From baaeac75b2693a176e5a70692d77fdcba371a313 Mon Sep 17 00:00:00 2001 From: Christopher Funk Date: Tue, 22 Mar 2022 13:50:49 -0400 Subject: [PATCH 1/2] Commit Temp File for creating patches --- ...-Middle-ExtrudedNS-VFold-Chris-Copy1.ipynb | 16147 +++++++ ...iddle-ExtrudedNS-VFold-Chris-Patches.ipynb | 39816 ++++++++++++++++ ...Net-3D-Middle-ExtrudedNS-VFold-Chris.ipynb | 16142 +++++++ ...D-Middle-ExtrudedNS-VFold-Test-Copy1.ipynb | 2582 + ...UNet-3D-Middle-ExtrudedNS-VFold-Test.ipynb | 16 +- .../ARUNet-3D-Middle-ExtrudedNS-VFold.ipynb | 7839 ++- Experiments/ARUNet-MiddleLines/cufile.log | 15 + .../BAMC_PTX_ROI_3DUNet-NS-VFold-Test.ipynb | 1879 + Experiments/ColumnNet/cufile.log | 1 + Experiments/ROINet/cufile.log | 1 + 10 files changed, 84382 insertions(+), 56 deletions(-) create mode 100644 Experiments/ARUNet-MiddleLines/ARUNet-3D-Middle-ExtrudedNS-VFold-Chris-Copy1.ipynb create mode 100644 Experiments/ARUNet-MiddleLines/ARUNet-3D-Middle-ExtrudedNS-VFold-Chris-Patches.ipynb create mode 100644 Experiments/ARUNet-MiddleLines/ARUNet-3D-Middle-ExtrudedNS-VFold-Chris.ipynb create mode 100644 Experiments/ARUNet-MiddleLines/ARUNet-3D-Middle-ExtrudedNS-VFold-Test-Copy1.ipynb create mode 100644 Experiments/ARUNet-MiddleLines/cufile.log create mode 100644 Experiments/BAMC_PTX_ROI_3DUNet-NS-VFold-Test.ipynb create mode 100644 Experiments/ColumnNet/cufile.log create mode 100644 Experiments/ROINet/cufile.log diff --git a/Experiments/ARUNet-MiddleLines/ARUNet-3D-Middle-ExtrudedNS-VFold-Chris-Copy1.ipynb b/Experiments/ARUNet-MiddleLines/ARUNet-3D-Middle-ExtrudedNS-VFold-Chris-Copy1.ipynb new file mode 100644 index 0000000..70eeda6 --- /dev/null +++ b/Experiments/ARUNet-MiddleLines/ARUNet-3D-Middle-ExtrudedNS-VFold-Chris-Copy1.ipynb @@ -0,0 +1,16147 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "b86771c6", + "metadata": {}, + "outputs": [], + "source": [ + "import warnings \n", + "warnings.filterwarnings(\"ignore\")\n", + "\n", + "from monai.utils import first, set_determinism\n", + "from monai.transforms import (\n", + " AddChanneld,\n", + " AsDiscrete,\n", + " AsDiscreted,\n", + " Compose,\n", + " EnsureChannelFirstd,\n", + " EnsureTyped,\n", + " EnsureType,\n", + " Invertd,\n", + " LabelFilterd,\n", + " LoadImaged,\n", + " RandFlipd,\n", + " RandSpatialCropd,\n", + " RandZoomd,\n", + " Resized,\n", + " ScaleIntensityRanged,\n", + " SpatialCrop,\n", + " SpatialCropd,\n", + " ToTensord,\n", + ")\n", + "from monai.handlers.utils import from_engine\n", + "from monai.networks.nets import UNet\n", + "from monai.networks.layers import Norm\n", + "from monai.metrics import DiceMetric\n", + "from monai.losses import DiceLoss\n", + "from monai.inferers import sliding_window_inference\n", + "from monai.data import CacheDataset, DataLoader, Dataset, decollate_batch\n", + "from monai.config import print_config\n", + "from monai.apps import download_and_extract\n", + "import torch\n", + "import matplotlib.pyplot as plt\n", + "import tempfile\n", + "import shutil\n", + "import os\n", + "from glob import glob\n", + "\n", + "import numpy as np\n", + "\n", + "import itk\n", + "\n", + "import sys\n", + "\n", + "import site\n", + "site.addsitedir('../../ARGUS')\n", + "from ARGUSUtils_Transforms import *" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "15392640", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Device number assumed to be 0\n", + "Num images / labels = 62 62\n" + ] + } + ], + "source": [ + "if False: #len(sys.argv) == 3:\n", + " device_num = int(sys.argv[1])\n", + " num_devices = int(sys.argv[2])\n", + " print(\"Using device\", str(device_num),\"of\", str(num_devices))\n", + "else:\n", + " print(\"Device number assumed to be 0\")\n", + " device_num = 0\n", + " num_devices = 1\n", + "\n", + "\n", + "img1_dir = \"../../Data/VFoldData/BAMC-PTX*Sliding-Annotations-Linear/\"\n", + " \n", + "all_images = sorted(glob(os.path.join(img1_dir, '*_?????.nii.gz')))\n", + "all_labels = sorted(glob(os.path.join(img1_dir, '*.extruded-overlay-NS.nii.gz')))\n", + "\n", + "num_folds = 3\n", + "\n", + "num_classes = 3\n", + "\n", + "num_workers_tr = 1\n", + "batch_size_tr = 32\n", + "num_workers_vl = 1\n", + "batch_size_vl = 4\n", + "\n", + "num_slices = 32\n", + "size_x = 160\n", + "size_y = 320\n", + "\n", + "\n", + "model_filename_base = \"./results/BAMC_PTX_3DUNet-Middle-Extruded-NS.best_model.vfold.UNETR.cyclical.1e5\"\n", + "\n", + "num_images = len(all_images)\n", + "print(\"Num images / labels =\", num_images, len(all_labels))\n", + "\n", + "ns_prefix = ['025ns','026ns','027ns','035ns','048ns','055ns','117ns',\n", + " '135ns','193ns','210ns','215ns','218ns','219ns','221ns','247ns']\n", + "s_prefix = ['004s','019s','030s','034s','037s','043s','065s','081s',\n", + " '206s','208s','211s','212s','224s','228s','236s','237s']\n", + "\n", + "fold_prefix_list = []\n", + "ns_count = 0\n", + "s_count = 0\n", + "for i in range(num_folds):\n", + " if i%2 == 0:\n", + " num_ns = 1\n", + " num_s = 1\n", + " if i > num_folds-3:\n", + " num_s = 2\n", + " else:\n", + " num_ns = 1\n", + " num_s = 1\n", + " f = []\n", + " for ns in range(num_ns):\n", + " f.append([ns_prefix[ns_count+ns]])\n", + " ns_count += num_ns\n", + " for s in range(num_s):\n", + " f.append([s_prefix[s_count+s]])\n", + " s_count += num_s\n", + " fold_prefix_list.append(f)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "2a1a38d0", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "4 4 6\n", + "4 6 4\n", + "6 4 4\n" + ] + } + ], + "source": [ + "train_files = []\n", + "val_files = []\n", + "test_files = []\n", + "for i in range(num_folds):\n", + " tr_folds = []\n", + " for f in range(i,i+num_folds-2):\n", + " tr_folds.append(fold_prefix_list[f%num_folds])\n", + " tr_folds = list(np.concatenate(tr_folds).flat)\n", + " va_folds = list(np.concatenate(fold_prefix_list[(i+num_folds-2) % num_folds]).flat)\n", + " te_folds = list(np.concatenate(fold_prefix_list[(i+num_folds-1) % num_folds]).flat)\n", + " train_files.append(\n", + " [\n", + " {\"image\": img, \"label\": seg}\n", + " for img, seg in zip(\n", + " [im for im in all_images if any(pref in im for pref in tr_folds)],\n", + " [se for se in all_labels if any(pref in se for pref in tr_folds)])\n", + " ]\n", + " )\n", + " val_files.append(\n", + " [\n", + " {\"image\": img, \"label\": seg}\n", + " for img, seg in zip(\n", + " [im for im in all_images if any(pref in im for pref in va_folds)],\n", + " [se for se in all_labels if any(pref in se for pref in va_folds)])\n", + " ]\n", + " )\n", + " test_files.append(\n", + " [\n", + " {\"image\": img, \"label\": seg}\n", + " for img, seg in zip(\n", + " [im for im in all_images if any(pref in im for pref in te_folds)],\n", + " [se for se in all_labels if any(pref in se for pref in te_folds)])\n", + " ]\n", + " )\n", + " print(len(train_files[i]),len(val_files[i]),len(test_files[i]))" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "c7d528b7", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "../../Data/VFoldData/BAMC-PTXNoSliding-Annotations-Linear/025ns_image_267456908021_clean.nii.gz\n", + "../../Data/VFoldData/BAMC-PTXNoSliding-Annotations-Linear/025ns_image_267456908021_clean.extruded-overlay-NS.nii.gz\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQEAAAD8CAYAAAB3lxGOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9ScxtW5emBz2zWtUuv+qUt/qryCjSOA3YCRJIgBMECMm9FNABCSlb9B1tWtlFQkJkwwIaCEPDAiELA5ZAyA2UGKTMjIyM+MtbnPIrd7XKWdAYc+/v3D/ujbBJ/84jxV3S0TnnK/Zee601xxzjHe/7DpVS4ofjh+OH46/vof9Fn8APxw/HD8e/2OOHIPDD8cPx1/z4IQj8cPxw/DU/fggCPxw/HH/Njx+CwA/HD8df8+OHIPDD8cPx1/z4nQUBpdR/Uyn1Z0qpXyil/vh39T4/HD8cPxz/fIf6XfAElFIG+HPgvw58A/xD4L+XUvqn/4m/2Q/HD8cPxz/X8bvKBP414BcppV+llEbgfwv8G7+j9/rh+OH44fjnOOzv6HVfAl9/8P9vgL/9fT9cqDJVzFBlSagtKiVUlO8lBSj5t/IJFSKkBEqRrCYWmmghOkg2gU7yS16hJ+SPT6iQM56UUPGD7CclCBFiJKUk//+uQwHHb6n8nwTKaDAWtIKYIHj5+/Tyf8XrKVBKy2sqBUaTrAGtHt8uptNnRisIETUFiBG0zn/U4+cBkpbXUyGC/61zivH7bsW/kEMZc7rHJMBa+X++L/JD6vFzKpU/HxCP9zZfTFL+rAmUBpP3uRjl9RSg8/vFSJr899/z0wkqOUetH8/leLL5viWlSFYRnSJp0B70EFEhQAhyelrOJ2kl9zTfv1ga+TwpoUL+FAqSUd9zQjyuiSBrJX3wNRKolJ/PYST5AMCO+5uU0tVvv9TvKgj8lYdS6u8Bfw+gouFv67+Dma0Z/rM/ZlhbVATbyQMQrSIWCj0lTBco7nvM/YGkFeFywbgu6c8N7RNN9ywxXU7oMpDuC5pXhuZtYv5qpNiMedEndD/KQ+Esqu1JbSd/+oE0jR+eKCiNrisIgeQ9KSaUsxATyU8oHHq5Qs1q0v5A2h/kV6sSlCbuDyQ/PT5sx4dKyUOtyxI1a+ThB/k5a0izGr+sUCFi7vawO8gDlX8mjROqcKjVklQ6+RzbPaSIqirSYgZao/KDnoxG+SDnpx4Dh1KKuNsT2/bxcx+Dzm8fv/31DxfQ8evqgwQzPQYcZQwYg8qfUxmDOl8zfnpBdBozBAlagNkNcHNPvL2T67+coxZzkjWoyZMKR6oLCYY+yHtbQ9IajCIV9hQo1RTkXgOpcnJNuhHeXRPy9frW58qfSblC3rdpJJjk5yUZjRonWfyzmumy4fCsZFwqlIf5G0/1Zo/edTBOpGlCVSXhckksLLr36NGffg8F1Z3HHjyx0HSXjmGlsX3CHWTTik6dNqFoFcmAGRO2jUSnUBH0lNBjzJtoQg8B+5t3+HfvAfi/xf/9l3/xhv7ugsAr4NMP/v9J/trpSCn9A+AfACzVeTo+OOXrLaZrGM8KpplGhw92MAPRacaLGjMvMK1H957yXaC408xfWYYzR3vp2H3umD4bOCw8w3lB+6xk8bWjvA8Um5FY5ZvRj6TCQVWgVgv0oSMdDsRDJ8EgJSASux6llTzAeWdVRpOCJk0j8WGDnkZUVUFdEzZbGCd58D9YCMegoqyVBVGVqPmMVJXygIaEbnvoetTksT4Qm1KClbWkrid5L68VI3Ec0SFAWZKGgRQiqqnBWtQ+L2pjIATZHcoCnlwQ5iXJaLSPqG5CN7W8DkCIpGEktS1pnEghyGdQGmWNZD+P91E+lrXoxVw+3weBIQ0jaRwleGmNqitUXUPhiE3FtK6ITmPbCbPtc5bjSbsDTCN6PoOyRBWF7JTdIAtbKfl3CPJ+RoImjSU5gxomWehak0oLpQMfUYNHDSPx9p54aB/vzQeBTVmLbhrUxRlhPSeVBr0fUeNEqgsICQrHdFbTPi8JpSzC+WtPcTdi2pGkNeFiIdmG0cTaorxcl/azGe2VIRSK6iHSvJtIRtE+K+nPNUnD4htPcT8SS8OwdkSjUAl8qfA1qADRKEKhMEOi2AWUTySrwIMegwS/upKgnL4/+/tdBYF/CPxMKfUjZPH/d4H//l/6GylC4WDy2E0vkWxZMC4MKj9TodBAxN169BTwM0cyBXoI6DGgO0+zH6neWeZvCu7uK3a/P6E+P3C4KuieWqobx+yVpXoImKHAdgX2tpMHY1kTL+bY7QJztyFutsSukzePQTaMnFYrI19WzqJMSZo8cX9A54VtwozYto9ZxQe7pDIGnJPFpGV3TJUjlnI7UmVRUy03MSVUCCRjUIUjhUDsB4gBtEEdd/OqJK0WkhEaLTviOKH2LenQyq6vDSpEVD+iagdaoUaP3uwfFyqg8rmlY/odQFn5mpo1HwSyD1LknOoS4mMKnhLqWMLEhCoL0mpBWNb4mUP5iLtrUffbx3MEYogoa1F1TYpRAoA1suNbQ6oa+dnJS+YwThLk2l4Cg/4gUzlmQpMH70ldRzgG+N/OdFICbSQAnK2IqxnTWUXSYJwBXUsq7xOh1IxrSzKK8iFSPIyYw0QqDeNlQyg0ySjMGLH7CT0E+suK7ReW4QzcHmavI66N9BeOqVGEAlybWP6qw77fMj1fs/2sJBaQNIRSfsa2YKdEtGAHKHYBPUUJFCFhOk8yiuGqodQa9Y0h+f+Ug0BKySul/sfAvwcY4N9KKf3JX/pLShN+9Aw/c9jdiAoJu5sgJvzckJR8wKnWhGcF1a3HbQdJc52syGRyej16qveRyylRbBz7zxw89cSziXapGM4t1Y2lvE8UW0NjNeXbhHl9iykLUl2S5g1qmtAxEscJOIIUOa30kRS0LMKiQNcVaZyI+wPKDqj5DO0scbMlef+Y/pMDh1KSCTSVpLg+onR+Dw3JapLVp88VC4MpDWbykO4lOKUolzdmjKRyEEEfOugH0jgSDy0xZyR6VktGOU3o3QFlDWmaSCFK5uCcXM+uI3a9lD8hPJZDxpD6vPsaI+l5XcpCPNbcKcnua40ssqY6BYZQFcTGEUpDLDRul3+nKqV0SonUyQagZrUEkXEizWvivEJNsrslpQTSNgaGEZyVIDFOqGHKQbU4ZSVq15J2u1yW+Q8f1Pzs5UBqLXo+Q61X+CcrpnVJtLLLT+6IB0itPi5y5nofKG977PWWVDjG9ZL+3IJSuH3AdIHxrGDzI8fu84SeErNXiuo+ys5eC6alItR3keZVj910jJ+esf0slxgJfEN+v4TtpN53XaJ48KiUmOaSabjWkwrN1GRcJeWMdfp+3ON3hgmklP5d4N/9j/4LETUEpqcVw1mDbSOmj+iQcNtAqDSh1NghEQ10TxzjylLdSQRWo5cHxBgwClKguEssgWJvGV4ZxpWlv0iEeWQ4SyStGJcKXxXMqiW11ej396Tbe0nXU5SH3aUMIP1WND1mB4cWTYOqKtnt9gfi7d0p5cd7Uggoq1GFk4/rvSwma1Fak1KSVk2UnRofTjtqskaCkzPE8wXaWdT9gyzUmIjDgN7t0UlAsdTlWtR7ed38nnF/QNWCF4CcNyDnCJKJxUTa5cwAJABUpZQYSknJ4TPGcEzDda6RNaANyRqp2Z0hlYZoNSok9BTQ/YQeA0lJyprqgrCqJX099Cjv5DxCIPUDqiqJTUGoLNoozBSkXMpZS3KW1JQkq9EpkcqCWNkTeKjHAF0nAeBY7sBj2aIUqihOu39YzQjzglALWKd9OqXZodT4WhNcvlyHnAHcH2DyxPM5/bkjWoUZE/2Z4faPHO2LSHKB6o1h9jrhuoiKYAb529ca7RPaJ/zMMi2X7D5xTHOFDpIF2AO4fcJ1spj1lHAHQRGHlZyQ6yRAxkJLBnKY0NuOGGL+vN+99P6FAYO/fShjMG9vaYDu5YxhZdBzg9sHtE8SEMZIdBpt5QbGQrF/UWLGgmIXsLsJc8jZgTGQEsVdj90ZinWBv9PMXiuGM0MowAwSYQ8vFf2lw326pr5bsfj5ToKB9+jZDJBFm9pOFhjHsuAxO4iHFjWOqKJALXJaPo0w+VMASdMowUCrxwey61HOostSal9rTjV8avPv5wWpikJAwHkNl+fomzt5uCfZQVFKUnlrBWQcRjieU1nI+Ycg53U88nvFtoWHjXQljoi5Npj5TL7mvbx2XZ06KWl/QGtNmtWksngE12KUoGAUKUoAsJsOtf0A2LT2hPxrpSRQ9r1c17J8zLjKQsqGmz1qL9c/+XxN8zXRhxKslQzOGXQ7SnZkNOrwQQD4APxTxmAuL0hnS2JV4GvLcJ7r+yQL1LZBUnyj8QsnqP+UsG3CdgG7GzG7HrRm+vyK/rIgWoWvFNsvNN3LQLKe4sbI7n8X0T4J6p8S41wTSkV00sUqtwo/M3QXhnGlcPuE9hIEAEIJ0SnMAFUX8bXGV/LNYhswfUDFhGkn9ODR25a03aGc/XYA/K3j4wkC1spO9YsDs90l5dWScV0QS4lgGmmHmCESo5J6a0iYDnyjaa8s+sxS7AvsIUh6fcz2pkD1tiU5Sauba8u4MCQtrbTdp5r+MnH4JPGgE/c/W7H+xYL5Vx169CSjSUZjuglzv3vcQb0XANFPkhUMgTQMqK6TtLKqoEwYY0jef1DLW6lzc3chjSMxJtQ4kpwTxN85Qfi11Lux62EY0CHIjm+NBDqlUQa5yV0voCXI4j5mLrmrcVzwR0RcGYOqa6m/rZVdfkoSpDDSASlyidB2JLpvZzfDQLjz6F7KH3KLNY0TpIguS7TWME2ktiN0veAQRXEKVNJiNY+t1LKE1fz0vviAvt1KgPjgeUkZnE3eS/CtSpT3cDdJiZFxiDiOpJRQ1p0CsL44J35yxe7TGUkrTBfxM02/0mgPro24KaH7nG0YeS17OG5IPgcaSM4Q5iXjyhFKTXeh6a/A14nyxlC/TTTX+VlMsqB9JeVEtMiDncD5hK8U04XG14rqNlEcIv1K010pQp0wnWL2OlHdy3mFQkmmvI+4zYjZDahhRPncPlYKnlyg3t/Ch52f3zo+miCg1yvS2RLV9nDocPsWu5zjL+ckp4UjMAVJ+0YFRhFzzez2nmQVvj5iA4qkDTpECIlUW0zymF2P7QaSNbjzOcNlJWnZlDgcNO1zxfA8wL9y4P0fWR7+dMbiy0R964lWASXqkznl/Yg5jKjRY3Yt8WFD3O/lgyR5MMNmC9t9Bg5ldz/iBsBpd+aIvmv9iLpPUj7gCnm4jZbMpx9Iw0DcbGVn74dThFdJsos0DPIaGRE+ff+Y8iv9rfOk60gftPSUEfRfaS07/v4gi3TypGlEuULOJwOkaZLPqofh2wh708iDaI0g1PNGAvnx97RgIrFyJK3RwyTgndbyO5NH7Q6kQ0v0XoLGMSBlIPDYZVHGPGZcxyxqDI+djeMzVjj0i2d0P72UTSOAGRLjyuArhfZQbQKmi6iQiJUhaZv77shmNAZ0L4E2VZZQWaal4/DUMi4VsYBiC81bcPtIsY/oKQmWoBX9mWFYKVQQLkEsBOlHQXDCbZltJHjvXxgOLxMqJZpXivmbgD1Ewge7v20Dph2lhTx56brMasKyFP6BUpQhwv0GvicZ+DiCgIJ0vmJ8OkePM3Q7ofcdapwwh5HQFOgpoHovSK/RpMISKyv1ZgJ7P+DuErF2j8Sg3J5JzhAaS3QNprAoHzG7nsJqfGMp7wLV+0jzvmT74Nj9AXz62Q3nf+cNf/r2Kdt/OmfxmyQ3VCW6JyVmcLiDx9QOkxevtJwe+/iknB0c0XSXSUUhEA8teppkJ86cAyCTYZI85Kf6+xGLkB0/p8UxPabNgd9qBR0XiTu97jEQfLgwkvffqo/lSXHoopAMZZyA6YOfnyCZb703QOw6CSBFgVrMYTEjOZtBQk0sLbG0wnnYD9JD90HKBh+kzDoGrtxW/LAMIkYYRykFQsjkHbmWKXcoVA5CKTwGAOWsgJpKo5oa/2RJKDVmlM8bncJ2keouorz042OhSTahByk/Qy0ljZSkijArCJXBN4bDM0N3KSm9beWPZJjk0kBjiZghSepvkPdKMKwUehCQ0Pby3r5SdJeaYQWhFhBx/cuJ4mGivyroLqWzVd4M6NGjuwm1k10+ni/oPlkwrAxmTPKelaK4cQJgf9RBIEHSmnFpBSCZWbioKB4G9KZFF5bhssb0geK9RDyVEtpHtJUUP1YW3U3obpI+ce9zXaqJTUEsheThl9WJiaVSwrYS1fUYmP9mwh0abGt59/4Z17+354+ev+FwWfLnnz2j/nVB8zZR7BMqKaZk8bUlPW1wuwvc7QHe30p9npI8yP7ISIvyUH/QQ499OHEJpF2oUWUp3zzuaN4LIi/9Sblcx4X7F67jt4HLY0cApR9fa/J/8fdOv6BPgSK27V9Y6Mdg8S2E/YPzSCGgorT3iAn2Hal04GpiaQm1we4ieteRbu/l+oQPspVj1gS545GDwuRlweeMipjkd0KAokAhASDlEiVN0o0x89m3SFhxNcfPHFOj6a400cDsXaR+16N7z3heEwtNKISmmhpp8x1BOJVguCwY55phpRmXMC0TeoTqFkwvOFUySNxUwmRVh3x9tCD6oVD0ORuYvw1U1yPDuWNYapKRsre+geWXnvqXt6SmZPt7S6JTzF+PFLcd+JhLiUS8WDJe1ByeS6uxehCQcVxq2iuNL9ec/6aBzXff9o8iCCit6T9Z4CuJ0EnLQumqhqKyFK8fqIaJ/vmc4dkCtxuFKFNa9BTR7QR5t0lWk5wmzQvsbsDcH9CTh1VDmBfSavTxVE7okDDdJF9TivK65WyqKHaO7nrBP3k6x78YmJ119LWnv6ooHjTlg6Z4SFSbyNQoNj9yaF9R35wxe9VJQPIRtdlLm/C4cyNttCNrLoUg7cZjC6cfBI23VurkE2021/4fvMZ3BoIPjpQRdjJIKosufJvRdzy0QRcONZ/Je4cI00js+kcQTj/utKdg9gFZ6NjbJ4QT2YfyHD8viE7jHgbsq1vi7V3OMI4nmvGJI3U6pW8FPaWVYCyzWe4a9IKRALppHrGFzKlQ1oJz0jqMcq3ies72b6zYP9eMZxCdpNjFRvAjvyjpL2URxZw8uUOiugu43YSfWYaF4fDUMC04/UzzWlE+JEzu2/sgPXEVwfaJ8iHgNiOhEQBgnCmGMwH9zv9swG4H+icN00xTPUTcPmIPHvdui9ruic8u2P9ogRkTs2969BQItcstZOmAtE8dh2c6E5YiZojsXloOnyZCFSkf1LcD928dH0UQADB9IF4azCjILEg6NVwW+PkV1dsD9Tc7/KqClNCd0DZD7VBWQDs9BlKCqBRYiJVD1yWq7dH7AbQmVBaVQHVeAqmR4EEBsTRCybSacispm/aa6aFiXJVQCrHRzyKhVIwLRdLys+6QGJeK7ReGw7M59U3ETAnSmvJ+oni/R232UrOPE9SVtN0mL3XvkVocg6TWxzQeHluVppCfPxI/vo/Ce6K/RuIwPJYJx5aYVmCKEwYhmYUW/KEsoXDS3fCldC1yNqKqUlL9fiDu9vJ6uVOgS2kjxsszYmnQux42O1Q/SoakFOp+S7i5k8/54aH0Y5sS5LMWxamzoZcLwRUmL+dqLeZsLZ+z/IAPMHmoSulUOCHyJGMYr2p2Lx2Hl4pQJsyomL0TVp5rPf2Tmv7c0J8JW8+1ifomUmxk4fRXsvtPM9nl3Q5sJ+0620WhtbvckgwSAIpdpHnVSvvQWUKzkNbhBBd/OlF/s0eNnulyTrKK6tZT3sjmodrccfjRM4aLEttFbOeJpZS1odSn9+vXmv5KYQ8wfxNIGjY/suw/iySXKO4MSSf0xTkcvnvtfRxBQCvcQ89MK8a1JVpFsZmIhWbSlmmmmX6yoLwXgpDqPartMYcOdbY4kYXUFIQB1ypiIUIkxklSbqXk+0cSjjPSm+69dA1qy7iyTM1j20aAoEThwQzqW1+3vQA6yUiwcq2kYCRObaKpUbmPW6JfFhT7NcXW4+57VDsQm1KCWJBsRvcDat8Sbu+/rV8A2QGVkJNUUUj6m9K3dulT9nAk+RyPD6mxSgsV94jyxwR9L6Sig+AwJ2FSFu0okwNEVZGairRs4NmF/FzW5CQj1zxUVoL0fnhk+uWyIvXDo4ZCqVOg07MatViQFo1w/rsRHraoYUDN56RFI/iBD4/dibI4cfiF1zBJUFNaMoPFjHixoH9SsX9uGdYKt4fVrxLFNuAOnqQU49LRnRtCCeVDonoIuL1Hj5FpbvEzAQ1DIV2q8kGwITNEYqEYloZQkduHUG4j9dtBmJAZhPZnDdEqZm8G3PUBtdmLcOhiSTIK20q7Ufko+MnlknFdEiqDSoloFdNMyD/CRBT6cH+uGddQbARn6M40m98Dv54we0P5zsj3HiJpt/ve5fdxBAGl6J7P0EEYVeNCVF5u60Eh7RQDU1NQLgzlw4TVZHApEmsHTqM7hT70ECPaCxElNaW0TIYR1QnhJBQFwRmSVeghoIaA1gHbCZ87FOoE7oDwCWwv6V4oFLGU+q++EdqnyustOtmB7UEisjxAWhhwUdDhaWYJRUOxsZibHW5zEHZd4YirBlYNpqlJm+2JbQg8Ao0RtLWyKGMiWfsIghmDPgqbjqDehzV9xiZQGXuwOXgWQgmOXS9tTD5gNYYAqpBg21QnkG9al/hGC+gJmFGug+kDdjM+BpPeo/qB5AMxP4i6aeQ961pOa1YTm1LwAx8FV1AK5nPSciZkJJDvjyMMg6jzUiK2HUyTpP8xkZIXenVVMK4KpkZ29+ZdYvZmxG1HYmGYFo5xZYhGSD/2WjoCx0CeVP5MCZKSdnKxe+zbdxeW/lwRaiHyzN5FyrtJcKx2JDnDdH6Gn1lCpeV7X9+SNjtS4VBNTWgcvjGoIKzXlOQe+UXBuLL4WnAD10V0T96EZHPpL5QErnuwh0R3pdl9EYlNxN5bio2i2EF5H3E7L63X7zk+iiCQCsf2C4vtZLEFp2ivLG5mhDk4JrqXEgGnmcHXmqo0FM6gtx02BPz5jOm8grMKtxsFULzZkJqKuJqJoGTfYYYR3coDl5yRlNFJy8ttR0wr0k5fG6aZ9GyPtE4zSEsp9iDKVSW7RuczC04RGyeKuF7IG2Ym7DU9yUOmfG4/OYNaNZibLWw7CAHjHGneCD+9adAhfJvogrxnHCe0FvahKhv0QhMPreAOxx1RC8iXfK63rT3V4anrpFvgnPTQnUPN5+ijum+5YHq2YloWuTyCYWnwVT6FiOxKpRI6awLTG9wh4Q6GyioKjSg9D+2JgZhikvR+tSTNG+KsIhZG6lut8iKMwgCcScBRPqK3LXS9SGKnEZQm+V7EUkajZispFwAKRzhr6J5VjDONr4T8U+4CKsLh04buQhML4fw37z16ihKcS2Ha6SFigsiDp5lsDK6VDWqaaYalYppLaTD/OrL4ZsBsR8ifY3wyP2WVZkw0r3vc6zspqeYz4vmC9pM5/dpIW/L2kUU5nVUcnjlCCbaVrCMUiuFKMg5fyeI/liXRwub3YLoaYdIUN4byXlFsEtWDdCVUfOycfNfxUQQBEkwzRX8BbqdOJx6NwpcG20eKbeLwQuFr0W2raFG+otwPqPstru0x6zl+XTGcl9jKUrwKcH13Er6k0kmf2otkVYHQS509lRQ2k0AKDbEp6J5W0ttdZ7nmKLuBChAc+MrgpigP5BAwu4AuHdGKNNYMQVLlHHAkIHj0VoCtuJgJT36cBEy730hfHk59cAHzvn0TYz+gJo8qpA5WmWp7SuGPP59bg6pwmMVCMgMvgppTn0JrWUSruexgq5LDs5LuSjPNZVdMVh48XyfJkow0zlUCt9WYXurk6naS2nZzgD7jH0dmYAY8AVmstWNaFfhGUi7TR2xnRG2XkvTkx3yuPkiH4MmlMAH7USTQi5pQO0Ili3hcGsaFBG8zJnSuProzw/ZTEe+oALM3icWXA6YdmdYVeoq4g4hwklFMS1nEUyNUdT3l9qGVDm51l6hvAs03wg/xq5KQfQEkQ4LyIVBdd5ibLakqCU/XTOuS/QtZ5O4g6j/TB0Jl6Z4WtFeSXc3eS9BqLw3TXMpQleTcbQ++hvZFYnoyoUxC37kMWEtm4FrxJjBDpLjrBOj9nuPjCAIkLv/xyN3vF7QvpOVSbCWaJYN0DXohYXRPEu0ziEYTCocOC4rJE69vUYeWYrfAziv8smJ6tsIaTXp7LaQX56CqRPdf5/QTHg06QkL1w0kQo7cts7bB7WaoWLB/qfBPQAWF7cD0iqQdtVEUD5nVOARUN2EykUmNXpRt/SBp73pGqIX0Ym620PaPKfsH5BZlzAcp/QeAX8YFUkxCQ/aTMAXzoWfNqeZXx987qvuUEsQc4OifkAOHqivCrDgp8HRI6FHy4lADShhr8+tsiIGkquU2Mfumxb0TclRqOwELi0Lu7LFNakwuQTKleZywtx5zcMSsoFQhSuk0CWJPkGCANUKOqkvCupEMzs6ZZhZfy0Idl0pQeyMKveZ9pHwQzUl3qZnmKu+uUF8nZm8nUaIuS/QYcVtPdJrYWGwfiHlXt50QckQ7IIu8vpXU3z30JKsZLuuTnFhPiep2RHdCTiMm/JMV41nJuDT051qu20YCAED3rGScaaaFtCOrI1nomcHPpfwwnfgHhELRvkiEz3qsC3Bb4W4N5YNCj/L+yO3C7TzFw4Bqh29TxX/r+CiCQKgM/YXl/J+NmNHx8PuJaZmIVlPfJNyYBCDvFbFI+CcT46VhfGPxVcVs8YTZzy28eU+6u0e3FcWuIlUFqSyEjdi2IttNkXT3IOj8co6/XKCKLLFVordP44TqA5DQ25ayn7DtjOqu4uGnlu5ZolsmOR+niNaStKLYaYyaTgBlctnkwlnY7kibLXozQ58tT+YWKYNyJ/Qe5DzhLwB6p7aZcuhCA+5EnpGfF/FQUuok+JHXtCduPkeJbu73x35AeY/qeuwwCh25LDD7ivqdCGl8o/GlRoeI22WWWu/BR/S+g7sH4UZkQFEVTlSBcAI0dV1lObNoC7h7EPmvMRilMMYIS/G3jwxQpqogrprM91CEyjDNDVOjTgvc9FBvE811wB4C0WUw1yLZ3SZhWyj2kVhoDi8Fkyh2Ad8cMSIhDWFB+YTtRac/LEUYVN0HytsBPUX8vGA8K4hOFIN2P2HaSXCNyZOcZXwxo79whIKs/ZeMyQ6RkDkJ0UmWZTrZwQH6tcY3OQAMUoKNS8Xhc0952eE7R/xmxvKtLP5YQKiEOWo+yDBOfJnFAu6/e/19FEFA+8S4UPjSsfg6UG40d3+k6D4J+EZEPxI5E/PfaA6fOc7+xh3FF57rhzm7X8y4mF2ychb17lYe/n6A+4fc8ioe619bwnwGw0h8e42936CWC5Gegizcqhbl3VFIEyNm01EPAXcoObwrODzXTAuY5uBrxbiyuIOhvilwO3GJ0b1HITWuiivxBTgcxOFq3pCqQnbtnC4rZx8JMuP0beFQ4aQW7roT4KfqWhSIRzIR0u6LbSvuMmVxau+dfqco0EfjkbKUc8rsvG9RjgHrLM5mluMxeMxzcMmWVcoHuZ7na3CWWOYediY+qlG8H07eBkE+GzGJtiKbtKS2e+T5nz5v7njMG1JVyv+jCEmSEQqyOyTqm4Se4knpNzVC5gmFdGnkGXvEMnwlXRsziDVZOnoyBDGt6eeGca4Rua6A0tpD825EDwHfWMa1xZfS8mte99LXb3soHKkumZ4sOLws6dfqRE4zg8iA3SGeLONUVExa3ssOwjfwZe5G5JjoKxhXCX/uUUXEfz1j9WuN2ydCmaRENmA7CXTlTjocdicAarhYiMz+q+9efx9FEFAxMX8d6M4Nu08NzXXk6v+buP1DQ//pRKgNs1dCznGHxOwrzUO4QH9+4PeeXeOf3PJn5y9JZs3Zf+hJMRKXtYg87jZSClgr+nnvZeHkWlwdOtLNnTj3NA0sJN30q0r0AbknfwIQgXIj7LGpUfhGdqFxCf0VtE8M5b2IlJq3uUc+isZdrZakuwfZkVNEqQVpMRO+QgaN0rzOzjg+uxy1sjjLkvTsQvQKdxsh3Oz333YuOtJmvXAPdCbOHKnHKvseqEbKIeoS09SEm9tHifC3XmcSnoDWElS9l2vo7KNIBaRll1th41oYedpzAtlsFyQ1dvYUQNTkZXef5cU9TCIUOhwyxdpJzz/LoNU4EecFQ3ac8rWkzvWt7MChMgxr4e8fd39h38niI4LyklI3byepk5US2bGWnvs0t0wLgz9mDyBdqkOiuhuJRnN4WUmAUFDsE/OvWuy7DWm3h1mDv1py+Kxh+5lhmmevwUlkwM1NoHgQIDJpJZ2DUgBvOwjNFwW+kdLmCAD6JhHmATVpyteO+q38bLTSjjZDOmUY5SZQ3g2Y3UAyStqThXksDb/j+CiCAECxnSi2E1Nj6S+ENPT0P5zYvbVsfwyHlyKdLDZyYet3iukw55++rzEXA/Pne979FxeQLln+uhUixZMG82KJu+sx9zt5+KpSdqXdAeqKeLVGnS2FyNMPwk4DoquZzmvUFDFDyK0rcW0hi0nMqBknYR0mBf25ZriA/gmgDCoVojzc7AW0y4498SDcf7U/CK3VOZHC7naoaYJ5I6VCU0FToduedGhRPtK/XBJ+ekZ1/Qz79kGQ965/ZAMej5hr/cVcWo7DKMEiJuJ2h2qzJFor4Rx8ILGFR1bg0ZDklKUcjTVLJ1ZgRx5GCJjSYUrDNDNMDUSrKQIQheYc5xXTosgprlzPUMoDaoG0nJ2ESycD1Sg/l+qScVUwLgXxN4OQdXyt6S6qU02ugtBulVK4XRLSV45Vto8UdyPu7YPoFRYNGCGcTXObSTsTSUEsH2W6KiXap6XwPvKO7Q6R+k2HOYykusQ/X3N4WbH93NA/EV8H20r6P3sdmb0ZMa1Q2n1tTkY5to2YAVAw1Vp6/ytZ+NFCconQCBnDbjRuy+nzqChBTY8ifCoevPATfCQ2BX5RSLDJna7vOz6KIBCdxtcWtxmp2h7XildgKDWrX40svtHc/8zRXyamBZhOLq7pobgzhLamsxW4xN0fKnw9Y/XrgWIzMi0LupczimUhRI1uIDWVkEw2W3TbkS7WpPUCdbchbbaoYcR1A/7piuGsZFo6bBfQo5B6XDtijRhmlLVlmllsF1h8E+kvCnYvDbGAcabpn9ZU6Qy9aQXNX68w87nU7l0v8mmlpGdujDDxMhtPWfvo3lM4eNhRWk33cs7+0xrztMLtAm47YG53pNt74fx/KAqKEUpRI9IPJ0+EGNMpUBzJO7osc789Zv1DEIn0CYtQqK4Xm62yBGdkkQ65bBkmbGuxnWAh2oPtROdxpHSrmLJh7IQ+DNiQlYb577iaozLV9+QCrSWldnt/Ar70GMAo+nMp48ptxLaZaZqJPaaP2P4xMKopiv9f4aCpRIBWGIZzRygUzfsRuxlkoc4doRBm3pQDjDtEdBDwrdhOhMYxXFWMc0N3qemeJqZ5xLaK6laowdVdZPZ1SywM3Yuaqc4KwF3ETAJc+koLtrFQDGciHEpAmEeYe5g07sbidh+oD520aIttYvbOU972qE48HKaLmRig5PZm0grXfuTdgaTh8MxSzLX0TPtA/bpjPK8YV5ZiF7j8xwPtU8fuM01/FRkcuL1CjxIQQlLYQWqj+z+A7qpi9etI80ZMRkJl4GqGfTDSdx7Gk05fK0VaS2pOjJKu9z226zH3C8YXS3xloBGLL7cTGbFqA2bTUYCw4kKg+DIw+/WC/nnDsDL0a4Ov59TXBe6mzcpGA+sFet/KLr7bE3c7YdgdU/HJC324bQU3OFsDoN/d0bQD/mpBLGTXHtcltjDYwqFv74kPmxOXH5Bdz3vohHN/yhhOvof5PY9+hpOXAPHhPTqqGjsrSH2EVBpSJjihdVZ0Jsq7EXswwo3wkVBbQmnQYxRD0fsWtdmd6MpHNaCaz6AuT8pD5YOUazGiuwG97zHLRuTkrXgE6s7ndBexn3ca2wmYh4akBESMVqFSwlRWMotsWR5KSe3Le4/ZSzBLRknH4CCvY4ZAKA3T0uQWInRZSBRKCTrjAkiK2TeK5l2kOATcNmA6f2oLitJQev/RKQ7PHNNCfANDDeMqEusICVQdSFGh7xzVncYMZPt8aaerAPVNzEClBIA4L/CNlE+hEqKa9onyfqJ6/ZEzBmUuAHQXmnFeUm7iKYrrKZ7Uhc27iWJn2L807L6A8TyggsI9aNxBEZ30sM0I7aeB9lOY/7rm7M885f2ImgKhEZsuvTHQdqLRD/doH+ByDcs5qs2XxRrUoaP80mPP59KLbiz9ZYXbTSfhkeoG0v0DAHHy8OYdza8rmqdXDJ+s6C4d49KhhxKz7R/tsXw4+QOCKPdOdlezGqizYi5C2wmYlyxqnHCv7iQt3x9QywWxqaTOziadaH2SHROTLP7fsj3/7SMdNfk5AOgq+wp6f2r1xUMnGc1uj24a0qIhLCt5+BToMcou309ivGQ1MWVmYkziz19aWM6z4CcKPyJICZAKS2hkdzfZJFT5IICbVgLcimyQpJQ46AxepOWFkL58ZYilysa0QBJAznRSWsisCnXy/y82QhOW1+RkGKJbAxpCU+Bn5pSFjHP5/dOubKHYQfFKDD+OzEM9RdoXFe0TWcT1jdCNh5Xh8EIznCdCGQmziF5McktGLcSMrWXxpaF4SCRz5GZkq/EhUd9G7EHERgD+rMbPhLItAKnCHSLl3YC92Uv5+z3HxxEEhsDim4HdpyX9mWJcGMqNRk8G10lEjk4xnMnpzt4FzGA4PLf0TyPjswlGTXljcPtMtdwahrPE7qee/tKw/EXN2Z/32K3YcMX1DK015s17wm5HuL3DTCNqPpf0dBihLIhrsdFWvce1I+5aQMf+qmJauGwz5TCTJ+33spuDWJS/fkcZAiqeMc2tDFYZHNoHob1GYbwJ2ac4If9pHKXNN2tQq9njoIpjrQwCdqZ06rnrlERifTTtJPfouz6bkn4HMPQXBEjflg2f9ALZWYhpOrUW096jJ4/yHjNOmKN3ohb/BnX0+z8Eiq16dAs+uiIVTq6BD6jFTGr+s5pYPgqJktXi8kteAErKAhUTsZJgkawSj8kpYh8GYuMYKsM4kx3edunUBfCNORF5tE/YXtibvjJop7EpYY5Cs5kjFRqilKtu7/GVoTsTnYHtQYxCpC43uUc/LDU6iKHIlLsM8zeBYuOJRtFfONpnmv4q4ReRVAWUjcS9wxw0Ra+o3ynmr6UNe6IK14qkpYVohzxXYIqoEBlXBX5u0KPMlgileCQUDxN20xNnFeHJAl5/9/r7KIIAKVH+5hZ3P2P3kwX7l4b2maLYQCgMeq4pdhHbRaaZZqxlMMP8G7C9pr9wjC8m/E8m/OuK6kZhRph/oxh2lnGdePiDxLSoWf3G0XzTotuROC9RX7zAvLuD3B5L+704+hRSG6spEJYVobKYdsLcHzDfXNPsF0yXc8a1Y1xbyqbAvatQh+6xR2+E/WV3sqiTFlqxygsBZ2WnqytZFFphh4l0v5HafrNFHVrBC5KwEvWsyV4DYqGlrCVVheyWKREv1vh1RXIa3Qfs7R7z/uZbLceTKUf+9+k4SowVj+7IVQmzGpXWsmA/DCbWSEvQiDhLb1sBGY+IfiuA5VFARG7/pcUM7UfSTgbIcLEmzArpviQB4pQX3AAgOiO73NG6PMF4VuBrjRkktbe7ET0GohO0vdxE9CRBzc/Mifasg6D9uk+EQuOzm2+xDaIZcAa/KCXDmx4zh/3zQmYCGEH6k+JkBZ40WWEotmDNuzELjDT1G/FCGNeOfm3orjTt04RfBSgiBIW9LqmuBUOobyLV7YR4EWjMKCWL7SXIyOARARSLzci0eMxSQimWZWZK2Fbu6/Bszri02SPhu4+PIgik3HbS9zuW/2TEdmc8/MQxrAX4ML2otcyYcK1IdH0lqHx1Kww+PRUMTwI8HWhLR3FvyOoPiq0iVNA9Tfja0p0tBDh8vZG21flKerxwmlSDNd8yrlReAKq4nokx5vUdxf0We3kmVk6FkbbkUXTj7KPzsVK47XBKZ0Pt0Eq6EAwTab8Dne3HC4daLwXR73vp8bft40JaLkjrBfHFBaqT3ju7g7QRjUG3BaY0BFMwLR1+cYZ+sRIK7iTZhOm9CKpyl4KYTgajKVt5qfkMVYvuwi/k8x3t2k7OTVo9ovv7Sc790EHbZYuv6dE7MIqGIWkDdw9SngwDqq7RVYlJcg4+ay/s8IGbkREvvRQ5jdfSQ6Q65HkTg3j+pawctYeAmSLBPYJjIH1016W84JMIex6khakHsa4blrWw7XpPdIbuacHhqTAOzSh9eBGD5celkmEgZoTlV4H5bw7oTUtqSvyiZDwr6C4s0UF/oegvEv7MoxtP9Bq9s5R3itnrSLGLlLfD6bqaTpiKx/JnmguLsdh4ivuBUJoTpjHNDMFlMdQ+EPIkI19pQvGXr7+PJAgoxpcrind71KGj+fktejzj/m+U9JfCiCofUu7Na1wrWUEoxfap2AIo9GQYzjRhFhjXMXu4ZSLOJCDiuE5MSxjXFZdGUf3qRoJQUwm998OaOQNUuvfoVzcyCKMqRU334goGjwoB+9AJM9Bq/PmMo5/cEXmfVoI02zZgxnhKa7EaSoe518TrW+J2K5z/oshe+ha9cNmePEobcd7Qv1yw+8QRLTTXK2a/2aO/eS875Tih9wOxsFBJu2586mifKvwciFA+wOxtpH4/4h564fn7IKXJlK3Qc3Yi6b1YbMWgKR4ee9DJGfTgZdccpXY/Tm96vLlRjFDysBSdpH2nityxiEnITs7mQCtqzPGsOKkz5XWkzlZjzFZfEoxUN8m8vbLALyt8beX31/akIBTxlwBy5e2AOeTBI5kDMjyb0T6rmbLeoLqXQSH9uZEFPgiaXxzEL9BXmnEhQqLoZBbA8itP/dWGWDq6H58zrizDQjwHkxGhVX+Z8JcTrhmJUcPBUL3TLL6U3b94EJ/GUIlZTqgN41KoyjFXSbM3I3Y3EGrHcFHkRS4lUrkVR+7+QjbQaSZZjh6ke/J9x0cRBIgQSsP4dI67M6h+orxuWVaGbbK0LxLjGVTXmsXXmV/uIWlxaCUJ6hqtwvSgJ3NycdWTIhSJZBPBJTEpDYrDi0R0JevlM2a/2Uv9WhYCrvW9ONQo6aEzTjLEcxikpeesKOGairCossORDMaIlWGaZzVeHgZhusg0M+xfukyiSajosK3MjbPrErdsMEdX3U7+kHv4aj6Di7UM4ShM9vCH/lIxrg3t1ZLFs4biYUSFiF8UhELacWaMuA6a95qxFyRaRQGzQmVQqxKjRIKdKuHxH4e4AHnIZsYhtPT+tVEi4waOFuNijnIgHucwftDpUNn3QBnx+ePyDL+sMO0oVmNGE85mTMuc2uZxXSnfQxXTI1U5O0r52qHHgEmJ2Dj6JzXDSgC7I8nmODeg2EkAqF8f0LteJOZKQe04fNKwfykW9MVG6m1/FA51kcXXk4CGSerwaVkwnWsxC00iUa7uxer78JM100yfpOiiJYBhLjyX6uWedTXSDo72pmTx55bllwF3iJg+SE8/37ujV4HgGpFyIzMO9OAZL2r6M3tSt2qf0AEplZ8ZhjO5z9qLzLnciprw+46PIgiolERJVWrSZSNDE7qJ8nZgVilCbeieJvY/CnRXmuWvLMuvPNX1wLgumOaaMQeA8kHRXwqaqkckQEwKFTWxSIRK2GN6gmGduP0jw7hYsvyyxz70kLKiL8hEWZVHXR0voWpkFEy8vgXANDXm6SV+VZFKmQIjI6PkIdJDwN3vKG4s03kjHgO1JjjFsBbMID61pJ+U2H6dH9ZOJtq0nSj+UoKdBB8qi92NzN4ponO0zxS7L+DhDwzJVKioUJOivFMsvhIDSxWF5Th/JXVvqPTJCy+UhrQuUTOH6cVefVpJvY3isa/fy2dRIYkM20chCfmQZyNM8sd70T6M42n4qJrNxAewKonnC4arRoCsocCMjagsrQSM8mGSVurkBTdRSkDah60sxLpGLxp0VZws5MdVkS288+LLqL3tJcWu37SY2x3ESLha0V/VMsymkN2yzEafYm0nO/fs9Uj15b1QnRcz4qqhe1az/dwyLkXGW1+Lh8I006fytNiJpFwCiWKcKw6fBS5/fEfjJjZdRf/1gos/UcxfSYCxnXSJhotKFJVKnIdtH2XS1kY8EP2yYveTxWlcmR0S7YXJugEJfiFLNmyXjU8PeWLRX3L8cwUBpdRvgB3iY+pTSv95pdQ58G8DXwC/Af5uSul7pAtyJHOcIyBWTaHOk1+nQHU7MSzF2ilU4J9M3F0o2meO9c8Ny1+3FDuDW4pR45gUxYNiOE9My4jphLQSTcIMKjsESWmhvGjl9y8V0VSsfq1wSqGnhnT/QNqMKD+TDOHE7JP5e8oa4nYnPflhxF2e46+WoASZPU6RVVNA9QPc3lO8SpSLOXE9P4lPxrnO2gPFfgFJGcy/tMBtF1R3wgM/MsH03U4s02sZJjp/rVDB0j5TdE1CXw48Pd8ydyPv93Pefb6kuDa4g5yL9vZUz0YL7iBtq/p6QicgJOzugH1o8WdN9lkAUsIcJsxDVgmC0HqzOjF5Lyq1GFGuOJUAui7Q52vh/juDr90paCejUC4RvHALTBdxuwl736L6UbKRoy2e1rCWa0uepaiBFAypdLjdhGs9wQlPQCUxN3H3nVCRhxHmDf7pmuGiYlpIm1HFRPNeAMRY6NNwEdVHitteAlxZZB1AJXqRudT/xTYHDUWeoC3W4OPC0J1r/FwG2/RPPFef31NZz9uHBf7LOWd/Bs11wAwRk41ux7VIqo/6hvIhUN306IMA1v2LBe1TJyDmPuJLzf4TwzR71EVEI5vbMQMxXaLcRZJR7J//bhmD/9WU0s0H//9j4N9PKf19pdQf5///m3/ZC0Qr7T97EG6AytxqnEH3geWXI0kXoAyDgjQL+N9vefuioLuas/75RHE/UjwICjusNG6n6S8N4zqevN+mmfARbCtS4GOPN5Sw/1SBKln9CqxSIiB6yHMEM+vuKMNNzqKCyzMBsvX15MVEYyajxPUoardYOWnzFXl0+F6MT92+xO4q9LMZSds89UYCXX+Z6D7zdIuBGAzxpmT2quLiTxbM/vQate9Qqxo9RRZfj8zeaaZfCqj18Kzh9ScevZigDPiFPuKj+JmURcrLrjt4GYLhq4L6NuAKjUsJdegF5yjsowdCPwqpabN7FC8dZcHZCfh0PTKIqdark3gllpZpaRlWUty6VgAs22ZTln6UOYIxkuqSOK+yrv+xtHEHj73vUK2w+mIjA1zsThaKya5HeorowyAYjzWEF88IM4evjXjzqewCHBWjU0RrxMevF+6+3GOZKtw/renPpC53B1Eh6gnKXTzxDkKtOTwztE8Fcwpzj5p5qmbkshpph4Lr12vKN5bFe2Hv2UPAHiaxOFsXTAtzmslQbDzurpcSrS7wayHNqSh4yeZzS38lhrzlvWTASYMqEK7GANW9UJunRrP/RJ0G8XzX8bsoB/4N4L+S//2/Av7v/FVBwAhRqDSP9FB7mE69YbcdWf8ioacSMIyTwi8Uejax+VuRwwvH6heW6l5qn3Ijf7tW03Wa7lkkOLAHAVj8LKGCoryX2npcKcYlcrFCyfIrYFWiL6RHr7tJauBhFJnxrJZswDmSznbhRp+AQBUS9iDEHGkLFqjSoRppPaU8O0F1I/VvJopNw7gSnjca+jPD4Zlj/2NFedmx+MmB7bOKr581LL94wepXE2YUKarbe8p3e+pxIq4amuuG7YPFNxJY9ChuTSrIpKbj5LToYDiH8Szh59BdWuobQ7l26GkuLSorgJMZErZ2WCc23unoX3CclXC0MTu2GI0GI1Jp3ftHi3dvREbbynh4sxukS9GPeTBqOJm/jKuCWMr8SaEAJ9kcnCE8WRJLk0duiWQ7FuakBjwOqQ3zJX5RMM2N+EFawQmO/v+2l1q63HjcZpLywijMJLhDf1UwzrR4Co5ZmlyIq7E9BGwfGBeO/TPD4ROYFpHUBOqzjifLPb233DzMUd/UNPeKYisWZeW9fH6A4bKkPzfS2++R9P+ux9xtBTSt8gBXJ8a2w5lsFEddgm0zAUuT8bCEO0hQ2H1qTsNQiu3vDhNIwP9FKZWA/0VK6R8AT1NKb/L33wJP/6oXsYMAff25EIWaG3kAi/se03tiYbGbgfWfB1xXs/1MM64EK6CJ+AvP7VJR3BnKO5XlmpI2FXsotjJdaJqlkzbbzxNdVNTvE24nQWFYy1zCpEvhoncCwrEqMGe1IOn3uxORiLp67Jv3g4hpnCXM5YG09x3mYZf98Z2w70onwJTW6FaMRe12j61K8Rp0lvqVZfXnhukflbRPZhyeLdBzKFJ2lHkqAyiElirutOlhiwmRorIsxfND0PPIabGYw4SKUQxXFmLIIXp2hQqCfiufF8uJUkwu0QwqioWXyq3A1HZZhjxJFmBzd8EYIRlVRbaANyRnxFAzZ3q6zUNXC0dYNNmRRcl8gtLIzMkpC7aUPGmxNGJkqoRgdnRtOnYwRCkowKjYhanHOZZ5BmBS4gHpdhNmO6D3rSgknSMtZ0JCqh3jWUFSgsYnK2PuQslperA9eMazgpu/aeleBJJL4CLz85Yniz03+xm7V0vqbwz1+2xJbo5y4sB4VrJ/7hhXUqqVD4n6/UT5/oC+34u8ei3DRNonYpSajul+ko0zaZGxn4RTUbCBcS0ZbvmAUJh3kfSXrPR/3iDwX0opvVJKPQH+r0qpf/bhN1NKKQeIv3Aopf4e8PcAqmLF+Z+29E9K2gvh27vMA69f79G7VmywY2T55xNmmLP71GacQBNtIpYwrWVijNvKgnYHQ/M+Mn8dqO41h6ea9qX0m91W8ID2mURolLDAQgGHTxR9Z5i/VjRvJ8wgJJThssbMC+xDLzPfJn9S1VEWpLZHHTp0IyaXrCuKhx3h5g7Irrp1LeQga04Cn7jdwWYr16Vw6MUCtZyhpkj5LrL8ZYFfOKIRr0LtkyyCdhRnXh+kDr+7x2mFHucyO3GXH3KlRITUj9D1uG6G2cuob932JGeJjSBKMv7biygoi3qS0ScAEJCAlu9HGscT9z/F+Di2vCqz2WaNr2TXtn0gGi2aA6OF7mv0yUM/FPK3dAQk+MRsZqoz4GqGhNtN6FYCmp6kj5icke7MrGSsCpKRtLp4GMShyGRL8MGjNwcx/BwGYozCr1iviJXFL0qGc3dC9w8vCrpLkfbaDur3svPuvqi4/wMFP91TasE2XOFxJvCbtxeYrysW7xXVjQSAqRZrPJXg4Scl3RNpH7o9zN6IC5LpgzAUzxeMlw3tE2EXHg1T9AjjGqaFlAKim1EoD2iY5lLOuI2ieZNobgN6SPiZpr38HWECKaVX+e/3Sql/B/jXgHdKqecppTdKqefA++/53X8A/AOAxfqTlLRi9qst9WtH/7RmnGv6c8O0WNG8qUSXHxKp1My+3GO7hsNTJ2YkM9F/x4MR7XWdsAdFd5XoLzTlnWb+JrL+1URzbdi/0ExLqZ1UhGnB6cEzo6Cc4yqxs5poCxZfDdjNAEYxXFSM6yXV+w6zER79aQBH4WSA5sOBIiXxvrtao/ueuNmdLL2VD/KzTrjeHId2pkQ6+DyzL6JXc+KsRIVI+Xqf62D3mPYGCSKpKlB2LbLib95gbkrUYiGEpf1BfACm+cldmNt79CYPRU0JFSPmuMDzwJLTvL9MIop5epGZz2T2wDEQ1JWQg8gsw1r0BhQui4Bk0apEli0nzEEIPmr6wBHJGHQjkt5YaKa5jAC3fcLtRe14LE+SVoRlgR7ycNacAZBt5cvbXkqhh0OeQiVkNEIQ3MF7MVzJ9u3x6TntU1l005zcrRBs5gguV9dibBMt3P2BYfijjqcXGx4ONd2uIiWYDo7x1rF4pdBjwvYSuLpzjZ+RsxlB8fUkAaV6eMxS/FwykH5t6C/l+U02Udwrphn0TyL6cpC9Y5s5HBqSTcQ6YQ6a2ddCObadCJH6c8PhpcbX37+O//8OAkqpGaBTSrv87/8G8D8B/o/A/wD4+/nv/8Nf9VrRKPafVlR3lurNntkvB6plxXBRMi4M2y8qisuC6jqTKWqD3U3MQ6I/t0wHTX8pdZHtFNNC9NfFRi7e4bNI/0RRvXfM3kUu/8nI/oVj95nU4Cog0TQDRrbL/IIKDi8UU1Myf2up3g8U9wPDZcVwUVEYLUaYgN71qPFAmrK2fvJoZ8U198UVpqpI2102/DhAqkWNt5ihnRMvg2kU85Ms5+X9LdoYMQFpO8EnnpzTfr5kWBlUqqnuPHY/CbhWFbIQs78ATUV6doW+fRD/gqKQToe1QvmdyZOhhlFEUMN44geoppaFDqiul9T/ODVptz9Rj9WsgR9dysIpXU7jhW6djMb0XhYenMxcdTeJf8M4ySj2uiIuavH4czpzPxLlJlHd9FmJ6ECDaT3RaqalIzUWtS7F1Tlr9VXImoUIqc5g7iQWW8lo8RCAU5Yznje0z8SohCTPwrCG7nkgFQl3byhvpf5unyi6LyZefHpLYQKvbtZM20JKr0FTXhtmb2QgSXAqt4qlSyDSd/HM1IOi2CVcl2nNVXbSzl2i/jIxXcg1c7eWaZXwLwYuzvds9hXTfYXucytxEVGTonpjmH8t3aTjANT2ynJ4qfCzhN3/bmjDT4F/J7vaWuB/k1L6Pyul/iHwv1NK/Y+AL4G/+1e9kJkkYu4+cQxna3Hkeeip3gbctmA4d/RnhmlWUT5IfdOf18IC20XKe0+1MWw/s3RXgn5PS5kS5Laa8lYzzRP7zyPtS8X8q4LVryeKnWb/0jCuyDeHk6+8OyRsJ4ywaam4n1uqM8P8jSjOks0z65XszPqsonioMW/vSdMku641eTHkdFwpSaGPU4jaDs5XwrWvS0Gzp0l2UWehXEmqP06PY8tu7qmNIukl3YWhfWLF4hvAalRhUf10MvvAGtL5Sui8Wkg5oSmyXDaIe1I3yLj1vPOTZxKkQtqAKkZpzUXpZx8diFIWQYVFKYKq3OMutoHypj8pCVUue/Suk3MKQa5RCGAq4rxivGhOlt/FLqBG0UYkpUiFEWXirs+eA1W2bc9ioEllvwKFiopUCX3YHCb0fn/SKKhZI9TosiCsa8YzmUugEtQ3oovYPxPMwR407o0sft9A+0nEPm/5/GxLOznevD0j9VkdOeTn7EFS9milG3XkLFR3kin6SjYd00kAUIHsDgTDWjOsYVolwpNRWrobR2gSxcsDF/OW67sl6V2JVpDK3Em41TRvZPgISrpAoVC0Twy7HwEx0bxTzF/9DhiDKaVfAf/yd3z9FvjX/+O8luon1n9+4OH3ZvRr2XnLjaPYBexuono/oKeCw1NLe2Wk96lg/9xge019G6jeD5S3E3d/WLH7XDgAYREIZx577Sg2CrdT+Cax+zwxLhxnPw+sfzHRXVjGlTrVnGRgzQyJNJDnHSj6K0WylnIjTDySEqfbhcrjqwqWtRPn3ZSI8wo/cygfcW1e4JBHbk3i8DOMqNVCnIgrd1rAKspsgvHpXBbHEGXRdhO698x+vaG8rxlXR/24BTw6GdSYsYo28/gv1oSzhbx37vun44QhyGj+B7p+pUhVSSpF/6CcQc0bAUSVgqYk1k40FbsOvR+pgNIIt/1oGHIaNR7jaQBMmiQ952xFquR1/ExEVdVNf8oaZGR53tlDntWwkDkFsRRWod57CcBjkHkFXp1UiKb16AeZe4CXkd2ME6zmdJ8tGBcyWcj2Sfr1udsiRihAEsCteyJU32IxonXim+sz4qRJvUF5hTlobCdu0/WNLLSpVthJQGjtOVm32xaat5HqIYihaYRxZdm/kPmIw3kgzQP0Bt1pYhkpLnqc87z9zQV2awjLgJp5uC9oXmvqawkGx3HnoGifKfqnAbfTzL+E5Zcj5fsPqNy/dXwUjEEA8/V7zqYL9j9eyHy1M0kL3dyIKcJ1j/Ylu5eO7lxT7IQJ1T1V9JeWZamZveo5/5MOM9Rsf6yYlCHOPf5C5rjZvcLtZTJLKGHzI8P8GyVIeyfmjkfWmUwb4tQ31h6CFcdXANtqzJQpwEnRn8nchHFes1pYyjvpXcdC49eWcX1FeTtgr7fCsV/ORZAzTuIJMIwnXYJfiy8cRyBwfDQBCbXYc5v9gL3eYe8NMX8NOKHxgPDx+wG2B9T5Ar+qT0YbYqhhgFJq9/VR3y8uz7EU153QWKa5vF6x8d8y5nRDOCkGdS81vmqz63BMsviMdDzQmjSrUb4QA5KqJJUmt9smCSj79mSrpqaI7qfH6TxKQZBZBCLE0iIfzpOoAZlEBegx4w1KFIrHISZhVtI/qejO7clDMGkpBaNVjEtN90TScRKi8z8fqcsJYyIxKrSOhGAwBy0OV73C7WQCUdIwzpWQdxIMa1mQvkmUd7Ib1+8nuaeDp3tR8/BTk2XFAXTC3FlUVPhFQC8mpsEyvatRgL+YICrMm5JZxh3G1SNFOFoYzhKxiNRvDctfR+Zf97i7Fr/+flDg4wgCR+PPQ8/sa4NtK8alGD76EsLTgqIxlNc9qzGy+6ykP5fpLsUm0V0pbv5lxf55w9mfTyy+GtGTo32q6S8lpUo2Ma0SyWncJrsRFbD/VFPeKlwnDDDtJZILiSiPmUaygWiAnBUkDWES//jF155ia+jPxXh0+7mlXJlH3fcoXnjbn9SoL6SO1z5lY4pEsRnR+15Sfy8tNH9WMi0Mpk8CQj60slsfr5dSkvK3PZqZtDJ9PLUsU5HtvCrJRI7TlnxtTi23lAdpWiV2XckIk8/PskFH4vT5xR0X7H4UwK3LxqSLGeF8xrR0qJBw20LmKj7sJONoKqanS0IpLjfuXgaT6N0BDlmTUJfifuRkzmCyWlqGAQlM3SjeA84S59VpcKxW6nGq0+jR+wEdZceL6xnTeSOy5DGSCn0SF5kxtws1yKxI8fZrnyemszzbMSqYT4L420ACukOFui0oDgo9ZWHbfcJ20J/JvbdtIiVon8icwOgS9XvF8jeB2avuFGT7pzU3f2TpXwTxFNhbyntNNInpPKLqQJy0mIzMA0wKe+Mo74XopjynoSTJwLgWfwK715z9qaK59lTXI/ahw581bH5Sw3/w3cvv4wgCIQhw00jbyu4lHTa1PslAfa1JT2vczrP8smf3ScmwEr52eQ/dMwEAQ+WYfxNxXWL2NlJsFd2VZlwlwiLiFxHQmD6z5hZJ2ok7mXFwpIOi5AL7jCNJv50T2KNCdhnOBijNtae6Twwrk22nHl1vi12iuve4PXRXlt2nDpNJPGaMRFfhSuHJJ6Ow+5HypgNqhjNLKBuKdYndi0kEUaYnpULGlvl1RWgs9uCxdwdpBRoZQ4bR+FUtizSRh4qInDgp4QeYwyipfuHwq5pkFONcPBvq99mZJk8TSj77DoaAms1krsMUcFtIhSY0ebxbHkwaKydBxSpUF04DRVIhfAmQ1P/o+MvRLag7GpgKgzDVhbQ0Hw6U+55YFcTKSht0s5dSK7dq/ZMV/ZMad/CYnVCQozLSgkta7k+RF89CDD7GS4+qPdZFwpgBTCe7f9uW+IPDbI0I0JSk9uWd8PeHpdCEj5Td4LIDUAflrWLxTWD29QE1evxZzeaLioffh/h5S2EDw12NbUXo5lcRZh5dSPYXosLcWcpbcScCTurKZGFaJvw8Cvnt2rD6ZaS+EQ6Fbif8quLhpzX95UfuJ3CUwIqRhUJFJ9x7xanNkrTsWuPKYg+B2dsJ11r6tUaPCfVK0T9RdM8j01Ix/1JRbsWGyQyavlN0aKZVYFoH4l4CgekkXRsuIqFW1O819pBIlkwjFTZhqGUCj+0lIwhlBhGNcA3GhaO6jxT7SPUQTwovMlAzrC3VzcT8m5H+0jEsZFa9qo0QSUol5J+sa1dTwG0nfCNjtWRyjaN6qLBtzI64mVF5CPhaM6xK3NpR3GfzkKP6L3MZoiYrMCN6P8q0pexadGwlum6NCkvMIC04e7MX+nSeY0jhUPPFyQMiGYXuJszd/uR85C8XDBeV9PwjuL0XxWA3gQ/E9VxKGHtkGCrhD1gpf8w+PPo7gDwbgygk8QGsQQN6kC7DUfqMUnJeVlPd9Ni3DxzHzOneMV7N6K6s1OgNJCeuvv7M4+YjV2c7ChN4t1kwjbI0psHCzmE6hfYKu1eUD1Bl0VFwQk6z+XSTAk2CXlEMifkbT/W6JVaWzR8sePh9KP5ww49XGzZDxfvbJZjEdCYmI8VsJHhD6Cz2xgnNeJ/wtTxzxUZYjt2l6GNiHdG9YvaNZvF1EPfi3C3xq5LD84LuqTptZt91fBRBIBWWeLGW3cZLD9keDMOZy2YOj8w3FcnsNWGClTtBXVUE/RpU0Axnke2PFc0bzexdFCT2RqG9pm9t1hPIA6A92H1GlY3MD4hGApB45knUHyrEE64T+jGAlxJUGFxO6kFfmlNNqKckQpDbwLiytE8dxS7i9rk3rNVpCnJ3bgiFAD3mEB7NNrOJRjQwXih2nxtMbzDDkdkHZjCQZBBKLAy2c+hRvh/NUVGW2ZIJ9GQpl47ioUR34omgrIBwcTUT/v0gIGScl6TVU7n2vUdNXlh9MyEX6SnbsXdISl8JEcgMEb0L0rrcdygfiIsaf94QmszvH2VgiK8Mocqg4qBQywpTWPS2k7kRfS8MxLMlaVYL2ejYbixs9hoU5qSakmQubS/t2qoknM9oX9Tsnxv6KxgugsxSVGBXI2fzjrOmIybFq9sV00OFGgQkLHea8g7cTnZ9Mwr4Z/J8QlUqVJKA7mdSn5tB0Pr6eqK47Ym15e4PGm7/C54/+tk3PK+3/Gp3wfXdEmMi1J44GLQLjK3DvS2obxXlg3go+FqeLydjDxnOcgAoI26jad4oqltxW3atRw+ZkfjC0T1VDOtHTcR3HR9HENCK6apBTZV4AGbyh20DSZs8XDIrtTJfPSklo6JCTo/yztu8SRQbTX+ZOHwi2vD6RgglZkjMXkN1q4lO7KHGhRBCbCug4ZGWmcg93iqrxh6UpF5Nws8SelCZVyDOR+WdZAlmSCdaJwrGZfY2QDKC3ScmewpIkBB/OqGUJqPozx2F07jtKHjCkHA2Uhyg2Cl2n2mGi0gsPhC7mCTvoROYxOgiadQQczALCndvKB4ECyGJhLZqNPYg6j3dFFKrPikZ51K/264EhQzjyKrI4iBmmUI1FgpucdfJBKda0H6Vkqged53YnPeDNFyqQoQsx3uoJQBMc6nxbS+yWhVE+Sa9sDx5uKmIhSM2jjATPr2eIpbMO2h7kTQ3lZCkljNSYTl8MufuDyzTIjGuA/aqpyk9SiWeLXeclS3v2wXX+xn7b5ZUbw3lgHzWbWLxjYDSfuYYzlzGFGQT6S4N3YXOGoxAson6taXYClEIreifNzz81LH5WyP/6u/9Gqsi/683n7F/aDBFYOot9n2BCZC0o9oq6mvhGiStMs4kvgBJi85lWor5aHUtlGR3iJTbQPEwEivDw89mtM8kUPhlDnj/KQuI/mMfInQR44YwL3MKdxwIGVFR5LahEOAFQKeUUy9Jy0X7rghOPOBsB+NCMS0lXT+OcSb7DOhJbnJ1De0zzbRMDOuE2wmN2A6C+g9nEEv5HbdX2DZjBbVcWDNI3T8todhAvY+YTiYUHbnqycgCcl0iFoIVCFOPvJiOoGT2zXcKP3PiRdB6bJ/NNEOkemjYvxDXnFDJ/LljMEpGACMzZKVcma+Rl1kNtpMdTeepPGZI6CCW2vowYPKYL/WkpF8ZcdrJHRCybiEUmmIvSjgVRD6bnJFsYJwwh+4xLa+ErKOMERPWbsDsDLo3xMKSCi0SXqMyyOvFOAQJ8nFeocNaypWs4NTtdMIwVMjzCbJhalrOCKtaXKEr4VBIqSYsUnU+UpTy+i9XGwoT+PntFQ93M8xNQX0n916yTKgeopRkc0f7tGCcCfI/LE3uIkTiesRWHp0U6lVFsZVMQGz0HfuXiu73e37vk/e8PSx5e7/A9w5lIn5bUFwbbKcyziS7vfIy3ap7mok+O0UshcUaKuHBVNea6lae83ITcXtP91yGn3RPEtPao+fZwfiuoHll+L7jowgCMvpaYQ4+U4NFHRELJROJMwUzOEUssl7fiG5ApQ92U6vQpcyf05Mgt24vIgu0pPXJwriAUCV0kP5u+ZCEIVhLiZCM+BK6vcyKG5dS+4vmQC66GVM2spAbPpxD90ShvWH1q+nkt58KLUDcIA4x7qDwdZ5M+yAzFlCSxh9NJKPTsjueidV6sfFC6tm3zO721K9mhEZQ/1haYrb/CuUHDkDZnlomJeVyKqWT1bb2iVAqppkg5tW7hLndYYeRZpqjR+nQRCP3x3URO8gu6LYy8ORohRWdxt32J0akqqqTAWpqSgEpC0eqCsJcvBBIon+o38o04GPb8YgThMoQS41ZFjL0ZfDiBPzmWjwXQ+A4s0DmMqyI84rhrKS/MByeacZ1OqkHwzxidCJGxawauW1n3LxbYu4cxQhul12pvEz0sdmJp39S0l08TjUe1gm/DrLAdMLpyLQvaH5ZyPDcfcw1u2b7E0iftKxmPb96dwmAUgldBMLBYXaGWEK3jOhRXIbNIG2//ioRCglGfp7oMwvWbjTNW3XyOiwOkpXc/Y2K7Y+ljVitewwwtA73dcnyl1Buw28vu9PxUQQBAF/nSN/57CHnKX2EC+FS20EsopMRoclRSONrfbJ9Ps5vV1FS+WjUKUgkLf+2O4nUw1rSqvaZ7PBmPGYIsrOPS/KcN0nFdJC6+riomvcjzZt0mkpb7BXtE83hhcJMJYvfdJje42clfmGxfZbQHryIl4zC9B69H6VdphThasVwUREqdTKrOHrdx6ZAWZEfq0OPzT35tG/F0ENpAe2Kgni+wC8rUVlGUa1BtnBbWYITBDsUQo0elpZxMad4+thLNl1ktpUujW9sHpuF9M9Lja7sKXM5Tg1GL4VkZLWQfiYvgphZSbiYMa0cvhbHJdPn+QSbVgxCmvJbXQIzCcClfZR0/9DD/Ya4233gkCyBIGVQub+q2H5mObyE8cqDTuh9bomqhDGReT1w6Av6rxYsv5Khnr56bBeKw1Fi0rKZ9OfynIRSUmuqAEEROytl64Nl+VpR3YlQKCno14rDC4U/m1CT5uHNEj2buDjf0w4FXVuASYRFAJVw95b6rWS501zhZ6BHyRD9LBFmETUqqveG8u4ogZaNcWoU+08M7ScBe9mxrkd2h4r0vmL+tWb2Op4C2vcdH0cQSIIBRKOhFouuUEn6Yg+BUksN60uNO0Tp2SsRp5gxMtXS9lEhnaiTMpaa0w6jJ2nrpVqifbFNaC/agmSkVEgKzCQZwymQOE4DTdxecAlfafYvSupbT3k3Mq4cSQk6e3hu2H6h8WXD7K2XSTjI7n/subuNKNtUjEIjrkpUP2De3FGNS3Sm0AJ5/FmQz9QUqNqJDt8HWXhGBnSkzVYQ/sqjjcb5iJ4V+HnBtHBCJ83jro5lSnTCeQi1+BWaXiyu3S4xeztR3PTo+z120dC/WDx6DVrFcFkIXrEXAZU/a4TUdJywrDWqF6VlcEumZR5UGkAPYlWGUkIk8gE1eEw/CRciT3NSXRYyDcPj5KQ8G0EZg24aeHLB8Pk5Dz8p2P0YpicT1WJgXUzs9jVxzB4KNuFHw81vzpn92vD81wHbTowrQ7TkAae59IlybfxMzFmjE5GO7jTmwQjBKIkStbyXIbkqptOA2v4CxousX+gN5XnH5fLAQ1vT7kpS0KiDQU2K4kEzeyMgY38hz6w9ZLxqLc9L+d7QvJEN4fgMRStuQYeXifBswNUTU2/Zvm2o30qpcForJluqf8/xUQQBlWQXT1YR0SK+GQLT8rFVqGJO69E5I8iqtEBWYR2jeE6HXb55uSYGuYhH/CBmowtxJOb076QQkHEU+WaoxYRkWkgXorqVgDDNpC3Y3Aij8Vjfz94EhrXGN4r9C4vL/m5icSbDJ6aFwW3DiTmmYhJSTzugDr0oEBfVqb8e8/QdGYgaMkkmgC0Il+Lco69WqNGTQOptK4vJdJ5kHSFnTJCzppAw46O3H9mUonoQX7vypkNvW9I4ojaRKkTiohLNRCOf4TgIxG56qcu98D2OcwTTfg/WYoyhzOzEaW7oLx0qOtw+4LYWu+2FLBUjqSxEd5GtyxSQUkSdxrRXqPmM+OKKzc8WbH6s6S8jYS3U3mfLA2dVxxQNbV8QE5hOo/aaYlPQvEvUt15AtqUEABWO48Fy+WDAozBd3hg6hRnlWRMPQskm3V6yzGkmbMNpJjLfsPLo2lM3I89WO2o78dXDmsN9jeoNdpfpyQdF8y5larFYl7tdLllX8tw0rzXNu5gZjblkMqJ8bT8J6PNRXLjf11TvDS4biKgoQLSeUm5hfuRBQCyiRmJtiVafKKHF/YifWYZz0dL7Cqa5xu0EmDpaRR091pQSMow5WtYv5XeON1qHY4chmzI06qQgjAWoCVwrPxtKTqoy00lKOFxEpoWiulOC1hqyTttR3k3YfcQ5jWtlDtzJyipLYMuHbCh5ZgmX4jZsRpODQcCElCcTIQi5gjAzTI242/qZ1K3N+4Ly3gtFWMmE32QVqjCZ5aeYFk5Sxv1E9WonZdSslPbcGE8kIRm2UdBfyFBOM8gDo3fCYFTucZCImbyw+2IC9ShCUtmTIKwbAXm3Ipnm8lzS/ELua3QKX2adRZdHdeUJuuPlDADTC/5BStBUMptwLNGLOXFWM7yYc/f7BZs/9Mye7Cisp9aJZdWzcANzN3DTz3j9sGTcF+ggzL7Za2jeB8FCspGKzLFI2Ewc86VknCALCC0eEyq7H0cnwKA5SLs1WmQ25mUUYLYKmMXEohloionzuiVEzS+vL+kfKlRrcDsBl90O6luxxd+/kABiOyGnHbGM+VfiRTjONe0zuW7aS0drfCaBJhwsxXtLscnnNiSiI2sgZE5HsZsyRfy7j48jCKBkYmwY0c5IIDAaPQWK2x4dEt1VceJjd08U8UFj23TiCAi6nsFBn6jvI7ZX9Bcy6nkq5H2i5cS8ikaQf9uC2cgN8JUYcNpWou00F9chexATiGmRaJ8lynud5ccK3xhmhaK68xS3HXqw6LksHjOIkcaxD+4OHtMHppWTADME8c3zUfThpejwo9WnoZnJQKgV7bNEbCLtM019XZ6YY7YVz3mXZ9MdrcaPXQnVDXBocUWBndeyw05eGIDjRNlU2O3yNANQ+UiqnBiL5InDKCXy5N0Baw22FucgEOZiOGsY16WoMc9KGece0remCjWvWma/zOh/7QiNlRFaM0NwinIThHbrMnsyRqaV+Ot1l5rdZ+C/6Pnpi6/4m7U0zX3SaBI+aX55f8HdzQK9cZheUQQB/Jo3iea9xwwCrvlaPAXNEAVcjuoEmB4zTj+TzUElSIU64U1kRuCwguFSUHgS4CLVaqCp5OEaveHdfs5m1xAeCvSgRbtyEKORcpsIBew+lZmEIFyUWIoXxvxr4Rr0Z+KKdez8dFeJcD6hbCRtCoo7ETBFK8+suCxL58cdpM3ePinYf2Lg3/vu1fdxBAGjhAKaWWXaalGROYPSAXffy1CFy0LQ04Wk28f01WfXFtsJYBKtErn4IGOdkhbeQH8l2MDRnw0QwKeB6r0grtNcXIm0P3IQhFEoAyzEoyAU0iI0vSLUie5Z5PBSUzwUzN44mmvRdCcFdoqUN63szhcN/VVxsu4SdWJBHRLFN3eolPDPz5jmApDpKaKiogzIDq80+x/D9PnA+FyjOlGy6UlRPBjKO019Z2jeDLi7/nEeIIgngbOk0om8+TgEJM9d1L96LWYmZQFNTWwqoXGHeGLkKRAlHgh1eZsBzadr+suKmNPPYaXxlcOMSRb2wYOGUDuZNAQMFxW7T2Q8lhklFRfWY0N08nmHlebwWcI/H/j8xS3/udV7ajNRas/Bl0xJ85vdBV/dnTF+M6N+q1lk6q7bJ2H1taIQPPJLfGmY5hkbUfKMaC8lpR2gbyQAJA1kzxfxl0jSkaqlVTquI7GSDSIVEV0GgtccuhJjIiFohocKe2cpJkRodJDdGQWHZ8IvGC4DqYzgFXZjqN9omveyobVXImiKTn7HL2UTUL3Bbp2Q3FLu3hxkM3Ct2J5rLxyZhxcluy/E//D7jo8jCKREqEXHbfYDqh0w2SoKpGdsDiNVTITG4vbSEktKlG31TaR9IsYQKiLsuUahkjyUxSbh6yN5QlL64j7rv704xA6X0mu2nZQCw5ksfEndFMkKcwstfVqVxTWmUySj8ecT3WWif+I43FjqdxLtk5URXjYPzTR9wje5Fs+jt8azAtMv0V+/x765R50vSaURtxwgOkN5C+W2RCUrllPzeCpXgFO9f7yeetdKBuCsTExyRuTDGtSYe+vjJAafedioKoqTDyJGEea1EHyCzBtgEKOSuKxlWOimAx+YliXtExnUWewkO+uusmnsQVNsrKgwC8SnMAm/ITqVmXeCtwxLxbiW7CVaaL+YuPrkgcvmwNwNHHyJUQkfDVPSXPdzfvHmCverivUrUEHaa3qEcptOC2E4EzDPV4phLWCfHsTZx4zye0LtViLKyUQv5RHizpAYVpIJhkIwIj3KRKtQJ8xBJNfTIlCue1JSTK9mNO+l9tdTLkN9ZpaeSf0/XAbUaiT1luLGMHsNxVZIQsNSCVDYJLHPKyTgVG+s7PijZK7JHtvWkg3aVgJef2bZfa7pL3J3wX/k2oFjS9A3luQ0VilUO8h8OfdYy5h2RI8eU1jSXrjmyidMOzIfAsN5SX9mcs2XBT9KFmx5L4u8N4pUJsa1kJCKDVTX0io74gBmBHcQh6LhIorBxFbhtjBcIDzvKICTPAxgbx1hHk+STpk7pygfFMVOU+ystMWGQHndfpD+iymp8jJSPF7fojdbGUJalWIdZgxqFPegaOfoUdx1TTZUNVPKrsARt89EpUpsyRgnMRRxVqTLk5fAkIODmrKTkbMi6rEC+JHVeRhFwkiaD/h1TfekZGoUqAZfigPueCaZj9tJByAWorcINdkkM4neIgggpjJrMinBbXyTadnLSTj0zcTL1Z6QFG+2S6piojQBHzUJ2LQ1h4ea4o1j9o3U19NM+Bco6C4U0dkTVyIZ2cH9XDQgxUYGeJAyXyJ3TbR/fA7KjbT9unMtFnRIeVDeZQxhJuUGwLQSsc9wV1O9tSzfC+noiENpn4PQhcoAYkStRuJgaH7lKO8FZ/CVPLvDmWJayOBSNYlpSbGV7FdF4br4mZQO5UYmLJku4uvspflcMZ4H0tyjDha3+R15DP4ndsSI2Up+7htLuGqwXSmKuENPmonLbdLS7jHZZx6jTvp55aO42fiScWnEj6A5oqOyM5gBzCA3NLrEtEjZQFKAGrfND0sjIKHda0KV8LOIn0P9xjD7RtGNluHlSDCJ1IqyTHvQDxrlFW6fJ9dqRagUXSFCn1IdWYSVTJXZD0RK4rxgeNLgKou1Rtp94ygEG5cdijOwIz12DSlzGPqsRZiiDO1URylwA5eiGnH3HfphL0ao1oiBybyUsqByUn8XVrgJUxTLtBhRh0AyhlQahsuaaWFOU3u6y2PgTCQnIKYe1WmXVEFstPw8Uny+4/eurimMF4be66VoNRovSr3RYCrPs/Mt53WLJvEw1LzfzukeKtmVXSRNGrW3Uu9vFMtOBDWzt164EEpatVL3587QmNt+ZLLYnTr9f1woVDhyryXlHxeKaZ5kiG0hNt++kYBlOk6ktHGFjMGbc9Lzl+8s1Y2g88lwYgHqSTLT/eeKcRmJTcQsR8KmYPnnluJBfv6oPQglDJdReAReYVstepUE0yxnUUXKVPfc9ZoS01yz+9TQPUuEZz2zRc/+tqF+ZVh89dGXA6D6ATt5YCaGi0tHKJcUty2qn/LAjyA7ZyXiEuWDDKrQYoIhrjaBAomW7aWWiDqH8j7TK1sh9YQyg0Az6J8EhiuoXxmqG4naw1oJPz+B6TV+GWi/mPDvLPW1ImnHeBWIVURPx4k2gJLAIvMTwB0fiAJ8qbEpMqwd8WWRd3C5BFOjiJ85is8bZq8vcbcHmd+XLbpSacQ4JEn3YzgTHnkfDPYgo6mL3SOB5GSO4sAMJfNXDdXrnYwKqwsRCYEYgfiI8oLIx1mJr3LQtZpQG4aVoT+Xa+Z2wqgrdhBG8I048cZZxFe5hx8Vdq/RoxhzLJueuZPAfT5rqb4QXCFETTc6RmcpCs9hKBiDISXF7e0cfV1QDJKey8SoPDimF78+2yGGMDsBG8t7jz3oPGFISg0V+BZZJilJ/ZORhU16NI+ZZoL/uIP0/6MVYNbtHhWjvlGPrcBaPm9xb4Rq3sq1mTK/QH2YFV4m/MqDjegqEG9K1v/MCKaVuxKhlp8fV5LCE5W0N6cjk/VIhhM1o5kEBLRDIjrF/qVh91PP2ScbzpqOX319RfPLguWXkfrG833HxxEEsgQVrbDvt5hDdZKajhcNthX3mOTEiea4g6m9WFZpIKmCVFrRog8eFQpUMKhkODxXDOfgtobZ68TiVaA7l755dQvlreHwaaL9xOMbQ/1e0kUdlNwQA2rQpJln+nzAzwvKG035zjKtIqGOmPaRsouSmxYKaSdWt4JKT43wHFSAWMG40qcH3HaSTm9/pHn4WU35UNO8C8y/7rBv7kmDI14uxFVHSVo9rsSAArKIKIJpNbFKJCMaczXJAzOcl5QvC+q7gOnEQj2ZrAT0OfXXKvfOs2lKkVusLnMqxpSNUiTg9ReyaPxSaLTOBZRKpKQYmwLVScvy/c2Su80MYyNaR7RODL3Dv6/RoyKWkXEWUCYLizqDezCnNP5oMKInyX70JJwGQb/zFKDqkbfgDgGTBV6+zN4OLgeSfO72ICBydy6U4CNhrHmjqG9jzngEr0hGNpJQy+4fC0QLstFUtzKZCKRrMK4/8KAwgi35eSIVCcqAthHzTcXsK0W5FUPS/kJwqVjIDp9sQg06S9dlbF4yYiX+Ia9FdCLS2tx9phn/pZa/85Ofc93P+Uf/6AtWPzdUt1GGndwP37v8Po4gcGS9GeGaqymI+UUeLBFrK+0rLamuPXjMps9koQitcKUh12HtiDmMmHWNyu4Ru8+h/czTvVDMf2No3kZUkhvXXAfKjeLw0jIuE8M52H0Gj97KAzCeQcBCn4hNoH8i9aDbaEKZiGU61aOxSJhO4zaZuGSVLB4ngUDQaDGcNEcrs9y3Nh2MTxP9VWL3hWLz4znzVw22k2h/1Cq4rQBF0UmWAkARMRc9q6ZHK+gnyzhaps4xnVt2CfSgKW+t7G5TLlly6nx0HDqqIUUglcdap0yUUbIb9ufHBzdR3BrsV5ajN2PSUJTppJ5M90LdPbqOhSr3skcFSoBWey1tPXsQxmKyinEhD7z+gK1pswMUSCAEmOaW7kre33V5ruFeWJZJS70fSnWi9ZKJZeNKvP9kbp8AheVW+CfD+hFX8k329M/iM7eV8zyKsMSqLafplhMAGGYi+IlVRM/FGsx+VdG8lnOZGgkA3ctAagJqbzCdxj5oTP+YFQAUW+EtjGv5v9sJw9HXsPtCcfWvvOVfvfqK/+DNj3n4kwtWXynKjfgZVtcd5mb7vcvvowgCsbKE8znm3QNkFxm0TJwFTvPkk9UYreielJiVo3pvxczi6GbbT8RGRCrmbo/76oDZzbHtDNc69p9YDp8Edj/zDGfHHT+d2lSLLyPjUnrAsZBSwR5EHWh7RfdEHgg9GmFpLVIe/SQpWqiyvFeBv5zwc028FuON8p48215qaZWzM+XBBLmZw1pS3fpaMUwKP4u0LyLdM+TzG1n4uhfg8kiAUl640mZjiLeOjc1b0TELdpDKiKo9oTQMMQuxDnm3bAQjkdJHdBRyckdKtTp5Lh6HgqgI1Y2ivknM3ozYw4SfuTztV2eatzq9zjSXlHi8FEKNBuJDQXGrKe8UxVZaW+LqBFOtKe+lBi92WS2IXAdfa4aliLe6c31K0fUE9U2izoNCYyEdJNcmioN8bVyqrEiVRWs6AQDdXrKcIzHnOG0olNK7FyBYsCMRnMkiFUm6vH+0km2Izbjs6HEe0JUn7h2Ln1vKe/m6rxTt80T4VGiJ7nVJcbQOywanw5WIy8zOMC6TaCFGJUGol2d085/x/Jf/5p+xtAP/pz/7mxR/0rB6L6P43C4HgNsd4WIBv/7u9fdRBAGA/mlDFcFcP4jV2LxBWU2ohAJr2kmsx3pPMwW2P2oY1nPq96VYccVIMhI0Ym2Jz1a46z1621L6iA4z3MFR3Rj2nyjGdWT3I/EeqN9CdU+mIj9Kk1OOvL4RN5nZK0X7VCydiHkny4cZH9uGDAofFJyNjHPPcLC4B0N1rR8XmJOsJeUFJoQgeahsKxiG6TV+Jh4GscqW0nUgnUX8JACYMglbTVgrVljDvkQ/WMo7aZcmQ64lNST7OKzCCSfCtkdAVJ10EjLe+rGm1l6a0Se67EGGW2ifsLsJ+9Bmj4CGpJywJfPrgSyS/jIxXnlUFQitRe8MzXt9AraEriuiHbmeWR3a5ck8ec5jLAxhJTP2jkh6slLf2/axLXjkAhyzAz2KDdjUqIzYP0p+k5LX+nCQzbFNaXrZdY88kdk7ce8ZF0ZGfq1UNveUqdcgYGmsBDAlgv2yYv6VjMULhYwrb58l0qcdcVtQf21FgjzKs7b7UcS9PKDaAnaW2OTXOXapDjIbwf9+y3/tx7/gq8MZ/8+fP2f2a0vzVliC7hBPMxu2f+sZd39g4P/93WvvowgCeoy4g8evS9BrzO0OdehQSmEQkklonASCFDHbnsWXiu2Pax5+VuCeFzTvJ2wrIJfuPLEwDJ+sMJ3H3h5wNy16KKmuFfVtye5TS/ssMS6j7FpvhaOt8q4cT/pudRreaQ/QvFWMnToZe9g2I8w5KBy9Cmqv8G8raXstAtPVhJ+ZUx0pqbc6eQJEJ8YiaNFQFBtpa9bvhSo9LR5bPFJ+SH0amojXCWtHnqz2rJ9e881mxf2bJWrSkj2MmupaM3v9CHqGo0dCBrNUemRdSmv12MmQDoSeUmb+ZUahUUSjmFYFqdCnoSB+Zti/MAzn0iJUU0bWB8X85w7buROD8MhtUF7anKdDPWYbNnFSEqbCMq4L+jPFtJAFZztQWZ+RtGLI1vGxyIt4zDV0EnEPCvQHlnXye7mlWShMJx2W6MA9QPnwiKrbQcw+prmhP8ut0bXcA93rkygrFkmMXHaW4kGyHJWEIBQq6J5G0sJjXtXMbiWtDyWMa0X3o5H5Wcv+oUa1llRFARPvpVxCwfYnkc//8A1X9Z7/x69+iv15w/o9NNcx62Pkz3BR8fBjx/ZnkaQ/8u5AMtLvV1H08VwsBP0fRrBCH/Yz2VbsvSDL5jDSvLWM84L+UhEqR7mxFBsvmEE3YXrPtCpJV3MRqbRSVjSDR4UZSVmmudzIw6dRXIjeJYodjMjiVAHKu8wYs+JTX2yh2Ig7rbi9SjA4KhiPRg9mhPgb6M8swxn4hfgTqHAU8cjEWJ93lFhCNAlfS61uW3GZWbwKp9YcyDkJOChjtYe1ZVqWvJ7N+fosm1QGhe40yaWTBFhF8oBOKV9MLwo4GV4K5SZQPAzSgp08cVkzrkvQSrwPlSJURv5kI1VRXhpUEEn1OJMAYwYJimY8gnCcdBRoacHqUTod5SZghsQ0yyKn7CJcXQ/Y/UioHdN5TX/u2PzYMJxLu9fuEcWfzci6eaTOimoUUNIKjIW8v0qczGsFlxEMRALGMThkKvkgHIKk5fW8gn4lMypko8glVKeJRXYqjgp9MBQP+nQu00xYiOM6EmtZ1PbG4TaPas7ooH8aMGVgfz2DqHCXHVU5sXtoMp05EX/S89nTe7Z9yZd/+owmd7SqTTxlL6GQUemHl4r+iUdNmtk3HzlP4PhwmT48jpCaVahhkj9GzDrGVUEyWrj2WVcwW1j2LwzjMjO9ksHPDKZzFNvpUZjUFOj9SMoS5fqduPkenhkhBs0y0OUQo5F7MReJhZCZ6ruYxSca20Zm7yLzN4b9M4OfI2lnBrRCBZOX9LXYy7DJ6VpzeG6YZnnX7SVNLTYet5uIheHwvKB9InPrkpEgtP9E4Q6G4kEYZ75WUAgPob4NVDc9yWi6bAs2rAva54k0k21bj4Il+JlIVatb2f3DcbptLkcENdeEsqKorExgPgwU2TkoWo1fWKZFnhWQKdrDwgiGkgeJai8DNo9GJscuQyiFMyHg2mM70wziLRAqfZoBCKATTAtH96ykvdSESuru4UK6HmK2wQmpV+lx4SajTiVGKBVhJmDk6ecO6kQLTyaDtSFl30k5x1CJXiPmVqI9yMCWccWJHxGrRKwD1XlPXY5sd424Cz2ok/Owr+ScwyyCizBpineO4j4H9KNsuckdho1DLyY+fXpP40Z+8e6S1MnQkWI1ULrAV3/2lMWvDOc7Sf21z+Knef6zgHEVSUXEbg3VjRjkfN/xVwYBpdS/Bfx3gPcppb+Zv3YO/NvAF8BvgL+bUrpXMpPsfwr8t4EW+B+mlP4/f+V7HCWvTgNieMkUTzx3NQSMlnRzOHeE2lDciod786bDDCXbzyVC66ApHyJxYfCNprqdUCkxrkvBBtqROCtJRlG/OlDdmNMIrWGlTpOIdADzgYmIPirJ8sioYi+U5fUhMM0Nw0p2MTVIei2WX4phaXLqK6YRoZRuw3FajPYmLwRP814RbUGftQW2FTuycQGsH63VpoW4GA1nlrNU0vzinvmmZ7psKPYO22v2n2j8TEg8SYFfRA6NytlOFlGpR0KLHfL4bKvYvyzQTwuqe5nwM801Uy0YhDtIMCQj7zokUi6DikPEHqRlFwtpzUX3qNirHoTVFmotu3chLdNQyqCZo1Y+OMV0qRlXRh5mm7B7AS2LrXjzj+tIMoni3mB6CaogTDuh0uZ2miMLtYSleGQKTpnfAEdCT677O8mWopMNwO6PBKFcYpTg57KozXLkfNFidOL63YryG/cYAAKnUi8ZUKPGPhjcNhvY5EwolIrpXHCfVERmly0/vbgB4B9//YJ0W0IV0I1nvKtwX1ou30rwPJZT/VrRX0o7O7p44hOU1wa3k585tnm/6/iPkgn8L4H/GfC//uBrfwz8+ymlv6+U+uP8/38T+G8BP8t//jbwP89//6WHCpkxaGSmnF+U4rrTTZn2m2CYBMBSojqLT5qTY07xMHLWR3afFgzn0lZ0+4RJMubJ7QKkRPe8obwx2LsDcV7iVyXurmX+J1sZalE5/KJgXFkZpHFsM1n9gTNuRr5rg16bE/XU9qIrjxlBV3mmoewueSpsTrslkGTEvdLsn1d5Fz2WCLKLujZhxsDU6NPAE5VEuBQddE8T09wxe3LF4pWUSdqLzXqxk0Xma3n/cSlc9e6Lke4TBVGwDDWKsUV5ryh2svOF+shOEzOScS2sOeVh/kqfAoGeElUbT/V1sZmw9x0YhV9WjGuXB6w8ejrE4iivFn+FI3Hn+Pmjkwe6e5IISw8uoXYWtxfyVcyEHRVlsZ1eNyP1oZaSyzf/P+r+LNbWNM3zg37v8I1r3NMZ48SQWZWZ3VVd3S662wNGMoO4QEgNNxZIiMmiubDFja/gxki+4QKwLCGBGglBX9DGEhJYxhJisGmg7XZX211dWVU5RGRMJ+Kcs8c1fuM7cPG839qR1RldpqqxgiWl4uQ+++y19lrf97zP83/+Q+q4ehm5pvdGjxLZNZyl8cAj3Umf7OiaieshY5PtIl2iDQtZSEhCdjmwXDTsDxXxy5rVa5n9o4oJXE0rxpgITlPyVc4p7i5kSj7DK4cqPPNFx1nd8vPbS/pfLLE9jGshDWW/KClvVaK/c5KpdxeK43uBUHnZEgVxbLbJLWsabWZv/xR+AjHGv6mU+vCPfPmvAP9M+vP/Bvh3kCLwV4C/HmOMwL+nlFpPMeV/3POoFJ5pBoeKMJwVqFlGtu1RKWYqKgQpBkmwzUVu6wuN7Tzrj1uOLwray0QAaRVRp1M8IffH90rK2oqgx0f6JzPyIkNvG+yhw2wt2aYgZka8+UdHmBf4Osdbkyy/EphkJK1IRSHVTEYnRDA8dgR6iKhcTE/5xr93NWnlJZsBwiPlOGtiygiAfB/wmaG7UIkBKNuD7CDP2z5V9Of5yVY8a5KU9CAbhWGuxST1aGifK/IPDmTW0w+Wsbd0K0P3ITBozEFCLnQvRhpRTesuOYnHWkRXJtlv6zGIJ+JMn3IRdQphDSmZFzhRcH0uhJ6pXT65+qT23M2EMw+gWwMtmGbyfYgUB7mpZQ2nTnoEAR85YTMSKhpPoJsvZTUYMtm9K5L4ywpmYqL8O5+nkQDQOnI8l+Aak+S6vg4Uly2zqufhbkH+RU51nazBZjIKTkxNV0V8KduFfJ/4/nUkO8h4dHwRcRcOXTr5nAbLl7eXlK8zrIbhXEbj8toKeW2MjGn0NL24QR0/9MQsiKI0ied0z+nP2T6y/NKRbyaTjX/w8SfFBJ5+48Z+iyQUA7wEvvzG971OX/uHF4G0/pnionUzUAyO4aKmvyjJ9gbTPP4SEzNMDyFVRc04s6iQqKOtYVjq0zw6zoRWGzJZQe1f5egxEwKPBzc3mPOC7ODEJGP0oCOhztC9ZN6bVhxz9NzICRrSGDPAFPDpc5Bqk7IQCk4W5KaT1lAucGG+TZTh8j6e/P5OludKTuUwk4vTjFE8DpaTJ0IkP0KRaK+SdpRuusip6PlMJbxEUd5FTK85MKddJRDrYCQzdOkozlvGuWUYDIxyquheRFL5g6J+Kzz97OBSgpGsY0E6FFcpfJGfTvRp3WeTR/8wvbggv6MrhV7rKgj2G6Bpqx6NXrysMfOd7PKnFt/N9Enzb4+crOVEK8ApAq5ba8bFYzGa6MKmU48dzB7KO5EzT0VAOPpSJCZUvn/iyM46gtc8fHomTj5HubmPL+V3mNypQhmJOorOQ8HhfdkiZFtRFvbnQqlGRcJgUDYwHAvsg5VchCJgHxJF/bR1eMRduksBEolgH+xJUqyCAMZ6hNmbSHnvUR6a58W33n5/amAwxhiVUt+OOnzLQyn1V4G/ClDmKwECB/Grm2Sv+X2Lr0XgAnLhYMTxVtx0layPhkCwRk6eUuimWZO+R0/rIxLhRIgiw+LRoNQ2oGf6FLxp+kjxIFz6cSbmm1GJvn/+iz2+zhjW4qyjvFh12VZ8Dsb54wUnqTFpbegixb3MpuMs8QESMYQgEtx4RKp8imp31SND0PRQpnZViCmKOCNl28kcrHtAy2kaNZhR6LJTaxqNnFiz15q2z3BLScbVncI0Ga6wxCzK2z3dkL0i3yjOfiZRWrpJ6Ua5JeYGn1SQ+VYs4XxpcTNJDS7vAvluPAWqFrMMVwu9t70wtE9hXAXhQEShPJtmkoAL98J0Qs6ZMicm4w9SYdUjJ86AdpxIP8FIofD5I7tPMBD1yLy00lVUN4HyXgxuj8/zU+KUdG1CH3Zrjyo97kZsvKqddHLdhbACo5UtUVCAnzZAop/orySTIL811G/luV0diZVHWSEBxc5AUMRXHfFgmX8iysLuQq4j6ZpSpkXys9CDEL70KBFmGBHDFXdQ34qPgqunw+nbH3/SIvBuavOVUs+B6/T1r4BX3/i+99LX/oFHjPGvAX8NYFW/iFEpyK1wS2Pys7ca3Tow0imodoTCnExITSfuNTrKjexLQ4ip7UsZ8TJnT27DQtjQo2IMaS4vZH+WJ8KMKMk0/bqk2Ijjbcg0oVC4IqO61RRvD9ibPWFeCbcBsI1HjwawuEqKTxwfL7YYZQdd3UTsMYVIzOVCMrX42dnEbJPuIdIvH00tpzgz7YSUEjXJ/EKdOoqJ7KOTc3JIZCHTyykLcjFle+k8VNToUSTSMkpIH61Cot+mYosSEBSlcGc1biZJxS6JsLImYDqIRqd1WsTuHGYn0u+YUo6jUfQrQ/NMc/ggwEVH9Bo6gxp0MkMFdJQZeiufq4qC4Ef7yPabgle+KQGPNq0LUweiB06Ep4n+G3KEeNNIlNhJUbiytOeK4yvhbEzofXcVCCsnRh5f5xQb4YQMa9k4xIlVmQdUFIxlAiHF509eW3FtqN4JVtG8DMSzAUYNOyuksLnHrgfim5Lzn8l1s/sejGcO1WtZlyBr16g4mePoXiWyVLKeeydGLj5XdCuD9pHywZ+i6X7V409aBP4N4L8B/I/Sf/+P3/j6v6CU+tcQQHD7HwUPYBwxt1sJnsyzJFwP39Cza6LWKC9tuZtnjHPxE8h2Dn0cMCFgM4OfZWhnJdU4nQ6TWmxK0TFDJGsD2plEnEkLZOR7sjbgSs3ufYvtTDKgFCR38/2c7PkZ89cDdt9jd/3J2FOPAhBGk+bmTlh505wYlSIOcppnTWSYC07g6gkwEmVYdpQAEz3IdiBqdTLFmADCaJIVesI7srQ56M4FhPRlKkRaeOrZPp5uWGG/afo0a5ebQL4LFA8D9t1W7MKdIyayv6pL3NO1xHpfWIb0O2kH86899ugJuXgICt8j0q8z3LPiFMoaNYwLAbHikxaTecZdQXZrKTbqxJWfotUm0C/kgvh3l2L7jQ6Yo2Acphc0PztwMpWdujCdEqt8AX4xAaRSgCUfIBFqllpIOlcC0BGgep2RHcXKCw16Z8WNqkkjWsXpJneLAAbUqE/r2JBFjE/U5FnAtPKiDu9H3MWIrR1un5HdW+xR0V0FVO0xH1fMXsvmh7+wY5Y5NjfzE/tbDUnZqkFNgrXEMM23AgjbY6A/kwJdbgPFw4g5juj+T6EiVEr9DQQEvFRKvQb+pXTz/+tKqX8O+Bz4Z9O3/1vIevBjZEX43/pjC0B6xP0ehgG1mEHKvAfE3AJOunblAtl2IGQFrtKELCO3iuyhQ3UO2zlMZtBDKcGfS5lNp9l8yv7LmphQbkV3rhnmiupekH6fKfKdJ2roknOwTrkGwSraC8WwKMj3uSTAngJExFbcFdKFlFvJSjw+Mye3mmAVYy0AXn3jCRt5flcKEg0C5OlUwFAy1090ZpsYbRODL2sfO4eJ/NNeaLoLRZxN0Wjps4yTTVogV+AqjZspmZsrhYoZ9lq8BJXWEiDSdcRjg3nI0Ms8rU8j+Y10VeXtINyIFCASc+H2d2tZt7bPxIaLgNhw1Sl3703J/FaR7aTVn+TWE4sPBCiU3XfEl0Jj1J3G9AKgFhvhYUydkB7j6fMda2H0uZrTHF0nb/+oZUMQjaD+3UXEXw7QGmafW8rbiK+U4AaJxWnax47LNklUtBLHHtOI0s+fj6KEfMikACwd5AG/iqjcoRUYZyTh+CBAXn8ZwESqnxbYBh5+0/PiBzf4qHj7dg1OC78gQkSDDeB0Ym7K+1DeRepb8Trsk6nO/I3DHkZipvGzDDf/9pngP8p24L/6LX/1n/0V3xuBf/6P+5n/wCPLUGdr4qFB9SOhTOj8UWyoUQrdDUSfSzTVKBpy5Q0hVykjTotcMkg8Vn7XYPoCKGkvZLV32vVniuPzb5gzjrIW6xdQPchFMiyMtLl98syr5TSJmpOme1hAsJbsqMkOYlxpeiGbDDNJ2p2988y/8mlE4NSRuBLaQp8cYk2bdvXDI/FjwgIkBVnYiicEeNowFCnDL7kv2zYwfxNQ3tI+ETR/AjJB4YpIfkzrw/oxcZkIx5cZ2Y+encRNtouUDykBqReqcH4IxEaR7T2283SXQnAalnLDCM2YxOSbTmeZV4kK/aakfBD+e7ERsovP5PcVa3n5jCbJr/Ky88/2j9JiMwghafZVJ3hDcmaKVtM+LTk+Nxxfpry+W8Xys0D9rmesLYf3LN25rM9UAvFMD/nHhdiR33sxEjXyGaNIicScVp1CWvLYvSRbD+uAed5gosLdigmKPx+pVh3fu7xjnbd8sr3g3c2K2BnsxorXQimgY/VO5vb9b3e89+yBd5sF43UFWcQsRmKA0FkpAIA5aoo7GZeq+0h5OxJyTXcu79HiiwE9hoRbJSOa9jtuOR6sZnxxhtlX0PRpLZfjs1p87LwnWoPqxDsgzMvTiSGoP/Qrg6srittBkOKku6+uB1TI6Jf6dJGadLN156LkUoA9iPtPNDo5wSq6cyOJvskeSrzfZXLQHswxnVYzjSu1hHV2QUA+LYWlvTDi/dbG5AAThOeQiZhlaqtNG0904Ee23aP5RTQyWkyoOWqixkYaayiyx87BdIHZtWPCJ9DCXPMVqIXCHeTiPpFzyqRsW0BXe549f+AvXX1BpjyfN+f87O6K/dsFunuknurBopzYd/laiDu602IvNkJMr7F+q2XDME6iINECRJ0MMZqAzhRmFBxnWMg2IynATytZcYUSjKDYebJ92tgAvsihMIy1Zf+e5fCefKaz14rVp47ypqO/KNh8L6N5EWVk2SpIqr/yVsxSzAhDoi67WrwSBHzjZGs/LIX+m+01+Va6lJhHxk2J3RkM4K4Gnj7d8peffE5lRv792w94+9UZ9l6owqaX3y3fqLTxgeP3R2aLni8/v8TsDHEeMIuRMGpir0VEoRBx2K0WXcldoHhwwq04l6Db+l1PVIr2SS7j39FjGgE9v+3xnSgCkykElDAr0Mntxi1yYmYw+w7VDkSjJdSyH4EFviwZ5iLrJQFpw6ykvnHoMTDOLD6NArN3LtGTFWOl0T5S33j6pWH7fUX3xKN7+WAnhpsvFd2l0EzzJDd1tTCzXCUzenUdk8GHors0ZAchKim5B7+h4hO031ihHeepbZ1UbCFDdtt9QKfRRSLAND5TJ2BvXKgTC05AOCl2hxcmceYjZtDCE2jiacRwZVoV5jCsSFuIxDm407hKTFht6Xg+2/Hb88/57fILsovA1y8W/N6vv+LNsMYFKQT344zXxzVvtkuGwTBuSrK9lnCWPp4AyqwRJuIUPRasws1MMlh5PO3DZDQ68fIzyYfM9lOxILX+Qgvuzy1uNhPGXWIzTjLwYiO23uWDePbf/2jO4fsOVfbEzog0V8fEhUh4xVzhvXALQvaY/iMqR04cAl9Esp2mfhtPPhDFjZHDYBHxT3s+fHHHP3n5KX2w/Ju/+A3cHy5ZvUudnJc15GRw0q8Uxw8dpna0ny0oDvL7EyHc56hREVdOLMaP9iT1lrj5wLiUXIpi6ymvO3xpaZ9laS0tmM64yuhXBv7Wr77/vhtFYHBkuwFfGJQS1aCkzYphhJvNyR969K492XXrzZHSBVSo6c7MKchyWChcmVE9TBedlvirUVDT4t5jS8kB8Jli9vVAeW/Yv2don0n1Jypsm4CnTmi6IZdCYFJs9XjuGZ8ExlVGcSsYgM/BXab05FaKRtZGif9uHGNtcTONyqC6HtGjpV/pU1zaOAOiphg9USgQFHcjvtCMSysmGkou2BPZJsEnZpj8BYUOa4+ik9eeE4pf3QrPfGK0+YITt8A2irE39L7kd/17/Oz2Cau6ZVV0rPMWqz27ocJFTa4d+7Hk7ljTHArYZ7I2u46nTD7bSAZCNOq0FhwXcsF2a4mGz5rIMJO16rB8VG4K9iEncLkJJ/MTV8pYNy2k4zK5G81kPao9p6ReX8D9jwztK4dZiumM3+WYo05dhUoU4XQRatAJm+guFa6MJ+OOydqMCNW18PC1h+YJp+Rnt4qYZy2/9eItT6sdf2/zHn/4yQtmP89ZvROsaRqPxHlZ0V9C+/6Iqjzqq5L6rSD9UUdUSIXlyYgpPf5oTwfB5Js4zjUouYbzmyPjec3xZSGxY0fRYzRP7aOD8rc8vhNFAK0wbx/g6Vr46G3yqU9hGK7SjLOafJcLg7BzCeQKFLctps9pr1J0dHK6bc81WSOBFkL11RyeW/JjJN95TBeItaZ5mpE1kdVnjtk7MasYE4FlnIu/3InoM084QqcIrSYsA+55z7i0ZFtDeSNWU66Udnb2LlDe9IlLECgbR9hqxgSw1W86tC84PjX4SsaHcS5rsOz46KBjeo991+Mqgxks3Shce1Rq80sxIqmvA8Ek0Muqk2vOWItC0R5JlGIviU4z0QSMc35JLef3Ge1tQRsXvCkmXbyAcmpMevyDGGCc7UUMVF/32P2QPBK0jFa5SIuPTy3dpejuo0H8AY9ibDIRqIKVWLRJ3JMdpKDkO08o1ElEJO9lYhbO5WSWTu3R03//gaL/fsfFxQE9ZBwfKhjltU9U7klVaboE+BpZIYvpSJRDIHUAEygs/gwqxZJHQiFzdlw4vvfqhg/n93x2OOfHr3+E+bRkda1OnUWwidOQpY7lLML7LbSW8ucl1bVwG4ZV6h5txD0ZMXnAH62oQntF/VYxexdSxxcobjp0M9K+WtI8sfhcurvmwtA+VScrMld9x8eBUFjC2Ry9bcTTvjCYJP0185L+okxBj0I2yXcjdtsnaqpBD4HifpTV4Fwz+fGHxPW3TcB2gX5lGOYKV1jygyCuIDHSetBUd57Z2/FEg20vRf8tbLVH1pbzEJUmdJmsiLKAL2V8qN9Fik2kO1e0Fxo95uT7EVdkJxxjulFCbijuRlyhT8EWUT2ShFQU5N72lvJO1IaidsvQTuMzyFH4HpiQ6z4yjgqfxnd5zTLLCj1XuP/ZwaFHjekNZhRSi/Qe+uQWPLWeejDShSSWpPZy8+SHQLZ3yVykR/WeUGe4OmNYWYkHX0qEm6uktbEHccZByc3vZvIhSCCMOomBpP2XvMZxbqXjCY9j0EkMdJAxwZVi1dU8i+gPD9SZ52E7w7dCwpE9u2QFmF6dXICnriJr4mkky5ON+HR6Ri1FfVxExnMxRokRlI7Mlh3fP79jPxb82z/5IfZtTrF9BB4fiVrgLmRNOV6M2MWI2+bUX1rKu4mrkBSHcxEnKafx2ww1it/g7GvF8gsneocI2U58M9oXFc2lEam5hvZKzHCijqCk8NrmcevyRx/fiSKgIrTvLSivW/Sxx61rsQjbNJjrDdWxontvKW4uhaI7zymUwm57TCsyXCqD6QKFl9RgX6hH+upMk28c9VsB5SQhRyq9TmaNPofmylBuFPnOkW8Gim3G4bmVpNhR5rA4RLGYSlTdYWEYVhpfTXJdLZJirWivoHlmidqeYqwm9Ly8i+R7uSGLrZwow1KAv4kaO+nQg1Xs388pbzPKh3CS7Qo9NjyKrKJ0IW6W5sqjnETZMVF6KylO+cFgDyP5doAtlEbh6ox+YxMZZ1L0PXL8iRNNOp6KmRnE5hwFfp5DFRkXGd25uBOPc+SmelDUb4QsBTJeuVrQ92yvTq32NO5MhiDBKqIysh1KGoBxMRWoeHJOaq50otE69HIkjIbhmAZvDTiFOWiygz6NDROPYNpCRJ0Ca5KhCvqxQIyL9LMXoyQOOU216niyPNA5y+/+4j3yr3Nmm2+Qw/wkaCKF3nhUJRbrajDEZChi+oQnXUTCi5ayFlJPsysx95mEobZC+Z6/ldllnMl4259L1Ht7qUWHME+diU3JSCaie039RlPefMc7AdU7st1I87Km/lphdx1uWRIWpdhiNx3la9BP5gxrKxW2NOgxw2w7tAtYqxnthIgGsoZTAOYw1wSbke9ktWiPinEpdFcx55BWdKwU/UoDVnbQm55V5zk+z08knckk1DZycxUb6Lea/kI894eVkIKkvU9klXmA+Yi2idAzavaNoXxnyfZGYtJHTmy4fC9zrUlkIVEdys8erw359nFVGFGpYKR1Yyd8gWgmenJS241yMfcXkX3UjFVF1sjab1o1ToDjhIQHI/+z7tEaPTsE8T8oZMPhKpNu4AghCgNTkTARTu7EwAlIE8PQx+IyFbtxnrqClPt4fPrImBRz04ivJFJeTRZwKm0nzgfqWY9zBu+lGyQoVG9+icUHnBKBxF/xMfwkmmRNv5GuwOcyRrkqQhYInZG2fObQOvL5Z1cUbzLmR/m5vpgYmvIc7bOIe9GTV6NsDZwh3BeU7wzZgVPSVf/U8eKDO+ps5M12yfG+wt5nJ8/BfCerS5ck1zqNRGOt2X2kab4/MD9v8MeCcBDpYswD2U0mtmZ72U592+M7UQQIgfyTt+jhiu6qpLgFu+sIdU6YpULQDeTXB/RQ4WoLWpx2VZ2hmxFz6CGCW2T4XAshZuMZ55bmiRXyytxSbDXFgyPfJNCqEq6BdsLk84W08eMsp7yT0WP2ZqA/z2jPRNIr9k3qsS09iBuRq4TKK8g89EGqcewU3hp8FlE2kNcDdhkYzg3DaDjeFRS3OuUgCFEl3z6+PSpwsp5un8ppn+/khhf0XfCKYSUrwHwTqa7lBh+TpLZoBQwbVmk0qOWUdTNxSta9qBKLB7Cb8LjS6+UOHhZGbowysfVaR8hyQq4wreg3RJsgnAWRYCt8YhJOJ/sU7zXRfqNJ69YO+WJMTj+ZIpbpexR0l5HxIpFvRo0adDKf8RSLHmsDw2BwtxX5naHoplFIdvEiC0bGJsXJRMYndyAVobhTpwIgUXEwnAnLz1Qe3xuxF7opCPcVi3TzC11Z8CPbygbp8H5APevITKA/FKiDOUm2CSSnoYh/1vMb77/BBc3PvnyKeVNQJYxDjylhqo90a3NSkE55nPd/LvLyz77hVTbwi+sLESLVjtga6l/kzF/HpI+B8u4fvYrwH+1Da8gz7JsH9LCkfT4jqyzmOAptuMohiYvMcUAP/mRAGgopCKr36M6hC/HN94UWT4D9yCxC80Tort1ZYhnuw0l5FoyAj8pP5iHCOAvG4ktNeT9Q3g0Qcxqr6dePTr/TOud0Ux6EHWcGsbDWw6NRSSgCarAMNqMvPaYSDTmLjv1ZhXlXpLY3JgqujCkhkxsnS0aWUYsKTTnF2CjyvTyv6dMKMcl186PH9Prk3+daEZtMxBx5TY8a/HwLy88d+U6irINR5LtR/B76LGkrwmlzQ4yMtRG3pTacfAGmfEQBLuX5fCan6sT7V+GxJc8OEWPAd9OYIa83GhKA+bgFwWmZ8RXE2qMLz9DkDDtL+c6wuBE+BiQMxEu+n04+Dt25pjtPTkN6QtqnNCcBVceF/P24DlTPD1zNWt7dL9EbS3k74SeJCp5MSaubSLGNdGvJvAwzD/uM2BjKB02+l+9zdVolFhHzvOU3X7zjppnx7pNLZp8JLwX4pb3+lLxdbAK2izRXhtu/7PnhD74iRsUv3l0SgiarB/ybmtXHGtMJLT0/ROp3Pdnb/bfeft+NImA044tzudj2HeV1Q39VM84lv88eR4wLkoibYquVj5heQDxfWiitiI6Sjt2VmmGusZ38jGIrXlKulg/aleYUKWVSQs04E4RYD5y890KmGBYZtvWJCCSElv5cEGQ9Cjp/fCn/f9or+3SKmS5S9WBbTftETiY1CFMntIbdwZKvexarlmMW8G9K7FHGAuvSWDv5F2SP40iwMK4i7TMpNMWDPHe+TWPKzp98EYWyLOOOuAPFE8CW7WV1N3HvJXDEiDNQrjC9Ib8fyA8Dp9g38ygIGmfqRMGd1m2Ta/Nk4OlKYe+B/C7ZXjAHnX63YDjJfbNjTDLryLCUziWkmC/2gtRFm+beo8XcZti9dEbK82gmOiYhUyOv5/BE0z6NhDwkxP+XjTdcmaLLTHJ3fjKwXh/JrefN2zOKXxSnbm9Ypc8+5SEUD4FiF+iXknjlqojZm+SEJMV8nEP78pG/v3i258OzBz5/OKP9yZr5tRwsIcWQRTVdS3Lj61EAvsNzw/0/5nn2wR3XhzmHY0qLCqA/nrP4SkJMhrVwWFYfN2Sv78A8Er3+6OM7UQQkAEP86+wyJ3/oKG4a+suK7iLDzA1FYbDbXrT+/UgsK1wpABcRYjIYObnFIDdwO1Mn8oxNJJxxJhdvyORi6c6EUiwBmdMqUG7w+jagYmScmzRfS8V3c0V/FpJZh7j0DKuAm6nT+kxUfQnxboWUM7kPq8qhbSQ4xbDPGZpkyGGEAORLOaVJ4JdOBWFYyw2lRnVaW/mZZ3Ry0RGn98BQbMQZqV/q04003fyTbdmUmCRpubCpDCqYk7dedqHJ99I5QdqOlCnQI083nAdvObknQQLXSAXVp3jtKO9LdnhkMDa1OhW34kHeWzPlBlgFpEKWT1Zl4HPxclRBDEeyY/IYWMs4ZVopClFJzHx/Ae58kGDOg3RDE0Do82QAmlyAQh7Qi5G8cGzu55jrnHIn+/vmqXQP2f7R42D21qGHwLC2HJ9ruifyPtmjAHquThTjyw4TNDHA86stL+Zbfn53xeGzFQbJGVAxFU8TKe40+S6erM3GmaY70+x+4Fk833Psc7zXlNXA/qGm+qQgO4jYSgWYfR04+/EW9fZOgm2TJP5XPb4TRYDJ+tko2quMUGjyzUi2G9EuMqwszdOCrLayJhv8CTwclznaBdQYUEqhQ8SMAdtoxqWhT6dcMMLYsp1QgIeFtItR/bI1WL6N5Dsx5WyfRbonmsVnkuYi+38pDuWt3ODDOhBy4XIXTjOuYvqaErtyI+DPFKFV3Ct8mxx7Z4FYpJVBUprF5DYshUB2x9HIBZJt5XnGOQwXXpBvmV5ScKoUgP4qELNIfmspHqSr6M/TSewTZ16LV/7JADMo1KhR/UQplk4o2nj6e9kghlPWgXcG+5mQXHRPUkQmFeV0o40kxePjKHOyAo+cdv1mJxfvWKnEkBQjU9sKFjIZavANkBE9hYyI+QcB1Dit5sCvJP3XVwKSVdcqFfmU91cHYhlQhUfpSAwKekO8L4iHktwJeax9Kc4/J9POfaS6DdRvB0Km2X6Us/t1GM9HVK+xe9ECDGceViOzRccwWMpi4L31hnnW8/vvntE8VKizAaeArVixoyG/l/Eh5El8lkuB7a4C9rKjsJ550TN6w1evz8nfyAEyziQjcvWpY/bJBrVvIM+JRS4anG95fDeKQJQLzvQBnxvaC4urtIhUGk/xMNKdZ6KQKgX0y/YOu++JmcHNM2JuhEgSI2oIZONI9hDJ1wX9WSYXVzG1wxJLrkc5CZSH8j6Io8xc0PnZGwGUDh9ENj+C+WeachNPhh56jBQPKQZsJjHj+YM48LhaJJ++mMAiORFc/dgO51uIyhCyVKSKhEjXgfHpCKPG7GVGjEYKgptLcaiuFaazQrLJk+AmIik1KhILUeu52ci4ztGtxs891VVDVQw0XUG3LTBbi+41QUcwkVh4otKi1Os0IRPjC1M7ynJkUXXM8wFN5DDm3G7nDOeekBmR0Fbxsah5dVpTqV5TPGgpPlbeb9sgW4VBVoW+gMN7oL34G+R7+TufS+cW0r8LtVi3RyN6Bz8D3TxqFnwladOK1OUERbaT5OjuIjKce+qnR0od8V6jdUTrQHMs0V8V5NvEYZhHhqcOPRvhmJHfGfKtFIB8F6mvB9zMcvMXMo4fOMgCem/RvWI886jKCwBsA95rZlXPjy6uObiC3/v6BW40LC+PhKg4XM+SWClidxrbyPshLs2PJiJh6fjek3ue11t+vrni7ddnmK2V97QRJ6HVxy3ZzUHuq+zRn2O8nH/r7fcdKQKge3+az8W7T5/IPJPpp3biTOtzg6s0dm4pbzuy+xY/ywm5IWQW03t8laF8EBbbGDCrjHFmTq5CJoFSk5gjmke23zhLjjbbiP6For2SCDKUtICuJikQI+WNovc6hUkKK0+IRal1LeWCzw6kkBEeUd6BU7KNH2XFGLUizCPlqiGcK/pNidna09qsexIYVyJfLR5EUzCdrr5Mdtv3lvhgBfyykVAF1KDpjjnOaVxvwWmhvNoIeTiFgZIF1DqgTaDMHTEqmkPB8XpGUxds6wFjgmQcdhY1d+iLjuWsI7eOXVvSdxkhaIJXMGr0MXU5mhPhZ8IgQiZAWcxEb6EP6fc8V2k+Fn8C2wiOIMEr6VRToFu5afQgBSBY+bq3kVhEog34LGJKx2rRsCgGOmdphgxjAkpF9m8XlF9bUXBW0mXFPHU/NwXFQVp74OSbuHu/5PCehNCYo0YPUszdhegApmBW7zWrWcuz2Z67bsYn7y4BuDrfs28Lmtsa1SWTnCZ5QTaCJY0LhZunbIuXHR8+uWeRdfztLz5kvK2kcCskpv2zwPzLDnMcCPMC3TlpnBYlmx/OObyn4W/+6tvvu1EEFGCUJAhFQBl8ssPylUb30g6KhDeexof+zDDOa4oHR3YY0b1nXGaMi1yKiRUAMWucsKsyYYH4DEmpDWLKoTtO6bsSCpJMKKqEC7yNyWE4WZollZ8ULVGh9ecx2T/JaTH5+csMm35ND8Yn1Dvt5CezTSCJaRT6NqPtDMtne55/dM22LXl4syS7t7JXv3CM52A3lmybZMJpnz4Za4iDkMzRfpYkqO8KfJ7LBZ4H8vOei6XsufZdIaeh8Xxw9cCH83uOLufjzSXHTYUaFBFLl9h30WkYtGAhneGus8SgUIniipJQVtMl1Zx6RNJdnXj0NqUQJXm26cUmqz+LsBrJ64HoNcM+x22thKZEMAdBFXX/SDMWXEH+PC4CYS0hLFpHimLEmkA/Zjw8zImNFVQyKOzGMNvIyNQ8D8SZA6cx0/MlV+NoYZhFTCGFd9raPLo8ReJCTEn80WJmDmMC5/OGF/MtX+7XvHu3RpnAatWwOVT0d8m6Lg/k9+aUyUiA5rmie+qJlWd+0fBiuePNfsHnP30mn8XCoxrD/EvN/LWnvHOETBPnOaZz+EVB86Li4QcmjaPfcZ6AGj3KiVe9aZwMi0srARJJX64HIaKERG7JG9G5u7lhWFtCrsmOkj4U8px+Jeh/LBQhz5KmWth2KqpHQ8gEPj2u+xTFPmBG2QJMqLVtZWfrqpQWZB+ZZ9lR/m4ysZjSfbRTpxtzWlGdvOjlaWVcaBLrLleJZafQbzXtZs1XH+RcrA88ffXAdbWEXYbqtGgrypB8DtUJiAtFIM49qIg6WPGePxjxoEPWitEqyAJZ5glR4YNmHC1+0ASteLNdijioy+m3JfpoHr0aOyHfaK9SQKcCDKHIcFV8XA+iTtsC0QakgpdFwiKFdLYW3ZhkkRUZF4FYe/LFwKzqMTrSjRY3yibFNhqTdvMmUZu/uY4MUTYm4WIkr0bG3hJ6Q7PJsQcjXAidzEusdBemE3fj4UwwFtUasp0UrwlknjqM7CDqRNuCv1CJJRokdhygE8lvvupZzVuezffk2vHZ9pybr9aoPFDNBo5twbDPIXU0xeuM8kbGkPZSjFjUeYe1gVndC4fgF88xGysp7UuHvbPMv1DUSRQ2OW5jFN1Vxf59y+774IsgOoj2O04bxnmyz67xz84Y16UQNx5GXGlO2XeTiyoIU6pfa8q7SPV1SzQaX1lx3ImRfDMSdXbKswN5k0BO/mGuGWecWFRjrk+KPPH+M1S3QcaBUbwI2ycia53YfYdX4OaiNCMqZm8D5UPg8NyI6tBO7WNixrUTS21yyomptZS4sewQKQ+B7ChzoG2gvIdDO+PdkxJmDmUCcS5kkPxebh5fpwuxSO0roEyQzcNqZBwU+YMUjXEVEj8ggtcMg+Wut7jeElsR10cNx9uaphfBjbIR/aTj+cWWyo4cxpx2yDCpKBy7HDcatAnkJtA1OaG1qEGLD36a6aKCmAXMeqDMPENnUa3M6tM4gwYGzfBQMjyUkvGYDFxMq04houpx05ZGhLQdqCPuMhWAzqLuc/K9GKXGxLr0dVpXRun8fBEkTgwx65iMO2VUicQEqhcb8fzXA/TnisOHXm7+mAqrjmTnHS8vtuTas8g7tIr85PYJhy+XYCLF2UDb5ESvMLUj3BXMvjDYI/Rn0L5yZOuOwkSUiljr2e0quCuwJ5ejSPHOsvyFmIUEK9fVxO04vsg5vKdpn8jYpHsxb43fMOv6o4/vRhGwhtj3mNudZAFcVqCUAIWFFhv5EMEnvXwvph/9WjwIiruO4t2BkFv8TGTIxWYk2JR0U+pTJsBk1jmlw2YT5bPk5Px7fBnpzzTlbaIUd4ASgceUUFxdQz/KKRKvIipoZm89s7eeJhpJGZqkvmlvDWLySVD0F6kzqARj6J7ICrHYSFcxhXFU1wi/YS5FLGQy57tZRCfrq1gGynVHlskMH4Ki7zPiIBuIbkLSSwH5jJEuoMpHrPF0Q0Y/kxM3yx1lPuK8YXQyq14ujjyb7Qip3Xg+2/Gs3HORH8iUx0dNE3L2ruST3SWvNyuabYXaCcVbeQFKYy4VuXuQ7sK26pQTIGah6jHZt0yzsJX3S4WEqRgZCaa/94VsIzCROHNoGxivxRE42yfuwCzx9xceTJRRICqZWpw63cimU6i0EXC1bGRswgOCkVO6vwrE9UD0CnqNioqYBc6e73h/tWE/FhzHHBc1r+/W+C9rlAVWI92+kJo4auxnlvkX8lq23wf7/QNnxcDhWOI9GAP7d3PJXkjkM9uoE615ik+rbzz5ZqA/yzk+k2yKYS0/d9pIhSKeYs5+5e33j+Yu/tM9Ym6JL65QuwZ17MiVYriQjsB2XsgrGY/WU4nmKfOlxtU1+TYnv+sw7YivMoLVSawjNljDIsPXQpgRy6VJpDLx2wXIKx7kz+3TyLGUFpAo3188COW2u0jqta0g/76USh4yQ3knpp6uTCGZVhKEpzywKYy0/voxQyAaaZkPH6RQ1OtIsUsf2vQfHU8X6pQW7OsgLWyn6Q452Znjg7MHrsoDD33NLx7OOWwrmHz2TKSqBi5mDZnxNGNGiIrzWYNVgZvjDICP1vc8K/fsXMFnuwv2XcHbh5eMTQ5eUa47eAbPii0r06JVIERNVjie5jt+L3/BT9RTjmONchpccgfaWNRtRpE2AjGtNn0BoRRDzpDFb2AEoA8CEPsiMs6liPg6kJ31mOS3F6JCAa432M/Lk5cgpATmMnU/CnTtKMoRNxpcW6J7xSRQske5gdy5A6/E4ceIv786G6hmA+tspOkKGVEKERMt1w1P5gfeHhc87GuUivSHguxdho7gTURf5yeexPwLCWFtnho2vzXywYc37LqCh7s5DFLs/dGgsojuZBtU3ok5rhmCmOcslPhDjIHD+yXHZzq5KU+GrJw8Et0sSP7Btzy+G0VAwXhek00hJBryTY+fifzWDGKQ4EqTorMjPhNjivwgq8VxaQl5TXHfy3Ygpee6mUmuNl7IPk4x1LK6yvdyoche+vH1FBsRFHUXcpGqoBgKTvzzyW/eDI+7cJDTrL0SdNembDzlFD7K7l9Shh6ZetlRzDCm6Gx/FWnfE5zDf6Up78NJ/CN59x7Va1knJRARjzjkPOS073L+4FnNkydbfm19y48ur/kiP+PQFXiv8U7T95Y7agC6Nsc7zWzRcTFrWFUdxyHnrpthdWBmBp7NdhS2ph8tPvcY63m23vGi2jI3HbXuGaOhiTnvxiXv+iV33YxhMCin0W1yRUrFbALxfBWI65HZqsXqIN3IMSe2hmxjRF3o0wYlycLDUTIAQqUY24wxICCkiTBqyjeW+l08Abf9WijHrhaC1vmLLR+t7+l8xic3l4xWQkX1IN1H+9yjL3tMVPh9hrscqZYdV/OGp/WeEDXboeS8bumd5e5Q45yhLga2fcnmUBG8xg8GdTAnwNe0ye5+Kyw+Ijz80BD//J4PVnte364JdwVmUBDUKcHZ7DWzryLFTmLfoiKNm8nyzEf272e0lzLuuFkUabuTDisq6QKynThmfdvjO1EEVARXGVQsMYcBX+cJhfcopZK3viDuw1wnrzpp6dtzRbHTVLdO/n6Vkz/05NuBQRf4QjMsEt1Ui/Y8a6BfyagwWXD7iYyS3qtsH09ut1MYpavS6TSQYrAiqiBp1DlJW8cFJy46LYQmCXfWQuKJWcQtwW1l9zyFg9qjYsxhfDqwXRv6N5Z8IzeC7iRIROytgaAIVUh0XI0ZFMVG4ZuCd80526uKRS2VyOhACAptAmNvORzyb5B/Is4ZMuP5cH5P6zPu+5qHrsblmiflgVXWoYkcx5wPl/f8+uyaOlkY37oF18OCL9sz3h6XbNuStstwg03cAYhG/PLKasDowFndsiw6rPI89DVvN0vcaIiDJr8V5mPIZfa3zSPN2ZfyXud7QzCGaBN70EB5pyju42ls6M4V/WXALzzLJwd++9lrvl/f8Hl7wd9+c0W3KaEUINI1BvJAte4wJhCjolgeebncsc4bMhWw2hOi5qo88KZd8tXDimGwLGYdpXW0Y4a1YcrJwS0gaJuKn6a6FuS/faI4/GDg5Xv3PBwrvvjZU7KNFg/RqE4r4+wgVme2k5V5v9RiHLsQdaZpYf+eSWKwx3AUdZ9RPOjHAnCvT1jWtz2+E0WAIC4p48xCAN07xnWRnHQCuhcPftOFxOUXmm9+jHRniuZKlBzVzSjUz8pimmS5rCSRI1pwVgDBYhuYvXWMM2mRskPAWvC5lk4EAY3UIeEHmTopxYAkOX3MHzTJ1ltsuxKanKWTfkwsvdM6UFZAepBM++4CsqPwy6ORXXFwilgGhnVAecm5zzcaNz4ab+gBQm7o10IYmrz99Qj5nWEYZtyU1WkVRkBOTBAAbjLaiDB0ljfbJduuxOjAquhkfz6U3LZzXND0ztKNlj8YnvLp7pyzsiVExa4v2aVOIwT9iDeUI/XVwDLvmWU9z6o9C9sRouJ+mLEdS94elzwcK7zTxKjAJenuIkCA8kasxIaVvNehkLZ+2oSoKFuCfCt79f5cHHuGS49dDqwWDd8/u+PXZjd4NP/Gl3+Om9drcfvNpRhPhRAN42BZrg+8mG+5Kg8YFTm4HK0iRkW2Y8EnD5dsdjWuNxSzgVkxYHUgN54iG+lihtIKkyt01eK6jPxtgelg/xHYX9vxanHk69s15tOS6jj9MjBlDOqRR++FRHFvXkTc2Sj5Bi5FqynonjnKq1aaodcz6reirgyZvDeTGnTSsvyqx3ejCACmFWdOXxmxFN/0DOcl49ygaoM9+iQIEZlqdyY3sCQPwfZ7mn6VM3/jJZo8e9wGhAx0H8m8iDzaCyMBH2PE5+LxZ7uQbKtlHal8xNUG5xQ6BzNGXDElA8sNZ1PM+CnwwoPLYDwLDKVneLBU13IT21ZEMtOHbZPmIKY8gukxzcToSFg4xjFDjzJLTtbhkx5eJVyiX4sDElGYdvlOEa9F1DORkyanZV9KyygIuawKlYaht4SgWM1antc7Frbjul/wer8+FYDmUBDvCzYq8mYpe/joFaE3kqYTgSxSnze8XG15NXtgaTtqM9CFjK/aNbfdjG1f4rxhdywZOyucg6AE8DwfUY2heBA3o+ZpZFwFYhVQueQ7xKOluLZi/ZbGqcMrqH5twz/9/Auel1tKPbL3JXtX8v9492u8ebdGPeTYXsk2IIHAE8KPilysD/z5y694UWzZuZJPjxd0PmMMhm1XcmgL2m0JXmHnI8tZh9WB3lkOfc7opeNcL1rqbOTddoF6nYOG7W/3/JkP33DbzPjykyvKtxbbSbfjKtk0mSRIm3wOptDa7olYmlc20O5K4lYzziPuZc8PX73j5jhj+9NzFl+IetBV6uSLOPFZ/mFBgd+JIjBlzOneE62oAu2+J9/09OcF40wLE7CV2Uhov1MwSGJX1YrjS4mTWnypmb0Z0J0/gYm+1KgYH0UjC32KCUcp8oM65dW5SnTx2dGjgqjmJoPIYSV37LSliEZEKr5MO+XEUisWPXE+cCwryrcmjQcK32vi3DEuZB0ltGC5H22rQGkJ2giKbD7gbKTTGdlOP6rMEpHJjDK2THZm41LexyyxRm0bUXtkh24n0ZAQpibkPVaeohzIrUepKK2tl31SiIrL6khuZCd3M5/ztlwyTMQgICsdfVSog0WNCr9yzMqB2g6EqDn6gs1Y81Wz4u1+QZE5lnnPccwZewv7DNvopACUzYdtRK47LORUN6uBshyJUXCMCLh5YDiPxDJw9nTHf/755/zW7Euu7J6vxzN+fHzBx7sr3u0WOKc5Oz9w/p7odN/uFrRtLmOSl3XDB0/u+YsXX/Be/sAYDT89POU4FgQU265ke6hkbTkqYu0pq4HcCM+iHTN80CyrjouqQRP5g6+fEb+sCbPI7Lfu+bXVli83a3afrik3+nSQDGciWTatPrkcTUSkqMVuLH/vyNPVnrtjjd4IE3T+vS1//ulXbIaa+3dLFl/LZslnchjh0gFoxISkuvuuawcAcxzxy/x0KoYywxx6ituIL2uGmaTyTP79po/Ut14isReiGuszRfs8MC4U3bpkdu2TqagnGnPiDUw6cOtkM9AvNc2VOrkDKx9xycJJDB05mZiaXm44FRO9s49kR5UEKbLCwiv6Y47OAixH2jwIwSdKC65swD5taBY55sHKCT+RXiLYRhNbzegVejbiVz6l8z5+X8iTAUmmKLap01iJe+2wE+EQqBNJacI1Qi6rpimbb6gMrjLk1uOD5u5Yc70TnnmZj1SZ47xqWGYdv7F+y2+ff4lHsx0rWp+xG0o+vb2gNxnRRuqLhrOyZQiWh6FiCJa7tmb0hjofWZctxzFn25bExmKPmnwjLX04OSAnP78Lx/zJkRfLHbOsZztUNHWGvoxcVA1XxYHz/MiH5S1r03DjFvyNd3+Zn91dna6rRdXxm+dv+a35a+7djL/z8IEUu3IkBEVWjnz//Ja/uP6Cc3ugCQVf9WsAzsqGw1jQj5ZhV6BGBQvHbNnxZHEg016owVGxLDsK43h7WHB7s0Q9ZITzkavnW0rr+P0vn6Nfl+SNkrWuFkGQX3hUp0/OxuNcukEVFOMqsPxow6v1hjf7JYe3c1h4vvfRO35j/YajK/jp2yfMf5KzeB1Ozk2mndKy5CCo7j3Vm/Zb770/tggopf5XwH8RuI4x/mb62v8Q+O8AN+nb/gcxxn8r/d1/H/jnAA/892KM/+c/7jmiVpIzeBgY1yXRpN1tlaEPA9WbjvBeKam/tUr6aukg8n3ADMnmuxNG4biMHN+HYW0o7jX1rWS0TfHkuZbCETUpjszTXqYUHQ1ZI173UYvoKKoE+BUC9uXbyJgCMki0UuUUMenmda+JTqUQUmk/w8pRzHuZfQFrPXbZ0ecZYZtLezq54A5iiGk3BgdQeNzKgzIiUe0gO8qeeFxI8dGDPFdU4mcoxCdZGenxEXPwhcyHAnAq8jvDOFZsygJdOpSJRK9QGhZVz7PZjovieALHAC6zA98vbyj0yNZXvKyf8eXFGh81F+URFzSNyxl8wbYvafqcKh/xUfHJzSXdrhBNQSsFYPZ1pNgHhpno8fs1uBcDP3z/Ld9b3HGeyBxfdWse+hoXNcusozIjWkU+6y759HjBF7szNvuKPPesa9k6ZMZz0835v3R/hptmRtPnJ06/1oEPzh74c6uvMSrwaX/FbT+nT+DPTTvn3W5B12WoLFCsOxZ1x3nVsC5aXNBcNwsOXcH9OKM75KhDAgMve85WDfum5Oamorg16VpI24paKMqqsRR3Yi/eXwi+oweFWzjO39vww/MbPt5ccvt6DXngxct73p8/sHclf+vzjyj/1pz1Jw5XTSlb6Z4yIoTL94HqbSOJ33/SIgD8r4H/GfDX/8jX/5UY4//4m19QSv1Z4L8C/AbwAvi/KqV+EGP89gwkEolnXmCakey+wyVQ0BcaWxhM45h93aOeF3QrsQU3o6j8fC4IarHxsks9WnYfiKTXzWLSHxjKW01940SINEbAnDTx1fVI8RA5vJeLYUgmYMwved5XQgn2ZeISRJm9BKFOfoKVoP+6k9QdFWWEyI6awVsGGzBWxDl9l+OTZx2VF9VdLzfGtBaLWlhs3gZU5fCjQjnxTZhouKZXadceTntolZiVvoqiaOs1+UawiWiTjHYm5iZmUNiDhqNOa1WRFqssMHpNrj2vygfmpuMX7RU/2T1nDIaXsw1/YfGaK7vnfHnkt+YFmXLcugV/f/dSuoPrGt1JEdxlj6Ifkjw5pvdoWCraJ8JxH58MLC6P/PmrdzwrhaD0RXvGbTfn5jinHTIy4xnn5oQv7JoS7zV1OfDR1T1nZUPnMn7xcE7X5uK6kzuqYqDIHEYHtIrMs4F13vAw1rx2Z2zHksbljMHQjBkPB9n5V9VAuXQU1pEZT27kcn7oa766WRM3ucS7R0UoAyr5HR6agvG+pLy26D45DS8jsfaoLEBryB400UTaS+F84BT+ycCzpxsuqob/4Kv3GK5rGZMqRzdafnz7nLvPzjj/DzXzr0d8pRkW+vT+RiW+gvk+kG963Dzn5i8s4Xf/hEUgxvg3lVIf/nHflx5/BfjXYow98KlS6mPgLwP/7j/0XynwlZWVYCeo/pRs6yuNrq14Bu68oNlzSd6NFaiYJMJIfPbi05byPufh1zNh7SX8S8wWDNUd6EHMQIJNQZyXGbM3PYvPe44vC/qVhFm2V4bi4ZFPENIulqiob4KAOsnmWY/ICWCD+BIcBCQa14Fh6g4ai8uCeOC7BPINCj8PlBctMcJwXZNvJKwyFBBH4EFm9OJBqMviuptorTrN9oqTaKfYSBDJuJQWJiZPAjFFUSeTy2g5Jf0oR6IJTynIioeHOX9nX/P38pePysHeom2gP7cU2rO0LR7NfizZu4LrZsFXt2vim5Jir9M2RKGOEu8V6kA0AvChIuNM3JGyF0eulkeuEgYxeMPvb56fALm+k/egnvVczo9UduRdM2eTbtSX51ueVnsCisNY8NBVUgCioqp75mVPaR2LvOeqENDk6HPu+xnX7QIfNZmWkcgFTTdadKJGl5nDGk87WlzQ6bkXfP7mAn2dY1JasJ97snXPatHSO8PY5JijMP7c/DF5iEETR4VpU4DtTMBJ3Wj8+cjV1Q6A3//kJdlNhjaiCXG7nPtDRv7O8vQPI+XdmPgzj3kKekwp01uHaR3t05I3/0nD2W/cwL/yq2+/Pw0m8C8opf7rwO8A/2KM8QF4Cfx73/ie1+lr/9CH8lG8/lcFmY/SupSW7CAVf1gaVDRpPpfW0XZyOoO0vu2lxucZFUI0uviDwPF5JrLgfqLwKhEWjfrknBM1tBeaflnK2NAFhrlJgZFwfA/GnT4hrdHA8ZX07rO34ZQZmG8VpjX4SpD6CdEPmUZ9cMSYSN9mQjcNYHeayQxEjYpuX3D1dIv5fsPb6gy9s6etw7QWtI2Eh/hcMAlXSyc0jRioVDiM7KSzRhiPk2x3KoimVaDT2i2Pj4EcWqTFqvDoLBCDUJDbfYE6WrFFKyKsByLw8e6SzlmhKkfFvinpNiX2zoKB7tWAsgF1n5M9CPjne814hvgOJPuxUAa0jozesB1KfNAch0wIRF1O8AqlInnpuJg1FMbRuox5PvD0yYGL4ohWkT98eMrNdo7WkRjB2MD5rOXD1T0vyw1P8j2Xdo9H8/P2KW+2Sx66Ch80PihCkBFh9IbDriI6jS1dYgCWuMFSVKNIgDeV4DlB4eYBViPLVcui7Dn2Ocd9KdqItBo2nTpdU+NMBF4hSJdkjhrbaronjnLZc/cwh2uRMAujVREHuWbLO8X8tdjlRTtZ6clnnB2guhW7fD167n9zwc1/auQHH37Nx2+ufsWdJ48/aRH4nwP/MnL2/cvA/wT4b/9/8wOUUn8V+KsAZbakuGnontTEi5Li+ojddXTP57IWJMjpn5KFtZOVnRkn5x3xuesuND7PqW80+WZg+alnWGe4Un8D+dcnh6BgBBjM99KSbj80cuoL/yaJVWT2n1bsyikoI7sfOnxpWf3CY3sZHyQgVD7oYSkf/uIzOI4zuqcSHa06jR7lpjW9uOawkAvtYTtjuWiYnzccVC3fP4lslIBG4yEx6dqJt6CYhi2fR/pzT3+BKOGapGI08j/lOFmoiZoxntJ4gBMHX5mI7w3KRIpqpA8Z9iA38VAHFvOWwVl2bYlWkSofKa2jzxx97iUHQnBJotNoJxe7L2QWpvKYPBBLTzwDo8TgY3SGVmVYHdAKQrLjysuRRd1TZSPNmHEccj5Y3fOD+TUAPzs84Q/ePaM7FOjcY61Ih89nDa/mD/xo9o6n2ZYLe0AT+Hy44ugL8nTy32/mEvOVHIZCY1GjKAK91RxuZjKu1TJXt8cCgsIvPdiIKWTD4rzm7d2K4JQ4FSlZ+5k+YTTrgD8fyUrHeBQg1RxSsOlCVsP925r8QSTaKFGZhhxwinILiy8lQWoSQPULWXHn+0j9dqS4aYiZ4d0/vmT4z2z5tfWOn//hSxYfm2+9F/9ERSDG+O4bN/P/Evg30//9Cnj1jW99L33tV/2Mvwb8NYDl4mVUPlJeNwwXFe6sInu7J7/vaF7WyTlXgCOffPj1KOBdeS8fjB6tRIgtFEdjhaxz8LJWHKVdnjTVw0Kf8viiFWQ930b6tYwB9iAxWP1KoVRi/qWVTsiSv18mQZIqWlaf+FPg6CmIcy92Xz5X1G8g32W4ZDCiJ/urUjTwwQRmi47jvuT+7Uoowb24+5BOEeXllB+WssUgKe8mJBnSqV4GzHxkqC16KwGWwCkUFfXo2S+U5GTWMZmBekXoDKqXPIFu0NIFeHG3MYuRInM0Q8YwWKz1DM6gVGRR9mgV2elI3OXorYBkIY/4RUDPRzITcIMhOIUtHNYGisxRZO60chu8wehAmY9Y65kVA4uixyiZ5V/MtnxvdsvNMOd33r1ifyxZL1penonSMUTFPOt5Uuzpg+XnzRP+vn/JwvaEqLjrZxxdzrYrud/O8DsZNWJQYjGGKB6V07DJoAqcv7dhXXU0Y0ZfWIyOHNqCobP41tDsZ/K51Z6zi73wIPYZIYun+Hd/5lAKxoNoMHSrKW/0KZTWbowIqFTykXRiNKOdbL8E85Lr2eeabm1OIG9168kfxHLv3V+qcP/UDq3gi7/1HmdfPl77v+rxJyoCSqnnMcY36f/+l4Efpz//G8D/Vin1P0WAwV8H/v3/KD9zXJfo3pPfd4TC4s9qzN2BsrC0T1OoSBMZa2m/Jzvr7Kgorhvx31sVdOeW9lLTXBpqwB49vpjWfZ78wRNsgc9klne5+AxmyTjSpbBI7UVDMDGzZDWpUlZBJLsxuCrSXkWiMszeyJvs6lQMUuGNGkIQjUC1j0lXICdwd6bpg6LPC47p5MQpTCMyXts9biYmQ41xjvgBJIrzxMvXAxirCFW6okKK3ErAXDBp2+Ej+TdckbWX4ucS2cgcxeUjJDadOtq0uhLbMjrDu3crATSdrDFbp4hFIFv1ZLkjKxx9YdCtXF7RRjARm3mKYsTUEZ9EP1pFYR42JcNgUcB81vHB+oHaDnTeCt/A5RyGgvNKxoF/5+2v8/X1Gm0DHz29O63MtAoU2nGRHWlCzhfHcz59OKdN+EAYDNHJ+4NXj13fYiTL5UBxo8Ftc3Qrp/3LV3f8+vqGu36GVYHeeN5uFvT3FbrR2CERkK56vvf8lsI4Prs/T/ZqSZ0alRRFgFwOkuqtzHtulgJa1GN3JjyCcApOLR4kZdk2Hp9r2ksjOJeD+lr4MLtfX3D/ZzTqz+7pHirWv5sx20m3nB/+FDwBpdTfAP4Z4FIp9Rr4l4B/Rin1F+Sy4TPgvwsQY/x9pdS/DvwB4IB//o/bDACo0ZPfHCV1KDfoZiRmmjCvyK73EOc0L0oJY2geAZaooL20KFdRfPlAPjj0UGHGjG5t6JdyJ2oXcZUGLNl2oLzpgQIVZS3oK9EmFNtIkRSAwzy54KY5zhfi728GoXKiJF9eiDuSjpvtxa5Mu3hK/Z1WNiETP4SQR5wSULDcBLRTEDV9KAh1SOIgleS1MRF9RDeRHcV8Y1gI1Tg7cNr3y2tVZBuNGwthwqbn9qUIaLKlrCiPdyXmoBPzcPKxi2AgTthHKT6FobGo3mKPoHYSiKocKUNAOhIxBVGMQ8lYhSQG0adMvdx6XOoWFKBUxCBkpG7IZGWYhECLiyMfnd2xyjv2Y0HjcvZDwbapCEFxu5vR79+DQaMXI6+uHqjsyO9vnlMYx4ezeyoz8kV7zmeHc+6PNfttRexlE6NOuYTfeBQem7mTFHvoxA8hZDC7bLisjrw+rtl2peAe9yV2YylSl+Vq8f+7XB/pneXrzZLmZkaezEmCBYNgAL4K6EZWo5IRKfTlmOjL4iSdVn1Rxs/J1di2HlcZDi8szTN57uparrWHZznH9yLjsx776ZzzjwVrc5V0tRNF/lfefzH+Q/iE/zE9VtlV/Kde/NeIRUasC2KRoUaZLVUEvW1wF3Pa548EaCH+yGuPWlHcjxTXR9CaUFqGVc6wkpTW7CihItEIfdi2XtZ+M4nKbi80bi6tev3OUzw4opVq2zyRmQuSBfdhek752kTLdHXyDewitntsvybu92SwGfI0kxeJ558yIfrVo524HpIrT6IYi3svpz0ziJehPZKyAVNKb4rSOvEN/KSnj4xnAb0esOlCn5Dvbl+II04e0KWXlrgzqNJjbMBtc2afW8rbR6zEZ0meax957q4Wi7UJ6UZDmDvyxSDKulHLnOw1cZSjTmXJuTjzzKqeVdUxywZGb9gNBYMzjyBdY2XVuU2xa2cePRvl50VYnx/5jau3VGbk59sr7o41fW9xXSYgYeFRgB+10JRHLTZdNqLmjmrWY03AeU17KIiDIV/2XK0OYr3WFLh9hm5MAmrTGjZhHZNbEgrC0ZLdWbF3S8VyslHTKRY95FFi1xSnTIbJPEU5MYBRTrH6mWL1mUOPgeZJxvGFpruQ4pttFfl+Uq/KyFXcGKp3yWtyFC+MiTb+9/4X/+LfjTH+xT96/303GINKwTiiMgvtgPLyS6hR4Zc5vlhgNx0zF2heVKL4g5Ntlx4D48KCnpNteqJS2KOk5bpaQkxdJglDFDBaK47BTsDFfC+Jwu2TSL82VNdCMCrvZNY/vJKVpDjZCsp7Eg0pqbi2VScE3ueccgtsJ8XHVUJLlkQimeWHdaS/EDMR24G6F+nrhCZPXgOmFdzCttIRRM0pgn1YPQammFEOVJ/F0zgyUVGLG4N6Uwn1eRnpV6IfEGfhFEm20qjKoQrRBLhRqMAhmxKNZfUYk2W42QlHQ54IBq9OAizlBNQcXAmZ0KizzNN3Gd5qjPXM6555IcpCQBiLbU2mAyaR3Q/bCvOmkBCPIF1XyMTck6N0T8VFy7puedMsuT3MOKZAjjBqlA0s5iJcOm4r2NsTMBtthMpzdnbg1XJL5y2brmIchaQVJqAvhZCqXp9MSKa2Xfdgg2LMNDFXRK+xkzFsyjGMRuZ6c1An7wixlpNiGJVI3E2XFJAvRrCR2U9zlp+PBKvYfpjTXalT52D3Aji6MpGMikh+a8g3pNAYcUFylXxW9c23N+TfjSKg07HaD8SzJbEwYikWo5iHzjPiVU121zD7dKR/Nqc7syhknldAvpNswXFdYPePuWv5bkQNgXGVM840Y6VFP5DJpsB24m+vU3Z9fxHonkQOe031VmzGqneR7lJO9HH5GFSRP2jyjaxmdKJqwgQgQj9P9mGtpAIFK0XBjMlOupTIq/5cGJDFg6K4n5KIOZ0S0SZSUqFOUV84ufFJqbdRi2eebeSC8olW7JbhhELXb1KgRafognQ4k4+C8gJMhU4TyiCdxCjtc38RGFYCYiov4hvtVUovknFiWEXGq4Fy1VMVw4lOmxnP0/mBdd4yBMMQLKUR8M4FQ+ftSVCUW8c8H8i05+1+wcPtAnOXCRP0G8ak2T7N0rWAov2h4LOHJ6heE6uAmY3CSSpHisJxOJRC6Gn1STkZLcQqcPVkxz929RqAd+2SwRmRQXuxYlcmohSoBLJOnRUKuREH8TiIlQevsdcZ5b1YyAmOkhKnXNJGKMh2Sd+hOQW4EOVzVO83qNEw+72Ss587hqVh+31Nfx5EQZkJFyQ7SjfWPRGCWnavT1F4k6LVVeKgXW7+4RP5d6YIxIs16n6Lvn0gXJ4RMwNGQYhkuwE3zxkuZ+S3R8rPHjDtkmGdndZbIdPkm158/AuDPQyYzjEuC7JxpPpyR5Fb+icV/dqeLMGbpSbfRknKbZLNdR4ZlwFfKMa5PnnLZRH0qKW9Xga6Z45xbph9rahuHpNfQ6YYEng3uRbnW0DL6nCKyMr3kG+geSEXUn8WT1Hd40p29nqUCygYIBdRTUgiEXuQdtB2iu5SOhDdC6XYNoL8j1Ezrj1+Lbt1V0rn4KtIuBywhSMGMcKIrZGZ2YoXIWMyAU0cArHyShLcPNCbiMlFTHNVdZyVLc+rHYV2bMYKFzUvyw2VGdm5kj5YMhUo9MgYDUdXnMRKvbd0zspJ3hSM+xx9MLJJSSEskgYt70/I0/t4ryUxKRcLLVM78lxSg53THO5qzEMGJlmvjwrdSyJSvhQC0S/2l7RjxsOxotmKqaApRFDlB4O+yaU4zyPDVQoiubfS/ayTR6HT5HcGe5DTeriQ9eG0ow1eXrs9qpN93LCS3w1Sd3DVE44Z5Rc55W3k+NSw+x64lZOC7FVycBa/RHc5QlTk7yzVjaK8l+I9hakWO2ENulKfRudf9fhuFIEQCFVGfHWFvdmhbu7Rs5pYZIQ6J2aGbNfjqwy3qrBKkX9xS3ZXMZ7XqVgI69C0jugU47Igvz1SvBtx6wrlAmZ7pOoGsn1N87wkGI0qoHkmH8wUXUUQY04VJtHNIylJ4rIU2d5IQMWFZ/ejyLDIqN/Gk6MQCEBoW5Eb9+cIip9cjaOWuX+K5dKDOsWNiYORdB6ujqfW02zEOKRfR9xi8o1LhqtOugrgtPsXCbOiuLOCa6jHv1dOEUeNKmUP3wYFlXTzJg8Y69HL1NqnFsc5zXjMhfdfeK7O93xvdUdlRlqf0XnLx7tLNo3cSE/mB87zhoMv+MOHZ2zbkkXZ8+HynkI7Xh/XvN0vBLhrZfSYNBB1o8g38h4KmUmlkzMVgIHkopvUeGsh7fjW0B5kz2+OmnyAmKWPNIGhbh6JS1Elvn57JhhBYvJJWxnwjUU1hmwnnVXzgcMsB9Rg4Ghxaw86ntyS9U5WfdP3GYAoaVOm0djE75g8J8bkeKTT16IGtjmmFRr45ofgrkZ07lHbXDZGCW4Z1kJOojMUbzPRXmxEQORq4b+U90KsG5I35bRG/lWP70YRSODf+GxF99ElxVdb2B1Qo8M0HWE9l0Jw30jISJWBn6GPLfnnDbEuiZkl1BnRStVTMdI9n1PcdZhDj5/lRDtHjR49eOqvO1QoMYOs1Ma5CIfyPZhRnU4eEevEk/vQuHyk2eY7SQLqXni6DwfGpSXfCLKrwqMrjh7VKcjSZZwiucZlpD+Xi1n300knpic6nf7DUtGdK4bzgPKK+m0k30B/pkUDUCbuwFFa4ykleSIFQbphkqHq5JCkR9AHyzBqhmR0Ih6IivigGItIftXwo6fXPK2ExvpVsxZbrsFirOfY5/zu2xeMgz0Re2JIxcVG+tGeuP3duxm6VeyWnuvFAu803BbkG009Fc70eidXnfwg3VU08t67SrCZ0CeBWRDsyNUyNuX3Bu2MhJgkwVTUEIdU3FVC8itZdfIuJx/kc4lFOBGc1NFgOk3UkeHKU18deTFrub5fEp1CzUcYjFiAp+cZzz3VZUNlPRHwCWA0W+FYjEv5+dlWxlGQDY8e5DqIhehDOAuMrT3RqrkryLcSFOOqSMxEY6DvcvK9prqRa2YCoJWH6j5gBtlyiaFNTJkbv/rx3SgCWqG6gex6z/hswfhsQaYVat8Qmx51bNDLBWFeortRxofM4NdzdDegmg7VDyhfEDNDNAZKySI4fDgj36T1yjw/RT77QpMdhcOunWI8SJ6AAuxBLrCsmU5zcT7So+FgteTtlXIqmUG84DzgV54ujyfzD9Mq6jeK8iHg00pvWIuZpR5ktebzSH/hBXBSyd22V2mjwcl9uBk1w0JkzLM3UaSjb+WG9rlcTOVdZFik4JTyG51MFrEp8962abeqVPIx0MLlhxPoxQTRHHN+ev2En/KEEJR0CSaS5Q7vNMd9KSNE8j0MRRBWnYbYGbrjjKFZSGczceS9wt2WckrvRI49ybsn56ap+LmZwR7lRJsciX0+kZs4GWtGJa12viFFkXHa6EzZAYqEIXioP7eyXo0SBBoXDp15Qpd4DWUkXvasFg1XsyP3bc3XX16gBg2lh4P4O0SdXJAWI2dnUmX7UWjU3aFA32X4uae4bAhB434xp7yVjtIydTCR+EHL+aIRgtFDjd6Lw5YcDmIrPy7lGrH7xMYMj25WzdNkU99BvomnAJqskcLjCk0w3/UioITLrrZ7bGbxqxK3rrEhorwntgPxYSubr6ogqigR5UCocyhz9KGF0YExKBUwnXgO+sKyf5WTtZF854V2PAjnPxhS16DIk5+bK1W6cRSujBTb9BJdpLqT1aLET4OaRYbzQMyD0Ht780skoXEdaNASWd7IqJDvI/1e058JOGUbCf9wS7HDHmrYK0v1Tp9Au2wfWXwRGOaKYSkSYjMIZ6LYipZgIjjlO2E6DmvpZpQDlchV2sdTxJVOM2a2V4RcTj3lUwZAEXE2wqjp39bYo0aN0lZ3lyPFsqesBiGtUIh2wSPBpVHBoLFbQ3ZQpwTiYS2W53IBq7Qbl5PLdnJzngJh8gSCptWnL4Ua7qbgFgvjTIq56eVmsS2goH0qeIceEQZfSMYtWjqwYhNPlvP9GvoXYibqnEabiNKiY1jUPSHCx2+eEDa5jE8zcSEmyIqSLJDVI7O6Z3BWzFUVDLsCfTToFy0/en5NiIqf/P4rzj8WzsfkMj2ce4pnDXXZ0w0Z7esF1bU+cWBUTJ4RRVKmOiUSZBPJtoKXjLOUxNzLtiBrpYMScFr9Uojutz2+E0XAF5rxxTnZZ+/Qtw9gLwilJSxKtNGoPCPuDtC0qBCgyIm5FR6BV8IpWFaSZOQjMfWV2okdGYgL0bCwFJtAvnvc45tO4sNcIU49+dHjM8VYa4aV4lhPmgBNlkxEik0yg9wrTGforsT0k16fEORohfMzrgPbH2jmn6eIKSUiID3KjQrycwZnGNeBqCLDE8e41nJjKbBHTfVOY49py5CpU5z6Y7hKGmGSU62SAxmvIWohjfRrufgm7oEZgADZdTwZWrgaYqMwjZGLNZMLF5NUjztLHxWsOsJEbDKPmQJsM8oHLW64KZF4cslRyU5beVEz2k4KQJZOe+1ioidrhpl0A4JzCJgZUnuvvIxipPWnTnqNcSk3jEknqKxo0+vQYBtZBe9fStpR9qzh1XrPcchoyfFeMBHvDA/bmUi9R+FQqMUUkQfZqqcoZAPRD5btthZhmNOYnUFZqN7f84+/+JztWPJ3//AjLn5XNCvH9yJ+lorhTDqq+3dLiq8zFvcqJR7J5+DNYyp1LIKwOAdNcW0kDNdOBU9R3E3ks2SiaxIJLEXr8V0vAmjF4YOKunhB8ekN+m5HvFwRKkvIKnSVofMMmk7WiTGidy0sSknEzS169GkUQFaLndDlQq6xbaAKcHyqOT43YiyyC4/ZgkmUFFXa73upqGaMtBeaYSmuN42SOS7fSDtPFsk3iuygxeFoJeUn26sTxXc4D4xrzwHD7LU+Ba6iZJaTbARxkG0Hk+zJwF2OZCnVtjsUtORkWzlZJclIbnxXTdLiFDOuEG17J6GlkGZjCy7KDA0JExjk74aVOpGgJr9/20jhc7PplE4sRg8qGHqfonmUUIJV0sYXD+rkxjwsBYRzcxk37D6h/SlodFgJIKq8zLR64NSNdZfJralKWo1ERNSDOhWxKTkomkdzUnvUp65iGn/E80HRPFO0H4wsrw58tNzxvN7xpllyd6gZB4vSAWMithhQKjLmlnGwxIgoCgvHxfrAMu+5b2tu3y6xtxnaShdlj7JCXn244c89+Zo37ZI//NlL1r+XMSxg/2sOKo9qrLhHG8PYa6rXGcWDvJ3DAvpLQflDHjGXPfO657Cr0Nc59RtNdojSFeXJuv4gRbxLXpMnl6pUMAkiuPu2x3eiCOhBgIzmWc64eM7s4wfM9gjMpBCUGaGwmF2O6geJXHYeve9QhZV1otYyVqgoqjqrUUmL4BY5eozMQ6S5MnRnGp8pslZ292OtT20pJAZgqU7Jw7ZDZu06reiMAHTFLjLMhWpbPIC/FatrEHAr24uHwbAOuHmgXxnqa5LleQonMSSxU6R+I465UUG2zRnWGe3Cn3bbYlKSsIKt3PDdWqjP4zKRX5DWWQhLwgmwR5V0Bt9409OIOJ08w1I6lfJBLNVUBPegGGslBCUjpxOo03ZBTlv5QXafbM4SrdsXguZHhSD1vYwe0SAhIiYZvhSIFiJAFuIJ4AoZnERbc1ntZfsE7s2kkAoDMwF9gGnNya8xdlL4+nNhMo7zgH3S8sOnt/xgeU2Iml8cLvjyYU3X5Njcs5q3LIqeyo5suoq3TYE/WGHnzQd+8Pya2g78+O1z/E8XzPZShKOX4tQ9d7z46JZXiw0/vnnO5vM19ddGIsaeOzCR7F2eQk7kPbD3VlKpC1n7Dc9HiX7LAh88uadzlrefX1B/YSnvIspJNwNQpwyDYano3pf1bb55NCslgB3SgTZ8x4uA8pHifmRYW3yhaL63pnzXYu4P6C4j5hY/yxmvauzOoJuBmFlU16Maj8oleixmBj8rUDaKc3AmJqG69xJP3itMG+jXlmGu6BdKPP0TEu9zBQOnNttVGjcTxl6exD++kGIwzgVHmH8tXIGoZC9bbDXNlT4pHYs7GRmGdWQ4C6iomX8ZpZrXKrnNyAqxSO2gW4iCrLhX+MYmC/N4CjsdZ/LaTpbm6X+Pu2TpBFwVcfPwqELM5fcUG2qFKh4troMVQZYeQOW/DCL5Mq01v8FCNE3K7Rvkayb9d5wJbuHLRG1NhBrTknb+wrWICYn3pRTR7JBm/VqlSDL5eZOycYoDczNBycVOF+EsBMS8QwmHggD9VaR930MWUUYKZlkNaBX56fYp14c5xzbHj4YYFHkSD3XO8tBUPLxdonoNZWBxdeA3r97SuJy/85OPmP80xyhon4bUZUWKpw1/6fnXNC7ndz77gPiuoNiI1f2QjERFVqzozwL6WQf7DBU4EYvKD/ac1x11NrLKWz59uKD9e+dcfBkhRnyliLlcn1UCgY/vwXA1QlAU12JTdjKuHWXcJcpn+22P70QRmFSBupf0mJiSVfPCYm8P6M0BvTf48zl+noPW6EauOjU6otbEPBMuQDPgFgVkYl0ercZXBkLEjEHoxGPEdob23DDO5OKc2tSQPc6qwUgken8GY5phJ6qyq6G51CybQHE/4mZiZGqGQH0D/VIYgTpd4EQ5rYdVpO0V1Y24BKMS534p7rl2b0T1V3p0pxO7TQg6fg7DhWTfTak7+Z159BbQQqkNOUQt7kQRwSWmVGEVFMEJ4hx10ikMMr4MZ5KJOCkUJwVjtOHEPYg2PoafRoPO5eu+klnfl9LCP96cktcHEByneHJ02teTItTN1IHJNeGriJvHU1FTQZ3SgZUXkDLaiG615BlGKSghD6jaU8wGYpQNR+wNZuZQwOf3Z/R9JgdlSHbpUXG4nXEI0rUoJxLyOHPMLxoK6/m7r1/hv6xZvBGmZfO+g4SDLM+PPF/u+HK/5u3bNfY6l/VxD24uXVPIRL8xVJ5y0dM3okMAGC4CZ+8/8NH6HqsD75oF/+Effsj85xnL25jYn99Qszo4vtAcX0k8mvIK+6Y4kd1EI5MOhlQvsz+NivA/jkfINe1lJiy4JqBdkLanMMQnC7I7jdodMW8fUOcLQp0T6hylFMoHVD8Qywy3qNCDwxxHGSOsRo+C9oyrDF9KmAnIhVTsA70SwGZiYkx0YtOJotC8i+hR069lxp2AKdIapnliqG9ADxFXCjZghki5CZJTkKLUpR+fgDZp/7JDorAqxRg048pLDp5TkAdCHtC5p67lgh76TMxLredqdWBZdHxyfcnwZS2Clr0+UWujjTAKLqBHhau/kVxspMApl7qGQS5SVwlL0XQa3T+uqmOYYsBF+BIGuSkn8kvIpVP5o4+YB1wR8DN96lKYfqaRf6MH2QyJRPoRkyB1MyrIeyUcfE5aCLz6pRDR6flVUHCw9HvZtSsg1qISbNucsRHTUIKCbYZNEWGml2RhFZQg+GvpHg53Nd1dRr5RWOD4XiCeDxJE6hTZbMR5zS/eXTLuc/IbS/4gHWZ7JTyDbNVTFU6i4Lyi2wp/QA+Kce15+dEtf+bsHW/aJT/58in684rLn8uJP854HI9AqObzyHgxYuYOP2jMfYYahXYcMgFG7VFch/N9IDsGst23I4PfiSIQlQRoRC2ob/ngMd5jjvLC3brC5FY6gkN3EhjFwhBMjd416ENHLDLGVYnpHObQg9b4KkN5SS/qzi3RaEwXhC8QU0KLTih7lPHb28RAm0kc9eytxx41rprCLR8Rb1dLNJrtHpWK02569mY8zd6+1LQXlj7lFgQrKC46kZJaRdQmyYcjMWrIorDZgLNZy1AO7JuSobfcH2oy4zlfHrl9oRl2eTIiebQl1x7yvZik+MrQn2uh4CaJ8oQzTPHeKoDdiyOR6ZHOYnIl8hPSLi3C9B5MXocY2ULYvaG4k/fVzcxJVajS9pDUXQQLJHCvuxTUT2SzGtVAfpTv6y+gPwtCwQ1SiKZRYSoCE3swTtyHVJimJF7dWdyD2LWpVMRN94hZCCD8yKUY1mLdhjLYreAZ/XkkPO0p64HuUBBbA1lgPGaM20Kckw9Kgl8M7H7gMec961nHouy5P9anrEWi/N5+5Th/umNdtvzu7QtuPj8TxeadvO5+LaPROJfOiCDF3c+DsBqPFn2UztGfy0igt6JeLO7lEMsayeoYF9+eTf6dKAJSiaE7E0BODDgDWivMtkV7T5xXhPVc/AdjRPUe1Q7EuhDS0KFFH3t0aXG1/Fp222FixM+L0961XxoKBdneo8eA9obWGsm+8ykAM0YIMvu3TxThQYtz6+FxdJlaZZ+Lz1tfJAQ7xBOgpULE7vtT0TJtiekzhrkIgqbuY5qtbZt8A4t4QsCjibSbjOO8olj2WCudTHtX8dmmRJde3I+WA8Er3DGTdtaJD6H83nKD2aPcQKadWmy5kSV0FbKDPpmNQDJImcVEOY74Rp388X3B6WQ2fSoMJp5ciwQ8BNPIKT0lLSmfMIxeJSdo+V31KJTdkIk+fgIsfS7tL6O8ZttKER3nAnpmB07KPGEDJoekAHZnKG/lVJYY87RJqCPjpcPOR1xKT8qvhUAUcskDCEsHg8YtA2458uLJhlk28NntOeohQzuF9gaV3JmU2AYK9vN0xNZOMAgdxJH4PifmEbsayHKHc5os8xyakt//ekXxNmN9I7LskE8nvig+QxnQvTpRf1WvUZ2Wkeuyp54NdG0ObwrqN5ryNlnv2YRrrR/9OH/V4ztRBKJK+/etoPDthcaMFhUiunfo3QhvbmG1IJbiNUCMKOdRmwNhMSOsZ+hdi933hKzC1RY95qh+RPlANPZ0c3Yrgys0+d5jm0Cea9pCMa6EDmx6URaKK69inCtAJ+2+3Ej5IWAb4SWEQjPMjXQKmeQioGCcp5Y0RILVKQUptbQJtdWjPBdRCsowl+BJN4uS6OvTPrjJGI6WYT2QlU6UhvsM9ZAlZmA8SYy1E7RdWv10Qc0ejUcmHwN7FAs0SSWSkz5qIaCokE7/o4Io3IRgobsSa3UAm/zx9KDQZSL55EkNl7wMJq+8k7PxMCkdZa6fbM4gUXqz5JnQQbYjMeyk0OpBCtKw5kRqamfgzhxmPpLnjmGw+E54/7ZVp8QpubHE8jt/eeTJ4sixzxlLQ9fmjMmaLs4cuvQYHaFUlNXAh+f3PK92/M7bV4TPZpSbKeMvGc7knMJRXSW7fGcMPtdsjjPiXUEsPbOrhiIbObYFrre464rizrDcyVZFjyI2kyRl2aJEI92ZbdWJValHISvVV0dy69lua8zbgvJWOlcUDHMpTP1KsKkJa/lVj+9GEUg0UZ1MO0IG7ZmWMFHAWo1Rini/QVtLnNePK8EQ0Zs9gYWQi5oBexgYzgqGs4JsI89h+pCstMGV4lXYnYkbLJFT5LirYVxOefUJOc9lLpu4+NFKe58dFNWdI9uOZAfHWFuGpfkGiAbjzKaMApExS6s6AYxJo58Ky8RPUG/FqWhYyXgiKx+Z7X1fMJxr6rOW0XpGSszBnMgxplNkTboBHYlchNBGE4nIDNLmT2qzaaUUzOR9KASU7DgpEtNGZCVchJgH1JAcmNP7NzkhRYOQnJCCKrwGeZ7+PCULpb361BVMHochjxLVbhNA2whlOzixRfOFor9IEt0s4oqAygNKR3xr6e4KYdYZ6WzGRaD7wGEKj+8N+Wzg/fMtL2dbDmMhOYLeUOUj8yf3AGxbuVuKzDE4w8vljufVlr/5+a8RfjKnenhkOZ6yKPI0nyTjELMeuFwfOPY5obWwcMzPGmIUG/d4tOR3hvJGiDyml/dQCjKn4NX8QWOnrUoObga+joSLkXrR4ZyhuZmR3RuKe0WxFY6FS2C3CIoET3Hnf7rwkf+fP6IR/rNtRbAz7Ti7tcaVOWbIKB5KitsatT3CZocqSyGkazn19GZPXM2JVqObEVtYxoVlXObYxgkuMAT0Nj6e6ApcoUQlGKUAqSBzf7Ayi9km/flMTtF8ly58C3EJ0ViyRuzQ9SDZCMPKyLpxhHGhReKb1IMgF7gvRUpqW5MIRN/Yq3s5GaJWpzRZ5eQ59QBma2l0hSkdqnZ4HU/bguxB6Lq2ESs020XUMaK8MCBRsjaKWopMfyY3lBqnU1PaT4A+neKcPAfEvkyPJvH15fOawFLtFEEJOSeYJAiIws4Uh2TZq4c6gHs0Tgl5JJTizhtyAfd8LmvYYZkKZFovBpvm+V4RBoUAC/La9TDhAQq3dly+2HI1O9CMOYVxvD9/4CrfM0bDvZ7hokaNOa/WNzwt9nxyuGRIoaLtkDEvBkJU/N8//iHZH9bk6aCQgyFxBNLB4JYBfd7z6nLDs9mO1/s1XZujskBeyyarPeawy8g3QqoS6ziVAMAkhNJy+OQ7pANLrlX9pax71WrAmEizK1GNJdtpint1MsYdVlEOlyGtHtdeitKy4Ytvuf++G0UgEUD6C9H065SqoxIDLGqIxpBvC+ZfL5i97si+vIV+AJt+BaNhGKHKxZTEiz7AV8miLG0FghEX4pBCNkwL0SiGpSYkIc4jFTfJVp3Me91TT/eUU36eGST2zGeTw44oxEJyEupTG9s8j6dgiJj0CgTSmk5O2qhlptVOlGbT7HsC+Rx4IwCRnwXwCn/IUIOWQM+TFkJOkhFFfz5dZPzS7zV1RIJrRBH+WEVIPn9TQpDOA2UlF/BxU5F9lTH7KjkcZUk8NUS6tWJQ6pdwDNNqyht1snCfknFNB9oLQOlWwr8XfrU6uRzZo9zUw0qeJ9vJezFxFabfY7L4kuTlFOy5HFjMOs5nDWdFwxAs7y/ueV7uWJmW9/I7upjzd8aPGL3hab3n+/UtB19QGsfTes99N8NbeeN//2fvMfskAyUOPjFxH3RKiXLzCO+1/OUPvuCD+p6jK/idm1fc3C1QJlIvO4psZLeviducIrn/uIrTKBTyZGvfy0E0cUiGRVorr4MUZh2JoyEMoDqD3WnKW+m42qeKYSV09Ogj3RNPftFxOeu4mh0ozch/8C3333eiCMjFISDRcOVQnajS4tnACMSjRc0dsRzZ3VfUn8+4/HHB7OMH1MNOxgJr5b8gKkOdZlmrGZaWbC92Y2LsYeXPCFEpOzqyI3QXGd2ZxiWG3CQ8iUqqsy/EoGM88wQrJ65yiXZ7VOn0lhNsmo9DIRwAfdYTdRByitfEXoOJ6NIz9HL6zM5azmcND03F4c2cbJtksSnIRPwItSjTVqK/HdqM4HLKaykE4yzSXSTGXxVhPVDOBvrRMO5ysnsrGvlR7MiKOy2mrlbm7VALBdg8SKZhm4uFF1rm6b6Rojzx/eVN5KSatMfULrfyPT5LdmqFjAtS2NNJFTXRK3QjJ6Pp0pxd/HIByI6ynh0uPbF2SaBkxXMxE4xCX/S8PN/xbCbRZS4atIo8r7Z8r7ql1gMvsge6mPFVf0brMxZ5x3neMEZDpjwf1ndsXM11syBExdv7JdWXGbZFBF9a9u9E0SkMl47l0wN/7skb/uz8DT9vnvD7d8/Y7CuyZKcOsN3XhIdCCsA20anreOISiPeDqEVViPRnIjAbZ1LwlRN78lAFlPXEXgpAvk1j2kI0EyqCnwXsRccHF1vmeU+uxcr9y/36W++/70QRCFaqYHGnGXuFuxylzRo1y8sj1dWID5rnix3vfbThFz+44KcfvmD14yue/N2a7Ms7CI9kCDV6DBCtFANXa8alRJsrFyGX9ZwYe0RcLZbk5e2IbQ3dmaE7l9jzaReugrgLK2+kS/EJ6IriONM9kRvCtGJe6S5GdOExJrCedRgdmRc9AKM3RGDXlsSocLlG68j5rOH7q1t++70v2H+/5P/w5W9x8+WZ+OkpsY+avYmUdxmHVxb/bKCYDWSrlsO5ePEpD27tyJYD61lHnY+8t9jwstxgdeD3Ni/46eunmK9KiltxJhpnCeBaeFTtiI2FVmZW20jR7K4C/mKkXUEzaPRRwlGzg8IeobgXfnp2jCdrK1887rc5bRFktMmTy06wj9shMyTF4ZkYqdhkAjIsEHstE1G77GT04WYy65brjjxlIbwOa1ZFx/vzBz6qbnkvvyNXni5m/LR7zifNFduxpLYDq6xjDIYxGt4v7vj940t+5/oV/WjxQTM+FGRJqRcy6WjGdWBcOOplx4vFgaf1Hq0C/7frH/LQVCgVKQpH1+YMXSamqoNONvJwfCHXSXUt1PPJsDZrhRR0fKHp14KPoCDbSFTZeOkwM4dvLHov41jzygs+M3kfXvZ8//kt788eOPocTcRFze+9fU5zPfvW++87UQRs6Th+6Kg/t4k6mzFeOLCR/bZi/rTnsj5ilWdmev5Lz/4eP17c8v9+9hGv1+c8+3ct5Wf3qGEkzEpCZdFjwB4GdG9QMRe670wnEDAQMsMwT+q75FwcbIbtxGBUOxEcufpxly4BJon0kvSe0T7SV/XZQDnrUMCq6vgLF6+Zm56VbWlCzs8PT5jZgafFjlKP3I5zfrJ9yud358SoeDbb8WF1x7k98OfKLzn/6MD/vvxtvrg9ozvkDHtL+U5TXUdWP4duU9Bd5PRXA2cXe8KqYXMzR3WG8ZjRJyrsXTdjZgY+qm/5S+efC/+9eE5TzOQ0zaPEn+dyypxCUd0jece0irjNZC2lZYQY9RSckU40FDoD20fqG38KyRjmgotMSUiT8Cmmq08l41YVZDsQTRqJmsd/Y48Kc2fRXmbd7r2R+eWRs7plDJrtseI4FMzqnicziSz/oLhlbY78uH3Fx80TPt5dcugLns73aBW5HQtKM5Jpz/+z+XV+dneFD5p52XO7naNGfWIpukVArQdm856zuuVJveeiOLIfSz7ZXnK7nZPn4uR8fKggKFThMaXHJ/VkfxXQg2L1U6juPcNCE3IothHlI00KZZ3yIbOdbEq6Kyf27y6NP2cj9bqV59pURBOpnh/4J15+zjpr+LI94zBKIvS7uxXxXQHld5wx6Lxm/XzHJp+Tf51RbBTZPqO/DPhZ4OvX57RP9rxY7viyPaPQjt+cvebFRxv+5uLX+GT+Ps/+9hMWP92gjx1+vmSYZ0IRbkaKzjFclIRCi//f3KC9oLKulgvSdJI10F5OfvyRfCdijckeXHtw2QRekVZnQt5QZVLK6cCPLq55WW34jfor/lL5OR9ZwyGO/DvVC/7O4XsAXNo9tR5o5xnXhzmHY8m2r1isO2a6x6P4Xn7Nf+7JT/jJ7Bmtz9j0FZ/eXHD/tqZ6px9tyz8pOH6R078YWV8dJMzjoaZ9M6cbFJtszSeLJ/zO+hVndUvvjZxSZSAswolBF1uL3Roh4DjZ008AWMhkt2/vtcSzxQk8jXRPJgGPZDLaRjjyKsiWQ2bpKIDYfcJGkg5eD6R/I++r9jIC2DZdG1nSOvRyAwyryPhs5Oxyz9XsSO8t/WhxTmOtp8gcpRlZmZZMOf6ge8nffviQ23bOpi1RwF1b8/W4ZHBy+X+sL4lRMSsGVsWR68Oc8bYSr4cydVaLgVnd83Sx59Vswzpr2Iw1P755xv56Lms5kwvb00bq8wZrArvbGaYRJme2Uyw+lRCdw0vZIs3eeLImcHxqT/ZwphXSUbAwrAIUHq0j9bxjVXXU2YCPmre7BTr3XDzd8p9+8XP2ruTv3H7AQ1Nx3JfodwXZUUYmlQJyf9XjO1EEVK/Zvl5RXDUMrwLhTUHxoKi/FkTbzTQPw4r9uuJifZD46KXheb7hn7z4lPKfcPzYfIQrz1j/wQ770OKLGe3TguxgKb4+kG96uqeVGGoMnn4lDi16SCsp+yiCOT4XYob4Dsj852YkJpaiuxR/fRUhFAE9G5ktOsrM0Y+Wn95fEc4VZ7bhLr+m9gfuQ06pRgrt+HdvPyJEKQb3x1rScYLm9WbF/yv7PvVlf0rDeZ490FXSU+/KEh81m1nH/cXsFBemvKZ+p6iuc/YfnJF9eGB51tBWGeNGXHziQ8auW7DLJFfPbqys/qqIW7uTKaafB0Ii6ygnJ7zuU/BJOpVPCr9MMI+wdJjK4YOi15Fs1nE+P3JVHnhebtEq8qZb8TuvX7H/fE79RtaYZlQnTwBfSkcxbWNC/kivBlmZjUvBOPJSTtyHrqIfLUYHXl1u+HB+T2Ec59mRhen4tH/C7+1fchwLoWWPFu80TVOIsWpnIA9k9cD5smFR9Hx2e078ZEa1F3GXWwhb0djAum6ZZz3bseTn2yu+eHOOvi7IfKI1FxK1lhcO5wzdlwvKe2nn9QDVrdjBHT4Q1er6Z2IEunvfSvxdy0nxKRJvUUjOVh0fnt9zVR4Yg2EzVOy7gmGwrJYNf/nJF7zplvzdr1/R3NXog6FInZSsnv//gCdAhOorQ9/Miecj7sIRCkN5ramu1Qkp9ceK6/uC2/M5+6HgB6uKi+zIb66+Jvwlxe8tXzEsVpz/pCN/6Ii2pr2wjLMV9ZuWfDPSn+eSNrTzdGtzMq3UTtYxphNQq3sSGRdCY863Qhvtz4PccG/EantcREIJRTVSp1DO86ph01X87O6K1/s1v1O/z4tqx2aseH1YMwbNoSvYXc/RjTmh/yGLNLXhpzzB6sBvLb/izB45+JKbYUHrM7SKzOyArmSu3OxqnNP4OtI+Ecyieqfowpxu7aQ7sXJTExHdvw1CSU5IvWkVYHFnjvJcZut+sLjRopNfXvtQkt+YtMVA6MR5YrbNAvW65cV6x/uzB96rHvhB+ZZX2R1L1TOg+XK84OPsKe8uFnzSZRxtLt1CmwgtlRScYhNRA4B8PR9kdermCZirPfW8p8gcy7JHqcivrW/54fwd//T8p6x1y0+G5/z95hX/9t0PeHNc4rzBB0XT5RKC4jUhzekUHluIC8vDvubd12uqz3Kyg9ChJ2txnMJ7xVe3a76MZ/jeoB8y8oM6MRDjwmFKR/SK/l1NcW2YbwUQDekQPr6U77VHxeJLoZk//CDDF5xi7LoLIXb5QrYnV68e+MeuXlNox20/5/P9Ge2QsdvXaB14Mj/w44fnfP75FflbS+mERZnvEnsTOHyg8D88fuvt98cWAaXUK+CvA0/lduWvxRj/VaXUOfC/Az5Eosj+2Rjjg1JKAf8q8F8AGuC/GWP8tu2EPEdyw6neKcYmZ7jwxDwKfTPT1O/kjRtW4BsD9xWfbXLuX9T8+sUNZ3nLVXHgP/FnPuXvL1/Qnc+5+vuW/GFAOcuwthzfq6i/7qQQXGQEI0SNiQlnewG2xlr8/cJG0V0GustIeavltc0EBNSjEmpmp7CNpaWmejlw7GsA5mWP0ZE3tyu+3l7xu71gB7rXSYEYxNT2XmZvn9hsPigaX/Pj+Jy7bsbLmdh178eSgyuY254P53ccXcEQDPdhJozCLNJfBYYzWbNFm/CK5ODLFL2VQjQISdU2l91+1EBQjIPF+8eI7svVgQ8WD+yelvzh7Bnhq1Jm+oWk/xTVyMvVnuf1jkXWcZEdObNHFrrFEOii5St3xt89fsjf27zH9X7ObNHRZ57xviQaLQSjLGKaRP5KrM5JJm1byWkARbCWrsqZlQPPZjuelTt+VL3hR8UbFrrjs/GS/9Ptb/E7X7zPuC1k+1KJ/bg2QiqKowKn0bVYh/uHApwUndk7GXXG+aN9GR5U1MQvJHA05pHs/0Pdn8Xctq75fdDv7UY3m69bzW7OqXOOq3HZrkh2nNgKvoAEuEBCspAMMUHGgEVxEYQickHwDZFCpCCBIyRQUCFf2ChQMkmQTWKEYnAAE9uxq2JcpsrVnXPqnN2s7mtmO5q34+J5x5hrl88+VXFZ0WZKW3utb33N/OYc43mf5//8m7FIvluIq4haBYxLxH1VAkDU4nUYOgH85qix5q2meRCnp+PXDdrD9a+J7d3uW5bhWdkwPff87t/1Of/E7fc4xppfePyIV7sNIRj8aLFV4OO7Hd9/vGb87ob1K138L2D9WcT2meHGsP+WYvrRfvFP/IcqAkim4L+Yc/55pdQG+Dml1L8P/LeA/1vO+V9TSv1LwL8E/I+A/xISRPrjwB9GYsz/8A/7AcZTKMPF0SYZqa5Fbjp4QVLNKOu4ZBXuYBker/n5r7d8+OKJq3pgjJaf+OAtn7YTn21uuP1Fw+a7A6vvTYx3DcOLGj1m3D4y3lj8SvLmsgLfKuyYl22APUPzTiKfhrsshqHviqa7+LepQlBpv2956m9JXUSNmn7aLqud6sGw/kQo0VkLo2u8Mvg1iyOx9kKQCauMqhPBGz65v+bdccWLzZGb+ixpuoMQXBrjuaoG1uuB/WBQZ4M5GlIjCH61mlh3A1rBeXSMo5PTrxc6rQpCTJqeia8hILTlkyUmJxwGDe+0OCVt64H1ZuDwgabbDvzeF6/4ifUbnrkD1+ZMozz71PKL54/427tv8t36Gf9Y9wl39shT7Ph8vOLtaU2IsgXxZyHMqFKAoi0Wbx3F51B8H+cEZSEfFRsxYFVNrMyEIfG98Y7/+PgjvB3W/Or9c06fbHB7jS0kpNxrQi2CG0YjRbFKpMFiH4VKnlymvhd/htmt2Z4VKYCKghHFRlaotoxF0614FZhOSCTpvqZ9ZXBnea7jLYRVCaop69PZdWm4ky7SnmD1qXQ7jz9hGJ7LBsQ8G/kj3/wuP7p6y2fDNb/89ILP7q/QOqEUNN1EU3m+9/oW872G9kmeU7WXAuBOkfMLy+EbcmhVv97SvOMfnixU0oc/L38+KKV+CfgY+KPAf6582p8D/oNSBP4o8OezhBz+DaXU9W9KMf4HHiplujfCMPOb2ehCLe6z2crNXz9lql0WLr+C7lPFeG74/Ok5Tx8f6WrPQ+y4agc2f/AV33/+jP55x+0vTjSvzuTaMN7VxEZTPwVQluFKE4uZ5RxoIelAcoO2STHeZPqXmfpRUe3yIg/OZna2zVQ7DTtdNN9gPr3QagXYSlT7gF9ZsUQzl+RiM5RuyGqGteL26oSPmsOp4TvnO3ZXDZ3z7PpGBCwq41ykrTzbZydO5xo+bWleG8ZbhVqP/PjtOyodeBhX+ChhoMep5uncMo0WYxNaJ4ncmix5Et6CrYtl9mCZzo5Xccuhq7lqB3787i3fWt3zB1ff5SP3yGf+hr9x/FGmZNFk3oxrhuhojee1v+Ihrng1XvF2WAOgdaY/1+i9XZSK7qAInSmdkoCJ2QpFe7oSBmO2ELYRs/E8vzlQ6cjbcc33Tjd8vtty3jewt9izxhY1qD0p1F6KnV+JZfccoqImjT1p8TCoM+0rTftWWHsqyc2kcmF21sKqTHVeCoC/ledibMSPFvWuZvW5xh0y01UZE50UdnsqrsGzh+P6oruoH2G8UfQvRAuQu8Cz5wf+8MvfoDUTv3x8yXd3tzzsVlgbcS7ivcFPlv5NR/1O6OLJSmrx9jek/z9+6Ap3BVafQb2PhPofkYBIKfVN4A8AfxN4+d6N/QoZF0AKxPff+7JPyse+tAgA2D5RPwGIm4+aWW658OCL4m0WmyRHMZwElGH0G863nno1MXrLj9w+8k/+nm/zi3cf8OmLLc/+P5bNt080r3um65psFO4g7sGpUFRjLfRLM0qhmSmi76cPq1ROJ80CLM5kDUmhlX+LFVS9JB3bUUgy05WVSPTMEhIpZioUdR+414639YbVWhxM4r7i7dliu4CrghhhRrkQlMr82O07rj4Y+OzlFb/6/ZeYVxX5V9f8zacfZf38RGUDrQu86ATV3q0bPjtecRhq0dcPVhx0Fdg6st2c2TYj+6HmeG7QOlPZyIvuwE9uXgPwc6dv8nN8kyff8f3TNQ99R4ia2gU65+md4zeGW/ro+N7hljf7NePgyCVGPbeJ2CqMv7gbz3oLMxuDKiQGLJb3uqjyzpPj0NeMQ0U8OPRZi3PR9N61dC4xXwVwnK4zaSPOq+osRJtZ4t28kwKQtRT02YiDcr0Nd0KjdnsNCfyzEoSaYNrVVG8s3SvJ/ps2cp2IUUu5Z7IUsvEmkysZe7TQRTh+PYt78CqyuTvxI9dPfHP1wD7UfPt4J0X72GKdAEfnU006WczeUo0U5Sa0rzPrTyOx1mIyaqF5SFTHhJ5y0bP8IygCSqk18G8D/0LOea/U5ZvmnLOaY2p++9/vp4GfBqjba+xJMtZ1gNFLy2/GS277HNU8q/v654pwLV2DStI56NcVU2fJ68i3wx3/2W/9On/yJ/4Gv/jRR/y/v/m7OP1HG25+xVM9TsTGopRIiqeVLQQX8BtRYnWvM/1ztcSgV0/zE5ebNlsWnX39TjPdZEKT6XZyocdahEhZK6qjmDuolJfkoWqflxy/UMwh5+/Hu5rD0aGion1lsGcITSWruJsJWwUSgnYffMNPbl7zT1//Eu9ebvkP7n+CX/jVr1G9dozvrjhtE4/rwPnWcVg1hKQZg+V4aEgnaf2xQhUOg+UprTA68+O377j94IxPhjEZzqHi5x+/zkPfcRxqauf5+nbHj23e8Znd8p3HO56OHUPl0Spj1IohOF7vNgz3reQAViV6OwqJaLoq83L5GFlo42YoIqtJLcKiPBhOoZW5ftLCfBzU4qM4Mw2FYSlFJHYwPMvEG8kVyE8V1UNxXDLys9yB4nuoFtcioIS9ys+2BxldZtNT3oqLT7UrDtI5MxUbcXuU6yU0UtymdZbI+UnJlsZkprtUMu0ybjXxUx99ztqNpKz5pd1LDmON0Yn9uSFFzTQYODh0r6iKCUqqgJzpPhf36vFaL2at1SFTHcTReLwS2rwdfoc8AaWUKwXg38w5/zvlw6/nNl8p9SHwpnz8U+Dr733518rHvvDIOf8M8DMA69uv52wV7hjQY8KOBt/q5cnP6THyhSJISU4kt36Tl/CK2IqXWwoKP2r+H/nHaH984o89+1v84e23+dm7f5LPn33Is7+jaR6kdbJ9pHun6O9McbGRTUS1zzQPlzc3tIU0M4rU2D3mpV3MR1nDjLdS8asnGRugzLE1TFljx0tasDvJRiK0ohv3W5mLxbAjQ5XIURFrTfsa2jdQ7TX9BzXTjYVWrtZ3xxV/z34EwO/rPuVPfvgf8ks3H/FXXv0k3/vsTkwsBsPjuw2P92tBxSuZLVUXUDqjdSZFRRosaTDsji2f2SvsJtEKKsfR1wufIWfFVdfzUbfjeXXgYeqYgmHsJQb8XnX0YyV/L5HiKoIqGgcZpTKhZokeyzaDnjMfLqYg2RbtxoMVzcTWQyieg2PBZopugvReAWiLKWyTYdSoB0v9pJfVZi6qR11cksjiTmzKRmI2j5lZkWKMorBHUwDLeb18GVtdAeCnTfE3uI6QwD0Jwy9so4SXTBqior3p+Sc+lkl9P7W861eMwVLbILmIRSSkz3rJYYyVYBNmhO4z+Zn9rV6sxc2UqY7SFUxrvVC7f0cJRAXt/7PAL+Wc/8x7//SXgD8J/Gvl/3/xvY//95VSP4sAgrsfhgfMj1hrYfn1ETMmbK0JK9nlu0MArYiVMK90gO6trOvOH0pLaY9lhlslzFGjsib4hn8v/BRPP9byzz3/m/zp3/Xv8X+8+kP8lZvfx93PVXT3xU/gccKeDacPHT6Jp8H5pbjnzrbcQtwoOYFOQMTqkEhFCWd7eZP65/J5Kira+4Q7Z1TKhFpYczP6HWv53pISLC3k+KzMjEo+z648/kcie1ez/l6JGvtMQNHQGUILu7Zmt+t482zNr22f81G748ae+S988Pf57Oaav/fwIa8eN0RvSINk9DFq8irSbQa6WuyxzkOFTwqlM0plnvqGXf8hWmWGyTGeyw2dlISIAFZFzqniYew4P3Tog2HsLFPn4OCWky+5LFLo0s3J38EeVcF+sgSYqFksk8k2oWophOpspItYB+gtzWtL/XRR8GUtUnDb58XBKDYKUyvSKOCeGYUZmY0UjFy8DWaOiBjJSihJ3Mj3ML1agFsA+ku3JuK0C4lM93nJRJyuC4EsKuxeF0ameNqro0VFRf21Iz/1weecQ8VUqsjKTazcxCdPV/SfbKhK8Zlj78JK/Bvre724D/Uvijv1SYhXdsz4lWHciK9FNiKD58sbgd9WJ/BHgD8B/IJS6u+Uj/1p5Ob/C0qpPwX8BvBfK//2l5H14K8hK8L/9m/1A7ISBxQVjHBWQsIMER0z09YS1gY9Sb5gLmskM2a6twmUZriT06D7TIvpxSph91qQ5tc1/6/hdzP8Hscfe/G3+W88++us/vDIX6x/P/HnKprHRJsy9hRYfQ79M1kfxhaGW7m4KLiELm1YAIZbTTKS9kIRHLljFtNPJ+BWaCV5yAwZFRPjtnQ3fSaUK9hMeZlDYyNfk5sIXhN8BTYRtpHTx4buc7WYT7RvigrQavy64d2HFW+eb1ltB1b1xG175mV74Mev3mJ04v7UoTay4x1HRwyCKxyTFNYYDLm35ARjsTTLWeF7MS6xoyo3l1x8U7B81l8xJctv3N9iH8TWKgxKci6qRCz2X7ZYk6sIsxe+6S/x3KG9pEGroCTtyMha07gkUumoUCdL+6mhfspLHJk9sSQYzbHt2c0OyWX8mJ1/YqmupROYswdtP4evyBp4AYnHy/uvg3QIM44T2oJXDfIezlLgMDslncvr2haV5mikKCrg456XVwcex46VnbiuzhiV2amG7z7dMn5nQ/OkF5WhSgJOxjrTvta4PcvPu+QrSAFIRpivxkuXMl3J+9be/w7GgZzzX+PSjP/mx3/+B3x+Bv753+r7vv/QUXao09YQG40Z02LVpX1m2hhSWanNNk7aC9mie5swo6Z/Ju3h1a/A6SNDbIWmmbWietL8/O7H+aUffck//fVf5adWn9L94xP/B/WHWP1KxbSpWL02VLtA+86jspP2fo7ySlLt7f5yikPx4Vd6Sc4NrRSo5ilh+0RoFL5VJCM78Nk2q94nXJ8YriUDQaVcPASgeaMJxVhSVHVW5tzZSrpYhttR5Msz0NgqzTTUHJ9ZTl1g3zUcNzVfWz/x8WpHzorDWOFMYlULajV6y/HUEB4azFFjtOy9yUpoxaPBPlrsSWbzsI2odcDYxOFc88v+BdNkme4b6nHWGSjCpMiz+chZhEbGy00lUmtB7bO9mJjMIi3KqIBN5KBJB7M4ItePJdasE6zGlQLgV5JUNBeB5C7K1PpRLbhRaGV1Nzsc1feycYpOcfxYrN5BjDrdXroD7aUAzN83OXmfxRdSnm//XF4f00tqtF/Jaju2svLToxitZgXxxrNuJ4Zg+cb2kZURG/Sdb/il1x8Qf31N8zRb7Mk1Nl0L8ad7JRun8Y4laal6Kh1Q6U58W6Lna1lFkuHqO4nV9/svvf++MozBah8ZbsWSSZebaZ5nJIJKkVqEZpqlqrsSFFrvE1lJCAcKVp9lzh+opU00A9SPmunhmv/z6z/A3/rGj/Dj12/53d/8nF+ePiZW4ku4/kxTP3iq3SXSNpRWSmLDc3E+EsuxWaMf3cWwdLxV7K+0xJSP8rmhcAtiLd6CKmuahygV/hp8GTPcvkRKfwZiOCHFzo6ysZhNUEIrxUWs05NYrhsZR6q9Zbw29LeWe5WpbeBHVo98tNrxudpymirGSdiHUzCE0eKeRJY6bTNxA8oktE2kpEp6kAAZKinyaKSztBGrE4XgJ+lLJS9Be0U+2IuxqINgQZUAV1nDXk5r+d6CA8SVyJaleIi/QNZy2lX7XCy21BIl179QnL8majqSQnmFPehSMPKSyeBXYrgRVglzFiZq85AZbxSnr6XSPYpJavNOch6hFNtzwq80Qcm6cY40k1xK6SqqJwE0JSux+BwWhaAAnwIUmlZWux+vd1Q6cIoV+6nh22/viN9d09xL0cpGbNT8KouM/KmAqXfvBbAeShdUAHNfYsljLSxL7WH1WWLzqwfMu92X3n5fiSKQjaj46p2gnHP6D0pe2PkEBJZ5ObQwbSXZtjolqpLiOzvxiGssheAxI6ZQPxp2n7zkr714hrqZMNsJf9SgNUelic7JSX0UOzKJJctLAuzcPiYnJ5J9TLhRTgh3kot8uFWcPlLY4oSb51OveNGFRhFrU+jKlJ24uBpprzAln0+HXDwJJY9Bh0yFdEzDlcZ3mmrvad6OdG8ssdKkWjFcGU4fWXq/5rujY3fVcNP0XFUDrfU89B1Px5bxvqV6MJizWlR+5qThUJNtFvCwzNg6CsMRNH5j8M8zxiSms0P3elFWCoAlbW+qS/DpbKZSOBNLslBRYOpJLmpQ5EddOr1ZWUjJlASVZQyo9nJTjbeK84cJNl6ixosbsS5mp9P20sCON7KOs2dN96nC9nJQnD+KZJdxT4bV9xXNQ1rW0e6ccftQPCQ143WJsD8Jl2QOpplv2lRMaAARZKkkhSBCajJqO/HB3Y5vbh94N6z45HDNaaw47Rv024r2XdFOVHD+UIDiqqwmh2d50SC4s3zeYu4yyuEwB7fOzMHV55HNr+7Qj0fyMH7p/feVKAIAoTNCqDkkxq3ESfni4abHOQJL5m7bQ73PDDeSWZecpt6lsisuHYDK5GOx0LotfgX7DMhc3b3SnF+2kpZrxYffdwp1K7OYmaS62kH2v+6YqE6JZOXCsiXwY9xqmsdUwkoU7iyuxONWVjaLrfe8wbAyJ54+VNRPMzCoFn6/mIGINkFGHll7VSdZRekA9pSojBiy7r/h6N7JKKNSJrrSFQxQ3xvGXPP2bHlrtiiTsVXAuUiKGjVpdFHnhdV8kaniBlzScYtOYLZnn2frUdecG+EYaF9a7qAvK7YiwZWLFuwpL/O1XxXHo5Ix6A4Sq25H0W/EwrKrSiFMVi3W53aQrmj2KzC9QvW1cAJK6ElYzYKkMn44eS7NW0P3KkPKDM8Vw52MBe7eFHWj8ENmoM30Cb+1jBsRsvktC0ck1oXTEAQIhrLxmUA15aSCS9z72vPND+/5sNvzK4/Pefv6SrYEgDlqus819ixko/FGOgkzKTEbtbJFcSe1rCB1lLSm2ckKTSmCGTdC85hYf++MOo+gFdxsL/u73/T4yhQBkCqmQ6Y+RHyUdc60VUuMd2wy0w1Uj4r2rWwIhpsyu1tN+yBWy7EqSHoEssyLp4/UcupkLVl+tlcMdwIsZlOYaSvwY8ECCninMvTPxYSkvQ8FIdHLnBgLG2tO1TVjouvlFJAVUsk2dKLmGm+kao83soKqdxm1L6GRUqeITi2zr0EsvECVNBmF6xP1Hk4faoY7Q/tOgipnbCJZKZ7VkyaMmtn/IDQO30aUkzCS2IqNeH1fHIB1SSZ2QtaZadVy8sgJPc1dmS005zYSosz5yiSy1+ijOBjVj1DtxFF5znaoDlKU016+TXUUQ9Fs5ESjOBfVD15svLdWAGEu7bnt5aROVjFeKc4vSqpSlcTG3GvsXizBTVTUR6GeqyyzcnIScAKMRwAAeLRJREFU++ZOUmwFnFS4Q6Z5KlhU8YqMJRJdTxeTVtvLiX38UH6vaifXjDgFCzdAT1IU053n937jc7TK/Ie/9rswn4vycC6uM+A7bxZE+wF+G1FZYY6znR3LQeHX8l7N5CozCW6gg7xG1VNAn0YwhrRqiOsafvkH33dfmSIg3vh5gSDNmBdUPmvF1Ak6mrpE6DSh07RvubSG1/Imdm8k3DQ6QeYlfVcKwfmFSFjdXgpFvZcoZ9ASOLoqdM8oMWEq5kL9zMVxGHQw1PuI7QXFSoESOqKWwNAlHCOCCYn6HElO2uhsFNVRosWnqwI0NTMxSi06fZE2l6Iy5QV78GtF3oBKGttnVp/JCDVeyc0wC5IEtCy77b6csO1lVtUuEX0iG9G1C1VbvO1ik4vHY3FYVrLDnx2MU5XhZuLm+kRImpwVVieaymNU5v6wwu/EIGaOY/fdXCjlNK9Osjqd13zJKUItJ5s5Z1avRuxuJKwrtC927pUqXo2K6slTPSbOHzX4lZh/ALIC9WAKLjCPcK6EmURbmJkF9APZCmQDzTtJjkoW+mdaivtCzBGNy3zq+rXkE6Az9b24TfUvhXQFoEvu4PTRxD/2rU/Zjw3f+9WX1K9l7R3bErayk+LrN7Nvg3QtkhYF7lHjDhd/hViBL0Y3pi8jVpD1oC5/rp8i9asThEiuHFlr7Lvjl957X40ikMsaLUmrRtakTroCdy5kkaTIzyF1kK49o7P4K/UFo4rpCqaNqLQkIEM6guog32M2EMlaCcEnaNw50b6VC2tMCn+V6V8m6SzeCJKf9eUCFEqwxh0CLmTGa2Ebmkk+TyW5CPxaLqKsFK43NPee+n4idhYzSMrS6YVl2qpiua0uAJKTUE9xBi4Jx2dpl0FOpeFGwkXMKO7BoVViy1VnCcYobf6c7OOKVt1vFEFBnCrMUS8mnuMdkMvO3oiZqu0vxJvYiFxZRZieR57dHrnrTrw9rTicGsYscl2A6VjR7OV9sH0qDjryc7KWNW91zLhe1la+k7Z4znKodhP6PJG6ium6YrzWspJ1ZfvQKIZr4UkMd+K+o4OifjsHwLDYqM9j5EzTlmyFYsNe0pNjLYdJs5ONjiRQv8eILTTw6eoShRZaGSXMIAnD+VbizNPJSWjuCNMHgY8/fOT7T9fsfuOK7jNTrMMvEWzz1mJWHM5pTmoUsPb9lGFZQcq17Iq+QQXpSmRrlmkeIu3392K6aw1qGNE7Dzl/6e33lSgC84pNVoOldcxyQ4OwBtu3UtJVMEzPgXUgGkPfJsZbLUabQfzphheZaidvkD/JSZj1fApJNZ+uZjWgRIjVT+XknhTDcxheJGKjSa80q9cS5ZScFCYzJtn3HwNmStKuzqIirbBDJE2KcSuzZI9hWmu6N0G+Vpfd7WNER8N4Je1prOQkVOV5hqaQioJarKmrg0hrh2uN74DtTFQSbgLAzMEXgEtdfvezjBLjaAmdkJSWfIQSdKGCdBP2LN3BnEgcbz2mDWiVcSrzuFvx7s0WvbeSJlQyEFWE5qjpPs+096HQwR1ZaXiv42geA+5pJFUGFd2SEKVixq8d/qOWaaUXWzexg5eb2W8Vp42g8BIpxqKdn1OOVIZQszyneUzya7mhzTTzLFik7NNaREV2kOcRGynG420W/0Uv1F+FbJuyguFrnmcf7Ri85XjfYXfCKJyeRW5e7um9ZfcbVzSvjTz3K9lEqEnhjjIuhJVkJIiGImOPptiIy/NIxaw1VllGwZN0iipQyGgyStaPQQpAiJAz6ukAWkNdiTP3lzy+EkVA+Yg7BEJncHuPzqUryOa9tN9M/TjjBpbpRpO3AbwibQLnVlO9kzcgXEf8XWCKijwYcdE5lZOozLMSR14IPae8MMOqJ0G0++fS9p4/UMTG0L1KC3AVWl3a/ow5eeqQ8WsrY0pTdtr3E2Z09INhvNKFfmyp9zLTyvyrl5wBVUgoyYBOMs8354vvfFpJMdBB/OnMmOnvyvc1UB8krtqvSmJSLnvjtRRGvy0n13sdgr/OTPYyggHiRxAKeadh0fsTFGkyqCoSR4t6dFQn+X5ztzDbp9cPQk6xp4ieIu3rRP1Y1oyF8KWnSFw5UVVWSrIhgenOMd5opq28Lu0bOaGFKq7ob7Xw8p10PGaUGzg18vopIZcKFjDHrs/koWIcO1N+s5UDUpW1sx0yzb3MCP1zx+6F4vz1gOoiaueo73XJY5TVbvqJEx/fHERs9W4lBqAmM91Gbj/Y0brAZ69uqItewW+Ke/CoqR9LAehKB1AKQPPGUt/LChKk4E1XQILmodiwuRJbNxTL+l7GJ/f2BF6qoRo9edWSuxo1eFT/FfcYJIP7/Ak+vCa2FrcfMWOEKLZasdVMK7341icL7SstOvmPBpI3UEf81wP6bYXZG6LJNNuR7vYIH8HTbiWxXe8FauhJUntjrdBXLF7y2meaezk1oLzhVgw+zZTJlSLWlqrWmD4ue1rbS/cQOoMdIs2rE/VbRWwd47MK3+r30nVEwTjnEs7kkGyKeGUFUPjxtuTjrSOnH9HU7yztm7zMq8OzTP8BuLkFP+dlztVeboh4lUjPA+HoMEctUWVAnNN8R8k6cHu1gE2xBZQAdXq0xVQ0Y8Jl/TmHuGo/MyAFz/ErCY7RAZp7jz2H8l7KKjO2wnf3regJbBFXxUpSeGb0PdbS9QhzLi8RavPPm2/w5EonkgsbMciNFFu1ZBDqqWwhzvK+xlrGATNk1p8Fuu/tISUOP3nL049phg+idC+vK9rXclhkBaevQfpdPW078en37tBHgytiJ/PxmR999oDRiV979Rz3aUW1K0QjA3ZnFknynLScamE1tm8Mq88E3A61YryVa1CP8rznTEUzCgioEjS7SPtqwBzG8l5piJH48lrEamcPRpO3a/jsB99+X40ioGSWdu+O+LsVYV1hDyN6ihiryVZ40F4XJlWJWKp2iqGqcR/0pIIw5ZcjeVfBqBmOFTEqrjc9X3/xyMO6pT/XhN7CpIlVIjWy+9ZBka4yJBkJzNJiS2GIDQzPZCU18wZipVBRyym20JkTodWM16LQs4cR9/aI6WvCppYLvRYGoe0TzQ5OjWHa8h63Xgw8U11AoiaiV4FVN/Hx1Q5nIp/urnh6WKFOltxGtnfivPv2sOL8dgU2oetIOjiqR4PdGwLlBtmrZVSwZ7W04qa/sOtUFlTfHS66erEPv2wRsrq027pclGTZ3586WXO4oyK0FbZ36Chr1JnxacZEew5on0hG4be28DCkmKhUcJyVrBjdWTCd8UpunFhRdAZyiuKyFLOzkXbfqsXUQ02yihTTmrxcd9U+s/50onpzIlvN4ceuuf99hrDOuCcB5erHXJiJcPwGxI8H0tHRf6+lLtum6S7y7OtPfOv6niE6/v7nLzB/fyUrSUSIVj+oeUkjI3qW8Fl7lNm/e5OXNKL+mTz36knciG0vhjRzxqMdpf1vXssaMDcOFRKkRF41UgDGQG4sORrM7ndgL/afyiNncu0gROzTgH/WEbZ12Q5k9JigERUee2TVVWY7e1ZMu5ru+YmcFePgUNcT+ejAa3yseHusWN+d2bYD22ZkDJanfUd8qAW53ubC+FIS+NBkdAv1UzntLCRV9s4hL4mxWenC2JvXjyKAsmfNeOMYb52su3yUsNQEqbGobJi2Vk7APtHeC9dhvBUjSpWkrTWDgiaTmsiLuz1TMOynmp+6fcV/+cXf5deHF/ydx6/x1LcYnbhtTvxnnn+bFz+5Z0yOmDVv/Iaff/d17o8dNmmGpsKnSopZAFtShoFlLEhWLmzJhgQdE9HJiDCHq4y3mdAlGRXy5WsBaQ2ywj0JgUf29bJ2m1WEySlQGvqEXzkZba7eu2nDBYwDUNfgbxPrj/d8uD7hoyFmxdOpLbZomnQS9uOi35gLlNyHwgNYQdaCNblTwS3OHv+sY/+NmuPXpfNpX8tWyIyXteLpoyILfltTncvmwEoE2fMfeeSbVw88jh2/9hsv2fy9itXngh31t3opPvOqE6SLM4NaxEtZw3CjGZ4VbOUB6se0UMZTJc+5uQ/U9wP66QRaS8s/BdThTN50cqj6JGvBnKXL7ocvvf2+GkVAKwEznIR32t1IuKrFccaoghgHuakQbr73qpBxFLrTDH3FdtMTo8b3TuSyR1nHkOEY1gzbis2656od2L4YeN1sOL1ZoaIANuJ1X2StiBTVFgccHWaeu5we47Wif6FAWZonmbdSpYTw9OYEecXwzDFtHCq02MeMPg1AQ6rl9/IrVazNZcY/Tob+g1zCWMrcd1J4X/NaXdGtR4bJ8brb0F2N/MHVd7myPY++Y0yOfag5p4oP7I6vu3tOqebb0wuuPug5hppjrJmS5Tsf3/HqaUP/0EqY5Zz+M+byu+ZlHTaTcuYY9tgW2+/nnvZqQOssZqfBiBy5t+izoXrSNO+KucUhLYGwsZFtQGhLhFtrOH8ougSQsWTOQlAvR57f7llXE3fNiT909V1euh1PsePT8Ya/f3jJ4C3j6JaIL3csHUnReyQr779sBRQqCyVYh0zzGKl2ntA5hmeO8bokPRVlZ6yEpzJdS/gJNqOmS1K0ShC7jHveo1XmFz7/iOFty/aXLZtPJXfh/Oxiby+pVxfxk44XP4xYz9mL8nyrvbx2ZpQg1lgpmsfE6ntnzGGQ2b9yxK2E8Kr9Sdp+rclWE1dyr7g3J0gJnOPLHl+JIpC1IndStdAarMYMgdAafKfxK03zztO88wzPHKEReqftVTGU0Bxbx9h4mtoTJkP2VvLg9wLKcIJ4bni8toRbzcvNkQ+v9rzWicObNTkoptsseXhTyb9Twt0OazAlTnu6EgKQADeK/rnCrwz1Tk669LKSOXIIqOiYthqVHdBhThMqRuxhlO/9ccW41VQnuRDah4TxRWtQWvS5IIy+5vQ1xe2zA2s7sosrau15NV6xDzXf6u75se413x2e8beO3yKuNXfmyDnV1Cpw05zYhQ6fDc+qI99p7/hkfU3/gRML7sea6l6Slu1R0Twl3Cmho3AQ5rTbeb4miDGpdRGlIAYNO0f9YC7AYOEnHD+UzieViPAwt/AWUhOpbgbWlWwetMpYk/jxm7f8U9ff5rndE9E8xY6NlmV5ypqn0LGbWnb7FbyqaR4EtJNuTU79rBUUCq07C57jzgldoufNOZCclgKwlZGzOkjrPVxrYRU+v6D2yutl8yIsz0wwmWlX8+57K+oHxcvvJZonX0hMAoY2j7mE28jrOFOoZ+GPcFQuGFS1g+6NiND8SpOMYv2Zp3rbo6dAdobcVGSn0b1HPxzAGtK2IzVO/l0r3EMvXIFVS2rdl5oMfiWKgGwCMqlx0jIZRaoN2idUNoxrxbSuWH8WaN55zi8d01rTPEVUEgff/B3LKXfkZz116+mDLPXDdUAfTXGsUeSz4WhaMcZoBzbNyHldk942Yiul5M3y60z9VOzG78TN1x6EYRY6iokDRQIMU9nZ+6RIpqZ5lHWgXxlxdyl0Wj0GVEjYw8Tqc8V4bUV9yIwxCJFljqfKpiDXZ0BVnFY1IWs+n67w2fDt4x2vj2u+V9/yUzefs7Ij3z/f8Lf4Fv/46rsAPIaOc6p45g4YMudUsa8bzqFiezXwoj7wblzznf0tD/sV58mw21esvmsLzbZsTmYVZSO7teA1oQSXmLPGHue2V34XMozXmuPXM+HFRLsd2LQjjQ34pBkmR8wKZyKVjdw0PZ2d6OzEy/rAQ1jxd49f437ssDrxje6BF9WeXej49uGO735+h/l+Q7UryrkK2bA4wXXkOWfqfV5Wu7MATftEqgzTtWVaFZ++faZ9FxhuLMOzOXRGySyoMmYs4SonKWYeVfIFjfAMHqVjDZ2R62PMokWImbDSxGKAIqd/kS93SiTkDYIhjbB6lejeTAx3TrZBbybsOZBrQ2ikW1Y+oseAPvTkriF3YpkHgoXoIUpXcL0iOfHq+LLHV6IIEBP6IFU+bBt0kMzA3ChRcLWG8Vrx+Lsd7duEOwl4MtwYujcBFU2R4lqO31iRX44064nxJOQV/YFnOlvMzorDbVYl8ENhTMKYRGwj9p0VBZwupJy68NrfCXfA3yRUFrAoFUHQbKqmorypyUJ/pwmNCJGqY3FGyuIpALLmVEPAakU2CjOKXmHcikec8dKOqizzdjYyGqy/B6e05m+fv8mnH1yxqUYOUy3TVNK8Gdd8w0y8aA68Grb8Vf97uHUnxuR4mFYYlfh97SdUKqJVYm1G+lTx5FumZPiDzz6BZ/BuWvG2X/Pt7jmxqmnu80KamleSZlRor1HJ4A6yWlUpLwSceVXp1wLetduBH3v+jq91T7R6IhaJXR8dB98wJYPVCVsih79zuuOX373geN/hVp6f+PANPhv+/vFDfuH+Q9792h3d55rqKb+3IZB1Gwie07zL1Ie0aA+odVmdZmJjRW+/1viNjGX17rKxmbkXsZzcs2+g7QsD0oiKr9qLp4Q9Jcwk2yEAe064g3Qa4414S84huEIuk7FA+CHSvZgRNp9Emjcj410FWTYrZORQHKM8/5BQPqLGQLxakWuD7r3cM86gglxrcVuhQkafPXqcgZ9/8PHVKAI5Q0qofsIC4aoVjX0uLK8xE3sBZ3Y/qmneCkAiF6Qte2Rp0Vff15xyw/BswtaRcHKEDNVmItSRdLYoEBFN0nhvyEl86MNWU90bqf6q+AaUU7i+V5JNV4k9nOTHs5w8cjMn2vskirMrAb7qfcL0CTtE9BBQ/SSzm9UonzDngPaaXDYks77AJpnLQ1PkoY10H+J1WPH58TmfdRGCQreBu1uhhY7JsjYjGzvy6fmK7x5ued4euXIDu9DyK8OH/Fj9mpd2hyHz+XTFtw933J9XHH3Ns+bEfmrYD40sPAp5pnmMxEqUiyop8QYovAV3kCKBUgwzM7BYsk3XklDU1hNWRcZosSrSlqiw0VquXc+YLCkrnIpolflOuGMcHCSFNonjVPO33v4In7++xn5ac/NdcCdR/IUGVFbL6ORO0H2eaZ6iyGrrQsdOwg0RzCMzbjShE9ceObFFoWnHTH0QND6Ue2fefgioKe+9O0kB0D6TKkU2BpVE3m56IezM1vY65GWrZSbZJl1UqsL6bN8l2tcjYSW3ZbUL4nAUEvZpIFeF2FCA9LiuSZXBPZxRIZG6ajlwUm3RY8TsB8iZuPnyCKKvRhFQQMrkupIV3XEidQ579GRdkZy0YvYMYwPnjzPuIGBW/0Isq9t3afGbqx8Ug3GErcKuPOHk8K9b8kq84gFSUqzakdFbht6QegsmM37k0UezoOd+I6fBbB82Azr1Li2rMiEQlZ3z28jm3Uh9WzFu5aKwQ8Scg1RvH2CI5KsVceWIjYHCIASoDuKNkJzCjknIT00ZF2phl6UKCes468KUs7wdJI6rKZ6AtQ5sq4HHoeUX33zA882Rn7h6w5u8YRdabuZlOdDZiSfdcn9ecfYVT33D8ZMt7aeG9o3MyL7ThEZLNmPx36MYicRaMV5rkdd2FJ99cIGiWTA86g0hGn787i0rO/IwrfjV8TlaZW6qnloHtEqFkSheBXXj8WfH+K7l+5+scAfN9h7qJ2nv45KTKKOHO8q/VYcixfZ58YFITuG7CxA3bgSc1D6LDdwxEjqD9pn6IRBb8bZw5WVKRi0FQFarYi9nBnG8AsEhtE8on8hOc35RExrxvZi7gHmNOutDdMyYo0jdu1fTUhjcIaJ9wgwBvTuTK0dymlSZZcVsxkj12R5iJG06UmXKwaSwux41CHV4+mDD+WUlHuE/4PHVKAIoEaj4QNq2AOgpymbgFAhtVWS9EM8iBhqeJexJWFf9y4zKegm1nMk3qjcEDdV2ZNIV5kl2falLeJUZbSRnSeVRk7544t15/FZh3zrZNxtJ65mLgF8VZtyTAE2hlnkvGRhvLGaI1G8H7FkQWXPyqClIlW7rhcedrSa2Rm5ydXExmpmJySqqg1ioTRu1kGdUQMwybS6ONhp7b3mVJd34a5snKh0JxTqsP1V8v7/F6sTXVk88JMP38w3Akl9/3fS8Pa24P3acdy3t54bV53LSZS0U6PFWLfZtAHpQuIMmH6UQzLkN1dOlM3BHhe0N/UvFqar5pLrm1WnLfqjpzzVKJzargZfrI7f1mVoUXZxDhVIZNRjq16ZYaOWSfiz2btNG3mvTF4+9ACRRIubi5JQVS7GYR7dpK+DrTC+WtafB9onqaSI78bd0ZW2XjKyYUklfbh6laKiy9tRRRj7tEyomUm0Y7pzs+U+C8IMUxKV7LNeoGYT5172eMOeJsKkxQ8L0AT0F9BDAWcJdi+8ssREnKneIVK8OKB+It2vCppKT/zzJaJ0Sad3Rf33D+YUVG7wveXxFigBkZ8EaSImwqUXBF0VLYPtErAy2L3z6VhGzrPX0JC/s6WuZ9nUxZOzEQAIroFbwhmY7MpqMfVVRf2rwa835mcGuvSwlvCp7cS1RaC8CcZOwb83iYa/9zLMXS6lkFN1bcXfNRjQA00bjzq4QcjJECUBVUyB1FckZUi2ocao0KggTLLQXB6KZ8psbhUpFjlqIL6b4zUsqjpBmwlXE7g3Va8sbf8fjs47b7YnaCBppbMIfKr77+o7+1uFMXHIFlMp0zcS6nnAmcfAGdbBUBxbl4lyY4klRWUU+mGUFp33phoqZhj1l2sdE/ejFDco6VJJiwa907EMnbLlV8dyvEr1N7J20q40Ry/KUBbshXsDX5C7WWbPFm+1ZiE/kjCocBEHa1eJOlY0iJ0jrsjbUM4VcMV5pmicxnDW9J66qcuNKMVYVRawlGxMzpgWE0z6hQkJnEb/FleP8opIotfMFA8hapOSz25IOIjoTzr/HPg2kWkA/U9iVqbJkI6f/eOPwrbgHN28n3JsDOIv/4IpQErjt/Ql16uVAuVlz/saW0wtDvU+svn/p/H7z4ytSBDIqRNJKL7NSbGQ7oEfJIxCWl1hGhU7BRmSxsyQz1ZJb2L4SZ1lfJdxKWuOcFcEbbOMJH4DpJfXY9o7xzsAmSAKOFwpr91rhjk6IKuXmrx/zMoPO66PQCfqtA6w+m6j2lv7OMG0Mpk/y5jdy4Vov9tOpNoRWQKlUzRz/i9b+/VNCZQRbQG4Cv7nQY5kPlUmAzLiSgdUcND63vDo7TJWwLhCjhqQIu4pX+Yrba8EPYtTE3jKdK461xGn53uFKUKgdcpFMixFs+5BYvc7LiQpSJKaNFDAzCRpeP3oZ5YwiVbrItQtZp5PRoS/pTapK5Kx487jhDRuqOnDd9cSspFMIkg6sSpHJTn5vM37R/6B+Kg4/tjDyCmUaSgGteE+kxFJoQdiJ7hAFTFtVTFsheYG8N7PMW0+yYUhOS3GIGaOlwMRKTunx2hCL/XeyarluQ+FaZKWwQ8KdZVNhh4jZT3LdW43uA9lowsrKRsBoputKaPMJ2tfCQE2bhummIawNbh+xj2dhC7Y1VI7+4w3n5wY7ZFafDpjTV1xARM7k40mcmO42C6MsOYNLGXuUUyU0okSr9tINjFcBTCaPBhUVcRs5a6gexdTCXg+smokpGHwwSwrO+CKiPjOYAZrXGj84wioJhbNXRayRC+UVyNKBuBPUT4HqoLCDlTZei9rRDIbukyPta8PwvFn0AZLgq4mrStaDPpGL1h+KcrB4ErheWlk3vZelUBfAqzgZhQbiqjD1VIakFj1E2IgJBQn0zqEmRTH4xZQiE5LiWNei/TeJZDI5KvzJoQZD9Sj+e6vXkeZeEOewssStXOx2SO/lA8rFvv4sFkaenJJo8NuqBMgk6ncDaMV4WzOtbXEckvDU6AxD3wqfI8J5lTnf1Lg6yMndJrIT78DZPccMcjdnU9KLd8KsM5MQa2ZjVjMWG/AtywuuivvOHGpje2jfBVTMDC9bfFe2M8UUZi4WJmbMGIm1IRTps6z4LKlWBTOZwUnKaS/jgryH8vPdOVHtQjGgyehRKmR2RkZgeykAug/42wa/1hgP3WcD7uFMeLZmunLERuOOkfq1FPW0bkHD+KxlvCkdwCe96Aqmr/p2QCkwhrw7YGLCdJXMyq2soKopUe0mUqXorYFKyDx+bdEfDJjVxHisRVF47RmNxR41/VPDix85ctsG3hzX+MmSe4M+a7IDipLMnBWmNxK3bVlOYzPlRcATa8XxIyEvNU+R5ikSWiFy6Jjxa4162dF8eqT79R7/XJgfZu9RKUHMKB+wg0clkcvqSeGy+BNIwKmcGlmLNFQVx5jkxHLLTILID1njbwTkVDaSB4MaNHQJ0wVh7p2c6BrKpmO22nJPmnFcM1Rzq3pREepReBDVQViMM8CVtcy2sdKMW9Hxx0o6nPoxoZLsxFNd1mG1WsaI7m3AnDVh45i2ZulypGiAfjCYSZFKV5fXgW41Yk2iz5CUnMppXUabgylgLDT3xbXIU5KLBTdwp8IJyJBqhY5yN8+5DzAXtCyzfYKwNoRGi43cwROdJjlZ3aoohjex0uKN4ARQlHGn+EaUgmEHufntUAoJQK0wXl5Tt/foIB9XUfb92WrBjCpLWDnxU9idCc83TFuLGTPt6wH71BOuWvzGkZySAvDmLJ3IukGFRFhXxEZT7RPtqzN636NChPNX3W1YadisUDGRD0eq77xBfeM56UVNrDWxNpgxUj949JQZbg3ZaOoHTd9WqOuR9c2Z/lwTRwPXnpAr7L3jk+6ab72857rrOZ1rss7i1XaWHW/wiv4DcWYxhQ8+M7pSIeq4Yuro14rhTrYR9e7iimMmuWljo+m/vqF526NDInROhDm7wts2GiaPOYyoMYLVZW8F4bpmuHNLEGYuqrmFAFLstE0vvAXtBddIxSJcRYV+dESbadYj3mQCFbrXZJdRVxMhaPSTwx4V6qCLt2KpAXkm+ZQILafQTuNXttiVqYXAJF6DcxGRDi3WQnwZb9TifCMLCMt4JZ6Rs2WaXwuGUO1FqBU6mJ5n8rOJuvEoBadTQ9w74XV0EdsGwmgkwxBd2I2XFOlkLms8M6YFjWcE0wfBX+J73UCWIhFr+aVUFkcee/TkUgByAfJUTKRK3KxEyi7fOlkpsJIdkZfxRJx+ZFWYrAjF7Dli96OIfAoxLivAaikElSU2FvcwYB4PpOs1oRWw0u0m7H4g1Y7YypqwvvfyscYRuwY9RlJdVov7gHvo0XvBAfK5J3/liwAZjCFer9BdA08H3PfeoeIt420t7Ks+g5ZTt3mIRY2l8XuDzzVxo6lbz+A1edLo25H4UGO/1/Lt+IwPn+9o24nwthFxTi+tYPc2krWRDUMC91QIIeUairViWgsNtt4nhmuxIfclrFTMTxTuJKBRsorhZSuiJ61ISWPKzZ5qB9083GYI0nLqY0/9eMD01wzPm8WvICtRU89c83kFl61sJ/SoiP3lFNJekV5V9M8UupaTM5sMUbwAbBtIzxK+qpZoK4nUUsVfoczM5QDLSn5ucqqo/+Rit31GFwZkdBdDFL8uq9JWsgVVRBKiVGHKTVwiu44zC5LSOivizjGeLKMC3WvspIjrBDoTveAauEyKmdAKYcxq6QTEF+IyksRKE1YX4o6eEvZ0ATP8RlZtc7aFGQrZp7NLd0fpAFTK5HrGB1hWgsYXSW8hdc34zrwqzEbJKLaXG5YsZJ7UVWSjBTAOST5WGex+QB960rYr4GTCPA7oIZBaR2yFUVvtPHoIpSuwuFPxEIgCULr7kxiKlOssH0/kEPiyx1ekCCCoZlcTrlt069C7M+bxTKWUkCe0wvReKJmVtHLNo+jFszakrOhHg6oSFDGLuvKk4NCfNnw6GtZ3Z+EKUNyMOwGYNt8XdH9WsNm+BHsUGm9shAXYPiSap0Tspd01Xua6XMxJQNM8SF+ajOxxZ36A3FCasK6E9lnkrFkprFLopxPm/kgbErGxy2kEQkHNuRiRljVlqriwFt+T8uoJzKMjroXUk6sMVURXEjmuTCZvPLEysDdYPxtUwKzatL0AgbGSOZcs1l8qCV/Ad3px3PXFD2HuJCSU44uS71RdVnFQiESuGJqaDFn0CnrSkj9Y5YVmbY4ajtWymUl23rcXFWR/+b4S1Kk4b0ULkLWi3iWqvSRM6bO8N/5GpLZmSkWtGQvtWE5/PSbMDErHTOxssSwrd3ri8v6VtF+VRUUqRSAVcFJk5qb38v53lezyk7D4lI9gBPvSg5eC0MraYwbyVD+RupqwEfafPU4QM+OzltgacW6aEuYs4KLyEfW4J+cMIYjVeM68HyD8mx+/ZRFQSn0d+PNI9HgGfibn/L9USv3LwH8XeFs+9U/nnP9y+Zr/MfCngAj8D3LO/9cf+kMyZO8xn79DfXDHdNeiG4vpPXoKGCsjgR5FQnn+WicOPkHchpJVDA2o0Uj8tU3gNXnUSzahvXccpzU0Cb+WkSBbxekDRfc2sf4k0T+TFUxWCh0S7hAJKyPchJX4+plR/PHqQ1wuIOMTvrNMW0NoDc3rs2wCGisSz36UltvqQq0VLreeErlShE2FLW9gqooDT8hgBJmuSEtLTp4JMMhWpBLvAVDFtacUhV4L8zFDdpp4A7qKpMmAVxCVRH4Vc9PF5FVJYUlWADIdZkq0sOLG6+LuXIspRmyENGWPWliUIDFfFlQPzZMwH+fU52mrGLeZuA2L5mCOc58jvlCy+jS9WsQ6i1w5q2XUqHZ58f/TEaa1jCZhJa+BO+XLeGUVuTZyU46Raic/c+56Qmckv7Ds9FXIy8gmTkjpgp1Mshac1aDzx/Qotu/ZasLaCTZwGMlKka5K4TlP6CHIyrKWsVYHGQlJCXxAGbOsy3NbkRqLHqKIh4xmumtIxefSHkb0sZAnUkL1IzkmKQB9D86hrJVR9Esmgt9OJxCAfzHn/PNKqQ3wc0qpf7/827+ec/6fv//JSqnfC/xx4PcBHwF/RSn1Eznn+MN+iHKO3PeoT9/i3AeMdyK5NX2Q1lmB39aYMeL2kXEjpo1QCBcnLWGegG4iNJE0yj47OTABqkdDsmbxqtOjaM2Hay0qs4Imywkv6xs7RKaNw44sCPB4pXAncfs1A+g+0L090axqhmcNsXVUnz6irRFhR1Ohhklo0c4QlLR1+uwxh0jYNqTKYAq/22/ccnGFVi3t+HwjhFZYe/Z8SaZJZTWGlhsobQOqicTRYO4d7o0jOYtJ8n1Tkwh3npAVfm+o32kJTxnzMhK4cxbqqlGLC9C0VfitGJrOUV+2V1S7i/Bpnr1tL6Qh2+fi3CuegbFVqGjLVkSJw25drMzaCC5Bb4q78WW9pycBAOeZfLgrM/kAhGKPbmcbbsF5sqLgGQV4DQllFDoq1ChKQ7+1xNmwI8nYqaLw88kZPcnqmpTRXjgfaC1F15RNwdmjhwm0xt+0su15GqQAdIU0NgTUGKX9b6yc2nEGCaNYghkt0npkY0CWToIkztD+phLH6sdJCsChl25EawEAyyNPE6qpUW0LdSU8nLf8wMdvWQRKovDn5c8HpdQvAR//kC/5o8DP5pxH4DtKqV8D/hDw13/IDxFn1KYhn07ob39KM75g/GCN3zjMlNAhEWvD1DgJWDjL3De3ocrL6Rd1JidFuxpJtS6GEwoGgxkUrpxKsQLtZBcOAobJXhvGMl+H1lLfDzRjZLyrMSX/z7dlN94osi6jymFAf/cV3W5LvF2RNi36fi+VedWS1kKGUVMoCcpyEal+wsVMuGpAa+zbA6gt422pcEotv+OSQ9jLPDzezCAdxOtIasQIM2swTeRrzx9ZVyO/cXPD8c0KczCgpZPIhUfRtBPj1nFeNVRvDd1rOQ1nsGvmaMTKLo7LMnYUld5O4ryqY2HFGZFEz8lFvhNm3/x3KGYlXvIJczndsy4gX1Dok6PaaZRHipqeuRGFsdkIIUxFKYK2nwlBJZxmyKV1l5WcOwYh4KRE6pys4Mp4kFor2o5zlG5IS1E3R7Hrysjf9RTklJ48aE1aN3KDVxpz8uIVYXSZ5SP6Xpx8clOhpyinvNbkVgqCGqMUEasXQVB2Vj4vyg2vfIRSJLCGcNOCLgXg/ojy0hngym3sIY8TeRhQXYdateSq/Lz9PyLLcaXUN4E/gLCQ/wgSQf7fBP420i08IgXib7z3ZZ/ww4sGAtPKPKRSIg8j6vUDtdaMz1pCK+lEekokY4itFqeaAL5WlxMlS/hjTo4+g60D2kRiJW2XUDsLWURREoZLcrAXjCAZyTDIWlPvFMm11A8T9hyl1WwkllxmyFKxtcLfrXCAGibMw4ncVuSrNerUo4ZRLsAr8b/W50lW3l1F3raoMaL7QOwc2ijMcaRS0hG4U5STzIixhGQUQP0o4SXTldiQUSdYJaIu/ICD422zYuwM62bE3xhG3UBUYIRj4AdLSpqcAJ0Jm0w4SM6fSpK7F2uHPUkrnHVhCY4KU4C+5j7TPor6rr8T+vScEjwDhbPIaMEF8nukHVWKeCksZjK4nVqcjpOWbkAXCa6MFVLI3F5d8gldoSwfUkkpSjJyFeEWVuOvG2KtsX3E7AaUDwXslBstWSnMegygFKmrICX0cZT3UG4CsjXkWoqJ8A6S+Pu3TsC53VnGgqaS6zlQxgpQfr7hjdDIS3eSjUGPAh6mq5X8rMmjghSHuG0ggXsaMU9nKQDWSAFQBXwNEcYRveqga6Wo5Iw6/CMCBpVSa+DfBv6FnPNeKfVvAP+KvKX8K8D/Avjv/Cf4fj8N/DRAYzbMUtu8amX0CxH9+oFm2uKfrwiNQWdwx0BIBr82wrpCEzqx0s6miDJGBX1NqB25FepdqmQPbfsC5BRkPNWiC68O4jiT7RwxLTfetFEM1y3tQ1jGhflCr/YSoe6OBQzsKpQxi94bpchNLe2dUqiQiK2T2XDXo3pP3NbQOMxpwpw92WpRgE0RMxYEO85bCkHgZ9qrKsSZVIhDrg7o1jPsa1RvOD+2xKgxRlh5M4cgjwZ1EsFUKgt2NWnsSYg2yy690F21T6gR2kfZuce68OmVdFJ6zKAzKmrCFUzXpTgWemxOUhB0MXGtnwq1dyWbhNAJOKi9OCnNLsmxKcKx4g4MUhjsSWGHwhEojk9zh4SayVVZgL2cybXBrx1hJUCae+jRp57c1sRVJSIuylw/lH39pigCy3ub152MaFqTGkvoxDPRHia5qcsJrwtAlxsJ/SBmlMrklBZ+AEahYrk+9DxOSAEIL6/EbPehF/zHGnJbiXnIrELNmdzW8rWFQKVPPfl8RnWtFICmQp0H2Qwg4/aXPX5bRUAp5ZAC8G/mnP8dgJzz6/f+/X8L/Lvlr58CX3/vy79WPvaFR875Z4CfAbiqP8i5ay4zTVNL24VsDVxMqNsVsZOna0uiT6oUzS4SRk2vFE6pQiOVFVb1aMgHQZznk2z2nE8NC/01NuCznCrVXiii4iAjgqRpowCLHeRNvOyFC+p8FMegXFkxdgTRd/cjxCgKyaZCAVop4roi364whxE9BlJtpQvoA2oI0DoBQn0i1nqxMp8jsfxabpzUFFabzsVoNrPpBjbdwO7YMh0rIUi5KICpyhgrdmBiX6aYtIU2ooPEkbmTuO7omCFQdtxihCLzvhSmUJfNhNRhZmntEuFdduizjboUrLxkNvrVfCGoxVNwXlXKyX4J+lDFY2/mbzQ7CaWZuQrSCbIUL+0zxgsPIGslyrvWoKdMtZvEmLNy+NuO6bpCexkHTC+IfSqrOD0GSJCdFRDPlY5Sq0Xgo3yxRZvCsgJUuvA/NKC1HHAzbwGkaGhN6qx0BpMXafBVS1g53H5aZv1cV5InWOLtAagumJGKGXUeYBjlRi/zvxom8tMOTBmzy9bhBz1+O9sBBfxZ4Jdyzn/mvY9/WPACgP8K8PfKn/8S8L9XSv0ZBBj8ceA/+qE/pPgJ5LYGH6RyVa6AMfIi2bd7zKohrip5EwZZ66Ek1txMmf5WF1BHIrdQJYTkLMlCc9BGLmETqWQQqFhIMq0QiNq3edGM65P823wqmikvkWkqZTFAGUbU6FHOkjYt2QqpBKOl4oeAmhSEiOlH9EHMIecqDhA6C50oEIXWKoXLHUOhpRqMz+SS3qsSeKXRLwdurmT+9MGgVWZVTWzqkU/VFeOuYRqMjACFXqxM8b8PmvqtJTmz3Gzzf2JrLcUgNuICHFZmGYHsKCOUyuBXAmDZMZXQFF1sw0UwY/ti21XwF99JIa6f5HPC8J49evEFTK4AgYWCuzDySj5EdFJQdRFgzQ8zitkrUQC+rAT5VzGLOed5ItcVcVMTO4s7BuxJbn51HsXnMiS5wYfSjtcOorReykdB4wsYJ29eXDwi5r/n2opTVhEYAcInKADfMjqcBnLjiCsxvXVPA+b+EhqiT72IiFaNPEelCl06Q4iocVqyBnBOisbkyfePUgDWK/Kq5XeaQPRHgD8B/IJS6u+Uj/1p4L+ulPr98tbwXeC/J/dz/v8qpf4C8IvIZuGf/602A+SMOvWimV416KPsMmYHYgAqh5oCBkitI6UZ5S+5AT7TPCZpkZJEdIUmo5341KMlLiqW2RPklEnFUjxbAQYlgitiH4X4E2td/OrkgnencrIbJcYRIG9Y2cnqGMl1JZhAV8vMVs9rDI0aPeyOqPsnVFNL15NXpFp8+PzWYs8yZmifFtlodMJPr4rrkNsrmneK8anj7Tcsz1/uaCrPcag5DjVt5emaiRAM6aGGEtmdjWwG1NpLqu2Tk2CWfNn7m0lsriSBVxE2UtRiea3nkz2bi9dB+5DQZ7Fb9yu1uOfMBcUOwqCLlV7SmpITzCB0uUiCpc03HvSTrAfh0gHMstv3xT/ZKGJpAeYOLRWOhRnjMrbMFN7UOlJlyE5jD7KCnum7KCUnuY8X7wcfFiNldZYVHCAHVhB0Pxstp2+52VNXk50uoGpain02CpQBo2Rs8IG0asQZqNiF66N0KbmrZVvQNYStgMoapLMEwQuGSYpKCCityesWNXrSuweIEX21JXeN3EO7w5fefr+d7cBfY9mQfuHxl3/I1/yrwL/6W33v5aEUOUTU7oh6fk28W2P2g7Q0pY3JSkHtiiNPlMTXRoObV2kSIVUdZ5WbKurCjE8S6ZS1xm8TaVALyHSxB5POQNBqmQ+rt6PMk9sKvxbO+rQx1E8BewzzLys7XWPAe/LxBKczetWRNivSqrRh6QIIKaNRx7MQOSYBCV1I2KPDbyr81hBahz3HYp4hwSt2lFAKFUGrTDTiNGTGirf+mvULsV0fBsd530jxTwrTi4GoCkV67A1RZczGk58lgqqpHjXuIB731TGhZwlueedTwVuWVSQsKzl7yrhjwgwJPSaq/QUTiI2YkfhOEVpThGBFOt2xrBt1kP3/rNqcgdtYzfO+vLdV+TmxFlOQWYdgR3FwSpV8XPb9oj9JTknHpapln6/7sKQhyemswFUFYBOEfhHd5Cxbnn4gx4hqWzmBjQCEubIF4CuO2eVGVcUFSEaKghXFCCfZPKTrlbAKey/fQ2vSui4ko0S6apmui2343gu4WD5f9UICyuOIspZ8s5WnOheAm2vyppN7aLeXa+1LHl8NxmDOKKPJk0cde9L6ivhijXs4o/dnKQS1VPCFTJOKrLNSi6wzl5PKjEUXEKR1mjP9mntQSTNthdZqPEQj4KCk3crnzYYeWI15PGMOI+ZZx3jt8CtN/9zRvAO3n8rzqdA+CCsrJfI4knd79OTJt1fETS3t9hiWtiyvO1TlyKcz+dyjlSL7QH0ccI8V48uOVAm/P1Z6Me5EidNRmjn+tbTN7fcdp2GLuhsxNqKbJDbgJ7v41y1ahxH0gyXtrTgtlUIobXtaxDcLOaa4+CxAYCEQiVQ2Ue+Ec699Qp9G1HkgbTv8XUdYmYvDbmHdVYdSdJ0qXoUIA7BwANLCJmRJhZqfuwS9yA0mUel5oQqHYtCiy74/NvP1kEtidMIcp0K6UQXAsyRTWvMhoM+C46hTT05JurWcyf0gY912I6i81uTGiQeAT+hzLzt/H6BrSI1GjTOWoi9g8Shcgni7Et5B70kFLJbXXDqIadswXVt5vXYRtCJ2Ft2HJVcwh4Cqa9KzK3ltXt2TQ0A/vxOA/TyQd4eFM8CXbAm/GkVAqeUXYpiwxwl/3TA9W1GBWCrHBqpO0POqzF6Fpx2dkv3pKTFqU0I8BaiKTjwI/FrcY5t34j8wXWXUThWKrJxosZFVY2gUdtD4TYVVQgSxj73MyMExbQz9C7F7cudAUgq1kj0/MaKcJZ960vEExxP22S1p0y4XF4URlpta2GGTkEGwsjbSp4H2+4HpxUqsup1aZvH55FtMTrO002ZUtK80Yd/ICfrBSLsemUougAoaHRV+I7Rc3Uv6kN5rkeeWg2LaiNnpTJ8WPzx5j3QQ/MX2QoNOTpXWXjFdVZgp4XIWnNAYYi05kq4vK7uprFYboVDnvYCBsblItnWQ9yHbEo1upCDYQQDarE2R4bL49oHgFaHVxa9Pipj2mWqKRdBTCsBpEKzJikffzBkwh1FOVy9jXc5J5mlrhOhlLenlLamyiwgo28L/Pw2oQ+EFrDtSVwkNuJ8ExHNGxgIfwBjC7WqhjseiJdH+8j2n65r+zuB6IWuhYLpy6Cnh3k0CoBuNsg3x2RZixrx5JMeIfvmcXDkJIjkcSP2AbhtUVX3p7ffVKAJGo1Yd+Tyg6gr9dMQBYVMTrlrh1h96zEHcV8R0RFh0thcducyhmuqYGLWsDQWmh1TipqQQyB5cVoHShrpTIQspFucX4ccrUtWg10IAIWfczmMGSSL2aw1KBBzZGdSk5UauEYQ4J/LxRHrzDu2vpaMp+AFl9RNvOtkujJPwy50hNxY1BNz9maykZVRJLa2xGXPxWwBbTtTYZFJLuXkV6rOafuvILqEoN1Yo4GgdiSWowp7BlRSiWeEnkWSytktORrGZSZmcIka9cOaBRSsfa02+bTArOdlCN49owvHwa/MF2a0Z5WSPzSVSPLRzV6YW9+ZUiZFMrEUbIHZiwlmQG0dOUdunC69fiZOQ9qno+oWsk7attOKVkSL+NGIejtLuj6NgOz6gtxvZsyOEn7TpSI3FnEbx7hM3EdR5XHACnCM3tch3zwO5rUmVfI95ixBuV8U8xJf1a1ywhGwUoXNMG7mOm3cT2SrGa4fpE9X9IB1M1wifYC3/N48FSHz5jGQ1+ulIPhzIk0evV2At+fSVdxYq7bEWqS0xofdnjJKWPGstK7Z+xD2cSdWaWCy6/EoX3b+EYGYF9Xu+fMtcGUQ+nCo5WeaoKr8R85A5sny+6HUsltBWoRpFGgqzq7SVzbuJWGbcPBuFhijIbNdchCVtK8jx8QijGEmSsmwUfEu8aYitxR4dqqyoMoa0rtDHCfc4gGogW4nOtkW6/Fiy+Gw5WZXk2oWVoGYqzHMw5C6IPn7Q6FFjH0oUeJoBUZZ2HaQANE/50vKrTC6Mv2XGfg9snjuSZT73CaVUATjlOUxbSWeex67Z1ENlIRIJZiPbgvl5qIAYsHD5u/alEBaprhnkpKdsAVJV2vyS9ahjlpZcIddMCVglZtxjX7YI0sHlXnb1qnLyscK2y0p0GUsBAOF9DAWcq2axhJJ9vw8FK3ColGR9mDLhbk0uwTpEoSBfboBMakUxW+8i1eNIshrfOaqngN2NYKQTAum0CGnJGExXawEc92fy/rh0AChFPveo+qveCSRZnaRNiz4gKxaj0aMnJyMvvJYWUgqBRaVagKYyq5pRrsJxK/OzO4kN+XAr5JZpK6eJO1CkpzKHxibj15e4sWQKJx0tZCQFGaG16oSYShZuuTkHbKHV6sHLvD9OgiprwTjyNKE2G9R6LZTOcy8Ir7XgPVVK+GdrGT1MKRAlsy5eNehRKK+2WFWdnxlJqi1t8JxSFNvLzjzrYmXlMqYLtN2I1YlTX+EPNWYnFOo5pnxm3Jnxvf8K0p618CFUyIuGYHbnATHoDE5OZXfMuGNYgj1USOS6GJE0FwelrNTCMZizApfiG2QbNz+0R3j+hQuggnA3xmtFGAxNFmswMU5RZZ0o2yIV0sWarnD/pVpJh5BaR7Ia93oi+8vNjTGyb1difquMBj8DJ2bh9KucyduVFP+ypstGQ93K+5gzTBFCJF115Ersw+btw9IlFErxvBI2syDIVdT3g4CEnXRXdi/jjB4m6V7qilxbeT/Ok2QOxoiua9lijZNsCZrqH1478J/KIyfUsYdOSA3qPCx0yVwCF/WxLyYbGn3scTGiV3Xh+wuBxZ6FiDJeCae7fko0D2VtiCKsMtM1xV9QDoE5uCKrXPgH8pTGG0WsNNVRvAWF6prFD07Lmy1odmlBQ5JZrSprzRBQmzWcTuClA1B1JcXs3AuK3DRw7HFAvGrlIjaKVAsKnKxCFUMVHTKqT6w/z/R3Vp5fsZKPbt6t52WdpjJiz+U1SmWu2oFn6xPHq4rHq47xscHdW9xRTvVZxaeLV0DWsip1MyPOlvGotYTWih/+VEw3FWJ0WTTz/raj/6DGt4VdaAtGc3zPnbcAYclK6MrcjYSVFGhZB87XR/mfBr+9FJD6MaMepP2fBULJFfnuKF3CLPmVjVJcGJthJYSb6r4XWm2MoDXKWsECCoUdrS5+/7B0GQC5KirRyV+MckHWdymLnDeLlb6kBMeL6Wzr5BrySb4/YM4FR9CK1FSY40iuLP66EYn3blwcqmZeTTZySAqe4cnDID83RlTXom6uSHWFPn7Vx4FCulDHs1TgupJ2+XBGh5q0kZgltTsJGShl1HEQtF1L6EPc1oTOUh3LBmAtVlDulGkeMmOSGDJh3Mk4UO0yelKMNyUXz0JuKaiztNmTApSmOsjOOTuNHnyZ6TTMKLPV0FRyKmi9FAJcJf8PQdZL1qKutmA0abNapKqzuYTM/yI3jo0pFzhiT16L2WX3xmNHS39XEoGKlJagyLHwH6qMyoo8GA4PK84ncRbOIHLiVFaN/tKea5+xZ1lFZsUCwGaliI1dJMe2D0VeK5oHFeVku4TKyvdShfbrThk7ittOqi6KPgH2FNlkJoRFGLry+5atzqJXCDDbvqEkGap7m6j2otUPncGvih33URx7dUhLKz+biGarlqJtj0Hm59IFqMqhrrakYtUlpC8jFO1Qugnk5M6VXQ6A3M1rYMqYF4Qubs1SPJRPMhr4SFzXCx8hO002GnMWJqN0BHLSzwxCM0TsU38pRHNmZ8qiN5ikC80xkX0gjyP65gZe3Ar+sD+TH56+9Pb7ahSBLOQL1Y/k0xnVNtKShQl1OKGL+CZXTl7gyjHLLdXoUWmUqq06vBGzD+PzAmi5XggdodzgyQm/PBvZHJhBSdCoY+Giy4UmF6RvFSpqXIbxWYM7WAkVTYLoitRZQD2MiP2Vko2F0noRbyhrZQtirQStAKmZGXsCcEWnFzRbNVrANjOf1oppqwtLLtHea2wv9ud+rVD6Iu/VRWIc2ywXMg4VwJ3Uou8HeT3cQZiBM44RHYBi2hqyaqj2XuZRkAvdJ3TKF0CrssRVTWoEIzFeMJP6HrlxysUbOyv5f6uyMisdh19JICdaQEpbKMGhU1+Iap+NQc2Qae8zZsj47nIJu3Nafi+MIqFLEdVL7Jjt5TSGwvOPScYEa1HbzaL2FF6+lht3jBc24HwjhiTtvhVLcOUTOnghD607uclHL4dCIbplpYQ3ohV68IuIyPReCsDcSYQoJCKjcbsRfSgt0fzvILT6IGA1lZMR83AUoPDlC/LVWgr1/kx+fCKNX3WeQAjSkq07EQ+degFnrCEPAXZHTMqkTSu/fIxgRVedVoLGUvaw2TixvCo+/aoHVWK0xmSYSu7cvAVIxR569XlZQRnBF/xG/PDccXb+VYvtl99aslXYo18447PsMzsxcMhRobwUB1VXggfEJAVgGOT0rBwqZ9KzThRsQU7HmRbq9gE2dtnXZy0z73zizaKZ2Vgl2zLfVxnthfk3/3/m3wuKXnT0a5g2BQM4lbHCyXbBnWXrogubTk9yE/u1LTt2eU56KjLcJJuHxZbLR3TmCxz3bDUq6lKgSwFYq6LNmC3fxCh0SUFuMhHKJkhAS9sLduPXWmzdDoJDTNcO3xm0E6GYCaJunEFkew6i1ais+AWcB/BeCsC6k+1NovgEKGnNZ+KPqiCV97hy4CAZI79TyuhRWvK0aknrSlaOx15Yr/OjGIrq0mWg5H1WpwJIjsU3oHLo84g+DdLmWyPchKwFiDz3gikpRbreyD3x8CgcgXlFOAg2lQ8HUeVWFQz8wMdXogjknEnHE1prctdIhS1rNOUceRjg3KOaSkgQp56sAxh5gdNVJ3JMJ0DhPGOGleAD9U4oxc2jWIsFCTmSbYGVEycr8cyfASzbZ8YbxXQl60V1LsWghFiERoIfTUjCAsuC+JOzUIWLcER8wQqHe3qvEIQooo9xwjSW8XmHcuJ6o0Zx+dVjxJ7jYoY5qxhF6yC7dUG9peOJjaglVZCbSsJV5XetDqAGKW7DnSo3rNyIw61ayEg6Susu1uKyEpxuarngrBTJ+TGPEHoUMCsXvXyqzIIdCJCY0cX80/apxINJUc09gowXwZEkPIldW6xZNBxGFfymVvgt6HF2RRagz2+Ev6GSAIXunczAqXO4/Sizuxe9iQkJvTsJu9OYL+ruS3enxiA35cwIjYL6YwvHAykAZOSGPxRSm1Hy972g9hizYAjqXLpHY0oBCKhxknViCIvabwYZ5YtU+dwEfhCikDHkTUe46cTr4N0jWWkhCRmN2h3kc4ZBCkDbSrew5wc+vhJFAJAVzSg2XHnVSgVMckMp1Yrr0Kkn3m5RppP9bMwwBDCK2FXCGKslLy+sKHMtnFtFaIxkzp0TKhZTzE6YhcZnxmuNVxfPOjNmuleZ/rlmuFNEZ1i9iZhB9to2lv10MRHNxgjxJ5Uqb6uFe46zcpGVkYcQigBFia3aZ/fUiF+8L6IWPcSlIzBjAdJI0IqIZ8YwJEYdwkYKQG4SOUEMFnsuYFuXCZ2sSaX7kUJhjlDvkZVZoUvP6zntpSDJjXyh6LpTEkxAy2yvo4BncV2TWkuspTjqKYr/gxMSj4vSfosyUoDcZC5jyUzhjSWkIzQssWYgiUWhFeWkHjTNO40dYLyS6HeJHs/UTx739iy0Xq0xuyAgWQEP9fv031UnN4vRsvcHuelCFLrtMAiDL2ix7MpJwN4s1mMawRYIUTj6IMShYZL3vMh9Vc5yHaQiJPJBuDH9KE7As2K2ri6bI7iMmQUHwwfyzZbUVUy3DfbgMW8epUisV1Igdnuyq+C9AqDqSp7/lzy+EkVAgbwpMS2qwdw1crKGKHiB0RJQ4izxdo3Wxap59o3rPak2gtirsvOvyiwJhQQjGwMdpAsIrZw67b1kyA13mskI2hwaOWma+8SQNeMdpMqw/Y0olNdKiWdblplTUVSQ4yS+AZsacitsx6FIQeuKnDNqKN10W1iGPmBeP1ED001DbA2mL6i3kQtNRwExY6tL4q/CDJnqLL9wqmR9F40Ck4mriI9i0GGDIqwz4614K9izxpwFgXdnGUFCq/Bd+T4WSXt+ENQ/1hqVZ2ZhcTFWsj3xawOqaOl9FvHVUTYKsRNTVXtSy9fFxizpS75TgvbXXExSx0xi9j2E7JToPdYR3QboLeap4AZFduzOWYJeYInnhmpp61FOnJ3HSUZNo2FVCAiTl61UmfnF5SeQx0kKQF3JTYaHRlpINXryxsrcH7Pc0MO03LTpekMqdvNqCjDLiMuJvowIgxwIqikkMmsWxZ8cFlE6D6UgJ9LdlrBt8Bsn1nf3x4XPkPdCDlKdMFOzD7KarpwUn6+827DWqKoinc9SXY2BmoX/LHLOSkC23REDxNt14epDWFfCCx8C7mgwG4WpL4w2HVkku/OO3yYAaamnjaZ5iFTHxOFrpjgYS+vZPGRWryJm0ow3isPXjbgTK2Fy6TGK7jwXiacxEMTNRth/FTzt4XGSU0SXUyfEwj+vpNs5D1II4hXTXUtY2cW9FismFHY/iJWV7zi9sMwe9+5ECS/RxKGwB10mVhk2Ara5gypCFrU4+YaVvB6zXHcW7aAET5kvWttnOIdlRZucRseEPsQSqyYzgunlPSALHTa2cnnNp/90JalNpgR3zBLhZCA34g+r/UV8FFYZfxMxGy/q0ceK7lND85CxZxlZqkPCnoIYiRYGHiDCr00t0d/F70/3GVbCGKQfyN6jOgGcSUhrPnk5QetKTnJn5RSvnbTxOZOuOvxGfAj0Ufb1KEXuROoeO1d0FNMFSCzsw9jIqKifTqKMNUYwpK4RU5qY0bvT4rSFlesp3q6Z7lpJtjpFqs/3S2eRD0fwQdiBZbRW6xWqmJXOQqMve3w1igBlPWOtOKRSuoPtirTuZO0yeeFxr1oYvaCrtRN9uNNiyRwFnLJjJp3F234OzZgJLrOHgPYZl2SNFiuFX2nat57153D4mmXaABUMKNp7cSSuDorzC81wo1m9DsRKM7yoqR81qrjS6DK3qcIak19GQ47k40mMHyonF8e5l9+zqaTzOZ7RT0cqWN5wFWVOj51d2GbVg1CMp60m1JeT1J7BjJeWerbxEoYdqKQWWm52RTzlwKeLRbgKogqsjgl79JjzDFZZwqYq7X6SE38ngKy9aomtXVx4s9H4q4rYqBLDpYmtWI+pXEJI2kL9Li5JyQg2kyrBNqarTO4iugmkoFD3FetPtMSSe6Ewu5M8RylOciqrmEFDXFeLDNweRghpQf71oZeObLuRwyQKKKcmLySfriVtO1Lr0L0vhVvWuKmkBKks31efh8X9J65qeY/Ocn0qXwr9TAevBR+weznY5nF3BhNFHTiVQrOW1eR5JK9bprtWuDCniHs4y3P1xVG4cALImXj/KExBY4SoVlWCDUxf9SxCWNY0+uZalHV9L5WsraWN9kFeOKWKXLPEQHUV5iBZd2ElN50dRHJrPCJ2MRIICXJDLWBVOUVBgLbxxlIdIuvPIsePDNOGkm6rSSbTPEW235NQzawV9ZMnNEb42klOn6wVjCOMBZDRipzK0WtEfSYtXDkCx2lhjOVVaTengNtPTFeVEIeitOF+Y+lfVoVoI2DazPcXFhzLKT/7+ethLgDl96zlJtGjwvUsMWvzZmEGVKdeo28qQeRilkLblQqaFakxeCupUfP+PFUSe5Yqse+OhV4804nNJONNqOfAEuk8khOehm8yqU6omwnrImFwpLNFnwzNW7FZmzbFCPVJhEKiFrSEruACZy+jVsFSqtcHVD8SbzZiKjqfzpsV4Xa97OiLNRO5MqTrFWEthiAalteAJLt+e/Ko0aOPArfnuiI15drb9V/wJiDJ12enUWPEnAUMJiYpAFuxLTP7QbYVSkkBahzm6UxuasZnbYkdCxJHvj/J959Zjk7WzXkYULPpaD+gupY8jCJkU+/RMH/T46tTBLTMPWiHurkS5HacCtKev2C0sDippIzfCt3W7AeZ5zZVkcJa2RJoRfvWlzgzAWnmVjRWwi6rDqJPl0hrSRS++nbi+JGlf66ILQhkaWgfIu27VMgmHnPyFzad1airDnPqpUKHAG2DalsRcBSn2tkxiRBlfpu8zJ7WyO9ZG2Hk+URsDGEl2oQZIOyfSQAI+iK5XZx8ixbfrzPZpeI+rL4gJU5uVuEVem1Usj7SgpMkJzebyhqV7EWu26eLBh+56XO5uObYrtAaZuqu8XnxJRBqsIi+slHLelMK2mw7nuDKUzWBabBwsriDpnpUC8gpK06oDhEdE6GzhJX8TPfoMbue3Ig9mH04o54O5O2auHKyeTmPcgNWcpNDYf6FJO38piZ082ESFsr6vJNXWqOCIPrkXDgrSObAFJY5Ple2rPwyeDC+yJOHQghqasG6Ri96g7kr2ArHQAqAY/hwTbZSANzbE7x6JyvAqhKXIW1kdDmdBcOonGygmobsPekgZiLKWfiSZuArUgSytGHN7MBjhFV37gVB3a5kHMARN420WoNHeQsZpqsKZzTmNGGPnlgb2tcRHSqmtdz8bu8xVblAy3oqtKqYhspaKZUgzXhlsENi/WnADobzS01shK+OkrRXd5RdtzmOUgSckVZxU8PHzzCfi7nD7AirjBaJ6mwJpfVFR2CMzKrWyLYBAQWVT1Q7j19bpiuDmTRuH1h9nji/cPiVnOhL1HahxssNo8VZqbgJgYxHZhKrcrjw9VWWEaDe5WLWKlsJO84EomLaWfbbKmWZhX0g15a4rqVrcYpci3CnfpREY+1FBxIbQ0A2G3Nu4ewQLHFoChU0IVaMO4c5ixFK/STkoDmO3Z0y9ZOsL6eNY7gRolX32qPPntxWkvIUMyRIL24I1+LUq59Oi+RXGY1qHNnJKjc1llSVkWuM2LcHWd01FWi7AHfAPwDaKS+ZAfN7mZVCPx7kc2qJHJtNPzGavF3L4TZ52B9lNdi1Yk2nFHp3BmeZnq9AKdzOU336SL5/RM1uQeMEyUghGIaiaszkU+lA/USa48e0uRycP+Dx1SgCmaLi6lGbjfzZWZlzxkleLGdlp57Fo98AepgwgyVbsX9OlZbQx6TJTlPfT+jJETqJDp+jn3VIJWVW2rRpXZiFRznt/NowbgyVTjT30l+fX2pSXQhFao7hanGdEzR8CtghEK4auQifX6PfPsmJUTkpclrLTT4bRmpFDnlxokmtI64raUP7UJ5vptol0BXDtSFZR7ULdG8D42SY1lwUgFla+dCC8uLtPwethI5i9skSuR4amC2/YyWkovZeuAlmiLJiLdZXEqtexrGYUcUOG0A1bgH5BHgFc/KLcCe9d5XNicLzDW3PMEeamUmRDhf7suYhL54Q86ZH8h8zsdUMV8L5qA5IIvLLrmxrFHaIZNMsmn97f5Ibbib/BAn/0FovhCZzEOxJ9aPcsOuVWMPNzLwQC1U4LYCu8EOmiw2eSqizcPjVqru4/va9tOddI9fDOIm3hNbQFs1MSOjTiVxXTM9FQm6PHvd6T358Ql1tic+uih+icAsoVPQcE/l4KCYoSQpAyqANSqv/f+gEhDCEj+SnHfpqi1Lvzf+FM5Brh+pHLBA3tTj+7EdpJBrRh093LfYUSFbix02Jj0pOUmdE9iuYgIwB8vc5ctqdEu4Yl6z7VCuax4gOLMUiW/CtJtSZaVNhJkf9GKjenbFPPakARLmtxU9wNpgMEdK0uL8qZ+FwkgvGF2dbrcBp8HrRoGdncDsPCaYrw3BncaeikCvA5pzKC/NNnyWNOBTKsRPgzYyqkJ4ysYZsc7EGF0AxVobNp4V7H0U6rXyU51bs1NGZ3FZQItbMY6JyBrITlN6Av64l8EOpkuhrFnciKUQS5ZaVYryS7scdBdgFwSqqUxIsR1HSgcrvZyUNKVmxHLPjLHl+rxi2Bu009uilADztZTyLUWZoZ8Xw0yjJFTiLc1CePfsK91/tT7ItaOrSFegiFS+U4n68BIS8zzW4uSKuW/ThLKSwYjeHBtWXjUItgPAiRDqcwYrpSKw17uCxb/bw5h717JbwbCPvx6kwHSd/cT46n+XPQOoFq1BGrOxwbtkk/KDHV6YIkJI48vhA2u3RRWQzAzac+yLMqFDHMyZn4rrGPJ6wKRFoi3GFZbp2X6DJUsQwQc0uxUrUZkkSdqd1caVtFMkanFPYU8IVequOmfatpzrMs38pBrro660iOkdya+p3/RJfNe9381lOAW7X4i04FWfidYeqHephJ5TP04ApghJSujDNYgK05NZ7y3DnGLcGHfMCtqVOLfN8tuVjdQYLehK/RYkAyxcufkbyCJEdvegmFMONIdn6Ms97CX9ZHllQeK21rLg06MFTpUyqjXABjMKUYquSaCHI8lrZUYg9s/uzMA/LJqPIjVWC4UoSoLMGe5atQDYw3EgHMD/n2UVIrMfUYnKiogSQzKlBOAetnMapraRLOJcTWaliZuvl83Im7w9L0ci1W/wFyKUTOvVSMJxQ3ClW47mtJSvgPIoormtJXSO04XMRGLU1ed1KzuBxQj3uwRji7ZqwcaLKfLOXQ+TuRgpAyvJ8i4nJzC/Ip5P8OWXZCBgjl71SUrx8+OqnEuf37JBV14n0dn8QUE1rYVDNK49SbVU/YmbxxDihBwdWY0/gr2QEAC7mGUZuWFtQ1qwEzLKDdAMiEWVZM6ZKlTw72UOrnNFTmQmDRFhno6gfA7ExhcFXwkX3o6Cxqwbtg/i8nU6w7kg3W/Rp1joEcuPg5e2yGprTb0iCumd0UcMJldj2kXqnGa/N4pRcHeQGiZW4A4HQoFXUsv73RVQUWMaDWIMyBSCcxLC03snaTTwEWVx5cgHzVGm1Q2uL1LkRmXAEd4xy4Z7KWhEWoU5WFQYumoM8r2whV4UnYCEVXwOQrsSvZXTQnuJUJOSu2Eg3Ue0h+vn9nXkHRf8xZEwfUL0XsHXVLpHi2Rli6wpeYeBqvcSBLaGex1MB6yrRFcymHCWKLPeD7N7r9/z8Z0FZccKiH4oNuJORb3wvOGTOIxwj+nFPTglur/BXDeYccG+PUmRurwQHKxLkhcY8cwAmj1qt5LlECTOdOwGqcqj2A+o9J6jf/PhKFAHIF6Wd0vJLhQCTWDAR4uKMkvtBUlZ1ljZMazAGfRoW5xZ7jovgZ6Glxiza9StNso760aNjlGQjL+2kjrnsyzP1HDHuNLnSmKcBcxhJjQg3GBR+bamOnvrNidlRdrGTDpHc1cSbDbpyYvn85h59vRUCynzK+0i4bonPV9jDdEGZfSCvGgGukghy1CC2YCokdJDocLlJivBIC4tQewkJ9UWAI/6JGXNQ2FPhHdRKbqj3zEjEmEW+TiVFnTLGB9QkUlxJ4pVLxq/EvCUr4WXY2V2J0rkkmMM49BTlYp9mXwYpMKEVuzG/uVinaV+4C2txfUqVbC9KU0JsEmbQS5JU1gIyRqcXl+TqKZRdvMiH/XYl6+CiJ4itqFCz1aTtezdxBj0EzOjL6Z4XoY4wQcV9KAdxCvriJSzgNkZfbMFrGR/UKJyWJTKsJBmpMWKejjIOXm2ZnnWYIQgoGSLp7rq4BfVFRCTbrNw1l1zEphaAeSrGO8MoXoNtI3oEH9BlTMD/4LvvK1EEFIVpl6WdwWgxHVVK6JupiImqSlZvc+vmA6ly5G0rvPQhkBojq7/iRixotJLWqMyLMwJu+ygvgL6cIK5PBSzLi4Y7rmviusY+ntGHgVw5jI/FUttKRNTjbvF/R2t5Y99luenbGq428PBE3h/ETKSsA9EKPQb8xjG8bMVZppdUo2xEvCNR5hl7vLyLZswkK+DmbEI6C2xSJaes7cEO6r3wFIgtpJKwNJ+wuYR9pOJeJG7LQh2OtcadIrbEfJte5LJ6ssJhUBJT5o6iJ/DbYpxZrL1nyTc+ooeE04qwssRG/B7GrV7SiFRGkiq0jDJhG6EpY8gkYh01aexZVoZmygvoWB1EN2BOfrlpxg82DHcWM2Xa14NsZZyVDsBqkjNkK2Yf8vMFpM21K8zBQRqXso/PqQjb8ux/Vk6YeWy1ZZSrnLTj72UUzODj8kgJfR7JxzPcXOFfXslz351lpNm00pmMQbqQ8vXZaQgJXWz4ct8v1ug5Cp6hi7RYKYW+uZIxoZDwftDjK1EE0HLT51B0+DnL2sPaBVnP3i9Ry3OhQCnUOEmazE0riLRPaK2IM400AmNe3gQxncxSNbWSJKEgbbBfF4DqIDFn2ZnF6zC7UonLPEjOVPsz6Wol8WOrVuTQMzMrRmnLjidxe111UEvVzuOISm7xrjejx1WW4UXNtLXoxuCcWSiwoopUmOuL06542suPUvky9szmGwsfPxQPhdJ2x1r+y0bUdyC4QGyEI2BHqHdpYVmK6m/mXGfUELDnCbPXiyGKvLAQtjV+Y4R1mAFtF0cdjCa1IkX2K0OcC5ZjeR4zWUnMRVlGB0YtzsM2LxoDFaUDQEP1JJ2QbC0Cua3oP15zfm4xXvAcff4iNJ5qAzFjD/6LGI7WqHGQvbvRl1F1XuVaCzP5S4vKdREhwRIRNkedpW3RAsx+ggVPYZwEH7rekK5XmN2A3h0FsKzdxZ7+vbVxnqXIRwEbs7+sJYkRvJcuuRyoersh5yx5hPk3dS7vPb4aRSAXEYZ2RW2Vl5ufFOWFVrLrzF0jAKIxJXNtxD6cmD7aEq7rhQCyJA9bhZkkGTZZiief+sIOWxJyM/VTXKKzdEiETS3gViymErG08HOhAjFtaERkQl3Jm1DsnbQx5H4gnc/QD+jtWogdWdrMPE1QZNIuZ3J1SzK6CHDk97CngL6x+ApyoxbJrS7GILMLb1byu80R4CoiJ2qR4s4nphmlMEj4R5Emu0yq5aYMK0X7NtE8ROqHETVGUifZiFkhOMyIzLizN56GrM3i7WeGJOpCpCMwZ3H/US5j+uL20xTSUMkUiE2GtmgHFJDA7gwqCbfD30T0ypNw+O3F67B+mFeMYu4RblrGG8e01rg+074VC3sSLLFhgB4jZl9cecq1BBmVorTaXXsB+ooRDGbm4uuLD2HtijFJKZQhCuhaiaU5WqHP75mTRlEDqhDJmxVp3Yo78fF84SGMXorKXGALbVufJ9TueOk4leILTMDCSFVKST6C96SnXdHY/A6KgFKqAf6fQF0+/9/KOf9PlFLfAn4WuAN+DvgTOedJKVUDfx74g8A98M/mnL/7W/2cfC5GIjOvPsrNn5MSBtQs98wS7glIcMS6wjyeqd6c8LedtEsAWS64eGXwrZiGzp51oVH4rSksOC+s0OsKkrSUyehCIoHprimOtUK3VV4uanIWUUmx1VKTl+oc0/J7KGtRzpEO8sblQYQmgmkocVAaipz0/pFKKeLNSmb+Q7+cLvWjJetiShnLTa8v67BpC2Gdys2vFqQ9GwEFq70wBlUQSrVKYHrJbAydpDXnqvAmtEZ7jZnA7bWMPVbhNwYw2JMRc47pPadcJVRhe/JUbyeh06YkRKk5U1IpzDGVIx500MLczKJwDOtENhl7MLijkhSjLOPL8LHn5uWenBVPgwS+uoPYw9X7SxR5qjRTJ/6H60+LU3POF1eg8lx1L8g+wygzdTEUnfMF5+QexulSAOYCotQi+LlElr1nMlqyI3JjBc0/TUvQyWzBpkIs8eZlg3Dqy6GX5BDUapEbLwzC+wP5cLwkDBeh2qKM0wqFWbwryFmERSDXXnzv/fpNj99OJzAC/0zO+VjSif+aUur/AvwPgX895/yzSqn/DfCngH+j/P8x5/xjSqk/DvzPgH/2h/6EeY8+edRS2TIZL/MzSLszV8aYyLWFmIkbS1Yr7K7HHkb8dVPWgvK57pgYryUKq96V7IAkoOF05Wh8FPXhSTNeO7Jx2JP4Ceogc3Doig3UlGSHD8JBh8UhhhgF1/CefBgL3dlAltXnXKGJiZwLv72kyBKTbEROsvpMK1kpKS/+fe4YiI0u/oOJOOqFUJOMnJ7JyY1MhjzosgXIkmDUyhxt+nIxRha2XrVTxFGRbC6vl6zjQLYssbNQdBax0oSV8DFsL5JhYia1RohahxKdXRiRFBkuIYovX1stoRuzd+ISa5ZBeX0JIc1CcBpeBjbP5WJ+erem/Z6jfZNp7yPuKJsbYLFhq54CbjdcZut1Kzenk0ODnBfgdqbuLlr/BCA3dT4V7cp2fSkS8+fMnpiDl5EOpJvo6oVLoaZw8Sl05vIz50fBtFQhwi3/ljOMZcZvVqA15uFIfnwSB6QSMZ6HgTxOpUPR5DGg6krGzhBlGwUySqf8O3MWyjJMHMtfXfkvA/8M8M+Vj/854F9GisAfLX8G+LeA/5VSSuUfNpQYvbQyCy6glbgFnUrmelPL+iYmuccLe22mCaeuEgbYGAkru+Tg6ZCpd4lprcXc4iTOPTbLynC8qanvh8I0zExbt3ydRFglqidf7M01ZhTBip6iKBjnU6a8kcqumC3Uc8EOUOL4u+gjIlBV8ntr0axnEOCzjDgCNIkyTp89trfinINgFtmUiK1JwlN8r4kmFdfksv9PkHUmXkXiWqG8/GcmtazpTC8gm56kNZfMAcn7E2xBOiLbR7E7A7JVy7pNpSTMRqMlGOZmRX6+IbZW3JqfJuzTGRDTzlQSpOSmLc9hkpWs8BtkFQhlRLCZ465FPVasPte0b+X5uWOUQNgC6uqQcfsBcxzFEKREfcdWYsIoIaSmDzJK3m7k+ffT4mORh1FouDGhrCHfbBen4dy4sqGRNd9CEirJUakTj399GooTUVrae30cl5Xv7KINSGFRCs7CN5Bxo0TybddgDfrtk5zoWjrInBKMI9mHC44RZXumNmvZqE1exoQkRii6qS8H6A94/LYwAaWUQVr+HwP+18CvA08555mB8Anwcfnzx8D3AXLOQSm1Q0aGdz/kB0gLM/kL8loEFcRI2h/Q11dfcG8FqcTkjPVRMgELcAcsJhvTRjqA5jFesvi8mHRko8hWkWqLOU+Y40QFpGIbJdbiCnWO1IeBcNVK2u0QxBx0dpzVQFLLC53XzTJPqvNQ3phJ3pyUSlejYd2JKGpyF0s1amkNfZCL2VmUUdiDJ3SaUGtsTmWdB8lmmncAivFGzFSzyUVFiJxcSWHOGhUloDWs5URToRiuakU9iOGo8RfAUY9pAVCFal0ERFHa/+m2KV6NqiQiqcXBJ9SqrAItpndistlJZyFiLrUYmyYLuS5FJbNkD+pR4d5aUPYLI84cGJucLi5QqWwUypi1qomNJbZGthRh3jAU7wcEA2LyciPm8udKLOHV5MXwBUSC3Ik9uDmMl5BRWHCA3NRyqu+Gi5uQ3ACSMqzVAt5lW7Cswhlg8gLwKdlgUdkLNrA/kfYH+bjSsinLqYzHRt4bHxbAHF8YkSleVu51YRT+Tv0ESrT471dKXQP/J+Anfztf98MeSqmfBn4aoNGrwn8u7z4ARV1XiSIs7/YFYa+kG3B2oWDmtkJ5teABM3lkbjVPLw2r15H2c1mTZGdAZaq9x3ciQ1XJoc9ecgVW7tKyzrnzCdybA2nbCkB2mgpnQBhzuRQFvTstacriJ98IYcdalCu+8FqLgcreFeZgIxTPYZSTovgUZnUpLOY80b7KjDc1qSqmpz7jzgl3guqo8G+EghuKdVpymTzIBTWHq6hQBDzby3pNxga1ZPslKzwBQeHlgo+1ITeyUpO/a3wruY1o3tsmCAtzKSZakRrLnNJketHRq6ALl0NuejWVMJQsZiIZ6RAExISZOmzP4rScjSraBhlRYiXmqPY08wcUbj+JH0DOiw2Ymvn/MV1We0Bed0JRn/n8ZRTL12s5JIZwcfidT1WlBJ+KxY5s1V46OViun0UsVERIahgF/BvGImQqK2Nn5fnFBLsD6dxLh6K1ALGmFAdrZUsxjihniw/nKArCgqctWwOtyX0v680vefwn2g7knJ+UUn8V+KeAa6WULd3A14BPy6d9Cnwd+EQpZYErBCD8zd/rZ4CfAbgyz3IuDqrKFotuV6HMRWab+wFO50IvLk7EjRMktJg3JKOZ02XMkPCdWfbjxw8NZqhpXp1g8GKRbYWf7TeO6crhrLr41Ze4MF2qdG4sygf0vidt5JQwj6eFDjqz6mZzELU/SUtpjQCCKQu1MyaUkpEnH46oGNE3VxJQ0dXkJC02ky904fJ61cJHMCtHNnLCqVxuvpjLzaexY2bs9ZK7ODsGzXO3uPkCCCiIFiOSPG9SikPy3KrbGdmGwtoTtqCNCT0p7KiWuDZgyUp0J/FJNGc58WbDjZmUZXsv3g7G0r7R+LMAhP46kW1G9xq0IrYJPSrqB037RmjSoZVxIlbSceggXg/V43TxEvRJjEIGOe3nuO9ZTbcIgEpIaK6trPUG8YJAadR2Ta7EXl7vixR8Hl1T+kJbL7oCJWs+o+V9nwtAcZGaHaSWcJqmlu1C4b0wG4WM740aBWtSXbsUAUDSrWJEYaSTKHb2TMU9WQlpKYcgmIBWMob+gMdvZzvwHPClALTAfxEB+/4q8MeQDcGfBP5i+ZK/VP7+18u//99/KB7w/iMncLXcIMUVRTWN7NW7Ttrl2SSyVPHcVuIfB9IeVzJH23OkqhT9jcFMcrP0zyz23ODuT9inM+GmI1WG+nEkzsk6WhUPeZl1ZxNRrCZ1NXoK4gNf3uR5fp/bP+WDgH/DZf0EgtAyjtJm5iRdjzFyMfSiMU9dDbUmWo0OtYBJBZBSQWKzYq3xa8Emqn1Y3HSyUWAz7iisPDOphRuRDMSGJapbIsgLoFhd5nLjyyk7ZzrkjNn1F418LdLbqA16jLixGLaspJuasxyyBV088JQPpE1Lqg1+I+7D9aPo7PUk9mC+U6VoZfSgMKMYiIRVxh411ZOifS3dxXCjCzVaqMHdu0T7esK9O5KdIWwvbfzCWpxzKnxJJHZWbsihgLuVk5t8nOR9SRlqyYbQx2IcWtD6hT6c5VSnzPUqZXjciyKwqeTjpd0vN9LFgRjEQGbWIiglRf88XHCkORGp61Cb1WUEyblslM7MztaqqgQrSFm6ZVjchHJJyQZ+R4zBD4E/V3ABDfyFnPO/q5T6ReBnlVL/U+A/Bv5s+fw/C/zvlFK/BjwAf/y3/AlZaMMKK21N1yxMLbVZX1xYQ5SbK2c5UYsFdGpdOb0EdJJ0m0R9L7TjcatxxTJ8unao0C4KRN2Ihrx6cyJsG8LKYlIJrjAXNplQPSGuZBzR5YRTc75djJf5LibyOF4Sh0zRfeeMKnxzNRM8Sl4cTSXuPcUWS3CGRqK+evHLJ4E7BFAQGqENu2MoUdmK3IkqzvYJHUqMWekW4qAYryC2BVAcMzYrgpo1B5D2Zc/fR1AI936+AUoGnwoZrQUbEHVkuYgLWWnOUfRbB3ojXUBj8VvDtC6sv2ixTpc05dn5WRSPdpCRIFUZt5PUZB3AbxTnDxTTjczk9b2i22U2v7pH9RPh2ZrpRm7Q6skvz2++aefiLDdDQM0eg02zRH3TFrv79epC7Z5lxDORqORkzhTgxVkpRuhaEbgdpGOdfQUF8S/uRTnLQVBXX8S3ZlFQ5ciHkTxN6Osr8u2VYABzN3MeFodi3TYySpQCwPVGNhmHkygi3wu9Qevf0Xbg7wJ/4Ad8/NvAH/oBHx+A/+pv9X2/8CgvYk4JlRNMRt4QEFrl7ZW02UVpSIiyHimGnWpQxO3/r72ziZHsuur479z7vuqre6anx45JImKjbLJAwYqsLKJskIB4Y9h5xYYVHxIsWBhFQmEJEizYEIGUBQhBIGGRDRIBIbHCJiDbcbCcWGBEjD1jz0xXd328z3tZnPNe9Yymxzaarm4ydaRRVb3Xmnvqvlfn3XvO//z/+ZB11mSQ3pCjd0ukyzeVgQ6afesgq6zebRj35NYC14wImeLdB0mokzVhf6JNJ7bqCNMCt6xgud5gxrPU2F31czR8wKajMGpgyHM4uKI3Vd0oRmK5xjsDvEy8Kv8C3cjhxp5kmSgzTohkRw0+78kS0aecYdLrmRv0AKJjaJt2rT79m9CDpUBEZcB6DQJA0ZMnlrTqVPBluLapN9EQ7cLsTmEy0kU3NF8BG71Bp5WEZNFp96X02wrlHKynzvIXEJM4VAZ6JSJgUJJuptECoTC+EZn9lwpK1j+2z+LjmYrIvK0VApxTkZGhESvRkp/xAvTBmq7Tp3euydh4eJVgpCSyNtafPngYOEorVK2+DpBhJQyVk5U2HyWJQciFuCoVZei8+gADqxRYAOgp5lZrxf4fXhuERaS2xOGqJC5VN9FNRsh0avJ2AZlNlHFouSYcnwz9DWIVKJozlgFcFsSgE4UNV8YbsFzpk7LIVW3l1h3k+gHd/gjJU1V7KVM9Nx3rvrpqCZnmAJqZ8c21enz8w5bqcET0QnrSEFJHM0twuSNdnIKNeqc/7Hiq8SP1UDvcfEko9mmnqWK8y4YwznBtN7DG9DwBpAmMC3yeE47mQ4KTYJnddYkUOd3BHnF/BOypvuHJmvS9BfgZzbjX/rOe/qhimyFzw3IdIETdExM3Sby2EBIwMFEkWQXDDWh5sMu0HNillijI5RQC0ZOUCVIHyIV2MtJ9fB2U7iz3tGPzIWqglc7yEk3QubFtVChSQq7l1KRWJuiQ+oFfgGwjjuIaiGHzvUQJnDdMyDnkt8W0JQPjm/pkXX1qT5WI1hrwk6P1IPApXUco0iHgx6j3gJTNgN0YWnyrxrgFM6QN2kTUKXqQvnwnClaj0a5SslSxIFa6ZrnW+nwvaNJvOfqKlwnqDAnKnnXagkFcLlVSfG9PYeh1o0/1LB1AZYAmAyeTzQp6NtX7rm6IR/NNJcAwN8poddmDQK8cm+c2McqiKl2mZZumgaMTvAjt/kgvWpYoHVlVqwKR09JdkjnKUcL6MKW4BUmM+GVN8c6C+nCiWeOjEigor6WETKnHENEM8LpBOgXGOExDzsRQ/a0F3SeuUF/Nyd+3LUG/NCzR4GVZXhJPnI5xiSfOj3WvZ6WjUFW4+bG21xY5YZzTzRSB5uYr0vdXxOsTTXKWm+aWkDjCyNON3LDs7qHQvrI99nGgHcmw8tDuwGBPaUfaqaKSrwPBC80sobzqBgqykECXOtKqgyYgrTLTYD0AftXimpRg3Y045Q0ENsEp6HjSBHxolKTTrrO0ARcjftBXdHATzeek1ipsTW+uRTUWjAFJdQi1/6OZJHTXesLXTiW8K+N77KHeWUI3US7BmHpCn0QG4iin29dVjitbFf8cKw+hX9YDJiDW9QYI1gW9N+tae1gy6//ot6ltq1n7K3uEca7AKdAAYsnG2DRg+S4leNBVSS9A4qYTZDrWgLJeE52Huh4SmIAmCUX0N9L7sSqJt+7QLZYadMQhLhBbyz9d+t4BIJyc6ASkufZo99uDtt3sx05WJF0gTHN96o9T3DpF2kB7JaMXxyhuw+qxhOpABSD65X2yqOkmKZ1RguVeWF/Xhg9XB5pZQnZH2Wdd0ykoyCvMNOxPcMcrsrfn1B/fp75akDmHW5S6V5uMNbE0P9lIlPfJmtkM1mvCyUKrGZkpwsyPoczxxw63N1V58ukIWZYk84pghJeAtp02HXihG2V0mRuIUJRbUJWVfK06Ae3YG9EqNFNjQRZIVkF7Ata6yvFlii9TO9cNVGm9tqI/Wm32toZqS+t2KFtJpYnLmGdDKzUAdYOzbVa0/gJdIWgwdG2AqZZii9smdzbzyn6cMug+NBNlSE7WVj4cac087XUH5g1+3W76GPr7qdDr3KshiQUgaYPRg2dGwNrRznK63OErTQbLukaqWkE6fR+LWQxBf8B9rb8LVr+PuhLcn2nJemWSdD24p1cZ6pviTH8irtd3nZOi0C3BYmnfx84Z/FpyZTyK82P9naQJslgRjubao9LfL6f5A8QBYdiq3WuXIwjYlwvrEpdmSK7NGT2H3QCwSTRyukVFLFICCd1epiSYTaCdpgMxSH4UqPYd9V5CftRQX8mGTHoYJ3hTfJUQqa7qXRcTWH+sYHRDcQBeRMlDRPXl4ihHTlbkb7W0j+8ru3Ceqp9tdzcjTZ7rqqDRCoHkOU6cZnWbZqMOA/qkWa5xo4xQJPgmNRHQDf9dNCYkt25JVgnVvmXjDdekrDzKCtwDZEKS0UyEslCNvqQMd0+7PR18pZ2CflGrCGaPaku8Zq0taTU0yXgHSdzAZkNU7oSJ6hC6LoW9wt4HknmFzNdKxpl4hUUnPQxaWZ/Lq954DHQb0GU9oxAkaxno1H0TScpIfqfVblAgpKovONzlSS/3bWVW5wZ4t6oTYSsSbQUPmVMAWdPh5iuTB1vpdSkKhRenWiLWGr3fzEWMGoCLQtWIrdQ4oFvLclPOE7GksOaP4mKl/BhZqj9UJ7olWK51i9xrFqYK3ZZxofiRk4WV0xMNGCcLwnptT38Z/i+C+jZsR86wyxEEgiKgYtsSjo/xh9dsqek2+7E+w5qlBqoIuKjLv2aaDjeP9sdrt1Z+HKhnjmTtSU9aysNsUO2JiT2dyo7Ru6qk00wSmpmw/lhBcVNITpS9KGQqHCFzkxNblyT/3QzIrh4duGl6Us43jPJJtQcVHiyJVxLI5RIZXxu0BrR2HBStOMkUiiuKXvRrw5Knnm6UED2DlLgzKa4oELzW8dvCGYmKKHWaN67+RhOHzXSsn9ed5g0E3ac/NsLXOekdXVprX7tm6qTpNEnWl7KmY+IoI+yNaKeZlv+SPj+hZCEAxW1DSXqv1YsiJYxSbeUVrQ6sDr3qPVr7MzDwIbgWXB1JbBuQroImGVNHO1HAlKdTBKeRbgDahi2iBCJekDogRJUUbzrIPd00s/ltTU2o1CQc6I8sy7RTMLNAX9W6EghBl/1ONkSfI93K9itDvNclvZF8APqQcKKvjZaMhwAQA7G0jH4MiM+GFTDiBtJSbh3p+dFIg8tqRSgrJEmHUmAPvFNSkQ+uzl+KIBCNWagnDYnLpWY+T9XS8V6X0McL5NoVwkifln5Za0bd+O6JCncNqS7vklQ58wogm7dUBwnNWEkiYyWQqXpQclIbrrzQUtZjOUWfJzBVnYF5tq8V97oBVX2qr1tx56RW7rQoHoOqEQMKflosCe/fxvnrtIczjfydNiz17D0xcYPyULKokapDEgdROfz6pBoC9dRIOq4I5WFUrcSIzUkkWQnNkQxwYwlQ3HFkx8osHKw5qJ14pAmktQJPpGfBMSALrf6TNCFOCkKemAy80bMF7bj01tnnbdvRTXJi5mgLTzP1hk0IpkOggUy7NDUZqMpLGgBGt03J2Ehiq6tanut5D6OTQfLMl/qDDqknZor0HIhG+gz8OKcb6/YxPa41MPQ6EM7pw6ZtldM/M/6IqtaSYi8Wak/aGIJ2g9p2VUuN2ufS9/ur1JiRfoaogKQYtFTYGotUzz8BqiB0yqSwZPNNxdzJ3kzvu1IpzgZCUdtqDojBrvvAVQBckiCgj6Jw97ZAnPYT2HGCtujGtkVuz5HHDwhFiisbkqWKi0Trtccpa1BIhGzewn5CM3FkbaB4v6G6mmqN2ursPXmHW9WMf9jBJyfWMZcM5T0JURmO+34AsH2/18i7WKgGXJbqxTV8gCY9OxO+HOnFDBrJw2JJ+J938XlK89gUQBl6wZbKyvrbFZ7y+oik7JBWgVASoLriaVNN5ilVGNT7ke4TJZNZSZG2VE1CVSdUq4zqJCFZOlylK4h2LKQzIT9RirU+249X6i231OV0LKym7QSKnDAd0+0XdFam9FXA39IkmKuUSmwozaWe6lpBN3KWCJSh2nGaWThZAWtFNLpa8wK+QlWkg6oPN1Y+TNYwfl+3A13m6HL1Pz1pN/yGQHCaCHTzlRJ4zCYWAFL8uhn4/WPqNQ9Q1tbkFa0JbIPAw/tNDz/QMwlJOtaV6VI1JOJ0pgneW0vd66fppiFO3FAqxBB9dAoTj3WDOFE9QXGa4fceN9Gkd3jnhoLnDq4MW86BLSgGwGlgtkQmzilUuO/KfUAwuBRBQMSWSP3nLDMIZK2Z0FO5AUlTaFvVlz/c00BQtfgqpXV6U3a5RtxkrUvqbK5lw3biyeYtxXsVne2TB1x57CnNG8ZvrykfKzZgoGGb4WF/hO+Malpsy+IccmUfFyJhtdKLNRlvsAFVDY3qJ8S9CbiJ5gCsEsLtOX6c0c7yQdBEBTEyFcI4qegmmUJ2+x9e2VHcjpQHCfVUSTmb/Ug3CTgfSX3HflHiisiiyTjygTUFjfeqOARUB6J8hEsF5WTHUSsHpcdniWbD6wbyVEE3mZbb2pl2pblG581XnXIIdEHzCUVGGGeaI0icNfrokztZmay5v5u1GTbJQAlR+QxWeuOuDzYowfwoMr7Zks5ra0aSTYLQJMZi6odcTg97DteuEG31mNxaKj7Dvo/K3GuwG6DaMQw//p7Hwm5WvQ+sgYcQNQCY2lTM003J2bAuelNalSdJFN/frwBi1OpXDFYdU5h5n0CMbUu4c4TLc+TaVXWtTwLaNgLR7Uds2oHJGhhe4wOERwDkwyJ6z9NE5D1gyYM6Dbdnh1y8H5fBB9j5ca/9f/fjx2OM1+89eCmCAICIfCfG+LmdH5fDh50fj44f7oP/ZGc729mPsu2CwM529ojbZQoCf3zRDphdBj8ugw+w8+Ne+5H049LkBHa2s51djF2mlcDOdrazC7ALDwIi8nMi8oaIvCkiL2x57LdE5Lsi8rKIfMeOHYjIt0XkB/Z69RzG/ZqI3BSR104du++4ovaHNj+visjT5+zHV0TkbZuTl0Xk2VPnfsv8eENEfvYh+vFJEflHEfl3EfmeiPy6Hd/qnDzAj63OiYgUIvKSiLxifvyOHX9SRF608b4uIpkdz+3zm3b+Ux9pwBjjhf0DPMpc/BSQAa8An9ni+G8Bh/cc+z3gBXv/AvC75zDuF4Gngdc+aFzgWeBvUSzk54EXz9mPrwC/eZ+//Yxdnxx40q6bf0h+PAE8be9nwPdtvK3OyQP82Oqc2Pea2vsUeNG+518Bz9vxrwK/bO9/BfiqvX8e+PpHGe+iVwLPAG/GGP8jxlijfIXPXbBPz6E6Ctjrzz/sAWKM/4RSr32YcZ8D/jSq/TNK8PrEOfpxlj0H/GWMsYox/ifwJvdhlvo/+vFOjPHf7P0J8DpKXb/VOXmAH2fZucyJfa+ztD6+YcfvnY9+nr4B/LTIA4QG7rGLDgKDRoHZaf2CbVgE/k5E/tUo0AEejzG+Y+/fBR7fki9njXsRc/Rrtsz+2qnt0Fb8sKXsT6FPvwubk3v8gC3PiYh4EXkZpVz5Nh9B6wOYo1ofH8ouOghctH0hxvg08CXgV0Xki6dPRl1fbb18clHjmv0R8BPAZ4F3gN/f1sAiMgW+CfxGjPH49Lltzsl9/Nj6nMQYuxjjZ1E6/2d4CFofZ9lFB4Feo6C30/oF524xxrft9SYqqvIMcKNfWtrrzS25c9a4W52jGOMNuwED8Cdslrfn6oeozuU3gT+PMf6NHd76nNzPj4uaExv7CKX3H7Q+7jPW4Ic8QOvjLLvoIPAvwKct65mhSY1vbWNgEZmIyKx/D/wM8Bob3QS4W0/hvO2scb8F/KJlxD8PzE8tkR+63bO3/gV0Tno/nrdM9JPAp4GXHtKYglLVvx5j/INTp7Y6J2f5se05EZHrompfyEbr43U2Wh9wf60P+KhaH3Cx1YG4yfR+H93zfHmL4z6FZnZfAb7Xj43upf4B+AHw98DBOYz9F+iyskH3dr901rhoprjXf/wu8Llz9uPPbJxX7eZ64tTff9n8eAP40kP04wvoUv9V4GX79+y25+QBfmx1ToCfRLU8XkUDzm+fumdfQhOQfw3kdrywz2/a+ac+yng7xODOdvaI20VvB3a2s51dsO2CwM529ojbLgjsbGePuO2CwM529ojbLgjsbGePuO2CwM529ojbLgjsbGePuO2CwM529ojb/wKALxmJfhmfiwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQEAAAD8CAYAAAB3lxGOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAATCklEQVR4nO3df5BdZX3H8fdnf2RjEgKJQAhJkF+hFm0JuCYBGaqiAmHGwJTSUFsoxkYRWhhtFbCjdMZO1dEwZRQ0FCRaSkCQIRVaCZFqVX4tv/KzyJIEkzUkQCAEGMNm8+0f90m4bHazm733nnvZ5/Oa2bnnPuec+3zvyeaTc55zcx9FBGaWr6Z6F2Bm9eUQMMucQ8Ascw4Bs8w5BMwy5xAwy1zNQkDS6ZKektQp6fJa9WNmlVEtPicgqRn4DfBRYAPwCHBeRKyqemdmVpFanQlMBzojYk1EvAEsAmbXqC8zq0BLjV53ErC+7PkGYEZ/G49QW4xkdI1KMTOAbbz0QkQc1Lu9ViEwIEnzgHkAIxnFDJ1ar1LMsnBf3P5sX+21uhzoAqaUPZ+c2naLiAUR0R4R7a201agMMxtIrULgEWCqpCMkjQDmAItr1JeZVaAmlwMRsUPSJcBPgWbgxohYWYu+zKwyNRsTiIh7gHtq9fpmVh3+xKBZ5hwCZplzCJhlziFgljmHgFnmHAJmmXMImGXOIWCWOYeAWeYcAmaZcwiYZc4hYJY5h4BZ5hwCZplzCJhlziFgljmHgFnmHAJmmXMImGXOIWCWOYeAWeYcAmaZcwiYZc4hYJY5h4BZ5iqagUjSOmAb0APsiIh2SeOBW4HDgXXAuRHxUmVlmlmtVONM4EMRMS0i2tPzy4GlETEVWJqem1mDqsXlwGxgYVpeCJxVgz7MrEoqDYEA7pX0qKR5qW1CRGxMy88BEyrsw8xqqNJZiU+OiC5JBwNLJP1f+cqICEnR144pNOYBjGRUhWWY2VBVdCYQEV3pcTNwJzAd2CRpIkB63NzPvgsioj0i2ltpq6QMM6vAkENA0mhJ++1aBj4GrAAWAxekzS4A7qq0SDOrnUouByYAd0ra9Tr/ERH/LekR4DZJc4FngXMrL9PMamXIIRARa4Dj+mh/ETi1kqLMrDj+xKBZ5hwCZplzCJhlziFgljmHgFnmHAJmmXMImGXOIWCWOYeAWeYcAmaZcwiYZc4hYJY5h4BZ5hwCZplzCJhlziFgljmHgFnmHAJmmXMImGXOIWCWOYeAWeYcAmaZcwiYZc4hYJY5h4BZ5gYMAUk3StosaUVZ23hJSyQ9nR7HpXZJukZSp6Rlkk6oZfFmVrnBnAncBJzeq+1yYGlETAWWpucAZwBT08884LrqlGlmtTJgCETEL4AtvZpnAwvT8kLgrLL2H0TJg8ABu6YpN7PGNNQxgQkRsTEtP0dphmKAScD6su02pDYza1AVDwxGRACxr/tJmiepQ1JHN9srLcPMhmioIbBp12l+etyc2ruAKWXbTU5te4iIBRHRHhHtrbQNsQwzq9RQQ2AxcEFavgC4q6z9/HSXYCawteyywcwaUMtAG0i6BfggcKCkDcBXgK8Bt0maCzwLnJs2vweYBXQCrwMX1qBmM6uiAUMgIs7rZ9WpfWwbwMWVFmVmxfEnBs0y5xAwy5xDwCxzDgGzzDkEzDLnEDDLnEPALHMOAbPMOQTMMucQMMucQ8Ascw4Bs8w5BMwy5xAwy5xDwCxzDgGzzDkEzDLnEDDLnEPALHMOAbPMOQTMMucQMMucQ8Ascw4Bs8w5BMwyN2AISLpR0mZJK8rarpLUJemJ9DOrbN0VkjolPSXptFoVbmbVMZgzgZuA0/tovzoipqWfewAkHQvMAd6T9rlWUnO1ijWz6hswBCLiF8CWQb7ebGBRRGyPiLWUJiadXkF9ZlZjlYwJXCJpWbpcGJfaJgHry7bZkNrMrEENNQSuA44CpgEbgW/t6wtImiepQ1JHN9uHWIaZVWpIIRARmyKiJyJ2Atfz5il/FzClbNPJqa2v11gQEe0R0d5K21DKMLMqGFIISJpY9vRsYNedg8XAHEltko4ApgIPV1aimdVSy0AbSLoF+CBwoKQNwFeAD0qaBgSwDvg0QESslHQbsArYAVwcET01qdzMqkIRUe8aGKvxMUOn1rsMs2Htvrj90Yho793uTwyaZc4hYJY5h4BZ5hwCZplzCJhlziFgljmHgFnmHAJmmXMImGXOIWCWOYeAWeYcAmaZcwiYZc4hYJY5h4BZ5hwCZplzCJhlziFgljmHgFnmHAJmmXMImGXOIWCWOYeAWeYcAmaZcwiYZW7AEJA0RdL9klZJWinp0tQ+XtISSU+nx3GpXZKukdSZpi4/odZvwsyGbjBnAjuAz0fEscBM4GJJxwKXA0sjYiqwND0HOIPSRKRTgXmUpjE3swY1YAhExMaIeCwtbwNWA5OA2cDCtNlC4Ky0PBv4QZQ8CBzQaxZjM2sg+zQmIOlw4HjgIWBCRGxMq54DJqTlScD6st02pDYza0CDDgFJY4A7gMsi4pXydVGa2nifpjeWNE9Sh6SObrbvy65mVkWDCgFJrZQC4OaI+HFq3rTrND89bk7tXcCUst0np7a3iIgFEdEeEe2ttA21/iy0TJlM288P4aW7p9J8wP71LseGmZaBNpAk4AZgdUTML1u1GLgA+Fp6vKus/RJJi4AZwNayywYbgt/NPozHp14LwDn/+RGeWXQSAIf8fAubTxrHzlaVNgyY+O8r6Hnllf5eqvFIvPjJmfSMLL2Hgx57DT3wZJ2LyotKZ/J72UA6GfhfYDmwMzVfSWlc4DbgMOBZ4NyI2JJC49vA6cDrwIUR0bG3PsZqfMzQqZW8j2FryydP5KYvz+c9I96xx7ovbprGVw56mFFNI3a3HXnvXI75m+VE9xtFljk0Tc2s/9IMfjXvm4xrHgXA/C1HsuQvpsPaLna++ioM8Ptpg3df3P5oRLT3bh8wBIrgEOhb87hxbPj+ISybfsug9+mOHv7ohkt415cfqGFlVdDUzJp/mc6Tn/jXt4QYwMYdr9INnPntL3DoN35dn/qGof5CwJ8YbGA7j568TwEA0Kpmzvn4L1l/+3t58VMn1qiyyq2/YgaPf+LqPQIAYGLLGA5rGcPdl3yD5y9q3PcwXAw4JmBvP189eDlfPXg5m2e8xkf2/wfGruvZvW7/Xz/Ljo3P1bG6knfMfIExTSP3us1hLWNo+/hmmm8/iJ7nnweg5fDD2Pq+vj92MnbVFnpWP131Woc7h8AwdnDzaJZ9/tq3tL3/sXN555++RLzRa8yg4MvCJg1uuweOu4M/mTGPkT95nuaxY9FN3fzymO/1ue3f/e79PHP2ZHas31DFSoc/h0BmHjx+EUtX7nlL9rN3zeXoKx8nttf+Mxsvn38idx/3TWD0oPdpmTKZnoXBPcfc3e821xz6CDNP+Qz73+wQ2BcOgcw0q4mPjereo73zvO9yzBsXccQVtR9Q7B5VOksZNMFvzzuM5e++dsBNz73iXn5689gKqsuPQ8B2++szf8avvnM0Ozbs8dmuurri6oUc0PQ60FzvUoYl3x2w3a488Ck6Lzqs3mXs4fRR25k50gFQKw4BK1TTe9/NZZf9qN5lWBmHgBUmTjqOWbc+wPljX6h3KVbGIWDFaGrmt6eN5m/HPVvvSqwXh4AVouXQQ+iYO3/gDa1wDgErROw/hlZ5cK8ROQSsEGMXPE+bWutdhvXBIWCFGNG0o94lWD8cAmaZcwiYZc4hYIVoVv2/vMb65hAAaGpGbW387gsnQVMzaJD/z9UGrSd8TBtV9v+BKD4wjU99/04OadnKsa0/Y9VnRvPD5z9A119OoOfpNfUuz6zmsj8T2PaP2zh3zFZOGQkHNo/mlJFw/ZRf0XnhhIF3NhsGsg6B5gkHM2nM1j7XdU/opmnk3r/+ymw4yDoENp5zNLcfdV+f69ae8W/EHx5VcEVmxcs6BKw4vjvQuBwCVgjfHWhcDgErhM8EGteAISBpiqT7Ja2StFLSpan9Kkldkp5IP7PK9rlCUqekpySdVss3YG8PPhNoXIP5nMAO4PMR8Zik/YBHJS1J666OiG+WbyzpWGAO8B7gUOA+ScdERA9m1nAGPBOIiI0R8Vha3gasBibtZZfZwKKI2B4Ra4FOYHo1ijWz6tunMQFJhwPHU5qRGEpTkC+TdKOkcaltErC+bLcN7D00LAMeE2hcgw4BSWOAO4DLIuIV4DrgKGAasBH41r50LGmepA5JHd3UftYbqy+PCTSuQYWApFZKAXBzRPwYICI2RURPROwErufNU/4uYErZ7pNT21tExIKIaI+I9lb2nBbLhhefCTSuwdwdEHADsDoi5pe1l08NezawIi0vBuZIapN0BDAVeLh6Jdvbkc8EGtdg7g58APgrYLmkJ1LblcB5kqYBAawDPg0QESsl3QasonRn4WLfGTBrXAOGQET8Eugrxu/Zyz7/DPxzBXWZWUH8iUGzzDkEzDLnELBC+O5A43IIWCF8d6BxOQTMMucQMMucQ8Ascw4BK4QHBhuXQ8Ascw4BK4TvDjQuh4BZ5hwCVgiPCTQuh4AVwpcDjcshYJY5h4BZ5hwCZplzCJhlziFgljmHgBXCtwgbl0PACuFbhI3LIWCWOYeAWeYcAmaZcwiYZc4hYIXw3YHGNZi5CEdKeljSk5JWSvqn1H6EpIckdUq6VdKI1N6Wnnem9YfX+D3Y24DvDjSuwZwJbAc+HBHHUZqG/HRJM4GvA1dHxNHAS8DctP1c4KXUfnXazswa1IAhECWvpqet6SeADwO3p/aFwFlpeXZ6Tlp/aprZ2Mwa0KDGBCQ1pxmJNwNLgGeAlyNiR9pkAzApLU8C1gOk9VuBd1ax5prriZ2c0PHnNP12Y71LMau5QYVARPRExDRgMjAdeHelHUuaJ6lDUkc32yt9uapZsPVQ/uB/5jLhvA30vLil3uUMGx4YbFwDTk1eLiJelnQ/cCJwgKSW9K/9ZKArbdYFTAE2SGoB9gde7OO1FgALAMZqfH1+QwK6owcoPR5/06W8657XOerXj7OzLgUNXx4YbFwDhoCkg4DuFADvAD5KabDvfuAcYBFwAXBX2mVxev5AWv+ziGjIfwYO+eFyZt97DgDaGRy+9kFooFKbXtvO3a+P5MxRv693KTaMDeZyYCJwv6RlwCPAkoj4CfBF4HOSOild89+Qtr8BeGdq/xxwefXLro6d27bR07mWns617FizrqECAKBn1W+47I4L612GDXMDnglExDLg+D7a11AaH+jd/nvgz6pSnTF1/jPMP/NIPjd+Tb1LsWHKnxhscD2bNvO9u06rdxk2jDkE3gYOfN+mepdgw5hD4G3gQ4c8Xe8SbBhzCDS45y47ic+Mf6DeZdgw5hBocK9PDCa3jKl3GTaMOQSsEP7EYONyCFgh/InBxuUQMMucGuETvZKeB14DXqh3LcCB1L+ORqgBXEdvb/c63hURB/VubIgQAJDUERHtrqMxanAd+dThywGzzDkEzDLXSCGwoN4FJI1QRyPUAK6jt2FZR8OMCZhZfTTSmYCZ1UHdQ0DS6ZKeSvMUFPoFJJLWSVou6QlJHaltvKQlkp5Oj+Nq0O+NkjZLWlHW1me/KrkmHZ9lkk6ocR1XSepKx+QJSbPK1l2R6nhKUtX+f7OkKZLul7QqzW1xaWov9JjspY5Cj0nhc31ERN1+gGZK31x8JDACeBI4tsD+1wEH9mr7BnB5Wr4c+HoN+j0FOAFYMVC/wCzgvwABM4GHalzHVcDf97HtsenPpw04Iv25NVepjonACWl5P+A3qb9Cj8le6ij0mKT3NSYttwIPpfd5GzAntX8XuCgtfxb4blqeA9y6L/3V+0xgOtAZEWsi4g1K31c4u841lc+bUD6fQtVExC+A3l9l3F+/s4EfRMmDlL7gdWIN6+jPbGBRRGyPiLVAJ318s9QQ69gYEY+l5W3AakpfXV/oMdlLHf2pyTFJ76uwuT7qHQK75yhIyucvKEIA90p6VNK81DYhInZNOPAcMKGgWvrrtx7H6JJ0mn1j2eVQIXWkU9njKf3rV7dj0qsOKPiYFDnXR71DoN5OjogTgDOAiyWdUr4ySudXhd8+qVe/yXXAUZSmnNsIfKuojiWNAe4ALouIV8rXFXlM+qij8GMSNZjroz/1DoFdcxTsUj5/Qc1FRFd63AzcSelgb9p1apkeNxdUTn/9FnqMImJT+gXcCVzPm6e3Na1DUiulv3g3R8SPU3Phx6SvOup1TFLfL1P6ev/dc3300dfuOrSXuT76U+8QeASYmkY9R1Aa1FhcRMeSRkvab9cy8DFgBW/OmwBvnU+h1vrrdzFwfhoRnwlsLTtFrrpe19ZnUzomu+qYk0aijwCmAg9XqU9R+qr61RExv2xVocekvzqKPiaSDpJ0QFreNdfHat6c6wP6nusDhjLXRzVGVSscCZ1FaRT2GeBLBfZ7JKWR3SeBlbv6pnQttRR4GrgPGF+Dvm+hdFrZTenabm5//VIaKf5OOj7LgfYa1/HD1M+y9Ms1sWz7L6U6ngLOqGIdJ1M61V8GPJF+ZhV9TPZSR6HHBPhj4PHU3wrgy2W/sw9TGoD8EdCW2kem551p/ZH70p8/MWiWuXpfDphZnTkEzDLnEDDLnEPALHMOAbPMOQTMMucQMMucQ8Asc/8PInkpU56yxuAAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "imgnum = 1 #10 for ns, 0 for s\n", + "\n", + "print(train_files[0][imgnum][\"image\"])\n", + "print(train_files[0][imgnum][\"label\"])\n", + "\n", + "img = itk.imread(train_files[0][imgnum][\"image\"])\n", + "arrimg = itk.GetArrayFromImage(img)\n", + "img = itk.imread(train_files[0][imgnum][\"label\"])\n", + "arrlbl = itk.GetArrayFromImage(img)\n", + "\n", + "plt.subplots()\n", + "plt.imshow(arrimg[0,:,:])\n", + "plt.subplots()\n", + "plt.imshow(arrlbl[0,:,:])" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "2c0866cc", + "metadata": {}, + "outputs": [], + "source": [ + "train_transforms = Compose(\n", + " [\n", + " LoadImaged(keys=[\"image\", \"label\"]),\n", + " AddChanneld(keys=[\"image\", \"label\"]),\n", + " ScaleIntensityRanged(\n", + " a_min=0, a_max=255,\n", + " b_min=0.0, b_max=1.0,\n", + " keys=[\"image\"]),\n", + " SpatialCropd(\n", + " roi_start=[80,0,1],\n", + " roi_end=[240,320,61],\n", + " keys=[\"image\", \"label\"]),\n", + " ARGUS_RandSpatialCropSlicesd(\n", + " num_slices=num_slices,\n", + " axis=3,\n", + " keys=['image', 'label']),\n", + " RandFlipd(prob=0.5, \n", + " spatial_axis=2,\n", + " keys=['image', 'label']),\n", + " RandFlipd(prob=0.5, \n", + " spatial_axis=0,\n", + " keys=['image', 'label']),\n", + " RandZoomd(prob=0.5, \n", + " min_zoom=1.0,\n", + " max_zoom=1.2,\n", + " keep_size=True,\n", + " mode=['trilinear', 'nearest'],\n", + " keys=['image', 'label']),\n", + " ToTensord(keys=[\"image\", \"label\"]),\n", + " ]\n", + ")\n", + "val_transforms = Compose(\n", + " [\n", + " LoadImaged(keys=[\"image\", \"label\"]),\n", + " AddChanneld(keys=[\"image\", \"label\"]),\n", + " ScaleIntensityRanged(\n", + " a_min=0, a_max=255,\n", + " b_min=0.0, b_max=1.0,\n", + " keys=[\"image\"]),\n", + " SpatialCropd(\n", + " roi_start=[80,0,1],\n", + " roi_end=[240,320,61],\n", + " keys=[\"image\", \"label\"]),\n", + " ARGUS_RandSpatialCropSlicesd(\n", + " num_slices=num_slices,\n", + " axis=3,\n", + " center_slice=30,\n", + " keys=['image', 'label']),\n", + " ToTensord(keys=[\"image\", \"label\"]),\n", + " ]\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "b61bb3d8", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Loading dataset: 100%|███████████████████████████| 4/4 [00:07<00:00, 1.93s/it]\n", + "Loading dataset: 100%|███████████████████████████| 4/4 [00:08<00:00, 2.13s/it]\n", + "Loading dataset: 100%|███████████████████████████| 6/6 [00:13<00:00, 2.20s/it]\n", + "Loading dataset: 100%|███████████████████████████| 4/4 [00:09<00:00, 2.26s/it]\n", + "Loading dataset: 100%|███████████████████████████| 6/6 [00:13<00:00, 2.27s/it]\n", + "Loading dataset: 100%|███████████████████████████| 4/4 [00:08<00:00, 2.10s/it]\n" + ] + } + ], + "source": [ + "train_ds = [CacheDataset(data=train_files[i], transform=train_transforms,cache_rate=1.0, num_workers=num_workers_tr)\n", + " for i in range(num_folds)]\n", + "train_loader = [DataLoader(train_ds[i], batch_size=batch_size_tr, shuffle=True, num_workers=num_workers_tr) \n", + " for i in range(num_folds)]\n", + "\n", + "val_ds = [CacheDataset(data=val_files[i], transform=val_transforms, cache_rate=1.0, num_workers=num_workers_vl)\n", + " for i in range(num_folds)]\n", + "val_loader = [DataLoader(val_ds[i], batch_size=batch_size_vl, num_workers=num_workers_vl)\n", + " for i in range(num_folds)]" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "f5c1f433", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "torch.Size([4, 1, 160, 320, 32])\n", + "torch.Size([160, 320, 32])\n", + "image shape: torch.Size([160, 320, 32]), label shape: torch.Size([160, 320, 32])\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsYAAADHCAYAAAAaq5U5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAADXxklEQVR4nOz9eZisWVrWC98rIjLmiIzMPVQV1VU9YDdCH5TTcFBAAW0UGhA+PIh6zgEEtJAWFUfA73O4OB/nQ0ERDwI2B0QcUVBBRoGj4qEZukGUoWnppruhq6ur9t6ZGXNkZES83x+ZvxX3u3ZW17R3Ze5d67mufe29Y3jfNb2x7ud+7udZoSgKZcuWLVu2bNmyZcv2UrfKRTcgW7Zs2bJly5YtW7bLYBkYZ8uWLVu2bNmyZcumDIyzZcuWLVu2bNmyZZOUgXG2bNmyZcuWLVu2bJIyMM6WLVu2bNmyZcuWTVIGxtmyZcuWLVu2bNmyScrAONsltxDCL4cQPvGi25EtW7Zs2Z67hRDeHUL4pGfxuSKE8Fue5z2e93ezZUutdtENyJbtA1lRFK+96DZky5YtW7Zs2V4alhnjbNmyZcuWLVu2bNmUgXG2S26E4UIIfyOE8K9CCP8khDAOIfxiCOE1IYSvDCE8FUL4zRDC77fvfUEI4W1nn/31EMIXJ9f9yyGEJ0II7wsh/HEPxYUQGiGErwsh/EYI4ckQwreEEFovdt+zZcuW7X6xEMJHhxB+KoRwdPbb+40hhHrysU89+72+GUL42hBCxb7/hWe/6YchhB8JIbz8Re5CtpeIZWCc7V6yPyDpH0vak/RfJP2ITtfww5K+StI/sM8+JenTJfUlfYGkrw8hvE6SQgifIunPS/okSb9F0icm9/kaSa+R9BFn7z8s6a/dhf5ky5Yt20vF1pL+nKSrkj5G0uslvTH5zGdJ+ihJr5P0mZK+UJJCCJ8p6a9I+oOSrkn6z5L++YvS6mwvOQtFUVx0G7Jle1oLIbxb0h+X9LskfVxRFL/v7PU/oNMfxt2iKNYhhJ6kkaS9oiiOzrnOv5X0H4qi+IYQwrdLerIoiq88e++3SPo1Sa+W9E5JE0m/rSiKd569/zGS/llRFK+8m33Nli1btvvN+A0viuLHkte/TNInFEXxWWf/LyS9oSiKHz77/xsl/c9FUbw+hPBDkr67KIpvO3uvotPf6Q8tiuI9Z999dVEU73ix+pXt/rXMGGe7l+xJ+/dc0s2iKNb2f0nqSlII4Q0hhJ8OIRyEEI4kfapOmQpJ+iBJv2nX8n9fk9SW9HNnIb8jST989nq2bNmyZXsediZ9+/4QwvtDCCNJ/4e2v8mY/xa/R6e/1ZL0cknfYL/JB5KCTqN52bLdUcvAONt9ZyGEhqTvkfR1kh4oimIg6Qd1+kMqSU9Iepl95RH7902dguzXFkUxOPuzWxRF9+63PFu2bNnuW/tmSb+qU2a3r1NpREg+47/Fj0p639m/f1PSF9tv8qAoilZRFG++663O9pKzDIyz3Y9Wl9SQdEPSKoTwBkm/397/l5K+IITwoSGEtqS/yhtFUWwkfatONcnXJSmE8HAI4ZNftNZny5Yt2/1nyN0mIYTfKulLzvnMXwoh7IUQHpH0ZyV919nr3yLpK0MIr5WkEMJuCOEPvRiNzvbSswyMs913VhTFWNKf0SkAPpT0v0j6Pnv/hyT9PUn/QdI7JP302VvHZ39/Oa+fhfx+TNKHvCiNz5YtW7b70/6iTn+LxzolH77rnM98r6Sfk/QLkn5A0rdJUlEU/0bS35T0L85+k39J0hvufpOzvRQtJ99le8lbCOFDdfpD2yiKYnXR7cmWLVu2bNmyXYxlxjjbS9JCCJ91Vq94T6dMxL/LoDhbtmzZsmV7aVsGxtleqvbFOq11/E6d1tc8T++WLVu2bNmyZXsJ2V0DxiGETwkhvD2E8I4Qwlfcrftky/Z8rCiKTzmrNrFfFMVnFUXxxEW3KVu2i7T8m50tW7Zsd0ljHEKoSvrvkn6fpPdKeoukP1oUxa/c8Ztly5YtW7YXZPk3O1u2bNlO7W4xxh8t6R1FUfx6URRLSf9Cp8c7ZsuWLVu2y2f5NztbtmzZJNXu0nUfVvkEm/dK+h3+gRDCY5Iek6RKpfKRzWZTsNeVSkWVyilm32w28bXNZqOTkxNtNhuFEFSpVOLfOzs7qlar8TOVSkW1Wk3ValXL5VJFUWhnZ0e1Wk2bzUar1Uqr1UpFUSiE0xrjRVHEP/4a9wshxPdqtdOhW6/X2mw2qlarsQ0hBG02G63Xa61WK63Xp4ez1et11et11Wo1hRC0XC61Wq0UQih9jz+05Wy8VKlUYh9pO2Pg7eL7GO9VKhUVRRHbnBr3rNfr2tnZie3h/unnmCN/f71ea71eyyMR3j765HNGm/gs169Wq3Fc0jHgPpvNpnQtvwdzd3JyouPjY63Xa9VqNTWbTVUqlbgG0rl28/XAH8bAx8bHKn3fP+PryecunWu/13nrkmfE++nPT7Vaje1gnPg+4+TrLZ1Dv5bPSfps+rMRQijNSfrM8G/mmuv4WvJxSNddGt1KP+dj4/eif+kzlt7Tv5/ew993o/+bzeZmURT38umIz/ibLZV/t6uqfmRb/Renddkuv9kzKEmt37rRy2qzC2zQ5bFChd7xSz0V5+y72S7GFppqWRzf/qOuuweMn9GKoniTpDdJUrfbLT78wz88AsWdnR0NBgPVajUNh0NtNhvt7u6qVqvpfe97n5588kltNhu12201m011u13t7+/r2rVrWi6XeuKJJ7RYLPSKV7xCjzzyiA4ODvQbv/EbarfbetnLXqb1eq2bN29qPB5H4MpmuFwutVwuFULQzs6OlsulJpOJarWa6vW6VqvTwgXdbletVkvL5VLD4VDValVXr17V/v6+ut2uNpuNRqORbt26pdFopKIo1O12deXKFT366KMaDAaaTCZ64okndHx8rFarFQHfZrPRcrnUYrHQdDrVcrlUvV5Xq9VSt9tVrVbT4eGhRqORNpuN6vW62u12bHNRFJrNZiqKQrVaLQKPdrstSRqNRprP51qtViVgtFgstFgstL+/r5e//OXa39/XbDbTfD6P9wdQzufzOCaAr2q1qvF4rMPDQy2XS1WrVZ2cnETQUqvVVKvVtFqtdHJyot3dXT344INqNBqaTCaazWYR7C0WC4UQdPXqVXW7p4fOrddr1et1Xb9+XZJ0cHCgo6Mjrddr7e3taX9/X+12O4JhAM98Ptev/dqv6Z3vfKeq1ao++IM/WK961as0m810dHSkk5MT7ezsaL1ex/46qAb84FhJimOwWq3UaDTUbDa1Xq81mUzimprP5zo+Pla1WlWr1VK73dZ6vdZ4PI7r1wG6pOjYSFKr1VKz2dTJyYkWi0UE99VqVY1GQ+12W41GQ8fHx5rP55rP5xH8sz43m41ms5lms5kWi4U2m02ct3q9Lkk6OTkpfXe9Xsd7SlKn0ynNZavVUr1e13K51Gw202q1Uq1W087OjlarlabTqYqiiJ/DarWaKpWKxuOxptNp/A7rtF6vx7ZIUqPRiI5T6jT6PNBOfg8cGNP3zWajVqulRqOh9Xqt4+Pj6BSxTnZ2dmJbd3Z2bltHOBw4p4Dmk5MTzWaz99yJ38XLbv673Q/7xe8Ir7/gFmW7aAuNhiq9rt72Na/Uuz71/0revXIhbbqMNtzM9Tkv+5iLbka2M/uZ4sef9r27BYwfV/lox5edvXauFUURgQGbEQCgXq9rNpvp+PhYjUZDvV5Pw+FQ4/FYx8fHajab2mw2Oj4+1mKxiCBxMplE4Njv99VutzWbzTQajdRoNCJYA4jx71qtpuVyqfV6rZ2dHTWbTS2Xy9PBOtuMT05OYnt3dnbUaDQ0n8918+bNuGH6Bg3bLUnHx8d68skntVwuS0BzsVhEUEQ7Go1GBK+SIgNdqVTUbDYjcAZIdDqdyPadnJzENhurFRnDRqOher2uxWKh0WgUmVRJJRC1s7OjyWSi8Xiser2uZrNZYnnp43q9jsw8YySdMnknJyfxe61WS5J0eHiog4MDhRB0/fp1dTqd0vcAmg7QFouFer2e5vN5dCTo32Kx0Hg8jmuANgG6rl27plu3bumJJ57Q+973PrXbbfX7fTUajdgHZ6cXi4WWy+VtzC9j6mwuQJ95ow8ALcam0WhEYDabzSIQxXmhrdVqNYJlxpjxoE+shWq1WlpnfM/BNiwvbeP78/lcIQQ1Gg21Wq0I5Jk31j7PHmCReaGPPH/cq1arxWvxf74nnQJeWHwfJwA2zhPXSxl11h+RgvV6HR0HAD+/I8wrzwTrEHDrkRkH4PTP598dQP4PsL4P7Dn9ZmfLJkmVdlvv+orfrl/949980U259FZVUO0Vjz7t+8V4ovWtgxexRdmezu4WMH6LpFeHEF6p0x/XP6LTE2/OtTQ8vFqtNJvNtLOzE0Pky+VSJycnarfb6na7ms1m8TWACcxqu92OoG86nWp/f1+dTieyR/V6vbThnhciZWOu1+saDAal8Df3Ozk5iUCGTXM6nZZkCPTJ5RbHx8d66qmntLu7G/uYsobOtPF9AJakCFolaTqdSjoFGL1eL4JRl3HwvUajEZk7gKCzfoDx4XCo/f392A7GstPpRHC3XC41n89VqVRKIWvGE+ZdOgWHgCuueXh4qMPDQ+3s7OjKlSsRpDp7z5hz/eFwqGazqWazGUGU95G5abVaETAxLteuXdPR0ZFu3rypnZ0dXb9+Xe12O/abMcPZ4lrMC3ORSmYY23q9XpJzAMhgn4+Pj6OzBZjy9b1YLCI4dqkNn3f5DuCUKIOk6CjwGYChM60urQBU+pqjz7QNxpq2A9qZF9Yiz4WDcMAoa4D1SF/4v69HlzjQd/rD9RgfxpDxOT4+1nQ6jcCXtrlshXXozqbLbbg2c+5SCq5HGx2o3wf2nH6zs2Wr9Hp6z5/5cP3qH/+mi27KPWHdSlM/8Obve9r3P+zN/5te/lWn0dDwm09qfXj4YjUtW2J3BRgXRbEKIXyppB+RVJX07UVR/PLTfZ6NlA0XEAEjXKvVYuiz0+lod3c3spgAH1hXGKFOp6P5fK7pdKperxfZWRgwZ1EBQWzmtIn27OzslPSItHW5XEZAAVgklHxeyBVwXKvVYhi/1WpF1g3WK4SgwWAQ5Qep5MH1tWzKw+EwbvqE7WFakRMANAEihNwJ7ztbd3x8rIODA127dk3NZrMEYnd3dyNIAUCk4BFw4XpsjwTA4A+HQx0cHMTrwuS7vpg+VioVwtbqdDqlULw7I4A7/j+fz+Oa6Ha7WiwWGg6HEVR3Op0Sw8+9AMH0D7YV5pd7Ib9xMIXDxfdxpFijrFlYdGQDx8fHkX1mTTBeDmRxFo6Pj0sRFweNMLYpKOa+rEXWtsshWLNcj3bB1C6XyzjmAHvYa9pnvwe3aXV5bmDm3dnA0aBfRHhY/0hfXPtMu5E+sT54zZ0Y2swz71GC9Xpd0rS77hvj2TvPob5X7bn+ZmfLNv7kD9Ov/KkMiu+U/crH/hPph0///erv/BK98t/NVfvFX9d6NLrYhr0E7a5pjIui+EFJP/hsPgtb5IloMMCwjAATtJntdjuCvcViEf8PkG42m5rP55pMJlosFmq1Wup0OhHMAQIc1DjIgxE9OTlRp9OJGz2gms8CfhqNRtx0YQhhprHFYlHSpKJlhUUFxAFo+v1+iV3EAHSE2QEA9NfZVKxarWo6nUa9NvdjLPgOMgt0q4vFIgLB8Xisg4OD2B6XG3APwIIz0w7gcWQARrVaTZPJJI4J4f4QQhy/SqUS5RHT6TSCO6IHziy7hIP7o1eu1Wra3d2Nc47UBrBLG7kGEgZkK/P5PIJDHBpAkjPHLgOgDbD4y+WyJEfxsUMuwXUAyoDpTqdzm6wAltaZ2DQCcfY8liQh3Id1gkPSbDZvS0yt1+tR900OANdi7XN/T5qkPaxXj2Awp9VqNT7HrDPALOww65L1BVMOs8981ev1uG75vz8vnpDnkQjWIWvFHQcHv55ImCYU3g/2XH6zs720rbq3p1uvvS8iJZfSfu3zvln6POm13/hGXf1vK7X/71/SZpYTGV8su7DkOzcSw1Jw6kCXzbgoipgIVq1WI9AC/AIqYbYmk4nm83lkpACUaBGREQCO2SxhNrkumzDvA64ASAA3AAgbfbPZjMlW0lb24FpI9Mztdjsy2tPpVPV6vZREBWsH4AV0A7QAbzDtkiLwxnFAStJoNOI4OxDgewBaxrNer2u9Xuvw8DCGv9FiS9twMt8jSWtnZycCF0kxGc0dGJjjZrOpwWBQqrhBW3FsYGABJThJrA0cF8B3o9EoAXgAJhGB4XAYGUi04s6sp6w1Eh7pNDkOdt1ZzlRa4tIexhsWlDazNl1GwjyzHq5cuRLXJmAfeYCkCPhoN06gs+AAQIBqCj4llXTXzia7/IHxw8GpVCrRaXFZRsr+44x5EiHRB6QMPKv+Gg6SO6g8d0VRaLlcRoafZ9NlUq7FZv2gfeY5JjnS9dBeXcMT9egX7xOdyZbtpWDHr3uV3vbFmS2+2/bLX3o6xr/t696o9pMbDb7rrSqM8Mh2d+xSAGPpFGSQZMcGOp1O1Wq11Ov1IjsHqCDjfTqdarFYaDabqdVqRW0pG9x0OtXR0ZEGg4EkxQ0PAAObxMbmCTkAxk6nE7WoHhpfLBbq9/txg5cUZQ8wXq7T5L5UmgDQApZ2dnbUarViQt14PI6bPwwcoM0rPXB92DBAR6VSidUpSGR00OBgzTWsDojQbQNuALGMm4+Jay25Z7vdju0GiI1GozhftP/4+Fij0SgCZu/Ler1Ws9mM+nG0uCSOASoBmMwrwNj7vdls4neWy6UODg7i3Ozv75ekBoAfdOAAuJOTE02nU+3u7sZKIePxOH6X7wGwKpVKlPPAZrqWFVANyGX9EXUgUQ79OtEJ1/p6iTbmnzYzT6xb3uNeJH4yLjhsPCNc06s94ACdnJxE58UrRLAmnVmmDTxbSH+QPfH8MT6VSiX+HuDgpW2H0aYtrp13dp31yxi5s8Cz2mg0YgUUl1t5RQpn63nNq1lky5Yt2522//YXTwHyhz/0Rn3Q3/kZabO+4Bbd33YpgDGbnusdpdNNfDKZxLq6fFZSKfTuiWCuF5VOgep4PI7VEHwDlbZg7jxwwsY8nU5LpaAANc7IeXiZTd8rW8zOwiCAfkqmdbvdCF7QkTp7TuUA14p6OyVFtg8dNqCGTR3GHAADYAPMUOoLIOXhY0CM62UXi8VtYMwdCcaIdsJAUuJtsVhoMplE0L2zsxMBd7VajVVEXEe7Wq00GAwiCKXU3mq1ioxlWknAATJzBthhnVCphO/CPktl9huW26ML3Lvb7UY236UVnpgpqeQIMW+sPRhP1wIz70gjZrNZXCPNZlOjM+2ZJ7wxH6xB18Kiy3WnAtaf+/IZZ3zTqg3OwrqUwce4Uqmo1WqVyp05iHVZA9GfdAx5RmHH6Suaf5ftSCo5hay9NPnQr0MfWJMeXfF1Tzv5jmub/RnIli1btrtpv/jnv0kf1nyjwlp62f/vzRfdnPvWLgUwZiMktOmJOrDBvV4vMkFewgpwQ4iWxCxAIOFY2EJYLDZxz+SH/fJEH5g7BxnOICJNgM0iBOwbPPcAUAF8SRSStslUbPIAE08WYgP3tjkIcKZV2mp+AV58jvC9dFqPmbZ6mN/ngWtRrs11xQ4AXerh1TgAOc5yr1YrHRwcxMoc6HgBx5VKpZTkNplMtLu7G5lXyrN5BQUkNAB0Z8rd8XKJA+Xfjo+PNRwOSwy9M9YAIGQRrnWFbSXJz8cOh4kScw50fY4cLNNGnw/GdzKZRCeNZ8N1zA5OcZKYcwf3yIa4DmvAow1clzXlAJf1h2PqGmYiJe12O0p8nPl1aQrXwbkh6ZZrer4B8+JOmT+/Lmnhul4hw5MU/fv0h3XNmsH4zfHEPBw25ixbtpeK1R56UO/4gnxQxUXZr7zxlD1+ze6X6JVf8VMX3Jr70y7FLzqbDhuMZ8WniTgOGgBPrkvm8+iQ0cjyecAxIXZAjbNGnhjFHxKgABOwhDCuhKP5DPdic0YHvVgsYmUNtK9ssABwZ8y85BigwEP9zhxL27rBHjLnHoyBM16tVkuDwUBFUUQ5gINexhbwCnBwUODh9+l0quPj43j4BO0HhABU6vV6lIuQZCgpOhvSNoFPUgTCzI0fJjEej9Xtdkugz50J1woD9JjPwWCgk5OTeFAIbXdniXUG8OQ9JDOewEg/WUvp53if+fWEOObH5xnJDZIVHL1msxk16SlzyXzwfUAmLK5r63F2AKX+WfrKmKUOEfPvax0QzRrEiSSq484WshDAJm1ONdrc31lkvx/tQBqU1i9mPP35cr0y8+rXdU2xJ+ql8+WRlGzZXhJWFNqcVJ75c9nuqv3y536jXjP4ElXmFf2WP/fTF92c+8ouBTAGrLJBArrYZF2v66wy7B6Axlk29JlUokgT7mazWQRLHmqHvYLVpCrEbDaLQI2EIZioNGnQk+oklZLzYM+uXbumXq+n8XisGzdulGoio8UF7NAfQIYfb8xnuBeha5L3YHQdPLtcBabOy44BgJx5rdVq6vV6UdcNWPBqDgA+qm2kCYl8BxADaF8sFup2uxHoOZvumlJOVINVR54xHA6jHp15czadufFIBBpxdKVebg3wz3U84ZGxoF8AQNabJ4r6eLOGuLavOweLOHX0EacM9tXZWyImyG28uoQnwAHMWTOczDiZTOL64F7eFsaDNcJ64rOMB88l9wAYwxKzTnjOAbSsZ1+fXmmC9rgcxuUn3IfXvUKGy1FYCx4JcqfVq2Xw++K5CN5XqZy4t9lsDzfJlu2lYKv3P6lX/ZOXSZ980S15adtOqOpdn/EmHa5nel3zy/SaL/nZi27SfWOXBhhPp9PIXDlAgUFqt9slgMLGBtPo2k82NdgcKgdwjC5gAemEHyTCRgyY4XUYy8FgUAK+gGJAFJ8HvAK8uA+b+Wq10u7ubtQbeyUGL7eVsmQAS3/PwdhkMolJaAAalzu4xtJ1lzs7O+p2uzo8PCxl2DtD6bVmAQw+/g6kCfNTAcKBhqTotPi9AIOAHnTjsODUmeUAD+r/ok925wVgDlBjvCRF0AtwI+wPs817sIWuS3fNsVd2gIXk3owLc+UsPdeu1WqlE/ywVOIDOGZNAn6JXrju3LXdrFMft9lsFgE1Tp2zww7oWR8uw8HZQNNN9RVnl/15dNDqUSDGDUcHB4l1SyUWZ+xZf4wxkRrWkycd+m8A5slzrAueWfpJH/keAN2jMymr72OWLVu2bC+m7VXbevOn/R197Lf+Ob3mT7zloptzX9ilAMaSdHBwoCtXrpR0ipJKABMdqes/XU4xn8/jhnx8fBxBB4DGa6V61jlMm7RlwhzYsKHOZjN1u92YTOaJVWmYHdaWEDunr7GpE8rnfUAlr4VwWrPXgYuDL8y1kvSNY56bzWZkdGH8/NQvvg+TiEQESYWH0ElA5DpUegCoABIZM4AtLKqznQ7auLcDLk9aY854T9om/0kqVfIgVA8YBajRfpg914/ikADu/EAPZwjRATs77Mym66i9UgHJbCTXSYoVMVxb73PK+vbXmDPWA/3wKAkg0sEgzHG1elpR5OTkRPP5XIPBILaN5wOgl8oPfL14gibvIU2q1Wpqt9uSVCqDyPpMD9lJ1wzPBWPu96I97jQg/5jP5/FZ9ueReXDGl9dZexwTzb3cifT140yzO6Q+1tmyZct2EfZQrav//Mlfr9/97V+m13zhWy+6Ofe8XQpgXBRFPOQhBcZsXiRGAXzY2NgQCRvDyHGalqQSIwRQcCADMIFl8vAyDFYIQUdHR5pMJlGfmMoTCOWyYcPgAt7YgJErUAnCGWva1+/3JSkeysE9XIoAqKHNDipTUOLfY3y9wgDjTWKb61YJF8OuwboBilLgmyaPMY/MB7IQHAJnYfmeJznxXS99R3toJ86OJ/fhmJCUSaIaDkPK9HoVA8BbtVotHYNNSTIHh17KjPWcAmUvgYa0hjlIkwKZV5dcAHwB2O4swp76nHtkgFq/Lg9Be586WX5//u1yAgDsZrMpjSHgERbb9f44HOiZPVnODz2hOkkqgQDgunTJmV2PLPkY4cD5M0JEid8LnlNYdFhn/+PPsyfi0SbWeLZsLxVr/Nw79GHf9MaYCJbt4u1lta7+0yf9XX3Ct32ZXvNFGRy/ELsUwFhS1JT6xsOGBsvFUcts9A68PON+PB5HYABrDIhCKzsej2OImA27Wq3G8KyDO4r/oyd1/a+01SUCXLkekgmS50hIozwaOmDYMcAZ4II+UO3AE+78/jgIAAmYQLTXgG5pe2CBS0FgCgEcHFzBmDA/sGuSYiJhWsaKueBeAEj0uF7ZoNvtKoSg2WwW2+UMHHMAKHGH4ebNmxHkweKh/0arDPvo48H6qdVqUbPMHPI5xgagLynqyhknDp5w4OjAn+u6dhX5ggNlZ6alcgKeM/2eDOjssOt+YU5peyrJIHmP+zFvtJHkNZwNT+BLk9WcZWZOvU40c0GVCb6LE4oEhOeDPqLDd3DuDhBr0fXi7oR4XkK1Wo0HwDAvaf9ns1msoUytbIy1jbQJR4Y+ewWPbNleSrY+Gmr/V3Mt3ctmj9a6+k+/7+/qE9705/Sax7Ks4vnapflFd+0lAMnZWo7G5Y8nVJHQBiO6Xq91dHSkw8PD0vGxAMR+v6+rV6/GDVPankTHpgrT5SWg+LwDUU8OAtSFcHq0LslgAHsAxpUrV7S3txflGbB/MK9stkgbOGAEoApDnh424qfUwSZiXAvQSngfllVSBLoAe+5DDWjuA0hARwwAdZYNZ4GQOcAUthdZA/MC8KJ9zp46C9hoNNTv99Xv90tOAoBR2oJQ2DzYPUAPa4t7+Zpj3LwKCH2nvYBkADnjAftNgp3rULk2cwiAb7VaJTCOA+JMNhIZ75Ov+X6/r16vF9eKnwbHM8X40jfXyXq1Ba++0e12Y8UQHDeXZkgqJWACPDlUhnux1jhS28E+EpX0pDrWiifZORDn9TS505llT6ik3jRSKNYo/Z1Op1H+4QyzM8gYa5n5dtY9W7aXivV+6Jf02v/zjRfdjGyJPVrr6s2f8vX6tb/3Oy66KfesXZpfdEAYjJpXXKASA8lVvhmxqR8fH0cQB2ADoDzwwAOlUmOcprdarXTr1q0IQpwx8kSy0WgUwQybPLpXaXtIAOwfGzwAik2UAz0A4UVxWiKNZC3X6gJCOIlrs9mo0+nE+0uKoNtLVAFcYDdhA+kfffNkLBg0rgEwdomAJ0U6eIXt87JcsMOARkqgAer5e7ValQ5UcEmBy0dCCBqPxzo6OtLu7m48+ZBQPkCFMm+AH5I66SPgkPHd2dmJLCtOQSptAYwRxWD9sPZS4CxtE8FcWkFfHXADxnHunAVlfj0qQUJhvV6PNY0BzV7FgvUxGo2iI9PpdGJ/XBKAAQhxiBgryrtNJpPYx/P0vjg67qgwxh59gQ0G6OME4MAyJt4GHAecLNf7OoPrOQPpWuIP/QME0/c0WdA1z84cu4yE/ubku2wvRdtMp3r0639eH9p4o972WJZUXCZ7qNbVz37W39HHzP+iXvXludbxc7VLAYwdSAFGpW0iFqeRwagBqgDHaAA5bKPX60VN6XA4jPpBWNdut6vBYKDNZqPZbKbDw8MY2oex88oE0+k01j1GriFtQ+bOKPkpYGymAN7FYqGjoyM1Gg0NBoNYP9h1ul7315PdPEydJnsxhh56lxSTEhk79JbUT5YUQTXfRUbSarUii4deG1BJHx0w8xnaxxx5+S5nhmkT5lU0qtXqbeF0yrLdunUr3htAzlHL4/E4nqrHuvCqJM7yuqwC0Mc8MO4emgfs0VbAMmtiOp2WwDHJc16JAUbVy/cBRr0qA697Uh7Php++x3r3vqasKvNFZRHGnvdgwLmHVzjhnl4FwrXErHHmwte+tD1N0p9pnBD65nILoia0n3FmTLyaBADZdfDeLpwXn3Pawji4XpvnHhaetnmCIPkDOBvunGfL9lK0zWKhl3/1W/Wp3/B79La/9Vv0rk/71otuUrYzu1rtaN3OTvvzsUsBjCXFDQgmCYbPARlspDNALhcAXCA9mEwmmkwmcZPb399Xr9dTpVJRv9/XZrPRU089pZs3b0bWdn9/X0dHRyWw7olyADXXOwLOJMXMf9eFsrFT8q3f78eELvTOhJU3m008OrnVapWA3XK5LMkzJJVq3roUAQAKAHBwTHvSMlWSIkDkc86YwYoDhhh7rwKBphvA7aXsYNIBP5gDKten0g9Y8slkooODgwgmHezwZz6f6+joKGqSpa32GTAM4GetwWROJpMS05vqsVkPHi1wtn84HMaxdOkF/efUQj9ABHYUXTeOCe97Uih/w/wDtJkTgCyRCubSjwr32sfO1LoO3/uHzIf2pTXFHSCS3Ee7PYHRZUbMuSchprp9PpuuFZ5/5omxcrDP/V3KwbPKe54PQBu9tB9OQ6fTiWDeowV+sErWGGd7KVtxstT6cKkP+ZL/ok+pbsP3v/2nj/U3H/iFi2tYNr39D36TftutP61H/0Y+Pvq52PMGxiGERyR9p6QHJBWS3lQUxTeEEP6GpD8h6cbZR/9KURQ/+IGu5aDLQZnrEZvNZtTQAlgAKlxDUon589PRDg8P1Ww2tbe3d9rxWk3Xr1/XAw88oCeeeCIm9iFfcNlArVaLhyzAZgF8CL9yVDDyBIDZer2OGk20xk8++WTUb7q2GYaM/jkrBjj0UmWUQ+t2uxEcAEi4f6PRiAdynM1b6Q/hYWQIVHCAsQbsOCB09s+1wZ4kxfhTVcOT8FarVenYZeYNptcdEE8cg3EHWDpLzzrgOpvNJspWPPzuzo6kKBVg/XHkMn/8VEKMuQf8e8UF18MDrvr9viqVim7dulUCZ0hPnEnHeJ8++lHgaKiZC9hV5AoARj/wAlAL2Gu1WhqPx7GaBeCYscHx8PY6Q4qMInUUuRZzBsvs/XGwzxrE8aNvfmiGS058/XHfVCvNOPFs4dz4b4U/Y7TBZR2AY54vHBvANu97tZV7we7k73a2bG7FaiVZhZZfeF3QJ+t/vMAWZZOkR4sMip+rvRDGeCXpLxRF8fMhhJ6knwsh/OjZe19fFMXXPdsLoTn0JCuvECCptHkCjJxdBVycnJzEGr7oZNfrtSaTicbjcdQpUuHg+vXr6na7unnzZkkygD7VE4IwNmZC/4BxWGCvewqwpFzbfD7XZDLR+9//fknbBB8/upr+AP4AIfP5XLPZTO12O27GlUpFu7u76na7EVjCMFcqlQjYPWTs7DvJZmhxvQIByYbOoAIgXL8MIHdgl4IRr37BtQBaOBqAOq8hzVzAHsKqXr16VZ1OR6vVSkdHR5rNZnGckKMwR15BIGUyea3f78fksNlsplarFRPZnJWlXawBKhpcu3atlJzJfNVqtZhsyfHVzLFXZmAc6C+VOhgjr8CC0R7Xs1MCDbCHM4eGmTWOMyVJk8kkyhv8Xu12O2q3iWjw3KEJTzXxvM/aZ86dXcWJ4nVnxAGqnmOQGmNE3x3o4ph4ZRsiLPQLh44xp21Ij3ztOnCmYk2alHleGy+x3bHf7WzZPqCZA5st271kzxsYF0XxhKQnzv49DiG8TdLDz+davrGzebHJsnkCEmGkOp2OpO0mzibKRu1hT9iyGzduqN1u6+GHH9ZqtVK329Ujjzyi3d1dnZycxPJpvuEDIGG7qtVqZAQJofsJYK6hpc2wbn7C2ng8jqAV5pH+wtZyPb7rukgSzKjty0ZOu5B0bDYbtVqt2A8MMB9CiNURAEj0AdkCQA8wDriGaeYwlV6vp06nU6rV7CAd1o8wNKy2h9qdjWfe02O/YWMrlUqUzTDPnhiIrMEBecrCAsRhBo+OjmLFB8r0HR8fR9Y9Tcqj/NdoNIoHWDAnrJPlchl17YB41g5r3itcsG5gggFqzJe0LRHoemnkDg4aXTONY8m49Pv9mLyJtMJBJ+uePuJgebWPZrMZxwsQ6Yl0AFzWN86L6/S9ygvg1hPx0ogDUSQHxfzxtnmSLOuQtc8c+m+Qr0Nvm48lx51zb+blXrE7+budLVu2bPej3RFxXAjhFZL+R0k/c/bSl4YQ/lsI4dtDCHvP5hpeTYFEJk+8cTbKM9upFOGgD1CL/tMP3Xjqqaf03ve+VwcHB1qv19rb29PDDz+sXq8XAS4bImDBs9I7nU4puQhg42wrFRM8PI5+FV3rer3W4eGhJpNJBCsAPq99C4jj79lsFqsN8D7t4vhl2EjXkLqm1ccJwOwsGACN/nt1iTTRCKkKIXOvEwsIZs4A6rDxyAMAOs5GAqS5DmsAQO0nIiINoO2Ml8tRSB6DKQasTSaTOJ6dTkeDwSBWS3DmlfECLJL4BzhCi+1rFaeI9yiphuPAGsW5S8GiA9a0djdl8nzN+hqAOZa2FUnQlI9GoygBabfb6na7sUoLiXAkrnoCJmsVMMgzSlUR5sSTYlmfzF0qa2G9ADR5llOdNzIrB7M8ky7R8MRGQD/OCfdjXFkP5CoA/AHkmOvjkTSl5eXuRbsTv9vZsmXLdr/ZCwbGIYSupO+R9GVFUYwkfbOkD5b0ETplJv7203zvsRDCW0MIb031tZIi0ALkehgXXSQ6XZgoB2SehEPNWMLbN2/e1Pve977I2l67dk17e3txM3XNJUDVM9Op7eqZ8r7JU+0A4MR1kXKg/UUWQHKUl48CbALG6AdgLz3dC1BAxj0VOGDcGFfP6JfKR9wydm4uIfBkL68iQt8AGmkSlMsDJEW2FBDGdVw+43NJ+1zf6QeMoJuF6Ucr6kl3DjZ9vQEC0YX3+311u90S+HMJA/PtABjj8wBG+kM/6/W6dnd3Yx8AmTiFLkVh/SDtcFkFjgprB6DG+gSEpvIBwCOHy6DnZ63AzLOOAcrMB5UwuB/HbANqmSuvw8ycuZzHtekOnnH+3DFyNtb7kWrmvc6ySzX86G3GzZNZPZqTtoF/s955FlPJ0L1od+J3+0TH530kW7Zs2e5pe0FVKUIIOzr9cf2nRVH8a0kqiuJJe/9bJX3/ed8tiuJNkt4kSZ1Op/BQN5saNXLTrHRC1Lu7uzFJilq1ziw6QD5rj1arlUajkW7cuKEnn3xSnU5H165di1pjEs8AbgA1NlKkBxihVdrkiWPcUypX3UhPxjuPIVsulzo6Ooq6ZfpFwhaMNpUXYIk98Y6KCA6KYc4ADF6DmXsDwtLKCV71wJMTASIAYgCyz6m0lb2QjOayCdejck9nAKXtUdLozW/evBn15p1OR91uNzpUjKU7TfwB6PH3er2O2t9erxeronjIHaBHGwFKsMIuu8FpYAwB5DgwyA9cU02EgXmB5fUEOPrDawBwNNMAXbTsXIvnwNfieDwuVWxAckFdZx83P4yD9QUAnk6nsW04Se7IkvzHnLJOPBriDrE7S4yds7VITXAQvSqGyynQ+qcstbPS7vS6Y+4gmPEBZPO8pg7bvWR36ne7H/aziDRbtmz3nb2QqhRB0rdJeltRFH/HXn/oTMcmSZ8l6ZeexbUkbZkiWC0v4+WJUoTAYd880ckZM2mb/Ob1VxeLhW7cuKHHH39c+/v7ajQasULF448/LukUzPX7/Qh4SUI6OTlRq9WKoIrDRJzxBUx5SDYFZgAikqK8fi1H8SI1gFFzQA3rOBwOVRSFrly5UgJckiJQhsX05DtvB9dyRhIDwDqTBmjx7H9PIKP6hpcsA8AhT2i1WhFAeiUFaXtwhutJeR02XtpWhXBwjEbYZQn87U5CmjAF4OUIbTTv1JCm336SG2vTqywAGmH5XZc9nU4jCHNpEOOLYwazDtuOdIKKKZRgo58uF0ilAM6SOnAEOANc6Y8zoK5v9vq/Hjkg+dDHGvDLXHn5N9rL80x7PULDGPJsM5c4yc5MM54ebXA5jUuE3Plk3LmWOz6w/FwXAO2RDJ4bf1buBbuTv9vZsmXLdj/aC2GMP07S50r6xRDCL5y99lck/dEQwkfotBTQuyV98bO5GMwOG6knWPlm6KzTdDrV/v5+qeQYm3EaakVXCKidzWZ63/vep4cffljXrl3T7u6u+v2+bty4UQISbLhelxeQAHDiiFk3NlivpcrhAX5d2FbPwvdqF/Sz1+tFqQTAjUoeVLrY3d0taaWlbc1b16e61hemsdFoxOQzBw0pW8zrzlzCguN0wChzqAbjBZhZLBbq9XqStqeXwURzWAdzx1gBkFxS4pIA1gnJci5/4T4A8BSEk+zooAfwTS1pZAtojGHtz6uzjUNAfWsfa5wsgDHrerPZRImJryWS6nDKSLjk+6xz1gHz7NdNx5J+83l3mGgvc8LYIe1wJplx9mRJl0DwvCAVcWcSR9Y1+ziuLk9i/TpQ9XVLW1NZC+3hWfS5xhnwRMMUNAPgHTi7ebWYe8zu6O92tmzZst1v9kKqUvw/ks4T2D2v2pcOftnkPNOdMCobFGzVarWKOlv0j16T1WUBngTmB0Zw4MZgMFC73dbR0VHMoucP+khPMGKj5pQ42Cnuzx+Ao3TKcnJIhzPDAC42eQDwdDotyTBwGqStLnI+n8c6zbXa6SEbaeUMAASMHEDp+PhY4/FYvV5PrVYrln1DRkKCmzsuzpByTYCFg1KAInMIuKUmtFfTQCdMQth8Po9ADlDmbDdseFEUsW6xpHhKIpIA2uC6Z8aSa3pVB2d5cUSq1WoEc161gz77Uduu6+W9VFqDwwHA9/Fzp3C12h4jzfperVaxiojX+mVcU9kR48t8w94iv/DoivdZ2taQZi6pIIKDw3V9LXgyJeuB5zuVosB8A0bdASPCARBPK7+4LAT5hc+LyyWYT9rmjg/PA2OA40WUya9FH+lPCsTvBbvTv9vZsmXLdr/ZpfllJ2TNxpuGOdk0MZg5ws6tVkuj0SgCJ098A2hy2AQbKRpJKhJcvXpVe3t7MZxNYhegDQALa8y1PZsdkOBAALAHu8l1KOk1Ho8j8KDdJENJiiyj13vF0BEfHx/r4OBAV69eLYW8PXQPuPfkNLTMgPxerxdlEABPyuBJWza11WophKDZbBbrJ8MKAqRgvaWtBtoBs5e745js3d1dbTYb3bx5M+pyAYYAXObQmUscGU7eQ14jbU88AwShi2UdFWcVK9Apez1bgBIyDWpbO3hjfdTrdY1Go3gvr7HtjC2abg/Hp8mKJIYB1gHCAErGE0dS2tZUxmnDufRrM8+w+/4+kQAOtHCHgjkCEHqi3nmVTaQyS+9SIRhb7s1zz/MuKa45DrHZ2dmJzyXrm3vhFBBZ8DwD//1g7QH+GTccOcaV2tWMN067a44ZX3/ms2XLli3bvW+XAhi7HtMTpRwgswk7u4Mkwlk13/wAloTyAbfO6MEYcuhBv9/XrVu3omaTMPtgMCiFjtkUnREGeLFRphnufgrZfD6P9WUBQr65s2nDgLp+kj+AMvoxHo8j0wyoKYoiMr6S4rjA+kmKzsVgMIgA3/sC4OE7gBtYV0AFVTDQ0rpeFTDiIIpT4Rjnfr+vq1evRtb94OCgBOoBT7PZLAIzTzxbr9elk+xcEgATiV5X2obYi+K0RGCr1dJgMFCr1SpJBZxpBJi6XERSdKCcrce5oA1IYKgZjVzHtbkAMy/d51pcr0ZC+1krfIdygRx3zFp3qQ5rhuiDtJUdeTSDZ+z4+Dj20edUUrwHbaW/OHP+OteGiXdNNusO55Zr0/ZKpRIjAV7GkHUJiHaHlDFlnI6Pj6PD4k4IAN2jQbDbLr9x9t3Xd7Zs2bJluz/sUgBjrNFolNgzD8MDSH3ThHUCWHQ6Hc3n85KkAWBdqVSinpHN15meer0eD4totVoaDocx+Y2DG7rdbgR9gBruAZPq9W9dSuBVBiRFQA+4QeZBPV7XgwL86AufZ9OH/ZpMJjo6OiodLiFtATpjSRkwTzhaLBaRUfcwPgx5Gu5mTJvNpnq9XjxS26UDXmMX1hxwAlAeDAZRswtLvrOzo93d3Qh8vc8kQTL2ABrGjnYDlpzpA6wBIJ3FXK1W8XREJB3Slo30Em2MD2vRQRmlAX2NuNaXfru0gzWCbIUEUta8h+/pr7SVZXAd15bjULAm6SfzRt9dH+zrirYCKr2P9MerOTAWyEMYq7Q8IM8c/aTaC2sxTValfd5+9Mb+PPBZxsTlO2nZRMbeQTyRC+qD035PBPSkPU9uvNcS8LJly5Yt29PbpQHGgC5pyw6x6TiAkbZaRmdzYGRDCJG5lFSqTlCtnp6Yhx4xLa/VbrfV7/fjkcu+kc7nc+3t7UU5gGfqA5xcQ8lmyd+u7wQcAPAADlRt8O+hnwZ4sCkDEjwrn2sAHsn+B6y6rIFyVtwDFjvd6GHVaDftdSbQZTDOKrqOlPJ63W5X4/E4AuZms6mrV69GIOmhagA9zC0sLIyvRxcYCy+xxnh4WbBqdXtyYaWyPYwFkM3R2DD14/G4lHxJ2/gbR4O1xj0At0QAvDKIr2/GlbYinajVajFqwVgSbWANsHaZB0Ai64i583JmyFAAj+n13GGk7R7RcLDo0gdn1hkP5AwutyDiQIk6l1AA2r3iCSCVZ8rv79EHT8r1z8JMu4YYCQnfcxDt4NhzFRgP2upzmKUU2bJly3b/2KUBxtI2q91D177hPt0mD8ACpPnJV9R2ZXMj/O8sHUw0G3az2YwJYAC7yWSiXq8X7w+YAMS4rtYBPMa1SaiTbj8wY71eq9PplBIMXZfK+ACCaTsbuCdScT1kIs6iAgJcB03VDEklKYInY6XSFoCJaz0llSQDANmDgwPt7u5qMBioKAoNh8OYLNntdlWv1+NpZDC6gBAAImwpINrD2rDOjAfz4WuJdgPQfDxZP0hSkC2MRqPSWEtbsAYg9VPl3GnysQwhaDKZlFhN1+NSfQQpCEl43h/GxFlYoia+Fl33mrKbLkdyp9EdC+nUGWm327c5Yc4wuyML+KQKBeufaIvreH3uXJfupxK6/IW16GudNhNR8NJ3vj74PNEHxg3HyBNJ/Vkm0c+fKWeR6bsn5mXLli1btnvfLgUwTjeZVBuahsNh6QirUmXAmWWYQdfJ8h4hd8LnhOGdEfRErqLYlpjymqzeToB4moAEKJC2VSQAZamdnJzo8PBQ3W5XnU5H0u3yB1g8wBFaVbSRnpXvmmB3DhhrQICDnJOTE3W7XUlboMupgZJiJRCAo4MwSoZ5oiCgfrlc6tatW+r3+3H8qb9bFIX29vbU6/X05JNPxhq7AJTJZBIrTzCGDm6dVXc21BlNzN9zdpq5dt06/z86OooSjXSMSfREa+16W9aItAXT9AvWHuBFAmAqsSG6wZzhfNF+l7Z4dIX58+oRzKf/DWBlrTGmPB9EGxgL5p71C7hEBsW8EMWAeXUJCOw/48b3GTsAqjsikuLYIbeRtrpqHLyUoWa+cNCc7ea58L4wdoyF10f2BEN3EDIwzpYtW7b7xy4FMEZmQMhc0m1A2EPPkkobHglYXu+W0lKAFa8bC5CSpMlkEpk6NmY2zXa7HZO80OHSFu7NZprKDbCUrSO87sCG71GhYjQa6cqVK+p0OhEMwGwCkgEXHB0NkKFyQLPZjJKFk5OTeKKbSxacOXcGk8QtZ2A5WATWDZDH/PFd2FbXh1LzGeb4wQcfVLvdjpUXVqtVlC4cHBzEseC45ul0qvF4HOUurVarBK5JOJMUQ+EOjryvPn+E2r02MLKZWq0WGVOkF91uN64x17mzHumzlyDzeWaMCNUD8HDiqMvMHFYqFc1ms8is4rCxRlnD9NsjEPzxsmc+J5JKn+P5gFEFhDuIT9czc49T4Pfz9ei1vPkeFWFg6rk/lTUYF0kxEpSeiucJkPztUSZ3BpxlB+Cz9p1lZ3yYv9RpIBrl+vcMjLNly5bt/rFLA4wBT4RHPeQLu8l7GBuqh9cxmDxJJX0oG6FXNZhOp+p2u6X7shm7tAMglko6SBrzEK60BR4ASRju9XpdOsXOpRXT6TRu9H5PGDhpW/qsWq1qNBqV6g7D7pHsRnITbfZkOjZ5T0aDOXU5igMX2uROgTsas9lM8/m8BPhhDYuiiEC+2+1GMAzYcQYUpng4HEbdL4Ae4AiLzny75MABvCdYwfjRH4AbIXfGw/Wrfl2v2MBceig/TR51R8vXrBvtQPoDMPckRtrhiXMksFWr1XgACA6TJxqy3gCK7hzQXmdPibA4UES/788sY4J2v1KpaDKZREfVHUwf+9RxIpoB4+ssu7O5flgKffBKL65R528/8dKZbsCtt9MT/2iDv7ZcLkva6DSxMFu2bNmy3ft2aYBxu92ObBesqicsAY5haglzssEDBlqtVky+AzzC4gFUAL5sqABiBwIeBvaDFADhtIfSXrBiHkKn3ZgDY8Ar7QCoYbzWaDSiPIH+8h7g1xlSgBtAhz45QAVUMJ4A03q9rna7HR0GgJmDEf7vTCggDeaQ44sZf8Ag0o/hcBjb4Iw/oBRJwWw203g81ng8juCdU+godQc4AQAxv8yDh9jpgyd3+Zz7gSMwl5yI50DOx4G2S6fgsdlsxhPl+A5r2kuWcR1ntF2nnOrGiVawjvgD4HVQjjPmDDZt8DFgfQLufL2zvtxp4pnwsXNQTTUOmGt31mB3XWYjbWUdrFuv+uHPHG2mTVTIcIfRJVeMLWPAd3H2XHPuZd64jj+zLpXySi+U1cvAOFu2bNnuH7s0wJgat1RUYDP1JDLP1p/NZnEDYwP08C41ZSkPBtBB1wpohMXymsKSSgAm1WF6SBag4LWMARIpQwvLeXx8rNFoFCUKMJKNRkO7u7sRCAFm2MS9+gQsZaPRiMdAj8fjUtKaJ+Itl8tYw9idCNdk4kzACFMlwWUsgGkHK4wXDKakEhBLx2I8HkfGHCBNuTdKpjlARkftoX4AGA4Un3GmmrXggBGHwHW2AK3pdBr7QzvH43FJz0wNZdfD41jBnMNi8p5HGVhfnrDIPLkOHBAJk0k7nX32SIBfm7XJfBOFoN04CqwN/u1yCtawJ865kweg9IiIl6qjffzhOg7qGQdYcHTFk8kkPpu00Q9JwaFiLJz99uu6nlgql59zDT59c71xqqNmXF0/Trt9vWXLli1btnvbLgUwlraMkesKAWBeNcJBMOFyB8388WoBHC8sbbWNhP75PMDYw+TUB3YtprTdKKVt2NUZbUA9IBh2ibbDcAO6PHEK5pwweKfTiSXhJJW0lmzMnU4nggCAlOssPQnPKxcwTtyTMmO026/HdwEoAFMAbypRQJICOPaQM/0FcMEM12q1ElNMYqTPk6TIRDqL50mWACeXeXiSlutTWV/ME5IAl8Ug9wBcwmw66IUl94oS9JeEPt5nXACUgOOUEZYUZSCMmSd4AvpgTPkuzwTOhx8nzZiwjh1cwvITgXDNP4CQOXCHNWWCvXaya5XdUuANY+vMuYN3X+/+LHkuAuPFeuXeDlpZ+/Td2+fRBebGk+5wYKmVTvuzxjhbtmzZ7h+7NMCYDRpw6XIB36Sd4XJwBePkCXMepiY5SzqtrICWFuP/6Fcp6QRjyv2cofK2AjzZkLlvmqTmjOZ4PJakKMHYbDYlDeNisYgsLOCDPsO6AuTq9bq63W4EDphXk4BlB0gwZgBrSSUwSageOYonQ3oCmIfvkWRI5VMF3QjtA1gPDg50cHCgTqej2Wym0Wikw8NDDYfDqFf28nIOIAGxnrQFMOfz1FlOnQfKsxFFACSlR2oD6lgT4/E46l0Jw8OMMn44c9K2OoTLKmi7t8kdrtSJIFFvMpnEcnhpghvRERIIkd5QCo/nxnXHOH4AQJ4l1qi/TrucdXVwz/tcA2mKJ92x/lzjz2fa7XbU3VOrGmeHfvpzhTwqBcf+rLEuvX2S4jPmvz+02xMlPQGVftAmZ9CzZcuWLdv9YZcCGKcJWAAGgIYzlB5e5v8e6m02m9rf34+vs3l5qHm9XsdKFGywkmI9XWmrfWTzdKAE4+jAeLFYxBrIDiS8lBjgCbDhIMKToLy6hh9fy31wFJbLZWQhYQ65Hywm4BS5gIMFr5BBCJyx5fQ310Ez3jDNaYUDxtoT9xwI8R3u79rXmzdv6vj4OCbaDYdDjUajOK6cWgjYcy2pH20MQHSW30FoCn4Ye2dGXTPqYByQBEvMXM7ncx0dHakoihilQGvsEhSAoAMrn3fYTDSxLv9Av4z8xcsIrlar6NwAFKm97ZIh5scPpEHK48+BywV8bFLwyPPhY5smyHriZTrmnpxIuTf/jkcZzovIVCqVCPgZu1Q6wf89GTNlyrkX8+2/QalMCzbZdePu0GTLli1btnvbLgUwXiwWOjw8VLvdLr2OvGBnZyfqGdlgnS2WyppHNlGAi7QFuK5T5e/pdBrr9yKf8KzzNJveQ+RssoAYACB1d/f390the/TOZLi77hMJhwNWP/Ia1lHa1rcFEMLoAiIXi0WsVuFjhcyAP5486Myeg/50rL190vZEMHTBHrp2BrZSqUTJAiAMoO/l15hHwL8nE3qbGDOPGrg5MGYOAb4ORJGnwDryPlEHgKAz3w5mSSpcrVbq9Xrq9XqRzWfeGcOiKGIonnF3vTp9ZK3xXRhjGFWcSAfy9J/16I6LzxdtBoC7PAIn1YGij6M7Op7MB6vKukJzzHPkLKwDZJ4JxtyfB1/3Dl496ZM1RvTDkxAZX5hl+sPzTaTGnRx3prlWKk1yh4ZrZsuWLVu2+8MuBTDebDalBCsAQloFwLPnXW/MNabTqQ4ODuLRzWxobg4E2CRXq5VGo5GuXr0aQQ3vc28Pv9MWaauVBKDRHhKe+v2+9vb2JJ1u8MPhMLYFcABbC8BD98rG7aACiQD/JpHOJQIw2s1mM5bxclCETMOdDQc6LjPxgzZgqrkOjkAa2nZw4ppenzvaD7ggGRE2k/EBTI/H45IGnNC6z6nPFa85U+8SDmf/YdlxxJBi0FeXnQDYUm0trDUglugB/eNwCWnLOrq8AyaeNnU6nRLwnc1mkd1lfDwREVBLu2BE00Q3n1eAMX0kOuGsK/1OIzYAZBINXXbhjDvtpF84HCkzT5k6nmWeewfmOCauX3Ym3yVPAHzPOwDQ+vPE+gHcp0mGjJdrpD1ilb6XLVu2bNnubXvBwDiE8G5JY0lrSauiKD4qhLAv6bskvULSuyV9TlEUh093Dd/cMWfNzu5TStpK9X0wcaPRSO9///t1/fr1uNH5UbCSSgwgGy9AFm0kwJwN1MPaJEEB9DwpzQFCevAI9/UKEyQ88TneB8zC9KXAm9JogAlAh1+/3W6XdMWAZj9S2kPFXjmCMYBNXSwWkUnkOu5AuMyB8YEVp68ATaoU8FnmYDwexyoUgDYAiOu9AVGALWdzU/aOefA14PPoUhckEp1OR5PJJLLfqRbY5QXck7lw4O0A3aMQvE9bAJYOKpkDyvUBurkuc+7jwxiwDv0ACh8j/j4+Pi5psXEGAMsOgp3B5dp8z5+tVH7AGvHKJ87I+rPurKzPDyw048hYANhxNADMDtR53l3X7Zp1jz4wLrzG9z3hlHGXtqfu8f97xe7Eb3a2bNmy3a92p37Rf09RFDft/18h6ceLoviaEMJXnP3/yz/QBRxQSFtNIRslG63/zSbLRrxanVY4ODw8jGAUAOuMl7TdLLkHVRDQXbKRAkypIOHXSrWWtN/bJm3BGhszpen4DMDRGUZP8IP98oMeqOcK+wbAc3AN80j7CIF3u92o52WsAY/SFgjwHUCdjxuAB60wwKvZbMY59dA3fecaztgC8Ji78Xgc2+YSiNFoFJligJzPhZfj8jakWmP+uHQFLS7z5LIMl1g4Q+8MqrPMh4eneIIEPR+DzWZTaj9zCPhLD48g4QzHhPZJivPtJwgydzxTvt7pB3INnAaiHs72s85cG8waS3X9zvDzHvf3/iN5oA+0jzXF/dy5ZG6YP77jsikcSQfy7mTgtPn88iy5PMLv75Ib/5t+ekTiHmWMX/BvdrZs2bLdj3a3qI7PlPSJZ//+R5L+oz7AjyysLppMSSWAk8oY2Lz4tzPLy+VSR0dHMZwtbUOrDqABiTBFq9VKk8kkMrhsxs6YoecF1FIdwMEi4MlBPWwgf3c6nail5H0AOG0lFI+m1A8ZoT0O0DxJi7ZWKhX1ej01Go3IHiKVYKxdDwprCjA4OTlRs9mM5dxoAwmG0qlEAHDpMg7exzzpzN9zzfh8PtdkMtFkMtFsNoustydE0i8qQTC/SBEcwHB9QA79hNmeTqcRZLHmAIuuo6Zfzjh7cppfG7DNcdzOoPs6QIsOkARUMsasTfq62WxK0hcfQ54Pnh1kNDgOHonxMmM4Kl4Pmfc8KdGjBDibrkN2YOzPmbPEjBUSIZ4vlwCdFw0C7LsT6s+SR2HcCcAA9XzXgTTJqHw+/Yz/SUEy7eB+qXzkHrTn9JudLVu2bPer3QlgXEj69yGEQtI/KIriTZIeKIriibP33y/pgQ94AZNLwJ4BdJx5ZQNz5heAy6YLsBkOhzGpxzd8Z/kAk71eT5XKaYZ7v98v1X4F9AFMADNsyLDLKfNLyNerGLjWE0ANKwZA975SFYLPOFtGCJzPAOQ8aa8oTqtNUFd3Pp/HRLfd3d3IwkqKmmzYScYSIN1qtTSdTm/TFXuZMpKppO0RwgA512/yuidHAvr4nOtKcRBGo1FkkilN56yxS0087M+Ysg683BjrxtuFjIFSga6PBcAyj+5oOZPuFTfcOQJYA2L5HgAOIMr8uSbe/00EYWdnJ1YQoVYxgNGfE54rNMEOXrkP2nIHsi6R4Flz9tyBsBt9ZgxYl4wBjqUz0j6W/lk/hdLHAQBPn7Hz5DS8DrD1BEYHz84e811+L+gXr7vW+h6zF/ybnS1btmz3q90JYPy7iqJ4PIRwXdKPhhB+1d8siqI4+wEuWQjhMUmP8X8Ps6e6Pd+UnLlzvS3JQw7oAJBIIlqtVmQLXUpB6TVOX+Oo5fF4HJkl13c6Y0W7nInjBDC+w+EOHkqmDWzK/jrjAPNHAhr9oaoFp95Rqss3c1jCSqWi3d3dUsgegO8Jd4A6wKInrNE+6gwDaqh+MR6Pb9MP4xw4OANEMMeARKpnAAxhL10rChACqJIo5mF7xs0ZvDTJivclxcMsPKEQx8pP5vPT21x+42sIcAbIdVbZJTWAPmeTAZz0A7Du38VwSiqVSimhzw/GSMfcr+POiYNExs914jyH9MVBKs6Qj68zs8w192PcXYLhMhjM++2A21naanV7aqM7NGnVCo/A8H0HwKncgmfb1xBtcAc9lXeldbrvAXtev9lS+Xe7qfZ5H8mWLVu2e9peMDAuiuLxs7+fCiH8G0kfLenJEMJDRVE8EUJ4SNJT53zvTZLeJEkhhIKQOWyds2oezkb2IKkEgl0n6uDHk3AAO8gNUiYOEEvST61WiwlVzrylYWXftB3osHlzkIcncsGIe1JeWvGCTRowwmYMMKbPvV7vNsYu1XC2Wi01m82Y2OanoiFzqFROj8YGCNL3arWqfr9fqiEMW93tdiUpyiAArLQb5hBA5ElO0laX6mwqCZCMEZ8DmACenMlzCYSDrhRY+Tz5v935osKEs6M4N6xTv54Dx9SYW+aB6EYK/BxkexURT/Lz9dVqtWL0gPVIXe5UY+uyCWeUAagpGPZ/0zacKo8Y8Lw60OQ5ow1pkiJ98mRSZ/kdOONoel/ov8sfnLV1aYsDY0B8up74DMl9Plb+TDmbzHtpv+8Ve76/2Wffib/b/bB/b3U8W7Zs2Z6FvSBgHELoSKoURTE++/fvl/RVkr5P0udL+pqzv7/3WVwrglPMNzU2QsCmpAi4XEPp3/WQOQwZoM6BgrQFaGSak2jEZwBhDohcvuEbOZ8FWKH5dbCPzKPVap2b1U5bAegeOkYGQgLR7u6uQgixioKzqIAPr34B+IHdBkRTRQJwTDUKKkIwlswL18RoE3Pi0hcHW+68uC4YOYWkUjIcIJsSZrDekkp6cJc9+PoBbMMIO1jDvC+wyB5ZgK2nL55oKZ1KR1x368DJWXJYbmciaau0rTfMGkq1tT72OIn+eX+GeB1WE4Ceanl93bpuG9DMHLEmvBJIKjnwZy2tDsG88Nn08/5MAYh9PJz99eiGOwD0kfu4k+CJni6LoR08F87S+zV8Prmv3/9esDv5m50tW7Zs96O9UMb4AUn/5mwjqUn6Z0VR/HAI4S2S/mUI4YskvUfS5zzThYbDoTqdTqligWtQXWJAqN7lAa75k24P2/Na+neq90SqEMLpEbWj0Ujj8TgCENcsI1lA7xnCtq4rYB1AVxRFrB3smy+AjI0Zcy20JwRKimXYAFiNRiOymN4W13k6y81rkiIwBgDDJHe7XS0Wiziuzs7zGqDRk+2KYnsoCWPl12C80SBzvxBCLJkHMAIU8sfBsleZqNfrtx2bnR5LzfzSBz9Iw8cYYLlYLDSbzUpMsoN3QF46vjDV7pjxfRwaxsmlF85cu3aV7/EZnos0SuEgm++5DIJnCAfCNe3OfNL+5XJZAr7SttawP2epU5cyqQBs14B7e9xhpf1cP2WdcbpcduSg1ceJezmIdemSr1dnjJl/Z7K9DZ7s5w7IPWR37Dc7W7Zs2e5He0HAuCiKX5f02895/Zak1z+Xa733ve/V/v6+2u12BBuuQ5W2IWHXCWKuO+ZvgBubM5/jWsgS5vO5ut1uSYfJd/h+qlV00EKy1GQyie/Rhp2dHfV6PVWr1Qg+uTesKuybg3zfjAG+sI0AQQdC/B+A7YdfeK3aRqOh2WwWK2c4Gw/oarfbajab6vV65yb9pdrhtP4y12IOGDfa4vMjbWUE6/U6Ohb0CwOEOMvsa+K8Um3ezhTMwKK63tklAn58dwrc3Jni3wB5Z3VhqnHmuC9r1dcQ93AnjXb7mndWl3sDFrkO4+3PCNdK++Nl2XA0WIcOJiVFB8ojJw4UAd4pUGQs6LNHMfhO6ry6Y+drgT7C6LuUwkEvY+xOhv8OuMSGMfG1mcpdfEzpE32+l+xO/mZny5Yt2/1ol6YyvUscnLnyUKVvSg4s+L5rFVNgm26igKjVahWrT8AipuFZB9ts1LBL6GUd2Ph10MvWajVNJpNYNo2Nmj7D5iJ1oG0ASKpY8Fqz2YxtTNlT6udSmgzgDiuKRhkw6CAEVo7rAHRTwOfsH30AnDG+9NGrgjAHXmoOB6HRaKjb7ZbkINzbgZFXVmDsGWfmxsEfgImxcCDrDCNrhjGCOXWZgyfoOeBjDh3IAuC8ioe0PbktZScdCPOaA2UHd/RjsVjcBghxhPzzzvD6WgYUe5IjRm1l+pK2n3u4nCK9j8sVvO18xtvJ51PZC9/zcfW2OThNnY2n+63hmXHn1sE7a8375eswZaGzZcuWLdv9YZcGGEvbqgHSlmWStqCMTZzNzJNznKVKN05nx9jsnK06OjpSs9nUYDAoAQUMICRt2WBPiuP+XjEAzSn3g4EFuFASDYDkWfGupyRhy8EH7Uf6MRqNIhAAHDvAR57gGksAsKSSE+KsMMy0AxlAMZ+BFXVG1OeSeaRqgjPurhVer9dxjJAy+CEOsLv0nwNOHDx6OTM/PIPxT1lljwAAjHAwWC/OhvocMQ5c3xltSSUA56DZASn3Zi58vs8DlFwXS6UF/tykiYnuvDDPXBN5DWDfHRg+585pKiGgfc4yuwMKGE6/l7aRP14VgrWGlIZx87rQzuz6c34eYGW+3LHy3xB39HxNu5OVRjLuNdY4W7Zs2bI9vV0qYOw6WjYjzDcjmFrfVNMQ6Wq1iscsU93Aw8awUgBjQui7u7uq1+uRVUWj6kwvLDEsrjONtJ9QsW+qtVpN/X4/bupombk3ZcNca+zsGTILpBUAnKOjI0mKoJg/rin1ELezwx7aB3BMJpP4f08qow/OHgMSHXC608LnAHDnSR6cMfeDWQDF0vbAC2lbEg5A546SA2P6DXB0XTBtB7hxP5faeIkxB8UAvPN0p2mZNT7v1RtcwpICWde5IjHwefMIhQNNjz4gp6Ft/vlU2uEAMO2/X8efRweifIfPpsxq6jA5sKSPDmhdJuNrx1lldxxdTuRzw/W8LYB3xszHjrFyJ5u2po53+l62bNmyZbt/7FIBYw/xelhVKoNFl0nArD0dO8SGfV6tUde9jsdj7e3taTAYqNFoaLM5LdE1n891fHwcjz32Y6ubzWZJ3gDwS8PSAMtKpRLrG3PKHhusH7EsqRR+93FARkEbKS02Ho+jzthLUqXVCxyUeEIdgGm1Oj30Y7FYqNfrxdP9SETjvlIZHHjCIeYAg/vBHEuKJwnS1nReSDKUtkdu4/CkWlZKhGEe6ncgj9Pg9YvPcyCcffdrOUsplVnqNNEPJ8IZbQfvLsVwYOug9Ty9LuPp0ROPsLg8AbaY92mDj4sDU5cQpbIiZ8+pmZyWXUvlEqkEwtfDeQ6DV64ABHNPHA+YdAeszvq69CIdP/+MX9elLbyXOud+DWeks5QiW7Zs2e4fuzTA2AExYAGgKZVr1zr7dR5r7Nfkddg3lz5wfeQDhN4BD/P5XNPptFSJgE2dz3k9V0+Q8zJai8UitpWkuH6/X9Ij81k23UajET8rbYHjarVSu93WYDCIAG86nZZC0QARAITXz2WzB9gwTtIW+AC2N5uNrl69Gtl5gK3Pl7OmqU7TwSFz6HIZB6weNkde4W1GhwyoSytfAGAdoKcgy8GQpNuqnhwfH8d5cu23z4HrVp3h5bppiJ5EvhQc0ycHlq6P5drnOSE+/t5G+p6WEPRqGev1OrL2XsHEwTgOkjsrqYQp1SL7uNA3rufscdp+d3LpnwNn3sdJdBbdZTku2fA17WPnzoDrpr1ftNWjClyD66YyjQyMs2XLlu3+sUsDjCWVwCGbHUAMwOlMEZ9JN2ZntjxcjbTCGTpYX5goQu+EXWezWTz0wyUcfJ5T8wCz1Wo1yi7YQOfzuYri9HjmTqcTT8ZzsOftJxENsAcTCWjdbE7rH1+5ckUnJye6ceOGZrNZTEDje5yW52wYulz6XRRFKeEPZ2E8Hms8Hmt3d7dUA9elCqlu1AECCXwOZpgb/k6rYTBHOBKMAe95GxkL7i1tq2OkThP3csmHs8Sw9ScnJxoOh/HzXsM3XV/nOWHp/dJ7u4QHZ8wdC4Aj68elHvzxBEl37lwSQP/8eykj71IXpCmsYb7rf/t33bF0Vh5j/F2ikrLOPm7pOPo401Z+B9yR8Dn2teVMMp/DPKnP2WK+m+YYuJPD+J8XjciWLVu2bPeHXRpgvNls9F//63/Vq1/96ts2eKlcvsk3LQ8l8zlneVJ9Lt+DrYW5PTo6iuDLN2KAaArG1+u1xuNxbB/HSANS2JCpNMERzkgEeA3Q4Cwf0gqvq+uMH2zelStX4qZ/69YthXB6IprXFYYF5Whp2goAms/nOjg4iOC/3+9H9hT2EWfA/ziwQ6IAkEvD/Iw/kg6OpPa5pwoE70tbkA645lQ9GETXEQNYHKyxFgBpOCAODJ1BdDaSZD+ArIMxZ2h9XTxd6J3PnidtSUEVaxMmN9UEM14paEXekEoAHPA5oHNgnEogfN6cxfU28jl/Hvz5cseQPqUgO2VrU12zf97n0Z0r3uf+HgHg3ucBcS8xiNQJx881xy6f8eiFj63LvLJly5Yt271tlwYYVyqVWOfXQ6WAQd+cvEzT0wERSZF5dJDgTBaHb3BiHGXbOHDCw9owyKvVKp4Cx4lwXv+21WrFjZLXAdDcu1arqdPpaDabaTKZxJrCgBPf4D2sDPjhdY55pt2Afd/MGTvALUwsAHo0Guno6KgkIWm321osFppMJprNZrEfzkZL29P7JEXJBgDcwQJMcMpeemUQ15PSV9qdlgMDYPqYOmMrKbYFMMznuI+k0ql9rAfXzZ53wIyztDgPXsEEYOdgMgVzVPs4Pj6Oc+SJZyloZl5Yx/55l3545Q+vouLPmCc/ck3X6rvkJHUsPDoA0GU94fz4971tfM+BtgNwdxBcBuJg23XYqfPla4dnjO/z3BL1cYeL17iPJyD6vLn8gvWYarCzZcuWLdu9b5cGGDvrJpU3dDYrQItrhR2UYM5SwVS6PtiZYYAczK5nrfsGvtlsImh25rDVamkwGMQNutlslsCo1xt26YKkCGrn83mp+sF8Pi85CPRxZ2cngmGYx8FgEPs0nU5jchxsqtfdZQzq9bra7XbUKHslAMLprVZLs9ksstoOJtIwuzOInU5Hg8FA0+k06rZToAfDXKvVYnt9jtFWw5p6sqFfBwae9jsAQ+aCo4KEBKdBUiz/5fIEZy9pA+31NenaXU9643ru5Dgb6glnDoZT8OwMtIf+YWeZS9dRo2l2dtzXMk4Bc8Z8unPhrHH6LDobzR8iD4wlOn0Hrc7Op6DYdemAT68A4vIRgH8aAeK7Pq6uvUYukkY3eM9/M+gnrzGOHmlgPFxW9IEc9GzZsmXLdu/YpQHGGBuQlyQDGKSVKQCgXu/YwYWkCCLS0HLKPhLe9tqwaEO9WsF8Pi/JFdD6uoa02+1GBndnZ0f9fj9WjECm4Pcmwc9Dt/P5PDLBntzFvQGCyEGGw2E8lQwgsFqt1Ol0tFqtNB6PNZ1OY0m6TqcTx9FD82zyMI7SNolMUpRQALpxBKgwsbOzo263q0qlouFwGJ0SQPbJyUl0RrrdbgS3VMKAwQwhxFrGHFTC2AFmnE120Mxcw8xOp9O4FphXvi8p1pTmNWe1nQEFUKcADBDMOKVaeB8/B7wp4+1r1JlKNMAAUWlbhs2BPt8HcPtYuEbW59VlJg6G3fy58qQ4wLVr7wGfgFmXcnh7+LxXF1kul5Hlp28Obn3OPSrh0YaUFWfsXafvURgcBQC3OwVcz5lhb5OXp8uWLVu2bPeHXTpgfHx8HOUJJKhRdcHZqhQMp5tTylTxWWmrHQTwSiptwISHvSIGoEpSLGkGO7e3txfr/8LIcnqaVE4KI8y92WxKpcvQDdOX2Wymo6MjtdttdbtdSVugQJIffeF7zvziMPD5xWKh2WwWQRBsMYleDvIWi4Xm83lk6UIIsXoHbDb9gs0FqNA2Z9VarVb87uHhYXwdaQYaYwxgDNBKS6Qxv+iMqTe9WCxKkpFUiuCOFdIXZ2KfjhEGLLE+lstlqYIFgNNZdb7jWvG01Jyz3KmO3dcCVhRFZPiZY3emSLTk+w5E3SFw3bwz1866st5YG9zPbb1ex0NsuAbAnXvg2HE9/k4dC48qwD77s+4RCb6PNth/C5wJ9jHG8QUMe6lAZ89TOZNHDxwcszZpSwbH2bJly3Z/2KUBxh7uRfdHKbPzdLMezpXKTDAg0WUEgBRPnloul5pMJhG8wBySCOalydignWmiFi4SCk8aQ0LhbWeDBci12+1SGBpmC9A+mUxi++gjIMJDwK7TrVar6nQ6Ojg4iJ9FIwzoddAym80i+wtoR/4AqACccj0YTJdWMOZ+GiD9r1Qqmk6npcoafrgJ4+UyFTfXcSInAXC5nIO5YlycIU01pUQkTk5OIoOPwVoC3ny9AcSWy2UE4V6iD8AN844D4OF/B5guCUr7IJXrOzvjzVxQ2cTXBvMQQlnv7M7EefplAJ7LLfw5pJoGbDDjEEKIziwRAE+yTGtOMz8OOokE+Dh53Wdnqd059AgCz547C7423bH1Z8cdNJ8b5jwdcy9Vl4FxtnvaQnjmz2S7OLuo35UXui7u8d/DSwOMpXK5NjYpNkFYT99kUzbN2S/AJuBB0m3gzYEFQFraygWcJeT6MJQA0fF4rPl8rn6/XwLe6Bi9ugUbNdfgMBCYRv6QhAhrTFKftGWCU12jl/1KmTh0upyu54whAIY2p/V2/QQ9mDvAPKXyXFrBvLlzkoIwwDbSDq6FxAImF9ADQwuIBoRJ0nw+j4AU4OPsrK8h7ku/qtVqdGZoJ21OJQ6uJXaQ5ubyAua90+mUksOYp/O0tB6ax5HDcCK8fBv35D1vj0tMHHRzLf52BwBn0J8XnkUvXQe7z/u02+UL9MudLu8bURnWa1Fsq0M4AOaPM9k+frSBkoi851El5sLH2pl0fj/OA7dEefgMenXWk2vKs2W71BaCQm170NXbv+W36V1v+L8usEHZnsk+/o2Pqf0Dv6DiZPnMH34BFna2e031wev6gZ/5/hd0vTe8+uNULE/uervvll0qYCxtE9ScEWVTBsiclxQkbTdLlxr4+1Rc6Ha7Eej4oRWVymlljMPDw7jZwbxxHcL+RVGUgCbtAuQC3prNZin5i0Q2NlRJEUjxGkCR0Pl8Po/AhwTB3d3dUvUEr0Xsh4PMZrMIWJrNZkyIg80DxPBv2E7ux5hUKpVYDcSTAF0e4Axto9GIrLnXIYapBYABsgDGjEfKbuKotNvtEkjlb8AuoIvPwHw7cEyPnQaAulMAmGOtudb0mcpz0U6/r0uBWAOeOIe5Y+GMKtIKNypj8B4gl/nkuUEWw3d4xlh3zoAyzq7h92cQSQ3t5n48ew5iXSvs4+hgnHXKevf5dqcplY+4lhhnEWfMNcI4fl6GjvXi0iOPBjl4Zt78N8BZdZegZMt2aa1S1cHnf7Te8tXfbC/+7IU1J9uzs5/4pjdJkj75D36eqr/ybq1Ho2f93bBTV6XVfOYPSvret/0H7YTqM3/wWdoP/dpP6qRY6zM/9Pc8pzZfFrs0wNg3WNgzrxDxgT7vGxUbqYeF2dicMfaMfWnLAq7Xa41GIy2XSw2Hw9LJYCnAYrOmBjKbbQghbviNRiPKBjxk7ZpPQKFrKQFrtVpNi8VCIQRNp1MNh0OtVitduXIl9m02m0UZiLO1kqJcwgEpYJp6xmhgW63WbWWv1uu1JpNJKUGPfuJQUAMZcOL67OFwqPl8Ho/WJuHOazkzJowZYW0v/+Ugy3XU0ha0+gErSF1cNsDn2u22Go1G6XQ2AB2WstyYJ3KmazGVAXENACafdSbW7+XrkTl0va1fC1Dnshp/fnDqkMek2mFnxF2rjHPhNardKfHx9zY6+MU5dYbd1w7rxwGy65CZP5wajzw4APbID2xz6jy4/MV/BwDd/NZ4UqG0zUNIne+UqffxyJbtMlqo1TT67I9KQHG2e8l+5F9/pyTpU1//hxSOxpKk1RPvv+1zYaeu6tV9SdI7vvSVevsXPNs5v3OgGNsJVf3LX/n3+sP/0/9LxWaj9ZNP3fF73C173sA4hPAhkr7LXnqVpL8maSDpT0i6cfb6XymK4gefy7XTTfG87G82xzTJiPd803K2zSsEnFd5ACCA7tSlG75Bwz63Wi2dnJxoPB5Hlk7aamEBCFwHUI4u05mr0WhUkj6gvQ0hxKOfJ5NJBAIOXgGZMMSwwkgu0EZ6+SkYO4AslSqkbfIUbPRyuYyyCkmR0YNV9jG6du2aOp2OnnrqqZIkZbU6PaRjuVxqd3e3pAPFKXGW1AGygzivfMA8wn46KHegA+B3h8TBN0wm8+5g1ZlBX0v+mRSQYYy9J3o6kEpD8O7AuWaXNgH2WSOSoiae8aedfM9ZZ7dUJuBrkWfHn0UvfUi0xBlq/u0SCGdk0+fSJQ04bcgiXPueap/pi0cv/DfCHUxPkKTPDs5pmzPFDuJdAuK/EazdVA9/2e1u/m5nu3wWajVNPvMj9ea/8y0X3ZRsd8B+8Mf/lSRpXWz0Bz7xs297/+bHPaCf/T8ujwPUrTT1Az/3w/q546X+2u/9Q1q96z0X3aRnZc8bGBdF8XZJHyFJIYSqpMcl/RtJXyDp64ui+Lrnc102LNfxOiPmmy8AiO+l2uSztnmbSwCpOEsE80QjpAOSSppO1+2GcJodv7+/H7PkHdT5Zg+YBMTBAKKZ5bQ8AGxRnB7XTCiedp6nbwUk+oEnJycnGo1GsXyb60aRdEjb2qvcg88RKgfMIRNxEOTX9TYBtPf29nT9+nWtVis9+eSTajabMSkt1eumgBeQDGhrtVpqtVqlxCyv/ODzDVPJ+nGNNJ93yYqf3ncesPVkK2cQXSvsrL/rcL1SAtdKpQcpC8m1XH/rQNm1wu6kudwHEOvsKmvZ54v7OtPt447z6PWb/XRG2P00MVFSjAiwdhlrxsBlHvQ3jah46USvN+0gnD4wPy6hgRX2MfTogQNmLzmYOlvc1xP53Lk6L5p1me1u/W5nu4RWqWr6GR+p/+f//AcX3ZJsd9iqoaIf/E//+qKb8aztIxt1vfFHf0R//zM+Q+tf+e8X3ZxntDslpXi9pHcWRfGep2POnos5a+iMFZpKB3GYh0y9DZ7Iw+ZIshmMIdZqtUoArl6vq9vtajQalZhPNt1+v68rV66o3W6XkoUA6GkSEteECYXhBPTAQpPY43rq9XodAbMnuhF2dgaMU+tgeZEXLJdLTadTVatVTSaTCCSw9XqtdrutdrtdqjssbSUFXhYMwEtfOVCj3+9rMBio0+lELTLaYKQu55VBA+QCUADGaJUnk0kExoCZ6XSq6XSqzWYT6yfTVhIOuT73B3gRfk8Tsuivn5jm4+vm8gNAkwN/199yHyxNdHQJjIM/fw4YN+Qv9I3v8CzgCNAGIgMuXXEmFcbVkze5L8ZadkmRJ6/yeeaH9vDsIDdKtc0Oxl2O4uA1TS6kLWnOAc8e/XWH2UEyf1KH1qUqrmF2x8bbdY9LKe7o73a2y2W1hx7Qf/7GDIqzXQ77tPZC7/+en9C/+txPUvHWX7ro5nxAu1PA+I9I+uf2/y8NIXyepLdK+gtFURymXwghPCbpMf4P68QBEGmI0lnizWYTASaMqbN5znABBNj4jo+P41HOgE+SywCpDlJarZa63W4peY7rEbbn8A4vVeYAEjDjIVuXAtBWgGC32411hqnhzCZO8hwsMMBQKtdnBtRxwh3/BwhOp9MIUNnkGS/G+2yeShUqAMrcwxMjGb96va79/X09+OCDunHjhkajUdQpdzod7e7uRgDpCYse1qevrVZLvV4vvj8ajUprgTkHxDuw43OMnYfOcVQcgHrSWuqceD9dPgBAdRDIOK/X67hGdnZ24jw93bp2SQmA26UIOAzMCWvNZQs+x75WO51OPOwEIM/YuDPniXMAYJc9OAj1g1eoKCJt2WzG2+VDrCPai4PHazD9AGHvpzPxDmBTmZXX1/aokDvSXIvrMp/uwPD6ebIaXnfm/x60F/S73VT7RWlktudhlapu/L6XX3QrsmUr2Rftvl8H3/FT+r6/9klqv3cm/ewvXnSTzrUXDIxDCHVJnyHpK89e+mZJ/7uk4uzvvy3pC9PvFUXxJklvOrtGIZ0yRzdu3IibrUsfPITpSUke3mWDdMaL95wh8tPXNpvTKhNslGzUDkAASZI0Ho9LFQ8AQn4iHQDj6OhI1WpVR0dHEVgDgDlsg/6hE202m+p0OlFKQYk6gBKHfcBoTqfTqMd0QORAnQ0eAIPW10P36/U6Jgl6uN6rEDigcs0ngLjT6ajT6USH4sqVK7p69aqeeuqpeLDH/v6+9vf3Y7UAB8aMu5e/ApR2Op3oKPC6s3geene2ESDrTkjK6Ho1C4CZgx/mkzGh/4xvq9W6LXkPQHa2vqPzxNi648Q4cz9ed429y4m4JnNHDehKpRIdP5c4ABQpx8fx2rSLfvsaTfvq7CztYix5HpkXvsua87lxh8UBPVp6l1vwN2MXQohjmpa/c4kGz4mXH6RtXId59d8NZ/2fjgXmM/7b0mw2NbrHMq/vxO92P+zfsx7B/W7VfvdSaU2zZcP+0v479Ze+8Z36vPd8vN7/Fz9C4Sd/4aKbdJvdCcb4DZJ+viiKJyWJvyUphPCtkp5VQTw2GxLJnJ1y5g8wQijdAUDKHPm1z5NnwFoirXBG1lnldJOfz+cxjH90dFRiEwEOq9VKs9lMq9Xpccyw0oTvOeqYjR7pAv2EEQe0nI1tiRFfLpexjjIAwQ8dAVCgrSS8THk1PyQDBhiHAC0yQNolKi7BANi1220NBgMNBoN4306no16vF99rNpvq9/vqdrsRACLpcN3w8fFxBKvOzHmtYubQmeBULuFAC920f85BdMoE87fruAFT6Yl5SEpYtwBF5Cyr1aokJ0EqgKX3p50k3+E0sX7TBDJ06e5Q+qElrCOM9hGhYH275Id7EL1hvZ+cnMQKJ+cBdu7J/ZwRd9lNyurTdhxHX+ueT4DzxLxyP9YH8wGTz5pivlLm2383fIxdWuBAOP2NgQG/B+2O/G5ny5Yt2/Ox73z5T+izv6auX/vXH6sHf3J8qdjjOwGM/6gsHBdCeKgoiifO/vtZkp6VmMQBnzNMgGFADqCRTfY8UOyaRoCKb8TS7eAIsAMDu1gsIljhPQ+zhhA0mUx069atuGnDHPP58XgcQTHh3MViEbWU9Pf4+DjqmGHOAD0eXj8+Po6AB4YX0EafYAxd1wqDCLBkfJ0NBWjCUAKMCZd7shlOBAYo2d3djQmJkmJy4e7ubqzH7ICl3W6XkhJZBy5RQDLCEcywnScnJ5EphyVE+kC/uR71klkPjHuqMwe8uZwAAAjA9fC/a3t9XFg3zsI6MHXtubPKDiZdH+z9qdVqkdlnXTNvgFjWi0sCHMTSVv7GAXQZBoasBEeqWq1GNhYnkiiFrxGcKe+Ts80uQXKpDn1hPQNqvRoGkhmPKLkUBxmF/57gYHoUwOeF9U9bXZrl8qfzkihT2dc9YnfkdztbtmzZnq999wf/mPSXfkwf/ymfpRs/9bGSpFf+kye0fse7LrRdLwgYhxA6kn6fpC+2l/9WCOEjdBqSe3fy3rMyNlU2UmeJPLnKWSVnjjyRizAtGkv/rLStAEAoejabRRDlJdbYKAEfgCU0vl6mDUkFANPrMTu4AoROp9PICgKYnd3yihKABEA276UgQdJtzBrAiM878PCQPCXhiqK4LbOfsDyAHeYbhvjq1ava39+PEoxGo6F+v6/1eh2vizyCA0f4P86QpMiw0g8AGHPBQSchBPV6vVj6DofI14CH01M9sQNcjwwwJn4gBt9D/7parUoHeDD/fJ45TrXvXMcjGP4Zb3daRQHgTl9gc9HKNpvNWF6PPjHnXNufISIT3v+0agVrkWsh9eHgGZ6DtBwdEQnayHuNRkOdTufcdcrhK8ikpG1ZPdpIO1jzXjlE2jLkOB+MrTstzDvPkuv/XXrkgNjbmjrZ95Ldrd/tbJfHNvOFXvm9j+ldn/mmi25KtmzPaD/x4f9G+vDTf3/oaz9Xy/f+Tn3I1/z6hdU+fkHAuCiKqaQryWuf+4JapPJGk2aHu+bQw7gAEwd7gJNOp6PBYBCBqFeDKIpC3W431iNGx8r9HAg5oAM4LpdLzefzqNXkEATXQtMuB6eAMmQbgCM2YQ/le9m0oihi/72EGowmsgYkG1zXAaKDNNdvc/Q09/FxZA4AJYAJxkE6BYX9fl+7u7vxuvV6Xb1eL7ZzNBqVtNA+x4ATH/dqtRoPCPHqB1yv2+1qb29P/X4/AloYQuaQ++CwAGQ96Yz7eSgdoMgYMscwxoBPT1pjvmEnqTWMdtllEAA5B+6ptjUF3Q7imBNn//15oa0AZdf0OtvJPd1ZSyMrtBFnAUeEyAInGPIdr6FNP2gP1UsajUZ0emCBXbrE9wCj3ifWAX1z3TPfdQbck/9SiQ7mjouPvzPhPid81yvb3At2t363s10eK46P9WH/3/dKn3nRLcmW7bnZ2z7uH0uSXvvo/6qX//ETrQ9vywG+63apTr5Lk2AkRXBBOD8N5adaUt+IHQC5xrPRaMRjoWFg2+12SfbgiWlYKi9wPbEDBxhDSrqdnJxoOBxGbS+HXNAf2gQInkwm6vf7EewiQwCgNptNFUWh2WwWwQ0ly3Z3d9XtdkuJiYBLGDwHR66RhI11TbfrM5GwwCASWvfwOIAHiQNjjW55MplE9tcZcELkztIx/6ksxvWvJOb1er0I6mazWQRTfrodUgnGmdcAXYwHY+anwEnbE91wRFhz0rZMGfV9AedegszHCcDMmgCMur7XGWX64I6WV0ORFB0a2gqIpcShOwMu3fDvuD7bHQMcOKIFDtL5Ln2SVJJCMYeMD/NNmUNJkXHmd8DnYr1e3xa5oB2MNcb6dg26j5/3K3VC3GnCUtkF1/C58s9ny5YtW7YXbr/8Mf9U/9M//hzNjj9Ij/zht6uw3/m7bZcGGLO5sIHCRgGMOa6Yzc7Z0zSZJv03+uBOpxPlApJKJ83x+TSk6iFkD6fDMDuAYzMH7Lo+czabxfD/bDYrgWc2en+fRCckG14vFnDkmtnxeByBX7/fj+11DSWsoX8fh4G+A9Rcb8v4pWAKYNntdmNFCph4wB0JZEVRxHrE8/m8VE8asNjpdEp9Pj4+Lo27a2eZT9YKoBHQ6gCGNtN+5gwWMa2p685DqiulrBhA1x0zaRvGRy8Oo+sJkVSI4HM4SYwzQDfVrgKs/bhp1i5Jlw4C03C/O5M+7n59xtAZWqIV1M8GxANUndEFrOMAcV2X4TC2ODa0gfUPEHbQSVudnW+1WiqKIq5ZHzMkSD4eDtTpB8y7f4/vuITL2+DzzrOVLVu2bNnurL3ldf9SkvTJP/Lp0ic9Lr1IJMSlAcbSdpNPNbYeVgdkpBshbKdUlgoQ1t1sTkuhXb16NWb6T6fTknwBMMf3zjPXxAIcfcN2/S6JSuv1WoeHhxqNRhHwUlUD8Oo6Zmc9YZUBLM6a+cYNy03ikYedU2aQA0xgddHyzmazWEnDx0La6r6dvYfBbrfb8bS7fr8fx8UdCxwBpCeAQNqL1hVg4qftOUOHrpgKG7zuAJ614t8FBLtmdLPZRE0rABKnB7DmyWU4B3zOQSSyCuYKJ8DXFYlusMq87hpYbzsMvQPRarUaj0B2Fr1SqUSHwyUb7rixfpkT+uh1rx0IOmPtumeSQJENMV9+GEuj0YhjJ21BZbfbLdX/7nQ60ZH0ccaJdYkQ/XGGHcfLn1eP4ji4Bhy7E86c4QAQHXC9us8ra8Odb+Y+W7bLYpVORy//twcX3Yxs2e6I/ciHfr8+780fryc/5sUpi3mpgDHmzFaqdfSQpm9+fDatluCfo74puktAFRIDT1hygOwJe4STASiw2pvNJuod03bCVAIq1uu1er1eZItT3SkAgM86q+uADqkAQJPNXNo6DIvFIpaC4xhqKlvgQLDZhxA0HA4lqaT3dWCUjivW7/e1v78fJQ2wf7B2VNGYTCY6Pj5Wq9XSYDBQr9eLfQ4hqN/vx3akzgkacLTFAFqXQfjfMM8w8mmiHOY1hAH6Xr/Zx90dNW8Xn3MgyLHIlUolOh9IAKhP7fIG2o6jQP+QfbiTwX1ZZw6C/Rny9rBeAJSsa9YtDiTsr7OrHpmZz+fxOeBegGqXp9BHXmu1WvFkRxwh5oXrMMawwchvPM8AR2SxWNzmJLrW2BPm/LfE5Vq+fpgPn1/AvfeBOaTf52mTs2W7SAs7NX3Twz950c3Ilu2O2T989D/qU/W6F+Velw4Ys3kT6oVdm81mkso6S8p1eWUGZ5kdMPkmKG2z9NGQoi1OM/LRijqIgHXzGr+SIpPqzBvgAI3marVSp9PRlStX1Gg0Ymk4wDahdkLw6/Xp6Wkk1DEOXuPYQbiH5AFVw+GwpO0FDDsz2el0Igh3ptDBl7PyAF1JEeju7u5GsMTYudYXUCxJ3W5Xg8EgAn4v28ax14B9T+YC6MI44jTAXvraYT0BTOv1eumQChyMdrsdHSMqmLBGnJUH+LojA2OILMRLicF8so6Pj49LyXgeymeds17b7XZsB/dPQaRHLwCZXJfv+NqUthIYnx+uwzPkjgMMOsCcdTybzeJhMy7ZcEYfxxFWl7mC6We9sz54nmHXWXsAYBwbnlUcWuYZh89BLmvKEyVdZiNtHWEcDn4ncIox/w3hfb9PtmzZsmW7O1YNFX36Lx/q+1+7d9fvdWmAMRsQtUzRD8O0skmhzwTgAIzTzHCXHwDovOyXh0jZ6LkPGz2brrTVHi4Wi1KyFq+n4ACA4sCd1+gHwHU2m0Ww5SfoMS5sxAAFr7Lg4ByWk2OTV6vTUnAAUkA0DKmDMcAVfyifxuZPez0hCpAbQojA08GFJ6ZNJpN4vHWr1dLe3l48Gpox9WQor01M8hhjGULQfD5Xq9WSJPV6Pe3v72uz2cRDNXCgaBOsuAOn9Xod24JMxzXYrBVP6GSccRQA8DCxOEPoZJEQ8F0cLE8oREPP2kF/S5Il+nqeB9rEmnJwjRPmJ/jxx6Ux7hC63INngGfDJTkefZlMJmq32/G5BPzyOeaOaAb9YR5cL01bqIji68xZXp5p9MGLxSKuYZd04Hx4vyuVSqmvtDkFvoBfB8/8wTlirbIOspQiW7Zs2e6+/em992j3V6f6p7/1ZXf1PpcGGGNshFRqAAAAiPiDVhUW1kuLIV1gswa0AUY4cY3kIGlbHcA3Q6ksSSAk68wdIIXvrNfrWJcYDS/aWPoBkJIUgSuHXwwGA0lPf9qWb84paw14Ho1GqlarUYrBeDjY9iTBNHkInehkMindnyOo0UAD6gaDgfr9fhwrZ/vb7XasX4yGttfraW9vT+12OzokrhNm3Pr9vur1ug4PDzUej0tSDua/1+tFrSpjBrOOfAFWWFJknJnbdrutXq8XnRQfe2eFXffOe8w3DoSvAa7lDC7zSR+QHDSbzXgaIOPqc4+e3eU93AdQhvPnwM0TxDypFcfN6x07AOX+aNbRfgN0kQRxPDf357ngufOyivwfAJ9Wh/DvecIo4B19Nm2EoXdHgXXNWPsJfS4HwZHluy6TYazTsnWMoydVEgXIlu2y2fpoqDd8yh/RD/3wv7jopmTLdkft8/o3VX/7Wv/wQ15+1+5x6YAxm7IDScKkbLLOhLr8QdoyrF6RwBONPCHKmTaXSACkpXKYGLCeSh1IyuE1dL/nARQ2bWcYvUav6xZhhmGVcQII+zM+zqzxGglSXl0gHQ9kCmkoGDAB2AIIhRA0nU4jGGg0GhoMBvEkNB93l2fM53O12211u93I6DkLjtMBI79er+MpehybDUNN+B1Q4+w8+s9WqxXBrlfKAMjx+Xa7rX6/HxPAuLcDXdYMrLPrhllD0hYYpjr3w7MajD4HrAkAJwCc8fCKHM7Cp6Dc1xXPjjtBfBeH0ZlcP3ade7tUiKgFQLEotodv8F3a6Lpl5sbBJY6Oa+BTppZnLQXvRDlwnHj+XS/NOPnYpmUJvd/0j3nxhD7azrPiMhdAtevBPaqULdtlsWq/r+/8gW+T1LnopmTLdsftt9bfL+klAIydpQKsAew86QmWmPJUaXKcgwaYOpgqwq2+ubLxcT1nOwGqntCVJkCl1SIAkePxuMQuA5jZSOfzeUygQ3bAddj0JUVnwKUQRVFoOp1GLTEAwPWzAEn0nhxTzWbvGf7SVvrgelYADeAdgIpml0oUsLZc05lhr3zR7XYj44yu2svRHR8fx+OO9/b21Ol0IuAGhDSbzXiYx3Q6LWm36QvgeLPZRGkKfUCvjDzEmWDGzWU2MKbIG9xhcmDKvJLUSYQCHTYAGCDmaxUwzvrEQQBUArhxBHAOcBqksnwHcOzr1MGia6f5HOvDAT/9A0DTb/rmz1K73Y46eUAxY+Mlzri29wejjf7Me7URj7gA+Pm3g1ScQSIfyDNoO5IK18z7fPgzlbLM7nDjnHkSarZsF21hp67v/pUfU7uSQXG2+9M+otHQF7z9PXeNNb40wJgN2HWQXoeUTTMFtlK5BjIhV4AhGzQspUszPHEGZoxNFTAEOw2odZaQ2r3OOBHmdTbLQ95edspZvFqtpitXrqjb7aooipiIBIsIY8zmzWvNZjPqa70MGuAKQAAI9aQjb4/LBGAeAQcOLvgsrCyJaz4uDmyQMcDCM2/T6bTkXDAfnuzogBi2knmp1+uRAaa9gKROpxPD4rQJMATwdeAImGUM+CzjAYgiIQ4HgTbTf9YqJehchw2j3Gq1SuF3d+LQJ6cJfPyf+XRtrEszHNC5DjZ1egCNkkoyA67nzhXridepN81nJ5NJdJQ8cdMdU09s8zXobcLJpS8+ry7JoD2sMeay1WqpXq/HSAnXYR3y/AFicT69jjKVa3CkeT5CCPGavm5w8DxilS3bhVqlqh9+z89Kql90S7Jlu6vWrhxLIdyV2saXBhhLZRmEtM3GdxbLN1QHB84a+Sbs9XZdbsBmlpZycmaQklB8liQh9MmDwUA7Ozsx2QmmzsEI+trJZBI1rQAINnWAFJIEQK0De0/wAqQAhGAxYUQ9aQxwATPOGAI+cRjoe7Vajayt19UFkPR6vQgSSaiivwApvuv3BpAyJ4vFIjJ2gEbXEDsorVar6vV6cb7QceM44GjM5/PSqWonJycaj8elAyoYb0kxcWo6nZYOfoGt9c+5/ASQ5tU6WB+SoubZqyZwLLnXr/YSeqwHX9cAN+Z8uVzGNtAOXz/cxyUpREwA+jxTqdzAq2Ww5lw/7xICku4A6j5GPCvO4DNWMMSu1cdR9QNKGF//XXBdMk4DERSXMvF7wDVclsLa4hlj/lKdvkswJEXnhPtzHQfm2bJdBvvB33yLpMozfi5btnvdPqMz06//0qF+6LWDO37tSwWMpW0SkW/MUpnJ4t/OFMOOOdBzoIpmcjabRbDqoX/XAwMMfHP30DkVFtbrtdrtdtzMPSzLxoneGBBBmDkNOTs7yuEjy+UylvsCnBJ6brfbMSsfYIZUgQ3fJSaMC4Cae8LAuqTAdc4+HwBivlOr1dTtdkvJaw7eXRsKk+dJgABbQJ2kCOI42MLnHXmHH8QA+4nMhtJxtGE2m8XXYdyplezsMNcCRHud61arFRlJ1hZrIw3J4/zgWHlInvrIrpX3Ork4cGkymdcL9nq+jB/AOIQQmX2PUjC3rHVPUqONRVFE/TyJqM7oMl7Ml4N3HBfXvjNGjI+zt6xPHEaeD0+g9TJzOCV+XTTarAscBtaLV+egH5Ii28+YAIS5LnPommWXVnkUyOt0Z8uWLVu2+8MuFTBmwyaEnIJfGCcHzJ5sxCaHnAJ2iD+wXM4MeSIewCfVvoYQ1O12S+CCzbzb7cZQLpu6J27N53ONRqOo23UQCrvp34PtI6TuiYOud6Y9DnL5v6TbABwAAsAlbZl2Qv6w3iQoAeLQYDszDIgaDAaxwgRzx/cJjzsjSEJYmqznyYt8n0odkiIwAYjQdj9aGWkFQM7LvLmuGPYZwAx4czCZMrI4UYwT3wP0omf1OYAVlRTBGyDUpTwAcyQSPgcpMPb61bTPpRUO3jyxjnsx/6kUwxP2XEftjDxr16MIlIXz5FYALmvOQbFr0NFfIxuCNccppT9c3+UrHkE6TzoymUxKa4Xr0d/NZhPnDZDuvytpdMmjVlzXnYBs2S7aag89eNFNyJbtvrBLA4y9MoJXaGBz98SoFNw5q8MmClDx0KiHcSnfBQCVdBsI5bMAbXSjfmiHh+95DV2ltJVzUOWB8C7/TrPwAbKAY9pE/wFsAHEPOwMISc4CXAIIPdTMtTwpzY/a9jC5J+sBbhlvDnLgwBAYOUDQ8fGxhsOhDg8PY0UKnBZ3IPg3DoykWN/Zdd8whwAo5pz7clIaLDRzw5x1u13t7u5qvV7H60sqlS5jvXD0MtdhXCaTSZTGdDqdWEbM9bqAYuaWfsBgkhDJ+sMxY134QRmUcmNcXUebhv39+fEoBOPl+lhf4zhCaGxhZH3NpJUbcCCd6fbyaoBsgD73Y64AyLSZ97gXbDbXgZnlWfLnlPZ70ijX5LeCceK6VDGpVCrxueWaLgnx9cx68DJ8GRxnuwz2v/zHt6gasowi20vHepWFaq94VKt3/8Ydve6lAcaYs26wwzBcqcTCQ7sAND88wLW1nuAE2ARIepa5tD16mM9yShubIxstyW9og0nq843ZM+JhoOnbYDCIwIU++YbLBu2gSNpWwmC8pG2CH8y0Jz+5HMUZM1hWPusMmMtLGBcACCCbzzD29NePFkanjTQBYAzzx3jDajMP1Jr2SguATa9MwKEmgLL5fF5KOERzy7HC3W5XjUZDo9GoVGWD/qGhBeQyVozRfD6PiZCw2CT7eY1kwCIadNftwvJ6OTXXV7uevNlsand3V8vlMspCuA6Al3lw+Yq0lVA4K4xTQtTDWX4HvOfVFE6TDpmDVDLDGkE64qyrtD2mvCiKWKsaGYhLVOgjDoZHN+ifVE6oo72MvTtQgGnWB0mhDorpqwNg3sNx5Fn25ypbtou27/yQR/RHHr+RwXG2l4x90e779V+/+wm9/aPu7HWfFTAOIXy7pE+X9FRRFP/D2Wv7kr5L0iskvVvS5xRFcRhOd6tvkPSpkmaS/lhRFD//bBuUahodvPqmjwGCO52OHnzwwQhgOEbWS1s5YwcLDRjzcm4cHsHm2e12owyh1+uV2C0AFyAFZowNms2d78DgEiYnVM5nuLdroB1YwBg7gPCkNml7KAn34fMeJvbrklDI5/z7nliWajsBvQ4i5vN5PNzETyjESeF6qTbTQ+e007/r+u2dnZ0I8EgWBJA7i+6yBk/SKooiMvKsD0/a5Ghl+u1yAgehtVpN7XY7OgXU963VaqXKCKw1rkGFDeo6U02Ee7J+AMXdblez2SxKfzzRlPnziArOmb/OunFpAmw2YBcmlTFzPTRjIamU4Ml6AbDy3KUyDOae97inSywcYHs/GT+cLZ5r1vDJyUmU4gDU/bmmL65Tps62V9zwSJRHbegzziPOWJoHcZnsxfzNznY5bPX6j5SUpy1bthdqz9a1/A5Jn5K89hWSfrwoildL+vGz/0vSGyS9+uzPY5K++dncwIGPVM5kZ0N0Jsw/D0t67do1Xbt2rXR8MRt0vV6PbKEnpQGG2PzT0mhXr17V3t5eBFX9fl+9Xi8CZNciwyYBHJ09JuTuAAFgSViXDZdqBmhLYeHY+Al9A0YAxs4eSiqxwABH7okMZDabxT9+LQCXtAV3VKbw09C4Nqwb4BHAx3WRfwDGvPyVtGXpADXoTbku4+JMKuF1gDHsdb/fjyy+a0L9sArmC4DJfEnbRE++R/9ZR2hTKdfnB4ugz/XkNXfAYIupgtHtdiNAo7+A5263WwJ8/gfAyh+cMsadY8C9mgSAlGfI2V9PuKOvgEzWAOPE9zjsBUeDSiGpjtn77ODe9eE4U/5M40z585k+/y4RcYafduNE9Xq96ODCZjNXLtny3ANPvEVfzfrwyE7623VJ7Dt0l3+zs10u+95/9PczW5wt2x2wZ8UYF0XxEyGEVyQvf6akTzz79z+S9B8lffnZ699ZnO5MPx1CGIQQHiqK4olnuk+asc+m7iyypNLfbPQkVTUajRjydqaOP4S2AZrcj00ZFni9XqvX62l/fz8CMA+H+2Ea0vb0r06no9VqFcPeq9Uqlg8jvA7odtaWGqwAI09Gg5UFcLiMwk8H81JbvJ/qtGHYYCcJd3NNZ+wA6M7mAuba7Xas9AGoRZPKgSaule33+7cxyui2XdssKTocAByqC+AAAbD4DGuB8el0OhFQUeEDp4W54v9evxoQDsAisQztr0cxqNAB20y7Aaq+JgDS0laugTMEGBuNRvHztAsnDuCH/IJnwuU3gH3mnP7x3Ljm21l5f5ZYG4yJJyA6SHYQjqOBc5gmqtF2vsdaZlyLoigl36UJcClb7AmjgHCvRsP65dlj/F1iler2Yfn5HeG5ow2eMMu/uY/rpC+TvVi/2dkuhx3+sY/RTnjLRTcjW7b7wl6IxvgB++F8v6QHzv79sKTftM+99+y10o9sCOExnbIT0brdrmq1WgwtpxniHqIF5LH5dTqdCNiGw2G8pm/OsGBs4BgbNvIAEsw6nY729va0s7MTAQXgB9DgDBubK6XWCH/DLpLQheaWttMv+uOJhLDOhKidXR6PxxEcS9vjpqWtntglBeiCXcrBvbmOgxdJkY1FVkHSWKvVUqfTiQd8AGAIV1cq2+N3SVKjnFe1elrea3d3N4IT18u69AMgShk6GHk+y/8BVi5PQcs6m80iiMbxQD/u7DRSDJwrl7ukII37Mu6pBt7XH9/DMWBNA0BhX1mXPp6APe7nlTl43zXKDtJ9bl0qkGq0aYNLGACOAEuXGQGm/Tn0ZDqe1+Pj4+g8bTabmLSIYwFL786gRw4A59yLZ5kky/TZllSqasIYObPurLRHXCSVTll0SRFA3KMLfB+H5R6xF/SbLZV/t5tq372WZntO9t1f9bVqhO5FNyNbthfV3rac6Yd+/KP0Kv3UHb3uHUm+K4qiCCE8J6FdURRvkvQmSQohFGhXPUzKRu56XQ/BSrotVCyVQ6mABxLSJEUgCYhDWuDsNCB2MBioVqvFUmAAVNdo1uv1yFZTng32EbYRHbIzs+lGC7uafhZA5aF43mezp+1s4v5/Nm9YP4AuDB0MMvIGvk+I24GxA7Z2u61+vx/H1pO/PDzO3ALeqLSwt7cXGW80uoT/AaW1Wq3EKNI+2uqVH3wd8Br1plkvXh3BwawzgYA12uAaXdeqOsPp4NdD8M6guq6ZMWZO6ZdHIbgm7CRrlggDAM4rofghLjChruPl3jhgvoYAmV6FxJ8/Z4/T59RLyzH2VP3AueMIb67LOFOWD2024BV9L4wsa9pL3XkVEBxLB7uuwef/PFMAbN5j/t3B5L4upcCc3b/X7Pn8Zp99L/5u98P+5RNXvwTtvV/5sdqt3FlgkC3bvWA/Mv0wverL7/zafyHA+EnCbSGEhyQ9dfb645Iesc+97Oy1ZzQHVvz/vPelss4QUOTgg82Oww8AXoTyYcn4PJuwM1SAUBihzWaj8XgcPwd44KSzer0eD//w5Cs/rcxBUxpmpoKFAxb+AHx43ccDkOAgzOvz0n/uBeNKnxg3tMCe4IdO2JO2aGO/39fu7m4sVwagOT4+1ng8jiXNACez2Uzr9VqdTic6ErTZw9PIXAB/nkjFGMLqO0PJdRhLak17+J3IAP1kDOmTy1tgSFkbzu6n8hyiCqw9ZAJIQBhHWEwYSQfnzAXXQyvvFTy87q60Pe2QNeH1tF3/6g4An0V2w7x7XV8HiOdVfaD9tI91jmQIln61WkWHEadEOnUCZrNZdDhd64+D4Eeas6a9NrH/PjBX7tQwn6nsiftUKpUI3mGiHey7pTpxniUciXvE7vhvdraLt3/42Ddot9K66GZky3bf2AtR6n+fpM8/+/fnS/pee/3zwqn9TknDZ6NVg3Vi42Pzc32kM1+uLWUDRh88nU41m81KEosQQgTADjZhzzzU7Al0gGMkAx7qdWaZZLzpdKrxeHybXEO6nb1yoMnmTZ/SMK8zd66bdV0loAMGmFAvDLRXXuBebPgAQELlMI5eeQIgCjO4t7en3d3dWDOZpMXRaKThcBiZ3uVyGWsZr1YrtVottdvt20AI95RU0vA2Go2YPAVjClvoAAVAd3x8rMlkEueBMQGcObMMo+nJaYwB7CTrxMP0IYSYcAdj6evLE9VITGNdOgvvTLc7ZRy5vV6vI9NarVbj2DE2foCN674xZ7nprzP3OH1IdBqNRgnQsw4B4B7x8HYCFgGJfAc5S6ojP4+t9TUMoGW8cdxYty5lYo15aUDXn3uUxJ3h2Wx2Wz1inBD/4xIunAccTnfM7gG7o7/Z2S6HfdHf/7M6XM8uuhnZsr2o9svLuf7R3//Uu3LtZ1uu7Z/rNGnjagjhvZL+uqSvkfQvQwhfJOk9kj7n7OM/qNOyP+/QaemfL3i2jSF5zEPdqTyCzdrZO+l0Iz44ONB8Ptfh4aFOTk7Ubrc1GAzU6XQkKW6EfgKZa5ldLwiY8MNC2OBdioEsoF6vazweR0DoofY0Gc7ZKICmJ365FAEGEVBYFIVGo1GppBagADAAc+aMJMAF4ACj5uN7fHx8G4CCfQMAtdvtmJTIiXdFUZTA3sHBQaxBzPePjo40m83U6XQigPV6uIz/2XqLoA3taSo3cGZT2jKOrmdl/DxRi2s6W8x7Hsb3CgeMJQA6hNMDYqhIgQaaShBIgnCEYK0Bmzhb0rZsHfMD4IRVxlnxBDMMJtwPyQDQM64uO6JvLuPge8hzfH3SBxwF2kdNavrP+mW80mf1PEvlTrSZ58bXiFdLYW7cQeY7Dmz9t4E++ecZP2eJPUETWQ+sujvL/P10fbsM9mL9Zme7ePugr3uzxn9mo72Lbki2bC+ivfPkiq5/05vvyrWfbVWKP/o0b73+nM8Wkv7U82kMG9h5rJ7LK1xW4EcF37hxI4Znw1l5sH6/Hw+UgEVutVolhgrwykEVAGQSxjyxx5ngavX0aOZ+v68QgiaTSQTFUvl4XGevnBl22QKAnxJknnAHCAeEwe4BSrwyAfeA/QPMEdL3Y7E9NO4gjbbCjrvm+qGHHtLLXvayeEAJIAJgCFvN/3Eq6AsSDal88uB50hSYatcR+zHDtu6iEwDL6WF7nA4YYZelAEA5PIPjrfkujhBh9Ha7rd3dXfX7fUmK8pxUH8t3kSp40p9HCjzpEFCMFIc1Ryk4l8/AXLMOkDWk8hBkJC7P8TaQ7ErUxTXsDkaZDzTjVAjxkxz9JD8/VIPvMY5pTgBVJCSV3qtUKqUoD3PgMg//vDPQrnt3AJwmDXIfpBfStoY2+Qk4MlyXsXLH9zLZi/Wbne1y2B/+8r+oH//av6d25Z5JBM2W7Xnbu04m+ltf8cXq6GfuyvUvzcl3bDCegARoTAEQn4GtAkh4map6va7r169rf39fkjSZTGI42nWvkmJYvNvtRkBEyNRPJ2Mj9NAp4fT5fK7hcBgZQ0DxeRsoQD5ltTCY2uVyGduBA+CHSABK0NzCLsPs8j73nc1mGo/HpYMzuB+sM8AQIARYAEj1ej1du3ZN169fV7VajaBwOBxqPB7H8SmKQsPhMB6AQh84VpsDVFxKQPs5NAMngXWBBpujmplDAKOHwT18z3dg3B3sIYEA3MPKOsj2REAAIZKFVNPuyaCwrcVZhQXeJ2IBGw2gZixcH+3sLgAfLTMMNu11OZDLVLxNmDtF3k9ANmsYEMn6cwDPe6xj2j+bzWLlEtY6z3Sq1WVemTfXbLsD4A5bCkQB5P7b4M+VS5f4LmsLJ9LHh+fL59rL7bl0izHKlu0i7YE/+S41Ql6H2V4aNtzsqPM9dwcUS5cIGMNuegUA15x6hj6gjk0LVoikOvSvV65cUafT0XK5jIDQE5BcQ8iGDKjg1DEADMDJtaAArvV6rRs3bujGjRtar9dRekEoH+CFFhQQCkgADNEGPg/IcXYP0EJpOgdX0inT5cfxOkhwZtlBBu0BGCLvcDZeOgVTu7u7unr1aqy7jN756OhI4/E4amABv8hjqGCB9AMnhTZIW2kATJ8nV8IaMkcwvDDnSE8ALtSiZi4BkMy5l+7zusbMKwDL9ew+91TcwCFxoOlA9+TkRJ1OJ+qFnfV0uQF/JJUY9c1mU3K00pJ6AFln913rC+jl3zxH6GVpe6rb57Opdpj16MmMzgYjqWB9nqfTddDqDDftd0DtjpP3w2UYOEkAXMbAozv+DPHs+xy7vEXalm7jmfXETP/j0axs2S7K/t4rv0fVXK4t20vAnlpP9Zf/1zcq6L/etXtcGmCchlnZbAAsgDQv79VoNNRut2NCU61WiyDkypUr2t3dVbVa1eOPP673v//9WiwWETB6gp+0DaXC6HEimeszndV1gLNYLKK2GPDoekbYTAAnDB9lvwBS6GoJ3cN8I+ngM7u7u9rd3dXOzk5kRgHtzhqn1RYALYAT2gOzSlIdbG1RFGo0GpG57na76vV66nQ6UcdLwh1A0Z0J5pM+oJMej8dRcuFgE6ACcMbBgJ2DaT0+PtZoNIptxpGg8oODX6/E4YxgGspHHoBcwEvgeX+KorgNpHNtnBmAK2ONHnk6nZbu61Uv3PlIw/xeuYS/WTfME2vZy5fxWfripdsAuC4xcIfPATCgFjlGyrx7RAdnkWfHnQqvXezyE5fFEAnxCA3t5Dlk/NJKFunzmUqwHDiniY8u+3BJC2OA7MXrPSMZysA4W7Zs2e6+zTZLff6nfZHCf7t7oFi6RMAYkOMAmE3bk88ARIQ30fsBVHq9ntrttvb399VqtTSZTPTUU0/p4OAgXh+mECbLE70AgWyUbLh+ZC1AAbZ6NBrFwwy4HsAM5m29Pj04QlKphFgIITJbrr2EvaItsGcwr4PBIGbjAzDQoXJEMayjZ+W7xtSlACQaOUO2Xp+WVgvh9OQ6JA6cVgcoBuTCbqKHBmBTUQLtbnr6mmtxYREZZ5fH4EigXQakenibuZK2gJJ7AHSk8qExOCsArbRihLQFYbQRwAu76cldMMkcR4xEx/+wbtPa1a5hlRR1vIBl+gxTC0gF7LJ2cCAcdAOAPUJC/5Av8CymzC7OAI7MbDYrRR4AnTir1K12lhw5AqCeUmmsdZc5AZS9prJXg/EqJP6ey0joKwyzy634HuNAMmeqOeZ3gHllHFhrHOmeLdtF2Rt++UgPV/NhK9nub1sXG/2h3/XZ2rz7V+/6vS7NLzobOmDTQ5wkY3m2e6ohRBtLfdxu9zSsdHR0pKOjIy0Wixg6TuvCenIaUoQUxPqJZYA0r1xAKS1nPwHKgE3fyD37nWRB12sC4NvtdolBhIEFTHKABRpa7kN1DsbVw8bOcgESAC0AH4AH0ogHH3xQe3t7sY9+fLW01W/SfhITW62Wrl27FoF1CCGCIsC+64F5zSuE0GecCJdo+FwC7PwACMzBEnMIIG02m/GerlPmfT9wxdnlarUaPwtg9cgCoJh5dmeJfjpzz7zwfT+aGQOU8X2eD9cPO5BkrGGW3Wlx/S0SGthUr6bhYBIAyTh7AqmPLd9hrryiBu3CuZHKyZM4fIy/zyMMss8Ha5r7e1sklSJNPAewwgBf1627g0pfF4uFJpNJdOD9vj722bK92PbvP+GD9dk//0t6WS1LKbLdv/YZH/kGrd7/Gy/KvS4NMIa5cWaMjdwBFSyeA0mAHJs2oAWJAwyfl6Pi2oA3au06YIHZdC2kh865JsC31+tF4O1MIKwffaC/Hv4FkAC2YOOc3Qb4AigAFw6giqLQeDzWaDSKgAQZBYDBnQMAMAeeMDbSKbinNu6DDz4YtcXubMDGeZUHxo8kvk6nE2UH9BlQT0ida1CdgEND0AUD0AA4ODGeXEcIHjYVR8KTq7w6BEAMkIQBeBzsY55ECAjGOWG9eOQA6YCzlO7gOVBGcsM6Yz5Zv6wd18fCBvsRzi7RYIwAkshavMoHAJC5cVkHr8GM1uv1KJ1BD+zJhO5wudPCGvfoAM8IkhovwccaIrEyZfvpD3KLVM4h3V5BwpMA+b3w69Jm1nIKinEUuF4ahciW7SJsffOWNs/8sWzZ7kn7tI/+NG0Oj7SZPvmi3fPS/KL7ZubAAEDJIQmezNXtdiM4QErBtY6OjuKmSEgfUOQh516vp1arpfF4HO/pjBrgDwbRgSR6ZSoj8FlP+vFNHFCeOgCuffVTyABD3i5JGg6HJZDQ6/WipACwBrAAaEjbULXX0wU4Axxoy2w202w2U7VaVa/X02AwUK/X03q91s2bN3V4eKgQgjqdTkl3S9IhmmqvdYvDMBqNdHh4qFu3bkUmv91uR7Dh9Y29egHACikBIXvvW6r5dAbU9aLSVqvr1RAYv5TZJ+SPpMcrjkjbsmqMKRVNPEkLA3gyf65VB+ghh6AdaHEZH8C6H8RByB85icsoAPNoz89zjkgk9IiApBJYpo2z2SyuUb7vkQZn0DG+x/rgXjxXOJw4PzD4AH6cJOYbc7mEG05nmkAJO857RISm02lJTuF6ccbT5R5ci2hLtmzZsmW7c/ZpH/eZWr33PS/6fS8FMHbGzqtESNuw8GQy0WQyiQCY0+bYDCeTSdS3AlL4f7t9qr/y5BxpC1r5AxuM5tiBqpfNAhDDNnvY3UPhnhAFyHF9KWDHWWlJJdkFABP9MIDC2TkHfA6maAubOcyefxam2Zl3wu+TyUSdTkeDwUAf9EEfpCtXrsSxXq1WkU0mKRAAAWAkfA+zvVqtNB6PdfPmTd28eVMHBweq1Wrqdrvqdruaz+cRQMMqsj4A9JSFo9qEH9jBvDO3jKFXuJC2jDBa4NVqFQ+BcTkIn91sNhG845wAjNBvw+p6JAPw7PPlNZs9Qc6Pk3ZpBYmm/jy4HnY2Oz3xCnDG2OHoIOlxJ8IdIQeuHqXw9evjB4BcLpe36at5LugT88JnxuNxqYqFjwHAmPUCAKauMpEU5pb2Ma4OVs8znAo/BRA2PF07/lvBaZokdfrhLTzbGRhnuzALQf/7r/+sHs0yimz3ia2Ljd7wOV+o8JO/oNNziF58uzTAWFJJLuDsH0fippnrftQzzE2j0Yhlu2D42OgBEbC2MEewTYBFQMRkMomMFff244l3d3dLTJWz3I1GQ9PptJQFD2CazWa6efNmvJdLADzxDjbS2TQvK4Y5w767uxs3eTZ9Zwm9jbCS9AsHYjqdxuObSZq7evWqut1uqWYvY+d6S0+iIwlxOBxG1vOJJ57QzZs3NRwOtVwu40EelKljzp25lVQC+uiBAb84C57w5fIO18kyXpJi4qAzsawdrx5BZKHX60U5DKAMUAvL78DQtcDOWjKnLrPw95kTgLvPP0CT61IGkPs6S4tW3bXwaSUQ7olD4Mdb00+vREHCpTt0JMniGHhFDYA2VUN8PDCeeR835spZYsab1+mPO4KAY8aTdjJ+/PGIBOvDfwNwxIhOMKa+Nv13KFu2i7DH3v5OfXRj56KbkS3bC7bj4kQnxVqf/tifVuMn33KhbbkUwFgqn04Gs4luE0YOq9fr6vf76vf7cZNuNptROwnL5Il1rr/cbDYRSPvmXq/XIwgkHA1YlxT1svzxygok/9Xr9XjAAUDcmePFYqHRaKTZbBY3VRIOOXmNthImp8+AFACYJ0cVRRGvRZ+90gIADl0rumhAEqCYwzomk4mkU3C1v7+vwWCgdrsdgRgAimO2GUMS6QAnk8kkgqNbt27pqaeeipVFAOmerOXsKUw0jgWnGlKVxJ0ngJ1LRJCJ4BAwF5IiqwqABgQBsAHAOC+MK9fabE5PIByPx1qv15E1BFwB0pw1BlClulbWj7QtVwjrjswD8Mna8KhIt9tVpVKJMgfmH1mPzwtVS+gfzw+OEa9T7WS1WkVHjz4URREdOk9KpT8+5qxTP21xZ2endDIhBtB35tblOZ6s544y48Ka4jXXkePEwTz7oTt+HS9Rx3zyN84d/eU3JmuMs2XLlu352+F6ptd/9V/QtW/5KTV0saBYuiTAGOAD8Gy325E9dGDhFRsAoYBDmGE2LpiylAXy0lVoLtEGNxoNDQYDdbvdCNAAlgAokqu4FjV1YUhhAh30eR8JdcMkAzIJ08KeOeNG6BcQQ9kzNKDcw6sFAMQ9AQzg5Nn4JK41Go2o/wSAtlot7e3t6aGHHtKDDz4YxxVdMcdAM0fj8TgCaoA2zkGlUomVKGirJ315yTfmDIaQseZeHGAibaU3Dk680oNruN08FE6Yn5J3HiFwWQRtZyxhT12i4qx2KqXwJE6cEk+A436wkmiJPeKAdpe5J/mNe/GMOHMNK833qcLBekDHTyIc/eIe9AknhLWDI0dfeBbROjN/yDaYE496APT5rJc/4zOebMk44pjBKLukwueb8UCCxfPH2JLk6aw3Y+fmSZg8k0SOnk6+kS1btmzZPrA9sZro93/jX9YHfcubL7op0S4FMJZON3BqELMxOhuLAYwBMJKihhfmEk2uazqlrf4SBhNtqycCoXMcj8eSVALBgACXOozH41iVwCUhAAQ+C3Dxcl6u65UUmUoAFOyl1w1mfFwq4QCTPkrbUnReUgwQBihm/JBBwBbP53P1ej3t7e2p3++r1Wpps9mo1+upWq1qOBxqOp2WKjKMx+Mov+j3+xqNRqVKALT3POAD0Ab0ML+AoclkUooEkPTocwQ4SsvjOdAFtOFE+EmELjVhXJxZ5XVO+qOWb7omXAaSap2dgWQ9AFiZS64B4HTQ66F8IiU4HS6ToO1+WIbLN/ygHEA9wBTHiDWMjAJw6Rpdd7y8bjZANo0EAWzd0fU1CuhkLFnL9MF/B3AI+Jzr5V0X7bINH3d3lP159ecRh93BN+PKOvR2ZcuWLVu2Z7b3rib6+ePr+vJ/8kY9+rcuDyiWLhEw9goG0ikoAaAB6vgcjLHrTD0su7e3p263Wwors+GfnJzEpKF2u612u62jo6MIllarVQzXw8wSQiZs6lnsN27c0HA4jCAGUFCtVkvso8siYK48IY4N2LW6gK5qtRoPEaEkHPdwIEW4ejablQAejKGDVL8G4e7JZBJP8Gu1Wtrf39ejjz6q69evx74hERmPx7p161Y8cZD2Ig/x2rHIUTxB0UuO0V7q7VLz2KtTcIAKunLXeUoqjTGg0Fm+tJoB68blEUhMms1mBELubDBv4/E4JmORqCkp6mgB/AA/l3swjilAI6rBWnO9L8mOnuiGc4fudzqdRkfKNcHeR/rpshHWOMDUK2Ogw8dZo0+AdBwSaesQ0EaX7jC2lUqldMoi8+EgFnDqUhKPungyIE6CJz8yb4wBvx0+Dqw7HELM9diMswNil+z4MdHT6fRO/ARmy5Yt20vCfmM10Sf+u7+gV/+pn9GjulygWLokwLhSqajT6ajf72tvby/KE847chW5A9UBeB+2Ci0smz36RBL4YJVIqPLDERyQppUFXBN7fHyso6MjTafTCFhhw5AEAFyQW4zH4wiCHeQDGAFJUllv6ify8T1PJAPMALj4f7vdjiysa2kxAIUfZDIcDqP+dzAY6IEHHtAjjzyiwWBQ0vDOZrNYHQIwxDx6jV9C8rTbWeu0L85eo4FFZwww4dpch/Z4vWmADvPFZ/zACAAw44CkAvDmACi9BmvJ9bI+ngAuWFBJpfWbzgF998oL6N2lbQUNZ765HsCMQzRYs14dBRDIumK8PdrAugOUp7rjoigi4wxLizH+PiaMhSfKSdtDTnjNIyau78UR8n464HWgzmd8/QOKcaAA8Wj8+bxLIGCaPcHP+8EYetWOzWYTHe5s2bJly/bM9q6TiX7vD/15veZP/cxFN+Vp7VIA4xCCrly5ouvXr2t/f1+PP/54qSA/mx9JVbDFzu6yyXoJKUmRQU3DxiQU+SbLNWE+AReAKlgidJgw2jB4sEcACyQABwcHms/nsbwbzGuv14sn+gGgvWIAIJ5QPoCHBCUAO44FyVBpeNo3dsaGSgqezASIQGbyspe9TIPBII4L4fLhcKjDw8PI8AIw/Ghdjm12AO+sqc89CXbIYLxkm5fUcr2tj7kzjmnJNmnr8MDeIgVw9pC1wH3SpE0YTKIOXurOK0r40c6w2n4fl4/QJq8I4oDegSHg3Ss2uN7YZTcws75OnP1mzbhUBVBOkh7lAQGqVGBgPbJmXYYCOKUyCa+l65Cx5ZlmvHCYvCIG7zG+zL+0rVLBe0g9UicDR8XXqieQcl0HxavV9uhxf3YcvLMW0iTCbNmyZct2u/3GaqLf+6Nfptf8yZ+96KZ8QHtGYBxC+HZJny7pqaIo/oez175W0h+QtJT0TklfUBTFUQjhFZLeJuntZ1//6aIo/uQz3aNSqejRRx/Vo48+GkOw1Ep1fSCJZ3t7e6rVahoOh1H7id7PdbWEWmGTea9arcZNEfBF+TI2d0klYOYyCrS1sKFstvP5PDLI7XZbs9lMo9Eo9oXPITfg4AuAxHK5jEdAE8qWVCqZlSY0kSBISJ8kJweP5zHUMKAASfTAAIsHHnhAL3/5y9XpdGJlCem0hvHR0VEM76PJlsoHiHA9l1QARiRF5g7pgldwQLMJkEW/zb9JsATMoPF1IIj+VlJJ80ubYFsBQoBlQI/LH2gTbWSMXDqTjoFXr/AKGDDBrEmSGWHZAYdpsqnrtAHZXjfaHSpe93FiPOkv14Jt98oPsLde+YMxZsxgdFn/rG1POpS2VSW4tycGMq9eMSSVUHB/l494zoEz4shRPBmROaFtzvSnOQGMt5dpk3Sbo+QRnsuqL34xfrezXayN//Dv1CM7b5GUy7Vlu9x2uJ7pDb/4eXryN/YvPSiWnh1j/B2SvlHSd9prPyrpK4uiWIUQ/qakr5T05WfvvbMoio94Lo2oVqt66KGHtLe3pyeeeELj8TjWk3XjUA2qRsAWdzqdeCKZb95e/gkwxHXQMXK0LXpjQsOwqsgZYOIAv7DIMFqSIosMw0k5LzZPpAutVivW73UG2JO4XJ8KMAZwUQ8WUOCnpAGCvLYu7YNt5xqc5oVEYLM5LWPX6/X0wAMPaG9vL4Jm2oUGGWmG95/2TqdTTSaT25KwAE8AJcbWEye9bi+sKzpcxsLZX+a1VqtF3S9gzEEmjLRLP3yc3ekA+HB9xovx8aQ41zR7mB3A58lhXIv7UB4QJhZg7EDbJQGMEaDYHUfu5SfTuebYxx1AzzUZP18zOBWe5Edtb4+KcH3u7+PuMhmAMfMKaHX5AuPkjhHv03ZnkL36B0wuzwEgOK3xTH+4Zio3ARizxnGmeY9/OwN+XhWLS2Dfobv8u53tYu2z/uqP5hrG2S69TTYLve6H/qxe89hbtHvRjXmW9ozAuCiKnzhjFPy1f2///WlJn/1CGlGtVnXlyhXVajUdHR1pNBpFxsz1mdRglU6ZSypHwCJ5CSxCoCRN8TlkAp7gAxPdarVKJcO89Bu6V9hfZwYBJIAGSqkB6JrN5m2HdXjSEmHv9GQy+k9SHa+n2tsUjHFNABdaUsANAAGQD1uGDnNvb097e3sqikLD4VCtViue8Ec1Bq5HeN/ZSlhzAI+z6gAKWDvC/rCcOBXStiwa4+ZVBgCJ/X4/6ov5LADJJQyur2VeU71oWl7NGUv64BUZ3DnC3JkDdAGyXSPsCXeMS1rRwqUczk4yLv4ZwCZrA4BPX1zG4ddz1pwxpl3ueFHdAt04iYeMoTO09N1Bayp5cQDNmnZ5iR+b7kyzS1fc4XLH15MLeaaQZ7gEx+Vazkan5eUwnw9YbZd5XCZ7MX63s12cPfWnPla/o/1NF92MbNk+oL3y+x5TOK7oNX/2py+6Kc/J7oTG+AslfZf9/5UhhP8iaSTp/1MUxX8+70shhMckPSYp6oLH47GefPLJUqIZG6knThHmBKC5Rtg3PF5jI3R2UdrqPJFgYB6KhWWl9qtv3DB8MEwceessHYDSmd1UNkD7AfBoc10PDNDgjwM439QdkPhx2H59gJWHln1cSF4E5ANQAP+e0ITxGeQjAGKALv2mL4ApgDkMv4NRQvsAcO7hcgl0116VwUE648V68gQtN5dhALY44hhmFGCEvha5Swr23FnyZE7MGWHGxFlgTyL0deL6auYKqYzr1AGgzlD7M8R1PaGM58TlF16isFqtxiiDP0usOT9t0hl3Z/49kdGrPVDNw9llPudzzXgBlj2S4iDaJUbO0ONwONvMeKVlIhkTny/uhXPla/setBf8u91U+7yPZHsR7GP+2M/r4/NJ5Nkusb36H3+JXvPlP3XRzXhe9oJ+0UMI/29JK0n/9OylJyQ9WhTFrRDCR0r6tyGE1xZFMUq/WxTFmyS9SZKuXr1arFar205FczbGj3AG2Hk4lJDpeZuWh0n5HMCFTZdN1bP6YUUBiuhqHThTXxig7qFZdL/OUMJgOTAK4bQuKiCadgD6eQ3ZB6CJz3jpLhgwQDGlx2CRYWhh9+ibJyy6ThuNdlEUkREnxMw9YdDm87kmk0kp89/DzM50A3q8hJxLM5whda2r991lDjhJzsSneljAn7RNcktBJW0D+HnJL+aL+QCQueSFz+KcuYPH/Vl3qSSAseDzRAsYf38eXCLj7KmDYpd7sEY8gc9lFM4W0ybWB06h6/49Ec31zF7dQSpXlGDcGR+eA0/8pN2MM4fvSCqB9lQb7mx/WpYwlXjwbxxIpFJUPPF2uFafdYlj7nKZe8nu1O92P+wX6fvZsmXL9mF//4161VdfvjJsz9aeNzAOIfwxnSZ3vL442/2LojiWdHz2758LIbxT0mskvfUZrqXJZKKbN2+W9KuAFNhJjmH2UCngixPA2Ew9E11STCbi1C5pyxi75hFQiBaVJDlKYtHe5XIZ5RwpMEjD5M6cUQ2DNsA6AlC9UoFXDUC7S19c5+pAAxYN+QPX8KN2zwOjkmLZOQcbgAfC6CTRuYyC+RiNRqWjfwGWtM9LXwHmfNy5N/eFrWS8nbnDXDIDgw3LKKkEYgHYgFbXiQJuWDO0HSCEfIZrArQBRjgb9BPGHvbTQSmJlq519SgA84JzwLy4Zvc8UAbw82Q7dyy9RJ2fguigj8+TKEgkZTqdRrYY54zkOT+mO9UEezKdg2TGEIcAh9SlKy5zcIeQ/rHGWC8u5ahWtzXCXXOM8X8cbp4nl5GkrDTrxX97HKTfC3Ynf7ezZcuWLbXf/rVv1CN/995kirHnBYxDCJ8i6S9L+oSiKGb2+jVJB0VRrEMIr5L0akm//kzXK4pCN2/e1I0bN2LSEBvR2XXVarXi4Q4csLBer6M2mKNZ/dhgDyV7ohebJcwPQBxwDXsIMCBUD5u0Xq91eHgYpRN+YpvLGhxASFvWu9PplELilOtyiQIgBpYb8CVtQX4IocS2OSD3ihfT6TRqJj1Jyh0H2gigBsTM53Pt7OzEcLek6GBIKgFjHATGE6bPtbM+Hq63TVlv+uTVExgPNwfMkkr3gfFG5+oadECXh9jpk0crHPjATgMCAUZIabzKB/NG/3CEYLd97XufYfsBlfTbZSjuyMEQOzPtunxPSmO8kET455hLgDdrP00iZUyZWz+Ax+UOrCln2H3sU32zr00H9zgjvObSKoC/R0DOc0zRsLPm0YfjLOEMwyZzP57RVNbh65C+3Qt2p3+3s12c/cpf+3B9zzf8iv7n7m2kfrZsF2av+6ov0YNv+hmpuLeDSc+mXNs/l/SJkq6GEN4r6a/rNJu5IelHzzYqyvt8vKSvCiGcSNpI+pNFURw80z02m40ODw/jSWoeIoZl9dPQOOmrUqnE6g4OoGBcAQlskp7U4yFswAtAADat3+9H3eV8Po+h1sPDQx0cHJTYOsKvftRyypByah9Al+90u101Go3I+rKxA+gJZXuVDE8aQ0YAeOCaAGdPwAJUOXgFEPhRyoAX1y4D/mG8YUcBxF7lAMDiIWtnMvkbRs4POnGHSNomsQEw6bszkjCqnuTFew6SHKi5thlnyZlAQKmvEwev9JEqHLzHmqXd3Hs+n8djs+kD4+IOgyd1YjhgWDqWrCfGzJ+tVNdLVRPm2nW4JIwy1kRGSNhk7EheRVIAO+vt41lMHQycEZ8r7u/OWuoEsSb8er42XIbBukXqxDwAzNfrdaxk4wmMtN3nI70Xn3ed9GWzF+N3O9vFWeOH3qJf/9prOpWEZ8t28fZRf/VLdP07f07F5t6Slp1nz6YqxR895+Vve5rPfo+k73mujQAYUzCf8LuDDA7CALRKWw0rGx7saa/Xi4ddUP7LAQPAjzA8x1E78JZUShyiDYeHhzo8PNR0Oi3pbF1D6iFyWETAuifD8X+YRRKsaCv981JingTkrBagrVbbHsSAoav2a5w3JgALD+sD9vwgCAAh7OdsNoul3wC6sJ3OHqZJZSlohRFl7DCvPHC2ziKQcV2t63MB7KkD4CwgYwzb7olszAX99XA884y8BAkJbWGsaTf3nUwmJTmOA23+BqwCzvjb9c8OIGkL7bRnsTSOALvzxtM1x8vlslRKcLFYxGgJn2XsuGYq7eHZYq0BJHG00iiI63id2UZK41U2HERjfI5rMmY4asyZO15UYGENMaYpYOf3yV9zZ/KyAuMX43c728Xaj3/u79Trvvvden3r3gci2e5t++i/8iW6+s9/XsXJ5azr/lztUqRTI1XwZCU2ODZdSTFcjZQAWQSsKcyh63XTWq9+T5guTvkCUMHMegJTp9NRtVqNQIjNnU0d5smvCxBZLpdRpsFGD4Cl8gGJfc5wA2CQVzSbzVICEv1B9oAcoNvtRuCWsqtPB64B84vFIh424eWtnG0HcEwmk5h46NIFaRtOd10zTGlRFLGKgR/44UlaHjKnv856wkg6w+sl7gBcACZAUaoZlU71zR4tYB36tR10AmTX67XG43EJ8HpNY3d4cPrcYB8Bci6HcW2uj2saTcEAn+lnpC3wZe7RD7scxyUSgFNAMcmUrCO/flpuzv/tkggHj9wXRpfn5+k03Hw/Taajzz7HjKsneXpJOdfgs07ccUzBruulfYy9P5cRGGe7/634L7+so3VHmTXOdlH22//mG/VBP36g/V/7eRUW0bzX7VIAY8K7KUPnTJ7XFEbiAIBk4wYUekk3D306m8Tn04QbAByAjc16Z2dH4/FY4/FYJycn8bQylz9gAC9P/HPw5QAeoAxAALDQBwdEKcsJ0KTtKfPJa2k9VkAF4NDZVJ8PmPJ+vx/7AkMMI0uIn8M1pC077MAMIOkVBKRtWTAHnw4+UoDqbfWEOBhogAwsPX983n0sGC+va03yJuuG77MOAJNoV/2+6XVduuGOjjPJgH1nPUnQS9nLpzOXVqQg3u/hsiLm38vUsU7X63VMLmUsWYcpu+4MrjscGPPrSZup9tiZYtrJ+Dlj7FIbPsM9WUvuDLusiX6g9/ZEQJ5jbxdj4s4lY+1a6HutKkW2+8e+/ff+bn3wf/7X+ggrnZkt24thH/5336iX/YOf18aIk/vFLgUw9jA7ANCBIPrVavX0hDwP9brGdn9/X7u7u7eVuEIT6+CF1x30eNi11WrFUlXcH/as0+lE8OB1jWkPIBAZSLVajVINzKUAlMGCCe90OpG9Po9xgzUDLACGAMGu0fTQrwMkAAoA1rXWsPdopvkskgGkBgB3StVxT8A8INgZSQelzvABMlJG0tk6B+7O/KL95h7OLDO/zpDTX6kMYP2gERh+xt4lGw6cAFtoV9GEcwIjiW7Mb6qvlhT75eXcnF32OU7XQpr8lTLurBPuT/SF9c5nuD9zzby6JAIHwp0b2oqkydleIhDr9fZIadpImzabTWSQXYvebDZL69ZlIO4o8AzxnidbkjTqkSieMfpPv9Lnyq+Dk+Ta41S2ki3bRdjqvY9rqdu1+Nmy3S374O/6k/qQr/41PTx8qzb3iXQitUsBjNlYUqkDG+h4PFalUtFgMFC73Va/31ez2dRsNtNwOJQk9ft97e/vRxkATJuXAPOMdTS/kqIWmc2v0WhoMBjo2rVrkcFDTwvg9XCuV2hwjTHAqt1ux7aT0AQryMbdaDSiNlpSrM4B6GdM0Go6Q+g6Z8YRHTWggLA18gJAMfdno4cJrtfrunbtWpSZHB8fR/aQ9k2n01JFABLYGJudnZ0IDAGy0vZQCqmcNOavOZuIE+TsuSe1MTaeWOVMJAmPAGIAH/ND35GFSColSXJNDOcAIHlychLlFH4kOSDKGWHXn3siJECcsXM9tQN9N2feXd/O95gL7uF9dUDJ50kOdQ05a5XIBPdxiQhzyvpnPlmnXp6Qz/jJcZJK65T7sB55NmnveREFj/Yw7+jcPXKCQwtg94Q9HD6+g513Px+3Z2Lzs2W7m/bXP/R36x/89x/To7XuRTcl231sH/qTn6tXfP479erlW7Ve3RuVeJ6vXRpgDHODzpENxxOaAI+9Xk8hhAhoe72erly5EssuSYobH2BY2tY2RWPY6/VKpZzYDPf29nTlyhV1Op3YRsAUIPK8o4ol3ZYhzybPcdaumSSjv1araXd3N9Zp5l4w1GiTAS1eocJrucJ0uc5Z2p6klybDOSBmrAEsjUZDV65c0bVr1yQpJthxHerauiba9ccpwyZtawSn4+XMLGCJdrlUwsP10lbjCsB0SQBrptPpxGPEF4uFxuNxBFowitIpMAPEe0UJIgXcC5DqJdiQPQD+YYppo+thuZczwiTc+Vh59RRnqIloAPxwnIgyMO4pKObeqfSB8cTBgy1GE+1OK+uY9c/R39TLZp5wkJhzvy/XAnw6g+6MONIHqngwJh5x4LoeceKZlLYOLyx+6rjRd19jqaPnwJl7eBJellFku2jbLBb6E6/4BIVK0A+852dVDZlBznZn7Xf9tz+oRz/nl7R5iUTHLgUw9g2djSaVDoQQ1O121e/31el0Sock9Ho97e7ulg5BYFMHiMEc89re3p7a7bYODg5UqVQ0nU61Xq/V6/V07do17e7uql6vR6AIg+YlyVyHykbrmzevdTodXblyRa1WKwJqwAla4729PfV6PU0mE00mE41Go8jQcigIgA72MWW7XAcKwE5rCHviGuPXarW0Xq91cHCg2Wymer2uwWCgbrer1Wql4XCow8PDeK2jo6NYVs+ZTdd3AiBSoEGtZz+NLi195Yy81zambwB6wCGAFXDJvdBwS9tEMk8ohB10VpZ7eGWNVAMtbat4ACJhi2u1WinxjARQIgGr1So6GNL2ZDkYVtfbMh4+tjhJRBNwLFh37hw4iOM58LlxGQH1wHkWvDScjwnrjTloNpvRUfVT8T6Q/tZlDV7hIZWqAJ7dwaUPLkVyzTF/3EHDiWFuXN6B1KYoijgvXN/vwbj5GmBdEAXKlu3CbLNWsZE+9eHXXXRLst2H1nmJlTW/FMBYOh8Ie5iy2Wyq2+1GVhhWFbAMwACkpKweeuLNZqN2u61utxtZ2KIoNJvNtLOzo263q+vXr0eGiQQzQCMsl7N2Doq5j6QI2jqdTkk37OCnVqvpypUrun79uqrVaqxycOPGDY1Gowj6nG2rVColBswTF2H1Uj2ts3GwmTgJLkOoVCp66KGH9PDDD6vdbsfDHQC40+k0HgvtmtGUoeT/jAXWbDZvC0W75ANw60l0zni6tpq+uqyFsa3X61HTTR1egBbtQx8LCGYOU6eCcZfKJ+NJWyadOXHgCKPriaIw7axJ1tBisYiyEQfWsM/j8TjqZmFsAfh+UqG3mXa75AQpCZKaoijUbrejzAfJkDsqPl9pgiJ9YF5wPr2qhstlPNmR6zGuOCfME20IIZSOcvfxd0eHOeIaOF5ec9qlFS55cecSeRJzkyba0SZ3OLJly5Yt2/1hlxIYY2w4sH8kvbmUAc0x2kff+AHFngwVQoiJdZ7Utdls1O/39fKXv1z9fj8C89FopKeeeqrEzrEpspkCkgEKlUqlVEWD8nHINlx60Ov1YjLhanVa63Y4HJaqXThrBaDx+zhw9IQlH1MPaft7AJLpdKoQgq5evarr16+rVqtpOBxG3a0nmzEnjLdXEkiT/bhPs9nUYDBQvV6Ppw16e72dsMJcG1CElne1WsX5Yy14u0h6xIECLAL0+L8DGg//ozV1Z8QBIveFded+sMK8xni5XhZW0iMLyDAAYlK5xBrX81rUJPpxDfqJxpZ2ss6caXfZB89GtVrVfD6PCZZpAqRreJk/1jvODSwskQLAsz/jPC84ZKm2nLlkrgCqPHfpGnedsifqwTK7Q+UOpjuvrFnXnHulCu7J932tA5izZcuWLdv9YZcCGJ+3ufj/q9XT45r39vZi1QkAR7/fLyWTHR0daTKZxJD9er3W3t5e1CR3Oh1dvXpV3W43Mp+S1Ov1dP36dV29elXNZlPL5VLD4VAHBwcajUYRzNTr9ZiU5MlCMI0AA9rd6/XiwSFII0hoo1/NZjOydc5iemkrT9TzU8YALWhE6XcKNr2SgEsTPNzd7/d19epV9fv9EkgB9PA39/DKFJKiLMRZbFg1HwfAdjpeACrXUTO2OBbOZEoqRQc8CTGEEAEcDpG0ZTw9wc31w6kGlc+4JMATtZA3pOXGJJXqAm82m8i8MyfSNpHPJQ7eL/7PGPC5nZ2dOBaMP2DX/6RyGw//E8nAwUqri/jnWTPOAMMOw5rjGHAtwL5HAQCraVk31pKz5YBPl4GkyXb0mbFy4OvOoMuIfN0zRshRUobY17A7kzir6bOWLVu2bNnubbsUwJhwsbM/Upkx3t/f15UrV1SpVDQej7VcLtVut2OpJ0k6ODiIYLfZbMa/Ydp2dna0v78fj0tmE6W+6pUrVyJbjIQAcCydstNsyLB4rVarxBhL2/qoHMqBJAOgByiGZYQB9FrGMJjOVLkUAPPkNwArEg7Cwe12O46xh4/Z3GE8SQCUFOcD8JDqRSlrBugE5KOF9uQmNODVajVqpyVFBwGw6ocyAJAo8+U6ZAAPjJ6PgbSVCwDApG2dY9pGJRHAK9di7NN7YYxXCq4Brc6eA0ArlUrpIBSXPjAfLnlIwbtXdPDkTpfI8FlP5HM5hkcKvCwbzDYVJmCcAZPMuSd1EsVwGQhzAINfFEWpHjfPH/PlEgZ3RtyxSeUrOHbetzQ3gc87m+vSEv/Nwdl15htnAMmT39sjM6nePFu2bNmy3R92KYAxm/F5oK9ararf7+uhhx7S7u6uimJ7Sp5vnjCyACLYHwdVMJoOOmu105rF/X5fjzzyiDqdjsbjsabTqZ566indunUrVmlotVo6OjqKelVKegFoaAv9gMV0DS0AmhA2OlTaK6n0PQCfn/JGWBnwwvVg8Bw0tFqtCKpTcARAA6QzB8gzAEGSIjuKYwAoBojRTgciADXK6/mBGM6Uu2TAAQegxauTAFS4jzP2zmLjHCC9AexIijIM74/LChx4O8ilbWlCmYf1vaqGn1ZIlQfG2wEpLLxUrqWL5pikMcAla8MTVVMQ50wvjDVrFAcKeYWkeCAOANvBJuvRq604C+2MO2sMx4xxO4+9ZbwcKLtcAsMRcX1v+juBeeTAk3Bdg+xjhkyH9fR0yZa0wwE3c5krU2TLli3b/WOXAhhLWwYmDUs2Go0Y3t/Z2dHBwYGGw6EWi0WUPKzX65jUhPaSTcuPn221Wup2u7HsGRtlp9OJlSg44OLmzZs6OjrSdDqNoMn1qZVKJTJiAAM/SQwAy8bpiURIMgD5hLI9JO7aVWQEAFgSpXiNsLikuLnD9HY6nQhGAHi8DgAC8ABA0YrSFoAw14XN9YNOmDcPb1M3FgdgNBrFRDX64CF6SbGN55VpIwnLteEAY5dK+OEMADyvZMF9WW+0F+fH++oygHStOlsJwPMqCK63dUbagRsA2A/IAKCmdY/dscF5wbnhvjgBjFnabm8zTiRzyprzpEnvC8cueySDcaLtPH9+QqA7F56I5zIdf/YdwPI9XwO8zvfcQeY6qZ7YpRAuz/AcA9rvY+YA2Z8Rb0sGxtmyZct2/9ilAcbnMTQAUg6+mM1munXrVjzUw0Oro9FIw+EwsmqABpK2YPBarVYEEGgeO51OTAzjIAvuA3jw0C8hYU/WATDAiFJiDRkHbQAEVSqVyLry/mQyKQF8QKWzW1wX4MjrnU5Hy+UynqLHa17SDIBDn+mXJyK5BILX0LsC3gBCOBKE4HFSXBYA8KWG8Hq9joCahC9K5XlI+jxnIpWr0C/ACk6LS3L4nCdMcW1vL+zuer2OsgeXUfB95BKMEWCL5E5epy9es9hZVMAZINKrTTizzPwB2ljPzij7c5My74yXs96se9aVs918x+/PuuP67gQxP3yXteHAl3u7tMNZ4vMAsQN4IgPuBKS/FT5PqdY4ZZgdSPv6wCk8D2iniXb+zGRgnC1btmz3j10qYIx5ljilpCqVikajkW7duqXJZBLDy57MtVgsSmwxiWAAE0BxChCQUqAtvnXrlg4ODjQej2NbnJ0FxABaXfpARj/AFDYYEAeLCXhD2zidTnV0dBQTtCg3BliXttIExsvrEPspbWiZATZodfk+SXqAXcbovIQzB6CAKEAtbKqzflyP/yPhgJGsVqux7N5qtYoJiYApQIi0PSVNUpxXrpWG/b1yBqCTPtAW5twBGvdA0jGdTmMCmmt7MQfrrvelbdyH+wKccEhYT67T9cQ95sHlMs6Ccx+eF3dmcLBcduLJap64mJbBcwad9jk4lhTlKA6ouZfr0dPEPfrMuLkkgdccwHKNVIJEe1wn778X3n6fa3dw6JtXqUiZ37R9vObm7z8dSM+WLVu2bPeePeMROSGEbw8hPBVC+CV77W+EEB4PIfzC2Z9Ptfe+MoTwjhDC20MIn/xsGuGMDhuX16JFJ0oNXYzNEdaRELiHp/1gBGdw/ahbDlhYLBY6OjrSzZs3Y/1ZQCAgGgAH++oMMJUjqIeMjANg2el04pHVgMFqtarFYhEZathepAYeppe2iYoASuQiAAmvYwtgca0qzKtn7aMrlranfaF9dvBNe7kW2lkABdflb0B6etSyH3vtelSprBF1kAx4InzPISvStqIB93ZWGXbVQeHTAafpdBorkPjcOfBMq2I4yE1lIRhadGeXcU4cALMuAGuw817hwbXlq9UqrneXdMBu84fPOVNN2/nbQSnzARAtiiIeAQ6j7WN7nnyDfnAdn08H4yk4ZQ0wlqm23OU+/PG55Lr+Hv/2Z8i1zv6MeYm3VNbl6yeNaFw2ezF+t7Nly5btfrRnwxh/h6RvlPSdyetfXxTF1/kLIYQPk/RHJL1W0gdJ+rEQwmuKoviAsUbfgDzhyo9CZnNn03cGcTab6ejoKCbbAVgBZrxOgpNrPs/aHeUYTz31VLwWjCFMmAMJBzqSYla/pFJCD2yh12BeLpfqdDpROzyZTHR0dFQCy/SX8fGSX67j9FJ1qf5ZUilsTrs5qQswgJPQ6XSiMwED7+FjDxlT4cFlGs7MSYosrrSVEXAPnAgHoNK2TJhLMmg/7DT3ZJ6ZSweCrst1AMy4eJk5XyubzSZWbAD8Meep3MfBMdpg1g39wElgvJHHSOUwPOuCNeDaYsavXq+X2umOAOPj4JZ1Tf9dt53qkh2M8xmvm4xEyNl1+sTnU6mEA3AAMWPj0iR3hBgLB/wun2BtpL8fKcvrQDm1VMLhgN0lE+n3GS++447bJbTv0F3+3c6WLVu2+9GeERgXRfETIYRXPMvrfaakf1EUxbGkd4UQ3iHpoyX91DPcI4IaT0Jio/byVmyA6IWLotBwOIz6YkqxoXEEnFABwbW+3Icw/2w2i6XgnE2VthpNZAlcH1A6m810fHxcqg6BTrjb7arVakXpANfj/8gnSFZDJ0xIHeBDqbPVaqVWq6Vr165FjSn9kBRZbhhxwIQDI1hI+ull7cbjcal8HuAHZpSx8kMmAGEpMAHESopzCUPNvCAlkbYaVgAfQN7BlFSWxRRFEdlXD+2nrC5aWT8Mw7/HWvEyZkgtXALhAJlKGPyh9Jczya77Zbwpd8c1HPCl8gzGT9JtEQE/KMQ18Kx11zen5jpyXwup1MSdUr7n8g4Hwt4Pl8awTnASvPpDKqtwUOwMszsKtN3lGc4Up9KslC1OJRL+fcYglfbwG3UvaIpfjN/tbNmyZbsf7YVojL80hPB5kt4q6S8URXEo6WFJP22fee/Zax/QYIeRBUhbfakzbGzUACdPlptMJqpUTg+S8HDrycmJer2eWq2WJEUw22g0SiwvyWHT6bQUZvUwOsAGBhuZAgwr7JekKIkIIUQQx8EgrVYrggNKzAH0act8Po+gkOuhQ5YUZRkw14Abxsw3edrKtQiJM97OyI5Goxh2d6AhKSanASwllZhNdzpSq1Qq6na7EbCv1+uSNhrA5I6MJ6dJ2xC5a15dNgPAdM0o1/AEMsrtSVt23xOvGG8/VdDLcjnD6lpidO04GKwd2GnW8WQyiTIS+pb2xTXLjNFsNivVGsZpApyTnMea8FJljJ1Xs2DdEGVIGV6X5rjzClAGdNMegCQOFYDYowkpKAYs+/h7xCB1vADKzhKnbHIqwfG1zDpKf3+ejl3mOh6hOg/430N2x363s2XLlu1+tGfUGD+NfbOkD5b0EZKekPS3n+sFQgiPhRDeGkJ4q6TIlvZ6vdOGnVWkGAwG8TADNlRPTlosFppMJpGBhO1zWQEJfM4uAlQBGvybezjzxL8BxSTMAQL8KF5PDgIgwLDBEIYQSuy0SwxghZ0VpFzabDaLAAXJSJzIM3Dh7DqJiXzPS8ehg+52u/HUvaOjIw2Hw9juNJnLNbDO5PtYAM4BM1iz2YwOAuCW0nOw7oA2TmRDj+yHcTCvx8fHkVmn/4Awry/NugJoo8/ebDaxlnJRFCXZh7R1JqRtmS6fD2c7JUWHBNAOUEvHZLFYaDQaRS0zgC+tpcw1+Jsa0ABy7kfpQf8+Eh2qOdAfJES0DcDu7LZLM/i86299bACJjH36HuMCyMbh45rcz6ULaZWK86pKOLPtTK9HCXxuUokH1362gNYZbZeMYE8Hqi+h3dHf7RMd3+HmZcuWLdvF2/NijIuieJJ/hxC+VdL3n/33cUmP2Edfdvbaedd4k6Q3SVKtVitarZZ6vZ5qtZqGw6FqtdPjnhuNRgRNgE9AFlIEKkHAnrF5UQHh6tWr8aAL2GKqDwAK2Lgd4Lp2t1arRYBNYh4bKyAWsO66W1hKAAEgj2SmzWYTwQ2giUQydKfz+TyWdpO2J/XB3gE8PAkLsIQsxAGbOx2VSiUmGyItoO0epvZ+AkA9/O36XY7NBli22231er3IfOLYIN/AISmKItaa5rqARBjz2WxWAksAOeYV4IohK2DMj46OomyF9jI3sLCM+3q9juA8TcBzEMnrngzorCLOAwmNfmKgy06cHWfs6A/1ghkPwL5/lrlD1gFg4/nxcXEHxxlY+u9OKM8I682PQ3dQzNz6a8WZhh0w7AlszgTzXcYMZ8SZ7Kf5HSl9F3suLK5/1kFvCqyfzjyacJntTv9u98P+PeMRZMuWLduztecFjEMIDxVF8cTZfz9LEpnP3yfpn/3/2zubGMmuq47/Tlf1V1V3VXU8HxolEdjIEsoCGStCQYqiCMRHvDFIWZgNWUQCQZBgwcIoEoRFFiCRBRIiAiVSQCgfBBDZIBHAEitsAtiOncjJAJaINcS0Z6prqqZ63D1zWbz3v3Pq0eVpxpN+dUfnJ5W66lX1q3/dV3Xf/5177rlm9imqSRyPAs+dZp/9fp/BYMB0OsWsWtii3+/naJ5OxsrZ7ff7zOdzJpMJt2/fzqXNNCwOlXm4ePEig8FgIZcWyEPpihrKSMqMyeRev349G8nd3d08cU25vTJRfva9jIr2I4Mqcz2fzxdyMxV9vHHjBtPplMPDw/w+SveQ2VIbqCoEkCORimgpeqg28yal06mWaNZkwPl8znQ6ZT6fL5THk3lV9NlHj5WXKzMuQ6d29BHzXq9Hv99fmKzoI7u68Egp0ev1silWGyrSeXBwwHQ6XWhrP1nMm/nmMVCqgVIYZN404uCX4tb/6oLFT5j0kWIflW5G2DVp0a+K6C9UlPJw0qQ5+L/1gf2kPl2wadTDl63rdrsLvxVvZH0Kks+nbppif5Hlfu8Ln89fDImT8pSb1SN8NFcR9Cb+Is4bZB+1ln5pahrZ5v2THjff0+/rbqbaG2ZpLMEYfy/67SAIggeNuxpjM/s88EHgnJl9B/gt4INm9hiQgFeBXwRIKb1sZl8CvgEcAx9Lp5jZ3OlUyz73ej0mk0meXKeTtB+W7ff7eYLd1atXmUwm2VCNRqMc/V1fX+fcuXNcuHCB9fV1Dg8P80lWw/Cbm5t5yH4+n+dcVJ10U0rM5/M85K+UCFUXkJn1ucWz2Yz19XUGg0E2PvoMvV6Pzc3NbGhlNOp2zuZC5tw/r9co+uqrMfj3UPUK32Y+d9RXMjg+Pubg4ICjoyO2t7cZjUY5z1nGWKZSUcfbt+9UbfDHRrmtMvc3btyg260WAVG03ufGqkSeTJhSVBTx1GsVZR2Px0yn03yMfA6p0jI2NjaYzWb5/Xu9HkA2xTKsMmWKxGrFN7WlDJ5yqhXN9pPxFLmVadV3Qzm0flKcDLWG+xUt9SkAvhSZzDcsVlCRcdUFi/bpc4L9ctiK1nrT5lNA/KQ2P9qhCyu1h7T5HHIZaj/h0htKGWuZzWber8/Z9ebW4/OndYy8ofbVJfxn0s3nAy+jafD99+A06AJHv+lV4Sz67SAIggeR01Sl+LkTNn/mLV7/SeCT/x8RyplVdNQPW+tEePPmzYVI8ng8Zjwe50jf+fPn2drayidvpVDIiGqBDuVqHh8f0+/32d3dzWYEyBFnRUQ1tC0jKmMh0+QrM+h9FCn0E3+k3Vc1OD6uFpRoVjLQ8td+39qP8oLhTmRR+/KltryJUITWm2wZQ73HcDhkOBzmY7C2VtUululSZNmnDyi9RTWONTFPFSZ2dnZyiTFFmpUGolxsRemVA678ahkvTVC8fv16bneVC5NGRb/X1tZyuoXaQ1FhrSboo59KT/DpIv47p/fX8dNrVTdaJrKZsiDzCneqSPg0Al/xRN8hXxrNpwX4qL90NKO3iuorWqyLI28ofUUF7a+Z/wxk4672V4Tam3ifF6w2g+VLJHuT6bWclAbRNNm62FAaia/77A219qn0jObzyyLBvub2sujzMry5XzXOot8OgiB4EFmJle90Qrt27drChDdFA3WS99Uk9vf3GY/HdDodzp8/z2g0ynm6GxsbjEYjhsMht27dWpjkpuHnbrebl4G+evVqNsveKCj6p//VydMvZ6zosZkt5Awrt1U1e/2wu2oEz2Yzjo6OcrR0Pp/n6PfGxkY2if5krfrHSkHwkT1tl9n15ljRRF8dQSXXtra2uHTpEkBeREVRckURp9Nprugho3d8fLxQ7UEXBlClMKj6hiKqMug+F9fXala1DKFJh8q5Xl9fz9FnXRDt7Ozk/OXxeMwbb7zBbDbLNY51/GRI/WiAbjJH+h9FO32lCJkmn5rhj40uDLwR8xPRmjm8MtpeG9zJ01WE1v8OmqkWPufbl4STfj32lVI0quANqL9Ya0aLvQlXJL1pOpvR5yY+Uuxzhn00uTmZTcfOR311fHyahjfG/oLGV1PxFz5ek89xbpr70+D/PwiCIHgwWAljnFJiPB7nfE+dgFWxQEPJijhOJhNmsxmdToe9vT329vbY2dlhOp0C1WSvwWAAVKWxlJ6h6LAmeW1vb3Pr1q28ap4qP2xtbeVJb3ofH23t9Xq5tJmiljJJ29vbOa9WaRrKm1bkcjweM5/P8+sfeuihbGgGgwG7u7sLE+f8pENF/WQ4Nayu4W5FMf3wvDdhfoKZqlUoBUXl4FTho5nTqfJuMiubm5u5PJlWn5MJ1kQ4vyiErxiiFAmZdbU1kC8gZrNZ/hy9Xi9HsJVSoVxppUxMp9P8HVBEWuZbxsdXDtF7yRTDnQilz7H1aSlqF7Wz2kXbvAFXfnRz8po3lr78XNPAK8Kt5xXBFv7CyBtIH3n2qTT6/NqXTLJMuD6j2sFHwqXFG2M99ubaG1zf5n4EpanZm1Lp8qZZv329t7/Y8cfUt7s3q00Dr++1n8R5t9ziZiTZG+owxkEQBA8OK2OMFV1ThGx3dzcbHkVhB4NBNrLKix0Oh+zt7S3M1h8Oh6ytrXHt2jUmkwn7+/tcuHAhn7w7nare7NraWl4cZDKZMJ1O81Dy4eEhV65cyUO4a2tr2TSrDNrR0RH9fj9PelKupips9Pv9fAJXPrJSAjqdDqPRKC8drcVBhsMhW1tb2UwDefheJ31FVWV8fFTQn6hlMt58880cNVfE2UcTVcZsMpnkJZ5VNs9XM/CTubSan0+h8LmwKgGnsmKqYazqEko7UDk5X19XEXWltGjVQhk4VcDQBZBGGw4ODhYmxqmtdNHiKz34XGs/cU0pF748n8ywjoevEqELD0VWfS3ek8q9NSuHCB2zZj6vRhpklL1xlBFslpPT8z6CqtcL/53xUWo/UdM/p3xf7cundTRLxsk0yoTqc+m77NvnJFPpUylkXNV2Psru9UqzLnybucLNx950380U+//373UvUeYgCIJgtVkJYwwsnLx3d3e5ePEiOzs7OWKoyXn7+/s5FUImVNEkDXN3u91cEmt/f59ut5sn7cnoKhqtaOXBwQHz+Zxut5vr+c5mM4bD4YIOn6esKg4pJabTaTYQvvauX8VLJ3ylWmjyn1/4YzAY5EirzKbMgUyBDJMm88n8Avk1Mh8ppRx9VvtqX4o0Hx4e5pztmzdv5v3KBHvT682QTKyvJ6zPrgsMlV9T6slkMlkwN/p/pTToeOgzDgaDbHK9IdNkO5ltGX+fKyzdy4b94U40U3Wm/QQ9LSLjjaYMoK8RrAsHP6ogndLYHHKXHr+Yh6L5Ol7S69/TRzr98dBn8ZHwZRPJvCn0kXGfa+wjqdq3R2khvubySSkL2q9/3pv306CREH+x4aPOat+T9nuSoVWb6rfQbJ+TWGawte00+wiCIAhWH1uFDt3M/geYAftta7lHzlGudihbf8naIfS3yf3U/n0ppfP3aV9FYGbXgVfa1vE2iO9ue5Ssv2TtULb+M+mzV8IYA5jZ11JK721bx71QsnYoW3/J2iH0t0nJ2leB0tuvZP0la4ey9ZesHcrWf1ba73VJ6CAIgiAIgiB4oAhjHARBEARBEASsljH+o7YFvA1K1g5l6y9ZO4T+NilZ+ypQevuVrL9k7VC2/pK1Q9n6z0T7yuQYB0EQBEEQBEGbrFLEOAiCIAiCIAhao3VjbGY/bWavmNllM3u6bT2nwcxeNbOvm9nzZva1ets7zOyrZvbt+u9e2zqFmX3WzF43s5fcthP1WsXv18fjRTN7vD3lS7V/wsxeq9v/eTN7wj33G7X2V8zsp9pRnbW828yeMbNvmNnLZvar9fZS2n6Z/lLaf8vMnjOzF2r9v11vf9jMnq11ftHMNurtm/Xjy/Xz39+m/lWmtH47+uyzo+Q+u9ZTbL8dffZ96rNV4L6NG9AB/h14BNgAXgDe06amU+p+FTjX2Pa7wNP1/aeB32lbp9P2AeBx4KW76QWeAP4GMOB9wLMrqP0TwK+f8Nr31N+hTeDh+rvVaVH7JeDx+v4u8K1aYyltv0x/Ke1vwE59fx14tm7XLwFP1ds/DfxSff+XgU/X958Cvthm+6/qrcR+O/rs1rUX0WfUmortt6PPvj99dtsR4x8BLqeU/iOl9CbwBeDJljXdK08Cn6vvfw74mfakLJJS+kfgamPzMr1PAn+SKv4JGJnZpTMRegJLtC/jSeALKaWbKaX/BC5TfcdaIaV0JaX0r/X968A3gXdSTtsv07+MVWv/lFKa1g/X61sCfgz4cr292f46Ll8Gftws1ns+gQel344++3tAyX02lN1vR599f/rsto3xO4H/co+/w1sfxFUhAX9rZv9iZr9Qb7uYUrpS3/9v4GI70k7NMr2lHJNfqYetPuuGQFdWez3E88NUV8DFtX1DPxTS/mbWMbPngdeBr1JFRMYpJa2F7TVm/fXzB8BDZyq4DFbuOJ+C6LPbp4g+w1Nyvx199r3TtjEulfenlB4HPgR8zMw+4J9MVVy/mHIfpekF/hD4AeAx4Arwe62quQtmtgP8BfBrKaWJf66Etj9BfzHtn1K6lVJ6DHgXVSTkB9tVFLRE9NntUkyfIUrut6PPfnu0bYxfA97tHr+r3rbSpJReq/++DvwV1cH7roZP6r+vt6fwVCzTu/LHJKX03frHcxv4Y+4M/aycdjNbp+qg/iyl9Jf15mLa/iT9JbW/SCmNgWeAH6Ua6uzWT3mNWX/9/BB442yVFsHKHudlRJ/dLqX1GSX329Fnv/0+u21j/M/Ao/WMww2q5OmvtKzpLTGzvpnt6j7wk8BLVLo/Ur/sI8Bft6Pw1CzT+xXg5+uZtu8DDtzw0UrQyN/6War2h0r7U/VM1YeBR4HnzlqfqHOdPgN8M6X0KfdUEW2/TH9B7X/ezEb1/W3gJ6hy7p4BPly/rNn+Oi4fBv6hjgwFixTVb0ef3T6l9BlQdr8dffZ96rObs/HO+kY1o/NbVHkkH29bzyn0PkI1i/MF4GVppspr+Xvg28DfAe9oW6vT/Hmq4ZMjqvycjy7TSzUr9A/q4/F14L0rqP1Pa20v1j+MS+71H6+1vwJ8qGXt76cabnsReL6+PVFQ2y/TX0r7/xDwb7XOl4DfrLc/QtX5Xwb+HNist2/Vjy/Xzz/Spv5VvpXUb0efvRLai+gzaj3F9tvRZ9+fPjtWvguCIAiCIAgC2k+lCIIgCIIgCIKVIIxxEARBEARBEBDGOAiCIAiCIAiAMMZBEARBEARBAIQxDoIgCIIgCAIgjHEQBEEQBEEQAGGMgyAIgiAIggAIYxwEQRAEQRAEAPwv7mW0TSjLBDEAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "tensor(0.) tensor(2.)\n" + ] + } + ], + "source": [ + "imgnum = 2\n", + "check_data = first(val_loader[0])\n", + "image, label = (check_data[\"image\"][imgnum][0], check_data[\"label\"][imgnum][0])\n", + "print(check_data[\"image\"].shape)\n", + "print(image.shape)\n", + "print(f\"image shape: {image.shape}, label shape: {label.shape}\")\n", + "plt.figure(\"check\", (12, 6))\n", + "plt.subplot(1, 2, 1)\n", + "plt.title(\"image\")\n", + "plt.imshow(image[:, :, 2], cmap=\"gray\")\n", + "plt.subplot(1, 2, 2)\n", + "plt.title(\"label\")\n", + "plt.imshow(label[:, :, 2])\n", + "plt.show()\n", + "print(label.min(), label.max())" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "5197d7dd", + "metadata": {}, + "outputs": [], + "source": [ + "device = torch.device(\"cuda:\"+str(device_num))\n", + "\n", + "max_epochs = 1000\n", + "net_channels=(32, 64, 128)\n", + "net_strides=(2, 2)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "98bd21de", + "metadata": {}, + "outputs": [], + "source": [ + "from monai.networks.nets import UNETR\n", + "# model = UNETR(1, \n", + "# num_classes, \n", + "# image.shape, \n", + "# feature_size=16, \n", + "# hidden_size=768, \n", + "# mlp_dim=3072, \n", + "# num_heads=12, \n", + "# pos_embed='conv', \n", + "# norm_name='instance', \n", + "# conv_block=True, \n", + "# res_block=True, \n", + "# dropout_rate=0.0, \n", + "# spatial_dims=3).to(device)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "a32f40bc", + "metadata": {}, + "outputs": [], + "source": [ + "# model(check_data['image'].to(device))\n", + "# model\n", + "# check_data['image']\n", + "\n", + "import gc\n", + "gc.collect()\n", + "torch.cuda.empty_cache()\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "2591bee5", + "metadata": {}, + "outputs": [], + "source": [ + "device=0\n", + "def vfold_train(vfold_num, train_loader, val_loader):\n", + "# model = UNet(\n", + "# dimensions=3,\n", + "# in_channels=1,\n", + "# out_channels=num_classes,\n", + "# channels=net_channels,\n", + "# strides=net_strides,\n", + "# num_res_units=2,\n", + "# norm=Norm.BATCH,\n", + "# ).to(device)\n", + " \n", + " model = UNETR(1, \n", + " num_classes, \n", + " image.shape, \n", + " feature_size=16, \n", + " hidden_size=768, \n", + " mlp_dim=3072, \n", + " num_heads=12, \n", + " pos_embed='conv', \n", + " norm_name='instance', \n", + " conv_block=True, \n", + " res_block=True, \n", + " dropout_rate=0.0, \n", + " spatial_dims=3).to(device)\n", + " \n", + " loss_function = DiceLoss(to_onehot_y=True, softmax=True)\n", + " optimizer = torch.optim.SGD(model.parameters(), 1e-4)\n", + " scheduler = torch.optim.lr_scheduler.CyclicLR(optimizer, base_lr=1e-3, max_lr=1e-4, step_size_up=200)\n", + " dice_metric = DiceMetric(include_background=False, reduction=\"mean\")\n", + "\n", + " val_interval = 2\n", + " best_metric = -1\n", + " best_metric_epoch = -1\n", + " epoch_loss_values = []\n", + " metric_values = []\n", + "\n", + " post_pred = Compose([EnsureType(), AsDiscrete(argmax=True, to_onehot=True, num_classes=num_classes)])\n", + " post_label = Compose([EnsureType(), AsDiscrete(to_onehot=True, num_classes=num_classes)])\n", + "\n", + " for epoch in range(max_epochs):\n", + " print(\"-\" * 10)\n", + " print(f\"{vfold_num}: epoch {epoch + 1}/{max_epochs}: lr: {scheduler.get_lr()}\")\n", + " model.train()\n", + " epoch_loss = 0\n", + " step = 0\n", + " for batch_data in train_loader:\n", + " step += 1\n", + " inputs, labels = (\n", + " batch_data[\"image\"].to(device),\n", + " batch_data[\"label\"].to(device),\n", + " )\n", + " optimizer.zero_grad()\n", + " outputs = model(inputs)\n", + " loss = loss_function(outputs, labels)\n", + " loss.backward()\n", + " optimizer.step()\n", + " epoch_loss += loss.item()\n", + " print(f\"{step}/{len(train_ds) // train_loader.batch_size}, \"\n", + " f\"train_loss: {loss.item():.4f}\")\n", + " epoch_loss /= step\n", + " epoch_loss_values.append(epoch_loss)\n", + " print(f\"{vfold_num} epoch {epoch + 1} average loss: {epoch_loss:.4f}\")\n", + " scheduler.step()\n", + " if (epoch + 1) % val_interval == 0:\n", + " model.eval()\n", + " with torch.no_grad():\n", + " for val_data in val_loader:\n", + " val_inputs, val_labels = (\n", + " val_data[\"image\"].to(device),\n", + " val_data[\"label\"].to(device),\n", + " )\n", + " roi_size = (size_x, size_y, num_slices)\n", + " sw_batch_size = batch_size_vl\n", + " val_outputs = sliding_window_inference(\n", + " val_inputs, roi_size, sw_batch_size, model)\n", + " val_outputs = [post_pred(i) for i in decollate_batch(val_outputs)]\n", + " val_labels = [post_label(i) for i in decollate_batch(val_labels)]\n", + " # compute metric for current iteration\n", + " dice_metric(y_pred=val_outputs, y=val_labels)\n", + "\n", + " # aggregate the final mean dice result\n", + " metric = dice_metric.aggregate().item()\n", + " # reset the status for next validation round\n", + " dice_metric.reset()\n", + "\n", + " metric_values.append(metric)\n", + " if metric > best_metric:\n", + " best_metric = metric\n", + " best_metric_epoch = epoch + 1\n", + " torch.save(model.state_dict(), model_filename_base+'_'+str(vfold_num)+'.pth')\n", + " print(\"saved new best metric model\")\n", + " print(\n", + " f\"current epoch: {epoch + 1} current mean dice: {metric:.4f}\"\n", + " f\"\\nbest mean dice: {best_metric:.4f} \"\n", + " f\"at epoch: {best_metric_epoch}\"\n", + " )\n", + "\n", + " np.save(model_filename_base+\"_loss_\"+str(vfold_num)+\".npy\", epoch_loss_values)\n", + " np.save(model_filename_base+\"_val_dice_\"+str(vfold_num)+\".npy\", metric_values)\n", + "\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "5aa4ecfe", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "----------\n", + "0: epoch 1/1000: lr: [0.001]\n", + "1/0, train_loss: 0.7529\n", + "0 epoch 1 average loss: 0.7529\n", + "----------\n", + "0: epoch 2/1000: lr: [0.0009955]\n", + "1/0, train_loss: 0.7513\n", + "0 epoch 2 average loss: 0.7513\n", + "saved new best metric model\n", + "current epoch: 2 current mean dice: 0.2751\n", + "best mean dice: 0.2751 at epoch: 2\n", + "----------\n", + "0: epoch 3/1000: lr: [0.0009910000000000001]\n", + "1/0, train_loss: 0.7505\n", + "0 epoch 3 average loss: 0.7505\n", + "----------\n", + "0: epoch 4/1000: lr: [0.0009865]\n", + "1/0, train_loss: 0.7460\n", + "0 epoch 4 average loss: 0.7460\n", + "saved new best metric model\n", + "current epoch: 4 current mean dice: 0.2885\n", + "best mean dice: 0.2885 at epoch: 4\n", + "----------\n", + "0: epoch 5/1000: lr: [0.000982]\n", + "1/0, train_loss: 0.7446\n", + "0 epoch 5 average loss: 0.7446\n", + "----------\n", + "0: epoch 6/1000: lr: [0.0009775]\n", + "1/0, train_loss: 0.7415\n", + "0 epoch 6 average loss: 0.7415\n", + "saved new best metric model\n", + "current epoch: 6 current mean dice: 0.2999\n", + "best mean dice: 0.2999 at epoch: 6\n", + "----------\n", + "0: epoch 7/1000: lr: [0.0009730000000000002]\n", + "1/0, train_loss: 0.7386\n", + "0 epoch 7 average loss: 0.7386\n", + "----------\n", + "0: epoch 8/1000: lr: [0.0009684999999999999]\n", + "1/0, train_loss: 0.7363\n", + "0 epoch 8 average loss: 0.7363\n", + "saved new best metric model\n", + "current epoch: 8 current mean dice: 0.3083\n", + "best mean dice: 0.3083 at epoch: 8\n", + "----------\n", + "0: epoch 9/1000: lr: [0.000964]\n", + "1/0, train_loss: 0.7325\n", + "0 epoch 9 average loss: 0.7325\n", + "----------\n", + "0: epoch 10/1000: lr: [0.0009595000000000001]\n", + "1/0, train_loss: 0.7300\n", + "0 epoch 10 average loss: 0.7300\n", + "saved new best metric model\n", + "current epoch: 10 current mean dice: 0.3149\n", + "best mean dice: 0.3149 at epoch: 10\n", + "----------\n", + "0: epoch 11/1000: lr: [0.0009550000000000002]\n", + "1/0, train_loss: 0.7275\n", + "0 epoch 11 average loss: 0.7275\n", + "----------\n", + "0: epoch 12/1000: lr: [0.0009504999999999998]\n", + "1/0, train_loss: 0.7267\n", + "0 epoch 12 average loss: 0.7267\n", + "saved new best metric model\n", + "current epoch: 12 current mean dice: 0.3207\n", + "best mean dice: 0.3207 at epoch: 12\n", + "----------\n", + "0: epoch 13/1000: lr: [0.000946]\n", + "1/0, train_loss: 0.7236\n", + "0 epoch 13 average loss: 0.7236\n", + "----------\n", + "0: epoch 14/1000: lr: [0.0009415000000000001]\n", + "1/0, train_loss: 0.7220\n", + "0 epoch 14 average loss: 0.7220\n", + "saved new best metric model\n", + "current epoch: 14 current mean dice: 0.3260\n", + "best mean dice: 0.3260 at epoch: 14\n", + "----------\n", + "0: epoch 15/1000: lr: [0.0009370000000000001]\n", + "1/0, train_loss: 0.7191\n", + "0 epoch 15 average loss: 0.7191\n", + "----------\n", + "0: epoch 16/1000: lr: [0.0009324999999999998]\n", + "1/0, train_loss: 0.7172\n", + "0 epoch 16 average loss: 0.7172\n", + "saved new best metric model\n", + "current epoch: 16 current mean dice: 0.3311\n", + "best mean dice: 0.3311 at epoch: 16\n", + "----------\n", + "0: epoch 17/1000: lr: [0.000928]\n", + "1/0, train_loss: 0.7157\n", + "0 epoch 17 average loss: 0.7157\n", + "----------\n", + "0: epoch 18/1000: lr: [0.0009235000000000001]\n", + "1/0, train_loss: 0.7135\n", + "0 epoch 18 average loss: 0.7135\n", + "saved new best metric model\n", + "current epoch: 18 current mean dice: 0.3355\n", + "best mean dice: 0.3355 at epoch: 18\n", + "----------\n", + "0: epoch 19/1000: lr: [0.0009190000000000001]\n", + "1/0, train_loss: 0.7110\n", + "0 epoch 19 average loss: 0.7110\n", + "----------\n", + "0: epoch 20/1000: lr: [0.0009144999999999998]\n", + "1/0, train_loss: 0.7101\n", + "0 epoch 20 average loss: 0.7101\n", + "saved new best metric model\n", + "current epoch: 20 current mean dice: 0.3395\n", + "best mean dice: 0.3395 at epoch: 20\n", + "----------\n", + "0: epoch 21/1000: lr: [0.00091]\n", + "1/0, train_loss: 0.7088\n", + "0 epoch 21 average loss: 0.7088\n", + "----------\n", + "0: epoch 22/1000: lr: [0.0009055000000000001]\n", + "1/0, train_loss: 0.7057\n", + "0 epoch 22 average loss: 0.7057\n", + "saved new best metric model\n", + "current epoch: 22 current mean dice: 0.3430\n", + "best mean dice: 0.3430 at epoch: 22\n", + "----------\n", + "0: epoch 23/1000: lr: [0.0009010000000000001]\n", + "1/0, train_loss: 0.7047\n", + "0 epoch 23 average loss: 0.7047\n", + "----------\n", + "0: epoch 24/1000: lr: [0.0008964999999999998]\n", + "1/0, train_loss: 0.7042\n", + "0 epoch 24 average loss: 0.7042\n", + "saved new best metric model\n", + "current epoch: 24 current mean dice: 0.3459\n", + "best mean dice: 0.3459 at epoch: 24\n", + "----------\n", + "0: epoch 25/1000: lr: [0.0008919999999999999]\n", + "1/0, train_loss: 0.7020\n", + "0 epoch 25 average loss: 0.7020\n", + "----------\n", + "0: epoch 26/1000: lr: [0.0008875]\n", + "1/0, train_loss: 0.7006\n", + "0 epoch 26 average loss: 0.7006\n", + "saved new best metric model\n", + "current epoch: 26 current mean dice: 0.3484\n", + "best mean dice: 0.3484 at epoch: 26\n", + "----------\n", + "0: epoch 27/1000: lr: [0.0008830000000000001]\n", + "1/0, train_loss: 0.6982\n", + "0 epoch 27 average loss: 0.6982\n", + "----------\n", + "0: epoch 28/1000: lr: [0.0008785000000000002]\n", + "1/0, train_loss: 0.6976\n", + "0 epoch 28 average loss: 0.6976\n", + "saved new best metric model\n", + "current epoch: 28 current mean dice: 0.3502\n", + "best mean dice: 0.3502 at epoch: 28\n", + "----------\n", + "0: epoch 29/1000: lr: [0.0008739999999999999]\n", + "1/0, train_loss: 0.6963\n", + "0 epoch 29 average loss: 0.6963\n", + "----------\n", + "0: epoch 30/1000: lr: [0.0008695]\n", + "1/0, train_loss: 0.6952\n", + "0 epoch 30 average loss: 0.6952\n", + "saved new best metric model\n", + "current epoch: 30 current mean dice: 0.3517\n", + "best mean dice: 0.3517 at epoch: 30\n", + "----------\n", + "0: epoch 31/1000: lr: [0.0008650000000000001]\n", + "1/0, train_loss: 0.6946\n", + "0 epoch 31 average loss: 0.6946\n", + "----------\n", + "0: epoch 32/1000: lr: [0.0008605000000000002]\n", + "1/0, train_loss: 0.6942\n", + "0 epoch 32 average loss: 0.6942\n", + "saved new best metric model\n", + "current epoch: 32 current mean dice: 0.3527\n", + "best mean dice: 0.3527 at epoch: 32\n", + "----------\n", + "0: epoch 33/1000: lr: [0.0008559999999999999]\n", + "1/0, train_loss: 0.6942\n", + "0 epoch 33 average loss: 0.6942\n", + "----------\n", + "0: epoch 34/1000: lr: [0.0008515]\n", + "1/0, train_loss: 0.6917\n", + "0 epoch 34 average loss: 0.6917\n", + "saved new best metric model\n", + "current epoch: 34 current mean dice: 0.3533\n", + "best mean dice: 0.3533 at epoch: 34\n", + "----------\n", + "0: epoch 35/1000: lr: [0.0008470000000000001]\n", + "1/0, train_loss: 0.6918\n", + "0 epoch 35 average loss: 0.6918\n", + "----------\n", + "0: epoch 36/1000: lr: [0.0008425000000000001]\n", + "1/0, train_loss: 0.6922\n", + "0 epoch 36 average loss: 0.6922\n", + "saved new best metric model\n", + "current epoch: 36 current mean dice: 0.3536\n", + "best mean dice: 0.3536 at epoch: 36\n", + "----------\n", + "0: epoch 37/1000: lr: [0.0008379999999999999]\n", + "1/0, train_loss: 0.6898\n", + "0 epoch 37 average loss: 0.6898\n", + "----------\n", + "0: epoch 38/1000: lr: [0.0008335]\n", + "1/0, train_loss: 0.6891\n", + "0 epoch 38 average loss: 0.6891\n", + "saved new best metric model\n", + "current epoch: 38 current mean dice: 0.3538\n", + "best mean dice: 0.3538 at epoch: 38\n", + "----------\n", + "0: epoch 39/1000: lr: [0.0008290000000000001]\n", + "1/0, train_loss: 0.6879\n", + "0 epoch 39 average loss: 0.6879\n", + "----------\n", + "0: epoch 40/1000: lr: [0.0008245000000000001]\n", + "1/0, train_loss: 0.6874\n", + "0 epoch 40 average loss: 0.6874\n", + "saved new best metric model\n", + "current epoch: 40 current mean dice: 0.3540\n", + "best mean dice: 0.3540 at epoch: 40\n", + "----------\n", + "0: epoch 41/1000: lr: [0.0008199999999999999]\n", + "1/0, train_loss: 0.6865\n", + "0 epoch 41 average loss: 0.6865\n", + "----------\n", + "0: epoch 42/1000: lr: [0.0008154999999999999]\n", + "1/0, train_loss: 0.6877\n", + "0 epoch 42 average loss: 0.6877\n", + "saved new best metric model\n", + "current epoch: 42 current mean dice: 0.3543\n", + "best mean dice: 0.3543 at epoch: 42\n", + "----------\n", + "0: epoch 43/1000: lr: [0.0008110000000000001]\n", + "1/0, train_loss: 0.6859\n", + "0 epoch 43 average loss: 0.6859\n", + "----------\n", + "0: epoch 44/1000: lr: [0.0008065000000000001]\n", + "1/0, train_loss: 0.6853\n", + "0 epoch 44 average loss: 0.6853\n", + "saved new best metric model\n", + "current epoch: 44 current mean dice: 0.3544\n", + "best mean dice: 0.3544 at epoch: 44\n", + "----------\n", + "0: epoch 45/1000: lr: [0.0008019999999999999]\n", + "1/0, train_loss: 0.6853\n", + "0 epoch 45 average loss: 0.6853\n", + "----------\n", + "0: epoch 46/1000: lr: [0.0007974999999999999]\n", + "1/0, train_loss: 0.6864\n", + "0 epoch 46 average loss: 0.6864\n", + "saved new best metric model\n", + "current epoch: 46 current mean dice: 0.3545\n", + "best mean dice: 0.3545 at epoch: 46\n", + "----------\n", + "0: epoch 47/1000: lr: [0.0007930000000000001]\n", + "1/0, train_loss: 0.6845\n", + "0 epoch 47 average loss: 0.6845\n", + "----------\n", + "0: epoch 48/1000: lr: [0.0007885000000000001]\n", + "1/0, train_loss: 0.6854\n", + "0 epoch 48 average loss: 0.6854\n", + "saved new best metric model\n", + "current epoch: 48 current mean dice: 0.3547\n", + "best mean dice: 0.3547 at epoch: 48\n", + "----------\n", + "0: epoch 49/1000: lr: [0.0007839999999999999]\n", + "1/0, train_loss: 0.6832\n", + "0 epoch 49 average loss: 0.6832\n", + "----------\n", + "0: epoch 50/1000: lr: [0.0007794999999999999]\n", + "1/0, train_loss: 0.6830\n", + "0 epoch 50 average loss: 0.6830\n", + "saved new best metric model\n", + "current epoch: 50 current mean dice: 0.3548\n", + "best mean dice: 0.3548 at epoch: 50\n", + "----------\n", + "0: epoch 51/1000: lr: [0.0007750000000000001]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.6816\n", + "0 epoch 51 average loss: 0.6816\n", + "----------\n", + "0: epoch 52/1000: lr: [0.0007705000000000001]\n", + "1/0, train_loss: 0.6816\n", + "0 epoch 52 average loss: 0.6816\n", + "saved new best metric model\n", + "current epoch: 52 current mean dice: 0.3549\n", + "best mean dice: 0.3549 at epoch: 52\n", + "----------\n", + "0: epoch 53/1000: lr: [0.0007660000000000002]\n", + "1/0, train_loss: 0.6824\n", + "0 epoch 53 average loss: 0.6824\n", + "----------\n", + "0: epoch 54/1000: lr: [0.0007614999999999999]\n", + "1/0, train_loss: 0.6801\n", + "0 epoch 54 average loss: 0.6801\n", + "saved new best metric model\n", + "current epoch: 54 current mean dice: 0.3551\n", + "best mean dice: 0.3551 at epoch: 54\n", + "----------\n", + "0: epoch 55/1000: lr: [0.0007570000000000001]\n", + "1/0, train_loss: 0.6803\n", + "0 epoch 55 average loss: 0.6803\n", + "----------\n", + "0: epoch 56/1000: lr: [0.0007525000000000001]\n", + "1/0, train_loss: 0.6803\n", + "0 epoch 56 average loss: 0.6803\n", + "saved new best metric model\n", + "current epoch: 56 current mean dice: 0.3552\n", + "best mean dice: 0.3552 at epoch: 56\n", + "----------\n", + "0: epoch 57/1000: lr: [0.0007479999999999998]\n", + "1/0, train_loss: 0.6837\n", + "0 epoch 57 average loss: 0.6837\n", + "----------\n", + "0: epoch 58/1000: lr: [0.0007434999999999999]\n", + "1/0, train_loss: 0.6810\n", + "0 epoch 58 average loss: 0.6810\n", + "saved new best metric model\n", + "current epoch: 58 current mean dice: 0.3553\n", + "best mean dice: 0.3553 at epoch: 58\n", + "----------\n", + "0: epoch 59/1000: lr: [0.0007390000000000001]\n", + "1/0, train_loss: 0.6790\n", + "0 epoch 59 average loss: 0.6790\n", + "----------\n", + "0: epoch 60/1000: lr: [0.0007345000000000001]\n", + "1/0, train_loss: 0.6792\n", + "0 epoch 60 average loss: 0.6792\n", + "saved new best metric model\n", + "current epoch: 60 current mean dice: 0.3555\n", + "best mean dice: 0.3555 at epoch: 60\n", + "----------\n", + "0: epoch 61/1000: lr: [0.0007300000000000002]\n", + "1/0, train_loss: 0.6786\n", + "0 epoch 61 average loss: 0.6786\n", + "----------\n", + "0: epoch 62/1000: lr: [0.0007254999999999999]\n", + "1/0, train_loss: 0.6790\n", + "0 epoch 62 average loss: 0.6790\n", + "saved new best metric model\n", + "current epoch: 62 current mean dice: 0.3557\n", + "best mean dice: 0.3557 at epoch: 62\n", + "----------\n", + "0: epoch 63/1000: lr: [0.000721]\n", + "1/0, train_loss: 0.6784\n", + "0 epoch 63 average loss: 0.6784\n", + "----------\n", + "0: epoch 64/1000: lr: [0.0007165000000000001]\n", + "1/0, train_loss: 0.6783\n", + "0 epoch 64 average loss: 0.6783\n", + "saved new best metric model\n", + "current epoch: 64 current mean dice: 0.3558\n", + "best mean dice: 0.3558 at epoch: 64\n", + "----------\n", + "0: epoch 65/1000: lr: [0.0007120000000000002]\n", + "1/0, train_loss: 0.6833\n", + "0 epoch 65 average loss: 0.6833\n", + "----------\n", + "0: epoch 66/1000: lr: [0.0007074999999999998]\n", + "1/0, train_loss: 0.6814\n", + "0 epoch 66 average loss: 0.6814\n", + "saved new best metric model\n", + "current epoch: 66 current mean dice: 0.3559\n", + "best mean dice: 0.3559 at epoch: 66\n", + "----------\n", + "0: epoch 67/1000: lr: [0.000703]\n", + "1/0, train_loss: 0.6769\n", + "0 epoch 67 average loss: 0.6769\n", + "----------\n", + "0: epoch 68/1000: lr: [0.0006985000000000001]\n", + "1/0, train_loss: 0.6780\n", + "0 epoch 68 average loss: 0.6780\n", + "saved new best metric model\n", + "current epoch: 68 current mean dice: 0.3561\n", + "best mean dice: 0.3561 at epoch: 68\n", + "----------\n", + "0: epoch 69/1000: lr: [0.0006940000000000002]\n", + "1/0, train_loss: 0.6764\n", + "0 epoch 69 average loss: 0.6764\n", + "----------\n", + "0: epoch 70/1000: lr: [0.0006895000000000002]\n", + "1/0, train_loss: 0.6768\n", + "0 epoch 70 average loss: 0.6768\n", + "saved new best metric model\n", + "current epoch: 70 current mean dice: 0.3563\n", + "best mean dice: 0.3563 at epoch: 70\n", + "----------\n", + "0: epoch 71/1000: lr: [0.000685]\n", + "1/0, train_loss: 0.6798\n", + "0 epoch 71 average loss: 0.6798\n", + "----------\n", + "0: epoch 72/1000: lr: [0.0006805000000000001]\n", + "1/0, train_loss: 0.6789\n", + "0 epoch 72 average loss: 0.6789\n", + "saved new best metric model\n", + "current epoch: 72 current mean dice: 0.3564\n", + "best mean dice: 0.3564 at epoch: 72\n", + "----------\n", + "0: epoch 73/1000: lr: [0.0006760000000000002]\n", + "1/0, train_loss: 0.6783\n", + "0 epoch 73 average loss: 0.6783\n", + "----------\n", + "0: epoch 74/1000: lr: [0.0006714999999999998]\n", + "1/0, train_loss: 0.6764\n", + "0 epoch 74 average loss: 0.6764\n", + "saved new best metric model\n", + "current epoch: 74 current mean dice: 0.3566\n", + "best mean dice: 0.3566 at epoch: 74\n", + "----------\n", + "0: epoch 75/1000: lr: [0.000667]\n", + "1/0, train_loss: 0.6785\n", + "0 epoch 75 average loss: 0.6785\n", + "----------\n", + "0: epoch 76/1000: lr: [0.0006625]\n", + "1/0, train_loss: 0.6784\n", + "0 epoch 76 average loss: 0.6784\n", + "saved new best metric model\n", + "current epoch: 76 current mean dice: 0.3568\n", + "best mean dice: 0.3568 at epoch: 76\n", + "----------\n", + "0: epoch 77/1000: lr: [0.0006580000000000002]\n", + "1/0, train_loss: 0.6750\n", + "0 epoch 77 average loss: 0.6750\n", + "----------\n", + "0: epoch 78/1000: lr: [0.0006535000000000002]\n", + "1/0, train_loss: 0.6751\n", + "0 epoch 78 average loss: 0.6751\n", + "saved new best metric model\n", + "current epoch: 78 current mean dice: 0.3569\n", + "best mean dice: 0.3569 at epoch: 78\n", + "----------\n", + "0: epoch 79/1000: lr: [0.0006489999999999998]\n", + "1/0, train_loss: 0.6754\n", + "0 epoch 79 average loss: 0.6754\n", + "----------\n", + "0: epoch 80/1000: lr: [0.0006445]\n", + "1/0, train_loss: 0.6755\n", + "0 epoch 80 average loss: 0.6755\n", + "saved new best metric model\n", + "current epoch: 80 current mean dice: 0.3570\n", + "best mean dice: 0.3570 at epoch: 80\n", + "----------\n", + "0: epoch 81/1000: lr: [0.0006400000000000002]\n", + "1/0, train_loss: 0.6748\n", + "0 epoch 81 average loss: 0.6748\n", + "----------\n", + "0: epoch 82/1000: lr: [0.0006354999999999998]\n", + "1/0, train_loss: 0.6761\n", + "0 epoch 82 average loss: 0.6761\n", + "saved new best metric model\n", + "current epoch: 82 current mean dice: 0.3571\n", + "best mean dice: 0.3571 at epoch: 82\n", + "----------\n", + "0: epoch 83/1000: lr: [0.0006309999999999998]\n", + "1/0, train_loss: 0.6744\n", + "0 epoch 83 average loss: 0.6744\n", + "----------\n", + "0: epoch 84/1000: lr: [0.0006265]\n", + "1/0, train_loss: 0.6737\n", + "0 epoch 84 average loss: 0.6737\n", + "saved new best metric model\n", + "current epoch: 84 current mean dice: 0.3572\n", + "best mean dice: 0.3572 at epoch: 84\n", + "----------\n", + "0: epoch 85/1000: lr: [0.0006220000000000002]\n", + "1/0, train_loss: 0.6739\n", + "0 epoch 85 average loss: 0.6739\n", + "----------\n", + "0: epoch 86/1000: lr: [0.0006175000000000002]\n", + "1/0, train_loss: 0.6740\n", + "0 epoch 86 average loss: 0.6740\n", + "saved new best metric model\n", + "current epoch: 86 current mean dice: 0.3573\n", + "best mean dice: 0.3573 at epoch: 86\n", + "----------\n", + "0: epoch 87/1000: lr: [0.0006129999999999998]\n", + "1/0, train_loss: 0.6739\n", + "0 epoch 87 average loss: 0.6739\n", + "----------\n", + "0: epoch 88/1000: lr: [0.0006085]\n", + "1/0, train_loss: 0.6729\n", + "0 epoch 88 average loss: 0.6729\n", + "saved new best metric model\n", + "current epoch: 88 current mean dice: 0.3574\n", + "best mean dice: 0.3574 at epoch: 88\n", + "----------\n", + "0: epoch 89/1000: lr: [0.0006040000000000002]\n", + "1/0, train_loss: 0.6754\n", + "0 epoch 89 average loss: 0.6754\n", + "----------\n", + "0: epoch 90/1000: lr: [0.0005995000000000002]\n", + "1/0, train_loss: 0.6723\n", + "0 epoch 90 average loss: 0.6723\n", + "saved new best metric model\n", + "current epoch: 90 current mean dice: 0.3576\n", + "best mean dice: 0.3576 at epoch: 90\n", + "----------\n", + "0: epoch 91/1000: lr: [0.0005949999999999998]\n", + "1/0, train_loss: 0.6759\n", + "0 epoch 91 average loss: 0.6759\n", + "----------\n", + "0: epoch 92/1000: lr: [0.0005905]\n", + "1/0, train_loss: 0.6725\n", + "0 epoch 92 average loss: 0.6725\n", + "saved new best metric model\n", + "current epoch: 92 current mean dice: 0.3577\n", + "best mean dice: 0.3577 at epoch: 92\n", + "----------\n", + "0: epoch 93/1000: lr: [0.000586]\n", + "1/0, train_loss: 0.6718\n", + "0 epoch 93 average loss: 0.6718\n", + "----------\n", + "0: epoch 94/1000: lr: [0.0005815000000000002]\n", + "1/0, train_loss: 0.6729\n", + "0 epoch 94 average loss: 0.6729\n", + "saved new best metric model\n", + "current epoch: 94 current mean dice: 0.3579\n", + "best mean dice: 0.3579 at epoch: 94\n", + "----------\n", + "0: epoch 95/1000: lr: [0.0005770000000000003]\n", + "1/0, train_loss: 0.6720\n", + "0 epoch 95 average loss: 0.6720\n", + "----------\n", + "0: epoch 96/1000: lr: [0.0005724999999999999]\n", + "1/0, train_loss: 0.6733\n", + "0 epoch 96 average loss: 0.6733\n", + "saved new best metric model\n", + "current epoch: 96 current mean dice: 0.3580\n", + "best mean dice: 0.3580 at epoch: 96\n", + "----------\n", + "0: epoch 97/1000: lr: [0.000568]\n", + "1/0, train_loss: 0.6714\n", + "0 epoch 97 average loss: 0.6714\n", + "----------\n", + "0: epoch 98/1000: lr: [0.0005635000000000002]\n", + "1/0, train_loss: 0.6725\n", + "0 epoch 98 average loss: 0.6725\n", + "saved new best metric model\n", + "current epoch: 98 current mean dice: 0.3581\n", + "best mean dice: 0.3581 at epoch: 98\n", + "----------\n", + "0: epoch 99/1000: lr: [0.0005589999999999998]\n", + "1/0, train_loss: 0.6719\n", + "0 epoch 99 average loss: 0.6719\n", + "----------\n", + "0: epoch 100/1000: lr: [0.0005544999999999999]\n", + "1/0, train_loss: 0.6753\n", + "0 epoch 100 average loss: 0.6753\n", + "saved new best metric model\n", + "current epoch: 100 current mean dice: 0.3582\n", + "best mean dice: 0.3582 at epoch: 100\n", + "----------\n", + "0: epoch 101/1000: lr: [0.00055]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.6723\n", + "0 epoch 101 average loss: 0.6723\n", + "----------\n", + "0: epoch 102/1000: lr: [0.0005455000000000002]\n", + "1/0, train_loss: 0.6718\n", + "0 epoch 102 average loss: 0.6718\n", + "saved new best metric model\n", + "current epoch: 102 current mean dice: 0.3584\n", + "best mean dice: 0.3584 at epoch: 102\n", + "----------\n", + "0: epoch 103/1000: lr: [0.0005410000000000002]\n", + "1/0, train_loss: 0.6700\n", + "0 epoch 103 average loss: 0.6700\n", + "----------\n", + "0: epoch 104/1000: lr: [0.0005364999999999999]\n", + "1/0, train_loss: 0.6722\n", + "0 epoch 104 average loss: 0.6722\n", + "saved new best metric model\n", + "current epoch: 104 current mean dice: 0.3584\n", + "best mean dice: 0.3584 at epoch: 104\n", + "----------\n", + "0: epoch 105/1000: lr: [0.000532]\n", + "1/0, train_loss: 0.6707\n", + "0 epoch 105 average loss: 0.6707\n", + "----------\n", + "0: epoch 106/1000: lr: [0.0005275000000000002]\n", + "1/0, train_loss: 0.6727\n", + "0 epoch 106 average loss: 0.6727\n", + "saved new best metric model\n", + "current epoch: 106 current mean dice: 0.3585\n", + "best mean dice: 0.3585 at epoch: 106\n", + "----------\n", + "0: epoch 107/1000: lr: [0.0005229999999999998]\n", + "1/0, train_loss: 0.6712\n", + "0 epoch 107 average loss: 0.6712\n", + "----------\n", + "0: epoch 108/1000: lr: [0.0005184999999999999]\n", + "1/0, train_loss: 0.6725\n", + "0 epoch 108 average loss: 0.6725\n", + "saved new best metric model\n", + "current epoch: 108 current mean dice: 0.3586\n", + "best mean dice: 0.3586 at epoch: 108\n", + "----------\n", + "0: epoch 109/1000: lr: [0.000514]\n", + "1/0, train_loss: 0.6753\n", + "0 epoch 109 average loss: 0.6753\n", + "----------\n", + "0: epoch 110/1000: lr: [0.0005095000000000001]\n", + "1/0, train_loss: 0.6699\n", + "0 epoch 110 average loss: 0.6699\n", + "saved new best metric model\n", + "current epoch: 110 current mean dice: 0.3587\n", + "best mean dice: 0.3587 at epoch: 110\n", + "----------\n", + "0: epoch 111/1000: lr: [0.0005050000000000002]\n", + "1/0, train_loss: 0.6702\n", + "0 epoch 111 average loss: 0.6702\n", + "----------\n", + "0: epoch 112/1000: lr: [0.0005004999999999999]\n", + "1/0, train_loss: 0.6695\n", + "0 epoch 112 average loss: 0.6695\n", + "saved new best metric model\n", + "current epoch: 112 current mean dice: 0.3587\n", + "best mean dice: 0.3587 at epoch: 112\n", + "----------\n", + "0: epoch 113/1000: lr: [0.000496]\n", + "1/0, train_loss: 0.6690\n", + "0 epoch 113 average loss: 0.6690\n", + "----------\n", + "0: epoch 114/1000: lr: [0.0004915000000000001]\n", + "1/0, train_loss: 0.6703\n", + "0 epoch 114 average loss: 0.6703\n", + "saved new best metric model\n", + "current epoch: 114 current mean dice: 0.3588\n", + "best mean dice: 0.3588 at epoch: 114\n", + "----------\n", + "0: epoch 115/1000: lr: [0.00048700000000000013]\n", + "1/0, train_loss: 0.6691\n", + "0 epoch 115 average loss: 0.6691\n", + "----------\n", + "0: epoch 116/1000: lr: [0.00048249999999999986]\n", + "1/0, train_loss: 0.6725\n", + "0 epoch 116 average loss: 0.6725\n", + "saved new best metric model\n", + "current epoch: 116 current mean dice: 0.3589\n", + "best mean dice: 0.3589 at epoch: 116\n", + "----------\n", + "0: epoch 117/1000: lr: [0.000478]\n", + "1/0, train_loss: 0.6728\n", + "0 epoch 117 average loss: 0.6728\n", + "----------\n", + "0: epoch 118/1000: lr: [0.00047350000000000007]\n", + "1/0, train_loss: 0.6686\n", + "0 epoch 118 average loss: 0.6686\n", + "saved new best metric model\n", + "current epoch: 118 current mean dice: 0.3589\n", + "best mean dice: 0.3589 at epoch: 118\n", + "----------\n", + "0: epoch 119/1000: lr: [0.0004690000000000001]\n", + "1/0, train_loss: 0.6698\n", + "0 epoch 119 average loss: 0.6698\n", + "----------\n", + "0: epoch 120/1000: lr: [0.0004645000000000003]\n", + "1/0, train_loss: 0.6700\n", + "0 epoch 120 average loss: 0.6700\n", + "saved new best metric model\n", + "current epoch: 120 current mean dice: 0.3590\n", + "best mean dice: 0.3590 at epoch: 120\n", + "----------\n", + "0: epoch 121/1000: lr: [0.0004599999999999999]\n", + "1/0, train_loss: 0.6713\n", + "0 epoch 121 average loss: 0.6713\n", + "----------\n", + "0: epoch 122/1000: lr: [0.00045550000000000007]\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Exception ignored in: \n", + "Traceback (most recent call last):\n", + " File \"/home/local/KHQ/christopher.funk/miniconda3/envs/myenv/lib/python3.9/site-packages/torch/utils/data/dataloader.py\", line 1328, in __del__\n", + " self._shutdown_workers()\n", + " File \"/home/local/KHQ/christopher.funk/miniconda3/envs/myenv/lib/python3.9/site-packages/torch/utils/data/dataloader.py\", line 1320, in _shutdown_workers\n", + " if w.is_alive():\n", + " File \"/home/local/KHQ/christopher.funk/miniconda3/envs/myenv/lib/python3.9/multiprocessing/process.py\", line 160, in is_alive\n", + " assert self._parent_pid == os.getpid(), 'can only test a child process'\n", + "AssertionError: can only test a child process\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.6689\n", + "0 epoch 122 average loss: 0.6689\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Exception ignored in: \n", + "Traceback (most recent call last):\n", + " File \"/home/local/KHQ/christopher.funk/miniconda3/envs/myenv/lib/python3.9/site-packages/torch/utils/data/dataloader.py\", line 1328, in __del__\n", + " self._shutdown_workers()\n", + " File \"/home/local/KHQ/christopher.funk/miniconda3/envs/myenv/lib/python3.9/site-packages/torch/utils/data/dataloader.py\", line 1320, in _shutdown_workers\n", + " if w.is_alive():\n", + " File \"/home/local/KHQ/christopher.funk/miniconda3/envs/myenv/lib/python3.9/multiprocessing/process.py\", line 160, in is_alive\n", + " assert self._parent_pid == os.getpid(), 'can only test a child process'\n", + "AssertionError: can only test a child process\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "saved new best metric model\n", + "current epoch: 122 current mean dice: 0.3591\n", + "best mean dice: 0.3591 at epoch: 122\n", + "----------\n", + "0: epoch 123/1000: lr: [0.0004510000000000001]\n", + "1/0, train_loss: 0.6724\n", + "0 epoch 123 average loss: 0.6724\n", + "----------\n", + "0: epoch 124/1000: lr: [0.00044649999999999985]\n", + "1/0, train_loss: 0.6692\n", + "0 epoch 124 average loss: 0.6692\n", + "saved new best metric model\n", + "current epoch: 124 current mean dice: 0.3592\n", + "best mean dice: 0.3592 at epoch: 124\n", + "----------\n", + "0: epoch 125/1000: lr: [0.0004419999999999999]\n", + "1/0, train_loss: 0.6695\n", + "0 epoch 125 average loss: 0.6695\n", + "----------\n", + "0: epoch 126/1000: lr: [0.00043750000000000006]\n", + "1/0, train_loss: 0.6686\n", + "0 epoch 126 average loss: 0.6686\n", + "saved new best metric model\n", + "current epoch: 126 current mean dice: 0.3593\n", + "best mean dice: 0.3593 at epoch: 126\n", + "----------\n", + "0: epoch 127/1000: lr: [0.0004330000000000001]\n", + "1/0, train_loss: 0.6704\n", + "0 epoch 127 average loss: 0.6704\n", + "----------\n", + "0: epoch 128/1000: lr: [0.0004285000000000003]\n", + "1/0, train_loss: 0.6751\n", + "0 epoch 128 average loss: 0.6751\n", + "saved new best metric model\n", + "current epoch: 128 current mean dice: 0.3593\n", + "best mean dice: 0.3593 at epoch: 128\n", + "----------\n", + "0: epoch 129/1000: lr: [0.0004239999999999999]\n", + "1/0, train_loss: 0.6701\n", + "0 epoch 129 average loss: 0.6701\n", + "----------\n", + "0: epoch 130/1000: lr: [0.00041950000000000006]\n", + "1/0, train_loss: 0.6691\n", + "0 epoch 130 average loss: 0.6691\n", + "saved new best metric model\n", + "current epoch: 130 current mean dice: 0.3593\n", + "best mean dice: 0.3593 at epoch: 130\n", + "----------\n", + "0: epoch 131/1000: lr: [0.0004150000000000001]\n", + "1/0, train_loss: 0.6675\n", + "0 epoch 131 average loss: 0.6675\n", + "----------\n", + "0: epoch 132/1000: lr: [0.00041049999999999984]\n", + "1/0, train_loss: 0.6682\n", + "0 epoch 132 average loss: 0.6682\n", + "saved new best metric model\n", + "current epoch: 132 current mean dice: 0.3594\n", + "best mean dice: 0.3594 at epoch: 132\n", + "----------\n", + "0: epoch 133/1000: lr: [0.0004059999999999999]\n", + "1/0, train_loss: 0.6674\n", + "0 epoch 133 average loss: 0.6674\n", + "----------\n", + "0: epoch 134/1000: lr: [0.00040150000000000006]\n", + "1/0, train_loss: 0.6720\n", + "0 epoch 134 average loss: 0.6720\n", + "saved new best metric model\n", + "current epoch: 134 current mean dice: 0.3594\n", + "best mean dice: 0.3594 at epoch: 134\n", + "----------\n", + "0: epoch 135/1000: lr: [0.0003970000000000001]\n", + "1/0, train_loss: 0.6703\n", + "0 epoch 135 average loss: 0.6703\n", + "----------\n", + "0: epoch 136/1000: lr: [0.00039250000000000016]\n", + "1/0, train_loss: 0.6701\n", + "0 epoch 136 average loss: 0.6701\n", + "saved new best metric model\n", + "current epoch: 136 current mean dice: 0.3594\n", + "best mean dice: 0.3594 at epoch: 136\n", + "----------\n", + "0: epoch 137/1000: lr: [0.0003879999999999999]\n", + "1/0, train_loss: 0.6669\n", + "0 epoch 137 average loss: 0.6669\n", + "----------\n", + "0: epoch 138/1000: lr: [0.00038349999999999994]\n", + "1/0, train_loss: 0.6672\n", + "0 epoch 138 average loss: 0.6672\n", + "saved new best metric model\n", + "current epoch: 138 current mean dice: 0.3595\n", + "best mean dice: 0.3595 at epoch: 138\n", + "----------\n", + "0: epoch 139/1000: lr: [0.0003790000000000001]\n", + "1/0, train_loss: 0.6681\n", + "0 epoch 139 average loss: 0.6681\n", + "----------\n", + "0: epoch 140/1000: lr: [0.00037450000000000016]\n", + "1/0, train_loss: 0.6727\n", + "0 epoch 140 average loss: 0.6727\n", + "saved new best metric model\n", + "current epoch: 140 current mean dice: 0.3595\n", + "best mean dice: 0.3595 at epoch: 140\n", + "----------\n", + "0: epoch 141/1000: lr: [0.0003699999999999999]\n", + "1/0, train_loss: 0.6694\n", + "0 epoch 141 average loss: 0.6694\n", + "----------\n", + "0: epoch 142/1000: lr: [0.00036549999999999994]\n", + "1/0, train_loss: 0.6719\n", + "0 epoch 142 average loss: 0.6719\n", + "saved new best metric model\n", + "current epoch: 142 current mean dice: 0.3595\n", + "best mean dice: 0.3595 at epoch: 142\n", + "----------\n", + "0: epoch 143/1000: lr: [0.0003610000000000001]\n", + "1/0, train_loss: 0.6723\n", + "0 epoch 143 average loss: 0.6723\n", + "----------\n", + "0: epoch 144/1000: lr: [0.00035650000000000015]\n", + "1/0, train_loss: 0.6659\n", + "0 epoch 144 average loss: 0.6659\n", + "saved new best metric model\n", + "current epoch: 144 current mean dice: 0.3596\n", + "best mean dice: 0.3596 at epoch: 144\n", + "----------\n", + "0: epoch 145/1000: lr: [0.0003520000000000003]\n", + "1/0, train_loss: 0.6708\n", + "0 epoch 145 average loss: 0.6708\n", + "----------\n", + "0: epoch 146/1000: lr: [0.00034749999999999994]\n", + "1/0, train_loss: 0.6666\n", + "0 epoch 146 average loss: 0.6666\n", + "saved new best metric model\n", + "current epoch: 146 current mean dice: 0.3596\n", + "best mean dice: 0.3596 at epoch: 146\n", + "----------\n", + "0: epoch 147/1000: lr: [0.0003430000000000001]\n", + "1/0, train_loss: 0.6680\n", + "0 epoch 147 average loss: 0.6680\n", + "----------\n", + "0: epoch 148/1000: lr: [0.00033850000000000015]\n", + "1/0, train_loss: 0.6684\n", + "0 epoch 148 average loss: 0.6684\n", + "saved new best metric model\n", + "current epoch: 148 current mean dice: 0.3597\n", + "best mean dice: 0.3597 at epoch: 148\n", + "----------\n", + "0: epoch 149/1000: lr: [0.0003339999999999999]\n", + "1/0, train_loss: 0.6667\n", + "0 epoch 149 average loss: 0.6667\n", + "----------\n", + "0: epoch 150/1000: lr: [0.00032949999999999993]\n", + "1/0, train_loss: 0.6680\n", + "0 epoch 150 average loss: 0.6680\n", + "saved new best metric model\n", + "current epoch: 150 current mean dice: 0.3597\n", + "best mean dice: 0.3597 at epoch: 150\n", + "----------\n", + "0: epoch 151/1000: lr: [0.000325]\n", + "1/0, train_loss: 0.6677\n", + "0 epoch 151 average loss: 0.6677\n", + "----------\n", + "0: epoch 152/1000: lr: [0.00032050000000000015]\n", + "1/0, train_loss: 0.6703\n", + "0 epoch 152 average loss: 0.6703\n", + "saved new best metric model\n", + "current epoch: 152 current mean dice: 0.3597\n", + "best mean dice: 0.3597 at epoch: 152\n", + "----------\n", + "0: epoch 153/1000: lr: [0.0003160000000000002]\n", + "1/0, train_loss: 0.6701\n", + "0 epoch 153 average loss: 0.6701\n", + "----------\n", + "0: epoch 154/1000: lr: [0.00031149999999999993]\n", + "1/0, train_loss: 0.6673\n", + "0 epoch 154 average loss: 0.6673\n", + "saved new best metric model\n", + "current epoch: 154 current mean dice: 0.3597\n", + "best mean dice: 0.3597 at epoch: 154\n", + "----------\n", + "0: epoch 155/1000: lr: [0.000307]\n", + "1/0, train_loss: 0.6673\n", + "0 epoch 155 average loss: 0.6673\n", + "----------\n", + "0: epoch 156/1000: lr: [0.00030250000000000014]\n", + "1/0, train_loss: 0.6669\n", + "0 epoch 156 average loss: 0.6669\n", + "saved new best metric model\n", + "current epoch: 156 current mean dice: 0.3598\n", + "best mean dice: 0.3598 at epoch: 156\n", + "----------\n", + "0: epoch 157/1000: lr: [0.00029799999999999976]\n", + "1/0, train_loss: 0.6678\n", + "0 epoch 157 average loss: 0.6678\n", + "----------\n", + "0: epoch 158/1000: lr: [0.0002934999999999999]\n", + "1/0, train_loss: 0.6671\n", + "0 epoch 158 average loss: 0.6671\n", + "saved new best metric model\n", + "current epoch: 158 current mean dice: 0.3598\n", + "best mean dice: 0.3598 at epoch: 158\n", + "----------\n", + "0: epoch 159/1000: lr: [0.000289]\n", + "1/0, train_loss: 0.6665\n", + "0 epoch 159 average loss: 0.6665\n", + "----------\n", + "0: epoch 160/1000: lr: [0.00028450000000000014]\n", + "1/0, train_loss: 0.6700\n", + "0 epoch 160 average loss: 0.6700\n", + "saved new best metric model\n", + "current epoch: 160 current mean dice: 0.3598\n", + "best mean dice: 0.3598 at epoch: 160\n", + "----------\n", + "0: epoch 161/1000: lr: [0.0002800000000000002]\n", + "1/0, train_loss: 0.6660\n", + "0 epoch 161 average loss: 0.6660\n", + "----------\n", + "0: epoch 162/1000: lr: [0.0002754999999999999]\n", + "1/0, train_loss: 0.6660\n", + "0 epoch 162 average loss: 0.6660\n", + "saved new best metric model\n", + "current epoch: 162 current mean dice: 0.3598\n", + "best mean dice: 0.3598 at epoch: 162\n", + "----------\n", + "0: epoch 163/1000: lr: [0.000271]\n", + "1/0, train_loss: 0.6674\n", + "0 epoch 163 average loss: 0.6674\n", + "----------\n", + "0: epoch 164/1000: lr: [0.00026650000000000014]\n", + "1/0, train_loss: 0.6656\n", + "0 epoch 164 average loss: 0.6656\n", + "saved new best metric model\n", + "current epoch: 164 current mean dice: 0.3598\n", + "best mean dice: 0.3598 at epoch: 164\n", + "----------\n", + "0: epoch 165/1000: lr: [0.0002620000000000002]\n", + "1/0, train_loss: 0.6671\n", + "0 epoch 165 average loss: 0.6671\n", + "----------\n", + "0: epoch 166/1000: lr: [0.0002574999999999999]\n", + "1/0, train_loss: 0.6663\n", + "0 epoch 166 average loss: 0.6663\n", + "saved new best metric model\n", + "current epoch: 166 current mean dice: 0.3598\n", + "best mean dice: 0.3598 at epoch: 166\n", + "----------\n", + "0: epoch 167/1000: lr: [0.00025299999999999997]\n", + "1/0, train_loss: 0.6654\n", + "0 epoch 167 average loss: 0.6654\n", + "----------\n", + "0: epoch 168/1000: lr: [0.0002485]\n", + "1/0, train_loss: 0.6704\n", + "0 epoch 168 average loss: 0.6704\n", + "saved new best metric model\n", + "current epoch: 168 current mean dice: 0.3599\n", + "best mean dice: 0.3599 at epoch: 168\n", + "----------\n", + "0: epoch 169/1000: lr: [0.00024400000000000018]\n", + "1/0, train_loss: 0.6665\n", + "0 epoch 169 average loss: 0.6665\n", + "----------\n", + "0: epoch 170/1000: lr: [0.00023950000000000024]\n", + "1/0, train_loss: 0.6669\n", + "0 epoch 170 average loss: 0.6669\n", + "saved new best metric model\n", + "current epoch: 170 current mean dice: 0.3599\n", + "best mean dice: 0.3599 at epoch: 170\n", + "----------\n", + "0: epoch 171/1000: lr: [0.00023499999999999997]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.6658\n", + "0 epoch 171 average loss: 0.6658\n", + "----------\n", + "0: epoch 172/1000: lr: [0.00023050000000000002]\n", + "1/0, train_loss: 0.6667\n", + "0 epoch 172 average loss: 0.6667\n", + "saved new best metric model\n", + "current epoch: 172 current mean dice: 0.3599\n", + "best mean dice: 0.3599 at epoch: 172\n", + "----------\n", + "0: epoch 173/1000: lr: [0.00022600000000000018]\n", + "1/0, train_loss: 0.6663\n", + "0 epoch 173 average loss: 0.6663\n", + "----------\n", + "0: epoch 174/1000: lr: [0.0002214999999999998]\n", + "1/0, train_loss: 0.6659\n", + "0 epoch 174 average loss: 0.6659\n", + "saved new best metric model\n", + "current epoch: 174 current mean dice: 0.3599\n", + "best mean dice: 0.3599 at epoch: 174\n", + "----------\n", + "0: epoch 175/1000: lr: [0.00021699999999999996]\n", + "1/0, train_loss: 0.6649\n", + "0 epoch 175 average loss: 0.6649\n", + "----------\n", + "0: epoch 176/1000: lr: [0.00021250000000000002]\n", + "1/0, train_loss: 0.6676\n", + "0 epoch 176 average loss: 0.6676\n", + "saved new best metric model\n", + "current epoch: 176 current mean dice: 0.3599\n", + "best mean dice: 0.3599 at epoch: 176\n", + "----------\n", + "0: epoch 177/1000: lr: [0.00020800000000000018]\n", + "1/0, train_loss: 0.6685\n", + "0 epoch 177 average loss: 0.6685\n", + "----------\n", + "0: epoch 178/1000: lr: [0.00020350000000000023]\n", + "1/0, train_loss: 0.6711\n", + "0 epoch 178 average loss: 0.6711\n", + "current epoch: 178 current mean dice: 0.3599\n", + "best mean dice: 0.3599 at epoch: 176\n", + "----------\n", + "0: epoch 179/1000: lr: [0.00019899999999999996]\n", + "1/0, train_loss: 0.6675\n", + "0 epoch 179 average loss: 0.6675\n", + "----------\n", + "0: epoch 180/1000: lr: [0.0001945]\n", + "1/0, train_loss: 0.6675\n", + "0 epoch 180 average loss: 0.6675\n", + "current epoch: 180 current mean dice: 0.3599\n", + "best mean dice: 0.3599 at epoch: 176\n", + "----------\n", + "0: epoch 181/1000: lr: [0.00019000000000000017]\n", + "1/0, train_loss: 0.6700\n", + "0 epoch 181 average loss: 0.6700\n", + "----------\n", + "0: epoch 182/1000: lr: [0.0001854999999999998]\n", + "1/0, train_loss: 0.6648\n", + "0 epoch 182 average loss: 0.6648\n", + "saved new best metric model\n", + "current epoch: 182 current mean dice: 0.3599\n", + "best mean dice: 0.3599 at epoch: 182\n", + "----------\n", + "0: epoch 183/1000: lr: [0.00018099999999999995]\n", + "1/0, train_loss: 0.6657\n", + "0 epoch 183 average loss: 0.6657\n", + "----------\n", + "0: epoch 184/1000: lr: [0.0001765]\n", + "1/0, train_loss: 0.6666\n", + "0 epoch 184 average loss: 0.6666\n", + "current epoch: 184 current mean dice: 0.3599\n", + "best mean dice: 0.3599 at epoch: 182\n", + "----------\n", + "0: epoch 185/1000: lr: [0.00017200000000000006]\n", + "1/0, train_loss: 0.6669\n", + "0 epoch 185 average loss: 0.6669\n", + "----------\n", + "0: epoch 186/1000: lr: [0.00016750000000000022]\n", + "1/0, train_loss: 0.6650\n", + "0 epoch 186 average loss: 0.6650\n", + "current epoch: 186 current mean dice: 0.3599\n", + "best mean dice: 0.3599 at epoch: 182\n", + "----------\n", + "0: epoch 187/1000: lr: [0.00016299999999999995]\n", + "1/0, train_loss: 0.6654\n", + "0 epoch 187 average loss: 0.6654\n", + "----------\n", + "0: epoch 188/1000: lr: [0.0001585]\n", + "1/0, train_loss: 0.6651\n", + "0 epoch 188 average loss: 0.6651\n", + "current epoch: 188 current mean dice: 0.3599\n", + "best mean dice: 0.3599 at epoch: 182\n", + "----------\n", + "0: epoch 189/1000: lr: [0.00015400000000000006]\n", + "1/0, train_loss: 0.6673\n", + "0 epoch 189 average loss: 0.6673\n", + "----------\n", + "0: epoch 190/1000: lr: [0.00014950000000000022]\n", + "1/0, train_loss: 0.6655\n", + "0 epoch 190 average loss: 0.6655\n", + "current epoch: 190 current mean dice: 0.3599\n", + "best mean dice: 0.3599 at epoch: 182\n", + "----------\n", + "0: epoch 191/1000: lr: [0.00014499999999999984]\n", + "1/0, train_loss: 0.6657\n", + "0 epoch 191 average loss: 0.6657\n", + "----------\n", + "0: epoch 192/1000: lr: [0.0001405]\n", + "1/0, train_loss: 0.6646\n", + "0 epoch 192 average loss: 0.6646\n", + "current epoch: 192 current mean dice: 0.3599\n", + "best mean dice: 0.3599 at epoch: 182\n", + "----------\n", + "0: epoch 193/1000: lr: [0.00013600000000000005]\n", + "1/0, train_loss: 0.6647\n", + "0 epoch 193 average loss: 0.6647\n", + "----------\n", + "0: epoch 194/1000: lr: [0.00013150000000000021]\n", + "1/0, train_loss: 0.6683\n", + "0 epoch 194 average loss: 0.6683\n", + "current epoch: 194 current mean dice: 0.3599\n", + "best mean dice: 0.3599 at epoch: 182\n", + "----------\n", + "0: epoch 195/1000: lr: [0.00012700000000000027]\n", + "1/0, train_loss: 0.6725\n", + "0 epoch 195 average loss: 0.6725\n", + "----------\n", + "0: epoch 196/1000: lr: [0.0001225]\n", + "1/0, train_loss: 0.6669\n", + "0 epoch 196 average loss: 0.6669\n", + "saved new best metric model\n", + "current epoch: 196 current mean dice: 0.3599\n", + "best mean dice: 0.3599 at epoch: 196\n", + "----------\n", + "0: epoch 197/1000: lr: [0.00011800000000000005]\n", + "1/0, train_loss: 0.6669\n", + "0 epoch 197 average loss: 0.6669\n", + "----------\n", + "0: epoch 198/1000: lr: [0.00011350000000000021]\n", + "1/0, train_loss: 0.6653\n", + "0 epoch 198 average loss: 0.6653\n", + "saved new best metric model\n", + "current epoch: 198 current mean dice: 0.3599\n", + "best mean dice: 0.3599 at epoch: 198\n", + "----------\n", + "0: epoch 199/1000: lr: [0.00010899999999999983]\n", + "1/0, train_loss: 0.6652\n", + "0 epoch 199 average loss: 0.6652\n", + "----------\n", + "0: epoch 200/1000: lr: [0.00010449999999999999]\n", + "1/0, train_loss: 0.6698\n", + "0 epoch 200 average loss: 0.6698\n", + "current epoch: 200 current mean dice: 0.3599\n", + "best mean dice: 0.3599 at epoch: 198\n", + "----------\n", + "0: epoch 201/1000: lr: [0.00010000000000000005]\n", + "1/0, train_loss: 0.6640\n", + "0 epoch 201 average loss: 0.6640\n", + "----------\n", + "0: epoch 202/1000: lr: [0.00010449999999999999]\n", + "1/0, train_loss: 0.6647\n", + "0 epoch 202 average loss: 0.6647\n", + "current epoch: 202 current mean dice: 0.3599\n", + "best mean dice: 0.3599 at epoch: 198\n", + "----------\n", + "0: epoch 203/1000: lr: [0.00010899999999999983]\n", + "1/0, train_loss: 0.6660\n", + "0 epoch 203 average loss: 0.6660\n", + "----------\n", + "0: epoch 204/1000: lr: [0.00011349999999999978]\n", + "1/0, train_loss: 0.6697\n", + "0 epoch 204 average loss: 0.6697\n", + "current epoch: 204 current mean dice: 0.3599\n", + "best mean dice: 0.3599 at epoch: 198\n", + "----------\n", + "0: epoch 205/1000: lr: [0.00011800000000000005]\n", + "1/0, train_loss: 0.6656\n", + "0 epoch 205 average loss: 0.6656\n", + "----------\n", + "0: epoch 206/1000: lr: [0.0001225]\n", + "1/0, train_loss: 0.6669\n", + "0 epoch 206 average loss: 0.6669\n", + "current epoch: 206 current mean dice: 0.3599\n", + "best mean dice: 0.3599 at epoch: 198\n", + "----------\n", + "0: epoch 207/1000: lr: [0.00012700000000000027]\n", + "1/0, train_loss: 0.6674\n", + "0 epoch 207 average loss: 0.6674\n", + "----------\n", + "0: epoch 208/1000: lr: [0.00013150000000000021]\n", + "1/0, train_loss: 0.6686\n", + "0 epoch 208 average loss: 0.6686\n", + "saved new best metric model\n", + "current epoch: 208 current mean dice: 0.3599\n", + "best mean dice: 0.3599 at epoch: 208\n", + "----------\n", + "0: epoch 209/1000: lr: [0.00013600000000000005]\n", + "1/0, train_loss: 0.6666\n", + "0 epoch 209 average loss: 0.6666\n", + "----------\n", + "0: epoch 210/1000: lr: [0.0001405]\n", + "1/0, train_loss: 0.6668\n", + "0 epoch 210 average loss: 0.6668\n", + "saved new best metric model\n", + "current epoch: 210 current mean dice: 0.3599\n", + "best mean dice: 0.3599 at epoch: 210\n", + "----------\n", + "0: epoch 211/1000: lr: [0.00014499999999999984]\n", + "1/0, train_loss: 0.6662\n", + "0 epoch 211 average loss: 0.6662\n", + "----------\n", + "0: epoch 212/1000: lr: [0.00014949999999999978]\n", + "1/0, train_loss: 0.6670\n", + "0 epoch 212 average loss: 0.6670\n", + "saved new best metric model\n", + "current epoch: 212 current mean dice: 0.3600\n", + "best mean dice: 0.3600 at epoch: 212\n", + "----------\n", + "0: epoch 213/1000: lr: [0.00015400000000000006]\n", + "1/0, train_loss: 0.6652\n", + "0 epoch 213 average loss: 0.6652\n", + "----------\n", + "0: epoch 214/1000: lr: [0.0001585]\n", + "1/0, train_loss: 0.6640\n", + "0 epoch 214 average loss: 0.6640\n", + "saved new best metric model\n", + "current epoch: 214 current mean dice: 0.3600\n", + "best mean dice: 0.3600 at epoch: 214\n", + "----------\n", + "0: epoch 215/1000: lr: [0.00016300000000000028]\n", + "1/0, train_loss: 0.6668\n", + "0 epoch 215 average loss: 0.6668\n", + "----------\n", + "0: epoch 216/1000: lr: [0.00016750000000000022]\n", + "1/0, train_loss: 0.6659\n", + "0 epoch 216 average loss: 0.6659\n", + "saved new best metric model\n", + "current epoch: 216 current mean dice: 0.3600\n", + "best mean dice: 0.3600 at epoch: 216\n", + "----------\n", + "0: epoch 217/1000: lr: [0.00017200000000000006]\n", + "1/0, train_loss: 0.6656\n", + "0 epoch 217 average loss: 0.6656\n", + "----------\n", + "0: epoch 218/1000: lr: [0.0001765]\n", + "1/0, train_loss: 0.6692\n", + "0 epoch 218 average loss: 0.6692\n", + "current epoch: 218 current mean dice: 0.3600\n", + "best mean dice: 0.3600 at epoch: 216\n", + "----------\n", + "0: epoch 219/1000: lr: [0.00018099999999999995]\n", + "1/0, train_loss: 0.6658\n", + "0 epoch 219 average loss: 0.6658\n", + "----------\n", + "0: epoch 220/1000: lr: [0.0001854999999999998]\n", + "1/0, train_loss: 0.6672\n", + "0 epoch 220 average loss: 0.6672\n", + "current epoch: 220 current mean dice: 0.3600\n", + "best mean dice: 0.3600 at epoch: 216\n", + "----------\n", + "0: epoch 221/1000: lr: [0.00019000000000000017]\n", + "1/0, train_loss: 0.6641\n", + "0 epoch 221 average loss: 0.6641\n", + "----------\n", + "0: epoch 222/1000: lr: [0.0001945]\n", + "1/0, train_loss: 0.6676\n", + "0 epoch 222 average loss: 0.6676\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "current epoch: 222 current mean dice: 0.3600\n", + "best mean dice: 0.3600 at epoch: 216\n", + "----------\n", + "0: epoch 223/1000: lr: [0.00019900000000000028]\n", + "1/0, train_loss: 0.6651\n", + "0 epoch 223 average loss: 0.6651\n", + "----------\n", + "0: epoch 224/1000: lr: [0.00020350000000000023]\n", + "1/0, train_loss: 0.6648\n", + "0 epoch 224 average loss: 0.6648\n", + "current epoch: 224 current mean dice: 0.3600\n", + "best mean dice: 0.3600 at epoch: 216\n", + "----------\n", + "0: epoch 225/1000: lr: [0.00020800000000000018]\n", + "1/0, train_loss: 0.6671\n", + "0 epoch 225 average loss: 0.6671\n", + "----------\n", + "0: epoch 226/1000: lr: [0.00021250000000000002]\n", + "1/0, train_loss: 0.6680\n", + "0 epoch 226 average loss: 0.6680\n", + "current epoch: 226 current mean dice: 0.3600\n", + "best mean dice: 0.3600 at epoch: 216\n", + "----------\n", + "0: epoch 227/1000: lr: [0.00021699999999999996]\n", + "1/0, train_loss: 0.6651\n", + "0 epoch 227 average loss: 0.6651\n", + "----------\n", + "0: epoch 228/1000: lr: [0.0002214999999999998]\n", + "1/0, train_loss: 0.6656\n", + "0 epoch 228 average loss: 0.6656\n", + "saved new best metric model\n", + "current epoch: 228 current mean dice: 0.3600\n", + "best mean dice: 0.3600 at epoch: 228\n", + "----------\n", + "0: epoch 229/1000: lr: [0.00022599999999999975]\n", + "1/0, train_loss: 0.6693\n", + "0 epoch 229 average loss: 0.6693\n", + "----------\n", + "0: epoch 230/1000: lr: [0.00023050000000000002]\n", + "1/0, train_loss: 0.6645\n", + "0 epoch 230 average loss: 0.6645\n", + "saved new best metric model\n", + "current epoch: 230 current mean dice: 0.3600\n", + "best mean dice: 0.3600 at epoch: 230\n", + "----------\n", + "0: epoch 231/1000: lr: [0.00023499999999999997]\n", + "1/0, train_loss: 0.6655\n", + "0 epoch 231 average loss: 0.6655\n", + "----------\n", + "0: epoch 232/1000: lr: [0.00023950000000000024]\n", + "1/0, train_loss: 0.6650\n", + "0 epoch 232 average loss: 0.6650\n", + "saved new best metric model\n", + "current epoch: 232 current mean dice: 0.3600\n", + "best mean dice: 0.3600 at epoch: 232\n", + "----------\n", + "0: epoch 233/1000: lr: [0.00024400000000000018]\n", + "1/0, train_loss: 0.6679\n", + "0 epoch 233 average loss: 0.6679\n", + "----------\n", + "0: epoch 234/1000: lr: [0.0002485]\n", + "1/0, train_loss: 0.6655\n", + "0 epoch 234 average loss: 0.6655\n", + "saved new best metric model\n", + "current epoch: 234 current mean dice: 0.3600\n", + "best mean dice: 0.3600 at epoch: 234\n", + "----------\n", + "0: epoch 235/1000: lr: [0.00025299999999999997]\n", + "1/0, train_loss: 0.6653\n", + "0 epoch 235 average loss: 0.6653\n", + "----------\n", + "0: epoch 236/1000: lr: [0.0002574999999999999]\n", + "1/0, train_loss: 0.6650\n", + "0 epoch 236 average loss: 0.6650\n", + "saved new best metric model\n", + "current epoch: 236 current mean dice: 0.3600\n", + "best mean dice: 0.3600 at epoch: 236\n", + "----------\n", + "0: epoch 237/1000: lr: [0.00026199999999999975]\n", + "1/0, train_loss: 0.6682\n", + "0 epoch 237 average loss: 0.6682\n", + "----------\n", + "0: epoch 238/1000: lr: [0.00026650000000000014]\n", + "1/0, train_loss: 0.6650\n", + "0 epoch 238 average loss: 0.6650\n", + "current epoch: 238 current mean dice: 0.3600\n", + "best mean dice: 0.3600 at epoch: 236\n", + "----------\n", + "0: epoch 239/1000: lr: [0.000271]\n", + "1/0, train_loss: 0.6684\n", + "0 epoch 239 average loss: 0.6684\n", + "----------\n", + "0: epoch 240/1000: lr: [0.00027550000000000025]\n", + "1/0, train_loss: 0.6630\n", + "0 epoch 240 average loss: 0.6630\n", + "saved new best metric model\n", + "current epoch: 240 current mean dice: 0.3600\n", + "best mean dice: 0.3600 at epoch: 240\n", + "----------\n", + "0: epoch 241/1000: lr: [0.0002800000000000002]\n", + "1/0, train_loss: 0.6691\n", + "0 epoch 241 average loss: 0.6691\n", + "----------\n", + "0: epoch 242/1000: lr: [0.00028450000000000014]\n", + "1/0, train_loss: 0.6644\n", + "0 epoch 242 average loss: 0.6644\n", + "saved new best metric model\n", + "current epoch: 242 current mean dice: 0.3601\n", + "best mean dice: 0.3601 at epoch: 242\n", + "----------\n", + "0: epoch 243/1000: lr: [0.000289]\n", + "1/0, train_loss: 0.6642\n", + "0 epoch 243 average loss: 0.6642\n", + "----------\n", + "0: epoch 244/1000: lr: [0.0002934999999999999]\n", + "1/0, train_loss: 0.6686\n", + "0 epoch 244 average loss: 0.6686\n", + "saved new best metric model\n", + "current epoch: 244 current mean dice: 0.3601\n", + "best mean dice: 0.3601 at epoch: 244\n", + "----------\n", + "0: epoch 245/1000: lr: [0.00029799999999999976]\n", + "1/0, train_loss: 0.6642\n", + "0 epoch 245 average loss: 0.6642\n", + "----------\n", + "0: epoch 246/1000: lr: [0.00030250000000000014]\n", + "1/0, train_loss: 0.6686\n", + "0 epoch 246 average loss: 0.6686\n", + "saved new best metric model\n", + "current epoch: 246 current mean dice: 0.3601\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 247/1000: lr: [0.000307]\n", + "1/0, train_loss: 0.6686\n", + "0 epoch 247 average loss: 0.6686\n", + "----------\n", + "0: epoch 248/1000: lr: [0.00031150000000000036]\n", + "1/0, train_loss: 0.6649\n", + "0 epoch 248 average loss: 0.6649\n", + "current epoch: 248 current mean dice: 0.3601\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 249/1000: lr: [0.0003160000000000002]\n", + "1/0, train_loss: 0.6670\n", + "0 epoch 249 average loss: 0.6670\n", + "----------\n", + "0: epoch 250/1000: lr: [0.00032050000000000015]\n", + "1/0, train_loss: 0.6643\n", + "0 epoch 250 average loss: 0.6643\n", + "current epoch: 250 current mean dice: 0.3601\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 251/1000: lr: [0.000325]\n", + "1/0, train_loss: 0.6653\n", + "0 epoch 251 average loss: 0.6653\n", + "----------\n", + "0: epoch 252/1000: lr: [0.00032949999999999993]\n", + "1/0, train_loss: 0.6641\n", + "0 epoch 252 average loss: 0.6641\n", + "current epoch: 252 current mean dice: 0.3601\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 253/1000: lr: [0.0003339999999999999]\n", + "1/0, train_loss: 0.6661\n", + "0 epoch 253 average loss: 0.6661\n", + "----------\n", + "0: epoch 254/1000: lr: [0.0003384999999999997]\n", + "1/0, train_loss: 0.6640\n", + "0 epoch 254 average loss: 0.6640\n", + "current epoch: 254 current mean dice: 0.3600\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 255/1000: lr: [0.0003430000000000001]\n", + "1/0, train_loss: 0.6656\n", + "0 epoch 255 average loss: 0.6656\n", + "----------\n", + "0: epoch 256/1000: lr: [0.00034749999999999994]\n", + "1/0, train_loss: 0.6644\n", + "0 epoch 256 average loss: 0.6644\n", + "current epoch: 256 current mean dice: 0.3600\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 257/1000: lr: [0.0003520000000000003]\n", + "1/0, train_loss: 0.6678\n", + "0 epoch 257 average loss: 0.6678\n", + "----------\n", + "0: epoch 258/1000: lr: [0.00035650000000000015]\n", + "1/0, train_loss: 0.6633\n", + "0 epoch 258 average loss: 0.6633\n", + "current epoch: 258 current mean dice: 0.3600\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 259/1000: lr: [0.0003610000000000001]\n", + "1/0, train_loss: 0.6636\n", + "0 epoch 259 average loss: 0.6636\n", + "----------\n", + "0: epoch 260/1000: lr: [0.00036549999999999994]\n", + "1/0, train_loss: 0.6645\n", + "0 epoch 260 average loss: 0.6645\n", + "current epoch: 260 current mean dice: 0.3599\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 261/1000: lr: [0.0003699999999999999]\n", + "1/0, train_loss: 0.6644\n", + "0 epoch 261 average loss: 0.6644\n", + "----------\n", + "0: epoch 262/1000: lr: [0.00037449999999999983]\n", + "1/0, train_loss: 0.6655\n", + "0 epoch 262 average loss: 0.6655\n", + "current epoch: 262 current mean dice: 0.3598\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 263/1000: lr: [0.0003790000000000001]\n", + "1/0, train_loss: 0.6635\n", + "0 epoch 263 average loss: 0.6635\n", + "----------\n", + "0: epoch 264/1000: lr: [0.00038349999999999994]\n", + "1/0, train_loss: 0.6644\n", + "0 epoch 264 average loss: 0.6644\n", + "current epoch: 264 current mean dice: 0.3598\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 265/1000: lr: [0.0003880000000000003]\n", + "1/0, train_loss: 0.6670\n", + "0 epoch 265 average loss: 0.6670\n", + "----------\n", + "0: epoch 266/1000: lr: [0.00039250000000000016]\n", + "1/0, train_loss: 0.6629\n", + "0 epoch 266 average loss: 0.6629\n", + "current epoch: 266 current mean dice: 0.3598\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 267/1000: lr: [0.0003970000000000001]\n", + "1/0, train_loss: 0.6649\n", + "0 epoch 267 average loss: 0.6649\n", + "----------\n", + "0: epoch 268/1000: lr: [0.00040150000000000006]\n", + "1/0, train_loss: 0.6631\n", + "0 epoch 268 average loss: 0.6631\n", + "current epoch: 268 current mean dice: 0.3597\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 269/1000: lr: [0.0004059999999999999]\n", + "1/0, train_loss: 0.6650\n", + "0 epoch 269 average loss: 0.6650\n", + "----------\n", + "0: epoch 270/1000: lr: [0.00041049999999999984]\n", + "1/0, train_loss: 0.6625\n", + "0 epoch 270 average loss: 0.6625\n", + "current epoch: 270 current mean dice: 0.3597\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 271/1000: lr: [0.0004150000000000001]\n", + "1/0, train_loss: 0.6616\n", + "0 epoch 271 average loss: 0.6616\n", + "----------\n", + "0: epoch 272/1000: lr: [0.00041950000000000006]\n", + "1/0, train_loss: 0.6617\n", + "0 epoch 272 average loss: 0.6617\n", + "current epoch: 272 current mean dice: 0.3597\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 273/1000: lr: [0.00042400000000000033]\n", + "1/0, train_loss: 0.6645\n", + "0 epoch 273 average loss: 0.6645\n", + "----------\n", + "0: epoch 274/1000: lr: [0.0004285000000000003]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.6635\n", + "0 epoch 274 average loss: 0.6635\n", + "current epoch: 274 current mean dice: 0.3597\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 275/1000: lr: [0.0004330000000000001]\n", + "1/0, train_loss: 0.6622\n", + "0 epoch 275 average loss: 0.6622\n", + "----------\n", + "0: epoch 276/1000: lr: [0.00043750000000000006]\n", + "1/0, train_loss: 0.6636\n", + "0 epoch 276 average loss: 0.6636\n", + "current epoch: 276 current mean dice: 0.3596\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 277/1000: lr: [0.0004419999999999999]\n", + "1/0, train_loss: 0.6669\n", + "0 epoch 277 average loss: 0.6669\n", + "----------\n", + "0: epoch 278/1000: lr: [0.00044649999999999985]\n", + "1/0, train_loss: 0.6615\n", + "0 epoch 278 average loss: 0.6615\n", + "current epoch: 278 current mean dice: 0.3596\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 279/1000: lr: [0.0004509999999999998]\n", + "1/0, train_loss: 0.6642\n", + "0 epoch 279 average loss: 0.6642\n", + "----------\n", + "0: epoch 280/1000: lr: [0.00045550000000000007]\n", + "1/0, train_loss: 0.6658\n", + "0 epoch 280 average loss: 0.6658\n", + "current epoch: 280 current mean dice: 0.3596\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 281/1000: lr: [0.0004599999999999999]\n", + "1/0, train_loss: 0.6658\n", + "0 epoch 281 average loss: 0.6658\n", + "----------\n", + "0: epoch 282/1000: lr: [0.0004645000000000003]\n", + "1/0, train_loss: 0.6672\n", + "0 epoch 282 average loss: 0.6672\n", + "current epoch: 282 current mean dice: 0.3596\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 283/1000: lr: [0.0004690000000000001]\n", + "1/0, train_loss: 0.6615\n", + "0 epoch 283 average loss: 0.6615\n", + "----------\n", + "0: epoch 284/1000: lr: [0.00047350000000000007]\n", + "1/0, train_loss: 0.6647\n", + "0 epoch 284 average loss: 0.6647\n", + "current epoch: 284 current mean dice: 0.3595\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 285/1000: lr: [0.000478]\n", + "1/0, train_loss: 0.6650\n", + "0 epoch 285 average loss: 0.6650\n", + "----------\n", + "0: epoch 286/1000: lr: [0.00048249999999999986]\n", + "1/0, train_loss: 0.6608\n", + "0 epoch 286 average loss: 0.6608\n", + "current epoch: 286 current mean dice: 0.3595\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 287/1000: lr: [0.0004869999999999998]\n", + "1/0, train_loss: 0.6635\n", + "0 epoch 287 average loss: 0.6635\n", + "----------\n", + "0: epoch 288/1000: lr: [0.0004915000000000001]\n", + "1/0, train_loss: 0.6619\n", + "0 epoch 288 average loss: 0.6619\n", + "current epoch: 288 current mean dice: 0.3595\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 289/1000: lr: [0.000496]\n", + "1/0, train_loss: 0.6652\n", + "0 epoch 289 average loss: 0.6652\n", + "----------\n", + "0: epoch 290/1000: lr: [0.0005005000000000003]\n", + "1/0, train_loss: 0.6630\n", + "0 epoch 290 average loss: 0.6630\n", + "current epoch: 290 current mean dice: 0.3595\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 291/1000: lr: [0.0005050000000000002]\n", + "1/0, train_loss: 0.6632\n", + "0 epoch 291 average loss: 0.6632\n", + "----------\n", + "0: epoch 292/1000: lr: [0.0005095000000000001]\n", + "1/0, train_loss: 0.6635\n", + "0 epoch 292 average loss: 0.6635\n", + "current epoch: 292 current mean dice: 0.3594\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 293/1000: lr: [0.000514]\n", + "1/0, train_loss: 0.6598\n", + "0 epoch 293 average loss: 0.6598\n", + "----------\n", + "0: epoch 294/1000: lr: [0.0005184999999999999]\n", + "1/0, train_loss: 0.6613\n", + "0 epoch 294 average loss: 0.6613\n", + "current epoch: 294 current mean dice: 0.3593\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 295/1000: lr: [0.0005229999999999998]\n", + "1/0, train_loss: 0.6625\n", + "0 epoch 295 average loss: 0.6625\n", + "----------\n", + "0: epoch 296/1000: lr: [0.0005275000000000002]\n", + "1/0, train_loss: 0.6598\n", + "0 epoch 296 average loss: 0.6598\n", + "current epoch: 296 current mean dice: 0.3593\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 297/1000: lr: [0.000532]\n", + "1/0, train_loss: 0.6597\n", + "0 epoch 297 average loss: 0.6597\n", + "----------\n", + "0: epoch 298/1000: lr: [0.0005365000000000003]\n", + "1/0, train_loss: 0.6598\n", + "0 epoch 298 average loss: 0.6598\n", + "current epoch: 298 current mean dice: 0.3593\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 299/1000: lr: [0.0005410000000000002]\n", + "1/0, train_loss: 0.6600\n", + "0 epoch 299 average loss: 0.6600\n", + "----------\n", + "0: epoch 300/1000: lr: [0.0005455000000000002]\n", + "1/0, train_loss: 0.6647\n", + "0 epoch 300 average loss: 0.6647\n", + "current epoch: 300 current mean dice: 0.3592\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 301/1000: lr: [0.00055]\n", + "1/0, train_loss: 0.6657\n", + "0 epoch 301 average loss: 0.6657\n", + "----------\n", + "0: epoch 302/1000: lr: [0.0005544999999999999]\n", + "1/0, train_loss: 0.6641\n", + "0 epoch 302 average loss: 0.6641\n", + "current epoch: 302 current mean dice: 0.3592\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 303/1000: lr: [0.0005589999999999998]\n", + "1/0, train_loss: 0.6640\n", + "0 epoch 303 average loss: 0.6640\n", + "----------\n", + "0: epoch 304/1000: lr: [0.0005634999999999998]\n", + "1/0, train_loss: 0.6595\n", + "0 epoch 304 average loss: 0.6595\n", + "current epoch: 304 current mean dice: 0.3592\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 305/1000: lr: [0.000568]\n", + "1/0, train_loss: 0.6645\n", + "0 epoch 305 average loss: 0.6645\n", + "----------\n", + "0: epoch 306/1000: lr: [0.0005724999999999999]\n", + "1/0, train_loss: 0.6612\n", + "0 epoch 306 average loss: 0.6612\n", + "current epoch: 306 current mean dice: 0.3591\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 307/1000: lr: [0.0005770000000000003]\n", + "1/0, train_loss: 0.6601\n", + "0 epoch 307 average loss: 0.6601\n", + "----------\n", + "0: epoch 308/1000: lr: [0.0005815000000000002]\n", + "1/0, train_loss: 0.6602\n", + "0 epoch 308 average loss: 0.6602\n", + "current epoch: 308 current mean dice: 0.3590\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 309/1000: lr: [0.000586]\n", + "1/0, train_loss: 0.6588\n", + "0 epoch 309 average loss: 0.6588\n", + "----------\n", + "0: epoch 310/1000: lr: [0.0005905]\n", + "1/0, train_loss: 0.6614\n", + "0 epoch 310 average loss: 0.6614\n", + "current epoch: 310 current mean dice: 0.3589\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 311/1000: lr: [0.0005949999999999998]\n", + "1/0, train_loss: 0.6598\n", + "0 epoch 311 average loss: 0.6598\n", + "----------\n", + "0: epoch 312/1000: lr: [0.0005994999999999998]\n", + "1/0, train_loss: 0.6592\n", + "0 epoch 312 average loss: 0.6592\n", + "current epoch: 312 current mean dice: 0.3589\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 313/1000: lr: [0.0006040000000000002]\n", + "1/0, train_loss: 0.6596\n", + "0 epoch 313 average loss: 0.6596\n", + "----------\n", + "0: epoch 314/1000: lr: [0.0006085]\n", + "1/0, train_loss: 0.6613\n", + "0 epoch 314 average loss: 0.6613\n", + "current epoch: 314 current mean dice: 0.3588\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 315/1000: lr: [0.0006130000000000003]\n", + "1/0, train_loss: 0.6657\n", + "0 epoch 315 average loss: 0.6657\n", + "----------\n", + "0: epoch 316/1000: lr: [0.0006175000000000002]\n", + "1/0, train_loss: 0.6599\n", + "0 epoch 316 average loss: 0.6599\n", + "current epoch: 316 current mean dice: 0.3588\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 317/1000: lr: [0.0006220000000000002]\n", + "1/0, train_loss: 0.6640\n", + "0 epoch 317 average loss: 0.6640\n", + "----------\n", + "0: epoch 318/1000: lr: [0.0006265]\n", + "1/0, train_loss: 0.6644\n", + "0 epoch 318 average loss: 0.6644\n", + "current epoch: 318 current mean dice: 0.3587\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 319/1000: lr: [0.0006309999999999998]\n", + "1/0, train_loss: 0.6612\n", + "0 epoch 319 average loss: 0.6612\n", + "----------\n", + "0: epoch 320/1000: lr: [0.0006354999999999998]\n", + "1/0, train_loss: 0.6638\n", + "0 epoch 320 average loss: 0.6638\n", + "current epoch: 320 current mean dice: 0.3586\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 321/1000: lr: [0.0006400000000000002]\n", + "1/0, train_loss: 0.6585\n", + "0 epoch 321 average loss: 0.6585\n", + "----------\n", + "0: epoch 322/1000: lr: [0.0006445]\n", + "1/0, train_loss: 0.6633\n", + "0 epoch 322 average loss: 0.6633\n", + "current epoch: 322 current mean dice: 0.3586\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 323/1000: lr: [0.0006490000000000003]\n", + "1/0, train_loss: 0.6587\n", + "0 epoch 323 average loss: 0.6587\n", + "----------\n", + "0: epoch 324/1000: lr: [0.0006535000000000002]\n", + "1/0, train_loss: 0.6576\n", + "0 epoch 324 average loss: 0.6576\n", + "current epoch: 324 current mean dice: 0.3586\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 325/1000: lr: [0.0006580000000000002]\n", + "1/0, train_loss: 0.6567\n", + "0 epoch 325 average loss: 0.6567\n", + "----------\n", + "0: epoch 326/1000: lr: [0.0006625]\n", + "1/0, train_loss: 0.6596\n", + "0 epoch 326 average loss: 0.6596\n", + "current epoch: 326 current mean dice: 0.3586\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 327/1000: lr: [0.000667]\n", + "1/0, train_loss: 0.6574\n", + "0 epoch 327 average loss: 0.6574\n", + "----------\n", + "0: epoch 328/1000: lr: [0.0006714999999999998]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.6595\n", + "0 epoch 328 average loss: 0.6595\n", + "current epoch: 328 current mean dice: 0.3586\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 329/1000: lr: [0.0006759999999999997]\n", + "1/0, train_loss: 0.6631\n", + "0 epoch 329 average loss: 0.6631\n", + "----------\n", + "0: epoch 330/1000: lr: [0.0006805000000000001]\n", + "1/0, train_loss: 0.6575\n", + "0 epoch 330 average loss: 0.6575\n", + "current epoch: 330 current mean dice: 0.3586\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 331/1000: lr: [0.000685]\n", + "1/0, train_loss: 0.6577\n", + "0 epoch 331 average loss: 0.6577\n", + "----------\n", + "0: epoch 332/1000: lr: [0.0006895000000000002]\n", + "1/0, train_loss: 0.6597\n", + "0 epoch 332 average loss: 0.6597\n", + "current epoch: 332 current mean dice: 0.3586\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 333/1000: lr: [0.0006940000000000002]\n", + "1/0, train_loss: 0.6593\n", + "0 epoch 333 average loss: 0.6593\n", + "----------\n", + "0: epoch 334/1000: lr: [0.0006985000000000001]\n", + "1/0, train_loss: 0.6577\n", + "0 epoch 334 average loss: 0.6577\n", + "current epoch: 334 current mean dice: 0.3585\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 335/1000: lr: [0.000703]\n", + "1/0, train_loss: 0.6590\n", + "0 epoch 335 average loss: 0.6590\n", + "----------\n", + "0: epoch 336/1000: lr: [0.0007074999999999998]\n", + "1/0, train_loss: 0.6571\n", + "0 epoch 336 average loss: 0.6571\n", + "current epoch: 336 current mean dice: 0.3584\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 337/1000: lr: [0.0007119999999999997]\n", + "1/0, train_loss: 0.6553\n", + "0 epoch 337 average loss: 0.6553\n", + "----------\n", + "0: epoch 338/1000: lr: [0.0007165000000000001]\n", + "1/0, train_loss: 0.6623\n", + "0 epoch 338 average loss: 0.6623\n", + "current epoch: 338 current mean dice: 0.3583\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 339/1000: lr: [0.000721]\n", + "1/0, train_loss: 0.6582\n", + "0 epoch 339 average loss: 0.6582\n", + "----------\n", + "0: epoch 340/1000: lr: [0.0007255000000000002]\n", + "1/0, train_loss: 0.6560\n", + "0 epoch 340 average loss: 0.6560\n", + "current epoch: 340 current mean dice: 0.3583\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 341/1000: lr: [0.0007300000000000002]\n", + "1/0, train_loss: 0.6559\n", + "0 epoch 341 average loss: 0.6559\n", + "----------\n", + "0: epoch 342/1000: lr: [0.0007345000000000001]\n", + "1/0, train_loss: 0.6557\n", + "0 epoch 342 average loss: 0.6557\n", + "current epoch: 342 current mean dice: 0.3581\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 343/1000: lr: [0.0007390000000000001]\n", + "1/0, train_loss: 0.6615\n", + "0 epoch 343 average loss: 0.6615\n", + "----------\n", + "0: epoch 344/1000: lr: [0.0007434999999999999]\n", + "1/0, train_loss: 0.6563\n", + "0 epoch 344 average loss: 0.6563\n", + "current epoch: 344 current mean dice: 0.3580\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 345/1000: lr: [0.0007479999999999998]\n", + "1/0, train_loss: 0.6560\n", + "0 epoch 345 average loss: 0.6560\n", + "----------\n", + "0: epoch 346/1000: lr: [0.0007525000000000001]\n", + "1/0, train_loss: 0.6566\n", + "0 epoch 346 average loss: 0.6566\n", + "current epoch: 346 current mean dice: 0.3579\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 347/1000: lr: [0.0007570000000000001]\n", + "1/0, train_loss: 0.6593\n", + "0 epoch 347 average loss: 0.6593\n", + "----------\n", + "0: epoch 348/1000: lr: [0.0007615000000000003]\n", + "1/0, train_loss: 0.6570\n", + "0 epoch 348 average loss: 0.6570\n", + "current epoch: 348 current mean dice: 0.3579\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 349/1000: lr: [0.0007660000000000002]\n", + "1/0, train_loss: 0.6601\n", + "0 epoch 349 average loss: 0.6601\n", + "----------\n", + "0: epoch 350/1000: lr: [0.0007705000000000001]\n", + "1/0, train_loss: 0.6611\n", + "0 epoch 350 average loss: 0.6611\n", + "current epoch: 350 current mean dice: 0.3580\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 351/1000: lr: [0.0007750000000000001]\n", + "1/0, train_loss: 0.6592\n", + "0 epoch 351 average loss: 0.6592\n", + "----------\n", + "0: epoch 352/1000: lr: [0.0007794999999999999]\n", + "1/0, train_loss: 0.6575\n", + "0 epoch 352 average loss: 0.6575\n", + "current epoch: 352 current mean dice: 0.3581\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 353/1000: lr: [0.0007839999999999999]\n", + "1/0, train_loss: 0.6529\n", + "0 epoch 353 average loss: 0.6529\n", + "----------\n", + "0: epoch 354/1000: lr: [0.0007884999999999997]\n", + "1/0, train_loss: 0.6560\n", + "0 epoch 354 average loss: 0.6560\n", + "current epoch: 354 current mean dice: 0.3582\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 355/1000: lr: [0.0007930000000000001]\n", + "1/0, train_loss: 0.6555\n", + "0 epoch 355 average loss: 0.6555\n", + "----------\n", + "0: epoch 356/1000: lr: [0.0007974999999999999]\n", + "1/0, train_loss: 0.6563\n", + "0 epoch 356 average loss: 0.6563\n", + "current epoch: 356 current mean dice: 0.3584\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 357/1000: lr: [0.0008020000000000002]\n", + "1/0, train_loss: 0.6587\n", + "0 epoch 357 average loss: 0.6587\n", + "----------\n", + "0: epoch 358/1000: lr: [0.0008065000000000001]\n", + "1/0, train_loss: 0.6535\n", + "0 epoch 358 average loss: 0.6535\n", + "current epoch: 358 current mean dice: 0.3585\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 359/1000: lr: [0.0008110000000000001]\n", + "1/0, train_loss: 0.6552\n", + "0 epoch 359 average loss: 0.6552\n", + "----------\n", + "0: epoch 360/1000: lr: [0.0008154999999999999]\n", + "1/0, train_loss: 0.6548\n", + "0 epoch 360 average loss: 0.6548\n", + "current epoch: 360 current mean dice: 0.3585\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 361/1000: lr: [0.0008199999999999999]\n", + "1/0, train_loss: 0.6545\n", + "0 epoch 361 average loss: 0.6545\n", + "----------\n", + "0: epoch 362/1000: lr: [0.0008244999999999997]\n", + "1/0, train_loss: 0.6536\n", + "0 epoch 362 average loss: 0.6536\n", + "current epoch: 362 current mean dice: 0.3585\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 363/1000: lr: [0.0008290000000000001]\n", + "1/0, train_loss: 0.6518\n", + "0 epoch 363 average loss: 0.6518\n", + "----------\n", + "0: epoch 364/1000: lr: [0.0008335]\n", + "1/0, train_loss: 0.6525\n", + "0 epoch 364 average loss: 0.6525\n", + "current epoch: 364 current mean dice: 0.3583\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 365/1000: lr: [0.0008380000000000003]\n", + "1/0, train_loss: 0.6533\n", + "0 epoch 365 average loss: 0.6533\n", + "----------\n", + "0: epoch 366/1000: lr: [0.0008425000000000001]\n", + "1/0, train_loss: 0.6529\n", + "0 epoch 366 average loss: 0.6529\n", + "current epoch: 366 current mean dice: 0.3582\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 367/1000: lr: [0.0008470000000000001]\n", + "1/0, train_loss: 0.6526\n", + "0 epoch 367 average loss: 0.6526\n", + "----------\n", + "0: epoch 368/1000: lr: [0.0008515]\n", + "1/0, train_loss: 0.6565\n", + "0 epoch 368 average loss: 0.6565\n", + "current epoch: 368 current mean dice: 0.3581\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 369/1000: lr: [0.0008559999999999999]\n", + "1/0, train_loss: 0.6545\n", + "0 epoch 369 average loss: 0.6545\n", + "----------\n", + "0: epoch 370/1000: lr: [0.0008604999999999998]\n", + "1/0, train_loss: 0.6505\n", + "0 epoch 370 average loss: 0.6505\n", + "current epoch: 370 current mean dice: 0.3580\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 371/1000: lr: [0.0008650000000000001]\n", + "1/0, train_loss: 0.6546\n", + "0 epoch 371 average loss: 0.6546\n", + "----------\n", + "0: epoch 372/1000: lr: [0.0008695]\n", + "1/0, train_loss: 0.6560\n", + "0 epoch 372 average loss: 0.6560\n", + "current epoch: 372 current mean dice: 0.3580\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 373/1000: lr: [0.0008740000000000003]\n", + "1/0, train_loss: 0.6514\n", + "0 epoch 373 average loss: 0.6514\n", + "----------\n", + "0: epoch 374/1000: lr: [0.0008785000000000002]\n", + "1/0, train_loss: 0.6511\n", + "0 epoch 374 average loss: 0.6511\n", + "current epoch: 374 current mean dice: 0.3581\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 375/1000: lr: [0.0008830000000000001]\n", + "1/0, train_loss: 0.6529\n", + "0 epoch 375 average loss: 0.6529\n", + "----------\n", + "0: epoch 376/1000: lr: [0.0008875]\n", + "1/0, train_loss: 0.6489\n", + "0 epoch 376 average loss: 0.6489\n", + "current epoch: 376 current mean dice: 0.3583\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 377/1000: lr: [0.0008919999999999999]\n", + "1/0, train_loss: 0.6498\n", + "0 epoch 377 average loss: 0.6498\n", + "----------\n", + "0: epoch 378/1000: lr: [0.0008964999999999998]\n", + "1/0, train_loss: 0.6497\n", + "0 epoch 378 average loss: 0.6497\n", + "current epoch: 378 current mean dice: 0.3584\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 379/1000: lr: [0.0009009999999999998]\n", + "1/0, train_loss: 0.6521\n", + "0 epoch 379 average loss: 0.6521\n", + "----------\n", + "0: epoch 380/1000: lr: [0.0009055000000000001]\n", + "1/0, train_loss: 0.6493\n", + "0 epoch 380 average loss: 0.6493\n", + "current epoch: 380 current mean dice: 0.3585\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 381/1000: lr: [0.00091]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.6503\n", + "0 epoch 381 average loss: 0.6503\n", + "----------\n", + "0: epoch 382/1000: lr: [0.0009145000000000003]\n", + "1/0, train_loss: 0.6549\n", + "0 epoch 382 average loss: 0.6549\n", + "current epoch: 382 current mean dice: 0.3584\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 383/1000: lr: [0.0009190000000000001]\n", + "1/0, train_loss: 0.6518\n", + "0 epoch 383 average loss: 0.6518\n", + "----------\n", + "0: epoch 384/1000: lr: [0.0009235000000000001]\n", + "1/0, train_loss: 0.6489\n", + "0 epoch 384 average loss: 0.6489\n", + "current epoch: 384 current mean dice: 0.3584\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 385/1000: lr: [0.000928]\n", + "1/0, train_loss: 0.6489\n", + "0 epoch 385 average loss: 0.6489\n", + "----------\n", + "0: epoch 386/1000: lr: [0.0009324999999999998]\n", + "1/0, train_loss: 0.6483\n", + "0 epoch 386 average loss: 0.6483\n", + "current epoch: 386 current mean dice: 0.3583\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 387/1000: lr: [0.0009369999999999998]\n", + "1/0, train_loss: 0.6561\n", + "0 epoch 387 average loss: 0.6561\n", + "----------\n", + "0: epoch 388/1000: lr: [0.0009415000000000001]\n", + "1/0, train_loss: 0.6476\n", + "0 epoch 388 average loss: 0.6476\n", + "current epoch: 388 current mean dice: 0.3584\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 389/1000: lr: [0.000946]\n", + "1/0, train_loss: 0.6486\n", + "0 epoch 389 average loss: 0.6486\n", + "----------\n", + "0: epoch 390/1000: lr: [0.0009505000000000003]\n", + "1/0, train_loss: 0.6531\n", + "0 epoch 390 average loss: 0.6531\n", + "current epoch: 390 current mean dice: 0.3585\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 391/1000: lr: [0.0009550000000000002]\n", + "1/0, train_loss: 0.6542\n", + "0 epoch 391 average loss: 0.6542\n", + "----------\n", + "0: epoch 392/1000: lr: [0.0009595000000000001]\n", + "1/0, train_loss: 0.6489\n", + "0 epoch 392 average loss: 0.6489\n", + "current epoch: 392 current mean dice: 0.3586\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 393/1000: lr: [0.000964]\n", + "1/0, train_loss: 0.6468\n", + "0 epoch 393 average loss: 0.6468\n", + "----------\n", + "0: epoch 394/1000: lr: [0.0009684999999999999]\n", + "1/0, train_loss: 0.6492\n", + "0 epoch 394 average loss: 0.6492\n", + "current epoch: 394 current mean dice: 0.3586\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 395/1000: lr: [0.0009729999999999998]\n", + "1/0, train_loss: 0.6503\n", + "0 epoch 395 average loss: 0.6503\n", + "----------\n", + "0: epoch 396/1000: lr: [0.0009775]\n", + "1/0, train_loss: 0.6490\n", + "0 epoch 396 average loss: 0.6490\n", + "current epoch: 396 current mean dice: 0.3587\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 397/1000: lr: [0.000982]\n", + "1/0, train_loss: 0.6500\n", + "0 epoch 397 average loss: 0.6500\n", + "----------\n", + "0: epoch 398/1000: lr: [0.0009865000000000004]\n", + "1/0, train_loss: 0.6519\n", + "0 epoch 398 average loss: 0.6519\n", + "current epoch: 398 current mean dice: 0.3587\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 399/1000: lr: [0.0009910000000000001]\n", + "1/0, train_loss: 0.6461\n", + "0 epoch 399 average loss: 0.6461\n", + "----------\n", + "0: epoch 400/1000: lr: [0.0009955]\n", + "1/0, train_loss: 0.6459\n", + "0 epoch 400 average loss: 0.6459\n", + "current epoch: 400 current mean dice: 0.3587\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 401/1000: lr: [0.001]\n", + "1/0, train_loss: 0.6494\n", + "0 epoch 401 average loss: 0.6494\n", + "----------\n", + "0: epoch 402/1000: lr: [0.0009955]\n", + "1/0, train_loss: 0.6471\n", + "0 epoch 402 average loss: 0.6471\n", + "current epoch: 402 current mean dice: 0.3587\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 403/1000: lr: [0.0009910000000000001]\n", + "1/0, train_loss: 0.6538\n", + "0 epoch 403 average loss: 0.6538\n", + "----------\n", + "0: epoch 404/1000: lr: [0.0009864999999999995]\n", + "1/0, train_loss: 0.6513\n", + "0 epoch 404 average loss: 0.6513\n", + "current epoch: 404 current mean dice: 0.3586\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 405/1000: lr: [0.0009820000000000005]\n", + "1/0, train_loss: 0.6441\n", + "0 epoch 405 average loss: 0.6441\n", + "----------\n", + "0: epoch 406/1000: lr: [0.0009774999999999996]\n", + "1/0, train_loss: 0.6499\n", + "0 epoch 406 average loss: 0.6499\n", + "current epoch: 406 current mean dice: 0.3586\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 407/1000: lr: [0.0009730000000000006]\n", + "1/0, train_loss: 0.6439\n", + "0 epoch 407 average loss: 0.6439\n", + "----------\n", + "0: epoch 408/1000: lr: [0.0009684999999999999]\n", + "1/0, train_loss: 0.6458\n", + "0 epoch 408 average loss: 0.6458\n", + "current epoch: 408 current mean dice: 0.3586\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 409/1000: lr: [0.000964]\n", + "1/0, train_loss: 0.6462\n", + "0 epoch 409 average loss: 0.6462\n", + "----------\n", + "0: epoch 410/1000: lr: [0.0009595000000000001]\n", + "1/0, train_loss: 0.6430\n", + "0 epoch 410 average loss: 0.6430\n", + "current epoch: 410 current mean dice: 0.3585\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 411/1000: lr: [0.0009550000000000002]\n", + "1/0, train_loss: 0.6455\n", + "0 epoch 411 average loss: 0.6455\n", + "----------\n", + "0: epoch 412/1000: lr: [0.0009505000000000003]\n", + "1/0, train_loss: 0.6479\n", + "0 epoch 412 average loss: 0.6479\n", + "current epoch: 412 current mean dice: 0.3584\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 413/1000: lr: [0.0009459999999999996]\n", + "1/0, train_loss: 0.6462\n", + "0 epoch 413 average loss: 0.6462\n", + "----------\n", + "0: epoch 414/1000: lr: [0.0009415000000000005]\n", + "1/0, train_loss: 0.6425\n", + "0 epoch 414 average loss: 0.6425\n", + "current epoch: 414 current mean dice: 0.3583\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 415/1000: lr: [0.0009369999999999998]\n", + "1/0, train_loss: 0.6447\n", + "0 epoch 415 average loss: 0.6447\n", + "----------\n", + "0: epoch 416/1000: lr: [0.0009324999999999998]\n", + "1/0, train_loss: 0.6475\n", + "0 epoch 416 average loss: 0.6475\n", + "current epoch: 416 current mean dice: 0.3582\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 417/1000: lr: [0.000928]\n", + "1/0, train_loss: 0.6456\n", + "0 epoch 417 average loss: 0.6456\n", + "----------\n", + "0: epoch 418/1000: lr: [0.0009235000000000001]\n", + "1/0, train_loss: 0.6496\n", + "0 epoch 418 average loss: 0.6496\n", + "current epoch: 418 current mean dice: 0.3582\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 419/1000: lr: [0.0009190000000000001]\n", + "1/0, train_loss: 0.6473\n", + "0 epoch 419 average loss: 0.6473\n", + "----------\n", + "0: epoch 420/1000: lr: [0.0009144999999999994]\n", + "1/0, train_loss: 0.6440\n", + "0 epoch 420 average loss: 0.6440\n", + "current epoch: 420 current mean dice: 0.3582\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 421/1000: lr: [0.0009100000000000003]\n", + "1/0, train_loss: 0.6414\n", + "0 epoch 421 average loss: 0.6414\n", + "----------\n", + "0: epoch 422/1000: lr: [0.0009054999999999996]\n", + "1/0, train_loss: 0.6476\n", + "0 epoch 422 average loss: 0.6476\n", + "current epoch: 422 current mean dice: 0.3583\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 423/1000: lr: [0.0009010000000000005]\n", + "1/0, train_loss: 0.6423\n", + "0 epoch 423 average loss: 0.6423\n", + "----------\n", + "0: epoch 424/1000: lr: [0.0008964999999999998]\n", + "1/0, train_loss: 0.6466\n", + "0 epoch 424 average loss: 0.6466\n", + "current epoch: 424 current mean dice: 0.3584\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 425/1000: lr: [0.0008919999999999999]\n", + "1/0, train_loss: 0.6433\n", + "0 epoch 425 average loss: 0.6433\n", + "----------\n", + "0: epoch 426/1000: lr: [0.0008875]\n", + "1/0, train_loss: 0.6469\n", + "0 epoch 426 average loss: 0.6469\n", + "current epoch: 426 current mean dice: 0.3584\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 427/1000: lr: [0.0008830000000000001]\n", + "1/0, train_loss: 0.6425\n", + "0 epoch 427 average loss: 0.6425\n", + "----------\n", + "0: epoch 428/1000: lr: [0.0008785000000000002]\n", + "1/0, train_loss: 0.6446\n", + "0 epoch 428 average loss: 0.6446\n", + "current epoch: 428 current mean dice: 0.3583\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 429/1000: lr: [0.0008739999999999996]\n", + "1/0, train_loss: 0.6399\n", + "0 epoch 429 average loss: 0.6399\n", + "----------\n", + "0: epoch 430/1000: lr: [0.0008695000000000004]\n", + "1/0, train_loss: 0.6474\n", + "0 epoch 430 average loss: 0.6474\n", + "current epoch: 430 current mean dice: 0.3582\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 431/1000: lr: [0.0008649999999999997]\n", + "1/0, train_loss: 0.6423\n", + "0 epoch 431 average loss: 0.6423\n", + "----------\n", + "0: epoch 432/1000: lr: [0.0008605000000000006]\n", + "1/0, train_loss: 0.6472\n", + "0 epoch 432 average loss: 0.6472\n", + "current epoch: 432 current mean dice: 0.3582\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 433/1000: lr: [0.0008559999999999999]\n", + "1/0, train_loss: 0.6444\n", + "0 epoch 433 average loss: 0.6444\n", + "----------\n", + "0: epoch 434/1000: lr: [0.0008515]\n", + "1/0, train_loss: 0.6417\n", + "0 epoch 434 average loss: 0.6417\n", + "current epoch: 434 current mean dice: 0.3580\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 435/1000: lr: [0.0008470000000000001]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.6418\n", + "0 epoch 435 average loss: 0.6418\n", + "----------\n", + "0: epoch 436/1000: lr: [0.0008425000000000001]\n", + "1/0, train_loss: 0.6414\n", + "0 epoch 436 average loss: 0.6414\n", + "current epoch: 436 current mean dice: 0.3579\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 437/1000: lr: [0.0008380000000000003]\n", + "1/0, train_loss: 0.6410\n", + "0 epoch 437 average loss: 0.6410\n", + "----------\n", + "0: epoch 438/1000: lr: [0.0008334999999999996]\n", + "1/0, train_loss: 0.6395\n", + "0 epoch 438 average loss: 0.6395\n", + "current epoch: 438 current mean dice: 0.3577\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 439/1000: lr: [0.0008290000000000005]\n", + "1/0, train_loss: 0.6422\n", + "0 epoch 439 average loss: 0.6422\n", + "----------\n", + "0: epoch 440/1000: lr: [0.0008244999999999997]\n", + "1/0, train_loss: 0.6480\n", + "0 epoch 440 average loss: 0.6480\n", + "current epoch: 440 current mean dice: 0.3575\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 441/1000: lr: [0.0008199999999999999]\n", + "1/0, train_loss: 0.6465\n", + "0 epoch 441 average loss: 0.6465\n", + "----------\n", + "0: epoch 442/1000: lr: [0.0008154999999999999]\n", + "1/0, train_loss: 0.6453\n", + "0 epoch 442 average loss: 0.6453\n", + "current epoch: 442 current mean dice: 0.3574\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 443/1000: lr: [0.0008110000000000001]\n", + "1/0, train_loss: 0.6401\n", + "0 epoch 443 average loss: 0.6401\n", + "----------\n", + "0: epoch 444/1000: lr: [0.0008065000000000001]\n", + "1/0, train_loss: 0.6416\n", + "0 epoch 444 average loss: 0.6416\n", + "current epoch: 444 current mean dice: 0.3573\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 445/1000: lr: [0.0008019999999999994]\n", + "1/0, train_loss: 0.6403\n", + "0 epoch 445 average loss: 0.6403\n", + "----------\n", + "0: epoch 446/1000: lr: [0.0007975000000000004]\n", + "1/0, train_loss: 0.6406\n", + "0 epoch 446 average loss: 0.6406\n", + "current epoch: 446 current mean dice: 0.3572\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 447/1000: lr: [0.0007929999999999997]\n", + "1/0, train_loss: 0.6397\n", + "0 epoch 447 average loss: 0.6397\n", + "----------\n", + "0: epoch 448/1000: lr: [0.0007885000000000006]\n", + "1/0, train_loss: 0.6441\n", + "0 epoch 448 average loss: 0.6441\n", + "current epoch: 448 current mean dice: 0.3571\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 449/1000: lr: [0.0007839999999999999]\n", + "1/0, train_loss: 0.6414\n", + "0 epoch 449 average loss: 0.6414\n", + "----------\n", + "0: epoch 450/1000: lr: [0.0007794999999999999]\n", + "1/0, train_loss: 0.6455\n", + "0 epoch 450 average loss: 0.6455\n", + "current epoch: 450 current mean dice: 0.3570\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 451/1000: lr: [0.0007750000000000001]\n", + "1/0, train_loss: 0.6407\n", + "0 epoch 451 average loss: 0.6407\n", + "----------\n", + "0: epoch 452/1000: lr: [0.0007705000000000001]\n", + "1/0, train_loss: 0.6417\n", + "0 epoch 452 average loss: 0.6417\n", + "current epoch: 452 current mean dice: 0.3570\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 453/1000: lr: [0.0007660000000000002]\n", + "1/0, train_loss: 0.6392\n", + "0 epoch 453 average loss: 0.6392\n", + "----------\n", + "0: epoch 454/1000: lr: [0.0007614999999999995]\n", + "1/0, train_loss: 0.6415\n", + "0 epoch 454 average loss: 0.6415\n", + "current epoch: 454 current mean dice: 0.3568\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 455/1000: lr: [0.0007570000000000004]\n", + "1/0, train_loss: 0.6427\n", + "0 epoch 455 average loss: 0.6427\n", + "----------\n", + "0: epoch 456/1000: lr: [0.0007524999999999997]\n", + "1/0, train_loss: 0.6404\n", + "0 epoch 456 average loss: 0.6404\n", + "current epoch: 456 current mean dice: 0.3567\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 457/1000: lr: [0.0007480000000000006]\n", + "1/0, train_loss: 0.6396\n", + "0 epoch 457 average loss: 0.6396\n", + "----------\n", + "0: epoch 458/1000: lr: [0.0007434999999999999]\n", + "1/0, train_loss: 0.6453\n", + "0 epoch 458 average loss: 0.6453\n", + "current epoch: 458 current mean dice: 0.3566\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 459/1000: lr: [0.0007390000000000001]\n", + "1/0, train_loss: 0.6434\n", + "0 epoch 459 average loss: 0.6434\n", + "----------\n", + "0: epoch 460/1000: lr: [0.0007345000000000001]\n", + "1/0, train_loss: 0.6390\n", + "0 epoch 460 average loss: 0.6390\n", + "current epoch: 460 current mean dice: 0.3565\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 461/1000: lr: [0.0007300000000000002]\n", + "1/0, train_loss: 0.6421\n", + "0 epoch 461 average loss: 0.6421\n", + "----------\n", + "0: epoch 462/1000: lr: [0.0007255000000000002]\n", + "1/0, train_loss: 0.6406\n", + "0 epoch 462 average loss: 0.6406\n", + "current epoch: 462 current mean dice: 0.3564\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 463/1000: lr: [0.0007209999999999996]\n", + "1/0, train_loss: 0.6374\n", + "0 epoch 463 average loss: 0.6374\n", + "----------\n", + "0: epoch 464/1000: lr: [0.0007165000000000006]\n", + "1/0, train_loss: 0.6367\n", + "0 epoch 464 average loss: 0.6367\n", + "current epoch: 464 current mean dice: 0.3564\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 465/1000: lr: [0.0007119999999999997]\n", + "1/0, train_loss: 0.6396\n", + "0 epoch 465 average loss: 0.6396\n", + "----------\n", + "0: epoch 466/1000: lr: [0.0007074999999999998]\n", + "1/0, train_loss: 0.6457\n", + "0 epoch 466 average loss: 0.6457\n", + "current epoch: 466 current mean dice: 0.3563\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 467/1000: lr: [0.000703]\n", + "1/0, train_loss: 0.6372\n", + "0 epoch 467 average loss: 0.6372\n", + "----------\n", + "0: epoch 468/1000: lr: [0.0006985000000000001]\n", + "1/0, train_loss: 0.6405\n", + "0 epoch 468 average loss: 0.6405\n", + "current epoch: 468 current mean dice: 0.3562\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 469/1000: lr: [0.0006940000000000002]\n", + "1/0, train_loss: 0.6369\n", + "0 epoch 469 average loss: 0.6369\n", + "----------\n", + "0: epoch 470/1000: lr: [0.0006894999999999995]\n", + "1/0, train_loss: 0.6398\n", + "0 epoch 470 average loss: 0.6398\n", + "current epoch: 470 current mean dice: 0.3561\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 471/1000: lr: [0.0006850000000000003]\n", + "1/0, train_loss: 0.6364\n", + "0 epoch 471 average loss: 0.6364\n", + "----------\n", + "0: epoch 472/1000: lr: [0.0006804999999999997]\n", + "1/0, train_loss: 0.6427\n", + "0 epoch 472 average loss: 0.6427\n", + "current epoch: 472 current mean dice: 0.3560\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 473/1000: lr: [0.0006760000000000006]\n", + "1/0, train_loss: 0.6429\n", + "0 epoch 473 average loss: 0.6429\n", + "----------\n", + "0: epoch 474/1000: lr: [0.0006714999999999998]\n", + "1/0, train_loss: 0.6403\n", + "0 epoch 474 average loss: 0.6403\n", + "current epoch: 474 current mean dice: 0.3560\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 475/1000: lr: [0.000667]\n", + "1/0, train_loss: 0.6393\n", + "0 epoch 475 average loss: 0.6393\n", + "----------\n", + "0: epoch 476/1000: lr: [0.0006625]\n", + "1/0, train_loss: 0.6382\n", + "0 epoch 476 average loss: 0.6382\n", + "current epoch: 476 current mean dice: 0.3559\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 477/1000: lr: [0.0006580000000000002]\n", + "1/0, train_loss: 0.6438\n", + "0 epoch 477 average loss: 0.6438\n", + "----------\n", + "0: epoch 478/1000: lr: [0.0006535000000000002]\n", + "1/0, train_loss: 0.6381\n", + "0 epoch 478 average loss: 0.6381\n", + "current epoch: 478 current mean dice: 0.3558\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 479/1000: lr: [0.0006489999999999995]\n", + "1/0, train_loss: 0.6427\n", + "0 epoch 479 average loss: 0.6427\n", + "----------\n", + "0: epoch 480/1000: lr: [0.0006445000000000004]\n", + "1/0, train_loss: 0.6376\n", + "0 epoch 480 average loss: 0.6376\n", + "current epoch: 480 current mean dice: 0.3557\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 481/1000: lr: [0.0006399999999999997]\n", + "1/0, train_loss: 0.6432\n", + "0 epoch 481 average loss: 0.6432\n", + "----------\n", + "0: epoch 482/1000: lr: [0.0006355000000000006]\n", + "1/0, train_loss: 0.6419\n", + "0 epoch 482 average loss: 0.6419\n", + "current epoch: 482 current mean dice: 0.3557\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 483/1000: lr: [0.0006309999999999998]\n", + "1/0, train_loss: 0.6400\n", + "0 epoch 483 average loss: 0.6400\n", + "----------\n", + "0: epoch 484/1000: lr: [0.0006265]\n", + "1/0, train_loss: 0.6383\n", + "0 epoch 484 average loss: 0.6383\n", + "current epoch: 484 current mean dice: 0.3557\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 485/1000: lr: [0.0006220000000000002]\n", + "1/0, train_loss: 0.6387\n", + "0 epoch 485 average loss: 0.6387\n", + "----------\n", + "0: epoch 486/1000: lr: [0.0006175000000000002]\n", + "1/0, train_loss: 0.6438\n", + "0 epoch 486 average loss: 0.6438\n", + "current epoch: 486 current mean dice: 0.3557\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 487/1000: lr: [0.0006130000000000003]\n", + "1/0, train_loss: 0.6381\n", + "0 epoch 487 average loss: 0.6381\n", + "----------\n", + "0: epoch 488/1000: lr: [0.0006084999999999996]\n", + "1/0, train_loss: 0.6388\n", + "0 epoch 488 average loss: 0.6388\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "current epoch: 488 current mean dice: 0.3556\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 489/1000: lr: [0.0006040000000000005]\n", + "1/0, train_loss: 0.6440\n", + "0 epoch 489 average loss: 0.6440\n", + "----------\n", + "0: epoch 490/1000: lr: [0.0005994999999999998]\n", + "1/0, train_loss: 0.6367\n", + "0 epoch 490 average loss: 0.6367\n", + "current epoch: 490 current mean dice: 0.3556\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 491/1000: lr: [0.0005949999999999998]\n", + "1/0, train_loss: 0.6378\n", + "0 epoch 491 average loss: 0.6378\n", + "----------\n", + "0: epoch 492/1000: lr: [0.0005905]\n", + "1/0, train_loss: 0.6347\n", + "0 epoch 492 average loss: 0.6347\n", + "current epoch: 492 current mean dice: 0.3555\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 493/1000: lr: [0.000586]\n", + "1/0, train_loss: 0.6406\n", + "0 epoch 493 average loss: 0.6406\n", + "----------\n", + "0: epoch 494/1000: lr: [0.0005815000000000002]\n", + "1/0, train_loss: 0.6365\n", + "0 epoch 494 average loss: 0.6365\n", + "current epoch: 494 current mean dice: 0.3554\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 495/1000: lr: [0.0005769999999999994]\n", + "1/0, train_loss: 0.6423\n", + "0 epoch 495 average loss: 0.6423\n", + "----------\n", + "0: epoch 496/1000: lr: [0.0005725000000000003]\n", + "1/0, train_loss: 0.6372\n", + "0 epoch 496 average loss: 0.6372\n", + "current epoch: 496 current mean dice: 0.3553\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 497/1000: lr: [0.0005679999999999997]\n", + "1/0, train_loss: 0.6358\n", + "0 epoch 497 average loss: 0.6358\n", + "----------\n", + "0: epoch 498/1000: lr: [0.0005635000000000005]\n", + "1/0, train_loss: 0.6398\n", + "0 epoch 498 average loss: 0.6398\n", + "current epoch: 498 current mean dice: 0.3552\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 499/1000: lr: [0.0005589999999999998]\n", + "1/0, train_loss: 0.6424\n", + "0 epoch 499 average loss: 0.6424\n", + "----------\n", + "0: epoch 500/1000: lr: [0.0005544999999999999]\n", + "1/0, train_loss: 0.6366\n", + "0 epoch 500 average loss: 0.6366\n", + "current epoch: 500 current mean dice: 0.3552\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 501/1000: lr: [0.00055]\n", + "1/0, train_loss: 0.6386\n", + "0 epoch 501 average loss: 0.6386\n", + "----------\n", + "0: epoch 502/1000: lr: [0.0005455000000000002]\n", + "1/0, train_loss: 0.6356\n", + "0 epoch 502 average loss: 0.6356\n", + "current epoch: 502 current mean dice: 0.3551\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 503/1000: lr: [0.0005410000000000002]\n", + "1/0, train_loss: 0.6403\n", + "0 epoch 503 average loss: 0.6403\n", + "----------\n", + "0: epoch 504/1000: lr: [0.0005364999999999995]\n", + "1/0, train_loss: 0.6354\n", + "0 epoch 504 average loss: 0.6354\n", + "current epoch: 504 current mean dice: 0.3551\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 505/1000: lr: [0.0005320000000000004]\n", + "1/0, train_loss: 0.6388\n", + "0 epoch 505 average loss: 0.6388\n", + "----------\n", + "0: epoch 506/1000: lr: [0.0005274999999999998]\n", + "1/0, train_loss: 0.6350\n", + "0 epoch 506 average loss: 0.6350\n", + "current epoch: 506 current mean dice: 0.3550\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 507/1000: lr: [0.0005230000000000007]\n", + "1/0, train_loss: 0.6438\n", + "0 epoch 507 average loss: 0.6438\n", + "----------\n", + "0: epoch 508/1000: lr: [0.0005184999999999999]\n", + "1/0, train_loss: 0.6363\n", + "0 epoch 508 average loss: 0.6363\n", + "current epoch: 508 current mean dice: 0.3550\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 509/1000: lr: [0.000514]\n", + "1/0, train_loss: 0.6362\n", + "0 epoch 509 average loss: 0.6362\n", + "----------\n", + "0: epoch 510/1000: lr: [0.0005095000000000001]\n", + "1/0, train_loss: 0.6404\n", + "0 epoch 510 average loss: 0.6404\n", + "current epoch: 510 current mean dice: 0.3549\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 511/1000: lr: [0.0005050000000000002]\n", + "1/0, train_loss: 0.6350\n", + "0 epoch 511 average loss: 0.6350\n", + "----------\n", + "0: epoch 512/1000: lr: [0.0005005000000000003]\n", + "1/0, train_loss: 0.6388\n", + "0 epoch 512 average loss: 0.6388\n", + "current epoch: 512 current mean dice: 0.3547\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 513/1000: lr: [0.0004959999999999996]\n", + "1/0, train_loss: 0.6375\n", + "0 epoch 513 average loss: 0.6375\n", + "----------\n", + "0: epoch 514/1000: lr: [0.0004915000000000005]\n", + "1/0, train_loss: 0.6402\n", + "0 epoch 514 average loss: 0.6402\n", + "current epoch: 514 current mean dice: 0.3547\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 515/1000: lr: [0.0004869999999999998]\n", + "1/0, train_loss: 0.6379\n", + "0 epoch 515 average loss: 0.6379\n", + "----------\n", + "0: epoch 516/1000: lr: [0.00048249999999999986]\n", + "1/0, train_loss: 0.6358\n", + "0 epoch 516 average loss: 0.6358\n", + "current epoch: 516 current mean dice: 0.3546\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 517/1000: lr: [0.000478]\n", + "1/0, train_loss: 0.6405\n", + "0 epoch 517 average loss: 0.6405\n", + "----------\n", + "0: epoch 518/1000: lr: [0.00047350000000000007]\n", + "1/0, train_loss: 0.6362\n", + "0 epoch 518 average loss: 0.6362\n", + "current epoch: 518 current mean dice: 0.3545\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 519/1000: lr: [0.0004690000000000001]\n", + "1/0, train_loss: 0.6371\n", + "0 epoch 519 average loss: 0.6371\n", + "----------\n", + "0: epoch 520/1000: lr: [0.0004644999999999994]\n", + "1/0, train_loss: 0.6367\n", + "0 epoch 520 average loss: 0.6367\n", + "current epoch: 520 current mean dice: 0.3544\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 521/1000: lr: [0.00046000000000000034]\n", + "1/0, train_loss: 0.6367\n", + "0 epoch 521 average loss: 0.6367\n", + "----------\n", + "0: epoch 522/1000: lr: [0.00045549999999999963]\n", + "1/0, train_loss: 0.6412\n", + "0 epoch 522 average loss: 0.6412\n", + "current epoch: 522 current mean dice: 0.3544\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 523/1000: lr: [0.00045100000000000055]\n", + "1/0, train_loss: 0.6346\n", + "0 epoch 523 average loss: 0.6346\n", + "----------\n", + "0: epoch 524/1000: lr: [0.00044649999999999985]\n", + "1/0, train_loss: 0.6428\n", + "0 epoch 524 average loss: 0.6428\n", + "current epoch: 524 current mean dice: 0.3544\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 525/1000: lr: [0.0004419999999999999]\n", + "1/0, train_loss: 0.6333\n", + "0 epoch 525 average loss: 0.6333\n", + "----------\n", + "0: epoch 526/1000: lr: [0.00043750000000000006]\n", + "1/0, train_loss: 0.6394\n", + "0 epoch 526 average loss: 0.6394\n", + "current epoch: 526 current mean dice: 0.3544\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 527/1000: lr: [0.0004330000000000001]\n", + "1/0, train_loss: 0.6364\n", + "0 epoch 527 average loss: 0.6364\n", + "----------\n", + "0: epoch 528/1000: lr: [0.0004285000000000003]\n", + "1/0, train_loss: 0.6430\n", + "0 epoch 528 average loss: 0.6430\n", + "current epoch: 528 current mean dice: 0.3543\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 529/1000: lr: [0.00042399999999999957]\n", + "1/0, train_loss: 0.6356\n", + "0 epoch 529 average loss: 0.6356\n", + "----------\n", + "0: epoch 530/1000: lr: [0.0004195000000000004]\n", + "1/0, train_loss: 0.6363\n", + "0 epoch 530 average loss: 0.6363\n", + "current epoch: 530 current mean dice: 0.3543\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 531/1000: lr: [0.0004149999999999997]\n", + "1/0, train_loss: 0.6364\n", + "0 epoch 531 average loss: 0.6364\n", + "----------\n", + "0: epoch 532/1000: lr: [0.0004105000000000006]\n", + "1/0, train_loss: 0.6416\n", + "0 epoch 532 average loss: 0.6416\n", + "current epoch: 532 current mean dice: 0.3543\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 533/1000: lr: [0.0004059999999999999]\n", + "1/0, train_loss: 0.6363\n", + "0 epoch 533 average loss: 0.6363\n", + "----------\n", + "0: epoch 534/1000: lr: [0.00040150000000000006]\n", + "1/0, train_loss: 0.6362\n", + "0 epoch 534 average loss: 0.6362\n", + "current epoch: 534 current mean dice: 0.3542\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 535/1000: lr: [0.0003970000000000001]\n", + "1/0, train_loss: 0.6336\n", + "0 epoch 535 average loss: 0.6336\n", + "----------\n", + "0: epoch 536/1000: lr: [0.00039250000000000016]\n", + "1/0, train_loss: 0.6373\n", + "0 epoch 536 average loss: 0.6373\n", + "current epoch: 536 current mean dice: 0.3542\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 537/1000: lr: [0.0003880000000000003]\n", + "1/0, train_loss: 0.6366\n", + "0 epoch 537 average loss: 0.6366\n", + "----------\n", + "0: epoch 538/1000: lr: [0.0003834999999999996]\n", + "1/0, train_loss: 0.6372\n", + "0 epoch 538 average loss: 0.6372\n", + "current epoch: 538 current mean dice: 0.3542\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 539/1000: lr: [0.00037900000000000054]\n", + "1/0, train_loss: 0.6402\n", + "0 epoch 539 average loss: 0.6402\n", + "----------\n", + "0: epoch 540/1000: lr: [0.00037449999999999983]\n", + "1/0, train_loss: 0.6354\n", + "0 epoch 540 average loss: 0.6354\n", + "current epoch: 540 current mean dice: 0.3541\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 541/1000: lr: [0.0003699999999999999]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.6368\n", + "0 epoch 541 average loss: 0.6368\n", + "----------\n", + "0: epoch 542/1000: lr: [0.00036549999999999994]\n", + "1/0, train_loss: 0.6359\n", + "0 epoch 542 average loss: 0.6359\n", + "current epoch: 542 current mean dice: 0.3541\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 543/1000: lr: [0.0003610000000000001]\n", + "1/0, train_loss: 0.6370\n", + "0 epoch 543 average loss: 0.6370\n", + "----------\n", + "0: epoch 544/1000: lr: [0.00035650000000000015]\n", + "1/0, train_loss: 0.6358\n", + "0 epoch 544 average loss: 0.6358\n", + "current epoch: 544 current mean dice: 0.3540\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 545/1000: lr: [0.00035199999999999945]\n", + "1/0, train_loss: 0.6416\n", + "0 epoch 545 average loss: 0.6416\n", + "----------\n", + "0: epoch 546/1000: lr: [0.00034750000000000037]\n", + "1/0, train_loss: 0.6389\n", + "0 epoch 546 average loss: 0.6389\n", + "current epoch: 546 current mean dice: 0.3540\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 547/1000: lr: [0.00034299999999999966]\n", + "1/0, train_loss: 0.6359\n", + "0 epoch 547 average loss: 0.6359\n", + "----------\n", + "0: epoch 548/1000: lr: [0.0003385000000000006]\n", + "1/0, train_loss: 0.6404\n", + "0 epoch 548 average loss: 0.6404\n", + "current epoch: 548 current mean dice: 0.3540\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 549/1000: lr: [0.0003339999999999999]\n", + "1/0, train_loss: 0.6350\n", + "0 epoch 549 average loss: 0.6350\n", + "----------\n", + "0: epoch 550/1000: lr: [0.00032949999999999993]\n", + "1/0, train_loss: 0.6404\n", + "0 epoch 550 average loss: 0.6404\n", + "current epoch: 550 current mean dice: 0.3540\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 551/1000: lr: [0.000325]\n", + "1/0, train_loss: 0.6346\n", + "0 epoch 551 average loss: 0.6346\n", + "----------\n", + "0: epoch 552/1000: lr: [0.00032050000000000015]\n", + "1/0, train_loss: 0.6399\n", + "0 epoch 552 average loss: 0.6399\n", + "current epoch: 552 current mean dice: 0.3539\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 553/1000: lr: [0.0003160000000000002]\n", + "1/0, train_loss: 0.6386\n", + "0 epoch 553 average loss: 0.6386\n", + "----------\n", + "0: epoch 554/1000: lr: [0.0003114999999999995]\n", + "1/0, train_loss: 0.6412\n", + "0 epoch 554 average loss: 0.6412\n", + "current epoch: 554 current mean dice: 0.3540\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 555/1000: lr: [0.0003070000000000004]\n", + "1/0, train_loss: 0.6355\n", + "0 epoch 555 average loss: 0.6355\n", + "----------\n", + "0: epoch 556/1000: lr: [0.0003024999999999997]\n", + "1/0, train_loss: 0.6363\n", + "0 epoch 556 average loss: 0.6363\n", + "current epoch: 556 current mean dice: 0.3539\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 557/1000: lr: [0.00029800000000000063]\n", + "1/0, train_loss: 0.6385\n", + "0 epoch 557 average loss: 0.6385\n", + "----------\n", + "0: epoch 558/1000: lr: [0.0002934999999999999]\n", + "1/0, train_loss: 0.6329\n", + "0 epoch 558 average loss: 0.6329\n", + "current epoch: 558 current mean dice: 0.3539\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 559/1000: lr: [0.000289]\n", + "1/0, train_loss: 0.6354\n", + "0 epoch 559 average loss: 0.6354\n", + "----------\n", + "0: epoch 560/1000: lr: [0.00028450000000000014]\n", + "1/0, train_loss: 0.6381\n", + "0 epoch 560 average loss: 0.6381\n", + "current epoch: 560 current mean dice: 0.3539\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 561/1000: lr: [0.0002800000000000002]\n", + "1/0, train_loss: 0.6351\n", + "0 epoch 561 average loss: 0.6351\n", + "----------\n", + "0: epoch 562/1000: lr: [0.00027550000000000025]\n", + "1/0, train_loss: 0.6384\n", + "0 epoch 562 average loss: 0.6384\n", + "current epoch: 562 current mean dice: 0.3538\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 563/1000: lr: [0.00027099999999999954]\n", + "1/0, train_loss: 0.6338\n", + "0 epoch 563 average loss: 0.6338\n", + "----------\n", + "0: epoch 564/1000: lr: [0.00026650000000000046]\n", + "1/0, train_loss: 0.6339\n", + "0 epoch 564 average loss: 0.6339\n", + "current epoch: 564 current mean dice: 0.3538\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 565/1000: lr: [0.00026199999999999975]\n", + "1/0, train_loss: 0.6351\n", + "0 epoch 565 average loss: 0.6351\n", + "----------\n", + "0: epoch 566/1000: lr: [0.0002574999999999999]\n", + "1/0, train_loss: 0.6319\n", + "0 epoch 566 average loss: 0.6319\n", + "current epoch: 566 current mean dice: 0.3538\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 567/1000: lr: [0.00025299999999999997]\n", + "1/0, train_loss: 0.6390\n", + "0 epoch 567 average loss: 0.6390\n", + "----------\n", + "0: epoch 568/1000: lr: [0.0002485]\n", + "1/0, train_loss: 0.6367\n", + "0 epoch 568 average loss: 0.6367\n", + "current epoch: 568 current mean dice: 0.3537\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 569/1000: lr: [0.00024400000000000018]\n", + "1/0, train_loss: 0.6416\n", + "0 epoch 569 average loss: 0.6416\n", + "----------\n", + "0: epoch 570/1000: lr: [0.00023949999999999948]\n", + "1/0, train_loss: 0.6352\n", + "0 epoch 570 average loss: 0.6352\n", + "current epoch: 570 current mean dice: 0.3537\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 571/1000: lr: [0.0002350000000000004]\n", + "1/0, train_loss: 0.6402\n", + "0 epoch 571 average loss: 0.6402\n", + "----------\n", + "0: epoch 572/1000: lr: [0.0002304999999999997]\n", + "1/0, train_loss: 0.6333\n", + "0 epoch 572 average loss: 0.6333\n", + "current epoch: 572 current mean dice: 0.3537\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 573/1000: lr: [0.0002260000000000005]\n", + "1/0, train_loss: 0.6342\n", + "0 epoch 573 average loss: 0.6342\n", + "----------\n", + "0: epoch 574/1000: lr: [0.0002214999999999998]\n", + "1/0, train_loss: 0.6352\n", + "0 epoch 574 average loss: 0.6352\n", + "current epoch: 574 current mean dice: 0.3537\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 575/1000: lr: [0.00021699999999999996]\n", + "1/0, train_loss: 0.6396\n", + "0 epoch 575 average loss: 0.6396\n", + "----------\n", + "0: epoch 576/1000: lr: [0.00021250000000000002]\n", + "1/0, train_loss: 0.6330\n", + "0 epoch 576 average loss: 0.6330\n", + "current epoch: 576 current mean dice: 0.3536\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 577/1000: lr: [0.00020800000000000018]\n", + "1/0, train_loss: 0.6420\n", + "0 epoch 577 average loss: 0.6420\n", + "----------\n", + "0: epoch 578/1000: lr: [0.00020350000000000023]\n", + "1/0, train_loss: 0.6352\n", + "0 epoch 578 average loss: 0.6352\n", + "current epoch: 578 current mean dice: 0.3536\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 579/1000: lr: [0.00019899999999999952]\n", + "1/0, train_loss: 0.6360\n", + "0 epoch 579 average loss: 0.6360\n", + "----------\n", + "0: epoch 580/1000: lr: [0.00019450000000000045]\n", + "1/0, train_loss: 0.6357\n", + "0 epoch 580 average loss: 0.6357\n", + "current epoch: 580 current mean dice: 0.3536\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 581/1000: lr: [0.00018999999999999974]\n", + "1/0, train_loss: 0.6316\n", + "0 epoch 581 average loss: 0.6316\n", + "----------\n", + "0: epoch 582/1000: lr: [0.00018550000000000066]\n", + "1/0, train_loss: 0.6347\n", + "0 epoch 582 average loss: 0.6347\n", + "current epoch: 582 current mean dice: 0.3535\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 583/1000: lr: [0.00018099999999999995]\n", + "1/0, train_loss: 0.6331\n", + "0 epoch 583 average loss: 0.6331\n", + "----------\n", + "0: epoch 584/1000: lr: [0.0001765]\n", + "1/0, train_loss: 0.6431\n", + "0 epoch 584 average loss: 0.6431\n", + "current epoch: 584 current mean dice: 0.3535\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 585/1000: lr: [0.00017200000000000006]\n", + "1/0, train_loss: 0.6361\n", + "0 epoch 585 average loss: 0.6361\n", + "----------\n", + "0: epoch 586/1000: lr: [0.00016750000000000022]\n", + "1/0, train_loss: 0.6417\n", + "0 epoch 586 average loss: 0.6417\n", + "current epoch: 586 current mean dice: 0.3535\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 587/1000: lr: [0.00016300000000000028]\n", + "1/0, train_loss: 0.6335\n", + "0 epoch 587 average loss: 0.6335\n", + "----------\n", + "0: epoch 588/1000: lr: [0.00015849999999999957]\n", + "1/0, train_loss: 0.6349\n", + "0 epoch 588 average loss: 0.6349\n", + "current epoch: 588 current mean dice: 0.3535\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 589/1000: lr: [0.0001540000000000005]\n", + "1/0, train_loss: 0.6362\n", + "0 epoch 589 average loss: 0.6362\n", + "----------\n", + "0: epoch 590/1000: lr: [0.00014949999999999978]\n", + "1/0, train_loss: 0.6363\n", + "0 epoch 590 average loss: 0.6363\n", + "current epoch: 590 current mean dice: 0.3535\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 591/1000: lr: [0.00014499999999999984]\n", + "1/0, train_loss: 0.6427\n", + "0 epoch 591 average loss: 0.6427\n", + "----------\n", + "0: epoch 592/1000: lr: [0.0001405]\n", + "1/0, train_loss: 0.6327\n", + "0 epoch 592 average loss: 0.6327\n", + "current epoch: 592 current mean dice: 0.3535\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 593/1000: lr: [0.00013600000000000005]\n", + "1/0, train_loss: 0.6424\n", + "0 epoch 593 average loss: 0.6424\n", + "----------\n", + "0: epoch 594/1000: lr: [0.00013150000000000021]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.6386\n", + "0 epoch 594 average loss: 0.6386\n", + "current epoch: 594 current mean dice: 0.3535\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 595/1000: lr: [0.0001269999999999995]\n", + "1/0, train_loss: 0.6368\n", + "0 epoch 595 average loss: 0.6368\n", + "----------\n", + "0: epoch 596/1000: lr: [0.00012250000000000032]\n", + "1/0, train_loss: 0.6361\n", + "0 epoch 596 average loss: 0.6361\n", + "current epoch: 596 current mean dice: 0.3535\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 597/1000: lr: [0.00011799999999999962]\n", + "1/0, train_loss: 0.6312\n", + "0 epoch 597 average loss: 0.6312\n", + "----------\n", + "0: epoch 598/1000: lr: [0.00011350000000000054]\n", + "1/0, train_loss: 0.6341\n", + "0 epoch 598 average loss: 0.6341\n", + "current epoch: 598 current mean dice: 0.3535\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 599/1000: lr: [0.00010899999999999983]\n", + "1/0, train_loss: 0.6326\n", + "0 epoch 599 average loss: 0.6326\n", + "----------\n", + "0: epoch 600/1000: lr: [0.00010449999999999999]\n", + "1/0, train_loss: 0.6416\n", + "0 epoch 600 average loss: 0.6416\n", + "current epoch: 600 current mean dice: 0.3535\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 601/1000: lr: [0.00010000000000000005]\n", + "1/0, train_loss: 0.6374\n", + "0 epoch 601 average loss: 0.6374\n", + "----------\n", + "0: epoch 602/1000: lr: [0.00010449999999999999]\n", + "1/0, train_loss: 0.6378\n", + "0 epoch 602 average loss: 0.6378\n", + "current epoch: 602 current mean dice: 0.3535\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 603/1000: lr: [0.00010899999999999983]\n", + "1/0, train_loss: 0.6349\n", + "0 epoch 603 average loss: 0.6349\n", + "----------\n", + "0: epoch 604/1000: lr: [0.00011350000000000054]\n", + "1/0, train_loss: 0.6354\n", + "0 epoch 604 average loss: 0.6354\n", + "current epoch: 604 current mean dice: 0.3535\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 605/1000: lr: [0.00011799999999999962]\n", + "1/0, train_loss: 0.6380\n", + "0 epoch 605 average loss: 0.6380\n", + "----------\n", + "0: epoch 606/1000: lr: [0.00012250000000000032]\n", + "1/0, train_loss: 0.6432\n", + "0 epoch 606 average loss: 0.6432\n", + "current epoch: 606 current mean dice: 0.3535\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 607/1000: lr: [0.0001269999999999995]\n", + "1/0, train_loss: 0.6343\n", + "0 epoch 607 average loss: 0.6343\n", + "----------\n", + "0: epoch 608/1000: lr: [0.00013150000000000021]\n", + "1/0, train_loss: 0.6338\n", + "0 epoch 608 average loss: 0.6338\n", + "current epoch: 608 current mean dice: 0.3535\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 609/1000: lr: [0.00013600000000000005]\n", + "1/0, train_loss: 0.6332\n", + "0 epoch 609 average loss: 0.6332\n", + "----------\n", + "0: epoch 610/1000: lr: [0.0001405]\n", + "1/0, train_loss: 0.6339\n", + "0 epoch 610 average loss: 0.6339\n", + "current epoch: 610 current mean dice: 0.3535\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 611/1000: lr: [0.00014499999999999984]\n", + "1/0, train_loss: 0.6380\n", + "0 epoch 611 average loss: 0.6380\n", + "----------\n", + "0: epoch 612/1000: lr: [0.00014949999999999978]\n", + "1/0, train_loss: 0.6380\n", + "0 epoch 612 average loss: 0.6380\n", + "current epoch: 612 current mean dice: 0.3535\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 613/1000: lr: [0.0001540000000000005]\n", + "1/0, train_loss: 0.6339\n", + "0 epoch 613 average loss: 0.6339\n", + "----------\n", + "0: epoch 614/1000: lr: [0.00015849999999999957]\n", + "1/0, train_loss: 0.6332\n", + "0 epoch 614 average loss: 0.6332\n", + "current epoch: 614 current mean dice: 0.3534\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 615/1000: lr: [0.00016300000000000028]\n", + "1/0, train_loss: 0.6379\n", + "0 epoch 615 average loss: 0.6379\n", + "----------\n", + "0: epoch 616/1000: lr: [0.00016750000000000022]\n", + "1/0, train_loss: 0.6406\n", + "0 epoch 616 average loss: 0.6406\n", + "current epoch: 616 current mean dice: 0.3535\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 617/1000: lr: [0.00017200000000000006]\n", + "1/0, train_loss: 0.6348\n", + "0 epoch 617 average loss: 0.6348\n", + "----------\n", + "0: epoch 618/1000: lr: [0.0001765]\n", + "1/0, train_loss: 0.6337\n", + "0 epoch 618 average loss: 0.6337\n", + "current epoch: 618 current mean dice: 0.3534\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 619/1000: lr: [0.00018099999999999995]\n", + "1/0, train_loss: 0.6388\n", + "0 epoch 619 average loss: 0.6388\n", + "----------\n", + "0: epoch 620/1000: lr: [0.00018550000000000066]\n", + "1/0, train_loss: 0.6331\n", + "0 epoch 620 average loss: 0.6331\n", + "current epoch: 620 current mean dice: 0.3535\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 621/1000: lr: [0.00018999999999999974]\n", + "1/0, train_loss: 0.6355\n", + "0 epoch 621 average loss: 0.6355\n", + "----------\n", + "0: epoch 622/1000: lr: [0.00019450000000000045]\n", + "1/0, train_loss: 0.6336\n", + "0 epoch 622 average loss: 0.6336\n", + "current epoch: 622 current mean dice: 0.3535\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 623/1000: lr: [0.00019899999999999952]\n", + "1/0, train_loss: 0.6345\n", + "0 epoch 623 average loss: 0.6345\n", + "----------\n", + "0: epoch 624/1000: lr: [0.00020350000000000023]\n", + "1/0, train_loss: 0.6373\n", + "0 epoch 624 average loss: 0.6373\n", + "current epoch: 624 current mean dice: 0.3534\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 625/1000: lr: [0.00020800000000000018]\n", + "1/0, train_loss: 0.6336\n", + "0 epoch 625 average loss: 0.6336\n", + "----------\n", + "0: epoch 626/1000: lr: [0.00021250000000000002]\n", + "1/0, train_loss: 0.6355\n", + "0 epoch 626 average loss: 0.6355\n", + "current epoch: 626 current mean dice: 0.3534\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 627/1000: lr: [0.00021699999999999996]\n", + "1/0, train_loss: 0.6346\n", + "0 epoch 627 average loss: 0.6346\n", + "----------\n", + "0: epoch 628/1000: lr: [0.0002214999999999998]\n", + "1/0, train_loss: 0.6406\n", + "0 epoch 628 average loss: 0.6406\n", + "current epoch: 628 current mean dice: 0.3534\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 629/1000: lr: [0.0002260000000000005]\n", + "1/0, train_loss: 0.6391\n", + "0 epoch 629 average loss: 0.6391\n", + "----------\n", + "0: epoch 630/1000: lr: [0.0002304999999999997]\n", + "1/0, train_loss: 0.6330\n", + "0 epoch 630 average loss: 0.6330\n", + "current epoch: 630 current mean dice: 0.3534\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 631/1000: lr: [0.0002350000000000004]\n", + "1/0, train_loss: 0.6341\n", + "0 epoch 631 average loss: 0.6341\n", + "----------\n", + "0: epoch 632/1000: lr: [0.00023949999999999948]\n", + "1/0, train_loss: 0.6335\n", + "0 epoch 632 average loss: 0.6335\n", + "current epoch: 632 current mean dice: 0.3533\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 633/1000: lr: [0.00024400000000000018]\n", + "1/0, train_loss: 0.6351\n", + "0 epoch 633 average loss: 0.6351\n", + "----------\n", + "0: epoch 634/1000: lr: [0.0002485]\n", + "1/0, train_loss: 0.6316\n", + "0 epoch 634 average loss: 0.6316\n", + "current epoch: 634 current mean dice: 0.3533\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 635/1000: lr: [0.00025299999999999997]\n", + "1/0, train_loss: 0.6345\n", + "0 epoch 635 average loss: 0.6345\n", + "----------\n", + "0: epoch 636/1000: lr: [0.0002574999999999999]\n", + "1/0, train_loss: 0.6319\n", + "0 epoch 636 average loss: 0.6319\n", + "current epoch: 636 current mean dice: 0.3533\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 637/1000: lr: [0.00026199999999999975]\n", + "1/0, train_loss: 0.6361\n", + "0 epoch 637 average loss: 0.6361\n", + "----------\n", + "0: epoch 638/1000: lr: [0.00026650000000000046]\n", + "1/0, train_loss: 0.6318\n", + "0 epoch 638 average loss: 0.6318\n", + "current epoch: 638 current mean dice: 0.3532\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 639/1000: lr: [0.00027099999999999954]\n", + "1/0, train_loss: 0.6328\n", + "0 epoch 639 average loss: 0.6328\n", + "----------\n", + "0: epoch 640/1000: lr: [0.00027550000000000025]\n", + "1/0, train_loss: 0.6335\n", + "0 epoch 640 average loss: 0.6335\n", + "current epoch: 640 current mean dice: 0.3532\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 641/1000: lr: [0.0002800000000000002]\n", + "1/0, train_loss: 0.6351\n", + "0 epoch 641 average loss: 0.6351\n", + "----------\n", + "0: epoch 642/1000: lr: [0.00028450000000000014]\n", + "1/0, train_loss: 0.6367\n", + "0 epoch 642 average loss: 0.6367\n", + "current epoch: 642 current mean dice: 0.3531\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 643/1000: lr: [0.000289]\n", + "1/0, train_loss: 0.6378\n", + "0 epoch 643 average loss: 0.6378\n", + "----------\n", + "0: epoch 644/1000: lr: [0.0002934999999999999]\n", + "1/0, train_loss: 0.6379\n", + "0 epoch 644 average loss: 0.6379\n", + "current epoch: 644 current mean dice: 0.3531\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 645/1000: lr: [0.00029800000000000063]\n", + "1/0, train_loss: 0.6386\n", + "0 epoch 645 average loss: 0.6386\n", + "----------\n", + "0: epoch 646/1000: lr: [0.0003024999999999997]\n", + "1/0, train_loss: 0.6353\n", + "0 epoch 646 average loss: 0.6353\n", + "current epoch: 646 current mean dice: 0.3531\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 647/1000: lr: [0.0003070000000000004]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.6386\n", + "0 epoch 647 average loss: 0.6386\n", + "----------\n", + "0: epoch 648/1000: lr: [0.0003114999999999995]\n", + "1/0, train_loss: 0.6326\n", + "0 epoch 648 average loss: 0.6326\n", + "current epoch: 648 current mean dice: 0.3530\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 649/1000: lr: [0.0003160000000000002]\n", + "1/0, train_loss: 0.6338\n", + "0 epoch 649 average loss: 0.6338\n", + "----------\n", + "0: epoch 650/1000: lr: [0.00032050000000000015]\n", + "1/0, train_loss: 0.6337\n", + "0 epoch 650 average loss: 0.6337\n", + "current epoch: 650 current mean dice: 0.3530\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 651/1000: lr: [0.000325]\n", + "1/0, train_loss: 0.6353\n", + "0 epoch 651 average loss: 0.6353\n", + "----------\n", + "0: epoch 652/1000: lr: [0.00032949999999999993]\n", + "1/0, train_loss: 0.6367\n", + "0 epoch 652 average loss: 0.6367\n", + "current epoch: 652 current mean dice: 0.3530\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 653/1000: lr: [0.0003339999999999999]\n", + "1/0, train_loss: 0.6336\n", + "0 epoch 653 average loss: 0.6336\n", + "----------\n", + "0: epoch 654/1000: lr: [0.0003385000000000006]\n", + "1/0, train_loss: 0.6343\n", + "0 epoch 654 average loss: 0.6343\n", + "current epoch: 654 current mean dice: 0.3529\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 655/1000: lr: [0.00034299999999999966]\n", + "1/0, train_loss: 0.6386\n", + "0 epoch 655 average loss: 0.6386\n", + "----------\n", + "0: epoch 656/1000: lr: [0.00034750000000000037]\n", + "1/0, train_loss: 0.6333\n", + "0 epoch 656 average loss: 0.6333\n", + "current epoch: 656 current mean dice: 0.3529\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 657/1000: lr: [0.00035199999999999945]\n", + "1/0, train_loss: 0.6327\n", + "0 epoch 657 average loss: 0.6327\n", + "----------\n", + "0: epoch 658/1000: lr: [0.00035650000000000015]\n", + "1/0, train_loss: 0.6334\n", + "0 epoch 658 average loss: 0.6334\n", + "current epoch: 658 current mean dice: 0.3528\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 659/1000: lr: [0.0003610000000000001]\n", + "1/0, train_loss: 0.6343\n", + "0 epoch 659 average loss: 0.6343\n", + "----------\n", + "0: epoch 660/1000: lr: [0.00036549999999999994]\n", + "1/0, train_loss: 0.6346\n", + "0 epoch 660 average loss: 0.6346\n", + "current epoch: 660 current mean dice: 0.3527\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 661/1000: lr: [0.0003699999999999999]\n", + "1/0, train_loss: 0.6330\n", + "0 epoch 661 average loss: 0.6330\n", + "----------\n", + "0: epoch 662/1000: lr: [0.00037449999999999983]\n", + "1/0, train_loss: 0.6366\n", + "0 epoch 662 average loss: 0.6366\n", + "current epoch: 662 current mean dice: 0.3526\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 663/1000: lr: [0.00037900000000000054]\n", + "1/0, train_loss: 0.6344\n", + "0 epoch 663 average loss: 0.6344\n", + "----------\n", + "0: epoch 664/1000: lr: [0.0003834999999999996]\n", + "1/0, train_loss: 0.6338\n", + "0 epoch 664 average loss: 0.6338\n", + "current epoch: 664 current mean dice: 0.3525\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 665/1000: lr: [0.0003880000000000003]\n", + "1/0, train_loss: 0.6353\n", + "0 epoch 665 average loss: 0.6353\n", + "----------\n", + "0: epoch 666/1000: lr: [0.00039250000000000016]\n", + "1/0, train_loss: 0.6393\n", + "0 epoch 666 average loss: 0.6393\n", + "current epoch: 666 current mean dice: 0.3524\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 667/1000: lr: [0.0003970000000000001]\n", + "1/0, train_loss: 0.6338\n", + "0 epoch 667 average loss: 0.6338\n", + "----------\n", + "0: epoch 668/1000: lr: [0.00040150000000000006]\n", + "1/0, train_loss: 0.6405\n", + "0 epoch 668 average loss: 0.6405\n", + "current epoch: 668 current mean dice: 0.3523\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 669/1000: lr: [0.0004059999999999999]\n", + "1/0, train_loss: 0.6370\n", + "0 epoch 669 average loss: 0.6370\n", + "----------\n", + "0: epoch 670/1000: lr: [0.0004105000000000006]\n", + "1/0, train_loss: 0.6388\n", + "0 epoch 670 average loss: 0.6388\n", + "current epoch: 670 current mean dice: 0.3522\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 671/1000: lr: [0.0004149999999999997]\n", + "1/0, train_loss: 0.6313\n", + "0 epoch 671 average loss: 0.6313\n", + "----------\n", + "0: epoch 672/1000: lr: [0.0004195000000000004]\n", + "1/0, train_loss: 0.6326\n", + "0 epoch 672 average loss: 0.6326\n", + "current epoch: 672 current mean dice: 0.3522\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 673/1000: lr: [0.00042399999999999957]\n", + "1/0, train_loss: 0.6351\n", + "0 epoch 673 average loss: 0.6351\n", + "----------\n", + "0: epoch 674/1000: lr: [0.0004285000000000003]\n", + "1/0, train_loss: 0.6342\n", + "0 epoch 674 average loss: 0.6342\n", + "current epoch: 674 current mean dice: 0.3522\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 675/1000: lr: [0.0004330000000000001]\n", + "1/0, train_loss: 0.6332\n", + "0 epoch 675 average loss: 0.6332\n", + "----------\n", + "0: epoch 676/1000: lr: [0.00043750000000000006]\n", + "1/0, train_loss: 0.6309\n", + "0 epoch 676 average loss: 0.6309\n", + "current epoch: 676 current mean dice: 0.3522\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 677/1000: lr: [0.0004419999999999999]\n", + "1/0, train_loss: 0.6301\n", + "0 epoch 677 average loss: 0.6301\n", + "----------\n", + "0: epoch 678/1000: lr: [0.00044649999999999985]\n", + "1/0, train_loss: 0.6387\n", + "0 epoch 678 average loss: 0.6387\n", + "current epoch: 678 current mean dice: 0.3521\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 679/1000: lr: [0.00045100000000000055]\n", + "1/0, train_loss: 0.6333\n", + "0 epoch 679 average loss: 0.6333\n", + "----------\n", + "0: epoch 680/1000: lr: [0.00045549999999999963]\n", + "1/0, train_loss: 0.6404\n", + "0 epoch 680 average loss: 0.6404\n", + "current epoch: 680 current mean dice: 0.3521\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 681/1000: lr: [0.00046000000000000034]\n", + "1/0, train_loss: 0.6372\n", + "0 epoch 681 average loss: 0.6372\n", + "----------\n", + "0: epoch 682/1000: lr: [0.0004644999999999994]\n", + "1/0, train_loss: 0.6395\n", + "0 epoch 682 average loss: 0.6395\n", + "current epoch: 682 current mean dice: 0.3521\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 683/1000: lr: [0.0004690000000000001]\n", + "1/0, train_loss: 0.6342\n", + "0 epoch 683 average loss: 0.6342\n", + "----------\n", + "0: epoch 684/1000: lr: [0.00047350000000000007]\n", + "1/0, train_loss: 0.6330\n", + "0 epoch 684 average loss: 0.6330\n", + "current epoch: 684 current mean dice: 0.3521\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 685/1000: lr: [0.000478]\n", + "1/0, train_loss: 0.6334\n", + "0 epoch 685 average loss: 0.6334\n", + "----------\n", + "0: epoch 686/1000: lr: [0.00048249999999999986]\n", + "1/0, train_loss: 0.6329\n", + "0 epoch 686 average loss: 0.6329\n", + "current epoch: 686 current mean dice: 0.3521\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 687/1000: lr: [0.0004869999999999998]\n", + "1/0, train_loss: 0.6373\n", + "0 epoch 687 average loss: 0.6373\n", + "----------\n", + "0: epoch 688/1000: lr: [0.0004915000000000005]\n", + "1/0, train_loss: 0.6305\n", + "0 epoch 688 average loss: 0.6305\n", + "current epoch: 688 current mean dice: 0.3520\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 689/1000: lr: [0.0004959999999999996]\n", + "1/0, train_loss: 0.6323\n", + "0 epoch 689 average loss: 0.6323\n", + "----------\n", + "0: epoch 690/1000: lr: [0.0005005000000000003]\n", + "1/0, train_loss: 0.6380\n", + "0 epoch 690 average loss: 0.6380\n", + "current epoch: 690 current mean dice: 0.3520\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 691/1000: lr: [0.0005050000000000002]\n", + "1/0, train_loss: 0.6341\n", + "0 epoch 691 average loss: 0.6341\n", + "----------\n", + "0: epoch 692/1000: lr: [0.0005095000000000001]\n", + "1/0, train_loss: 0.6385\n", + "0 epoch 692 average loss: 0.6385\n", + "current epoch: 692 current mean dice: 0.3520\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 693/1000: lr: [0.000514]\n", + "1/0, train_loss: 0.6331\n", + "0 epoch 693 average loss: 0.6331\n", + "----------\n", + "0: epoch 694/1000: lr: [0.0005184999999999999]\n", + "1/0, train_loss: 0.6318\n", + "0 epoch 694 average loss: 0.6318\n", + "current epoch: 694 current mean dice: 0.3519\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 695/1000: lr: [0.0005230000000000007]\n", + "1/0, train_loss: 0.6352\n", + "0 epoch 695 average loss: 0.6352\n", + "----------\n", + "0: epoch 696/1000: lr: [0.0005274999999999998]\n", + "1/0, train_loss: 0.6324\n", + "0 epoch 696 average loss: 0.6324\n", + "current epoch: 696 current mean dice: 0.3518\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 697/1000: lr: [0.0005320000000000004]\n", + "1/0, train_loss: 0.6349\n", + "0 epoch 697 average loss: 0.6349\n", + "----------\n", + "0: epoch 698/1000: lr: [0.0005364999999999995]\n", + "1/0, train_loss: 0.6362\n", + "0 epoch 698 average loss: 0.6362\n", + "current epoch: 698 current mean dice: 0.3517\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 699/1000: lr: [0.0005410000000000002]\n", + "1/0, train_loss: 0.6316\n", + "0 epoch 699 average loss: 0.6316\n", + "----------\n", + "0: epoch 700/1000: lr: [0.0005455000000000002]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.6314\n", + "0 epoch 700 average loss: 0.6314\n", + "current epoch: 700 current mean dice: 0.3516\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 701/1000: lr: [0.00055]\n", + "1/0, train_loss: 0.6347\n", + "0 epoch 701 average loss: 0.6347\n", + "----------\n", + "0: epoch 702/1000: lr: [0.0005544999999999999]\n", + "1/0, train_loss: 0.6348\n", + "0 epoch 702 average loss: 0.6348\n", + "current epoch: 702 current mean dice: 0.3515\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 703/1000: lr: [0.0005589999999999998]\n", + "1/0, train_loss: 0.6319\n", + "0 epoch 703 average loss: 0.6319\n", + "----------\n", + "0: epoch 704/1000: lr: [0.0005635000000000005]\n", + "1/0, train_loss: 0.6387\n", + "0 epoch 704 average loss: 0.6387\n", + "current epoch: 704 current mean dice: 0.3514\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 705/1000: lr: [0.0005679999999999997]\n", + "1/0, train_loss: 0.6395\n", + "0 epoch 705 average loss: 0.6395\n", + "----------\n", + "0: epoch 706/1000: lr: [0.0005725000000000003]\n", + "1/0, train_loss: 0.6368\n", + "0 epoch 706 average loss: 0.6368\n", + "current epoch: 706 current mean dice: 0.3514\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 707/1000: lr: [0.0005769999999999994]\n", + "1/0, train_loss: 0.6317\n", + "0 epoch 707 average loss: 0.6317\n", + "----------\n", + "0: epoch 708/1000: lr: [0.0005815000000000002]\n", + "1/0, train_loss: 0.6325\n", + "0 epoch 708 average loss: 0.6325\n", + "current epoch: 708 current mean dice: 0.3513\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 709/1000: lr: [0.000586]\n", + "1/0, train_loss: 0.6316\n", + "0 epoch 709 average loss: 0.6316\n", + "----------\n", + "0: epoch 710/1000: lr: [0.0005905]\n", + "1/0, train_loss: 0.6373\n", + "0 epoch 710 average loss: 0.6373\n", + "current epoch: 710 current mean dice: 0.3512\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 711/1000: lr: [0.0005949999999999998]\n", + "1/0, train_loss: 0.6327\n", + "0 epoch 711 average loss: 0.6327\n", + "----------\n", + "0: epoch 712/1000: lr: [0.0005994999999999998]\n", + "1/0, train_loss: 0.6312\n", + "0 epoch 712 average loss: 0.6312\n", + "current epoch: 712 current mean dice: 0.3511\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 713/1000: lr: [0.0006040000000000005]\n", + "1/0, train_loss: 0.6318\n", + "0 epoch 713 average loss: 0.6318\n", + "----------\n", + "0: epoch 714/1000: lr: [0.0006084999999999996]\n", + "1/0, train_loss: 0.6365\n", + "0 epoch 714 average loss: 0.6365\n", + "current epoch: 714 current mean dice: 0.3510\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 715/1000: lr: [0.0006130000000000003]\n", + "1/0, train_loss: 0.6346\n", + "0 epoch 715 average loss: 0.6346\n", + "----------\n", + "0: epoch 716/1000: lr: [0.0006175000000000002]\n", + "1/0, train_loss: 0.6411\n", + "0 epoch 716 average loss: 0.6411\n", + "current epoch: 716 current mean dice: 0.3510\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 717/1000: lr: [0.0006220000000000002]\n", + "1/0, train_loss: 0.6317\n", + "0 epoch 717 average loss: 0.6317\n", + "----------\n", + "0: epoch 718/1000: lr: [0.0006265]\n", + "1/0, train_loss: 0.6292\n", + "0 epoch 718 average loss: 0.6292\n", + "current epoch: 718 current mean dice: 0.3509\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 719/1000: lr: [0.0006309999999999998]\n", + "1/0, train_loss: 0.6335\n", + "0 epoch 719 average loss: 0.6335\n", + "----------\n", + "0: epoch 720/1000: lr: [0.0006355000000000006]\n", + "1/0, train_loss: 0.6349\n", + "0 epoch 720 average loss: 0.6349\n", + "current epoch: 720 current mean dice: 0.3508\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 721/1000: lr: [0.0006399999999999997]\n", + "1/0, train_loss: 0.6307\n", + "0 epoch 721 average loss: 0.6307\n", + "----------\n", + "0: epoch 722/1000: lr: [0.0006445000000000004]\n", + "1/0, train_loss: 0.6280\n", + "0 epoch 722 average loss: 0.6280\n", + "current epoch: 722 current mean dice: 0.3507\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 723/1000: lr: [0.0006489999999999995]\n", + "1/0, train_loss: 0.6316\n", + "0 epoch 723 average loss: 0.6316\n", + "----------\n", + "0: epoch 724/1000: lr: [0.0006535000000000002]\n", + "1/0, train_loss: 0.6305\n", + "0 epoch 724 average loss: 0.6305\n", + "current epoch: 724 current mean dice: 0.3506\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 725/1000: lr: [0.0006580000000000002]\n", + "1/0, train_loss: 0.6337\n", + "0 epoch 725 average loss: 0.6337\n", + "----------\n", + "0: epoch 726/1000: lr: [0.0006625]\n", + "1/0, train_loss: 0.6350\n", + "0 epoch 726 average loss: 0.6350\n", + "current epoch: 726 current mean dice: 0.3504\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 727/1000: lr: [0.000667]\n", + "1/0, train_loss: 0.6358\n", + "0 epoch 727 average loss: 0.6358\n", + "----------\n", + "0: epoch 728/1000: lr: [0.0006714999999999998]\n", + "1/0, train_loss: 0.6308\n", + "0 epoch 728 average loss: 0.6308\n", + "current epoch: 728 current mean dice: 0.3502\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 729/1000: lr: [0.0006760000000000006]\n", + "1/0, train_loss: 0.6312\n", + "0 epoch 729 average loss: 0.6312\n", + "----------\n", + "0: epoch 730/1000: lr: [0.0006804999999999997]\n", + "1/0, train_loss: 0.6365\n", + "0 epoch 730 average loss: 0.6365\n", + "current epoch: 730 current mean dice: 0.3501\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 731/1000: lr: [0.0006850000000000003]\n", + "1/0, train_loss: 0.6307\n", + "0 epoch 731 average loss: 0.6307\n", + "----------\n", + "0: epoch 732/1000: lr: [0.0006894999999999995]\n", + "1/0, train_loss: 0.6371\n", + "0 epoch 732 average loss: 0.6371\n", + "current epoch: 732 current mean dice: 0.3500\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 733/1000: lr: [0.0006940000000000002]\n", + "1/0, train_loss: 0.6346\n", + "0 epoch 733 average loss: 0.6346\n", + "----------\n", + "0: epoch 734/1000: lr: [0.0006985000000000001]\n", + "1/0, train_loss: 0.6356\n", + "0 epoch 734 average loss: 0.6356\n", + "current epoch: 734 current mean dice: 0.3499\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 735/1000: lr: [0.000703]\n", + "1/0, train_loss: 0.6313\n", + "0 epoch 735 average loss: 0.6313\n", + "----------\n", + "0: epoch 736/1000: lr: [0.0007074999999999998]\n", + "1/0, train_loss: 0.6319\n", + "0 epoch 736 average loss: 0.6319\n", + "current epoch: 736 current mean dice: 0.3498\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 737/1000: lr: [0.0007119999999999997]\n", + "1/0, train_loss: 0.6317\n", + "0 epoch 737 average loss: 0.6317\n", + "----------\n", + "0: epoch 738/1000: lr: [0.0007165000000000006]\n", + "1/0, train_loss: 0.6299\n", + "0 epoch 738 average loss: 0.6299\n", + "current epoch: 738 current mean dice: 0.3497\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 739/1000: lr: [0.0007209999999999996]\n", + "1/0, train_loss: 0.6301\n", + "0 epoch 739 average loss: 0.6301\n", + "----------\n", + "0: epoch 740/1000: lr: [0.0007255000000000002]\n", + "1/0, train_loss: 0.6304\n", + "0 epoch 740 average loss: 0.6304\n", + "current epoch: 740 current mean dice: 0.3495\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 741/1000: lr: [0.0007300000000000002]\n", + "1/0, train_loss: 0.6286\n", + "0 epoch 741 average loss: 0.6286\n", + "----------\n", + "0: epoch 742/1000: lr: [0.0007345000000000001]\n", + "1/0, train_loss: 0.6332\n", + "0 epoch 742 average loss: 0.6332\n", + "current epoch: 742 current mean dice: 0.3494\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 743/1000: lr: [0.0007390000000000001]\n", + "1/0, train_loss: 0.6319\n", + "0 epoch 743 average loss: 0.6319\n", + "----------\n", + "0: epoch 744/1000: lr: [0.0007434999999999999]\n", + "1/0, train_loss: 0.6302\n", + "0 epoch 744 average loss: 0.6302\n", + "current epoch: 744 current mean dice: 0.3493\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 745/1000: lr: [0.0007480000000000006]\n", + "1/0, train_loss: 0.6330\n", + "0 epoch 745 average loss: 0.6330\n", + "----------\n", + "0: epoch 746/1000: lr: [0.0007524999999999997]\n", + "1/0, train_loss: 0.6286\n", + "0 epoch 746 average loss: 0.6286\n", + "current epoch: 746 current mean dice: 0.3493\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 747/1000: lr: [0.0007570000000000004]\n", + "1/0, train_loss: 0.6332\n", + "0 epoch 747 average loss: 0.6332\n", + "----------\n", + "0: epoch 748/1000: lr: [0.0007614999999999995]\n", + "1/0, train_loss: 0.6411\n", + "0 epoch 748 average loss: 0.6411\n", + "current epoch: 748 current mean dice: 0.3493\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 749/1000: lr: [0.0007660000000000002]\n", + "1/0, train_loss: 0.6382\n", + "0 epoch 749 average loss: 0.6382\n", + "----------\n", + "0: epoch 750/1000: lr: [0.0007705000000000001]\n", + "1/0, train_loss: 0.6287\n", + "0 epoch 750 average loss: 0.6287\n", + "current epoch: 750 current mean dice: 0.3492\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 751/1000: lr: [0.0007750000000000001]\n", + "1/0, train_loss: 0.6287\n", + "0 epoch 751 average loss: 0.6287\n", + "----------\n", + "0: epoch 752/1000: lr: [0.0007794999999999999]\n", + "1/0, train_loss: 0.6303\n", + "0 epoch 752 average loss: 0.6303\n", + "current epoch: 752 current mean dice: 0.3492\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 753/1000: lr: [0.0007839999999999999]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.6295\n", + "0 epoch 753 average loss: 0.6295\n", + "----------\n", + "0: epoch 754/1000: lr: [0.0007885000000000006]\n", + "1/0, train_loss: 0.6295\n", + "0 epoch 754 average loss: 0.6295\n", + "current epoch: 754 current mean dice: 0.3492\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 755/1000: lr: [0.0007929999999999997]\n", + "1/0, train_loss: 0.6311\n", + "0 epoch 755 average loss: 0.6311\n", + "----------\n", + "0: epoch 756/1000: lr: [0.0007975000000000004]\n", + "1/0, train_loss: 0.6342\n", + "0 epoch 756 average loss: 0.6342\n", + "current epoch: 756 current mean dice: 0.3493\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 757/1000: lr: [0.0008019999999999994]\n", + "1/0, train_loss: 0.6261\n", + "0 epoch 757 average loss: 0.6261\n", + "----------\n", + "0: epoch 758/1000: lr: [0.0008065000000000001]\n", + "1/0, train_loss: 0.6331\n", + "0 epoch 758 average loss: 0.6331\n", + "current epoch: 758 current mean dice: 0.3493\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 759/1000: lr: [0.0008110000000000001]\n", + "1/0, train_loss: 0.6291\n", + "0 epoch 759 average loss: 0.6291\n", + "----------\n", + "0: epoch 760/1000: lr: [0.0008154999999999999]\n", + "1/0, train_loss: 0.6261\n", + "0 epoch 760 average loss: 0.6261\n", + "current epoch: 760 current mean dice: 0.3492\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 761/1000: lr: [0.0008199999999999999]\n", + "1/0, train_loss: 0.6364\n", + "0 epoch 761 average loss: 0.6364\n", + "----------\n", + "0: epoch 762/1000: lr: [0.0008244999999999997]\n", + "1/0, train_loss: 0.6291\n", + "0 epoch 762 average loss: 0.6291\n", + "current epoch: 762 current mean dice: 0.3492\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 763/1000: lr: [0.0008290000000000005]\n", + "1/0, train_loss: 0.6254\n", + "0 epoch 763 average loss: 0.6254\n", + "----------\n", + "0: epoch 764/1000: lr: [0.0008334999999999996]\n", + "1/0, train_loss: 0.6331\n", + "0 epoch 764 average loss: 0.6331\n", + "current epoch: 764 current mean dice: 0.3491\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 765/1000: lr: [0.0008380000000000003]\n", + "1/0, train_loss: 0.6372\n", + "0 epoch 765 average loss: 0.6372\n", + "----------\n", + "0: epoch 766/1000: lr: [0.0008425000000000001]\n", + "1/0, train_loss: 0.6381\n", + "0 epoch 766 average loss: 0.6381\n", + "current epoch: 766 current mean dice: 0.3490\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 767/1000: lr: [0.0008470000000000001]\n", + "1/0, train_loss: 0.6290\n", + "0 epoch 767 average loss: 0.6290\n", + "----------\n", + "0: epoch 768/1000: lr: [0.0008515]\n", + "1/0, train_loss: 0.6364\n", + "0 epoch 768 average loss: 0.6364\n", + "current epoch: 768 current mean dice: 0.3490\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 769/1000: lr: [0.0008559999999999999]\n", + "1/0, train_loss: 0.6279\n", + "0 epoch 769 average loss: 0.6279\n", + "----------\n", + "0: epoch 770/1000: lr: [0.0008605000000000006]\n", + "1/0, train_loss: 0.6268\n", + "0 epoch 770 average loss: 0.6268\n", + "current epoch: 770 current mean dice: 0.3489\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 771/1000: lr: [0.0008649999999999997]\n", + "1/0, train_loss: 0.6297\n", + "0 epoch 771 average loss: 0.6297\n", + "----------\n", + "0: epoch 772/1000: lr: [0.0008695000000000004]\n", + "1/0, train_loss: 0.6359\n", + "0 epoch 772 average loss: 0.6359\n", + "current epoch: 772 current mean dice: 0.3488\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 773/1000: lr: [0.0008739999999999996]\n", + "1/0, train_loss: 0.6313\n", + "0 epoch 773 average loss: 0.6313\n", + "----------\n", + "0: epoch 774/1000: lr: [0.0008785000000000002]\n", + "1/0, train_loss: 0.6294\n", + "0 epoch 774 average loss: 0.6294\n", + "current epoch: 774 current mean dice: 0.3487\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 775/1000: lr: [0.0008830000000000001]\n", + "1/0, train_loss: 0.6283\n", + "0 epoch 775 average loss: 0.6283\n", + "----------\n", + "0: epoch 776/1000: lr: [0.0008875]\n", + "1/0, train_loss: 0.6269\n", + "0 epoch 776 average loss: 0.6269\n", + "current epoch: 776 current mean dice: 0.3485\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 777/1000: lr: [0.0008919999999999999]\n", + "1/0, train_loss: 0.6283\n", + "0 epoch 777 average loss: 0.6283\n", + "----------\n", + "0: epoch 778/1000: lr: [0.0008964999999999998]\n", + "1/0, train_loss: 0.6305\n", + "0 epoch 778 average loss: 0.6305\n", + "current epoch: 778 current mean dice: 0.3483\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 779/1000: lr: [0.0009010000000000005]\n", + "1/0, train_loss: 0.6254\n", + "0 epoch 779 average loss: 0.6254\n", + "----------\n", + "0: epoch 780/1000: lr: [0.0009054999999999996]\n", + "1/0, train_loss: 0.6306\n", + "0 epoch 780 average loss: 0.6306\n", + "current epoch: 780 current mean dice: 0.3480\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 781/1000: lr: [0.0009100000000000003]\n", + "1/0, train_loss: 0.6271\n", + "0 epoch 781 average loss: 0.6271\n", + "----------\n", + "0: epoch 782/1000: lr: [0.0009144999999999994]\n", + "1/0, train_loss: 0.6360\n", + "0 epoch 782 average loss: 0.6360\n", + "current epoch: 782 current mean dice: 0.3478\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 783/1000: lr: [0.0009190000000000001]\n", + "1/0, train_loss: 0.6304\n", + "0 epoch 783 average loss: 0.6304\n", + "----------\n", + "0: epoch 784/1000: lr: [0.0009235000000000001]\n", + "1/0, train_loss: 0.6265\n", + "0 epoch 784 average loss: 0.6265\n", + "current epoch: 784 current mean dice: 0.3477\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 785/1000: lr: [0.000928]\n", + "1/0, train_loss: 0.6261\n", + "0 epoch 785 average loss: 0.6261\n", + "----------\n", + "0: epoch 786/1000: lr: [0.0009324999999999998]\n", + "1/0, train_loss: 0.6269\n", + "0 epoch 786 average loss: 0.6269\n", + "current epoch: 786 current mean dice: 0.3476\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 787/1000: lr: [0.0009369999999999998]\n", + "1/0, train_loss: 0.6249\n", + "0 epoch 787 average loss: 0.6249\n", + "----------\n", + "0: epoch 788/1000: lr: [0.0009415000000000005]\n", + "1/0, train_loss: 0.6301\n", + "0 epoch 788 average loss: 0.6301\n", + "current epoch: 788 current mean dice: 0.3474\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 789/1000: lr: [0.0009459999999999996]\n", + "1/0, train_loss: 0.6256\n", + "0 epoch 789 average loss: 0.6256\n", + "----------\n", + "0: epoch 790/1000: lr: [0.0009505000000000003]\n", + "1/0, train_loss: 0.6255\n", + "0 epoch 790 average loss: 0.6255\n", + "current epoch: 790 current mean dice: 0.3473\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 791/1000: lr: [0.0009550000000000002]\n", + "1/0, train_loss: 0.6286\n", + "0 epoch 791 average loss: 0.6286\n", + "----------\n", + "0: epoch 792/1000: lr: [0.0009595000000000001]\n", + "1/0, train_loss: 0.6360\n", + "0 epoch 792 average loss: 0.6360\n", + "current epoch: 792 current mean dice: 0.3472\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 793/1000: lr: [0.000964]\n", + "1/0, train_loss: 0.6334\n", + "0 epoch 793 average loss: 0.6334\n", + "----------\n", + "0: epoch 794/1000: lr: [0.0009684999999999999]\n", + "1/0, train_loss: 0.6282\n", + "0 epoch 794 average loss: 0.6282\n", + "current epoch: 794 current mean dice: 0.3471\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 795/1000: lr: [0.0009730000000000006]\n", + "1/0, train_loss: 0.6289\n", + "0 epoch 795 average loss: 0.6289\n", + "----------\n", + "0: epoch 796/1000: lr: [0.0009774999999999996]\n", + "1/0, train_loss: 0.6259\n", + "0 epoch 796 average loss: 0.6259\n", + "current epoch: 796 current mean dice: 0.3470\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 797/1000: lr: [0.0009820000000000005]\n", + "1/0, train_loss: 0.6271\n", + "0 epoch 797 average loss: 0.6271\n", + "----------\n", + "0: epoch 798/1000: lr: [0.0009864999999999995]\n", + "1/0, train_loss: 0.6277\n", + "0 epoch 798 average loss: 0.6277\n", + "current epoch: 798 current mean dice: 0.3469\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 799/1000: lr: [0.0009910000000000001]\n", + "1/0, train_loss: 0.6281\n", + "0 epoch 799 average loss: 0.6281\n", + "----------\n", + "0: epoch 800/1000: lr: [0.0009955]\n", + "1/0, train_loss: 0.6233\n", + "0 epoch 800 average loss: 0.6233\n", + "current epoch: 800 current mean dice: 0.3467\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 801/1000: lr: [0.001]\n", + "1/0, train_loss: 0.6238\n", + "0 epoch 801 average loss: 0.6238\n", + "----------\n", + "0: epoch 802/1000: lr: [0.0009955]\n", + "1/0, train_loss: 0.6286\n", + "0 epoch 802 average loss: 0.6286\n", + "current epoch: 802 current mean dice: 0.3466\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 803/1000: lr: [0.0009910000000000001]\n", + "1/0, train_loss: 0.6254\n", + "0 epoch 803 average loss: 0.6254\n", + "----------\n", + "0: epoch 804/1000: lr: [0.0009865000000000004]\n", + "1/0, train_loss: 0.6319\n", + "0 epoch 804 average loss: 0.6319\n", + "current epoch: 804 current mean dice: 0.3466\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 805/1000: lr: [0.0009820000000000005]\n", + "1/0, train_loss: 0.6318\n", + "0 epoch 805 average loss: 0.6318\n", + "----------\n", + "0: epoch 806/1000: lr: [0.0009774999999999996]\n", + "1/0, train_loss: 0.6223\n", + "0 epoch 806 average loss: 0.6223\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "current epoch: 806 current mean dice: 0.3466\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 807/1000: lr: [0.0009729999999999998]\n", + "1/0, train_loss: 0.6300\n", + "0 epoch 807 average loss: 0.6300\n", + "----------\n", + "0: epoch 808/1000: lr: [0.0009684999999999999]\n", + "1/0, train_loss: 0.6258\n", + "0 epoch 808 average loss: 0.6258\n", + "current epoch: 808 current mean dice: 0.3466\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 809/1000: lr: [0.000964]\n", + "1/0, train_loss: 0.6226\n", + "0 epoch 809 average loss: 0.6226\n", + "----------\n", + "0: epoch 810/1000: lr: [0.0009595000000000001]\n", + "1/0, train_loss: 0.6316\n", + "0 epoch 810 average loss: 0.6316\n", + "current epoch: 810 current mean dice: 0.3465\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 811/1000: lr: [0.0009550000000000002]\n", + "1/0, train_loss: 0.6321\n", + "0 epoch 811 average loss: 0.6321\n", + "----------\n", + "0: epoch 812/1000: lr: [0.0009505000000000003]\n", + "1/0, train_loss: 0.6283\n", + "0 epoch 812 average loss: 0.6283\n", + "current epoch: 812 current mean dice: 0.3464\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 813/1000: lr: [0.0009460000000000003]\n", + "1/0, train_loss: 0.6261\n", + "0 epoch 813 average loss: 0.6261\n", + "----------\n", + "0: epoch 814/1000: lr: [0.0009414999999999996]\n", + "1/0, train_loss: 0.6286\n", + "0 epoch 814 average loss: 0.6286\n", + "current epoch: 814 current mean dice: 0.3464\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 815/1000: lr: [0.0009369999999999998]\n", + "1/0, train_loss: 0.6323\n", + "0 epoch 815 average loss: 0.6323\n", + "----------\n", + "0: epoch 816/1000: lr: [0.0009324999999999998]\n", + "1/0, train_loss: 0.6208\n", + "0 epoch 816 average loss: 0.6208\n", + "current epoch: 816 current mean dice: 0.3463\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 817/1000: lr: [0.000928]\n", + "1/0, train_loss: 0.6259\n", + "0 epoch 817 average loss: 0.6259\n", + "----------\n", + "0: epoch 818/1000: lr: [0.0009235000000000001]\n", + "1/0, train_loss: 0.6220\n", + "0 epoch 818 average loss: 0.6220\n", + "current epoch: 818 current mean dice: 0.3462\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 819/1000: lr: [0.0009190000000000001]\n", + "1/0, train_loss: 0.6215\n", + "0 epoch 819 average loss: 0.6215\n", + "----------\n", + "0: epoch 820/1000: lr: [0.0009145000000000003]\n", + "1/0, train_loss: 0.6233\n", + "0 epoch 820 average loss: 0.6233\n", + "current epoch: 820 current mean dice: 0.3459\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 821/1000: lr: [0.0009100000000000003]\n", + "1/0, train_loss: 0.6220\n", + "0 epoch 821 average loss: 0.6220\n", + "----------\n", + "0: epoch 822/1000: lr: [0.0009054999999999996]\n", + "1/0, train_loss: 0.6310\n", + "0 epoch 822 average loss: 0.6310\n", + "current epoch: 822 current mean dice: 0.3458\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 823/1000: lr: [0.0009009999999999998]\n", + "1/0, train_loss: 0.6227\n", + "0 epoch 823 average loss: 0.6227\n", + "----------\n", + "0: epoch 824/1000: lr: [0.0008964999999999998]\n", + "1/0, train_loss: 0.6273\n", + "0 epoch 824 average loss: 0.6273\n", + "current epoch: 824 current mean dice: 0.3456\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 825/1000: lr: [0.0008919999999999999]\n", + "1/0, train_loss: 0.6280\n", + "0 epoch 825 average loss: 0.6280\n", + "----------\n", + "0: epoch 826/1000: lr: [0.0008875]\n", + "1/0, train_loss: 0.6239\n", + "0 epoch 826 average loss: 0.6239\n", + "current epoch: 826 current mean dice: 0.3453\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 827/1000: lr: [0.0008830000000000001]\n", + "1/0, train_loss: 0.6235\n", + "0 epoch 827 average loss: 0.6235\n", + "----------\n", + "0: epoch 828/1000: lr: [0.0008785000000000002]\n", + "1/0, train_loss: 0.6266\n", + "0 epoch 828 average loss: 0.6266\n", + "current epoch: 828 current mean dice: 0.3450\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 829/1000: lr: [0.0008740000000000003]\n", + "1/0, train_loss: 0.6223\n", + "0 epoch 829 average loss: 0.6223\n", + "----------\n", + "0: epoch 830/1000: lr: [0.0008695000000000004]\n", + "1/0, train_loss: 0.6272\n", + "0 epoch 830 average loss: 0.6272\n", + "current epoch: 830 current mean dice: 0.3448\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 831/1000: lr: [0.0008649999999999997]\n", + "1/0, train_loss: 0.6263\n", + "0 epoch 831 average loss: 0.6263\n", + "----------\n", + "0: epoch 832/1000: lr: [0.0008604999999999998]\n", + "1/0, train_loss: 0.6300\n", + "0 epoch 832 average loss: 0.6300\n", + "current epoch: 832 current mean dice: 0.3447\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 833/1000: lr: [0.0008559999999999999]\n", + "1/0, train_loss: 0.6250\n", + "0 epoch 833 average loss: 0.6250\n", + "----------\n", + "0: epoch 834/1000: lr: [0.0008515]\n", + "1/0, train_loss: 0.6268\n", + "0 epoch 834 average loss: 0.6268\n", + "current epoch: 834 current mean dice: 0.3446\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 835/1000: lr: [0.0008470000000000001]\n", + "1/0, train_loss: 0.6233\n", + "0 epoch 835 average loss: 0.6233\n", + "----------\n", + "0: epoch 836/1000: lr: [0.0008425000000000001]\n", + "1/0, train_loss: 0.6251\n", + "0 epoch 836 average loss: 0.6251\n", + "current epoch: 836 current mean dice: 0.3445\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 837/1000: lr: [0.0008380000000000003]\n", + "1/0, train_loss: 0.6258\n", + "0 epoch 837 average loss: 0.6258\n", + "----------\n", + "0: epoch 838/1000: lr: [0.0008335000000000004]\n", + "1/0, train_loss: 0.6234\n", + "0 epoch 838 average loss: 0.6234\n", + "current epoch: 838 current mean dice: 0.3444\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 839/1000: lr: [0.0008289999999999997]\n", + "1/0, train_loss: 0.6231\n", + "0 epoch 839 average loss: 0.6231\n", + "----------\n", + "0: epoch 840/1000: lr: [0.0008244999999999997]\n", + "1/0, train_loss: 0.6235\n", + "0 epoch 840 average loss: 0.6235\n", + "current epoch: 840 current mean dice: 0.3442\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 841/1000: lr: [0.0008199999999999999]\n", + "1/0, train_loss: 0.6252\n", + "0 epoch 841 average loss: 0.6252\n", + "----------\n", + "0: epoch 842/1000: lr: [0.0008154999999999999]\n", + "1/0, train_loss: 0.6281\n", + "0 epoch 842 average loss: 0.6281\n", + "current epoch: 842 current mean dice: 0.3440\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 843/1000: lr: [0.0008110000000000001]\n", + "1/0, train_loss: 0.6223\n", + "0 epoch 843 average loss: 0.6223\n", + "----------\n", + "0: epoch 844/1000: lr: [0.0008065000000000001]\n", + "1/0, train_loss: 0.6329\n", + "0 epoch 844 average loss: 0.6329\n", + "current epoch: 844 current mean dice: 0.3440\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 845/1000: lr: [0.0008020000000000002]\n", + "1/0, train_loss: 0.6260\n", + "0 epoch 845 average loss: 0.6260\n", + "----------\n", + "0: epoch 846/1000: lr: [0.0007975000000000004]\n", + "1/0, train_loss: 0.6231\n", + "0 epoch 846 average loss: 0.6231\n", + "current epoch: 846 current mean dice: 0.3438\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 847/1000: lr: [0.0007929999999999997]\n", + "1/0, train_loss: 0.6220\n", + "0 epoch 847 average loss: 0.6220\n", + "----------\n", + "0: epoch 848/1000: lr: [0.0007884999999999997]\n", + "1/0, train_loss: 0.6247\n", + "0 epoch 848 average loss: 0.6247\n", + "current epoch: 848 current mean dice: 0.3435\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 849/1000: lr: [0.0007839999999999999]\n", + "1/0, train_loss: 0.6244\n", + "0 epoch 849 average loss: 0.6244\n", + "----------\n", + "0: epoch 850/1000: lr: [0.0007794999999999999]\n", + "1/0, train_loss: 0.6208\n", + "0 epoch 850 average loss: 0.6208\n", + "current epoch: 850 current mean dice: 0.3433\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 851/1000: lr: [0.0007750000000000001]\n", + "1/0, train_loss: 0.6279\n", + "0 epoch 851 average loss: 0.6279\n", + "----------\n", + "0: epoch 852/1000: lr: [0.0007705000000000001]\n", + "1/0, train_loss: 0.6307\n", + "0 epoch 852 average loss: 0.6307\n", + "current epoch: 852 current mean dice: 0.3431\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 853/1000: lr: [0.0007660000000000002]\n", + "1/0, train_loss: 0.6205\n", + "0 epoch 853 average loss: 0.6205\n", + "----------\n", + "0: epoch 854/1000: lr: [0.0007615000000000003]\n", + "1/0, train_loss: 0.6228\n", + "0 epoch 854 average loss: 0.6228\n", + "current epoch: 854 current mean dice: 0.3431\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 855/1000: lr: [0.0007570000000000004]\n", + "1/0, train_loss: 0.6254\n", + "0 epoch 855 average loss: 0.6254\n", + "----------\n", + "0: epoch 856/1000: lr: [0.0007524999999999997]\n", + "1/0, train_loss: 0.6231\n", + "0 epoch 856 average loss: 0.6231\n", + "current epoch: 856 current mean dice: 0.3430\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 857/1000: lr: [0.0007479999999999998]\n", + "1/0, train_loss: 0.6233\n", + "0 epoch 857 average loss: 0.6233\n", + "----------\n", + "0: epoch 858/1000: lr: [0.0007434999999999999]\n", + "1/0, train_loss: 0.6226\n", + "0 epoch 858 average loss: 0.6226\n", + "current epoch: 858 current mean dice: 0.3430\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 859/1000: lr: [0.0007390000000000001]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.6237\n", + "0 epoch 859 average loss: 0.6237\n", + "----------\n", + "0: epoch 860/1000: lr: [0.0007345000000000001]\n", + "1/0, train_loss: 0.6228\n", + "0 epoch 860 average loss: 0.6228\n", + "current epoch: 860 current mean dice: 0.3429\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 861/1000: lr: [0.0007300000000000002]\n", + "1/0, train_loss: 0.6199\n", + "0 epoch 861 average loss: 0.6199\n", + "----------\n", + "0: epoch 862/1000: lr: [0.0007255000000000002]\n", + "1/0, train_loss: 0.6252\n", + "0 epoch 862 average loss: 0.6252\n", + "current epoch: 862 current mean dice: 0.3429\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 863/1000: lr: [0.0007210000000000004]\n", + "1/0, train_loss: 0.6203\n", + "0 epoch 863 average loss: 0.6203\n", + "----------\n", + "0: epoch 864/1000: lr: [0.0007164999999999997]\n", + "1/0, train_loss: 0.6232\n", + "0 epoch 864 average loss: 0.6232\n", + "current epoch: 864 current mean dice: 0.3428\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 865/1000: lr: [0.0007119999999999997]\n", + "1/0, train_loss: 0.6259\n", + "0 epoch 865 average loss: 0.6259\n", + "----------\n", + "0: epoch 866/1000: lr: [0.0007074999999999998]\n", + "1/0, train_loss: 0.6219\n", + "0 epoch 866 average loss: 0.6219\n", + "current epoch: 866 current mean dice: 0.3428\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 867/1000: lr: [0.000703]\n", + "1/0, train_loss: 0.6220\n", + "0 epoch 867 average loss: 0.6220\n", + "----------\n", + "0: epoch 868/1000: lr: [0.0006985000000000001]\n", + "1/0, train_loss: 0.6199\n", + "0 epoch 868 average loss: 0.6199\n", + "current epoch: 868 current mean dice: 0.3426\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 869/1000: lr: [0.0006940000000000002]\n", + "1/0, train_loss: 0.6227\n", + "0 epoch 869 average loss: 0.6227\n", + "----------\n", + "0: epoch 870/1000: lr: [0.0006895000000000002]\n", + "1/0, train_loss: 0.6215\n", + "0 epoch 870 average loss: 0.6215\n", + "current epoch: 870 current mean dice: 0.3425\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 871/1000: lr: [0.0006850000000000003]\n", + "1/0, train_loss: 0.6322\n", + "0 epoch 871 average loss: 0.6322\n", + "----------\n", + "0: epoch 872/1000: lr: [0.0006804999999999997]\n", + "1/0, train_loss: 0.6243\n", + "0 epoch 872 average loss: 0.6243\n", + "current epoch: 872 current mean dice: 0.3424\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 873/1000: lr: [0.0006759999999999997]\n", + "1/0, train_loss: 0.6287\n", + "0 epoch 873 average loss: 0.6287\n", + "----------\n", + "0: epoch 874/1000: lr: [0.0006714999999999998]\n", + "1/0, train_loss: 0.6293\n", + "0 epoch 874 average loss: 0.6293\n", + "current epoch: 874 current mean dice: 0.3423\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 875/1000: lr: [0.000667]\n", + "1/0, train_loss: 0.6263\n", + "0 epoch 875 average loss: 0.6263\n", + "----------\n", + "0: epoch 876/1000: lr: [0.0006625]\n", + "1/0, train_loss: 0.6258\n", + "0 epoch 876 average loss: 0.6258\n", + "current epoch: 876 current mean dice: 0.3423\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 877/1000: lr: [0.0006580000000000002]\n", + "1/0, train_loss: 0.6173\n", + "0 epoch 877 average loss: 0.6173\n", + "----------\n", + "0: epoch 878/1000: lr: [0.0006535000000000002]\n", + "1/0, train_loss: 0.6254\n", + "0 epoch 878 average loss: 0.6254\n", + "current epoch: 878 current mean dice: 0.3422\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 879/1000: lr: [0.0006490000000000003]\n", + "1/0, train_loss: 0.6234\n", + "0 epoch 879 average loss: 0.6234\n", + "----------\n", + "0: epoch 880/1000: lr: [0.0006445000000000004]\n", + "1/0, train_loss: 0.6330\n", + "0 epoch 880 average loss: 0.6330\n", + "current epoch: 880 current mean dice: 0.3422\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 881/1000: lr: [0.0006399999999999997]\n", + "1/0, train_loss: 0.6193\n", + "0 epoch 881 average loss: 0.6193\n", + "----------\n", + "0: epoch 882/1000: lr: [0.0006354999999999998]\n", + "1/0, train_loss: 0.6278\n", + "0 epoch 882 average loss: 0.6278\n", + "current epoch: 882 current mean dice: 0.3422\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 883/1000: lr: [0.0006309999999999998]\n", + "1/0, train_loss: 0.6222\n", + "0 epoch 883 average loss: 0.6222\n", + "----------\n", + "0: epoch 884/1000: lr: [0.0006265]\n", + "1/0, train_loss: 0.6184\n", + "0 epoch 884 average loss: 0.6184\n", + "current epoch: 884 current mean dice: 0.3421\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 885/1000: lr: [0.0006220000000000002]\n", + "1/0, train_loss: 0.6218\n", + "0 epoch 885 average loss: 0.6218\n", + "----------\n", + "0: epoch 886/1000: lr: [0.0006175000000000002]\n", + "1/0, train_loss: 0.6287\n", + "0 epoch 886 average loss: 0.6287\n", + "current epoch: 886 current mean dice: 0.3421\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 887/1000: lr: [0.0006130000000000003]\n", + "1/0, train_loss: 0.6213\n", + "0 epoch 887 average loss: 0.6213\n", + "----------\n", + "0: epoch 888/1000: lr: [0.0006085000000000003]\n", + "1/0, train_loss: 0.6278\n", + "0 epoch 888 average loss: 0.6278\n", + "current epoch: 888 current mean dice: 0.3421\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 889/1000: lr: [0.0006039999999999997]\n", + "1/0, train_loss: 0.6280\n", + "0 epoch 889 average loss: 0.6280\n", + "----------\n", + "0: epoch 890/1000: lr: [0.0005994999999999998]\n", + "1/0, train_loss: 0.6213\n", + "0 epoch 890 average loss: 0.6213\n", + "current epoch: 890 current mean dice: 0.3421\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 891/1000: lr: [0.0005949999999999998]\n", + "1/0, train_loss: 0.6246\n", + "0 epoch 891 average loss: 0.6246\n", + "----------\n", + "0: epoch 892/1000: lr: [0.0005905]\n", + "1/0, train_loss: 0.6190\n", + "0 epoch 892 average loss: 0.6190\n", + "current epoch: 892 current mean dice: 0.3420\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 893/1000: lr: [0.000586]\n", + "1/0, train_loss: 0.6219\n", + "0 epoch 893 average loss: 0.6219\n", + "----------\n", + "0: epoch 894/1000: lr: [0.0005815000000000002]\n", + "1/0, train_loss: 0.6267\n", + "0 epoch 894 average loss: 0.6267\n", + "current epoch: 894 current mean dice: 0.3419\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 895/1000: lr: [0.0005770000000000003]\n", + "1/0, train_loss: 0.6183\n", + "0 epoch 895 average loss: 0.6183\n", + "----------\n", + "0: epoch 896/1000: lr: [0.0005725000000000003]\n", + "1/0, train_loss: 0.6210\n", + "0 epoch 896 average loss: 0.6210\n", + "current epoch: 896 current mean dice: 0.3418\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 897/1000: lr: [0.0005679999999999997]\n", + "1/0, train_loss: 0.6204\n", + "0 epoch 897 average loss: 0.6204\n", + "----------\n", + "0: epoch 898/1000: lr: [0.0005634999999999998]\n", + "1/0, train_loss: 0.6156\n", + "0 epoch 898 average loss: 0.6156\n", + "current epoch: 898 current mean dice: 0.3417\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 899/1000: lr: [0.0005589999999999998]\n", + "1/0, train_loss: 0.6268\n", + "0 epoch 899 average loss: 0.6268\n", + "----------\n", + "0: epoch 900/1000: lr: [0.0005544999999999999]\n", + "1/0, train_loss: 0.6277\n", + "0 epoch 900 average loss: 0.6277\n", + "current epoch: 900 current mean dice: 0.3417\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 901/1000: lr: [0.00055]\n", + "1/0, train_loss: 0.6236\n", + "0 epoch 901 average loss: 0.6236\n", + "----------\n", + "0: epoch 902/1000: lr: [0.0005455000000000002]\n", + "1/0, train_loss: 0.6268\n", + "0 epoch 902 average loss: 0.6268\n", + "current epoch: 902 current mean dice: 0.3417\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 903/1000: lr: [0.0005410000000000002]\n", + "1/0, train_loss: 0.6283\n", + "0 epoch 903 average loss: 0.6283\n", + "----------\n", + "0: epoch 904/1000: lr: [0.0005365000000000003]\n", + "1/0, train_loss: 0.6239\n", + "0 epoch 904 average loss: 0.6239\n", + "current epoch: 904 current mean dice: 0.3418\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 905/1000: lr: [0.0005320000000000004]\n", + "1/0, train_loss: 0.6195\n", + "0 epoch 905 average loss: 0.6195\n", + "----------\n", + "0: epoch 906/1000: lr: [0.0005274999999999998]\n", + "1/0, train_loss: 0.6175\n", + "0 epoch 906 average loss: 0.6175\n", + "current epoch: 906 current mean dice: 0.3419\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 907/1000: lr: [0.0005229999999999998]\n", + "1/0, train_loss: 0.6200\n", + "0 epoch 907 average loss: 0.6200\n", + "----------\n", + "0: epoch 908/1000: lr: [0.0005184999999999999]\n", + "1/0, train_loss: 0.6154\n", + "0 epoch 908 average loss: 0.6154\n", + "current epoch: 908 current mean dice: 0.3419\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 909/1000: lr: [0.000514]\n", + "1/0, train_loss: 0.6251\n", + "0 epoch 909 average loss: 0.6251\n", + "----------\n", + "0: epoch 910/1000: lr: [0.0005095000000000001]\n", + "1/0, train_loss: 0.6180\n", + "0 epoch 910 average loss: 0.6180\n", + "current epoch: 910 current mean dice: 0.3419\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 911/1000: lr: [0.0005050000000000002]\n", + "1/0, train_loss: 0.6254\n", + "0 epoch 911 average loss: 0.6254\n", + "----------\n", + "0: epoch 912/1000: lr: [0.0005005000000000003]\n", + "1/0, train_loss: 0.6281\n", + "0 epoch 912 average loss: 0.6281\n", + "current epoch: 912 current mean dice: 0.3419\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 913/1000: lr: [0.0004960000000000003]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.6207\n", + "0 epoch 913 average loss: 0.6207\n", + "----------\n", + "0: epoch 914/1000: lr: [0.0004914999999999996]\n", + "1/0, train_loss: 0.6252\n", + "0 epoch 914 average loss: 0.6252\n", + "current epoch: 914 current mean dice: 0.3419\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 915/1000: lr: [0.0004869999999999998]\n", + "1/0, train_loss: 0.6208\n", + "0 epoch 915 average loss: 0.6208\n", + "----------\n", + "0: epoch 916/1000: lr: [0.00048249999999999986]\n", + "1/0, train_loss: 0.6218\n", + "0 epoch 916 average loss: 0.6218\n", + "current epoch: 916 current mean dice: 0.3419\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 917/1000: lr: [0.000478]\n", + "1/0, train_loss: 0.6225\n", + "0 epoch 917 average loss: 0.6225\n", + "----------\n", + "0: epoch 918/1000: lr: [0.00047350000000000007]\n", + "1/0, train_loss: 0.6185\n", + "0 epoch 918 average loss: 0.6185\n", + "current epoch: 918 current mean dice: 0.3417\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 919/1000: lr: [0.0004690000000000001]\n", + "1/0, train_loss: 0.6206\n", + "0 epoch 919 average loss: 0.6206\n", + "----------\n", + "0: epoch 920/1000: lr: [0.0004645000000000003]\n", + "1/0, train_loss: 0.6200\n", + "0 epoch 920 average loss: 0.6200\n", + "current epoch: 920 current mean dice: 0.3417\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 921/1000: lr: [0.00046000000000000034]\n", + "1/0, train_loss: 0.6201\n", + "0 epoch 921 average loss: 0.6201\n", + "----------\n", + "0: epoch 922/1000: lr: [0.00045549999999999963]\n", + "1/0, train_loss: 0.6184\n", + "0 epoch 922 average loss: 0.6184\n", + "current epoch: 922 current mean dice: 0.3416\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 923/1000: lr: [0.0004509999999999998]\n", + "1/0, train_loss: 0.6204\n", + "0 epoch 923 average loss: 0.6204\n", + "----------\n", + "0: epoch 924/1000: lr: [0.00044649999999999985]\n", + "1/0, train_loss: 0.6187\n", + "0 epoch 924 average loss: 0.6187\n", + "current epoch: 924 current mean dice: 0.3415\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 925/1000: lr: [0.0004419999999999999]\n", + "1/0, train_loss: 0.6193\n", + "0 epoch 925 average loss: 0.6193\n", + "----------\n", + "0: epoch 926/1000: lr: [0.00043750000000000006]\n", + "1/0, train_loss: 0.6167\n", + "0 epoch 926 average loss: 0.6167\n", + "current epoch: 926 current mean dice: 0.3414\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 927/1000: lr: [0.0004330000000000001]\n", + "1/0, train_loss: 0.6178\n", + "0 epoch 927 average loss: 0.6178\n", + "----------\n", + "0: epoch 928/1000: lr: [0.0004285000000000003]\n", + "1/0, train_loss: 0.6278\n", + "0 epoch 928 average loss: 0.6278\n", + "current epoch: 928 current mean dice: 0.3414\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 929/1000: lr: [0.00042400000000000033]\n", + "1/0, train_loss: 0.6236\n", + "0 epoch 929 average loss: 0.6236\n", + "----------\n", + "0: epoch 930/1000: lr: [0.0004195000000000004]\n", + "1/0, train_loss: 0.6183\n", + "0 epoch 930 average loss: 0.6183\n", + "current epoch: 930 current mean dice: 0.3413\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 931/1000: lr: [0.0004149999999999997]\n", + "1/0, train_loss: 0.6184\n", + "0 epoch 931 average loss: 0.6184\n", + "----------\n", + "0: epoch 932/1000: lr: [0.00041049999999999984]\n", + "1/0, train_loss: 0.6188\n", + "0 epoch 932 average loss: 0.6188\n", + "current epoch: 932 current mean dice: 0.3411\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 933/1000: lr: [0.0004059999999999999]\n", + "1/0, train_loss: 0.6189\n", + "0 epoch 933 average loss: 0.6189\n", + "----------\n", + "0: epoch 934/1000: lr: [0.00040150000000000006]\n", + "1/0, train_loss: 0.6181\n", + "0 epoch 934 average loss: 0.6181\n", + "current epoch: 934 current mean dice: 0.3410\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 935/1000: lr: [0.0003970000000000001]\n", + "1/0, train_loss: 0.6226\n", + "0 epoch 935 average loss: 0.6226\n", + "----------\n", + "0: epoch 936/1000: lr: [0.00039250000000000016]\n", + "1/0, train_loss: 0.6170\n", + "0 epoch 936 average loss: 0.6170\n", + "current epoch: 936 current mean dice: 0.3408\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 937/1000: lr: [0.0003880000000000003]\n", + "1/0, train_loss: 0.6195\n", + "0 epoch 937 average loss: 0.6195\n", + "----------\n", + "0: epoch 938/1000: lr: [0.0003835000000000004]\n", + "1/0, train_loss: 0.6193\n", + "0 epoch 938 average loss: 0.6193\n", + "current epoch: 938 current mean dice: 0.3407\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 939/1000: lr: [0.00037899999999999967]\n", + "1/0, train_loss: 0.6187\n", + "0 epoch 939 average loss: 0.6187\n", + "----------\n", + "0: epoch 940/1000: lr: [0.00037449999999999983]\n", + "1/0, train_loss: 0.6224\n", + "0 epoch 940 average loss: 0.6224\n", + "current epoch: 940 current mean dice: 0.3405\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 941/1000: lr: [0.0003699999999999999]\n", + "1/0, train_loss: 0.6207\n", + "0 epoch 941 average loss: 0.6207\n", + "----------\n", + "0: epoch 942/1000: lr: [0.00036549999999999994]\n", + "1/0, train_loss: 0.6211\n", + "0 epoch 942 average loss: 0.6211\n", + "current epoch: 942 current mean dice: 0.3404\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 943/1000: lr: [0.0003610000000000001]\n", + "1/0, train_loss: 0.6243\n", + "0 epoch 943 average loss: 0.6243\n", + "----------\n", + "0: epoch 944/1000: lr: [0.00035650000000000015]\n", + "1/0, train_loss: 0.6225\n", + "0 epoch 944 average loss: 0.6225\n", + "current epoch: 944 current mean dice: 0.3403\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 945/1000: lr: [0.0003520000000000003]\n", + "1/0, train_loss: 0.6228\n", + "0 epoch 945 average loss: 0.6228\n", + "----------\n", + "0: epoch 946/1000: lr: [0.00034750000000000037]\n", + "1/0, train_loss: 0.6227\n", + "0 epoch 946 average loss: 0.6227\n", + "current epoch: 946 current mean dice: 0.3403\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 947/1000: lr: [0.00034299999999999966]\n", + "1/0, train_loss: 0.6294\n", + "0 epoch 947 average loss: 0.6294\n", + "----------\n", + "0: epoch 948/1000: lr: [0.0003384999999999997]\n", + "1/0, train_loss: 0.6211\n", + "0 epoch 948 average loss: 0.6211\n", + "current epoch: 948 current mean dice: 0.3403\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 949/1000: lr: [0.0003339999999999999]\n", + "1/0, train_loss: 0.6151\n", + "0 epoch 949 average loss: 0.6151\n", + "----------\n", + "0: epoch 950/1000: lr: [0.00032949999999999993]\n", + "1/0, train_loss: 0.6287\n", + "0 epoch 950 average loss: 0.6287\n", + "current epoch: 950 current mean dice: 0.3403\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 951/1000: lr: [0.000325]\n", + "1/0, train_loss: 0.6223\n", + "0 epoch 951 average loss: 0.6223\n", + "----------\n", + "0: epoch 952/1000: lr: [0.00032050000000000015]\n", + "1/0, train_loss: 0.6180\n", + "0 epoch 952 average loss: 0.6180\n", + "current epoch: 952 current mean dice: 0.3404\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 953/1000: lr: [0.0003160000000000002]\n", + "1/0, train_loss: 0.6217\n", + "0 epoch 953 average loss: 0.6217\n", + "----------\n", + "0: epoch 954/1000: lr: [0.00031150000000000036]\n", + "1/0, train_loss: 0.6169\n", + "0 epoch 954 average loss: 0.6169\n", + "current epoch: 954 current mean dice: 0.3404\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 955/1000: lr: [0.0003070000000000004]\n", + "1/0, train_loss: 0.6216\n", + "0 epoch 955 average loss: 0.6216\n", + "----------\n", + "0: epoch 956/1000: lr: [0.0003024999999999997]\n", + "1/0, train_loss: 0.6197\n", + "0 epoch 956 average loss: 0.6197\n", + "current epoch: 956 current mean dice: 0.3404\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 957/1000: lr: [0.00029799999999999976]\n", + "1/0, train_loss: 0.6281\n", + "0 epoch 957 average loss: 0.6281\n", + "----------\n", + "0: epoch 958/1000: lr: [0.0002934999999999999]\n", + "1/0, train_loss: 0.6198\n", + "0 epoch 958 average loss: 0.6198\n", + "current epoch: 958 current mean dice: 0.3404\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 959/1000: lr: [0.000289]\n", + "1/0, train_loss: 0.6233\n", + "0 epoch 959 average loss: 0.6233\n", + "----------\n", + "0: epoch 960/1000: lr: [0.00028450000000000014]\n", + "1/0, train_loss: 0.6219\n", + "0 epoch 960 average loss: 0.6219\n", + "current epoch: 960 current mean dice: 0.3403\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 961/1000: lr: [0.0002800000000000002]\n", + "1/0, train_loss: 0.6160\n", + "0 epoch 961 average loss: 0.6160\n", + "----------\n", + "0: epoch 962/1000: lr: [0.00027550000000000025]\n", + "1/0, train_loss: 0.6252\n", + "0 epoch 962 average loss: 0.6252\n", + "current epoch: 962 current mean dice: 0.3403\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 963/1000: lr: [0.0002710000000000004]\n", + "1/0, train_loss: 0.6266\n", + "0 epoch 963 average loss: 0.6266\n", + "----------\n", + "0: epoch 964/1000: lr: [0.0002664999999999997]\n", + "1/0, train_loss: 0.6270\n", + "0 epoch 964 average loss: 0.6270\n", + "current epoch: 964 current mean dice: 0.3403\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 965/1000: lr: [0.00026199999999999975]\n", + "1/0, train_loss: 0.6196\n", + "0 epoch 965 average loss: 0.6196\n", + "----------\n", + "0: epoch 966/1000: lr: [0.0002574999999999999]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.6200\n", + "0 epoch 966 average loss: 0.6200\n", + "current epoch: 966 current mean dice: 0.3403\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 967/1000: lr: [0.00025299999999999997]\n", + "1/0, train_loss: 0.6191\n", + "0 epoch 967 average loss: 0.6191\n", + "----------\n", + "0: epoch 968/1000: lr: [0.0002485]\n", + "1/0, train_loss: 0.6176\n", + "0 epoch 968 average loss: 0.6176\n", + "current epoch: 968 current mean dice: 0.3404\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 969/1000: lr: [0.00024400000000000018]\n", + "1/0, train_loss: 0.6311\n", + "0 epoch 969 average loss: 0.6311\n", + "----------\n", + "0: epoch 970/1000: lr: [0.00023950000000000024]\n", + "1/0, train_loss: 0.6218\n", + "0 epoch 970 average loss: 0.6218\n", + "current epoch: 970 current mean dice: 0.3404\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 971/1000: lr: [0.0002350000000000004]\n", + "1/0, train_loss: 0.6181\n", + "0 epoch 971 average loss: 0.6181\n", + "----------\n", + "0: epoch 972/1000: lr: [0.0002304999999999997]\n", + "1/0, train_loss: 0.6166\n", + "0 epoch 972 average loss: 0.6166\n", + "current epoch: 972 current mean dice: 0.3404\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 973/1000: lr: [0.00022599999999999975]\n", + "1/0, train_loss: 0.6137\n", + "0 epoch 973 average loss: 0.6137\n", + "----------\n", + "0: epoch 974/1000: lr: [0.0002214999999999998]\n", + "1/0, train_loss: 0.6215\n", + "0 epoch 974 average loss: 0.6215\n", + "current epoch: 974 current mean dice: 0.3404\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 975/1000: lr: [0.00021699999999999996]\n", + "1/0, train_loss: 0.6163\n", + "0 epoch 975 average loss: 0.6163\n", + "----------\n", + "0: epoch 976/1000: lr: [0.00021250000000000002]\n", + "1/0, train_loss: 0.6171\n", + "0 epoch 976 average loss: 0.6171\n", + "current epoch: 976 current mean dice: 0.3403\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 977/1000: lr: [0.00020800000000000018]\n", + "1/0, train_loss: 0.6191\n", + "0 epoch 977 average loss: 0.6191\n", + "----------\n", + "0: epoch 978/1000: lr: [0.00020350000000000023]\n", + "1/0, train_loss: 0.6247\n", + "0 epoch 978 average loss: 0.6247\n", + "current epoch: 978 current mean dice: 0.3403\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 979/1000: lr: [0.00019900000000000028]\n", + "1/0, train_loss: 0.6258\n", + "0 epoch 979 average loss: 0.6258\n", + "----------\n", + "0: epoch 980/1000: lr: [0.00019450000000000045]\n", + "1/0, train_loss: 0.6278\n", + "0 epoch 980 average loss: 0.6278\n", + "current epoch: 980 current mean dice: 0.3403\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 981/1000: lr: [0.00018999999999999974]\n", + "1/0, train_loss: 0.6215\n", + "0 epoch 981 average loss: 0.6215\n", + "----------\n", + "0: epoch 982/1000: lr: [0.0001854999999999998]\n", + "1/0, train_loss: 0.6174\n", + "0 epoch 982 average loss: 0.6174\n", + "current epoch: 982 current mean dice: 0.3402\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 983/1000: lr: [0.00018099999999999995]\n", + "1/0, train_loss: 0.6211\n", + "0 epoch 983 average loss: 0.6211\n", + "----------\n", + "0: epoch 984/1000: lr: [0.0001765]\n", + "1/0, train_loss: 0.6187\n", + "0 epoch 984 average loss: 0.6187\n", + "current epoch: 984 current mean dice: 0.3402\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 985/1000: lr: [0.00017200000000000006]\n", + "1/0, train_loss: 0.6174\n", + "0 epoch 985 average loss: 0.6174\n", + "----------\n", + "0: epoch 986/1000: lr: [0.00016750000000000022]\n", + "1/0, train_loss: 0.6307\n", + "0 epoch 986 average loss: 0.6307\n", + "current epoch: 986 current mean dice: 0.3402\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 987/1000: lr: [0.00016300000000000028]\n", + "1/0, train_loss: 0.6196\n", + "0 epoch 987 average loss: 0.6196\n", + "----------\n", + "0: epoch 988/1000: lr: [0.00015850000000000044]\n", + "1/0, train_loss: 0.6203\n", + "0 epoch 988 average loss: 0.6203\n", + "current epoch: 988 current mean dice: 0.3402\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 989/1000: lr: [0.00015399999999999973]\n", + "1/0, train_loss: 0.6176\n", + "0 epoch 989 average loss: 0.6176\n", + "----------\n", + "0: epoch 990/1000: lr: [0.00014949999999999978]\n", + "1/0, train_loss: 0.6182\n", + "0 epoch 990 average loss: 0.6182\n", + "current epoch: 990 current mean dice: 0.3402\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 991/1000: lr: [0.00014499999999999984]\n", + "1/0, train_loss: 0.6161\n", + "0 epoch 991 average loss: 0.6161\n", + "----------\n", + "0: epoch 992/1000: lr: [0.0001405]\n", + "1/0, train_loss: 0.6273\n", + "0 epoch 992 average loss: 0.6273\n", + "current epoch: 992 current mean dice: 0.3402\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 993/1000: lr: [0.00013600000000000005]\n", + "1/0, train_loss: 0.6199\n", + "0 epoch 993 average loss: 0.6199\n", + "----------\n", + "0: epoch 994/1000: lr: [0.00013150000000000021]\n", + "1/0, train_loss: 0.6170\n", + "0 epoch 994 average loss: 0.6170\n", + "current epoch: 994 current mean dice: 0.3402\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 995/1000: lr: [0.00012700000000000027]\n", + "1/0, train_loss: 0.6210\n", + "0 epoch 995 average loss: 0.6210\n", + "----------\n", + "0: epoch 996/1000: lr: [0.00012250000000000032]\n", + "1/0, train_loss: 0.6269\n", + "0 epoch 996 average loss: 0.6269\n", + "current epoch: 996 current mean dice: 0.3402\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 997/1000: lr: [0.00011799999999999962]\n", + "1/0, train_loss: 0.6236\n", + "0 epoch 997 average loss: 0.6236\n", + "----------\n", + "0: epoch 998/1000: lr: [0.00011349999999999978]\n", + "1/0, train_loss: 0.6203\n", + "0 epoch 998 average loss: 0.6203\n", + "current epoch: 998 current mean dice: 0.3402\n", + "best mean dice: 0.3601 at epoch: 246\n", + "----------\n", + "0: epoch 999/1000: lr: [0.00010899999999999983]\n", + "1/0, train_loss: 0.6159\n", + "0 epoch 999 average loss: 0.6159\n", + "----------\n", + "0: epoch 1000/1000: lr: [0.00010449999999999999]\n", + "1/0, train_loss: 0.6215\n", + "0 epoch 1000 average loss: 0.6215\n", + "current epoch: 1000 current mean dice: 0.3402\n", + "best mean dice: 0.3601 at epoch: 246\n" + ] + } + ], + "source": [ + "vfold_train(0, train_loader[i], val_loader[i])\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "5841ca19", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "----------\n", + "1: epoch 1/1000: lr: [0.001]\n", + "1/0, train_loss: 0.7805\n", + "1 epoch 1 average loss: 0.7805\n", + "----------\n", + "1: epoch 2/1000: lr: [0.0009955]\n", + "1/0, train_loss: 0.7806\n", + "1 epoch 2 average loss: 0.7806\n", + "saved new best metric model\n", + "current epoch: 2 current mean dice: 0.3181\n", + "best mean dice: 0.3181 at epoch: 2\n", + "----------\n", + "1: epoch 3/1000: lr: [0.0009910000000000001]\n", + "1/0, train_loss: 0.7794\n", + "1 epoch 3 average loss: 0.7794\n", + "----------\n", + "1: epoch 4/1000: lr: [0.0009865]\n", + "1/0, train_loss: 0.7785\n", + "1 epoch 4 average loss: 0.7785\n", + "saved new best metric model\n", + "current epoch: 4 current mean dice: 0.3204\n", + "best mean dice: 0.3204 at epoch: 4\n", + "----------\n", + "1: epoch 5/1000: lr: [0.000982]\n", + "1/0, train_loss: 0.7742\n", + "1 epoch 5 average loss: 0.7742\n", + "----------\n", + "1: epoch 6/1000: lr: [0.0009775]\n", + "1/0, train_loss: 0.7735\n", + "1 epoch 6 average loss: 0.7735\n", + "saved new best metric model\n", + "current epoch: 6 current mean dice: 0.3247\n", + "best mean dice: 0.3247 at epoch: 6\n", + "----------\n", + "1: epoch 7/1000: lr: [0.0009730000000000002]\n", + "1/0, train_loss: 0.7715\n", + "1 epoch 7 average loss: 0.7715\n", + "----------\n", + "1: epoch 8/1000: lr: [0.0009684999999999999]\n", + "1/0, train_loss: 0.7699\n", + "1 epoch 8 average loss: 0.7699\n", + "saved new best metric model\n", + "current epoch: 8 current mean dice: 0.3295\n", + "best mean dice: 0.3295 at epoch: 8\n", + "----------\n", + "1: epoch 9/1000: lr: [0.000964]\n", + "1/0, train_loss: 0.7673\n", + "1 epoch 9 average loss: 0.7673\n", + "----------\n", + "1: epoch 10/1000: lr: [0.0009595000000000001]\n", + "1/0, train_loss: 0.7658\n", + "1 epoch 10 average loss: 0.7658\n", + "saved new best metric model\n", + "current epoch: 10 current mean dice: 0.3338\n", + "best mean dice: 0.3338 at epoch: 10\n", + "----------\n", + "1: epoch 11/1000: lr: [0.0009550000000000002]\n", + "1/0, train_loss: 0.7631\n", + "1 epoch 11 average loss: 0.7631\n", + "----------\n", + "1: epoch 12/1000: lr: [0.0009504999999999998]\n", + "1/0, train_loss: 0.7627\n", + "1 epoch 12 average loss: 0.7627\n", + "saved new best metric model\n", + "current epoch: 12 current mean dice: 0.3376\n", + "best mean dice: 0.3376 at epoch: 12\n", + "----------\n", + "1: epoch 13/1000: lr: [0.000946]\n", + "1/0, train_loss: 0.7609\n", + "1 epoch 13 average loss: 0.7609\n", + "----------\n", + "1: epoch 14/1000: lr: [0.0009415000000000001]\n", + "1/0, train_loss: 0.7578\n", + "1 epoch 14 average loss: 0.7578\n", + "saved new best metric model\n", + "current epoch: 14 current mean dice: 0.3414\n", + "best mean dice: 0.3414 at epoch: 14\n", + "----------\n", + "1: epoch 15/1000: lr: [0.0009370000000000001]\n", + "1/0, train_loss: 0.7571\n", + "1 epoch 15 average loss: 0.7571\n", + "----------\n", + "1: epoch 16/1000: lr: [0.0009324999999999998]\n", + "1/0, train_loss: 0.7548\n", + "1 epoch 16 average loss: 0.7548\n", + "saved new best metric model\n", + "current epoch: 16 current mean dice: 0.3450\n", + "best mean dice: 0.3450 at epoch: 16\n", + "----------\n", + "1: epoch 17/1000: lr: [0.000928]\n", + "1/0, train_loss: 0.7505\n", + "1 epoch 17 average loss: 0.7505\n", + "----------\n", + "1: epoch 18/1000: lr: [0.0009235000000000001]\n", + "1/0, train_loss: 0.7496\n", + "1 epoch 18 average loss: 0.7496\n", + "saved new best metric model\n", + "current epoch: 18 current mean dice: 0.3486\n", + "best mean dice: 0.3486 at epoch: 18\n", + "----------\n", + "1: epoch 19/1000: lr: [0.0009190000000000001]\n", + "1/0, train_loss: 0.7476\n", + "1 epoch 19 average loss: 0.7476\n", + "----------\n", + "1: epoch 20/1000: lr: [0.0009144999999999998]\n", + "1/0, train_loss: 0.7478\n", + "1 epoch 20 average loss: 0.7478\n", + "saved new best metric model\n", + "current epoch: 20 current mean dice: 0.3522\n", + "best mean dice: 0.3522 at epoch: 20\n", + "----------\n", + "1: epoch 21/1000: lr: [0.00091]\n", + "1/0, train_loss: 0.7460\n", + "1 epoch 21 average loss: 0.7460\n", + "----------\n", + "1: epoch 22/1000: lr: [0.0009055000000000001]\n", + "1/0, train_loss: 0.7420\n", + "1 epoch 22 average loss: 0.7420\n", + "saved new best metric model\n", + "current epoch: 22 current mean dice: 0.3552\n", + "best mean dice: 0.3552 at epoch: 22\n", + "----------\n", + "1: epoch 23/1000: lr: [0.0009010000000000001]\n", + "1/0, train_loss: 0.7388\n", + "1 epoch 23 average loss: 0.7388\n", + "----------\n", + "1: epoch 24/1000: lr: [0.0008964999999999998]\n", + "1/0, train_loss: 0.7403\n", + "1 epoch 24 average loss: 0.7403\n", + "saved new best metric model\n", + "current epoch: 24 current mean dice: 0.3575\n", + "best mean dice: 0.3575 at epoch: 24\n", + "----------\n", + "1: epoch 25/1000: lr: [0.0008919999999999999]\n", + "1/0, train_loss: 0.7339\n", + "1 epoch 25 average loss: 0.7339\n", + "----------\n", + "1: epoch 26/1000: lr: [0.0008875]\n", + "1/0, train_loss: 0.7335\n", + "1 epoch 26 average loss: 0.7335\n", + "saved new best metric model\n", + "current epoch: 26 current mean dice: 0.3591\n", + "best mean dice: 0.3591 at epoch: 26\n", + "----------\n", + "1: epoch 27/1000: lr: [0.0008830000000000001]\n", + "1/0, train_loss: 0.7312\n", + "1 epoch 27 average loss: 0.7312\n", + "----------\n", + "1: epoch 28/1000: lr: [0.0008785000000000002]\n", + "1/0, train_loss: 0.7301\n", + "1 epoch 28 average loss: 0.7301\n", + "saved new best metric model\n", + "current epoch: 28 current mean dice: 0.3600\n", + "best mean dice: 0.3600 at epoch: 28\n", + "----------\n", + "1: epoch 29/1000: lr: [0.0008739999999999999]\n", + "1/0, train_loss: 0.7289\n", + "1 epoch 29 average loss: 0.7289\n", + "----------\n", + "1: epoch 30/1000: lr: [0.0008695]\n", + "1/0, train_loss: 0.7262\n", + "1 epoch 30 average loss: 0.7262\n", + "saved new best metric model\n", + "current epoch: 30 current mean dice: 0.3601\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 31/1000: lr: [0.0008650000000000001]\n", + "1/0, train_loss: 0.7197\n", + "1 epoch 31 average loss: 0.7197\n", + "----------\n", + "1: epoch 32/1000: lr: [0.0008605000000000002]\n", + "1/0, train_loss: 0.7223\n", + "1 epoch 32 average loss: 0.7223\n", + "current epoch: 32 current mean dice: 0.3597\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 33/1000: lr: [0.0008559999999999999]\n", + "1/0, train_loss: 0.7194\n", + "1 epoch 33 average loss: 0.7194\n", + "----------\n", + "1: epoch 34/1000: lr: [0.0008515]\n", + "1/0, train_loss: 0.7178\n", + "1 epoch 34 average loss: 0.7178\n", + "current epoch: 34 current mean dice: 0.3590\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 35/1000: lr: [0.0008470000000000001]\n", + "1/0, train_loss: 0.7165\n", + "1 epoch 35 average loss: 0.7165\n", + "----------\n", + "1: epoch 36/1000: lr: [0.0008425000000000001]\n", + "1/0, train_loss: 0.7138\n", + "1 epoch 36 average loss: 0.7138\n", + "current epoch: 36 current mean dice: 0.3576\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 37/1000: lr: [0.0008379999999999999]\n", + "1/0, train_loss: 0.7119\n", + "1 epoch 37 average loss: 0.7119\n", + "----------\n", + "1: epoch 38/1000: lr: [0.0008335]\n", + "1/0, train_loss: 0.7096\n", + "1 epoch 38 average loss: 0.7096\n", + "current epoch: 38 current mean dice: 0.3562\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 39/1000: lr: [0.0008290000000000001]\n", + "1/0, train_loss: 0.7104\n", + "1 epoch 39 average loss: 0.7104\n", + "----------\n", + "1: epoch 40/1000: lr: [0.0008245000000000001]\n", + "1/0, train_loss: 0.7076\n", + "1 epoch 40 average loss: 0.7076\n", + "current epoch: 40 current mean dice: 0.3548\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 41/1000: lr: [0.0008199999999999999]\n", + "1/0, train_loss: 0.7061\n", + "1 epoch 41 average loss: 0.7061\n", + "----------\n", + "1: epoch 42/1000: lr: [0.0008154999999999999]\n", + "1/0, train_loss: 0.7072\n", + "1 epoch 42 average loss: 0.7072\n", + "current epoch: 42 current mean dice: 0.3536\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 43/1000: lr: [0.0008110000000000001]\n", + "1/0, train_loss: 0.7062\n", + "1 epoch 43 average loss: 0.7062\n", + "----------\n", + "1: epoch 44/1000: lr: [0.0008065000000000001]\n", + "1/0, train_loss: 0.7045\n", + "1 epoch 44 average loss: 0.7045\n", + "current epoch: 44 current mean dice: 0.3525\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 45/1000: lr: [0.0008019999999999999]\n", + "1/0, train_loss: 0.7041\n", + "1 epoch 45 average loss: 0.7041\n", + "----------\n", + "1: epoch 46/1000: lr: [0.0007974999999999999]\n", + "1/0, train_loss: 0.7022\n", + "1 epoch 46 average loss: 0.7022\n", + "current epoch: 46 current mean dice: 0.3516\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 47/1000: lr: [0.0007930000000000001]\n", + "1/0, train_loss: 0.7019\n", + "1 epoch 47 average loss: 0.7019\n", + "----------\n", + "1: epoch 48/1000: lr: [0.0007885000000000001]\n", + "1/0, train_loss: 0.7004\n", + "1 epoch 48 average loss: 0.7004\n", + "current epoch: 48 current mean dice: 0.3507\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 49/1000: lr: [0.0007839999999999999]\n", + "1/0, train_loss: 0.7006\n", + "1 epoch 49 average loss: 0.7006\n", + "----------\n", + "1: epoch 50/1000: lr: [0.0007794999999999999]\n", + "1/0, train_loss: 0.6992\n", + "1 epoch 50 average loss: 0.6992\n", + "current epoch: 50 current mean dice: 0.3501\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 51/1000: lr: [0.0007750000000000001]\n", + "1/0, train_loss: 0.7010\n", + "1 epoch 51 average loss: 0.7010\n", + "----------\n", + "1: epoch 52/1000: lr: [0.0007705000000000001]\n", + "1/0, train_loss: 0.7001\n", + "1 epoch 52 average loss: 0.7001\n", + "current epoch: 52 current mean dice: 0.3496\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 53/1000: lr: [0.0007660000000000002]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.6985\n", + "1 epoch 53 average loss: 0.6985\n", + "----------\n", + "1: epoch 54/1000: lr: [0.0007614999999999999]\n", + "1/0, train_loss: 0.6980\n", + "1 epoch 54 average loss: 0.6980\n", + "current epoch: 54 current mean dice: 0.3492\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 55/1000: lr: [0.0007570000000000001]\n", + "1/0, train_loss: 0.6964\n", + "1 epoch 55 average loss: 0.6964\n", + "----------\n", + "1: epoch 56/1000: lr: [0.0007525000000000001]\n", + "1/0, train_loss: 0.6966\n", + "1 epoch 56 average loss: 0.6966\n", + "current epoch: 56 current mean dice: 0.3488\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 57/1000: lr: [0.0007479999999999998]\n", + "1/0, train_loss: 0.6965\n", + "1 epoch 57 average loss: 0.6965\n", + "----------\n", + "1: epoch 58/1000: lr: [0.0007434999999999999]\n", + "1/0, train_loss: 0.6942\n", + "1 epoch 58 average loss: 0.6942\n", + "current epoch: 58 current mean dice: 0.3484\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 59/1000: lr: [0.0007390000000000001]\n", + "1/0, train_loss: 0.6962\n", + "1 epoch 59 average loss: 0.6962\n", + "----------\n", + "1: epoch 60/1000: lr: [0.0007345000000000001]\n", + "1/0, train_loss: 0.6935\n", + "1 epoch 60 average loss: 0.6935\n", + "current epoch: 60 current mean dice: 0.3481\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 61/1000: lr: [0.0007300000000000002]\n", + "1/0, train_loss: 0.6944\n", + "1 epoch 61 average loss: 0.6944\n", + "----------\n", + "1: epoch 62/1000: lr: [0.0007254999999999999]\n", + "1/0, train_loss: 0.6937\n", + "1 epoch 62 average loss: 0.6937\n", + "current epoch: 62 current mean dice: 0.3478\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 63/1000: lr: [0.000721]\n", + "1/0, train_loss: 0.6947\n", + "1 epoch 63 average loss: 0.6947\n", + "----------\n", + "1: epoch 64/1000: lr: [0.0007165000000000001]\n", + "1/0, train_loss: 0.6935\n", + "1 epoch 64 average loss: 0.6935\n", + "current epoch: 64 current mean dice: 0.3475\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 65/1000: lr: [0.0007120000000000002]\n", + "1/0, train_loss: 0.6947\n", + "1 epoch 65 average loss: 0.6947\n", + "----------\n", + "1: epoch 66/1000: lr: [0.0007074999999999998]\n", + "1/0, train_loss: 0.6918\n", + "1 epoch 66 average loss: 0.6918\n", + "current epoch: 66 current mean dice: 0.3472\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 67/1000: lr: [0.000703]\n", + "1/0, train_loss: 0.6919\n", + "1 epoch 67 average loss: 0.6919\n", + "----------\n", + "1: epoch 68/1000: lr: [0.0006985000000000001]\n", + "1/0, train_loss: 0.6921\n", + "1 epoch 68 average loss: 0.6921\n", + "current epoch: 68 current mean dice: 0.3469\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 69/1000: lr: [0.0006940000000000002]\n", + "1/0, train_loss: 0.6929\n", + "1 epoch 69 average loss: 0.6929\n", + "----------\n", + "1: epoch 70/1000: lr: [0.0006895000000000002]\n", + "1/0, train_loss: 0.6908\n", + "1 epoch 70 average loss: 0.6908\n", + "current epoch: 70 current mean dice: 0.3466\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 71/1000: lr: [0.000685]\n", + "1/0, train_loss: 0.6913\n", + "1 epoch 71 average loss: 0.6913\n", + "----------\n", + "1: epoch 72/1000: lr: [0.0006805000000000001]\n", + "1/0, train_loss: 0.6899\n", + "1 epoch 72 average loss: 0.6899\n", + "current epoch: 72 current mean dice: 0.3464\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 73/1000: lr: [0.0006760000000000002]\n", + "1/0, train_loss: 0.6900\n", + "1 epoch 73 average loss: 0.6900\n", + "----------\n", + "1: epoch 74/1000: lr: [0.0006714999999999998]\n", + "1/0, train_loss: 0.6897\n", + "1 epoch 74 average loss: 0.6897\n", + "current epoch: 74 current mean dice: 0.3462\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 75/1000: lr: [0.000667]\n", + "1/0, train_loss: 0.6900\n", + "1 epoch 75 average loss: 0.6900\n", + "----------\n", + "1: epoch 76/1000: lr: [0.0006625]\n", + "1/0, train_loss: 0.6893\n", + "1 epoch 76 average loss: 0.6893\n", + "current epoch: 76 current mean dice: 0.3459\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 77/1000: lr: [0.0006580000000000002]\n", + "1/0, train_loss: 0.6890\n", + "1 epoch 77 average loss: 0.6890\n", + "----------\n", + "1: epoch 78/1000: lr: [0.0006535000000000002]\n", + "1/0, train_loss: 0.6896\n", + "1 epoch 78 average loss: 0.6896\n", + "current epoch: 78 current mean dice: 0.3458\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 79/1000: lr: [0.0006489999999999998]\n", + "1/0, train_loss: 0.6875\n", + "1 epoch 79 average loss: 0.6875\n", + "----------\n", + "1: epoch 80/1000: lr: [0.0006445]\n", + "1/0, train_loss: 0.6892\n", + "1 epoch 80 average loss: 0.6892\n", + "current epoch: 80 current mean dice: 0.3455\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 81/1000: lr: [0.0006400000000000002]\n", + "1/0, train_loss: 0.6884\n", + "1 epoch 81 average loss: 0.6884\n", + "----------\n", + "1: epoch 82/1000: lr: [0.0006354999999999998]\n", + "1/0, train_loss: 0.6886\n", + "1 epoch 82 average loss: 0.6886\n", + "current epoch: 82 current mean dice: 0.3453\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 83/1000: lr: [0.0006309999999999998]\n", + "1/0, train_loss: 0.6885\n", + "1 epoch 83 average loss: 0.6885\n", + "----------\n", + "1: epoch 84/1000: lr: [0.0006265]\n", + "1/0, train_loss: 0.6879\n", + "1 epoch 84 average loss: 0.6879\n", + "current epoch: 84 current mean dice: 0.3451\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 85/1000: lr: [0.0006220000000000002]\n", + "1/0, train_loss: 0.6889\n", + "1 epoch 85 average loss: 0.6889\n", + "----------\n", + "1: epoch 86/1000: lr: [0.0006175000000000002]\n", + "1/0, train_loss: 0.6866\n", + "1 epoch 86 average loss: 0.6866\n", + "current epoch: 86 current mean dice: 0.3448\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 87/1000: lr: [0.0006129999999999998]\n", + "1/0, train_loss: 0.6866\n", + "1 epoch 87 average loss: 0.6866\n", + "----------\n", + "1: epoch 88/1000: lr: [0.0006085]\n", + "1/0, train_loss: 0.6888\n", + "1 epoch 88 average loss: 0.6888\n", + "current epoch: 88 current mean dice: 0.3446\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 89/1000: lr: [0.0006040000000000002]\n", + "1/0, train_loss: 0.6873\n", + "1 epoch 89 average loss: 0.6873\n", + "----------\n", + "1: epoch 90/1000: lr: [0.0005995000000000002]\n", + "1/0, train_loss: 0.6859\n", + "1 epoch 90 average loss: 0.6859\n", + "current epoch: 90 current mean dice: 0.3444\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 91/1000: lr: [0.0005949999999999998]\n", + "1/0, train_loss: 0.6866\n", + "1 epoch 91 average loss: 0.6866\n", + "----------\n", + "1: epoch 92/1000: lr: [0.0005905]\n", + "1/0, train_loss: 0.6843\n", + "1 epoch 92 average loss: 0.6843\n", + "current epoch: 92 current mean dice: 0.3442\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 93/1000: lr: [0.000586]\n", + "1/0, train_loss: 0.6846\n", + "1 epoch 93 average loss: 0.6846\n", + "----------\n", + "1: epoch 94/1000: lr: [0.0005815000000000002]\n", + "1/0, train_loss: 0.6843\n", + "1 epoch 94 average loss: 0.6843\n", + "current epoch: 94 current mean dice: 0.3440\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 95/1000: lr: [0.0005770000000000003]\n", + "1/0, train_loss: 0.6853\n", + "1 epoch 95 average loss: 0.6853\n", + "----------\n", + "1: epoch 96/1000: lr: [0.0005724999999999999]\n", + "1/0, train_loss: 0.6846\n", + "1 epoch 96 average loss: 0.6846\n", + "current epoch: 96 current mean dice: 0.3438\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 97/1000: lr: [0.000568]\n", + "1/0, train_loss: 0.6842\n", + "1 epoch 97 average loss: 0.6842\n", + "----------\n", + "1: epoch 98/1000: lr: [0.0005635000000000002]\n", + "1/0, train_loss: 0.6838\n", + "1 epoch 98 average loss: 0.6838\n", + "current epoch: 98 current mean dice: 0.3436\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 99/1000: lr: [0.0005589999999999998]\n", + "1/0, train_loss: 0.6833\n", + "1 epoch 99 average loss: 0.6833\n", + "----------\n", + "1: epoch 100/1000: lr: [0.0005544999999999999]\n", + "1/0, train_loss: 0.6838\n", + "1 epoch 100 average loss: 0.6838\n", + "current epoch: 100 current mean dice: 0.3434\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 101/1000: lr: [0.00055]\n", + "1/0, train_loss: 0.6852\n", + "1 epoch 101 average loss: 0.6852\n", + "----------\n", + "1: epoch 102/1000: lr: [0.0005455000000000002]\n", + "1/0, train_loss: 0.6857\n", + "1 epoch 102 average loss: 0.6857\n", + "current epoch: 102 current mean dice: 0.3433\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 103/1000: lr: [0.0005410000000000002]\n", + "1/0, train_loss: 0.6840\n", + "1 epoch 103 average loss: 0.6840\n", + "----------\n", + "1: epoch 104/1000: lr: [0.0005364999999999999]\n", + "1/0, train_loss: 0.6849\n", + "1 epoch 104 average loss: 0.6849\n", + "current epoch: 104 current mean dice: 0.3431\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 105/1000: lr: [0.000532]\n", + "1/0, train_loss: 0.6836\n", + "1 epoch 105 average loss: 0.6836\n", + "----------\n", + "1: epoch 106/1000: lr: [0.0005275000000000002]\n", + "1/0, train_loss: 0.6863\n", + "1 epoch 106 average loss: 0.6863\n", + "current epoch: 106 current mean dice: 0.3429\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 107/1000: lr: [0.0005229999999999998]\n", + "1/0, train_loss: 0.6818\n", + "1 epoch 107 average loss: 0.6818\n", + "----------\n", + "1: epoch 108/1000: lr: [0.0005184999999999999]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.6828\n", + "1 epoch 108 average loss: 0.6828\n", + "current epoch: 108 current mean dice: 0.3427\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 109/1000: lr: [0.000514]\n", + "1/0, train_loss: 0.6832\n", + "1 epoch 109 average loss: 0.6832\n", + "----------\n", + "1: epoch 110/1000: lr: [0.0005095000000000001]\n", + "1/0, train_loss: 0.6842\n", + "1 epoch 110 average loss: 0.6842\n", + "current epoch: 110 current mean dice: 0.3425\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 111/1000: lr: [0.0005050000000000002]\n", + "1/0, train_loss: 0.6827\n", + "1 epoch 111 average loss: 0.6827\n", + "----------\n", + "1: epoch 112/1000: lr: [0.0005004999999999999]\n", + "1/0, train_loss: 0.6841\n", + "1 epoch 112 average loss: 0.6841\n", + "current epoch: 112 current mean dice: 0.3423\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 113/1000: lr: [0.000496]\n", + "1/0, train_loss: 0.6821\n", + "1 epoch 113 average loss: 0.6821\n", + "----------\n", + "1: epoch 114/1000: lr: [0.0004915000000000001]\n", + "1/0, train_loss: 0.6837\n", + "1 epoch 114 average loss: 0.6837\n", + "current epoch: 114 current mean dice: 0.3422\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 115/1000: lr: [0.00048700000000000013]\n", + "1/0, train_loss: 0.6822\n", + "1 epoch 115 average loss: 0.6822\n", + "----------\n", + "1: epoch 116/1000: lr: [0.00048249999999999986]\n", + "1/0, train_loss: 0.6822\n", + "1 epoch 116 average loss: 0.6822\n", + "current epoch: 116 current mean dice: 0.3420\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 117/1000: lr: [0.000478]\n", + "1/0, train_loss: 0.6814\n", + "1 epoch 117 average loss: 0.6814\n", + "----------\n", + "1: epoch 118/1000: lr: [0.00047350000000000007]\n", + "1/0, train_loss: 0.6825\n", + "1 epoch 118 average loss: 0.6825\n", + "current epoch: 118 current mean dice: 0.3418\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 119/1000: lr: [0.0004690000000000001]\n", + "1/0, train_loss: 0.6806\n", + "1 epoch 119 average loss: 0.6806\n", + "----------\n", + "1: epoch 120/1000: lr: [0.0004645000000000003]\n", + "1/0, train_loss: 0.6811\n", + "1 epoch 120 average loss: 0.6811\n", + "current epoch: 120 current mean dice: 0.3417\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 121/1000: lr: [0.0004599999999999999]\n", + "1/0, train_loss: 0.6812\n", + "1 epoch 121 average loss: 0.6812\n", + "----------\n", + "1: epoch 122/1000: lr: [0.00045550000000000007]\n", + "1/0, train_loss: 0.6813\n", + "1 epoch 122 average loss: 0.6813\n", + "current epoch: 122 current mean dice: 0.3416\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 123/1000: lr: [0.0004510000000000001]\n", + "1/0, train_loss: 0.6805\n", + "1 epoch 123 average loss: 0.6805\n", + "----------\n", + "1: epoch 124/1000: lr: [0.00044649999999999985]\n", + "1/0, train_loss: 0.6798\n", + "1 epoch 124 average loss: 0.6798\n", + "current epoch: 124 current mean dice: 0.3414\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 125/1000: lr: [0.0004419999999999999]\n", + "1/0, train_loss: 0.6813\n", + "1 epoch 125 average loss: 0.6813\n", + "----------\n", + "1: epoch 126/1000: lr: [0.00043750000000000006]\n", + "1/0, train_loss: 0.6821\n", + "1 epoch 126 average loss: 0.6821\n", + "current epoch: 126 current mean dice: 0.3413\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 127/1000: lr: [0.0004330000000000001]\n", + "1/0, train_loss: 0.6814\n", + "1 epoch 127 average loss: 0.6814\n", + "----------\n", + "1: epoch 128/1000: lr: [0.0004285000000000003]\n", + "1/0, train_loss: 0.6796\n", + "1 epoch 128 average loss: 0.6796\n", + "current epoch: 128 current mean dice: 0.3412\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 129/1000: lr: [0.0004239999999999999]\n", + "1/0, train_loss: 0.6808\n", + "1 epoch 129 average loss: 0.6808\n", + "----------\n", + "1: epoch 130/1000: lr: [0.00041950000000000006]\n", + "1/0, train_loss: 0.6798\n", + "1 epoch 130 average loss: 0.6798\n", + "current epoch: 130 current mean dice: 0.3411\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 131/1000: lr: [0.0004150000000000001]\n", + "1/0, train_loss: 0.6803\n", + "1 epoch 131 average loss: 0.6803\n", + "----------\n", + "1: epoch 132/1000: lr: [0.00041049999999999984]\n", + "1/0, train_loss: 0.6805\n", + "1 epoch 132 average loss: 0.6805\n", + "current epoch: 132 current mean dice: 0.3410\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 133/1000: lr: [0.0004059999999999999]\n", + "1/0, train_loss: 0.6822\n", + "1 epoch 133 average loss: 0.6822\n", + "----------\n", + "1: epoch 134/1000: lr: [0.00040150000000000006]\n", + "1/0, train_loss: 0.6794\n", + "1 epoch 134 average loss: 0.6794\n", + "current epoch: 134 current mean dice: 0.3409\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 135/1000: lr: [0.0003970000000000001]\n", + "1/0, train_loss: 0.6799\n", + "1 epoch 135 average loss: 0.6799\n", + "----------\n", + "1: epoch 136/1000: lr: [0.00039250000000000016]\n", + "1/0, train_loss: 0.6789\n", + "1 epoch 136 average loss: 0.6789\n", + "current epoch: 136 current mean dice: 0.3408\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 137/1000: lr: [0.0003879999999999999]\n", + "1/0, train_loss: 0.6797\n", + "1 epoch 137 average loss: 0.6797\n", + "----------\n", + "1: epoch 138/1000: lr: [0.00038349999999999994]\n", + "1/0, train_loss: 0.6790\n", + "1 epoch 138 average loss: 0.6790\n", + "current epoch: 138 current mean dice: 0.3408\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 139/1000: lr: [0.0003790000000000001]\n", + "1/0, train_loss: 0.6806\n", + "1 epoch 139 average loss: 0.6806\n", + "----------\n", + "1: epoch 140/1000: lr: [0.00037450000000000016]\n", + "1/0, train_loss: 0.6791\n", + "1 epoch 140 average loss: 0.6791\n", + "current epoch: 140 current mean dice: 0.3406\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 141/1000: lr: [0.0003699999999999999]\n", + "1/0, train_loss: 0.6794\n", + "1 epoch 141 average loss: 0.6794\n", + "----------\n", + "1: epoch 142/1000: lr: [0.00036549999999999994]\n", + "1/0, train_loss: 0.6792\n", + "1 epoch 142 average loss: 0.6792\n", + "current epoch: 142 current mean dice: 0.3405\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 143/1000: lr: [0.0003610000000000001]\n", + "1/0, train_loss: 0.6795\n", + "1 epoch 143 average loss: 0.6795\n", + "----------\n", + "1: epoch 144/1000: lr: [0.00035650000000000015]\n", + "1/0, train_loss: 0.6800\n", + "1 epoch 144 average loss: 0.6800\n", + "current epoch: 144 current mean dice: 0.3404\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 145/1000: lr: [0.0003520000000000003]\n", + "1/0, train_loss: 0.6768\n", + "1 epoch 145 average loss: 0.6768\n", + "----------\n", + "1: epoch 146/1000: lr: [0.00034749999999999994]\n", + "1/0, train_loss: 0.6798\n", + "1 epoch 146 average loss: 0.6798\n", + "current epoch: 146 current mean dice: 0.3403\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 147/1000: lr: [0.0003430000000000001]\n", + "1/0, train_loss: 0.6772\n", + "1 epoch 147 average loss: 0.6772\n", + "----------\n", + "1: epoch 148/1000: lr: [0.00033850000000000015]\n", + "1/0, train_loss: 0.6799\n", + "1 epoch 148 average loss: 0.6799\n", + "current epoch: 148 current mean dice: 0.3402\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 149/1000: lr: [0.0003339999999999999]\n", + "1/0, train_loss: 0.6781\n", + "1 epoch 149 average loss: 0.6781\n", + "----------\n", + "1: epoch 150/1000: lr: [0.00032949999999999993]\n", + "1/0, train_loss: 0.6802\n", + "1 epoch 150 average loss: 0.6802\n", + "current epoch: 150 current mean dice: 0.3401\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 151/1000: lr: [0.000325]\n", + "1/0, train_loss: 0.6782\n", + "1 epoch 151 average loss: 0.6782\n", + "----------\n", + "1: epoch 152/1000: lr: [0.00032050000000000015]\n", + "1/0, train_loss: 0.6792\n", + "1 epoch 152 average loss: 0.6792\n", + "current epoch: 152 current mean dice: 0.3400\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 153/1000: lr: [0.0003160000000000002]\n", + "1/0, train_loss: 0.6801\n", + "1 epoch 153 average loss: 0.6801\n", + "----------\n", + "1: epoch 154/1000: lr: [0.00031149999999999993]\n", + "1/0, train_loss: 0.6784\n", + "1 epoch 154 average loss: 0.6784\n", + "current epoch: 154 current mean dice: 0.3400\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 155/1000: lr: [0.000307]\n", + "1/0, train_loss: 0.6783\n", + "1 epoch 155 average loss: 0.6783\n", + "----------\n", + "1: epoch 156/1000: lr: [0.00030250000000000014]\n", + "1/0, train_loss: 0.6772\n", + "1 epoch 156 average loss: 0.6772\n", + "current epoch: 156 current mean dice: 0.3399\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 157/1000: lr: [0.00029799999999999976]\n", + "1/0, train_loss: 0.6791\n", + "1 epoch 157 average loss: 0.6791\n", + "----------\n", + "1: epoch 158/1000: lr: [0.0002934999999999999]\n", + "1/0, train_loss: 0.6783\n", + "1 epoch 158 average loss: 0.6783\n", + "current epoch: 158 current mean dice: 0.3398\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 159/1000: lr: [0.000289]\n", + "1/0, train_loss: 0.6787\n", + "1 epoch 159 average loss: 0.6787\n", + "----------\n", + "1: epoch 160/1000: lr: [0.00028450000000000014]\n", + "1/0, train_loss: 0.6777\n", + "1 epoch 160 average loss: 0.6777\n", + "current epoch: 160 current mean dice: 0.3398\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 161/1000: lr: [0.0002800000000000002]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.6775\n", + "1 epoch 161 average loss: 0.6775\n", + "----------\n", + "1: epoch 162/1000: lr: [0.0002754999999999999]\n", + "1/0, train_loss: 0.6776\n", + "1 epoch 162 average loss: 0.6776\n", + "current epoch: 162 current mean dice: 0.3397\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 163/1000: lr: [0.000271]\n", + "1/0, train_loss: 0.6794\n", + "1 epoch 163 average loss: 0.6794\n", + "----------\n", + "1: epoch 164/1000: lr: [0.00026650000000000014]\n", + "1/0, train_loss: 0.6763\n", + "1 epoch 164 average loss: 0.6763\n", + "current epoch: 164 current mean dice: 0.3396\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 165/1000: lr: [0.0002620000000000002]\n", + "1/0, train_loss: 0.6772\n", + "1 epoch 165 average loss: 0.6772\n", + "----------\n", + "1: epoch 166/1000: lr: [0.0002574999999999999]\n", + "1/0, train_loss: 0.6772\n", + "1 epoch 166 average loss: 0.6772\n", + "current epoch: 166 current mean dice: 0.3396\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 167/1000: lr: [0.00025299999999999997]\n", + "1/0, train_loss: 0.6777\n", + "1 epoch 167 average loss: 0.6777\n", + "----------\n", + "1: epoch 168/1000: lr: [0.0002485]\n", + "1/0, train_loss: 0.6774\n", + "1 epoch 168 average loss: 0.6774\n", + "current epoch: 168 current mean dice: 0.3395\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 169/1000: lr: [0.00024400000000000018]\n", + "1/0, train_loss: 0.6768\n", + "1 epoch 169 average loss: 0.6768\n", + "----------\n", + "1: epoch 170/1000: lr: [0.00023950000000000024]\n", + "1/0, train_loss: 0.6780\n", + "1 epoch 170 average loss: 0.6780\n", + "current epoch: 170 current mean dice: 0.3394\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 171/1000: lr: [0.00023499999999999997]\n", + "1/0, train_loss: 0.6774\n", + "1 epoch 171 average loss: 0.6774\n", + "----------\n", + "1: epoch 172/1000: lr: [0.00023050000000000002]\n", + "1/0, train_loss: 0.6793\n", + "1 epoch 172 average loss: 0.6793\n", + "current epoch: 172 current mean dice: 0.3394\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 173/1000: lr: [0.00022600000000000018]\n", + "1/0, train_loss: 0.6771\n", + "1 epoch 173 average loss: 0.6771\n", + "----------\n", + "1: epoch 174/1000: lr: [0.0002214999999999998]\n", + "1/0, train_loss: 0.6765\n", + "1 epoch 174 average loss: 0.6765\n", + "current epoch: 174 current mean dice: 0.3393\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 175/1000: lr: [0.00021699999999999996]\n", + "1/0, train_loss: 0.6793\n", + "1 epoch 175 average loss: 0.6793\n", + "----------\n", + "1: epoch 176/1000: lr: [0.00021250000000000002]\n", + "1/0, train_loss: 0.6762\n", + "1 epoch 176 average loss: 0.6762\n", + "current epoch: 176 current mean dice: 0.3393\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 177/1000: lr: [0.00020800000000000018]\n", + "1/0, train_loss: 0.6774\n", + "1 epoch 177 average loss: 0.6774\n", + "----------\n", + "1: epoch 178/1000: lr: [0.00020350000000000023]\n", + "1/0, train_loss: 0.6760\n", + "1 epoch 178 average loss: 0.6760\n", + "current epoch: 178 current mean dice: 0.3392\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 179/1000: lr: [0.00019899999999999996]\n", + "1/0, train_loss: 0.6757\n", + "1 epoch 179 average loss: 0.6757\n", + "----------\n", + "1: epoch 180/1000: lr: [0.0001945]\n", + "1/0, train_loss: 0.6769\n", + "1 epoch 180 average loss: 0.6769\n", + "current epoch: 180 current mean dice: 0.3392\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 181/1000: lr: [0.00019000000000000017]\n", + "1/0, train_loss: 0.6771\n", + "1 epoch 181 average loss: 0.6771\n", + "----------\n", + "1: epoch 182/1000: lr: [0.0001854999999999998]\n", + "1/0, train_loss: 0.6799\n", + "1 epoch 182 average loss: 0.6799\n", + "current epoch: 182 current mean dice: 0.3391\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 183/1000: lr: [0.00018099999999999995]\n", + "1/0, train_loss: 0.6763\n", + "1 epoch 183 average loss: 0.6763\n", + "----------\n", + "1: epoch 184/1000: lr: [0.0001765]\n", + "1/0, train_loss: 0.6766\n", + "1 epoch 184 average loss: 0.6766\n", + "current epoch: 184 current mean dice: 0.3391\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 185/1000: lr: [0.00017200000000000006]\n", + "1/0, train_loss: 0.6759\n", + "1 epoch 185 average loss: 0.6759\n", + "----------\n", + "1: epoch 186/1000: lr: [0.00016750000000000022]\n", + "1/0, train_loss: 0.6777\n", + "1 epoch 186 average loss: 0.6777\n", + "current epoch: 186 current mean dice: 0.3391\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 187/1000: lr: [0.00016299999999999995]\n", + "1/0, train_loss: 0.6760\n", + "1 epoch 187 average loss: 0.6760\n", + "----------\n", + "1: epoch 188/1000: lr: [0.0001585]\n", + "1/0, train_loss: 0.6775\n", + "1 epoch 188 average loss: 0.6775\n", + "current epoch: 188 current mean dice: 0.3390\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 189/1000: lr: [0.00015400000000000006]\n", + "1/0, train_loss: 0.6768\n", + "1 epoch 189 average loss: 0.6768\n", + "----------\n", + "1: epoch 190/1000: lr: [0.00014950000000000022]\n", + "1/0, train_loss: 0.6768\n", + "1 epoch 190 average loss: 0.6768\n", + "current epoch: 190 current mean dice: 0.3390\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 191/1000: lr: [0.00014499999999999984]\n", + "1/0, train_loss: 0.6781\n", + "1 epoch 191 average loss: 0.6781\n", + "----------\n", + "1: epoch 192/1000: lr: [0.0001405]\n", + "1/0, train_loss: 0.6759\n", + "1 epoch 192 average loss: 0.6759\n", + "current epoch: 192 current mean dice: 0.3390\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 193/1000: lr: [0.00013600000000000005]\n", + "1/0, train_loss: 0.6777\n", + "1 epoch 193 average loss: 0.6777\n", + "----------\n", + "1: epoch 194/1000: lr: [0.00013150000000000021]\n", + "1/0, train_loss: 0.6764\n", + "1 epoch 194 average loss: 0.6764\n", + "current epoch: 194 current mean dice: 0.3390\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 195/1000: lr: [0.00012700000000000027]\n", + "1/0, train_loss: 0.6771\n", + "1 epoch 195 average loss: 0.6771\n", + "----------\n", + "1: epoch 196/1000: lr: [0.0001225]\n", + "1/0, train_loss: 0.6772\n", + "1 epoch 196 average loss: 0.6772\n", + "current epoch: 196 current mean dice: 0.3389\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 197/1000: lr: [0.00011800000000000005]\n", + "1/0, train_loss: 0.6768\n", + "1 epoch 197 average loss: 0.6768\n", + "----------\n", + "1: epoch 198/1000: lr: [0.00011350000000000021]\n", + "1/0, train_loss: 0.6773\n", + "1 epoch 198 average loss: 0.6773\n", + "current epoch: 198 current mean dice: 0.3389\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 199/1000: lr: [0.00010899999999999983]\n", + "1/0, train_loss: 0.6765\n", + "1 epoch 199 average loss: 0.6765\n", + "----------\n", + "1: epoch 200/1000: lr: [0.00010449999999999999]\n", + "1/0, train_loss: 0.6809\n", + "1 epoch 200 average loss: 0.6809\n", + "current epoch: 200 current mean dice: 0.3389\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 201/1000: lr: [0.00010000000000000005]\n", + "1/0, train_loss: 0.6793\n", + "1 epoch 201 average loss: 0.6793\n", + "----------\n", + "1: epoch 202/1000: lr: [0.00010449999999999999]\n", + "1/0, train_loss: 0.6764\n", + "1 epoch 202 average loss: 0.6764\n", + "current epoch: 202 current mean dice: 0.3389\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 203/1000: lr: [0.00010899999999999983]\n", + "1/0, train_loss: 0.6757\n", + "1 epoch 203 average loss: 0.6757\n", + "----------\n", + "1: epoch 204/1000: lr: [0.00011349999999999978]\n", + "1/0, train_loss: 0.6757\n", + "1 epoch 204 average loss: 0.6757\n", + "current epoch: 204 current mean dice: 0.3388\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 205/1000: lr: [0.00011800000000000005]\n", + "1/0, train_loss: 0.6769\n", + "1 epoch 205 average loss: 0.6769\n", + "----------\n", + "1: epoch 206/1000: lr: [0.0001225]\n", + "1/0, train_loss: 0.6804\n", + "1 epoch 206 average loss: 0.6804\n", + "current epoch: 206 current mean dice: 0.3388\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 207/1000: lr: [0.00012700000000000027]\n", + "1/0, train_loss: 0.6787\n", + "1 epoch 207 average loss: 0.6787\n", + "----------\n", + "1: epoch 208/1000: lr: [0.00013150000000000021]\n", + "1/0, train_loss: 0.6755\n", + "1 epoch 208 average loss: 0.6755\n", + "current epoch: 208 current mean dice: 0.3388\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 209/1000: lr: [0.00013600000000000005]\n", + "1/0, train_loss: 0.6773\n", + "1 epoch 209 average loss: 0.6773\n", + "----------\n", + "1: epoch 210/1000: lr: [0.0001405]\n", + "1/0, train_loss: 0.6756\n", + "1 epoch 210 average loss: 0.6756\n", + "current epoch: 210 current mean dice: 0.3388\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 211/1000: lr: [0.00014499999999999984]\n", + "1/0, train_loss: 0.6757\n", + "1 epoch 211 average loss: 0.6757\n", + "----------\n", + "1: epoch 212/1000: lr: [0.00014949999999999978]\n", + "1/0, train_loss: 0.6762\n", + "1 epoch 212 average loss: 0.6762\n", + "current epoch: 212 current mean dice: 0.3387\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 213/1000: lr: [0.00015400000000000006]\n", + "1/0, train_loss: 0.6749\n", + "1 epoch 213 average loss: 0.6749\n", + "----------\n", + "1: epoch 214/1000: lr: [0.0001585]\n", + "1/0, train_loss: 0.6749\n", + "1 epoch 214 average loss: 0.6749\n", + "current epoch: 214 current mean dice: 0.3387\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 215/1000: lr: [0.00016300000000000028]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.6757\n", + "1 epoch 215 average loss: 0.6757\n", + "----------\n", + "1: epoch 216/1000: lr: [0.00016750000000000022]\n", + "1/0, train_loss: 0.6755\n", + "1 epoch 216 average loss: 0.6755\n", + "current epoch: 216 current mean dice: 0.3387\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 217/1000: lr: [0.00017200000000000006]\n", + "1/0, train_loss: 0.6768\n", + "1 epoch 217 average loss: 0.6768\n", + "----------\n", + "1: epoch 218/1000: lr: [0.0001765]\n", + "1/0, train_loss: 0.6743\n", + "1 epoch 218 average loss: 0.6743\n", + "current epoch: 218 current mean dice: 0.3387\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 219/1000: lr: [0.00018099999999999995]\n", + "1/0, train_loss: 0.6773\n", + "1 epoch 219 average loss: 0.6773\n", + "----------\n", + "1: epoch 220/1000: lr: [0.0001854999999999998]\n", + "1/0, train_loss: 0.6769\n", + "1 epoch 220 average loss: 0.6769\n", + "current epoch: 220 current mean dice: 0.3386\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 221/1000: lr: [0.00019000000000000017]\n", + "1/0, train_loss: 0.6764\n", + "1 epoch 221 average loss: 0.6764\n", + "----------\n", + "1: epoch 222/1000: lr: [0.0001945]\n", + "1/0, train_loss: 0.6780\n", + "1 epoch 222 average loss: 0.6780\n", + "current epoch: 222 current mean dice: 0.3386\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 223/1000: lr: [0.00019900000000000028]\n", + "1/0, train_loss: 0.6786\n", + "1 epoch 223 average loss: 0.6786\n", + "----------\n", + "1: epoch 224/1000: lr: [0.00020350000000000023]\n", + "1/0, train_loss: 0.6766\n", + "1 epoch 224 average loss: 0.6766\n", + "current epoch: 224 current mean dice: 0.3385\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 225/1000: lr: [0.00020800000000000018]\n", + "1/0, train_loss: 0.6750\n", + "1 epoch 225 average loss: 0.6750\n", + "----------\n", + "1: epoch 226/1000: lr: [0.00021250000000000002]\n", + "1/0, train_loss: 0.6751\n", + "1 epoch 226 average loss: 0.6751\n", + "current epoch: 226 current mean dice: 0.3385\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 227/1000: lr: [0.00021699999999999996]\n", + "1/0, train_loss: 0.6770\n", + "1 epoch 227 average loss: 0.6770\n", + "----------\n", + "1: epoch 228/1000: lr: [0.0002214999999999998]\n", + "1/0, train_loss: 0.6749\n", + "1 epoch 228 average loss: 0.6749\n", + "current epoch: 228 current mean dice: 0.3385\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 229/1000: lr: [0.00022599999999999975]\n", + "1/0, train_loss: 0.6760\n", + "1 epoch 229 average loss: 0.6760\n", + "----------\n", + "1: epoch 230/1000: lr: [0.00023050000000000002]\n", + "1/0, train_loss: 0.6778\n", + "1 epoch 230 average loss: 0.6778\n", + "current epoch: 230 current mean dice: 0.3384\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 231/1000: lr: [0.00023499999999999997]\n", + "1/0, train_loss: 0.6758\n", + "1 epoch 231 average loss: 0.6758\n", + "----------\n", + "1: epoch 232/1000: lr: [0.00023950000000000024]\n", + "1/0, train_loss: 0.6766\n", + "1 epoch 232 average loss: 0.6766\n", + "current epoch: 232 current mean dice: 0.3383\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 233/1000: lr: [0.00024400000000000018]\n", + "1/0, train_loss: 0.6752\n", + "1 epoch 233 average loss: 0.6752\n", + "----------\n", + "1: epoch 234/1000: lr: [0.0002485]\n", + "1/0, train_loss: 0.6738\n", + "1 epoch 234 average loss: 0.6738\n", + "current epoch: 234 current mean dice: 0.3383\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 235/1000: lr: [0.00025299999999999997]\n", + "1/0, train_loss: 0.6780\n", + "1 epoch 235 average loss: 0.6780\n", + "----------\n", + "1: epoch 236/1000: lr: [0.0002574999999999999]\n", + "1/0, train_loss: 0.6744\n", + "1 epoch 236 average loss: 0.6744\n", + "current epoch: 236 current mean dice: 0.3382\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 237/1000: lr: [0.00026199999999999975]\n", + "1/0, train_loss: 0.6775\n", + "1 epoch 237 average loss: 0.6775\n", + "----------\n", + "1: epoch 238/1000: lr: [0.00026650000000000014]\n", + "1/0, train_loss: 0.6753\n", + "1 epoch 238 average loss: 0.6753\n", + "current epoch: 238 current mean dice: 0.3382\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 239/1000: lr: [0.000271]\n", + "1/0, train_loss: 0.6748\n", + "1 epoch 239 average loss: 0.6748\n", + "----------\n", + "1: epoch 240/1000: lr: [0.00027550000000000025]\n", + "1/0, train_loss: 0.6743\n", + "1 epoch 240 average loss: 0.6743\n", + "current epoch: 240 current mean dice: 0.3381\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 241/1000: lr: [0.0002800000000000002]\n", + "1/0, train_loss: 0.6773\n", + "1 epoch 241 average loss: 0.6773\n", + "----------\n", + "1: epoch 242/1000: lr: [0.00028450000000000014]\n", + "1/0, train_loss: 0.6777\n", + "1 epoch 242 average loss: 0.6777\n", + "current epoch: 242 current mean dice: 0.3381\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 243/1000: lr: [0.000289]\n", + "1/0, train_loss: 0.6776\n", + "1 epoch 243 average loss: 0.6776\n", + "----------\n", + "1: epoch 244/1000: lr: [0.0002934999999999999]\n", + "1/0, train_loss: 0.6760\n", + "1 epoch 244 average loss: 0.6760\n", + "current epoch: 244 current mean dice: 0.3381\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 245/1000: lr: [0.00029799999999999976]\n", + "1/0, train_loss: 0.6741\n", + "1 epoch 245 average loss: 0.6741\n", + "----------\n", + "1: epoch 246/1000: lr: [0.00030250000000000014]\n", + "1/0, train_loss: 0.6740\n", + "1 epoch 246 average loss: 0.6740\n", + "current epoch: 246 current mean dice: 0.3380\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 247/1000: lr: [0.000307]\n", + "1/0, train_loss: 0.6732\n", + "1 epoch 247 average loss: 0.6732\n", + "----------\n", + "1: epoch 248/1000: lr: [0.00031150000000000036]\n", + "1/0, train_loss: 0.6765\n", + "1 epoch 248 average loss: 0.6765\n", + "current epoch: 248 current mean dice: 0.3380\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 249/1000: lr: [0.0003160000000000002]\n", + "1/0, train_loss: 0.6755\n", + "1 epoch 249 average loss: 0.6755\n", + "----------\n", + "1: epoch 250/1000: lr: [0.00032050000000000015]\n", + "1/0, train_loss: 0.6746\n", + "1 epoch 250 average loss: 0.6746\n", + "current epoch: 250 current mean dice: 0.3379\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 251/1000: lr: [0.000325]\n", + "1/0, train_loss: 0.6755\n", + "1 epoch 251 average loss: 0.6755\n", + "----------\n", + "1: epoch 252/1000: lr: [0.00032949999999999993]\n", + "1/0, train_loss: 0.6742\n", + "1 epoch 252 average loss: 0.6742\n", + "current epoch: 252 current mean dice: 0.3378\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 253/1000: lr: [0.0003339999999999999]\n", + "1/0, train_loss: 0.6747\n", + "1 epoch 253 average loss: 0.6747\n", + "----------\n", + "1: epoch 254/1000: lr: [0.0003384999999999997]\n", + "1/0, train_loss: 0.6745\n", + "1 epoch 254 average loss: 0.6745\n", + "current epoch: 254 current mean dice: 0.3378\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 255/1000: lr: [0.0003430000000000001]\n", + "1/0, train_loss: 0.6760\n", + "1 epoch 255 average loss: 0.6760\n", + "----------\n", + "1: epoch 256/1000: lr: [0.00034749999999999994]\n", + "1/0, train_loss: 0.6749\n", + "1 epoch 256 average loss: 0.6749\n", + "current epoch: 256 current mean dice: 0.3377\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 257/1000: lr: [0.0003520000000000003]\n", + "1/0, train_loss: 0.6755\n", + "1 epoch 257 average loss: 0.6755\n", + "----------\n", + "1: epoch 258/1000: lr: [0.00035650000000000015]\n", + "1/0, train_loss: 0.6734\n", + "1 epoch 258 average loss: 0.6734\n", + "current epoch: 258 current mean dice: 0.3376\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 259/1000: lr: [0.0003610000000000001]\n", + "1/0, train_loss: 0.6750\n", + "1 epoch 259 average loss: 0.6750\n", + "----------\n", + "1: epoch 260/1000: lr: [0.00036549999999999994]\n", + "1/0, train_loss: 0.6757\n", + "1 epoch 260 average loss: 0.6757\n", + "current epoch: 260 current mean dice: 0.3375\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 261/1000: lr: [0.0003699999999999999]\n", + "1/0, train_loss: 0.6750\n", + "1 epoch 261 average loss: 0.6750\n", + "----------\n", + "1: epoch 262/1000: lr: [0.00037449999999999983]\n", + "1/0, train_loss: 0.6741\n", + "1 epoch 262 average loss: 0.6741\n", + "current epoch: 262 current mean dice: 0.3375\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 263/1000: lr: [0.0003790000000000001]\n", + "1/0, train_loss: 0.6739\n", + "1 epoch 263 average loss: 0.6739\n", + "----------\n", + "1: epoch 264/1000: lr: [0.00038349999999999994]\n", + "1/0, train_loss: 0.6762\n", + "1 epoch 264 average loss: 0.6762\n", + "current epoch: 264 current mean dice: 0.3374\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 265/1000: lr: [0.0003880000000000003]\n", + "1/0, train_loss: 0.6764\n", + "1 epoch 265 average loss: 0.6764\n", + "----------\n", + "1: epoch 266/1000: lr: [0.00039250000000000016]\n", + "1/0, train_loss: 0.6733\n", + "1 epoch 266 average loss: 0.6733\n", + "current epoch: 266 current mean dice: 0.3373\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 267/1000: lr: [0.0003970000000000001]\n", + "1/0, train_loss: 0.6745\n", + "1 epoch 267 average loss: 0.6745\n", + "----------\n", + "1: epoch 268/1000: lr: [0.00040150000000000006]\n", + "1/0, train_loss: 0.6756\n", + "1 epoch 268 average loss: 0.6756\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "current epoch: 268 current mean dice: 0.3372\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 269/1000: lr: [0.0004059999999999999]\n", + "1/0, train_loss: 0.6745\n", + "1 epoch 269 average loss: 0.6745\n", + "----------\n", + "1: epoch 270/1000: lr: [0.00041049999999999984]\n", + "1/0, train_loss: 0.6744\n", + "1 epoch 270 average loss: 0.6744\n", + "current epoch: 270 current mean dice: 0.3371\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 271/1000: lr: [0.0004150000000000001]\n", + "1/0, train_loss: 0.6730\n", + "1 epoch 271 average loss: 0.6730\n", + "----------\n", + "1: epoch 272/1000: lr: [0.00041950000000000006]\n", + "1/0, train_loss: 0.6734\n", + "1 epoch 272 average loss: 0.6734\n", + "current epoch: 272 current mean dice: 0.3370\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 273/1000: lr: [0.00042400000000000033]\n", + "1/0, train_loss: 0.6725\n", + "1 epoch 273 average loss: 0.6725\n", + "----------\n", + "1: epoch 274/1000: lr: [0.0004285000000000003]\n", + "1/0, train_loss: 0.6750\n", + "1 epoch 274 average loss: 0.6750\n", + "current epoch: 274 current mean dice: 0.3370\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 275/1000: lr: [0.0004330000000000001]\n", + "1/0, train_loss: 0.6731\n", + "1 epoch 275 average loss: 0.6731\n", + "----------\n", + "1: epoch 276/1000: lr: [0.00043750000000000006]\n", + "1/0, train_loss: 0.6731\n", + "1 epoch 276 average loss: 0.6731\n", + "current epoch: 276 current mean dice: 0.3369\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 277/1000: lr: [0.0004419999999999999]\n", + "1/0, train_loss: 0.6741\n", + "1 epoch 277 average loss: 0.6741\n", + "----------\n", + "1: epoch 278/1000: lr: [0.00044649999999999985]\n", + "1/0, train_loss: 0.6741\n", + "1 epoch 278 average loss: 0.6741\n", + "current epoch: 278 current mean dice: 0.3368\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 279/1000: lr: [0.0004509999999999998]\n", + "1/0, train_loss: 0.6713\n", + "1 epoch 279 average loss: 0.6713\n", + "----------\n", + "1: epoch 280/1000: lr: [0.00045550000000000007]\n", + "1/0, train_loss: 0.6721\n", + "1 epoch 280 average loss: 0.6721\n", + "current epoch: 280 current mean dice: 0.3368\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 281/1000: lr: [0.0004599999999999999]\n", + "1/0, train_loss: 0.6753\n", + "1 epoch 281 average loss: 0.6753\n", + "----------\n", + "1: epoch 282/1000: lr: [0.0004645000000000003]\n", + "1/0, train_loss: 0.6727\n", + "1 epoch 282 average loss: 0.6727\n", + "current epoch: 282 current mean dice: 0.3367\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 283/1000: lr: [0.0004690000000000001]\n", + "1/0, train_loss: 0.6720\n", + "1 epoch 283 average loss: 0.6720\n", + "----------\n", + "1: epoch 284/1000: lr: [0.00047350000000000007]\n", + "1/0, train_loss: 0.6711\n", + "1 epoch 284 average loss: 0.6711\n", + "current epoch: 284 current mean dice: 0.3366\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 285/1000: lr: [0.000478]\n", + "1/0, train_loss: 0.6718\n", + "1 epoch 285 average loss: 0.6718\n", + "----------\n", + "1: epoch 286/1000: lr: [0.00048249999999999986]\n", + "1/0, train_loss: 0.6724\n", + "1 epoch 286 average loss: 0.6724\n", + "current epoch: 286 current mean dice: 0.3366\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 287/1000: lr: [0.0004869999999999998]\n", + "1/0, train_loss: 0.6750\n", + "1 epoch 287 average loss: 0.6750\n", + "----------\n", + "1: epoch 288/1000: lr: [0.0004915000000000001]\n", + "1/0, train_loss: 0.6712\n", + "1 epoch 288 average loss: 0.6712\n", + "current epoch: 288 current mean dice: 0.3365\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 289/1000: lr: [0.000496]\n", + "1/0, train_loss: 0.6724\n", + "1 epoch 289 average loss: 0.6724\n", + "----------\n", + "1: epoch 290/1000: lr: [0.0005005000000000003]\n", + "1/0, train_loss: 0.6725\n", + "1 epoch 290 average loss: 0.6725\n", + "current epoch: 290 current mean dice: 0.3365\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 291/1000: lr: [0.0005050000000000002]\n", + "1/0, train_loss: 0.6710\n", + "1 epoch 291 average loss: 0.6710\n", + "----------\n", + "1: epoch 292/1000: lr: [0.0005095000000000001]\n", + "1/0, train_loss: 0.6718\n", + "1 epoch 292 average loss: 0.6718\n", + "current epoch: 292 current mean dice: 0.3364\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 293/1000: lr: [0.000514]\n", + "1/0, train_loss: 0.6735\n", + "1 epoch 293 average loss: 0.6735\n", + "----------\n", + "1: epoch 294/1000: lr: [0.0005184999999999999]\n", + "1/0, train_loss: 0.6740\n", + "1 epoch 294 average loss: 0.6740\n", + "current epoch: 294 current mean dice: 0.3364\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 295/1000: lr: [0.0005229999999999998]\n", + "1/0, train_loss: 0.6739\n", + "1 epoch 295 average loss: 0.6739\n", + "----------\n", + "1: epoch 296/1000: lr: [0.0005275000000000002]\n", + "1/0, train_loss: 0.6705\n", + "1 epoch 296 average loss: 0.6705\n", + "current epoch: 296 current mean dice: 0.3363\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 297/1000: lr: [0.000532]\n", + "1/0, train_loss: 0.6718\n", + "1 epoch 297 average loss: 0.6718\n", + "----------\n", + "1: epoch 298/1000: lr: [0.0005365000000000003]\n", + "1/0, train_loss: 0.6695\n", + "1 epoch 298 average loss: 0.6695\n", + "current epoch: 298 current mean dice: 0.3363\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 299/1000: lr: [0.0005410000000000002]\n", + "1/0, train_loss: 0.6712\n", + "1 epoch 299 average loss: 0.6712\n", + "----------\n", + "1: epoch 300/1000: lr: [0.0005455000000000002]\n", + "1/0, train_loss: 0.6702\n", + "1 epoch 300 average loss: 0.6702\n", + "current epoch: 300 current mean dice: 0.3362\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 301/1000: lr: [0.00055]\n", + "1/0, train_loss: 0.6702\n", + "1 epoch 301 average loss: 0.6702\n", + "----------\n", + "1: epoch 302/1000: lr: [0.0005544999999999999]\n", + "1/0, train_loss: 0.6707\n", + "1 epoch 302 average loss: 0.6707\n", + "current epoch: 302 current mean dice: 0.3361\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 303/1000: lr: [0.0005589999999999998]\n", + "1/0, train_loss: 0.6731\n", + "1 epoch 303 average loss: 0.6731\n", + "----------\n", + "1: epoch 304/1000: lr: [0.0005634999999999998]\n", + "1/0, train_loss: 0.6731\n", + "1 epoch 304 average loss: 0.6731\n", + "current epoch: 304 current mean dice: 0.3361\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 305/1000: lr: [0.000568]\n", + "1/0, train_loss: 0.6692\n", + "1 epoch 305 average loss: 0.6692\n", + "----------\n", + "1: epoch 306/1000: lr: [0.0005724999999999999]\n", + "1/0, train_loss: 0.6693\n", + "1 epoch 306 average loss: 0.6693\n", + "current epoch: 306 current mean dice: 0.3360\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 307/1000: lr: [0.0005770000000000003]\n", + "1/0, train_loss: 0.6686\n", + "1 epoch 307 average loss: 0.6686\n", + "----------\n", + "1: epoch 308/1000: lr: [0.0005815000000000002]\n", + "1/0, train_loss: 0.6707\n", + "1 epoch 308 average loss: 0.6707\n", + "current epoch: 308 current mean dice: 0.3359\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 309/1000: lr: [0.000586]\n", + "1/0, train_loss: 0.6721\n", + "1 epoch 309 average loss: 0.6721\n", + "----------\n", + "1: epoch 310/1000: lr: [0.0005905]\n", + "1/0, train_loss: 0.6689\n", + "1 epoch 310 average loss: 0.6689\n", + "current epoch: 310 current mean dice: 0.3359\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 311/1000: lr: [0.0005949999999999998]\n", + "1/0, train_loss: 0.6695\n", + "1 epoch 311 average loss: 0.6695\n", + "----------\n", + "1: epoch 312/1000: lr: [0.0005994999999999998]\n", + "1/0, train_loss: 0.6708\n", + "1 epoch 312 average loss: 0.6708\n", + "current epoch: 312 current mean dice: 0.3358\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 313/1000: lr: [0.0006040000000000002]\n", + "1/0, train_loss: 0.6681\n", + "1 epoch 313 average loss: 0.6681\n", + "----------\n", + "1: epoch 314/1000: lr: [0.0006085]\n", + "1/0, train_loss: 0.6702\n", + "1 epoch 314 average loss: 0.6702\n", + "current epoch: 314 current mean dice: 0.3358\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 315/1000: lr: [0.0006130000000000003]\n", + "1/0, train_loss: 0.6702\n", + "1 epoch 315 average loss: 0.6702\n", + "----------\n", + "1: epoch 316/1000: lr: [0.0006175000000000002]\n", + "1/0, train_loss: 0.6695\n", + "1 epoch 316 average loss: 0.6695\n", + "current epoch: 316 current mean dice: 0.3357\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 317/1000: lr: [0.0006220000000000002]\n", + "1/0, train_loss: 0.6720\n", + "1 epoch 317 average loss: 0.6720\n", + "----------\n", + "1: epoch 318/1000: lr: [0.0006265]\n", + "1/0, train_loss: 0.6685\n", + "1 epoch 318 average loss: 0.6685\n", + "current epoch: 318 current mean dice: 0.3356\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 319/1000: lr: [0.0006309999999999998]\n", + "1/0, train_loss: 0.6725\n", + "1 epoch 319 average loss: 0.6725\n", + "----------\n", + "1: epoch 320/1000: lr: [0.0006354999999999998]\n", + "1/0, train_loss: 0.6693\n", + "1 epoch 320 average loss: 0.6693\n", + "current epoch: 320 current mean dice: 0.3355\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 321/1000: lr: [0.0006400000000000002]\n", + "1/0, train_loss: 0.6689\n", + "1 epoch 321 average loss: 0.6689\n", + "----------\n", + "1: epoch 322/1000: lr: [0.0006445]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.6700\n", + "1 epoch 322 average loss: 0.6700\n", + "current epoch: 322 current mean dice: 0.3355\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 323/1000: lr: [0.0006490000000000003]\n", + "1/0, train_loss: 0.6688\n", + "1 epoch 323 average loss: 0.6688\n", + "----------\n", + "1: epoch 324/1000: lr: [0.0006535000000000002]\n", + "1/0, train_loss: 0.6707\n", + "1 epoch 324 average loss: 0.6707\n", + "current epoch: 324 current mean dice: 0.3354\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 325/1000: lr: [0.0006580000000000002]\n", + "1/0, train_loss: 0.6683\n", + "1 epoch 325 average loss: 0.6683\n", + "----------\n", + "1: epoch 326/1000: lr: [0.0006625]\n", + "1/0, train_loss: 0.6666\n", + "1 epoch 326 average loss: 0.6666\n", + "current epoch: 326 current mean dice: 0.3353\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 327/1000: lr: [0.000667]\n", + "1/0, train_loss: 0.6687\n", + "1 epoch 327 average loss: 0.6687\n", + "----------\n", + "1: epoch 328/1000: lr: [0.0006714999999999998]\n", + "1/0, train_loss: 0.6676\n", + "1 epoch 328 average loss: 0.6676\n", + "current epoch: 328 current mean dice: 0.3353\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 329/1000: lr: [0.0006759999999999997]\n", + "1/0, train_loss: 0.6690\n", + "1 epoch 329 average loss: 0.6690\n", + "----------\n", + "1: epoch 330/1000: lr: [0.0006805000000000001]\n", + "1/0, train_loss: 0.6663\n", + "1 epoch 330 average loss: 0.6663\n", + "current epoch: 330 current mean dice: 0.3353\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 331/1000: lr: [0.000685]\n", + "1/0, train_loss: 0.6669\n", + "1 epoch 331 average loss: 0.6669\n", + "----------\n", + "1: epoch 332/1000: lr: [0.0006895000000000002]\n", + "1/0, train_loss: 0.6669\n", + "1 epoch 332 average loss: 0.6669\n", + "current epoch: 332 current mean dice: 0.3352\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 333/1000: lr: [0.0006940000000000002]\n", + "1/0, train_loss: 0.6661\n", + "1 epoch 333 average loss: 0.6661\n", + "----------\n", + "1: epoch 334/1000: lr: [0.0006985000000000001]\n", + "1/0, train_loss: 0.6683\n", + "1 epoch 334 average loss: 0.6683\n", + "current epoch: 334 current mean dice: 0.3352\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 335/1000: lr: [0.000703]\n", + "1/0, train_loss: 0.6668\n", + "1 epoch 335 average loss: 0.6668\n", + "----------\n", + "1: epoch 336/1000: lr: [0.0007074999999999998]\n", + "1/0, train_loss: 0.6663\n", + "1 epoch 336 average loss: 0.6663\n", + "current epoch: 336 current mean dice: 0.3351\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 337/1000: lr: [0.0007119999999999997]\n", + "1/0, train_loss: 0.6666\n", + "1 epoch 337 average loss: 0.6666\n", + "----------\n", + "1: epoch 338/1000: lr: [0.0007165000000000001]\n", + "1/0, train_loss: 0.6671\n", + "1 epoch 338 average loss: 0.6671\n", + "current epoch: 338 current mean dice: 0.3351\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 339/1000: lr: [0.000721]\n", + "1/0, train_loss: 0.6659\n", + "1 epoch 339 average loss: 0.6659\n", + "----------\n", + "1: epoch 340/1000: lr: [0.0007255000000000002]\n", + "1/0, train_loss: 0.6644\n", + "1 epoch 340 average loss: 0.6644\n", + "current epoch: 340 current mean dice: 0.3350\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 341/1000: lr: [0.0007300000000000002]\n", + "1/0, train_loss: 0.6662\n", + "1 epoch 341 average loss: 0.6662\n", + "----------\n", + "1: epoch 342/1000: lr: [0.0007345000000000001]\n", + "1/0, train_loss: 0.6685\n", + "1 epoch 342 average loss: 0.6685\n", + "current epoch: 342 current mean dice: 0.3350\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 343/1000: lr: [0.0007390000000000001]\n", + "1/0, train_loss: 0.6705\n", + "1 epoch 343 average loss: 0.6705\n", + "----------\n", + "1: epoch 344/1000: lr: [0.0007434999999999999]\n", + "1/0, train_loss: 0.6641\n", + "1 epoch 344 average loss: 0.6641\n", + "current epoch: 344 current mean dice: 0.3350\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 345/1000: lr: [0.0007479999999999998]\n", + "1/0, train_loss: 0.6686\n", + "1 epoch 345 average loss: 0.6686\n", + "----------\n", + "1: epoch 346/1000: lr: [0.0007525000000000001]\n", + "1/0, train_loss: 0.6684\n", + "1 epoch 346 average loss: 0.6684\n", + "current epoch: 346 current mean dice: 0.3350\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 347/1000: lr: [0.0007570000000000001]\n", + "1/0, train_loss: 0.6656\n", + "1 epoch 347 average loss: 0.6656\n", + "----------\n", + "1: epoch 348/1000: lr: [0.0007615000000000003]\n", + "1/0, train_loss: 0.6646\n", + "1 epoch 348 average loss: 0.6646\n", + "current epoch: 348 current mean dice: 0.3350\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 349/1000: lr: [0.0007660000000000002]\n", + "1/0, train_loss: 0.6677\n", + "1 epoch 349 average loss: 0.6677\n", + "----------\n", + "1: epoch 350/1000: lr: [0.0007705000000000001]\n", + "1/0, train_loss: 0.6682\n", + "1 epoch 350 average loss: 0.6682\n", + "current epoch: 350 current mean dice: 0.3349\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 351/1000: lr: [0.0007750000000000001]\n", + "1/0, train_loss: 0.6648\n", + "1 epoch 351 average loss: 0.6648\n", + "----------\n", + "1: epoch 352/1000: lr: [0.0007794999999999999]\n", + "1/0, train_loss: 0.6655\n", + "1 epoch 352 average loss: 0.6655\n", + "current epoch: 352 current mean dice: 0.3349\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 353/1000: lr: [0.0007839999999999999]\n", + "1/0, train_loss: 0.6646\n", + "1 epoch 353 average loss: 0.6646\n", + "----------\n", + "1: epoch 354/1000: lr: [0.0007884999999999997]\n", + "1/0, train_loss: 0.6665\n", + "1 epoch 354 average loss: 0.6665\n", + "current epoch: 354 current mean dice: 0.3348\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 355/1000: lr: [0.0007930000000000001]\n", + "1/0, train_loss: 0.6665\n", + "1 epoch 355 average loss: 0.6665\n", + "----------\n", + "1: epoch 356/1000: lr: [0.0007974999999999999]\n", + "1/0, train_loss: 0.6653\n", + "1 epoch 356 average loss: 0.6653\n", + "current epoch: 356 current mean dice: 0.3348\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 357/1000: lr: [0.0008020000000000002]\n", + "1/0, train_loss: 0.6683\n", + "1 epoch 357 average loss: 0.6683\n", + "----------\n", + "1: epoch 358/1000: lr: [0.0008065000000000001]\n", + "1/0, train_loss: 0.6652\n", + "1 epoch 358 average loss: 0.6652\n", + "current epoch: 358 current mean dice: 0.3346\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 359/1000: lr: [0.0008110000000000001]\n", + "1/0, train_loss: 0.6622\n", + "1 epoch 359 average loss: 0.6622\n", + "----------\n", + "1: epoch 360/1000: lr: [0.0008154999999999999]\n", + "1/0, train_loss: 0.6643\n", + "1 epoch 360 average loss: 0.6643\n", + "current epoch: 360 current mean dice: 0.3345\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 361/1000: lr: [0.0008199999999999999]\n", + "1/0, train_loss: 0.6639\n", + "1 epoch 361 average loss: 0.6639\n", + "----------\n", + "1: epoch 362/1000: lr: [0.0008244999999999997]\n", + "1/0, train_loss: 0.6624\n", + "1 epoch 362 average loss: 0.6624\n", + "current epoch: 362 current mean dice: 0.3344\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 363/1000: lr: [0.0008290000000000001]\n", + "1/0, train_loss: 0.6648\n", + "1 epoch 363 average loss: 0.6648\n", + "----------\n", + "1: epoch 364/1000: lr: [0.0008335]\n", + "1/0, train_loss: 0.6626\n", + "1 epoch 364 average loss: 0.6626\n", + "current epoch: 364 current mean dice: 0.3343\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 365/1000: lr: [0.0008380000000000003]\n", + "1/0, train_loss: 0.6627\n", + "1 epoch 365 average loss: 0.6627\n", + "----------\n", + "1: epoch 366/1000: lr: [0.0008425000000000001]\n", + "1/0, train_loss: 0.6623\n", + "1 epoch 366 average loss: 0.6623\n", + "current epoch: 366 current mean dice: 0.3343\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 367/1000: lr: [0.0008470000000000001]\n", + "1/0, train_loss: 0.6647\n", + "1 epoch 367 average loss: 0.6647\n", + "----------\n", + "1: epoch 368/1000: lr: [0.0008515]\n", + "1/0, train_loss: 0.6629\n", + "1 epoch 368 average loss: 0.6629\n", + "current epoch: 368 current mean dice: 0.3341\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 369/1000: lr: [0.0008559999999999999]\n", + "1/0, train_loss: 0.6627\n", + "1 epoch 369 average loss: 0.6627\n", + "----------\n", + "1: epoch 370/1000: lr: [0.0008604999999999998]\n", + "1/0, train_loss: 0.6619\n", + "1 epoch 370 average loss: 0.6619\n", + "current epoch: 370 current mean dice: 0.3340\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 371/1000: lr: [0.0008650000000000001]\n", + "1/0, train_loss: 0.6635\n", + "1 epoch 371 average loss: 0.6635\n", + "----------\n", + "1: epoch 372/1000: lr: [0.0008695]\n", + "1/0, train_loss: 0.6606\n", + "1 epoch 372 average loss: 0.6606\n", + "current epoch: 372 current mean dice: 0.3339\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 373/1000: lr: [0.0008740000000000003]\n", + "1/0, train_loss: 0.6621\n", + "1 epoch 373 average loss: 0.6621\n", + "----------\n", + "1: epoch 374/1000: lr: [0.0008785000000000002]\n", + "1/0, train_loss: 0.6636\n", + "1 epoch 374 average loss: 0.6636\n", + "current epoch: 374 current mean dice: 0.3339\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 375/1000: lr: [0.0008830000000000001]\n", + "1/0, train_loss: 0.6648\n", + "1 epoch 375 average loss: 0.6648\n", + "----------\n", + "1: epoch 376/1000: lr: [0.0008875]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.6613\n", + "1 epoch 376 average loss: 0.6613\n", + "current epoch: 376 current mean dice: 0.3338\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 377/1000: lr: [0.0008919999999999999]\n", + "1/0, train_loss: 0.6601\n", + "1 epoch 377 average loss: 0.6601\n", + "----------\n", + "1: epoch 378/1000: lr: [0.0008964999999999998]\n", + "1/0, train_loss: 0.6625\n", + "1 epoch 378 average loss: 0.6625\n", + "current epoch: 378 current mean dice: 0.3337\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 379/1000: lr: [0.0009009999999999998]\n", + "1/0, train_loss: 0.6611\n", + "1 epoch 379 average loss: 0.6611\n", + "----------\n", + "1: epoch 380/1000: lr: [0.0009055000000000001]\n", + "1/0, train_loss: 0.6613\n", + "1 epoch 380 average loss: 0.6613\n", + "current epoch: 380 current mean dice: 0.3336\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 381/1000: lr: [0.00091]\n", + "1/0, train_loss: 0.6610\n", + "1 epoch 381 average loss: 0.6610\n", + "----------\n", + "1: epoch 382/1000: lr: [0.0009145000000000003]\n", + "1/0, train_loss: 0.6599\n", + "1 epoch 382 average loss: 0.6599\n", + "current epoch: 382 current mean dice: 0.3335\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 383/1000: lr: [0.0009190000000000001]\n", + "1/0, train_loss: 0.6586\n", + "1 epoch 383 average loss: 0.6586\n", + "----------\n", + "1: epoch 384/1000: lr: [0.0009235000000000001]\n", + "1/0, train_loss: 0.6596\n", + "1 epoch 384 average loss: 0.6596\n", + "current epoch: 384 current mean dice: 0.3333\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 385/1000: lr: [0.000928]\n", + "1/0, train_loss: 0.6630\n", + "1 epoch 385 average loss: 0.6630\n", + "----------\n", + "1: epoch 386/1000: lr: [0.0009324999999999998]\n", + "1/0, train_loss: 0.6618\n", + "1 epoch 386 average loss: 0.6618\n", + "current epoch: 386 current mean dice: 0.3333\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 387/1000: lr: [0.0009369999999999998]\n", + "1/0, train_loss: 0.6609\n", + "1 epoch 387 average loss: 0.6609\n", + "----------\n", + "1: epoch 388/1000: lr: [0.0009415000000000001]\n", + "1/0, train_loss: 0.6620\n", + "1 epoch 388 average loss: 0.6620\n", + "current epoch: 388 current mean dice: 0.3332\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 389/1000: lr: [0.000946]\n", + "1/0, train_loss: 0.6614\n", + "1 epoch 389 average loss: 0.6614\n", + "----------\n", + "1: epoch 390/1000: lr: [0.0009505000000000003]\n", + "1/0, train_loss: 0.6578\n", + "1 epoch 390 average loss: 0.6578\n", + "current epoch: 390 current mean dice: 0.3330\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 391/1000: lr: [0.0009550000000000002]\n", + "1/0, train_loss: 0.6607\n", + "1 epoch 391 average loss: 0.6607\n", + "----------\n", + "1: epoch 392/1000: lr: [0.0009595000000000001]\n", + "1/0, train_loss: 0.6591\n", + "1 epoch 392 average loss: 0.6591\n", + "current epoch: 392 current mean dice: 0.3329\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 393/1000: lr: [0.000964]\n", + "1/0, train_loss: 0.6630\n", + "1 epoch 393 average loss: 0.6630\n", + "----------\n", + "1: epoch 394/1000: lr: [0.0009684999999999999]\n", + "1/0, train_loss: 0.6595\n", + "1 epoch 394 average loss: 0.6595\n", + "current epoch: 394 current mean dice: 0.3327\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 395/1000: lr: [0.0009729999999999998]\n", + "1/0, train_loss: 0.6597\n", + "1 epoch 395 average loss: 0.6597\n", + "----------\n", + "1: epoch 396/1000: lr: [0.0009775]\n", + "1/0, train_loss: 0.6592\n", + "1 epoch 396 average loss: 0.6592\n", + "current epoch: 396 current mean dice: 0.3325\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 397/1000: lr: [0.000982]\n", + "1/0, train_loss: 0.6561\n", + "1 epoch 397 average loss: 0.6561\n", + "----------\n", + "1: epoch 398/1000: lr: [0.0009865000000000004]\n", + "1/0, train_loss: 0.6624\n", + "1 epoch 398 average loss: 0.6624\n", + "current epoch: 398 current mean dice: 0.3323\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 399/1000: lr: [0.0009910000000000001]\n", + "1/0, train_loss: 0.6560\n", + "1 epoch 399 average loss: 0.6560\n", + "----------\n", + "1: epoch 400/1000: lr: [0.0009955]\n", + "1/0, train_loss: 0.6608\n", + "1 epoch 400 average loss: 0.6608\n", + "current epoch: 400 current mean dice: 0.3322\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 401/1000: lr: [0.001]\n", + "1/0, train_loss: 0.6612\n", + "1 epoch 401 average loss: 0.6612\n", + "----------\n", + "1: epoch 402/1000: lr: [0.0009955]\n", + "1/0, train_loss: 0.6608\n", + "1 epoch 402 average loss: 0.6608\n", + "current epoch: 402 current mean dice: 0.3320\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 403/1000: lr: [0.0009910000000000001]\n", + "1/0, train_loss: 0.6582\n", + "1 epoch 403 average loss: 0.6582\n", + "----------\n", + "1: epoch 404/1000: lr: [0.0009864999999999995]\n", + "1/0, train_loss: 0.6601\n", + "1 epoch 404 average loss: 0.6601\n", + "current epoch: 404 current mean dice: 0.3318\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 405/1000: lr: [0.0009820000000000005]\n", + "1/0, train_loss: 0.6564\n", + "1 epoch 405 average loss: 0.6564\n", + "----------\n", + "1: epoch 406/1000: lr: [0.0009774999999999996]\n", + "1/0, train_loss: 0.6563\n", + "1 epoch 406 average loss: 0.6563\n", + "current epoch: 406 current mean dice: 0.3317\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 407/1000: lr: [0.0009730000000000006]\n", + "1/0, train_loss: 0.6581\n", + "1 epoch 407 average loss: 0.6581\n", + "----------\n", + "1: epoch 408/1000: lr: [0.0009684999999999999]\n", + "1/0, train_loss: 0.6569\n", + "1 epoch 408 average loss: 0.6569\n", + "current epoch: 408 current mean dice: 0.3315\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 409/1000: lr: [0.000964]\n", + "1/0, train_loss: 0.6579\n", + "1 epoch 409 average loss: 0.6579\n", + "----------\n", + "1: epoch 410/1000: lr: [0.0009595000000000001]\n", + "1/0, train_loss: 0.6555\n", + "1 epoch 410 average loss: 0.6555\n", + "current epoch: 410 current mean dice: 0.3314\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 411/1000: lr: [0.0009550000000000002]\n", + "1/0, train_loss: 0.6579\n", + "1 epoch 411 average loss: 0.6579\n", + "----------\n", + "1: epoch 412/1000: lr: [0.0009505000000000003]\n", + "1/0, train_loss: 0.6564\n", + "1 epoch 412 average loss: 0.6564\n", + "current epoch: 412 current mean dice: 0.3312\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 413/1000: lr: [0.0009459999999999996]\n", + "1/0, train_loss: 0.6615\n", + "1 epoch 413 average loss: 0.6615\n", + "----------\n", + "1: epoch 414/1000: lr: [0.0009415000000000005]\n", + "1/0, train_loss: 0.6546\n", + "1 epoch 414 average loss: 0.6546\n", + "current epoch: 414 current mean dice: 0.3310\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 415/1000: lr: [0.0009369999999999998]\n", + "1/0, train_loss: 0.6568\n", + "1 epoch 415 average loss: 0.6568\n", + "----------\n", + "1: epoch 416/1000: lr: [0.0009324999999999998]\n", + "1/0, train_loss: 0.6542\n", + "1 epoch 416 average loss: 0.6542\n", + "current epoch: 416 current mean dice: 0.3309\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 417/1000: lr: [0.000928]\n", + "1/0, train_loss: 0.6562\n", + "1 epoch 417 average loss: 0.6562\n", + "----------\n", + "1: epoch 418/1000: lr: [0.0009235000000000001]\n", + "1/0, train_loss: 0.6560\n", + "1 epoch 418 average loss: 0.6560\n", + "current epoch: 418 current mean dice: 0.3307\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 419/1000: lr: [0.0009190000000000001]\n", + "1/0, train_loss: 0.6554\n", + "1 epoch 419 average loss: 0.6554\n", + "----------\n", + "1: epoch 420/1000: lr: [0.0009144999999999994]\n", + "1/0, train_loss: 0.6557\n", + "1 epoch 420 average loss: 0.6557\n", + "current epoch: 420 current mean dice: 0.3306\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 421/1000: lr: [0.0009100000000000003]\n", + "1/0, train_loss: 0.6536\n", + "1 epoch 421 average loss: 0.6536\n", + "----------\n", + "1: epoch 422/1000: lr: [0.0009054999999999996]\n", + "1/0, train_loss: 0.6593\n", + "1 epoch 422 average loss: 0.6593\n", + "current epoch: 422 current mean dice: 0.3306\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 423/1000: lr: [0.0009010000000000005]\n", + "1/0, train_loss: 0.6543\n", + "1 epoch 423 average loss: 0.6543\n", + "----------\n", + "1: epoch 424/1000: lr: [0.0008964999999999998]\n", + "1/0, train_loss: 0.6547\n", + "1 epoch 424 average loss: 0.6547\n", + "current epoch: 424 current mean dice: 0.3305\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 425/1000: lr: [0.0008919999999999999]\n", + "1/0, train_loss: 0.6589\n", + "1 epoch 425 average loss: 0.6589\n", + "----------\n", + "1: epoch 426/1000: lr: [0.0008875]\n", + "1/0, train_loss: 0.6583\n", + "1 epoch 426 average loss: 0.6583\n", + "current epoch: 426 current mean dice: 0.3305\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 427/1000: lr: [0.0008830000000000001]\n", + "1/0, train_loss: 0.6590\n", + "1 epoch 427 average loss: 0.6590\n", + "----------\n", + "1: epoch 428/1000: lr: [0.0008785000000000002]\n", + "1/0, train_loss: 0.6564\n", + "1 epoch 428 average loss: 0.6564\n", + "current epoch: 428 current mean dice: 0.3304\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 429/1000: lr: [0.0008739999999999996]\n", + "1/0, train_loss: 0.6561\n", + "1 epoch 429 average loss: 0.6561\n", + "----------\n", + "1: epoch 430/1000: lr: [0.0008695000000000004]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.6525\n", + "1 epoch 430 average loss: 0.6525\n", + "current epoch: 430 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 431/1000: lr: [0.0008649999999999997]\n", + "1/0, train_loss: 0.6538\n", + "1 epoch 431 average loss: 0.6538\n", + "----------\n", + "1: epoch 432/1000: lr: [0.0008605000000000006]\n", + "1/0, train_loss: 0.6541\n", + "1 epoch 432 average loss: 0.6541\n", + "current epoch: 432 current mean dice: 0.3302\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 433/1000: lr: [0.0008559999999999999]\n", + "1/0, train_loss: 0.6548\n", + "1 epoch 433 average loss: 0.6548\n", + "----------\n", + "1: epoch 434/1000: lr: [0.0008515]\n", + "1/0, train_loss: 0.6537\n", + "1 epoch 434 average loss: 0.6537\n", + "current epoch: 434 current mean dice: 0.3301\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 435/1000: lr: [0.0008470000000000001]\n", + "1/0, train_loss: 0.6544\n", + "1 epoch 435 average loss: 0.6544\n", + "----------\n", + "1: epoch 436/1000: lr: [0.0008425000000000001]\n", + "1/0, train_loss: 0.6531\n", + "1 epoch 436 average loss: 0.6531\n", + "current epoch: 436 current mean dice: 0.3301\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 437/1000: lr: [0.0008380000000000003]\n", + "1/0, train_loss: 0.6534\n", + "1 epoch 437 average loss: 0.6534\n", + "----------\n", + "1: epoch 438/1000: lr: [0.0008334999999999996]\n", + "1/0, train_loss: 0.6528\n", + "1 epoch 438 average loss: 0.6528\n", + "current epoch: 438 current mean dice: 0.3301\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 439/1000: lr: [0.0008290000000000005]\n", + "1/0, train_loss: 0.6567\n", + "1 epoch 439 average loss: 0.6567\n", + "----------\n", + "1: epoch 440/1000: lr: [0.0008244999999999997]\n", + "1/0, train_loss: 0.6570\n", + "1 epoch 440 average loss: 0.6570\n", + "current epoch: 440 current mean dice: 0.3300\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 441/1000: lr: [0.0008199999999999999]\n", + "1/0, train_loss: 0.6567\n", + "1 epoch 441 average loss: 0.6567\n", + "----------\n", + "1: epoch 442/1000: lr: [0.0008154999999999999]\n", + "1/0, train_loss: 0.6529\n", + "1 epoch 442 average loss: 0.6529\n", + "current epoch: 442 current mean dice: 0.3300\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 443/1000: lr: [0.0008110000000000001]\n", + "1/0, train_loss: 0.6513\n", + "1 epoch 443 average loss: 0.6513\n", + "----------\n", + "1: epoch 444/1000: lr: [0.0008065000000000001]\n", + "1/0, train_loss: 0.6533\n", + "1 epoch 444 average loss: 0.6533\n", + "current epoch: 444 current mean dice: 0.3299\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 445/1000: lr: [0.0008019999999999994]\n", + "1/0, train_loss: 0.6520\n", + "1 epoch 445 average loss: 0.6520\n", + "----------\n", + "1: epoch 446/1000: lr: [0.0007975000000000004]\n", + "1/0, train_loss: 0.6529\n", + "1 epoch 446 average loss: 0.6529\n", + "current epoch: 446 current mean dice: 0.3299\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 447/1000: lr: [0.0007929999999999997]\n", + "1/0, train_loss: 0.6522\n", + "1 epoch 447 average loss: 0.6522\n", + "----------\n", + "1: epoch 448/1000: lr: [0.0007885000000000006]\n", + "1/0, train_loss: 0.6553\n", + "1 epoch 448 average loss: 0.6553\n", + "current epoch: 448 current mean dice: 0.3298\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 449/1000: lr: [0.0007839999999999999]\n", + "1/0, train_loss: 0.6512\n", + "1 epoch 449 average loss: 0.6512\n", + "----------\n", + "1: epoch 450/1000: lr: [0.0007794999999999999]\n", + "1/0, train_loss: 0.6522\n", + "1 epoch 450 average loss: 0.6522\n", + "current epoch: 450 current mean dice: 0.3299\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 451/1000: lr: [0.0007750000000000001]\n", + "1/0, train_loss: 0.6521\n", + "1 epoch 451 average loss: 0.6521\n", + "----------\n", + "1: epoch 452/1000: lr: [0.0007705000000000001]\n", + "1/0, train_loss: 0.6534\n", + "1 epoch 452 average loss: 0.6534\n", + "current epoch: 452 current mean dice: 0.3299\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 453/1000: lr: [0.0007660000000000002]\n", + "1/0, train_loss: 0.6590\n", + "1 epoch 453 average loss: 0.6590\n", + "----------\n", + "1: epoch 454/1000: lr: [0.0007614999999999995]\n", + "1/0, train_loss: 0.6505\n", + "1 epoch 454 average loss: 0.6505\n", + "current epoch: 454 current mean dice: 0.3299\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 455/1000: lr: [0.0007570000000000004]\n", + "1/0, train_loss: 0.6528\n", + "1 epoch 455 average loss: 0.6528\n", + "----------\n", + "1: epoch 456/1000: lr: [0.0007524999999999997]\n", + "1/0, train_loss: 0.6496\n", + "1 epoch 456 average loss: 0.6496\n", + "current epoch: 456 current mean dice: 0.3299\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 457/1000: lr: [0.0007480000000000006]\n", + "1/0, train_loss: 0.6504\n", + "1 epoch 457 average loss: 0.6504\n", + "----------\n", + "1: epoch 458/1000: lr: [0.0007434999999999999]\n", + "1/0, train_loss: 0.6546\n", + "1 epoch 458 average loss: 0.6546\n", + "current epoch: 458 current mean dice: 0.3299\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 459/1000: lr: [0.0007390000000000001]\n", + "1/0, train_loss: 0.6554\n", + "1 epoch 459 average loss: 0.6554\n", + "----------\n", + "1: epoch 460/1000: lr: [0.0007345000000000001]\n", + "1/0, train_loss: 0.6538\n", + "1 epoch 460 average loss: 0.6538\n", + "current epoch: 460 current mean dice: 0.3300\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 461/1000: lr: [0.0007300000000000002]\n", + "1/0, train_loss: 0.6503\n", + "1 epoch 461 average loss: 0.6503\n", + "----------\n", + "1: epoch 462/1000: lr: [0.0007255000000000002]\n", + "1/0, train_loss: 0.6525\n", + "1 epoch 462 average loss: 0.6525\n", + "current epoch: 462 current mean dice: 0.3300\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 463/1000: lr: [0.0007209999999999996]\n", + "1/0, train_loss: 0.6515\n", + "1 epoch 463 average loss: 0.6515\n", + "----------\n", + "1: epoch 464/1000: lr: [0.0007165000000000006]\n", + "1/0, train_loss: 0.6506\n", + "1 epoch 464 average loss: 0.6506\n", + "current epoch: 464 current mean dice: 0.3301\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 465/1000: lr: [0.0007119999999999997]\n", + "1/0, train_loss: 0.6499\n", + "1 epoch 465 average loss: 0.6499\n", + "----------\n", + "1: epoch 466/1000: lr: [0.0007074999999999998]\n", + "1/0, train_loss: 0.6546\n", + "1 epoch 466 average loss: 0.6546\n", + "current epoch: 466 current mean dice: 0.3301\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 467/1000: lr: [0.000703]\n", + "1/0, train_loss: 0.6558\n", + "1 epoch 467 average loss: 0.6558\n", + "----------\n", + "1: epoch 468/1000: lr: [0.0006985000000000001]\n", + "1/0, train_loss: 0.6516\n", + "1 epoch 468 average loss: 0.6516\n", + "current epoch: 468 current mean dice: 0.3301\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 469/1000: lr: [0.0006940000000000002]\n", + "1/0, train_loss: 0.6500\n", + "1 epoch 469 average loss: 0.6500\n", + "----------\n", + "1: epoch 470/1000: lr: [0.0006894999999999995]\n", + "1/0, train_loss: 0.6500\n", + "1 epoch 470 average loss: 0.6500\n", + "current epoch: 470 current mean dice: 0.3302\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 471/1000: lr: [0.0006850000000000003]\n", + "1/0, train_loss: 0.6524\n", + "1 epoch 471 average loss: 0.6524\n", + "----------\n", + "1: epoch 472/1000: lr: [0.0006804999999999997]\n", + "1/0, train_loss: 0.6510\n", + "1 epoch 472 average loss: 0.6510\n", + "current epoch: 472 current mean dice: 0.3302\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 473/1000: lr: [0.0006760000000000006]\n", + "1/0, train_loss: 0.6541\n", + "1 epoch 473 average loss: 0.6541\n", + "----------\n", + "1: epoch 474/1000: lr: [0.0006714999999999998]\n", + "1/0, train_loss: 0.6533\n", + "1 epoch 474 average loss: 0.6533\n", + "current epoch: 474 current mean dice: 0.3301\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 475/1000: lr: [0.000667]\n", + "1/0, train_loss: 0.6509\n", + "1 epoch 475 average loss: 0.6509\n", + "----------\n", + "1: epoch 476/1000: lr: [0.0006625]\n", + "1/0, train_loss: 0.6493\n", + "1 epoch 476 average loss: 0.6493\n", + "current epoch: 476 current mean dice: 0.3301\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 477/1000: lr: [0.0006580000000000002]\n", + "1/0, train_loss: 0.6526\n", + "1 epoch 477 average loss: 0.6526\n", + "----------\n", + "1: epoch 478/1000: lr: [0.0006535000000000002]\n", + "1/0, train_loss: 0.6508\n", + "1 epoch 478 average loss: 0.6508\n", + "current epoch: 478 current mean dice: 0.3301\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 479/1000: lr: [0.0006489999999999995]\n", + "1/0, train_loss: 0.6507\n", + "1 epoch 479 average loss: 0.6507\n", + "----------\n", + "1: epoch 480/1000: lr: [0.0006445000000000004]\n", + "1/0, train_loss: 0.6488\n", + "1 epoch 480 average loss: 0.6488\n", + "current epoch: 480 current mean dice: 0.3301\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 481/1000: lr: [0.0006399999999999997]\n", + "1/0, train_loss: 0.6504\n", + "1 epoch 481 average loss: 0.6504\n", + "----------\n", + "1: epoch 482/1000: lr: [0.0006355000000000006]\n", + "1/0, train_loss: 0.6480\n", + "1 epoch 482 average loss: 0.6480\n", + "current epoch: 482 current mean dice: 0.3301\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 483/1000: lr: [0.0006309999999999998]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.6502\n", + "1 epoch 483 average loss: 0.6502\n", + "----------\n", + "1: epoch 484/1000: lr: [0.0006265]\n", + "1/0, train_loss: 0.6526\n", + "1 epoch 484 average loss: 0.6526\n", + "current epoch: 484 current mean dice: 0.3301\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 485/1000: lr: [0.0006220000000000002]\n", + "1/0, train_loss: 0.6489\n", + "1 epoch 485 average loss: 0.6489\n", + "----------\n", + "1: epoch 486/1000: lr: [0.0006175000000000002]\n", + "1/0, train_loss: 0.6553\n", + "1 epoch 486 average loss: 0.6553\n", + "current epoch: 486 current mean dice: 0.3301\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 487/1000: lr: [0.0006130000000000003]\n", + "1/0, train_loss: 0.6504\n", + "1 epoch 487 average loss: 0.6504\n", + "----------\n", + "1: epoch 488/1000: lr: [0.0006084999999999996]\n", + "1/0, train_loss: 0.6511\n", + "1 epoch 488 average loss: 0.6511\n", + "current epoch: 488 current mean dice: 0.3301\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 489/1000: lr: [0.0006040000000000005]\n", + "1/0, train_loss: 0.6492\n", + "1 epoch 489 average loss: 0.6492\n", + "----------\n", + "1: epoch 490/1000: lr: [0.0005994999999999998]\n", + "1/0, train_loss: 0.6499\n", + "1 epoch 490 average loss: 0.6499\n", + "current epoch: 490 current mean dice: 0.3301\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 491/1000: lr: [0.0005949999999999998]\n", + "1/0, train_loss: 0.6489\n", + "1 epoch 491 average loss: 0.6489\n", + "----------\n", + "1: epoch 492/1000: lr: [0.0005905]\n", + "1/0, train_loss: 0.6513\n", + "1 epoch 492 average loss: 0.6513\n", + "current epoch: 492 current mean dice: 0.3301\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 493/1000: lr: [0.000586]\n", + "1/0, train_loss: 0.6475\n", + "1 epoch 493 average loss: 0.6475\n", + "----------\n", + "1: epoch 494/1000: lr: [0.0005815000000000002]\n", + "1/0, train_loss: 0.6501\n", + "1 epoch 494 average loss: 0.6501\n", + "current epoch: 494 current mean dice: 0.3301\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 495/1000: lr: [0.0005769999999999994]\n", + "1/0, train_loss: 0.6478\n", + "1 epoch 495 average loss: 0.6478\n", + "----------\n", + "1: epoch 496/1000: lr: [0.0005725000000000003]\n", + "1/0, train_loss: 0.6500\n", + "1 epoch 496 average loss: 0.6500\n", + "current epoch: 496 current mean dice: 0.3301\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 497/1000: lr: [0.0005679999999999997]\n", + "1/0, train_loss: 0.6488\n", + "1 epoch 497 average loss: 0.6488\n", + "----------\n", + "1: epoch 498/1000: lr: [0.0005635000000000005]\n", + "1/0, train_loss: 0.6524\n", + "1 epoch 498 average loss: 0.6524\n", + "current epoch: 498 current mean dice: 0.3302\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 499/1000: lr: [0.0005589999999999998]\n", + "1/0, train_loss: 0.6494\n", + "1 epoch 499 average loss: 0.6494\n", + "----------\n", + "1: epoch 500/1000: lr: [0.0005544999999999999]\n", + "1/0, train_loss: 0.6487\n", + "1 epoch 500 average loss: 0.6487\n", + "current epoch: 500 current mean dice: 0.3302\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 501/1000: lr: [0.00055]\n", + "1/0, train_loss: 0.6475\n", + "1 epoch 501 average loss: 0.6475\n", + "----------\n", + "1: epoch 502/1000: lr: [0.0005455000000000002]\n", + "1/0, train_loss: 0.6541\n", + "1 epoch 502 average loss: 0.6541\n", + "current epoch: 502 current mean dice: 0.3302\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 503/1000: lr: [0.0005410000000000002]\n", + "1/0, train_loss: 0.6521\n", + "1 epoch 503 average loss: 0.6521\n", + "----------\n", + "1: epoch 504/1000: lr: [0.0005364999999999995]\n", + "1/0, train_loss: 0.6547\n", + "1 epoch 504 average loss: 0.6547\n", + "current epoch: 504 current mean dice: 0.3302\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 505/1000: lr: [0.0005320000000000004]\n", + "1/0, train_loss: 0.6484\n", + "1 epoch 505 average loss: 0.6484\n", + "----------\n", + "1: epoch 506/1000: lr: [0.0005274999999999998]\n", + "1/0, train_loss: 0.6469\n", + "1 epoch 506 average loss: 0.6469\n", + "current epoch: 506 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 507/1000: lr: [0.0005230000000000007]\n", + "1/0, train_loss: 0.6529\n", + "1 epoch 507 average loss: 0.6529\n", + "----------\n", + "1: epoch 508/1000: lr: [0.0005184999999999999]\n", + "1/0, train_loss: 0.6477\n", + "1 epoch 508 average loss: 0.6477\n", + "current epoch: 508 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 509/1000: lr: [0.000514]\n", + "1/0, train_loss: 0.6507\n", + "1 epoch 509 average loss: 0.6507\n", + "----------\n", + "1: epoch 510/1000: lr: [0.0005095000000000001]\n", + "1/0, train_loss: 0.6490\n", + "1 epoch 510 average loss: 0.6490\n", + "current epoch: 510 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 511/1000: lr: [0.0005050000000000002]\n", + "1/0, train_loss: 0.6494\n", + "1 epoch 511 average loss: 0.6494\n", + "----------\n", + "1: epoch 512/1000: lr: [0.0005005000000000003]\n", + "1/0, train_loss: 0.6498\n", + "1 epoch 512 average loss: 0.6498\n", + "current epoch: 512 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 513/1000: lr: [0.0004959999999999996]\n", + "1/0, train_loss: 0.6568\n", + "1 epoch 513 average loss: 0.6568\n", + "----------\n", + "1: epoch 514/1000: lr: [0.0004915000000000005]\n", + "1/0, train_loss: 0.6513\n", + "1 epoch 514 average loss: 0.6513\n", + "current epoch: 514 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 515/1000: lr: [0.0004869999999999998]\n", + "1/0, train_loss: 0.6500\n", + "1 epoch 515 average loss: 0.6500\n", + "----------\n", + "1: epoch 516/1000: lr: [0.00048249999999999986]\n", + "1/0, train_loss: 0.6457\n", + "1 epoch 516 average loss: 0.6457\n", + "current epoch: 516 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 517/1000: lr: [0.000478]\n", + "1/0, train_loss: 0.6472\n", + "1 epoch 517 average loss: 0.6472\n", + "----------\n", + "1: epoch 518/1000: lr: [0.00047350000000000007]\n", + "1/0, train_loss: 0.6470\n", + "1 epoch 518 average loss: 0.6470\n", + "current epoch: 518 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 519/1000: lr: [0.0004690000000000001]\n", + "1/0, train_loss: 0.6504\n", + "1 epoch 519 average loss: 0.6504\n", + "----------\n", + "1: epoch 520/1000: lr: [0.0004644999999999994]\n", + "1/0, train_loss: 0.6523\n", + "1 epoch 520 average loss: 0.6523\n", + "current epoch: 520 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 521/1000: lr: [0.00046000000000000034]\n", + "1/0, train_loss: 0.6495\n", + "1 epoch 521 average loss: 0.6495\n", + "----------\n", + "1: epoch 522/1000: lr: [0.00045549999999999963]\n", + "1/0, train_loss: 0.6477\n", + "1 epoch 522 average loss: 0.6477\n", + "current epoch: 522 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 523/1000: lr: [0.00045100000000000055]\n", + "1/0, train_loss: 0.6495\n", + "1 epoch 523 average loss: 0.6495\n", + "----------\n", + "1: epoch 524/1000: lr: [0.00044649999999999985]\n", + "1/0, train_loss: 0.6461\n", + "1 epoch 524 average loss: 0.6461\n", + "current epoch: 524 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 525/1000: lr: [0.0004419999999999999]\n", + "1/0, train_loss: 0.6529\n", + "1 epoch 525 average loss: 0.6529\n", + "----------\n", + "1: epoch 526/1000: lr: [0.00043750000000000006]\n", + "1/0, train_loss: 0.6506\n", + "1 epoch 526 average loss: 0.6506\n", + "current epoch: 526 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 527/1000: lr: [0.0004330000000000001]\n", + "1/0, train_loss: 0.6514\n", + "1 epoch 527 average loss: 0.6514\n", + "----------\n", + "1: epoch 528/1000: lr: [0.0004285000000000003]\n", + "1/0, train_loss: 0.6474\n", + "1 epoch 528 average loss: 0.6474\n", + "current epoch: 528 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 529/1000: lr: [0.00042399999999999957]\n", + "1/0, train_loss: 0.6476\n", + "1 epoch 529 average loss: 0.6476\n", + "----------\n", + "1: epoch 530/1000: lr: [0.0004195000000000004]\n", + "1/0, train_loss: 0.6498\n", + "1 epoch 530 average loss: 0.6498\n", + "current epoch: 530 current mean dice: 0.3302\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 531/1000: lr: [0.0004149999999999997]\n", + "1/0, train_loss: 0.6522\n", + "1 epoch 531 average loss: 0.6522\n", + "----------\n", + "1: epoch 532/1000: lr: [0.0004105000000000006]\n", + "1/0, train_loss: 0.6491\n", + "1 epoch 532 average loss: 0.6491\n", + "current epoch: 532 current mean dice: 0.3302\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 533/1000: lr: [0.0004059999999999999]\n", + "1/0, train_loss: 0.6484\n", + "1 epoch 533 average loss: 0.6484\n", + "----------\n", + "1: epoch 534/1000: lr: [0.00040150000000000006]\n", + "1/0, train_loss: 0.6534\n", + "1 epoch 534 average loss: 0.6534\n", + "current epoch: 534 current mean dice: 0.3302\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 535/1000: lr: [0.0003970000000000001]\n", + "1/0, train_loss: 0.6459\n", + "1 epoch 535 average loss: 0.6459\n", + "----------\n", + "1: epoch 536/1000: lr: [0.00039250000000000016]\n", + "1/0, train_loss: 0.6479\n", + "1 epoch 536 average loss: 0.6479\n", + "current epoch: 536 current mean dice: 0.3302\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 537/1000: lr: [0.0003880000000000003]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.6469\n", + "1 epoch 537 average loss: 0.6469\n", + "----------\n", + "1: epoch 538/1000: lr: [0.0003834999999999996]\n", + "1/0, train_loss: 0.6508\n", + "1 epoch 538 average loss: 0.6508\n", + "current epoch: 538 current mean dice: 0.3302\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 539/1000: lr: [0.00037900000000000054]\n", + "1/0, train_loss: 0.6487\n", + "1 epoch 539 average loss: 0.6487\n", + "----------\n", + "1: epoch 540/1000: lr: [0.00037449999999999983]\n", + "1/0, train_loss: 0.6467\n", + "1 epoch 540 average loss: 0.6467\n", + "current epoch: 540 current mean dice: 0.3302\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 541/1000: lr: [0.0003699999999999999]\n", + "1/0, train_loss: 0.6491\n", + "1 epoch 541 average loss: 0.6491\n", + "----------\n", + "1: epoch 542/1000: lr: [0.00036549999999999994]\n", + "1/0, train_loss: 0.6489\n", + "1 epoch 542 average loss: 0.6489\n", + "current epoch: 542 current mean dice: 0.3302\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 543/1000: lr: [0.0003610000000000001]\n", + "1/0, train_loss: 0.6479\n", + "1 epoch 543 average loss: 0.6479\n", + "----------\n", + "1: epoch 544/1000: lr: [0.00035650000000000015]\n", + "1/0, train_loss: 0.6532\n", + "1 epoch 544 average loss: 0.6532\n", + "current epoch: 544 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 545/1000: lr: [0.00035199999999999945]\n", + "1/0, train_loss: 0.6527\n", + "1 epoch 545 average loss: 0.6527\n", + "----------\n", + "1: epoch 546/1000: lr: [0.00034750000000000037]\n", + "1/0, train_loss: 0.6508\n", + "1 epoch 546 average loss: 0.6508\n", + "current epoch: 546 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 547/1000: lr: [0.00034299999999999966]\n", + "1/0, train_loss: 0.6483\n", + "1 epoch 547 average loss: 0.6483\n", + "----------\n", + "1: epoch 548/1000: lr: [0.0003385000000000006]\n", + "1/0, train_loss: 0.6475\n", + "1 epoch 548 average loss: 0.6475\n", + "current epoch: 548 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 549/1000: lr: [0.0003339999999999999]\n", + "1/0, train_loss: 0.6467\n", + "1 epoch 549 average loss: 0.6467\n", + "----------\n", + "1: epoch 550/1000: lr: [0.00032949999999999993]\n", + "1/0, train_loss: 0.6471\n", + "1 epoch 550 average loss: 0.6471\n", + "current epoch: 550 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 551/1000: lr: [0.000325]\n", + "1/0, train_loss: 0.6468\n", + "1 epoch 551 average loss: 0.6468\n", + "----------\n", + "1: epoch 552/1000: lr: [0.00032050000000000015]\n", + "1/0, train_loss: 0.6490\n", + "1 epoch 552 average loss: 0.6490\n", + "current epoch: 552 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 553/1000: lr: [0.0003160000000000002]\n", + "1/0, train_loss: 0.6519\n", + "1 epoch 553 average loss: 0.6519\n", + "----------\n", + "1: epoch 554/1000: lr: [0.0003114999999999995]\n", + "1/0, train_loss: 0.6486\n", + "1 epoch 554 average loss: 0.6486\n", + "current epoch: 554 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 555/1000: lr: [0.0003070000000000004]\n", + "1/0, train_loss: 0.6510\n", + "1 epoch 555 average loss: 0.6510\n", + "----------\n", + "1: epoch 556/1000: lr: [0.0003024999999999997]\n", + "1/0, train_loss: 0.6488\n", + "1 epoch 556 average loss: 0.6488\n", + "current epoch: 556 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 557/1000: lr: [0.00029800000000000063]\n", + "1/0, train_loss: 0.6478\n", + "1 epoch 557 average loss: 0.6478\n", + "----------\n", + "1: epoch 558/1000: lr: [0.0002934999999999999]\n", + "1/0, train_loss: 0.6474\n", + "1 epoch 558 average loss: 0.6474\n", + "current epoch: 558 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 559/1000: lr: [0.000289]\n", + "1/0, train_loss: 0.6468\n", + "1 epoch 559 average loss: 0.6468\n", + "----------\n", + "1: epoch 560/1000: lr: [0.00028450000000000014]\n", + "1/0, train_loss: 0.6529\n", + "1 epoch 560 average loss: 0.6529\n", + "current epoch: 560 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 561/1000: lr: [0.0002800000000000002]\n", + "1/0, train_loss: 0.6501\n", + "1 epoch 561 average loss: 0.6501\n", + "----------\n", + "1: epoch 562/1000: lr: [0.00027550000000000025]\n", + "1/0, train_loss: 0.6484\n", + "1 epoch 562 average loss: 0.6484\n", + "current epoch: 562 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 563/1000: lr: [0.00027099999999999954]\n", + "1/0, train_loss: 0.6478\n", + "1 epoch 563 average loss: 0.6478\n", + "----------\n", + "1: epoch 564/1000: lr: [0.00026650000000000046]\n", + "1/0, train_loss: 0.6466\n", + "1 epoch 564 average loss: 0.6466\n", + "current epoch: 564 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 565/1000: lr: [0.00026199999999999975]\n", + "1/0, train_loss: 0.6474\n", + "1 epoch 565 average loss: 0.6474\n", + "----------\n", + "1: epoch 566/1000: lr: [0.0002574999999999999]\n", + "1/0, train_loss: 0.6468\n", + "1 epoch 566 average loss: 0.6468\n", + "current epoch: 566 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 567/1000: lr: [0.00025299999999999997]\n", + "1/0, train_loss: 0.6552\n", + "1 epoch 567 average loss: 0.6552\n", + "----------\n", + "1: epoch 568/1000: lr: [0.0002485]\n", + "1/0, train_loss: 0.6495\n", + "1 epoch 568 average loss: 0.6495\n", + "current epoch: 568 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 569/1000: lr: [0.00024400000000000018]\n", + "1/0, train_loss: 0.6469\n", + "1 epoch 569 average loss: 0.6469\n", + "----------\n", + "1: epoch 570/1000: lr: [0.00023949999999999948]\n", + "1/0, train_loss: 0.6478\n", + "1 epoch 570 average loss: 0.6478\n", + "current epoch: 570 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 571/1000: lr: [0.0002350000000000004]\n", + "1/0, train_loss: 0.6463\n", + "1 epoch 571 average loss: 0.6463\n", + "----------\n", + "1: epoch 572/1000: lr: [0.0002304999999999997]\n", + "1/0, train_loss: 0.6461\n", + "1 epoch 572 average loss: 0.6461\n", + "current epoch: 572 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 573/1000: lr: [0.0002260000000000005]\n", + "1/0, train_loss: 0.6510\n", + "1 epoch 573 average loss: 0.6510\n", + "----------\n", + "1: epoch 574/1000: lr: [0.0002214999999999998]\n", + "1/0, train_loss: 0.6496\n", + "1 epoch 574 average loss: 0.6496\n", + "current epoch: 574 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 575/1000: lr: [0.00021699999999999996]\n", + "1/0, train_loss: 0.6477\n", + "1 epoch 575 average loss: 0.6477\n", + "----------\n", + "1: epoch 576/1000: lr: [0.00021250000000000002]\n", + "1/0, train_loss: 0.6494\n", + "1 epoch 576 average loss: 0.6494\n", + "current epoch: 576 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 577/1000: lr: [0.00020800000000000018]\n", + "1/0, train_loss: 0.6492\n", + "1 epoch 577 average loss: 0.6492\n", + "----------\n", + "1: epoch 578/1000: lr: [0.00020350000000000023]\n", + "1/0, train_loss: 0.6501\n", + "1 epoch 578 average loss: 0.6501\n", + "current epoch: 578 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 579/1000: lr: [0.00019899999999999952]\n", + "1/0, train_loss: 0.6482\n", + "1 epoch 579 average loss: 0.6482\n", + "----------\n", + "1: epoch 580/1000: lr: [0.00019450000000000045]\n", + "1/0, train_loss: 0.6502\n", + "1 epoch 580 average loss: 0.6502\n", + "current epoch: 580 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 581/1000: lr: [0.00018999999999999974]\n", + "1/0, train_loss: 0.6479\n", + "1 epoch 581 average loss: 0.6479\n", + "----------\n", + "1: epoch 582/1000: lr: [0.00018550000000000066]\n", + "1/0, train_loss: 0.6484\n", + "1 epoch 582 average loss: 0.6484\n", + "current epoch: 582 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 583/1000: lr: [0.00018099999999999995]\n", + "1/0, train_loss: 0.6465\n", + "1 epoch 583 average loss: 0.6465\n", + "----------\n", + "1: epoch 584/1000: lr: [0.0001765]\n", + "1/0, train_loss: 0.6494\n", + "1 epoch 584 average loss: 0.6494\n", + "current epoch: 584 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 585/1000: lr: [0.00017200000000000006]\n", + "1/0, train_loss: 0.6461\n", + "1 epoch 585 average loss: 0.6461\n", + "----------\n", + "1: epoch 586/1000: lr: [0.00016750000000000022]\n", + "1/0, train_loss: 0.6481\n", + "1 epoch 586 average loss: 0.6481\n", + "current epoch: 586 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 587/1000: lr: [0.00016300000000000028]\n", + "1/0, train_loss: 0.6479\n", + "1 epoch 587 average loss: 0.6479\n", + "----------\n", + "1: epoch 588/1000: lr: [0.00015849999999999957]\n", + "1/0, train_loss: 0.6456\n", + "1 epoch 588 average loss: 0.6456\n", + "current epoch: 588 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 589/1000: lr: [0.0001540000000000005]\n", + "1/0, train_loss: 0.6510\n", + "1 epoch 589 average loss: 0.6510\n", + "----------\n", + "1: epoch 590/1000: lr: [0.00014949999999999978]\n", + "1/0, train_loss: 0.6453\n", + "1 epoch 590 average loss: 0.6453\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "current epoch: 590 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 591/1000: lr: [0.00014499999999999984]\n", + "1/0, train_loss: 0.6477\n", + "1 epoch 591 average loss: 0.6477\n", + "----------\n", + "1: epoch 592/1000: lr: [0.0001405]\n", + "1/0, train_loss: 0.6461\n", + "1 epoch 592 average loss: 0.6461\n", + "current epoch: 592 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 593/1000: lr: [0.00013600000000000005]\n", + "1/0, train_loss: 0.6509\n", + "1 epoch 593 average loss: 0.6509\n", + "----------\n", + "1: epoch 594/1000: lr: [0.00013150000000000021]\n", + "1/0, train_loss: 0.6468\n", + "1 epoch 594 average loss: 0.6468\n", + "current epoch: 594 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 595/1000: lr: [0.0001269999999999995]\n", + "1/0, train_loss: 0.6468\n", + "1 epoch 595 average loss: 0.6468\n", + "----------\n", + "1: epoch 596/1000: lr: [0.00012250000000000032]\n", + "1/0, train_loss: 0.6470\n", + "1 epoch 596 average loss: 0.6470\n", + "current epoch: 596 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 597/1000: lr: [0.00011799999999999962]\n", + "1/0, train_loss: 0.6518\n", + "1 epoch 597 average loss: 0.6518\n", + "----------\n", + "1: epoch 598/1000: lr: [0.00011350000000000054]\n", + "1/0, train_loss: 0.6464\n", + "1 epoch 598 average loss: 0.6464\n", + "current epoch: 598 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 599/1000: lr: [0.00010899999999999983]\n", + "1/0, train_loss: 0.6485\n", + "1 epoch 599 average loss: 0.6485\n", + "----------\n", + "1: epoch 600/1000: lr: [0.00010449999999999999]\n", + "1/0, train_loss: 0.6509\n", + "1 epoch 600 average loss: 0.6509\n", + "current epoch: 600 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 601/1000: lr: [0.00010000000000000005]\n", + "1/0, train_loss: 0.6485\n", + "1 epoch 601 average loss: 0.6485\n", + "----------\n", + "1: epoch 602/1000: lr: [0.00010449999999999999]\n", + "1/0, train_loss: 0.6502\n", + "1 epoch 602 average loss: 0.6502\n", + "current epoch: 602 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 603/1000: lr: [0.00010899999999999983]\n", + "1/0, train_loss: 0.6488\n", + "1 epoch 603 average loss: 0.6488\n", + "----------\n", + "1: epoch 604/1000: lr: [0.00011350000000000054]\n", + "1/0, train_loss: 0.6453\n", + "1 epoch 604 average loss: 0.6453\n", + "current epoch: 604 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 605/1000: lr: [0.00011799999999999962]\n", + "1/0, train_loss: 0.6466\n", + "1 epoch 605 average loss: 0.6466\n", + "----------\n", + "1: epoch 606/1000: lr: [0.00012250000000000032]\n", + "1/0, train_loss: 0.6457\n", + "1 epoch 606 average loss: 0.6457\n", + "current epoch: 606 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 607/1000: lr: [0.0001269999999999995]\n", + "1/0, train_loss: 0.6524\n", + "1 epoch 607 average loss: 0.6524\n", + "----------\n", + "1: epoch 608/1000: lr: [0.00013150000000000021]\n", + "1/0, train_loss: 0.6516\n", + "1 epoch 608 average loss: 0.6516\n", + "current epoch: 608 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 609/1000: lr: [0.00013600000000000005]\n", + "1/0, train_loss: 0.6495\n", + "1 epoch 609 average loss: 0.6495\n", + "----------\n", + "1: epoch 610/1000: lr: [0.0001405]\n", + "1/0, train_loss: 0.6499\n", + "1 epoch 610 average loss: 0.6499\n", + "current epoch: 610 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 611/1000: lr: [0.00014499999999999984]\n", + "1/0, train_loss: 0.6476\n", + "1 epoch 611 average loss: 0.6476\n", + "----------\n", + "1: epoch 612/1000: lr: [0.00014949999999999978]\n", + "1/0, train_loss: 0.6491\n", + "1 epoch 612 average loss: 0.6491\n", + "current epoch: 612 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 613/1000: lr: [0.0001540000000000005]\n", + "1/0, train_loss: 0.6472\n", + "1 epoch 613 average loss: 0.6472\n", + "----------\n", + "1: epoch 614/1000: lr: [0.00015849999999999957]\n", + "1/0, train_loss: 0.6458\n", + "1 epoch 614 average loss: 0.6458\n", + "current epoch: 614 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 615/1000: lr: [0.00016300000000000028]\n", + "1/0, train_loss: 0.6456\n", + "1 epoch 615 average loss: 0.6456\n", + "----------\n", + "1: epoch 616/1000: lr: [0.00016750000000000022]\n", + "1/0, train_loss: 0.6452\n", + "1 epoch 616 average loss: 0.6452\n", + "current epoch: 616 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 617/1000: lr: [0.00017200000000000006]\n", + "1/0, train_loss: 0.6461\n", + "1 epoch 617 average loss: 0.6461\n", + "----------\n", + "1: epoch 618/1000: lr: [0.0001765]\n", + "1/0, train_loss: 0.6502\n", + "1 epoch 618 average loss: 0.6502\n", + "current epoch: 618 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 619/1000: lr: [0.00018099999999999995]\n", + "1/0, train_loss: 0.6487\n", + "1 epoch 619 average loss: 0.6487\n", + "----------\n", + "1: epoch 620/1000: lr: [0.00018550000000000066]\n", + "1/0, train_loss: 0.6480\n", + "1 epoch 620 average loss: 0.6480\n", + "current epoch: 620 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 621/1000: lr: [0.00018999999999999974]\n", + "1/0, train_loss: 0.6511\n", + "1 epoch 621 average loss: 0.6511\n", + "----------\n", + "1: epoch 622/1000: lr: [0.00019450000000000045]\n", + "1/0, train_loss: 0.6484\n", + "1 epoch 622 average loss: 0.6484\n", + "current epoch: 622 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 623/1000: lr: [0.00019899999999999952]\n", + "1/0, train_loss: 0.6454\n", + "1 epoch 623 average loss: 0.6454\n", + "----------\n", + "1: epoch 624/1000: lr: [0.00020350000000000023]\n", + "1/0, train_loss: 0.6506\n", + "1 epoch 624 average loss: 0.6506\n", + "current epoch: 624 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 625/1000: lr: [0.00020800000000000018]\n", + "1/0, train_loss: 0.6480\n", + "1 epoch 625 average loss: 0.6480\n", + "----------\n", + "1: epoch 626/1000: lr: [0.00021250000000000002]\n", + "1/0, train_loss: 0.6456\n", + "1 epoch 626 average loss: 0.6456\n", + "current epoch: 626 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 627/1000: lr: [0.00021699999999999996]\n", + "1/0, train_loss: 0.6473\n", + "1 epoch 627 average loss: 0.6473\n", + "----------\n", + "1: epoch 628/1000: lr: [0.0002214999999999998]\n", + "1/0, train_loss: 0.6478\n", + "1 epoch 628 average loss: 0.6478\n", + "current epoch: 628 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 629/1000: lr: [0.0002260000000000005]\n", + "1/0, train_loss: 0.6540\n", + "1 epoch 629 average loss: 0.6540\n", + "----------\n", + "1: epoch 630/1000: lr: [0.0002304999999999997]\n", + "1/0, train_loss: 0.6538\n", + "1 epoch 630 average loss: 0.6538\n", + "current epoch: 630 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 631/1000: lr: [0.0002350000000000004]\n", + "1/0, train_loss: 0.6467\n", + "1 epoch 631 average loss: 0.6467\n", + "----------\n", + "1: epoch 632/1000: lr: [0.00023949999999999948]\n", + "1/0, train_loss: 0.6471\n", + "1 epoch 632 average loss: 0.6471\n", + "current epoch: 632 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 633/1000: lr: [0.00024400000000000018]\n", + "1/0, train_loss: 0.6500\n", + "1 epoch 633 average loss: 0.6500\n", + "----------\n", + "1: epoch 634/1000: lr: [0.0002485]\n", + "1/0, train_loss: 0.6496\n", + "1 epoch 634 average loss: 0.6496\n", + "current epoch: 634 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 635/1000: lr: [0.00025299999999999997]\n", + "1/0, train_loss: 0.6478\n", + "1 epoch 635 average loss: 0.6478\n", + "----------\n", + "1: epoch 636/1000: lr: [0.0002574999999999999]\n", + "1/0, train_loss: 0.6526\n", + "1 epoch 636 average loss: 0.6526\n", + "current epoch: 636 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 637/1000: lr: [0.00026199999999999975]\n", + "1/0, train_loss: 0.6461\n", + "1 epoch 637 average loss: 0.6461\n", + "----------\n", + "1: epoch 638/1000: lr: [0.00026650000000000046]\n", + "1/0, train_loss: 0.6441\n", + "1 epoch 638 average loss: 0.6441\n", + "current epoch: 638 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 639/1000: lr: [0.00027099999999999954]\n", + "1/0, train_loss: 0.6496\n", + "1 epoch 639 average loss: 0.6496\n", + "----------\n", + "1: epoch 640/1000: lr: [0.00027550000000000025]\n", + "1/0, train_loss: 0.6496\n", + "1 epoch 640 average loss: 0.6496\n", + "current epoch: 640 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 641/1000: lr: [0.0002800000000000002]\n", + "1/0, train_loss: 0.6458\n", + "1 epoch 641 average loss: 0.6458\n", + "----------\n", + "1: epoch 642/1000: lr: [0.00028450000000000014]\n", + "1/0, train_loss: 0.6484\n", + "1 epoch 642 average loss: 0.6484\n", + "current epoch: 642 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 643/1000: lr: [0.000289]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.6477\n", + "1 epoch 643 average loss: 0.6477\n", + "----------\n", + "1: epoch 644/1000: lr: [0.0002934999999999999]\n", + "1/0, train_loss: 0.6473\n", + "1 epoch 644 average loss: 0.6473\n", + "current epoch: 644 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 645/1000: lr: [0.00029800000000000063]\n", + "1/0, train_loss: 0.6449\n", + "1 epoch 645 average loss: 0.6449\n", + "----------\n", + "1: epoch 646/1000: lr: [0.0003024999999999997]\n", + "1/0, train_loss: 0.6475\n", + "1 epoch 646 average loss: 0.6475\n", + "current epoch: 646 current mean dice: 0.3304\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 647/1000: lr: [0.0003070000000000004]\n", + "1/0, train_loss: 0.6480\n", + "1 epoch 647 average loss: 0.6480\n", + "----------\n", + "1: epoch 648/1000: lr: [0.0003114999999999995]\n", + "1/0, train_loss: 0.6472\n", + "1 epoch 648 average loss: 0.6472\n", + "current epoch: 648 current mean dice: 0.3304\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 649/1000: lr: [0.0003160000000000002]\n", + "1/0, train_loss: 0.6478\n", + "1 epoch 649 average loss: 0.6478\n", + "----------\n", + "1: epoch 650/1000: lr: [0.00032050000000000015]\n", + "1/0, train_loss: 0.6474\n", + "1 epoch 650 average loss: 0.6474\n", + "current epoch: 650 current mean dice: 0.3304\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 651/1000: lr: [0.000325]\n", + "1/0, train_loss: 0.6472\n", + "1 epoch 651 average loss: 0.6472\n", + "----------\n", + "1: epoch 652/1000: lr: [0.00032949999999999993]\n", + "1/0, train_loss: 0.6469\n", + "1 epoch 652 average loss: 0.6469\n", + "current epoch: 652 current mean dice: 0.3304\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 653/1000: lr: [0.0003339999999999999]\n", + "1/0, train_loss: 0.6499\n", + "1 epoch 653 average loss: 0.6499\n", + "----------\n", + "1: epoch 654/1000: lr: [0.0003385000000000006]\n", + "1/0, train_loss: 0.6447\n", + "1 epoch 654 average loss: 0.6447\n", + "current epoch: 654 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 655/1000: lr: [0.00034299999999999966]\n", + "1/0, train_loss: 0.6522\n", + "1 epoch 655 average loss: 0.6522\n", + "----------\n", + "1: epoch 656/1000: lr: [0.00034750000000000037]\n", + "1/0, train_loss: 0.6528\n", + "1 epoch 656 average loss: 0.6528\n", + "current epoch: 656 current mean dice: 0.3304\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 657/1000: lr: [0.00035199999999999945]\n", + "1/0, train_loss: 0.6460\n", + "1 epoch 657 average loss: 0.6460\n", + "----------\n", + "1: epoch 658/1000: lr: [0.00035650000000000015]\n", + "1/0, train_loss: 0.6458\n", + "1 epoch 658 average loss: 0.6458\n", + "current epoch: 658 current mean dice: 0.3304\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 659/1000: lr: [0.0003610000000000001]\n", + "1/0, train_loss: 0.6440\n", + "1 epoch 659 average loss: 0.6440\n", + "----------\n", + "1: epoch 660/1000: lr: [0.00036549999999999994]\n", + "1/0, train_loss: 0.6477\n", + "1 epoch 660 average loss: 0.6477\n", + "current epoch: 660 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 661/1000: lr: [0.0003699999999999999]\n", + "1/0, train_loss: 0.6453\n", + "1 epoch 661 average loss: 0.6453\n", + "----------\n", + "1: epoch 662/1000: lr: [0.00037449999999999983]\n", + "1/0, train_loss: 0.6467\n", + "1 epoch 662 average loss: 0.6467\n", + "current epoch: 662 current mean dice: 0.3303\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 663/1000: lr: [0.00037900000000000054]\n", + "1/0, train_loss: 0.6463\n", + "1 epoch 663 average loss: 0.6463\n", + "----------\n", + "1: epoch 664/1000: lr: [0.0003834999999999996]\n", + "1/0, train_loss: 0.6457\n", + "1 epoch 664 average loss: 0.6457\n", + "current epoch: 664 current mean dice: 0.3304\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 665/1000: lr: [0.0003880000000000003]\n", + "1/0, train_loss: 0.6508\n", + "1 epoch 665 average loss: 0.6508\n", + "----------\n", + "1: epoch 666/1000: lr: [0.00039250000000000016]\n", + "1/0, train_loss: 0.6471\n", + "1 epoch 666 average loss: 0.6471\n", + "current epoch: 666 current mean dice: 0.3304\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 667/1000: lr: [0.0003970000000000001]\n", + "1/0, train_loss: 0.6469\n", + "1 epoch 667 average loss: 0.6469\n", + "----------\n", + "1: epoch 668/1000: lr: [0.00040150000000000006]\n", + "1/0, train_loss: 0.6459\n", + "1 epoch 668 average loss: 0.6459\n", + "current epoch: 668 current mean dice: 0.3304\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 669/1000: lr: [0.0004059999999999999]\n", + "1/0, train_loss: 0.6523\n", + "1 epoch 669 average loss: 0.6523\n", + "----------\n", + "1: epoch 670/1000: lr: [0.0004105000000000006]\n", + "1/0, train_loss: 0.6447\n", + "1 epoch 670 average loss: 0.6447\n", + "current epoch: 670 current mean dice: 0.3304\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 671/1000: lr: [0.0004149999999999997]\n", + "1/0, train_loss: 0.6479\n", + "1 epoch 671 average loss: 0.6479\n", + "----------\n", + "1: epoch 672/1000: lr: [0.0004195000000000004]\n", + "1/0, train_loss: 0.6479\n", + "1 epoch 672 average loss: 0.6479\n", + "current epoch: 672 current mean dice: 0.3304\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 673/1000: lr: [0.00042399999999999957]\n", + "1/0, train_loss: 0.6469\n", + "1 epoch 673 average loss: 0.6469\n", + "----------\n", + "1: epoch 674/1000: lr: [0.0004285000000000003]\n", + "1/0, train_loss: 0.6523\n", + "1 epoch 674 average loss: 0.6523\n", + "current epoch: 674 current mean dice: 0.3304\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 675/1000: lr: [0.0004330000000000001]\n", + "1/0, train_loss: 0.6458\n", + "1 epoch 675 average loss: 0.6458\n", + "----------\n", + "1: epoch 676/1000: lr: [0.00043750000000000006]\n", + "1/0, train_loss: 0.6440\n", + "1 epoch 676 average loss: 0.6440\n", + "current epoch: 676 current mean dice: 0.3304\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 677/1000: lr: [0.0004419999999999999]\n", + "1/0, train_loss: 0.6464\n", + "1 epoch 677 average loss: 0.6464\n", + "----------\n", + "1: epoch 678/1000: lr: [0.00044649999999999985]\n", + "1/0, train_loss: 0.6492\n", + "1 epoch 678 average loss: 0.6492\n", + "current epoch: 678 current mean dice: 0.3304\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 679/1000: lr: [0.00045100000000000055]\n", + "1/0, train_loss: 0.6454\n", + "1 epoch 679 average loss: 0.6454\n", + "----------\n", + "1: epoch 680/1000: lr: [0.00045549999999999963]\n", + "1/0, train_loss: 0.6473\n", + "1 epoch 680 average loss: 0.6473\n", + "current epoch: 680 current mean dice: 0.3304\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 681/1000: lr: [0.00046000000000000034]\n", + "1/0, train_loss: 0.6517\n", + "1 epoch 681 average loss: 0.6517\n", + "----------\n", + "1: epoch 682/1000: lr: [0.0004644999999999994]\n", + "1/0, train_loss: 0.6461\n", + "1 epoch 682 average loss: 0.6461\n", + "current epoch: 682 current mean dice: 0.3304\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 683/1000: lr: [0.0004690000000000001]\n", + "1/0, train_loss: 0.6522\n", + "1 epoch 683 average loss: 0.6522\n", + "----------\n", + "1: epoch 684/1000: lr: [0.00047350000000000007]\n", + "1/0, train_loss: 0.6509\n", + "1 epoch 684 average loss: 0.6509\n", + "current epoch: 684 current mean dice: 0.3304\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 685/1000: lr: [0.000478]\n", + "1/0, train_loss: 0.6515\n", + "1 epoch 685 average loss: 0.6515\n", + "----------\n", + "1: epoch 686/1000: lr: [0.00048249999999999986]\n", + "1/0, train_loss: 0.6475\n", + "1 epoch 686 average loss: 0.6475\n", + "current epoch: 686 current mean dice: 0.3304\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 687/1000: lr: [0.0004869999999999998]\n", + "1/0, train_loss: 0.6461\n", + "1 epoch 687 average loss: 0.6461\n", + "----------\n", + "1: epoch 688/1000: lr: [0.0004915000000000005]\n", + "1/0, train_loss: 0.6519\n", + "1 epoch 688 average loss: 0.6519\n", + "current epoch: 688 current mean dice: 0.3304\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 689/1000: lr: [0.0004959999999999996]\n", + "1/0, train_loss: 0.6498\n", + "1 epoch 689 average loss: 0.6498\n", + "----------\n", + "1: epoch 690/1000: lr: [0.0005005000000000003]\n", + "1/0, train_loss: 0.6447\n", + "1 epoch 690 average loss: 0.6447\n", + "current epoch: 690 current mean dice: 0.3304\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 691/1000: lr: [0.0005050000000000002]\n", + "1/0, train_loss: 0.6457\n", + "1 epoch 691 average loss: 0.6457\n", + "----------\n", + "1: epoch 692/1000: lr: [0.0005095000000000001]\n", + "1/0, train_loss: 0.6458\n", + "1 epoch 692 average loss: 0.6458\n", + "current epoch: 692 current mean dice: 0.3304\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 693/1000: lr: [0.000514]\n", + "1/0, train_loss: 0.6440\n", + "1 epoch 693 average loss: 0.6440\n", + "----------\n", + "1: epoch 694/1000: lr: [0.0005184999999999999]\n", + "1/0, train_loss: 0.6434\n", + "1 epoch 694 average loss: 0.6434\n", + "current epoch: 694 current mean dice: 0.3304\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 695/1000: lr: [0.0005230000000000007]\n", + "1/0, train_loss: 0.6485\n", + "1 epoch 695 average loss: 0.6485\n", + "----------\n", + "1: epoch 696/1000: lr: [0.0005274999999999998]\n", + "1/0, train_loss: 0.6452\n", + "1 epoch 696 average loss: 0.6452\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "current epoch: 696 current mean dice: 0.3304\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 697/1000: lr: [0.0005320000000000004]\n", + "1/0, train_loss: 0.6442\n", + "1 epoch 697 average loss: 0.6442\n", + "----------\n", + "1: epoch 698/1000: lr: [0.0005364999999999995]\n", + "1/0, train_loss: 0.6434\n", + "1 epoch 698 average loss: 0.6434\n", + "current epoch: 698 current mean dice: 0.3304\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 699/1000: lr: [0.0005410000000000002]\n", + "1/0, train_loss: 0.6453\n", + "1 epoch 699 average loss: 0.6453\n", + "----------\n", + "1: epoch 700/1000: lr: [0.0005455000000000002]\n", + "1/0, train_loss: 0.6433\n", + "1 epoch 700 average loss: 0.6433\n", + "current epoch: 700 current mean dice: 0.3305\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 701/1000: lr: [0.00055]\n", + "1/0, train_loss: 0.6455\n", + "1 epoch 701 average loss: 0.6455\n", + "----------\n", + "1: epoch 702/1000: lr: [0.0005544999999999999]\n", + "1/0, train_loss: 0.6441\n", + "1 epoch 702 average loss: 0.6441\n", + "current epoch: 702 current mean dice: 0.3305\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 703/1000: lr: [0.0005589999999999998]\n", + "1/0, train_loss: 0.6473\n", + "1 epoch 703 average loss: 0.6473\n", + "----------\n", + "1: epoch 704/1000: lr: [0.0005635000000000005]\n", + "1/0, train_loss: 0.6484\n", + "1 epoch 704 average loss: 0.6484\n", + "current epoch: 704 current mean dice: 0.3305\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 705/1000: lr: [0.0005679999999999997]\n", + "1/0, train_loss: 0.6495\n", + "1 epoch 705 average loss: 0.6495\n", + "----------\n", + "1: epoch 706/1000: lr: [0.0005725000000000003]\n", + "1/0, train_loss: 0.6452\n", + "1 epoch 706 average loss: 0.6452\n", + "current epoch: 706 current mean dice: 0.3305\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 707/1000: lr: [0.0005769999999999994]\n", + "1/0, train_loss: 0.6509\n", + "1 epoch 707 average loss: 0.6509\n", + "----------\n", + "1: epoch 708/1000: lr: [0.0005815000000000002]\n", + "1/0, train_loss: 0.6480\n", + "1 epoch 708 average loss: 0.6480\n", + "current epoch: 708 current mean dice: 0.3305\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 709/1000: lr: [0.000586]\n", + "1/0, train_loss: 0.6479\n", + "1 epoch 709 average loss: 0.6479\n", + "----------\n", + "1: epoch 710/1000: lr: [0.0005905]\n", + "1/0, train_loss: 0.6441\n", + "1 epoch 710 average loss: 0.6441\n", + "current epoch: 710 current mean dice: 0.3306\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 711/1000: lr: [0.0005949999999999998]\n", + "1/0, train_loss: 0.6473\n", + "1 epoch 711 average loss: 0.6473\n", + "----------\n", + "1: epoch 712/1000: lr: [0.0005994999999999998]\n", + "1/0, train_loss: 0.6435\n", + "1 epoch 712 average loss: 0.6435\n", + "current epoch: 712 current mean dice: 0.3306\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 713/1000: lr: [0.0006040000000000005]\n", + "1/0, train_loss: 0.6481\n", + "1 epoch 713 average loss: 0.6481\n", + "----------\n", + "1: epoch 714/1000: lr: [0.0006084999999999996]\n", + "1/0, train_loss: 0.6511\n", + "1 epoch 714 average loss: 0.6511\n", + "current epoch: 714 current mean dice: 0.3306\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 715/1000: lr: [0.0006130000000000003]\n", + "1/0, train_loss: 0.6486\n", + "1 epoch 715 average loss: 0.6486\n", + "----------\n", + "1: epoch 716/1000: lr: [0.0006175000000000002]\n", + "1/0, train_loss: 0.6469\n", + "1 epoch 716 average loss: 0.6469\n", + "current epoch: 716 current mean dice: 0.3305\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 717/1000: lr: [0.0006220000000000002]\n", + "1/0, train_loss: 0.6434\n", + "1 epoch 717 average loss: 0.6434\n", + "----------\n", + "1: epoch 718/1000: lr: [0.0006265]\n", + "1/0, train_loss: 0.6477\n", + "1 epoch 718 average loss: 0.6477\n", + "current epoch: 718 current mean dice: 0.3306\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 719/1000: lr: [0.0006309999999999998]\n", + "1/0, train_loss: 0.6454\n", + "1 epoch 719 average loss: 0.6454\n", + "----------\n", + "1: epoch 720/1000: lr: [0.0006355000000000006]\n", + "1/0, train_loss: 0.6430\n", + "1 epoch 720 average loss: 0.6430\n", + "current epoch: 720 current mean dice: 0.3306\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 721/1000: lr: [0.0006399999999999997]\n", + "1/0, train_loss: 0.6494\n", + "1 epoch 721 average loss: 0.6494\n", + "----------\n", + "1: epoch 722/1000: lr: [0.0006445000000000004]\n", + "1/0, train_loss: 0.6464\n", + "1 epoch 722 average loss: 0.6464\n", + "current epoch: 722 current mean dice: 0.3306\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 723/1000: lr: [0.0006489999999999995]\n", + "1/0, train_loss: 0.6434\n", + "1 epoch 723 average loss: 0.6434\n", + "----------\n", + "1: epoch 724/1000: lr: [0.0006535000000000002]\n", + "1/0, train_loss: 0.6424\n", + "1 epoch 724 average loss: 0.6424\n", + "current epoch: 724 current mean dice: 0.3307\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 725/1000: lr: [0.0006580000000000002]\n", + "1/0, train_loss: 0.6439\n", + "1 epoch 725 average loss: 0.6439\n", + "----------\n", + "1: epoch 726/1000: lr: [0.0006625]\n", + "1/0, train_loss: 0.6442\n", + "1 epoch 726 average loss: 0.6442\n", + "current epoch: 726 current mean dice: 0.3307\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 727/1000: lr: [0.000667]\n", + "1/0, train_loss: 0.6420\n", + "1 epoch 727 average loss: 0.6420\n", + "----------\n", + "1: epoch 728/1000: lr: [0.0006714999999999998]\n", + "1/0, train_loss: 0.6452\n", + "1 epoch 728 average loss: 0.6452\n", + "current epoch: 728 current mean dice: 0.3308\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 729/1000: lr: [0.0006760000000000006]\n", + "1/0, train_loss: 0.6489\n", + "1 epoch 729 average loss: 0.6489\n", + "----------\n", + "1: epoch 730/1000: lr: [0.0006804999999999997]\n", + "1/0, train_loss: 0.6433\n", + "1 epoch 730 average loss: 0.6433\n", + "current epoch: 730 current mean dice: 0.3308\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 731/1000: lr: [0.0006850000000000003]\n", + "1/0, train_loss: 0.6448\n", + "1 epoch 731 average loss: 0.6448\n", + "----------\n", + "1: epoch 732/1000: lr: [0.0006894999999999995]\n", + "1/0, train_loss: 0.6442\n", + "1 epoch 732 average loss: 0.6442\n", + "current epoch: 732 current mean dice: 0.3308\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 733/1000: lr: [0.0006940000000000002]\n", + "1/0, train_loss: 0.6463\n", + "1 epoch 733 average loss: 0.6463\n", + "----------\n", + "1: epoch 734/1000: lr: [0.0006985000000000001]\n", + "1/0, train_loss: 0.6509\n", + "1 epoch 734 average loss: 0.6509\n", + "current epoch: 734 current mean dice: 0.3308\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 735/1000: lr: [0.000703]\n", + "1/0, train_loss: 0.6449\n", + "1 epoch 735 average loss: 0.6449\n", + "----------\n", + "1: epoch 736/1000: lr: [0.0007074999999999998]\n", + "1/0, train_loss: 0.6493\n", + "1 epoch 736 average loss: 0.6493\n", + "current epoch: 736 current mean dice: 0.3309\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 737/1000: lr: [0.0007119999999999997]\n", + "1/0, train_loss: 0.6463\n", + "1 epoch 737 average loss: 0.6463\n", + "----------\n", + "1: epoch 738/1000: lr: [0.0007165000000000006]\n", + "1/0, train_loss: 0.6452\n", + "1 epoch 738 average loss: 0.6452\n", + "current epoch: 738 current mean dice: 0.3309\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 739/1000: lr: [0.0007209999999999996]\n", + "1/0, train_loss: 0.6425\n", + "1 epoch 739 average loss: 0.6425\n", + "----------\n", + "1: epoch 740/1000: lr: [0.0007255000000000002]\n", + "1/0, train_loss: 0.6432\n", + "1 epoch 740 average loss: 0.6432\n", + "current epoch: 740 current mean dice: 0.3309\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 741/1000: lr: [0.0007300000000000002]\n", + "1/0, train_loss: 0.6499\n", + "1 epoch 741 average loss: 0.6499\n", + "----------\n", + "1: epoch 742/1000: lr: [0.0007345000000000001]\n", + "1/0, train_loss: 0.6449\n", + "1 epoch 742 average loss: 0.6449\n", + "current epoch: 742 current mean dice: 0.3309\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 743/1000: lr: [0.0007390000000000001]\n", + "1/0, train_loss: 0.6455\n", + "1 epoch 743 average loss: 0.6455\n", + "----------\n", + "1: epoch 744/1000: lr: [0.0007434999999999999]\n", + "1/0, train_loss: 0.6473\n", + "1 epoch 744 average loss: 0.6473\n", + "current epoch: 744 current mean dice: 0.3309\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 745/1000: lr: [0.0007480000000000006]\n", + "1/0, train_loss: 0.6438\n", + "1 epoch 745 average loss: 0.6438\n", + "----------\n", + "1: epoch 746/1000: lr: [0.0007524999999999997]\n", + "1/0, train_loss: 0.6463\n", + "1 epoch 746 average loss: 0.6463\n", + "current epoch: 746 current mean dice: 0.3309\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 747/1000: lr: [0.0007570000000000004]\n", + "1/0, train_loss: 0.6415\n", + "1 epoch 747 average loss: 0.6415\n", + "----------\n", + "1: epoch 748/1000: lr: [0.0007614999999999995]\n", + "1/0, train_loss: 0.6425\n", + "1 epoch 748 average loss: 0.6425\n", + "current epoch: 748 current mean dice: 0.3310\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 749/1000: lr: [0.0007660000000000002]\n", + "1/0, train_loss: 0.6457\n", + "1 epoch 749 average loss: 0.6457\n", + "----------\n", + "1: epoch 750/1000: lr: [0.0007705000000000001]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.6484\n", + "1 epoch 750 average loss: 0.6484\n", + "current epoch: 750 current mean dice: 0.3310\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 751/1000: lr: [0.0007750000000000001]\n", + "1/0, train_loss: 0.6480\n", + "1 epoch 751 average loss: 0.6480\n", + "----------\n", + "1: epoch 752/1000: lr: [0.0007794999999999999]\n", + "1/0, train_loss: 0.6447\n", + "1 epoch 752 average loss: 0.6447\n", + "current epoch: 752 current mean dice: 0.3310\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 753/1000: lr: [0.0007839999999999999]\n", + "1/0, train_loss: 0.6421\n", + "1 epoch 753 average loss: 0.6421\n", + "----------\n", + "1: epoch 754/1000: lr: [0.0007885000000000006]\n", + "1/0, train_loss: 0.6473\n", + "1 epoch 754 average loss: 0.6473\n", + "current epoch: 754 current mean dice: 0.3310\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 755/1000: lr: [0.0007929999999999997]\n", + "1/0, train_loss: 0.6465\n", + "1 epoch 755 average loss: 0.6465\n", + "----------\n", + "1: epoch 756/1000: lr: [0.0007975000000000004]\n", + "1/0, train_loss: 0.6446\n", + "1 epoch 756 average loss: 0.6446\n", + "current epoch: 756 current mean dice: 0.3310\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 757/1000: lr: [0.0008019999999999994]\n", + "1/0, train_loss: 0.6467\n", + "1 epoch 757 average loss: 0.6467\n", + "----------\n", + "1: epoch 758/1000: lr: [0.0008065000000000001]\n", + "1/0, train_loss: 0.6437\n", + "1 epoch 758 average loss: 0.6437\n", + "current epoch: 758 current mean dice: 0.3310\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 759/1000: lr: [0.0008110000000000001]\n", + "1/0, train_loss: 0.6398\n", + "1 epoch 759 average loss: 0.6398\n", + "----------\n", + "1: epoch 760/1000: lr: [0.0008154999999999999]\n", + "1/0, train_loss: 0.6440\n", + "1 epoch 760 average loss: 0.6440\n", + "current epoch: 760 current mean dice: 0.3310\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 761/1000: lr: [0.0008199999999999999]\n", + "1/0, train_loss: 0.6495\n", + "1 epoch 761 average loss: 0.6495\n", + "----------\n", + "1: epoch 762/1000: lr: [0.0008244999999999997]\n", + "1/0, train_loss: 0.6429\n", + "1 epoch 762 average loss: 0.6429\n", + "current epoch: 762 current mean dice: 0.3310\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 763/1000: lr: [0.0008290000000000005]\n", + "1/0, train_loss: 0.6440\n", + "1 epoch 763 average loss: 0.6440\n", + "----------\n", + "1: epoch 764/1000: lr: [0.0008334999999999996]\n", + "1/0, train_loss: 0.6424\n", + "1 epoch 764 average loss: 0.6424\n", + "current epoch: 764 current mean dice: 0.3311\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 765/1000: lr: [0.0008380000000000003]\n", + "1/0, train_loss: 0.6435\n", + "1 epoch 765 average loss: 0.6435\n", + "----------\n", + "1: epoch 766/1000: lr: [0.0008425000000000001]\n", + "1/0, train_loss: 0.6426\n", + "1 epoch 766 average loss: 0.6426\n", + "current epoch: 766 current mean dice: 0.3311\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 767/1000: lr: [0.0008470000000000001]\n", + "1/0, train_loss: 0.6467\n", + "1 epoch 767 average loss: 0.6467\n", + "----------\n", + "1: epoch 768/1000: lr: [0.0008515]\n", + "1/0, train_loss: 0.6469\n", + "1 epoch 768 average loss: 0.6469\n", + "current epoch: 768 current mean dice: 0.3311\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 769/1000: lr: [0.0008559999999999999]\n", + "1/0, train_loss: 0.6421\n", + "1 epoch 769 average loss: 0.6421\n", + "----------\n", + "1: epoch 770/1000: lr: [0.0008605000000000006]\n", + "1/0, train_loss: 0.6415\n", + "1 epoch 770 average loss: 0.6415\n", + "current epoch: 770 current mean dice: 0.3311\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 771/1000: lr: [0.0008649999999999997]\n", + "1/0, train_loss: 0.6427\n", + "1 epoch 771 average loss: 0.6427\n", + "----------\n", + "1: epoch 772/1000: lr: [0.0008695000000000004]\n", + "1/0, train_loss: 0.6445\n", + "1 epoch 772 average loss: 0.6445\n", + "current epoch: 772 current mean dice: 0.3312\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 773/1000: lr: [0.0008739999999999996]\n", + "1/0, train_loss: 0.6402\n", + "1 epoch 773 average loss: 0.6402\n", + "----------\n", + "1: epoch 774/1000: lr: [0.0008785000000000002]\n", + "1/0, train_loss: 0.6457\n", + "1 epoch 774 average loss: 0.6457\n", + "current epoch: 774 current mean dice: 0.3312\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 775/1000: lr: [0.0008830000000000001]\n", + "1/0, train_loss: 0.6469\n", + "1 epoch 775 average loss: 0.6469\n", + "----------\n", + "1: epoch 776/1000: lr: [0.0008875]\n", + "1/0, train_loss: 0.6445\n", + "1 epoch 776 average loss: 0.6445\n", + "current epoch: 776 current mean dice: 0.3313\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 777/1000: lr: [0.0008919999999999999]\n", + "1/0, train_loss: 0.6479\n", + "1 epoch 777 average loss: 0.6479\n", + "----------\n", + "1: epoch 778/1000: lr: [0.0008964999999999998]\n", + "1/0, train_loss: 0.6398\n", + "1 epoch 778 average loss: 0.6398\n", + "current epoch: 778 current mean dice: 0.3313\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 779/1000: lr: [0.0009010000000000005]\n", + "1/0, train_loss: 0.6486\n", + "1 epoch 779 average loss: 0.6486\n", + "----------\n", + "1: epoch 780/1000: lr: [0.0009054999999999996]\n", + "1/0, train_loss: 0.6405\n", + "1 epoch 780 average loss: 0.6405\n", + "current epoch: 780 current mean dice: 0.3313\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 781/1000: lr: [0.0009100000000000003]\n", + "1/0, train_loss: 0.6436\n", + "1 epoch 781 average loss: 0.6436\n", + "----------\n", + "1: epoch 782/1000: lr: [0.0009144999999999994]\n", + "1/0, train_loss: 0.6402\n", + "1 epoch 782 average loss: 0.6402\n", + "current epoch: 782 current mean dice: 0.3313\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 783/1000: lr: [0.0009190000000000001]\n", + "1/0, train_loss: 0.6412\n", + "1 epoch 783 average loss: 0.6412\n", + "----------\n", + "1: epoch 784/1000: lr: [0.0009235000000000001]\n", + "1/0, train_loss: 0.6434\n", + "1 epoch 784 average loss: 0.6434\n", + "current epoch: 784 current mean dice: 0.3314\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 785/1000: lr: [0.000928]\n", + "1/0, train_loss: 0.6430\n", + "1 epoch 785 average loss: 0.6430\n", + "----------\n", + "1: epoch 786/1000: lr: [0.0009324999999999998]\n", + "1/0, train_loss: 0.6412\n", + "1 epoch 786 average loss: 0.6412\n", + "current epoch: 786 current mean dice: 0.3314\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 787/1000: lr: [0.0009369999999999998]\n", + "1/0, train_loss: 0.6411\n", + "1 epoch 787 average loss: 0.6411\n", + "----------\n", + "1: epoch 788/1000: lr: [0.0009415000000000005]\n", + "1/0, train_loss: 0.6396\n", + "1 epoch 788 average loss: 0.6396\n", + "current epoch: 788 current mean dice: 0.3315\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 789/1000: lr: [0.0009459999999999996]\n", + "1/0, train_loss: 0.6432\n", + "1 epoch 789 average loss: 0.6432\n", + "----------\n", + "1: epoch 790/1000: lr: [0.0009505000000000003]\n", + "1/0, train_loss: 0.6423\n", + "1 epoch 790 average loss: 0.6423\n", + "current epoch: 790 current mean dice: 0.3315\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 791/1000: lr: [0.0009550000000000002]\n", + "1/0, train_loss: 0.6424\n", + "1 epoch 791 average loss: 0.6424\n", + "----------\n", + "1: epoch 792/1000: lr: [0.0009595000000000001]\n", + "1/0, train_loss: 0.6397\n", + "1 epoch 792 average loss: 0.6397\n", + "current epoch: 792 current mean dice: 0.3315\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 793/1000: lr: [0.000964]\n", + "1/0, train_loss: 0.6403\n", + "1 epoch 793 average loss: 0.6403\n", + "----------\n", + "1: epoch 794/1000: lr: [0.0009684999999999999]\n", + "1/0, train_loss: 0.6405\n", + "1 epoch 794 average loss: 0.6405\n", + "current epoch: 794 current mean dice: 0.3315\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 795/1000: lr: [0.0009730000000000006]\n", + "1/0, train_loss: 0.6444\n", + "1 epoch 795 average loss: 0.6444\n", + "----------\n", + "1: epoch 796/1000: lr: [0.0009774999999999996]\n", + "1/0, train_loss: 0.6392\n", + "1 epoch 796 average loss: 0.6392\n", + "current epoch: 796 current mean dice: 0.3316\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 797/1000: lr: [0.0009820000000000005]\n", + "1/0, train_loss: 0.6450\n", + "1 epoch 797 average loss: 0.6450\n", + "----------\n", + "1: epoch 798/1000: lr: [0.0009864999999999995]\n", + "1/0, train_loss: 0.6414\n", + "1 epoch 798 average loss: 0.6414\n", + "current epoch: 798 current mean dice: 0.3316\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 799/1000: lr: [0.0009910000000000001]\n", + "1/0, train_loss: 0.6382\n", + "1 epoch 799 average loss: 0.6382\n", + "----------\n", + "1: epoch 800/1000: lr: [0.0009955]\n", + "1/0, train_loss: 0.6454\n", + "1 epoch 800 average loss: 0.6454\n", + "current epoch: 800 current mean dice: 0.3316\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 801/1000: lr: [0.001]\n", + "1/0, train_loss: 0.6391\n", + "1 epoch 801 average loss: 0.6391\n", + "----------\n", + "1: epoch 802/1000: lr: [0.0009955]\n", + "1/0, train_loss: 0.6394\n", + "1 epoch 802 average loss: 0.6394\n", + "current epoch: 802 current mean dice: 0.3316\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 803/1000: lr: [0.0009910000000000001]\n", + "1/0, train_loss: 0.6439\n", + "1 epoch 803 average loss: 0.6439\n", + "----------\n", + "1: epoch 804/1000: lr: [0.0009865000000000004]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.6405\n", + "1 epoch 804 average loss: 0.6405\n", + "current epoch: 804 current mean dice: 0.3317\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 805/1000: lr: [0.0009820000000000005]\n", + "1/0, train_loss: 0.6387\n", + "1 epoch 805 average loss: 0.6387\n", + "----------\n", + "1: epoch 806/1000: lr: [0.0009774999999999996]\n", + "1/0, train_loss: 0.6402\n", + "1 epoch 806 average loss: 0.6402\n", + "current epoch: 806 current mean dice: 0.3317\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 807/1000: lr: [0.0009729999999999998]\n", + "1/0, train_loss: 0.6417\n", + "1 epoch 807 average loss: 0.6417\n", + "----------\n", + "1: epoch 808/1000: lr: [0.0009684999999999999]\n", + "1/0, train_loss: 0.6375\n", + "1 epoch 808 average loss: 0.6375\n", + "current epoch: 808 current mean dice: 0.3317\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 809/1000: lr: [0.000964]\n", + "1/0, train_loss: 0.6442\n", + "1 epoch 809 average loss: 0.6442\n", + "----------\n", + "1: epoch 810/1000: lr: [0.0009595000000000001]\n", + "1/0, train_loss: 0.6408\n", + "1 epoch 810 average loss: 0.6408\n", + "current epoch: 810 current mean dice: 0.3318\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 811/1000: lr: [0.0009550000000000002]\n", + "1/0, train_loss: 0.6429\n", + "1 epoch 811 average loss: 0.6429\n", + "----------\n", + "1: epoch 812/1000: lr: [0.0009505000000000003]\n", + "1/0, train_loss: 0.6389\n", + "1 epoch 812 average loss: 0.6389\n", + "current epoch: 812 current mean dice: 0.3318\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 813/1000: lr: [0.0009460000000000003]\n", + "1/0, train_loss: 0.6373\n", + "1 epoch 813 average loss: 0.6373\n", + "----------\n", + "1: epoch 814/1000: lr: [0.0009414999999999996]\n", + "1/0, train_loss: 0.6383\n", + "1 epoch 814 average loss: 0.6383\n", + "current epoch: 814 current mean dice: 0.3319\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 815/1000: lr: [0.0009369999999999998]\n", + "1/0, train_loss: 0.6455\n", + "1 epoch 815 average loss: 0.6455\n", + "----------\n", + "1: epoch 816/1000: lr: [0.0009324999999999998]\n", + "1/0, train_loss: 0.6366\n", + "1 epoch 816 average loss: 0.6366\n", + "current epoch: 816 current mean dice: 0.3319\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 817/1000: lr: [0.000928]\n", + "1/0, train_loss: 0.6390\n", + "1 epoch 817 average loss: 0.6390\n", + "----------\n", + "1: epoch 818/1000: lr: [0.0009235000000000001]\n", + "1/0, train_loss: 0.6411\n", + "1 epoch 818 average loss: 0.6411\n", + "current epoch: 818 current mean dice: 0.3320\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 819/1000: lr: [0.0009190000000000001]\n", + "1/0, train_loss: 0.6457\n", + "1 epoch 819 average loss: 0.6457\n", + "----------\n", + "1: epoch 820/1000: lr: [0.0009145000000000003]\n", + "1/0, train_loss: 0.6482\n", + "1 epoch 820 average loss: 0.6482\n", + "current epoch: 820 current mean dice: 0.3320\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 821/1000: lr: [0.0009100000000000003]\n", + "1/0, train_loss: 0.6388\n", + "1 epoch 821 average loss: 0.6388\n", + "----------\n", + "1: epoch 822/1000: lr: [0.0009054999999999996]\n", + "1/0, train_loss: 0.6409\n", + "1 epoch 822 average loss: 0.6409\n", + "current epoch: 822 current mean dice: 0.3320\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 823/1000: lr: [0.0009009999999999998]\n", + "1/0, train_loss: 0.6389\n", + "1 epoch 823 average loss: 0.6389\n", + "----------\n", + "1: epoch 824/1000: lr: [0.0008964999999999998]\n", + "1/0, train_loss: 0.6472\n", + "1 epoch 824 average loss: 0.6472\n", + "current epoch: 824 current mean dice: 0.3320\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 825/1000: lr: [0.0008919999999999999]\n", + "1/0, train_loss: 0.6425\n", + "1 epoch 825 average loss: 0.6425\n", + "----------\n", + "1: epoch 826/1000: lr: [0.0008875]\n", + "1/0, train_loss: 0.6404\n", + "1 epoch 826 average loss: 0.6404\n", + "current epoch: 826 current mean dice: 0.3320\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 827/1000: lr: [0.0008830000000000001]\n", + "1/0, train_loss: 0.6374\n", + "1 epoch 827 average loss: 0.6374\n", + "----------\n", + "1: epoch 828/1000: lr: [0.0008785000000000002]\n", + "1/0, train_loss: 0.6354\n", + "1 epoch 828 average loss: 0.6354\n", + "current epoch: 828 current mean dice: 0.3321\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 829/1000: lr: [0.0008740000000000003]\n", + "1/0, train_loss: 0.6391\n", + "1 epoch 829 average loss: 0.6391\n", + "----------\n", + "1: epoch 830/1000: lr: [0.0008695000000000004]\n", + "1/0, train_loss: 0.6389\n", + "1 epoch 830 average loss: 0.6389\n", + "current epoch: 830 current mean dice: 0.3321\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 831/1000: lr: [0.0008649999999999997]\n", + "1/0, train_loss: 0.6444\n", + "1 epoch 831 average loss: 0.6444\n", + "----------\n", + "1: epoch 832/1000: lr: [0.0008604999999999998]\n", + "1/0, train_loss: 0.6388\n", + "1 epoch 832 average loss: 0.6388\n", + "current epoch: 832 current mean dice: 0.3322\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 833/1000: lr: [0.0008559999999999999]\n", + "1/0, train_loss: 0.6392\n", + "1 epoch 833 average loss: 0.6392\n", + "----------\n", + "1: epoch 834/1000: lr: [0.0008515]\n", + "1/0, train_loss: 0.6375\n", + "1 epoch 834 average loss: 0.6375\n", + "current epoch: 834 current mean dice: 0.3322\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 835/1000: lr: [0.0008470000000000001]\n", + "1/0, train_loss: 0.6440\n", + "1 epoch 835 average loss: 0.6440\n", + "----------\n", + "1: epoch 836/1000: lr: [0.0008425000000000001]\n", + "1/0, train_loss: 0.6372\n", + "1 epoch 836 average loss: 0.6372\n", + "current epoch: 836 current mean dice: 0.3322\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 837/1000: lr: [0.0008380000000000003]\n", + "1/0, train_loss: 0.6403\n", + "1 epoch 837 average loss: 0.6403\n", + "----------\n", + "1: epoch 838/1000: lr: [0.0008335000000000004]\n", + "1/0, train_loss: 0.6365\n", + "1 epoch 838 average loss: 0.6365\n", + "current epoch: 838 current mean dice: 0.3322\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 839/1000: lr: [0.0008289999999999997]\n", + "1/0, train_loss: 0.6407\n", + "1 epoch 839 average loss: 0.6407\n", + "----------\n", + "1: epoch 840/1000: lr: [0.0008244999999999997]\n", + "1/0, train_loss: 0.6376\n", + "1 epoch 840 average loss: 0.6376\n", + "current epoch: 840 current mean dice: 0.3322\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 841/1000: lr: [0.0008199999999999999]\n", + "1/0, train_loss: 0.6376\n", + "1 epoch 841 average loss: 0.6376\n", + "----------\n", + "1: epoch 842/1000: lr: [0.0008154999999999999]\n", + "1/0, train_loss: 0.6393\n", + "1 epoch 842 average loss: 0.6393\n", + "current epoch: 842 current mean dice: 0.3322\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 843/1000: lr: [0.0008110000000000001]\n", + "1/0, train_loss: 0.6352\n", + "1 epoch 843 average loss: 0.6352\n", + "----------\n", + "1: epoch 844/1000: lr: [0.0008065000000000001]\n", + "1/0, train_loss: 0.6400\n", + "1 epoch 844 average loss: 0.6400\n", + "current epoch: 844 current mean dice: 0.3323\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 845/1000: lr: [0.0008020000000000002]\n", + "1/0, train_loss: 0.6425\n", + "1 epoch 845 average loss: 0.6425\n", + "----------\n", + "1: epoch 846/1000: lr: [0.0007975000000000004]\n", + "1/0, train_loss: 0.6369\n", + "1 epoch 846 average loss: 0.6369\n", + "current epoch: 846 current mean dice: 0.3323\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 847/1000: lr: [0.0007929999999999997]\n", + "1/0, train_loss: 0.6353\n", + "1 epoch 847 average loss: 0.6353\n", + "----------\n", + "1: epoch 848/1000: lr: [0.0007884999999999997]\n", + "1/0, train_loss: 0.6344\n", + "1 epoch 848 average loss: 0.6344\n", + "current epoch: 848 current mean dice: 0.3323\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 849/1000: lr: [0.0007839999999999999]\n", + "1/0, train_loss: 0.6388\n", + "1 epoch 849 average loss: 0.6388\n", + "----------\n", + "1: epoch 850/1000: lr: [0.0007794999999999999]\n", + "1/0, train_loss: 0.6398\n", + "1 epoch 850 average loss: 0.6398\n", + "current epoch: 850 current mean dice: 0.3323\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 851/1000: lr: [0.0007750000000000001]\n", + "1/0, train_loss: 0.6371\n", + "1 epoch 851 average loss: 0.6371\n", + "----------\n", + "1: epoch 852/1000: lr: [0.0007705000000000001]\n", + "1/0, train_loss: 0.6354\n", + "1 epoch 852 average loss: 0.6354\n", + "current epoch: 852 current mean dice: 0.3323\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 853/1000: lr: [0.0007660000000000002]\n", + "1/0, train_loss: 0.6346\n", + "1 epoch 853 average loss: 0.6346\n", + "----------\n", + "1: epoch 854/1000: lr: [0.0007615000000000003]\n", + "1/0, train_loss: 0.6413\n", + "1 epoch 854 average loss: 0.6413\n", + "current epoch: 854 current mean dice: 0.3323\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 855/1000: lr: [0.0007570000000000004]\n", + "1/0, train_loss: 0.6356\n", + "1 epoch 855 average loss: 0.6356\n", + "----------\n", + "1: epoch 856/1000: lr: [0.0007524999999999997]\n", + "1/0, train_loss: 0.6367\n", + "1 epoch 856 average loss: 0.6367\n", + "current epoch: 856 current mean dice: 0.3323\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 857/1000: lr: [0.0007479999999999998]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.6352\n", + "1 epoch 857 average loss: 0.6352\n", + "----------\n", + "1: epoch 858/1000: lr: [0.0007434999999999999]\n", + "1/0, train_loss: 0.6363\n", + "1 epoch 858 average loss: 0.6363\n", + "current epoch: 858 current mean dice: 0.3324\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 859/1000: lr: [0.0007390000000000001]\n", + "1/0, train_loss: 0.6338\n", + "1 epoch 859 average loss: 0.6338\n", + "----------\n", + "1: epoch 860/1000: lr: [0.0007345000000000001]\n", + "1/0, train_loss: 0.6351\n", + "1 epoch 860 average loss: 0.6351\n", + "current epoch: 860 current mean dice: 0.3324\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 861/1000: lr: [0.0007300000000000002]\n", + "1/0, train_loss: 0.6427\n", + "1 epoch 861 average loss: 0.6427\n", + "----------\n", + "1: epoch 862/1000: lr: [0.0007255000000000002]\n", + "1/0, train_loss: 0.6408\n", + "1 epoch 862 average loss: 0.6408\n", + "current epoch: 862 current mean dice: 0.3324\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 863/1000: lr: [0.0007210000000000004]\n", + "1/0, train_loss: 0.6347\n", + "1 epoch 863 average loss: 0.6347\n", + "----------\n", + "1: epoch 864/1000: lr: [0.0007164999999999997]\n", + "1/0, train_loss: 0.6371\n", + "1 epoch 864 average loss: 0.6371\n", + "current epoch: 864 current mean dice: 0.3325\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 865/1000: lr: [0.0007119999999999997]\n", + "1/0, train_loss: 0.6396\n", + "1 epoch 865 average loss: 0.6396\n", + "----------\n", + "1: epoch 866/1000: lr: [0.0007074999999999998]\n", + "1/0, train_loss: 0.6396\n", + "1 epoch 866 average loss: 0.6396\n", + "current epoch: 866 current mean dice: 0.3325\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 867/1000: lr: [0.000703]\n", + "1/0, train_loss: 0.6388\n", + "1 epoch 867 average loss: 0.6388\n", + "----------\n", + "1: epoch 868/1000: lr: [0.0006985000000000001]\n", + "1/0, train_loss: 0.6437\n", + "1 epoch 868 average loss: 0.6437\n", + "current epoch: 868 current mean dice: 0.3325\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 869/1000: lr: [0.0006940000000000002]\n", + "1/0, train_loss: 0.6392\n", + "1 epoch 869 average loss: 0.6392\n", + "----------\n", + "1: epoch 870/1000: lr: [0.0006895000000000002]\n", + "1/0, train_loss: 0.6398\n", + "1 epoch 870 average loss: 0.6398\n", + "current epoch: 870 current mean dice: 0.3326\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 871/1000: lr: [0.0006850000000000003]\n", + "1/0, train_loss: 0.6359\n", + "1 epoch 871 average loss: 0.6359\n", + "----------\n", + "1: epoch 872/1000: lr: [0.0006804999999999997]\n", + "1/0, train_loss: 0.6419\n", + "1 epoch 872 average loss: 0.6419\n", + "current epoch: 872 current mean dice: 0.3326\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 873/1000: lr: [0.0006759999999999997]\n", + "1/0, train_loss: 0.6388\n", + "1 epoch 873 average loss: 0.6388\n", + "----------\n", + "1: epoch 874/1000: lr: [0.0006714999999999998]\n", + "1/0, train_loss: 0.6372\n", + "1 epoch 874 average loss: 0.6372\n", + "current epoch: 874 current mean dice: 0.3326\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 875/1000: lr: [0.000667]\n", + "1/0, train_loss: 0.6374\n", + "1 epoch 875 average loss: 0.6374\n", + "----------\n", + "1: epoch 876/1000: lr: [0.0006625]\n", + "1/0, train_loss: 0.6424\n", + "1 epoch 876 average loss: 0.6424\n", + "current epoch: 876 current mean dice: 0.3326\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 877/1000: lr: [0.0006580000000000002]\n", + "1/0, train_loss: 0.6327\n", + "1 epoch 877 average loss: 0.6327\n", + "----------\n", + "1: epoch 878/1000: lr: [0.0006535000000000002]\n", + "1/0, train_loss: 0.6395\n", + "1 epoch 878 average loss: 0.6395\n", + "current epoch: 878 current mean dice: 0.3326\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 879/1000: lr: [0.0006490000000000003]\n", + "1/0, train_loss: 0.6333\n", + "1 epoch 879 average loss: 0.6333\n", + "----------\n", + "1: epoch 880/1000: lr: [0.0006445000000000004]\n", + "1/0, train_loss: 0.6386\n", + "1 epoch 880 average loss: 0.6386\n", + "current epoch: 880 current mean dice: 0.3326\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 881/1000: lr: [0.0006399999999999997]\n", + "1/0, train_loss: 0.6374\n", + "1 epoch 881 average loss: 0.6374\n", + "----------\n", + "1: epoch 882/1000: lr: [0.0006354999999999998]\n", + "1/0, train_loss: 0.6349\n", + "1 epoch 882 average loss: 0.6349\n", + "current epoch: 882 current mean dice: 0.3326\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 883/1000: lr: [0.0006309999999999998]\n", + "1/0, train_loss: 0.6415\n", + "1 epoch 883 average loss: 0.6415\n", + "----------\n", + "1: epoch 884/1000: lr: [0.0006265]\n", + "1/0, train_loss: 0.6358\n", + "1 epoch 884 average loss: 0.6358\n", + "current epoch: 884 current mean dice: 0.3326\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 885/1000: lr: [0.0006220000000000002]\n", + "1/0, train_loss: 0.6423\n", + "1 epoch 885 average loss: 0.6423\n", + "----------\n", + "1: epoch 886/1000: lr: [0.0006175000000000002]\n", + "1/0, train_loss: 0.6371\n", + "1 epoch 886 average loss: 0.6371\n", + "current epoch: 886 current mean dice: 0.3326\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 887/1000: lr: [0.0006130000000000003]\n", + "1/0, train_loss: 0.6349\n", + "1 epoch 887 average loss: 0.6349\n", + "----------\n", + "1: epoch 888/1000: lr: [0.0006085000000000003]\n", + "1/0, train_loss: 0.6355\n", + "1 epoch 888 average loss: 0.6355\n", + "current epoch: 888 current mean dice: 0.3326\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 889/1000: lr: [0.0006039999999999997]\n", + "1/0, train_loss: 0.6353\n", + "1 epoch 889 average loss: 0.6353\n", + "----------\n", + "1: epoch 890/1000: lr: [0.0005994999999999998]\n", + "1/0, train_loss: 0.6382\n", + "1 epoch 890 average loss: 0.6382\n", + "current epoch: 890 current mean dice: 0.3327\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 891/1000: lr: [0.0005949999999999998]\n", + "1/0, train_loss: 0.6344\n", + "1 epoch 891 average loss: 0.6344\n", + "----------\n", + "1: epoch 892/1000: lr: [0.0005905]\n", + "1/0, train_loss: 0.6352\n", + "1 epoch 892 average loss: 0.6352\n", + "current epoch: 892 current mean dice: 0.3327\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 893/1000: lr: [0.000586]\n", + "1/0, train_loss: 0.6367\n", + "1 epoch 893 average loss: 0.6367\n", + "----------\n", + "1: epoch 894/1000: lr: [0.0005815000000000002]\n", + "1/0, train_loss: 0.6358\n", + "1 epoch 894 average loss: 0.6358\n", + "current epoch: 894 current mean dice: 0.3327\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 895/1000: lr: [0.0005770000000000003]\n", + "1/0, train_loss: 0.6409\n", + "1 epoch 895 average loss: 0.6409\n", + "----------\n", + "1: epoch 896/1000: lr: [0.0005725000000000003]\n", + "1/0, train_loss: 0.6402\n", + "1 epoch 896 average loss: 0.6402\n", + "current epoch: 896 current mean dice: 0.3327\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 897/1000: lr: [0.0005679999999999997]\n", + "1/0, train_loss: 0.6405\n", + "1 epoch 897 average loss: 0.6405\n", + "----------\n", + "1: epoch 898/1000: lr: [0.0005634999999999998]\n", + "1/0, train_loss: 0.6390\n", + "1 epoch 898 average loss: 0.6390\n", + "current epoch: 898 current mean dice: 0.3327\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 899/1000: lr: [0.0005589999999999998]\n", + "1/0, train_loss: 0.6381\n", + "1 epoch 899 average loss: 0.6381\n", + "----------\n", + "1: epoch 900/1000: lr: [0.0005544999999999999]\n", + "1/0, train_loss: 0.6423\n", + "1 epoch 900 average loss: 0.6423\n", + "current epoch: 900 current mean dice: 0.3327\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 901/1000: lr: [0.00055]\n", + "1/0, train_loss: 0.6358\n", + "1 epoch 901 average loss: 0.6358\n", + "----------\n", + "1: epoch 902/1000: lr: [0.0005455000000000002]\n", + "1/0, train_loss: 0.6364\n", + "1 epoch 902 average loss: 0.6364\n", + "current epoch: 902 current mean dice: 0.3327\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 903/1000: lr: [0.0005410000000000002]\n", + "1/0, train_loss: 0.6429\n", + "1 epoch 903 average loss: 0.6429\n", + "----------\n", + "1: epoch 904/1000: lr: [0.0005365000000000003]\n", + "1/0, train_loss: 0.6413\n", + "1 epoch 904 average loss: 0.6413\n", + "current epoch: 904 current mean dice: 0.3327\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 905/1000: lr: [0.0005320000000000004]\n", + "1/0, train_loss: 0.6358\n", + "1 epoch 905 average loss: 0.6358\n", + "----------\n", + "1: epoch 906/1000: lr: [0.0005274999999999998]\n", + "1/0, train_loss: 0.6418\n", + "1 epoch 906 average loss: 0.6418\n", + "current epoch: 906 current mean dice: 0.3327\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 907/1000: lr: [0.0005229999999999998]\n", + "1/0, train_loss: 0.6385\n", + "1 epoch 907 average loss: 0.6385\n", + "----------\n", + "1: epoch 908/1000: lr: [0.0005184999999999999]\n", + "1/0, train_loss: 0.6346\n", + "1 epoch 908 average loss: 0.6346\n", + "current epoch: 908 current mean dice: 0.3327\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 909/1000: lr: [0.000514]\n", + "1/0, train_loss: 0.6382\n", + "1 epoch 909 average loss: 0.6382\n", + "----------\n", + "1: epoch 910/1000: lr: [0.0005095000000000001]\n", + "1/0, train_loss: 0.6406\n", + "1 epoch 910 average loss: 0.6406\n", + "current epoch: 910 current mean dice: 0.3327\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 911/1000: lr: [0.0005050000000000002]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.6403\n", + "1 epoch 911 average loss: 0.6403\n", + "----------\n", + "1: epoch 912/1000: lr: [0.0005005000000000003]\n", + "1/0, train_loss: 0.6348\n", + "1 epoch 912 average loss: 0.6348\n", + "current epoch: 912 current mean dice: 0.3327\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 913/1000: lr: [0.0004960000000000003]\n", + "1/0, train_loss: 0.6338\n", + "1 epoch 913 average loss: 0.6338\n", + "----------\n", + "1: epoch 914/1000: lr: [0.0004914999999999996]\n", + "1/0, train_loss: 0.6382\n", + "1 epoch 914 average loss: 0.6382\n", + "current epoch: 914 current mean dice: 0.3327\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 915/1000: lr: [0.0004869999999999998]\n", + "1/0, train_loss: 0.6318\n", + "1 epoch 915 average loss: 0.6318\n", + "----------\n", + "1: epoch 916/1000: lr: [0.00048249999999999986]\n", + "1/0, train_loss: 0.6352\n", + "1 epoch 916 average loss: 0.6352\n", + "current epoch: 916 current mean dice: 0.3327\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 917/1000: lr: [0.000478]\n", + "1/0, train_loss: 0.6355\n", + "1 epoch 917 average loss: 0.6355\n", + "----------\n", + "1: epoch 918/1000: lr: [0.00047350000000000007]\n", + "1/0, train_loss: 0.6409\n", + "1 epoch 918 average loss: 0.6409\n", + "current epoch: 918 current mean dice: 0.3327\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 919/1000: lr: [0.0004690000000000001]\n", + "1/0, train_loss: 0.6355\n", + "1 epoch 919 average loss: 0.6355\n", + "----------\n", + "1: epoch 920/1000: lr: [0.0004645000000000003]\n", + "1/0, train_loss: 0.6364\n", + "1 epoch 920 average loss: 0.6364\n", + "current epoch: 920 current mean dice: 0.3327\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 921/1000: lr: [0.00046000000000000034]\n", + "1/0, train_loss: 0.6369\n", + "1 epoch 921 average loss: 0.6369\n", + "----------\n", + "1: epoch 922/1000: lr: [0.00045549999999999963]\n", + "1/0, train_loss: 0.6326\n", + "1 epoch 922 average loss: 0.6326\n", + "current epoch: 922 current mean dice: 0.3327\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 923/1000: lr: [0.0004509999999999998]\n", + "1/0, train_loss: 0.6332\n", + "1 epoch 923 average loss: 0.6332\n", + "----------\n", + "1: epoch 924/1000: lr: [0.00044649999999999985]\n", + "1/0, train_loss: 0.6338\n", + "1 epoch 924 average loss: 0.6338\n", + "current epoch: 924 current mean dice: 0.3327\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 925/1000: lr: [0.0004419999999999999]\n", + "1/0, train_loss: 0.6430\n", + "1 epoch 925 average loss: 0.6430\n", + "----------\n", + "1: epoch 926/1000: lr: [0.00043750000000000006]\n", + "1/0, train_loss: 0.6386\n", + "1 epoch 926 average loss: 0.6386\n", + "current epoch: 926 current mean dice: 0.3327\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 927/1000: lr: [0.0004330000000000001]\n", + "1/0, train_loss: 0.6346\n", + "1 epoch 927 average loss: 0.6346\n", + "----------\n", + "1: epoch 928/1000: lr: [0.0004285000000000003]\n", + "1/0, train_loss: 0.6364\n", + "1 epoch 928 average loss: 0.6364\n", + "current epoch: 928 current mean dice: 0.3327\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 929/1000: lr: [0.00042400000000000033]\n", + "1/0, train_loss: 0.6324\n", + "1 epoch 929 average loss: 0.6324\n", + "----------\n", + "1: epoch 930/1000: lr: [0.0004195000000000004]\n", + "1/0, train_loss: 0.6351\n", + "1 epoch 930 average loss: 0.6351\n", + "current epoch: 930 current mean dice: 0.3327\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 931/1000: lr: [0.0004149999999999997]\n", + "1/0, train_loss: 0.6380\n", + "1 epoch 931 average loss: 0.6380\n", + "----------\n", + "1: epoch 932/1000: lr: [0.00041049999999999984]\n", + "1/0, train_loss: 0.6343\n", + "1 epoch 932 average loss: 0.6343\n", + "current epoch: 932 current mean dice: 0.3327\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 933/1000: lr: [0.0004059999999999999]\n", + "1/0, train_loss: 0.6386\n", + "1 epoch 933 average loss: 0.6386\n", + "----------\n", + "1: epoch 934/1000: lr: [0.00040150000000000006]\n", + "1/0, train_loss: 0.6357\n", + "1 epoch 934 average loss: 0.6357\n", + "current epoch: 934 current mean dice: 0.3327\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 935/1000: lr: [0.0003970000000000001]\n", + "1/0, train_loss: 0.6356\n", + "1 epoch 935 average loss: 0.6356\n", + "----------\n", + "1: epoch 936/1000: lr: [0.00039250000000000016]\n", + "1/0, train_loss: 0.6350\n", + "1 epoch 936 average loss: 0.6350\n", + "current epoch: 936 current mean dice: 0.3327\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 937/1000: lr: [0.0003880000000000003]\n", + "1/0, train_loss: 0.6424\n", + "1 epoch 937 average loss: 0.6424\n", + "----------\n", + "1: epoch 938/1000: lr: [0.0003835000000000004]\n", + "1/0, train_loss: 0.6399\n", + "1 epoch 938 average loss: 0.6399\n", + "current epoch: 938 current mean dice: 0.3327\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 939/1000: lr: [0.00037899999999999967]\n", + "1/0, train_loss: 0.6433\n", + "1 epoch 939 average loss: 0.6433\n", + "----------\n", + "1: epoch 940/1000: lr: [0.00037449999999999983]\n", + "1/0, train_loss: 0.6368\n", + "1 epoch 940 average loss: 0.6368\n", + "current epoch: 940 current mean dice: 0.3327\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 941/1000: lr: [0.0003699999999999999]\n", + "1/0, train_loss: 0.6347\n", + "1 epoch 941 average loss: 0.6347\n", + "----------\n", + "1: epoch 942/1000: lr: [0.00036549999999999994]\n", + "1/0, train_loss: 0.6312\n", + "1 epoch 942 average loss: 0.6312\n", + "current epoch: 942 current mean dice: 0.3327\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 943/1000: lr: [0.0003610000000000001]\n", + "1/0, train_loss: 0.6374\n", + "1 epoch 943 average loss: 0.6374\n", + "----------\n", + "1: epoch 944/1000: lr: [0.00035650000000000015]\n", + "1/0, train_loss: 0.6366\n", + "1 epoch 944 average loss: 0.6366\n", + "current epoch: 944 current mean dice: 0.3328\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 945/1000: lr: [0.0003520000000000003]\n", + "1/0, train_loss: 0.6393\n", + "1 epoch 945 average loss: 0.6393\n", + "----------\n", + "1: epoch 946/1000: lr: [0.00034750000000000037]\n", + "1/0, train_loss: 0.6356\n", + "1 epoch 946 average loss: 0.6356\n", + "current epoch: 946 current mean dice: 0.3327\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 947/1000: lr: [0.00034299999999999966]\n", + "1/0, train_loss: 0.6361\n", + "1 epoch 947 average loss: 0.6361\n", + "----------\n", + "1: epoch 948/1000: lr: [0.0003384999999999997]\n", + "1/0, train_loss: 0.6353\n", + "1 epoch 948 average loss: 0.6353\n", + "current epoch: 948 current mean dice: 0.3327\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 949/1000: lr: [0.0003339999999999999]\n", + "1/0, train_loss: 0.6349\n", + "1 epoch 949 average loss: 0.6349\n", + "----------\n", + "1: epoch 950/1000: lr: [0.00032949999999999993]\n", + "1/0, train_loss: 0.6379\n", + "1 epoch 950 average loss: 0.6379\n", + "current epoch: 950 current mean dice: 0.3327\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 951/1000: lr: [0.000325]\n", + "1/0, train_loss: 0.6350\n", + "1 epoch 951 average loss: 0.6350\n", + "----------\n", + "1: epoch 952/1000: lr: [0.00032050000000000015]\n", + "1/0, train_loss: 0.6355\n", + "1 epoch 952 average loss: 0.6355\n", + "current epoch: 952 current mean dice: 0.3327\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 953/1000: lr: [0.0003160000000000002]\n", + "1/0, train_loss: 0.6422\n", + "1 epoch 953 average loss: 0.6422\n", + "----------\n", + "1: epoch 954/1000: lr: [0.00031150000000000036]\n", + "1/0, train_loss: 0.6343\n", + "1 epoch 954 average loss: 0.6343\n", + "current epoch: 954 current mean dice: 0.3327\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 955/1000: lr: [0.0003070000000000004]\n", + "1/0, train_loss: 0.6374\n", + "1 epoch 955 average loss: 0.6374\n", + "----------\n", + "1: epoch 956/1000: lr: [0.0003024999999999997]\n", + "1/0, train_loss: 0.6339\n", + "1 epoch 956 average loss: 0.6339\n", + "current epoch: 956 current mean dice: 0.3327\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 957/1000: lr: [0.00029799999999999976]\n", + "1/0, train_loss: 0.6378\n", + "1 epoch 957 average loss: 0.6378\n", + "----------\n", + "1: epoch 958/1000: lr: [0.0002934999999999999]\n", + "1/0, train_loss: 0.6343\n", + "1 epoch 958 average loss: 0.6343\n", + "current epoch: 958 current mean dice: 0.3327\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 959/1000: lr: [0.000289]\n", + "1/0, train_loss: 0.6356\n", + "1 epoch 959 average loss: 0.6356\n", + "----------\n", + "1: epoch 960/1000: lr: [0.00028450000000000014]\n", + "1/0, train_loss: 0.6376\n", + "1 epoch 960 average loss: 0.6376\n", + "current epoch: 960 current mean dice: 0.3327\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 961/1000: lr: [0.0002800000000000002]\n", + "1/0, train_loss: 0.6371\n", + "1 epoch 961 average loss: 0.6371\n", + "----------\n", + "1: epoch 962/1000: lr: [0.00027550000000000025]\n", + "1/0, train_loss: 0.6343\n", + "1 epoch 962 average loss: 0.6343\n", + "current epoch: 962 current mean dice: 0.3327\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 963/1000: lr: [0.0002710000000000004]\n", + "1/0, train_loss: 0.6375\n", + "1 epoch 963 average loss: 0.6375\n", + "----------\n", + "1: epoch 964/1000: lr: [0.0002664999999999997]\n", + "1/0, train_loss: 0.6334\n", + "1 epoch 964 average loss: 0.6334\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "current epoch: 964 current mean dice: 0.3327\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 965/1000: lr: [0.00026199999999999975]\n", + "1/0, train_loss: 0.6308\n", + "1 epoch 965 average loss: 0.6308\n", + "----------\n", + "1: epoch 966/1000: lr: [0.0002574999999999999]\n", + "1/0, train_loss: 0.6421\n", + "1 epoch 966 average loss: 0.6421\n", + "current epoch: 966 current mean dice: 0.3327\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 967/1000: lr: [0.00025299999999999997]\n", + "1/0, train_loss: 0.6390\n", + "1 epoch 967 average loss: 0.6390\n", + "----------\n", + "1: epoch 968/1000: lr: [0.0002485]\n", + "1/0, train_loss: 0.6334\n", + "1 epoch 968 average loss: 0.6334\n", + "current epoch: 968 current mean dice: 0.3327\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 969/1000: lr: [0.00024400000000000018]\n", + "1/0, train_loss: 0.6386\n", + "1 epoch 969 average loss: 0.6386\n", + "----------\n", + "1: epoch 970/1000: lr: [0.00023950000000000024]\n", + "1/0, train_loss: 0.6361\n", + "1 epoch 970 average loss: 0.6361\n", + "current epoch: 970 current mean dice: 0.3327\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 971/1000: lr: [0.0002350000000000004]\n", + "1/0, train_loss: 0.6379\n", + "1 epoch 971 average loss: 0.6379\n", + "----------\n", + "1: epoch 972/1000: lr: [0.0002304999999999997]\n", + "1/0, train_loss: 0.6354\n", + "1 epoch 972 average loss: 0.6354\n", + "current epoch: 972 current mean dice: 0.3327\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 973/1000: lr: [0.00022599999999999975]\n", + "1/0, train_loss: 0.6394\n", + "1 epoch 973 average loss: 0.6394\n", + "----------\n", + "1: epoch 974/1000: lr: [0.0002214999999999998]\n", + "1/0, train_loss: 0.6335\n", + "1 epoch 974 average loss: 0.6335\n", + "current epoch: 974 current mean dice: 0.3327\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 975/1000: lr: [0.00021699999999999996]\n", + "1/0, train_loss: 0.6372\n", + "1 epoch 975 average loss: 0.6372\n", + "----------\n", + "1: epoch 976/1000: lr: [0.00021250000000000002]\n", + "1/0, train_loss: 0.6375\n", + "1 epoch 976 average loss: 0.6375\n", + "current epoch: 976 current mean dice: 0.3327\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 977/1000: lr: [0.00020800000000000018]\n", + "1/0, train_loss: 0.6411\n", + "1 epoch 977 average loss: 0.6411\n", + "----------\n", + "1: epoch 978/1000: lr: [0.00020350000000000023]\n", + "1/0, train_loss: 0.6350\n", + "1 epoch 978 average loss: 0.6350\n", + "current epoch: 978 current mean dice: 0.3327\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 979/1000: lr: [0.00019900000000000028]\n", + "1/0, train_loss: 0.6344\n", + "1 epoch 979 average loss: 0.6344\n", + "----------\n", + "1: epoch 980/1000: lr: [0.00019450000000000045]\n", + "1/0, train_loss: 0.6372\n", + "1 epoch 980 average loss: 0.6372\n", + "current epoch: 980 current mean dice: 0.3327\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 981/1000: lr: [0.00018999999999999974]\n", + "1/0, train_loss: 0.6346\n", + "1 epoch 981 average loss: 0.6346\n", + "----------\n", + "1: epoch 982/1000: lr: [0.0001854999999999998]\n", + "1/0, train_loss: 0.6351\n", + "1 epoch 982 average loss: 0.6351\n", + "current epoch: 982 current mean dice: 0.3327\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 983/1000: lr: [0.00018099999999999995]\n", + "1/0, train_loss: 0.6406\n", + "1 epoch 983 average loss: 0.6406\n", + "----------\n", + "1: epoch 984/1000: lr: [0.0001765]\n", + "1/0, train_loss: 0.6378\n", + "1 epoch 984 average loss: 0.6378\n", + "current epoch: 984 current mean dice: 0.3327\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 985/1000: lr: [0.00017200000000000006]\n", + "1/0, train_loss: 0.6373\n", + "1 epoch 985 average loss: 0.6373\n", + "----------\n", + "1: epoch 986/1000: lr: [0.00016750000000000022]\n", + "1/0, train_loss: 0.6400\n", + "1 epoch 986 average loss: 0.6400\n", + "current epoch: 986 current mean dice: 0.3327\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 987/1000: lr: [0.00016300000000000028]\n", + "1/0, train_loss: 0.6348\n", + "1 epoch 987 average loss: 0.6348\n", + "----------\n", + "1: epoch 988/1000: lr: [0.00015850000000000044]\n", + "1/0, train_loss: 0.6364\n", + "1 epoch 988 average loss: 0.6364\n", + "current epoch: 988 current mean dice: 0.3327\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 989/1000: lr: [0.00015399999999999973]\n", + "1/0, train_loss: 0.6337\n", + "1 epoch 989 average loss: 0.6337\n", + "----------\n", + "1: epoch 990/1000: lr: [0.00014949999999999978]\n", + "1/0, train_loss: 0.6341\n", + "1 epoch 990 average loss: 0.6341\n", + "current epoch: 990 current mean dice: 0.3327\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 991/1000: lr: [0.00014499999999999984]\n", + "1/0, train_loss: 0.6318\n", + "1 epoch 991 average loss: 0.6318\n", + "----------\n", + "1: epoch 992/1000: lr: [0.0001405]\n", + "1/0, train_loss: 0.6320\n", + "1 epoch 992 average loss: 0.6320\n", + "current epoch: 992 current mean dice: 0.3327\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 993/1000: lr: [0.00013600000000000005]\n", + "1/0, train_loss: 0.6356\n", + "1 epoch 993 average loss: 0.6356\n", + "----------\n", + "1: epoch 994/1000: lr: [0.00013150000000000021]\n", + "1/0, train_loss: 0.6382\n", + "1 epoch 994 average loss: 0.6382\n", + "current epoch: 994 current mean dice: 0.3327\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 995/1000: lr: [0.00012700000000000027]\n", + "1/0, train_loss: 0.6317\n", + "1 epoch 995 average loss: 0.6317\n", + "----------\n", + "1: epoch 996/1000: lr: [0.00012250000000000032]\n", + "1/0, train_loss: 0.6428\n", + "1 epoch 996 average loss: 0.6428\n", + "current epoch: 996 current mean dice: 0.3328\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 997/1000: lr: [0.00011799999999999962]\n", + "1/0, train_loss: 0.6361\n", + "1 epoch 997 average loss: 0.6361\n", + "----------\n", + "1: epoch 998/1000: lr: [0.00011349999999999978]\n", + "1/0, train_loss: 0.6406\n", + "1 epoch 998 average loss: 0.6406\n", + "current epoch: 998 current mean dice: 0.3328\n", + "best mean dice: 0.3601 at epoch: 30\n", + "----------\n", + "1: epoch 999/1000: lr: [0.00010899999999999983]\n", + "1/0, train_loss: 0.6395\n", + "1 epoch 999 average loss: 0.6395\n", + "----------\n", + "1: epoch 1000/1000: lr: [0.00010449999999999999]\n", + "1/0, train_loss: 0.6349\n", + "1 epoch 1000 average loss: 0.6349\n", + "current epoch: 1000 current mean dice: 0.3328\n", + "best mean dice: 0.3601 at epoch: 30\n" + ] + } + ], + "source": [ + "vfold_train(1, train_loader[i], val_loader[i])\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "643943fc", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "----------\n", + "2: epoch 1/1000: lr: [0.001]\n", + "1/0, train_loss: 0.7899\n", + "2 epoch 1 average loss: 0.7899\n", + "----------\n", + "2: epoch 2/1000: lr: [0.0009955]\n", + "1/0, train_loss: 0.7895\n", + "2 epoch 2 average loss: 0.7895\n", + "saved new best metric model\n", + "current epoch: 2 current mean dice: 0.3264\n", + "best mean dice: 0.3264 at epoch: 2\n", + "----------\n", + "2: epoch 3/1000: lr: [0.0009910000000000001]\n", + "1/0, train_loss: 0.7881\n", + "2 epoch 3 average loss: 0.7881\n", + "----------\n", + "2: epoch 4/1000: lr: [0.0009865]\n", + "1/0, train_loss: 0.7842\n", + "2 epoch 4 average loss: 0.7842\n", + "saved new best metric model\n", + "current epoch: 4 current mean dice: 0.3312\n", + "best mean dice: 0.3312 at epoch: 4\n", + "----------\n", + "2: epoch 5/1000: lr: [0.000982]\n", + "1/0, train_loss: 0.7825\n", + "2 epoch 5 average loss: 0.7825\n", + "----------\n", + "2: epoch 6/1000: lr: [0.0009775]\n", + "1/0, train_loss: 0.7764\n", + "2 epoch 6 average loss: 0.7764\n", + "saved new best metric model\n", + "current epoch: 6 current mean dice: 0.3414\n", + "best mean dice: 0.3414 at epoch: 6\n", + "----------\n", + "2: epoch 7/1000: lr: [0.0009730000000000002]\n", + "1/0, train_loss: 0.7719\n", + "2 epoch 7 average loss: 0.7719\n", + "----------\n", + "2: epoch 8/1000: lr: [0.0009684999999999999]\n", + "1/0, train_loss: 0.7683\n", + "2 epoch 8 average loss: 0.7683\n", + "saved new best metric model\n", + "current epoch: 8 current mean dice: 0.3517\n", + "best mean dice: 0.3517 at epoch: 8\n", + "----------\n", + "2: epoch 9/1000: lr: [0.000964]\n", + "1/0, train_loss: 0.7660\n", + "2 epoch 9 average loss: 0.7660\n", + "----------\n", + "2: epoch 10/1000: lr: [0.0009595000000000001]\n", + "1/0, train_loss: 0.7617\n", + "2 epoch 10 average loss: 0.7617\n", + "saved new best metric model\n", + "current epoch: 10 current mean dice: 0.3570\n", + "best mean dice: 0.3570 at epoch: 10\n", + "----------\n", + "2: epoch 11/1000: lr: [0.0009550000000000002]\n", + "1/0, train_loss: 0.7622\n", + "2 epoch 11 average loss: 0.7622\n", + "----------\n", + "2: epoch 12/1000: lr: [0.0009504999999999998]\n", + "1/0, train_loss: 0.7581\n", + "2 epoch 12 average loss: 0.7581\n", + "saved new best metric model\n", + "current epoch: 12 current mean dice: 0.3590\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 13/1000: lr: [0.000946]\n", + "1/0, train_loss: 0.7571\n", + "2 epoch 13 average loss: 0.7571\n", + "----------\n", + "2: epoch 14/1000: lr: [0.0009415000000000001]\n", + "1/0, train_loss: 0.7556\n", + "2 epoch 14 average loss: 0.7556\n", + "current epoch: 14 current mean dice: 0.3580\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 15/1000: lr: [0.0009370000000000001]\n", + "1/0, train_loss: 0.7500\n", + "2 epoch 15 average loss: 0.7500\n", + "----------\n", + "2: epoch 16/1000: lr: [0.0009324999999999998]\n", + "1/0, train_loss: 0.7470\n", + "2 epoch 16 average loss: 0.7470\n", + "current epoch: 16 current mean dice: 0.3550\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 17/1000: lr: [0.000928]\n", + "1/0, train_loss: 0.7430\n", + "2 epoch 17 average loss: 0.7430\n", + "----------\n", + "2: epoch 18/1000: lr: [0.0009235000000000001]\n", + "1/0, train_loss: 0.7418\n", + "2 epoch 18 average loss: 0.7418\n", + "current epoch: 18 current mean dice: 0.3506\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 19/1000: lr: [0.0009190000000000001]\n", + "1/0, train_loss: 0.7387\n", + "2 epoch 19 average loss: 0.7387\n", + "----------\n", + "2: epoch 20/1000: lr: [0.0009144999999999998]\n", + "1/0, train_loss: 0.7377\n", + "2 epoch 20 average loss: 0.7377\n", + "current epoch: 20 current mean dice: 0.3460\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 21/1000: lr: [0.00091]\n", + "1/0, train_loss: 0.7396\n", + "2 epoch 21 average loss: 0.7396\n", + "----------\n", + "2: epoch 22/1000: lr: [0.0009055000000000001]\n", + "1/0, train_loss: 0.7342\n", + "2 epoch 22 average loss: 0.7342\n", + "current epoch: 22 current mean dice: 0.3409\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 23/1000: lr: [0.0009010000000000001]\n", + "1/0, train_loss: 0.7319\n", + "2 epoch 23 average loss: 0.7319\n", + "----------\n", + "2: epoch 24/1000: lr: [0.0008964999999999998]\n", + "1/0, train_loss: 0.7310\n", + "2 epoch 24 average loss: 0.7310\n", + "current epoch: 24 current mean dice: 0.3360\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 25/1000: lr: [0.0008919999999999999]\n", + "1/0, train_loss: 0.7313\n", + "2 epoch 25 average loss: 0.7313\n", + "----------\n", + "2: epoch 26/1000: lr: [0.0008875]\n", + "1/0, train_loss: 0.7296\n", + "2 epoch 26 average loss: 0.7296\n", + "current epoch: 26 current mean dice: 0.3317\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 27/1000: lr: [0.0008830000000000001]\n", + "1/0, train_loss: 0.7268\n", + "2 epoch 27 average loss: 0.7268\n", + "----------\n", + "2: epoch 28/1000: lr: [0.0008785000000000002]\n", + "1/0, train_loss: 0.7266\n", + "2 epoch 28 average loss: 0.7266\n", + "current epoch: 28 current mean dice: 0.3283\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 29/1000: lr: [0.0008739999999999999]\n", + "1/0, train_loss: 0.7248\n", + "2 epoch 29 average loss: 0.7248\n", + "----------\n", + "2: epoch 30/1000: lr: [0.0008695]\n", + "1/0, train_loss: 0.7232\n", + "2 epoch 30 average loss: 0.7232\n", + "current epoch: 30 current mean dice: 0.3262\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 31/1000: lr: [0.0008650000000000001]\n", + "1/0, train_loss: 0.7236\n", + "2 epoch 31 average loss: 0.7236\n", + "----------\n", + "2: epoch 32/1000: lr: [0.0008605000000000002]\n", + "1/0, train_loss: 0.7198\n", + "2 epoch 32 average loss: 0.7198\n", + "current epoch: 32 current mean dice: 0.3253\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 33/1000: lr: [0.0008559999999999999]\n", + "1/0, train_loss: 0.7200\n", + "2 epoch 33 average loss: 0.7200\n", + "----------\n", + "2: epoch 34/1000: lr: [0.0008515]\n", + "1/0, train_loss: 0.7192\n", + "2 epoch 34 average loss: 0.7192\n", + "current epoch: 34 current mean dice: 0.3251\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 35/1000: lr: [0.0008470000000000001]\n", + "1/0, train_loss: 0.7176\n", + "2 epoch 35 average loss: 0.7176\n", + "----------\n", + "2: epoch 36/1000: lr: [0.0008425000000000001]\n", + "1/0, train_loss: 0.7156\n", + "2 epoch 36 average loss: 0.7156\n", + "current epoch: 36 current mean dice: 0.3254\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 37/1000: lr: [0.0008379999999999999]\n", + "1/0, train_loss: 0.7158\n", + "2 epoch 37 average loss: 0.7158\n", + "----------\n", + "2: epoch 38/1000: lr: [0.0008335]\n", + "1/0, train_loss: 0.7152\n", + "2 epoch 38 average loss: 0.7152\n", + "current epoch: 38 current mean dice: 0.3257\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 39/1000: lr: [0.0008290000000000001]\n", + "1/0, train_loss: 0.7161\n", + "2 epoch 39 average loss: 0.7161\n", + "----------\n", + "2: epoch 40/1000: lr: [0.0008245000000000001]\n", + "1/0, train_loss: 0.7153\n", + "2 epoch 40 average loss: 0.7153\n", + "current epoch: 40 current mean dice: 0.3263\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 41/1000: lr: [0.0008199999999999999]\n", + "1/0, train_loss: 0.7135\n", + "2 epoch 41 average loss: 0.7135\n", + "----------\n", + "2: epoch 42/1000: lr: [0.0008154999999999999]\n", + "1/0, train_loss: 0.7104\n", + "2 epoch 42 average loss: 0.7104\n", + "current epoch: 42 current mean dice: 0.3268\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 43/1000: lr: [0.0008110000000000001]\n", + "1/0, train_loss: 0.7112\n", + "2 epoch 43 average loss: 0.7112\n", + "----------\n", + "2: epoch 44/1000: lr: [0.0008065000000000001]\n", + "1/0, train_loss: 0.7111\n", + "2 epoch 44 average loss: 0.7111\n", + "current epoch: 44 current mean dice: 0.3273\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 45/1000: lr: [0.0008019999999999999]\n", + "1/0, train_loss: 0.7099\n", + "2 epoch 45 average loss: 0.7099\n", + "----------\n", + "2: epoch 46/1000: lr: [0.0007974999999999999]\n", + "1/0, train_loss: 0.7093\n", + "2 epoch 46 average loss: 0.7093\n", + "current epoch: 46 current mean dice: 0.3276\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 47/1000: lr: [0.0007930000000000001]\n", + "1/0, train_loss: 0.7087\n", + "2 epoch 47 average loss: 0.7087\n", + "----------\n", + "2: epoch 48/1000: lr: [0.0007885000000000001]\n", + "1/0, train_loss: 0.7077\n", + "2 epoch 48 average loss: 0.7077\n", + "current epoch: 48 current mean dice: 0.3279\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 49/1000: lr: [0.0007839999999999999]\n", + "1/0, train_loss: 0.7061\n", + "2 epoch 49 average loss: 0.7061\n", + "----------\n", + "2: epoch 50/1000: lr: [0.0007794999999999999]\n", + "1/0, train_loss: 0.7074\n", + "2 epoch 50 average loss: 0.7074\n", + "current epoch: 50 current mean dice: 0.3282\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 51/1000: lr: [0.0007750000000000001]\n", + "1/0, train_loss: 0.7066\n", + "2 epoch 51 average loss: 0.7066\n", + "----------\n", + "2: epoch 52/1000: lr: [0.0007705000000000001]\n", + "1/0, train_loss: 0.7070\n", + "2 epoch 52 average loss: 0.7070\n", + "current epoch: 52 current mean dice: 0.3284\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 53/1000: lr: [0.0007660000000000002]\n", + "1/0, train_loss: 0.7046\n", + "2 epoch 53 average loss: 0.7046\n", + "----------\n", + "2: epoch 54/1000: lr: [0.0007614999999999999]\n", + "1/0, train_loss: 0.7052\n", + "2 epoch 54 average loss: 0.7052\n", + "current epoch: 54 current mean dice: 0.3286\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 55/1000: lr: [0.0007570000000000001]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.7041\n", + "2 epoch 55 average loss: 0.7041\n", + "----------\n", + "2: epoch 56/1000: lr: [0.0007525000000000001]\n", + "1/0, train_loss: 0.7025\n", + "2 epoch 56 average loss: 0.7025\n", + "current epoch: 56 current mean dice: 0.3287\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 57/1000: lr: [0.0007479999999999998]\n", + "1/0, train_loss: 0.7027\n", + "2 epoch 57 average loss: 0.7027\n", + "----------\n", + "2: epoch 58/1000: lr: [0.0007434999999999999]\n", + "1/0, train_loss: 0.7028\n", + "2 epoch 58 average loss: 0.7028\n", + "current epoch: 58 current mean dice: 0.3288\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 59/1000: lr: [0.0007390000000000001]\n", + "1/0, train_loss: 0.7031\n", + "2 epoch 59 average loss: 0.7031\n", + "----------\n", + "2: epoch 60/1000: lr: [0.0007345000000000001]\n", + "1/0, train_loss: 0.7031\n", + "2 epoch 60 average loss: 0.7031\n", + "current epoch: 60 current mean dice: 0.3289\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 61/1000: lr: [0.0007300000000000002]\n", + "1/0, train_loss: 0.7023\n", + "2 epoch 61 average loss: 0.7023\n", + "----------\n", + "2: epoch 62/1000: lr: [0.0007254999999999999]\n", + "1/0, train_loss: 0.7020\n", + "2 epoch 62 average loss: 0.7020\n", + "current epoch: 62 current mean dice: 0.3290\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 63/1000: lr: [0.000721]\n", + "1/0, train_loss: 0.7009\n", + "2 epoch 63 average loss: 0.7009\n", + "----------\n", + "2: epoch 64/1000: lr: [0.0007165000000000001]\n", + "1/0, train_loss: 0.7012\n", + "2 epoch 64 average loss: 0.7012\n", + "current epoch: 64 current mean dice: 0.3291\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 65/1000: lr: [0.0007120000000000002]\n", + "1/0, train_loss: 0.7007\n", + "2 epoch 65 average loss: 0.7007\n", + "----------\n", + "2: epoch 66/1000: lr: [0.0007074999999999998]\n", + "1/0, train_loss: 0.7004\n", + "2 epoch 66 average loss: 0.7004\n", + "current epoch: 66 current mean dice: 0.3293\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 67/1000: lr: [0.000703]\n", + "1/0, train_loss: 0.6982\n", + "2 epoch 67 average loss: 0.6982\n", + "----------\n", + "2: epoch 68/1000: lr: [0.0006985000000000001]\n", + "1/0, train_loss: 0.6989\n", + "2 epoch 68 average loss: 0.6989\n", + "current epoch: 68 current mean dice: 0.3294\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 69/1000: lr: [0.0006940000000000002]\n", + "1/0, train_loss: 0.6996\n", + "2 epoch 69 average loss: 0.6996\n", + "----------\n", + "2: epoch 70/1000: lr: [0.0006895000000000002]\n", + "1/0, train_loss: 0.6995\n", + "2 epoch 70 average loss: 0.6995\n", + "current epoch: 70 current mean dice: 0.3295\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 71/1000: lr: [0.000685]\n", + "1/0, train_loss: 0.6991\n", + "2 epoch 71 average loss: 0.6991\n", + "----------\n", + "2: epoch 72/1000: lr: [0.0006805000000000001]\n", + "1/0, train_loss: 0.6982\n", + "2 epoch 72 average loss: 0.6982\n", + "current epoch: 72 current mean dice: 0.3296\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 73/1000: lr: [0.0006760000000000002]\n", + "1/0, train_loss: 0.6987\n", + "2 epoch 73 average loss: 0.6987\n", + "----------\n", + "2: epoch 74/1000: lr: [0.0006714999999999998]\n", + "1/0, train_loss: 0.6961\n", + "2 epoch 74 average loss: 0.6961\n", + "current epoch: 74 current mean dice: 0.3297\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 75/1000: lr: [0.000667]\n", + "1/0, train_loss: 0.6968\n", + "2 epoch 75 average loss: 0.6968\n", + "----------\n", + "2: epoch 76/1000: lr: [0.0006625]\n", + "1/0, train_loss: 0.6957\n", + "2 epoch 76 average loss: 0.6957\n", + "current epoch: 76 current mean dice: 0.3298\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 77/1000: lr: [0.0006580000000000002]\n", + "1/0, train_loss: 0.6970\n", + "2 epoch 77 average loss: 0.6970\n", + "----------\n", + "2: epoch 78/1000: lr: [0.0006535000000000002]\n", + "1/0, train_loss: 0.6958\n", + "2 epoch 78 average loss: 0.6958\n", + "current epoch: 78 current mean dice: 0.3300\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 79/1000: lr: [0.0006489999999999998]\n", + "1/0, train_loss: 0.6952\n", + "2 epoch 79 average loss: 0.6952\n", + "----------\n", + "2: epoch 80/1000: lr: [0.0006445]\n", + "1/0, train_loss: 0.6944\n", + "2 epoch 80 average loss: 0.6944\n", + "current epoch: 80 current mean dice: 0.3300\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 81/1000: lr: [0.0006400000000000002]\n", + "1/0, train_loss: 0.6952\n", + "2 epoch 81 average loss: 0.6952\n", + "----------\n", + "2: epoch 82/1000: lr: [0.0006354999999999998]\n", + "1/0, train_loss: 0.6943\n", + "2 epoch 82 average loss: 0.6943\n", + "current epoch: 82 current mean dice: 0.3301\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 83/1000: lr: [0.0006309999999999998]\n", + "1/0, train_loss: 0.6949\n", + "2 epoch 83 average loss: 0.6949\n", + "----------\n", + "2: epoch 84/1000: lr: [0.0006265]\n", + "1/0, train_loss: 0.6954\n", + "2 epoch 84 average loss: 0.6954\n", + "current epoch: 84 current mean dice: 0.3302\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 85/1000: lr: [0.0006220000000000002]\n", + "1/0, train_loss: 0.6957\n", + "2 epoch 85 average loss: 0.6957\n", + "----------\n", + "2: epoch 86/1000: lr: [0.0006175000000000002]\n", + "1/0, train_loss: 0.6934\n", + "2 epoch 86 average loss: 0.6934\n", + "current epoch: 86 current mean dice: 0.3303\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 87/1000: lr: [0.0006129999999999998]\n", + "1/0, train_loss: 0.6937\n", + "2 epoch 87 average loss: 0.6937\n", + "----------\n", + "2: epoch 88/1000: lr: [0.0006085]\n", + "1/0, train_loss: 0.6948\n", + "2 epoch 88 average loss: 0.6948\n", + "current epoch: 88 current mean dice: 0.3303\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 89/1000: lr: [0.0006040000000000002]\n", + "1/0, train_loss: 0.6923\n", + "2 epoch 89 average loss: 0.6923\n", + "----------\n", + "2: epoch 90/1000: lr: [0.0005995000000000002]\n", + "1/0, train_loss: 0.6936\n", + "2 epoch 90 average loss: 0.6936\n", + "current epoch: 90 current mean dice: 0.3304\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 91/1000: lr: [0.0005949999999999998]\n", + "1/0, train_loss: 0.6919\n", + "2 epoch 91 average loss: 0.6919\n", + "----------\n", + "2: epoch 92/1000: lr: [0.0005905]\n", + "1/0, train_loss: 0.6945\n", + "2 epoch 92 average loss: 0.6945\n", + "current epoch: 92 current mean dice: 0.3305\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 93/1000: lr: [0.000586]\n", + "1/0, train_loss: 0.6926\n", + "2 epoch 93 average loss: 0.6926\n", + "----------\n", + "2: epoch 94/1000: lr: [0.0005815000000000002]\n", + "1/0, train_loss: 0.6915\n", + "2 epoch 94 average loss: 0.6915\n", + "current epoch: 94 current mean dice: 0.3304\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 95/1000: lr: [0.0005770000000000003]\n", + "1/0, train_loss: 0.6906\n", + "2 epoch 95 average loss: 0.6906\n", + "----------\n", + "2: epoch 96/1000: lr: [0.0005724999999999999]\n", + "1/0, train_loss: 0.6918\n", + "2 epoch 96 average loss: 0.6918\n", + "current epoch: 96 current mean dice: 0.3304\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 97/1000: lr: [0.000568]\n", + "1/0, train_loss: 0.6905\n", + "2 epoch 97 average loss: 0.6905\n", + "----------\n", + "2: epoch 98/1000: lr: [0.0005635000000000002]\n", + "1/0, train_loss: 0.6901\n", + "2 epoch 98 average loss: 0.6901\n", + "current epoch: 98 current mean dice: 0.3304\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 99/1000: lr: [0.0005589999999999998]\n", + "1/0, train_loss: 0.6900\n", + "2 epoch 99 average loss: 0.6900\n", + "----------\n", + "2: epoch 100/1000: lr: [0.0005544999999999999]\n", + "1/0, train_loss: 0.6909\n", + "2 epoch 100 average loss: 0.6909\n", + "current epoch: 100 current mean dice: 0.3304\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 101/1000: lr: [0.00055]\n", + "1/0, train_loss: 0.6902\n", + "2 epoch 101 average loss: 0.6902\n", + "----------\n", + "2: epoch 102/1000: lr: [0.0005455000000000002]\n", + "1/0, train_loss: 0.6910\n", + "2 epoch 102 average loss: 0.6910\n", + "current epoch: 102 current mean dice: 0.3304\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 103/1000: lr: [0.0005410000000000002]\n", + "1/0, train_loss: 0.6899\n", + "2 epoch 103 average loss: 0.6899\n", + "----------\n", + "2: epoch 104/1000: lr: [0.0005364999999999999]\n", + "1/0, train_loss: 0.6908\n", + "2 epoch 104 average loss: 0.6908\n", + "current epoch: 104 current mean dice: 0.3304\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 105/1000: lr: [0.000532]\n", + "1/0, train_loss: 0.6885\n", + "2 epoch 105 average loss: 0.6885\n", + "----------\n", + "2: epoch 106/1000: lr: [0.0005275000000000002]\n", + "1/0, train_loss: 0.6893\n", + "2 epoch 106 average loss: 0.6893\n", + "current epoch: 106 current mean dice: 0.3304\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 107/1000: lr: [0.0005229999999999998]\n", + "1/0, train_loss: 0.6908\n", + "2 epoch 107 average loss: 0.6908\n", + "----------\n", + "2: epoch 108/1000: lr: [0.0005184999999999999]\n", + "1/0, train_loss: 0.6883\n", + "2 epoch 108 average loss: 0.6883\n", + "current epoch: 108 current mean dice: 0.3304\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 109/1000: lr: [0.000514]\n", + "1/0, train_loss: 0.6897\n", + "2 epoch 109 average loss: 0.6897\n", + "----------\n", + "2: epoch 110/1000: lr: [0.0005095000000000001]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.6894\n", + "2 epoch 110 average loss: 0.6894\n", + "current epoch: 110 current mean dice: 0.3304\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 111/1000: lr: [0.0005050000000000002]\n", + "1/0, train_loss: 0.6885\n", + "2 epoch 111 average loss: 0.6885\n", + "----------\n", + "2: epoch 112/1000: lr: [0.0005004999999999999]\n", + "1/0, train_loss: 0.6903\n", + "2 epoch 112 average loss: 0.6903\n", + "current epoch: 112 current mean dice: 0.3304\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 113/1000: lr: [0.000496]\n", + "1/0, train_loss: 0.6886\n", + "2 epoch 113 average loss: 0.6886\n", + "----------\n", + "2: epoch 114/1000: lr: [0.0004915000000000001]\n", + "1/0, train_loss: 0.6880\n", + "2 epoch 114 average loss: 0.6880\n", + "current epoch: 114 current mean dice: 0.3303\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 115/1000: lr: [0.00048700000000000013]\n", + "1/0, train_loss: 0.6883\n", + "2 epoch 115 average loss: 0.6883\n", + "----------\n", + "2: epoch 116/1000: lr: [0.00048249999999999986]\n", + "1/0, train_loss: 0.6870\n", + "2 epoch 116 average loss: 0.6870\n", + "current epoch: 116 current mean dice: 0.3303\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 117/1000: lr: [0.000478]\n", + "1/0, train_loss: 0.6889\n", + "2 epoch 117 average loss: 0.6889\n", + "----------\n", + "2: epoch 118/1000: lr: [0.00047350000000000007]\n", + "1/0, train_loss: 0.6883\n", + "2 epoch 118 average loss: 0.6883\n", + "current epoch: 118 current mean dice: 0.3303\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 119/1000: lr: [0.0004690000000000001]\n", + "1/0, train_loss: 0.6880\n", + "2 epoch 119 average loss: 0.6880\n", + "----------\n", + "2: epoch 120/1000: lr: [0.0004645000000000003]\n", + "1/0, train_loss: 0.6871\n", + "2 epoch 120 average loss: 0.6871\n", + "current epoch: 120 current mean dice: 0.3303\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 121/1000: lr: [0.0004599999999999999]\n", + "1/0, train_loss: 0.6877\n", + "2 epoch 121 average loss: 0.6877\n", + "----------\n", + "2: epoch 122/1000: lr: [0.00045550000000000007]\n", + "1/0, train_loss: 0.6876\n", + "2 epoch 122 average loss: 0.6876\n", + "current epoch: 122 current mean dice: 0.3302\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 123/1000: lr: [0.0004510000000000001]\n", + "1/0, train_loss: 0.6875\n", + "2 epoch 123 average loss: 0.6875\n", + "----------\n", + "2: epoch 124/1000: lr: [0.00044649999999999985]\n", + "1/0, train_loss: 0.6880\n", + "2 epoch 124 average loss: 0.6880\n", + "current epoch: 124 current mean dice: 0.3302\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 125/1000: lr: [0.0004419999999999999]\n", + "1/0, train_loss: 0.6866\n", + "2 epoch 125 average loss: 0.6866\n", + "----------\n", + "2: epoch 126/1000: lr: [0.00043750000000000006]\n", + "1/0, train_loss: 0.6867\n", + "2 epoch 126 average loss: 0.6867\n", + "current epoch: 126 current mean dice: 0.3302\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 127/1000: lr: [0.0004330000000000001]\n", + "1/0, train_loss: 0.6856\n", + "2 epoch 127 average loss: 0.6856\n", + "----------\n", + "2: epoch 128/1000: lr: [0.0004285000000000003]\n", + "1/0, train_loss: 0.6867\n", + "2 epoch 128 average loss: 0.6867\n", + "current epoch: 128 current mean dice: 0.3302\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 129/1000: lr: [0.0004239999999999999]\n", + "1/0, train_loss: 0.6868\n", + "2 epoch 129 average loss: 0.6868\n", + "----------\n", + "2: epoch 130/1000: lr: [0.00041950000000000006]\n", + "1/0, train_loss: 0.6864\n", + "2 epoch 130 average loss: 0.6864\n", + "current epoch: 130 current mean dice: 0.3301\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 131/1000: lr: [0.0004150000000000001]\n", + "1/0, train_loss: 0.6856\n", + "2 epoch 131 average loss: 0.6856\n", + "----------\n", + "2: epoch 132/1000: lr: [0.00041049999999999984]\n", + "1/0, train_loss: 0.6872\n", + "2 epoch 132 average loss: 0.6872\n", + "current epoch: 132 current mean dice: 0.3301\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 133/1000: lr: [0.0004059999999999999]\n", + "1/0, train_loss: 0.6867\n", + "2 epoch 133 average loss: 0.6867\n", + "----------\n", + "2: epoch 134/1000: lr: [0.00040150000000000006]\n", + "1/0, train_loss: 0.6865\n", + "2 epoch 134 average loss: 0.6865\n", + "current epoch: 134 current mean dice: 0.3300\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 135/1000: lr: [0.0003970000000000001]\n", + "1/0, train_loss: 0.6860\n", + "2 epoch 135 average loss: 0.6860\n", + "----------\n", + "2: epoch 136/1000: lr: [0.00039250000000000016]\n", + "1/0, train_loss: 0.6858\n", + "2 epoch 136 average loss: 0.6858\n", + "current epoch: 136 current mean dice: 0.3299\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 137/1000: lr: [0.0003879999999999999]\n", + "1/0, train_loss: 0.6853\n", + "2 epoch 137 average loss: 0.6853\n", + "----------\n", + "2: epoch 138/1000: lr: [0.00038349999999999994]\n", + "1/0, train_loss: 0.6854\n", + "2 epoch 138 average loss: 0.6854\n", + "current epoch: 138 current mean dice: 0.3299\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 139/1000: lr: [0.0003790000000000001]\n", + "1/0, train_loss: 0.6853\n", + "2 epoch 139 average loss: 0.6853\n", + "----------\n", + "2: epoch 140/1000: lr: [0.00037450000000000016]\n", + "1/0, train_loss: 0.6853\n", + "2 epoch 140 average loss: 0.6853\n", + "current epoch: 140 current mean dice: 0.3298\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 141/1000: lr: [0.0003699999999999999]\n", + "1/0, train_loss: 0.6853\n", + "2 epoch 141 average loss: 0.6853\n", + "----------\n", + "2: epoch 142/1000: lr: [0.00036549999999999994]\n", + "1/0, train_loss: 0.6857\n", + "2 epoch 142 average loss: 0.6857\n", + "current epoch: 142 current mean dice: 0.3298\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 143/1000: lr: [0.0003610000000000001]\n", + "1/0, train_loss: 0.6846\n", + "2 epoch 143 average loss: 0.6846\n", + "----------\n", + "2: epoch 144/1000: lr: [0.00035650000000000015]\n", + "1/0, train_loss: 0.6836\n", + "2 epoch 144 average loss: 0.6836\n", + "current epoch: 144 current mean dice: 0.3297\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 145/1000: lr: [0.0003520000000000003]\n", + "1/0, train_loss: 0.6840\n", + "2 epoch 145 average loss: 0.6840\n", + "----------\n", + "2: epoch 146/1000: lr: [0.00034749999999999994]\n", + "1/0, train_loss: 0.6852\n", + "2 epoch 146 average loss: 0.6852\n", + "current epoch: 146 current mean dice: 0.3296\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 147/1000: lr: [0.0003430000000000001]\n", + "1/0, train_loss: 0.6839\n", + "2 epoch 147 average loss: 0.6839\n", + "----------\n", + "2: epoch 148/1000: lr: [0.00033850000000000015]\n", + "1/0, train_loss: 0.6841\n", + "2 epoch 148 average loss: 0.6841\n", + "current epoch: 148 current mean dice: 0.3296\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 149/1000: lr: [0.0003339999999999999]\n", + "1/0, train_loss: 0.6838\n", + "2 epoch 149 average loss: 0.6838\n", + "----------\n", + "2: epoch 150/1000: lr: [0.00032949999999999993]\n", + "1/0, train_loss: 0.6854\n", + "2 epoch 150 average loss: 0.6854\n", + "current epoch: 150 current mean dice: 0.3295\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 151/1000: lr: [0.000325]\n", + "1/0, train_loss: 0.6842\n", + "2 epoch 151 average loss: 0.6842\n", + "----------\n", + "2: epoch 152/1000: lr: [0.00032050000000000015]\n", + "1/0, train_loss: 0.6830\n", + "2 epoch 152 average loss: 0.6830\n", + "current epoch: 152 current mean dice: 0.3295\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 153/1000: lr: [0.0003160000000000002]\n", + "1/0, train_loss: 0.6840\n", + "2 epoch 153 average loss: 0.6840\n", + "----------\n", + "2: epoch 154/1000: lr: [0.00031149999999999993]\n", + "1/0, train_loss: 0.6845\n", + "2 epoch 154 average loss: 0.6845\n", + "current epoch: 154 current mean dice: 0.3294\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 155/1000: lr: [0.000307]\n", + "1/0, train_loss: 0.6838\n", + "2 epoch 155 average loss: 0.6838\n", + "----------\n", + "2: epoch 156/1000: lr: [0.00030250000000000014]\n", + "1/0, train_loss: 0.6839\n", + "2 epoch 156 average loss: 0.6839\n", + "current epoch: 156 current mean dice: 0.3294\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 157/1000: lr: [0.00029799999999999976]\n", + "1/0, train_loss: 0.6833\n", + "2 epoch 157 average loss: 0.6833\n", + "----------\n", + "2: epoch 158/1000: lr: [0.0002934999999999999]\n", + "1/0, train_loss: 0.6842\n", + "2 epoch 158 average loss: 0.6842\n", + "current epoch: 158 current mean dice: 0.3294\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 159/1000: lr: [0.000289]\n", + "1/0, train_loss: 0.6832\n", + "2 epoch 159 average loss: 0.6832\n", + "----------\n", + "2: epoch 160/1000: lr: [0.00028450000000000014]\n", + "1/0, train_loss: 0.6853\n", + "2 epoch 160 average loss: 0.6853\n", + "current epoch: 160 current mean dice: 0.3293\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 161/1000: lr: [0.0002800000000000002]\n", + "1/0, train_loss: 0.6843\n", + "2 epoch 161 average loss: 0.6843\n", + "----------\n", + "2: epoch 162/1000: lr: [0.0002754999999999999]\n", + "1/0, train_loss: 0.6827\n", + "2 epoch 162 average loss: 0.6827\n", + "current epoch: 162 current mean dice: 0.3293\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 163/1000: lr: [0.000271]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.6825\n", + "2 epoch 163 average loss: 0.6825\n", + "----------\n", + "2: epoch 164/1000: lr: [0.00026650000000000014]\n", + "1/0, train_loss: 0.6838\n", + "2 epoch 164 average loss: 0.6838\n", + "current epoch: 164 current mean dice: 0.3292\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 165/1000: lr: [0.0002620000000000002]\n", + "1/0, train_loss: 0.6828\n", + "2 epoch 165 average loss: 0.6828\n", + "----------\n", + "2: epoch 166/1000: lr: [0.0002574999999999999]\n", + "1/0, train_loss: 0.6846\n", + "2 epoch 166 average loss: 0.6846\n", + "current epoch: 166 current mean dice: 0.3292\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 167/1000: lr: [0.00025299999999999997]\n", + "1/0, train_loss: 0.6834\n", + "2 epoch 167 average loss: 0.6834\n", + "----------\n", + "2: epoch 168/1000: lr: [0.0002485]\n", + "1/0, train_loss: 0.6830\n", + "2 epoch 168 average loss: 0.6830\n", + "current epoch: 168 current mean dice: 0.3292\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 169/1000: lr: [0.00024400000000000018]\n", + "1/0, train_loss: 0.6821\n", + "2 epoch 169 average loss: 0.6821\n", + "----------\n", + "2: epoch 170/1000: lr: [0.00023950000000000024]\n", + "1/0, train_loss: 0.6842\n", + "2 epoch 170 average loss: 0.6842\n", + "current epoch: 170 current mean dice: 0.3291\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 171/1000: lr: [0.00023499999999999997]\n", + "1/0, train_loss: 0.6848\n", + "2 epoch 171 average loss: 0.6848\n", + "----------\n", + "2: epoch 172/1000: lr: [0.00023050000000000002]\n", + "1/0, train_loss: 0.6833\n", + "2 epoch 172 average loss: 0.6833\n", + "current epoch: 172 current mean dice: 0.3291\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 173/1000: lr: [0.00022600000000000018]\n", + "1/0, train_loss: 0.6838\n", + "2 epoch 173 average loss: 0.6838\n", + "----------\n", + "2: epoch 174/1000: lr: [0.0002214999999999998]\n", + "1/0, train_loss: 0.6852\n", + "2 epoch 174 average loss: 0.6852\n", + "current epoch: 174 current mean dice: 0.3291\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 175/1000: lr: [0.00021699999999999996]\n", + "1/0, train_loss: 0.6829\n", + "2 epoch 175 average loss: 0.6829\n", + "----------\n", + "2: epoch 176/1000: lr: [0.00021250000000000002]\n", + "1/0, train_loss: 0.6822\n", + "2 epoch 176 average loss: 0.6822\n", + "current epoch: 176 current mean dice: 0.3290\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 177/1000: lr: [0.00020800000000000018]\n", + "1/0, train_loss: 0.6839\n", + "2 epoch 177 average loss: 0.6839\n", + "----------\n", + "2: epoch 178/1000: lr: [0.00020350000000000023]\n", + "1/0, train_loss: 0.6837\n", + "2 epoch 178 average loss: 0.6837\n", + "current epoch: 178 current mean dice: 0.3290\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 179/1000: lr: [0.00019899999999999996]\n", + "1/0, train_loss: 0.6827\n", + "2 epoch 179 average loss: 0.6827\n", + "----------\n", + "2: epoch 180/1000: lr: [0.0001945]\n", + "1/0, train_loss: 0.6823\n", + "2 epoch 180 average loss: 0.6823\n", + "current epoch: 180 current mean dice: 0.3290\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 181/1000: lr: [0.00019000000000000017]\n", + "1/0, train_loss: 0.6825\n", + "2 epoch 181 average loss: 0.6825\n", + "----------\n", + "2: epoch 182/1000: lr: [0.0001854999999999998]\n", + "1/0, train_loss: 0.6816\n", + "2 epoch 182 average loss: 0.6816\n", + "current epoch: 182 current mean dice: 0.3289\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 183/1000: lr: [0.00018099999999999995]\n", + "1/0, train_loss: 0.6820\n", + "2 epoch 183 average loss: 0.6820\n", + "----------\n", + "2: epoch 184/1000: lr: [0.0001765]\n", + "1/0, train_loss: 0.6821\n", + "2 epoch 184 average loss: 0.6821\n", + "current epoch: 184 current mean dice: 0.3289\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 185/1000: lr: [0.00017200000000000006]\n", + "1/0, train_loss: 0.6833\n", + "2 epoch 185 average loss: 0.6833\n", + "----------\n", + "2: epoch 186/1000: lr: [0.00016750000000000022]\n", + "1/0, train_loss: 0.6823\n", + "2 epoch 186 average loss: 0.6823\n", + "current epoch: 186 current mean dice: 0.3289\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 187/1000: lr: [0.00016299999999999995]\n", + "1/0, train_loss: 0.6833\n", + "2 epoch 187 average loss: 0.6833\n", + "----------\n", + "2: epoch 188/1000: lr: [0.0001585]\n", + "1/0, train_loss: 0.6814\n", + "2 epoch 188 average loss: 0.6814\n", + "current epoch: 188 current mean dice: 0.3288\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 189/1000: lr: [0.00015400000000000006]\n", + "1/0, train_loss: 0.6816\n", + "2 epoch 189 average loss: 0.6816\n", + "----------\n", + "2: epoch 190/1000: lr: [0.00014950000000000022]\n", + "1/0, train_loss: 0.6819\n", + "2 epoch 190 average loss: 0.6819\n", + "current epoch: 190 current mean dice: 0.3288\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 191/1000: lr: [0.00014499999999999984]\n", + "1/0, train_loss: 0.6822\n", + "2 epoch 191 average loss: 0.6822\n", + "----------\n", + "2: epoch 192/1000: lr: [0.0001405]\n", + "1/0, train_loss: 0.6817\n", + "2 epoch 192 average loss: 0.6817\n", + "current epoch: 192 current mean dice: 0.3288\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 193/1000: lr: [0.00013600000000000005]\n", + "1/0, train_loss: 0.6835\n", + "2 epoch 193 average loss: 0.6835\n", + "----------\n", + "2: epoch 194/1000: lr: [0.00013150000000000021]\n", + "1/0, train_loss: 0.6832\n", + "2 epoch 194 average loss: 0.6832\n", + "current epoch: 194 current mean dice: 0.3288\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 195/1000: lr: [0.00012700000000000027]\n", + "1/0, train_loss: 0.6825\n", + "2 epoch 195 average loss: 0.6825\n", + "----------\n", + "2: epoch 196/1000: lr: [0.0001225]\n", + "1/0, train_loss: 0.6827\n", + "2 epoch 196 average loss: 0.6827\n", + "current epoch: 196 current mean dice: 0.3288\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 197/1000: lr: [0.00011800000000000005]\n", + "1/0, train_loss: 0.6820\n", + "2 epoch 197 average loss: 0.6820\n", + "----------\n", + "2: epoch 198/1000: lr: [0.00011350000000000021]\n", + "1/0, train_loss: 0.6828\n", + "2 epoch 198 average loss: 0.6828\n", + "current epoch: 198 current mean dice: 0.3288\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 199/1000: lr: [0.00010899999999999983]\n", + "1/0, train_loss: 0.6819\n", + "2 epoch 199 average loss: 0.6819\n", + "----------\n", + "2: epoch 200/1000: lr: [0.00010449999999999999]\n", + "1/0, train_loss: 0.6819\n", + "2 epoch 200 average loss: 0.6819\n", + "current epoch: 200 current mean dice: 0.3287\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 201/1000: lr: [0.00010000000000000005]\n", + "1/0, train_loss: 0.6821\n", + "2 epoch 201 average loss: 0.6821\n", + "----------\n", + "2: epoch 202/1000: lr: [0.00010449999999999999]\n", + "1/0, train_loss: 0.6822\n", + "2 epoch 202 average loss: 0.6822\n", + "current epoch: 202 current mean dice: 0.3287\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 203/1000: lr: [0.00010899999999999983]\n", + "1/0, train_loss: 0.6818\n", + "2 epoch 203 average loss: 0.6818\n", + "----------\n", + "2: epoch 204/1000: lr: [0.00011349999999999978]\n", + "1/0, train_loss: 0.6817\n", + "2 epoch 204 average loss: 0.6817\n", + "current epoch: 204 current mean dice: 0.3287\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 205/1000: lr: [0.00011800000000000005]\n", + "1/0, train_loss: 0.6808\n", + "2 epoch 205 average loss: 0.6808\n", + "----------\n", + "2: epoch 206/1000: lr: [0.0001225]\n", + "1/0, train_loss: 0.6840\n", + "2 epoch 206 average loss: 0.6840\n", + "current epoch: 206 current mean dice: 0.3287\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 207/1000: lr: [0.00012700000000000027]\n", + "1/0, train_loss: 0.6826\n", + "2 epoch 207 average loss: 0.6826\n", + "----------\n", + "2: epoch 208/1000: lr: [0.00013150000000000021]\n", + "1/0, train_loss: 0.6817\n", + "2 epoch 208 average loss: 0.6817\n", + "current epoch: 208 current mean dice: 0.3287\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 209/1000: lr: [0.00013600000000000005]\n", + "1/0, train_loss: 0.6821\n", + "2 epoch 209 average loss: 0.6821\n", + "----------\n", + "2: epoch 210/1000: lr: [0.0001405]\n", + "1/0, train_loss: 0.6834\n", + "2 epoch 210 average loss: 0.6834\n", + "current epoch: 210 current mean dice: 0.3287\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 211/1000: lr: [0.00014499999999999984]\n", + "1/0, train_loss: 0.6815\n", + "2 epoch 211 average loss: 0.6815\n", + "----------\n", + "2: epoch 212/1000: lr: [0.00014949999999999978]\n", + "1/0, train_loss: 0.6814\n", + "2 epoch 212 average loss: 0.6814\n", + "current epoch: 212 current mean dice: 0.3287\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 213/1000: lr: [0.00015400000000000006]\n", + "1/0, train_loss: 0.6835\n", + "2 epoch 213 average loss: 0.6835\n", + "----------\n", + "2: epoch 214/1000: lr: [0.0001585]\n", + "1/0, train_loss: 0.6813\n", + "2 epoch 214 average loss: 0.6813\n", + "current epoch: 214 current mean dice: 0.3287\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 215/1000: lr: [0.00016300000000000028]\n", + "1/0, train_loss: 0.6813\n", + "2 epoch 215 average loss: 0.6813\n", + "----------\n", + "2: epoch 216/1000: lr: [0.00016750000000000022]\n", + "1/0, train_loss: 0.6807\n", + "2 epoch 216 average loss: 0.6807\n", + "current epoch: 216 current mean dice: 0.3286\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 217/1000: lr: [0.00017200000000000006]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.6822\n", + "2 epoch 217 average loss: 0.6822\n", + "----------\n", + "2: epoch 218/1000: lr: [0.0001765]\n", + "1/0, train_loss: 0.6808\n", + "2 epoch 218 average loss: 0.6808\n", + "current epoch: 218 current mean dice: 0.3286\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 219/1000: lr: [0.00018099999999999995]\n", + "1/0, train_loss: 0.6835\n", + "2 epoch 219 average loss: 0.6835\n", + "----------\n", + "2: epoch 220/1000: lr: [0.0001854999999999998]\n", + "1/0, train_loss: 0.6816\n", + "2 epoch 220 average loss: 0.6816\n", + "current epoch: 220 current mean dice: 0.3286\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 221/1000: lr: [0.00019000000000000017]\n", + "1/0, train_loss: 0.6818\n", + "2 epoch 221 average loss: 0.6818\n", + "----------\n", + "2: epoch 222/1000: lr: [0.0001945]\n", + "1/0, train_loss: 0.6827\n", + "2 epoch 222 average loss: 0.6827\n", + "current epoch: 222 current mean dice: 0.3286\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 223/1000: lr: [0.00019900000000000028]\n", + "1/0, train_loss: 0.6823\n", + "2 epoch 223 average loss: 0.6823\n", + "----------\n", + "2: epoch 224/1000: lr: [0.00020350000000000023]\n", + "1/0, train_loss: 0.6825\n", + "2 epoch 224 average loss: 0.6825\n", + "current epoch: 224 current mean dice: 0.3285\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 225/1000: lr: [0.00020800000000000018]\n", + "1/0, train_loss: 0.6810\n", + "2 epoch 225 average loss: 0.6810\n", + "----------\n", + "2: epoch 226/1000: lr: [0.00021250000000000002]\n", + "1/0, train_loss: 0.6816\n", + "2 epoch 226 average loss: 0.6816\n", + "current epoch: 226 current mean dice: 0.3285\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 227/1000: lr: [0.00021699999999999996]\n", + "1/0, train_loss: 0.6814\n", + "2 epoch 227 average loss: 0.6814\n", + "----------\n", + "2: epoch 228/1000: lr: [0.0002214999999999998]\n", + "1/0, train_loss: 0.6828\n", + "2 epoch 228 average loss: 0.6828\n", + "current epoch: 228 current mean dice: 0.3284\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 229/1000: lr: [0.00022599999999999975]\n", + "1/0, train_loss: 0.6817\n", + "2 epoch 229 average loss: 0.6817\n", + "----------\n", + "2: epoch 230/1000: lr: [0.00023050000000000002]\n", + "1/0, train_loss: 0.6816\n", + "2 epoch 230 average loss: 0.6816\n", + "current epoch: 230 current mean dice: 0.3284\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 231/1000: lr: [0.00023499999999999997]\n", + "1/0, train_loss: 0.6806\n", + "2 epoch 231 average loss: 0.6806\n", + "----------\n", + "2: epoch 232/1000: lr: [0.00023950000000000024]\n", + "1/0, train_loss: 0.6833\n", + "2 epoch 232 average loss: 0.6833\n", + "current epoch: 232 current mean dice: 0.3284\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 233/1000: lr: [0.00024400000000000018]\n", + "1/0, train_loss: 0.6805\n", + "2 epoch 233 average loss: 0.6805\n", + "----------\n", + "2: epoch 234/1000: lr: [0.0002485]\n", + "1/0, train_loss: 0.6826\n", + "2 epoch 234 average loss: 0.6826\n", + "current epoch: 234 current mean dice: 0.3284\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 235/1000: lr: [0.00025299999999999997]\n", + "1/0, train_loss: 0.6819\n", + "2 epoch 235 average loss: 0.6819\n", + "----------\n", + "2: epoch 236/1000: lr: [0.0002574999999999999]\n", + "1/0, train_loss: 0.6807\n", + "2 epoch 236 average loss: 0.6807\n", + "current epoch: 236 current mean dice: 0.3283\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 237/1000: lr: [0.00026199999999999975]\n", + "1/0, train_loss: 0.6801\n", + "2 epoch 237 average loss: 0.6801\n", + "----------\n", + "2: epoch 238/1000: lr: [0.00026650000000000014]\n", + "1/0, train_loss: 0.6803\n", + "2 epoch 238 average loss: 0.6803\n", + "current epoch: 238 current mean dice: 0.3283\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 239/1000: lr: [0.000271]\n", + "1/0, train_loss: 0.6800\n", + "2 epoch 239 average loss: 0.6800\n", + "----------\n", + "2: epoch 240/1000: lr: [0.00027550000000000025]\n", + "1/0, train_loss: 0.6805\n", + "2 epoch 240 average loss: 0.6805\n", + "current epoch: 240 current mean dice: 0.3283\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 241/1000: lr: [0.0002800000000000002]\n", + "1/0, train_loss: 0.6809\n", + "2 epoch 241 average loss: 0.6809\n", + "----------\n", + "2: epoch 242/1000: lr: [0.00028450000000000014]\n", + "1/0, train_loss: 0.6805\n", + "2 epoch 242 average loss: 0.6805\n", + "current epoch: 242 current mean dice: 0.3283\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 243/1000: lr: [0.000289]\n", + "1/0, train_loss: 0.6809\n", + "2 epoch 243 average loss: 0.6809\n", + "----------\n", + "2: epoch 244/1000: lr: [0.0002934999999999999]\n", + "1/0, train_loss: 0.6808\n", + "2 epoch 244 average loss: 0.6808\n", + "current epoch: 244 current mean dice: 0.3283\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 245/1000: lr: [0.00029799999999999976]\n", + "1/0, train_loss: 0.6817\n", + "2 epoch 245 average loss: 0.6817\n", + "----------\n", + "2: epoch 246/1000: lr: [0.00030250000000000014]\n", + "1/0, train_loss: 0.6793\n", + "2 epoch 246 average loss: 0.6793\n", + "current epoch: 246 current mean dice: 0.3283\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 247/1000: lr: [0.000307]\n", + "1/0, train_loss: 0.6808\n", + "2 epoch 247 average loss: 0.6808\n", + "----------\n", + "2: epoch 248/1000: lr: [0.00031150000000000036]\n", + "1/0, train_loss: 0.6811\n", + "2 epoch 248 average loss: 0.6811\n", + "current epoch: 248 current mean dice: 0.3282\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 249/1000: lr: [0.0003160000000000002]\n", + "1/0, train_loss: 0.6802\n", + "2 epoch 249 average loss: 0.6802\n", + "----------\n", + "2: epoch 250/1000: lr: [0.00032050000000000015]\n", + "1/0, train_loss: 0.6800\n", + "2 epoch 250 average loss: 0.6800\n", + "current epoch: 250 current mean dice: 0.3282\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 251/1000: lr: [0.000325]\n", + "1/0, train_loss: 0.6790\n", + "2 epoch 251 average loss: 0.6790\n", + "----------\n", + "2: epoch 252/1000: lr: [0.00032949999999999993]\n", + "1/0, train_loss: 0.6799\n", + "2 epoch 252 average loss: 0.6799\n", + "current epoch: 252 current mean dice: 0.3281\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 253/1000: lr: [0.0003339999999999999]\n", + "1/0, train_loss: 0.6804\n", + "2 epoch 253 average loss: 0.6804\n", + "----------\n", + "2: epoch 254/1000: lr: [0.0003384999999999997]\n", + "1/0, train_loss: 0.6803\n", + "2 epoch 254 average loss: 0.6803\n", + "current epoch: 254 current mean dice: 0.3280\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 255/1000: lr: [0.0003430000000000001]\n", + "1/0, train_loss: 0.6795\n", + "2 epoch 255 average loss: 0.6795\n", + "----------\n", + "2: epoch 256/1000: lr: [0.00034749999999999994]\n", + "1/0, train_loss: 0.6784\n", + "2 epoch 256 average loss: 0.6784\n", + "current epoch: 256 current mean dice: 0.3280\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 257/1000: lr: [0.0003520000000000003]\n", + "1/0, train_loss: 0.6822\n", + "2 epoch 257 average loss: 0.6822\n", + "----------\n", + "2: epoch 258/1000: lr: [0.00035650000000000015]\n", + "1/0, train_loss: 0.6800\n", + "2 epoch 258 average loss: 0.6800\n", + "current epoch: 258 current mean dice: 0.3279\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 259/1000: lr: [0.0003610000000000001]\n", + "1/0, train_loss: 0.6818\n", + "2 epoch 259 average loss: 0.6818\n", + "----------\n", + "2: epoch 260/1000: lr: [0.00036549999999999994]\n", + "1/0, train_loss: 0.6788\n", + "2 epoch 260 average loss: 0.6788\n", + "current epoch: 260 current mean dice: 0.3279\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 261/1000: lr: [0.0003699999999999999]\n", + "1/0, train_loss: 0.6790\n", + "2 epoch 261 average loss: 0.6790\n", + "----------\n", + "2: epoch 262/1000: lr: [0.00037449999999999983]\n", + "1/0, train_loss: 0.6784\n", + "2 epoch 262 average loss: 0.6784\n", + "current epoch: 262 current mean dice: 0.3278\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 263/1000: lr: [0.0003790000000000001]\n", + "1/0, train_loss: 0.6794\n", + "2 epoch 263 average loss: 0.6794\n", + "----------\n", + "2: epoch 264/1000: lr: [0.00038349999999999994]\n", + "1/0, train_loss: 0.6794\n", + "2 epoch 264 average loss: 0.6794\n", + "current epoch: 264 current mean dice: 0.3278\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 265/1000: lr: [0.0003880000000000003]\n", + "1/0, train_loss: 0.6784\n", + "2 epoch 265 average loss: 0.6784\n", + "----------\n", + "2: epoch 266/1000: lr: [0.00039250000000000016]\n", + "1/0, train_loss: 0.6792\n", + "2 epoch 266 average loss: 0.6792\n", + "current epoch: 266 current mean dice: 0.3277\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 267/1000: lr: [0.0003970000000000001]\n", + "1/0, train_loss: 0.6783\n", + "2 epoch 267 average loss: 0.6783\n", + "----------\n", + "2: epoch 268/1000: lr: [0.00040150000000000006]\n", + "1/0, train_loss: 0.6786\n", + "2 epoch 268 average loss: 0.6786\n", + "current epoch: 268 current mean dice: 0.3277\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 269/1000: lr: [0.0004059999999999999]\n", + "1/0, train_loss: 0.6785\n", + "2 epoch 269 average loss: 0.6785\n", + "----------\n", + "2: epoch 270/1000: lr: [0.00041049999999999984]\n", + "1/0, train_loss: 0.6778\n", + "2 epoch 270 average loss: 0.6778\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "current epoch: 270 current mean dice: 0.3276\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 271/1000: lr: [0.0004150000000000001]\n", + "1/0, train_loss: 0.6788\n", + "2 epoch 271 average loss: 0.6788\n", + "----------\n", + "2: epoch 272/1000: lr: [0.00041950000000000006]\n", + "1/0, train_loss: 0.6790\n", + "2 epoch 272 average loss: 0.6790\n", + "current epoch: 272 current mean dice: 0.3276\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 273/1000: lr: [0.00042400000000000033]\n", + "1/0, train_loss: 0.6773\n", + "2 epoch 273 average loss: 0.6773\n", + "----------\n", + "2: epoch 274/1000: lr: [0.0004285000000000003]\n", + "1/0, train_loss: 0.6778\n", + "2 epoch 274 average loss: 0.6778\n", + "current epoch: 274 current mean dice: 0.3276\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 275/1000: lr: [0.0004330000000000001]\n", + "1/0, train_loss: 0.6777\n", + "2 epoch 275 average loss: 0.6777\n", + "----------\n", + "2: epoch 276/1000: lr: [0.00043750000000000006]\n", + "1/0, train_loss: 0.6791\n", + "2 epoch 276 average loss: 0.6791\n", + "current epoch: 276 current mean dice: 0.3275\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 277/1000: lr: [0.0004419999999999999]\n", + "1/0, train_loss: 0.6784\n", + "2 epoch 277 average loss: 0.6784\n", + "----------\n", + "2: epoch 278/1000: lr: [0.00044649999999999985]\n", + "1/0, train_loss: 0.6779\n", + "2 epoch 278 average loss: 0.6779\n", + "current epoch: 278 current mean dice: 0.3275\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 279/1000: lr: [0.0004509999999999998]\n", + "1/0, train_loss: 0.6776\n", + "2 epoch 279 average loss: 0.6776\n", + "----------\n", + "2: epoch 280/1000: lr: [0.00045550000000000007]\n", + "1/0, train_loss: 0.6789\n", + "2 epoch 280 average loss: 0.6789\n", + "current epoch: 280 current mean dice: 0.3274\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 281/1000: lr: [0.0004599999999999999]\n", + "1/0, train_loss: 0.6772\n", + "2 epoch 281 average loss: 0.6772\n", + "----------\n", + "2: epoch 282/1000: lr: [0.0004645000000000003]\n", + "1/0, train_loss: 0.6785\n", + "2 epoch 282 average loss: 0.6785\n", + "current epoch: 282 current mean dice: 0.3273\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 283/1000: lr: [0.0004690000000000001]\n", + "1/0, train_loss: 0.6784\n", + "2 epoch 283 average loss: 0.6784\n", + "----------\n", + "2: epoch 284/1000: lr: [0.00047350000000000007]\n", + "1/0, train_loss: 0.6773\n", + "2 epoch 284 average loss: 0.6773\n", + "current epoch: 284 current mean dice: 0.3273\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 285/1000: lr: [0.000478]\n", + "1/0, train_loss: 0.6766\n", + "2 epoch 285 average loss: 0.6766\n", + "----------\n", + "2: epoch 286/1000: lr: [0.00048249999999999986]\n", + "1/0, train_loss: 0.6762\n", + "2 epoch 286 average loss: 0.6762\n", + "current epoch: 286 current mean dice: 0.3272\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 287/1000: lr: [0.0004869999999999998]\n", + "1/0, train_loss: 0.6762\n", + "2 epoch 287 average loss: 0.6762\n", + "----------\n", + "2: epoch 288/1000: lr: [0.0004915000000000001]\n", + "1/0, train_loss: 0.6769\n", + "2 epoch 288 average loss: 0.6769\n", + "current epoch: 288 current mean dice: 0.3271\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 289/1000: lr: [0.000496]\n", + "1/0, train_loss: 0.6769\n", + "2 epoch 289 average loss: 0.6769\n", + "----------\n", + "2: epoch 290/1000: lr: [0.0005005000000000003]\n", + "1/0, train_loss: 0.6788\n", + "2 epoch 290 average loss: 0.6788\n", + "current epoch: 290 current mean dice: 0.3271\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 291/1000: lr: [0.0005050000000000002]\n", + "1/0, train_loss: 0.6761\n", + "2 epoch 291 average loss: 0.6761\n", + "----------\n", + "2: epoch 292/1000: lr: [0.0005095000000000001]\n", + "1/0, train_loss: 0.6780\n", + "2 epoch 292 average loss: 0.6780\n", + "current epoch: 292 current mean dice: 0.3270\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 293/1000: lr: [0.000514]\n", + "1/0, train_loss: 0.6777\n", + "2 epoch 293 average loss: 0.6777\n", + "----------\n", + "2: epoch 294/1000: lr: [0.0005184999999999999]\n", + "1/0, train_loss: 0.6761\n", + "2 epoch 294 average loss: 0.6761\n", + "current epoch: 294 current mean dice: 0.3270\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 295/1000: lr: [0.0005229999999999998]\n", + "1/0, train_loss: 0.6756\n", + "2 epoch 295 average loss: 0.6756\n", + "----------\n", + "2: epoch 296/1000: lr: [0.0005275000000000002]\n", + "1/0, train_loss: 0.6772\n", + "2 epoch 296 average loss: 0.6772\n", + "current epoch: 296 current mean dice: 0.3269\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 297/1000: lr: [0.000532]\n", + "1/0, train_loss: 0.6763\n", + "2 epoch 297 average loss: 0.6763\n", + "----------\n", + "2: epoch 298/1000: lr: [0.0005365000000000003]\n", + "1/0, train_loss: 0.6757\n", + "2 epoch 298 average loss: 0.6757\n", + "current epoch: 298 current mean dice: 0.3269\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 299/1000: lr: [0.0005410000000000002]\n", + "1/0, train_loss: 0.6751\n", + "2 epoch 299 average loss: 0.6751\n", + "----------\n", + "2: epoch 300/1000: lr: [0.0005455000000000002]\n", + "1/0, train_loss: 0.6750\n", + "2 epoch 300 average loss: 0.6750\n", + "current epoch: 300 current mean dice: 0.3268\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 301/1000: lr: [0.00055]\n", + "1/0, train_loss: 0.6742\n", + "2 epoch 301 average loss: 0.6742\n", + "----------\n", + "2: epoch 302/1000: lr: [0.0005544999999999999]\n", + "1/0, train_loss: 0.6765\n", + "2 epoch 302 average loss: 0.6765\n", + "current epoch: 302 current mean dice: 0.3268\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 303/1000: lr: [0.0005589999999999998]\n", + "1/0, train_loss: 0.6746\n", + "2 epoch 303 average loss: 0.6746\n", + "----------\n", + "2: epoch 304/1000: lr: [0.0005634999999999998]\n", + "1/0, train_loss: 0.6752\n", + "2 epoch 304 average loss: 0.6752\n", + "current epoch: 304 current mean dice: 0.3267\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 305/1000: lr: [0.000568]\n", + "1/0, train_loss: 0.6749\n", + "2 epoch 305 average loss: 0.6749\n", + "----------\n", + "2: epoch 306/1000: lr: [0.0005724999999999999]\n", + "1/0, train_loss: 0.6749\n", + "2 epoch 306 average loss: 0.6749\n", + "current epoch: 306 current mean dice: 0.3267\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 307/1000: lr: [0.0005770000000000003]\n", + "1/0, train_loss: 0.6763\n", + "2 epoch 307 average loss: 0.6763\n", + "----------\n", + "2: epoch 308/1000: lr: [0.0005815000000000002]\n", + "1/0, train_loss: 0.6743\n", + "2 epoch 308 average loss: 0.6743\n", + "current epoch: 308 current mean dice: 0.3267\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 309/1000: lr: [0.000586]\n", + "1/0, train_loss: 0.6740\n", + "2 epoch 309 average loss: 0.6740\n", + "----------\n", + "2: epoch 310/1000: lr: [0.0005905]\n", + "1/0, train_loss: 0.6751\n", + "2 epoch 310 average loss: 0.6751\n", + "current epoch: 310 current mean dice: 0.3266\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 311/1000: lr: [0.0005949999999999998]\n", + "1/0, train_loss: 0.6742\n", + "2 epoch 311 average loss: 0.6742\n", + "----------\n", + "2: epoch 312/1000: lr: [0.0005994999999999998]\n", + "1/0, train_loss: 0.6736\n", + "2 epoch 312 average loss: 0.6736\n", + "current epoch: 312 current mean dice: 0.3266\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 313/1000: lr: [0.0006040000000000002]\n", + "1/0, train_loss: 0.6738\n", + "2 epoch 313 average loss: 0.6738\n", + "----------\n", + "2: epoch 314/1000: lr: [0.0006085]\n", + "1/0, train_loss: 0.6742\n", + "2 epoch 314 average loss: 0.6742\n", + "current epoch: 314 current mean dice: 0.3266\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 315/1000: lr: [0.0006130000000000003]\n", + "1/0, train_loss: 0.6739\n", + "2 epoch 315 average loss: 0.6739\n", + "----------\n", + "2: epoch 316/1000: lr: [0.0006175000000000002]\n", + "1/0, train_loss: 0.6738\n", + "2 epoch 316 average loss: 0.6738\n", + "current epoch: 316 current mean dice: 0.3265\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 317/1000: lr: [0.0006220000000000002]\n", + "1/0, train_loss: 0.6744\n", + "2 epoch 317 average loss: 0.6744\n", + "----------\n", + "2: epoch 318/1000: lr: [0.0006265]\n", + "1/0, train_loss: 0.6733\n", + "2 epoch 318 average loss: 0.6733\n", + "current epoch: 318 current mean dice: 0.3265\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 319/1000: lr: [0.0006309999999999998]\n", + "1/0, train_loss: 0.6735\n", + "2 epoch 319 average loss: 0.6735\n", + "----------\n", + "2: epoch 320/1000: lr: [0.0006354999999999998]\n", + "1/0, train_loss: 0.6735\n", + "2 epoch 320 average loss: 0.6735\n", + "current epoch: 320 current mean dice: 0.3264\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 321/1000: lr: [0.0006400000000000002]\n", + "1/0, train_loss: 0.6721\n", + "2 epoch 321 average loss: 0.6721\n", + "----------\n", + "2: epoch 322/1000: lr: [0.0006445]\n", + "1/0, train_loss: 0.6729\n", + "2 epoch 322 average loss: 0.6729\n", + "current epoch: 322 current mean dice: 0.3264\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 323/1000: lr: [0.0006490000000000003]\n", + "1/0, train_loss: 0.6739\n", + "2 epoch 323 average loss: 0.6739\n", + "----------\n", + "2: epoch 324/1000: lr: [0.0006535000000000002]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.6744\n", + "2 epoch 324 average loss: 0.6744\n", + "current epoch: 324 current mean dice: 0.3263\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 325/1000: lr: [0.0006580000000000002]\n", + "1/0, train_loss: 0.6747\n", + "2 epoch 325 average loss: 0.6747\n", + "----------\n", + "2: epoch 326/1000: lr: [0.0006625]\n", + "1/0, train_loss: 0.6731\n", + "2 epoch 326 average loss: 0.6731\n", + "current epoch: 326 current mean dice: 0.3262\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 327/1000: lr: [0.000667]\n", + "1/0, train_loss: 0.6722\n", + "2 epoch 327 average loss: 0.6722\n", + "----------\n", + "2: epoch 328/1000: lr: [0.0006714999999999998]\n", + "1/0, train_loss: 0.6737\n", + "2 epoch 328 average loss: 0.6737\n", + "current epoch: 328 current mean dice: 0.3262\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 329/1000: lr: [0.0006759999999999997]\n", + "1/0, train_loss: 0.6727\n", + "2 epoch 329 average loss: 0.6727\n", + "----------\n", + "2: epoch 330/1000: lr: [0.0006805000000000001]\n", + "1/0, train_loss: 0.6717\n", + "2 epoch 330 average loss: 0.6717\n", + "current epoch: 330 current mean dice: 0.3261\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 331/1000: lr: [0.000685]\n", + "1/0, train_loss: 0.6707\n", + "2 epoch 331 average loss: 0.6707\n", + "----------\n", + "2: epoch 332/1000: lr: [0.0006895000000000002]\n", + "1/0, train_loss: 0.6728\n", + "2 epoch 332 average loss: 0.6728\n", + "current epoch: 332 current mean dice: 0.3260\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 333/1000: lr: [0.0006940000000000002]\n", + "1/0, train_loss: 0.6715\n", + "2 epoch 333 average loss: 0.6715\n", + "----------\n", + "2: epoch 334/1000: lr: [0.0006985000000000001]\n", + "1/0, train_loss: 0.6717\n", + "2 epoch 334 average loss: 0.6717\n", + "current epoch: 334 current mean dice: 0.3260\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 335/1000: lr: [0.000703]\n", + "1/0, train_loss: 0.6710\n", + "2 epoch 335 average loss: 0.6710\n", + "----------\n", + "2: epoch 336/1000: lr: [0.0007074999999999998]\n", + "1/0, train_loss: 0.6712\n", + "2 epoch 336 average loss: 0.6712\n", + "current epoch: 336 current mean dice: 0.3259\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 337/1000: lr: [0.0007119999999999997]\n", + "1/0, train_loss: 0.6707\n", + "2 epoch 337 average loss: 0.6707\n", + "----------\n", + "2: epoch 338/1000: lr: [0.0007165000000000001]\n", + "1/0, train_loss: 0.6704\n", + "2 epoch 338 average loss: 0.6704\n", + "current epoch: 338 current mean dice: 0.3259\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 339/1000: lr: [0.000721]\n", + "1/0, train_loss: 0.6721\n", + "2 epoch 339 average loss: 0.6721\n", + "----------\n", + "2: epoch 340/1000: lr: [0.0007255000000000002]\n", + "1/0, train_loss: 0.6708\n", + "2 epoch 340 average loss: 0.6708\n", + "current epoch: 340 current mean dice: 0.3260\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 341/1000: lr: [0.0007300000000000002]\n", + "1/0, train_loss: 0.6728\n", + "2 epoch 341 average loss: 0.6728\n", + "----------\n", + "2: epoch 342/1000: lr: [0.0007345000000000001]\n", + "1/0, train_loss: 0.6709\n", + "2 epoch 342 average loss: 0.6709\n", + "current epoch: 342 current mean dice: 0.3259\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 343/1000: lr: [0.0007390000000000001]\n", + "1/0, train_loss: 0.6720\n", + "2 epoch 343 average loss: 0.6720\n", + "----------\n", + "2: epoch 344/1000: lr: [0.0007434999999999999]\n", + "1/0, train_loss: 0.6730\n", + "2 epoch 344 average loss: 0.6730\n", + "current epoch: 344 current mean dice: 0.3259\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 345/1000: lr: [0.0007479999999999998]\n", + "1/0, train_loss: 0.6701\n", + "2 epoch 345 average loss: 0.6701\n", + "----------\n", + "2: epoch 346/1000: lr: [0.0007525000000000001]\n", + "1/0, train_loss: 0.6691\n", + "2 epoch 346 average loss: 0.6691\n", + "current epoch: 346 current mean dice: 0.3259\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 347/1000: lr: [0.0007570000000000001]\n", + "1/0, train_loss: 0.6708\n", + "2 epoch 347 average loss: 0.6708\n", + "----------\n", + "2: epoch 348/1000: lr: [0.0007615000000000003]\n", + "1/0, train_loss: 0.6700\n", + "2 epoch 348 average loss: 0.6700\n", + "current epoch: 348 current mean dice: 0.3259\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 349/1000: lr: [0.0007660000000000002]\n", + "1/0, train_loss: 0.6697\n", + "2 epoch 349 average loss: 0.6697\n", + "----------\n", + "2: epoch 350/1000: lr: [0.0007705000000000001]\n", + "1/0, train_loss: 0.6716\n", + "2 epoch 350 average loss: 0.6716\n", + "current epoch: 350 current mean dice: 0.3258\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 351/1000: lr: [0.0007750000000000001]\n", + "1/0, train_loss: 0.6687\n", + "2 epoch 351 average loss: 0.6687\n", + "----------\n", + "2: epoch 352/1000: lr: [0.0007794999999999999]\n", + "1/0, train_loss: 0.6687\n", + "2 epoch 352 average loss: 0.6687\n", + "current epoch: 352 current mean dice: 0.3257\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 353/1000: lr: [0.0007839999999999999]\n", + "1/0, train_loss: 0.6717\n", + "2 epoch 353 average loss: 0.6717\n", + "----------\n", + "2: epoch 354/1000: lr: [0.0007884999999999997]\n", + "1/0, train_loss: 0.6684\n", + "2 epoch 354 average loss: 0.6684\n", + "current epoch: 354 current mean dice: 0.3257\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 355/1000: lr: [0.0007930000000000001]\n", + "1/0, train_loss: 0.6691\n", + "2 epoch 355 average loss: 0.6691\n", + "----------\n", + "2: epoch 356/1000: lr: [0.0007974999999999999]\n", + "1/0, train_loss: 0.6681\n", + "2 epoch 356 average loss: 0.6681\n", + "current epoch: 356 current mean dice: 0.3256\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 357/1000: lr: [0.0008020000000000002]\n", + "1/0, train_loss: 0.6682\n", + "2 epoch 357 average loss: 0.6682\n", + "----------\n", + "2: epoch 358/1000: lr: [0.0008065000000000001]\n", + "1/0, train_loss: 0.6697\n", + "2 epoch 358 average loss: 0.6697\n", + "current epoch: 358 current mean dice: 0.3256\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 359/1000: lr: [0.0008110000000000001]\n", + "1/0, train_loss: 0.6688\n", + "2 epoch 359 average loss: 0.6688\n", + "----------\n", + "2: epoch 360/1000: lr: [0.0008154999999999999]\n", + "1/0, train_loss: 0.6690\n", + "2 epoch 360 average loss: 0.6690\n", + "current epoch: 360 current mean dice: 0.3256\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 361/1000: lr: [0.0008199999999999999]\n", + "1/0, train_loss: 0.6698\n", + "2 epoch 361 average loss: 0.6698\n", + "----------\n", + "2: epoch 362/1000: lr: [0.0008244999999999997]\n", + "1/0, train_loss: 0.6693\n", + "2 epoch 362 average loss: 0.6693\n", + "current epoch: 362 current mean dice: 0.3255\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 363/1000: lr: [0.0008290000000000001]\n", + "1/0, train_loss: 0.6674\n", + "2 epoch 363 average loss: 0.6674\n", + "----------\n", + "2: epoch 364/1000: lr: [0.0008335]\n", + "1/0, train_loss: 0.6675\n", + "2 epoch 364 average loss: 0.6675\n", + "current epoch: 364 current mean dice: 0.3255\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 365/1000: lr: [0.0008380000000000003]\n", + "1/0, train_loss: 0.6678\n", + "2 epoch 365 average loss: 0.6678\n", + "----------\n", + "2: epoch 366/1000: lr: [0.0008425000000000001]\n", + "1/0, train_loss: 0.6677\n", + "2 epoch 366 average loss: 0.6677\n", + "current epoch: 366 current mean dice: 0.3254\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 367/1000: lr: [0.0008470000000000001]\n", + "1/0, train_loss: 0.6712\n", + "2 epoch 367 average loss: 0.6712\n", + "----------\n", + "2: epoch 368/1000: lr: [0.0008515]\n", + "1/0, train_loss: 0.6667\n", + "2 epoch 368 average loss: 0.6667\n", + "current epoch: 368 current mean dice: 0.3254\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 369/1000: lr: [0.0008559999999999999]\n", + "1/0, train_loss: 0.6669\n", + "2 epoch 369 average loss: 0.6669\n", + "----------\n", + "2: epoch 370/1000: lr: [0.0008604999999999998]\n", + "1/0, train_loss: 0.6657\n", + "2 epoch 370 average loss: 0.6657\n", + "current epoch: 370 current mean dice: 0.3254\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 371/1000: lr: [0.0008650000000000001]\n", + "1/0, train_loss: 0.6690\n", + "2 epoch 371 average loss: 0.6690\n", + "----------\n", + "2: epoch 372/1000: lr: [0.0008695]\n", + "1/0, train_loss: 0.6686\n", + "2 epoch 372 average loss: 0.6686\n", + "current epoch: 372 current mean dice: 0.3254\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 373/1000: lr: [0.0008740000000000003]\n", + "1/0, train_loss: 0.6657\n", + "2 epoch 373 average loss: 0.6657\n", + "----------\n", + "2: epoch 374/1000: lr: [0.0008785000000000002]\n", + "1/0, train_loss: 0.6658\n", + "2 epoch 374 average loss: 0.6658\n", + "current epoch: 374 current mean dice: 0.3254\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 375/1000: lr: [0.0008830000000000001]\n", + "1/0, train_loss: 0.6672\n", + "2 epoch 375 average loss: 0.6672\n", + "----------\n", + "2: epoch 376/1000: lr: [0.0008875]\n", + "1/0, train_loss: 0.6656\n", + "2 epoch 376 average loss: 0.6656\n", + "current epoch: 376 current mean dice: 0.3254\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 377/1000: lr: [0.0008919999999999999]\n", + "1/0, train_loss: 0.6660\n", + "2 epoch 377 average loss: 0.6660\n", + "----------\n", + "2: epoch 378/1000: lr: [0.0008964999999999998]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.6657\n", + "2 epoch 378 average loss: 0.6657\n", + "current epoch: 378 current mean dice: 0.3253\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 379/1000: lr: [0.0009009999999999998]\n", + "1/0, train_loss: 0.6640\n", + "2 epoch 379 average loss: 0.6640\n", + "----------\n", + "2: epoch 380/1000: lr: [0.0009055000000000001]\n", + "1/0, train_loss: 0.6661\n", + "2 epoch 380 average loss: 0.6661\n", + "current epoch: 380 current mean dice: 0.3253\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 381/1000: lr: [0.00091]\n", + "1/0, train_loss: 0.6656\n", + "2 epoch 381 average loss: 0.6656\n", + "----------\n", + "2: epoch 382/1000: lr: [0.0009145000000000003]\n", + "1/0, train_loss: 0.6645\n", + "2 epoch 382 average loss: 0.6645\n", + "current epoch: 382 current mean dice: 0.3253\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 383/1000: lr: [0.0009190000000000001]\n", + "1/0, train_loss: 0.6666\n", + "2 epoch 383 average loss: 0.6666\n", + "----------\n", + "2: epoch 384/1000: lr: [0.0009235000000000001]\n", + "1/0, train_loss: 0.6678\n", + "2 epoch 384 average loss: 0.6678\n", + "current epoch: 384 current mean dice: 0.3253\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 385/1000: lr: [0.000928]\n", + "1/0, train_loss: 0.6633\n", + "2 epoch 385 average loss: 0.6633\n", + "----------\n", + "2: epoch 386/1000: lr: [0.0009324999999999998]\n", + "1/0, train_loss: 0.6651\n", + "2 epoch 386 average loss: 0.6651\n", + "current epoch: 386 current mean dice: 0.3252\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 387/1000: lr: [0.0009369999999999998]\n", + "1/0, train_loss: 0.6631\n", + "2 epoch 387 average loss: 0.6631\n", + "----------\n", + "2: epoch 388/1000: lr: [0.0009415000000000001]\n", + "1/0, train_loss: 0.6642\n", + "2 epoch 388 average loss: 0.6642\n", + "current epoch: 388 current mean dice: 0.3252\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 389/1000: lr: [0.000946]\n", + "1/0, train_loss: 0.6632\n", + "2 epoch 389 average loss: 0.6632\n", + "----------\n", + "2: epoch 390/1000: lr: [0.0009505000000000003]\n", + "1/0, train_loss: 0.6623\n", + "2 epoch 390 average loss: 0.6623\n", + "current epoch: 390 current mean dice: 0.3252\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 391/1000: lr: [0.0009550000000000002]\n", + "1/0, train_loss: 0.6639\n", + "2 epoch 391 average loss: 0.6639\n", + "----------\n", + "2: epoch 392/1000: lr: [0.0009595000000000001]\n", + "1/0, train_loss: 0.6624\n", + "2 epoch 392 average loss: 0.6624\n", + "current epoch: 392 current mean dice: 0.3252\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 393/1000: lr: [0.000964]\n", + "1/0, train_loss: 0.6624\n", + "2 epoch 393 average loss: 0.6624\n", + "----------\n", + "2: epoch 394/1000: lr: [0.0009684999999999999]\n", + "1/0, train_loss: 0.6632\n", + "2 epoch 394 average loss: 0.6632\n", + "current epoch: 394 current mean dice: 0.3253\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 395/1000: lr: [0.0009729999999999998]\n", + "1/0, train_loss: 0.6616\n", + "2 epoch 395 average loss: 0.6616\n", + "----------\n", + "2: epoch 396/1000: lr: [0.0009775]\n", + "1/0, train_loss: 0.6616\n", + "2 epoch 396 average loss: 0.6616\n", + "current epoch: 396 current mean dice: 0.3252\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 397/1000: lr: [0.000982]\n", + "1/0, train_loss: 0.6637\n", + "2 epoch 397 average loss: 0.6637\n", + "----------\n", + "2: epoch 398/1000: lr: [0.0009865000000000004]\n", + "1/0, train_loss: 0.6614\n", + "2 epoch 398 average loss: 0.6614\n", + "current epoch: 398 current mean dice: 0.3253\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 399/1000: lr: [0.0009910000000000001]\n", + "1/0, train_loss: 0.6628\n", + "2 epoch 399 average loss: 0.6628\n", + "----------\n", + "2: epoch 400/1000: lr: [0.0009955]\n", + "1/0, train_loss: 0.6633\n", + "2 epoch 400 average loss: 0.6633\n", + "current epoch: 400 current mean dice: 0.3253\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 401/1000: lr: [0.001]\n", + "1/0, train_loss: 0.6617\n", + "2 epoch 401 average loss: 0.6617\n", + "----------\n", + "2: epoch 402/1000: lr: [0.0009955]\n", + "1/0, train_loss: 0.6628\n", + "2 epoch 402 average loss: 0.6628\n", + "current epoch: 402 current mean dice: 0.3252\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 403/1000: lr: [0.0009910000000000001]\n", + "1/0, train_loss: 0.6614\n", + "2 epoch 403 average loss: 0.6614\n", + "----------\n", + "2: epoch 404/1000: lr: [0.0009864999999999995]\n", + "1/0, train_loss: 0.6612\n", + "2 epoch 404 average loss: 0.6612\n", + "current epoch: 404 current mean dice: 0.3252\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 405/1000: lr: [0.0009820000000000005]\n", + "1/0, train_loss: 0.6621\n", + "2 epoch 405 average loss: 0.6621\n", + "----------\n", + "2: epoch 406/1000: lr: [0.0009774999999999996]\n", + "1/0, train_loss: 0.6612\n", + "2 epoch 406 average loss: 0.6612\n", + "current epoch: 406 current mean dice: 0.3252\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 407/1000: lr: [0.0009730000000000006]\n", + "1/0, train_loss: 0.6625\n", + "2 epoch 407 average loss: 0.6625\n", + "----------\n", + "2: epoch 408/1000: lr: [0.0009684999999999999]\n", + "1/0, train_loss: 0.6636\n", + "2 epoch 408 average loss: 0.6636\n", + "current epoch: 408 current mean dice: 0.3252\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 409/1000: lr: [0.000964]\n", + "1/0, train_loss: 0.6621\n", + "2 epoch 409 average loss: 0.6621\n", + "----------\n", + "2: epoch 410/1000: lr: [0.0009595000000000001]\n", + "1/0, train_loss: 0.6592\n", + "2 epoch 410 average loss: 0.6592\n", + "current epoch: 410 current mean dice: 0.3252\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 411/1000: lr: [0.0009550000000000002]\n", + "1/0, train_loss: 0.6625\n", + "2 epoch 411 average loss: 0.6625\n", + "----------\n", + "2: epoch 412/1000: lr: [0.0009505000000000003]\n", + "1/0, train_loss: 0.6598\n", + "2 epoch 412 average loss: 0.6598\n", + "current epoch: 412 current mean dice: 0.3252\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 413/1000: lr: [0.0009459999999999996]\n", + "1/0, train_loss: 0.6596\n", + "2 epoch 413 average loss: 0.6596\n", + "----------\n", + "2: epoch 414/1000: lr: [0.0009415000000000005]\n", + "1/0, train_loss: 0.6625\n", + "2 epoch 414 average loss: 0.6625\n", + "current epoch: 414 current mean dice: 0.3252\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 415/1000: lr: [0.0009369999999999998]\n", + "1/0, train_loss: 0.6640\n", + "2 epoch 415 average loss: 0.6640\n", + "----------\n", + "2: epoch 416/1000: lr: [0.0009324999999999998]\n", + "1/0, train_loss: 0.6597\n", + "2 epoch 416 average loss: 0.6597\n", + "current epoch: 416 current mean dice: 0.3253\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 417/1000: lr: [0.000928]\n", + "1/0, train_loss: 0.6589\n", + "2 epoch 417 average loss: 0.6589\n", + "----------\n", + "2: epoch 418/1000: lr: [0.0009235000000000001]\n", + "1/0, train_loss: 0.6604\n", + "2 epoch 418 average loss: 0.6604\n", + "current epoch: 418 current mean dice: 0.3253\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 419/1000: lr: [0.0009190000000000001]\n", + "1/0, train_loss: 0.6606\n", + "2 epoch 419 average loss: 0.6606\n", + "----------\n", + "2: epoch 420/1000: lr: [0.0009144999999999994]\n", + "1/0, train_loss: 0.6600\n", + "2 epoch 420 average loss: 0.6600\n", + "current epoch: 420 current mean dice: 0.3253\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 421/1000: lr: [0.0009100000000000003]\n", + "1/0, train_loss: 0.6620\n", + "2 epoch 421 average loss: 0.6620\n", + "----------\n", + "2: epoch 422/1000: lr: [0.0009054999999999996]\n", + "1/0, train_loss: 0.6579\n", + "2 epoch 422 average loss: 0.6579\n", + "current epoch: 422 current mean dice: 0.3253\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 423/1000: lr: [0.0009010000000000005]\n", + "1/0, train_loss: 0.6584\n", + "2 epoch 423 average loss: 0.6584\n", + "----------\n", + "2: epoch 424/1000: lr: [0.0008964999999999998]\n", + "1/0, train_loss: 0.6576\n", + "2 epoch 424 average loss: 0.6576\n", + "current epoch: 424 current mean dice: 0.3253\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 425/1000: lr: [0.0008919999999999999]\n", + "1/0, train_loss: 0.6578\n", + "2 epoch 425 average loss: 0.6578\n", + "----------\n", + "2: epoch 426/1000: lr: [0.0008875]\n", + "1/0, train_loss: 0.6592\n", + "2 epoch 426 average loss: 0.6592\n", + "current epoch: 426 current mean dice: 0.3254\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 427/1000: lr: [0.0008830000000000001]\n", + "1/0, train_loss: 0.6576\n", + "2 epoch 427 average loss: 0.6576\n", + "----------\n", + "2: epoch 428/1000: lr: [0.0008785000000000002]\n", + "1/0, train_loss: 0.6569\n", + "2 epoch 428 average loss: 0.6569\n", + "current epoch: 428 current mean dice: 0.3254\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 429/1000: lr: [0.0008739999999999996]\n", + "1/0, train_loss: 0.6606\n", + "2 epoch 429 average loss: 0.6606\n", + "----------\n", + "2: epoch 430/1000: lr: [0.0008695000000000004]\n", + "1/0, train_loss: 0.6568\n", + "2 epoch 430 average loss: 0.6568\n", + "current epoch: 430 current mean dice: 0.3255\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 431/1000: lr: [0.0008649999999999997]\n", + "1/0, train_loss: 0.6580\n", + "2 epoch 431 average loss: 0.6580\n", + "----------\n", + "2: epoch 432/1000: lr: [0.0008605000000000006]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.6562\n", + "2 epoch 432 average loss: 0.6562\n", + "current epoch: 432 current mean dice: 0.3255\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 433/1000: lr: [0.0008559999999999999]\n", + "1/0, train_loss: 0.6576\n", + "2 epoch 433 average loss: 0.6576\n", + "----------\n", + "2: epoch 434/1000: lr: [0.0008515]\n", + "1/0, train_loss: 0.6562\n", + "2 epoch 434 average loss: 0.6562\n", + "current epoch: 434 current mean dice: 0.3256\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 435/1000: lr: [0.0008470000000000001]\n", + "1/0, train_loss: 0.6604\n", + "2 epoch 435 average loss: 0.6604\n", + "----------\n", + "2: epoch 436/1000: lr: [0.0008425000000000001]\n", + "1/0, train_loss: 0.6616\n", + "2 epoch 436 average loss: 0.6616\n", + "current epoch: 436 current mean dice: 0.3255\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 437/1000: lr: [0.0008380000000000003]\n", + "1/0, train_loss: 0.6568\n", + "2 epoch 437 average loss: 0.6568\n", + "----------\n", + "2: epoch 438/1000: lr: [0.0008334999999999996]\n", + "1/0, train_loss: 0.6565\n", + "2 epoch 438 average loss: 0.6565\n", + "current epoch: 438 current mean dice: 0.3256\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 439/1000: lr: [0.0008290000000000005]\n", + "1/0, train_loss: 0.6573\n", + "2 epoch 439 average loss: 0.6573\n", + "----------\n", + "2: epoch 440/1000: lr: [0.0008244999999999997]\n", + "1/0, train_loss: 0.6567\n", + "2 epoch 440 average loss: 0.6567\n", + "current epoch: 440 current mean dice: 0.3256\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 441/1000: lr: [0.0008199999999999999]\n", + "1/0, train_loss: 0.6598\n", + "2 epoch 441 average loss: 0.6598\n", + "----------\n", + "2: epoch 442/1000: lr: [0.0008154999999999999]\n", + "1/0, train_loss: 0.6556\n", + "2 epoch 442 average loss: 0.6556\n", + "current epoch: 442 current mean dice: 0.3256\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 443/1000: lr: [0.0008110000000000001]\n", + "1/0, train_loss: 0.6557\n", + "2 epoch 443 average loss: 0.6557\n", + "----------\n", + "2: epoch 444/1000: lr: [0.0008065000000000001]\n", + "1/0, train_loss: 0.6597\n", + "2 epoch 444 average loss: 0.6597\n", + "current epoch: 444 current mean dice: 0.3257\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 445/1000: lr: [0.0008019999999999994]\n", + "1/0, train_loss: 0.6567\n", + "2 epoch 445 average loss: 0.6567\n", + "----------\n", + "2: epoch 446/1000: lr: [0.0007975000000000004]\n", + "1/0, train_loss: 0.6562\n", + "2 epoch 446 average loss: 0.6562\n", + "current epoch: 446 current mean dice: 0.3257\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 447/1000: lr: [0.0007929999999999997]\n", + "1/0, train_loss: 0.6557\n", + "2 epoch 447 average loss: 0.6557\n", + "----------\n", + "2: epoch 448/1000: lr: [0.0007885000000000006]\n", + "1/0, train_loss: 0.6553\n", + "2 epoch 448 average loss: 0.6553\n", + "current epoch: 448 current mean dice: 0.3257\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 449/1000: lr: [0.0007839999999999999]\n", + "1/0, train_loss: 0.6564\n", + "2 epoch 449 average loss: 0.6564\n", + "----------\n", + "2: epoch 450/1000: lr: [0.0007794999999999999]\n", + "1/0, train_loss: 0.6549\n", + "2 epoch 450 average loss: 0.6549\n", + "current epoch: 450 current mean dice: 0.3258\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 451/1000: lr: [0.0007750000000000001]\n", + "1/0, train_loss: 0.6547\n", + "2 epoch 451 average loss: 0.6547\n", + "----------\n", + "2: epoch 452/1000: lr: [0.0007705000000000001]\n", + "1/0, train_loss: 0.6547\n", + "2 epoch 452 average loss: 0.6547\n", + "current epoch: 452 current mean dice: 0.3258\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 453/1000: lr: [0.0007660000000000002]\n", + "1/0, train_loss: 0.6571\n", + "2 epoch 453 average loss: 0.6571\n", + "----------\n", + "2: epoch 454/1000: lr: [0.0007614999999999995]\n", + "1/0, train_loss: 0.6543\n", + "2 epoch 454 average loss: 0.6543\n", + "current epoch: 454 current mean dice: 0.3259\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 455/1000: lr: [0.0007570000000000004]\n", + "1/0, train_loss: 0.6574\n", + "2 epoch 455 average loss: 0.6574\n", + "----------\n", + "2: epoch 456/1000: lr: [0.0007524999999999997]\n", + "1/0, train_loss: 0.6543\n", + "2 epoch 456 average loss: 0.6543\n", + "current epoch: 456 current mean dice: 0.3260\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 457/1000: lr: [0.0007480000000000006]\n", + "1/0, train_loss: 0.6566\n", + "2 epoch 457 average loss: 0.6566\n", + "----------\n", + "2: epoch 458/1000: lr: [0.0007434999999999999]\n", + "1/0, train_loss: 0.6566\n", + "2 epoch 458 average loss: 0.6566\n", + "current epoch: 458 current mean dice: 0.3260\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 459/1000: lr: [0.0007390000000000001]\n", + "1/0, train_loss: 0.6555\n", + "2 epoch 459 average loss: 0.6555\n", + "----------\n", + "2: epoch 460/1000: lr: [0.0007345000000000001]\n", + "1/0, train_loss: 0.6550\n", + "2 epoch 460 average loss: 0.6550\n", + "current epoch: 460 current mean dice: 0.3260\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 461/1000: lr: [0.0007300000000000002]\n", + "1/0, train_loss: 0.6588\n", + "2 epoch 461 average loss: 0.6588\n", + "----------\n", + "2: epoch 462/1000: lr: [0.0007255000000000002]\n", + "1/0, train_loss: 0.6539\n", + "2 epoch 462 average loss: 0.6539\n", + "current epoch: 462 current mean dice: 0.3260\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 463/1000: lr: [0.0007209999999999996]\n", + "1/0, train_loss: 0.6549\n", + "2 epoch 463 average loss: 0.6549\n", + "----------\n", + "2: epoch 464/1000: lr: [0.0007165000000000006]\n", + "1/0, train_loss: 0.6523\n", + "2 epoch 464 average loss: 0.6523\n", + "current epoch: 464 current mean dice: 0.3260\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 465/1000: lr: [0.0007119999999999997]\n", + "1/0, train_loss: 0.6544\n", + "2 epoch 465 average loss: 0.6544\n", + "----------\n", + "2: epoch 466/1000: lr: [0.0007074999999999998]\n", + "1/0, train_loss: 0.6537\n", + "2 epoch 466 average loss: 0.6537\n", + "current epoch: 466 current mean dice: 0.3260\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 467/1000: lr: [0.000703]\n", + "1/0, train_loss: 0.6546\n", + "2 epoch 467 average loss: 0.6546\n", + "----------\n", + "2: epoch 468/1000: lr: [0.0006985000000000001]\n", + "1/0, train_loss: 0.6550\n", + "2 epoch 468 average loss: 0.6550\n", + "current epoch: 468 current mean dice: 0.3261\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 469/1000: lr: [0.0006940000000000002]\n", + "1/0, train_loss: 0.6536\n", + "2 epoch 469 average loss: 0.6536\n", + "----------\n", + "2: epoch 470/1000: lr: [0.0006894999999999995]\n", + "1/0, train_loss: 0.6555\n", + "2 epoch 470 average loss: 0.6555\n", + "current epoch: 470 current mean dice: 0.3260\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 471/1000: lr: [0.0006850000000000003]\n", + "1/0, train_loss: 0.6542\n", + "2 epoch 471 average loss: 0.6542\n", + "----------\n", + "2: epoch 472/1000: lr: [0.0006804999999999997]\n", + "1/0, train_loss: 0.6538\n", + "2 epoch 472 average loss: 0.6538\n", + "current epoch: 472 current mean dice: 0.3261\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 473/1000: lr: [0.0006760000000000006]\n", + "1/0, train_loss: 0.6564\n", + "2 epoch 473 average loss: 0.6564\n", + "----------\n", + "2: epoch 474/1000: lr: [0.0006714999999999998]\n", + "1/0, train_loss: 0.6538\n", + "2 epoch 474 average loss: 0.6538\n", + "current epoch: 474 current mean dice: 0.3261\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 475/1000: lr: [0.000667]\n", + "1/0, train_loss: 0.6559\n", + "2 epoch 475 average loss: 0.6559\n", + "----------\n", + "2: epoch 476/1000: lr: [0.0006625]\n", + "1/0, train_loss: 0.6589\n", + "2 epoch 476 average loss: 0.6589\n", + "current epoch: 476 current mean dice: 0.3261\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 477/1000: lr: [0.0006580000000000002]\n", + "1/0, train_loss: 0.6552\n", + "2 epoch 477 average loss: 0.6552\n", + "----------\n", + "2: epoch 478/1000: lr: [0.0006535000000000002]\n", + "1/0, train_loss: 0.6544\n", + "2 epoch 478 average loss: 0.6544\n", + "current epoch: 478 current mean dice: 0.3261\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 479/1000: lr: [0.0006489999999999995]\n", + "1/0, train_loss: 0.6528\n", + "2 epoch 479 average loss: 0.6528\n", + "----------\n", + "2: epoch 480/1000: lr: [0.0006445000000000004]\n", + "1/0, train_loss: 0.6571\n", + "2 epoch 480 average loss: 0.6571\n", + "current epoch: 480 current mean dice: 0.3261\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 481/1000: lr: [0.0006399999999999997]\n", + "1/0, train_loss: 0.6548\n", + "2 epoch 481 average loss: 0.6548\n", + "----------\n", + "2: epoch 482/1000: lr: [0.0006355000000000006]\n", + "1/0, train_loss: 0.6565\n", + "2 epoch 482 average loss: 0.6565\n", + "current epoch: 482 current mean dice: 0.3261\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 483/1000: lr: [0.0006309999999999998]\n", + "1/0, train_loss: 0.6568\n", + "2 epoch 483 average loss: 0.6568\n", + "----------\n", + "2: epoch 484/1000: lr: [0.0006265]\n", + "1/0, train_loss: 0.6557\n", + "2 epoch 484 average loss: 0.6557\n", + "current epoch: 484 current mean dice: 0.3261\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 485/1000: lr: [0.0006220000000000002]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.6541\n", + "2 epoch 485 average loss: 0.6541\n", + "----------\n", + "2: epoch 486/1000: lr: [0.0006175000000000002]\n", + "1/0, train_loss: 0.6571\n", + "2 epoch 486 average loss: 0.6571\n", + "current epoch: 486 current mean dice: 0.3261\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 487/1000: lr: [0.0006130000000000003]\n", + "1/0, train_loss: 0.6530\n", + "2 epoch 487 average loss: 0.6530\n", + "----------\n", + "2: epoch 488/1000: lr: [0.0006084999999999996]\n", + "1/0, train_loss: 0.6550\n", + "2 epoch 488 average loss: 0.6550\n", + "current epoch: 488 current mean dice: 0.3262\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 489/1000: lr: [0.0006040000000000005]\n", + "1/0, train_loss: 0.6525\n", + "2 epoch 489 average loss: 0.6525\n", + "----------\n", + "2: epoch 490/1000: lr: [0.0005994999999999998]\n", + "1/0, train_loss: 0.6537\n", + "2 epoch 490 average loss: 0.6537\n", + "current epoch: 490 current mean dice: 0.3262\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 491/1000: lr: [0.0005949999999999998]\n", + "1/0, train_loss: 0.6515\n", + "2 epoch 491 average loss: 0.6515\n", + "----------\n", + "2: epoch 492/1000: lr: [0.0005905]\n", + "1/0, train_loss: 0.6534\n", + "2 epoch 492 average loss: 0.6534\n", + "current epoch: 492 current mean dice: 0.3262\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 493/1000: lr: [0.000586]\n", + "1/0, train_loss: 0.6521\n", + "2 epoch 493 average loss: 0.6521\n", + "----------\n", + "2: epoch 494/1000: lr: [0.0005815000000000002]\n", + "1/0, train_loss: 0.6518\n", + "2 epoch 494 average loss: 0.6518\n", + "current epoch: 494 current mean dice: 0.3262\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 495/1000: lr: [0.0005769999999999994]\n", + "1/0, train_loss: 0.6523\n", + "2 epoch 495 average loss: 0.6523\n", + "----------\n", + "2: epoch 496/1000: lr: [0.0005725000000000003]\n", + "1/0, train_loss: 0.6532\n", + "2 epoch 496 average loss: 0.6532\n", + "current epoch: 496 current mean dice: 0.3262\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 497/1000: lr: [0.0005679999999999997]\n", + "1/0, train_loss: 0.6568\n", + "2 epoch 497 average loss: 0.6568\n", + "----------\n", + "2: epoch 498/1000: lr: [0.0005635000000000005]\n", + "1/0, train_loss: 0.6543\n", + "2 epoch 498 average loss: 0.6543\n", + "current epoch: 498 current mean dice: 0.3262\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 499/1000: lr: [0.0005589999999999998]\n", + "1/0, train_loss: 0.6555\n", + "2 epoch 499 average loss: 0.6555\n", + "----------\n", + "2: epoch 500/1000: lr: [0.0005544999999999999]\n", + "1/0, train_loss: 0.6514\n", + "2 epoch 500 average loss: 0.6514\n", + "current epoch: 500 current mean dice: 0.3262\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 501/1000: lr: [0.00055]\n", + "1/0, train_loss: 0.6512\n", + "2 epoch 501 average loss: 0.6512\n", + "----------\n", + "2: epoch 502/1000: lr: [0.0005455000000000002]\n", + "1/0, train_loss: 0.6520\n", + "2 epoch 502 average loss: 0.6520\n", + "current epoch: 502 current mean dice: 0.3263\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 503/1000: lr: [0.0005410000000000002]\n", + "1/0, train_loss: 0.6526\n", + "2 epoch 503 average loss: 0.6526\n", + "----------\n", + "2: epoch 504/1000: lr: [0.0005364999999999995]\n", + "1/0, train_loss: 0.6525\n", + "2 epoch 504 average loss: 0.6525\n", + "current epoch: 504 current mean dice: 0.3263\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 505/1000: lr: [0.0005320000000000004]\n", + "1/0, train_loss: 0.6540\n", + "2 epoch 505 average loss: 0.6540\n", + "----------\n", + "2: epoch 506/1000: lr: [0.0005274999999999998]\n", + "1/0, train_loss: 0.6560\n", + "2 epoch 506 average loss: 0.6560\n", + "current epoch: 506 current mean dice: 0.3263\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 507/1000: lr: [0.0005230000000000007]\n", + "1/0, train_loss: 0.6510\n", + "2 epoch 507 average loss: 0.6510\n", + "----------\n", + "2: epoch 508/1000: lr: [0.0005184999999999999]\n", + "1/0, train_loss: 0.6540\n", + "2 epoch 508 average loss: 0.6540\n", + "current epoch: 508 current mean dice: 0.3264\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 509/1000: lr: [0.000514]\n", + "1/0, train_loss: 0.6529\n", + "2 epoch 509 average loss: 0.6529\n", + "----------\n", + "2: epoch 510/1000: lr: [0.0005095000000000001]\n", + "1/0, train_loss: 0.6544\n", + "2 epoch 510 average loss: 0.6544\n", + "current epoch: 510 current mean dice: 0.3264\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 511/1000: lr: [0.0005050000000000002]\n", + "1/0, train_loss: 0.6542\n", + "2 epoch 511 average loss: 0.6542\n", + "----------\n", + "2: epoch 512/1000: lr: [0.0005005000000000003]\n", + "1/0, train_loss: 0.6508\n", + "2 epoch 512 average loss: 0.6508\n", + "current epoch: 512 current mean dice: 0.3264\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 513/1000: lr: [0.0004959999999999996]\n", + "1/0, train_loss: 0.6511\n", + "2 epoch 513 average loss: 0.6511\n", + "----------\n", + "2: epoch 514/1000: lr: [0.0004915000000000005]\n", + "1/0, train_loss: 0.6555\n", + "2 epoch 514 average loss: 0.6555\n", + "current epoch: 514 current mean dice: 0.3264\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 515/1000: lr: [0.0004869999999999998]\n", + "1/0, train_loss: 0.6528\n", + "2 epoch 515 average loss: 0.6528\n", + "----------\n", + "2: epoch 516/1000: lr: [0.00048249999999999986]\n", + "1/0, train_loss: 0.6547\n", + "2 epoch 516 average loss: 0.6547\n", + "current epoch: 516 current mean dice: 0.3264\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 517/1000: lr: [0.000478]\n", + "1/0, train_loss: 0.6496\n", + "2 epoch 517 average loss: 0.6496\n", + "----------\n", + "2: epoch 518/1000: lr: [0.00047350000000000007]\n", + "1/0, train_loss: 0.6516\n", + "2 epoch 518 average loss: 0.6516\n", + "current epoch: 518 current mean dice: 0.3264\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 519/1000: lr: [0.0004690000000000001]\n", + "1/0, train_loss: 0.6509\n", + "2 epoch 519 average loss: 0.6509\n", + "----------\n", + "2: epoch 520/1000: lr: [0.0004644999999999994]\n", + "1/0, train_loss: 0.6512\n", + "2 epoch 520 average loss: 0.6512\n", + "current epoch: 520 current mean dice: 0.3264\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 521/1000: lr: [0.00046000000000000034]\n", + "1/0, train_loss: 0.6520\n", + "2 epoch 521 average loss: 0.6520\n", + "----------\n", + "2: epoch 522/1000: lr: [0.00045549999999999963]\n", + "1/0, train_loss: 0.6513\n", + "2 epoch 522 average loss: 0.6513\n", + "current epoch: 522 current mean dice: 0.3264\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 523/1000: lr: [0.00045100000000000055]\n", + "1/0, train_loss: 0.6511\n", + "2 epoch 523 average loss: 0.6511\n", + "----------\n", + "2: epoch 524/1000: lr: [0.00044649999999999985]\n", + "1/0, train_loss: 0.6528\n", + "2 epoch 524 average loss: 0.6528\n", + "current epoch: 524 current mean dice: 0.3264\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 525/1000: lr: [0.0004419999999999999]\n", + "1/0, train_loss: 0.6522\n", + "2 epoch 525 average loss: 0.6522\n", + "----------\n", + "2: epoch 526/1000: lr: [0.00043750000000000006]\n", + "1/0, train_loss: 0.6502\n", + "2 epoch 526 average loss: 0.6502\n", + "current epoch: 526 current mean dice: 0.3264\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 527/1000: lr: [0.0004330000000000001]\n", + "1/0, train_loss: 0.6498\n", + "2 epoch 527 average loss: 0.6498\n", + "----------\n", + "2: epoch 528/1000: lr: [0.0004285000000000003]\n", + "1/0, train_loss: 0.6516\n", + "2 epoch 528 average loss: 0.6516\n", + "current epoch: 528 current mean dice: 0.3265\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 529/1000: lr: [0.00042399999999999957]\n", + "1/0, train_loss: 0.6565\n", + "2 epoch 529 average loss: 0.6565\n", + "----------\n", + "2: epoch 530/1000: lr: [0.0004195000000000004]\n", + "1/0, train_loss: 0.6531\n", + "2 epoch 530 average loss: 0.6531\n", + "current epoch: 530 current mean dice: 0.3265\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 531/1000: lr: [0.0004149999999999997]\n", + "1/0, train_loss: 0.6519\n", + "2 epoch 531 average loss: 0.6519\n", + "----------\n", + "2: epoch 532/1000: lr: [0.0004105000000000006]\n", + "1/0, train_loss: 0.6553\n", + "2 epoch 532 average loss: 0.6553\n", + "current epoch: 532 current mean dice: 0.3265\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 533/1000: lr: [0.0004059999999999999]\n", + "1/0, train_loss: 0.6530\n", + "2 epoch 533 average loss: 0.6530\n", + "----------\n", + "2: epoch 534/1000: lr: [0.00040150000000000006]\n", + "1/0, train_loss: 0.6511\n", + "2 epoch 534 average loss: 0.6511\n", + "current epoch: 534 current mean dice: 0.3265\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 535/1000: lr: [0.0003970000000000001]\n", + "1/0, train_loss: 0.6506\n", + "2 epoch 535 average loss: 0.6506\n", + "----------\n", + "2: epoch 536/1000: lr: [0.00039250000000000016]\n", + "1/0, train_loss: 0.6501\n", + "2 epoch 536 average loss: 0.6501\n", + "current epoch: 536 current mean dice: 0.3265\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 537/1000: lr: [0.0003880000000000003]\n", + "1/0, train_loss: 0.6538\n", + "2 epoch 537 average loss: 0.6538\n", + "----------\n", + "2: epoch 538/1000: lr: [0.0003834999999999996]\n", + "1/0, train_loss: 0.6506\n", + "2 epoch 538 average loss: 0.6506\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "current epoch: 538 current mean dice: 0.3265\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 539/1000: lr: [0.00037900000000000054]\n", + "1/0, train_loss: 0.6547\n", + "2 epoch 539 average loss: 0.6547\n", + "----------\n", + "2: epoch 540/1000: lr: [0.00037449999999999983]\n", + "1/0, train_loss: 0.6530\n", + "2 epoch 540 average loss: 0.6530\n", + "current epoch: 540 current mean dice: 0.3265\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 541/1000: lr: [0.0003699999999999999]\n", + "1/0, train_loss: 0.6516\n", + "2 epoch 541 average loss: 0.6516\n", + "----------\n", + "2: epoch 542/1000: lr: [0.00036549999999999994]\n", + "1/0, train_loss: 0.6517\n", + "2 epoch 542 average loss: 0.6517\n", + "current epoch: 542 current mean dice: 0.3266\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 543/1000: lr: [0.0003610000000000001]\n", + "1/0, train_loss: 0.6517\n", + "2 epoch 543 average loss: 0.6517\n", + "----------\n", + "2: epoch 544/1000: lr: [0.00035650000000000015]\n", + "1/0, train_loss: 0.6551\n", + "2 epoch 544 average loss: 0.6551\n", + "current epoch: 544 current mean dice: 0.3266\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 545/1000: lr: [0.00035199999999999945]\n", + "1/0, train_loss: 0.6533\n", + "2 epoch 545 average loss: 0.6533\n", + "----------\n", + "2: epoch 546/1000: lr: [0.00034750000000000037]\n", + "1/0, train_loss: 0.6529\n", + "2 epoch 546 average loss: 0.6529\n", + "current epoch: 546 current mean dice: 0.3266\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 547/1000: lr: [0.00034299999999999966]\n", + "1/0, train_loss: 0.6497\n", + "2 epoch 547 average loss: 0.6497\n", + "----------\n", + "2: epoch 548/1000: lr: [0.0003385000000000006]\n", + "1/0, train_loss: 0.6493\n", + "2 epoch 548 average loss: 0.6493\n", + "current epoch: 548 current mean dice: 0.3266\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 549/1000: lr: [0.0003339999999999999]\n", + "1/0, train_loss: 0.6494\n", + "2 epoch 549 average loss: 0.6494\n", + "----------\n", + "2: epoch 550/1000: lr: [0.00032949999999999993]\n", + "1/0, train_loss: 0.6549\n", + "2 epoch 550 average loss: 0.6549\n", + "current epoch: 550 current mean dice: 0.3267\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 551/1000: lr: [0.000325]\n", + "1/0, train_loss: 0.6525\n", + "2 epoch 551 average loss: 0.6525\n", + "----------\n", + "2: epoch 552/1000: lr: [0.00032050000000000015]\n", + "1/0, train_loss: 0.6526\n", + "2 epoch 552 average loss: 0.6526\n", + "current epoch: 552 current mean dice: 0.3267\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 553/1000: lr: [0.0003160000000000002]\n", + "1/0, train_loss: 0.6537\n", + "2 epoch 553 average loss: 0.6537\n", + "----------\n", + "2: epoch 554/1000: lr: [0.0003114999999999995]\n", + "1/0, train_loss: 0.6564\n", + "2 epoch 554 average loss: 0.6564\n", + "current epoch: 554 current mean dice: 0.3267\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 555/1000: lr: [0.0003070000000000004]\n", + "1/0, train_loss: 0.6496\n", + "2 epoch 555 average loss: 0.6496\n", + "----------\n", + "2: epoch 556/1000: lr: [0.0003024999999999997]\n", + "1/0, train_loss: 0.6522\n", + "2 epoch 556 average loss: 0.6522\n", + "current epoch: 556 current mean dice: 0.3267\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 557/1000: lr: [0.00029800000000000063]\n", + "1/0, train_loss: 0.6501\n", + "2 epoch 557 average loss: 0.6501\n", + "----------\n", + "2: epoch 558/1000: lr: [0.0002934999999999999]\n", + "1/0, train_loss: 0.6558\n", + "2 epoch 558 average loss: 0.6558\n", + "current epoch: 558 current mean dice: 0.3267\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 559/1000: lr: [0.000289]\n", + "1/0, train_loss: 0.6507\n", + "2 epoch 559 average loss: 0.6507\n", + "----------\n", + "2: epoch 560/1000: lr: [0.00028450000000000014]\n", + "1/0, train_loss: 0.6492\n", + "2 epoch 560 average loss: 0.6492\n", + "current epoch: 560 current mean dice: 0.3268\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 561/1000: lr: [0.0002800000000000002]\n", + "1/0, train_loss: 0.6498\n", + "2 epoch 561 average loss: 0.6498\n", + "----------\n", + "2: epoch 562/1000: lr: [0.00027550000000000025]\n", + "1/0, train_loss: 0.6540\n", + "2 epoch 562 average loss: 0.6540\n", + "current epoch: 562 current mean dice: 0.3268\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 563/1000: lr: [0.00027099999999999954]\n", + "1/0, train_loss: 0.6536\n", + "2 epoch 563 average loss: 0.6536\n", + "----------\n", + "2: epoch 564/1000: lr: [0.00026650000000000046]\n", + "1/0, train_loss: 0.6523\n", + "2 epoch 564 average loss: 0.6523\n", + "current epoch: 564 current mean dice: 0.3268\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 565/1000: lr: [0.00026199999999999975]\n", + "1/0, train_loss: 0.6497\n", + "2 epoch 565 average loss: 0.6497\n", + "----------\n", + "2: epoch 566/1000: lr: [0.0002574999999999999]\n", + "1/0, train_loss: 0.6496\n", + "2 epoch 566 average loss: 0.6496\n", + "current epoch: 566 current mean dice: 0.3268\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 567/1000: lr: [0.00025299999999999997]\n", + "1/0, train_loss: 0.6508\n", + "2 epoch 567 average loss: 0.6508\n", + "----------\n", + "2: epoch 568/1000: lr: [0.0002485]\n", + "1/0, train_loss: 0.6504\n", + "2 epoch 568 average loss: 0.6504\n", + "current epoch: 568 current mean dice: 0.3268\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 569/1000: lr: [0.00024400000000000018]\n", + "1/0, train_loss: 0.6497\n", + "2 epoch 569 average loss: 0.6497\n", + "----------\n", + "2: epoch 570/1000: lr: [0.00023949999999999948]\n", + "1/0, train_loss: 0.6571\n", + "2 epoch 570 average loss: 0.6571\n", + "current epoch: 570 current mean dice: 0.3268\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 571/1000: lr: [0.0002350000000000004]\n", + "1/0, train_loss: 0.6509\n", + "2 epoch 571 average loss: 0.6509\n", + "----------\n", + "2: epoch 572/1000: lr: [0.0002304999999999997]\n", + "1/0, train_loss: 0.6505\n", + "2 epoch 572 average loss: 0.6505\n", + "current epoch: 572 current mean dice: 0.3268\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 573/1000: lr: [0.0002260000000000005]\n", + "1/0, train_loss: 0.6533\n", + "2 epoch 573 average loss: 0.6533\n", + "----------\n", + "2: epoch 574/1000: lr: [0.0002214999999999998]\n", + "1/0, train_loss: 0.6484\n", + "2 epoch 574 average loss: 0.6484\n", + "current epoch: 574 current mean dice: 0.3268\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 575/1000: lr: [0.00021699999999999996]\n", + "1/0, train_loss: 0.6546\n", + "2 epoch 575 average loss: 0.6546\n", + "----------\n", + "2: epoch 576/1000: lr: [0.00021250000000000002]\n", + "1/0, train_loss: 0.6494\n", + "2 epoch 576 average loss: 0.6494\n", + "current epoch: 576 current mean dice: 0.3268\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 577/1000: lr: [0.00020800000000000018]\n", + "1/0, train_loss: 0.6481\n", + "2 epoch 577 average loss: 0.6481\n", + "----------\n", + "2: epoch 578/1000: lr: [0.00020350000000000023]\n", + "1/0, train_loss: 0.6526\n", + "2 epoch 578 average loss: 0.6526\n", + "current epoch: 578 current mean dice: 0.3268\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 579/1000: lr: [0.00019899999999999952]\n", + "1/0, train_loss: 0.6510\n", + "2 epoch 579 average loss: 0.6510\n", + "----------\n", + "2: epoch 580/1000: lr: [0.00019450000000000045]\n", + "1/0, train_loss: 0.6517\n", + "2 epoch 580 average loss: 0.6517\n", + "current epoch: 580 current mean dice: 0.3268\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 581/1000: lr: [0.00018999999999999974]\n", + "1/0, train_loss: 0.6511\n", + "2 epoch 581 average loss: 0.6511\n", + "----------\n", + "2: epoch 582/1000: lr: [0.00018550000000000066]\n", + "1/0, train_loss: 0.6487\n", + "2 epoch 582 average loss: 0.6487\n", + "current epoch: 582 current mean dice: 0.3268\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 583/1000: lr: [0.00018099999999999995]\n", + "1/0, train_loss: 0.6485\n", + "2 epoch 583 average loss: 0.6485\n", + "----------\n", + "2: epoch 584/1000: lr: [0.0001765]\n", + "1/0, train_loss: 0.6482\n", + "2 epoch 584 average loss: 0.6482\n", + "current epoch: 584 current mean dice: 0.3268\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 585/1000: lr: [0.00017200000000000006]\n", + "1/0, train_loss: 0.6505\n", + "2 epoch 585 average loss: 0.6505\n", + "----------\n", + "2: epoch 586/1000: lr: [0.00016750000000000022]\n", + "1/0, train_loss: 0.6510\n", + "2 epoch 586 average loss: 0.6510\n", + "current epoch: 586 current mean dice: 0.3269\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 587/1000: lr: [0.00016300000000000028]\n", + "1/0, train_loss: 0.6503\n", + "2 epoch 587 average loss: 0.6503\n", + "----------\n", + "2: epoch 588/1000: lr: [0.00015849999999999957]\n", + "1/0, train_loss: 0.6537\n", + "2 epoch 588 average loss: 0.6537\n", + "current epoch: 588 current mean dice: 0.3269\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 589/1000: lr: [0.0001540000000000005]\n", + "1/0, train_loss: 0.6500\n", + "2 epoch 589 average loss: 0.6500\n", + "----------\n", + "2: epoch 590/1000: lr: [0.00014949999999999978]\n", + "1/0, train_loss: 0.6542\n", + "2 epoch 590 average loss: 0.6542\n", + "current epoch: 590 current mean dice: 0.3269\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 591/1000: lr: [0.00014499999999999984]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.6519\n", + "2 epoch 591 average loss: 0.6519\n", + "----------\n", + "2: epoch 592/1000: lr: [0.0001405]\n", + "1/0, train_loss: 0.6513\n", + "2 epoch 592 average loss: 0.6513\n", + "current epoch: 592 current mean dice: 0.3269\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 593/1000: lr: [0.00013600000000000005]\n", + "1/0, train_loss: 0.6496\n", + "2 epoch 593 average loss: 0.6496\n", + "----------\n", + "2: epoch 594/1000: lr: [0.00013150000000000021]\n", + "1/0, train_loss: 0.6503\n", + "2 epoch 594 average loss: 0.6503\n", + "current epoch: 594 current mean dice: 0.3269\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 595/1000: lr: [0.0001269999999999995]\n", + "1/0, train_loss: 0.6500\n", + "2 epoch 595 average loss: 0.6500\n", + "----------\n", + "2: epoch 596/1000: lr: [0.00012250000000000032]\n", + "1/0, train_loss: 0.6538\n", + "2 epoch 596 average loss: 0.6538\n", + "current epoch: 596 current mean dice: 0.3269\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 597/1000: lr: [0.00011799999999999962]\n", + "1/0, train_loss: 0.6525\n", + "2 epoch 597 average loss: 0.6525\n", + "----------\n", + "2: epoch 598/1000: lr: [0.00011350000000000054]\n", + "1/0, train_loss: 0.6497\n", + "2 epoch 598 average loss: 0.6497\n", + "current epoch: 598 current mean dice: 0.3269\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 599/1000: lr: [0.00010899999999999983]\n", + "1/0, train_loss: 0.6507\n", + "2 epoch 599 average loss: 0.6507\n", + "----------\n", + "2: epoch 600/1000: lr: [0.00010449999999999999]\n", + "1/0, train_loss: 0.6531\n", + "2 epoch 600 average loss: 0.6531\n", + "current epoch: 600 current mean dice: 0.3269\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 601/1000: lr: [0.00010000000000000005]\n", + "1/0, train_loss: 0.6515\n", + "2 epoch 601 average loss: 0.6515\n", + "----------\n", + "2: epoch 602/1000: lr: [0.00010449999999999999]\n", + "1/0, train_loss: 0.6498\n", + "2 epoch 602 average loss: 0.6498\n", + "current epoch: 602 current mean dice: 0.3269\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 603/1000: lr: [0.00010899999999999983]\n", + "1/0, train_loss: 0.6514\n", + "2 epoch 603 average loss: 0.6514\n", + "----------\n", + "2: epoch 604/1000: lr: [0.00011350000000000054]\n", + "1/0, train_loss: 0.6493\n", + "2 epoch 604 average loss: 0.6493\n", + "current epoch: 604 current mean dice: 0.3269\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 605/1000: lr: [0.00011799999999999962]\n", + "1/0, train_loss: 0.6502\n", + "2 epoch 605 average loss: 0.6502\n", + "----------\n", + "2: epoch 606/1000: lr: [0.00012250000000000032]\n", + "1/0, train_loss: 0.6491\n", + "2 epoch 606 average loss: 0.6491\n", + "current epoch: 606 current mean dice: 0.3269\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 607/1000: lr: [0.0001269999999999995]\n", + "1/0, train_loss: 0.6496\n", + "2 epoch 607 average loss: 0.6496\n", + "----------\n", + "2: epoch 608/1000: lr: [0.00013150000000000021]\n", + "1/0, train_loss: 0.6529\n", + "2 epoch 608 average loss: 0.6529\n", + "current epoch: 608 current mean dice: 0.3269\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 609/1000: lr: [0.00013600000000000005]\n", + "1/0, train_loss: 0.6508\n", + "2 epoch 609 average loss: 0.6508\n", + "----------\n", + "2: epoch 610/1000: lr: [0.0001405]\n", + "1/0, train_loss: 0.6511\n", + "2 epoch 610 average loss: 0.6511\n", + "current epoch: 610 current mean dice: 0.3269\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 611/1000: lr: [0.00014499999999999984]\n", + "1/0, train_loss: 0.6546\n", + "2 epoch 611 average loss: 0.6546\n", + "----------\n", + "2: epoch 612/1000: lr: [0.00014949999999999978]\n", + "1/0, train_loss: 0.6494\n", + "2 epoch 612 average loss: 0.6494\n", + "current epoch: 612 current mean dice: 0.3270\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 613/1000: lr: [0.0001540000000000005]\n", + "1/0, train_loss: 0.6491\n", + "2 epoch 613 average loss: 0.6491\n", + "----------\n", + "2: epoch 614/1000: lr: [0.00015849999999999957]\n", + "1/0, train_loss: 0.6518\n", + "2 epoch 614 average loss: 0.6518\n", + "current epoch: 614 current mean dice: 0.3270\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 615/1000: lr: [0.00016300000000000028]\n", + "1/0, train_loss: 0.6505\n", + "2 epoch 615 average loss: 0.6505\n", + "----------\n", + "2: epoch 616/1000: lr: [0.00016750000000000022]\n", + "1/0, train_loss: 0.6552\n", + "2 epoch 616 average loss: 0.6552\n", + "current epoch: 616 current mean dice: 0.3270\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 617/1000: lr: [0.00017200000000000006]\n", + "1/0, train_loss: 0.6507\n", + "2 epoch 617 average loss: 0.6507\n", + "----------\n", + "2: epoch 618/1000: lr: [0.0001765]\n", + "1/0, train_loss: 0.6492\n", + "2 epoch 618 average loss: 0.6492\n", + "current epoch: 618 current mean dice: 0.3270\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 619/1000: lr: [0.00018099999999999995]\n", + "1/0, train_loss: 0.6498\n", + "2 epoch 619 average loss: 0.6498\n", + "----------\n", + "2: epoch 620/1000: lr: [0.00018550000000000066]\n", + "1/0, train_loss: 0.6485\n", + "2 epoch 620 average loss: 0.6485\n", + "current epoch: 620 current mean dice: 0.3270\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 621/1000: lr: [0.00018999999999999974]\n", + "1/0, train_loss: 0.6509\n", + "2 epoch 621 average loss: 0.6509\n", + "----------\n", + "2: epoch 622/1000: lr: [0.00019450000000000045]\n", + "1/0, train_loss: 0.6504\n", + "2 epoch 622 average loss: 0.6504\n", + "current epoch: 622 current mean dice: 0.3270\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 623/1000: lr: [0.00019899999999999952]\n", + "1/0, train_loss: 0.6530\n", + "2 epoch 623 average loss: 0.6530\n", + "----------\n", + "2: epoch 624/1000: lr: [0.00020350000000000023]\n", + "1/0, train_loss: 0.6515\n", + "2 epoch 624 average loss: 0.6515\n", + "current epoch: 624 current mean dice: 0.3270\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 625/1000: lr: [0.00020800000000000018]\n", + "1/0, train_loss: 0.6505\n", + "2 epoch 625 average loss: 0.6505\n", + "----------\n", + "2: epoch 626/1000: lr: [0.00021250000000000002]\n", + "1/0, train_loss: 0.6549\n", + "2 epoch 626 average loss: 0.6549\n", + "current epoch: 626 current mean dice: 0.3270\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 627/1000: lr: [0.00021699999999999996]\n", + "1/0, train_loss: 0.6499\n", + "2 epoch 627 average loss: 0.6499\n", + "----------\n", + "2: epoch 628/1000: lr: [0.0002214999999999998]\n", + "1/0, train_loss: 0.6530\n", + "2 epoch 628 average loss: 0.6530\n", + "current epoch: 628 current mean dice: 0.3270\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 629/1000: lr: [0.0002260000000000005]\n", + "1/0, train_loss: 0.6485\n", + "2 epoch 629 average loss: 0.6485\n", + "----------\n", + "2: epoch 630/1000: lr: [0.0002304999999999997]\n", + "1/0, train_loss: 0.6489\n", + "2 epoch 630 average loss: 0.6489\n", + "current epoch: 630 current mean dice: 0.3270\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 631/1000: lr: [0.0002350000000000004]\n", + "1/0, train_loss: 0.6511\n", + "2 epoch 631 average loss: 0.6511\n", + "----------\n", + "2: epoch 632/1000: lr: [0.00023949999999999948]\n", + "1/0, train_loss: 0.6476\n", + "2 epoch 632 average loss: 0.6476\n", + "current epoch: 632 current mean dice: 0.3270\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 633/1000: lr: [0.00024400000000000018]\n", + "1/0, train_loss: 0.6490\n", + "2 epoch 633 average loss: 0.6490\n", + "----------\n", + "2: epoch 634/1000: lr: [0.0002485]\n", + "1/0, train_loss: 0.6519\n", + "2 epoch 634 average loss: 0.6519\n", + "current epoch: 634 current mean dice: 0.3270\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 635/1000: lr: [0.00025299999999999997]\n", + "1/0, train_loss: 0.6494\n", + "2 epoch 635 average loss: 0.6494\n", + "----------\n", + "2: epoch 636/1000: lr: [0.0002574999999999999]\n", + "1/0, train_loss: 0.6504\n", + "2 epoch 636 average loss: 0.6504\n", + "current epoch: 636 current mean dice: 0.3270\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 637/1000: lr: [0.00026199999999999975]\n", + "1/0, train_loss: 0.6511\n", + "2 epoch 637 average loss: 0.6511\n", + "----------\n", + "2: epoch 638/1000: lr: [0.00026650000000000046]\n", + "1/0, train_loss: 0.6500\n", + "2 epoch 638 average loss: 0.6500\n", + "current epoch: 638 current mean dice: 0.3270\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 639/1000: lr: [0.00027099999999999954]\n", + "1/0, train_loss: 0.6506\n", + "2 epoch 639 average loss: 0.6506\n", + "----------\n", + "2: epoch 640/1000: lr: [0.00027550000000000025]\n", + "1/0, train_loss: 0.6509\n", + "2 epoch 640 average loss: 0.6509\n", + "current epoch: 640 current mean dice: 0.3270\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 641/1000: lr: [0.0002800000000000002]\n", + "1/0, train_loss: 0.6514\n", + "2 epoch 641 average loss: 0.6514\n", + "----------\n", + "2: epoch 642/1000: lr: [0.00028450000000000014]\n", + "1/0, train_loss: 0.6486\n", + "2 epoch 642 average loss: 0.6486\n", + "current epoch: 642 current mean dice: 0.3270\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 643/1000: lr: [0.000289]\n", + "1/0, train_loss: 0.6480\n", + "2 epoch 643 average loss: 0.6480\n", + "----------\n", + "2: epoch 644/1000: lr: [0.0002934999999999999]\n", + "1/0, train_loss: 0.6523\n", + "2 epoch 644 average loss: 0.6523\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "current epoch: 644 current mean dice: 0.3270\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 645/1000: lr: [0.00029800000000000063]\n", + "1/0, train_loss: 0.6544\n", + "2 epoch 645 average loss: 0.6544\n", + "----------\n", + "2: epoch 646/1000: lr: [0.0003024999999999997]\n", + "1/0, train_loss: 0.6484\n", + "2 epoch 646 average loss: 0.6484\n", + "current epoch: 646 current mean dice: 0.3271\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 647/1000: lr: [0.0003070000000000004]\n", + "1/0, train_loss: 0.6520\n", + "2 epoch 647 average loss: 0.6520\n", + "----------\n", + "2: epoch 648/1000: lr: [0.0003114999999999995]\n", + "1/0, train_loss: 0.6509\n", + "2 epoch 648 average loss: 0.6509\n", + "current epoch: 648 current mean dice: 0.3271\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 649/1000: lr: [0.0003160000000000002]\n", + "1/0, train_loss: 0.6481\n", + "2 epoch 649 average loss: 0.6481\n", + "----------\n", + "2: epoch 650/1000: lr: [0.00032050000000000015]\n", + "1/0, train_loss: 0.6489\n", + "2 epoch 650 average loss: 0.6489\n", + "current epoch: 650 current mean dice: 0.3271\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 651/1000: lr: [0.000325]\n", + "1/0, train_loss: 0.6504\n", + "2 epoch 651 average loss: 0.6504\n", + "----------\n", + "2: epoch 652/1000: lr: [0.00032949999999999993]\n", + "1/0, train_loss: 0.6482\n", + "2 epoch 652 average loss: 0.6482\n", + "current epoch: 652 current mean dice: 0.3271\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 653/1000: lr: [0.0003339999999999999]\n", + "1/0, train_loss: 0.6499\n", + "2 epoch 653 average loss: 0.6499\n", + "----------\n", + "2: epoch 654/1000: lr: [0.0003385000000000006]\n", + "1/0, train_loss: 0.6477\n", + "2 epoch 654 average loss: 0.6477\n", + "current epoch: 654 current mean dice: 0.3271\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 655/1000: lr: [0.00034299999999999966]\n", + "1/0, train_loss: 0.6491\n", + "2 epoch 655 average loss: 0.6491\n", + "----------\n", + "2: epoch 656/1000: lr: [0.00034750000000000037]\n", + "1/0, train_loss: 0.6536\n", + "2 epoch 656 average loss: 0.6536\n", + "current epoch: 656 current mean dice: 0.3271\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 657/1000: lr: [0.00035199999999999945]\n", + "1/0, train_loss: 0.6483\n", + "2 epoch 657 average loss: 0.6483\n", + "----------\n", + "2: epoch 658/1000: lr: [0.00035650000000000015]\n", + "1/0, train_loss: 0.6497\n", + "2 epoch 658 average loss: 0.6497\n", + "current epoch: 658 current mean dice: 0.3272\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 659/1000: lr: [0.0003610000000000001]\n", + "1/0, train_loss: 0.6485\n", + "2 epoch 659 average loss: 0.6485\n", + "----------\n", + "2: epoch 660/1000: lr: [0.00036549999999999994]\n", + "1/0, train_loss: 0.6546\n", + "2 epoch 660 average loss: 0.6546\n", + "current epoch: 660 current mean dice: 0.3272\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 661/1000: lr: [0.0003699999999999999]\n", + "1/0, train_loss: 0.6495\n", + "2 epoch 661 average loss: 0.6495\n", + "----------\n", + "2: epoch 662/1000: lr: [0.00037449999999999983]\n", + "1/0, train_loss: 0.6568\n", + "2 epoch 662 average loss: 0.6568\n", + "current epoch: 662 current mean dice: 0.3272\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 663/1000: lr: [0.00037900000000000054]\n", + "1/0, train_loss: 0.6470\n", + "2 epoch 663 average loss: 0.6470\n", + "----------\n", + "2: epoch 664/1000: lr: [0.0003834999999999996]\n", + "1/0, train_loss: 0.6516\n", + "2 epoch 664 average loss: 0.6516\n", + "current epoch: 664 current mean dice: 0.3272\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 665/1000: lr: [0.0003880000000000003]\n", + "1/0, train_loss: 0.6482\n", + "2 epoch 665 average loss: 0.6482\n", + "----------\n", + "2: epoch 666/1000: lr: [0.00039250000000000016]\n", + "1/0, train_loss: 0.6496\n", + "2 epoch 666 average loss: 0.6496\n", + "current epoch: 666 current mean dice: 0.3272\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 667/1000: lr: [0.0003970000000000001]\n", + "1/0, train_loss: 0.6491\n", + "2 epoch 667 average loss: 0.6491\n", + "----------\n", + "2: epoch 668/1000: lr: [0.00040150000000000006]\n", + "1/0, train_loss: 0.6480\n", + "2 epoch 668 average loss: 0.6480\n", + "current epoch: 668 current mean dice: 0.3272\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 669/1000: lr: [0.0004059999999999999]\n", + "1/0, train_loss: 0.6492\n", + "2 epoch 669 average loss: 0.6492\n", + "----------\n", + "2: epoch 670/1000: lr: [0.0004105000000000006]\n", + "1/0, train_loss: 0.6525\n", + "2 epoch 670 average loss: 0.6525\n", + "current epoch: 670 current mean dice: 0.3272\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 671/1000: lr: [0.0004149999999999997]\n", + "1/0, train_loss: 0.6491\n", + "2 epoch 671 average loss: 0.6491\n", + "----------\n", + "2: epoch 672/1000: lr: [0.0004195000000000004]\n", + "1/0, train_loss: 0.6556\n", + "2 epoch 672 average loss: 0.6556\n", + "current epoch: 672 current mean dice: 0.3272\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 673/1000: lr: [0.00042399999999999957]\n", + "1/0, train_loss: 0.6473\n", + "2 epoch 673 average loss: 0.6473\n", + "----------\n", + "2: epoch 674/1000: lr: [0.0004285000000000003]\n", + "1/0, train_loss: 0.6498\n", + "2 epoch 674 average loss: 0.6498\n", + "current epoch: 674 current mean dice: 0.3271\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 675/1000: lr: [0.0004330000000000001]\n", + "1/0, train_loss: 0.6490\n", + "2 epoch 675 average loss: 0.6490\n", + "----------\n", + "2: epoch 676/1000: lr: [0.00043750000000000006]\n", + "1/0, train_loss: 0.6510\n", + "2 epoch 676 average loss: 0.6510\n", + "current epoch: 676 current mean dice: 0.3271\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 677/1000: lr: [0.0004419999999999999]\n", + "1/0, train_loss: 0.6535\n", + "2 epoch 677 average loss: 0.6535\n", + "----------\n", + "2: epoch 678/1000: lr: [0.00044649999999999985]\n", + "1/0, train_loss: 0.6516\n", + "2 epoch 678 average loss: 0.6516\n", + "current epoch: 678 current mean dice: 0.3271\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 679/1000: lr: [0.00045100000000000055]\n", + "1/0, train_loss: 0.6509\n", + "2 epoch 679 average loss: 0.6509\n", + "----------\n", + "2: epoch 680/1000: lr: [0.00045549999999999963]\n", + "1/0, train_loss: 0.6479\n", + "2 epoch 680 average loss: 0.6479\n", + "current epoch: 680 current mean dice: 0.3271\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 681/1000: lr: [0.00046000000000000034]\n", + "1/0, train_loss: 0.6502\n", + "2 epoch 681 average loss: 0.6502\n", + "----------\n", + "2: epoch 682/1000: lr: [0.0004644999999999994]\n", + "1/0, train_loss: 0.6521\n", + "2 epoch 682 average loss: 0.6521\n", + "current epoch: 682 current mean dice: 0.3271\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 683/1000: lr: [0.0004690000000000001]\n", + "1/0, train_loss: 0.6486\n", + "2 epoch 683 average loss: 0.6486\n", + "----------\n", + "2: epoch 684/1000: lr: [0.00047350000000000007]\n", + "1/0, train_loss: 0.6474\n", + "2 epoch 684 average loss: 0.6474\n", + "current epoch: 684 current mean dice: 0.3271\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 685/1000: lr: [0.000478]\n", + "1/0, train_loss: 0.6476\n", + "2 epoch 685 average loss: 0.6476\n", + "----------\n", + "2: epoch 686/1000: lr: [0.00048249999999999986]\n", + "1/0, train_loss: 0.6500\n", + "2 epoch 686 average loss: 0.6500\n", + "current epoch: 686 current mean dice: 0.3272\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 687/1000: lr: [0.0004869999999999998]\n", + "1/0, train_loss: 0.6499\n", + "2 epoch 687 average loss: 0.6499\n", + "----------\n", + "2: epoch 688/1000: lr: [0.0004915000000000005]\n", + "1/0, train_loss: 0.6534\n", + "2 epoch 688 average loss: 0.6534\n", + "current epoch: 688 current mean dice: 0.3272\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 689/1000: lr: [0.0004959999999999996]\n", + "1/0, train_loss: 0.6495\n", + "2 epoch 689 average loss: 0.6495\n", + "----------\n", + "2: epoch 690/1000: lr: [0.0005005000000000003]\n", + "1/0, train_loss: 0.6474\n", + "2 epoch 690 average loss: 0.6474\n", + "current epoch: 690 current mean dice: 0.3272\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 691/1000: lr: [0.0005050000000000002]\n", + "1/0, train_loss: 0.6487\n", + "2 epoch 691 average loss: 0.6487\n", + "----------\n", + "2: epoch 692/1000: lr: [0.0005095000000000001]\n", + "1/0, train_loss: 0.6476\n", + "2 epoch 692 average loss: 0.6476\n", + "current epoch: 692 current mean dice: 0.3272\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 693/1000: lr: [0.000514]\n", + "1/0, train_loss: 0.6475\n", + "2 epoch 693 average loss: 0.6475\n", + "----------\n", + "2: epoch 694/1000: lr: [0.0005184999999999999]\n", + "1/0, train_loss: 0.6470\n", + "2 epoch 694 average loss: 0.6470\n", + "current epoch: 694 current mean dice: 0.3272\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 695/1000: lr: [0.0005230000000000007]\n", + "1/0, train_loss: 0.6487\n", + "2 epoch 695 average loss: 0.6487\n", + "----------\n", + "2: epoch 696/1000: lr: [0.0005274999999999998]\n", + "1/0, train_loss: 0.6500\n", + "2 epoch 696 average loss: 0.6500\n", + "current epoch: 696 current mean dice: 0.3273\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 697/1000: lr: [0.0005320000000000004]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.6484\n", + "2 epoch 697 average loss: 0.6484\n", + "----------\n", + "2: epoch 698/1000: lr: [0.0005364999999999995]\n", + "1/0, train_loss: 0.6495\n", + "2 epoch 698 average loss: 0.6495\n", + "current epoch: 698 current mean dice: 0.3273\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 699/1000: lr: [0.0005410000000000002]\n", + "1/0, train_loss: 0.6470\n", + "2 epoch 699 average loss: 0.6470\n", + "----------\n", + "2: epoch 700/1000: lr: [0.0005455000000000002]\n", + "1/0, train_loss: 0.6486\n", + "2 epoch 700 average loss: 0.6486\n", + "current epoch: 700 current mean dice: 0.3274\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 701/1000: lr: [0.00055]\n", + "1/0, train_loss: 0.6475\n", + "2 epoch 701 average loss: 0.6475\n", + "----------\n", + "2: epoch 702/1000: lr: [0.0005544999999999999]\n", + "1/0, train_loss: 0.6487\n", + "2 epoch 702 average loss: 0.6487\n", + "current epoch: 702 current mean dice: 0.3274\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 703/1000: lr: [0.0005589999999999998]\n", + "1/0, train_loss: 0.6534\n", + "2 epoch 703 average loss: 0.6534\n", + "----------\n", + "2: epoch 704/1000: lr: [0.0005635000000000005]\n", + "1/0, train_loss: 0.6507\n", + "2 epoch 704 average loss: 0.6507\n", + "current epoch: 704 current mean dice: 0.3274\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 705/1000: lr: [0.0005679999999999997]\n", + "1/0, train_loss: 0.6509\n", + "2 epoch 705 average loss: 0.6509\n", + "----------\n", + "2: epoch 706/1000: lr: [0.0005725000000000003]\n", + "1/0, train_loss: 0.6482\n", + "2 epoch 706 average loss: 0.6482\n", + "current epoch: 706 current mean dice: 0.3274\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 707/1000: lr: [0.0005769999999999994]\n", + "1/0, train_loss: 0.6523\n", + "2 epoch 707 average loss: 0.6523\n", + "----------\n", + "2: epoch 708/1000: lr: [0.0005815000000000002]\n", + "1/0, train_loss: 0.6462\n", + "2 epoch 708 average loss: 0.6462\n", + "current epoch: 708 current mean dice: 0.3274\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 709/1000: lr: [0.000586]\n", + "1/0, train_loss: 0.6496\n", + "2 epoch 709 average loss: 0.6496\n", + "----------\n", + "2: epoch 710/1000: lr: [0.0005905]\n", + "1/0, train_loss: 0.6487\n", + "2 epoch 710 average loss: 0.6487\n", + "current epoch: 710 current mean dice: 0.3274\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 711/1000: lr: [0.0005949999999999998]\n", + "1/0, train_loss: 0.6485\n", + "2 epoch 711 average loss: 0.6485\n", + "----------\n", + "2: epoch 712/1000: lr: [0.0005994999999999998]\n", + "1/0, train_loss: 0.6525\n", + "2 epoch 712 average loss: 0.6525\n", + "current epoch: 712 current mean dice: 0.3274\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 713/1000: lr: [0.0006040000000000005]\n", + "1/0, train_loss: 0.6480\n", + "2 epoch 713 average loss: 0.6480\n", + "----------\n", + "2: epoch 714/1000: lr: [0.0006084999999999996]\n", + "1/0, train_loss: 0.6461\n", + "2 epoch 714 average loss: 0.6461\n", + "current epoch: 714 current mean dice: 0.3275\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 715/1000: lr: [0.0006130000000000003]\n", + "1/0, train_loss: 0.6517\n", + "2 epoch 715 average loss: 0.6517\n", + "----------\n", + "2: epoch 716/1000: lr: [0.0006175000000000002]\n", + "1/0, train_loss: 0.6491\n", + "2 epoch 716 average loss: 0.6491\n", + "current epoch: 716 current mean dice: 0.3275\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 717/1000: lr: [0.0006220000000000002]\n", + "1/0, train_loss: 0.6483\n", + "2 epoch 717 average loss: 0.6483\n", + "----------\n", + "2: epoch 718/1000: lr: [0.0006265]\n", + "1/0, train_loss: 0.6456\n", + "2 epoch 718 average loss: 0.6456\n", + "current epoch: 718 current mean dice: 0.3275\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 719/1000: lr: [0.0006309999999999998]\n", + "1/0, train_loss: 0.6527\n", + "2 epoch 719 average loss: 0.6527\n", + "----------\n", + "2: epoch 720/1000: lr: [0.0006355000000000006]\n", + "1/0, train_loss: 0.6511\n", + "2 epoch 720 average loss: 0.6511\n", + "current epoch: 720 current mean dice: 0.3276\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 721/1000: lr: [0.0006399999999999997]\n", + "1/0, train_loss: 0.6526\n", + "2 epoch 721 average loss: 0.6526\n", + "----------\n", + "2: epoch 722/1000: lr: [0.0006445000000000004]\n", + "1/0, train_loss: 0.6497\n", + "2 epoch 722 average loss: 0.6497\n", + "current epoch: 722 current mean dice: 0.3276\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 723/1000: lr: [0.0006489999999999995]\n", + "1/0, train_loss: 0.6513\n", + "2 epoch 723 average loss: 0.6513\n", + "----------\n", + "2: epoch 724/1000: lr: [0.0006535000000000002]\n", + "1/0, train_loss: 0.6457\n", + "2 epoch 724 average loss: 0.6457\n", + "current epoch: 724 current mean dice: 0.3277\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 725/1000: lr: [0.0006580000000000002]\n", + "1/0, train_loss: 0.6477\n", + "2 epoch 725 average loss: 0.6477\n", + "----------\n", + "2: epoch 726/1000: lr: [0.0006625]\n", + "1/0, train_loss: 0.6484\n", + "2 epoch 726 average loss: 0.6484\n", + "current epoch: 726 current mean dice: 0.3277\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 727/1000: lr: [0.000667]\n", + "1/0, train_loss: 0.6490\n", + "2 epoch 727 average loss: 0.6490\n", + "----------\n", + "2: epoch 728/1000: lr: [0.0006714999999999998]\n", + "1/0, train_loss: 0.6481\n", + "2 epoch 728 average loss: 0.6481\n", + "current epoch: 728 current mean dice: 0.3278\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 729/1000: lr: [0.0006760000000000006]\n", + "1/0, train_loss: 0.6467\n", + "2 epoch 729 average loss: 0.6467\n", + "----------\n", + "2: epoch 730/1000: lr: [0.0006804999999999997]\n", + "1/0, train_loss: 0.6464\n", + "2 epoch 730 average loss: 0.6464\n", + "current epoch: 730 current mean dice: 0.3278\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 731/1000: lr: [0.0006850000000000003]\n", + "1/0, train_loss: 0.6454\n", + "2 epoch 731 average loss: 0.6454\n", + "----------\n", + "2: epoch 732/1000: lr: [0.0006894999999999995]\n", + "1/0, train_loss: 0.6470\n", + "2 epoch 732 average loss: 0.6470\n", + "current epoch: 732 current mean dice: 0.3278\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 733/1000: lr: [0.0006940000000000002]\n", + "1/0, train_loss: 0.6495\n", + "2 epoch 733 average loss: 0.6495\n", + "----------\n", + "2: epoch 734/1000: lr: [0.0006985000000000001]\n", + "1/0, train_loss: 0.6481\n", + "2 epoch 734 average loss: 0.6481\n", + "current epoch: 734 current mean dice: 0.3279\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 735/1000: lr: [0.000703]\n", + "1/0, train_loss: 0.6511\n", + "2 epoch 735 average loss: 0.6511\n", + "----------\n", + "2: epoch 736/1000: lr: [0.0007074999999999998]\n", + "1/0, train_loss: 0.6507\n", + "2 epoch 736 average loss: 0.6507\n", + "current epoch: 736 current mean dice: 0.3279\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 737/1000: lr: [0.0007119999999999997]\n", + "1/0, train_loss: 0.6503\n", + "2 epoch 737 average loss: 0.6503\n", + "----------\n", + "2: epoch 738/1000: lr: [0.0007165000000000006]\n", + "1/0, train_loss: 0.6494\n", + "2 epoch 738 average loss: 0.6494\n", + "current epoch: 738 current mean dice: 0.3280\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 739/1000: lr: [0.0007209999999999996]\n", + "1/0, train_loss: 0.6506\n", + "2 epoch 739 average loss: 0.6506\n", + "----------\n", + "2: epoch 740/1000: lr: [0.0007255000000000002]\n", + "1/0, train_loss: 0.6504\n", + "2 epoch 740 average loss: 0.6504\n", + "current epoch: 740 current mean dice: 0.3280\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 741/1000: lr: [0.0007300000000000002]\n", + "1/0, train_loss: 0.6475\n", + "2 epoch 741 average loss: 0.6475\n", + "----------\n", + "2: epoch 742/1000: lr: [0.0007345000000000001]\n", + "1/0, train_loss: 0.6467\n", + "2 epoch 742 average loss: 0.6467\n", + "current epoch: 742 current mean dice: 0.3280\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 743/1000: lr: [0.0007390000000000001]\n", + "1/0, train_loss: 0.6485\n", + "2 epoch 743 average loss: 0.6485\n", + "----------\n", + "2: epoch 744/1000: lr: [0.0007434999999999999]\n", + "1/0, train_loss: 0.6461\n", + "2 epoch 744 average loss: 0.6461\n", + "current epoch: 744 current mean dice: 0.3281\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 745/1000: lr: [0.0007480000000000006]\n", + "1/0, train_loss: 0.6457\n", + "2 epoch 745 average loss: 0.6457\n", + "----------\n", + "2: epoch 746/1000: lr: [0.0007524999999999997]\n", + "1/0, train_loss: 0.6451\n", + "2 epoch 746 average loss: 0.6451\n", + "current epoch: 746 current mean dice: 0.3281\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 747/1000: lr: [0.0007570000000000004]\n", + "1/0, train_loss: 0.6458\n", + "2 epoch 747 average loss: 0.6458\n", + "----------\n", + "2: epoch 748/1000: lr: [0.0007614999999999995]\n", + "1/0, train_loss: 0.6468\n", + "2 epoch 748 average loss: 0.6468\n", + "current epoch: 748 current mean dice: 0.3281\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 749/1000: lr: [0.0007660000000000002]\n", + "1/0, train_loss: 0.6513\n", + "2 epoch 749 average loss: 0.6513\n", + "----------\n", + "2: epoch 750/1000: lr: [0.0007705000000000001]\n", + "1/0, train_loss: 0.6462\n", + "2 epoch 750 average loss: 0.6462\n", + "current epoch: 750 current mean dice: 0.3282\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 751/1000: lr: [0.0007750000000000001]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.6502\n", + "2 epoch 751 average loss: 0.6502\n", + "----------\n", + "2: epoch 752/1000: lr: [0.0007794999999999999]\n", + "1/0, train_loss: 0.6442\n", + "2 epoch 752 average loss: 0.6442\n", + "current epoch: 752 current mean dice: 0.3282\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 753/1000: lr: [0.0007839999999999999]\n", + "1/0, train_loss: 0.6471\n", + "2 epoch 753 average loss: 0.6471\n", + "----------\n", + "2: epoch 754/1000: lr: [0.0007885000000000006]\n", + "1/0, train_loss: 0.6466\n", + "2 epoch 754 average loss: 0.6466\n", + "current epoch: 754 current mean dice: 0.3282\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 755/1000: lr: [0.0007929999999999997]\n", + "1/0, train_loss: 0.6530\n", + "2 epoch 755 average loss: 0.6530\n", + "----------\n", + "2: epoch 756/1000: lr: [0.0007975000000000004]\n", + "1/0, train_loss: 0.6489\n", + "2 epoch 756 average loss: 0.6489\n", + "current epoch: 756 current mean dice: 0.3283\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 757/1000: lr: [0.0008019999999999994]\n", + "1/0, train_loss: 0.6454\n", + "2 epoch 757 average loss: 0.6454\n", + "----------\n", + "2: epoch 758/1000: lr: [0.0008065000000000001]\n", + "1/0, train_loss: 0.6451\n", + "2 epoch 758 average loss: 0.6451\n", + "current epoch: 758 current mean dice: 0.3283\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 759/1000: lr: [0.0008110000000000001]\n", + "1/0, train_loss: 0.6460\n", + "2 epoch 759 average loss: 0.6460\n", + "----------\n", + "2: epoch 760/1000: lr: [0.0008154999999999999]\n", + "1/0, train_loss: 0.6501\n", + "2 epoch 760 average loss: 0.6501\n", + "current epoch: 760 current mean dice: 0.3283\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 761/1000: lr: [0.0008199999999999999]\n", + "1/0, train_loss: 0.6448\n", + "2 epoch 761 average loss: 0.6448\n", + "----------\n", + "2: epoch 762/1000: lr: [0.0008244999999999997]\n", + "1/0, train_loss: 0.6458\n", + "2 epoch 762 average loss: 0.6458\n", + "current epoch: 762 current mean dice: 0.3283\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 763/1000: lr: [0.0008290000000000005]\n", + "1/0, train_loss: 0.6516\n", + "2 epoch 763 average loss: 0.6516\n", + "----------\n", + "2: epoch 764/1000: lr: [0.0008334999999999996]\n", + "1/0, train_loss: 0.6449\n", + "2 epoch 764 average loss: 0.6449\n", + "current epoch: 764 current mean dice: 0.3283\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 765/1000: lr: [0.0008380000000000003]\n", + "1/0, train_loss: 0.6468\n", + "2 epoch 765 average loss: 0.6468\n", + "----------\n", + "2: epoch 766/1000: lr: [0.0008425000000000001]\n", + "1/0, train_loss: 0.6438\n", + "2 epoch 766 average loss: 0.6438\n", + "current epoch: 766 current mean dice: 0.3283\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 767/1000: lr: [0.0008470000000000001]\n", + "1/0, train_loss: 0.6489\n", + "2 epoch 767 average loss: 0.6489\n", + "----------\n", + "2: epoch 768/1000: lr: [0.0008515]\n", + "1/0, train_loss: 0.6460\n", + "2 epoch 768 average loss: 0.6460\n", + "current epoch: 768 current mean dice: 0.3283\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 769/1000: lr: [0.0008559999999999999]\n", + "1/0, train_loss: 0.6489\n", + "2 epoch 769 average loss: 0.6489\n", + "----------\n", + "2: epoch 770/1000: lr: [0.0008605000000000006]\n", + "1/0, train_loss: 0.6458\n", + "2 epoch 770 average loss: 0.6458\n", + "current epoch: 770 current mean dice: 0.3283\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 771/1000: lr: [0.0008649999999999997]\n", + "1/0, train_loss: 0.6471\n", + "2 epoch 771 average loss: 0.6471\n", + "----------\n", + "2: epoch 772/1000: lr: [0.0008695000000000004]\n", + "1/0, train_loss: 0.6446\n", + "2 epoch 772 average loss: 0.6446\n", + "current epoch: 772 current mean dice: 0.3284\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 773/1000: lr: [0.0008739999999999996]\n", + "1/0, train_loss: 0.6448\n", + "2 epoch 773 average loss: 0.6448\n", + "----------\n", + "2: epoch 774/1000: lr: [0.0008785000000000002]\n", + "1/0, train_loss: 0.6455\n", + "2 epoch 774 average loss: 0.6455\n", + "current epoch: 774 current mean dice: 0.3283\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 775/1000: lr: [0.0008830000000000001]\n", + "1/0, train_loss: 0.6507\n", + "2 epoch 775 average loss: 0.6507\n", + "----------\n", + "2: epoch 776/1000: lr: [0.0008875]\n", + "1/0, train_loss: 0.6435\n", + "2 epoch 776 average loss: 0.6435\n", + "current epoch: 776 current mean dice: 0.3284\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 777/1000: lr: [0.0008919999999999999]\n", + "1/0, train_loss: 0.6438\n", + "2 epoch 777 average loss: 0.6438\n", + "----------\n", + "2: epoch 778/1000: lr: [0.0008964999999999998]\n", + "1/0, train_loss: 0.6465\n", + "2 epoch 778 average loss: 0.6465\n", + "current epoch: 778 current mean dice: 0.3284\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 779/1000: lr: [0.0009010000000000005]\n", + "1/0, train_loss: 0.6441\n", + "2 epoch 779 average loss: 0.6441\n", + "----------\n", + "2: epoch 780/1000: lr: [0.0009054999999999996]\n", + "1/0, train_loss: 0.6457\n", + "2 epoch 780 average loss: 0.6457\n", + "current epoch: 780 current mean dice: 0.3284\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 781/1000: lr: [0.0009100000000000003]\n", + "1/0, train_loss: 0.6468\n", + "2 epoch 781 average loss: 0.6468\n", + "----------\n", + "2: epoch 782/1000: lr: [0.0009144999999999994]\n", + "1/0, train_loss: 0.6447\n", + "2 epoch 782 average loss: 0.6447\n", + "current epoch: 782 current mean dice: 0.3284\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 783/1000: lr: [0.0009190000000000001]\n", + "1/0, train_loss: 0.6447\n", + "2 epoch 783 average loss: 0.6447\n", + "----------\n", + "2: epoch 784/1000: lr: [0.0009235000000000001]\n", + "1/0, train_loss: 0.6494\n", + "2 epoch 784 average loss: 0.6494\n", + "current epoch: 784 current mean dice: 0.3284\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 785/1000: lr: [0.000928]\n", + "1/0, train_loss: 0.6447\n", + "2 epoch 785 average loss: 0.6447\n", + "----------\n", + "2: epoch 786/1000: lr: [0.0009324999999999998]\n", + "1/0, train_loss: 0.6495\n", + "2 epoch 786 average loss: 0.6495\n", + "current epoch: 786 current mean dice: 0.3285\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 787/1000: lr: [0.0009369999999999998]\n", + "1/0, train_loss: 0.6462\n", + "2 epoch 787 average loss: 0.6462\n", + "----------\n", + "2: epoch 788/1000: lr: [0.0009415000000000005]\n", + "1/0, train_loss: 0.6440\n", + "2 epoch 788 average loss: 0.6440\n", + "current epoch: 788 current mean dice: 0.3285\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 789/1000: lr: [0.0009459999999999996]\n", + "1/0, train_loss: 0.6451\n", + "2 epoch 789 average loss: 0.6451\n", + "----------\n", + "2: epoch 790/1000: lr: [0.0009505000000000003]\n", + "1/0, train_loss: 0.6448\n", + "2 epoch 790 average loss: 0.6448\n", + "current epoch: 790 current mean dice: 0.3285\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 791/1000: lr: [0.0009550000000000002]\n", + "1/0, train_loss: 0.6496\n", + "2 epoch 791 average loss: 0.6496\n", + "----------\n", + "2: epoch 792/1000: lr: [0.0009595000000000001]\n", + "1/0, train_loss: 0.6423\n", + "2 epoch 792 average loss: 0.6423\n", + "current epoch: 792 current mean dice: 0.3285\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 793/1000: lr: [0.000964]\n", + "1/0, train_loss: 0.6500\n", + "2 epoch 793 average loss: 0.6500\n", + "----------\n", + "2: epoch 794/1000: lr: [0.0009684999999999999]\n", + "1/0, train_loss: 0.6446\n", + "2 epoch 794 average loss: 0.6446\n", + "current epoch: 794 current mean dice: 0.3286\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 795/1000: lr: [0.0009730000000000006]\n", + "1/0, train_loss: 0.6495\n", + "2 epoch 795 average loss: 0.6495\n", + "----------\n", + "2: epoch 796/1000: lr: [0.0009774999999999996]\n", + "1/0, train_loss: 0.6423\n", + "2 epoch 796 average loss: 0.6423\n", + "current epoch: 796 current mean dice: 0.3286\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 797/1000: lr: [0.0009820000000000005]\n", + "1/0, train_loss: 0.6447\n", + "2 epoch 797 average loss: 0.6447\n", + "----------\n", + "2: epoch 798/1000: lr: [0.0009864999999999995]\n", + "1/0, train_loss: 0.6442\n", + "2 epoch 798 average loss: 0.6442\n", + "current epoch: 798 current mean dice: 0.3286\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 799/1000: lr: [0.0009910000000000001]\n", + "1/0, train_loss: 0.6428\n", + "2 epoch 799 average loss: 0.6428\n", + "----------\n", + "2: epoch 800/1000: lr: [0.0009955]\n", + "1/0, train_loss: 0.6442\n", + "2 epoch 800 average loss: 0.6442\n", + "current epoch: 800 current mean dice: 0.3286\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 801/1000: lr: [0.001]\n", + "1/0, train_loss: 0.6483\n", + "2 epoch 801 average loss: 0.6483\n", + "----------\n", + "2: epoch 802/1000: lr: [0.0009955]\n", + "1/0, train_loss: 0.6471\n", + "2 epoch 802 average loss: 0.6471\n", + "current epoch: 802 current mean dice: 0.3286\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 803/1000: lr: [0.0009910000000000001]\n", + "1/0, train_loss: 0.6417\n", + "2 epoch 803 average loss: 0.6417\n", + "----------\n", + "2: epoch 804/1000: lr: [0.0009865000000000004]\n", + "1/0, train_loss: 0.6476\n", + "2 epoch 804 average loss: 0.6476\n", + "current epoch: 804 current mean dice: 0.3286\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 805/1000: lr: [0.0009820000000000005]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.6418\n", + "2 epoch 805 average loss: 0.6418\n", + "----------\n", + "2: epoch 806/1000: lr: [0.0009774999999999996]\n", + "1/0, train_loss: 0.6431\n", + "2 epoch 806 average loss: 0.6431\n", + "current epoch: 806 current mean dice: 0.3286\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 807/1000: lr: [0.0009729999999999998]\n", + "1/0, train_loss: 0.6477\n", + "2 epoch 807 average loss: 0.6477\n", + "----------\n", + "2: epoch 808/1000: lr: [0.0009684999999999999]\n", + "1/0, train_loss: 0.6440\n", + "2 epoch 808 average loss: 0.6440\n", + "current epoch: 808 current mean dice: 0.3286\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 809/1000: lr: [0.000964]\n", + "1/0, train_loss: 0.6432\n", + "2 epoch 809 average loss: 0.6432\n", + "----------\n", + "2: epoch 810/1000: lr: [0.0009595000000000001]\n", + "1/0, train_loss: 0.6415\n", + "2 epoch 810 average loss: 0.6415\n", + "current epoch: 810 current mean dice: 0.3286\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 811/1000: lr: [0.0009550000000000002]\n", + "1/0, train_loss: 0.6412\n", + "2 epoch 811 average loss: 0.6412\n", + "----------\n", + "2: epoch 812/1000: lr: [0.0009505000000000003]\n", + "1/0, train_loss: 0.6471\n", + "2 epoch 812 average loss: 0.6471\n", + "current epoch: 812 current mean dice: 0.3286\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 813/1000: lr: [0.0009460000000000003]\n", + "1/0, train_loss: 0.6431\n", + "2 epoch 813 average loss: 0.6431\n", + "----------\n", + "2: epoch 814/1000: lr: [0.0009414999999999996]\n", + "1/0, train_loss: 0.6432\n", + "2 epoch 814 average loss: 0.6432\n", + "current epoch: 814 current mean dice: 0.3287\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 815/1000: lr: [0.0009369999999999998]\n", + "1/0, train_loss: 0.6465\n", + "2 epoch 815 average loss: 0.6465\n", + "----------\n", + "2: epoch 816/1000: lr: [0.0009324999999999998]\n", + "1/0, train_loss: 0.6415\n", + "2 epoch 816 average loss: 0.6415\n", + "current epoch: 816 current mean dice: 0.3287\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 817/1000: lr: [0.000928]\n", + "1/0, train_loss: 0.6433\n", + "2 epoch 817 average loss: 0.6433\n", + "----------\n", + "2: epoch 818/1000: lr: [0.0009235000000000001]\n", + "1/0, train_loss: 0.6440\n", + "2 epoch 818 average loss: 0.6440\n", + "current epoch: 818 current mean dice: 0.3288\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 819/1000: lr: [0.0009190000000000001]\n", + "1/0, train_loss: 0.6448\n", + "2 epoch 819 average loss: 0.6448\n", + "----------\n", + "2: epoch 820/1000: lr: [0.0009145000000000003]\n", + "1/0, train_loss: 0.6405\n", + "2 epoch 820 average loss: 0.6405\n", + "current epoch: 820 current mean dice: 0.3288\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 821/1000: lr: [0.0009100000000000003]\n", + "1/0, train_loss: 0.6436\n", + "2 epoch 821 average loss: 0.6436\n", + "----------\n", + "2: epoch 822/1000: lr: [0.0009054999999999996]\n", + "1/0, train_loss: 0.6399\n", + "2 epoch 822 average loss: 0.6399\n", + "current epoch: 822 current mean dice: 0.3289\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 823/1000: lr: [0.0009009999999999998]\n", + "1/0, train_loss: 0.6412\n", + "2 epoch 823 average loss: 0.6412\n", + "----------\n", + "2: epoch 824/1000: lr: [0.0008964999999999998]\n", + "1/0, train_loss: 0.6426\n", + "2 epoch 824 average loss: 0.6426\n", + "current epoch: 824 current mean dice: 0.3290\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 825/1000: lr: [0.0008919999999999999]\n", + "1/0, train_loss: 0.6416\n", + "2 epoch 825 average loss: 0.6416\n", + "----------\n", + "2: epoch 826/1000: lr: [0.0008875]\n", + "1/0, train_loss: 0.6456\n", + "2 epoch 826 average loss: 0.6456\n", + "current epoch: 826 current mean dice: 0.3290\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 827/1000: lr: [0.0008830000000000001]\n", + "1/0, train_loss: 0.6419\n", + "2 epoch 827 average loss: 0.6419\n", + "----------\n", + "2: epoch 828/1000: lr: [0.0008785000000000002]\n", + "1/0, train_loss: 0.6425\n", + "2 epoch 828 average loss: 0.6425\n", + "current epoch: 828 current mean dice: 0.3291\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 829/1000: lr: [0.0008740000000000003]\n", + "1/0, train_loss: 0.6450\n", + "2 epoch 829 average loss: 0.6450\n", + "----------\n", + "2: epoch 830/1000: lr: [0.0008695000000000004]\n", + "1/0, train_loss: 0.6481\n", + "2 epoch 830 average loss: 0.6481\n", + "current epoch: 830 current mean dice: 0.3292\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 831/1000: lr: [0.0008649999999999997]\n", + "1/0, train_loss: 0.6442\n", + "2 epoch 831 average loss: 0.6442\n", + "----------\n", + "2: epoch 832/1000: lr: [0.0008604999999999998]\n", + "1/0, train_loss: 0.6436\n", + "2 epoch 832 average loss: 0.6436\n", + "current epoch: 832 current mean dice: 0.3292\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 833/1000: lr: [0.0008559999999999999]\n", + "1/0, train_loss: 0.6405\n", + "2 epoch 833 average loss: 0.6405\n", + "----------\n", + "2: epoch 834/1000: lr: [0.0008515]\n", + "1/0, train_loss: 0.6405\n", + "2 epoch 834 average loss: 0.6405\n", + "current epoch: 834 current mean dice: 0.3292\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 835/1000: lr: [0.0008470000000000001]\n", + "1/0, train_loss: 0.6379\n", + "2 epoch 835 average loss: 0.6379\n", + "----------\n", + "2: epoch 836/1000: lr: [0.0008425000000000001]\n", + "1/0, train_loss: 0.6469\n", + "2 epoch 836 average loss: 0.6469\n", + "current epoch: 836 current mean dice: 0.3293\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 837/1000: lr: [0.0008380000000000003]\n", + "1/0, train_loss: 0.6407\n", + "2 epoch 837 average loss: 0.6407\n", + "----------\n", + "2: epoch 838/1000: lr: [0.0008335000000000004]\n", + "1/0, train_loss: 0.6404\n", + "2 epoch 838 average loss: 0.6404\n", + "current epoch: 838 current mean dice: 0.3294\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 839/1000: lr: [0.0008289999999999997]\n", + "1/0, train_loss: 0.6416\n", + "2 epoch 839 average loss: 0.6416\n", + "----------\n", + "2: epoch 840/1000: lr: [0.0008244999999999997]\n", + "1/0, train_loss: 0.6394\n", + "2 epoch 840 average loss: 0.6394\n", + "current epoch: 840 current mean dice: 0.3294\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 841/1000: lr: [0.0008199999999999999]\n", + "1/0, train_loss: 0.6413\n", + "2 epoch 841 average loss: 0.6413\n", + "----------\n", + "2: epoch 842/1000: lr: [0.0008154999999999999]\n", + "1/0, train_loss: 0.6387\n", + "2 epoch 842 average loss: 0.6387\n", + "current epoch: 842 current mean dice: 0.3295\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 843/1000: lr: [0.0008110000000000001]\n", + "1/0, train_loss: 0.6467\n", + "2 epoch 843 average loss: 0.6467\n", + "----------\n", + "2: epoch 844/1000: lr: [0.0008065000000000001]\n", + "1/0, train_loss: 0.6404\n", + "2 epoch 844 average loss: 0.6404\n", + "current epoch: 844 current mean dice: 0.3295\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 845/1000: lr: [0.0008020000000000002]\n", + "1/0, train_loss: 0.6455\n", + "2 epoch 845 average loss: 0.6455\n", + "----------\n", + "2: epoch 846/1000: lr: [0.0007975000000000004]\n", + "1/0, train_loss: 0.6405\n", + "2 epoch 846 average loss: 0.6405\n", + "current epoch: 846 current mean dice: 0.3296\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 847/1000: lr: [0.0007929999999999997]\n", + "1/0, train_loss: 0.6403\n", + "2 epoch 847 average loss: 0.6403\n", + "----------\n", + "2: epoch 848/1000: lr: [0.0007884999999999997]\n", + "1/0, train_loss: 0.6403\n", + "2 epoch 848 average loss: 0.6403\n", + "current epoch: 848 current mean dice: 0.3296\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 849/1000: lr: [0.0007839999999999999]\n", + "1/0, train_loss: 0.6405\n", + "2 epoch 849 average loss: 0.6405\n", + "----------\n", + "2: epoch 850/1000: lr: [0.0007794999999999999]\n", + "1/0, train_loss: 0.6420\n", + "2 epoch 850 average loss: 0.6420\n", + "current epoch: 850 current mean dice: 0.3297\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 851/1000: lr: [0.0007750000000000001]\n", + "1/0, train_loss: 0.6392\n", + "2 epoch 851 average loss: 0.6392\n", + "----------\n", + "2: epoch 852/1000: lr: [0.0007705000000000001]\n", + "1/0, train_loss: 0.6395\n", + "2 epoch 852 average loss: 0.6395\n", + "current epoch: 852 current mean dice: 0.3297\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 853/1000: lr: [0.0007660000000000002]\n", + "1/0, train_loss: 0.6452\n", + "2 epoch 853 average loss: 0.6452\n", + "----------\n", + "2: epoch 854/1000: lr: [0.0007615000000000003]\n", + "1/0, train_loss: 0.6381\n", + "2 epoch 854 average loss: 0.6381\n", + "current epoch: 854 current mean dice: 0.3297\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 855/1000: lr: [0.0007570000000000004]\n", + "1/0, train_loss: 0.6391\n", + "2 epoch 855 average loss: 0.6391\n", + "----------\n", + "2: epoch 856/1000: lr: [0.0007524999999999997]\n", + "1/0, train_loss: 0.6422\n", + "2 epoch 856 average loss: 0.6422\n", + "current epoch: 856 current mean dice: 0.3298\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 857/1000: lr: [0.0007479999999999998]\n", + "1/0, train_loss: 0.6429\n", + "2 epoch 857 average loss: 0.6429\n", + "----------\n", + "2: epoch 858/1000: lr: [0.0007434999999999999]\n", + "1/0, train_loss: 0.6428\n", + "2 epoch 858 average loss: 0.6428\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "current epoch: 858 current mean dice: 0.3298\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 859/1000: lr: [0.0007390000000000001]\n", + "1/0, train_loss: 0.6395\n", + "2 epoch 859 average loss: 0.6395\n", + "----------\n", + "2: epoch 860/1000: lr: [0.0007345000000000001]\n", + "1/0, train_loss: 0.6441\n", + "2 epoch 860 average loss: 0.6441\n", + "current epoch: 860 current mean dice: 0.3298\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 861/1000: lr: [0.0007300000000000002]\n", + "1/0, train_loss: 0.6387\n", + "2 epoch 861 average loss: 0.6387\n", + "----------\n", + "2: epoch 862/1000: lr: [0.0007255000000000002]\n", + "1/0, train_loss: 0.6409\n", + "2 epoch 862 average loss: 0.6409\n", + "current epoch: 862 current mean dice: 0.3299\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 863/1000: lr: [0.0007210000000000004]\n", + "1/0, train_loss: 0.6430\n", + "2 epoch 863 average loss: 0.6430\n", + "----------\n", + "2: epoch 864/1000: lr: [0.0007164999999999997]\n", + "1/0, train_loss: 0.6422\n", + "2 epoch 864 average loss: 0.6422\n", + "current epoch: 864 current mean dice: 0.3299\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 865/1000: lr: [0.0007119999999999997]\n", + "1/0, train_loss: 0.6428\n", + "2 epoch 865 average loss: 0.6428\n", + "----------\n", + "2: epoch 866/1000: lr: [0.0007074999999999998]\n", + "1/0, train_loss: 0.6424\n", + "2 epoch 866 average loss: 0.6424\n", + "current epoch: 866 current mean dice: 0.3299\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 867/1000: lr: [0.000703]\n", + "1/0, train_loss: 0.6385\n", + "2 epoch 867 average loss: 0.6385\n", + "----------\n", + "2: epoch 868/1000: lr: [0.0006985000000000001]\n", + "1/0, train_loss: 0.6399\n", + "2 epoch 868 average loss: 0.6399\n", + "current epoch: 868 current mean dice: 0.3300\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 869/1000: lr: [0.0006940000000000002]\n", + "1/0, train_loss: 0.6404\n", + "2 epoch 869 average loss: 0.6404\n", + "----------\n", + "2: epoch 870/1000: lr: [0.0006895000000000002]\n", + "1/0, train_loss: 0.6404\n", + "2 epoch 870 average loss: 0.6404\n", + "current epoch: 870 current mean dice: 0.3300\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 871/1000: lr: [0.0006850000000000003]\n", + "1/0, train_loss: 0.6383\n", + "2 epoch 871 average loss: 0.6383\n", + "----------\n", + "2: epoch 872/1000: lr: [0.0006804999999999997]\n", + "1/0, train_loss: 0.6393\n", + "2 epoch 872 average loss: 0.6393\n", + "current epoch: 872 current mean dice: 0.3300\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 873/1000: lr: [0.0006759999999999997]\n", + "1/0, train_loss: 0.6386\n", + "2 epoch 873 average loss: 0.6386\n", + "----------\n", + "2: epoch 874/1000: lr: [0.0006714999999999998]\n", + "1/0, train_loss: 0.6463\n", + "2 epoch 874 average loss: 0.6463\n", + "current epoch: 874 current mean dice: 0.3300\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 875/1000: lr: [0.000667]\n", + "1/0, train_loss: 0.6391\n", + "2 epoch 875 average loss: 0.6391\n", + "----------\n", + "2: epoch 876/1000: lr: [0.0006625]\n", + "1/0, train_loss: 0.6383\n", + "2 epoch 876 average loss: 0.6383\n", + "current epoch: 876 current mean dice: 0.3301\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 877/1000: lr: [0.0006580000000000002]\n", + "1/0, train_loss: 0.6410\n", + "2 epoch 877 average loss: 0.6410\n", + "----------\n", + "2: epoch 878/1000: lr: [0.0006535000000000002]\n", + "1/0, train_loss: 0.6376\n", + "2 epoch 878 average loss: 0.6376\n", + "current epoch: 878 current mean dice: 0.3301\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 879/1000: lr: [0.0006490000000000003]\n", + "1/0, train_loss: 0.6404\n", + "2 epoch 879 average loss: 0.6404\n", + "----------\n", + "2: epoch 880/1000: lr: [0.0006445000000000004]\n", + "1/0, train_loss: 0.6399\n", + "2 epoch 880 average loss: 0.6399\n", + "current epoch: 880 current mean dice: 0.3301\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 881/1000: lr: [0.0006399999999999997]\n", + "1/0, train_loss: 0.6435\n", + "2 epoch 881 average loss: 0.6435\n", + "----------\n", + "2: epoch 882/1000: lr: [0.0006354999999999998]\n", + "1/0, train_loss: 0.6428\n", + "2 epoch 882 average loss: 0.6428\n", + "current epoch: 882 current mean dice: 0.3302\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 883/1000: lr: [0.0006309999999999998]\n", + "1/0, train_loss: 0.6457\n", + "2 epoch 883 average loss: 0.6457\n", + "----------\n", + "2: epoch 884/1000: lr: [0.0006265]\n", + "1/0, train_loss: 0.6394\n", + "2 epoch 884 average loss: 0.6394\n", + "current epoch: 884 current mean dice: 0.3302\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 885/1000: lr: [0.0006220000000000002]\n", + "1/0, train_loss: 0.6376\n", + "2 epoch 885 average loss: 0.6376\n", + "----------\n", + "2: epoch 886/1000: lr: [0.0006175000000000002]\n", + "1/0, train_loss: 0.6416\n", + "2 epoch 886 average loss: 0.6416\n", + "current epoch: 886 current mean dice: 0.3302\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 887/1000: lr: [0.0006130000000000003]\n", + "1/0, train_loss: 0.6391\n", + "2 epoch 887 average loss: 0.6391\n", + "----------\n", + "2: epoch 888/1000: lr: [0.0006085000000000003]\n", + "1/0, train_loss: 0.6401\n", + "2 epoch 888 average loss: 0.6401\n", + "current epoch: 888 current mean dice: 0.3303\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 889/1000: lr: [0.0006039999999999997]\n", + "1/0, train_loss: 0.6384\n", + "2 epoch 889 average loss: 0.6384\n", + "----------\n", + "2: epoch 890/1000: lr: [0.0005994999999999998]\n", + "1/0, train_loss: 0.6422\n", + "2 epoch 890 average loss: 0.6422\n", + "current epoch: 890 current mean dice: 0.3303\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 891/1000: lr: [0.0005949999999999998]\n", + "1/0, train_loss: 0.6389\n", + "2 epoch 891 average loss: 0.6389\n", + "----------\n", + "2: epoch 892/1000: lr: [0.0005905]\n", + "1/0, train_loss: 0.6379\n", + "2 epoch 892 average loss: 0.6379\n", + "current epoch: 892 current mean dice: 0.3303\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 893/1000: lr: [0.000586]\n", + "1/0, train_loss: 0.6455\n", + "2 epoch 893 average loss: 0.6455\n", + "----------\n", + "2: epoch 894/1000: lr: [0.0005815000000000002]\n", + "1/0, train_loss: 0.6439\n", + "2 epoch 894 average loss: 0.6439\n", + "current epoch: 894 current mean dice: 0.3303\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 895/1000: lr: [0.0005770000000000003]\n", + "1/0, train_loss: 0.6370\n", + "2 epoch 895 average loss: 0.6370\n", + "----------\n", + "2: epoch 896/1000: lr: [0.0005725000000000003]\n", + "1/0, train_loss: 0.6407\n", + "2 epoch 896 average loss: 0.6407\n", + "current epoch: 896 current mean dice: 0.3303\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 897/1000: lr: [0.0005679999999999997]\n", + "1/0, train_loss: 0.6379\n", + "2 epoch 897 average loss: 0.6379\n", + "----------\n", + "2: epoch 898/1000: lr: [0.0005634999999999998]\n", + "1/0, train_loss: 0.6398\n", + "2 epoch 898 average loss: 0.6398\n", + "current epoch: 898 current mean dice: 0.3304\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 899/1000: lr: [0.0005589999999999998]\n", + "1/0, train_loss: 0.6389\n", + "2 epoch 899 average loss: 0.6389\n", + "----------\n", + "2: epoch 900/1000: lr: [0.0005544999999999999]\n", + "1/0, train_loss: 0.6421\n", + "2 epoch 900 average loss: 0.6421\n", + "current epoch: 900 current mean dice: 0.3304\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 901/1000: lr: [0.00055]\n", + "1/0, train_loss: 0.6427\n", + "2 epoch 901 average loss: 0.6427\n", + "----------\n", + "2: epoch 902/1000: lr: [0.0005455000000000002]\n", + "1/0, train_loss: 0.6392\n", + "2 epoch 902 average loss: 0.6392\n", + "current epoch: 902 current mean dice: 0.3304\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 903/1000: lr: [0.0005410000000000002]\n", + "1/0, train_loss: 0.6363\n", + "2 epoch 903 average loss: 0.6363\n", + "----------\n", + "2: epoch 904/1000: lr: [0.0005365000000000003]\n", + "1/0, train_loss: 0.6399\n", + "2 epoch 904 average loss: 0.6399\n", + "current epoch: 904 current mean dice: 0.3304\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 905/1000: lr: [0.0005320000000000004]\n", + "1/0, train_loss: 0.6404\n", + "2 epoch 905 average loss: 0.6404\n", + "----------\n", + "2: epoch 906/1000: lr: [0.0005274999999999998]\n", + "1/0, train_loss: 0.6406\n", + "2 epoch 906 average loss: 0.6406\n", + "current epoch: 906 current mean dice: 0.3305\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 907/1000: lr: [0.0005229999999999998]\n", + "1/0, train_loss: 0.6364\n", + "2 epoch 907 average loss: 0.6364\n", + "----------\n", + "2: epoch 908/1000: lr: [0.0005184999999999999]\n", + "1/0, train_loss: 0.6409\n", + "2 epoch 908 average loss: 0.6409\n", + "current epoch: 908 current mean dice: 0.3305\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 909/1000: lr: [0.000514]\n", + "1/0, train_loss: 0.6395\n", + "2 epoch 909 average loss: 0.6395\n", + "----------\n", + "2: epoch 910/1000: lr: [0.0005095000000000001]\n", + "1/0, train_loss: 0.6355\n", + "2 epoch 910 average loss: 0.6355\n", + "current epoch: 910 current mean dice: 0.3305\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 911/1000: lr: [0.0005050000000000002]\n", + "1/0, train_loss: 0.6394\n", + "2 epoch 911 average loss: 0.6394\n", + "----------\n", + "2: epoch 912/1000: lr: [0.0005005000000000003]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.6433\n", + "2 epoch 912 average loss: 0.6433\n", + "current epoch: 912 current mean dice: 0.3306\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 913/1000: lr: [0.0004960000000000003]\n", + "1/0, train_loss: 0.6373\n", + "2 epoch 913 average loss: 0.6373\n", + "----------\n", + "2: epoch 914/1000: lr: [0.0004914999999999996]\n", + "1/0, train_loss: 0.6410\n", + "2 epoch 914 average loss: 0.6410\n", + "current epoch: 914 current mean dice: 0.3306\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 915/1000: lr: [0.0004869999999999998]\n", + "1/0, train_loss: 0.6387\n", + "2 epoch 915 average loss: 0.6387\n", + "----------\n", + "2: epoch 916/1000: lr: [0.00048249999999999986]\n", + "1/0, train_loss: 0.6436\n", + "2 epoch 916 average loss: 0.6436\n", + "current epoch: 916 current mean dice: 0.3306\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 917/1000: lr: [0.000478]\n", + "1/0, train_loss: 0.6354\n", + "2 epoch 917 average loss: 0.6354\n", + "----------\n", + "2: epoch 918/1000: lr: [0.00047350000000000007]\n", + "1/0, train_loss: 0.6430\n", + "2 epoch 918 average loss: 0.6430\n", + "current epoch: 918 current mean dice: 0.3306\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 919/1000: lr: [0.0004690000000000001]\n", + "1/0, train_loss: 0.6385\n", + "2 epoch 919 average loss: 0.6385\n", + "----------\n", + "2: epoch 920/1000: lr: [0.0004645000000000003]\n", + "1/0, train_loss: 0.6372\n", + "2 epoch 920 average loss: 0.6372\n", + "current epoch: 920 current mean dice: 0.3307\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 921/1000: lr: [0.00046000000000000034]\n", + "1/0, train_loss: 0.6389\n", + "2 epoch 921 average loss: 0.6389\n", + "----------\n", + "2: epoch 922/1000: lr: [0.00045549999999999963]\n", + "1/0, train_loss: 0.6453\n", + "2 epoch 922 average loss: 0.6453\n", + "current epoch: 922 current mean dice: 0.3307\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 923/1000: lr: [0.0004509999999999998]\n", + "1/0, train_loss: 0.6416\n", + "2 epoch 923 average loss: 0.6416\n", + "----------\n", + "2: epoch 924/1000: lr: [0.00044649999999999985]\n", + "1/0, train_loss: 0.6392\n", + "2 epoch 924 average loss: 0.6392\n", + "current epoch: 924 current mean dice: 0.3307\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 925/1000: lr: [0.0004419999999999999]\n", + "1/0, train_loss: 0.6385\n", + "2 epoch 925 average loss: 0.6385\n", + "----------\n", + "2: epoch 926/1000: lr: [0.00043750000000000006]\n", + "1/0, train_loss: 0.6379\n", + "2 epoch 926 average loss: 0.6379\n", + "current epoch: 926 current mean dice: 0.3308\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 927/1000: lr: [0.0004330000000000001]\n", + "1/0, train_loss: 0.6370\n", + "2 epoch 927 average loss: 0.6370\n", + "----------\n", + "2: epoch 928/1000: lr: [0.0004285000000000003]\n", + "1/0, train_loss: 0.6380\n", + "2 epoch 928 average loss: 0.6380\n", + "current epoch: 928 current mean dice: 0.3308\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 929/1000: lr: [0.00042400000000000033]\n", + "1/0, train_loss: 0.6371\n", + "2 epoch 929 average loss: 0.6371\n", + "----------\n", + "2: epoch 930/1000: lr: [0.0004195000000000004]\n", + "1/0, train_loss: 0.6424\n", + "2 epoch 930 average loss: 0.6424\n", + "current epoch: 930 current mean dice: 0.3308\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 931/1000: lr: [0.0004149999999999997]\n", + "1/0, train_loss: 0.6430\n", + "2 epoch 931 average loss: 0.6430\n", + "----------\n", + "2: epoch 932/1000: lr: [0.00041049999999999984]\n", + "1/0, train_loss: 0.6429\n", + "2 epoch 932 average loss: 0.6429\n", + "current epoch: 932 current mean dice: 0.3308\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 933/1000: lr: [0.0004059999999999999]\n", + "1/0, train_loss: 0.6369\n", + "2 epoch 933 average loss: 0.6369\n", + "----------\n", + "2: epoch 934/1000: lr: [0.00040150000000000006]\n", + "1/0, train_loss: 0.6376\n", + "2 epoch 934 average loss: 0.6376\n", + "current epoch: 934 current mean dice: 0.3308\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 935/1000: lr: [0.0003970000000000001]\n", + "1/0, train_loss: 0.6364\n", + "2 epoch 935 average loss: 0.6364\n", + "----------\n", + "2: epoch 936/1000: lr: [0.00039250000000000016]\n", + "1/0, train_loss: 0.6398\n", + "2 epoch 936 average loss: 0.6398\n", + "current epoch: 936 current mean dice: 0.3308\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 937/1000: lr: [0.0003880000000000003]\n", + "1/0, train_loss: 0.6403\n", + "2 epoch 937 average loss: 0.6403\n", + "----------\n", + "2: epoch 938/1000: lr: [0.0003835000000000004]\n", + "1/0, train_loss: 0.6388\n", + "2 epoch 938 average loss: 0.6388\n", + "current epoch: 938 current mean dice: 0.3308\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 939/1000: lr: [0.00037899999999999967]\n", + "1/0, train_loss: 0.6370\n", + "2 epoch 939 average loss: 0.6370\n", + "----------\n", + "2: epoch 940/1000: lr: [0.00037449999999999983]\n", + "1/0, train_loss: 0.6379\n", + "2 epoch 940 average loss: 0.6379\n", + "current epoch: 940 current mean dice: 0.3309\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 941/1000: lr: [0.0003699999999999999]\n", + "1/0, train_loss: 0.6365\n", + "2 epoch 941 average loss: 0.6365\n", + "----------\n", + "2: epoch 942/1000: lr: [0.00036549999999999994]\n", + "1/0, train_loss: 0.6398\n", + "2 epoch 942 average loss: 0.6398\n", + "current epoch: 942 current mean dice: 0.3309\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 943/1000: lr: [0.0003610000000000001]\n", + "1/0, train_loss: 0.6400\n", + "2 epoch 943 average loss: 0.6400\n", + "----------\n", + "2: epoch 944/1000: lr: [0.00035650000000000015]\n", + "1/0, train_loss: 0.6355\n", + "2 epoch 944 average loss: 0.6355\n", + "current epoch: 944 current mean dice: 0.3309\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 945/1000: lr: [0.0003520000000000003]\n", + "1/0, train_loss: 0.6358\n", + "2 epoch 945 average loss: 0.6358\n", + "----------\n", + "2: epoch 946/1000: lr: [0.00034750000000000037]\n", + "1/0, train_loss: 0.6421\n", + "2 epoch 946 average loss: 0.6421\n", + "current epoch: 946 current mean dice: 0.3309\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 947/1000: lr: [0.00034299999999999966]\n", + "1/0, train_loss: 0.6371\n", + "2 epoch 947 average loss: 0.6371\n", + "----------\n", + "2: epoch 948/1000: lr: [0.0003384999999999997]\n", + "1/0, train_loss: 0.6371\n", + "2 epoch 948 average loss: 0.6371\n", + "current epoch: 948 current mean dice: 0.3309\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 949/1000: lr: [0.0003339999999999999]\n", + "1/0, train_loss: 0.6373\n", + "2 epoch 949 average loss: 0.6373\n", + "----------\n", + "2: epoch 950/1000: lr: [0.00032949999999999993]\n", + "1/0, train_loss: 0.6397\n", + "2 epoch 950 average loss: 0.6397\n", + "current epoch: 950 current mean dice: 0.3309\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 951/1000: lr: [0.000325]\n", + "1/0, train_loss: 0.6392\n", + "2 epoch 951 average loss: 0.6392\n", + "----------\n", + "2: epoch 952/1000: lr: [0.00032050000000000015]\n", + "1/0, train_loss: 0.6433\n", + "2 epoch 952 average loss: 0.6433\n", + "current epoch: 952 current mean dice: 0.3309\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 953/1000: lr: [0.0003160000000000002]\n", + "1/0, train_loss: 0.6378\n", + "2 epoch 953 average loss: 0.6378\n", + "----------\n", + "2: epoch 954/1000: lr: [0.00031150000000000036]\n", + "1/0, train_loss: 0.6364\n", + "2 epoch 954 average loss: 0.6364\n", + "current epoch: 954 current mean dice: 0.3310\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 955/1000: lr: [0.0003070000000000004]\n", + "1/0, train_loss: 0.6384\n", + "2 epoch 955 average loss: 0.6384\n", + "----------\n", + "2: epoch 956/1000: lr: [0.0003024999999999997]\n", + "1/0, train_loss: 0.6356\n", + "2 epoch 956 average loss: 0.6356\n", + "current epoch: 956 current mean dice: 0.3310\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 957/1000: lr: [0.00029799999999999976]\n", + "1/0, train_loss: 0.6433\n", + "2 epoch 957 average loss: 0.6433\n", + "----------\n", + "2: epoch 958/1000: lr: [0.0002934999999999999]\n", + "1/0, train_loss: 0.6373\n", + "2 epoch 958 average loss: 0.6373\n", + "current epoch: 958 current mean dice: 0.3310\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 959/1000: lr: [0.000289]\n", + "1/0, train_loss: 0.6372\n", + "2 epoch 959 average loss: 0.6372\n", + "----------\n", + "2: epoch 960/1000: lr: [0.00028450000000000014]\n", + "1/0, train_loss: 0.6382\n", + "2 epoch 960 average loss: 0.6382\n", + "current epoch: 960 current mean dice: 0.3310\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 961/1000: lr: [0.0002800000000000002]\n", + "1/0, train_loss: 0.6385\n", + "2 epoch 961 average loss: 0.6385\n", + "----------\n", + "2: epoch 962/1000: lr: [0.00027550000000000025]\n", + "1/0, train_loss: 0.6394\n", + "2 epoch 962 average loss: 0.6394\n", + "current epoch: 962 current mean dice: 0.3310\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 963/1000: lr: [0.0002710000000000004]\n", + "1/0, train_loss: 0.6395\n", + "2 epoch 963 average loss: 0.6395\n", + "----------\n", + "2: epoch 964/1000: lr: [0.0002664999999999997]\n", + "1/0, train_loss: 0.6411\n", + "2 epoch 964 average loss: 0.6411\n", + "current epoch: 964 current mean dice: 0.3310\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 965/1000: lr: [0.00026199999999999975]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.6386\n", + "2 epoch 965 average loss: 0.6386\n", + "----------\n", + "2: epoch 966/1000: lr: [0.0002574999999999999]\n", + "1/0, train_loss: 0.6372\n", + "2 epoch 966 average loss: 0.6372\n", + "current epoch: 966 current mean dice: 0.3310\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 967/1000: lr: [0.00025299999999999997]\n", + "1/0, train_loss: 0.6361\n", + "2 epoch 967 average loss: 0.6361\n", + "----------\n", + "2: epoch 968/1000: lr: [0.0002485]\n", + "1/0, train_loss: 0.6405\n", + "2 epoch 968 average loss: 0.6405\n", + "current epoch: 968 current mean dice: 0.3311\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 969/1000: lr: [0.00024400000000000018]\n", + "1/0, train_loss: 0.6474\n", + "2 epoch 969 average loss: 0.6474\n", + "----------\n", + "2: epoch 970/1000: lr: [0.00023950000000000024]\n", + "1/0, train_loss: 0.6398\n", + "2 epoch 970 average loss: 0.6398\n", + "current epoch: 970 current mean dice: 0.3311\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 971/1000: lr: [0.0002350000000000004]\n", + "1/0, train_loss: 0.6350\n", + "2 epoch 971 average loss: 0.6350\n", + "----------\n", + "2: epoch 972/1000: lr: [0.0002304999999999997]\n", + "1/0, train_loss: 0.6354\n", + "2 epoch 972 average loss: 0.6354\n", + "current epoch: 972 current mean dice: 0.3311\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 973/1000: lr: [0.00022599999999999975]\n", + "1/0, train_loss: 0.6356\n", + "2 epoch 973 average loss: 0.6356\n", + "----------\n", + "2: epoch 974/1000: lr: [0.0002214999999999998]\n", + "1/0, train_loss: 0.6361\n", + "2 epoch 974 average loss: 0.6361\n", + "current epoch: 974 current mean dice: 0.3311\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 975/1000: lr: [0.00021699999999999996]\n", + "1/0, train_loss: 0.6377\n", + "2 epoch 975 average loss: 0.6377\n", + "----------\n", + "2: epoch 976/1000: lr: [0.00021250000000000002]\n", + "1/0, train_loss: 0.6381\n", + "2 epoch 976 average loss: 0.6381\n", + "current epoch: 976 current mean dice: 0.3311\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 977/1000: lr: [0.00020800000000000018]\n", + "1/0, train_loss: 0.6403\n", + "2 epoch 977 average loss: 0.6403\n", + "----------\n", + "2: epoch 978/1000: lr: [0.00020350000000000023]\n", + "1/0, train_loss: 0.6413\n", + "2 epoch 978 average loss: 0.6413\n", + "current epoch: 978 current mean dice: 0.3311\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 979/1000: lr: [0.00019900000000000028]\n", + "1/0, train_loss: 0.6383\n", + "2 epoch 979 average loss: 0.6383\n", + "----------\n", + "2: epoch 980/1000: lr: [0.00019450000000000045]\n", + "1/0, train_loss: 0.6436\n", + "2 epoch 980 average loss: 0.6436\n", + "current epoch: 980 current mean dice: 0.3311\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 981/1000: lr: [0.00018999999999999974]\n", + "1/0, train_loss: 0.6369\n", + "2 epoch 981 average loss: 0.6369\n", + "----------\n", + "2: epoch 982/1000: lr: [0.0001854999999999998]\n", + "1/0, train_loss: 0.6441\n", + "2 epoch 982 average loss: 0.6441\n", + "current epoch: 982 current mean dice: 0.3311\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 983/1000: lr: [0.00018099999999999995]\n", + "1/0, train_loss: 0.6346\n", + "2 epoch 983 average loss: 0.6346\n", + "----------\n", + "2: epoch 984/1000: lr: [0.0001765]\n", + "1/0, train_loss: 0.6370\n", + "2 epoch 984 average loss: 0.6370\n", + "current epoch: 984 current mean dice: 0.3311\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 985/1000: lr: [0.00017200000000000006]\n", + "1/0, train_loss: 0.6391\n", + "2 epoch 985 average loss: 0.6391\n", + "----------\n", + "2: epoch 986/1000: lr: [0.00016750000000000022]\n", + "1/0, train_loss: 0.6369\n", + "2 epoch 986 average loss: 0.6369\n", + "current epoch: 986 current mean dice: 0.3311\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 987/1000: lr: [0.00016300000000000028]\n", + "1/0, train_loss: 0.6370\n", + "2 epoch 987 average loss: 0.6370\n", + "----------\n", + "2: epoch 988/1000: lr: [0.00015850000000000044]\n", + "1/0, train_loss: 0.6360\n", + "2 epoch 988 average loss: 0.6360\n", + "current epoch: 988 current mean dice: 0.3311\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 989/1000: lr: [0.00015399999999999973]\n", + "1/0, train_loss: 0.6417\n", + "2 epoch 989 average loss: 0.6417\n", + "----------\n", + "2: epoch 990/1000: lr: [0.00014949999999999978]\n", + "1/0, train_loss: 0.6360\n", + "2 epoch 990 average loss: 0.6360\n", + "current epoch: 990 current mean dice: 0.3312\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 991/1000: lr: [0.00014499999999999984]\n", + "1/0, train_loss: 0.6369\n", + "2 epoch 991 average loss: 0.6369\n", + "----------\n", + "2: epoch 992/1000: lr: [0.0001405]\n", + "1/0, train_loss: 0.6401\n", + "2 epoch 992 average loss: 0.6401\n", + "current epoch: 992 current mean dice: 0.3312\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 993/1000: lr: [0.00013600000000000005]\n", + "1/0, train_loss: 0.6369\n", + "2 epoch 993 average loss: 0.6369\n", + "----------\n", + "2: epoch 994/1000: lr: [0.00013150000000000021]\n", + "1/0, train_loss: 0.6440\n", + "2 epoch 994 average loss: 0.6440\n", + "current epoch: 994 current mean dice: 0.3312\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 995/1000: lr: [0.00012700000000000027]\n", + "1/0, train_loss: 0.6397\n", + "2 epoch 995 average loss: 0.6397\n", + "----------\n", + "2: epoch 996/1000: lr: [0.00012250000000000032]\n", + "1/0, train_loss: 0.6357\n", + "2 epoch 996 average loss: 0.6357\n", + "current epoch: 996 current mean dice: 0.3312\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 997/1000: lr: [0.00011799999999999962]\n", + "1/0, train_loss: 0.6394\n", + "2 epoch 997 average loss: 0.6394\n", + "----------\n", + "2: epoch 998/1000: lr: [0.00011349999999999978]\n", + "1/0, train_loss: 0.6453\n", + "2 epoch 998 average loss: 0.6453\n", + "current epoch: 998 current mean dice: 0.3312\n", + "best mean dice: 0.3590 at epoch: 12\n", + "----------\n", + "2: epoch 999/1000: lr: [0.00010899999999999983]\n", + "1/0, train_loss: 0.6415\n", + "2 epoch 999 average loss: 0.6415\n", + "----------\n", + "2: epoch 1000/1000: lr: [0.00010449999999999999]\n", + "1/0, train_loss: 0.6382\n", + "2 epoch 1000 average loss: 0.6382\n", + "current epoch: 1000 current mean dice: 0.3312\n", + "best mean dice: 0.3590 at epoch: 12\n" + ] + } + ], + "source": [ + "vfold_train(2, train_loader[i], val_loader[i])\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "1fd1e392", + "metadata": {}, + "outputs": [], + "source": [ + "!mkdir results" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.7" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/Experiments/ARUNet-MiddleLines/ARUNet-3D-Middle-ExtrudedNS-VFold-Chris-Patches.ipynb b/Experiments/ARUNet-MiddleLines/ARUNet-3D-Middle-ExtrudedNS-VFold-Chris-Patches.ipynb new file mode 100644 index 0000000..3adebbf --- /dev/null +++ b/Experiments/ARUNet-MiddleLines/ARUNet-3D-Middle-ExtrudedNS-VFold-Chris-Patches.ipynb @@ -0,0 +1,39816 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "b86771c6", + "metadata": {}, + "outputs": [], + "source": [ + "import warnings \n", + "warnings.filterwarnings(\"ignore\")\n", + "\n", + "from monai.utils import first, set_determinism\n", + "from monai.transforms import (\n", + " AddChanneld,\n", + " AsDiscrete,\n", + " AsDiscreted,\n", + " Compose,\n", + " EnsureChannelFirstd,\n", + " EnsureTyped,\n", + " EnsureType,\n", + " Invertd,\n", + " LabelFilterd,\n", + " LoadImaged,\n", + " RandFlipd,\n", + " RandSpatialCropd,\n", + " RandZoomd,\n", + " Resized,\n", + " ScaleIntensityRanged,\n", + " SpatialCrop,\n", + " SpatialCropd,\n", + " ToTensord,\n", + ")\n", + "from monai.handlers.utils import from_engine\n", + "from monai.networks.nets import UNet\n", + "from monai.networks.layers import Norm\n", + "from monai.metrics import DiceMetric\n", + "from monai.losses import DiceLoss\n", + "from monai.inferers import sliding_window_inference\n", + "from monai.data import CacheDataset, DataLoader, Dataset, decollate_batch\n", + "from monai.config import print_config\n", + "from monai.apps import download_and_extract\n", + "import torch\n", + "import matplotlib.pyplot as plt\n", + "import tempfile\n", + "import shutil\n", + "import os\n", + "from glob import glob\n", + "\n", + "import numpy as np\n", + "\n", + "import itk\n", + "\n", + "import sys\n", + "\n", + "import site\n", + "site.addsitedir('../../ARGUS')\n", + "from ARGUSUtils_Transforms import *" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "id": "65a3539d", + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "torch.Size([4, 1, 160, 320, 32])\n", + "torch.Size([1, 160, 320, 32]) torch.Size([4, 1, 160, 320, 32])\n", + "3\n", + "Initial Shape torch.Size([4, 1, 160, 320, 32])\n", + "After embedding Shape torch.Size([4, 124, 22, 45, 32])\n", + "Shape after layer 0: torch.Size([4, 124, 22, 45, 32])\n", + "Shape after layer 1: torch.Size([4, 124, 22, 45, 32])\n", + "Shape after layer 2: torch.Size([4, 124, 22, 45, 32])\n", + "Shape after layer 3: torch.Size([4, 124, 22, 45, 32])\n", + "Shape after layer 4: torch.Size([4, 124, 22, 45, 32])\n", + "Shape after layer 5: torch.Size([4, 124, 22, 45, 32])\n", + "Shape after layer 6: torch.Size([4, 124, 22, 45, 32])\n", + "Shape after layer 7: torch.Size([4, 124, 22, 45, 32])\n", + "Shape after layer 8: torch.Size([4, 124, 22, 45, 32])\n", + "Shape after layer 9: torch.Size([4, 124, 22, 45, 32])\n", + "Shape after layer 10: torch.Size([4, 124, 22, 45, 32])\n", + "Shape after layer 11: torch.Size([4, 124, 22, 45, 32])\n", + "Shape after layer 12: torch.Size([4, 124, 22, 45, 32])\n", + "Shape after layer 13: torch.Size([4, 124, 22, 45, 32])\n", + "Shape after layer 14: torch.Size([4, 124, 22, 45, 32])\n", + "Shape after layer 15: torch.Size([4, 124, 22, 45, 32])\n", + "Shape after layer 16: torch.Size([4, 124, 22, 45, 32])\n", + "Shape after layer 17: torch.Size([4, 124, 22, 45, 32])\n", + "Shape after layer 18: torch.Size([4, 124, 22, 45, 32])\n", + "Shape after layer 19: torch.Size([4, 124, 22, 45, 32])\n", + "Output Shape torch.Size([4, 2, 160, 320, 32])\n" + ] + } + ], + "source": [ + "# Initial Convnet with just increasing\n", + "from monai.networks.layers import Conv\n", + "from monai.networks.blocks import Convolution, Upsample\n", + "\n", + "import torch.nn as nn\n", + "class Residual(nn.Module):\n", + " def __init__(self, fn):\n", + " super().__init__()\n", + " self.fn = fn\n", + "\n", + " def forward(self, x):\n", + " return self.fn(x) + x\n", + "\n", + "\n", + "class ConvMixer(nn.Module):\n", + " def __init__(\n", + " self, \n", + " hidden_dim, \n", + " depth, \n", + " img_size, \n", + " data_dims=3, \n", + " kernel_size=9, \n", + " patch_size=7, \n", + " n_classes=1000,\n", + " norm=False,\n", + " classification=False,\n", + " segmentation=True,\n", + " upsample_mode='deconv', # 'deconv' or 'pixelshuffle'\n", + " )->None:\n", + " \n", + " super().__init__()\n", + " \n", + " self.norm = norm\n", + " self.classification = classification\n", + " self.segmentation = segmentation\n", + " \n", + " dimensions = len(img_size)-1\n", + " print(dimensions)\n", + " self.patch_embedding = Convolution(\n", + " dimensions=dimensions,\n", + " in_channels=img_size[0], \n", + " out_channels=hidden_dim, \n", + " kernel_size=(patch_size,patch_size,1), \n", + " strides=(patch_size,patch_size,1),\n", + " act='GELU',\n", + " norm='BATCH',\n", + " padding='valid'\n", + " )\n", + " self.blocks = nn.ModuleList(\n", + " [\n", + " nn.Sequential(\n", + " Residual(\n", + " Convolution(\n", + " dimensions=dimensions,\n", + " in_channels=hidden_dim, \n", + " out_channels=hidden_dim, \n", + " kernel_size=(kernel_size,kernel_size,1), \n", + " strides=(1,1,1),\n", + " groups=hidden_dim,\n", + " act='GELU',\n", + " norm='BATCH',\n", + " padding='same'\n", + " )\n", + " ),\n", + " Convolution(\n", + " dimensions=dimensions,\n", + " in_channels=hidden_dim, \n", + " out_channels=hidden_dim, \n", + " kernel_size=(1,1,1), \n", + " strides=(1,1,1),\n", + " act='GELU',\n", + " norm='BATCH',\n", + " padding='same'\n", + " )\n", + " ) for i in range(depth)\n", + " ]\n", + " )\n", + " if self.norm:\n", + " self.norm = nn.AdaptiveAvgPool2d((1,1))\n", + " if self.classification:\n", + " self.classification_head = nn.Linear(dim, n_classes)\n", + " if self.segmentation:\n", + " # First upsample using either deconv or pixelshuffel then interpolate to exact same size\n", + " self.segmentation_head = nn.Sequential(\n", + " Upsample(\n", + " spatial_dims=dimensions,\n", + " in_channels=hidden_dim,\n", + " out_channels=n_classes,\n", + " scale_factor=[patch_size,patch_size,1],\n", + " mode=upsample_mode,\n", + " pre_conv=None\n", + " ),\n", + " Upsample(\n", + " spatial_dims=dimensions,\n", + " in_channels=n_classes,\n", + " out_channels=n_classes,\n", + " size=img_size[1:],\n", + " mode='nontrainable',\n", + " interp_mode='bilinear'\n", + " )\n", + " )\n", + " \n", + " \n", + " \n", + " \n", + " def forward(self, x):\n", + " print(f'Initial Shape {x.shape}')\n", + " x = self.patch_embedding(x)\n", + " print(f'After embedding Shape {x.shape}')\n", + " hidden_states_out = []\n", + " for i, blk in enumerate(self.blocks):\n", + " x = blk(x)\n", + " hidden_states_out.append(x)\n", + " print(f'Shape after layer {i}: {x.shape}')\n", + " if self.norm:\n", + " x = self.norm(x)\n", + " if self.classification:\n", + " x = self.classification_head(x)\n", + " if self.segmentation:\n", + " x = self.segmentation_head(x)\n", + " \n", + " print(f'Output Shape {x.shape}')\n", + " return x, hidden_states_out\n", + "\n", + "num_classes = 2\n", + "image_shape = torch.Size([1, 160, 320, 32])#, label shape: torch.Size([160, 320, 32]) \n", + "print(check_data['image'].shape)\n", + "print(image_shape, check_data['image'].shape)\n", + "patches = ConvMixer(\n", + " hidden_dim=124, \n", + " depth=20, \n", + " data_dims=1, \n", + " img_size=image_shape,\n", + " n_classes=2)\n", + "\n", + "patches\n", + "\n", + "patches_out, patches_hidden_states = patches(check_data['image'])" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "id": "bbfb4406", + "metadata": { + "scrolled": false + }, + "outputs": [], + "source": [ + "# check_data['label'].shape\n", + "layer = patches.blocks[0][0].fn" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "id": "e92cae2d", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "torch.nn.modules.conv.Conv3d" + ] + }, + "execution_count": 74, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "layer.conv.__class__" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "id": "7b147efd", + "metadata": {}, + "outputs": [], + "source": [ + "from monai.networks.blocks.dynunet_block import UnetOutBlock\n", + "from monai.networks.blocks.unetr_block import UnetrBasicBlock, UnetrPrUpBlock, UnetrUpBlock\n", + "from monai.networks.nets.vit import ViT\n", + "from monai.utils import ensure_tuple_rep\n", + "\n", + "class ConvMixerPlusPlus(nn.Module):\n", + " \"\"\"\n", + " \"\"\"\n", + "\n", + " def __init__(\n", + " self,\n", + " in_channels: int,\n", + " out_channels: int,\n", + " img_size: Union[Sequence[int], int],\n", + " feature_size: int = 16,\n", + " hidden_size: int = 768,\n", + " mlp_dim: int = 3072,\n", + " num_heads: int = 12,\n", + " pos_embed: str = \"conv\",\n", + " norm_name: Union[Tuple, str] = \"instance\",\n", + " conv_block: bool = True,\n", + " res_block: bool = True,\n", + " dropout_rate: float = 0.0,\n", + " spatial_dims: int = 3,\n", + " ) -> None:\n", + " \"\"\"\n", + " Not updated!!!\n", + " Args:\n", + " in_channels: dimension of input channels.\n", + " out_channels: dimension of output channels.\n", + " img_size: dimension of input image.\n", + " feature_size: dimension of network feature size.\n", + " hidden_size: dimension of hidden layer.\n", + " mlp_dim: dimension of feedforward layer.\n", + " num_heads: number of attention heads.\n", + " pos_embed: position embedding layer type.\n", + " norm_name: feature normalization type and arguments.\n", + " conv_block: bool argument to determine if convolutional block is used.\n", + " res_block: bool argument to determine if residual block is used.\n", + " dropout_rate: faction of the input units to drop.\n", + " spatial_dims: number of spatial dims.\n", + "\n", + " Examples::\n", + "\n", + " # for single channel input 4-channel output with image size of (96,96,96), feature size of 32 and batch norm\n", + " >>> net = UNETR(in_channels=1, out_channels=4, img_size=(96,96,96), feature_size=32, norm_name='batch')\n", + "\n", + " # for single channel input 4-channel output with image size of (96,96), feature size of 32 and batch norm\n", + " >>> net = UNETR(in_channels=1, out_channels=4, img_size=96, feature_size=32, norm_name='batch', spatial_dims=2)\n", + "\n", + " # for 4-channel input 3-channel output with image size of (128,128,128), conv position embedding and instance norm\n", + " >>> net = UNETR(in_channels=4, out_channels=3, img_size=(128,128,128), pos_embed='conv', norm_name='instance')\n", + "\n", + " \"\"\"\n", + "\n", + " super().__init__()\n", + "\n", + " if not (0 <= dropout_rate <= 1):\n", + " raise ValueError(\"dropout_rate should be between 0 and 1.\")\n", + "\n", + " if hidden_size % num_heads != 0:\n", + " raise ValueError(\"hidden_size should be divisible by num_heads.\")\n", + "\n", + " self.num_layers = 12\n", + " img_size = ensure_tuple_rep(img_size, spatial_dims)\n", + " self.patch_size = ensure_tuple_rep(16, spatial_dims)\n", + " self.feat_size = tuple(img_d // p_d for img_d, p_d in zip(img_size, self.patch_size))\n", + " self.hidden_size = hidden_size\n", + " self.classification = False\n", + " self.vit = ViT(\n", + " in_channels=in_channels,\n", + " img_size=img_size,\n", + " patch_size=self.patch_size,\n", + " hidden_size=hidden_size,\n", + " mlp_dim=mlp_dim,\n", + " num_layers=self.num_layers,\n", + " num_heads=num_heads,\n", + " pos_embed=pos_embed,\n", + " classification=self.classification,\n", + " dropout_rate=dropout_rate,\n", + " spatial_dims=spatial_dims,\n", + " )\n", + " self.encoder1 = UnetrBasicBlock(\n", + " spatial_dims=spatial_dims,\n", + " in_channels=in_channels,\n", + " out_channels=feature_size,\n", + " kernel_size=3,\n", + " stride=1,\n", + " norm_name=norm_name,\n", + " res_block=res_block,\n", + " )\n", + " self.encoder2 = UnetrPrUpBlock(\n", + " spatial_dims=spatial_dims,\n", + " in_channels=hidden_size,\n", + " out_channels=feature_size * 2,\n", + " num_layer=2,\n", + " kernel_size=3,\n", + " stride=1,\n", + " upsample_kernel_size=2,\n", + " norm_name=norm_name,\n", + " conv_block=conv_block,\n", + " res_block=res_block,\n", + " )\n", + " self.encoder3 = UnetrPrUpBlock(\n", + " spatial_dims=spatial_dims,\n", + " in_channels=hidden_size,\n", + " out_channels=feature_size * 4,\n", + " num_layer=1,\n", + " kernel_size=3,\n", + " stride=1,\n", + " upsample_kernel_size=2,\n", + " norm_name=norm_name,\n", + " conv_block=conv_block,\n", + " res_block=res_block,\n", + " )\n", + " self.encoder4 = UnetrPrUpBlock(\n", + " spatial_dims=spatial_dims,\n", + " in_channels=hidden_size,\n", + " out_channels=feature_size * 8,\n", + " num_layer=0,\n", + " kernel_size=3,\n", + " stride=1,\n", + " upsample_kernel_size=2,\n", + " norm_name=norm_name,\n", + " conv_block=conv_block,\n", + " res_block=res_block,\n", + " )\n", + " self.decoder5 = UnetrUpBlock(\n", + " spatial_dims=spatial_dims,\n", + " in_channels=hidden_size,\n", + " out_channels=feature_size * 8,\n", + " kernel_size=3,\n", + " upsample_kernel_size=2,\n", + " norm_name=norm_name,\n", + " res_block=res_block,\n", + " )\n", + " self.decoder4 = UnetrUpBlock(\n", + " spatial_dims=spatial_dims,\n", + " in_channels=feature_size * 8,\n", + " out_channels=feature_size * 4,\n", + " kernel_size=3,\n", + " upsample_kernel_size=2,\n", + " norm_name=norm_name,\n", + " res_block=res_block,\n", + " )\n", + " self.decoder3 = UnetrUpBlock(\n", + " spatial_dims=spatial_dims,\n", + " in_channels=feature_size * 4,\n", + " out_channels=feature_size * 2,\n", + " kernel_size=3,\n", + " upsample_kernel_size=2,\n", + " norm_name=norm_name,\n", + " res_block=res_block,\n", + " )\n", + " self.decoder2 = UnetrUpBlock(\n", + " spatial_dims=spatial_dims,\n", + " in_channels=feature_size * 2,\n", + " out_channels=feature_size,\n", + " kernel_size=3,\n", + " upsample_kernel_size=2,\n", + " norm_name=norm_name,\n", + " res_block=res_block,\n", + " )\n", + " self.out = UnetOutBlock(spatial_dims=spatial_dims, in_channels=feature_size, out_channels=out_channels)\n", + "\n", + "\n", + " def proj_feat(self, x, hidden_size, feat_size):\n", + " new_view = (x.size(0), *feat_size, hidden_size)\n", + " x = x.view(new_view)\n", + " new_axes = (0, len(x.shape) - 1) + tuple(d + 1 for d in range(len(feat_size)))\n", + " x = x.permute(new_axes).contiguous()\n", + " return x\n", + "\n", + " def forward(self, x_in):\n", + " x, hidden_states_out = self.vit(x_in)\n", + " enc1 = self.encoder1(x_in)\n", + " x2 = hidden_states_out[3]\n", + " enc2 = self.encoder2(self.proj_feat(x2, self.hidden_size, self.feat_size))\n", + " x3 = hidden_states_out[6]\n", + " enc3 = self.encoder3(self.proj_feat(x3, self.hidden_size, self.feat_size))\n", + " x4 = hidden_states_out[9]\n", + " enc4 = self.encoder4(self.proj_feat(x4, self.hidden_size, self.feat_size))\n", + " dec4 = self.proj_feat(x, self.hidden_size, self.feat_size)\n", + " dec3 = self.decoder5(dec4, enc4)\n", + " dec2 = self.decoder4(dec3, enc3)\n", + " dec1 = self.decoder3(dec2, enc2)\n", + " out = self.decoder2(dec1, enc1)\n", + " return self.out(out)\n", + " \n", + "CMPP = ConvMixerPlusPlus(1, num_classes, image_shape, )\n", + "vit_out, vit_hidden_states = CMPP.vit(check_data['image'])\n", + "# CMPP(check_data['image'])" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "8415b432", + "metadata": {}, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'vit_hidden_states' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m/tmp/ipykernel_417918/1379783736.py\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32mfor\u001b[0m \u001b[0mx\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mvit_hidden_states\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mNameError\u001b[0m: name 'vit_hidden_states' is not defined" + ] + } + ], + "source": [ + "for x in vit_hidden_states:\n", + " print(x.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "8a997712", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "UNETR(\n", + " (vit): ViT(\n", + " (patch_embedding): PatchEmbeddingBlock(\n", + " (patch_embeddings): Conv3d(1, 768, kernel_size=(16, 16, 16), stride=(16, 16, 16))\n", + " (dropout): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (blocks): ModuleList(\n", + " (0): TransformerBlock(\n", + " (mlp): MLPBlock(\n", + " (linear1): Linear(in_features=768, out_features=3072, bias=True)\n", + " (linear2): Linear(in_features=3072, out_features=768, bias=True)\n", + " (fn): GELU()\n", + " (drop1): Dropout(p=0.0, inplace=False)\n", + " (drop2): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (norm1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n", + " (attn): SABlock(\n", + " (out_proj): Linear(in_features=768, out_features=768, bias=True)\n", + " (qkv): Linear(in_features=768, out_features=2304, bias=False)\n", + " (drop_output): Dropout(p=0.0, inplace=False)\n", + " (drop_weights): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (norm2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n", + " )\n", + " (1): TransformerBlock(\n", + " (mlp): MLPBlock(\n", + " (linear1): Linear(in_features=768, out_features=3072, bias=True)\n", + " (linear2): Linear(in_features=3072, out_features=768, bias=True)\n", + " (fn): GELU()\n", + " (drop1): Dropout(p=0.0, inplace=False)\n", + " (drop2): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (norm1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n", + " (attn): SABlock(\n", + " (out_proj): Linear(in_features=768, out_features=768, bias=True)\n", + " (qkv): Linear(in_features=768, out_features=2304, bias=False)\n", + " (drop_output): Dropout(p=0.0, inplace=False)\n", + " (drop_weights): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (norm2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n", + " )\n", + " (2): TransformerBlock(\n", + " (mlp): MLPBlock(\n", + " (linear1): Linear(in_features=768, out_features=3072, bias=True)\n", + " (linear2): Linear(in_features=3072, out_features=768, bias=True)\n", + " (fn): GELU()\n", + " (drop1): Dropout(p=0.0, inplace=False)\n", + " (drop2): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (norm1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n", + " (attn): SABlock(\n", + " (out_proj): Linear(in_features=768, out_features=768, bias=True)\n", + " (qkv): Linear(in_features=768, out_features=2304, bias=False)\n", + " (drop_output): Dropout(p=0.0, inplace=False)\n", + " (drop_weights): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (norm2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n", + " )\n", + " (3): TransformerBlock(\n", + " (mlp): MLPBlock(\n", + " (linear1): Linear(in_features=768, out_features=3072, bias=True)\n", + " (linear2): Linear(in_features=3072, out_features=768, bias=True)\n", + " (fn): GELU()\n", + " (drop1): Dropout(p=0.0, inplace=False)\n", + " (drop2): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (norm1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n", + " (attn): SABlock(\n", + " (out_proj): Linear(in_features=768, out_features=768, bias=True)\n", + " (qkv): Linear(in_features=768, out_features=2304, bias=False)\n", + " (drop_output): Dropout(p=0.0, inplace=False)\n", + " (drop_weights): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (norm2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n", + " )\n", + " (4): TransformerBlock(\n", + " (mlp): MLPBlock(\n", + " (linear1): Linear(in_features=768, out_features=3072, bias=True)\n", + " (linear2): Linear(in_features=3072, out_features=768, bias=True)\n", + " (fn): GELU()\n", + " (drop1): Dropout(p=0.0, inplace=False)\n", + " (drop2): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (norm1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n", + " (attn): SABlock(\n", + " (out_proj): Linear(in_features=768, out_features=768, bias=True)\n", + " (qkv): Linear(in_features=768, out_features=2304, bias=False)\n", + " (drop_output): Dropout(p=0.0, inplace=False)\n", + " (drop_weights): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (norm2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n", + " )\n", + " (5): TransformerBlock(\n", + " (mlp): MLPBlock(\n", + " (linear1): Linear(in_features=768, out_features=3072, bias=True)\n", + " (linear2): Linear(in_features=3072, out_features=768, bias=True)\n", + " (fn): GELU()\n", + " (drop1): Dropout(p=0.0, inplace=False)\n", + " (drop2): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (norm1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n", + " (attn): SABlock(\n", + " (out_proj): Linear(in_features=768, out_features=768, bias=True)\n", + " (qkv): Linear(in_features=768, out_features=2304, bias=False)\n", + " (drop_output): Dropout(p=0.0, inplace=False)\n", + " (drop_weights): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (norm2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n", + " )\n", + " (6): TransformerBlock(\n", + " (mlp): MLPBlock(\n", + " (linear1): Linear(in_features=768, out_features=3072, bias=True)\n", + " (linear2): Linear(in_features=3072, out_features=768, bias=True)\n", + " (fn): GELU()\n", + " (drop1): Dropout(p=0.0, inplace=False)\n", + " (drop2): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (norm1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n", + " (attn): SABlock(\n", + " (out_proj): Linear(in_features=768, out_features=768, bias=True)\n", + " (qkv): Linear(in_features=768, out_features=2304, bias=False)\n", + " (drop_output): Dropout(p=0.0, inplace=False)\n", + " (drop_weights): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (norm2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n", + " )\n", + " (7): TransformerBlock(\n", + " (mlp): MLPBlock(\n", + " (linear1): Linear(in_features=768, out_features=3072, bias=True)\n", + " (linear2): Linear(in_features=3072, out_features=768, bias=True)\n", + " (fn): GELU()\n", + " (drop1): Dropout(p=0.0, inplace=False)\n", + " (drop2): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (norm1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n", + " (attn): SABlock(\n", + " (out_proj): Linear(in_features=768, out_features=768, bias=True)\n", + " (qkv): Linear(in_features=768, out_features=2304, bias=False)\n", + " (drop_output): Dropout(p=0.0, inplace=False)\n", + " (drop_weights): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (norm2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n", + " )\n", + " (8): TransformerBlock(\n", + " (mlp): MLPBlock(\n", + " (linear1): Linear(in_features=768, out_features=3072, bias=True)\n", + " (linear2): Linear(in_features=3072, out_features=768, bias=True)\n", + " (fn): GELU()\n", + " (drop1): Dropout(p=0.0, inplace=False)\n", + " (drop2): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (norm1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n", + " (attn): SABlock(\n", + " (out_proj): Linear(in_features=768, out_features=768, bias=True)\n", + " (qkv): Linear(in_features=768, out_features=2304, bias=False)\n", + " (drop_output): Dropout(p=0.0, inplace=False)\n", + " (drop_weights): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (norm2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n", + " )\n", + " (9): TransformerBlock(\n", + " (mlp): MLPBlock(\n", + " (linear1): Linear(in_features=768, out_features=3072, bias=True)\n", + " (linear2): Linear(in_features=3072, out_features=768, bias=True)\n", + " (fn): GELU()\n", + " (drop1): Dropout(p=0.0, inplace=False)\n", + " (drop2): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (norm1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n", + " (attn): SABlock(\n", + " (out_proj): Linear(in_features=768, out_features=768, bias=True)\n", + " (qkv): Linear(in_features=768, out_features=2304, bias=False)\n", + " (drop_output): Dropout(p=0.0, inplace=False)\n", + " (drop_weights): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (norm2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n", + " )\n", + " (10): TransformerBlock(\n", + " (mlp): MLPBlock(\n", + " (linear1): Linear(in_features=768, out_features=3072, bias=True)\n", + " (linear2): Linear(in_features=3072, out_features=768, bias=True)\n", + " (fn): GELU()\n", + " (drop1): Dropout(p=0.0, inplace=False)\n", + " (drop2): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (norm1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n", + " (attn): SABlock(\n", + " (out_proj): Linear(in_features=768, out_features=768, bias=True)\n", + " (qkv): Linear(in_features=768, out_features=2304, bias=False)\n", + " (drop_output): Dropout(p=0.0, inplace=False)\n", + " (drop_weights): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (norm2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n", + " )\n", + " (11): TransformerBlock(\n", + " (mlp): MLPBlock(\n", + " (linear1): Linear(in_features=768, out_features=3072, bias=True)\n", + " (linear2): Linear(in_features=3072, out_features=768, bias=True)\n", + " (fn): GELU()\n", + " (drop1): Dropout(p=0.0, inplace=False)\n", + " (drop2): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (norm1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n", + " (attn): SABlock(\n", + " (out_proj): Linear(in_features=768, out_features=768, bias=True)\n", + " (qkv): Linear(in_features=768, out_features=2304, bias=False)\n", + " (drop_output): Dropout(p=0.0, inplace=False)\n", + " (drop_weights): Dropout(p=0.0, inplace=False)\n", + " )\n", + " (norm2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n", + " )\n", + " )\n", + " (norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n", + " )\n", + " (encoder1): UnetrBasicBlock(\n", + " (layer): UnetResBlock(\n", + " (conv1): Convolution(\n", + " (conv): Conv3d(1, 16, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)\n", + " )\n", + " (conv2): Convolution(\n", + " (conv): Conv3d(16, 16, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)\n", + " )\n", + " (conv3): Convolution(\n", + " (conv): Conv3d(1, 16, kernel_size=(1, 1, 1), stride=(1, 1, 1), bias=False)\n", + " )\n", + " (lrelu): LeakyReLU(negative_slope=0.01, inplace=True)\n", + " (norm1): InstanceNorm3d(16, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)\n", + " (norm2): InstanceNorm3d(16, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)\n", + " (norm3): InstanceNorm3d(16, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)\n", + " )\n", + " )\n", + " (encoder2): UnetrPrUpBlock(\n", + " (transp_conv_init): Convolution(\n", + " (conv): ConvTranspose3d(768, 32, kernel_size=(2, 2, 2), stride=(2, 2, 2), bias=False)\n", + " )\n", + " (blocks): ModuleList(\n", + " (0): Sequential(\n", + " (0): Convolution(\n", + " (conv): ConvTranspose3d(32, 32, kernel_size=(2, 2, 2), stride=(2, 2, 2), bias=False)\n", + " )\n", + " (1): UnetResBlock(\n", + " (conv1): Convolution(\n", + " (conv): Conv3d(32, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)\n", + " )\n", + " (conv2): Convolution(\n", + " (conv): Conv3d(32, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)\n", + " )\n", + " (conv3): Convolution(\n", + " (conv): Conv3d(32, 32, kernel_size=(1, 1, 1), stride=(1, 1, 1), bias=False)\n", + " )\n", + " (lrelu): LeakyReLU(negative_slope=0.01, inplace=True)\n", + " (norm1): InstanceNorm3d(32, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)\n", + " (norm2): InstanceNorm3d(32, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)\n", + " (norm3): InstanceNorm3d(32, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)\n", + " )\n", + " )\n", + " (1): Sequential(\n", + " (0): Convolution(\n", + " (conv): ConvTranspose3d(32, 32, kernel_size=(2, 2, 2), stride=(2, 2, 2), bias=False)\n", + " )\n", + " (1): UnetResBlock(\n", + " (conv1): Convolution(\n", + " (conv): Conv3d(32, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)\n", + " )\n", + " (conv2): Convolution(\n", + " (conv): Conv3d(32, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)\n", + " )\n", + " (conv3): Convolution(\n", + " (conv): Conv3d(32, 32, kernel_size=(1, 1, 1), stride=(1, 1, 1), bias=False)\n", + " )\n", + " (lrelu): LeakyReLU(negative_slope=0.01, inplace=True)\n", + " (norm1): InstanceNorm3d(32, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)\n", + " (norm2): InstanceNorm3d(32, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)\n", + " (norm3): InstanceNorm3d(32, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)\n", + " )\n", + " )\n", + " )\n", + " )\n", + " (encoder3): UnetrPrUpBlock(\n", + " (transp_conv_init): Convolution(\n", + " (conv): ConvTranspose3d(768, 64, kernel_size=(2, 2, 2), stride=(2, 2, 2), bias=False)\n", + " )\n", + " (blocks): ModuleList(\n", + " (0): Sequential(\n", + " (0): Convolution(\n", + " (conv): ConvTranspose3d(64, 64, kernel_size=(2, 2, 2), stride=(2, 2, 2), bias=False)\n", + " )\n", + " (1): UnetResBlock(\n", + " (conv1): Convolution(\n", + " (conv): Conv3d(64, 64, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)\n", + " )\n", + " (conv2): Convolution(\n", + " (conv): Conv3d(64, 64, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)\n", + " )\n", + " (conv3): Convolution(\n", + " (conv): Conv3d(64, 64, kernel_size=(1, 1, 1), stride=(1, 1, 1), bias=False)\n", + " )\n", + " (lrelu): LeakyReLU(negative_slope=0.01, inplace=True)\n", + " (norm1): InstanceNorm3d(64, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)\n", + " (norm2): InstanceNorm3d(64, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)\n", + " (norm3): InstanceNorm3d(64, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)\n", + " )\n", + " )\n", + " )\n", + " )\n", + " (encoder4): UnetrPrUpBlock(\n", + " (transp_conv_init): Convolution(\n", + " (conv): ConvTranspose3d(768, 128, kernel_size=(2, 2, 2), stride=(2, 2, 2), bias=False)\n", + " )\n", + " (blocks): ModuleList()\n", + " )\n", + " (decoder5): UnetrUpBlock(\n", + " (transp_conv): Convolution(\n", + " (conv): ConvTranspose3d(768, 128, kernel_size=(2, 2, 2), stride=(2, 2, 2), bias=False)\n", + " )\n", + " (conv_block): UnetResBlock(\n", + " (conv1): Convolution(\n", + " (conv): Conv3d(256, 128, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)\n", + " )\n", + " (conv2): Convolution(\n", + " (conv): Conv3d(128, 128, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)\n", + " )\n", + " (conv3): Convolution(\n", + " (conv): Conv3d(256, 128, kernel_size=(1, 1, 1), stride=(1, 1, 1), bias=False)\n", + " )\n", + " (lrelu): LeakyReLU(negative_slope=0.01, inplace=True)\n", + " (norm1): InstanceNorm3d(128, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)\n", + " (norm2): InstanceNorm3d(128, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)\n", + " (norm3): InstanceNorm3d(128, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)\n", + " )\n", + " )\n", + " (decoder4): UnetrUpBlock(\n", + " (transp_conv): Convolution(\n", + " (conv): ConvTranspose3d(128, 64, kernel_size=(2, 2, 2), stride=(2, 2, 2), bias=False)\n", + " )\n", + " (conv_block): UnetResBlock(\n", + " (conv1): Convolution(\n", + " (conv): Conv3d(128, 64, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)\n", + " )\n", + " (conv2): Convolution(\n", + " (conv): Conv3d(64, 64, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)\n", + " )\n", + " (conv3): Convolution(\n", + " (conv): Conv3d(128, 64, kernel_size=(1, 1, 1), stride=(1, 1, 1), bias=False)\n", + " )\n", + " (lrelu): LeakyReLU(negative_slope=0.01, inplace=True)\n", + " (norm1): InstanceNorm3d(64, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)\n", + " (norm2): InstanceNorm3d(64, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)\n", + " (norm3): InstanceNorm3d(64, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)\n", + " )\n", + " )\n", + " (decoder3): UnetrUpBlock(\n", + " (transp_conv): Convolution(\n", + " (conv): ConvTranspose3d(64, 32, kernel_size=(2, 2, 2), stride=(2, 2, 2), bias=False)\n", + " )\n", + " (conv_block): UnetResBlock(\n", + " (conv1): Convolution(\n", + " (conv): Conv3d(64, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)\n", + " )\n", + " (conv2): Convolution(\n", + " (conv): Conv3d(32, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)\n", + " )\n", + " (conv3): Convolution(\n", + " (conv): Conv3d(64, 32, kernel_size=(1, 1, 1), stride=(1, 1, 1), bias=False)\n", + " )\n", + " (lrelu): LeakyReLU(negative_slope=0.01, inplace=True)\n", + " (norm1): InstanceNorm3d(32, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)\n", + " (norm2): InstanceNorm3d(32, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)\n", + " (norm3): InstanceNorm3d(32, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)\n", + " )\n", + " )\n", + " (decoder2): UnetrUpBlock(\n", + " (transp_conv): Convolution(\n", + " (conv): ConvTranspose3d(32, 16, kernel_size=(2, 2, 2), stride=(2, 2, 2), bias=False)\n", + " )\n", + " (conv_block): UnetResBlock(\n", + " (conv1): Convolution(\n", + " (conv): Conv3d(32, 16, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)\n", + " )\n", + " (conv2): Convolution(\n", + " (conv): Conv3d(16, 16, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)\n", + " )\n", + " (conv3): Convolution(\n", + " (conv): Conv3d(32, 16, kernel_size=(1, 1, 1), stride=(1, 1, 1), bias=False)\n", + " )\n", + " (lrelu): LeakyReLU(negative_slope=0.01, inplace=True)\n", + " (norm1): InstanceNorm3d(16, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)\n", + " (norm2): InstanceNorm3d(16, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)\n", + " (norm3): InstanceNorm3d(16, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)\n", + " )\n", + " )\n", + " (out): UnetOutBlock(\n", + " (conv): Convolution(\n", + " (conv): Conv3d(16, 2, kernel_size=(1, 1, 1), stride=(1, 1, 1))\n", + " )\n", + " )\n", + ")" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from monai.networks.nets import UNETR\n", + "num_classes = 2\n", + "image_shape = torch.Size([160, 320, 32])#, label shape: torch.Size([160, 320, 32])\n", + "model = UNETR(1, \n", + " num_classes, \n", + " image_shape, \n", + " feature_size=16, \n", + " hidden_size=768, \n", + " mlp_dim=3072, \n", + " num_heads=12, \n", + " pos_embed='conv', \n", + " norm_name='instance', \n", + " conv_block=True, \n", + " res_block=True, \n", + " dropout_rate=0.0, \n", + " spatial_dims=3)\n", + "model" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "fefe0b75", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[01;34m/data/krsdata2-pocus-ai-synced/root/Data_PTX\u001b[00m\r\n", + "├── \u001b[01;34mClinical\u001b[00m\r\n", + "│   ├── \u001b[01;34m2021.06.03\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mImage001.jpg\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mImage002.jpg\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mImage003.jpg\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mImage004.jpg\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mImage005.jpg\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mImage006.jpg\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mImage007.jpg\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mImage008.jpg\u001b[00m\r\n", + "│   │   └── \u001b[01;32mImage009.jpg\u001b[00m\r\n", + "│   ├── \u001b[01;34m2021.06.08\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m10.12.32 hrs __[0003758].mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m10.47.35 hrs __[0002954].mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m10.48.18 hrs __[0002956].mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mLung point.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mpneumothorax.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mPTX 2.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mPTX 3.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mPTX 4.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mPTX 5.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mPTX.mp4\u001b[00m\r\n", + "│   │   └── \u001b[01;34mSonoExport\u001b[00m\r\n", + "│   │   ├── \u001b[01;34m(_No_Name_)__K76374__[0000082510171491420000205]\u001b[00m\r\n", + "│   │   │   └── \u001b[01;34m2017Jun17 Study__[0000428]\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32m11.40.52 hrs __[0002135].jpg\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32m11.41.38 hrs __[0002136].mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32m11.42.00 hrs __[0002137].mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32m11.42.12 hrs __[0002138].mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32m11.42.37 hrs __[0002139].mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32m11.42.46 hrs __[0002140].mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32m11.43.18 hrs __[0002141].mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32m11.44.36 hrs __[0002142].mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32m11.44.56 hrs __[0002143].mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32m11.45.27 hrs __[0002144].mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mC0002135.XML\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mC0002136.XML\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mC0002137.XML\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mC0002138.XML\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mC0002139.XML\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mC0002140.XML\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mC0002141.XML\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mC0002142.XML\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mC0002143.XML\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mC0002144.XML\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mPT_PPS.XML\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mPT_REPORT.HTML\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mREPORT.XML\u001b[00m\r\n", + "│   │   │   └── \u001b[01;32msonologo.gif\u001b[00m\r\n", + "│   │   └── \u001b[01;34m(_No_Name_)__(_No_ID_)__[0000082510171491420000000]\u001b[00m\r\n", + "│   │   └── \u001b[01;34m2017Jun02 Study__[0000374]\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m13.15.08 hrs __[0001934].mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m13.15.43 hrs __[0001935].jpg\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m13.16.11 hrs __[0001936].mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m13.16.36 hrs __[0001937].jpg\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mC0001934.XML\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mC0001935.XML\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mC0001936.XML\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mC0001937.XML\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mPT_PPS.XML\u001b[00m\r\n", + "│   │   └── \u001b[01;32mREPORT.XML\u001b[00m\r\n", + "│   ├── \u001b[01;34mBackup\u001b[00m\r\n", + "│   └── \u001b[01;32mREADME.txt\u001b[00m\r\n", + "├── \u001b[01;34mDARPA\u001b[00m\r\n", + "│   ├── \u001b[01;34mBAMC\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mPrivateInfo.txt\u001b[00m\r\n", + "│   │   └── \u001b[01;34mPTX\u001b[00m\r\n", + "│   │   └── \u001b[01;34m2021.08.12\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210811 - POCUS AI Phase 1 Training Data - Annotated Sheets.xlsx\u001b[00m\r\n", + "│   │   ├── \u001b[01;32miter_videos.sh\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mNoSliding.csv\u001b[00m\r\n", + "│   │   ├── \u001b[01;34mOriginalFromBox\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mPTX No Sliding.zip\u001b[00m\r\n", + "│   │   │   └── \u001b[01;32mPTX Sliding.zip\u001b[00m\r\n", + "│   │   ├── \u001b[01;34mPTXNoSliding\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4\u001b[00m\r\n", + "│   │   │   └── \u001b[01;34mMHA\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00002-f00012.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00003-f00019.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00005-f00034.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00006-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00007-f00052.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00008-f00056.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00002-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00003-f00019.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00005-f00033.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00006-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00007-f00051.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00008-f00054.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00009-f00059.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00001-f00013.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00002-f00017.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00003-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00004-f00033.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00005-f00041.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00006-f00048.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00007-f00052.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00008-f00055.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00001-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00002-f00017.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00003-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00004-f00028.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00005-f00032.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00006-f00036.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00007-f00041.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00008-f00059.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00001-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00002-f00015.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00003-f00018.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00005-f00037.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00006-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00007-f00053.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00008-f00055.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00009-f00057.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00002-f00015.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00003-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00004-f00033.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00005-f00036.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00006-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00007-f00056.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00008-f00059.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00001-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00002-f00011.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00003-f00015.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00004-f00019.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00005-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00006-f00048.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00007-f00053.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00008-f00058.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00001-f00007.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00002-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00003-f00019.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00005-f00031.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00006-f00034.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00007-f00037.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00008-f00039.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00009-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00002-f00007.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00003-f00013.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00005-f00028.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00006-f00033.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00008-f00050.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00009-f00055.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00001-f00003.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00002-f00005.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00003-f00007.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00004-f00017.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00005-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00006-f00030.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00007-f00034.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00008-f00039.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00009-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00001-f00004.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00002-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00003-f00011.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00004-f00017.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00005-f00024.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00006-f00045.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00007-f00048.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00008-f00056.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00009-f00063.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00002-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00003-f00030.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00004-f00033.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00005-f00036.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00006-f00039.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00008-f00049.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00001-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00002-f00017.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00003-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00004-f00030.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00005-f00034.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00006-f00039.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00008-f00052.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00009-f00058.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00001-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00002-f00016.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00003-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00004-f00030.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00005-f00034.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00006-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00007-f00049.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00008-f00054.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00009-f00058.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00001-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00002-f00019.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00003-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00004-f00031.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00005-f00034.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00006-f00038.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00007-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00008-f00048.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00009-f00058.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00001-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00002-f00011.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00003-f00014.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00004-f00019.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00005-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00006-f00028.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00007-f00032.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00008-f00034.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00009-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00002-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00003-f00017.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00005-f00026.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00006-f00033.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00008-f00057.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00001-f00004.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00002-f00007.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00003-f00011.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00004-f00014.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00005-f00019.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00006-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00007-f00033.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00008-f00037.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00009-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00002-f00014.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00003-f00019.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00005-f00035.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00006-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00007-f00050.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00008-f00056.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00002-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00003-f00012.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00005-f00033.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00006-f00037.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00008-f00056.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00009-f00059.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00002-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00003-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00004-f00014.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00005-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00006-f00035.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00007-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00001-f00004.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00002-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00003-f00007.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00004-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00005-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00006-f00012.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00007-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00008-f00037.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00009-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00001-f00005.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00002-f00007.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00003-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00004-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00005-f00017.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00006-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00007-f00034.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00008-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00009-f00054.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00001-f00007.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00002-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00003-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00004-f00034.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00005-f00039.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00006-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00007-f00053.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00008-f00059.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00001-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00002-f00016.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00003-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00004-f00036.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00005-f00039.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00006-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00007-f00051.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00008-f00054.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00009-f00057.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00002-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00003-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00004-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00005-f00013.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00006-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00007-f00037.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00008-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00001-f00007.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00002-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00003-f00012.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00005-f00029.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00006-f00034.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00007-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00008-f00054.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00009-f00059.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00002-f00007.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00003-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00004-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00005-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00006-f00017.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00007-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00008-f00042.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00001-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00002-f00015.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00003-f00019.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00005-f00035.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00006-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00007-f00052.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00008-f00058.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00002-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00003-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00004-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00005-f00019.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00006-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00007-f00042.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00008-f00050.mha\u001b[00m\r\n", + "│   │   │   └── \u001b[01;32mimage_642169070951_clean.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;34mPTXSliding\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32m210811 - POCUS AI Phase 1 Training Data.xlsx\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3925135436261_clean.mov\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3929217595322_clean.mov\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4\u001b[00m\r\n", + "│   │   │   └── \u001b[01;34mMHA\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00001-f00007.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00002-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00003-f00032.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00004-f00038.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00005-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00006-f00050.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00007-f00054.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00008-f00058.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00002-f00016.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00003-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00004-f00031.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00005-f00036.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00006-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00007-f00049.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00008-f00054.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00009-f00059.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00002-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00003-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00004-f00017.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00005-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00006-f00051.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00007-f00056.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00008-f00059.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00002-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00003-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00004-f00014.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00005-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00006-f00037.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00007-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00008-f00054.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00002-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00003-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00004-f00016.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00005-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00006-f00035.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00007-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00008-f00054.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00001-f00011.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00002-f00016.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00003-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00004-f00048.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00005-f00052.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00006-f00055.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00007-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00002-f00014.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00003-f00019.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00005-f00037.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00006-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00007-f00058.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00008-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00001-f00012.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00002-f00018.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00003-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00004-f00031.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00005-f00034.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00006-f00037.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00007-f00041.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00008-f00051.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00009-f00056.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00002-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00003-f00018.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00005-f00031.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00006-f00036.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00008-f00048.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00009-f00054.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00001-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00002-f00012.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00003-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00004-f00030.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00005-f00034.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00006-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00007-f00050.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00008-f00054.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00009-f00057.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00001-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00002-f00011.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00003-f00014.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00004-f00017.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00005-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00006-f00047.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00007-f00053.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00008-f00056.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00001-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00002-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00003-f00013.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00004-f00017.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00005-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00006-f00035.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00007-f00038.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00008-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mp4-00001-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mp4-00002-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mp4-00003-f00012.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mp4-00004-f00014.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mp4-00005-f00016.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mp4-00006-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00001-f00007.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00002-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00003-f00013.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00004-f00017.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00005-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00006-f00045.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00007-f00050.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00008-f00055.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00009-f00059.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00001-f00007.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00002-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00003-f00013.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00005-f00030.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00006-f00032.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00007-f00036.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00008-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00001-f00004.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00002-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00003-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00004-f00015.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00005-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00006-f00039.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00008-f00053.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00009-f00058.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00002-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00003-f00012.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00004-f00015.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00005-f00017.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00006-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00007-f00050.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00008-f00059.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00002-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00003-f00013.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00004-f00017.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00005-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00006-f00043.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00007-f00051.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00008-f00058.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00002-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00003-f00014.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00004-f00017.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00005-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00006-f00030.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00007-f00034.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00008-f00038.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00009-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00001-f00005.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00002-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00003-f00007.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00004-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00005-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00006-f00012.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00007-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00008-f00041.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00009-f00058.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00001-f00005.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00002-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00003-f00007.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00004-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00005-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00006-f00011.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00007-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00008-f00041.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00009-f00056.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00001-f00013.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00002-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00003-f00038.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00004-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00005-f00050.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00006-f00052.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00007-f00055.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00008-f00059.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00002-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00003-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00004-f00011.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00005-f00013.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00006-f00015.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00007-f00018.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00008-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00009-f00042.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00002-f00012.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00003-f00019.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00005-f00038.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00006-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00007-f00049.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00008-f00052.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00009-f00058.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00002-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00003-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00005-f00027.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00006-f00029.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00007-f00031.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00008-f00034.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00009-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00002-f00014.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00003-f00019.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00005-f00034.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00006-f00039.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00008-f00051.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00001-f00007.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00002-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00003-f00013.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00004-f00017.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00005-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00006-f00045.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00007-f00047.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00008-f00049.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00009-f00054.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00001-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00002-f00018.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00003-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00004-f00034.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00005-f00038.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00006-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00007-f00055.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00008-f00058.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00002-f00012.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00003-f00018.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00005-f00030.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00006-f00034.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00008-f00059.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00002-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00003-f00017.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00005-f00031.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00006-f00036.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00008-f00058.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00002-f00012.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00003-f00018.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00005-f00029.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00006-f00035.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00008-f00052.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00001-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00002-f00014.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00003-f00019.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00005-f00029.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00006-f00035.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00007-f00039.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00008-f00040.mha\u001b[00m\r\n", + "│   │   │   └── \u001b[01;32mimage_74132233134844_clean.mp4-00009-f00054.mha\u001b[00m\r\n", + "│   │   └── \u001b[01;32mSliding.csv\u001b[00m\r\n", + "│   └── \u001b[01;32mREADME.txt\u001b[00m\r\n", + "├── \u001b[01;34mFinal15\u001b[00m\r\n", + "│   ├── \u001b[01;34mBAMC-PTXNoSliding\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov\u001b[00m\r\n", + "│   │   └── \u001b[01;34mDo_Not_Use\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov\u001b[00m\r\n", + "│   │   └── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov\u001b[00m\r\n", + "│   ├── \u001b[01;34mBAMC-PTXNoSliding-Annotations-Linear\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00002-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00002-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00002-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00002-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00003-f00030.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00003-f00030.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00003-f00030.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00003-f00030.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00004-f00033.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00004-f00033.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00004-f00033.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00004-f00033.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00005-f00036.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00005-f00036.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00005-f00036.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00005-f00036.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00006-f00039.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00006-f00039.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00006-f00039.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00006-f00039.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00007-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00008-f00049.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00008-f00049.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00008-f00049.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00008-f00049.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00002-f00012.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00002-f00012.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00002-f00012.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00002-f00012.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00003-f00019.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00003-f00019.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00003-f00019.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00003-f00019.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00005-f00034.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00005-f00034.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00005-f00034.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00005-f00034.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00006-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00006-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00007-f00052.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00007-f00052.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00007-f00052.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00007-f00052.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00008-f00056.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00008-f00056.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00008-f00056.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00008-f00056.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00001-f00005.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00001-f00005.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00002-f00008.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00002-f00008.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00002-f00008.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00002-f00008.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00003-f00012.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00003-f00012.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00003-f00012.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00003-f00012.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00005-f00033.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00005-f00033.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00005-f00033.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00005-f00033.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00006-f00037.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00006-f00037.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00006-f00037.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00006-f00037.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00007-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00008-f00056.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00008-f00056.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00008-f00056.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00008-f00056.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00009-f00059.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00009-f00059.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00009-f00059.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00009-f00059.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00001-f00013.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00001-f00013.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00001-f00013.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00001-f00013.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00002-f00017.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00002-f00017.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00002-f00017.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00002-f00017.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00003-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00003-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00004-f00033.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00004-f00033.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00004-f00033.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00004-f00033.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00005-f00041.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00005-f00041.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00005-f00041.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00005-f00041.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00006-f00048.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00006-f00048.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00006-f00048.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00006-f00048.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00007-f00052.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00007-f00052.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00007-f00052.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00007-f00052.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00008-f00055.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00008-f00055.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00008-f00055.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00008-f00055.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00001-f00005.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00001-f00005.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00002-f00015.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00002-f00015.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00002-f00015.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00002-f00015.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00003-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00003-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00004-f00033.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00004-f00033.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00004-f00033.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00004-f00033.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00005-f00036.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00005-f00036.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00005-f00036.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00005-f00036.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00006-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00006-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00007-f00056.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00007-f00056.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00007-f00056.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00007-f00056.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00008-f00059.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00008-f00059.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00008-f00059.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00008-f00059.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00001-f00009.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00001-f00009.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00001-f00009.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00001-f00009.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00002-f00016.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00002-f00016.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00002-f00016.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00002-f00016.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00003-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00003-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00004-f00030.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00004-f00030.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00004-f00030.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00004-f00030.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00005-f00034.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00005-f00034.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00005-f00034.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00005-f00034.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00006-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00006-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00007-f00049.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00007-f00049.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00007-f00049.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00007-f00049.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00008-f00054.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00008-f00054.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00008-f00054.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00008-f00054.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00001-f00004.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00001-f00004.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00001-f00004.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00001-f00004.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00002-f00007.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00002-f00007.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00002-f00007.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00002-f00007.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00003-f00011.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00003-f00011.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00003-f00011.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00003-f00011.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00004-f00014.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00004-f00014.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00004-f00014.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00004-f00014.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00005-f00019.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00005-f00019.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00005-f00019.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00005-f00019.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00006-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00006-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00006-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00006-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00007-f00033.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00007-f00033.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00007-f00033.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00007-f00033.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00008-f00037.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00008-f00037.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00008-f00037.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00008-f00037.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00009-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00009-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00009-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00009-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00001-f00003.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00001-f00003.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00001-f00003.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00001-f00003.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00002-f00005.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00002-f00005.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00002-f00005.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00002-f00005.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00003-f00007.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00003-f00007.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00003-f00007.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00003-f00007.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00004-f00017.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00004-f00017.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00004-f00017.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00004-f00017.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00005-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00005-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00005-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00006-f00030.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00006-f00030.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00006-f00030.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00006-f00030.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00007-f00034.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00007-f00034.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00007-f00034.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00007-f00034.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00008-f00039.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00008-f00039.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00008-f00039.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00008-f00039.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00009-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00009-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00009-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00009-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00001-f00005.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00001-f00005.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00002-f00007.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00002-f00007.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00002-f00007.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00002-f00007.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00003-f00008.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00003-f00008.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00003-f00008.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00003-f00008.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00004-f00009.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00004-f00009.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00004-f00009.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00004-f00009.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00005-f00010.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00005-f00010.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00005-f00010.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00005-f00010.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00006-f00017.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00006-f00017.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00006-f00017.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00006-f00017.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00007-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00007-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00007-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00007-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00008-f00042.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00008-f00042.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00008-f00042.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00008-f00042.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00001-f00007.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00001-f00007.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00001-f00007.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00001-f00007.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00002-f00010.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00002-f00010.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00002-f00010.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00002-f00010.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00003-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00003-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00004-f00034.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00004-f00034.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00004-f00034.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00004-f00034.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00005-f00039.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00005-f00039.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00005-f00039.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00005-f00039.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00006-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00006-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00007-f00053.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00007-f00053.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00007-f00053.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00007-f00053.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00008-f00059.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00008-f00059.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00008-f00059.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00008-f00059.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00009-f00060.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00001-f00006.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00002-f00008.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00002-f00008.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00002-f00008.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00002-f00008.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00003-f00010.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00003-f00010.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00003-f00010.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00003-f00010.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00004-f00014.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00004-f00014.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00004-f00014.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00004-f00014.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00005-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00005-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00005-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00006-f00035.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00006-f00035.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00006-f00035.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00006-f00035.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00007-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00007-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00001-f00009.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00001-f00009.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00001-f00009.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00001-f00009.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00002-f00016.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00002-f00016.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00002-f00016.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00002-f00016.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00003-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00003-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00004-f00036.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00004-f00036.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00004-f00036.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00004-f00036.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00005-f00039.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00005-f00039.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00005-f00039.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00005-f00039.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00006-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00006-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00007-f00051.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00007-f00051.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00007-f00051.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00007-f00051.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00008-f00054.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00008-f00054.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00008-f00054.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00008-f00054.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00009-f00057.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00009-f00057.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00009-f00057.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00009-f00057.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00001-f00010.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00001-f00010.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00001-f00010.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00001-f00010.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00002-f00015.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00002-f00015.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00002-f00015.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00002-f00015.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00003-f00019.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00003-f00019.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00003-f00019.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00003-f00019.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00004-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00005-f00035.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00005-f00035.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00005-f00035.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00005-f00035.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00006-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00006-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00007-f00052.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00007-f00052.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00007-f00052.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00007-f00052.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00008-f00058.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00008-f00058.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00008-f00058.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00008-f00058.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00009-f00060.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00001-f00008.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00001-f00008.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00001-f00008.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00001-f00008.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00002-f00011.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00002-f00011.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00002-f00011.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00002-f00011.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00003-f00015.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00003-f00015.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00003-f00015.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00003-f00015.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00004-f00019.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00004-f00019.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00004-f00019.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00004-f00019.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00005-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00005-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00005-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00006-f00048.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00006-f00048.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00006-f00048.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00006-f00048.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00007-f00053.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00007-f00053.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00007-f00053.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00007-f00053.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00008-f00058.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00008-f00058.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00008-f00058.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00008-f00058.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00009-f00060.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00001-f00010.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00001-f00010.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00001-f00010.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00001-f00010.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00002-f00019.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00002-f00019.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00002-f00019.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00002-f00019.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00003-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00003-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00004-f00031.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00004-f00031.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00004-f00031.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00004-f00031.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00005-f00034.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00005-f00034.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00005-f00034.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00005-f00034.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00006-f00038.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00006-f00038.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00006-f00038.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00006-f00038.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00007-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00007-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00008-f00048.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00008-f00048.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00008-f00048.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00008-f00048.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00009-f00058.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00009-f00058.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00009-f00058.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00009-f00058.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.nii.gz\u001b[00m\r\n", + "│   │   └── \u001b[01;34mDo_Not_Use\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.mp4-00001-f00004.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.mp4-00001-f00004.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.mp4-00002-f00006.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.mp4-00002-f00006.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.mp4-00003-f00011.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.mp4-00003-f00011.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.mp4-00004-f00017.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.mp4-00004-f00017.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.mp4-00005-f00024.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.mp4-00005-f00024.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.mp4-00006-f00045.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.mp4-00006-f00045.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.mp4-00007-f00048.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.mp4-00007-f00048.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.mp4-00008-f00056.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.mp4-00008-f00056.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.mp4-00009-f00063.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.mp4-00009-f00063.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00001-f00005.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00001-f00005.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00002-f00009.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00002-f00009.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00002-f00009.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00002-f00009.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00003-f00019.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00003-f00019.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00003-f00019.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00003-f00019.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00005-f00033.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00005-f00033.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00005-f00033.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00005-f00033.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00006-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00006-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00007-f00051.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00007-f00051.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00007-f00051.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00007-f00051.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00008-f00054.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00008-f00054.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00008-f00054.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00008-f00054.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00009-f00059.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00009-f00059.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00009-f00059.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00009-f00059.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00002-f00014.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00002-f00014.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00002-f00014.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00002-f00014.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00003-f00019.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00003-f00019.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00003-f00019.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00003-f00019.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00005-f00035.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00005-f00035.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00005-f00035.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00005-f00035.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00006-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00006-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00007-f00050.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00007-f00050.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00007-f00050.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00007-f00050.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00008-f00056.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00008-f00056.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00008-f00056.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00008-f00056.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00001-f00010.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00001-f00010.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00001-f00010.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00001-f00010.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00002-f00017.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00002-f00017.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00002-f00017.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00002-f00017.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00003-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00003-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00004-f00028.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00004-f00028.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00004-f00028.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00004-f00028.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00005-f00032.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00005-f00032.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00005-f00032.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00005-f00032.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00006-f00036.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00006-f00036.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00006-f00036.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00006-f00036.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00007-f00041.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00007-f00041.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00007-f00041.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00007-f00041.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00008-f00059.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00008-f00059.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00008-f00059.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00008-f00059.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00001-f00009.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00001-f00009.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00001-f00009.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00001-f00009.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00002-f00015.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00002-f00015.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00002-f00015.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00002-f00015.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00003-f00018.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00003-f00018.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00003-f00018.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00003-f00018.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00005-f00037.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00005-f00037.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00005-f00037.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00005-f00037.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00006-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00006-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00007-f00053.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00007-f00053.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00007-f00053.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00007-f00053.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00008-f00055.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00008-f00055.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00008-f00055.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00008-f00055.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00009-f00057.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00009-f00057.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00009-f00057.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00009-f00057.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00001-f00009.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00001-f00009.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00001-f00009.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00001-f00009.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00002-f00017.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00002-f00017.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00002-f00017.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00002-f00017.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00003-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00003-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00004-f00030.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00004-f00030.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00004-f00030.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00004-f00030.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00005-f00034.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00005-f00034.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00005-f00034.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00005-f00034.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00006-f00039.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00006-f00039.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00006-f00039.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00006-f00039.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00007-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00008-f00052.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00008-f00052.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00008-f00052.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00008-f00052.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00009-f00058.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00009-f00058.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00009-f00058.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00009-f00058.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00001-f00005.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00001-f00005.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00002-f00010.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00002-f00010.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00002-f00010.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00002-f00010.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00003-f00017.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00003-f00017.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00003-f00017.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00003-f00017.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00005-f00026.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00005-f00026.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00005-f00026.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00005-f00026.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00006-f00033.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00006-f00033.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00006-f00033.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00006-f00033.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00007-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00008-f00057.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00008-f00057.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00008-f00057.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00008-f00057.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00001-f00005.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00001-f00005.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00002-f00007.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00002-f00007.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00002-f00007.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00002-f00007.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00003-f00013.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00003-f00013.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00003-f00013.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00003-f00013.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00005-f00028.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00005-f00028.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00005-f00028.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00005-f00028.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00006-f00033.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00006-f00033.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00006-f00033.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00006-f00033.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00007-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00008-f00050.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00008-f00050.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00008-f00050.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00008-f00050.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00009-f00055.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00009-f00055.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00009-f00055.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00009-f00055.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00002-f00008.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00002-f00008.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00002-f00008.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00002-f00008.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00003-f00009.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00003-f00009.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00003-f00009.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00003-f00009.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00004-f00010.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00004-f00010.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00004-f00010.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00004-f00010.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00005-f00019.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00005-f00019.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00005-f00019.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00005-f00019.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00006-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00006-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00006-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00006-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00007-f00042.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00007-f00042.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00007-f00042.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00007-f00042.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00008-f00050.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00008-f00050.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00008-f00050.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00008-f00050.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00001-f00007.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00001-f00007.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00001-f00007.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00001-f00007.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00002-f00009.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00002-f00009.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00002-f00009.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00002-f00009.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00003-f00012.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00003-f00012.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00003-f00012.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00003-f00012.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00004-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00005-f00029.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00005-f00029.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00005-f00029.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00005-f00029.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00006-f00034.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00006-f00034.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00006-f00034.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00006-f00034.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00007-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00007-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00008-f00054.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00008-f00054.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00008-f00054.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00008-f00054.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00009-f00059.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00009-f00059.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00009-f00059.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00009-f00059.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00001-f00006.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00002-f00008.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00002-f00008.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00002-f00008.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00002-f00008.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00003-f00009.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00003-f00009.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00003-f00009.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00003-f00009.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00004-f00010.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00004-f00010.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00004-f00010.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00004-f00010.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00005-f00013.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00005-f00013.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00005-f00013.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00005-f00013.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00006-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00006-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00006-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00006-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00007-f00037.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00007-f00037.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00007-f00037.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00007-f00037.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00008-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00008-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00008-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00008-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00001-f00007.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00001-f00007.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00001-f00007.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00001-f00007.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00002-f00009.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00002-f00009.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00002-f00009.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00002-f00009.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00003-f00019.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00003-f00019.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00003-f00019.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00003-f00019.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00004-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00005-f00031.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00005-f00031.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00005-f00031.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00005-f00031.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00006-f00034.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00006-f00034.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00006-f00034.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00006-f00034.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00007-f00037.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00007-f00037.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00007-f00037.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00007-f00037.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00008-f00039.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00008-f00039.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00008-f00039.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00008-f00039.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00009-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00009-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00009-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00009-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00001-f00004.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00001-f00004.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00001-f00004.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00001-f00004.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00002-f00006.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00002-f00006.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00002-f00006.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00002-f00006.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00003-f00007.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00003-f00007.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00003-f00007.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00003-f00007.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00004-f00008.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00004-f00008.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00004-f00008.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00004-f00008.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00005-f00009.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00005-f00009.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00005-f00009.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00005-f00009.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00006-f00012.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00006-f00012.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00006-f00012.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00006-f00012.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00007-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00007-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00007-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00007-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00008-f00037.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00008-f00037.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00008-f00037.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00008-f00037.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00009-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00009-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00009-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00009-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00001-f00005.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00001-f00005.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00001-f00005.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00002-f00007.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00002-f00007.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00002-f00007.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00002-f00007.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00003-f00008.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00003-f00008.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00003-f00008.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00003-f00008.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00004-f00010.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00004-f00010.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00004-f00010.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00004-f00010.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00005-f00017.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00005-f00017.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00005-f00017.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00005-f00017.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00006-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00006-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00006-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00006-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00007-f00034.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00007-f00034.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00007-f00034.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00007-f00034.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00008-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00008-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00008-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00008-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00009-f00054.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00009-f00054.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00009-f00054.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00009-f00054.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00001-f00008.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00001-f00008.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00001-f00008.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00001-f00008.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00002-f00011.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00002-f00011.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00002-f00011.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00002-f00011.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00003-f00014.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00003-f00014.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00003-f00014.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00003-f00014.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00004-f00019.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00004-f00019.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00004-f00019.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00004-f00019.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00005-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00005-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00005-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00006-f00028.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00006-f00028.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00006-f00028.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00006-f00028.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00007-f00032.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00007-f00032.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00007-f00032.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00007-f00032.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00008-f00034.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00008-f00034.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00008-f00034.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00008-f00034.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00009-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00009-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00009-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00009-f00040.overlay.mha\u001b[00m\r\n", + "│   │   └── \u001b[01;32m247ns_image_2743083265515_CLEAN.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;34mBAMC-PTXSliding\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_image_73815992352100_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_image_74132233134844_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_image_10705997566592_CLEAN.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_image_10891015221417_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_image_1180496934444_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_image_677741729740_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_image_3368391807672_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_image_3401832241774_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_image_588413346180_CLEAN.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_image_10391571128899_CLEAN.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_image_10395655826502_CLEAN.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_image_1896534330004_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_image_1901852337971_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_image_2959672151786_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_image_3320344386805_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_image_1499268364374_clean.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_image_1511338287338_clean.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_image_104543812690743_CLEAN.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_image_104548309385533_CLEAN.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_image_104932526155699_CLEAN.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_image_3925135436261_clean.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_image_3929217595322_clean.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_image_128683942015128_CLEAN.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_image_128688523296793_CLEAN.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_image_128692595484031_CLEAN.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_image_3308406916756_clean.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_image_3315947589826_clean.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_image_3321463845606_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_image_3384882513134_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_image_1139765223418_CLEAN.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_image_1327616672148_clean.mp4\u001b[00m\r\n", + "│   │   └── \u001b[01;32m237s_image_24164968068436_CLEAN.mp4\u001b[00m\r\n", + "│   └── \u001b[01;34mBAMC-PTXSliding-Annotations-Linear\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_73815992352100_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_73815992352100_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_73815992352100_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_73815992352100_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00002-f00012.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00002-f00012.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00002-f00012.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00002-f00012.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00003-f00018.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00003-f00018.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00003-f00018.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00003-f00018.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00005-f00029.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00005-f00029.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00005-f00029.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00005-f00029.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00006-f00035.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00006-f00035.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00006-f00035.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00006-f00035.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00007-f00040.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00007-f00040.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00008-f00052.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00008-f00052.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00008-f00052.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00008-f00052.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_73815992352100_clean.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_74132233134844_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_74132233134844_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_74132233134844_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_74132233134844_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00001-f00008.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00001-f00008.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00001-f00008.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00001-f00008.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00002-f00014.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00002-f00014.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00002-f00014.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00002-f00014.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00003-f00019.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00003-f00019.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00003-f00019.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00003-f00019.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00005-f00029.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00005-f00029.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00005-f00029.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00005-f00029.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00006-f00035.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00006-f00035.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00006-f00035.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00006-f00035.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00007-f00039.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00007-f00039.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00007-f00039.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00007-f00039.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00008-f00040.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00008-f00040.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00008-f00040.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00008-f00040.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00009-f00054.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00009-f00054.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00009-f00054.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00009-f00054.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_74132233134844_clean.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00001-f00011.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00001-f00011.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00001-f00011.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00001-f00011.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00002-f00016.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00002-f00016.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00002-f00016.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00002-f00016.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00003-f00020.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00003-f00020.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00003-f00020.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00004-f00048.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00004-f00048.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00004-f00048.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00004-f00048.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00005-f00052.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00005-f00052.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00005-f00052.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00005-f00052.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00006-f00055.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00006-f00055.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00006-f00055.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00006-f00055.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00007-f00060.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00007-f00060.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00007-f00060.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00007-f00060.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10891015221417_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10891015221417_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10891015221417_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10891015221417_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00002-f00014.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00002-f00014.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00002-f00014.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00002-f00014.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00003-f00019.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00003-f00019.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00003-f00019.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00003-f00019.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00005-f00037.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00005-f00037.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00005-f00037.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00005-f00037.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00006-f00040.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00006-f00040.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00006-f00040.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00007-f00058.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00007-f00058.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00007-f00058.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00007-f00058.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00008-f00060.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00008-f00060.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00008-f00060.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00008-f00060.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10891015221417_clean.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_1180496934444_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_1180496934444_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_1180496934444_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_1180496934444_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00001-f00005.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00001-f00005.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00002-f00010.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00002-f00010.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00002-f00010.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00002-f00010.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00003-f00018.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00003-f00018.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00003-f00018.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00003-f00018.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00005-f00031.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00005-f00031.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00005-f00031.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00005-f00031.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00006-f00036.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00006-f00036.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00006-f00036.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00006-f00036.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00007-f00040.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00007-f00040.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00008-f00048.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00008-f00048.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00008-f00048.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00008-f00048.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00009-f00054.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00009-f00054.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00009-f00054.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00009-f00054.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_1180496934444_clean.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_677741729740_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_677741729740_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_677741729740_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_677741729740_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00002-f00010.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00002-f00010.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00002-f00010.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00002-f00010.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00003-f00017.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00003-f00017.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00003-f00017.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00003-f00017.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00005-f00031.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00005-f00031.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00005-f00031.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00005-f00031.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00006-f00036.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00006-f00036.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00006-f00036.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00006-f00036.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00007-f00040.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00007-f00040.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00008-f00058.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00008-f00058.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00008-f00058.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00008-f00058.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_677741729740_clean.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00001-f00005.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00001-f00005.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00002-f00012.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00002-f00012.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00002-f00012.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00002-f00012.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00003-f00019.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00003-f00019.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00003-f00019.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00003-f00019.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00005-f00038.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00005-f00038.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00005-f00038.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00005-f00038.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00006-f00040.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00006-f00040.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00006-f00040.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00007-f00049.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00007-f00049.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00007-f00049.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00007-f00049.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00008-f00052.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00008-f00052.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00008-f00052.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00008-f00052.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00009-f00058.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00009-f00058.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00009-f00058.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00009-f00058.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3401832241774_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3401832241774_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3401832241774_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3401832241774_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00002-f00014.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00002-f00014.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00002-f00014.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00002-f00014.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00003-f00019.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00003-f00019.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00003-f00019.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00003-f00019.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00005-f00034.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00005-f00034.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00005-f00034.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00005-f00034.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00006-f00039.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00006-f00039.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00006-f00039.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00006-f00039.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00007-f00040.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00007-f00040.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00008-f00051.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00008-f00051.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00008-f00051.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00008-f00051.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3401832241774_clean.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00002-f00012.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00002-f00012.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00002-f00012.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00002-f00012.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00003-f00018.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00003-f00018.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00003-f00018.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00003-f00018.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00005-f00030.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00005-f00030.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00005-f00030.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00005-f00030.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00006-f00034.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00006-f00034.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00006-f00034.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00006-f00034.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00007-f00040.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00007-f00040.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00008-f00059.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00008-f00059.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00008-f00059.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00008-f00059.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00001-f00007.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00001-f00007.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00001-f00007.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00001-f00007.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00002-f00020.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00002-f00020.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00002-f00020.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00002-f00020.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00003-f00032.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00003-f00032.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00003-f00032.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00003-f00032.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00004-f00038.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00004-f00038.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00004-f00038.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00004-f00038.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00005-f00040.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00005-f00040.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00005-f00040.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00005-f00040.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00006-f00050.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00006-f00050.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00006-f00050.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00006-f00050.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00007-f00054.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00007-f00054.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00007-f00054.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00007-f00054.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00008-f00058.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00008-f00058.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00008-f00058.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00008-f00058.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00002-f00016.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00002-f00016.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00002-f00016.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00002-f00016.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00003-f00020.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00003-f00020.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00003-f00020.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00004-f00031.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00004-f00031.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00004-f00031.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00004-f00031.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00005-f00036.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00005-f00036.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00005-f00036.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00005-f00036.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00006-f00040.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00006-f00040.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00006-f00040.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00007-f00049.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00007-f00049.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00007-f00049.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00007-f00049.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00008-f00054.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00008-f00054.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00008-f00054.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00008-f00054.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00009-f00059.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00009-f00059.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00009-f00059.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00009-f00059.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1896534330004_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1896534330004_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1896534330004_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1896534330004_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00001-f00004.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00001-f00004.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00001-f00004.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00001-f00004.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00002-f00006.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00002-f00006.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00002-f00006.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00002-f00006.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00003-f00010.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00003-f00010.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00003-f00010.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00003-f00010.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00004-f00015.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00004-f00015.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00004-f00015.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00004-f00015.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00005-f00020.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00005-f00020.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00005-f00020.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00006-f00039.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00006-f00039.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00006-f00039.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00006-f00039.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00007-f00040.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00007-f00040.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00008-f00053.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00008-f00053.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00008-f00053.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00008-f00053.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00009-f00058.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00009-f00058.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00009-f00058.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00009-f00058.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1896534330004_clean.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1901852337971_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1901852337971_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1901852337971_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1901852337971_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00001-f00005.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00001-f00005.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00002-f00009.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00002-f00009.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00002-f00009.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00002-f00009.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00003-f00012.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00003-f00012.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00003-f00012.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00003-f00012.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00004-f00015.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00004-f00015.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00004-f00015.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00004-f00015.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00005-f00017.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00005-f00017.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00005-f00017.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00005-f00017.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00006-f00020.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00006-f00020.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00006-f00020.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00006-f00020.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00007-f00050.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00007-f00050.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00007-f00050.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00007-f00050.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00008-f00059.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00008-f00059.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00008-f00059.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00008-f00059.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1901852337971_clean.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_2959672151786_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_2959672151786_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_2959672151786_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_2959672151786_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00002-f00010.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00002-f00010.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00002-f00010.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00002-f00010.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00003-f00014.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00003-f00014.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00003-f00014.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00003-f00014.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00004-f00017.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00004-f00017.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00004-f00017.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00004-f00017.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00005-f00020.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00005-f00020.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00005-f00020.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00006-f00030.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00006-f00030.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00006-f00030.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00006-f00030.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00007-f00034.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00007-f00034.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00007-f00034.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00007-f00034.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00008-f00038.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00008-f00038.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00008-f00038.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00008-f00038.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00009-f00040.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00009-f00040.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00009-f00040.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00009-f00040.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_2959672151786_clean.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_3320344386805_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_3320344386805_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_3320344386805_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_3320344386805_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00001-f00013.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00001-f00013.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00001-f00013.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00001-f00013.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00002-f00020.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00002-f00020.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00002-f00020.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00002-f00020.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00003-f00038.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00003-f00038.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00003-f00038.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00003-f00038.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00004-f00040.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00004-f00040.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00004-f00040.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00004-f00040.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00005-f00050.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00005-f00050.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00005-f00050.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00005-f00050.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00006-f00052.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00006-f00052.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00006-f00052.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00006-f00052.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00007-f00055.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00007-f00055.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00007-f00055.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00007-f00055.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00008-f00059.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00008-f00059.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00008-f00059.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00008-f00059.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_3320344386805_clean.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00001-f00007.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00001-f00007.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00001-f00007.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00001-f00007.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00002-f00009.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00002-f00009.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00002-f00009.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00002-f00009.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00003-f00013.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00003-f00013.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00003-f00013.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00003-f00013.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00004-f00017.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00004-f00017.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00004-f00017.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00004-f00017.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00005-f00020.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00005-f00020.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00005-f00020.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00006-f00045.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00006-f00045.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00006-f00045.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00006-f00045.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00007-f00050.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00007-f00050.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00007-f00050.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00007-f00050.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00008-f00055.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00008-f00055.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00008-f00055.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00008-f00055.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00009-f00059.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00009-f00059.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00009-f00059.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00009-f00059.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1511338287338_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1511338287338_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1511338287338_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1511338287338_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00001-f00007.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00001-f00007.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00001-f00007.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00001-f00007.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00002-f00009.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00002-f00009.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00002-f00009.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00002-f00009.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00003-f00013.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00003-f00013.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00003-f00013.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00003-f00013.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00004-f00020.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00004-f00020.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00005-f00030.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00005-f00030.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00005-f00030.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00005-f00030.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00006-f00032.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00006-f00032.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00006-f00032.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00006-f00032.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00007-f00036.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00007-f00036.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00007-f00036.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00007-f00036.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00008-f00040.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00008-f00040.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00008-f00040.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00008-f00040.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1511338287338_clean.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00001-f00006.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00001-f00006.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00002-f00008.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00002-f00008.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00002-f00008.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00002-f00008.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00003-f00010.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00003-f00010.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00003-f00010.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00003-f00010.overlay.mha\u001b[00m\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "│   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00004-f00017.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00004-f00017.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00004-f00017.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00004-f00017.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00005-f00020.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00005-f00020.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00005-f00020.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00006-f00051.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00006-f00051.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00006-f00051.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00006-f00051.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00007-f00056.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00007-f00056.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00007-f00056.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00007-f00056.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00008-f00059.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00008-f00059.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00008-f00059.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00008-f00059.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00009-f00060.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00009-f00060.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00001-f00006.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00001-f00006.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00002-f00008.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00002-f00008.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00002-f00008.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00002-f00008.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00003-f00010.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00003-f00010.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00003-f00010.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00003-f00010.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00004-f00014.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00004-f00014.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00004-f00014.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00004-f00014.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00005-f00020.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00005-f00020.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00005-f00020.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00006-f00037.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00006-f00037.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00006-f00037.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00006-f00037.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00007-f00040.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00007-f00040.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00007-f00040.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00008-f00054.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00008-f00054.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00008-f00054.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00008-f00054.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00009-f00060.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00009-f00060.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00001-f00006.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00001-f00006.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00002-f00008.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00002-f00008.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00002-f00008.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00002-f00008.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00003-f00010.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00003-f00010.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00003-f00010.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00003-f00010.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00004-f00016.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00004-f00016.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00004-f00016.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00004-f00016.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00005-f00020.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00005-f00020.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00005-f00020.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00006-f00035.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00006-f00035.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00006-f00035.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00006-f00035.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00007-f00040.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00007-f00040.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00007-f00040.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00008-f00054.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00008-f00054.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00008-f00054.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00008-f00054.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00009-f00060.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00009-f00060.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00001-f00007.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00001-f00007.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00001-f00007.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00001-f00007.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00002-f00009.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00002-f00009.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00002-f00009.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00002-f00009.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00003-f00013.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00003-f00013.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00003-f00013.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00003-f00013.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00004-f00017.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00004-f00017.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00004-f00017.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00004-f00017.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00005-f00020.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00005-f00020.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00005-f00020.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00006-f00045.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00006-f00045.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00006-f00045.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00006-f00045.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00007-f00047.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00007-f00047.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00007-f00047.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00007-f00047.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00008-f00049.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00008-f00049.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00008-f00049.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00008-f00049.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00009-f00054.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00009-f00054.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00009-f00054.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00009-f00054.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3929217595322_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3929217595322_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3929217595322_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3929217595322_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00001-f00009.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00001-f00009.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00001-f00009.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00001-f00009.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00002-f00018.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00002-f00018.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00002-f00018.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00002-f00018.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00003-f00020.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00003-f00020.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00003-f00020.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00004-f00034.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00004-f00034.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00004-f00034.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00004-f00034.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00005-f00038.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00005-f00038.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00005-f00038.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00005-f00038.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00006-f00040.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00006-f00040.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00006-f00040.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00007-f00055.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00007-f00055.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00007-f00055.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00007-f00055.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00008-f00058.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00008-f00058.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00008-f00058.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00008-f00058.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00009-f00060.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00009-f00060.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3929217595322_clean.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00001-f00009.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00001-f00009.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00001-f00009.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00001-f00009.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00002-f00012.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00002-f00012.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00002-f00012.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00002-f00012.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00003-f00020.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00003-f00020.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00003-f00020.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00004-f00030.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00004-f00030.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00004-f00030.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00004-f00030.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00005-f00034.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00005-f00034.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00005-f00034.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00005-f00034.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00006-f00040.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00006-f00040.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00006-f00040.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00007-f00050.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00007-f00050.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00007-f00050.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00007-f00050.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00008-f00054.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00008-f00054.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00008-f00054.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00008-f00054.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00009-f00057.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00009-f00057.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00009-f00057.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00009-f00057.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00001-f00009.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00001-f00009.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00001-f00009.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00001-f00009.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00002-f00011.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00002-f00011.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00002-f00011.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00002-f00011.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00003-f00014.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00003-f00014.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00003-f00014.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00003-f00014.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00004-f00017.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00004-f00017.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00004-f00017.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00004-f00017.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00005-f00020.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00005-f00020.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00005-f00020.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00006-f00047.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00006-f00047.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00006-f00047.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00006-f00047.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00007-f00053.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00007-f00053.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00007-f00053.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00007-f00053.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00008-f00056.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00008-f00056.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00008-f00056.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00008-f00056.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00009-f00060.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00009-f00060.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00001-f00008.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00001-f00008.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00001-f00008.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00001-f00008.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00002-f00010.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00002-f00010.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00002-f00010.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00002-f00010.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00003-f00013.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00003-f00013.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00003-f00013.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00003-f00013.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00004-f00017.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00004-f00017.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00004-f00017.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00004-f00017.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00005-f00020.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00005-f00020.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00005-f00020.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00006-f00035.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00006-f00035.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00006-f00035.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00006-f00035.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00007-f00038.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00007-f00038.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00007-f00038.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00007-f00038.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00008-f00040.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00008-f00040.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00008-f00040.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00008-f00040.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3308406916756_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3308406916756_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3308406916756_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3308406916756_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00001-f00005.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00001-f00005.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00001-f00005.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00002-f00006.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00002-f00006.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00002-f00006.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00002-f00006.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00003-f00007.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00003-f00007.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00003-f00007.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00003-f00007.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00004-f00008.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00004-f00008.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00004-f00008.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00004-f00008.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00005-f00009.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00005-f00009.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00005-f00009.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00005-f00009.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00006-f00012.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00006-f00012.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00006-f00012.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00006-f00012.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00007-f00020.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00007-f00020.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00007-f00020.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00007-f00020.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00008-f00041.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00008-f00041.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00008-f00041.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00008-f00041.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00009-f00058.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00009-f00058.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00009-f00058.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00009-f00058.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3308406916756_clean.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3315947589826_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3315947589826_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3315947589826_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3315947589826_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00001-f00005.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00001-f00005.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00001-f00005.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00002-f00006.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00002-f00006.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00002-f00006.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00002-f00006.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00003-f00007.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00003-f00007.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00003-f00007.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00003-f00007.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00004-f00008.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00004-f00008.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00004-f00008.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00004-f00008.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00005-f00009.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00005-f00009.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00005-f00009.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00005-f00009.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00006-f00011.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00006-f00011.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00006-f00011.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00006-f00011.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00007-f00020.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00007-f00020.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00007-f00020.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00007-f00020.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00008-f00041.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00008-f00041.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00008-f00041.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00008-f00041.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00009-f00056.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00009-f00056.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00009-f00056.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00009-f00056.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3315947589826_clean.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3321463845606_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3321463845606_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3321463845606_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3321463845606_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00002-f00008.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00002-f00008.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00002-f00008.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00002-f00008.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00003-f00009.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00003-f00009.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00003-f00009.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00003-f00009.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00004-f00011.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00004-f00011.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00004-f00011.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00004-f00011.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00005-f00013.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00005-f00013.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00005-f00013.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00005-f00013.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00006-f00015.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00006-f00015.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00006-f00015.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00006-f00015.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00007-f00018.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00007-f00018.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00007-f00018.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00007-f00018.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00008-f00020.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00008-f00020.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00008-f00020.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00008-f00020.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00009-f00042.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00009-f00042.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00009-f00042.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00009-f00042.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3321463845606_clean.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3384882513134_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3384882513134_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3384882513134_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3384882513134_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00002-f00008.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00002-f00008.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00002-f00008.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00002-f00008.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00003-f00010.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00003-f00010.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00003-f00010.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00003-f00010.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00005-f00027.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00005-f00027.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00005-f00027.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00005-f00027.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00006-f00029.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00006-f00029.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00006-f00029.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00006-f00029.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00007-f00031.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00007-f00031.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00007-f00031.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00007-f00031.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00008-f00034.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00008-f00034.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00008-f00034.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00008-f00034.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00009-f00040.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00009-f00040.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00009-f00040.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00009-f00040.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3384882513134_clean.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00001-f00012.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00001-f00012.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00001-f00012.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00001-f00012.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00002-f00018.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00002-f00018.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00002-f00018.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00002-f00018.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00003-f00020.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00003-f00020.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00003-f00020.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00004-f00031.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00004-f00031.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00004-f00031.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00004-f00031.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00005-f00034.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00005-f00034.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00005-f00034.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00005-f00034.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00006-f00037.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00006-f00037.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00006-f00037.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00006-f00037.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00007-f00041.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00007-f00041.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00007-f00041.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00007-f00041.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00008-f00051.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00008-f00051.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00008-f00051.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00008-f00051.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00009-f00056.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00009-f00056.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00009-f00056.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00009-f00056.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1327616672148_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1327616672148_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1327616672148_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1327616672148_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00001-f00008.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00001-f00008.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00001-f00008.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00001-f00008.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00002-f00010.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00002-f00010.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00002-f00010.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00002-f00010.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00003-f00012.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00003-f00012.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00003-f00012.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00003-f00012.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00004-f00014.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00004-f00014.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00004-f00014.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00004-f00014.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00005-f00016.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00005-f00016.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00005-f00016.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00005-f00016.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00006-f00020.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00006-f00020.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00006-f00020.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00006-f00020.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1327616672148_clean.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00001-f00005.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00001-f00005.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00002-f00008.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00002-f00008.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00002-f00008.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00002-f00008.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00003-f00013.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00003-f00013.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00003-f00013.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00003-f00013.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00004-f00017.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00004-f00017.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00004-f00017.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00004-f00017.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00005-f00020.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00005-f00020.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00005-f00020.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00006-f00043.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00006-f00043.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00006-f00043.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00006-f00043.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00007-f00051.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00007-f00051.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00007-f00051.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00007-f00051.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00008-f00058.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00008-f00058.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00008-f00058.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00008-f00058.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   └── \u001b[01;32m237s_iimage_24164968068436_CLEAN.nii.gz\u001b[00m\r\n", + "├── \u001b[01;34mPhase1TestData\u001b[00m\r\n", + "│   ├── \u001b[01;34mDebug15\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1036584980280_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1036584980280_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1036584980280_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1036584980280_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1036584980280_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1036584980280_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1036584980280_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1036584980280_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1036584980280_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1036584980280_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1215182877868_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1215182877868_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1215182877868_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1215182877868_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1215182877868_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1215182877868_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1215182877868_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1215182877868_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1215182877868_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1215182877868_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1355315203127_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1355315203127_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1355315203127_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1355315203127_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1355315203127_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1355315203127_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1355315203127_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1355315203127_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1355315203127_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1355315203127_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1447186382728_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1447186382728_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1447186382728_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1447186382728_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1447186382728_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1447186382728_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1447186382728_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1447186382728_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1447186382728_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1447186382728_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1604910716625_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1604910716625_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1604910716625_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1604910716625_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1604910716625_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1604910716625_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1604910716625_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1604910716625_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1604910716625_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1604910716625_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1675609772328_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1675609772328_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1675609772328_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1675609772328_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1675609772328_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1675609772328_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1675609772328_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1675609772328_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1675609772328_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1675609772328_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1710325448148_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1710325448148_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1710325448148_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1710325448148_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1710325448148_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1710325448148_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1710325448148_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1710325448148_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1710325448148_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1710325448148_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1991804868665_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1991804868665_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1991804868665_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1991804868665_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1991804868665_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1991804868665_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1991804868665_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1991804868665_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1991804868665_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1991804868665_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2100361349561_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2100361349561_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2100361349561_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2100361349561_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2100361349561_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2100361349561_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2100361349561_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2100361349561_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2100361349561_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2100361349561_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_222706744966_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_222706744966_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_222706744966_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_222706744966_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_222706744966_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_222706744966_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_222706744966_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_222706744966_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_222706744966_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_222706744966_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_225130637841202_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_225130637841202_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_225130637841202_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_225130637841202_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_225130637841202_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_225130637841202_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_225130637841202_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_225130637841202_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_225130637841202_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_225130637841202_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_233507706680_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_233507706680_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_233507706680_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_233507706680_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_233507706680_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_233507706680_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_233507706680_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_233507706680_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_233507706680_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_233507706680_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2370853937896_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2370853937896_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2370853937896_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2370853937896_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2370853937896_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2370853937896_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2370853937896_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2370853937896_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2370853937896_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2370853937896_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2375004178780_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2375004178780_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2375004178780_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2375004178780_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2375004178780_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2375004178780_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2375004178780_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2375004178780_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2375004178780_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2375004178780_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2475978478013_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2475978478013_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2475978478013_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2475978478013_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2475978478013_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2475978478013_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2475978478013_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2475978478013_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2475978478013_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2475978478013_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2518177532892_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2518177532892_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2518177532892_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2518177532892_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2518177532892_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2518177532892_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2518177532892_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2518177532892_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2518177532892_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2518177532892_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2673074007832_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2673074007832_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2673074007832_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2673074007832_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2673074007832_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2673074007832_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2673074007832_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2673074007832_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2673074007832_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2673074007832_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_270509486562_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_270509486562_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_270509486562_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_270509486562_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_270509486562_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_270509486562_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_270509486562_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_270509486562_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_270509486562_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_270509486562_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2719958257554_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2719958257554_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2719958257554_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2719958257554_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2719958257554_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2719958257554_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2719958257554_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2719958257554_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2719958257554_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2719958257554_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3012822351141_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3012822351141_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3012822351141_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3012822351141_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3012822351141_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3012822351141_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3012822351141_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3012822351141_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3012822351141_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3012822351141_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_307870966391_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_307870966391_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_307870966391_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_307870966391_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_307870966391_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_307870966391_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_307870966391_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_307870966391_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_307870966391_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_307870966391_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3512795900742_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3512795900742_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3512795900742_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3512795900742_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3512795900742_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3512795900742_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3512795900742_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3512795900742_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3512795900742_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3512795900742_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_358997745435_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_358997745435_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_358997745435_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_358997745435_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_358997745435_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_358997745435_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_358997745435_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_358997745435_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_358997745435_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_358997745435_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_383588065321_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_383588065321_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_383588065321_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_383588065321_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_383588065321_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_383588065321_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_383588065321_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_383588065321_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_383588065321_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_383588065321_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3945589816827_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3945589816827_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3945589816827_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3945589816827_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3945589816827_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3945589816827_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3945589816827_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3945589816827_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3945589816827_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3945589816827_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_4065361175427_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_4065361175427_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_4065361175427_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_4065361175427_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_4065361175427_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_4065361175427_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_4065361175427_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_4065361175427_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_4065361175427_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_4065361175427_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_4217982672400_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_4217982672400_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_4217982672400_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_4217982672400_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_4217982672400_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_4217982672400_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_4217982672400_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_4217982672400_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_4217982672400_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_4217982672400_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_4227031119375_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_4227031119375_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_4227031119375_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_4227031119375_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_4227031119375_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_4227031119375_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_4227031119375_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_4227031119375_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_4227031119375_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_4227031119375_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_432792096448_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_432792096448_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_432792096448_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_432792096448_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_432792096448_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_432792096448_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_432792096448_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_432792096448_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_432792096448_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_432792096448_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_456885889303_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_456885889303_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_456885889303_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_456885889303_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_456885889303_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_456885889303_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_456885889303_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_456885889303_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_456885889303_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_456885889303_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_507659607045_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_507659607045_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_507659607045_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_507659607045_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_507659607045_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_507659607045_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_507659607045_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_507659607045_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_507659607045_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_507659607045_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_527803396828_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_527803396828_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_527803396828_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_527803396828_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_527803396828_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_527803396828_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_527803396828_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_527803396828_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_527803396828_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_527803396828_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_543109924479_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_543109924479_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_543109924479_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_543109924479_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_543109924479_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_543109924479_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_543109924479_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_543109924479_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_543109924479_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_543109924479_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_560395551296_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_560395551296_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_560395551296_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_560395551296_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_560395551296_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_560395551296_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_560395551296_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_560395551296_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_560395551296_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_560395551296_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_595115042480_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_595115042480_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_595115042480_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_595115042480_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_595115042480_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_595115042480_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_595115042480_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_595115042480_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_595115042480_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_595115042480_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_620422280751_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_620422280751_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_620422280751_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_620422280751_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_620422280751_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_620422280751_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_620422280751_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_620422280751_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_620422280751_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_620422280751_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_6692463753591_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_6692463753591_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_6692463753591_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_6692463753591_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_6692463753591_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_6692463753591_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_6692463753591_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_6692463753591_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_6692463753591_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_6692463753591_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_703682641552_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_703682641552_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_703682641552_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_703682641552_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_703682641552_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_703682641552_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_703682641552_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_703682641552_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_703682641552_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_703682641552_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_706555992698_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_706555992698_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_706555992698_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_706555992698_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_706555992698_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_706555992698_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_706555992698_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_706555992698_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_706555992698_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_706555992698_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_740584633467_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_740584633467_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_740584633467_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_740584633467_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_740584633467_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_740584633467_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_740584633467_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_740584633467_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_740584633467_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_740584633467_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_931984558757_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_931984558757_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_931984558757_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_931984558757_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_931984558757_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_931984558757_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_931984558757_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_931984558757_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_931984558757_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_931984558757_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_9367839490019_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_9367839490019_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_9367839490019_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_9367839490019_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_9367839490019_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_9367839490019_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_9367839490019_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_9367839490019_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_9367839490019_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_9367839490019_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_9401889534225_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_9401889534225_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_9401889534225_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_9401889534225_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_9401889534225_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_9401889534225_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_9401889534225_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_9401889534225_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_9401889534225_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_9401889534225_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_987146487434_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_987146487434_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_987146487434_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_987146487434_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_987146487434_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_987146487434_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_987146487434_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_987146487434_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_987146487434_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_987146487434_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_9970708112236_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_9970708112236_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_9970708112236_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_9970708112236_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_9970708112236_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_9970708112236_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_9970708112236_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_9970708112236_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_9970708112236_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_9970708112236_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   └── \u001b[01;32mtest_phase1_15.log.txt\u001b[00m\r\n", + "│   ├── \u001b[01;34mDebug30\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1036584980280_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1036584980280_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1036584980280_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1036584980280_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1036584980280_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1036584980280_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1036584980280_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1036584980280_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1036584980280_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1036584980280_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1215182877868_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1215182877868_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1215182877868_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1215182877868_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1215182877868_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1215182877868_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1215182877868_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1215182877868_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1215182877868_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1215182877868_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1355315203127_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1355315203127_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1355315203127_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1355315203127_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1355315203127_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1355315203127_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1355315203127_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1355315203127_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1355315203127_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1355315203127_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1447186382728_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1447186382728_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1447186382728_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1447186382728_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1447186382728_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1447186382728_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1447186382728_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1447186382728_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1447186382728_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1447186382728_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1604910716625_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1604910716625_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1604910716625_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1604910716625_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1604910716625_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1604910716625_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1604910716625_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1604910716625_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1604910716625_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1604910716625_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1675609772328_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1675609772328_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1675609772328_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1675609772328_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1675609772328_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1675609772328_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1675609772328_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1675609772328_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1675609772328_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1675609772328_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1710325448148_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1710325448148_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1710325448148_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1710325448148_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1710325448148_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1710325448148_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1710325448148_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1710325448148_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1710325448148_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1710325448148_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1991804868665_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1991804868665_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1991804868665_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1991804868665_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1991804868665_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1991804868665_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1991804868665_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1991804868665_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1991804868665_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_1991804868665_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2100361349561_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2100361349561_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2100361349561_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2100361349561_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2100361349561_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2100361349561_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2100361349561_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2100361349561_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2100361349561_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2100361349561_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_222706744966_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_222706744966_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_222706744966_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_222706744966_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_222706744966_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_222706744966_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_222706744966_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_222706744966_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_222706744966_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_222706744966_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_225130637841202_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_225130637841202_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_225130637841202_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_225130637841202_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_225130637841202_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_225130637841202_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_225130637841202_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_225130637841202_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_225130637841202_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_225130637841202_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_233507706680_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_233507706680_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_233507706680_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_233507706680_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_233507706680_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_233507706680_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_233507706680_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_233507706680_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_233507706680_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_233507706680_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2370853937896_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2370853937896_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2370853937896_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2370853937896_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2370853937896_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2370853937896_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2370853937896_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2370853937896_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2370853937896_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2370853937896_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2375004178780_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2375004178780_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2375004178780_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2375004178780_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2375004178780_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2375004178780_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2375004178780_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2375004178780_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2375004178780_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2375004178780_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2475978478013_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2475978478013_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2475978478013_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2475978478013_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2475978478013_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2475978478013_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2475978478013_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2475978478013_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2475978478013_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2475978478013_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2518177532892_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2518177532892_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2518177532892_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2518177532892_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2518177532892_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2518177532892_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2518177532892_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2518177532892_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2518177532892_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2518177532892_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2673074007832_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2673074007832_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2673074007832_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2673074007832_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2673074007832_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2673074007832_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2673074007832_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2673074007832_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2673074007832_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2673074007832_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_270509486562_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_270509486562_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_270509486562_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_270509486562_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_270509486562_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_270509486562_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_270509486562_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_270509486562_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_270509486562_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_270509486562_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2719958257554_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2719958257554_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2719958257554_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2719958257554_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2719958257554_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2719958257554_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2719958257554_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2719958257554_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2719958257554_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_2719958257554_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3012822351141_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3012822351141_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3012822351141_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3012822351141_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3012822351141_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3012822351141_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3012822351141_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3012822351141_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3012822351141_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3012822351141_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_307870966391_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_307870966391_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_307870966391_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_307870966391_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_307870966391_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_307870966391_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_307870966391_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_307870966391_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_307870966391_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_307870966391_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3512795900742_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3512795900742_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3512795900742_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3512795900742_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3512795900742_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3512795900742_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3512795900742_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3512795900742_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3512795900742_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3512795900742_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_358997745435_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_358997745435_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_358997745435_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_358997745435_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_358997745435_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_358997745435_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_358997745435_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_358997745435_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_358997745435_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_358997745435_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_383588065321_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_383588065321_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_383588065321_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_383588065321_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_383588065321_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_383588065321_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_383588065321_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_383588065321_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_383588065321_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_383588065321_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3945589816827_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3945589816827_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3945589816827_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3945589816827_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3945589816827_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3945589816827_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3945589816827_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3945589816827_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3945589816827_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3945589816827_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_4065361175427_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_4065361175427_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_4065361175427_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_4065361175427_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_4065361175427_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_4065361175427_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_4065361175427_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_4065361175427_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_4065361175427_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_4065361175427_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_4217982672400_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_4217982672400_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_4217982672400_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_4217982672400_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_4217982672400_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_4217982672400_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_4217982672400_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_4217982672400_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_4217982672400_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_4217982672400_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_4227031119375_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_4227031119375_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_4227031119375_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_4227031119375_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_4227031119375_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_4227031119375_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_4227031119375_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_4227031119375_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_4227031119375_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_4227031119375_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_432792096448_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_432792096448_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_432792096448_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_432792096448_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_432792096448_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_432792096448_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_432792096448_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_432792096448_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_432792096448_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_432792096448_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_456885889303_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_456885889303_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_456885889303_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_456885889303_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_456885889303_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_456885889303_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_456885889303_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_456885889303_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_456885889303_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_456885889303_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_507659607045_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_507659607045_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_507659607045_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_507659607045_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_507659607045_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_507659607045_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_507659607045_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_507659607045_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_507659607045_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_507659607045_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_527803396828_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_527803396828_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_527803396828_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_527803396828_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_527803396828_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_527803396828_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_527803396828_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_527803396828_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_527803396828_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_527803396828_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_543109924479_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_543109924479_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_543109924479_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_543109924479_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_543109924479_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_543109924479_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_543109924479_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_543109924479_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_543109924479_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_543109924479_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_560395551296_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_560395551296_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_560395551296_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_560395551296_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_560395551296_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_560395551296_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_560395551296_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_560395551296_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_560395551296_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_560395551296_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_595115042480_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_595115042480_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_595115042480_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_595115042480_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_595115042480_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_595115042480_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_595115042480_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_595115042480_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_595115042480_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_595115042480_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_620422280751_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_620422280751_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_620422280751_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_620422280751_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_620422280751_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_620422280751_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_620422280751_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_620422280751_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_620422280751_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_620422280751_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_6692463753591_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_6692463753591_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_6692463753591_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_6692463753591_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_6692463753591_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_6692463753591_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_6692463753591_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_6692463753591_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_6692463753591_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_6692463753591_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_703682641552_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_703682641552_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_703682641552_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_703682641552_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_703682641552_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_703682641552_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_703682641552_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_703682641552_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_703682641552_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_703682641552_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_706555992698_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_706555992698_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_706555992698_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_706555992698_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_706555992698_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_706555992698_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_706555992698_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_706555992698_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_706555992698_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_706555992698_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_740584633467_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_740584633467_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_740584633467_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_740584633467_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_740584633467_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_740584633467_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_740584633467_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_740584633467_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_740584633467_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_740584633467_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_931984558757_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_931984558757_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_931984558757_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_931984558757_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_931984558757_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_931984558757_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_931984558757_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_931984558757_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_931984558757_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_931984558757_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_9367839490019_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_9367839490019_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_9367839490019_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_9367839490019_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_9367839490019_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_9367839490019_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_9367839490019_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_9367839490019_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_9367839490019_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_9367839490019_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_9401889534225_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_9401889534225_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_9401889534225_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_9401889534225_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_9401889534225_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_9401889534225_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_9401889534225_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_9401889534225_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_9401889534225_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_9401889534225_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_987146487434_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_987146487434_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_987146487434_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_987146487434_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_987146487434_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_987146487434_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_987146487434_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_987146487434_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_987146487434_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_987146487434_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_9970708112236_CLEAN.mp4_arnet.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_9970708112236_CLEAN.mp4_class0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_9970708112236_CLEAN.mp4_class1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_9970708112236_CLEAN.mp4_class2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_9970708112236_CLEAN.mp4_linear.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_9970708112236_CLEAN.mp4_preproc.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_9970708112236_CLEAN.mp4_roi0.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_9970708112236_CLEAN.mp4_roi1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_9970708112236_CLEAN.mp4_roi2.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_9970708112236_CLEAN.mp4_roi.mha\u001b[00m\r\n", + "│   │   └── \u001b[01;32mtest_phase1_30.log.txt\u001b[00m\r\n", + "│   ├── \u001b[01;32mimage_1036584980280_CLEAN.mp4\u001b[00m\r\n", + "│   ├── \u001b[01;32mimage_1215182877868_CLEAN.mp4\u001b[00m\r\n", + "│   ├── \u001b[01;32mimage_1355315203127_CLEAN.mp4\u001b[00m\r\n", + "│   ├── \u001b[01;32mimage_1447186382728_CLEAN.mp4\u001b[00m\r\n", + "│   ├── \u001b[01;32mimage_1604910716625_CLEAN.mp4\u001b[00m\r\n", + "│   ├── \u001b[01;32mimage_1675609772328_CLEAN.mp4\u001b[00m\r\n", + "│   ├── \u001b[01;32mimage_1710325448148_CLEAN.mp4\u001b[00m\r\n", + "│   ├── \u001b[01;32mimage_1991804868665_CLEAN.mp4\u001b[00m\r\n", + "│   ├── \u001b[01;32mimage_2100361349561_CLEAN.mp4\u001b[00m\r\n", + "│   ├── \u001b[01;32mimage_222706744966_CLEAN.mp4\u001b[00m\r\n", + "│   ├── \u001b[01;32mimage_225130637841202_CLEAN.mp4\u001b[00m\r\n", + "│   ├── \u001b[01;32mimage_233507706680_CLEAN.mp4\u001b[00m\r\n", + "│   ├── \u001b[01;32mimage_2370853937896_CLEAN.mp4\u001b[00m\r\n", + "│   ├── \u001b[01;32mimage_2375004178780_CLEAN.mp4\u001b[00m\r\n", + "│   ├── \u001b[01;32mimage_2475978478013_CLEAN.mp4\u001b[00m\r\n", + "│   ├── \u001b[01;32mimage_2518177532892_CLEAN.mp4\u001b[00m\r\n", + "│   ├── \u001b[01;32mimage_2673074007832_CLEAN.mp4\u001b[00m\r\n", + "│   ├── \u001b[01;32mimage_270509486562_CLEAN.mp4\u001b[00m\r\n", + "│   ├── \u001b[01;32mimage_2719958257554_CLEAN.mp4\u001b[00m\r\n", + "│   ├── \u001b[01;32mimage_3012822351141_CLEAN.mp4\u001b[00m\r\n", + "│   ├── \u001b[01;32mimage_307870966391_CLEAN.mp4\u001b[00m\r\n", + "│   ├── \u001b[01;32mimage_3512795900742_CLEAN.mp4\u001b[00m\r\n", + "│   ├── \u001b[01;32mimage_358997745435_CLEAN.mp4\u001b[00m\r\n", + "│   ├── \u001b[01;32mimage_383588065321_CLEAN.mp4\u001b[00m\r\n", + "│   ├── \u001b[01;32mimage_3945589816827_CLEAN.mp4\u001b[00m\r\n", + "│   ├── \u001b[01;32mimage_4065361175427_CLEAN.mp4\u001b[00m\r\n", + "│   ├── \u001b[01;32mimage_4217982672400_CLEAN.mp4\u001b[00m\r\n", + "│   ├── \u001b[01;32mimage_4227031119375_CLEAN.mp4\u001b[00m\r\n", + "│   ├── \u001b[01;32mimage_432792096448_CLEAN.mp4\u001b[00m\r\n", + "│   ├── \u001b[01;32mimage_456885889303_CLEAN.mp4\u001b[00m\r\n", + "│   ├── \u001b[01;32mimage_507659607045_CLEAN.mp4\u001b[00m\r\n", + "│   ├── \u001b[01;32mimage_527803396828_CLEAN.mp4\u001b[00m\r\n", + "│   ├── \u001b[01;32mimage_543109924479_CLEAN.mp4\u001b[00m\r\n", + "│   ├── \u001b[01;32mimage_560395551296_CLEAN.mp4\u001b[00m\r\n", + "│   ├── \u001b[01;32mimage_595115042480_CLEAN.mp4\u001b[00m\r\n", + "│   ├── \u001b[01;32mimage_620422280751_CLEAN.mp4\u001b[00m\r\n", + "│   ├── \u001b[01;32mimage_6692463753591_CLEAN.mp4\u001b[00m\r\n", + "│   ├── \u001b[01;32mimage_703682641552_CLEAN.mp4\u001b[00m\r\n", + "│   ├── \u001b[01;32mimage_706555992698_CLEAN.mp4\u001b[00m\r\n", + "│   ├── \u001b[01;32mimage_740584633467_CLEAN.mp4\u001b[00m\r\n", + "│   ├── \u001b[01;32mimage_931984558757_CLEAN.mp4\u001b[00m\r\n", + "│   ├── \u001b[01;32mimage_9367839490019_CLEAN.mp4\u001b[00m\r\n", + "│   ├── \u001b[01;32mimage_9401889534225_CLEAN.mp4\u001b[00m\r\n", + "│   ├── \u001b[01;32mimage_987146487434_CLEAN.mp4\u001b[00m\r\n", + "│   ├── \u001b[01;32mimage_9970708112236_CLEAN.mp4\u001b[00m\r\n", + "│   ├── \u001b[01;32mPOCUSAI-Phase1TestData-KitwareDukeAssessment.xlsx\u001b[00m\r\n", + "│   └── \u001b[01;32mTest dataset - Phase 1.zip\u001b[00m\r\n", + "├── \u001b[01;32mREADME.md\u001b[00m\r\n", + "├── \u001b[01;32mresults_stats\u001b[00m\r\n", + "├── \u001b[01;34mTestingData\u001b[00m\r\n", + "│   ├── \u001b[01;34mBAMC-PTXNoSliding\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4\u001b[00m\r\n", + "│   │   └── \u001b[01;32mimage_426794579576_CLEAN.mp4\u001b[00m\r\n", + "│   ├── \u001b[01;34mBAMC-PTXNoSliding-Annotations\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00001-f00005.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00002-f00010.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00002-f00010.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00002-f00010.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00003-f00017.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00003-f00017.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00003-f00017.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00005-f00026.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00005-f00026.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00005-f00026.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00006-f00033.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00006-f00033.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00006-f00033.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00008-f00057.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00008-f00057.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00008-f00057.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00001-f00004.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00001-f00004.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00001-f00004.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00002-f00007.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00002-f00007.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00002-f00007.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00003-f00011.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00003-f00011.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00003-f00011.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00004-f00014.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00004-f00014.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00004-f00014.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00005-f00019.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00005-f00019.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00005-f00019.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00006-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00006-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00006-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00007-f00033.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00007-f00033.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00007-f00033.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00008-f00037.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00008-f00037.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00008-f00037.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00009-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00009-f00040.mha\u001b[00m\r\n", + "│   │   └── \u001b[01;32mimage_426794579576_CLEAN.mp4-00009-f00040.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;34mBAMC-PTXNoSliding-Annotations-Linear\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.extruded-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.extruded-overlay-twoclass.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.inserted-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.interpolated-overlay-3class.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00001-f00005.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00001-f00005.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00002-f00010.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00002-f00010.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00002-f00010.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00002-f00010.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00003-f00017.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00003-f00017.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00003-f00017.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00003-f00017.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00005-f00026.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00005-f00026.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00005-f00026.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00005-f00026.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00006-f00033.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00006-f00033.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00006-f00033.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00006-f00033.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00007-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00008-f00057.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00008-f00057.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00008-f00057.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00008-f00057.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.extruded-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.extruded-overlay-twoclass.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.inserted-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.interpolated-overlay-3class.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00001-f00004.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00001-f00004.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00001-f00004.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00001-f00004.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00002-f00007.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00002-f00007.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00002-f00007.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00002-f00007.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00003-f00011.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00003-f00011.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00003-f00011.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00003-f00011.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00004-f00014.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00004-f00014.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00004-f00014.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00004-f00014.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00005-f00019.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00005-f00019.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00005-f00019.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00005-f00019.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00006-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00006-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00006-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00006-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00007-f00033.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00007-f00033.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00007-f00033.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00007-f00033.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00008-f00037.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00008-f00037.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00008-f00037.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00008-f00037.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00009-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00009-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_426794579576_CLEAN.mp4-00009-f00040.mha\u001b[00m\r\n", + "│   │   └── \u001b[01;32mimage_426794579576_CLEAN.mp4-00009-f00040.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;34mBAMC-PTXNoSliding-Linear\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_417221672548_CLEAN.mha\u001b[00m\r\n", + "│   │   └── \u001b[01;32mimage_426794579576_CLEAN.mha\u001b[00m\r\n", + "│   ├── \u001b[01;34mBAMC-PTXSliding\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mha\u001b[00m\r\n", + "│   │   └── \u001b[01;32mimage_3929217595322_clean.mov\u001b[00m\r\n", + "│   ├── \u001b[01;34mBAMC-PTXSliding-Annotations\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00001-f00007.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00001-f00007.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00001-f00007.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00002-f00009.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00002-f00009.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00002-f00009.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00003-f00013.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00003-f00013.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00003-f00013.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00004-f00017.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00004-f00017.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00004-f00017.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00005-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00005-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00006-f00045.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00006-f00045.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00006-f00045.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00007-f00047.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00007-f00047.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00007-f00047.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00008-f00049.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00008-f00049.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00008-f00049.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00009-f00054.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00009-f00054.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00009-f00054.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00001-f00009.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00001-f00009.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00001-f00009.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00002-f00018.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00002-f00018.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00002-f00018.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00003-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00004-f00034.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00004-f00034.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00004-f00034.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00005-f00038.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00005-f00038.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00005-f00038.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00006-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00007-f00055.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00007-f00055.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00007-f00055.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00008-f00058.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00008-f00058.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00008-f00058.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00009-f00060.mha\u001b[00m\r\n", + "│   │   └── \u001b[01;32mimage_3929217595322_clean.mov-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;34mBAMC-PTXSliding-Annotations-Linear\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.extruded-overlay-twoclass.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.inserted-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.interpolated-overlay-3class.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00001-f00007.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00001-f00007.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00001-f00007.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00001-f00007.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00002-f00009.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00002-f00009.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00002-f00009.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00002-f00009.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00003-f00013.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00003-f00013.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00003-f00013.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00003-f00013.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00004-f00017.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00004-f00017.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00004-f00017.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00004-f00017.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00005-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00005-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00005-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00006-f00045.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00006-f00045.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00006-f00045.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00006-f00045.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00007-f00047.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00007-f00047.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00007-f00047.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00007-f00047.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00008-f00049.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00008-f00049.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00008-f00049.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00008-f00049.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00009-f00054.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00009-f00054.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00009-f00054.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3925135436261_clean.mov-00009-f00054.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.extruded-overlay-twoclass.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.inserted-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.interpolated-overlay-3class.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00001-f00009.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00001-f00009.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00001-f00009.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00001-f00009.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00002-f00018.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00002-f00018.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00002-f00018.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00002-f00018.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00003-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00003-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00004-f00034.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00004-f00034.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00004-f00034.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00004-f00034.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00005-f00038.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00005-f00038.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00005-f00038.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00005-f00038.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00006-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00006-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00007-f00055.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00007-f00055.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00007-f00055.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00007-f00055.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00008-f00058.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00008-f00058.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00008-f00058.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00008-f00058.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mimage_3929217595322_clean.mov-00009-f00060.mha\u001b[00m\r\n", + "│   │   └── \u001b[01;32mimage_3929217595322_clean.mov-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   └── \u001b[01;34mBAMC-PTXSliding-Linear\u001b[00m\r\n", + "│   ├── \u001b[01;32mimage_3925135436261_clean.mha\u001b[00m\r\n", + "│   └── \u001b[01;32mimage_3929217595322_clean.mha\u001b[00m\r\n", + "├── \u001b[01;34mTrainingData\u001b[00m\r\n", + "│   ├── \u001b[01;34mArchive\u001b[00m\r\n", + "│   │   └── \u001b[01;34mPTX\u001b[00m\r\n", + "│   │   ├── \u001b[01;32ma1lb.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32ma1l.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32ma1.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32ma4lb.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32ma4l.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32ma4.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32ma5lb.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32ma5l.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32ma5.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32ma6lb.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32ma6l.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32ma6.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mdoAll\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mReadme.txt\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mReadme.txt~\u001b[00m\r\n", + "│   │   └── \u001b[01;32mt.mha\u001b[00m\r\n", + "│   ├── \u001b[01;34mAR-UNet\u001b[00m\r\n", + "│   │   ├── \u001b[01;34mBackup\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;34mAnnotations_from_Sean\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;34mAnnotations on Set 1\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00002-f00012.boxes.json\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00002-f00012.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00003-f00019.boxes.json\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00003-f00019.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00005-f00034.boxes.json\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00005-f00034.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00007-f00052.boxes.json\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00007-f00052.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00008-f00056.boxes.json\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00008-f00056.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00001-f00005.boxes.json\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00002-f00009.boxes.json\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00002-f00009.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00003-f00019.boxes.json\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00003-f00019.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00005-f00033.boxes.json\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00005-f00033.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00007-f00051.boxes.json\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00007-f00051.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00008-f00054.boxes.json\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00008-f00054.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00009-f00059.boxes.json\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00009-f00059.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00001-f00013.boxes.json\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00001-f00013.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00002-f00017.boxes.json\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00002-f00017.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00004-f00033.boxes.json\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00004-f00033.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00005-f00041.boxes.json\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00005-f00041.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00006-f00048.boxes.json\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00006-f00048.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00007-f00052.boxes.json\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00007-f00052.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00008-f00055.boxes.json\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00008-f00055.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00001-f00010.boxes.json\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00001-f00010.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00002-f00017.boxes.json\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00002-f00017.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00004-f00028.boxes.json\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00004-f00028.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00005-f00032.boxes.json\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00005-f00032.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00006-f00036.boxes.json\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00006-f00036.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00007-f00041.boxes.json\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00007-f00041.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00008-f00059.boxes.json\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00008-f00059.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00001-f00009.boxes.json\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00001-f00009.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00002-f00015.boxes.json\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00002-f00015.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00003-f00018.boxes.json\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00003-f00018.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00005-f00037.boxes.json\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00005-f00037.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   │   │   └── \u001b[01;32mimage_1543571117118_clean.mp4-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + "│   │   │   │   └── \u001b[01;34mLinear\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;34malready_annotated_images\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00000.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00001.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00002.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00003.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00004.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00005.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00006.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00007.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00008.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00009.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00000.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00001.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00002.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00003.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00004.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00005.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00006.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00007.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00008.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00009.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-grep-7431.mp4-00000.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-grep-7431.mp4-00001.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-grep-7431.mp4-00002.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-grep-7431.mp4-00003.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + "│   │   │   │   │   └── \u001b[01;34mpngs\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00000.png\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00001.png\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00002.png\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00003.png\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00004.png\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00005.png\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00006.png\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00007.png\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00008.png\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00009.png\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00000.png\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00001.png\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00002.png\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00003.png\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00004.png\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00005.png\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00006.png\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00007.png\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00008.png\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00009.png\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-grep-7431.mp4-00000.png\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-grep-7431.mp4-00001.png\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-grep-7431.mp4-00002.png\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-grep-7431.mp4-00003.png\u001b[00m\r\n", + "│   │   │   │   │   └── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;34mannotations\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00000.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00001.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00002.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00003.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00004.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00005.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00006.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00007.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00008.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00009.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00000.boxes.json\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00000.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00001.boxes.json\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00001.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00002.boxes.json\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00002.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00003.boxes.json\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00003.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00004.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00005.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00006.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00007.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00008.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00009.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-grep-7431.mp4-00000.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-grep-7431.mp4-00001.boxes.json\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-grep-7431.mp4-00001.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-grep-7431.mp4-00002.boxes.json\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-grep-7431.mp4-00002.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-grep-7431.mp4-00003.boxes.json\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mCov-grep-7431.mp4-00003.overlay.mha\u001b[00m\r\n", + "│   │   │   │   │   └── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + "│   │   │   │   └── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;34mArchive\u001b[00m\r\n", + "│   │   │   │   └── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;34mLung2DData\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00000.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00001.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00002.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00003.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00004.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00005.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00006.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00007.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00008.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00009.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00000.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00001.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00002.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00003.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00004.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00005.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00006.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00007.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00008.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00009.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov_emdocs_vid2.gif-00000.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov_emdocs_vid2.gif-00001.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov_emdocs_vid2.gif-00002.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov_emdocs_vid2.gif-00003.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov_emdocs_vid2.gif-00004.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov_emdocs_vid2.gif-00005.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov_emdocs_vid2.gif-00006.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov_emdocs_vid2.gif-00007.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov_emdocs_vid2.gif-00008.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov_emdocs_vid2.gif-00009.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-grep-7431.mp4-00000.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-grep-7431.mp4-00001.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-grep-7431.mp4-00002.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-grep-7431.mp4-00003.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-grep-7431.mp4-00004.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-grep-7431.mp4-00005.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-grep-7431.mp4-00006.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-grep-7431.mp4-00007.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-grep-7431.mp4-00008.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-grep-7431.mp4-00009.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-grep-7432.mp4-00000.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-grep-7432.mp4-00001.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-grep-7432.mp4-00002.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-grep-7432.mp4-00003.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-grep-7432.mp4-00004.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-grep-7432.mp4-00005.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-grep-7432.mp4-00006.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-grep-7432.mp4-00007.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-grep-7432.mp4-00008.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-grep-7432.mp4-00009.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-grep-7500.mp4-00000.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-grep-7500.mp4-00001.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-grep-7500.mp4-00002.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-grep-7500.mp4-00003.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-grep-7500.mp4-00004.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-grep-7500.mp4-00005.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-grep-7500.mp4-00006.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-grep-7500.mp4-00007.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-grep-7500.mp4-00008.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-grep-7500.mp4-00009.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov_linear_abrams_2020_v1.mp4-00000.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov_linear_abrams_2020_v1.mp4-00001.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov_linear_abrams_2020_v1.mp4-00002.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov_linear_abrams_2020_v1.mp4-00003.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov_linear_abrams_2020_v1.mp4-00004.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov_linear_abrams_2020_v1.mp4-00005.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov_linear_abrams_2020_v1.mp4-00006.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov_linear_abrams_2020_v1.mp4-00007.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov_linear_abrams_2020_v1.mp4-00008.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov_linear_abrams_2020_v1.mp4-00009.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mdoAll\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mdoAll~\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mPneu_prospective_file3.mp4-00000.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mPneu_prospective_file3.mp4-00001.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mPneu_prospective_file3.mp4-00002.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mPneu_prospective_file3.mp4-00003.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mPneu_prospective_file3.mp4-00004.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mPneu_prospective_file3.mp4-00005.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mPneu_prospective_file3.mp4-00006.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mPneu_prospective_file3.mp4-00007.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mPneu_prospective_file3.mp4-00008.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mPneu-Youtube-start20sec.mp4-00000.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mPneu-Youtube-start20sec.mp4-00001.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mPneu-Youtube-start20sec.mp4-00002.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mPneu-Youtube-start20sec.mp4-00003.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mPneu-Youtube-start20sec.mp4-00004.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mPneu-Youtube-start20sec.mp4-00005.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mPneu-Youtube-start20sec.mp4-00006.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mPneu-Youtube-start20sec.mp4-00007.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mPneu-Youtube-start20sec.mp4-00008.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mPneu-Youtube-start20sec.mp4-00009.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-grep-normal-alines-original.mp4-00000.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-grep-normal-alines-original.mp4-00001.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-grep-normal-alines-original.mp4-00002.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-grep-normal-alines-original.mp4-00003.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-grep-normal-alines-original.mp4-00004.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-grep-normal-alines-original.mp4-00005.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-grep-normal-alines-original.mp4-00006.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-grep-normal-alines-original.mp4-00007.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-grep-normal-alines-original.mp4-00008.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-grep-normal-alines-original.mp4-00009.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg_Image_181206_crop.mp4-00000.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg_Image_181206_crop.mp4-00001.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg_Image_181206_crop.mp4-00002.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg_Image_181206_crop.mp4-00003.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg_Image_181206_crop.mp4-00004.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg_Image_181206_crop.mp4-00005.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg_Image_181206_crop.mp4-00006.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg_Image_181206_crop.mp4-00007.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg_Image_181206_crop.mp4-00008.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg_Image_181206_crop.mp4-00009.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg_Image_18122_crop.mp4-00000.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg_Image_18122_crop.mp4-00001.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg_Image_18122_crop.mp4-00002.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg_Image_18122_crop.mp4-00003.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg_Image_18122_crop.mp4-00004.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg_Image_18122_crop.mp4-00005.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg_Image_18122_crop.mp4-00006.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg_Image_18122_crop.mp4-00007.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg_Image_18122_crop.mp4-00008.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg_Image_18122_crop.mp4-00009.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg_Image_181432_crop.mp4-00000.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg_Image_181432_crop.mp4-00001.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg_Image_181432_crop.mp4-00002.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg_Image_181432_crop.mp4-00003.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg_Image_181432_crop.mp4-00004.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg_Image_181432_crop.mp4-00005.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg_Image_181432_crop.mp4-00006.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg_Image_181432_crop.mp4-00007.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg_Image_181432_crop.mp4-00008.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg_Image_181432_crop.mp4-00009.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-minimalmovement.mp4-00000.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-minimalmovement.mp4-00001.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-minimalmovement.mp4-00002.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-minimalmovement.mp4-00003.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-minimalmovement.mp4-00004.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-minimalmovement.mp4-00005.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-minimalmovement.mp4-00006.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-minimalmovement.mp4-00007.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-minimalmovement.mp4-00008.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-minimalmovement.mp4-00009.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-nephropocus.mp4-00000.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-nephropocus.mp4-00001.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-nephropocus.mp4-00002.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-nephropocus.mp4-00003.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-nephropocus.mp4-00004.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-nephropocus.mp4-00005.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-nephropocus.mp4-00006.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-nephropocus.mp4-00007.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-nephropocus.mp4-00008.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-nephropocus.mp4-00009.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-NormalLung.mp4-00000.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-NormalLung.mp4-00001.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-NormalLung.mp4-00002.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-NormalLung.mp4-00003.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-NormalLung.mp4-00004.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-NormalLung.mp4-00005.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-NormalLung.mp4-00006.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-NormalLung.mp4-00007.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-NormalLung.mp4-00008.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-NormalLung.mp4-00009.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-Youtube-start20sec.mp4-00000.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-Youtube-start20sec.mp4-00001.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-Youtube-start20sec.mp4-00002.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-Youtube-start20sec.mp4-00003.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-Youtube-start20sec.mp4-00004.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-Youtube-start20sec.mp4-00005.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-Youtube-start20sec.mp4-00006.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-Youtube-start20sec.mp4-00007.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-Youtube-start20sec.mp4-00008.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-Youtube-start20sec.mp4-00009.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-Youtube-Video_902_Lung_POCUS-left.mp4-00000.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-Youtube-Video_902_Lung_POCUS-left.mp4-00001.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-Youtube-Video_902_Lung_POCUS-left.mp4-00002.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-Youtube-Video_902_Lung_POCUS-left.mp4-00003.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-Youtube-Video_902_Lung_POCUS-left.mp4-00004.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-Youtube-Video_902_Lung_POCUS-left.mp4-00005.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-Youtube-Video_902_Lung_POCUS-left.mp4-00006.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-Youtube-Video_902_Lung_POCUS-left.mp4-00007.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-Youtube-Video_902_Lung_POCUS-left.mp4-00008.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-Youtube-Video_902_Lung_POCUS-left.mp4-00009.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mt.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mVir_liftl_H1N1_case2_clip2.mp4-00000.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mVir_liftl_H1N1_case2_clip2.mp4-00001.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mVir_liftl_H1N1_case2_clip2.mp4-00002.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mVir_liftl_H1N1_case2_clip2.mp4-00003.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mVir_prospective_file1.mp4-00000.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mVir_prospective_file1.mp4-00001.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mVir_prospective_file1.mp4-00002.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mVir_prospective_file1.mp4-00003.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mVir_prospective_file1.mp4-00004.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mVir_prospective_file1.mp4-00005.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mVir_prospective_file1.mp4-00006.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mVir_prospective_file1.mp4-00007.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mVir_prospective_file1.mp4-00008.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mVir_prospective_file1.mp4-00009.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mVir_prospective_file2.mp4-00000.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mVir_prospective_file2.mp4-00001.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mVir_prospective_file2.mp4-00002.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mVir_prospective_file2.mp4-00003.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mVir_prospective_file2.mp4-00004.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mVir_prospective_file2.mp4-00005.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mVir_prospective_file2.mp4-00006.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mVir_prospective_file2.mp4-00007.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mVir_prospective_file2.mp4-00008.mha\u001b[00m\r\n", + "│   │   │   │   └── \u001b[01;32mVir_prospective_file2.mp4-00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;34mmanual-segmentation-windows-ImageViewer\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;34malready_annotated_images\u001b[00m\r\n", + "│   │   │   │   │   └── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mannotate_with_ImageViewer.bat\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;34mannotations\u001b[00m\r\n", + "│   │   │   │   │   └── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;34mimages_to_be_annotated\u001b[00m\r\n", + "│   │   │   │   │   └── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;34mImageViewer\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mD3Dcompiler_47.dll\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;34miconengines\u001b[00m\r\n", + "│   │   │   │   │   │   ├── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + "│   │   │   │   │   │   └── \u001b[01;32mqsvgicon.dll\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;34mimageformats\u001b[00m\r\n", + "│   │   │   │   │   │   ├── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + "│   │   │   │   │   │   ├── \u001b[01;32mqgif.dll\u001b[00m\r\n", + "│   │   │   │   │   │   ├── \u001b[01;32mqicns.dll\u001b[00m\r\n", + "│   │   │   │   │   │   ├── \u001b[01;32mqico.dll\u001b[00m\r\n", + "│   │   │   │   │   │   ├── \u001b[01;32mqjpeg.dll\u001b[00m\r\n", + "│   │   │   │   │   │   ├── \u001b[01;32mqsvg.dll\u001b[00m\r\n", + "│   │   │   │   │   │   ├── \u001b[01;32mqtga.dll\u001b[00m\r\n", + "│   │   │   │   │   │   ├── \u001b[01;32mqtiff.dll\u001b[00m\r\n", + "│   │   │   │   │   │   ├── \u001b[01;32mqwbmp.dll\u001b[00m\r\n", + "│   │   │   │   │   │   └── \u001b[01;32mqwebp.dll\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mImageViewer.exe\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mImageViewer.exe.manifest\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mImageViewer.pdb\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mImageViewer.xml\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mlibEGL.dll\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mlibGLESv2.dll\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mopengl32sw.dll\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;34mplatforms\u001b[00m\r\n", + "│   │   │   │   │   │   ├── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + "│   │   │   │   │   │   └── \u001b[01;32mqwindows.dll\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mQt5Core.dll\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mQt5Gui.dll\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mQt5Svg.dll\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mQt5Widgets.dll\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;34mstyles\u001b[00m\r\n", + "│   │   │   │   │   │   ├── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + "│   │   │   │   │   │   └── \u001b[01;32mqwindowsvistastyle.dll\u001b[00m\r\n", + "│   │   │   │   │   └── \u001b[01;34mtranslations\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mqt_ar.qm\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mqt_bg.qm\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mqt_ca.qm\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mqt_cs.qm\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mqt_da.qm\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mqt_de.qm\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mqt_en.qm\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mqt_es.qm\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mqt_fi.qm\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mqt_fr.qm\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mqt_gd.qm\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mqt_he.qm\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mqt_hu.qm\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mqt_it.qm\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mqt_ja.qm\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mqt_ko.qm\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mqt_lv.qm\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mqt_pl.qm\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mqt_ru.qm\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mqt_sk.qm\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mqt_tr.qm\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mqt_uk.qm\u001b[00m\r\n", + "│   │   │   │   │   └── \u001b[01;32mqt_zh_TW.qm\u001b[00m\r\n", + "│   │   │   │   └── \u001b[01;32mREADME.md\u001b[00m\r\n", + "│   │   │   └── \u001b[01;34mmanual-segmentation-windows-ImageViewer-coviddata\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;34malready_annotated_images\u001b[00m\r\n", + "│   │   │   │   └── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mannotate_with_ImageViewer.bat\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;34mannotations\u001b[00m\r\n", + "│   │   │   │   └── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;34mimages_to_be_annotated\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00000.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00001.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00002.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00003.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00004.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00005.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00006.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00007.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00008.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00009.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00000.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00001.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00002.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00003.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00004.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00005.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00006.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00007.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00008.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00009.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov_emdocs_vid2.gif-00000.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov_emdocs_vid2.gif-00001.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov_emdocs_vid2.gif-00002.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov_emdocs_vid2.gif-00003.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov_emdocs_vid2.gif-00004.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov_emdocs_vid2.gif-00005.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov_emdocs_vid2.gif-00006.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov_emdocs_vid2.gif-00007.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov_emdocs_vid2.gif-00008.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov_emdocs_vid2.gif-00009.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-grep-7431.mp4-00000.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-grep-7431.mp4-00001.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-grep-7431.mp4-00002.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-grep-7431.mp4-00003.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-grep-7431.mp4-00004.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-grep-7431.mp4-00005.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-grep-7431.mp4-00006.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-grep-7431.mp4-00007.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-grep-7431.mp4-00008.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-grep-7431.mp4-00009.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-grep-7432.mp4-00000.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-grep-7432.mp4-00001.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-grep-7432.mp4-00002.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-grep-7432.mp4-00003.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-grep-7432.mp4-00004.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-grep-7432.mp4-00005.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-grep-7432.mp4-00006.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-grep-7432.mp4-00007.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-grep-7432.mp4-00008.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-grep-7432.mp4-00009.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-grep-7500.mp4-00000.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-grep-7500.mp4-00001.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-grep-7500.mp4-00002.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-grep-7500.mp4-00003.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-grep-7500.mp4-00004.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-grep-7500.mp4-00005.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-grep-7500.mp4-00006.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-grep-7500.mp4-00007.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-grep-7500.mp4-00008.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov-grep-7500.mp4-00009.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov_linear_abrams_2020_v1.mp4-00000.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov_linear_abrams_2020_v1.mp4-00001.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov_linear_abrams_2020_v1.mp4-00002.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov_linear_abrams_2020_v1.mp4-00003.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov_linear_abrams_2020_v1.mp4-00004.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov_linear_abrams_2020_v1.mp4-00005.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov_linear_abrams_2020_v1.mp4-00006.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov_linear_abrams_2020_v1.mp4-00007.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov_linear_abrams_2020_v1.mp4-00008.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mCov_linear_abrams_2020_v1.mp4-00009.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mPneu_prospective_file3.mp4-00000.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mPneu_prospective_file3.mp4-00001.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mPneu_prospective_file3.mp4-00002.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mPneu_prospective_file3.mp4-00003.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mPneu_prospective_file3.mp4-00004.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mPneu_prospective_file3.mp4-00005.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mPneu_prospective_file3.mp4-00006.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mPneu_prospective_file3.mp4-00007.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mPneu_prospective_file3.mp4-00008.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mPneu-Youtube-start20sec.mp4-00000.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mPneu-Youtube-start20sec.mp4-00001.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mPneu-Youtube-start20sec.mp4-00002.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mPneu-Youtube-start20sec.mp4-00003.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mPneu-Youtube-start20sec.mp4-00004.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mPneu-Youtube-start20sec.mp4-00005.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mPneu-Youtube-start20sec.mp4-00006.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mPneu-Youtube-start20sec.mp4-00007.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mPneu-Youtube-start20sec.mp4-00008.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mPneu-Youtube-start20sec.mp4-00009.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-grep-normal-alines-original.mp4-00000.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-grep-normal-alines-original.mp4-00001.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-grep-normal-alines-original.mp4-00002.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-grep-normal-alines-original.mp4-00003.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-grep-normal-alines-original.mp4-00004.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-grep-normal-alines-original.mp4-00005.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-grep-normal-alines-original.mp4-00006.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-grep-normal-alines-original.mp4-00007.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-grep-normal-alines-original.mp4-00008.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-grep-normal-alines-original.mp4-00009.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg_Image_181206_crop.mp4-00000.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg_Image_181206_crop.mp4-00001.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg_Image_181206_crop.mp4-00002.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg_Image_181206_crop.mp4-00003.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg_Image_181206_crop.mp4-00004.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg_Image_181206_crop.mp4-00005.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg_Image_181206_crop.mp4-00006.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg_Image_181206_crop.mp4-00007.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg_Image_181206_crop.mp4-00008.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg_Image_181206_crop.mp4-00009.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg_Image_18122_crop.mp4-00000.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg_Image_18122_crop.mp4-00001.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg_Image_18122_crop.mp4-00002.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg_Image_18122_crop.mp4-00003.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg_Image_18122_crop.mp4-00004.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg_Image_18122_crop.mp4-00005.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg_Image_18122_crop.mp4-00006.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg_Image_18122_crop.mp4-00007.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg_Image_18122_crop.mp4-00008.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg_Image_18122_crop.mp4-00009.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg_Image_181432_crop.mp4-00000.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg_Image_181432_crop.mp4-00001.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg_Image_181432_crop.mp4-00002.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg_Image_181432_crop.mp4-00003.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg_Image_181432_crop.mp4-00004.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg_Image_181432_crop.mp4-00005.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg_Image_181432_crop.mp4-00006.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg_Image_181432_crop.mp4-00007.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg_Image_181432_crop.mp4-00008.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg_Image_181432_crop.mp4-00009.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-minimalmovement.mp4-00000.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-minimalmovement.mp4-00001.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-minimalmovement.mp4-00002.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-minimalmovement.mp4-00003.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-minimalmovement.mp4-00004.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-minimalmovement.mp4-00005.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-minimalmovement.mp4-00006.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-minimalmovement.mp4-00007.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-minimalmovement.mp4-00008.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-minimalmovement.mp4-00009.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-nephropocus.mp4-00000.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-nephropocus.mp4-00001.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-nephropocus.mp4-00002.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-nephropocus.mp4-00003.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-nephropocus.mp4-00004.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-nephropocus.mp4-00005.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-nephropocus.mp4-00006.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-nephropocus.mp4-00007.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-nephropocus.mp4-00008.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-nephropocus.mp4-00009.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-NormalLung.mp4-00000.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-NormalLung.mp4-00001.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-NormalLung.mp4-00002.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-NormalLung.mp4-00003.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-NormalLung.mp4-00004.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-NormalLung.mp4-00005.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-NormalLung.mp4-00006.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-NormalLung.mp4-00007.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-NormalLung.mp4-00008.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-NormalLung.mp4-00009.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-Youtube-start20sec.mp4-00000.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-Youtube-start20sec.mp4-00001.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-Youtube-start20sec.mp4-00002.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-Youtube-start20sec.mp4-00003.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-Youtube-start20sec.mp4-00004.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-Youtube-start20sec.mp4-00005.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-Youtube-start20sec.mp4-00006.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-Youtube-start20sec.mp4-00007.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-Youtube-start20sec.mp4-00008.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-Youtube-start20sec.mp4-00009.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-Youtube-Video_902_Lung_POCUS-left.mp4-00000.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-Youtube-Video_902_Lung_POCUS-left.mp4-00001.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-Youtube-Video_902_Lung_POCUS-left.mp4-00002.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-Youtube-Video_902_Lung_POCUS-left.mp4-00003.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-Youtube-Video_902_Lung_POCUS-left.mp4-00004.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-Youtube-Video_902_Lung_POCUS-left.mp4-00005.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-Youtube-Video_902_Lung_POCUS-left.mp4-00006.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-Youtube-Video_902_Lung_POCUS-left.mp4-00007.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-Youtube-Video_902_Lung_POCUS-left.mp4-00008.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mReg-Youtube-Video_902_Lung_POCUS-left.mp4-00009.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mVir_liftl_H1N1_case2_clip2.mp4-00000.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mVir_liftl_H1N1_case2_clip2.mp4-00001.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mVir_liftl_H1N1_case2_clip2.mp4-00002.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mVir_liftl_H1N1_case2_clip2.mp4-00003.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mVir_prospective_file1.mp4-00000.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mVir_prospective_file1.mp4-00001.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mVir_prospective_file1.mp4-00002.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mVir_prospective_file1.mp4-00003.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mVir_prospective_file1.mp4-00004.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mVir_prospective_file1.mp4-00005.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mVir_prospective_file1.mp4-00006.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mVir_prospective_file1.mp4-00007.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mVir_prospective_file1.mp4-00008.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mVir_prospective_file1.mp4-00009.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mVir_prospective_file2.mp4-00000.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mVir_prospective_file2.mp4-00001.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mVir_prospective_file2.mp4-00002.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mVir_prospective_file2.mp4-00003.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mVir_prospective_file2.mp4-00004.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mVir_prospective_file2.mp4-00005.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mVir_prospective_file2.mp4-00006.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mVir_prospective_file2.mp4-00007.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mVir_prospective_file2.mp4-00008.mha\u001b[00m\r\n", + "│   │   │   │   └── \u001b[01;32mVir_prospective_file2.mp4-00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;34mImageViewer\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mD3Dcompiler_47.dll\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;34miconengines\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + "│   │   │   │   │   └── \u001b[01;32mqsvgicon.dll\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;34mimageformats\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mqgif.dll\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mqicns.dll\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mqico.dll\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mqjpeg.dll\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mqsvg.dll\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mqtga.dll\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mqtiff.dll\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mqwbmp.dll\u001b[00m\r\n", + "│   │   │   │   │   └── \u001b[01;32mqwebp.dll\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mImageViewer.exe\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mImageViewer.exe.manifest\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mImageViewer.pdb\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mImageViewer.xml\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mlibEGL.dll\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mlibGLESv2.dll\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mopengl32sw.dll\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;34mplatforms\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + "│   │   │   │   │   └── \u001b[01;32mqwindows.dll\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mQt5Core.dll\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mQt5Gui.dll\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mQt5Svg.dll\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mQt5Widgets.dll\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;34mstyles\u001b[00m\r\n", + "│   │   │   │   │   ├── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + "│   │   │   │   │   └── \u001b[01;32mqwindowsvistastyle.dll\u001b[00m\r\n", + "│   │   │   │   └── \u001b[01;34mtranslations\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mqt_ar.qm\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mqt_bg.qm\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mqt_ca.qm\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mqt_cs.qm\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mqt_da.qm\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mqt_de.qm\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mqt_en.qm\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mqt_es.qm\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mqt_fi.qm\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mqt_fr.qm\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mqt_gd.qm\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mqt_he.qm\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mqt_hu.qm\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mqt_it.qm\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mqt_ja.qm\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mqt_ko.qm\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mqt_lv.qm\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mqt_pl.qm\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mqt_ru.qm\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mqt_sk.qm\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mqt_tr.qm\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mqt_uk.qm\u001b[00m\r\n", + "│   │   │   │   └── \u001b[01;32mqt_zh_TW.qm\u001b[00m\r\n", + "│   │   │   └── \u001b[01;32mREADME.md\u001b[00m\r\n", + "│   │   ├── \u001b[01;34mBAMC-PTXNoSliding\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov\u001b[00m\r\n", + "│   │   │   └── \u001b[01;32mimage_642169070951_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;34mBAMC-PTXNoSliding-Annotations\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;34m2021.09.24\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00002-f00012.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00002-f00012.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00003-f00019.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00003-f00019.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00005-f00034.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00005-f00034.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00007-f00052.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00007-f00052.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00008-f00056.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00008-f00056.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00001-f00005.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00002-f00009.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00002-f00009.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00003-f00019.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00003-f00019.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00005-f00033.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00005-f00033.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00007-f00051.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00007-f00051.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00008-f00054.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00008-f00054.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00009-f00059.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00009-f00059.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00001-f00013.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00001-f00013.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00002-f00017.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00002-f00017.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00004-f00033.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00004-f00033.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00005-f00041.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00005-f00041.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00006-f00048.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00006-f00048.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00007-f00052.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00007-f00052.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00008-f00055.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00008-f00055.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00001-f00010.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00001-f00010.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00002-f00017.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00002-f00017.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00004-f00028.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00004-f00028.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00005-f00032.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00005-f00032.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00006-f00036.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00006-f00036.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00007-f00041.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00007-f00041.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00008-f00059.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00008-f00059.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00001-f00009.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00001-f00009.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00002-f00015.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00002-f00015.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00003-f00018.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00003-f00018.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00005-f00037.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00005-f00037.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00007-f00053.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00007-f00053.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00008-f00055.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00008-f00055.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00009-f00057.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00009-f00057.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00001-f00005.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00002-f00015.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00002-f00015.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00004-f00033.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00004-f00033.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00005-f00036.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00005-f00036.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00007-f00056.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00007-f00056.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00008-f00059.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00008-f00059.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00001-f00008.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00001-f00008.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00002-f00011.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00002-f00011.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00003-f00015.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00003-f00015.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00004-f00019.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00004-f00019.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00005-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00006-f00048.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00006-f00048.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00007-f00053.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00007-f00053.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00008-f00058.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00008-f00058.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00001-f00007.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00001-f00007.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00002-f00009.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00002-f00009.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00003-f00019.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00003-f00019.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00005-f00031.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00005-f00031.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00006-f00034.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00006-f00034.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00007-f00037.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00007-f00037.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00008-f00039.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00008-f00039.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00009-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00001-f00005.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00002-f00007.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00002-f00007.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00003-f00013.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00003-f00013.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00005-f00028.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00005-f00028.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00006-f00033.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00006-f00033.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00008-f00050.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00008-f00050.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00009-f00055.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00009-f00055.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00001-f00003.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00001-f00003.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00002-f00005.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00002-f00005.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00003-f00007.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00003-f00007.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00004-f00017.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00004-f00017.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00005-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00006-f00030.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00006-f00030.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00007-f00034.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00007-f00034.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00008-f00039.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00008-f00039.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00009-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00009-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mImage_262499828648_clean (1).mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mImage_262499828648_clean (1).mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mImage_262499828648_clean (1).mp4-00001-f00004.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mImage_262499828648_clean (1).mp4-00001-f00004.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mImage_262499828648_clean (1).mp4-00002-f00006.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mImage_262499828648_clean (1).mp4-00002-f00006.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mImage_262499828648_clean (1).mp4-00003-f00011.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mImage_262499828648_clean (1).mp4-00003-f00011.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mImage_262499828648_clean (1).mp4-00004-f00017.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mImage_262499828648_clean (1).mp4-00004-f00017.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mImage_262499828648_clean (1).mp4-00005-f00024.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mImage_262499828648_clean (1).mp4-00005-f00024.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mImage_262499828648_clean (1).mp4-00006-f00045.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mImage_262499828648_clean (1).mp4-00006-f00045.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mImage_262499828648_clean (1).mp4-00007-f00048.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mImage_262499828648_clean (1).mp4-00007-f00048.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mImage_262499828648_clean (1).mp4-00008-f00056.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mImage_262499828648_clean (1).mp4-00008-f00056.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mImage_262499828648_clean (1).mp4-00009-f00063.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mImage_262499828648_clean (1).mp4-00009-f00063.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00001-f00004.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00001-f00004.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00002-f00006.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00002-f00006.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00003-f00011.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00003-f00011.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00004-f00017.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00004-f00017.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00005-f00024.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00005-f00024.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00006-f00045.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00006-f00045.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00007-f00048.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00007-f00048.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00008-f00056.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00008-f00056.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00009-f00063.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00009-f00063.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_267456908021_clean (1).mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_267456908021_clean (1).mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_267456908021_clean (1).mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_267456908021_clean (1).mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_267456908021_clean (1).mp4-00002-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_267456908021_clean (1).mp4-00002-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_267456908021_clean (1).mp4-00003-f00030.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_267456908021_clean (1).mp4-00003-f00030.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_267456908021_clean (1).mp4-00004-f00033.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_267456908021_clean (1).mp4-00004-f00033.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_267456908021_clean (1).mp4-00005-f00036.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_267456908021_clean (1).mp4-00005-f00036.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_267456908021_clean (1).mp4-00006-f00039.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_267456908021_clean (1).mp4-00006-f00039.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_267456908021_clean (1).mp4-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_267456908021_clean (1).mp4-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_267456908021_clean (1).mp4-00008-f00049.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_267456908021_clean (1).mp4-00008-f00049.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_267456908021_clean (1).mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_267456908021_clean (1).mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00002-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00002-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00003-f00030.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00003-f00030.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00004-f00033.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00004-f00033.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00005-f00036.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00005-f00036.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00006-f00039.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00006-f00039.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00008-f00049.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00008-f00049.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00001-f00009.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00001-f00009.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00002-f00017.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00002-f00017.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00004-f00030.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00004-f00030.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00005-f00034.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00005-f00034.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00006-f00039.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00006-f00039.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00008-f00052.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00008-f00052.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00009-f00058.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00009-f00058.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN (1).mp4-00002-f00016.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN (1).mp4-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN (1).mp4-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN (1).mp4-00004-f00030.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN (1).mp4-00004-f00030.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN (1).mp4-00005-f00034.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN (1).mp4-00005-f00034.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN (1).mp4-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN (1).mp4-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN (1).mp4-00007-f00049.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN (1).mp4-00007-f00049.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN (1).mp4-00008-f00054.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN (1).mp4-00008-f00054.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00001-f00009.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00001-f00009.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00002-f00016.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00002-f00016.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00004-f00030.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00004-f00030.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00005-f00034.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00005-f00034.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00007-f00049.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00007-f00049.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00008-f00054.boxes.json\u001b[00m\r\n", + "│   │   │   │   └── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00008-f00054.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;34m2021.09.24-Cleaned\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00002-f00012.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00002-f00012.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00003-f00019.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00003-f00019.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00005-f00034.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00005-f00034.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00007-f00052.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00007-f00052.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00008-f00056.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00008-f00056.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00001-f00005.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00002-f00009.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00002-f00009.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00003-f00019.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00003-f00019.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00005-f00033.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00005-f00033.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00007-f00051.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00007-f00051.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00008-f00054.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00008-f00054.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00009-f00059.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00009-f00059.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00001-f00013.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00001-f00013.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00002-f00017.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00002-f00017.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00004-f00033.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00004-f00033.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00005-f00041.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00005-f00041.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00006-f00048.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00006-f00048.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00007-f00052.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00007-f00052.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00008-f00055.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00008-f00055.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00001-f00010.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00001-f00010.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00002-f00017.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00002-f00017.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00004-f00028.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00004-f00028.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00005-f00032.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00005-f00032.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00006-f00036.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00006-f00036.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00007-f00041.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00007-f00041.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00008-f00059.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00008-f00059.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00001-f00009.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00001-f00009.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00002-f00015.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00002-f00015.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00003-f00018.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00003-f00018.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00005-f00037.boxes.json\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00005-f00037.overlay.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   │   └── \u001b[01;32mimage_1543571117118_clean.mp4-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00002-f00012.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00002-f00012.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00002-f00012.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00003-f00019.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00003-f00019.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00003-f00019.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00005-f00034.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00005-f00034.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00005-f00034.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00006-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00007-f00052.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00007-f00052.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00007-f00052.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00008-f00056.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00008-f00056.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00008-f00056.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00001-f00005.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00002-f00009.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00002-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00002-f00009.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00003-f00019.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00003-f00019.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00003-f00019.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00005-f00033.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00005-f00033.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00005-f00033.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00006-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00007-f00051.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00007-f00051.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00007-f00051.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00008-f00054.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00008-f00054.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00008-f00054.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00009-f00059.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00009-f00059.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00009-f00059.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00001-f00013.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00001-f00013.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00001-f00013.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00002-f00017.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00002-f00017.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00002-f00017.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00003-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00004-f00033.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00004-f00033.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00004-f00033.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00005-f00041.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00005-f00041.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00005-f00041.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00006-f00048.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00006-f00048.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00006-f00048.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00007-f00052.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00007-f00052.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00007-f00052.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00008-f00055.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00008-f00055.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00008-f00055.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00001-f00010.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00001-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00001-f00010.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00002-f00017.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00002-f00017.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00002-f00017.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00003-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00004-f00028.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00004-f00028.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00004-f00028.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00005-f00032.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00005-f00032.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00005-f00032.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00006-f00036.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00006-f00036.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00006-f00036.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00007-f00041.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00007-f00041.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00007-f00041.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00008-f00059.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00008-f00059.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00008-f00059.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00001-f00009.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00001-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00001-f00009.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00002-f00015.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00002-f00015.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00002-f00015.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00003-f00018.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00003-f00018.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00003-f00018.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00005-f00037.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00005-f00037.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00005-f00037.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00006-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00007-f00053.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00007-f00053.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00007-f00053.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00008-f00055.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00008-f00055.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00008-f00055.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00009-f00057.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00009-f00057.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00009-f00057.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00001-f00005.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00002-f00015.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00002-f00015.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00002-f00015.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00003-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00004-f00033.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00004-f00033.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00004-f00033.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00005-f00036.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00005-f00036.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00005-f00036.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00006-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00007-f00056.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00007-f00056.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00007-f00056.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00008-f00059.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00008-f00059.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00008-f00059.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00001-f00008.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00001-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00001-f00008.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00002-f00011.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00002-f00011.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00002-f00011.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00003-f00015.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00003-f00015.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00003-f00015.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00004-f00019.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00004-f00019.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00004-f00019.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00005-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00005-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00006-f00048.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00006-f00048.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00006-f00048.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00007-f00053.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00007-f00053.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00007-f00053.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00008-f00058.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00008-f00058.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00008-f00058.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00001-f00007.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00001-f00007.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00001-f00007.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00002-f00009.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00002-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00002-f00009.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00003-f00019.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00003-f00019.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00003-f00019.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00005-f00031.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00005-f00031.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00005-f00031.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00006-f00034.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00006-f00034.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00006-f00034.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00007-f00037.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00007-f00037.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00007-f00037.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00008-f00039.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00008-f00039.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00008-f00039.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00009-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00009-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00009-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00001-f00005.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00002-f00007.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00002-f00007.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00002-f00007.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00003-f00013.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00003-f00013.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00003-f00013.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00005-f00028.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00005-f00028.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00005-f00028.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00006-f00033.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00006-f00033.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00006-f00033.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00008-f00050.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00008-f00050.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00008-f00050.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00009-f00055.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00009-f00055.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00009-f00055.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00001-f00003.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00001-f00003.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00001-f00003.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00002-f00005.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00002-f00005.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00002-f00005.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00003-f00007.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00003-f00007.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00003-f00007.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00004-f00017.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00004-f00017.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00004-f00017.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00005-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00005-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00006-f00030.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00006-f00030.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00006-f00030.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00007-f00034.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00007-f00034.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00007-f00034.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00008-f00039.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00008-f00039.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00008-f00039.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00009-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00009-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00009-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00001-f00004.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00001-f00004.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00001-f00004.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00002-f00006.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00002-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00002-f00006.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00003-f00011.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00003-f00011.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00003-f00011.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00004-f00017.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00004-f00017.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00004-f00017.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00005-f00024.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00005-f00024.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00005-f00024.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00006-f00045.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00006-f00045.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00006-f00045.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00007-f00048.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00007-f00048.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00007-f00048.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00008-f00056.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00008-f00056.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00008-f00056.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00009-f00063.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00009-f00063.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00009-f00063.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00002-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00002-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00002-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00003-f00030.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00003-f00030.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00003-f00030.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00004-f00033.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00004-f00033.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00004-f00033.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00005-f00036.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00005-f00036.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00005-f00036.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00006-f00039.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00006-f00039.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00006-f00039.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00008-f00049.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00008-f00049.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00008-f00049.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00001-f00009.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00001-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00001-f00009.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00002-f00017.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00002-f00017.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00002-f00017.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00003-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00004-f00030.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00004-f00030.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00004-f00030.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00005-f00034.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00005-f00034.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00005-f00034.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00006-f00039.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00006-f00039.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00006-f00039.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00008-f00052.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00008-f00052.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00008-f00052.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00009-f00058.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00009-f00058.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00009-f00058.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00001-f00009.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00001-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00001-f00009.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00002-f00016.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00002-f00016.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00002-f00016.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00003-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00004-f00030.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00004-f00030.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00004-f00030.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00005-f00034.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00005-f00034.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00005-f00034.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00006-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00007-f00049.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00007-f00049.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00007-f00049.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00008-f00054.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00008-f00054.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00008-f00054.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00001-f00010.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00001-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00001-f00010.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00002-f00019.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00002-f00019.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00002-f00019.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00003-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00004-f00031.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00004-f00031.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00004-f00031.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00005-f00034.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00005-f00034.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00005-f00034.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00006-f00038.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00006-f00038.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00006-f00038.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00007-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00008-f00048.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00008-f00048.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00008-f00048.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00009-f00058.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00009-f00058.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00009-f00058.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00001-f00008.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00001-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00001-f00008.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00002-f00011.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00002-f00011.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00002-f00011.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00003-f00014.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00003-f00014.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00003-f00014.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00004-f00019.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00004-f00019.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00004-f00019.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00005-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00005-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00006-f00028.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00006-f00028.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00006-f00028.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00007-f00032.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00007-f00032.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00007-f00032.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00008-f00034.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00008-f00034.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00008-f00034.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00009-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00009-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00009-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00002-f00014.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00002-f00014.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00002-f00014.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00003-f00019.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00003-f00019.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00003-f00019.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00005-f00035.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00005-f00035.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00005-f00035.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00006-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00007-f00050.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00007-f00050.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00007-f00050.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00008-f00056.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00008-f00056.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00008-f00056.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00001-f00005.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00002-f00008.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00002-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00002-f00008.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00003-f00012.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00003-f00012.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00003-f00012.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00005-f00033.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00005-f00033.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00005-f00033.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00006-f00037.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00006-f00037.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00006-f00037.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00008-f00056.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00008-f00056.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00008-f00056.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00009-f00059.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00009-f00059.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00009-f00059.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00002-f00008.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00002-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00002-f00008.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00003-f00010.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00003-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00003-f00010.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00004-f00014.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00004-f00014.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00004-f00014.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00005-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00005-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00006-f00035.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00006-f00035.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00006-f00035.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00007-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00001-f00004.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00001-f00004.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00001-f00004.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00002-f00006.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00002-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00002-f00006.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00003-f00007.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00003-f00007.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00003-f00007.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00004-f00008.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00004-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00004-f00008.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00005-f00009.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00005-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00005-f00009.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00006-f00012.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00006-f00012.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00006-f00012.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00007-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00007-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00007-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00008-f00037.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00008-f00037.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00008-f00037.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00009-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00009-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00009-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00001-f00005.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00001-f00005.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00002-f00007.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00002-f00007.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00002-f00007.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00003-f00008.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00003-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00003-f00008.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00004-f00010.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00004-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00004-f00010.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00005-f00017.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00005-f00017.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00005-f00017.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00006-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00006-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00006-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00007-f00034.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00007-f00034.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00007-f00034.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00008-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00008-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00008-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00009-f00054.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00009-f00054.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00009-f00054.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00001-f00007.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00001-f00007.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00001-f00007.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00002-f00010.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00002-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00002-f00010.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00003-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00004-f00034.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00004-f00034.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00004-f00034.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00005-f00039.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00005-f00039.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00005-f00039.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00006-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00007-f00053.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00007-f00053.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00007-f00053.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00008-f00059.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00008-f00059.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00008-f00059.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00001-f00009.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00001-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00001-f00009.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00002-f00016.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00002-f00016.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00002-f00016.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00003-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00004-f00036.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00004-f00036.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00004-f00036.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00005-f00039.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00005-f00039.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00005-f00039.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00006-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00007-f00051.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00007-f00051.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00007-f00051.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00008-f00054.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00008-f00054.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00008-f00054.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00009-f00057.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00009-f00057.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00009-f00057.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00002-f00008.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00002-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00002-f00008.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00003-f00009.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00003-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00003-f00009.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00004-f00010.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00004-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00004-f00010.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00005-f00013.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00005-f00013.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00005-f00013.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00006-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00006-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00006-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00007-f00037.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00007-f00037.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00007-f00037.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00008-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00008-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00008-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00001-f00007.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00001-f00007.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00001-f00007.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00002-f00009.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00002-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00002-f00009.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00003-f00012.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00003-f00012.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00003-f00012.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00005-f00029.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00005-f00029.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00005-f00029.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00006-f00034.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00006-f00034.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00006-f00034.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00007-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00008-f00054.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00008-f00054.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00008-f00054.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00009-f00059.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00009-f00059.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00009-f00059.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00001-f00005.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00002-f00007.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00002-f00007.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00002-f00007.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00003-f00008.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00003-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00003-f00008.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00004-f00009.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00004-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00004-f00009.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00005-f00010.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00005-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00005-f00010.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00006-f00017.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00006-f00017.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00006-f00017.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00007-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00007-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00007-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00008-f00042.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00008-f00042.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00008-f00042.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00001-f00010.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00001-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00001-f00010.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00002-f00015.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00002-f00015.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00002-f00015.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00003-f00019.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00003-f00019.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00003-f00019.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00005-f00035.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00005-f00035.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00005-f00035.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00006-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00007-f00052.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00007-f00052.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00007-f00052.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00008-f00058.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00008-f00058.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00008-f00058.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00002-f00008.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00002-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00002-f00008.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00003-f00009.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00003-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00003-f00009.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00004-f00010.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00004-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00004-f00010.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00005-f00019.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00005-f00019.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00005-f00019.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00006-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00006-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00006-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00007-f00042.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00007-f00042.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00007-f00042.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00008-f00050.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00008-f00050.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00008-f00050.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   │   └── \u001b[01;34mOriginal\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00002-f00012.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00002-f00012.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00003-f00019.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00003-f00019.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00005-f00034.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00005-f00034.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00007-f00052.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00007-f00052.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00008-f00056.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00008-f00056.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00001-f00005.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00002-f00009.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00002-f00009.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00003-f00019.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00003-f00019.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00005-f00033.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00005-f00033.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00007-f00051.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00007-f00051.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00008-f00054.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00008-f00054.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00009-f00059.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00009-f00059.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00001-f00013.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00001-f00013.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00002-f00017.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00002-f00017.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00004-f00033.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00004-f00033.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00005-f00041.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00005-f00041.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00006-f00048.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00006-f00048.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00007-f00052.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00007-f00052.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00008-f00055.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00008-f00055.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00001-f00010.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00001-f00010.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00002-f00017.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00002-f00017.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00004-f00028.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00004-f00028.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00005-f00032.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00005-f00032.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00006-f00036.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00006-f00036.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00007-f00041.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00007-f00041.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00008-f00059.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00008-f00059.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00001-f00009.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00001-f00009.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00002-f00015.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00002-f00015.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00003-f00018.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00003-f00018.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00005-f00037.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00005-f00037.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   └── \u001b[01;32mimage_1543571117118_clean.mp4-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;34mBAMC-PTXNoSliding-Annotations-Linear\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.extruded-overlay-twoclass.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.inserted-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.interpolated-overlay-3class.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00002-f00012.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00002-f00012.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00002-f00012.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00002-f00012.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00003-f00019.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00003-f00019.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00003-f00019.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00003-f00019.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00005-f00034.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00005-f00034.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00005-f00034.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00005-f00034.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00006-f00040.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00006-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00007-f00052.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00007-f00052.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00007-f00052.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00007-f00052.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00008-f00056.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00008-f00056.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00008-f00056.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00008-f00056.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.extruded-overlay-twoclass.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.inserted-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.interpolated-overlay-3class.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00001-f00005.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00001-f00005.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00002-f00009.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00002-f00009.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00002-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00002-f00009.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00003-f00019.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00003-f00019.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00003-f00019.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00003-f00019.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00005-f00033.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00005-f00033.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00005-f00033.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00005-f00033.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00006-f00040.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00006-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00007-f00051.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00007-f00051.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00007-f00051.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00007-f00051.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00008-f00054.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00008-f00054.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00008-f00054.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00008-f00054.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00009-f00059.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00009-f00059.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00009-f00059.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00009-f00059.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.extruded-overlay-twoclass.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.inserted-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.interpolated-overlay-3class.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00001-f00013.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00001-f00013.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00001-f00013.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00001-f00013.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00002-f00017.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00002-f00017.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00002-f00017.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00002-f00017.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00003-f00020.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00003-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00004-f00033.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00004-f00033.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00004-f00033.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00004-f00033.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00005-f00041.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00005-f00041.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00005-f00041.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00005-f00041.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00006-f00048.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00006-f00048.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00006-f00048.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00006-f00048.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00007-f00052.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00007-f00052.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00007-f00052.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00007-f00052.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00008-f00055.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00008-f00055.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00008-f00055.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00008-f00055.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.extruded-overlay-twoclass.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.inserted-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.interpolated-overlay-3class.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00001-f00010.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00001-f00010.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00001-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00001-f00010.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00002-f00017.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00002-f00017.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00002-f00017.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00002-f00017.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00003-f00020.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00003-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00004-f00028.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00004-f00028.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00004-f00028.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00004-f00028.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00005-f00032.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00005-f00032.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00005-f00032.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00005-f00032.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00006-f00036.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00006-f00036.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00006-f00036.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00006-f00036.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00007-f00041.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00007-f00041.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00007-f00041.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00007-f00041.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00008-f00059.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00008-f00059.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00008-f00059.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00008-f00059.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.extruded-overlay-twoclass.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.inserted-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.interpolated-overlay-3class.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00001-f00009.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00001-f00009.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00001-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00001-f00009.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00002-f00015.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00002-f00015.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00002-f00015.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00002-f00015.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00003-f00018.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00003-f00018.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00003-f00018.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00003-f00018.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00005-f00037.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00005-f00037.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00005-f00037.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00005-f00037.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00006-f00040.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00006-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00007-f00053.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00007-f00053.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00007-f00053.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00007-f00053.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00008-f00055.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00008-f00055.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00008-f00055.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00008-f00055.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00009-f00057.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00009-f00057.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00009-f00057.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00009-f00057.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.extruded-overlay-twoclass.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.inserted-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.interpolated-overlay-3class.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00001-f00005.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00001-f00005.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00002-f00015.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00002-f00015.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00002-f00015.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00002-f00015.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00003-f00020.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00003-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00004-f00033.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00004-f00033.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00004-f00033.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00004-f00033.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00005-f00036.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00005-f00036.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00005-f00036.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00005-f00036.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00006-f00040.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00006-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00007-f00056.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00007-f00056.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00007-f00056.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00007-f00056.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00008-f00059.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00008-f00059.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00008-f00059.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00008-f00059.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.extruded-overlay-twoclass.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.inserted-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.interpolated-overlay-3class.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00001-f00008.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00001-f00008.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00001-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00001-f00008.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00002-f00011.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00002-f00011.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00002-f00011.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00002-f00011.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00003-f00015.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00003-f00015.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00003-f00015.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00003-f00015.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00004-f00019.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00004-f00019.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00004-f00019.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00004-f00019.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00005-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00005-f00020.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00005-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00006-f00048.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00006-f00048.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00006-f00048.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00006-f00048.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00007-f00053.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00007-f00053.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00007-f00053.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00007-f00053.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00008-f00058.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00008-f00058.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00008-f00058.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00008-f00058.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.extruded-overlay-twoclass.mha\u001b[00m\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.inserted-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.interpolated-overlay-3class.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00001-f00007.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00001-f00007.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00001-f00007.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00001-f00007.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00002-f00009.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00002-f00009.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00002-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00002-f00009.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00003-f00019.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00003-f00019.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00003-f00019.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00003-f00019.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00005-f00031.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00005-f00031.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00005-f00031.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00005-f00031.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00006-f00034.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00006-f00034.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00006-f00034.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00006-f00034.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00007-f00037.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00007-f00037.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00007-f00037.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00007-f00037.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00008-f00039.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00008-f00039.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00008-f00039.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00008-f00039.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00009-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00009-f00040.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00009-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00009-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.extruded-overlay-twoclass.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.inserted-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.interpolated-overlay-3class.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00001-f00005.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00001-f00005.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00002-f00007.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00002-f00007.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00002-f00007.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00002-f00007.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00003-f00013.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00003-f00013.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00003-f00013.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00003-f00013.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00005-f00028.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00005-f00028.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00005-f00028.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00005-f00028.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00006-f00033.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00006-f00033.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00006-f00033.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00006-f00033.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00007-f00040.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00008-f00050.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00008-f00050.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00008-f00050.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00008-f00050.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00009-f00055.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00009-f00055.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00009-f00055.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00009-f00055.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.extruded-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.extruded-overlay-twoclass.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.inserted-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.interpolated-overlay-3class.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00001-f00003.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00001-f00003.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00001-f00003.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00001-f00003.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00002-f00005.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00002-f00005.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00002-f00005.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00002-f00005.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00003-f00007.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00003-f00007.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00003-f00007.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00003-f00007.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00004-f00017.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00004-f00017.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00004-f00017.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00004-f00017.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00005-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00005-f00020.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00005-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00006-f00030.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00006-f00030.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00006-f00030.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00006-f00030.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00007-f00034.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00007-f00034.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00007-f00034.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00007-f00034.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00008-f00039.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00008-f00039.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00008-f00039.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00008-f00039.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00009-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00009-f00040.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00009-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00009-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.extruded-overlay-twoclass.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.inserted-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.interpolated-overlay-3class.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00001-f00004.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00001-f00004.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00001-f00004.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00001-f00004.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00002-f00006.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00002-f00006.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00002-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00002-f00006.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00003-f00011.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00003-f00011.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00003-f00011.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00003-f00011.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00004-f00017.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00004-f00017.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00004-f00017.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00004-f00017.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00005-f00024.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00005-f00024.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00005-f00024.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00005-f00024.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00006-f00045.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00006-f00045.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00006-f00045.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00006-f00045.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00007-f00048.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00007-f00048.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00007-f00048.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00007-f00048.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00008-f00056.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00008-f00056.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00008-f00056.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00008-f00056.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00009-f00063.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00009-f00063.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00009-f00063.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00009-f00063.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.extruded-overlay-twoclass.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.inserted-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.interpolated-overlay-3class.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00002-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00002-f00020.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00002-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00002-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00003-f00030.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00003-f00030.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00003-f00030.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00003-f00030.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00004-f00033.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00004-f00033.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00004-f00033.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00004-f00033.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00005-f00036.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00005-f00036.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00005-f00036.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00005-f00036.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00006-f00039.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00006-f00039.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00006-f00039.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00006-f00039.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00007-f00040.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00008-f00049.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00008-f00049.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00008-f00049.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00008-f00049.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.extruded-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.extruded-overlay-twoclass.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.inserted-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.interpolated-overlay-3class.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00001-f00009.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00001-f00009.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00001-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00001-f00009.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00002-f00017.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00002-f00017.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00002-f00017.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00002-f00017.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00003-f00020.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00003-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00004-f00030.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00004-f00030.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00004-f00030.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00004-f00030.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00005-f00034.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00005-f00034.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00005-f00034.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00005-f00034.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00006-f00039.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00006-f00039.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00006-f00039.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00006-f00039.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00007-f00040.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00008-f00052.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00008-f00052.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00008-f00052.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00008-f00052.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00009-f00058.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00009-f00058.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00009-f00058.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00009-f00058.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.extruded-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.extruded-overlay-twoclass.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.inserted-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.interpolated-overlay-3class.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00001-f00009.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00001-f00009.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00001-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00001-f00009.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00002-f00016.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00002-f00016.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00002-f00016.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00002-f00016.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00003-f00020.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00003-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00004-f00030.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00004-f00030.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00004-f00030.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00004-f00030.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00005-f00034.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00005-f00034.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00005-f00034.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00005-f00034.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00006-f00040.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00006-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00007-f00049.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00007-f00049.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00007-f00049.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00007-f00049.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00008-f00054.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00008-f00054.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00008-f00054.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00008-f00054.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.extruded-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.extruded-overlay-twoclass.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.inserted-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.interpolated-overlay-3class.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00001-f00010.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00001-f00010.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00001-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00001-f00010.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00002-f00019.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00002-f00019.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00002-f00019.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00002-f00019.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00003-f00020.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00003-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00004-f00031.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00004-f00031.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00004-f00031.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00004-f00031.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00005-f00034.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00005-f00034.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00005-f00034.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00005-f00034.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00006-f00038.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00006-f00038.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00006-f00038.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00006-f00038.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00007-f00040.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00007-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00008-f00048.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00008-f00048.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00008-f00048.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00008-f00048.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00009-f00058.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00009-f00058.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00009-f00058.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00009-f00058.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.extruded-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.extruded-overlay-twoclass.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.inserted-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.interpolated-overlay-3class.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00001-f00008.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00001-f00008.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00001-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00001-f00008.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00002-f00011.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00002-f00011.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00002-f00011.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00002-f00011.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00003-f00014.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00003-f00014.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00003-f00014.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00003-f00014.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00004-f00019.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00004-f00019.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00004-f00019.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00004-f00019.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00005-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00005-f00020.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00005-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00006-f00028.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00006-f00028.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00006-f00028.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00006-f00028.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00007-f00032.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00007-f00032.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00007-f00032.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00007-f00032.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00008-f00034.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00008-f00034.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00008-f00034.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00008-f00034.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00009-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00009-f00040.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00009-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00009-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.extruded-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.extruded-overlay-twoclass.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.inserted-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.interpolated-overlay-3class.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00002-f00014.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00002-f00014.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00002-f00014.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00002-f00014.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00003-f00019.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00003-f00019.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00003-f00019.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00003-f00019.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00005-f00035.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00005-f00035.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00005-f00035.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00005-f00035.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00006-f00040.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00006-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00007-f00050.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00007-f00050.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00007-f00050.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00007-f00050.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00008-f00056.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00008-f00056.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00008-f00056.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00008-f00056.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.extruded-overlay-twoclass.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.inserted-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.interpolated-overlay-3class.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00001-f00005.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00001-f00005.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00002-f00008.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00002-f00008.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00002-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00002-f00008.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00003-f00012.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00003-f00012.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00003-f00012.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00003-f00012.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00005-f00033.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00005-f00033.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00005-f00033.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00005-f00033.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00006-f00037.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00006-f00037.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00006-f00037.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00006-f00037.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00007-f00040.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00008-f00056.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00008-f00056.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00008-f00056.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00008-f00056.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00009-f00059.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00009-f00059.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00009-f00059.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00009-f00059.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.extruded-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.extruded-overlay-twoclass.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.inserted-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.interpolated-overlay-3class.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00002-f00008.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00002-f00008.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00002-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00002-f00008.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00003-f00010.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00003-f00010.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00003-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00003-f00010.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00004-f00014.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00004-f00014.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00004-f00014.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00004-f00014.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00005-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00005-f00020.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00005-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00006-f00035.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00006-f00035.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00006-f00035.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00006-f00035.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00007-f00040.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00007-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.extruded-overlay-twoclass.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.inserted-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.interpolated-overlay-3class.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00001-f00004.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00001-f00004.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00001-f00004.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00001-f00004.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00002-f00006.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00002-f00006.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00002-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00002-f00006.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00003-f00007.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00003-f00007.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00003-f00007.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00003-f00007.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00004-f00008.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00004-f00008.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00004-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00004-f00008.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00005-f00009.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00005-f00009.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00005-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00005-f00009.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00006-f00012.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00006-f00012.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00006-f00012.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00006-f00012.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00007-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00007-f00020.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00007-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00007-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00008-f00037.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00008-f00037.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00008-f00037.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00008-f00037.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00009-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00009-f00040.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00009-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00009-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.extruded-overlay-twoclass.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.inserted-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.interpolated-overlay-3class.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00001-f00005.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00001-f00005.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00001-f00005.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00002-f00007.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00002-f00007.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00002-f00007.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00002-f00007.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00003-f00008.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00003-f00008.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00003-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00003-f00008.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00004-f00010.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00004-f00010.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00004-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00004-f00010.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00005-f00017.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00005-f00017.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00005-f00017.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00005-f00017.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00006-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00006-f00020.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00006-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00006-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00007-f00034.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00007-f00034.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00007-f00034.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00007-f00034.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00008-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00008-f00040.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00008-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00008-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00009-f00054.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00009-f00054.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00009-f00054.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00009-f00054.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.extruded-overlay-twoclass.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.inserted-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.interpolated-overlay-3class.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00001-f00007.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00001-f00007.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00001-f00007.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00001-f00007.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00002-f00010.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00002-f00010.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00002-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00002-f00010.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00003-f00020.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00003-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00004-f00034.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00004-f00034.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00004-f00034.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00004-f00034.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00005-f00039.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00005-f00039.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00005-f00039.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00005-f00039.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00006-f00040.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00006-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00007-f00053.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00007-f00053.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00007-f00053.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00007-f00053.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00008-f00059.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00008-f00059.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00008-f00059.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00008-f00059.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.extruded-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.extruded-overlay-twoclass.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.inserted-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.interpolated-overlay-3class.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00001-f00009.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00001-f00009.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00001-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00001-f00009.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00002-f00016.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00002-f00016.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00002-f00016.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00002-f00016.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00003-f00020.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00003-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00004-f00036.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00004-f00036.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00004-f00036.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00004-f00036.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00005-f00039.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00005-f00039.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00005-f00039.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00005-f00039.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00006-f00040.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00006-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00007-f00051.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00007-f00051.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00007-f00051.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00007-f00051.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00008-f00054.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00008-f00054.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00008-f00054.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00008-f00054.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00009-f00057.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00009-f00057.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00009-f00057.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00009-f00057.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.extruded-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.extruded-overlay-twoclass.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.inserted-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.interpolated-overlay-3class.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00002-f00008.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00002-f00008.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00002-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00002-f00008.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00003-f00009.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00003-f00009.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00003-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00003-f00009.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00004-f00010.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00004-f00010.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00004-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00004-f00010.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00005-f00013.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00005-f00013.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00005-f00013.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00005-f00013.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00006-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00006-f00020.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00006-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00006-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00007-f00037.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00007-f00037.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00007-f00037.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00007-f00037.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00008-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00008-f00040.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00008-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00008-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.extruded-overlay-twoclass.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.inserted-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.interpolated-overlay-3class.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00001-f00007.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00001-f00007.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00001-f00007.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00001-f00007.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00002-f00009.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00002-f00009.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00002-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00002-f00009.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00003-f00012.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00003-f00012.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00003-f00012.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00003-f00012.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00005-f00029.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00005-f00029.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00005-f00029.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00005-f00029.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00006-f00034.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00006-f00034.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00006-f00034.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00006-f00034.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00007-f00040.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00007-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00008-f00054.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00008-f00054.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00008-f00054.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00008-f00054.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00009-f00059.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00009-f00059.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00009-f00059.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00009-f00059.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.extruded-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.extruded-overlay-twoclass.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.inserted-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.interpolated-overlay-3class.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00001-f00005.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00001-f00005.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00002-f00007.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00002-f00007.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00002-f00007.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00002-f00007.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00003-f00008.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00003-f00008.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00003-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00003-f00008.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00004-f00009.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00004-f00009.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00004-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00004-f00009.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00005-f00010.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00005-f00010.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00005-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00005-f00010.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00006-f00017.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00006-f00017.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00006-f00017.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00006-f00017.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00007-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00007-f00020.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00007-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00007-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00008-f00042.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00008-f00042.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00008-f00042.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00008-f00042.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.extruded-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.extruded-overlay-twoclass.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.inserted-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.interpolated-overlay-3class.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00001-f00010.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00001-f00010.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00001-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00001-f00010.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00002-f00015.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00002-f00015.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00002-f00015.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00002-f00015.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00003-f00019.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00003-f00019.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00003-f00019.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00003-f00019.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00005-f00035.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00005-f00035.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00005-f00035.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00005-f00035.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00006-f00040.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00006-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00007-f00052.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00007-f00052.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00007-f00052.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00007-f00052.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00008-f00058.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00008-f00058.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00008-f00058.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00008-f00058.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.extruded-overlay-twoclass.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.inserted-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.interpolated-overlay-3class.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00002-f00008.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00002-f00008.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00002-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00002-f00008.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00003-f00009.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00003-f00009.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00003-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00003-f00009.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00004-f00010.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00004-f00010.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00004-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00004-f00010.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00005-f00019.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00005-f00019.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00005-f00019.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00005-f00019.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00006-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00006-f00020.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00006-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00006-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00007-f00042.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00007-f00042.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00007-f00042.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00007-f00042.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00008-f00050.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00008-f00050.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00008-f00050.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00008-f00050.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   └── \u001b[01;32mimage_642169070951_clean.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;34mBAMC-PTXNoSliding-Linear\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mcheckAll.sh\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mcheckAll.sh~\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mha\u001b[00m\r\n", + "│   │   │   └── \u001b[01;32mimage_642169070951_clean.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;34mBAMC-PTXNoSliding-Sliced\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00002-f00012.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00003-f00019.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00005-f00034.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00006-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00007-f00052.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00008-f00056.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00002-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00003-f00019.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00005-f00033.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00006-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00007-f00051.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00008-f00054.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mp4-00009-f00059.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00001-f00013.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00002-f00017.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00003-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00004-f00033.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00005-f00041.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00006-f00048.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00007-f00052.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00008-f00055.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00001-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00002-f00017.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00003-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00004-f00028.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00005-f00032.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00006-f00036.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00007-f00041.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00008-f00059.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00001-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00002-f00015.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00003-f00018.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00005-f00037.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00006-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00007-f00053.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00008-f00055.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mp4-00009-f00057.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00002-f00015.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00003-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00004-f00033.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00005-f00036.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00006-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00007-f00056.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mp4-00008-f00059.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00001-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00002-f00011.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00003-f00015.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00004-f00019.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00005-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00006-f00048.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00007-f00053.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00008-f00058.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mov-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00001-f00007.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00002-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00003-f00019.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00005-f00031.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00006-f00034.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00007-f00037.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00008-f00039.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mov-00009-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00002-f00007.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00003-f00013.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00005-f00028.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00006-f00033.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00008-f00050.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mp4-00009-f00055.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00001-f00003.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00002-f00005.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00003-f00007.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00004-f00017.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00005-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00006-f00030.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00007-f00034.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00008-f00039.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mp4-00009-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00001-f00004.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00002-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00003-f00011.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00004-f00017.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00005-f00024.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00006-f00045.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00007-f00048.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00008-f00056.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mImage_262499828648_clean.mp4-00009-f00063.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00002-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00003-f00030.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00004-f00033.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00005-f00036.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00006-f00039.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00008-f00049.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_267456908021_clean.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00001-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00002-f00017.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00003-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00004-f00030.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00005-f00034.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00006-f00039.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00008-f00052.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mp4-00009-f00058.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00001-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00002-f00016.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00003-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00004-f00030.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00005-f00034.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00006-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00007-f00049.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00008-f00054.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00009-f00058.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00001-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00002-f00019.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00003-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00004-f00031.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00005-f00034.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00006-f00038.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00007-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00008-f00048.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mov-00009-f00058.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00001-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00002-f00011.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00003-f00014.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00004-f00019.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00005-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00006-f00028.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00007-f00032.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00008-f00034.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mov-00009-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00002-f00014.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00003-f00019.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00005-f00035.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00006-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00007-f00050.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00008-f00056.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00002-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00003-f00012.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00005-f00033.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00006-f00037.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00008-f00056.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mp4-00009-f00059.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00002-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00003-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00004-f00014.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00005-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00006-f00035.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mov-00007-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00001-f00004.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00002-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00003-f00007.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00004-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00005-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00006-f00012.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00007-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00008-f00037.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00009-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00001-f00005.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00002-f00007.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00003-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00004-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00005-f00017.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00006-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00007-f00034.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00008-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00009-f00054.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00001-f00007.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00002-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00003-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00004-f00034.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00005-f00039.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00006-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00007-f00053.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00008-f00059.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_603665940081_clean.mov-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00001-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00002-f00016.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00003-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00004-f00036.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00005-f00039.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00006-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00007-f00051.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00008-f00054.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mov-00009-f00057.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00002-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00003-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00004-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00005-f00013.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00006-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00007-f00037.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mov-00008-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00001-f00007.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00002-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00003-f00012.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00005-f00029.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00006-f00034.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00007-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00008-f00054.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_614587120545_clean.mov-00009-f00059.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00002-f00007.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00003-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00004-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00005-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00006-f00017.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00007-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00008-f00042.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00001-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00002-f00015.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00003-f00019.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00005-f00035.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00006-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00007-f00052.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00008-f00058.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mov-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00002-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00003-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00004-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00005-f00019.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00006-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00007-f00042.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_642169070951_clean.mp4-00008-f00050.mha\u001b[00m\r\n", + "│   │   │   └── \u001b[01;32mimage_642169070951_clean.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;34mBAMC-PTXSliding\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32m210811 - POCUS AI Phase 1 Training Data.xlsx\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4\u001b[00m\r\n", + "│   │   │   └── \u001b[01;32mimage_74132233134844_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;34mBAMC-PTXSliding-Annotations\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00001-f00007.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00001-f00007.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00001-f00007.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00002-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00002-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00002-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00003-f00032.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00003-f00032.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00003-f00032.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00004-f00038.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00004-f00038.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00004-f00038.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00005-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00005-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00005-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00006-f00050.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00006-f00050.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00006-f00050.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00007-f00054.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00007-f00054.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00007-f00054.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00008-f00058.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00008-f00058.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00008-f00058.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00002-f00016.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00002-f00016.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00002-f00016.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00003-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00004-f00031.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00004-f00031.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00004-f00031.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00005-f00036.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00005-f00036.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00005-f00036.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00006-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00007-f00049.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00007-f00049.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00007-f00049.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00008-f00054.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00008-f00054.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00008-f00054.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00009-f00059.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00009-f00059.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00009-f00059.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00002-f00008.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00002-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00002-f00008.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00003-f00010.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00003-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00003-f00010.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00004-f00017.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00004-f00017.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00004-f00017.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00005-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00005-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00006-f00051.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00006-f00051.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00006-f00051.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00007-f00056.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00007-f00056.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00007-f00056.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00008-f00059.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00008-f00059.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00008-f00059.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00002-f00008.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00002-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00002-f00008.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00003-f00010.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00003-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00003-f00010.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00004-f00014.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00004-f00014.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00004-f00014.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00005-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00005-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00006-f00037.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00006-f00037.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00006-f00037.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00007-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00008-f00054.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00008-f00054.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00008-f00054.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00002-f00008.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00002-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00002-f00008.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00003-f00010.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00003-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00003-f00010.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00004-f00016.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00004-f00016.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00004-f00016.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00005-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00005-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00006-f00035.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00006-f00035.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00006-f00035.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00007-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00008-f00054.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00008-f00054.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00008-f00054.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00001-f00011.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00001-f00011.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00001-f00011.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00002-f00016.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00002-f00016.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00002-f00016.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00003-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00004-f00048.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00004-f00048.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00004-f00048.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00005-f00052.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00005-f00052.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00005-f00052.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00006-f00055.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00006-f00055.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00006-f00055.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00007-f00060.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00007-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00007-f00060.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00002-f00014.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00002-f00014.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00002-f00014.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00003-f00019.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00003-f00019.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00003-f00019.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00005-f00037.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00005-f00037.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00005-f00037.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00006-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00007-f00058.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00007-f00058.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00007-f00058.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00008-f00060.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00008-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00008-f00060.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00001-f00012.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00001-f00012.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00001-f00012.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00002-f00018.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00002-f00018.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00002-f00018.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00003-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00004-f00031.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00004-f00031.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00004-f00031.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00005-f00034.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00005-f00034.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00005-f00034.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00006-f00037.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00006-f00037.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00006-f00037.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00007-f00041.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00007-f00041.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00007-f00041.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00008-f00051.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00008-f00051.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00008-f00051.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00009-f00056.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00009-f00056.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00009-f00056.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00001-f00005.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00002-f00010.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00002-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00002-f00010.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00003-f00018.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00003-f00018.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00003-f00018.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00005-f00031.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00005-f00031.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00005-f00031.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00006-f00036.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00006-f00036.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00006-f00036.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00008-f00048.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00008-f00048.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00008-f00048.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00009-f00054.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00009-f00054.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00009-f00054.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00001-f00009.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00001-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00001-f00009.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00002-f00012.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00002-f00012.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00002-f00012.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00003-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00004-f00030.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00004-f00030.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00004-f00030.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00005-f00034.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00005-f00034.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00005-f00034.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00006-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00007-f00050.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00007-f00050.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00007-f00050.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00008-f00054.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00008-f00054.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00008-f00054.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00009-f00057.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00009-f00057.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00009-f00057.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00001-f00009.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00001-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00001-f00009.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00002-f00011.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00002-f00011.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00002-f00011.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00003-f00014.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00003-f00014.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00003-f00014.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00004-f00017.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00004-f00017.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00004-f00017.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00005-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00005-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00006-f00047.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00006-f00047.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00006-f00047.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00007-f00053.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00007-f00053.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00007-f00053.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00008-f00056.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00008-f00056.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00008-f00056.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00001-f00008.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00001-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00001-f00008.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00002-f00010.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00002-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00002-f00010.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00003-f00013.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00003-f00013.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00003-f00013.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00004-f00017.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00004-f00017.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00004-f00017.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00005-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00005-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00006-f00035.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00006-f00035.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00006-f00035.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00007-f00038.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00007-f00038.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00007-f00038.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00008-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00008-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00008-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mp4-00001-f00008.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mp4-00001-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mp4-00001-f00008.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mp4-00002-f00010.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mp4-00002-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mp4-00002-f00010.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mp4-00003-f00012.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mp4-00003-f00012.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mp4-00003-f00012.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mp4-00004-f00014.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mp4-00004-f00014.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mp4-00004-f00014.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mp4-00005-f00016.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mp4-00005-f00016.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mp4-00005-f00016.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mp4-00006-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mp4-00006-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mp4-00006-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00001-f00007.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00001-f00007.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00001-f00007.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00002-f00009.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00002-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00002-f00009.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00003-f00013.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00003-f00013.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00003-f00013.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00004-f00017.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00004-f00017.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00004-f00017.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00005-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00005-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00006-f00045.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00006-f00045.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00006-f00045.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00007-f00050.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00007-f00050.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00007-f00050.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00008-f00055.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00008-f00055.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00008-f00055.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00009-f00059.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00009-f00059.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00009-f00059.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00001-f00007.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00001-f00007.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00001-f00007.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00002-f00009.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00002-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00002-f00009.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00003-f00013.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00003-f00013.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00003-f00013.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00005-f00030.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00005-f00030.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00005-f00030.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00006-f00032.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00006-f00032.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00006-f00032.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00007-f00036.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00007-f00036.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00007-f00036.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00008-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00008-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00008-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00001-f00004.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00001-f00004.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00001-f00004.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00002-f00006.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00002-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00002-f00006.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00003-f00010.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00003-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00003-f00010.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00004-f00015.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00004-f00015.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00004-f00015.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00005-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00005-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00006-f00039.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00006-f00039.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00006-f00039.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00008-f00053.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00008-f00053.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00008-f00053.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00009-f00058.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00009-f00058.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00009-f00058.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00001-f00005.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00002-f00009.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00002-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00002-f00009.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00003-f00012.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00003-f00012.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00003-f00012.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00004-f00015.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00004-f00015.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00004-f00015.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00005-f00017.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00005-f00017.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00005-f00017.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00006-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00006-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00006-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00007-f00050.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00007-f00050.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00007-f00050.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00008-f00059.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00008-f00059.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00008-f00059.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00001-f00005.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00002-f00008.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00002-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00002-f00008.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00003-f00013.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00003-f00013.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00003-f00013.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00004-f00017.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00004-f00017.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00004-f00017.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00005-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00005-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00006-f00043.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00006-f00043.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00006-f00043.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00007-f00051.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00007-f00051.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00007-f00051.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00008-f00058.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00008-f00058.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00008-f00058.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00002-f00010.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00002-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00002-f00010.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00003-f00014.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00003-f00014.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00003-f00014.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00004-f00017.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00004-f00017.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00004-f00017.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00005-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00005-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00006-f00030.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00006-f00030.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00006-f00030.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00007-f00034.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00007-f00034.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00007-f00034.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00008-f00038.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00008-f00038.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00008-f00038.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00009-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00009-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00009-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00001-f00005.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00001-f00005.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00002-f00006.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00002-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00002-f00006.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00003-f00007.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00003-f00007.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00003-f00007.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00004-f00008.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00004-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00004-f00008.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00005-f00009.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00005-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00005-f00009.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00006-f00012.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00006-f00012.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00006-f00012.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00007-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00007-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00007-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00008-f00041.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00008-f00041.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00008-f00041.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00009-f00058.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00009-f00058.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00009-f00058.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00001-f00005.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00001-f00005.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00002-f00006.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00002-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00002-f00006.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00003-f00007.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00003-f00007.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00003-f00007.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00004-f00008.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00004-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00004-f00008.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00005-f00009.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00005-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00005-f00009.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00006-f00011.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00006-f00011.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00006-f00011.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00007-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00007-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00007-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00008-f00041.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00008-f00041.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00008-f00041.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00009-f00056.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00009-f00056.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00009-f00056.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00001-f00013.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00001-f00013.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00001-f00013.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00002-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00002-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00002-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00003-f00038.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00003-f00038.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00003-f00038.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00004-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00004-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00004-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00005-f00050.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00005-f00050.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00005-f00050.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00006-f00052.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00006-f00052.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00006-f00052.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00007-f00055.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00007-f00055.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00007-f00055.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00008-f00059.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00008-f00059.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00008-f00059.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00002-f00008.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00002-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00002-f00008.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00003-f00009.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00003-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00003-f00009.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00004-f00011.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00004-f00011.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00004-f00011.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00005-f00013.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00005-f00013.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00005-f00013.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00006-f00015.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00006-f00015.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00006-f00015.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00007-f00018.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00007-f00018.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00007-f00018.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00008-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00008-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00008-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00009-f00042.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00009-f00042.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00009-f00042.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00001-f00005.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00002-f00012.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00002-f00012.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00002-f00012.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00003-f00019.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00003-f00019.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00003-f00019.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00005-f00038.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00005-f00038.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00005-f00038.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00006-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00007-f00049.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00007-f00049.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00007-f00049.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00008-f00052.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00008-f00052.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00008-f00052.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00009-f00058.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00009-f00058.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00009-f00058.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00002-f00008.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00002-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00002-f00008.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00003-f00010.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00003-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00003-f00010.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00005-f00027.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00005-f00027.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00005-f00027.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00006-f00029.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00006-f00029.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00006-f00029.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00007-f00031.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00007-f00031.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00007-f00031.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00008-f00034.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00008-f00034.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00008-f00034.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00009-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00009-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00009-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00002-f00014.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00002-f00014.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00002-f00014.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00003-f00019.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00003-f00019.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00003-f00019.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00005-f00034.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00005-f00034.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00005-f00034.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00006-f00039.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00006-f00039.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00006-f00039.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00008-f00051.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00008-f00051.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00008-f00051.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00002-f00012.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00002-f00012.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00002-f00012.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00003-f00018.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00003-f00018.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00003-f00018.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00005-f00030.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00005-f00030.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00005-f00030.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00006-f00034.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00006-f00034.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00006-f00034.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00008-f00059.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00008-f00059.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00008-f00059.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00002-f00010.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00002-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00002-f00010.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00003-f00017.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00003-f00017.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00003-f00017.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00005-f00031.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00005-f00031.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00005-f00031.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00006-f00036.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00006-f00036.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00006-f00036.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00008-f00058.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00008-f00058.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00008-f00058.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00002-f00012.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00002-f00012.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00002-f00012.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00003-f00018.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00003-f00018.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00003-f00018.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00005-f00029.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00005-f00029.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00005-f00029.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00006-f00035.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00006-f00035.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00006-f00035.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00008-f00052.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00008-f00052.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00008-f00052.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00001-f00008.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00001-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00001-f00008.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00002-f00014.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00002-f00014.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00002-f00014.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00003-f00019.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00003-f00019.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00003-f00019.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00005-f00029.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00005-f00029.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00005-f00029.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00006-f00035.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00006-f00035.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00006-f00035.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00007-f00039.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00007-f00039.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00007-f00039.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00008-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00008-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00008-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00009-f00054.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00009-f00054.mha\u001b[00m\r\n", + "│   │   │   └── \u001b[01;32mimage_74132233134844_clean.mp4-00009-f00054.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;34mBAMC-PTXSliding-Annotations-Linear\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.extruded-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.extruded-overlay-twoclass.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.inserted-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.interpolated-overlay-3class.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00001-f00007.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00001-f00007.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00001-f00007.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00001-f00007.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00002-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00002-f00020.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00002-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00002-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00003-f00032.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00003-f00032.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00003-f00032.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00003-f00032.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00004-f00038.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00004-f00038.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00004-f00038.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00004-f00038.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00005-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00005-f00040.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00005-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00005-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00006-f00050.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00006-f00050.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00006-f00050.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00006-f00050.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00007-f00054.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00007-f00054.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00007-f00054.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00007-f00054.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00008-f00058.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00008-f00058.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00008-f00058.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00008-f00058.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.extruded-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.extruded-overlay-twoclass.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.inserted-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.interpolated-overlay-3class.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00002-f00016.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00002-f00016.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00002-f00016.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00002-f00016.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00003-f00020.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00003-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00004-f00031.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00004-f00031.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00004-f00031.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00004-f00031.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00005-f00036.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00005-f00036.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00005-f00036.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00005-f00036.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00006-f00040.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00006-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00007-f00049.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00007-f00049.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00007-f00049.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00007-f00049.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00008-f00054.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00008-f00054.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00008-f00054.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00008-f00054.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00009-f00059.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00009-f00059.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00009-f00059.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00009-f00059.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.extruded-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.extruded-overlay-twoclass.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.inserted-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.interpolated-overlay-3class.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00002-f00008.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00002-f00008.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00002-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00002-f00008.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00003-f00010.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00003-f00010.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00003-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00003-f00010.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00004-f00017.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00004-f00017.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00004-f00017.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00004-f00017.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00005-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00005-f00020.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00005-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00006-f00051.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00006-f00051.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00006-f00051.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00006-f00051.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00007-f00056.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00007-f00056.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00007-f00056.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00007-f00056.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00008-f00059.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00008-f00059.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00008-f00059.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00008-f00059.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.extruded-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.extruded-overlay-twoclass.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.inserted-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.interpolated-overlay-3class.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00002-f00008.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00002-f00008.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00002-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00002-f00008.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00003-f00010.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00003-f00010.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00003-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00003-f00010.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00004-f00014.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00004-f00014.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00004-f00014.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00004-f00014.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00005-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00005-f00020.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00005-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00006-f00037.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00006-f00037.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00006-f00037.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00006-f00037.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00007-f00040.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00007-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00008-f00054.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00008-f00054.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00008-f00054.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00008-f00054.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.extruded-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.extruded-overlay-twoclass.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.inserted-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.interpolated-overlay-3class.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00002-f00008.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00002-f00008.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00002-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00002-f00008.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00003-f00010.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00003-f00010.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00003-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00003-f00010.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00004-f00016.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00004-f00016.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00004-f00016.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00004-f00016.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00005-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00005-f00020.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00005-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00006-f00035.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00006-f00035.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00006-f00035.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00006-f00035.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00007-f00040.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00007-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00008-f00054.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00008-f00054.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00008-f00054.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00008-f00054.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.extruded-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.extruded-overlay-twoclass.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.inserted-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.interpolated-overlay-3class.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00001-f00011.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00001-f00011.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00001-f00011.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00001-f00011.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00002-f00016.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00002-f00016.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00002-f00016.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00002-f00016.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00003-f00020.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00003-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00004-f00048.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00004-f00048.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00004-f00048.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00004-f00048.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00005-f00052.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00005-f00052.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00005-f00052.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00005-f00052.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00006-f00055.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00006-f00055.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00006-f00055.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00006-f00055.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00007-f00060.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00007-f00060.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00007-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00007-f00060.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.extruded-overlay-twoclass.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.inserted-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.interpolated-overlay-3class.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00002-f00014.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00002-f00014.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00002-f00014.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00002-f00014.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00003-f00019.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00003-f00019.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00003-f00019.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00003-f00019.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00005-f00037.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00005-f00037.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00005-f00037.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00005-f00037.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00006-f00040.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00006-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00007-f00058.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00007-f00058.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00007-f00058.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00007-f00058.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00008-f00060.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00008-f00060.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00008-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00008-f00060.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.extruded-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.extruded-overlay-twoclass.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.inserted-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.interpolated-overlay-3class.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00001-f00012.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00001-f00012.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00001-f00012.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00001-f00012.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00002-f00018.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00002-f00018.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00002-f00018.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00002-f00018.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00003-f00020.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00003-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00004-f00031.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00004-f00031.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00004-f00031.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00004-f00031.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00005-f00034.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00005-f00034.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00005-f00034.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00005-f00034.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00006-f00037.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00006-f00037.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00006-f00037.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00006-f00037.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00007-f00041.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00007-f00041.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00007-f00041.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00007-f00041.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00008-f00051.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00008-f00051.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00008-f00051.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00008-f00051.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00009-f00056.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00009-f00056.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00009-f00056.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00009-f00056.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.extruded-overlay-twoclass.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.inserted-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.interpolated-overlay-3class.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00001-f00005.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00001-f00005.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00002-f00010.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00002-f00010.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00002-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00002-f00010.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00003-f00018.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00003-f00018.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00003-f00018.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00003-f00018.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00005-f00031.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00005-f00031.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00005-f00031.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00005-f00031.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00006-f00036.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00006-f00036.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00006-f00036.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00006-f00036.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00007-f00040.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00008-f00048.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00008-f00048.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00008-f00048.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00008-f00048.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00009-f00054.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00009-f00054.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00009-f00054.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00009-f00054.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.extruded-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.extruded-overlay-twoclass.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.inserted-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.interpolated-overlay-3class.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00001-f00009.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00001-f00009.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00001-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00001-f00009.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00002-f00012.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00002-f00012.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00002-f00012.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00002-f00012.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00003-f00020.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00003-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00004-f00030.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00004-f00030.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00004-f00030.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00004-f00030.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00005-f00034.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00005-f00034.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00005-f00034.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00005-f00034.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00006-f00040.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00006-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00007-f00050.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00007-f00050.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00007-f00050.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00007-f00050.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00008-f00054.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00008-f00054.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00008-f00054.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00008-f00054.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00009-f00057.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00009-f00057.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00009-f00057.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00009-f00057.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.extruded-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.extruded-overlay-twoclass.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.inserted-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.interpolated-overlay-3class.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00001-f00009.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00001-f00009.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00001-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00001-f00009.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00002-f00011.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00002-f00011.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00002-f00011.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00002-f00011.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00003-f00014.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00003-f00014.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00003-f00014.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00003-f00014.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00004-f00017.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00004-f00017.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00004-f00017.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00004-f00017.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00005-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00005-f00020.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00005-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00006-f00047.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00006-f00047.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00006-f00047.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00006-f00047.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00007-f00053.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00007-f00053.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00007-f00053.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00007-f00053.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00008-f00056.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00008-f00056.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00008-f00056.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00008-f00056.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.extruded-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.extruded-overlay-twoclass.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.inserted-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.interpolated-overlay-3class.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00001-f00008.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00001-f00008.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00001-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00001-f00008.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00002-f00010.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00002-f00010.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00002-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00002-f00010.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00003-f00013.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00003-f00013.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00003-f00013.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00003-f00013.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00004-f00017.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00004-f00017.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00004-f00017.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00004-f00017.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00005-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00005-f00020.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00005-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00006-f00035.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00006-f00035.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00006-f00035.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00006-f00035.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00007-f00038.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00007-f00038.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00007-f00038.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00007-f00038.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00008-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00008-f00040.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00008-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00008-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.extruded-overlay-twoclass.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.inserted-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.interpolated-overlay-3class.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mp4-00001-f00008.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mp4-00001-f00008.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mp4-00001-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mp4-00001-f00008.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mp4-00002-f00010.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mp4-00002-f00010.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mp4-00002-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mp4-00002-f00010.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mp4-00003-f00012.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mp4-00003-f00012.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mp4-00003-f00012.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mp4-00003-f00012.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mp4-00004-f00014.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mp4-00004-f00014.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mp4-00004-f00014.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mp4-00004-f00014.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mp4-00005-f00016.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mp4-00005-f00016.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mp4-00005-f00016.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mp4-00005-f00016.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mp4-00006-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mp4-00006-f00020.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mp4-00006-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mp4-00006-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.extruded-overlay-twoclass.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.inserted-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.interpolated-overlay-3class.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00001-f00007.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00001-f00007.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00001-f00007.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00001-f00007.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00002-f00009.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00002-f00009.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00002-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00002-f00009.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00003-f00013.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00003-f00013.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00003-f00013.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00003-f00013.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00004-f00017.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00004-f00017.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00004-f00017.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00004-f00017.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00005-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00005-f00020.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00005-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00006-f00045.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00006-f00045.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00006-f00045.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00006-f00045.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00007-f00050.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00007-f00050.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00007-f00050.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00007-f00050.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00008-f00055.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00008-f00055.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00008-f00055.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00008-f00055.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00009-f00059.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00009-f00059.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00009-f00059.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00009-f00059.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.extruded-overlay-twoclass.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.inserted-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.interpolated-overlay-3class.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00001-f00007.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00001-f00007.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00001-f00007.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00001-f00007.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00002-f00009.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00002-f00009.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00002-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00002-f00009.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00003-f00013.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00003-f00013.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00003-f00013.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00003-f00013.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00005-f00030.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00005-f00030.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00005-f00030.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00005-f00030.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00006-f00032.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00006-f00032.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00006-f00032.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00006-f00032.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00007-f00036.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00007-f00036.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00007-f00036.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00007-f00036.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00008-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00008-f00040.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00008-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00008-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.extruded-overlay-twoclass.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.inserted-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.interpolated-overlay-3class.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00001-f00004.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00001-f00004.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00001-f00004.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00001-f00004.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00002-f00006.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00002-f00006.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00002-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00002-f00006.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00003-f00010.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00003-f00010.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00003-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00003-f00010.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00004-f00015.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00004-f00015.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00004-f00015.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00004-f00015.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00005-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00005-f00020.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00005-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00006-f00039.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00006-f00039.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00006-f00039.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00006-f00039.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00007-f00040.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00008-f00053.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00008-f00053.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00008-f00053.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00008-f00053.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00009-f00058.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00009-f00058.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00009-f00058.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00009-f00058.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.extruded-overlay-twoclass.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.inserted-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.interpolated-overlay-3class.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00001-f00005.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00001-f00005.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00002-f00009.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00002-f00009.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00002-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00002-f00009.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00003-f00012.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00003-f00012.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00003-f00012.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00003-f00012.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00004-f00015.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00004-f00015.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00004-f00015.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00004-f00015.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00005-f00017.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00005-f00017.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00005-f00017.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00005-f00017.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00006-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00006-f00020.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00006-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00006-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00007-f00050.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00007-f00050.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00007-f00050.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00007-f00050.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00008-f00059.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00008-f00059.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00008-f00059.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00008-f00059.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.extruded-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.extruded-overlay-twoclass.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.inserted-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.interpolated-overlay-3class.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00001-f00005.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00001-f00005.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00002-f00008.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00002-f00008.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00002-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00002-f00008.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00003-f00013.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00003-f00013.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00003-f00013.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00003-f00013.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00004-f00017.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00004-f00017.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00004-f00017.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00004-f00017.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00005-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00005-f00020.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00005-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00006-f00043.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00006-f00043.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00006-f00043.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00006-f00043.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00007-f00051.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00007-f00051.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00007-f00051.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00007-f00051.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00008-f00058.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00008-f00058.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00008-f00058.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00008-f00058.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.extruded-overlay-twoclass.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.inserted-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.interpolated-overlay-3class.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00002-f00010.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00002-f00010.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00002-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00002-f00010.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00003-f00014.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00003-f00014.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00003-f00014.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00003-f00014.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00004-f00017.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00004-f00017.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00004-f00017.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00004-f00017.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00005-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00005-f00020.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00005-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00006-f00030.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00006-f00030.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00006-f00030.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00006-f00030.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00007-f00034.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00007-f00034.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00007-f00034.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00007-f00034.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00008-f00038.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00008-f00038.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00008-f00038.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00008-f00038.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00009-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00009-f00040.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00009-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00009-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.extruded-overlay-twoclass.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.inserted-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.interpolated-overlay-3class.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00001-f00005.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00001-f00005.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00001-f00005.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00002-f00006.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00002-f00006.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00002-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00002-f00006.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00003-f00007.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00003-f00007.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00003-f00007.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00003-f00007.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00004-f00008.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00004-f00008.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00004-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00004-f00008.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00005-f00009.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00005-f00009.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00005-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00005-f00009.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00006-f00012.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00006-f00012.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00006-f00012.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00006-f00012.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00007-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00007-f00020.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00007-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00007-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00008-f00041.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00008-f00041.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00008-f00041.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00008-f00041.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00009-f00058.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00009-f00058.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00009-f00058.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00009-f00058.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.extruded-overlay-twoclass.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.inserted-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.interpolated-overlay-3class.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00001-f00005.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00001-f00005.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00001-f00005.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00002-f00006.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00002-f00006.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00002-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00002-f00006.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00003-f00007.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00003-f00007.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00003-f00007.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00003-f00007.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00004-f00008.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00004-f00008.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00004-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00004-f00008.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00005-f00009.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00005-f00009.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00005-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00005-f00009.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00006-f00011.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00006-f00011.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00006-f00011.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00006-f00011.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00007-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00007-f00020.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00007-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00007-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00008-f00041.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00008-f00041.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00008-f00041.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00008-f00041.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00009-f00056.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00009-f00056.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00009-f00056.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00009-f00056.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.extruded-overlay-twoclass.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.inserted-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.interpolated-overlay-3class.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00001-f00013.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00001-f00013.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00001-f00013.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00001-f00013.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00002-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00002-f00020.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00002-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00002-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00003-f00038.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00003-f00038.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00003-f00038.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00003-f00038.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00004-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00004-f00040.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00004-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00004-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00005-f00050.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00005-f00050.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00005-f00050.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00005-f00050.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00006-f00052.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00006-f00052.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00006-f00052.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00006-f00052.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00007-f00055.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00007-f00055.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00007-f00055.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00007-f00055.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00008-f00059.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00008-f00059.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00008-f00059.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00008-f00059.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.extruded-overlay-twoclass.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.inserted-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.interpolated-overlay-3class.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00002-f00008.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00002-f00008.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00002-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00002-f00008.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00003-f00009.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00003-f00009.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00003-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00003-f00009.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00004-f00011.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00004-f00011.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00004-f00011.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00004-f00011.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00005-f00013.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00005-f00013.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00005-f00013.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00005-f00013.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00006-f00015.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00006-f00015.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00006-f00015.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00006-f00015.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00007-f00018.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00007-f00018.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00007-f00018.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00007-f00018.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00008-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00008-f00020.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00008-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00008-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00009-f00042.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00009-f00042.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00009-f00042.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00009-f00042.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.extruded-overlay-twoclass.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.inserted-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.interpolated-overlay-3class.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00001-f00005.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00001-f00005.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00002-f00012.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00002-f00012.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00002-f00012.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00002-f00012.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00003-f00019.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00003-f00019.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00003-f00019.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00003-f00019.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00005-f00038.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00005-f00038.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00005-f00038.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00005-f00038.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00006-f00040.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00006-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00007-f00049.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00007-f00049.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00007-f00049.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00007-f00049.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00008-f00052.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00008-f00052.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00008-f00052.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00008-f00052.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00009-f00058.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00009-f00058.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00009-f00058.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00009-f00058.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.extruded-overlay-twoclass.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.inserted-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.interpolated-overlay-3class.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00002-f00008.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00002-f00008.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00002-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00002-f00008.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00003-f00010.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00003-f00010.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00003-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00003-f00010.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00005-f00027.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00005-f00027.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00005-f00027.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00005-f00027.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00006-f00029.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00006-f00029.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00006-f00029.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00006-f00029.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00007-f00031.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00007-f00031.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00007-f00031.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00007-f00031.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00008-f00034.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00008-f00034.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00008-f00034.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00008-f00034.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00009-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00009-f00040.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00009-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00009-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.extruded-overlay-twoclass.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.inserted-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.interpolated-overlay-3class.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00002-f00014.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00002-f00014.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00002-f00014.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00002-f00014.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00003-f00019.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00003-f00019.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00003-f00019.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00003-f00019.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00005-f00034.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00005-f00034.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00005-f00034.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00005-f00034.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00006-f00039.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00006-f00039.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00006-f00039.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00006-f00039.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00007-f00040.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00008-f00051.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00008-f00051.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00008-f00051.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00008-f00051.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.extruded-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.extruded-overlay-twoclass.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.inserted-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.interpolated-overlay-3class.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00002-f00012.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00002-f00012.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00002-f00012.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00002-f00012.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00003-f00018.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00003-f00018.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00003-f00018.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00003-f00018.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00005-f00030.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00005-f00030.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00005-f00030.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00005-f00030.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00006-f00034.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00006-f00034.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00006-f00034.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00006-f00034.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00007-f00040.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00008-f00059.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00008-f00059.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00008-f00059.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00008-f00059.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.extruded-overlay-twoclass.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.inserted-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.interpolated-overlay-3class.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00002-f00010.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00002-f00010.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00002-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00002-f00010.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00003-f00017.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00003-f00017.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00003-f00017.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00003-f00017.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00005-f00031.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00005-f00031.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00005-f00031.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00005-f00031.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00006-f00036.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00006-f00036.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00006-f00036.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00006-f00036.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00007-f00040.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00008-f00058.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00008-f00058.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00008-f00058.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00008-f00058.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.extruded-overlay-twoclass.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.inserted-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.interpolated-overlay-3class.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00002-f00012.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00002-f00012.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00002-f00012.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00002-f00012.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00003-f00018.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00003-f00018.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00003-f00018.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00003-f00018.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00005-f00029.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00005-f00029.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00005-f00029.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00005-f00029.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00006-f00035.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00006-f00035.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00006-f00035.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00006-f00035.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00007-f00040.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00008-f00052.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00008-f00052.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00008-f00052.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00008-f00052.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.extruded-overlay-twoclass.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.inserted-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.interpolated-overlay-3class.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00001-f00008.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00001-f00008.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00001-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00001-f00008.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00002-f00014.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00002-f00014.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00002-f00014.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00002-f00014.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00003-f00019.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00003-f00019.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00003-f00019.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00003-f00019.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00005-f00029.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00005-f00029.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00005-f00029.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00005-f00029.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00006-f00035.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00006-f00035.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00006-f00035.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00006-f00035.overlay.mha\u001b[00m\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00007-f00039.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00007-f00039.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00007-f00039.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00007-f00039.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00008-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00008-f00040.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00008-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00008-f00040.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00009-f00054.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00009-f00054.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00009-f00054.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00009-f00054.overlay.mha\u001b[00m\r\n", + "│   │   │   └── \u001b[01;34mold\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00002-f00012.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00002-f00012.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00003-f00019.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00003-f00019.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00005-f00034.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00005-f00034.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00006-f00040.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00007-f00052.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00007-f00052.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00008-f00056.boxes.json\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00008-f00056.boxes.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   │   └── \u001b[01;32mimage_1083297968960_clean.mp4-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;34mBAMC-PTXSliding-Linear\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mcheckAll.sh\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mcheckAll.sh~\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mha\u001b[00m\r\n", + "│   │   │   └── \u001b[01;32mimage_74132233134844_clean.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;34mBAMC-PTXSliding-Sliced\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00001-f00007.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00002-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00003-f00032.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00004-f00038.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00005-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00006-f00050.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00007-f00054.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00008-f00058.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00002-f00016.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00003-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00004-f00031.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00005-f00036.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00006-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00007-f00049.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00008-f00054.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mp4-00009-f00059.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00002-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00003-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00004-f00017.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00005-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00006-f00051.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00007-f00056.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00008-f00059.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mov-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00002-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00003-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00004-f00014.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00005-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00006-f00037.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00007-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00008-f00054.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mov-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00002-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00003-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00004-f00016.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00005-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00006-f00035.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00007-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00008-f00054.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mov-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00001-f00011.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00002-f00016.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00003-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00004-f00048.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00005-f00052.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00006-f00055.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mp4-00007-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00002-f00014.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00003-f00019.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00005-f00037.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00006-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00007-f00058.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mp4-00008-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00001-f00012.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00002-f00018.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00003-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00004-f00031.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00005-f00034.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00006-f00037.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00007-f00041.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00008-f00051.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mov-00009-f00056.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00002-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00003-f00018.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00005-f00031.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00006-f00036.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00008-f00048.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mp4-00009-f00054.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00001-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00002-f00012.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00003-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00004-f00030.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00005-f00034.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00006-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00007-f00050.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00008-f00054.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mov-00009-f00057.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00001-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00002-f00011.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00003-f00014.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00004-f00017.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00005-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00006-f00047.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00007-f00053.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00008-f00056.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mov-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00001-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00002-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00003-f00013.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00004-f00017.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00005-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00006-f00035.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00007-f00038.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mov-00008-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mp4-00001-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mp4-00002-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mp4-00003-f00012.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mp4-00004-f00014.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mp4-00005-f00016.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mp4-00006-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00001-f00007.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00002-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00003-f00013.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00004-f00017.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00005-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00006-f00045.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00007-f00050.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00008-f00055.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mov-00009-f00059.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00001-f00007.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00002-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00003-f00013.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00005-f00030.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00006-f00032.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00007-f00036.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mov-00008-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00001-f00004.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00002-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00003-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00004-f00015.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00005-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00006-f00039.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00008-f00053.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mp4-00009-f00058.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00002-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00003-f00012.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00004-f00015.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00005-f00017.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00006-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00007-f00050.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00008-f00059.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00002-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00003-f00013.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00004-f00017.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00005-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00006-f00043.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00007-f00051.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00008-f00058.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00002-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00003-f00014.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00004-f00017.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00005-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00006-f00030.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00007-f00034.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00008-f00038.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mp4-00009-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00001-f00005.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00002-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00003-f00007.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00004-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00005-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00006-f00012.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00007-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00008-f00041.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mov-00009-f00058.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00001-f00005.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00002-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00003-f00007.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00004-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00005-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00006-f00011.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00007-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00008-f00041.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mov-00009-f00056.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00001-f00013.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00002-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00003-f00038.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00004-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00005-f00050.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00006-f00052.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00007-f00055.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mp4-00008-f00059.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00002-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00003-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00004-f00011.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00005-f00013.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00006-f00015.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00007-f00018.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00008-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mp4-00009-f00042.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00002-f00012.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00003-f00019.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00005-f00038.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00006-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00007-f00049.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00008-f00052.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mp4-00009-f00058.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00002-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00003-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00005-f00027.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00006-f00029.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00007-f00031.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00008-f00034.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00009-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00002-f00014.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00003-f00019.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00005-f00034.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00006-f00039.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00008-f00051.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00002-f00012.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00003-f00018.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00005-f00030.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00006-f00034.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00008-f00059.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00002-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00003-f00017.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00005-f00031.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00006-f00036.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00008-f00058.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00002-f00012.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00003-f00018.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00005-f00029.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00006-f00035.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00008-f00052.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00001-f00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00002-f00014.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00003-f00019.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00005-f00029.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00006-f00035.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00007-f00039.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_74132233134844_clean.mp4-00008-f00040.mha\u001b[00m\r\n", + "│   │   │   └── \u001b[01;32mimage_74132233134844_clean.mp4-00009-f00054.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;34mLung2DData\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + "│   │   │   └── \u001b[01;32mdoAll\u001b[00m\r\n", + "│   │   ├── \u001b[01;34mMissingAnnotations\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mp4-00001-f00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00003-f00010.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mp4-00003-f00010.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_584357289931_clean.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588695055398_clean.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   │   └── \u001b[01;32mimage_677741729740_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mNotesAndToDos.txt\u001b[00m\r\n", + "│   │   ├── \u001b[01;34mold\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;34mBAMC-PTXNoSliding-Linear\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1083297968960_clean.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1087766719219_clean.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1394469579519_clean.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1404802450036_clean.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1543571117118_clean.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1749559540112_clean.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1884162273498_clean.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_1895283541879_clean.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_2418161753608_clean.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_2454526567135_CLEAN.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mImage_262499828648_clean.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_267456908021_clean.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_27180764486244_CLEAN.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_27185428518326_CLEAN.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_2734882394424_CLEAN.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_2743083265515_CLEAN.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_4641643404894_CLEAN.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_4743880599022_clean.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_573611404207_CLEAN.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_584357289931_clean.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_588695055398_clean.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_603665940081_clean.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_6056976176281_CLEAN.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_610066411380_CLEAN.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_614587120545_clean.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_634125159704_CLEAN.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_6370410622099_CLEAN.mha\u001b[00m\r\n", + "│   │   │   │   ├── \u001b[01;32mimage_642169070951_clean.mha\u001b[00m\r\n", + "│   │   │   │   └── \u001b[01;34mold\u001b[00m\r\n", + "│   │   │   └── \u001b[01;34mBAMC-PTXSliding-Linear\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10391571128899_CLEAN.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10395655826502_CLEAN.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104543812690743_CLEAN.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104548309385533_CLEAN.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_104932526155699_CLEAN.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10705997566592_CLEAN.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_10891015221417_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1139765223418_CLEAN.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1180496934444_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128683942015128_CLEAN.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128688523296793_CLEAN.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_128692595484031_CLEAN.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1327616672148_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1499268364374_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1511338287338_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1896534330004_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_1901852337971_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_24164968068436_CLEAN.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_2959672151786_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3308406916756_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3315947589826_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3320344386805_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3321463845606_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3368391807672_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3384882513134_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_3401832241774_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_588413346180_CLEAN.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_677741729740_clean.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mimage_73815992352100_clean.mha\u001b[00m\r\n", + "│   │   │   └── \u001b[01;32mimage_74132233134844_clean.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;34mSpine\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mQ000_04_tu_segmented_segmentation_256.npy\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mQ000_04_tu_segmented_ultrasound_256.npy\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mq000_segmentation.npy\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mq000_ultrasound.npy\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mQ001_04_tu_segemented_segmentation_256.npy\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mQ001_04_tu_segemented_ultrasound_256.npy\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mq001_segmentation.npy\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mq001_ultrasound.npy\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mQ002_04_tu_segemented_segmentation_256.npy\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mQ002_04_tu_segemented_ultrasound_256.npy\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mq002_segmentation.npy\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mq002_ultrasound.npy\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mQ003_04_tu_segemented_segmentation_256.npy\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mQ003_04_tu_segemented_ultrasound_256.npy\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mq003_segmentation.npy\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mq003_ultrasound.npy\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mQ004_04_tu_segemented_segmentation_256.npy\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mQ004_04_tu_segemented_ultrasound_256.npy\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mq004_segmentation.npy\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mq004_ultrasound.npy\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mQ005_04_tu_segemented_segmentation_256.npy\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mQ005_04_tu_segemented_ultrasound_256.npy\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mq005_segmentation.npy\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mq005_ultrasound.npy\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mQ006_04_tu_segemented_segmentation_256.npy\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mQ006_04_tu_segemented_ultrasound_256.npy\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mq006_segmentation.npy\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mq006_ultrasound.npy\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mQ007_04_tu_segemented_segmentation_256.npy\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mQ007_04_tu_segemented_ultrasound_256.npy\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mq007_segmentation.npy\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mq007_ultrasound.npy\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32msegmentation-test.npy\u001b[00m\r\n", + "│   │   │   └── \u001b[01;32multrasound-test.npy\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mSyncToy_433d6dff-eb29-4669-8d65-d4157a24fbd3.dat\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mVerifyData.ipynb\u001b[00m\r\n", + "│   │   ├── \u001b[01;34mWeb-COVID\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00001.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00002.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00003.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00004.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00005.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00007.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00001.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00002.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00003.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00004.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00005.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00006.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00007.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00008.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00009.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mCov-grep-7431.mp4-00000.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mCov-grep-7431.mp4-00001.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mCov-grep-7431.mp4-00002.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mCov-grep-7431.mp4-00003.mha\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + "│   │   │   └── \u001b[01;34mpngs\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00000.png\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00001.png\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00002.png\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00003.png\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00004.png\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00005.png\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00006.png\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00007.png\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00008.png\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00009.png\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00000.png\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00001.png\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00002.png\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00003.png\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00004.png\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00005.png\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00006.png\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00007.png\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00008.png\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00009.png\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mCov-grep-7431.mp4-00000.png\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mCov-grep-7431.mp4-00001.png\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mCov-grep-7431.mp4-00002.png\u001b[00m\r\n", + "│   │   │   ├── \u001b[01;32mCov-grep-7431.mp4-00003.png\u001b[00m\r\n", + "│   │   │   └── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + "│   │   └── \u001b[01;34mWeb-COVID-Annotations\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00001.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00002.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00003.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00004.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00005.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00006.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00007.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00008.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00009.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00001.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00001.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00002.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00002.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00003.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00003.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00004.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00005.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00006.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00007.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00008.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00009.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mCov-grep-7431.mp4-00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mCov-grep-7431.mp4-00001.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mCov-grep-7431.mp4-00001.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mCov-grep-7431.mp4-00002.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mCov-grep-7431.mp4-00002.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mCov-grep-7431.mp4-00003.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32mCov-grep-7431.mp4-00003.overlay.mha\u001b[00m\r\n", + "│   │   └── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + "│   ├── \u001b[01;34mColumnNet\u001b[00m\r\n", + "│   └── \u001b[01;32mREADME.txt\u001b[00m\r\n", + "├── \u001b[01;34mVFoldData\u001b[00m\r\n", + "│   ├── \u001b[01;34mBAMC-PTXNoSliding\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov\u001b[00m\r\n", + "│   │   └── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov\u001b[00m\r\n", + "│   ├── \u001b[01;34mBAMC-PTXNoSliding-Annotations-Linear\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.mp4-00001-f00004.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.mp4-00001-f00004.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.mp4-00002-f00006.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.mp4-00002-f00006.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.mp4-00003-f00011.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.mp4-00003-f00011.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.mp4-00004-f00017.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.mp4-00004-f00017.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.mp4-00005-f00024.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.mp4-00005-f00024.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.mp4-00006-f00045.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.mp4-00006-f00045.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.mp4-00007-f00048.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.mp4-00007-f00048.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.mp4-00008-f00056.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.mp4-00008-f00056.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.mp4-00009-f00063.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.mp4-00009-f00063.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00002-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00002-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00002-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00002-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00003-f00030.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00003-f00030.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00003-f00030.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00003-f00030.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00004-f00033.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00004-f00033.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00004-f00033.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00004-f00033.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00005-f00036.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00005-f00036.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00005-f00036.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00005-f00036.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00006-f00039.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00006-f00039.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00006-f00039.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00006-f00039.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00007-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00008-f00049.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00008-f00049.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00008-f00049.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00008-f00049.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00002-f00012.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00002-f00012.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00002-f00012.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00002-f00012.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00003-f00019.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00003-f00019.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00003-f00019.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00003-f00019.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00005-f00034.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00005-f00034.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00005-f00034.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00005-f00034.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00006-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00006-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00007-f00052.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00007-f00052.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00007-f00052.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00007-f00052.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00008-f00056.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00008-f00056.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00008-f00056.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00008-f00056.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00001-f00005.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00001-f00005.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00002-f00009.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00002-f00009.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00002-f00009.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00002-f00009.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00003-f00019.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00003-f00019.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00003-f00019.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00003-f00019.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00005-f00033.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00005-f00033.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00005-f00033.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00005-f00033.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00006-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00006-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00007-f00051.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00007-f00051.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00007-f00051.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00007-f00051.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00008-f00054.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00008-f00054.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00008-f00054.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00008-f00054.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00009-f00059.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00009-f00059.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00009-f00059.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00009-f00059.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00002-f00014.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00002-f00014.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00002-f00014.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00002-f00014.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00003-f00019.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00003-f00019.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00003-f00019.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00003-f00019.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00005-f00035.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00005-f00035.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00005-f00035.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00005-f00035.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00006-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00006-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00007-f00050.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00007-f00050.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00007-f00050.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00007-f00050.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00008-f00056.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00008-f00056.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00008-f00056.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00008-f00056.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00001-f00005.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00001-f00005.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00002-f00008.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00002-f00008.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00002-f00008.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00002-f00008.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00003-f00012.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00003-f00012.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00003-f00012.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00003-f00012.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00005-f00033.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00005-f00033.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00005-f00033.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00005-f00033.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00006-f00037.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00006-f00037.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00006-f00037.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00006-f00037.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00007-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00008-f00056.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00008-f00056.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00008-f00056.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00008-f00056.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00009-f00059.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00009-f00059.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00009-f00059.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00009-f00059.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00001-f00013.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00001-f00013.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00001-f00013.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00001-f00013.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00002-f00017.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00002-f00017.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00002-f00017.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00002-f00017.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00003-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00003-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00004-f00033.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00004-f00033.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00004-f00033.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00004-f00033.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00005-f00041.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00005-f00041.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00005-f00041.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00005-f00041.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00006-f00048.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00006-f00048.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00006-f00048.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00006-f00048.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00007-f00052.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00007-f00052.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00007-f00052.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00007-f00052.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00008-f00055.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00008-f00055.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00008-f00055.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00008-f00055.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00001-f00010.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00001-f00010.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00001-f00010.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00001-f00010.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00002-f00017.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00002-f00017.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00002-f00017.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00002-f00017.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00003-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00003-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00004-f00028.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00004-f00028.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00004-f00028.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00004-f00028.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00005-f00032.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00005-f00032.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00005-f00032.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00005-f00032.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00006-f00036.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00006-f00036.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00006-f00036.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00006-f00036.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00007-f00041.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00007-f00041.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00007-f00041.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00007-f00041.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00008-f00059.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00008-f00059.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00008-f00059.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00008-f00059.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00001-f00009.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00001-f00009.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00001-f00009.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00001-f00009.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00002-f00015.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00002-f00015.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00002-f00015.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00002-f00015.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00003-f00018.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00003-f00018.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00003-f00018.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00003-f00018.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00005-f00037.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00005-f00037.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00005-f00037.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00005-f00037.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00006-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00006-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00007-f00053.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00007-f00053.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00007-f00053.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00007-f00053.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00008-f00055.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00008-f00055.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00008-f00055.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00008-f00055.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00009-f00057.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00009-f00057.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00009-f00057.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00009-f00057.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00001-f00005.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00001-f00005.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00002-f00015.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00002-f00015.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00002-f00015.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00002-f00015.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00003-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00003-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00004-f00033.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00004-f00033.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00004-f00033.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00004-f00033.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00005-f00036.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00005-f00036.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00005-f00036.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00005-f00036.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00006-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00006-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00007-f00056.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00007-f00056.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00007-f00056.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00007-f00056.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00008-f00059.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00008-f00059.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00008-f00059.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00008-f00059.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00001-f00009.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00001-f00009.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00001-f00009.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00001-f00009.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00002-f00017.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00002-f00017.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00002-f00017.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00002-f00017.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00003-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00003-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00004-f00030.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00004-f00030.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00004-f00030.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00004-f00030.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00005-f00034.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00005-f00034.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00005-f00034.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00005-f00034.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00006-f00039.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00006-f00039.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00006-f00039.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00006-f00039.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00007-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00008-f00052.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00008-f00052.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00008-f00052.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00008-f00052.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00009-f00058.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00009-f00058.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00009-f00058.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00009-f00058.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00001-f00009.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00001-f00009.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00001-f00009.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00001-f00009.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00002-f00016.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00002-f00016.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00002-f00016.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00002-f00016.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00003-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00003-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00004-f00030.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00004-f00030.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00004-f00030.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00004-f00030.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00005-f00034.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00005-f00034.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00005-f00034.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00005-f00034.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00006-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00006-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00007-f00049.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00007-f00049.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00007-f00049.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00007-f00049.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00008-f00054.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00008-f00054.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00008-f00054.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00008-f00054.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00001-f00005.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00001-f00005.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00002-f00010.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00002-f00010.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00002-f00010.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00002-f00010.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00003-f00017.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00003-f00017.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00003-f00017.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00003-f00017.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00005-f00026.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00005-f00026.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00005-f00026.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00005-f00026.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00006-f00033.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00006-f00033.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00006-f00033.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00006-f00033.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00007-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00008-f00057.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00008-f00057.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00008-f00057.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00008-f00057.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00001-f00004.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00001-f00004.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00001-f00004.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00001-f00004.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00002-f00007.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00002-f00007.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00002-f00007.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00002-f00007.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00003-f00011.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00003-f00011.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00003-f00011.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00003-f00011.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00004-f00014.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00004-f00014.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00004-f00014.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00004-f00014.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00005-f00019.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00005-f00019.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00005-f00019.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00005-f00019.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00006-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00006-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00006-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00006-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00007-f00033.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00007-f00033.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00007-f00033.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00007-f00033.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00008-f00037.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00008-f00037.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00008-f00037.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00008-f00037.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00009-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00009-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00009-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00009-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00001-f00005.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00001-f00005.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00002-f00007.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00002-f00007.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00002-f00007.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00002-f00007.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00003-f00013.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00003-f00013.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00003-f00013.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00003-f00013.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00005-f00028.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00005-f00028.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00005-f00028.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00005-f00028.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00006-f00033.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00006-f00033.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00006-f00033.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00006-f00033.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00007-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00008-f00050.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00008-f00050.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00008-f00050.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00008-f00050.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00009-f00055.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00009-f00055.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00009-f00055.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00009-f00055.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00001-f00003.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00001-f00003.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00001-f00003.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00001-f00003.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00002-f00005.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00002-f00005.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00002-f00005.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00002-f00005.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00003-f00007.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00003-f00007.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00003-f00007.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00003-f00007.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00004-f00017.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00004-f00017.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00004-f00017.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00004-f00017.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00005-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00005-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00005-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00006-f00030.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00006-f00030.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00006-f00030.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00006-f00030.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00007-f00034.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00007-f00034.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00007-f00034.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00007-f00034.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00008-f00039.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00008-f00039.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00008-f00039.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00008-f00039.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00009-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00009-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00009-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00009-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00001-f00005.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00001-f00005.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00002-f00007.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00002-f00007.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00002-f00007.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00002-f00007.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00003-f00008.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00003-f00008.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00003-f00008.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00003-f00008.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00004-f00009.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00004-f00009.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00004-f00009.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00004-f00009.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00005-f00010.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00005-f00010.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00005-f00010.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00005-f00010.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00006-f00017.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00006-f00017.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00006-f00017.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00006-f00017.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00007-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00007-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00007-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00007-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00008-f00042.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00008-f00042.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00008-f00042.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00008-f00042.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00002-f00008.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00002-f00008.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00002-f00008.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00002-f00008.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00003-f00009.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00003-f00009.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00003-f00009.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00003-f00009.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00004-f00010.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00004-f00010.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00004-f00010.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00004-f00010.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00005-f00019.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00005-f00019.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00005-f00019.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00005-f00019.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00006-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00006-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00006-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00006-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00007-f00042.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00007-f00042.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00007-f00042.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00007-f00042.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00008-f00050.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00008-f00050.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00008-f00050.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00008-f00050.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00001-f00007.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00001-f00007.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00001-f00007.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00001-f00007.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00002-f00010.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00002-f00010.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00002-f00010.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00002-f00010.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00003-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00003-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00004-f00034.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00004-f00034.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00004-f00034.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00004-f00034.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00005-f00039.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00005-f00039.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00005-f00039.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00005-f00039.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00006-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00006-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00007-f00053.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00007-f00053.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00007-f00053.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00007-f00053.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00008-f00059.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00008-f00059.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00008-f00059.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00008-f00059.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00009-f00060.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00001-f00007.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00001-f00007.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00001-f00007.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00001-f00007.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00002-f00009.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00002-f00009.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00002-f00009.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00002-f00009.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00003-f00012.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00003-f00012.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00003-f00012.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00003-f00012.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00004-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00005-f00029.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00005-f00029.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00005-f00029.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00005-f00029.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00006-f00034.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00006-f00034.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00006-f00034.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00006-f00034.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00007-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00007-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00008-f00054.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00008-f00054.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00008-f00054.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00008-f00054.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00009-f00059.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00009-f00059.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00009-f00059.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00009-f00059.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00001-f00006.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00002-f00008.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00002-f00008.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00002-f00008.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00002-f00008.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00003-f00010.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00003-f00010.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00003-f00010.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00003-f00010.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00004-f00014.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00004-f00014.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00004-f00014.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00004-f00014.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00005-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00005-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00005-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00006-f00035.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00006-f00035.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00006-f00035.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00006-f00035.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00007-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00007-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00001-f00006.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00002-f00008.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00002-f00008.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00002-f00008.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00002-f00008.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00003-f00009.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00003-f00009.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00003-f00009.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00003-f00009.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00004-f00010.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00004-f00010.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00004-f00010.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00004-f00010.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00005-f00013.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00005-f00013.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00005-f00013.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00005-f00013.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00006-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00006-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00006-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00006-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00007-f00037.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00007-f00037.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00007-f00037.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00007-f00037.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00008-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00008-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00008-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00008-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00001-f00009.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00001-f00009.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00001-f00009.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00001-f00009.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00002-f00016.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00002-f00016.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00002-f00016.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00002-f00016.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00003-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00003-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00004-f00036.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00004-f00036.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00004-f00036.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00004-f00036.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00005-f00039.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00005-f00039.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00005-f00039.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00005-f00039.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00006-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00006-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00007-f00051.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00007-f00051.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00007-f00051.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00007-f00051.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00008-f00054.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00008-f00054.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00008-f00054.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00008-f00054.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00009-f00057.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00009-f00057.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00009-f00057.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00009-f00057.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00001-f00010.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00001-f00010.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00001-f00010.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00001-f00010.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00002-f00015.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00002-f00015.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00002-f00015.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00002-f00015.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00003-f00019.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00003-f00019.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00003-f00019.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00003-f00019.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00004-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00005-f00035.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00005-f00035.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00005-f00035.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00005-f00035.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00006-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00006-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00007-f00052.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00007-f00052.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00007-f00052.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00007-f00052.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00008-f00058.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00008-f00058.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00008-f00058.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00008-f00058.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00009-f00060.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00001-f00008.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00001-f00008.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00001-f00008.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00001-f00008.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00002-f00011.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00002-f00011.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00002-f00011.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00002-f00011.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00003-f00015.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00003-f00015.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00003-f00015.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00003-f00015.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00004-f00019.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00004-f00019.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00004-f00019.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00004-f00019.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00005-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00005-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00005-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00006-f00048.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00006-f00048.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00006-f00048.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00006-f00048.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00007-f00053.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00007-f00053.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00007-f00053.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00007-f00053.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00008-f00058.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00008-f00058.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00008-f00058.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00008-f00058.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00009-f00060.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00001-f00007.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00001-f00007.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00001-f00007.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00001-f00007.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00002-f00009.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00002-f00009.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00002-f00009.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00002-f00009.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00003-f00019.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00003-f00019.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00003-f00019.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00003-f00019.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00004-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00005-f00031.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00005-f00031.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00005-f00031.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00005-f00031.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00006-f00034.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00006-f00034.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00006-f00034.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00006-f00034.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00007-f00037.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00007-f00037.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00007-f00037.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00007-f00037.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00008-f00039.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00008-f00039.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00008-f00039.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00008-f00039.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00009-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00009-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00009-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00009-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00001-f00004.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00001-f00004.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00001-f00004.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00001-f00004.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00002-f00006.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00002-f00006.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00002-f00006.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00002-f00006.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00003-f00007.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00003-f00007.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00003-f00007.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00003-f00007.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00004-f00008.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00004-f00008.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00004-f00008.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00004-f00008.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00005-f00009.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00005-f00009.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00005-f00009.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00005-f00009.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00006-f00012.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00006-f00012.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00006-f00012.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00006-f00012.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00007-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00007-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00007-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00007-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00008-f00037.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00008-f00037.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00008-f00037.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00008-f00037.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00009-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00009-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00009-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00009-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00001-f00005.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00001-f00005.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00001-f00005.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00002-f00007.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00002-f00007.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00002-f00007.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00002-f00007.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00003-f00008.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00003-f00008.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00003-f00008.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00003-f00008.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00004-f00010.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00004-f00010.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00004-f00010.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00004-f00010.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00005-f00017.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00005-f00017.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00005-f00017.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00005-f00017.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00006-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00006-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00006-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00006-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00007-f00034.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00007-f00034.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00007-f00034.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00007-f00034.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00008-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00008-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00008-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00008-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00009-f00054.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00009-f00054.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00009-f00054.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00009-f00054.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00001-f00010.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00001-f00010.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00001-f00010.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00001-f00010.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00002-f00019.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00002-f00019.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00002-f00019.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00002-f00019.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00003-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00003-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00004-f00031.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00004-f00031.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00004-f00031.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00004-f00031.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00005-f00034.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00005-f00034.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00005-f00034.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00005-f00034.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00006-f00038.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00006-f00038.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00006-f00038.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00006-f00038.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00007-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00007-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00008-f00048.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00008-f00048.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00008-f00048.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00008-f00048.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00009-f00058.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00009-f00058.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00009-f00058.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00009-f00058.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00001-f00008.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00001-f00008.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00001-f00008.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00001-f00008.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00002-f00011.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00002-f00011.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00002-f00011.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00002-f00011.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00003-f00014.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00003-f00014.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00003-f00014.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00003-f00014.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00004-f00019.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00004-f00019.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00004-f00019.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00004-f00019.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00005-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00005-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00005-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00006-f00028.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00006-f00028.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00006-f00028.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00006-f00028.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00007-f00032.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00007-f00032.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00007-f00032.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00007-f00032.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00008-f00034.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00008-f00034.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00008-f00034.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00008-f00034.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00009-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00009-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00009-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00009-f00040.overlay.mha\u001b[00m\r\n", + "│   │   └── \u001b[01;32m247ns_image_2743083265515_CLEAN.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;34mBAMC-PTXSliding\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_image_73815992352100_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_image_74132233134844_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_image_10705997566592_CLEAN.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_image_10891015221417_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_image_1180496934444_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_image_677741729740_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_image_3368391807672_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_image_3401832241774_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_image_588413346180_CLEAN.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_image_10391571128899_CLEAN.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_image_10395655826502_CLEAN.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_image_1896534330004_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_image_1901852337971_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_image_2959672151786_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_image_3320344386805_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_image_1499268364374_clean.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_image_1511338287338_clean.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_image_104543812690743_CLEAN.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_image_104548309385533_CLEAN.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_image_104932526155699_CLEAN.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_image_3925135436261_clean.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_image_3929217595322_clean.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_image_128683942015128_CLEAN.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_image_128688523296793_CLEAN.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_image_128692595484031_CLEAN.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_image_3308406916756_clean.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_image_3315947589826_clean.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_image_3321463845606_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_image_3384882513134_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_image_1139765223418_CLEAN.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_image_1327616672148_clean.mp4\u001b[00m\r\n", + "│   │   └── \u001b[01;32m237s_image_24164968068436_CLEAN.mp4\u001b[00m\r\n", + "│   ├── \u001b[01;34mBAMC-PTXSliding-Annotations-Linear\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00002-f00012.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00002-f00012.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00002-f00012.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00002-f00012.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00003-f00018.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00003-f00018.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00003-f00018.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00003-f00018.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00005-f00029.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00005-f00029.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00005-f00029.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00005-f00029.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00006-f00035.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00006-f00035.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00006-f00035.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00006-f00035.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00007-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00008-f00052.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00008-f00052.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00008-f00052.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00008-f00052.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00001-f00008.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00001-f00008.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00001-f00008.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00001-f00008.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00002-f00014.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00002-f00014.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00002-f00014.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00002-f00014.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00003-f00019.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00003-f00019.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00003-f00019.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00003-f00019.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00005-f00029.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00005-f00029.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00005-f00029.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00005-f00029.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00006-f00035.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00006-f00035.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00006-f00035.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00006-f00035.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00007-f00039.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00007-f00039.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00007-f00039.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00007-f00039.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00008-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00008-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00008-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00008-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00009-f00054.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00009-f00054.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00009-f00054.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00009-f00054.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00001-f00011.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00001-f00011.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00001-f00011.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00001-f00011.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00002-f00016.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00002-f00016.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00002-f00016.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00002-f00016.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00003-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00003-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00004-f00048.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00004-f00048.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00004-f00048.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00004-f00048.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00005-f00052.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00005-f00052.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00005-f00052.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00005-f00052.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00006-f00055.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00006-f00055.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00006-f00055.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00006-f00055.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00007-f00060.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00007-f00060.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00007-f00060.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00007-f00060.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00002-f00014.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00002-f00014.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00002-f00014.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00002-f00014.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00003-f00019.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00003-f00019.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00003-f00019.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00003-f00019.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00005-f00037.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00005-f00037.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00005-f00037.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00005-f00037.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00006-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00006-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00007-f00058.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00007-f00058.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00007-f00058.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00007-f00058.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00008-f00060.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00008-f00060.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00008-f00060.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00008-f00060.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00001-f00005.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00001-f00005.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00002-f00010.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00002-f00010.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00002-f00010.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00002-f00010.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00003-f00018.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00003-f00018.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00003-f00018.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00003-f00018.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00005-f00031.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00005-f00031.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00005-f00031.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00005-f00031.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00006-f00036.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00006-f00036.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00006-f00036.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00006-f00036.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00007-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00008-f00048.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00008-f00048.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00008-f00048.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00008-f00048.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00009-f00054.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00009-f00054.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00009-f00054.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00009-f00054.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00002-f00010.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00002-f00010.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00002-f00010.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00002-f00010.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00003-f00017.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00003-f00017.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00003-f00017.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00003-f00017.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00005-f00031.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00005-f00031.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00005-f00031.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00005-f00031.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00006-f00036.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00006-f00036.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00006-f00036.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00006-f00036.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00007-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00008-f00058.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00008-f00058.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00008-f00058.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00008-f00058.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00001-f00005.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00001-f00005.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00002-f00012.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00002-f00012.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00002-f00012.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00002-f00012.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00003-f00019.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00003-f00019.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00003-f00019.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00003-f00019.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00005-f00038.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00005-f00038.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00005-f00038.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00005-f00038.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00006-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00006-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00007-f00049.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00007-f00049.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00007-f00049.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00007-f00049.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00008-f00052.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00008-f00052.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00008-f00052.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00008-f00052.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00009-f00058.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00009-f00058.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00009-f00058.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00009-f00058.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00002-f00014.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00002-f00014.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00002-f00014.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00002-f00014.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00003-f00019.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00003-f00019.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00003-f00019.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00003-f00019.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00005-f00034.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00005-f00034.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00005-f00034.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00005-f00034.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00006-f00039.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00006-f00039.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00006-f00039.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00006-f00039.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00007-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00008-f00051.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00008-f00051.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00008-f00051.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00008-f00051.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00002-f00012.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00002-f00012.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00002-f00012.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00002-f00012.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00003-f00018.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00003-f00018.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00003-f00018.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00003-f00018.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00005-f00030.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00005-f00030.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00005-f00030.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00005-f00030.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00006-f00034.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00006-f00034.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00006-f00034.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00006-f00034.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00007-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00008-f00059.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00008-f00059.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00008-f00059.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00008-f00059.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00001-f00007.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00001-f00007.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00001-f00007.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00001-f00007.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00002-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00002-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00002-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00002-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00003-f00032.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00003-f00032.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00003-f00032.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00003-f00032.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00004-f00038.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00004-f00038.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00004-f00038.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00004-f00038.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00005-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00005-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00005-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00005-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00006-f00050.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00006-f00050.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00006-f00050.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00006-f00050.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00007-f00054.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00007-f00054.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00007-f00054.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00007-f00054.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00008-f00058.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00008-f00058.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00008-f00058.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00008-f00058.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00002-f00016.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00002-f00016.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00002-f00016.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00002-f00016.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00003-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00003-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00004-f00031.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00004-f00031.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00004-f00031.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00004-f00031.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00005-f00036.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00005-f00036.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00005-f00036.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00005-f00036.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00006-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00006-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00007-f00049.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00007-f00049.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00007-f00049.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00007-f00049.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00008-f00054.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00008-f00054.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00008-f00054.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00008-f00054.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00009-f00059.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00009-f00059.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00009-f00059.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00009-f00059.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00001-f00004.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00001-f00004.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00001-f00004.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00001-f00004.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00002-f00006.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00002-f00006.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00002-f00006.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00002-f00006.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00003-f00010.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00003-f00010.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00003-f00010.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00003-f00010.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00004-f00015.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00004-f00015.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00004-f00015.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00004-f00015.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00005-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00005-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00005-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00006-f00039.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00006-f00039.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00006-f00039.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00006-f00039.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00007-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00008-f00053.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00008-f00053.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00008-f00053.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00008-f00053.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00009-f00058.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00009-f00058.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00009-f00058.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00009-f00058.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00001-f00005.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00001-f00005.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00002-f00009.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00002-f00009.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00002-f00009.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00002-f00009.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00003-f00012.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00003-f00012.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00003-f00012.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00003-f00012.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00004-f00015.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00004-f00015.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00004-f00015.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00004-f00015.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00005-f00017.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00005-f00017.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00005-f00017.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00005-f00017.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00006-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00006-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00006-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00006-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00007-f00050.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00007-f00050.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00007-f00050.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00007-f00050.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00008-f00059.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00008-f00059.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00008-f00059.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00008-f00059.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00002-f00010.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00002-f00010.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00002-f00010.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00002-f00010.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00003-f00014.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00003-f00014.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00003-f00014.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00003-f00014.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00004-f00017.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00004-f00017.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00004-f00017.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00004-f00017.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00005-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00005-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00005-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00006-f00030.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00006-f00030.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00006-f00030.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00006-f00030.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00007-f00034.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00007-f00034.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00007-f00034.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00007-f00034.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00008-f00038.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00008-f00038.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00008-f00038.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00008-f00038.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00009-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00009-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00009-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00009-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00001-f00013.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00001-f00013.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00001-f00013.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00001-f00013.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00002-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00002-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00002-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00002-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00003-f00038.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00003-f00038.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00003-f00038.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00003-f00038.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00004-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00004-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00004-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00004-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00005-f00050.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00005-f00050.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00005-f00050.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00005-f00050.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00006-f00052.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00006-f00052.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00006-f00052.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00006-f00052.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00007-f00055.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00007-f00055.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00007-f00055.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00007-f00055.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00008-f00059.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00008-f00059.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00008-f00059.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00008-f00059.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00001-f00007.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00001-f00007.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00001-f00007.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00001-f00007.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00002-f00009.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00002-f00009.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00002-f00009.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00002-f00009.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00003-f00013.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00003-f00013.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00003-f00013.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00003-f00013.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00004-f00017.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00004-f00017.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00004-f00017.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00004-f00017.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00005-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00005-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00005-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00006-f00045.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00006-f00045.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00006-f00045.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00006-f00045.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00007-f00050.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00007-f00050.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00007-f00050.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00007-f00050.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00008-f00055.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00008-f00055.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00008-f00055.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00008-f00055.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00009-f00059.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00009-f00059.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00009-f00059.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00009-f00059.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00001-f00007.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00001-f00007.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00001-f00007.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00001-f00007.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00002-f00009.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00002-f00009.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00002-f00009.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00002-f00009.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00003-f00013.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00003-f00013.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00003-f00013.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00003-f00013.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00004-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00005-f00030.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00005-f00030.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00005-f00030.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00005-f00030.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00006-f00032.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00006-f00032.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00006-f00032.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00006-f00032.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00007-f00036.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00007-f00036.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00007-f00036.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00007-f00036.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00008-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00008-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00008-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00008-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00001-f00006.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00002-f00008.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00002-f00008.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00002-f00008.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00002-f00008.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00003-f00010.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00003-f00010.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00003-f00010.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00003-f00010.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00004-f00017.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00004-f00017.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00004-f00017.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00004-f00017.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00005-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00005-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00005-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00006-f00051.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00006-f00051.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00006-f00051.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00006-f00051.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00007-f00056.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00007-f00056.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00007-f00056.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00007-f00056.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00008-f00059.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00008-f00059.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00008-f00059.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00008-f00059.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00009-f00060.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00001-f00006.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00002-f00008.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00002-f00008.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00002-f00008.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00002-f00008.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00003-f00010.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00003-f00010.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00003-f00010.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00003-f00010.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00004-f00014.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00004-f00014.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00004-f00014.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00004-f00014.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00005-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00005-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00005-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00006-f00037.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00006-f00037.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00006-f00037.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00006-f00037.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00007-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00007-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00008-f00054.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00008-f00054.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00008-f00054.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00008-f00054.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00009-f00060.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00001-f00006.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00002-f00008.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00002-f00008.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00002-f00008.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00002-f00008.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00003-f00010.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00003-f00010.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00003-f00010.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00003-f00010.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00004-f00016.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00004-f00016.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00004-f00016.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00004-f00016.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00005-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00005-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00005-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00006-f00035.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00006-f00035.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00006-f00035.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00006-f00035.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00007-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00007-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00008-f00054.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00008-f00054.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00008-f00054.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00008-f00054.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00009-f00060.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00001-f00007.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00001-f00007.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00001-f00007.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00001-f00007.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00002-f00009.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00002-f00009.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00002-f00009.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00002-f00009.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00003-f00013.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00003-f00013.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00003-f00013.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00003-f00013.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00004-f00017.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00004-f00017.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00004-f00017.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00004-f00017.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00005-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00005-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00005-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00006-f00045.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00006-f00045.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00006-f00045.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00006-f00045.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00007-f00047.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00007-f00047.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00007-f00047.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00007-f00047.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00008-f00049.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00008-f00049.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00008-f00049.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00008-f00049.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00009-f00054.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00009-f00054.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00009-f00054.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00009-f00054.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00001-f00009.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00001-f00009.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00001-f00009.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00001-f00009.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00002-f00018.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00002-f00018.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00002-f00018.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00002-f00018.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00003-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00003-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00004-f00034.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00004-f00034.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00004-f00034.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00004-f00034.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00005-f00038.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00005-f00038.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00005-f00038.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00005-f00038.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00006-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00006-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00007-f00055.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00007-f00055.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00007-f00055.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00007-f00055.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00008-f00058.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00008-f00058.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00008-f00058.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00008-f00058.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00009-f00060.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00001-f00009.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00001-f00009.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00001-f00009.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00001-f00009.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00002-f00012.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00002-f00012.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00002-f00012.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00002-f00012.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00003-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00003-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00004-f00030.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00004-f00030.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00004-f00030.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00004-f00030.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00005-f00034.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00005-f00034.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00005-f00034.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00005-f00034.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00006-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00006-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00007-f00050.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00007-f00050.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00007-f00050.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00007-f00050.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00008-f00054.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00008-f00054.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00008-f00054.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00008-f00054.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00009-f00057.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00009-f00057.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00009-f00057.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00009-f00057.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00001-f00009.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00001-f00009.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00001-f00009.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00001-f00009.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00002-f00011.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00002-f00011.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00002-f00011.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00002-f00011.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00003-f00014.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00003-f00014.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00003-f00014.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00003-f00014.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00004-f00017.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00004-f00017.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00004-f00017.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00004-f00017.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00005-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00005-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00005-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00006-f00047.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00006-f00047.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00006-f00047.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00006-f00047.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00007-f00053.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00007-f00053.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00007-f00053.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00007-f00053.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00008-f00056.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00008-f00056.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00008-f00056.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00008-f00056.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00009-f00060.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00001-f00008.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00001-f00008.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00001-f00008.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00001-f00008.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00002-f00010.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00002-f00010.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00002-f00010.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00002-f00010.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00003-f00013.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00003-f00013.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00003-f00013.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00003-f00013.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00004-f00017.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00004-f00017.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00004-f00017.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00004-f00017.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00005-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00005-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00005-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00006-f00035.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00006-f00035.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00006-f00035.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00006-f00035.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00007-f00038.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00007-f00038.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00007-f00038.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00007-f00038.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00008-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00008-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00008-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00008-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00001-f00005.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00001-f00005.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00001-f00005.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00002-f00006.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00002-f00006.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00002-f00006.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00002-f00006.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00003-f00007.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00003-f00007.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00003-f00007.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00003-f00007.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00004-f00008.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00004-f00008.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00004-f00008.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00004-f00008.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00005-f00009.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00005-f00009.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00005-f00009.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00005-f00009.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00006-f00012.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00006-f00012.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00006-f00012.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00006-f00012.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00007-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00007-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00007-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00007-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00008-f00041.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00008-f00041.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00008-f00041.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00008-f00041.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00009-f00058.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00009-f00058.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00009-f00058.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00009-f00058.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00001-f00005.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00001-f00005.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00001-f00005.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00002-f00006.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00002-f00006.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00002-f00006.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00002-f00006.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00003-f00007.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00003-f00007.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00003-f00007.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00003-f00007.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00004-f00008.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00004-f00008.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00004-f00008.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00004-f00008.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00005-f00009.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00005-f00009.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00005-f00009.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00005-f00009.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00006-f00011.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00006-f00011.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00006-f00011.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00006-f00011.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00007-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00007-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00007-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00007-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00008-f00041.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00008-f00041.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00008-f00041.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00008-f00041.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00009-f00056.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00009-f00056.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00009-f00056.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00009-f00056.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00002-f00008.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00002-f00008.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00002-f00008.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00002-f00008.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00003-f00009.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00003-f00009.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00003-f00009.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00003-f00009.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00004-f00011.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00004-f00011.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00004-f00011.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00004-f00011.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00005-f00013.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00005-f00013.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00005-f00013.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00005-f00013.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00006-f00015.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00006-f00015.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00006-f00015.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00006-f00015.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00007-f00018.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00007-f00018.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00007-f00018.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00007-f00018.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00008-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00008-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00008-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00008-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00009-f00042.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00009-f00042.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00009-f00042.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00009-f00042.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00002-f00008.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00002-f00008.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00002-f00008.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00002-f00008.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00003-f00010.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00003-f00010.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00003-f00010.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00003-f00010.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00005-f00027.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00005-f00027.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00005-f00027.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00005-f00027.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00006-f00029.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00006-f00029.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00006-f00029.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00006-f00029.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00007-f00031.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00007-f00031.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00007-f00031.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00007-f00031.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00008-f00034.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00008-f00034.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00008-f00034.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00008-f00034.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00009-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00009-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00009-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00009-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00001-f00012.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00001-f00012.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00001-f00012.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00001-f00012.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00002-f00018.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00002-f00018.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00002-f00018.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00002-f00018.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00003-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00003-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00004-f00031.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00004-f00031.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00004-f00031.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00004-f00031.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00005-f00034.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00005-f00034.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00005-f00034.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00005-f00034.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00006-f00037.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00006-f00037.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00006-f00037.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00006-f00037.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00007-f00041.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00007-f00041.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00007-f00041.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00007-f00041.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00008-f00051.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00008-f00051.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00008-f00051.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00008-f00051.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00009-f00056.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00009-f00056.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00009-f00056.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00009-f00056.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00001-f00008.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00001-f00008.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00001-f00008.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00001-f00008.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00002-f00010.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00002-f00010.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00002-f00010.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00002-f00010.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00003-f00012.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00003-f00012.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00003-f00012.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00003-f00012.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00004-f00014.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00004-f00014.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00004-f00014.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00004-f00014.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00005-f00016.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00005-f00016.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00005-f00016.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00005-f00016.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00006-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00006-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00006-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00006-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.interpolated-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00001-f00005.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00001-f00005.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00002-f00008.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00002-f00008.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00002-f00008.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00002-f00008.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00003-f00013.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00003-f00013.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00003-f00013.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00003-f00013.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00004-f00017.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00004-f00017.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00004-f00017.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00004-f00017.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00005-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00005-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00005-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00006-f00043.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00006-f00043.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00006-f00043.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00006-f00043.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00007-f00051.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00007-f00051.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00007-f00051.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00007-f00051.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00008-f00058.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00008-f00058.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00008-f00058.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00008-f00058.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   └── \u001b[01;32m237s_iimage_24164968068436_CLEAN.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;34mColumnData\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean_ClassR_170-186.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean_ClassR_170-186.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean_ClassS_199-292.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean_ClassS_199-292.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean_ClassS_99-145.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean_ClassS_99-145.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean_ClassR_215-240.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean_ClassR_215-240.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean_ClassR_49-83.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean_ClassR_49-83.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean_ClassS_0-19.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean_ClassS_0-19.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean_ClassS_106-191.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean_ClassS_106-191.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean_ClassS_253-291.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean_ClassS_253-291.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN_ClassR_121-146.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN_ClassR_121-146.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN_ClassR_222-265.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN_ClassR_222-265.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN_ClassS_162-199.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN_ClassS_162-199.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean_ClassR_79-154.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean_ClassR_79-154.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean_ClassS_172-251.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean_ClassS_172-251.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean_ClassR_147-166.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean_ClassR_147-166.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean_ClassR_212-242.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean_ClassR_212-242.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean_ClassR_65-96.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean_ClassR_65-96.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassN_122-140.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassN_122-140.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassR_219-250.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassR_219-250.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassR_72-98.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassR_72-98.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean_ClassN_103-129.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean_ClassN_103-129.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean_ClassN_181-232.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean_ClassN_181-232.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean_ClassR_149-172.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean_ClassR_149-172.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean_ClassR_252-297.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean_ClassR_252-297.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean_ClassN_103-130.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean_ClassN_103-130.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean_ClassN_183-239.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean_ClassN_183-239.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean_ClassR_155-172.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean_ClassR_155-172.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean_ClassR_262-305.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean_ClassR_262-305.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN_ClassN_196-260.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN_ClassN_196-260.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN_ClassN_47-109.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN_ClassN_47-109.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN_ClassR_137-174.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN_ClassR_137-174.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean_ClassN_165-229.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean_ClassN_165-229.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean_ClassR_257-319.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean_ClassR_257-319.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean_ClassR_79-132.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean_ClassR_79-132.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean_ClassR_10-63.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean_ClassR_10-63.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean_ClassR_139-159.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean_ClassR_139-159.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean_ClassS_183-222.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean_ClassS_183-222.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean_ClassS_92-119.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean_ClassS_92-119.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean_ClassR_106-141.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean_ClassR_106-141.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean_ClassR_232-273.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean_ClassR_232-273.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean_ClassS_160-214.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean_ClassS_160-214.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean_ClassR_110-136.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean_ClassR_110-136.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean_ClassR_197-222.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean_ClassR_197-222.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean_ClassS_159-183.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean_ClassS_159-183.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean_ClassS_238-269.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean_ClassS_238-269.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean_ClassR_136-156.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean_ClassR_136-156.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean_ClassR_18-54.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean_ClassR_18-54.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean_ClassS_177-230.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean_ClassS_177-230.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean_ClassS_82-114.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean_ClassS_82-114.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean_ClassN_179-204.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean_ClassN_179-204.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean_ClassN_35-115.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean_ClassN_35-115.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean_ClassR_125-165.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean_ClassR_125-165.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean_ClassR_223-268.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean_ClassR_223-268.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean_ClassN_187-211.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean_ClassN_187-211.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean_ClassR_124-172.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean_ClassR_124-172.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean_ClassR_239-278.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean_ClassR_239-278.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN_ClassR_179-204.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN_ClassR_179-204.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN_ClassR_53-87.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN_ClassR_53-87.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN_ClassS_114-164.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN_ClassS_114-164.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN_ClassS_220-276.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN_ClassS_220-276.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN_ClassR_192-209.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN_ClassR_192-209.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN_ClassS_141-165.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN_ClassS_141-165.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN_ClassS_227-283.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN_ClassS_227-283.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN_ClassR_181-211.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN_ClassR_181-211.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN_ClassS_140-161.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN_ClassS_140-161.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN_ClassS_232-286.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN_ClassS_232-286.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean_ClassN_211-306.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean_ClassN_211-306.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean_ClassR_130-193.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean_ClassR_130-193.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean_ClassN_228-311.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean_ClassN_228-311.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean_ClassR_149-200.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean_ClassR_149-200.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN_ClassN_126-206.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN_ClassN_126-206.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN_ClassR_219-263.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN_ClassR_219-263.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN_ClassN_127-214.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN_ClassN_127-214.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN_ClassR_229-272.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN_ClassR_229-272.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean_ClassR_0-29.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean_ClassR_0-29.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean_ClassR_121-157.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean_ClassR_121-157.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean_ClassR_231-276.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean_ClassR_231-276.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean_ClassS_184-205.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean_ClassS_184-205.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean_ClassS_46-100.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean_ClassS_46-100.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean_ClassR_0-27.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean_ClassR_0-27.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean_ClassR_127-155.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean_ClassR_127-155.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean_ClassR_229-275.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean_ClassR_229-275.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean_ClassS_55-94.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean_ClassS_55-94.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean_ClassR_131-150.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean_ClassR_131-150.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean_ClassR_234-270.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean_ClassR_234-270.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean_ClassS_167-211.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean_ClassS_167-211.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean_ClassS_69-112.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean_ClassS_69-112.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean_ClassR_213-269.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean_ClassR_213-269.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean_ClassR_33-101.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean_ClassR_33-101.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean_ClassS_106-192.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean_ClassS_106-192.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN_ClassN_79-130.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN_ClassN_79-130.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN_ClassR_0-45.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN_ClassR_0-45.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN_ClassR_163-201.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN_ClassR_163-201.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN_ClassN_196-245.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN_ClassN_196-245.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN_ClassN_61-118.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN_ClassN_61-118.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN_ClassR_0-33.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN_ClassR_0-33.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN_ClassR_139-185.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN_ClassR_139-185.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean_ClassN_120-154.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean_ClassN_120-154.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean_ClassR_182-226.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean_ClassR_182-226.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean_ClassR_58-97.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean_ClassR_58-97.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN_ClassN_144-174.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN_ClassN_144-174.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN_ClassR_198-231.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN_ClassR_198-231.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN_ClassR_74-123.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN_ClassR_74-123.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN_ClassN_38-56.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN_ClassN_38-56.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassN_0-22.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassN_0-22.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassR_138-154.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassR_138-154.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassR_212-230.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassR_212-230.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassR_56-75.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassR_56-75.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassR_0-43.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassR_0-43.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassR_106-124.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassR_106-124.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassR_175-195.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassR_175-195.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassS_216-244.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassS_216-244.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean_ClassR_153-177.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean_ClassR_153-177.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean_ClassR_78-94.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean_ClassR_78-94.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean_ClassS_17-48.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean_ClassS_17-48.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN_ClassR_232-285.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN_ClassR_232-285.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN_ClassR_34-115.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN_ClassR_34-115.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN_ClassS_129-220.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN_ClassS_129-220.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN_ClassR_236-291.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN_ClassR_236-291.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN_ClassR_38-112.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN_ClassR_38-112.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN_ClassS_133-225.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN_ClassS_133-225.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN_ClassR_187-241.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN_ClassR_187-241.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN_ClassR_70-127.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN_ClassR_70-127.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN_ClassS_138-167.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN_ClassS_138-167.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean_ClassN_121-193.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean_ClassN_121-193.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean_ClassR_232-263.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean_ClassR_232-263.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean_ClassR_38-98.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean_ClassR_38-98.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean_ClassN_108-191.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean_ClassN_108-191.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean_ClassR_209-261.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean_ClassR_209-261.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean_ClassR_25-91.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean_ClassR_25-91.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassR_170-192.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassR_170-192.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassR_88-105.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassR_88-105.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassS_128-153.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassS_128-153.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassS_211-258.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassS_211-258.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean_ClassR_170-192.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean_ClassR_170-192.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean_ClassR_66-101.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean_ClassR_66-101.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean_ClassS_124-153.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean_ClassS_124-153.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean_ClassS_216-260.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean_ClassS_216-260.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN_ClassR_141-179.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN_ClassR_141-179.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN_ClassR_264-311.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN_ClassR_264-311.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN_ClassS_188-252.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN_ClassS_188-252.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN_ClassS_58-120.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN_ClassS_58-120.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN_ClassR_134-173.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN_ClassR_134-173.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN_ClassR_265-309.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN_ClassR_265-309.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN_ClassS_187-245.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN_ClassS_187-245.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN_ClassS_55-120.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN_ClassS_55-120.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN_ClassR_135-178.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN_ClassR_135-178.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN_ClassR_261-312.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN_ClassR_261-312.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN_ClassS_189-242.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN_ClassS_189-242.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN_ClassS_52-121.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN_ClassS_52-121.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN_ClassN_135-227.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN_ClassN_135-227.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN_ClassR_248-319.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN_ClassR_248-319.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN_ClassR_95-114.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN_ClassR_95-114.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN_ClassN_136-183.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN_ClassN_136-183.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN_ClassR_207-266.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN_ClassR_207-266.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN_ClassR_45-108.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN_ClassR_45-108.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN_ClassN_111-194.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN_ClassN_111-194.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN_ClassR_215-276.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN_ClassR_215-276.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN_ClassR_27-93.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN_ClassR_27-93.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN_ClassN_108-133.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN_ClassN_108-133.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN_ClassN_185-211.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN_ClassN_185-211.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN_ClassR_144-173.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN_ClassR_144-173.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN_ClassR_226-264.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN_ClassR_226-264.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN_ClassR_59-89.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN_ClassR_59-89.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassN_116-152.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassN_116-152.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassN_197-221.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassN_197-221.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassN_45-69.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassN_45-69.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassN_120-147.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassN_120-147.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassN_190-221.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassN_190-221.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassN_36-53.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassN_36-53.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean_ClassN_144-225.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean_ClassN_144-225.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean_ClassR_15-108.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean_ClassR_15-108.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean_ClassR_241-319.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean_ClassR_241-319.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean_ClassN_141-239.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean_ClassN_141-239.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean_ClassR_252-319.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean_ClassR_252-319.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean_ClassR_30-118.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean_ClassR_30-118.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean_ClassR_255-300.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean_ClassR_255-300.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean_ClassR_92-129.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean_ClassR_92-129.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean_ClassS_165-235.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean_ClassS_165-235.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean_ClassR_100-131.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean_ClassR_100-131.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean_ClassR_232-288.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean_ClassR_232-288.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean_ClassS_152-211.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean_ClassS_152-211.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean_ClassR_10-43.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean_ClassR_10-43.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean_ClassR_160-243.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean_ClassR_160-243.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean_ClassS_262-315.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean_ClassS_262-315.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean_ClassS_57-144.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean_ClassS_57-144.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean_ClassR_12-84.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean_ClassR_12-84.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean_ClassR_140-156.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean_ClassR_140-156.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean_ClassS_186-212.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean_ClassS_186-212.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean_ClassS_94-126.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean_ClassS_94-126.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN_ClassR_159-194.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN_ClassR_159-194.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN_ClassR_47-102.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN_ClassR_47-102.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN_ClassS_118-138.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN_ClassS_118-138.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN_ClassS_220-258.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN_ClassS_220-258.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean_ClassR_124-144.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean_ClassR_124-144.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean_ClassS_178-266.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean_ClassS_178-266.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN_ClassR_11-63.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN_ClassR_11-63.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN_ClassR_141-204.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN_ClassR_141-204.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN_ClassS_95-120.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN_ClassS_95-120.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN_ClassR_175-204.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN_ClassR_175-204.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN_ClassR_97-119.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN_ClassR_97-119.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN_ClassN_104-130.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN_ClassN_104-130.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN_ClassN_180-198.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN_ClassN_180-198.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN_ClassR_147-163.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN_ClassR_147-163.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN_ClassR_218-261.mha\u001b[00m\r\n", + "│   │   └── \u001b[01;32m247ns_image_2743083265515_CLEAN_ClassR_218-261.roi-overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;34mROIData\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean_ClassS_178-306.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean_ClassS_178-306.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean_ClassS_178-306.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean_ClassS_70-198.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean_ClassS_70-198.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean_ClassS_70-198.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean_ClassS_0-128.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean_ClassS_0-128.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean_ClassS_0-128.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean_ClassS_192-320.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean_ClassS_192-320.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean_ClassS_192-320.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean_ClassS_85-213.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean_ClassS_85-213.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean_ClassS_85-213.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN_ClassS_120-248.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN_ClassS_120-248.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN_ClassS_120-248.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN_ClassS_27-155.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN_ClassS_27-155.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN_ClassS_27-155.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean_ClassS_142-270.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean_ClassS_142-270.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean_ClassS_142-270.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean_ClassN_125-253.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean_ClassN_125-253.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean_ClassN_125-253.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean_ClassN_57-185.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean_ClassN_57-185.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean_ClassN_57-185.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassN_0-128.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassN_0-128.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassN_0-128.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassN_131-259.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassN_131-259.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassN_131-259.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassN_63-191.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassN_63-191.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassN_63-191.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean_ClassN_148-276.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean_ClassN_148-276.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean_ClassN_148-276.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean_ClassN_61-189.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean_ClassN_61-189.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean_ClassN_61-189.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean_ClassN_153-281.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean_ClassN_153-281.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean_ClassN_153-281.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean_ClassN_64-192.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean_ClassN_64-192.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean_ClassN_64-192.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN_ClassN_154-282.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN_ClassN_154-282.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN_ClassN_154-282.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN_ClassN_21-149.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN_ClassN_21-149.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN_ClassN_21-149.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean_ClassN_130-258.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean_ClassN_130-258.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean_ClassN_130-258.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean_ClassS_127-255.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean_ClassS_127-255.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean_ClassS_127-255.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean_ClassS_37-165.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean_ClassS_37-165.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean_ClassS_37-165.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean_ClassS_122-250.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean_ClassS_122-250.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean_ClassS_122-250.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean_ClassS_102-230.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean_ClassS_102-230.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean_ClassS_102-230.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean_ClassS_190-318.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean_ClassS_190-318.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean_ClassS_190-318.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean_ClassS_32-160.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean_ClassS_32-160.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean_ClassS_32-160.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean_ClassS_132-260.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean_ClassS_132-260.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean_ClassS_132-260.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean_ClassS_31-159.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean_ClassS_31-159.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean_ClassS_31-159.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean_ClassN_11-139.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean_ClassN_11-139.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean_ClassN_11-139.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean_ClassN_130-258.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean_ClassN_130-258.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean_ClassN_130-258.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean_ClassN_141-269.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean_ClassN_141-269.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean_ClassN_141-269.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN_ClassS_178-306.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN_ClassS_178-306.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN_ClassS_178-306.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN_ClassS_69-197.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN_ClassS_69-197.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN_ClassS_69-197.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN_ClassS_100-228.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN_ClassS_100-228.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN_ClassS_100-228.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN_ClassS_185-313.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN_ClassS_185-313.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN_ClassS_185-313.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN_ClassS_189-317.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN_ClassS_189-317.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN_ClassS_189-317.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN_ClassS_94-222.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN_ClassS_94-222.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN_ClassS_94-222.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean_ClassN_188-316.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean_ClassN_188-316.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean_ClassN_188-316.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean_ClassN_192-320.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean_ClassN_192-320.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean_ClassN_192-320.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN_ClassN_99-227.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN_ClassN_99-227.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN_ClassN_99-227.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN_ClassN_101-229.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN_ClassN_101-229.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN_ClassN_101-229.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean_ClassS_11-139.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean_ClassS_11-139.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean_ClassS_11-139.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean_ClassS_130-258.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean_ClassS_130-258.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean_ClassS_130-258.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean_ClassS_128-256.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean_ClassS_128-256.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean_ClassS_128-256.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean_ClassS_13-141.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean_ClassS_13-141.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean_ClassS_13-141.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean_ClassS_128-256.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean_ClassS_128-256.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean_ClassS_128-256.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean_ClassS_27-155.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean_ClassS_27-155.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean_ClassS_27-155.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean_ClassS_94-222.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean_ClassS_94-222.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean_ClassS_94-222.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN_ClassN_40-168.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN_ClassN_40-168.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN_ClassN_40-168.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN_ClassN_151-279.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN_ClassN_151-279.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN_ClassN_151-279.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN_ClassN_22-150.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN_ClassN_22-150.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN_ClassN_22-150.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean_ClassN_75-203.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean_ClassN_75-203.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean_ClassN_75-203.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN_ClassN_96-224.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN_ClassN_96-224.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN_ClassN_96-224.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN_ClassN_145-273.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN_ClassN_145-273.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN_ClassN_145-273.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN_ClassN_192-320.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN_ClassN_192-320.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN_ClassN_192-320.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN_ClassN_36-164.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN_ClassN_36-164.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN_ClassN_36-164.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassN_0-128.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassN_0-128.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassN_0-128.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassN_119-247.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassN_119-247.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassN_119-247.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassN_188-316.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassN_188-316.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassN_188-316.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassN_42-170.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassN_42-170.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassN_42-170.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassS_10-138.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassS_10-138.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassS_10-138.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassS_158-286.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassS_158-286.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassS_158-286.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassS_85-213.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassS_85-213.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassS_85-213.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean_ClassS_0-128.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean_ClassS_0-128.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean_ClassS_0-128.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean_ClassS_138-266.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean_ClassS_138-266.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean_ClassS_138-266.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean_ClassS_59-187.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean_ClassS_59-187.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean_ClassS_59-187.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN_ClassS_109-237.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN_ClassS_109-237.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN_ClassS_109-237.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN_ClassS_110-238.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN_ClassS_110-238.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN_ClassS_110-238.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN_ClassS_93-221.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN_ClassS_93-221.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN_ClassS_93-221.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean_ClassN_101-229.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean_ClassN_101-229.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean_ClassN_101-229.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean_ClassN_86-214.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean_ClassN_86-214.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean_ClassN_86-214.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassS_0-128.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassS_0-128.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassS_0-128.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassS_166-294.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassS_166-294.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassS_166-294.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassS_73-201.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassS_73-201.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassS_73-201.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean_ClassS_163-291.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean_ClassS_163-291.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean_ClassS_163-291.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean_ClassS_71-199.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean_ClassS_71-199.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean_ClassS_71-199.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN_ClassS_157-285.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN_ClassS_157-285.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN_ClassS_157-285.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN_ClassS_32-160.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN_ClassS_32-160.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN_ClassS_32-160.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN_ClassS_155-283.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN_ClassS_155-283.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN_ClassS_155-283.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN_ClassS_27-155.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN_ClassS_27-155.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN_ClassS_27-155.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN_ClassS_155-283.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN_ClassS_155-283.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN_ClassS_155-283.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN_ClassS_28-156.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN_ClassS_28-156.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN_ClassS_28-156.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN_ClassN_121-249.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN_ClassN_121-249.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN_ClassN_121-249.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN_ClassN_93-221.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN_ClassN_93-221.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN_ClassN_93-221.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN_ClassN_90-218.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN_ClassN_90-218.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN_ClassN_90-218.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN_ClassN_0-128.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN_ClassN_0-128.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN_ClassN_0-128.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN_ClassN_135-263.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN_ClassN_135-263.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN_ClassN_135-263.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN_ClassN_52-180.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN_ClassN_52-180.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN_ClassN_52-180.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassN_0-128.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassN_0-128.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassN_0-128.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassN_138-266.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassN_138-266.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassN_138-266.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassN_67-195.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassN_67-195.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassN_67-195.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassN_0-128.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassN_0-128.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassN_0-128.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassN_133-261.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassN_133-261.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassN_133-261.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassN_62-190.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassN_62-190.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassN_62-190.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean_ClassN_110-238.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean_ClassN_110-238.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean_ClassN_110-238.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean_ClassN_121-249.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean_ClassN_121-249.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean_ClassN_121-249.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean_ClassS_128-256.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean_ClassS_128-256.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean_ClassS_128-256.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean_ClassS_117-245.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean_ClassS_117-245.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean_ClassS_117-245.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean_ClassS_192-320.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean_ClassS_192-320.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean_ClassS_192-320.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean_ClassS_37-165.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean_ClassS_37-165.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean_ClassS_37-165.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean_ClassS_133-261.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean_ClassS_133-261.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean_ClassS_133-261.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean_ClassS_48-176.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean_ClassS_48-176.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean_ClassS_48-176.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN_ClassS_166-294.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN_ClassS_166-294.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN_ClassS_166-294.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN_ClassS_66-194.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN_ClassS_66-194.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN_ClassS_66-194.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean_ClassS_158-286.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean_ClassS_158-286.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean_ClassS_158-286.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN_ClassS_172-300.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN_ClassS_172-300.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN_ClassS_172-300.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN_ClassS_38-166.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN_ClassS_38-166.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN_ClassS_38-166.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN_ClassN_83-211.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN_ClassN_83-211.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN_ClassN_83-211.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN_ClassN_126-254.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN_ClassN_126-254.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN_ClassN_126-254.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN_ClassN_60-188.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN_ClassN_60-188.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN_ClassN_60-188.roi.nii.gz\u001b[00m\r\n", + "│   │   └── \u001b[01;34msave\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean_ClassR_179-307.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean_ClassR_179-307.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean_ClassR_70-198.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean_ClassR_70-198.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean_ClassS_179-307.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean_ClassS_179-307.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean_ClassS_70-198.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean_ClassS_70-198.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean_ClassR_192-320.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean_ClassR_192-320.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean_ClassR_86-214.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean_ClassR_86-214.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean_ClassS_192-320.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean_ClassS_192-320.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean_ClassS_86-214.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean_ClassS_86-214.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN_ClassR_120-248.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN_ClassR_120-248.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN_ClassR_27-155.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN_ClassR_27-155.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN_ClassS_120-248.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN_ClassS_120-248.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN_ClassS_27-155.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN_ClassS_27-155.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean_ClassR_151-279.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean_ClassR_151-279.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean_ClassS_151-279.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean_ClassS_151-279.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean_ClassN_125-253.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean_ClassN_125-253.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean_ClassN_57-185.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean_ClassN_57-185.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean_ClassN_65-193.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean_ClassN_65-193.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean_ClassR_125-253.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean_ClassR_125-253.roi.overlay.mha\u001b[00m\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "│ �� │   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassN_0-128.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassN_0-128.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassN_131-259.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassN_131-259.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassN_141-269.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassN_141-269.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassN_63-191.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassN_63-191.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassN_72-200.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassN_72-200.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassR_117-245.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassR_117-245.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassR_43-171.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassR_43-171.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean_ClassN_148-276.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean_ClassN_148-276.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean_ClassN_61-189.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean_ClassN_61-189.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean_ClassR_148-276.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean_ClassR_148-276.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean_ClassR_61-189.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean_ClassR_61-189.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean_ClassN_153-281.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean_ClassN_153-281.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean_ClassN_64-192.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean_ClassN_64-192.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean_ClassR_153-281.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean_ClassR_153-281.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean_ClassR_64-192.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean_ClassR_64-192.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN_ClassN_154-282.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN_ClassN_154-282.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN_ClassN_21-149.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN_ClassN_21-149.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN_ClassR_154-282.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN_ClassR_154-282.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN_ClassR_21-149.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN_ClassR_21-149.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean_ClassN_130-258.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean_ClassN_130-258.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean_ClassR_130-258.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean_ClassR_130-258.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean_ClassR_127-255.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean_ClassR_127-255.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean_ClassR_37-165.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean_ClassR_37-165.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean_ClassS_127-255.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean_ClassS_127-255.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean_ClassS_37-165.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean_ClassS_37-165.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean_ClassR_122-250.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean_ClassR_122-250.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean_ClassS_122-250.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean_ClassS_122-250.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean_ClassR_102-230.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean_ClassR_102-230.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean_ClassR_190-318.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean_ClassR_190-318.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean_ClassS_102-230.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean_ClassS_102-230.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean_ClassS_190-318.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean_ClassS_190-318.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean_ClassS_32-160.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean_ClassS_32-160.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean_ClassR_132-260.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean_ClassR_132-260.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean_ClassR_31-159.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean_ClassR_31-159.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean_ClassS_132-260.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean_ClassS_132-260.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean_ClassS_31-159.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean_ClassS_31-159.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean_ClassN_11-139.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean_ClassN_11-139.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean_ClassN_130-258.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean_ClassN_130-258.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean_ClassR_11-139.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean_ClassR_11-139.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean_ClassR_130-258.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean_ClassR_130-258.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean_ClassN_141-269.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean_ClassN_141-269.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean_ClassR_141-269.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean_ClassR_141-269.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN_ClassR_178-306.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN_ClassR_178-306.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN_ClassR_38-166.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN_ClassR_38-166.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN_ClassS_178-306.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN_ClassS_178-306.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN_ClassS_69-197.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN_ClassS_69-197.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN_ClassS_84-212.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN_ClassS_84-212.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN_ClassR_100-228.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN_ClassR_100-228.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN_ClassR_185-313.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN_ClassR_185-313.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN_ClassS_107-235.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN_ClassS_107-235.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN_ClassS_185-313.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN_ClassS_185-313.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN_ClassR_189-317.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN_ClassR_189-317.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN_ClassR_94-222.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN_ClassR_94-222.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN_ClassS_102-230.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN_ClassS_102-230.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN_ClassS_189-317.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN_ClassS_189-317.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean_ClassN_188-316.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean_ClassN_188-316.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean_ClassR_188-316.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean_ClassR_188-316.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean_ClassN_192-320.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean_ClassN_192-320.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean_ClassR_192-320.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean_ClassR_192-320.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN_ClassN_99-227.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN_ClassN_99-227.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN_ClassR_99-227.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN_ClassR_99-227.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN_ClassN_101-229.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN_ClassN_101-229.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN_ClassR_101-229.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN_ClassR_101-229.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean_ClassR_11-139.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean_ClassR_11-139.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean_ClassR_130-258.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean_ClassR_130-258.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean_ClassS_11-139.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean_ClassS_11-139.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean_ClassS_130-258.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean_ClassS_130-258.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean_ClassR_128-256.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean_ClassR_128-256.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean_ClassR_13-141.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean_ClassR_13-141.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean_ClassS_128-256.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean_ClassS_128-256.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean_ClassS_13-141.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean_ClassS_13-141.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean_ClassR_27-155.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean_ClassR_27-155.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean_ClassR_94-222.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean_ClassR_94-222.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean_ClassS_128-256.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean_ClassS_128-256.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean_ClassS_135-263.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean_ClassS_135-263.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean_ClassS_27-155.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean_ClassS_27-155.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean_ClassR_94-222.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean_ClassR_94-222.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean_ClassS_94-222.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean_ClassS_94-222.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN_ClassN_40-168.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN_ClassN_40-168.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN_ClassR_40-168.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN_ClassR_40-168.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN_ClassN_151-279.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN_ClassN_151-279.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN_ClassN_22-150.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN_ClassN_22-150.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN_ClassR_151-279.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN_ClassR_151-279.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN_ClassR_22-150.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN_ClassR_22-150.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean_ClassN_75-203.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean_ClassN_75-203.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean_ClassN_88-216.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean_ClassN_88-216.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean_ClassR_46-174.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean_ClassR_46-174.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN_ClassN_96-224.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN_ClassN_96-224.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN_ClassN_145-273.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN_ClassN_145-273.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN_ClassN_192-320.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN_ClassN_192-320.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN_ClassN_36-164.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN_ClassN_36-164.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN_ClassR_145-273.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN_ClassR_145-273.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN_ClassR_192-320.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN_ClassR_192-320.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN_ClassR_36-164.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN_ClassR_36-164.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassN_0-128.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassN_0-128.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassN_119-247.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassN_119-247.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassN_130-258.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassN_130-258.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassN_188-316.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassN_188-316.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassN_42-170.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassN_42-170.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassR_0-128.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassR_0-128.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassR_102-230.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassR_102-230.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassR_42-170.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassR_42-170.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassR_10-138.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassR_10-138.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassR_158-286.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassR_158-286.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassR_85-213.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassR_85-213.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassS_10-138.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassS_10-138.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassS_158-286.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassS_158-286.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassS_85-213.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassS_85-213.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean_ClassR_0-128.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean_ClassR_0-128.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean_ClassR_138-266.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean_ClassR_138-266.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean_ClassS_0-128.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean_ClassS_0-128.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean_ClassS_138-266.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean_ClassS_138-266.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean_ClassS_59-187.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean_ClassS_59-187.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN_ClassR_109-237.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN_ClassR_109-237.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN_ClassS_109-237.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN_ClassS_109-237.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN_ClassR_110-238.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN_ClassR_110-238.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN_ClassS_110-238.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN_ClassS_110-238.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN_ClassR_93-221.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN_ClassR_93-221.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN_ClassS_93-221.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN_ClassS_93-221.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean_ClassN_101-229.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean_ClassN_101-229.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean_ClassN_86-214.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean_ClassN_86-214.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean_ClassR_86-214.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean_ClassR_86-214.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassR_0-128.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassR_0-128.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassR_142-270.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassR_142-270.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassR_73-201.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassR_73-201.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassS_0-128.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassS_0-128.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassS_166-294.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassS_166-294.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassS_180-308.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassS_180-308.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassS_73-201.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassS_73-201.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean_ClassR_139-267.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean_ClassR_139-267.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean_ClassR_71-199.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean_ClassR_71-199.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean_ClassS_163-291.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean_ClassS_163-291.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean_ClassS_174-302.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean_ClassS_174-302.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean_ClassS_71-199.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean_ClassS_71-199.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN_ClassR_131-259.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN_ClassR_131-259.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN_ClassR_32-160.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN_ClassR_32-160.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN_ClassS_157-285.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN_ClassS_157-285.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN_ClassS_173-301.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN_ClassS_173-301.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN_ClassS_32-160.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN_ClassS_32-160.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN_ClassR_128-256.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN_ClassR_128-256.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN_ClassR_31-159.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN_ClassR_31-159.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN_ClassS_155-283.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN_ClassS_155-283.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN_ClassS_173-301.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN_ClassS_173-301.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN_ClassS_31-159.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN_ClassS_31-159.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN_ClassR_128-256.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN_ClassR_128-256.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN_ClassR_32-160.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN_ClassR_32-160.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN_ClassS_155-283.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN_ClassS_155-283.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN_ClassS_169-297.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN_ClassS_169-297.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN_ClassS_32-160.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN_ClassS_32-160.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN_ClassN_121-249.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN_ClassN_121-249.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN_ClassN_147-275.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN_ClassN_147-275.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN_ClassR_85-213.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN_ClassR_85-213.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN_ClassN_93-221.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN_ClassN_93-221.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN_ClassR_93-221.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN_ClassR_93-221.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN_ClassN_90-218.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN_ClassN_90-218.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN_ClassR_90-218.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN_ClassR_90-218.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN_ClassN_135-263.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN_ClassN_135-263.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN_ClassN_52-180.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN_ClassN_52-180.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN_ClassR_0-128.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN_ClassR_0-128.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassN_0-128.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassN_0-128.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassN_138-266.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassN_138-266.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassN_67-195.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassN_67-195.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassN_84-212.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassN_84-212.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassR_0-128.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassR_0-128.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassR_138-266.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassR_138-266.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassR_50-178.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassR_50-178.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassN_0-128.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassN_0-128.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassN_133-261.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassN_133-261.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassN_62-190.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassN_62-190.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassN_78-206.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassN_78-206.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassR_0-128.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassR_0-128.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassR_133-261.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassR_133-261.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassR_45-173.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassR_45-173.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean_ClassN_110-238.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean_ClassN_110-238.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean_ClassN_129-257.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean_ClassN_129-257.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean_ClassR_63-191.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean_ClassR_63-191.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean_ClassN_121-249.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean_ClassN_121-249.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean_ClassN_137-265.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean_ClassN_137-265.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean_ClassR_70-198.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean_ClassR_70-198.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean_ClassR_86-214.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean_ClassR_86-214.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean_ClassS_128-256.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean_ClassS_128-256.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean_ClassS_148-276.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean_ClassS_148-276.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean_ClassR_77-205.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean_ClassR_77-205.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean_ClassS_117-245.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean_ClassS_117-245.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean_ClassS_127-255.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean_ClassS_127-255.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean_ClassR_192-320.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean_ClassR_192-320.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean_ClassR_32-160.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean_ClassR_32-160.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean_ClassS_192-320.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean_ClassS_192-320.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean_ClassS_32-160.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean_ClassS_32-160.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean_ClassR_133-261.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean_ClassR_133-261.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean_ClassR_30-158.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean_ClassR_30-158.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean_ClassS_133-261.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean_ClassS_133-261.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean_ClassS_48-176.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean_ClassS_48-176.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean_ClassS_58-186.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean_ClassS_58-186.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN_ClassR_66-194.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN_ClassR_66-194.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN_ClassS_166-294.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN_ClassS_166-294.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN_ClassS_66-194.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN_ClassS_66-194.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean_ClassR_158-286.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean_ClassR_158-286.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean_ClassS_158-286.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean_ClassS_158-286.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN_ClassR_172-300.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN_ClassR_172-300.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN_ClassR_18-146.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN_ClassR_18-146.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN_ClassS_172-300.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN_ClassS_172-300.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN_ClassS_38-166.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN_ClassS_38-166.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN_ClassS_57-185.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN_ClassS_57-185.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN_ClassN_83-211.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN_ClassN_83-211.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN_ClassN_90-218.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN_ClassN_90-218.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN_ClassN_126-254.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN_ClassN_126-254.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN_ClassN_133-261.roi.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN_ClassN_133-261.roi.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN_ClassN_60-188.roi.mha\u001b[00m\r\n", + "│   │   └── \u001b[01;32m247ns_image_2743083265515_CLEAN_ClassN_60-188.roi.overlay.mha\u001b[00m\r\n", + "│   └── \u001b[01;34msave\u001b[00m\r\n", + "│   ├── \u001b[01;34mBAMC-PTXNoSliding\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov\u001b[00m\r\n", + "│   │   └── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov\u001b[00m\r\n", + "│   ├── \u001b[01;34mBAMC-PTXNoSliding-Annotations-Linear\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.columns-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.columns-roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.extruded-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.mp4-00001-f00004.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.mp4-00001-f00004.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.mp4-00002-f00006.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.mp4-00002-f00006.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.mp4-00003-f00011.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.mp4-00003-f00011.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.mp4-00004-f00017.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.mp4-00004-f00017.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.mp4-00005-f00024.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.mp4-00005-f00024.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.mp4-00006-f00045.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.mp4-00006-f00045.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.mp4-00007-f00048.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.mp4-00007-f00048.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.mp4-00008-f00056.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.mp4-00008-f00056.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.mp4-00009-f00063.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean.mp4-00009-f00063.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.columns-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.columns-roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.extruded-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00002-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00002-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00002-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00002-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00003-f00030.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00003-f00030.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00003-f00030.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00003-f00030.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00004-f00033.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00004-f00033.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00004-f00033.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00004-f00033.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00005-f00036.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00005-f00036.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00005-f00036.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00005-f00036.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00006-f00039.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00006-f00039.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00006-f00039.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00006-f00039.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00007-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00008-f00049.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00008-f00049.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00008-f00049.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00008-f00049.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.columns-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.columns-roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.extruded-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00002-f00012.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00002-f00012.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00002-f00012.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00002-f00012.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00003-f00019.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00003-f00019.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00003-f00019.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00003-f00019.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00005-f00034.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00005-f00034.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00005-f00034.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00005-f00034.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00006-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00006-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00007-f00052.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00007-f00052.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00007-f00052.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00007-f00052.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00008-f00056.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00008-f00056.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00008-f00056.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00008-f00056.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.columns-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.columns-roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.extruded-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00001-f00005.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00001-f00005.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00002-f00009.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00002-f00009.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00002-f00009.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00002-f00009.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00003-f00019.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00003-f00019.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00003-f00019.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00003-f00019.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00005-f00033.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00005-f00033.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00005-f00033.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00005-f00033.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00006-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00006-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00007-f00051.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00007-f00051.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00007-f00051.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00007-f00051.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00008-f00054.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00008-f00054.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00008-f00054.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00008-f00054.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00009-f00059.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00009-f00059.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00009-f00059.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean.mp4-00009-f00059.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.columns-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.columns-roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.extruded-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.extruded-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00002-f00014.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00002-f00014.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00002-f00014.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00002-f00014.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00003-f00019.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00003-f00019.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00003-f00019.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00003-f00019.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00005-f00035.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00005-f00035.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00005-f00035.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00005-f00035.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00006-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00006-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00007-f00050.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00007-f00050.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00007-f00050.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00007-f00050.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00008-f00056.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00008-f00056.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00008-f00056.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00008-f00056.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.columns-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.columns-roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.extruded-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00001-f00005.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00001-f00005.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00002-f00008.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00002-f00008.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00002-f00008.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00002-f00008.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00003-f00012.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00003-f00012.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00003-f00012.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00003-f00012.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00005-f00033.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00005-f00033.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00005-f00033.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00005-f00033.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00006-f00037.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00006-f00037.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00006-f00037.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00006-f00037.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00007-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00008-f00056.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00008-f00056.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00008-f00056.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00008-f00056.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00009-f00059.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00009-f00059.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00009-f00059.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean.mp4-00009-f00059.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.columns-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.columns-roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.extruded-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00001-f00013.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00001-f00013.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00001-f00013.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00001-f00013.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00002-f00017.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00002-f00017.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00002-f00017.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00002-f00017.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00003-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00003-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00004-f00033.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00004-f00033.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00004-f00033.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00004-f00033.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00005-f00041.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00005-f00041.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00005-f00041.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00005-f00041.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00006-f00048.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00006-f00048.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00006-f00048.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00006-f00048.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00007-f00052.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00007-f00052.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00007-f00052.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00007-f00052.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00008-f00055.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00008-f00055.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00008-f00055.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00008-f00055.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.columns-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.columns-roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.extruded-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00001-f00010.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00001-f00010.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00001-f00010.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00001-f00010.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00002-f00017.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00002-f00017.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00002-f00017.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00002-f00017.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00003-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00003-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00004-f00028.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00004-f00028.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00004-f00028.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00004-f00028.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00005-f00032.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00005-f00032.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00005-f00032.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00005-f00032.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00006-f00036.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00006-f00036.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00006-f00036.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00006-f00036.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00007-f00041.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00007-f00041.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00007-f00041.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00007-f00041.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00008-f00059.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00008-f00059.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00008-f00059.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00008-f00059.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.columns-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.columns-roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.extruded-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00001-f00009.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00001-f00009.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00001-f00009.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00001-f00009.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00002-f00015.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00002-f00015.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00002-f00015.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00002-f00015.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00003-f00018.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00003-f00018.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00003-f00018.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00003-f00018.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00005-f00037.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00005-f00037.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00005-f00037.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00005-f00037.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00006-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00006-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00007-f00053.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00007-f00053.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00007-f00053.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00007-f00053.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00008-f00055.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00008-f00055.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00008-f00055.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00008-f00055.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00009-f00057.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00009-f00057.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00009-f00057.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean.mp4-00009-f00057.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.columns-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.columns-roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.extruded-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00001-f00005.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00001-f00005.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00002-f00015.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00002-f00015.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00002-f00015.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00002-f00015.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00003-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00003-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00004-f00033.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00004-f00033.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00004-f00033.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00004-f00033.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00005-f00036.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00005-f00036.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00005-f00036.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00005-f00036.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00006-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00006-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00007-f00056.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00007-f00056.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00007-f00056.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00007-f00056.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00008-f00059.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00008-f00059.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00008-f00059.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean.mp4-00008-f00059.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.columns-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.columns-roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.extruded-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.extruded-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00001-f00009.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00001-f00009.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00001-f00009.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00001-f00009.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00002-f00017.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00002-f00017.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00002-f00017.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00002-f00017.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00003-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00003-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00004-f00030.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00004-f00030.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00004-f00030.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00004-f00030.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00005-f00034.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00005-f00034.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00005-f00034.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00005-f00034.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00006-f00039.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00006-f00039.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00006-f00039.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00006-f00039.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00007-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00008-f00052.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00008-f00052.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00008-f00052.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00008-f00052.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00009-f00058.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00009-f00058.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00009-f00058.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN.mp4-00009-f00058.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.columns-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.columns-roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.extruded-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.extruded-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00001-f00009.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00001-f00009.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00001-f00009.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00001-f00009.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00002-f00016.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00002-f00016.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00002-f00016.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00002-f00016.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00003-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00003-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00004-f00030.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00004-f00030.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00004-f00030.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00004-f00030.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00005-f00034.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00005-f00034.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00005-f00034.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00005-f00034.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00006-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00006-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00007-f00049.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00007-f00049.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00007-f00049.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00007-f00049.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00008-f00054.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00008-f00054.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00008-f00054.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN.mp4-00008-f00054.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.columns-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.columns-roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.extruded-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.extruded-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00001-f00005.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00001-f00005.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00002-f00010.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00002-f00010.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00002-f00010.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00002-f00010.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00003-f00017.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00003-f00017.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00003-f00017.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00003-f00017.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00005-f00026.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00005-f00026.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00005-f00026.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00005-f00026.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00006-f00033.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00006-f00033.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00006-f00033.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00006-f00033.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00007-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00008-f00057.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00008-f00057.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00008-f00057.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00008-f00057.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.columns-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.columns-roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.extruded-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.extruded-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00001-f00004.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00001-f00004.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00001-f00004.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00001-f00004.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00002-f00007.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00002-f00007.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00002-f00007.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00002-f00007.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00003-f00011.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00003-f00011.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00003-f00011.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00003-f00011.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00004-f00014.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00004-f00014.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00004-f00014.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00004-f00014.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00005-f00019.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00005-f00019.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00005-f00019.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00005-f00019.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00006-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00006-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00006-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00006-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00007-f00033.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00007-f00033.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00007-f00033.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00007-f00033.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00008-f00037.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00008-f00037.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00008-f00037.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00008-f00037.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00009-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00009-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00009-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN.mp4-00009-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.columns-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.columns-roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.extruded-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00001-f00005.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00001-f00005.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00002-f00007.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00002-f00007.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00002-f00007.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00002-f00007.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00003-f00013.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00003-f00013.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00003-f00013.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00003-f00013.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00005-f00028.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00005-f00028.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00005-f00028.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00005-f00028.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00006-f00033.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00006-f00033.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00006-f00033.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00006-f00033.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00007-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00008-f00050.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00008-f00050.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00008-f00050.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00008-f00050.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00009-f00055.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00009-f00055.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00009-f00055.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean.mp4-00009-f00055.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.columns-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.columns-roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.extruded-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.extruded-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00001-f00003.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00001-f00003.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00001-f00003.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00001-f00003.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00002-f00005.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00002-f00005.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00002-f00005.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00002-f00005.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00003-f00007.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00003-f00007.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00003-f00007.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00003-f00007.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00004-f00017.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00004-f00017.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00004-f00017.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00004-f00017.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00005-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00005-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00005-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00006-f00030.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00006-f00030.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00006-f00030.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00006-f00030.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00007-f00034.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00007-f00034.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00007-f00034.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00007-f00034.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00008-f00039.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00008-f00039.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00008-f00039.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00008-f00039.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00009-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00009-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00009-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN.mp4-00009-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.columns-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.columns-roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.extruded-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.extruded-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00001-f00005.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00001-f00005.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00002-f00007.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00002-f00007.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00002-f00007.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00002-f00007.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00003-f00008.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00003-f00008.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00003-f00008.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00003-f00008.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00004-f00009.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00004-f00009.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00004-f00009.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00004-f00009.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00005-f00010.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00005-f00010.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00005-f00010.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00005-f00010.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00006-f00017.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00006-f00017.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00006-f00017.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00006-f00017.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00007-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00007-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00007-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00007-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00008-f00042.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00008-f00042.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00008-f00042.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00008-f00042.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.columns-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.columns-roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.extruded-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00002-f00008.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00002-f00008.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00002-f00008.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00002-f00008.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00003-f00009.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00003-f00009.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00003-f00009.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00003-f00009.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00004-f00010.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00004-f00010.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00004-f00010.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00004-f00010.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00005-f00019.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00005-f00019.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00005-f00019.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00005-f00019.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00006-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00006-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00006-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00006-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00007-f00042.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00007-f00042.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00007-f00042.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00007-f00042.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00008-f00050.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00008-f00050.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00008-f00050.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00008-f00050.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.columns-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.columns-roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.extruded-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00001-f00007.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00001-f00007.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00001-f00007.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00001-f00007.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00002-f00010.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00002-f00010.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00002-f00010.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00002-f00010.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00003-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00003-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00004-f00034.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00004-f00034.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00004-f00034.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00004-f00034.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00005-f00039.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00005-f00039.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00005-f00039.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00005-f00039.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00006-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00006-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00007-f00053.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00007-f00053.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00007-f00053.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00007-f00053.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00008-f00059.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00008-f00059.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00008-f00059.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00008-f00059.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00009-f00060.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean.mov-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.columns-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.columns-roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.extruded-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00001-f00007.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00001-f00007.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00001-f00007.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00001-f00007.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00002-f00009.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00002-f00009.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00002-f00009.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00002-f00009.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00003-f00012.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00003-f00012.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00003-f00012.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00003-f00012.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00004-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00005-f00029.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00005-f00029.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00005-f00029.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00005-f00029.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00006-f00034.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00006-f00034.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00006-f00034.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00006-f00034.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00007-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00007-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00008-f00054.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00008-f00054.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00008-f00054.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00008-f00054.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00009-f00059.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00009-f00059.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00009-f00059.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean.mov-00009-f00059.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.columns-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.columns-roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.extruded-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.extruded-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00001-f00006.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00002-f00008.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00002-f00008.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00002-f00008.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00002-f00008.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00003-f00010.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00003-f00010.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00003-f00010.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00003-f00010.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00004-f00014.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00004-f00014.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00004-f00014.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00004-f00014.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00005-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00005-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00005-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00006-f00035.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00006-f00035.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00006-f00035.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00006-f00035.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00007-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00007-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN.mov-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.columns-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.columns-roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.extruded-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.extruded-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00001-f00006.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00002-f00008.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00002-f00008.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00002-f00008.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00002-f00008.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00003-f00009.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00003-f00009.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00003-f00009.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00003-f00009.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00004-f00010.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00004-f00010.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00004-f00010.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00004-f00010.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00005-f00013.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00005-f00013.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00005-f00013.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00005-f00013.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00006-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00006-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00006-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00006-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00007-f00037.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00007-f00037.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00007-f00037.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00007-f00037.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00008-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00008-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00008-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN.mov-00008-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.columns-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.columns-roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.extruded-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.extruded-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00001-f00009.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00001-f00009.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00001-f00009.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00001-f00009.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00002-f00016.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00002-f00016.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00002-f00016.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00002-f00016.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00003-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00003-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00004-f00036.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00004-f00036.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00004-f00036.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00004-f00036.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00005-f00039.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00005-f00039.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00005-f00039.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00005-f00039.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00006-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00006-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00007-f00051.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00007-f00051.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00007-f00051.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00007-f00051.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00008-f00054.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00008-f00054.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00008-f00054.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00008-f00054.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00009-f00057.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00009-f00057.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00009-f00057.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN.mov-00009-f00057.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.columns-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.columns-roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.extruded-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.extruded-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00001-f00010.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00001-f00010.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00001-f00010.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00001-f00010.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00002-f00015.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00002-f00015.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00002-f00015.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00002-f00015.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00003-f00019.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00003-f00019.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00003-f00019.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00003-f00019.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00004-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00005-f00035.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00005-f00035.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00005-f00035.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00005-f00035.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00006-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00006-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00007-f00052.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00007-f00052.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00007-f00052.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00007-f00052.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00008-f00058.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00008-f00058.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00008-f00058.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00008-f00058.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00009-f00060.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN.mov-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.columns-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.columns-roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.extruded-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00001-f00008.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00001-f00008.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00001-f00008.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00001-f00008.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00002-f00011.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00002-f00011.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00002-f00011.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00002-f00011.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00003-f00015.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00003-f00015.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00003-f00015.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00003-f00015.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00004-f00019.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00004-f00019.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00004-f00019.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00004-f00019.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00005-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00005-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00005-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00006-f00048.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00006-f00048.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00006-f00048.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00006-f00048.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00007-f00053.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00007-f00053.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00007-f00053.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00007-f00053.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00008-f00058.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00008-f00058.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00008-f00058.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00008-f00058.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00009-f00060.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean.mov-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.columns-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.columns-roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.extruded-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00001-f00007.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00001-f00007.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00001-f00007.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00001-f00007.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00002-f00009.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00002-f00009.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00002-f00009.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00002-f00009.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00003-f00019.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00003-f00019.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00003-f00019.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00003-f00019.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00004-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00005-f00031.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00005-f00031.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00005-f00031.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00005-f00031.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00006-f00034.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00006-f00034.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00006-f00034.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00006-f00034.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00007-f00037.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00007-f00037.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00007-f00037.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00007-f00037.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00008-f00039.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00008-f00039.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00008-f00039.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00008-f00039.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00009-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00009-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00009-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean.mov-00009-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.columns-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.columns-roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.extruded-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00001-f00004.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00001-f00004.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00001-f00004.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00001-f00004.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00002-f00006.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00002-f00006.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00002-f00006.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00002-f00006.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00003-f00007.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00003-f00007.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00003-f00007.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00003-f00007.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00004-f00008.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00004-f00008.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00004-f00008.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00004-f00008.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00005-f00009.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00005-f00009.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00005-f00009.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00005-f00009.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00006-f00012.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00006-f00012.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00006-f00012.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00006-f00012.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00007-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00007-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00007-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00007-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00008-f00037.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00008-f00037.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00008-f00037.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00008-f00037.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00009-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00009-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00009-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean.mov-00009-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.columns-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.columns-roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.extruded-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00001-f00005.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00001-f00005.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00001-f00005.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00002-f00007.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00002-f00007.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00002-f00007.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00002-f00007.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00003-f00008.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00003-f00008.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00003-f00008.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00003-f00008.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00004-f00010.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00004-f00010.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00004-f00010.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00004-f00010.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00005-f00017.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00005-f00017.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00005-f00017.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00005-f00017.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00006-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00006-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00006-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00006-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00007-f00034.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00007-f00034.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00007-f00034.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00007-f00034.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00008-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00008-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00008-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00008-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00009-f00054.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00009-f00054.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00009-f00054.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean.mov-00009-f00054.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.columns-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.columns-roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.extruded-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.extruded-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00001-f00010.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00001-f00010.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00001-f00010.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00001-f00010.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00002-f00019.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00002-f00019.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00002-f00019.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00002-f00019.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00003-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00003-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00004-f00031.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00004-f00031.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00004-f00031.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00004-f00031.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00005-f00034.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00005-f00034.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00005-f00034.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00005-f00034.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00006-f00038.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00006-f00038.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00006-f00038.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00006-f00038.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00007-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00007-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00008-f00048.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00008-f00048.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00008-f00048.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00008-f00048.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00009-f00058.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00009-f00058.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00009-f00058.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN.mov-00009-f00058.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.columns-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.columns-roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.extruded-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.extruded-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00001-f00008.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00001-f00008.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00001-f00008.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00001-f00008.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00002-f00011.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00002-f00011.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00002-f00011.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00002-f00011.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00003-f00014.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00003-f00014.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00003-f00014.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00003-f00014.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00004-f00019.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00004-f00019.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00004-f00019.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00004-f00019.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00005-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00005-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00005-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00006-f00028.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00006-f00028.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00006-f00028.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00006-f00028.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00007-f00032.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00007-f00032.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00007-f00032.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00007-f00032.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00008-f00034.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00008-f00034.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00008-f00034.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00008-f00034.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00009-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00009-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00009-f00040.mha\u001b[00m\r\n", + "│   │   └── \u001b[01;32m247ns_image_2743083265515_CLEAN.mov-00009-f00040.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;34mBAMC-PTXSliding\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_image_73815992352100_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_image_74132233134844_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_image_10705997566592_CLEAN.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_image_10891015221417_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_image_1180496934444_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_image_677741729740_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_image_3368391807672_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_image_3401832241774_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_image_588413346180_CLEAN.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_image_10391571128899_CLEAN.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_image_10395655826502_CLEAN.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_image_1896534330004_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_image_1901852337971_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_image_2959672151786_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_image_3320344386805_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_image_1499268364374_clean.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_image_1511338287338_clean.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_image_104543812690743_CLEAN.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_image_104548309385533_CLEAN.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_image_104932526155699_CLEAN.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_image_3925135436261_clean.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_image_3929217595322_clean.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_image_128683942015128_CLEAN.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_image_128688523296793_CLEAN.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_image_128692595484031_CLEAN.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_image_3308406916756_clean.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_image_3315947589826_clean.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_image_3321463845606_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_image_3384882513134_clean.mp4\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_image_1139765223418_CLEAN.mov\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_image_1327616672148_clean.mp4\u001b[00m\r\n", + "│   │   └── \u001b[01;32m237s_image_24164968068436_CLEAN.mp4\u001b[00m\r\n", + "│   ├── \u001b[01;34mBAMC-PTXSliding-Annotations-Linear\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.columns-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.columns-roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.extruded-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00002-f00012.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00002-f00012.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00002-f00012.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00002-f00012.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00003-f00018.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00003-f00018.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00003-f00018.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00003-f00018.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00005-f00029.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00005-f00029.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00005-f00029.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00005-f00029.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00006-f00035.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00006-f00035.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00006-f00035.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00006-f00035.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00007-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00008-f00052.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00008-f00052.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00008-f00052.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00008-f00052.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.columns-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.columns-roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.extruded-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00001-f00008.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00001-f00008.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00001-f00008.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00001-f00008.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00002-f00014.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00002-f00014.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00002-f00014.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00002-f00014.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00003-f00019.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00003-f00019.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00003-f00019.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00003-f00019.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00005-f00029.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00005-f00029.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00005-f00029.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00005-f00029.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00006-f00035.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00006-f00035.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00006-f00035.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00006-f00035.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00007-f00039.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00007-f00039.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00007-f00039.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00007-f00039.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00008-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00008-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00008-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00008-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00009-f00054.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00009-f00054.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00009-f00054.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean.mp4-00009-f00054.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.columns-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.columns-roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.extruded-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.extruded-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00001-f00011.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00001-f00011.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00001-f00011.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00001-f00011.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00002-f00016.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00002-f00016.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00002-f00016.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00002-f00016.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00003-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00003-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00004-f00048.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00004-f00048.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00004-f00048.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00004-f00048.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00005-f00052.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00005-f00052.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00005-f00052.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00005-f00052.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00006-f00055.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00006-f00055.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00006-f00055.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00006-f00055.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00007-f00060.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00007-f00060.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00007-f00060.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN.mp4-00007-f00060.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.columns-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.columns-roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.extruded-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00002-f00014.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00002-f00014.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00002-f00014.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00002-f00014.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00003-f00019.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00003-f00019.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00003-f00019.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00003-f00019.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00005-f00037.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00005-f00037.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00005-f00037.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00005-f00037.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00006-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00006-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00007-f00058.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00007-f00058.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00007-f00058.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00007-f00058.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00008-f00060.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00008-f00060.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00008-f00060.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean.mp4-00008-f00060.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.columns-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.columns-roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.extruded-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00001-f00005.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00001-f00005.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00002-f00010.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00002-f00010.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00002-f00010.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00002-f00010.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00003-f00018.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00003-f00018.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00003-f00018.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00003-f00018.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00005-f00031.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00005-f00031.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00005-f00031.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00005-f00031.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00006-f00036.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00006-f00036.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00006-f00036.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00006-f00036.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00007-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00008-f00048.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00008-f00048.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00008-f00048.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00008-f00048.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00009-f00054.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00009-f00054.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00009-f00054.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean.mp4-00009-f00054.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.columns-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.columns-roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.extruded-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00002-f00010.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00002-f00010.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00002-f00010.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00002-f00010.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00003-f00017.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00003-f00017.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00003-f00017.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00003-f00017.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00005-f00031.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00005-f00031.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00005-f00031.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00005-f00031.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00006-f00036.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00006-f00036.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00006-f00036.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00006-f00036.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00007-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00008-f00058.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00008-f00058.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00008-f00058.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00008-f00058.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.columns-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.columns-roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.extruded-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00001-f00005.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00001-f00005.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00002-f00012.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00002-f00012.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00002-f00012.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00002-f00012.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00003-f00019.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00003-f00019.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00003-f00019.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00003-f00019.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00005-f00038.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00005-f00038.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00005-f00038.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00005-f00038.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00006-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00006-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00007-f00049.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00007-f00049.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00007-f00049.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00007-f00049.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00008-f00052.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00008-f00052.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00008-f00052.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00008-f00052.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00009-f00058.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00009-f00058.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00009-f00058.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean.mp4-00009-f00058.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.columns-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.columns-roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.extruded-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00002-f00014.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00002-f00014.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00002-f00014.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00002-f00014.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00003-f00019.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00003-f00019.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00003-f00019.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00003-f00019.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00005-f00034.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00005-f00034.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00005-f00034.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00005-f00034.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00006-f00039.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00006-f00039.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00006-f00039.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00006-f00039.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00007-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00008-f00051.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00008-f00051.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00008-f00051.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00008-f00051.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.columns-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.columns-roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.extruded-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.extruded-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00002-f00012.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00002-f00012.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00002-f00012.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00002-f00012.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00003-f00018.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00003-f00018.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00003-f00018.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00003-f00018.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00005-f00030.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00005-f00030.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00005-f00030.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00005-f00030.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00006-f00034.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00006-f00034.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00006-f00034.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00006-f00034.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00007-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00008-f00059.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00008-f00059.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00008-f00059.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00008-f00059.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.columns-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.columns-roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.extruded-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.extruded-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00001-f00007.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00001-f00007.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00001-f00007.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00001-f00007.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00002-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00002-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00002-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00002-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00003-f00032.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00003-f00032.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00003-f00032.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00003-f00032.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00004-f00038.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00004-f00038.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00004-f00038.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00004-f00038.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00005-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00005-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00005-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00005-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00006-f00050.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00006-f00050.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00006-f00050.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00006-f00050.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00007-f00054.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00007-f00054.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00007-f00054.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00007-f00054.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00008-f00058.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00008-f00058.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00008-f00058.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00008-f00058.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.columns-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.columns-roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.extruded-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.extruded-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00002-f00016.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00002-f00016.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00002-f00016.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00002-f00016.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00003-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00003-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00004-f00031.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00004-f00031.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00004-f00031.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00004-f00031.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00005-f00036.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00005-f00036.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00005-f00036.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00005-f00036.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00006-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00006-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00007-f00049.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00007-f00049.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00007-f00049.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00007-f00049.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00008-f00054.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00008-f00054.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00008-f00054.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00008-f00054.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00009-f00059.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00009-f00059.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00009-f00059.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN.mp4-00009-f00059.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.columns-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.columns-roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.extruded-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00001-f00004.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00001-f00004.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00001-f00004.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00001-f00004.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00002-f00006.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00002-f00006.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00002-f00006.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00002-f00006.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00003-f00010.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00003-f00010.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00003-f00010.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00003-f00010.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00004-f00015.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00004-f00015.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00004-f00015.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00004-f00015.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00005-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00005-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00005-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00006-f00039.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00006-f00039.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00006-f00039.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00006-f00039.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00007-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00007-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00008-f00053.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00008-f00053.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00008-f00053.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00008-f00053.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00009-f00058.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00009-f00058.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00009-f00058.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean.mp4-00009-f00058.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.columns-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.columns-roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.extruded-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00001-f00005.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00001-f00005.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00002-f00009.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00002-f00009.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00002-f00009.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00002-f00009.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00003-f00012.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00003-f00012.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00003-f00012.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00003-f00012.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00004-f00015.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00004-f00015.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00004-f00015.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00004-f00015.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00005-f00017.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00005-f00017.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00005-f00017.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00005-f00017.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00006-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00006-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00006-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00006-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00007-f00050.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00007-f00050.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00007-f00050.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00007-f00050.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00008-f00059.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00008-f00059.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00008-f00059.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00008-f00059.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.columns-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.columns-roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.extruded-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00002-f00010.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00002-f00010.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00002-f00010.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00002-f00010.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00003-f00014.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00003-f00014.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00003-f00014.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00003-f00014.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00004-f00017.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00004-f00017.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00004-f00017.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00004-f00017.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00005-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00005-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00005-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00006-f00030.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00006-f00030.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00006-f00030.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00006-f00030.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00007-f00034.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00007-f00034.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00007-f00034.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00007-f00034.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00008-f00038.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00008-f00038.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00008-f00038.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00008-f00038.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00009-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00009-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00009-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean.mp4-00009-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.columns-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.columns-roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.extruded-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00001-f00013.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00001-f00013.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00001-f00013.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00001-f00013.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00002-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00002-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00002-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00002-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00003-f00038.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00003-f00038.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00003-f00038.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00003-f00038.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00004-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00004-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00004-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00004-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00005-f00050.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00005-f00050.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00005-f00050.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00005-f00050.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00006-f00052.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00006-f00052.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00006-f00052.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00006-f00052.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00007-f00055.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00007-f00055.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00007-f00055.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00007-f00055.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00008-f00059.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00008-f00059.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00008-f00059.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean.mp4-00008-f00059.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.columns-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.columns-roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.extruded-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00001-f00007.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00001-f00007.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00001-f00007.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00001-f00007.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00002-f00009.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00002-f00009.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00002-f00009.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00002-f00009.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00003-f00013.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00003-f00013.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00003-f00013.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00003-f00013.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00004-f00017.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00004-f00017.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00004-f00017.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00004-f00017.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00005-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00005-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00005-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00006-f00045.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00006-f00045.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00006-f00045.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00006-f00045.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00007-f00050.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00007-f00050.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00007-f00050.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00007-f00050.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00008-f00055.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00008-f00055.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00008-f00055.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00008-f00055.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00009-f00059.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00009-f00059.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00009-f00059.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean.mov-00009-f00059.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.columns-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.columns-roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.extruded-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00001-f00007.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00001-f00007.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00001-f00007.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00001-f00007.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00002-f00009.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00002-f00009.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00002-f00009.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00002-f00009.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00003-f00013.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00003-f00013.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00003-f00013.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00003-f00013.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00004-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00005-f00030.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00005-f00030.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00005-f00030.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00005-f00030.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00006-f00032.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00006-f00032.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00006-f00032.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00006-f00032.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00007-f00036.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00007-f00036.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00007-f00036.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00007-f00036.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00008-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00008-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00008-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean.mov-00008-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.columns-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.columns-roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.extruded-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.extruded-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00001-f00006.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00002-f00008.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00002-f00008.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00002-f00008.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00002-f00008.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00003-f00010.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00003-f00010.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00003-f00010.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00003-f00010.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00004-f00017.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00004-f00017.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00004-f00017.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00004-f00017.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00005-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00005-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00005-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00006-f00051.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00006-f00051.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00006-f00051.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00006-f00051.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00007-f00056.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00007-f00056.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00007-f00056.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00007-f00056.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00008-f00059.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00008-f00059.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00008-f00059.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00008-f00059.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00009-f00060.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN.mov-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.columns-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.columns-roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.extruded-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.extruded-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00001-f00006.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00002-f00008.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00002-f00008.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00002-f00008.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00002-f00008.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00003-f00010.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00003-f00010.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00003-f00010.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00003-f00010.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00004-f00014.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00004-f00014.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00004-f00014.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00004-f00014.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00005-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00005-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00005-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00006-f00037.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00006-f00037.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00006-f00037.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00006-f00037.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00007-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00007-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00008-f00054.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00008-f00054.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00008-f00054.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00008-f00054.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00009-f00060.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN.mov-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.columns-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.columns-roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.extruded-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.extruded-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00001-f00006.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00002-f00008.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00002-f00008.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00002-f00008.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00002-f00008.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00003-f00010.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00003-f00010.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00003-f00010.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00003-f00010.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00004-f00016.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00004-f00016.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00004-f00016.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00004-f00016.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00005-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00005-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00005-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00006-f00035.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00006-f00035.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00006-f00035.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00006-f00035.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00007-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00007-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00007-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00007-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00008-f00054.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00008-f00054.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00008-f00054.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00008-f00054.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00009-f00060.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN.mov-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.columns-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.columns-roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.extruded-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00001-f00007.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00001-f00007.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00001-f00007.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00001-f00007.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00002-f00009.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00002-f00009.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00002-f00009.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00002-f00009.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00003-f00013.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00003-f00013.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00003-f00013.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00003-f00013.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00004-f00017.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00004-f00017.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00004-f00017.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00004-f00017.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00005-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00005-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00005-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00006-f00045.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00006-f00045.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00006-f00045.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00006-f00045.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00007-f00047.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00007-f00047.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00007-f00047.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00007-f00047.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00008-f00049.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00008-f00049.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00008-f00049.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00008-f00049.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00009-f00054.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00009-f00054.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00009-f00054.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean.mov-00009-f00054.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.columns-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.columns-roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.extruded-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00001-f00009.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00001-f00009.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00001-f00009.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00001-f00009.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00002-f00018.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00002-f00018.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00002-f00018.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00002-f00018.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00003-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00003-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00004-f00034.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00004-f00034.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00004-f00034.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00004-f00034.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00005-f00038.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00005-f00038.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00005-f00038.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00005-f00038.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00006-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00006-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00007-f00055.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00007-f00055.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00007-f00055.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00007-f00055.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00008-f00058.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00008-f00058.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00008-f00058.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00008-f00058.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00009-f00060.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean.mov-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.columns-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.columns-roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.extruded-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.extruded-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00001-f00009.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00001-f00009.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00001-f00009.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00001-f00009.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00002-f00012.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00002-f00012.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00002-f00012.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00002-f00012.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00003-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00003-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00004-f00030.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00004-f00030.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00004-f00030.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00004-f00030.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00005-f00034.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00005-f00034.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00005-f00034.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00005-f00034.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00006-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00006-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00006-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00006-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00007-f00050.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00007-f00050.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00007-f00050.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00007-f00050.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00008-f00054.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00008-f00054.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00008-f00054.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00008-f00054.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00009-f00057.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00009-f00057.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00009-f00057.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN.mov-00009-f00057.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.columns-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.columns-roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.extruded-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.extruded-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00001-f00009.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00001-f00009.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00001-f00009.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00001-f00009.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00002-f00011.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00002-f00011.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00002-f00011.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00002-f00011.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00003-f00014.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00003-f00014.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00003-f00014.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00003-f00014.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00004-f00017.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00004-f00017.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00004-f00017.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00004-f00017.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00005-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00005-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00005-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00006-f00047.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00006-f00047.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00006-f00047.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00006-f00047.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00007-f00053.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00007-f00053.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00007-f00053.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00007-f00053.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00008-f00056.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00008-f00056.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00008-f00056.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00008-f00056.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00009-f00060.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN.mov-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.columns-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.columns-roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.extruded-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.extruded-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00001-f00008.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00001-f00008.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00001-f00008.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00001-f00008.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00002-f00010.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00002-f00010.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00002-f00010.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00002-f00010.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00003-f00013.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00003-f00013.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00003-f00013.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00003-f00013.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00004-f00017.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00004-f00017.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00004-f00017.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00004-f00017.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00005-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00005-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00005-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00006-f00035.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00006-f00035.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00006-f00035.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00006-f00035.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00007-f00038.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00007-f00038.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00007-f00038.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00007-f00038.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00008-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00008-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00008-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN.mov-00008-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.columns-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.columns-roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.extruded-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00001-f00005.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00001-f00005.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00001-f00005.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00002-f00006.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00002-f00006.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00002-f00006.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00002-f00006.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00003-f00007.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00003-f00007.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00003-f00007.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00003-f00007.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00004-f00008.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00004-f00008.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00004-f00008.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00004-f00008.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00005-f00009.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00005-f00009.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00005-f00009.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00005-f00009.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00006-f00012.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00006-f00012.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00006-f00012.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00006-f00012.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00007-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00007-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00007-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00007-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00008-f00041.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00008-f00041.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00008-f00041.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00008-f00041.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00009-f00058.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00009-f00058.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00009-f00058.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean.mov-00009-f00058.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.columns-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.columns-roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.extruded-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00001-f00005.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00001-f00005.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00001-f00005.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00002-f00006.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00002-f00006.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00002-f00006.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00002-f00006.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00003-f00007.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00003-f00007.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00003-f00007.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00003-f00007.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00004-f00008.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00004-f00008.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00004-f00008.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00004-f00008.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00005-f00009.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00005-f00009.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00005-f00009.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00005-f00009.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00006-f00011.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00006-f00011.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00006-f00011.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00006-f00011.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00007-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00007-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00007-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00007-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00008-f00041.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00008-f00041.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00008-f00041.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00008-f00041.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00009-f00056.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00009-f00056.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00009-f00056.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean.mov-00009-f00056.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.columns-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.columns-roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.extruded-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00002-f00008.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00002-f00008.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00002-f00008.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00002-f00008.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00003-f00009.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00003-f00009.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00003-f00009.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00003-f00009.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00004-f00011.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00004-f00011.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00004-f00011.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00004-f00011.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00005-f00013.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00005-f00013.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00005-f00013.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00005-f00013.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00006-f00015.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00006-f00015.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00006-f00015.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00006-f00015.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00007-f00018.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00007-f00018.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00007-f00018.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00007-f00018.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00008-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00008-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00008-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00008-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00009-f00042.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00009-f00042.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00009-f00042.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean.mp4-00009-f00042.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.columns-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.columns-roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.extruded-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00001-f00006.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00001-f00006.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00001-f00006.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00001-f00006.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00002-f00008.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00002-f00008.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00002-f00008.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00002-f00008.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00003-f00010.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00003-f00010.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00003-f00010.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00003-f00010.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00004-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00004-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00004-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00004-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00005-f00027.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00005-f00027.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00005-f00027.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00005-f00027.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00006-f00029.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00006-f00029.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00006-f00029.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00006-f00029.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00007-f00031.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00007-f00031.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00007-f00031.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00007-f00031.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00008-f00034.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00008-f00034.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00008-f00034.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00008-f00034.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00009-f00040.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00009-f00040.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00009-f00040.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean.mp4-00009-f00040.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.columns-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.columns-roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.extruded-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.extruded-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00001-f00012.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00001-f00012.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00001-f00012.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00001-f00012.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00002-f00018.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00002-f00018.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00002-f00018.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00002-f00018.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00003-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00003-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00003-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00003-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00004-f00031.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00004-f00031.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00004-f00031.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00004-f00031.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00005-f00034.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00005-f00034.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00005-f00034.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00005-f00034.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00006-f00037.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00006-f00037.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00006-f00037.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00006-f00037.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00007-f00041.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00007-f00041.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00007-f00041.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00007-f00041.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00008-f00051.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00008-f00051.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00008-f00051.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00008-f00051.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00009-f00056.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00009-f00056.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00009-f00056.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN.mov-00009-f00056.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.columns-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.columns-roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.extruded-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.extruded-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00001-f00008.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00001-f00008.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00001-f00008.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00001-f00008.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00002-f00010.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00002-f00010.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00002-f00010.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00002-f00010.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00003-f00012.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00003-f00012.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00003-f00012.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00003-f00012.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00004-f00014.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00004-f00014.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00004-f00014.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00004-f00014.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00005-f00016.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00005-f00016.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00005-f00016.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00005-f00016.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00006-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00006-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00006-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean.mp4-00006-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.columns-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.columns-roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.extruded-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.extruded-overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.extruded-overlay-NRS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.interpolated-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00000-f00000.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00000-f00000.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00000-f00000.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00000-f00000.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00001-f00005.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00001-f00005.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00001-f00005.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00001-f00005.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00002-f00008.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00002-f00008.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00002-f00008.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00002-f00008.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00003-f00013.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00003-f00013.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00003-f00013.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00003-f00013.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00004-f00017.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00004-f00017.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00004-f00017.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00004-f00017.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00005-f00020.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00005-f00020.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00005-f00020.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00005-f00020.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00006-f00043.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00006-f00043.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00006-f00043.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00006-f00043.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00007-f00051.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00007-f00051.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00007-f00051.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00007-f00051.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00008-f00058.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00008-f00058.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00008-f00058.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00008-f00058.overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00009-f00060.boxes.json\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00009-f00060.boxes.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00009-f00060.mha\u001b[00m\r\n", + "│   │   └── \u001b[01;32m237s_iimage_24164968068436_CLEAN.mp4-00009-f00060.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;34mColumnData\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean_ClassR_170-186.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean_ClassR_170-186.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean_ClassS_199-292.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean_ClassS_199-292.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean_ClassS_99-145.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean_ClassS_99-145.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean_ClassR_215-240.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean_ClassR_215-240.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean_ClassR_49-83.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean_ClassR_49-83.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean_ClassS_0-19.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean_ClassS_0-19.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean_ClassS_106-191.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean_ClassS_106-191.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean_ClassS_253-291.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean_ClassS_253-291.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN_ClassR_121-146.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN_ClassR_121-146.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN_ClassR_222-265.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN_ClassR_222-265.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN_ClassS_162-199.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN_ClassS_162-199.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean_ClassR_79-154.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean_ClassR_79-154.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean_ClassS_172-251.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean_ClassS_172-251.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean_ClassR_147-166.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean_ClassR_147-166.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean_ClassR_212-242.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean_ClassR_212-242.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean_ClassR_65-96.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean_ClassR_65-96.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassN_122-140.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassN_122-140.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassR_219-250.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassR_219-250.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassR_72-98.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassR_72-98.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean_ClassN_103-129.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean_ClassN_103-129.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean_ClassN_181-232.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean_ClassN_181-232.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean_ClassR_149-172.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean_ClassR_149-172.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean_ClassR_252-297.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean_ClassR_252-297.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean_ClassN_103-130.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean_ClassN_103-130.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean_ClassN_183-239.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean_ClassN_183-239.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean_ClassR_155-172.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean_ClassR_155-172.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean_ClassR_262-305.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean_ClassR_262-305.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN_ClassN_196-260.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN_ClassN_196-260.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN_ClassN_47-109.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN_ClassN_47-109.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN_ClassR_137-174.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN_ClassR_137-174.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean_ClassN_165-229.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean_ClassN_165-229.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean_ClassR_257-319.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean_ClassR_257-319.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean_ClassR_79-132.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean_ClassR_79-132.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean_ClassR_10-63.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean_ClassR_10-63.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean_ClassR_139-159.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean_ClassR_139-159.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean_ClassS_183-222.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean_ClassS_183-222.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean_ClassS_92-119.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean_ClassS_92-119.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean_ClassR_106-141.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean_ClassR_106-141.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean_ClassR_232-273.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean_ClassR_232-273.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean_ClassS_160-214.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean_ClassS_160-214.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean_ClassR_110-136.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean_ClassR_110-136.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean_ClassR_197-222.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean_ClassR_197-222.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean_ClassS_159-183.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean_ClassS_159-183.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean_ClassS_238-269.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean_ClassS_238-269.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean_ClassR_136-156.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean_ClassR_136-156.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean_ClassR_18-54.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean_ClassR_18-54.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean_ClassS_177-230.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean_ClassS_177-230.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean_ClassS_82-114.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean_ClassS_82-114.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean_ClassN_179-204.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean_ClassN_179-204.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean_ClassN_35-115.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean_ClassN_35-115.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean_ClassR_125-165.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean_ClassR_125-165.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean_ClassR_223-268.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean_ClassR_223-268.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean_ClassN_187-211.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean_ClassN_187-211.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean_ClassR_124-172.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean_ClassR_124-172.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean_ClassR_239-278.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean_ClassR_239-278.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN_ClassR_179-204.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN_ClassR_179-204.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN_ClassR_53-87.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN_ClassR_53-87.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN_ClassS_114-164.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN_ClassS_114-164.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN_ClassS_220-276.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN_ClassS_220-276.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN_ClassR_192-209.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN_ClassR_192-209.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN_ClassS_141-165.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN_ClassS_141-165.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN_ClassS_227-283.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN_ClassS_227-283.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN_ClassR_181-211.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN_ClassR_181-211.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN_ClassS_140-161.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN_ClassS_140-161.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN_ClassS_232-286.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN_ClassS_232-286.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean_ClassN_211-306.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean_ClassN_211-306.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean_ClassR_130-193.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean_ClassR_130-193.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean_ClassN_228-311.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean_ClassN_228-311.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean_ClassR_149-200.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean_ClassR_149-200.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN_ClassN_126-206.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN_ClassN_126-206.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN_ClassR_219-263.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN_ClassR_219-263.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN_ClassN_127-214.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN_ClassN_127-214.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN_ClassR_229-272.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN_ClassR_229-272.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean_ClassR_0-29.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean_ClassR_0-29.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean_ClassR_121-157.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean_ClassR_121-157.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean_ClassR_231-276.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean_ClassR_231-276.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean_ClassS_184-205.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean_ClassS_184-205.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean_ClassS_46-100.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean_ClassS_46-100.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean_ClassR_0-27.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean_ClassR_0-27.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean_ClassR_127-155.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean_ClassR_127-155.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean_ClassR_229-275.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean_ClassR_229-275.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean_ClassS_55-94.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean_ClassS_55-94.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean_ClassR_131-150.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean_ClassR_131-150.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean_ClassR_234-270.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean_ClassR_234-270.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean_ClassS_167-211.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean_ClassS_167-211.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean_ClassS_69-112.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean_ClassS_69-112.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean_ClassR_213-269.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean_ClassR_213-269.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean_ClassR_33-101.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean_ClassR_33-101.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean_ClassS_106-192.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean_ClassS_106-192.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN_ClassN_79-130.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN_ClassN_79-130.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN_ClassR_0-45.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN_ClassR_0-45.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN_ClassR_163-201.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN_ClassR_163-201.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN_ClassN_196-245.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN_ClassN_196-245.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN_ClassN_61-118.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN_ClassN_61-118.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN_ClassR_0-33.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN_ClassR_0-33.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN_ClassR_139-185.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN_ClassR_139-185.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean_ClassN_120-154.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean_ClassN_120-154.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean_ClassR_182-226.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean_ClassR_182-226.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean_ClassR_58-97.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean_ClassR_58-97.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN_ClassN_144-174.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN_ClassN_144-174.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN_ClassR_198-231.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN_ClassR_198-231.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN_ClassR_74-123.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN_ClassR_74-123.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN_ClassN_38-56.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN_ClassN_38-56.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassN_0-22.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassN_0-22.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassR_138-154.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassR_138-154.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassR_212-230.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassR_212-230.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassR_56-75.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassR_56-75.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassR_0-43.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassR_0-43.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassR_106-124.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassR_106-124.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassR_175-195.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassR_175-195.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassS_216-244.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassS_216-244.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean_ClassR_153-177.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean_ClassR_153-177.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean_ClassR_78-94.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean_ClassR_78-94.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean_ClassS_17-48.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean_ClassS_17-48.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN_ClassR_232-285.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN_ClassR_232-285.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN_ClassR_34-115.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN_ClassR_34-115.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN_ClassS_129-220.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN_ClassS_129-220.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN_ClassR_236-291.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN_ClassR_236-291.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN_ClassR_38-112.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN_ClassR_38-112.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN_ClassS_133-225.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN_ClassS_133-225.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN_ClassR_187-241.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN_ClassR_187-241.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN_ClassR_70-127.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN_ClassR_70-127.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN_ClassS_138-167.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN_ClassS_138-167.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean_ClassN_121-193.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean_ClassN_121-193.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean_ClassR_232-263.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean_ClassR_232-263.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean_ClassR_38-98.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean_ClassR_38-98.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean_ClassN_108-191.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean_ClassN_108-191.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean_ClassR_209-261.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean_ClassR_209-261.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean_ClassR_25-91.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean_ClassR_25-91.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassR_170-192.mha\u001b[00m\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassR_170-192.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassR_88-105.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassR_88-105.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassS_128-153.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassS_128-153.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassS_211-258.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassS_211-258.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean_ClassR_170-192.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean_ClassR_170-192.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean_ClassR_66-101.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean_ClassR_66-101.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean_ClassS_124-153.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean_ClassS_124-153.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean_ClassS_216-260.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean_ClassS_216-260.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN_ClassR_141-179.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN_ClassR_141-179.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN_ClassR_264-311.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN_ClassR_264-311.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN_ClassS_188-252.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN_ClassS_188-252.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN_ClassS_58-120.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN_ClassS_58-120.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN_ClassR_134-173.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN_ClassR_134-173.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN_ClassR_265-309.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN_ClassR_265-309.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN_ClassS_187-245.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN_ClassS_187-245.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN_ClassS_55-120.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN_ClassS_55-120.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN_ClassR_135-178.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN_ClassR_135-178.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN_ClassR_261-312.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN_ClassR_261-312.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN_ClassS_189-242.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN_ClassS_189-242.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN_ClassS_52-121.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN_ClassS_52-121.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN_ClassN_135-227.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN_ClassN_135-227.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN_ClassR_248-319.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN_ClassR_248-319.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN_ClassR_95-114.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN_ClassR_95-114.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN_ClassN_136-183.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN_ClassN_136-183.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN_ClassR_207-266.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN_ClassR_207-266.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN_ClassR_45-108.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN_ClassR_45-108.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN_ClassN_111-194.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN_ClassN_111-194.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN_ClassR_215-276.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN_ClassR_215-276.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN_ClassR_27-93.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN_ClassR_27-93.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN_ClassN_108-133.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN_ClassN_108-133.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN_ClassN_185-211.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN_ClassN_185-211.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN_ClassR_144-173.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN_ClassR_144-173.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN_ClassR_226-264.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN_ClassR_226-264.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN_ClassR_59-89.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN_ClassR_59-89.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassN_116-152.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassN_116-152.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassN_197-221.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassN_197-221.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassN_45-69.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassN_45-69.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassN_120-147.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassN_120-147.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassN_190-221.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassN_190-221.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassN_36-53.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassN_36-53.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean_ClassN_144-225.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean_ClassN_144-225.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean_ClassR_15-108.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean_ClassR_15-108.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean_ClassR_241-319.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean_ClassR_241-319.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean_ClassN_141-239.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean_ClassN_141-239.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean_ClassR_252-319.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean_ClassR_252-319.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean_ClassR_30-118.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean_ClassR_30-118.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean_ClassR_255-300.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean_ClassR_255-300.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean_ClassR_92-129.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean_ClassR_92-129.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean_ClassS_165-235.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean_ClassS_165-235.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean_ClassR_100-131.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean_ClassR_100-131.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean_ClassR_232-288.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean_ClassR_232-288.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean_ClassS_152-211.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean_ClassS_152-211.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean_ClassR_10-43.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean_ClassR_10-43.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean_ClassR_160-243.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean_ClassR_160-243.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean_ClassS_262-315.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean_ClassS_262-315.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean_ClassS_57-144.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean_ClassS_57-144.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean_ClassR_12-84.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean_ClassR_12-84.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean_ClassR_140-156.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean_ClassR_140-156.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean_ClassS_186-212.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean_ClassS_186-212.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean_ClassS_94-126.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean_ClassS_94-126.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN_ClassR_159-194.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN_ClassR_159-194.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN_ClassR_47-102.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN_ClassR_47-102.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN_ClassS_118-138.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN_ClassS_118-138.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN_ClassS_220-258.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN_ClassS_220-258.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean_ClassR_124-144.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean_ClassR_124-144.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean_ClassS_178-266.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean_ClassS_178-266.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN_ClassR_11-63.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN_ClassR_11-63.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN_ClassR_141-204.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN_ClassR_141-204.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN_ClassS_95-120.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN_ClassS_95-120.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN_ClassR_175-204.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN_ClassR_175-204.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN_ClassR_97-119.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN_ClassR_97-119.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN_ClassN_104-130.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN_ClassN_104-130.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN_ClassN_180-198.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN_ClassN_180-198.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN_ClassR_147-163.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN_ClassR_147-163.roi-overlay.mha\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN_ClassR_218-261.mha\u001b[00m\r\n", + "│   │   └── \u001b[01;32m247ns_image_2743083265515_CLEAN_ClassR_218-261.roi-overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32mFixAnnotationNaming.ipynb\u001b[00m\r\n", + "│   ├── \u001b[01;34mROIData\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean_ClassS_179-307.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean_ClassS_179-307.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean_ClassS_70-198.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_73815992352100_clean_ClassS_70-198.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean_ClassS_192-320.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean_ClassS_192-320.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean_ClassS_86-214.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m004s_iimage_74132233134844_clean_ClassS_86-214.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN_ClassS_120-248.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN_ClassS_120-248.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN_ClassS_27-155.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN_ClassS_27-155.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean_ClassS_151-279.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m019s_iimage_10891015221417_clean_ClassS_151-279.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean_ClassN_125-253.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean_ClassN_125-253.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean_ClassN_57-185.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_Image_262499828648_clean_ClassN_57-185.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassN_0-128.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassN_0-128.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassN_131-259.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassN_131-259.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassN_63-191.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassN_63-191.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean_ClassN_148-276.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean_ClassN_148-276.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean_ClassN_61-189.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1083297968960_clean_ClassN_61-189.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean_ClassN_153-281.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean_ClassN_153-281.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean_ClassN_64-192.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m026ns_image_1087766719219_clean_ClassN_64-192.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN_ClassN_154-282.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN_ClassN_154-282.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN_ClassN_21-149.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN_ClassN_21-149.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean_ClassN_130-258.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m027ns_image_4743880599022_clean_ClassN_130-258.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean_ClassS_127-255.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean_ClassS_127-255.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean_ClassS_37-165.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_1180496934444_clean_ClassS_37-165.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean_ClassS_122-250.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m030s_iimage_677741729740_clean_ClassS_122-250.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean_ClassS_102-230.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean_ClassS_102-230.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean_ClassS_190-318.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean_ClassS_190-318.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean_ClassS_32-160.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3368391807672_clean_ClassS_32-160.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean_ClassS_132-260.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean_ClassS_132-260.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean_ClassS_31-159.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m034s_iimage_3401832241774_clean_ClassS_31-159.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean_ClassN_11-139.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean_ClassN_11-139.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean_ClassN_130-258.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1394469579519_clean_ClassN_130-258.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean_ClassN_141-269.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m035ns_image_1404802450036_clean_ClassN_141-269.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN_ClassS_178-306.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN_ClassS_178-306.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN_ClassS_69-197.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN_ClassS_69-197.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN_ClassS_107-235.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN_ClassS_107-235.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN_ClassS_185-313.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN_ClassS_185-313.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN_ClassS_102-230.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN_ClassS_102-230.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN_ClassS_189-317.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN_ClassS_189-317.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean_ClassN_188-316.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1543571117118_clean_ClassN_188-316.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean_ClassN_192-320.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m048ns_image_1749559540112_clean_ClassN_192-320.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN_ClassN_99-227.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN_ClassN_99-227.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN_ClassN_101-229.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN_ClassN_101-229.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean_ClassS_11-139.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean_ClassS_11-139.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean_ClassS_130-258.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1896534330004_clean_ClassS_130-258.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean_ClassS_128-256.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean_ClassS_128-256.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean_ClassS_13-141.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m065s_iimage_1901852337971_clean_ClassS_13-141.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean_ClassS_128-256.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean_ClassS_128-256.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean_ClassS_27-155.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_2959672151786_clean_ClassS_27-155.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean_ClassS_94-222.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m081s_iimage_3320344386805_clean_ClassS_94-222.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN_ClassN_40-168.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_417221672548_CLEAN_ClassN_40-168.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN_ClassN_151-279.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN_ClassN_151-279.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN_ClassN_22-150.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m117ns_image_426794579576_CLEAN_ClassN_22-150.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean_ClassN_75-203.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2418161753608_clean_ClassN_75-203.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN_ClassN_96-224.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN_ClassN_96-224.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN_ClassN_145-273.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN_ClassN_145-273.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN_ClassN_192-320.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN_ClassN_192-320.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN_ClassN_36-164.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_634125159704_CLEAN_ClassN_36-164.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassN_0-128.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassN_0-128.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassN_119-247.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassN_119-247.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassN_188-316.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassN_188-316.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassN_42-170.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassN_42-170.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassS_10-138.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassS_10-138.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassS_158-286.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassS_158-286.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassS_85-213.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassS_85-213.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean_ClassS_0-128.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean_ClassS_0-128.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean_ClassS_138-266.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean_ClassS_138-266.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean_ClassS_59-187.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m206s_iimage_1511338287338_clean_ClassS_59-187.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN_ClassS_109-237.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN_ClassS_109-237.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN_ClassS_110-238.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN_ClassS_110-238.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN_ClassS_93-221.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN_ClassS_93-221.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean_ClassN_101-229.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_603665940081_clean_ClassN_101-229.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean_ClassN_86-214.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m210ns_image_614587120545_clean_ClassN_86-214.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassS_0-128.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassS_0-128.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassS_166-294.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassS_166-294.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassS_73-201.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassS_73-201.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean_ClassS_163-291.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean_ClassS_163-291.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean_ClassS_71-199.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m211s_iimage_3929217595322_clean_ClassS_71-199.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN_ClassS_157-285.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN_ClassS_157-285.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN_ClassS_32-160.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN_ClassS_32-160.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN_ClassS_155-283.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN_ClassS_155-283.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN_ClassS_31-159.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN_ClassS_31-159.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN_ClassS_155-283.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN_ClassS_155-283.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN_ClassS_32-160.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN_ClassS_32-160.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN_ClassN_121-249.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_573611404207_CLEAN_ClassN_121-249.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN_ClassN_93-221.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m215ns_image_610066411380_CLEAN_ClassN_93-221.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN_ClassN_90-218.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN_ClassN_90-218.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN_ClassN_135-263.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN_ClassN_135-263.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN_ClassN_52-180.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN_ClassN_52-180.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassN_0-128.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassN_0-128.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassN_138-266.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassN_138-266.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassN_67-195.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassN_67-195.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassN_0-128.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassN_0-128.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassN_133-261.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassN_133-261.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassN_62-190.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassN_62-190.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean_ClassN_110-238.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_584357289931_clean_ClassN_110-238.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean_ClassN_121-249.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m221ns_image_588695055398_clean_ClassN_121-249.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean_ClassS_128-256.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3308406916756_clean_ClassS_128-256.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean_ClassS_117-245.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m224s_iimage_3315947589826_clean_ClassS_117-245.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean_ClassS_192-320.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean_ClassS_192-320.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean_ClassS_32-160.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3321463845606_clean_ClassS_32-160.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean_ClassS_133-261.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean_ClassS_133-261.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean_ClassS_48-176.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m228s_iimage_3384882513134_clean_ClassS_48-176.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN_ClassS_166-294.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN_ClassS_166-294.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN_ClassS_66-194.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN_ClassS_66-194.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean_ClassS_158-286.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m236s_iimage_1327616672148_clean_ClassS_158-286.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN_ClassS_172-300.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN_ClassS_172-300.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN_ClassS_38-166.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN_ClassS_38-166.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN_ClassN_83-211.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN_ClassN_83-211.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN_ClassN_126-254.roi.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN_ClassN_126-254.roi.overlay.nii.gz\u001b[00m\r\n", + "│   │   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN_ClassN_60-188.roi.nii.gz\u001b[00m\r\n", + "│   │   └── \u001b[01;32m247ns_image_2743083265515_CLEAN_ClassN_60-188.roi.overlay.nii.gz\u001b[00m\r\n", + "│   └── \u001b[01;34mROIData2\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_73815992352100_clean_ClassS_179-307.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_73815992352100_clean_ClassS_179-307.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_73815992352100_clean_ClassS_179-307.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_73815992352100_clean_ClassS_179-307.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_73815992352100_clean_ClassS_70-198.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_73815992352100_clean_ClassS_70-198.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_73815992352100_clean_ClassS_70-198.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_73815992352100_clean_ClassS_70-198.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_74132233134844_clean_ClassS_192-320.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_74132233134844_clean_ClassS_192-320.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_74132233134844_clean_ClassS_192-320.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_74132233134844_clean_ClassS_192-320.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_74132233134844_clean_ClassS_86-214.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_74132233134844_clean_ClassS_86-214.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_74132233134844_clean_ClassS_86-214.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_74132233134844_clean_ClassS_86-214.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN_ClassS_120-248.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN_ClassS_120-248.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN_ClassS_120-248.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN_ClassS_120-248.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN_ClassS_27-155.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN_ClassS_27-155.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN_ClassS_27-155.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN_ClassS_27-155.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10891015221417_clean_ClassS_151-279.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10891015221417_clean_ClassS_151-279.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10891015221417_clean_ClassS_151-279.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10891015221417_clean_ClassS_151-279.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m025ns_Image_262499828648_clean_ClassN_125-253.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m025ns_Image_262499828648_clean_ClassN_125-253.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m025ns_Image_262499828648_clean_ClassN_125-253.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m025ns_Image_262499828648_clean_ClassN_125-253.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m025ns_Image_262499828648_clean_ClassN_57-185.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m025ns_Image_262499828648_clean_ClassN_57-185.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m025ns_Image_262499828648_clean_ClassN_57-185.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m025ns_Image_262499828648_clean_ClassN_57-185.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassN_0-128.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassN_0-128.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassN_0-128.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassN_0-128.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassN_131-259.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassN_131-259.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassN_131-259.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassN_131-259.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassN_63-191.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassN_63-191.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassN_63-191.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassN_63-191.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m026ns_image_1083297968960_clean_ClassN_148-276.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m026ns_image_1083297968960_clean_ClassN_148-276.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m026ns_image_1083297968960_clean_ClassN_148-276.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m026ns_image_1083297968960_clean_ClassN_148-276.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m026ns_image_1083297968960_clean_ClassN_61-189.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m026ns_image_1083297968960_clean_ClassN_61-189.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m026ns_image_1083297968960_clean_ClassN_61-189.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m026ns_image_1083297968960_clean_ClassN_61-189.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m026ns_image_1087766719219_clean_ClassN_153-281.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m026ns_image_1087766719219_clean_ClassN_153-281.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m026ns_image_1087766719219_clean_ClassN_153-281.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m026ns_image_1087766719219_clean_ClassN_153-281.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m026ns_image_1087766719219_clean_ClassN_64-192.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m026ns_image_1087766719219_clean_ClassN_64-192.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m026ns_image_1087766719219_clean_ClassN_64-192.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m026ns_image_1087766719219_clean_ClassN_64-192.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN_ClassN_154-282.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN_ClassN_154-282.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN_ClassN_154-282.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN_ClassN_154-282.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN_ClassN_21-149.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN_ClassN_21-149.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN_ClassN_21-149.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN_ClassN_21-149.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m027ns_image_4743880599022_clean_ClassN_130-258.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m027ns_image_4743880599022_clean_ClassN_130-258.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m027ns_image_4743880599022_clean_ClassN_130-258.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m027ns_image_4743880599022_clean_ClassN_130-258.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_1180496934444_clean_ClassS_127-255.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_1180496934444_clean_ClassS_127-255.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_1180496934444_clean_ClassS_127-255.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_1180496934444_clean_ClassS_127-255.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_1180496934444_clean_ClassS_37-165.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_1180496934444_clean_ClassS_37-165.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_1180496934444_clean_ClassS_37-165.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_1180496934444_clean_ClassS_37-165.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_677741729740_clean_ClassS_122-250.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_677741729740_clean_ClassS_122-250.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_677741729740_clean_ClassS_122-250.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_677741729740_clean_ClassS_122-250.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean_ClassS_102-230.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean_ClassS_102-230.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean_ClassS_102-230.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean_ClassS_102-230.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean_ClassS_190-318.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean_ClassS_190-318.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean_ClassS_190-318.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean_ClassS_190-318.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean_ClassS_32-160.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean_ClassS_32-160.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean_ClassS_32-160.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean_ClassS_32-160.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3401832241774_clean_ClassS_132-260.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3401832241774_clean_ClassS_132-260.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3401832241774_clean_ClassS_132-260.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3401832241774_clean_ClassS_132-260.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3401832241774_clean_ClassS_31-159.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3401832241774_clean_ClassS_31-159.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3401832241774_clean_ClassS_31-159.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3401832241774_clean_ClassS_31-159.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m035ns_image_1394469579519_clean_ClassN_11-139.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m035ns_image_1394469579519_clean_ClassN_11-139.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m035ns_image_1394469579519_clean_ClassN_11-139.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m035ns_image_1394469579519_clean_ClassN_11-139.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m035ns_image_1394469579519_clean_ClassN_130-258.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m035ns_image_1394469579519_clean_ClassN_130-258.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m035ns_image_1394469579519_clean_ClassN_130-258.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m035ns_image_1394469579519_clean_ClassN_130-258.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m035ns_image_1404802450036_clean_ClassN_141-269.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m035ns_image_1404802450036_clean_ClassN_141-269.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m035ns_image_1404802450036_clean_ClassN_141-269.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m035ns_image_1404802450036_clean_ClassN_141-269.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN_ClassS_178-306.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN_ClassS_178-306.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN_ClassS_178-306.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN_ClassS_178-306.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN_ClassS_69-197.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN_ClassS_69-197.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN_ClassS_69-197.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN_ClassS_69-197.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN_ClassS_101-229.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN_ClassS_101-229.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN_ClassS_101-229.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN_ClassS_107-235.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN_ClassS_107-235.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN_ClassS_185-313.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN_ClassS_185-313.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN_ClassS_185-313.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN_ClassS_185-313.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN_ClassS_102-230.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN_ClassS_102-230.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN_ClassS_189-317.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN_ClassS_189-317.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN_ClassS_189-317.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN_ClassS_189-317.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN_ClassS_96-224.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN_ClassS_96-224.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN_ClassS_96-224.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m048ns_image_1543571117118_clean_ClassN_188-316.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m048ns_image_1543571117118_clean_ClassN_188-316.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m048ns_image_1543571117118_clean_ClassN_188-316.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m048ns_image_1543571117118_clean_ClassN_188-316.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m048ns_image_1749559540112_clean_ClassN_192-320.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m048ns_image_1749559540112_clean_ClassN_192-320.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m048ns_image_1749559540112_clean_ClassN_192-320.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m048ns_image_1749559540112_clean_ClassN_192-320.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN_ClassN_99-227.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN_ClassN_99-227.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN_ClassN_99-227.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN_ClassN_99-227.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN_ClassN_101-229.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN_ClassN_101-229.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN_ClassN_101-229.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN_ClassN_101-229.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1896534330004_clean_ClassS_11-139.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1896534330004_clean_ClassS_11-139.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1896534330004_clean_ClassS_11-139.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1896534330004_clean_ClassS_11-139.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1896534330004_clean_ClassS_130-258.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1896534330004_clean_ClassS_130-258.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1896534330004_clean_ClassS_130-258.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1896534330004_clean_ClassS_130-258.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1901852337971_clean_ClassS_128-256.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1901852337971_clean_ClassS_128-256.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1901852337971_clean_ClassS_128-256.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1901852337971_clean_ClassS_128-256.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1901852337971_clean_ClassS_13-141.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1901852337971_clean_ClassS_13-141.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1901852337971_clean_ClassS_13-141.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1901852337971_clean_ClassS_13-141.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_2959672151786_clean_ClassS_128-256.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_2959672151786_clean_ClassS_128-256.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_2959672151786_clean_ClassS_128-256.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_2959672151786_clean_ClassS_128-256.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_2959672151786_clean_ClassS_27-155.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_2959672151786_clean_ClassS_27-155.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_2959672151786_clean_ClassS_27-155.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_2959672151786_clean_ClassS_27-155.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_3320344386805_clean_ClassS_94-222.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_3320344386805_clean_ClassS_94-222.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_3320344386805_clean_ClassS_94-222.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_3320344386805_clean_ClassS_94-222.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m117ns_image_417221672548_CLEAN_ClassN_40-168.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m117ns_image_417221672548_CLEAN_ClassN_40-168.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m117ns_image_417221672548_CLEAN_ClassN_40-168.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m117ns_image_417221672548_CLEAN_ClassN_40-168.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m117ns_image_426794579576_CLEAN_ClassN_151-279.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m117ns_image_426794579576_CLEAN_ClassN_151-279.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m117ns_image_426794579576_CLEAN_ClassN_151-279.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m117ns_image_426794579576_CLEAN_ClassN_151-279.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m117ns_image_426794579576_CLEAN_ClassN_22-150.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m117ns_image_426794579576_CLEAN_ClassN_22-150.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m117ns_image_426794579576_CLEAN_ClassN_22-150.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m117ns_image_426794579576_CLEAN_ClassN_22-150.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m135ns_image_2418161753608_clean_ClassN_75-203.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m135ns_image_2418161753608_clean_ClassN_75-203.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m135ns_image_2418161753608_clean_ClassN_75-203.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m135ns_image_2418161753608_clean_ClassN_75-203.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN_ClassN_96-224.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN_ClassN_96-224.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN_ClassN_96-224.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN_ClassN_96-224.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m193ns_image_634125159704_CLEAN_ClassN_145-273.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m193ns_image_634125159704_CLEAN_ClassN_145-273.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m193ns_image_634125159704_CLEAN_ClassN_145-273.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m193ns_image_634125159704_CLEAN_ClassN_145-273.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m193ns_image_634125159704_CLEAN_ClassN_192-320.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m193ns_image_634125159704_CLEAN_ClassN_192-320.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m193ns_image_634125159704_CLEAN_ClassN_192-320.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m193ns_image_634125159704_CLEAN_ClassN_192-320.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m193ns_image_634125159704_CLEAN_ClassN_36-164.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m193ns_image_634125159704_CLEAN_ClassN_36-164.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m193ns_image_634125159704_CLEAN_ClassN_36-164.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m193ns_image_634125159704_CLEAN_ClassN_36-164.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassN_0-128.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassN_0-128.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassN_0-128.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassN_0-128.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassN_119-247.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassN_119-247.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassN_119-247.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassN_119-247.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassN_188-316.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassN_188-316.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassN_188-316.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassN_188-316.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassN_42-170.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassN_42-170.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassN_42-170.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassN_42-170.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassS_10-138.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassS_10-138.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassS_10-138.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassS_10-138.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassS_157-285.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassS_157-285.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassS_157-285.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassS_158-286.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassS_158-286.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassS_85-213.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassS_85-213.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassS_85-213.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassS_85-213.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1511338287338_clean_ClassS_0-128.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1511338287338_clean_ClassS_0-128.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1511338287338_clean_ClassS_0-128.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1511338287338_clean_ClassS_0-128.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1511338287338_clean_ClassS_138-266.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1511338287338_clean_ClassS_138-266.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1511338287338_clean_ClassS_138-266.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1511338287338_clean_ClassS_138-266.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1511338287338_clean_ClassS_59-187.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1511338287338_clean_ClassS_59-187.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1511338287338_clean_ClassS_59-187.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1511338287338_clean_ClassS_59-187.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN_ClassS_109-237.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN_ClassS_109-237.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN_ClassS_109-237.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN_ClassS_109-237.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN_ClassS_110-238.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN_ClassS_110-238.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN_ClassS_110-238.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN_ClassS_110-238.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN_ClassS_93-221.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN_ClassS_93-221.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN_ClassS_93-221.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN_ClassS_93-221.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m210ns_image_603665940081_clean_ClassN_101-229.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m210ns_image_603665940081_clean_ClassN_101-229.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m210ns_image_603665940081_clean_ClassN_101-229.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m210ns_image_603665940081_clean_ClassN_101-229.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m210ns_image_614587120545_clean_ClassN_86-214.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m210ns_image_614587120545_clean_ClassN_86-214.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m210ns_image_614587120545_clean_ClassN_86-214.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m210ns_image_614587120545_clean_ClassN_86-214.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassS_0-128.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassS_0-128.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassS_0-128.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassS_0-128.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassS_166-294.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassS_166-294.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassS_166-294.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassS_166-294.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassS_73-201.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassS_73-201.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassS_73-201.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassS_73-201.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3929217595322_clean_ClassS_163-291.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3929217595322_clean_ClassS_163-291.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3929217595322_clean_ClassS_163-291.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3929217595322_clean_ClassS_163-291.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3929217595322_clean_ClassS_71-199.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3929217595322_clean_ClassS_71-199.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3929217595322_clean_ClassS_71-199.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3929217595322_clean_ClassS_71-199.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN_ClassS_157-285.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN_ClassS_157-285.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN_ClassS_157-285.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN_ClassS_157-285.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN_ClassS_32-160.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN_ClassS_32-160.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN_ClassS_32-160.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN_ClassS_32-160.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN_ClassS_155-283.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN_ClassS_155-283.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN_ClassS_155-283.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN_ClassS_155-283.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN_ClassS_31-159.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN_ClassS_31-159.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN_ClassS_31-159.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN_ClassS_31-159.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN_ClassS_155-283.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN_ClassS_155-283.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN_ClassS_155-283.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN_ClassS_155-283.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN_ClassS_32-160.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN_ClassS_32-160.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN_ClassS_32-160.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN_ClassS_32-160.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m215ns_image_573611404207_CLEAN_ClassN_121-249.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m215ns_image_573611404207_CLEAN_ClassN_121-249.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m215ns_image_573611404207_CLEAN_ClassN_121-249.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m215ns_image_573611404207_CLEAN_ClassN_121-249.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m215ns_image_610066411380_CLEAN_ClassN_93-221.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m215ns_image_610066411380_CLEAN_ClassN_93-221.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m215ns_image_610066411380_CLEAN_ClassN_93-221.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m215ns_image_610066411380_CLEAN_ClassN_93-221.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN_ClassN_90-218.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN_ClassN_90-218.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN_ClassN_90-218.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN_ClassN_90-218.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN_ClassN_0-128.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN_ClassN_0-128.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN_ClassN_0-128.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN_ClassN_135-263.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN_ClassN_135-263.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN_ClassN_135-263.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN_ClassN_135-263.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN_ClassN_52-180.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN_ClassN_52-180.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN_ClassN_52-180.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN_ClassN_52-180.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassN_0-128.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassN_0-128.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassN_0-128.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassN_0-128.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassN_138-266.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassN_138-266.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassN_138-266.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassN_138-266.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassN_67-195.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassN_67-195.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassN_67-195.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassN_67-195.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassN_0-128.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassN_0-128.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassN_0-128.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassN_0-128.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassN_133-261.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassN_133-261.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassN_133-261.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassN_133-261.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassN_62-190.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassN_62-190.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassN_62-190.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassN_62-190.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m221ns_image_584357289931_clean_ClassN_110-238.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m221ns_image_584357289931_clean_ClassN_110-238.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m221ns_image_584357289931_clean_ClassN_110-238.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m221ns_image_584357289931_clean_ClassN_110-238.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m221ns_image_588695055398_clean_ClassN_121-249.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m221ns_image_588695055398_clean_ClassN_121-249.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m221ns_image_588695055398_clean_ClassN_121-249.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m221ns_image_588695055398_clean_ClassN_121-249.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3308406916756_clean_ClassS_128-256.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3308406916756_clean_ClassS_128-256.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3308406916756_clean_ClassS_128-256.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3308406916756_clean_ClassS_128-256.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3315947589826_clean_ClassS_117-245.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3315947589826_clean_ClassS_117-245.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3315947589826_clean_ClassS_117-245.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3315947589826_clean_ClassS_117-245.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3321463845606_clean_ClassS_192-320.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3321463845606_clean_ClassS_192-320.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3321463845606_clean_ClassS_192-320.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3321463845606_clean_ClassS_192-320.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3321463845606_clean_ClassS_32-160.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3321463845606_clean_ClassS_32-160.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3321463845606_clean_ClassS_32-160.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3321463845606_clean_ClassS_32-160.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3384882513134_clean_ClassS_133-261.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3384882513134_clean_ClassS_133-261.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3384882513134_clean_ClassS_133-261.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3384882513134_clean_ClassS_133-261.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3384882513134_clean_ClassS_48-176.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3384882513134_clean_ClassS_48-176.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3384882513134_clean_ClassS_48-176.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3384882513134_clean_ClassS_48-176.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN_ClassS_166-294.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN_ClassS_166-294.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN_ClassS_166-294.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN_ClassS_166-294.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN_ClassS_66-194.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN_ClassS_66-194.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN_ClassS_66-194.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN_ClassS_66-194.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1327616672148_clean_ClassS_158-286.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1327616672148_clean_ClassS_158-286.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1327616672148_clean_ClassS_158-286.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1327616672148_clean_ClassS_158-286.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN_ClassS_172-300.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN_ClassS_172-300.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN_ClassS_172-300.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN_ClassS_172-300.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN_ClassS_38-166.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN_ClassS_38-166.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN_ClassS_38-166.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN_ClassS_38-166.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN_ClassN_83-211.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN_ClassN_83-211.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN_ClassN_83-211.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN_ClassN_83-211.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN_ClassN_126-254.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN_ClassN_126-254.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN_ClassN_126-254.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN_ClassN_126-254.roi.overlay.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN_ClassN_60-188.roi.extruded-overlay-NS.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN_ClassN_60-188.roi.extruded-overlay-S.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN_ClassN_60-188.roi.nii.gz\u001b[00m\r\n", + "│   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN_ClassN_60-188.roi.overlay.nii.gz\u001b[00m\r\n", + "│   └── \u001b[01;34msave\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_73815992352100_clean_ClassR_179-307.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_73815992352100_clean_ClassR_179-307.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_73815992352100_clean_ClassR_70-198.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_73815992352100_clean_ClassR_70-198.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_73815992352100_clean_ClassS_179-307.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_73815992352100_clean_ClassS_179-307.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_73815992352100_clean_ClassS_70-198.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_73815992352100_clean_ClassS_70-198.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_74132233134844_clean_ClassR_192-320.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_74132233134844_clean_ClassR_192-320.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_74132233134844_clean_ClassR_86-214.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_74132233134844_clean_ClassR_86-214.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_74132233134844_clean_ClassS_192-320.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_74132233134844_clean_ClassS_192-320.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_74132233134844_clean_ClassS_86-214.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m004s_iimage_74132233134844_clean_ClassS_86-214.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN_ClassR_120-248.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN_ClassR_120-248.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN_ClassR_27-155.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN_ClassR_27-155.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN_ClassS_120-248.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN_ClassS_120-248.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN_ClassS_27-155.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10705997566592_CLEAN_ClassS_27-155.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10891015221417_clean_ClassR_151-279.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10891015221417_clean_ClassR_151-279.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10891015221417_clean_ClassS_151-279.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m019s_iimage_10891015221417_clean_ClassS_151-279.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m025ns_Image_262499828648_clean_ClassN_125-253.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m025ns_Image_262499828648_clean_ClassN_125-253.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m025ns_Image_262499828648_clean_ClassN_57-185.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m025ns_Image_262499828648_clean_ClassN_57-185.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m025ns_Image_262499828648_clean_ClassN_65-193.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m025ns_Image_262499828648_clean_ClassN_65-193.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m025ns_Image_262499828648_clean_ClassR_125-253.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m025ns_Image_262499828648_clean_ClassR_125-253.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassN_0-128.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassN_0-128.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassN_131-259.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassN_131-259.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassN_141-269.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassN_141-269.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassN_63-191.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassN_63-191.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassN_72-200.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassN_72-200.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassR_117-245.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassR_117-245.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassR_43-171.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m025ns_image_267456908021_clean_ClassR_43-171.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m026ns_image_1083297968960_clean_ClassN_148-276.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m026ns_image_1083297968960_clean_ClassN_148-276.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m026ns_image_1083297968960_clean_ClassN_61-189.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m026ns_image_1083297968960_clean_ClassN_61-189.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m026ns_image_1083297968960_clean_ClassR_148-276.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m026ns_image_1083297968960_clean_ClassR_148-276.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m026ns_image_1083297968960_clean_ClassR_61-189.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m026ns_image_1083297968960_clean_ClassR_61-189.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m026ns_image_1087766719219_clean_ClassN_153-281.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m026ns_image_1087766719219_clean_ClassN_153-281.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m026ns_image_1087766719219_clean_ClassN_64-192.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m026ns_image_1087766719219_clean_ClassN_64-192.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m026ns_image_1087766719219_clean_ClassR_153-281.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m026ns_image_1087766719219_clean_ClassR_153-281.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m026ns_image_1087766719219_clean_ClassR_64-192.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m026ns_image_1087766719219_clean_ClassR_64-192.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN_ClassN_154-282.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN_ClassN_154-282.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN_ClassN_21-149.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN_ClassN_21-149.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN_ClassR_154-282.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN_ClassR_154-282.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN_ClassR_21-149.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m027ns_image_4641643404894_CLEAN_ClassR_21-149.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m027ns_image_4743880599022_clean_ClassN_130-258.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m027ns_image_4743880599022_clean_ClassN_130-258.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m027ns_image_4743880599022_clean_ClassR_130-258.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m027ns_image_4743880599022_clean_ClassR_130-258.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_1180496934444_clean_ClassR_127-255.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_1180496934444_clean_ClassR_127-255.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_1180496934444_clean_ClassR_37-165.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_1180496934444_clean_ClassR_37-165.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_1180496934444_clean_ClassS_127-255.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_1180496934444_clean_ClassS_127-255.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_1180496934444_clean_ClassS_37-165.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_1180496934444_clean_ClassS_37-165.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_677741729740_clean_ClassR_122-250.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_677741729740_clean_ClassR_122-250.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_677741729740_clean_ClassS_122-250.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m030s_iimage_677741729740_clean_ClassS_122-250.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean_ClassR_102-230.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean_ClassR_102-230.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean_ClassR_190-318.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean_ClassR_190-318.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean_ClassS_102-230.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean_ClassS_102-230.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean_ClassS_190-318.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean_ClassS_190-318.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean_ClassS_32-160.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3368391807672_clean_ClassS_32-160.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3401832241774_clean_ClassR_132-260.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3401832241774_clean_ClassR_132-260.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3401832241774_clean_ClassR_31-159.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3401832241774_clean_ClassR_31-159.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3401832241774_clean_ClassS_132-260.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3401832241774_clean_ClassS_132-260.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3401832241774_clean_ClassS_31-159.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m034s_iimage_3401832241774_clean_ClassS_31-159.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m035ns_image_1394469579519_clean_ClassN_11-139.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m035ns_image_1394469579519_clean_ClassN_11-139.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m035ns_image_1394469579519_clean_ClassN_130-258.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m035ns_image_1394469579519_clean_ClassN_130-258.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m035ns_image_1394469579519_clean_ClassR_11-139.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m035ns_image_1394469579519_clean_ClassR_11-139.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m035ns_image_1394469579519_clean_ClassR_130-258.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m035ns_image_1394469579519_clean_ClassR_130-258.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m035ns_image_1404802450036_clean_ClassN_141-269.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m035ns_image_1404802450036_clean_ClassN_141-269.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m035ns_image_1404802450036_clean_ClassR_141-269.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m035ns_image_1404802450036_clean_ClassR_141-269.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN_ClassR_178-306.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN_ClassR_178-306.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN_ClassR_38-166.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN_ClassR_38-166.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN_ClassS_178-306.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN_ClassS_178-306.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN_ClassS_69-197.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN_ClassS_69-197.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN_ClassS_84-212.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m037s_iimage_588413346180_CLEAN_ClassS_84-212.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN_ClassR_100-228.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN_ClassR_100-228.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN_ClassR_185-313.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN_ClassR_185-313.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN_ClassS_107-235.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN_ClassS_107-235.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN_ClassS_185-313.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10391571128899_CLEAN_ClassS_185-313.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN_ClassR_189-317.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN_ClassR_189-317.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN_ClassR_94-222.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN_ClassR_94-222.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN_ClassS_102-230.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN_ClassS_102-230.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN_ClassS_189-317.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m043s_iimage_10395655826502_CLEAN_ClassS_189-317.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m048ns_image_1543571117118_clean_ClassN_188-316.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m048ns_image_1543571117118_clean_ClassN_188-316.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m048ns_image_1543571117118_clean_ClassR_188-316.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m048ns_image_1543571117118_clean_ClassR_188-316.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m048ns_image_1749559540112_clean_ClassN_192-320.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m048ns_image_1749559540112_clean_ClassN_192-320.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m048ns_image_1749559540112_clean_ClassR_192-320.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m048ns_image_1749559540112_clean_ClassR_192-320.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN_ClassN_99-227.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN_ClassN_99-227.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN_ClassR_99-227.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m055ns_image_27180764486244_CLEAN_ClassR_99-227.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN_ClassN_101-229.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN_ClassN_101-229.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN_ClassR_101-229.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m055ns_image_27185428518326_CLEAN_ClassR_101-229.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1896534330004_clean_ClassR_11-139.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1896534330004_clean_ClassR_11-139.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1896534330004_clean_ClassR_130-258.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1896534330004_clean_ClassR_130-258.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1896534330004_clean_ClassS_11-139.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1896534330004_clean_ClassS_11-139.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1896534330004_clean_ClassS_130-258.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1896534330004_clean_ClassS_130-258.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1901852337971_clean_ClassR_128-256.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1901852337971_clean_ClassR_128-256.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1901852337971_clean_ClassR_13-141.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1901852337971_clean_ClassR_13-141.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1901852337971_clean_ClassS_128-256.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1901852337971_clean_ClassS_128-256.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1901852337971_clean_ClassS_13-141.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m065s_iimage_1901852337971_clean_ClassS_13-141.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_2959672151786_clean_ClassR_27-155.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_2959672151786_clean_ClassR_27-155.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_2959672151786_clean_ClassR_94-222.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_2959672151786_clean_ClassR_94-222.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_2959672151786_clean_ClassS_128-256.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_2959672151786_clean_ClassS_128-256.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_2959672151786_clean_ClassS_135-263.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_2959672151786_clean_ClassS_135-263.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_2959672151786_clean_ClassS_27-155.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_2959672151786_clean_ClassS_27-155.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_3320344386805_clean_ClassR_94-222.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_3320344386805_clean_ClassR_94-222.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_3320344386805_clean_ClassS_94-222.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m081s_iimage_3320344386805_clean_ClassS_94-222.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m117ns_image_417221672548_CLEAN_ClassN_40-168.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m117ns_image_417221672548_CLEAN_ClassN_40-168.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m117ns_image_417221672548_CLEAN_ClassR_40-168.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m117ns_image_417221672548_CLEAN_ClassR_40-168.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m117ns_image_426794579576_CLEAN_ClassN_151-279.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m117ns_image_426794579576_CLEAN_ClassN_151-279.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m117ns_image_426794579576_CLEAN_ClassN_22-150.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m117ns_image_426794579576_CLEAN_ClassN_22-150.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m117ns_image_426794579576_CLEAN_ClassR_151-279.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m117ns_image_426794579576_CLEAN_ClassR_151-279.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m117ns_image_426794579576_CLEAN_ClassR_22-150.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m117ns_image_426794579576_CLEAN_ClassR_22-150.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m135ns_image_2418161753608_clean_ClassN_75-203.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m135ns_image_2418161753608_clean_ClassN_75-203.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m135ns_image_2418161753608_clean_ClassN_88-216.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m135ns_image_2418161753608_clean_ClassN_88-216.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m135ns_image_2418161753608_clean_ClassR_46-174.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m135ns_image_2418161753608_clean_ClassR_46-174.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN_ClassN_96-224.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m135ns_image_2454526567135_CLEAN_ClassN_96-224.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m193ns_image_634125159704_CLEAN_ClassN_145-273.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m193ns_image_634125159704_CLEAN_ClassN_145-273.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m193ns_image_634125159704_CLEAN_ClassN_192-320.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m193ns_image_634125159704_CLEAN_ClassN_192-320.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m193ns_image_634125159704_CLEAN_ClassN_36-164.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m193ns_image_634125159704_CLEAN_ClassN_36-164.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m193ns_image_634125159704_CLEAN_ClassR_145-273.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m193ns_image_634125159704_CLEAN_ClassR_145-273.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m193ns_image_634125159704_CLEAN_ClassR_192-320.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m193ns_image_634125159704_CLEAN_ClassR_192-320.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m193ns_image_634125159704_CLEAN_ClassR_36-164.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m193ns_image_634125159704_CLEAN_ClassR_36-164.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassN_0-128.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassN_0-128.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassN_119-247.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassN_119-247.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassN_130-258.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassN_130-258.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassN_188-316.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassN_188-316.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassN_42-170.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassN_42-170.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassR_0-128.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassR_0-128.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassR_102-230.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassR_102-230.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassR_42-170.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m193ns_image_642169070951_clean_ClassR_42-170.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassR_10-138.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassR_10-138.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassR_158-286.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassR_158-286.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassR_85-213.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassR_85-213.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassS_10-138.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassS_10-138.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassS_158-286.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassS_158-286.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassS_85-213.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1499268364374_clean_ClassS_85-213.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1511338287338_clean_ClassR_0-128.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1511338287338_clean_ClassR_0-128.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1511338287338_clean_ClassR_138-266.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1511338287338_clean_ClassR_138-266.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1511338287338_clean_ClassS_0-128.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1511338287338_clean_ClassS_0-128.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1511338287338_clean_ClassS_138-266.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1511338287338_clean_ClassS_138-266.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1511338287338_clean_ClassS_59-187.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m206s_iimage_1511338287338_clean_ClassS_59-187.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN_ClassR_109-237.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN_ClassR_109-237.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN_ClassS_109-237.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104543812690743_CLEAN_ClassS_109-237.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN_ClassR_110-238.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN_ClassR_110-238.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN_ClassS_110-238.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104548309385533_CLEAN_ClassS_110-238.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN_ClassR_93-221.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN_ClassR_93-221.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN_ClassS_93-221.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m208s_iimage_104932526155699_CLEAN_ClassS_93-221.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m210ns_image_603665940081_clean_ClassN_101-229.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m210ns_image_603665940081_clean_ClassN_101-229.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m210ns_image_614587120545_clean_ClassN_86-214.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m210ns_image_614587120545_clean_ClassN_86-214.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m210ns_image_614587120545_clean_ClassR_86-214.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m210ns_image_614587120545_clean_ClassR_86-214.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassR_0-128.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassR_0-128.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassR_142-270.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassR_142-270.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassR_73-201.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassR_73-201.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassS_0-128.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassS_0-128.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassS_166-294.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassS_166-294.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassS_180-308.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassS_180-308.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassS_73-201.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3925135436261_clean_ClassS_73-201.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3929217595322_clean_ClassR_139-267.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3929217595322_clean_ClassR_139-267.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3929217595322_clean_ClassR_71-199.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3929217595322_clean_ClassR_71-199.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3929217595322_clean_ClassS_163-291.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3929217595322_clean_ClassS_163-291.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3929217595322_clean_ClassS_174-302.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3929217595322_clean_ClassS_174-302.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3929217595322_clean_ClassS_71-199.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m211s_iimage_3929217595322_clean_ClassS_71-199.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN_ClassR_131-259.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN_ClassR_131-259.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN_ClassR_32-160.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN_ClassR_32-160.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN_ClassS_157-285.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN_ClassS_157-285.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN_ClassS_173-301.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN_ClassS_173-301.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN_ClassS_32-160.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128683942015128_CLEAN_ClassS_32-160.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN_ClassR_128-256.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN_ClassR_128-256.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN_ClassR_31-159.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN_ClassR_31-159.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN_ClassS_155-283.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN_ClassS_155-283.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN_ClassS_173-301.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN_ClassS_173-301.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN_ClassS_31-159.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128688523296793_CLEAN_ClassS_31-159.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN_ClassR_128-256.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN_ClassR_128-256.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN_ClassR_32-160.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN_ClassR_32-160.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN_ClassS_155-283.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN_ClassS_155-283.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN_ClassS_169-297.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN_ClassS_169-297.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN_ClassS_32-160.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m212s_iimage_128692595484031_CLEAN_ClassS_32-160.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m215ns_image_573611404207_CLEAN_ClassN_121-249.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m215ns_image_573611404207_CLEAN_ClassN_121-249.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m215ns_image_573611404207_CLEAN_ClassN_147-275.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m215ns_image_573611404207_CLEAN_ClassN_147-275.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m215ns_image_573611404207_CLEAN_ClassR_85-213.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m215ns_image_573611404207_CLEAN_ClassR_85-213.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m215ns_image_610066411380_CLEAN_ClassN_93-221.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m215ns_image_610066411380_CLEAN_ClassN_93-221.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m215ns_image_610066411380_CLEAN_ClassR_93-221.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m215ns_image_610066411380_CLEAN_ClassR_93-221.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN_ClassN_90-218.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN_ClassN_90-218.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN_ClassR_90-218.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m218ns_image_6056976176281_CLEAN_ClassR_90-218.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN_ClassN_135-263.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN_ClassN_135-263.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN_ClassN_52-180.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN_ClassN_52-180.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN_ClassR_0-128.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m218ns_image_6370410622099_CLEAN_ClassR_0-128.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassN_0-128.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassN_0-128.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassN_138-266.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassN_138-266.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassN_67-195.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassN_67-195.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassN_84-212.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassN_84-212.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassR_0-128.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassR_0-128.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassR_138-266.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassR_138-266.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassR_50-178.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m219ns_image_1884162273498_clean_ClassR_50-178.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassN_0-128.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassN_0-128.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassN_133-261.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassN_133-261.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassN_62-190.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassN_62-190.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassN_78-206.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassN_78-206.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassR_0-128.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassR_0-128.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassR_133-261.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassR_133-261.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassR_45-173.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m219ns_image_1895283541879_clean_ClassR_45-173.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m221ns_image_584357289931_clean_ClassN_110-238.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m221ns_image_584357289931_clean_ClassN_110-238.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m221ns_image_584357289931_clean_ClassN_129-257.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m221ns_image_584357289931_clean_ClassN_129-257.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m221ns_image_584357289931_clean_ClassR_63-191.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m221ns_image_584357289931_clean_ClassR_63-191.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m221ns_image_588695055398_clean_ClassN_121-249.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m221ns_image_588695055398_clean_ClassN_121-249.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m221ns_image_588695055398_clean_ClassN_137-265.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m221ns_image_588695055398_clean_ClassN_137-265.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m221ns_image_588695055398_clean_ClassR_70-198.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m221ns_image_588695055398_clean_ClassR_70-198.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3308406916756_clean_ClassR_86-214.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3308406916756_clean_ClassR_86-214.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3308406916756_clean_ClassS_128-256.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3308406916756_clean_ClassS_128-256.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3308406916756_clean_ClassS_148-276.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3308406916756_clean_ClassS_148-276.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3315947589826_clean_ClassR_77-205.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3315947589826_clean_ClassR_77-205.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3315947589826_clean_ClassS_117-245.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3315947589826_clean_ClassS_117-245.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3315947589826_clean_ClassS_127-255.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m224s_iimage_3315947589826_clean_ClassS_127-255.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3321463845606_clean_ClassR_192-320.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3321463845606_clean_ClassR_192-320.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3321463845606_clean_ClassR_32-160.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3321463845606_clean_ClassR_32-160.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3321463845606_clean_ClassS_192-320.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3321463845606_clean_ClassS_192-320.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3321463845606_clean_ClassS_32-160.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3321463845606_clean_ClassS_32-160.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3384882513134_clean_ClassR_133-261.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3384882513134_clean_ClassR_133-261.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3384882513134_clean_ClassR_30-158.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3384882513134_clean_ClassR_30-158.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3384882513134_clean_ClassS_133-261.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3384882513134_clean_ClassS_133-261.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3384882513134_clean_ClassS_48-176.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3384882513134_clean_ClassS_48-176.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3384882513134_clean_ClassS_58-186.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m228s_iimage_3384882513134_clean_ClassS_58-186.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN_ClassR_66-194.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN_ClassR_66-194.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN_ClassS_166-294.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN_ClassS_166-294.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN_ClassS_66-194.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1139765223418_CLEAN_ClassS_66-194.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1327616672148_clean_ClassR_158-286.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1327616672148_clean_ClassR_158-286.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1327616672148_clean_ClassS_158-286.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m236s_iimage_1327616672148_clean_ClassS_158-286.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN_ClassR_172-300.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN_ClassR_172-300.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN_ClassR_18-146.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN_ClassR_18-146.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN_ClassS_172-300.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN_ClassS_172-300.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN_ClassS_38-166.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN_ClassS_38-166.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN_ClassS_57-185.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m237s_iimage_24164968068436_CLEAN_ClassS_57-185.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN_ClassN_83-211.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN_ClassN_83-211.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN_ClassN_90-218.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m247ns_image_2734882394424_CLEAN_ClassN_90-218.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN_ClassN_126-254.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN_ClassN_126-254.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN_ClassN_133-261.roi.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN_ClassN_133-261.roi.overlay.mha\u001b[00m\r\n", + "│   ├── \u001b[01;32m247ns_image_2743083265515_CLEAN_ClassN_60-188.roi.mha\u001b[00m\r\n", + "│   └── \u001b[01;32m247ns_image_2743083265515_CLEAN_ClassN_60-188.roi.overlay.mha\u001b[00m\r\n", + "└── \u001b[01;34mWeb\u001b[00m\r\n", + " ├── \u001b[01;34mAdditionalDataSources\u001b[00m\r\n", + " │   ├── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + " │   └── \u001b[01;32mUltrasound Image Database - Musculoskeletal Ultrasounds Courses In London.url\u001b[00m\r\n", + " ├── \u001b[01;34mCCA\u001b[00m\r\n", + " │   ├── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + " │   ├── \u001b[01;34mus_images\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m09-41-06_1.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m09-41-06_2.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m09-42-05_1.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m09-42-05_2.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m09-43-07_1.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m09-43-07_2.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m09-44-06_1.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m09-44-06_2.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m09-45-04_1.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m09-45-04_2.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m09-46-10_1.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m09-46-10_2.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m09-49-17_1.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m09-49-17_2.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m09-49-37_1.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m09-49-37_2.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m09-50-11_1.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m09-50-11_2.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m09-52-38_1.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m09-52-38_2.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m09-53-51_2.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m09-53-51.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m09-54-44_2.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m09-54-44.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m09-55-22_2.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m09-55-22.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m09-55-50_2.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m09-55-50.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m09-56-30_2.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m09-56-30.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m09-57-36_2.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m09-57-36.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m09-58-19.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m10-51-38.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m10-52-09.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m10-55-10.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m10-58-55.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m11-02-15.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m11-03-10.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m11-03-53.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m11-05-17.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m11-05-42.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m11-06-10.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m11-09-26.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m11-11-23.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m11-12-47.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m11-13-13.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m12-06-36.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m17-35-44.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m17-35-50.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m17-35-56.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m17-36-01.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m17-36-35.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m17-36-47.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m17-37-04.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m17-37-19.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m17-37-40.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m17-38-18.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m17-38-30.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m17-40-25.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m17-47-32.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m17-47-38.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m17-47-41.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m17-47-48.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m17-48-12.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m17-48-16.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m17-48-21.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m17-48-34.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m17-48-45.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m17-48-47.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m17-48-50.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m17-49-02.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m17-57-01.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m17-57-11.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m17-57-24.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m17-57-47.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m18-15-18.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m18-15-27.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m18-18-25.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m18-18-29.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m18-18-34.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m18-19-42.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m18-19-50.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32m18-19-54.jpg\u001b[00m\r\n", + " │   │   └── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + " │   ├── \u001b[01;32mus_images.zip\u001b[00m\r\n", + " │   └── \u001b[01;32mus_images.zip-screen.png\u001b[00m\r\n", + " ├── \u001b[01;34mCOVID\u001b[00m\r\n", + " │   ├── \u001b[01;32mcrop.json\u001b[00m\r\n", + " │   ├── \u001b[01;32mcrop_processed_data.py\u001b[00m\r\n", + " │   ├── \u001b[01;32mdata_from_butterfly.json\u001b[00m\r\n", + " │   ├── \u001b[01;32mdataset_metadata.csv\u001b[00m\r\n", + " │   ├── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + " │   ├── \u001b[01;32mget_and_process_web_data.sh\u001b[00m\r\n", + " │   ├── \u001b[01;32mparse_butterfly.sh\u001b[00m\r\n", + " │   ├── \u001b[01;34mpocus_images\u001b[00m\r\n", + " │   │   ├── \u001b[01;34mconvex\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_ablines_covidmanifestations_paper1.png\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_blines_covidmanifestation_paper2.png\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_blines_thoraric_paperfig1.png\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_blines_thoraric_paperfig2.png\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_blines_thoraric_paperfig3.png\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_efsumb1_2.png\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_efsumb1.png\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_efsumb3.png\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_Oliviera_2020_Fig15A.jpg\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_Oliviera_2020_Fig4A.jpg\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_Oliviera_2020_Fig5A.jpg\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_pleuraleffusion_thoraric_paperfig9.png\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_pleuralthickening_thoraric_paperfig8.png\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_pregnantPublication1.png\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_pregnantPublication2.png\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_severe_acutemedicine.png\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_subpleuralthickening_thoraric_paperfig6.png\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_unsmooth_pleuralline_prelim_study_SSRN_paper2.png\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_wfumb_case_dez_a.jpg\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_wfumb_case_dez_b.jpg\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_wfumb_case_dez_c.jpg\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_whitelungs_thoraric_paperfig5.png\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu_Avi_B-lines-hyperechoic-effusion-consolidated-lung.JPG\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu_Avi_consolidated-lung-effusion-shred-sign.JPG\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu_Avi_consolidated-lung.JPG\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu_Avi_effusion-and-thickened-diaphragm.JPG\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu_Avi_hyperechoic-effusion.JPG\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu_Avi_large-anaechoic-effusion-with-atelectatic-lung.jpg\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu_Avi_plerual-effusion-consolidated-lung.JPG\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu_Avi_small-effusionA-line.JPG\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu_Avi_Small-effusion-pleural-line.jpg\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu_Avi_subpleural-consolidation.JPG\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu_clarius2.png\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu_clarius.jpg\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu_emdocs_1.png\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set4_img2.jpg\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set5_img1.jpg\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_img6.jpg\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu_Reissig_2012_fig2A.jpg\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu_Reissig_2012_fig2B.jpg\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu_sonographiebilder1.jpg\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu_sonographiebilder2.jpg\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_Avi_Image001.jpg\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_Avi_Image005.jpg\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_Avi_Image006.jpg\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_Avi_Image007.jpg\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_Avi_Image009.jpg\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_Avi_Image010.jpg\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_Avi_Image011.jpg\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_Avi_normal-A-lines.JPG\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_Avi_normal-A-lines-pleural-line.JPG\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_Avi_pleural-line-normal.JPG\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_Chen_2020_3A.png\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_Chen_2020_6A.png\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_efsumb2.png\u001b[00m\r\n", + " │   │   │   └── \u001b[01;32mReg_publication1.png\u001b[00m\r\n", + " │   │   ├── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + " │   │   └── \u001b[01;34mlinear\u001b[00m\r\n", + " │   │   ├── \u001b[01;32mCov_irregularpleural_covidmanifestations_paper3.png\u001b[00m\r\n", + " │   │   ├── \u001b[01;32mCov_Oliviera_2020_Fig14.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32mCov_Oliviera_2020_Fig16.jpg\u001b[00m\r\n", + " │   │   ├── \u001b[01;32mCov_unsmoothpleuralline_prelim_study_SSRN_paper6.png\u001b[00m\r\n", + " │   │   ├── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + " │   │   ├── \u001b[01;32mPneu_consol_pedriatic_pneumonia.png\u001b[00m\r\n", + " │   │   └── \u001b[01;32mPneu_leftbasal_pedriatic_pneumonia.png\u001b[00m\r\n", + " │   ├── \u001b[01;34mpocus_videos\u001b[00m\r\n", + " │   │   ├── \u001b[01;34mconvex\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mConvertVideoToITK_InterestingSlices.ipynb\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_Arnthfield_2020_Vid3.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-Atlas-+(43).gif\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-Atlas+(44).gif\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-Atlas+(45).gif\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-Atlas-Day+1.gif\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-Atlas-Day+2.gif\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-Atlas-Day+3.gif\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-Atlas-Day+4.gif\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-Atlas-suspectedCovid.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-clarius3.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-clarius.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_combatting_Image1.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_combatting_Image2.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_combatting_Image3.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_combatting_image4.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_combatting_Image5.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_convex_volpecelli_sonographic_v1.mov\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_convex_volpecelli_sonographic_v2.mov\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_convex_volpecelli_sonographic_v3.mov\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_convex_volpecelli_sonographic_v4.mov\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_convex_volpecelli_sonographic_v5.mov\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid10.mov\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid11.mov\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid12.mov\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid13.mov\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid14.mov\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid1.mov\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid2.mov\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid5.mov\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_emdocs_vid1.gif\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_emdocs_vid3.gif\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-grep-7453.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-grep-7505.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-grep-7507.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-grep-7510.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-grep-7511.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-grep-7525.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-grep-7543.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-grepmed2.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-grepmed-blines-pocus-.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid1.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid2.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid3.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid4.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid5.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid6.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid7.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid8.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_recommendations_lightbeam_mov6.mov\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_recommendations_likebutterfly_mov5.mov\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_wfumb_case_dez.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;34mextracted_frames\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_Arnthfield_2020_Vid3.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_Arnthfield_2020_Vid3.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_Arnthfield_2020_Vid3.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_Arnthfield_2020_Vid3.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_Arnthfield_2020_Vid3.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_Arnthfield_2020_Vid3.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_Arnthfield_2020_Vid3.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_Arnthfield_2020_Vid3.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_Arnthfield_2020_Vid3.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_Arnthfield_2020_Vid3.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas-+(43).gif-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas-+(43).gif-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas-+(43).gif-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas-+(43).gif-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas-+(43).gif-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas-+(43).gif-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas-+(43).gif-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas-+(43).gif-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas-+(43).gif-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas+(44).gif-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas+(44).gif-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas+(44).gif-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas+(44).gif-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas+(44).gif-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas+(44).gif-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas+(44).gif-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas+(44).gif-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas+(44).gif-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas+(45).gif-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas+(45).gif-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas+(45).gif-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas+(45).gif-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas+(45).gif-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas+(45).gif-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas+(45).gif-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas+(45).gif-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas+(45).gif-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas-Day+1.gif-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas-Day+1.gif-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas-Day+1.gif-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas-Day+1.gif-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas-Day+1.gif-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas-Day+1.gif-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas-Day+1.gif-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas-Day+1.gif-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas-Day+1.gif-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas-Day+1.gif-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas-Day+2.gif-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas-Day+2.gif-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas-Day+2.gif-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas-Day+2.gif-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas-Day+2.gif-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas-Day+2.gif-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas-Day+2.gif-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas-Day+2.gif-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas-Day+2.gif-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas-Day+2.gif-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas-Day+3.gif-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas-Day+3.gif-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas-Day+3.gif-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas-Day+3.gif-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas-Day+3.gif-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas-Day+3.gif-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas-Day+3.gif-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas-Day+3.gif-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas-Day+3.gif-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas-Day+3.gif-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas-Day+4.gif-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas-Day+4.gif-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas-Day+4.gif-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas-Day+4.gif-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas-Day+4.gif-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas-Day+4.gif-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas-Day+4.gif-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas-Day+4.gif-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas-Day+4.gif-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas-Day+4.gif-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas-suspectedCovid.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas-suspectedCovid.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas-suspectedCovid.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas-suspectedCovid.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas-suspectedCovid.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas-suspectedCovid.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas-suspectedCovid.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas-suspectedCovid.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas-suspectedCovid.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas-suspectedCovid.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-clarius3.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-clarius3.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-clarius3.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-clarius3.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-clarius3.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-clarius3.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-clarius3.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-clarius3.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-clarius3.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-clarius.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-clarius.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-clarius.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-clarius.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-clarius.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-clarius.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-clarius.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-clarius.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-clarius.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-clarius.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_combatting_Image1.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_combatting_Image1.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_combatting_Image1.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_combatting_Image1.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_combatting_Image1.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_combatting_Image1.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_combatting_Image1.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_combatting_Image1.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_combatting_Image1.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_combatting_Image1.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_combatting_Image2.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_combatting_Image2.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_combatting_Image2.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_combatting_Image2.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_combatting_Image2.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_combatting_Image2.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_combatting_Image2.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_combatting_Image2.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_combatting_Image2.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_combatting_Image2.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_combatting_Image3.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_combatting_Image3.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_combatting_Image3.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_combatting_Image3.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_combatting_Image3.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_combatting_Image3.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_combatting_Image3.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_combatting_Image3.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_combatting_Image3.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_combatting_Image3.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_combatting_image4.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_combatting_image4.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_combatting_image4.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_combatting_image4.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_combatting_image4.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_combatting_image4.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_combatting_image4.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_combatting_image4.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_combatting_image4.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_combatting_image4.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_combatting_Image5.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_combatting_Image5.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_combatting_Image5.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_combatting_Image5.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_combatting_Image5.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_combatting_Image5.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_combatting_Image5.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_combatting_Image5.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_combatting_Image5.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_combatting_Image5.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_convex_volpecelli_sonographic_v1.mov-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_convex_volpecelli_sonographic_v1.mov-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_convex_volpecelli_sonographic_v1.mov-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_convex_volpecelli_sonographic_v1.mov-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_convex_volpecelli_sonographic_v1.mov-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_convex_volpecelli_sonographic_v1.mov-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_convex_volpecelli_sonographic_v1.mov-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_convex_volpecelli_sonographic_v1.mov-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_convex_volpecelli_sonographic_v1.mov-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_convex_volpecelli_sonographic_v1.mov-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_convex_volpecelli_sonographic_v2.mov-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_convex_volpecelli_sonographic_v2.mov-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_convex_volpecelli_sonographic_v2.mov-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_convex_volpecelli_sonographic_v2.mov-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_convex_volpecelli_sonographic_v2.mov-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_convex_volpecelli_sonographic_v2.mov-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_convex_volpecelli_sonographic_v2.mov-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_convex_volpecelli_sonographic_v2.mov-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_convex_volpecelli_sonographic_v2.mov-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_convex_volpecelli_sonographic_v3.mov-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_convex_volpecelli_sonographic_v3.mov-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_convex_volpecelli_sonographic_v3.mov-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_convex_volpecelli_sonographic_v3.mov-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_convex_volpecelli_sonographic_v3.mov-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_convex_volpecelli_sonographic_v3.mov-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_convex_volpecelli_sonographic_v3.mov-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_convex_volpecelli_sonographic_v3.mov-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_convex_volpecelli_sonographic_v3.mov-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_convex_volpecelli_sonographic_v3.mov-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_convex_volpecelli_sonographic_v4.mov-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_convex_volpecelli_sonographic_v4.mov-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_convex_volpecelli_sonographic_v4.mov-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_convex_volpecelli_sonographic_v4.mov-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_convex_volpecelli_sonographic_v4.mov-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_convex_volpecelli_sonographic_v4.mov-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_convex_volpecelli_sonographic_v4.mov-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_convex_volpecelli_sonographic_v4.mov-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_convex_volpecelli_sonographic_v4.mov-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_convex_volpecelli_sonographic_v4.mov-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_convex_volpecelli_sonographic_v5.mov-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_convex_volpecelli_sonographic_v5.mov-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_convex_volpecelli_sonographic_v5.mov-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_convex_volpecelli_sonographic_v5.mov-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_convex_volpecelli_sonographic_v5.mov-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_convex_volpecelli_sonographic_v5.mov-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_convex_volpecelli_sonographic_v5.mov-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_convex_volpecelli_sonographic_v5.mov-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_convex_volpecelli_sonographic_v5.mov-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_convex_volpecelli_sonographic_v5.mov-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid10.mov-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid10.mov-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid10.mov-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid10.mov-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid10.mov-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid10.mov-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid10.mov-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid10.mov-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid10.mov-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid10.mov-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid11.mov-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid11.mov-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid11.mov-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid11.mov-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid11.mov-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid11.mov-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid11.mov-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid11.mov-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid11.mov-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid11.mov-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid12.mov-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid12.mov-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid12.mov-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid12.mov-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid12.mov-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid12.mov-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid12.mov-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid12.mov-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid12.mov-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid12.mov-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid13.mov-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid13.mov-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid13.mov-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid13.mov-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid13.mov-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid13.mov-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid13.mov-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid13.mov-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid13.mov-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid13.mov-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid14.mov-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid14.mov-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid14.mov-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid14.mov-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid14.mov-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid14.mov-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid14.mov-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid14.mov-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid14.mov-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid14.mov-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid1.mov-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid1.mov-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid1.mov-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid1.mov-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid1.mov-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid1.mov-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid1.mov-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid1.mov-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid1.mov-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid2.mov-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid2.mov-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid2.mov-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid2.mov-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid2.mov-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid2.mov-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid2.mov-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid2.mov-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid2.mov-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid2.mov-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid5.mov-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid5.mov-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid5.mov-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid5.mov-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid5.mov-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid5.mov-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid5.mov-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid5.mov-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid5.mov-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid5.mov-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_emdocs_vid1.gif-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_emdocs_vid1.gif-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_emdocs_vid1.gif-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_emdocs_vid1.gif-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_emdocs_vid1.gif-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_emdocs_vid1.gif-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_emdocs_vid1.gif-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_emdocs_vid1.gif-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_emdocs_vid1.gif-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_emdocs_vid1.gif-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_emdocs_vid3.gif-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7453.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7453.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7453.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7453.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7453.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7453.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7453.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7453.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7453.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7453.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7505.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7505.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7505.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7505.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7505.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7505.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7505.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7505.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7505.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7505.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7507.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7507.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7507.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7507.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7507.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7507.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7507.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7507.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7507.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7507.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7510.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7510.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7510.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7510.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7510.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7510.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7510.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7510.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7510.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7511.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7511.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7511.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7511.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7511.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7511.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7511.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7511.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7511.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7511.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7525.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7525.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7525.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7525.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7525.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7525.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7525.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7525.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7525.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7525.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7543.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7543.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7543.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7543.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7543.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7543.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7543.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7543.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7543.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7543.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grepmed2.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grepmed2.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grepmed2.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grepmed2.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grepmed2.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grepmed2.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grepmed2.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grepmed2.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grepmed2.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grepmed2.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grepmed-blines-pocus-.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grepmed-blines-pocus-.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grepmed-blines-pocus-.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grepmed-blines-pocus-.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grepmed-blines-pocus-.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grepmed-blines-pocus-.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grepmed-blines-pocus-.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grepmed-blines-pocus-.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grepmed-blines-pocus-.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grepmed-blines-pocus-.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid1.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid1.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid1.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid1.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid1.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid1.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid1.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid1.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid1.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid1.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid2.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid2.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid2.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid2.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid2.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid2.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid2.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid2.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid2.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid2.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid3.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid3.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid3.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid3.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid3.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid3.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid3.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid3.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid3.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid3.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid4.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid4.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid4.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid4.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid4.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid4.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid4.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid4.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid4.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid4.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid5.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid5.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid5.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid5.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid5.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid5.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid5.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid5.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid5.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid5.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid6.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid6.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid6.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid6.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid6.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid6.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid6.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid6.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid6.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid6.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid7.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid7.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid7.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid7.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid7.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid7.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid7.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid7.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid7.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid7.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid8.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid8.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid8.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid8.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid8.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid8.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid8.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid8.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid8.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid8.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_recommendations_lightbeam_mov6.mov-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_recommendations_lightbeam_mov6.mov-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_recommendations_lightbeam_mov6.mov-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_recommendations_lightbeam_mov6.mov-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_recommendations_lightbeam_mov6.mov-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_recommendations_lightbeam_mov6.mov-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_recommendations_lightbeam_mov6.mov-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_recommendations_lightbeam_mov6.mov-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_recommendations_lightbeam_mov6.mov-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_recommendations_lightbeam_mov6.mov-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_recommendations_likebutterfly_mov5.mov-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_recommendations_likebutterfly_mov5.mov-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_recommendations_likebutterfly_mov5.mov-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_recommendations_likebutterfly_mov5.mov-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_recommendations_likebutterfly_mov5.mov-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_recommendations_likebutterfly_mov5.mov-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_recommendations_likebutterfly_mov5.mov-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_recommendations_likebutterfly_mov5.mov-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_recommendations_likebutterfly_mov5.mov-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_recommendations_likebutterfly_mov5.mov-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_wfumb_case_dez.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_wfumb_case_dez.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_wfumb_case_dez.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_wfumb_case_dez.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_wfumb_case_dez.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_wfumb_case_dez.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_wfumb_case_dez.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_wfumb_case_dez.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_wfumb_case_dez.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_wfumb_case_dez.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_AIR BRONC2.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_AIR BRONC2.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_AIR BRONC2.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_AIR BRONC2.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_AIR BRONC2.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_AIR BRONC2.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_AIR BRONC2.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_AIR BRONC2.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_AIR BRONC2.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_AIR BRONC2.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-Atlas-pneumonia2.gif-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-Atlas-pneumonia2.gif-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-Atlas-pneumonia2.gif-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-Atlas-pneumonia2.gif-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-Atlas-pneumonia2.gif-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-Atlas-pneumonia2.gif-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-Atlas-pneumonia2.gif-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-Atlas-pneumonia2.gif-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-Atlas-pneumonia2.gif-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-Atlas-pneumonia2.gif-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-Atlas-pneumonia.gif-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-Atlas-pneumonia.gif-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-Atlas-pneumonia.gif-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-Atlas-pneumonia.gif-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-Atlas-pneumonia.gif-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-Atlas-pneumonia.gif-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-Atlas-pneumonia.gif-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-Atlas-pneumonia.gif-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-Atlas-pneumonia.gif-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-Atlas-pneumonia.gif-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Avi_Video_001.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Avi_Video_001.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Avi_Video_001.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Avi_Video_001.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Avi_Video_001.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Avi_Video_001.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Avi_Video_001.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Avi_Video_001.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Avi_Video_001.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Avi_Video_001.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Avi_Video_002.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Avi_Video_002.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Avi_Video_002.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Avi_Video_002.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Avi_Video_002.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Avi_Video_002.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Avi_Video_002.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Avi_Video_002.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Avi_Video_002.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Avi_Video_002.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Avi_Video_003.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Avi_Video_003.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Avi_Video_003.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Avi_Video_003.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Avi_Video_003.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Avi_Video_003.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Avi_Video_003.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Avi_Video_003.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Avi_Video_003.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Avi_Video_003.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Avi_Video_004.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Avi_Video_004.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Avi_Video_004.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Avi_Video_004.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Avi_Video_004.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Avi_Video_004.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Avi_Video_004.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Avi_Video_004.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Avi_Video_004.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Avi_Video_004.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Avi_Video_005.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Avi_Video_005.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Avi_Video_005.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Avi_Video_005.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Avi_Video_005.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Avi_Video_005.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Avi_Video_005.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Avi_Video_005.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Avi_Video_005.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Avi_Video_005.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Avi_Video_006.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Avi_Video_006.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Avi_Video_006.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Avi_Video_006.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Avi_Video_006.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Avi_Video_006.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Avi_Video_006.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Avi_Video_006.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Avi_Video_006.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Avi_Video_006.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_basalpneumonia_liftle_case1.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_basalpneumonia_liftle_case1.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_basalpneumonia_liftle_case1.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_basalpneumonia_liftle_case1.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_basalpneumonia_liftle_case1.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_basalpneumonia_liftle_case1.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_basalpneumonia_liftle_case1.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_basalpneumonia_liftle_case1.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_basalpneumonia_liftle_case1.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_basalpneumonia_liftle_case1.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Basal-pneumonia-RUQ_crop.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Basal-pneumonia-RUQ_crop.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Basal-pneumonia-RUQ_crop.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Basal-pneumonia-RUQ_crop.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Basal-pneumonia-RUQ_crop.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Basal-pneumonia-RUQ_crop.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Basal-pneumonia-RUQ_crop.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Basal-pneumonia-RUQ_crop.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Basal-pneumonia-RUQ_crop.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Basal-pneumonia-RUQ_crop.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_clinicalreview_MOV4.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_clinicalreview_MOV4.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_clinicalreview_MOV4.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_clinicalreview_MOV4.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_clinicalreview_MOV4.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_clinicalreview_MOV4.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_clinicalreview_MOV4.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_clinicalreview_MOV4.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_clinicalreview_MOV4.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_clinicalreview_MOV4.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_consol_advancesVid10.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_consol_advancesVid10.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_consol_advancesVid10.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_consol_advancesVid10.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_consol_advancesVid10.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_consol_advancesVid10.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_consol_advancesVid10.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_consol_advancesVid10.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_consol_advancesVid10.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_consol_advancesVid10.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mpneu-everyday.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mpneu-everyday.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mpneu-everyday.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mpneu-everyday.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mpneu-everyday.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mpneu-everyday.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mpneu-everyday.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mpneu-everyday.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mpneu-everyday.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mpneu-everyday.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_from_article_rippey.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_from_article_rippey.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_from_article_rippey.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_from_article_rippey.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_from_article_rippey.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_from_article_rippey.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_from_article_rippey.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_from_article_rippey.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_from_article_rippey.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_from_article_rippey.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mpneu-gred-6.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mpneu-gred-6.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mpneu-gred-6.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mpneu-gred-6.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mpneu-gred-6.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mpneu-gred-6.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mpneu-gred-6.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mpneu-gred-6.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mpneu-gred-6.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mpneu-gred-6.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mpneu-gred-7.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mpneu-gred-7.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mpneu-gred-7.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mpneu-gred-7.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mpneu-gred-7.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mpneu-gred-7.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mpneu-gred-7.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mpneu-gred-7.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mpneu-gred-7.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mpneu-gred-7.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-bacterial-hepatization-clinical.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-bacterial-hepatization-clinical.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-bacterial-hepatization-clinical.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-bacterial-hepatization-clinical.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-bacterial-hepatization-clinical.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-bacterial-hepatization-clinical.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-bacterial-hepatization-clinical.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-bacterial-hepatization-clinical.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-bacterial-hepatization-clinical.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-pneumonia1.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-pneumonia1.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-pneumonia1.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-pneumonia1.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-pneumonia1.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-pneumonia1.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-pneumonia1.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-pneumonia1.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-pneumonia2_1.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-pneumonia2_1.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-pneumonia2_1.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-pneumonia2_1.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-pneumonia2_1.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-pneumonia2_1.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-pneumonia2_1.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-pneumonia3.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-pneumonia3.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-pneumonia3.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-pneumonia3.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-pneumonia3.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-pneumonia3.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-pneumonia3.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-pneumonia3.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-pneumonia3.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-pneumonia3.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-pneumonia4.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-pneumonia4.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-pneumonia4.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-pneumonia4.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-pneumonia4.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-pneumonia4.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-pneumonia4.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-pneumonia4.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-pneumonia4.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-pneumonia4.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-pulmonary-pneumonia.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-pulmonary-pneumonia.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-pulmonary-pneumonia.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-pulmonary-pneumonia.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-pulmonary-pneumonia.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-pulmonary-pneumonia.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-pulmonary-pneumonia.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-pulmonary-pneumonia.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-pulmonary-pneumonia.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-pulmonary-pneumonia.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-shredsign-consolidation.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-shredsign-consolidation.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-shredsign-consolidation.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-shredsign-consolidation.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-shredsign-consolidation.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-shredsign-consolidation.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-shredsign-consolidation.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-shredsign-consolidation.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-shredsign-consolidation.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-shredsign-consolidation.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_liftl_pneu_case3_clip3.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_liftl_pneu_case3_clip3.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_liftl_pneu_case3_clip3.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_liftl_pneu_case3_clip3.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_liftl_pneu_case3_clip3.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_liftl_pneu_case3_clip3.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_liftl_pneu_case3_clip3.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_liftl_pneu_case3_clip3.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_liftl_pneu_case3_clip3.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_liftl_pneu_case3_clip4.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_liftl_pneu_case3_clip4.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_liftl_pneu_case3_clip4.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_liftl_pneu_case3_clip5.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_liftl_pneu_case3_clip5.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_liftl_pneu_case3_clip5.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_liftl_pneu_case3_clip5.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_liftl_pneu_case3_clip5.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_liftl_pneu_case3_clip5.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_liftl_pneu_case3_clip5.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_liftl_pneu_case3_clip5.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_liftl_pneu_case3_clip5.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_liftl_pneu_case3_clip5.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set1_vid1.avi-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set1_vid1.avi-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set1_vid1.avi-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set1_vid1.avi-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set1_vid1.avi-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set1_vid1.avi-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set1_vid1.avi-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set1_vid1.avi-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set1_vid1.avi-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set1_vid1.avi-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set1_vid2.avi-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set1_vid2.avi-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set1_vid2.avi-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set1_vid2.avi-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set1_vid2.avi-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set1_vid2.avi-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set1_vid2.avi-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set1_vid2.avi-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set1_vid2.avi-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set1_vid2.avi-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set2_vid1.avi-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set2_vid1.avi-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set2_vid1.avi-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set2_vid1.avi-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set2_vid1.avi-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set2_vid1.avi-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set2_vid1.avi-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set2_vid1.avi-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set2_vid1.avi-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set2_vid1.avi-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set2_vid2.avi-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set2_vid2.avi-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set2_vid2.avi-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set2_vid2.avi-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set2_vid2.avi-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set2_vid2.avi-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set2_vid2.avi-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set2_vid3.avi-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set2_vid3.avi-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set2_vid3.avi-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set2_vid3.avi-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set2_vid3.avi-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set2_vid3.avi-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set2_vid3.avi-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set2_vid3.avi-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set2_vid3.avi-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set2_vid3.avi-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set2_vid4.avi-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set2_vid4.avi-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set2_vid4.avi-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set2_vid4.avi-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set2_vid4.avi-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set2_vid4.avi-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set2_vid4.avi-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set2_vid4.avi-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set2_vid4.avi-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set2_vid4.avi-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set3_vid1.avi-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set3_vid1.avi-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set3_vid1.avi-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set3_vid1.avi-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set3_vid1.avi-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set3_vid2.avi-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set3_vid2.avi-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set3_vid2.avi-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set3_vid2.avi-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set3_vid2.avi-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set3_vid2.avi-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set3_vid2.avi-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set3_vid2.avi-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set3_vid2.avi-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set3_vid2.avi-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set4_vid1.avi-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set4_vid1.avi-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set4_vid1.avi-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set4_vid1.avi-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set4_vid1.avi-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set4_vid1.avi-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set4_vid1.avi-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set4_vid1.avi-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set4_vid1.avi-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set4_vid1.avi-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set4_vid2.avi-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set4_vid2.avi-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set4_vid2.avi-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set4_vid2.avi-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set4_vid2.avi-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set4_vid2.avi-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set4_vid2.avi-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set4_vid2.avi-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set4_vid2.avi-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set4_vid2.avi-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set5_vid1.avi-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set5_vid1.avi-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set5_vid1.avi-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set5_vid1.avi-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set5_vid1.avi-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set5_vid1.avi-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set5_vid1.avi-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set5_vid1.avi-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set5_vid1.avi-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set5_vid1.avi-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set5_vid2.avi-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set5_vid2.avi-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set5_vid2.avi-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set5_vid2.avi-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set5_vid2.avi-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set5_vid2.avi-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set5_vid2.avi-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set5_vid2.avi-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set5_vid2.avi-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set5_vid2.avi-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid1.avi-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid1.avi-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid1.avi-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid1.avi-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid1.avi-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid1.avi-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid1.avi-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid1.avi-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid1.avi-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid1.avi-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid2.avi-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid2.avi-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid2.avi-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid2.avi-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid2.avi-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid2.avi-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid2.avi-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid2.avi-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid2.avi-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid2.avi-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid3.avi-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid3.avi-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid3.avi-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid3.avi-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid3.avi-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid3.avi-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid3.avi-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid3.avi-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid3.avi-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid3.avi-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid4.avi-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid4.avi-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid4.avi-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid4.avi-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid4.avi-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid4.avi-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid4.avi-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid4.avi-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid4.avi-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid4.avi-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid5.avi-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid5.avi-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid5.avi-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid5.avi-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid5.avi-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid5.avi-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid5.avi-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid5.avi-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid5.avi-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid5.avi-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid7.avi-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid7.avi-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid7.avi-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid7.avi-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid7.avi-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid7.avi-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid7.avi-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid7.avi-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid7.avi-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid7.avi-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid8.avi-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid8.avi-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid8.avi-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid8.avi-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid8.avi-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid8.avi-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid8.avi-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid8.avi-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid8.avi-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid8.avi-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_1009_vid1.avi-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_1009_vid1.avi-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_1009_vid1.avi-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_1009_vid1.avi-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_1009_vid1.avi-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_1009_vid1.avi-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_1009_vid1.avi-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_1009_vid1.avi-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_1009_vid1.avi-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_1009_vid1.avi-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Pneumonia-LITFL-Ultrasound_crop.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Pneumonia-LITFL-Ultrasound_crop.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Pneumonia-LITFL-Ultrasound_crop.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Pneumonia-LITFL-Ultrasound_crop.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Pneumonia-LITFL-Ultrasound_crop.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Pneumonia-LITFL-Ultrasound_crop.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Pneumonia-LITFL-Ultrasound_crop.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Pneumonia-LITFL-Ultrasound_crop.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mpneu-radiopaeda.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mpneu-radiopaeda.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mpneu-radiopaeda.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mpneu-radiopaeda.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mpneu-radiopaeda.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mpneu-radiopaeda.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mpneu-radiopaeda.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mpneu-radiopaeda.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mpneu-radiopaeda.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mpneu-radiopaeda.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Youtube_case.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Youtube_case.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Youtube_case.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Youtube_case.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Youtube_case.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Youtube_case.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Youtube_case.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Youtube_case.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Youtube_case.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Youtube_case.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Alines-1-90.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Alines-1-90.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Alines-1-90.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Alines-1-90.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Alines-1-90.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Alines-1-90.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Alines-1-90.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Alines-1-90.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Alines-1-90.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Alines-1-90.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_alines_advancesVid4.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_alines_advancesVid4.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_alines_advancesVid4.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_alines_advancesVid4.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_alines_advancesVid4.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_alines_advancesVid4.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_alines_advancesVid4.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_alines_advancesVid4.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_alines_advancesVid4.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_alines_advancesVid4.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Atlas-alines.gif-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Atlas-alines.gif-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Atlas-alines.gif-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Atlas-alines.gif-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Atlas-alines.gif-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Atlas-alines.gif-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Atlas-alines.gif-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Atlas-alines.gif-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Atlas-alines.gif-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Atlas-alines.gif-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Atlas.gif-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Atlas.gif-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Atlas.gif-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Atlas.gif-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Atlas.gif-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Atlas.gif-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Atlas.gif-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Atlas.gif-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Atlas.gif-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Atlas.gif-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Atlas-lungcurtain.gif-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Atlas-lungcurtain.gif-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Atlas-lungcurtain.gif-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Atlas-lungcurtain.gif-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Atlas-lungcurtain.gif-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Atlas-lungcurtain.gif-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Atlas-lungcurtain.gif-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Atlas-lungcurtain.gif-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Atlas-lungcurtain.gif-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Atlas-lungcurtain.gif-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Image002.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Image002.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Image002.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Image002.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Image002.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Image002.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Image002.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Image002.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Image002.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Image002.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Image003.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Image003.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Image003.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Image003.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Image003.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Image003.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Image003.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Image003.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Image003.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Image003.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Image004.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Image004.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Image004.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Image004.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Image004.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Image004.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Image004.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Image004.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Image004.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Image004.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Image008.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Image008.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Image008.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Image008.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Image008.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Image008.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Image008.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Image008.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Image008.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Image008.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_lung-sliding-2.MP4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_lung-sliding-2.MP4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_lung-sliding-2.MP4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_lung-sliding-2.MP4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_lung-sliding-2.MP4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_lung-sliding-2.MP4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_lung-sliding-2.MP4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_lung-sliding-2.MP4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_lung-sliding-2.MP4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_lung-sliding-2.MP4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_lung-sliding-3.MP4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_lung-sliding-3.MP4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_lung-sliding-3.MP4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_lung-sliding-3.MP4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_lung-sliding-3.MP4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_lung-sliding-3.MP4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_lung-sliding-3.MP4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_lung-sliding-3.MP4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_lung-sliding-3.MP4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_lung-sliding-3.MP4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_lung-sliding.MP4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_lung-sliding.MP4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_lung-sliding.MP4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_lung-sliding.MP4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_lung-sliding.MP4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_lung-sliding.MP4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_lung-sliding.MP4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_lung-sliding.MP4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_lung-sliding.MP4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_lung-sliding.MP4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Video_001.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Video_001.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Video_001.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Video_001.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Video_001.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Video_001.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Video_001.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Video_001.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Video_001.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Video_001.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Video_002.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Video_002.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Video_002.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Video_002.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Video_002.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Video_002.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Video_002.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Video_002.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Video_002.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Video_002.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Video_003.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Video_003.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Video_003.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Video_003.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Video_003.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Video_003.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Video_003.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Video_003.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Video_003.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Video_003.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Video_004.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Video_004.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Video_004.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Video_004.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Video_004.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Video_004.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Video_004.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Video_004.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Video_004.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Video_004.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-bcpocus.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-bcpocus.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-bcpocus.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-bcpocus.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-bcpocus.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-bcpocus.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-bcpocus.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-bcpocus.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-bcpocus.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-bcpocus.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_clinicalreview_mov1.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_clinicalreview_mov1.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_clinicalreview_mov1.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_clinicalreview_mov1.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_clinicalreview_mov1.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_clinicalreview_mov1.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_clinicalreview_mov1.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_clinicalreview_mov1.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_clinicalreview_mov1.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_clinicalreview_mov1.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Grep-Alines.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Grep-Alines.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Grep-Alines.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Grep-Alines.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Grep-Alines.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Grep-Alines.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Grep-Alines.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Grep-Alines.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Grep-Alines.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Grep-Alines.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Grep-Normal.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Grep-Normal.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Grep-Normal.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Grep-Normal.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Grep-Normal.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Grep-Normal.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Grep-Normal.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Grep-Normal.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Grep-Normal.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Grep-Normal.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Image_181602_trimmed_crop.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Image_181602_trimmed_crop.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Image_181602_trimmed_crop.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Image_181602_trimmed_crop.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Image_181602_trimmed_crop.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Image_181602_trimmed_crop.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Image_181602_trimmed_crop.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Image_181602_trimmed_crop.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Image_181602_trimmed_crop.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Image_181602_trimmed_crop.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Image_181739_trimmed_crop.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Image_181739_trimmed_crop.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Image_181739_trimmed_crop.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Image_181739_trimmed_crop.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Image_181739_trimmed_crop.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Image_181739_trimmed_crop.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Image_181739_trimmed_crop.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Image_181739_trimmed_crop.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Image_181739_trimmed_crop.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Image_181739_trimmed_crop.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Image_182106_crop.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Image_182106_crop.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Image_182106_crop.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Image_182106_crop.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Image_182106_crop.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Image_182106_crop.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Image_182106_crop.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Image_182106_crop.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Image_182106_crop.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Image_182106_crop.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Image_182340_crop.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Image_182340_crop.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Image_182340_crop.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Image_182340_crop.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Image_182340_crop.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Image_182340_crop.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Image_182340_crop.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Image_182340_crop.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Image_182340_crop.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Image_182340_crop.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_liftl_case3_clip2.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_liftl_case3_clip2.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_liftl_case3_clip2.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_liftl_case3_clip2.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_liftl_case3_clip2.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_liftl_case3_clip2.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_liftl_case3_clip2.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_liftl_case3_clip2.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_liftl_case3_clip2.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_liftl_case3_clip2.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_liftl_pneucase3_clip1.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_liftl_pneucase3_clip1.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_liftl_pneucase3_clip1.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_liftl_pneucase3_clip1.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_liftl_pneucase3_clip1.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_liftl_pneucase3_clip1.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-nephropocus.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-nephropocus.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-nephropocus.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-nephropocus.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-nephropocus.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-nephropocus.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-nephropocus.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-nephropocus.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-nephropocus.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-nephropocus.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-NormalLungs.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-NormalLungs.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-NormalLungs.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_0409_set3_vid1.avi-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_0409_set3_vid1.avi-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_0409_set3_vid1.avi-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_0409_set3_vid1.avi-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_0409_set3_vid1.avi-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_0409_set3_vid1.avi-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_0409_set3_vid1.avi-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_0409_set3_vid1.avi-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_0409_set3_vid1.avi-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_0409_set3_vid1.avi-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_0409_set3_vid2.avi-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_0409_set3_vid2.avi-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_0409_set3_vid2.avi-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_0409_set3_vid2.avi-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_0409_set3_vid2.avi-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_0409_set3_vid2.avi-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_0409_set3_vid2.avi-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_0409_set3_vid2.avi-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_0409_set3_vid2.avi-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_0409_set3_vid2.avi-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_0409_set5_vid1.avi-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_0409_set5_vid1.avi-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_0409_set5_vid1.avi-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_0409_set5_vid1.avi-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_0409_set5_vid1.avi-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_0409_set5_vid1.avi-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_0409_set5_vid1.avi-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_0409_set5_vid1.avi-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_0409_set5_vid1.avi-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_0409_set5_vid1.avi-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_0409_set5_vid2.avi-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_0409_set5_vid2.avi-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_0409_set5_vid2.avi-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_0409_set5_vid2.avi-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_0409_set5_vid2.avi-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_0409_set5_vid2.avi-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_0409_set5_vid2.avi-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_0409_set5_vid2.avi-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_0409_set5_vid2.avi-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_0409_set5_vid2.avi-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid1.avi-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid1.avi-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid1.avi-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid1.avi-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid1.avi-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid1.avi-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid1.avi-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid1.avi-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid1.avi-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid1.avi-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid2.avi-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid2.avi-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid2.avi-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid2.avi-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid2.avi-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid2.avi-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid2.avi-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid2.avi-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid2.avi-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid2.avi-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid3.avi-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid3.avi-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid3.avi-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid3.avi-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid3.avi-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid3.avi-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid3.avi-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid3.avi-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid3.avi-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid3.avi-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid5.avi-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid5.avi-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid5.avi-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid5.avi-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid5.avi-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid5.avi-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid5.avi-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid5.avi-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid5.avi-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid5.avi-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid6.avi-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid6.avi-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid6.avi-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid6.avi-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid6.avi-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid6.avi-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid6.avi-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid6.avi-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid6.avi-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid6.avi-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid7.avi-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid7.avi-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid7.avi-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid7.avi-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid7.avi-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid7.avi-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid7.avi-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid7.avi-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid7.avi-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid7.avi-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat1Image_132943.mpeg-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat1Image_132943.mpeg-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat1Image_132943.mpeg-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat1Image_132943.mpeg-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat1Image_132943.mpeg-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat1Image_132943.mpeg-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat1Image_132943.mpeg-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat1Image_132943.mpeg-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat1Image_132943.mpeg-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat1Image_132943.mpeg-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat1Image_133043.mpeg-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat1Image_133043.mpeg-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat1Image_133043.mpeg-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat1Image_133043.mpeg-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat1Image_133043.mpeg-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat1Image_133043.mpeg-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat1Image_133043.mpeg-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat1Image_133043.mpeg-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat1Image_133043.mpeg-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat1Image_133043.mpeg-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat1Image_133138.mpeg-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat1Image_133138.mpeg-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat1Image_133138.mpeg-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat1Image_133138.mpeg-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat1Image_133138.mpeg-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat1Image_133138.mpeg-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat1Image_133138.mpeg-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat1Image_133138.mpeg-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat1Image_133138.mpeg-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat1Image_133138.mpeg-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat1Image_133232.mpeg-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat1Image_133232.mpeg-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat1Image_133232.mpeg-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat1Image_133232.mpeg-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat1Image_133232.mpeg-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat1Image_133232.mpeg-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat1Image_133232.mpeg-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat1Image_133232.mpeg-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat1Image_133232.mpeg-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat1Image_133232.mpeg-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat1Image_133327.mpeg-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat1Image_133327.mpeg-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat1Image_133327.mpeg-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat1Image_133327.mpeg-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat1Image_133327.mpeg-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat1Image_133327.mpeg-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat1Image_133327.mpeg-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat1Image_133327.mpeg-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat1Image_133327.mpeg-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat1Image_133327.mpeg-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat1Image_133410.mpeg-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat1Image_133410.mpeg-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat1Image_133410.mpeg-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat1Image_133410.mpeg-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat1Image_133410.mpeg-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat1Image_133410.mpeg-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat1Image_133410.mpeg-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat1Image_133410.mpeg-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat1Image_133410.mpeg-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat1Image_133410.mpeg-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat2Image_133824.mpeg-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat2Image_133824.mpeg-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat2Image_133824.mpeg-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat2Image_133824.mpeg-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat2Image_133824.mpeg-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat2Image_133824.mpeg-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat2Image_133824.mpeg-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat2Image_133824.mpeg-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat2Image_133824.mpeg-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat2Image_133824.mpeg-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat2Image_133952.mpeg-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat2Image_133952.mpeg-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat2Image_133952.mpeg-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat2Image_133952.mpeg-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat2Image_133952.mpeg-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat2Image_133952.mpeg-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat2Image_133952.mpeg-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat2Image_133952.mpeg-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat2Image_133952.mpeg-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat2Image_133952.mpeg-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat2Image_134138.mpeg-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat2Image_134138.mpeg-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat2Image_134138.mpeg-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat2Image_134138.mpeg-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat2Image_134138.mpeg-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat2Image_134138.mpeg-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat2Image_134138.mpeg-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat2Image_134138.mpeg-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat2Image_134138.mpeg-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat2Image_134138.mpeg-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat2Image_134240.mpeg-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat2Image_134240.mpeg-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat2Image_134240.mpeg-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat2Image_134240.mpeg-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat2Image_134240.mpeg-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat2Image_134240.mpeg-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat2Image_134240.mpeg-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat2Image_134240.mpeg-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat2Image_134240.mpeg-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat2Image_134240.mpeg-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat2Image_134348.mpeg-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat2Image_134348.mpeg-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat2Image_134348.mpeg-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat2Image_134348.mpeg-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat2Image_134348.mpeg-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat2Image_134348.mpeg-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat2Image_134348.mpeg-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat2Image_134348.mpeg-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat2Image_134348.mpeg-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat2Image_134348.mpeg-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat2Image_134441.mpeg-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat2Image_134441.mpeg-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat2Image_134441.mpeg-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat2Image_134441.mpeg-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat2Image_134441.mpeg-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat2Image_134441.mpeg-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat2Image_134441.mpeg-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat2Image_134441.mpeg-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat2Image_134441.mpeg-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat2Image_134441.mpeg-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat3Image_134711.mpeg-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat3Image_134711.mpeg-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat3Image_134711.mpeg-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat3Image_134711.mpeg-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat3Image_134711.mpeg-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat3Image_134711.mpeg-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat3Image_134711.mpeg-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat3Image_134711.mpeg-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat3Image_134711.mpeg-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat3Image_134811.mpeg-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat3Image_134811.mpeg-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat3Image_134811.mpeg-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat3Image_134811.mpeg-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat3Image_134811.mpeg-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat3Image_134811.mpeg-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat3Image_134811.mpeg-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat3Image_134811.mpeg-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat3Image_134811.mpeg-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat3Image_134811.mpeg-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat3Image_134904.mpeg-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat3Image_134904.mpeg-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat3Image_134904.mpeg-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat3Image_134904.mpeg-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat3Image_134904.mpeg-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat3Image_134904.mpeg-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat3Image_134904.mpeg-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat3Image_134904.mpeg-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat3Image_134904.mpeg-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat3Image_134904.mpeg-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat3Image_135026.mpeg-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat3Image_135026.mpeg-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat3Image_135026.mpeg-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat3Image_135026.mpeg-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat3Image_135026.mpeg-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat3Image_135026.mpeg-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat3Image_135026.mpeg-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat3Image_135026.mpeg-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat3Image_135026.mpeg-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat3Image_135128.mpeg-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat3Image_135128.mpeg-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat3Image_135128.mpeg-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat3Image_135128.mpeg-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat3Image_135128.mpeg-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat3Image_135128.mpeg-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat3Image_135128.mpeg-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat3Image_135128.mpeg-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat3Image_135128.mpeg-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat3Image_135128.mpeg-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat3Image_135215.mpeg-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat3Image_135215.mpeg-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat3Image_135215.mpeg-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat3Image_135215.mpeg-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat3Image_135215.mpeg-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat3Image_135215.mpeg-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat3Image_135215.mpeg-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat3Image_135215.mpeg-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat3Image_135215.mpeg-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat3Image_135215.mpeg-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat4Image_135904.mpeg-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat4Image_135904.mpeg-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat4Image_135904.mpeg-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat4Image_135904.mpeg-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat4Image_135904.mpeg-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat4Image_135904.mpeg-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat4Image_135904.mpeg-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat4Image_135904.mpeg-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat4Image_135904.mpeg-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat4Image_135904.mpeg-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140024.mpeg-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140024.mpeg-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140024.mpeg-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140024.mpeg-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140024.mpeg-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140024.mpeg-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140024.mpeg-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140024.mpeg-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140024.mpeg-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140024.mpeg-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140238.mpeg-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140238.mpeg-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140238.mpeg-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140238.mpeg-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140238.mpeg-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140238.mpeg-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140238.mpeg-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140238.mpeg-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140238.mpeg-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140434.mpeg-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140434.mpeg-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140434.mpeg-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140434.mpeg-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140434.mpeg-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140434.mpeg-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140434.mpeg-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140434.mpeg-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140434.mpeg-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140434.mpeg-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140606.mpeg-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140606.mpeg-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140606.mpeg-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140606.mpeg-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140606.mpeg-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140606.mpeg-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140606.mpeg-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140606.mpeg-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140606.mpeg-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140606.mpeg-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140705.mpeg-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140705.mpeg-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140705.mpeg-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140705.mpeg-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140705.mpeg-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140705.mpeg-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140705.mpeg-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140705.mpeg-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140705.mpeg-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_recommendations_alines_mov1.mov-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_recommendations_alines_mov1.mov-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_recommendations_alines_mov1.mov-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_recommendations_alines_mov1.mov-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_recommendations_alines_mov1.mov-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_recommendations_alines_mov1.mov-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_recommendations_alines_mov1.mov-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_recommendations_alines_mov1.mov-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_recommendations_alines_mov1.mov-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_recommendations_alines_mov1.mov-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Youtube.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Youtube.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Youtube.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Youtube.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Youtube.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Youtube.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Youtube.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Youtube.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Youtube.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Youtube.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mVir_blines_advancesVid9.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mVir_blines_advancesVid9.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mVir_blines_advancesVid9.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mVir_blines_advancesVid9.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mVir_blines_advancesVid9.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mVir_blines_advancesVid9.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mVir_blines_advancesVid9.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mVir_blines_advancesVid9.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mVir_blines_advancesVid9.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mVir_liftl_H1N1_case2_clip1.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mVir_liftl_H1N1_case2_clip1.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mVir_liftl_H1N1_case2_clip1.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mVir_liftl_H1N1_case2_clip1.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mVir_liftl_H1N1_case2_clip1.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mVir_liftl_H1N1_case2_clip1.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mVir_liftl_H1N1_case2_clip1.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mVir_liftl_H1N1_case2_clip1.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mVir_liftl_H1N1_case2_clip1.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mVir_liftl_H1N1_case2_clip1.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mVir_whitelung_h1n1.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mVir_whitelung_h1n1.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mVir_whitelung_h1n1.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mVir_whitelung_h1n1.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mVir_whitelung_h1n1.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mVir_whitelung_h1n1.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mVir_whitelung_h1n1.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mVir_whitelung_h1n1.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mVir_whitelung_h1n1.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   └── \u001b[01;32mVir_whitelung_h1n1.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu_AIR BRONC2.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu-Atlas-pneumonia2.gif\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu-Atlas-pneumonia.gif\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu_Avi_Video_001.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu_Avi_Video_002.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu_Avi_Video_003.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu_Avi_Video_004.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu_Avi_Video_005.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu_Avi_Video_006.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu_basalpneumonia_liftle_case1.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu_Basal-pneumonia-RUQ_crop.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu_clinicalreview_MOV4.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu_consol_advancesVid10.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mpneu-everyday.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu_from_article_rippey.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mpneu-gred-6.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mpneu-gred-7.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu-grep-bacterial-hepatization-clinical.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu-grep-pneumonia1.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu-grep-pneumonia2_1.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu-grep-pneumonia3.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu-grep-pneumonia4.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu-grep-pulmonary-pneumonia.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu-grep-shredsign-consolidation.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu_liftl_pneu_case3_clip3.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu_liftl_pneu_case3_clip4.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu_liftl_pneu_case3_clip5.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set1_vid1.avi\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set1_vid2.avi\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set2_vid1.avi\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set2_vid2.avi\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set2_vid3.avi\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set2_vid4.avi\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set3_vid1.avi\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set3_vid2.avi\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set4_vid1.avi\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set4_vid2.avi\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set5_vid1.avi\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set5_vid2.avi\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid1.avi\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid2.avi\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid3.avi\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid4.avi\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid5.avi\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid7.avi\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid8.avi\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu_northumbria_1009_vid1.avi\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu_Pneumonia-LITFL-Ultrasound_crop.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mpneu-radiopaeda.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu_Youtube_case.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_Alines-1-90.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_alines_advancesVid4.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-Atlas-alines.gif\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-Atlas.gif\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-Atlas-lungcurtain.gif\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_Avi_Image002.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_Avi_Image003.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_Avi_Image004.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_Avi_Image008.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_Avi_lung-sliding-2.MP4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_Avi_lung-sliding-3.MP4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_Avi_lung-sliding.MP4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_Avi_Video_001.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_Avi_Video_002.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_Avi_Video_003.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_Avi_Video_004.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-bcpocus.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_clinicalreview_mov1.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-Grep-Alines.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-Grep-Normal.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_Image_181602_trimmed_crop.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_Image_181739_trimmed_crop.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_Image_182106_crop.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_Image_182340_crop.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_liftl_case3_clip2.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_liftl_pneucase3_clip1.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-nephropocus.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-NormalLungs.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_northumbria_0409_set3_vid1.avi\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_northumbria_0409_set3_vid2.avi\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_northumbria_0409_set5_vid1.avi\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_northumbria_0409_set5_vid2.avi\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid1.avi\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid2.avi\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid3.avi\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid5.avi\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid6.avi\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid7.avi\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_pat1Image_132943.mpeg\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_pat1Image_133043.mpeg\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_pat1Image_133138.mpeg\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_pat1Image_133232.mpeg\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_pat1Image_133327.mpeg\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_pat1Image_133410.mpeg\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_pat2Image_133824.mpeg\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_pat2Image_133952.mpeg\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_pat2Image_134138.mpeg\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_pat2Image_134240.mpeg\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_pat2Image_134348.mpeg\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_pat2Image_134441.mpeg\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_pat3Image_134711.mpeg\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_pat3Image_134811.mpeg\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_pat3Image_134904.mpeg\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_pat3Image_135026.mpeg\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_pat3Image_135128.mpeg\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_pat3Image_135215.mpeg\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_pat4Image_135904.mpeg\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_pat4Image_140024.mpeg\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_pat4Image_140238.mpeg\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_pat4Image_140434.mpeg\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_pat4Image_140606.mpeg\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_pat4Image_140705.mpeg\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_recommendations_alines_mov1.mov\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-Youtube.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mVir_blines_advancesVid9.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mVir_liftl_H1N1_case2_clip1.mp4\u001b[00m\r\n", + " │   │   │   └── \u001b[01;32mVir_whitelung_h1n1.mp4\u001b[00m\r\n", + " │   │   ├── \u001b[01;34mCOVID videos reviewed by sean\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;34mcovid videos bad (lung doesn't look like lung) linear\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7432.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7500.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_linear_abrams_2020_v1.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;34mlabel_uncertain\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + " │   │   │   │   │   └── \u001b[01;32mVir_or_Pneu_prospective_file4.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_prospective_file3.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-Youtube-start20sec.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Image_181206_crop.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Image_18122_crop.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-minimalmovement.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-nephropocus.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Youtube-start20sec.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mVir_liftl_H1N1_case2_clip2.mp4\u001b[00m\r\n", + " │   │   │   │   └── \u001b[01;32mVir_prospective_file1.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;34mCovid videos with bad (lung does not look like lung) lungs convex\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas-+(43).gif\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas+(44).gif\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas+(45).gif\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas-Day+2.gif\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas-Day+3.gif\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas-Day+4.gif\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-clarius3.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_combatting_image4.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_combatting_Image5.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid10.mov\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid11.mov\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid12.mov\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid2.mov\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid5.mov\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7505.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7507.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7510.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7525.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grepmed-blines-pocus-.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid1.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid2.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid3.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid4.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid5.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid6.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid7.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_new_pregnant_vid8.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_recommendations_likebutterfly_mov5.mov\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_wfumb_case_dez.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_AIR BRONC2.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-Atlas-pneumonia2.gif\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-Atlas-pneumonia.gif\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Avi_Video_001.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Avi_Video_002.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Avi_Video_003.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Avi_Video_004.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Avi_Video_005.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Avi_Video_006.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_basalpneumonia_liftle_case1.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Basal-pneumonia-RUQ_crop.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_clinicalreview_MOV4.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_consol_advancesVid10.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mpneu-everyday.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_from_article_rippey.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mpneu-gred-6.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mpneu-gred-7.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-bacterial-hepatization-clinical.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-pneumonia1.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-pneumonia2_1.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-pneumonia3.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-pneumonia4.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-pulmonary-pneumonia.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu-grep-shredsign-consolidation.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_liftl_pneu_case3_clip3.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_liftl_pneu_case3_clip4.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_liftl_pneu_case3_clip5.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set1_vid1.avi\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set1_vid2.avi\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set2_vid1.avi\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set2_vid2.avi\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set2_vid3.avi\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set2_vid4.avi\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set3_vid1.avi\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set3_vid2.avi\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set4_vid1.avi\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set4_vid2.avi\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set5_vid1.avi\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set5_vid2.avi\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid1.avi\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid2.avi\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid3.avi\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid4.avi\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid5.avi\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid7.avi\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_0409_set6_vid8.avi\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_northumbria_1009_vid1.avi\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Pneumonia-LITFL-Ultrasound_crop.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mpneu-radiopaeda.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mPneu_Youtube_case.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Alines-1-90.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_alines_advancesVid4.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Atlas.gif\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Atlas-lungcurtain.gif\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Image002.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Image003.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Image004.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Image008.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_lung-sliding-2.MP4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_lung-sliding-3.MP4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Video_001.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Video_002.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Video_003.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_Video_004.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_clinicalreview_mov1.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Grep-Normal.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Image_182106_crop.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-nephropocus.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_0409_set5_vid1.avi\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_0409_set5_vid2.avi\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid2.avi\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid3.avi\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid5.avi\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat1Image_132943.mpeg\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat1Image_133043.mpeg\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat1Image_133138.mpeg\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat1Image_133232.mpeg\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat1Image_133327.mpeg\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat2Image_133824.mpeg\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat2Image_133952.mpeg\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat2Image_134138.mpeg\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat2Image_134240.mpeg\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat2Image_134348.mpeg\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat2Image_134441.mpeg\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat3Image_134711.mpeg\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat3Image_134811.mpeg\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat3Image_134904.mpeg\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat3Image_135128.mpeg\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat3Image_135215.mpeg\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat4Image_135904.mpeg\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140024.mpeg\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_recommendations_alines_mov1.mov\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Youtube.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mVir_liftl_H1N1_case2_clip1.mp4\u001b[00m\r\n", + " │   │   │   │   └── \u001b[01;32mVir_whitelung_h1n1.mp4\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;34mcovid videos with lungs that look like lungs convex\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_Arnthfield_2020_Vid3.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-Atlas-Day+1.gif\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_combatting_Image1.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_combatting_Image2.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_combatting_Image3.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid13.mov\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid14.mov\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid1.mov\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_emdocs_vid1.gif\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_emdocs_vid3.gif\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7511.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7543.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov_recommendations_lightbeam_mov6.mov\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;34mextracted_frames\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_Arnthfield_2020_Vid3.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_Arnthfield_2020_Vid3.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_Arnthfield_2020_Vid3.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_Arnthfield_2020_Vid3.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_Arnthfield_2020_Vid3.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_Arnthfield_2020_Vid3.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_Arnthfield_2020_Vid3.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_Arnthfield_2020_Vid3.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_Arnthfield_2020_Vid3.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_Arnthfield_2020_Vid3.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov-Atlas-Day+1.gif-00000.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov-Atlas-Day+1.gif-00001.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov-Atlas-Day+1.gif-00002.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov-Atlas-Day+1.gif-00003.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov-Atlas-Day+1.gif-00004.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov-Atlas-Day+1.gif-00005.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov-Atlas-Day+1.gif-00006.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov-Atlas-Day+1.gif-00007.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov-Atlas-Day+1.gif-00008.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov-Atlas-Day+1.gif-00009.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_combatting_Image1.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_combatting_Image1.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_combatting_Image1.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_combatting_Image1.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_combatting_Image1.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_combatting_Image1.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_combatting_Image1.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_combatting_Image1.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_combatting_Image1.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_combatting_Image1.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_combatting_Image2.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_combatting_Image2.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_combatting_Image2.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_combatting_Image2.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_combatting_Image2.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_combatting_Image2.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_combatting_Image2.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_combatting_Image2.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_combatting_Image2.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_combatting_Image2.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_combatting_Image3.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_combatting_Image3.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_combatting_Image3.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_combatting_Image3.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_combatting_Image3.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_combatting_Image3.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_combatting_Image3.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_combatting_Image3.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_combatting_Image3.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_combatting_Image3.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid13.mov-00000.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid13.mov-00001.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid13.mov-00002.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid13.mov-00003.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid13.mov-00004.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid13.mov-00005.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid13.mov-00006.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid13.mov-00007.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid13.mov-00008.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid13.mov-00009.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid14.mov-00000.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid14.mov-00001.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid14.mov-00002.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid14.mov-00003.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid14.mov-00004.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid14.mov-00005.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid14.mov-00006.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid14.mov-00007.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid14.mov-00008.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid14.mov-00009.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid1.mov-00000.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid1.mov-00001.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid1.mov-00002.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid1.mov-00003.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid1.mov-00004.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid1.mov-00005.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid1.mov-00006.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid1.mov-00007.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_denault_proposedUS_vid1.mov-00008.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_emdocs_vid1.gif-00000.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_emdocs_vid1.gif-00001.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_emdocs_vid1.gif-00002.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_emdocs_vid1.gif-00003.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_emdocs_vid1.gif-00004.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_emdocs_vid1.gif-00005.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_emdocs_vid1.gif-00006.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_emdocs_vid1.gif-00007.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_emdocs_vid1.gif-00008.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_emdocs_vid1.gif-00009.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_emdocs_vid3.gif-00000.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov-grep-7511.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov-grep-7511.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov-grep-7511.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov-grep-7511.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov-grep-7511.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov-grep-7511.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov-grep-7511.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov-grep-7511.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov-grep-7511.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov-grep-7511.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov-grep-7543.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov-grep-7543.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov-grep-7543.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov-grep-7543.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov-grep-7543.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov-grep-7543.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov-grep-7543.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov-grep-7543.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov-grep-7543.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov-grep-7543.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_recommendations_lightbeam_mov6.mov-00000.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_recommendations_lightbeam_mov6.mov-00001.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_recommendations_lightbeam_mov6.mov-00002.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_recommendations_lightbeam_mov6.mov-00003.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_recommendations_lightbeam_mov6.mov-00004.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_recommendations_lightbeam_mov6.mov-00005.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_recommendations_lightbeam_mov6.mov-00006.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_recommendations_lightbeam_mov6.mov-00007.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_recommendations_lightbeam_mov6.mov-00008.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_recommendations_lightbeam_mov6.mov-00009.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg-Atlas-alines.gif-00000.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg-Atlas-alines.gif-00001.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg-Atlas-alines.gif-00002.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg-Atlas-alines.gif-00003.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg-Atlas-alines.gif-00004.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg-Atlas-alines.gif-00005.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg-Atlas-alines.gif-00006.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg-Atlas-alines.gif-00007.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg-Atlas-alines.gif-00008.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg-Atlas-alines.gif-00009.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_Avi_lung-sliding.MP4-00000.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_Avi_lung-sliding.MP4-00001.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_Avi_lung-sliding.MP4-00002.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_Avi_lung-sliding.MP4-00003.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_Avi_lung-sliding.MP4-00004.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_Avi_lung-sliding.MP4-00005.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_Avi_lung-sliding.MP4-00006.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_Avi_lung-sliding.MP4-00007.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_Avi_lung-sliding.MP4-00008.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_Avi_lung-sliding.MP4-00009.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg-bcpocus.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg-bcpocus.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg-bcpocus.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg-bcpocus.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg-bcpocus.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg-bcpocus.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg-bcpocus.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg-bcpocus.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg-bcpocus.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg-bcpocus.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg-Grep-Alines.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg-Grep-Alines.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg-Grep-Alines.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg-Grep-Alines.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg-Grep-Alines.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg-Grep-Alines.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg-Grep-Alines.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg-Grep-Alines.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg-Grep-Alines.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg-Grep-Alines.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_Image_182340_crop.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_Image_182340_crop.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_Image_182340_crop.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_Image_182340_crop.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_Image_182340_crop.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_Image_182340_crop.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_Image_182340_crop.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_Image_182340_crop.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_Image_182340_crop.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_Image_182340_crop.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_liftl_case3_clip2.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_liftl_case3_clip2.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_liftl_case3_clip2.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_liftl_case3_clip2.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_liftl_case3_clip2.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_liftl_case3_clip2.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_liftl_case3_clip2.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_liftl_case3_clip2.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_liftl_case3_clip2.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_liftl_case3_clip2.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_northumbria_0409_set3_vid2.avi-00000.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_northumbria_0409_set3_vid2.avi-00001.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_northumbria_0409_set3_vid2.avi-00002.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_northumbria_0409_set3_vid2.avi-00003.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_northumbria_0409_set3_vid2.avi-00004.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_northumbria_0409_set3_vid2.avi-00005.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_northumbria_0409_set3_vid2.avi-00006.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_northumbria_0409_set3_vid2.avi-00007.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_northumbria_0409_set3_vid2.avi-00008.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_northumbria_0409_set3_vid2.avi-00009.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid6.avi-00000.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid6.avi-00001.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid6.avi-00002.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid6.avi-00003.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid6.avi-00004.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid6.avi-00005.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid6.avi-00006.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid6.avi-00007.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid6.avi-00008.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid6.avi-00009.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid7.avi-00000.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid7.avi-00001.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid7.avi-00002.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid7.avi-00003.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid7.avi-00004.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid7.avi-00005.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid7.avi-00006.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid7.avi-00007.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid7.avi-00008.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid7.avi-00009.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_pat1Image_133410.mpeg-00000.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_pat1Image_133410.mpeg-00001.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_pat1Image_133410.mpeg-00002.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_pat1Image_133410.mpeg-00003.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_pat1Image_133410.mpeg-00004.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_pat1Image_133410.mpeg-00005.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_pat1Image_133410.mpeg-00006.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_pat1Image_133410.mpeg-00007.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_pat1Image_133410.mpeg-00008.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_pat1Image_133410.mpeg-00009.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_pat3Image_135026.mpeg-00000.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_pat3Image_135026.mpeg-00001.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_pat3Image_135026.mpeg-00002.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_pat3Image_135026.mpeg-00003.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_pat3Image_135026.mpeg-00004.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_pat3Image_135026.mpeg-00005.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_pat3Image_135026.mpeg-00006.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_pat3Image_135026.mpeg-00007.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_pat3Image_135026.mpeg-00008.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140238.mpeg-00000.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140238.mpeg-00001.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140238.mpeg-00002.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140238.mpeg-00003.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140238.mpeg-00004.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140238.mpeg-00005.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140238.mpeg-00006.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140238.mpeg-00007.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140238.mpeg-00008.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140434.mpeg-00000.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140434.mpeg-00001.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140434.mpeg-00002.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140434.mpeg-00003.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140434.mpeg-00004.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140434.mpeg-00005.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140434.mpeg-00006.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140434.mpeg-00007.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140434.mpeg-00008.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140434.mpeg-00009.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140606.mpeg-00000.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140606.mpeg-00001.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140606.mpeg-00002.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140606.mpeg-00003.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140606.mpeg-00004.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140606.mpeg-00005.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140606.mpeg-00006.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140606.mpeg-00007.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140606.mpeg-00008.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140606.mpeg-00009.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140705.mpeg-00000.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140705.mpeg-00001.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140705.mpeg-00002.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140705.mpeg-00003.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140705.mpeg-00004.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140705.mpeg-00005.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140705.mpeg-00006.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140705.mpeg-00007.mha\u001b[00m\r\n", + " │   │   │   │   │   └── \u001b[01;32mReg_pat4Image_140705.mpeg-00008.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;34mOK lungs no ribs\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov-Atlas-suspectedCovid.mp4\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov-clarius.mp4\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_convex_volpecelli_sonographic_v1.mov\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_convex_volpecelli_sonographic_v2.mov\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_convex_volpecelli_sonographic_v3.mov\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_convex_volpecelli_sonographic_v4.mov\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov_convex_volpecelli_sonographic_v5.mov\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov-grep-7453.mp4\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov-grepmed2.mp4\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_Image_181602_trimmed_crop.mp4\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_Image_181739_trimmed_crop.mp4\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_liftl_pneucase3_clip1.mp4\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg-NormalLungs.mp4\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_northumbria_0409_set3_vid1.avi\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid1.avi\u001b[00m\r\n", + " │   │   │   │   │   └── \u001b[01;32mVir_blines_advancesVid9.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Atlas-alines.gif\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Avi_lung-sliding.MP4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-bcpocus.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-Grep-Alines.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Image_182340_crop.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_liftl_case3_clip2.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_0409_set3_vid2.avi\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid6.avi\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_northumbria_1009_vid7.avi\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat1Image_133410.mpeg\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat3Image_135026.mpeg\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140238.mpeg\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140434.mpeg\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_pat4Image_140606.mpeg\u001b[00m\r\n", + " │   │   │   │   └── \u001b[01;32mReg_pat4Image_140705.mpeg\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;34mcovid videos with lungs that look like lungs (good) linear\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mCov-grep-7431.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;34mextracted_frames\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov-grep-7431.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov-grep-7431.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov-grep-7431.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov-grep-7431.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov-grep-7431.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov-grep-7431.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov-grep-7431.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov-grep-7431.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov-grep-7431.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mCov-grep-7431.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_Image_181432_crop.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_Image_181432_crop.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_Image_181432_crop.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_Image_181432_crop.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_Image_181432_crop.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_Image_181432_crop.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_Image_181432_crop.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_Image_181432_crop.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_Image_181432_crop.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg_Image_181432_crop.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg-NormalLung.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg-NormalLung.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg-NormalLung.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg-NormalLung.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg-NormalLung.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg-NormalLung.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg-NormalLung.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg-NormalLung.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg-NormalLung.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg-NormalLung.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg-Youtube-Video_902_Lung_POCUS-left.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg-Youtube-Video_902_Lung_POCUS-left.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg-Youtube-Video_902_Lung_POCUS-left.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg-Youtube-Video_902_Lung_POCUS-left.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg-Youtube-Video_902_Lung_POCUS-left.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg-Youtube-Video_902_Lung_POCUS-left.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg-Youtube-Video_902_Lung_POCUS-left.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg-Youtube-Video_902_Lung_POCUS-left.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg-Youtube-Video_902_Lung_POCUS-left.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   │   │   └── \u001b[01;32mReg-Youtube-Video_902_Lung_POCUS-left.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;34mNo ribs but lungs that look like lungs linear\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + " │   │   │   │   │   ├── \u001b[01;32mReg-grep-normal-alines-original.mp4\u001b[00m\r\n", + " │   │   │   │   │   └── \u001b[01;32mVir_prospective_file2.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg_Image_181432_crop.mp4\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32mReg-NormalLung.mp4\u001b[00m\r\n", + " │   │   │   │   └── \u001b[01;32mReg-Youtube-Video_902_Lung_POCUS-left.mp4\u001b[00m\r\n", + " │   │   │   └── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + " │   │   ├── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + " │   │   └── \u001b[01;34mlinear\u001b[00m\r\n", + " │   │   ├── \u001b[01;32mConvertVideoToITK_InterestingSlices.ipynb\u001b[00m\r\n", + " │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4\u001b[00m\r\n", + " │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4.mha\u001b[00m\r\n", + " │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4\u001b[00m\r\n", + " │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4.mha\u001b[00m\r\n", + " │   │   ├── \u001b[01;32mCov_emdocs_vid2.gif\u001b[00m\r\n", + " │   │   ├── \u001b[01;32mCov_emdocs_vid2.gif.mha\u001b[00m\r\n", + " │   │   ├── \u001b[01;32mCov-grep-7431.mp4\u001b[00m\r\n", + " │   │   ├── \u001b[01;32mCov-grep-7431.mp4.mha\u001b[00m\r\n", + " │   │   ├── \u001b[01;32mCov-grep-7432.mp4\u001b[00m\r\n", + " │   │   ├── \u001b[01;32mCov-grep-7432.mp4.mha\u001b[00m\r\n", + " │   │   ├── \u001b[01;32mCov-grep-7500.mp4\u001b[00m\r\n", + " │   │   ├── \u001b[01;32mCov-grep-7500.mp4.mha\u001b[00m\r\n", + " │   │   ├── \u001b[01;32mCov_linear_abrams_2020_v1.mp4\u001b[00m\r\n", + " │   │   ├── \u001b[01;32mCov_linear_abrams_2020_v1.mp4.mha\u001b[00m\r\n", + " │   │   ├── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + " │   │   ├── \u001b[01;34mlabel_uncertain\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + " │   │   │   └── \u001b[01;32mVir_or_Pneu_prospective_file4.mp4\u001b[00m\r\n", + " │   │   ├── \u001b[01;34mMHA\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-Atlas-pleural2.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-Atlas-pleural.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_emdocs_vid2.gif-00000.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_emdocs_vid2.gif-00001.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_emdocs_vid2.gif-00002.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_emdocs_vid2.gif-00003.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_emdocs_vid2.gif-00004.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_emdocs_vid2.gif-00005.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_emdocs_vid2.gif-00006.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_emdocs_vid2.gif-00007.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_emdocs_vid2.gif-00008.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_emdocs_vid2.gif-00009.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-grep-7431.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-grep-7431.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-grep-7431.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-grep-7431.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-grep-7431.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-grep-7431.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-grep-7431.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-grep-7431.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-grep-7431.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-grep-7431.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-grep-7432.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-grep-7432.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-grep-7432.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-grep-7432.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-grep-7432.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-grep-7432.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-grep-7432.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-grep-7432.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-grep-7432.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-grep-7432.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-grep-7500.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-grep-7500.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-grep-7500.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-grep-7500.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-grep-7500.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-grep-7500.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-grep-7500.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-grep-7500.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-grep-7500.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov-grep-7500.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_linear_abrams_2020_v1.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_linear_abrams_2020_v1.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_linear_abrams_2020_v1.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_linear_abrams_2020_v1.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_linear_abrams_2020_v1.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_linear_abrams_2020_v1.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_linear_abrams_2020_v1.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_linear_abrams_2020_v1.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_linear_abrams_2020_v1.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mCov_linear_abrams_2020_v1.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu_prospective_file3.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu_prospective_file3.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu_prospective_file3.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu_prospective_file3.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu_prospective_file3.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu_prospective_file3.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu_prospective_file3.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu_prospective_file3.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu_prospective_file3.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu-Youtube-start20sec.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu-Youtube-start20sec.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu-Youtube-start20sec.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu-Youtube-start20sec.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu-Youtube-start20sec.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu-Youtube-start20sec.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu-Youtube-start20sec.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu-Youtube-start20sec.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu-Youtube-start20sec.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mPneu-Youtube-start20sec.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-grep-normal-alines-original.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-grep-normal-alines-original.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-grep-normal-alines-original.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-grep-normal-alines-original.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-grep-normal-alines-original.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-grep-normal-alines-original.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-grep-normal-alines-original.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-grep-normal-alines-original.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-grep-normal-alines-original.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-grep-normal-alines-original.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_Image_181206_crop.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_Image_181206_crop.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_Image_181206_crop.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_Image_181206_crop.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_Image_181206_crop.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_Image_181206_crop.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_Image_181206_crop.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_Image_181206_crop.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_Image_181206_crop.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_Image_181206_crop.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_Image_18122_crop.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_Image_18122_crop.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_Image_18122_crop.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_Image_18122_crop.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_Image_18122_crop.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_Image_18122_crop.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_Image_18122_crop.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_Image_18122_crop.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_Image_18122_crop.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_Image_18122_crop.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_Image_181432_crop.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_Image_181432_crop.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_Image_181432_crop.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_Image_181432_crop.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_Image_181432_crop.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_Image_181432_crop.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_Image_181432_crop.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_Image_181432_crop.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_Image_181432_crop.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg_Image_181432_crop.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-minimalmovement.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-minimalmovement.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-minimalmovement.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-minimalmovement.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-minimalmovement.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-minimalmovement.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-minimalmovement.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-minimalmovement.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-minimalmovement.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-minimalmovement.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-nephropocus.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-nephropocus.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-nephropocus.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-nephropocus.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-nephropocus.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-nephropocus.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-nephropocus.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-nephropocus.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-nephropocus.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-nephropocus.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-NormalLung.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-NormalLung.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-NormalLung.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-NormalLung.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-NormalLung.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-NormalLung.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-NormalLung.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-NormalLung.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-NormalLung.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-NormalLung.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-Youtube-start20sec.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-Youtube-start20sec.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-Youtube-start20sec.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-Youtube-start20sec.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-Youtube-start20sec.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-Youtube-start20sec.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-Youtube-start20sec.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-Youtube-start20sec.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-Youtube-start20sec.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-Youtube-start20sec.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-Youtube-Video_902_Lung_POCUS-left.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-Youtube-Video_902_Lung_POCUS-left.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-Youtube-Video_902_Lung_POCUS-left.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-Youtube-Video_902_Lung_POCUS-left.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-Youtube-Video_902_Lung_POCUS-left.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-Youtube-Video_902_Lung_POCUS-left.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-Youtube-Video_902_Lung_POCUS-left.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-Youtube-Video_902_Lung_POCUS-left.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-Youtube-Video_902_Lung_POCUS-left.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mReg-Youtube-Video_902_Lung_POCUS-left.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mVir_liftl_H1N1_case2_clip2.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mVir_liftl_H1N1_case2_clip2.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mVir_liftl_H1N1_case2_clip2.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mVir_liftl_H1N1_case2_clip2.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mVir_prospective_file1.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mVir_prospective_file1.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mVir_prospective_file1.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mVir_prospective_file1.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mVir_prospective_file1.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mVir_prospective_file1.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mVir_prospective_file1.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mVir_prospective_file1.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mVir_prospective_file1.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mVir_prospective_file1.mp4-00009.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mVir_prospective_file2.mp4-00000.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mVir_prospective_file2.mp4-00001.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mVir_prospective_file2.mp4-00002.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mVir_prospective_file2.mp4-00003.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mVir_prospective_file2.mp4-00004.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mVir_prospective_file2.mp4-00005.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mVir_prospective_file2.mp4-00006.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mVir_prospective_file2.mp4-00007.mha\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;32mVir_prospective_file2.mp4-00008.mha\u001b[00m\r\n", + " │   │   │   └── \u001b[01;32mVir_prospective_file2.mp4-00009.mha\u001b[00m\r\n", + " │   │   ├── \u001b[01;32mPneu_prospective_file3.mp4\u001b[00m\r\n", + " │   │   ├── \u001b[01;32mPneu_prospective_file3.mp4.mha\u001b[00m\r\n", + " │   │   ├── \u001b[01;32mPneu-Youtube-start20sec.mp4\u001b[00m\r\n", + " │   │   ├── \u001b[01;32mPneu-Youtube-start20sec.mp4.mha\u001b[00m\r\n", + " │   │   ├── \u001b[01;32mReg-grep-normal-alines-original.mp4\u001b[00m\r\n", + " │   │   ├── \u001b[01;32mReg-grep-normal-alines-original.mp4.mha\u001b[00m\r\n", + " │   │   ├── \u001b[01;32mReg_Image_181206_crop.mp4\u001b[00m\r\n", + " │   │   ├── \u001b[01;32mReg_Image_181206_crop.mp4.mha\u001b[00m\r\n", + " │   │   ├── \u001b[01;32mReg_Image_18122_crop.mp4\u001b[00m\r\n", + " │   │   ├── \u001b[01;32mReg_Image_18122_crop.mp4.mha\u001b[00m\r\n", + " │   │   ├── \u001b[01;32mReg_Image_181432_crop.mp4\u001b[00m\r\n", + " │   │   ├── \u001b[01;32mReg_Image_181432_crop.mp4.mha\u001b[00m\r\n", + " │   │   ├── \u001b[01;32mReg-minimalmovement.mp4\u001b[00m\r\n", + " │   │   ├── \u001b[01;32mReg-minimalmovement.mp4.mha\u001b[00m\r\n", + " │   │   ├── \u001b[01;32mReg-nephropocus.mp4\u001b[00m\r\n", + " │   │   ├── \u001b[01;32mReg-nephropocus.mp4.mha\u001b[00m\r\n", + " │   │   ├── \u001b[01;32mReg-NormalLung.mp4\u001b[00m\r\n", + " │   │   ├── \u001b[01;32mReg-NormalLung.mp4.mha\u001b[00m\r\n", + " │   │   ├── \u001b[01;32mReg-Youtube-start20sec.mp4\u001b[00m\r\n", + " │   │   ├── \u001b[01;32mReg-Youtube-start20sec.mp4.mha\u001b[00m\r\n", + " │   │   ├── \u001b[01;32mReg-Youtube-Video_902_Lung_POCUS-left.mp4\u001b[00m\r\n", + " │   │   ├── \u001b[01;32mReg-Youtube-Video_902_Lung_POCUS-left.mp4.mha\u001b[00m\r\n", + " │   │   ├── \u001b[01;32mVir_liftl_H1N1_case2_clip2.mp4\u001b[00m\r\n", + " │   │   ├── \u001b[01;32mVir_liftl_H1N1_case2_clip2.mp4.mha\u001b[00m\r\n", + " │   │   ├── \u001b[01;32mVir_prospective_file1.mp4\u001b[00m\r\n", + " │   │   ├── \u001b[01;32mVir_prospective_file1.mp4.mha\u001b[00m\r\n", + " │   │   ├── \u001b[01;32mVir_prospective_file2.mp4\u001b[00m\r\n", + " │   │   └── \u001b[01;32mVir_prospective_file2.mp4.mha\u001b[00m\r\n", + " │   ├── \u001b[01;32mprocess_butterfly_videos.py\u001b[00m\r\n", + " │   └── \u001b[01;32mREADME.md\u001b[00m\r\n", + " ├── \u001b[01;34mCPTAC\u001b[00m\r\n", + " │   ├── \u001b[01;34mC3L-02610\u001b[00m\r\n", + " │   │   ├── \u001b[01;34m02-01-2004-US ABDOMEN COMPLETEAB-62271\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;34m1.000000-73818\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-001.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-002.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-003.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-004.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-005.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-006.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-007.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-008.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-009.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-010.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-011.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-012.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-013.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-014.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-015.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-016.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-017.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-018.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-019.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-020.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-021.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-022.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-023.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-024.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-025.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-026.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-027.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-028.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-029.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-030.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-031.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-032.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-033.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-034.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-035.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-036.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-037.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-038.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-039.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-040.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-041.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-042.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-043.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-044.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-045.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-046.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-047.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-048.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-049.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-050.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-051.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-052.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-053.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-054.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-055.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-056.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-057.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-058.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-059.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-060.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-061.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-062.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-063.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-064.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-065.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-066.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-067.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-068.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-069.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-070.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-071.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-072.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-073.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-074.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-075.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-076.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-077.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-078.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-079.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-080.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-081.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-082.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-083.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-084.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-085.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-086.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-087.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-088.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-089.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-090.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-091.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-092.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-093.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-094.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-095.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-096.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-097.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-098.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-099.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-100.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-101.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-102.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-103.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-104.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-105.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-106.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-107.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-108.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-109.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-110.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-111.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-112.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-113.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-114.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-115.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-116.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-117.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-118.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-119.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-120.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-121.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-122.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-123.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-124.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-125.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-126.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-127.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-128.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-129.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-130.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-131.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-132.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-133.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-134.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-135.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-136.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-137.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-138.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-139.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-140.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-141.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-142.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-143.dcm\u001b[00m\r\n", + " │   │   │   │   └── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + " │   │   │   └── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + " │   │   └── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + " │   ├── \u001b[01;34mC3N-02010\u001b[00m\r\n", + " │   │   ├── \u001b[01;34m04-30-2011-79717\u001b[00m\r\n", + " │   │   │   ├── \u001b[01;34m1.000000-41558\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-01.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-02.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-03.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-04.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-05.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-06.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-07.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-08.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-09.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-10.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-11.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-12.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-13.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-14.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-15.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-16.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-17.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-18.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-19.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-20.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-21.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-22.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-23.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-24.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-25.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-26.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-27.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-28.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-29.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-30.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-31.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-32.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-33.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-34.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-35.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-36.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-37.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-38.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-39.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-40.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-41.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-42.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-43.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-44.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-45.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-46.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-47.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-48.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-49.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-50.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-51.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-52.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-53.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-54.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-55.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-56.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-57.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-58.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-59.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-60.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-61.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-62.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-63.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-64.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-65.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-66.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m1-67.dcm\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m_20110430133000_1.json\u001b[00m\r\n", + " │   │   │   │   ├── \u001b[01;32m_20110430133000_1.nii\u001b[00m\r\n", + " │   │   │   │   └── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + " │   │   │   └── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + " │   │   └── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + " │   ├── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + " │   ├── \u001b[01;32mlicense.html\u001b[00m\r\n", + " │   ├── \u001b[01;32mmanifest-1617035276985.tcia\u001b[00m\r\n", + " │   └── \u001b[01;32mScreenshot 2021-03-29 122843.png\u001b[00m\r\n", + " ├── \u001b[01;34mLUMINOUS\u001b[00m\r\n", + " │   ├── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + " │   ├── \u001b[01;32mLUMINOUS_Database-Screen.png\u001b[00m\r\n", + " │   └── \u001b[01;32mLUMINOUS_Database.zip\u001b[00m\r\n", + " ├── \u001b[01;32mREADME.txt\u001b[00m\r\n", + " ├── \u001b[01;34mSpineData\u001b[00m\r\n", + " │   ├── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + " │   ├── \u001b[01;32mKitware Mail - Bone segmentation data.pdf\u001b[00m\r\n", + " │   ├── \u001b[01;32mQ000_04_tu_Segmented.mrb\u001b[00m\r\n", + " │   ├── \u001b[01;32mQ001_04_tu_Segmented.mrb\u001b[00m\r\n", + " │   ├── \u001b[01;32mQ002_04_tu_Segmented.mrb\u001b[00m\r\n", + " │   ├── \u001b[01;32mQ003_04_tu_Segmented.mrb\u001b[00m\r\n", + " │   ├── \u001b[01;32mQ004_04_tu_Segmented.mrb\u001b[00m\r\n", + " │   ├── \u001b[01;32mQ005_04_tu_Segmented.mrb\u001b[00m\r\n", + " │   ├── \u001b[01;32mQ006_04_tu_Segmented.mrb\u001b[00m\r\n", + " │   ├── \u001b[01;32mQ007_04_tu_Segmented.mrb\u001b[00m\r\n", + " │   └── \u001b[01;34mTrainingData\u001b[00m\r\n", + " │   ├── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + " │   └── \u001b[01;32mResources.zip\u001b[00m\r\n", + " └── \u001b[01;34mThyroid\u001b[00m\r\n", + " ├── \u001b[01;32mdesktop.ini\u001b[00m\r\n", + " ├── \u001b[01;32mthyroid-Screen.png\u001b[00m\r\n", + " └── \u001b[01;32mthyroid.zip\u001b[00m\r\n", + "\r\n", + "147 directories, 22550 files\r\n" + ] + } + ], + "source": [ + "!tree /data/krsdata2-pocus-ai-synced/root/Data_PTX " + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "15392640", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Device number assumed to be 0\n", + "Num images / labels = 62 62\n" + ] + } + ], + "source": [ + "if False: #len(sys.argv) == 3:\n", + " device_num = int(sys.argv[1])\n", + " num_devices = int(sys.argv[2])\n", + " print(\"Using device\", str(device_num),\"of\", str(num_devices))\n", + "else:\n", + " print(\"Device number assumed to be 0\")\n", + " device_num = 0\n", + " num_devices = 1\n", + "\n", + "\n", + "img1_dir = \"../../Data/VFoldData/BAMC-PTX*Sliding-Annotations-Linear/\"\n", + "img1_dir = \"/data/krsdata2-pocus-ai-synced/root/Data_PTX/VFoldData/BAMC-PTX*Sliding-Annotations-Linear/\"\n", + "all_images = sorted(glob(os.path.join(img1_dir, '*_?????.nii.gz')))\n", + "all_labels = sorted(glob(os.path.join(img1_dir, '*.extruded-overlay-NS.nii.gz')))\n", + "\n", + "num_folds = 3\n", + "\n", + "num_classes = 3\n", + "\n", + "num_workers_tr = 1\n", + "batch_size_tr = 32\n", + "num_workers_vl = 1\n", + "batch_size_vl = 4\n", + "\n", + "num_slices = 32\n", + "size_x = 160\n", + "size_y = 320\n", + "\n", + "\n", + "model_filename_base = \"./results/BAMC_PTX_3DUNet-Middle-Extruded-NS.best_model.vfold.ConvMixer-UNET.adam.1e-4\"\n", + "\n", + "num_images = len(all_images)\n", + "print(\"Num images / labels =\", num_images, len(all_labels))\n", + "\n", + "ns_prefix = ['025ns','026ns','027ns','035ns','048ns','055ns','117ns',\n", + " '135ns','193ns','210ns','215ns','218ns','219ns','221ns','247ns']\n", + "s_prefix = ['004s','019s','030s','034s','037s','043s','065s','081s',\n", + " '206s','208s','211s','212s','224s','228s','236s','237s']\n", + "\n", + "fold_prefix_list = []\n", + "ns_count = 0\n", + "s_count = 0\n", + "for i in range(num_folds):\n", + " if i%2 == 0:\n", + " num_ns = 1\n", + " num_s = 1\n", + " if i > num_folds-3:\n", + " num_s = 2\n", + " else:\n", + " num_ns = 1\n", + " num_s = 1\n", + " f = []\n", + " for ns in range(num_ns):\n", + " f.append([ns_prefix[ns_count+ns]])\n", + " ns_count += num_ns\n", + " for s in range(num_s):\n", + " f.append([s_prefix[s_count+s]])\n", + " s_count += num_s\n", + " fold_prefix_list.append(f)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "2a1a38d0", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "4 4 6\n", + "4 6 4\n", + "6 4 4\n" + ] + } + ], + "source": [ + "train_files = []\n", + "val_files = []\n", + "test_files = []\n", + "for i in range(num_folds):\n", + " tr_folds = []\n", + " for f in range(i,i+num_folds-2):\n", + " tr_folds.append(fold_prefix_list[f%num_folds])\n", + " tr_folds = list(np.concatenate(tr_folds).flat)\n", + " va_folds = list(np.concatenate(fold_prefix_list[(i+num_folds-2) % num_folds]).flat)\n", + " te_folds = list(np.concatenate(fold_prefix_list[(i+num_folds-1) % num_folds]).flat)\n", + " train_files.append(\n", + " [\n", + " {\"image\": img, \"label\": seg}\n", + " for img, seg in zip(\n", + " [im for im in all_images if any(pref in im for pref in tr_folds)],\n", + " [se for se in all_labels if any(pref in se for pref in tr_folds)])\n", + " ]\n", + " )\n", + " val_files.append(\n", + " [\n", + " {\"image\": img, \"label\": seg}\n", + " for img, seg in zip(\n", + " [im for im in all_images if any(pref in im for pref in va_folds)],\n", + " [se for se in all_labels if any(pref in se for pref in va_folds)])\n", + " ]\n", + " )\n", + " test_files.append(\n", + " [\n", + " {\"image\": img, \"label\": seg}\n", + " for img, seg in zip(\n", + " [im for im in all_images if any(pref in im for pref in te_folds)],\n", + " [se for se in all_labels if any(pref in se for pref in te_folds)])\n", + " ]\n", + " )\n", + " print(len(train_files[i]),len(val_files[i]),len(test_files[i]))" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "3eaf62ae", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[[{'image': '/data/krsdata2-pocus-ai-synced/root/Data_PTX/VFoldData/BAMC-PTXNoSliding-Annotations-Linear/025ns_Image_262499828648_clean.nii.gz',\n", + " 'label': '/data/krsdata2-pocus-ai-synced/root/Data_PTX/VFoldData/BAMC-PTXNoSliding-Annotations-Linear/025ns_Image_262499828648_clean.extruded-overlay-NS.nii.gz'},\n", + " {'image': '/data/krsdata2-pocus-ai-synced/root/Data_PTX/VFoldData/BAMC-PTXNoSliding-Annotations-Linear/025ns_image_267456908021_clean.nii.gz',\n", + " 'label': '/data/krsdata2-pocus-ai-synced/root/Data_PTX/VFoldData/BAMC-PTXNoSliding-Annotations-Linear/025ns_image_267456908021_clean.extruded-overlay-NS.nii.gz'},\n", + " {'image': '/data/krsdata2-pocus-ai-synced/root/Data_PTX/VFoldData/BAMC-PTXSliding-Annotations-Linear/004s_iimage_73815992352100_clean.nii.gz',\n", + " 'label': '/data/krsdata2-pocus-ai-synced/root/Data_PTX/VFoldData/BAMC-PTXSliding-Annotations-Linear/004s_iimage_73815992352100_clean.extruded-overlay-NS.nii.gz'},\n", + " {'image': '/data/krsdata2-pocus-ai-synced/root/Data_PTX/VFoldData/BAMC-PTXSliding-Annotations-Linear/004s_iimage_74132233134844_clean.nii.gz',\n", + " 'label': '/data/krsdata2-pocus-ai-synced/root/Data_PTX/VFoldData/BAMC-PTXSliding-Annotations-Linear/004s_iimage_74132233134844_clean.extruded-overlay-NS.nii.gz'}],\n", + " [{'image': '/data/krsdata2-pocus-ai-synced/root/Data_PTX/VFoldData/BAMC-PTXNoSliding-Annotations-Linear/026ns_image_1083297968960_clean.nii.gz',\n", + " 'label': '/data/krsdata2-pocus-ai-synced/root/Data_PTX/VFoldData/BAMC-PTXNoSliding-Annotations-Linear/026ns_image_1083297968960_clean.extruded-overlay-NS.nii.gz'},\n", + " {'image': '/data/krsdata2-pocus-ai-synced/root/Data_PTX/VFoldData/BAMC-PTXNoSliding-Annotations-Linear/026ns_image_1087766719219_clean.nii.gz',\n", + " 'label': '/data/krsdata2-pocus-ai-synced/root/Data_PTX/VFoldData/BAMC-PTXNoSliding-Annotations-Linear/026ns_image_1087766719219_clean.extruded-overlay-NS.nii.gz'},\n", + " {'image': '/data/krsdata2-pocus-ai-synced/root/Data_PTX/VFoldData/BAMC-PTXSliding-Annotations-Linear/019s_iimage_10705997566592_CLEAN.nii.gz',\n", + " 'label': '/data/krsdata2-pocus-ai-synced/root/Data_PTX/VFoldData/BAMC-PTXSliding-Annotations-Linear/019s_iimage_10705997566592_CLEAN.extruded-overlay-NS.nii.gz'},\n", + " {'image': '/data/krsdata2-pocus-ai-synced/root/Data_PTX/VFoldData/BAMC-PTXSliding-Annotations-Linear/019s_iimage_10891015221417_clean.nii.gz',\n", + " 'label': '/data/krsdata2-pocus-ai-synced/root/Data_PTX/VFoldData/BAMC-PTXSliding-Annotations-Linear/019s_iimage_10891015221417_clean.extruded-overlay-NS.nii.gz'}],\n", + " [{'image': '/data/krsdata2-pocus-ai-synced/root/Data_PTX/VFoldData/BAMC-PTXNoSliding-Annotations-Linear/027ns_image_4641643404894_CLEAN.nii.gz',\n", + " 'label': '/data/krsdata2-pocus-ai-synced/root/Data_PTX/VFoldData/BAMC-PTXNoSliding-Annotations-Linear/027ns_image_4641643404894_CLEAN.extruded-overlay-NS.nii.gz'},\n", + " {'image': '/data/krsdata2-pocus-ai-synced/root/Data_PTX/VFoldData/BAMC-PTXNoSliding-Annotations-Linear/027ns_image_4743880599022_clean.nii.gz',\n", + " 'label': '/data/krsdata2-pocus-ai-synced/root/Data_PTX/VFoldData/BAMC-PTXNoSliding-Annotations-Linear/027ns_image_4743880599022_clean.extruded-overlay-NS.nii.gz'},\n", + " {'image': '/data/krsdata2-pocus-ai-synced/root/Data_PTX/VFoldData/BAMC-PTXSliding-Annotations-Linear/030s_iimage_1180496934444_clean.nii.gz',\n", + " 'label': '/data/krsdata2-pocus-ai-synced/root/Data_PTX/VFoldData/BAMC-PTXSliding-Annotations-Linear/030s_iimage_1180496934444_clean.extruded-overlay-NS.nii.gz'},\n", + " {'image': '/data/krsdata2-pocus-ai-synced/root/Data_PTX/VFoldData/BAMC-PTXSliding-Annotations-Linear/030s_iimage_677741729740_clean.nii.gz',\n", + " 'label': '/data/krsdata2-pocus-ai-synced/root/Data_PTX/VFoldData/BAMC-PTXSliding-Annotations-Linear/030s_iimage_677741729740_clean.extruded-overlay-NS.nii.gz'},\n", + " {'image': '/data/krsdata2-pocus-ai-synced/root/Data_PTX/VFoldData/BAMC-PTXSliding-Annotations-Linear/034s_iimage_3368391807672_clean.nii.gz',\n", + " 'label': '/data/krsdata2-pocus-ai-synced/root/Data_PTX/VFoldData/BAMC-PTXSliding-Annotations-Linear/034s_iimage_3368391807672_clean.extruded-overlay-NS.nii.gz'},\n", + " {'image': '/data/krsdata2-pocus-ai-synced/root/Data_PTX/VFoldData/BAMC-PTXSliding-Annotations-Linear/034s_iimage_3401832241774_clean.nii.gz',\n", + " 'label': '/data/krsdata2-pocus-ai-synced/root/Data_PTX/VFoldData/BAMC-PTXSliding-Annotations-Linear/034s_iimage_3401832241774_clean.extruded-overlay-NS.nii.gz'}]]" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "train_files" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "c7d528b7", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/data/krsdata2-pocus-ai-synced/root/Data_PTX/VFoldData/BAMC-PTXNoSliding-Annotations-Linear/025ns_image_267456908021_clean.nii.gz\n", + "/data/krsdata2-pocus-ai-synced/root/Data_PTX/VFoldData/BAMC-PTXNoSliding-Annotations-Linear/025ns_image_267456908021_clean.extruded-overlay-NS.nii.gz\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQEAAAD8CAYAAAB3lxGOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9ScxtW5emBz2zWtUuv+qUt/qryCjSOA3YCRJIgBMECMm9FNABCSlb9B1tWtlFQkJkwwIaCEPDAiELA5ZAyA2UGKTMjIyM+MtbnPIrd7XKWdAYc+/v3D/ujbBJ/84jxV3S0TnnK/Zee601xxzjHe/7DpVS4ofjh+OH46/vof9Fn8APxw/HD8e/2OOHIPDD8cPx1/z4IQj8cPxw/DU/fggCPxw/HH/Njx+CwA/HD8df8+OHIPDD8cPx1/z4nQUBpdR/Uyn1Z0qpXyil/vh39T4/HD8cPxz/fIf6XfAElFIG+HPgvw58A/xD4L+XUvqn/4m/2Q/HD8cPxz/X8bvKBP414BcppV+llEbgfwv8G7+j9/rh+OH44fjnOOzv6HVfAl9/8P9vgL/9fT9cqDJVzFBlSagtKiVUlO8lBSj5t/IJFSKkBEqRrCYWmmghOkg2gU7yS16hJ+SPT6iQM56UUPGD7CclCBFiJKUk//+uQwHHb6n8nwTKaDAWtIKYIHj5+/Tyf8XrKVBKy2sqBUaTrAGtHt8uptNnRisIETUFiBG0zn/U4+cBkpbXUyGC/61zivH7bsW/kEMZc7rHJMBa+X++L/JD6vFzKpU/HxCP9zZfTFL+rAmUBpP3uRjl9RSg8/vFSJr899/z0wkqOUetH8/leLL5viWlSFYRnSJp0B70EFEhQAhyelrOJ2kl9zTfv1ga+TwpoUL+FAqSUd9zQjyuiSBrJX3wNRKolJ/PYST5AMCO+5uU0tVvv9TvKgj8lYdS6u8Bfw+gouFv67+Dma0Z/rM/ZlhbVATbyQMQrSIWCj0lTBco7nvM/YGkFeFywbgu6c8N7RNN9ywxXU7oMpDuC5pXhuZtYv5qpNiMedEndD/KQ+Esqu1JbSd/+oE0jR+eKCiNrisIgeQ9KSaUsxATyU8oHHq5Qs1q0v5A2h/kV6sSlCbuDyQ/PT5sx4dKyUOtyxI1a+ThB/k5a0izGr+sUCFi7vawO8gDlX8mjROqcKjVklQ6+RzbPaSIqirSYgZao/KDnoxG+SDnpx4Dh1KKuNsT2/bxcx+Dzm8fv/31DxfQ8evqgwQzPQYcZQwYg8qfUxmDOl8zfnpBdBozBAlagNkNcHNPvL2T67+coxZzkjWoyZMKR6oLCYY+yHtbQ9IajCIV9hQo1RTkXgOpcnJNuhHeXRPy9frW58qfSblC3rdpJJjk5yUZjRonWfyzmumy4fCsZFwqlIf5G0/1Zo/edTBOpGlCVSXhckksLLr36NGffg8F1Z3HHjyx0HSXjmGlsX3CHWTTik6dNqFoFcmAGRO2jUSnUBH0lNBjzJtoQg8B+5t3+HfvAfi/xf/9l3/xhv7ugsAr4NMP/v9J/trpSCn9A+AfACzVeTo+OOXrLaZrGM8KpplGhw92MAPRacaLGjMvMK1H957yXaC408xfWYYzR3vp2H3umD4bOCw8w3lB+6xk8bWjvA8Um5FY5ZvRj6TCQVWgVgv0oSMdDsRDJ8EgJSASux6llTzAeWdVRpOCJk0j8WGDnkZUVUFdEzZbGCd58D9YCMegoqyVBVGVqPmMVJXygIaEbnvoetTksT4Qm1KClbWkrid5L68VI3Ec0SFAWZKGgRQiqqnBWtQ+L2pjIATZHcoCnlwQ5iXJaLSPqG5CN7W8DkCIpGEktS1pnEghyGdQGmWNZD+P91E+lrXoxVw+3weBIQ0jaRwleGmNqitUXUPhiE3FtK6ITmPbCbPtc5bjSbsDTCN6PoOyRBWF7JTdIAtbKfl3CPJ+RoImjSU5gxomWehak0oLpQMfUYNHDSPx9p54aB/vzQeBTVmLbhrUxRlhPSeVBr0fUeNEqgsICQrHdFbTPi8JpSzC+WtPcTdi2pGkNeFiIdmG0cTaorxcl/azGe2VIRSK6iHSvJtIRtE+K+nPNUnD4htPcT8SS8OwdkSjUAl8qfA1qADRKEKhMEOi2AWUTySrwIMegwS/upKgnL4/+/tdBYF/CPxMKfUjZPH/d4H//l/6GylC4WDy2E0vkWxZMC4MKj9TodBAxN169BTwM0cyBXoI6DGgO0+zH6neWeZvCu7uK3a/P6E+P3C4KuieWqobx+yVpXoImKHAdgX2tpMHY1kTL+bY7QJztyFutsSukzePQTaMnFYrI19WzqJMSZo8cX9A54VtwozYto9ZxQe7pDIGnJPFpGV3TJUjlnI7UmVRUy03MSVUCCRjUIUjhUDsB4gBtEEdd/OqJK0WkhEaLTviOKH2LenQyq6vDSpEVD+iagdaoUaP3uwfFyqg8rmlY/odQFn5mpo1HwSyD1LknOoS4mMKnhLqWMLEhCoL0mpBWNb4mUP5iLtrUffbx3MEYogoa1F1TYpRAoA1suNbQ6oa+dnJS+YwThLk2l4Cg/4gUzlmQpMH70ldRzgG+N/OdFICbSQAnK2IqxnTWUXSYJwBXUsq7xOh1IxrSzKK8iFSPIyYw0QqDeNlQyg0ySjMGLH7CT0E+suK7ReW4QzcHmavI66N9BeOqVGEAlybWP6qw77fMj1fs/2sJBaQNIRSfsa2YKdEtGAHKHYBPUUJFCFhOk8yiuGqodQa9Y0h+f+Ug0BKySul/sfAvwcY4N9KKf3JX/pLShN+9Aw/c9jdiAoJu5sgJvzckJR8wKnWhGcF1a3HbQdJc52syGRyej16qveRyylRbBz7zxw89cSziXapGM4t1Y2lvE8UW0NjNeXbhHl9iykLUl2S5g1qmtAxEscJOIIUOa30kRS0LMKiQNcVaZyI+wPKDqj5DO0scbMlef+Y/pMDh1KSCTSVpLg+onR+Dw3JapLVp88VC4MpDWbykO4lOKUolzdmjKRyEEEfOugH0jgSDy0xZyR6VktGOU3o3QFlDWmaSCFK5uCcXM+uI3a9lD8hPJZDxpD6vPsaI+l5XcpCPNbcKcnua40ssqY6BYZQFcTGEUpDLDRul3+nKqV0SonUyQagZrUEkXEizWvivEJNsrslpQTSNgaGEZyVIDFOqGHKQbU4ZSVq15J2u1yW+Q8f1Pzs5UBqLXo+Q61X+CcrpnVJtLLLT+6IB0itPi5y5nofKG977PWWVDjG9ZL+3IJSuH3AdIHxrGDzI8fu84SeErNXiuo+ys5eC6alItR3keZVj910jJ+esf0slxgJfEN+v4TtpN53XaJ48KiUmOaSabjWkwrN1GRcJeWMdfp+3ON3hgmklP5d4N/9j/4LETUEpqcVw1mDbSOmj+iQcNtAqDSh1NghEQ10TxzjylLdSQRWo5cHxBgwClKguEssgWJvGV4ZxpWlv0iEeWQ4SyStGJcKXxXMqiW11ej396Tbe0nXU5SH3aUMIP1WND1mB4cWTYOqKtnt9gfi7d0p5cd7Uggoq1GFk4/rvSwma1Fak1KSVk2UnRofTjtqskaCkzPE8wXaWdT9gyzUmIjDgN7t0UlAsdTlWtR7ed38nnF/QNWCF4CcNyDnCJKJxUTa5cwAJABUpZQYSknJ4TPGcEzDda6RNaANyRqp2Z0hlYZoNSok9BTQ/YQeA0lJyprqgrCqJX099Cjv5DxCIPUDqiqJTUGoLNoozBSkXMpZS3KW1JQkq9EpkcqCWNkTeKjHAF0nAeBY7sBj2aIUqihOu39YzQjzglALWKd9OqXZodT4WhNcvlyHnAHcH2DyxPM5/bkjWoUZE/2Z4faPHO2LSHKB6o1h9jrhuoiKYAb529ca7RPaJ/zMMi2X7D5xTHOFDpIF2AO4fcJ1spj1lHAHQRGHlZyQ6yRAxkJLBnKY0NuOGGL+vN+99P6FAYO/fShjMG9vaYDu5YxhZdBzg9sHtE8SEMZIdBpt5QbGQrF/UWLGgmIXsLsJc8jZgTGQEsVdj90ZinWBv9PMXiuGM0MowAwSYQ8vFf2lw326pr5bsfj5ToKB9+jZDJBFm9pOFhjHsuAxO4iHFjWOqKJALXJaPo0w+VMASdMowUCrxwey61HOostSal9rTjV8avPv5wWpikJAwHkNl+fomzt5uCfZQVFKUnlrBWQcRjieU1nI+Ycg53U88nvFtoWHjXQljoi5Npj5TL7mvbx2XZ06KWl/QGtNmtWksngE12KUoGAUKUoAsJsOtf0A2LT2hPxrpSRQ9r1c17J8zLjKQsqGmz1qL9c/+XxN8zXRhxKslQzOGXQ7SnZkNOrwQQD4APxTxmAuL0hnS2JV4GvLcJ7r+yQL1LZBUnyj8QsnqP+UsG3CdgG7GzG7HrRm+vyK/rIgWoWvFNsvNN3LQLKe4sbI7n8X0T4J6p8S41wTSkV00sUqtwo/M3QXhnGlcPuE9hIEAEIJ0SnMAFUX8bXGV/LNYhswfUDFhGkn9ODR25a03aGc/XYA/K3j4wkC1spO9YsDs90l5dWScV0QS4lgGmmHmCESo5J6a0iYDnyjaa8s+sxS7AvsIUh6fcz2pkD1tiU5Sauba8u4MCQtrbTdp5r+MnH4JPGgE/c/W7H+xYL5Vx169CSjSUZjuglzv3vcQb0XANFPkhUMgTQMqK6TtLKqoEwYY0jef1DLW6lzc3chjSMxJtQ4kpwTxN85Qfi11Lux62EY0CHIjm+NBDqlUQa5yV0voCXI4j5mLrmrcVzwR0RcGYOqa6m/rZVdfkoSpDDSASlyidB2JLpvZzfDQLjz6F7KH3KLNY0TpIguS7TWME2ktiN0veAQRXEKVNJiNY+t1LKE1fz0vviAvt1KgPjgeUkZnE3eS/CtSpT3cDdJiZFxiDiOpJRQ1p0CsL44J35yxe7TGUkrTBfxM02/0mgPro24KaH7nG0YeS17OG5IPgcaSM4Q5iXjyhFKTXeh6a/A14nyxlC/TTTX+VlMsqB9JeVEtMiDncD5hK8U04XG14rqNlEcIv1K010pQp0wnWL2OlHdy3mFQkmmvI+4zYjZDahhRPncPlYKnlyg3t/Ch52f3zo+miCg1yvS2RLV9nDocPsWu5zjL+ckp4UjMAVJ+0YFRhFzzez2nmQVvj5iA4qkDTpECIlUW0zymF2P7QaSNbjzOcNlJWnZlDgcNO1zxfA8wL9y4P0fWR7+dMbiy0R964lWASXqkznl/Yg5jKjRY3Yt8WFD3O/lgyR5MMNmC9t9Bg5ldz/iBsBpd+aIvmv9iLpPUj7gCnm4jZbMpx9Iw0DcbGVn74dThFdJsos0DPIaGRE+ff+Y8iv9rfOk60gftPSUEfRfaS07/v4gi3TypGlEuULOJwOkaZLPqofh2wh708iDaI0g1PNGAvnx97RgIrFyJK3RwyTgndbyO5NH7Q6kQ0v0XoLGMSBlIPDYZVHGPGZcxyxqDI+djeMzVjj0i2d0P72UTSOAGRLjyuArhfZQbQKmi6iQiJUhaZv77shmNAZ0L4E2VZZQWaal4/DUMi4VsYBiC81bcPtIsY/oKQmWoBX9mWFYKVQQLkEsBOlHQXDCbZltJHjvXxgOLxMqJZpXivmbgD1Ewge7v20Dph2lhTx56brMasKyFP6BUpQhwv0GvicZ+DiCgIJ0vmJ8OkePM3Q7ofcdapwwh5HQFOgpoHovSK/RpMISKyv1ZgJ7P+DuErF2j8Sg3J5JzhAaS3QNprAoHzG7nsJqfGMp7wLV+0jzvmT74Nj9AXz62Q3nf+cNf/r2Kdt/OmfxmyQ3VCW6JyVmcLiDx9QOkxevtJwe+/iknB0c0XSXSUUhEA8teppkJ86cAyCTYZI85Kf6+xGLkB0/p8UxPabNgd9qBR0XiTu97jEQfLgwkvffqo/lSXHoopAMZZyA6YOfnyCZb703QOw6CSBFgVrMYTEjOZtBQk0sLbG0wnnYD9JD90HKBh+kzDoGrtxW/LAMIkYYRykFQsjkHbmWKXcoVA5CKTwGAOWsgJpKo5oa/2RJKDVmlM8bncJ2keouorz042OhSTahByk/Qy0ljZSkijArCJXBN4bDM0N3KSm9beWPZJjk0kBjiZghSepvkPdKMKwUehCQ0Pby3r5SdJeaYQWhFhBx/cuJ4mGivyroLqWzVd4M6NGjuwm1k10+ni/oPlkwrAxmTPKelaK4cQJgf9RBIEHSmnFpBSCZWbioKB4G9KZFF5bhssb0geK9RDyVEtpHtJUUP1YW3U3obpI+ce9zXaqJTUEsheThl9WJiaVSwrYS1fUYmP9mwh0abGt59/4Z17+354+ev+FwWfLnnz2j/nVB8zZR7BMqKaZk8bUlPW1wuwvc7QHe30p9npI8yP7ISIvyUH/QQ499OHEJpF2oUWUp3zzuaN4LIi/9Sblcx4X7F67jt4HLY0cApR9fa/J/8fdOv6BPgSK27V9Y6Mdg8S2E/YPzSCGgorT3iAn2Hal04GpiaQm1we4ieteRbu/l+oQPspVj1gS545GDwuRlweeMipjkd0KAokAhASDlEiVN0o0x89m3SFhxNcfPHFOj6a400cDsXaR+16N7z3heEwtNKISmmhpp8x1BOJVguCwY55phpRmXMC0TeoTqFkwvOFUySNxUwmRVh3x9tCD6oVD0ORuYvw1U1yPDuWNYapKRsre+geWXnvqXt6SmZPt7S6JTzF+PFLcd+JhLiUS8WDJe1ByeS6uxehCQcVxq2iuNL9ec/6aBzXff9o8iCCit6T9Z4CuJ0EnLQumqhqKyFK8fqIaJ/vmc4dkCtxuFKFNa9BTR7QR5t0lWk5wmzQvsbsDcH9CTh1VDmBfSavTxVE7okDDdJF9TivK65WyqKHaO7nrBP3k6x78YmJ119LWnv6ooHjTlg6Z4SFSbyNQoNj9yaF9R35wxe9VJQPIRtdlLm/C4cyNttCNrLoUg7cZjC6cfBI23VurkE2021/4fvMZ3BoIPjpQRdjJIKosufJvRdzy0QRcONZ/Je4cI00js+kcQTj/utKdg9gFZ6NjbJ4QT2YfyHD8viE7jHgbsq1vi7V3OMI4nmvGJI3U6pW8FPaWVYCyzWe4a9IKRALppHrGFzKlQ1oJz0jqMcq3ies72b6zYP9eMZxCdpNjFRvAjvyjpL2URxZw8uUOiugu43YSfWYaF4fDUMC04/UzzWlE+JEzu2/sgPXEVwfaJ8iHgNiOhEQBgnCmGMwH9zv9swG4H+icN00xTPUTcPmIPHvdui9ruic8u2P9ogRkTs2969BQItcstZOmAtE8dh2c6E5YiZojsXloOnyZCFSkf1LcD928dH0UQADB9IF4azCjILEg6NVwW+PkV1dsD9Tc7/KqClNCd0DZD7VBWQDs9BlKCqBRYiJVD1yWq7dH7AbQmVBaVQHVeAqmR4EEBsTRCybSacispm/aa6aFiXJVQCrHRzyKhVIwLRdLys+6QGJeK7ReGw7M59U3ETAnSmvJ+oni/R232UrOPE9SVtN0mL3XvkVocg6TWxzQeHluVppCfPxI/vo/Ce6K/RuIwPJYJx5aYVmCKEwYhmYUW/KEsoXDS3fCldC1yNqKqUlL9fiDu9vJ6uVOgS2kjxsszYmnQux42O1Q/SoakFOp+S7i5k8/54aH0Y5sS5LMWxamzoZcLwRUmL+dqLeZsLZ+z/IAPMHmoSulUOCHyJGMYr2p2Lx2Hl4pQJsyomL0TVp5rPf2Tmv7c0J8JW8+1ifomUmxk4fRXsvtPM9nl3Q5sJ+0620WhtbvckgwSAIpdpHnVSvvQWUKzkNbhBBd/OlF/s0eNnulyTrKK6tZT3sjmodrccfjRM4aLEttFbOeJpZS1odSn9+vXmv5KYQ8wfxNIGjY/suw/iySXKO4MSSf0xTkcvnvtfRxBQCvcQ89MK8a1JVpFsZmIhWbSlmmmmX6yoLwXgpDqPartMYcOdbY4kYXUFIQB1ypiIUIkxklSbqXk+0cSjjPSm+69dA1qy7iyTM1j20aAoEThwQzqW1+3vQA6yUiwcq2kYCRObaKpUbmPW6JfFhT7NcXW4+57VDsQm1KCWJBsRvcDat8Sbu+/rV8A2QGVkJNUUUj6m9K3dulT9nAk+RyPD6mxSgsV94jyxwR9L6Sig+AwJ2FSFu0okwNEVZGairRs4NmF/FzW5CQj1zxUVoL0fnhk+uWyIvXDo4ZCqVOg07MatViQFo1w/rsRHraoYUDN56RFI/iBD4/dibI4cfiF1zBJUFNaMoPFjHixoH9SsX9uGdYKt4fVrxLFNuAOnqQU49LRnRtCCeVDonoIuL1Hj5FpbvEzAQ1DIV2q8kGwITNEYqEYloZQkduHUG4j9dtBmJAZhPZnDdEqZm8G3PUBtdmLcOhiSTIK20q7Ufko+MnlknFdEiqDSoloFdNMyD/CRBT6cH+uGddQbARn6M40m98Dv54we0P5zsj3HiJpt/ve5fdxBAGl6J7P0EEYVeNCVF5u60Eh7RQDU1NQLgzlw4TVZHApEmsHTqM7hT70ECPaCxElNaW0TIYR1QnhJBQFwRmSVeghoIaA1gHbCZ87FOoE7oDwCWwv6V4oFLGU+q++EdqnyustOtmB7UEisjxAWhhwUdDhaWYJRUOxsZibHW5zEHZd4YirBlYNpqlJm+2JbQg8Ao0RtLWyKGMiWfsIghmDPgqbjqDehzV9xiZQGXuwOXgWQgmOXS9tTD5gNYYAqpBg21QnkG9al/hGC+gJmFGug+kDdjM+BpPeo/qB5AMxP4i6aeQ961pOa1YTm1LwAx8FV1AK5nPSciZkJJDvjyMMg6jzUiK2HUyTpP8xkZIXenVVMK4KpkZ29+ZdYvZmxG1HYmGYFo5xZYhGSD/2WjoCx0CeVP5MCZKSdnKxe+zbdxeW/lwRaiHyzN5FyrtJcKx2JDnDdH6Gn1lCpeV7X9+SNjtS4VBNTWgcvjGoIKzXlOQe+UXBuLL4WnAD10V0T96EZHPpL5QErnuwh0R3pdl9EYlNxN5bio2i2EF5H3E7L63X7zk+iiCQCsf2C4vtZLEFp2ivLG5mhDk4JrqXEgGnmcHXmqo0FM6gtx02BPz5jOm8grMKtxsFULzZkJqKuJqJoGTfYYYR3coDl5yRlNFJy8ttR0wr0k5fG6aZ9GyPtE4zSEsp9iDKVSW7RuczC04RGyeKuF7IG2Ym7DU9yUOmfG4/OYNaNZibLWw7CAHjHGneCD+9adAhfJvogrxnHCe0FvahKhv0QhMPreAOxx1RC8iXfK63rT3V4anrpFvgnPTQnUPN5+ijum+5YHq2YloWuTyCYWnwVT6FiOxKpRI6awLTG9wh4Q6GyioKjSg9D+2JgZhikvR+tSTNG+KsIhZG6lut8iKMwgCcScBRPqK3LXS9SGKnEZQm+V7EUkajZispFwAKRzhr6J5VjDONr4T8U+4CKsLh04buQhML4fw37z16ihKcS2Ha6SFigsiDp5lsDK6VDWqaaYalYppLaTD/OrL4ZsBsR8ifY3wyP2WVZkw0r3vc6zspqeYz4vmC9pM5/dpIW/L2kUU5nVUcnjlCCbaVrCMUiuFKMg5fyeI/liXRwub3YLoaYdIUN4byXlFsEtWDdCVUfOycfNfxUQQBEkwzRX8BbqdOJx6NwpcG20eKbeLwQuFr0W2raFG+otwPqPstru0x6zl+XTGcl9jKUrwKcH13Er6k0kmf2otkVYHQS509lRQ2k0AKDbEp6J5W0ttdZ7nmKLuBChAc+MrgpigP5BAwu4AuHdGKNNYMQVLlHHAkIHj0VoCtuJgJT36cBEy730hfHk59cAHzvn0TYz+gJo8qpA5WmWp7SuGPP59bg6pwmMVCMgMvgppTn0JrWUSruexgq5LDs5LuSjPNZVdMVh48XyfJkow0zlUCt9WYXurk6naS2nZzgD7jH0dmYAY8AVmstWNaFfhGUi7TR2xnRG2XkvTkx3yuPkiH4MmlMAH7USTQi5pQO0Ili3hcGsaFBG8zJnSuProzw/ZTEe+oALM3icWXA6YdmdYVeoq4g4hwklFMS1nEUyNUdT3l9qGVDm51l6hvAs03wg/xq5KQfQEkQ4LyIVBdd5ibLakqCU/XTOuS/QtZ5O4g6j/TB0Jl6Z4WtFeSXc3eS9BqLw3TXMpQleTcbQ++hvZFYnoyoUxC37kMWEtm4FrxJjBDpLjrBOj9nuPjCAIkLv/xyN3vF7QvpOVSbCWaJYN0DXohYXRPEu0ziEYTCocOC4rJE69vUYeWYrfAziv8smJ6tsIaTXp7LaQX56CqRPdf5/QTHg06QkL1w0kQo7cts7bB7WaoWLB/qfBPQAWF7cD0iqQdtVEUD5nVOARUN2EykUmNXpRt/SBp73pGqIX0Ym620PaPKfsH5BZlzAcp/QeAX8YFUkxCQ/aTMAXzoWfNqeZXx987qvuUEsQc4OifkAOHqivCrDgp8HRI6FHy4lADShhr8+tsiIGkquU2Mfumxb0TclRqOwELi0Lu7LFNakwuQTKleZywtx5zcMSsoFQhSuk0CWJPkGCANUKOqkvCupEMzs6ZZhZfy0Idl0pQeyMKveZ9pHwQzUl3qZnmKu+uUF8nZm8nUaIuS/QYcVtPdJrYWGwfiHlXt50QckQ7IIu8vpXU3z30JKsZLuuTnFhPiep2RHdCTiMm/JMV41nJuDT051qu20YCAED3rGScaaaFtCOrI1nomcHPpfwwnfgHhELRvkiEz3qsC3Bb4W4N5YNCj/L+yO3C7TzFw4Bqh29TxX/r+CiCQKgM/YXl/J+NmNHx8PuJaZmIVlPfJNyYBCDvFbFI+CcT46VhfGPxVcVs8YTZzy28eU+6u0e3FcWuIlUFqSyEjdi2IttNkXT3IOj8co6/XKCKLLFVordP44TqA5DQ25ayn7DtjOqu4uGnlu5ZolsmOR+niNaStKLYaYyaTgBlctnkwlnY7kibLXozQ58tT+YWKYNyJ/Qe5DzhLwB6p7aZcuhCA+5EnpGfF/FQUuok+JHXtCduPkeJbu73x35AeY/qeuwwCh25LDD7ivqdCGl8o/GlRoeI22WWWu/BR/S+g7sH4UZkQFEVTlSBcAI0dV1lObNoC7h7EPmvMRilMMYIS/G3jwxQpqogrprM91CEyjDNDVOjTgvc9FBvE811wB4C0WUw1yLZ3SZhWyj2kVhoDi8Fkyh2Ad8cMSIhDWFB+YTtRac/LEUYVN0HytsBPUX8vGA8K4hOFIN2P2HaSXCNyZOcZXwxo79whIKs/ZeMyQ6RkDkJ0UmWZTrZwQH6tcY3OQAMUoKNS8Xhc0952eE7R/xmxvKtLP5YQKiEOWo+yDBOfJnFAu6/e/19FEFA+8S4UPjSsfg6UG40d3+k6D4J+EZEPxI5E/PfaA6fOc7+xh3FF57rhzm7X8y4mF2ychb17lYe/n6A+4fc8ioe619bwnwGw0h8e42936CWC5Gegizcqhbl3VFIEyNm01EPAXcoObwrODzXTAuY5uBrxbiyuIOhvilwO3GJ0b1HITWuiivxBTgcxOFq3pCqQnbtnC4rZx8JMuP0beFQ4aQW7roT4KfqWhSIRzIR0u6LbSvuMmVxau+dfqco0EfjkbKUc8rsvG9RjgHrLM5mluMxeMxzcMmWVcoHuZ7na3CWWOYediY+qlG8H07eBkE+GzGJtiKbtKS2e+T5nz5v7njMG1JVyv+jCEmSEQqyOyTqm4Se4knpNzVC5gmFdGnkGXvEMnwlXRsziDVZOnoyBDGt6eeGca4Rua6A0tpD825EDwHfWMa1xZfS8mte99LXb3soHKkumZ4sOLws6dfqRE4zg8iA3SGeLONUVExa3ssOwjfwZe5G5JjoKxhXCX/uUUXEfz1j9WuN2ydCmaRENmA7CXTlTjocdicAarhYiMz+q+9efx9FEFAxMX8d6M4Nu08NzXXk6v+buP1DQ//pRKgNs1dCznGHxOwrzUO4QH9+4PeeXeOf3PJn5y9JZs3Zf+hJMRKXtYg87jZSClgr+nnvZeHkWlwdOtLNnTj3NA0sJN30q0r0AbknfwIQgXIj7LGpUfhGdqFxCf0VtE8M5b2IlJq3uUc+isZdrZakuwfZkVNEqQVpMRO+QgaN0rzOzjg+uxy1sjjLkvTsQvQKdxsh3Oz333YuOtJmvXAPdCbOHKnHKvseqEbKIeoS09SEm9tHifC3XmcSnoDWElS9l2vo7KNIBaRll1th41oYedpzAtlsFyQ1dvYUQNTkZXef5cU9TCIUOhwyxdpJzz/LoNU4EecFQ3ac8rWkzvWt7MChMgxr4e8fd39h38niI4LyklI3byepk5US2bGWnvs0t0wLgz9mDyBdqkOiuhuJRnN4WUmAUFDsE/OvWuy7DWm3h1mDv1py+Kxh+5lhmmevwUlkwM1NoHgQIDJpJZ2DUgBvOwjNFwW+kdLmCAD6JhHmATVpyteO+q38bLTSjjZDOmUY5SZQ3g2Y3UAyStqThXksDb/j+CiCAECxnSi2E1Nj6S+ENPT0P5zYvbVsfwyHlyKdLDZyYet3iukw55++rzEXA/Pne979FxeQLln+uhUixZMG82KJu+sx9zt5+KpSdqXdAeqKeLVGnS2FyNMPwk4DoquZzmvUFDFDyK0rcW0hi0nMqBknYR0mBf25ZriA/gmgDCoVojzc7AW0y4498SDcf7U/CK3VOZHC7naoaYJ5I6VCU0FToduedGhRPtK/XBJ+ekZ1/Qz79kGQ965/ZAMej5hr/cVcWo7DKMEiJuJ2h2qzJFor4Rx8ILGFR1bg0ZDklKUcjTVLJ1ZgRx5GCJjSYUrDNDNMDUSrKQIQheYc5xXTosgprlzPUMoDaoG0nJ2ESycD1Sg/l+qScVUwLgXxN4OQdXyt6S6qU02ugtBulVK4XRLSV45Vto8UdyPu7YPoFRYNGCGcTXObSTsTSUEsH2W6KiXap6XwPvKO7Q6R+k2HOYykusQ/X3N4WbH93NA/EV8H20r6P3sdmb0ZMa1Q2n1tTkY5to2YAVAw1Vp6/ytZ+NFCconQCBnDbjRuy+nzqChBTY8ifCoevPATfCQ2BX5RSLDJna7vOz6KIBCdxtcWtxmp2h7XildgKDWrX40svtHc/8zRXyamBZhOLq7pobgzhLamsxW4xN0fKnw9Y/XrgWIzMi0LupczimUhRI1uIDWVkEw2W3TbkS7WpPUCdbchbbaoYcR1A/7piuGsZFo6bBfQo5B6XDtijRhmlLVlmllsF1h8E+kvCnYvDbGAcabpn9ZU6Qy9aQXNX68w87nU7l0v8mmlpGdujDDxMhtPWfvo3lM4eNhRWk33cs7+0xrztMLtAm47YG53pNt74fx/KAqKEUpRI9IPJ0+EGNMpUBzJO7osc789Zv1DEIn0CYtQqK4Xm62yBGdkkQ65bBkmbGuxnWAh2oPtROdxpHSrmLJh7IQ+DNiQlYb577iaozLV9+QCrSWldnt/Ar70GMAo+nMp48ptxLaZaZqJPaaP2P4xMKopiv9f4aCpRIBWGIZzRygUzfsRuxlkoc4doRBm3pQDjDtEdBDwrdhOhMYxXFWMc0N3qemeJqZ5xLaK6laowdVdZPZ1SywM3Yuaqc4KwF3ETAJc+koLtrFQDGciHEpAmEeYe5g07sbidh+oD520aIttYvbOU972qE48HKaLmRig5PZm0grXfuTdgaTh8MxSzLX0TPtA/bpjPK8YV5ZiF7j8xwPtU8fuM01/FRkcuL1CjxIQQlLYQWqj+z+A7qpi9etI80ZMRkJl4GqGfTDSdx7Gk05fK0VaS2pOjJKu9z226zH3C8YXS3xloBGLL7cTGbFqA2bTUYCw4kKg+DIw+/WC/nnDsDL0a4Ov59TXBe6mzcpGA+sFet/KLr7bE3c7YdgdU/HJC324bQU3OFsDoN/d0bQD/mpBLGTXHtcltjDYwqFv74kPmxOXH5Bdz3vohHN/yhhOvof5PY9+hpOXAPHhPTqqGjsrSH2EVBpSJjihdVZ0Jsq7EXswwo3wkVBbQmnQYxRD0fsWtdmd6MpHNaCaz6AuT8pD5YOUazGiuwG97zHLRuTkrXgE6s7ndBexn3ca2wmYh4akBESMVqFSwlRWMotsWR5KSe3Le4/ZSzBLRknH4CCvY4ZAKA3T0uQWInRZSBRKCTrjAkiK2TeK5l2kOATcNmA6f2oLitJQev/RKQ7PHNNCfANDDeMqEusICVQdSFGh7xzVncYMZPt8aaerAPVNzEClBIA4L/CNlE+hEqKa9onyfqJ6/ZEzBmUuAHQXmnFeUm7iKYrrKZ7Uhc27iWJn2L807L6A8TyggsI9aNxBEZ30sM0I7aeB9lOY/7rm7M885f2ImgKhEZsuvTHQdqLRD/doH+ByDcs5qs2XxRrUoaP80mPP59KLbiz9ZYXbTSfhkeoG0v0DAHHy8OYdza8rmqdXDJ+s6C4d49KhhxKz7R/tsXw4+QOCKPdOdlezGqizYi5C2wmYlyxqnHCv7iQt3x9QywWxqaTOziadaH2SHROTLP7fsj3/7SMdNfk5AOgq+wp6f2r1xUMnGc1uj24a0qIhLCt5+BToMcou309ivGQ1MWVmYkziz19aWM6z4CcKPyJICZAKS2hkdzfZJFT5IICbVgLcimyQpJQ46AxepOWFkL58ZYilysa0QBJAznRSWsisCnXy/y82QhOW1+RkGKJbAxpCU+Bn5pSFjHP5/dOubKHYQfFKDD+OzEM9RdoXFe0TWcT1jdCNh5Xh8EIznCdCGQmziF5McktGLcSMrWXxpaF4SCRz5GZkq/EhUd9G7EHERgD+rMbPhLItAKnCHSLl3YC92Uv5+z3HxxEEhsDim4HdpyX9mWJcGMqNRk8G10lEjk4xnMnpzt4FzGA4PLf0TyPjswlGTXljcPtMtdwahrPE7qee/tKw/EXN2Z/32K3YcMX1DK015s17wm5HuL3DTCNqPpf0dBihLIhrsdFWvce1I+5aQMf+qmJauGwz5TCTJ+33spuDWJS/fkcZAiqeMc2tDFYZHNoHob1GYbwJ2ac4If9pHKXNN2tQq9njoIpjrQwCdqZ06rnrlERifTTtJPfouz6bkn4HMPQXBEjflg2f9ALZWYhpOrUW096jJ4/yHjNOmKN3ohb/BnX0+z8Eiq16dAs+uiIVTq6BD6jFTGr+s5pYPgqJktXi8kteAErKAhUTsZJgkawSj8kpYh8GYuMYKsM4kx3edunUBfCNORF5tE/YXtibvjJop7EpYY5Cs5kjFRqilKtu7/GVoTsTnYHtQYxCpC43uUc/LDU6iKHIlLsM8zeBYuOJRtFfONpnmv4q4ReRVAWUjcS9wxw0Ra+o3ynmr6UNe6IK14qkpYVohzxXYIqoEBlXBX5u0KPMlgileCQUDxN20xNnFeHJAl5/9/r7KIIAKVH+5hZ3P2P3kwX7l4b2maLYQCgMeq4pdhHbRaaZZqxlMMP8G7C9pr9wjC8m/E8m/OuK6kZhRph/oxh2lnGdePiDxLSoWf3G0XzTotuROC9RX7zAvLuD3B5L+704+hRSG6spEJYVobKYdsLcHzDfXNPsF0yXc8a1Y1xbyqbAvatQh+6xR2+E/WV3sqiTFlqxygsBZ2WnqytZFFphh4l0v5HafrNFHVrBC5KwEvWsyV4DYqGlrCVVheyWKREv1vh1RXIa3Qfs7R7z/uZbLceTKUf+9+k4SowVj+7IVQmzGpXWsmA/DCbWSEvQiDhLb1sBGY+IfiuA5VFARG7/pcUM7UfSTgbIcLEmzArpviQB4pQX3AAgOiO73NG6PMF4VuBrjRkktbe7ET0GohO0vdxE9CRBzc/Mifasg6D9uk+EQuOzm2+xDaIZcAa/KCXDmx4zh/3zQmYCGEH6k+JkBZ40WWEotmDNuzELjDT1G/FCGNeOfm3orjTt04RfBSgiBIW9LqmuBUOobyLV7YR4EWjMKCWL7SXIyOARARSLzci0eMxSQimWZWZK2Fbu6/Bszri02SPhu4+PIgik3HbS9zuW/2TEdmc8/MQxrAX4ML2otcyYcK1IdH0lqHx1Kww+PRUMTwI8HWhLR3FvyOoPiq0iVNA9Tfja0p0tBDh8vZG21flKerxwmlSDNd8yrlReAKq4nokx5vUdxf0We3kmVk6FkbbkUXTj7KPzsVK47XBKZ0Pt0Eq6EAwTab8Dne3HC4daLwXR73vp8bft40JaLkjrBfHFBaqT3ju7g7QRjUG3BaY0BFMwLR1+cYZ+sRIK7iTZhOm9CKpyl4KYTgajKVt5qfkMVYvuwi/k8x3t2k7OTVo9ovv7Sc790EHbZYuv6dE7MIqGIWkDdw9SngwDqq7RVYlJcg4+ay/s8IGbkREvvRQ5jdfSQ6Q65HkTg3j+pawctYeAmSLBPYJjIH1016W84JMIex6khakHsa4blrWw7XpPdIbuacHhqTAOzSh9eBGD5celkmEgZoTlV4H5bw7oTUtqSvyiZDwr6C4s0UF/oegvEv7MoxtP9Bq9s5R3itnrSLGLlLfD6bqaTpiKx/JnmguLsdh4ivuBUJoTpjHNDMFlMdQ+EPIkI19pQvGXr7+PJAgoxpcrind71KGj+fktejzj/m+U9JfCiCofUu7Na1wrWUEoxfap2AIo9GQYzjRhFhjXMXu4ZSLOJCDiuE5MSxjXFZdGUf3qRoJQUwm998OaOQNUuvfoVzcyCKMqRU334goGjwoB+9AJM9Bq/PmMo5/cEXmfVoI02zZgxnhKa7EaSoe518TrW+J2K5z/oshe+ha9cNmePEobcd7Qv1yw+8QRLTTXK2a/2aO/eS875Tih9wOxsFBJu2586mifKvwciFA+wOxtpH4/4h564fn7IKXJlK3Qc3Yi6b1YbMWgKR4ee9DJGfTgZdccpXY/Tm96vLlRjFDysBSdpH2nityxiEnITs7mQCtqzPGsOKkz5XWkzlZjzFZfEoxUN8m8vbLALyt8beX31/akIBTxlwBy5e2AOeTBI5kDMjyb0T6rmbLeoLqXQSH9uZEFPgiaXxzEL9BXmnEhQqLoZBbA8itP/dWGWDq6H58zrizDQjwHkxGhVX+Z8JcTrhmJUcPBUL3TLL6U3b94EJ/GUIlZTqgN41KoyjFXSbM3I3Y3EGrHcFHkRS4lUrkVR+7+QjbQaSZZjh6ke/J9x0cRBIgQSsP4dI67M6h+orxuWVaGbbK0LxLjGVTXmsXXmV/uIWlxaCUJ6hqtwvSgJ3NycdWTIhSJZBPBJTEpDYrDi0R0JevlM2a/2Uv9WhYCrvW9ONQo6aEzTjLEcxikpeesKOGairCossORDMaIlWGaZzVeHgZhusg0M+xfukyiSajosK3MjbPrErdsMEdX3U7+kHv4aj6Di7UM4ShM9vCH/lIxrg3t1ZLFs4biYUSFiF8UhELacWaMuA6a95qxFyRaRQGzQmVQqxKjRIKdKuHxH4e4AHnIZsYhtPT+tVEi4waOFuNijnIgHucwftDpUNn3QBnx+ePyDL+sMO0oVmNGE85mTMuc2uZxXSnfQxXTI1U5O0r52qHHgEmJ2Dj6JzXDSgC7I8nmODeg2EkAqF8f0LteJOZKQe04fNKwfykW9MVG6m1/FA51kcXXk4CGSerwaVkwnWsxC00iUa7uxer78JM100yfpOiiJYBhLjyX6uWedTXSDo72pmTx55bllwF3iJg+SE8/37ujV4HgGpFyIzMO9OAZL2r6M3tSt2qf0AEplZ8ZhjO5z9qLzLnciprw+46PIgiolERJVWrSZSNDE7qJ8nZgVilCbeieJvY/CnRXmuWvLMuvPNX1wLgumOaaMQeA8kHRXwqaqkckQEwKFTWxSIRK2GN6gmGduP0jw7hYsvyyxz70kLKiL8hEWZVHXR0voWpkFEy8vgXANDXm6SV+VZFKmQIjI6PkIdJDwN3vKG4s03kjHgO1JjjFsBbMID61pJ+U2H6dH9ZOJtq0nSj+UoKdBB8qi92NzN4ponO0zxS7L+DhDwzJVKioUJOivFMsvhIDSxWF5Th/JXVvqPTJCy+UhrQuUTOH6cVefVpJvY3isa/fy2dRIYkM20chCfmQZyNM8sd70T6M42n4qJrNxAewKonnC4arRoCsocCMjagsrQSM8mGSVurkBTdRSkDah60sxLpGLxp0VZws5MdVkS288+LLqL3tJcWu37SY2x3ESLha0V/VMsymkN2yzEafYm0nO/fs9Uj15b1QnRcz4qqhe1az/dwyLkXGW1+Lh8I006fytNiJpFwCiWKcKw6fBS5/fEfjJjZdRf/1gos/UcxfSYCxnXSJhotKFJVKnIdtH2XS1kY8EP2yYveTxWlcmR0S7YXJugEJfiFLNmyXjU8PeWLRX3L8cwUBpdRvgB3iY+pTSv95pdQ58G8DXwC/Af5uSul7pAtyJHOcIyBWTaHOk1+nQHU7MSzF2ilU4J9M3F0o2meO9c8Ny1+3FDuDW4pR45gUxYNiOE9My4jphLQSTcIMKjsESWmhvGjl9y8V0VSsfq1wSqGnhnT/QNqMKD+TDOHE7JP5e8oa4nYnPflhxF2e46+WoASZPU6RVVNA9QPc3lO8SpSLOXE9P4lPxrnO2gPFfgFJGcy/tMBtF1R3wgM/MsH03U4s02sZJjp/rVDB0j5TdE1CXw48Pd8ydyPv93Pefb6kuDa4g5yL9vZUz0YL7iBtq/p6QicgJOzugH1o8WdN9lkAUsIcJsxDVgmC0HqzOjF5Lyq1GFGuOJUAui7Q52vh/juDr90paCejUC4RvHALTBdxuwl736L6UbKRoy2e1rCWa0uepaiBFAypdLjdhGs9wQlPQCUxN3H3nVCRhxHmDf7pmuGiYlpIm1HFRPNeAMRY6NNwEdVHitteAlxZZB1AJXqRudT/xTYHDUWeoC3W4OPC0J1r/FwG2/RPPFef31NZz9uHBf7LOWd/Bs11wAwRk41ux7VIqo/6hvIhUN306IMA1v2LBe1TJyDmPuJLzf4TwzR71EVEI5vbMQMxXaLcRZJR7J//bhmD/9WU0s0H//9j4N9PKf19pdQf5///m3/ZC0Qr7T97EG6AytxqnEH3geWXI0kXoAyDgjQL+N9vefuioLuas/75RHE/UjwICjusNG6n6S8N4zqevN+mmfARbCtS4GOPN5Sw/1SBKln9CqxSIiB6yHMEM+vuKMNNzqKCyzMBsvX15MVEYyajxPUoardYOWnzFXl0+F6MT92+xO4q9LMZSds89UYCXX+Z6D7zdIuBGAzxpmT2quLiTxbM/vQate9Qqxo9RRZfj8zeaaZfCqj18Kzh9ScevZigDPiFPuKj+JmURcrLrjt4GYLhq4L6NuAKjUsJdegF5yjsowdCPwqpabN7FC8dZcHZCfh0PTKIqdark3gllpZpaRlWUty6VgAs22ZTln6UOYIxkuqSOK+yrv+xtHEHj73vUK2w+mIjA1zsThaKya5HeorowyAYjzWEF88IM4evjXjzqewCHBWjU0RrxMevF+6+3GOZKtw/renPpC53B1Eh6gnKXTzxDkKtOTwztE8Fcwpzj5p5qmbkshpph4Lr12vKN5bFe2Hv2UPAHiaxOFsXTAtzmslQbDzurpcSrS7wayHNqSh4yeZzS38lhrzlvWTASYMqEK7GANW9UJunRrP/RJ0G8XzX8bsoB/4N4L+S//2/Av7v/FVBwAhRqDSP9FB7mE69YbcdWf8ioacSMIyTwi8Uejax+VuRwwvH6heW6l5qn3Ijf7tW03Wa7lkkOLAHAVj8LKGCoryX2npcKcYlcrFCyfIrYFWiL6RHr7tJauBhFJnxrJZswDmSznbhRp+AQBUS9iDEHGkLFqjSoRppPaU8O0F1I/VvJopNw7gSnjca+jPD4Zlj/2NFedmx+MmB7bOKr581LL94wepXE2YUKarbe8p3e+pxIq4amuuG7YPFNxJY9ChuTSrIpKbj5LToYDiH8Szh59BdWuobQ7l26GkuLSorgJMZErZ2WCc23unoX3CclXC0MTu2GI0GI1Jp3ftHi3dvREbbynh4sxukS9GPeTBqOJm/jKuCWMr8SaEAJ9kcnCE8WRJLk0duiWQ7FuakBjwOqQ3zJX5RMM2N+EFawQmO/v+2l1q63HjcZpLywijMJLhDf1UwzrR4Co5ZmlyIq7E9BGwfGBeO/TPD4ROYFpHUBOqzjifLPb233DzMUd/UNPeKYisWZeW9fH6A4bKkPzfS2++R9P+ux9xtBTSt8gBXJ8a2w5lsFEddgm0zAUuT8bCEO0hQ2H1qTsNQiu3vDhNIwP9FKZWA/0VK6R8AT1NKb/L33wJP/6oXsYMAff25EIWaG3kAi/se03tiYbGbgfWfB1xXs/1MM64EK6CJ+AvP7VJR3BnKO5XlmpI2FXsotjJdaJqlkzbbzxNdVNTvE24nQWFYy1zCpEvhoncCwrEqMGe1IOn3uxORiLp67Jv3g4hpnCXM5YG09x3mYZf98Z2w70onwJTW6FaMRe12j61K8Rp0lvqVZfXnhukflbRPZhyeLdBzKFJ2lHkqAyiElirutOlhiwmRorIsxfND0PPIabGYw4SKUQxXFmLIIXp2hQqCfiufF8uJUkwu0QwqioWXyq3A1HZZhjxJFmBzd8EYIRlVRbaANyRnxFAzZ3q6zUNXC0dYNNmRRcl8gtLIzMkpC7aUPGmxNGJkqoRgdnRtOnYwRCkowKjYhanHOZZ5BmBS4gHpdhNmO6D3rSgknSMtZ0JCqh3jWUFSgsYnK2PuQslperA9eMazgpu/aeleBJJL4CLz85Yniz03+xm7V0vqbwz1+2xJbo5y4sB4VrJ/7hhXUqqVD4n6/UT5/oC+34u8ei3DRNonYpSajul+ko0zaZGxn4RTUbCBcS0ZbvmAUJh3kfSXrPR/3iDwX0opvVJKPQH+r0qpf/bhN1NKKQeIv3Aopf4e8PcAqmLF+Z+29E9K2gvh27vMA69f79G7VmywY2T55xNmmLP71GacQBNtIpYwrWVijNvKgnYHQ/M+Mn8dqO41h6ea9qX0m91W8ID2mURolLDAQgGHTxR9Z5i/VjRvJ8wgJJThssbMC+xDLzPfJn9S1VEWpLZHHTp0IyaXrCuKhx3h5g7Irrp1LeQga04Cn7jdwWYr16Vw6MUCtZyhpkj5LrL8ZYFfOKIRr0LtkyyCdhRnXh+kDr+7x2mFHucyO3GXH3KlRITUj9D1uG6G2cuob932JGeJjSBKMv7biygoi3qS0ScAEJCAlu9HGscT9z/F+Di2vCqz2WaNr2TXtn0gGi2aA6OF7mv0yUM/FPK3dAQk+MRsZqoz4GqGhNtN6FYCmp6kj5icke7MrGSsCpKRtLp4GMShyGRL8MGjNwcx/BwGYozCr1iviJXFL0qGc3dC9w8vCrpLkfbaDur3svPuvqi4/wMFP91TasE2XOFxJvCbtxeYrysW7xXVjQSAqRZrPJXg4Scl3RNpH7o9zN6IC5LpgzAUzxeMlw3tE2EXHg1T9AjjGqaFlAKim1EoD2iY5lLOuI2ieZNobgN6SPiZpr38HWECKaVX+e/3Sql/B/jXgHdKqecppTdKqefA++/53X8A/AOAxfqTlLRi9qst9WtH/7RmnGv6c8O0WNG8qUSXHxKp1My+3GO7hsNTJ2YkM9F/x4MR7XWdsAdFd5XoLzTlnWb+JrL+1URzbdi/0ExLqZ1UhGnB6cEzo6Cc4yqxs5poCxZfDdjNAEYxXFSM6yXV+w6zER79aQBH4WSA5sOBIiXxvrtao/ueuNmdLL2VD/KzTrjeHId2pkQ6+DyzL6JXc+KsRIVI+Xqf62D3mPYGCSKpKlB2LbLib95gbkrUYiGEpf1BfACm+cldmNt79CYPRU0JFSPmuMDzwJLTvL9MIop5epGZz2T2wDEQ1JWQg8gsw1r0BhQui4Bk0apEli0nzEEIPmr6wBHJGHQjkt5YaKa5jAC3fcLtRe14LE+SVoRlgR7ycNacAZBt5cvbXkqhh0OeQiVkNEIQ3MF7MVzJ9u3x6TntU1l005zcrRBs5gguV9dibBMt3P2BYfijjqcXGx4ONd2uIiWYDo7x1rF4pdBjwvYSuLpzjZ+RsxlB8fUkAaV6eMxS/FwykH5t6C/l+U02Udwrphn0TyL6cpC9Y5s5HBqSTcQ6YQ6a2ddCObadCJH6c8PhpcbX37+O//8OAkqpGaBTSrv87/8G8D8B/o/A/wD4+/nv/8Nf9VrRKPafVlR3lurNntkvB6plxXBRMi4M2y8qisuC6jqTKWqD3U3MQ6I/t0wHTX8pdZHtFNNC9NfFRi7e4bNI/0RRvXfM3kUu/8nI/oVj95nU4Cog0TQDRrbL/IIKDi8UU1Myf2up3g8U9wPDZcVwUVEYLUaYgN71qPFAmrK2fvJoZ8U198UVpqpI2102/DhAqkWNt5ihnRMvg2kU85Ms5+X9LdoYMQFpO8EnnpzTfr5kWBlUqqnuPHY/CbhWFbIQs78ATUV6doW+fRD/gqKQToe1QvmdyZOhhlFEUMN44geoppaFDqiul9T/ODVptz9Rj9WsgR9dysIpXU7jhW6djMb0XhYenMxcdTeJf8M4ySj2uiIuavH4czpzPxLlJlHd9FmJ6ECDaT3RaqalIzUWtS7F1Tlr9VXImoUIqc5g7iQWW8lo8RCAU5Yznje0z8SohCTPwrCG7nkgFQl3byhvpf5unyi6LyZefHpLYQKvbtZM20JKr0FTXhtmb2QgSXAqt4qlSyDSd/HM1IOi2CVcl2nNVXbSzl2i/jIxXcg1c7eWaZXwLwYuzvds9hXTfYXucytxEVGTonpjmH8t3aTjANT2ynJ4qfCzhN3/bmjDT4F/J7vaWuB/k1L6Pyul/iHwv1NK/Y+AL4G/+1e9kJkkYu4+cQxna3Hkeeip3gbctmA4d/RnhmlWUT5IfdOf18IC20XKe0+1MWw/s3RXgn5PS5kS5Laa8lYzzRP7zyPtS8X8q4LVryeKnWb/0jCuyDeHk6+8OyRsJ4ywaam4n1uqM8P8jSjOks0z65XszPqsonioMW/vSdMku641eTHkdFwpSaGPU4jaDs5XwrWvS0Gzp0l2UWehXEmqP06PY8tu7qmNIukl3YWhfWLF4hvAalRhUf10MvvAGtL5Sui8Wkg5oSmyXDaIe1I3yLj1vPOTZxKkQtqAKkZpzUXpZx8diFIWQYVFKYKq3OMutoHypj8pCVUue/Suk3MKQa5RCGAq4rxivGhOlt/FLqBG0UYkpUiFEWXirs+eA1W2bc9ioEllvwKFiopUCX3YHCb0fn/SKKhZI9TosiCsa8YzmUugEtQ3oovYPxPMwR407o0sft9A+0nEPm/5/GxLOznevD0j9VkdOeTn7EFS9milG3XkLFR3kin6SjYd00kAUIHsDgTDWjOsYVolwpNRWrobR2gSxcsDF/OW67sl6V2JVpDK3Em41TRvZPgISrpAoVC0Twy7HwEx0bxTzF/9DhiDKaVfAf/yd3z9FvjX/+O8luon1n9+4OH3ZvRr2XnLjaPYBexuono/oKeCw1NLe2Wk96lg/9xge019G6jeD5S3E3d/WLH7XDgAYREIZx577Sg2CrdT+Cax+zwxLhxnPw+sfzHRXVjGlTrVnGRgzQyJNJDnHSj6K0WylnIjTDySEqfbhcrjqwqWtRPn3ZSI8wo/cygfcW1e4JBHbk3i8DOMqNVCnIgrd1rAKspsgvHpXBbHEGXRdhO698x+vaG8rxlXR/24BTw6GdSYsYo28/gv1oSzhbx37vun44QhyGj+B7p+pUhVSSpF/6CcQc0bAUSVgqYk1k40FbsOvR+pgNIIt/1oGHIaNR7jaQBMmiQ952xFquR1/ExEVdVNf8oaZGR53tlDntWwkDkFsRRWod57CcBjkHkFXp1UiKb16AeZe4CXkd2ME6zmdJ8tGBcyWcj2Sfr1udsiRihAEsCteyJU32IxonXim+sz4qRJvUF5hTlobCdu0/WNLLSpVthJQGjtOVm32xaat5HqIYihaYRxZdm/kPmIw3kgzQP0Bt1pYhkpLnqc87z9zQV2awjLgJp5uC9oXmvqawkGx3HnoGifKfqnAbfTzL+E5Zcj5fsPqNy/dXwUjEEA8/V7zqYL9j9eyHy1M0kL3dyIKcJ1j/Ylu5eO7lxT7IQJ1T1V9JeWZamZveo5/5MOM9Rsf6yYlCHOPf5C5rjZvcLtZTJLKGHzI8P8GyVIeyfmjkfWmUwb4tQ31h6CFcdXANtqzJQpwEnRn8nchHFes1pYyjvpXcdC49eWcX1FeTtgr7fCsV/ORZAzTuIJMIwnXYJfiy8cRyBwfDQBCbXYc5v9gL3eYe8NMX8NOKHxgPDx+wG2B9T5Ar+qT0YbYqhhgFJq9/VR3y8uz7EU153QWKa5vF6x8d8y5nRDOCkGdS81vmqz63BMsviMdDzQmjSrUb4QA5KqJJUmt9smCSj79mSrpqaI7qfH6TxKQZBZBCLE0iIfzpOoAZlEBegx4w1KFIrHISZhVtI/qejO7clDMGkpBaNVjEtN90TScRKi8z8fqcsJYyIxKrSOhGAwBy0OV73C7WQCUdIwzpWQdxIMa1mQvkmUd7Ib1+8nuaeDp3tR8/BTk2XFAXTC3FlUVPhFQC8mpsEyvatRgL+YICrMm5JZxh3G1SNFOFoYzhKxiNRvDctfR+Zf97i7Fr/+flDg4wgCR+PPQ8/sa4NtK8alGD76EsLTgqIxlNc9qzGy+6ykP5fpLsUm0V0pbv5lxf55w9mfTyy+GtGTo32q6S8lpUo2Ma0SyWncJrsRFbD/VFPeKlwnDDDtJZILiSiPmUaygWiAnBUkDWES//jF155ia+jPxXh0+7mlXJlH3fcoXnjbn9SoL6SO1z5lY4pEsRnR+15Sfy8tNH9WMi0Mpk8CQj60slsfr5dSkvK3PZqZtDJ9PLUsU5HtvCrJRI7TlnxtTi23lAdpWiV2XckIk8/PskFH4vT5xR0X7H4UwK3LxqSLGeF8xrR0qJBw20LmKj7sJONoKqanS0IpLjfuXgaT6N0BDlmTUJfifuRkzmCyWlqGAQlM3SjeA84S59VpcKxW6nGq0+jR+wEdZceL6xnTeSOy5DGSCn0SF5kxtws1yKxI8fZrnyemszzbMSqYT4L420ACukOFui0oDgo9ZWHbfcJ20J/JvbdtIiVon8icwOgS9XvF8jeB2avuFGT7pzU3f2TpXwTxFNhbyntNNInpPKLqQJy0mIzMA0wKe+Mo74XopjynoSTJwLgWfwK715z9qaK59lTXI/ahw581bH5Sw3/w3cvv4wgCIQhw00jbyu4lHTa1PslAfa1JT2vczrP8smf3ScmwEr52eQ/dMwEAQ+WYfxNxXWL2NlJsFd2VZlwlwiLiFxHQmD6z5hZJ2ok7mXFwpIOi5AL7jCNJv50T2KNCdhnOBijNtae6Twwrk22nHl1vi12iuve4PXRXlt2nDpNJPGaMRFfhSuHJJ6Ow+5HypgNqhjNLKBuKdYndi0kEUaYnpULGlvl1RWgs9uCxdwdpBRoZQ4bR+FUtizSRh4qInDgp4QeYwyipfuHwq5pkFONcPBvq99mZJk8TSj77DoaAms1krsMUcFtIhSY0ebxbHkwaKydBxSpUF04DRVIhfAmQ1P/o+MvRLag7GpgKgzDVhbQ0Hw6U+55YFcTKSht0s5dSK7dq/ZMV/ZMad/CYnVCQozLSgkta7k+RF89CDD7GS4+qPdZFwpgBTCe7f9uW+IPDbI0I0JSk9uWd8PeHpdCEj5Td4LIDUAflrWLxTWD29QE1evxZzeaLioffh/h5S2EDw12NbUXo5lcRZh5dSPYXosLcWcpbcScCTurKZGFaJvw8Cvnt2rD6ZaS+EQ6Fbif8quLhpzX95UfuJ3CUwIqRhUJFJ9x7xanNkrTsWuPKYg+B2dsJ11r6tUaPCfVK0T9RdM8j01Ix/1JRbsWGyQyavlN0aKZVYFoH4l4CgekkXRsuIqFW1O819pBIlkwjFTZhqGUCj+0lIwhlBhGNcA3GhaO6jxT7SPUQTwovMlAzrC3VzcT8m5H+0jEsZFa9qo0QSUol5J+sa1dTwG0nfCNjtWRyjaN6qLBtzI64mVF5CPhaM6xK3NpR3GfzkKP6L3MZoiYrMCN6P8q0pexadGwlum6NCkvMIC04e7MX+nSeY0jhUPPFyQMiGYXuJszd/uR85C8XDBeV9PwjuL0XxWA3gQ/E9VxKGHtkGCrhD1gpf8w+PPo7gDwbgygk8QGsQQN6kC7DUfqMUnJeVlPd9Ni3DxzHzOneMV7N6K6s1OgNJCeuvv7M4+YjV2c7ChN4t1kwjbI0psHCzmE6hfYKu1eUD1Bl0VFwQk6z+XSTAk2CXlEMifkbT/W6JVaWzR8sePh9KP5ww49XGzZDxfvbJZjEdCYmI8VsJHhD6Cz2xgnNeJ/wtTxzxUZYjt2l6GNiHdG9YvaNZvF1EPfi3C3xq5LD84LuqTptZt91fBRBIBWWeLGW3cZLD9keDMOZy2YOj8w3FcnsNWGClTtBXVUE/RpU0Axnke2PFc0bzexdFCT2RqG9pm9t1hPIA6A92H1GlY3MD4hGApB45knUHyrEE64T+jGAlxJUGFxO6kFfmlNNqKckQpDbwLiytE8dxS7i9rk3rNVpCnJ3bgiFAD3mEB7NNrOJRjQwXih2nxtMbzDDkdkHZjCQZBBKLAy2c+hRvh/NUVGW2ZIJ9GQpl47ioUR34omgrIBwcTUT/v0gIGScl6TVU7n2vUdNXlh9MyEX6SnbsXdISl8JEcgMEb0L0rrcdygfiIsaf94QmszvH2VgiK8Mocqg4qBQywpTWPS2k7kRfS8MxLMlaVYL2ejYbixs9hoU5qSakmQubS/t2qoknM9oX9Tsnxv6KxgugsxSVGBXI2fzjrOmIybFq9sV00OFGgQkLHea8g7cTnZ9Mwr4Z/J8QlUqVJKA7mdSn5tB0Pr6eqK47Ym15e4PGm7/C54/+tk3PK+3/Gp3wfXdEmMi1J44GLQLjK3DvS2obxXlg3go+FqeLydjDxnOcgAoI26jad4oqltxW3atRw+ZkfjC0T1VDOtHTcR3HR9HENCK6apBTZV4AGbyh20DSZs8XDIrtTJfPSklo6JCTo/yztu8SRQbTX+ZOHwi2vD6RgglZkjMXkN1q4lO7KHGhRBCbCug4ZGWmcg93iqrxh6UpF5Nws8SelCZVyDOR+WdZAlmSCdaJwrGZfY2QDKC3ScmewpIkBB/OqGUJqPozx2F07jtKHjCkHA2Uhyg2Cl2n2mGi0gsPhC7mCTvoROYxOgiadQQczALCndvKB4ECyGJhLZqNPYg6j3dFFKrPikZ51K/264EhQzjyKrI4iBmmUI1FgpucdfJBKda0H6Vkqged53YnPeDNFyqQoQsx3uoJQBMc6nxbS+yWhVE+Sa9sDx5uKmIhSM2jjATPr2eIpbMO2h7kTQ3lZCkljNSYTl8MufuDyzTIjGuA/aqpyk9SiWeLXeclS3v2wXX+xn7b5ZUbw3lgHzWbWLxjYDSfuYYzlzGFGQT6S4N3YXOGoxAson6taXYClEIreifNzz81LH5WyP/6u/9Gqsi/683n7F/aDBFYOot9n2BCZC0o9oq6mvhGiStMs4kvgBJi85lWor5aHUtlGR3iJTbQPEwEivDw89mtM8kUPhlDnj/KQuI/mMfInQR44YwL3MKdxwIGVFR5LahEOAFQKeUUy9Jy0X7rghOPOBsB+NCMS0lXT+OcSb7DOhJbnJ1De0zzbRMDOuE2wmN2A6C+g9nEEv5HbdX2DZjBbVcWDNI3T8todhAvY+YTiYUHbnqycgCcl0iFoIVCFOPvJiOoGT2zXcKP3PiRdB6bJ/NNEOkemjYvxDXnFDJ/LljMEpGACMzZKVcma+Rl1kNtpMdTeepPGZI6CCW2vowYPKYL/WkpF8ZcdrJHRCybiEUmmIvSjgVRD6bnJFsYJwwh+4xLa+ErKOMERPWbsDsDLo3xMKSCi0SXqMyyOvFOAQJ8nFeocNaypWs4NTtdMIwVMjzCbJhalrOCKtaXKEr4VBIqSYsUnU+UpTy+i9XGwoT+PntFQ93M8xNQX0n916yTKgeopRkc0f7tGCcCfI/LE3uIkTiesRWHp0U6lVFsZVMQGz0HfuXiu73e37vk/e8PSx5e7/A9w5lIn5bUFwbbKcyziS7vfIy3ap7mok+O0UshcUaKuHBVNea6lae83ITcXtP91yGn3RPEtPao+fZwfiuoHll+L7jowgCMvpaYQ4+U4NFHRELJROJMwUzOEUssl7fiG5ApQ92U6vQpcyf05Mgt24vIgu0pPXJwriAUCV0kP5u+ZCEIVhLiZCM+BK6vcyKG5dS+4vmQC66GVM2spAbPpxD90ShvWH1q+nkt58KLUDcIA4x7qDwdZ5M+yAzFlCSxh9NJKPTsjueidV6sfFC6tm3zO721K9mhEZQ/1haYrb/CuUHDkDZnlomJeVyKqWT1bb2iVAqppkg5tW7hLndYYeRZpqjR+nQRCP3x3URO8gu6LYy8ORohRWdxt32J0akqqqTAWpqSgEpC0eqCsJcvBBIon+o38o04GPb8YgThMoQS41ZFjL0ZfDiBPzmWjwXQ+A4s0DmMqyI84rhrKS/MByeacZ1OqkHwzxidCJGxawauW1n3LxbYu4cxQhul12pvEz0sdmJp39S0l08TjUe1gm/DrLAdMLpyLQvaH5ZyPDcfcw1u2b7E0iftKxmPb96dwmAUgldBMLBYXaGWEK3jOhRXIbNIG2//ioRCglGfp7oMwvWbjTNW3XyOiwOkpXc/Y2K7Y+ljVitewwwtA73dcnyl1Buw28vu9PxUQQBAF/nSN/57CHnKX2EC+FS20EsopMRoclRSONrfbJ9Ps5vV1FS+WjUKUgkLf+2O4nUw1rSqvaZ7PBmPGYIsrOPS/KcN0nFdJC6+riomvcjzZt0mkpb7BXtE83hhcJMJYvfdJje42clfmGxfZbQHryIl4zC9B69H6VdphThasVwUREqdTKrOHrdx6ZAWZEfq0OPzT35tG/F0ENpAe2Kgni+wC8rUVlGUa1BtnBbWYITBDsUQo0elpZxMad4+thLNl1ktpUujW9sHpuF9M9Lja7sKXM5Tg1GL4VkZLWQfiYvgphZSbiYMa0cvhbHJdPn+QSbVgxCmvJbXQIzCcClfZR0/9DD/Ya4233gkCyBIGVQub+q2H5mObyE8cqDTuh9bomqhDGReT1w6Av6rxYsv5Khnr56bBeKw1Fi0rKZ9OfynIRSUmuqAEEROytl64Nl+VpR3YlQKCno14rDC4U/m1CT5uHNEj2buDjf0w4FXVuASYRFAJVw95b6rWS501zhZ6BHyRD9LBFmETUqqveG8u4ogZaNcWoU+08M7ScBe9mxrkd2h4r0vmL+tWb2Op4C2vcdH0cQSIIBRKOhFouuUEn6Yg+BUksN60uNO0Tp2SsRp5gxMtXS9lEhnaiTMpaa0w6jJ2nrpVqifbFNaC/agmSkVEgKzCQZwymQOE4DTdxecAlfafYvSupbT3k3Mq4cSQk6e3hu2H6h8WXD7K2XSTjI7n/subuNKNtUjEIjrkpUP2De3FGNS3Sm0AJ5/FmQz9QUqNqJDt8HWXhGBnSkzVYQ/sqjjcb5iJ4V+HnBtHBCJ83jro5lSnTCeQi1+BWaXiyu3S4xeztR3PTo+z120dC/WDx6DVrFcFkIXrEXAZU/a4TUdJywrDWqF6VlcEumZR5UGkAPYlWGUkIk8gE1eEw/CRciT3NSXRYyDcPj5KQ8G0EZg24aeHLB8Pk5Dz8p2P0YpicT1WJgXUzs9jVxzB4KNuFHw81vzpn92vD81wHbTowrQ7TkAae59IlybfxMzFmjE5GO7jTmwQjBKIkStbyXIbkqptOA2v4CxousX+gN5XnH5fLAQ1vT7kpS0KiDQU2K4kEzeyMgY38hz6w9ZLxqLc9L+d7QvJEN4fgMRStuQYeXifBswNUTU2/Zvm2o30qpcForJluqf8/xUQQBlWQXT1YR0SK+GQLT8rFVqGJO69E5I8iqtEBWYR2jeE6HXb55uSYGuYhH/CBmowtxJOb076QQkHEU+WaoxYRkWkgXorqVgDDNpC3Y3Aij8Vjfz94EhrXGN4r9C4vL/m5icSbDJ6aFwW3DiTmmYhJSTzugDr0oEBfVqb8e8/QdGYgaMkkmgC0Il+Lco69WqNGTQOptK4vJdJ5kHSFnTJCzppAw46O3H9mUonoQX7vypkNvW9I4ojaRKkTiohLNRCOf4TgIxG56qcu98D2OcwTTfg/WYoyhzOzEaW7oLx0qOtw+4LYWu+2FLBUjqSxEd5GtyxSQUkSdxrRXqPmM+OKKzc8WbH6s6S8jYS3U3mfLA2dVxxQNbV8QE5hOo/aaYlPQvEvUt15AtqUEABWO48Fy+WDAozBd3hg6hRnlWRMPQskm3V6yzGkmbMNpJjLfsPLo2lM3I89WO2o78dXDmsN9jeoNdpfpyQdF8y5larFYl7tdLllX8tw0rzXNu5gZjblkMqJ8bT8J6PNRXLjf11TvDS4biKgoQLSeUm5hfuRBQCyiRmJtiVafKKHF/YifWYZz0dL7Cqa5xu0EmDpaRR091pQSMow5WtYv5XeON1qHY4chmzI06qQgjAWoCVwrPxtKTqoy00lKOFxEpoWiulOC1hqyTttR3k3YfcQ5jWtlDtzJyipLYMuHbCh5ZgmX4jZsRpODQcCElCcTIQi5gjAzTI242/qZ1K3N+4Ly3gtFWMmE32QVqjCZ5aeYFk5Sxv1E9WonZdSslPbcGE8kIRm2UdBfyFBOM8gDo3fCYFTucZCImbyw+2IC9ShCUtmTIKwbAXm3Ipnm8lzS/ELua3QKX2adRZdHdeUJuuPlDADTC/5BStBUMptwLNGLOXFWM7yYc/f7BZs/9Mye7Cisp9aJZdWzcANzN3DTz3j9sGTcF+ggzL7Za2jeB8FCspGKzLFI2Ewc86VknCALCC0eEyq7H0cnwKA5SLs1WmQ25mUUYLYKmMXEohloionzuiVEzS+vL+kfKlRrcDsBl90O6luxxd+/kABiOyGnHbGM+VfiRTjONe0zuW7aS0drfCaBJhwsxXtLscnnNiSiI2sgZE5HsZsyRfy7j48jCKBkYmwY0c5IIDAaPQWK2x4dEt1VceJjd08U8UFj23TiCAi6nsFBn6jvI7ZX9Bcy6nkq5H2i5cS8ikaQf9uC2cgN8JUYcNpWou00F9chexATiGmRaJ8lynud5ccK3xhmhaK68xS3HXqw6LksHjOIkcaxD+4OHtMHppWTADME8c3zUfThpejwo9WnoZnJQKgV7bNEbCLtM019XZ6YY7YVz3mXZ9MdrcaPXQnVDXBocUWBndeyw05eGIDjRNlU2O3yNANQ+UiqnBiL5InDKCXy5N0Baw22FucgEOZiOGsY16WoMc9KGece0remCjWvWma/zOh/7QiNlRFaM0NwinIThHbrMnsyRqaV+Ot1l5rdZ+C/6Pnpi6/4m7U0zX3SaBI+aX55f8HdzQK9cZheUQQB/Jo3iea9xwwCrvlaPAXNEAVcjuoEmB4zTj+TzUElSIU64U1kRuCwguFSUHgS4CLVaqCp5OEaveHdfs5m1xAeCvSgRbtyEKORcpsIBew+lZmEIFyUWIoXxvxr4Rr0Z+KKdez8dFeJcD6hbCRtCoo7ETBFK8+suCxL58cdpM3ePinYf2Lg3/vu1fdxBAGjhAKaWWXaalGROYPSAXffy1CFy0LQ04Wk28f01WfXFtsJYBKtErn4IGOdkhbeQH8l2MDRnw0QwKeB6r0grtNcXIm0P3IQhFEoAyzEoyAU0iI0vSLUie5Z5PBSUzwUzN44mmvRdCcFdoqUN63szhcN/VVxsu4SdWJBHRLFN3eolPDPz5jmApDpKaKiogzIDq80+x/D9PnA+FyjOlGy6UlRPBjKO019Z2jeDLi7/nEeIIgngbOk0om8+TgEJM9d1L96LWYmZQFNTWwqoXGHeGLkKRAlHgh1eZsBzadr+suKmNPPYaXxlcOMSRb2wYOGUDuZNAQMFxW7T2Q8lhklFRfWY0N08nmHlebwWcI/H/j8xS3/udV7ajNRas/Bl0xJ85vdBV/dnTF+M6N+q1lk6q7bJ2H1taIQPPJLfGmY5hkbUfKMaC8lpR2gbyQAJA1kzxfxl0jSkaqlVTquI7GSDSIVEV0GgtccuhJjIiFohocKe2cpJkRodJDdGQWHZ8IvGC4DqYzgFXZjqN9omveyobVXImiKTn7HL2UTUL3Bbp2Q3FLu3hxkM3Ct2J5rLxyZhxcluy/E//D7jo8jCKREqEXHbfYDqh0w2SoKpGdsDiNVTITG4vbSEktKlG31TaR9IsYQKiLsuUahkjyUxSbh6yN5QlL64j7rv704xA6X0mu2nZQCw5ksfEndFMkKcwstfVqVxTWmUySj8ecT3WWif+I43FjqdxLtk5URXjYPzTR9wje5Fs+jt8azAtMv0V+/x765R50vSaURtxwgOkN5C+W2RCUrllPzeCpXgFO9f7yeetdKBuCsTExyRuTDGtSYe+vjJAafedioKoqTDyJGEea1EHyCzBtgEKOSuKxlWOimAx+YliXtExnUWewkO+uusmnsQVNsrKgwC8SnMAm/ITqVmXeCtwxLxbiW7CVaaL+YuPrkgcvmwNwNHHyJUQkfDVPSXPdzfvHmCverivUrUEHaa3qEcptOC2E4EzDPV4phLWCfHsTZx4zye0LtViLKyUQv5RHizpAYVpIJhkIwIj3KRKtQJ8xBJNfTIlCue1JSTK9mNO+l9tdTLkN9ZpaeSf0/XAbUaiT1luLGMHsNxVZIQsNSCVDYJLHPKyTgVG+s7PijZK7JHtvWkg3aVgJef2bZfa7pL3J3wX/k2oFjS9A3luQ0VilUO8h8OfdYy5h2RI8eU1jSXrjmyidMOzIfAsN5SX9mcs2XBT9KFmx5L4u8N4pUJsa1kJCKDVTX0io74gBmBHcQh6LhIorBxFbhtjBcIDzvKICTPAxgbx1hHk+STpk7pygfFMVOU+ystMWGQHndfpD+iymp8jJSPF7fojdbGUJalWIdZgxqFPegaOfoUdx1TTZUNVPKrsARt89EpUpsyRgnMRRxVqTLk5fAkIODmrKTkbMi6rEC+JHVeRhFwkiaD/h1TfekZGoUqAZfigPueCaZj9tJByAWorcINdkkM4neIgggpjJrMinBbXyTadnLSTj0zcTL1Z6QFG+2S6piojQBHzUJ2LQ1h4ea4o1j9o3U19NM+Bco6C4U0dkTVyIZ2cH9XDQgxUYGeJAyXyJ3TbR/fA7KjbT9unMtFnRIeVDeZQxhJuUGwLQSsc9wV1O9tSzfC+noiENpn4PQhcoAYkStRuJgaH7lKO8FZ/CVPLvDmWJayOBSNYlpSbGV7FdF4br4mZQO5UYmLJku4uvspflcMZ4H0tyjDha3+R15DP4ndsSI2Up+7htLuGqwXSmKuENPmonLbdLS7jHZZx6jTvp55aO42fiScWnEj6A5oqOyM5gBzCA3NLrEtEjZQFKAGrfND0sjIKHda0KV8LOIn0P9xjD7RtGNluHlSDCJ1IqyTHvQDxrlFW6fJ9dqRagUXSFCn1IdWYSVTJXZD0RK4rxgeNLgKou1Rtp94ygEG5cdijOwIz12DSlzGPqsRZiiDO1URylwA5eiGnH3HfphL0ao1oiBybyUsqByUn8XVrgJUxTLtBhRh0AyhlQahsuaaWFOU3u6y2PgTCQnIKYe1WmXVEFstPw8Uny+4/eurimMF4be66VoNRovSr3RYCrPs/Mt53WLJvEw1LzfzukeKtmVXSRNGrW3Uu9vFMtOBDWzt164EEpatVL3587QmNt+ZLLYnTr9f1woVDhyryXlHxeKaZ5kiG0hNt++kYBlOk6ktHGFjMGbc9Lzl+8s1Y2g88lwYgHqSTLT/eeKcRmJTcQsR8KmYPnnluJBfv6oPQglDJdReAReYVstepUE0yxnUUXKVPfc9ZoS01yz+9TQPUuEZz2zRc/+tqF+ZVh89dGXA6D6ATt5YCaGi0tHKJcUty2qn/LAjyA7ZyXiEuWDDKrQYoIhrjaBAomW7aWWiDqH8j7TK1sh9YQyg0Az6J8EhiuoXxmqG4naw1oJPz+B6TV+GWi/mPDvLPW1ImnHeBWIVURPx4k2gJLAIvMTwB0fiAJ8qbEpMqwd8WWRd3C5BFOjiJ85is8bZq8vcbcHmd+XLbpSacQ4JEn3YzgTHnkfDPYgo6mL3SOB5GSO4sAMJfNXDdXrnYwKqwsRCYEYgfiI8oLIx1mJr3LQtZpQG4aVoT+Xa+Z2wqgrdhBG8I048cZZxFe5hx8Vdq/RoxhzLJueuZPAfT5rqb4QXCFETTc6RmcpCs9hKBiDISXF7e0cfV1QDJKey8SoPDimF78+2yGGMDsBG8t7jz3oPGFISg0V+BZZJilJ/ZORhU16NI+ZZoL/uIP0/6MVYNbtHhWjvlGPrcBaPm9xb4Rq3sq1mTK/QH2YFV4m/MqDjegqEG9K1v/MCKaVuxKhlp8fV5LCE5W0N6cjk/VIhhM1o5kEBLRDIjrF/qVh91PP2ScbzpqOX319RfPLguWXkfrG833HxxEEsgQVrbDvt5hDdZKajhcNthX3mOTEiea4g6m9WFZpIKmCVFrRog8eFQpUMKhkODxXDOfgtobZ68TiVaA7l755dQvlreHwaaL9xOMbQ/1e0kUdlNwQA2rQpJln+nzAzwvKG035zjKtIqGOmPaRsouSmxYKaSdWt4JKT43wHFSAWMG40qcH3HaSTm9/pHn4WU35UNO8C8y/7rBv7kmDI14uxFVHSVo9rsSAArKIKIJpNbFKJCMaczXJAzOcl5QvC+q7gOnEQj2ZrAT0OfXXKvfOs2lKkVusLnMqxpSNUiTg9ReyaPxSaLTOBZRKpKQYmwLVScvy/c2Su80MYyNaR7RODL3Dv6/RoyKWkXEWUCYLizqDezCnNP5oMKInyX70JJwGQb/zFKDqkbfgDgGTBV6+zN4OLgeSfO72ICBydy6U4CNhrHmjqG9jzngEr0hGNpJQy+4fC0QLstFUtzKZCKRrMK4/8KAwgi35eSIVCcqAthHzTcXsK0W5FUPS/kJwqVjIDp9sQg06S9dlbF4yYiX+Ia9FdCLS2tx9phn/pZa/85Ofc93P+Uf/6AtWPzdUt1GGndwP37v8Po4gcGS9GeGaqymI+UUeLBFrK+0rLamuPXjMps9koQitcKUh12HtiDmMmHWNyu4Ru8+h/czTvVDMf2No3kZUkhvXXAfKjeLw0jIuE8M52H0Gj97KAzCeQcBCn4hNoH8i9aDbaEKZiGU61aOxSJhO4zaZuGSVLB4ngUDQaDGcNEcrs9y3Nh2MTxP9VWL3hWLz4znzVw22k2h/1Cq4rQBF0UmWAkARMRc9q6ZHK+gnyzhaps4xnVt2CfSgKW+t7G5TLlly6nx0HDqqIUUglcdap0yUUbIb9ufHBzdR3BrsV5ajN2PSUJTppJ5M90LdPbqOhSr3skcFSoBWey1tPXsQxmKyinEhD7z+gK1pswMUSCAEmOaW7kre33V5ruFeWJZJS70fSnWi9ZKJZeNKvP9kbp8AheVW+CfD+hFX8k329M/iM7eV8zyKsMSqLafplhMAGGYi+IlVRM/FGsx+VdG8lnOZGgkA3ctAagJqbzCdxj5oTP+YFQAUW+EtjGv5v9sJw9HXsPtCcfWvvOVfvfqK/+DNj3n4kwtWXynKjfgZVtcd5mb7vcvvowgCsbKE8znm3QNkFxm0TJwFTvPkk9UYreielJiVo3pvxczi6GbbT8RGRCrmbo/76oDZzbHtDNc69p9YDp8Edj/zDGfHHT+d2lSLLyPjUnrAsZBSwR5EHWh7RfdEHgg9GmFpLVIe/SQpWqiyvFeBv5zwc028FuON8p48215qaZWzM+XBBLmZw1pS3fpaMUwKP4u0LyLdM+TzG1n4uhfg8kiAUl640mZjiLeOjc1b0TELdpDKiKo9oTQMMQuxDnm3bAQjkdJHdBRyckdKtTp5Lh6HgqgI1Y2ivknM3ozYw4SfuTztV2eatzq9zjSXlHi8FEKNBuJDQXGrKe8UxVZaW+LqBFOtKe+lBi92WS2IXAdfa4aliLe6c31K0fUE9U2izoNCYyEdJNcmioN8bVyqrEiVRWs6AQDdXrKcIzHnOG0olNK7FyBYsCMRnMkiFUm6vH+0km2Izbjs6HEe0JUn7h2Ln1vKe/m6rxTt80T4VGiJ7nVJcbQOywanw5WIy8zOMC6TaCFGJUGol2d085/x/Jf/5p+xtAP/pz/7mxR/0rB6L6P43C4HgNsd4WIBv/7u9fdRBAGA/mlDFcFcP4jV2LxBWU2ohAJr2kmsx3pPMwW2P2oY1nPq96VYccVIMhI0Ym2Jz1a46z1621L6iA4z3MFR3Rj2nyjGdWT3I/EeqN9CdU+mIj9Kk1OOvL4RN5nZK0X7VCydiHkny4cZH9uGDAofFJyNjHPPcLC4B0N1rR8XmJOsJeUFJoQgeahsKxiG6TV+Jh4GscqW0nUgnUX8JACYMglbTVgrVljDvkQ/WMo7aZcmQ64lNST7OKzCCSfCtkdAVJ10EjLe+rGm1l6a0Se67EGGW2ifsLsJ+9Bmj4CGpJywJfPrgSyS/jIxXnlUFQitRe8MzXt9AraEriuiHbmeWR3a5ck8ec5jLAxhJTP2jkh6slLf2/axLXjkAhyzAz2KDdjUqIzYP0p+k5LX+nCQzbFNaXrZdY88kdk7ce8ZF0ZGfq1UNveUqdcgYGmsBDAlgv2yYv6VjMULhYwrb58l0qcdcVtQf21FgjzKs7b7UcS9PKDaAnaW2OTXOXapDjIbwf9+y3/tx7/gq8MZ/8+fP2f2a0vzVliC7hBPMxu2f+sZd39g4P/93WvvowgCeoy4g8evS9BrzO0OdehQSmEQkklonASCFDHbnsWXiu2Pax5+VuCeFzTvJ2wrIJfuPLEwDJ+sMJ3H3h5wNy16KKmuFfVtye5TS/ssMS6j7FpvhaOt8q4cT/pudRreaQ/QvFWMnToZe9g2I8w5KBy9Cmqv8G8raXstAtPVhJ+ZUx0pqbc6eQJEJ8YiaNFQFBtpa9bvhSo9LR5bPFJ+SH0amojXCWtHnqz2rJ9e881mxf2bJWrSkj2MmupaM3v9CHqGo0dCBrNUemRdSmv12MmQDoSeUmb+ZUahUUSjmFYFqdCnoSB+Zti/MAzn0iJUU0bWB8X85w7buROD8MhtUF7anKdDPWYbNnFSEqbCMq4L+jPFtJAFZztQWZ+RtGLI1vGxyIt4zDV0EnEPCvQHlnXye7mlWShMJx2W6MA9QPnwiKrbQcw+prmhP8ut0bXcA93rkygrFkmMXHaW4kGyHJWEIBQq6J5G0sJjXtXMbiWtDyWMa0X3o5H5Wcv+oUa1llRFARPvpVxCwfYnkc//8A1X9Z7/x69+iv15w/o9NNcx62Pkz3BR8fBjx/ZnkaQ/8u5AMtLvV1H08VwsBP0fRrBCH/Yz2VbsvSDL5jDSvLWM84L+UhEqR7mxFBsvmEE3YXrPtCpJV3MRqbRSVjSDR4UZSVmmudzIw6dRXIjeJYodjMjiVAHKu8wYs+JTX2yh2Ig7rbi9SjA4KhiPRg9mhPgb6M8swxn4hfgTqHAU8cjEWJ93lFhCNAlfS61uW3GZWbwKp9YcyDkJOChjtYe1ZVqWvJ7N+fosm1QGhe40yaWTBFhF8oBOKV9MLwo4GV4K5SZQPAzSgp08cVkzrkvQSrwPlSJURv5kI1VRXhpUEEn1OJMAYwYJimY8gnCcdBRoacHqUTod5SZghsQ0yyKn7CJcXQ/Y/UioHdN5TX/u2PzYMJxLu9fuEcWfzci6eaTOimoUUNIKjIW8v0qczGsFlxEMRALGMThkKvkgHIKk5fW8gn4lMypko8glVKeJRXYqjgp9MBQP+nQu00xYiOM6EmtZ1PbG4TaPas7ooH8aMGVgfz2DqHCXHVU5sXtoMp05EX/S89nTe7Z9yZd/+owmd7SqTTxlL6GQUemHl4r+iUdNmtk3HzlP4PhwmT48jpCaVahhkj9GzDrGVUEyWrj2WVcwW1j2LwzjMjO9ksHPDKZzFNvpUZjUFOj9SMoS5fqduPkenhkhBs0y0OUQo5F7MReJhZCZ6ruYxSca20Zm7yLzN4b9M4OfI2lnBrRCBZOX9LXYy7DJ6VpzeG6YZnnX7SVNLTYet5uIheHwvKB9InPrkpEgtP9E4Q6G4kEYZ75WUAgPob4NVDc9yWi6bAs2rAva54k0k21bj4Il+JlIVatb2f3DcbptLkcENdeEsqKorExgPgwU2TkoWo1fWKZFnhWQKdrDwgiGkgeJai8DNo9GJscuQyiFMyHg2mM70wziLRAqfZoBCKATTAtH96ykvdSESuru4UK6HmK2wQmpV+lx4SajTiVGKBVhJmDk6ecO6kQLTyaDtSFl30k5x1CJXiPmVqI9yMCWccWJHxGrRKwD1XlPXY5sd424Cz2ok/Owr+ScwyyCizBpineO4j4H9KNsuckdho1DLyY+fXpP40Z+8e6S1MnQkWI1ULrAV3/2lMWvDOc7Sf21z+Knef6zgHEVSUXEbg3VjRjkfN/xVwYBpdS/Bfx3gPcppb+Zv3YO/NvAF8BvgL+bUrpXMpPsfwr8t4EW+B+mlP4/f+V7HCWvTgNieMkUTzx3NQSMlnRzOHeE2lDciod786bDDCXbzyVC66ApHyJxYfCNprqdUCkxrkvBBtqROCtJRlG/OlDdmNMIrWGlTpOIdADzgYmIPirJ8sioYi+U5fUhMM0Nw0p2MTVIei2WX4phaXLqK6YRoZRuw3FajPYmLwRP814RbUGftQW2FTuycQGsH63VpoW4GA1nlrNU0vzinvmmZ7psKPYO22v2n2j8TEg8SYFfRA6NytlOFlGpR0KLHfL4bKvYvyzQTwuqe5nwM801Uy0YhDtIMCQj7zokUi6DikPEHqRlFwtpzUX3qNirHoTVFmotu3chLdNQyqCZo1Y+OMV0qRlXRh5mm7B7AS2LrXjzj+tIMoni3mB6CaogTDuh0uZ2miMLtYSleGQKTpnfAEdCT677O8mWopMNwO6PBKFcYpTg57KozXLkfNFidOL63YryG/cYAAKnUi8ZUKPGPhjcNhvY5EwolIrpXHCfVERmly0/vbgB4B9//YJ0W0IV0I1nvKtwX1ou30rwPJZT/VrRX0o7O7p44hOU1wa3k585tnm/6/iPkgn8L4H/GfC//uBrfwz8+ymlv6+U+uP8/38T+G8BP8t//jbwP89//6WHCpkxaGSmnF+U4rrTTZn2m2CYBMBSojqLT5qTY07xMHLWR3afFgzn0lZ0+4RJMubJ7QKkRPe8obwx2LsDcV7iVyXurmX+J1sZalE5/KJgXFkZpHFsM1n9gTNuRr5rg16bE/XU9qIrjxlBV3mmoewueSpsTrslkGTEvdLsn1d5Fz2WCLKLujZhxsDU6NPAE5VEuBQddE8T09wxe3LF4pWUSdqLzXqxk0Xma3n/cSlc9e6Lke4TBVGwDDWKsUV5ryh2svOF+shOEzOScS2sOeVh/kqfAoGeElUbT/V1sZmw9x0YhV9WjGuXB6w8ejrE4iivFn+FI3Hn+Pmjkwe6e5IISw8uoXYWtxfyVcyEHRVlsZ1eNyP1oZaSyzf/P+r+LNbWNM3zg37v8I1r3NMZ48SQWZWZ3VVd3S662wNGMoO4QEgNNxZIiMmiubDFja/gxki+4QKwLCGBGglBX9DGEhJYxhJisGmg7XZX211dWVU5RGRMJ+Kcs8c1fuM7cPG839qR1RldpqqxgiWl4uQ+++y19lrf97zP83/+Q+q4ehm5pvdGjxLZNZyl8cAj3Umf7OiaieshY5PtIl2iDQtZSEhCdjmwXDTsDxXxy5rVa5n9o4oJXE0rxpgITlPyVc4p7i5kSj7DK4cqPPNFx1nd8vPbS/pfLLE9jGshDWW/KClvVaK/c5KpdxeK43uBUHnZEgVxbLbJLWsabWZv/xR+AjHGv6mU+vCPfPmvAP9M+vP/Bvh3kCLwV4C/HmOMwL+nlFpPMeV/3POoFJ5pBoeKMJwVqFlGtu1RKWYqKgQpBkmwzUVu6wuN7Tzrj1uOLwray0QAaRVRp1M8IffH90rK2oqgx0f6JzPyIkNvG+yhw2wt2aYgZka8+UdHmBf4Osdbkyy/EphkJK1IRSHVTEYnRDA8dgR6iKhcTE/5xr93NWnlJZsBwiPlOGtiygiAfB/wmaG7UIkBKNuD7CDP2z5V9Of5yVY8a5KU9CAbhWGuxST1aGifK/IPDmTW0w+Wsbd0K0P3ITBozEFCLnQvRhpRTesuOYnHWkRXJtlv6zGIJ+JMn3IRdQphDSmZFzhRcH0uhJ6pXT65+qT23M2EMw+gWwMtmGbyfYgUB7mpZQ2nTnoEAR85YTMSKhpPoJsvZTUYMtm9K5L4ywpmYqL8O5+nkQDQOnI8l+Aak+S6vg4Uly2zqufhbkH+RU51nazBZjIKTkxNV0V8KduFfJ/4/nUkO8h4dHwRcRcOXTr5nAbLl7eXlK8zrIbhXEbj8toKeW2MjGn0NL24QR0/9MQsiKI0ied0z+nP2T6y/NKRbyaTjX/w8SfFBJ5+48Z+iyQUA7wEvvzG971OX/uHF4G0/pnionUzUAyO4aKmvyjJ9gbTPP4SEzNMDyFVRc04s6iQqKOtYVjq0zw6zoRWGzJZQe1f5egxEwKPBzc3mPOC7ODEJGP0oCOhztC9ZN6bVhxz9NzICRrSGDPAFPDpc5Bqk7IQCk4W5KaT1lAucGG+TZTh8j6e/P5OludKTuUwk4vTjFE8DpaTJ0IkP0KRaK+SdpRuusip6PlMJbxEUd5FTK85MKddJRDrYCQzdOkozlvGuWUYDIxyquheRFL5g6J+Kzz97OBSgpGsY0E6FFcpfJGfTvRp3WeTR/8wvbggv6MrhV7rKgj2G6Bpqx6NXrysMfOd7PKnFt/N9Enzb4+crOVEK8ApAq5ba8bFYzGa6MKmU48dzB7KO5EzT0VAOPpSJCZUvn/iyM46gtc8fHomTj5HubmPL+V3mNypQhmJOorOQ8HhfdkiZFtRFvbnQqlGRcJgUDYwHAvsg5VchCJgHxJF/bR1eMRduksBEolgH+xJUqyCAMZ6hNmbSHnvUR6a58W33n5/amAwxhiVUt+OOnzLQyn1V4G/ClDmKwECB/Grm2Sv+X2Lr0XgAnLhYMTxVtx0layPhkCwRk6eUuimWZO+R0/rIxLhRIgiw+LRoNQ2oGf6FLxp+kjxIFz6cSbmm1GJvn/+iz2+zhjW4qyjvFh12VZ8Dsb54wUnqTFpbegixb3MpuMs8QESMYQgEtx4RKp8imp31SND0PRQpnZViCmKOCNl28kcrHtAy2kaNZhR6LJTaxqNnFiz15q2z3BLScbVncI0Ga6wxCzK2z3dkL0i3yjOfiZRWrpJ6Ua5JeYGn1SQ+VYs4XxpcTNJDS7vAvluPAWqFrMMVwu9t70wtE9hXAXhQEShPJtmkoAL98J0Qs6ZMicm4w9SYdUjJ86AdpxIP8FIofD5I7tPMBD1yLy00lVUN4HyXgxuj8/zU+KUdG1CH3Zrjyo97kZsvKqddHLdhbACo5UtUVCAnzZAop/orySTIL811G/luV0diZVHWSEBxc5AUMRXHfFgmX8iysLuQq4j6ZpSpkXys9CDEL70KBFmGBHDFXdQ34qPgqunw+nbH3/SIvBuavOVUs+B6/T1r4BX3/i+99LX/oFHjPGvAX8NYFW/iFEpyK1wS2Pys7ca3Tow0imodoTCnExITSfuNTrKjexLQ4ip7UsZ8TJnT27DQtjQo2IMaS4vZH+WJ8KMKMk0/bqk2Ijjbcg0oVC4IqO61RRvD9ibPWFeCbcBsI1HjwawuEqKTxwfL7YYZQdd3UTsMYVIzOVCMrX42dnEbJPuIdIvH00tpzgz7YSUEjXJ/EKdOoqJ7KOTc3JIZCHTyykLcjFle+k8VNToUSTSMkpIH61Cot+mYosSEBSlcGc1biZJxS6JsLImYDqIRqd1WsTuHGYn0u+YUo6jUfQrQ/NMc/ggwEVH9Bo6gxp0MkMFdJQZeiufq4qC4Ef7yPabgle+KQGPNq0LUweiB06Ep4n+G3KEeNNIlNhJUbiytOeK4yvhbEzofXcVCCsnRh5f5xQb4YQMa9k4xIlVmQdUFIxlAiHF509eW3FtqN4JVtG8DMSzAUYNOyuksLnHrgfim5Lzn8l1s/sejGcO1WtZlyBr16g4mePoXiWyVLKeeydGLj5XdCuD9pHywZ+i6X7V409aBP4N4L8B/I/Sf/+P3/j6v6CU+tcQQHD7HwUPYBwxt1sJnsyzJFwP39Cza6LWKC9tuZtnjHPxE8h2Dn0cMCFgM4OfZWhnJdU4nQ6TWmxK0TFDJGsD2plEnEkLZOR7sjbgSs3ufYvtTDKgFCR38/2c7PkZ89cDdt9jd/3J2FOPAhBGk+bmTlh505wYlSIOcppnTWSYC07g6gkwEmVYdpQAEz3IdiBqdTLFmADCaJIVesI7srQ56M4FhPRlKkRaeOrZPp5uWGG/afo0a5ebQL4LFA8D9t1W7MKdIyayv6pL3NO1xHpfWIb0O2kH86899ugJuXgICt8j0q8z3LPiFMoaNYwLAbHikxaTecZdQXZrKTbqxJWfotUm0C/kgvh3l2L7jQ6Yo2Acphc0PztwMpWdujCdEqt8AX4xAaRSgCUfIBFqllpIOlcC0BGgep2RHcXKCw16Z8WNqkkjWsXpJneLAAbUqE/r2JBFjE/U5FnAtPKiDu9H3MWIrR1un5HdW+xR0V0FVO0xH1fMXsvmh7+wY5Y5NjfzE/tbDUnZqkFNgrXEMM23AgjbY6A/kwJdbgPFw4g5juj+T6EiVEr9DQQEvFRKvQb+pXTz/+tKqX8O+Bz4Z9O3/1vIevBjZEX43/pjC0B6xP0ehgG1mEHKvAfE3AJOunblAtl2IGQFrtKELCO3iuyhQ3UO2zlMZtBDKcGfS5lNp9l8yv7LmphQbkV3rhnmiupekH6fKfKdJ2roknOwTrkGwSraC8WwKMj3uSTAngJExFbcFdKFlFvJSjw+Mye3mmAVYy0AXn3jCRt5flcKEg0C5OlUwFAy1090ZpsYbRODL2sfO4eJ/NNeaLoLRZxN0Wjps4yTTVogV+AqjZspmZsrhYoZ9lq8BJXWEiDSdcRjg3nI0Ms8rU8j+Y10VeXtINyIFCASc+H2d2tZt7bPxIaLgNhw1Sl3703J/FaR7aTVn+TWE4sPBCiU3XfEl0Jj1J3G9AKgFhvhYUydkB7j6fMda2H0uZrTHF0nb/+oZUMQjaD+3UXEXw7QGmafW8rbiK+U4AaJxWnax47LNklUtBLHHtOI0s+fj6KEfMikACwd5AG/iqjcoRUYZyTh+CBAXn8ZwESqnxbYBh5+0/PiBzf4qHj7dg1OC78gQkSDDeB0Ym7K+1DeRepb8Trsk6nO/I3DHkZipvGzDDf/9pngP8p24L/6LX/1n/0V3xuBf/6P+5n/wCPLUGdr4qFB9SOhTOj8UWyoUQrdDUSfSzTVKBpy5Q0hVykjTotcMkg8Vn7XYPoCKGkvZLV32vVniuPzb5gzjrIW6xdQPchFMiyMtLl98syr5TSJmpOme1hAsJbsqMkOYlxpeiGbDDNJ2p2988y/8mlE4NSRuBLaQp8cYk2bdvXDI/FjwgIkBVnYiicEeNowFCnDL7kv2zYwfxNQ3tI+ETR/AjJB4YpIfkzrw/oxcZkIx5cZ2Y+encRNtouUDykBqReqcH4IxEaR7T2283SXQnAalnLDCM2YxOSbTmeZV4kK/aakfBD+e7ERsovP5PcVa3n5jCbJr/Ky88/2j9JiMwghafZVJ3hDcmaKVtM+LTk+Nxxfpry+W8Xys0D9rmesLYf3LN25rM9UAvFMD/nHhdiR33sxEjXyGaNIicScVp1CWvLYvSRbD+uAed5gosLdigmKPx+pVh3fu7xjnbd8sr3g3c2K2BnsxorXQimgY/VO5vb9b3e89+yBd5sF43UFWcQsRmKA0FkpAIA5aoo7GZeq+0h5OxJyTXcu79HiiwE9hoRbJSOa9jtuOR6sZnxxhtlX0PRpLZfjs1p87LwnWoPqxDsgzMvTiSGoP/Qrg6srittBkOKku6+uB1TI6Jf6dJGadLN156LkUoA9iPtPNDo5wSq6cyOJvskeSrzfZXLQHswxnVYzjSu1hHV2QUA+LYWlvTDi/dbG5AAThOeQiZhlaqtNG0904Ee23aP5RTQyWkyoOWqixkYaayiyx87BdIHZtWPCJ9DCXPMVqIXCHeTiPpFzyqRsW0BXe549f+AvXX1BpjyfN+f87O6K/dsFunuknurBopzYd/laiDu602IvNkJMr7F+q2XDME6iINECRJ0MMZqAzhRmFBxnWMg2IynATytZcYUSjKDYebJ92tgAvsihMIy1Zf+e5fCefKaz14rVp47ypqO/KNh8L6N5EWVk2SpIqr/yVsxSzAhDoi67WrwSBHzjZGs/LIX+m+01+Va6lJhHxk2J3RkM4K4Gnj7d8peffE5lRv792w94+9UZ9l6owqaX3y3fqLTxgeP3R2aLni8/v8TsDHEeMIuRMGpir0VEoRBx2K0WXcldoHhwwq04l6Db+l1PVIr2SS7j39FjGgE9v+3xnSgCkykElDAr0Mntxi1yYmYw+w7VDkSjJdSyH4EFviwZ5iLrJQFpw6ykvnHoMTDOLD6NArN3LtGTFWOl0T5S33j6pWH7fUX3xKN7+WAnhpsvFd2l0EzzJDd1tTCzXCUzenUdk8GHors0ZAchKim5B7+h4hO031ihHeepbZ1UbCFDdtt9QKfRRSLAND5TJ2BvXKgTC05AOCl2hxcmceYjZtDCE2jiacRwZVoV5jCsSFuIxDm407hKTFht6Xg+2/Hb88/57fILsovA1y8W/N6vv+LNsMYFKQT344zXxzVvtkuGwTBuSrK9lnCWPp4AyqwRJuIUPRasws1MMlh5PO3DZDQ68fIzyYfM9lOxILX+Qgvuzy1uNhPGXWIzTjLwYiO23uWDePbf/2jO4fsOVfbEzog0V8fEhUh4xVzhvXALQvaY/iMqR04cAl9Esp2mfhtPPhDFjZHDYBHxT3s+fHHHP3n5KX2w/Ju/+A3cHy5ZvUudnJc15GRw0q8Uxw8dpna0ny0oDvL7EyHc56hREVdOLMaP9iT1lrj5wLiUXIpi6ymvO3xpaZ9laS0tmM64yuhXBv7Wr77/vhtFYHBkuwFfGJQS1aCkzYphhJvNyR969K492XXrzZHSBVSo6c7MKchyWChcmVE9TBedlvirUVDT4t5jS8kB8Jli9vVAeW/Yv2don0n1Jypsm4CnTmi6IZdCYFJs9XjuGZ8ExlVGcSsYgM/BXab05FaKRtZGif9uHGNtcTONyqC6HtGjpV/pU1zaOAOiphg9USgQFHcjvtCMSysmGkou2BPZJsEnZpj8BYUOa4+ik9eeE4pf3QrPfGK0+YITt8A2irE39L7kd/17/Oz2Cau6ZVV0rPMWqz27ocJFTa4d+7Hk7ljTHArYZ7I2u46nTD7bSAZCNOq0FhwXcsF2a4mGz5rIMJO16rB8VG4K9iEncLkJJ/MTV8pYNy2k4zK5G81kPao9p6ReX8D9jwztK4dZiumM3+WYo05dhUoU4XQRatAJm+guFa6MJ+OOydqMCNW18PC1h+YJp+Rnt4qYZy2/9eItT6sdf2/zHn/4yQtmP89ZvROsaRqPxHlZ0V9C+/6Iqjzqq5L6rSD9UUdUSIXlyYgpPf5oTwfB5Js4zjUouYbzmyPjec3xZSGxY0fRYzRP7aOD8rc8vhNFAK0wbx/g6Vr46G3yqU9hGK7SjLOafJcLg7BzCeQKFLctps9pr1J0dHK6bc81WSOBFkL11RyeW/JjJN95TBeItaZ5mpE1kdVnjtk7MasYE4FlnIu/3InoM084QqcIrSYsA+55z7i0ZFtDeSNWU66Udnb2LlDe9IlLECgbR9hqxgSw1W86tC84PjX4SsaHcS5rsOz46KBjeo991+Mqgxks3Shce1Rq80sxIqmvA8Ek0Muqk2vOWItC0R5JlGIviU4z0QSMc35JLef3Ge1tQRsXvCkmXbyAcmpMevyDGGCc7UUMVF/32P2QPBK0jFa5SIuPTy3dpejuo0H8AY9ibDIRqIKVWLRJ3JMdpKDkO08o1ElEJO9lYhbO5WSWTu3R03//gaL/fsfFxQE9ZBwfKhjltU9U7klVaboE+BpZIYvpSJRDIHUAEygs/gwqxZJHQiFzdlw4vvfqhg/n93x2OOfHr3+E+bRkda1OnUWwidOQpY7lLML7LbSW8ucl1bVwG4ZV6h5txD0ZMXnAH62oQntF/VYxexdSxxcobjp0M9K+WtI8sfhcurvmwtA+VScrMld9x8eBUFjC2Ry9bcTTvjCYJP0185L+okxBj0I2yXcjdtsnaqpBD4HifpTV4Fwz+fGHxPW3TcB2gX5lGOYKV1jygyCuIDHSetBUd57Z2/FEg20vRf8tbLVH1pbzEJUmdJmsiLKAL2V8qN9Fik2kO1e0Fxo95uT7EVdkJxxjulFCbijuRlyhT8EWUT2ShFQU5N72lvJO1IaidsvQTuMzyFH4HpiQ6z4yjgqfxnd5zTLLCj1XuP/ZwaFHjekNZhRSi/Qe+uQWPLWeejDShSSWpPZy8+SHQLZ3yVykR/WeUGe4OmNYWYkHX0qEm6uktbEHccZByc3vZvIhSCCMOomBpP2XvMZxbqXjCY9j0EkMdJAxwZVi1dU8i+gPD9SZ52E7w7dCwpE9u2QFmF6dXICnriJr4mkky5ON+HR6Ri1FfVxExnMxRokRlI7Mlh3fP79jPxb82z/5IfZtTrF9BB4fiVrgLmRNOV6M2MWI2+bUX1rKu4mrkBSHcxEnKafx2ww1it/g7GvF8gsneocI2U58M9oXFc2lEam5hvZKzHCijqCk8NrmcevyRx/fiSKgIrTvLSivW/Sxx61rsQjbNJjrDdWxontvKW4uhaI7zymUwm57TCsyXCqD6QKFl9RgX6hH+upMk28c9VsB5SQhRyq9TmaNPofmylBuFPnOkW8Gim3G4bmVpNhR5rA4RLGYSlTdYWEYVhpfTXJdLZJirWivoHlmidqeYqwm9Ly8i+R7uSGLrZwow1KAv4kaO+nQg1Xs388pbzPKh3CS7Qo9NjyKrKJ0IW6W5sqjnETZMVF6KylO+cFgDyP5doAtlEbh6ox+YxMZZ1L0PXL8iRNNOp6KmRnE5hwFfp5DFRkXGd25uBOPc+SmelDUb4QsBTJeuVrQ92yvTq32NO5MhiDBKqIysh1KGoBxMRWoeHJOaq50otE69HIkjIbhmAZvDTiFOWiygz6NDROPYNpCRJ0Ca5KhCvqxQIyL9LMXoyQOOU216niyPNA5y+/+4j3yr3Nmm2+Qw/wkaCKF3nhUJRbrajDEZChi+oQnXUTCi5ayFlJPsysx95mEobZC+Z6/ldllnMl4259L1Ht7qUWHME+diU3JSCaie039RlPefMc7AdU7st1I87Km/lphdx1uWRIWpdhiNx3la9BP5gxrKxW2NOgxw2w7tAtYqxnthIgGsoZTAOYw1wSbke9ktWiPinEpdFcx55BWdKwU/UoDVnbQm55V5zk+z08knckk1DZycxUb6Lea/kI894eVkIKkvU9klXmA+Yi2idAzavaNoXxnyfZGYtJHTmy4fC9zrUlkIVEdys8erw359nFVGFGpYKR1Yyd8gWgmenJS241yMfcXkX3UjFVF1sjab1o1ToDjhIQHI/+z7tEaPTsE8T8oZMPhKpNu4AghCgNTkTARTu7EwAlIE8PQx+IyFbtxnrqClPt4fPrImBRz04ivJFJeTRZwKm0nzgfqWY9zBu+lGyQoVG9+icUHnBKBxF/xMfwkmmRNv5GuwOcyRrkqQhYInZG2fObQOvL5Z1cUbzLmR/m5vpgYmvIc7bOIe9GTV6NsDZwh3BeU7wzZgVPSVf/U8eKDO+ps5M12yfG+wt5nJ8/BfCerS5ck1zqNRGOt2X2kab4/MD9v8MeCcBDpYswD2U0mtmZ72U592+M7UQQIgfyTt+jhiu6qpLgFu+sIdU6YpULQDeTXB/RQ4WoLWpx2VZ2hmxFz6CGCW2T4XAshZuMZ55bmiRXyytxSbDXFgyPfJNCqEq6BdsLk84W08eMsp7yT0WP2ZqA/z2jPRNIr9k3qsS09iBuRq4TKK8g89EGqcewU3hp8FlE2kNcDdhkYzg3DaDjeFRS3OuUgCFEl3z6+PSpwsp5un8ppn+/khhf0XfCKYSUrwHwTqa7lBh+TpLZoBQwbVmk0qOWUdTNxSta9qBKLB7Cb8LjS6+UOHhZGbowysfVaR8hyQq4wreg3RJsgnAWRYCt8YhJOJ/sU7zXRfqNJ69YO+WJMTj+ZIpbpexR0l5HxIpFvRo0adDKf8RSLHmsDw2BwtxX5naHoplFIdvEiC0bGJsXJRMYndyAVobhTpwIgUXEwnAnLz1Qe3xuxF7opCPcVi3TzC11Z8CPbygbp8H5APevITKA/FKiDOUm2CSSnoYh/1vMb77/BBc3PvnyKeVNQJYxDjylhqo90a3NSkE55nPd/LvLyz77hVTbwi+sLESLVjtga6l/kzF/HpI+B8u4fvYrwH+1Da8gz7JsH9LCkfT4jqyzmOAptuMohiYvMcUAP/mRAGgopCKr36M6hC/HN94UWT4D9yCxC80Tort1ZYhnuw0l5FoyAj8pP5iHCOAvG4ktNeT9Q3g0Qcxqr6dePTr/TOud0Ux6EHWcGsbDWw6NRSSgCarAMNqMvPaYSDTmLjv1ZhXlXpLY3JgqujCkhkxsnS0aWUYsKTTnF2CjyvTyv6dMKMcl186PH9Prk3+daEZtMxBx5TY8a/HwLy88d+U6irINR5LtR/B76LGkrwmlzQ4yMtRG3pTacfAGmfEQBLuX5fCan6sT7V+GxJc8OEWPAd9OYIa83GhKA+bgFwWmZ8RXE2qMLz9DkDDtL+c6wuBE+BiQMxEu+n04+Dt25pjtPTkN6QtqnNCcBVceF/P24DlTPD1zNWt7dL9EbS3k74SeJCp5MSaubSLGNdGvJvAwzD/uM2BjKB02+l+9zdVolFhHzvOU3X7zjppnx7pNLZp8JLwX4pb3+lLxdbAK2izRXhtu/7PnhD74iRsUv3l0SgiarB/ybmtXHGtMJLT0/ROp3Pdnb/bfeft+NImA044tzudj2HeV1Q39VM84lv88eR4wLkoibYquVj5heQDxfWiitiI6Sjt2VmmGusZ38jGIrXlKulg/aleYUKWVSQs04E4RYD5y890KmGBYZtvWJCCSElv5cEGQ9Cjp/fCn/f9or+3SKmS5S9WBbTftETiY1CFMntIbdwZKvexarlmMW8G9K7FHGAuvSWDv5F2SP40iwMK4i7TMpNMWDPHe+TWPKzp98EYWyLOOOuAPFE8CW7WV1N3HvJXDEiDNQrjC9Ib8fyA8Dp9g38ygIGmfqRMGd1m2Ta/Nk4OlKYe+B/C7ZXjAHnX63YDjJfbNjTDLryLCUziWkmC/2gtRFm+beo8XcZti9dEbK82gmOiYhUyOv5/BE0z6NhDwkxP+XjTdcmaLLTHJ3fjKwXh/JrefN2zOKXxSnbm9Ypc8+5SEUD4FiF+iXknjlqojZm+SEJMV8nEP78pG/v3i258OzBz5/OKP9yZr5tRwsIcWQRTVdS3Lj61EAvsNzw/0/5nn2wR3XhzmHY0qLCqA/nrP4SkJMhrVwWFYfN2Sv78A8Er3+6OM7UQQkAEP86+wyJ3/oKG4a+suK7iLDzA1FYbDbXrT+/UgsK1wpABcRYjIYObnFIDdwO1Mn8oxNJJxxJhdvyORi6c6EUiwBmdMqUG7w+jagYmScmzRfS8V3c0V/FpJZh7j0DKuAm6nT+kxUfQnxboWUM7kPq8qhbSQ4xbDPGZpkyGGEAORLOaVJ4JdOBWFYyw2lRnVaW/mZZ3Ry0RGn98BQbMQZqV/q04003fyTbdmUmCRpubCpDCqYk7dedqHJ99I5QdqOlCnQI083nAdvObknQQLXSAXVp3jtKO9LdnhkMDa1OhW34kHeWzPlBlgFpEKWT1Zl4HPxclRBDEeyY/IYWMs4ZVopClFJzHx/Ae58kGDOg3RDE0Do82QAmlyAQh7Qi5G8cGzu55jrnHIn+/vmqXQP2f7R42D21qGHwLC2HJ9ruifyPtmjAHquThTjyw4TNDHA86stL+Zbfn53xeGzFQbJGVAxFU8TKe40+S6erM3GmaY70+x+4Fk833Psc7zXlNXA/qGm+qQgO4jYSgWYfR04+/EW9fZOgm2TJP5XPb4TRYDJ+tko2quMUGjyzUi2G9EuMqwszdOCrLayJhv8CTwclznaBdQYUEqhQ8SMAdtoxqWhT6dcMMLYsp1QgIeFtItR/bI1WL6N5Dsx5WyfRbonmsVnkuYi+38pDuWt3ODDOhBy4XIXTjOuYvqaErtyI+DPFKFV3Ct8mxx7Z4FYpJVBUprF5DYshUB2x9HIBZJt5XnGOQwXXpBvmV5ScKoUgP4qELNIfmspHqSr6M/TSewTZ16LV/7JADMo1KhR/UQplk4o2nj6e9kghlPWgXcG+5mQXHRPUkQmFeV0o40kxePjKHOyAo+cdv1mJxfvWKnEkBQjU9sKFjIZavANkBE9hYyI+QcB1Dit5sCvJP3XVwKSVdcqFfmU91cHYhlQhUfpSAwKekO8L4iHktwJeax9Kc4/J9POfaS6DdRvB0Km2X6Us/t1GM9HVK+xe9ECDGceViOzRccwWMpi4L31hnnW8/vvntE8VKizAaeArVixoyG/l/Eh5El8lkuB7a4C9rKjsJ550TN6w1evz8nfyAEyziQjcvWpY/bJBrVvIM+JRS4anG95fDeKQJQLzvQBnxvaC4urtIhUGk/xMNKdZ6KQKgX0y/YOu++JmcHNM2JuhEgSI2oIZONI9hDJ1wX9WSYXVzG1wxJLrkc5CZSH8j6Io8xc0PnZGwGUDh9ENj+C+WeachNPhh56jBQPKQZsJjHj+YM48LhaJJ++mMAiORFc/dgO51uIyhCyVKSKhEjXgfHpCKPG7GVGjEYKgptLcaiuFaazQrLJk+AmIik1KhILUeu52ci4ztGtxs891VVDVQw0XUG3LTBbi+41QUcwkVh4otKi1Os0IRPjC1M7ynJkUXXM8wFN5DDm3G7nDOeekBmR0Fbxsah5dVpTqV5TPGgpPlbeb9sgW4VBVoW+gMN7oL34G+R7+TufS+cW0r8LtVi3RyN6Bz8D3TxqFnwladOK1OUERbaT5OjuIjKce+qnR0od8V6jdUTrQHMs0V8V5NvEYZhHhqcOPRvhmJHfGfKtFIB8F6mvB9zMcvMXMo4fOMgCem/RvWI886jKCwBsA95rZlXPjy6uObiC3/v6BW40LC+PhKg4XM+SWClidxrbyPshLs2PJiJh6fjek3ue11t+vrni7ddnmK2V97QRJ6HVxy3ZzUHuq+zRn2O8nH/r7fcdKQKge3+az8W7T5/IPJPpp3biTOtzg6s0dm4pbzuy+xY/ywm5IWQW03t8laF8EBbbGDCrjHFmTq5CJoFSk5gjmke23zhLjjbbiP6For2SCDKUtICuJikQI+WNovc6hUkKK0+IRal1LeWCzw6kkBEeUd6BU7KNH2XFGLUizCPlqiGcK/pNidna09qsexIYVyJfLR5EUzCdrr5Mdtv3lvhgBfyykVAF1KDpjjnOaVxvwWmhvNoIeTiFgZIF1DqgTaDMHTEqmkPB8XpGUxds6wFjgmQcdhY1d+iLjuWsI7eOXVvSdxkhaIJXMGr0MXU5mhPhZ8IgQiZAWcxEb6EP6fc8V2k+Fn8C2wiOIMEr6VRToFu5afQgBSBY+bq3kVhEog34LGJKx2rRsCgGOmdphgxjAkpF9m8XlF9bUXBW0mXFPHU/NwXFQVp74OSbuHu/5PCehNCYo0YPUszdhegApmBW7zWrWcuz2Z67bsYn7y4BuDrfs28Lmtsa1SWTnCZ5QTaCJY0LhZunbIuXHR8+uWeRdfztLz5kvK2kcCskpv2zwPzLDnMcCPMC3TlpnBYlmx/OObyn4W/+6tvvu1EEFGCUJAhFQBl8ssPylUb30g6KhDeexof+zDDOa4oHR3YY0b1nXGaMi1yKiRUAMWucsKsyYYH4DEmpDWLKoTtO6bsSCpJMKKqEC7yNyWE4WZollZ8ULVGh9ecx2T/JaTH5+csMm35ND8Yn1Dvt5CezTSCJaRT6NqPtDMtne55/dM22LXl4syS7t7JXv3CM52A3lmybZMJpnz4Za4iDkMzRfpYkqO8KfJ7LBZ4H8vOei6XsufZdIaeh8Xxw9cCH83uOLufjzSXHTYUaFBFLl9h30WkYtGAhneGus8SgUIniipJQVtMl1Zx6RNJdnXj0NqUQJXm26cUmqz+LsBrJ64HoNcM+x22thKZEMAdBFXX/SDMWXEH+PC4CYS0hLFpHimLEmkA/Zjw8zImNFVQyKOzGMNvIyNQ8D8SZA6cx0/MlV+NoYZhFTCGFd9raPLo8ReJCTEn80WJmDmMC5/OGF/MtX+7XvHu3RpnAatWwOVT0d8m6Lg/k9+aUyUiA5rmie+qJlWd+0fBiuePNfsHnP30mn8XCoxrD/EvN/LWnvHOETBPnOaZz+EVB86Li4QcmjaPfcZ6AGj3KiVe9aZwMi0srARJJX64HIaKERG7JG9G5u7lhWFtCrsmOkj4U8px+Jeh/LBQhz5KmWth2KqpHQ8gEPj2u+xTFPmBG2QJMqLVtZWfrqpQWZB+ZZ9lR/m4ysZjSfbRTpxtzWlGdvOjlaWVcaBLrLleJZafQbzXtZs1XH+RcrA88ffXAdbWEXYbqtGgrypB8DtUJiAtFIM49qIg6WPGePxjxoEPWitEqyAJZ5glR4YNmHC1+0ASteLNdijioy+m3JfpoHr0aOyHfaK9SQKcCDKHIcFV8XA+iTtsC0QakgpdFwiKFdLYW3ZhkkRUZF4FYe/LFwKzqMTrSjRY3yibFNhqTdvMmUZu/uY4MUTYm4WIkr0bG3hJ6Q7PJsQcjXAidzEusdBemE3fj4UwwFtUasp0UrwlknjqM7CDqRNuCv1CJJRokdhygE8lvvupZzVuezffk2vHZ9pybr9aoPFDNBo5twbDPIXU0xeuM8kbGkPZSjFjUeYe1gVndC4fgF88xGysp7UuHvbPMv1DUSRQ2OW5jFN1Vxf59y+774IsgOoj2O04bxnmyz67xz84Y16UQNx5GXGlO2XeTiyoIU6pfa8q7SPV1SzQaX1lx3ImRfDMSdXbKswN5k0BO/mGuGWecWFRjrk+KPPH+M1S3QcaBUbwI2ycia53YfYdX4OaiNCMqZm8D5UPg8NyI6tBO7WNixrUTS21yyomptZS4sewQKQ+B7ChzoG2gvIdDO+PdkxJmDmUCcS5kkPxebh5fpwuxSO0roEyQzcNqZBwU+YMUjXEVEj8ggtcMg+Wut7jeElsR10cNx9uaphfBjbIR/aTj+cWWyo4cxpx2yDCpKBy7HDcatAnkJtA1OaG1qEGLD36a6aKCmAXMeqDMPENnUa3M6tM4gwYGzfBQMjyUkvGYDFxMq04houpx05ZGhLQdqCPuMhWAzqLuc/K9GKXGxLr0dVpXRun8fBEkTgwx65iMO2VUicQEqhcb8fzXA/TnisOHXm7+mAqrjmTnHS8vtuTas8g7tIr85PYJhy+XYCLF2UDb5ESvMLUj3BXMvjDYI/Rn0L5yZOuOwkSUiljr2e0quCuwJ5ejSPHOsvyFmIUEK9fVxO04vsg5vKdpn8jYpHsxb43fMOv6o4/vRhGwhtj3mNudZAFcVqCUAIWFFhv5EMEnvXwvph/9WjwIiruO4t2BkFv8TGTIxWYk2JR0U+pTJsBk1jmlw2YT5bPk5Px7fBnpzzTlbaIUd4ASgceUUFxdQz/KKRKvIipoZm89s7eeJhpJGZqkvmlvDWLySVD0F6kzqARj6J7ICrHYSFcxhXFU1wi/YS5FLGQy57tZRCfrq1gGynVHlskMH4Ki7zPiIBuIbkLSSwH5jJEuoMpHrPF0Q0Y/kxM3yx1lPuK8YXQyq14ujjyb7Qip3Xg+2/Gs3HORH8iUx0dNE3L2ruST3SWvNyuabYXaCcVbeQFKYy4VuXuQ7sK26pQTIGah6jHZt0yzsJX3S4WEqRgZCaa/94VsIzCROHNoGxivxRE42yfuwCzx9xceTJRRICqZWpw63cimU6i0EXC1bGRswgOCkVO6vwrE9UD0CnqNioqYBc6e73h/tWE/FhzHHBc1r+/W+C9rlAVWI92+kJo4auxnlvkX8lq23wf7/QNnxcDhWOI9GAP7d3PJXkjkM9uoE615ik+rbzz5ZqA/yzk+k2yKYS0/d9pIhSKeYs5+5e33j+Yu/tM9Ym6JL65QuwZ17MiVYriQjsB2XsgrGY/WU4nmKfOlxtU1+TYnv+sw7YivMoLVSawjNljDIsPXQpgRy6VJpDLx2wXIKx7kz+3TyLGUFpAo3188COW2u0jqta0g/76USh4yQ3knpp6uTCGZVhKEpzywKYy0/voxQyAaaZkPH6RQ1OtIsUsf2vQfHU8X6pQW7OsgLWyn6Q452Znjg7MHrsoDD33NLx7OOWwrmHz2TKSqBi5mDZnxNGNGiIrzWYNVgZvjDICP1vc8K/fsXMFnuwv2XcHbh5eMTQ5eUa47eAbPii0r06JVIERNVjie5jt+L3/BT9RTjmONchpccgfaWNRtRpE2AjGtNn0BoRRDzpDFb2AEoA8CEPsiMs6liPg6kJ31mOS3F6JCAa432M/Lk5cgpATmMnU/CnTtKMoRNxpcW6J7xSRQske5gdy5A6/E4ceIv786G6hmA+tspOkKGVEKERMt1w1P5gfeHhc87GuUivSHguxdho7gTURf5yeexPwLCWFtnho2vzXywYc37LqCh7s5DFLs/dGgsojuZBtU3ok5rhmCmOcslPhDjIHD+yXHZzq5KU+GrJw8Et0sSP7Btzy+G0VAwXhek00hJBryTY+fifzWDGKQ4EqTorMjPhNjivwgq8VxaQl5TXHfy3Ygpee6mUmuNl7IPk4x1LK6yvdyoche+vH1FBsRFHUXcpGqoBgKTvzzyW/eDI+7cJDTrL0SdNembDzlFD7K7l9Shh6ZetlRzDCm6Gx/FWnfE5zDf6Up78NJ/CN59x7Va1knJRARjzjkPOS073L+4FnNkydbfm19y48ur/kiP+PQFXiv8U7T95Y7agC6Nsc7zWzRcTFrWFUdxyHnrpthdWBmBp7NdhS2ph8tPvcY63m23vGi2jI3HbXuGaOhiTnvxiXv+iV33YxhMCin0W1yRUrFbALxfBWI65HZqsXqIN3IMSe2hmxjRF3o0wYlycLDUTIAQqUY24wxICCkiTBqyjeW+l08Abf9WijHrhaC1vmLLR+t7+l8xic3l4xWQkX1IN1H+9yjL3tMVPh9hrscqZYdV/OGp/WeEDXboeS8bumd5e5Q45yhLga2fcnmUBG8xg8GdTAnwNe0ye5+Kyw+Ijz80BD//J4PVnte364JdwVmUBDUKcHZ7DWzryLFTmLfoiKNm8nyzEf272e0lzLuuFkUabuTDisq6QKynThmfdvjO1EEVARXGVQsMYcBX+cJhfcopZK3viDuw1wnrzpp6dtzRbHTVLdO/n6Vkz/05NuBQRf4QjMsEt1Ui/Y8a6BfyagwWXD7iYyS3qtsH09ut1MYpavS6TSQYrAiqiBp1DlJW8cFJy46LYQmCXfWQuKJWcQtwW1l9zyFg9qjYsxhfDqwXRv6N5Z8IzeC7iRIROytgaAIVUh0XI0ZFMVG4ZuCd80526uKRS2VyOhACAptAmNvORzyb5B/Is4ZMuP5cH5P6zPu+5qHrsblmiflgVXWoYkcx5wPl/f8+uyaOlkY37oF18OCL9sz3h6XbNuStstwg03cAYhG/PLKasDowFndsiw6rPI89DVvN0vcaIiDJr8V5mPIZfa3zSPN2ZfyXud7QzCGaBN70EB5pyju42ls6M4V/WXALzzLJwd++9lrvl/f8Hl7wd9+c0W3KaEUINI1BvJAte4wJhCjolgeebncsc4bMhWw2hOi5qo88KZd8tXDimGwLGYdpXW0Y4a1YcrJwS0gaJuKn6a6FuS/faI4/GDg5Xv3PBwrvvjZU7KNFg/RqE4r4+wgVme2k5V5v9RiHLsQdaZpYf+eSWKwx3AUdZ9RPOjHAnCvT1jWtz2+E0WAIC4p48xCAN07xnWRnHQCuhcPftOFxOUXmm9+jHRniuZKlBzVzSjUz8pimmS5rCSRI1pwVgDBYhuYvXWMM2mRskPAWvC5lk4EAY3UIeEHmTopxYAkOX3MHzTJ1ltsuxKanKWTfkwsvdM6UFZAepBM++4CsqPwy6ORXXFwilgGhnVAecm5zzcaNz4ab+gBQm7o10IYmrz99Qj5nWEYZtyU1WkVRkBOTBAAbjLaiDB0ljfbJduuxOjAquhkfz6U3LZzXND0ztKNlj8YnvLp7pyzsiVExa4v2aVOIwT9iDeUI/XVwDLvmWU9z6o9C9sRouJ+mLEdS94elzwcK7zTxKjAJenuIkCA8kasxIaVvNehkLZ+2oSoKFuCfCt79f5cHHuGS49dDqwWDd8/u+PXZjd4NP/Gl3+Om9drcfvNpRhPhRAN42BZrg+8mG+5Kg8YFTm4HK0iRkW2Y8EnD5dsdjWuNxSzgVkxYHUgN54iG+lihtIKkyt01eK6jPxtgelg/xHYX9vxanHk69s15tOS6jj9MjBlDOqRR++FRHFvXkTc2Sj5Bi5FqynonjnKq1aaodcz6reirgyZvDeTGnTSsvyqx3ejCACmFWdOXxmxFN/0DOcl49ygaoM9+iQIEZlqdyY3sCQPwfZ7mn6VM3/jJZo8e9wGhAx0H8m8iDzaCyMBH2PE5+LxZ7uQbKtlHal8xNUG5xQ6BzNGXDElA8sNZ1PM+CnwwoPLYDwLDKVneLBU13IT21ZEMtOHbZPmIKY8gukxzcToSFg4xjFDjzJLTtbhkx5eJVyiX4sDElGYdvlOEa9F1DORkyanZV9KyygIuawKlYaht4SgWM1antc7Frbjul/wer8+FYDmUBDvCzYq8mYpe/joFaE3kqYTgSxSnze8XG15NXtgaTtqM9CFjK/aNbfdjG1f4rxhdywZOyucg6AE8DwfUY2heBA3o+ZpZFwFYhVQueQ7xKOluLZi/ZbGqcMrqH5twz/9/Auel1tKPbL3JXtX8v9492u8ebdGPeTYXsk2IIHAE8KPilysD/z5y694UWzZuZJPjxd0PmMMhm1XcmgL2m0JXmHnI8tZh9WB3lkOfc7opeNcL1rqbOTddoF6nYOG7W/3/JkP33DbzPjykyvKtxbbSbfjKtk0mSRIm3wOptDa7olYmlc20O5K4lYzziPuZc8PX73j5jhj+9NzFl+IetBV6uSLOPFZ/mFBgd+JIjBlzOneE62oAu2+J9/09OcF40wLE7CV2Uhov1MwSGJX1YrjS4mTWnypmb0Z0J0/gYm+1KgYH0UjC32KCUcp8oM65dW5SnTx2dGjgqjmJoPIYSV37LSliEZEKr5MO+XEUisWPXE+cCwryrcmjQcK32vi3DEuZB0ltGC5H22rQGkJ2giKbD7gbKTTGdlOP6rMEpHJjDK2THZm41LexyyxRm0bUXtkh24n0ZAQpibkPVaeohzIrUepKK2tl31SiIrL6khuZCd3M5/ztlwyTMQgICsdfVSog0WNCr9yzMqB2g6EqDn6gs1Y81Wz4u1+QZE5lnnPccwZewv7DNvopACUzYdtRK47LORUN6uBshyJUXCMCLh5YDiPxDJw9nTHf/755/zW7Euu7J6vxzN+fHzBx7sr3u0WOKc5Oz9w/p7odN/uFrRtLmOSl3XDB0/u+YsXX/Be/sAYDT89POU4FgQU265ke6hkbTkqYu0pq4HcCM+iHTN80CyrjouqQRP5g6+fEb+sCbPI7Lfu+bXVli83a3afrik3+nSQDGciWTatPrkcTUSkqMVuLH/vyNPVnrtjjd4IE3T+vS1//ulXbIaa+3dLFl/LZslnchjh0gFoxISkuvuuawcAcxzxy/x0KoYywxx6ituIL2uGmaTyTP79po/Ut14isReiGuszRfs8MC4U3bpkdu2TqagnGnPiDUw6cOtkM9AvNc2VOrkDKx9xycJJDB05mZiaXm44FRO9s49kR5UEKbLCwiv6Y47OAixH2jwIwSdKC65swD5taBY55sHKCT+RXiLYRhNbzegVejbiVz6l8z5+X8iTAUmmKLap01iJe+2wE+EQqBNJacI1Qi6rpimbb6gMrjLk1uOD5u5Yc70TnnmZj1SZ47xqWGYdv7F+y2+ff4lHsx0rWp+xG0o+vb2gNxnRRuqLhrOyZQiWh6FiCJa7tmb0hjofWZctxzFn25bExmKPmnwjLX04OSAnP78Lx/zJkRfLHbOsZztUNHWGvoxcVA1XxYHz/MiH5S1r03DjFvyNd3+Zn91dna6rRdXxm+dv+a35a+7djL/z8IEUu3IkBEVWjnz//Ja/uP6Cc3ugCQVf9WsAzsqGw1jQj5ZhV6BGBQvHbNnxZHEg016owVGxLDsK43h7WHB7s0Q9ZITzkavnW0rr+P0vn6Nfl+SNkrWuFkGQX3hUp0/OxuNcukEVFOMqsPxow6v1hjf7JYe3c1h4vvfRO35j/YajK/jp2yfMf5KzeB1Ozk2mndKy5CCo7j3Vm/Zb770/tggopf5XwH8RuI4x/mb62v8Q+O8AN+nb/gcxxn8r/d1/H/jnAA/892KM/+c/7jmiVpIzeBgY1yXRpN1tlaEPA9WbjvBeKam/tUr6aukg8n3ADMnmuxNG4biMHN+HYW0o7jX1rWS0TfHkuZbCETUpjszTXqYUHQ1ZI173UYvoKKoE+BUC9uXbyJgCMki0UuUUMenmda+JTqUQUmk/w8pRzHuZfQFrPXbZ0ecZYZtLezq54A5iiGk3BgdQeNzKgzIiUe0gO8qeeFxI8dGDPFdU4mcoxCdZGenxEXPwhcyHAnAq8jvDOFZsygJdOpSJRK9QGhZVz7PZjovieALHAC6zA98vbyj0yNZXvKyf8eXFGh81F+URFzSNyxl8wbYvafqcKh/xUfHJzSXdrhBNQSsFYPZ1pNgHhpno8fs1uBcDP3z/Ld9b3HGeyBxfdWse+hoXNcusozIjWkU+6y759HjBF7szNvuKPPesa9k6ZMZz0835v3R/hptmRtPnJ06/1oEPzh74c6uvMSrwaX/FbT+nT+DPTTvn3W5B12WoLFCsOxZ1x3nVsC5aXNBcNwsOXcH9OKM75KhDAgMve85WDfum5Oamorg16VpI24paKMqqsRR3Yi/eXwi+oweFWzjO39vww/MbPt5ccvt6DXngxct73p8/sHclf+vzjyj/1pz1Jw5XTSlb6Z4yIoTL94HqbSOJ33/SIgD8r4H/GfDX/8jX/5UY4//4m19QSv1Z4L8C/AbwAvi/KqV+EGP89gwkEolnXmCakey+wyVQ0BcaWxhM45h93aOeF3QrsQU3o6j8fC4IarHxsks9WnYfiKTXzWLSHxjKW01940SINEbAnDTx1fVI8RA5vJeLYUgmYMwved5XQgn2ZeISRJm9BKFOfoKVoP+6k9QdFWWEyI6awVsGGzBWxDl9l+OTZx2VF9VdLzfGtBaLWlhs3gZU5fCjQjnxTZhouKZXadceTntolZiVvoqiaOs1+UawiWiTjHYm5iZmUNiDhqNOa1WRFqssMHpNrj2vygfmpuMX7RU/2T1nDIaXsw1/YfGaK7vnfHnkt+YFmXLcugV/f/dSuoPrGt1JEdxlj6Ifkjw5pvdoWCraJ8JxH58MLC6P/PmrdzwrhaD0RXvGbTfn5jinHTIy4xnn5oQv7JoS7zV1OfDR1T1nZUPnMn7xcE7X5uK6kzuqYqDIHEYHtIrMs4F13vAw1rx2Z2zHksbljMHQjBkPB9n5V9VAuXQU1pEZT27kcn7oa766WRM3ucS7R0UoAyr5HR6agvG+pLy26D45DS8jsfaoLEBryB400UTaS+F84BT+ycCzpxsuqob/4Kv3GK5rGZMqRzdafnz7nLvPzjj/DzXzr0d8pRkW+vT+RiW+gvk+kG963Dzn5i8s4Xf/hEUgxvg3lVIf/nHflx5/BfjXYow98KlS6mPgLwP/7j/0XynwlZWVYCeo/pRs6yuNrq14Bu68oNlzSd6NFaiYJMJIfPbi05byPufh1zNh7SX8S8wWDNUd6EHMQIJNQZyXGbM3PYvPe44vC/qVhFm2V4bi4ZFPENIulqiob4KAOsnmWY/ICWCD+BIcBCQa14Fh6g4ai8uCeOC7BPINCj8PlBctMcJwXZNvJKwyFBBH4EFm9OJBqMviuptorTrN9oqTaKfYSBDJuJQWJiZPAjFFUSeTy2g5Jf0oR6IJTynIioeHOX9nX/P38pePysHeom2gP7cU2rO0LR7NfizZu4LrZsFXt2vim5Jir9M2RKGOEu8V6kA0AvChIuNM3JGyF0eulkeuEgYxeMPvb56fALm+k/egnvVczo9UduRdM2eTbtSX51ueVnsCisNY8NBVUgCioqp75mVPaR2LvOeqENDk6HPu+xnX7QIfNZmWkcgFTTdadKJGl5nDGk87WlzQ6bkXfP7mAn2dY1JasJ97snXPatHSO8PY5JijMP7c/DF5iEETR4VpU4DtTMBJ3Wj8+cjV1Q6A3//kJdlNhjaiCXG7nPtDRv7O8vQPI+XdmPgzj3kKekwp01uHaR3t05I3/0nD2W/cwL/yq2+/Pw0m8C8opf7rwO8A/2KM8QF4Cfx73/ie1+lr/9CH8lG8/lcFmY/SupSW7CAVf1gaVDRpPpfW0XZyOoO0vu2lxucZFUI0uviDwPF5JrLgfqLwKhEWjfrknBM1tBeaflnK2NAFhrlJgZFwfA/GnT4hrdHA8ZX07rO34ZQZmG8VpjX4SpD6CdEPmUZ9cMSYSN9mQjcNYHeayQxEjYpuX3D1dIv5fsPb6gy9s6etw7QWtI2Eh/hcMAlXSyc0jRioVDiM7KSzRhiPk2x3KoimVaDT2i2Pj4EcWqTFqvDoLBCDUJDbfYE6WrFFKyKsByLw8e6SzlmhKkfFvinpNiX2zoKB7tWAsgF1n5M9CPjne814hvgOJPuxUAa0jozesB1KfNAch0wIRF1O8AqlInnpuJg1FMbRuox5PvD0yYGL4ohWkT98eMrNdo7WkRjB2MD5rOXD1T0vyw1P8j2Xdo9H8/P2KW+2Sx66Ch80PihCkBFh9IbDriI6jS1dYgCWuMFSVKNIgDeV4DlB4eYBViPLVcui7Dn2Ocd9KdqItBo2nTpdU+NMBF4hSJdkjhrbaronjnLZc/cwh2uRMAujVREHuWbLO8X8tdjlRTtZ6clnnB2guhW7fD167n9zwc1/auQHH37Nx2+ufsWdJ48/aRH4nwP/MnL2/cvA/wT4b/9/8wOUUn8V+KsAZbakuGnontTEi5Li+ojddXTP57IWJMjpn5KFtZOVnRkn5x3xuesuND7PqW80+WZg+alnWGe4Un8D+dcnh6BgBBjM99KSbj80cuoL/yaJVWT2n1bsyikoI7sfOnxpWf3CY3sZHyQgVD7oYSkf/uIzOI4zuqcSHa06jR7lpjW9uOawkAvtYTtjuWiYnzccVC3fP4lslIBG4yEx6dqJt6CYhi2fR/pzT3+BKOGapGI08j/lOFmoiZoxntJ4gBMHX5mI7w3KRIpqpA8Z9iA38VAHFvOWwVl2bYlWkSofKa2jzxx97iUHQnBJotNoJxe7L2QWpvKYPBBLTzwDo8TgY3SGVmVYHdAKQrLjysuRRd1TZSPNmHEccj5Y3fOD+TUAPzs84Q/ePaM7FOjcY61Ih89nDa/mD/xo9o6n2ZYLe0AT+Hy44ugL8nTy32/mEvOVHIZCY1GjKAK91RxuZjKu1TJXt8cCgsIvPdiIKWTD4rzm7d2K4JQ4FSlZ+5k+YTTrgD8fyUrHeBQg1RxSsOlCVsP925r8QSTaKFGZhhxwinILiy8lQWoSQPULWXHn+0j9dqS4aYiZ4d0/vmT4z2z5tfWOn//hSxYfm2+9F/9ERSDG+O4bN/P/Evg30//9Cnj1jW99L33tV/2Mvwb8NYDl4mVUPlJeNwwXFe6sInu7J7/vaF7WyTlXgCOffPj1KOBdeS8fjB6tRIgtFEdjhaxz8LJWHKVdnjTVw0Kf8viiFWQ930b6tYwB9iAxWP1KoVRi/qWVTsiSv18mQZIqWlaf+FPg6CmIcy92Xz5X1G8g32W4ZDCiJ/urUjTwwQRmi47jvuT+7Uoowb24+5BOEeXllB+WssUgKe8mJBnSqV4GzHxkqC16KwGWwCkUFfXo2S+U5GTWMZmBekXoDKqXPIFu0NIFeHG3MYuRInM0Q8YwWKz1DM6gVGRR9mgV2elI3OXorYBkIY/4RUDPRzITcIMhOIUtHNYGisxRZO60chu8wehAmY9Y65kVA4uixyiZ5V/MtnxvdsvNMOd33r1ifyxZL1penonSMUTFPOt5Uuzpg+XnzRP+vn/JwvaEqLjrZxxdzrYrud/O8DsZNWJQYjGGKB6V07DJoAqcv7dhXXU0Y0ZfWIyOHNqCobP41tDsZ/K51Z6zi73wIPYZIYun+Hd/5lAKxoNoMHSrKW/0KZTWbowIqFTykXRiNKOdbL8E85Lr2eeabm1OIG9168kfxHLv3V+qcP/UDq3gi7/1HmdfPl77v+rxJyoCSqnnMcY36f/+l4Efpz//G8D/Vin1P0WAwV8H/v3/KD9zXJfo3pPfd4TC4s9qzN2BsrC0T1OoSBMZa2m/Jzvr7Kgorhvx31sVdOeW9lLTXBpqwB49vpjWfZ78wRNsgc9klne5+AxmyTjSpbBI7UVDMDGzZDWpUlZBJLsxuCrSXkWiMszeyJvs6lQMUuGNGkIQjUC1j0lXICdwd6bpg6LPC47p5MQpTCMyXts9biYmQ41xjvgBJIrzxMvXAxirCFW6okKK3ErAXDBp2+Ej+TdckbWX4ucS2cgcxeUjJDadOtq0uhLbMjrDu3crATSdrDFbp4hFIFv1ZLkjKxx9YdCtXF7RRjARm3mKYsTUEZ9EP1pFYR42JcNgUcB81vHB+oHaDnTeCt/A5RyGgvNKxoF/5+2v8/X1Gm0DHz29O63MtAoU2nGRHWlCzhfHcz59OKdN+EAYDNHJ+4NXj13fYiTL5UBxo8Ftc3Qrp/3LV3f8+vqGu36GVYHeeN5uFvT3FbrR2CERkK56vvf8lsI4Prs/T/ZqSZ0alRRFgFwOkuqtzHtulgJa1GN3JjyCcApOLR4kZdk2Hp9r2ksjOJeD+lr4MLtfX3D/ZzTqz+7pHirWv5sx20m3nB/+FDwBpdTfAP4Z4FIp9Rr4l4B/Rin1F+Sy4TPgvwsQY/x9pdS/DvwB4IB//o/bDACo0ZPfHCV1KDfoZiRmmjCvyK73EOc0L0oJY2geAZaooL20KFdRfPlAPjj0UGHGjG5t6JdyJ2oXcZUGLNl2oLzpgQIVZS3oK9EmFNtIkRSAwzy54KY5zhfi728GoXKiJF9eiDuSjpvtxa5Mu3hK/Z1WNiETP4SQR5wSULDcBLRTEDV9KAh1SOIgleS1MRF9RDeRHcV8Y1gI1Tg7cNr3y2tVZBuNGwthwqbn9qUIaLKlrCiPdyXmoBPzcPKxi2AgTthHKT6FobGo3mKPoHYSiKocKUNAOhIxBVGMQ8lYhSQG0adMvdx6XOoWFKBUxCBkpG7IZGWYhECLiyMfnd2xyjv2Y0HjcvZDwbapCEFxu5vR79+DQaMXI6+uHqjsyO9vnlMYx4ezeyoz8kV7zmeHc+6PNfttRexlE6NOuYTfeBQem7mTFHvoxA8hZDC7bLisjrw+rtl2peAe9yV2YylSl+Vq8f+7XB/pneXrzZLmZkaezEmCBYNgAL4K6EZWo5IRKfTlmOjL4iSdVn1Rxs/J1di2HlcZDi8szTN57uparrWHZznH9yLjsx776ZzzjwVrc5V0tRNF/lfefzH+Q/iE/zE9VtlV/Kde/NeIRUasC2KRoUaZLVUEvW1wF3Pa548EaCH+yGuPWlHcjxTXR9CaUFqGVc6wkpTW7CihItEIfdi2XtZ+M4nKbi80bi6tev3OUzw4opVq2zyRmQuSBfdhek752kTLdHXyDewitntsvybu92SwGfI0kxeJ558yIfrVo524HpIrT6IYi3svpz0ziJehPZKyAVNKb4rSOvEN/KSnj4xnAb0esOlCn5Dvbl+II04e0KWXlrgzqNJjbMBtc2afW8rbR6zEZ0meax957q4Wi7UJ6UZDmDvyxSDKulHLnOw1cZSjTmXJuTjzzKqeVdUxywZGb9gNBYMzjyBdY2XVuU2xa2cePRvl50VYnx/5jau3VGbk59sr7o41fW9xXSYgYeFRgB+10JRHLTZdNqLmjmrWY03AeU17KIiDIV/2XK0OYr3WFLh9hm5MAmrTGjZhHZNbEgrC0ZLdWbF3S8VyslHTKRY95FFi1xSnTIbJPEU5MYBRTrH6mWL1mUOPgeZJxvGFpruQ4pttFfl+Uq/KyFXcGKp3yWtyFC+MiTb+9/4X/+LfjTH+xT96/303GINKwTiiMgvtgPLyS6hR4Zc5vlhgNx0zF2heVKL4g5Ntlx4D48KCnpNteqJS2KOk5bpaQkxdJglDFDBaK47BTsDFfC+Jwu2TSL82VNdCMCrvZNY/vJKVpDjZCsp7Eg0pqbi2VScE3ueccgtsJ8XHVUJLlkQimeWHdaS/EDMR24G6F+nrhCZPXgOmFdzCttIRRM0pgn1YPQammFEOVJ/F0zgyUVGLG4N6Uwn1eRnpV6IfEGfhFEm20qjKoQrRBLhRqMAhmxKNZfUYk2W42QlHQ54IBq9OAizlBNQcXAmZ0KizzNN3Gd5qjPXM6555IcpCQBiLbU2mAyaR3Q/bCvOmkBCPIF1XyMTck6N0T8VFy7puedMsuT3MOKZAjjBqlA0s5iJcOm4r2NsTMBtthMpzdnbg1XJL5y2brmIchaQVJqAvhZCqXp9MSKa2Xfdgg2LMNDFXRK+xkzFsyjGMRuZ6c1An7wixlpNiGJVI3E2XFJAvRrCR2U9zlp+PBKvYfpjTXalT52D3Aji6MpGMikh+a8g3pNAYcUFylXxW9c23N+TfjSKg07HaD8SzJbEwYikWo5iHzjPiVU121zD7dKR/Nqc7syhknldAvpNswXFdYPePuWv5bkQNgXGVM840Y6VFP5DJpsB24m+vU3Z9fxHonkQOe031VmzGqneR7lJO9HH5GFSRP2jyjaxmdKJqwgQgQj9P9mGtpAIFK0XBjMlOupTIq/5cGJDFg6K4n5KIOZ0S0SZSUqFOUV84ufFJqbdRi2eebeSC8olW7JbhhELXb1KgRafognQ4k4+C8gJMhU4TyiCdxCjtc38RGFYCYiov4hvtVUovknFiWEXGq4Fy1VMVw4lOmxnP0/mBdd4yBMMQLKUR8M4FQ+ftSVCUW8c8H8i05+1+wcPtAnOXCRP0G8ak2T7N0rWAov2h4LOHJ6heE6uAmY3CSSpHisJxOJRC6Gn1STkZLcQqcPVkxz929RqAd+2SwRmRQXuxYlcmohSoBLJOnRUKuREH8TiIlQevsdcZ5b1YyAmOkhKnXNJGKMh2Sd+hOQW4EOVzVO83qNEw+72Ss587hqVh+31Nfx5EQZkJFyQ7SjfWPRGCWnavT1F4k6LVVeKgXW7+4RP5d6YIxIs16n6Lvn0gXJ4RMwNGQYhkuwE3zxkuZ+S3R8rPHjDtkmGdndZbIdPkm158/AuDPQyYzjEuC7JxpPpyR5Fb+icV/dqeLMGbpSbfRknKbZLNdR4ZlwFfKMa5PnnLZRH0qKW9Xga6Z45xbph9rahuHpNfQ6YYEng3uRbnW0DL6nCKyMr3kG+geSEXUn8WT1Hd40p29nqUCygYIBdRTUgiEXuQdtB2iu5SOhDdC6XYNoL8j1Ezrj1+Lbt1V0rn4KtIuBywhSMGMcKIrZGZ2YoXIWMyAU0cArHyShLcPNCbiMlFTHNVdZyVLc+rHYV2bMYKFzUvyw2VGdm5kj5YMhUo9MgYDUdXnMRKvbd0zspJ3hSM+xx9MLJJSSEskgYt70/I0/t4ryUxKRcLLVM78lxSg53THO5qzEMGJlmvjwrdSyJSvhQC0S/2l7RjxsOxotmKqaApRFDlB4O+yaU4zyPDVQoiubfS/ayTR6HT5HcGe5DTeriQ9eG0ow1eXrs9qpN93LCS3w1Sd3DVE44Z5Rc55W3k+NSw+x64lZOC7FVycBa/RHc5QlTk7yzVjaK8l+I9hakWO2ENulKfRudf9fhuFIEQCFVGfHWFvdmhbu7Rs5pYZIQ6J2aGbNfjqwy3qrBKkX9xS3ZXMZ7XqVgI69C0jugU47Igvz1SvBtx6wrlAmZ7pOoGsn1N87wkGI0qoHkmH8wUXUUQY04VJtHNIylJ4rIU2d5IQMWFZ/ejyLDIqN/Gk6MQCEBoW5Eb9+cIip9cjaOWuX+K5dKDOsWNiYORdB6ujqfW02zEOKRfR9xi8o1LhqtOugrgtPsXCbOiuLOCa6jHv1dOEUeNKmUP3wYFlXTzJg8Y69HL1NqnFsc5zXjMhfdfeK7O93xvdUdlRlqf0XnLx7tLNo3cSE/mB87zhoMv+MOHZ2zbkkXZ8+HynkI7Xh/XvN0vBLhrZfSYNBB1o8g38h4KmUmlkzMVgIHkopvUeGsh7fjW0B5kz2+OmnyAmKWPNIGhbh6JS1Elvn57JhhBYvJJWxnwjUU1hmwnnVXzgcMsB9Rg4Ghxaw86ntyS9U5WfdP3GYAoaVOm0djE75g8J8bkeKTT16IGtjmmFRr45ofgrkZ07lHbXDZGCW4Z1kJOojMUbzPRXmxEQORq4b+U90KsG5I35bRG/lWP70YRSODf+GxF99ElxVdb2B1Qo8M0HWE9l0Jw30jISJWBn6GPLfnnDbEuiZkl1BnRStVTMdI9n1PcdZhDj5/lRDtHjR49eOqvO1QoMYOs1Ma5CIfyPZhRnU4eEevEk/vQuHyk2eY7SQLqXni6DwfGpSXfCLKrwqMrjh7VKcjSZZwiucZlpD+Xi1n300knpic6nf7DUtGdK4bzgPKK+m0k30B/pkUDUCbuwFFa4ykleSIFQbphkqHq5JCkR9AHyzBqhmR0Ih6IivigGItIftXwo6fXPK2ExvpVsxZbrsFirOfY5/zu2xeMgz0Re2JIxcVG+tGeuP3duxm6VeyWnuvFAu803BbkG009Fc70eidXnfwg3VU08t67SrCZ0CeBWRDsyNUyNuX3Bu2MhJgkwVTUEIdU3FVC8itZdfIuJx/kc4lFOBGc1NFgOk3UkeHKU18deTFrub5fEp1CzUcYjFiAp+cZzz3VZUNlPRHwCWA0W+FYjEv5+dlWxlGQDY8e5DqIhehDOAuMrT3RqrkryLcSFOOqSMxEY6DvcvK9prqRa2YCoJWH6j5gBtlyiaFNTJkbv/rx3SgCWqG6gex6z/hswfhsQaYVat8Qmx51bNDLBWFeortRxofM4NdzdDegmg7VDyhfEDNDNAZKySI4fDgj36T1yjw/RT77QpMdhcOunWI8SJ6AAuxBLrCsmU5zcT7So+FgteTtlXIqmUG84DzgV54ujyfzD9Mq6jeK8iHg00pvWIuZpR5ktebzSH/hBXBSyd22V2mjwcl9uBk1w0JkzLM3UaSjb+WG9rlcTOVdZFik4JTyG51MFrEp8962abeqVPIx0MLlhxPoxQTRHHN+ev2En/KEEJR0CSaS5Q7vNMd9KSNE8j0MRRBWnYbYGbrjjKFZSGczceS9wt2WckrvRI49ybsn56ap+LmZwR7lRJsciX0+kZs4GWtGJa12viFFkXHa6EzZAYqEIXioP7eyXo0SBBoXDp15Qpd4DWUkXvasFg1XsyP3bc3XX16gBg2lh4P4O0SdXJAWI2dnUmX7UWjU3aFA32X4uae4bAhB434xp7yVjtIydTCR+EHL+aIRgtFDjd6Lw5YcDmIrPy7lGrH7xMYMj25WzdNkU99BvomnAJqskcLjCk0w3/UioITLrrZ7bGbxqxK3rrEhorwntgPxYSubr6ogqigR5UCocyhz9KGF0YExKBUwnXgO+sKyf5WTtZF854V2PAjnPxhS16DIk5+bK1W6cRSujBTb9BJdpLqT1aLET4OaRYbzQMyD0Ht780skoXEdaNASWd7IqJDvI/1e058JOGUbCf9wS7HDHmrYK0v1Tp9Au2wfWXwRGOaKYSkSYjMIZ6LYipZgIjjlO2E6DmvpZpQDlchV2sdTxJVOM2a2V4RcTj3lUwZAEXE2wqjp39bYo0aN0lZ3lyPFsqesBiGtUIh2wSPBpVHBoLFbQ3ZQpwTiYS2W53IBq7Qbl5PLdnJzngJh8gSCptWnL4Ua7qbgFgvjTIq56eVmsS2goH0qeIceEQZfSMYtWjqwYhNPlvP9GvoXYibqnEabiNKiY1jUPSHCx2+eEDa5jE8zcSEmyIqSLJDVI7O6Z3BWzFUVDLsCfTToFy0/en5NiIqf/P4rzj8WzsfkMj2ce4pnDXXZ0w0Z7esF1bU+cWBUTJ4RRVKmOiUSZBPJtoKXjLOUxNzLtiBrpYMScFr9Uojutz2+E0XAF5rxxTnZZ+/Qtw9gLwilJSxKtNGoPCPuDtC0qBCgyIm5FR6BV8IpWFaSZOQjMfWV2okdGYgL0bCwFJtAvnvc45tO4sNcIU49+dHjM8VYa4aV4lhPmgBNlkxEik0yg9wrTGforsT0k16fEORohfMzrgPbH2jmn6eIKSUiID3KjQrycwZnGNeBqCLDE8e41nJjKbBHTfVOY49py5CpU5z6Y7hKGmGSU62SAxmvIWohjfRrufgm7oEZgADZdTwZWrgaYqMwjZGLNZMLF5NUjztLHxWsOsJEbDKPmQJsM8oHLW64KZF4cslRyU5beVEz2k4KQJZOe+1ioidrhpl0A4JzCJgZUnuvvIxipPWnTnqNcSk3jEknqKxo0+vQYBtZBe9fStpR9qzh1XrPcchoyfFeMBHvDA/bmUi9R+FQqMUUkQfZqqcoZAPRD5btthZhmNOYnUFZqN7f84+/+JztWPJ3//AjLn5XNCvH9yJ+lorhTDqq+3dLiq8zFvcqJR7J5+DNYyp1LIKwOAdNcW0kDNdOBU9R3E3ks2SiaxIJLEXr8V0vAmjF4YOKunhB8ekN+m5HvFwRKkvIKnSVofMMmk7WiTGidy0sSknEzS169GkUQFaLndDlQq6xbaAKcHyqOT43YiyyC4/ZgkmUFFXa73upqGaMtBeaYSmuN42SOS7fSDtPFsk3iuygxeFoJeUn26sTxXc4D4xrzwHD7LU+Ba6iZJaTbARxkG0Hk+zJwF2OZCnVtjsUtORkWzlZJclIbnxXTdLiFDOuEG17J6GlkGZjCy7KDA0JExjk74aVOpGgJr9/20jhc7PplE4sRg8qGHqfonmUUIJV0sYXD+rkxjwsBYRzcxk37D6h/SlodFgJIKq8zLR64NSNdZfJralKWo1ERNSDOhWxKTkomkdzUnvUp65iGn/E80HRPFO0H4wsrw58tNzxvN7xpllyd6gZB4vSAWMithhQKjLmlnGwxIgoCgvHxfrAMu+5b2tu3y6xtxnaShdlj7JCXn244c89+Zo37ZI//NlL1r+XMSxg/2sOKo9qrLhHG8PYa6rXGcWDvJ3DAvpLQflDHjGXPfO657Cr0Nc59RtNdojSFeXJuv4gRbxLXpMnl6pUMAkiuPu2x3eiCOhBgIzmWc64eM7s4wfM9gjMpBCUGaGwmF2O6geJXHYeve9QhZV1otYyVqgoqjqrUUmL4BY5eozMQ6S5MnRnGp8pslZ292OtT20pJAZgqU7Jw7ZDZu06reiMAHTFLjLMhWpbPIC/FatrEHAr24uHwbAOuHmgXxnqa5LleQonMSSxU6R+I465UUG2zRnWGe3Cn3bbYlKSsIKt3PDdWqjP4zKRX5DWWQhLwgmwR5V0Bt9409OIOJ08w1I6lfJBLNVUBPegGGslBCUjpxOo03ZBTlv5QXafbM4SrdsXguZHhSD1vYwe0SAhIiYZvhSIFiJAFuIJ4AoZnERbc1ntZfsE7s2kkAoDMwF9gGnNya8xdlL4+nNhMo7zgH3S8sOnt/xgeU2Iml8cLvjyYU3X5Njcs5q3LIqeyo5suoq3TYE/WGHnzQd+8Pya2g78+O1z/E8XzPZShKOX4tQ9d7z46JZXiw0/vnnO5vM19ddGIsaeOzCR7F2eQk7kPbD3VlKpC1n7Dc9HiX7LAh88uadzlrefX1B/YSnvIspJNwNQpwyDYano3pf1bb55NCslgB3SgTZ8x4uA8pHifmRYW3yhaL63pnzXYu4P6C4j5hY/yxmvauzOoJuBmFlU16Maj8oleixmBj8rUDaKc3AmJqG69xJP3itMG+jXlmGu6BdKPP0TEu9zBQOnNttVGjcTxl6exD++kGIwzgVHmH8tXIGoZC9bbDXNlT4pHYs7GRmGdWQ4C6iomX8ZpZrXKrnNyAqxSO2gW4iCrLhX+MYmC/N4CjsdZ/LaTpbm6X+Pu2TpBFwVcfPwqELM5fcUG2qFKh4troMVQZYeQOW/DCL5Mq01v8FCNE3K7Rvkayb9d5wJbuHLRG1NhBrTknb+wrWICYn3pRTR7JBm/VqlSDL5eZOycYoDczNBycVOF+EsBMS8QwmHggD9VaR930MWUUYKZlkNaBX56fYp14c5xzbHj4YYFHkSD3XO8tBUPLxdonoNZWBxdeA3r97SuJy/85OPmP80xyhon4bUZUWKpw1/6fnXNC7ndz77gPiuoNiI1f2QjERFVqzozwL6WQf7DBU4EYvKD/ac1x11NrLKWz59uKD9e+dcfBkhRnyliLlcn1UCgY/vwXA1QlAU12JTdjKuHWXcJcpn+22P70QRmFSBupf0mJiSVfPCYm8P6M0BvTf48zl+noPW6EauOjU6otbEPBMuQDPgFgVkYl0ercZXBkLEjEHoxGPEdob23DDO5OKc2tSQPc6qwUgken8GY5phJ6qyq6G51CybQHE/4mZiZGqGQH0D/VIYgTpd4EQ5rYdVpO0V1Y24BKMS534p7rl2b0T1V3p0pxO7TQg6fg7DhWTfTak7+Z159BbQQqkNOUQt7kQRwSWmVGEVFMEJ4hx10ikMMr4MZ5KJOCkUJwVjtOHEPYg2PoafRoPO5eu+klnfl9LCP96cktcHEByneHJ02teTItTN1IHJNeGriJvHU1FTQZ3SgZUXkDLaiG615BlGKSghD6jaU8wGYpQNR+wNZuZQwOf3Z/R9JgdlSHbpUXG4nXEI0rUoJxLyOHPMLxoK6/m7r1/hv6xZvBGmZfO+g4SDLM+PPF/u+HK/5u3bNfY6l/VxD24uXVPIRL8xVJ5y0dM3okMAGC4CZ+8/8NH6HqsD75oF/+Effsj85xnL25jYn99Qszo4vtAcX0k8mvIK+6Y4kd1EI5MOhlQvsz+NivA/jkfINe1lJiy4JqBdkLanMMQnC7I7jdodMW8fUOcLQp0T6hylFMoHVD8Qywy3qNCDwxxHGSOsRo+C9oyrDF9KmAnIhVTsA70SwGZiYkx0YtOJotC8i+hR069lxp2AKdIapnliqG9ADxFXCjZghki5CZJTkKLUpR+fgDZp/7JDorAqxRg048pLDp5TkAdCHtC5p67lgh76TMxLredqdWBZdHxyfcnwZS2Clr0+UWujjTAKLqBHhau/kVxspMApl7qGQS5SVwlL0XQa3T+uqmOYYsBF+BIGuSkn8kvIpVP5o4+YB1wR8DN96lKYfqaRf6MH2QyJRPoRkyB1MyrIeyUcfE5aCLz6pRDR6flVUHCw9HvZtSsg1qISbNucsRHTUIKCbYZNEWGml2RhFZQg+GvpHg53Nd1dRr5RWOD4XiCeDxJE6hTZbMR5zS/eXTLuc/IbS/4gHWZ7JTyDbNVTFU6i4Lyi2wp/QA+Kce15+dEtf+bsHW/aJT/58in684rLn8uJP854HI9AqObzyHgxYuYOP2jMfYYahXYcMgFG7VFch/N9IDsGst23I4PfiSIQlQRoRC2ob/ngMd5jjvLC3brC5FY6gkN3EhjFwhBMjd416ENHLDLGVYnpHObQg9b4KkN5SS/qzi3RaEwXhC8QU0KLTih7lPHb28RAm0kc9eytxx41rprCLR8Rb1dLNJrtHpWK02569mY8zd6+1LQXlj7lFgQrKC46kZJaRdQmyYcjMWrIorDZgLNZy1AO7JuSobfcH2oy4zlfHrl9oRl2eTIiebQl1x7yvZik+MrQn2uh4CaJ8oQzTPHeKoDdiyOR6ZHOYnIl8hPSLi3C9B5MXocY2ULYvaG4k/fVzcxJVajS9pDUXQQLJHCvuxTUT2SzGtVAfpTv6y+gPwtCwQ1SiKZRYSoCE3swTtyHVJimJF7dWdyD2LWpVMRN94hZCCD8yKUY1mLdhjLYreAZ/XkkPO0p64HuUBBbA1lgPGaM20Kckw9Kgl8M7H7gMec961nHouy5P9anrEWi/N5+5Th/umNdtvzu7QtuPj8TxeadvO5+LaPROJfOiCDF3c+DsBqPFn2UztGfy0igt6JeLO7lEMsayeoYF9+eTf6dKAJSiaE7E0BODDgDWivMtkV7T5xXhPVc/AdjRPUe1Q7EuhDS0KFFH3t0aXG1/Fp222FixM+L0961XxoKBdneo8eA9obWGsm+8ykAM0YIMvu3TxThQYtz6+FxdJlaZZ+Lz1tfJAQ7xBOgpULE7vtT0TJtiekzhrkIgqbuY5qtbZt8A4t4QsCjibSbjOO8olj2WCudTHtX8dmmRJde3I+WA8Er3DGTdtaJD6H83nKD2aPcQKadWmy5kSV0FbKDPpmNQDJImcVEOY74Rp388X3B6WQ2fSoMJp5ciwQ8BNPIKT0lLSmfMIxeJSdo+V31KJTdkIk+fgIsfS7tL6O8ZttKER3nAnpmB07KPGEDJoekAHZnKG/lVJYY87RJqCPjpcPOR1xKT8qvhUAUcskDCEsHg8YtA2458uLJhlk28NntOeohQzuF9gaV3JmU2AYK9vN0xNZOMAgdxJH4PifmEbsayHKHc5os8xyakt//ekXxNmN9I7LskE8nvig+QxnQvTpRf1WvUZ2Wkeuyp54NdG0ObwrqN5ryNlnv2YRrrR/9OH/V4ztRBKJK+/etoPDthcaMFhUiunfo3QhvbmG1IJbiNUCMKOdRmwNhMSOsZ+hdi933hKzC1RY95qh+RPlANPZ0c3Yrgys0+d5jm0Cea9pCMa6EDmx6URaKK69inCtAJ+2+3Ej5IWAb4SWEQjPMjXQKmeQioGCcp5Y0RILVKQUptbQJtdWjPBdRCsowl+BJN4uS6OvTPrjJGI6WYT2QlU6UhvsM9ZAlZmA8SYy1E7RdWv10Qc0ejUcmHwN7FAs0SSWSkz5qIaCokE7/o4Io3IRgobsSa3UAm/zx9KDQZSL55EkNl7wMJq+8k7PxMCkdZa6fbM4gUXqz5JnQQbYjMeyk0OpBCtKw5kRqamfgzhxmPpLnjmGw+E54/7ZVp8QpubHE8jt/eeTJ4sixzxlLQ9fmjMmaLs4cuvQYHaFUlNXAh+f3PK92/M7bV4TPZpSbKeMvGc7knMJRXSW7fGcMPtdsjjPiXUEsPbOrhiIbObYFrre464rizrDcyVZFjyI2kyRl2aJEI92ZbdWJValHISvVV0dy69lua8zbgvJWOlcUDHMpTP1KsKkJa/lVj+9GEUg0UZ1MO0IG7ZmWMFHAWo1Rini/QVtLnNePK8EQ0Zs9gYWQi5oBexgYzgqGs4JsI89h+pCstMGV4lXYnYkbLJFT5LirYVxOefUJOc9lLpu4+NFKe58dFNWdI9uOZAfHWFuGpfkGiAbjzKaMApExS6s6AYxJo58Ky8RPUG/FqWhYyXgiKx+Z7X1fMJxr6rOW0XpGSszBnMgxplNkTboBHYlchNBGE4nIDNLmT2qzaaUUzOR9KASU7DgpEtNGZCVchJgH1JAcmNP7NzkhRYOQnJCCKrwGeZ7+PCULpb361BVMHochjxLVbhNA2whlOzixRfOFor9IEt0s4oqAygNKR3xr6e4KYdYZ6WzGRaD7wGEKj+8N+Wzg/fMtL2dbDmMhOYLeUOUj8yf3AGxbuVuKzDE4w8vljufVlr/5+a8RfjKnenhkOZ6yKPI0nyTjELMeuFwfOPY5obWwcMzPGmIUG/d4tOR3hvJGiDyml/dQCjKn4NX8QWOnrUoObga+joSLkXrR4ZyhuZmR3RuKe0WxFY6FS2C3CIoET3Hnf7rwkf+fP6IR/rNtRbAz7Ti7tcaVOWbIKB5KitsatT3CZocqSyGkazn19GZPXM2JVqObEVtYxoVlXObYxgkuMAT0Nj6e6ApcoUQlGKUAqSBzf7Ayi9km/flMTtF8ly58C3EJ0ViyRuzQ9SDZCMPKyLpxhHGhReKb1IMgF7gvRUpqW5MIRN/Yq3s5GaJWpzRZ5eQ59QBma2l0hSkdqnZ4HU/bguxB6Lq2ESs020XUMaK8MCBRsjaKWopMfyY3lBqnU1PaT4A+neKcPAfEvkyPJvH15fOawFLtFEEJOSeYJAiIws4Uh2TZq4c6gHs0Tgl5JJTizhtyAfd8LmvYYZkKZFovBpvm+V4RBoUAC/La9TDhAQq3dly+2HI1O9CMOYVxvD9/4CrfM0bDvZ7hokaNOa/WNzwt9nxyuGRIoaLtkDEvBkJU/N8//iHZH9bk6aCQgyFxBNLB4JYBfd7z6nLDs9mO1/s1XZujskBeyyarPeawy8g3QqoS6ziVAMAkhNJy+OQ7pANLrlX9pax71WrAmEizK1GNJdtpint1MsYdVlEOlyGtHtdeitKy4Ytvuf++G0UgEUD6C9H065SqoxIDLGqIxpBvC+ZfL5i97si+vIV+AJt+BaNhGKHKxZTEiz7AV8miLG0FghEX4pBCNkwL0SiGpSYkIc4jFTfJVp3Me91TT/eUU36eGST2zGeTw44oxEJyEupTG9s8j6dgiJj0CgTSmk5O2qhlptVOlGbT7HsC+Rx4IwCRnwXwCn/IUIOWQM+TFkJOkhFFfz5dZPzS7zV1RIJrRBH+WEVIPn9TQpDOA2UlF/BxU5F9lTH7KjkcZUk8NUS6tWJQ6pdwDNNqyht1snCfknFNB9oLQOlWwr8XfrU6uRzZo9zUw0qeJ9vJezFxFabfY7L4kuTlFOy5HFjMOs5nDWdFwxAs7y/ueV7uWJmW9/I7upjzd8aPGL3hab3n+/UtB19QGsfTes99N8NbeeN//2fvMfskAyUOPjFxH3RKiXLzCO+1/OUPvuCD+p6jK/idm1fc3C1QJlIvO4psZLeviducIrn/uIrTKBTyZGvfy0E0cUiGRVorr4MUZh2JoyEMoDqD3WnKW+m42qeKYSV09Ogj3RNPftFxOeu4mh0ozch/8C3333eiCMjFISDRcOVQnajS4tnACMSjRc0dsRzZ3VfUn8+4/HHB7OMH1MNOxgJr5b8gKkOdZlmrGZaWbC92Y2LsYeXPCFEpOzqyI3QXGd2ZxiWG3CQ8iUqqsy/EoGM88wQrJ65yiXZ7VOn0lhNsmo9DIRwAfdYTdRByitfEXoOJ6NIz9HL6zM5azmcND03F4c2cbJtksSnIRPwItSjTVqK/HdqM4HLKaykE4yzSXSTGXxVhPVDOBvrRMO5ysnsrGvlR7MiKOy2mrlbm7VALBdg8SKZhm4uFF1rm6b6Rojzx/eVN5KSatMfULrfyPT5LdmqFjAtS2NNJFTXRK3QjJ6Pp0pxd/HIByI6ynh0uPbF2SaBkxXMxE4xCX/S8PN/xbCbRZS4atIo8r7Z8r7ql1gMvsge6mPFVf0brMxZ5x3neMEZDpjwf1ndsXM11syBExdv7JdWXGbZFBF9a9u9E0SkMl47l0wN/7skb/uz8DT9vnvD7d8/Y7CuyZKcOsN3XhIdCCsA20anreOISiPeDqEVViPRnIjAbZ1LwlRN78lAFlPXEXgpAvk1j2kI0EyqCnwXsRccHF1vmeU+uxcr9y/36W++/70QRCFaqYHGnGXuFuxylzRo1y8sj1dWID5rnix3vfbThFz+44KcfvmD14yue/N2a7Ms7CI9kCDV6DBCtFANXa8alRJsrFyGX9ZwYe0RcLZbk5e2IbQ3dmaE7l9jzaReugrgLK2+kS/EJ6IriONM9kRvCtGJe6S5GdOExJrCedRgdmRc9AKM3RGDXlsSocLlG68j5rOH7q1t++70v2H+/5P/w5W9x8+WZ+OkpsY+avYmUdxmHVxb/bKCYDWSrlsO5ePEpD27tyJYD61lHnY+8t9jwstxgdeD3Ni/46eunmK9KiltxJhpnCeBaeFTtiI2FVmZW20jR7K4C/mKkXUEzaPRRwlGzg8IeobgXfnp2jCdrK1887rc5bRFktMmTy06wj9shMyTF4ZkYqdhkAjIsEHstE1G77GT04WYy65brjjxlIbwOa1ZFx/vzBz6qbnkvvyNXni5m/LR7zifNFduxpLYDq6xjDIYxGt4v7vj940t+5/oV/WjxQTM+FGRJqRcy6WjGdWBcOOplx4vFgaf1Hq0C/7frH/LQVCgVKQpH1+YMXSamqoNONvJwfCHXSXUt1PPJsDZrhRR0fKHp14KPoCDbSFTZeOkwM4dvLHov41jzygs+M3kfXvZ8//kt788eOPocTcRFze+9fU5zPfvW++87UQRs6Th+6Kg/t4k6mzFeOLCR/bZi/rTnsj5ilWdmev5Lz/4eP17c8v9+9hGv1+c8+3ct5Wf3qGEkzEpCZdFjwB4GdG9QMRe670wnEDAQMsMwT+q75FwcbIbtxGBUOxEcufpxly4BJon0kvSe0T7SV/XZQDnrUMCq6vgLF6+Zm56VbWlCzs8PT5jZgafFjlKP3I5zfrJ9yud358SoeDbb8WF1x7k98OfKLzn/6MD/vvxtvrg9ozvkDHtL+U5TXUdWP4duU9Bd5PRXA2cXe8KqYXMzR3WG8ZjRJyrsXTdjZgY+qm/5S+efC/+9eE5TzOQ0zaPEn+dyypxCUd0jece0irjNZC2lZYQY9RSckU40FDoD20fqG38KyRjmgotMSUiT8Cmmq08l41YVZDsQTRqJmsd/Y48Kc2fRXmbd7r2R+eWRs7plDJrtseI4FMzqnicziSz/oLhlbY78uH3Fx80TPt5dcugLns73aBW5HQtKM5Jpz/+z+XV+dneFD5p52XO7naNGfWIpukVArQdm856zuuVJveeiOLIfSz7ZXnK7nZPn4uR8fKggKFThMaXHJ/VkfxXQg2L1U6juPcNCE3IothHlI00KZZ3yIbOdbEq6Kyf27y6NP2cj9bqV59pURBOpnh/4J15+zjpr+LI94zBKIvS7uxXxXQHld5wx6Lxm/XzHJp+Tf51RbBTZPqO/DPhZ4OvX57RP9rxY7viyPaPQjt+cvebFRxv+5uLX+GT+Ps/+9hMWP92gjx1+vmSYZ0IRbkaKzjFclIRCi//f3KC9oLKulgvSdJI10F5OfvyRfCdijckeXHtw2QRekVZnQt5QZVLK6cCPLq55WW34jfor/lL5OR9ZwyGO/DvVC/7O4XsAXNo9tR5o5xnXhzmHY8m2r1isO2a6x6P4Xn7Nf+7JT/jJ7Bmtz9j0FZ/eXHD/tqZ6px9tyz8pOH6R078YWV8dJMzjoaZ9M6cbFJtszSeLJ/zO+hVndUvvjZxSZSAswolBF1uL3Roh4DjZ008AWMhkt2/vtcSzxQk8jXRPJgGPZDLaRjjyKsiWQ2bpKIDYfcJGkg5eD6R/I++r9jIC2DZdG1nSOvRyAwyryPhs5Oxyz9XsSO8t/WhxTmOtp8gcpRlZmZZMOf6ge8nffviQ23bOpi1RwF1b8/W4ZHBy+X+sL4lRMSsGVsWR68Oc8bYSr4cydVaLgVnd83Sx59Vswzpr2Iw1P755xv56Lms5kwvb00bq8wZrArvbGaYRJme2Uyw+lRCdw0vZIs3eeLImcHxqT/ZwphXSUbAwrAIUHq0j9bxjVXXU2YCPmre7BTr3XDzd8p9+8XP2ruTv3H7AQ1Nx3JfodwXZUUYmlQJyf9XjO1EEVK/Zvl5RXDUMrwLhTUHxoKi/FkTbzTQPw4r9uuJifZD46KXheb7hn7z4lPKfcPzYfIQrz1j/wQ770OKLGe3TguxgKb4+kG96uqeVGGoMnn4lDi16SCsp+yiCOT4XYob4Dsj852YkJpaiuxR/fRUhFAE9G5ktOsrM0Y+Wn95fEc4VZ7bhLr+m9gfuQ06pRgrt+HdvPyJEKQb3x1rScYLm9WbF/yv7PvVlf0rDeZ490FXSU+/KEh81m1nH/cXsFBemvKZ+p6iuc/YfnJF9eGB51tBWGeNGXHziQ8auW7DLJFfPbqys/qqIW7uTKaafB0Ii6ygnJ7zuU/BJOpVPCr9MMI+wdJjK4YOi15Fs1nE+P3JVHnhebtEq8qZb8TuvX7H/fE79RtaYZlQnTwBfSkcxbWNC/kivBlmZjUvBOPJSTtyHrqIfLUYHXl1u+HB+T2Ec59mRhen4tH/C7+1fchwLoWWPFu80TVOIsWpnIA9k9cD5smFR9Hx2e078ZEa1F3GXWwhb0djAum6ZZz3bseTn2yu+eHOOvi7IfKI1FxK1lhcO5wzdlwvKe2nn9QDVrdjBHT4Q1er6Z2IEunvfSvxdy0nxKRJvUUjOVh0fnt9zVR4Yg2EzVOy7gmGwrJYNf/nJF7zplvzdr1/R3NXog6FInZSsnv//gCdAhOorQ9/Miecj7sIRCkN5ramu1Qkp9ceK6/uC2/M5+6HgB6uKi+zIb66+Jvwlxe8tXzEsVpz/pCN/6Ii2pr2wjLMV9ZuWfDPSn+eSNrTzdGtzMq3UTtYxphNQq3sSGRdCY863Qhvtz4PccG/EantcREIJRTVSp1DO86ph01X87O6K1/s1v1O/z4tqx2aseH1YMwbNoSvYXc/RjTmh/yGLNLXhpzzB6sBvLb/izB45+JKbYUHrM7SKzOyArmSu3OxqnNP4OtI+Ecyieqfowpxu7aQ7sXJTExHdvw1CSU5IvWkVYHFnjvJcZut+sLjRopNfXvtQkt+YtMVA6MR5YrbNAvW65cV6x/uzB96rHvhB+ZZX2R1L1TOg+XK84OPsKe8uFnzSZRxtLt1CmwgtlRScYhNRA4B8PR9kdermCZirPfW8p8gcy7JHqcivrW/54fwd//T8p6x1y0+G5/z95hX/9t0PeHNc4rzBB0XT5RKC4jUhzekUHluIC8vDvubd12uqz3Kyg9ChJ2txnMJ7xVe3a76MZ/jeoB8y8oM6MRDjwmFKR/SK/l1NcW2YbwUQDekQPr6U77VHxeJLoZk//CDDF5xi7LoLIXb5QrYnV68e+MeuXlNox20/5/P9Ge2QsdvXaB14Mj/w44fnfP75FflbS+mERZnvEnsTOHyg8D88fuvt98cWAaXUK+CvA0/lduWvxRj/VaXUOfC/Az5Eosj+2Rjjg1JKAf8q8F8AGuC/GWP8tu2EPEdyw6neKcYmZ7jwxDwKfTPT1O/kjRtW4BsD9xWfbXLuX9T8+sUNZ3nLVXHgP/FnPuXvL1/Qnc+5+vuW/GFAOcuwthzfq6i/7qQQXGQEI0SNiQlnewG2xlr8/cJG0V0GustIeavltc0EBNSjEmpmp7CNpaWmejlw7GsA5mWP0ZE3tyu+3l7xu71gB7rXSYEYxNT2XmZvn9hsPigaX/Pj+Jy7bsbLmdh178eSgyuY254P53ccXcEQDPdhJozCLNJfBYYzWbNFm/CK5ODLFL2VQjQISdU2l91+1EBQjIPF+8eI7svVgQ8WD+yelvzh7Bnhq1Jm+oWk/xTVyMvVnuf1jkXWcZEdObNHFrrFEOii5St3xt89fsjf27zH9X7ObNHRZ57xviQaLQSjLGKaRP5KrM5JJm1byWkARbCWrsqZlQPPZjuelTt+VL3hR8UbFrrjs/GS/9Ptb/E7X7zPuC1k+1KJ/bg2QiqKowKn0bVYh/uHApwUndk7GXXG+aN9GR5U1MQvJHA05pHs/0Pdn8Xctq75fdDv7UY3m69bzW7OqXOOq3HZrkh2nNgKvoAEuEBCspAMMUHGgEVxEYQickHwDZFCpCCBIyRQUCFf2ChQMkmQTWKEYnAAE9uxq2JcpsrVnXPqnN2s7mtmO5q34+J5x5hrl88+VXFZ0WZKW3utb33N/OYc43mf5//8m7FIvluIq4haBYxLxH1VAkDU4nUYOgH85qix5q2meRCnp+PXDdrD9a+J7d3uW5bhWdkwPff87t/1Of/E7fc4xppfePyIV7sNIRj8aLFV4OO7Hd9/vGb87ob1K138L2D9WcT2meHGsP+WYvrRfvFP/IcqAkim4L+Yc/55pdQG+Dml1L8P/LeA/1vO+V9TSv1LwL8E/I+A/xISRPrjwB9GYsz/8A/7AcZTKMPF0SYZqa5Fbjp4QVLNKOu4ZBXuYBker/n5r7d8+OKJq3pgjJaf+OAtn7YTn21uuP1Fw+a7A6vvTYx3DcOLGj1m3D4y3lj8SvLmsgLfKuyYl22APUPzTiKfhrsshqHviqa7+LepQlBpv2956m9JXUSNmn7aLqud6sGw/kQo0VkLo2u8Mvg1iyOx9kKQCauMqhPBGz65v+bdccWLzZGb+ixpuoMQXBrjuaoG1uuB/WBQZ4M5GlIjCH61mlh3A1rBeXSMo5PTrxc6rQpCTJqeia8hILTlkyUmJxwGDe+0OCVt64H1ZuDwgabbDvzeF6/4ifUbnrkD1+ZMozz71PKL54/427tv8t36Gf9Y9wl39shT7Ph8vOLtaU2IsgXxZyHMqFKAoi0Wbx3F51B8H+cEZSEfFRsxYFVNrMyEIfG98Y7/+PgjvB3W/Or9c06fbHB7jS0kpNxrQi2CG0YjRbFKpMFiH4VKnlymvhd/htmt2Z4VKYCKghHFRlaotoxF0614FZhOSCTpvqZ9ZXBnea7jLYRVCaop69PZdWm4ky7SnmD1qXQ7jz9hGJ7LBsQ8G/kj3/wuP7p6y2fDNb/89ILP7q/QOqEUNN1EU3m+9/oW872G9kmeU7WXAuBOkfMLy+EbcmhVv97SvOMfnixU0oc/L38+KKV+CfgY+KPAf6582p8D/oNSBP4o8OezhBz+DaXU9W9KMf4HHiplujfCMPOb2ehCLe6z2crNXz9lql0WLr+C7lPFeG74/Ok5Tx8f6WrPQ+y4agc2f/AV33/+jP55x+0vTjSvzuTaMN7VxEZTPwVQluFKE4uZ5RxoIelAcoO2STHeZPqXmfpRUe3yIg/OZna2zVQ7DTtdNN9gPr3QagXYSlT7gF9ZsUQzl+RiM5RuyGqGteL26oSPmsOp4TvnO3ZXDZ3z7PpGBCwq41ykrTzbZydO5xo+bWleG8ZbhVqP/PjtOyodeBhX+ChhoMep5uncMo0WYxNaJ4ncmix5Et6CrYtl9mCZzo5Xccuhq7lqB3787i3fWt3zB1ff5SP3yGf+hr9x/FGmZNFk3oxrhuhojee1v+Ihrng1XvF2WAOgdaY/1+i9XZSK7qAInSmdkoCJ2QpFe7oSBmO2ELYRs/E8vzlQ6cjbcc33Tjd8vtty3jewt9izxhY1qD0p1F6KnV+JZfccoqImjT1p8TCoM+0rTftWWHsqyc2kcmF21sKqTHVeCoC/ledibMSPFvWuZvW5xh0y01UZE50UdnsqrsGzh+P6oruoH2G8UfQvRAuQu8Cz5wf+8MvfoDUTv3x8yXd3tzzsVlgbcS7ivcFPlv5NR/1O6OLJSmrx9jek/z9+6Ap3BVafQb2PhPofkYBIKfVN4A8AfxN4+d6N/QoZF0AKxPff+7JPyse+tAgA2D5RPwGIm4+aWW658OCL4m0WmyRHMZwElGH0G863nno1MXrLj9w+8k/+nm/zi3cf8OmLLc/+P5bNt080r3um65psFO4g7sGpUFRjLfRLM0qhmSmi76cPq1ROJ80CLM5kDUmhlX+LFVS9JB3bUUgy05WVSPTMEhIpZioUdR+414639YbVWhxM4r7i7dliu4CrghhhRrkQlMr82O07rj4Y+OzlFb/6/ZeYVxX5V9f8zacfZf38RGUDrQu86ATV3q0bPjtecRhq0dcPVhx0Fdg6st2c2TYj+6HmeG7QOlPZyIvuwE9uXgPwc6dv8nN8kyff8f3TNQ99R4ia2gU65+md4zeGW/ro+N7hljf7NePgyCVGPbeJ2CqMv7gbz3oLMxuDKiQGLJb3uqjyzpPj0NeMQ0U8OPRZi3PR9N61dC4xXwVwnK4zaSPOq+osRJtZ4t28kwKQtRT02YiDcr0Nd0KjdnsNCfyzEoSaYNrVVG8s3SvJ/ps2cp2IUUu5Z7IUsvEmkysZe7TQRTh+PYt78CqyuTvxI9dPfHP1wD7UfPt4J0X72GKdAEfnU006WczeUo0U5Sa0rzPrTyOx1mIyaqF5SFTHhJ5y0bP8IygCSqk18G8D/0LOea/U5ZvmnLOaY2p++9/vp4GfBqjba+xJMtZ1gNFLy2/GS277HNU8q/v654pwLV2DStI56NcVU2fJ68i3wx3/2W/9On/yJ/4Gv/jRR/y/v/m7OP1HG25+xVM9TsTGopRIiqeVLQQX8BtRYnWvM/1ztcSgV0/zE5ebNlsWnX39TjPdZEKT6XZyocdahEhZK6qjmDuolJfkoWqflxy/UMwh5+/Hu5rD0aGion1lsGcITSWruJsJWwUSgnYffMNPbl7zT1//Eu9ebvkP7n+CX/jVr1G9dozvrjhtE4/rwPnWcVg1hKQZg+V4aEgnaf2xQhUOg+UprTA68+O377j94IxPhjEZzqHi5x+/zkPfcRxqauf5+nbHj23e8Znd8p3HO56OHUPl0Spj1IohOF7vNgz3reQAViV6OwqJaLoq83L5GFlo42YoIqtJLcKiPBhOoZW5ftLCfBzU4qM4Mw2FYSlFJHYwPMvEG8kVyE8V1UNxXDLys9yB4nuoFtcioIS9ys+2BxldZtNT3oqLT7UrDtI5MxUbcXuU6yU0UtymdZbI+UnJlsZkprtUMu0ybjXxUx99ztqNpKz5pd1LDmON0Yn9uSFFzTQYODh0r6iKCUqqgJzpPhf36vFaL2at1SFTHcTReLwS2rwdfoc8AaWUKwXg38w5/zvlw6/nNl8p9SHwpnz8U+Dr733518rHvvDIOf8M8DMA69uv52wV7hjQY8KOBt/q5cnP6THyhSJISU4kt36Tl/CK2IqXWwoKP2r+H/nHaH984o89+1v84e23+dm7f5LPn33Is7+jaR6kdbJ9pHun6O9McbGRTUS1zzQPlzc3tIU0M4rU2D3mpV3MR1nDjLdS8asnGRugzLE1TFljx0tasDvJRiK0ohv3W5mLxbAjQ5XIURFrTfsa2jdQ7TX9BzXTjYVWrtZ3xxV/z34EwO/rPuVPfvgf8ks3H/FXXv0k3/vsTkwsBsPjuw2P92tBxSuZLVUXUDqjdSZFRRosaTDsji2f2SvsJtEKKsfR1wufIWfFVdfzUbfjeXXgYeqYgmHsJQb8XnX0YyV/L5HiKoIqGgcZpTKhZokeyzaDnjMfLqYg2RbtxoMVzcTWQyieg2PBZopugvReAWiLKWyTYdSoB0v9pJfVZi6qR11cksjiTmzKRmI2j5lZkWKMorBHUwDLeb18GVtdAeCnTfE3uI6QwD0Jwy9so4SXTBqior3p+Sc+lkl9P7W861eMwVLbILmIRSSkz3rJYYyVYBNmhO4z+Zn9rV6sxc2UqY7SFUxrvVC7f0cJRAXt/7PAL+Wc/8x7//SXgD8J/Gvl/3/xvY//95VSP4sAgrsfhgfMj1hrYfn1ETMmbK0JK9nlu0MArYiVMK90gO6trOvOH0pLaY9lhlslzFGjsib4hn8v/BRPP9byzz3/m/zp3/Xv8X+8+kP8lZvfx93PVXT3xU/gccKeDacPHT6Jp8H5pbjnzrbcQtwoOYFOQMTqkEhFCWd7eZP65/J5Kira+4Q7Z1TKhFpYczP6HWv53pISLC3k+KzMjEo+z648/kcie1ez/l6JGvtMQNHQGUILu7Zmt+t482zNr22f81G748ae+S988Pf57Oaav/fwIa8eN0RvSINk9DFq8irSbQa6WuyxzkOFTwqlM0plnvqGXf8hWmWGyTGeyw2dlISIAFZFzqniYew4P3Tog2HsLFPn4OCWky+5LFLo0s3J38EeVcF+sgSYqFksk8k2oWophOpspItYB+gtzWtL/XRR8GUtUnDb58XBKDYKUyvSKOCeGYUZmY0UjFy8DWaOiBjJSihJ3Mj3ML1agFsA+ku3JuK0C4lM93nJRJyuC4EsKuxeF0ameNqro0VFRf21Iz/1weecQ8VUqsjKTazcxCdPV/SfbKhK8Zlj78JK/Bvre724D/Uvijv1SYhXdsz4lWHciK9FNiKD58sbgd9WJ/BHgD8B/IJS6u+Uj/1p5Ob/C0qpPwX8BvBfK//2l5H14K8hK8L/9m/1A7ISBxQVjHBWQsIMER0z09YS1gY9Sb5gLmskM2a6twmUZriT06D7TIvpxSph91qQ5tc1/6/hdzP8Hscfe/G3+W88++us/vDIX6x/P/HnKprHRJsy9hRYfQ79M1kfxhaGW7m4KLiELm1YAIZbTTKS9kIRHLljFtNPJ+BWaCV5yAwZFRPjtnQ3fSaUK9hMeZlDYyNfk5sIXhN8BTYRtpHTx4buc7WYT7RvigrQavy64d2HFW+eb1ltB1b1xG175mV74Mev3mJ04v7UoTay4x1HRwyCKxyTFNYYDLm35ARjsTTLWeF7MS6xoyo3l1x8U7B81l8xJctv3N9iH8TWKgxKci6qRCz2X7ZYk6sIsxe+6S/x3KG9pEGroCTtyMha07gkUumoUCdL+6mhfspLHJk9sSQYzbHt2c0OyWX8mJ1/YqmupROYswdtP4evyBp4AYnHy/uvg3QIM44T2oJXDfIezlLgMDslncvr2haV5mikKCrg456XVwcex46VnbiuzhiV2amG7z7dMn5nQ/OkF5WhSgJOxjrTvta4PcvPu+QrSAFIRpivxkuXMl3J+9be/w7GgZzzX+PSjP/mx3/+B3x+Bv753+r7vv/QUXao09YQG40Z02LVpX1m2hhSWanNNk7aC9mie5swo6Z/Ju3h1a/A6SNDbIWmmbWietL8/O7H+aUffck//fVf5adWn9L94xP/B/WHWP1KxbSpWL02VLtA+86jspP2fo7ySlLt7f5yikPx4Vd6Sc4NrRSo5ilh+0RoFL5VJCM78Nk2q94nXJ8YriUDQaVcPASgeaMJxVhSVHVW5tzZSrpYhttR5Msz0NgqzTTUHJ9ZTl1g3zUcNzVfWz/x8WpHzorDWOFMYlULajV6y/HUEB4azFFjtOy9yUpoxaPBPlrsSWbzsI2odcDYxOFc88v+BdNkme4b6nHWGSjCpMiz+chZhEbGy00lUmtB7bO9mJjMIi3KqIBN5KBJB7M4ItePJdasE6zGlQLgV5JUNBeB5C7K1PpRLbhRaGV1Nzsc1feycYpOcfxYrN5BjDrdXroD7aUAzN83OXmfxRdSnm//XF4f00tqtF/Jaju2svLToxitZgXxxrNuJ4Zg+cb2kZURG/Sdb/il1x8Qf31N8zRb7Mk1Nl0L8ad7JRun8Y4laal6Kh1Q6U58W6Lna1lFkuHqO4nV9/svvf++MozBah8ZbsWSSZebaZ5nJIJKkVqEZpqlqrsSFFrvE1lJCAcKVp9lzh+opU00A9SPmunhmv/z6z/A3/rGj/Dj12/53d/8nF+ePiZW4ku4/kxTP3iq3SXSNpRWSmLDc3E+EsuxWaMf3cWwdLxV7K+0xJSP8rmhcAtiLd6CKmuahygV/hp8GTPcvkRKfwZiOCHFzo6ysZhNUEIrxUWs05NYrhsZR6q9Zbw29LeWe5WpbeBHVo98tNrxudpymirGSdiHUzCE0eKeRJY6bTNxA8oktE2kpEp6kAAZKinyaKSztBGrE4XgJ+lLJS9Be0U+2IuxqINgQZUAV1nDXk5r+d6CA8SVyJaleIi/QNZy2lX7XCy21BIl179QnL8majqSQnmFPehSMPKSyeBXYrgRVglzFiZq85AZbxSnr6XSPYpJavNOch6hFNtzwq80Qcm6cY40k1xK6SqqJwE0JSux+BwWhaAAnwIUmlZWux+vd1Q6cIoV+6nh22/viN9d09xL0cpGbNT8KouM/KmAqXfvBbAeShdUAHNfYsljLSxL7WH1WWLzqwfMu92X3n5fiSKQjaj46p2gnHP6D0pe2PkEBJZ5ObQwbSXZtjolqpLiOzvxiGssheAxI6ZQPxp2n7zkr714hrqZMNsJf9SgNUelic7JSX0UOzKJJctLAuzcPiYnJ5J9TLhRTgh3kot8uFWcPlLY4oSb51OveNGFRhFrU+jKlJ24uBpprzAln0+HXDwJJY9Bh0yFdEzDlcZ3mmrvad6OdG8ssdKkWjFcGU4fWXq/5rujY3fVcNP0XFUDrfU89B1Px5bxvqV6MJizWlR+5qThUJNtFvCwzNg6CsMRNH5j8M8zxiSms0P3elFWCoAlbW+qS/DpbKZSOBNLslBRYOpJLmpQ5EddOr1ZWUjJlASVZQyo9nJTjbeK84cJNl6ixosbsS5mp9P20sCON7KOs2dN96nC9nJQnD+KZJdxT4bV9xXNQ1rW0e6ccftQPCQ143WJsD8Jl2QOpplv2lRMaAARZKkkhSBCajJqO/HB3Y5vbh94N6z45HDNaaw47Rv024r2XdFOVHD+UIDiqqwmh2d50SC4s3zeYu4yyuEwB7fOzMHV55HNr+7Qj0fyMH7p/feVKAIAoTNCqDkkxq3ESfni4abHOQJL5m7bQ73PDDeSWZecpt6lsisuHYDK5GOx0LotfgX7DMhc3b3SnF+2kpZrxYffdwp1K7OYmaS62kH2v+6YqE6JZOXCsiXwY9xqmsdUwkoU7iyuxONWVjaLrfe8wbAyJ54+VNRPMzCoFn6/mIGINkFGHll7VSdZRekA9pSojBiy7r/h6N7JKKNSJrrSFQxQ3xvGXPP2bHlrtiiTsVXAuUiKGjVpdFHnhdV8kaniBlzScYtOYLZnn2frUdecG+EYaF9a7qAvK7YiwZWLFuwpL/O1XxXHo5Ix6A4Sq25H0W/EwrKrSiFMVi3W53aQrmj2KzC9QvW1cAJK6ElYzYKkMn44eS7NW0P3KkPKDM8Vw52MBe7eFHWj8ENmoM30Cb+1jBsRsvktC0ck1oXTEAQIhrLxmUA15aSCS9z72vPND+/5sNvzK4/Pefv6SrYEgDlqus819ixko/FGOgkzKTEbtbJFcSe1rCB1lLSm2ckKTSmCGTdC85hYf++MOo+gFdxsL/u73/T4yhQBkCqmQ6Y+RHyUdc60VUuMd2wy0w1Uj4r2rWwIhpsyu1tN+yBWy7EqSHoEssyLp4/UcupkLVl+tlcMdwIsZlOYaSvwY8ECCninMvTPxYSkvQ8FIdHLnBgLG2tO1TVjouvlFJAVUsk2dKLmGm+kao83soKqdxm1L6GRUqeITi2zr0EsvECVNBmF6xP1Hk4faoY7Q/tOgipnbCJZKZ7VkyaMmtn/IDQO30aUkzCS2IqNeH1fHIB1SSZ2QtaZadVy8sgJPc1dmS005zYSosz5yiSy1+ijOBjVj1DtxFF5znaoDlKU016+TXUUQ9Fs5ESjOBfVD15svLdWAGEu7bnt5aROVjFeKc4vSqpSlcTG3GvsXizBTVTUR6GeqyyzcnIScAKMRwAAeLRJREFU++ZOUmwFnFS4Q6Z5KlhU8YqMJRJdTxeTVtvLiX38UH6vaifXjDgFCzdAT1IU053n937jc7TK/Ie/9rswn4vycC6uM+A7bxZE+wF+G1FZYY6znR3LQeHX8l7N5CozCW6gg7xG1VNAn0YwhrRqiOsafvkH33dfmSIg3vh5gSDNmBdUPmvF1Ak6mrpE6DSh07RvubSG1/Imdm8k3DQ6QeYlfVcKwfmFSFjdXgpFvZcoZ9ASOLoqdM8oMWEq5kL9zMVxGHQw1PuI7QXFSoESOqKWwNAlHCOCCYn6HElO2uhsFNVRosWnqwI0NTMxSi06fZE2l6Iy5QV78GtF3oBKGttnVp/JCDVeyc0wC5IEtCy77b6csO1lVtUuEX0iG9G1C1VbvO1ik4vHY3FYVrLDnx2MU5XhZuLm+kRImpwVVieaymNU5v6wwu/EIGaOY/fdXCjlNK9Osjqd13zJKUItJ5s5Z1avRuxuJKwrtC927pUqXo2K6slTPSbOHzX4lZh/ALIC9WAKLjCPcK6EmURbmJkF9APZCmQDzTtJjkoW+mdaivtCzBGNy3zq+rXkE6Az9b24TfUvhXQFoEvu4PTRxD/2rU/Zjw3f+9WX1K9l7R3bErayk+LrN7Nvg3QtkhYF7lHjDhd/hViBL0Y3pi8jVpD1oC5/rp8i9asThEiuHFlr7Lvjl957X40ikMsaLUmrRtakTroCdy5kkaTIzyF1kK49o7P4K/UFo4rpCqaNqLQkIEM6guog32M2EMlaCcEnaNw50b6VC2tMCn+V6V8m6SzeCJKf9eUCFEqwxh0CLmTGa2Ebmkk+TyW5CPxaLqKsFK43NPee+n4idhYzSMrS6YVl2qpiua0uAJKTUE9xBi4Jx2dpl0FOpeFGwkXMKO7BoVViy1VnCcYobf6c7OOKVt1vFEFBnCrMUS8mnuMdkMvO3oiZqu0vxJvYiFxZRZieR57dHrnrTrw9rTicGsYscl2A6VjR7OV9sH0qDjryc7KWNW91zLhe1la+k7Z4znKodhP6PJG6ium6YrzWspJ1ZfvQKIZr4UkMd+K+o4OifjsHwLDYqM9j5EzTlmyFYsNe0pNjLYdJs5ONjiRQv8eILTTw6eoShRZaGSXMIAnD+VbizNPJSWjuCNMHgY8/fOT7T9fsfuOK7jNTrMMvEWzz1mJWHM5pTmoUsPb9lGFZQcq17Iq+QQXpSmRrlmkeIu3392K6aw1qGNE7Dzl/6e33lSgC84pNVoOldcxyQ4OwBtu3UtJVMEzPgXUgGkPfJsZbLUabQfzphheZaidvkD/JSZj1fApJNZ+uZjWgRIjVT+XknhTDcxheJGKjSa80q9cS5ZScFCYzJtn3HwNmStKuzqIirbBDJE2KcSuzZI9hWmu6N0G+Vpfd7WNER8N4Je1prOQkVOV5hqaQioJarKmrg0hrh2uN74DtTFQSbgLAzMEXgEtdfvezjBLjaAmdkJSWfIQSdKGCdBP2LN3BnEgcbz2mDWiVcSrzuFvx7s0WvbeSJlQyEFWE5qjpPs+096HQwR1ZaXiv42geA+5pJFUGFd2SEKVixq8d/qOWaaUXWzexg5eb2W8Vp42g8BIpxqKdn1OOVIZQszyneUzya7mhzTTzLFik7NNaREV2kOcRGynG420W/0Uv1F+FbJuyguFrnmcf7Ri85XjfYXfCKJyeRW5e7um9ZfcbVzSvjTz3K9lEqEnhjjIuhJVkJIiGImOPptiIy/NIxaw1VllGwZN0iipQyGgyStaPQQpAiJAz6ukAWkNdiTP3lzy+EkVA+Yg7BEJncHuPzqUryOa9tN9M/TjjBpbpRpO3AbwibQLnVlO9kzcgXEf8XWCKijwYcdE5lZOozLMSR14IPae8MMOqJ0G0++fS9p4/UMTG0L1KC3AVWl3a/ow5eeqQ8WsrY0pTdtr3E2Z09INhvNKFfmyp9zLTyvyrl5wBVUgoyYBOMs8354vvfFpJMdBB/OnMmOnvyvc1UB8krtqvSmJSLnvjtRRGvy0n13sdgr/OTPYyggHiRxAKeadh0fsTFGkyqCoSR4t6dFQn+X5ztzDbp9cPQk6xp4ieIu3rRP1Y1oyF8KWnSFw5UVVWSrIhgenOMd5opq28Lu0bOaGFKq7ob7Xw8p10PGaUGzg18vopIZcKFjDHrs/koWIcO1N+s5UDUpW1sx0yzb3MCP1zx+6F4vz1gOoiaueo73XJY5TVbvqJEx/fHERs9W4lBqAmM91Gbj/Y0brAZ69uqItewW+Ke/CoqR9LAehKB1AKQPPGUt/LChKk4E1XQILmodiwuRJbNxTL+l7GJ/f2BF6qoRo9edWSuxo1eFT/FfcYJIP7/Ak+vCa2FrcfMWOEKLZasdVMK7341icL7SstOvmPBpI3UEf81wP6bYXZG6LJNNuR7vYIH8HTbiWxXe8FauhJUntjrdBXLF7y2meaezk1oLzhVgw+zZTJlSLWlqrWmD4ue1rbS/cQOoMdIs2rE/VbRWwd47MK3+r30nVEwTjnEs7kkGyKeGUFUPjxtuTjrSOnH9HU7yztm7zMq8OzTP8BuLkFP+dlztVeboh4lUjPA+HoMEctUWVAnNN8R8k6cHu1gE2xBZQAdXq0xVQ0Y8Jl/TmHuGo/MyAFz/ErCY7RAZp7jz2H8l7KKjO2wnf3regJbBFXxUpSeGb0PdbS9QhzLi8RavPPm2/w5EonkgsbMciNFFu1ZBDqqWwhzvK+xlrGATNk1p8Fuu/tISUOP3nL049phg+idC+vK9rXclhkBaevQfpdPW078en37tBHgytiJ/PxmR999oDRiV979Rz3aUW1K0QjA3ZnFknynLScamE1tm8Mq88E3A61YryVa1CP8rznTEUzCgioEjS7SPtqwBzG8l5piJH48lrEamcPRpO3a/jsB99+X40ioGSWdu+O+LsVYV1hDyN6ihiryVZ40F4XJlWJWKp2iqGqcR/0pIIw5ZcjeVfBqBmOFTEqrjc9X3/xyMO6pT/XhN7CpIlVIjWy+9ZBka4yJBkJzNJiS2GIDQzPZCU18wZipVBRyym20JkTodWM16LQs4cR9/aI6WvCppYLvRYGoe0TzQ5OjWHa8h63Xgw8U11AoiaiV4FVN/Hx1Q5nIp/urnh6WKFOltxGtnfivPv2sOL8dgU2oetIOjiqR4PdGwLlBtmrZVSwZ7W04qa/sOtUFlTfHS66erEPv2wRsrq027pclGTZ3586WXO4oyK0FbZ36Chr1JnxacZEew5on0hG4be28DCkmKhUcJyVrBjdWTCd8UpunFhRdAZyiuKyFLOzkXbfqsXUQ02yihTTmrxcd9U+s/50onpzIlvN4ceuuf99hrDOuCcB5erHXJiJcPwGxI8H0tHRf6+lLtum6S7y7OtPfOv6niE6/v7nLzB/fyUrSUSIVj+oeUkjI3qW8Fl7lNm/e5OXNKL+mTz36knciG0vhjRzxqMdpf1vXssaMDcOFRKkRF41UgDGQG4sORrM7ndgL/afyiNncu0gROzTgH/WEbZ12Q5k9JigERUee2TVVWY7e1ZMu5ru+YmcFePgUNcT+ejAa3yseHusWN+d2bYD22ZkDJanfUd8qAW53ubC+FIS+NBkdAv1UzntLCRV9s4hL4mxWenC2JvXjyKAsmfNeOMYb52su3yUsNQEqbGobJi2Vk7APtHeC9dhvBUjSpWkrTWDgiaTmsiLuz1TMOynmp+6fcV/+cXf5deHF/ydx6/x1LcYnbhtTvxnnn+bFz+5Z0yOmDVv/Iaff/d17o8dNmmGpsKnSopZAFtShoFlLEhWLmzJhgQdE9HJiDCHq4y3mdAlGRXy5WsBaQ2ywj0JgUf29bJ2m1WEySlQGvqEXzkZba7eu2nDBYwDUNfgbxPrj/d8uD7hoyFmxdOpLbZomnQS9uOi35gLlNyHwgNYQdaCNblTwS3OHv+sY/+NmuPXpfNpX8tWyIyXteLpoyILfltTncvmwEoE2fMfeeSbVw88jh2/9hsv2fy9itXngh31t3opPvOqE6SLM4NaxEtZw3CjGZ4VbOUB6se0UMZTJc+5uQ/U9wP66QRaS8s/BdThTN50cqj6JGvBnKXL7ocvvf2+GkVAKwEznIR32t1IuKrFccaoghgHuakQbr73qpBxFLrTDH3FdtMTo8b3TuSyR1nHkOEY1gzbis2656od2L4YeN1sOL1ZoaIANuJ1X2StiBTVFgccHWaeu5we47Wif6FAWZonmbdSpYTw9OYEecXwzDFtHCq02MeMPg1AQ6rl9/IrVazNZcY/Tob+g1zCWMrcd1J4X/NaXdGtR4bJ8brb0F2N/MHVd7myPY++Y0yOfag5p4oP7I6vu3tOqebb0wuuPug5hppjrJmS5Tsf3/HqaUP/0EqY5Zz+M+byu+ZlHTaTcuYY9tgW2+/nnvZqQOssZqfBiBy5t+izoXrSNO+KucUhLYGwsZFtQGhLhFtrOH8ougSQsWTOQlAvR57f7llXE3fNiT909V1euh1PsePT8Ya/f3jJ4C3j6JaIL3csHUnReyQr779sBRQqCyVYh0zzGKl2ntA5hmeO8bokPRVlZ6yEpzJdS/gJNqOmS1K0ShC7jHveo1XmFz7/iOFty/aXLZtPJXfh/Oxiby+pVxfxk44XP4xYz9mL8nyrvbx2ZpQg1lgpmsfE6ntnzGGQ2b9yxK2E8Kr9Sdp+rclWE1dyr7g3J0gJnOPLHl+JIpC1IndStdAarMYMgdAafKfxK03zztO88wzPHKEReqftVTGU0Bxbx9h4mtoTJkP2VvLg9wLKcIJ4bni8toRbzcvNkQ+v9rzWicObNTkoptsseXhTyb9Twt0OazAlTnu6EgKQADeK/rnCrwz1Tk669LKSOXIIqOiYthqVHdBhThMqRuxhlO/9ccW41VQnuRDah4TxRWtQWvS5IIy+5vQ1xe2zA2s7sosrau15NV6xDzXf6u75se413x2e8beO3yKuNXfmyDnV1Cpw05zYhQ6fDc+qI99p7/hkfU3/gRML7sea6l6Slu1R0Twl3Cmho3AQ5rTbeb4miDGpdRGlIAYNO0f9YC7AYOEnHD+UzieViPAwt/AWUhOpbgbWlWwetMpYk/jxm7f8U9ff5rndE9E8xY6NlmV5ypqn0LGbWnb7FbyqaR4EtJNuTU79rBUUCq07C57jzgldoufNOZCclgKwlZGzOkjrPVxrYRU+v6D2yutl8yIsz0wwmWlX8+57K+oHxcvvJZonX0hMAoY2j7mE28jrOFOoZ+GPcFQuGFS1g+6NiND8SpOMYv2Zp3rbo6dAdobcVGSn0b1HPxzAGtK2IzVO/l0r3EMvXIFVS2rdl5oMfiWKgGwCMqlx0jIZRaoN2idUNoxrxbSuWH8WaN55zi8d01rTPEVUEgff/B3LKXfkZz116+mDLPXDdUAfTXGsUeSz4WhaMcZoBzbNyHldk942Yiul5M3y60z9VOzG78TN1x6EYRY6iokDRQIMU9nZ+6RIpqZ5lHWgXxlxdyl0Wj0GVEjYw8Tqc8V4bUV9yIwxCJFljqfKpiDXZ0BVnFY1IWs+n67w2fDt4x2vj2u+V9/yUzefs7Ij3z/f8Lf4Fv/46rsAPIaOc6p45g4YMudUsa8bzqFiezXwoj7wblzznf0tD/sV58mw21esvmsLzbZsTmYVZSO7teA1oQSXmLPGHue2V34XMozXmuPXM+HFRLsd2LQjjQ34pBkmR8wKZyKVjdw0PZ2d6OzEy/rAQ1jxd49f437ssDrxje6BF9WeXej49uGO735+h/l+Q7UryrkK2bA4wXXkOWfqfV5Wu7MATftEqgzTtWVaFZ++faZ9FxhuLMOzOXRGySyoMmYs4SonKWYeVfIFjfAMHqVjDZ2R62PMokWImbDSxGKAIqd/kS93SiTkDYIhjbB6lejeTAx3TrZBbybsOZBrQ2ikW1Y+oseAPvTkriF3YpkHgoXoIUpXcL0iOfHq+LLHV6IIEBP6IFU+bBt0kMzA3ChRcLWG8Vrx+Lsd7duEOwl4MtwYujcBFU2R4lqO31iRX44064nxJOQV/YFnOlvMzorDbVYl8ENhTMKYRGwj9p0VBZwupJy68NrfCXfA3yRUFrAoFUHQbKqmorypyUJ/pwmNCJGqY3FGyuIpALLmVEPAakU2CjOKXmHcikec8dKOqizzdjYyGqy/B6e05m+fv8mnH1yxqUYOUy3TVNK8Gdd8w0y8aA68Grb8Vf97uHUnxuR4mFYYlfh97SdUKqJVYm1G+lTx5FumZPiDzz6BZ/BuWvG2X/Pt7jmxqmnu80KamleSZlRor1HJ4A6yWlUpLwSceVXp1wLetduBH3v+jq91T7R6IhaJXR8dB98wJYPVCVsih79zuuOX373geN/hVp6f+PANPhv+/vFDfuH+Q9792h3d55rqKb+3IZB1Gwie07zL1Ie0aA+odVmdZmJjRW+/1viNjGX17rKxmbkXsZzcs2+g7QsD0oiKr9qLp4Q9Jcwk2yEAe064g3Qa4414S84huEIuk7FA+CHSvZgRNp9Emjcj410FWTYrZORQHKM8/5BQPqLGQLxakWuD7r3cM86gglxrcVuhQkafPXqcgZ9/8PHVKAI5Q0qofsIC4aoVjX0uLK8xE3sBZ3Y/qmneCkAiF6Qte2Rp0Vff15xyw/BswtaRcHKEDNVmItSRdLYoEBFN0nhvyEl86MNWU90bqf6q+AaUU7i+V5JNV4k9nOTHs5w8cjMn2vskirMrAb7qfcL0CTtE9BBQ/SSzm9UonzDngPaaXDYks77AJpnLQ1PkoY10H+J1WPH58TmfdRGCQreBu1uhhY7JsjYjGzvy6fmK7x5ued4euXIDu9DyK8OH/Fj9mpd2hyHz+XTFtw933J9XHH3Ns+bEfmrYD40sPAp5pnmMxEqUiyop8QYovAV3kCKBUgwzM7BYsk3XklDU1hNWRcZosSrSlqiw0VquXc+YLCkrnIpolflOuGMcHCSFNonjVPO33v4In7++xn5ac/NdcCdR/IUGVFbL6ORO0H2eaZ6iyGrrQsdOwg0RzCMzbjShE9ceObFFoWnHTH0QND6Ue2fefgioKe+9O0kB0D6TKkU2BpVE3m56IezM1vY65GWrZSbZJl1UqsL6bN8l2tcjYSW3ZbUL4nAUEvZpIFeF2FCA9LiuSZXBPZxRIZG6ajlwUm3RY8TsB8iZuPnyCKKvRhFQQMrkupIV3XEidQ579GRdkZy0YvYMYwPnjzPuIGBW/0Isq9t3afGbqx8Ug3GErcKuPOHk8K9b8kq84gFSUqzakdFbht6QegsmM37k0UezoOd+I6fBbB82Azr1Li2rMiEQlZ3z28jm3Uh9WzFu5aKwQ8Scg1RvH2CI5KsVceWIjYHCIASoDuKNkJzCjknIT00ZF2phl6UKCes468KUs7wdJI6rKZ6AtQ5sq4HHoeUX33zA882Rn7h6w5u8YRdabuZlOdDZiSfdcn9ecfYVT33D8ZMt7aeG9o3MyL7ThEZLNmPx36MYicRaMV5rkdd2FJ99cIGiWTA86g0hGn787i0rO/IwrfjV8TlaZW6qnloHtEqFkSheBXXj8WfH+K7l+5+scAfN9h7qJ2nv45KTKKOHO8q/VYcixfZ58YFITuG7CxA3bgSc1D6LDdwxEjqD9pn6IRBb8bZw5WVKRi0FQFarYi9nBnG8AsEhtE8on8hOc35RExrxvZi7gHmNOutDdMyYo0jdu1fTUhjcIaJ9wgwBvTuTK0dymlSZZcVsxkj12R5iJG06UmXKwaSwux41CHV4+mDD+WUlHuE/4PHVKAIoEaj4QNq2AOgpymbgFAhtVWS9EM8iBhqeJexJWFf9y4zKegm1nMk3qjcEDdV2ZNIV5kl2falLeJUZbSRnSeVRk7544t15/FZh3zrZNxtJ65mLgF8VZtyTAE2hlnkvGRhvLGaI1G8H7FkQWXPyqClIlW7rhcedrSa2Rm5ydXExmpmJySqqg1ioTRu1kGdUQMwybS6ONhp7b3mVJd34a5snKh0JxTqsP1V8v7/F6sTXVk88JMP38w3Akl9/3fS8Pa24P3acdy3t54bV53LSZS0U6PFWLfZtAHpQuIMmH6UQzLkN1dOlM3BHhe0N/UvFqar5pLrm1WnLfqjpzzVKJzargZfrI7f1mVoUXZxDhVIZNRjq16ZYaOWSfiz2btNG3mvTF4+9ACRRIubi5JQVS7GYR7dpK+DrTC+WtafB9onqaSI78bd0ZW2XjKyYUklfbh6laKiy9tRRRj7tEyomUm0Y7pzs+U+C8IMUxKV7LNeoGYT5172eMOeJsKkxQ8L0AT0F9BDAWcJdi+8ssREnKneIVK8OKB+It2vCppKT/zzJaJ0Sad3Rf33D+YUVG7wveXxFigBkZ8EaSImwqUXBF0VLYPtErAy2L3z6VhGzrPX0JC/s6WuZ9nUxZOzEQAIroFbwhmY7MpqMfVVRf2rwa835mcGuvSwlvCp7cS1RaC8CcZOwb83iYa/9zLMXS6lkFN1bcXfNRjQA00bjzq4QcjJECUBVUyB1FckZUi2ocao0KggTLLQXB6KZ8psbhUpFjlqIL6b4zUsqjpBmwlXE7g3Va8sbf8fjs47b7YnaCBppbMIfKr77+o7+1uFMXHIFlMp0zcS6nnAmcfAGdbBUBxbl4lyY4klRWUU+mGUFp33phoqZhj1l2sdE/ejFDco6VJJiwa907EMnbLlV8dyvEr1N7J20q40Ry/KUBbshXsDX5C7WWbPFm+1ZiE/kjCocBEHa1eJOlY0iJ0jrsjbUM4VcMV5pmicxnDW9J66qcuNKMVYVRawlGxMzpgWE0z6hQkJnEb/FleP8opIotfMFA8hapOSz25IOIjoTzr/HPg2kWkA/U9iVqbJkI6f/eOPwrbgHN28n3JsDOIv/4IpQErjt/Ql16uVAuVlz/saW0wtDvU+svn/p/H7z4ytSBDIqRNJKL7NSbGQ7oEfJIxCWl1hGhU7BRmSxsyQz1ZJb2L4SZ1lfJdxKWuOcFcEbbOMJH4DpJfXY9o7xzsAmSAKOFwpr91rhjk6IKuXmrx/zMoPO66PQCfqtA6w+m6j2lv7OMG0Mpk/y5jdy4Vov9tOpNoRWQKlUzRz/i9b+/VNCZQRbQG4Cv7nQY5kPlUmAzLiSgdUcND63vDo7TJWwLhCjhqQIu4pX+Yrba8EPYtTE3jKdK461xGn53uFKUKgdcpFMixFs+5BYvc7LiQpSJKaNFDAzCRpeP3oZ5YwiVbrItQtZp5PRoS/pTapK5Kx487jhDRuqOnDd9cSspFMIkg6sSpHJTn5vM37R/6B+Kg4/tjDyCmUaSgGteE+kxFJoQdiJ7hAFTFtVTFsheYG8N7PMW0+yYUhOS3GIGaOlwMRKTunx2hCL/XeyarluQ+FaZKWwQ8KdZVNhh4jZT3LdW43uA9lowsrKRsBoputKaPMJ2tfCQE2bhummIawNbh+xj2dhC7Y1VI7+4w3n5wY7ZFafDpjTV1xARM7k40mcmO42C6MsOYNLGXuUUyU0okSr9tINjFcBTCaPBhUVcRs5a6gexdTCXg+smokpGHwwSwrO+CKiPjOYAZrXGj84wioJhbNXRayRC+UVyNKBuBPUT4HqoLCDlTZei9rRDIbukyPta8PwvFn0AZLgq4mrStaDPpGL1h+KcrB4ErheWlk3vZelUBfAqzgZhQbiqjD1VIakFj1E2IgJBQn0zqEmRTH4xZQiE5LiWNei/TeJZDI5KvzJoQZD9Sj+e6vXkeZeEOewssStXOx2SO/lA8rFvv4sFkaenJJo8NuqBMgk6ncDaMV4WzOtbXEckvDU6AxD3wqfI8J5lTnf1Lg6yMndJrIT78DZPccMcjdnU9KLd8KsM5MQa2ZjVjMWG/AtywuuivvOHGpje2jfBVTMDC9bfFe2M8UUZi4WJmbMGIm1IRTps6z4LKlWBTOZwUnKaS/jgryH8vPdOVHtQjGgyehRKmR2RkZgeykAug/42wa/1hgP3WcD7uFMeLZmunLERuOOkfq1FPW0bkHD+KxlvCkdwCe96Aqmr/p2QCkwhrw7YGLCdJXMyq2soKopUe0mUqXorYFKyDx+bdEfDJjVxHisRVF47RmNxR41/VPDix85ctsG3hzX+MmSe4M+a7IDipLMnBWmNxK3bVlOYzPlRcATa8XxIyEvNU+R5ikSWiFy6Jjxa4162dF8eqT79R7/XJgfZu9RKUHMKB+wg0clkcvqSeGy+BNIwKmcGlmLNFQVx5jkxHLLTILID1njbwTkVDaSB4MaNHQJ0wVh7p2c6BrKpmO22nJPmnFcM1Rzq3pREepReBDVQViMM8CVtcy2sdKMW9Hxx0o6nPoxoZLsxFNd1mG1WsaI7m3AnDVh45i2ZulypGiAfjCYSZFKV5fXgW41Yk2iz5CUnMppXUabgylgLDT3xbXIU5KLBTdwp8IJyJBqhY5yN8+5DzAXtCyzfYKwNoRGi43cwROdJjlZ3aoohjex0uKN4ARQlHGn+EaUgmEHufntUAoJQK0wXl5Tt/foIB9XUfb92WrBjCpLWDnxU9idCc83TFuLGTPt6wH71BOuWvzGkZySAvDmLJ3IukGFRFhXxEZT7RPtqzN636NChPNX3W1YadisUDGRD0eq77xBfeM56UVNrDWxNpgxUj949JQZbg3ZaOoHTd9WqOuR9c2Z/lwTRwPXnpAr7L3jk+6ab72857rrOZ1rss7i1XaWHW/wiv4DcWYxhQ8+M7pSIeq4Yuro14rhTrYR9e7iimMmuWljo+m/vqF526NDInROhDm7wts2GiaPOYyoMYLVZW8F4bpmuHNLEGYuqrmFAFLstE0vvAXtBddIxSJcRYV+dESbadYj3mQCFbrXZJdRVxMhaPSTwx4V6qCLt2KpAXkm+ZQILafQTuNXttiVqYXAJF6DcxGRDi3WQnwZb9TifCMLCMt4JZ6Rs2WaXwuGUO1FqBU6mJ5n8rOJuvEoBadTQ9w74XV0EdsGwmgkwxBd2I2XFOlkLms8M6YFjWcE0wfBX+J73UCWIhFr+aVUFkcee/TkUgByAfJUTKRK3KxEyi7fOlkpsJIdkZfxRJx+ZFWYrAjF7Dli96OIfAoxLivAaikElSU2FvcwYB4PpOs1oRWw0u0m7H4g1Y7YypqwvvfyscYRuwY9RlJdVov7gHvo0XvBAfK5J3/liwAZjCFer9BdA08H3PfeoeIt420t7Ks+g5ZTt3mIRY2l8XuDzzVxo6lbz+A1edLo25H4UGO/1/Lt+IwPn+9o24nwthFxTi+tYPc2krWRDUMC91QIIeUairViWgsNtt4nhmuxIfclrFTMTxTuJKBRsorhZSuiJ61ISWPKzZ5qB9083GYI0nLqY0/9eMD01wzPm8WvICtRU89c83kFl61sJ/SoiP3lFNJekV5V9M8UupaTM5sMUbwAbBtIzxK+qpZoK4nUUsVfoczM5QDLSn5ucqqo/+Rit31GFwZkdBdDFL8uq9JWsgVVRBKiVGHKTVwiu44zC5LSOivizjGeLKMC3WvspIjrBDoTveAauEyKmdAKYcxq6QTEF+IyksRKE1YX4o6eEvZ0ATP8RlZtc7aFGQrZp7NLd0fpAFTK5HrGB1hWgsYXSW8hdc34zrwqzEbJKLaXG5YsZJ7UVWSjBTAOST5WGex+QB960rYr4GTCPA7oIZBaR2yFUVvtPHoIpSuwuFPxEIgCULr7kxiKlOssH0/kEPiyx1ekCCCoZlcTrlt069C7M+bxTKWUkCe0wvReKJmVtHLNo+jFszakrOhHg6oSFDGLuvKk4NCfNnw6GtZ3Z+EKUNyMOwGYNt8XdH9WsNm+BHsUGm9shAXYPiSap0Tspd01Xua6XMxJQNM8SF+ajOxxZ36A3FCasK6E9lnkrFkprFLopxPm/kgbErGxy2kEQkHNuRiRljVlqriwFt+T8uoJzKMjroXUk6sMVURXEjmuTCZvPLEysDdYPxtUwKzatL0AgbGSOZcs1l8qCV/Ad3px3PXFD2HuJCSU44uS71RdVnFQiESuGJqaDFn0CnrSkj9Y5YVmbY4ajtWymUl23rcXFWR/+b4S1Kk4b0ULkLWi3iWqvSRM6bO8N/5GpLZmSkWtGQvtWE5/PSbMDErHTOxssSwrd3ri8v6VtF+VRUUqRSAVcFJk5qb38v53lezyk7D4lI9gBPvSg5eC0MraYwbyVD+RupqwEfafPU4QM+OzltgacW6aEuYs4KLyEfW4J+cMIYjVeM68HyD8mx+/ZRFQSn0d+PNI9HgGfibn/L9USv3LwH8XeFs+9U/nnP9y+Zr/MfCngAj8D3LO/9cf+kMyZO8xn79DfXDHdNeiG4vpPXoKGCsjgR5FQnn+WicOPkHchpJVDA2o0Uj8tU3gNXnUSzahvXccpzU0Cb+WkSBbxekDRfc2sf4k0T+TFUxWCh0S7hAJKyPchJX4+plR/PHqQ1wuIOMTvrNMW0NoDc3rs2wCGisSz36UltvqQq0VLreeErlShE2FLW9gqooDT8hgBJmuSEtLTp4JMMhWpBLvAVDFtacUhV4L8zFDdpp4A7qKpMmAVxCVRH4Vc9PF5FVJYUlWADIdZkq0sOLG6+LuXIspRmyENGWPWliUIDFfFlQPzZMwH+fU52mrGLeZuA2L5mCOc58jvlCy+jS9WsQ6i1w5q2XUqHZ58f/TEaa1jCZhJa+BO+XLeGUVuTZyU46Raic/c+56Qmckv7Ds9FXIy8gmTkjpgp1Mshac1aDzx/Qotu/ZasLaCTZwGMlKka5K4TlP6CHIyrKWsVYHGQlJCXxAGbOsy3NbkRqLHqKIh4xmumtIxefSHkb0sZAnUkL1IzkmKQB9D86hrJVR9Esmgt9OJxCAfzHn/PNKqQ3wc0qpf7/827+ec/6fv//JSqnfC/xx4PcBHwF/RSn1Eznn+MN+iHKO3PeoT9/i3AeMdyK5NX2Q1lmB39aYMeL2kXEjpo1QCBcnLWGegG4iNJE0yj47OTABqkdDsmbxqtOjaM2Hay0qs4Imywkv6xs7RKaNw44sCPB4pXAncfs1A+g+0L090axqhmcNsXVUnz6irRFhR1Ohhklo0c4QlLR1+uwxh0jYNqTKYAq/22/ccnGFVi3t+HwjhFZYe/Z8SaZJZTWGlhsobQOqicTRYO4d7o0jOYtJ8n1Tkwh3npAVfm+o32kJTxnzMhK4cxbqqlGLC9C0VfitGJrOUV+2V1S7i/Bpnr1tL6Qh2+fi3CuegbFVqGjLVkSJw25drMzaCC5Bb4q78WW9pycBAOeZfLgrM/kAhGKPbmcbbsF5sqLgGQV4DQllFDoq1ChKQ7+1xNmwI8nYqaLw88kZPcnqmpTRXjgfaC1F15RNwdmjhwm0xt+0su15GqQAdIU0NgTUGKX9b6yc2nEGCaNYghkt0npkY0CWToIkztD+phLH6sdJCsChl25EawEAyyNPE6qpUW0LdSU8nLf8wMdvWQRKovDn5c8HpdQvAR//kC/5o8DP5pxH4DtKqV8D/hDw13/IDxFn1KYhn07ob39KM75g/GCN3zjMlNAhEWvD1DgJWDjL3De3ocrL6Rd1JidFuxpJtS6GEwoGgxkUrpxKsQLtZBcOAobJXhvGMl+H1lLfDzRjZLyrMSX/z7dlN94osi6jymFAf/cV3W5LvF2RNi36fi+VedWS1kKGUVMoCcpyEal+wsVMuGpAa+zbA6gt422pcEotv+OSQ9jLPDzezCAdxOtIasQIM2swTeRrzx9ZVyO/cXPD8c0KczCgpZPIhUfRtBPj1nFeNVRvDd1rOQ1nsGvmaMTKLo7LMnYUld5O4ryqY2HFGZFEz8lFvhNm3/x3KGYlXvIJczndsy4gX1Dok6PaaZRHipqeuRGFsdkIIUxFKYK2nwlBJZxmyKV1l5WcOwYh4KRE6pys4Mp4kFor2o5zlG5IS1E3R7Hrysjf9RTklJ48aE1aN3KDVxpz8uIVYXSZ5SP6Xpx8clOhpyinvNbkVgqCGqMUEasXQVB2Vj4vyg2vfIRSJLCGcNOCLgXg/ojy0hngym3sIY8TeRhQXYdateSq/Lz9PyLLcaXUN4E/gLCQ/wgSQf7fBP420i08IgXib7z3ZZ/ww4sGAtPKPKRSIg8j6vUDtdaMz1pCK+lEekokY4itFqeaAL5WlxMlS/hjTo4+g60D2kRiJW2XUDsLWURREoZLcrAXjCAZyTDIWlPvFMm11A8T9hyl1WwkllxmyFKxtcLfrXCAGibMw4ncVuSrNerUo4ZRLsAr8b/W50lW3l1F3raoMaL7QOwc2ijMcaRS0hG4U5STzIixhGQUQP0o4SXTldiQUSdYJaIu/ICD422zYuwM62bE3xhG3UBUYIRj4AdLSpqcAJ0Jm0w4SM6fSpK7F2uHPUkrnHVhCY4KU4C+5j7TPor6rr8T+vScEjwDhbPIaMEF8nukHVWKeCksZjK4nVqcjpOWbkAXCa6MFVLI3F5d8gldoSwfUkkpSjJyFeEWVuOvG2KtsX3E7AaUDwXslBstWSnMegygFKmrICX0cZT3UG4CsjXkWoqJ8A6S+Pu3TsC53VnGgqaS6zlQxgpQfr7hjdDIS3eSjUGPAh6mq5X8rMmjghSHuG0ggXsaMU9nKQDWSAFQBXwNEcYRveqga6Wo5Iw6/CMCBpVSa+DfBv6FnPNeKfVvAP+KvKX8K8D/Avjv/Cf4fj8N/DRAYzbMUtu8amX0CxH9+oFm2uKfrwiNQWdwx0BIBr82wrpCEzqx0s6miDJGBX1NqB25FepdqmQPbfsC5BRkPNWiC68O4jiT7RwxLTfetFEM1y3tQ1jGhflCr/YSoe6OBQzsKpQxi94bpchNLe2dUqiQiK2T2XDXo3pP3NbQOMxpwpw92WpRgE0RMxYEO85bCkHgZ9qrKsSZVIhDrg7o1jPsa1RvOD+2xKgxRlh5M4cgjwZ1EsFUKgt2NWnsSYg2yy690F21T6gR2kfZuce68OmVdFJ6zKAzKmrCFUzXpTgWemxOUhB0MXGtnwq1dyWbhNAJOKi9OCnNLsmxKcKx4g4MUhjsSWGHwhEojk9zh4SayVVZgL2cybXBrx1hJUCae+jRp57c1sRVJSIuylw/lH39pigCy3ub152MaFqTGkvoxDPRHia5qcsJrwtAlxsJ/SBmlMrklBZ+AEahYrk+9DxOSAEIL6/EbPehF/zHGnJbiXnIrELNmdzW8rWFQKVPPfl8RnWtFICmQp0H2Qwg4/aXPX5bRUAp5ZAC8G/mnP8dgJzz6/f+/X8L/Lvlr58CX3/vy79WPvaFR875Z4CfAbiqP8i5ay4zTVNL24VsDVxMqNsVsZOna0uiT6oUzS4SRk2vFE6pQiOVFVb1aMgHQZznk2z2nE8NC/01NuCznCrVXiii4iAjgqRpowCLHeRNvOyFC+p8FMegXFkxdgTRd/cjxCgKyaZCAVop4roi364whxE9BlJtpQvoA2oI0DoBQn0i1nqxMp8jsfxabpzUFFabzsVoNrPpBjbdwO7YMh0rIUi5KICpyhgrdmBiX6aYtIU2ooPEkbmTuO7omCFQdtxihCLzvhSmUJfNhNRhZmntEuFdduizjboUrLxkNvrVfCGoxVNwXlXKyX4J+lDFY2/mbzQ7CaWZuQrSCbIUL+0zxgsPIGslyrvWoKdMtZvEmLNy+NuO6bpCexkHTC+IfSqrOD0GSJCdFRDPlY5Sq0Xgo3yxRZvCsgJUuvA/NKC1HHAzbwGkaGhN6qx0BpMXafBVS1g53H5aZv1cV5InWOLtAagumJGKGXUeYBjlRi/zvxom8tMOTBmzy9bhBz1+O9sBBfxZ4Jdyzn/mvY9/WPACgP8K8PfKn/8S8L9XSv0ZBBj8ceA/+qE/pPgJ5LYGH6RyVa6AMfIi2bd7zKohrip5EwZZ66Ek1txMmf5WF1BHIrdQJYTkLMlCc9BGLmETqWQQqFhIMq0QiNq3edGM65P823wqmikvkWkqZTFAGUbU6FHOkjYt2QqpBKOl4oeAmhSEiOlH9EHMIecqDhA6C50oEIXWKoXLHUOhpRqMz+SS3qsSeKXRLwdurmT+9MGgVWZVTWzqkU/VFeOuYRqMjACFXqxM8b8PmvqtJTmz3Gzzf2JrLcUgNuICHFZmGYHsKCOUyuBXAmDZMZXQFF1sw0UwY/ti21XwF99JIa6f5HPC8J49evEFTK4AgYWCuzDySj5EdFJQdRFgzQ8zitkrUQC+rAT5VzGLOed5ItcVcVMTO4s7BuxJbn51HsXnMiS5wYfSjtcOorReykdB4wsYJ29eXDwi5r/n2opTVhEYAcInKADfMjqcBnLjiCsxvXVPA+b+EhqiT72IiFaNPEelCl06Q4iocVqyBnBOisbkyfePUgDWK/Kq5XeaQPRHgD8B/IJS6u+Uj/1p4L+ulPr98tbwXeC/J/dz/v8qpf4C8IvIZuGf/602A+SMOvWimV416KPsMmYHYgAqh5oCBkitI6UZ5S+5AT7TPCZpkZJEdIUmo5341KMlLiqW2RPklEnFUjxbAQYlgitiH4X4E2td/OrkgnencrIbJcYRIG9Y2cnqGMl1JZhAV8vMVs9rDI0aPeyOqPsnVFNL15NXpFp8+PzWYs8yZmifFtlodMJPr4rrkNsrmneK8anj7Tcsz1/uaCrPcag5DjVt5emaiRAM6aGGEtmdjWwG1NpLqu2Tk2CWfNn7m0lsriSBVxE2UtRiea3nkz2bi9dB+5DQZ7Fb9yu1uOfMBcUOwqCLlV7SmpITzCB0uUiCpc03HvSTrAfh0gHMstv3xT/ZKGJpAeYOLRWOhRnjMrbMFN7UOlJlyE5jD7KCnum7KCUnuY8X7wcfFiNldZYVHCAHVhB0Pxstp2+52VNXk50uoGpain02CpQBo2Rs8IG0asQZqNiF66N0KbmrZVvQNYStgMoapLMEwQuGSYpKCCityesWNXrSuweIEX21JXeN3EO7w5fefr+d7cBfY9mQfuHxl3/I1/yrwL/6W33v5aEUOUTU7oh6fk28W2P2g7Q0pY3JSkHtiiNPlMTXRoObV2kSIVUdZ5WbKurCjE8S6ZS1xm8TaVALyHSxB5POQNBqmQ+rt6PMk9sKvxbO+rQx1E8BewzzLys7XWPAe/LxBKczetWRNivSqrRh6QIIKaNRx7MQOSYBCV1I2KPDbyr81hBahz3HYp4hwSt2lFAKFUGrTDTiNGTGirf+mvULsV0fBsd530jxTwrTi4GoCkV67A1RZczGk58lgqqpHjXuIB731TGhZwlueedTwVuWVSQsKzl7yrhjwgwJPSaq/QUTiI2YkfhOEVpThGBFOt2xrBt1kP3/rNqcgdtYzfO+vLdV+TmxFlOQWYdgR3FwSpV8XPb9oj9JTknHpapln6/7sKQhyemswFUFYBOEfhHd5Cxbnn4gx4hqWzmBjQCEubIF4CuO2eVGVcUFSEaKghXFCCfZPKTrlbAKey/fQ2vSui4ko0S6apmui2343gu4WD5f9UICyuOIspZ8s5WnOheAm2vyppN7aLeXa+1LHl8NxmDOKKPJk0cde9L6ivhijXs4o/dnKQS1VPCFTJOKrLNSi6wzl5PKjEUXEKR1mjP9mntQSTNthdZqPEQj4KCk3crnzYYeWI15PGMOI+ZZx3jt8CtN/9zRvAO3n8rzqdA+CCsrJfI4knd79OTJt1fETS3t9hiWtiyvO1TlyKcz+dyjlSL7QH0ccI8V48uOVAm/P1Z6Me5EidNRmjn+tbTN7fcdp2GLuhsxNqKbJDbgJ7v41y1ahxH0gyXtrTgtlUIobXtaxDcLOaa4+CxAYCEQiVQ2Ue+Ec699Qp9G1HkgbTv8XUdYmYvDbmHdVYdSdJ0qXoUIA7BwANLCJmRJhZqfuwS9yA0mUel5oQqHYtCiy74/NvP1kEtidMIcp0K6UQXAsyRTWvMhoM+C46hTT05JurWcyf0gY912I6i81uTGiQeAT+hzLzt/H6BrSI1GjTOWoi9g8Shcgni7Et5B70kFLJbXXDqIadswXVt5vXYRtCJ2Ft2HJVcwh4Cqa9KzK3ltXt2TQ0A/vxOA/TyQd4eFM8CXbAm/GkVAqeUXYpiwxwl/3TA9W1GBWCrHBqpO0POqzF6Fpx2dkv3pKTFqU0I8BaiKTjwI/FrcY5t34j8wXWXUThWKrJxosZFVY2gUdtD4TYVVQgSxj73MyMExbQz9C7F7cudAUgq1kj0/MaKcJZ960vEExxP22S1p0y4XF4URlpta2GGTkEGwsjbSp4H2+4HpxUqsup1aZvH55FtMTrO002ZUtK80Yd/ICfrBSLsemUougAoaHRV+I7Rc3Uv6kN5rkeeWg2LaiNnpTJ8WPzx5j3QQ/MX2QoNOTpXWXjFdVZgp4XIWnNAYYi05kq4vK7uprFYboVDnvYCBsblItnWQ9yHbEo1upCDYQQDarE2R4bL49oHgFaHVxa9Pipj2mWqKRdBTCsBpEKzJikffzBkwh1FOVy9jXc5J5mlrhOhlLenlLamyiwgo28L/Pw2oQ+EFrDtSVwkNuJ8ExHNGxgIfwBjC7WqhjseiJdH+8j2n65r+zuB6IWuhYLpy6Cnh3k0CoBuNsg3x2RZixrx5JMeIfvmcXDkJIjkcSP2AbhtUVX3p7ffVKAJGo1Yd+Tyg6gr9dMQBYVMTrlrh1h96zEHcV8R0RFh0thcducyhmuqYGLWsDQWmh1TipqQQyB5cVoHShrpTIQspFucX4ccrUtWg10IAIWfczmMGSSL2aw1KBBzZGdSk5UauEYQ4J/LxRHrzDu2vpaMp+AFl9RNvOtkujJPwy50hNxY1BNz9maykZVRJLa2xGXPxWwBbTtTYZFJLuXkV6rOafuvILqEoN1Yo4GgdiSWowp7BlRSiWeEnkWSytktORrGZSZmcIka9cOaBRSsfa02+bTArOdlCN49owvHwa/MF2a0Z5WSPzSVSPLRzV6YW9+ZUiZFMrEUbIHZiwlmQG0dOUdunC69fiZOQ9qno+oWsk7attOKVkSL+NGIejtLuj6NgOz6gtxvZsyOEn7TpSI3FnEbx7hM3EdR5XHACnCM3tch3zwO5rUmVfI95ixBuV8U8xJf1a1ywhGwUoXNMG7mOm3cT2SrGa4fpE9X9IB1M1wifYC3/N48FSHz5jGQ1+ulIPhzIk0evV2At+fSVdxYq7bEWqS0xofdnjJKWPGstK7Z+xD2cSdWaWCy6/EoX3b+EYGYF9Xu+fMtcGUQ+nCo5WeaoKr8R85A5sny+6HUsltBWoRpFGgqzq7SVzbuJWGbcPBuFhijIbNdchCVtK8jx8QijGEmSsmwUfEu8aYitxR4dqqyoMoa0rtDHCfc4gGogW4nOtkW6/Fiy+Gw5WZXk2oWVoGYqzHMw5C6IPn7Q6FFjH0oUeJoBUZZ2HaQANE/50vKrTC6Mv2XGfg9snjuSZT73CaVUATjlOUxbSWeex67Z1ENlIRIJZiPbgvl5qIAYsHD5u/alEBaprhnkpKdsAVJV2vyS9ahjlpZcIddMCVglZtxjX7YI0sHlXnb1qnLyscK2y0p0GUsBAOF9DAWcq2axhJJ9vw8FK3ColGR9mDLhbk0uwTpEoSBfboBMakUxW+8i1eNIshrfOaqngN2NYKQTAum0CGnJGExXawEc92fy/rh0AChFPveo+qveCSRZnaRNiz4gKxaj0aMnJyMvvJYWUgqBRaVagKYyq5pRrsJxK/OzO4kN+XAr5JZpK6eJO1CkpzKHxibj15e4sWQKJx0tZCQFGaG16oSYShZuuTkHbKHV6sHLvD9OgiprwTjyNKE2G9R6LZTOcy8Ir7XgPVVK+GdrGT1MKRAlsy5eNehRKK+2WFWdnxlJqi1t8JxSFNvLzjzrYmXlMqYLtN2I1YlTX+EPNWYnFOo5pnxm3Jnxvf8K0p618CFUyIuGYHbnATHoDE5OZXfMuGNYgj1USOS6GJE0FwelrNTCMZizApfiG2QbNz+0R3j+hQuggnA3xmtFGAxNFmswMU5RZZ0o2yIV0sWarnD/pVpJh5BaR7Ia93oi+8vNjTGyb1difquMBj8DJ2bh9KucyduVFP+ypstGQ93K+5gzTBFCJF115Ersw+btw9IlFErxvBI2syDIVdT3g4CEnXRXdi/jjB4m6V7qilxbeT/Ok2QOxoiua9lijZNsCZrqH1478J/KIyfUsYdOSA3qPCx0yVwCF/WxLyYbGn3scTGiV3Xh+wuBxZ6FiDJeCae7fko0D2VtiCKsMtM1xV9QDoE5uCKrXPgH8pTGG0WsNNVRvAWF6prFD07Lmy1odmlBQ5JZrSprzRBQmzWcTuClA1B1JcXs3AuK3DRw7HFAvGrlIjaKVAsKnKxCFUMVHTKqT6w/z/R3Vp5fsZKPbt6t52WdpjJiz+U1SmWu2oFn6xPHq4rHq47xscHdW9xRTvVZxaeLV0DWsip1MyPOlvGotYTWih/+VEw3FWJ0WTTz/raj/6DGt4VdaAtGc3zPnbcAYclK6MrcjYSVFGhZB87XR/mfBr+9FJD6MaMepP2fBULJFfnuKF3CLPmVjVJcGJthJYSb6r4XWm2MoDXKWsECCoUdrS5+/7B0GQC5KirRyV+MckHWdymLnDeLlb6kBMeL6Wzr5BrySb4/YM4FR9CK1FSY40iuLP66EYn3blwcqmZeTTZySAqe4cnDID83RlTXom6uSHWFPn7Vx4FCulDHs1TgupJ2+XBGh5q0kZgltTsJGShl1HEQtF1L6EPc1oTOUh3LBmAtVlDulGkeMmOSGDJh3Mk4UO0yelKMNyUXz0JuKaiztNmTApSmOsjOOTuNHnyZ6TTMKLPV0FRyKmi9FAJcJf8PQdZL1qKutmA0abNapKqzuYTM/yI3jo0pFzhiT16L2WX3xmNHS39XEoGKlJagyLHwH6qMyoo8GA4PK84ncRbOIHLiVFaN/tKea5+xZ1lFZsUCwGaliI1dJMe2D0VeK5oHFeVku4TKyvdShfbrThk7ittOqi6KPgH2FNlkJoRFGLry+5atzqJXCDDbvqEkGap7m6j2otUPncGvih33URx7dUhLKz+biGarlqJtj0Hm59IFqMqhrrakYtUlpC8jFO1Qugnk5M6VXQ6A3M1rYMqYF4Qubs1SPJRPMhr4SFzXCx8hO002GnMWJqN0BHLSzwxCM0TsU38pRHNmZ8qiN5ikC80xkX0gjyP65gZe3Ar+sD+TH56+9Pb7ahSBLOQL1Y/k0xnVNtKShQl1OKGL+CZXTl7gyjHLLdXoUWmUqq06vBGzD+PzAmi5XggdodzgyQm/PBvZHJhBSdCoY+Giy4UmF6RvFSpqXIbxWYM7WAkVTYLoitRZQD2MiP2Vko2F0noRbyhrZQtirQStAKmZGXsCcEWnFzRbNVrANjOf1oppqwtLLtHea2wv9ud+rVD6Iu/VRWIc2ywXMg4VwJ3Uou8HeT3cQZiBM44RHYBi2hqyaqj2XuZRkAvdJ3TKF0CrssRVTWoEIzFeMJP6HrlxysUbOyv5f6uyMisdh19JICdaQEpbKMGhU1+Iap+NQc2Qae8zZsj47nIJu3Nafi+MIqFLEdVL7Jjt5TSGwvOPScYEa1HbzaL2FF6+lht3jBc24HwjhiTtvhVLcOUTOnghD607uclHL4dCIbplpYQ3ohV68IuIyPReCsDcSYQoJCKjcbsRfSgt0fzvILT6IGA1lZMR83AUoPDlC/LVWgr1/kx+fCKNX3WeQAjSkq07EQ+degFnrCEPAXZHTMqkTSu/fIxgRVedVoLGUvaw2TixvCo+/aoHVWK0xmSYSu7cvAVIxR569XlZQRnBF/xG/PDccXb+VYvtl99aslXYo18447PsMzsxcMhRobwUB1VXggfEJAVgGOT0rBwqZ9KzThRsQU7HmRbq9gE2dtnXZy0z73zizaKZ2Vgl2zLfVxnthfk3/3/m3wuKXnT0a5g2BQM4lbHCyXbBnWXrogubTk9yE/u1LTt2eU56KjLcJJuHxZbLR3TmCxz3bDUq6lKgSwFYq6LNmC3fxCh0SUFuMhHKJkhAS9sLduPXWmzdDoJDTNcO3xm0E6GYCaJunEFkew6i1ais+AWcB/BeCsC6k+1NovgEKGnNZ+KPqiCV97hy4CAZI79TyuhRWvK0aknrSlaOx15Yr/OjGIrq0mWg5H1WpwJIjsU3oHLo84g+DdLmWyPchKwFiDz3gikpRbreyD3x8CgcgXlFOAg2lQ8HUeVWFQz8wMdXogjknEnHE1prctdIhS1rNOUceRjg3KOaSkgQp56sAxh5gdNVJ3JMJ0DhPGOGleAD9U4oxc2jWIsFCTmSbYGVEycr8cyfASzbZ8YbxXQl60V1LsWghFiERoIfTUjCAsuC+JOzUIWLcER8wQqHe3qvEIQooo9xwjSW8XmHcuJ6o0Zx+dVjxJ7jYoY5qxhF6yC7dUG9peOJjaglVZCbSsJV5XetDqAGKW7DnSo3rNyIw61ayEg6Susu1uKyEpxuarngrBTJ+TGPEHoUMCsXvXyqzIIdCJCY0cX80/apxINJUc09gowXwZEkPIldW6xZNBxGFfymVvgt6HF2RRagz2+Ev6GSAIXunczAqXO4/Sizuxe9iQkJvTsJu9OYL+ruS3enxiA35cwIjYL6YwvHAykAZOSGPxRSm1Hy972g9hizYAjqXLpHY0oBCKhxknViCIvabwYZ5YtU+dwEfhCikDHkTUe46cTr4N0jWWkhCRmN2h3kc4ZBCkDbSrew5wc+vhJFAJAVzSg2XHnVSgVMckMp1Yrr0Kkn3m5RppP9bMwwBDCK2FXCGKslLy+sKHMtnFtFaIxkzp0TKhZTzE6YhcZnxmuNVxfPOjNmuleZ/rlmuFNEZ1i9iZhB9to2lv10MRHNxgjxJ5Uqb6uFe46zcpGVkYcQigBFia3aZ/fUiF+8L6IWPcSlIzBjAdJI0IqIZ8YwJEYdwkYKQG4SOUEMFnsuYFuXCZ2sSaX7kUJhjlDvkZVZoUvP6zntpSDJjXyh6LpTEkxAy2yvo4BncV2TWkuspTjqKYr/gxMSj4vSfosyUoDcZC5jyUzhjSWkIzQssWYgiUWhFeWkHjTNO40dYLyS6HeJHs/UTx739iy0Xq0xuyAgWQEP9fv031UnN4vRsvcHuelCFLrtMAiDL2ix7MpJwN4s1mMawRYIUTj6IMShYZL3vMh9Vc5yHaQiJPJBuDH9KE7As2K2ri6bI7iMmQUHwwfyzZbUVUy3DfbgMW8epUisV1Igdnuyq+C9AqDqSp7/lzy+EkVAgbwpMS2qwdw1crKGKHiB0RJQ4izxdo3Wxap59o3rPak2gtirsvOvyiwJhQQjGwMdpAsIrZw67b1kyA13mskI2hwaOWma+8SQNeMdpMqw/Y0olNdKiWdblplTUVSQ4yS+AZsacitsx6FIQeuKnDNqKN10W1iGPmBeP1ED001DbA2mL6i3kQtNRwExY6tL4q/CDJnqLL9wqmR9F40Ck4mriI9i0GGDIqwz4614K9izxpwFgXdnGUFCq/Bd+T4WSXt+ENQ/1hqVZ2ZhcTFWsj3xawOqaOl9FvHVUTYKsRNTVXtSy9fFxizpS75TgvbXXExSx0xi9j2E7JToPdYR3QboLeap4AZFduzOWYJeYInnhmpp61FOnJ3HSUZNo2FVCAiTl61UmfnF5SeQx0kKQF3JTYaHRlpINXryxsrcH7Pc0MO03LTpekMqdvNqCjDLiMuJvowIgxwIqikkMmsWxZ8cFlE6D6UgJ9LdlrBt8Bsn1nf3x4XPkPdCDlKdMFOzD7KarpwUn6+827DWqKoinc9SXY2BmoX/LHLOSkC23REDxNt14epDWFfCCx8C7mgwG4WpL4w2HVkku/OO3yYAaamnjaZ5iFTHxOFrpjgYS+vZPGRWryJm0ow3isPXjbgTK2Fy6TGK7jwXiacxEMTNRth/FTzt4XGSU0SXUyfEwj+vpNs5D1II4hXTXUtY2cW9FismFHY/iJWV7zi9sMwe9+5ECS/RxKGwB10mVhk2Ara5gypCFrU4+YaVvB6zXHcW7aAET5kvWttnOIdlRZucRseEPsQSqyYzgunlPSALHTa2cnnNp/90JalNpgR3zBLhZCA34g+r/UV8FFYZfxMxGy/q0ceK7lND85CxZxlZqkPCnoIYiRYGHiDCr00t0d/F70/3GVbCGKQfyN6jOgGcSUhrPnk5QetKTnJn5RSvnbTxOZOuOvxGfAj0Ufb1KEXuROoeO1d0FNMFSCzsw9jIqKifTqKMNUYwpK4RU5qY0bvT4rSFlesp3q6Z7lpJtjpFqs/3S2eRD0fwQdiBZbRW6xWqmJXOQqMve3w1igBlPWOtOKRSuoPtirTuZO0yeeFxr1oYvaCrtRN9uNNiyRwFnLJjJp3F234OzZgJLrOHgPYZl2SNFiuFX2nat57153D4mmXaABUMKNp7cSSuDorzC81wo1m9DsRKM7yoqR81qrjS6DK3qcIak19GQ47k40mMHyonF8e5l9+zqaTzOZ7RT0cqWN5wFWVOj51d2GbVg1CMp60m1JeT1J7BjJeWerbxEoYdqKQWWm52RTzlwKeLRbgKogqsjgl79JjzDFZZwqYq7X6SE38ngKy9aomtXVx4s9H4q4rYqBLDpYmtWI+pXEJI2kL9Li5JyQg2kyrBNqarTO4iugmkoFD3FetPtMSSe6Ewu5M8RylOciqrmEFDXFeLDNweRghpQf71oZeObLuRwyQKKKcmLySfriVtO1Lr0L0vhVvWuKmkBKks31efh8X9J65qeY/Ocn0qXwr9TAevBR+weznY5nF3BhNFHTiVQrOW1eR5JK9bprtWuDCniHs4y3P1xVG4cALImXj/KExBY4SoVlWCDUxf9SxCWNY0+uZalHV9L5WsraWN9kFeOKWKXLPEQHUV5iBZd2ElN50dRHJrPCJ2MRIICXJDLWBVOUVBgLbxxlIdIuvPIsePDNOGkm6rSSbTPEW235NQzawV9ZMnNEb42klOn6wVjCOMBZDRipzK0WtEfSYtXDkCx2lhjOVVaTengNtPTFeVEIeitOF+Y+lfVoVoI2DazPcXFhzLKT/7+ethLgDl96zlJtGjwvUsMWvzZmEGVKdeo28qQeRilkLblQqaFakxeCupUfP+PFUSe5Yqse+OhV4804nNJONNqOfAEuk8khOehm8yqU6omwnrImFwpLNFnwzNW7FZmzbFCPVJhEKiFrSEruACZy+jVsFSqtcHVD8SbzZiKjqfzpsV4Xa97OiLNRO5MqTrFWEthiAalteAJLt+e/Ko0aOPArfnuiI15drb9V/wJiDJ12enUWPEnAUMJiYpAFuxLTP7QbYVSkkBahzm6UxuasZnbYkdCxJHvj/J959Zjk7WzXkYULPpaD+gupY8jCJkU+/RMH/T46tTBLTMPWiHurkS5HacCtKev2C0sDippIzfCt3W7AeZ5zZVkcJa2RJoRfvWlzgzAWnmVjRWwi6rDqJPl0hrSRS++nbi+JGlf66ILQhkaWgfIu27VMgmHnPyFzad1airDnPqpUKHAG2DalsRcBSn2tkxiRBlfpu8zJ7WyO9ZG2Hk+URsDGEl2oQZIOyfSQAI+iK5XZx8ixbfrzPZpeI+rL4gJU5uVuEVem1Usj7SgpMkJzebyhqV7EWu26eLBh+56XO5uObYrtAaZuqu8XnxJRBqsIi+slHLelMK2mw7nuDKUzWBabBwsriDpnpUC8gpK06oDhEdE6GzhJX8TPfoMbue3Ig9mH04o54O5O2auHKyeTmPcgNWcpNDYf6FJO38piZ082ESFsr6vJNXWqOCIPrkXDgrSObAFJY5Ple2rPwyeDC+yJOHQghqasG6Ri96g7kr2ArHQAqAY/hwTbZSANzbE7x6JyvAqhKXIW1kdDmdBcOonGygmobsPekgZiLKWfiSZuArUgSytGHN7MBjhFV37gVB3a5kHMARN420WoNHeQsZpqsKZzTmNGGPnlgb2tcRHSqmtdz8bu8xVblAy3oqtKqYhspaKZUgzXhlsENi/WnADobzS01shK+OkrRXd5RdtzmOUgSckVZxU8PHzzCfi7nD7AirjBaJ6mwJpfVFR2CMzKrWyLYBAQWVT1Q7j19bpiuDmTRuH1h9nji/cPiVnOhL1HahxssNo8VZqbgJgYxHZhKrcrjw9VWWEaDe5WLWKlsJO84EomLaWfbbKmWZhX0g15a4rqVrcYpci3CnfpREY+1FBxIbQ0A2G3Nu4ewQLHFoChU0IVaMO4c5ixFK/STkoDmO3Z0y9ZOsL6eNY7gRolX32qPPntxWkvIUMyRIL24I1+LUq59Oi+RXGY1qHNnJKjc1llSVkWuM2LcHWd01FWi7AHfAPwDaKS+ZAfN7mZVCPx7kc2qJHJtNPzGavF3L4TZ52B9lNdi1Yk2nFHp3BmeZnq9AKdzOU336SL5/RM1uQeMEyUghGIaiaszkU+lA/USa48e0uRycP+Dx1SgCmaLi6lGbjfzZWZlzxkleLGdlp57Fo98AepgwgyVbsX9OlZbQx6TJTlPfT+jJETqJDp+jn3VIJWVW2rRpXZiFRznt/NowbgyVTjT30l+fX2pSXQhFao7hanGdEzR8CtghEK4auQifX6PfPsmJUTkpclrLTT4bRmpFDnlxokmtI64raUP7UJ5vptol0BXDtSFZR7ULdG8D42SY1lwUgFla+dCC8uLtPwethI5i9skSuR4amC2/YyWkovZeuAlmiLJiLdZXEqtexrGYUcUOG0A1bgH5BHgFc/KLcCe9d5XNicLzDW3PMEeamUmRDhf7suYhL54Q86ZH8h8zsdUMV8L5qA5IIvLLrmxrFHaIZNMsmn97f5Ibbib/BAn/0FovhCZzEOxJ9aPcsOuVWMPNzLwQC1U4LYCu8EOmiw2eSqizcPjVqru4/va9tOddI9fDOIm3hNbQFs1MSOjTiVxXTM9FQm6PHvd6T358Ql1tic+uih+icAsoVPQcE/l4KCYoSQpAyqANSqv/f+gEhDCEj+SnHfpqi1Lvzf+FM5Brh+pHLBA3tTj+7EdpJBrRh093LfYUSFbix02Jj0pOUmdE9iuYgIwB8vc5ctqdEu4Yl6z7VCuax4gOLMUiW/CtJtSZaVNhJkf9GKjenbFPPakARLmtxU9wNpgMEdK0uL8qZ+FwkgvGF2dbrcBp8HrRoGdncDsPCaYrw3BncaeikCvA5pzKC/NNnyWNOBTKsRPgzYyqkJ4ysYZsc7EGF0AxVobNp4V7H0U6rXyU51bs1NGZ3FZQItbMY6JyBrITlN6Av64l8EOpkuhrFnciKUQS5ZaVYryS7scdBdgFwSqqUxIsR1HSgcrvZyUNKVmxHLPjLHl+rxi2Bu009uilADztZTyLUWZoZ8Xw0yjJFTiLc1CePfsK91/tT7ItaOrSFegiFS+U4n68BIS8zzW4uSKuW/ThLKSwYjeHBtWXjUItgPAiRDqcwYrpSKw17uCxb/bw5h717JbwbCPvx6kwHSd/cT46n+XPQOoFq1BGrOxwbtkk/KDHV6YIkJI48vhA2u3RRWQzAzac+yLMqFDHMyZn4rrGPJ6wKRFoi3GFZbp2X6DJUsQwQc0uxUrUZkkSdqd1caVtFMkanFPYU8IVequOmfatpzrMs38pBrro660iOkdya+p3/RJfNe9381lOAW7X4i04FWfidYeqHephJ5TP04ApghJSujDNYgK05NZ7y3DnGLcGHfMCtqVOLfN8tuVjdQYLehK/RYkAyxcufkbyCJEdvegmFMONIdn6Ms97CX9ZHllQeK21rLg06MFTpUyqjXABjMKUYquSaCHI8lrZUYg9s/uzMA/LJqPIjVWC4UoSoLMGe5atQDYw3EgHMD/n2UVIrMfUYnKiogSQzKlBOAetnMapraRLOJcTWaliZuvl83Im7w9L0ci1W/wFyKUTOvVSMJxQ3ClW47mtJSvgPIoormtJXSO04XMRGLU1ed1KzuBxQj3uwRji7ZqwcaLKfLOXQ+TuRgpAyvJ8i4nJzC/Ip5P8OWXZCBgjl71SUrx8+OqnEuf37JBV14n0dn8QUE1rYVDNK49SbVU/YmbxxDihBwdWY0/gr2QEAC7mGUZuWFtQ1qwEzLKDdAMiEWVZM6ZKlTw72UOrnNFTmQmDRFhno6gfA7ExhcFXwkX3o6Cxqwbtg/i8nU6w7kg3W/Rp1joEcuPg5e2yGprTb0iCumd0UcMJldj2kXqnGa/N4pRcHeQGiZW4A4HQoFXUsv73RVQUWMaDWIMyBSCcxLC03snaTTwEWVx5cgHzVGm1Q2uL1LkRmXAEd4xy4Z7KWhEWoU5WFQYumoM8r2whV4UnYCEVXwOQrsSvZXTQnuJUJOSu2Eg3Ue0h+vn9nXkHRf8xZEwfUL0XsHXVLpHi2Rli6wpeYeBqvcSBLaGex1MB6yrRFcymHCWKLPeD7N7r9/z8Z0FZccKiH4oNuJORb3wvOGTOIxwj+nFPTglur/BXDeYccG+PUmRurwQHKxLkhcY8cwAmj1qt5LlECTOdOwGqcqj2A+o9J6jf/PhKFAHIF6Wd0vJLhQCTWDAR4uKMkvtBUlZ1ljZMazAGfRoW5xZ7jovgZ6Glxiza9StNso760aNjlGQjL+2kjrnsyzP1HDHuNLnSmKcBcxhJjQg3GBR+bamOnvrNidlRdrGTDpHc1cSbDbpyYvn85h59vRUCynzK+0i4bonPV9jDdEGZfSCvGgGukghy1CC2YCokdJDocLlJivBIC4tQewkJ9UWAI/6JGXNQ2FPhHdRKbqj3zEjEmEW+TiVFnTLGB9QkUlxJ4pVLxq/EvCUr4WXY2V2J0rkkmMM49BTlYp9mXwYpMKEVuzG/uVinaV+4C2txfUqVbC9KU0JsEmbQS5JU1gIyRqcXl+TqKZRdvMiH/XYl6+CiJ4itqFCz1aTtezdxBj0EzOjL6Z4XoY4wQcV9KAdxCvriJSzgNkZfbMFrGR/UKJyWJTKsJBmpMWKejjIOXm2ZnnWYIQgoGSLp7rq4BfVFRCTbrNw1l1zEphaAeSrGO8MoXoNtI3oEH9BlTMD/4LvvK1EEFIVpl6WdwWgxHVVK6JupiImqSlZvc+vmA6ly5G0rvPQhkBojq7/iRixotJLWqMyLMwJu+ygvgL6cIK5PBSzLi4Y7rmviusY+ntGHgVw5jI/FUttKRNTjbvF/R2t5Y99luenbGq428PBE3h/ETKSsA9EKPQb8xjG8bMVZppdUo2xEvCNR5hl7vLyLZswkK+DmbEI6C2xSJaes7cEO6r3wFIgtpJKwNJ+wuYR9pOJeJG7LQh2OtcadIrbEfJte5LJ6ssJhUBJT5o6iJ/DbYpxZrL1nyTc+ooeE04qwssRG/B7GrV7SiFRGkiq0jDJhG6EpY8gkYh01aexZVoZmygvoWB1EN2BOfrlpxg82DHcWM2Xa14NsZZyVDsBqkjNkK2Yf8vMFpM21K8zBQRqXso/PqQjb8ux/Vk6YeWy1ZZSrnLTj72UUzODj8kgJfR7JxzPcXOFfXslz351lpNm00pmMQbqQ8vXZaQgJXWz4ct8v1ug5Cp6hi7RYKYW+uZIxoZDwftDjK1EE0HLT51B0+DnL2sPaBVnP3i9Ry3OhQCnUOEmazE0riLRPaK2IM400AmNe3gQxncxSNbWSJKEgbbBfF4DqIDFn2ZnF6zC7UonLPEjOVPsz6Wol8WOrVuTQMzMrRmnLjidxe111UEvVzuOISm7xrjejx1WW4UXNtLXoxuCcWSiwoopUmOuL06542suPUvky9szmGwsfPxQPhdJ2x1r+y0bUdyC4QGyEI2BHqHdpYVmK6m/mXGfUELDnCbPXiyGKvLAQtjV+Y4R1mAFtF0cdjCa1IkX2K0OcC5ZjeR4zWUnMRVlGB0YtzsM2LxoDFaUDQEP1JJ2QbC0Cua3oP15zfm4xXvAcff4iNJ5qAzFjD/6LGI7WqHGQvbvRl1F1XuVaCzP5S4vKdREhwRIRNkedpW3RAsx+ggVPYZwEH7rekK5XmN2A3h0FsKzdxZ7+vbVxnqXIRwEbs7+sJYkRvJcuuRyoersh5yx5hPk3dS7vPb4aRSAXEYZ2RW2Vl5ufFOWFVrLrzF0jAKIxJXNtxD6cmD7aEq7rhQCyJA9bhZkkGTZZiief+sIOWxJyM/VTXKKzdEiETS3gViymErG08HOhAjFtaERkQl3Jm1DsnbQx5H4gnc/QD+jtWogdWdrMPE1QZNIuZ3J1SzK6CHDk97CngL6x+ApyoxbJrS7GILMLb1byu80R4CoiJ2qR4s4nphmlMEj4R5Emu0yq5aYMK0X7NtE8ROqHETVGUifZiFkhOMyIzLizN56GrM3i7WeGJOpCpCMwZ3H/US5j+uL20xTSUMkUiE2GtmgHFJDA7gwqCbfD30T0ypNw+O3F67B+mFeMYu4RblrGG8e01rg+074VC3sSLLFhgB4jZl9cecq1BBmVorTaXXsB+ooRDGbm4uuLD2HtijFJKZQhCuhaiaU5WqHP75mTRlEDqhDJmxVp3Yo78fF84SGMXorKXGALbVufJ9TueOk4leILTMDCSFVKST6C96SnXdHY/A6KgFKqAf6fQF0+/9/KOf9PlFLfAn4WuAN+DvgTOedJKVUDfx74g8A98M/mnL/7W/2cfC5GIjOvPsrNn5MSBtQs98wS7glIcMS6wjyeqd6c8LedtEsAWS64eGXwrZiGzp51oVH4rSksOC+s0OsKkrSUyehCIoHprimOtUK3VV4uanIWUUmx1VKTl+oc0/J7KGtRzpEO8sblQYQmgmkocVAaipz0/pFKKeLNSmb+Q7+cLvWjJetiShnLTa8v67BpC2Gdys2vFqQ9GwEFq70wBlUQSrVKYHrJbAydpDXnqvAmtEZ7jZnA7bWMPVbhNwYw2JMRc47pPadcJVRhe/JUbyeh06YkRKk5U1IpzDGVIx500MLczKJwDOtENhl7MLijkhSjLOPL8LHn5uWenBVPgwS+uoPYw9X7SxR5qjRTJ/6H60+LU3POF1eg8lx1L8g+wygzdTEUnfMF5+QexulSAOYCotQi+LlElr1nMlqyI3JjBc0/TUvQyWzBpkIs8eZlg3Dqy6GX5BDUapEbLwzC+wP5cLwkDBeh2qKM0wqFWbwryFmERSDXXnzv/fpNj99OJzAC/0zO+VjSif+aUur/AvwPgX895/yzSqn/DfCngH+j/P8x5/xjSqk/DvzPgH/2h/6EeY8+edRS2TIZL/MzSLszV8aYyLWFmIkbS1Yr7K7HHkb8dVPWgvK57pgYryUKq96V7IAkoOF05Wh8FPXhSTNeO7Jx2JP4Ceogc3Doig3UlGSHD8JBh8UhhhgF1/CefBgL3dlAltXnXKGJiZwLv72kyBKTbEROsvpMK1kpKS/+fe4YiI0u/oOJOOqFUJOMnJ7JyY1MhjzosgXIkmDUyhxt+nIxRha2XrVTxFGRbC6vl6zjQLYssbNQdBax0oSV8DFsL5JhYia1RohahxKdXRiRFBkuIYovX1stoRuzd+ISa5ZBeX0JIc1CcBpeBjbP5WJ+erem/Z6jfZNp7yPuKJsbYLFhq54CbjdcZut1Kzenk0ODnBfgdqbuLlr/BCA3dT4V7cp2fSkS8+fMnpiDl5EOpJvo6oVLoaZw8Sl05vIz50fBtFQhwi3/ljOMZcZvVqA15uFIfnwSB6QSMZ6HgTxOpUPR5DGg6krGzhBlGwUySqf8O3MWyjJMHMtfXfkvA/8M8M+Vj/854F9GisAfLX8G+LeA/5VSSuUfNpQYvbQyCy6glbgFnUrmelPL+iYmuccLe22mCaeuEgbYGAkru+Tg6ZCpd4lprcXc4iTOPTbLynC8qanvh8I0zExbt3ydRFglqidf7M01ZhTBip6iKBjnU6a8kcqumC3Uc8EOUOL4u+gjIlBV8ntr0axnEOCzjDgCNIkyTp89trfinINgFtmUiK1JwlN8r4kmFdfksv9PkHUmXkXiWqG8/GcmtazpTC8gm56kNZfMAcn7E2xBOiLbR7E7A7JVy7pNpSTMRqMlGOZmRX6+IbZW3JqfJuzTGRDTzlQSpOSmLc9hkpWs8BtkFQhlRLCZ465FPVasPte0b+X5uWOUQNgC6uqQcfsBcxzFEKREfcdWYsIoIaSmDzJK3m7k+ffT4mORh1FouDGhrCHfbBen4dy4sqGRNd9CEirJUakTj399GooTUVrae30cl5Xv7KINSGFRCs7CN5Bxo0TybddgDfrtk5zoWjrInBKMI9mHC44RZXumNmvZqE1exoQkRii6qS8H6A94/LYwAaWUQVr+HwP+18CvA08555mB8Anwcfnzx8D3AXLOQSm1Q0aGdz/kB0gLM/kL8loEFcRI2h/Q11dfcG8FqcTkjPVRMgELcAcsJhvTRjqA5jFesvi8mHRko8hWkWqLOU+Y40QFpGIbJdbiCnWO1IeBcNVK2u0QxBx0dpzVQFLLC53XzTJPqvNQ3phJ3pyUSlejYd2JKGpyF0s1amkNfZCL2VmUUdiDJ3SaUGtsTmWdB8lmmncAivFGzFSzyUVFiJxcSWHOGhUloDWs5URToRiuakU9iOGo8RfAUY9pAVCFal0ERFHa/+m2KV6NqiQiqcXBJ9SqrAItpndistlJZyFiLrUYmyYLuS5FJbNkD+pR4d5aUPYLI84cGJucLi5QqWwUypi1qomNJbZGthRh3jAU7wcEA2LyciPm8udKLOHV5MXwBUSC3Ik9uDmMl5BRWHCA3NRyqu+Gi5uQ3ACSMqzVAt5lW7Cswhlg8gLwKdlgUdkLNrA/kfYH+bjSsinLqYzHRt4bHxbAHF8YkSleVu51YRT+Tv0ESrT471dKXQP/J+Anfztf98MeSqmfBn4aoNGrwn8u7z4ARV1XiSIs7/YFYa+kG3B2oWDmtkJ5teABM3lkbjVPLw2r15H2c1mTZGdAZaq9x3ciQ1XJoc9ecgVW7tKyzrnzCdybA2nbCkB2mgpnQBhzuRQFvTstacriJ98IYcdalCu+8FqLgcreFeZgIxTPYZSTovgUZnUpLOY80b7KjDc1qSqmpz7jzgl3guqo8G+EghuKdVpymTzIBTWHq6hQBDzby3pNxga1ZPslKzwBQeHlgo+1ITeyUpO/a3wruY1o3tsmCAtzKSZakRrLnNJketHRq6ALl0NuejWVMJQsZiIZ6RAExISZOmzP4rScjSraBhlRYiXmqPY08wcUbj+JH0DOiw2Ymvn/MV1We0Bed0JRn/n8ZRTL12s5JIZwcfidT1WlBJ+KxY5s1V46OViun0UsVERIahgF/BvGImQqK2Nn5fnFBLsD6dxLh6K1ALGmFAdrZUsxjihniw/nKArCgqctWwOtyX0v680vefwn2g7knJ+UUn8V+KeAa6WULd3A14BPy6d9Cnwd+EQpZYErBCD8zd/rZ4CfAbgyz3IuDqrKFotuV6HMRWab+wFO50IvLk7EjRMktJg3JKOZ02XMkPCdWfbjxw8NZqhpXp1g8GKRbYWf7TeO6crhrLr41Ze4MF2qdG4sygf0vidt5JQwj6eFDjqz6mZzELU/SUtpjQCCKQu1MyaUkpEnH46oGNE3VxJQ0dXkJC02ky904fJ61cJHMCtHNnLCqVxuvpjLzaexY2bs9ZK7ODsGzXO3uPkCCCiIFiOSPG9SikPy3KrbGdmGwtoTtqCNCT0p7KiWuDZgyUp0J/FJNGc58WbDjZmUZXsv3g7G0r7R+LMAhP46kW1G9xq0IrYJPSrqB037RmjSoZVxIlbSceggXg/V43TxEvRJjEIGOe3nuO9ZTbcIgEpIaK6trPUG8YJAadR2Ta7EXl7vixR8Hl1T+kJbL7oCJWs+o+V9nwtAcZGaHaSWcJqmlu1C4b0wG4WM740aBWtSXbsUAUDSrWJEYaSTKHb2TMU9WQlpKYcgmIBWMob+gMdvZzvwHPClALTAfxEB+/4q8MeQDcGfBP5i+ZK/VP7+18u//99/KB7w/iMncLXcIMUVRTWN7NW7Ttrl2SSyVPHcVuIfB9IeVzJH23OkqhT9jcFMcrP0zyz23ODuT9inM+GmI1WG+nEkzsk6WhUPeZl1ZxNRrCZ1NXoK4gNf3uR5fp/bP+WDgH/DZf0EgtAyjtJm5iRdjzFyMfSiMU9dDbUmWo0OtYBJBZBSQWKzYq3xa8Emqn1Y3HSyUWAz7iisPDOphRuRDMSGJapbIsgLoFhd5nLjyyk7ZzrkjNn1F418LdLbqA16jLixGLaspJuasxyyBV088JQPpE1Lqg1+I+7D9aPo7PUk9mC+U6VoZfSgMKMYiIRVxh411ZOifS3dxXCjCzVaqMHdu0T7esK9O5KdIWwvbfzCWpxzKnxJJHZWbsihgLuVk5t8nOR9SRlqyYbQx2IcWtD6hT6c5VSnzPUqZXjciyKwqeTjpd0vN9LFgRjEQGbWIiglRf88XHCkORGp61Cb1WUEyblslM7MztaqqgQrSFm6ZVjchHJJyQZ+R4zBD4E/V3ABDfyFnPO/q5T6ReBnlVL/U+A/Bv5s+fw/C/zvlFK/BjwAf/y3/AlZaMMKK21N1yxMLbVZX1xYQ5SbK2c5UYsFdGpdOb0EdJJ0m0R9L7TjcatxxTJ8unao0C4KRN2Ihrx6cyJsG8LKYlIJrjAXNplQPSGuZBzR5YRTc75djJf5LibyOF4Sh0zRfeeMKnxzNRM8Sl4cTSXuPcUWS3CGRqK+evHLJ4E7BFAQGqENu2MoUdmK3IkqzvYJHUqMWekW4qAYryC2BVAcMzYrgpo1B5D2Zc/fR1AI936+AUoGnwoZrQUbEHVkuYgLWWnOUfRbB3ojXUBj8VvDtC6sv2ixTpc05dn5WRSPdpCRIFUZt5PUZB3AbxTnDxTTjczk9b2i22U2v7pH9RPh2ZrpRm7Q6skvz2++aefiLDdDQM0eg02zRH3TFrv79epC7Z5lxDORqORkzhTgxVkpRuhaEbgdpGOdfQUF8S/uRTnLQVBXX8S3ZlFQ5ciHkTxN6Osr8u2VYABzN3MeFodi3TYySpQCwPVGNhmHkygi3wu9Qevf0Xbg7wJ/4Ad8/NvAH/oBHx+A/+pv9X2/8CgvYk4JlRNMRt4QEFrl7ZW02UVpSIiyHimGnWpQxO3/r72ziZHsuur479z7vuqre6anx45JImKjbLJAwYqsLKJskIB4Y9h5xYYVHxIsWBhFQmEJEizYEIGUBQhBIGGRDRIBIbHCJiDbcbCcWGBEjD1jz0xXd328z3tZnPNe9Yymxzaarm4ydaRRVb3Xmnvqvlfn3XvO//z/+ZB11mSQ3pCjd0ukyzeVgQ6afesgq6zebRj35NYC14wImeLdB0mokzVhf6JNJ7bqCNMCt6xgud5gxrPU2F31czR8wKajMGpgyHM4uKI3Vd0oRmK5xjsDvEy8Kv8C3cjhxp5kmSgzTohkRw0+78kS0aecYdLrmRv0AKJjaJt2rT79m9CDpUBEZcB6DQJA0ZMnlrTqVPBluLapN9EQ7cLsTmEy0kU3NF8BG71Bp5WEZNFp96X02wrlHKynzvIXEJM4VAZ6JSJgUJJuptECoTC+EZn9lwpK1j+2z+LjmYrIvK0VApxTkZGhESvRkp/xAvTBmq7Tp3euydh4eJVgpCSyNtafPngYOEorVK2+DpBhJQyVk5U2HyWJQciFuCoVZei8+gADqxRYAOgp5lZrxf4fXhuERaS2xOGqJC5VN9FNRsh0avJ2AZlNlHFouSYcnwz9DWIVKJozlgFcFsSgE4UNV8YbsFzpk7LIVW3l1h3k+gHd/gjJU1V7KVM9Nx3rvrpqCZnmAJqZ8c21enz8w5bqcET0QnrSEFJHM0twuSNdnIKNeqc/7Hiq8SP1UDvcfEko9mmnqWK8y4YwznBtN7DG9DwBpAmMC3yeE47mQ4KTYJnddYkUOd3BHnF/BOypvuHJmvS9BfgZzbjX/rOe/qhimyFzw3IdIETdExM3Sby2EBIwMFEkWQXDDWh5sMu0HNillijI5RQC0ZOUCVIHyIV2MtJ9fB2U7iz3tGPzIWqglc7yEk3QubFtVChSQq7l1KRWJuiQ+oFfgGwjjuIaiGHzvUQJnDdMyDnkt8W0JQPjm/pkXX1qT5WI1hrwk6P1IPApXUco0iHgx6j3gJTNgN0YWnyrxrgFM6QN2kTUKXqQvnwnClaj0a5SslSxIFa6ZrnW+nwvaNJvOfqKlwnqDAnKnnXagkFcLlVSfG9PYeh1o0/1LB1AZYAmAyeTzQp6NtX7rm6IR/NNJcAwN8poddmDQK8cm+c2McqiKl2mZZumgaMTvAjt/kgvWpYoHVlVqwKR09JdkjnKUcL6MKW4BUmM+GVN8c6C+nCiWeOjEigor6WETKnHENEM8LpBOgXGOExDzsRQ/a0F3SeuUF/Nyd+3LUG/NCzR4GVZXhJPnI5xiSfOj3WvZ6WjUFW4+bG21xY5YZzTzRSB5uYr0vdXxOsTTXKWm+aWkDjCyNON3LDs7qHQvrI99nGgHcmw8tDuwGBPaUfaqaKSrwPBC80sobzqBgqykECXOtKqgyYgrTLTYD0AftXimpRg3Y045Q0ENsEp6HjSBHxolKTTrrO0ARcjftBXdHATzeek1ipsTW+uRTUWjAFJdQi1/6OZJHTXesLXTiW8K+N77KHeWUI3US7BmHpCn0QG4iin29dVjitbFf8cKw+hX9YDJiDW9QYI1gW9N+tae1gy6//ot6ltq1n7K3uEca7AKdAAYsnG2DRg+S4leNBVSS9A4qYTZDrWgLJeE52Huh4SmIAmCUX0N9L7sSqJt+7QLZYadMQhLhBbyz9d+t4BIJyc6ASkufZo99uDtt3sx05WJF0gTHN96o9T3DpF2kB7JaMXxyhuw+qxhOpABSD65X2yqOkmKZ1RguVeWF/Xhg9XB5pZQnZH2Wdd0ykoyCvMNOxPcMcrsrfn1B/fp75akDmHW5S6V5uMNbE0P9lIlPfJmtkM1mvCyUKrGZkpwsyPoczxxw63N1V58ukIWZYk84pghJeAtp02HXihG2V0mRuIUJRbUJWVfK06Ae3YG9EqNFNjQRZIVkF7Ata6yvFlii9TO9cNVGm9tqI/Wm32toZqS+t2KFtJpYnLmGdDKzUAdYOzbVa0/gJdIWgwdG2AqZZii9smdzbzyn6cMug+NBNlSE7WVj4cac087XUH5g1+3W76GPr7qdDr3KshiQUgaYPRg2dGwNrRznK63OErTQbLukaqWkE6fR+LWQxBf8B9rb8LVr+PuhLcn2nJemWSdD24p1cZ6pviTH8irtd3nZOi0C3BYmnfx84Z/FpyZTyK82P9naQJslgRjubao9LfL6f5A8QBYdiq3WuXIwjYlwvrEpdmSK7NGT2H3QCwSTRyukVFLFICCd1epiSYTaCdpgMxSH4UqPYd9V5CftRQX8mGTHoYJ3hTfJUQqa7qXRcTWH+sYHRDcQBeRMlDRPXl4ihHTlbkb7W0j+8ru3Ceqp9tdzcjTZ7rqqDRCoHkOU6cZnWbZqMOA/qkWa5xo4xQJPgmNRHQDf9dNCYkt25JVgnVvmXjDdekrDzKCtwDZEKS0UyEslCNvqQMd0+7PR18pZ2CflGrCGaPaku8Zq0taTU0yXgHSdzAZkNU7oSJ6hC6LoW9wt4HknmFzNdKxpl4hUUnPQxaWZ/Lq954DHQb0GU9oxAkaxno1H0TScpIfqfVblAgpKovONzlSS/3bWVW5wZ4t6oTYSsSbQUPmVMAWdPh5iuTB1vpdSkKhRenWiLWGr3fzEWMGoCLQtWIrdQ4oFvLclPOE7GksOaP4mKl/BhZqj9UJ7olWK51i9xrFqYK3ZZxofiRk4WV0xMNGCcLwnptT38Z/i+C+jZsR86wyxEEgiKgYtsSjo/xh9dsqek2+7E+w5qlBqoIuKjLv2aaDjeP9sdrt1Z+HKhnjmTtSU9aysNsUO2JiT2dyo7Ru6qk00wSmpmw/lhBcVNITpS9KGQqHCFzkxNblyT/3QzIrh4duGl6Us43jPJJtQcVHiyJVxLI5RIZXxu0BrR2HBStOMkUiiuKXvRrw5Knnm6UED2DlLgzKa4oELzW8dvCGYmKKHWaN67+RhOHzXSsn9ed5g0E3ac/NsLXOekdXVprX7tm6qTpNEnWl7KmY+IoI+yNaKeZlv+SPj+hZCEAxW1DSXqv1YsiJYxSbeUVrQ6sDr3qPVr7MzDwIbgWXB1JbBuQroImGVNHO1HAlKdTBKeRbgDahi2iBCJekDogRJUUbzrIPd00s/ltTU2o1CQc6I8sy7RTMLNAX9W6EghBl/1ONkSfI93K9itDvNclvZF8APqQcKKvjZaMhwAQA7G0jH4MiM+GFTDiBtJSbh3p+dFIg8tqRSgrJEmHUmAPvFNSkQ+uzl+KIBCNWagnDYnLpWY+T9XS8V6X0McL5NoVwkifln5Za0bd+O6JCncNqS7vklQ58wogm7dUBwnNWEkiYyWQqXpQclIbrrzQUtZjOUWfJzBVnYF5tq8V97oBVX2qr1tx56RW7rQoHoOqEQMKflosCe/fxvnrtIczjfydNiz17D0xcYPyULKokapDEgdROfz6pBoC9dRIOq4I5WFUrcSIzUkkWQnNkQxwYwlQ3HFkx8osHKw5qJ14pAmktQJPpGfBMSALrf6TNCFOCkKemAy80bMF7bj01tnnbdvRTXJi5mgLTzP1hk0IpkOggUy7NDUZqMpLGgBGt03J2Ehiq6tanut5D6OTQfLMl/qDDqknZor0HIhG+gz8OKcb6/YxPa41MPQ6EM7pw6ZtldM/M/6IqtaSYi8Wak/aGIJ2g9p2VUuN2ufS9/ur1JiRfoaogKQYtFTYGotUzz8BqiB0yqSwZPNNxdzJ3kzvu1IpzgZCUdtqDojBrvvAVQBckiCgj6Jw97ZAnPYT2HGCtujGtkVuz5HHDwhFiisbkqWKi0Trtccpa1BIhGzewn5CM3FkbaB4v6G6mmqN2ursPXmHW9WMf9jBJyfWMZcM5T0JURmO+34AsH2/18i7WKgGXJbqxTV8gCY9OxO+HOnFDBrJw2JJ+J938XlK89gUQBl6wZbKyvrbFZ7y+oik7JBWgVASoLriaVNN5ilVGNT7ke4TJZNZSZG2VE1CVSdUq4zqJCFZOlylK4h2LKQzIT9RirU+249X6i231OV0LKym7QSKnDAd0+0XdFam9FXA39IkmKuUSmwozaWe6lpBN3KWCJSh2nGaWThZAWtFNLpa8wK+QlWkg6oPN1Y+TNYwfl+3A13m6HL1Pz1pN/yGQHCaCHTzlRJ4zCYWAFL8uhn4/WPqNQ9Q1tbkFa0JbIPAw/tNDz/QMwlJOtaV6VI1JOJ0pgneW0vd66fppiFO3FAqxBB9dAoTj3WDOFE9QXGa4fceN9Gkd3jnhoLnDq4MW86BLSgGwGlgtkQmzilUuO/KfUAwuBRBQMSWSP3nLDMIZK2Z0FO5AUlTaFvVlz/c00BQtfgqpXV6U3a5RtxkrUvqbK5lw3biyeYtxXsVne2TB1x57CnNG8ZvrykfKzZgoGGb4WF/hO+Malpsy+IccmUfFyJhtdKLNRlvsAFVDY3qJ8S9CbiJ5gCsEsLtOX6c0c7yQdBEBTEyFcI4qegmmUJ2+x9e2VHcjpQHCfVUSTmb/Ug3CTgfSX3HflHiisiiyTjygTUFjfeqOARUB6J8hEsF5WTHUSsHpcdniWbD6wbyVEE3mZbb2pl2pblG581XnXIIdEHzCUVGGGeaI0icNfrokztZmay5v5u1GTbJQAlR+QxWeuOuDzYowfwoMr7Zks5ra0aSTYLQJMZi6odcTg97DteuEG31mNxaKj7Dvo/K3GuwG6DaMQw//p7Hwm5WvQ+sgYcQNQCY2lTM003J2bAuelNalSdJFN/frwBi1OpXDFYdU5h5n0CMbUu4c4TLc+TaVXWtTwLaNgLR7Uds2oHJGhhe4wOERwDkwyJ6z9NE5D1gyYM6Dbdnh1y8H5fBB9j5ca/9f/fjx2OM1+89eCmCAICIfCfG+LmdH5fDh50fj44f7oP/ZGc729mPsu2CwM529ojbZQoCf3zRDphdBj8ugw+w8+Ne+5H049LkBHa2s51djF2mlcDOdrazC7ALDwIi8nMi8oaIvCkiL2x57LdE5Lsi8rKIfMeOHYjIt0XkB/Z69RzG/ZqI3BSR104du++4ovaHNj+visjT5+zHV0TkbZuTl0Xk2VPnfsv8eENEfvYh+vFJEflHEfl3EfmeiPy6Hd/qnDzAj63OiYgUIvKSiLxifvyOHX9SRF608b4uIpkdz+3zm3b+Ux9pwBjjhf0DPMpc/BSQAa8An9ni+G8Bh/cc+z3gBXv/AvC75zDuF4Gngdc+aFzgWeBvUSzk54EXz9mPrwC/eZ+//Yxdnxx40q6bf0h+PAE8be9nwPdtvK3OyQP82Oqc2Pea2vsUeNG+518Bz9vxrwK/bO9/BfiqvX8e+PpHGe+iVwLPAG/GGP8jxlijfIXPXbBPz6E6Ctjrzz/sAWKM/4RSr32YcZ8D/jSq/TNK8PrEOfpxlj0H/GWMsYox/ifwJvdhlvo/+vFOjPHf7P0J8DpKXb/VOXmAH2fZucyJfa+ztD6+YcfvnY9+nr4B/LTIA4QG7rGLDgKDRoHZaf2CbVgE/k5E/tUo0AEejzG+Y+/fBR7fki9njXsRc/Rrtsz+2qnt0Fb8sKXsT6FPvwubk3v8gC3PiYh4EXkZpVz5Nh9B6wOYo1ofH8ouOghctH0hxvg08CXgV0Xki6dPRl1fbb18clHjmv0R8BPAZ4F3gN/f1sAiMgW+CfxGjPH49Lltzsl9/Nj6nMQYuxjjZ1E6/2d4CFofZ9lFB4Feo6C30/oF524xxrft9SYqqvIMcKNfWtrrzS25c9a4W52jGOMNuwED8Cdslrfn6oeozuU3gT+PMf6NHd76nNzPj4uaExv7CKX3H7Q+7jPW4Ic8QOvjLLvoIPAvwKct65mhSY1vbWNgEZmIyKx/D/wM8Bob3QS4W0/hvO2scb8F/KJlxD8PzE8tkR+63bO3/gV0Tno/nrdM9JPAp4GXHtKYglLVvx5j/INTp7Y6J2f5se05EZHrompfyEbr43U2Wh9wf60P+KhaH3Cx1YG4yfR+H93zfHmL4z6FZnZfAb7Xj43upf4B+AHw98DBOYz9F+iyskH3dr901rhoprjXf/wu8Llz9uPPbJxX7eZ64tTff9n8eAP40kP04wvoUv9V4GX79+y25+QBfmx1ToCfRLU8XkUDzm+fumdfQhOQfw3kdrywz2/a+ac+yng7xODOdvaI20VvB3a2s51dsO2CwM529ojbLgjsbGePuO2CwM529ojbLgjsbGePuO2CwM529ojbLgjsbGePuO2CwM529ojb/wKALxmJfhmfiwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQEAAAD8CAYAAAB3lxGOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAATCklEQVR4nO3df5BdZX3H8fdnf2RjEgKJQAhJkF+hFm0JuCYBGaqiAmHGwJTSUFsoxkYRWhhtFbCjdMZO1dEwZRQ0FCRaSkCQIRVaCZFqVX4tv/KzyJIEkzUkQCAEGMNm8+0f90m4bHazm733nnvZ5/Oa2bnnPuec+3zvyeaTc55zcx9FBGaWr6Z6F2Bm9eUQMMucQ8Ascw4Bs8w5BMwy5xAwy1zNQkDS6ZKektQp6fJa9WNmlVEtPicgqRn4DfBRYAPwCHBeRKyqemdmVpFanQlMBzojYk1EvAEsAmbXqC8zq0BLjV53ErC+7PkGYEZ/G49QW4xkdI1KMTOAbbz0QkQc1Lu9ViEwIEnzgHkAIxnFDJ1ar1LMsnBf3P5sX+21uhzoAqaUPZ+c2naLiAUR0R4R7a201agMMxtIrULgEWCqpCMkjQDmAItr1JeZVaAmlwMRsUPSJcBPgWbgxohYWYu+zKwyNRsTiIh7gHtq9fpmVh3+xKBZ5hwCZplzCJhlziFgljmHgFnmHAJmmXMImGXOIWCWOYeAWeYcAmaZcwiYZc4hYJY5h4BZ5hwCZplzCJhlziFgljmHgFnmHAJmmXMImGXOIWCWOYeAWeYcAmaZcwiYZc4hYJY5h4BZ5iqagUjSOmAb0APsiIh2SeOBW4HDgXXAuRHxUmVlmlmtVONM4EMRMS0i2tPzy4GlETEVWJqem1mDqsXlwGxgYVpeCJxVgz7MrEoqDYEA7pX0qKR5qW1CRGxMy88BEyrsw8xqqNJZiU+OiC5JBwNLJP1f+cqICEnR144pNOYBjGRUhWWY2VBVdCYQEV3pcTNwJzAd2CRpIkB63NzPvgsioj0i2ltpq6QMM6vAkENA0mhJ++1aBj4GrAAWAxekzS4A7qq0SDOrnUouByYAd0ra9Tr/ERH/LekR4DZJc4FngXMrL9PMamXIIRARa4Dj+mh/ETi1kqLMrDj+xKBZ5hwCZplzCJhlziFgljmHgFnmHAJmmXMImGXOIWCWOYeAWeYcAmaZcwiYZc4hYJY5h4BZ5hwCZplzCJhlziFgljmHgFnmHAJmmXMImGXOIWCWOYeAWeYcAmaZcwiYZc4hYJY5h4BZ5gYMAUk3StosaUVZ23hJSyQ9nR7HpXZJukZSp6Rlkk6oZfFmVrnBnAncBJzeq+1yYGlETAWWpucAZwBT08884LrqlGlmtTJgCETEL4AtvZpnAwvT8kLgrLL2H0TJg8ABu6YpN7PGNNQxgQkRsTEtP0dphmKAScD6su02pDYza1AVDwxGRACxr/tJmiepQ1JHN9srLcPMhmioIbBp12l+etyc2ruAKWXbTU5te4iIBRHRHhHtrbQNsQwzq9RQQ2AxcEFavgC4q6z9/HSXYCawteyywcwaUMtAG0i6BfggcKCkDcBXgK8Bt0maCzwLnJs2vweYBXQCrwMX1qBmM6uiAUMgIs7rZ9WpfWwbwMWVFmVmxfEnBs0y5xAwy5xDwCxzDgGzzDkEzDLnEDDLnEPALHMOAbPMOQTMMucQMMucQ8Ascw4Bs8w5BMwy5xAwy5xDwCxzDgGzzDkEzDLnEDDLnEPALHMOAbPMOQTMMucQMMucQ8Ascw4Bs8w5BMwyN2AISLpR0mZJK8rarpLUJemJ9DOrbN0VkjolPSXptFoVbmbVMZgzgZuA0/tovzoipqWfewAkHQvMAd6T9rlWUnO1ijWz6hswBCLiF8CWQb7ebGBRRGyPiLWUJiadXkF9ZlZjlYwJXCJpWbpcGJfaJgHry7bZkNrMrEENNQSuA44CpgEbgW/t6wtImiepQ1JHN9uHWIaZVWpIIRARmyKiJyJ2Atfz5il/FzClbNPJqa2v11gQEe0R0d5K21DKMLMqGFIISJpY9vRsYNedg8XAHEltko4ApgIPV1aimdVSy0AbSLoF+CBwoKQNwFeAD0qaBgSwDvg0QESslHQbsArYAVwcET01qdzMqkIRUe8aGKvxMUOn1rsMs2Htvrj90Yho793uTwyaZc4hYJY5h4BZ5hwCZplzCJhlziFgljmHgFnmHAJmmXMImGXOIWCWOYeAWeYcAmaZcwiYZc4hYJY5h4BZ5hwCZplzCJhlziFgljmHgFnmHAJmmXMImGXOIWCWOYeAWeYcAmaZcwiYZW7AEJA0RdL9klZJWinp0tQ+XtISSU+nx3GpXZKukdSZpi4/odZvwsyGbjBnAjuAz0fEscBM4GJJxwKXA0sjYiqwND0HOIPSRKRTgXmUpjE3swY1YAhExMaIeCwtbwNWA5OA2cDCtNlC4Ky0PBv4QZQ8CBzQaxZjM2sg+zQmIOlw4HjgIWBCRGxMq54DJqTlScD6st02pDYza0CDDgFJY4A7gMsi4pXydVGa2nifpjeWNE9Sh6SObrbvy65mVkWDCgFJrZQC4OaI+HFq3rTrND89bk7tXcCUst0np7a3iIgFEdEeEe2ttA21/iy0TJlM288P4aW7p9J8wP71LseGmZaBNpAk4AZgdUTML1u1GLgA+Fp6vKus/RJJi4AZwNayywYbgt/NPozHp14LwDn/+RGeWXQSAIf8fAubTxrHzlaVNgyY+O8r6Hnllf5eqvFIvPjJmfSMLL2Hgx57DT3wZJ2LyotKZ/J72UA6GfhfYDmwMzVfSWlc4DbgMOBZ4NyI2JJC49vA6cDrwIUR0bG3PsZqfMzQqZW8j2FryydP5KYvz+c9I96xx7ovbprGVw56mFFNI3a3HXnvXI75m+VE9xtFljk0Tc2s/9IMfjXvm4xrHgXA/C1HsuQvpsPaLna++ioM8Ptpg3df3P5oRLT3bh8wBIrgEOhb87hxbPj+ISybfsug9+mOHv7ohkt415cfqGFlVdDUzJp/mc6Tn/jXt4QYwMYdr9INnPntL3DoN35dn/qGof5CwJ8YbGA7j568TwEA0Kpmzvn4L1l/+3t58VMn1qiyyq2/YgaPf+LqPQIAYGLLGA5rGcPdl3yD5y9q3PcwXAw4JmBvP189eDlfPXg5m2e8xkf2/wfGruvZvW7/Xz/Ljo3P1bG6knfMfIExTSP3us1hLWNo+/hmmm8/iJ7nnweg5fDD2Pq+vj92MnbVFnpWP131Woc7h8AwdnDzaJZ9/tq3tL3/sXN555++RLzRa8yg4MvCJg1uuweOu4M/mTGPkT95nuaxY9FN3fzymO/1ue3f/e79PHP2ZHas31DFSoc/h0BmHjx+EUtX7nlL9rN3zeXoKx8nttf+Mxsvn38idx/3TWD0oPdpmTKZnoXBPcfc3e821xz6CDNP+Qz73+wQ2BcOgcw0q4mPjereo73zvO9yzBsXccQVtR9Q7B5VOksZNMFvzzuM5e++dsBNz73iXn5689gKqsuPQ8B2++szf8avvnM0Ozbs8dmuurri6oUc0PQ60FzvUoYl3x2w3a488Ck6Lzqs3mXs4fRR25k50gFQKw4BK1TTe9/NZZf9qN5lWBmHgBUmTjqOWbc+wPljX6h3KVbGIWDFaGrmt6eN5m/HPVvvSqwXh4AVouXQQ+iYO3/gDa1wDgErROw/hlZ5cK8ROQSsEGMXPE+bWutdhvXBIWCFGNG0o94lWD8cAmaZcwiYZc4hYIVoVv2/vMb65hAAaGpGbW387gsnQVMzaJD/z9UGrSd8TBtV9v+BKD4wjU99/04OadnKsa0/Y9VnRvPD5z9A119OoOfpNfUuz6zmsj8T2PaP2zh3zFZOGQkHNo/mlJFw/ZRf0XnhhIF3NhsGsg6B5gkHM2nM1j7XdU/opmnk3r/+ymw4yDoENp5zNLcfdV+f69ae8W/EHx5VcEVmxcs6BKw4vjvQuBwCVgjfHWhcDgErhM8EGteAISBpiqT7Ja2StFLSpan9Kkldkp5IP7PK9rlCUqekpySdVss3YG8PPhNoXIP5nMAO4PMR8Zik/YBHJS1J666OiG+WbyzpWGAO8B7gUOA+ScdERA9m1nAGPBOIiI0R8Vha3gasBibtZZfZwKKI2B4Ra4FOYHo1ijWz6tunMQFJhwPHU5qRGEpTkC+TdKOkcaltErC+bLcN7D00LAMeE2hcgw4BSWOAO4DLIuIV4DrgKGAasBH41r50LGmepA5JHd3UftYbqy+PCTSuQYWApFZKAXBzRPwYICI2RURPROwErufNU/4uYErZ7pNT21tExIKIaI+I9lb2nBbLhhefCTSuwdwdEHADsDoi5pe1l08NezawIi0vBuZIapN0BDAVeLh6Jdvbkc8EGtdg7g58APgrYLmkJ1LblcB5kqYBAawDPg0QESsl3QasonRn4WLfGTBrXAOGQET8Eugrxu/Zyz7/DPxzBXWZWUH8iUGzzDkEzDLnELBC+O5A43IIWCF8d6BxOQTMMucQMMucQ8Ascw4BK4QHBhuXQ8Ascw4BK4TvDjQuh4BZ5hwCVgiPCTQuh4AVwpcDjcshYJY5h4BZ5hwCZplzCJhlziFgljmHgBXCtwgbl0PACuFbhI3LIWCWOYeAWeYcAmaZcwiYZc4hYIXw3YHGNZi5CEdKeljSk5JWSvqn1H6EpIckdUq6VdKI1N6Wnnem9YfX+D3Y24DvDjSuwZwJbAc+HBHHUZqG/HRJM4GvA1dHxNHAS8DctP1c4KXUfnXazswa1IAhECWvpqet6SeADwO3p/aFwFlpeXZ6Tlp/aprZ2Mwa0KDGBCQ1pxmJNwNLgGeAlyNiR9pkAzApLU8C1gOk9VuBd1ax5prriZ2c0PHnNP12Y71LMau5QYVARPRExDRgMjAdeHelHUuaJ6lDUkc32yt9uapZsPVQ/uB/5jLhvA30vLil3uUMGx4YbFwDTk1eLiJelnQ/cCJwgKSW9K/9ZKArbdYFTAE2SGoB9gde7OO1FgALAMZqfH1+QwK6owcoPR5/06W8657XOerXj7OzLgUNXx4YbFwDhoCkg4DuFADvAD5KabDvfuAcYBFwAXBX2mVxev5AWv+ziGjIfwYO+eFyZt97DgDaGRy+9kFooFKbXtvO3a+P5MxRv693KTaMDeZyYCJwv6RlwCPAkoj4CfBF4HOSOild89+Qtr8BeGdq/xxwefXLro6d27bR07mWns617FizrqECAKBn1W+47I4L612GDXMDnglExDLg+D7a11AaH+jd/nvgz6pSnTF1/jPMP/NIPjd+Tb1LsWHKnxhscD2bNvO9u06rdxk2jDkE3gYOfN+mepdgw5hD4G3gQ4c8Xe8SbBhzCDS45y47ic+Mf6DeZdgw5hBocK9PDCa3jKl3GTaMOQSsEP7EYONyCFgh/InBxuUQMMucGuETvZKeB14DXqh3LcCB1L+ORqgBXEdvb/c63hURB/VubIgQAJDUERHtrqMxanAd+dThywGzzDkEzDLXSCGwoN4FJI1QRyPUAK6jt2FZR8OMCZhZfTTSmYCZ1UHdQ0DS6ZKeSvMUFPoFJJLWSVou6QlJHaltvKQlkp5Oj+Nq0O+NkjZLWlHW1me/KrkmHZ9lkk6ocR1XSepKx+QJSbPK1l2R6nhKUtX+f7OkKZLul7QqzW1xaWov9JjspY5Cj0nhc31ERN1+gGZK31x8JDACeBI4tsD+1wEH9mr7BnB5Wr4c+HoN+j0FOAFYMVC/wCzgvwABM4GHalzHVcDf97HtsenPpw04Iv25NVepjonACWl5P+A3qb9Cj8le6ij0mKT3NSYttwIPpfd5GzAntX8XuCgtfxb4blqeA9y6L/3V+0xgOtAZEWsi4g1K31c4u841lc+bUD6fQtVExC+A3l9l3F+/s4EfRMmDlL7gdWIN6+jPbGBRRGyPiLVAJ318s9QQ69gYEY+l5W3AakpfXV/oMdlLHf2pyTFJ76uwuT7qHQK75yhIyucvKEIA90p6VNK81DYhInZNOPAcMKGgWvrrtx7H6JJ0mn1j2eVQIXWkU9njKf3rV7dj0qsOKPiYFDnXR71DoN5OjogTgDOAiyWdUr4ySudXhd8+qVe/yXXAUZSmnNsIfKuojiWNAe4ALouIV8rXFXlM+qij8GMSNZjroz/1DoFdcxTsUj5/Qc1FRFd63AzcSelgb9p1apkeNxdUTn/9FnqMImJT+gXcCVzPm6e3Na1DUiulv3g3R8SPU3Phx6SvOup1TFLfL1P6ev/dc3300dfuOrSXuT76U+8QeASYmkY9R1Aa1FhcRMeSRkvab9cy8DFgBW/OmwBvnU+h1vrrdzFwfhoRnwlsLTtFrrpe19ZnUzomu+qYk0aijwCmAg9XqU9R+qr61RExv2xVocekvzqKPiaSDpJ0QFreNdfHat6c6wP6nusDhjLXRzVGVSscCZ1FaRT2GeBLBfZ7JKWR3SeBlbv6pnQttRR4GrgPGF+Dvm+hdFrZTenabm5//VIaKf5OOj7LgfYa1/HD1M+y9Ms1sWz7L6U6ngLOqGIdJ1M61V8GPJF+ZhV9TPZSR6HHBPhj4PHU3wrgy2W/sw9TGoD8EdCW2kem551p/ZH70p8/MWiWuXpfDphZnTkEzDLnEDDLnEPALHMOAbPMOQTMMucQMMucQ8Asc/8PInkpU56yxuAAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "imgnum = 1 #10 for ns, 0 for s\n", + "\n", + "print(train_files[0][imgnum][\"image\"])\n", + "print(train_files[0][imgnum][\"label\"])\n", + "\n", + "img = itk.imread(train_files[0][imgnum][\"image\"])\n", + "arrimg = itk.GetArrayFromImage(img)\n", + "img = itk.imread(train_files[0][imgnum][\"label\"])\n", + "arrlbl = itk.GetArrayFromImage(img)\n", + "\n", + "plt.subplots()\n", + "plt.imshow(arrimg[0,:,:])\n", + "plt.subplots()\n", + "plt.imshow(arrlbl[0,:,:])" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "2c0866cc", + "metadata": {}, + "outputs": [], + "source": [ + "train_transforms = Compose(\n", + " [\n", + " LoadImaged(keys=[\"image\", \"label\"]),\n", + " AddChanneld(keys=[\"image\", \"label\"]),\n", + " ScaleIntensityRanged(\n", + " a_min=0, a_max=255,\n", + " b_min=0.0, b_max=1.0,\n", + " keys=[\"image\"]),\n", + " SpatialCropd(\n", + " roi_start=[80,0,1],\n", + " roi_end=[240,320,61],\n", + " keys=[\"image\", \"label\"]),\n", + " ARGUS_RandSpatialCropSlicesd(\n", + " num_slices=num_slices,\n", + " axis=3,\n", + " keys=['image', 'label']),\n", + " RandFlipd(prob=0.5, \n", + " spatial_axis=2,\n", + " keys=['image', 'label']),\n", + " RandFlipd(prob=0.5, \n", + " spatial_axis=0,\n", + " keys=['image', 'label']),\n", + " RandZoomd(prob=0.5, \n", + " min_zoom=1.0,\n", + " max_zoom=1.2,\n", + " keep_size=True,\n", + " mode=['trilinear', 'nearest'],\n", + " keys=['image', 'label']),\n", + " ToTensord(keys=[\"image\", \"label\"]),\n", + " ]\n", + ")\n", + "val_transforms = Compose(\n", + " [\n", + " LoadImaged(keys=[\"image\", \"label\"]),\n", + " AddChanneld(keys=[\"image\", \"label\"]),\n", + " ScaleIntensityRanged(\n", + " a_min=0, a_max=255,\n", + " b_min=0.0, b_max=1.0,\n", + " keys=[\"image\"]),\n", + " SpatialCropd(\n", + " roi_start=[80,0,1],\n", + " roi_end=[240,320,61],\n", + " keys=[\"image\", \"label\"]),\n", + " ARGUS_RandSpatialCropSlicesd(\n", + " num_slices=num_slices,\n", + " axis=3,\n", + " center_slice=30,\n", + " keys=['image', 'label']),\n", + " ToTensord(keys=[\"image\", \"label\"]),\n", + " ]\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "b61bb3d8", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Loading dataset: 100%|████████████████████████████████████████████████████████████████████| 4/4 [00:00<00:00, 5.55it/s]\n", + "Loading dataset: 100%|████████████████████████████████████████████████████████████████████| 4/4 [00:00<00:00, 5.91it/s]\n", + "Loading dataset: 100%|████████████████████████████████████████████████████████████████████| 6/6 [00:01<00:00, 5.91it/s]\n", + "Loading dataset: 100%|████████████████████████████████████████████████████████████████████| 4/4 [00:00<00:00, 6.95it/s]\n", + "Loading dataset: 100%|████████████████████████████████████████████████████████████████████| 6/6 [00:00<00:00, 7.22it/s]\n", + "Loading dataset: 100%|████████████████████████████████████████████████████████████████████| 4/4 [00:00<00:00, 6.82it/s]\n" + ] + } + ], + "source": [ + "train_ds = [CacheDataset(data=train_files[i], transform=train_transforms,cache_rate=1.0, num_workers=num_workers_tr)\n", + " for i in range(num_folds)]\n", + "train_loader = [DataLoader(train_ds[i], batch_size=batch_size_tr, shuffle=True, num_workers=num_workers_tr) \n", + " for i in range(num_folds)]\n", + "\n", + "val_ds = [CacheDataset(data=val_files[i], transform=val_transforms, cache_rate=1.0, num_workers=num_workers_vl)\n", + " for i in range(num_folds)]\n", + "val_loader = [DataLoader(val_ds[i], batch_size=batch_size_vl, num_workers=num_workers_vl)\n", + " for i in range(num_folds)]" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "f5c1f433", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "torch.Size([4, 1, 160, 320, 32])\n", + "torch.Size([160, 320, 32])\n", + "image shape: torch.Size([160, 320, 32]), label shape: torch.Size([160, 320, 32])\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsYAAADHCAYAAAAaq5U5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAADXxklEQVR4nOz9eZisWVrWC98rIjLmiIzMPVQV1VU9YDdCH5TTcFBAAW0UGhA+PIh6zgEEtJAWFUfA73O4OB/nQ0ERDwI2B0QcUVBBRoGj4qEZukGUoWnppruhq6ur9t6ZGXNkZES83x+ZvxX3u3ZW17R3Ze5d67mufe29Y3jfNb2x7ud+7udZoSgKZcuWLVu2bNmyZcv2UrfKRTcgW7Zs2bJly5YtW7bLYBkYZ8uWLVu2bNmyZcumDIyzZcuWLVu2bNmyZZOUgXG2bNmyZcuWLVu2bJIyMM6WLVu2bNmyZcuWTVIGxtmyZcuWLVu2bNmyScrAONsltxDCL4cQPvGi25EtW7Zs2Z67hRDeHUL4pGfxuSKE8Fue5z2e93ezZUutdtENyJbtA1lRFK+96DZky5YtW7Zs2V4alhnjbNmyZcuWLVu2bNmUgXG2S26E4UIIfyOE8K9CCP8khDAOIfxiCOE1IYSvDCE8FUL4zRDC77fvfUEI4W1nn/31EMIXJ9f9yyGEJ0II7wsh/HEPxYUQGiGErwsh/EYI4ckQwreEEFovdt+zZcuW7X6xEMJHhxB+KoRwdPbb+40hhHrysU89+72+GUL42hBCxb7/hWe/6YchhB8JIbz8Re5CtpeIZWCc7V6yPyDpH0vak/RfJP2ITtfww5K+StI/sM8+JenTJfUlfYGkrw8hvE6SQgifIunPS/okSb9F0icm9/kaSa+R9BFn7z8s6a/dhf5ky5Yt20vF1pL+nKSrkj5G0uslvTH5zGdJ+ihJr5P0mZK+UJJCCJ8p6a9I+oOSrkn6z5L++YvS6mwvOQtFUVx0G7Jle1oLIbxb0h+X9LskfVxRFL/v7PU/oNMfxt2iKNYhhJ6kkaS9oiiOzrnOv5X0H4qi+IYQwrdLerIoiq88e++3SPo1Sa+W9E5JE0m/rSiKd569/zGS/llRFK+8m33Nli1btvvN+A0viuLHkte/TNInFEXxWWf/LyS9oSiKHz77/xsl/c9FUbw+hPBDkr67KIpvO3uvotPf6Q8tiuI9Z999dVEU73ix+pXt/rXMGGe7l+xJ+/dc0s2iKNb2f0nqSlII4Q0hhJ8OIRyEEI4kfapOmQpJ+iBJv2nX8n9fk9SW9HNnIb8jST989nq2bNmyZXsediZ9+/4QwvtDCCNJ/4e2v8mY/xa/R6e/1ZL0cknfYL/JB5KCTqN52bLdUcvAONt9ZyGEhqTvkfR1kh4oimIg6Qd1+kMqSU9Iepl95RH7902dguzXFkUxOPuzWxRF9+63PFu2bNnuW/tmSb+qU2a3r1NpREg+47/Fj0p639m/f1PSF9tv8qAoilZRFG++663O9pKzDIyz3Y9Wl9SQdEPSKoTwBkm/397/l5K+IITwoSGEtqS/yhtFUWwkfatONcnXJSmE8HAI4ZNftNZny5Yt2/1nyN0mIYTfKulLzvnMXwoh7IUQHpH0ZyV919nr3yLpK0MIr5WkEMJuCOEPvRiNzvbSswyMs913VhTFWNKf0SkAPpT0v0j6Pnv/hyT9PUn/QdI7JP302VvHZ39/Oa+fhfx+TNKHvCiNz5YtW7b70/6iTn+LxzolH77rnM98r6Sfk/QLkn5A0rdJUlEU/0bS35T0L85+k39J0hvufpOzvRQtJ99le8lbCOFDdfpD2yiKYnXR7cmWLVu2bNmyXYxlxjjbS9JCCJ91Vq94T6dMxL/LoDhbtmzZsmV7aVsGxtleqvbFOq11/E6d1tc8T++WLVu2bNmyZXsJ2V0DxiGETwkhvD2E8I4Qwlfcrftky/Z8rCiKTzmrNrFfFMVnFUXxxEW3KVu2i7T8m50tW7Zsd0ljHEKoSvrvkn6fpPdKeoukP1oUxa/c8Ztly5YtW7YXZPk3O1u2bNlO7W4xxh8t6R1FUfx6URRLSf9Cp8c7ZsuWLVu2y2f5NztbtmzZJNXu0nUfVvkEm/dK+h3+gRDCY5Iek6RKpfKRzWZTsNeVSkWVyilm32w28bXNZqOTkxNtNhuFEFSpVOLfOzs7qlar8TOVSkW1Wk3ValXL5VJFUWhnZ0e1Wk2bzUar1Uqr1UpFUSiE0xrjRVHEP/4a9wshxPdqtdOhW6/X2mw2qlarsQ0hBG02G63Xa61WK63Xp4ez1et11et11Wo1hRC0XC61Wq0UQih9jz+05Wy8VKlUYh9pO2Pg7eL7GO9VKhUVRRHbnBr3rNfr2tnZie3h/unnmCN/f71ea71eyyMR3j765HNGm/gs169Wq3Fc0jHgPpvNpnQtvwdzd3JyouPjY63Xa9VqNTWbTVUqlbgG0rl28/XAH8bAx8bHKn3fP+PryecunWu/13nrkmfE++nPT7Vaje1gnPg+4+TrLZ1Dv5bPSfps+rMRQijNSfrM8G/mmuv4WvJxSNddGt1KP+dj4/eif+kzlt7Tv5/ew993o/+bzeZmURT38umIz/ibLZV/t6uqfmRb/Renddkuv9kzKEmt37rRy2qzC2zQ5bFChd7xSz0V5+y72S7GFppqWRzf/qOuuweMn9GKoniTpDdJUrfbLT78wz88AsWdnR0NBgPVajUNh0NtNhvt7u6qVqvpfe97n5588kltNhu12201m011u13t7+/r2rVrWi6XeuKJJ7RYLPSKV7xCjzzyiA4ODvQbv/EbarfbetnLXqb1eq2bN29qPB5H4MpmuFwutVwuFULQzs6OlsulJpOJarWa6vW6VqvTwgXdbletVkvL5VLD4VDValVXr17V/v6+ut2uNpuNRqORbt26pdFopKIo1O12deXKFT366KMaDAaaTCZ64okndHx8rFarFQHfZrPRcrnUYrHQdDrVcrlUvV5Xq9VSt9tVrVbT4eGhRqORNpuN6vW62u12bHNRFJrNZiqKQrVaLQKPdrstSRqNRprP51qtViVgtFgstFgstL+/r5e//OXa39/XbDbTfD6P9wdQzufzOCaAr2q1qvF4rMPDQy2XS1WrVZ2cnETQUqvVVKvVtFqtdHJyot3dXT344INqNBqaTCaazWYR7C0WC4UQdPXqVXW7p4fOrddr1et1Xb9+XZJ0cHCgo6Mjrddr7e3taX9/X+12O4JhAM98Ptev/dqv6Z3vfKeq1ao++IM/WK961as0m810dHSkk5MT7ezsaL1ex/46qAb84FhJimOwWq3UaDTUbDa1Xq81mUzimprP5zo+Pla1WlWr1VK73dZ6vdZ4PI7r1wG6pOjYSFKr1VKz2dTJyYkWi0UE99VqVY1GQ+12W41GQ8fHx5rP55rP5xH8sz43m41ms5lms5kWi4U2m02ct3q9Lkk6OTkpfXe9Xsd7SlKn0ynNZavVUr1e13K51Gw202q1Uq1W087OjlarlabTqYqiiJ/DarWaKpWKxuOxptNp/A7rtF6vx7ZIUqPRiI5T6jT6PNBOfg8cGNP3zWajVqulRqOh9Xqt4+Pj6BSxTnZ2dmJbd3Z2bltHOBw4p4Dmk5MTzWaz99yJ38XLbv673Q/7xe8Ir7/gFmW7aAuNhiq9rt72Na/Uuz71/0revXIhbbqMNtzM9Tkv+5iLbka2M/uZ4sef9r27BYwfV/lox5edvXauFUURgQGbEQCgXq9rNpvp+PhYjUZDvV5Pw+FQ4/FYx8fHajab2mw2Oj4+1mKxiCBxMplE4Njv99VutzWbzTQajdRoNCJYA4jx71qtpuVyqfV6rZ2dHTWbTS2Xy9PBOtuMT05OYnt3dnbUaDQ0n8918+bNuGH6Bg3bLUnHx8d68skntVwuS0BzsVhEUEQ7Go1GBK+SIgNdqVTUbDYjcAZIdDqdyPadnJzENhurFRnDRqOher2uxWKh0WgUmVRJJRC1s7OjyWSi8Xiser2uZrNZYnnp43q9jsw8YySdMnknJyfxe61WS5J0eHiog4MDhRB0/fp1dTqd0vcAmg7QFouFer2e5vN5dCTo32Kx0Hg8jmuANgG6rl27plu3bumJJ57Q+973PrXbbfX7fTUajdgHZ6cXi4WWy+VtzC9j6mwuQJ95ow8ALcam0WhEYDabzSIQxXmhrdVqNYJlxpjxoE+shWq1WlpnfM/BNiwvbeP78/lcIQQ1Gg21Wq0I5Jk31j7PHmCReaGPPH/cq1arxWvxf74nnQJeWHwfJwA2zhPXSxl11h+RgvV6HR0HAD+/I8wrzwTrEHDrkRkH4PTP598dQP4PsL4P7Dn9ZmfLJkmVdlvv+orfrl/949980U259FZVUO0Vjz7t+8V4ovWtgxexRdmezu4WMH6LpFeHEF6p0x/XP6LTE2/OtTQ8vFqtNJvNtLOzE0Pky+VSJycnarfb6na7ms1m8TWACcxqu92OoG86nWp/f1+dTieyR/V6vbThnhciZWOu1+saDAal8Df3Ozk5iUCGTXM6nZZkCPTJ5RbHx8d66qmntLu7G/uYsobOtPF9AJakCFolaTqdSjoFGL1eL4JRl3HwvUajEZk7gKCzfoDx4XCo/f392A7GstPpRHC3XC41n89VqVRKIWvGE+ZdOgWHgCuueXh4qMPDQ+3s7OjKlSsRpDp7z5hz/eFwqGazqWazGUGU95G5abVaETAxLteuXdPR0ZFu3rypnZ0dXb9+Xe12O/abMcPZ4lrMC3ORSmYY23q9XpJzAMhgn4+Pj6OzBZjy9b1YLCI4dqkNn3f5DuCUKIOk6CjwGYChM60urQBU+pqjz7QNxpq2A9qZF9Yiz4WDcMAoa4D1SF/4v69HlzjQd/rD9RgfxpDxOT4+1nQ6jcCXtrlshXXozqbLbbg2c+5SCq5HGx2o3wf2nH6zs2Wr9Hp6z5/5cP3qH/+mi27KPWHdSlM/8Obve9r3P+zN/5te/lWn0dDwm09qfXj4YjUtW2J3BRgXRbEKIXyppB+RVJX07UVR/PLTfZ6NlA0XEAEjXKvVYuiz0+lod3c3spgAH1hXGKFOp6P5fK7pdKperxfZWRgwZ1EBQWzmtIn27OzslPSItHW5XEZAAVgklHxeyBVwXKvVYhi/1WpF1g3WK4SgwWAQ5Qep5MH1tWzKw+EwbvqE7WFakRMANAEihNwJ7ztbd3x8rIODA127dk3NZrMEYnd3dyNIAUCk4BFw4XpsjwTA4A+HQx0cHMTrwuS7vpg+VioVwtbqdDqlULw7I4A7/j+fz+Oa6Ha7WiwWGg6HEVR3Op0Sw8+9AMH0D7YV5pd7Ib9xMIXDxfdxpFijrFlYdGQDx8fHkX1mTTBeDmRxFo6Pj0sRFweNMLYpKOa+rEXWtsshWLNcj3bB1C6XyzjmAHvYa9pnvwe3aXV5bmDm3dnA0aBfRHhY/0hfXPtMu5E+sT54zZ0Y2swz71GC9Xpd0rS77hvj2TvPob5X7bn+ZmfLNv7kD9Ov/KkMiu+U/crH/hPph0///erv/BK98t/NVfvFX9d6NLrYhr0E7a5pjIui+EFJP/hsPgtb5IloMMCwjAATtJntdjuCvcViEf8PkG42m5rP55pMJlosFmq1Wup0OhHMAQIc1DjIgxE9OTlRp9OJGz2gms8CfhqNRtx0YQhhprHFYlHSpKJlhUUFxAFo+v1+iV3EAHSE2QEA9NfZVKxarWo6nUa9NvdjLPgOMgt0q4vFIgLB8Xisg4OD2B6XG3APwIIz0w7gcWQARrVaTZPJJI4J4f4QQhy/SqUS5RHT6TSCO6IHziy7hIP7o1eu1Wra3d2Nc47UBrBLG7kGEgZkK/P5PIJDHBpAkjPHLgOgDbD4y+WyJEfxsUMuwXUAyoDpTqdzm6wAltaZ2DQCcfY8liQh3Id1gkPSbDZvS0yt1+tR900OANdi7XN/T5qkPaxXj2Awp9VqNT7HrDPALOww65L1BVMOs8981ev1uG75vz8vnpDnkQjWIWvFHQcHv55ImCYU3g/2XH6zs720rbq3p1uvvS8iJZfSfu3zvln6POm13/hGXf1vK7X/71/SZpYTGV8su7DkOzcSw1Jw6kCXzbgoipgIVq1WI9AC/AIqYbYmk4nm83lkpACUaBGREQCO2SxhNrkumzDvA64ASAA3AAgbfbPZjMlW0lb24FpI9Mztdjsy2tPpVPV6vZREBWsH4AV0A7QAbzDtkiLwxnFAStJoNOI4OxDgewBaxrNer2u9Xuvw8DCGv9FiS9twMt8jSWtnZycCF0kxGc0dGJjjZrOpwWBQqrhBW3FsYGABJThJrA0cF8B3o9EoAXgAJhGB4XAYGUi04s6sp6w1Eh7pNDkOdt1ZzlRa4tIexhsWlDazNl1GwjyzHq5cuRLXJmAfeYCkCPhoN06gs+AAQIBqCj4llXTXzia7/IHxw8GpVCrRaXFZRsr+44x5EiHRB6QMPKv+Gg6SO6g8d0VRaLlcRoafZ9NlUq7FZv2gfeY5JjnS9dBeXcMT9egX7xOdyZbtpWDHr3uV3vbFmS2+2/bLX3o6xr/t696o9pMbDb7rrSqM8Mh2d+xSAGPpFGSQZMcGOp1O1Wq11Ov1IjsHqCDjfTqdarFYaDabqdVqRW0pG9x0OtXR0ZEGg4EkxQ0PAAObxMbmCTkAxk6nE7WoHhpfLBbq9/txg5cUZQ8wXq7T5L5UmgDQApZ2dnbUarViQt14PI6bPwwcoM0rPXB92DBAR6VSidUpSGR00OBgzTWsDojQbQNuALGMm4+Jay25Z7vdju0GiI1GozhftP/4+Fij0SgCZu/Ler1Ws9mM+nG0uCSOASoBmMwrwNj7vdls4neWy6UODg7i3Ozv75ekBoAfdOAAuJOTE02nU+3u7sZKIePxOH6X7wGwKpVKlPPAZrqWFVANyGX9EXUgUQ79OtEJ1/p6iTbmnzYzT6xb3uNeJH4yLjhsPCNc06s94ACdnJxE58UrRLAmnVmmDTxbSH+QPfH8MT6VSiX+HuDgpW2H0aYtrp13dp31yxi5s8Cz2mg0YgUUl1t5RQpn63nNq1lky5Yt2522//YXTwHyhz/0Rn3Q3/kZabO+4Bbd33YpgDGbnusdpdNNfDKZxLq6fFZSKfTuiWCuF5VOgep4PI7VEHwDlbZg7jxwwsY8nU5LpaAANc7IeXiZTd8rW8zOwiCAfkqmdbvdCF7QkTp7TuUA14p6OyVFtg8dNqCGTR3GHAADYAPMUOoLIOXhY0CM62UXi8VtYMwdCcaIdsJAUuJtsVhoMplE0L2zsxMBd7VajVVEXEe7Wq00GAwiCKXU3mq1ioxlWknAATJzBthhnVCphO/CPktl9huW26ML3Lvb7UY236UVnpgpqeQIMW+sPRhP1wIz70gjZrNZXCPNZlOjM+2ZJ7wxH6xB18Kiy3WnAtaf+/IZZ3zTqg3OwrqUwce4Uqmo1WqVyp05iHVZA9GfdAx5RmHH6Suaf5ftSCo5hay9NPnQr0MfWJMeXfF1Tzv5jmub/RnIli1btrtpv/jnv0kf1nyjwlp62f/vzRfdnPvWLgUwZiMktOmJOrDBvV4vMkFewgpwQ4iWxCxAIOFY2EJYLDZxz+SH/fJEH5g7BxnOICJNgM0iBOwbPPcAUAF8SRSStslUbPIAE08WYgP3tjkIcKZV2mp+AV58jvC9dFqPmbZ6mN/ngWtRrs11xQ4AXerh1TgAOc5yr1YrHRwcxMoc6HgBx5VKpZTkNplMtLu7G5lXyrN5BQUkNAB0Z8rd8XKJA+Xfjo+PNRwOSwy9M9YAIGQRrnWFbSXJz8cOh4kScw50fY4cLNNGnw/GdzKZRCeNZ8N1zA5OcZKYcwf3yIa4DmvAow1clzXlAJf1h2PqGmYiJe12O0p8nPl1aQrXwbkh6ZZrer4B8+JOmT+/Lmnhul4hw5MU/fv0h3XNmsH4zfHEPBw25ixbtpeK1R56UO/4gnxQxUXZr7zxlD1+ze6X6JVf8VMX3Jr70y7FLzqbDhuMZ8WniTgOGgBPrkvm8+iQ0cjyecAxIXZAjbNGnhjFHxKgABOwhDCuhKP5DPdic0YHvVgsYmUNtK9ssABwZ8y85BigwEP9zhxL27rBHjLnHoyBM16tVkuDwUBFUUQ5gINexhbwCnBwUODh9+l0quPj43j4BO0HhABU6vV6lIuQZCgpOhvSNoFPUgTCzI0fJjEej9Xtdkugz50J1woD9JjPwWCgk5OTeFAIbXdniXUG8OQ9JDOewEg/WUvp53if+fWEOObH5xnJDZIVHL1msxk16SlzyXzwfUAmLK5r63F2AKX+WfrKmKUOEfPvax0QzRrEiSSq484WshDAJm1ONdrc31lkvx/tQBqU1i9mPP35cr0y8+rXdU2xJ+ql8+WRlGzZXhJWFNqcVJ75c9nuqv3y536jXjP4ElXmFf2WP/fTF92c+8ouBTAGrLJBArrYZF2v66wy7B6Axlk29JlUokgT7mazWQRLHmqHvYLVpCrEbDaLQI2EIZioNGnQk+oklZLzYM+uXbumXq+n8XisGzdulGoio8UF7NAfQIYfb8xnuBeha5L3YHQdPLtcBabOy44BgJx5rdVq6vV6UdcNWPBqDgA+qm2kCYl8BxADaF8sFup2uxHoOZvumlJOVINVR54xHA6jHp15czadufFIBBpxdKVebg3wz3U84ZGxoF8AQNabJ4r6eLOGuLavOweLOHX0EacM9tXZWyImyG28uoQnwAHMWTOczDiZTOL64F7eFsaDNcJ64rOMB88l9wAYwxKzTnjOAbSsZ1+fXmmC9rgcxuUn3IfXvUKGy1FYCx4JcqfVq2Xw++K5CN5XqZy4t9lsDzfJlu2lYKv3P6lX/ZOXSZ980S15adtOqOpdn/EmHa5nel3zy/SaL/nZi27SfWOXBhhPp9PIXDlAgUFqt9slgMLGBtPo2k82NdgcKgdwjC5gAemEHyTCRgyY4XUYy8FgUAK+gGJAFJ8HvAK8uA+b+Wq10u7ubtQbeyUGL7eVsmQAS3/PwdhkMolJaAAalzu4xtJ1lzs7O+p2uzo8PCxl2DtD6bVmAQw+/g6kCfNTAcKBhqTotPi9AIOAHnTjsODUmeUAD+r/ok925wVgDlBjvCRF0AtwI+wPs817sIWuS3fNsVd2gIXk3owLc+UsPdeu1WqlE/ywVOIDOGZNAn6JXrju3LXdrFMft9lsFgE1Tp2zww7oWR8uw8HZQNNN9RVnl/15dNDqUSDGDUcHB4l1SyUWZ+xZf4wxkRrWkycd+m8A5slzrAueWfpJH/keAN2jMymr72OWLVu2bC+m7VXbevOn/R197Lf+Ob3mT7zloptzX9ilAMaSdHBwoCtXrpR0ipJKABMdqes/XU4xn8/jhnx8fBxBB4DGa6V61jlMm7RlwhzYsKHOZjN1u92YTOaJVWmYHdaWEDunr7GpE8rnfUAlr4VwWrPXgYuDL8y1kvSNY56bzWZkdGH8/NQvvg+TiEQESYWH0ElA5DpUegCoABIZM4AtLKqznQ7auLcDLk9aY854T9om/0kqVfIgVA8YBajRfpg914/ikADu/EAPZwjRATs77Mym66i9UgHJbCTXSYoVMVxb73PK+vbXmDPWA/3wKAkg0sEgzHG1elpR5OTkRPP5XIPBILaN5wOgl8oPfL14gibvIU2q1Wpqt9uSVCqDyPpMD9lJ1wzPBWPu96I97jQg/5jP5/FZ9ueReXDGl9dZexwTzb3cifT140yzO6Q+1tmyZct2EfZQrav//Mlfr9/97V+m13zhWy+6Ofe8XQpgXBRFPOQhBcZsXiRGAXzY2NgQCRvDyHGalqQSIwRQcCADMIFl8vAyDFYIQUdHR5pMJlGfmMoTCOWyYcPgAt7YgJErUAnCGWva1+/3JSkeysE9XIoAqKHNDipTUOLfY3y9wgDjTWKb61YJF8OuwboBilLgmyaPMY/MB7IQHAJnYfmeJznxXS99R3toJ86OJ/fhmJCUSaIaDkPK9HoVA8BbtVotHYNNSTIHh17KjPWcAmUvgYa0hjlIkwKZV5dcAHwB2O4swp76nHtkgFq/Lg9Be586WX5//u1yAgDsZrMpjSHgERbb9f44HOiZPVnODz2hOkkqgQDgunTJmV2PLPkY4cD5M0JEid8LnlNYdFhn/+PPsyfi0SbWeLZsLxVr/Nw79GHf9MaYCJbt4u1lta7+0yf9XX3Ct32ZXvNFGRy/ELsUwFhS1JT6xsOGBsvFUcts9A68PON+PB5HYABrDIhCKzsej2OImA27Wq3G8KyDO4r/oyd1/a+01SUCXLkekgmS50hIozwaOmDYMcAZ4II+UO3AE+78/jgIAAmYQLTXgG5pe2CBS0FgCgEcHFzBmDA/sGuSYiJhWsaKueBeAEj0uF7ZoNvtKoSg2WwW2+UMHHMAKHGH4ebNmxHkweKh/0arDPvo48H6qdVqUbPMHPI5xgagLynqyhknDp5w4OjAn+u6dhX5ggNlZ6alcgKeM/2eDOjssOt+YU5peyrJIHmP+zFvtJHkNZwNT+BLk9WcZWZOvU40c0GVCb6LE4oEhOeDPqLDd3DuDhBr0fXi7oR4XkK1Wo0HwDAvaf9ns1msoUytbIy1jbQJR4Y+ewWPbNleSrY+Gmr/V3Mt3ctmj9a6+k+/7+/qE9705/Sax7Ks4vnapflFd+0lAMnZWo7G5Y8nVJHQBiO6Xq91dHSkw8PD0vGxAMR+v6+rV6/GDVPankTHpgrT5SWg+LwDUU8OAtSFcHq0LslgAHsAxpUrV7S3txflGbB/MK9stkgbOGAEoApDnh424qfUwSZiXAvQSngfllVSBLoAe+5DDWjuA0hARwwAdZYNZ4GQOcAUthdZA/MC8KJ9zp46C9hoNNTv99Xv90tOAoBR2oJQ2DzYPUAPa4t7+Zpj3LwKCH2nvYBkADnjAftNgp3rULk2cwiAb7VaJTCOA+JMNhIZ75Ov+X6/r16vF9eKnwbHM8X40jfXyXq1Ba++0e12Y8UQHDeXZkgqJWACPDlUhnux1jhS28E+EpX0pDrWiifZORDn9TS505llT6ik3jRSKNYo/Z1Op1H+4QyzM8gYa5n5dtY9W7aXivV+6Jf02v/zjRfdjGyJPVrr6s2f8vX6tb/3Oy66KfesXZpfdEAYjJpXXKASA8lVvhmxqR8fH0cQB2ADoDzwwAOlUmOcprdarXTr1q0IQpwx8kSy0WgUwQybPLpXaXtIAOwfGzwAik2UAz0A4UVxWiKNZC3X6gJCOIlrs9mo0+nE+0uKoNtLVAFcYDdhA+kfffNkLBg0rgEwdomAJ0U6eIXt87JcsMOARkqgAer5e7ValQ5UcEmBy0dCCBqPxzo6OtLu7m48+ZBQPkCFMm+AH5I66SPgkPHd2dmJLCtOQSptAYwRxWD9sPZS4CxtE8FcWkFfHXADxnHunAVlfj0qQUJhvV6PNY0BzV7FgvUxGo2iI9PpdGJ/XBKAAQhxiBgryrtNJpPYx/P0vjg67qgwxh59gQ0G6OME4MAyJt4GHAecLNf7OoPrOQPpWuIP/QME0/c0WdA1z84cu4yE/ubku2wvRdtMp3r0639eH9p4o972WJZUXCZ7qNbVz37W39HHzP+iXvXludbxc7VLAYwdSAFGpW0iFqeRwagBqgDHaAA5bKPX60VN6XA4jPpBWNdut6vBYKDNZqPZbKbDw8MY2oex88oE0+k01j1GriFtQ+bOKPkpYGymAN7FYqGjoyM1Gg0NBoNYP9h1ul7315PdPEydJnsxhh56lxSTEhk79JbUT5YUQTXfRUbSarUii4deG1BJHx0w8xnaxxx5+S5nhmkT5lU0qtXqbeF0yrLdunUr3htAzlHL4/E4nqrHuvCqJM7yuqwC0Mc8MO4emgfs0VbAMmtiOp2WwDHJc16JAUbVy/cBRr0qA697Uh7Php++x3r3vqasKvNFZRHGnvdgwLmHVzjhnl4FwrXErHHmwte+tD1N0p9pnBD65nILoia0n3FmTLyaBADZdfDeLpwXn3Pawji4XpvnHhaetnmCIPkDOBvunGfL9lK0zWKhl3/1W/Wp3/B79La/9Vv0rk/71otuUrYzu1rtaN3OTvvzsUsBjCXFDQgmCYbPARlspDNALhcAXCA9mEwmmkwmcZPb399Xr9dTpVJRv9/XZrPRU089pZs3b0bWdn9/X0dHRyWw7olyADXXOwLOJMXMf9eFsrFT8q3f78eELvTOhJU3m008OrnVapWA3XK5LMkzJJVq3roUAQAKAHBwTHvSMlWSIkDkc86YwYoDhhh7rwKBphvA7aXsYNIBP5gDKten0g9Y8slkooODgwgmHezwZz6f6+joKGqSpa32GTAM4GetwWROJpMS05vqsVkPHi1wtn84HMaxdOkF/efUQj9ABHYUXTeOCe97Uih/w/wDtJkTgCyRCubSjwr32sfO1LoO3/uHzIf2pTXFHSCS3Ee7PYHRZUbMuSchprp9PpuuFZ5/5omxcrDP/V3KwbPKe54PQBu9tB9OQ6fTiWDeowV+sErWGGd7KVtxstT6cKkP+ZL/ok+pbsP3v/2nj/U3H/iFi2tYNr39D36TftutP61H/0Y+Pvq52PMGxiGERyR9p6QHJBWS3lQUxTeEEP6GpD8h6cbZR/9KURQ/+IGu5aDLQZnrEZvNZtTQAlgAKlxDUon589PRDg8P1Ww2tbe3d9rxWk3Xr1/XAw88oCeeeCIm9iFfcNlArVaLhyzAZgF8CL9yVDDyBIDZer2OGk20xk8++WTUb7q2GYaM/jkrBjj0UmWUQ+t2uxEcAEi4f6PRiAdynM1b6Q/hYWQIVHCAsQbsOCB09s+1wZ4kxfhTVcOT8FarVenYZeYNptcdEE8cg3EHWDpLzzrgOpvNJspWPPzuzo6kKBVg/XHkMn/8VEKMuQf8e8UF18MDrvr9viqVim7dulUCZ0hPnEnHeJ8++lHgaKiZC9hV5AoARj/wAlAL2Gu1WhqPx7GaBeCYscHx8PY6Q4qMInUUuRZzBsvs/XGwzxrE8aNvfmiGS058/XHfVCvNOPFs4dz4b4U/Y7TBZR2AY54vHBvANu97tZV7we7k73a2bG7FaiVZhZZfeF3QJ+t/vMAWZZOkR4sMip+rvRDGeCXpLxRF8fMhhJ6knwsh/OjZe19fFMXXPdsLoTn0JCuvECCptHkCjJxdBVycnJzEGr7oZNfrtSaTicbjcdQpUuHg+vXr6na7unnzZkkygD7VE4IwNmZC/4BxWGCvewqwpFzbfD7XZDLR+9//fknbBB8/upr+AP4AIfP5XLPZTO12O27GlUpFu7u76na7EVjCMFcqlQjYPWTs7DvJZmhxvQIByYbOoAIgXL8MIHdgl4IRr37BtQBaOBqAOq8hzVzAHsKqXr16VZ1OR6vVSkdHR5rNZnGckKMwR15BIGUyea3f78fksNlsplarFRPZnJWlXawBKhpcu3atlJzJfNVqtZhsyfHVzLFXZmAc6C+VOhgjr8CC0R7Xs1MCDbCHM4eGmTWOMyVJk8kkyhv8Xu12O2q3iWjw3KEJTzXxvM/aZ86dXcWJ4nVnxAGqnmOQGmNE3x3o4ph4ZRsiLPQLh44xp21Ij3ztOnCmYk2alHleGy+x3bHf7WzZPqCZA5st271kzxsYF0XxhKQnzv49DiG8TdLDz+davrGzebHJsnkCEmGkOp2OpO0mzibKRu1hT9iyGzduqN1u6+GHH9ZqtVK329Ujjzyi3d1dnZycxPJpvuEDIGG7qtVqZAQJofsJYK6hpc2wbn7C2ng8jqAV5pH+wtZyPb7rukgSzKjty0ZOu5B0bDYbtVqt2A8MMB9CiNURAEj0AdkCQA8wDriGaeYwlV6vp06nU6rV7CAd1o8wNKy2h9qdjWfe02O/YWMrlUqUzTDPnhiIrMEBecrCAsRhBo+OjmLFB8r0HR8fR9Y9Tcqj/NdoNIoHWDAnrJPlchl17YB41g5r3itcsG5gggFqzJe0LRHoemnkDg4aXTONY8m49Pv9mLyJtMJBJ+uePuJgebWPZrMZxwsQ6Yl0AFzWN86L6/S9ygvg1hPx0ogDUSQHxfzxtnmSLOuQtc8c+m+Qr0Nvm48lx51zb+blXrE7+budLVu2bPej3RFxXAjhFZL+R0k/c/bSl4YQ/lsI4dtDCHvP5hpeTYFEJk+8cTbKM9upFOGgD1CL/tMP3Xjqqaf03ve+VwcHB1qv19rb29PDDz+sXq8XAS4bImDBs9I7nU4puQhg42wrFRM8PI5+FV3rer3W4eGhJpNJBCsAPq99C4jj79lsFqsN8D7t4vhl2EjXkLqm1ccJwOwsGACN/nt1iTTRCKkKIXOvEwsIZs4A6rDxyAMAOs5GAqS5DmsAQO0nIiINoO2Ml8tRSB6DKQasTSaTOJ6dTkeDwSBWS3DmlfECLJL4BzhCi+1rFaeI9yiphuPAGsW5S8GiA9a0djdl8nzN+hqAOZa2FUnQlI9GoygBabfb6na7sUoLiXAkrnoCJmsVMMgzSlUR5sSTYlmfzF0qa2G9ADR5llOdNzIrB7M8ky7R8MRGQD/OCfdjXFkP5CoA/AHkmOvjkTSl5eXuRbsTv9vZsmXLdr/ZCwbGIYSupO+R9GVFUYwkfbOkD5b0ETplJv7203zvsRDCW0MIb031tZIi0ALkehgXXSQ6XZgoB2SehEPNWMLbN2/e1Pve977I2l67dk17e3txM3XNJUDVM9Op7eqZ8r7JU+0A4MR1kXKg/UUWQHKUl48CbALG6AdgLz3dC1BAxj0VOGDcGFfP6JfKR9wydm4uIfBkL68iQt8AGmkSlMsDJEW2FBDGdVw+43NJ+1zf6QeMoJuF6Ucr6kl3DjZ9vQEC0YX3+311u90S+HMJA/PtABjj8wBG+kM/6/W6dnd3Yx8AmTiFLkVh/SDtcFkFjgprB6DG+gSEpvIBwCOHy6DnZ63AzLOOAcrMB5UwuB/HbANqmSuvw8ycuZzHtekOnnH+3DFyNtb7kWrmvc6ySzX86G3GzZNZPZqTtoF/s955FlPJ0L1od+J3+0TH530kW7Zs2e5pe0FVKUIIOzr9cf2nRVH8a0kqiuJJe/9bJX3/ed8tiuJNkt4kSZ1Op/BQN5saNXLTrHRC1Lu7uzFJilq1ziw6QD5rj1arlUajkW7cuKEnn3xSnU5H165di1pjEs8AbgA1NlKkBxihVdrkiWPcUypX3UhPxjuPIVsulzo6Ooq6ZfpFwhaMNpUXYIk98Y6KCA6KYc4ADF6DmXsDwtLKCV71wJMTASIAYgCyz6m0lb2QjOayCdejck9nAKXtUdLozW/evBn15p1OR91uNzpUjKU7TfwB6PH3er2O2t9erxeronjIHaBHGwFKsMIuu8FpYAwB5DgwyA9cU02EgXmB5fUEOPrDawBwNNMAXbTsXIvnwNfieDwuVWxAckFdZx83P4yD9QUAnk6nsW04Se7IkvzHnLJOPBriDrE7S4yds7VITXAQvSqGyynQ+qcstbPS7vS6Y+4gmPEBZPO8pg7bvWR36ne7H/aziDRbtmz3nb2QqhRB0rdJeltRFH/HXn/oTMcmSZ8l6ZeexbUkbZkiWC0v4+WJUoTAYd880ckZM2mb/Ob1VxeLhW7cuKHHH39c+/v7ajQasULF448/LukUzPX7/Qh4SUI6OTlRq9WKoIrDRJzxBUx5SDYFZgAikqK8fi1H8SI1gFFzQA3rOBwOVRSFrly5UgJckiJQhsX05DtvB9dyRhIDwDqTBmjx7H9PIKP6hpcsA8AhT2i1WhFAeiUFaXtwhutJeR02XtpWhXBwjEbYZQn87U5CmjAF4OUIbTTv1JCm336SG2vTqywAGmH5XZc9nU4jCHNpEOOLYwazDtuOdIKKKZRgo58uF0ilAM6SOnAEOANc6Y8zoK5v9vq/Hjkg+dDHGvDLXHn5N9rL80x7PULDGPJsM5c4yc5MM54ebXA5jUuE3Plk3LmWOz6w/FwXAO2RDJ4bf1buBbuTv9vZsmXLdj/aC2GMP07S50r6xRDCL5y99lck/dEQwkfotBTQuyV98bO5GMwOG6knWPlm6KzTdDrV/v5+qeQYm3EaakVXCKidzWZ63/vep4cffljXrl3T7u6u+v2+bty4UQISbLhelxeQAHDiiFk3NlivpcrhAX5d2FbPwvdqF/Sz1+tFqQTAjUoeVLrY3d0taaWlbc1b16e61hemsdFoxOQzBw0pW8zrzlzCguN0wChzqAbjBZhZLBbq9XqStqeXwURzWAdzx1gBkFxS4pIA1gnJci5/4T4A8BSEk+zooAfwTS1pZAtojGHtz6uzjUNAfWsfa5wsgDHrerPZRImJryWS6nDKSLjk+6xz1gHz7NdNx5J+83l3mGgvc8LYIe1wJplx9mRJl0DwvCAVcWcSR9Y1+ziuLk9i/TpQ9XVLW1NZC+3hWfS5xhnwRMMUNAPgHTi7ebWYe8zu6O92tmzZst1v9kKqUvw/ks4T2D2v2pcOftnkPNOdMCobFGzVarWKOlv0j16T1WUBngTmB0Zw4MZgMFC73dbR0VHMoucP+khPMGKj5pQ42Cnuzx+Ao3TKcnJIhzPDAC42eQDwdDotyTBwGqStLnI+n8c6zbXa6SEbaeUMAASMHEDp+PhY4/FYvV5PrVYrln1DRkKCmzsuzpByTYCFg1KAInMIuKUmtFfTQCdMQth8Po9ADlDmbDdseFEUsW6xpHhKIpIA2uC6Z8aSa3pVB2d5cUSq1WoEc161gz77Uduu6+W9VFqDwwHA9/Fzp3C12h4jzfperVaxiojX+mVcU9kR48t8w94iv/DoivdZ2taQZi6pIIKDw3V9LXgyJeuB5zuVosB8A0bdASPCARBPK7+4LAT5hc+LyyWYT9rmjg/PA2OA40WUya9FH+lPCsTvBbvTv9vZsmXLdr/ZpfllJ2TNxpuGOdk0MZg5ws6tVkuj0SgCJ098A2hy2AQbKRpJKhJcvXpVe3t7MZxNYhegDQALa8y1PZsdkOBAALAHu8l1KOk1Ho8j8KDdJENJiiyj13vF0BEfHx/r4OBAV69eLYW8PXQPuPfkNLTMgPxerxdlEABPyuBJWza11WophKDZbBbrJ8MKAqRgvaWtBtoBs5e745js3d1dbTYb3bx5M+pyAYYAXObQmUscGU7eQ14jbU88AwShi2UdFWcVK9Apez1bgBIyDWpbO3hjfdTrdY1Go3gvr7HtjC2abg/Hp8mKJIYB1gHCAErGE0dS2tZUxmnDufRrM8+w+/4+kQAOtHCHgjkCEHqi3nmVTaQyS+9SIRhb7s1zz/MuKa45DrHZ2dmJzyXrm3vhFBBZ8DwD//1g7QH+GTccOcaV2tWMN067a44ZX3/ms2XLli3bvW+XAhi7HtMTpRwgswk7u4Mkwlk13/wAloTyAbfO6MEYcuhBv9/XrVu3omaTMPtgMCiFjtkUnREGeLFRphnufgrZfD6P9WUBQr65s2nDgLp+kj+AMvoxHo8j0wyoKYoiMr6S4rjA+kmKzsVgMIgA3/sC4OE7gBtYV0AFVTDQ0rpeFTDiIIpT4Rjnfr+vq1evRtb94OCgBOoBT7PZLAIzTzxbr9elk+xcEgATiV5X2obYi+K0RGCr1dJgMFCr1SpJBZxpBJi6XERSdKCcrce5oA1IYKgZjVzHtbkAMy/d51pcr0ZC+1krfIdygRx3zFp3qQ5rhuiDtJUdeTSDZ+z4+Dj20edUUrwHbaW/OHP+OteGiXdNNusO55Zr0/ZKpRIjAV7GkHUJiHaHlDFlnI6Pj6PD4k4IAN2jQbDbLr9x9t3Xd7Zs2bJluz/sUgBjrNFolNgzD8MDSH3ThHUCWHQ6Hc3n85KkAWBdqVSinpHN15meer0eD4totVoaDocx+Y2DG7rdbgR9gBruAZPq9W9dSuBVBiRFQA+4QeZBPV7XgwL86AufZ9OH/ZpMJjo6OiodLiFtATpjSRkwTzhaLBaRUfcwPgx5Gu5mTJvNpnq9XjxS26UDXmMX1hxwAlAeDAZRswtLvrOzo93d3Qh8vc8kQTL2ABrGjnYDlpzpA6wBIJ3FXK1W8XREJB3Slo30Em2MD2vRQRmlAX2NuNaXfru0gzWCbIUEUta8h+/pr7SVZXAd15bjULAm6SfzRt9dH+zrirYCKr2P9MerOTAWyEMYq7Q8IM8c/aTaC2sxTValfd5+9Mb+PPBZxsTlO2nZRMbeQTyRC+qD035PBPSkPU9uvNcS8LJly5Yt29PbpQHGgC5pyw6x6TiAkbZaRmdzYGRDCJG5lFSqTlCtnp6Yhx4xLa/VbrfV7/fjkcu+kc7nc+3t7UU5gGfqA5xcQ8lmyd+u7wQcAPAADlRt8O+hnwZ4sCkDEjwrn2sAHsn+B6y6rIFyVtwDFjvd6GHVaDftdSbQZTDOKrqOlPJ63W5X4/E4AuZms6mrV69GIOmhagA9zC0sLIyvRxcYCy+xxnh4WbBqdXtyYaWyPYwFkM3R2DD14/G4lHxJ2/gbR4O1xj0At0QAvDKIr2/GlbYinajVajFqwVgSbWANsHaZB0Ai64i583JmyFAAj+n13GGk7R7RcLDo0gdn1hkP5AwutyDiQIk6l1AA2r3iCSCVZ8rv79EHT8r1z8JMu4YYCQnfcxDt4NhzFRgP2upzmKUU2bJly3b/2KUBxtI2q91D177hPt0mD8ACpPnJV9R2ZXMj/O8sHUw0G3az2YwJYAC7yWSiXq8X7w+YAMS4rtYBPMa1SaiTbj8wY71eq9PplBIMXZfK+ACCaTsbuCdScT1kIs6iAgJcB03VDEklKYInY6XSFoCJaz0llSQDANmDgwPt7u5qMBioKAoNh8OYLNntdlWv1+NpZDC6gBAAImwpINrD2rDOjAfz4WuJdgPQfDxZP0hSkC2MRqPSWEtbsAYg9VPl3GnysQwhaDKZlFhN1+NSfQQpCEl43h/GxFlYoia+Fl33mrKbLkdyp9EdC+nUGWm327c5Yc4wuyML+KQKBeufaIvreH3uXJfupxK6/IW16GudNhNR8NJ3vj74PNEHxg3HyBNJ/Vkm0c+fKWeR6bsn5mXLli1btnvfLgUwTjeZVBuahsNh6QirUmXAmWWYQdfJ8h4hd8LnhOGdEfRErqLYlpjymqzeToB4moAEKJC2VSQAZamdnJzo8PBQ3W5XnU5H0u3yB1g8wBFaVbSRnpXvmmB3DhhrQICDnJOTE3W7XUlboMupgZJiJRCAo4MwSoZ5oiCgfrlc6tatW+r3+3H8qb9bFIX29vbU6/X05JNPxhq7AJTJZBIrTzCGDm6dVXc21BlNzN9zdpq5dt06/z86OooSjXSMSfREa+16W9aItAXT9AvWHuBFAmAqsSG6wZzhfNF+l7Z4dIX58+oRzKf/DWBlrTGmPB9EGxgL5p71C7hEBsW8EMWAeXUJCOw/48b3GTsAqjsikuLYIbeRtrpqHLyUoWa+cNCc7ea58L4wdoyF10f2BEN3EDIwzpYtW7b7xy4FMEZmQMhc0m1A2EPPkkobHglYXu+W0lKAFa8bC5CSpMlkEpk6NmY2zXa7HZO80OHSFu7NZprKDbCUrSO87sCG71GhYjQa6cqVK+p0OhEMwGwCkgEXHB0NkKFyQLPZjJKFk5OTeKKbSxacOXcGk8QtZ2A5WATWDZDH/PFd2FbXh1LzGeb4wQcfVLvdjpUXVqtVlC4cHBzEseC45ul0qvF4HOUurVarBK5JOJMUQ+EOjryvPn+E2r02MLKZWq0WGVOkF91uN64x17mzHumzlyDzeWaMCNUD8HDiqMvMHFYqFc1ms8is4rCxRlnD9NsjEPzxsmc+J5JKn+P5gFEFhDuIT9czc49T4Pfz9ei1vPkeFWFg6rk/lTUYF0kxEpSeiucJkPztUSZ3BpxlB+Cz9p1lZ3yYv9RpIBrl+vcMjLNly5bt/rFLA4wBT4RHPeQLu8l7GBuqh9cxmDxJJX0oG6FXNZhOp+p2u6X7shm7tAMglko6SBrzEK60BR4ASRju9XpdOsXOpRXT6TRu9H5PGDhpW/qsWq1qNBqV6g7D7pHsRnITbfZkOjZ5T0aDOXU5igMX2uROgTsas9lM8/m8BPhhDYuiiEC+2+1GMAzYcQYUpng4HEbdL4Ae4AiLzny75MABvCdYwfjRH4AbIXfGw/Wrfl2v2MBceig/TR51R8vXrBvtQPoDMPckRtrhiXMksFWr1XgACA6TJxqy3gCK7hzQXmdPibA4UES/788sY4J2v1KpaDKZREfVHUwf+9RxIpoB4+ssu7O5flgKffBKL65R528/8dKZbsCtt9MT/2iDv7ZcLkva6DSxMFu2bNmy3ft2aYBxu92ObBesqicsAY5haglzssEDBlqtVky+AzzC4gFUAL5sqABiBwIeBvaDFADhtIfSXrBiHkKn3ZgDY8Ar7QCoYbzWaDSiPIH+8h7g1xlSgBtAhz45QAVUMJ4A03q9rna7HR0GgJmDEf7vTCggDeaQ44sZf8Ag0o/hcBjb4Iw/oBRJwWw203g81ng8juCdU+godQc4AQAxv8yDh9jpgyd3+Zz7gSMwl5yI50DOx4G2S6fgsdlsxhPl+A5r2kuWcR1ntF2nnOrGiVawjvgD4HVQjjPmDDZt8DFgfQLufL2zvtxp4pnwsXNQTTUOmGt31mB3XWYjbWUdrFuv+uHPHG2mTVTIcIfRJVeMLWPAd3H2XHPuZd64jj+zLpXySi+U1cvAOFu2bNnuH7s0wJgat1RUYDP1JDLP1p/NZnEDYwP08C41ZSkPBtBB1wpohMXymsKSSgAm1WF6SBag4LWMARIpQwvLeXx8rNFoFCUKMJKNRkO7u7sRCAFm2MS9+gQsZaPRiMdAj8fjUtKaJ+Itl8tYw9idCNdk4kzACFMlwWUsgGkHK4wXDKakEhBLx2I8HkfGHCBNuTdKpjlARkftoX4AGA4Un3GmmrXggBGHwHW2AK3pdBr7QzvH43FJz0wNZdfD41jBnMNi8p5HGVhfnrDIPLkOHBAJk0k7nX32SIBfm7XJfBOFoN04CqwN/u1yCtawJ865kweg9IiIl6qjffzhOg7qGQdYcHTFk8kkPpu00Q9JwaFiLJz99uu6nlgql59zDT59c71xqqNmXF0/Trt9vWXLli1btnvbLgUwlraMkesKAWBeNcJBMOFyB8388WoBHC8sbbWNhP75PMDYw+TUB3YtprTdKKVt2NUZbUA9IBh2ibbDcAO6PHEK5pwweKfTiSXhJJW0lmzMnU4nggCAlOssPQnPKxcwTtyTMmO026/HdwEoAFMAbypRQJICOPaQM/0FcMEM12q1ElNMYqTPk6TIRDqL50mWACeXeXiSlutTWV/ME5IAl8Ug9wBcwmw66IUl94oS9JeEPt5nXACUgOOUEZYUZSCMmSd4AvpgTPkuzwTOhx8nzZiwjh1cwvITgXDNP4CQOXCHNWWCvXaya5XdUuANY+vMuYN3X+/+LHkuAuPFeuXeDlpZ+/Td2+fRBebGk+5wYKmVTvuzxjhbtmzZ7h+7NMCYDRpw6XIB36Sd4XJwBePkCXMepiY5SzqtrICWFuP/6Fcp6QRjyv2cofK2AjzZkLlvmqTmjOZ4PJakKMHYbDYlDeNisYgsLOCDPsO6AuTq9bq63W4EDphXk4BlB0gwZgBrSSUwSageOYonQ3oCmIfvkWRI5VMF3QjtA1gPDg50cHCgTqej2Wym0Wikw8NDDYfDqFf28nIOIAGxnrQFMOfz1FlOnQfKsxFFACSlR2oD6lgT4/E46l0Jw8OMMn44c9K2OoTLKmi7t8kdrtSJIFFvMpnEcnhpghvRERIIkd5QCo/nxnXHOH4AQJ4l1qi/TrucdXVwz/tcA2mKJ92x/lzjz2fa7XbU3VOrGmeHfvpzhTwqBcf+rLEuvX2S4jPmvz+02xMlPQGVftAmZ9CzZcuWLdv9YZcCGKcJWAAGgIYzlB5e5v8e6m02m9rf34+vs3l5qHm9XsdKFGywkmI9XWmrfWTzdKAE4+jAeLFYxBrIDiS8lBjgCbDhIMKToLy6hh9fy31wFJbLZWQhYQ65Hywm4BS5gIMFr5BBCJyx5fQ310Ez3jDNaYUDxtoT9xwI8R3u79rXmzdv6vj4OCbaDYdDjUajOK6cWgjYcy2pH20MQHSW30FoCn4Ye2dGXTPqYByQBEvMXM7ncx0dHakoihilQGvsEhSAoAMrn3fYTDSxLv9Av4z8xcsIrlar6NwAFKm97ZIh5scPpEHK48+BywV8bFLwyPPhY5smyHriZTrmnpxIuTf/jkcZzovIVCqVCPgZu1Q6wf89GTNlyrkX8+2/QalMCzbZdePu0GTLli1btnvbLgUwXiwWOjw8VLvdLr2OvGBnZyfqGdlgnS2WyppHNlGAi7QFuK5T5e/pdBrr9yKf8KzzNJveQ+RssoAYACB1d/f390the/TOZLi77hMJhwNWP/Ia1lHa1rcFEMLoAiIXi0WsVuFjhcyAP5486Myeg/50rL190vZEMHTBHrp2BrZSqUTJAiAMoO/l15hHwL8nE3qbGDOPGrg5MGYOAb4ORJGnwDryPlEHgKAz3w5mSSpcrVbq9Xrq9XqRzWfeGcOiKGIonnF3vTp9ZK3xXRhjGFWcSAfy9J/16I6LzxdtBoC7PAIn1YGij6M7Op7MB6vKukJzzHPkLKwDZJ4JxtyfB1/3Dl496ZM1RvTDkxAZX5hl+sPzTaTGnRx3prlWKk1yh4ZrZsuWLVu2+8MuBTDebDalBCsAQloFwLPnXW/MNabTqQ4ODuLRzWxobg4E2CRXq5VGo5GuXr0aQQ3vc28Pv9MWaauVBKDRHhKe+v2+9vb2JJ1u8MPhMLYFcABbC8BD98rG7aACiQD/JpHOJQIw2s1mM5bxclCETMOdDQc6LjPxgzZgqrkOjkAa2nZw4ppenzvaD7ggGRE2k/EBTI/H45IGnNC6z6nPFa85U+8SDmf/YdlxxJBi0FeXnQDYUm0trDUglugB/eNwCWnLOrq8AyaeNnU6nRLwnc1mkd1lfDwREVBLu2BE00Q3n1eAMX0kOuGsK/1OIzYAZBINXXbhjDvtpF84HCkzT5k6nmWeewfmOCauX3Ym3yVPAHzPOwDQ+vPE+gHcp0mGjJdrpD1ilb6XLVu2bNnubXvBwDiE8G5JY0lrSauiKD4qhLAv6bskvULSuyV9TlEUh093Dd/cMWfNzu5TStpK9X0wcaPRSO9///t1/fr1uNH5UbCSSgwgGy9AFm0kwJwN1MPaJEEB9DwpzQFCevAI9/UKEyQ88TneB8zC9KXAm9JogAlAh1+/3W6XdMWAZj9S2kPFXjmCMYBNXSwWkUnkOu5AuMyB8YEVp68ATaoU8FnmYDwexyoUgDYAiOu9AVGALWdzU/aOefA14PPoUhckEp1OR5PJJLLfqRbY5QXck7lw4O0A3aMQvE9bAJYOKpkDyvUBurkuc+7jwxiwDv0ACh8j/j4+Pi5psXEGAMsOgp3B5dp8z5+tVH7AGvHKJ87I+rPurKzPDyw048hYANhxNADMDtR53l3X7Zp1jz4wLrzG9z3hlHGXtqfu8f97xe7Eb3a2bNmy3a92p37Rf09RFDft/18h6ceLoviaEMJXnP3/yz/QBRxQSFtNIRslG63/zSbLRrxanVY4ODw8jGAUAOuMl7TdLLkHVRDQXbKRAkypIOHXSrWWtN/bJm3BGhszpen4DMDRGUZP8IP98oMeqOcK+wbAc3AN80j7CIF3u92o52WsAY/SFgjwHUCdjxuAB60wwKvZbMY59dA3fecaztgC8Ji78Xgc2+YSiNFoFJligJzPhZfj8jakWmP+uHQFLS7z5LIMl1g4Q+8MqrPMh4eneIIEPR+DzWZTaj9zCPhLD48g4QzHhPZJivPtJwgydzxTvt7pB3INnAaiHs72s85cG8waS3X9zvDzHvf3/iN5oA+0jzXF/dy5ZG6YP77jsikcSQfy7mTgtPn88iy5PMLv75Ib/5t+ekTiHmWMX/BvdrZs2bLdj3a3qI7PlPSJZ//+R5L+oz7AjyysLppMSSWAk8oY2Lz4tzPLy+VSR0dHMZwtbUOrDqABiTBFq9VKk8kkMrhsxs6YoecF1FIdwMEi4MlBPWwgf3c6nail5H0AOG0lFI+m1A8ZoT0O0DxJi7ZWKhX1ej01Go3IHiKVYKxdDwprCjA4OTlRs9mM5dxoAwmG0qlEAHDpMg7exzzpzN9zzfh8PtdkMtFkMtFsNoustydE0i8qQTC/SBEcwHB9QA79hNmeTqcRZLHmAIuuo6Zfzjh7cppfG7DNcdzOoPs6QIsOkARUMsasTfq62WxK0hcfQ54Pnh1kNDgOHonxMmM4Kl4Pmfc8KdGjBDibrkN2YOzPmbPEjBUSIZ4vlwCdFw0C7LsT6s+SR2HcCcAA9XzXgTTJqHw+/Yz/SUEy7eB+qXzkHrTn9JudLVu2bPer3QlgXEj69yGEQtI/KIriTZIeKIriibP33y/pgQ94AZNLwJ4BdJx5ZQNz5heAy6YLsBkOhzGpxzd8Z/kAk71eT5XKaYZ7v98v1X4F9AFMADNsyLDLKfNLyNerGLjWE0ANKwZA975SFYLPOFtGCJzPAOQ8aa8oTqtNUFd3Pp/HRLfd3d3IwkqKmmzYScYSIN1qtTSdTm/TFXuZMpKppO0RwgA512/yuidHAvr4nOtKcRBGo1FkkilN56yxS0087M+Ysg683BjrxtuFjIFSga6PBcAyj+5oOZPuFTfcOQJYA2L5HgAOIMr8uSbe/00EYWdnJ1YQoVYxgNGfE54rNMEOXrkP2nIHsi6R4Flz9tyBsBt9ZgxYl4wBjqUz0j6W/lk/hdLHAQBPn7Hz5DS8DrD1BEYHz84e811+L+gXr7vW+h6zF/ybnS1btmz3q90JYPy7iqJ4PIRwXdKPhhB+1d8siqI4+wEuWQjhMUmP8X8Ps6e6Pd+UnLlzvS3JQw7oAJBIIlqtVmQLXUpB6TVOX+Oo5fF4HJkl13c6Y0W7nInjBDC+w+EOHkqmDWzK/jrjAPNHAhr9oaoFp95Rqss3c1jCSqWi3d3dUsgegO8Jd4A6wKInrNE+6gwDaqh+MR6Pb9MP4xw4OANEMMeARKpnAAxhL10rChACqJIo5mF7xs0ZvDTJivclxcMsPKEQx8pP5vPT21x+42sIcAbIdVbZJTWAPmeTAZz0A7Du38VwSiqVSimhzw/GSMfcr+POiYNExs914jyH9MVBKs6Qj68zs8w192PcXYLhMhjM++2A21naanV7aqM7NGnVCo/A8H0HwKncgmfb1xBtcAc9lXeldbrvAXtev9lS+Xe7qfZ5H8mWLVu2e9peMDAuiuLxs7+fCiH8G0kfLenJEMJDRVE8EUJ4SNJT53zvTZLeJEkhhIKQOWyds2oezkb2IKkEgl0n6uDHk3AAO8gNUiYOEEvST61WiwlVzrylYWXftB3osHlzkIcncsGIe1JeWvGCTRowwmYMMKbPvV7vNsYu1XC2Wi01m82Y2OanoiFzqFROj8YGCNL3arWqfr9fqiEMW93tdiUpyiAArLQb5hBA5ElO0laX6mwqCZCMEZ8DmACenMlzCYSDrhRY+Tz5v935osKEs6M4N6xTv54Dx9SYW+aB6EYK/BxkexURT/Lz9dVqtWL0gPVIXe5UY+uyCWeUAagpGPZ/0zacKo8Y8Lw60OQ5ow1pkiJ98mRSZ/kdOONoel/ov8sfnLV1aYsDY0B8up74DMl9Plb+TDmbzHtpv+8Ve76/2Wffib/b/bB/b3U8W7Zs2Z6FvSBgHELoSKoURTE++/fvl/RVkr5P0udL+pqzv7/3WVwrglPMNzU2QsCmpAi4XEPp3/WQOQwZoM6BgrQFaGSak2jEZwBhDohcvuEbOZ8FWKH5dbCPzKPVap2b1U5bAegeOkYGQgLR7u6uQgixioKzqIAPr34B+IHdBkRTRQJwTDUKKkIwlswL18RoE3Pi0hcHW+68uC4YOYWkUjIcIJsSZrDekkp6cJc9+PoBbMMIO1jDvC+wyB5ZgK2nL55oKZ1KR1x368DJWXJYbmciaau0rTfMGkq1tT72OIn+eX+GeB1WE4Ceanl93bpuG9DMHLEmvBJIKjnwZy2tDsG88Nn08/5MAYh9PJz99eiGOwD0kfu4k+CJni6LoR08F87S+zV8Prmv3/9esDv5m50tW7Zs96O9UMb4AUn/5mwjqUn6Z0VR/HAI4S2S/mUI4YskvUfS5zzThYbDoTqdTqligWtQXWJAqN7lAa75k24P2/Na+neq90SqEMLpEbWj0Ujj8TgCENcsI1lA7xnCtq4rYB1AVxRFrB3smy+AjI0Zcy20JwRKimXYAFiNRiOymN4W13k6y81rkiIwBgDDJHe7XS0Wiziuzs7zGqDRk+2KYnsoCWPl12C80SBzvxBCLJkHMAIU8sfBsleZqNfrtx2bnR5LzfzSBz9Iw8cYYLlYLDSbzUpMsoN3QF46vjDV7pjxfRwaxsmlF85cu3aV7/EZnos0SuEgm++5DIJnCAfCNe3OfNL+5XJZAr7SttawP2epU5cyqQBs14B7e9xhpf1cP2WdcbpcduSg1ceJezmIdemSr1dnjJl/Z7K9DZ7s5w7IPWR37Dc7W7Zs2e5He0HAuCiKX5f02895/Zak1z+Xa733ve/V/v6+2u12BBuuQ5W2IWHXCWKuO+ZvgBubM5/jWsgS5vO5ut1uSYfJd/h+qlV00EKy1GQyie/Rhp2dHfV6PVWr1Qg+uTesKuybg3zfjAG+sI0AQQdC/B+A7YdfeK3aRqOh2WwWK2c4Gw/oarfbajab6vV65yb9pdrhtP4y12IOGDfa4vMjbWUE6/U6Ohb0CwOEOMvsa+K8Um3ezhTMwKK63tklAn58dwrc3Jni3wB5Z3VhqnHmuC9r1dcQ93AnjXb7mndWl3sDFrkO4+3PCNdK++Nl2XA0WIcOJiVFB8ojJw4UAd4pUGQs6LNHMfhO6ry6Y+drgT7C6LuUwkEvY+xOhv8OuMSGMfG1mcpdfEzpE32+l+xO/mZny5Yt2/1ol6YyvUscnLnyUKVvSg4s+L5rFVNgm26igKjVahWrT8AipuFZB9ts1LBL6GUd2Ph10MvWajVNJpNYNo2Nmj7D5iJ1oG0ASKpY8Fqz2YxtTNlT6udSmgzgDiuKRhkw6CAEVo7rAHRTwOfsH30AnDG+9NGrgjAHXmoOB6HRaKjb7ZbkINzbgZFXVmDsGWfmxsEfgImxcCDrDCNrhjGCOXWZgyfoOeBjDh3IAuC8ioe0PbktZScdCPOaA2UHd/RjsVjcBghxhPzzzvD6WgYUe5IjRm1l+pK2n3u4nCK9j8sVvO18xtvJ51PZC9/zcfW2OThNnY2n+63hmXHn1sE7a8375eswZaGzZcuWLdv9YZcGGEvbqgHSlmWStqCMTZzNzJNznKVKN05nx9jsnK06OjpSs9nUYDAoAQUMICRt2WBPiuP+XjEAzSn3g4EFuFASDYDkWfGupyRhy8EH7Uf6MRqNIhAAHDvAR57gGksAsKSSE+KsMMy0AxlAMZ+BFXVG1OeSeaRqgjPurhVer9dxjJAy+CEOsLv0nwNOHDx6OTM/PIPxT1lljwAAjHAwWC/OhvocMQ5c3xltSSUA56DZASn3Zi58vs8DlFwXS6UF/tykiYnuvDDPXBN5DWDfHRg+585pKiGgfc4yuwMKGE6/l7aRP14VgrWGlIZx87rQzuz6c34eYGW+3LHy3xB39HxNu5OVRjLuNdY4W7Zs2bI9vV0qYOw6WjYjzDcjmFrfVNMQ6Wq1iscsU93Aw8awUgBjQui7u7uq1+uRVUWj6kwvLDEsrjONtJ9QsW+qtVpN/X4/bupombk3ZcNca+zsGTILpBUAnKOjI0mKoJg/rin1ELezwx7aB3BMJpP4f08qow/OHgMSHXC608LnAHDnSR6cMfeDWQDF0vbAC2lbEg5A546SA2P6DXB0XTBtB7hxP5faeIkxB8UAvPN0p2mZNT7v1RtcwpICWde5IjHwefMIhQNNjz4gp6Ft/vlU2uEAMO2/X8efRweifIfPpsxq6jA5sKSPDmhdJuNrx1lldxxdTuRzw/W8LYB3xszHjrFyJ5u2po53+l62bNmyZbt/7FIBYw/xelhVKoNFl0nArD0dO8SGfV6tUde9jsdj7e3taTAYqNFoaLM5LdE1n891fHwcjz32Y6ubzWZJ3gDwS8PSAMtKpRLrG3PKHhusH7EsqRR+93FARkEbKS02Ho+jzthLUqXVCxyUeEIdgGm1Oj30Y7FYqNfrxdP9SETjvlIZHHjCIeYAg/vBHEuKJwnS1nReSDKUtkdu4/CkWlZKhGEe6ncgj9Pg9YvPcyCcffdrOUsplVnqNNEPJ8IZbQfvLsVwYOug9Ty9LuPp0ROPsLg8AbaY92mDj4sDU5cQpbIiZ8+pmZyWXUvlEqkEwtfDeQ6DV64ABHNPHA+YdAeszvq69CIdP/+MX9elLbyXOud+DWeks5QiW7Zs2e4fuzTA2AExYAGgKZVr1zr7dR5r7Nfkddg3lz5wfeQDhN4BD/P5XNPptFSJgE2dz3k9V0+Q8zJai8UitpWkuH6/X9Ij81k23UajET8rbYHjarVSu93WYDCIAG86nZZC0QARAITXz2WzB9gwTtIW+AC2N5uNrl69Gtl5gK3Pl7OmqU7TwSFz6HIZB6weNkde4W1GhwyoSytfAGAdoKcgy8GQpNuqnhwfH8d5cu23z4HrVp3h5bppiJ5EvhQc0ycHlq6P5drnOSE+/t5G+p6WEPRqGev1OrL2XsHEwTgOkjsrqYQp1SL7uNA3rufscdp+d3LpnwNn3sdJdBbdZTku2fA17WPnzoDrpr1ftNWjClyD66YyjQyMs2XLlu3+sUsDjCWVwCGbHUAMwOlMEZ9JN2ZntjxcjbTCGTpYX5goQu+EXWezWTz0wyUcfJ5T8wCz1Wo1yi7YQOfzuYri9HjmTqcTT8ZzsOftJxENsAcTCWjdbE7rH1+5ckUnJye6ceOGZrNZTEDje5yW52wYulz6XRRFKeEPZ2E8Hms8Hmt3d7dUA9elCqlu1AECCXwOZpgb/k6rYTBHOBKMAe95GxkL7i1tq2OkThP3csmHs8Sw9ScnJxoOh/HzXsM3XV/nOWHp/dJ7u4QHZ8wdC4Aj68elHvzxBEl37lwSQP/8eykj71IXpCmsYb7rf/t33bF0Vh5j/F2ikrLOPm7pOPo401Z+B9yR8Dn2teVMMp/DPKnP2WK+m+YYuJPD+J8XjciWLVu2bPeHXRpgvNls9F//63/Vq1/96ts2eKlcvsk3LQ8l8zlneVJ9Lt+DrYW5PTo6iuDLN2KAaArG1+u1xuNxbB/HSANS2JCpNMERzkgEeA3Q4Cwf0gqvq+uMH2zelStX4qZ/69YthXB6IprXFYYF5Whp2goAms/nOjg4iOC/3+9H9hT2EWfA/ziwQ6IAkEvD/Iw/kg6OpPa5pwoE70tbkA645lQ9GETXEQNYHKyxFgBpOCAODJ1BdDaSZD+ArIMxZ2h9XTxd6J3PnidtSUEVaxMmN9UEM14paEXekEoAHPA5oHNgnEogfN6cxfU28jl/Hvz5cseQPqUgO2VrU12zf97n0Z0r3uf+HgHg3ucBcS8xiNQJx881xy6f8eiFj63LvLJly5Yt271tlwYYVyqVWOfXQ6WAQd+cvEzT0wERSZF5dJDgTBaHb3BiHGXbOHDCw9owyKvVKp4Cx4lwXv+21WrFjZLXAdDcu1arqdPpaDabaTKZxJrCgBPf4D2sDPjhdY55pt2Afd/MGTvALUwsAHo0Guno6KgkIWm321osFppMJprNZrEfzkZL29P7JEXJBgDcwQJMcMpeemUQ15PSV9qdlgMDYPqYOmMrKbYFMMznuI+k0ql9rAfXzZ53wIyztDgPXsEEYOdgMgVzVPs4Pj6Oc+SJZyloZl5Yx/55l3545Q+vouLPmCc/ck3X6rvkJHUsPDoA0GU94fz4971tfM+BtgNwdxBcBuJg23XYqfPla4dnjO/z3BL1cYeL17iPJyD6vLn8gvWYarCzZcuWLdu9b5cGGDvrJpU3dDYrQItrhR2UYM5SwVS6PtiZYYAczK5nrfsGvtlsImh25rDVamkwGMQNutlslsCo1xt26YKkCGrn83mp+sF8Pi85CPRxZ2cngmGYx8FgEPs0nU5jchxsqtfdZQzq9bra7XbUKHslAMLprVZLs9ksstoOJtIwuzOInU5Hg8FA0+k06rZToAfDXKvVYnt9jtFWw5p6sqFfBwae9jsAQ+aCo4KEBKdBUiz/5fIEZy9pA+31NenaXU9643ru5Dgb6glnDoZT8OwMtIf+YWeZS9dRo2l2dtzXMk4Bc8Z8unPhrHH6LDobzR8iD4wlOn0Hrc7Op6DYdemAT68A4vIRgH8aAeK7Pq6uvUYukkY3eM9/M+gnrzGOHmlgPFxW9IEc9GzZsmXLdu/YpQHGGBuQlyQDGKSVKQCgXu/YwYWkCCLS0HLKPhLe9tqwaEO9WsF8Pi/JFdD6uoa02+1GBndnZ0f9fj9WjECm4Pcmwc9Dt/P5PDLBntzFvQGCyEGGw2E8lQwgsFqt1Ol0tFqtNB6PNZ1OY0m6TqcTx9FD82zyMI7SNolMUpRQALpxBKgwsbOzo263q0qlouFwGJ0SQPbJyUl0RrrdbgS3VMKAwQwhxFrGHFTC2AFmnE120Mxcw8xOp9O4FphXvi8p1pTmNWe1nQEFUKcADBDMOKVaeB8/B7wp4+1r1JlKNMAAUWlbhs2BPt8HcPtYuEbW59VlJg6G3fy58qQ4wLVr7wGfgFmXcnh7+LxXF1kul5Hlp28Obn3OPSrh0YaUFWfsXafvURgcBQC3OwVcz5lhb5OXp8uWLVu2bPeHXTpgfHx8HOUJJKhRdcHZqhQMp5tTylTxWWmrHQTwSiptwISHvSIGoEpSLGkGO7e3txfr/8LIcnqaVE4KI8y92WxKpcvQDdOX2Wymo6MjtdttdbtdSVugQJIffeF7zvziMPD5xWKh2WwWQRBsMYleDvIWi4Xm83lk6UIIsXoHbDb9gs0FqNA2Z9VarVb87uHhYXwdaQYaYwxgDNBKS6Qxv+iMqTe9WCxKkpFUiuCOFdIXZ2KfjhEGLLE+lstlqYIFgNNZdb7jWvG01Jyz3KmO3dcCVhRFZPiZY3emSLTk+w5E3SFw3bwz1866st5YG9zPbb1ex0NsuAbAnXvg2HE9/k4dC48qwD77s+4RCb6PNth/C5wJ9jHG8QUMe6lAZ89TOZNHDxwcszZpSwbH2bJly3Z/2KUBxh7uRfdHKbPzdLMezpXKTDAg0WUEgBRPnloul5pMJhG8wBySCOalydignWmiFi4SCk8aQ0LhbWeDBci12+1SGBpmC9A+mUxi++gjIMJDwK7TrVar6nQ6Ojg4iJ9FIwzoddAym80i+wtoR/4AqACccj0YTJdWMOZ+GiD9r1Qqmk6npcoafrgJ4+UyFTfXcSInAXC5nIO5YlycIU01pUQkTk5OIoOPwVoC3ny9AcSWy2UE4V6iD8AN844D4OF/B5guCUr7IJXrOzvjzVxQ2cTXBvMQQlnv7M7EefplAJ7LLfw5pJoGbDDjEEKIziwRAE+yTGtOMz8OOokE+Dh53Wdnqd059AgCz547C7423bH1Z8cdNJ8b5jwdcy9Vl4FxtnvaQnjmz2S7OLuo35UXui7u8d/DSwOMpXK5NjYpNkFYT99kUzbN2S/AJuBB0m3gzYEFQFraygWcJeT6MJQA0fF4rPl8rn6/XwLe6Bi9ugUbNdfgMBCYRv6QhAhrTFKftGWCU12jl/1KmTh0upyu54whAIY2p/V2/QQ9mDvAPKXyXFrBvLlzkoIwwDbSDq6FxAImF9ADQwuIBoRJ0nw+j4AU4OPsrK8h7ku/qtVqdGZoJ21OJQ6uJXaQ5ubyAua90+mUksOYp/O0tB6ax5HDcCK8fBv35D1vj0tMHHRzLf52BwBn0J8XnkUvXQe7z/u02+UL9MudLu8bURnWa1Fsq0M4AOaPM9k+frSBkoi851El5sLH2pl0fj/OA7dEefgMenXWk2vKs2W71BaCQm170NXbv+W36V1v+L8usEHZnsk+/o2Pqf0Dv6DiZPnMH34BFna2e031wev6gZ/5/hd0vTe8+uNULE/uervvll0qYCxtE9ScEWVTBsiclxQkbTdLlxr4+1Rc6Ha7Eej4oRWVymlljMPDw7jZwbxxHcL+RVGUgCbtAuQC3prNZin5i0Q2NlRJEUjxGkCR0Pl8Po/AhwTB3d3dUvUEr0Xsh4PMZrMIWJrNZkyIg80DxPBv2E7ux5hUKpVYDcSTAF0e4Axto9GIrLnXIYapBYABsgDGjEfKbuKotNvtEkjlb8AuoIvPwHw7cEyPnQaAulMAmGOtudb0mcpz0U6/r0uBWAOeOIe5Y+GMKtIKNypj8B4gl/nkuUEWw3d4xlh3zoAyzq7h92cQSQ3t5n48ew5iXSvs4+hgnHXKevf5dqcplY+4lhhnEWfMNcI4fl6GjvXi0iOPBjl4Zt78N8BZdZegZMt2aa1S1cHnf7Te8tXfbC/+7IU1J9uzs5/4pjdJkj75D36eqr/ybq1Ho2f93bBTV6XVfOYPSvret/0H7YTqM3/wWdoP/dpP6qRY6zM/9Pc8pzZfFrs0wNg3WNgzrxDxgT7vGxUbqYeF2dicMfaMfWnLAq7Xa41GIy2XSw2Hw9LJYCnAYrOmBjKbbQghbviNRiPKBjxk7ZpPQKFrKQFrtVpNi8VCIQRNp1MNh0OtVitduXIl9m02m0UZiLO1kqJcwgEpYJp6xmhgW63WbWWv1uu1JpNJKUGPfuJQUAMZcOL67OFwqPl8Ho/WJuHOazkzJowZYW0v/+Ugy3XU0ha0+gErSF1cNsDn2u22Go1G6XQ2AB2WstyYJ3KmazGVAXENACafdSbW7+XrkTl0va1fC1Dnshp/fnDqkMek2mFnxF2rjHPhNardKfHx9zY6+MU5dYbd1w7rxwGy65CZP5wajzw4APbID2xz6jy4/MV/BwDd/NZ4UqG0zUNIne+UqffxyJbtMlqo1TT67I9KQHG2e8l+5F9/pyTpU1//hxSOxpKk1RPvv+1zYaeu6tV9SdI7vvSVevsXPNs5v3OgGNsJVf3LX/n3+sP/0/9LxWaj9ZNP3fF73C173sA4hPAhkr7LXnqVpL8maSDpT0i6cfb6XymK4gefy7XTTfG87G82xzTJiPd803K2zSsEnFd5ACCA7tSlG75Bwz63Wi2dnJxoPB5Hlk7aamEBCFwHUI4u05mr0WhUkj6gvQ0hxKOfJ5NJBAIOXgGZMMSwwkgu0EZ6+SkYO4AslSqkbfIUbPRyuYyyCkmR0YNV9jG6du2aOp2OnnrqqZIkZbU6PaRjuVxqd3e3pAPFKXGW1AGygzivfMA8wn46KHegA+B3h8TBN0wm8+5g1ZlBX0v+mRSQYYy9J3o6kEpD8O7AuWaXNgH2WSOSoiae8aedfM9ZZ7dUJuBrkWfHn0UvfUi0xBlq/u0SCGdk0+fSJQ04bcgiXPueap/pi0cv/DfCHUxPkKTPDs5pmzPFDuJdAuK/EazdVA9/2e1u/m5nu3wWajVNPvMj9ea/8y0X3ZRsd8B+8Mf/lSRpXWz0Bz7xs297/+bHPaCf/T8ujwPUrTT1Az/3w/q546X+2u/9Q1q96z0X3aRnZc8bGBdF8XZJHyFJIYSqpMcl/RtJXyDp64ui+Lrnc102LNfxOiPmmy8AiO+l2uSztnmbSwCpOEsE80QjpAOSSppO1+2GcJodv7+/H7PkHdT5Zg+YBMTBAKKZ5bQ8AGxRnB7XTCiedp6nbwUk+oEnJycnGo1GsXyb60aRdEjb2qvcg88RKgfMIRNxEOTX9TYBtPf29nT9+nWtVis9+eSTajabMSkt1eumgBeQDGhrtVpqtVqlxCyv/ODzDVPJ+nGNNJ93yYqf3ncesPVkK2cQXSvsrL/rcL1SAtdKpQcpC8m1XH/rQNm1wu6kudwHEOvsKmvZ54v7OtPt447z6PWb/XRG2P00MVFSjAiwdhlrxsBlHvQ3jah46USvN+0gnD4wPy6hgRX2MfTogQNmLzmYOlvc1xP53Lk6L5p1me1u/W5nu4RWqWr6GR+p/+f//AcX3ZJsd9iqoaIf/E//+qKb8aztIxt1vfFHf0R//zM+Q+tf+e8X3ZxntDslpXi9pHcWRfGep2POnos5a+iMFZpKB3GYh0y9DZ7Iw+ZIshmMIdZqtUoArl6vq9vtajQalZhPNt1+v68rV66o3W6XkoUA6GkSEteECYXhBPTAQpPY43rq9XodAbMnuhF2dgaMU+tgeZEXLJdLTadTVatVTSaTCCSw9XqtdrutdrtdqjssbSUFXhYMwEtfOVCj3+9rMBio0+lELTLaYKQu55VBA+QCUADGaJUnk0kExoCZ6XSq6XSqzWYT6yfTVhIOuT73B3gRfk8Tsuivn5jm4+vm8gNAkwN/199yHyxNdHQJjIM/fw4YN+Qv9I3v8CzgCNAGIgMuXXEmFcbVkze5L8ZadkmRJ6/yeeaH9vDsIDdKtc0Oxl2O4uA1TS6kLWnOAc8e/XWH2UEyf1KH1qUqrmF2x8bbdY9LKe7o73a2y2W1hx7Qf/7GDIqzXQ77tPZC7/+en9C/+txPUvHWX7ro5nxAu1PA+I9I+uf2/y8NIXyepLdK+gtFURymXwghPCbpMf4P68QBEGmI0lnizWYTASaMqbN5znABBNj4jo+P41HOgE+SywCpDlJarZa63W4peY7rEbbn8A4vVeYAEjDjIVuXAtBWgGC32411hqnhzCZO8hwsMMBQKtdnBtRxwh3/BwhOp9MIUNnkGS/G+2yeShUqAMrcwxMjGb96va79/X09+OCDunHjhkajUdQpdzod7e7uRgDpCYse1qevrVZLvV4vvj8ajUprgTkHxDuw43OMnYfOcVQcgHrSWuqceD9dPgBAdRDIOK/X67hGdnZ24jw93bp2SQmA26UIOAzMCWvNZQs+x75WO51OPOwEIM/YuDPniXMAYJc9OAj1g1eoKCJt2WzG2+VDrCPai4PHazD9AGHvpzPxDmBTmZXX1/aokDvSXIvrMp/uwPD6ebIaXnfm/x60F/S73VT7RWlktudhlapu/L6XX3QrsmUr2Rftvl8H3/FT+r6/9klqv3cm/ewvXnSTzrUXDIxDCHVJnyHpK89e+mZJ/7uk4uzvvy3pC9PvFUXxJklvOrtGIZ0yRzdu3IibrUsfPITpSUke3mWDdMaL95wh8tPXNpvTKhNslGzUDkAASZI0Ho9LFQ8AQn4iHQDj6OhI1WpVR0dHEVgDgDlsg/6hE202m+p0OlFKQYk6gBKHfcBoTqfTqMd0QORAnQ0eAIPW10P36/U6Jgl6uN6rEDigcs0ngLjT6ajT6USH4sqVK7p69aqeeuqpeLDH/v6+9vf3Y7UAB8aMu5e/ApR2Op3oKPC6s3geene2ESDrTkjK6Ho1C4CZgx/mkzGh/4xvq9W6LXkPQHa2vqPzxNi648Q4cz9ed429y4m4JnNHDehKpRIdP5c4ABQpx8fx2rSLfvsaTfvq7CztYix5HpkXvsua87lxh8UBPVp6l1vwN2MXQohjmpa/c4kGz4mXH6RtXId59d8NZ/2fjgXmM/7b0mw2NbrHMq/vxO92P+zfsx7B/W7VfvdSaU2zZcP+0v479Ze+8Z36vPd8vN7/Fz9C4Sd/4aKbdJvdCcb4DZJ+viiKJyWJvyUphPCtkp5VQTw2GxLJnJ1y5g8wQijdAUDKHPm1z5NnwFoirXBG1lnldJOfz+cxjH90dFRiEwEOq9VKs9lMq9Xpccyw0oTvOeqYjR7pAv2EEQe0nI1tiRFfLpexjjIAwQ8dAVCgrSS8THk1PyQDBhiHAC0yQNolKi7BANi1220NBgMNBoN4306no16vF99rNpvq9/vqdrsRACLpcN3w8fFxBKvOzHmtYubQmeBULuFAC920f85BdMoE87fruAFT6Yl5SEpYtwBF5Cyr1aokJ0EqgKX3p50k3+E0sX7TBDJ06e5Q+qElrCOM9hGhYH275Id7EL1hvZ+cnMQKJ+cBdu7J/ZwRd9lNyurTdhxHX+ueT4DzxLxyP9YH8wGTz5pivlLm2383fIxdWuBAOP2NgQG/B+2O/G5ny5Yt2/Ox73z5T+izv6auX/vXH6sHf3J8qdjjOwGM/6gsHBdCeKgoiifO/vtZkp6VmMQBnzNMgGFADqCRTfY8UOyaRoCKb8TS7eAIsAMDu1gsIljhPQ+zhhA0mUx069atuGnDHPP58XgcQTHh3MViEbWU9Pf4+DjqmGHOAD0eXj8+Po6AB4YX0EafYAxd1wqDCLBkfJ0NBWjCUAKMCZd7shlOBAYo2d3djQmJkmJy4e7ubqzH7ICl3W6XkhJZBy5RQDLCEcywnScnJ5EphyVE+kC/uR71klkPjHuqMwe8uZwAAAjA9fC/a3t9XFg3zsI6MHXtubPKDiZdH+z9qdVqkdlnXTNvgFjWi0sCHMTSVv7GAXQZBoasBEeqWq1GNhYnkiiFrxGcKe+Ts80uQXKpDn1hPQNqvRoGkhmPKLkUBxmF/57gYHoUwOeF9U9bXZrl8qfzkihT2dc9YnfkdztbtmzZnq999wf/mPSXfkwf/ymfpRs/9bGSpFf+kye0fse7LrRdLwgYhxA6kn6fpC+2l/9WCOEjdBqSe3fy3rMyNlU2UmeJPLnKWSVnjjyRizAtGkv/rLStAEAoejabRRDlJdbYKAEfgCU0vl6mDUkFANPrMTu4AoROp9PICgKYnd3yihKABEA276UgQdJtzBrAiM878PCQPCXhiqK4LbOfsDyAHeYbhvjq1ava39+PEoxGo6F+v6/1eh2vizyCA0f4P86QpMiw0g8AGHPBQSchBPV6vVj6DofI14CH01M9sQNcjwwwJn4gBt9D/7parUoHeDD/fJ45TrXvXMcjGP4Zb3daRQHgTl9gc9HKNpvNWF6PPjHnXNufISIT3v+0agVrkWsh9eHgGZ6DtBwdEQnayHuNRkOdTufcdcrhK8ikpG1ZPdpIO1jzXjlE2jLkOB+MrTstzDvPkuv/XXrkgNjbmjrZ95Ldrd/tbJfHNvOFXvm9j+ldn/mmi25KtmzPaD/x4f9G+vDTf3/oaz9Xy/f+Tn3I1/z6hdU+fkHAuCiKqaQryWuf+4JapPJGk2aHu+bQw7gAEwd7gJNOp6PBYBCBqFeDKIpC3W431iNGx8r9HAg5oAM4LpdLzefzqNXkEATXQtMuB6eAMmQbgCM2YQ/le9m0oihi/72EGowmsgYkG1zXAaKDNNdvc/Q09/FxZA4AJYAJxkE6BYX9fl+7u7vxuvV6Xb1eL7ZzNBqVtNA+x4ATH/dqtRoPCPHqB1yv2+1qb29P/X4/AloYQuaQ++CwAGQ96Yz7eSgdoMgYMscwxoBPT1pjvmEnqTWMdtllEAA5B+6ptjUF3Q7imBNn//15oa0AZdf0OtvJPd1ZSyMrtBFnAUeEyAInGPIdr6FNP2gP1UsajUZ0emCBXbrE9wCj3ifWAX1z3TPfdQbck/9SiQ7mjouPvzPhPid81yvb3At2t363s10eK46P9WH/3/dKn3nRLcmW7bnZ2z7uH0uSXvvo/6qX//ETrQ9vywG+63apTr5Lk2AkRXBBOD8N5adaUt+IHQC5xrPRaMRjoWFg2+12SfbgiWlYKi9wPbEDBxhDSrqdnJxoOBxGbS+HXNAf2gQInkwm6vf7EewiQwCgNptNFUWh2WwWwQ0ly3Z3d9XtdkuJiYBLGDwHR66RhI11TbfrM5GwwCASWvfwOIAHiQNjjW55MplE9tcZcELkztIx/6ksxvWvJOb1er0I6mazWQRTfrodUgnGmdcAXYwHY+anwEnbE91wRFhz0rZMGfV9AedegszHCcDMmgCMur7XGWX64I6WV0ORFB0a2gqIpcShOwMu3fDvuD7bHQMcOKIFDtL5Ln2SVJJCMYeMD/NNmUNJkXHmd8DnYr1e3xa5oB2MNcb6dg26j5/3K3VC3GnCUtkF1/C58s9ny5YtW7YXbr/8Mf9U/9M//hzNjj9Ij/zht6uw3/m7bZcGGLO5sIHCRgGMOa6Yzc7Z0zSZJv03+uBOpxPlApJKJ83x+TSk6iFkD6fDMDuAYzMH7Lo+czabxfD/bDYrgWc2en+fRCckG14vFnDkmtnxeByBX7/fj+11DSWsoX8fh4G+A9Rcb8v4pWAKYNntdmNFCph4wB0JZEVRxHrE8/m8VE8asNjpdEp9Pj4+Lo27a2eZT9YKoBHQ6gCGNtN+5gwWMa2p685DqiulrBhA1x0zaRvGRy8Oo+sJkVSI4HM4SYwzQDfVrgKs/bhp1i5Jlw4C03C/O5M+7n59xtAZWqIV1M8GxANUndEFrOMAcV2X4TC2ODa0gfUPEHbQSVudnW+1WiqKIq5ZHzMkSD4eDtTpB8y7f4/vuITL2+DzzrOVLVu2bNnurL3ldf9SkvTJP/Lp0ic9Lr1IJMSlAcbSdpNPNbYeVgdkpBshbKdUlgoQ1t1sTkuhXb16NWb6T6fTknwBMMf3zjPXxAIcfcN2/S6JSuv1WoeHhxqNRhHwUlUD8Oo6Zmc9YZUBLM6a+cYNy03ikYedU2aQA0xgddHyzmazWEnDx0La6r6dvYfBbrfb8bS7fr8fx8UdCxwBpCeAQNqL1hVg4qftOUOHrpgKG7zuAJ614t8FBLtmdLPZRE0rABKnB7DmyWU4B3zOQSSyCuYKJ8DXFYlusMq87hpYbzsMvQPRarUaj0B2Fr1SqUSHwyUb7rixfpkT+uh1rx0IOmPtumeSQJENMV9+GEuj0YhjJ21BZbfbLdX/7nQ60ZH0ccaJdYkQ/XGGHcfLn1eP4ji4Bhy7E86c4QAQHXC9us8ra8Odb+Y+W7bLYpVORy//twcX3Yxs2e6I/ciHfr8+780fryc/5sUpi3mpgDHmzFaqdfSQpm9+fDatluCfo74puktAFRIDT1hygOwJe4STASiw2pvNJuod03bCVAIq1uu1er1eZItT3SkAgM86q+uADqkAQJPNXNo6DIvFIpaC4xhqKlvgQLDZhxA0HA4lqaT3dWCUjivW7/e1v78fJQ2wf7B2VNGYTCY6Pj5Wq9XSYDBQr9eLfQ4hqN/vx3akzgkacLTFAFqXQfjfMM8w8mmiHOY1hAH6Xr/Zx90dNW8Xn3MgyLHIlUolOh9IAKhP7fIG2o6jQP+QfbiTwX1ZZw6C/Rny9rBeAJSsa9YtDiTsr7OrHpmZz+fxOeBegGqXp9BHXmu1WvFkRxwh5oXrMMawwchvPM8AR2SxWNzmJLrW2BPm/LfE5Vq+fpgPn1/AvfeBOaTf52mTs2W7SAs7NX3Twz950c3Ilu2O2T989D/qU/W6F+Velw4Ys3kT6oVdm81mkso6S8p1eWUGZ5kdMPkmKG2z9NGQoi1OM/LRijqIgHXzGr+SIpPqzBvgAI3marVSp9PRlStX1Gg0Ymk4wDahdkLw6/Xp6Wkk1DEOXuPYQbiH5AFVw+GwpO0FDDsz2el0Igh3ptDBl7PyAF1JEeju7u5GsMTYudYXUCxJ3W5Xg8EgAn4v28ax14B9T+YC6MI44jTAXvraYT0BTOv1eumQChyMdrsdHSMqmLBGnJUH+LojA2OILMRLicF8so6Pj49LyXgeymeds17b7XZsB/dPQaRHLwCZXJfv+NqUthIYnx+uwzPkjgMMOsCcdTybzeJhMy7ZcEYfxxFWl7mC6We9sz54nmHXWXsAYBwbnlUcWuYZh89BLmvKEyVdZiNtHWEcDn4ncIox/w3hfb9PtmzZsmW7O1YNFX36Lx/q+1+7d9fvdWmAMRsQtUzRD8O0skmhzwTgAIzTzHCXHwDovOyXh0jZ6LkPGz2brrTVHi4Wi1KyFq+n4ACA4sCd1+gHwHU2m0Ww5SfoMS5sxAAFr7Lg4ByWk2OTV6vTUnAAUkA0DKmDMcAVfyifxuZPez0hCpAbQojA08GFJ6ZNJpN4vHWr1dLe3l48Gpox9WQor01M8hhjGULQfD5Xq9WSJPV6Pe3v72uz2cRDNXCgaBOsuAOn9Xod24JMxzXYrBVP6GSccRQA8DCxOEPoZJEQ8F0cLE8oREPP2kF/S5Il+nqeB9rEmnJwjRPmJ/jxx6Ux7hC63INngGfDJTkefZlMJmq32/G5BPzyOeaOaAb9YR5cL01bqIji68xZXp5p9MGLxSKuYZd04Hx4vyuVSqmvtDkFvoBfB8/8wTlirbIOspQiW7Zs2e6+/em992j3V6f6p7/1ZXf1PpcGGGNshFRqAAAAiPiDVhUW1kuLIV1gswa0AUY4cY3kIGlbHcA3Q6ksSSAk68wdIIXvrNfrWJcYDS/aWPoBkJIUgSuHXwwGA0lPf9qWb84paw14Ho1GqlarUYrBeDjY9iTBNHkInehkMindnyOo0UAD6gaDgfr9fhwrZ/vb7XasX4yGttfraW9vT+12OzokrhNm3Pr9vur1ug4PDzUej0tSDua/1+tFrSpjBrOOfAFWWFJknJnbdrutXq8XnRQfe2eFXffOe8w3DoSvAa7lDC7zSR+QHDSbzXgaIOPqc4+e3eU93AdQhvPnwM0TxDypFcfN6x07AOX+aNbRfgN0kQRxPDf357ngufOyivwfAJ9Wh/DvecIo4B19Nm2EoXdHgXXNWPsJfS4HwZHluy6TYazTsnWMoydVEgXIlu2y2fpoqDd8yh/RD/3wv7jopmTLdkft8/o3VX/7Wv/wQ15+1+5x6YAxm7IDScKkbLLOhLr8QdoyrF6RwBONPCHKmTaXSACkpXKYGLCeSh1IyuE1dL/nARQ2bWcYvUav6xZhhmGVcQII+zM+zqzxGglSXl0gHQ9kCmkoGDAB2AIIhRA0nU4jGGg0GhoMBvEkNB93l2fM53O12211u93I6DkLjtMBI79er+MpehybDUNN+B1Q4+w8+s9WqxXBrlfKAMjx+Xa7rX6/HxPAuLcDXdYMrLPrhllD0hYYpjr3w7MajD4HrAkAJwCc8fCKHM7Cp6Dc1xXPjjtBfBeH0ZlcP3ade7tUiKgFQLEotodv8F3a6Lpl5sbBJY6Oa+BTppZnLQXvRDlwnHj+XS/NOPnYpmUJvd/0j3nxhD7azrPiMhdAtevBPaqULdtlsWq/r+/8gW+T1LnopmTLdsftt9bfL+klAIydpQKsAew86QmWmPJUaXKcgwaYOpgqwq2+ubLxcT1nOwGqntCVJkCl1SIAkePxuMQuA5jZSOfzeUygQ3bAddj0JUVnwKUQRVFoOp1GLTEAwPWzAEn0nhxTzWbvGf7SVvrgelYADeAdgIpml0oUsLZc05lhr3zR7XYj44yu2svRHR8fx+OO9/b21Ol0IuAGhDSbzXiYx3Q6LWm36QvgeLPZRGkKfUCvjDzEmWDGzWU2MKbIG9xhcmDKvJLUSYQCHTYAGCDmaxUwzvrEQQBUArhxBHAOcBqksnwHcOzr1MGia6f5HOvDAT/9A0DTb/rmz1K73Y46eUAxY+Mlzri29wejjf7Me7URj7gA+Pm3g1ScQSIfyDNoO5IK18z7fPgzlbLM7nDjnHkSarZsF21hp67v/pUfU7uSQXG2+9M+otHQF7z9PXeNNb40wJgN2HWQXoeUTTMFtlK5BjIhV4AhGzQspUszPHEGZoxNFTAEOw2odZaQ2r3OOBHmdTbLQ95edspZvFqtpitXrqjb7aooipiIBIsIY8zmzWvNZjPqa70MGuAKQAAI9aQjb4/LBGAeAQcOLvgsrCyJaz4uDmyQMcDCM2/T6bTkXDAfnuzogBi2knmp1+uRAaa9gKROpxPD4rQJMATwdeAImGUM+CzjAYgiIQ4HgTbTf9YqJehchw2j3Gq1SuF3d+LQJ6cJfPyf+XRtrEszHNC5DjZ1egCNkkoyA67nzhXridepN81nJ5NJdJQ8cdMdU09s8zXobcLJpS8+ry7JoD2sMeay1WqpXq/HSAnXYR3y/AFicT69jjKVa3CkeT5CCPGavm5w8DxilS3bhVqlqh9+z89Kql90S7Jlu6vWrhxLIdyV2saXBhhLZRmEtM3GdxbLN1QHB84a+Sbs9XZdbsBmlpZycmaQklB8liQh9MmDwUA7Ozsx2QmmzsEI+trJZBI1rQAINnWAFJIEQK0De0/wAqQAhGAxYUQ9aQxwATPOGAI+cRjoe7Vajayt19UFkPR6vQgSSaiivwApvuv3BpAyJ4vFIjJ2gEbXEDsorVar6vV6cb7QceM44GjM5/PSqWonJycaj8elAyoYb0kxcWo6nZYOfoGt9c+5/ASQ5tU6WB+SoubZqyZwLLnXr/YSeqwHX9cAN+Z8uVzGNtAOXz/cxyUpREwA+jxTqdzAq2Ww5lw/7xICku4A6j5GPCvO4DNWMMSu1cdR9QNKGF//XXBdMk4DERSXMvF7wDVclsLa4hlj/lKdvkswJEXnhPtzHQfm2bJdBvvB33yLpMozfi5btnvdPqMz06//0qF+6LWDO37tSwWMpW0SkW/MUpnJ4t/OFMOOOdBzoIpmcjabRbDqoX/XAwMMfHP30DkVFtbrtdrtdtzMPSzLxoneGBBBmDkNOTs7yuEjy+UylvsCnBJ6brfbMSsfYIZUgQ3fJSaMC4Cae8LAuqTAdc4+HwBivlOr1dTtdkvJaw7eXRsKk+dJgABbQJ2kCOI42MLnHXmHH8QA+4nMhtJxtGE2m8XXYdyplezsMNcCRHud61arFRlJ1hZrIw3J4/zgWHlInvrIrpX3Ork4cGkymdcL9nq+jB/AOIQQmX2PUjC3rHVPUqONRVFE/TyJqM7oMl7Ml4N3HBfXvjNGjI+zt6xPHEaeD0+g9TJzOCV+XTTarAscBtaLV+egH5Ii28+YAIS5LnPommWXVnkUyOt0Z8uWLVu2+8MuFTBmwyaEnIJfGCcHzJ5sxCaHnAJ2iD+wXM4MeSIewCfVvoYQ1O12S+CCzbzb7cZQLpu6J27N53ONRqOo23UQCrvp34PtI6TuiYOud6Y9DnL5v6TbABwAAsAlbZl2Qv6w3iQoAeLQYDszDIgaDAaxwgRzx/cJjzsjSEJYmqznyYt8n0odkiIwAYjQdj9aGWkFQM7LvLmuGPYZwAx4czCZMrI4UYwT3wP0omf1OYAVlRTBGyDUpTwAcyQSPgcpMPb61bTPpRUO3jyxjnsx/6kUwxP2XEftjDxr16MIlIXz5FYALmvOQbFr0NFfIxuCNccppT9c3+UrHkE6TzoymUxKa4Xr0d/NZhPnDZDuvytpdMmjVlzXnYBs2S7aag89eNFNyJbtvrBLA4y9MoJXaGBz98SoFNw5q8MmClDx0KiHcSnfBQCVdBsI5bMAbXSjfmiHh+95DV2ltJVzUOWB8C7/TrPwAbKAY9pE/wFsAHEPOwMISc4CXAIIPdTMtTwpzY/a9jC5J+sBbhlvDnLgwBAYOUDQ8fGxhsOhDg8PY0UKnBZ3IPg3DoykWN/Zdd8whwAo5pz7clIaLDRzw5x1u13t7u5qvV7H60sqlS5jvXD0MtdhXCaTSZTGdDqdWEbM9bqAYuaWfsBgkhDJ+sMxY134QRmUcmNcXUebhv39+fEoBOPl+lhf4zhCaGxhZH3NpJUbcCCd6fbyaoBsgD73Y64AyLSZ97gXbDbXgZnlWfLnlPZ70ijX5LeCceK6VDGpVCrxueWaLgnx9cx68DJ8GRxnuwz2v/zHt6gasowi20vHepWFaq94VKt3/8Ydve6lAcaYs26wwzBcqcTCQ7sAND88wLW1nuAE2ARIepa5tD16mM9yShubIxstyW9og0nq843ZM+JhoOnbYDCIwIU++YbLBu2gSNpWwmC8pG2CH8y0Jz+5HMUZM1hWPusMmMtLGBcACCCbzzD29NePFkanjTQBYAzzx3jDajMP1Jr2SguATa9MwKEmgLL5fF5KOERzy7HC3W5XjUZDo9GoVGWD/qGhBeQyVozRfD6PiZCw2CT7eY1kwCIadNftwvJ6OTXXV7uevNlsand3V8vlMspCuA6Al3lw+Yq0lVA4K4xTQtTDWX4HvOfVFE6TDpmDVDLDGkE64qyrtD2mvCiKWKsaGYhLVOgjDoZHN+ifVE6oo72MvTtQgGnWB0mhDorpqwNg3sNx5Fn25ypbtou27/yQR/RHHr+RwXG2l4x90e779V+/+wm9/aPu7HWfFTAOIXy7pE+X9FRRFP/D2Wv7kr5L0iskvVvS5xRFcRhOd6tvkPSpkmaS/lhRFD//bBuUahodvPqmjwGCO52OHnzwwQhgOEbWS1s5YwcLDRjzcm4cHsHm2e12owyh1+uV2C0AFyAFZowNms2d78DgEiYnVM5nuLdroB1YwBg7gPCkNml7KAn34fMeJvbrklDI5/z7nliWajsBvQ4i5vN5PNzETyjESeF6qTbTQ+e007/r+u2dnZ0I8EgWBJA7i+6yBk/SKooiMvKsD0/a5Ghl+u1yAgehtVpN7XY7OgXU963VaqXKCKw1rkGFDeo6U02Ee7J+AMXdblez2SxKfzzRlPnziArOmb/OunFpAmw2YBcmlTFzPTRjIamU4Ml6AbDy3KUyDOae97inSywcYHs/GT+cLZ5r1vDJyUmU4gDU/bmmL65Tps62V9zwSJRHbegzziPOWJoHcZnsxfzNznY5bPX6j5SUpy1bthdqz9a1/A5Jn5K89hWSfrwoildL+vGz/0vSGyS9+uzPY5K++dncwIGPVM5kZ0N0Jsw/D0t67do1Xbt2rXR8MRt0vV6PbKEnpQGG2PzT0mhXr17V3t5eBFX9fl+9Xi8CZNciwyYBHJ09JuTuAAFgSViXDZdqBmhLYeHY+Al9A0YAxs4eSiqxwABH7okMZDabxT9+LQCXtAV3VKbw09C4Nqwb4BHAx3WRfwDGvPyVtGXpADXoTbku4+JMKuF1gDHsdb/fjyy+a0L9sArmC4DJfEnbRE++R/9ZR2hTKdfnB4ugz/XkNXfAYIupgtHtdiNAo7+A5263WwJ8/gfAyh+cMsadY8C9mgSAlGfI2V9PuKOvgEzWAOPE9zjsBUeDSiGpjtn77ODe9eE4U/5M40z585k+/y4RcYafduNE9Xq96ODCZjNXLtny3ANPvEVfzfrwyE7623VJ7Dt0l3+zs10u+95/9PczW5wt2x2wZ8UYF0XxEyGEVyQvf6akTzz79z+S9B8lffnZ699ZnO5MPx1CGIQQHiqK4olnuk+asc+m7iyypNLfbPQkVTUajRjydqaOP4S2AZrcj00ZFni9XqvX62l/fz8CMA+H+2Ea0vb0r06no9VqFcPeq9Uqlg8jvA7odtaWGqwAI09Gg5UFcLiMwk8H81JbvJ/qtGHYYCcJd3NNZ+wA6M7mAuba7Xas9AGoRZPKgSaule33+7cxyui2XdssKTocAByqC+AAAbD4DGuB8el0OhFQUeEDp4W54v9evxoQDsAisQztr0cxqNAB20y7Aaq+JgDS0laugTMEGBuNRvHztAsnDuCH/IJnwuU3gH3mnP7x3Ljm21l5f5ZYG4yJJyA6SHYQjqOBc5gmqtF2vsdaZlyLoigl36UJcClb7AmjgHCvRsP65dlj/F1iler2Yfn5HeG5ow2eMMu/uY/rpC+TvVi/2dkuhx3+sY/RTnjLRTcjW7b7wl6IxvgB++F8v6QHzv79sKTftM+99+y10o9sCOExnbIT0brdrmq1WgwtpxniHqIF5LH5dTqdCNiGw2G8pm/OsGBs4BgbNvIAEsw6nY729va0s7MTAQXgB9DgDBubK6XWCH/DLpLQheaWttMv+uOJhLDOhKidXR6PxxEcS9vjpqWtntglBeiCXcrBvbmOgxdJkY1FVkHSWKvVUqfTiQd8AGAIV1cq2+N3SVKjnFe1elrea3d3N4IT18u69AMgShk6GHk+y/8BVi5PQcs6m80iiMbxQD/u7DRSDJwrl7ukII37Mu6pBt7XH9/DMWBNA0BhX1mXPp6APe7nlTl43zXKDtJ9bl0qkGq0aYNLGACOAEuXGQGm/Tn0ZDqe1+Pj4+g8bTabmLSIYwFL786gRw4A59yLZ5kky/TZllSqasIYObPurLRHXCSVTll0SRFA3KMLfB+H5R6xF/SbLZV/t5tq372WZntO9t1f9bVqhO5FNyNbthfV3rac6Yd+/KP0Kv3UHb3uHUm+K4qiCCE8J6FdURRvkvQmSQohFGhXPUzKRu56XQ/BSrotVCyVQ6mABxLSJEUgCYhDWuDsNCB2MBioVqvFUmAAVNdo1uv1yFZTng32EbYRHbIzs+lGC7uafhZA5aF43mezp+1s4v5/Nm9YP4AuDB0MMvIGvk+I24GxA7Z2u61+vx/H1pO/PDzO3ALeqLSwt7cXGW80uoT/AaW1Wq3EKNI+2uqVH3wd8Br1plkvXh3BwawzgYA12uAaXdeqOsPp4NdD8M6guq6ZMWZO6ZdHIbgm7CRrlggDAM4rofghLjChruPl3jhgvoYAmV6FxJ8/Z4/T59RLyzH2VP3AueMIb67LOFOWD2024BV9L4wsa9pL3XkVEBxLB7uuwef/PFMAbN5j/t3B5L4upcCc3b/X7Pn8Zp99L/5u98P+5RNXvwTtvV/5sdqt3FlgkC3bvWA/Mv0wverL7/zafyHA+EnCbSGEhyQ9dfb645Iesc+97Oy1ZzQHVvz/vPelss4QUOTgg82Oww8AXoTyYcn4PJuwM1SAUBihzWaj8XgcPwd44KSzer0eD//w5Cs/rcxBUxpmpoKFAxb+AHx43ccDkOAgzOvz0n/uBeNKnxg3tMCe4IdO2JO2aGO/39fu7m4sVwagOT4+1ng8jiXNACez2Uzr9VqdTic6ErTZw9PIXAB/nkjFGMLqO0PJdRhLak17+J3IAP1kDOmTy1tgSFkbzu6n8hyiCqw9ZAJIQBhHWEwYSQfnzAXXQyvvFTy87q60Pe2QNeH1tF3/6g4An0V2w7x7XV8HiOdVfaD9tI91jmQIln61WkWHEadEOnUCZrNZdDhd64+D4Eeas6a9NrH/PjBX7tQwn6nsiftUKpUI3mGiHey7pTpxniUciXvE7vhvdraLt3/42Ddot9K66GZky3bf2AtR6n+fpM8/+/fnS/pee/3zwqn9TknDZ6NVg3Vi42Pzc32kM1+uLWUDRh88nU41m81KEosQQgTADjZhzzzU7Al0gGMkAx7qdWaZZLzpdKrxeHybXEO6nb1yoMnmTZ/SMK8zd66bdV0loAMGmFAvDLRXXuBebPgAQELlMI5eeQIgCjO4t7en3d3dWDOZpMXRaKThcBiZ3uVyGWsZr1YrtVottdvt20AI95RU0vA2Go2YPAVjClvoAAVAd3x8rMlkEueBMQGcObMMo+nJaYwB7CTrxMP0IYSYcAdj6evLE9VITGNdOgvvTLc7ZRy5vV6vI9NarVbj2DE2foCN674xZ7nprzP3OH1IdBqNRgnQsw4B4B7x8HYCFgGJfAc5S6ojP4+t9TUMoGW8cdxYty5lYo15aUDXn3uUxJ3h2Wx2Wz1inBD/4xIunAccTnfM7gG7o7/Z2S6HfdHf/7M6XM8uuhnZsr2o9svLuf7R3//Uu3LtZ1uu7Z/rNGnjagjhvZL+uqSvkfQvQwhfJOk9kj7n7OM/qNOyP+/QaemfL3i2jSF5zEPdqTyCzdrZO+l0Iz44ONB8Ptfh4aFOTk7Ubrc1GAzU6XQkKW6EfgKZa5ldLwiY8MNC2OBdioEsoF6vazweR0DoofY0Gc7ZKICmJ365FAEGEVBYFIVGo1GppBagADAAc+aMJMAF4ACj5uN7fHx8G4CCfQMAtdvtmJTIiXdFUZTA3sHBQaxBzPePjo40m83U6XQigPV6uIz/2XqLoA3taSo3cGZT2jKOrmdl/DxRi2s6W8x7Hsb3CgeMJQA6hNMDYqhIgQaaShBIgnCEYK0Bmzhb0rZsHfMD4IRVxlnxBDMMJtwPyQDQM64uO6JvLuPge8hzfH3SBxwF2kdNavrP+mW80mf1PEvlTrSZ58bXiFdLYW7cQeY7Dmz9t4E++ecZP2eJPUETWQ+sujvL/P10fbsM9mL9Zme7ePugr3uzxn9mo72Lbki2bC+ivfPkiq5/05vvyrWfbVWKP/o0b73+nM8Wkv7U82kMG9h5rJ7LK1xW4EcF37hxI4Znw1l5sH6/Hw+UgEVutVolhgrwykEVAGQSxjyxx5ngavX0aOZ+v68QgiaTSQTFUvl4XGevnBl22QKAnxJknnAHCAeEwe4BSrwyAfeA/QPMEdL3Y7E9NO4gjbbCjrvm+qGHHtLLXvayeEAJIAJgCFvN/3Eq6AsSDal88uB50hSYatcR+zHDtu6iEwDL6WF7nA4YYZelAEA5PIPjrfkujhBh9Ha7rd3dXfX7fUmK8pxUH8t3kSp40p9HCjzpEFCMFIc1Ryk4l8/AXLMOkDWk8hBkJC7P8TaQ7ErUxTXsDkaZDzTjVAjxkxz9JD8/VIPvMY5pTgBVJCSV3qtUKqUoD3PgMg//vDPQrnt3AJwmDXIfpBfStoY2+Qk4MlyXsXLH9zLZi/Wbne1y2B/+8r+oH//av6d25Z5JBM2W7Xnbu04m+ltf8cXq6GfuyvUvzcl3bDCegARoTAEQn4GtAkh4map6va7r169rf39fkjSZTGI42nWvkmJYvNvtRkBEyNRPJ2Mj9NAp4fT5fK7hcBgZQ0DxeRsoQD5ltTCY2uVyGduBA+CHSABK0NzCLsPs8j73nc1mGo/HpYMzuB+sM8AQIARYAEj1ej1du3ZN169fV7VajaBwOBxqPB7H8SmKQsPhMB6AQh84VpsDVFxKQPs5NAMngXWBBpujmplDAKOHwT18z3dg3B3sIYEA3MPKOsj2REAAIZKFVNPuyaCwrcVZhQXeJ2IBGw2gZixcH+3sLgAfLTMMNu11OZDLVLxNmDtF3k9ANmsYEMn6cwDPe6xj2j+bzWLlEtY6z3Sq1WVemTfXbLsD4A5bCkQB5P7b4M+VS5f4LmsLJ9LHh+fL59rL7bl0izHKlu0i7YE/+S41Ql6H2V4aNtzsqPM9dwcUS5cIGMNuegUA15x6hj6gjk0LVoikOvSvV65cUafT0XK5jIDQE5BcQ8iGDKjg1DEADMDJtaAArvV6rRs3bujGjRtar9dRekEoH+CFFhQQCkgADNEGPg/IcXYP0EJpOgdX0inT5cfxOkhwZtlBBu0BGCLvcDZeOgVTu7u7unr1aqy7jN756OhI4/E4amABv8hjqGCB9AMnhTZIW2kATJ8nV8IaMkcwvDDnSE8ALtSiZi4BkMy5l+7zusbMKwDL9ew+91TcwCFxoOlA9+TkRJ1OJ+qFnfV0uQF/JJUY9c1mU3K00pJ6AFln913rC+jl3zxH6GVpe6rb57Opdpj16MmMzgYjqWB9nqfTddDqDDftd0DtjpP3w2UYOEkAXMbAozv+DPHs+xy7vEXalm7jmfXETP/j0axs2S7K/t4rv0fVXK4t20vAnlpP9Zf/1zcq6L/etXtcGmCchlnZbAAsgDQv79VoNNRut2NCU61WiyDkypUr2t3dVbVa1eOPP673v//9WiwWETB6gp+0DaXC6HEimeszndV1gLNYLKK2GPDoekbYTAAnDB9lvwBS6GoJ3cN8I+ngM7u7u9rd3dXOzk5kRgHtzhqn1RYALYAT2gOzSlIdbG1RFGo0GpG57na76vV66nQ6UcdLwh1A0Z0J5pM+oJMej8dRcuFgE6ACcMbBgJ2DaT0+PtZoNIptxpGg8oODX6/E4YxgGspHHoBcwEvgeX+KorgNpHNtnBmAK2ONHnk6nZbu61Uv3PlIw/xeuYS/WTfME2vZy5fxWfripdsAuC4xcIfPATCgFjlGyrx7RAdnkWfHnQqvXezyE5fFEAnxCA3t5Dlk/NJKFunzmUqwHDiniY8u+3BJC2OA7MXrPSMZysA4W7Zs2e6+zTZLff6nfZHCf7t7oFi6RMAYkOMAmE3bk88ARIQ30fsBVHq9ntrttvb399VqtTSZTPTUU0/p4OAgXh+mECbLE70AgWyUbLh+ZC1AAbZ6NBrFwwy4HsAM5m29Pj04QlKphFgIITJbrr2EvaItsGcwr4PBIGbjAzDQoXJEMayjZ+W7xtSlACQaOUO2Xp+WVgvh9OQ6JA6cVgcoBuTCbqKHBmBTUQLtbnr6mmtxYREZZ5fH4EigXQakenibuZK2gJJ7AHSk8qExOCsArbRihLQFYbQRwAu76cldMMkcR4xEx/+wbtPa1a5hlRR1vIBl+gxTC0gF7LJ2cCAcdAOAPUJC/5Av8CymzC7OAI7MbDYrRR4AnTir1K12lhw5AqCeUmmsdZc5AZS9prJXg/EqJP6ey0joKwyzy634HuNAMmeqOeZ3gHllHFhrHOmeLdtF2Rt++UgPV/NhK9nub1sXG/2h3/XZ2rz7V+/6vS7NLzobOmDTQ5wkY3m2e6ohRBtLfdxu9zSsdHR0pKOjIy0Wixg6TuvCenIaUoQUxPqJZYA0r1xAKS1nPwHKgE3fyD37nWRB12sC4NvtdolBhIEFTHKABRpa7kN1DsbVw8bOcgESAC0AH4AH0ogHH3xQe3t7sY9+fLW01W/SfhITW62Wrl27FoF1CCGCIsC+64F5zSuE0GecCJdo+FwC7PwACMzBEnMIIG02m/GerlPmfT9wxdnlarUaPwtg9cgCoJh5dmeJfjpzz7zwfT+aGQOU8X2eD9cPO5BkrGGW3Wlx/S0SGthUr6bhYBIAyTh7AqmPLd9hrryiBu3CuZHKyZM4fIy/zyMMss8Ha5r7e1sklSJNPAewwgBf1627g0pfF4uFJpNJdOD9vj722bK92PbvP+GD9dk//0t6WS1LKbLdv/YZH/kGrd7/Gy/KvS4NMIa5cWaMjdwBFSyeA0mAHJs2oAWJAwyfl6Pi2oA3au06YIHZdC2kh865JsC31+tF4O1MIKwffaC/Hv4FkAC2YOOc3Qb4AigAFw6giqLQeDzWaDSKgAQZBYDBnQMAMAeeMDbSKbinNu6DDz4YtcXubMDGeZUHxo8kvk6nE2UH9BlQT0ida1CdgEND0AUD0AA4ODGeXEcIHjYVR8KTq7w6BEAMkIQBeBzsY55ECAjGOWG9eOQA6YCzlO7gOVBGcsM6Yz5Zv6wd18fCBvsRzi7RYIwAkshavMoHAJC5cVkHr8GM1uv1KJ1BD+zJhO5wudPCGvfoAM8IkhovwccaIrEyZfvpD3KLVM4h3V5BwpMA+b3w69Jm1nIKinEUuF4ahciW7SJsffOWNs/8sWzZ7kn7tI/+NG0Oj7SZPvmi3fPS/KL7ZubAAEDJIQmezNXtdiM4QErBtY6OjuKmSEgfUOQh516vp1arpfF4HO/pjBrgDwbRgSR6ZSoj8FlP+vFNHFCeOgCuffVTyABD3i5JGg6HJZDQ6/WipACwBrAAaEjbULXX0wU4Axxoy2w202w2U7VaVa/X02AwUK/X03q91s2bN3V4eKgQgjqdTkl3S9IhmmqvdYvDMBqNdHh4qFu3bkUmv91uR7Dh9Y29egHACikBIXvvW6r5dAbU9aLSVqvr1RAYv5TZJ+SPpMcrjkjbsmqMKRVNPEkLA3gyf65VB+ghh6AdaHEZH8C6H8RByB85icsoAPNoz89zjkgk9IiApBJYpo2z2SyuUb7vkQZn0DG+x/rgXjxXOJw4PzD4AH6cJOYbc7mEG05nmkAJO857RISm02lJTuF6ccbT5R5ci2hLtmzZsmW7c/ZpH/eZWr33PS/6fS8FMHbGzqtESNuw8GQy0WQyiQCY0+bYDCeTSdS3AlL4f7t9qr/y5BxpC1r5AxuM5tiBqpfNAhDDNnvY3UPhnhAFyHF9KWDHWWlJJdkFABP9MIDC2TkHfA6maAubOcyefxam2Zl3wu+TyUSdTkeDwUAf9EEfpCtXrsSxXq1WkU0mKRAAAWAkfA+zvVqtNB6PdfPmTd28eVMHBweq1Wrqdrvqdruaz+cRQMMqsj4A9JSFo9qEH9jBvDO3jKFXuJC2jDBa4NVqFQ+BcTkIn91sNhG845wAjNBvw+p6JAPw7PPlNZs9Qc6Pk3ZpBYmm/jy4HnY2Oz3xCnDG2OHoIOlxJ8IdIQeuHqXw9evjB4BcLpe36at5LugT88JnxuNxqYqFjwHAmPUCAKauMpEU5pb2Ma4OVs8znAo/BRA2PF07/lvBaZokdfrhLTzbGRhnuzALQf/7r/+sHs0yimz3ia2Ljd7wOV+o8JO/oNNziF58uzTAWFJJLuDsH0fippnrftQzzE2j0Yhlu2D42OgBEbC2MEewTYBFQMRkMomMFff244l3d3dLTJWz3I1GQ9PptJQFD2CazWa6efNmvJdLADzxDjbS2TQvK4Y5w767uxs3eTZ9Zwm9jbCS9AsHYjqdxuObSZq7evWqut1uqWYvY+d6S0+iIwlxOBxG1vOJJ57QzZs3NRwOtVwu40EelKljzp25lVQC+uiBAb84C57w5fIO18kyXpJi4qAzsawdrx5BZKHX60U5DKAMUAvL78DQtcDOWjKnLrPw95kTgLvPP0CT61IGkPs6S4tW3bXwaSUQ7olD4Mdb00+vREHCpTt0JMniGHhFDYA2VUN8PDCeeR835spZYsab1+mPO4KAY8aTdjJ+/PGIBOvDfwNwxIhOMKa+Nv13KFu2i7DH3v5OfXRj56KbkS3bC7bj4kQnxVqf/tifVuMn33KhbbkUwFgqn04Gs4luE0YOq9fr6vf76vf7cZNuNptROwnL5Il1rr/cbDYRSPvmXq/XIwgkHA1YlxT1svzxygok/9Xr9XjAAUDcmePFYqHRaKTZbBY3VRIOOXmNthImp8+AFACYJ0cVRRGvRZ+90gIADl0rumhAEqCYwzomk4mkU3C1v7+vwWCgdrsdgRgAimO2GUMS6QAnk8kkgqNbt27pqaeeipVFAOmerOXsKUw0jgWnGlKVxJ0ngJ1LRJCJ4BAwF5IiqwqABgQBsAHAOC+MK9fabE5PIByPx1qv15E1BFwB0pw1BlClulbWj7QtVwjrjswD8Mna8KhIt9tVpVKJMgfmH1mPzwtVS+gfzw+OEa9T7WS1WkVHjz4URREdOk9KpT8+5qxTP21xZ2endDIhBtB35tblOZ6s544y48Ka4jXXkePEwTz7oTt+HS9Rx3zyN84d/eU3JmuMs2XLlu352+F6ptd/9V/QtW/5KTV0saBYuiTAGOAD8Gy325E9dGDhFRsAoYBDmGE2LpiylAXy0lVoLtEGNxoNDQYDdbvdCNAAlgAokqu4FjV1YUhhAh30eR8JdcMkAzIJ08KeOeNG6BcQQ9kzNKDcw6sFAMQ9AQzg5Nn4JK41Go2o/wSAtlot7e3t6aGHHtKDDz4YxxVdMcdAM0fj8TgCaoA2zkGlUomVKGirJ315yTfmDIaQseZeHGAibaU3Dk680oNruN08FE6Yn5J3HiFwWQRtZyxhT12i4qx2KqXwJE6cEk+A436wkmiJPeKAdpe5J/mNe/GMOHMNK833qcLBekDHTyIc/eIe9AknhLWDI0dfeBbROjN/yDaYE496APT5rJc/4zOebMk44pjBKLukwueb8UCCxfPH2JLk6aw3Y+fmSZg8k0SOnk6+kS1btmzZPrA9sZro93/jX9YHfcubL7op0S4FMJZON3BqELMxOhuLAYwBMJKihhfmEk2uazqlrf4SBhNtqycCoXMcj8eSVALBgACXOozH41iVwCUhAAQ+C3Dxcl6u65UUmUoAFOyl1w1mfFwq4QCTPkrbUnReUgwQBihm/JBBwBbP53P1ej3t7e2p3++r1Wpps9mo1+upWq1qOBxqOp2WKjKMx+Mov+j3+xqNRqVKALT3POAD0Ab0ML+AoclkUooEkPTocwQ4SsvjOdAFtOFE+EmELjVhXJxZ5XVO+qOWb7omXAaSap2dgWQ9AFiZS64B4HTQ66F8IiU4HS6ToO1+WIbLN/ygHEA9wBTHiDWMjAJw6Rpdd7y8bjZANo0EAWzd0fU1CuhkLFnL9MF/B3AI+Jzr5V0X7bINH3d3lP159ecRh93BN+PKOvR2ZcuWLVu2Z7b3rib6+ePr+vJ/8kY9+rcuDyiWLhEw9goG0ikoAaAB6vgcjLHrTD0su7e3p263Wwors+GfnJzEpKF2u612u62jo6MIllarVQzXw8wSQiZs6lnsN27c0HA4jCAGUFCtVkvso8siYK48IY4N2LW6gK5qtRoPEaEkHPdwIEW4ejablQAejKGDVL8G4e7JZBJP8Gu1Wtrf39ejjz6q69evx74hERmPx7p161Y8cZD2Ig/x2rHIUTxB0UuO0V7q7VLz2KtTcIAKunLXeUoqjTGg0Fm+tJoB68blEUhMms1mBELubDBv4/E4JmORqCkp6mgB/AA/l3swjilAI6rBWnO9L8mOnuiGc4fudzqdRkfKNcHeR/rpshHWOMDUK2Ogw8dZo0+AdBwSaesQ0EaX7jC2lUqldMoi8+EgFnDqUhKPungyIE6CJz8yb4wBvx0+Dqw7HELM9diMswNil+z4MdHT6fRO/ARmy5Yt20vCfmM10Sf+u7+gV/+pn9GjulygWLokwLhSqajT6ajf72tvby/KE847chW5A9UBeB+2Ci0smz36RBL4YJVIqPLDERyQppUFXBN7fHyso6MjTafTCFhhw5AEAFyQW4zH4wiCHeQDGAFJUllv6ify8T1PJAPMALj4f7vdjiysa2kxAIUfZDIcDqP+dzAY6IEHHtAjjzyiwWBQ0vDOZrNYHQIwxDx6jV9C8rTbWeu0L85eo4FFZwww4dpch/Z4vWmADvPFZ/zACAAw44CkAvDmACi9BmvJ9bI+ngAuWFBJpfWbzgF998oL6N2lbQUNZ765HsCMQzRYs14dBRDIumK8PdrAugOUp7rjoigi4wxLizH+PiaMhSfKSdtDTnjNIyau78UR8n464HWgzmd8/QOKcaAA8Wj8+bxLIGCaPcHP+8EYetWOzWYTHe5s2bJly/bM9q6TiX7vD/15veZP/cxFN+Vp7VIA4xCCrly5ouvXr2t/f1+PP/54qSA/mx9JVbDFzu6yyXoJKUmRQU3DxiQU+SbLNWE+AReAKlgidJgw2jB4sEcACyQABwcHms/nsbwbzGuv14sn+gGgvWIAIJ5QPoCHBCUAO44FyVBpeNo3dsaGSgqezASIQGbyspe9TIPBII4L4fLhcKjDw8PI8AIw/Ghdjm12AO+sqc89CXbIYLxkm5fUcr2tj7kzjmnJNmnr8MDeIgVw9pC1wH3SpE0YTKIOXurOK0r40c6w2n4fl4/QJq8I4oDegSHg3Ss2uN7YZTcws75OnP1mzbhUBVBOkh7lAQGqVGBgPbJmXYYCOKUyCa+l65Cx5ZlmvHCYvCIG7zG+zL+0rVLBe0g9UicDR8XXqieQcl0HxavV9uhxf3YcvLMW0iTCbNmyZct2u/3GaqLf+6Nfptf8yZ+96KZ8QHtGYBxC+HZJny7pqaIo/oez175W0h+QtJT0TklfUBTFUQjhFZLeJuntZ1//6aIo/uQz3aNSqejRRx/Vo48+GkOw1Ep1fSCJZ3t7e6rVahoOh1H7id7PdbWEWmGTea9arcZNEfBF+TI2d0klYOYyCrS1sKFstvP5PDLI7XZbs9lMo9Eo9oXPITfg4AuAxHK5jEdAE8qWVCqZlSY0kSBISJ8kJweP5zHUMKAASfTAAIsHHnhAL3/5y9XpdGJlCem0hvHR0VEM76PJlsoHiHA9l1QARiRF5g7pgldwQLMJkEW/zb9JsATMoPF1IIj+VlJJ80ubYFsBQoBlQI/LH2gTbWSMXDqTjoFXr/AKGDDBrEmSGWHZAYdpsqnrtAHZXjfaHSpe93FiPOkv14Jt98oPsLde+YMxZsxgdFn/rG1POpS2VSW4tycGMq9eMSSVUHB/l494zoEz4shRPBmROaFtzvSnOQGMt5dpk3Sbo+QRnsuqL34xfrezXayN//Dv1CM7b5GUy7Vlu9x2uJ7pDb/4eXryN/YvPSiWnh1j/B2SvlHSd9prPyrpK4uiWIUQ/qakr5T05WfvvbMoio94Lo2oVqt66KGHtLe3pyeeeELj8TjWk3XjUA2qRsAWdzqdeCKZb95e/gkwxHXQMXK0LXpjQsOwqsgZYOIAv7DIMFqSIosMw0k5LzZPpAutVivW73UG2JO4XJ8KMAZwUQ8WUOCnpAGCvLYu7YNt5xqc5oVEYLM5LWPX6/X0wAMPaG9vL4Jm2oUGGWmG95/2TqdTTSaT25KwAE8AJcbWEye9bi+sKzpcxsLZX+a1VqtF3S9gzEEmjLRLP3yc3ekA+HB9xovx8aQ41zR7mB3A58lhXIv7UB4QJhZg7EDbJQGMEaDYHUfu5SfTuebYxx1AzzUZP18zOBWe5Edtb4+KcH3u7+PuMhmAMfMKaHX5AuPkjhHv03ZnkL36B0wuzwEgOK3xTH+4Zio3ARizxnGmeY9/OwN+XhWLS2Dfobv8u53tYu2z/uqP5hrG2S69TTYLve6H/qxe89hbtHvRjXmW9ozAuCiKnzhjFPy1f2///WlJn/1CGlGtVnXlyhXVajUdHR1pNBpFxsz1mdRglU6ZSypHwCJ5CSxCoCRN8TlkAp7gAxPdarVKJcO89Bu6V9hfZwYBJIAGSqkB6JrN5m2HdXjSEmHv9GQy+k9SHa+n2tsUjHFNABdaUsANAAGQD1uGDnNvb097e3sqikLD4VCtViue8Ec1Bq5HeN/ZSlhzAI+z6gAKWDvC/rCcOBXStiwa4+ZVBgCJ/X4/6ov5LADJJQyur2VeU71oWl7NGUv64BUZ3DnC3JkDdAGyXSPsCXeMS1rRwqUczk4yLv4ZwCZrA4BPX1zG4ddz1pwxpl3ueFHdAt04iYeMoTO09N1Bayp5cQDNmnZ5iR+b7kyzS1fc4XLH15MLeaaQZ7gEx+Vazkan5eUwnw9YbZd5XCZ7MX63s12cPfWnPla/o/1NF92MbNk+oL3y+x5TOK7oNX/2py+6Kc/J7oTG+AslfZf9/5UhhP8iaSTp/1MUxX8+70shhMckPSYp6oLH47GefPLJUqIZG6knThHmBKC5Rtg3PF5jI3R2UdrqPJFgYB6KhWWl9qtv3DB8MEwceessHYDSmd1UNkD7AfBoc10PDNDgjwM439QdkPhx2H59gJWHln1cSF4E5ANQAP+e0ITxGeQjAGKALv2mL4ApgDkMv4NRQvsAcO7hcgl0116VwUE648V68gQtN5dhALY44hhmFGCEvha5Swr23FnyZE7MGWHGxFlgTyL0deL6auYKqYzr1AGgzlD7M8R1PaGM58TlF16isFqtxiiDP0usOT9t0hl3Z/49kdGrPVDNw9llPudzzXgBlj2S4iDaJUbO0ONwONvMeKVlIhkTny/uhXPla/setBf8u91U+7yPZHsR7GP+2M/r4/NJ5Nkusb36H3+JXvPlP3XRzXhe9oJ+0UMI/29JK0n/9OylJyQ9WhTFrRDCR0r6tyGE1xZFMUq/WxTFmyS9SZKuXr1arFar205FczbGj3AG2Hk4lJDpeZuWh0n5HMCFTZdN1bP6YUUBiuhqHThTXxig7qFZdL/OUMJgOTAK4bQuKiCadgD6eQ3ZB6CJz3jpLhgwQDGlx2CRYWhh9+ibJyy6ThuNdlEUkREnxMw9YdDm87kmk0kp89/DzM50A3q8hJxLM5whda2r991lDjhJzsSneljAn7RNcktBJW0D+HnJL+aL+QCQueSFz+KcuYPH/Vl3qSSAseDzRAsYf38eXCLj7KmDYpd7sEY8gc9lFM4W0ybWB06h6/49Ec31zF7dQSpXlGDcGR+eA0/8pN2MM4fvSCqB9lQb7mx/WpYwlXjwbxxIpFJUPPF2uFafdYlj7nKZe8nu1O92P+wX6fvZsmXL9mF//4161VdfvjJsz9aeNzAOIfwxnSZ3vL442/2LojiWdHz2758LIbxT0mskvfUZrqXJZKKbN2+W9KuAFNhJjmH2UCngixPA2Ew9E11STCbi1C5pyxi75hFQiBaVJDlKYtHe5XIZ5RwpMEjD5M6cUQ2DNsA6AlC9UoFXDUC7S19c5+pAAxYN+QPX8KN2zwOjkmLZOQcbgAfC6CTRuYyC+RiNRqWjfwGWtM9LXwHmfNy5N/eFrWS8nbnDXDIDgw3LKKkEYgHYgFbXiQJuWDO0HSCEfIZrArQBRjgb9BPGHvbTQSmJlq519SgA84JzwLy4Zvc8UAbw82Q7dyy9RJ2fguigj8+TKEgkZTqdRrYY54zkOT+mO9UEezKdg2TGEIcAh9SlKy5zcIeQ/rHGWC8u5ahWtzXCXXOM8X8cbp4nl5GkrDTrxX97HKTfC3Ynf7ezZcuWLbXf/rVv1CN/995kirHnBYxDCJ8i6S9L+oSiKGb2+jVJB0VRrEMIr5L0akm//kzXK4pCN2/e1I0bN2LSEBvR2XXVarXi4Q4csLBer6M2mKNZ/dhgDyV7ohebJcwPQBxwDXsIMCBUD5u0Xq91eHgYpRN+YpvLGhxASFvWu9PplELilOtyiQIgBpYb8CVtQX4IocS2OSD3ihfT6TRqJj1Jyh0H2gigBsTM53Pt7OzEcLek6GBIKgFjHATGE6bPtbM+Hq63TVlv+uTVExgPNwfMkkr3gfFG5+oadECXh9jpk0crHPjATgMCAUZIabzKB/NG/3CEYLd97XufYfsBlfTbZSjuyMEQOzPtunxPSmO8kET455hLgDdrP00iZUyZWz+Ax+UOrCln2H3sU32zr00H9zgjvObSKoC/R0DOc0zRsLPm0YfjLOEMwyZzP57RVNbh65C+3Qt2p3+3s12c/cpf+3B9zzf8iv7n7m2kfrZsF2av+6ov0YNv+hmpuLeDSc+mXNs/l/SJkq6GEN4r6a/rNJu5IelHzzYqyvt8vKSvCiGcSNpI+pNFURw80z02m40ODw/jSWoeIoZl9dPQOOmrUqnE6g4OoGBcAQlskp7U4yFswAtAADat3+9H3eV8Po+h1sPDQx0cHJTYOsKvftRyypByah9Al+90u101Go3I+rKxA+gJZXuVDE8aQ0YAeOCaAGdPwAJUOXgFEPhRyoAX1y4D/mG8YUcBxF7lAMDiIWtnMvkbRs4POnGHSNomsQEw6bszkjCqnuTFew6SHKi5thlnyZlAQKmvEwev9JEqHLzHmqXd3Hs+n8djs+kD4+IOgyd1YjhgWDqWrCfGzJ+tVNdLVRPm2nW4JIwy1kRGSNhk7EheRVIAO+vt41lMHQycEZ8r7u/OWuoEsSb8er42XIbBukXqxDwAzNfrdaxk4wmMtN3nI70Xn3ed9GWzF+N3O9vFWeOH3qJf/9prOpWEZ8t28fZRf/VLdP07f07F5t6Slp1nz6YqxR895+Vve5rPfo+k73mujQAYUzCf8LuDDA7CALRKWw0rGx7saa/Xi4ddUP7LAQPAjzA8x1E78JZUShyiDYeHhzo8PNR0Oi3pbF1D6iFyWETAuifD8X+YRRKsaCv981JingTkrBagrVbbHsSAoav2a5w3JgALD+sD9vwgCAAh7OdsNoul3wC6sJ3OHqZJZSlohRFl7DCvPHC2ziKQcV2t63MB7KkD4CwgYwzb7olszAX99XA884y8BAkJbWGsaTf3nUwmJTmOA23+BqwCzvjb9c8OIGkL7bRnsTSOALvzxtM1x8vlslRKcLFYxGgJn2XsuGYq7eHZYq0BJHG00iiI63id2UZK41U2HERjfI5rMmY4asyZO15UYGENMaYpYOf3yV9zZ/KyAuMX43c728Xaj3/u79Trvvvden3r3gci2e5t++i/8iW6+s9/XsXJ5azr/lztUqRTI1XwZCU2ODZdSTFcjZQAWQSsKcyh63XTWq9+T5guTvkCUMHMegJTp9NRtVqNQIjNnU0d5smvCxBZLpdRpsFGD4Cl8gGJfc5wA2CQVzSbzVICEv1B9oAcoNvtRuCWsqtPB64B84vFIh424eWtnG0HcEwmk5h46NIFaRtOd10zTGlRFLGKgR/44UlaHjKnv856wkg6w+sl7gBcACZAUaoZlU71zR4tYB36tR10AmTX67XG43EJ8HpNY3d4cPrcYB8Bci6HcW2uj2saTcEAn+lnpC3wZe7RD7scxyUSgFNAMcmUrCO/flpuzv/tkggHj9wXRpfn5+k03Hw/Taajzz7HjKsneXpJOdfgs07ccUzBruulfYy9P5cRGGe7/634L7+so3VHmTXOdlH22//mG/VBP36g/V/7eRUW0bzX7VIAY8K7KUPnTJ7XFEbiAIBk4wYUekk3D306m8Tn04QbAByAjc16Z2dH4/FY4/FYJycn8bQylz9gAC9P/HPw5QAeoAxAALDQBwdEKcsJ0KTtKfPJa2k9VkAF4NDZVJ8PmPJ+vx/7AkMMI0uIn8M1pC077MAMIOkVBKRtWTAHnw4+UoDqbfWEOBhogAwsPX983n0sGC+va03yJuuG77MOAJNoV/2+6XVduuGOjjPJgH1nPUnQS9nLpzOXVqQg3u/hsiLm38vUsU7X63VMLmUsWYcpu+4MrjscGPPrSZup9tiZYtrJ+Dlj7FIbPsM9WUvuDLusiX6g9/ZEQJ5jbxdj4s4lY+1a6HutKkW2+8e+/ff+bn3wf/7X+ggrnZkt24thH/5336iX/YOf18aIk/vFLgUw9jA7ANCBIPrVavX0hDwP9brGdn9/X7u7u7eVuEIT6+CF1x30eNi11WrFUlXcH/as0+lE8OB1jWkPIBAZSLVajVINzKUAlMGCCe90OpG9Po9xgzUDLACGAMGu0fTQrwMkAAoA1rXWsPdopvkskgGkBgB3StVxT8A8INgZSQelzvABMlJG0tk6B+7O/KL95h7OLDO/zpDTX6kMYP2gERh+xt4lGw6cAFtoV9GEcwIjiW7Mb6qvlhT75eXcnF32OU7XQpr8lTLurBPuT/SF9c5nuD9zzby6JAIHwp0b2oqkydleIhDr9fZIadpImzabTWSQXYvebDZL69ZlIO4o8AzxnidbkjTqkSieMfpPv9Lnyq+Dk+Ta41S2ki3bRdjqvY9rqdu1+Nmy3S374O/6k/qQr/41PTx8qzb3iXQitUsBjNlYUqkDG+h4PFalUtFgMFC73Va/31ez2dRsNtNwOJQk9ft97e/vRxkATJuXAPOMdTS/kqIWmc2v0WhoMBjo2rVrkcFDTwvg9XCuV2hwjTHAqt1ux7aT0AQryMbdaDSiNlpSrM4B6GdM0Go6Q+g6Z8YRHTWggLA18gJAMfdno4cJrtfrunbtWpSZHB8fR/aQ9k2n01JFABLYGJudnZ0IDAGy0vZQCqmcNOavOZuIE+TsuSe1MTaeWOVMJAmPAGIAH/ND35GFSColSXJNDOcAIHlychLlFH4kOSDKGWHXn3siJECcsXM9tQN9N2feXd/O95gL7uF9dUDJ50kOdQ05a5XIBPdxiQhzyvpnPlmnXp6Qz/jJcZJK65T7sB55NmnveREFj/Yw7+jcPXKCQwtg94Q9HD6+g513Px+3Z2Lzs2W7m/bXP/R36x/89x/To7XuRTcl231sH/qTn6tXfP479erlW7Ve3RuVeJ6vXRpgDHODzpENxxOaAI+9Xk8hhAhoe72erly5EssuSYobH2BY2tY2RWPY6/VKpZzYDPf29nTlyhV1Op3YRsAUIPK8o4ol3ZYhzybPcdaumSSjv1araXd3N9Zp5l4w1GiTAS1eocJrucJ0uc5Z2p6klybDOSBmrAEsjUZDV65c0bVr1yQpJthxHerauiba9ccpwyZtawSn4+XMLGCJdrlUwsP10lbjCsB0SQBrptPpxGPEF4uFxuNxBFowitIpMAPEe0UJIgXcC5DqJdiQPQD+YYppo+thuZczwiTc+Vh59RRnqIloAPxwnIgyMO4pKObeqfSB8cTBgy1GE+1OK+uY9c/R39TLZp5wkJhzvy/XAnw6g+6MONIHqngwJh5x4LoeceKZlLYOLyx+6rjRd19jqaPnwJl7eBJellFku2jbLBb6E6/4BIVK0A+852dVDZlBznZn7Xf9tz+oRz/nl7R5iUTHLgUw9g2djSaVDoQQ1O121e/31el0Sock9Ho97e7ulg5BYFMHiMEc89re3p7a7bYODg5UqVQ0nU61Xq/V6/V07do17e7uql6vR6AIg+YlyVyHykbrmzevdTodXblyRa1WKwJqwAla4729PfV6PU0mE00mE41Go8jQcigIgA72MWW7XAcKwE5rCHviGuPXarW0Xq91cHCg2Wymer2uwWCgbrer1Wql4XCow8PDeK2jo6NYVs+ZTdd3AiBSoEGtZz+NLi195Yy81zambwB6wCGAFXDJvdBwS9tEMk8ohB10VpZ7eGWNVAMtbat4ACJhi2u1WinxjARQIgGr1So6GNL2ZDkYVtfbMh4+tjhJRBNwLFh37hw4iOM58LlxGQH1wHkWvDScjwnrjTloNpvRUfVT8T6Q/tZlDV7hIZWqAJ7dwaUPLkVyzTF/3EHDiWFuXN6B1KYoijgvXN/vwbj5GmBdEAXKlu3CbLNWsZE+9eHXXXRLst2H1nmJlTW/FMBYOh8Ie5iy2Wyq2+1GVhhWFbAMwACkpKweeuLNZqN2u61utxtZ2KIoNJvNtLOzo263q+vXr0eGiQQzQCMsl7N2Doq5j6QI2jqdTkk37OCnVqvpypUrun79uqrVaqxycOPGDY1Gowj6nG2rVColBswTF2H1Uj2ts3GwmTgJLkOoVCp66KGH9PDDD6vdbsfDHQC40+k0HgvtmtGUoeT/jAXWbDZvC0W75ANw60l0zni6tpq+uqyFsa3X61HTTR1egBbtQx8LCGYOU6eCcZfKJ+NJWyadOXHgCKPriaIw7axJ1tBisYiyEQfWsM/j8TjqZmFsAfh+UqG3mXa75AQpCZKaoijUbrejzAfJkDsqPl9pgiJ9YF5wPr2qhstlPNmR6zGuOCfME20IIZSOcvfxd0eHOeIaOF5ec9qlFS55cecSeRJzkyba0SZ3OLJly5Yt2/1hlxIYY2w4sH8kvbmUAc0x2kff+AHFngwVQoiJdZ7Utdls1O/39fKXv1z9fj8C89FopKeeeqrEzrEpspkCkgEKlUqlVEWD8nHINlx60Ov1YjLhanVa63Y4HJaqXThrBaDx+zhw9IQlH1MPaft7AJLpdKoQgq5evarr16+rVqtpOBxG3a0nmzEnjLdXEkiT/bhPs9nUYDBQvV6Ppw16e72dsMJcG1CElne1WsX5Yy14u0h6xIECLAL0+L8DGg//ozV1Z8QBIveFded+sMK8xni5XhZW0iMLyDAAYlK5xBrX81rUJPpxDfqJxpZ2ss6caXfZB89GtVrVfD6PCZZpAqRreJk/1jvODSwskQLAsz/jPC84ZKm2nLlkrgCqPHfpGnedsifqwTK7Q+UOpjuvrFnXnHulCu7J932tA5izZcuWLdv9YZcCGJ+3ufj/q9XT45r39vZi1QkAR7/fLyWTHR0daTKZxJD9er3W3t5e1CR3Oh1dvXpV3W43Mp+S1Ov1dP36dV29elXNZlPL5VLD4VAHBwcajUYRzNTr9ZiU5MlCMI0AA9rd6/XiwSFII0hoo1/NZjOydc5iemkrT9TzU8YALWhE6XcKNr2SgEsTPNzd7/d19epV9fv9EkgB9PA39/DKFJKiLMRZbFg1HwfAdjpeACrXUTO2OBbOZEoqRQc8CTGEEAEcDpG0ZTw9wc31w6kGlc+4JMATtZA3pOXGJJXqAm82m8i8MyfSNpHPJQ7eL/7PGPC5nZ2dOBaMP2DX/6RyGw//E8nAwUqri/jnWTPOAMMOw5rjGHAtwL5HAQCraVk31pKz5YBPl4GkyXb0mbFy4OvOoMuIfN0zRshRUobY17A7kzir6bOWLVu2bNnubbsUwJhwsbM/Upkx3t/f15UrV1SpVDQej7VcLtVut2OpJ0k6ODiIYLfZbMa/Ydp2dna0v78fj0tmE6W+6pUrVyJbjIQAcCydstNsyLB4rVarxBhL2/qoHMqBJAOgByiGZYQB9FrGMJjOVLkUAPPkNwArEg7Cwe12O46xh4/Z3GE8SQCUFOcD8JDqRSlrBugE5KOF9uQmNODVajVqpyVFBwGw6ocyAJAo8+U6ZAAPjJ6PgbSVCwDApG2dY9pGJRHAK9di7NN7YYxXCq4Brc6eA0ArlUrpIBSXPjAfLnlIwbtXdPDkTpfI8FlP5HM5hkcKvCwbzDYVJmCcAZPMuSd1EsVwGQhzAINfFEWpHjfPH/PlEgZ3RtyxSeUrOHbetzQ3gc87m+vSEv/Nwdl15htnAMmT39sjM6nePFu2bNmy3R92KYAxm/F5oK9ararf7+uhhx7S7u6uimJ7Sp5vnjCyACLYHwdVMJoOOmu105rF/X5fjzzyiDqdjsbjsabTqZ566indunUrVmlotVo6OjqKelVKegFoaAv9gMV0DS0AmhA2OlTaK6n0PQCfn/JGWBnwwvVg8Bw0tFqtCKpTcARAA6QzB8gzAEGSIjuKYwAoBojRTgciADXK6/mBGM6Uu2TAAQegxauTAFS4jzP2zmLjHCC9AexIijIM74/LChx4O8ilbWlCmYf1vaqGn1ZIlQfG2wEpLLxUrqWL5pikMcAla8MTVVMQ50wvjDVrFAcKeYWkeCAOANvBJuvRq604C+2MO2sMx4xxO4+9ZbwcKLtcAsMRcX1v+juBeeTAk3Bdg+xjhkyH9fR0yZa0wwE3c5krU2TLli3b/WOXAhhLWwYmDUs2Go0Y3t/Z2dHBwYGGw6EWi0WUPKzX65jUhPaSTcuPn221Wup2u7HsGRtlp9OJlSg44OLmzZs6OjrSdDqNoMn1qZVKJTJiAAM/SQwAy8bpiURIMgD5hLI9JO7aVWQEAFgSpXiNsLikuLnD9HY6nQhGAHi8DgAC8ABA0YrSFoAw14XN9YNOmDcPb1M3FgdgNBrFRDX64CF6SbGN55VpIwnLteEAY5dK+OEMADyvZMF9WW+0F+fH++oygHStOlsJwPMqCK63dUbagRsA2A/IAKCmdY/dscF5wbnhvjgBjFnabm8zTiRzyprzpEnvC8cueySDcaLtPH9+QqA7F56I5zIdf/YdwPI9XwO8zvfcQeY6qZ7YpRAuz/AcA9rvY+YA2Z8Rb0sGxtmyZct2/9ilAcbnMTQAUg6+mM1munXrVjzUw0Oro9FIw+EwsmqABpK2YPBarVYEEGgeO51OTAzjIAvuA3jw0C8hYU/WATDAiFJiDRkHbQAEVSqVyLry/mQyKQF8QKWzW1wX4MjrnU5Hy+UynqLHa17SDIBDn+mXJyK5BILX0LsC3gBCOBKE4HFSXBYA8KWG8Hq9joCahC9K5XlI+jxnIpWr0C/ACk6LS3L4nCdMcW1vL+zuer2OsgeXUfB95BKMEWCL5E5epy9es9hZVMAZINKrTTizzPwB2ljPzij7c5My74yXs96se9aVs918x+/PuuP67gQxP3yXteHAl3u7tMNZ4vMAsQN4IgPuBKS/FT5PqdY4ZZgdSPv6wCk8D2iniXb+zGRgnC1btmz3j10qYIx5ljilpCqVikajkW7duqXJZBLDy57MtVgsSmwxiWAAE0BxChCQUqAtvnXrlg4ODjQej2NbnJ0FxABaXfpARj/AFDYYEAeLCXhD2zidTnV0dBQTtCg3BliXttIExsvrEPspbWiZATZodfk+SXqAXcbovIQzB6CAKEAtbKqzflyP/yPhgJGsVqux7N5qtYoJiYApQIi0PSVNUpxXrpWG/b1yBqCTPtAW5twBGvdA0jGdTmMCmmt7MQfrrvelbdyH+wKccEhYT67T9cQ95sHlMs6Ccx+eF3dmcLBcduLJap64mJbBcwad9jk4lhTlKA6ouZfr0dPEPfrMuLkkgdccwHKNVIJEe1wn778X3n6fa3dw6JtXqUiZ37R9vObm7z8dSM+WLVu2bPeePeMROSGEbw8hPBVC+CV77W+EEB4PIfzC2Z9Ptfe+MoTwjhDC20MIn/xsGuGMDhuX16JFJ0oNXYzNEdaRELiHp/1gBGdw/ahbDlhYLBY6OjrSzZs3Y/1ZQCAgGgAH++oMMJUjqIeMjANg2el04pHVgMFqtarFYhEZathepAYeppe2iYoASuQiAAmvYwtgca0qzKtn7aMrlranfaF9dvBNe7kW2lkABdflb0B6etSyH3vtelSprBF1kAx4InzPISvStqIB93ZWGXbVQeHTAafpdBorkPjcOfBMq2I4yE1lIRhadGeXcU4cALMuAGuw817hwbXlq9UqrneXdMBu84fPOVNN2/nbQSnzARAtiiIeAQ6j7WN7nnyDfnAdn08H4yk4ZQ0wlqm23OU+/PG55Lr+Hv/2Z8i1zv6MeYm3VNbl6yeNaFw2ezF+t7Nly5btfrRnwxh/h6RvlPSdyetfXxTF1/kLIYQPk/RHJL1W0gdJ+rEQwmuKoviAsUbfgDzhyo9CZnNn03cGcTab6ejoKCbbAVgBZrxOgpNrPs/aHeUYTz31VLwWjCFMmAMJBzqSYla/pFJCD2yh12BeLpfqdDpROzyZTHR0dFQCy/SX8fGSX67j9FJ1qf5ZUilsTrs5qQswgJPQ6XSiMwED7+FjDxlT4cFlGs7MSYosrrSVEXAPnAgHoNK2TJhLMmg/7DT3ZJ6ZSweCrst1AMy4eJk5XyubzSZWbAD8Meep3MfBMdpg1g39wElgvJHHSOUwPOuCNeDaYsavXq+X2umOAOPj4JZ1Tf9dt53qkh2M8xmvm4xEyNl1+sTnU6mEA3AAMWPj0iR3hBgLB/wun2BtpL8fKcvrQDm1VMLhgN0lE+n3GS++447bJbTv0F3+3c6WLVu2+9GeERgXRfETIYRXPMvrfaakf1EUxbGkd4UQ3iHpoyX91DPcI4IaT0Jio/byVmyA6IWLotBwOIz6YkqxoXEEnFABwbW+3Icw/2w2i6XgnE2VthpNZAlcH1A6m810fHxcqg6BTrjb7arVakXpANfj/8gnSFZDJ0xIHeBDqbPVaqVWq6Vr165FjSn9kBRZbhhxwIQDI1hI+ull7cbjcal8HuAHZpSx8kMmAGEpMAHESopzCUPNvCAlkbYaVgAfQN7BlFSWxRRFEdlXD+2nrC5aWT8Mw7/HWvEyZkgtXALhAJlKGPyh9Jczya77Zbwpd8c1HPCl8gzGT9JtEQE/KMQ18Kx11zen5jpyXwup1MSdUr7n8g4Hwt4Pl8awTnASvPpDKqtwUOwMszsKtN3lGc4Up9KslC1OJRL+fcYglfbwG3UvaIpfjN/tbNmyZbsf7YVojL80hPB5kt4q6S8URXEo6WFJP22fee/Zax/QYIeRBUhbfakzbGzUACdPlptMJqpUTg+S8HDrycmJer2eWq2WJEUw22g0SiwvyWHT6bQUZvUwOsAGBhuZAgwr7JekKIkIIUQQx8EgrVYrggNKzAH0act8Po+gkOuhQ5YUZRkw14Abxsw3edrKtQiJM97OyI5Goxh2d6AhKSanASwllZhNdzpSq1Qq6na7EbCv1+uSNhrA5I6MJ6dJ2xC5a15dNgPAdM0o1/AEMsrtSVt23xOvGG8/VdDLcjnD6lpidO04GKwd2GnW8WQyiTIS+pb2xTXLjNFsNivVGsZpApyTnMea8FJljJ1Xs2DdEGVIGV6X5rjzClAGdNMegCQOFYDYowkpKAYs+/h7xCB1vADKzhKnbHIqwfG1zDpKf3+ejl3mOh6hOg/430N2x363s2XLlu1+tGfUGD+NfbOkD5b0EZKekPS3n+sFQgiPhRDeGkJ4q6TIlvZ6vdOGnVWkGAwG8TADNlRPTlosFppMJpGBhO1zWQEJfM4uAlQBGvybezjzxL8BxSTMAQL8KF5PDgIgwLDBEIYQSuy0SwxghZ0VpFzabDaLAAXJSJzIM3Dh7DqJiXzPS8ehg+52u/HUvaOjIw2Hw9juNJnLNbDO5PtYAM4BM1iz2YwOAuCW0nOw7oA2TmRDj+yHcTCvx8fHkVmn/4Awry/NugJoo8/ebDaxlnJRFCXZh7R1JqRtmS6fD2c7JUWHBNAOUEvHZLFYaDQaRS0zgC+tpcw1+Jsa0ABy7kfpQf8+Eh2qOdAfJES0DcDu7LZLM/i86299bACJjH36HuMCyMbh45rcz6ULaZWK86pKOLPtTK9HCXxuUokH1362gNYZbZeMYE8Hqi+h3dHf7RMd3+HmZcuWLdvF2/NijIuieJJ/hxC+VdL3n/33cUmP2Edfdvbaedd4k6Q3SVKtVitarZZ6vZ5qtZqGw6FqtdPjnhuNRgRNgE9AFlIEKkHAnrF5UQHh6tWr8aAL2GKqDwAK2Lgd4Lp2t1arRYBNYh4bKyAWsO66W1hKAAEgj2SmzWYTwQ2giUQydKfz+TyWdpO2J/XB3gE8PAkLsIQsxAGbOx2VSiUmGyItoO0epvZ+AkA9/O36XY7NBli22231er3IfOLYIN/AISmKItaa5rqARBjz2WxWAksAOeYV4IohK2DMj46OomyF9jI3sLCM+3q9juA8TcBzEMnrngzorCLOAwmNfmKgy06cHWfs6A/1ghkPwL5/lrlD1gFg4/nxcXEHxxlY+u9OKM8I682PQ3dQzNz6a8WZhh0w7AlszgTzXcYMZ8SZ7Kf5HSl9F3suLK5/1kFvCqyfzjyacJntTv9u98P+PeMRZMuWLduztecFjEMIDxVF8cTZfz9LEpnP3yfpn/3/2zubGMmuq47/Tlf1V1V3VXU8HxolEdjIEsoCGStCQYqiCMRHvDFIWZgNWUQCQZBgwcIoEoRFFiCRBRIiAiVSQCgfBBDZIBHAEitsAtiOncjJAJaINcS0Z6prqqZ63D1zWbz3v3Pq0eVpxpN+dUfnJ5W66lX1q3/dV3Xf/5177rlm9imqSRyPAs+dZp/9fp/BYMB0OsWsWtii3+/naJ5OxsrZ7ff7zOdzJpMJt2/fzqXNNCwOlXm4ePEig8FgIZcWyEPpihrKSMqMyeRev349G8nd3d08cU25vTJRfva9jIr2I4Mqcz2fzxdyMxV9vHHjBtPplMPDw/w+SveQ2VIbqCoEkCORimgpeqg28yal06mWaNZkwPl8znQ6ZT6fL5THk3lV9NlHj5WXKzMuQ6d29BHzXq9Hv99fmKzoI7u68Egp0ev1silWGyrSeXBwwHQ6XWhrP1nMm/nmMVCqgVIYZN404uCX4tb/6oLFT5j0kWIflW5G2DVp0a+K6C9UlPJw0qQ5+L/1gf2kPl2wadTDl63rdrsLvxVvZH0Kks+nbppif5Hlfu8Ln89fDImT8pSb1SN8NFcR9Cb+Is4bZB+1ln5pahrZ5v2THjff0+/rbqbaG2ZpLMEYfy/67SAIggeNuxpjM/s88EHgnJl9B/gt4INm9hiQgFeBXwRIKb1sZl8CvgEcAx9Lp5jZ3OlUyz73ej0mk0meXKeTtB+W7ff7eYLd1atXmUwm2VCNRqMc/V1fX+fcuXNcuHCB9fV1Dg8P80lWw/Cbm5t5yH4+n+dcVJ10U0rM5/M85K+UCFUXkJn1ucWz2Yz19XUGg0E2PvoMvV6Pzc3NbGhlNOp2zuZC5tw/r9co+uqrMfj3UPUK32Y+d9RXMjg+Pubg4ICjoyO2t7cZjUY5z1nGWKZSUcfbt+9UbfDHRrmtMvc3btyg260WAVG03ufGqkSeTJhSVBTx1GsVZR2Px0yn03yMfA6p0jI2NjaYzWb5/Xu9HkA2xTKsMmWKxGrFN7WlDJ5yqhXN9pPxFLmVadV3Qzm0flKcDLWG+xUt9SkAvhSZzDcsVlCRcdUFi/bpc4L9ctiK1nrT5lNA/KQ2P9qhCyu1h7T5HHIZaj/h0htKGWuZzWber8/Z9ebW4/OndYy8ofbVJfxn0s3nAy+jafD99+A06AJHv+lV4Sz67SAIggeR01Sl+LkTNn/mLV7/SeCT/x8RyplVdNQPW+tEePPmzYVI8ng8Zjwe50jf+fPn2drayidvpVDIiGqBDuVqHh8f0+/32d3dzWYEyBFnRUQ1tC0jKmMh0+QrM+h9FCn0E3+k3Vc1OD6uFpRoVjLQ8td+39qP8oLhTmRR+/KltryJUITWm2wZQ73HcDhkOBzmY7C2VtUululSZNmnDyi9RTWONTFPFSZ2dnZyiTFFmpUGolxsRemVA678ahkvTVC8fv16bneVC5NGRb/X1tZyuoXaQ1FhrSboo59KT/DpIv47p/fX8dNrVTdaJrKZsiDzCneqSPg0Al/xRN8hXxrNpwX4qL90NKO3iuorWqyLI28ofUUF7a+Z/wxk4672V4Tam3ifF6w2g+VLJHuT6bWclAbRNNm62FAaia/77A219qn0jObzyyLBvub2sujzMry5XzXOot8OgiB4EFmJle90Qrt27drChDdFA3WS99Uk9vf3GY/HdDodzp8/z2g0ynm6GxsbjEYjhsMht27dWpjkpuHnbrebl4G+evVqNsveKCj6p//VydMvZ6zosZkt5Awrt1U1e/2wu2oEz2Yzjo6OcrR0Pp/n6PfGxkY2if5krfrHSkHwkT1tl9n15ljRRF8dQSXXtra2uHTpEkBeREVRckURp9Nprugho3d8fLxQ7UEXBlClMKj6hiKqMug+F9fXala1DKFJh8q5Xl9fz9FnXRDt7Ozk/OXxeMwbb7zBbDbLNY51/GRI/WiAbjJH+h9FO32lCJkmn5rhj40uDLwR8xPRmjm8MtpeG9zJ01WE1v8OmqkWPufbl4STfj32lVI0quANqL9Ya0aLvQlXJL1pOpvR5yY+Uuxzhn00uTmZTcfOR311fHyahjfG/oLGV1PxFz5ek89xbpr70+D/PwiCIHgwWAljnFJiPB7nfE+dgFWxQEPJijhOJhNmsxmdToe9vT329vbY2dlhOp0C1WSvwWAAVKWxlJ6h6LAmeW1vb3Pr1q28ap4qP2xtbeVJb3ofH23t9Xq5tJmiljJJ29vbOa9WaRrKm1bkcjweM5/P8+sfeuihbGgGgwG7u7sLE+f8pENF/WQ4Nayu4W5FMf3wvDdhfoKZqlUoBUXl4FTho5nTqfJuMiubm5u5PJlWn5MJ1kQ4vyiErxiiFAmZdbU1kC8gZrNZ/hy9Xi9HsJVSoVxppUxMp9P8HVBEWuZbxsdXDtF7yRTDnQilz7H1aSlqF7Wz2kXbvAFXfnRz8po3lr78XNPAK8Kt5xXBFv7CyBtIH3n2qTT6/NqXTLJMuD6j2sFHwqXFG2M99ubaG1zf5n4EpanZm1Lp8qZZv329t7/Y8cfUt7s3q00Dr++1n8R5t9ziZiTZG+owxkEQBA8OK2OMFV1ThGx3dzcbHkVhB4NBNrLKix0Oh+zt7S3M1h8Oh6ytrXHt2jUmkwn7+/tcuHAhn7w7nare7NraWl4cZDKZMJ1O81Dy4eEhV65cyUO4a2tr2TSrDNrR0RH9fj9PelKupips9Pv9fAJXPrJSAjqdDqPRKC8drcVBhsMhW1tb2UwDefheJ31FVWV8fFTQn6hlMt58880cNVfE2UcTVcZsMpnkJZ5VNs9XM/CTubSan0+h8LmwKgGnsmKqYazqEko7UDk5X19XEXWltGjVQhk4VcDQBZBGGw4ODhYmxqmtdNHiKz34XGs/cU0pF748n8ywjoevEqELD0VWfS3ek8q9NSuHCB2zZj6vRhpklL1xlBFslpPT8z6CqtcL/53xUWo/UdM/p3xf7cundTRLxsk0yoTqc+m77NvnJFPpUylkXNV2Psru9UqzLnybucLNx950380U+//373UvUeYgCIJgtVkJYwwsnLx3d3e5ePEiOzs7OWKoyXn7+/s5FUImVNEkDXN3u91cEmt/f59ut5sn7cnoKhqtaOXBwQHz+Zxut5vr+c5mM4bD4YIOn6esKg4pJabTaTYQvvauX8VLJ3ylWmjyn1/4YzAY5EirzKbMgUyBDJMm88n8Avk1Mh8ppRx9VvtqX4o0Hx4e5pztmzdv5v3KBHvT682QTKyvJ6zPrgsMlV9T6slkMlkwN/p/pTToeOgzDgaDbHK9IdNkO5ltGX+fKyzdy4b94U40U3Wm/QQ9LSLjjaYMoK8RrAsHP6ogndLYHHKXHr+Yh6L5Ol7S69/TRzr98dBn8ZHwZRPJvCn0kXGfa+wjqdq3R2khvubySSkL2q9/3pv306CREH+x4aPOat+T9nuSoVWb6rfQbJ+TWGawte00+wiCIAhWH1uFDt3M/geYAftta7lHzlGudihbf8naIfS3yf3U/n0ppfP3aV9FYGbXgVfa1vE2iO9ue5Ssv2TtULb+M+mzV8IYA5jZ11JK721bx71QsnYoW3/J2iH0t0nJ2leB0tuvZP0la4ey9ZesHcrWf1ba73VJ6CAIgiAIgiB4oAhjHARBEARBEASsljH+o7YFvA1K1g5l6y9ZO4T+NilZ+ypQevuVrL9k7VC2/pK1Q9n6z0T7yuQYB0EQBEEQBEGbrFLEOAiCIAiCIAhao3VjbGY/bWavmNllM3u6bT2nwcxeNbOvm9nzZva1ets7zOyrZvbt+u9e2zqFmX3WzF43s5fcthP1WsXv18fjRTN7vD3lS7V/wsxeq9v/eTN7wj33G7X2V8zsp9pRnbW828yeMbNvmNnLZvar9fZS2n6Z/lLaf8vMnjOzF2r9v11vf9jMnq11ftHMNurtm/Xjy/Xz39+m/lWmtH47+uyzo+Q+u9ZTbL8dffZ96rNV4L6NG9AB/h14BNgAXgDe06amU+p+FTjX2Pa7wNP1/aeB32lbp9P2AeBx4KW76QWeAP4GMOB9wLMrqP0TwK+f8Nr31N+hTeDh+rvVaVH7JeDx+v4u8K1aYyltv0x/Ke1vwE59fx14tm7XLwFP1ds/DfxSff+XgU/X958Cvthm+6/qrcR+O/rs1rUX0WfUmortt6PPvj99dtsR4x8BLqeU/iOl9CbwBeDJljXdK08Cn6vvfw74mfakLJJS+kfgamPzMr1PAn+SKv4JGJnZpTMRegJLtC/jSeALKaWbKaX/BC5TfcdaIaV0JaX0r/X968A3gXdSTtsv07+MVWv/lFKa1g/X61sCfgz4cr292f46Ll8Gftws1ns+gQel344++3tAyX02lN1vR599f/rsto3xO4H/co+/w1sfxFUhAX9rZv9iZr9Qb7uYUrpS3/9v4GI70k7NMr2lHJNfqYetPuuGQFdWez3E88NUV8DFtX1DPxTS/mbWMbPngdeBr1JFRMYpJa2F7TVm/fXzB8BDZyq4DFbuOJ+C6LPbp4g+w1Nyvx199r3TtjEulfenlB4HPgR8zMw+4J9MVVy/mHIfpekF/hD4AeAx4Arwe62quQtmtgP8BfBrKaWJf66Etj9BfzHtn1K6lVJ6DHgXVSTkB9tVFLRE9NntUkyfIUrut6PPfnu0bYxfA97tHr+r3rbSpJReq/++DvwV1cH7roZP6r+vt6fwVCzTu/LHJKX03frHcxv4Y+4M/aycdjNbp+qg/iyl9Jf15mLa/iT9JbW/SCmNgWeAH6Ua6uzWT3mNWX/9/BB442yVFsHKHudlRJ/dLqX1GSX329Fnv/0+u21j/M/Ao/WMww2q5OmvtKzpLTGzvpnt6j7wk8BLVLo/Ur/sI8Bft6Pw1CzT+xXg5+uZtu8DDtzw0UrQyN/6War2h0r7U/VM1YeBR4HnzlqfqHOdPgN8M6X0KfdUEW2/TH9B7X/ezEb1/W3gJ6hy7p4BPly/rNn+Oi4fBv6hjgwFixTVb0ef3T6l9BlQdr8dffZ96rObs/HO+kY1o/NbVHkkH29bzyn0PkI1i/MF4GVppspr+Xvg28DfAe9oW6vT/Hmq4ZMjqvycjy7TSzUr9A/q4/F14L0rqP1Pa20v1j+MS+71H6+1vwJ8qGXt76cabnsReL6+PVFQ2y/TX0r7/xDwb7XOl4DfrLc/QtX5Xwb+HNist2/Vjy/Xzz/Spv5VvpXUb0efvRLai+gzaj3F9tvRZ9+fPjtWvguCIAiCIAgC2k+lCIIgCIIgCIKVIIxxEARBEARBEBDGOAiCIAiCIAiAMMZBEARBEARBAIQxDoIgCIIgCAIgjHEQBEEQBEEQAGGMgyAIgiAIggAIYxwEQRAEQRAEAPwv7mW0TSjLBDEAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "tensor(0.) tensor(2.)\n" + ] + } + ], + "source": [ + "imgnum = 2\n", + "check_data = first(val_loader[0])\n", + "image, label = (check_data[\"image\"][imgnum][0], check_data[\"label\"][imgnum][0])\n", + "print(check_data[\"image\"].shape)\n", + "print(image.shape)\n", + "print(f\"image shape: {image.shape}, label shape: {label.shape}\")\n", + "plt.figure(\"check\", (12, 6))\n", + "plt.subplot(1, 2, 1)\n", + "plt.title(\"image\")\n", + "plt.imshow(image[:, :, 2], cmap=\"gray\")\n", + "plt.subplot(1, 2, 2)\n", + "plt.title(\"label\")\n", + "plt.imshow(label[:, :, 2])\n", + "plt.show()\n", + "print(label.min(), label.max())" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "5197d7dd", + "metadata": {}, + "outputs": [], + "source": [ + "device = torch.device(\"cuda:\"+str(device_num))\n", + "\n", + "max_epochs = 500\n", + "net_channels=(32, 64, 128)\n", + "net_strides=(2, 2)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "98bd21de", + "metadata": {}, + "outputs": [], + "source": [ + "from monai.networks.nets import UNETR\n", + "# model = UNETR(1, \n", + "# num_classes, \n", + "# image.shape, \n", + "# feature_size=16, \n", + "# hidden_size=768, \n", + "# mlp_dim=3072, \n", + "# num_heads=12, \n", + "# pos_embed='conv', \n", + "# norm_name='instance', \n", + "# conv_block=True, \n", + "# res_block=True, \n", + "# dropout_rate=0.0, \n", + "# spatial_dims=3).to(device)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "a32f40bc", + "metadata": {}, + "outputs": [], + "source": [ + "# model(check_data['image'].to(device))\n", + "# model\n", + "# check_data['image']\n", + "\n", + "import gc\n", + "gc.collect()\n", + "torch.cuda.empty_cache()\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "2591bee5", + "metadata": {}, + "outputs": [], + "source": [ + "device=1\n", + "def vfold_train(vfold_num, train_loader, val_loader):\n", + "# model = UNet(\n", + "# dimensions=3,\n", + "# in_channels=1,\n", + "# out_channels=num_classes,\n", + "# channels=net_channels,\n", + "# strides=net_strides,\n", + "# num_res_units=2,\n", + "# norm=Norm.BATCH,\n", + "# ).to(device)\n", + " \n", + " model = UNETR(1, \n", + " num_classes, \n", + " image.shape, \n", + " feature_size=16, \n", + " hidden_size=768, \n", + " mlp_dim=3072, \n", + " num_heads=12, \n", + " pos_embed='conv', \n", + " norm_name='instance', \n", + " conv_block=True, \n", + " res_block=True, \n", + " dropout_rate=0.0, \n", + " spatial_dims=3).to(device)\n", + " \n", + " loss_function = DiceLoss(to_onehot_y=True, softmax=True)\n", + " optimizer = torch.optim.Adam(model.parameters(), 1e-4)\n", + " dice_metric = DiceMetric(include_background=False, reduction=\"mean\")\n", + "\n", + " val_interval = 2\n", + " best_metric = -1\n", + " best_metric_epoch = -1\n", + " epoch_loss_values = []\n", + " metric_values = []\n", + "\n", + " post_pred = Compose([EnsureType(), AsDiscrete(argmax=True, to_onehot=True, num_classes=num_classes)])\n", + " post_label = Compose([EnsureType(), AsDiscrete(to_onehot=True, num_classes=num_classes)])\n", + "\n", + " for epoch in range(max_epochs):\n", + " print(\"-\" * 10)\n", + " print(f\"{vfold_num}: epoch {epoch + 1}/{max_epochs}\")\n", + " model.train()\n", + " epoch_loss = 0\n", + " step = 0\n", + " for batch_data in train_loader:\n", + " step += 1\n", + " inputs, labels = (\n", + " batch_data[\"image\"].to(device),\n", + " batch_data[\"label\"].to(device),\n", + " )\n", + " optimizer.zero_grad()\n", + " outputs = model(inputs)\n", + " loss = loss_function(outputs, labels)\n", + " loss.backward()\n", + " optimizer.step()\n", + " epoch_loss += loss.item()\n", + " print(f\"{step}/{len(train_ds) // train_loader.batch_size}, \"\n", + " f\"train_loss: {loss.item():.4f}\")\n", + " epoch_loss /= step\n", + " epoch_loss_values.append(epoch_loss)\n", + " print(f\"{vfold_num} epoch {epoch + 1} average loss: {epoch_loss:.4f}\")\n", + "\n", + " if (epoch + 1) % val_interval == 0:\n", + " model.eval()\n", + " with torch.no_grad():\n", + " for val_data in val_loader:\n", + " val_inputs, val_labels = (\n", + " val_data[\"image\"].to(device),\n", + " val_data[\"label\"].to(device),\n", + " )\n", + " roi_size = (size_x, size_y, num_slices)\n", + " sw_batch_size = batch_size_vl\n", + " val_outputs = sliding_window_inference(\n", + " val_inputs, roi_size, sw_batch_size, model)\n", + " val_outputs = [post_pred(i) for i in decollate_batch(val_outputs)]\n", + " val_labels = [post_label(i) for i in decollate_batch(val_labels)]\n", + " # compute metric for current iteration\n", + " dice_metric(y_pred=val_outputs, y=val_labels)\n", + "\n", + " # aggregate the final mean dice result\n", + " metric = dice_metric.aggregate().item()\n", + " # reset the status for next validation round\n", + " dice_metric.reset()\n", + "\n", + " metric_values.append(metric)\n", + " if metric > best_metric:\n", + " best_metric = metric\n", + " best_metric_epoch = epoch + 1\n", + " torch.save(model.state_dict(), model_filename_base+'_'+str(vfold_num)+'.pth')\n", + " print(\"saved new best metric model\")\n", + " print(\n", + " f\"current epoch: {epoch + 1} current mean dice: {metric:.4f}\"\n", + " f\"\\nbest mean dice: {best_metric:.4f} \"\n", + " f\"at epoch: {best_metric_epoch}\"\n", + " )\n", + "\n", + " np.save(model_filename_base+\"_loss_\"+str(vfold_num)+\".npy\", epoch_loss_values)\n", + " np.save(model_filename_base+\"_val_dice_\"+str(vfold_num)+\".npy\", metric_values)\n", + "\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "5aa4ecfe", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "----------\n", + "0: epoch 1/500\n", + "1/0, train_loss: 0.7591\n", + "0 epoch 1 average loss: 0.7591\n", + "----------\n", + "0: epoch 2/500\n", + "1/0, train_loss: 0.7524\n", + "0 epoch 2 average loss: 0.7524\n", + "saved new best metric model\n", + "current epoch: 2 current mean dice: 0.3267\n", + "best mean dice: 0.3267 at epoch: 2\n", + "----------\n", + "0: epoch 3/500\n", + "1/0, train_loss: 0.7471\n", + "0 epoch 3 average loss: 0.7471\n", + "----------\n", + "0: epoch 4/500\n", + "1/0, train_loss: 0.7411\n", + "0 epoch 4 average loss: 0.7411\n", + "saved new best metric model\n", + "current epoch: 4 current mean dice: 0.3427\n", + "best mean dice: 0.3427 at epoch: 4\n", + "----------\n", + "0: epoch 5/500\n", + "1/0, train_loss: 0.7369\n", + "0 epoch 5 average loss: 0.7369\n", + "----------\n", + "0: epoch 6/500\n", + "1/0, train_loss: 0.7330\n", + "0 epoch 6 average loss: 0.7330\n", + "saved new best metric model\n", + "current epoch: 6 current mean dice: 0.3518\n", + "best mean dice: 0.3518 at epoch: 6\n", + "----------\n", + "0: epoch 7/500\n", + "1/0, train_loss: 0.7293\n", + "0 epoch 7 average loss: 0.7293\n", + "----------\n", + "0: epoch 8/500\n", + "1/0, train_loss: 0.7266\n", + "0 epoch 8 average loss: 0.7266\n", + "saved new best metric model\n", + "current epoch: 8 current mean dice: 0.3558\n", + "best mean dice: 0.3558 at epoch: 8\n", + "----------\n", + "0: epoch 9/500\n", + "1/0, train_loss: 0.7241\n", + "0 epoch 9 average loss: 0.7241\n", + "----------\n", + "0: epoch 10/500\n", + "1/0, train_loss: 0.7231\n", + "0 epoch 10 average loss: 0.7231\n", + "saved new best metric model\n", + "current epoch: 10 current mean dice: 0.3572\n", + "best mean dice: 0.3572 at epoch: 10\n", + "----------\n", + "0: epoch 11/500\n", + "1/0, train_loss: 0.7221\n", + "0 epoch 11 average loss: 0.7221\n", + "----------\n", + "0: epoch 12/500\n", + "1/0, train_loss: 0.7180\n", + "0 epoch 12 average loss: 0.7180\n", + "current epoch: 12 current mean dice: 0.3572\n", + "best mean dice: 0.3572 at epoch: 10\n", + "----------\n", + "0: epoch 13/500\n", + "1/0, train_loss: 0.7166\n", + "0 epoch 13 average loss: 0.7166\n", + "----------\n", + "0: epoch 14/500\n", + "1/0, train_loss: 0.7144\n", + "0 epoch 14 average loss: 0.7144\n", + "current epoch: 14 current mean dice: 0.3568\n", + "best mean dice: 0.3572 at epoch: 10\n", + "----------\n", + "0: epoch 15/500\n", + "1/0, train_loss: 0.7133\n", + "0 epoch 15 average loss: 0.7133\n", + "----------\n", + "0: epoch 16/500\n", + "1/0, train_loss: 0.7137\n", + "0 epoch 16 average loss: 0.7137\n", + "current epoch: 16 current mean dice: 0.3558\n", + "best mean dice: 0.3572 at epoch: 10\n", + "----------\n", + "0: epoch 17/500\n", + "1/0, train_loss: 0.7101\n", + "0 epoch 17 average loss: 0.7101\n", + "----------\n", + "0: epoch 18/500\n", + "1/0, train_loss: 0.7088\n", + "0 epoch 18 average loss: 0.7088\n", + "current epoch: 18 current mean dice: 0.3549\n", + "best mean dice: 0.3572 at epoch: 10\n", + "----------\n", + "0: epoch 19/500\n", + "1/0, train_loss: 0.7065\n", + "0 epoch 19 average loss: 0.7065\n", + "----------\n", + "0: epoch 20/500\n", + "1/0, train_loss: 0.7055\n", + "0 epoch 20 average loss: 0.7055\n", + "current epoch: 20 current mean dice: 0.3537\n", + "best mean dice: 0.3572 at epoch: 10\n", + "----------\n", + "0: epoch 21/500\n", + "1/0, train_loss: 0.7031\n", + "0 epoch 21 average loss: 0.7031\n", + "----------\n", + "0: epoch 22/500\n", + "1/0, train_loss: 0.7021\n", + "0 epoch 22 average loss: 0.7021\n", + "current epoch: 22 current mean dice: 0.3529\n", + "best mean dice: 0.3572 at epoch: 10\n", + "----------\n", + "0: epoch 23/500\n", + "1/0, train_loss: 0.7008\n", + "0 epoch 23 average loss: 0.7008\n", + "----------\n", + "0: epoch 24/500\n", + "1/0, train_loss: 0.7002\n", + "0 epoch 24 average loss: 0.7002\n", + "current epoch: 24 current mean dice: 0.3524\n", + "best mean dice: 0.3572 at epoch: 10\n", + "----------\n", + "0: epoch 25/500\n", + "1/0, train_loss: 0.6977\n", + "0 epoch 25 average loss: 0.6977\n", + "----------\n", + "0: epoch 26/500\n", + "1/0, train_loss: 0.6965\n", + "0 epoch 26 average loss: 0.6965\n", + "current epoch: 26 current mean dice: 0.3526\n", + "best mean dice: 0.3572 at epoch: 10\n", + "----------\n", + "0: epoch 27/500\n", + "1/0, train_loss: 0.6921\n", + "0 epoch 27 average loss: 0.6921\n", + "----------\n", + "0: epoch 28/500\n", + "1/0, train_loss: 0.6899\n", + "0 epoch 28 average loss: 0.6899\n", + "current epoch: 28 current mean dice: 0.3550\n", + "best mean dice: 0.3572 at epoch: 10\n", + "----------\n", + "0: epoch 29/500\n", + "1/0, train_loss: 0.6894\n", + "0 epoch 29 average loss: 0.6894\n", + "----------\n", + "0: epoch 30/500\n", + "1/0, train_loss: 0.6866\n", + "0 epoch 30 average loss: 0.6866\n", + "current epoch: 30 current mean dice: 0.3509\n", + "best mean dice: 0.3572 at epoch: 10\n", + "----------\n", + "0: epoch 31/500\n", + "1/0, train_loss: 0.6823\n", + "0 epoch 31 average loss: 0.6823\n", + "----------\n", + "0: epoch 32/500\n", + "1/0, train_loss: 0.6840\n", + "0 epoch 32 average loss: 0.6840\n", + "saved new best metric model\n", + "current epoch: 32 current mean dice: 0.3595\n", + "best mean dice: 0.3595 at epoch: 32\n", + "----------\n", + "0: epoch 33/500\n", + "1/0, train_loss: 0.6775\n", + "0 epoch 33 average loss: 0.6775\n", + "----------\n", + "0: epoch 34/500\n", + "1/0, train_loss: 0.6772\n", + "0 epoch 34 average loss: 0.6772\n", + "saved new best metric model\n", + "current epoch: 34 current mean dice: 0.3601\n", + "best mean dice: 0.3601 at epoch: 34\n", + "----------\n", + "0: epoch 35/500\n", + "1/0, train_loss: 0.6727\n", + "0 epoch 35 average loss: 0.6727\n", + "----------\n", + "0: epoch 36/500\n", + "1/0, train_loss: 0.6690\n", + "0 epoch 36 average loss: 0.6690\n", + "saved new best metric model\n", + "current epoch: 36 current mean dice: 0.3675\n", + "best mean dice: 0.3675 at epoch: 36\n", + "----------\n", + "0: epoch 37/500\n", + "1/0, train_loss: 0.6663\n", + "0 epoch 37 average loss: 0.6663\n", + "----------\n", + "0: epoch 38/500\n", + "1/0, train_loss: 0.6637\n", + "0 epoch 38 average loss: 0.6637\n", + "saved new best metric model\n", + "current epoch: 38 current mean dice: 0.3778\n", + "best mean dice: 0.3778 at epoch: 38\n", + "----------\n", + "0: epoch 39/500\n", + "1/0, train_loss: 0.6607\n", + "0 epoch 39 average loss: 0.6607\n", + "----------\n", + "0: epoch 40/500\n", + "1/0, train_loss: 0.6563\n", + "0 epoch 40 average loss: 0.6563\n", + "saved new best metric model\n", + "current epoch: 40 current mean dice: 0.3816\n", + "best mean dice: 0.3816 at epoch: 40\n", + "----------\n", + "0: epoch 41/500\n", + "1/0, train_loss: 0.6529\n", + "0 epoch 41 average loss: 0.6529\n", + "----------\n", + "0: epoch 42/500\n", + "1/0, train_loss: 0.6501\n", + "0 epoch 42 average loss: 0.6501\n", + "saved new best metric model\n", + "current epoch: 42 current mean dice: 0.3847\n", + "best mean dice: 0.3847 at epoch: 42\n", + "----------\n", + "0: epoch 43/500\n", + "1/0, train_loss: 0.6467\n", + "0 epoch 43 average loss: 0.6467\n", + "----------\n", + "0: epoch 44/500\n", + "1/0, train_loss: 0.6422\n", + "0 epoch 44 average loss: 0.6422\n", + "saved new best metric model\n", + "current epoch: 44 current mean dice: 0.3937\n", + "best mean dice: 0.3937 at epoch: 44\n", + "----------\n", + "0: epoch 45/500\n", + "1/0, train_loss: 0.6409\n", + "0 epoch 45 average loss: 0.6409\n", + "----------\n", + "0: epoch 46/500\n", + "1/0, train_loss: 0.6397\n", + "0 epoch 46 average loss: 0.6397\n", + "saved new best metric model\n", + "current epoch: 46 current mean dice: 0.4045\n", + "best mean dice: 0.4045 at epoch: 46\n", + "----------\n", + "0: epoch 47/500\n", + "1/0, train_loss: 0.6371\n", + "0 epoch 47 average loss: 0.6371\n", + "----------\n", + "0: epoch 48/500\n", + "1/0, train_loss: 0.6344\n", + "0 epoch 48 average loss: 0.6344\n", + "saved new best metric model\n", + "current epoch: 48 current mean dice: 0.4055\n", + "best mean dice: 0.4055 at epoch: 48\n", + "----------\n", + "0: epoch 49/500\n", + "1/0, train_loss: 0.6302\n", + "0 epoch 49 average loss: 0.6302\n", + "----------\n", + "0: epoch 50/500\n", + "1/0, train_loss: 0.6323\n", + "0 epoch 50 average loss: 0.6323\n", + "saved new best metric model\n", + "current epoch: 50 current mean dice: 0.4119\n", + "best mean dice: 0.4119 at epoch: 50\n", + "----------\n", + "0: epoch 51/500\n", + "1/0, train_loss: 0.6287\n", + "0 epoch 51 average loss: 0.6287\n", + "----------\n", + "0: epoch 52/500\n", + "1/0, train_loss: 0.6240\n", + "0 epoch 52 average loss: 0.6240\n", + "current epoch: 52 current mean dice: 0.3997\n", + "best mean dice: 0.4119 at epoch: 50\n", + "----------\n", + "0: epoch 53/500\n", + "1/0, train_loss: 0.6238\n", + "0 epoch 53 average loss: 0.6238\n", + "----------\n", + "0: epoch 54/500\n", + "1/0, train_loss: 0.6207\n", + "0 epoch 54 average loss: 0.6207\n", + "saved new best metric model\n", + "current epoch: 54 current mean dice: 0.4199\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 55/500\n", + "1/0, train_loss: 0.6219\n", + "0 epoch 55 average loss: 0.6219\n", + "----------\n", + "0: epoch 56/500\n", + "1/0, train_loss: 0.6166\n", + "0 epoch 56 average loss: 0.6166\n", + "current epoch: 56 current mean dice: 0.4129\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 57/500\n", + "1/0, train_loss: 0.6166\n", + "0 epoch 57 average loss: 0.6166\n", + "----------\n", + "0: epoch 58/500\n", + "1/0, train_loss: 0.6170\n", + "0 epoch 58 average loss: 0.6170\n", + "current epoch: 58 current mean dice: 0.4114\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 59/500\n", + "1/0, train_loss: 0.6165\n", + "0 epoch 59 average loss: 0.6165\n", + "----------\n", + "0: epoch 60/500\n", + "1/0, train_loss: 0.6116\n", + "0 epoch 60 average loss: 0.6116\n", + "current epoch: 60 current mean dice: 0.4181\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 61/500\n", + "1/0, train_loss: 0.6118\n", + "0 epoch 61 average loss: 0.6118\n", + "----------\n", + "0: epoch 62/500\n", + "1/0, train_loss: 0.6110\n", + "0 epoch 62 average loss: 0.6110\n", + "current epoch: 62 current mean dice: 0.4113\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 63/500\n", + "1/0, train_loss: 0.6088\n", + "0 epoch 63 average loss: 0.6088\n", + "----------\n", + "0: epoch 64/500\n", + "1/0, train_loss: 0.6050\n", + "0 epoch 64 average loss: 0.6050\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "current epoch: 64 current mean dice: 0.4006\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 65/500\n", + "1/0, train_loss: 0.6032\n", + "0 epoch 65 average loss: 0.6032\n", + "----------\n", + "0: epoch 66/500\n", + "1/0, train_loss: 0.6034\n", + "0 epoch 66 average loss: 0.6034\n", + "current epoch: 66 current mean dice: 0.4020\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 67/500\n", + "1/0, train_loss: 0.5996\n", + "0 epoch 67 average loss: 0.5996\n", + "----------\n", + "0: epoch 68/500\n", + "1/0, train_loss: 0.6003\n", + "0 epoch 68 average loss: 0.6003\n", + "current epoch: 68 current mean dice: 0.4133\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 69/500\n", + "1/0, train_loss: 0.5968\n", + "0 epoch 69 average loss: 0.5968\n", + "----------\n", + "0: epoch 70/500\n", + "1/0, train_loss: 0.5970\n", + "0 epoch 70 average loss: 0.5970\n", + "current epoch: 70 current mean dice: 0.3998\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 71/500\n", + "1/0, train_loss: 0.5941\n", + "0 epoch 71 average loss: 0.5941\n", + "----------\n", + "0: epoch 72/500\n", + "1/0, train_loss: 0.5945\n", + "0 epoch 72 average loss: 0.5945\n", + "current epoch: 72 current mean dice: 0.3910\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 73/500\n", + "1/0, train_loss: 0.5913\n", + "0 epoch 73 average loss: 0.5913\n", + "----------\n", + "0: epoch 74/500\n", + "1/0, train_loss: 0.5916\n", + "0 epoch 74 average loss: 0.5916\n", + "current epoch: 74 current mean dice: 0.3831\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 75/500\n", + "1/0, train_loss: 0.5938\n", + "0 epoch 75 average loss: 0.5938\n", + "----------\n", + "0: epoch 76/500\n", + "1/0, train_loss: 0.5889\n", + "0 epoch 76 average loss: 0.5889\n", + "current epoch: 76 current mean dice: 0.3841\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 77/500\n", + "1/0, train_loss: 0.5904\n", + "0 epoch 77 average loss: 0.5904\n", + "----------\n", + "0: epoch 78/500\n", + "1/0, train_loss: 0.5856\n", + "0 epoch 78 average loss: 0.5856\n", + "current epoch: 78 current mean dice: 0.3860\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 79/500\n", + "1/0, train_loss: 0.5848\n", + "0 epoch 79 average loss: 0.5848\n", + "----------\n", + "0: epoch 80/500\n", + "1/0, train_loss: 0.5817\n", + "0 epoch 80 average loss: 0.5817\n", + "current epoch: 80 current mean dice: 0.4101\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 81/500\n", + "1/0, train_loss: 0.5841\n", + "0 epoch 81 average loss: 0.5841\n", + "----------\n", + "0: epoch 82/500\n", + "1/0, train_loss: 0.5803\n", + "0 epoch 82 average loss: 0.5803\n", + "current epoch: 82 current mean dice: 0.3620\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 83/500\n", + "1/0, train_loss: 0.5776\n", + "0 epoch 83 average loss: 0.5776\n", + "----------\n", + "0: epoch 84/500\n", + "1/0, train_loss: 0.5796\n", + "0 epoch 84 average loss: 0.5796\n", + "current epoch: 84 current mean dice: 0.3821\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 85/500\n", + "1/0, train_loss: 0.5780\n", + "0 epoch 85 average loss: 0.5780\n", + "----------\n", + "0: epoch 86/500\n", + "1/0, train_loss: 0.5718\n", + "0 epoch 86 average loss: 0.5718\n", + "current epoch: 86 current mean dice: 0.3692\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 87/500\n", + "1/0, train_loss: 0.5782\n", + "0 epoch 87 average loss: 0.5782\n", + "----------\n", + "0: epoch 88/500\n", + "1/0, train_loss: 0.5735\n", + "0 epoch 88 average loss: 0.5735\n", + "current epoch: 88 current mean dice: 0.3612\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 89/500\n", + "1/0, train_loss: 0.5722\n", + "0 epoch 89 average loss: 0.5722\n", + "----------\n", + "0: epoch 90/500\n", + "1/0, train_loss: 0.5710\n", + "0 epoch 90 average loss: 0.5710\n", + "current epoch: 90 current mean dice: 0.3747\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 91/500\n", + "1/0, train_loss: 0.5724\n", + "0 epoch 91 average loss: 0.5724\n", + "----------\n", + "0: epoch 92/500\n", + "1/0, train_loss: 0.5678\n", + "0 epoch 92 average loss: 0.5678\n", + "current epoch: 92 current mean dice: 0.3748\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 93/500\n", + "1/0, train_loss: 0.5658\n", + "0 epoch 93 average loss: 0.5658\n", + "----------\n", + "0: epoch 94/500\n", + "1/0, train_loss: 0.5631\n", + "0 epoch 94 average loss: 0.5631\n", + "current epoch: 94 current mean dice: 0.3769\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 95/500\n", + "1/0, train_loss: 0.5636\n", + "0 epoch 95 average loss: 0.5636\n", + "----------\n", + "0: epoch 96/500\n", + "1/0, train_loss: 0.5620\n", + "0 epoch 96 average loss: 0.5620\n", + "current epoch: 96 current mean dice: 0.3913\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 97/500\n", + "1/0, train_loss: 0.5688\n", + "0 epoch 97 average loss: 0.5688\n", + "----------\n", + "0: epoch 98/500\n", + "1/0, train_loss: 0.5657\n", + "0 epoch 98 average loss: 0.5657\n", + "current epoch: 98 current mean dice: 0.2983\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 99/500\n", + "1/0, train_loss: 0.5627\n", + "0 epoch 99 average loss: 0.5627\n", + "----------\n", + "0: epoch 100/500\n", + "1/0, train_loss: 0.5630\n", + "0 epoch 100 average loss: 0.5630\n", + "current epoch: 100 current mean dice: 0.3099\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 101/500\n", + "1/0, train_loss: 0.5564\n", + "0 epoch 101 average loss: 0.5564\n", + "----------\n", + "0: epoch 102/500\n", + "1/0, train_loss: 0.5568\n", + "0 epoch 102 average loss: 0.5568\n", + "current epoch: 102 current mean dice: 0.3134\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 103/500\n", + "1/0, train_loss: 0.5615\n", + "0 epoch 103 average loss: 0.5615\n", + "----------\n", + "0: epoch 104/500\n", + "1/0, train_loss: 0.5570\n", + "0 epoch 104 average loss: 0.5570\n", + "current epoch: 104 current mean dice: 0.3824\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 105/500\n", + "1/0, train_loss: 0.5554\n", + "0 epoch 105 average loss: 0.5554\n", + "----------\n", + "0: epoch 106/500\n", + "1/0, train_loss: 0.5595\n", + "0 epoch 106 average loss: 0.5595\n", + "current epoch: 106 current mean dice: 0.3672\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 107/500\n", + "1/0, train_loss: 0.5537\n", + "0 epoch 107 average loss: 0.5537\n", + "----------\n", + "0: epoch 108/500\n", + "1/0, train_loss: 0.5581\n", + "0 epoch 108 average loss: 0.5581\n", + "current epoch: 108 current mean dice: 0.3577\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 109/500\n", + "1/0, train_loss: 0.5538\n", + "0 epoch 109 average loss: 0.5538\n", + "----------\n", + "0: epoch 110/500\n", + "1/0, train_loss: 0.5482\n", + "0 epoch 110 average loss: 0.5482\n", + "current epoch: 110 current mean dice: 0.2989\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 111/500\n", + "1/0, train_loss: 0.5555\n", + "0 epoch 111 average loss: 0.5555\n", + "----------\n", + "0: epoch 112/500\n", + "1/0, train_loss: 0.5485\n", + "0 epoch 112 average loss: 0.5485\n", + "current epoch: 112 current mean dice: 0.3159\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 113/500\n", + "1/0, train_loss: 0.5476\n", + "0 epoch 113 average loss: 0.5476\n", + "----------\n", + "0: epoch 114/500\n", + "1/0, train_loss: 0.5454\n", + "0 epoch 114 average loss: 0.5454\n", + "current epoch: 114 current mean dice: 0.2656\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 115/500\n", + "1/0, train_loss: 0.5457\n", + "0 epoch 115 average loss: 0.5457\n", + "----------\n", + "0: epoch 116/500\n", + "1/0, train_loss: 0.5443\n", + "0 epoch 116 average loss: 0.5443\n", + "current epoch: 116 current mean dice: 0.2635\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 117/500\n", + "1/0, train_loss: 0.5444\n", + "0 epoch 117 average loss: 0.5444\n", + "----------\n", + "0: epoch 118/500\n", + "1/0, train_loss: 0.5477\n", + "0 epoch 118 average loss: 0.5477\n", + "current epoch: 118 current mean dice: 0.3123\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 119/500\n", + "1/0, train_loss: 0.5405\n", + "0 epoch 119 average loss: 0.5405\n", + "----------\n", + "0: epoch 120/500\n", + "1/0, train_loss: 0.5363\n", + "0 epoch 120 average loss: 0.5363\n", + "current epoch: 120 current mean dice: 0.2956\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 121/500\n", + "1/0, train_loss: 0.5432\n", + "0 epoch 121 average loss: 0.5432\n", + "----------\n", + "0: epoch 122/500\n", + "1/0, train_loss: 0.5379\n", + "0 epoch 122 average loss: 0.5379\n", + "current epoch: 122 current mean dice: 0.3312\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 123/500\n", + "1/0, train_loss: 0.5374\n", + "0 epoch 123 average loss: 0.5374\n", + "----------\n", + "0: epoch 124/500\n", + "1/0, train_loss: 0.5381\n", + "0 epoch 124 average loss: 0.5381\n", + "current epoch: 124 current mean dice: 0.2869\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 125/500\n", + "1/0, train_loss: 0.5379\n", + "0 epoch 125 average loss: 0.5379\n", + "----------\n", + "0: epoch 126/500\n", + "1/0, train_loss: 0.5369\n", + "0 epoch 126 average loss: 0.5369\n", + "current epoch: 126 current mean dice: 0.2921\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 127/500\n", + "1/0, train_loss: 0.5353\n", + "0 epoch 127 average loss: 0.5353\n", + "----------\n", + "0: epoch 128/500\n", + "1/0, train_loss: 0.5389\n", + "0 epoch 128 average loss: 0.5389\n", + "current epoch: 128 current mean dice: 0.2915\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 129/500\n", + "1/0, train_loss: 0.5351\n", + "0 epoch 129 average loss: 0.5351\n", + "----------\n", + "0: epoch 130/500\n", + "1/0, train_loss: 0.5329\n", + "0 epoch 130 average loss: 0.5329\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "current epoch: 130 current mean dice: 0.2862\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 131/500\n", + "1/0, train_loss: 0.5409\n", + "0 epoch 131 average loss: 0.5409\n", + "----------\n", + "0: epoch 132/500\n", + "1/0, train_loss: 0.5423\n", + "0 epoch 132 average loss: 0.5423\n", + "current epoch: 132 current mean dice: 0.3139\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 133/500\n", + "1/0, train_loss: 0.5362\n", + "0 epoch 133 average loss: 0.5362\n", + "----------\n", + "0: epoch 134/500\n", + "1/0, train_loss: 0.5411\n", + "0 epoch 134 average loss: 0.5411\n", + "current epoch: 134 current mean dice: 0.3242\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 135/500\n", + "1/0, train_loss: 0.5324\n", + "0 epoch 135 average loss: 0.5324\n", + "----------\n", + "0: epoch 136/500\n", + "1/0, train_loss: 0.5386\n", + "0 epoch 136 average loss: 0.5386\n", + "current epoch: 136 current mean dice: 0.3456\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 137/500\n", + "1/0, train_loss: 0.5288\n", + "0 epoch 137 average loss: 0.5288\n", + "----------\n", + "0: epoch 138/500\n", + "1/0, train_loss: 0.5286\n", + "0 epoch 138 average loss: 0.5286\n", + "current epoch: 138 current mean dice: 0.3222\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 139/500\n", + "1/0, train_loss: 0.5264\n", + "0 epoch 139 average loss: 0.5264\n", + "----------\n", + "0: epoch 140/500\n", + "1/0, train_loss: 0.5317\n", + "0 epoch 140 average loss: 0.5317\n", + "current epoch: 140 current mean dice: 0.2781\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 141/500\n", + "1/0, train_loss: 0.5319\n", + "0 epoch 141 average loss: 0.5319\n", + "----------\n", + "0: epoch 142/500\n", + "1/0, train_loss: 0.5296\n", + "0 epoch 142 average loss: 0.5296\n", + "current epoch: 142 current mean dice: 0.3038\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 143/500\n", + "1/0, train_loss: 0.5363\n", + "0 epoch 143 average loss: 0.5363\n", + "----------\n", + "0: epoch 144/500\n", + "1/0, train_loss: 0.5367\n", + "0 epoch 144 average loss: 0.5367\n", + "current epoch: 144 current mean dice: 0.2656\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 145/500\n", + "1/0, train_loss: 0.5292\n", + "0 epoch 145 average loss: 0.5292\n", + "----------\n", + "0: epoch 146/500\n", + "1/0, train_loss: 0.5252\n", + "0 epoch 146 average loss: 0.5252\n", + "current epoch: 146 current mean dice: 0.2603\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 147/500\n", + "1/0, train_loss: 0.5228\n", + "0 epoch 147 average loss: 0.5228\n", + "----------\n", + "0: epoch 148/500\n", + "1/0, train_loss: 0.5262\n", + "0 epoch 148 average loss: 0.5262\n", + "current epoch: 148 current mean dice: 0.2947\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 149/500\n", + "1/0, train_loss: 0.5271\n", + "0 epoch 149 average loss: 0.5271\n", + "----------\n", + "0: epoch 150/500\n", + "1/0, train_loss: 0.5230\n", + "0 epoch 150 average loss: 0.5230\n", + "current epoch: 150 current mean dice: 0.3171\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 151/500\n", + "1/0, train_loss: 0.5243\n", + "0 epoch 151 average loss: 0.5243\n", + "----------\n", + "0: epoch 152/500\n", + "1/0, train_loss: 0.5360\n", + "0 epoch 152 average loss: 0.5360\n", + "current epoch: 152 current mean dice: 0.2832\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 153/500\n", + "1/0, train_loss: 0.5267\n", + "0 epoch 153 average loss: 0.5267\n", + "----------\n", + "0: epoch 154/500\n", + "1/0, train_loss: 0.5249\n", + "0 epoch 154 average loss: 0.5249\n", + "current epoch: 154 current mean dice: 0.2570\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 155/500\n", + "1/0, train_loss: 0.5190\n", + "0 epoch 155 average loss: 0.5190\n", + "----------\n", + "0: epoch 156/500\n", + "1/0, train_loss: 0.5247\n", + "0 epoch 156 average loss: 0.5247\n", + "current epoch: 156 current mean dice: 0.2467\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 157/500\n", + "1/0, train_loss: 0.5263\n", + "0 epoch 157 average loss: 0.5263\n", + "----------\n", + "0: epoch 158/500\n", + "1/0, train_loss: 0.5199\n", + "0 epoch 158 average loss: 0.5199\n", + "current epoch: 158 current mean dice: 0.2530\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 159/500\n", + "1/0, train_loss: 0.5223\n", + "0 epoch 159 average loss: 0.5223\n", + "----------\n", + "0: epoch 160/500\n", + "1/0, train_loss: 0.5273\n", + "0 epoch 160 average loss: 0.5273\n", + "current epoch: 160 current mean dice: 0.3023\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 161/500\n", + "1/0, train_loss: 0.5210\n", + "0 epoch 161 average loss: 0.5210\n", + "----------\n", + "0: epoch 162/500\n", + "1/0, train_loss: 0.5201\n", + "0 epoch 162 average loss: 0.5201\n", + "current epoch: 162 current mean dice: 0.2946\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 163/500\n", + "1/0, train_loss: 0.5167\n", + "0 epoch 163 average loss: 0.5167\n", + "----------\n", + "0: epoch 164/500\n", + "1/0, train_loss: 0.5172\n", + "0 epoch 164 average loss: 0.5172\n", + "current epoch: 164 current mean dice: 0.2519\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 165/500\n", + "1/0, train_loss: 0.5234\n", + "0 epoch 165 average loss: 0.5234\n", + "----------\n", + "0: epoch 166/500\n", + "1/0, train_loss: 0.5199\n", + "0 epoch 166 average loss: 0.5199\n", + "current epoch: 166 current mean dice: 0.2553\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 167/500\n", + "1/0, train_loss: 0.5202\n", + "0 epoch 167 average loss: 0.5202\n", + "----------\n", + "0: epoch 168/500\n", + "1/0, train_loss: 0.5235\n", + "0 epoch 168 average loss: 0.5235\n", + "current epoch: 168 current mean dice: 0.2477\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 169/500\n", + "1/0, train_loss: 0.5248\n", + "0 epoch 169 average loss: 0.5248\n", + "----------\n", + "0: epoch 170/500\n", + "1/0, train_loss: 0.5212\n", + "0 epoch 170 average loss: 0.5212\n", + "current epoch: 170 current mean dice: 0.2505\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 171/500\n", + "1/0, train_loss: 0.5188\n", + "0 epoch 171 average loss: 0.5188\n", + "----------\n", + "0: epoch 172/500\n", + "1/0, train_loss: 0.5164\n", + "0 epoch 172 average loss: 0.5164\n", + "current epoch: 172 current mean dice: 0.2834\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 173/500\n", + "1/0, train_loss: 0.5145\n", + "0 epoch 173 average loss: 0.5145\n", + "----------\n", + "0: epoch 174/500\n", + "1/0, train_loss: 0.5130\n", + "0 epoch 174 average loss: 0.5130\n", + "current epoch: 174 current mean dice: 0.2412\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 175/500\n", + "1/0, train_loss: 0.5118\n", + "0 epoch 175 average loss: 0.5118\n", + "----------\n", + "0: epoch 176/500\n", + "1/0, train_loss: 0.5161\n", + "0 epoch 176 average loss: 0.5161\n", + "current epoch: 176 current mean dice: 0.2376\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 177/500\n", + "1/0, train_loss: 0.5122\n", + "0 epoch 177 average loss: 0.5122\n", + "----------\n", + "0: epoch 178/500\n", + "1/0, train_loss: 0.5138\n", + "0 epoch 178 average loss: 0.5138\n", + "current epoch: 178 current mean dice: 0.2378\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 179/500\n", + "1/0, train_loss: 0.5147\n", + "0 epoch 179 average loss: 0.5147\n", + "----------\n", + "0: epoch 180/500\n", + "1/0, train_loss: 0.5120\n", + "0 epoch 180 average loss: 0.5120\n", + "current epoch: 180 current mean dice: 0.2396\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 181/500\n", + "1/0, train_loss: 0.5136\n", + "0 epoch 181 average loss: 0.5136\n", + "----------\n", + "0: epoch 182/500\n", + "1/0, train_loss: 0.5173\n", + "0 epoch 182 average loss: 0.5173\n", + "current epoch: 182 current mean dice: 0.2755\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 183/500\n", + "1/0, train_loss: 0.5098\n", + "0 epoch 183 average loss: 0.5098\n", + "----------\n", + "0: epoch 184/500\n", + "1/0, train_loss: 0.5091\n", + "0 epoch 184 average loss: 0.5091\n", + "current epoch: 184 current mean dice: 0.3214\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 185/500\n", + "1/0, train_loss: 0.5119\n", + "0 epoch 185 average loss: 0.5119\n", + "----------\n", + "0: epoch 186/500\n", + "1/0, train_loss: 0.5160\n", + "0 epoch 186 average loss: 0.5160\n", + "current epoch: 186 current mean dice: 0.2807\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 187/500\n", + "1/0, train_loss: 0.5149\n", + "0 epoch 187 average loss: 0.5149\n", + "----------\n", + "0: epoch 188/500\n", + "1/0, train_loss: 0.5063\n", + "0 epoch 188 average loss: 0.5063\n", + "current epoch: 188 current mean dice: 0.2902\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 189/500\n", + "1/0, train_loss: 0.5085\n", + "0 epoch 189 average loss: 0.5085\n", + "----------\n", + "0: epoch 190/500\n", + "1/0, train_loss: 0.5062\n", + "0 epoch 190 average loss: 0.5062\n", + "current epoch: 190 current mean dice: 0.2854\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 191/500\n", + "1/0, train_loss: 0.5126\n", + "0 epoch 191 average loss: 0.5126\n", + "----------\n", + "0: epoch 192/500\n", + "1/0, train_loss: 0.5100\n", + "0 epoch 192 average loss: 0.5100\n", + "current epoch: 192 current mean dice: 0.3000\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 193/500\n", + "1/0, train_loss: 0.5076\n", + "0 epoch 193 average loss: 0.5076\n", + "----------\n", + "0: epoch 194/500\n", + "1/0, train_loss: 0.5085\n", + "0 epoch 194 average loss: 0.5085\n", + "current epoch: 194 current mean dice: 0.3106\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 195/500\n", + "1/0, train_loss: 0.5039\n", + "0 epoch 195 average loss: 0.5039\n", + "----------\n", + "0: epoch 196/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.5074\n", + "0 epoch 196 average loss: 0.5074\n", + "current epoch: 196 current mean dice: 0.2436\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 197/500\n", + "1/0, train_loss: 0.5110\n", + "0 epoch 197 average loss: 0.5110\n", + "----------\n", + "0: epoch 198/500\n", + "1/0, train_loss: 0.5145\n", + "0 epoch 198 average loss: 0.5145\n", + "current epoch: 198 current mean dice: 0.2361\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 199/500\n", + "1/0, train_loss: 0.5051\n", + "0 epoch 199 average loss: 0.5051\n", + "----------\n", + "0: epoch 200/500\n", + "1/0, train_loss: 0.5035\n", + "0 epoch 200 average loss: 0.5035\n", + "current epoch: 200 current mean dice: 0.2377\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 201/500\n", + "1/0, train_loss: 0.5061\n", + "0 epoch 201 average loss: 0.5061\n", + "----------\n", + "0: epoch 202/500\n", + "1/0, train_loss: 0.5032\n", + "0 epoch 202 average loss: 0.5032\n", + "current epoch: 202 current mean dice: 0.3256\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 203/500\n", + "1/0, train_loss: 0.5147\n", + "0 epoch 203 average loss: 0.5147\n", + "----------\n", + "0: epoch 204/500\n", + "1/0, train_loss: 0.5058\n", + "0 epoch 204 average loss: 0.5058\n", + "current epoch: 204 current mean dice: 0.3533\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 205/500\n", + "1/0, train_loss: 0.5010\n", + "0 epoch 205 average loss: 0.5010\n", + "----------\n", + "0: epoch 206/500\n", + "1/0, train_loss: 0.5016\n", + "0 epoch 206 average loss: 0.5016\n", + "current epoch: 206 current mean dice: 0.2533\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 207/500\n", + "1/0, train_loss: 0.5062\n", + "0 epoch 207 average loss: 0.5062\n", + "----------\n", + "0: epoch 208/500\n", + "1/0, train_loss: 0.5026\n", + "0 epoch 208 average loss: 0.5026\n", + "current epoch: 208 current mean dice: 0.2307\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 209/500\n", + "1/0, train_loss: 0.5029\n", + "0 epoch 209 average loss: 0.5029\n", + "----------\n", + "0: epoch 210/500\n", + "1/0, train_loss: 0.5051\n", + "0 epoch 210 average loss: 0.5051\n", + "current epoch: 210 current mean dice: 0.2232\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 211/500\n", + "1/0, train_loss: 0.5034\n", + "0 epoch 211 average loss: 0.5034\n", + "----------\n", + "0: epoch 212/500\n", + "1/0, train_loss: 0.5094\n", + "0 epoch 212 average loss: 0.5094\n", + "current epoch: 212 current mean dice: 0.2420\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 213/500\n", + "1/0, train_loss: 0.5033\n", + "0 epoch 213 average loss: 0.5033\n", + "----------\n", + "0: epoch 214/500\n", + "1/0, train_loss: 0.5107\n", + "0 epoch 214 average loss: 0.5107\n", + "current epoch: 214 current mean dice: 0.3597\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 215/500\n", + "1/0, train_loss: 0.4990\n", + "0 epoch 215 average loss: 0.4990\n", + "----------\n", + "0: epoch 216/500\n", + "1/0, train_loss: 0.5171\n", + "0 epoch 216 average loss: 0.5171\n", + "saved new best metric model\n", + "current epoch: 216 current mean dice: 0.4238\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 217/500\n", + "1/0, train_loss: 0.5374\n", + "0 epoch 217 average loss: 0.5374\n", + "----------\n", + "0: epoch 218/500\n", + "1/0, train_loss: 0.5229\n", + "0 epoch 218 average loss: 0.5229\n", + "current epoch: 218 current mean dice: 0.1902\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 219/500\n", + "1/0, train_loss: 0.5239\n", + "0 epoch 219 average loss: 0.5239\n", + "----------\n", + "0: epoch 220/500\n", + "1/0, train_loss: 0.5247\n", + "0 epoch 220 average loss: 0.5247\n", + "current epoch: 220 current mean dice: 0.2816\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 221/500\n", + "1/0, train_loss: 0.5260\n", + "0 epoch 221 average loss: 0.5260\n", + "----------\n", + "0: epoch 222/500\n", + "1/0, train_loss: 0.5154\n", + "0 epoch 222 average loss: 0.5154\n", + "current epoch: 222 current mean dice: 0.3386\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 223/500\n", + "1/0, train_loss: 0.5108\n", + "0 epoch 223 average loss: 0.5108\n", + "----------\n", + "0: epoch 224/500\n", + "1/0, train_loss: 0.5168\n", + "0 epoch 224 average loss: 0.5168\n", + "current epoch: 224 current mean dice: 0.4076\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 225/500\n", + "1/0, train_loss: 0.5102\n", + "0 epoch 225 average loss: 0.5102\n", + "----------\n", + "0: epoch 226/500\n", + "1/0, train_loss: 0.5121\n", + "0 epoch 226 average loss: 0.5121\n", + "current epoch: 226 current mean dice: 0.3889\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 227/500\n", + "1/0, train_loss: 0.5104\n", + "0 epoch 227 average loss: 0.5104\n", + "----------\n", + "0: epoch 228/500\n", + "1/0, train_loss: 0.5089\n", + "0 epoch 228 average loss: 0.5089\n", + "current epoch: 228 current mean dice: 0.3539\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 229/500\n", + "1/0, train_loss: 0.5057\n", + "0 epoch 229 average loss: 0.5057\n", + "----------\n", + "0: epoch 230/500\n", + "1/0, train_loss: 0.5060\n", + "0 epoch 230 average loss: 0.5060\n", + "current epoch: 230 current mean dice: 0.3232\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 231/500\n", + "1/0, train_loss: 0.5090\n", + "0 epoch 231 average loss: 0.5090\n", + "----------\n", + "0: epoch 232/500\n", + "1/0, train_loss: 0.5046\n", + "0 epoch 232 average loss: 0.5046\n", + "current epoch: 232 current mean dice: 0.3021\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 233/500\n", + "1/0, train_loss: 0.5116\n", + "0 epoch 233 average loss: 0.5116\n", + "----------\n", + "0: epoch 234/500\n", + "1/0, train_loss: 0.5060\n", + "0 epoch 234 average loss: 0.5060\n", + "current epoch: 234 current mean dice: 0.2829\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 235/500\n", + "1/0, train_loss: 0.5005\n", + "0 epoch 235 average loss: 0.5005\n", + "----------\n", + "0: epoch 236/500\n", + "1/0, train_loss: 0.5017\n", + "0 epoch 236 average loss: 0.5017\n", + "current epoch: 236 current mean dice: 0.2673\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 237/500\n", + "1/0, train_loss: 0.5026\n", + "0 epoch 237 average loss: 0.5026\n", + "----------\n", + "0: epoch 238/500\n", + "1/0, train_loss: 0.5131\n", + "0 epoch 238 average loss: 0.5131\n", + "current epoch: 238 current mean dice: 0.2874\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 239/500\n", + "1/0, train_loss: 0.5053\n", + "0 epoch 239 average loss: 0.5053\n", + "----------\n", + "0: epoch 240/500\n", + "1/0, train_loss: 0.4950\n", + "0 epoch 240 average loss: 0.4950\n", + "current epoch: 240 current mean dice: 0.3038\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 241/500\n", + "1/0, train_loss: 0.4973\n", + "0 epoch 241 average loss: 0.4973\n", + "----------\n", + "0: epoch 242/500\n", + "1/0, train_loss: 0.4985\n", + "0 epoch 242 average loss: 0.4985\n", + "current epoch: 242 current mean dice: 0.2831\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 243/500\n", + "1/0, train_loss: 0.5086\n", + "0 epoch 243 average loss: 0.5086\n", + "----------\n", + "0: epoch 244/500\n", + "1/0, train_loss: 0.4960\n", + "0 epoch 244 average loss: 0.4960\n", + "current epoch: 244 current mean dice: 0.2683\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 245/500\n", + "1/0, train_loss: 0.4942\n", + "0 epoch 245 average loss: 0.4942\n", + "----------\n", + "0: epoch 246/500\n", + "1/0, train_loss: 0.4934\n", + "0 epoch 246 average loss: 0.4934\n", + "current epoch: 246 current mean dice: 0.2830\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 247/500\n", + "1/0, train_loss: 0.4944\n", + "0 epoch 247 average loss: 0.4944\n", + "----------\n", + "0: epoch 248/500\n", + "1/0, train_loss: 0.4946\n", + "0 epoch 248 average loss: 0.4946\n", + "current epoch: 248 current mean dice: 0.2604\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 249/500\n", + "1/0, train_loss: 0.4980\n", + "0 epoch 249 average loss: 0.4980\n", + "----------\n", + "0: epoch 250/500\n", + "1/0, train_loss: 0.4929\n", + "0 epoch 250 average loss: 0.4929\n", + "current epoch: 250 current mean dice: 0.2350\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 251/500\n", + "1/0, train_loss: 0.4898\n", + "0 epoch 251 average loss: 0.4898\n", + "----------\n", + "0: epoch 252/500\n", + "1/0, train_loss: 0.4951\n", + "0 epoch 252 average loss: 0.4951\n", + "current epoch: 252 current mean dice: 0.2492\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 253/500\n", + "1/0, train_loss: 0.4943\n", + "0 epoch 253 average loss: 0.4943\n", + "----------\n", + "0: epoch 254/500\n", + "1/0, train_loss: 0.5025\n", + "0 epoch 254 average loss: 0.5025\n", + "current epoch: 254 current mean dice: 0.2828\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 255/500\n", + "1/0, train_loss: 0.4902\n", + "0 epoch 255 average loss: 0.4902\n", + "----------\n", + "0: epoch 256/500\n", + "1/0, train_loss: 0.4859\n", + "0 epoch 256 average loss: 0.4859\n", + "current epoch: 256 current mean dice: 0.2849\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 257/500\n", + "1/0, train_loss: 0.4878\n", + "0 epoch 257 average loss: 0.4878\n", + "----------\n", + "0: epoch 258/500\n", + "1/0, train_loss: 0.4949\n", + "0 epoch 258 average loss: 0.4949\n", + "current epoch: 258 current mean dice: 0.2686\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 259/500\n", + "1/0, train_loss: 0.4869\n", + "0 epoch 259 average loss: 0.4869\n", + "----------\n", + "0: epoch 260/500\n", + "1/0, train_loss: 0.4884\n", + "0 epoch 260 average loss: 0.4884\n", + "current epoch: 260 current mean dice: 0.2438\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 261/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.4895\n", + "0 epoch 261 average loss: 0.4895\n", + "----------\n", + "0: epoch 262/500\n", + "1/0, train_loss: 0.4859\n", + "0 epoch 262 average loss: 0.4859\n", + "current epoch: 262 current mean dice: 0.2406\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 263/500\n", + "1/0, train_loss: 0.4860\n", + "0 epoch 263 average loss: 0.4860\n", + "----------\n", + "0: epoch 264/500\n", + "1/0, train_loss: 0.4870\n", + "0 epoch 264 average loss: 0.4870\n", + "current epoch: 264 current mean dice: 0.2581\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 265/500\n", + "1/0, train_loss: 0.4883\n", + "0 epoch 265 average loss: 0.4883\n", + "----------\n", + "0: epoch 266/500\n", + "1/0, train_loss: 0.4998\n", + "0 epoch 266 average loss: 0.4998\n", + "current epoch: 266 current mean dice: 0.2432\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 267/500\n", + "1/0, train_loss: 0.4869\n", + "0 epoch 267 average loss: 0.4869\n", + "----------\n", + "0: epoch 268/500\n", + "1/0, train_loss: 0.4902\n", + "0 epoch 268 average loss: 0.4902\n", + "current epoch: 268 current mean dice: 0.2861\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 269/500\n", + "1/0, train_loss: 0.4873\n", + "0 epoch 269 average loss: 0.4873\n", + "----------\n", + "0: epoch 270/500\n", + "1/0, train_loss: 0.4868\n", + "0 epoch 270 average loss: 0.4868\n", + "current epoch: 270 current mean dice: 0.3178\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 271/500\n", + "1/0, train_loss: 0.4879\n", + "0 epoch 271 average loss: 0.4879\n", + "----------\n", + "0: epoch 272/500\n", + "1/0, train_loss: 0.4924\n", + "0 epoch 272 average loss: 0.4924\n", + "current epoch: 272 current mean dice: 0.3043\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 273/500\n", + "1/0, train_loss: 0.4874\n", + "0 epoch 273 average loss: 0.4874\n", + "----------\n", + "0: epoch 274/500\n", + "1/0, train_loss: 0.4889\n", + "0 epoch 274 average loss: 0.4889\n", + "current epoch: 274 current mean dice: 0.2525\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 275/500\n", + "1/0, train_loss: 0.4868\n", + "0 epoch 275 average loss: 0.4868\n", + "----------\n", + "0: epoch 276/500\n", + "1/0, train_loss: 0.4864\n", + "0 epoch 276 average loss: 0.4864\n", + "current epoch: 276 current mean dice: 0.2555\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 277/500\n", + "1/0, train_loss: 0.4835\n", + "0 epoch 277 average loss: 0.4835\n", + "----------\n", + "0: epoch 278/500\n", + "1/0, train_loss: 0.4935\n", + "0 epoch 278 average loss: 0.4935\n", + "current epoch: 278 current mean dice: 0.2858\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 279/500\n", + "1/0, train_loss: 0.5006\n", + "0 epoch 279 average loss: 0.5006\n", + "----------\n", + "0: epoch 280/500\n", + "1/0, train_loss: 0.4855\n", + "0 epoch 280 average loss: 0.4855\n", + "current epoch: 280 current mean dice: 0.3082\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 281/500\n", + "1/0, train_loss: 0.4878\n", + "0 epoch 281 average loss: 0.4878\n", + "----------\n", + "0: epoch 282/500\n", + "1/0, train_loss: 0.4862\n", + "0 epoch 282 average loss: 0.4862\n", + "current epoch: 282 current mean dice: 0.2835\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 283/500\n", + "1/0, train_loss: 0.4814\n", + "0 epoch 283 average loss: 0.4814\n", + "----------\n", + "0: epoch 284/500\n", + "1/0, train_loss: 0.4842\n", + "0 epoch 284 average loss: 0.4842\n", + "current epoch: 284 current mean dice: 0.2729\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 285/500\n", + "1/0, train_loss: 0.4801\n", + "0 epoch 285 average loss: 0.4801\n", + "----------\n", + "0: epoch 286/500\n", + "1/0, train_loss: 0.4807\n", + "0 epoch 286 average loss: 0.4807\n", + "current epoch: 286 current mean dice: 0.2726\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 287/500\n", + "1/0, train_loss: 0.4842\n", + "0 epoch 287 average loss: 0.4842\n", + "----------\n", + "0: epoch 288/500\n", + "1/0, train_loss: 0.4782\n", + "0 epoch 288 average loss: 0.4782\n", + "current epoch: 288 current mean dice: 0.2568\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 289/500\n", + "1/0, train_loss: 0.4791\n", + "0 epoch 289 average loss: 0.4791\n", + "----------\n", + "0: epoch 290/500\n", + "1/0, train_loss: 0.4819\n", + "0 epoch 290 average loss: 0.4819\n", + "current epoch: 290 current mean dice: 0.2459\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 291/500\n", + "1/0, train_loss: 0.4822\n", + "0 epoch 291 average loss: 0.4822\n", + "----------\n", + "0: epoch 292/500\n", + "1/0, train_loss: 0.4841\n", + "0 epoch 292 average loss: 0.4841\n", + "current epoch: 292 current mean dice: 0.2301\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 293/500\n", + "1/0, train_loss: 0.4797\n", + "0 epoch 293 average loss: 0.4797\n", + "----------\n", + "0: epoch 294/500\n", + "1/0, train_loss: 0.4790\n", + "0 epoch 294 average loss: 0.4790\n", + "current epoch: 294 current mean dice: 0.2207\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 295/500\n", + "1/0, train_loss: 0.4812\n", + "0 epoch 295 average loss: 0.4812\n", + "----------\n", + "0: epoch 296/500\n", + "1/0, train_loss: 0.4785\n", + "0 epoch 296 average loss: 0.4785\n", + "current epoch: 296 current mean dice: 0.2290\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 297/500\n", + "1/0, train_loss: 0.4774\n", + "0 epoch 297 average loss: 0.4774\n", + "----------\n", + "0: epoch 298/500\n", + "1/0, train_loss: 0.4805\n", + "0 epoch 298 average loss: 0.4805\n", + "current epoch: 298 current mean dice: 0.2449\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 299/500\n", + "1/0, train_loss: 0.4801\n", + "0 epoch 299 average loss: 0.4801\n", + "----------\n", + "0: epoch 300/500\n", + "1/0, train_loss: 0.4858\n", + "0 epoch 300 average loss: 0.4858\n", + "current epoch: 300 current mean dice: 0.2638\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 301/500\n", + "1/0, train_loss: 0.4769\n", + "0 epoch 301 average loss: 0.4769\n", + "----------\n", + "0: epoch 302/500\n", + "1/0, train_loss: 0.4830\n", + "0 epoch 302 average loss: 0.4830\n", + "current epoch: 302 current mean dice: 0.2833\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 303/500\n", + "1/0, train_loss: 0.4845\n", + "0 epoch 303 average loss: 0.4845\n", + "----------\n", + "0: epoch 304/500\n", + "1/0, train_loss: 0.4762\n", + "0 epoch 304 average loss: 0.4762\n", + "current epoch: 304 current mean dice: 0.2456\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 305/500\n", + "1/0, train_loss: 0.4873\n", + "0 epoch 305 average loss: 0.4873\n", + "----------\n", + "0: epoch 306/500\n", + "1/0, train_loss: 0.4802\n", + "0 epoch 306 average loss: 0.4802\n", + "current epoch: 306 current mean dice: 0.2245\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 307/500\n", + "1/0, train_loss: 0.4813\n", + "0 epoch 307 average loss: 0.4813\n", + "----------\n", + "0: epoch 308/500\n", + "1/0, train_loss: 0.4789\n", + "0 epoch 308 average loss: 0.4789\n", + "current epoch: 308 current mean dice: 0.2463\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 309/500\n", + "1/0, train_loss: 0.4864\n", + "0 epoch 309 average loss: 0.4864\n", + "----------\n", + "0: epoch 310/500\n", + "1/0, train_loss: 0.4777\n", + "0 epoch 310 average loss: 0.4777\n", + "current epoch: 310 current mean dice: 0.2470\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 311/500\n", + "1/0, train_loss: 0.4763\n", + "0 epoch 311 average loss: 0.4763\n", + "----------\n", + "0: epoch 312/500\n", + "1/0, train_loss: 0.4780\n", + "0 epoch 312 average loss: 0.4780\n", + "current epoch: 312 current mean dice: 0.2394\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 313/500\n", + "1/0, train_loss: 0.4801\n", + "0 epoch 313 average loss: 0.4801\n", + "----------\n", + "0: epoch 314/500\n", + "1/0, train_loss: 0.4745\n", + "0 epoch 314 average loss: 0.4745\n", + "current epoch: 314 current mean dice: 0.2419\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 315/500\n", + "1/0, train_loss: 0.4735\n", + "0 epoch 315 average loss: 0.4735\n", + "----------\n", + "0: epoch 316/500\n", + "1/0, train_loss: 0.4754\n", + "0 epoch 316 average loss: 0.4754\n", + "current epoch: 316 current mean dice: 0.2473\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 317/500\n", + "1/0, train_loss: 0.4773\n", + "0 epoch 317 average loss: 0.4773\n", + "----------\n", + "0: epoch 318/500\n", + "1/0, train_loss: 0.4759\n", + "0 epoch 318 average loss: 0.4759\n", + "current epoch: 318 current mean dice: 0.2294\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 319/500\n", + "1/0, train_loss: 0.4729\n", + "0 epoch 319 average loss: 0.4729\n", + "----------\n", + "0: epoch 320/500\n", + "1/0, train_loss: 0.4763\n", + "0 epoch 320 average loss: 0.4763\n", + "current epoch: 320 current mean dice: 0.2304\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 321/500\n", + "1/0, train_loss: 0.4718\n", + "0 epoch 321 average loss: 0.4718\n", + "----------\n", + "0: epoch 322/500\n", + "1/0, train_loss: 0.4739\n", + "0 epoch 322 average loss: 0.4739\n", + "current epoch: 322 current mean dice: 0.2043\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 323/500\n", + "1/0, train_loss: 0.4717\n", + "0 epoch 323 average loss: 0.4717\n", + "----------\n", + "0: epoch 324/500\n", + "1/0, train_loss: 0.4745\n", + "0 epoch 324 average loss: 0.4745\n", + "current epoch: 324 current mean dice: 0.2054\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 325/500\n", + "1/0, train_loss: 0.4704\n", + "0 epoch 325 average loss: 0.4704\n", + "----------\n", + "0: epoch 326/500\n", + "1/0, train_loss: 0.4735\n", + "0 epoch 326 average loss: 0.4735\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "current epoch: 326 current mean dice: 0.2225\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 327/500\n", + "1/0, train_loss: 0.4741\n", + "0 epoch 327 average loss: 0.4741\n", + "----------\n", + "0: epoch 328/500\n", + "1/0, train_loss: 0.4694\n", + "0 epoch 328 average loss: 0.4694\n", + "current epoch: 328 current mean dice: 0.2377\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 329/500\n", + "1/0, train_loss: 0.4709\n", + "0 epoch 329 average loss: 0.4709\n", + "----------\n", + "0: epoch 330/500\n", + "1/0, train_loss: 0.4812\n", + "0 epoch 330 average loss: 0.4812\n", + "current epoch: 330 current mean dice: 0.2301\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 331/500\n", + "1/0, train_loss: 0.4748\n", + "0 epoch 331 average loss: 0.4748\n", + "----------\n", + "0: epoch 332/500\n", + "1/0, train_loss: 0.4716\n", + "0 epoch 332 average loss: 0.4716\n", + "current epoch: 332 current mean dice: 0.2410\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 333/500\n", + "1/0, train_loss: 0.4698\n", + "0 epoch 333 average loss: 0.4698\n", + "----------\n", + "0: epoch 334/500\n", + "1/0, train_loss: 0.4711\n", + "0 epoch 334 average loss: 0.4711\n", + "current epoch: 334 current mean dice: 0.2620\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 335/500\n", + "1/0, train_loss: 0.4847\n", + "0 epoch 335 average loss: 0.4847\n", + "----------\n", + "0: epoch 336/500\n", + "1/0, train_loss: 0.4703\n", + "0 epoch 336 average loss: 0.4703\n", + "current epoch: 336 current mean dice: 0.2750\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 337/500\n", + "1/0, train_loss: 0.4691\n", + "0 epoch 337 average loss: 0.4691\n", + "----------\n", + "0: epoch 338/500\n", + "1/0, train_loss: 0.4779\n", + "0 epoch 338 average loss: 0.4779\n", + "current epoch: 338 current mean dice: 0.2559\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 339/500\n", + "1/0, train_loss: 0.4732\n", + "0 epoch 339 average loss: 0.4732\n", + "----------\n", + "0: epoch 340/500\n", + "1/0, train_loss: 0.4685\n", + "0 epoch 340 average loss: 0.4685\n", + "current epoch: 340 current mean dice: 0.2349\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 341/500\n", + "1/0, train_loss: 0.4794\n", + "0 epoch 341 average loss: 0.4794\n", + "----------\n", + "0: epoch 342/500\n", + "1/0, train_loss: 0.4674\n", + "0 epoch 342 average loss: 0.4674\n", + "current epoch: 342 current mean dice: 0.2243\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 343/500\n", + "1/0, train_loss: 0.4665\n", + "0 epoch 343 average loss: 0.4665\n", + "----------\n", + "0: epoch 344/500\n", + "1/0, train_loss: 0.4757\n", + "0 epoch 344 average loss: 0.4757\n", + "current epoch: 344 current mean dice: 0.2205\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 345/500\n", + "1/0, train_loss: 0.4660\n", + "0 epoch 345 average loss: 0.4660\n", + "----------\n", + "0: epoch 346/500\n", + "1/0, train_loss: 0.4654\n", + "0 epoch 346 average loss: 0.4654\n", + "current epoch: 346 current mean dice: 0.2103\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 347/500\n", + "1/0, train_loss: 0.4664\n", + "0 epoch 347 average loss: 0.4664\n", + "----------\n", + "0: epoch 348/500\n", + "1/0, train_loss: 0.4705\n", + "0 epoch 348 average loss: 0.4705\n", + "current epoch: 348 current mean dice: 0.2143\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 349/500\n", + "1/0, train_loss: 0.4644\n", + "0 epoch 349 average loss: 0.4644\n", + "----------\n", + "0: epoch 350/500\n", + "1/0, train_loss: 0.4723\n", + "0 epoch 350 average loss: 0.4723\n", + "current epoch: 350 current mean dice: 0.2176\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 351/500\n", + "1/0, train_loss: 0.4676\n", + "0 epoch 351 average loss: 0.4676\n", + "----------\n", + "0: epoch 352/500\n", + "1/0, train_loss: 0.4782\n", + "0 epoch 352 average loss: 0.4782\n", + "current epoch: 352 current mean dice: 0.2344\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 353/500\n", + "1/0, train_loss: 0.4766\n", + "0 epoch 353 average loss: 0.4766\n", + "----------\n", + "0: epoch 354/500\n", + "1/0, train_loss: 0.4653\n", + "0 epoch 354 average loss: 0.4653\n", + "current epoch: 354 current mean dice: 0.2520\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 355/500\n", + "1/0, train_loss: 0.4646\n", + "0 epoch 355 average loss: 0.4646\n", + "----------\n", + "0: epoch 356/500\n", + "1/0, train_loss: 0.4674\n", + "0 epoch 356 average loss: 0.4674\n", + "current epoch: 356 current mean dice: 0.2471\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 357/500\n", + "1/0, train_loss: 0.4685\n", + "0 epoch 357 average loss: 0.4685\n", + "----------\n", + "0: epoch 358/500\n", + "1/0, train_loss: 0.4660\n", + "0 epoch 358 average loss: 0.4660\n", + "current epoch: 358 current mean dice: 0.2094\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 359/500\n", + "1/0, train_loss: 0.4755\n", + "0 epoch 359 average loss: 0.4755\n", + "----------\n", + "0: epoch 360/500\n", + "1/0, train_loss: 0.4635\n", + "0 epoch 360 average loss: 0.4635\n", + "current epoch: 360 current mean dice: 0.1779\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 361/500\n", + "1/0, train_loss: 0.4724\n", + "0 epoch 361 average loss: 0.4724\n", + "----------\n", + "0: epoch 362/500\n", + "1/0, train_loss: 0.4674\n", + "0 epoch 362 average loss: 0.4674\n", + "current epoch: 362 current mean dice: 0.1714\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 363/500\n", + "1/0, train_loss: 0.4730\n", + "0 epoch 363 average loss: 0.4730\n", + "----------\n", + "0: epoch 364/500\n", + "1/0, train_loss: 0.4686\n", + "0 epoch 364 average loss: 0.4686\n", + "current epoch: 364 current mean dice: 0.1901\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 365/500\n", + "1/0, train_loss: 0.4663\n", + "0 epoch 365 average loss: 0.4663\n", + "----------\n", + "0: epoch 366/500\n", + "1/0, train_loss: 0.4656\n", + "0 epoch 366 average loss: 0.4656\n", + "current epoch: 366 current mean dice: 0.1681\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 367/500\n", + "1/0, train_loss: 0.4766\n", + "0 epoch 367 average loss: 0.4766\n", + "----------\n", + "0: epoch 368/500\n", + "1/0, train_loss: 0.4644\n", + "0 epoch 368 average loss: 0.4644\n", + "current epoch: 368 current mean dice: 0.1916\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 369/500\n", + "1/0, train_loss: 0.4671\n", + "0 epoch 369 average loss: 0.4671\n", + "----------\n", + "0: epoch 370/500\n", + "1/0, train_loss: 0.4653\n", + "0 epoch 370 average loss: 0.4653\n", + "current epoch: 370 current mean dice: 0.2272\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 371/500\n", + "1/0, train_loss: 0.4701\n", + "0 epoch 371 average loss: 0.4701\n", + "----------\n", + "0: epoch 372/500\n", + "1/0, train_loss: 0.4618\n", + "0 epoch 372 average loss: 0.4618\n", + "current epoch: 372 current mean dice: 0.2400\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 373/500\n", + "1/0, train_loss: 0.4647\n", + "0 epoch 373 average loss: 0.4647\n", + "----------\n", + "0: epoch 374/500\n", + "1/0, train_loss: 0.4606\n", + "0 epoch 374 average loss: 0.4606\n", + "current epoch: 374 current mean dice: 0.2311\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 375/500\n", + "1/0, train_loss: 0.4720\n", + "0 epoch 375 average loss: 0.4720\n", + "----------\n", + "0: epoch 376/500\n", + "1/0, train_loss: 0.4697\n", + "0 epoch 376 average loss: 0.4697\n", + "current epoch: 376 current mean dice: 0.2196\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 377/500\n", + "1/0, train_loss: 0.4628\n", + "0 epoch 377 average loss: 0.4628\n", + "----------\n", + "0: epoch 378/500\n", + "1/0, train_loss: 0.4684\n", + "0 epoch 378 average loss: 0.4684\n", + "current epoch: 378 current mean dice: 0.1948\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 379/500\n", + "1/0, train_loss: 0.4627\n", + "0 epoch 379 average loss: 0.4627\n", + "----------\n", + "0: epoch 380/500\n", + "1/0, train_loss: 0.4624\n", + "0 epoch 380 average loss: 0.4624\n", + "current epoch: 380 current mean dice: 0.2091\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 381/500\n", + "1/0, train_loss: 0.4720\n", + "0 epoch 381 average loss: 0.4720\n", + "----------\n", + "0: epoch 382/500\n", + "1/0, train_loss: 0.4602\n", + "0 epoch 382 average loss: 0.4602\n", + "current epoch: 382 current mean dice: 0.2164\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 383/500\n", + "1/0, train_loss: 0.4695\n", + "0 epoch 383 average loss: 0.4695\n", + "----------\n", + "0: epoch 384/500\n", + "1/0, train_loss: 0.4583\n", + "0 epoch 384 average loss: 0.4583\n", + "current epoch: 384 current mean dice: 0.2340\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 385/500\n", + "1/0, train_loss: 0.4613\n", + "0 epoch 385 average loss: 0.4613\n", + "----------\n", + "0: epoch 386/500\n", + "1/0, train_loss: 0.4657\n", + "0 epoch 386 average loss: 0.4657\n", + "current epoch: 386 current mean dice: 0.2569\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 387/500\n", + "1/0, train_loss: 0.4625\n", + "0 epoch 387 average loss: 0.4625\n", + "----------\n", + "0: epoch 388/500\n", + "1/0, train_loss: 0.4631\n", + "0 epoch 388 average loss: 0.4631\n", + "current epoch: 388 current mean dice: 0.2439\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 389/500\n", + "1/0, train_loss: 0.4602\n", + "0 epoch 389 average loss: 0.4602\n", + "----------\n", + "0: epoch 390/500\n", + "1/0, train_loss: 0.4632\n", + "0 epoch 390 average loss: 0.4632\n", + "current epoch: 390 current mean dice: 0.2315\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 391/500\n", + "1/0, train_loss: 0.4688\n", + "0 epoch 391 average loss: 0.4688\n", + "----------\n", + "0: epoch 392/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.4597\n", + "0 epoch 392 average loss: 0.4597\n", + "current epoch: 392 current mean dice: 0.2269\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 393/500\n", + "1/0, train_loss: 0.4578\n", + "0 epoch 393 average loss: 0.4578\n", + "----------\n", + "0: epoch 394/500\n", + "1/0, train_loss: 0.4564\n", + "0 epoch 394 average loss: 0.4564\n", + "current epoch: 394 current mean dice: 0.2291\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 395/500\n", + "1/0, train_loss: 0.4612\n", + "0 epoch 395 average loss: 0.4612\n", + "----------\n", + "0: epoch 396/500\n", + "1/0, train_loss: 0.4622\n", + "0 epoch 396 average loss: 0.4622\n", + "current epoch: 396 current mean dice: 0.2294\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 397/500\n", + "1/0, train_loss: 0.4575\n", + "0 epoch 397 average loss: 0.4575\n", + "----------\n", + "0: epoch 398/500\n", + "1/0, train_loss: 0.4547\n", + "0 epoch 398 average loss: 0.4547\n", + "current epoch: 398 current mean dice: 0.2410\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 399/500\n", + "1/0, train_loss: 0.4596\n", + "0 epoch 399 average loss: 0.4596\n", + "----------\n", + "0: epoch 400/500\n", + "1/0, train_loss: 0.4602\n", + "0 epoch 400 average loss: 0.4602\n", + "current epoch: 400 current mean dice: 0.2424\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 401/500\n", + "1/0, train_loss: 0.4575\n", + "0 epoch 401 average loss: 0.4575\n", + "----------\n", + "0: epoch 402/500\n", + "1/0, train_loss: 0.4691\n", + "0 epoch 402 average loss: 0.4691\n", + "current epoch: 402 current mean dice: 0.2191\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 403/500\n", + "1/0, train_loss: 0.4606\n", + "0 epoch 403 average loss: 0.4606\n", + "----------\n", + "0: epoch 404/500\n", + "1/0, train_loss: 0.4553\n", + "0 epoch 404 average loss: 0.4553\n", + "current epoch: 404 current mean dice: 0.2057\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 405/500\n", + "1/0, train_loss: 0.4581\n", + "0 epoch 405 average loss: 0.4581\n", + "----------\n", + "0: epoch 406/500\n", + "1/0, train_loss: 0.4572\n", + "0 epoch 406 average loss: 0.4572\n", + "current epoch: 406 current mean dice: 0.2033\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 407/500\n", + "1/0, train_loss: 0.4592\n", + "0 epoch 407 average loss: 0.4592\n", + "----------\n", + "0: epoch 408/500\n", + "1/0, train_loss: 0.4588\n", + "0 epoch 408 average loss: 0.4588\n", + "current epoch: 408 current mean dice: 0.2137\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 409/500\n", + "1/0, train_loss: 0.4557\n", + "0 epoch 409 average loss: 0.4557\n", + "----------\n", + "0: epoch 410/500\n", + "1/0, train_loss: 0.4537\n", + "0 epoch 410 average loss: 0.4537\n", + "current epoch: 410 current mean dice: 0.2167\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 411/500\n", + "1/0, train_loss: 0.4557\n", + "0 epoch 411 average loss: 0.4557\n", + "----------\n", + "0: epoch 412/500\n", + "1/0, train_loss: 0.4552\n", + "0 epoch 412 average loss: 0.4552\n", + "current epoch: 412 current mean dice: 0.2166\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 413/500\n", + "1/0, train_loss: 0.4564\n", + "0 epoch 413 average loss: 0.4564\n", + "----------\n", + "0: epoch 414/500\n", + "1/0, train_loss: 0.4585\n", + "0 epoch 414 average loss: 0.4585\n", + "current epoch: 414 current mean dice: 0.2333\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 415/500\n", + "1/0, train_loss: 0.4553\n", + "0 epoch 415 average loss: 0.4553\n", + "----------\n", + "0: epoch 416/500\n", + "1/0, train_loss: 0.4536\n", + "0 epoch 416 average loss: 0.4536\n", + "current epoch: 416 current mean dice: 0.2391\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 417/500\n", + "1/0, train_loss: 0.4583\n", + "0 epoch 417 average loss: 0.4583\n", + "----------\n", + "0: epoch 418/500\n", + "1/0, train_loss: 0.4597\n", + "0 epoch 418 average loss: 0.4597\n", + "current epoch: 418 current mean dice: 0.2160\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 419/500\n", + "1/0, train_loss: 0.4568\n", + "0 epoch 419 average loss: 0.4568\n", + "----------\n", + "0: epoch 420/500\n", + "1/0, train_loss: 0.4554\n", + "0 epoch 420 average loss: 0.4554\n", + "current epoch: 420 current mean dice: 0.1993\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 421/500\n", + "1/0, train_loss: 0.4513\n", + "0 epoch 421 average loss: 0.4513\n", + "----------\n", + "0: epoch 422/500\n", + "1/0, train_loss: 0.4518\n", + "0 epoch 422 average loss: 0.4518\n", + "current epoch: 422 current mean dice: 0.1990\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 423/500\n", + "1/0, train_loss: 0.4531\n", + "0 epoch 423 average loss: 0.4531\n", + "----------\n", + "0: epoch 424/500\n", + "1/0, train_loss: 0.4531\n", + "0 epoch 424 average loss: 0.4531\n", + "current epoch: 424 current mean dice: 0.2074\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 425/500\n", + "1/0, train_loss: 0.4523\n", + "0 epoch 425 average loss: 0.4523\n", + "----------\n", + "0: epoch 426/500\n", + "1/0, train_loss: 0.4577\n", + "0 epoch 426 average loss: 0.4577\n", + "current epoch: 426 current mean dice: 0.2108\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 427/500\n", + "1/0, train_loss: 0.4501\n", + "0 epoch 427 average loss: 0.4501\n", + "----------\n", + "0: epoch 428/500\n", + "1/0, train_loss: 0.4511\n", + "0 epoch 428 average loss: 0.4511\n", + "current epoch: 428 current mean dice: 0.1948\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 429/500\n", + "1/0, train_loss: 0.4595\n", + "0 epoch 429 average loss: 0.4595\n", + "----------\n", + "0: epoch 430/500\n", + "1/0, train_loss: 0.4519\n", + "0 epoch 430 average loss: 0.4519\n", + "current epoch: 430 current mean dice: 0.2129\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 431/500\n", + "1/0, train_loss: 0.4639\n", + "0 epoch 431 average loss: 0.4639\n", + "----------\n", + "0: epoch 432/500\n", + "1/0, train_loss: 0.4499\n", + "0 epoch 432 average loss: 0.4499\n", + "current epoch: 432 current mean dice: 0.2210\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 433/500\n", + "1/0, train_loss: 0.4620\n", + "0 epoch 433 average loss: 0.4620\n", + "----------\n", + "0: epoch 434/500\n", + "1/0, train_loss: 0.4499\n", + "0 epoch 434 average loss: 0.4499\n", + "current epoch: 434 current mean dice: 0.2172\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 435/500\n", + "1/0, train_loss: 0.4490\n", + "0 epoch 435 average loss: 0.4490\n", + "----------\n", + "0: epoch 436/500\n", + "1/0, train_loss: 0.4502\n", + "0 epoch 436 average loss: 0.4502\n", + "current epoch: 436 current mean dice: 0.2120\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 437/500\n", + "1/0, train_loss: 0.4510\n", + "0 epoch 437 average loss: 0.4510\n", + "----------\n", + "0: epoch 438/500\n", + "1/0, train_loss: 0.4505\n", + "0 epoch 438 average loss: 0.4505\n", + "current epoch: 438 current mean dice: 0.2086\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 439/500\n", + "1/0, train_loss: 0.4535\n", + "0 epoch 439 average loss: 0.4535\n", + "----------\n", + "0: epoch 440/500\n", + "1/0, train_loss: 0.4548\n", + "0 epoch 440 average loss: 0.4548\n", + "current epoch: 440 current mean dice: 0.2175\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 441/500\n", + "1/0, train_loss: 0.4504\n", + "0 epoch 441 average loss: 0.4504\n", + "----------\n", + "0: epoch 442/500\n", + "1/0, train_loss: 0.4500\n", + "0 epoch 442 average loss: 0.4500\n", + "current epoch: 442 current mean dice: 0.2358\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 443/500\n", + "1/0, train_loss: 0.4537\n", + "0 epoch 443 average loss: 0.4537\n", + "----------\n", + "0: epoch 444/500\n", + "1/0, train_loss: 0.4565\n", + "0 epoch 444 average loss: 0.4565\n", + "current epoch: 444 current mean dice: 0.2376\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 445/500\n", + "1/0, train_loss: 0.4544\n", + "0 epoch 445 average loss: 0.4544\n", + "----------\n", + "0: epoch 446/500\n", + "1/0, train_loss: 0.4483\n", + "0 epoch 446 average loss: 0.4483\n", + "current epoch: 446 current mean dice: 0.2256\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 447/500\n", + "1/0, train_loss: 0.4482\n", + "0 epoch 447 average loss: 0.4482\n", + "----------\n", + "0: epoch 448/500\n", + "1/0, train_loss: 0.4474\n", + "0 epoch 448 average loss: 0.4474\n", + "current epoch: 448 current mean dice: 0.2071\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 449/500\n", + "1/0, train_loss: 0.4513\n", + "0 epoch 449 average loss: 0.4513\n", + "----------\n", + "0: epoch 450/500\n", + "1/0, train_loss: 0.4518\n", + "0 epoch 450 average loss: 0.4518\n", + "current epoch: 450 current mean dice: 0.1989\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 451/500\n", + "1/0, train_loss: 0.4519\n", + "0 epoch 451 average loss: 0.4519\n", + "----------\n", + "0: epoch 452/500\n", + "1/0, train_loss: 0.4500\n", + "0 epoch 452 average loss: 0.4500\n", + "current epoch: 452 current mean dice: 0.1958\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 453/500\n", + "1/0, train_loss: 0.4478\n", + "0 epoch 453 average loss: 0.4478\n", + "----------\n", + "0: epoch 454/500\n", + "1/0, train_loss: 0.4482\n", + "0 epoch 454 average loss: 0.4482\n", + "current epoch: 454 current mean dice: 0.2008\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 455/500\n", + "1/0, train_loss: 0.4534\n", + "0 epoch 455 average loss: 0.4534\n", + "----------\n", + "0: epoch 456/500\n", + "1/0, train_loss: 0.4578\n", + "0 epoch 456 average loss: 0.4578\n", + "current epoch: 456 current mean dice: 0.2036\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 457/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.4469\n", + "0 epoch 457 average loss: 0.4469\n", + "----------\n", + "0: epoch 458/500\n", + "1/0, train_loss: 0.4465\n", + "0 epoch 458 average loss: 0.4465\n", + "current epoch: 458 current mean dice: 0.2113\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 459/500\n", + "1/0, train_loss: 0.4487\n", + "0 epoch 459 average loss: 0.4487\n", + "----------\n", + "0: epoch 460/500\n", + "1/0, train_loss: 0.4466\n", + "0 epoch 460 average loss: 0.4466\n", + "current epoch: 460 current mean dice: 0.2139\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 461/500\n", + "1/0, train_loss: 0.4493\n", + "0 epoch 461 average loss: 0.4493\n", + "----------\n", + "0: epoch 462/500\n", + "1/0, train_loss: 0.4478\n", + "0 epoch 462 average loss: 0.4478\n", + "current epoch: 462 current mean dice: 0.2204\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 463/500\n", + "1/0, train_loss: 0.4520\n", + "0 epoch 463 average loss: 0.4520\n", + "----------\n", + "0: epoch 464/500\n", + "1/0, train_loss: 0.4457\n", + "0 epoch 464 average loss: 0.4457\n", + "current epoch: 464 current mean dice: 0.2247\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 465/500\n", + "1/0, train_loss: 0.4471\n", + "0 epoch 465 average loss: 0.4471\n", + "----------\n", + "0: epoch 466/500\n", + "1/0, train_loss: 0.4532\n", + "0 epoch 466 average loss: 0.4532\n", + "current epoch: 466 current mean dice: 0.2267\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 467/500\n", + "1/0, train_loss: 0.4438\n", + "0 epoch 467 average loss: 0.4438\n", + "----------\n", + "0: epoch 468/500\n", + "1/0, train_loss: 0.4504\n", + "0 epoch 468 average loss: 0.4504\n", + "current epoch: 468 current mean dice: 0.2166\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 469/500\n", + "1/0, train_loss: 0.4469\n", + "0 epoch 469 average loss: 0.4469\n", + "----------\n", + "0: epoch 470/500\n", + "1/0, train_loss: 0.4514\n", + "0 epoch 470 average loss: 0.4514\n", + "current epoch: 470 current mean dice: 0.1896\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 471/500\n", + "1/0, train_loss: 0.4472\n", + "0 epoch 471 average loss: 0.4472\n", + "----------\n", + "0: epoch 472/500\n", + "1/0, train_loss: 0.4451\n", + "0 epoch 472 average loss: 0.4451\n", + "current epoch: 472 current mean dice: 0.1884\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 473/500\n", + "1/0, train_loss: 0.4580\n", + "0 epoch 473 average loss: 0.4580\n", + "----------\n", + "0: epoch 474/500\n", + "1/0, train_loss: 0.4443\n", + "0 epoch 474 average loss: 0.4443\n", + "current epoch: 474 current mean dice: 0.2116\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 475/500\n", + "1/0, train_loss: 0.4499\n", + "0 epoch 475 average loss: 0.4499\n", + "----------\n", + "0: epoch 476/500\n", + "1/0, train_loss: 0.4497\n", + "0 epoch 476 average loss: 0.4497\n", + "current epoch: 476 current mean dice: 0.2344\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 477/500\n", + "1/0, train_loss: 0.4608\n", + "0 epoch 477 average loss: 0.4608\n", + "----------\n", + "0: epoch 478/500\n", + "1/0, train_loss: 0.4467\n", + "0 epoch 478 average loss: 0.4467\n", + "current epoch: 478 current mean dice: 0.2277\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 479/500\n", + "1/0, train_loss: 0.4462\n", + "0 epoch 479 average loss: 0.4462\n", + "----------\n", + "0: epoch 480/500\n", + "1/0, train_loss: 0.4500\n", + "0 epoch 480 average loss: 0.4500\n", + "current epoch: 480 current mean dice: 0.2136\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 481/500\n", + "1/0, train_loss: 0.4554\n", + "0 epoch 481 average loss: 0.4554\n", + "----------\n", + "0: epoch 482/500\n", + "1/0, train_loss: 0.4558\n", + "0 epoch 482 average loss: 0.4558\n", + "current epoch: 482 current mean dice: 0.1888\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 483/500\n", + "1/0, train_loss: 0.4470\n", + "0 epoch 483 average loss: 0.4470\n", + "----------\n", + "0: epoch 484/500\n", + "1/0, train_loss: 0.4452\n", + "0 epoch 484 average loss: 0.4452\n", + "current epoch: 484 current mean dice: 0.2020\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 485/500\n", + "1/0, train_loss: 0.4447\n", + "0 epoch 485 average loss: 0.4447\n", + "----------\n", + "0: epoch 486/500\n", + "1/0, train_loss: 0.4453\n", + "0 epoch 486 average loss: 0.4453\n", + "current epoch: 486 current mean dice: 0.2381\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 487/500\n", + "1/0, train_loss: 0.4430\n", + "0 epoch 487 average loss: 0.4430\n", + "----------\n", + "0: epoch 488/500\n", + "1/0, train_loss: 0.4448\n", + "0 epoch 488 average loss: 0.4448\n", + "current epoch: 488 current mean dice: 0.2464\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 489/500\n", + "1/0, train_loss: 0.4426\n", + "0 epoch 489 average loss: 0.4426\n", + "----------\n", + "0: epoch 490/500\n", + "1/0, train_loss: 0.4513\n", + "0 epoch 490 average loss: 0.4513\n", + "current epoch: 490 current mean dice: 0.2502\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 491/500\n", + "1/0, train_loss: 0.4416\n", + "0 epoch 491 average loss: 0.4416\n", + "----------\n", + "0: epoch 492/500\n", + "1/0, train_loss: 0.4472\n", + "0 epoch 492 average loss: 0.4472\n", + "current epoch: 492 current mean dice: 0.2678\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 493/500\n", + "1/0, train_loss: 0.4433\n", + "0 epoch 493 average loss: 0.4433\n", + "----------\n", + "0: epoch 494/500\n", + "1/0, train_loss: 0.4444\n", + "0 epoch 494 average loss: 0.4444\n", + "current epoch: 494 current mean dice: 0.2634\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 495/500\n", + "1/0, train_loss: 0.4429\n", + "0 epoch 495 average loss: 0.4429\n", + "----------\n", + "0: epoch 496/500\n", + "1/0, train_loss: 0.4447\n", + "0 epoch 496 average loss: 0.4447\n", + "current epoch: 496 current mean dice: 0.2277\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 497/500\n", + "1/0, train_loss: 0.4427\n", + "0 epoch 497 average loss: 0.4427\n", + "----------\n", + "0: epoch 498/500\n", + "1/0, train_loss: 0.4449\n", + "0 epoch 498 average loss: 0.4449\n", + "current epoch: 498 current mean dice: 0.1953\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 499/500\n", + "1/0, train_loss: 0.4428\n", + "0 epoch 499 average loss: 0.4428\n", + "----------\n", + "0: epoch 500/500\n", + "1/0, train_loss: 0.4439\n", + "0 epoch 500 average loss: 0.4439\n", + "current epoch: 500 current mean dice: 0.2030\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "1: epoch 1/500\n", + "1/0, train_loss: 0.7635\n", + "1 epoch 1 average loss: 0.7635\n", + "----------\n", + "1: epoch 2/500\n", + "1/0, train_loss: 0.7545\n", + "1 epoch 2 average loss: 0.7545\n", + "saved new best metric model\n", + "current epoch: 2 current mean dice: 0.3238\n", + "best mean dice: 0.3238 at epoch: 2\n", + "----------\n", + "1: epoch 3/500\n", + "1/0, train_loss: 0.7493\n", + "1 epoch 3 average loss: 0.7493\n", + "----------\n", + "1: epoch 4/500\n", + "1/0, train_loss: 0.7413\n", + "1 epoch 4 average loss: 0.7413\n", + "saved new best metric model\n", + "current epoch: 4 current mean dice: 0.3687\n", + "best mean dice: 0.3687 at epoch: 4\n", + "----------\n", + "1: epoch 5/500\n", + "1/0, train_loss: 0.7344\n", + "1 epoch 5 average loss: 0.7344\n", + "----------\n", + "1: epoch 6/500\n", + "1/0, train_loss: 0.7269\n", + "1 epoch 6 average loss: 0.7269\n", + "saved new best metric model\n", + "current epoch: 6 current mean dice: 0.3930\n", + "best mean dice: 0.3930 at epoch: 6\n", + "----------\n", + "1: epoch 7/500\n", + "1/0, train_loss: 0.7234\n", + "1 epoch 7 average loss: 0.7234\n", + "----------\n", + "1: epoch 8/500\n", + "1/0, train_loss: 0.7186\n", + "1 epoch 8 average loss: 0.7186\n", + "saved new best metric model\n", + "current epoch: 8 current mean dice: 0.4053\n", + "best mean dice: 0.4053 at epoch: 8\n", + "----------\n", + "1: epoch 9/500\n", + "1/0, train_loss: 0.7126\n", + "1 epoch 9 average loss: 0.7126\n", + "----------\n", + "1: epoch 10/500\n", + "1/0, train_loss: 0.7102\n", + "1 epoch 10 average loss: 0.7102\n", + "saved new best metric model\n", + "current epoch: 10 current mean dice: 0.4151\n", + "best mean dice: 0.4151 at epoch: 10\n", + "----------\n", + "1: epoch 11/500\n", + "1/0, train_loss: 0.7063\n", + "1 epoch 11 average loss: 0.7063\n", + "----------\n", + "1: epoch 12/500\n", + "1/0, train_loss: 0.7028\n", + "1 epoch 12 average loss: 0.7028\n", + "saved new best metric model\n", + "current epoch: 12 current mean dice: 0.4237\n", + "best mean dice: 0.4237 at epoch: 12\n", + "----------\n", + "1: epoch 13/500\n", + "1/0, train_loss: 0.6984\n", + "1 epoch 13 average loss: 0.6984\n", + "----------\n", + "1: epoch 14/500\n", + "1/0, train_loss: 0.6966\n", + "1 epoch 14 average loss: 0.6966\n", + "saved new best metric model\n", + "current epoch: 14 current mean dice: 0.4319\n", + "best mean dice: 0.4319 at epoch: 14\n", + "----------\n", + "1: epoch 15/500\n", + "1/0, train_loss: 0.6930\n", + "1 epoch 15 average loss: 0.6930\n", + "----------\n", + "1: epoch 16/500\n", + "1/0, train_loss: 0.6920\n", + "1 epoch 16 average loss: 0.6920\n", + "saved new best metric model\n", + "current epoch: 16 current mean dice: 0.4396\n", + "best mean dice: 0.4396 at epoch: 16\n", + "----------\n", + "1: epoch 17/500\n", + "1/0, train_loss: 0.6886\n", + "1 epoch 17 average loss: 0.6886\n", + "----------\n", + "1: epoch 18/500\n", + "1/0, train_loss: 0.6877\n", + "1 epoch 18 average loss: 0.6877\n", + "saved new best metric model\n", + "current epoch: 18 current mean dice: 0.4455\n", + "best mean dice: 0.4455 at epoch: 18\n", + "----------\n", + "1: epoch 19/500\n", + "1/0, train_loss: 0.6842\n", + "1 epoch 19 average loss: 0.6842\n", + "----------\n", + "1: epoch 20/500\n", + "1/0, train_loss: 0.6814\n", + "1 epoch 20 average loss: 0.6814\n", + "saved new best metric model\n", + "current epoch: 20 current mean dice: 0.4496\n", + "best mean dice: 0.4496 at epoch: 20\n", + "----------\n", + "1: epoch 21/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.6793\n", + "1 epoch 21 average loss: 0.6793\n", + "----------\n", + "1: epoch 22/500\n", + "1/0, train_loss: 0.6776\n", + "1 epoch 22 average loss: 0.6776\n", + "saved new best metric model\n", + "current epoch: 22 current mean dice: 0.4531\n", + "best mean dice: 0.4531 at epoch: 22\n", + "----------\n", + "1: epoch 23/500\n", + "1/0, train_loss: 0.6751\n", + "1 epoch 23 average loss: 0.6751\n", + "----------\n", + "1: epoch 24/500\n", + "1/0, train_loss: 0.6756\n", + "1 epoch 24 average loss: 0.6756\n", + "saved new best metric model\n", + "current epoch: 24 current mean dice: 0.4555\n", + "best mean dice: 0.4555 at epoch: 24\n", + "----------\n", + "1: epoch 25/500\n", + "1/0, train_loss: 0.6752\n", + "1 epoch 25 average loss: 0.6752\n", + "----------\n", + "1: epoch 26/500\n", + "1/0, train_loss: 0.6739\n", + "1 epoch 26 average loss: 0.6739\n", + "saved new best metric model\n", + "current epoch: 26 current mean dice: 0.4584\n", + "best mean dice: 0.4584 at epoch: 26\n", + "----------\n", + "1: epoch 27/500\n", + "1/0, train_loss: 0.6690\n", + "1 epoch 27 average loss: 0.6690\n", + "----------\n", + "1: epoch 28/500\n", + "1/0, train_loss: 0.6672\n", + "1 epoch 28 average loss: 0.6672\n", + "saved new best metric model\n", + "current epoch: 28 current mean dice: 0.4611\n", + "best mean dice: 0.4611 at epoch: 28\n", + "----------\n", + "1: epoch 29/500\n", + "1/0, train_loss: 0.6676\n", + "1 epoch 29 average loss: 0.6676\n", + "----------\n", + "1: epoch 30/500\n", + "1/0, train_loss: 0.6670\n", + "1 epoch 30 average loss: 0.6670\n", + "saved new best metric model\n", + "current epoch: 30 current mean dice: 0.4624\n", + "best mean dice: 0.4624 at epoch: 30\n", + "----------\n", + "1: epoch 31/500\n", + "1/0, train_loss: 0.6655\n", + "1 epoch 31 average loss: 0.6655\n", + "----------\n", + "1: epoch 32/500\n", + "1/0, train_loss: 0.6616\n", + "1 epoch 32 average loss: 0.6616\n", + "saved new best metric model\n", + "current epoch: 32 current mean dice: 0.4670\n", + "best mean dice: 0.4670 at epoch: 32\n", + "----------\n", + "1: epoch 33/500\n", + "1/0, train_loss: 0.6628\n", + "1 epoch 33 average loss: 0.6628\n", + "----------\n", + "1: epoch 34/500\n", + "1/0, train_loss: 0.6610\n", + "1 epoch 34 average loss: 0.6610\n", + "saved new best metric model\n", + "current epoch: 34 current mean dice: 0.4704\n", + "best mean dice: 0.4704 at epoch: 34\n", + "----------\n", + "1: epoch 35/500\n", + "1/0, train_loss: 0.6590\n", + "1 epoch 35 average loss: 0.6590\n", + "----------\n", + "1: epoch 36/500\n", + "1/0, train_loss: 0.6608\n", + "1 epoch 36 average loss: 0.6608\n", + "current epoch: 36 current mean dice: 0.4677\n", + "best mean dice: 0.4704 at epoch: 34\n", + "----------\n", + "1: epoch 37/500\n", + "1/0, train_loss: 0.6584\n", + "1 epoch 37 average loss: 0.6584\n", + "----------\n", + "1: epoch 38/500\n", + "1/0, train_loss: 0.6582\n", + "1 epoch 38 average loss: 0.6582\n", + "saved new best metric model\n", + "current epoch: 38 current mean dice: 0.4798\n", + "best mean dice: 0.4798 at epoch: 38\n", + "----------\n", + "1: epoch 39/500\n", + "1/0, train_loss: 0.6554\n", + "1 epoch 39 average loss: 0.6554\n", + "----------\n", + "1: epoch 40/500\n", + "1/0, train_loss: 0.6525\n", + "1 epoch 40 average loss: 0.6525\n", + "saved new best metric model\n", + "current epoch: 40 current mean dice: 0.4799\n", + "best mean dice: 0.4799 at epoch: 40\n", + "----------\n", + "1: epoch 41/500\n", + "1/0, train_loss: 0.6538\n", + "1 epoch 41 average loss: 0.6538\n", + "----------\n", + "1: epoch 42/500\n", + "1/0, train_loss: 0.6529\n", + "1 epoch 42 average loss: 0.6529\n", + "current epoch: 42 current mean dice: 0.4754\n", + "best mean dice: 0.4799 at epoch: 40\n", + "----------\n", + "1: epoch 43/500\n", + "1/0, train_loss: 0.6521\n", + "1 epoch 43 average loss: 0.6521\n", + "----------\n", + "1: epoch 44/500\n", + "1/0, train_loss: 0.6506\n", + "1 epoch 44 average loss: 0.6506\n", + "saved new best metric model\n", + "current epoch: 44 current mean dice: 0.4914\n", + "best mean dice: 0.4914 at epoch: 44\n", + "----------\n", + "1: epoch 45/500\n", + "1/0, train_loss: 0.6478\n", + "1 epoch 45 average loss: 0.6478\n", + "----------\n", + "1: epoch 46/500\n", + "1/0, train_loss: 0.6430\n", + "1 epoch 46 average loss: 0.6430\n", + "current epoch: 46 current mean dice: 0.4905\n", + "best mean dice: 0.4914 at epoch: 44\n", + "----------\n", + "1: epoch 47/500\n", + "1/0, train_loss: 0.6424\n", + "1 epoch 47 average loss: 0.6424\n", + "----------\n", + "1: epoch 48/500\n", + "1/0, train_loss: 0.6395\n", + "1 epoch 48 average loss: 0.6395\n", + "saved new best metric model\n", + "current epoch: 48 current mean dice: 0.4968\n", + "best mean dice: 0.4968 at epoch: 48\n", + "----------\n", + "1: epoch 49/500\n", + "1/0, train_loss: 0.6417\n", + "1 epoch 49 average loss: 0.6417\n", + "----------\n", + "1: epoch 50/500\n", + "1/0, train_loss: 0.6388\n", + "1 epoch 50 average loss: 0.6388\n", + "current epoch: 50 current mean dice: 0.4895\n", + "best mean dice: 0.4968 at epoch: 48\n", + "----------\n", + "1: epoch 51/500\n", + "1/0, train_loss: 0.6395\n", + "1 epoch 51 average loss: 0.6395\n", + "----------\n", + "1: epoch 52/500\n", + "1/0, train_loss: 0.6355\n", + "1 epoch 52 average loss: 0.6355\n", + "current epoch: 52 current mean dice: 0.4891\n", + "best mean dice: 0.4968 at epoch: 48\n", + "----------\n", + "1: epoch 53/500\n", + "1/0, train_loss: 0.6336\n", + "1 epoch 53 average loss: 0.6336\n", + "----------\n", + "1: epoch 54/500\n", + "1/0, train_loss: 0.6287\n", + "1 epoch 54 average loss: 0.6287\n", + "saved new best metric model\n", + "current epoch: 54 current mean dice: 0.5048\n", + "best mean dice: 0.5048 at epoch: 54\n", + "----------\n", + "1: epoch 55/500\n", + "1/0, train_loss: 0.6326\n", + "1 epoch 55 average loss: 0.6326\n", + "----------\n", + "1: epoch 56/500\n", + "1/0, train_loss: 0.6278\n", + "1 epoch 56 average loss: 0.6278\n", + "saved new best metric model\n", + "current epoch: 56 current mean dice: 0.5056\n", + "best mean dice: 0.5056 at epoch: 56\n", + "----------\n", + "1: epoch 57/500\n", + "1/0, train_loss: 0.6281\n", + "1 epoch 57 average loss: 0.6281\n", + "----------\n", + "1: epoch 58/500\n", + "1/0, train_loss: 0.6250\n", + "1 epoch 58 average loss: 0.6250\n", + "current epoch: 58 current mean dice: 0.4960\n", + "best mean dice: 0.5056 at epoch: 56\n", + "----------\n", + "1: epoch 59/500\n", + "1/0, train_loss: 0.6267\n", + "1 epoch 59 average loss: 0.6267\n", + "----------\n", + "1: epoch 60/500\n", + "1/0, train_loss: 0.6215\n", + "1 epoch 60 average loss: 0.6215\n", + "saved new best metric model\n", + "current epoch: 60 current mean dice: 0.5131\n", + "best mean dice: 0.5131 at epoch: 60\n", + "----------\n", + "1: epoch 61/500\n", + "1/0, train_loss: 0.6211\n", + "1 epoch 61 average loss: 0.6211\n", + "----------\n", + "1: epoch 62/500\n", + "1/0, train_loss: 0.6172\n", + "1 epoch 62 average loss: 0.6172\n", + "saved new best metric model\n", + "current epoch: 62 current mean dice: 0.5149\n", + "best mean dice: 0.5149 at epoch: 62\n", + "----------\n", + "1: epoch 63/500\n", + "1/0, train_loss: 0.6188\n", + "1 epoch 63 average loss: 0.6188\n", + "----------\n", + "1: epoch 64/500\n", + "1/0, train_loss: 0.6198\n", + "1 epoch 64 average loss: 0.6198\n", + "current epoch: 64 current mean dice: 0.5072\n", + "best mean dice: 0.5149 at epoch: 62\n", + "----------\n", + "1: epoch 65/500\n", + "1/0, train_loss: 0.6186\n", + "1 epoch 65 average loss: 0.6186\n", + "----------\n", + "1: epoch 66/500\n", + "1/0, train_loss: 0.6162\n", + "1 epoch 66 average loss: 0.6162\n", + "current epoch: 66 current mean dice: 0.5053\n", + "best mean dice: 0.5149 at epoch: 62\n", + "----------\n", + "1: epoch 67/500\n", + "1/0, train_loss: 0.6171\n", + "1 epoch 67 average loss: 0.6171\n", + "----------\n", + "1: epoch 68/500\n", + "1/0, train_loss: 0.6127\n", + "1 epoch 68 average loss: 0.6127\n", + "saved new best metric model\n", + "current epoch: 68 current mean dice: 0.5164\n", + "best mean dice: 0.5164 at epoch: 68\n", + "----------\n", + "1: epoch 69/500\n", + "1/0, train_loss: 0.6121\n", + "1 epoch 69 average loss: 0.6121\n", + "----------\n", + "1: epoch 70/500\n", + "1/0, train_loss: 0.6129\n", + "1 epoch 70 average loss: 0.6129\n", + "saved new best metric model\n", + "current epoch: 70 current mean dice: 0.5184\n", + "best mean dice: 0.5184 at epoch: 70\n", + "----------\n", + "1: epoch 71/500\n", + "1/0, train_loss: 0.6112\n", + "1 epoch 71 average loss: 0.6112\n", + "----------\n", + "1: epoch 72/500\n", + "1/0, train_loss: 0.6079\n", + "1 epoch 72 average loss: 0.6079\n", + "current epoch: 72 current mean dice: 0.5146\n", + "best mean dice: 0.5184 at epoch: 70\n", + "----------\n", + "1: epoch 73/500\n", + "1/0, train_loss: 0.6098\n", + "1 epoch 73 average loss: 0.6098\n", + "----------\n", + "1: epoch 74/500\n", + "1/0, train_loss: 0.6069\n", + "1 epoch 74 average loss: 0.6069\n", + "saved new best metric model\n", + "current epoch: 74 current mean dice: 0.5185\n", + "best mean dice: 0.5185 at epoch: 74\n", + "----------\n", + "1: epoch 75/500\n", + "1/0, train_loss: 0.6060\n", + "1 epoch 75 average loss: 0.6060\n", + "----------\n", + "1: epoch 76/500\n", + "1/0, train_loss: 0.6040\n", + "1 epoch 76 average loss: 0.6040\n", + "saved new best metric model\n", + "current epoch: 76 current mean dice: 0.5195\n", + "best mean dice: 0.5195 at epoch: 76\n", + "----------\n", + "1: epoch 77/500\n", + "1/0, train_loss: 0.6050\n", + "1 epoch 77 average loss: 0.6050\n", + "----------\n", + "1: epoch 78/500\n", + "1/0, train_loss: 0.6010\n", + "1 epoch 78 average loss: 0.6010\n", + "saved new best metric model\n", + "current epoch: 78 current mean dice: 0.5393\n", + "best mean dice: 0.5393 at epoch: 78\n", + "----------\n", + "1: epoch 79/500\n", + "1/0, train_loss: 0.5974\n", + "1 epoch 79 average loss: 0.5974\n", + "----------\n", + "1: epoch 80/500\n", + "1/0, train_loss: 0.6019\n", + "1 epoch 80 average loss: 0.6019\n", + "current epoch: 80 current mean dice: 0.5277\n", + "best mean dice: 0.5393 at epoch: 78\n", + "----------\n", + "1: epoch 81/500\n", + "1/0, train_loss: 0.6033\n", + "1 epoch 81 average loss: 0.6033\n", + "----------\n", + "1: epoch 82/500\n", + "1/0, train_loss: 0.6043\n", + "1 epoch 82 average loss: 0.6043\n", + "current epoch: 82 current mean dice: 0.5234\n", + "best mean dice: 0.5393 at epoch: 78\n", + "----------\n", + "1: epoch 83/500\n", + "1/0, train_loss: 0.5991\n", + "1 epoch 83 average loss: 0.5991\n", + "----------\n", + "1: epoch 84/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.6002\n", + "1 epoch 84 average loss: 0.6002\n", + "current epoch: 84 current mean dice: 0.5114\n", + "best mean dice: 0.5393 at epoch: 78\n", + "----------\n", + "1: epoch 85/500\n", + "1/0, train_loss: 0.6011\n", + "1 epoch 85 average loss: 0.6011\n", + "----------\n", + "1: epoch 86/500\n", + "1/0, train_loss: 0.6045\n", + "1 epoch 86 average loss: 0.6045\n", + "current epoch: 86 current mean dice: 0.5246\n", + "best mean dice: 0.5393 at epoch: 78\n", + "----------\n", + "1: epoch 87/500\n", + "1/0, train_loss: 0.5962\n", + "1 epoch 87 average loss: 0.5962\n", + "----------\n", + "1: epoch 88/500\n", + "1/0, train_loss: 0.5950\n", + "1 epoch 88 average loss: 0.5950\n", + "current epoch: 88 current mean dice: 0.5292\n", + "best mean dice: 0.5393 at epoch: 78\n", + "----------\n", + "1: epoch 89/500\n", + "1/0, train_loss: 0.5974\n", + "1 epoch 89 average loss: 0.5974\n", + "----------\n", + "1: epoch 90/500\n", + "1/0, train_loss: 0.5924\n", + "1 epoch 90 average loss: 0.5924\n", + "saved new best metric model\n", + "current epoch: 90 current mean dice: 0.5466\n", + "best mean dice: 0.5466 at epoch: 90\n", + "----------\n", + "1: epoch 91/500\n", + "1/0, train_loss: 0.5920\n", + "1 epoch 91 average loss: 0.5920\n", + "----------\n", + "1: epoch 92/500\n", + "1/0, train_loss: 0.5921\n", + "1 epoch 92 average loss: 0.5921\n", + "saved new best metric model\n", + "current epoch: 92 current mean dice: 0.5504\n", + "best mean dice: 0.5504 at epoch: 92\n", + "----------\n", + "1: epoch 93/500\n", + "1/0, train_loss: 0.5901\n", + "1 epoch 93 average loss: 0.5901\n", + "----------\n", + "1: epoch 94/500\n", + "1/0, train_loss: 0.5903\n", + "1 epoch 94 average loss: 0.5903\n", + "current epoch: 94 current mean dice: 0.5230\n", + "best mean dice: 0.5504 at epoch: 92\n", + "----------\n", + "1: epoch 95/500\n", + "1/0, train_loss: 0.5869\n", + "1 epoch 95 average loss: 0.5869\n", + "----------\n", + "1: epoch 96/500\n", + "1/0, train_loss: 0.5979\n", + "1 epoch 96 average loss: 0.5979\n", + "current epoch: 96 current mean dice: 0.5366\n", + "best mean dice: 0.5504 at epoch: 92\n", + "----------\n", + "1: epoch 97/500\n", + "1/0, train_loss: 0.5912\n", + "1 epoch 97 average loss: 0.5912\n", + "----------\n", + "1: epoch 98/500\n", + "1/0, train_loss: 0.5918\n", + "1 epoch 98 average loss: 0.5918\n", + "current epoch: 98 current mean dice: 0.5293\n", + "best mean dice: 0.5504 at epoch: 92\n", + "----------\n", + "1: epoch 99/500\n", + "1/0, train_loss: 0.5897\n", + "1 epoch 99 average loss: 0.5897\n", + "----------\n", + "1: epoch 100/500\n", + "1/0, train_loss: 0.5910\n", + "1 epoch 100 average loss: 0.5910\n", + "current epoch: 100 current mean dice: 0.5251\n", + "best mean dice: 0.5504 at epoch: 92\n", + "----------\n", + "1: epoch 101/500\n", + "1/0, train_loss: 0.5886\n", + "1 epoch 101 average loss: 0.5886\n", + "----------\n", + "1: epoch 102/500\n", + "1/0, train_loss: 0.5863\n", + "1 epoch 102 average loss: 0.5863\n", + "current epoch: 102 current mean dice: 0.5374\n", + "best mean dice: 0.5504 at epoch: 92\n", + "----------\n", + "1: epoch 103/500\n", + "1/0, train_loss: 0.5854\n", + "1 epoch 103 average loss: 0.5854\n", + "----------\n", + "1: epoch 104/500\n", + "1/0, train_loss: 0.5846\n", + "1 epoch 104 average loss: 0.5846\n", + "current epoch: 104 current mean dice: 0.5381\n", + "best mean dice: 0.5504 at epoch: 92\n", + "----------\n", + "1: epoch 105/500\n", + "1/0, train_loss: 0.5878\n", + "1 epoch 105 average loss: 0.5878\n", + "----------\n", + "1: epoch 106/500\n", + "1/0, train_loss: 0.5844\n", + "1 epoch 106 average loss: 0.5844\n", + "current epoch: 106 current mean dice: 0.5427\n", + "best mean dice: 0.5504 at epoch: 92\n", + "----------\n", + "1: epoch 107/500\n", + "1/0, train_loss: 0.5830\n", + "1 epoch 107 average loss: 0.5830\n", + "----------\n", + "1: epoch 108/500\n", + "1/0, train_loss: 0.5832\n", + "1 epoch 108 average loss: 0.5832\n", + "current epoch: 108 current mean dice: 0.5225\n", + "best mean dice: 0.5504 at epoch: 92\n", + "----------\n", + "1: epoch 109/500\n", + "1/0, train_loss: 0.5858\n", + "1 epoch 109 average loss: 0.5858\n", + "----------\n", + "1: epoch 110/500\n", + "1/0, train_loss: 0.5817\n", + "1 epoch 110 average loss: 0.5817\n", + "current epoch: 110 current mean dice: 0.5389\n", + "best mean dice: 0.5504 at epoch: 92\n", + "----------\n", + "1: epoch 111/500\n", + "1/0, train_loss: 0.5825\n", + "1 epoch 111 average loss: 0.5825\n", + "----------\n", + "1: epoch 112/500\n", + "1/0, train_loss: 0.5785\n", + "1 epoch 112 average loss: 0.5785\n", + "current epoch: 112 current mean dice: 0.5290\n", + "best mean dice: 0.5504 at epoch: 92\n", + "----------\n", + "1: epoch 113/500\n", + "1/0, train_loss: 0.5827\n", + "1 epoch 113 average loss: 0.5827\n", + "----------\n", + "1: epoch 114/500\n", + "1/0, train_loss: 0.5810\n", + "1 epoch 114 average loss: 0.5810\n", + "current epoch: 114 current mean dice: 0.5328\n", + "best mean dice: 0.5504 at epoch: 92\n", + "----------\n", + "1: epoch 115/500\n", + "1/0, train_loss: 0.5809\n", + "1 epoch 115 average loss: 0.5809\n", + "----------\n", + "1: epoch 116/500\n", + "1/0, train_loss: 0.5783\n", + "1 epoch 116 average loss: 0.5783\n", + "saved new best metric model\n", + "current epoch: 116 current mean dice: 0.5537\n", + "best mean dice: 0.5537 at epoch: 116\n", + "----------\n", + "1: epoch 117/500\n", + "1/0, train_loss: 0.5832\n", + "1 epoch 117 average loss: 0.5832\n", + "----------\n", + "1: epoch 118/500\n", + "1/0, train_loss: 0.5762\n", + "1 epoch 118 average loss: 0.5762\n", + "current epoch: 118 current mean dice: 0.5375\n", + "best mean dice: 0.5537 at epoch: 116\n", + "----------\n", + "1: epoch 119/500\n", + "1/0, train_loss: 0.5807\n", + "1 epoch 119 average loss: 0.5807\n", + "----------\n", + "1: epoch 120/500\n", + "1/0, train_loss: 0.5766\n", + "1 epoch 120 average loss: 0.5766\n", + "current epoch: 120 current mean dice: 0.5275\n", + "best mean dice: 0.5537 at epoch: 116\n", + "----------\n", + "1: epoch 121/500\n", + "1/0, train_loss: 0.5787\n", + "1 epoch 121 average loss: 0.5787\n", + "----------\n", + "1: epoch 122/500\n", + "1/0, train_loss: 0.5783\n", + "1 epoch 122 average loss: 0.5783\n", + "current epoch: 122 current mean dice: 0.5333\n", + "best mean dice: 0.5537 at epoch: 116\n", + "----------\n", + "1: epoch 123/500\n", + "1/0, train_loss: 0.5777\n", + "1 epoch 123 average loss: 0.5777\n", + "----------\n", + "1: epoch 124/500\n", + "1/0, train_loss: 0.5778\n", + "1 epoch 124 average loss: 0.5778\n", + "current epoch: 124 current mean dice: 0.5421\n", + "best mean dice: 0.5537 at epoch: 116\n", + "----------\n", + "1: epoch 125/500\n", + "1/0, train_loss: 0.5692\n", + "1 epoch 125 average loss: 0.5692\n", + "----------\n", + "1: epoch 126/500\n", + "1/0, train_loss: 0.5682\n", + "1 epoch 126 average loss: 0.5682\n", + "current epoch: 126 current mean dice: 0.5425\n", + "best mean dice: 0.5537 at epoch: 116\n", + "----------\n", + "1: epoch 127/500\n", + "1/0, train_loss: 0.5708\n", + "1 epoch 127 average loss: 0.5708\n", + "----------\n", + "1: epoch 128/500\n", + "1/0, train_loss: 0.5678\n", + "1 epoch 128 average loss: 0.5678\n", + "saved new best metric model\n", + "current epoch: 128 current mean dice: 0.5580\n", + "best mean dice: 0.5580 at epoch: 128\n", + "----------\n", + "1: epoch 129/500\n", + "1/0, train_loss: 0.5676\n", + "1 epoch 129 average loss: 0.5676\n", + "----------\n", + "1: epoch 130/500\n", + "1/0, train_loss: 0.5680\n", + "1 epoch 130 average loss: 0.5680\n", + "current epoch: 130 current mean dice: 0.5486\n", + "best mean dice: 0.5580 at epoch: 128\n", + "----------\n", + "1: epoch 131/500\n", + "1/0, train_loss: 0.5646\n", + "1 epoch 131 average loss: 0.5646\n", + "----------\n", + "1: epoch 132/500\n", + "1/0, train_loss: 0.5663\n", + "1 epoch 132 average loss: 0.5663\n", + "current epoch: 132 current mean dice: 0.5515\n", + "best mean dice: 0.5580 at epoch: 128\n", + "----------\n", + "1: epoch 133/500\n", + "1/0, train_loss: 0.5668\n", + "1 epoch 133 average loss: 0.5668\n", + "----------\n", + "1: epoch 134/500\n", + "1/0, train_loss: 0.5646\n", + "1 epoch 134 average loss: 0.5646\n", + "current epoch: 134 current mean dice: 0.5467\n", + "best mean dice: 0.5580 at epoch: 128\n", + "----------\n", + "1: epoch 135/500\n", + "1/0, train_loss: 0.5574\n", + "1 epoch 135 average loss: 0.5574\n", + "----------\n", + "1: epoch 136/500\n", + "1/0, train_loss: 0.5654\n", + "1 epoch 136 average loss: 0.5654\n", + "saved new best metric model\n", + "current epoch: 136 current mean dice: 0.5613\n", + "best mean dice: 0.5613 at epoch: 136\n", + "----------\n", + "1: epoch 137/500\n", + "1/0, train_loss: 0.5569\n", + "1 epoch 137 average loss: 0.5569\n", + "----------\n", + "1: epoch 138/500\n", + "1/0, train_loss: 0.5604\n", + "1 epoch 138 average loss: 0.5604\n", + "saved new best metric model\n", + "current epoch: 138 current mean dice: 0.5709\n", + "best mean dice: 0.5709 at epoch: 138\n", + "----------\n", + "1: epoch 139/500\n", + "1/0, train_loss: 0.5604\n", + "1 epoch 139 average loss: 0.5604\n", + "----------\n", + "1: epoch 140/500\n", + "1/0, train_loss: 0.5566\n", + "1 epoch 140 average loss: 0.5566\n", + "saved new best metric model\n", + "current epoch: 140 current mean dice: 0.5719\n", + "best mean dice: 0.5719 at epoch: 140\n", + "----------\n", + "1: epoch 141/500\n", + "1/0, train_loss: 0.5593\n", + "1 epoch 141 average loss: 0.5593\n", + "----------\n", + "1: epoch 142/500\n", + "1/0, train_loss: 0.5550\n", + "1 epoch 142 average loss: 0.5550\n", + "saved new best metric model\n", + "current epoch: 142 current mean dice: 0.6442\n", + "best mean dice: 0.6442 at epoch: 142\n", + "----------\n", + "1: epoch 143/500\n", + "1/0, train_loss: 0.5565\n", + "1 epoch 143 average loss: 0.5565\n", + "----------\n", + "1: epoch 144/500\n", + "1/0, train_loss: 0.5590\n", + "1 epoch 144 average loss: 0.5590\n", + "current epoch: 144 current mean dice: 0.6006\n", + "best mean dice: 0.6442 at epoch: 142\n", + "----------\n", + "1: epoch 145/500\n", + "1/0, train_loss: 0.5553\n", + "1 epoch 145 average loss: 0.5553\n", + "----------\n", + "1: epoch 146/500\n", + "1/0, train_loss: 0.5550\n", + "1 epoch 146 average loss: 0.5550\n", + "current epoch: 146 current mean dice: 0.4930\n", + "best mean dice: 0.6442 at epoch: 142\n", + "----------\n", + "1: epoch 147/500\n", + "1/0, train_loss: 0.5654\n", + "1 epoch 147 average loss: 0.5654\n", + "----------\n", + "1: epoch 148/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.5500\n", + "1 epoch 148 average loss: 0.5500\n", + "current epoch: 148 current mean dice: 0.6097\n", + "best mean dice: 0.6442 at epoch: 142\n", + "----------\n", + "1: epoch 149/500\n", + "1/0, train_loss: 0.5597\n", + "1 epoch 149 average loss: 0.5597\n", + "----------\n", + "1: epoch 150/500\n", + "1/0, train_loss: 0.5462\n", + "1 epoch 150 average loss: 0.5462\n", + "current epoch: 150 current mean dice: 0.5345\n", + "best mean dice: 0.6442 at epoch: 142\n", + "----------\n", + "1: epoch 151/500\n", + "1/0, train_loss: 0.5571\n", + "1 epoch 151 average loss: 0.5571\n", + "----------\n", + "1: epoch 152/500\n", + "1/0, train_loss: 0.5513\n", + "1 epoch 152 average loss: 0.5513\n", + "saved new best metric model\n", + "current epoch: 152 current mean dice: 0.6497\n", + "best mean dice: 0.6497 at epoch: 152\n", + "----------\n", + "1: epoch 153/500\n", + "1/0, train_loss: 0.5464\n", + "1 epoch 153 average loss: 0.5464\n", + "----------\n", + "1: epoch 154/500\n", + "1/0, train_loss: 0.5448\n", + "1 epoch 154 average loss: 0.5448\n", + "current epoch: 154 current mean dice: 0.5849\n", + "best mean dice: 0.6497 at epoch: 152\n", + "----------\n", + "1: epoch 155/500\n", + "1/0, train_loss: 0.5416\n", + "1 epoch 155 average loss: 0.5416\n", + "----------\n", + "1: epoch 156/500\n", + "1/0, train_loss: 0.5493\n", + "1 epoch 156 average loss: 0.5493\n", + "current epoch: 156 current mean dice: 0.6211\n", + "best mean dice: 0.6497 at epoch: 152\n", + "----------\n", + "1: epoch 157/500\n", + "1/0, train_loss: 0.5459\n", + "1 epoch 157 average loss: 0.5459\n", + "----------\n", + "1: epoch 158/500\n", + "1/0, train_loss: 0.5366\n", + "1 epoch 158 average loss: 0.5366\n", + "current epoch: 158 current mean dice: 0.6117\n", + "best mean dice: 0.6497 at epoch: 152\n", + "----------\n", + "1: epoch 159/500\n", + "1/0, train_loss: 0.5373\n", + "1 epoch 159 average loss: 0.5373\n", + "----------\n", + "1: epoch 160/500\n", + "1/0, train_loss: 0.5452\n", + "1 epoch 160 average loss: 0.5452\n", + "current epoch: 160 current mean dice: 0.5932\n", + "best mean dice: 0.6497 at epoch: 152\n", + "----------\n", + "1: epoch 161/500\n", + "1/0, train_loss: 0.5343\n", + "1 epoch 161 average loss: 0.5343\n", + "----------\n", + "1: epoch 162/500\n", + "1/0, train_loss: 0.5386\n", + "1 epoch 162 average loss: 0.5386\n", + "current epoch: 162 current mean dice: 0.6317\n", + "best mean dice: 0.6497 at epoch: 152\n", + "----------\n", + "1: epoch 163/500\n", + "1/0, train_loss: 0.5390\n", + "1 epoch 163 average loss: 0.5390\n", + "----------\n", + "1: epoch 164/500\n", + "1/0, train_loss: 0.5364\n", + "1 epoch 164 average loss: 0.5364\n", + "saved new best metric model\n", + "current epoch: 164 current mean dice: 0.6534\n", + "best mean dice: 0.6534 at epoch: 164\n", + "----------\n", + "1: epoch 165/500\n", + "1/0, train_loss: 0.5337\n", + "1 epoch 165 average loss: 0.5337\n", + "----------\n", + "1: epoch 166/500\n", + "1/0, train_loss: 0.5340\n", + "1 epoch 166 average loss: 0.5340\n", + "current epoch: 166 current mean dice: 0.6462\n", + "best mean dice: 0.6534 at epoch: 164\n", + "----------\n", + "1: epoch 167/500\n", + "1/0, train_loss: 0.5300\n", + "1 epoch 167 average loss: 0.5300\n", + "----------\n", + "1: epoch 168/500\n", + "1/0, train_loss: 0.5296\n", + "1 epoch 168 average loss: 0.5296\n", + "current epoch: 168 current mean dice: 0.6478\n", + "best mean dice: 0.6534 at epoch: 164\n", + "----------\n", + "1: epoch 169/500\n", + "1/0, train_loss: 0.5317\n", + "1 epoch 169 average loss: 0.5317\n", + "----------\n", + "1: epoch 170/500\n", + "1/0, train_loss: 0.5298\n", + "1 epoch 170 average loss: 0.5298\n", + "current epoch: 170 current mean dice: 0.5491\n", + "best mean dice: 0.6534 at epoch: 164\n", + "----------\n", + "1: epoch 171/500\n", + "1/0, train_loss: 0.5449\n", + "1 epoch 171 average loss: 0.5449\n", + "----------\n", + "1: epoch 172/500\n", + "1/0, train_loss: 0.5719\n", + "1 epoch 172 average loss: 0.5719\n", + "current epoch: 172 current mean dice: 0.6076\n", + "best mean dice: 0.6534 at epoch: 164\n", + "----------\n", + "1: epoch 173/500\n", + "1/0, train_loss: 0.5758\n", + "1 epoch 173 average loss: 0.5758\n", + "----------\n", + "1: epoch 174/500\n", + "1/0, train_loss: 0.5622\n", + "1 epoch 174 average loss: 0.5622\n", + "current epoch: 174 current mean dice: 0.6207\n", + "best mean dice: 0.6534 at epoch: 164\n", + "----------\n", + "1: epoch 175/500\n", + "1/0, train_loss: 0.5369\n", + "1 epoch 175 average loss: 0.5369\n", + "----------\n", + "1: epoch 176/500\n", + "1/0, train_loss: 0.5478\n", + "1 epoch 176 average loss: 0.5478\n", + "current epoch: 176 current mean dice: 0.5266\n", + "best mean dice: 0.6534 at epoch: 164\n", + "----------\n", + "1: epoch 177/500\n", + "1/0, train_loss: 0.5437\n", + "1 epoch 177 average loss: 0.5437\n", + "----------\n", + "1: epoch 178/500\n", + "1/0, train_loss: 0.5496\n", + "1 epoch 178 average loss: 0.5496\n", + "current epoch: 178 current mean dice: 0.6189\n", + "best mean dice: 0.6534 at epoch: 164\n", + "----------\n", + "1: epoch 179/500\n", + "1/0, train_loss: 0.5428\n", + "1 epoch 179 average loss: 0.5428\n", + "----------\n", + "1: epoch 180/500\n", + "1/0, train_loss: 0.5436\n", + "1 epoch 180 average loss: 0.5436\n", + "current epoch: 180 current mean dice: 0.6322\n", + "best mean dice: 0.6534 at epoch: 164\n", + "----------\n", + "1: epoch 181/500\n", + "1/0, train_loss: 0.5346\n", + "1 epoch 181 average loss: 0.5346\n", + "----------\n", + "1: epoch 182/500\n", + "1/0, train_loss: 0.5364\n", + "1 epoch 182 average loss: 0.5364\n", + "current epoch: 182 current mean dice: 0.6017\n", + "best mean dice: 0.6534 at epoch: 164\n", + "----------\n", + "1: epoch 183/500\n", + "1/0, train_loss: 0.5286\n", + "1 epoch 183 average loss: 0.5286\n", + "----------\n", + "1: epoch 184/500\n", + "1/0, train_loss: 0.5300\n", + "1 epoch 184 average loss: 0.5300\n", + "current epoch: 184 current mean dice: 0.6215\n", + "best mean dice: 0.6534 at epoch: 164\n", + "----------\n", + "1: epoch 185/500\n", + "1/0, train_loss: 0.5318\n", + "1 epoch 185 average loss: 0.5318\n", + "----------\n", + "1: epoch 186/500\n", + "1/0, train_loss: 0.5259\n", + "1 epoch 186 average loss: 0.5259\n", + "current epoch: 186 current mean dice: 0.5838\n", + "best mean dice: 0.6534 at epoch: 164\n", + "----------\n", + "1: epoch 187/500\n", + "1/0, train_loss: 0.5304\n", + "1 epoch 187 average loss: 0.5304\n", + "----------\n", + "1: epoch 188/500\n", + "1/0, train_loss: 0.5254\n", + "1 epoch 188 average loss: 0.5254\n", + "current epoch: 188 current mean dice: 0.6171\n", + "best mean dice: 0.6534 at epoch: 164\n", + "----------\n", + "1: epoch 189/500\n", + "1/0, train_loss: 0.5303\n", + "1 epoch 189 average loss: 0.5303\n", + "----------\n", + "1: epoch 190/500\n", + "1/0, train_loss: 0.5216\n", + "1 epoch 190 average loss: 0.5216\n", + "current epoch: 190 current mean dice: 0.6386\n", + "best mean dice: 0.6534 at epoch: 164\n", + "----------\n", + "1: epoch 191/500\n", + "1/0, train_loss: 0.5178\n", + "1 epoch 191 average loss: 0.5178\n", + "----------\n", + "1: epoch 192/500\n", + "1/0, train_loss: 0.5173\n", + "1 epoch 192 average loss: 0.5173\n", + "current epoch: 192 current mean dice: 0.6300\n", + "best mean dice: 0.6534 at epoch: 164\n", + "----------\n", + "1: epoch 193/500\n", + "1/0, train_loss: 0.5214\n", + "1 epoch 193 average loss: 0.5214\n", + "----------\n", + "1: epoch 194/500\n", + "1/0, train_loss: 0.5176\n", + "1 epoch 194 average loss: 0.5176\n", + "current epoch: 194 current mean dice: 0.6314\n", + "best mean dice: 0.6534 at epoch: 164\n", + "----------\n", + "1: epoch 195/500\n", + "1/0, train_loss: 0.5129\n", + "1 epoch 195 average loss: 0.5129\n", + "----------\n", + "1: epoch 196/500\n", + "1/0, train_loss: 0.5145\n", + "1 epoch 196 average loss: 0.5145\n", + "current epoch: 196 current mean dice: 0.6318\n", + "best mean dice: 0.6534 at epoch: 164\n", + "----------\n", + "1: epoch 197/500\n", + "1/0, train_loss: 0.5152\n", + "1 epoch 197 average loss: 0.5152\n", + "----------\n", + "1: epoch 198/500\n", + "1/0, train_loss: 0.5138\n", + "1 epoch 198 average loss: 0.5138\n", + "saved new best metric model\n", + "current epoch: 198 current mean dice: 0.6628\n", + "best mean dice: 0.6628 at epoch: 198\n", + "----------\n", + "1: epoch 199/500\n", + "1/0, train_loss: 0.5174\n", + "1 epoch 199 average loss: 0.5174\n", + "----------\n", + "1: epoch 200/500\n", + "1/0, train_loss: 0.5098\n", + "1 epoch 200 average loss: 0.5098\n", + "current epoch: 200 current mean dice: 0.6618\n", + "best mean dice: 0.6628 at epoch: 198\n", + "----------\n", + "1: epoch 201/500\n", + "1/0, train_loss: 0.5103\n", + "1 epoch 201 average loss: 0.5103\n", + "----------\n", + "1: epoch 202/500\n", + "1/0, train_loss: 0.5080\n", + "1 epoch 202 average loss: 0.5080\n", + "current epoch: 202 current mean dice: 0.6444\n", + "best mean dice: 0.6628 at epoch: 198\n", + "----------\n", + "1: epoch 203/500\n", + "1/0, train_loss: 0.5118\n", + "1 epoch 203 average loss: 0.5118\n", + "----------\n", + "1: epoch 204/500\n", + "1/0, train_loss: 0.5081\n", + "1 epoch 204 average loss: 0.5081\n", + "current epoch: 204 current mean dice: 0.6567\n", + "best mean dice: 0.6628 at epoch: 198\n", + "----------\n", + "1: epoch 205/500\n", + "1/0, train_loss: 0.5082\n", + "1 epoch 205 average loss: 0.5082\n", + "----------\n", + "1: epoch 206/500\n", + "1/0, train_loss: 0.5071\n", + "1 epoch 206 average loss: 0.5071\n", + "current epoch: 206 current mean dice: 0.6285\n", + "best mean dice: 0.6628 at epoch: 198\n", + "----------\n", + "1: epoch 207/500\n", + "1/0, train_loss: 0.5099\n", + "1 epoch 207 average loss: 0.5099\n", + "----------\n", + "1: epoch 208/500\n", + "1/0, train_loss: 0.5068\n", + "1 epoch 208 average loss: 0.5068\n", + "current epoch: 208 current mean dice: 0.6569\n", + "best mean dice: 0.6628 at epoch: 198\n", + "----------\n", + "1: epoch 209/500\n", + "1/0, train_loss: 0.5054\n", + "1 epoch 209 average loss: 0.5054\n", + "----------\n", + "1: epoch 210/500\n", + "1/0, train_loss: 0.5079\n", + "1 epoch 210 average loss: 0.5079\n", + "current epoch: 210 current mean dice: 0.6500\n", + "best mean dice: 0.6628 at epoch: 198\n", + "----------\n", + "1: epoch 211/500\n", + "1/0, train_loss: 0.5026\n", + "1 epoch 211 average loss: 0.5026\n", + "----------\n", + "1: epoch 212/500\n", + "1/0, train_loss: 0.5005\n", + "1 epoch 212 average loss: 0.5005\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "current epoch: 212 current mean dice: 0.6435\n", + "best mean dice: 0.6628 at epoch: 198\n", + "----------\n", + "1: epoch 213/500\n", + "1/0, train_loss: 0.5048\n", + "1 epoch 213 average loss: 0.5048\n", + "----------\n", + "1: epoch 214/500\n", + "1/0, train_loss: 0.5087\n", + "1 epoch 214 average loss: 0.5087\n", + "current epoch: 214 current mean dice: 0.6563\n", + "best mean dice: 0.6628 at epoch: 198\n", + "----------\n", + "1: epoch 215/500\n", + "1/0, train_loss: 0.5038\n", + "1 epoch 215 average loss: 0.5038\n", + "----------\n", + "1: epoch 216/500\n", + "1/0, train_loss: 0.5033\n", + "1 epoch 216 average loss: 0.5033\n", + "current epoch: 216 current mean dice: 0.6462\n", + "best mean dice: 0.6628 at epoch: 198\n", + "----------\n", + "1: epoch 217/500\n", + "1/0, train_loss: 0.5067\n", + "1 epoch 217 average loss: 0.5067\n", + "----------\n", + "1: epoch 218/500\n", + "1/0, train_loss: 0.5012\n", + "1 epoch 218 average loss: 0.5012\n", + "current epoch: 218 current mean dice: 0.6476\n", + "best mean dice: 0.6628 at epoch: 198\n", + "----------\n", + "1: epoch 219/500\n", + "1/0, train_loss: 0.5037\n", + "1 epoch 219 average loss: 0.5037\n", + "----------\n", + "1: epoch 220/500\n", + "1/0, train_loss: 0.5039\n", + "1 epoch 220 average loss: 0.5039\n", + "current epoch: 220 current mean dice: 0.6448\n", + "best mean dice: 0.6628 at epoch: 198\n", + "----------\n", + "1: epoch 221/500\n", + "1/0, train_loss: 0.5002\n", + "1 epoch 221 average loss: 0.5002\n", + "----------\n", + "1: epoch 222/500\n", + "1/0, train_loss: 0.4997\n", + "1 epoch 222 average loss: 0.4997\n", + "current epoch: 222 current mean dice: 0.6379\n", + "best mean dice: 0.6628 at epoch: 198\n", + "----------\n", + "1: epoch 223/500\n", + "1/0, train_loss: 0.5026\n", + "1 epoch 223 average loss: 0.5026\n", + "----------\n", + "1: epoch 224/500\n", + "1/0, train_loss: 0.4974\n", + "1 epoch 224 average loss: 0.4974\n", + "current epoch: 224 current mean dice: 0.6332\n", + "best mean dice: 0.6628 at epoch: 198\n", + "----------\n", + "1: epoch 225/500\n", + "1/0, train_loss: 0.4980\n", + "1 epoch 225 average loss: 0.4980\n", + "----------\n", + "1: epoch 226/500\n", + "1/0, train_loss: 0.4969\n", + "1 epoch 226 average loss: 0.4969\n", + "current epoch: 226 current mean dice: 0.6536\n", + "best mean dice: 0.6628 at epoch: 198\n", + "----------\n", + "1: epoch 227/500\n", + "1/0, train_loss: 0.4964\n", + "1 epoch 227 average loss: 0.4964\n", + "----------\n", + "1: epoch 228/500\n", + "1/0, train_loss: 0.4969\n", + "1 epoch 228 average loss: 0.4969\n", + "current epoch: 228 current mean dice: 0.6445\n", + "best mean dice: 0.6628 at epoch: 198\n", + "----------\n", + "1: epoch 229/500\n", + "1/0, train_loss: 0.4962\n", + "1 epoch 229 average loss: 0.4962\n", + "----------\n", + "1: epoch 230/500\n", + "1/0, train_loss: 0.4968\n", + "1 epoch 230 average loss: 0.4968\n", + "current epoch: 230 current mean dice: 0.6566\n", + "best mean dice: 0.6628 at epoch: 198\n", + "----------\n", + "1: epoch 231/500\n", + "1/0, train_loss: 0.4937\n", + "1 epoch 231 average loss: 0.4937\n", + "----------\n", + "1: epoch 232/500\n", + "1/0, train_loss: 0.4919\n", + "1 epoch 232 average loss: 0.4919\n", + "current epoch: 232 current mean dice: 0.6602\n", + "best mean dice: 0.6628 at epoch: 198\n", + "----------\n", + "1: epoch 233/500\n", + "1/0, train_loss: 0.4950\n", + "1 epoch 233 average loss: 0.4950\n", + "----------\n", + "1: epoch 234/500\n", + "1/0, train_loss: 0.4921\n", + "1 epoch 234 average loss: 0.4921\n", + "current epoch: 234 current mean dice: 0.6545\n", + "best mean dice: 0.6628 at epoch: 198\n", + "----------\n", + "1: epoch 235/500\n", + "1/0, train_loss: 0.4883\n", + "1 epoch 235 average loss: 0.4883\n", + "----------\n", + "1: epoch 236/500\n", + "1/0, train_loss: 0.5018\n", + "1 epoch 236 average loss: 0.5018\n", + "saved new best metric model\n", + "current epoch: 236 current mean dice: 0.6862\n", + "best mean dice: 0.6862 at epoch: 236\n", + "----------\n", + "1: epoch 237/500\n", + "1/0, train_loss: 0.4881\n", + "1 epoch 237 average loss: 0.4881\n", + "----------\n", + "1: epoch 238/500\n", + "1/0, train_loss: 0.4934\n", + "1 epoch 238 average loss: 0.4934\n", + "current epoch: 238 current mean dice: 0.6849\n", + "best mean dice: 0.6862 at epoch: 236\n", + "----------\n", + "1: epoch 239/500\n", + "1/0, train_loss: 0.4937\n", + "1 epoch 239 average loss: 0.4937\n", + "----------\n", + "1: epoch 240/500\n", + "1/0, train_loss: 0.4909\n", + "1 epoch 240 average loss: 0.4909\n", + "current epoch: 240 current mean dice: 0.6713\n", + "best mean dice: 0.6862 at epoch: 236\n", + "----------\n", + "1: epoch 241/500\n", + "1/0, train_loss: 0.4911\n", + "1 epoch 241 average loss: 0.4911\n", + "----------\n", + "1: epoch 242/500\n", + "1/0, train_loss: 0.4887\n", + "1 epoch 242 average loss: 0.4887\n", + "saved new best metric model\n", + "current epoch: 242 current mean dice: 0.7016\n", + "best mean dice: 0.7016 at epoch: 242\n", + "----------\n", + "1: epoch 243/500\n", + "1/0, train_loss: 0.4883\n", + "1 epoch 243 average loss: 0.4883\n", + "----------\n", + "1: epoch 244/500\n", + "1/0, train_loss: 0.4879\n", + "1 epoch 244 average loss: 0.4879\n", + "current epoch: 244 current mean dice: 0.6330\n", + "best mean dice: 0.7016 at epoch: 242\n", + "----------\n", + "1: epoch 245/500\n", + "1/0, train_loss: 0.4906\n", + "1 epoch 245 average loss: 0.4906\n", + "----------\n", + "1: epoch 246/500\n", + "1/0, train_loss: 0.4869\n", + "1 epoch 246 average loss: 0.4869\n", + "current epoch: 246 current mean dice: 0.6713\n", + "best mean dice: 0.7016 at epoch: 242\n", + "----------\n", + "1: epoch 247/500\n", + "1/0, train_loss: 0.4895\n", + "1 epoch 247 average loss: 0.4895\n", + "----------\n", + "1: epoch 248/500\n", + "1/0, train_loss: 0.4861\n", + "1 epoch 248 average loss: 0.4861\n", + "saved new best metric model\n", + "current epoch: 248 current mean dice: 0.7051\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 249/500\n", + "1/0, train_loss: 0.4901\n", + "1 epoch 249 average loss: 0.4901\n", + "----------\n", + "1: epoch 250/500\n", + "1/0, train_loss: 0.4861\n", + "1 epoch 250 average loss: 0.4861\n", + "current epoch: 250 current mean dice: 0.6890\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 251/500\n", + "1/0, train_loss: 0.4873\n", + "1 epoch 251 average loss: 0.4873\n", + "----------\n", + "1: epoch 252/500\n", + "1/0, train_loss: 0.4867\n", + "1 epoch 252 average loss: 0.4867\n", + "current epoch: 252 current mean dice: 0.6810\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 253/500\n", + "1/0, train_loss: 0.4854\n", + "1 epoch 253 average loss: 0.4854\n", + "----------\n", + "1: epoch 254/500\n", + "1/0, train_loss: 0.4844\n", + "1 epoch 254 average loss: 0.4844\n", + "current epoch: 254 current mean dice: 0.6415\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 255/500\n", + "1/0, train_loss: 0.4862\n", + "1 epoch 255 average loss: 0.4862\n", + "----------\n", + "1: epoch 256/500\n", + "1/0, train_loss: 0.4844\n", + "1 epoch 256 average loss: 0.4844\n", + "current epoch: 256 current mean dice: 0.6598\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 257/500\n", + "1/0, train_loss: 0.4844\n", + "1 epoch 257 average loss: 0.4844\n", + "----------\n", + "1: epoch 258/500\n", + "1/0, train_loss: 0.4812\n", + "1 epoch 258 average loss: 0.4812\n", + "current epoch: 258 current mean dice: 0.6250\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 259/500\n", + "1/0, train_loss: 0.4843\n", + "1 epoch 259 average loss: 0.4843\n", + "----------\n", + "1: epoch 260/500\n", + "1/0, train_loss: 0.4852\n", + "1 epoch 260 average loss: 0.4852\n", + "current epoch: 260 current mean dice: 0.6856\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 261/500\n", + "1/0, train_loss: 0.4772\n", + "1 epoch 261 average loss: 0.4772\n", + "----------\n", + "1: epoch 262/500\n", + "1/0, train_loss: 0.4826\n", + "1 epoch 262 average loss: 0.4826\n", + "current epoch: 262 current mean dice: 0.6745\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 263/500\n", + "1/0, train_loss: 0.4811\n", + "1 epoch 263 average loss: 0.4811\n", + "----------\n", + "1: epoch 264/500\n", + "1/0, train_loss: 0.4820\n", + "1 epoch 264 average loss: 0.4820\n", + "current epoch: 264 current mean dice: 0.6817\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 265/500\n", + "1/0, train_loss: 0.4796\n", + "1 epoch 265 average loss: 0.4796\n", + "----------\n", + "1: epoch 266/500\n", + "1/0, train_loss: 0.4815\n", + "1 epoch 266 average loss: 0.4815\n", + "current epoch: 266 current mean dice: 0.6969\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 267/500\n", + "1/0, train_loss: 0.4789\n", + "1 epoch 267 average loss: 0.4789\n", + "----------\n", + "1: epoch 268/500\n", + "1/0, train_loss: 0.4805\n", + "1 epoch 268 average loss: 0.4805\n", + "current epoch: 268 current mean dice: 0.6824\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 269/500\n", + "1/0, train_loss: 0.4781\n", + "1 epoch 269 average loss: 0.4781\n", + "----------\n", + "1: epoch 270/500\n", + "1/0, train_loss: 0.4829\n", + "1 epoch 270 average loss: 0.4829\n", + "current epoch: 270 current mean dice: 0.6630\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 271/500\n", + "1/0, train_loss: 0.4777\n", + "1 epoch 271 average loss: 0.4777\n", + "----------\n", + "1: epoch 272/500\n", + "1/0, train_loss: 0.4761\n", + "1 epoch 272 average loss: 0.4761\n", + "current epoch: 272 current mean dice: 0.6859\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 273/500\n", + "1/0, train_loss: 0.4804\n", + "1 epoch 273 average loss: 0.4804\n", + "----------\n", + "1: epoch 274/500\n", + "1/0, train_loss: 0.4789\n", + "1 epoch 274 average loss: 0.4789\n", + "current epoch: 274 current mean dice: 0.6854\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 275/500\n", + "1/0, train_loss: 0.4782\n", + "1 epoch 275 average loss: 0.4782\n", + "----------\n", + "1: epoch 276/500\n", + "1/0, train_loss: 0.4775\n", + "1 epoch 276 average loss: 0.4775\n", + "current epoch: 276 current mean dice: 0.6477\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 277/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.4797\n", + "1 epoch 277 average loss: 0.4797\n", + "----------\n", + "1: epoch 278/500\n", + "1/0, train_loss: 0.4736\n", + "1 epoch 278 average loss: 0.4736\n", + "current epoch: 278 current mean dice: 0.6980\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 279/500\n", + "1/0, train_loss: 0.4753\n", + "1 epoch 279 average loss: 0.4753\n", + "----------\n", + "1: epoch 280/500\n", + "1/0, train_loss: 0.4787\n", + "1 epoch 280 average loss: 0.4787\n", + "current epoch: 280 current mean dice: 0.6882\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 281/500\n", + "1/0, train_loss: 0.4770\n", + "1 epoch 281 average loss: 0.4770\n", + "----------\n", + "1: epoch 282/500\n", + "1/0, train_loss: 0.4753\n", + "1 epoch 282 average loss: 0.4753\n", + "current epoch: 282 current mean dice: 0.6636\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 283/500\n", + "1/0, train_loss: 0.4806\n", + "1 epoch 283 average loss: 0.4806\n", + "----------\n", + "1: epoch 284/500\n", + "1/0, train_loss: 0.4739\n", + "1 epoch 284 average loss: 0.4739\n", + "current epoch: 284 current mean dice: 0.6798\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 285/500\n", + "1/0, train_loss: 0.4766\n", + "1 epoch 285 average loss: 0.4766\n", + "----------\n", + "1: epoch 286/500\n", + "1/0, train_loss: 0.4745\n", + "1 epoch 286 average loss: 0.4745\n", + "current epoch: 286 current mean dice: 0.6596\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 287/500\n", + "1/0, train_loss: 0.4721\n", + "1 epoch 287 average loss: 0.4721\n", + "----------\n", + "1: epoch 288/500\n", + "1/0, train_loss: 0.4684\n", + "1 epoch 288 average loss: 0.4684\n", + "current epoch: 288 current mean dice: 0.6480\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 289/500\n", + "1/0, train_loss: 0.4703\n", + "1 epoch 289 average loss: 0.4703\n", + "----------\n", + "1: epoch 290/500\n", + "1/0, train_loss: 0.4730\n", + "1 epoch 290 average loss: 0.4730\n", + "current epoch: 290 current mean dice: 0.6745\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 291/500\n", + "1/0, train_loss: 0.4725\n", + "1 epoch 291 average loss: 0.4725\n", + "----------\n", + "1: epoch 292/500\n", + "1/0, train_loss: 0.4715\n", + "1 epoch 292 average loss: 0.4715\n", + "current epoch: 292 current mean dice: 0.6659\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 293/500\n", + "1/0, train_loss: 0.4703\n", + "1 epoch 293 average loss: 0.4703\n", + "----------\n", + "1: epoch 294/500\n", + "1/0, train_loss: 0.4733\n", + "1 epoch 294 average loss: 0.4733\n", + "current epoch: 294 current mean dice: 0.6551\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 295/500\n", + "1/0, train_loss: 0.4718\n", + "1 epoch 295 average loss: 0.4718\n", + "----------\n", + "1: epoch 296/500\n", + "1/0, train_loss: 0.4721\n", + "1 epoch 296 average loss: 0.4721\n", + "current epoch: 296 current mean dice: 0.6558\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 297/500\n", + "1/0, train_loss: 0.4704\n", + "1 epoch 297 average loss: 0.4704\n", + "----------\n", + "1: epoch 298/500\n", + "1/0, train_loss: 0.4686\n", + "1 epoch 298 average loss: 0.4686\n", + "current epoch: 298 current mean dice: 0.6818\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 299/500\n", + "1/0, train_loss: 0.4708\n", + "1 epoch 299 average loss: 0.4708\n", + "----------\n", + "1: epoch 300/500\n", + "1/0, train_loss: 0.4661\n", + "1 epoch 300 average loss: 0.4661\n", + "current epoch: 300 current mean dice: 0.6938\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 301/500\n", + "1/0, train_loss: 0.4705\n", + "1 epoch 301 average loss: 0.4705\n", + "----------\n", + "1: epoch 302/500\n", + "1/0, train_loss: 0.4666\n", + "1 epoch 302 average loss: 0.4666\n", + "current epoch: 302 current mean dice: 0.5685\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 303/500\n", + "1/0, train_loss: 0.4691\n", + "1 epoch 303 average loss: 0.4691\n", + "----------\n", + "1: epoch 304/500\n", + "1/0, train_loss: 0.4637\n", + "1 epoch 304 average loss: 0.4637\n", + "current epoch: 304 current mean dice: 0.5549\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 305/500\n", + "1/0, train_loss: 0.4691\n", + "1 epoch 305 average loss: 0.4691\n", + "----------\n", + "1: epoch 306/500\n", + "1/0, train_loss: 0.4639\n", + "1 epoch 306 average loss: 0.4639\n", + "current epoch: 306 current mean dice: 0.6633\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 307/500\n", + "1/0, train_loss: 0.4639\n", + "1 epoch 307 average loss: 0.4639\n", + "----------\n", + "1: epoch 308/500\n", + "1/0, train_loss: 0.4644\n", + "1 epoch 308 average loss: 0.4644\n", + "current epoch: 308 current mean dice: 0.6927\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 309/500\n", + "1/0, train_loss: 0.4656\n", + "1 epoch 309 average loss: 0.4656\n", + "----------\n", + "1: epoch 310/500\n", + "1/0, train_loss: 0.4634\n", + "1 epoch 310 average loss: 0.4634\n", + "current epoch: 310 current mean dice: 0.6853\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 311/500\n", + "1/0, train_loss: 0.4670\n", + "1 epoch 311 average loss: 0.4670\n", + "----------\n", + "1: epoch 312/500\n", + "1/0, train_loss: 0.4651\n", + "1 epoch 312 average loss: 0.4651\n", + "current epoch: 312 current mean dice: 0.6558\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 313/500\n", + "1/0, train_loss: 0.4637\n", + "1 epoch 313 average loss: 0.4637\n", + "----------\n", + "1: epoch 314/500\n", + "1/0, train_loss: 0.4635\n", + "1 epoch 314 average loss: 0.4635\n", + "current epoch: 314 current mean dice: 0.6627\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 315/500\n", + "1/0, train_loss: 0.4635\n", + "1 epoch 315 average loss: 0.4635\n", + "----------\n", + "1: epoch 316/500\n", + "1/0, train_loss: 0.4631\n", + "1 epoch 316 average loss: 0.4631\n", + "current epoch: 316 current mean dice: 0.6580\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 317/500\n", + "1/0, train_loss: 0.4637\n", + "1 epoch 317 average loss: 0.4637\n", + "----------\n", + "1: epoch 318/500\n", + "1/0, train_loss: 0.4630\n", + "1 epoch 318 average loss: 0.4630\n", + "current epoch: 318 current mean dice: 0.6564\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 319/500\n", + "1/0, train_loss: 0.4652\n", + "1 epoch 319 average loss: 0.4652\n", + "----------\n", + "1: epoch 320/500\n", + "1/0, train_loss: 0.4634\n", + "1 epoch 320 average loss: 0.4634\n", + "current epoch: 320 current mean dice: 0.6676\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 321/500\n", + "1/0, train_loss: 0.4595\n", + "1 epoch 321 average loss: 0.4595\n", + "----------\n", + "1: epoch 322/500\n", + "1/0, train_loss: 0.4625\n", + "1 epoch 322 average loss: 0.4625\n", + "current epoch: 322 current mean dice: 0.6791\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 323/500\n", + "1/0, train_loss: 0.4646\n", + "1 epoch 323 average loss: 0.4646\n", + "----------\n", + "1: epoch 324/500\n", + "1/0, train_loss: 0.4599\n", + "1 epoch 324 average loss: 0.4599\n", + "current epoch: 324 current mean dice: 0.6858\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 325/500\n", + "1/0, train_loss: 0.4604\n", + "1 epoch 325 average loss: 0.4604\n", + "----------\n", + "1: epoch 326/500\n", + "1/0, train_loss: 0.4615\n", + "1 epoch 326 average loss: 0.4615\n", + "current epoch: 326 current mean dice: 0.6688\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 327/500\n", + "1/0, train_loss: 0.4606\n", + "1 epoch 327 average loss: 0.4606\n", + "----------\n", + "1: epoch 328/500\n", + "1/0, train_loss: 0.4536\n", + "1 epoch 328 average loss: 0.4536\n", + "current epoch: 328 current mean dice: 0.5728\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 329/500\n", + "1/0, train_loss: 0.4635\n", + "1 epoch 329 average loss: 0.4635\n", + "----------\n", + "1: epoch 330/500\n", + "1/0, train_loss: 0.4601\n", + "1 epoch 330 average loss: 0.4601\n", + "current epoch: 330 current mean dice: 0.6546\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 331/500\n", + "1/0, train_loss: 0.4603\n", + "1 epoch 331 average loss: 0.4603\n", + "----------\n", + "1: epoch 332/500\n", + "1/0, train_loss: 0.4607\n", + "1 epoch 332 average loss: 0.4607\n", + "current epoch: 332 current mean dice: 0.6771\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 333/500\n", + "1/0, train_loss: 0.4558\n", + "1 epoch 333 average loss: 0.4558\n", + "----------\n", + "1: epoch 334/500\n", + "1/0, train_loss: 0.4556\n", + "1 epoch 334 average loss: 0.4556\n", + "current epoch: 334 current mean dice: 0.6809\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 335/500\n", + "1/0, train_loss: 0.4570\n", + "1 epoch 335 average loss: 0.4570\n", + "----------\n", + "1: epoch 336/500\n", + "1/0, train_loss: 0.4596\n", + "1 epoch 336 average loss: 0.4596\n", + "current epoch: 336 current mean dice: 0.6775\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 337/500\n", + "1/0, train_loss: 0.4570\n", + "1 epoch 337 average loss: 0.4570\n", + "----------\n", + "1: epoch 338/500\n", + "1/0, train_loss: 0.4527\n", + "1 epoch 338 average loss: 0.4527\n", + "current epoch: 338 current mean dice: 0.6746\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 339/500\n", + "1/0, train_loss: 0.4577\n", + "1 epoch 339 average loss: 0.4577\n", + "----------\n", + "1: epoch 340/500\n", + "1/0, train_loss: 0.4594\n", + "1 epoch 340 average loss: 0.4594\n", + "current epoch: 340 current mean dice: 0.6664\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 341/500\n", + "1/0, train_loss: 0.4583\n", + "1 epoch 341 average loss: 0.4583\n", + "----------\n", + "1: epoch 342/500\n", + "1/0, train_loss: 0.4546\n", + "1 epoch 342 average loss: 0.4546\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "current epoch: 342 current mean dice: 0.6665\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 343/500\n", + "1/0, train_loss: 0.4552\n", + "1 epoch 343 average loss: 0.4552\n", + "----------\n", + "1: epoch 344/500\n", + "1/0, train_loss: 0.4543\n", + "1 epoch 344 average loss: 0.4543\n", + "current epoch: 344 current mean dice: 0.6764\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 345/500\n", + "1/0, train_loss: 0.4538\n", + "1 epoch 345 average loss: 0.4538\n", + "----------\n", + "1: epoch 346/500\n", + "1/0, train_loss: 0.4542\n", + "1 epoch 346 average loss: 0.4542\n", + "current epoch: 346 current mean dice: 0.6854\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 347/500\n", + "1/0, train_loss: 0.4556\n", + "1 epoch 347 average loss: 0.4556\n", + "----------\n", + "1: epoch 348/500\n", + "1/0, train_loss: 0.4514\n", + "1 epoch 348 average loss: 0.4514\n", + "current epoch: 348 current mean dice: 0.6833\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 349/500\n", + "1/0, train_loss: 0.4536\n", + "1 epoch 349 average loss: 0.4536\n", + "----------\n", + "1: epoch 350/500\n", + "1/0, train_loss: 0.4519\n", + "1 epoch 350 average loss: 0.4519\n", + "current epoch: 350 current mean dice: 0.6783\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 351/500\n", + "1/0, train_loss: 0.4562\n", + "1 epoch 351 average loss: 0.4562\n", + "----------\n", + "1: epoch 352/500\n", + "1/0, train_loss: 0.4572\n", + "1 epoch 352 average loss: 0.4572\n", + "current epoch: 352 current mean dice: 0.6408\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 353/500\n", + "1/0, train_loss: 0.4538\n", + "1 epoch 353 average loss: 0.4538\n", + "----------\n", + "1: epoch 354/500\n", + "1/0, train_loss: 0.4511\n", + "1 epoch 354 average loss: 0.4511\n", + "current epoch: 354 current mean dice: 0.5716\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 355/500\n", + "1/0, train_loss: 0.4551\n", + "1 epoch 355 average loss: 0.4551\n", + "----------\n", + "1: epoch 356/500\n", + "1/0, train_loss: 0.4535\n", + "1 epoch 356 average loss: 0.4535\n", + "current epoch: 356 current mean dice: 0.6567\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 357/500\n", + "1/0, train_loss: 0.4595\n", + "1 epoch 357 average loss: 0.4595\n", + "----------\n", + "1: epoch 358/500\n", + "1/0, train_loss: 0.4549\n", + "1 epoch 358 average loss: 0.4549\n", + "current epoch: 358 current mean dice: 0.6510\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 359/500\n", + "1/0, train_loss: 0.4507\n", + "1 epoch 359 average loss: 0.4507\n", + "----------\n", + "1: epoch 360/500\n", + "1/0, train_loss: 0.4485\n", + "1 epoch 360 average loss: 0.4485\n", + "current epoch: 360 current mean dice: 0.6331\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 361/500\n", + "1/0, train_loss: 0.4524\n", + "1 epoch 361 average loss: 0.4524\n", + "----------\n", + "1: epoch 362/500\n", + "1/0, train_loss: 0.4532\n", + "1 epoch 362 average loss: 0.4532\n", + "current epoch: 362 current mean dice: 0.6761\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 363/500\n", + "1/0, train_loss: 0.4508\n", + "1 epoch 363 average loss: 0.4508\n", + "----------\n", + "1: epoch 364/500\n", + "1/0, train_loss: 0.4517\n", + "1 epoch 364 average loss: 0.4517\n", + "current epoch: 364 current mean dice: 0.6787\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 365/500\n", + "1/0, train_loss: 0.4491\n", + "1 epoch 365 average loss: 0.4491\n", + "----------\n", + "1: epoch 366/500\n", + "1/0, train_loss: 0.4489\n", + "1 epoch 366 average loss: 0.4489\n", + "current epoch: 366 current mean dice: 0.6754\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 367/500\n", + "1/0, train_loss: 0.4493\n", + "1 epoch 367 average loss: 0.4493\n", + "----------\n", + "1: epoch 368/500\n", + "1/0, train_loss: 0.4511\n", + "1 epoch 368 average loss: 0.4511\n", + "current epoch: 368 current mean dice: 0.6650\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 369/500\n", + "1/0, train_loss: 0.4476\n", + "1 epoch 369 average loss: 0.4476\n", + "----------\n", + "1: epoch 370/500\n", + "1/0, train_loss: 0.4504\n", + "1 epoch 370 average loss: 0.4504\n", + "current epoch: 370 current mean dice: 0.6639\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 371/500\n", + "1/0, train_loss: 0.4487\n", + "1 epoch 371 average loss: 0.4487\n", + "----------\n", + "1: epoch 372/500\n", + "1/0, train_loss: 0.4529\n", + "1 epoch 372 average loss: 0.4529\n", + "current epoch: 372 current mean dice: 0.6731\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 373/500\n", + "1/0, train_loss: 0.4518\n", + "1 epoch 373 average loss: 0.4518\n", + "----------\n", + "1: epoch 374/500\n", + "1/0, train_loss: 0.4472\n", + "1 epoch 374 average loss: 0.4472\n", + "current epoch: 374 current mean dice: 0.6767\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 375/500\n", + "1/0, train_loss: 0.4482\n", + "1 epoch 375 average loss: 0.4482\n", + "----------\n", + "1: epoch 376/500\n", + "1/0, train_loss: 0.4491\n", + "1 epoch 376 average loss: 0.4491\n", + "current epoch: 376 current mean dice: 0.6654\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 377/500\n", + "1/0, train_loss: 0.4474\n", + "1 epoch 377 average loss: 0.4474\n", + "----------\n", + "1: epoch 378/500\n", + "1/0, train_loss: 0.4507\n", + "1 epoch 378 average loss: 0.4507\n", + "current epoch: 378 current mean dice: 0.6482\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 379/500\n", + "1/0, train_loss: 0.4509\n", + "1 epoch 379 average loss: 0.4509\n", + "----------\n", + "1: epoch 380/500\n", + "1/0, train_loss: 0.4498\n", + "1 epoch 380 average loss: 0.4498\n", + "current epoch: 380 current mean dice: 0.5422\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 381/500\n", + "1/0, train_loss: 0.4494\n", + "1 epoch 381 average loss: 0.4494\n", + "----------\n", + "1: epoch 382/500\n", + "1/0, train_loss: 0.4449\n", + "1 epoch 382 average loss: 0.4449\n", + "current epoch: 382 current mean dice: 0.6585\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 383/500\n", + "1/0, train_loss: 0.4480\n", + "1 epoch 383 average loss: 0.4480\n", + "----------\n", + "1: epoch 384/500\n", + "1/0, train_loss: 0.4454\n", + "1 epoch 384 average loss: 0.4454\n", + "current epoch: 384 current mean dice: 0.6762\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 385/500\n", + "1/0, train_loss: 0.4466\n", + "1 epoch 385 average loss: 0.4466\n", + "----------\n", + "1: epoch 386/500\n", + "1/0, train_loss: 0.4484\n", + "1 epoch 386 average loss: 0.4484\n", + "current epoch: 386 current mean dice: 0.6804\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 387/500\n", + "1/0, train_loss: 0.4475\n", + "1 epoch 387 average loss: 0.4475\n", + "----------\n", + "1: epoch 388/500\n", + "1/0, train_loss: 0.4458\n", + "1 epoch 388 average loss: 0.4458\n", + "current epoch: 388 current mean dice: 0.6593\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 389/500\n", + "1/0, train_loss: 0.4455\n", + "1 epoch 389 average loss: 0.4455\n", + "----------\n", + "1: epoch 390/500\n", + "1/0, train_loss: 0.4485\n", + "1 epoch 390 average loss: 0.4485\n", + "current epoch: 390 current mean dice: 0.6046\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 391/500\n", + "1/0, train_loss: 0.4463\n", + "1 epoch 391 average loss: 0.4463\n", + "----------\n", + "1: epoch 392/500\n", + "1/0, train_loss: 0.4438\n", + "1 epoch 392 average loss: 0.4438\n", + "current epoch: 392 current mean dice: 0.6463\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 393/500\n", + "1/0, train_loss: 0.4446\n", + "1 epoch 393 average loss: 0.4446\n", + "----------\n", + "1: epoch 394/500\n", + "1/0, train_loss: 0.4409\n", + "1 epoch 394 average loss: 0.4409\n", + "current epoch: 394 current mean dice: 0.6698\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 395/500\n", + "1/0, train_loss: 0.4481\n", + "1 epoch 395 average loss: 0.4481\n", + "----------\n", + "1: epoch 396/500\n", + "1/0, train_loss: 0.4460\n", + "1 epoch 396 average loss: 0.4460\n", + "current epoch: 396 current mean dice: 0.6548\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 397/500\n", + "1/0, train_loss: 0.4470\n", + "1 epoch 397 average loss: 0.4470\n", + "----------\n", + "1: epoch 398/500\n", + "1/0, train_loss: 0.4413\n", + "1 epoch 398 average loss: 0.4413\n", + "current epoch: 398 current mean dice: 0.5618\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 399/500\n", + "1/0, train_loss: 0.4472\n", + "1 epoch 399 average loss: 0.4472\n", + "----------\n", + "1: epoch 400/500\n", + "1/0, train_loss: 0.4445\n", + "1 epoch 400 average loss: 0.4445\n", + "current epoch: 400 current mean dice: 0.5995\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 401/500\n", + "1/0, train_loss: 0.4462\n", + "1 epoch 401 average loss: 0.4462\n", + "----------\n", + "1: epoch 402/500\n", + "1/0, train_loss: 0.4465\n", + "1 epoch 402 average loss: 0.4465\n", + "current epoch: 402 current mean dice: 0.6648\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 403/500\n", + "1/0, train_loss: 0.4466\n", + "1 epoch 403 average loss: 0.4466\n", + "----------\n", + "1: epoch 404/500\n", + "1/0, train_loss: 0.4449\n", + "1 epoch 404 average loss: 0.4449\n", + "current epoch: 404 current mean dice: 0.6703\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 405/500\n", + "1/0, train_loss: 0.4425\n", + "1 epoch 405 average loss: 0.4425\n", + "----------\n", + "1: epoch 406/500\n", + "1/0, train_loss: 0.4435\n", + "1 epoch 406 average loss: 0.4435\n", + "current epoch: 406 current mean dice: 0.6728\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 407/500\n", + "1/0, train_loss: 0.4451\n", + "1 epoch 407 average loss: 0.4451\n", + "----------\n", + "1: epoch 408/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.4433\n", + "1 epoch 408 average loss: 0.4433\n", + "current epoch: 408 current mean dice: 0.6659\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 409/500\n", + "1/0, train_loss: 0.4470\n", + "1 epoch 409 average loss: 0.4470\n", + "----------\n", + "1: epoch 410/500\n", + "1/0, train_loss: 0.4378\n", + "1 epoch 410 average loss: 0.4378\n", + "current epoch: 410 current mean dice: 0.6657\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 411/500\n", + "1/0, train_loss: 0.4430\n", + "1 epoch 411 average loss: 0.4430\n", + "----------\n", + "1: epoch 412/500\n", + "1/0, train_loss: 0.4433\n", + "1 epoch 412 average loss: 0.4433\n", + "current epoch: 412 current mean dice: 0.6664\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 413/500\n", + "1/0, train_loss: 0.4394\n", + "1 epoch 413 average loss: 0.4394\n", + "----------\n", + "1: epoch 414/500\n", + "1/0, train_loss: 0.4429\n", + "1 epoch 414 average loss: 0.4429\n", + "current epoch: 414 current mean dice: 0.6515\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 415/500\n", + "1/0, train_loss: 0.4430\n", + "1 epoch 415 average loss: 0.4430\n", + "----------\n", + "1: epoch 416/500\n", + "1/0, train_loss: 0.4413\n", + "1 epoch 416 average loss: 0.4413\n", + "current epoch: 416 current mean dice: 0.6482\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 417/500\n", + "1/0, train_loss: 0.4416\n", + "1 epoch 417 average loss: 0.4416\n", + "----------\n", + "1: epoch 418/500\n", + "1/0, train_loss: 0.4419\n", + "1 epoch 418 average loss: 0.4419\n", + "current epoch: 418 current mean dice: 0.6624\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 419/500\n", + "1/0, train_loss: 0.4417\n", + "1 epoch 419 average loss: 0.4417\n", + "----------\n", + "1: epoch 420/500\n", + "1/0, train_loss: 0.4453\n", + "1 epoch 420 average loss: 0.4453\n", + "current epoch: 420 current mean dice: 0.6704\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 421/500\n", + "1/0, train_loss: 0.4394\n", + "1 epoch 421 average loss: 0.4394\n", + "----------\n", + "1: epoch 422/500\n", + "1/0, train_loss: 0.4381\n", + "1 epoch 422 average loss: 0.4381\n", + "current epoch: 422 current mean dice: 0.5595\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 423/500\n", + "1/0, train_loss: 0.4369\n", + "1 epoch 423 average loss: 0.4369\n", + "----------\n", + "1: epoch 424/500\n", + "1/0, train_loss: 0.4357\n", + "1 epoch 424 average loss: 0.4357\n", + "current epoch: 424 current mean dice: 0.6276\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 425/500\n", + "1/0, train_loss: 0.4387\n", + "1 epoch 425 average loss: 0.4387\n", + "----------\n", + "1: epoch 426/500\n", + "1/0, train_loss: 0.4401\n", + "1 epoch 426 average loss: 0.4401\n", + "current epoch: 426 current mean dice: 0.6608\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 427/500\n", + "1/0, train_loss: 0.4398\n", + "1 epoch 427 average loss: 0.4398\n", + "----------\n", + "1: epoch 428/500\n", + "1/0, train_loss: 0.4359\n", + "1 epoch 428 average loss: 0.4359\n", + "current epoch: 428 current mean dice: 0.6603\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 429/500\n", + "1/0, train_loss: 0.4396\n", + "1 epoch 429 average loss: 0.4396\n", + "----------\n", + "1: epoch 430/500\n", + "1/0, train_loss: 0.4439\n", + "1 epoch 430 average loss: 0.4439\n", + "current epoch: 430 current mean dice: 0.6487\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 431/500\n", + "1/0, train_loss: 0.4366\n", + "1 epoch 431 average loss: 0.4366\n", + "----------\n", + "1: epoch 432/500\n", + "1/0, train_loss: 0.4380\n", + "1 epoch 432 average loss: 0.4380\n", + "current epoch: 432 current mean dice: 0.6633\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 433/500\n", + "1/0, train_loss: 0.4357\n", + "1 epoch 433 average loss: 0.4357\n", + "----------\n", + "1: epoch 434/500\n", + "1/0, train_loss: 0.4349\n", + "1 epoch 434 average loss: 0.4349\n", + "current epoch: 434 current mean dice: 0.6599\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 435/500\n", + "1/0, train_loss: 0.4407\n", + "1 epoch 435 average loss: 0.4407\n", + "----------\n", + "1: epoch 436/500\n", + "1/0, train_loss: 0.4343\n", + "1 epoch 436 average loss: 0.4343\n", + "current epoch: 436 current mean dice: 0.6125\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 437/500\n", + "1/0, train_loss: 0.4342\n", + "1 epoch 437 average loss: 0.4342\n", + "----------\n", + "1: epoch 438/500\n", + "1/0, train_loss: 0.4392\n", + "1 epoch 438 average loss: 0.4392\n", + "current epoch: 438 current mean dice: 0.6673\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 439/500\n", + "1/0, train_loss: 0.4373\n", + "1 epoch 439 average loss: 0.4373\n", + "----------\n", + "1: epoch 440/500\n", + "1/0, train_loss: 0.4391\n", + "1 epoch 440 average loss: 0.4391\n", + "current epoch: 440 current mean dice: 0.6709\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 441/500\n", + "1/0, train_loss: 0.4340\n", + "1 epoch 441 average loss: 0.4340\n", + "----------\n", + "1: epoch 442/500\n", + "1/0, train_loss: 0.4344\n", + "1 epoch 442 average loss: 0.4344\n", + "current epoch: 442 current mean dice: 0.6784\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 443/500\n", + "1/0, train_loss: 0.4362\n", + "1 epoch 443 average loss: 0.4362\n", + "----------\n", + "1: epoch 444/500\n", + "1/0, train_loss: 0.4366\n", + "1 epoch 444 average loss: 0.4366\n", + "current epoch: 444 current mean dice: 0.6740\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 445/500\n", + "1/0, train_loss: 0.4380\n", + "1 epoch 445 average loss: 0.4380\n", + "----------\n", + "1: epoch 446/500\n", + "1/0, train_loss: 0.4346\n", + "1 epoch 446 average loss: 0.4346\n", + "current epoch: 446 current mean dice: 0.6772\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 447/500\n", + "1/0, train_loss: 0.4329\n", + "1 epoch 447 average loss: 0.4329\n", + "----------\n", + "1: epoch 448/500\n", + "1/0, train_loss: 0.4373\n", + "1 epoch 448 average loss: 0.4373\n", + "current epoch: 448 current mean dice: 0.6635\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 449/500\n", + "1/0, train_loss: 0.4364\n", + "1 epoch 449 average loss: 0.4364\n", + "----------\n", + "1: epoch 450/500\n", + "1/0, train_loss: 0.4325\n", + "1 epoch 450 average loss: 0.4325\n", + "current epoch: 450 current mean dice: 0.6724\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 451/500\n", + "1/0, train_loss: 0.4344\n", + "1 epoch 451 average loss: 0.4344\n", + "----------\n", + "1: epoch 452/500\n", + "1/0, train_loss: 0.4356\n", + "1 epoch 452 average loss: 0.4356\n", + "current epoch: 452 current mean dice: 0.6778\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 453/500\n", + "1/0, train_loss: 0.4325\n", + "1 epoch 453 average loss: 0.4325\n", + "----------\n", + "1: epoch 454/500\n", + "1/0, train_loss: 0.4333\n", + "1 epoch 454 average loss: 0.4333\n", + "current epoch: 454 current mean dice: 0.6727\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 455/500\n", + "1/0, train_loss: 0.4367\n", + "1 epoch 455 average loss: 0.4367\n", + "----------\n", + "1: epoch 456/500\n", + "1/0, train_loss: 0.4325\n", + "1 epoch 456 average loss: 0.4325\n", + "current epoch: 456 current mean dice: 0.6733\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 457/500\n", + "1/0, train_loss: 0.4336\n", + "1 epoch 457 average loss: 0.4336\n", + "----------\n", + "1: epoch 458/500\n", + "1/0, train_loss: 0.4328\n", + "1 epoch 458 average loss: 0.4328\n", + "current epoch: 458 current mean dice: 0.6692\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 459/500\n", + "1/0, train_loss: 0.4346\n", + "1 epoch 459 average loss: 0.4346\n", + "----------\n", + "1: epoch 460/500\n", + "1/0, train_loss: 0.4309\n", + "1 epoch 460 average loss: 0.4309\n", + "current epoch: 460 current mean dice: 0.6657\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 461/500\n", + "1/0, train_loss: 0.4312\n", + "1 epoch 461 average loss: 0.4312\n", + "----------\n", + "1: epoch 462/500\n", + "1/0, train_loss: 0.4344\n", + "1 epoch 462 average loss: 0.4344\n", + "current epoch: 462 current mean dice: 0.6705\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 463/500\n", + "1/0, train_loss: 0.4347\n", + "1 epoch 463 average loss: 0.4347\n", + "----------\n", + "1: epoch 464/500\n", + "1/0, train_loss: 0.4312\n", + "1 epoch 464 average loss: 0.4312\n", + "current epoch: 464 current mean dice: 0.6666\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 465/500\n", + "1/0, train_loss: 0.4365\n", + "1 epoch 465 average loss: 0.4365\n", + "----------\n", + "1: epoch 466/500\n", + "1/0, train_loss: 0.4363\n", + "1 epoch 466 average loss: 0.4363\n", + "current epoch: 466 current mean dice: 0.6142\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 467/500\n", + "1/0, train_loss: 0.4351\n", + "1 epoch 467 average loss: 0.4351\n", + "----------\n", + "1: epoch 468/500\n", + "1/0, train_loss: 0.4341\n", + "1 epoch 468 average loss: 0.4341\n", + "current epoch: 468 current mean dice: 0.5474\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 469/500\n", + "1/0, train_loss: 0.4355\n", + "1 epoch 469 average loss: 0.4355\n", + "----------\n", + "1: epoch 470/500\n", + "1/0, train_loss: 0.4299\n", + "1 epoch 470 average loss: 0.4299\n", + "current epoch: 470 current mean dice: 0.6224\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 471/500\n", + "1/0, train_loss: 0.4289\n", + "1 epoch 471 average loss: 0.4289\n", + "----------\n", + "1: epoch 472/500\n", + "1/0, train_loss: 0.4340\n", + "1 epoch 472 average loss: 0.4340\n", + "current epoch: 472 current mean dice: 0.6540\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 473/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.4333\n", + "1 epoch 473 average loss: 0.4333\n", + "----------\n", + "1: epoch 474/500\n", + "1/0, train_loss: 0.4307\n", + "1 epoch 474 average loss: 0.4307\n", + "current epoch: 474 current mean dice: 0.6550\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 475/500\n", + "1/0, train_loss: 0.4312\n", + "1 epoch 475 average loss: 0.4312\n", + "----------\n", + "1: epoch 476/500\n", + "1/0, train_loss: 0.4267\n", + "1 epoch 476 average loss: 0.4267\n", + "current epoch: 476 current mean dice: 0.6763\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 477/500\n", + "1/0, train_loss: 0.4337\n", + "1 epoch 477 average loss: 0.4337\n", + "----------\n", + "1: epoch 478/500\n", + "1/0, train_loss: 0.4310\n", + "1 epoch 478 average loss: 0.4310\n", + "current epoch: 478 current mean dice: 0.6749\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 479/500\n", + "1/0, train_loss: 0.4308\n", + "1 epoch 479 average loss: 0.4308\n", + "----------\n", + "1: epoch 480/500\n", + "1/0, train_loss: 0.4258\n", + "1 epoch 480 average loss: 0.4258\n", + "current epoch: 480 current mean dice: 0.6692\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 481/500\n", + "1/0, train_loss: 0.4289\n", + "1 epoch 481 average loss: 0.4289\n", + "----------\n", + "1: epoch 482/500\n", + "1/0, train_loss: 0.4298\n", + "1 epoch 482 average loss: 0.4298\n", + "current epoch: 482 current mean dice: 0.6653\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 483/500\n", + "1/0, train_loss: 0.4277\n", + "1 epoch 483 average loss: 0.4277\n", + "----------\n", + "1: epoch 484/500\n", + "1/0, train_loss: 0.4293\n", + "1 epoch 484 average loss: 0.4293\n", + "current epoch: 484 current mean dice: 0.6596\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 485/500\n", + "1/0, train_loss: 0.4361\n", + "1 epoch 485 average loss: 0.4361\n", + "----------\n", + "1: epoch 486/500\n", + "1/0, train_loss: 0.4260\n", + "1 epoch 486 average loss: 0.4260\n", + "current epoch: 486 current mean dice: 0.6737\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 487/500\n", + "1/0, train_loss: 0.4277\n", + "1 epoch 487 average loss: 0.4277\n", + "----------\n", + "1: epoch 488/500\n", + "1/0, train_loss: 0.4293\n", + "1 epoch 488 average loss: 0.4293\n", + "current epoch: 488 current mean dice: 0.6769\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 489/500\n", + "1/0, train_loss: 0.4286\n", + "1 epoch 489 average loss: 0.4286\n", + "----------\n", + "1: epoch 490/500\n", + "1/0, train_loss: 0.4271\n", + "1 epoch 490 average loss: 0.4271\n", + "current epoch: 490 current mean dice: 0.6775\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 491/500\n", + "1/0, train_loss: 0.4304\n", + "1 epoch 491 average loss: 0.4304\n", + "----------\n", + "1: epoch 492/500\n", + "1/0, train_loss: 0.4266\n", + "1 epoch 492 average loss: 0.4266\n", + "current epoch: 492 current mean dice: 0.6773\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 493/500\n", + "1/0, train_loss: 0.4258\n", + "1 epoch 493 average loss: 0.4258\n", + "----------\n", + "1: epoch 494/500\n", + "1/0, train_loss: 0.4268\n", + "1 epoch 494 average loss: 0.4268\n", + "current epoch: 494 current mean dice: 0.6742\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 495/500\n", + "1/0, train_loss: 0.4250\n", + "1 epoch 495 average loss: 0.4250\n", + "----------\n", + "1: epoch 496/500\n", + "1/0, train_loss: 0.4288\n", + "1 epoch 496 average loss: 0.4288\n", + "current epoch: 496 current mean dice: 0.6827\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 497/500\n", + "1/0, train_loss: 0.4256\n", + "1 epoch 497 average loss: 0.4256\n", + "----------\n", + "1: epoch 498/500\n", + "1/0, train_loss: 0.4273\n", + "1 epoch 498 average loss: 0.4273\n", + "current epoch: 498 current mean dice: 0.6814\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 499/500\n", + "1/0, train_loss: 0.4251\n", + "1 epoch 499 average loss: 0.4251\n", + "----------\n", + "1: epoch 500/500\n", + "1/0, train_loss: 0.4251\n", + "1 epoch 500 average loss: 0.4251\n", + "current epoch: 500 current mean dice: 0.6591\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "2: epoch 1/500\n", + "1/0, train_loss: 0.7869\n", + "2 epoch 1 average loss: 0.7869\n", + "----------\n", + "2: epoch 2/500\n", + "1/0, train_loss: 0.7795\n", + "2 epoch 2 average loss: 0.7795\n", + "saved new best metric model\n", + "current epoch: 2 current mean dice: 0.1477\n", + "best mean dice: 0.1477 at epoch: 2\n", + "----------\n", + "2: epoch 3/500\n", + "1/0, train_loss: 0.7697\n", + "2 epoch 3 average loss: 0.7697\n", + "----------\n", + "2: epoch 4/500\n", + "1/0, train_loss: 0.7610\n", + "2 epoch 4 average loss: 0.7610\n", + "saved new best metric model\n", + "current epoch: 4 current mean dice: 0.1524\n", + "best mean dice: 0.1524 at epoch: 4\n", + "----------\n", + "2: epoch 5/500\n", + "1/0, train_loss: 0.7520\n", + "2 epoch 5 average loss: 0.7520\n", + "----------\n", + "2: epoch 6/500\n", + "1/0, train_loss: 0.7460\n", + "2 epoch 6 average loss: 0.7460\n", + "saved new best metric model\n", + "current epoch: 6 current mean dice: 0.1663\n", + "best mean dice: 0.1663 at epoch: 6\n", + "----------\n", + "2: epoch 7/500\n", + "1/0, train_loss: 0.7389\n", + "2 epoch 7 average loss: 0.7389\n", + "----------\n", + "2: epoch 8/500\n", + "1/0, train_loss: 0.7280\n", + "2 epoch 8 average loss: 0.7280\n", + "saved new best metric model\n", + "current epoch: 8 current mean dice: 0.1788\n", + "best mean dice: 0.1788 at epoch: 8\n", + "----------\n", + "2: epoch 9/500\n", + "1/0, train_loss: 0.7259\n", + "2 epoch 9 average loss: 0.7259\n", + "----------\n", + "2: epoch 10/500\n", + "1/0, train_loss: 0.7255\n", + "2 epoch 10 average loss: 0.7255\n", + "saved new best metric model\n", + "current epoch: 10 current mean dice: 0.1833\n", + "best mean dice: 0.1833 at epoch: 10\n", + "----------\n", + "2: epoch 11/500\n", + "1/0, train_loss: 0.7202\n", + "2 epoch 11 average loss: 0.7202\n", + "----------\n", + "2: epoch 12/500\n", + "1/0, train_loss: 0.7168\n", + "2 epoch 12 average loss: 0.7168\n", + "saved new best metric model\n", + "current epoch: 12 current mean dice: 0.1842\n", + "best mean dice: 0.1842 at epoch: 12\n", + "----------\n", + "2: epoch 13/500\n", + "1/0, train_loss: 0.7151\n", + "2 epoch 13 average loss: 0.7151\n", + "----------\n", + "2: epoch 14/500\n", + "1/0, train_loss: 0.7134\n", + "2 epoch 14 average loss: 0.7134\n", + "saved new best metric model\n", + "current epoch: 14 current mean dice: 0.1847\n", + "best mean dice: 0.1847 at epoch: 14\n", + "----------\n", + "2: epoch 15/500\n", + "1/0, train_loss: 0.7127\n", + "2 epoch 15 average loss: 0.7127\n", + "----------\n", + "2: epoch 16/500\n", + "1/0, train_loss: 0.7085\n", + "2 epoch 16 average loss: 0.7085\n", + "saved new best metric model\n", + "current epoch: 16 current mean dice: 0.1852\n", + "best mean dice: 0.1852 at epoch: 16\n", + "----------\n", + "2: epoch 17/500\n", + "1/0, train_loss: 0.7089\n", + "2 epoch 17 average loss: 0.7089\n", + "----------\n", + "2: epoch 18/500\n", + "1/0, train_loss: 0.7055\n", + "2 epoch 18 average loss: 0.7055\n", + "saved new best metric model\n", + "current epoch: 18 current mean dice: 0.1867\n", + "best mean dice: 0.1867 at epoch: 18\n", + "----------\n", + "2: epoch 19/500\n", + "1/0, train_loss: 0.7028\n", + "2 epoch 19 average loss: 0.7028\n", + "----------\n", + "2: epoch 20/500\n", + "1/0, train_loss: 0.7028\n", + "2 epoch 20 average loss: 0.7028\n", + "saved new best metric model\n", + "current epoch: 20 current mean dice: 0.1896\n", + "best mean dice: 0.1896 at epoch: 20\n", + "----------\n", + "2: epoch 21/500\n", + "1/0, train_loss: 0.7005\n", + "2 epoch 21 average loss: 0.7005\n", + "----------\n", + "2: epoch 22/500\n", + "1/0, train_loss: 0.7004\n", + "2 epoch 22 average loss: 0.7004\n", + "saved new best metric model\n", + "current epoch: 22 current mean dice: 0.1936\n", + "best mean dice: 0.1936 at epoch: 22\n", + "----------\n", + "2: epoch 23/500\n", + "1/0, train_loss: 0.7006\n", + "2 epoch 23 average loss: 0.7006\n", + "----------\n", + "2: epoch 24/500\n", + "1/0, train_loss: 0.6976\n", + "2 epoch 24 average loss: 0.6976\n", + "saved new best metric model\n", + "current epoch: 24 current mean dice: 0.1990\n", + "best mean dice: 0.1990 at epoch: 24\n", + "----------\n", + "2: epoch 25/500\n", + "1/0, train_loss: 0.6944\n", + "2 epoch 25 average loss: 0.6944\n", + "----------\n", + "2: epoch 26/500\n", + "1/0, train_loss: 0.6933\n", + "2 epoch 26 average loss: 0.6933\n", + "saved new best metric model\n", + "current epoch: 26 current mean dice: 0.2056\n", + "best mean dice: 0.2056 at epoch: 26\n", + "----------\n", + "2: epoch 27/500\n", + "1/0, train_loss: 0.6955\n", + "2 epoch 27 average loss: 0.6955\n", + "----------\n", + "2: epoch 28/500\n", + "1/0, train_loss: 0.6909\n", + "2 epoch 28 average loss: 0.6909\n", + "saved new best metric model\n", + "current epoch: 28 current mean dice: 0.2121\n", + "best mean dice: 0.2121 at epoch: 28\n", + "----------\n", + "2: epoch 29/500\n", + "1/0, train_loss: 0.6892\n", + "2 epoch 29 average loss: 0.6892\n", + "----------\n", + "2: epoch 30/500\n", + "1/0, train_loss: 0.6872\n", + "2 epoch 30 average loss: 0.6872\n", + "saved new best metric model\n", + "current epoch: 30 current mean dice: 0.2178\n", + "best mean dice: 0.2178 at epoch: 30\n", + "----------\n", + "2: epoch 31/500\n", + "1/0, train_loss: 0.6862\n", + "2 epoch 31 average loss: 0.6862\n", + "----------\n", + "2: epoch 32/500\n", + "1/0, train_loss: 0.6845\n", + "2 epoch 32 average loss: 0.6845\n", + "saved new best metric model\n", + "current epoch: 32 current mean dice: 0.2204\n", + "best mean dice: 0.2204 at epoch: 32\n", + "----------\n", + "2: epoch 33/500\n", + "1/0, train_loss: 0.6774\n", + "2 epoch 33 average loss: 0.6774\n", + "----------\n", + "2: epoch 34/500\n", + "1/0, train_loss: 0.6806\n", + "2 epoch 34 average loss: 0.6806\n", + "saved new best metric model\n", + "current epoch: 34 current mean dice: 0.2279\n", + "best mean dice: 0.2279 at epoch: 34\n", + "----------\n", + "2: epoch 35/500\n", + "1/0, train_loss: 0.6767\n", + "2 epoch 35 average loss: 0.6767\n", + "----------\n", + "2: epoch 36/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.6740\n", + "2 epoch 36 average loss: 0.6740\n", + "saved new best metric model\n", + "current epoch: 36 current mean dice: 0.2371\n", + "best mean dice: 0.2371 at epoch: 36\n", + "----------\n", + "2: epoch 37/500\n", + "1/0, train_loss: 0.6735\n", + "2 epoch 37 average loss: 0.6735\n", + "----------\n", + "2: epoch 38/500\n", + "1/0, train_loss: 0.6706\n", + "2 epoch 38 average loss: 0.6706\n", + "saved new best metric model\n", + "current epoch: 38 current mean dice: 0.2433\n", + "best mean dice: 0.2433 at epoch: 38\n", + "----------\n", + "2: epoch 39/500\n", + "1/0, train_loss: 0.6679\n", + "2 epoch 39 average loss: 0.6679\n", + "----------\n", + "2: epoch 40/500\n", + "1/0, train_loss: 0.6637\n", + "2 epoch 40 average loss: 0.6637\n", + "saved new best metric model\n", + "current epoch: 40 current mean dice: 0.2531\n", + "best mean dice: 0.2531 at epoch: 40\n", + "----------\n", + "2: epoch 41/500\n", + "1/0, train_loss: 0.6624\n", + "2 epoch 41 average loss: 0.6624\n", + "----------\n", + "2: epoch 42/500\n", + "1/0, train_loss: 0.6588\n", + "2 epoch 42 average loss: 0.6588\n", + "saved new best metric model\n", + "current epoch: 42 current mean dice: 0.2728\n", + "best mean dice: 0.2728 at epoch: 42\n", + "----------\n", + "2: epoch 43/500\n", + "1/0, train_loss: 0.6605\n", + "2 epoch 43 average loss: 0.6605\n", + "----------\n", + "2: epoch 44/500\n", + "1/0, train_loss: 0.6563\n", + "2 epoch 44 average loss: 0.6563\n", + "current epoch: 44 current mean dice: 0.2664\n", + "best mean dice: 0.2728 at epoch: 42\n", + "----------\n", + "2: epoch 45/500\n", + "1/0, train_loss: 0.6590\n", + "2 epoch 45 average loss: 0.6590\n", + "----------\n", + "2: epoch 46/500\n", + "1/0, train_loss: 0.6535\n", + "2 epoch 46 average loss: 0.6535\n", + "saved new best metric model\n", + "current epoch: 46 current mean dice: 0.3047\n", + "best mean dice: 0.3047 at epoch: 46\n", + "----------\n", + "2: epoch 47/500\n", + "1/0, train_loss: 0.6470\n", + "2 epoch 47 average loss: 0.6470\n", + "----------\n", + "2: epoch 48/500\n", + "1/0, train_loss: 0.6482\n", + "2 epoch 48 average loss: 0.6482\n", + "saved new best metric model\n", + "current epoch: 48 current mean dice: 0.3092\n", + "best mean dice: 0.3092 at epoch: 48\n", + "----------\n", + "2: epoch 49/500\n", + "1/0, train_loss: 0.6445\n", + "2 epoch 49 average loss: 0.6445\n", + "----------\n", + "2: epoch 50/500\n", + "1/0, train_loss: 0.6455\n", + "2 epoch 50 average loss: 0.6455\n", + "current epoch: 50 current mean dice: 0.3010\n", + "best mean dice: 0.3092 at epoch: 48\n", + "----------\n", + "2: epoch 51/500\n", + "1/0, train_loss: 0.6421\n", + "2 epoch 51 average loss: 0.6421\n", + "----------\n", + "2: epoch 52/500\n", + "1/0, train_loss: 0.6376\n", + "2 epoch 52 average loss: 0.6376\n", + "saved new best metric model\n", + "current epoch: 52 current mean dice: 0.3098\n", + "best mean dice: 0.3098 at epoch: 52\n", + "----------\n", + "2: epoch 53/500\n", + "1/0, train_loss: 0.6341\n", + "2 epoch 53 average loss: 0.6341\n", + "----------\n", + "2: epoch 54/500\n", + "1/0, train_loss: 0.6353\n", + "2 epoch 54 average loss: 0.6353\n", + "saved new best metric model\n", + "current epoch: 54 current mean dice: 0.3219\n", + "best mean dice: 0.3219 at epoch: 54\n", + "----------\n", + "2: epoch 55/500\n", + "1/0, train_loss: 0.6309\n", + "2 epoch 55 average loss: 0.6309\n", + "----------\n", + "2: epoch 56/500\n", + "1/0, train_loss: 0.6330\n", + "2 epoch 56 average loss: 0.6330\n", + "current epoch: 56 current mean dice: 0.3126\n", + "best mean dice: 0.3219 at epoch: 54\n", + "----------\n", + "2: epoch 57/500\n", + "1/0, train_loss: 0.6273\n", + "2 epoch 57 average loss: 0.6273\n", + "----------\n", + "2: epoch 58/500\n", + "1/0, train_loss: 0.6290\n", + "2 epoch 58 average loss: 0.6290\n", + "current epoch: 58 current mean dice: 0.3150\n", + "best mean dice: 0.3219 at epoch: 54\n", + "----------\n", + "2: epoch 59/500\n", + "1/0, train_loss: 0.6278\n", + "2 epoch 59 average loss: 0.6278\n", + "----------\n", + "2: epoch 60/500\n", + "1/0, train_loss: 0.6240\n", + "2 epoch 60 average loss: 0.6240\n", + "current epoch: 60 current mean dice: 0.3181\n", + "best mean dice: 0.3219 at epoch: 54\n", + "----------\n", + "2: epoch 61/500\n", + "1/0, train_loss: 0.6209\n", + "2 epoch 61 average loss: 0.6209\n", + "----------\n", + "2: epoch 62/500\n", + "1/0, train_loss: 0.6216\n", + "2 epoch 62 average loss: 0.6216\n", + "saved new best metric model\n", + "current epoch: 62 current mean dice: 0.3333\n", + "best mean dice: 0.3333 at epoch: 62\n", + "----------\n", + "2: epoch 63/500\n", + "1/0, train_loss: 0.6159\n", + "2 epoch 63 average loss: 0.6159\n", + "----------\n", + "2: epoch 64/500\n", + "1/0, train_loss: 0.6198\n", + "2 epoch 64 average loss: 0.6198\n", + "saved new best metric model\n", + "current epoch: 64 current mean dice: 0.3468\n", + "best mean dice: 0.3468 at epoch: 64\n", + "----------\n", + "2: epoch 65/500\n", + "1/0, train_loss: 0.6185\n", + "2 epoch 65 average loss: 0.6185\n", + "----------\n", + "2: epoch 66/500\n", + "1/0, train_loss: 0.6161\n", + "2 epoch 66 average loss: 0.6161\n", + "current epoch: 66 current mean dice: 0.3158\n", + "best mean dice: 0.3468 at epoch: 64\n", + "----------\n", + "2: epoch 67/500\n", + "1/0, train_loss: 0.6162\n", + "2 epoch 67 average loss: 0.6162\n", + "----------\n", + "2: epoch 68/500\n", + "1/0, train_loss: 0.6122\n", + "2 epoch 68 average loss: 0.6122\n", + "current epoch: 68 current mean dice: 0.3318\n", + "best mean dice: 0.3468 at epoch: 64\n", + "----------\n", + "2: epoch 69/500\n", + "1/0, train_loss: 0.6108\n", + "2 epoch 69 average loss: 0.6108\n", + "----------\n", + "2: epoch 70/500\n", + "1/0, train_loss: 0.6125\n", + "2 epoch 70 average loss: 0.6125\n", + "current epoch: 70 current mean dice: 0.3206\n", + "best mean dice: 0.3468 at epoch: 64\n", + "----------\n", + "2: epoch 71/500\n", + "1/0, train_loss: 0.6174\n", + "2 epoch 71 average loss: 0.6174\n", + "----------\n", + "2: epoch 72/500\n", + "1/0, train_loss: 0.6064\n", + "2 epoch 72 average loss: 0.6064\n", + "current epoch: 72 current mean dice: 0.3321\n", + "best mean dice: 0.3468 at epoch: 64\n", + "----------\n", + "2: epoch 73/500\n", + "1/0, train_loss: 0.6067\n", + "2 epoch 73 average loss: 0.6067\n", + "----------\n", + "2: epoch 74/500\n", + "1/0, train_loss: 0.6074\n", + "2 epoch 74 average loss: 0.6074\n", + "current epoch: 74 current mean dice: 0.3386\n", + "best mean dice: 0.3468 at epoch: 64\n", + "----------\n", + "2: epoch 75/500\n", + "1/0, train_loss: 0.6065\n", + "2 epoch 75 average loss: 0.6065\n", + "----------\n", + "2: epoch 76/500\n", + "1/0, train_loss: 0.6084\n", + "2 epoch 76 average loss: 0.6084\n", + "current epoch: 76 current mean dice: 0.3357\n", + "best mean dice: 0.3468 at epoch: 64\n", + "----------\n", + "2: epoch 77/500\n", + "1/0, train_loss: 0.6069\n", + "2 epoch 77 average loss: 0.6069\n", + "----------\n", + "2: epoch 78/500\n", + "1/0, train_loss: 0.6000\n", + "2 epoch 78 average loss: 0.6000\n", + "saved new best metric model\n", + "current epoch: 78 current mean dice: 0.3510\n", + "best mean dice: 0.3510 at epoch: 78\n", + "----------\n", + "2: epoch 79/500\n", + "1/0, train_loss: 0.6016\n", + "2 epoch 79 average loss: 0.6016\n", + "----------\n", + "2: epoch 80/500\n", + "1/0, train_loss: 0.6003\n", + "2 epoch 80 average loss: 0.6003\n", + "current epoch: 80 current mean dice: 0.3381\n", + "best mean dice: 0.3510 at epoch: 78\n", + "----------\n", + "2: epoch 81/500\n", + "1/0, train_loss: 0.6000\n", + "2 epoch 81 average loss: 0.6000\n", + "----------\n", + "2: epoch 82/500\n", + "1/0, train_loss: 0.5988\n", + "2 epoch 82 average loss: 0.5988\n", + "saved new best metric model\n", + "current epoch: 82 current mean dice: 0.3580\n", + "best mean dice: 0.3580 at epoch: 82\n", + "----------\n", + "2: epoch 83/500\n", + "1/0, train_loss: 0.5956\n", + "2 epoch 83 average loss: 0.5956\n", + "----------\n", + "2: epoch 84/500\n", + "1/0, train_loss: 0.5968\n", + "2 epoch 84 average loss: 0.5968\n", + "current epoch: 84 current mean dice: 0.3234\n", + "best mean dice: 0.3580 at epoch: 82\n", + "----------\n", + "2: epoch 85/500\n", + "1/0, train_loss: 0.5920\n", + "2 epoch 85 average loss: 0.5920\n", + "----------\n", + "2: epoch 86/500\n", + "1/0, train_loss: 0.5956\n", + "2 epoch 86 average loss: 0.5956\n", + "current epoch: 86 current mean dice: 0.3160\n", + "best mean dice: 0.3580 at epoch: 82\n", + "----------\n", + "2: epoch 87/500\n", + "1/0, train_loss: 0.5971\n", + "2 epoch 87 average loss: 0.5971\n", + "----------\n", + "2: epoch 88/500\n", + "1/0, train_loss: 0.5977\n", + "2 epoch 88 average loss: 0.5977\n", + "saved new best metric model\n", + "current epoch: 88 current mean dice: 0.3660\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 89/500\n", + "1/0, train_loss: 0.5915\n", + "2 epoch 89 average loss: 0.5915\n", + "----------\n", + "2: epoch 90/500\n", + "1/0, train_loss: 0.5930\n", + "2 epoch 90 average loss: 0.5930\n", + "current epoch: 90 current mean dice: 0.3317\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 91/500\n", + "1/0, train_loss: 0.5895\n", + "2 epoch 91 average loss: 0.5895\n", + "----------\n", + "2: epoch 92/500\n", + "1/0, train_loss: 0.5972\n", + "2 epoch 92 average loss: 0.5972\n", + "current epoch: 92 current mean dice: 0.3508\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 93/500\n", + "1/0, train_loss: 0.5953\n", + "2 epoch 93 average loss: 0.5953\n", + "----------\n", + "2: epoch 94/500\n", + "1/0, train_loss: 0.5871\n", + "2 epoch 94 average loss: 0.5871\n", + "current epoch: 94 current mean dice: 0.3448\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 95/500\n", + "1/0, train_loss: 0.5868\n", + "2 epoch 95 average loss: 0.5868\n", + "----------\n", + "2: epoch 96/500\n", + "1/0, train_loss: 0.5870\n", + "2 epoch 96 average loss: 0.5870\n", + "current epoch: 96 current mean dice: 0.3591\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 97/500\n", + "1/0, train_loss: 0.5818\n", + "2 epoch 97 average loss: 0.5818\n", + "----------\n", + "2: epoch 98/500\n", + "1/0, train_loss: 0.5841\n", + "2 epoch 98 average loss: 0.5841\n", + "current epoch: 98 current mean dice: 0.3229\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 99/500\n", + "1/0, train_loss: 0.5852\n", + "2 epoch 99 average loss: 0.5852\n", + "----------\n", + "2: epoch 100/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.5824\n", + "2 epoch 100 average loss: 0.5824\n", + "current epoch: 100 current mean dice: 0.3389\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 101/500\n", + "1/0, train_loss: 0.5822\n", + "2 epoch 101 average loss: 0.5822\n", + "----------\n", + "2: epoch 102/500\n", + "1/0, train_loss: 0.5793\n", + "2 epoch 102 average loss: 0.5793\n", + "current epoch: 102 current mean dice: 0.3477\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 103/500\n", + "1/0, train_loss: 0.5863\n", + "2 epoch 103 average loss: 0.5863\n", + "----------\n", + "2: epoch 104/500\n", + "1/0, train_loss: 0.5770\n", + "2 epoch 104 average loss: 0.5770\n", + "current epoch: 104 current mean dice: 0.2972\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 105/500\n", + "1/0, train_loss: 0.5782\n", + "2 epoch 105 average loss: 0.5782\n", + "----------\n", + "2: epoch 106/500\n", + "1/0, train_loss: 0.5809\n", + "2 epoch 106 average loss: 0.5809\n", + "current epoch: 106 current mean dice: 0.3307\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 107/500\n", + "1/0, train_loss: 0.5785\n", + "2 epoch 107 average loss: 0.5785\n", + "----------\n", + "2: epoch 108/500\n", + "1/0, train_loss: 0.5739\n", + "2 epoch 108 average loss: 0.5739\n", + "current epoch: 108 current mean dice: 0.2986\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 109/500\n", + "1/0, train_loss: 0.5846\n", + "2 epoch 109 average loss: 0.5846\n", + "----------\n", + "2: epoch 110/500\n", + "1/0, train_loss: 0.5752\n", + "2 epoch 110 average loss: 0.5752\n", + "current epoch: 110 current mean dice: 0.2751\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 111/500\n", + "1/0, train_loss: 0.5718\n", + "2 epoch 111 average loss: 0.5718\n", + "----------\n", + "2: epoch 112/500\n", + "1/0, train_loss: 0.5796\n", + "2 epoch 112 average loss: 0.5796\n", + "current epoch: 112 current mean dice: 0.2541\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 113/500\n", + "1/0, train_loss: 0.5734\n", + "2 epoch 113 average loss: 0.5734\n", + "----------\n", + "2: epoch 114/500\n", + "1/0, train_loss: 0.5709\n", + "2 epoch 114 average loss: 0.5709\n", + "current epoch: 114 current mean dice: 0.2735\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 115/500\n", + "1/0, train_loss: 0.5689\n", + "2 epoch 115 average loss: 0.5689\n", + "----------\n", + "2: epoch 116/500\n", + "1/0, train_loss: 0.5683\n", + "2 epoch 116 average loss: 0.5683\n", + "current epoch: 116 current mean dice: 0.2387\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 117/500\n", + "1/0, train_loss: 0.5673\n", + "2 epoch 117 average loss: 0.5673\n", + "----------\n", + "2: epoch 118/500\n", + "1/0, train_loss: 0.5678\n", + "2 epoch 118 average loss: 0.5678\n", + "current epoch: 118 current mean dice: 0.2088\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 119/500\n", + "1/0, train_loss: 0.5665\n", + "2 epoch 119 average loss: 0.5665\n", + "----------\n", + "2: epoch 120/500\n", + "1/0, train_loss: 0.5687\n", + "2 epoch 120 average loss: 0.5687\n", + "current epoch: 120 current mean dice: 0.2247\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 121/500\n", + "1/0, train_loss: 0.5688\n", + "2 epoch 121 average loss: 0.5688\n", + "----------\n", + "2: epoch 122/500\n", + "1/0, train_loss: 0.5644\n", + "2 epoch 122 average loss: 0.5644\n", + "current epoch: 122 current mean dice: 0.2160\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 123/500\n", + "1/0, train_loss: 0.5630\n", + "2 epoch 123 average loss: 0.5630\n", + "----------\n", + "2: epoch 124/500\n", + "1/0, train_loss: 0.5616\n", + "2 epoch 124 average loss: 0.5616\n", + "current epoch: 124 current mean dice: 0.2206\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 125/500\n", + "1/0, train_loss: 0.5635\n", + "2 epoch 125 average loss: 0.5635\n", + "----------\n", + "2: epoch 126/500\n", + "1/0, train_loss: 0.5608\n", + "2 epoch 126 average loss: 0.5608\n", + "current epoch: 126 current mean dice: 0.2074\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 127/500\n", + "1/0, train_loss: 0.5565\n", + "2 epoch 127 average loss: 0.5565\n", + "----------\n", + "2: epoch 128/500\n", + "1/0, train_loss: 0.5542\n", + "2 epoch 128 average loss: 0.5542\n", + "current epoch: 128 current mean dice: 0.2070\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 129/500\n", + "1/0, train_loss: 0.5565\n", + "2 epoch 129 average loss: 0.5565\n", + "----------\n", + "2: epoch 130/500\n", + "1/0, train_loss: 0.5550\n", + "2 epoch 130 average loss: 0.5550\n", + "current epoch: 130 current mean dice: 0.2344\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 131/500\n", + "1/0, train_loss: 0.5582\n", + "2 epoch 131 average loss: 0.5582\n", + "----------\n", + "2: epoch 132/500\n", + "1/0, train_loss: 0.5554\n", + "2 epoch 132 average loss: 0.5554\n", + "current epoch: 132 current mean dice: 0.2052\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 133/500\n", + "1/0, train_loss: 0.5527\n", + "2 epoch 133 average loss: 0.5527\n", + "----------\n", + "2: epoch 134/500\n", + "1/0, train_loss: 0.5531\n", + "2 epoch 134 average loss: 0.5531\n", + "current epoch: 134 current mean dice: 0.2361\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 135/500\n", + "1/0, train_loss: 0.5575\n", + "2 epoch 135 average loss: 0.5575\n", + "----------\n", + "2: epoch 136/500\n", + "1/0, train_loss: 0.5503\n", + "2 epoch 136 average loss: 0.5503\n", + "current epoch: 136 current mean dice: 0.1814\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 137/500\n", + "1/0, train_loss: 0.5510\n", + "2 epoch 137 average loss: 0.5510\n", + "----------\n", + "2: epoch 138/500\n", + "1/0, train_loss: 0.5527\n", + "2 epoch 138 average loss: 0.5527\n", + "current epoch: 138 current mean dice: 0.1734\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 139/500\n", + "1/0, train_loss: 0.5460\n", + "2 epoch 139 average loss: 0.5460\n", + "----------\n", + "2: epoch 140/500\n", + "1/0, train_loss: 0.5437\n", + "2 epoch 140 average loss: 0.5437\n", + "current epoch: 140 current mean dice: 0.2001\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 141/500\n", + "1/0, train_loss: 0.5503\n", + "2 epoch 141 average loss: 0.5503\n", + "----------\n", + "2: epoch 142/500\n", + "1/0, train_loss: 0.5494\n", + "2 epoch 142 average loss: 0.5494\n", + "current epoch: 142 current mean dice: 0.2149\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 143/500\n", + "1/0, train_loss: 0.5488\n", + "2 epoch 143 average loss: 0.5488\n", + "----------\n", + "2: epoch 144/500\n", + "1/0, train_loss: 0.5474\n", + "2 epoch 144 average loss: 0.5474\n", + "current epoch: 144 current mean dice: 0.1637\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 145/500\n", + "1/0, train_loss: 0.5468\n", + "2 epoch 145 average loss: 0.5468\n", + "----------\n", + "2: epoch 146/500\n", + "1/0, train_loss: 0.5469\n", + "2 epoch 146 average loss: 0.5469\n", + "current epoch: 146 current mean dice: 0.2197\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 147/500\n", + "1/0, train_loss: 0.5487\n", + "2 epoch 147 average loss: 0.5487\n", + "----------\n", + "2: epoch 148/500\n", + "1/0, train_loss: 0.5434\n", + "2 epoch 148 average loss: 0.5434\n", + "current epoch: 148 current mean dice: 0.1681\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 149/500\n", + "1/0, train_loss: 0.5481\n", + "2 epoch 149 average loss: 0.5481\n", + "----------\n", + "2: epoch 150/500\n", + "1/0, train_loss: 0.5398\n", + "2 epoch 150 average loss: 0.5398\n", + "current epoch: 150 current mean dice: 0.1639\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 151/500\n", + "1/0, train_loss: 0.5413\n", + "2 epoch 151 average loss: 0.5413\n", + "----------\n", + "2: epoch 152/500\n", + "1/0, train_loss: 0.5394\n", + "2 epoch 152 average loss: 0.5394\n", + "current epoch: 152 current mean dice: 0.1753\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 153/500\n", + "1/0, train_loss: 0.5373\n", + "2 epoch 153 average loss: 0.5373\n", + "----------\n", + "2: epoch 154/500\n", + "1/0, train_loss: 0.5411\n", + "2 epoch 154 average loss: 0.5411\n", + "current epoch: 154 current mean dice: 0.2182\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 155/500\n", + "1/0, train_loss: 0.5409\n", + "2 epoch 155 average loss: 0.5409\n", + "----------\n", + "2: epoch 156/500\n", + "1/0, train_loss: 0.5386\n", + "2 epoch 156 average loss: 0.5386\n", + "current epoch: 156 current mean dice: 0.1895\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 157/500\n", + "1/0, train_loss: 0.5404\n", + "2 epoch 157 average loss: 0.5404\n", + "----------\n", + "2: epoch 158/500\n", + "1/0, train_loss: 0.5389\n", + "2 epoch 158 average loss: 0.5389\n", + "current epoch: 158 current mean dice: 0.1695\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 159/500\n", + "1/0, train_loss: 0.5365\n", + "2 epoch 159 average loss: 0.5365\n", + "----------\n", + "2: epoch 160/500\n", + "1/0, train_loss: 0.5364\n", + "2 epoch 160 average loss: 0.5364\n", + "current epoch: 160 current mean dice: 0.1738\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 161/500\n", + "1/0, train_loss: 0.5340\n", + "2 epoch 161 average loss: 0.5340\n", + "----------\n", + "2: epoch 162/500\n", + "1/0, train_loss: 0.5337\n", + "2 epoch 162 average loss: 0.5337\n", + "current epoch: 162 current mean dice: 0.1812\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 163/500\n", + "1/0, train_loss: 0.5355\n", + "2 epoch 163 average loss: 0.5355\n", + "----------\n", + "2: epoch 164/500\n", + "1/0, train_loss: 0.5338\n", + "2 epoch 164 average loss: 0.5338\n", + "current epoch: 164 current mean dice: 0.1691\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 165/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.5333\n", + "2 epoch 165 average loss: 0.5333\n", + "----------\n", + "2: epoch 166/500\n", + "1/0, train_loss: 0.5316\n", + "2 epoch 166 average loss: 0.5316\n", + "current epoch: 166 current mean dice: 0.1605\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 167/500\n", + "1/0, train_loss: 0.5370\n", + "2 epoch 167 average loss: 0.5370\n", + "----------\n", + "2: epoch 168/500\n", + "1/0, train_loss: 0.5306\n", + "2 epoch 168 average loss: 0.5306\n", + "current epoch: 168 current mean dice: 0.1338\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 169/500\n", + "1/0, train_loss: 0.5347\n", + "2 epoch 169 average loss: 0.5347\n", + "----------\n", + "2: epoch 170/500\n", + "1/0, train_loss: 0.5314\n", + "2 epoch 170 average loss: 0.5314\n", + "current epoch: 170 current mean dice: 0.1742\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 171/500\n", + "1/0, train_loss: 0.5360\n", + "2 epoch 171 average loss: 0.5360\n", + "----------\n", + "2: epoch 172/500\n", + "1/0, train_loss: 0.5327\n", + "2 epoch 172 average loss: 0.5327\n", + "current epoch: 172 current mean dice: 0.1259\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 173/500\n", + "1/0, train_loss: 0.5260\n", + "2 epoch 173 average loss: 0.5260\n", + "----------\n", + "2: epoch 174/500\n", + "1/0, train_loss: 0.5298\n", + "2 epoch 174 average loss: 0.5298\n", + "current epoch: 174 current mean dice: 0.1705\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 175/500\n", + "1/0, train_loss: 0.5299\n", + "2 epoch 175 average loss: 0.5299\n", + "----------\n", + "2: epoch 176/500\n", + "1/0, train_loss: 0.5248\n", + "2 epoch 176 average loss: 0.5248\n", + "current epoch: 176 current mean dice: 0.1488\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 177/500\n", + "1/0, train_loss: 0.5264\n", + "2 epoch 177 average loss: 0.5264\n", + "----------\n", + "2: epoch 178/500\n", + "1/0, train_loss: 0.5290\n", + "2 epoch 178 average loss: 0.5290\n", + "current epoch: 178 current mean dice: 0.1506\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 179/500\n", + "1/0, train_loss: 0.5245\n", + "2 epoch 179 average loss: 0.5245\n", + "----------\n", + "2: epoch 180/500\n", + "1/0, train_loss: 0.5263\n", + "2 epoch 180 average loss: 0.5263\n", + "current epoch: 180 current mean dice: 0.1418\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 181/500\n", + "1/0, train_loss: 0.5223\n", + "2 epoch 181 average loss: 0.5223\n", + "----------\n", + "2: epoch 182/500\n", + "1/0, train_loss: 0.5213\n", + "2 epoch 182 average loss: 0.5213\n", + "current epoch: 182 current mean dice: 0.1571\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 183/500\n", + "1/0, train_loss: 0.5285\n", + "2 epoch 183 average loss: 0.5285\n", + "----------\n", + "2: epoch 184/500\n", + "1/0, train_loss: 0.5245\n", + "2 epoch 184 average loss: 0.5245\n", + "current epoch: 184 current mean dice: 0.1372\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 185/500\n", + "1/0, train_loss: 0.5224\n", + "2 epoch 185 average loss: 0.5224\n", + "----------\n", + "2: epoch 186/500\n", + "1/0, train_loss: 0.5213\n", + "2 epoch 186 average loss: 0.5213\n", + "current epoch: 186 current mean dice: 0.1300\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 187/500\n", + "1/0, train_loss: 0.5206\n", + "2 epoch 187 average loss: 0.5206\n", + "----------\n", + "2: epoch 188/500\n", + "1/0, train_loss: 0.5199\n", + "2 epoch 188 average loss: 0.5199\n", + "current epoch: 188 current mean dice: 0.1648\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 189/500\n", + "1/0, train_loss: 0.5187\n", + "2 epoch 189 average loss: 0.5187\n", + "----------\n", + "2: epoch 190/500\n", + "1/0, train_loss: 0.5201\n", + "2 epoch 190 average loss: 0.5201\n", + "current epoch: 190 current mean dice: 0.1318\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 191/500\n", + "1/0, train_loss: 0.5166\n", + "2 epoch 191 average loss: 0.5166\n", + "----------\n", + "2: epoch 192/500\n", + "1/0, train_loss: 0.5165\n", + "2 epoch 192 average loss: 0.5165\n", + "current epoch: 192 current mean dice: 0.1609\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 193/500\n", + "1/0, train_loss: 0.5188\n", + "2 epoch 193 average loss: 0.5188\n", + "----------\n", + "2: epoch 194/500\n", + "1/0, train_loss: 0.5148\n", + "2 epoch 194 average loss: 0.5148\n", + "current epoch: 194 current mean dice: 0.1418\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 195/500\n", + "1/0, train_loss: 0.5146\n", + "2 epoch 195 average loss: 0.5146\n", + "----------\n", + "2: epoch 196/500\n", + "1/0, train_loss: 0.5169\n", + "2 epoch 196 average loss: 0.5169\n", + "current epoch: 196 current mean dice: 0.1529\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 197/500\n", + "1/0, train_loss: 0.5182\n", + "2 epoch 197 average loss: 0.5182\n", + "----------\n", + "2: epoch 198/500\n", + "1/0, train_loss: 0.5152\n", + "2 epoch 198 average loss: 0.5152\n", + "current epoch: 198 current mean dice: 0.1126\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 199/500\n", + "1/0, train_loss: 0.5159\n", + "2 epoch 199 average loss: 0.5159\n", + "----------\n", + "2: epoch 200/500\n", + "1/0, train_loss: 0.5145\n", + "2 epoch 200 average loss: 0.5145\n", + "current epoch: 200 current mean dice: 0.1477\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 201/500\n", + "1/0, train_loss: 0.5141\n", + "2 epoch 201 average loss: 0.5141\n", + "----------\n", + "2: epoch 202/500\n", + "1/0, train_loss: 0.5124\n", + "2 epoch 202 average loss: 0.5124\n", + "current epoch: 202 current mean dice: 0.1256\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 203/500\n", + "1/0, train_loss: 0.5126\n", + "2 epoch 203 average loss: 0.5126\n", + "----------\n", + "2: epoch 204/500\n", + "1/0, train_loss: 0.5130\n", + "2 epoch 204 average loss: 0.5130\n", + "current epoch: 204 current mean dice: 0.1340\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 205/500\n", + "1/0, train_loss: 0.5103\n", + "2 epoch 205 average loss: 0.5103\n", + "----------\n", + "2: epoch 206/500\n", + "1/0, train_loss: 0.5155\n", + "2 epoch 206 average loss: 0.5155\n", + "current epoch: 206 current mean dice: 0.1558\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 207/500\n", + "1/0, train_loss: 0.5097\n", + "2 epoch 207 average loss: 0.5097\n", + "----------\n", + "2: epoch 208/500\n", + "1/0, train_loss: 0.5123\n", + "2 epoch 208 average loss: 0.5123\n", + "current epoch: 208 current mean dice: 0.1150\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 209/500\n", + "1/0, train_loss: 0.5116\n", + "2 epoch 209 average loss: 0.5116\n", + "----------\n", + "2: epoch 210/500\n", + "1/0, train_loss: 0.5096\n", + "2 epoch 210 average loss: 0.5096\n", + "current epoch: 210 current mean dice: 0.1423\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 211/500\n", + "1/0, train_loss: 0.5109\n", + "2 epoch 211 average loss: 0.5109\n", + "----------\n", + "2: epoch 212/500\n", + "1/0, train_loss: 0.5102\n", + "2 epoch 212 average loss: 0.5102\n", + "current epoch: 212 current mean dice: 0.1327\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 213/500\n", + "1/0, train_loss: 0.5095\n", + "2 epoch 213 average loss: 0.5095\n", + "----------\n", + "2: epoch 214/500\n", + "1/0, train_loss: 0.5103\n", + "2 epoch 214 average loss: 0.5103\n", + "current epoch: 214 current mean dice: 0.1644\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 215/500\n", + "1/0, train_loss: 0.5143\n", + "2 epoch 215 average loss: 0.5143\n", + "----------\n", + "2: epoch 216/500\n", + "1/0, train_loss: 0.5090\n", + "2 epoch 216 average loss: 0.5090\n", + "current epoch: 216 current mean dice: 0.1211\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 217/500\n", + "1/0, train_loss: 0.5142\n", + "2 epoch 217 average loss: 0.5142\n", + "----------\n", + "2: epoch 218/500\n", + "1/0, train_loss: 0.5073\n", + "2 epoch 218 average loss: 0.5073\n", + "current epoch: 218 current mean dice: 0.1287\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 219/500\n", + "1/0, train_loss: 0.5073\n", + "2 epoch 219 average loss: 0.5073\n", + "----------\n", + "2: epoch 220/500\n", + "1/0, train_loss: 0.5079\n", + "2 epoch 220 average loss: 0.5079\n", + "current epoch: 220 current mean dice: 0.1364\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 221/500\n", + "1/0, train_loss: 0.5088\n", + "2 epoch 221 average loss: 0.5088\n", + "----------\n", + "2: epoch 222/500\n", + "1/0, train_loss: 0.5034\n", + "2 epoch 222 average loss: 0.5034\n", + "current epoch: 222 current mean dice: 0.1533\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 223/500\n", + "1/0, train_loss: 0.5056\n", + "2 epoch 223 average loss: 0.5056\n", + "----------\n", + "2: epoch 224/500\n", + "1/0, train_loss: 0.5060\n", + "2 epoch 224 average loss: 0.5060\n", + "current epoch: 224 current mean dice: 0.1206\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 225/500\n", + "1/0, train_loss: 0.5016\n", + "2 epoch 225 average loss: 0.5016\n", + "----------\n", + "2: epoch 226/500\n", + "1/0, train_loss: 0.5035\n", + "2 epoch 226 average loss: 0.5035\n", + "current epoch: 226 current mean dice: 0.1003\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 227/500\n", + "1/0, train_loss: 0.5058\n", + "2 epoch 227 average loss: 0.5058\n", + "----------\n", + "2: epoch 228/500\n", + "1/0, train_loss: 0.4990\n", + "2 epoch 228 average loss: 0.4990\n", + "current epoch: 228 current mean dice: 0.0964\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 229/500\n", + "1/0, train_loss: 0.5083\n", + "2 epoch 229 average loss: 0.5083\n", + "----------\n", + "2: epoch 230/500\n", + "1/0, train_loss: 0.4992\n", + "2 epoch 230 average loss: 0.4992\n", + "current epoch: 230 current mean dice: 0.1165\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 231/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.4976\n", + "2 epoch 231 average loss: 0.4976\n", + "----------\n", + "2: epoch 232/500\n", + "1/0, train_loss: 0.5010\n", + "2 epoch 232 average loss: 0.5010\n", + "current epoch: 232 current mean dice: 0.1275\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 233/500\n", + "1/0, train_loss: 0.5042\n", + "2 epoch 233 average loss: 0.5042\n", + "----------\n", + "2: epoch 234/500\n", + "1/0, train_loss: 0.4993\n", + "2 epoch 234 average loss: 0.4993\n", + "current epoch: 234 current mean dice: 0.1239\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 235/500\n", + "1/0, train_loss: 0.5020\n", + "2 epoch 235 average loss: 0.5020\n", + "----------\n", + "2: epoch 236/500\n", + "1/0, train_loss: 0.5009\n", + "2 epoch 236 average loss: 0.5009\n", + "current epoch: 236 current mean dice: 0.1147\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 237/500\n", + "1/0, train_loss: 0.4979\n", + "2 epoch 237 average loss: 0.4979\n", + "----------\n", + "2: epoch 238/500\n", + "1/0, train_loss: 0.4989\n", + "2 epoch 238 average loss: 0.4989\n", + "current epoch: 238 current mean dice: 0.1227\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 239/500\n", + "1/0, train_loss: 0.4983\n", + "2 epoch 239 average loss: 0.4983\n", + "----------\n", + "2: epoch 240/500\n", + "1/0, train_loss: 0.4962\n", + "2 epoch 240 average loss: 0.4962\n", + "current epoch: 240 current mean dice: 0.1052\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 241/500\n", + "1/0, train_loss: 0.4993\n", + "2 epoch 241 average loss: 0.4993\n", + "----------\n", + "2: epoch 242/500\n", + "1/0, train_loss: 0.4970\n", + "2 epoch 242 average loss: 0.4970\n", + "current epoch: 242 current mean dice: 0.1199\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 243/500\n", + "1/0, train_loss: 0.4968\n", + "2 epoch 243 average loss: 0.4968\n", + "----------\n", + "2: epoch 244/500\n", + "1/0, train_loss: 0.4979\n", + "2 epoch 244 average loss: 0.4979\n", + "current epoch: 244 current mean dice: 0.1237\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 245/500\n", + "1/0, train_loss: 0.4929\n", + "2 epoch 245 average loss: 0.4929\n", + "----------\n", + "2: epoch 246/500\n", + "1/0, train_loss: 0.4951\n", + "2 epoch 246 average loss: 0.4951\n", + "current epoch: 246 current mean dice: 0.1382\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 247/500\n", + "1/0, train_loss: 0.5004\n", + "2 epoch 247 average loss: 0.5004\n", + "----------\n", + "2: epoch 248/500\n", + "1/0, train_loss: 0.4956\n", + "2 epoch 248 average loss: 0.4956\n", + "current epoch: 248 current mean dice: 0.1059\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 249/500\n", + "1/0, train_loss: 0.4937\n", + "2 epoch 249 average loss: 0.4937\n", + "----------\n", + "2: epoch 250/500\n", + "1/0, train_loss: 0.4917\n", + "2 epoch 250 average loss: 0.4917\n", + "current epoch: 250 current mean dice: 0.1207\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 251/500\n", + "1/0, train_loss: 0.4955\n", + "2 epoch 251 average loss: 0.4955\n", + "----------\n", + "2: epoch 252/500\n", + "1/0, train_loss: 0.4922\n", + "2 epoch 252 average loss: 0.4922\n", + "current epoch: 252 current mean dice: 0.1344\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 253/500\n", + "1/0, train_loss: 0.4955\n", + "2 epoch 253 average loss: 0.4955\n", + "----------\n", + "2: epoch 254/500\n", + "1/0, train_loss: 0.4978\n", + "2 epoch 254 average loss: 0.4978\n", + "current epoch: 254 current mean dice: 0.1211\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 255/500\n", + "1/0, train_loss: 0.4928\n", + "2 epoch 255 average loss: 0.4928\n", + "----------\n", + "2: epoch 256/500\n", + "1/0, train_loss: 0.4899\n", + "2 epoch 256 average loss: 0.4899\n", + "current epoch: 256 current mean dice: 0.1385\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 257/500\n", + "1/0, train_loss: 0.4925\n", + "2 epoch 257 average loss: 0.4925\n", + "----------\n", + "2: epoch 258/500\n", + "1/0, train_loss: 0.4902\n", + "2 epoch 258 average loss: 0.4902\n", + "current epoch: 258 current mean dice: 0.0751\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 259/500\n", + "1/0, train_loss: 0.4895\n", + "2 epoch 259 average loss: 0.4895\n", + "----------\n", + "2: epoch 260/500\n", + "1/0, train_loss: 0.4922\n", + "2 epoch 260 average loss: 0.4922\n", + "current epoch: 260 current mean dice: 0.1052\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 261/500\n", + "1/0, train_loss: 0.4893\n", + "2 epoch 261 average loss: 0.4893\n", + "----------\n", + "2: epoch 262/500\n", + "1/0, train_loss: 0.4899\n", + "2 epoch 262 average loss: 0.4899\n", + "current epoch: 262 current mean dice: 0.0747\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 263/500\n", + "1/0, train_loss: 0.4917\n", + "2 epoch 263 average loss: 0.4917\n", + "----------\n", + "2: epoch 264/500\n", + "1/0, train_loss: 0.4848\n", + "2 epoch 264 average loss: 0.4848\n", + "current epoch: 264 current mean dice: 0.0972\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 265/500\n", + "1/0, train_loss: 0.4883\n", + "2 epoch 265 average loss: 0.4883\n", + "----------\n", + "2: epoch 266/500\n", + "1/0, train_loss: 0.4913\n", + "2 epoch 266 average loss: 0.4913\n", + "current epoch: 266 current mean dice: 0.1070\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 267/500\n", + "1/0, train_loss: 0.4853\n", + "2 epoch 267 average loss: 0.4853\n", + "----------\n", + "2: epoch 268/500\n", + "1/0, train_loss: 0.4867\n", + "2 epoch 268 average loss: 0.4867\n", + "current epoch: 268 current mean dice: 0.0992\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 269/500\n", + "1/0, train_loss: 0.4848\n", + "2 epoch 269 average loss: 0.4848\n", + "----------\n", + "2: epoch 270/500\n", + "1/0, train_loss: 0.4858\n", + "2 epoch 270 average loss: 0.4858\n", + "current epoch: 270 current mean dice: 0.0840\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 271/500\n", + "1/0, train_loss: 0.4902\n", + "2 epoch 271 average loss: 0.4902\n", + "----------\n", + "2: epoch 272/500\n", + "1/0, train_loss: 0.4851\n", + "2 epoch 272 average loss: 0.4851\n", + "current epoch: 272 current mean dice: 0.0711\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 273/500\n", + "1/0, train_loss: 0.4879\n", + "2 epoch 273 average loss: 0.4879\n", + "----------\n", + "2: epoch 274/500\n", + "1/0, train_loss: 0.4868\n", + "2 epoch 274 average loss: 0.4868\n", + "current epoch: 274 current mean dice: 0.1099\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 275/500\n", + "1/0, train_loss: 0.4812\n", + "2 epoch 275 average loss: 0.4812\n", + "----------\n", + "2: epoch 276/500\n", + "1/0, train_loss: 0.4825\n", + "2 epoch 276 average loss: 0.4825\n", + "current epoch: 276 current mean dice: 0.0767\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 277/500\n", + "1/0, train_loss: 0.4843\n", + "2 epoch 277 average loss: 0.4843\n", + "----------\n", + "2: epoch 278/500\n", + "1/0, train_loss: 0.4858\n", + "2 epoch 278 average loss: 0.4858\n", + "current epoch: 278 current mean dice: 0.0655\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 279/500\n", + "1/0, train_loss: 0.4832\n", + "2 epoch 279 average loss: 0.4832\n", + "----------\n", + "2: epoch 280/500\n", + "1/0, train_loss: 0.4872\n", + "2 epoch 280 average loss: 0.4872\n", + "current epoch: 280 current mean dice: 0.0877\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 281/500\n", + "1/0, train_loss: 0.4845\n", + "2 epoch 281 average loss: 0.4845\n", + "----------\n", + "2: epoch 282/500\n", + "1/0, train_loss: 0.4808\n", + "2 epoch 282 average loss: 0.4808\n", + "current epoch: 282 current mean dice: 0.1008\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 283/500\n", + "1/0, train_loss: 0.4824\n", + "2 epoch 283 average loss: 0.4824\n", + "----------\n", + "2: epoch 284/500\n", + "1/0, train_loss: 0.4824\n", + "2 epoch 284 average loss: 0.4824\n", + "current epoch: 284 current mean dice: 0.1075\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 285/500\n", + "1/0, train_loss: 0.4832\n", + "2 epoch 285 average loss: 0.4832\n", + "----------\n", + "2: epoch 286/500\n", + "1/0, train_loss: 0.4784\n", + "2 epoch 286 average loss: 0.4784\n", + "current epoch: 286 current mean dice: 0.0825\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 287/500\n", + "1/0, train_loss: 0.4789\n", + "2 epoch 287 average loss: 0.4789\n", + "----------\n", + "2: epoch 288/500\n", + "1/0, train_loss: 0.4771\n", + "2 epoch 288 average loss: 0.4771\n", + "current epoch: 288 current mean dice: 0.0722\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 289/500\n", + "1/0, train_loss: 0.4816\n", + "2 epoch 289 average loss: 0.4816\n", + "----------\n", + "2: epoch 290/500\n", + "1/0, train_loss: 0.4803\n", + "2 epoch 290 average loss: 0.4803\n", + "current epoch: 290 current mean dice: 0.0710\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 291/500\n", + "1/0, train_loss: 0.4775\n", + "2 epoch 291 average loss: 0.4775\n", + "----------\n", + "2: epoch 292/500\n", + "1/0, train_loss: 0.4776\n", + "2 epoch 292 average loss: 0.4776\n", + "current epoch: 292 current mean dice: 0.0719\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 293/500\n", + "1/0, train_loss: 0.4778\n", + "2 epoch 293 average loss: 0.4778\n", + "----------\n", + "2: epoch 294/500\n", + "1/0, train_loss: 0.4795\n", + "2 epoch 294 average loss: 0.4795\n", + "current epoch: 294 current mean dice: 0.0648\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 295/500\n", + "1/0, train_loss: 0.4819\n", + "2 epoch 295 average loss: 0.4819\n", + "----------\n", + "2: epoch 296/500\n", + "1/0, train_loss: 0.4793\n", + "2 epoch 296 average loss: 0.4793\n", + "current epoch: 296 current mean dice: 0.0609\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 297/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.4781\n", + "2 epoch 297 average loss: 0.4781\n", + "----------\n", + "2: epoch 298/500\n", + "1/0, train_loss: 0.4768\n", + "2 epoch 298 average loss: 0.4768\n", + "current epoch: 298 current mean dice: 0.0774\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 299/500\n", + "1/0, train_loss: 0.4754\n", + "2 epoch 299 average loss: 0.4754\n", + "----------\n", + "2: epoch 300/500\n", + "1/0, train_loss: 0.4761\n", + "2 epoch 300 average loss: 0.4761\n", + "current epoch: 300 current mean dice: 0.0912\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 301/500\n", + "1/0, train_loss: 0.4753\n", + "2 epoch 301 average loss: 0.4753\n", + "----------\n", + "2: epoch 302/500\n", + "1/0, train_loss: 0.4767\n", + "2 epoch 302 average loss: 0.4767\n", + "current epoch: 302 current mean dice: 0.0665\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 303/500\n", + "1/0, train_loss: 0.4726\n", + "2 epoch 303 average loss: 0.4726\n", + "----------\n", + "2: epoch 304/500\n", + "1/0, train_loss: 0.4757\n", + "2 epoch 304 average loss: 0.4757\n", + "current epoch: 304 current mean dice: 0.0637\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 305/500\n", + "1/0, train_loss: 0.4756\n", + "2 epoch 305 average loss: 0.4756\n", + "----------\n", + "2: epoch 306/500\n", + "1/0, train_loss: 0.4737\n", + "2 epoch 306 average loss: 0.4737\n", + "current epoch: 306 current mean dice: 0.0576\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 307/500\n", + "1/0, train_loss: 0.4724\n", + "2 epoch 307 average loss: 0.4724\n", + "----------\n", + "2: epoch 308/500\n", + "1/0, train_loss: 0.4708\n", + "2 epoch 308 average loss: 0.4708\n", + "current epoch: 308 current mean dice: 0.0777\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 309/500\n", + "1/0, train_loss: 0.4744\n", + "2 epoch 309 average loss: 0.4744\n", + "----------\n", + "2: epoch 310/500\n", + "1/0, train_loss: 0.4697\n", + "2 epoch 310 average loss: 0.4697\n", + "current epoch: 310 current mean dice: 0.0619\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 311/500\n", + "1/0, train_loss: 0.4721\n", + "2 epoch 311 average loss: 0.4721\n", + "----------\n", + "2: epoch 312/500\n", + "1/0, train_loss: 0.4753\n", + "2 epoch 312 average loss: 0.4753\n", + "current epoch: 312 current mean dice: 0.0570\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 313/500\n", + "1/0, train_loss: 0.4709\n", + "2 epoch 313 average loss: 0.4709\n", + "----------\n", + "2: epoch 314/500\n", + "1/0, train_loss: 0.4738\n", + "2 epoch 314 average loss: 0.4738\n", + "current epoch: 314 current mean dice: 0.0690\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 315/500\n", + "1/0, train_loss: 0.4710\n", + "2 epoch 315 average loss: 0.4710\n", + "----------\n", + "2: epoch 316/500\n", + "1/0, train_loss: 0.4683\n", + "2 epoch 316 average loss: 0.4683\n", + "current epoch: 316 current mean dice: 0.0685\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 317/500\n", + "1/0, train_loss: 0.4729\n", + "2 epoch 317 average loss: 0.4729\n", + "----------\n", + "2: epoch 318/500\n", + "1/0, train_loss: 0.4723\n", + "2 epoch 318 average loss: 0.4723\n", + "current epoch: 318 current mean dice: 0.0999\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 319/500\n", + "1/0, train_loss: 0.4732\n", + "2 epoch 319 average loss: 0.4732\n", + "----------\n", + "2: epoch 320/500\n", + "1/0, train_loss: 0.4700\n", + "2 epoch 320 average loss: 0.4700\n", + "current epoch: 320 current mean dice: 0.0796\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 321/500\n", + "1/0, train_loss: 0.4709\n", + "2 epoch 321 average loss: 0.4709\n", + "----------\n", + "2: epoch 322/500\n", + "1/0, train_loss: 0.4677\n", + "2 epoch 322 average loss: 0.4677\n", + "current epoch: 322 current mean dice: 0.0738\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 323/500\n", + "1/0, train_loss: 0.4682\n", + "2 epoch 323 average loss: 0.4682\n", + "----------\n", + "2: epoch 324/500\n", + "1/0, train_loss: 0.4676\n", + "2 epoch 324 average loss: 0.4676\n", + "current epoch: 324 current mean dice: 0.0607\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 325/500\n", + "1/0, train_loss: 0.4657\n", + "2 epoch 325 average loss: 0.4657\n", + "----------\n", + "2: epoch 326/500\n", + "1/0, train_loss: 0.4676\n", + "2 epoch 326 average loss: 0.4676\n", + "current epoch: 326 current mean dice: 0.0590\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 327/500\n", + "1/0, train_loss: 0.4665\n", + "2 epoch 327 average loss: 0.4665\n", + "----------\n", + "2: epoch 328/500\n", + "1/0, train_loss: 0.4688\n", + "2 epoch 328 average loss: 0.4688\n", + "current epoch: 328 current mean dice: 0.0738\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 329/500\n", + "1/0, train_loss: 0.4656\n", + "2 epoch 329 average loss: 0.4656\n", + "----------\n", + "2: epoch 330/500\n", + "1/0, train_loss: 0.4690\n", + "2 epoch 330 average loss: 0.4690\n", + "current epoch: 330 current mean dice: 0.0896\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 331/500\n", + "1/0, train_loss: 0.4643\n", + "2 epoch 331 average loss: 0.4643\n", + "----------\n", + "2: epoch 332/500\n", + "1/0, train_loss: 0.4660\n", + "2 epoch 332 average loss: 0.4660\n", + "current epoch: 332 current mean dice: 0.0674\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 333/500\n", + "1/0, train_loss: 0.4680\n", + "2 epoch 333 average loss: 0.4680\n", + "----------\n", + "2: epoch 334/500\n", + "1/0, train_loss: 0.4683\n", + "2 epoch 334 average loss: 0.4683\n", + "current epoch: 334 current mean dice: 0.0592\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 335/500\n", + "1/0, train_loss: 0.4673\n", + "2 epoch 335 average loss: 0.4673\n", + "----------\n", + "2: epoch 336/500\n", + "1/0, train_loss: 0.4670\n", + "2 epoch 336 average loss: 0.4670\n", + "current epoch: 336 current mean dice: 0.0551\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 337/500\n", + "1/0, train_loss: 0.4660\n", + "2 epoch 337 average loss: 0.4660\n", + "----------\n", + "2: epoch 338/500\n", + "1/0, train_loss: 0.4640\n", + "2 epoch 338 average loss: 0.4640\n", + "current epoch: 338 current mean dice: 0.0761\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 339/500\n", + "1/0, train_loss: 0.4665\n", + "2 epoch 339 average loss: 0.4665\n", + "----------\n", + "2: epoch 340/500\n", + "1/0, train_loss: 0.4657\n", + "2 epoch 340 average loss: 0.4657\n", + "current epoch: 340 current mean dice: 0.0651\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 341/500\n", + "1/0, train_loss: 0.4648\n", + "2 epoch 341 average loss: 0.4648\n", + "----------\n", + "2: epoch 342/500\n", + "1/0, train_loss: 0.4662\n", + "2 epoch 342 average loss: 0.4662\n", + "current epoch: 342 current mean dice: 0.0636\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 343/500\n", + "1/0, train_loss: 0.4664\n", + "2 epoch 343 average loss: 0.4664\n", + "----------\n", + "2: epoch 344/500\n", + "1/0, train_loss: 0.4651\n", + "2 epoch 344 average loss: 0.4651\n", + "current epoch: 344 current mean dice: 0.0516\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 345/500\n", + "1/0, train_loss: 0.4637\n", + "2 epoch 345 average loss: 0.4637\n", + "----------\n", + "2: epoch 346/500\n", + "1/0, train_loss: 0.4645\n", + "2 epoch 346 average loss: 0.4645\n", + "current epoch: 346 current mean dice: 0.0653\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 347/500\n", + "1/0, train_loss: 0.4627\n", + "2 epoch 347 average loss: 0.4627\n", + "----------\n", + "2: epoch 348/500\n", + "1/0, train_loss: 0.4621\n", + "2 epoch 348 average loss: 0.4621\n", + "current epoch: 348 current mean dice: 0.0518\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 349/500\n", + "1/0, train_loss: 0.4627\n", + "2 epoch 349 average loss: 0.4627\n", + "----------\n", + "2: epoch 350/500\n", + "1/0, train_loss: 0.4593\n", + "2 epoch 350 average loss: 0.4593\n", + "current epoch: 350 current mean dice: 0.0742\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 351/500\n", + "1/0, train_loss: 0.4641\n", + "2 epoch 351 average loss: 0.4641\n", + "----------\n", + "2: epoch 352/500\n", + "1/0, train_loss: 0.4647\n", + "2 epoch 352 average loss: 0.4647\n", + "current epoch: 352 current mean dice: 0.0738\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 353/500\n", + "1/0, train_loss: 0.4604\n", + "2 epoch 353 average loss: 0.4604\n", + "----------\n", + "2: epoch 354/500\n", + "1/0, train_loss: 0.4599\n", + "2 epoch 354 average loss: 0.4599\n", + "current epoch: 354 current mean dice: 0.0803\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 355/500\n", + "1/0, train_loss: 0.4619\n", + "2 epoch 355 average loss: 0.4619\n", + "----------\n", + "2: epoch 356/500\n", + "1/0, train_loss: 0.4617\n", + "2 epoch 356 average loss: 0.4617\n", + "current epoch: 356 current mean dice: 0.0697\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 357/500\n", + "1/0, train_loss: 0.4575\n", + "2 epoch 357 average loss: 0.4575\n", + "----------\n", + "2: epoch 358/500\n", + "1/0, train_loss: 0.4622\n", + "2 epoch 358 average loss: 0.4622\n", + "current epoch: 358 current mean dice: 0.0682\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 359/500\n", + "1/0, train_loss: 0.4612\n", + "2 epoch 359 average loss: 0.4612\n", + "----------\n", + "2: epoch 360/500\n", + "1/0, train_loss: 0.4593\n", + "2 epoch 360 average loss: 0.4593\n", + "current epoch: 360 current mean dice: 0.0657\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 361/500\n", + "1/0, train_loss: 0.4635\n", + "2 epoch 361 average loss: 0.4635\n", + "----------\n", + "2: epoch 362/500\n", + "1/0, train_loss: 0.4622\n", + "2 epoch 362 average loss: 0.4622\n", + "current epoch: 362 current mean dice: 0.0346\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 363/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.4588\n", + "2 epoch 363 average loss: 0.4588\n", + "----------\n", + "2: epoch 364/500\n", + "1/0, train_loss: 0.4595\n", + "2 epoch 364 average loss: 0.4595\n", + "current epoch: 364 current mean dice: 0.0479\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 365/500\n", + "1/0, train_loss: 0.4598\n", + "2 epoch 365 average loss: 0.4598\n", + "----------\n", + "2: epoch 366/500\n", + "1/0, train_loss: 0.4587\n", + "2 epoch 366 average loss: 0.4587\n", + "current epoch: 366 current mean dice: 0.0584\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 367/500\n", + "1/0, train_loss: 0.4610\n", + "2 epoch 367 average loss: 0.4610\n", + "----------\n", + "2: epoch 368/500\n", + "1/0, train_loss: 0.4599\n", + "2 epoch 368 average loss: 0.4599\n", + "current epoch: 368 current mean dice: 0.0587\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 369/500\n", + "1/0, train_loss: 0.4578\n", + "2 epoch 369 average loss: 0.4578\n", + "----------\n", + "2: epoch 370/500\n", + "1/0, train_loss: 0.4582\n", + "2 epoch 370 average loss: 0.4582\n", + "current epoch: 370 current mean dice: 0.0506\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 371/500\n", + "1/0, train_loss: 0.4568\n", + "2 epoch 371 average loss: 0.4568\n", + "----------\n", + "2: epoch 372/500\n", + "1/0, train_loss: 0.4590\n", + "2 epoch 372 average loss: 0.4590\n", + "current epoch: 372 current mean dice: 0.0554\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 373/500\n", + "1/0, train_loss: 0.4580\n", + "2 epoch 373 average loss: 0.4580\n", + "----------\n", + "2: epoch 374/500\n", + "1/0, train_loss: 0.4562\n", + "2 epoch 374 average loss: 0.4562\n", + "current epoch: 374 current mean dice: 0.0407\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 375/500\n", + "1/0, train_loss: 0.4599\n", + "2 epoch 375 average loss: 0.4599\n", + "----------\n", + "2: epoch 376/500\n", + "1/0, train_loss: 0.4557\n", + "2 epoch 376 average loss: 0.4557\n", + "current epoch: 376 current mean dice: 0.0666\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 377/500\n", + "1/0, train_loss: 0.4566\n", + "2 epoch 377 average loss: 0.4566\n", + "----------\n", + "2: epoch 378/500\n", + "1/0, train_loss: 0.4551\n", + "2 epoch 378 average loss: 0.4551\n", + "current epoch: 378 current mean dice: 0.0587\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 379/500\n", + "1/0, train_loss: 0.4529\n", + "2 epoch 379 average loss: 0.4529\n", + "----------\n", + "2: epoch 380/500\n", + "1/0, train_loss: 0.4543\n", + "2 epoch 380 average loss: 0.4543\n", + "current epoch: 380 current mean dice: 0.0676\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 381/500\n", + "1/0, train_loss: 0.4563\n", + "2 epoch 381 average loss: 0.4563\n", + "----------\n", + "2: epoch 382/500\n", + "1/0, train_loss: 0.4559\n", + "2 epoch 382 average loss: 0.4559\n", + "current epoch: 382 current mean dice: 0.0634\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 383/500\n", + "1/0, train_loss: 0.4524\n", + "2 epoch 383 average loss: 0.4524\n", + "----------\n", + "2: epoch 384/500\n", + "1/0, train_loss: 0.4531\n", + "2 epoch 384 average loss: 0.4531\n", + "current epoch: 384 current mean dice: 0.0640\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 385/500\n", + "1/0, train_loss: 0.4543\n", + "2 epoch 385 average loss: 0.4543\n", + "----------\n", + "2: epoch 386/500\n", + "1/0, train_loss: 0.4517\n", + "2 epoch 386 average loss: 0.4517\n", + "current epoch: 386 current mean dice: 0.0837\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 387/500\n", + "1/0, train_loss: 0.4576\n", + "2 epoch 387 average loss: 0.4576\n", + "----------\n", + "2: epoch 388/500\n", + "1/0, train_loss: 0.4530\n", + "2 epoch 388 average loss: 0.4530\n", + "current epoch: 388 current mean dice: 0.0759\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 389/500\n", + "1/0, train_loss: 0.4541\n", + "2 epoch 389 average loss: 0.4541\n", + "----------\n", + "2: epoch 390/500\n", + "1/0, train_loss: 0.4531\n", + "2 epoch 390 average loss: 0.4531\n", + "current epoch: 390 current mean dice: 0.0655\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 391/500\n", + "1/0, train_loss: 0.4517\n", + "2 epoch 391 average loss: 0.4517\n", + "----------\n", + "2: epoch 392/500\n", + "1/0, train_loss: 0.4515\n", + "2 epoch 392 average loss: 0.4515\n", + "current epoch: 392 current mean dice: 0.0601\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 393/500\n", + "1/0, train_loss: 0.4543\n", + "2 epoch 393 average loss: 0.4543\n", + "----------\n", + "2: epoch 394/500\n", + "1/0, train_loss: 0.4530\n", + "2 epoch 394 average loss: 0.4530\n", + "current epoch: 394 current mean dice: 0.0479\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 395/500\n", + "1/0, train_loss: 0.4542\n", + "2 epoch 395 average loss: 0.4542\n", + "----------\n", + "2: epoch 396/500\n", + "1/0, train_loss: 0.4505\n", + "2 epoch 396 average loss: 0.4505\n", + "current epoch: 396 current mean dice: 0.0436\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 397/500\n", + "1/0, train_loss: 0.4537\n", + "2 epoch 397 average loss: 0.4537\n", + "----------\n", + "2: epoch 398/500\n", + "1/0, train_loss: 0.4487\n", + "2 epoch 398 average loss: 0.4487\n", + "current epoch: 398 current mean dice: 0.0422\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 399/500\n", + "1/0, train_loss: 0.4503\n", + "2 epoch 399 average loss: 0.4503\n", + "----------\n", + "2: epoch 400/500\n", + "1/0, train_loss: 0.4497\n", + "2 epoch 400 average loss: 0.4497\n", + "current epoch: 400 current mean dice: 0.0552\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 401/500\n", + "1/0, train_loss: 0.4493\n", + "2 epoch 401 average loss: 0.4493\n", + "----------\n", + "2: epoch 402/500\n", + "1/0, train_loss: 0.4477\n", + "2 epoch 402 average loss: 0.4477\n", + "current epoch: 402 current mean dice: 0.0644\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 403/500\n", + "1/0, train_loss: 0.4484\n", + "2 epoch 403 average loss: 0.4484\n", + "----------\n", + "2: epoch 404/500\n", + "1/0, train_loss: 0.4504\n", + "2 epoch 404 average loss: 0.4504\n", + "current epoch: 404 current mean dice: 0.0561\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 405/500\n", + "1/0, train_loss: 0.4491\n", + "2 epoch 405 average loss: 0.4491\n", + "----------\n", + "2: epoch 406/500\n", + "1/0, train_loss: 0.4480\n", + "2 epoch 406 average loss: 0.4480\n", + "current epoch: 406 current mean dice: 0.0596\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 407/500\n", + "1/0, train_loss: 0.4495\n", + "2 epoch 407 average loss: 0.4495\n", + "----------\n", + "2: epoch 408/500\n", + "1/0, train_loss: 0.4504\n", + "2 epoch 408 average loss: 0.4504\n", + "current epoch: 408 current mean dice: 0.0515\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 409/500\n", + "1/0, train_loss: 0.4480\n", + "2 epoch 409 average loss: 0.4480\n", + "----------\n", + "2: epoch 410/500\n", + "1/0, train_loss: 0.4470\n", + "2 epoch 410 average loss: 0.4470\n", + "current epoch: 410 current mean dice: 0.0569\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 411/500\n", + "1/0, train_loss: 0.4485\n", + "2 epoch 411 average loss: 0.4485\n", + "----------\n", + "2: epoch 412/500\n", + "1/0, train_loss: 0.4493\n", + "2 epoch 412 average loss: 0.4493\n", + "current epoch: 412 current mean dice: 0.0578\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 413/500\n", + "1/0, train_loss: 0.4450\n", + "2 epoch 413 average loss: 0.4450\n", + "----------\n", + "2: epoch 414/500\n", + "1/0, train_loss: 0.4504\n", + "2 epoch 414 average loss: 0.4504\n", + "current epoch: 414 current mean dice: 0.0591\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 415/500\n", + "1/0, train_loss: 0.4462\n", + "2 epoch 415 average loss: 0.4462\n", + "----------\n", + "2: epoch 416/500\n", + "1/0, train_loss: 0.4483\n", + "2 epoch 416 average loss: 0.4483\n", + "current epoch: 416 current mean dice: 0.0676\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 417/500\n", + "1/0, train_loss: 0.4466\n", + "2 epoch 417 average loss: 0.4466\n", + "----------\n", + "2: epoch 418/500\n", + "1/0, train_loss: 0.4484\n", + "2 epoch 418 average loss: 0.4484\n", + "current epoch: 418 current mean dice: 0.0621\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 419/500\n", + "1/0, train_loss: 0.4472\n", + "2 epoch 419 average loss: 0.4472\n", + "----------\n", + "2: epoch 420/500\n", + "1/0, train_loss: 0.4468\n", + "2 epoch 420 average loss: 0.4468\n", + "current epoch: 420 current mean dice: 0.0620\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 421/500\n", + "1/0, train_loss: 0.4432\n", + "2 epoch 421 average loss: 0.4432\n", + "----------\n", + "2: epoch 422/500\n", + "1/0, train_loss: 0.4453\n", + "2 epoch 422 average loss: 0.4453\n", + "current epoch: 422 current mean dice: 0.0614\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 423/500\n", + "1/0, train_loss: 0.4461\n", + "2 epoch 423 average loss: 0.4461\n", + "----------\n", + "2: epoch 424/500\n", + "1/0, train_loss: 0.4454\n", + "2 epoch 424 average loss: 0.4454\n", + "current epoch: 424 current mean dice: 0.0614\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 425/500\n", + "1/0, train_loss: 0.4451\n", + "2 epoch 425 average loss: 0.4451\n", + "----------\n", + "2: epoch 426/500\n", + "1/0, train_loss: 0.4436\n", + "2 epoch 426 average loss: 0.4436\n", + "current epoch: 426 current mean dice: 0.0383\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 427/500\n", + "1/0, train_loss: 0.4447\n", + "2 epoch 427 average loss: 0.4447\n", + "----------\n", + "2: epoch 428/500\n", + "1/0, train_loss: 0.4450\n", + "2 epoch 428 average loss: 0.4450\n", + "current epoch: 428 current mean dice: 0.0465\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 429/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.4439\n", + "2 epoch 429 average loss: 0.4439\n", + "----------\n", + "2: epoch 430/500\n", + "1/0, train_loss: 0.4441\n", + "2 epoch 430 average loss: 0.4441\n", + "current epoch: 430 current mean dice: 0.0582\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 431/500\n", + "1/0, train_loss: 0.4436\n", + "2 epoch 431 average loss: 0.4436\n", + "----------\n", + "2: epoch 432/500\n", + "1/0, train_loss: 0.4416\n", + "2 epoch 432 average loss: 0.4416\n", + "current epoch: 432 current mean dice: 0.0602\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 433/500\n", + "1/0, train_loss: 0.4435\n", + "2 epoch 433 average loss: 0.4435\n", + "----------\n", + "2: epoch 434/500\n", + "1/0, train_loss: 0.4458\n", + "2 epoch 434 average loss: 0.4458\n", + "current epoch: 434 current mean dice: 0.0530\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 435/500\n", + "1/0, train_loss: 0.4448\n", + "2 epoch 435 average loss: 0.4448\n", + "----------\n", + "2: epoch 436/500\n", + "1/0, train_loss: 0.4427\n", + "2 epoch 436 average loss: 0.4427\n", + "current epoch: 436 current mean dice: 0.0577\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 437/500\n", + "1/0, train_loss: 0.4436\n", + "2 epoch 437 average loss: 0.4436\n", + "----------\n", + "2: epoch 438/500\n", + "1/0, train_loss: 0.4439\n", + "2 epoch 438 average loss: 0.4439\n", + "current epoch: 438 current mean dice: 0.0524\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 439/500\n", + "1/0, train_loss: 0.4412\n", + "2 epoch 439 average loss: 0.4412\n", + "----------\n", + "2: epoch 440/500\n", + "1/0, train_loss: 0.4428\n", + "2 epoch 440 average loss: 0.4428\n", + "current epoch: 440 current mean dice: 0.0491\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 441/500\n", + "1/0, train_loss: 0.4437\n", + "2 epoch 441 average loss: 0.4437\n", + "----------\n", + "2: epoch 442/500\n", + "1/0, train_loss: 0.4423\n", + "2 epoch 442 average loss: 0.4423\n", + "current epoch: 442 current mean dice: 0.0559\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 443/500\n", + "1/0, train_loss: 0.4422\n", + "2 epoch 443 average loss: 0.4422\n", + "----------\n", + "2: epoch 444/500\n", + "1/0, train_loss: 0.4439\n", + "2 epoch 444 average loss: 0.4439\n", + "current epoch: 444 current mean dice: 0.0553\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 445/500\n", + "1/0, train_loss: 0.4448\n", + "2 epoch 445 average loss: 0.4448\n", + "----------\n", + "2: epoch 446/500\n", + "1/0, train_loss: 0.4385\n", + "2 epoch 446 average loss: 0.4385\n", + "current epoch: 446 current mean dice: 0.0649\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 447/500\n", + "1/0, train_loss: 0.4453\n", + "2 epoch 447 average loss: 0.4453\n", + "----------\n", + "2: epoch 448/500\n", + "1/0, train_loss: 0.4422\n", + "2 epoch 448 average loss: 0.4422\n", + "current epoch: 448 current mean dice: 0.0591\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 449/500\n", + "1/0, train_loss: 0.4446\n", + "2 epoch 449 average loss: 0.4446\n", + "----------\n", + "2: epoch 450/500\n", + "1/0, train_loss: 0.4412\n", + "2 epoch 450 average loss: 0.4412\n", + "current epoch: 450 current mean dice: 0.0647\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 451/500\n", + "1/0, train_loss: 0.4395\n", + "2 epoch 451 average loss: 0.4395\n", + "----------\n", + "2: epoch 452/500\n", + "1/0, train_loss: 0.4435\n", + "2 epoch 452 average loss: 0.4435\n", + "current epoch: 452 current mean dice: 0.0505\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 453/500\n", + "1/0, train_loss: 0.4403\n", + "2 epoch 453 average loss: 0.4403\n", + "----------\n", + "2: epoch 454/500\n", + "1/0, train_loss: 0.4398\n", + "2 epoch 454 average loss: 0.4398\n", + "current epoch: 454 current mean dice: 0.0537\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 455/500\n", + "1/0, train_loss: 0.4417\n", + "2 epoch 455 average loss: 0.4417\n", + "----------\n", + "2: epoch 456/500\n", + "1/0, train_loss: 0.4383\n", + "2 epoch 456 average loss: 0.4383\n", + "current epoch: 456 current mean dice: 0.0499\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 457/500\n", + "1/0, train_loss: 0.4383\n", + "2 epoch 457 average loss: 0.4383\n", + "----------\n", + "2: epoch 458/500\n", + "1/0, train_loss: 0.4401\n", + "2 epoch 458 average loss: 0.4401\n", + "current epoch: 458 current mean dice: 0.0570\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 459/500\n", + "1/0, train_loss: 0.4402\n", + "2 epoch 459 average loss: 0.4402\n", + "----------\n", + "2: epoch 460/500\n", + "1/0, train_loss: 0.4395\n", + "2 epoch 460 average loss: 0.4395\n", + "current epoch: 460 current mean dice: 0.0531\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 461/500\n", + "1/0, train_loss: 0.4390\n", + "2 epoch 461 average loss: 0.4390\n", + "----------\n", + "2: epoch 462/500\n", + "1/0, train_loss: 0.4392\n", + "2 epoch 462 average loss: 0.4392\n", + "current epoch: 462 current mean dice: 0.0427\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 463/500\n", + "1/0, train_loss: 0.4385\n", + "2 epoch 463 average loss: 0.4385\n", + "----------\n", + "2: epoch 464/500\n", + "1/0, train_loss: 0.4379\n", + "2 epoch 464 average loss: 0.4379\n", + "current epoch: 464 current mean dice: 0.0563\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 465/500\n", + "1/0, train_loss: 0.4356\n", + "2 epoch 465 average loss: 0.4356\n", + "----------\n", + "2: epoch 466/500\n", + "1/0, train_loss: 0.4384\n", + "2 epoch 466 average loss: 0.4384\n", + "current epoch: 466 current mean dice: 0.0572\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 467/500\n", + "1/0, train_loss: 0.4405\n", + "2 epoch 467 average loss: 0.4405\n", + "----------\n", + "2: epoch 468/500\n", + "1/0, train_loss: 0.4379\n", + "2 epoch 468 average loss: 0.4379\n", + "current epoch: 468 current mean dice: 0.0733\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 469/500\n", + "1/0, train_loss: 0.4382\n", + "2 epoch 469 average loss: 0.4382\n", + "----------\n", + "2: epoch 470/500\n", + "1/0, train_loss: 0.4378\n", + "2 epoch 470 average loss: 0.4378\n", + "current epoch: 470 current mean dice: 0.0700\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 471/500\n", + "1/0, train_loss: 0.4373\n", + "2 epoch 471 average loss: 0.4373\n", + "----------\n", + "2: epoch 472/500\n", + "1/0, train_loss: 0.4392\n", + "2 epoch 472 average loss: 0.4392\n", + "current epoch: 472 current mean dice: 0.0705\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 473/500\n", + "1/0, train_loss: 0.4396\n", + "2 epoch 473 average loss: 0.4396\n", + "----------\n", + "2: epoch 474/500\n", + "1/0, train_loss: 0.4372\n", + "2 epoch 474 average loss: 0.4372\n", + "current epoch: 474 current mean dice: 0.0509\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 475/500\n", + "1/0, train_loss: 0.4390\n", + "2 epoch 475 average loss: 0.4390\n", + "----------\n", + "2: epoch 476/500\n", + "1/0, train_loss: 0.4364\n", + "2 epoch 476 average loss: 0.4364\n", + "current epoch: 476 current mean dice: 0.0476\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 477/500\n", + "1/0, train_loss: 0.4379\n", + "2 epoch 477 average loss: 0.4379\n", + "----------\n", + "2: epoch 478/500\n", + "1/0, train_loss: 0.4373\n", + "2 epoch 478 average loss: 0.4373\n", + "current epoch: 478 current mean dice: 0.0512\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 479/500\n", + "1/0, train_loss: 0.4354\n", + "2 epoch 479 average loss: 0.4354\n", + "----------\n", + "2: epoch 480/500\n", + "1/0, train_loss: 0.4369\n", + "2 epoch 480 average loss: 0.4369\n", + "current epoch: 480 current mean dice: 0.0569\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 481/500\n", + "1/0, train_loss: 0.4370\n", + "2 epoch 481 average loss: 0.4370\n", + "----------\n", + "2: epoch 482/500\n", + "1/0, train_loss: 0.4325\n", + "2 epoch 482 average loss: 0.4325\n", + "current epoch: 482 current mean dice: 0.0582\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 483/500\n", + "1/0, train_loss: 0.4371\n", + "2 epoch 483 average loss: 0.4371\n", + "----------\n", + "2: epoch 484/500\n", + "1/0, train_loss: 0.4356\n", + "2 epoch 484 average loss: 0.4356\n", + "current epoch: 484 current mean dice: 0.0681\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 485/500\n", + "1/0, train_loss: 0.4364\n", + "2 epoch 485 average loss: 0.4364\n", + "----------\n", + "2: epoch 486/500\n", + "1/0, train_loss: 0.4362\n", + "2 epoch 486 average loss: 0.4362\n", + "current epoch: 486 current mean dice: 0.0621\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 487/500\n", + "1/0, train_loss: 0.4372\n", + "2 epoch 487 average loss: 0.4372\n", + "----------\n", + "2: epoch 488/500\n", + "1/0, train_loss: 0.4348\n", + "2 epoch 488 average loss: 0.4348\n", + "current epoch: 488 current mean dice: 0.0776\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 489/500\n", + "1/0, train_loss: 0.4348\n", + "2 epoch 489 average loss: 0.4348\n", + "----------\n", + "2: epoch 490/500\n", + "1/0, train_loss: 0.4354\n", + "2 epoch 490 average loss: 0.4354\n", + "current epoch: 490 current mean dice: 0.0678\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 491/500\n", + "1/0, train_loss: 0.4348\n", + "2 epoch 491 average loss: 0.4348\n", + "----------\n", + "2: epoch 492/500\n", + "1/0, train_loss: 0.4375\n", + "2 epoch 492 average loss: 0.4375\n", + "current epoch: 492 current mean dice: 0.0777\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 493/500\n", + "1/0, train_loss: 0.4376\n", + "2 epoch 493 average loss: 0.4376\n", + "----------\n", + "2: epoch 494/500\n", + "1/0, train_loss: 0.4352\n", + "2 epoch 494 average loss: 0.4352\n", + "current epoch: 494 current mean dice: 0.0691\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 495/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.4361\n", + "2 epoch 495 average loss: 0.4361\n", + "----------\n", + "2: epoch 496/500\n", + "1/0, train_loss: 0.4332\n", + "2 epoch 496 average loss: 0.4332\n", + "current epoch: 496 current mean dice: 0.0495\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 497/500\n", + "1/0, train_loss: 0.4349\n", + "2 epoch 497 average loss: 0.4349\n", + "----------\n", + "2: epoch 498/500\n", + "1/0, train_loss: 0.4365\n", + "2 epoch 498 average loss: 0.4365\n", + "current epoch: 498 current mean dice: 0.0645\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 499/500\n", + "1/0, train_loss: 0.4352\n", + "2 epoch 499 average loss: 0.4352\n", + "----------\n", + "2: epoch 500/500\n", + "1/0, train_loss: 0.4336\n", + "2 epoch 500 average loss: 0.4336\n", + "current epoch: 500 current mean dice: 0.0426\n", + "best mean dice: 0.3660 at epoch: 88\n" + ] + } + ], + "source": [ + "for i in range(device_num,num_folds,num_devices):\n", + " vfold_train(i, train_loader[i], val_loader[i])" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "1fd1e392", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "----------\n", + "0: epoch 1/500\n", + "1/0, train_loss: 0.7399\n", + "0 epoch 1 average loss: 0.7399\n", + "----------\n", + "0: epoch 2/500\n", + "1/0, train_loss: 0.7025\n", + "0 epoch 2 average loss: 0.7025\n", + "saved new best metric model\n", + "current epoch: 2 current mean dice: 0.3466\n", + "best mean dice: 0.3466 at epoch: 2\n", + "----------\n", + "0: epoch 3/500\n", + "1/0, train_loss: 0.6769\n", + "0 epoch 3 average loss: 0.6769\n", + "----------\n", + "0: epoch 4/500\n", + "1/0, train_loss: 0.6662\n", + "0 epoch 4 average loss: 0.6662\n", + "current epoch: 4 current mean dice: 0.2852\n", + "best mean dice: 0.3466 at epoch: 2\n", + "----------\n", + "0: epoch 5/500\n", + "1/0, train_loss: 0.6644\n", + "0 epoch 5 average loss: 0.6644\n", + "----------\n", + "0: epoch 6/500\n", + "1/0, train_loss: 0.6556\n", + "0 epoch 6 average loss: 0.6556\n", + "current epoch: 6 current mean dice: 0.2716\n", + "best mean dice: 0.3466 at epoch: 2\n", + "----------\n", + "0: epoch 7/500\n", + "1/0, train_loss: 0.6573\n", + "0 epoch 7 average loss: 0.6573\n", + "----------\n", + "0: epoch 8/500\n", + "1/0, train_loss: 0.6482\n", + "0 epoch 8 average loss: 0.6482\n", + "current epoch: 8 current mean dice: 0.2875\n", + "best mean dice: 0.3466 at epoch: 2\n", + "----------\n", + "0: epoch 9/500\n", + "1/0, train_loss: 0.6459\n", + "0 epoch 9 average loss: 0.6459\n", + "----------\n", + "0: epoch 10/500\n", + "1/0, train_loss: 0.6427\n", + "0 epoch 10 average loss: 0.6427\n", + "current epoch: 10 current mean dice: 0.3244\n", + "best mean dice: 0.3466 at epoch: 2\n", + "----------\n", + "0: epoch 11/500\n", + "1/0, train_loss: 0.6338\n", + "0 epoch 11 average loss: 0.6338\n", + "----------\n", + "0: epoch 12/500\n", + "1/0, train_loss: 0.6291\n", + "0 epoch 12 average loss: 0.6291\n", + "saved new best metric model\n", + "current epoch: 12 current mean dice: 0.3563\n", + "best mean dice: 0.3563 at epoch: 12\n", + "----------\n", + "0: epoch 13/500\n", + "1/0, train_loss: 0.6261\n", + "0 epoch 13 average loss: 0.6261\n", + "----------\n", + "0: epoch 14/500\n", + "1/0, train_loss: 0.6192\n", + "0 epoch 14 average loss: 0.6192\n", + "current epoch: 14 current mean dice: 0.3460\n", + "best mean dice: 0.3563 at epoch: 12\n", + "----------\n", + "0: epoch 15/500\n", + "1/0, train_loss: 0.6239\n", + "0 epoch 15 average loss: 0.6239\n", + "----------\n", + "0: epoch 16/500\n", + "1/0, train_loss: 0.6177\n", + "0 epoch 16 average loss: 0.6177\n", + "saved new best metric model\n", + "current epoch: 16 current mean dice: 0.3589\n", + "best mean dice: 0.3589 at epoch: 16\n", + "----------\n", + "0: epoch 17/500\n", + "1/0, train_loss: 0.6086\n", + "0 epoch 17 average loss: 0.6086\n", + "----------\n", + "0: epoch 18/500\n", + "1/0, train_loss: 0.6018\n", + "0 epoch 18 average loss: 0.6018\n", + "saved new best metric model\n", + "current epoch: 18 current mean dice: 0.3733\n", + "best mean dice: 0.3733 at epoch: 18\n", + "----------\n", + "0: epoch 19/500\n", + "1/0, train_loss: 0.6034\n", + "0 epoch 19 average loss: 0.6034\n", + "----------\n", + "0: epoch 20/500\n", + "1/0, train_loss: 0.5996\n", + "0 epoch 20 average loss: 0.5996\n", + "saved new best metric model\n", + "current epoch: 20 current mean dice: 0.3887\n", + "best mean dice: 0.3887 at epoch: 20\n", + "----------\n", + "0: epoch 21/500\n", + "1/0, train_loss: 0.5865\n", + "0 epoch 21 average loss: 0.5865\n", + "----------\n", + "0: epoch 22/500\n", + "1/0, train_loss: 0.5940\n", + "0 epoch 22 average loss: 0.5940\n", + "current epoch: 22 current mean dice: 0.3815\n", + "best mean dice: 0.3887 at epoch: 20\n", + "----------\n", + "0: epoch 23/500\n", + "1/0, train_loss: 0.5820\n", + "0 epoch 23 average loss: 0.5820\n", + "----------\n", + "0: epoch 24/500\n", + "1/0, train_loss: 0.5749\n", + "0 epoch 24 average loss: 0.5749\n", + "current epoch: 24 current mean dice: 0.3807\n", + "best mean dice: 0.3887 at epoch: 20\n", + "----------\n", + "0: epoch 25/500\n", + "1/0, train_loss: 0.5764\n", + "0 epoch 25 average loss: 0.5764\n", + "----------\n", + "0: epoch 26/500\n", + "1/0, train_loss: 0.5768\n", + "0 epoch 26 average loss: 0.5768\n", + "saved new best metric model\n", + "current epoch: 26 current mean dice: 0.4032\n", + "best mean dice: 0.4032 at epoch: 26\n", + "----------\n", + "0: epoch 27/500\n", + "1/0, train_loss: 0.5782\n", + "0 epoch 27 average loss: 0.5782\n", + "----------\n", + "0: epoch 28/500\n", + "1/0, train_loss: 0.5727\n", + "0 epoch 28 average loss: 0.5727\n", + "saved new best metric model\n", + "current epoch: 28 current mean dice: 0.4050\n", + "best mean dice: 0.4050 at epoch: 28\n", + "----------\n", + "0: epoch 29/500\n", + "1/0, train_loss: 0.5580\n", + "0 epoch 29 average loss: 0.5580\n", + "----------\n", + "0: epoch 30/500\n", + "1/0, train_loss: 0.5547\n", + "0 epoch 30 average loss: 0.5547\n", + "saved new best metric model\n", + "current epoch: 30 current mean dice: 0.4340\n", + "best mean dice: 0.4340 at epoch: 30\n", + "----------\n", + "0: epoch 31/500\n", + "1/0, train_loss: 0.5497\n", + "0 epoch 31 average loss: 0.5497\n", + "----------\n", + "0: epoch 32/500\n", + "1/0, train_loss: 0.5371\n", + "0 epoch 32 average loss: 0.5371\n", + "saved new best metric model\n", + "current epoch: 32 current mean dice: 0.4481\n", + "best mean dice: 0.4481 at epoch: 32\n", + "----------\n", + "0: epoch 33/500\n", + "1/0, train_loss: 0.5432\n", + "0 epoch 33 average loss: 0.5432\n", + "----------\n", + "0: epoch 34/500\n", + "1/0, train_loss: 0.5453\n", + "0 epoch 34 average loss: 0.5453\n", + "current epoch: 34 current mean dice: 0.4338\n", + "best mean dice: 0.4481 at epoch: 32\n", + "----------\n", + "0: epoch 35/500\n", + "1/0, train_loss: 0.5300\n", + "0 epoch 35 average loss: 0.5300\n", + "----------\n", + "0: epoch 36/500\n", + "1/0, train_loss: 0.5191\n", + "0 epoch 36 average loss: 0.5191\n", + "saved new best metric model\n", + "current epoch: 36 current mean dice: 0.4492\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 37/500\n", + "1/0, train_loss: 0.5239\n", + "0 epoch 37 average loss: 0.5239\n", + "----------\n", + "0: epoch 38/500\n", + "1/0, train_loss: 0.5143\n", + "0 epoch 38 average loss: 0.5143\n", + "current epoch: 38 current mean dice: 0.4215\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 39/500\n", + "1/0, train_loss: 0.5129\n", + "0 epoch 39 average loss: 0.5129\n", + "----------\n", + "0: epoch 40/500\n", + "1/0, train_loss: 0.5058\n", + "0 epoch 40 average loss: 0.5058\n", + "current epoch: 40 current mean dice: 0.4387\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 41/500\n", + "1/0, train_loss: 0.4995\n", + "0 epoch 41 average loss: 0.4995\n", + "----------\n", + "0: epoch 42/500\n", + "1/0, train_loss: 0.5066\n", + "0 epoch 42 average loss: 0.5066\n", + "current epoch: 42 current mean dice: 0.4312\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 43/500\n", + "1/0, train_loss: 0.4953\n", + "0 epoch 43 average loss: 0.4953\n", + "----------\n", + "0: epoch 44/500\n", + "1/0, train_loss: 0.5086\n", + "0 epoch 44 average loss: 0.5086\n", + "current epoch: 44 current mean dice: 0.4294\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 45/500\n", + "1/0, train_loss: 0.5069\n", + "0 epoch 45 average loss: 0.5069\n", + "----------\n", + "0: epoch 46/500\n", + "1/0, train_loss: 0.4942\n", + "0 epoch 46 average loss: 0.4942\n", + "current epoch: 46 current mean dice: 0.4034\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 47/500\n", + "1/0, train_loss: 0.4819\n", + "0 epoch 47 average loss: 0.4819\n", + "----------\n", + "0: epoch 48/500\n", + "1/0, train_loss: 0.4927\n", + "0 epoch 48 average loss: 0.4927\n", + "current epoch: 48 current mean dice: 0.3835\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 49/500\n", + "1/0, train_loss: 0.4891\n", + "0 epoch 49 average loss: 0.4891\n", + "----------\n", + "0: epoch 50/500\n", + "1/0, train_loss: 0.4820\n", + "0 epoch 50 average loss: 0.4820\n", + "current epoch: 50 current mean dice: 0.3572\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 51/500\n", + "1/0, train_loss: 0.4761\n", + "0 epoch 51 average loss: 0.4761\n", + "----------\n", + "0: epoch 52/500\n", + "1/0, train_loss: 0.4774\n", + "0 epoch 52 average loss: 0.4774\n", + "current epoch: 52 current mean dice: 0.3901\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 53/500\n", + "1/0, train_loss: 0.5038\n", + "0 epoch 53 average loss: 0.5038\n", + "----------\n", + "0: epoch 54/500\n", + "1/0, train_loss: 0.5077\n", + "0 epoch 54 average loss: 0.5077\n", + "current epoch: 54 current mean dice: 0.4385\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 55/500\n", + "1/0, train_loss: 0.4988\n", + "0 epoch 55 average loss: 0.4988\n", + "----------\n", + "0: epoch 56/500\n", + "1/0, train_loss: 0.4873\n", + "0 epoch 56 average loss: 0.4873\n", + "current epoch: 56 current mean dice: 0.4184\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 57/500\n", + "1/0, train_loss: 0.5016\n", + "0 epoch 57 average loss: 0.5016\n", + "----------\n", + "0: epoch 58/500\n", + "1/0, train_loss: 0.4905\n", + "0 epoch 58 average loss: 0.4905\n", + "current epoch: 58 current mean dice: 0.4236\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 59/500\n", + "1/0, train_loss: 0.4847\n", + "0 epoch 59 average loss: 0.4847\n", + "----------\n", + "0: epoch 60/500\n", + "1/0, train_loss: 0.4855\n", + "0 epoch 60 average loss: 0.4855\n", + "current epoch: 60 current mean dice: 0.4171\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 61/500\n", + "1/0, train_loss: 0.4784\n", + "0 epoch 61 average loss: 0.4784\n", + "----------\n", + "0: epoch 62/500\n", + "1/0, train_loss: 0.4729\n", + "0 epoch 62 average loss: 0.4729\n", + "current epoch: 62 current mean dice: 0.3829\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 63/500\n", + "1/0, train_loss: 0.4674\n", + "0 epoch 63 average loss: 0.4674\n", + "----------\n", + "0: epoch 64/500\n", + "1/0, train_loss: 0.4750\n", + "0 epoch 64 average loss: 0.4750\n", + "current epoch: 64 current mean dice: 0.4281\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 65/500\n", + "1/0, train_loss: 0.4693\n", + "0 epoch 65 average loss: 0.4693\n", + "----------\n", + "0: epoch 66/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.4585\n", + "0 epoch 66 average loss: 0.4585\n", + "current epoch: 66 current mean dice: 0.4099\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 67/500\n", + "1/0, train_loss: 0.4521\n", + "0 epoch 67 average loss: 0.4521\n", + "----------\n", + "0: epoch 68/500\n", + "1/0, train_loss: 0.4619\n", + "0 epoch 68 average loss: 0.4619\n", + "current epoch: 68 current mean dice: 0.4173\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 69/500\n", + "1/0, train_loss: 0.4546\n", + "0 epoch 69 average loss: 0.4546\n", + "----------\n", + "0: epoch 70/500\n", + "1/0, train_loss: 0.4608\n", + "0 epoch 70 average loss: 0.4608\n", + "current epoch: 70 current mean dice: 0.3502\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 71/500\n", + "1/0, train_loss: 0.4505\n", + "0 epoch 71 average loss: 0.4505\n", + "----------\n", + "0: epoch 72/500\n", + "1/0, train_loss: 0.4461\n", + "0 epoch 72 average loss: 0.4461\n", + "current epoch: 72 current mean dice: 0.3666\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 73/500\n", + "1/0, train_loss: 0.4516\n", + "0 epoch 73 average loss: 0.4516\n", + "----------\n", + "0: epoch 74/500\n", + "1/0, train_loss: 0.4443\n", + "0 epoch 74 average loss: 0.4443\n", + "current epoch: 74 current mean dice: 0.2996\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 75/500\n", + "1/0, train_loss: 0.4491\n", + "0 epoch 75 average loss: 0.4491\n", + "----------\n", + "0: epoch 76/500\n", + "1/0, train_loss: 0.4418\n", + "0 epoch 76 average loss: 0.4418\n", + "current epoch: 76 current mean dice: 0.4180\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 77/500\n", + "1/0, train_loss: 0.4575\n", + "0 epoch 77 average loss: 0.4575\n", + "----------\n", + "0: epoch 78/500\n", + "1/0, train_loss: 0.4543\n", + "0 epoch 78 average loss: 0.4543\n", + "current epoch: 78 current mean dice: 0.3449\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 79/500\n", + "1/0, train_loss: 0.4433\n", + "0 epoch 79 average loss: 0.4433\n", + "----------\n", + "0: epoch 80/500\n", + "1/0, train_loss: 0.4635\n", + "0 epoch 80 average loss: 0.4635\n", + "current epoch: 80 current mean dice: 0.3689\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 81/500\n", + "1/0, train_loss: 0.4529\n", + "0 epoch 81 average loss: 0.4529\n", + "----------\n", + "0: epoch 82/500\n", + "1/0, train_loss: 0.4504\n", + "0 epoch 82 average loss: 0.4504\n", + "current epoch: 82 current mean dice: 0.3976\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 83/500\n", + "1/0, train_loss: 0.4528\n", + "0 epoch 83 average loss: 0.4528\n", + "----------\n", + "0: epoch 84/500\n", + "1/0, train_loss: 0.4410\n", + "0 epoch 84 average loss: 0.4410\n", + "current epoch: 84 current mean dice: 0.3751\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 85/500\n", + "1/0, train_loss: 0.4431\n", + "0 epoch 85 average loss: 0.4431\n", + "----------\n", + "0: epoch 86/500\n", + "1/0, train_loss: 0.4383\n", + "0 epoch 86 average loss: 0.4383\n", + "current epoch: 86 current mean dice: 0.3313\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 87/500\n", + "1/0, train_loss: 0.4477\n", + "0 epoch 87 average loss: 0.4477\n", + "----------\n", + "0: epoch 88/500\n", + "1/0, train_loss: 0.4354\n", + "0 epoch 88 average loss: 0.4354\n", + "current epoch: 88 current mean dice: 0.3827\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 89/500\n", + "1/0, train_loss: 0.4380\n", + "0 epoch 89 average loss: 0.4380\n", + "----------\n", + "0: epoch 90/500\n", + "1/0, train_loss: 0.4409\n", + "0 epoch 90 average loss: 0.4409\n", + "current epoch: 90 current mean dice: 0.4092\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 91/500\n", + "1/0, train_loss: 0.4453\n", + "0 epoch 91 average loss: 0.4453\n", + "----------\n", + "0: epoch 92/500\n", + "1/0, train_loss: 0.4394\n", + "0 epoch 92 average loss: 0.4394\n", + "current epoch: 92 current mean dice: 0.3996\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 93/500\n", + "1/0, train_loss: 0.4357\n", + "0 epoch 93 average loss: 0.4357\n", + "----------\n", + "0: epoch 94/500\n", + "1/0, train_loss: 0.4327\n", + "0 epoch 94 average loss: 0.4327\n", + "current epoch: 94 current mean dice: 0.4051\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 95/500\n", + "1/0, train_loss: 0.4332\n", + "0 epoch 95 average loss: 0.4332\n", + "----------\n", + "0: epoch 96/500\n", + "1/0, train_loss: 0.4397\n", + "0 epoch 96 average loss: 0.4397\n", + "current epoch: 96 current mean dice: 0.3668\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 97/500\n", + "1/0, train_loss: 0.4311\n", + "0 epoch 97 average loss: 0.4311\n", + "----------\n", + "0: epoch 98/500\n", + "1/0, train_loss: 0.4386\n", + "0 epoch 98 average loss: 0.4386\n", + "current epoch: 98 current mean dice: 0.4241\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 99/500\n", + "1/0, train_loss: 0.4514\n", + "0 epoch 99 average loss: 0.4514\n", + "----------\n", + "0: epoch 100/500\n", + "1/0, train_loss: 0.4294\n", + "0 epoch 100 average loss: 0.4294\n", + "current epoch: 100 current mean dice: 0.3919\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 101/500\n", + "1/0, train_loss: 0.4231\n", + "0 epoch 101 average loss: 0.4231\n", + "----------\n", + "0: epoch 102/500\n", + "1/0, train_loss: 0.4295\n", + "0 epoch 102 average loss: 0.4295\n", + "current epoch: 102 current mean dice: 0.4315\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 103/500\n", + "1/0, train_loss: 0.4246\n", + "0 epoch 103 average loss: 0.4246\n", + "----------\n", + "0: epoch 104/500\n", + "1/0, train_loss: 0.4382\n", + "0 epoch 104 average loss: 0.4382\n", + "current epoch: 104 current mean dice: 0.4101\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 105/500\n", + "1/0, train_loss: 0.4197\n", + "0 epoch 105 average loss: 0.4197\n", + "----------\n", + "0: epoch 106/500\n", + "1/0, train_loss: 0.4261\n", + "0 epoch 106 average loss: 0.4261\n", + "current epoch: 106 current mean dice: 0.4031\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 107/500\n", + "1/0, train_loss: 0.4353\n", + "0 epoch 107 average loss: 0.4353\n", + "----------\n", + "0: epoch 108/500\n", + "1/0, train_loss: 0.4222\n", + "0 epoch 108 average loss: 0.4222\n", + "current epoch: 108 current mean dice: 0.4256\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 109/500\n", + "1/0, train_loss: 0.4229\n", + "0 epoch 109 average loss: 0.4229\n", + "----------\n", + "0: epoch 110/500\n", + "1/0, train_loss: 0.4252\n", + "0 epoch 110 average loss: 0.4252\n", + "current epoch: 110 current mean dice: 0.3819\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 111/500\n", + "1/0, train_loss: 0.4314\n", + "0 epoch 111 average loss: 0.4314\n", + "----------\n", + "0: epoch 112/500\n", + "1/0, train_loss: 0.4185\n", + "0 epoch 112 average loss: 0.4185\n", + "current epoch: 112 current mean dice: 0.4204\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 113/500\n", + "1/0, train_loss: 0.4409\n", + "0 epoch 113 average loss: 0.4409\n", + "----------\n", + "0: epoch 114/500\n", + "1/0, train_loss: 0.4325\n", + "0 epoch 114 average loss: 0.4325\n", + "current epoch: 114 current mean dice: 0.3882\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 115/500\n", + "1/0, train_loss: 0.4210\n", + "0 epoch 115 average loss: 0.4210\n", + "----------\n", + "0: epoch 116/500\n", + "1/0, train_loss: 0.4241\n", + "0 epoch 116 average loss: 0.4241\n", + "current epoch: 116 current mean dice: 0.4271\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 117/500\n", + "1/0, train_loss: 0.4161\n", + "0 epoch 117 average loss: 0.4161\n", + "----------\n", + "0: epoch 118/500\n", + "1/0, train_loss: 0.4297\n", + "0 epoch 118 average loss: 0.4297\n", + "current epoch: 118 current mean dice: 0.3512\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 119/500\n", + "1/0, train_loss: 0.4234\n", + "0 epoch 119 average loss: 0.4234\n", + "----------\n", + "0: epoch 120/500\n", + "1/0, train_loss: 0.4320\n", + "0 epoch 120 average loss: 0.4320\n", + "current epoch: 120 current mean dice: 0.3893\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 121/500\n", + "1/0, train_loss: 0.4333\n", + "0 epoch 121 average loss: 0.4333\n", + "----------\n", + "0: epoch 122/500\n", + "1/0, train_loss: 0.4263\n", + "0 epoch 122 average loss: 0.4263\n", + "current epoch: 122 current mean dice: 0.3929\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 123/500\n", + "1/0, train_loss: 0.4227\n", + "0 epoch 123 average loss: 0.4227\n", + "----------\n", + "0: epoch 124/500\n", + "1/0, train_loss: 0.4219\n", + "0 epoch 124 average loss: 0.4219\n", + "current epoch: 124 current mean dice: 0.3946\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 125/500\n", + "1/0, train_loss: 0.4210\n", + "0 epoch 125 average loss: 0.4210\n", + "----------\n", + "0: epoch 126/500\n", + "1/0, train_loss: 0.4232\n", + "0 epoch 126 average loss: 0.4232\n", + "current epoch: 126 current mean dice: 0.3764\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 127/500\n", + "1/0, train_loss: 0.4193\n", + "0 epoch 127 average loss: 0.4193\n", + "----------\n", + "0: epoch 128/500\n", + "1/0, train_loss: 0.4176\n", + "0 epoch 128 average loss: 0.4176\n", + "current epoch: 128 current mean dice: 0.3526\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 129/500\n", + "1/0, train_loss: 0.4142\n", + "0 epoch 129 average loss: 0.4142\n", + "----------\n", + "0: epoch 130/500\n", + "1/0, train_loss: 0.4147\n", + "0 epoch 130 average loss: 0.4147\n", + "current epoch: 130 current mean dice: 0.3492\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 131/500\n", + "1/0, train_loss: 0.4142\n", + "0 epoch 131 average loss: 0.4142\n", + "----------\n", + "0: epoch 132/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.4259\n", + "0 epoch 132 average loss: 0.4259\n", + "current epoch: 132 current mean dice: 0.3234\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 133/500\n", + "1/0, train_loss: 0.4134\n", + "0 epoch 133 average loss: 0.4134\n", + "----------\n", + "0: epoch 134/500\n", + "1/0, train_loss: 0.4169\n", + "0 epoch 134 average loss: 0.4169\n", + "current epoch: 134 current mean dice: 0.3407\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 135/500\n", + "1/0, train_loss: 0.4270\n", + "0 epoch 135 average loss: 0.4270\n", + "----------\n", + "0: epoch 136/500\n", + "1/0, train_loss: 0.4191\n", + "0 epoch 136 average loss: 0.4191\n", + "current epoch: 136 current mean dice: 0.3862\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 137/500\n", + "1/0, train_loss: 0.4157\n", + "0 epoch 137 average loss: 0.4157\n", + "----------\n", + "0: epoch 138/500\n", + "1/0, train_loss: 0.4143\n", + "0 epoch 138 average loss: 0.4143\n", + "current epoch: 138 current mean dice: 0.4185\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 139/500\n", + "1/0, train_loss: 0.4213\n", + "0 epoch 139 average loss: 0.4213\n", + "----------\n", + "0: epoch 140/500\n", + "1/0, train_loss: 0.4196\n", + "0 epoch 140 average loss: 0.4196\n", + "current epoch: 140 current mean dice: 0.3070\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 141/500\n", + "1/0, train_loss: 0.4152\n", + "0 epoch 141 average loss: 0.4152\n", + "----------\n", + "0: epoch 142/500\n", + "1/0, train_loss: 0.4156\n", + "0 epoch 142 average loss: 0.4156\n", + "current epoch: 142 current mean dice: 0.3192\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 143/500\n", + "1/0, train_loss: 0.4146\n", + "0 epoch 143 average loss: 0.4146\n", + "----------\n", + "0: epoch 144/500\n", + "1/0, train_loss: 0.4109\n", + "0 epoch 144 average loss: 0.4109\n", + "current epoch: 144 current mean dice: 0.3604\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 145/500\n", + "1/0, train_loss: 0.4303\n", + "0 epoch 145 average loss: 0.4303\n", + "----------\n", + "0: epoch 146/500\n", + "1/0, train_loss: 0.4112\n", + "0 epoch 146 average loss: 0.4112\n", + "current epoch: 146 current mean dice: 0.4221\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 147/500\n", + "1/0, train_loss: 0.4152\n", + "0 epoch 147 average loss: 0.4152\n", + "----------\n", + "0: epoch 148/500\n", + "1/0, train_loss: 0.4068\n", + "0 epoch 148 average loss: 0.4068\n", + "current epoch: 148 current mean dice: 0.3006\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 149/500\n", + "1/0, train_loss: 0.4123\n", + "0 epoch 149 average loss: 0.4123\n", + "----------\n", + "0: epoch 150/500\n", + "1/0, train_loss: 0.4195\n", + "0 epoch 150 average loss: 0.4195\n", + "current epoch: 150 current mean dice: 0.3688\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 151/500\n", + "1/0, train_loss: 0.4295\n", + "0 epoch 151 average loss: 0.4295\n", + "----------\n", + "0: epoch 152/500\n", + "1/0, train_loss: 0.4042\n", + "0 epoch 152 average loss: 0.4042\n", + "current epoch: 152 current mean dice: 0.3665\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 153/500\n", + "1/0, train_loss: 0.4275\n", + "0 epoch 153 average loss: 0.4275\n", + "----------\n", + "0: epoch 154/500\n", + "1/0, train_loss: 0.4123\n", + "0 epoch 154 average loss: 0.4123\n", + "current epoch: 154 current mean dice: 0.4140\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 155/500\n", + "1/0, train_loss: 0.4104\n", + "0 epoch 155 average loss: 0.4104\n", + "----------\n", + "0: epoch 156/500\n", + "1/0, train_loss: 0.4165\n", + "0 epoch 156 average loss: 0.4165\n", + "current epoch: 156 current mean dice: 0.4070\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 157/500\n", + "1/0, train_loss: 0.4070\n", + "0 epoch 157 average loss: 0.4070\n", + "----------\n", + "0: epoch 158/500\n", + "1/0, train_loss: 0.4105\n", + "0 epoch 158 average loss: 0.4105\n", + "current epoch: 158 current mean dice: 0.3681\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 159/500\n", + "1/0, train_loss: 0.4037\n", + "0 epoch 159 average loss: 0.4037\n", + "----------\n", + "0: epoch 160/500\n", + "1/0, train_loss: 0.4034\n", + "0 epoch 160 average loss: 0.4034\n", + "current epoch: 160 current mean dice: 0.3770\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 161/500\n", + "1/0, train_loss: 0.4103\n", + "0 epoch 161 average loss: 0.4103\n", + "----------\n", + "0: epoch 162/500\n", + "1/0, train_loss: 0.4011\n", + "0 epoch 162 average loss: 0.4011\n", + "current epoch: 162 current mean dice: 0.2963\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 163/500\n", + "1/0, train_loss: 0.4088\n", + "0 epoch 163 average loss: 0.4088\n", + "----------\n", + "0: epoch 164/500\n", + "1/0, train_loss: 0.4088\n", + "0 epoch 164 average loss: 0.4088\n", + "current epoch: 164 current mean dice: 0.3386\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 165/500\n", + "1/0, train_loss: 0.4013\n", + "0 epoch 165 average loss: 0.4013\n", + "----------\n", + "0: epoch 166/500\n", + "1/0, train_loss: 0.4077\n", + "0 epoch 166 average loss: 0.4077\n", + "current epoch: 166 current mean dice: 0.3153\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 167/500\n", + "1/0, train_loss: 0.4194\n", + "0 epoch 167 average loss: 0.4194\n", + "----------\n", + "0: epoch 168/500\n", + "1/0, train_loss: 0.4099\n", + "0 epoch 168 average loss: 0.4099\n", + "current epoch: 168 current mean dice: 0.3452\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 169/500\n", + "1/0, train_loss: 0.4060\n", + "0 epoch 169 average loss: 0.4060\n", + "----------\n", + "0: epoch 170/500\n", + "1/0, train_loss: 0.4183\n", + "0 epoch 170 average loss: 0.4183\n", + "current epoch: 170 current mean dice: 0.4278\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 171/500\n", + "1/0, train_loss: 0.4072\n", + "0 epoch 171 average loss: 0.4072\n", + "----------\n", + "0: epoch 172/500\n", + "1/0, train_loss: 0.4011\n", + "0 epoch 172 average loss: 0.4011\n", + "current epoch: 172 current mean dice: 0.4352\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 173/500\n", + "1/0, train_loss: 0.4133\n", + "0 epoch 173 average loss: 0.4133\n", + "----------\n", + "0: epoch 174/500\n", + "1/0, train_loss: 0.4006\n", + "0 epoch 174 average loss: 0.4006\n", + "current epoch: 174 current mean dice: 0.3277\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 175/500\n", + "1/0, train_loss: 0.4151\n", + "0 epoch 175 average loss: 0.4151\n", + "----------\n", + "0: epoch 176/500\n", + "1/0, train_loss: 0.4047\n", + "0 epoch 176 average loss: 0.4047\n", + "current epoch: 176 current mean dice: 0.3586\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 177/500\n", + "1/0, train_loss: 0.4197\n", + "0 epoch 177 average loss: 0.4197\n", + "----------\n", + "0: epoch 178/500\n", + "1/0, train_loss: 0.4094\n", + "0 epoch 178 average loss: 0.4094\n", + "current epoch: 178 current mean dice: 0.4180\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 179/500\n", + "1/0, train_loss: 0.4035\n", + "0 epoch 179 average loss: 0.4035\n", + "----------\n", + "0: epoch 180/500\n", + "1/0, train_loss: 0.4123\n", + "0 epoch 180 average loss: 0.4123\n", + "current epoch: 180 current mean dice: 0.3642\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 181/500\n", + "1/0, train_loss: 0.4033\n", + "0 epoch 181 average loss: 0.4033\n", + "----------\n", + "0: epoch 182/500\n", + "1/0, train_loss: 0.4060\n", + "0 epoch 182 average loss: 0.4060\n", + "current epoch: 182 current mean dice: 0.3461\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 183/500\n", + "1/0, train_loss: 0.4158\n", + "0 epoch 183 average loss: 0.4158\n", + "----------\n", + "0: epoch 184/500\n", + "1/0, train_loss: 0.4059\n", + "0 epoch 184 average loss: 0.4059\n", + "current epoch: 184 current mean dice: 0.3056\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 185/500\n", + "1/0, train_loss: 0.4106\n", + "0 epoch 185 average loss: 0.4106\n", + "----------\n", + "0: epoch 186/500\n", + "1/0, train_loss: 0.4001\n", + "0 epoch 186 average loss: 0.4001\n", + "current epoch: 186 current mean dice: 0.3324\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 187/500\n", + "1/0, train_loss: 0.4059\n", + "0 epoch 187 average loss: 0.4059\n", + "----------\n", + "0: epoch 188/500\n", + "1/0, train_loss: 0.4100\n", + "0 epoch 188 average loss: 0.4100\n", + "current epoch: 188 current mean dice: 0.3503\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 189/500\n", + "1/0, train_loss: 0.4015\n", + "0 epoch 189 average loss: 0.4015\n", + "----------\n", + "0: epoch 190/500\n", + "1/0, train_loss: 0.4014\n", + "0 epoch 190 average loss: 0.4014\n", + "current epoch: 190 current mean dice: 0.3469\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 191/500\n", + "1/0, train_loss: 0.3985\n", + "0 epoch 191 average loss: 0.3985\n", + "----------\n", + "0: epoch 192/500\n", + "1/0, train_loss: 0.4026\n", + "0 epoch 192 average loss: 0.4026\n", + "current epoch: 192 current mean dice: 0.3224\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 193/500\n", + "1/0, train_loss: 0.3966\n", + "0 epoch 193 average loss: 0.3966\n", + "----------\n", + "0: epoch 194/500\n", + "1/0, train_loss: 0.4029\n", + "0 epoch 194 average loss: 0.4029\n", + "current epoch: 194 current mean dice: 0.3367\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 195/500\n", + "1/0, train_loss: 0.4119\n", + "0 epoch 195 average loss: 0.4119\n", + "----------\n", + "0: epoch 196/500\n", + "1/0, train_loss: 0.3970\n", + "0 epoch 196 average loss: 0.3970\n", + "current epoch: 196 current mean dice: 0.3384\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 197/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.3971\n", + "0 epoch 197 average loss: 0.3971\n", + "----------\n", + "0: epoch 198/500\n", + "1/0, train_loss: 0.3958\n", + "0 epoch 198 average loss: 0.3958\n", + "current epoch: 198 current mean dice: 0.3333\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 199/500\n", + "1/0, train_loss: 0.3968\n", + "0 epoch 199 average loss: 0.3968\n", + "----------\n", + "0: epoch 200/500\n", + "1/0, train_loss: 0.4193\n", + "0 epoch 200 average loss: 0.4193\n", + "current epoch: 200 current mean dice: 0.3705\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 201/500\n", + "1/0, train_loss: 0.3950\n", + "0 epoch 201 average loss: 0.3950\n", + "----------\n", + "0: epoch 202/500\n", + "1/0, train_loss: 0.3974\n", + "0 epoch 202 average loss: 0.3974\n", + "current epoch: 202 current mean dice: 0.4104\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 203/500\n", + "1/0, train_loss: 0.4281\n", + "0 epoch 203 average loss: 0.4281\n", + "----------\n", + "0: epoch 204/500\n", + "1/0, train_loss: 0.4119\n", + "0 epoch 204 average loss: 0.4119\n", + "current epoch: 204 current mean dice: 0.4477\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 205/500\n", + "1/0, train_loss: 0.4025\n", + "0 epoch 205 average loss: 0.4025\n", + "----------\n", + "0: epoch 206/500\n", + "1/0, train_loss: 0.4070\n", + "0 epoch 206 average loss: 0.4070\n", + "current epoch: 206 current mean dice: 0.4056\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 207/500\n", + "1/0, train_loss: 0.4056\n", + "0 epoch 207 average loss: 0.4056\n", + "----------\n", + "0: epoch 208/500\n", + "1/0, train_loss: 0.3972\n", + "0 epoch 208 average loss: 0.3972\n", + "current epoch: 208 current mean dice: 0.3606\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 209/500\n", + "1/0, train_loss: 0.4079\n", + "0 epoch 209 average loss: 0.4079\n", + "----------\n", + "0: epoch 210/500\n", + "1/0, train_loss: 0.4024\n", + "0 epoch 210 average loss: 0.4024\n", + "current epoch: 210 current mean dice: 0.4468\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 211/500\n", + "1/0, train_loss: 0.4103\n", + "0 epoch 211 average loss: 0.4103\n", + "----------\n", + "0: epoch 212/500\n", + "1/0, train_loss: 0.3986\n", + "0 epoch 212 average loss: 0.3986\n", + "current epoch: 212 current mean dice: 0.3723\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 213/500\n", + "1/0, train_loss: 0.4057\n", + "0 epoch 213 average loss: 0.4057\n", + "----------\n", + "0: epoch 214/500\n", + "1/0, train_loss: 0.4008\n", + "0 epoch 214 average loss: 0.4008\n", + "current epoch: 214 current mean dice: 0.4484\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 215/500\n", + "1/0, train_loss: 0.3965\n", + "0 epoch 215 average loss: 0.3965\n", + "----------\n", + "0: epoch 216/500\n", + "1/0, train_loss: 0.3978\n", + "0 epoch 216 average loss: 0.3978\n", + "current epoch: 216 current mean dice: 0.4226\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 217/500\n", + "1/0, train_loss: 0.3965\n", + "0 epoch 217 average loss: 0.3965\n", + "----------\n", + "0: epoch 218/500\n", + "1/0, train_loss: 0.3956\n", + "0 epoch 218 average loss: 0.3956\n", + "current epoch: 218 current mean dice: 0.3418\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 219/500\n", + "1/0, train_loss: 0.3961\n", + "0 epoch 219 average loss: 0.3961\n", + "----------\n", + "0: epoch 220/500\n", + "1/0, train_loss: 0.4060\n", + "0 epoch 220 average loss: 0.4060\n", + "current epoch: 220 current mean dice: 0.3307\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 221/500\n", + "1/0, train_loss: 0.3981\n", + "0 epoch 221 average loss: 0.3981\n", + "----------\n", + "0: epoch 222/500\n", + "1/0, train_loss: 0.4046\n", + "0 epoch 222 average loss: 0.4046\n", + "current epoch: 222 current mean dice: 0.3748\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 223/500\n", + "1/0, train_loss: 0.3995\n", + "0 epoch 223 average loss: 0.3995\n", + "----------\n", + "0: epoch 224/500\n", + "1/0, train_loss: 0.4004\n", + "0 epoch 224 average loss: 0.4004\n", + "current epoch: 224 current mean dice: 0.4160\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 225/500\n", + "1/0, train_loss: 0.4021\n", + "0 epoch 225 average loss: 0.4021\n", + "----------\n", + "0: epoch 226/500\n", + "1/0, train_loss: 0.3939\n", + "0 epoch 226 average loss: 0.3939\n", + "saved new best metric model\n", + "current epoch: 226 current mean dice: 0.4578\n", + "best mean dice: 0.4578 at epoch: 226\n", + "----------\n", + "0: epoch 227/500\n", + "1/0, train_loss: 0.3915\n", + "0 epoch 227 average loss: 0.3915\n", + "----------\n", + "0: epoch 228/500\n", + "1/0, train_loss: 0.3893\n", + "0 epoch 228 average loss: 0.3893\n", + "current epoch: 228 current mean dice: 0.4158\n", + "best mean dice: 0.4578 at epoch: 226\n", + "----------\n", + "0: epoch 229/500\n", + "1/0, train_loss: 0.4048\n", + "0 epoch 229 average loss: 0.4048\n", + "----------\n", + "0: epoch 230/500\n", + "1/0, train_loss: 0.3945\n", + "0 epoch 230 average loss: 0.3945\n", + "current epoch: 230 current mean dice: 0.3420\n", + "best mean dice: 0.4578 at epoch: 226\n", + "----------\n", + "0: epoch 231/500\n", + "1/0, train_loss: 0.3901\n", + "0 epoch 231 average loss: 0.3901\n", + "----------\n", + "0: epoch 232/500\n", + "1/0, train_loss: 0.3966\n", + "0 epoch 232 average loss: 0.3966\n", + "current epoch: 232 current mean dice: 0.3236\n", + "best mean dice: 0.4578 at epoch: 226\n", + "----------\n", + "0: epoch 233/500\n", + "1/0, train_loss: 0.3940\n", + "0 epoch 233 average loss: 0.3940\n", + "----------\n", + "0: epoch 234/500\n", + "1/0, train_loss: 0.3992\n", + "0 epoch 234 average loss: 0.3992\n", + "current epoch: 234 current mean dice: 0.3833\n", + "best mean dice: 0.4578 at epoch: 226\n", + "----------\n", + "0: epoch 235/500\n", + "1/0, train_loss: 0.3931\n", + "0 epoch 235 average loss: 0.3931\n", + "----------\n", + "0: epoch 236/500\n", + "1/0, train_loss: 0.3962\n", + "0 epoch 236 average loss: 0.3962\n", + "current epoch: 236 current mean dice: 0.4451\n", + "best mean dice: 0.4578 at epoch: 226\n", + "----------\n", + "0: epoch 237/500\n", + "1/0, train_loss: 0.3923\n", + "0 epoch 237 average loss: 0.3923\n", + "----------\n", + "0: epoch 238/500\n", + "1/0, train_loss: 0.3965\n", + "0 epoch 238 average loss: 0.3965\n", + "current epoch: 238 current mean dice: 0.4139\n", + "best mean dice: 0.4578 at epoch: 226\n", + "----------\n", + "0: epoch 239/500\n", + "1/0, train_loss: 0.3875\n", + "0 epoch 239 average loss: 0.3875\n", + "----------\n", + "0: epoch 240/500\n", + "1/0, train_loss: 0.3857\n", + "0 epoch 240 average loss: 0.3857\n", + "current epoch: 240 current mean dice: 0.3808\n", + "best mean dice: 0.4578 at epoch: 226\n", + "----------\n", + "0: epoch 241/500\n", + "1/0, train_loss: 0.3924\n", + "0 epoch 241 average loss: 0.3924\n", + "----------\n", + "0: epoch 242/500\n", + "1/0, train_loss: 0.3974\n", + "0 epoch 242 average loss: 0.3974\n", + "current epoch: 242 current mean dice: 0.3944\n", + "best mean dice: 0.4578 at epoch: 226\n", + "----------\n", + "0: epoch 243/500\n", + "1/0, train_loss: 0.3914\n", + "0 epoch 243 average loss: 0.3914\n", + "----------\n", + "0: epoch 244/500\n", + "1/0, train_loss: 0.3924\n", + "0 epoch 244 average loss: 0.3924\n", + "current epoch: 244 current mean dice: 0.4192\n", + "best mean dice: 0.4578 at epoch: 226\n", + "----------\n", + "0: epoch 245/500\n", + "1/0, train_loss: 0.3860\n", + "0 epoch 245 average loss: 0.3860\n", + "----------\n", + "0: epoch 246/500\n", + "1/0, train_loss: 0.3876\n", + "0 epoch 246 average loss: 0.3876\n", + "current epoch: 246 current mean dice: 0.4021\n", + "best mean dice: 0.4578 at epoch: 226\n", + "----------\n", + "0: epoch 247/500\n", + "1/0, train_loss: 0.4037\n", + "0 epoch 247 average loss: 0.4037\n", + "----------\n", + "0: epoch 248/500\n", + "1/0, train_loss: 0.3934\n", + "0 epoch 248 average loss: 0.3934\n", + "current epoch: 248 current mean dice: 0.3671\n", + "best mean dice: 0.4578 at epoch: 226\n", + "----------\n", + "0: epoch 249/500\n", + "1/0, train_loss: 0.3888\n", + "0 epoch 249 average loss: 0.3888\n", + "----------\n", + "0: epoch 250/500\n", + "1/0, train_loss: 0.3910\n", + "0 epoch 250 average loss: 0.3910\n", + "current epoch: 250 current mean dice: 0.4063\n", + "best mean dice: 0.4578 at epoch: 226\n", + "----------\n", + "0: epoch 251/500\n", + "1/0, train_loss: 0.4035\n", + "0 epoch 251 average loss: 0.4035\n", + "----------\n", + "0: epoch 252/500\n", + "1/0, train_loss: 0.3941\n", + "0 epoch 252 average loss: 0.3941\n", + "current epoch: 252 current mean dice: 0.4133\n", + "best mean dice: 0.4578 at epoch: 226\n", + "----------\n", + "0: epoch 253/500\n", + "1/0, train_loss: 0.3988\n", + "0 epoch 253 average loss: 0.3988\n", + "----------\n", + "0: epoch 254/500\n", + "1/0, train_loss: 0.3977\n", + "0 epoch 254 average loss: 0.3977\n", + "current epoch: 254 current mean dice: 0.3336\n", + "best mean dice: 0.4578 at epoch: 226\n", + "----------\n", + "0: epoch 255/500\n", + "1/0, train_loss: 0.4026\n", + "0 epoch 255 average loss: 0.4026\n", + "----------\n", + "0: epoch 256/500\n", + "1/0, train_loss: 0.3939\n", + "0 epoch 256 average loss: 0.3939\n", + "current epoch: 256 current mean dice: 0.3476\n", + "best mean dice: 0.4578 at epoch: 226\n", + "----------\n", + "0: epoch 257/500\n", + "1/0, train_loss: 0.3957\n", + "0 epoch 257 average loss: 0.3957\n", + "----------\n", + "0: epoch 258/500\n", + "1/0, train_loss: 0.3901\n", + "0 epoch 258 average loss: 0.3901\n", + "saved new best metric model\n", + "current epoch: 258 current mean dice: 0.4797\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 259/500\n", + "1/0, train_loss: 0.3977\n", + "0 epoch 259 average loss: 0.3977\n", + "----------\n", + "0: epoch 260/500\n", + "1/0, train_loss: 0.3879\n", + "0 epoch 260 average loss: 0.3879\n", + "current epoch: 260 current mean dice: 0.4013\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 261/500\n", + "1/0, train_loss: 0.3937\n", + "0 epoch 261 average loss: 0.3937\n", + "----------\n", + "0: epoch 262/500\n", + "1/0, train_loss: 0.3904\n", + "0 epoch 262 average loss: 0.3904\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "current epoch: 262 current mean dice: 0.3300\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 263/500\n", + "1/0, train_loss: 0.3930\n", + "0 epoch 263 average loss: 0.3930\n", + "----------\n", + "0: epoch 264/500\n", + "1/0, train_loss: 0.3880\n", + "0 epoch 264 average loss: 0.3880\n", + "current epoch: 264 current mean dice: 0.3069\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 265/500\n", + "1/0, train_loss: 0.3924\n", + "0 epoch 265 average loss: 0.3924\n", + "----------\n", + "0: epoch 266/500\n", + "1/0, train_loss: 0.3918\n", + "0 epoch 266 average loss: 0.3918\n", + "current epoch: 266 current mean dice: 0.3143\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 267/500\n", + "1/0, train_loss: 0.3852\n", + "0 epoch 267 average loss: 0.3852\n", + "----------\n", + "0: epoch 268/500\n", + "1/0, train_loss: 0.3891\n", + "0 epoch 268 average loss: 0.3891\n", + "current epoch: 268 current mean dice: 0.3640\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 269/500\n", + "1/0, train_loss: 0.3891\n", + "0 epoch 269 average loss: 0.3891\n", + "----------\n", + "0: epoch 270/500\n", + "1/0, train_loss: 0.3865\n", + "0 epoch 270 average loss: 0.3865\n", + "current epoch: 270 current mean dice: 0.3636\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 271/500\n", + "1/0, train_loss: 0.3898\n", + "0 epoch 271 average loss: 0.3898\n", + "----------\n", + "0: epoch 272/500\n", + "1/0, train_loss: 0.3887\n", + "0 epoch 272 average loss: 0.3887\n", + "current epoch: 272 current mean dice: 0.2782\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 273/500\n", + "1/0, train_loss: 0.3852\n", + "0 epoch 273 average loss: 0.3852\n", + "----------\n", + "0: epoch 274/500\n", + "1/0, train_loss: 0.3827\n", + "0 epoch 274 average loss: 0.3827\n", + "current epoch: 274 current mean dice: 0.3517\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 275/500\n", + "1/0, train_loss: 0.3974\n", + "0 epoch 275 average loss: 0.3974\n", + "----------\n", + "0: epoch 276/500\n", + "1/0, train_loss: 0.3854\n", + "0 epoch 276 average loss: 0.3854\n", + "current epoch: 276 current mean dice: 0.2819\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 277/500\n", + "1/0, train_loss: 0.3796\n", + "0 epoch 277 average loss: 0.3796\n", + "----------\n", + "0: epoch 278/500\n", + "1/0, train_loss: 0.3862\n", + "0 epoch 278 average loss: 0.3862\n", + "current epoch: 278 current mean dice: 0.3186\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 279/500\n", + "1/0, train_loss: 0.3916\n", + "0 epoch 279 average loss: 0.3916\n", + "----------\n", + "0: epoch 280/500\n", + "1/0, train_loss: 0.4079\n", + "0 epoch 280 average loss: 0.4079\n", + "current epoch: 280 current mean dice: 0.2890\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 281/500\n", + "1/0, train_loss: 0.3840\n", + "0 epoch 281 average loss: 0.3840\n", + "----------\n", + "0: epoch 282/500\n", + "1/0, train_loss: 0.3864\n", + "0 epoch 282 average loss: 0.3864\n", + "current epoch: 282 current mean dice: 0.3266\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 283/500\n", + "1/0, train_loss: 0.3783\n", + "0 epoch 283 average loss: 0.3783\n", + "----------\n", + "0: epoch 284/500\n", + "1/0, train_loss: 0.3822\n", + "0 epoch 284 average loss: 0.3822\n", + "current epoch: 284 current mean dice: 0.3509\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 285/500\n", + "1/0, train_loss: 0.3937\n", + "0 epoch 285 average loss: 0.3937\n", + "----------\n", + "0: epoch 286/500\n", + "1/0, train_loss: 0.3804\n", + "0 epoch 286 average loss: 0.3804\n", + "current epoch: 286 current mean dice: 0.3527\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 287/500\n", + "1/0, train_loss: 0.3887\n", + "0 epoch 287 average loss: 0.3887\n", + "----------\n", + "0: epoch 288/500\n", + "1/0, train_loss: 0.3845\n", + "0 epoch 288 average loss: 0.3845\n", + "current epoch: 288 current mean dice: 0.3058\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 289/500\n", + "1/0, train_loss: 0.3843\n", + "0 epoch 289 average loss: 0.3843\n", + "----------\n", + "0: epoch 290/500\n", + "1/0, train_loss: 0.3879\n", + "0 epoch 290 average loss: 0.3879\n", + "current epoch: 290 current mean dice: 0.3606\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 291/500\n", + "1/0, train_loss: 0.3774\n", + "0 epoch 291 average loss: 0.3774\n", + "----------\n", + "0: epoch 292/500\n", + "1/0, train_loss: 0.3933\n", + "0 epoch 292 average loss: 0.3933\n", + "current epoch: 292 current mean dice: 0.3598\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 293/500\n", + "1/0, train_loss: 0.3820\n", + "0 epoch 293 average loss: 0.3820\n", + "----------\n", + "0: epoch 294/500\n", + "1/0, train_loss: 0.3859\n", + "0 epoch 294 average loss: 0.3859\n", + "current epoch: 294 current mean dice: 0.2841\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 295/500\n", + "1/0, train_loss: 0.3798\n", + "0 epoch 295 average loss: 0.3798\n", + "----------\n", + "0: epoch 296/500\n", + "1/0, train_loss: 0.3833\n", + "0 epoch 296 average loss: 0.3833\n", + "current epoch: 296 current mean dice: 0.4150\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 297/500\n", + "1/0, train_loss: 0.3827\n", + "0 epoch 297 average loss: 0.3827\n", + "----------\n", + "0: epoch 298/500\n", + "1/0, train_loss: 0.3790\n", + "0 epoch 298 average loss: 0.3790\n", + "current epoch: 298 current mean dice: 0.4186\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 299/500\n", + "1/0, train_loss: 0.3889\n", + "0 epoch 299 average loss: 0.3889\n", + "----------\n", + "0: epoch 300/500\n", + "1/0, train_loss: 0.3816\n", + "0 epoch 300 average loss: 0.3816\n", + "current epoch: 300 current mean dice: 0.3519\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 301/500\n", + "1/0, train_loss: 0.3827\n", + "0 epoch 301 average loss: 0.3827\n", + "----------\n", + "0: epoch 302/500\n", + "1/0, train_loss: 0.3866\n", + "0 epoch 302 average loss: 0.3866\n", + "current epoch: 302 current mean dice: 0.3203\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 303/500\n", + "1/0, train_loss: 0.3968\n", + "0 epoch 303 average loss: 0.3968\n", + "----------\n", + "0: epoch 304/500\n", + "1/0, train_loss: 0.3782\n", + "0 epoch 304 average loss: 0.3782\n", + "current epoch: 304 current mean dice: 0.3118\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 305/500\n", + "1/0, train_loss: 0.3886\n", + "0 epoch 305 average loss: 0.3886\n", + "----------\n", + "0: epoch 306/500\n", + "1/0, train_loss: 0.3912\n", + "0 epoch 306 average loss: 0.3912\n", + "current epoch: 306 current mean dice: 0.3152\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 307/500\n", + "1/0, train_loss: 0.3844\n", + "0 epoch 307 average loss: 0.3844\n", + "----------\n", + "0: epoch 308/500\n", + "1/0, train_loss: 0.3950\n", + "0 epoch 308 average loss: 0.3950\n", + "current epoch: 308 current mean dice: 0.3793\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 309/500\n", + "1/0, train_loss: 0.3912\n", + "0 epoch 309 average loss: 0.3912\n", + "----------\n", + "0: epoch 310/500\n", + "1/0, train_loss: 0.3849\n", + "0 epoch 310 average loss: 0.3849\n", + "current epoch: 310 current mean dice: 0.4143\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 311/500\n", + "1/0, train_loss: 0.3902\n", + "0 epoch 311 average loss: 0.3902\n", + "----------\n", + "0: epoch 312/500\n", + "1/0, train_loss: 0.3915\n", + "0 epoch 312 average loss: 0.3915\n", + "current epoch: 312 current mean dice: 0.2802\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 313/500\n", + "1/0, train_loss: 0.3896\n", + "0 epoch 313 average loss: 0.3896\n", + "----------\n", + "0: epoch 314/500\n", + "1/0, train_loss: 0.3837\n", + "0 epoch 314 average loss: 0.3837\n", + "current epoch: 314 current mean dice: 0.3152\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 315/500\n", + "1/0, train_loss: 0.3942\n", + "0 epoch 315 average loss: 0.3942\n", + "----------\n", + "0: epoch 316/500\n", + "1/0, train_loss: 0.3848\n", + "0 epoch 316 average loss: 0.3848\n", + "current epoch: 316 current mean dice: 0.2899\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 317/500\n", + "1/0, train_loss: 0.3974\n", + "0 epoch 317 average loss: 0.3974\n", + "----------\n", + "0: epoch 318/500\n", + "1/0, train_loss: 0.3909\n", + "0 epoch 318 average loss: 0.3909\n", + "current epoch: 318 current mean dice: 0.3599\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 319/500\n", + "1/0, train_loss: 0.3852\n", + "0 epoch 319 average loss: 0.3852\n", + "----------\n", + "0: epoch 320/500\n", + "1/0, train_loss: 0.3829\n", + "0 epoch 320 average loss: 0.3829\n", + "current epoch: 320 current mean dice: 0.3446\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 321/500\n", + "1/0, train_loss: 0.3832\n", + "0 epoch 321 average loss: 0.3832\n", + "----------\n", + "0: epoch 322/500\n", + "1/0, train_loss: 0.3828\n", + "0 epoch 322 average loss: 0.3828\n", + "current epoch: 322 current mean dice: 0.4130\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 323/500\n", + "1/0, train_loss: 0.3897\n", + "0 epoch 323 average loss: 0.3897\n", + "----------\n", + "0: epoch 324/500\n", + "1/0, train_loss: 0.3837\n", + "0 epoch 324 average loss: 0.3837\n", + "current epoch: 324 current mean dice: 0.4001\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 325/500\n", + "1/0, train_loss: 0.3861\n", + "0 epoch 325 average loss: 0.3861\n", + "----------\n", + "0: epoch 326/500\n", + "1/0, train_loss: 0.3865\n", + "0 epoch 326 average loss: 0.3865\n", + "current epoch: 326 current mean dice: 0.3385\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 327/500\n", + "1/0, train_loss: 0.3821\n", + "0 epoch 327 average loss: 0.3821\n", + "----------\n", + "0: epoch 328/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.3810\n", + "0 epoch 328 average loss: 0.3810\n", + "current epoch: 328 current mean dice: 0.3314\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 329/500\n", + "1/0, train_loss: 0.3890\n", + "0 epoch 329 average loss: 0.3890\n", + "----------\n", + "0: epoch 330/500\n", + "1/0, train_loss: 0.3784\n", + "0 epoch 330 average loss: 0.3784\n", + "current epoch: 330 current mean dice: 0.3388\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 331/500\n", + "1/0, train_loss: 0.3867\n", + "0 epoch 331 average loss: 0.3867\n", + "----------\n", + "0: epoch 332/500\n", + "1/0, train_loss: 0.3855\n", + "0 epoch 332 average loss: 0.3855\n", + "current epoch: 332 current mean dice: 0.3139\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 333/500\n", + "1/0, train_loss: 0.3834\n", + "0 epoch 333 average loss: 0.3834\n", + "----------\n", + "0: epoch 334/500\n", + "1/0, train_loss: 0.3804\n", + "0 epoch 334 average loss: 0.3804\n", + "current epoch: 334 current mean dice: 0.3392\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 335/500\n", + "1/0, train_loss: 0.3852\n", + "0 epoch 335 average loss: 0.3852\n", + "----------\n", + "0: epoch 336/500\n", + "1/0, train_loss: 0.3806\n", + "0 epoch 336 average loss: 0.3806\n", + "current epoch: 336 current mean dice: 0.3487\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 337/500\n", + "1/0, train_loss: 0.3861\n", + "0 epoch 337 average loss: 0.3861\n", + "----------\n", + "0: epoch 338/500\n", + "1/0, train_loss: 0.3790\n", + "0 epoch 338 average loss: 0.3790\n", + "current epoch: 338 current mean dice: 0.2895\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 339/500\n", + "1/0, train_loss: 0.4003\n", + "0 epoch 339 average loss: 0.4003\n", + "----------\n", + "0: epoch 340/500\n", + "1/0, train_loss: 0.3732\n", + "0 epoch 340 average loss: 0.3732\n", + "current epoch: 340 current mean dice: 0.3267\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 341/500\n", + "1/0, train_loss: 0.3890\n", + "0 epoch 341 average loss: 0.3890\n", + "----------\n", + "0: epoch 342/500\n", + "1/0, train_loss: 0.3800\n", + "0 epoch 342 average loss: 0.3800\n", + "current epoch: 342 current mean dice: 0.2803\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 343/500\n", + "1/0, train_loss: 0.3826\n", + "0 epoch 343 average loss: 0.3826\n", + "----------\n", + "0: epoch 344/500\n", + "1/0, train_loss: 0.3859\n", + "0 epoch 344 average loss: 0.3859\n", + "current epoch: 344 current mean dice: 0.2685\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 345/500\n", + "1/0, train_loss: 0.3800\n", + "0 epoch 345 average loss: 0.3800\n", + "----------\n", + "0: epoch 346/500\n", + "1/0, train_loss: 0.3867\n", + "0 epoch 346 average loss: 0.3867\n", + "current epoch: 346 current mean dice: 0.3550\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 347/500\n", + "1/0, train_loss: 0.3879\n", + "0 epoch 347 average loss: 0.3879\n", + "----------\n", + "0: epoch 348/500\n", + "1/0, train_loss: 0.3818\n", + "0 epoch 348 average loss: 0.3818\n", + "current epoch: 348 current mean dice: 0.3819\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 349/500\n", + "1/0, train_loss: 0.3750\n", + "0 epoch 349 average loss: 0.3750\n", + "----------\n", + "0: epoch 350/500\n", + "1/0, train_loss: 0.3812\n", + "0 epoch 350 average loss: 0.3812\n", + "current epoch: 350 current mean dice: 0.2978\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 351/500\n", + "1/0, train_loss: 0.3786\n", + "0 epoch 351 average loss: 0.3786\n", + "----------\n", + "0: epoch 352/500\n", + "1/0, train_loss: 0.3827\n", + "0 epoch 352 average loss: 0.3827\n", + "current epoch: 352 current mean dice: 0.3100\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 353/500\n", + "1/0, train_loss: 0.3826\n", + "0 epoch 353 average loss: 0.3826\n", + "----------\n", + "0: epoch 354/500\n", + "1/0, train_loss: 0.3776\n", + "0 epoch 354 average loss: 0.3776\n", + "current epoch: 354 current mean dice: 0.3142\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 355/500\n", + "1/0, train_loss: 0.3833\n", + "0 epoch 355 average loss: 0.3833\n", + "----------\n", + "0: epoch 356/500\n", + "1/0, train_loss: 0.3829\n", + "0 epoch 356 average loss: 0.3829\n", + "current epoch: 356 current mean dice: 0.2901\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 357/500\n", + "1/0, train_loss: 0.3756\n", + "0 epoch 357 average loss: 0.3756\n", + "----------\n", + "0: epoch 358/500\n", + "1/0, train_loss: 0.3771\n", + "0 epoch 358 average loss: 0.3771\n", + "current epoch: 358 current mean dice: 0.3240\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 359/500\n", + "1/0, train_loss: 0.3842\n", + "0 epoch 359 average loss: 0.3842\n", + "----------\n", + "0: epoch 360/500\n", + "1/0, train_loss: 0.3778\n", + "0 epoch 360 average loss: 0.3778\n", + "current epoch: 360 current mean dice: 0.3200\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 361/500\n", + "1/0, train_loss: 0.3778\n", + "0 epoch 361 average loss: 0.3778\n", + "----------\n", + "0: epoch 362/500\n", + "1/0, train_loss: 0.3774\n", + "0 epoch 362 average loss: 0.3774\n", + "current epoch: 362 current mean dice: 0.2724\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 363/500\n", + "1/0, train_loss: 0.3886\n", + "0 epoch 363 average loss: 0.3886\n", + "----------\n", + "0: epoch 364/500\n", + "1/0, train_loss: 0.3766\n", + "0 epoch 364 average loss: 0.3766\n", + "current epoch: 364 current mean dice: 0.2606\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 365/500\n", + "1/0, train_loss: 0.3821\n", + "0 epoch 365 average loss: 0.3821\n", + "----------\n", + "0: epoch 366/500\n", + "1/0, train_loss: 0.3781\n", + "0 epoch 366 average loss: 0.3781\n", + "current epoch: 366 current mean dice: 0.2722\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 367/500\n", + "1/0, train_loss: 0.3787\n", + "0 epoch 367 average loss: 0.3787\n", + "----------\n", + "0: epoch 368/500\n", + "1/0, train_loss: 0.3764\n", + "0 epoch 368 average loss: 0.3764\n", + "current epoch: 368 current mean dice: 0.2901\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 369/500\n", + "1/0, train_loss: 0.3812\n", + "0 epoch 369 average loss: 0.3812\n", + "----------\n", + "0: epoch 370/500\n", + "1/0, train_loss: 0.3876\n", + "0 epoch 370 average loss: 0.3876\n", + "current epoch: 370 current mean dice: 0.3135\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 371/500\n", + "1/0, train_loss: 0.3749\n", + "0 epoch 371 average loss: 0.3749\n", + "----------\n", + "0: epoch 372/500\n", + "1/0, train_loss: 0.3760\n", + "0 epoch 372 average loss: 0.3760\n", + "current epoch: 372 current mean dice: 0.3096\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 373/500\n", + "1/0, train_loss: 0.3895\n", + "0 epoch 373 average loss: 0.3895\n", + "----------\n", + "0: epoch 374/500\n", + "1/0, train_loss: 0.3860\n", + "0 epoch 374 average loss: 0.3860\n", + "current epoch: 374 current mean dice: 0.2607\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 375/500\n", + "1/0, train_loss: 0.3765\n", + "0 epoch 375 average loss: 0.3765\n", + "----------\n", + "0: epoch 376/500\n", + "1/0, train_loss: 0.3836\n", + "0 epoch 376 average loss: 0.3836\n", + "current epoch: 376 current mean dice: 0.2814\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 377/500\n", + "1/0, train_loss: 0.3779\n", + "0 epoch 377 average loss: 0.3779\n", + "----------\n", + "0: epoch 378/500\n", + "1/0, train_loss: 0.3732\n", + "0 epoch 378 average loss: 0.3732\n", + "current epoch: 378 current mean dice: 0.2991\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 379/500\n", + "1/0, train_loss: 0.3767\n", + "0 epoch 379 average loss: 0.3767\n", + "----------\n", + "0: epoch 380/500\n", + "1/0, train_loss: 0.3861\n", + "0 epoch 380 average loss: 0.3861\n", + "current epoch: 380 current mean dice: 0.3018\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 381/500\n", + "1/0, train_loss: 0.3830\n", + "0 epoch 381 average loss: 0.3830\n", + "----------\n", + "0: epoch 382/500\n", + "1/0, train_loss: 0.3796\n", + "0 epoch 382 average loss: 0.3796\n", + "current epoch: 382 current mean dice: 0.3026\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 383/500\n", + "1/0, train_loss: 0.3884\n", + "0 epoch 383 average loss: 0.3884\n", + "----------\n", + "0: epoch 384/500\n", + "1/0, train_loss: 0.3777\n", + "0 epoch 384 average loss: 0.3777\n", + "current epoch: 384 current mean dice: 0.2902\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 385/500\n", + "1/0, train_loss: 0.3788\n", + "0 epoch 385 average loss: 0.3788\n", + "----------\n", + "0: epoch 386/500\n", + "1/0, train_loss: 0.3827\n", + "0 epoch 386 average loss: 0.3827\n", + "current epoch: 386 current mean dice: 0.2766\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 387/500\n", + "1/0, train_loss: 0.3849\n", + "0 epoch 387 average loss: 0.3849\n", + "----------\n", + "0: epoch 388/500\n", + "1/0, train_loss: 0.3849\n", + "0 epoch 388 average loss: 0.3849\n", + "current epoch: 388 current mean dice: 0.3246\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 389/500\n", + "1/0, train_loss: 0.3729\n", + "0 epoch 389 average loss: 0.3729\n", + "----------\n", + "0: epoch 390/500\n", + "1/0, train_loss: 0.3766\n", + "0 epoch 390 average loss: 0.3766\n", + "current epoch: 390 current mean dice: 0.3231\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 391/500\n", + "1/0, train_loss: 0.3802\n", + "0 epoch 391 average loss: 0.3802\n", + "----------\n", + "0: epoch 392/500\n", + "1/0, train_loss: 0.3812\n", + "0 epoch 392 average loss: 0.3812\n", + "current epoch: 392 current mean dice: 0.2753\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 393/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.3773\n", + "0 epoch 393 average loss: 0.3773\n", + "----------\n", + "0: epoch 394/500\n", + "1/0, train_loss: 0.3786\n", + "0 epoch 394 average loss: 0.3786\n", + "current epoch: 394 current mean dice: 0.2755\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 395/500\n", + "1/0, train_loss: 0.3815\n", + "0 epoch 395 average loss: 0.3815\n", + "----------\n", + "0: epoch 396/500\n", + "1/0, train_loss: 0.3820\n", + "0 epoch 396 average loss: 0.3820\n", + "current epoch: 396 current mean dice: 0.2705\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 397/500\n", + "1/0, train_loss: 0.3755\n", + "0 epoch 397 average loss: 0.3755\n", + "----------\n", + "0: epoch 398/500\n", + "1/0, train_loss: 0.3753\n", + "0 epoch 398 average loss: 0.3753\n", + "current epoch: 398 current mean dice: 0.2867\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 399/500\n", + "1/0, train_loss: 0.3829\n", + "0 epoch 399 average loss: 0.3829\n", + "----------\n", + "0: epoch 400/500\n", + "1/0, train_loss: 0.3771\n", + "0 epoch 400 average loss: 0.3771\n", + "current epoch: 400 current mean dice: 0.2981\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 401/500\n", + "1/0, train_loss: 0.3798\n", + "0 epoch 401 average loss: 0.3798\n", + "----------\n", + "0: epoch 402/500\n", + "1/0, train_loss: 0.3782\n", + "0 epoch 402 average loss: 0.3782\n", + "current epoch: 402 current mean dice: 0.2920\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 403/500\n", + "1/0, train_loss: 0.3814\n", + "0 epoch 403 average loss: 0.3814\n", + "----------\n", + "0: epoch 404/500\n", + "1/0, train_loss: 0.3740\n", + "0 epoch 404 average loss: 0.3740\n", + "current epoch: 404 current mean dice: 0.2716\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 405/500\n", + "1/0, train_loss: 0.3848\n", + "0 epoch 405 average loss: 0.3848\n", + "----------\n", + "0: epoch 406/500\n", + "1/0, train_loss: 0.3728\n", + "0 epoch 406 average loss: 0.3728\n", + "current epoch: 406 current mean dice: 0.2279\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 407/500\n", + "1/0, train_loss: 0.3795\n", + "0 epoch 407 average loss: 0.3795\n", + "----------\n", + "0: epoch 408/500\n", + "1/0, train_loss: 0.3789\n", + "0 epoch 408 average loss: 0.3789\n", + "current epoch: 408 current mean dice: 0.2255\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 409/500\n", + "1/0, train_loss: 0.3748\n", + "0 epoch 409 average loss: 0.3748\n", + "----------\n", + "0: epoch 410/500\n", + "1/0, train_loss: 0.3797\n", + "0 epoch 410 average loss: 0.3797\n", + "current epoch: 410 current mean dice: 0.2839\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 411/500\n", + "1/0, train_loss: 0.3832\n", + "0 epoch 411 average loss: 0.3832\n", + "----------\n", + "0: epoch 412/500\n", + "1/0, train_loss: 0.3801\n", + "0 epoch 412 average loss: 0.3801\n", + "current epoch: 412 current mean dice: 0.2579\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 413/500\n", + "1/0, train_loss: 0.3758\n", + "0 epoch 413 average loss: 0.3758\n", + "----------\n", + "0: epoch 414/500\n", + "1/0, train_loss: 0.3782\n", + "0 epoch 414 average loss: 0.3782\n", + "current epoch: 414 current mean dice: 0.2692\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 415/500\n", + "1/0, train_loss: 0.3744\n", + "0 epoch 415 average loss: 0.3744\n", + "----------\n", + "0: epoch 416/500\n", + "1/0, train_loss: 0.3765\n", + "0 epoch 416 average loss: 0.3765\n", + "current epoch: 416 current mean dice: 0.2997\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 417/500\n", + "1/0, train_loss: 0.3757\n", + "0 epoch 417 average loss: 0.3757\n", + "----------\n", + "0: epoch 418/500\n", + "1/0, train_loss: 0.3756\n", + "0 epoch 418 average loss: 0.3756\n", + "current epoch: 418 current mean dice: 0.3309\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 419/500\n", + "1/0, train_loss: 0.3723\n", + "0 epoch 419 average loss: 0.3723\n", + "----------\n", + "0: epoch 420/500\n", + "1/0, train_loss: 0.3835\n", + "0 epoch 420 average loss: 0.3835\n", + "current epoch: 420 current mean dice: 0.2444\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 421/500\n", + "1/0, train_loss: 0.3739\n", + "0 epoch 421 average loss: 0.3739\n", + "----------\n", + "0: epoch 422/500\n", + "1/0, train_loss: 0.3854\n", + "0 epoch 422 average loss: 0.3854\n", + "current epoch: 422 current mean dice: 0.2501\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 423/500\n", + "1/0, train_loss: 0.3782\n", + "0 epoch 423 average loss: 0.3782\n", + "----------\n", + "0: epoch 424/500\n", + "1/0, train_loss: 0.3763\n", + "0 epoch 424 average loss: 0.3763\n", + "current epoch: 424 current mean dice: 0.3492\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 425/500\n", + "1/0, train_loss: 0.3802\n", + "0 epoch 425 average loss: 0.3802\n", + "----------\n", + "0: epoch 426/500\n", + "1/0, train_loss: 0.3812\n", + "0 epoch 426 average loss: 0.3812\n", + "current epoch: 426 current mean dice: 0.2860\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 427/500\n", + "1/0, train_loss: 0.3797\n", + "0 epoch 427 average loss: 0.3797\n", + "----------\n", + "0: epoch 428/500\n", + "1/0, train_loss: 0.3763\n", + "0 epoch 428 average loss: 0.3763\n", + "current epoch: 428 current mean dice: 0.2892\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 429/500\n", + "1/0, train_loss: 0.3744\n", + "0 epoch 429 average loss: 0.3744\n", + "----------\n", + "0: epoch 430/500\n", + "1/0, train_loss: 0.3786\n", + "0 epoch 430 average loss: 0.3786\n", + "current epoch: 430 current mean dice: 0.2749\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 431/500\n", + "1/0, train_loss: 0.3778\n", + "0 epoch 431 average loss: 0.3778\n", + "----------\n", + "0: epoch 432/500\n", + "1/0, train_loss: 0.3787\n", + "0 epoch 432 average loss: 0.3787\n", + "current epoch: 432 current mean dice: 0.2235\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 433/500\n", + "1/0, train_loss: 0.3773\n", + "0 epoch 433 average loss: 0.3773\n", + "----------\n", + "0: epoch 434/500\n", + "1/0, train_loss: 0.3731\n", + "0 epoch 434 average loss: 0.3731\n", + "current epoch: 434 current mean dice: 0.2173\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 435/500\n", + "1/0, train_loss: 0.3727\n", + "0 epoch 435 average loss: 0.3727\n", + "----------\n", + "0: epoch 436/500\n", + "1/0, train_loss: 0.3739\n", + "0 epoch 436 average loss: 0.3739\n", + "current epoch: 436 current mean dice: 0.2394\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 437/500\n", + "1/0, train_loss: 0.3781\n", + "0 epoch 437 average loss: 0.3781\n", + "----------\n", + "0: epoch 438/500\n", + "1/0, train_loss: 0.3873\n", + "0 epoch 438 average loss: 0.3873\n", + "current epoch: 438 current mean dice: 0.2642\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 439/500\n", + "1/0, train_loss: 0.3747\n", + "0 epoch 439 average loss: 0.3747\n", + "----------\n", + "0: epoch 440/500\n", + "1/0, train_loss: 0.3734\n", + "0 epoch 440 average loss: 0.3734\n", + "current epoch: 440 current mean dice: 0.3113\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 441/500\n", + "1/0, train_loss: 0.3832\n", + "0 epoch 441 average loss: 0.3832\n", + "----------\n", + "0: epoch 442/500\n", + "1/0, train_loss: 0.3701\n", + "0 epoch 442 average loss: 0.3701\n", + "current epoch: 442 current mean dice: 0.2508\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 443/500\n", + "1/0, train_loss: 0.3758\n", + "0 epoch 443 average loss: 0.3758\n", + "----------\n", + "0: epoch 444/500\n", + "1/0, train_loss: 0.3735\n", + "0 epoch 444 average loss: 0.3735\n", + "current epoch: 444 current mean dice: 0.2857\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 445/500\n", + "1/0, train_loss: 0.3822\n", + "0 epoch 445 average loss: 0.3822\n", + "----------\n", + "0: epoch 446/500\n", + "1/0, train_loss: 0.3754\n", + "0 epoch 446 average loss: 0.3754\n", + "current epoch: 446 current mean dice: 0.2897\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 447/500\n", + "1/0, train_loss: 0.3818\n", + "0 epoch 447 average loss: 0.3818\n", + "----------\n", + "0: epoch 448/500\n", + "1/0, train_loss: 0.3776\n", + "0 epoch 448 average loss: 0.3776\n", + "current epoch: 448 current mean dice: 0.3025\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 449/500\n", + "1/0, train_loss: 0.3813\n", + "0 epoch 449 average loss: 0.3813\n", + "----------\n", + "0: epoch 450/500\n", + "1/0, train_loss: 0.3728\n", + "0 epoch 450 average loss: 0.3728\n", + "current epoch: 450 current mean dice: 0.2795\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 451/500\n", + "1/0, train_loss: 0.3766\n", + "0 epoch 451 average loss: 0.3766\n", + "----------\n", + "0: epoch 452/500\n", + "1/0, train_loss: 0.3744\n", + "0 epoch 452 average loss: 0.3744\n", + "current epoch: 452 current mean dice: 0.2906\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 453/500\n", + "1/0, train_loss: 0.3741\n", + "0 epoch 453 average loss: 0.3741\n", + "----------\n", + "0: epoch 454/500\n", + "1/0, train_loss: 0.3755\n", + "0 epoch 454 average loss: 0.3755\n", + "current epoch: 454 current mean dice: 0.2541\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 455/500\n", + "1/0, train_loss: 0.3710\n", + "0 epoch 455 average loss: 0.3710\n", + "----------\n", + "0: epoch 456/500\n", + "1/0, train_loss: 0.3700\n", + "0 epoch 456 average loss: 0.3700\n", + "current epoch: 456 current mean dice: 0.2445\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 457/500\n", + "1/0, train_loss: 0.3759\n", + "0 epoch 457 average loss: 0.3759\n", + "----------\n", + "0: epoch 458/500\n", + "1/0, train_loss: 0.3793\n", + "0 epoch 458 average loss: 0.3793\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "current epoch: 458 current mean dice: 0.2499\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 459/500\n", + "1/0, train_loss: 0.3724\n", + "0 epoch 459 average loss: 0.3724\n", + "----------\n", + "0: epoch 460/500\n", + "1/0, train_loss: 0.3695\n", + "0 epoch 460 average loss: 0.3695\n", + "current epoch: 460 current mean dice: 0.3084\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 461/500\n", + "1/0, train_loss: 0.3861\n", + "0 epoch 461 average loss: 0.3861\n", + "----------\n", + "0: epoch 462/500\n", + "1/0, train_loss: 0.3747\n", + "0 epoch 462 average loss: 0.3747\n", + "current epoch: 462 current mean dice: 0.3450\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 463/500\n", + "1/0, train_loss: 0.3836\n", + "0 epoch 463 average loss: 0.3836\n", + "----------\n", + "0: epoch 464/500\n", + "1/0, train_loss: 0.3690\n", + "0 epoch 464 average loss: 0.3690\n", + "current epoch: 464 current mean dice: 0.3047\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 465/500\n", + "1/0, train_loss: 0.3770\n", + "0 epoch 465 average loss: 0.3770\n", + "----------\n", + "0: epoch 466/500\n", + "1/0, train_loss: 0.3761\n", + "0 epoch 466 average loss: 0.3761\n", + "current epoch: 466 current mean dice: 0.2665\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 467/500\n", + "1/0, train_loss: 0.3784\n", + "0 epoch 467 average loss: 0.3784\n", + "----------\n", + "0: epoch 468/500\n", + "1/0, train_loss: 0.3788\n", + "0 epoch 468 average loss: 0.3788\n", + "current epoch: 468 current mean dice: 0.2703\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 469/500\n", + "1/0, train_loss: 0.3785\n", + "0 epoch 469 average loss: 0.3785\n", + "----------\n", + "0: epoch 470/500\n", + "1/0, train_loss: 0.3770\n", + "0 epoch 470 average loss: 0.3770\n", + "current epoch: 470 current mean dice: 0.3105\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 471/500\n", + "1/0, train_loss: 0.3765\n", + "0 epoch 471 average loss: 0.3765\n", + "----------\n", + "0: epoch 472/500\n", + "1/0, train_loss: 0.3781\n", + "0 epoch 472 average loss: 0.3781\n", + "current epoch: 472 current mean dice: 0.3485\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 473/500\n", + "1/0, train_loss: 0.3791\n", + "0 epoch 473 average loss: 0.3791\n", + "----------\n", + "0: epoch 474/500\n", + "1/0, train_loss: 0.3747\n", + "0 epoch 474 average loss: 0.3747\n", + "current epoch: 474 current mean dice: 0.3376\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 475/500\n", + "1/0, train_loss: 0.3766\n", + "0 epoch 475 average loss: 0.3766\n", + "----------\n", + "0: epoch 476/500\n", + "1/0, train_loss: 0.3762\n", + "0 epoch 476 average loss: 0.3762\n", + "current epoch: 476 current mean dice: 0.2715\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 477/500\n", + "1/0, train_loss: 0.3721\n", + "0 epoch 477 average loss: 0.3721\n", + "----------\n", + "0: epoch 478/500\n", + "1/0, train_loss: 0.3724\n", + "0 epoch 478 average loss: 0.3724\n", + "current epoch: 478 current mean dice: 0.2834\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 479/500\n", + "1/0, train_loss: 0.3750\n", + "0 epoch 479 average loss: 0.3750\n", + "----------\n", + "0: epoch 480/500\n", + "1/0, train_loss: 0.3795\n", + "0 epoch 480 average loss: 0.3795\n", + "current epoch: 480 current mean dice: 0.2701\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 481/500\n", + "1/0, train_loss: 0.3695\n", + "0 epoch 481 average loss: 0.3695\n", + "----------\n", + "0: epoch 482/500\n", + "1/0, train_loss: 0.3698\n", + "0 epoch 482 average loss: 0.3698\n", + "current epoch: 482 current mean dice: 0.2594\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 483/500\n", + "1/0, train_loss: 0.3798\n", + "0 epoch 483 average loss: 0.3798\n", + "----------\n", + "0: epoch 484/500\n", + "1/0, train_loss: 0.3720\n", + "0 epoch 484 average loss: 0.3720\n", + "current epoch: 484 current mean dice: 0.2782\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 485/500\n", + "1/0, train_loss: 0.3701\n", + "0 epoch 485 average loss: 0.3701\n", + "----------\n", + "0: epoch 486/500\n", + "1/0, train_loss: 0.3777\n", + "0 epoch 486 average loss: 0.3777\n", + "current epoch: 486 current mean dice: 0.2726\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 487/500\n", + "1/0, train_loss: 0.3800\n", + "0 epoch 487 average loss: 0.3800\n", + "----------\n", + "0: epoch 488/500\n", + "1/0, train_loss: 0.3676\n", + "0 epoch 488 average loss: 0.3676\n", + "current epoch: 488 current mean dice: 0.2876\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 489/500\n", + "1/0, train_loss: 0.3706\n", + "0 epoch 489 average loss: 0.3706\n", + "----------\n", + "0: epoch 490/500\n", + "1/0, train_loss: 0.3693\n", + "0 epoch 490 average loss: 0.3693\n", + "current epoch: 490 current mean dice: 0.3021\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 491/500\n", + "1/0, train_loss: 0.3720\n", + "0 epoch 491 average loss: 0.3720\n", + "----------\n", + "0: epoch 492/500\n", + "1/0, train_loss: 0.3675\n", + "0 epoch 492 average loss: 0.3675\n", + "current epoch: 492 current mean dice: 0.2794\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 493/500\n", + "1/0, train_loss: 0.3753\n", + "0 epoch 493 average loss: 0.3753\n", + "----------\n", + "0: epoch 494/500\n", + "1/0, train_loss: 0.3708\n", + "0 epoch 494 average loss: 0.3708\n", + "current epoch: 494 current mean dice: 0.2790\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 495/500\n", + "1/0, train_loss: 0.3688\n", + "0 epoch 495 average loss: 0.3688\n", + "----------\n", + "0: epoch 496/500\n", + "1/0, train_loss: 0.3734\n", + "0 epoch 496 average loss: 0.3734\n", + "current epoch: 496 current mean dice: 0.2845\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 497/500\n", + "1/0, train_loss: 0.3684\n", + "0 epoch 497 average loss: 0.3684\n", + "----------\n", + "0: epoch 498/500\n", + "1/0, train_loss: 0.3707\n", + "0 epoch 498 average loss: 0.3707\n", + "current epoch: 498 current mean dice: 0.3067\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 499/500\n", + "1/0, train_loss: 0.3679\n", + "0 epoch 499 average loss: 0.3679\n", + "----------\n", + "0: epoch 500/500\n", + "1/0, train_loss: 0.3712\n", + "0 epoch 500 average loss: 0.3712\n", + "current epoch: 500 current mean dice: 0.3314\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "1: epoch 1/500\n", + "1/0, train_loss: 0.7298\n", + "1 epoch 1 average loss: 0.7298\n", + "----------\n", + "1: epoch 2/500\n", + "1/0, train_loss: 0.7040\n", + "1 epoch 2 average loss: 0.7040\n", + "saved new best metric model\n", + "current epoch: 2 current mean dice: 0.3959\n", + "best mean dice: 0.3959 at epoch: 2\n", + "----------\n", + "1: epoch 3/500\n", + "1/0, train_loss: 0.6859\n", + "1 epoch 3 average loss: 0.6859\n", + "----------\n", + "1: epoch 4/500\n", + "1/0, train_loss: 0.6727\n", + "1 epoch 4 average loss: 0.6727\n", + "saved new best metric model\n", + "current epoch: 4 current mean dice: 0.4353\n", + "best mean dice: 0.4353 at epoch: 4\n", + "----------\n", + "1: epoch 5/500\n", + "1/0, train_loss: 0.6605\n", + "1 epoch 5 average loss: 0.6605\n", + "----------\n", + "1: epoch 6/500\n", + "1/0, train_loss: 0.6596\n", + "1 epoch 6 average loss: 0.6596\n", + "saved new best metric model\n", + "current epoch: 6 current mean dice: 0.4562\n", + "best mean dice: 0.4562 at epoch: 6\n", + "----------\n", + "1: epoch 7/500\n", + "1/0, train_loss: 0.6510\n", + "1 epoch 7 average loss: 0.6510\n", + "----------\n", + "1: epoch 8/500\n", + "1/0, train_loss: 0.6483\n", + "1 epoch 8 average loss: 0.6483\n", + "saved new best metric model\n", + "current epoch: 8 current mean dice: 0.4570\n", + "best mean dice: 0.4570 at epoch: 8\n", + "----------\n", + "1: epoch 9/500\n", + "1/0, train_loss: 0.6497\n", + "1 epoch 9 average loss: 0.6497\n", + "----------\n", + "1: epoch 10/500\n", + "1/0, train_loss: 0.6437\n", + "1 epoch 10 average loss: 0.6437\n", + "saved new best metric model\n", + "current epoch: 10 current mean dice: 0.4581\n", + "best mean dice: 0.4581 at epoch: 10\n", + "----------\n", + "1: epoch 11/500\n", + "1/0, train_loss: 0.6424\n", + "1 epoch 11 average loss: 0.6424\n", + "----------\n", + "1: epoch 12/500\n", + "1/0, train_loss: 0.6423\n", + "1 epoch 12 average loss: 0.6423\n", + "saved new best metric model\n", + "current epoch: 12 current mean dice: 0.4594\n", + "best mean dice: 0.4594 at epoch: 12\n", + "----------\n", + "1: epoch 13/500\n", + "1/0, train_loss: 0.6388\n", + "1 epoch 13 average loss: 0.6388\n", + "----------\n", + "1: epoch 14/500\n", + "1/0, train_loss: 0.6342\n", + "1 epoch 14 average loss: 0.6342\n", + "saved new best metric model\n", + "current epoch: 14 current mean dice: 0.4625\n", + "best mean dice: 0.4625 at epoch: 14\n", + "----------\n", + "1: epoch 15/500\n", + "1/0, train_loss: 0.6336\n", + "1 epoch 15 average loss: 0.6336\n", + "----------\n", + "1: epoch 16/500\n", + "1/0, train_loss: 0.6332\n", + "1 epoch 16 average loss: 0.6332\n", + "saved new best metric model\n", + "current epoch: 16 current mean dice: 0.4779\n", + "best mean dice: 0.4779 at epoch: 16\n", + "----------\n", + "1: epoch 17/500\n", + "1/0, train_loss: 0.6262\n", + "1 epoch 17 average loss: 0.6262\n", + "----------\n", + "1: epoch 18/500\n", + "1/0, train_loss: 0.6209\n", + "1 epoch 18 average loss: 0.6209\n", + "saved new best metric model\n", + "current epoch: 18 current mean dice: 0.4809\n", + "best mean dice: 0.4809 at epoch: 18\n", + "----------\n", + "1: epoch 19/500\n", + "1/0, train_loss: 0.6184\n", + "1 epoch 19 average loss: 0.6184\n", + "----------\n", + "1: epoch 20/500\n", + "1/0, train_loss: 0.6155\n", + "1 epoch 20 average loss: 0.6155\n", + "saved new best metric model\n", + "current epoch: 20 current mean dice: 0.4982\n", + "best mean dice: 0.4982 at epoch: 20\n", + "----------\n", + "1: epoch 21/500\n", + "1/0, train_loss: 0.6097\n", + "1 epoch 21 average loss: 0.6097\n", + "----------\n", + "1: epoch 22/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.6152\n", + "1 epoch 22 average loss: 0.6152\n", + "saved new best metric model\n", + "current epoch: 22 current mean dice: 0.5081\n", + "best mean dice: 0.5081 at epoch: 22\n", + "----------\n", + "1: epoch 23/500\n", + "1/0, train_loss: 0.6128\n", + "1 epoch 23 average loss: 0.6128\n", + "----------\n", + "1: epoch 24/500\n", + "1/0, train_loss: 0.6090\n", + "1 epoch 24 average loss: 0.6090\n", + "saved new best metric model\n", + "current epoch: 24 current mean dice: 0.5081\n", + "best mean dice: 0.5081 at epoch: 24\n", + "----------\n", + "1: epoch 25/500\n", + "1/0, train_loss: 0.6063\n", + "1 epoch 25 average loss: 0.6063\n", + "----------\n", + "1: epoch 26/500\n", + "1/0, train_loss: 0.5961\n", + "1 epoch 26 average loss: 0.5961\n", + "current epoch: 26 current mean dice: 0.4763\n", + "best mean dice: 0.5081 at epoch: 24\n", + "----------\n", + "1: epoch 27/500\n", + "1/0, train_loss: 0.5952\n", + "1 epoch 27 average loss: 0.5952\n", + "----------\n", + "1: epoch 28/500\n", + "1/0, train_loss: 0.5896\n", + "1 epoch 28 average loss: 0.5896\n", + "current epoch: 28 current mean dice: 0.5021\n", + "best mean dice: 0.5081 at epoch: 24\n", + "----------\n", + "1: epoch 29/500\n", + "1/0, train_loss: 0.5856\n", + "1 epoch 29 average loss: 0.5856\n", + "----------\n", + "1: epoch 30/500\n", + "1/0, train_loss: 0.5860\n", + "1 epoch 30 average loss: 0.5860\n", + "saved new best metric model\n", + "current epoch: 30 current mean dice: 0.5351\n", + "best mean dice: 0.5351 at epoch: 30\n", + "----------\n", + "1: epoch 31/500\n", + "1/0, train_loss: 0.5797\n", + "1 epoch 31 average loss: 0.5797\n", + "----------\n", + "1: epoch 32/500\n", + "1/0, train_loss: 0.5754\n", + "1 epoch 32 average loss: 0.5754\n", + "current epoch: 32 current mean dice: 0.5088\n", + "best mean dice: 0.5351 at epoch: 30\n", + "----------\n", + "1: epoch 33/500\n", + "1/0, train_loss: 0.5694\n", + "1 epoch 33 average loss: 0.5694\n", + "----------\n", + "1: epoch 34/500\n", + "1/0, train_loss: 0.5681\n", + "1 epoch 34 average loss: 0.5681\n", + "current epoch: 34 current mean dice: 0.5321\n", + "best mean dice: 0.5351 at epoch: 30\n", + "----------\n", + "1: epoch 35/500\n", + "1/0, train_loss: 0.5606\n", + "1 epoch 35 average loss: 0.5606\n", + "----------\n", + "1: epoch 36/500\n", + "1/0, train_loss: 0.5570\n", + "1 epoch 36 average loss: 0.5570\n", + "saved new best metric model\n", + "current epoch: 36 current mean dice: 0.5451\n", + "best mean dice: 0.5451 at epoch: 36\n", + "----------\n", + "1: epoch 37/500\n", + "1/0, train_loss: 0.5644\n", + "1 epoch 37 average loss: 0.5644\n", + "----------\n", + "1: epoch 38/500\n", + "1/0, train_loss: 0.5521\n", + "1 epoch 38 average loss: 0.5521\n", + "current epoch: 38 current mean dice: 0.5222\n", + "best mean dice: 0.5451 at epoch: 36\n", + "----------\n", + "1: epoch 39/500\n", + "1/0, train_loss: 0.5505\n", + "1 epoch 39 average loss: 0.5505\n", + "----------\n", + "1: epoch 40/500\n", + "1/0, train_loss: 0.5505\n", + "1 epoch 40 average loss: 0.5505\n", + "current epoch: 40 current mean dice: 0.5114\n", + "best mean dice: 0.5451 at epoch: 36\n", + "----------\n", + "1: epoch 41/500\n", + "1/0, train_loss: 0.5489\n", + "1 epoch 41 average loss: 0.5489\n", + "----------\n", + "1: epoch 42/500\n", + "1/0, train_loss: 0.5474\n", + "1 epoch 42 average loss: 0.5474\n", + "current epoch: 42 current mean dice: 0.5091\n", + "best mean dice: 0.5451 at epoch: 36\n", + "----------\n", + "1: epoch 43/500\n", + "1/0, train_loss: 0.5474\n", + "1 epoch 43 average loss: 0.5474\n", + "----------\n", + "1: epoch 44/500\n", + "1/0, train_loss: 0.5398\n", + "1 epoch 44 average loss: 0.5398\n", + "saved new best metric model\n", + "current epoch: 44 current mean dice: 0.5510\n", + "best mean dice: 0.5510 at epoch: 44\n", + "----------\n", + "1: epoch 45/500\n", + "1/0, train_loss: 0.5415\n", + "1 epoch 45 average loss: 0.5415\n", + "----------\n", + "1: epoch 46/500\n", + "1/0, train_loss: 0.5440\n", + "1 epoch 46 average loss: 0.5440\n", + "current epoch: 46 current mean dice: 0.5129\n", + "best mean dice: 0.5510 at epoch: 44\n", + "----------\n", + "1: epoch 47/500\n", + "1/0, train_loss: 0.5319\n", + "1 epoch 47 average loss: 0.5319\n", + "----------\n", + "1: epoch 48/500\n", + "1/0, train_loss: 0.5272\n", + "1 epoch 48 average loss: 0.5272\n", + "current epoch: 48 current mean dice: 0.5232\n", + "best mean dice: 0.5510 at epoch: 44\n", + "----------\n", + "1: epoch 49/500\n", + "1/0, train_loss: 0.5287\n", + "1 epoch 49 average loss: 0.5287\n", + "----------\n", + "1: epoch 50/500\n", + "1/0, train_loss: 0.5318\n", + "1 epoch 50 average loss: 0.5318\n", + "current epoch: 50 current mean dice: 0.5084\n", + "best mean dice: 0.5510 at epoch: 44\n", + "----------\n", + "1: epoch 51/500\n", + "1/0, train_loss: 0.5271\n", + "1 epoch 51 average loss: 0.5271\n", + "----------\n", + "1: epoch 52/500\n", + "1/0, train_loss: 0.5314\n", + "1 epoch 52 average loss: 0.5314\n", + "saved new best metric model\n", + "current epoch: 52 current mean dice: 0.5563\n", + "best mean dice: 0.5563 at epoch: 52\n", + "----------\n", + "1: epoch 53/500\n", + "1/0, train_loss: 0.5202\n", + "1 epoch 53 average loss: 0.5202\n", + "----------\n", + "1: epoch 54/500\n", + "1/0, train_loss: 0.5252\n", + "1 epoch 54 average loss: 0.5252\n", + "current epoch: 54 current mean dice: 0.4823\n", + "best mean dice: 0.5563 at epoch: 52\n", + "----------\n", + "1: epoch 55/500\n", + "1/0, train_loss: 0.5306\n", + "1 epoch 55 average loss: 0.5306\n", + "----------\n", + "1: epoch 56/500\n", + "1/0, train_loss: 0.5286\n", + "1 epoch 56 average loss: 0.5286\n", + "saved new best metric model\n", + "current epoch: 56 current mean dice: 0.5661\n", + "best mean dice: 0.5661 at epoch: 56\n", + "----------\n", + "1: epoch 57/500\n", + "1/0, train_loss: 0.5185\n", + "1 epoch 57 average loss: 0.5185\n", + "----------\n", + "1: epoch 58/500\n", + "1/0, train_loss: 0.5249\n", + "1 epoch 58 average loss: 0.5249\n", + "current epoch: 58 current mean dice: 0.5638\n", + "best mean dice: 0.5661 at epoch: 56\n", + "----------\n", + "1: epoch 59/500\n", + "1/0, train_loss: 0.5129\n", + "1 epoch 59 average loss: 0.5129\n", + "----------\n", + "1: epoch 60/500\n", + "1/0, train_loss: 0.5230\n", + "1 epoch 60 average loss: 0.5230\n", + "current epoch: 60 current mean dice: 0.5561\n", + "best mean dice: 0.5661 at epoch: 56\n", + "----------\n", + "1: epoch 61/500\n", + "1/0, train_loss: 0.5139\n", + "1 epoch 61 average loss: 0.5139\n", + "----------\n", + "1: epoch 62/500\n", + "1/0, train_loss: 0.5191\n", + "1 epoch 62 average loss: 0.5191\n", + "current epoch: 62 current mean dice: 0.5404\n", + "best mean dice: 0.5661 at epoch: 56\n", + "----------\n", + "1: epoch 63/500\n", + "1/0, train_loss: 0.5143\n", + "1 epoch 63 average loss: 0.5143\n", + "----------\n", + "1: epoch 64/500\n", + "1/0, train_loss: 0.4995\n", + "1 epoch 64 average loss: 0.4995\n", + "current epoch: 64 current mean dice: 0.5562\n", + "best mean dice: 0.5661 at epoch: 56\n", + "----------\n", + "1: epoch 65/500\n", + "1/0, train_loss: 0.5045\n", + "1 epoch 65 average loss: 0.5045\n", + "----------\n", + "1: epoch 66/500\n", + "1/0, train_loss: 0.4954\n", + "1 epoch 66 average loss: 0.4954\n", + "current epoch: 66 current mean dice: 0.5491\n", + "best mean dice: 0.5661 at epoch: 56\n", + "----------\n", + "1: epoch 67/500\n", + "1/0, train_loss: 0.5034\n", + "1 epoch 67 average loss: 0.5034\n", + "----------\n", + "1: epoch 68/500\n", + "1/0, train_loss: 0.4951\n", + "1 epoch 68 average loss: 0.4951\n", + "saved new best metric model\n", + "current epoch: 68 current mean dice: 0.5814\n", + "best mean dice: 0.5814 at epoch: 68\n", + "----------\n", + "1: epoch 69/500\n", + "1/0, train_loss: 0.4955\n", + "1 epoch 69 average loss: 0.4955\n", + "----------\n", + "1: epoch 70/500\n", + "1/0, train_loss: 0.4890\n", + "1 epoch 70 average loss: 0.4890\n", + "current epoch: 70 current mean dice: 0.5325\n", + "best mean dice: 0.5814 at epoch: 68\n", + "----------\n", + "1: epoch 71/500\n", + "1/0, train_loss: 0.5098\n", + "1 epoch 71 average loss: 0.5098\n", + "----------\n", + "1: epoch 72/500\n", + "1/0, train_loss: 0.5177\n", + "1 epoch 72 average loss: 0.5177\n", + "saved new best metric model\n", + "current epoch: 72 current mean dice: 0.5917\n", + "best mean dice: 0.5917 at epoch: 72\n", + "----------\n", + "1: epoch 73/500\n", + "1/0, train_loss: 0.5109\n", + "1 epoch 73 average loss: 0.5109\n", + "----------\n", + "1: epoch 74/500\n", + "1/0, train_loss: 0.4940\n", + "1 epoch 74 average loss: 0.4940\n", + "current epoch: 74 current mean dice: 0.5352\n", + "best mean dice: 0.5917 at epoch: 72\n", + "----------\n", + "1: epoch 75/500\n", + "1/0, train_loss: 0.4958\n", + "1 epoch 75 average loss: 0.4958\n", + "----------\n", + "1: epoch 76/500\n", + "1/0, train_loss: 0.5003\n", + "1 epoch 76 average loss: 0.5003\n", + "current epoch: 76 current mean dice: 0.5671\n", + "best mean dice: 0.5917 at epoch: 72\n", + "----------\n", + "1: epoch 77/500\n", + "1/0, train_loss: 0.5045\n", + "1 epoch 77 average loss: 0.5045\n", + "----------\n", + "1: epoch 78/500\n", + "1/0, train_loss: 0.4911\n", + "1 epoch 78 average loss: 0.4911\n", + "current epoch: 78 current mean dice: 0.5655\n", + "best mean dice: 0.5917 at epoch: 72\n", + "----------\n", + "1: epoch 79/500\n", + "1/0, train_loss: 0.4931\n", + "1 epoch 79 average loss: 0.4931\n", + "----------\n", + "1: epoch 80/500\n", + "1/0, train_loss: 0.4943\n", + "1 epoch 80 average loss: 0.4943\n", + "current epoch: 80 current mean dice: 0.5696\n", + "best mean dice: 0.5917 at epoch: 72\n", + "----------\n", + "1: epoch 81/500\n", + "1/0, train_loss: 0.4928\n", + "1 epoch 81 average loss: 0.4928\n", + "----------\n", + "1: epoch 82/500\n", + "1/0, train_loss: 0.4890\n", + "1 epoch 82 average loss: 0.4890\n", + "saved new best metric model\n", + "current epoch: 82 current mean dice: 0.6008\n", + "best mean dice: 0.6008 at epoch: 82\n", + "----------\n", + "1: epoch 83/500\n", + "1/0, train_loss: 0.4816\n", + "1 epoch 83 average loss: 0.4816\n", + "----------\n", + "1: epoch 84/500\n", + "1/0, train_loss: 0.4763\n", + "1 epoch 84 average loss: 0.4763\n", + "saved new best metric model\n", + "current epoch: 84 current mean dice: 0.6149\n", + "best mean dice: 0.6149 at epoch: 84\n", + "----------\n", + "1: epoch 85/500\n", + "1/0, train_loss: 0.4743\n", + "1 epoch 85 average loss: 0.4743\n", + "----------\n", + "1: epoch 86/500\n", + "1/0, train_loss: 0.4661\n", + "1 epoch 86 average loss: 0.4661\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "current epoch: 86 current mean dice: 0.6055\n", + "best mean dice: 0.6149 at epoch: 84\n", + "----------\n", + "1: epoch 87/500\n", + "1/0, train_loss: 0.4729\n", + "1 epoch 87 average loss: 0.4729\n", + "----------\n", + "1: epoch 88/500\n", + "1/0, train_loss: 0.4756\n", + "1 epoch 88 average loss: 0.4756\n", + "saved new best metric model\n", + "current epoch: 88 current mean dice: 0.6151\n", + "best mean dice: 0.6151 at epoch: 88\n", + "----------\n", + "1: epoch 89/500\n", + "1/0, train_loss: 0.4888\n", + "1 epoch 89 average loss: 0.4888\n", + "----------\n", + "1: epoch 90/500\n", + "1/0, train_loss: 0.4626\n", + "1 epoch 90 average loss: 0.4626\n", + "current epoch: 90 current mean dice: 0.4658\n", + "best mean dice: 0.6151 at epoch: 88\n", + "----------\n", + "1: epoch 91/500\n", + "1/0, train_loss: 0.5009\n", + "1 epoch 91 average loss: 0.5009\n", + "----------\n", + "1: epoch 92/500\n", + "1/0, train_loss: 0.4856\n", + "1 epoch 92 average loss: 0.4856\n", + "current epoch: 92 current mean dice: 0.5295\n", + "best mean dice: 0.6151 at epoch: 88\n", + "----------\n", + "1: epoch 93/500\n", + "1/0, train_loss: 0.5260\n", + "1 epoch 93 average loss: 0.5260\n", + "----------\n", + "1: epoch 94/500\n", + "1/0, train_loss: 0.4896\n", + "1 epoch 94 average loss: 0.4896\n", + "current epoch: 94 current mean dice: 0.5624\n", + "best mean dice: 0.6151 at epoch: 88\n", + "----------\n", + "1: epoch 95/500\n", + "1/0, train_loss: 0.4979\n", + "1 epoch 95 average loss: 0.4979\n", + "----------\n", + "1: epoch 96/500\n", + "1/0, train_loss: 0.4834\n", + "1 epoch 96 average loss: 0.4834\n", + "current epoch: 96 current mean dice: 0.6061\n", + "best mean dice: 0.6151 at epoch: 88\n", + "----------\n", + "1: epoch 97/500\n", + "1/0, train_loss: 0.4649\n", + "1 epoch 97 average loss: 0.4649\n", + "----------\n", + "1: epoch 98/500\n", + "1/0, train_loss: 0.4594\n", + "1 epoch 98 average loss: 0.4594\n", + "current epoch: 98 current mean dice: 0.6010\n", + "best mean dice: 0.6151 at epoch: 88\n", + "----------\n", + "1: epoch 99/500\n", + "1/0, train_loss: 0.4578\n", + "1 epoch 99 average loss: 0.4578\n", + "----------\n", + "1: epoch 100/500\n", + "1/0, train_loss: 0.4566\n", + "1 epoch 100 average loss: 0.4566\n", + "saved new best metric model\n", + "current epoch: 100 current mean dice: 0.6194\n", + "best mean dice: 0.6194 at epoch: 100\n", + "----------\n", + "1: epoch 101/500\n", + "1/0, train_loss: 0.4540\n", + "1 epoch 101 average loss: 0.4540\n", + "----------\n", + "1: epoch 102/500\n", + "1/0, train_loss: 0.4465\n", + "1 epoch 102 average loss: 0.4465\n", + "saved new best metric model\n", + "current epoch: 102 current mean dice: 0.6213\n", + "best mean dice: 0.6213 at epoch: 102\n", + "----------\n", + "1: epoch 103/500\n", + "1/0, train_loss: 0.4509\n", + "1 epoch 103 average loss: 0.4509\n", + "----------\n", + "1: epoch 104/500\n", + "1/0, train_loss: 0.4523\n", + "1 epoch 104 average loss: 0.4523\n", + "current epoch: 104 current mean dice: 0.5910\n", + "best mean dice: 0.6213 at epoch: 102\n", + "----------\n", + "1: epoch 105/500\n", + "1/0, train_loss: 0.4641\n", + "1 epoch 105 average loss: 0.4641\n", + "----------\n", + "1: epoch 106/500\n", + "1/0, train_loss: 0.4502\n", + "1 epoch 106 average loss: 0.4502\n", + "current epoch: 106 current mean dice: 0.5908\n", + "best mean dice: 0.6213 at epoch: 102\n", + "----------\n", + "1: epoch 107/500\n", + "1/0, train_loss: 0.4630\n", + "1 epoch 107 average loss: 0.4630\n", + "----------\n", + "1: epoch 108/500\n", + "1/0, train_loss: 0.4691\n", + "1 epoch 108 average loss: 0.4691\n", + "current epoch: 108 current mean dice: 0.5802\n", + "best mean dice: 0.6213 at epoch: 102\n", + "----------\n", + "1: epoch 109/500\n", + "1/0, train_loss: 0.4688\n", + "1 epoch 109 average loss: 0.4688\n", + "----------\n", + "1: epoch 110/500\n", + "1/0, train_loss: 0.4772\n", + "1 epoch 110 average loss: 0.4772\n", + "saved new best metric model\n", + "current epoch: 110 current mean dice: 0.6245\n", + "best mean dice: 0.6245 at epoch: 110\n", + "----------\n", + "1: epoch 111/500\n", + "1/0, train_loss: 0.4422\n", + "1 epoch 111 average loss: 0.4422\n", + "----------\n", + "1: epoch 112/500\n", + "1/0, train_loss: 0.4660\n", + "1 epoch 112 average loss: 0.4660\n", + "current epoch: 112 current mean dice: 0.5887\n", + "best mean dice: 0.6245 at epoch: 110\n", + "----------\n", + "1: epoch 113/500\n", + "1/0, train_loss: 0.4538\n", + "1 epoch 113 average loss: 0.4538\n", + "----------\n", + "1: epoch 114/500\n", + "1/0, train_loss: 0.4354\n", + "1 epoch 114 average loss: 0.4354\n", + "current epoch: 114 current mean dice: 0.5803\n", + "best mean dice: 0.6245 at epoch: 110\n", + "----------\n", + "1: epoch 115/500\n", + "1/0, train_loss: 0.4543\n", + "1 epoch 115 average loss: 0.4543\n", + "----------\n", + "1: epoch 116/500\n", + "1/0, train_loss: 0.4421\n", + "1 epoch 116 average loss: 0.4421\n", + "current epoch: 116 current mean dice: 0.5448\n", + "best mean dice: 0.6245 at epoch: 110\n", + "----------\n", + "1: epoch 117/500\n", + "1/0, train_loss: 0.4587\n", + "1 epoch 117 average loss: 0.4587\n", + "----------\n", + "1: epoch 118/500\n", + "1/0, train_loss: 0.4323\n", + "1 epoch 118 average loss: 0.4323\n", + "current epoch: 118 current mean dice: 0.5819\n", + "best mean dice: 0.6245 at epoch: 110\n", + "----------\n", + "1: epoch 119/500\n", + "1/0, train_loss: 0.4792\n", + "1 epoch 119 average loss: 0.4792\n", + "----------\n", + "1: epoch 120/500\n", + "1/0, train_loss: 0.4278\n", + "1 epoch 120 average loss: 0.4278\n", + "saved new best metric model\n", + "current epoch: 120 current mean dice: 0.6387\n", + "best mean dice: 0.6387 at epoch: 120\n", + "----------\n", + "1: epoch 121/500\n", + "1/0, train_loss: 0.4200\n", + "1 epoch 121 average loss: 0.4200\n", + "----------\n", + "1: epoch 122/500\n", + "1/0, train_loss: 0.4371\n", + "1 epoch 122 average loss: 0.4371\n", + "current epoch: 122 current mean dice: 0.6188\n", + "best mean dice: 0.6387 at epoch: 120\n", + "----------\n", + "1: epoch 123/500\n", + "1/0, train_loss: 0.4314\n", + "1 epoch 123 average loss: 0.4314\n", + "----------\n", + "1: epoch 124/500\n", + "1/0, train_loss: 0.4225\n", + "1 epoch 124 average loss: 0.4225\n", + "current epoch: 124 current mean dice: 0.5984\n", + "best mean dice: 0.6387 at epoch: 120\n", + "----------\n", + "1: epoch 125/500\n", + "1/0, train_loss: 0.4240\n", + "1 epoch 125 average loss: 0.4240\n", + "----------\n", + "1: epoch 126/500\n", + "1/0, train_loss: 0.4279\n", + "1 epoch 126 average loss: 0.4279\n", + "current epoch: 126 current mean dice: 0.5754\n", + "best mean dice: 0.6387 at epoch: 120\n", + "----------\n", + "1: epoch 127/500\n", + "1/0, train_loss: 0.4556\n", + "1 epoch 127 average loss: 0.4556\n", + "----------\n", + "1: epoch 128/500\n", + "1/0, train_loss: 0.4163\n", + "1 epoch 128 average loss: 0.4163\n", + "current epoch: 128 current mean dice: 0.6343\n", + "best mean dice: 0.6387 at epoch: 120\n", + "----------\n", + "1: epoch 129/500\n", + "1/0, train_loss: 0.4186\n", + "1 epoch 129 average loss: 0.4186\n", + "----------\n", + "1: epoch 130/500\n", + "1/0, train_loss: 0.4246\n", + "1 epoch 130 average loss: 0.4246\n", + "current epoch: 130 current mean dice: 0.6311\n", + "best mean dice: 0.6387 at epoch: 120\n", + "----------\n", + "1: epoch 131/500\n", + "1/0, train_loss: 0.4231\n", + "1 epoch 131 average loss: 0.4231\n", + "----------\n", + "1: epoch 132/500\n", + "1/0, train_loss: 0.4226\n", + "1 epoch 132 average loss: 0.4226\n", + "saved new best metric model\n", + "current epoch: 132 current mean dice: 0.6390\n", + "best mean dice: 0.6390 at epoch: 132\n", + "----------\n", + "1: epoch 133/500\n", + "1/0, train_loss: 0.4229\n", + "1 epoch 133 average loss: 0.4229\n", + "----------\n", + "1: epoch 134/500\n", + "1/0, train_loss: 0.4131\n", + "1 epoch 134 average loss: 0.4131\n", + "current epoch: 134 current mean dice: 0.5621\n", + "best mean dice: 0.6390 at epoch: 132\n", + "----------\n", + "1: epoch 135/500\n", + "1/0, train_loss: 0.4178\n", + "1 epoch 135 average loss: 0.4178\n", + "----------\n", + "1: epoch 136/500\n", + "1/0, train_loss: 0.4185\n", + "1 epoch 136 average loss: 0.4185\n", + "current epoch: 136 current mean dice: 0.5463\n", + "best mean dice: 0.6390 at epoch: 132\n", + "----------\n", + "1: epoch 137/500\n", + "1/0, train_loss: 0.4165\n", + "1 epoch 137 average loss: 0.4165\n", + "----------\n", + "1: epoch 138/500\n", + "1/0, train_loss: 0.4106\n", + "1 epoch 138 average loss: 0.4106\n", + "current epoch: 138 current mean dice: 0.5467\n", + "best mean dice: 0.6390 at epoch: 132\n", + "----------\n", + "1: epoch 139/500\n", + "1/0, train_loss: 0.4273\n", + "1 epoch 139 average loss: 0.4273\n", + "----------\n", + "1: epoch 140/500\n", + "1/0, train_loss: 0.4110\n", + "1 epoch 140 average loss: 0.4110\n", + "current epoch: 140 current mean dice: 0.5896\n", + "best mean dice: 0.6390 at epoch: 132\n", + "----------\n", + "1: epoch 141/500\n", + "1/0, train_loss: 0.4134\n", + "1 epoch 141 average loss: 0.4134\n", + "----------\n", + "1: epoch 142/500\n", + "1/0, train_loss: 0.4096\n", + "1 epoch 142 average loss: 0.4096\n", + "current epoch: 142 current mean dice: 0.6002\n", + "best mean dice: 0.6390 at epoch: 132\n", + "----------\n", + "1: epoch 143/500\n", + "1/0, train_loss: 0.4101\n", + "1 epoch 143 average loss: 0.4101\n", + "----------\n", + "1: epoch 144/500\n", + "1/0, train_loss: 0.4074\n", + "1 epoch 144 average loss: 0.4074\n", + "current epoch: 144 current mean dice: 0.5642\n", + "best mean dice: 0.6390 at epoch: 132\n", + "----------\n", + "1: epoch 145/500\n", + "1/0, train_loss: 0.4283\n", + "1 epoch 145 average loss: 0.4283\n", + "----------\n", + "1: epoch 146/500\n", + "1/0, train_loss: 0.4116\n", + "1 epoch 146 average loss: 0.4116\n", + "current epoch: 146 current mean dice: 0.6182\n", + "best mean dice: 0.6390 at epoch: 132\n", + "----------\n", + "1: epoch 147/500\n", + "1/0, train_loss: 0.4119\n", + "1 epoch 147 average loss: 0.4119\n", + "----------\n", + "1: epoch 148/500\n", + "1/0, train_loss: 0.4345\n", + "1 epoch 148 average loss: 0.4345\n", + "current epoch: 148 current mean dice: 0.6024\n", + "best mean dice: 0.6390 at epoch: 132\n", + "----------\n", + "1: epoch 149/500\n", + "1/0, train_loss: 0.4180\n", + "1 epoch 149 average loss: 0.4180\n", + "----------\n", + "1: epoch 150/500\n", + "1/0, train_loss: 0.4059\n", + "1 epoch 150 average loss: 0.4059\n", + "current epoch: 150 current mean dice: 0.5778\n", + "best mean dice: 0.6390 at epoch: 132\n", + "----------\n", + "1: epoch 151/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.4164\n", + "1 epoch 151 average loss: 0.4164\n", + "----------\n", + "1: epoch 152/500\n", + "1/0, train_loss: 0.4325\n", + "1 epoch 152 average loss: 0.4325\n", + "current epoch: 152 current mean dice: 0.6240\n", + "best mean dice: 0.6390 at epoch: 132\n", + "----------\n", + "1: epoch 153/500\n", + "1/0, train_loss: 0.4144\n", + "1 epoch 153 average loss: 0.4144\n", + "----------\n", + "1: epoch 154/500\n", + "1/0, train_loss: 0.4380\n", + "1 epoch 154 average loss: 0.4380\n", + "current epoch: 154 current mean dice: 0.4815\n", + "best mean dice: 0.6390 at epoch: 132\n", + "----------\n", + "1: epoch 155/500\n", + "1/0, train_loss: 0.4843\n", + "1 epoch 155 average loss: 0.4843\n", + "----------\n", + "1: epoch 156/500\n", + "1/0, train_loss: 0.5080\n", + "1 epoch 156 average loss: 0.5080\n", + "current epoch: 156 current mean dice: 0.5219\n", + "best mean dice: 0.6390 at epoch: 132\n", + "----------\n", + "1: epoch 157/500\n", + "1/0, train_loss: 0.4823\n", + "1 epoch 157 average loss: 0.4823\n", + "----------\n", + "1: epoch 158/500\n", + "1/0, train_loss: 0.4465\n", + "1 epoch 158 average loss: 0.4465\n", + "saved new best metric model\n", + "current epoch: 158 current mean dice: 0.6584\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 159/500\n", + "1/0, train_loss: 0.4376\n", + "1 epoch 159 average loss: 0.4376\n", + "----------\n", + "1: epoch 160/500\n", + "1/0, train_loss: 0.4604\n", + "1 epoch 160 average loss: 0.4604\n", + "current epoch: 160 current mean dice: 0.6536\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 161/500\n", + "1/0, train_loss: 0.4297\n", + "1 epoch 161 average loss: 0.4297\n", + "----------\n", + "1: epoch 162/500\n", + "1/0, train_loss: 0.4366\n", + "1 epoch 162 average loss: 0.4366\n", + "current epoch: 162 current mean dice: 0.6312\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 163/500\n", + "1/0, train_loss: 0.4238\n", + "1 epoch 163 average loss: 0.4238\n", + "----------\n", + "1: epoch 164/500\n", + "1/0, train_loss: 0.4451\n", + "1 epoch 164 average loss: 0.4451\n", + "current epoch: 164 current mean dice: 0.6153\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 165/500\n", + "1/0, train_loss: 0.4325\n", + "1 epoch 165 average loss: 0.4325\n", + "----------\n", + "1: epoch 166/500\n", + "1/0, train_loss: 0.4208\n", + "1 epoch 166 average loss: 0.4208\n", + "current epoch: 166 current mean dice: 0.6483\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 167/500\n", + "1/0, train_loss: 0.4195\n", + "1 epoch 167 average loss: 0.4195\n", + "----------\n", + "1: epoch 168/500\n", + "1/0, train_loss: 0.4270\n", + "1 epoch 168 average loss: 0.4270\n", + "current epoch: 168 current mean dice: 0.6380\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 169/500\n", + "1/0, train_loss: 0.4376\n", + "1 epoch 169 average loss: 0.4376\n", + "----------\n", + "1: epoch 170/500\n", + "1/0, train_loss: 0.4148\n", + "1 epoch 170 average loss: 0.4148\n", + "current epoch: 170 current mean dice: 0.5554\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 171/500\n", + "1/0, train_loss: 0.4615\n", + "1 epoch 171 average loss: 0.4615\n", + "----------\n", + "1: epoch 172/500\n", + "1/0, train_loss: 0.4167\n", + "1 epoch 172 average loss: 0.4167\n", + "current epoch: 172 current mean dice: 0.5597\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 173/500\n", + "1/0, train_loss: 0.4085\n", + "1 epoch 173 average loss: 0.4085\n", + "----------\n", + "1: epoch 174/500\n", + "1/0, train_loss: 0.4798\n", + "1 epoch 174 average loss: 0.4798\n", + "current epoch: 174 current mean dice: 0.5344\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 175/500\n", + "1/0, train_loss: 0.5450\n", + "1 epoch 175 average loss: 0.5450\n", + "----------\n", + "1: epoch 176/500\n", + "1/0, train_loss: 0.4774\n", + "1 epoch 176 average loss: 0.4774\n", + "current epoch: 176 current mean dice: 0.5773\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 177/500\n", + "1/0, train_loss: 0.4854\n", + "1 epoch 177 average loss: 0.4854\n", + "----------\n", + "1: epoch 178/500\n", + "1/0, train_loss: 0.4995\n", + "1 epoch 178 average loss: 0.4995\n", + "current epoch: 178 current mean dice: 0.6149\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 179/500\n", + "1/0, train_loss: 0.5020\n", + "1 epoch 179 average loss: 0.5020\n", + "----------\n", + "1: epoch 180/500\n", + "1/0, train_loss: 0.4833\n", + "1 epoch 180 average loss: 0.4833\n", + "current epoch: 180 current mean dice: 0.4641\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 181/500\n", + "1/0, train_loss: 0.5335\n", + "1 epoch 181 average loss: 0.5335\n", + "----------\n", + "1: epoch 182/500\n", + "1/0, train_loss: 0.5124\n", + "1 epoch 182 average loss: 0.5124\n", + "current epoch: 182 current mean dice: 0.5360\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 183/500\n", + "1/0, train_loss: 0.4993\n", + "1 epoch 183 average loss: 0.4993\n", + "----------\n", + "1: epoch 184/500\n", + "1/0, train_loss: 0.5011\n", + "1 epoch 184 average loss: 0.5011\n", + "current epoch: 184 current mean dice: 0.5177\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 185/500\n", + "1/0, train_loss: 0.5328\n", + "1 epoch 185 average loss: 0.5328\n", + "----------\n", + "1: epoch 186/500\n", + "1/0, train_loss: 0.5111\n", + "1 epoch 186 average loss: 0.5111\n", + "current epoch: 186 current mean dice: 0.5741\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 187/500\n", + "1/0, train_loss: 0.4940\n", + "1 epoch 187 average loss: 0.4940\n", + "----------\n", + "1: epoch 188/500\n", + "1/0, train_loss: 0.4891\n", + "1 epoch 188 average loss: 0.4891\n", + "current epoch: 188 current mean dice: 0.5691\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 189/500\n", + "1/0, train_loss: 0.4857\n", + "1 epoch 189 average loss: 0.4857\n", + "----------\n", + "1: epoch 190/500\n", + "1/0, train_loss: 0.4747\n", + "1 epoch 190 average loss: 0.4747\n", + "current epoch: 190 current mean dice: 0.5924\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 191/500\n", + "1/0, train_loss: 0.4786\n", + "1 epoch 191 average loss: 0.4786\n", + "----------\n", + "1: epoch 192/500\n", + "1/0, train_loss: 0.4670\n", + "1 epoch 192 average loss: 0.4670\n", + "current epoch: 192 current mean dice: 0.6082\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 193/500\n", + "1/0, train_loss: 0.4638\n", + "1 epoch 193 average loss: 0.4638\n", + "----------\n", + "1: epoch 194/500\n", + "1/0, train_loss: 0.4625\n", + "1 epoch 194 average loss: 0.4625\n", + "current epoch: 194 current mean dice: 0.6088\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 195/500\n", + "1/0, train_loss: 0.4530\n", + "1 epoch 195 average loss: 0.4530\n", + "----------\n", + "1: epoch 196/500\n", + "1/0, train_loss: 0.4431\n", + "1 epoch 196 average loss: 0.4431\n", + "current epoch: 196 current mean dice: 0.6273\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 197/500\n", + "1/0, train_loss: 0.4416\n", + "1 epoch 197 average loss: 0.4416\n", + "----------\n", + "1: epoch 198/500\n", + "1/0, train_loss: 0.4553\n", + "1 epoch 198 average loss: 0.4553\n", + "current epoch: 198 current mean dice: 0.6187\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 199/500\n", + "1/0, train_loss: 0.4709\n", + "1 epoch 199 average loss: 0.4709\n", + "----------\n", + "1: epoch 200/500\n", + "1/0, train_loss: 0.4479\n", + "1 epoch 200 average loss: 0.4479\n", + "current epoch: 200 current mean dice: 0.4350\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 201/500\n", + "1/0, train_loss: 0.4568\n", + "1 epoch 201 average loss: 0.4568\n", + "----------\n", + "1: epoch 202/500\n", + "1/0, train_loss: 0.4628\n", + "1 epoch 202 average loss: 0.4628\n", + "current epoch: 202 current mean dice: 0.6309\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 203/500\n", + "1/0, train_loss: 0.4831\n", + "1 epoch 203 average loss: 0.4831\n", + "----------\n", + "1: epoch 204/500\n", + "1/0, train_loss: 0.4477\n", + "1 epoch 204 average loss: 0.4477\n", + "current epoch: 204 current mean dice: 0.4793\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 205/500\n", + "1/0, train_loss: 0.4647\n", + "1 epoch 205 average loss: 0.4647\n", + "----------\n", + "1: epoch 206/500\n", + "1/0, train_loss: 0.4432\n", + "1 epoch 206 average loss: 0.4432\n", + "current epoch: 206 current mean dice: 0.5824\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 207/500\n", + "1/0, train_loss: 0.4396\n", + "1 epoch 207 average loss: 0.4396\n", + "----------\n", + "1: epoch 208/500\n", + "1/0, train_loss: 0.4374\n", + "1 epoch 208 average loss: 0.4374\n", + "current epoch: 208 current mean dice: 0.6156\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 209/500\n", + "1/0, train_loss: 0.4306\n", + "1 epoch 209 average loss: 0.4306\n", + "----------\n", + "1: epoch 210/500\n", + "1/0, train_loss: 0.4202\n", + "1 epoch 210 average loss: 0.4202\n", + "current epoch: 210 current mean dice: 0.6296\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 211/500\n", + "1/0, train_loss: 0.4149\n", + "1 epoch 211 average loss: 0.4149\n", + "----------\n", + "1: epoch 212/500\n", + "1/0, train_loss: 0.4149\n", + "1 epoch 212 average loss: 0.4149\n", + "current epoch: 212 current mean dice: 0.6123\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 213/500\n", + "1/0, train_loss: 0.4360\n", + "1 epoch 213 average loss: 0.4360\n", + "----------\n", + "1: epoch 214/500\n", + "1/0, train_loss: 0.4112\n", + "1 epoch 214 average loss: 0.4112\n", + "current epoch: 214 current mean dice: 0.6409\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 215/500\n", + "1/0, train_loss: 0.4142\n", + "1 epoch 215 average loss: 0.4142\n", + "----------\n", + "1: epoch 216/500\n", + "1/0, train_loss: 0.4092\n", + "1 epoch 216 average loss: 0.4092\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "current epoch: 216 current mean dice: 0.6570\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 217/500\n", + "1/0, train_loss: 0.4115\n", + "1 epoch 217 average loss: 0.4115\n", + "----------\n", + "1: epoch 218/500\n", + "1/0, train_loss: 0.4118\n", + "1 epoch 218 average loss: 0.4118\n", + "current epoch: 218 current mean dice: 0.6361\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 219/500\n", + "1/0, train_loss: 0.4093\n", + "1 epoch 219 average loss: 0.4093\n", + "----------\n", + "1: epoch 220/500\n", + "1/0, train_loss: 0.4092\n", + "1 epoch 220 average loss: 0.4092\n", + "current epoch: 220 current mean dice: 0.6441\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 221/500\n", + "1/0, train_loss: 0.4198\n", + "1 epoch 221 average loss: 0.4198\n", + "----------\n", + "1: epoch 222/500\n", + "1/0, train_loss: 0.4117\n", + "1 epoch 222 average loss: 0.4117\n", + "current epoch: 222 current mean dice: 0.6369\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 223/500\n", + "1/0, train_loss: 0.4016\n", + "1 epoch 223 average loss: 0.4016\n", + "----------\n", + "1: epoch 224/500\n", + "1/0, train_loss: 0.3997\n", + "1 epoch 224 average loss: 0.3997\n", + "current epoch: 224 current mean dice: 0.6171\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 225/500\n", + "1/0, train_loss: 0.3980\n", + "1 epoch 225 average loss: 0.3980\n", + "----------\n", + "1: epoch 226/500\n", + "1/0, train_loss: 0.4026\n", + "1 epoch 226 average loss: 0.4026\n", + "current epoch: 226 current mean dice: 0.5931\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 227/500\n", + "1/0, train_loss: 0.3990\n", + "1 epoch 227 average loss: 0.3990\n", + "----------\n", + "1: epoch 228/500\n", + "1/0, train_loss: 0.3968\n", + "1 epoch 228 average loss: 0.3968\n", + "current epoch: 228 current mean dice: 0.5802\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 229/500\n", + "1/0, train_loss: 0.3956\n", + "1 epoch 229 average loss: 0.3956\n", + "----------\n", + "1: epoch 230/500\n", + "1/0, train_loss: 0.4159\n", + "1 epoch 230 average loss: 0.4159\n", + "current epoch: 230 current mean dice: 0.6456\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 231/500\n", + "1/0, train_loss: 0.3978\n", + "1 epoch 231 average loss: 0.3978\n", + "----------\n", + "1: epoch 232/500\n", + "1/0, train_loss: 0.3963\n", + "1 epoch 232 average loss: 0.3963\n", + "current epoch: 232 current mean dice: 0.4755\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 233/500\n", + "1/0, train_loss: 0.4024\n", + "1 epoch 233 average loss: 0.4024\n", + "----------\n", + "1: epoch 234/500\n", + "1/0, train_loss: 0.4167\n", + "1 epoch 234 average loss: 0.4167\n", + "current epoch: 234 current mean dice: 0.5688\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 235/500\n", + "1/0, train_loss: 0.4386\n", + "1 epoch 235 average loss: 0.4386\n", + "----------\n", + "1: epoch 236/500\n", + "1/0, train_loss: 0.4780\n", + "1 epoch 236 average loss: 0.4780\n", + "current epoch: 236 current mean dice: 0.5473\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 237/500\n", + "1/0, train_loss: 0.4413\n", + "1 epoch 237 average loss: 0.4413\n", + "----------\n", + "1: epoch 238/500\n", + "1/0, train_loss: 0.4078\n", + "1 epoch 238 average loss: 0.4078\n", + "current epoch: 238 current mean dice: 0.5981\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 239/500\n", + "1/0, train_loss: 0.4027\n", + "1 epoch 239 average loss: 0.4027\n", + "----------\n", + "1: epoch 240/500\n", + "1/0, train_loss: 0.4145\n", + "1 epoch 240 average loss: 0.4145\n", + "current epoch: 240 current mean dice: 0.6134\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 241/500\n", + "1/0, train_loss: 0.4279\n", + "1 epoch 241 average loss: 0.4279\n", + "----------\n", + "1: epoch 242/500\n", + "1/0, train_loss: 0.4032\n", + "1 epoch 242 average loss: 0.4032\n", + "current epoch: 242 current mean dice: 0.6065\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 243/500\n", + "1/0, train_loss: 0.4152\n", + "1 epoch 243 average loss: 0.4152\n", + "----------\n", + "1: epoch 244/500\n", + "1/0, train_loss: 0.4340\n", + "1 epoch 244 average loss: 0.4340\n", + "current epoch: 244 current mean dice: 0.5843\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 245/500\n", + "1/0, train_loss: 0.4674\n", + "1 epoch 245 average loss: 0.4674\n", + "----------\n", + "1: epoch 246/500\n", + "1/0, train_loss: 0.4089\n", + "1 epoch 246 average loss: 0.4089\n", + "current epoch: 246 current mean dice: 0.5612\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 247/500\n", + "1/0, train_loss: 0.4106\n", + "1 epoch 247 average loss: 0.4106\n", + "----------\n", + "1: epoch 248/500\n", + "1/0, train_loss: 0.4076\n", + "1 epoch 248 average loss: 0.4076\n", + "current epoch: 248 current mean dice: 0.5461\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 249/500\n", + "1/0, train_loss: 0.4229\n", + "1 epoch 249 average loss: 0.4229\n", + "----------\n", + "1: epoch 250/500\n", + "1/0, train_loss: 0.4120\n", + "1 epoch 250 average loss: 0.4120\n", + "current epoch: 250 current mean dice: 0.6261\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 251/500\n", + "1/0, train_loss: 0.3987\n", + "1 epoch 251 average loss: 0.3987\n", + "----------\n", + "1: epoch 252/500\n", + "1/0, train_loss: 0.4393\n", + "1 epoch 252 average loss: 0.4393\n", + "current epoch: 252 current mean dice: 0.5762\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 253/500\n", + "1/0, train_loss: 0.4038\n", + "1 epoch 253 average loss: 0.4038\n", + "----------\n", + "1: epoch 254/500\n", + "1/0, train_loss: 0.4017\n", + "1 epoch 254 average loss: 0.4017\n", + "current epoch: 254 current mean dice: 0.5716\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 255/500\n", + "1/0, train_loss: 0.3941\n", + "1 epoch 255 average loss: 0.3941\n", + "----------\n", + "1: epoch 256/500\n", + "1/0, train_loss: 0.4368\n", + "1 epoch 256 average loss: 0.4368\n", + "current epoch: 256 current mean dice: 0.5723\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 257/500\n", + "1/0, train_loss: 0.4399\n", + "1 epoch 257 average loss: 0.4399\n", + "----------\n", + "1: epoch 258/500\n", + "1/0, train_loss: 0.3983\n", + "1 epoch 258 average loss: 0.3983\n", + "current epoch: 258 current mean dice: 0.5970\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 259/500\n", + "1/0, train_loss: 0.4121\n", + "1 epoch 259 average loss: 0.4121\n", + "----------\n", + "1: epoch 260/500\n", + "1/0, train_loss: 0.4036\n", + "1 epoch 260 average loss: 0.4036\n", + "current epoch: 260 current mean dice: 0.5447\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 261/500\n", + "1/0, train_loss: 0.4165\n", + "1 epoch 261 average loss: 0.4165\n", + "----------\n", + "1: epoch 262/500\n", + "1/0, train_loss: 0.5114\n", + "1 epoch 262 average loss: 0.5114\n", + "current epoch: 262 current mean dice: 0.5339\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 263/500\n", + "1/0, train_loss: 0.4249\n", + "1 epoch 263 average loss: 0.4249\n", + "----------\n", + "1: epoch 264/500\n", + "1/0, train_loss: 0.4252\n", + "1 epoch 264 average loss: 0.4252\n", + "saved new best metric model\n", + "current epoch: 264 current mean dice: 0.6669\n", + "best mean dice: 0.6669 at epoch: 264\n", + "----------\n", + "1: epoch 265/500\n", + "1/0, train_loss: 0.4067\n", + "1 epoch 265 average loss: 0.4067\n", + "----------\n", + "1: epoch 266/500\n", + "1/0, train_loss: 0.4367\n", + "1 epoch 266 average loss: 0.4367\n", + "saved new best metric model\n", + "current epoch: 266 current mean dice: 0.6720\n", + "best mean dice: 0.6720 at epoch: 266\n", + "----------\n", + "1: epoch 267/500\n", + "1/0, train_loss: 0.3987\n", + "1 epoch 267 average loss: 0.3987\n", + "----------\n", + "1: epoch 268/500\n", + "1/0, train_loss: 0.3994\n", + "1 epoch 268 average loss: 0.3994\n", + "current epoch: 268 current mean dice: 0.6442\n", + "best mean dice: 0.6720 at epoch: 266\n", + "----------\n", + "1: epoch 269/500\n", + "1/0, train_loss: 0.4062\n", + "1 epoch 269 average loss: 0.4062\n", + "----------\n", + "1: epoch 270/500\n", + "1/0, train_loss: 0.4039\n", + "1 epoch 270 average loss: 0.4039\n", + "current epoch: 270 current mean dice: 0.6488\n", + "best mean dice: 0.6720 at epoch: 266\n", + "----------\n", + "1: epoch 271/500\n", + "1/0, train_loss: 0.3985\n", + "1 epoch 271 average loss: 0.3985\n", + "----------\n", + "1: epoch 272/500\n", + "1/0, train_loss: 0.3899\n", + "1 epoch 272 average loss: 0.3899\n", + "current epoch: 272 current mean dice: 0.6391\n", + "best mean dice: 0.6720 at epoch: 266\n", + "----------\n", + "1: epoch 273/500\n", + "1/0, train_loss: 0.3913\n", + "1 epoch 273 average loss: 0.3913\n", + "----------\n", + "1: epoch 274/500\n", + "1/0, train_loss: 0.4118\n", + "1 epoch 274 average loss: 0.4118\n", + "current epoch: 274 current mean dice: 0.6494\n", + "best mean dice: 0.6720 at epoch: 266\n", + "----------\n", + "1: epoch 275/500\n", + "1/0, train_loss: 0.3907\n", + "1 epoch 275 average loss: 0.3907\n", + "----------\n", + "1: epoch 276/500\n", + "1/0, train_loss: 0.4023\n", + "1 epoch 276 average loss: 0.4023\n", + "current epoch: 276 current mean dice: 0.5871\n", + "best mean dice: 0.6720 at epoch: 266\n", + "----------\n", + "1: epoch 277/500\n", + "1/0, train_loss: 0.3987\n", + "1 epoch 277 average loss: 0.3987\n", + "----------\n", + "1: epoch 278/500\n", + "1/0, train_loss: 0.3899\n", + "1 epoch 278 average loss: 0.3899\n", + "current epoch: 278 current mean dice: 0.6646\n", + "best mean dice: 0.6720 at epoch: 266\n", + "----------\n", + "1: epoch 279/500\n", + "1/0, train_loss: 0.3974\n", + "1 epoch 279 average loss: 0.3974\n", + "----------\n", + "1: epoch 280/500\n", + "1/0, train_loss: 0.3887\n", + "1 epoch 280 average loss: 0.3887\n", + "current epoch: 280 current mean dice: 0.5832\n", + "best mean dice: 0.6720 at epoch: 266\n", + "----------\n", + "1: epoch 281/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.4077\n", + "1 epoch 281 average loss: 0.4077\n", + "----------\n", + "1: epoch 282/500\n", + "1/0, train_loss: 0.3886\n", + "1 epoch 282 average loss: 0.3886\n", + "current epoch: 282 current mean dice: 0.6655\n", + "best mean dice: 0.6720 at epoch: 266\n", + "----------\n", + "1: epoch 283/500\n", + "1/0, train_loss: 0.3930\n", + "1 epoch 283 average loss: 0.3930\n", + "----------\n", + "1: epoch 284/500\n", + "1/0, train_loss: 0.3899\n", + "1 epoch 284 average loss: 0.3899\n", + "saved new best metric model\n", + "current epoch: 284 current mean dice: 0.6738\n", + "best mean dice: 0.6738 at epoch: 284\n", + "----------\n", + "1: epoch 285/500\n", + "1/0, train_loss: 0.3883\n", + "1 epoch 285 average loss: 0.3883\n", + "----------\n", + "1: epoch 286/500\n", + "1/0, train_loss: 0.3978\n", + "1 epoch 286 average loss: 0.3978\n", + "current epoch: 286 current mean dice: 0.6286\n", + "best mean dice: 0.6738 at epoch: 284\n", + "----------\n", + "1: epoch 287/500\n", + "1/0, train_loss: 0.3868\n", + "1 epoch 287 average loss: 0.3868\n", + "----------\n", + "1: epoch 288/500\n", + "1/0, train_loss: 0.4051\n", + "1 epoch 288 average loss: 0.4051\n", + "current epoch: 288 current mean dice: 0.5364\n", + "best mean dice: 0.6738 at epoch: 284\n", + "----------\n", + "1: epoch 289/500\n", + "1/0, train_loss: 0.4939\n", + "1 epoch 289 average loss: 0.4939\n", + "----------\n", + "1: epoch 290/500\n", + "1/0, train_loss: 0.4957\n", + "1 epoch 290 average loss: 0.4957\n", + "current epoch: 290 current mean dice: 0.5206\n", + "best mean dice: 0.6738 at epoch: 284\n", + "----------\n", + "1: epoch 291/500\n", + "1/0, train_loss: 0.4905\n", + "1 epoch 291 average loss: 0.4905\n", + "----------\n", + "1: epoch 292/500\n", + "1/0, train_loss: 0.4433\n", + "1 epoch 292 average loss: 0.4433\n", + "current epoch: 292 current mean dice: 0.6157\n", + "best mean dice: 0.6738 at epoch: 284\n", + "----------\n", + "1: epoch 293/500\n", + "1/0, train_loss: 0.4116\n", + "1 epoch 293 average loss: 0.4116\n", + "----------\n", + "1: epoch 294/500\n", + "1/0, train_loss: 0.4147\n", + "1 epoch 294 average loss: 0.4147\n", + "current epoch: 294 current mean dice: 0.5744\n", + "best mean dice: 0.6738 at epoch: 284\n", + "----------\n", + "1: epoch 295/500\n", + "1/0, train_loss: 0.4266\n", + "1 epoch 295 average loss: 0.4266\n", + "----------\n", + "1: epoch 296/500\n", + "1/0, train_loss: 0.4562\n", + "1 epoch 296 average loss: 0.4562\n", + "current epoch: 296 current mean dice: 0.6449\n", + "best mean dice: 0.6738 at epoch: 284\n", + "----------\n", + "1: epoch 297/500\n", + "1/0, train_loss: 0.4121\n", + "1 epoch 297 average loss: 0.4121\n", + "----------\n", + "1: epoch 298/500\n", + "1/0, train_loss: 0.4001\n", + "1 epoch 298 average loss: 0.4001\n", + "current epoch: 298 current mean dice: 0.6457\n", + "best mean dice: 0.6738 at epoch: 284\n", + "----------\n", + "1: epoch 299/500\n", + "1/0, train_loss: 0.4000\n", + "1 epoch 299 average loss: 0.4000\n", + "----------\n", + "1: epoch 300/500\n", + "1/0, train_loss: 0.4345\n", + "1 epoch 300 average loss: 0.4345\n", + "current epoch: 300 current mean dice: 0.6426\n", + "best mean dice: 0.6738 at epoch: 284\n", + "----------\n", + "1: epoch 301/500\n", + "1/0, train_loss: 0.4084\n", + "1 epoch 301 average loss: 0.4084\n", + "----------\n", + "1: epoch 302/500\n", + "1/0, train_loss: 0.4073\n", + "1 epoch 302 average loss: 0.4073\n", + "current epoch: 302 current mean dice: 0.6117\n", + "best mean dice: 0.6738 at epoch: 284\n", + "----------\n", + "1: epoch 303/500\n", + "1/0, train_loss: 0.3947\n", + "1 epoch 303 average loss: 0.3947\n", + "----------\n", + "1: epoch 304/500\n", + "1/0, train_loss: 0.4314\n", + "1 epoch 304 average loss: 0.4314\n", + "current epoch: 304 current mean dice: 0.6143\n", + "best mean dice: 0.6738 at epoch: 284\n", + "----------\n", + "1: epoch 305/500\n", + "1/0, train_loss: 0.3901\n", + "1 epoch 305 average loss: 0.3901\n", + "----------\n", + "1: epoch 306/500\n", + "1/0, train_loss: 0.3905\n", + "1 epoch 306 average loss: 0.3905\n", + "current epoch: 306 current mean dice: 0.6417\n", + "best mean dice: 0.6738 at epoch: 284\n", + "----------\n", + "1: epoch 307/500\n", + "1/0, train_loss: 0.3859\n", + "1 epoch 307 average loss: 0.3859\n", + "----------\n", + "1: epoch 308/500\n", + "1/0, train_loss: 0.3874\n", + "1 epoch 308 average loss: 0.3874\n", + "current epoch: 308 current mean dice: 0.6229\n", + "best mean dice: 0.6738 at epoch: 284\n", + "----------\n", + "1: epoch 309/500\n", + "1/0, train_loss: 0.3961\n", + "1 epoch 309 average loss: 0.3961\n", + "----------\n", + "1: epoch 310/500\n", + "1/0, train_loss: 0.3916\n", + "1 epoch 310 average loss: 0.3916\n", + "current epoch: 310 current mean dice: 0.6038\n", + "best mean dice: 0.6738 at epoch: 284\n", + "----------\n", + "1: epoch 311/500\n", + "1/0, train_loss: 0.3824\n", + "1 epoch 311 average loss: 0.3824\n", + "----------\n", + "1: epoch 312/500\n", + "1/0, train_loss: 0.3856\n", + "1 epoch 312 average loss: 0.3856\n", + "current epoch: 312 current mean dice: 0.6069\n", + "best mean dice: 0.6738 at epoch: 284\n", + "----------\n", + "1: epoch 313/500\n", + "1/0, train_loss: 0.3949\n", + "1 epoch 313 average loss: 0.3949\n", + "----------\n", + "1: epoch 314/500\n", + "1/0, train_loss: 0.3851\n", + "1 epoch 314 average loss: 0.3851\n", + "current epoch: 314 current mean dice: 0.5817\n", + "best mean dice: 0.6738 at epoch: 284\n", + "----------\n", + "1: epoch 315/500\n", + "1/0, train_loss: 0.3887\n", + "1 epoch 315 average loss: 0.3887\n", + "----------\n", + "1: epoch 316/500\n", + "1/0, train_loss: 0.3864\n", + "1 epoch 316 average loss: 0.3864\n", + "current epoch: 316 current mean dice: 0.6047\n", + "best mean dice: 0.6738 at epoch: 284\n", + "----------\n", + "1: epoch 317/500\n", + "1/0, train_loss: 0.3859\n", + "1 epoch 317 average loss: 0.3859\n", + "----------\n", + "1: epoch 318/500\n", + "1/0, train_loss: 0.3896\n", + "1 epoch 318 average loss: 0.3896\n", + "current epoch: 318 current mean dice: 0.5941\n", + "best mean dice: 0.6738 at epoch: 284\n", + "----------\n", + "1: epoch 319/500\n", + "1/0, train_loss: 0.3830\n", + "1 epoch 319 average loss: 0.3830\n", + "----------\n", + "1: epoch 320/500\n", + "1/0, train_loss: 0.3913\n", + "1 epoch 320 average loss: 0.3913\n", + "current epoch: 320 current mean dice: 0.5847\n", + "best mean dice: 0.6738 at epoch: 284\n", + "----------\n", + "1: epoch 321/500\n", + "1/0, train_loss: 0.4142\n", + "1 epoch 321 average loss: 0.4142\n", + "----------\n", + "1: epoch 322/500\n", + "1/0, train_loss: 0.3897\n", + "1 epoch 322 average loss: 0.3897\n", + "current epoch: 322 current mean dice: 0.5875\n", + "best mean dice: 0.6738 at epoch: 284\n", + "----------\n", + "1: epoch 323/500\n", + "1/0, train_loss: 0.3887\n", + "1 epoch 323 average loss: 0.3887\n", + "----------\n", + "1: epoch 324/500\n", + "1/0, train_loss: 0.4315\n", + "1 epoch 324 average loss: 0.4315\n", + "current epoch: 324 current mean dice: 0.6384\n", + "best mean dice: 0.6738 at epoch: 284\n", + "----------\n", + "1: epoch 325/500\n", + "1/0, train_loss: 0.3881\n", + "1 epoch 325 average loss: 0.3881\n", + "----------\n", + "1: epoch 326/500\n", + "1/0, train_loss: 0.3850\n", + "1 epoch 326 average loss: 0.3850\n", + "saved new best metric model\n", + "current epoch: 326 current mean dice: 0.6825\n", + "best mean dice: 0.6825 at epoch: 326\n", + "----------\n", + "1: epoch 327/500\n", + "1/0, train_loss: 0.3976\n", + "1 epoch 327 average loss: 0.3976\n", + "----------\n", + "1: epoch 328/500\n", + "1/0, train_loss: 0.3870\n", + "1 epoch 328 average loss: 0.3870\n", + "saved new best metric model\n", + "current epoch: 328 current mean dice: 0.7235\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 329/500\n", + "1/0, train_loss: 0.4197\n", + "1 epoch 329 average loss: 0.4197\n", + "----------\n", + "1: epoch 330/500\n", + "1/0, train_loss: 0.4144\n", + "1 epoch 330 average loss: 0.4144\n", + "current epoch: 330 current mean dice: 0.6395\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 331/500\n", + "1/0, train_loss: 0.4614\n", + "1 epoch 331 average loss: 0.4614\n", + "----------\n", + "1: epoch 332/500\n", + "1/0, train_loss: 0.4011\n", + "1 epoch 332 average loss: 0.4011\n", + "current epoch: 332 current mean dice: 0.6479\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 333/500\n", + "1/0, train_loss: 0.3973\n", + "1 epoch 333 average loss: 0.3973\n", + "----------\n", + "1: epoch 334/500\n", + "1/0, train_loss: 0.3850\n", + "1 epoch 334 average loss: 0.3850\n", + "current epoch: 334 current mean dice: 0.7121\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 335/500\n", + "1/0, train_loss: 0.4658\n", + "1 epoch 335 average loss: 0.4658\n", + "----------\n", + "1: epoch 336/500\n", + "1/0, train_loss: 0.3810\n", + "1 epoch 336 average loss: 0.3810\n", + "current epoch: 336 current mean dice: 0.5552\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 337/500\n", + "1/0, train_loss: 0.3933\n", + "1 epoch 337 average loss: 0.3933\n", + "----------\n", + "1: epoch 338/500\n", + "1/0, train_loss: 0.3964\n", + "1 epoch 338 average loss: 0.3964\n", + "current epoch: 338 current mean dice: 0.5309\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 339/500\n", + "1/0, train_loss: 0.3961\n", + "1 epoch 339 average loss: 0.3961\n", + "----------\n", + "1: epoch 340/500\n", + "1/0, train_loss: 0.3894\n", + "1 epoch 340 average loss: 0.3894\n", + "current epoch: 340 current mean dice: 0.5345\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 341/500\n", + "1/0, train_loss: 0.3861\n", + "1 epoch 341 average loss: 0.3861\n", + "----------\n", + "1: epoch 342/500\n", + "1/0, train_loss: 0.3931\n", + "1 epoch 342 average loss: 0.3931\n", + "current epoch: 342 current mean dice: 0.5623\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 343/500\n", + "1/0, train_loss: 0.3811\n", + "1 epoch 343 average loss: 0.3811\n", + "----------\n", + "1: epoch 344/500\n", + "1/0, train_loss: 0.3846\n", + "1 epoch 344 average loss: 0.3846\n", + "current epoch: 344 current mean dice: 0.6039\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 345/500\n", + "1/0, train_loss: 0.4204\n", + "1 epoch 345 average loss: 0.4204\n", + "----------\n", + "1: epoch 346/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.4350\n", + "1 epoch 346 average loss: 0.4350\n", + "current epoch: 346 current mean dice: 0.6983\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 347/500\n", + "1/0, train_loss: 0.3927\n", + "1 epoch 347 average loss: 0.3927\n", + "----------\n", + "1: epoch 348/500\n", + "1/0, train_loss: 0.3928\n", + "1 epoch 348 average loss: 0.3928\n", + "current epoch: 348 current mean dice: 0.6585\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 349/500\n", + "1/0, train_loss: 0.4265\n", + "1 epoch 349 average loss: 0.4265\n", + "----------\n", + "1: epoch 350/500\n", + "1/0, train_loss: 0.3834\n", + "1 epoch 350 average loss: 0.3834\n", + "current epoch: 350 current mean dice: 0.6185\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 351/500\n", + "1/0, train_loss: 0.3933\n", + "1 epoch 351 average loss: 0.3933\n", + "----------\n", + "1: epoch 352/500\n", + "1/0, train_loss: 0.4572\n", + "1 epoch 352 average loss: 0.4572\n", + "current epoch: 352 current mean dice: 0.5357\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 353/500\n", + "1/0, train_loss: 0.3893\n", + "1 epoch 353 average loss: 0.3893\n", + "----------\n", + "1: epoch 354/500\n", + "1/0, train_loss: 0.3876\n", + "1 epoch 354 average loss: 0.3876\n", + "current epoch: 354 current mean dice: 0.5544\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 355/500\n", + "1/0, train_loss: 0.3797\n", + "1 epoch 355 average loss: 0.3797\n", + "----------\n", + "1: epoch 356/500\n", + "1/0, train_loss: 0.3845\n", + "1 epoch 356 average loss: 0.3845\n", + "current epoch: 356 current mean dice: 0.5075\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 357/500\n", + "1/0, train_loss: 0.3874\n", + "1 epoch 357 average loss: 0.3874\n", + "----------\n", + "1: epoch 358/500\n", + "1/0, train_loss: 0.3821\n", + "1 epoch 358 average loss: 0.3821\n", + "current epoch: 358 current mean dice: 0.5473\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 359/500\n", + "1/0, train_loss: 0.4404\n", + "1 epoch 359 average loss: 0.4404\n", + "----------\n", + "1: epoch 360/500\n", + "1/0, train_loss: 0.3796\n", + "1 epoch 360 average loss: 0.3796\n", + "current epoch: 360 current mean dice: 0.5543\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 361/500\n", + "1/0, train_loss: 0.3791\n", + "1 epoch 361 average loss: 0.3791\n", + "----------\n", + "1: epoch 362/500\n", + "1/0, train_loss: 0.3861\n", + "1 epoch 362 average loss: 0.3861\n", + "current epoch: 362 current mean dice: 0.5480\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 363/500\n", + "1/0, train_loss: 0.3889\n", + "1 epoch 363 average loss: 0.3889\n", + "----------\n", + "1: epoch 364/500\n", + "1/0, train_loss: 0.3835\n", + "1 epoch 364 average loss: 0.3835\n", + "current epoch: 364 current mean dice: 0.5150\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 365/500\n", + "1/0, train_loss: 0.3860\n", + "1 epoch 365 average loss: 0.3860\n", + "----------\n", + "1: epoch 366/500\n", + "1/0, train_loss: 0.3741\n", + "1 epoch 366 average loss: 0.3741\n", + "current epoch: 366 current mean dice: 0.4571\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 367/500\n", + "1/0, train_loss: 0.3842\n", + "1 epoch 367 average loss: 0.3842\n", + "----------\n", + "1: epoch 368/500\n", + "1/0, train_loss: 0.3785\n", + "1 epoch 368 average loss: 0.3785\n", + "current epoch: 368 current mean dice: 0.4599\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 369/500\n", + "1/0, train_loss: 0.3837\n", + "1 epoch 369 average loss: 0.3837\n", + "----------\n", + "1: epoch 370/500\n", + "1/0, train_loss: 0.3830\n", + "1 epoch 370 average loss: 0.3830\n", + "current epoch: 370 current mean dice: 0.5742\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 371/500\n", + "1/0, train_loss: 0.3823\n", + "1 epoch 371 average loss: 0.3823\n", + "----------\n", + "1: epoch 372/500\n", + "1/0, train_loss: 0.3790\n", + "1 epoch 372 average loss: 0.3790\n", + "current epoch: 372 current mean dice: 0.5989\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 373/500\n", + "1/0, train_loss: 0.4185\n", + "1 epoch 373 average loss: 0.4185\n", + "----------\n", + "1: epoch 374/500\n", + "1/0, train_loss: 0.3965\n", + "1 epoch 374 average loss: 0.3965\n", + "current epoch: 374 current mean dice: 0.6138\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 375/500\n", + "1/0, train_loss: 0.3809\n", + "1 epoch 375 average loss: 0.3809\n", + "----------\n", + "1: epoch 376/500\n", + "1/0, train_loss: 0.3782\n", + "1 epoch 376 average loss: 0.3782\n", + "current epoch: 376 current mean dice: 0.6191\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 377/500\n", + "1/0, train_loss: 0.3828\n", + "1 epoch 377 average loss: 0.3828\n", + "----------\n", + "1: epoch 378/500\n", + "1/0, train_loss: 0.3948\n", + "1 epoch 378 average loss: 0.3948\n", + "current epoch: 378 current mean dice: 0.5938\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 379/500\n", + "1/0, train_loss: 0.4379\n", + "1 epoch 379 average loss: 0.4379\n", + "----------\n", + "1: epoch 380/500\n", + "1/0, train_loss: 0.3825\n", + "1 epoch 380 average loss: 0.3825\n", + "current epoch: 380 current mean dice: 0.6403\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 381/500\n", + "1/0, train_loss: 0.3798\n", + "1 epoch 381 average loss: 0.3798\n", + "----------\n", + "1: epoch 382/500\n", + "1/0, train_loss: 0.3816\n", + "1 epoch 382 average loss: 0.3816\n", + "current epoch: 382 current mean dice: 0.5936\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 383/500\n", + "1/0, train_loss: 0.3790\n", + "1 epoch 383 average loss: 0.3790\n", + "----------\n", + "1: epoch 384/500\n", + "1/0, train_loss: 0.3758\n", + "1 epoch 384 average loss: 0.3758\n", + "current epoch: 384 current mean dice: 0.5733\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 385/500\n", + "1/0, train_loss: 0.3857\n", + "1 epoch 385 average loss: 0.3857\n", + "----------\n", + "1: epoch 386/500\n", + "1/0, train_loss: 0.3849\n", + "1 epoch 386 average loss: 0.3849\n", + "current epoch: 386 current mean dice: 0.5220\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 387/500\n", + "1/0, train_loss: 0.3793\n", + "1 epoch 387 average loss: 0.3793\n", + "----------\n", + "1: epoch 388/500\n", + "1/0, train_loss: 0.3857\n", + "1 epoch 388 average loss: 0.3857\n", + "current epoch: 388 current mean dice: 0.5320\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 389/500\n", + "1/0, train_loss: 0.3779\n", + "1 epoch 389 average loss: 0.3779\n", + "----------\n", + "1: epoch 390/500\n", + "1/0, train_loss: 0.3827\n", + "1 epoch 390 average loss: 0.3827\n", + "current epoch: 390 current mean dice: 0.5306\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 391/500\n", + "1/0, train_loss: 0.4395\n", + "1 epoch 391 average loss: 0.4395\n", + "----------\n", + "1: epoch 392/500\n", + "1/0, train_loss: 0.3829\n", + "1 epoch 392 average loss: 0.3829\n", + "current epoch: 392 current mean dice: 0.5617\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 393/500\n", + "1/0, train_loss: 0.4337\n", + "1 epoch 393 average loss: 0.4337\n", + "----------\n", + "1: epoch 394/500\n", + "1/0, train_loss: 0.4113\n", + "1 epoch 394 average loss: 0.4113\n", + "current epoch: 394 current mean dice: 0.5893\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 395/500\n", + "1/0, train_loss: 0.3907\n", + "1 epoch 395 average loss: 0.3907\n", + "----------\n", + "1: epoch 396/500\n", + "1/0, train_loss: 0.3863\n", + "1 epoch 396 average loss: 0.3863\n", + "current epoch: 396 current mean dice: 0.6185\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 397/500\n", + "1/0, train_loss: 0.3835\n", + "1 epoch 397 average loss: 0.3835\n", + "----------\n", + "1: epoch 398/500\n", + "1/0, train_loss: 0.5174\n", + "1 epoch 398 average loss: 0.5174\n", + "current epoch: 398 current mean dice: 0.4304\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 399/500\n", + "1/0, train_loss: 0.5229\n", + "1 epoch 399 average loss: 0.5229\n", + "----------\n", + "1: epoch 400/500\n", + "1/0, train_loss: 0.4826\n", + "1 epoch 400 average loss: 0.4826\n", + "current epoch: 400 current mean dice: 0.6377\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 401/500\n", + "1/0, train_loss: 0.4296\n", + "1 epoch 401 average loss: 0.4296\n", + "----------\n", + "1: epoch 402/500\n", + "1/0, train_loss: 0.4694\n", + "1 epoch 402 average loss: 0.4694\n", + "current epoch: 402 current mean dice: 0.6467\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 403/500\n", + "1/0, train_loss: 0.4394\n", + "1 epoch 403 average loss: 0.4394\n", + "----------\n", + "1: epoch 404/500\n", + "1/0, train_loss: 0.4245\n", + "1 epoch 404 average loss: 0.4245\n", + "current epoch: 404 current mean dice: 0.6480\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 405/500\n", + "1/0, train_loss: 0.4133\n", + "1 epoch 405 average loss: 0.4133\n", + "----------\n", + "1: epoch 406/500\n", + "1/0, train_loss: 0.3992\n", + "1 epoch 406 average loss: 0.3992\n", + "current epoch: 406 current mean dice: 0.6351\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 407/500\n", + "1/0, train_loss: 0.4043\n", + "1 epoch 407 average loss: 0.4043\n", + "----------\n", + "1: epoch 408/500\n", + "1/0, train_loss: 0.4055\n", + "1 epoch 408 average loss: 0.4055\n", + "current epoch: 408 current mean dice: 0.6136\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 409/500\n", + "1/0, train_loss: 0.3954\n", + "1 epoch 409 average loss: 0.3954\n", + "----------\n", + "1: epoch 410/500\n", + "1/0, train_loss: 0.3866\n", + "1 epoch 410 average loss: 0.3866\n", + "current epoch: 410 current mean dice: 0.5879\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 411/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.3926\n", + "1 epoch 411 average loss: 0.3926\n", + "----------\n", + "1: epoch 412/500\n", + "1/0, train_loss: 0.3871\n", + "1 epoch 412 average loss: 0.3871\n", + "current epoch: 412 current mean dice: 0.6163\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 413/500\n", + "1/0, train_loss: 0.3858\n", + "1 epoch 413 average loss: 0.3858\n", + "----------\n", + "1: epoch 414/500\n", + "1/0, train_loss: 0.3983\n", + "1 epoch 414 average loss: 0.3983\n", + "current epoch: 414 current mean dice: 0.6496\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 415/500\n", + "1/0, train_loss: 0.3955\n", + "1 epoch 415 average loss: 0.3955\n", + "----------\n", + "1: epoch 416/500\n", + "1/0, train_loss: 0.4024\n", + "1 epoch 416 average loss: 0.4024\n", + "current epoch: 416 current mean dice: 0.6570\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 417/500\n", + "1/0, train_loss: 0.4773\n", + "1 epoch 417 average loss: 0.4773\n", + "----------\n", + "1: epoch 418/500\n", + "1/0, train_loss: 0.3871\n", + "1 epoch 418 average loss: 0.3871\n", + "current epoch: 418 current mean dice: 0.5205\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 419/500\n", + "1/0, train_loss: 0.3902\n", + "1 epoch 419 average loss: 0.3902\n", + "----------\n", + "1: epoch 420/500\n", + "1/0, train_loss: 0.4784\n", + "1 epoch 420 average loss: 0.4784\n", + "current epoch: 420 current mean dice: 0.5012\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 421/500\n", + "1/0, train_loss: 0.4475\n", + "1 epoch 421 average loss: 0.4475\n", + "----------\n", + "1: epoch 422/500\n", + "1/0, train_loss: 0.3958\n", + "1 epoch 422 average loss: 0.3958\n", + "current epoch: 422 current mean dice: 0.5852\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 423/500\n", + "1/0, train_loss: 0.4144\n", + "1 epoch 423 average loss: 0.4144\n", + "----------\n", + "1: epoch 424/500\n", + "1/0, train_loss: 0.3996\n", + "1 epoch 424 average loss: 0.3996\n", + "current epoch: 424 current mean dice: 0.6217\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 425/500\n", + "1/0, train_loss: 0.3855\n", + "1 epoch 425 average loss: 0.3855\n", + "----------\n", + "1: epoch 426/500\n", + "1/0, train_loss: 0.3921\n", + "1 epoch 426 average loss: 0.3921\n", + "current epoch: 426 current mean dice: 0.5976\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 427/500\n", + "1/0, train_loss: 0.3937\n", + "1 epoch 427 average loss: 0.3937\n", + "----------\n", + "1: epoch 428/500\n", + "1/0, train_loss: 0.3988\n", + "1 epoch 428 average loss: 0.3988\n", + "current epoch: 428 current mean dice: 0.5556\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 429/500\n", + "1/0, train_loss: 0.3930\n", + "1 epoch 429 average loss: 0.3930\n", + "----------\n", + "1: epoch 430/500\n", + "1/0, train_loss: 0.4062\n", + "1 epoch 430 average loss: 0.4062\n", + "current epoch: 430 current mean dice: 0.5407\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 431/500\n", + "1/0, train_loss: 0.4367\n", + "1 epoch 431 average loss: 0.4367\n", + "----------\n", + "1: epoch 432/500\n", + "1/0, train_loss: 0.3889\n", + "1 epoch 432 average loss: 0.3889\n", + "current epoch: 432 current mean dice: 0.5209\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 433/500\n", + "1/0, train_loss: 0.3959\n", + "1 epoch 433 average loss: 0.3959\n", + "----------\n", + "1: epoch 434/500\n", + "1/0, train_loss: 0.3940\n", + "1 epoch 434 average loss: 0.3940\n", + "current epoch: 434 current mean dice: 0.5272\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 435/500\n", + "1/0, train_loss: 0.3863\n", + "1 epoch 435 average loss: 0.3863\n", + "----------\n", + "1: epoch 436/500\n", + "1/0, train_loss: 0.4497\n", + "1 epoch 436 average loss: 0.4497\n", + "current epoch: 436 current mean dice: 0.5361\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 437/500\n", + "1/0, train_loss: 0.3782\n", + "1 epoch 437 average loss: 0.3782\n", + "----------\n", + "1: epoch 438/500\n", + "1/0, train_loss: 0.3972\n", + "1 epoch 438 average loss: 0.3972\n", + "current epoch: 438 current mean dice: 0.5425\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 439/500\n", + "1/0, train_loss: 0.3845\n", + "1 epoch 439 average loss: 0.3845\n", + "----------\n", + "1: epoch 440/500\n", + "1/0, train_loss: 0.3816\n", + "1 epoch 440 average loss: 0.3816\n", + "current epoch: 440 current mean dice: 0.5510\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 441/500\n", + "1/0, train_loss: 0.4452\n", + "1 epoch 441 average loss: 0.4452\n", + "----------\n", + "1: epoch 442/500\n", + "1/0, train_loss: 0.3777\n", + "1 epoch 442 average loss: 0.3777\n", + "current epoch: 442 current mean dice: 0.5520\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 443/500\n", + "1/0, train_loss: 0.3814\n", + "1 epoch 443 average loss: 0.3814\n", + "----------\n", + "1: epoch 444/500\n", + "1/0, train_loss: 0.4366\n", + "1 epoch 444 average loss: 0.4366\n", + "current epoch: 444 current mean dice: 0.5684\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 445/500\n", + "1/0, train_loss: 0.3825\n", + "1 epoch 445 average loss: 0.3825\n", + "----------\n", + "1: epoch 446/500\n", + "1/0, train_loss: 0.4576\n", + "1 epoch 446 average loss: 0.4576\n", + "current epoch: 446 current mean dice: 0.5749\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 447/500\n", + "1/0, train_loss: 0.3818\n", + "1 epoch 447 average loss: 0.3818\n", + "----------\n", + "1: epoch 448/500\n", + "1/0, train_loss: 0.3783\n", + "1 epoch 448 average loss: 0.3783\n", + "current epoch: 448 current mean dice: 0.5925\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 449/500\n", + "1/0, train_loss: 0.3869\n", + "1 epoch 449 average loss: 0.3869\n", + "----------\n", + "1: epoch 450/500\n", + "1/0, train_loss: 0.3935\n", + "1 epoch 450 average loss: 0.3935\n", + "current epoch: 450 current mean dice: 0.5879\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 451/500\n", + "1/0, train_loss: 0.3784\n", + "1 epoch 451 average loss: 0.3784\n", + "----------\n", + "1: epoch 452/500\n", + "1/0, train_loss: 0.3806\n", + "1 epoch 452 average loss: 0.3806\n", + "current epoch: 452 current mean dice: 0.5851\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 453/500\n", + "1/0, train_loss: 0.3794\n", + "1 epoch 453 average loss: 0.3794\n", + "----------\n", + "1: epoch 454/500\n", + "1/0, train_loss: 0.3792\n", + "1 epoch 454 average loss: 0.3792\n", + "current epoch: 454 current mean dice: 0.5818\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 455/500\n", + "1/0, train_loss: 0.3839\n", + "1 epoch 455 average loss: 0.3839\n", + "----------\n", + "1: epoch 456/500\n", + "1/0, train_loss: 0.3755\n", + "1 epoch 456 average loss: 0.3755\n", + "current epoch: 456 current mean dice: 0.5767\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 457/500\n", + "1/0, train_loss: 0.3768\n", + "1 epoch 457 average loss: 0.3768\n", + "----------\n", + "1: epoch 458/500\n", + "1/0, train_loss: 0.3768\n", + "1 epoch 458 average loss: 0.3768\n", + "current epoch: 458 current mean dice: 0.5728\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 459/500\n", + "1/0, train_loss: 0.3732\n", + "1 epoch 459 average loss: 0.3732\n", + "----------\n", + "1: epoch 460/500\n", + "1/0, train_loss: 0.3755\n", + "1 epoch 460 average loss: 0.3755\n", + "current epoch: 460 current mean dice: 0.5583\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 461/500\n", + "1/0, train_loss: 0.3752\n", + "1 epoch 461 average loss: 0.3752\n", + "----------\n", + "1: epoch 462/500\n", + "1/0, train_loss: 0.3837\n", + "1 epoch 462 average loss: 0.3837\n", + "current epoch: 462 current mean dice: 0.5794\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 463/500\n", + "1/0, train_loss: 0.4421\n", + "1 epoch 463 average loss: 0.4421\n", + "----------\n", + "1: epoch 464/500\n", + "1/0, train_loss: 0.3824\n", + "1 epoch 464 average loss: 0.3824\n", + "current epoch: 464 current mean dice: 0.6003\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 465/500\n", + "1/0, train_loss: 0.3820\n", + "1 epoch 465 average loss: 0.3820\n", + "----------\n", + "1: epoch 466/500\n", + "1/0, train_loss: 0.3767\n", + "1 epoch 466 average loss: 0.3767\n", + "current epoch: 466 current mean dice: 0.6012\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 467/500\n", + "1/0, train_loss: 0.3775\n", + "1 epoch 467 average loss: 0.3775\n", + "----------\n", + "1: epoch 468/500\n", + "1/0, train_loss: 0.3747\n", + "1 epoch 468 average loss: 0.3747\n", + "current epoch: 468 current mean dice: 0.5612\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 469/500\n", + "1/0, train_loss: 0.4258\n", + "1 epoch 469 average loss: 0.4258\n", + "----------\n", + "1: epoch 470/500\n", + "1/0, train_loss: 0.3796\n", + "1 epoch 470 average loss: 0.3796\n", + "current epoch: 470 current mean dice: 0.5807\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 471/500\n", + "1/0, train_loss: 0.3835\n", + "1 epoch 471 average loss: 0.3835\n", + "----------\n", + "1: epoch 472/500\n", + "1/0, train_loss: 0.3771\n", + "1 epoch 472 average loss: 0.3771\n", + "current epoch: 472 current mean dice: 0.5936\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 473/500\n", + "1/0, train_loss: 0.3732\n", + "1 epoch 473 average loss: 0.3732\n", + "----------\n", + "1: epoch 474/500\n", + "1/0, train_loss: 0.3761\n", + "1 epoch 474 average loss: 0.3761\n", + "current epoch: 474 current mean dice: 0.5946\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 475/500\n", + "1/0, train_loss: 0.3746\n", + "1 epoch 475 average loss: 0.3746\n", + "----------\n", + "1: epoch 476/500\n", + "1/0, train_loss: 0.3761\n", + "1 epoch 476 average loss: 0.3761\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "current epoch: 476 current mean dice: 0.5627\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 477/500\n", + "1/0, train_loss: 0.3742\n", + "1 epoch 477 average loss: 0.3742\n", + "----------\n", + "1: epoch 478/500\n", + "1/0, train_loss: 0.3816\n", + "1 epoch 478 average loss: 0.3816\n", + "current epoch: 478 current mean dice: 0.5623\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 479/500\n", + "1/0, train_loss: 0.3742\n", + "1 epoch 479 average loss: 0.3742\n", + "----------\n", + "1: epoch 480/500\n", + "1/0, train_loss: 0.3779\n", + "1 epoch 480 average loss: 0.3779\n", + "current epoch: 480 current mean dice: 0.5715\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 481/500\n", + "1/0, train_loss: 0.3738\n", + "1 epoch 481 average loss: 0.3738\n", + "----------\n", + "1: epoch 482/500\n", + "1/0, train_loss: 0.4082\n", + "1 epoch 482 average loss: 0.4082\n", + "current epoch: 482 current mean dice: 0.5747\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 483/500\n", + "1/0, train_loss: 0.3749\n", + "1 epoch 483 average loss: 0.3749\n", + "----------\n", + "1: epoch 484/500\n", + "1/0, train_loss: 0.3768\n", + "1 epoch 484 average loss: 0.3768\n", + "current epoch: 484 current mean dice: 0.5609\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 485/500\n", + "1/0, train_loss: 0.3826\n", + "1 epoch 485 average loss: 0.3826\n", + "----------\n", + "1: epoch 486/500\n", + "1/0, train_loss: 0.4254\n", + "1 epoch 486 average loss: 0.4254\n", + "current epoch: 486 current mean dice: 0.5430\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 487/500\n", + "1/0, train_loss: 0.3736\n", + "1 epoch 487 average loss: 0.3736\n", + "----------\n", + "1: epoch 488/500\n", + "1/0, train_loss: 0.3706\n", + "1 epoch 488 average loss: 0.3706\n", + "current epoch: 488 current mean dice: 0.5476\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 489/500\n", + "1/0, train_loss: 0.3766\n", + "1 epoch 489 average loss: 0.3766\n", + "----------\n", + "1: epoch 490/500\n", + "1/0, train_loss: 0.4270\n", + "1 epoch 490 average loss: 0.4270\n", + "current epoch: 490 current mean dice: 0.5465\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 491/500\n", + "1/0, train_loss: 0.3760\n", + "1 epoch 491 average loss: 0.3760\n", + "----------\n", + "1: epoch 492/500\n", + "1/0, train_loss: 0.3795\n", + "1 epoch 492 average loss: 0.3795\n", + "current epoch: 492 current mean dice: 0.5623\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 493/500\n", + "1/0, train_loss: 0.3757\n", + "1 epoch 493 average loss: 0.3757\n", + "----------\n", + "1: epoch 494/500\n", + "1/0, train_loss: 0.3727\n", + "1 epoch 494 average loss: 0.3727\n", + "current epoch: 494 current mean dice: 0.5676\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 495/500\n", + "1/0, train_loss: 0.3788\n", + "1 epoch 495 average loss: 0.3788\n", + "----------\n", + "1: epoch 496/500\n", + "1/0, train_loss: 0.4210\n", + "1 epoch 496 average loss: 0.4210\n", + "current epoch: 496 current mean dice: 0.5604\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 497/500\n", + "1/0, train_loss: 0.4133\n", + "1 epoch 497 average loss: 0.4133\n", + "----------\n", + "1: epoch 498/500\n", + "1/0, train_loss: 0.3760\n", + "1 epoch 498 average loss: 0.3760\n", + "current epoch: 498 current mean dice: 0.5922\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 499/500\n", + "1/0, train_loss: 0.3784\n", + "1 epoch 499 average loss: 0.3784\n", + "----------\n", + "1: epoch 500/500\n", + "1/0, train_loss: 0.3987\n", + "1 epoch 500 average loss: 0.3987\n", + "current epoch: 500 current mean dice: 0.5552\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "2: epoch 1/500\n", + "1/0, train_loss: 0.7510\n", + "2 epoch 1 average loss: 0.7510\n", + "----------\n", + "2: epoch 2/500\n", + "1/0, train_loss: 0.7060\n", + "2 epoch 2 average loss: 0.7060\n", + "saved new best metric model\n", + "current epoch: 2 current mean dice: 0.2929\n", + "best mean dice: 0.2929 at epoch: 2\n", + "----------\n", + "2: epoch 3/500\n", + "1/0, train_loss: 0.6770\n", + "2 epoch 3 average loss: 0.6770\n", + "----------\n", + "2: epoch 4/500\n", + "1/0, train_loss: 0.6647\n", + "2 epoch 4 average loss: 0.6647\n", + "saved new best metric model\n", + "current epoch: 4 current mean dice: 0.3698\n", + "best mean dice: 0.3698 at epoch: 4\n", + "----------\n", + "2: epoch 5/500\n", + "1/0, train_loss: 0.6548\n", + "2 epoch 5 average loss: 0.6548\n", + "----------\n", + "2: epoch 6/500\n", + "1/0, train_loss: 0.6520\n", + "2 epoch 6 average loss: 0.6520\n", + "saved new best metric model\n", + "current epoch: 6 current mean dice: 0.3889\n", + "best mean dice: 0.3889 at epoch: 6\n", + "----------\n", + "2: epoch 7/500\n", + "1/0, train_loss: 0.6491\n", + "2 epoch 7 average loss: 0.6491\n", + "----------\n", + "2: epoch 8/500\n", + "1/0, train_loss: 0.6448\n", + "2 epoch 8 average loss: 0.6448\n", + "saved new best metric model\n", + "current epoch: 8 current mean dice: 0.3939\n", + "best mean dice: 0.3939 at epoch: 8\n", + "----------\n", + "2: epoch 9/500\n", + "1/0, train_loss: 0.6425\n", + "2 epoch 9 average loss: 0.6425\n", + "----------\n", + "2: epoch 10/500\n", + "1/0, train_loss: 0.6404\n", + "2 epoch 10 average loss: 0.6404\n", + "current epoch: 10 current mean dice: 0.3911\n", + "best mean dice: 0.3939 at epoch: 8\n", + "----------\n", + "2: epoch 11/500\n", + "1/0, train_loss: 0.6399\n", + "2 epoch 11 average loss: 0.6399\n", + "----------\n", + "2: epoch 12/500\n", + "1/0, train_loss: 0.6374\n", + "2 epoch 12 average loss: 0.6374\n", + "current epoch: 12 current mean dice: 0.3935\n", + "best mean dice: 0.3939 at epoch: 8\n", + "----------\n", + "2: epoch 13/500\n", + "1/0, train_loss: 0.6334\n", + "2 epoch 13 average loss: 0.6334\n", + "----------\n", + "2: epoch 14/500\n", + "1/0, train_loss: 0.6330\n", + "2 epoch 14 average loss: 0.6330\n", + "saved new best metric model\n", + "current epoch: 14 current mean dice: 0.4019\n", + "best mean dice: 0.4019 at epoch: 14\n", + "----------\n", + "2: epoch 15/500\n", + "1/0, train_loss: 0.6299\n", + "2 epoch 15 average loss: 0.6299\n", + "----------\n", + "2: epoch 16/500\n", + "1/0, train_loss: 0.6293\n", + "2 epoch 16 average loss: 0.6293\n", + "saved new best metric model\n", + "current epoch: 16 current mean dice: 0.4144\n", + "best mean dice: 0.4144 at epoch: 16\n", + "----------\n", + "2: epoch 17/500\n", + "1/0, train_loss: 0.6243\n", + "2 epoch 17 average loss: 0.6243\n", + "----------\n", + "2: epoch 18/500\n", + "1/0, train_loss: 0.6225\n", + "2 epoch 18 average loss: 0.6225\n", + "saved new best metric model\n", + "current epoch: 18 current mean dice: 0.4281\n", + "best mean dice: 0.4281 at epoch: 18\n", + "----------\n", + "2: epoch 19/500\n", + "1/0, train_loss: 0.6186\n", + "2 epoch 19 average loss: 0.6186\n", + "----------\n", + "2: epoch 20/500\n", + "1/0, train_loss: 0.6240\n", + "2 epoch 20 average loss: 0.6240\n", + "saved new best metric model\n", + "current epoch: 20 current mean dice: 0.4412\n", + "best mean dice: 0.4412 at epoch: 20\n", + "----------\n", + "2: epoch 21/500\n", + "1/0, train_loss: 0.6134\n", + "2 epoch 21 average loss: 0.6134\n", + "----------\n", + "2: epoch 22/500\n", + "1/0, train_loss: 0.6112\n", + "2 epoch 22 average loss: 0.6112\n", + "saved new best metric model\n", + "current epoch: 22 current mean dice: 0.4453\n", + "best mean dice: 0.4453 at epoch: 22\n", + "----------\n", + "2: epoch 23/500\n", + "1/0, train_loss: 0.6018\n", + "2 epoch 23 average loss: 0.6018\n", + "----------\n", + "2: epoch 24/500\n", + "1/0, train_loss: 0.6022\n", + "2 epoch 24 average loss: 0.6022\n", + "current epoch: 24 current mean dice: 0.4389\n", + "best mean dice: 0.4453 at epoch: 22\n", + "----------\n", + "2: epoch 25/500\n", + "1/0, train_loss: 0.5973\n", + "2 epoch 25 average loss: 0.5973\n", + "----------\n", + "2: epoch 26/500\n", + "1/0, train_loss: 0.5923\n", + "2 epoch 26 average loss: 0.5923\n", + "saved new best metric model\n", + "current epoch: 26 current mean dice: 0.4482\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 27/500\n", + "1/0, train_loss: 0.5908\n", + "2 epoch 27 average loss: 0.5908\n", + "----------\n", + "2: epoch 28/500\n", + "1/0, train_loss: 0.5864\n", + "2 epoch 28 average loss: 0.5864\n", + "current epoch: 28 current mean dice: 0.4434\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 29/500\n", + "1/0, train_loss: 0.5852\n", + "2 epoch 29 average loss: 0.5852\n", + "----------\n", + "2: epoch 30/500\n", + "1/0, train_loss: 0.5782\n", + "2 epoch 30 average loss: 0.5782\n", + "current epoch: 30 current mean dice: 0.4202\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 31/500\n", + "1/0, train_loss: 0.5740\n", + "2 epoch 31 average loss: 0.5740\n", + "----------\n", + "2: epoch 32/500\n", + "1/0, train_loss: 0.5745\n", + "2 epoch 32 average loss: 0.5745\n", + "current epoch: 32 current mean dice: 0.4013\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 33/500\n", + "1/0, train_loss: 0.5634\n", + "2 epoch 33 average loss: 0.5634\n", + "----------\n", + "2: epoch 34/500\n", + "1/0, train_loss: 0.5605\n", + "2 epoch 34 average loss: 0.5605\n", + "current epoch: 34 current mean dice: 0.4124\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 35/500\n", + "1/0, train_loss: 0.5591\n", + "2 epoch 35 average loss: 0.5591\n", + "----------\n", + "2: epoch 36/500\n", + "1/0, train_loss: 0.5487\n", + "2 epoch 36 average loss: 0.5487\n", + "current epoch: 36 current mean dice: 0.3864\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 37/500\n", + "1/0, train_loss: 0.5435\n", + "2 epoch 37 average loss: 0.5435\n", + "----------\n", + "2: epoch 38/500\n", + "1/0, train_loss: 0.5490\n", + "2 epoch 38 average loss: 0.5490\n", + "current epoch: 38 current mean dice: 0.3913\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 39/500\n", + "1/0, train_loss: 0.5504\n", + "2 epoch 39 average loss: 0.5504\n", + "----------\n", + "2: epoch 40/500\n", + "1/0, train_loss: 0.5413\n", + "2 epoch 40 average loss: 0.5413\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "current epoch: 40 current mean dice: 0.4029\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 41/500\n", + "1/0, train_loss: 0.5323\n", + "2 epoch 41 average loss: 0.5323\n", + "----------\n", + "2: epoch 42/500\n", + "1/0, train_loss: 0.5321\n", + "2 epoch 42 average loss: 0.5321\n", + "current epoch: 42 current mean dice: 0.3871\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 43/500\n", + "1/0, train_loss: 0.5295\n", + "2 epoch 43 average loss: 0.5295\n", + "----------\n", + "2: epoch 44/500\n", + "1/0, train_loss: 0.5255\n", + "2 epoch 44 average loss: 0.5255\n", + "current epoch: 44 current mean dice: 0.3885\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 45/500\n", + "1/0, train_loss: 0.5232\n", + "2 epoch 45 average loss: 0.5232\n", + "----------\n", + "2: epoch 46/500\n", + "1/0, train_loss: 0.5244\n", + "2 epoch 46 average loss: 0.5244\n", + "current epoch: 46 current mean dice: 0.4063\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 47/500\n", + "1/0, train_loss: 0.5297\n", + "2 epoch 47 average loss: 0.5297\n", + "----------\n", + "2: epoch 48/500\n", + "1/0, train_loss: 0.5129\n", + "2 epoch 48 average loss: 0.5129\n", + "current epoch: 48 current mean dice: 0.3472\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 49/500\n", + "1/0, train_loss: 0.5238\n", + "2 epoch 49 average loss: 0.5238\n", + "----------\n", + "2: epoch 50/500\n", + "1/0, train_loss: 0.5068\n", + "2 epoch 50 average loss: 0.5068\n", + "current epoch: 50 current mean dice: 0.3968\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 51/500\n", + "1/0, train_loss: 0.5031\n", + "2 epoch 51 average loss: 0.5031\n", + "----------\n", + "2: epoch 52/500\n", + "1/0, train_loss: 0.5075\n", + "2 epoch 52 average loss: 0.5075\n", + "current epoch: 52 current mean dice: 0.3493\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 53/500\n", + "1/0, train_loss: 0.5026\n", + "2 epoch 53 average loss: 0.5026\n", + "----------\n", + "2: epoch 54/500\n", + "1/0, train_loss: 0.4988\n", + "2 epoch 54 average loss: 0.4988\n", + "current epoch: 54 current mean dice: 0.3753\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 55/500\n", + "1/0, train_loss: 0.4989\n", + "2 epoch 55 average loss: 0.4989\n", + "----------\n", + "2: epoch 56/500\n", + "1/0, train_loss: 0.5048\n", + "2 epoch 56 average loss: 0.5048\n", + "current epoch: 56 current mean dice: 0.3407\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 57/500\n", + "1/0, train_loss: 0.4987\n", + "2 epoch 57 average loss: 0.4987\n", + "----------\n", + "2: epoch 58/500\n", + "1/0, train_loss: 0.4922\n", + "2 epoch 58 average loss: 0.4922\n", + "current epoch: 58 current mean dice: 0.3348\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 59/500\n", + "1/0, train_loss: 0.4873\n", + "2 epoch 59 average loss: 0.4873\n", + "----------\n", + "2: epoch 60/500\n", + "1/0, train_loss: 0.4863\n", + "2 epoch 60 average loss: 0.4863\n", + "current epoch: 60 current mean dice: 0.3803\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 61/500\n", + "1/0, train_loss: 0.4905\n", + "2 epoch 61 average loss: 0.4905\n", + "----------\n", + "2: epoch 62/500\n", + "1/0, train_loss: 0.4864\n", + "2 epoch 62 average loss: 0.4864\n", + "current epoch: 62 current mean dice: 0.3013\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 63/500\n", + "1/0, train_loss: 0.4844\n", + "2 epoch 63 average loss: 0.4844\n", + "----------\n", + "2: epoch 64/500\n", + "1/0, train_loss: 0.4770\n", + "2 epoch 64 average loss: 0.4770\n", + "current epoch: 64 current mean dice: 0.3005\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 65/500\n", + "1/0, train_loss: 0.4862\n", + "2 epoch 65 average loss: 0.4862\n", + "----------\n", + "2: epoch 66/500\n", + "1/0, train_loss: 0.4769\n", + "2 epoch 66 average loss: 0.4769\n", + "current epoch: 66 current mean dice: 0.3071\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 67/500\n", + "1/0, train_loss: 0.4705\n", + "2 epoch 67 average loss: 0.4705\n", + "----------\n", + "2: epoch 68/500\n", + "1/0, train_loss: 0.4731\n", + "2 epoch 68 average loss: 0.4731\n", + "current epoch: 68 current mean dice: 0.2388\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 69/500\n", + "1/0, train_loss: 0.4739\n", + "2 epoch 69 average loss: 0.4739\n", + "----------\n", + "2: epoch 70/500\n", + "1/0, train_loss: 0.4681\n", + "2 epoch 70 average loss: 0.4681\n", + "current epoch: 70 current mean dice: 0.2617\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 71/500\n", + "1/0, train_loss: 0.4719\n", + "2 epoch 71 average loss: 0.4719\n", + "----------\n", + "2: epoch 72/500\n", + "1/0, train_loss: 0.4645\n", + "2 epoch 72 average loss: 0.4645\n", + "current epoch: 72 current mean dice: 0.2142\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 73/500\n", + "1/0, train_loss: 0.4598\n", + "2 epoch 73 average loss: 0.4598\n", + "----------\n", + "2: epoch 74/500\n", + "1/0, train_loss: 0.4671\n", + "2 epoch 74 average loss: 0.4671\n", + "current epoch: 74 current mean dice: 0.1777\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 75/500\n", + "1/0, train_loss: 0.4793\n", + "2 epoch 75 average loss: 0.4793\n", + "----------\n", + "2: epoch 76/500\n", + "1/0, train_loss: 0.4663\n", + "2 epoch 76 average loss: 0.4663\n", + "current epoch: 76 current mean dice: 0.3074\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 77/500\n", + "1/0, train_loss: 0.4747\n", + "2 epoch 77 average loss: 0.4747\n", + "----------\n", + "2: epoch 78/500\n", + "1/0, train_loss: 0.4566\n", + "2 epoch 78 average loss: 0.4566\n", + "current epoch: 78 current mean dice: 0.1597\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 79/500\n", + "1/0, train_loss: 0.4544\n", + "2 epoch 79 average loss: 0.4544\n", + "----------\n", + "2: epoch 80/500\n", + "1/0, train_loss: 0.4568\n", + "2 epoch 80 average loss: 0.4568\n", + "current epoch: 80 current mean dice: 0.1969\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 81/500\n", + "1/0, train_loss: 0.4518\n", + "2 epoch 81 average loss: 0.4518\n", + "----------\n", + "2: epoch 82/500\n", + "1/0, train_loss: 0.4560\n", + "2 epoch 82 average loss: 0.4560\n", + "current epoch: 82 current mean dice: 0.1720\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 83/500\n", + "1/0, train_loss: 0.4466\n", + "2 epoch 83 average loss: 0.4466\n", + "----------\n", + "2: epoch 84/500\n", + "1/0, train_loss: 0.4484\n", + "2 epoch 84 average loss: 0.4484\n", + "current epoch: 84 current mean dice: 0.1837\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 85/500\n", + "1/0, train_loss: 0.4444\n", + "2 epoch 85 average loss: 0.4444\n", + "----------\n", + "2: epoch 86/500\n", + "1/0, train_loss: 0.4425\n", + "2 epoch 86 average loss: 0.4425\n", + "current epoch: 86 current mean dice: 0.1555\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 87/500\n", + "1/0, train_loss: 0.4415\n", + "2 epoch 87 average loss: 0.4415\n", + "----------\n", + "2: epoch 88/500\n", + "1/0, train_loss: 0.4439\n", + "2 epoch 88 average loss: 0.4439\n", + "current epoch: 88 current mean dice: 0.1158\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 89/500\n", + "1/0, train_loss: 0.4487\n", + "2 epoch 89 average loss: 0.4487\n", + "----------\n", + "2: epoch 90/500\n", + "1/0, train_loss: 0.4307\n", + "2 epoch 90 average loss: 0.4307\n", + "current epoch: 90 current mean dice: 0.1301\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 91/500\n", + "1/0, train_loss: 0.4365\n", + "2 epoch 91 average loss: 0.4365\n", + "----------\n", + "2: epoch 92/500\n", + "1/0, train_loss: 0.4304\n", + "2 epoch 92 average loss: 0.4304\n", + "current epoch: 92 current mean dice: 0.1230\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 93/500\n", + "1/0, train_loss: 0.4392\n", + "2 epoch 93 average loss: 0.4392\n", + "----------\n", + "2: epoch 94/500\n", + "1/0, train_loss: 0.4413\n", + "2 epoch 94 average loss: 0.4413\n", + "current epoch: 94 current mean dice: 0.0455\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 95/500\n", + "1/0, train_loss: 0.4568\n", + "2 epoch 95 average loss: 0.4568\n", + "----------\n", + "2: epoch 96/500\n", + "1/0, train_loss: 0.4526\n", + "2 epoch 96 average loss: 0.4526\n", + "current epoch: 96 current mean dice: 0.0916\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 97/500\n", + "1/0, train_loss: 0.4411\n", + "2 epoch 97 average loss: 0.4411\n", + "----------\n", + "2: epoch 98/500\n", + "1/0, train_loss: 0.4370\n", + "2 epoch 98 average loss: 0.4370\n", + "current epoch: 98 current mean dice: 0.1196\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 99/500\n", + "1/0, train_loss: 0.4279\n", + "2 epoch 99 average loss: 0.4279\n", + "----------\n", + "2: epoch 100/500\n", + "1/0, train_loss: 0.4256\n", + "2 epoch 100 average loss: 0.4256\n", + "current epoch: 100 current mean dice: 0.1353\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 101/500\n", + "1/0, train_loss: 0.4266\n", + "2 epoch 101 average loss: 0.4266\n", + "----------\n", + "2: epoch 102/500\n", + "1/0, train_loss: 0.4262\n", + "2 epoch 102 average loss: 0.4262\n", + "current epoch: 102 current mean dice: 0.1587\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 103/500\n", + "1/0, train_loss: 0.4261\n", + "2 epoch 103 average loss: 0.4261\n", + "----------\n", + "2: epoch 104/500\n", + "1/0, train_loss: 0.4258\n", + "2 epoch 104 average loss: 0.4258\n", + "current epoch: 104 current mean dice: 0.1447\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 105/500\n", + "1/0, train_loss: 0.4282\n", + "2 epoch 105 average loss: 0.4282\n", + "----------\n", + "2: epoch 106/500\n", + "1/0, train_loss: 0.4310\n", + "2 epoch 106 average loss: 0.4310\n", + "current epoch: 106 current mean dice: 0.1735\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 107/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.4220\n", + "2 epoch 107 average loss: 0.4220\n", + "----------\n", + "2: epoch 108/500\n", + "1/0, train_loss: 0.4222\n", + "2 epoch 108 average loss: 0.4222\n", + "current epoch: 108 current mean dice: 0.0974\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 109/500\n", + "1/0, train_loss: 0.4264\n", + "2 epoch 109 average loss: 0.4264\n", + "----------\n", + "2: epoch 110/500\n", + "1/0, train_loss: 0.4243\n", + "2 epoch 110 average loss: 0.4243\n", + "current epoch: 110 current mean dice: 0.0592\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 111/500\n", + "1/0, train_loss: 0.4255\n", + "2 epoch 111 average loss: 0.4255\n", + "----------\n", + "2: epoch 112/500\n", + "1/0, train_loss: 0.4217\n", + "2 epoch 112 average loss: 0.4217\n", + "current epoch: 112 current mean dice: 0.1373\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 113/500\n", + "1/0, train_loss: 0.4179\n", + "2 epoch 113 average loss: 0.4179\n", + "----------\n", + "2: epoch 114/500\n", + "1/0, train_loss: 0.4228\n", + "2 epoch 114 average loss: 0.4228\n", + "current epoch: 114 current mean dice: 0.0880\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 115/500\n", + "1/0, train_loss: 0.4407\n", + "2 epoch 115 average loss: 0.4407\n", + "----------\n", + "2: epoch 116/500\n", + "1/0, train_loss: 0.5362\n", + "2 epoch 116 average loss: 0.5362\n", + "current epoch: 116 current mean dice: 0.1638\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 117/500\n", + "1/0, train_loss: 0.4306\n", + "2 epoch 117 average loss: 0.4306\n", + "----------\n", + "2: epoch 118/500\n", + "1/0, train_loss: 0.4911\n", + "2 epoch 118 average loss: 0.4911\n", + "current epoch: 118 current mean dice: 0.3439\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 119/500\n", + "1/0, train_loss: 0.5028\n", + "2 epoch 119 average loss: 0.5028\n", + "----------\n", + "2: epoch 120/500\n", + "1/0, train_loss: 0.5038\n", + "2 epoch 120 average loss: 0.5038\n", + "current epoch: 120 current mean dice: 0.3496\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 121/500\n", + "1/0, train_loss: 0.4571\n", + "2 epoch 121 average loss: 0.4571\n", + "----------\n", + "2: epoch 122/500\n", + "1/0, train_loss: 0.4693\n", + "2 epoch 122 average loss: 0.4693\n", + "current epoch: 122 current mean dice: 0.2190\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 123/500\n", + "1/0, train_loss: 0.4632\n", + "2 epoch 123 average loss: 0.4632\n", + "----------\n", + "2: epoch 124/500\n", + "1/0, train_loss: 0.4600\n", + "2 epoch 124 average loss: 0.4600\n", + "current epoch: 124 current mean dice: 0.2123\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 125/500\n", + "1/0, train_loss: 0.4652\n", + "2 epoch 125 average loss: 0.4652\n", + "----------\n", + "2: epoch 126/500\n", + "1/0, train_loss: 0.4615\n", + "2 epoch 126 average loss: 0.4615\n", + "current epoch: 126 current mean dice: 0.1925\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 127/500\n", + "1/0, train_loss: 0.4516\n", + "2 epoch 127 average loss: 0.4516\n", + "----------\n", + "2: epoch 128/500\n", + "1/0, train_loss: 0.4406\n", + "2 epoch 128 average loss: 0.4406\n", + "current epoch: 128 current mean dice: 0.2114\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 129/500\n", + "1/0, train_loss: 0.4406\n", + "2 epoch 129 average loss: 0.4406\n", + "----------\n", + "2: epoch 130/500\n", + "1/0, train_loss: 0.4367\n", + "2 epoch 130 average loss: 0.4367\n", + "current epoch: 130 current mean dice: 0.1869\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 131/500\n", + "1/0, train_loss: 0.4367\n", + "2 epoch 131 average loss: 0.4367\n", + "----------\n", + "2: epoch 132/500\n", + "1/0, train_loss: 0.4298\n", + "2 epoch 132 average loss: 0.4298\n", + "current epoch: 132 current mean dice: 0.1738\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 133/500\n", + "1/0, train_loss: 0.4257\n", + "2 epoch 133 average loss: 0.4257\n", + "----------\n", + "2: epoch 134/500\n", + "1/0, train_loss: 0.4172\n", + "2 epoch 134 average loss: 0.4172\n", + "current epoch: 134 current mean dice: 0.1024\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 135/500\n", + "1/0, train_loss: 0.4300\n", + "2 epoch 135 average loss: 0.4300\n", + "----------\n", + "2: epoch 136/500\n", + "1/0, train_loss: 0.4187\n", + "2 epoch 136 average loss: 0.4187\n", + "current epoch: 136 current mean dice: 0.0590\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 137/500\n", + "1/0, train_loss: 0.4135\n", + "2 epoch 137 average loss: 0.4135\n", + "----------\n", + "2: epoch 138/500\n", + "1/0, train_loss: 0.4077\n", + "2 epoch 138 average loss: 0.4077\n", + "current epoch: 138 current mean dice: 0.0661\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 139/500\n", + "1/0, train_loss: 0.4150\n", + "2 epoch 139 average loss: 0.4150\n", + "----------\n", + "2: epoch 140/500\n", + "1/0, train_loss: 0.4129\n", + "2 epoch 140 average loss: 0.4129\n", + "current epoch: 140 current mean dice: 0.0518\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 141/500\n", + "1/0, train_loss: 0.4225\n", + "2 epoch 141 average loss: 0.4225\n", + "----------\n", + "2: epoch 142/500\n", + "1/0, train_loss: 0.4128\n", + "2 epoch 142 average loss: 0.4128\n", + "current epoch: 142 current mean dice: 0.0456\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 143/500\n", + "1/0, train_loss: 0.4152\n", + "2 epoch 143 average loss: 0.4152\n", + "----------\n", + "2: epoch 144/500\n", + "1/0, train_loss: 0.4135\n", + "2 epoch 144 average loss: 0.4135\n", + "current epoch: 144 current mean dice: 0.0475\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 145/500\n", + "1/0, train_loss: 0.4455\n", + "2 epoch 145 average loss: 0.4455\n", + "----------\n", + "2: epoch 146/500\n", + "1/0, train_loss: 0.4207\n", + "2 epoch 146 average loss: 0.4207\n", + "current epoch: 146 current mean dice: 0.0524\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 147/500\n", + "1/0, train_loss: 0.4249\n", + "2 epoch 147 average loss: 0.4249\n", + "----------\n", + "2: epoch 148/500\n", + "1/0, train_loss: 0.4377\n", + "2 epoch 148 average loss: 0.4377\n", + "current epoch: 148 current mean dice: 0.1484\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 149/500\n", + "1/0, train_loss: 0.4085\n", + "2 epoch 149 average loss: 0.4085\n", + "----------\n", + "2: epoch 150/500\n", + "1/0, train_loss: 0.4081\n", + "2 epoch 150 average loss: 0.4081\n", + "current epoch: 150 current mean dice: 0.1477\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 151/500\n", + "1/0, train_loss: 0.4184\n", + "2 epoch 151 average loss: 0.4184\n", + "----------\n", + "2: epoch 152/500\n", + "1/0, train_loss: 0.4091\n", + "2 epoch 152 average loss: 0.4091\n", + "current epoch: 152 current mean dice: 0.0720\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 153/500\n", + "1/0, train_loss: 0.4134\n", + "2 epoch 153 average loss: 0.4134\n", + "----------\n", + "2: epoch 154/500\n", + "1/0, train_loss: 0.4134\n", + "2 epoch 154 average loss: 0.4134\n", + "current epoch: 154 current mean dice: 0.0586\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 155/500\n", + "1/0, train_loss: 0.4091\n", + "2 epoch 155 average loss: 0.4091\n", + "----------\n", + "2: epoch 156/500\n", + "1/0, train_loss: 0.4200\n", + "2 epoch 156 average loss: 0.4200\n", + "current epoch: 156 current mean dice: 0.0518\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 157/500\n", + "1/0, train_loss: 0.4119\n", + "2 epoch 157 average loss: 0.4119\n", + "----------\n", + "2: epoch 158/500\n", + "1/0, train_loss: 0.4084\n", + "2 epoch 158 average loss: 0.4084\n", + "current epoch: 158 current mean dice: 0.0372\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 159/500\n", + "1/0, train_loss: 0.4136\n", + "2 epoch 159 average loss: 0.4136\n", + "----------\n", + "2: epoch 160/500\n", + "1/0, train_loss: 0.4046\n", + "2 epoch 160 average loss: 0.4046\n", + "current epoch: 160 current mean dice: 0.0720\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 161/500\n", + "1/0, train_loss: 0.4113\n", + "2 epoch 161 average loss: 0.4113\n", + "----------\n", + "2: epoch 162/500\n", + "1/0, train_loss: 0.4372\n", + "2 epoch 162 average loss: 0.4372\n", + "current epoch: 162 current mean dice: 0.0548\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 163/500\n", + "1/0, train_loss: 0.4100\n", + "2 epoch 163 average loss: 0.4100\n", + "----------\n", + "2: epoch 164/500\n", + "1/0, train_loss: 0.4062\n", + "2 epoch 164 average loss: 0.4062\n", + "current epoch: 164 current mean dice: 0.1206\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 165/500\n", + "1/0, train_loss: 0.4096\n", + "2 epoch 165 average loss: 0.4096\n", + "----------\n", + "2: epoch 166/500\n", + "1/0, train_loss: 0.4038\n", + "2 epoch 166 average loss: 0.4038\n", + "current epoch: 166 current mean dice: 0.1523\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 167/500\n", + "1/0, train_loss: 0.4062\n", + "2 epoch 167 average loss: 0.4062\n", + "----------\n", + "2: epoch 168/500\n", + "1/0, train_loss: 0.4055\n", + "2 epoch 168 average loss: 0.4055\n", + "current epoch: 168 current mean dice: 0.1736\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 169/500\n", + "1/0, train_loss: 0.4050\n", + "2 epoch 169 average loss: 0.4050\n", + "----------\n", + "2: epoch 170/500\n", + "1/0, train_loss: 0.4004\n", + "2 epoch 170 average loss: 0.4004\n", + "current epoch: 170 current mean dice: 0.1120\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 171/500\n", + "1/0, train_loss: 0.4032\n", + "2 epoch 171 average loss: 0.4032\n", + "----------\n", + "2: epoch 172/500\n", + "1/0, train_loss: 0.4102\n", + "2 epoch 172 average loss: 0.4102\n", + "current epoch: 172 current mean dice: 0.0635\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 173/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.3959\n", + "2 epoch 173 average loss: 0.3959\n", + "----------\n", + "2: epoch 174/500\n", + "1/0, train_loss: 0.4066\n", + "2 epoch 174 average loss: 0.4066\n", + "current epoch: 174 current mean dice: 0.0585\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 175/500\n", + "1/0, train_loss: 0.4026\n", + "2 epoch 175 average loss: 0.4026\n", + "----------\n", + "2: epoch 176/500\n", + "1/0, train_loss: 0.3968\n", + "2 epoch 176 average loss: 0.3968\n", + "current epoch: 176 current mean dice: 0.0344\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 177/500\n", + "1/0, train_loss: 0.4018\n", + "2 epoch 177 average loss: 0.4018\n", + "----------\n", + "2: epoch 178/500\n", + "1/0, train_loss: 0.4037\n", + "2 epoch 178 average loss: 0.4037\n", + "current epoch: 178 current mean dice: 0.0375\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 179/500\n", + "1/0, train_loss: 0.4018\n", + "2 epoch 179 average loss: 0.4018\n", + "----------\n", + "2: epoch 180/500\n", + "1/0, train_loss: 0.3980\n", + "2 epoch 180 average loss: 0.3980\n", + "current epoch: 180 current mean dice: 0.0401\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 181/500\n", + "1/0, train_loss: 0.4051\n", + "2 epoch 181 average loss: 0.4051\n", + "----------\n", + "2: epoch 182/500\n", + "1/0, train_loss: 0.3963\n", + "2 epoch 182 average loss: 0.3963\n", + "current epoch: 182 current mean dice: 0.0567\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 183/500\n", + "1/0, train_loss: 0.3921\n", + "2 epoch 183 average loss: 0.3921\n", + "----------\n", + "2: epoch 184/500\n", + "1/0, train_loss: 0.3888\n", + "2 epoch 184 average loss: 0.3888\n", + "current epoch: 184 current mean dice: 0.0250\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 185/500\n", + "1/0, train_loss: 0.4047\n", + "2 epoch 185 average loss: 0.4047\n", + "----------\n", + "2: epoch 186/500\n", + "1/0, train_loss: 0.3983\n", + "2 epoch 186 average loss: 0.3983\n", + "current epoch: 186 current mean dice: 0.0321\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 187/500\n", + "1/0, train_loss: 0.4011\n", + "2 epoch 187 average loss: 0.4011\n", + "----------\n", + "2: epoch 188/500\n", + "1/0, train_loss: 0.3945\n", + "2 epoch 188 average loss: 0.3945\n", + "current epoch: 188 current mean dice: 0.0166\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 189/500\n", + "1/0, train_loss: 0.3945\n", + "2 epoch 189 average loss: 0.3945\n", + "----------\n", + "2: epoch 190/500\n", + "1/0, train_loss: 0.3992\n", + "2 epoch 190 average loss: 0.3992\n", + "current epoch: 190 current mean dice: 0.0117\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 191/500\n", + "1/0, train_loss: 0.4006\n", + "2 epoch 191 average loss: 0.4006\n", + "----------\n", + "2: epoch 192/500\n", + "1/0, train_loss: 0.3973\n", + "2 epoch 192 average loss: 0.3973\n", + "current epoch: 192 current mean dice: 0.0117\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 193/500\n", + "1/0, train_loss: 0.3947\n", + "2 epoch 193 average loss: 0.3947\n", + "----------\n", + "2: epoch 194/500\n", + "1/0, train_loss: 0.4001\n", + "2 epoch 194 average loss: 0.4001\n", + "current epoch: 194 current mean dice: 0.0110\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 195/500\n", + "1/0, train_loss: 0.3878\n", + "2 epoch 195 average loss: 0.3878\n", + "----------\n", + "2: epoch 196/500\n", + "1/0, train_loss: 0.3947\n", + "2 epoch 196 average loss: 0.3947\n", + "current epoch: 196 current mean dice: 0.1302\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 197/500\n", + "1/0, train_loss: 0.3872\n", + "2 epoch 197 average loss: 0.3872\n", + "----------\n", + "2: epoch 198/500\n", + "1/0, train_loss: 0.3869\n", + "2 epoch 198 average loss: 0.3869\n", + "current epoch: 198 current mean dice: 0.1387\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 199/500\n", + "1/0, train_loss: 0.3963\n", + "2 epoch 199 average loss: 0.3963\n", + "----------\n", + "2: epoch 200/500\n", + "1/0, train_loss: 0.3915\n", + "2 epoch 200 average loss: 0.3915\n", + "current epoch: 200 current mean dice: 0.1322\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 201/500\n", + "1/0, train_loss: 0.3926\n", + "2 epoch 201 average loss: 0.3926\n", + "----------\n", + "2: epoch 202/500\n", + "1/0, train_loss: 0.3886\n", + "2 epoch 202 average loss: 0.3886\n", + "current epoch: 202 current mean dice: 0.1304\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 203/500\n", + "1/0, train_loss: 0.3895\n", + "2 epoch 203 average loss: 0.3895\n", + "----------\n", + "2: epoch 204/500\n", + "1/0, train_loss: 0.3936\n", + "2 epoch 204 average loss: 0.3936\n", + "current epoch: 204 current mean dice: 0.1327\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 205/500\n", + "1/0, train_loss: 0.3907\n", + "2 epoch 205 average loss: 0.3907\n", + "----------\n", + "2: epoch 206/500\n", + "1/0, train_loss: 0.3867\n", + "2 epoch 206 average loss: 0.3867\n", + "current epoch: 206 current mean dice: 0.1329\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 207/500\n", + "1/0, train_loss: 0.3975\n", + "2 epoch 207 average loss: 0.3975\n", + "----------\n", + "2: epoch 208/500\n", + "1/0, train_loss: 0.3927\n", + "2 epoch 208 average loss: 0.3927\n", + "current epoch: 208 current mean dice: 0.1209\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 209/500\n", + "1/0, train_loss: 0.3841\n", + "2 epoch 209 average loss: 0.3841\n", + "----------\n", + "2: epoch 210/500\n", + "1/0, train_loss: 0.3912\n", + "2 epoch 210 average loss: 0.3912\n", + "current epoch: 210 current mean dice: 0.0274\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 211/500\n", + "1/0, train_loss: 0.3866\n", + "2 epoch 211 average loss: 0.3866\n", + "----------\n", + "2: epoch 212/500\n", + "1/0, train_loss: 0.4310\n", + "2 epoch 212 average loss: 0.4310\n", + "current epoch: 212 current mean dice: 0.0126\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 213/500\n", + "1/0, train_loss: 0.3911\n", + "2 epoch 213 average loss: 0.3911\n", + "----------\n", + "2: epoch 214/500\n", + "1/0, train_loss: 0.4036\n", + "2 epoch 214 average loss: 0.4036\n", + "current epoch: 214 current mean dice: 0.0260\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 215/500\n", + "1/0, train_loss: 0.4176\n", + "2 epoch 215 average loss: 0.4176\n", + "----------\n", + "2: epoch 216/500\n", + "1/0, train_loss: 0.4056\n", + "2 epoch 216 average loss: 0.4056\n", + "current epoch: 216 current mean dice: 0.0199\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 217/500\n", + "1/0, train_loss: 0.3975\n", + "2 epoch 217 average loss: 0.3975\n", + "----------\n", + "2: epoch 218/500\n", + "1/0, train_loss: 0.4073\n", + "2 epoch 218 average loss: 0.4073\n", + "current epoch: 218 current mean dice: 0.1508\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 219/500\n", + "1/0, train_loss: 0.3994\n", + "2 epoch 219 average loss: 0.3994\n", + "----------\n", + "2: epoch 220/500\n", + "1/0, train_loss: 0.3927\n", + "2 epoch 220 average loss: 0.3927\n", + "current epoch: 220 current mean dice: 0.1483\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 221/500\n", + "1/0, train_loss: 0.4023\n", + "2 epoch 221 average loss: 0.4023\n", + "----------\n", + "2: epoch 222/500\n", + "1/0, train_loss: 0.4353\n", + "2 epoch 222 average loss: 0.4353\n", + "current epoch: 222 current mean dice: 0.1554\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 223/500\n", + "1/0, train_loss: 0.4330\n", + "2 epoch 223 average loss: 0.4330\n", + "----------\n", + "2: epoch 224/500\n", + "1/0, train_loss: 0.4039\n", + "2 epoch 224 average loss: 0.4039\n", + "current epoch: 224 current mean dice: 0.1520\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 225/500\n", + "1/0, train_loss: 0.3985\n", + "2 epoch 225 average loss: 0.3985\n", + "----------\n", + "2: epoch 226/500\n", + "1/0, train_loss: 0.4004\n", + "2 epoch 226 average loss: 0.4004\n", + "current epoch: 226 current mean dice: 0.0284\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 227/500\n", + "1/0, train_loss: 0.3976\n", + "2 epoch 227 average loss: 0.3976\n", + "----------\n", + "2: epoch 228/500\n", + "1/0, train_loss: 0.3951\n", + "2 epoch 228 average loss: 0.3951\n", + "current epoch: 228 current mean dice: 0.0356\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 229/500\n", + "1/0, train_loss: 0.4128\n", + "2 epoch 229 average loss: 0.4128\n", + "----------\n", + "2: epoch 230/500\n", + "1/0, train_loss: 0.4115\n", + "2 epoch 230 average loss: 0.4115\n", + "current epoch: 230 current mean dice: 0.0367\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 231/500\n", + "1/0, train_loss: 0.3957\n", + "2 epoch 231 average loss: 0.3957\n", + "----------\n", + "2: epoch 232/500\n", + "1/0, train_loss: 0.4033\n", + "2 epoch 232 average loss: 0.4033\n", + "current epoch: 232 current mean dice: 0.0400\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 233/500\n", + "1/0, train_loss: 0.4032\n", + "2 epoch 233 average loss: 0.4032\n", + "----------\n", + "2: epoch 234/500\n", + "1/0, train_loss: 0.4025\n", + "2 epoch 234 average loss: 0.4025\n", + "current epoch: 234 current mean dice: 0.0355\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 235/500\n", + "1/0, train_loss: 0.3926\n", + "2 epoch 235 average loss: 0.3926\n", + "----------\n", + "2: epoch 236/500\n", + "1/0, train_loss: 0.4010\n", + "2 epoch 236 average loss: 0.4010\n", + "current epoch: 236 current mean dice: 0.0137\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 237/500\n", + "1/0, train_loss: 0.3943\n", + "2 epoch 237 average loss: 0.3943\n", + "----------\n", + "2: epoch 238/500\n", + "1/0, train_loss: 0.3907\n", + "2 epoch 238 average loss: 0.3907\n", + "current epoch: 238 current mean dice: 0.0103\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 239/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.3889\n", + "2 epoch 239 average loss: 0.3889\n", + "----------\n", + "2: epoch 240/500\n", + "1/0, train_loss: 0.3910\n", + "2 epoch 240 average loss: 0.3910\n", + "current epoch: 240 current mean dice: 0.0092\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 241/500\n", + "1/0, train_loss: 0.3927\n", + "2 epoch 241 average loss: 0.3927\n", + "----------\n", + "2: epoch 242/500\n", + "1/0, train_loss: 0.3927\n", + "2 epoch 242 average loss: 0.3927\n", + "current epoch: 242 current mean dice: 0.0093\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 243/500\n", + "1/0, train_loss: 0.3839\n", + "2 epoch 243 average loss: 0.3839\n", + "----------\n", + "2: epoch 244/500\n", + "1/0, train_loss: 0.3898\n", + "2 epoch 244 average loss: 0.3898\n", + "current epoch: 244 current mean dice: 0.0142\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 245/500\n", + "1/0, train_loss: 0.3903\n", + "2 epoch 245 average loss: 0.3903\n", + "----------\n", + "2: epoch 246/500\n", + "1/0, train_loss: 0.3873\n", + "2 epoch 246 average loss: 0.3873\n", + "current epoch: 246 current mean dice: 0.0182\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 247/500\n", + "1/0, train_loss: 0.4209\n", + "2 epoch 247 average loss: 0.4209\n", + "----------\n", + "2: epoch 248/500\n", + "1/0, train_loss: 0.3944\n", + "2 epoch 248 average loss: 0.3944\n", + "current epoch: 248 current mean dice: 0.0187\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 249/500\n", + "1/0, train_loss: 0.3888\n", + "2 epoch 249 average loss: 0.3888\n", + "----------\n", + "2: epoch 250/500\n", + "1/0, train_loss: 0.3792\n", + "2 epoch 250 average loss: 0.3792\n", + "current epoch: 250 current mean dice: 0.0126\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 251/500\n", + "1/0, train_loss: 0.3934\n", + "2 epoch 251 average loss: 0.3934\n", + "----------\n", + "2: epoch 252/500\n", + "1/0, train_loss: 0.3824\n", + "2 epoch 252 average loss: 0.3824\n", + "current epoch: 252 current mean dice: 0.0141\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 253/500\n", + "1/0, train_loss: 0.3841\n", + "2 epoch 253 average loss: 0.3841\n", + "----------\n", + "2: epoch 254/500\n", + "1/0, train_loss: 0.3883\n", + "2 epoch 254 average loss: 0.3883\n", + "current epoch: 254 current mean dice: 0.0114\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 255/500\n", + "1/0, train_loss: 0.3810\n", + "2 epoch 255 average loss: 0.3810\n", + "----------\n", + "2: epoch 256/500\n", + "1/0, train_loss: 0.3873\n", + "2 epoch 256 average loss: 0.3873\n", + "current epoch: 256 current mean dice: 0.0105\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 257/500\n", + "1/0, train_loss: 0.3853\n", + "2 epoch 257 average loss: 0.3853\n", + "----------\n", + "2: epoch 258/500\n", + "1/0, train_loss: 0.3819\n", + "2 epoch 258 average loss: 0.3819\n", + "current epoch: 258 current mean dice: 0.0081\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 259/500\n", + "1/0, train_loss: 0.3829\n", + "2 epoch 259 average loss: 0.3829\n", + "----------\n", + "2: epoch 260/500\n", + "1/0, train_loss: 0.3942\n", + "2 epoch 260 average loss: 0.3942\n", + "current epoch: 260 current mean dice: 0.0065\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 261/500\n", + "1/0, train_loss: 0.3910\n", + "2 epoch 261 average loss: 0.3910\n", + "----------\n", + "2: epoch 262/500\n", + "1/0, train_loss: 0.3895\n", + "2 epoch 262 average loss: 0.3895\n", + "current epoch: 262 current mean dice: 0.0043\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 263/500\n", + "1/0, train_loss: 0.3865\n", + "2 epoch 263 average loss: 0.3865\n", + "----------\n", + "2: epoch 264/500\n", + "1/0, train_loss: 0.3840\n", + "2 epoch 264 average loss: 0.3840\n", + "current epoch: 264 current mean dice: 0.0083\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 265/500\n", + "1/0, train_loss: 0.3788\n", + "2 epoch 265 average loss: 0.3788\n", + "----------\n", + "2: epoch 266/500\n", + "1/0, train_loss: 0.3811\n", + "2 epoch 266 average loss: 0.3811\n", + "current epoch: 266 current mean dice: 0.0056\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 267/500\n", + "1/0, train_loss: 0.3809\n", + "2 epoch 267 average loss: 0.3809\n", + "----------\n", + "2: epoch 268/500\n", + "1/0, train_loss: 0.3812\n", + "2 epoch 268 average loss: 0.3812\n", + "current epoch: 268 current mean dice: 0.0028\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 269/500\n", + "1/0, train_loss: 0.3853\n", + "2 epoch 269 average loss: 0.3853\n", + "----------\n", + "2: epoch 270/500\n", + "1/0, train_loss: 0.3796\n", + "2 epoch 270 average loss: 0.3796\n", + "current epoch: 270 current mean dice: 0.0023\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 271/500\n", + "1/0, train_loss: 0.3843\n", + "2 epoch 271 average loss: 0.3843\n", + "----------\n", + "2: epoch 272/500\n", + "1/0, train_loss: 0.3747\n", + "2 epoch 272 average loss: 0.3747\n", + "current epoch: 272 current mean dice: 0.0025\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 273/500\n", + "1/0, train_loss: 0.3805\n", + "2 epoch 273 average loss: 0.3805\n", + "----------\n", + "2: epoch 274/500\n", + "1/0, train_loss: 0.3773\n", + "2 epoch 274 average loss: 0.3773\n", + "current epoch: 274 current mean dice: 0.0028\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 275/500\n", + "1/0, train_loss: 0.3876\n", + "2 epoch 275 average loss: 0.3876\n", + "----------\n", + "2: epoch 276/500\n", + "1/0, train_loss: 0.3787\n", + "2 epoch 276 average loss: 0.3787\n", + "current epoch: 276 current mean dice: 0.0030\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 277/500\n", + "1/0, train_loss: 0.3819\n", + "2 epoch 277 average loss: 0.3819\n", + "----------\n", + "2: epoch 278/500\n", + "1/0, train_loss: 0.3754\n", + "2 epoch 278 average loss: 0.3754\n", + "current epoch: 278 current mean dice: 0.0040\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 279/500\n", + "1/0, train_loss: 0.3759\n", + "2 epoch 279 average loss: 0.3759\n", + "----------\n", + "2: epoch 280/500\n", + "1/0, train_loss: 0.3808\n", + "2 epoch 280 average loss: 0.3808\n", + "current epoch: 280 current mean dice: 0.0033\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 281/500\n", + "1/0, train_loss: 0.3758\n", + "2 epoch 281 average loss: 0.3758\n", + "----------\n", + "2: epoch 282/500\n", + "1/0, train_loss: 0.3753\n", + "2 epoch 282 average loss: 0.3753\n", + "current epoch: 282 current mean dice: 0.0025\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 283/500\n", + "1/0, train_loss: 0.3808\n", + "2 epoch 283 average loss: 0.3808\n", + "----------\n", + "2: epoch 284/500\n", + "1/0, train_loss: 0.3765\n", + "2 epoch 284 average loss: 0.3765\n", + "current epoch: 284 current mean dice: 0.0025\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 285/500\n", + "1/0, train_loss: 0.4305\n", + "2 epoch 285 average loss: 0.4305\n", + "----------\n", + "2: epoch 286/500\n", + "1/0, train_loss: 0.3746\n", + "2 epoch 286 average loss: 0.3746\n", + "current epoch: 286 current mean dice: 0.0060\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 287/500\n", + "1/0, train_loss: 0.3789\n", + "2 epoch 287 average loss: 0.3789\n", + "----------\n", + "2: epoch 288/500\n", + "1/0, train_loss: 0.3753\n", + "2 epoch 288 average loss: 0.3753\n", + "current epoch: 288 current mean dice: 0.0100\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 289/500\n", + "1/0, train_loss: 0.3831\n", + "2 epoch 289 average loss: 0.3831\n", + "----------\n", + "2: epoch 290/500\n", + "1/0, train_loss: 0.3814\n", + "2 epoch 290 average loss: 0.3814\n", + "current epoch: 290 current mean dice: 0.0081\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 291/500\n", + "1/0, train_loss: 0.3781\n", + "2 epoch 291 average loss: 0.3781\n", + "----------\n", + "2: epoch 292/500\n", + "1/0, train_loss: 0.3811\n", + "2 epoch 292 average loss: 0.3811\n", + "current epoch: 292 current mean dice: 0.0097\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 293/500\n", + "1/0, train_loss: 0.3771\n", + "2 epoch 293 average loss: 0.3771\n", + "----------\n", + "2: epoch 294/500\n", + "1/0, train_loss: 0.3815\n", + "2 epoch 294 average loss: 0.3815\n", + "current epoch: 294 current mean dice: 0.0094\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 295/500\n", + "1/0, train_loss: 0.3798\n", + "2 epoch 295 average loss: 0.3798\n", + "----------\n", + "2: epoch 296/500\n", + "1/0, train_loss: 0.3786\n", + "2 epoch 296 average loss: 0.3786\n", + "current epoch: 296 current mean dice: 0.0086\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 297/500\n", + "1/0, train_loss: 0.3804\n", + "2 epoch 297 average loss: 0.3804\n", + "----------\n", + "2: epoch 298/500\n", + "1/0, train_loss: 0.3780\n", + "2 epoch 298 average loss: 0.3780\n", + "current epoch: 298 current mean dice: 0.0051\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 299/500\n", + "1/0, train_loss: 0.3762\n", + "2 epoch 299 average loss: 0.3762\n", + "----------\n", + "2: epoch 300/500\n", + "1/0, train_loss: 0.3728\n", + "2 epoch 300 average loss: 0.3728\n", + "current epoch: 300 current mean dice: 0.0032\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 301/500\n", + "1/0, train_loss: 0.3729\n", + "2 epoch 301 average loss: 0.3729\n", + "----------\n", + "2: epoch 302/500\n", + "1/0, train_loss: 0.3715\n", + "2 epoch 302 average loss: 0.3715\n", + "current epoch: 302 current mean dice: 0.0025\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 303/500\n", + "1/0, train_loss: 0.3721\n", + "2 epoch 303 average loss: 0.3721\n", + "----------\n", + "2: epoch 304/500\n", + "1/0, train_loss: 0.3716\n", + "2 epoch 304 average loss: 0.3716\n", + "current epoch: 304 current mean dice: 0.0031\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 305/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.3695\n", + "2 epoch 305 average loss: 0.3695\n", + "----------\n", + "2: epoch 306/500\n", + "1/0, train_loss: 0.3762\n", + "2 epoch 306 average loss: 0.3762\n", + "current epoch: 306 current mean dice: 0.0039\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 307/500\n", + "1/0, train_loss: 0.3707\n", + "2 epoch 307 average loss: 0.3707\n", + "----------\n", + "2: epoch 308/500\n", + "1/0, train_loss: 0.3704\n", + "2 epoch 308 average loss: 0.3704\n", + "current epoch: 308 current mean dice: 0.0053\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 309/500\n", + "1/0, train_loss: 0.3760\n", + "2 epoch 309 average loss: 0.3760\n", + "----------\n", + "2: epoch 310/500\n", + "1/0, train_loss: 0.3728\n", + "2 epoch 310 average loss: 0.3728\n", + "current epoch: 310 current mean dice: 0.0027\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 311/500\n", + "1/0, train_loss: 0.3729\n", + "2 epoch 311 average loss: 0.3729\n", + "----------\n", + "2: epoch 312/500\n", + "1/0, train_loss: 0.3737\n", + "2 epoch 312 average loss: 0.3737\n", + "current epoch: 312 current mean dice: 0.0024\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 313/500\n", + "1/0, train_loss: 0.3791\n", + "2 epoch 313 average loss: 0.3791\n", + "----------\n", + "2: epoch 314/500\n", + "1/0, train_loss: 0.3722\n", + "2 epoch 314 average loss: 0.3722\n", + "current epoch: 314 current mean dice: 0.0037\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 315/500\n", + "1/0, train_loss: 0.3735\n", + "2 epoch 315 average loss: 0.3735\n", + "----------\n", + "2: epoch 316/500\n", + "1/0, train_loss: 0.3786\n", + "2 epoch 316 average loss: 0.3786\n", + "current epoch: 316 current mean dice: 0.0028\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 317/500\n", + "1/0, train_loss: 0.3741\n", + "2 epoch 317 average loss: 0.3741\n", + "----------\n", + "2: epoch 318/500\n", + "1/0, train_loss: 0.3702\n", + "2 epoch 318 average loss: 0.3702\n", + "current epoch: 318 current mean dice: 0.0014\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 319/500\n", + "1/0, train_loss: 0.3785\n", + "2 epoch 319 average loss: 0.3785\n", + "----------\n", + "2: epoch 320/500\n", + "1/0, train_loss: 0.3724\n", + "2 epoch 320 average loss: 0.3724\n", + "current epoch: 320 current mean dice: 0.0019\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 321/500\n", + "1/0, train_loss: 0.3783\n", + "2 epoch 321 average loss: 0.3783\n", + "----------\n", + "2: epoch 322/500\n", + "1/0, train_loss: 0.3791\n", + "2 epoch 322 average loss: 0.3791\n", + "current epoch: 322 current mean dice: 0.0036\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 323/500\n", + "1/0, train_loss: 0.3760\n", + "2 epoch 323 average loss: 0.3760\n", + "----------\n", + "2: epoch 324/500\n", + "1/0, train_loss: 0.3780\n", + "2 epoch 324 average loss: 0.3780\n", + "current epoch: 324 current mean dice: 0.0025\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 325/500\n", + "1/0, train_loss: 0.3775\n", + "2 epoch 325 average loss: 0.3775\n", + "----------\n", + "2: epoch 326/500\n", + "1/0, train_loss: 0.3743\n", + "2 epoch 326 average loss: 0.3743\n", + "current epoch: 326 current mean dice: 0.0015\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 327/500\n", + "1/0, train_loss: 0.4214\n", + "2 epoch 327 average loss: 0.4214\n", + "----------\n", + "2: epoch 328/500\n", + "1/0, train_loss: 0.3845\n", + "2 epoch 328 average loss: 0.3845\n", + "current epoch: 328 current mean dice: 0.0055\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 329/500\n", + "1/0, train_loss: 0.3749\n", + "2 epoch 329 average loss: 0.3749\n", + "----------\n", + "2: epoch 330/500\n", + "1/0, train_loss: 0.3789\n", + "2 epoch 330 average loss: 0.3789\n", + "current epoch: 330 current mean dice: 0.0120\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 331/500\n", + "1/0, train_loss: 0.3835\n", + "2 epoch 331 average loss: 0.3835\n", + "----------\n", + "2: epoch 332/500\n", + "1/0, train_loss: 0.3802\n", + "2 epoch 332 average loss: 0.3802\n", + "current epoch: 332 current mean dice: 0.0038\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 333/500\n", + "1/0, train_loss: 0.4097\n", + "2 epoch 333 average loss: 0.4097\n", + "----------\n", + "2: epoch 334/500\n", + "1/0, train_loss: 0.4250\n", + "2 epoch 334 average loss: 0.4250\n", + "current epoch: 334 current mean dice: 0.0646\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 335/500\n", + "1/0, train_loss: 0.4270\n", + "2 epoch 335 average loss: 0.4270\n", + "----------\n", + "2: epoch 336/500\n", + "1/0, train_loss: 0.4129\n", + "2 epoch 336 average loss: 0.4129\n", + "current epoch: 336 current mean dice: 0.0211\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 337/500\n", + "1/0, train_loss: 0.4132\n", + "2 epoch 337 average loss: 0.4132\n", + "----------\n", + "2: epoch 338/500\n", + "1/0, train_loss: 0.4043\n", + "2 epoch 338 average loss: 0.4043\n", + "current epoch: 338 current mean dice: 0.0294\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 339/500\n", + "1/0, train_loss: 0.3872\n", + "2 epoch 339 average loss: 0.3872\n", + "----------\n", + "2: epoch 340/500\n", + "1/0, train_loss: 0.3909\n", + "2 epoch 340 average loss: 0.3909\n", + "current epoch: 340 current mean dice: 0.0250\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 341/500\n", + "1/0, train_loss: 0.3996\n", + "2 epoch 341 average loss: 0.3996\n", + "----------\n", + "2: epoch 342/500\n", + "1/0, train_loss: 0.3943\n", + "2 epoch 342 average loss: 0.3943\n", + "current epoch: 342 current mean dice: 0.0293\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 343/500\n", + "1/0, train_loss: 0.4023\n", + "2 epoch 343 average loss: 0.4023\n", + "----------\n", + "2: epoch 344/500\n", + "1/0, train_loss: 0.3835\n", + "2 epoch 344 average loss: 0.3835\n", + "current epoch: 344 current mean dice: 0.0266\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 345/500\n", + "1/0, train_loss: 0.3882\n", + "2 epoch 345 average loss: 0.3882\n", + "----------\n", + "2: epoch 346/500\n", + "1/0, train_loss: 0.3881\n", + "2 epoch 346 average loss: 0.3881\n", + "current epoch: 346 current mean dice: 0.0227\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 347/500\n", + "1/0, train_loss: 0.3850\n", + "2 epoch 347 average loss: 0.3850\n", + "----------\n", + "2: epoch 348/500\n", + "1/0, train_loss: 0.3780\n", + "2 epoch 348 average loss: 0.3780\n", + "current epoch: 348 current mean dice: 0.0142\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 349/500\n", + "1/0, train_loss: 0.3940\n", + "2 epoch 349 average loss: 0.3940\n", + "----------\n", + "2: epoch 350/500\n", + "1/0, train_loss: 0.3891\n", + "2 epoch 350 average loss: 0.3891\n", + "current epoch: 350 current mean dice: 0.0057\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 351/500\n", + "1/0, train_loss: 0.3840\n", + "2 epoch 351 average loss: 0.3840\n", + "----------\n", + "2: epoch 352/500\n", + "1/0, train_loss: 0.4057\n", + "2 epoch 352 average loss: 0.4057\n", + "current epoch: 352 current mean dice: 0.0636\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 353/500\n", + "1/0, train_loss: 0.4044\n", + "2 epoch 353 average loss: 0.4044\n", + "----------\n", + "2: epoch 354/500\n", + "1/0, train_loss: 0.3868\n", + "2 epoch 354 average loss: 0.3868\n", + "current epoch: 354 current mean dice: 0.0211\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 355/500\n", + "1/0, train_loss: 0.3843\n", + "2 epoch 355 average loss: 0.3843\n", + "----------\n", + "2: epoch 356/500\n", + "1/0, train_loss: 0.3837\n", + "2 epoch 356 average loss: 0.3837\n", + "current epoch: 356 current mean dice: 0.0211\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 357/500\n", + "1/0, train_loss: 0.3721\n", + "2 epoch 357 average loss: 0.3721\n", + "----------\n", + "2: epoch 358/500\n", + "1/0, train_loss: 0.3751\n", + "2 epoch 358 average loss: 0.3751\n", + "current epoch: 358 current mean dice: 0.0141\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 359/500\n", + "1/0, train_loss: 0.3768\n", + "2 epoch 359 average loss: 0.3768\n", + "----------\n", + "2: epoch 360/500\n", + "1/0, train_loss: 0.3712\n", + "2 epoch 360 average loss: 0.3712\n", + "current epoch: 360 current mean dice: 0.0175\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 361/500\n", + "1/0, train_loss: 0.3788\n", + "2 epoch 361 average loss: 0.3788\n", + "----------\n", + "2: epoch 362/500\n", + "1/0, train_loss: 0.3751\n", + "2 epoch 362 average loss: 0.3751\n", + "current epoch: 362 current mean dice: 0.0187\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 363/500\n", + "1/0, train_loss: 0.3762\n", + "2 epoch 363 average loss: 0.3762\n", + "----------\n", + "2: epoch 364/500\n", + "1/0, train_loss: 0.3766\n", + "2 epoch 364 average loss: 0.3766\n", + "current epoch: 364 current mean dice: 0.0049\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 365/500\n", + "1/0, train_loss: 0.3781\n", + "2 epoch 365 average loss: 0.3781\n", + "----------\n", + "2: epoch 366/500\n", + "1/0, train_loss: 0.3740\n", + "2 epoch 366 average loss: 0.3740\n", + "current epoch: 366 current mean dice: 0.0048\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 367/500\n", + "1/0, train_loss: 0.3700\n", + "2 epoch 367 average loss: 0.3700\n", + "----------\n", + "2: epoch 368/500\n", + "1/0, train_loss: 0.3724\n", + "2 epoch 368 average loss: 0.3724\n", + "current epoch: 368 current mean dice: 0.0054\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 369/500\n", + "1/0, train_loss: 0.3701\n", + "2 epoch 369 average loss: 0.3701\n", + "----------\n", + "2: epoch 370/500\n", + "1/0, train_loss: 0.3705\n", + "2 epoch 370 average loss: 0.3705\n", + "current epoch: 370 current mean dice: 0.0095\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 371/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.3718\n", + "2 epoch 371 average loss: 0.3718\n", + "----------\n", + "2: epoch 372/500\n", + "1/0, train_loss: 0.3778\n", + "2 epoch 372 average loss: 0.3778\n", + "current epoch: 372 current mean dice: 0.0067\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 373/500\n", + "1/0, train_loss: 0.3735\n", + "2 epoch 373 average loss: 0.3735\n", + "----------\n", + "2: epoch 374/500\n", + "1/0, train_loss: 0.3707\n", + "2 epoch 374 average loss: 0.3707\n", + "current epoch: 374 current mean dice: 0.0130\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 375/500\n", + "1/0, train_loss: 0.3771\n", + "2 epoch 375 average loss: 0.3771\n", + "----------\n", + "2: epoch 376/500\n", + "1/0, train_loss: 0.3746\n", + "2 epoch 376 average loss: 0.3746\n", + "current epoch: 376 current mean dice: 0.0155\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 377/500\n", + "1/0, train_loss: 0.3785\n", + "2 epoch 377 average loss: 0.3785\n", + "----------\n", + "2: epoch 378/500\n", + "1/0, train_loss: 0.3709\n", + "2 epoch 378 average loss: 0.3709\n", + "current epoch: 378 current mean dice: 0.0128\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 379/500\n", + "1/0, train_loss: 0.3693\n", + "2 epoch 379 average loss: 0.3693\n", + "----------\n", + "2: epoch 380/500\n", + "1/0, train_loss: 0.3733\n", + "2 epoch 380 average loss: 0.3733\n", + "current epoch: 380 current mean dice: 0.0026\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 381/500\n", + "1/0, train_loss: 0.3710\n", + "2 epoch 381 average loss: 0.3710\n", + "----------\n", + "2: epoch 382/500\n", + "1/0, train_loss: 0.3703\n", + "2 epoch 382 average loss: 0.3703\n", + "current epoch: 382 current mean dice: 0.0011\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 383/500\n", + "1/0, train_loss: 0.3736\n", + "2 epoch 383 average loss: 0.3736\n", + "----------\n", + "2: epoch 384/500\n", + "1/0, train_loss: 0.3726\n", + "2 epoch 384 average loss: 0.3726\n", + "current epoch: 384 current mean dice: 0.0010\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 385/500\n", + "1/0, train_loss: 0.3716\n", + "2 epoch 385 average loss: 0.3716\n", + "----------\n", + "2: epoch 386/500\n", + "1/0, train_loss: 0.3689\n", + "2 epoch 386 average loss: 0.3689\n", + "current epoch: 386 current mean dice: 0.0009\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 387/500\n", + "1/0, train_loss: 0.3719\n", + "2 epoch 387 average loss: 0.3719\n", + "----------\n", + "2: epoch 388/500\n", + "1/0, train_loss: 0.3664\n", + "2 epoch 388 average loss: 0.3664\n", + "current epoch: 388 current mean dice: 0.0010\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 389/500\n", + "1/0, train_loss: 0.3734\n", + "2 epoch 389 average loss: 0.3734\n", + "----------\n", + "2: epoch 390/500\n", + "1/0, train_loss: 0.3677\n", + "2 epoch 390 average loss: 0.3677\n", + "current epoch: 390 current mean dice: 0.0010\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 391/500\n", + "1/0, train_loss: 0.3671\n", + "2 epoch 391 average loss: 0.3671\n", + "----------\n", + "2: epoch 392/500\n", + "1/0, train_loss: 0.3730\n", + "2 epoch 392 average loss: 0.3730\n", + "current epoch: 392 current mean dice: 0.0006\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 393/500\n", + "1/0, train_loss: 0.3735\n", + "2 epoch 393 average loss: 0.3735\n", + "----------\n", + "2: epoch 394/500\n", + "1/0, train_loss: 0.3769\n", + "2 epoch 394 average loss: 0.3769\n", + "current epoch: 394 current mean dice: 0.0008\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 395/500\n", + "1/0, train_loss: 0.3664\n", + "2 epoch 395 average loss: 0.3664\n", + "----------\n", + "2: epoch 396/500\n", + "1/0, train_loss: 0.3699\n", + "2 epoch 396 average loss: 0.3699\n", + "current epoch: 396 current mean dice: 0.0014\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 397/500\n", + "1/0, train_loss: 0.3740\n", + "2 epoch 397 average loss: 0.3740\n", + "----------\n", + "2: epoch 398/500\n", + "1/0, train_loss: 0.3663\n", + "2 epoch 398 average loss: 0.3663\n", + "current epoch: 398 current mean dice: 0.0010\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 399/500\n", + "1/0, train_loss: 0.3688\n", + "2 epoch 399 average loss: 0.3688\n", + "----------\n", + "2: epoch 400/500\n", + "1/0, train_loss: 0.3673\n", + "2 epoch 400 average loss: 0.3673\n", + "current epoch: 400 current mean dice: 0.0016\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 401/500\n", + "1/0, train_loss: 0.3716\n", + "2 epoch 401 average loss: 0.3716\n", + "----------\n", + "2: epoch 402/500\n", + "1/0, train_loss: 0.3737\n", + "2 epoch 402 average loss: 0.3737\n", + "current epoch: 402 current mean dice: 0.0017\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 403/500\n", + "1/0, train_loss: 0.3759\n", + "2 epoch 403 average loss: 0.3759\n", + "----------\n", + "2: epoch 404/500\n", + "1/0, train_loss: 0.3711\n", + "2 epoch 404 average loss: 0.3711\n", + "current epoch: 404 current mean dice: 0.0015\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 405/500\n", + "1/0, train_loss: 0.3699\n", + "2 epoch 405 average loss: 0.3699\n", + "----------\n", + "2: epoch 406/500\n", + "1/0, train_loss: 0.3756\n", + "2 epoch 406 average loss: 0.3756\n", + "current epoch: 406 current mean dice: 0.0047\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 407/500\n", + "1/0, train_loss: 0.3700\n", + "2 epoch 407 average loss: 0.3700\n", + "----------\n", + "2: epoch 408/500\n", + "1/0, train_loss: 0.3704\n", + "2 epoch 408 average loss: 0.3704\n", + "current epoch: 408 current mean dice: 0.0036\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 409/500\n", + "1/0, train_loss: 0.3680\n", + "2 epoch 409 average loss: 0.3680\n", + "----------\n", + "2: epoch 410/500\n", + "1/0, train_loss: 0.3694\n", + "2 epoch 410 average loss: 0.3694\n", + "current epoch: 410 current mean dice: 0.0030\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 411/500\n", + "1/0, train_loss: 0.3708\n", + "2 epoch 411 average loss: 0.3708\n", + "----------\n", + "2: epoch 412/500\n", + "1/0, train_loss: 0.3700\n", + "2 epoch 412 average loss: 0.3700\n", + "current epoch: 412 current mean dice: 0.0061\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 413/500\n", + "1/0, train_loss: 0.3700\n", + "2 epoch 413 average loss: 0.3700\n", + "----------\n", + "2: epoch 414/500\n", + "1/0, train_loss: 0.3738\n", + "2 epoch 414 average loss: 0.3738\n", + "current epoch: 414 current mean dice: 0.0078\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 415/500\n", + "1/0, train_loss: 0.3774\n", + "2 epoch 415 average loss: 0.3774\n", + "----------\n", + "2: epoch 416/500\n", + "1/0, train_loss: 0.3657\n", + "2 epoch 416 average loss: 0.3657\n", + "current epoch: 416 current mean dice: 0.0024\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 417/500\n", + "1/0, train_loss: 0.3726\n", + "2 epoch 417 average loss: 0.3726\n", + "----------\n", + "2: epoch 418/500\n", + "1/0, train_loss: 0.3680\n", + "2 epoch 418 average loss: 0.3680\n", + "current epoch: 418 current mean dice: 0.0007\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 419/500\n", + "1/0, train_loss: 0.3685\n", + "2 epoch 419 average loss: 0.3685\n", + "----------\n", + "2: epoch 420/500\n", + "1/0, train_loss: 0.3690\n", + "2 epoch 420 average loss: 0.3690\n", + "current epoch: 420 current mean dice: 0.0010\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 421/500\n", + "1/0, train_loss: 0.3689\n", + "2 epoch 421 average loss: 0.3689\n", + "----------\n", + "2: epoch 422/500\n", + "1/0, train_loss: 0.3705\n", + "2 epoch 422 average loss: 0.3705\n", + "current epoch: 422 current mean dice: 0.0026\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 423/500\n", + "1/0, train_loss: 0.3721\n", + "2 epoch 423 average loss: 0.3721\n", + "----------\n", + "2: epoch 424/500\n", + "1/0, train_loss: 0.3653\n", + "2 epoch 424 average loss: 0.3653\n", + "current epoch: 424 current mean dice: 0.0033\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 425/500\n", + "1/0, train_loss: 0.3691\n", + "2 epoch 425 average loss: 0.3691\n", + "----------\n", + "2: epoch 426/500\n", + "1/0, train_loss: 0.3857\n", + "2 epoch 426 average loss: 0.3857\n", + "current epoch: 426 current mean dice: 0.0045\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 427/500\n", + "1/0, train_loss: 0.3743\n", + "2 epoch 427 average loss: 0.3743\n", + "----------\n", + "2: epoch 428/500\n", + "1/0, train_loss: 0.4226\n", + "2 epoch 428 average loss: 0.4226\n", + "current epoch: 428 current mean dice: 0.0318\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 429/500\n", + "1/0, train_loss: 0.3688\n", + "2 epoch 429 average loss: 0.3688\n", + "----------\n", + "2: epoch 430/500\n", + "1/0, train_loss: 0.4219\n", + "2 epoch 430 average loss: 0.4219\n", + "current epoch: 430 current mean dice: 0.1295\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 431/500\n", + "1/0, train_loss: 0.4239\n", + "2 epoch 431 average loss: 0.4239\n", + "----------\n", + "2: epoch 432/500\n", + "1/0, train_loss: 0.4000\n", + "2 epoch 432 average loss: 0.4000\n", + "current epoch: 432 current mean dice: 0.0140\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 433/500\n", + "1/0, train_loss: 0.3730\n", + "2 epoch 433 average loss: 0.3730\n", + "----------\n", + "2: epoch 434/500\n", + "1/0, train_loss: 0.3702\n", + "2 epoch 434 average loss: 0.3702\n", + "current epoch: 434 current mean dice: 0.0405\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 435/500\n", + "1/0, train_loss: 0.3788\n", + "2 epoch 435 average loss: 0.3788\n", + "----------\n", + "2: epoch 436/500\n", + "1/0, train_loss: 0.3780\n", + "2 epoch 436 average loss: 0.3780\n", + "current epoch: 436 current mean dice: 0.1527\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 437/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.3763\n", + "2 epoch 437 average loss: 0.3763\n", + "----------\n", + "2: epoch 438/500\n", + "1/0, train_loss: 0.4267\n", + "2 epoch 438 average loss: 0.4267\n", + "current epoch: 438 current mean dice: 0.1496\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 439/500\n", + "1/0, train_loss: 0.3758\n", + "2 epoch 439 average loss: 0.3758\n", + "----------\n", + "2: epoch 440/500\n", + "1/0, train_loss: 0.4223\n", + "2 epoch 440 average loss: 0.4223\n", + "current epoch: 440 current mean dice: 0.1543\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 441/500\n", + "1/0, train_loss: 0.3739\n", + "2 epoch 441 average loss: 0.3739\n", + "----------\n", + "2: epoch 442/500\n", + "1/0, train_loss: 0.3732\n", + "2 epoch 442 average loss: 0.3732\n", + "current epoch: 442 current mean dice: 0.1664\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 443/500\n", + "1/0, train_loss: 0.3729\n", + "2 epoch 443 average loss: 0.3729\n", + "----------\n", + "2: epoch 444/500\n", + "1/0, train_loss: 0.3755\n", + "2 epoch 444 average loss: 0.3755\n", + "current epoch: 444 current mean dice: 0.2721\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 445/500\n", + "1/0, train_loss: 0.3746\n", + "2 epoch 445 average loss: 0.3746\n", + "----------\n", + "2: epoch 446/500\n", + "1/0, train_loss: 0.3704\n", + "2 epoch 446 average loss: 0.3704\n", + "current epoch: 446 current mean dice: 0.2937\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 447/500\n", + "1/0, train_loss: 0.3722\n", + "2 epoch 447 average loss: 0.3722\n", + "----------\n", + "2: epoch 448/500\n", + "1/0, train_loss: 0.3710\n", + "2 epoch 448 average loss: 0.3710\n", + "current epoch: 448 current mean dice: 0.2690\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 449/500\n", + "1/0, train_loss: 0.4309\n", + "2 epoch 449 average loss: 0.4309\n", + "----------\n", + "2: epoch 450/500\n", + "1/0, train_loss: 0.3759\n", + "2 epoch 450 average loss: 0.3759\n", + "current epoch: 450 current mean dice: 0.2846\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 451/500\n", + "1/0, train_loss: 0.3719\n", + "2 epoch 451 average loss: 0.3719\n", + "----------\n", + "2: epoch 452/500\n", + "1/0, train_loss: 0.4061\n", + "2 epoch 452 average loss: 0.4061\n", + "current epoch: 452 current mean dice: 0.4293\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 453/500\n", + "1/0, train_loss: 0.4036\n", + "2 epoch 453 average loss: 0.4036\n", + "----------\n", + "2: epoch 454/500\n", + "1/0, train_loss: 0.4206\n", + "2 epoch 454 average loss: 0.4206\n", + "current epoch: 454 current mean dice: 0.3744\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 455/500\n", + "1/0, train_loss: 0.4125\n", + "2 epoch 455 average loss: 0.4125\n", + "----------\n", + "2: epoch 456/500\n", + "1/0, train_loss: 0.3831\n", + "2 epoch 456 average loss: 0.3831\n", + "current epoch: 456 current mean dice: 0.1539\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 457/500\n", + "1/0, train_loss: 0.3740\n", + "2 epoch 457 average loss: 0.3740\n", + "----------\n", + "2: epoch 458/500\n", + "1/0, train_loss: 0.3804\n", + "2 epoch 458 average loss: 0.3804\n", + "current epoch: 458 current mean dice: 0.0614\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 459/500\n", + "1/0, train_loss: 0.3750\n", + "2 epoch 459 average loss: 0.3750\n", + "----------\n", + "2: epoch 460/500\n", + "1/0, train_loss: 0.3734\n", + "2 epoch 460 average loss: 0.3734\n", + "current epoch: 460 current mean dice: 0.0467\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 461/500\n", + "1/0, train_loss: 0.3808\n", + "2 epoch 461 average loss: 0.3808\n", + "----------\n", + "2: epoch 462/500\n", + "1/0, train_loss: 0.3964\n", + "2 epoch 462 average loss: 0.3964\n", + "current epoch: 462 current mean dice: 0.0328\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 463/500\n", + "1/0, train_loss: 0.3750\n", + "2 epoch 463 average loss: 0.3750\n", + "----------\n", + "2: epoch 464/500\n", + "1/0, train_loss: 0.3745\n", + "2 epoch 464 average loss: 0.3745\n", + "current epoch: 464 current mean dice: 0.0239\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 465/500\n", + "1/0, train_loss: 0.3767\n", + "2 epoch 465 average loss: 0.3767\n", + "----------\n", + "2: epoch 466/500\n", + "1/0, train_loss: 0.3780\n", + "2 epoch 466 average loss: 0.3780\n", + "current epoch: 466 current mean dice: 0.0233\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 467/500\n", + "1/0, train_loss: 0.3700\n", + "2 epoch 467 average loss: 0.3700\n", + "----------\n", + "2: epoch 468/500\n", + "1/0, train_loss: 0.3736\n", + "2 epoch 468 average loss: 0.3736\n", + "current epoch: 468 current mean dice: 0.0162\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 469/500\n", + "1/0, train_loss: 0.3720\n", + "2 epoch 469 average loss: 0.3720\n", + "----------\n", + "2: epoch 470/500\n", + "1/0, train_loss: 0.4159\n", + "2 epoch 470 average loss: 0.4159\n", + "current epoch: 470 current mean dice: 0.0162\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 471/500\n", + "1/0, train_loss: 0.3725\n", + "2 epoch 471 average loss: 0.3725\n", + "----------\n", + "2: epoch 472/500\n", + "1/0, train_loss: 0.3758\n", + "2 epoch 472 average loss: 0.3758\n", + "current epoch: 472 current mean dice: 0.0295\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 473/500\n", + "1/0, train_loss: 0.3722\n", + "2 epoch 473 average loss: 0.3722\n", + "----------\n", + "2: epoch 474/500\n", + "1/0, train_loss: 0.3785\n", + "2 epoch 474 average loss: 0.3785\n", + "current epoch: 474 current mean dice: 0.0300\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 475/500\n", + "1/0, train_loss: 0.3816\n", + "2 epoch 475 average loss: 0.3816\n", + "----------\n", + "2: epoch 476/500\n", + "1/0, train_loss: 0.3838\n", + "2 epoch 476 average loss: 0.3838\n", + "current epoch: 476 current mean dice: 0.0242\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 477/500\n", + "1/0, train_loss: 0.3742\n", + "2 epoch 477 average loss: 0.3742\n", + "----------\n", + "2: epoch 478/500\n", + "1/0, train_loss: 0.3783\n", + "2 epoch 478 average loss: 0.3783\n", + "current epoch: 478 current mean dice: 0.0329\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 479/500\n", + "1/0, train_loss: 0.3778\n", + "2 epoch 479 average loss: 0.3778\n", + "----------\n", + "2: epoch 480/500\n", + "1/0, train_loss: 0.3791\n", + "2 epoch 480 average loss: 0.3791\n", + "current epoch: 480 current mean dice: 0.0158\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 481/500\n", + "1/0, train_loss: 0.3728\n", + "2 epoch 481 average loss: 0.3728\n", + "----------\n", + "2: epoch 482/500\n", + "1/0, train_loss: 0.3937\n", + "2 epoch 482 average loss: 0.3937\n", + "current epoch: 482 current mean dice: 0.1723\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 483/500\n", + "1/0, train_loss: 0.4309\n", + "2 epoch 483 average loss: 0.4309\n", + "----------\n", + "2: epoch 484/500\n", + "1/0, train_loss: 0.4433\n", + "2 epoch 484 average loss: 0.4433\n", + "current epoch: 484 current mean dice: 0.0476\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 485/500\n", + "1/0, train_loss: 0.4248\n", + "2 epoch 485 average loss: 0.4248\n", + "----------\n", + "2: epoch 486/500\n", + "1/0, train_loss: 0.4099\n", + "2 epoch 486 average loss: 0.4099\n", + "current epoch: 486 current mean dice: 0.2678\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 487/500\n", + "1/0, train_loss: 0.4126\n", + "2 epoch 487 average loss: 0.4126\n", + "----------\n", + "2: epoch 488/500\n", + "1/0, train_loss: 0.4011\n", + "2 epoch 488 average loss: 0.4011\n", + "current epoch: 488 current mean dice: 0.2109\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 489/500\n", + "1/0, train_loss: 0.3959\n", + "2 epoch 489 average loss: 0.3959\n", + "----------\n", + "2: epoch 490/500\n", + "1/0, train_loss: 0.3922\n", + "2 epoch 490 average loss: 0.3922\n", + "current epoch: 490 current mean dice: 0.1651\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 491/500\n", + "1/0, train_loss: 0.3827\n", + "2 epoch 491 average loss: 0.3827\n", + "----------\n", + "2: epoch 492/500\n", + "1/0, train_loss: 0.3833\n", + "2 epoch 492 average loss: 0.3833\n", + "current epoch: 492 current mean dice: 0.1326\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 493/500\n", + "1/0, train_loss: 0.3893\n", + "2 epoch 493 average loss: 0.3893\n", + "----------\n", + "2: epoch 494/500\n", + "1/0, train_loss: 0.3743\n", + "2 epoch 494 average loss: 0.3743\n", + "current epoch: 494 current mean dice: 0.1314\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 495/500\n", + "1/0, train_loss: 0.3813\n", + "2 epoch 495 average loss: 0.3813\n", + "----------\n", + "2: epoch 496/500\n", + "1/0, train_loss: 0.3861\n", + "2 epoch 496 average loss: 0.3861\n", + "current epoch: 496 current mean dice: 0.1069\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 497/500\n", + "1/0, train_loss: 0.3791\n", + "2 epoch 497 average loss: 0.3791\n", + "----------\n", + "2: epoch 498/500\n", + "1/0, train_loss: 0.3790\n", + "2 epoch 498 average loss: 0.3790\n", + "current epoch: 498 current mean dice: 0.0895\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 499/500\n", + "1/0, train_loss: 0.3762\n", + "2 epoch 499 average loss: 0.3762\n", + "----------\n", + "2: epoch 500/500\n", + "1/0, train_loss: 0.3801\n", + "2 epoch 500 average loss: 0.3801\n", + "current epoch: 500 current mean dice: 0.0658\n", + "best mean dice: 0.4482 at epoch: 26\n" + ] + } + ], + "source": [ + "device=1\n", + "def vfold_train(vfold_num, train_loader, val_loader):\n", + "# model = UNet(\n", + "# dimensions=3,\n", + "# in_channels=1,\n", + "# out_channels=num_classes,\n", + "# channels=net_channels,\n", + "# strides=net_strides,\n", + "# num_res_units=2,\n", + "# norm=Norm.BATCH,\n", + "# ).to(device)\n", + " \n", + " model = UNETR(1, \n", + " num_classes, \n", + " image.shape, \n", + " feature_size=16, \n", + " hidden_size=768, \n", + " mlp_dim=3072, \n", + " num_heads=12, \n", + " pos_embed='conv', \n", + " norm_name='instance', \n", + " conv_block=True, \n", + " res_block=True, \n", + " dropout_rate=0.0, \n", + " spatial_dims=3).to(device)\n", + " \n", + " loss_function = DiceLoss(to_onehot_y=True, softmax=True)\n", + " optimizer = torch.optim.Adam(model.parameters(), 1e-3)\n", + " dice_metric = DiceMetric(include_background=False, reduction=\"mean\")\n", + "\n", + " val_interval = 2\n", + " best_metric = -1\n", + " best_metric_epoch = -1\n", + " epoch_loss_values = []\n", + " metric_values = []\n", + "\n", + " post_pred = Compose([EnsureType(), AsDiscrete(argmax=True, to_onehot=True, num_classes=num_classes)])\n", + " post_label = Compose([EnsureType(), AsDiscrete(to_onehot=True, num_classes=num_classes)])\n", + "\n", + " for epoch in range(max_epochs):\n", + " print(\"-\" * 10)\n", + " print(f\"{vfold_num}: epoch {epoch + 1}/{max_epochs}\")\n", + " model.train()\n", + " epoch_loss = 0\n", + " step = 0\n", + " for batch_data in train_loader:\n", + " step += 1\n", + " inputs, labels = (\n", + " batch_data[\"image\"].to(device),\n", + " batch_data[\"label\"].to(device),\n", + " )\n", + " optimizer.zero_grad()\n", + " outputs = model(inputs)\n", + " loss = loss_function(outputs, labels)\n", + " loss.backward()\n", + " optimizer.step()\n", + " epoch_loss += loss.item()\n", + " print(f\"{step}/{len(train_ds) // train_loader.batch_size}, \"\n", + " f\"train_loss: {loss.item():.4f}\")\n", + " epoch_loss /= step\n", + " epoch_loss_values.append(epoch_loss)\n", + " print(f\"{vfold_num} epoch {epoch + 1} average loss: {epoch_loss:.4f}\")\n", + "\n", + " if (epoch + 1) % val_interval == 0:\n", + " model.eval()\n", + " with torch.no_grad():\n", + " for val_data in val_loader:\n", + " val_inputs, val_labels = (\n", + " val_data[\"image\"].to(device),\n", + " val_data[\"label\"].to(device),\n", + " )\n", + " roi_size = (size_x, size_y, num_slices)\n", + " sw_batch_size = batch_size_vl\n", + " val_outputs = sliding_window_inference(\n", + " val_inputs, roi_size, sw_batch_size, model)\n", + " val_outputs = [post_pred(i) for i in decollate_batch(val_outputs)]\n", + " val_labels = [post_label(i) for i in decollate_batch(val_labels)]\n", + " # compute metric for current iteration\n", + " dice_metric(y_pred=val_outputs, y=val_labels)\n", + "\n", + " # aggregate the final mean dice result\n", + " metric = dice_metric.aggregate().item()\n", + " # reset the status for next validation round\n", + " dice_metric.reset()\n", + "\n", + " metric_values.append(metric)\n", + " if metric > best_metric:\n", + " best_metric = metric\n", + " best_metric_epoch = epoch + 1\n", + " torch.save(model.state_dict(), model_filename_base+'_'+str(vfold_num)+'.pth')\n", + " print(\"saved new best metric model\")\n", + " print(\n", + " f\"current epoch: {epoch + 1} current mean dice: {metric:.4f}\"\n", + " f\"\\nbest mean dice: {best_metric:.4f} \"\n", + " f\"at epoch: {best_metric_epoch}\"\n", + " )\n", + "\n", + " np.save(model_filename_base+\"_loss_\"+str(vfold_num)+\".npy\", epoch_loss_values)\n", + " np.save(model_filename_base+\"_val_dice_\"+str(vfold_num)+\".npy\", metric_values)\n", + " \n", + "for i in range(device_num,num_folds,num_devices):\n", + " vfold_train(i, train_loader[i], val_loader[i])" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.7" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/Experiments/ARUNet-MiddleLines/ARUNet-3D-Middle-ExtrudedNS-VFold-Chris.ipynb b/Experiments/ARUNet-MiddleLines/ARUNet-3D-Middle-ExtrudedNS-VFold-Chris.ipynb new file mode 100644 index 0000000..e74aa5d --- /dev/null +++ b/Experiments/ARUNet-MiddleLines/ARUNet-3D-Middle-ExtrudedNS-VFold-Chris.ipynb @@ -0,0 +1,16142 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "b86771c6", + "metadata": {}, + "outputs": [], + "source": [ + "import warnings \n", + "warnings.filterwarnings(\"ignore\")\n", + "\n", + "from monai.utils import first, set_determinism\n", + "from monai.transforms import (\n", + " AddChanneld,\n", + " AsDiscrete,\n", + " AsDiscreted,\n", + " Compose,\n", + " EnsureChannelFirstd,\n", + " EnsureTyped,\n", + " EnsureType,\n", + " Invertd,\n", + " LabelFilterd,\n", + " LoadImaged,\n", + " RandFlipd,\n", + " RandSpatialCropd,\n", + " RandZoomd,\n", + " Resized,\n", + " ScaleIntensityRanged,\n", + " SpatialCrop,\n", + " SpatialCropd,\n", + " ToTensord,\n", + ")\n", + "from monai.handlers.utils import from_engine\n", + "from monai.networks.nets import UNet\n", + "from monai.networks.layers import Norm\n", + "from monai.metrics import DiceMetric\n", + "from monai.losses import DiceLoss\n", + "from monai.inferers import sliding_window_inference\n", + "from monai.data import CacheDataset, DataLoader, Dataset, decollate_batch\n", + "from monai.config import print_config\n", + "from monai.apps import download_and_extract\n", + "import torch\n", + "import matplotlib.pyplot as plt\n", + "import tempfile\n", + "import shutil\n", + "import os\n", + "from glob import glob\n", + "\n", + "import numpy as np\n", + "\n", + "import itk\n", + "\n", + "import sys\n", + "\n", + "import site\n", + "site.addsitedir('../../ARGUS')\n", + "from ARGUSUtils_Transforms import *" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "15392640", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Device number assumed to be 0\n", + "Num images / labels = 62 62\n" + ] + } + ], + "source": [ + "if False: #len(sys.argv) == 3:\n", + " device_num = int(sys.argv[1])\n", + " num_devices = int(sys.argv[2])\n", + " print(\"Using device\", str(device_num),\"of\", str(num_devices))\n", + "else:\n", + " print(\"Device number assumed to be 0\")\n", + " device_num = 0\n", + " num_devices = 1\n", + "\n", + "\n", + "img1_dir = \"../../Data/VFoldData/BAMC-PTX*Sliding-Annotations-Linear/\"\n", + " \n", + "all_images = sorted(glob(os.path.join(img1_dir, '*_?????.nii.gz')))\n", + "all_labels = sorted(glob(os.path.join(img1_dir, '*.extruded-overlay-NS.nii.gz')))\n", + "\n", + "num_folds = 3\n", + "\n", + "num_classes = 3\n", + "\n", + "num_workers_tr = 1\n", + "batch_size_tr = 32\n", + "num_workers_vl = 1\n", + "batch_size_vl = 4\n", + "\n", + "num_slices = 32\n", + "size_x = 160\n", + "size_y = 320\n", + "\n", + "\n", + "model_filename_base = \"./results/BAMC_PTX_3DUNet-Middle-Extruded-NS.best_model.vfold.UNETR.adam.1e-4\"\n", + "\n", + "num_images = len(all_images)\n", + "print(\"Num images / labels =\", num_images, len(all_labels))\n", + "\n", + "ns_prefix = ['025ns','026ns','027ns','035ns','048ns','055ns','117ns',\n", + " '135ns','193ns','210ns','215ns','218ns','219ns','221ns','247ns']\n", + "s_prefix = ['004s','019s','030s','034s','037s','043s','065s','081s',\n", + " '206s','208s','211s','212s','224s','228s','236s','237s']\n", + "\n", + "fold_prefix_list = []\n", + "ns_count = 0\n", + "s_count = 0\n", + "for i in range(num_folds):\n", + " if i%2 == 0:\n", + " num_ns = 1\n", + " num_s = 1\n", + " if i > num_folds-3:\n", + " num_s = 2\n", + " else:\n", + " num_ns = 1\n", + " num_s = 1\n", + " f = []\n", + " for ns in range(num_ns):\n", + " f.append([ns_prefix[ns_count+ns]])\n", + " ns_count += num_ns\n", + " for s in range(num_s):\n", + " f.append([s_prefix[s_count+s]])\n", + " s_count += num_s\n", + " fold_prefix_list.append(f)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "2a1a38d0", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "4 4 6\n", + "4 6 4\n", + "6 4 4\n" + ] + } + ], + "source": [ + "train_files = []\n", + "val_files = []\n", + "test_files = []\n", + "for i in range(num_folds):\n", + " tr_folds = []\n", + " for f in range(i,i+num_folds-2):\n", + " tr_folds.append(fold_prefix_list[f%num_folds])\n", + " tr_folds = list(np.concatenate(tr_folds).flat)\n", + " va_folds = list(np.concatenate(fold_prefix_list[(i+num_folds-2) % num_folds]).flat)\n", + " te_folds = list(np.concatenate(fold_prefix_list[(i+num_folds-1) % num_folds]).flat)\n", + " train_files.append(\n", + " [\n", + " {\"image\": img, \"label\": seg}\n", + " for img, seg in zip(\n", + " [im for im in all_images if any(pref in im for pref in tr_folds)],\n", + " [se for se in all_labels if any(pref in se for pref in tr_folds)])\n", + " ]\n", + " )\n", + " val_files.append(\n", + " [\n", + " {\"image\": img, \"label\": seg}\n", + " for img, seg in zip(\n", + " [im for im in all_images if any(pref in im for pref in va_folds)],\n", + " [se for se in all_labels if any(pref in se for pref in va_folds)])\n", + " ]\n", + " )\n", + " test_files.append(\n", + " [\n", + " {\"image\": img, \"label\": seg}\n", + " for img, seg in zip(\n", + " [im for im in all_images if any(pref in im for pref in te_folds)],\n", + " [se for se in all_labels if any(pref in se for pref in te_folds)])\n", + " ]\n", + " )\n", + " print(len(train_files[i]),len(val_files[i]),len(test_files[i]))" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "c7d528b7", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "../../Data/VFoldData/BAMC-PTXNoSliding-Annotations-Linear/025ns_image_267456908021_clean.nii.gz\n", + "../../Data/VFoldData/BAMC-PTXNoSliding-Annotations-Linear/025ns_image_267456908021_clean.extruded-overlay-NS.nii.gz\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQEAAAD8CAYAAAB3lxGOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9ScxtW5emBz2zWtUuv+qUt/qryCjSOA3YCRJIgBMECMm9FNABCSlb9B1tWtlFQkJkwwIaCEPDAiELA5ZAyA2UGKTMjIyM+MtbnPIrd7XKWdAYc+/v3D/ujbBJ/84jxV3S0TnnK/Zee601xxzjHe/7DpVS4ofjh+OH46/vof9Fn8APxw/HD8e/2OOHIPDD8cPx1/z4IQj8cPxw/DU/fggCPxw/HH/Njx+CwA/HD8df8+OHIPDD8cPx1/z4nQUBpdR/Uyn1Z0qpXyil/vh39T4/HD8cPxz/fIf6XfAElFIG+HPgvw58A/xD4L+XUvqn/4m/2Q/HD8cPxz/X8bvKBP414BcppV+llEbgfwv8G7+j9/rh+OH44fjnOOzv6HVfAl9/8P9vgL/9fT9cqDJVzFBlSagtKiVUlO8lBSj5t/IJFSKkBEqRrCYWmmghOkg2gU7yS16hJ+SPT6iQM56UUPGD7CclCBFiJKUk//+uQwHHb6n8nwTKaDAWtIKYIHj5+/Tyf8XrKVBKy2sqBUaTrAGtHt8uptNnRisIETUFiBG0zn/U4+cBkpbXUyGC/61zivH7bsW/kEMZc7rHJMBa+X++L/JD6vFzKpU/HxCP9zZfTFL+rAmUBpP3uRjl9RSg8/vFSJr899/z0wkqOUetH8/leLL5viWlSFYRnSJp0B70EFEhQAhyelrOJ2kl9zTfv1ga+TwpoUL+FAqSUd9zQjyuiSBrJX3wNRKolJ/PYST5AMCO+5uU0tVvv9TvKgj8lYdS6u8Bfw+gouFv67+Dma0Z/rM/ZlhbVATbyQMQrSIWCj0lTBco7nvM/YGkFeFywbgu6c8N7RNN9ywxXU7oMpDuC5pXhuZtYv5qpNiMedEndD/KQ+Esqu1JbSd/+oE0jR+eKCiNrisIgeQ9KSaUsxATyU8oHHq5Qs1q0v5A2h/kV6sSlCbuDyQ/PT5sx4dKyUOtyxI1a+ThB/k5a0izGr+sUCFi7vawO8gDlX8mjROqcKjVklQ6+RzbPaSIqirSYgZao/KDnoxG+SDnpx4Dh1KKuNsT2/bxcx+Dzm8fv/31DxfQ8evqgwQzPQYcZQwYg8qfUxmDOl8zfnpBdBozBAlagNkNcHNPvL2T67+coxZzkjWoyZMKR6oLCYY+yHtbQ9IajCIV9hQo1RTkXgOpcnJNuhHeXRPy9frW58qfSblC3rdpJJjk5yUZjRonWfyzmumy4fCsZFwqlIf5G0/1Zo/edTBOpGlCVSXhckksLLr36NGffg8F1Z3HHjyx0HSXjmGlsX3CHWTTik6dNqFoFcmAGRO2jUSnUBH0lNBjzJtoQg8B+5t3+HfvAfi/xf/9l3/xhv7ugsAr4NMP/v9J/trpSCn9A+AfACzVeTo+OOXrLaZrGM8KpplGhw92MAPRacaLGjMvMK1H957yXaC408xfWYYzR3vp2H3umD4bOCw8w3lB+6xk8bWjvA8Um5FY5ZvRj6TCQVWgVgv0oSMdDsRDJ8EgJSASux6llTzAeWdVRpOCJk0j8WGDnkZUVUFdEzZbGCd58D9YCMegoqyVBVGVqPmMVJXygIaEbnvoetTksT4Qm1KClbWkrid5L68VI3Ec0SFAWZKGgRQiqqnBWtQ+L2pjIATZHcoCnlwQ5iXJaLSPqG5CN7W8DkCIpGEktS1pnEghyGdQGmWNZD+P91E+lrXoxVw+3weBIQ0jaRwleGmNqitUXUPhiE3FtK6ITmPbCbPtc5bjSbsDTCN6PoOyRBWF7JTdIAtbKfl3CPJ+RoImjSU5gxomWehak0oLpQMfUYNHDSPx9p54aB/vzQeBTVmLbhrUxRlhPSeVBr0fUeNEqgsICQrHdFbTPi8JpSzC+WtPcTdi2pGkNeFiIdmG0cTaorxcl/azGe2VIRSK6iHSvJtIRtE+K+nPNUnD4htPcT8SS8OwdkSjUAl8qfA1qADRKEKhMEOi2AWUTySrwIMegwS/upKgnL4/+/tdBYF/CPxMKfUjZPH/d4H//l/6GylC4WDy2E0vkWxZMC4MKj9TodBAxN169BTwM0cyBXoI6DGgO0+zH6neWeZvCu7uK3a/P6E+P3C4KuieWqobx+yVpXoImKHAdgX2tpMHY1kTL+bY7QJztyFutsSukzePQTaMnFYrI19WzqJMSZo8cX9A54VtwozYto9ZxQe7pDIGnJPFpGV3TJUjlnI7UmVRUy03MSVUCCRjUIUjhUDsB4gBtEEdd/OqJK0WkhEaLTviOKH2LenQyq6vDSpEVD+iagdaoUaP3uwfFyqg8rmlY/odQFn5mpo1HwSyD1LknOoS4mMKnhLqWMLEhCoL0mpBWNb4mUP5iLtrUffbx3MEYogoa1F1TYpRAoA1suNbQ6oa+dnJS+YwThLk2l4Cg/4gUzlmQpMH70ldRzgG+N/OdFICbSQAnK2IqxnTWUXSYJwBXUsq7xOh1IxrSzKK8iFSPIyYw0QqDeNlQyg0ySjMGLH7CT0E+suK7ReW4QzcHmavI66N9BeOqVGEAlybWP6qw77fMj1fs/2sJBaQNIRSfsa2YKdEtGAHKHYBPUUJFCFhOk8yiuGqodQa9Y0h+f+Ug0BKySul/sfAvwcY4N9KKf3JX/pLShN+9Aw/c9jdiAoJu5sgJvzckJR8wKnWhGcF1a3HbQdJc52syGRyej16qveRyylRbBz7zxw89cSziXapGM4t1Y2lvE8UW0NjNeXbhHl9iykLUl2S5g1qmtAxEscJOIIUOa30kRS0LMKiQNcVaZyI+wPKDqj5DO0scbMlef+Y/pMDh1KSCTSVpLg+onR+Dw3JapLVp88VC4MpDWbykO4lOKUolzdmjKRyEEEfOugH0jgSDy0xZyR6VktGOU3o3QFlDWmaSCFK5uCcXM+uI3a9lD8hPJZDxpD6vPsaI+l5XcpCPNbcKcnua40ssqY6BYZQFcTGEUpDLDRul3+nKqV0SonUyQagZrUEkXEizWvivEJNsrslpQTSNgaGEZyVIDFOqGHKQbU4ZSVq15J2u1yW+Q8f1Pzs5UBqLXo+Q61X+CcrpnVJtLLLT+6IB0itPi5y5nofKG977PWWVDjG9ZL+3IJSuH3AdIHxrGDzI8fu84SeErNXiuo+ys5eC6alItR3keZVj910jJ+esf0slxgJfEN+v4TtpN53XaJ48KiUmOaSabjWkwrN1GRcJeWMdfp+3ON3hgmklP5d4N/9j/4LETUEpqcVw1mDbSOmj+iQcNtAqDSh1NghEQ10TxzjylLdSQRWo5cHxBgwClKguEssgWJvGV4ZxpWlv0iEeWQ4SyStGJcKXxXMqiW11ej396Tbe0nXU5SH3aUMIP1WND1mB4cWTYOqKtnt9gfi7d0p5cd7Uggoq1GFk4/rvSwma1Fak1KSVk2UnRofTjtqskaCkzPE8wXaWdT9gyzUmIjDgN7t0UlAsdTlWtR7ed38nnF/QNWCF4CcNyDnCJKJxUTa5cwAJABUpZQYSknJ4TPGcEzDda6RNaANyRqp2Z0hlYZoNSok9BTQ/YQeA0lJyprqgrCqJX099Cjv5DxCIPUDqiqJTUGoLNoozBSkXMpZS3KW1JQkq9EpkcqCWNkTeKjHAF0nAeBY7sBj2aIUqihOu39YzQjzglALWKd9OqXZodT4WhNcvlyHnAHcH2DyxPM5/bkjWoUZE/2Z4faPHO2LSHKB6o1h9jrhuoiKYAb529ca7RPaJ/zMMi2X7D5xTHOFDpIF2AO4fcJ1spj1lHAHQRGHlZyQ6yRAxkJLBnKY0NuOGGL+vN+99P6FAYO/fShjMG9vaYDu5YxhZdBzg9sHtE8SEMZIdBpt5QbGQrF/UWLGgmIXsLsJc8jZgTGQEsVdj90ZinWBv9PMXiuGM0MowAwSYQ8vFf2lw326pr5bsfj5ToKB9+jZDJBFm9pOFhjHsuAxO4iHFjWOqKJALXJaPo0w+VMASdMowUCrxwey61HOostSal9rTjV8avPv5wWpikJAwHkNl+fomzt5uCfZQVFKUnlrBWQcRjieU1nI+Ycg53U88nvFtoWHjXQljoi5Npj5TL7mvbx2XZ06KWl/QGtNmtWksngE12KUoGAUKUoAsJsOtf0A2LT2hPxrpSRQ9r1c17J8zLjKQsqGmz1qL9c/+XxN8zXRhxKslQzOGXQ7SnZkNOrwQQD4APxTxmAuL0hnS2JV4GvLcJ7r+yQL1LZBUnyj8QsnqP+UsG3CdgG7GzG7HrRm+vyK/rIgWoWvFNsvNN3LQLKe4sbI7n8X0T4J6p8S41wTSkV00sUqtwo/M3QXhnGlcPuE9hIEAEIJ0SnMAFUX8bXGV/LNYhswfUDFhGkn9ODR25a03aGc/XYA/K3j4wkC1spO9YsDs90l5dWScV0QS4lgGmmHmCESo5J6a0iYDnyjaa8s+sxS7AvsIUh6fcz2pkD1tiU5Sauba8u4MCQtrbTdp5r+MnH4JPGgE/c/W7H+xYL5Vx169CSjSUZjuglzv3vcQb0XANFPkhUMgTQMqK6TtLKqoEwYY0jef1DLW6lzc3chjSMxJtQ4kpwTxN85Qfi11Lux62EY0CHIjm+NBDqlUQa5yV0voCXI4j5mLrmrcVzwR0RcGYOqa6m/rZVdfkoSpDDSASlyidB2JLpvZzfDQLjz6F7KH3KLNY0TpIguS7TWME2ktiN0veAQRXEKVNJiNY+t1LKE1fz0vviAvt1KgPjgeUkZnE3eS/CtSpT3cDdJiZFxiDiOpJRQ1p0CsL44J35yxe7TGUkrTBfxM02/0mgPro24KaH7nG0YeS17OG5IPgcaSM4Q5iXjyhFKTXeh6a/A14nyxlC/TTTX+VlMsqB9JeVEtMiDncD5hK8U04XG14rqNlEcIv1K010pQp0wnWL2OlHdy3mFQkmmvI+4zYjZDahhRPncPlYKnlyg3t/Ch52f3zo+miCg1yvS2RLV9nDocPsWu5zjL+ckp4UjMAVJ+0YFRhFzzez2nmQVvj5iA4qkDTpECIlUW0zymF2P7QaSNbjzOcNlJWnZlDgcNO1zxfA8wL9y4P0fWR7+dMbiy0R964lWASXqkznl/Yg5jKjRY3Yt8WFD3O/lgyR5MMNmC9t9Bg5ldz/iBsBpd+aIvmv9iLpPUj7gCnm4jZbMpx9Iw0DcbGVn74dThFdJsos0DPIaGRE+ff+Y8iv9rfOk60gftPSUEfRfaS07/v4gi3TypGlEuULOJwOkaZLPqofh2wh708iDaI0g1PNGAvnx97RgIrFyJK3RwyTgndbyO5NH7Q6kQ0v0XoLGMSBlIPDYZVHGPGZcxyxqDI+djeMzVjj0i2d0P72UTSOAGRLjyuArhfZQbQKmi6iQiJUhaZv77shmNAZ0L4E2VZZQWaal4/DUMi4VsYBiC81bcPtIsY/oKQmWoBX9mWFYKVQQLkEsBOlHQXDCbZltJHjvXxgOLxMqJZpXivmbgD1Ewge7v20Dph2lhTx56brMasKyFP6BUpQhwv0GvicZ+DiCgIJ0vmJ8OkePM3Q7ofcdapwwh5HQFOgpoHovSK/RpMISKyv1ZgJ7P+DuErF2j8Sg3J5JzhAaS3QNprAoHzG7nsJqfGMp7wLV+0jzvmT74Nj9AXz62Q3nf+cNf/r2Kdt/OmfxmyQ3VCW6JyVmcLiDx9QOkxevtJwe+/iknB0c0XSXSUUhEA8teppkJ86cAyCTYZI85Kf6+xGLkB0/p8UxPabNgd9qBR0XiTu97jEQfLgwkvffqo/lSXHoopAMZZyA6YOfnyCZb703QOw6CSBFgVrMYTEjOZtBQk0sLbG0wnnYD9JD90HKBh+kzDoGrtxW/LAMIkYYRykFQsjkHbmWKXcoVA5CKTwGAOWsgJpKo5oa/2RJKDVmlM8bncJ2keouorz042OhSTahByk/Qy0ljZSkijArCJXBN4bDM0N3KSm9beWPZJjk0kBjiZghSepvkPdKMKwUehCQ0Pby3r5SdJeaYQWhFhBx/cuJ4mGivyroLqWzVd4M6NGjuwm1k10+ni/oPlkwrAxmTPKelaK4cQJgf9RBIEHSmnFpBSCZWbioKB4G9KZFF5bhssb0geK9RDyVEtpHtJUUP1YW3U3obpI+ce9zXaqJTUEsheThl9WJiaVSwrYS1fUYmP9mwh0abGt59/4Z17+354+ev+FwWfLnnz2j/nVB8zZR7BMqKaZk8bUlPW1wuwvc7QHe30p9npI8yP7ISIvyUH/QQ499OHEJpF2oUWUp3zzuaN4LIi/9Sblcx4X7F67jt4HLY0cApR9fa/J/8fdOv6BPgSK27V9Y6Mdg8S2E/YPzSCGgorT3iAn2Hal04GpiaQm1we4ieteRbu/l+oQPspVj1gS545GDwuRlweeMipjkd0KAokAhASDlEiVN0o0x89m3SFhxNcfPHFOj6a400cDsXaR+16N7z3heEwtNKISmmhpp8x1BOJVguCwY55phpRmXMC0TeoTqFkwvOFUySNxUwmRVh3x9tCD6oVD0ORuYvw1U1yPDuWNYapKRsre+geWXnvqXt6SmZPt7S6JTzF+PFLcd+JhLiUS8WDJe1ByeS6uxehCQcVxq2iuNL9ec/6aBzXff9o8iCCit6T9Z4CuJ0EnLQumqhqKyFK8fqIaJ/vmc4dkCtxuFKFNa9BTR7QR5t0lWk5wmzQvsbsDcH9CTh1VDmBfSavTxVE7okDDdJF9TivK65WyqKHaO7nrBP3k6x78YmJ119LWnv6ooHjTlg6Z4SFSbyNQoNj9yaF9R35wxe9VJQPIRtdlLm/C4cyNttCNrLoUg7cZjC6cfBI23VurkE2021/4fvMZ3BoIPjpQRdjJIKosufJvRdzy0QRcONZ/Je4cI00js+kcQTj/utKdg9gFZ6NjbJ4QT2YfyHD8viE7jHgbsq1vi7V3OMI4nmvGJI3U6pW8FPaWVYCyzWe4a9IKRALppHrGFzKlQ1oJz0jqMcq3ies72b6zYP9eMZxCdpNjFRvAjvyjpL2URxZw8uUOiugu43YSfWYaF4fDUMC04/UzzWlE+JEzu2/sgPXEVwfaJ8iHgNiOhEQBgnCmGMwH9zv9swG4H+icN00xTPUTcPmIPHvdui9ruic8u2P9ogRkTs2969BQItcstZOmAtE8dh2c6E5YiZojsXloOnyZCFSkf1LcD928dH0UQADB9IF4azCjILEg6NVwW+PkV1dsD9Tc7/KqClNCd0DZD7VBWQDs9BlKCqBRYiJVD1yWq7dH7AbQmVBaVQHVeAqmR4EEBsTRCybSacispm/aa6aFiXJVQCrHRzyKhVIwLRdLys+6QGJeK7ReGw7M59U3ETAnSmvJ+oni/R232UrOPE9SVtN0mL3XvkVocg6TWxzQeHluVppCfPxI/vo/Ce6K/RuIwPJYJx5aYVmCKEwYhmYUW/KEsoXDS3fCldC1yNqKqUlL9fiDu9vJ6uVOgS2kjxsszYmnQux42O1Q/SoakFOp+S7i5k8/54aH0Y5sS5LMWxamzoZcLwRUmL+dqLeZsLZ+z/IAPMHmoSulUOCHyJGMYr2p2Lx2Hl4pQJsyomL0TVp5rPf2Tmv7c0J8JW8+1ifomUmxk4fRXsvtPM9nl3Q5sJ+0620WhtbvckgwSAIpdpHnVSvvQWUKzkNbhBBd/OlF/s0eNnulyTrKK6tZT3sjmodrccfjRM4aLEttFbOeJpZS1odSn9+vXmv5KYQ8wfxNIGjY/suw/iySXKO4MSSf0xTkcvnvtfRxBQCvcQ89MK8a1JVpFsZmIhWbSlmmmmX6yoLwXgpDqPartMYcOdbY4kYXUFIQB1ypiIUIkxklSbqXk+0cSjjPSm+69dA1qy7iyTM1j20aAoEThwQzqW1+3vQA6yUiwcq2kYCRObaKpUbmPW6JfFhT7NcXW4+57VDsQm1KCWJBsRvcDat8Sbu+/rV8A2QGVkJNUUUj6m9K3dulT9nAk+RyPD6mxSgsV94jyxwR9L6Sig+AwJ2FSFu0okwNEVZGairRs4NmF/FzW5CQj1zxUVoL0fnhk+uWyIvXDo4ZCqVOg07MatViQFo1w/rsRHraoYUDN56RFI/iBD4/dibI4cfiF1zBJUFNaMoPFjHixoH9SsX9uGdYKt4fVrxLFNuAOnqQU49LRnRtCCeVDonoIuL1Hj5FpbvEzAQ1DIV2q8kGwITNEYqEYloZQkduHUG4j9dtBmJAZhPZnDdEqZm8G3PUBtdmLcOhiSTIK20q7Ufko+MnlknFdEiqDSoloFdNMyD/CRBT6cH+uGddQbARn6M40m98Dv54we0P5zsj3HiJpt/ve5fdxBAGl6J7P0EEYVeNCVF5u60Eh7RQDU1NQLgzlw4TVZHApEmsHTqM7hT70ECPaCxElNaW0TIYR1QnhJBQFwRmSVeghoIaA1gHbCZ87FOoE7oDwCWwv6V4oFLGU+q++EdqnyustOtmB7UEisjxAWhhwUdDhaWYJRUOxsZibHW5zEHZd4YirBlYNpqlJm+2JbQg8Ao0RtLWyKGMiWfsIghmDPgqbjqDehzV9xiZQGXuwOXgWQgmOXS9tTD5gNYYAqpBg21QnkG9al/hGC+gJmFGug+kDdjM+BpPeo/qB5AMxP4i6aeQ961pOa1YTm1LwAx8FV1AK5nPSciZkJJDvjyMMg6jzUiK2HUyTpP8xkZIXenVVMK4KpkZ29+ZdYvZmxG1HYmGYFo5xZYhGSD/2WjoCx0CeVP5MCZKSdnKxe+zbdxeW/lwRaiHyzN5FyrtJcKx2JDnDdH6Gn1lCpeV7X9+SNjtS4VBNTWgcvjGoIKzXlOQe+UXBuLL4WnAD10V0T96EZHPpL5QErnuwh0R3pdl9EYlNxN5bio2i2EF5H3E7L63X7zk+iiCQCsf2C4vtZLEFp2ivLG5mhDk4JrqXEgGnmcHXmqo0FM6gtx02BPz5jOm8grMKtxsFULzZkJqKuJqJoGTfYYYR3coDl5yRlNFJy8ttR0wr0k5fG6aZ9GyPtE4zSEsp9iDKVSW7RuczC04RGyeKuF7IG2Ym7DU9yUOmfG4/OYNaNZibLWw7CAHjHGneCD+9adAhfJvogrxnHCe0FvahKhv0QhMPreAOxx1RC8iXfK63rT3V4anrpFvgnPTQnUPN5+ijum+5YHq2YloWuTyCYWnwVT6FiOxKpRI6awLTG9wh4Q6GyioKjSg9D+2JgZhikvR+tSTNG+KsIhZG6lut8iKMwgCcScBRPqK3LXS9SGKnEZQm+V7EUkajZispFwAKRzhr6J5VjDONr4T8U+4CKsLh04buQhML4fw37z16ihKcS2Ha6SFigsiDp5lsDK6VDWqaaYalYppLaTD/OrL4ZsBsR8ifY3wyP2WVZkw0r3vc6zspqeYz4vmC9pM5/dpIW/L2kUU5nVUcnjlCCbaVrCMUiuFKMg5fyeI/liXRwub3YLoaYdIUN4byXlFsEtWDdCVUfOycfNfxUQQBEkwzRX8BbqdOJx6NwpcG20eKbeLwQuFr0W2raFG+otwPqPstru0x6zl+XTGcl9jKUrwKcH13Er6k0kmf2otkVYHQS509lRQ2k0AKDbEp6J5W0ttdZ7nmKLuBChAc+MrgpigP5BAwu4AuHdGKNNYMQVLlHHAkIHj0VoCtuJgJT36cBEy730hfHk59cAHzvn0TYz+gJo8qpA5WmWp7SuGPP59bg6pwmMVCMgMvgppTn0JrWUSruexgq5LDs5LuSjPNZVdMVh48XyfJkow0zlUCt9WYXurk6naS2nZzgD7jH0dmYAY8AVmstWNaFfhGUi7TR2xnRG2XkvTkx3yuPkiH4MmlMAH7USTQi5pQO0Ili3hcGsaFBG8zJnSuProzw/ZTEe+oALM3icWXA6YdmdYVeoq4g4hwklFMS1nEUyNUdT3l9qGVDm51l6hvAs03wg/xq5KQfQEkQ4LyIVBdd5ibLakqCU/XTOuS/QtZ5O4g6j/TB0Jl6Z4WtFeSXc3eS9BqLw3TXMpQleTcbQ++hvZFYnoyoUxC37kMWEtm4FrxJjBDpLjrBOj9nuPjCAIkLv/xyN3vF7QvpOVSbCWaJYN0DXohYXRPEu0ziEYTCocOC4rJE69vUYeWYrfAziv8smJ6tsIaTXp7LaQX56CqRPdf5/QTHg06QkL1w0kQo7cts7bB7WaoWLB/qfBPQAWF7cD0iqQdtVEUD5nVOARUN2EykUmNXpRt/SBp73pGqIX0Ym620PaPKfsH5BZlzAcp/QeAX8YFUkxCQ/aTMAXzoWfNqeZXx987qvuUEsQc4OifkAOHqivCrDgp8HRI6FHy4lADShhr8+tsiIGkquU2Mfumxb0TclRqOwELi0Lu7LFNakwuQTKleZywtx5zcMSsoFQhSuk0CWJPkGCANUKOqkvCupEMzs6ZZhZfy0Idl0pQeyMKveZ9pHwQzUl3qZnmKu+uUF8nZm8nUaIuS/QYcVtPdJrYWGwfiHlXt50QckQ7IIu8vpXU3z30JKsZLuuTnFhPiep2RHdCTiMm/JMV41nJuDT051qu20YCAED3rGScaaaFtCOrI1nomcHPpfwwnfgHhELRvkiEz3qsC3Bb4W4N5YNCj/L+yO3C7TzFw4Bqh29TxX/r+CiCQKgM/YXl/J+NmNHx8PuJaZmIVlPfJNyYBCDvFbFI+CcT46VhfGPxVcVs8YTZzy28eU+6u0e3FcWuIlUFqSyEjdi2IttNkXT3IOj8co6/XKCKLLFVordP44TqA5DQ25ayn7DtjOqu4uGnlu5ZolsmOR+niNaStKLYaYyaTgBlctnkwlnY7kibLXozQ58tT+YWKYNyJ/Qe5DzhLwB6p7aZcuhCA+5EnpGfF/FQUuok+JHXtCduPkeJbu73x35AeY/qeuwwCh25LDD7ivqdCGl8o/GlRoeI22WWWu/BR/S+g7sH4UZkQFEVTlSBcAI0dV1lObNoC7h7EPmvMRilMMYIS/G3jwxQpqogrprM91CEyjDNDVOjTgvc9FBvE811wB4C0WUw1yLZ3SZhWyj2kVhoDi8Fkyh2Ad8cMSIhDWFB+YTtRac/LEUYVN0HytsBPUX8vGA8K4hOFIN2P2HaSXCNyZOcZXwxo79whIKs/ZeMyQ6RkDkJ0UmWZTrZwQH6tcY3OQAMUoKNS8Xhc0952eE7R/xmxvKtLP5YQKiEOWo+yDBOfJnFAu6/e/19FEFA+8S4UPjSsfg6UG40d3+k6D4J+EZEPxI5E/PfaA6fOc7+xh3FF57rhzm7X8y4mF2ychb17lYe/n6A+4fc8ioe619bwnwGw0h8e42936CWC5Gegizcqhbl3VFIEyNm01EPAXcoObwrODzXTAuY5uBrxbiyuIOhvilwO3GJ0b1HITWuiivxBTgcxOFq3pCqQnbtnC4rZx8JMuP0beFQ4aQW7roT4KfqWhSIRzIR0u6LbSvuMmVxau+dfqco0EfjkbKUc8rsvG9RjgHrLM5mluMxeMxzcMmWVcoHuZ7na3CWWOYediY+qlG8H07eBkE+GzGJtiKbtKS2e+T5nz5v7njMG1JVyv+jCEmSEQqyOyTqm4Se4knpNzVC5gmFdGnkGXvEMnwlXRsziDVZOnoyBDGt6eeGca4Rua6A0tpD825EDwHfWMa1xZfS8mte99LXb3soHKkumZ4sOLws6dfqRE4zg8iA3SGeLONUVExa3ssOwjfwZe5G5JjoKxhXCX/uUUXEfz1j9WuN2ydCmaRENmA7CXTlTjocdicAarhYiMz+q+9efx9FEFAxMX8d6M4Nu08NzXXk6v+buP1DQ//pRKgNs1dCznGHxOwrzUO4QH9+4PeeXeOf3PJn5y9JZs3Zf+hJMRKXtYg87jZSClgr+nnvZeHkWlwdOtLNnTj3NA0sJN30q0r0AbknfwIQgXIj7LGpUfhGdqFxCf0VtE8M5b2IlJq3uUc+isZdrZakuwfZkVNEqQVpMRO+QgaN0rzOzjg+uxy1sjjLkvTsQvQKdxsh3Oz333YuOtJmvXAPdCbOHKnHKvseqEbKIeoS09SEm9tHifC3XmcSnoDWElS9l2vo7KNIBaRll1th41oYedpzAtlsFyQ1dvYUQNTkZXef5cU9TCIUOhwyxdpJzz/LoNU4EecFQ3ac8rWkzvWt7MChMgxr4e8fd39h38niI4LyklI3byepk5US2bGWnvs0t0wLgz9mDyBdqkOiuhuJRnN4WUmAUFDsE/OvWuy7DWm3h1mDv1py+Kxh+5lhmmevwUlkwM1NoHgQIDJpJZ2DUgBvOwjNFwW+kdLmCAD6JhHmATVpyteO+q38bLTSjjZDOmUY5SZQ3g2Y3UAyStqThXksDb/j+CiCAECxnSi2E1Nj6S+ENPT0P5zYvbVsfwyHlyKdLDZyYet3iukw55++rzEXA/Pne979FxeQLln+uhUixZMG82KJu+sx9zt5+KpSdqXdAeqKeLVGnS2FyNMPwk4DoquZzmvUFDFDyK0rcW0hi0nMqBknYR0mBf25ZriA/gmgDCoVojzc7AW0y4498SDcf7U/CK3VOZHC7naoaYJ5I6VCU0FToduedGhRPtK/XBJ+ekZ1/Qz79kGQ965/ZAMej5hr/cVcWo7DKMEiJuJ2h2qzJFor4Rx8ILGFR1bg0ZDklKUcjTVLJ1ZgRx5GCJjSYUrDNDNMDUSrKQIQheYc5xXTosgprlzPUMoDaoG0nJ2ESycD1Sg/l+qScVUwLgXxN4OQdXyt6S6qU02ugtBulVK4XRLSV45Vto8UdyPu7YPoFRYNGCGcTXObSTsTSUEsH2W6KiXap6XwPvKO7Q6R+k2HOYykusQ/X3N4WbH93NA/EV8H20r6P3sdmb0ZMa1Q2n1tTkY5to2YAVAw1Vp6/ytZ+NFCconQCBnDbjRuy+nzqChBTY8ifCoevPATfCQ2BX5RSLDJna7vOz6KIBCdxtcWtxmp2h7XildgKDWrX40svtHc/8zRXyamBZhOLq7pobgzhLamsxW4xN0fKnw9Y/XrgWIzMi0LupczimUhRI1uIDWVkEw2W3TbkS7WpPUCdbchbbaoYcR1A/7piuGsZFo6bBfQo5B6XDtijRhmlLVlmllsF1h8E+kvCnYvDbGAcabpn9ZU6Qy9aQXNX68w87nU7l0v8mmlpGdujDDxMhtPWfvo3lM4eNhRWk33cs7+0xrztMLtAm47YG53pNt74fx/KAqKEUpRI9IPJ0+EGNMpUBzJO7osc789Zv1DEIn0CYtQqK4Xm62yBGdkkQ65bBkmbGuxnWAh2oPtROdxpHSrmLJh7IQ+DNiQlYb577iaozLV9+QCrSWldnt/Ar70GMAo+nMp48ptxLaZaZqJPaaP2P4xMKopiv9f4aCpRIBWGIZzRygUzfsRuxlkoc4doRBm3pQDjDtEdBDwrdhOhMYxXFWMc0N3qemeJqZ5xLaK6laowdVdZPZ1SywM3Yuaqc4KwF3ETAJc+koLtrFQDGciHEpAmEeYe5g07sbidh+oD520aIttYvbOU972qE48HKaLmRig5PZm0grXfuTdgaTh8MxSzLX0TPtA/bpjPK8YV5ZiF7j8xwPtU8fuM01/FRkcuL1CjxIQQlLYQWqj+z+A7qpi9etI80ZMRkJl4GqGfTDSdx7Gk05fK0VaS2pOjJKu9z226zH3C8YXS3xloBGLL7cTGbFqA2bTUYCw4kKg+DIw+/WC/nnDsDL0a4Ov59TXBe6mzcpGA+sFet/KLr7bE3c7YdgdU/HJC324bQU3OFsDoN/d0bQD/mpBLGTXHtcltjDYwqFv74kPmxOXH5Bdz3vohHN/yhhOvof5PY9+hpOXAPHhPTqqGjsrSH2EVBpSJjihdVZ0Jsq7EXswwo3wkVBbQmnQYxRD0fsWtdmd6MpHNaCaz6AuT8pD5YOUazGiuwG97zHLRuTkrXgE6s7ndBexn3ca2wmYh4akBESMVqFSwlRWMotsWR5KSe3Le4/ZSzBLRknH4CCvY4ZAKA3T0uQWInRZSBRKCTrjAkiK2TeK5l2kOATcNmA6f2oLitJQev/RKQ7PHNNCfANDDeMqEusICVQdSFGh7xzVncYMZPt8aaerAPVNzEClBIA4L/CNlE+hEqKa9onyfqJ6/ZEzBmUuAHQXmnFeUm7iKYrrKZ7Uhc27iWJn2L807L6A8TyggsI9aNxBEZ30sM0I7aeB9lOY/7rm7M885f2ImgKhEZsuvTHQdqLRD/doH+ByDcs5qs2XxRrUoaP80mPP59KLbiz9ZYXbTSfhkeoG0v0DAHHy8OYdza8rmqdXDJ+s6C4d49KhhxKz7R/tsXw4+QOCKPdOdlezGqizYi5C2wmYlyxqnHCv7iQt3x9QywWxqaTOziadaH2SHROTLP7fsj3/7SMdNfk5AOgq+wp6f2r1xUMnGc1uj24a0qIhLCt5+BToMcou309ivGQ1MWVmYkziz19aWM6z4CcKPyJICZAKS2hkdzfZJFT5IICbVgLcimyQpJQ46AxepOWFkL58ZYilysa0QBJAznRSWsisCnXy/y82QhOW1+RkGKJbAxpCU+Bn5pSFjHP5/dOubKHYQfFKDD+OzEM9RdoXFe0TWcT1jdCNh5Xh8EIznCdCGQmziF5McktGLcSMrWXxpaF4SCRz5GZkq/EhUd9G7EHERgD+rMbPhLItAKnCHSLl3YC92Uv5+z3HxxEEhsDim4HdpyX9mWJcGMqNRk8G10lEjk4xnMnpzt4FzGA4PLf0TyPjswlGTXljcPtMtdwahrPE7qee/tKw/EXN2Z/32K3YcMX1DK015s17wm5HuL3DTCNqPpf0dBihLIhrsdFWvce1I+5aQMf+qmJauGwz5TCTJ+33spuDWJS/fkcZAiqeMc2tDFYZHNoHob1GYbwJ2ac4If9pHKXNN2tQq9njoIpjrQwCdqZ06rnrlERifTTtJPfouz6bkn4HMPQXBEjflg2f9ALZWYhpOrUW096jJ4/yHjNOmKN3ohb/BnX0+z8Eiq16dAs+uiIVTq6BD6jFTGr+s5pYPgqJktXi8kteAErKAhUTsZJgkawSj8kpYh8GYuMYKsM4kx3edunUBfCNORF5tE/YXtibvjJop7EpYY5Cs5kjFRqilKtu7/GVoTsTnYHtQYxCpC43uUc/LDU6iKHIlLsM8zeBYuOJRtFfONpnmv4q4ReRVAWUjcS9wxw0Ra+o3ynmr6UNe6IK14qkpYVohzxXYIqoEBlXBX5u0KPMlgileCQUDxN20xNnFeHJAl5/9/r7KIIAKVH+5hZ3P2P3kwX7l4b2maLYQCgMeq4pdhHbRaaZZqxlMMP8G7C9pr9wjC8m/E8m/OuK6kZhRph/oxh2lnGdePiDxLSoWf3G0XzTotuROC9RX7zAvLuD3B5L+704+hRSG6spEJYVobKYdsLcHzDfXNPsF0yXc8a1Y1xbyqbAvatQh+6xR2+E/WV3sqiTFlqxygsBZ2WnqytZFFphh4l0v5HafrNFHVrBC5KwEvWsyV4DYqGlrCVVheyWKREv1vh1RXIa3Qfs7R7z/uZbLceTKUf+9+k4SowVj+7IVQmzGpXWsmA/DCbWSEvQiDhLb1sBGY+IfiuA5VFARG7/pcUM7UfSTgbIcLEmzArpviQB4pQX3AAgOiO73NG6PMF4VuBrjRkktbe7ET0GohO0vdxE9CRBzc/Mifasg6D9uk+EQuOzm2+xDaIZcAa/KCXDmx4zh/3zQmYCGEH6k+JkBZ40WWEotmDNuzELjDT1G/FCGNeOfm3orjTt04RfBSgiBIW9LqmuBUOobyLV7YR4EWjMKCWL7SXIyOARARSLzci0eMxSQimWZWZK2Fbu6/Bszri02SPhu4+PIgik3HbS9zuW/2TEdmc8/MQxrAX4ML2otcyYcK1IdH0lqHx1Kww+PRUMTwI8HWhLR3FvyOoPiq0iVNA9Tfja0p0tBDh8vZG21flKerxwmlSDNd8yrlReAKq4nokx5vUdxf0We3kmVk6FkbbkUXTj7KPzsVK47XBKZ0Pt0Eq6EAwTab8Dne3HC4daLwXR73vp8bft40JaLkjrBfHFBaqT3ju7g7QRjUG3BaY0BFMwLR1+cYZ+sRIK7iTZhOm9CKpyl4KYTgajKVt5qfkMVYvuwi/k8x3t2k7OTVo9ovv7Sc790EHbZYuv6dE7MIqGIWkDdw9SngwDqq7RVYlJcg4+ay/s8IGbkREvvRQ5jdfSQ6Q65HkTg3j+pawctYeAmSLBPYJjIH1016W84JMIex6khakHsa4blrWw7XpPdIbuacHhqTAOzSh9eBGD5celkmEgZoTlV4H5bw7oTUtqSvyiZDwr6C4s0UF/oegvEv7MoxtP9Bq9s5R3itnrSLGLlLfD6bqaTpiKx/JnmguLsdh4ivuBUJoTpjHNDMFlMdQ+EPIkI19pQvGXr7+PJAgoxpcrind71KGj+fktejzj/m+U9JfCiCofUu7Na1wrWUEoxfap2AIo9GQYzjRhFhjXMXu4ZSLOJCDiuE5MSxjXFZdGUf3qRoJQUwm998OaOQNUuvfoVzcyCKMqRU334goGjwoB+9AJM9Bq/PmMo5/cEXmfVoI02zZgxnhKa7EaSoe518TrW+J2K5z/oshe+ha9cNmePEobcd7Qv1yw+8QRLTTXK2a/2aO/eS875Tih9wOxsFBJu2586mifKvwciFA+wOxtpH4/4h564fn7IKXJlK3Qc3Yi6b1YbMWgKR4ee9DJGfTgZdccpXY/Tm96vLlRjFDysBSdpH2nityxiEnITs7mQCtqzPGsOKkz5XWkzlZjzFZfEoxUN8m8vbLALyt8beX31/akIBTxlwBy5e2AOeTBI5kDMjyb0T6rmbLeoLqXQSH9uZEFPgiaXxzEL9BXmnEhQqLoZBbA8itP/dWGWDq6H58zrizDQjwHkxGhVX+Z8JcTrhmJUcPBUL3TLL6U3b94EJ/GUIlZTqgN41KoyjFXSbM3I3Y3EGrHcFHkRS4lUrkVR+7+QjbQaSZZjh6ke/J9x0cRBIgQSsP4dI67M6h+orxuWVaGbbK0LxLjGVTXmsXXmV/uIWlxaCUJ6hqtwvSgJ3NycdWTIhSJZBPBJTEpDYrDi0R0JevlM2a/2Uv9WhYCrvW9ONQo6aEzTjLEcxikpeesKOGairCossORDMaIlWGaZzVeHgZhusg0M+xfukyiSajosK3MjbPrErdsMEdX3U7+kHv4aj6Di7UM4ShM9vCH/lIxrg3t1ZLFs4biYUSFiF8UhELacWaMuA6a95qxFyRaRQGzQmVQqxKjRIKdKuHxH4e4AHnIZsYhtPT+tVEi4waOFuNijnIgHucwftDpUNn3QBnx+ePyDL+sMO0oVmNGE85mTMuc2uZxXSnfQxXTI1U5O0r52qHHgEmJ2Dj6JzXDSgC7I8nmODeg2EkAqF8f0LteJOZKQe04fNKwfykW9MVG6m1/FA51kcXXk4CGSerwaVkwnWsxC00iUa7uxer78JM100yfpOiiJYBhLjyX6uWedTXSDo72pmTx55bllwF3iJg+SE8/37ujV4HgGpFyIzMO9OAZL2r6M3tSt2qf0AEplZ8ZhjO5z9qLzLnciprw+46PIgiolERJVWrSZSNDE7qJ8nZgVilCbeieJvY/CnRXmuWvLMuvPNX1wLgumOaaMQeA8kHRXwqaqkckQEwKFTWxSIRK2GN6gmGduP0jw7hYsvyyxz70kLKiL8hEWZVHXR0voWpkFEy8vgXANDXm6SV+VZFKmQIjI6PkIdJDwN3vKG4s03kjHgO1JjjFsBbMID61pJ+U2H6dH9ZOJtq0nSj+UoKdBB8qi92NzN4ponO0zxS7L+DhDwzJVKioUJOivFMsvhIDSxWF5Th/JXVvqPTJCy+UhrQuUTOH6cVefVpJvY3isa/fy2dRIYkM20chCfmQZyNM8sd70T6M42n4qJrNxAewKonnC4arRoCsocCMjagsrQSM8mGSVurkBTdRSkDah60sxLpGLxp0VZws5MdVkS288+LLqL3tJcWu37SY2x3ESLha0V/VMsymkN2yzEafYm0nO/fs9Uj15b1QnRcz4qqhe1az/dwyLkXGW1+Lh8I006fytNiJpFwCiWKcKw6fBS5/fEfjJjZdRf/1gos/UcxfSYCxnXSJhotKFJVKnIdtH2XS1kY8EP2yYveTxWlcmR0S7YXJugEJfiFLNmyXjU8PeWLRX3L8cwUBpdRvgB3iY+pTSv95pdQ58G8DXwC/Af5uSul7pAtyJHOcIyBWTaHOk1+nQHU7MSzF2ilU4J9M3F0o2meO9c8Ny1+3FDuDW4pR45gUxYNiOE9My4jphLQSTcIMKjsESWmhvGjl9y8V0VSsfq1wSqGnhnT/QNqMKD+TDOHE7JP5e8oa4nYnPflhxF2e46+WoASZPU6RVVNA9QPc3lO8SpSLOXE9P4lPxrnO2gPFfgFJGcy/tMBtF1R3wgM/MsH03U4s02sZJjp/rVDB0j5TdE1CXw48Pd8ydyPv93Pefb6kuDa4g5yL9vZUz0YL7iBtq/p6QicgJOzugH1o8WdN9lkAUsIcJsxDVgmC0HqzOjF5Lyq1GFGuOJUAui7Q52vh/juDr90paCejUC4RvHALTBdxuwl736L6UbKRoy2e1rCWa0uepaiBFAypdLjdhGs9wQlPQCUxN3H3nVCRhxHmDf7pmuGiYlpIm1HFRPNeAMRY6NNwEdVHitteAlxZZB1AJXqRudT/xTYHDUWeoC3W4OPC0J1r/FwG2/RPPFef31NZz9uHBf7LOWd/Bs11wAwRk41ux7VIqo/6hvIhUN306IMA1v2LBe1TJyDmPuJLzf4TwzR71EVEI5vbMQMxXaLcRZJR7J//bhmD/9WU0s0H//9j4N9PKf19pdQf5///m3/ZC0Qr7T97EG6AytxqnEH3geWXI0kXoAyDgjQL+N9vefuioLuas/75RHE/UjwICjusNG6n6S8N4zqevN+mmfARbCtS4GOPN5Sw/1SBKln9CqxSIiB6yHMEM+vuKMNNzqKCyzMBsvX15MVEYyajxPUoardYOWnzFXl0+F6MT92+xO4q9LMZSds89UYCXX+Z6D7zdIuBGAzxpmT2quLiTxbM/vQate9Qqxo9RRZfj8zeaaZfCqj18Kzh9ScevZigDPiFPuKj+JmURcrLrjt4GYLhq4L6NuAKjUsJdegF5yjsowdCPwqpabN7FC8dZcHZCfh0PTKIqdark3gllpZpaRlWUty6VgAs22ZTln6UOYIxkuqSOK+yrv+xtHEHj73vUK2w+mIjA1zsThaKya5HeorowyAYjzWEF88IM4evjXjzqewCHBWjU0RrxMevF+6+3GOZKtw/renPpC53B1Eh6gnKXTzxDkKtOTwztE8Fcwpzj5p5qmbkshpph4Lr12vKN5bFe2Hv2UPAHiaxOFsXTAtzmslQbDzurpcSrS7wayHNqSh4yeZzS38lhrzlvWTASYMqEK7GANW9UJunRrP/RJ0G8XzX8bsoB/4N4L+S//2/Av7v/FVBwAhRqDSP9FB7mE69YbcdWf8ioacSMIyTwi8Uejax+VuRwwvH6heW6l5qn3Ijf7tW03Wa7lkkOLAHAVj8LKGCoryX2npcKcYlcrFCyfIrYFWiL6RHr7tJauBhFJnxrJZswDmSznbhRp+AQBUS9iDEHGkLFqjSoRppPaU8O0F1I/VvJopNw7gSnjca+jPD4Zlj/2NFedmx+MmB7bOKr581LL94wepXE2YUKarbe8p3e+pxIq4amuuG7YPFNxJY9ChuTSrIpKbj5LToYDiH8Szh59BdWuobQ7l26GkuLSorgJMZErZ2WCc23unoX3CclXC0MTu2GI0GI1Jp3ftHi3dvREbbynh4sxukS9GPeTBqOJm/jKuCWMr8SaEAJ9kcnCE8WRJLk0duiWQ7FuakBjwOqQ3zJX5RMM2N+EFawQmO/v+2l1q63HjcZpLywijMJLhDf1UwzrR4Co5ZmlyIq7E9BGwfGBeO/TPD4ROYFpHUBOqzjifLPb233DzMUd/UNPeKYisWZeW9fH6A4bKkPzfS2++R9P+ux9xtBTSt8gBXJ8a2w5lsFEddgm0zAUuT8bCEO0hQ2H1qTsNQiu3vDhNIwP9FKZWA/0VK6R8AT1NKb/L33wJP/6oXsYMAff25EIWaG3kAi/se03tiYbGbgfWfB1xXs/1MM64EK6CJ+AvP7VJR3BnKO5XlmpI2FXsotjJdaJqlkzbbzxNdVNTvE24nQWFYy1zCpEvhoncCwrEqMGe1IOn3uxORiLp67Jv3g4hpnCXM5YG09x3mYZf98Z2w70onwJTW6FaMRe12j61K8Rp0lvqVZfXnhukflbRPZhyeLdBzKFJ2lHkqAyiElirutOlhiwmRorIsxfND0PPIabGYw4SKUQxXFmLIIXp2hQqCfiufF8uJUkwu0QwqioWXyq3A1HZZhjxJFmBzd8EYIRlVRbaANyRnxFAzZ3q6zUNXC0dYNNmRRcl8gtLIzMkpC7aUPGmxNGJkqoRgdnRtOnYwRCkowKjYhanHOZZ5BmBS4gHpdhNmO6D3rSgknSMtZ0JCqh3jWUFSgsYnK2PuQslperA9eMazgpu/aeleBJJL4CLz85Yniz03+xm7V0vqbwz1+2xJbo5y4sB4VrJ/7hhXUqqVD4n6/UT5/oC+34u8ei3DRNonYpSajul+ko0zaZGxn4RTUbCBcS0ZbvmAUJh3kfSXrPR/3iDwX0opvVJKPQH+r0qpf/bhN1NKKQeIv3Aopf4e8PcAqmLF+Z+29E9K2gvh27vMA69f79G7VmywY2T55xNmmLP71GacQBNtIpYwrWVijNvKgnYHQ/M+Mn8dqO41h6ea9qX0m91W8ID2mURolLDAQgGHTxR9Z5i/VjRvJ8wgJJThssbMC+xDLzPfJn9S1VEWpLZHHTp0IyaXrCuKhx3h5g7Irrp1LeQga04Cn7jdwWYr16Vw6MUCtZyhpkj5LrL8ZYFfOKIRr0LtkyyCdhRnXh+kDr+7x2mFHucyO3GXH3KlRITUj9D1uG6G2cuob932JGeJjSBKMv7biygoi3qS0ScAEJCAlu9HGscT9z/F+Di2vCqz2WaNr2TXtn0gGi2aA6OF7mv0yUM/FPK3dAQk+MRsZqoz4GqGhNtN6FYCmp6kj5icke7MrGSsCpKRtLp4GMShyGRL8MGjNwcx/BwGYozCr1iviJXFL0qGc3dC9w8vCrpLkfbaDur3svPuvqi4/wMFP91TasE2XOFxJvCbtxeYrysW7xXVjQSAqRZrPJXg4Scl3RNpH7o9zN6IC5LpgzAUzxeMlw3tE2EXHg1T9AjjGqaFlAKim1EoD2iY5lLOuI2ieZNobgN6SPiZpr38HWECKaVX+e/3Sql/B/jXgHdKqecppTdKqefA++/53X8A/AOAxfqTlLRi9qst9WtH/7RmnGv6c8O0WNG8qUSXHxKp1My+3GO7hsNTJ2YkM9F/x4MR7XWdsAdFd5XoLzTlnWb+JrL+1URzbdi/0ExLqZ1UhGnB6cEzo6Cc4yqxs5poCxZfDdjNAEYxXFSM6yXV+w6zER79aQBH4WSA5sOBIiXxvrtao/ueuNmdLL2VD/KzTrjeHId2pkQ6+DyzL6JXc+KsRIVI+Xqf62D3mPYGCSKpKlB2LbLib95gbkrUYiGEpf1BfACm+cldmNt79CYPRU0JFSPmuMDzwJLTvL9MIop5epGZz2T2wDEQ1JWQg8gsw1r0BhQui4Bk0apEli0nzEEIPmr6wBHJGHQjkt5YaKa5jAC3fcLtRe14LE+SVoRlgR7ycNacAZBt5cvbXkqhh0OeQiVkNEIQ3MF7MVzJ9u3x6TntU1l005zcrRBs5gguV9dibBMt3P2BYfijjqcXGx4ONd2uIiWYDo7x1rF4pdBjwvYSuLpzjZ+RsxlB8fUkAaV6eMxS/FwykH5t6C/l+U02Udwrphn0TyL6cpC9Y5s5HBqSTcQ6YQ6a2ddCObadCJH6c8PhpcbX37+O//8OAkqpGaBTSrv87/8G8D8B/o/A/wD4+/nv/8Nf9VrRKPafVlR3lurNntkvB6plxXBRMi4M2y8qisuC6jqTKWqD3U3MQ6I/t0wHTX8pdZHtFNNC9NfFRi7e4bNI/0RRvXfM3kUu/8nI/oVj95nU4Cog0TQDRrbL/IIKDi8UU1Myf2up3g8U9wPDZcVwUVEYLUaYgN71qPFAmrK2fvJoZ8U198UVpqpI2102/DhAqkWNt5ihnRMvg2kU85Ms5+X9LdoYMQFpO8EnnpzTfr5kWBlUqqnuPHY/CbhWFbIQs78ATUV6doW+fRD/gqKQToe1QvmdyZOhhlFEUMN44geoppaFDqiul9T/ODVptz9Rj9WsgR9dysIpXU7jhW6djMb0XhYenMxcdTeJf8M4ySj2uiIuavH4czpzPxLlJlHd9FmJ6ECDaT3RaqalIzUWtS7F1Tlr9VXImoUIqc5g7iQWW8lo8RCAU5Yznje0z8SohCTPwrCG7nkgFQl3byhvpf5unyi6LyZefHpLYQKvbtZM20JKr0FTXhtmb2QgSXAqt4qlSyDSd/HM1IOi2CVcl2nNVXbSzl2i/jIxXcg1c7eWaZXwLwYuzvds9hXTfYXucytxEVGTonpjmH8t3aTjANT2ynJ4qfCzhN3/bmjDT4F/J7vaWuB/k1L6Pyul/iHwv1NK/Y+AL4G/+1e9kJkkYu4+cQxna3Hkeeip3gbctmA4d/RnhmlWUT5IfdOf18IC20XKe0+1MWw/s3RXgn5PS5kS5Laa8lYzzRP7zyPtS8X8q4LVryeKnWb/0jCuyDeHk6+8OyRsJ4ywaam4n1uqM8P8jSjOks0z65XszPqsonioMW/vSdMku641eTHkdFwpSaGPU4jaDs5XwrWvS0Gzp0l2UWehXEmqP06PY8tu7qmNIukl3YWhfWLF4hvAalRhUf10MvvAGtL5Sui8Wkg5oSmyXDaIe1I3yLj1vPOTZxKkQtqAKkZpzUXpZx8diFIWQYVFKYKq3OMutoHypj8pCVUue/Suk3MKQa5RCGAq4rxivGhOlt/FLqBG0UYkpUiFEWXirs+eA1W2bc9ioEllvwKFiopUCX3YHCb0fn/SKKhZI9TosiCsa8YzmUugEtQ3oovYPxPMwR407o0sft9A+0nEPm/5/GxLOznevD0j9VkdOeTn7EFS9milG3XkLFR3kin6SjYd00kAUIHsDgTDWjOsYVolwpNRWrobR2gSxcsDF/OW67sl6V2JVpDK3Em41TRvZPgISrpAoVC0Twy7HwEx0bxTzF/9DhiDKaVfAf/yd3z9FvjX/+O8luon1n9+4OH3ZvRr2XnLjaPYBexuono/oKeCw1NLe2Wk96lg/9xge019G6jeD5S3E3d/WLH7XDgAYREIZx577Sg2CrdT+Cax+zwxLhxnPw+sfzHRXVjGlTrVnGRgzQyJNJDnHSj6K0WylnIjTDySEqfbhcrjqwqWtRPn3ZSI8wo/cygfcW1e4JBHbk3i8DOMqNVCnIgrd1rAKspsgvHpXBbHEGXRdhO698x+vaG8rxlXR/24BTw6GdSYsYo28/gv1oSzhbx37vun44QhyGj+B7p+pUhVSSpF/6CcQc0bAUSVgqYk1k40FbsOvR+pgNIIt/1oGHIaNR7jaQBMmiQ952xFquR1/ExEVdVNf8oaZGR53tlDntWwkDkFsRRWod57CcBjkHkFXp1UiKb16AeZe4CXkd2ME6zmdJ8tGBcyWcj2Sfr1udsiRihAEsCteyJU32IxonXim+sz4qRJvUF5hTlobCdu0/WNLLSpVthJQGjtOVm32xaat5HqIYihaYRxZdm/kPmIw3kgzQP0Bt1pYhkpLnqc87z9zQV2awjLgJp5uC9oXmvqawkGx3HnoGifKfqnAbfTzL+E5Zcj5fsPqNy/dXwUjEEA8/V7zqYL9j9eyHy1M0kL3dyIKcJ1j/Ylu5eO7lxT7IQJ1T1V9JeWZamZveo5/5MOM9Rsf6yYlCHOPf5C5rjZvcLtZTJLKGHzI8P8GyVIeyfmjkfWmUwb4tQ31h6CFcdXANtqzJQpwEnRn8nchHFes1pYyjvpXcdC49eWcX1FeTtgr7fCsV/ORZAzTuIJMIwnXYJfiy8cRyBwfDQBCbXYc5v9gL3eYe8NMX8NOKHxgPDx+wG2B9T5Ar+qT0YbYqhhgFJq9/VR3y8uz7EU153QWKa5vF6x8d8y5nRDOCkGdS81vmqz63BMsviMdDzQmjSrUb4QA5KqJJUmt9smCSj79mSrpqaI7qfH6TxKQZBZBCLE0iIfzpOoAZlEBegx4w1KFIrHISZhVtI/qejO7clDMGkpBaNVjEtN90TScRKi8z8fqcsJYyIxKrSOhGAwBy0OV73C7WQCUdIwzpWQdxIMa1mQvkmUd7Ib1+8nuaeDp3tR8/BTk2XFAXTC3FlUVPhFQC8mpsEyvatRgL+YICrMm5JZxh3G1SNFOFoYzhKxiNRvDctfR+Zf97i7Fr/+flDg4wgCR+PPQ8/sa4NtK8alGD76EsLTgqIxlNc9qzGy+6ykP5fpLsUm0V0pbv5lxf55w9mfTyy+GtGTo32q6S8lpUo2Ma0SyWncJrsRFbD/VFPeKlwnDDDtJZILiSiPmUaygWiAnBUkDWES//jF155ia+jPxXh0+7mlXJlH3fcoXnjbn9SoL6SO1z5lY4pEsRnR+15Sfy8tNH9WMi0Mpk8CQj60slsfr5dSkvK3PZqZtDJ9PLUsU5HtvCrJRI7TlnxtTi23lAdpWiV2XckIk8/PskFH4vT5xR0X7H4UwK3LxqSLGeF8xrR0qJBw20LmKj7sJONoKqanS0IpLjfuXgaT6N0BDlmTUJfifuRkzmCyWlqGAQlM3SjeA84S59VpcKxW6nGq0+jR+wEdZceL6xnTeSOy5DGSCn0SF5kxtws1yKxI8fZrnyemszzbMSqYT4L420ACukOFui0oDgo9ZWHbfcJ20J/JvbdtIiVon8icwOgS9XvF8jeB2avuFGT7pzU3f2TpXwTxFNhbyntNNInpPKLqQJy0mIzMA0wKe+Mo74XopjynoSTJwLgWfwK715z9qaK59lTXI/ahw581bH5Sw3/w3cvv4wgCIQhw00jbyu4lHTa1PslAfa1JT2vczrP8smf3ScmwEr52eQ/dMwEAQ+WYfxNxXWL2NlJsFd2VZlwlwiLiFxHQmD6z5hZJ2ok7mXFwpIOi5AL7jCNJv50T2KNCdhnOBijNtae6Twwrk22nHl1vi12iuve4PXRXlt2nDpNJPGaMRFfhSuHJJ6Ow+5HypgNqhjNLKBuKdYndi0kEUaYnpULGlvl1RWgs9uCxdwdpBRoZQ4bR+FUtizSRh4qInDgp4QeYwyipfuHwq5pkFONcPBvq99mZJk8TSj77DoaAms1krsMUcFtIhSY0ebxbHkwaKydBxSpUF04DRVIhfAmQ1P/o+MvRLag7GpgKgzDVhbQ0Hw6U+55YFcTKSht0s5dSK7dq/ZMV/ZMad/CYnVCQozLSgkta7k+RF89CDD7GS4+qPdZFwpgBTCe7f9uW+IPDbI0I0JSk9uWd8PeHpdCEj5Td4LIDUAflrWLxTWD29QE1evxZzeaLioffh/h5S2EDw12NbUXo5lcRZh5dSPYXosLcWcpbcScCTurKZGFaJvw8Cvnt2rD6ZaS+EQ6Fbif8quLhpzX95UfuJ3CUwIqRhUJFJ9x7xanNkrTsWuPKYg+B2dsJ11r6tUaPCfVK0T9RdM8j01Ix/1JRbsWGyQyavlN0aKZVYFoH4l4CgekkXRsuIqFW1O819pBIlkwjFTZhqGUCj+0lIwhlBhGNcA3GhaO6jxT7SPUQTwovMlAzrC3VzcT8m5H+0jEsZFa9qo0QSUol5J+sa1dTwG0nfCNjtWRyjaN6qLBtzI64mVF5CPhaM6xK3NpR3GfzkKP6L3MZoiYrMCN6P8q0pexadGwlum6NCkvMIC04e7MX+nSeY0jhUPPFyQMiGYXuJszd/uR85C8XDBeV9PwjuL0XxWA3gQ/E9VxKGHtkGCrhD1gpf8w+PPo7gDwbgygk8QGsQQN6kC7DUfqMUnJeVlPd9Ni3DxzHzOneMV7N6K6s1OgNJCeuvv7M4+YjV2c7ChN4t1kwjbI0psHCzmE6hfYKu1eUD1Bl0VFwQk6z+XSTAk2CXlEMifkbT/W6JVaWzR8sePh9KP5ww49XGzZDxfvbJZjEdCYmI8VsJHhD6Cz2xgnNeJ/wtTxzxUZYjt2l6GNiHdG9YvaNZvF1EPfi3C3xq5LD84LuqTptZt91fBRBIBWWeLGW3cZLD9keDMOZy2YOj8w3FcnsNWGClTtBXVUE/RpU0Axnke2PFc0bzexdFCT2RqG9pm9t1hPIA6A92H1GlY3MD4hGApB45knUHyrEE64T+jGAlxJUGFxO6kFfmlNNqKckQpDbwLiytE8dxS7i9rk3rNVpCnJ3bgiFAD3mEB7NNrOJRjQwXih2nxtMbzDDkdkHZjCQZBBKLAy2c+hRvh/NUVGW2ZIJ9GQpl47ioUR34omgrIBwcTUT/v0gIGScl6TVU7n2vUdNXlh9MyEX6SnbsXdISl8JEcgMEb0L0rrcdygfiIsaf94QmszvH2VgiK8Mocqg4qBQywpTWPS2k7kRfS8MxLMlaVYL2ejYbixs9hoU5qSakmQubS/t2qoknM9oX9Tsnxv6KxgugsxSVGBXI2fzjrOmIybFq9sV00OFGgQkLHea8g7cTnZ9Mwr4Z/J8QlUqVJKA7mdSn5tB0Pr6eqK47Ym15e4PGm7/C54/+tk3PK+3/Gp3wfXdEmMi1J44GLQLjK3DvS2obxXlg3go+FqeLydjDxnOcgAoI26jad4oqltxW3atRw+ZkfjC0T1VDOtHTcR3HR9HENCK6apBTZV4AGbyh20DSZs8XDIrtTJfPSklo6JCTo/yztu8SRQbTX+ZOHwi2vD6RgglZkjMXkN1q4lO7KHGhRBCbCug4ZGWmcg93iqrxh6UpF5Nws8SelCZVyDOR+WdZAlmSCdaJwrGZfY2QDKC3ScmewpIkBB/OqGUJqPozx2F07jtKHjCkHA2Uhyg2Cl2n2mGi0gsPhC7mCTvoROYxOgiadQQczALCndvKB4ECyGJhLZqNPYg6j3dFFKrPikZ51K/264EhQzjyKrI4iBmmUI1FgpucdfJBKda0H6Vkqged53YnPeDNFyqQoQsx3uoJQBMc6nxbS+yWhVE+Sa9sDx5uKmIhSM2jjATPr2eIpbMO2h7kTQ3lZCkljNSYTl8MufuDyzTIjGuA/aqpyk9SiWeLXeclS3v2wXX+xn7b5ZUbw3lgHzWbWLxjYDSfuYYzlzGFGQT6S4N3YXOGoxAson6taXYClEIreifNzz81LH5WyP/6u/9Gqsi/683n7F/aDBFYOot9n2BCZC0o9oq6mvhGiStMs4kvgBJi85lWor5aHUtlGR3iJTbQPEwEivDw89mtM8kUPhlDnj/KQuI/mMfInQR44YwL3MKdxwIGVFR5LahEOAFQKeUUy9Jy0X7rghOPOBsB+NCMS0lXT+OcSb7DOhJbnJ1De0zzbRMDOuE2wmN2A6C+g9nEEv5HbdX2DZjBbVcWDNI3T8todhAvY+YTiYUHbnqycgCcl0iFoIVCFOPvJiOoGT2zXcKP3PiRdB6bJ/NNEOkemjYvxDXnFDJ/LljMEpGACMzZKVcma+Rl1kNtpMdTeepPGZI6CCW2vowYPKYL/WkpF8ZcdrJHRCybiEUmmIvSjgVRD6bnJFsYJwwh+4xLa+ErKOMERPWbsDsDLo3xMKSCi0SXqMyyOvFOAQJ8nFeocNaypWs4NTtdMIwVMjzCbJhalrOCKtaXKEr4VBIqSYsUnU+UpTy+i9XGwoT+PntFQ93M8xNQX0n916yTKgeopRkc0f7tGCcCfI/LE3uIkTiesRWHp0U6lVFsZVMQGz0HfuXiu73e37vk/e8PSx5e7/A9w5lIn5bUFwbbKcyziS7vfIy3ap7mok+O0UshcUaKuHBVNea6lae83ITcXtP91yGn3RPEtPao+fZwfiuoHll+L7jowgCMvpaYQ4+U4NFHRELJROJMwUzOEUssl7fiG5ApQ92U6vQpcyf05Mgt24vIgu0pPXJwriAUCV0kP5u+ZCEIVhLiZCM+BK6vcyKG5dS+4vmQC66GVM2spAbPpxD90ShvWH1q+nkt58KLUDcIA4x7qDwdZ5M+yAzFlCSxh9NJKPTsjueidV6sfFC6tm3zO721K9mhEZQ/1haYrb/CuUHDkDZnlomJeVyKqWT1bb2iVAqppkg5tW7hLndYYeRZpqjR+nQRCP3x3URO8gu6LYy8ORohRWdxt32J0akqqqTAWpqSgEpC0eqCsJcvBBIon+o38o04GPb8YgThMoQS41ZFjL0ZfDiBPzmWjwXQ+A4s0DmMqyI84rhrKS/MByeacZ1OqkHwzxidCJGxawauW1n3LxbYu4cxQhul12pvEz0sdmJp39S0l08TjUe1gm/DrLAdMLpyLQvaH5ZyPDcfcw1u2b7E0iftKxmPb96dwmAUgldBMLBYXaGWEK3jOhRXIbNIG2//ioRCglGfp7oMwvWbjTNW3XyOiwOkpXc/Y2K7Y+ljVitewwwtA73dcnyl1Buw28vu9PxUQQBAF/nSN/57CHnKX2EC+FS20EsopMRoclRSONrfbJ9Ps5vV1FS+WjUKUgkLf+2O4nUw1rSqvaZ7PBmPGYIsrOPS/KcN0nFdJC6+riomvcjzZt0mkpb7BXtE83hhcJMJYvfdJje42clfmGxfZbQHryIl4zC9B69H6VdphThasVwUREqdTKrOHrdx6ZAWZEfq0OPzT35tG/F0ENpAe2Kgni+wC8rUVlGUa1BtnBbWYITBDsUQo0elpZxMad4+thLNl1ktpUujW9sHpuF9M9Lja7sKXM5Tg1GL4VkZLWQfiYvgphZSbiYMa0cvhbHJdPn+QSbVgxCmvJbXQIzCcClfZR0/9DD/Ya4233gkCyBIGVQub+q2H5mObyE8cqDTuh9bomqhDGReT1w6Av6rxYsv5Khnr56bBeKw1Fi0rKZ9OfynIRSUmuqAEEROytl64Nl+VpR3YlQKCno14rDC4U/m1CT5uHNEj2buDjf0w4FXVuASYRFAJVw95b6rWS501zhZ6BHyRD9LBFmETUqqveG8u4ogZaNcWoU+08M7ScBe9mxrkd2h4r0vmL+tWb2Op4C2vcdH0cQSIIBRKOhFouuUEn6Yg+BUksN60uNO0Tp2SsRp5gxMtXS9lEhnaiTMpaa0w6jJ2nrpVqifbFNaC/agmSkVEgKzCQZwymQOE4DTdxecAlfafYvSupbT3k3Mq4cSQk6e3hu2H6h8WXD7K2XSTjI7n/subuNKNtUjEIjrkpUP2De3FGNS3Sm0AJ5/FmQz9QUqNqJDt8HWXhGBnSkzVYQ/sqjjcb5iJ4V+HnBtHBCJ83jro5lSnTCeQi1+BWaXiyu3S4xeztR3PTo+z120dC/WDx6DVrFcFkIXrEXAZU/a4TUdJywrDWqF6VlcEumZR5UGkAPYlWGUkIk8gE1eEw/CRciT3NSXRYyDcPj5KQ8G0EZg24aeHLB8Pk5Dz8p2P0YpicT1WJgXUzs9jVxzB4KNuFHw81vzpn92vD81wHbTowrQ7TkAae59IlybfxMzFmjE5GO7jTmwQjBKIkStbyXIbkqptOA2v4CxousX+gN5XnH5fLAQ1vT7kpS0KiDQU2K4kEzeyMgY38hz6w9ZLxqLc9L+d7QvJEN4fgMRStuQYeXifBswNUTU2/Zvm2o30qpcForJluqf8/xUQQBlWQXT1YR0SK+GQLT8rFVqGJO69E5I8iqtEBWYR2jeE6HXb55uSYGuYhH/CBmowtxJOb076QQkHEU+WaoxYRkWkgXorqVgDDNpC3Y3Aij8Vjfz94EhrXGN4r9C4vL/m5icSbDJ6aFwW3DiTmmYhJSTzugDr0oEBfVqb8e8/QdGYgaMkkmgC0Il+Lco69WqNGTQOptK4vJdJ5kHSFnTJCzppAw46O3H9mUonoQX7vypkNvW9I4ojaRKkTiohLNRCOf4TgIxG56qcu98D2OcwTTfg/WYoyhzOzEaW7oLx0qOtw+4LYWu+2FLBUjqSxEd5GtyxSQUkSdxrRXqPmM+OKKzc8WbH6s6S8jYS3U3mfLA2dVxxQNbV8QE5hOo/aaYlPQvEvUt15AtqUEABWO48Fy+WDAozBd3hg6hRnlWRMPQskm3V6yzGkmbMNpJjLfsPLo2lM3I89WO2o78dXDmsN9jeoNdpfpyQdF8y5larFYl7tdLllX8tw0rzXNu5gZjblkMqJ8bT8J6PNRXLjf11TvDS4biKgoQLSeUm5hfuRBQCyiRmJtiVafKKHF/YifWYZz0dL7Cqa5xu0EmDpaRR091pQSMow5WtYv5XeON1qHY4chmzI06qQgjAWoCVwrPxtKTqoy00lKOFxEpoWiulOC1hqyTttR3k3YfcQ5jWtlDtzJyipLYMuHbCh5ZgmX4jZsRpODQcCElCcTIQi5gjAzTI242/qZ1K3N+4Ly3gtFWMmE32QVqjCZ5aeYFk5Sxv1E9WonZdSslPbcGE8kIRm2UdBfyFBOM8gDo3fCYFTucZCImbyw+2IC9ShCUtmTIKwbAXm3Ipnm8lzS/ELua3QKX2adRZdHdeUJuuPlDADTC/5BStBUMptwLNGLOXFWM7yYc/f7BZs/9Mye7Cisp9aJZdWzcANzN3DTz3j9sGTcF+ggzL7Za2jeB8FCspGKzLFI2Ewc86VknCALCC0eEyq7H0cnwKA5SLs1WmQ25mUUYLYKmMXEohloionzuiVEzS+vL+kfKlRrcDsBl90O6luxxd+/kABiOyGnHbGM+VfiRTjONe0zuW7aS0drfCaBJhwsxXtLscnnNiSiI2sgZE5HsZsyRfy7j48jCKBkYmwY0c5IIDAaPQWK2x4dEt1VceJjd08U8UFj23TiCAi6nsFBn6jvI7ZX9Bcy6nkq5H2i5cS8ikaQf9uC2cgN8JUYcNpWou00F9chexATiGmRaJ8lynud5ccK3xhmhaK68xS3HXqw6LksHjOIkcaxD+4OHtMHppWTADME8c3zUfThpejwo9WnoZnJQKgV7bNEbCLtM019XZ6YY7YVz3mXZ9MdrcaPXQnVDXBocUWBndeyw05eGIDjRNlU2O3yNANQ+UiqnBiL5InDKCXy5N0Baw22FucgEOZiOGsY16WoMc9KGece0remCjWvWma/zOh/7QiNlRFaM0NwinIThHbrMnsyRqaV+Ot1l5rdZ+C/6Pnpi6/4m7U0zX3SaBI+aX55f8HdzQK9cZheUQQB/Jo3iea9xwwCrvlaPAXNEAVcjuoEmB4zTj+TzUElSIU64U1kRuCwguFSUHgS4CLVaqCp5OEaveHdfs5m1xAeCvSgRbtyEKORcpsIBew+lZmEIFyUWIoXxvxr4Rr0Z+KKdez8dFeJcD6hbCRtCoo7ETBFK8+suCxL58cdpM3ePinYf2Lg3/vu1fdxBAGjhAKaWWXaalGROYPSAXffy1CFy0LQ04Wk28f01WfXFtsJYBKtErn4IGOdkhbeQH8l2MDRnw0QwKeB6r0grtNcXIm0P3IQhFEoAyzEoyAU0iI0vSLUie5Z5PBSUzwUzN44mmvRdCcFdoqUN63szhcN/VVxsu4SdWJBHRLFN3eolPDPz5jmApDpKaKiogzIDq80+x/D9PnA+FyjOlGy6UlRPBjKO019Z2jeDLi7/nEeIIgngbOk0om8+TgEJM9d1L96LWYmZQFNTWwqoXGHeGLkKRAlHgh1eZsBzadr+suKmNPPYaXxlcOMSRb2wYOGUDuZNAQMFxW7T2Q8lhklFRfWY0N08nmHlebwWcI/H/j8xS3/udV7ajNRas/Bl0xJ85vdBV/dnTF+M6N+q1lk6q7bJ2H1taIQPPJLfGmY5hkbUfKMaC8lpR2gbyQAJA1kzxfxl0jSkaqlVTquI7GSDSIVEV0GgtccuhJjIiFohocKe2cpJkRodJDdGQWHZ8IvGC4DqYzgFXZjqN9omveyobVXImiKTn7HL2UTUL3Bbp2Q3FLu3hxkM3Ct2J5rLxyZhxcluy/E//D7jo8jCKREqEXHbfYDqh0w2SoKpGdsDiNVTITG4vbSEktKlG31TaR9IsYQKiLsuUahkjyUxSbh6yN5QlL64j7rv704xA6X0mu2nZQCw5ksfEndFMkKcwstfVqVxTWmUySj8ecT3WWif+I43FjqdxLtk5URXjYPzTR9wje5Fs+jt8azAtMv0V+/x765R50vSaURtxwgOkN5C+W2RCUrllPzeCpXgFO9f7yeetdKBuCsTExyRuTDGtSYe+vjJAafedioKoqTDyJGEea1EHyCzBtgEKOSuKxlWOimAx+YliXtExnUWewkO+uusmnsQVNsrKgwC8SnMAm/ITqVmXeCtwxLxbiW7CVaaL+YuPrkgcvmwNwNHHyJUQkfDVPSXPdzfvHmCverivUrUEHaa3qEcptOC2E4EzDPV4phLWCfHsTZx4zye0LtViLKyUQv5RHizpAYVpIJhkIwIj3KRKtQJ8xBJNfTIlCue1JSTK9mNO+l9tdTLkN9ZpaeSf0/XAbUaiT1luLGMHsNxVZIQsNSCVDYJLHPKyTgVG+s7PijZK7JHtvWkg3aVgJef2bZfa7pL3J3wX/k2oFjS9A3luQ0VilUO8h8OfdYy5h2RI8eU1jSXrjmyidMOzIfAsN5SX9mcs2XBT9KFmx5L4u8N4pUJsa1kJCKDVTX0io74gBmBHcQh6LhIorBxFbhtjBcIDzvKICTPAxgbx1hHk+STpk7pygfFMVOU+ystMWGQHndfpD+iymp8jJSPF7fojdbGUJalWIdZgxqFPegaOfoUdx1TTZUNVPKrsARt89EpUpsyRgnMRRxVqTLk5fAkIODmrKTkbMi6rEC+JHVeRhFwkiaD/h1TfekZGoUqAZfigPueCaZj9tJByAWorcINdkkM4neIgggpjJrMinBbXyTadnLSTj0zcTL1Z6QFG+2S6piojQBHzUJ2LQ1h4ea4o1j9o3U19NM+Bco6C4U0dkTVyIZ2cH9XDQgxUYGeJAyXyJ3TbR/fA7KjbT9unMtFnRIeVDeZQxhJuUGwLQSsc9wV1O9tSzfC+noiENpn4PQhcoAYkStRuJgaH7lKO8FZ/CVPLvDmWJayOBSNYlpSbGV7FdF4br4mZQO5UYmLJku4uvspflcMZ4H0tyjDha3+R15DP4ndsSI2Up+7htLuGqwXSmKuENPmonLbdLS7jHZZx6jTvp55aO42fiScWnEj6A5oqOyM5gBzCA3NLrEtEjZQFKAGrfND0sjIKHda0KV8LOIn0P9xjD7RtGNluHlSDCJ1IqyTHvQDxrlFW6fJ9dqRagUXSFCn1IdWYSVTJXZD0RK4rxgeNLgKou1Rtp94ygEG5cdijOwIz12DSlzGPqsRZiiDO1URylwA5eiGnH3HfphL0ao1oiBybyUsqByUn8XVrgJUxTLtBhRh0AyhlQahsuaaWFOU3u6y2PgTCQnIKYe1WmXVEFstPw8Uny+4/eurimMF4be66VoNRovSr3RYCrPs/Mt53WLJvEw1LzfzukeKtmVXSRNGrW3Uu9vFMtOBDWzt164EEpatVL3587QmNt+ZLLYnTr9f1woVDhyryXlHxeKaZ5kiG0hNt++kYBlOk6ktHGFjMGbc9Lzl+8s1Y2g88lwYgHqSTLT/eeKcRmJTcQsR8KmYPnnluJBfv6oPQglDJdReAReYVstepUE0yxnUUXKVPfc9ZoS01yz+9TQPUuEZz2zRc/+tqF+ZVh89dGXA6D6ATt5YCaGi0tHKJcUty2qn/LAjyA7ZyXiEuWDDKrQYoIhrjaBAomW7aWWiDqH8j7TK1sh9YQyg0Az6J8EhiuoXxmqG4naw1oJPz+B6TV+GWi/mPDvLPW1ImnHeBWIVURPx4k2gJLAIvMTwB0fiAJ8qbEpMqwd8WWRd3C5BFOjiJ85is8bZq8vcbcHmd+XLbpSacQ4JEn3YzgTHnkfDPYgo6mL3SOB5GSO4sAMJfNXDdXrnYwKqwsRCYEYgfiI8oLIx1mJr3LQtZpQG4aVoT+Xa+Z2wqgrdhBG8I048cZZxFe5hx8Vdq/RoxhzLJueuZPAfT5rqb4QXCFETTc6RmcpCs9hKBiDISXF7e0cfV1QDJKey8SoPDimF78+2yGGMDsBG8t7jz3oPGFISg0V+BZZJilJ/ZORhU16NI+ZZoL/uIP0/6MVYNbtHhWjvlGPrcBaPm9xb4Rq3sq1mTK/QH2YFV4m/MqDjegqEG9K1v/MCKaVuxKhlp8fV5LCE5W0N6cjk/VIhhM1o5kEBLRDIjrF/qVh91PP2ScbzpqOX319RfPLguWXkfrG833HxxEEsgQVrbDvt5hDdZKajhcNthX3mOTEiea4g6m9WFZpIKmCVFrRog8eFQpUMKhkODxXDOfgtobZ68TiVaA7l755dQvlreHwaaL9xOMbQ/1e0kUdlNwQA2rQpJln+nzAzwvKG035zjKtIqGOmPaRsouSmxYKaSdWt4JKT43wHFSAWMG40qcH3HaSTm9/pHn4WU35UNO8C8y/7rBv7kmDI14uxFVHSVo9rsSAArKIKIJpNbFKJCMaczXJAzOcl5QvC+q7gOnEQj2ZrAT0OfXXKvfOs2lKkVusLnMqxpSNUiTg9ReyaPxSaLTOBZRKpKQYmwLVScvy/c2Su80MYyNaR7RODL3Dv6/RoyKWkXEWUCYLizqDezCnNP5oMKInyX70JJwGQb/zFKDqkbfgDgGTBV6+zN4OLgeSfO72ICBydy6U4CNhrHmjqG9jzngEr0hGNpJQy+4fC0QLstFUtzKZCKRrMK4/8KAwgi35eSIVCcqAthHzTcXsK0W5FUPS/kJwqVjIDp9sQg06S9dlbF4yYiX+Ia9FdCLS2tx9phn/pZa/85Ofc93P+Uf/6AtWPzdUt1GGndwP37v8Po4gcGS9GeGaqymI+UUeLBFrK+0rLamuPXjMps9koQitcKUh12HtiDmMmHWNyu4Ru8+h/czTvVDMf2No3kZUkhvXXAfKjeLw0jIuE8M52H0Gj97KAzCeQcBCn4hNoH8i9aDbaEKZiGU61aOxSJhO4zaZuGSVLB4ngUDQaDGcNEcrs9y3Nh2MTxP9VWL3hWLz4znzVw22k2h/1Cq4rQBF0UmWAkARMRc9q6ZHK+gnyzhaps4xnVt2CfSgKW+t7G5TLlly6nx0HDqqIUUglcdap0yUUbIb9ufHBzdR3BrsV5ajN2PSUJTppJ5M90LdPbqOhSr3skcFSoBWey1tPXsQxmKyinEhD7z+gK1pswMUSCAEmOaW7kre33V5ruFeWJZJS70fSnWi9ZKJZeNKvP9kbp8AheVW+CfD+hFX8k329M/iM7eV8zyKsMSqLafplhMAGGYi+IlVRM/FGsx+VdG8lnOZGgkA3ctAagJqbzCdxj5oTP+YFQAUW+EtjGv5v9sJw9HXsPtCcfWvvOVfvfqK/+DNj3n4kwtWXynKjfgZVtcd5mb7vcvvowgCsbKE8znm3QNkFxm0TJwFTvPkk9UYreielJiVo3pvxczi6GbbT8RGRCrmbo/76oDZzbHtDNc69p9YDp8Edj/zDGfHHT+d2lSLLyPjUnrAsZBSwR5EHWh7RfdEHgg9GmFpLVIe/SQpWqiyvFeBv5zwc028FuON8p48215qaZWzM+XBBLmZw1pS3fpaMUwKP4u0LyLdM+TzG1n4uhfg8kiAUl640mZjiLeOjc1b0TELdpDKiKo9oTQMMQuxDnm3bAQjkdJHdBRyckdKtTp5Lh6HgqgI1Y2ivknM3ozYw4SfuTztV2eatzq9zjSXlHi8FEKNBuJDQXGrKe8UxVZaW+LqBFOtKe+lBi92WS2IXAdfa4aliLe6c31K0fUE9U2izoNCYyEdJNcmioN8bVyqrEiVRWs6AQDdXrKcIzHnOG0olNK7FyBYsCMRnMkiFUm6vH+0km2Izbjs6HEe0JUn7h2Ln1vKe/m6rxTt80T4VGiJ7nVJcbQOywanw5WIy8zOMC6TaCFGJUGol2d085/x/Jf/5p+xtAP/pz/7mxR/0rB6L6P43C4HgNsd4WIBv/7u9fdRBAGA/mlDFcFcP4jV2LxBWU2ohAJr2kmsx3pPMwW2P2oY1nPq96VYccVIMhI0Ym2Jz1a46z1621L6iA4z3MFR3Rj2nyjGdWT3I/EeqN9CdU+mIj9Kk1OOvL4RN5nZK0X7VCydiHkny4cZH9uGDAofFJyNjHPPcLC4B0N1rR8XmJOsJeUFJoQgeahsKxiG6TV+Jh4GscqW0nUgnUX8JACYMglbTVgrVljDvkQ/WMo7aZcmQ64lNST7OKzCCSfCtkdAVJ10EjLe+rGm1l6a0Se67EGGW2ifsLsJ+9Bmj4CGpJywJfPrgSyS/jIxXnlUFQitRe8MzXt9AraEriuiHbmeWR3a5ck8ec5jLAxhJTP2jkh6slLf2/axLXjkAhyzAz2KDdjUqIzYP0p+k5LX+nCQzbFNaXrZdY88kdk7ce8ZF0ZGfq1UNveUqdcgYGmsBDAlgv2yYv6VjMULhYwrb58l0qcdcVtQf21FgjzKs7b7UcS9PKDaAnaW2OTXOXapDjIbwf9+y3/tx7/gq8MZ/8+fP2f2a0vzVliC7hBPMxu2f+sZd39g4P/93WvvowgCeoy4g8evS9BrzO0OdehQSmEQkklonASCFDHbnsWXiu2Pax5+VuCeFzTvJ2wrIJfuPLEwDJ+sMJ3H3h5wNy16KKmuFfVtye5TS/ssMS6j7FpvhaOt8q4cT/pudRreaQ/QvFWMnToZe9g2I8w5KBy9Cmqv8G8raXstAtPVhJ+ZUx0pqbc6eQJEJ8YiaNFQFBtpa9bvhSo9LR5bPFJ+SH0amojXCWtHnqz2rJ9e881mxf2bJWrSkj2MmupaM3v9CHqGo0dCBrNUemRdSmv12MmQDoSeUmb+ZUahUUSjmFYFqdCnoSB+Zti/MAzn0iJUU0bWB8X85w7buROD8MhtUF7anKdDPWYbNnFSEqbCMq4L+jPFtJAFZztQWZ+RtGLI1vGxyIt4zDV0EnEPCvQHlnXye7mlWShMJx2W6MA9QPnwiKrbQcw+prmhP8ut0bXcA93rkygrFkmMXHaW4kGyHJWEIBQq6J5G0sJjXtXMbiWtDyWMa0X3o5H5Wcv+oUa1llRFARPvpVxCwfYnkc//8A1X9Z7/x69+iv15w/o9NNcx62Pkz3BR8fBjx/ZnkaQ/8u5AMtLvV1H08VwsBP0fRrBCH/Yz2VbsvSDL5jDSvLWM84L+UhEqR7mxFBsvmEE3YXrPtCpJV3MRqbRSVjSDR4UZSVmmudzIw6dRXIjeJYodjMjiVAHKu8wYs+JTX2yh2Ig7rbi9SjA4KhiPRg9mhPgb6M8swxn4hfgTqHAU8cjEWJ93lFhCNAlfS61uW3GZWbwKp9YcyDkJOChjtYe1ZVqWvJ7N+fosm1QGhe40yaWTBFhF8oBOKV9MLwo4GV4K5SZQPAzSgp08cVkzrkvQSrwPlSJURv5kI1VRXhpUEEn1OJMAYwYJimY8gnCcdBRoacHqUTod5SZghsQ0yyKn7CJcXQ/Y/UioHdN5TX/u2PzYMJxLu9fuEcWfzci6eaTOimoUUNIKjIW8v0qczGsFlxEMRALGMThkKvkgHIKk5fW8gn4lMypko8glVKeJRXYqjgp9MBQP+nQu00xYiOM6EmtZ1PbG4TaPas7ooH8aMGVgfz2DqHCXHVU5sXtoMp05EX/S89nTe7Z9yZd/+owmd7SqTTxlL6GQUemHl4r+iUdNmtk3HzlP4PhwmT48jpCaVahhkj9GzDrGVUEyWrj2WVcwW1j2LwzjMjO9ksHPDKZzFNvpUZjUFOj9SMoS5fqduPkenhkhBs0y0OUQo5F7MReJhZCZ6ruYxSca20Zm7yLzN4b9M4OfI2lnBrRCBZOX9LXYy7DJ6VpzeG6YZnnX7SVNLTYet5uIheHwvKB9InPrkpEgtP9E4Q6G4kEYZ75WUAgPob4NVDc9yWi6bAs2rAva54k0k21bj4Il+JlIVatb2f3DcbptLkcENdeEsqKorExgPgwU2TkoWo1fWKZFnhWQKdrDwgiGkgeJai8DNo9GJscuQyiFMyHg2mM70wziLRAqfZoBCKATTAtH96ykvdSESuru4UK6HmK2wQmpV+lx4SajTiVGKBVhJmDk6ecO6kQLTyaDtSFl30k5x1CJXiPmVqI9yMCWccWJHxGrRKwD1XlPXY5sd424Cz2ok/Owr+ScwyyCizBpineO4j4H9KNsuckdho1DLyY+fXpP40Z+8e6S1MnQkWI1ULrAV3/2lMWvDOc7Sf21z+Knef6zgHEVSUXEbg3VjRjkfN/xVwYBpdS/Bfx3gPcppb+Zv3YO/NvAF8BvgL+bUrpXMpPsfwr8t4EW+B+mlP4/f+V7HCWvTgNieMkUTzx3NQSMlnRzOHeE2lDciod786bDDCXbzyVC66ApHyJxYfCNprqdUCkxrkvBBtqROCtJRlG/OlDdmNMIrWGlTpOIdADzgYmIPirJ8sioYi+U5fUhMM0Nw0p2MTVIei2WX4phaXLqK6YRoZRuw3FajPYmLwRP814RbUGftQW2FTuycQGsH63VpoW4GA1nlrNU0vzinvmmZ7psKPYO22v2n2j8TEg8SYFfRA6NytlOFlGpR0KLHfL4bKvYvyzQTwuqe5nwM801Uy0YhDtIMCQj7zokUi6DikPEHqRlFwtpzUX3qNirHoTVFmotu3chLdNQyqCZo1Y+OMV0qRlXRh5mm7B7AS2LrXjzj+tIMoni3mB6CaogTDuh0uZ2miMLtYSleGQKTpnfAEdCT677O8mWopMNwO6PBKFcYpTg57KozXLkfNFidOL63YryG/cYAAKnUi8ZUKPGPhjcNhvY5EwolIrpXHCfVERmly0/vbgB4B9//YJ0W0IV0I1nvKtwX1ou30rwPJZT/VrRX0o7O7p44hOU1wa3k585tnm/6/iPkgn8L4H/GfC//uBrfwz8+ymlv6+U+uP8/38T+G8BP8t//jbwP89//6WHCpkxaGSmnF+U4rrTTZn2m2CYBMBSojqLT5qTY07xMHLWR3afFgzn0lZ0+4RJMubJ7QKkRPe8obwx2LsDcV7iVyXurmX+J1sZalE5/KJgXFkZpHFsM1n9gTNuRr5rg16bE/XU9qIrjxlBV3mmoewueSpsTrslkGTEvdLsn1d5Fz2WCLKLujZhxsDU6NPAE5VEuBQddE8T09wxe3LF4pWUSdqLzXqxk0Xma3n/cSlc9e6Lke4TBVGwDDWKsUV5ryh2svOF+shOEzOScS2sOeVh/kqfAoGeElUbT/V1sZmw9x0YhV9WjGuXB6w8ejrE4iivFn+FI3Hn+Pmjkwe6e5IISw8uoXYWtxfyVcyEHRVlsZ1eNyP1oZaSyzf/P+r+LNbWNM3zg37v8I1r3NMZ48SQWZWZ3VVd3S662wNGMoO4QEgNNxZIiMmiubDFja/gxki+4QKwLCGBGglBX9DGEhJYxhJisGmg7XZX211dWVU5RGRMJ+Kcs8c1fuM7cPG839qR1RldpqqxgiWl4uQ+++y19lrf97zP83/+Q+q4ehm5pvdGjxLZNZyl8cAj3Umf7OiaieshY5PtIl2iDQtZSEhCdjmwXDTsDxXxy5rVa5n9o4oJXE0rxpgITlPyVc4p7i5kSj7DK4cqPPNFx1nd8vPbS/pfLLE9jGshDWW/KClvVaK/c5KpdxeK43uBUHnZEgVxbLbJLWsabWZv/xR+AjHGv6mU+vCPfPmvAP9M+vP/Bvh3kCLwV4C/HmOMwL+nlFpPMeV/3POoFJ5pBoeKMJwVqFlGtu1RKWYqKgQpBkmwzUVu6wuN7Tzrj1uOLwray0QAaRVRp1M8IffH90rK2oqgx0f6JzPyIkNvG+yhw2wt2aYgZka8+UdHmBf4Osdbkyy/EphkJK1IRSHVTEYnRDA8dgR6iKhcTE/5xr93NWnlJZsBwiPlOGtiygiAfB/wmaG7UIkBKNuD7CDP2z5V9Of5yVY8a5KU9CAbhWGuxST1aGifK/IPDmTW0w+Wsbd0K0P3ITBozEFCLnQvRhpRTesuOYnHWkRXJtlv6zGIJ+JMn3IRdQphDSmZFzhRcH0uhJ6pXT65+qT23M2EMw+gWwMtmGbyfYgUB7mpZQ2nTnoEAR85YTMSKhpPoJsvZTUYMtm9K5L4ywpmYqL8O5+nkQDQOnI8l+Aak+S6vg4Uly2zqufhbkH+RU51nazBZjIKTkxNV0V8KduFfJ/4/nUkO8h4dHwRcRcOXTr5nAbLl7eXlK8zrIbhXEbj8toKeW2MjGn0NL24QR0/9MQsiKI0ied0z+nP2T6y/NKRbyaTjX/w8SfFBJ5+48Z+iyQUA7wEvvzG971OX/uHF4G0/pnionUzUAyO4aKmvyjJ9gbTPP4SEzNMDyFVRc04s6iQqKOtYVjq0zw6zoRWGzJZQe1f5egxEwKPBzc3mPOC7ODEJGP0oCOhztC9ZN6bVhxz9NzICRrSGDPAFPDpc5Bqk7IQCk4W5KaT1lAucGG+TZTh8j6e/P5OludKTuUwk4vTjFE8DpaTJ0IkP0KRaK+SdpRuusip6PlMJbxEUd5FTK85MKddJRDrYCQzdOkozlvGuWUYDIxyquheRFL5g6J+Kzz97OBSgpGsY0E6FFcpfJGfTvRp3WeTR/8wvbggv6MrhV7rKgj2G6Bpqx6NXrysMfOd7PKnFt/N9Enzb4+crOVEK8ApAq5ba8bFYzGa6MKmU48dzB7KO5EzT0VAOPpSJCZUvn/iyM46gtc8fHomTj5HubmPL+V3mNypQhmJOorOQ8HhfdkiZFtRFvbnQqlGRcJgUDYwHAvsg5VchCJgHxJF/bR1eMRduksBEolgH+xJUqyCAMZ6hNmbSHnvUR6a58W33n5/amAwxhiVUt+OOnzLQyn1V4G/ClDmKwECB/Grm2Sv+X2Lr0XgAnLhYMTxVtx0layPhkCwRk6eUuimWZO+R0/rIxLhRIgiw+LRoNQ2oGf6FLxp+kjxIFz6cSbmm1GJvn/+iz2+zhjW4qyjvFh12VZ8Dsb54wUnqTFpbegixb3MpuMs8QESMYQgEtx4RKp8imp31SND0PRQpnZViCmKOCNl28kcrHtAy2kaNZhR6LJTaxqNnFiz15q2z3BLScbVncI0Ga6wxCzK2z3dkL0i3yjOfiZRWrpJ6Ua5JeYGn1SQ+VYs4XxpcTNJDS7vAvluPAWqFrMMVwu9t70wtE9hXAXhQEShPJtmkoAL98J0Qs6ZMicm4w9SYdUjJ86AdpxIP8FIofD5I7tPMBD1yLy00lVUN4HyXgxuj8/zU+KUdG1CH3Zrjyo97kZsvKqddHLdhbACo5UtUVCAnzZAop/orySTIL811G/luV0diZVHWSEBxc5AUMRXHfFgmX8iysLuQq4j6ZpSpkXys9CDEL70KBFmGBHDFXdQ34qPgqunw+nbH3/SIvBuavOVUs+B6/T1r4BX3/i+99LX/oFHjPGvAX8NYFW/iFEpyK1wS2Pys7ca3Tow0imodoTCnExITSfuNTrKjexLQ4ip7UsZ8TJnT27DQtjQo2IMaS4vZH+WJ8KMKMk0/bqk2Ijjbcg0oVC4IqO61RRvD9ibPWFeCbcBsI1HjwawuEqKTxwfL7YYZQdd3UTsMYVIzOVCMrX42dnEbJPuIdIvH00tpzgz7YSUEjXJ/EKdOoqJ7KOTc3JIZCHTyykLcjFle+k8VNToUSTSMkpIH61Cot+mYosSEBSlcGc1biZJxS6JsLImYDqIRqd1WsTuHGYn0u+YUo6jUfQrQ/NMc/ggwEVH9Bo6gxp0MkMFdJQZeiufq4qC4Ef7yPabgle+KQGPNq0LUweiB06Ep4n+G3KEeNNIlNhJUbiytOeK4yvhbEzofXcVCCsnRh5f5xQb4YQMa9k4xIlVmQdUFIxlAiHF509eW3FtqN4JVtG8DMSzAUYNOyuksLnHrgfim5Lzn8l1s/sejGcO1WtZlyBr16g4mePoXiWyVLKeeydGLj5XdCuD9pHywZ+i6X7V409aBP4N4L8B/I/Sf/+P3/j6v6CU+tcQQHD7HwUPYBwxt1sJnsyzJFwP39Cza6LWKC9tuZtnjHPxE8h2Dn0cMCFgM4OfZWhnJdU4nQ6TWmxK0TFDJGsD2plEnEkLZOR7sjbgSs3ufYvtTDKgFCR38/2c7PkZ89cDdt9jd/3J2FOPAhBGk+bmTlh505wYlSIOcppnTWSYC07g6gkwEmVYdpQAEz3IdiBqdTLFmADCaJIVesI7srQ56M4FhPRlKkRaeOrZPp5uWGG/afo0a5ebQL4LFA8D9t1W7MKdIyayv6pL3NO1xHpfWIb0O2kH86899ugJuXgICt8j0q8z3LPiFMoaNYwLAbHikxaTecZdQXZrKTbqxJWfotUm0C/kgvh3l2L7jQ6Yo2Acphc0PztwMpWdujCdEqt8AX4xAaRSgCUfIBFqllpIOlcC0BGgep2RHcXKCw16Z8WNqkkjWsXpJneLAAbUqE/r2JBFjE/U5FnAtPKiDu9H3MWIrR1un5HdW+xR0V0FVO0xH1fMXsvmh7+wY5Y5NjfzE/tbDUnZqkFNgrXEMM23AgjbY6A/kwJdbgPFw4g5juj+T6EiVEr9DQQEvFRKvQb+pXTz/+tKqX8O+Bz4Z9O3/1vIevBjZEX43/pjC0B6xP0ehgG1mEHKvAfE3AJOunblAtl2IGQFrtKELCO3iuyhQ3UO2zlMZtBDKcGfS5lNp9l8yv7LmphQbkV3rhnmiupekH6fKfKdJ2roknOwTrkGwSraC8WwKMj3uSTAngJExFbcFdKFlFvJSjw+Mye3mmAVYy0AXn3jCRt5flcKEg0C5OlUwFAy1090ZpsYbRODL2sfO4eJ/NNeaLoLRZxN0Wjps4yTTVogV+AqjZspmZsrhYoZ9lq8BJXWEiDSdcRjg3nI0Ms8rU8j+Y10VeXtINyIFCASc+H2d2tZt7bPxIaLgNhw1Sl3703J/FaR7aTVn+TWE4sPBCiU3XfEl0Jj1J3G9AKgFhvhYUydkB7j6fMda2H0uZrTHF0nb/+oZUMQjaD+3UXEXw7QGmafW8rbiK+U4AaJxWnax47LNklUtBLHHtOI0s+fj6KEfMikACwd5AG/iqjcoRUYZyTh+CBAXn8ZwESqnxbYBh5+0/PiBzf4qHj7dg1OC78gQkSDDeB0Ym7K+1DeRepb8Trsk6nO/I3DHkZipvGzDDf/9pngP8p24L/6LX/1n/0V3xuBf/6P+5n/wCPLUGdr4qFB9SOhTOj8UWyoUQrdDUSfSzTVKBpy5Q0hVykjTotcMkg8Vn7XYPoCKGkvZLV32vVniuPzb5gzjrIW6xdQPchFMiyMtLl98syr5TSJmpOme1hAsJbsqMkOYlxpeiGbDDNJ2p2988y/8mlE4NSRuBLaQp8cYk2bdvXDI/FjwgIkBVnYiicEeNowFCnDL7kv2zYwfxNQ3tI+ETR/AjJB4YpIfkzrw/oxcZkIx5cZ2Y+encRNtouUDykBqReqcH4IxEaR7T2283SXQnAalnLDCM2YxOSbTmeZV4kK/aakfBD+e7ERsovP5PcVa3n5jCbJr/Ky88/2j9JiMwghafZVJ3hDcmaKVtM+LTk+Nxxfpry+W8Xys0D9rmesLYf3LN25rM9UAvFMD/nHhdiR33sxEjXyGaNIicScVp1CWvLYvSRbD+uAed5gosLdigmKPx+pVh3fu7xjnbd8sr3g3c2K2BnsxorXQimgY/VO5vb9b3e89+yBd5sF43UFWcQsRmKA0FkpAIA5aoo7GZeq+0h5OxJyTXcu79HiiwE9hoRbJSOa9jtuOR6sZnxxhtlX0PRpLZfjs1p87LwnWoPqxDsgzMvTiSGoP/Qrg6srittBkOKku6+uB1TI6Jf6dJGadLN156LkUoA9iPtPNDo5wSq6cyOJvskeSrzfZXLQHswxnVYzjSu1hHV2QUA+LYWlvTDi/dbG5AAThOeQiZhlaqtNG0904Ee23aP5RTQyWkyoOWqixkYaayiyx87BdIHZtWPCJ9DCXPMVqIXCHeTiPpFzyqRsW0BXe549f+AvXX1BpjyfN+f87O6K/dsFunuknurBopzYd/laiDu602IvNkJMr7F+q2XDME6iINECRJ0MMZqAzhRmFBxnWMg2IynATytZcYUSjKDYebJ92tgAvsihMIy1Zf+e5fCefKaz14rVp47ypqO/KNh8L6N5EWVk2SpIqr/yVsxSzAhDoi67WrwSBHzjZGs/LIX+m+01+Va6lJhHxk2J3RkM4K4Gnj7d8peffE5lRv792w94+9UZ9l6owqaX3y3fqLTxgeP3R2aLni8/v8TsDHEeMIuRMGpir0VEoRBx2K0WXcldoHhwwq04l6Db+l1PVIr2SS7j39FjGgE9v+3xnSgCkykElDAr0Mntxi1yYmYw+w7VDkSjJdSyH4EFviwZ5iLrJQFpw6ykvnHoMTDOLD6NArN3LtGTFWOl0T5S33j6pWH7fUX3xKN7+WAnhpsvFd2l0EzzJDd1tTCzXCUzenUdk8GHors0ZAchKim5B7+h4hO031ihHeepbZ1UbCFDdtt9QKfRRSLAND5TJ2BvXKgTC05AOCl2hxcmceYjZtDCE2jiacRwZVoV5jCsSFuIxDm407hKTFht6Xg+2/Hb88/57fILsovA1y8W/N6vv+LNsMYFKQT344zXxzVvtkuGwTBuSrK9lnCWPp4AyqwRJuIUPRasws1MMlh5PO3DZDQ68fIzyYfM9lOxILX+Qgvuzy1uNhPGXWIzTjLwYiO23uWDePbf/2jO4fsOVfbEzog0V8fEhUh4xVzhvXALQvaY/iMqR04cAl9Esp2mfhtPPhDFjZHDYBHxT3s+fHHHP3n5KX2w/Ju/+A3cHy5ZvUudnJc15GRw0q8Uxw8dpna0ny0oDvL7EyHc56hREVdOLMaP9iT1lrj5wLiUXIpi6ymvO3xpaZ9laS0tmM64yuhXBv7Wr77/vhtFYHBkuwFfGJQS1aCkzYphhJvNyR969K492XXrzZHSBVSo6c7MKchyWChcmVE9TBedlvirUVDT4t5jS8kB8Jli9vVAeW/Yv2don0n1Jypsm4CnTmi6IZdCYFJs9XjuGZ8ExlVGcSsYgM/BXab05FaKRtZGif9uHGNtcTONyqC6HtGjpV/pU1zaOAOiphg9USgQFHcjvtCMSysmGkou2BPZJsEnZpj8BYUOa4+ik9eeE4pf3QrPfGK0+YITt8A2irE39L7kd/17/Oz2Cau6ZVV0rPMWqz27ocJFTa4d+7Hk7ljTHArYZ7I2u46nTD7bSAZCNOq0FhwXcsF2a4mGz5rIMJO16rB8VG4K9iEncLkJJ/MTV8pYNy2k4zK5G81kPao9p6ReX8D9jwztK4dZiumM3+WYo05dhUoU4XQRatAJm+guFa6MJ+OOydqMCNW18PC1h+YJp+Rnt4qYZy2/9eItT6sdf2/zHn/4yQtmP89ZvROsaRqPxHlZ0V9C+/6Iqjzqq5L6rSD9UUdUSIXlyYgpPf5oTwfB5Js4zjUouYbzmyPjec3xZSGxY0fRYzRP7aOD8rc8vhNFAK0wbx/g6Vr46G3yqU9hGK7SjLOafJcLg7BzCeQKFLctps9pr1J0dHK6bc81WSOBFkL11RyeW/JjJN95TBeItaZ5mpE1kdVnjtk7MasYE4FlnIu/3InoM084QqcIrSYsA+55z7i0ZFtDeSNWU66Udnb2LlDe9IlLECgbR9hqxgSw1W86tC84PjX4SsaHcS5rsOz46KBjeo991+Mqgxks3Shce1Rq80sxIqmvA8Ek0Muqk2vOWItC0R5JlGIviU4z0QSMc35JLef3Ge1tQRsXvCkmXbyAcmpMevyDGGCc7UUMVF/32P2QPBK0jFa5SIuPTy3dpejuo0H8AY9ibDIRqIKVWLRJ3JMdpKDkO08o1ElEJO9lYhbO5WSWTu3R03//gaL/fsfFxQE9ZBwfKhjltU9U7klVaboE+BpZIYvpSJRDIHUAEygs/gwqxZJHQiFzdlw4vvfqhg/n93x2OOfHr3+E+bRkda1OnUWwidOQpY7lLML7LbSW8ucl1bVwG4ZV6h5txD0ZMXnAH62oQntF/VYxexdSxxcobjp0M9K+WtI8sfhcurvmwtA+VScrMld9x8eBUFjC2Ry9bcTTvjCYJP0185L+okxBj0I2yXcjdtsnaqpBD4HifpTV4Fwz+fGHxPW3TcB2gX5lGOYKV1jygyCuIDHSetBUd57Z2/FEg20vRf8tbLVH1pbzEJUmdJmsiLKAL2V8qN9Fik2kO1e0Fxo95uT7EVdkJxxjulFCbijuRlyhT8EWUT2ShFQU5N72lvJO1IaidsvQTuMzyFH4HpiQ6z4yjgqfxnd5zTLLCj1XuP/ZwaFHjekNZhRSi/Qe+uQWPLWeejDShSSWpPZy8+SHQLZ3yVykR/WeUGe4OmNYWYkHX0qEm6uktbEHccZByc3vZvIhSCCMOomBpP2XvMZxbqXjCY9j0EkMdJAxwZVi1dU8i+gPD9SZ52E7w7dCwpE9u2QFmF6dXICnriJr4mkky5ON+HR6Ri1FfVxExnMxRokRlI7Mlh3fP79jPxb82z/5IfZtTrF9BB4fiVrgLmRNOV6M2MWI2+bUX1rKu4mrkBSHcxEnKafx2ww1it/g7GvF8gsneocI2U58M9oXFc2lEam5hvZKzHCijqCk8NrmcevyRx/fiSKgIrTvLSivW/Sxx61rsQjbNJjrDdWxontvKW4uhaI7zymUwm57TCsyXCqD6QKFl9RgX6hH+upMk28c9VsB5SQhRyq9TmaNPofmylBuFPnOkW8Gim3G4bmVpNhR5rA4RLGYSlTdYWEYVhpfTXJdLZJirWivoHlmidqeYqwm9Ly8i+R7uSGLrZwow1KAv4kaO+nQg1Xs388pbzPKh3CS7Qo9NjyKrKJ0IW6W5sqjnETZMVF6KylO+cFgDyP5doAtlEbh6ox+YxMZZ1L0PXL8iRNNOp6KmRnE5hwFfp5DFRkXGd25uBOPc+SmelDUb4QsBTJeuVrQ92yvTq32NO5MhiDBKqIysh1KGoBxMRWoeHJOaq50otE69HIkjIbhmAZvDTiFOWiygz6NDROPYNpCRJ0Ca5KhCvqxQIyL9LMXoyQOOU216niyPNA5y+/+4j3yr3Nmm2+Qw/wkaCKF3nhUJRbrajDEZChi+oQnXUTCi5ayFlJPsysx95mEobZC+Z6/ldllnMl4259L1Ht7qUWHME+diU3JSCaie039RlPefMc7AdU7st1I87Km/lphdx1uWRIWpdhiNx3la9BP5gxrKxW2NOgxw2w7tAtYqxnthIgGsoZTAOYw1wSbke9ktWiPinEpdFcx55BWdKwU/UoDVnbQm55V5zk+z08knckk1DZycxUb6Lea/kI894eVkIKkvU9klXmA+Yi2idAzavaNoXxnyfZGYtJHTmy4fC9zrUlkIVEdys8erw359nFVGFGpYKR1Yyd8gWgmenJS241yMfcXkX3UjFVF1sjab1o1ToDjhIQHI/+z7tEaPTsE8T8oZMPhKpNu4AghCgNTkTARTu7EwAlIE8PQx+IyFbtxnrqClPt4fPrImBRz04ivJFJeTRZwKm0nzgfqWY9zBu+lGyQoVG9+icUHnBKBxF/xMfwkmmRNv5GuwOcyRrkqQhYInZG2fObQOvL5Z1cUbzLmR/m5vpgYmvIc7bOIe9GTV6NsDZwh3BeU7wzZgVPSVf/U8eKDO+ps5M12yfG+wt5nJ8/BfCerS5ck1zqNRGOt2X2kab4/MD9v8MeCcBDpYswD2U0mtmZ72U592+M7UQQIgfyTt+jhiu6qpLgFu+sIdU6YpULQDeTXB/RQ4WoLWpx2VZ2hmxFz6CGCW2T4XAshZuMZ55bmiRXyytxSbDXFgyPfJNCqEq6BdsLk84W08eMsp7yT0WP2ZqA/z2jPRNIr9k3qsS09iBuRq4TKK8g89EGqcewU3hp8FlE2kNcDdhkYzg3DaDjeFRS3OuUgCFEl3z6+PSpwsp5un8ppn+/khhf0XfCKYSUrwHwTqa7lBh+TpLZoBQwbVmk0qOWUdTNxSta9qBKLB7Cb8LjS6+UOHhZGbowysfVaR8hyQq4wreg3RJsgnAWRYCt8YhJOJ/sU7zXRfqNJ69YO+WJMTj+ZIpbpexR0l5HxIpFvRo0adDKf8RSLHmsDw2BwtxX5naHoplFIdvEiC0bGJsXJRMYndyAVobhTpwIgUXEwnAnLz1Qe3xuxF7opCPcVi3TzC11Z8CPbygbp8H5APevITKA/FKiDOUm2CSSnoYh/1vMb77/BBc3PvnyKeVNQJYxDjylhqo90a3NSkE55nPd/LvLyz77hVTbwi+sLESLVjtga6l/kzF/HpI+B8u4fvYrwH+1Da8gz7JsH9LCkfT4jqyzmOAptuMohiYvMcUAP/mRAGgopCKr36M6hC/HN94UWT4D9yCxC80Tort1ZYhnuw0l5FoyAj8pP5iHCOAvG4ktNeT9Q3g0Qcxqr6dePTr/TOud0Ux6EHWcGsbDWw6NRSSgCarAMNqMvPaYSDTmLjv1ZhXlXpLY3JgqujCkhkxsnS0aWUYsKTTnF2CjyvTyv6dMKMcl186PH9Prk3+daEZtMxBx5TY8a/HwLy88d+U6irINR5LtR/B76LGkrwmlzQ4yMtRG3pTacfAGmfEQBLuX5fCan6sT7V+GxJc8OEWPAd9OYIa83GhKA+bgFwWmZ8RXE2qMLz9DkDDtL+c6wuBE+BiQMxEu+n04+Dt25pjtPTkN6QtqnNCcBVceF/P24DlTPD1zNWt7dL9EbS3k74SeJCp5MSaubSLGNdGvJvAwzD/uM2BjKB02+l+9zdVolFhHzvOU3X7zjppnx7pNLZp8JLwX4pb3+lLxdbAK2izRXhtu/7PnhD74iRsUv3l0SgiarB/ybmtXHGtMJLT0/ROp3Pdnb/bfeft+NImA044tzudj2HeV1Q39VM84lv88eR4wLkoibYquVj5heQDxfWiitiI6Sjt2VmmGusZ38jGIrXlKulg/aleYUKWVSQs04E4RYD5y890KmGBYZtvWJCCSElv5cEGQ9Cjp/fCn/f9or+3SKmS5S9WBbTftETiY1CFMntIbdwZKvexarlmMW8G9K7FHGAuvSWDv5F2SP40iwMK4i7TMpNMWDPHe+TWPKzp98EYWyLOOOuAPFE8CW7WV1N3HvJXDEiDNQrjC9Ib8fyA8Dp9g38ygIGmfqRMGd1m2Ta/Nk4OlKYe+B/C7ZXjAHnX63YDjJfbNjTDLryLCUziWkmC/2gtRFm+beo8XcZti9dEbK82gmOiYhUyOv5/BE0z6NhDwkxP+XjTdcmaLLTHJ3fjKwXh/JrefN2zOKXxSnbm9Ypc8+5SEUD4FiF+iXknjlqojZm+SEJMV8nEP78pG/v3i258OzBz5/OKP9yZr5tRwsIcWQRTVdS3Lj61EAvsNzw/0/5nn2wR3XhzmHY0qLCqA/nrP4SkJMhrVwWFYfN2Sv78A8Er3+6OM7UQQkAEP86+wyJ3/oKG4a+suK7iLDzA1FYbDbXrT+/UgsK1wpABcRYjIYObnFIDdwO1Mn8oxNJJxxJhdvyORi6c6EUiwBmdMqUG7w+jagYmScmzRfS8V3c0V/FpJZh7j0DKuAm6nT+kxUfQnxboWUM7kPq8qhbSQ4xbDPGZpkyGGEAORLOaVJ4JdOBWFYyw2lRnVaW/mZZ3Ry0RGn98BQbMQZqV/q04003fyTbdmUmCRpubCpDCqYk7dedqHJ99I5QdqOlCnQI083nAdvObknQQLXSAXVp3jtKO9LdnhkMDa1OhW34kHeWzPlBlgFpEKWT1Zl4HPxclRBDEeyY/IYWMs4ZVopClFJzHx/Ae58kGDOg3RDE0Do82QAmlyAQh7Qi5G8cGzu55jrnHIn+/vmqXQP2f7R42D21qGHwLC2HJ9ruifyPtmjAHquThTjyw4TNDHA86stL+Zbfn53xeGzFQbJGVAxFU8TKe40+S6erM3GmaY70+x+4Fk833Psc7zXlNXA/qGm+qQgO4jYSgWYfR04+/EW9fZOgm2TJP5XPb4TRYDJ+tko2quMUGjyzUi2G9EuMqwszdOCrLayJhv8CTwclznaBdQYUEqhQ8SMAdtoxqWhT6dcMMLYsp1QgIeFtItR/bI1WL6N5Dsx5WyfRbonmsVnkuYi+38pDuWt3ODDOhBy4XIXTjOuYvqaErtyI+DPFKFV3Ct8mxx7Z4FYpJVBUprF5DYshUB2x9HIBZJt5XnGOQwXXpBvmV5ScKoUgP4qELNIfmspHqSr6M/TSewTZ16LV/7JADMo1KhR/UQplk4o2nj6e9kghlPWgXcG+5mQXHRPUkQmFeV0o40kxePjKHOyAo+cdv1mJxfvWKnEkBQjU9sKFjIZavANkBE9hYyI+QcB1Dit5sCvJP3XVwKSVdcqFfmU91cHYhlQhUfpSAwKekO8L4iHktwJeax9Kc4/J9POfaS6DdRvB0Km2X6Us/t1GM9HVK+xe9ECDGceViOzRccwWMpi4L31hnnW8/vvntE8VKizAaeArVixoyG/l/Eh5El8lkuB7a4C9rKjsJ550TN6w1evz8nfyAEyziQjcvWpY/bJBrVvIM+JRS4anG95fDeKQJQLzvQBnxvaC4urtIhUGk/xMNKdZ6KQKgX0y/YOu++JmcHNM2JuhEgSI2oIZONI9hDJ1wX9WSYXVzG1wxJLrkc5CZSH8j6Io8xc0PnZGwGUDh9ENj+C+WeachNPhh56jBQPKQZsJjHj+YM48LhaJJ++mMAiORFc/dgO51uIyhCyVKSKhEjXgfHpCKPG7GVGjEYKgptLcaiuFaazQrLJk+AmIik1KhILUeu52ci4ztGtxs891VVDVQw0XUG3LTBbi+41QUcwkVh4otKi1Os0IRPjC1M7ynJkUXXM8wFN5DDm3G7nDOeekBmR0Fbxsah5dVpTqV5TPGgpPlbeb9sgW4VBVoW+gMN7oL34G+R7+TufS+cW0r8LtVi3RyN6Bz8D3TxqFnwladOK1OUERbaT5OjuIjKce+qnR0od8V6jdUTrQHMs0V8V5NvEYZhHhqcOPRvhmJHfGfKtFIB8F6mvB9zMcvMXMo4fOMgCem/RvWI886jKCwBsA95rZlXPjy6uObiC3/v6BW40LC+PhKg4XM+SWClidxrbyPshLs2PJiJh6fjek3ue11t+vrni7ddnmK2V97QRJ6HVxy3ZzUHuq+zRn2O8nH/r7fcdKQKge3+az8W7T5/IPJPpp3biTOtzg6s0dm4pbzuy+xY/ywm5IWQW03t8laF8EBbbGDCrjHFmTq5CJoFSk5gjmke23zhLjjbbiP6For2SCDKUtICuJikQI+WNovc6hUkKK0+IRal1LeWCzw6kkBEeUd6BU7KNH2XFGLUizCPlqiGcK/pNidna09qsexIYVyJfLR5EUzCdrr5Mdtv3lvhgBfyykVAF1KDpjjnOaVxvwWmhvNoIeTiFgZIF1DqgTaDMHTEqmkPB8XpGUxds6wFjgmQcdhY1d+iLjuWsI7eOXVvSdxkhaIJXMGr0MXU5mhPhZ8IgQiZAWcxEb6EP6fc8V2k+Fn8C2wiOIMEr6VRToFu5afQgBSBY+bq3kVhEog34LGJKx2rRsCgGOmdphgxjAkpF9m8XlF9bUXBW0mXFPHU/NwXFQVp74OSbuHu/5PCehNCYo0YPUszdhegApmBW7zWrWcuz2Z67bsYn7y4BuDrfs28Lmtsa1SWTnCZ5QTaCJY0LhZunbIuXHR8+uWeRdfztLz5kvK2kcCskpv2zwPzLDnMcCPMC3TlpnBYlmx/OObyn4W/+6tvvu1EEFGCUJAhFQBl8ssPylUb30g6KhDeexof+zDDOa4oHR3YY0b1nXGaMi1yKiRUAMWucsKsyYYH4DEmpDWLKoTtO6bsSCpJMKKqEC7yNyWE4WZollZ8ULVGh9ecx2T/JaTH5+csMm35ND8Yn1Dvt5CezTSCJaRT6NqPtDMtne55/dM22LXl4syS7t7JXv3CM52A3lmybZMJpnz4Za4iDkMzRfpYkqO8KfJ7LBZ4H8vOei6XsufZdIaeh8Xxw9cCH83uOLufjzSXHTYUaFBFLl9h30WkYtGAhneGus8SgUIniipJQVtMl1Zx6RNJdnXj0NqUQJXm26cUmqz+LsBrJ64HoNcM+x22thKZEMAdBFXX/SDMWXEH+PC4CYS0hLFpHimLEmkA/Zjw8zImNFVQyKOzGMNvIyNQ8D8SZA6cx0/MlV+NoYZhFTCGFd9raPLo8ReJCTEn80WJmDmMC5/OGF/MtX+7XvHu3RpnAatWwOVT0d8m6Lg/k9+aUyUiA5rmie+qJlWd+0fBiuePNfsHnP30mn8XCoxrD/EvN/LWnvHOETBPnOaZz+EVB86Li4QcmjaPfcZ6AGj3KiVe9aZwMi0srARJJX64HIaKERG7JG9G5u7lhWFtCrsmOkj4U8px+Jeh/LBQhz5KmWth2KqpHQ8gEPj2u+xTFPmBG2QJMqLVtZWfrqpQWZB+ZZ9lR/m4ysZjSfbRTpxtzWlGdvOjlaWVcaBLrLleJZafQbzXtZs1XH+RcrA88ffXAdbWEXYbqtGgrypB8DtUJiAtFIM49qIg6WPGePxjxoEPWitEqyAJZ5glR4YNmHC1+0ASteLNdijioy+m3JfpoHr0aOyHfaK9SQKcCDKHIcFV8XA+iTtsC0QakgpdFwiKFdLYW3ZhkkRUZF4FYe/LFwKzqMTrSjRY3yibFNhqTdvMmUZu/uY4MUTYm4WIkr0bG3hJ6Q7PJsQcjXAidzEusdBemE3fj4UwwFtUasp0UrwlknjqM7CDqRNuCv1CJJRokdhygE8lvvupZzVuezffk2vHZ9pybr9aoPFDNBo5twbDPIXU0xeuM8kbGkPZSjFjUeYe1gVndC4fgF88xGysp7UuHvbPMv1DUSRQ2OW5jFN1Vxf59y+774IsgOoj2O04bxnmyz67xz84Y16UQNx5GXGlO2XeTiyoIU6pfa8q7SPV1SzQaX1lx3ImRfDMSdXbKswN5k0BO/mGuGWecWFRjrk+KPPH+M1S3QcaBUbwI2ycia53YfYdX4OaiNCMqZm8D5UPg8NyI6tBO7WNixrUTS21yyomptZS4sewQKQ+B7ChzoG2gvIdDO+PdkxJmDmUCcS5kkPxebh5fpwuxSO0roEyQzcNqZBwU+YMUjXEVEj8ggtcMg+Wut7jeElsR10cNx9uaphfBjbIR/aTj+cWWyo4cxpx2yDCpKBy7HDcatAnkJtA1OaG1qEGLD36a6aKCmAXMeqDMPENnUa3M6tM4gwYGzfBQMjyUkvGYDFxMq04houpx05ZGhLQdqCPuMhWAzqLuc/K9GKXGxLr0dVpXRun8fBEkTgwx65iMO2VUicQEqhcb8fzXA/TnisOHXm7+mAqrjmTnHS8vtuTas8g7tIr85PYJhy+XYCLF2UDb5ESvMLUj3BXMvjDYI/Rn0L5yZOuOwkSUiljr2e0quCuwJ5ejSPHOsvyFmIUEK9fVxO04vsg5vKdpn8jYpHsxb43fMOv6o4/vRhGwhtj3mNudZAFcVqCUAIWFFhv5EMEnvXwvph/9WjwIiruO4t2BkFv8TGTIxWYk2JR0U+pTJsBk1jmlw2YT5bPk5Px7fBnpzzTlbaIUd4ASgceUUFxdQz/KKRKvIipoZm89s7eeJhpJGZqkvmlvDWLySVD0F6kzqARj6J7ICrHYSFcxhXFU1wi/YS5FLGQy57tZRCfrq1gGynVHlskMH4Ki7zPiIBuIbkLSSwH5jJEuoMpHrPF0Q0Y/kxM3yx1lPuK8YXQyq14ujjyb7Qip3Xg+2/Gs3HORH8iUx0dNE3L2ruST3SWvNyuabYXaCcVbeQFKYy4VuXuQ7sK26pQTIGah6jHZt0yzsJX3S4WEqRgZCaa/94VsIzCROHNoGxivxRE42yfuwCzx9xceTJRRICqZWpw63cimU6i0EXC1bGRswgOCkVO6vwrE9UD0CnqNioqYBc6e73h/tWE/FhzHHBc1r+/W+C9rlAVWI92+kJo4auxnlvkX8lq23wf7/QNnxcDhWOI9GAP7d3PJXkjkM9uoE615ik+rbzz5ZqA/yzk+k2yKYS0/d9pIhSKeYs5+5e33j+Yu/tM9Ym6JL65QuwZ17MiVYriQjsB2XsgrGY/WU4nmKfOlxtU1+TYnv+sw7YivMoLVSawjNljDIsPXQpgRy6VJpDLx2wXIKx7kz+3TyLGUFpAo3188COW2u0jqta0g/76USh4yQ3knpp6uTCGZVhKEpzywKYy0/voxQyAaaZkPH6RQ1OtIsUsf2vQfHU8X6pQW7OsgLWyn6Q452Znjg7MHrsoDD33NLx7OOWwrmHz2TKSqBi5mDZnxNGNGiIrzWYNVgZvjDICP1vc8K/fsXMFnuwv2XcHbh5eMTQ5eUa47eAbPii0r06JVIERNVjie5jt+L3/BT9RTjmONchpccgfaWNRtRpE2AjGtNn0BoRRDzpDFb2AEoA8CEPsiMs6liPg6kJ31mOS3F6JCAa432M/Lk5cgpATmMnU/CnTtKMoRNxpcW6J7xSRQske5gdy5A6/E4ceIv786G6hmA+tspOkKGVEKERMt1w1P5gfeHhc87GuUivSHguxdho7gTURf5yeexPwLCWFtnho2vzXywYc37LqCh7s5DFLs/dGgsojuZBtU3ok5rhmCmOcslPhDjIHD+yXHZzq5KU+GrJw8Et0sSP7Btzy+G0VAwXhek00hJBryTY+fifzWDGKQ4EqTorMjPhNjivwgq8VxaQl5TXHfy3Ygpee6mUmuNl7IPk4x1LK6yvdyoche+vH1FBsRFHUXcpGqoBgKTvzzyW/eDI+7cJDTrL0SdNembDzlFD7K7l9Shh6ZetlRzDCm6Gx/FWnfE5zDf6Up78NJ/CN59x7Va1knJRARjzjkPOS073L+4FnNkydbfm19y48ur/kiP+PQFXiv8U7T95Y7agC6Nsc7zWzRcTFrWFUdxyHnrpthdWBmBp7NdhS2ph8tPvcY63m23vGi2jI3HbXuGaOhiTnvxiXv+iV33YxhMCin0W1yRUrFbALxfBWI65HZqsXqIN3IMSe2hmxjRF3o0wYlycLDUTIAQqUY24wxICCkiTBqyjeW+l08Abf9WijHrhaC1vmLLR+t7+l8xic3l4xWQkX1IN1H+9yjL3tMVPh9hrscqZYdV/OGp/WeEDXboeS8bumd5e5Q45yhLga2fcnmUBG8xg8GdTAnwNe0ye5+Kyw+Ijz80BD//J4PVnte364JdwVmUBDUKcHZ7DWzryLFTmLfoiKNm8nyzEf272e0lzLuuFkUabuTDisq6QKynThmfdvjO1EEVARXGVQsMYcBX+cJhfcopZK3viDuw1wnrzpp6dtzRbHTVLdO/n6Vkz/05NuBQRf4QjMsEt1Ui/Y8a6BfyagwWXD7iYyS3qtsH09ut1MYpavS6TSQYrAiqiBp1DlJW8cFJy46LYQmCXfWQuKJWcQtwW1l9zyFg9qjYsxhfDqwXRv6N5Z8IzeC7iRIROytgaAIVUh0XI0ZFMVG4ZuCd80526uKRS2VyOhACAptAmNvORzyb5B/Is4ZMuP5cH5P6zPu+5qHrsblmiflgVXWoYkcx5wPl/f8+uyaOlkY37oF18OCL9sz3h6XbNuStstwg03cAYhG/PLKasDowFndsiw6rPI89DVvN0vcaIiDJr8V5mPIZfa3zSPN2ZfyXud7QzCGaBN70EB5pyju42ls6M4V/WXALzzLJwd++9lrvl/f8Hl7wd9+c0W3KaEUINI1BvJAte4wJhCjolgeebncsc4bMhWw2hOi5qo88KZd8tXDimGwLGYdpXW0Y4a1YcrJwS0gaJuKn6a6FuS/faI4/GDg5Xv3PBwrvvjZU7KNFg/RqE4r4+wgVme2k5V5v9RiHLsQdaZpYf+eSWKwx3AUdZ9RPOjHAnCvT1jWtz2+E0WAIC4p48xCAN07xnWRnHQCuhcPftOFxOUXmm9+jHRniuZKlBzVzSjUz8pimmS5rCSRI1pwVgDBYhuYvXWMM2mRskPAWvC5lk4EAY3UIeEHmTopxYAkOX3MHzTJ1ltsuxKanKWTfkwsvdM6UFZAepBM++4CsqPwy6ORXXFwilgGhnVAecm5zzcaNz4ab+gBQm7o10IYmrz99Qj5nWEYZtyU1WkVRkBOTBAAbjLaiDB0ljfbJduuxOjAquhkfz6U3LZzXND0ztKNlj8YnvLp7pyzsiVExa4v2aVOIwT9iDeUI/XVwDLvmWU9z6o9C9sRouJ+mLEdS94elzwcK7zTxKjAJenuIkCA8kasxIaVvNehkLZ+2oSoKFuCfCt79f5cHHuGS49dDqwWDd8/u+PXZjd4NP/Gl3+Om9drcfvNpRhPhRAN42BZrg+8mG+5Kg8YFTm4HK0iRkW2Y8EnD5dsdjWuNxSzgVkxYHUgN54iG+lihtIKkyt01eK6jPxtgelg/xHYX9vxanHk69s15tOS6jj9MjBlDOqRR++FRHFvXkTc2Sj5Bi5FqynonjnKq1aaodcz6reirgyZvDeTGnTSsvyqx3ejCACmFWdOXxmxFN/0DOcl49ygaoM9+iQIEZlqdyY3sCQPwfZ7mn6VM3/jJZo8e9wGhAx0H8m8iDzaCyMBH2PE5+LxZ7uQbKtlHal8xNUG5xQ6BzNGXDElA8sNZ1PM+CnwwoPLYDwLDKVneLBU13IT21ZEMtOHbZPmIKY8gukxzcToSFg4xjFDjzJLTtbhkx5eJVyiX4sDElGYdvlOEa9F1DORkyanZV9KyygIuawKlYaht4SgWM1antc7Frbjul/wer8+FYDmUBDvCzYq8mYpe/joFaE3kqYTgSxSnze8XG15NXtgaTtqM9CFjK/aNbfdjG1f4rxhdywZOyucg6AE8DwfUY2heBA3o+ZpZFwFYhVQueQ7xKOluLZi/ZbGqcMrqH5twz/9/Auel1tKPbL3JXtX8v9492u8ebdGPeTYXsk2IIHAE8KPilysD/z5y694UWzZuZJPjxd0PmMMhm1XcmgL2m0JXmHnI8tZh9WB3lkOfc7opeNcL1rqbOTddoF6nYOG7W/3/JkP33DbzPjykyvKtxbbSbfjKtk0mSRIm3wOptDa7olYmlc20O5K4lYzziPuZc8PX73j5jhj+9NzFl+IetBV6uSLOPFZ/mFBgd+JIjBlzOneE62oAu2+J9/09OcF40wLE7CV2Uhov1MwSGJX1YrjS4mTWnypmb0Z0J0/gYm+1KgYH0UjC32KCUcp8oM65dW5SnTx2dGjgqjmJoPIYSV37LSliEZEKr5MO+XEUisWPXE+cCwryrcmjQcK32vi3DEuZB0ltGC5H22rQGkJ2giKbD7gbKTTGdlOP6rMEpHJjDK2THZm41LexyyxRm0bUXtkh24n0ZAQpibkPVaeohzIrUepKK2tl31SiIrL6khuZCd3M5/ztlwyTMQgICsdfVSog0WNCr9yzMqB2g6EqDn6gs1Y81Wz4u1+QZE5lnnPccwZewv7DNvopACUzYdtRK47LORUN6uBshyJUXCMCLh5YDiPxDJw9nTHf/755/zW7Euu7J6vxzN+fHzBx7sr3u0WOKc5Oz9w/p7odN/uFrRtLmOSl3XDB0/u+YsXX/Be/sAYDT89POU4FgQU265ke6hkbTkqYu0pq4HcCM+iHTN80CyrjouqQRP5g6+fEb+sCbPI7Lfu+bXVli83a3afrik3+nSQDGciWTatPrkcTUSkqMVuLH/vyNPVnrtjjd4IE3T+vS1//ulXbIaa+3dLFl/LZslnchjh0gFoxISkuvuuawcAcxzxy/x0KoYywxx6ituIL2uGmaTyTP79po/Ut14isReiGuszRfs8MC4U3bpkdu2TqagnGnPiDUw6cOtkM9AvNc2VOrkDKx9xycJJDB05mZiaXm44FRO9s49kR5UEKbLCwiv6Y47OAixH2jwIwSdKC65swD5taBY55sHKCT+RXiLYRhNbzegVejbiVz6l8z5+X8iTAUmmKLap01iJe+2wE+EQqBNJacI1Qi6rpimbb6gMrjLk1uOD5u5Yc70TnnmZj1SZ47xqWGYdv7F+y2+ff4lHsx0rWp+xG0o+vb2gNxnRRuqLhrOyZQiWh6FiCJa7tmb0hjofWZctxzFn25bExmKPmnwjLX04OSAnP78Lx/zJkRfLHbOsZztUNHWGvoxcVA1XxYHz/MiH5S1r03DjFvyNd3+Zn91dna6rRdXxm+dv+a35a+7djL/z8IEUu3IkBEVWjnz//Ja/uP6Cc3ugCQVf9WsAzsqGw1jQj5ZhV6BGBQvHbNnxZHEg016owVGxLDsK43h7WHB7s0Q9ZITzkavnW0rr+P0vn6Nfl+SNkrWuFkGQX3hUp0/OxuNcukEVFOMqsPxow6v1hjf7JYe3c1h4vvfRO35j/YajK/jp2yfMf5KzeB1Ozk2mndKy5CCo7j3Vm/Zb770/tggopf5XwH8RuI4x/mb62v8Q+O8AN+nb/gcxxn8r/d1/H/jnAA/892KM/+c/7jmiVpIzeBgY1yXRpN1tlaEPA9WbjvBeKam/tUr6aukg8n3ADMnmuxNG4biMHN+HYW0o7jX1rWS0TfHkuZbCETUpjszTXqYUHQ1ZI173UYvoKKoE+BUC9uXbyJgCMki0UuUUMenmda+JTqUQUmk/w8pRzHuZfQFrPXbZ0ecZYZtLezq54A5iiGk3BgdQeNzKgzIiUe0gO8qeeFxI8dGDPFdU4mcoxCdZGenxEXPwhcyHAnAq8jvDOFZsygJdOpSJRK9QGhZVz7PZjovieALHAC6zA98vbyj0yNZXvKyf8eXFGh81F+URFzSNyxl8wbYvafqcKh/xUfHJzSXdrhBNQSsFYPZ1pNgHhpno8fs1uBcDP3z/Ld9b3HGeyBxfdWse+hoXNcusozIjWkU+6y759HjBF7szNvuKPPesa9k6ZMZz0835v3R/hptmRtPnJ06/1oEPzh74c6uvMSrwaX/FbT+nT+DPTTvn3W5B12WoLFCsOxZ1x3nVsC5aXNBcNwsOXcH9OKM75KhDAgMve85WDfum5Oamorg16VpI24paKMqqsRR3Yi/eXwi+oweFWzjO39vww/MbPt5ccvt6DXngxct73p8/sHclf+vzjyj/1pz1Jw5XTSlb6Z4yIoTL94HqbSOJ33/SIgD8r4H/GfDX/8jX/5UY4//4m19QSv1Z4L8C/AbwAvi/KqV+EGP89gwkEolnXmCakey+wyVQ0BcaWxhM45h93aOeF3QrsQU3o6j8fC4IarHxsks9WnYfiKTXzWLSHxjKW01940SINEbAnDTx1fVI8RA5vJeLYUgmYMwved5XQgn2ZeISRJm9BKFOfoKVoP+6k9QdFWWEyI6awVsGGzBWxDl9l+OTZx2VF9VdLzfGtBaLWlhs3gZU5fCjQjnxTZhouKZXadceTntolZiVvoqiaOs1+UawiWiTjHYm5iZmUNiDhqNOa1WRFqssMHpNrj2vygfmpuMX7RU/2T1nDIaXsw1/YfGaK7vnfHnkt+YFmXLcugV/f/dSuoPrGt1JEdxlj6Ifkjw5pvdoWCraJ8JxH58MLC6P/PmrdzwrhaD0RXvGbTfn5jinHTIy4xnn5oQv7JoS7zV1OfDR1T1nZUPnMn7xcE7X5uK6kzuqYqDIHEYHtIrMs4F13vAw1rx2Z2zHksbljMHQjBkPB9n5V9VAuXQU1pEZT27kcn7oa766WRM3ucS7R0UoAyr5HR6agvG+pLy26D45DS8jsfaoLEBryB400UTaS+F84BT+ycCzpxsuqob/4Kv3GK5rGZMqRzdafnz7nLvPzjj/DzXzr0d8pRkW+vT+RiW+gvk+kG963Dzn5i8s4Xf/hEUgxvg3lVIf/nHflx5/BfjXYow98KlS6mPgLwP/7j/0XynwlZWVYCeo/pRs6yuNrq14Bu68oNlzSd6NFaiYJMJIfPbi05byPufh1zNh7SX8S8wWDNUd6EHMQIJNQZyXGbM3PYvPe44vC/qVhFm2V4bi4ZFPENIulqiob4KAOsnmWY/ICWCD+BIcBCQa14Fh6g4ai8uCeOC7BPINCj8PlBctMcJwXZNvJKwyFBBH4EFm9OJBqMviuptorTrN9oqTaKfYSBDJuJQWJiZPAjFFUSeTy2g5Jf0oR6IJTynIioeHOX9nX/P38pePysHeom2gP7cU2rO0LR7NfizZu4LrZsFXt2vim5Jir9M2RKGOEu8V6kA0AvChIuNM3JGyF0eulkeuEgYxeMPvb56fALm+k/egnvVczo9UduRdM2eTbtSX51ueVnsCisNY8NBVUgCioqp75mVPaR2LvOeqENDk6HPu+xnX7QIfNZmWkcgFTTdadKJGl5nDGk87WlzQ6bkXfP7mAn2dY1JasJ97snXPatHSO8PY5JijMP7c/DF5iEETR4VpU4DtTMBJ3Wj8+cjV1Q6A3//kJdlNhjaiCXG7nPtDRv7O8vQPI+XdmPgzj3kKekwp01uHaR3t05I3/0nD2W/cwL/yq2+/Pw0m8C8opf7rwO8A/2KM8QF4Cfx73/ie1+lr/9CH8lG8/lcFmY/SupSW7CAVf1gaVDRpPpfW0XZyOoO0vu2lxucZFUI0uviDwPF5JrLgfqLwKhEWjfrknBM1tBeaflnK2NAFhrlJgZFwfA/GnT4hrdHA8ZX07rO34ZQZmG8VpjX4SpD6CdEPmUZ9cMSYSN9mQjcNYHeayQxEjYpuX3D1dIv5fsPb6gy9s6etw7QWtI2Eh/hcMAlXSyc0jRioVDiM7KSzRhiPk2x3KoimVaDT2i2Pj4EcWqTFqvDoLBCDUJDbfYE6WrFFKyKsByLw8e6SzlmhKkfFvinpNiX2zoKB7tWAsgF1n5M9CPjne814hvgOJPuxUAa0jozesB1KfNAch0wIRF1O8AqlInnpuJg1FMbRuox5PvD0yYGL4ohWkT98eMrNdo7WkRjB2MD5rOXD1T0vyw1P8j2Xdo9H8/P2KW+2Sx66Ch80PihCkBFh9IbDriI6jS1dYgCWuMFSVKNIgDeV4DlB4eYBViPLVcui7Dn2Ocd9KdqItBo2nTpdU+NMBF4hSJdkjhrbaronjnLZc/cwh2uRMAujVREHuWbLO8X8tdjlRTtZ6clnnB2guhW7fD167n9zwc1/auQHH37Nx2+ufsWdJ48/aRH4nwP/MnL2/cvA/wT4b/9/8wOUUn8V+KsAZbakuGnontTEi5Li+ojddXTP57IWJMjpn5KFtZOVnRkn5x3xuesuND7PqW80+WZg+alnWGe4Un8D+dcnh6BgBBjM99KSbj80cuoL/yaJVWT2n1bsyikoI7sfOnxpWf3CY3sZHyQgVD7oYSkf/uIzOI4zuqcSHa06jR7lpjW9uOawkAvtYTtjuWiYnzccVC3fP4lslIBG4yEx6dqJt6CYhi2fR/pzT3+BKOGapGI08j/lOFmoiZoxntJ4gBMHX5mI7w3KRIpqpA8Z9iA38VAHFvOWwVl2bYlWkSofKa2jzxx97iUHQnBJotNoJxe7L2QWpvKYPBBLTzwDo8TgY3SGVmVYHdAKQrLjysuRRd1TZSPNmHEccj5Y3fOD+TUAPzs84Q/ePaM7FOjcY61Ih89nDa/mD/xo9o6n2ZYLe0AT+Hy44ugL8nTy32/mEvOVHIZCY1GjKAK91RxuZjKu1TJXt8cCgsIvPdiIKWTD4rzm7d2K4JQ4FSlZ+5k+YTTrgD8fyUrHeBQg1RxSsOlCVsP925r8QSTaKFGZhhxwinILiy8lQWoSQPULWXHn+0j9dqS4aYiZ4d0/vmT4z2z5tfWOn//hSxYfm2+9F/9ERSDG+O4bN/P/Evg30//9Cnj1jW99L33tV/2Mvwb8NYDl4mVUPlJeNwwXFe6sInu7J7/vaF7WyTlXgCOffPj1KOBdeS8fjB6tRIgtFEdjhaxz8LJWHKVdnjTVw0Kf8viiFWQ930b6tYwB9iAxWP1KoVRi/qWVTsiSv18mQZIqWlaf+FPg6CmIcy92Xz5X1G8g32W4ZDCiJ/urUjTwwQRmi47jvuT+7Uoowb24+5BOEeXllB+WssUgKe8mJBnSqV4GzHxkqC16KwGWwCkUFfXo2S+U5GTWMZmBekXoDKqXPIFu0NIFeHG3MYuRInM0Q8YwWKz1DM6gVGRR9mgV2elI3OXorYBkIY/4RUDPRzITcIMhOIUtHNYGisxRZO60chu8wehAmY9Y65kVA4uixyiZ5V/MtnxvdsvNMOd33r1ifyxZL1penonSMUTFPOt5Uuzpg+XnzRP+vn/JwvaEqLjrZxxdzrYrud/O8DsZNWJQYjGGKB6V07DJoAqcv7dhXXU0Y0ZfWIyOHNqCobP41tDsZ/K51Z6zi73wIPYZIYun+Hd/5lAKxoNoMHSrKW/0KZTWbowIqFTykXRiNKOdbL8E85Lr2eeabm1OIG9168kfxHLv3V+qcP/UDq3gi7/1HmdfPl77v+rxJyoCSqnnMcY36f/+l4Efpz//G8D/Vin1P0WAwV8H/v3/KD9zXJfo3pPfd4TC4s9qzN2BsrC0T1OoSBMZa2m/Jzvr7Kgorhvx31sVdOeW9lLTXBpqwB49vpjWfZ78wRNsgc9klne5+AxmyTjSpbBI7UVDMDGzZDWpUlZBJLsxuCrSXkWiMszeyJvs6lQMUuGNGkIQjUC1j0lXICdwd6bpg6LPC47p5MQpTCMyXts9biYmQ41xjvgBJIrzxMvXAxirCFW6okKK3ErAXDBp2+Ej+TdckbWX4ucS2cgcxeUjJDadOtq0uhLbMjrDu3crATSdrDFbp4hFIFv1ZLkjKxx9YdCtXF7RRjARm3mKYsTUEZ9EP1pFYR42JcNgUcB81vHB+oHaDnTeCt/A5RyGgvNKxoF/5+2v8/X1Gm0DHz29O63MtAoU2nGRHWlCzhfHcz59OKdN+EAYDNHJ+4NXj13fYiTL5UBxo8Ftc3Qrp/3LV3f8+vqGu36GVYHeeN5uFvT3FbrR2CERkK56vvf8lsI4Prs/T/ZqSZ0alRRFgFwOkuqtzHtulgJa1GN3JjyCcApOLR4kZdk2Hp9r2ksjOJeD+lr4MLtfX3D/ZzTqz+7pHirWv5sx20m3nB/+FDwBpdTfAP4Z4FIp9Rr4l4B/Rin1F+Sy4TPgvwsQY/x9pdS/DvwB4IB//o/bDACo0ZPfHCV1KDfoZiRmmjCvyK73EOc0L0oJY2geAZaooL20KFdRfPlAPjj0UGHGjG5t6JdyJ2oXcZUGLNl2oLzpgQIVZS3oK9EmFNtIkRSAwzy54KY5zhfi728GoXKiJF9eiDuSjpvtxa5Mu3hK/Z1WNiETP4SQR5wSULDcBLRTEDV9KAh1SOIgleS1MRF9RDeRHcV8Y1gI1Tg7cNr3y2tVZBuNGwthwqbn9qUIaLKlrCiPdyXmoBPzcPKxi2AgTthHKT6FobGo3mKPoHYSiKocKUNAOhIxBVGMQ8lYhSQG0adMvdx6XOoWFKBUxCBkpG7IZGWYhECLiyMfnd2xyjv2Y0HjcvZDwbapCEFxu5vR79+DQaMXI6+uHqjsyO9vnlMYx4ezeyoz8kV7zmeHc+6PNfttRexlE6NOuYTfeBQem7mTFHvoxA8hZDC7bLisjrw+rtl2peAe9yV2YylSl+Vq8f+7XB/pneXrzZLmZkaezEmCBYNgAL4K6EZWo5IRKfTlmOjL4iSdVn1Rxs/J1di2HlcZDi8szTN57uparrWHZznH9yLjsx776ZzzjwVrc5V0tRNF/lfefzH+Q/iE/zE9VtlV/Kde/NeIRUasC2KRoUaZLVUEvW1wF3Pa548EaCH+yGuPWlHcjxTXR9CaUFqGVc6wkpTW7CihItEIfdi2XtZ+M4nKbi80bi6tev3OUzw4opVq2zyRmQuSBfdhek752kTLdHXyDewitntsvybu92SwGfI0kxeJ558yIfrVo524HpIrT6IYi3svpz0ziJehPZKyAVNKb4rSOvEN/KSnj4xnAb0esOlCn5Dvbl+II04e0KWXlrgzqNJjbMBtc2afW8rbR6zEZ0meax957q4Wi7UJ6UZDmDvyxSDKulHLnOw1cZSjTmXJuTjzzKqeVdUxywZGb9gNBYMzjyBdY2XVuU2xa2cePRvl50VYnx/5jau3VGbk59sr7o41fW9xXSYgYeFRgB+10JRHLTZdNqLmjmrWY03AeU17KIiDIV/2XK0OYr3WFLh9hm5MAmrTGjZhHZNbEgrC0ZLdWbF3S8VyslHTKRY95FFi1xSnTIbJPEU5MYBRTrH6mWL1mUOPgeZJxvGFpruQ4pttFfl+Uq/KyFXcGKp3yWtyFC+MiTb+9/4X/+LfjTH+xT96/303GINKwTiiMgvtgPLyS6hR4Zc5vlhgNx0zF2heVKL4g5Ntlx4D48KCnpNteqJS2KOk5bpaQkxdJglDFDBaK47BTsDFfC+Jwu2TSL82VNdCMCrvZNY/vJKVpDjZCsp7Eg0pqbi2VScE3ueccgtsJ8XHVUJLlkQimeWHdaS/EDMR24G6F+nrhCZPXgOmFdzCttIRRM0pgn1YPQammFEOVJ/F0zgyUVGLG4N6Uwn1eRnpV6IfEGfhFEm20qjKoQrRBLhRqMAhmxKNZfUYk2W42QlHQ54IBq9OAizlBNQcXAmZ0KizzNN3Gd5qjPXM6555IcpCQBiLbU2mAyaR3Q/bCvOmkBCPIF1XyMTck6N0T8VFy7puedMsuT3MOKZAjjBqlA0s5iJcOm4r2NsTMBtthMpzdnbg1XJL5y2brmIchaQVJqAvhZCqXp9MSKa2Xfdgg2LMNDFXRK+xkzFsyjGMRuZ6c1An7wixlpNiGJVI3E2XFJAvRrCR2U9zlp+PBKvYfpjTXalT52D3Aji6MpGMikh+a8g3pNAYcUFylXxW9c23N+TfjSKg07HaD8SzJbEwYikWo5iHzjPiVU121zD7dKR/Nqc7syhknldAvpNswXFdYPePuWv5bkQNgXGVM840Y6VFP5DJpsB24m+vU3Z9fxHonkQOe031VmzGqneR7lJO9HH5GFSRP2jyjaxmdKJqwgQgQj9P9mGtpAIFK0XBjMlOupTIq/5cGJDFg6K4n5KIOZ0S0SZSUqFOUV84ufFJqbdRi2eebeSC8olW7JbhhELXb1KgRafognQ4k4+C8gJMhU4TyiCdxCjtc38RGFYCYiov4hvtVUovknFiWEXGq4Fy1VMVw4lOmxnP0/mBdd4yBMMQLKUR8M4FQ+ftSVCUW8c8H8i05+1+wcPtAnOXCRP0G8ak2T7N0rWAov2h4LOHJ6heE6uAmY3CSSpHisJxOJRC6Gn1STkZLcQqcPVkxz929RqAd+2SwRmRQXuxYlcmohSoBLJOnRUKuREH8TiIlQevsdcZ5b1YyAmOkhKnXNJGKMh2Sd+hOQW4EOVzVO83qNEw+72Ss587hqVh+31Nfx5EQZkJFyQ7SjfWPRGCWnavT1F4k6LVVeKgXW7+4RP5d6YIxIs16n6Lvn0gXJ4RMwNGQYhkuwE3zxkuZ+S3R8rPHjDtkmGdndZbIdPkm158/AuDPQyYzjEuC7JxpPpyR5Fb+icV/dqeLMGbpSbfRknKbZLNdR4ZlwFfKMa5PnnLZRH0qKW9Xga6Z45xbph9rahuHpNfQ6YYEng3uRbnW0DL6nCKyMr3kG+geSEXUn8WT1Hd40p29nqUCygYIBdRTUgiEXuQdtB2iu5SOhDdC6XYNoL8j1Ezrj1+Lbt1V0rn4KtIuBywhSMGMcKIrZGZ2YoXIWMyAU0cArHyShLcPNCbiMlFTHNVdZyVLc+rHYV2bMYKFzUvyw2VGdm5kj5YMhUo9MgYDUdXnMRKvbd0zspJ3hSM+xx9MLJJSSEskgYt70/I0/t4ryUxKRcLLVM78lxSg53THO5qzEMGJlmvjwrdSyJSvhQC0S/2l7RjxsOxotmKqaApRFDlB4O+yaU4zyPDVQoiubfS/ayTR6HT5HcGe5DTeriQ9eG0ow1eXrs9qpN93LCS3w1Sd3DVE44Z5Rc55W3k+NSw+x64lZOC7FVycBa/RHc5QlTk7yzVjaK8l+I9hakWO2ENulKfRudf9fhuFIEQCFVGfHWFvdmhbu7Rs5pYZIQ6J2aGbNfjqwy3qrBKkX9xS3ZXMZ7XqVgI69C0jugU47Igvz1SvBtx6wrlAmZ7pOoGsn1N87wkGI0qoHkmH8wUXUUQY04VJtHNIylJ4rIU2d5IQMWFZ/ejyLDIqN/Gk6MQCEBoW5Eb9+cIip9cjaOWuX+K5dKDOsWNiYORdB6ujqfW02zEOKRfR9xi8o1LhqtOugrgtPsXCbOiuLOCa6jHv1dOEUeNKmUP3wYFlXTzJg8Y69HL1NqnFsc5zXjMhfdfeK7O93xvdUdlRlqf0XnLx7tLNo3cSE/mB87zhoMv+MOHZ2zbkkXZ8+HynkI7Xh/XvN0vBLhrZfSYNBB1o8g38h4KmUmlkzMVgIHkopvUeGsh7fjW0B5kz2+OmnyAmKWPNIGhbh6JS1Elvn57JhhBYvJJWxnwjUU1hmwnnVXzgcMsB9Rg4Ghxaw86ntyS9U5WfdP3GYAoaVOm0djE75g8J8bkeKTT16IGtjmmFRr45ofgrkZ07lHbXDZGCW4Z1kJOojMUbzPRXmxEQORq4b+U90KsG5I35bRG/lWP70YRSODf+GxF99ElxVdb2B1Qo8M0HWE9l0Jw30jISJWBn6GPLfnnDbEuiZkl1BnRStVTMdI9n1PcdZhDj5/lRDtHjR49eOqvO1QoMYOs1Ma5CIfyPZhRnU4eEevEk/vQuHyk2eY7SQLqXni6DwfGpSXfCLKrwqMrjh7VKcjSZZwiucZlpD+Xi1n300knpic6nf7DUtGdK4bzgPKK+m0k30B/pkUDUCbuwFFa4ykleSIFQbphkqHq5JCkR9AHyzBqhmR0Ih6IivigGItIftXwo6fXPK2ExvpVsxZbrsFirOfY5/zu2xeMgz0Re2JIxcVG+tGeuP3duxm6VeyWnuvFAu803BbkG009Fc70eidXnfwg3VU08t67SrCZ0CeBWRDsyNUyNuX3Bu2MhJgkwVTUEIdU3FVC8itZdfIuJx/kc4lFOBGc1NFgOk3UkeHKU18deTFrub5fEp1CzUcYjFiAp+cZzz3VZUNlPRHwCWA0W+FYjEv5+dlWxlGQDY8e5DqIhehDOAuMrT3RqrkryLcSFOOqSMxEY6DvcvK9prqRa2YCoJWH6j5gBtlyiaFNTJkbv/rx3SgCWqG6gex6z/hswfhsQaYVat8Qmx51bNDLBWFeortRxofM4NdzdDegmg7VDyhfEDNDNAZKySI4fDgj36T1yjw/RT77QpMdhcOunWI8SJ6AAuxBLrCsmU5zcT7So+FgteTtlXIqmUG84DzgV54ujyfzD9Mq6jeK8iHg00pvWIuZpR5ktebzSH/hBXBSyd22V2mjwcl9uBk1w0JkzLM3UaSjb+WG9rlcTOVdZFik4JTyG51MFrEp8962abeqVPIx0MLlhxPoxQTRHHN+ev2En/KEEJR0CSaS5Q7vNMd9KSNE8j0MRRBWnYbYGbrjjKFZSGczceS9wt2WckrvRI49ybsn56ap+LmZwR7lRJsciX0+kZs4GWtGJa12viFFkXHa6EzZAYqEIXioP7eyXo0SBBoXDp15Qpd4DWUkXvasFg1XsyP3bc3XX16gBg2lh4P4O0SdXJAWI2dnUmX7UWjU3aFA32X4uae4bAhB434xp7yVjtIydTCR+EHL+aIRgtFDjd6Lw5YcDmIrPy7lGrH7xMYMj25WzdNkU99BvomnAJqskcLjCk0w3/UioITLrrZ7bGbxqxK3rrEhorwntgPxYSubr6ogqigR5UCocyhz9KGF0YExKBUwnXgO+sKyf5WTtZF854V2PAjnPxhS16DIk5+bK1W6cRSujBTb9BJdpLqT1aLET4OaRYbzQMyD0Ht780skoXEdaNASWd7IqJDvI/1e058JOGUbCf9wS7HDHmrYK0v1Tp9Au2wfWXwRGOaKYSkSYjMIZ6LYipZgIjjlO2E6DmvpZpQDlchV2sdTxJVOM2a2V4RcTj3lUwZAEXE2wqjp39bYo0aN0lZ3lyPFsqesBiGtUIh2wSPBpVHBoLFbQ3ZQpwTiYS2W53IBq7Qbl5PLdnJzngJh8gSCptWnL4Ua7qbgFgvjTIq56eVmsS2goH0qeIceEQZfSMYtWjqwYhNPlvP9GvoXYibqnEabiNKiY1jUPSHCx2+eEDa5jE8zcSEmyIqSLJDVI7O6Z3BWzFUVDLsCfTToFy0/en5NiIqf/P4rzj8WzsfkMj2ce4pnDXXZ0w0Z7esF1bU+cWBUTJ4RRVKmOiUSZBPJtoKXjLOUxNzLtiBrpYMScFr9Uojutz2+E0XAF5rxxTnZZ+/Qtw9gLwilJSxKtNGoPCPuDtC0qBCgyIm5FR6BV8IpWFaSZOQjMfWV2okdGYgL0bCwFJtAvnvc45tO4sNcIU49+dHjM8VYa4aV4lhPmgBNlkxEik0yg9wrTGforsT0k16fEORohfMzrgPbH2jmn6eIKSUiID3KjQrycwZnGNeBqCLDE8e41nJjKbBHTfVOY49py5CpU5z6Y7hKGmGSU62SAxmvIWohjfRrufgm7oEZgADZdTwZWrgaYqMwjZGLNZMLF5NUjztLHxWsOsJEbDKPmQJsM8oHLW64KZF4cslRyU5beVEz2k4KQJZOe+1ioidrhpl0A4JzCJgZUnuvvIxipPWnTnqNcSk3jEknqKxo0+vQYBtZBe9fStpR9qzh1XrPcchoyfFeMBHvDA/bmUi9R+FQqMUUkQfZqqcoZAPRD5btthZhmNOYnUFZqN7f84+/+JztWPJ3//AjLn5XNCvH9yJ+lorhTDqq+3dLiq8zFvcqJR7J5+DNYyp1LIKwOAdNcW0kDNdOBU9R3E3ks2SiaxIJLEXr8V0vAmjF4YOKunhB8ekN+m5HvFwRKkvIKnSVofMMmk7WiTGidy0sSknEzS169GkUQFaLndDlQq6xbaAKcHyqOT43YiyyC4/ZgkmUFFXa73upqGaMtBeaYSmuN42SOS7fSDtPFsk3iuygxeFoJeUn26sTxXc4D4xrzwHD7LU+Ba6iZJaTbARxkG0Hk+zJwF2OZCnVtjsUtORkWzlZJclIbnxXTdLiFDOuEG17J6GlkGZjCy7KDA0JExjk74aVOpGgJr9/20jhc7PplE4sRg8qGHqfonmUUIJV0sYXD+rkxjwsBYRzcxk37D6h/SlodFgJIKq8zLR64NSNdZfJralKWo1ERNSDOhWxKTkomkdzUnvUp65iGn/E80HRPFO0H4wsrw58tNzxvN7xpllyd6gZB4vSAWMithhQKjLmlnGwxIgoCgvHxfrAMu+5b2tu3y6xtxnaShdlj7JCXn244c89+Zo37ZI//NlL1r+XMSxg/2sOKo9qrLhHG8PYa6rXGcWDvJ3DAvpLQflDHjGXPfO657Cr0Nc59RtNdojSFeXJuv4gRbxLXpMnl6pUMAkiuPu2x3eiCOhBgIzmWc64eM7s4wfM9gjMpBCUGaGwmF2O6geJXHYeve9QhZV1otYyVqgoqjqrUUmL4BY5eozMQ6S5MnRnGp8pslZ292OtT20pJAZgqU7Jw7ZDZu06reiMAHTFLjLMhWpbPIC/FatrEHAr24uHwbAOuHmgXxnqa5LleQonMSSxU6R+I465UUG2zRnWGe3Cn3bbYlKSsIKt3PDdWqjP4zKRX5DWWQhLwgmwR5V0Bt9409OIOJ08w1I6lfJBLNVUBPegGGslBCUjpxOo03ZBTlv5QXafbM4SrdsXguZHhSD1vYwe0SAhIiYZvhSIFiJAFuIJ4AoZnERbc1ntZfsE7s2kkAoDMwF9gGnNya8xdlL4+nNhMo7zgH3S8sOnt/xgeU2Iml8cLvjyYU3X5Njcs5q3LIqeyo5suoq3TYE/WGHnzQd+8Pya2g78+O1z/E8XzPZShKOX4tQ9d7z46JZXiw0/vnnO5vM19ddGIsaeOzCR7F2eQk7kPbD3VlKpC1n7Dc9HiX7LAh88uadzlrefX1B/YSnvIspJNwNQpwyDYano3pf1bb55NCslgB3SgTZ8x4uA8pHifmRYW3yhaL63pnzXYu4P6C4j5hY/yxmvauzOoJuBmFlU16Maj8oleixmBj8rUDaKc3AmJqG69xJP3itMG+jXlmGu6BdKPP0TEu9zBQOnNttVGjcTxl6exD++kGIwzgVHmH8tXIGoZC9bbDXNlT4pHYs7GRmGdWQ4C6iomX8ZpZrXKrnNyAqxSO2gW4iCrLhX+MYmC/N4CjsdZ/LaTpbm6X+Pu2TpBFwVcfPwqELM5fcUG2qFKh4troMVQZYeQOW/DCL5Mq01v8FCNE3K7Rvkayb9d5wJbuHLRG1NhBrTknb+wrWICYn3pRTR7JBm/VqlSDL5eZOycYoDczNBycVOF+EsBMS8QwmHggD9VaR930MWUUYKZlkNaBX56fYp14c5xzbHj4YYFHkSD3XO8tBUPLxdonoNZWBxdeA3r97SuJy/85OPmP80xyhon4bUZUWKpw1/6fnXNC7ndz77gPiuoNiI1f2QjERFVqzozwL6WQf7DBU4EYvKD/ac1x11NrLKWz59uKD9e+dcfBkhRnyliLlcn1UCgY/vwXA1QlAU12JTdjKuHWXcJcpn+22P70QRmFSBupf0mJiSVfPCYm8P6M0BvTf48zl+noPW6EauOjU6otbEPBMuQDPgFgVkYl0ercZXBkLEjEHoxGPEdob23DDO5OKc2tSQPc6qwUgken8GY5phJ6qyq6G51CybQHE/4mZiZGqGQH0D/VIYgTpd4EQ5rYdVpO0V1Y24BKMS534p7rl2b0T1V3p0pxO7TQg6fg7DhWTfTak7+Z159BbQQqkNOUQt7kQRwSWmVGEVFMEJ4hx10ikMMr4MZ5KJOCkUJwVjtOHEPYg2PoafRoPO5eu+klnfl9LCP96cktcHEByneHJ02teTItTN1IHJNeGriJvHU1FTQZ3SgZUXkDLaiG615BlGKSghD6jaU8wGYpQNR+wNZuZQwOf3Z/R9JgdlSHbpUXG4nXEI0rUoJxLyOHPMLxoK6/m7r1/hv6xZvBGmZfO+g4SDLM+PPF/u+HK/5u3bNfY6l/VxD24uXVPIRL8xVJ5y0dM3okMAGC4CZ+8/8NH6HqsD75oF/+Effsj85xnL25jYn99Qszo4vtAcX0k8mvIK+6Y4kd1EI5MOhlQvsz+NivA/jkfINe1lJiy4JqBdkLanMMQnC7I7jdodMW8fUOcLQp0T6hylFMoHVD8Qywy3qNCDwxxHGSOsRo+C9oyrDF9KmAnIhVTsA70SwGZiYkx0YtOJotC8i+hR069lxp2AKdIapnliqG9ADxFXCjZghki5CZJTkKLUpR+fgDZp/7JDorAqxRg048pLDp5TkAdCHtC5p67lgh76TMxLredqdWBZdHxyfcnwZS2Clr0+UWujjTAKLqBHhau/kVxspMApl7qGQS5SVwlL0XQa3T+uqmOYYsBF+BIGuSkn8kvIpVP5o4+YB1wR8DN96lKYfqaRf6MH2QyJRPoRkyB1MyrIeyUcfE5aCLz6pRDR6flVUHCw9HvZtSsg1qISbNucsRHTUIKCbYZNEWGml2RhFZQg+GvpHg53Nd1dRr5RWOD4XiCeDxJE6hTZbMR5zS/eXTLuc/IbS/4gHWZ7JTyDbNVTFU6i4Lyi2wp/QA+Kce15+dEtf+bsHW/aJT/58in684rLn8uJP854HI9AqObzyHgxYuYOP2jMfYYahXYcMgFG7VFch/N9IDsGst23I4PfiSIQlQRoRC2ob/ngMd5jjvLC3brC5FY6gkN3EhjFwhBMjd416ENHLDLGVYnpHObQg9b4KkN5SS/qzi3RaEwXhC8QU0KLTih7lPHb28RAm0kc9eytxx41rprCLR8Rb1dLNJrtHpWK02569mY8zd6+1LQXlj7lFgQrKC46kZJaRdQmyYcjMWrIorDZgLNZy1AO7JuSobfcH2oy4zlfHrl9oRl2eTIiebQl1x7yvZik+MrQn2uh4CaJ8oQzTPHeKoDdiyOR6ZHOYnIl8hPSLi3C9B5MXocY2ULYvaG4k/fVzcxJVajS9pDUXQQLJHCvuxTUT2SzGtVAfpTv6y+gPwtCwQ1SiKZRYSoCE3swTtyHVJimJF7dWdyD2LWpVMRN94hZCCD8yKUY1mLdhjLYreAZ/XkkPO0p64HuUBBbA1lgPGaM20Kckw9Kgl8M7H7gMec961nHouy5P9anrEWi/N5+5Th/umNdtvzu7QtuPj8TxeadvO5+LaPROJfOiCDF3c+DsBqPFn2UztGfy0igt6JeLO7lEMsayeoYF9+eTf6dKAJSiaE7E0BODDgDWivMtkV7T5xXhPVc/AdjRPUe1Q7EuhDS0KFFH3t0aXG1/Fp222FixM+L0961XxoKBdneo8eA9obWGsm+8ykAM0YIMvu3TxThQYtz6+FxdJlaZZ+Lz1tfJAQ7xBOgpULE7vtT0TJtiekzhrkIgqbuY5qtbZt8A4t4QsCjibSbjOO8olj2WCudTHtX8dmmRJde3I+WA8Er3DGTdtaJD6H83nKD2aPcQKadWmy5kSV0FbKDPpmNQDJImcVEOY74Rp388X3B6WQ2fSoMJp5ciwQ8BNPIKT0lLSmfMIxeJSdo+V31KJTdkIk+fgIsfS7tL6O8ZttKER3nAnpmB07KPGEDJoekAHZnKG/lVJYY87RJqCPjpcPOR1xKT8qvhUAUcskDCEsHg8YtA2458uLJhlk28NntOeohQzuF9gaV3JmU2AYK9vN0xNZOMAgdxJH4PifmEbsayHKHc5os8xyakt//ekXxNmN9I7LskE8nvig+QxnQvTpRf1WvUZ2Wkeuyp54NdG0ObwrqN5ryNlnv2YRrrR/9OH/V4ztRBKJK+/etoPDthcaMFhUiunfo3QhvbmG1IJbiNUCMKOdRmwNhMSOsZ+hdi933hKzC1RY95qh+RPlANPZ0c3Yrgys0+d5jm0Cea9pCMa6EDmx6URaKK69inCtAJ+2+3Ej5IWAb4SWEQjPMjXQKmeQioGCcp5Y0RILVKQUptbQJtdWjPBdRCsowl+BJN4uS6OvTPrjJGI6WYT2QlU6UhvsM9ZAlZmA8SYy1E7RdWv10Qc0ejUcmHwN7FAs0SSWSkz5qIaCokE7/o4Io3IRgobsSa3UAm/zx9KDQZSL55EkNl7wMJq+8k7PxMCkdZa6fbM4gUXqz5JnQQbYjMeyk0OpBCtKw5kRqamfgzhxmPpLnjmGw+E54/7ZVp8QpubHE8jt/eeTJ4sixzxlLQ9fmjMmaLs4cuvQYHaFUlNXAh+f3PK92/M7bV4TPZpSbKeMvGc7knMJRXSW7fGcMPtdsjjPiXUEsPbOrhiIbObYFrre464rizrDcyVZFjyI2kyRl2aJEI92ZbdWJValHISvVV0dy69lua8zbgvJWOlcUDHMpTP1KsKkJa/lVj+9GEUg0UZ1MO0IG7ZmWMFHAWo1Rini/QVtLnNePK8EQ0Zs9gYWQi5oBexgYzgqGs4JsI89h+pCstMGV4lXYnYkbLJFT5LirYVxOefUJOc9lLpu4+NFKe58dFNWdI9uOZAfHWFuGpfkGiAbjzKaMApExS6s6AYxJo58Ky8RPUG/FqWhYyXgiKx+Z7X1fMJxr6rOW0XpGSszBnMgxplNkTboBHYlchNBGE4nIDNLmT2qzaaUUzOR9KASU7DgpEtNGZCVchJgH1JAcmNP7NzkhRYOQnJCCKrwGeZ7+PCULpb361BVMHochjxLVbhNA2whlOzixRfOFor9IEt0s4oqAygNKR3xr6e4KYdYZ6WzGRaD7wGEKj+8N+Wzg/fMtL2dbDmMhOYLeUOUj8yf3AGxbuVuKzDE4w8vljufVlr/5+a8RfjKnenhkOZ6yKPI0nyTjELMeuFwfOPY5obWwcMzPGmIUG/d4tOR3hvJGiDyml/dQCjKn4NX8QWOnrUoObga+joSLkXrR4ZyhuZmR3RuKe0WxFY6FS2C3CIoET3Hnf7rwkf+fP6IR/rNtRbAz7Ti7tcaVOWbIKB5KitsatT3CZocqSyGkazn19GZPXM2JVqObEVtYxoVlXObYxgkuMAT0Nj6e6ApcoUQlGKUAqSBzf7Ayi9km/flMTtF8ly58C3EJ0ViyRuzQ9SDZCMPKyLpxhHGhReKb1IMgF7gvRUpqW5MIRN/Yq3s5GaJWpzRZ5eQ59QBma2l0hSkdqnZ4HU/bguxB6Lq2ESs020XUMaK8MCBRsjaKWopMfyY3lBqnU1PaT4A+neKcPAfEvkyPJvH15fOawFLtFEEJOSeYJAiIws4Uh2TZq4c6gHs0Tgl5JJTizhtyAfd8LmvYYZkKZFovBpvm+V4RBoUAC/La9TDhAQq3dly+2HI1O9CMOYVxvD9/4CrfM0bDvZ7hokaNOa/WNzwt9nxyuGRIoaLtkDEvBkJU/N8//iHZH9bk6aCQgyFxBNLB4JYBfd7z6nLDs9mO1/s1XZujskBeyyarPeawy8g3QqoS6ziVAMAkhNJy+OQ7pANLrlX9pax71WrAmEizK1GNJdtpint1MsYdVlEOlyGtHtdeitKy4Ytvuf++G0UgEUD6C9H065SqoxIDLGqIxpBvC+ZfL5i97si+vIV+AJt+BaNhGKHKxZTEiz7AV8miLG0FghEX4pBCNkwL0SiGpSYkIc4jFTfJVp3Me91TT/eUU36eGST2zGeTw44oxEJyEupTG9s8j6dgiJj0CgTSmk5O2qhlptVOlGbT7HsC+Rx4IwCRnwXwCn/IUIOWQM+TFkJOkhFFfz5dZPzS7zV1RIJrRBH+WEVIPn9TQpDOA2UlF/BxU5F9lTH7KjkcZUk8NUS6tWJQ6pdwDNNqyht1snCfknFNB9oLQOlWwr8XfrU6uRzZo9zUw0qeJ9vJezFxFabfY7L4kuTlFOy5HFjMOs5nDWdFwxAs7y/ueV7uWJmW9/I7upjzd8aPGL3hab3n+/UtB19QGsfTes99N8NbeeN//2fvMfskAyUOPjFxH3RKiXLzCO+1/OUPvuCD+p6jK/idm1fc3C1QJlIvO4psZLeviducIrn/uIrTKBTyZGvfy0E0cUiGRVorr4MUZh2JoyEMoDqD3WnKW+m42qeKYSV09Ogj3RNPftFxOeu4mh0ozch/8C3333eiCMjFISDRcOVQnajS4tnACMSjRc0dsRzZ3VfUn8+4/HHB7OMH1MNOxgJr5b8gKkOdZlmrGZaWbC92Y2LsYeXPCFEpOzqyI3QXGd2ZxiWG3CQ8iUqqsy/EoGM88wQrJ65yiXZ7VOn0lhNsmo9DIRwAfdYTdRByitfEXoOJ6NIz9HL6zM5azmcND03F4c2cbJtksSnIRPwItSjTVqK/HdqM4HLKaykE4yzSXSTGXxVhPVDOBvrRMO5ysnsrGvlR7MiKOy2mrlbm7VALBdg8SKZhm4uFF1rm6b6Rojzx/eVN5KSatMfULrfyPT5LdmqFjAtS2NNJFTXRK3QjJ6Pp0pxd/HIByI6ynh0uPbF2SaBkxXMxE4xCX/S8PN/xbCbRZS4atIo8r7Z8r7ql1gMvsge6mPFVf0brMxZ5x3neMEZDpjwf1ndsXM11syBExdv7JdWXGbZFBF9a9u9E0SkMl47l0wN/7skb/uz8DT9vnvD7d8/Y7CuyZKcOsN3XhIdCCsA20anreOISiPeDqEVViPRnIjAbZ1LwlRN78lAFlPXEXgpAvk1j2kI0EyqCnwXsRccHF1vmeU+uxcr9y/36W++/70QRCFaqYHGnGXuFuxylzRo1y8sj1dWID5rnix3vfbThFz+44KcfvmD14yue/N2a7Ms7CI9kCDV6DBCtFANXa8alRJsrFyGX9ZwYe0RcLZbk5e2IbQ3dmaE7l9jzaReugrgLK2+kS/EJ6IriONM9kRvCtGJe6S5GdOExJrCedRgdmRc9AKM3RGDXlsSocLlG68j5rOH7q1t++70v2H+/5P/w5W9x8+WZ+OkpsY+avYmUdxmHVxb/bKCYDWSrlsO5ePEpD27tyJYD61lHnY+8t9jwstxgdeD3Ni/46eunmK9KiltxJhpnCeBaeFTtiI2FVmZW20jR7K4C/mKkXUEzaPRRwlGzg8IeobgXfnp2jCdrK1887rc5bRFktMmTy06wj9shMyTF4ZkYqdhkAjIsEHstE1G77GT04WYy65brjjxlIbwOa1ZFx/vzBz6qbnkvvyNXni5m/LR7zifNFduxpLYDq6xjDIYxGt4v7vj940t+5/oV/WjxQTM+FGRJqRcy6WjGdWBcOOplx4vFgaf1Hq0C/7frH/LQVCgVKQpH1+YMXSamqoNONvJwfCHXSXUt1PPJsDZrhRR0fKHp14KPoCDbSFTZeOkwM4dvLHov41jzygs+M3kfXvZ8//kt788eOPocTcRFze+9fU5zPfvW++87UQRs6Th+6Kg/t4k6mzFeOLCR/bZi/rTnsj5ilWdmev5Lz/4eP17c8v9+9hGv1+c8+3ct5Wf3qGEkzEpCZdFjwB4GdG9QMRe670wnEDAQMsMwT+q75FwcbIbtxGBUOxEcufpxly4BJon0kvSe0T7SV/XZQDnrUMCq6vgLF6+Zm56VbWlCzs8PT5jZgafFjlKP3I5zfrJ9yud358SoeDbb8WF1x7k98OfKLzn/6MD/vvxtvrg9ozvkDHtL+U5TXUdWP4duU9Bd5PRXA2cXe8KqYXMzR3WG8ZjRJyrsXTdjZgY+qm/5S+efC/+9eE5TzOQ0zaPEn+dyypxCUd0jece0irjNZC2lZYQY9RSckU40FDoD20fqG38KyRjmgotMSUiT8Cmmq08l41YVZDsQTRqJmsd/Y48Kc2fRXmbd7r2R+eWRs7plDJrtseI4FMzqnicziSz/oLhlbY78uH3Fx80TPt5dcugLns73aBW5HQtKM5Jpz/+z+XV+dneFD5p52XO7naNGfWIpukVArQdm856zuuVJveeiOLIfSz7ZXnK7nZPn4uR8fKggKFThMaXHJ/VkfxXQg2L1U6juPcNCE3IothHlI00KZZ3yIbOdbEq6Kyf27y6NP2cj9bqV59pURBOpnh/4J15+zjpr+LI94zBKIvS7uxXxXQHld5wx6Lxm/XzHJp+Tf51RbBTZPqO/DPhZ4OvX57RP9rxY7viyPaPQjt+cvebFRxv+5uLX+GT+Ps/+9hMWP92gjx1+vmSYZ0IRbkaKzjFclIRCi//f3KC9oLKulgvSdJI10F5OfvyRfCdijckeXHtw2QRekVZnQt5QZVLK6cCPLq55WW34jfor/lL5OR9ZwyGO/DvVC/7O4XsAXNo9tR5o5xnXhzmHY8m2r1isO2a6x6P4Xn7Nf+7JT/jJ7Bmtz9j0FZ/eXHD/tqZ6px9tyz8pOH6R078YWV8dJMzjoaZ9M6cbFJtszSeLJ/zO+hVndUvvjZxSZSAswolBF1uL3Roh4DjZ008AWMhkt2/vtcSzxQk8jXRPJgGPZDLaRjjyKsiWQ2bpKIDYfcJGkg5eD6R/I++r9jIC2DZdG1nSOvRyAwyryPhs5Oxyz9XsSO8t/WhxTmOtp8gcpRlZmZZMOf6ge8nffviQ23bOpi1RwF1b8/W4ZHBy+X+sL4lRMSsGVsWR68Oc8bYSr4cydVaLgVnd83Sx59Vswzpr2Iw1P755xv56Lms5kwvb00bq8wZrArvbGaYRJme2Uyw+lRCdw0vZIs3eeLImcHxqT/ZwphXSUbAwrAIUHq0j9bxjVXXU2YCPmre7BTr3XDzd8p9+8XP2ruTv3H7AQ1Nx3JfodwXZUUYmlQJyf9XjO1EEVK/Zvl5RXDUMrwLhTUHxoKi/FkTbzTQPw4r9uuJifZD46KXheb7hn7z4lPKfcPzYfIQrz1j/wQ770OKLGe3TguxgKb4+kG96uqeVGGoMnn4lDi16SCsp+yiCOT4XYob4Dsj852YkJpaiuxR/fRUhFAE9G5ktOsrM0Y+Wn95fEc4VZ7bhLr+m9gfuQ06pRgrt+HdvPyJEKQb3x1rScYLm9WbF/yv7PvVlf0rDeZ490FXSU+/KEh81m1nH/cXsFBemvKZ+p6iuc/YfnJF9eGB51tBWGeNGXHziQ8auW7DLJFfPbqys/qqIW7uTKaafB0Ii6ygnJ7zuU/BJOpVPCr9MMI+wdJjK4YOi15Fs1nE+P3JVHnhebtEq8qZb8TuvX7H/fE79RtaYZlQnTwBfSkcxbWNC/kivBlmZjUvBOPJSTtyHrqIfLUYHXl1u+HB+T2Ec59mRhen4tH/C7+1fchwLoWWPFu80TVOIsWpnIA9k9cD5smFR9Hx2e078ZEa1F3GXWwhb0djAum6ZZz3bseTn2yu+eHOOvi7IfKI1FxK1lhcO5wzdlwvKe2nn9QDVrdjBHT4Q1er6Z2IEunvfSvxdy0nxKRJvUUjOVh0fnt9zVR4Yg2EzVOy7gmGwrJYNf/nJF7zplvzdr1/R3NXog6FInZSsnv//gCdAhOorQ9/Miecj7sIRCkN5ramu1Qkp9ceK6/uC2/M5+6HgB6uKi+zIb66+Jvwlxe8tXzEsVpz/pCN/6Ii2pr2wjLMV9ZuWfDPSn+eSNrTzdGtzMq3UTtYxphNQq3sSGRdCY863Qhvtz4PccG/EantcREIJRTVSp1DO86ph01X87O6K1/s1v1O/z4tqx2aseH1YMwbNoSvYXc/RjTmh/yGLNLXhpzzB6sBvLb/izB45+JKbYUHrM7SKzOyArmSu3OxqnNP4OtI+Ecyieqfowpxu7aQ7sXJTExHdvw1CSU5IvWkVYHFnjvJcZut+sLjRopNfXvtQkt+YtMVA6MR5YrbNAvW65cV6x/uzB96rHvhB+ZZX2R1L1TOg+XK84OPsKe8uFnzSZRxtLt1CmwgtlRScYhNRA4B8PR9kdermCZirPfW8p8gcy7JHqcivrW/54fwd//T8p6x1y0+G5/z95hX/9t0PeHNc4rzBB0XT5RKC4jUhzekUHluIC8vDvubd12uqz3Kyg9ChJ2txnMJ7xVe3a76MZ/jeoB8y8oM6MRDjwmFKR/SK/l1NcW2YbwUQDekQPr6U77VHxeJLoZk//CDDF5xi7LoLIXb5QrYnV68e+MeuXlNox20/5/P9Ge2QsdvXaB14Mj/w44fnfP75FflbS+mERZnvEnsTOHyg8D88fuvt98cWAaXUK+CvA0/lduWvxRj/VaXUOfC/Az5Eosj+2Rjjg1JKAf8q8F8AGuC/GWP8tu2EPEdyw6neKcYmZ7jwxDwKfTPT1O/kjRtW4BsD9xWfbXLuX9T8+sUNZ3nLVXHgP/FnPuXvL1/Qnc+5+vuW/GFAOcuwthzfq6i/7qQQXGQEI0SNiQlnewG2xlr8/cJG0V0GustIeavltc0EBNSjEmpmp7CNpaWmejlw7GsA5mWP0ZE3tyu+3l7xu71gB7rXSYEYxNT2XmZvn9hsPigaX/Pj+Jy7bsbLmdh178eSgyuY254P53ccXcEQDPdhJozCLNJfBYYzWbNFm/CK5ODLFL2VQjQISdU2l91+1EBQjIPF+8eI7svVgQ8WD+yelvzh7Bnhq1Jm+oWk/xTVyMvVnuf1jkXWcZEdObNHFrrFEOii5St3xt89fsjf27zH9X7ObNHRZ57xviQaLQSjLGKaRP5KrM5JJm1byWkARbCWrsqZlQPPZjuelTt+VL3hR8UbFrrjs/GS/9Ptb/E7X7zPuC1k+1KJ/bg2QiqKowKn0bVYh/uHApwUndk7GXXG+aN9GR5U1MQvJHA05pHs/0Pdn8Xctq75fdDv7UY3m69bzW7OqXOOq3HZrkh2nNgKvoAEuEBCspAMMUHGgEVxEYQickHwDZFCpCCBIyRQUCFf2ChQMkmQTWKEYnAAE9uxq2JcpsrVnXPqnN2s7mtmO5q34+J5x5hrl88+VXFZ0WZKW3utb33N/OYc43mf5//8m7FIvluIq4haBYxLxH1VAkDU4nUYOgH85qix5q2meRCnp+PXDdrD9a+J7d3uW5bhWdkwPff87t/1Of/E7fc4xppfePyIV7sNIRj8aLFV4OO7Hd9/vGb87ob1K138L2D9WcT2meHGsP+WYvrRfvFP/IcqAkim4L+Yc/55pdQG+Dml1L8P/LeA/1vO+V9TSv1LwL8E/I+A/xISRPrjwB9GYsz/8A/7AcZTKMPF0SYZqa5Fbjp4QVLNKOu4ZBXuYBker/n5r7d8+OKJq3pgjJaf+OAtn7YTn21uuP1Fw+a7A6vvTYx3DcOLGj1m3D4y3lj8SvLmsgLfKuyYl22APUPzTiKfhrsshqHviqa7+LepQlBpv2956m9JXUSNmn7aLqud6sGw/kQo0VkLo2u8Mvg1iyOx9kKQCauMqhPBGz65v+bdccWLzZGb+ixpuoMQXBrjuaoG1uuB/WBQZ4M5GlIjCH61mlh3A1rBeXSMo5PTrxc6rQpCTJqeia8hILTlkyUmJxwGDe+0OCVt64H1ZuDwgabbDvzeF6/4ifUbnrkD1+ZMozz71PKL54/427tv8t36Gf9Y9wl39shT7Ph8vOLtaU2IsgXxZyHMqFKAoi0Wbx3F51B8H+cEZSEfFRsxYFVNrMyEIfG98Y7/+PgjvB3W/Or9c06fbHB7jS0kpNxrQi2CG0YjRbFKpMFiH4VKnlymvhd/htmt2Z4VKYCKghHFRlaotoxF0614FZhOSCTpvqZ9ZXBnea7jLYRVCaop69PZdWm4ky7SnmD1qXQ7jz9hGJ7LBsQ8G/kj3/wuP7p6y2fDNb/89ILP7q/QOqEUNN1EU3m+9/oW872G9kmeU7WXAuBOkfMLy+EbcmhVv97SvOMfnixU0oc/L38+KKV+CfgY+KPAf6582p8D/oNSBP4o8OezhBz+DaXU9W9KMf4HHiplujfCMPOb2ehCLe6z2crNXz9lql0WLr+C7lPFeG74/Ok5Tx8f6WrPQ+y4agc2f/AV33/+jP55x+0vTjSvzuTaMN7VxEZTPwVQluFKE4uZ5RxoIelAcoO2STHeZPqXmfpRUe3yIg/OZna2zVQ7DTtdNN9gPr3QagXYSlT7gF9ZsUQzl+RiM5RuyGqGteL26oSPmsOp4TvnO3ZXDZ3z7PpGBCwq41ykrTzbZydO5xo+bWleG8ZbhVqP/PjtOyodeBhX+ChhoMep5uncMo0WYxNaJ4ncmix5Et6CrYtl9mCZzo5Xccuhq7lqB3787i3fWt3zB1ff5SP3yGf+hr9x/FGmZNFk3oxrhuhojee1v+Ihrng1XvF2WAOgdaY/1+i9XZSK7qAInSmdkoCJ2QpFe7oSBmO2ELYRs/E8vzlQ6cjbcc33Tjd8vtty3jewt9izxhY1qD0p1F6KnV+JZfccoqImjT1p8TCoM+0rTftWWHsqyc2kcmF21sKqTHVeCoC/ledibMSPFvWuZvW5xh0y01UZE50UdnsqrsGzh+P6oruoH2G8UfQvRAuQu8Cz5wf+8MvfoDUTv3x8yXd3tzzsVlgbcS7ivcFPlv5NR/1O6OLJSmrx9jek/z9+6Ap3BVafQb2PhPofkYBIKfVN4A8AfxN4+d6N/QoZF0AKxPff+7JPyse+tAgA2D5RPwGIm4+aWW658OCL4m0WmyRHMZwElGH0G863nno1MXrLj9w+8k/+nm/zi3cf8OmLLc/+P5bNt080r3um65psFO4g7sGpUFRjLfRLM0qhmSmi76cPq1ROJ80CLM5kDUmhlX+LFVS9JB3bUUgy05WVSPTMEhIpZioUdR+414639YbVWhxM4r7i7dliu4CrghhhRrkQlMr82O07rj4Y+OzlFb/6/ZeYVxX5V9f8zacfZf38RGUDrQu86ATV3q0bPjtecRhq0dcPVhx0Fdg6st2c2TYj+6HmeG7QOlPZyIvuwE9uXgPwc6dv8nN8kyff8f3TNQ99R4ia2gU65+md4zeGW/ro+N7hljf7NePgyCVGPbeJ2CqMv7gbz3oLMxuDKiQGLJb3uqjyzpPj0NeMQ0U8OPRZi3PR9N61dC4xXwVwnK4zaSPOq+osRJtZ4t28kwKQtRT02YiDcr0Nd0KjdnsNCfyzEoSaYNrVVG8s3SvJ/ps2cp2IUUu5Z7IUsvEmkysZe7TQRTh+PYt78CqyuTvxI9dPfHP1wD7UfPt4J0X72GKdAEfnU006WczeUo0U5Sa0rzPrTyOx1mIyaqF5SFTHhJ5y0bP8IygCSqk18G8D/0LOea/U5ZvmnLOaY2p++9/vp4GfBqjba+xJMtZ1gNFLy2/GS277HNU8q/v654pwLV2DStI56NcVU2fJ68i3wx3/2W/9On/yJ/4Gv/jRR/y/v/m7OP1HG25+xVM9TsTGopRIiqeVLQQX8BtRYnWvM/1ztcSgV0/zE5ebNlsWnX39TjPdZEKT6XZyocdahEhZK6qjmDuolJfkoWqflxy/UMwh5+/Hu5rD0aGion1lsGcITSWruJsJWwUSgnYffMNPbl7zT1//Eu9ebvkP7n+CX/jVr1G9dozvrjhtE4/rwPnWcVg1hKQZg+V4aEgnaf2xQhUOg+UprTA68+O377j94IxPhjEZzqHi5x+/zkPfcRxqauf5+nbHj23e8Znd8p3HO56OHUPl0Spj1IohOF7vNgz3reQAViV6OwqJaLoq83L5GFlo42YoIqtJLcKiPBhOoZW5ftLCfBzU4qM4Mw2FYSlFJHYwPMvEG8kVyE8V1UNxXDLys9yB4nuoFtcioIS9ys+2BxldZtNT3oqLT7UrDtI5MxUbcXuU6yU0UtymdZbI+UnJlsZkprtUMu0ybjXxUx99ztqNpKz5pd1LDmON0Yn9uSFFzTQYODh0r6iKCUqqgJzpPhf36vFaL2at1SFTHcTReLwS2rwdfoc8AaWUKwXg38w5/zvlw6/nNl8p9SHwpnz8U+Dr733518rHvvDIOf8M8DMA69uv52wV7hjQY8KOBt/q5cnP6THyhSJISU4kt36Tl/CK2IqXWwoKP2r+H/nHaH984o89+1v84e23+dm7f5LPn33Is7+jaR6kdbJ9pHun6O9McbGRTUS1zzQPlzc3tIU0M4rU2D3mpV3MR1nDjLdS8asnGRugzLE1TFljx0tasDvJRiK0ohv3W5mLxbAjQ5XIURFrTfsa2jdQ7TX9BzXTjYVWrtZ3xxV/z34EwO/rPuVPfvgf8ks3H/FXXv0k3/vsTkwsBsPjuw2P92tBxSuZLVUXUDqjdSZFRRosaTDsji2f2SvsJtEKKsfR1wufIWfFVdfzUbfjeXXgYeqYgmHsJQb8XnX0YyV/L5HiKoIqGgcZpTKhZokeyzaDnjMfLqYg2RbtxoMVzcTWQyieg2PBZopugvReAWiLKWyTYdSoB0v9pJfVZi6qR11cksjiTmzKRmI2j5lZkWKMorBHUwDLeb18GVtdAeCnTfE3uI6QwD0Jwy9so4SXTBqior3p+Sc+lkl9P7W861eMwVLbILmIRSSkz3rJYYyVYBNmhO4z+Zn9rV6sxc2UqY7SFUxrvVC7f0cJRAXt/7PAL+Wc/8x7//SXgD8J/Gvl/3/xvY//95VSP4sAgrsfhgfMj1hrYfn1ETMmbK0JK9nlu0MArYiVMK90gO6trOvOH0pLaY9lhlslzFGjsib4hn8v/BRPP9byzz3/m/zp3/Xv8X+8+kP8lZvfx93PVXT3xU/gccKeDacPHT6Jp8H5pbjnzrbcQtwoOYFOQMTqkEhFCWd7eZP65/J5Kira+4Q7Z1TKhFpYczP6HWv53pISLC3k+KzMjEo+z648/kcie1ez/l6JGvtMQNHQGUILu7Zmt+t482zNr22f81G748ae+S988Pf57Oaav/fwIa8eN0RvSINk9DFq8irSbQa6WuyxzkOFTwqlM0plnvqGXf8hWmWGyTGeyw2dlISIAFZFzqniYew4P3Tog2HsLFPn4OCWky+5LFLo0s3J38EeVcF+sgSYqFksk8k2oWophOpspItYB+gtzWtL/XRR8GUtUnDb58XBKDYKUyvSKOCeGYUZmY0UjFy8DWaOiBjJSihJ3Mj3ML1agFsA+ku3JuK0C4lM93nJRJyuC4EsKuxeF0ameNqro0VFRf21Iz/1weecQ8VUqsjKTazcxCdPV/SfbKhK8Zlj78JK/Bvre724D/Uvijv1SYhXdsz4lWHciK9FNiKD58sbgd9WJ/BHgD8B/IJS6u+Uj/1p5Ob/C0qpPwX8BvBfK//2l5H14K8hK8L/9m/1A7ISBxQVjHBWQsIMER0z09YS1gY9Sb5gLmskM2a6twmUZriT06D7TIvpxSph91qQ5tc1/6/hdzP8Hscfe/G3+W88++us/vDIX6x/P/HnKprHRJsy9hRYfQ79M1kfxhaGW7m4KLiELm1YAIZbTTKS9kIRHLljFtNPJ+BWaCV5yAwZFRPjtnQ3fSaUK9hMeZlDYyNfk5sIXhN8BTYRtpHTx4buc7WYT7RvigrQavy64d2HFW+eb1ltB1b1xG175mV74Mev3mJ04v7UoTay4x1HRwyCKxyTFNYYDLm35ARjsTTLWeF7MS6xoyo3l1x8U7B81l8xJctv3N9iH8TWKgxKci6qRCz2X7ZYk6sIsxe+6S/x3KG9pEGroCTtyMha07gkUumoUCdL+6mhfspLHJk9sSQYzbHt2c0OyWX8mJ1/YqmupROYswdtP4evyBp4AYnHy/uvg3QIM44T2oJXDfIezlLgMDslncvr2haV5mikKCrg456XVwcex46VnbiuzhiV2amG7z7dMn5nQ/OkF5WhSgJOxjrTvta4PcvPu+QrSAFIRpivxkuXMl3J+9be/w7GgZzzX+PSjP/mx3/+B3x+Bv753+r7vv/QUXao09YQG40Z02LVpX1m2hhSWanNNk7aC9mie5swo6Z/Ju3h1a/A6SNDbIWmmbWietL8/O7H+aUffck//fVf5adWn9L94xP/B/WHWP1KxbSpWL02VLtA+86jspP2fo7ySlLt7f5yikPx4Vd6Sc4NrRSo5ilh+0RoFL5VJCM78Nk2q94nXJ8YriUDQaVcPASgeaMJxVhSVHVW5tzZSrpYhttR5Msz0NgqzTTUHJ9ZTl1g3zUcNzVfWz/x8WpHzorDWOFMYlULajV6y/HUEB4azFFjtOy9yUpoxaPBPlrsSWbzsI2odcDYxOFc88v+BdNkme4b6nHWGSjCpMiz+chZhEbGy00lUmtB7bO9mJjMIi3KqIBN5KBJB7M4ItePJdasE6zGlQLgV5JUNBeB5C7K1PpRLbhRaGV1Nzsc1feycYpOcfxYrN5BjDrdXroD7aUAzN83OXmfxRdSnm//XF4f00tqtF/Jaju2svLToxitZgXxxrNuJ4Zg+cb2kZURG/Sdb/il1x8Qf31N8zRb7Mk1Nl0L8ad7JRun8Y4laal6Kh1Q6U58W6Lna1lFkuHqO4nV9/svvf++MozBah8ZbsWSSZebaZ5nJIJKkVqEZpqlqrsSFFrvE1lJCAcKVp9lzh+opU00A9SPmunhmv/z6z/A3/rGj/Dj12/53d/8nF+ePiZW4ku4/kxTP3iq3SXSNpRWSmLDc3E+EsuxWaMf3cWwdLxV7K+0xJSP8rmhcAtiLd6CKmuahygV/hp8GTPcvkRKfwZiOCHFzo6ysZhNUEIrxUWs05NYrhsZR6q9Zbw29LeWe5WpbeBHVo98tNrxudpymirGSdiHUzCE0eKeRJY6bTNxA8oktE2kpEp6kAAZKinyaKSztBGrE4XgJ+lLJS9Be0U+2IuxqINgQZUAV1nDXk5r+d6CA8SVyJaleIi/QNZy2lX7XCy21BIl179QnL8majqSQnmFPehSMPKSyeBXYrgRVglzFiZq85AZbxSnr6XSPYpJavNOch6hFNtzwq80Qcm6cY40k1xK6SqqJwE0JSux+BwWhaAAnwIUmlZWux+vd1Q6cIoV+6nh22/viN9d09xL0cpGbNT8KouM/KmAqXfvBbAeShdUAHNfYsljLSxL7WH1WWLzqwfMu92X3n5fiSKQjaj46p2gnHP6D0pe2PkEBJZ5ObQwbSXZtjolqpLiOzvxiGssheAxI6ZQPxp2n7zkr714hrqZMNsJf9SgNUelic7JSX0UOzKJJctLAuzcPiYnJ5J9TLhRTgh3kot8uFWcPlLY4oSb51OveNGFRhFrU+jKlJ24uBpprzAln0+HXDwJJY9Bh0yFdEzDlcZ3mmrvad6OdG8ssdKkWjFcGU4fWXq/5rujY3fVcNP0XFUDrfU89B1Px5bxvqV6MJizWlR+5qThUJNtFvCwzNg6CsMRNH5j8M8zxiSms0P3elFWCoAlbW+qS/DpbKZSOBNLslBRYOpJLmpQ5EddOr1ZWUjJlASVZQyo9nJTjbeK84cJNl6ixosbsS5mp9P20sCON7KOs2dN96nC9nJQnD+KZJdxT4bV9xXNQ1rW0e6ccftQPCQ143WJsD8Jl2QOpplv2lRMaAARZKkkhSBCajJqO/HB3Y5vbh94N6z45HDNaaw47Rv024r2XdFOVHD+UIDiqqwmh2d50SC4s3zeYu4yyuEwB7fOzMHV55HNr+7Qj0fyMH7p/feVKAIAoTNCqDkkxq3ESfni4abHOQJL5m7bQ73PDDeSWZecpt6lsisuHYDK5GOx0LotfgX7DMhc3b3SnF+2kpZrxYffdwp1K7OYmaS62kH2v+6YqE6JZOXCsiXwY9xqmsdUwkoU7iyuxONWVjaLrfe8wbAyJ54+VNRPMzCoFn6/mIGINkFGHll7VSdZRekA9pSojBiy7r/h6N7JKKNSJrrSFQxQ3xvGXPP2bHlrtiiTsVXAuUiKGjVpdFHnhdV8kaniBlzScYtOYLZnn2frUdecG+EYaF9a7qAvK7YiwZWLFuwpL/O1XxXHo5Ix6A4Sq25H0W/EwrKrSiFMVi3W53aQrmj2KzC9QvW1cAJK6ElYzYKkMn44eS7NW0P3KkPKDM8Vw52MBe7eFHWj8ENmoM30Cb+1jBsRsvktC0ck1oXTEAQIhrLxmUA15aSCS9z72vPND+/5sNvzK4/Pefv6SrYEgDlqus819ixko/FGOgkzKTEbtbJFcSe1rCB1lLSm2ckKTSmCGTdC85hYf++MOo+gFdxsL/u73/T4yhQBkCqmQ6Y+RHyUdc60VUuMd2wy0w1Uj4r2rWwIhpsyu1tN+yBWy7EqSHoEssyLp4/UcupkLVl+tlcMdwIsZlOYaSvwY8ECCninMvTPxYSkvQ8FIdHLnBgLG2tO1TVjouvlFJAVUsk2dKLmGm+kao83soKqdxm1L6GRUqeITi2zr0EsvECVNBmF6xP1Hk4faoY7Q/tOgipnbCJZKZ7VkyaMmtn/IDQO30aUkzCS2IqNeH1fHIB1SSZ2QtaZadVy8sgJPc1dmS005zYSosz5yiSy1+ijOBjVj1DtxFF5znaoDlKU016+TXUUQ9Fs5ESjOBfVD15svLdWAGEu7bnt5aROVjFeKc4vSqpSlcTG3GvsXizBTVTUR6GeqyyzcnIScAKMRwAAeLRJREFU++ZOUmwFnFS4Q6Z5KlhU8YqMJRJdTxeTVtvLiX38UH6vaifXjDgFCzdAT1IU053n937jc7TK/Ie/9rswn4vycC6uM+A7bxZE+wF+G1FZYY6znR3LQeHX8l7N5CozCW6gg7xG1VNAn0YwhrRqiOsafvkH33dfmSIg3vh5gSDNmBdUPmvF1Ak6mrpE6DSh07RvubSG1/Imdm8k3DQ6QeYlfVcKwfmFSFjdXgpFvZcoZ9ASOLoqdM8oMWEq5kL9zMVxGHQw1PuI7QXFSoESOqKWwNAlHCOCCYn6HElO2uhsFNVRosWnqwI0NTMxSi06fZE2l6Iy5QV78GtF3oBKGttnVp/JCDVeyc0wC5IEtCy77b6csO1lVtUuEX0iG9G1C1VbvO1ik4vHY3FYVrLDnx2MU5XhZuLm+kRImpwVVieaymNU5v6wwu/EIGaOY/fdXCjlNK9Osjqd13zJKUItJ5s5Z1avRuxuJKwrtC927pUqXo2K6slTPSbOHzX4lZh/ALIC9WAKLjCPcK6EmURbmJkF9APZCmQDzTtJjkoW+mdaivtCzBGNy3zq+rXkE6Az9b24TfUvhXQFoEvu4PTRxD/2rU/Zjw3f+9WX1K9l7R3bErayk+LrN7Nvg3QtkhYF7lHjDhd/hViBL0Y3pi8jVpD1oC5/rp8i9asThEiuHFlr7Lvjl957X40ikMsaLUmrRtakTroCdy5kkaTIzyF1kK49o7P4K/UFo4rpCqaNqLQkIEM6guog32M2EMlaCcEnaNw50b6VC2tMCn+V6V8m6SzeCJKf9eUCFEqwxh0CLmTGa2Ebmkk+TyW5CPxaLqKsFK43NPee+n4idhYzSMrS6YVl2qpiua0uAJKTUE9xBi4Jx2dpl0FOpeFGwkXMKO7BoVViy1VnCcYobf6c7OOKVt1vFEFBnCrMUS8mnuMdkMvO3oiZqu0vxJvYiFxZRZieR57dHrnrTrw9rTicGsYscl2A6VjR7OV9sH0qDjryc7KWNW91zLhe1la+k7Z4znKodhP6PJG6ium6YrzWspJ1ZfvQKIZr4UkMd+K+o4OifjsHwLDYqM9j5EzTlmyFYsNe0pNjLYdJs5ONjiRQv8eILTTw6eoShRZaGSXMIAnD+VbizNPJSWjuCNMHgY8/fOT7T9fsfuOK7jNTrMMvEWzz1mJWHM5pTmoUsPb9lGFZQcq17Iq+QQXpSmRrlmkeIu3392K6aw1qGNE7Dzl/6e33lSgC84pNVoOldcxyQ4OwBtu3UtJVMEzPgXUgGkPfJsZbLUabQfzphheZaidvkD/JSZj1fApJNZ+uZjWgRIjVT+XknhTDcxheJGKjSa80q9cS5ZScFCYzJtn3HwNmStKuzqIirbBDJE2KcSuzZI9hWmu6N0G+Vpfd7WNER8N4Je1prOQkVOV5hqaQioJarKmrg0hrh2uN74DtTFQSbgLAzMEXgEtdfvezjBLjaAmdkJSWfIQSdKGCdBP2LN3BnEgcbz2mDWiVcSrzuFvx7s0WvbeSJlQyEFWE5qjpPs+096HQwR1ZaXiv42geA+5pJFUGFd2SEKVixq8d/qOWaaUXWzexg5eb2W8Vp42g8BIpxqKdn1OOVIZQszyneUzya7mhzTTzLFik7NNaREV2kOcRGynG420W/0Uv1F+FbJuyguFrnmcf7Ri85XjfYXfCKJyeRW5e7um9ZfcbVzSvjTz3K9lEqEnhjjIuhJVkJIiGImOPptiIy/NIxaw1VllGwZN0iipQyGgyStaPQQpAiJAz6ukAWkNdiTP3lzy+EkVA+Yg7BEJncHuPzqUryOa9tN9M/TjjBpbpRpO3AbwibQLnVlO9kzcgXEf8XWCKijwYcdE5lZOozLMSR14IPae8MMOqJ0G0++fS9p4/UMTG0L1KC3AVWl3a/ow5eeqQ8WsrY0pTdtr3E2Z09INhvNKFfmyp9zLTyvyrl5wBVUgoyYBOMs8354vvfFpJMdBB/OnMmOnvyvc1UB8krtqvSmJSLnvjtRRGvy0n13sdgr/OTPYyggHiRxAKeadh0fsTFGkyqCoSR4t6dFQn+X5ztzDbp9cPQk6xp4ieIu3rRP1Y1oyF8KWnSFw5UVVWSrIhgenOMd5opq28Lu0bOaGFKq7ob7Xw8p10PGaUGzg18vopIZcKFjDHrs/koWIcO1N+s5UDUpW1sx0yzb3MCP1zx+6F4vz1gOoiaueo73XJY5TVbvqJEx/fHERs9W4lBqAmM91Gbj/Y0brAZ69uqItewW+Ke/CoqR9LAehKB1AKQPPGUt/LChKk4E1XQILmodiwuRJbNxTL+l7GJ/f2BF6qoRo9edWSuxo1eFT/FfcYJIP7/Ak+vCa2FrcfMWOEKLZasdVMK7341icL7SstOvmPBpI3UEf81wP6bYXZG6LJNNuR7vYIH8HTbiWxXe8FauhJUntjrdBXLF7y2meaezk1oLzhVgw+zZTJlSLWlqrWmD4ue1rbS/cQOoMdIs2rE/VbRWwd47MK3+r30nVEwTjnEs7kkGyKeGUFUPjxtuTjrSOnH9HU7yztm7zMq8OzTP8BuLkFP+dlztVeboh4lUjPA+HoMEctUWVAnNN8R8k6cHu1gE2xBZQAdXq0xVQ0Y8Jl/TmHuGo/MyAFz/ErCY7RAZp7jz2H8l7KKjO2wnf3regJbBFXxUpSeGb0PdbS9QhzLi8RavPPm2/w5EonkgsbMciNFFu1ZBDqqWwhzvK+xlrGATNk1p8Fuu/tISUOP3nL049phg+idC+vK9rXclhkBaevQfpdPW078en37tBHgytiJ/PxmR999oDRiV979Rz3aUW1K0QjA3ZnFknynLScamE1tm8Mq88E3A61YryVa1CP8rznTEUzCgioEjS7SPtqwBzG8l5piJH48lrEamcPRpO3a/jsB99+X40ioGSWdu+O+LsVYV1hDyN6ihiryVZ40F4XJlWJWKp2iqGqcR/0pIIw5ZcjeVfBqBmOFTEqrjc9X3/xyMO6pT/XhN7CpIlVIjWy+9ZBka4yJBkJzNJiS2GIDQzPZCU18wZipVBRyym20JkTodWM16LQs4cR9/aI6WvCppYLvRYGoe0TzQ5OjWHa8h63Xgw8U11AoiaiV4FVN/Hx1Q5nIp/urnh6WKFOltxGtnfivPv2sOL8dgU2oetIOjiqR4PdGwLlBtmrZVSwZ7W04qa/sOtUFlTfHS66erEPv2wRsrq027pclGTZ3586WXO4oyK0FbZ36Chr1JnxacZEew5on0hG4be28DCkmKhUcJyVrBjdWTCd8UpunFhRdAZyiuKyFLOzkXbfqsXUQ02yihTTmrxcd9U+s/50onpzIlvN4ceuuf99hrDOuCcB5erHXJiJcPwGxI8H0tHRf6+lLtum6S7y7OtPfOv6niE6/v7nLzB/fyUrSUSIVj+oeUkjI3qW8Fl7lNm/e5OXNKL+mTz36knciG0vhjRzxqMdpf1vXssaMDcOFRKkRF41UgDGQG4sORrM7ndgL/afyiNncu0gROzTgH/WEbZ12Q5k9JigERUee2TVVWY7e1ZMu5ru+YmcFePgUNcT+ejAa3yseHusWN+d2bYD22ZkDJanfUd8qAW53ubC+FIS+NBkdAv1UzntLCRV9s4hL4mxWenC2JvXjyKAsmfNeOMYb52su3yUsNQEqbGobJi2Vk7APtHeC9dhvBUjSpWkrTWDgiaTmsiLuz1TMOynmp+6fcV/+cXf5deHF/ydx6/x1LcYnbhtTvxnnn+bFz+5Z0yOmDVv/Iaff/d17o8dNmmGpsKnSopZAFtShoFlLEhWLmzJhgQdE9HJiDCHq4y3mdAlGRXy5WsBaQ2ywj0JgUf29bJ2m1WEySlQGvqEXzkZba7eu2nDBYwDUNfgbxPrj/d8uD7hoyFmxdOpLbZomnQS9uOi35gLlNyHwgNYQdaCNblTwS3OHv+sY/+NmuPXpfNpX8tWyIyXteLpoyILfltTncvmwEoE2fMfeeSbVw88jh2/9hsv2fy9itXngh31t3opPvOqE6SLM4NaxEtZw3CjGZ4VbOUB6se0UMZTJc+5uQ/U9wP66QRaS8s/BdThTN50cqj6JGvBnKXL7ocvvf2+GkVAKwEznIR32t1IuKrFccaoghgHuakQbr73qpBxFLrTDH3FdtMTo8b3TuSyR1nHkOEY1gzbis2656od2L4YeN1sOL1ZoaIANuJ1X2StiBTVFgccHWaeu5we47Wif6FAWZonmbdSpYTw9OYEecXwzDFtHCq02MeMPg1AQ6rl9/IrVazNZcY/Tob+g1zCWMrcd1J4X/NaXdGtR4bJ8brb0F2N/MHVd7myPY++Y0yOfag5p4oP7I6vu3tOqebb0wuuPug5hppjrJmS5Tsf3/HqaUP/0EqY5Zz+M+byu+ZlHTaTcuYY9tgW2+/nnvZqQOssZqfBiBy5t+izoXrSNO+KucUhLYGwsZFtQGhLhFtrOH8ougSQsWTOQlAvR57f7llXE3fNiT909V1euh1PsePT8Ya/f3jJ4C3j6JaIL3csHUnReyQr779sBRQqCyVYh0zzGKl2ntA5hmeO8bokPRVlZ6yEpzJdS/gJNqOmS1K0ShC7jHveo1XmFz7/iOFty/aXLZtPJXfh/Oxiby+pVxfxk44XP4xYz9mL8nyrvbx2ZpQg1lgpmsfE6ntnzGGQ2b9yxK2E8Kr9Sdp+rclWE1dyr7g3J0gJnOPLHl+JIpC1IndStdAarMYMgdAafKfxK03zztO88wzPHKEReqftVTGU0Bxbx9h4mtoTJkP2VvLg9wLKcIJ4bni8toRbzcvNkQ+v9rzWicObNTkoptsseXhTyb9Twt0OazAlTnu6EgKQADeK/rnCrwz1Tk669LKSOXIIqOiYthqVHdBhThMqRuxhlO/9ccW41VQnuRDah4TxRWtQWvS5IIy+5vQ1xe2zA2s7sosrau15NV6xDzXf6u75se413x2e8beO3yKuNXfmyDnV1Cpw05zYhQ6fDc+qI99p7/hkfU3/gRML7sea6l6Slu1R0Twl3Cmho3AQ5rTbeb4miDGpdRGlIAYNO0f9YC7AYOEnHD+UzieViPAwt/AWUhOpbgbWlWwetMpYk/jxm7f8U9ff5rndE9E8xY6NlmV5ypqn0LGbWnb7FbyqaR4EtJNuTU79rBUUCq07C57jzgldoufNOZCclgKwlZGzOkjrPVxrYRU+v6D2yutl8yIsz0wwmWlX8+57K+oHxcvvJZonX0hMAoY2j7mE28jrOFOoZ+GPcFQuGFS1g+6NiND8SpOMYv2Zp3rbo6dAdobcVGSn0b1HPxzAGtK2IzVO/l0r3EMvXIFVS2rdl5oMfiWKgGwCMqlx0jIZRaoN2idUNoxrxbSuWH8WaN55zi8d01rTPEVUEgff/B3LKXfkZz116+mDLPXDdUAfTXGsUeSz4WhaMcZoBzbNyHldk942Yiul5M3y60z9VOzG78TN1x6EYRY6iokDRQIMU9nZ+6RIpqZ5lHWgXxlxdyl0Wj0GVEjYw8Tqc8V4bUV9yIwxCJFljqfKpiDXZ0BVnFY1IWs+n67w2fDt4x2vj2u+V9/yUzefs7Ij3z/f8Lf4Fv/46rsAPIaOc6p45g4YMudUsa8bzqFiezXwoj7wblzznf0tD/sV58mw21esvmsLzbZsTmYVZSO7teA1oQSXmLPGHue2V34XMozXmuPXM+HFRLsd2LQjjQ34pBkmR8wKZyKVjdw0PZ2d6OzEy/rAQ1jxd49f437ssDrxje6BF9WeXej49uGO735+h/l+Q7UryrkK2bA4wXXkOWfqfV5Wu7MATftEqgzTtWVaFZ++faZ9FxhuLMOzOXRGySyoMmYs4SonKWYeVfIFjfAMHqVjDZ2R62PMokWImbDSxGKAIqd/kS93SiTkDYIhjbB6lejeTAx3TrZBbybsOZBrQ2ikW1Y+oseAPvTkriF3YpkHgoXoIUpXcL0iOfHq+LLHV6IIEBP6IFU+bBt0kMzA3ChRcLWG8Vrx+Lsd7duEOwl4MtwYujcBFU2R4lqO31iRX44064nxJOQV/YFnOlvMzorDbVYl8ENhTMKYRGwj9p0VBZwupJy68NrfCXfA3yRUFrAoFUHQbKqmorypyUJ/pwmNCJGqY3FGyuIpALLmVEPAakU2CjOKXmHcikec8dKOqizzdjYyGqy/B6e05m+fv8mnH1yxqUYOUy3TVNK8Gdd8w0y8aA68Grb8Vf97uHUnxuR4mFYYlfh97SdUKqJVYm1G+lTx5FumZPiDzz6BZ/BuWvG2X/Pt7jmxqmnu80KamleSZlRor1HJ4A6yWlUpLwSceVXp1wLetduBH3v+jq91T7R6IhaJXR8dB98wJYPVCVsih79zuuOX373geN/hVp6f+PANPhv+/vFDfuH+Q9792h3d55rqKb+3IZB1Gwie07zL1Ie0aA+odVmdZmJjRW+/1viNjGX17rKxmbkXsZzcs2+g7QsD0oiKr9qLp4Q9Jcwk2yEAe064g3Qa4414S84huEIuk7FA+CHSvZgRNp9Emjcj410FWTYrZORQHKM8/5BQPqLGQLxakWuD7r3cM86gglxrcVuhQkafPXqcgZ9/8PHVKAI5Q0qofsIC4aoVjX0uLK8xE3sBZ3Y/qmneCkAiF6Qte2Rp0Vff15xyw/BswtaRcHKEDNVmItSRdLYoEBFN0nhvyEl86MNWU90bqf6q+AaUU7i+V5JNV4k9nOTHs5w8cjMn2vskirMrAb7qfcL0CTtE9BBQ/SSzm9UonzDngPaaXDYks77AJpnLQ1PkoY10H+J1WPH58TmfdRGCQreBu1uhhY7JsjYjGzvy6fmK7x5ued4euXIDu9DyK8OH/Fj9mpd2hyHz+XTFtw933J9XHH3Ns+bEfmrYD40sPAp5pnmMxEqUiyop8QYovAV3kCKBUgwzM7BYsk3XklDU1hNWRcZosSrSlqiw0VquXc+YLCkrnIpolflOuGMcHCSFNonjVPO33v4In7++xn5ac/NdcCdR/IUGVFbL6ORO0H2eaZ6iyGrrQsdOwg0RzCMzbjShE9ceObFFoWnHTH0QND6Ue2fefgioKe+9O0kB0D6TKkU2BpVE3m56IezM1vY65GWrZSbZJl1UqsL6bN8l2tcjYSW3ZbUL4nAUEvZpIFeF2FCA9LiuSZXBPZxRIZG6ajlwUm3RY8TsB8iZuPnyCKKvRhFQQMrkupIV3XEidQ579GRdkZy0YvYMYwPnjzPuIGBW/0Isq9t3afGbqx8Ug3GErcKuPOHk8K9b8kq84gFSUqzakdFbht6QegsmM37k0UezoOd+I6fBbB82Azr1Li2rMiEQlZ3z28jm3Uh9WzFu5aKwQ8Scg1RvH2CI5KsVceWIjYHCIASoDuKNkJzCjknIT00ZF2phl6UKCes468KUs7wdJI6rKZ6AtQ5sq4HHoeUX33zA882Rn7h6w5u8YRdabuZlOdDZiSfdcn9ecfYVT33D8ZMt7aeG9o3MyL7ThEZLNmPx36MYicRaMV5rkdd2FJ99cIGiWTA86g0hGn787i0rO/IwrfjV8TlaZW6qnloHtEqFkSheBXXj8WfH+K7l+5+scAfN9h7qJ2nv45KTKKOHO8q/VYcixfZ58YFITuG7CxA3bgSc1D6LDdwxEjqD9pn6IRBb8bZw5WVKRi0FQFarYi9nBnG8AsEhtE8on8hOc35RExrxvZi7gHmNOutDdMyYo0jdu1fTUhjcIaJ9wgwBvTuTK0dymlSZZcVsxkj12R5iJG06UmXKwaSwux41CHV4+mDD+WUlHuE/4PHVKAIoEaj4QNq2AOgpymbgFAhtVWS9EM8iBhqeJexJWFf9y4zKegm1nMk3qjcEDdV2ZNIV5kl2falLeJUZbSRnSeVRk7544t15/FZh3zrZNxtJ65mLgF8VZtyTAE2hlnkvGRhvLGaI1G8H7FkQWXPyqClIlW7rhcedrSa2Rm5ydXExmpmJySqqg1ioTRu1kGdUQMwybS6ONhp7b3mVJd34a5snKh0JxTqsP1V8v7/F6sTXVk88JMP38w3Akl9/3fS8Pa24P3acdy3t54bV53LSZS0U6PFWLfZtAHpQuIMmH6UQzLkN1dOlM3BHhe0N/UvFqar5pLrm1WnLfqjpzzVKJzargZfrI7f1mVoUXZxDhVIZNRjq16ZYaOWSfiz2btNG3mvTF4+9ACRRIubi5JQVS7GYR7dpK+DrTC+WtafB9onqaSI78bd0ZW2XjKyYUklfbh6laKiy9tRRRj7tEyomUm0Y7pzs+U+C8IMUxKV7LNeoGYT5172eMOeJsKkxQ8L0AT0F9BDAWcJdi+8ssREnKneIVK8OKB+It2vCppKT/zzJaJ0Sad3Rf33D+YUVG7wveXxFigBkZ8EaSImwqUXBF0VLYPtErAy2L3z6VhGzrPX0JC/s6WuZ9nUxZOzEQAIroFbwhmY7MpqMfVVRf2rwa835mcGuvSwlvCp7cS1RaC8CcZOwb83iYa/9zLMXS6lkFN1bcXfNRjQA00bjzq4QcjJECUBVUyB1FckZUi2ocao0KggTLLQXB6KZ8psbhUpFjlqIL6b4zUsqjpBmwlXE7g3Va8sbf8fjs47b7YnaCBppbMIfKr77+o7+1uFMXHIFlMp0zcS6nnAmcfAGdbBUBxbl4lyY4klRWUU+mGUFp33phoqZhj1l2sdE/ejFDco6VJJiwa907EMnbLlV8dyvEr1N7J20q40Ry/KUBbshXsDX5C7WWbPFm+1ZiE/kjCocBEHa1eJOlY0iJ0jrsjbUM4VcMV5pmicxnDW9J66qcuNKMVYVRawlGxMzpgWE0z6hQkJnEb/FleP8opIotfMFA8hapOSz25IOIjoTzr/HPg2kWkA/U9iVqbJkI6f/eOPwrbgHN28n3JsDOIv/4IpQErjt/Ql16uVAuVlz/saW0wtDvU+svn/p/H7z4ytSBDIqRNJKL7NSbGQ7oEfJIxCWl1hGhU7BRmSxsyQz1ZJb2L4SZ1lfJdxKWuOcFcEbbOMJH4DpJfXY9o7xzsAmSAKOFwpr91rhjk6IKuXmrx/zMoPO66PQCfqtA6w+m6j2lv7OMG0Mpk/y5jdy4Vov9tOpNoRWQKlUzRz/i9b+/VNCZQRbQG4Cv7nQY5kPlUmAzLiSgdUcND63vDo7TJWwLhCjhqQIu4pX+Yrba8EPYtTE3jKdK461xGn53uFKUKgdcpFMixFs+5BYvc7LiQpSJKaNFDAzCRpeP3oZ5YwiVbrItQtZp5PRoS/pTapK5Kx487jhDRuqOnDd9cSspFMIkg6sSpHJTn5vM37R/6B+Kg4/tjDyCmUaSgGteE+kxFJoQdiJ7hAFTFtVTFsheYG8N7PMW0+yYUhOS3GIGaOlwMRKTunx2hCL/XeyarluQ+FaZKWwQ8KdZVNhh4jZT3LdW43uA9lowsrKRsBoputKaPMJ2tfCQE2bhummIawNbh+xj2dhC7Y1VI7+4w3n5wY7ZFafDpjTV1xARM7k40mcmO42C6MsOYNLGXuUUyU0okSr9tINjFcBTCaPBhUVcRs5a6gexdTCXg+smokpGHwwSwrO+CKiPjOYAZrXGj84wioJhbNXRayRC+UVyNKBuBPUT4HqoLCDlTZei9rRDIbukyPta8PwvFn0AZLgq4mrStaDPpGL1h+KcrB4ErheWlk3vZelUBfAqzgZhQbiqjD1VIakFj1E2IgJBQn0zqEmRTH4xZQiE5LiWNei/TeJZDI5KvzJoQZD9Sj+e6vXkeZeEOewssStXOx2SO/lA8rFvv4sFkaenJJo8NuqBMgk6ncDaMV4WzOtbXEckvDU6AxD3wqfI8J5lTnf1Lg6yMndJrIT78DZPccMcjdnU9KLd8KsM5MQa2ZjVjMWG/AtywuuivvOHGpje2jfBVTMDC9bfFe2M8UUZi4WJmbMGIm1IRTps6z4LKlWBTOZwUnKaS/jgryH8vPdOVHtQjGgyehRKmR2RkZgeykAug/42wa/1hgP3WcD7uFMeLZmunLERuOOkfq1FPW0bkHD+KxlvCkdwCe96Aqmr/p2QCkwhrw7YGLCdJXMyq2soKopUe0mUqXorYFKyDx+bdEfDJjVxHisRVF47RmNxR41/VPDix85ctsG3hzX+MmSe4M+a7IDipLMnBWmNxK3bVlOYzPlRcATa8XxIyEvNU+R5ikSWiFy6Jjxa4162dF8eqT79R7/XJgfZu9RKUHMKB+wg0clkcvqSeGy+BNIwKmcGlmLNFQVx5jkxHLLTILID1njbwTkVDaSB4MaNHQJ0wVh7p2c6BrKpmO22nJPmnFcM1Rzq3pREepReBDVQViMM8CVtcy2sdKMW9Hxx0o6nPoxoZLsxFNd1mG1WsaI7m3AnDVh45i2ZulypGiAfjCYSZFKV5fXgW41Yk2iz5CUnMppXUabgylgLDT3xbXIU5KLBTdwp8IJyJBqhY5yN8+5DzAXtCyzfYKwNoRGi43cwROdJjlZ3aoohjex0uKN4ARQlHGn+EaUgmEHufntUAoJQK0wXl5Tt/foIB9XUfb92WrBjCpLWDnxU9idCc83TFuLGTPt6wH71BOuWvzGkZySAvDmLJ3IukGFRFhXxEZT7RPtqzN636NChPNX3W1YadisUDGRD0eq77xBfeM56UVNrDWxNpgxUj949JQZbg3ZaOoHTd9WqOuR9c2Z/lwTRwPXnpAr7L3jk+6ab72857rrOZ1rss7i1XaWHW/wiv4DcWYxhQ8+M7pSIeq4Yuro14rhTrYR9e7iimMmuWljo+m/vqF526NDInROhDm7wts2GiaPOYyoMYLVZW8F4bpmuHNLEGYuqrmFAFLstE0vvAXtBddIxSJcRYV+dESbadYj3mQCFbrXZJdRVxMhaPSTwx4V6qCLt2KpAXkm+ZQILafQTuNXttiVqYXAJF6DcxGRDi3WQnwZb9TifCMLCMt4JZ6Rs2WaXwuGUO1FqBU6mJ5n8rOJuvEoBadTQ9w74XV0EdsGwmgkwxBd2I2XFOlkLms8M6YFjWcE0wfBX+J73UCWIhFr+aVUFkcee/TkUgByAfJUTKRK3KxEyi7fOlkpsJIdkZfxRJx+ZFWYrAjF7Dli96OIfAoxLivAaikElSU2FvcwYB4PpOs1oRWw0u0m7H4g1Y7YypqwvvfyscYRuwY9RlJdVov7gHvo0XvBAfK5J3/liwAZjCFer9BdA08H3PfeoeIt420t7Ks+g5ZTt3mIRY2l8XuDzzVxo6lbz+A1edLo25H4UGO/1/Lt+IwPn+9o24nwthFxTi+tYPc2krWRDUMC91QIIeUairViWgsNtt4nhmuxIfclrFTMTxTuJKBRsorhZSuiJ61ISWPKzZ5qB9083GYI0nLqY0/9eMD01wzPm8WvICtRU89c83kFl61sJ/SoiP3lFNJekV5V9M8UupaTM5sMUbwAbBtIzxK+qpZoK4nUUsVfoczM5QDLSn5ucqqo/+Rit31GFwZkdBdDFL8uq9JWsgVVRBKiVGHKTVwiu44zC5LSOivizjGeLKMC3WvspIjrBDoTveAauEyKmdAKYcxq6QTEF+IyksRKE1YX4o6eEvZ0ATP8RlZtc7aFGQrZp7NLd0fpAFTK5HrGB1hWgsYXSW8hdc34zrwqzEbJKLaXG5YsZJ7UVWSjBTAOST5WGex+QB960rYr4GTCPA7oIZBaR2yFUVvtPHoIpSuwuFPxEIgCULr7kxiKlOssH0/kEPiyx1ekCCCoZlcTrlt069C7M+bxTKWUkCe0wvReKJmVtHLNo+jFszakrOhHg6oSFDGLuvKk4NCfNnw6GtZ3Z+EKUNyMOwGYNt8XdH9WsNm+BHsUGm9shAXYPiSap0Tspd01Xua6XMxJQNM8SF+ajOxxZ36A3FCasK6E9lnkrFkprFLopxPm/kgbErGxy2kEQkHNuRiRljVlqriwFt+T8uoJzKMjroXUk6sMVURXEjmuTCZvPLEysDdYPxtUwKzatL0AgbGSOZcs1l8qCV/Ad3px3PXFD2HuJCSU44uS71RdVnFQiESuGJqaDFn0CnrSkj9Y5YVmbY4ajtWymUl23rcXFWR/+b4S1Kk4b0ULkLWi3iWqvSRM6bO8N/5GpLZmSkWtGQvtWE5/PSbMDErHTOxssSwrd3ri8v6VtF+VRUUqRSAVcFJk5qb38v53lezyk7D4lI9gBPvSg5eC0MraYwbyVD+RupqwEfafPU4QM+OzltgacW6aEuYs4KLyEfW4J+cMIYjVeM68HyD8mx+/ZRFQSn0d+PNI9HgGfibn/L9USv3LwH8XeFs+9U/nnP9y+Zr/MfCngAj8D3LO/9cf+kMyZO8xn79DfXDHdNeiG4vpPXoKGCsjgR5FQnn+WicOPkHchpJVDA2o0Uj8tU3gNXnUSzahvXccpzU0Cb+WkSBbxekDRfc2sf4k0T+TFUxWCh0S7hAJKyPchJX4+plR/PHqQ1wuIOMTvrNMW0NoDc3rs2wCGisSz36UltvqQq0VLreeErlShE2FLW9gqooDT8hgBJmuSEtLTp4JMMhWpBLvAVDFtacUhV4L8zFDdpp4A7qKpMmAVxCVRH4Vc9PF5FVJYUlWADIdZkq0sOLG6+LuXIspRmyENGWPWliUIDFfFlQPzZMwH+fU52mrGLeZuA2L5mCOc58jvlCy+jS9WsQ6i1w5q2XUqHZ58f/TEaa1jCZhJa+BO+XLeGUVuTZyU46Raic/c+56Qmckv7Ds9FXIy8gmTkjpgp1Mshac1aDzx/Qotu/ZasLaCTZwGMlKka5K4TlP6CHIyrKWsVYHGQlJCXxAGbOsy3NbkRqLHqKIh4xmumtIxefSHkb0sZAnUkL1IzkmKQB9D86hrJVR9Esmgt9OJxCAfzHn/PNKqQ3wc0qpf7/827+ec/6fv//JSqnfC/xx4PcBHwF/RSn1Eznn+MN+iHKO3PeoT9/i3AeMdyK5NX2Q1lmB39aYMeL2kXEjpo1QCBcnLWGegG4iNJE0yj47OTABqkdDsmbxqtOjaM2Hay0qs4Imywkv6xs7RKaNw44sCPB4pXAncfs1A+g+0L090axqhmcNsXVUnz6irRFhR1Ohhklo0c4QlLR1+uwxh0jYNqTKYAq/22/ccnGFVi3t+HwjhFZYe/Z8SaZJZTWGlhsobQOqicTRYO4d7o0jOYtJ8n1Tkwh3npAVfm+o32kJTxnzMhK4cxbqqlGLC9C0VfitGJrOUV+2V1S7i/Bpnr1tL6Qh2+fi3CuegbFVqGjLVkSJw25drMzaCC5Bb4q78WW9pycBAOeZfLgrM/kAhGKPbmcbbsF5sqLgGQV4DQllFDoq1ChKQ7+1xNmwI8nYqaLw88kZPcnqmpTRXjgfaC1F15RNwdmjhwm0xt+0su15GqQAdIU0NgTUGKX9b6yc2nEGCaNYghkt0npkY0CWToIkztD+phLH6sdJCsChl25EawEAyyNPE6qpUW0LdSU8nLf8wMdvWQRKovDn5c8HpdQvAR//kC/5o8DP5pxH4DtKqV8D/hDw13/IDxFn1KYhn07ob39KM75g/GCN3zjMlNAhEWvD1DgJWDjL3De3ocrL6Rd1JidFuxpJtS6GEwoGgxkUrpxKsQLtZBcOAobJXhvGMl+H1lLfDzRjZLyrMSX/z7dlN94osi6jymFAf/cV3W5LvF2RNi36fi+VedWS1kKGUVMoCcpyEal+wsVMuGpAa+zbA6gt422pcEotv+OSQ9jLPDzezCAdxOtIasQIM2swTeRrzx9ZVyO/cXPD8c0KczCgpZPIhUfRtBPj1nFeNVRvDd1rOQ1nsGvmaMTKLo7LMnYUld5O4ryqY2HFGZFEz8lFvhNm3/x3KGYlXvIJczndsy4gX1Dok6PaaZRHipqeuRGFsdkIIUxFKYK2nwlBJZxmyKV1l5WcOwYh4KRE6pys4Mp4kFor2o5zlG5IS1E3R7Hrysjf9RTklJ48aE1aN3KDVxpz8uIVYXSZ5SP6Xpx8clOhpyinvNbkVgqCGqMUEasXQVB2Vj4vyg2vfIRSJLCGcNOCLgXg/ojy0hngym3sIY8TeRhQXYdateSq/Lz9PyLLcaXUN4E/gLCQ/wgSQf7fBP420i08IgXib7z3ZZ/ww4sGAtPKPKRSIg8j6vUDtdaMz1pCK+lEekokY4itFqeaAL5WlxMlS/hjTo4+g60D2kRiJW2XUDsLWURREoZLcrAXjCAZyTDIWlPvFMm11A8T9hyl1WwkllxmyFKxtcLfrXCAGibMw4ncVuSrNerUo4ZRLsAr8b/W50lW3l1F3raoMaL7QOwc2ijMcaRS0hG4U5STzIixhGQUQP0o4SXTldiQUSdYJaIu/ICD422zYuwM62bE3xhG3UBUYIRj4AdLSpqcAJ0Jm0w4SM6fSpK7F2uHPUkrnHVhCY4KU4C+5j7TPor6rr8T+vScEjwDhbPIaMEF8nukHVWKeCksZjK4nVqcjpOWbkAXCa6MFVLI3F5d8gldoSwfUkkpSjJyFeEWVuOvG2KtsX3E7AaUDwXslBstWSnMegygFKmrICX0cZT3UG4CsjXkWoqJ8A6S+Pu3TsC53VnGgqaS6zlQxgpQfr7hjdDIS3eSjUGPAh6mq5X8rMmjghSHuG0ggXsaMU9nKQDWSAFQBXwNEcYRveqga6Wo5Iw6/CMCBpVSa+DfBv6FnPNeKfVvAP+KvKX8K8D/Avjv/Cf4fj8N/DRAYzbMUtu8amX0CxH9+oFm2uKfrwiNQWdwx0BIBr82wrpCEzqx0s6miDJGBX1NqB25FepdqmQPbfsC5BRkPNWiC68O4jiT7RwxLTfetFEM1y3tQ1jGhflCr/YSoe6OBQzsKpQxi94bpchNLe2dUqiQiK2T2XDXo3pP3NbQOMxpwpw92WpRgE0RMxYEO85bCkHgZ9qrKsSZVIhDrg7o1jPsa1RvOD+2xKgxRlh5M4cgjwZ1EsFUKgt2NWnsSYg2yy690F21T6gR2kfZuce68OmVdFJ6zKAzKmrCFUzXpTgWemxOUhB0MXGtnwq1dyWbhNAJOKi9OCnNLsmxKcKx4g4MUhjsSWGHwhEojk9zh4SayVVZgL2cybXBrx1hJUCae+jRp57c1sRVJSIuylw/lH39pigCy3ub152MaFqTGkvoxDPRHia5qcsJrwtAlxsJ/SBmlMrklBZ+AEahYrk+9DxOSAEIL6/EbPehF/zHGnJbiXnIrELNmdzW8rWFQKVPPfl8RnWtFICmQp0H2Qwg4/aXPX5bRUAp5ZAC8G/mnP8dgJzz6/f+/X8L/Lvlr58CX3/vy79WPvaFR875Z4CfAbiqP8i5ay4zTVNL24VsDVxMqNsVsZOna0uiT6oUzS4SRk2vFE6pQiOVFVb1aMgHQZznk2z2nE8NC/01NuCznCrVXiii4iAjgqRpowCLHeRNvOyFC+p8FMegXFkxdgTRd/cjxCgKyaZCAVop4roi364whxE9BlJtpQvoA2oI0DoBQn0i1nqxMp8jsfxabpzUFFabzsVoNrPpBjbdwO7YMh0rIUi5KICpyhgrdmBiX6aYtIU2ooPEkbmTuO7omCFQdtxihCLzvhSmUJfNhNRhZmntEuFdduizjboUrLxkNvrVfCGoxVNwXlXKyX4J+lDFY2/mbzQ7CaWZuQrSCbIUL+0zxgsPIGslyrvWoKdMtZvEmLNy+NuO6bpCexkHTC+IfSqrOD0GSJCdFRDPlY5Sq0Xgo3yxRZvCsgJUuvA/NKC1HHAzbwGkaGhN6qx0BpMXafBVS1g53H5aZv1cV5InWOLtAagumJGKGXUeYBjlRi/zvxom8tMOTBmzy9bhBz1+O9sBBfxZ4Jdyzn/mvY9/WPACgP8K8PfKn/8S8L9XSv0ZBBj8ceA/+qE/pPgJ5LYGH6RyVa6AMfIi2bd7zKohrip5EwZZ66Ek1txMmf5WF1BHIrdQJYTkLMlCc9BGLmETqWQQqFhIMq0QiNq3edGM65P823wqmikvkWkqZTFAGUbU6FHOkjYt2QqpBKOl4oeAmhSEiOlH9EHMIecqDhA6C50oEIXWKoXLHUOhpRqMz+SS3qsSeKXRLwdurmT+9MGgVWZVTWzqkU/VFeOuYRqMjACFXqxM8b8PmvqtJTmz3Gzzf2JrLcUgNuICHFZmGYHsKCOUyuBXAmDZMZXQFF1sw0UwY/ti21XwF99JIa6f5HPC8J49evEFTK4AgYWCuzDySj5EdFJQdRFgzQ8zitkrUQC+rAT5VzGLOed5ItcVcVMTO4s7BuxJbn51HsXnMiS5wYfSjtcOorReykdB4wsYJ29eXDwi5r/n2opTVhEYAcInKADfMjqcBnLjiCsxvXVPA+b+EhqiT72IiFaNPEelCl06Q4iocVqyBnBOisbkyfePUgDWK/Kq5XeaQPRHgD8B/IJS6u+Uj/1p4L+ulPr98tbwXeC/J/dz/v8qpf4C8IvIZuGf/602A+SMOvWimV416KPsMmYHYgAqh5oCBkitI6UZ5S+5AT7TPCZpkZJEdIUmo5341KMlLiqW2RPklEnFUjxbAQYlgitiH4X4E2td/OrkgnencrIbJcYRIG9Y2cnqGMl1JZhAV8vMVs9rDI0aPeyOqPsnVFNL15NXpFp8+PzWYs8yZmifFtlodMJPr4rrkNsrmneK8anj7Tcsz1/uaCrPcag5DjVt5emaiRAM6aGGEtmdjWwG1NpLqu2Tk2CWfNn7m0lsriSBVxE2UtRiea3nkz2bi9dB+5DQZ7Fb9yu1uOfMBcUOwqCLlV7SmpITzCB0uUiCpc03HvSTrAfh0gHMstv3xT/ZKGJpAeYOLRWOhRnjMrbMFN7UOlJlyE5jD7KCnum7KCUnuY8X7wcfFiNldZYVHCAHVhB0Pxstp2+52VNXk50uoGpain02CpQBo2Rs8IG0asQZqNiF66N0KbmrZVvQNYStgMoapLMEwQuGSYpKCCityesWNXrSuweIEX21JXeN3EO7w5fefr+d7cBfY9mQfuHxl3/I1/yrwL/6W33v5aEUOUTU7oh6fk28W2P2g7Q0pY3JSkHtiiNPlMTXRoObV2kSIVUdZ5WbKurCjE8S6ZS1xm8TaVALyHSxB5POQNBqmQ+rt6PMk9sKvxbO+rQx1E8BewzzLys7XWPAe/LxBKczetWRNivSqrRh6QIIKaNRx7MQOSYBCV1I2KPDbyr81hBahz3HYp4hwSt2lFAKFUGrTDTiNGTGirf+mvULsV0fBsd530jxTwrTi4GoCkV67A1RZczGk58lgqqpHjXuIB731TGhZwlueedTwVuWVSQsKzl7yrhjwgwJPSaq/QUTiI2YkfhOEVpThGBFOt2xrBt1kP3/rNqcgdtYzfO+vLdV+TmxFlOQWYdgR3FwSpV8XPb9oj9JTknHpapln6/7sKQhyemswFUFYBOEfhHd5Cxbnn4gx4hqWzmBjQCEubIF4CuO2eVGVcUFSEaKghXFCCfZPKTrlbAKey/fQ2vSui4ko0S6apmui2343gu4WD5f9UICyuOIspZ8s5WnOheAm2vyppN7aLeXa+1LHl8NxmDOKKPJk0cde9L6ivhijXs4o/dnKQS1VPCFTJOKrLNSi6wzl5PKjEUXEKR1mjP9mntQSTNthdZqPEQj4KCk3crnzYYeWI15PGMOI+ZZx3jt8CtN/9zRvAO3n8rzqdA+CCsrJfI4knd79OTJt1fETS3t9hiWtiyvO1TlyKcz+dyjlSL7QH0ccI8V48uOVAm/P1Z6Me5EidNRmjn+tbTN7fcdp2GLuhsxNqKbJDbgJ7v41y1ahxH0gyXtrTgtlUIobXtaxDcLOaa4+CxAYCEQiVQ2Ue+Ec699Qp9G1HkgbTv8XUdYmYvDbmHdVYdSdJ0qXoUIA7BwANLCJmRJhZqfuwS9yA0mUel5oQqHYtCiy74/NvP1kEtidMIcp0K6UQXAsyRTWvMhoM+C46hTT05JurWcyf0gY912I6i81uTGiQeAT+hzLzt/H6BrSI1GjTOWoi9g8Shcgni7Et5B70kFLJbXXDqIadswXVt5vXYRtCJ2Ft2HJVcwh4Cqa9KzK3ltXt2TQ0A/vxOA/TyQd4eFM8CXbAm/GkVAqeUXYpiwxwl/3TA9W1GBWCrHBqpO0POqzF6Fpx2dkv3pKTFqU0I8BaiKTjwI/FrcY5t34j8wXWXUThWKrJxosZFVY2gUdtD4TYVVQgSxj73MyMExbQz9C7F7cudAUgq1kj0/MaKcJZ960vEExxP22S1p0y4XF4URlpta2GGTkEGwsjbSp4H2+4HpxUqsup1aZvH55FtMTrO002ZUtK80Yd/ICfrBSLsemUougAoaHRV+I7Rc3Uv6kN5rkeeWg2LaiNnpTJ8WPzx5j3QQ/MX2QoNOTpXWXjFdVZgp4XIWnNAYYi05kq4vK7uprFYboVDnvYCBsblItnWQ9yHbEo1upCDYQQDarE2R4bL49oHgFaHVxa9Pipj2mWqKRdBTCsBpEKzJikffzBkwh1FOVy9jXc5J5mlrhOhlLenlLamyiwgo28L/Pw2oQ+EFrDtSVwkNuJ8ExHNGxgIfwBjC7WqhjseiJdH+8j2n65r+zuB6IWuhYLpy6Cnh3k0CoBuNsg3x2RZixrx5JMeIfvmcXDkJIjkcSP2AbhtUVX3p7ffVKAJGo1Yd+Tyg6gr9dMQBYVMTrlrh1h96zEHcV8R0RFh0thcducyhmuqYGLWsDQWmh1TipqQQyB5cVoHShrpTIQspFucX4ccrUtWg10IAIWfczmMGSSL2aw1KBBzZGdSk5UauEYQ4J/LxRHrzDu2vpaMp+AFl9RNvOtkujJPwy50hNxY1BNz9maykZVRJLa2xGXPxWwBbTtTYZFJLuXkV6rOafuvILqEoN1Yo4GgdiSWowp7BlRSiWeEnkWSytktORrGZSZmcIka9cOaBRSsfa02+bTArOdlCN49owvHwa/MF2a0Z5WSPzSVSPLRzV6YW9+ZUiZFMrEUbIHZiwlmQG0dOUdunC69fiZOQ9qno+oWsk7attOKVkSL+NGIejtLuj6NgOz6gtxvZsyOEn7TpSI3FnEbx7hM3EdR5XHACnCM3tch3zwO5rUmVfI95ixBuV8U8xJf1a1ywhGwUoXNMG7mOm3cT2SrGa4fpE9X9IB1M1wifYC3/N48FSHz5jGQ1+ulIPhzIk0evV2At+fSVdxYq7bEWqS0xofdnjJKWPGstK7Z+xD2cSdWaWCy6/EoX3b+EYGYF9Xu+fMtcGUQ+nCo5WeaoKr8R85A5sny+6HUsltBWoRpFGgqzq7SVzbuJWGbcPBuFhijIbNdchCVtK8jx8QijGEmSsmwUfEu8aYitxR4dqqyoMoa0rtDHCfc4gGogW4nOtkW6/Fiy+Gw5WZXk2oWVoGYqzHMw5C6IPn7Q6FFjH0oUeJoBUZZ2HaQANE/50vKrTC6Mv2XGfg9snjuSZT73CaVUATjlOUxbSWeex67Z1ENlIRIJZiPbgvl5qIAYsHD5u/alEBaprhnkpKdsAVJV2vyS9ahjlpZcIddMCVglZtxjX7YI0sHlXnb1qnLyscK2y0p0GUsBAOF9DAWcq2axhJJ9vw8FK3ColGR9mDLhbk0uwTpEoSBfboBMakUxW+8i1eNIshrfOaqngN2NYKQTAum0CGnJGExXawEc92fy/rh0AChFPveo+qveCSRZnaRNiz4gKxaj0aMnJyMvvJYWUgqBRaVagKYyq5pRrsJxK/OzO4kN+XAr5JZpK6eJO1CkpzKHxibj15e4sWQKJx0tZCQFGaG16oSYShZuuTkHbKHV6sHLvD9OgiprwTjyNKE2G9R6LZTOcy8Ir7XgPVVK+GdrGT1MKRAlsy5eNehRKK+2WFWdnxlJqi1t8JxSFNvLzjzrYmXlMqYLtN2I1YlTX+EPNWYnFOo5pnxm3Jnxvf8K0p618CFUyIuGYHbnATHoDE5OZXfMuGNYgj1USOS6GJE0FwelrNTCMZizApfiG2QbNz+0R3j+hQuggnA3xmtFGAxNFmswMU5RZZ0o2yIV0sWarnD/pVpJh5BaR7Ia93oi+8vNjTGyb1difquMBj8DJ2bh9KucyduVFP+ypstGQ93K+5gzTBFCJF115Ersw+btw9IlFErxvBI2syDIVdT3g4CEnXRXdi/jjB4m6V7qilxbeT/Ok2QOxoiua9lijZNsCZrqH1478J/KIyfUsYdOSA3qPCx0yVwCF/WxLyYbGn3scTGiV3Xh+wuBxZ6FiDJeCae7fko0D2VtiCKsMtM1xV9QDoE5uCKrXPgH8pTGG0WsNNVRvAWF6prFD07Lmy1odmlBQ5JZrSprzRBQmzWcTuClA1B1JcXs3AuK3DRw7HFAvGrlIjaKVAsKnKxCFUMVHTKqT6w/z/R3Vp5fsZKPbt6t52WdpjJiz+U1SmWu2oFn6xPHq4rHq47xscHdW9xRTvVZxaeLV0DWsip1MyPOlvGotYTWih/+VEw3FWJ0WTTz/raj/6DGt4VdaAtGc3zPnbcAYclK6MrcjYSVFGhZB87XR/mfBr+9FJD6MaMepP2fBULJFfnuKF3CLPmVjVJcGJthJYSb6r4XWm2MoDXKWsECCoUdrS5+/7B0GQC5KirRyV+MckHWdymLnDeLlb6kBMeL6Wzr5BrySb4/YM4FR9CK1FSY40iuLP66EYn3blwcqmZeTTZySAqe4cnDID83RlTXom6uSHWFPn7Vx4FCulDHs1TgupJ2+XBGh5q0kZgltTsJGShl1HEQtF1L6EPc1oTOUh3LBmAtVlDulGkeMmOSGDJh3Mk4UO0yelKMNyUXz0JuKaiztNmTApSmOsjOOTuNHnyZ6TTMKLPV0FRyKmi9FAJcJf8PQdZL1qKutmA0abNapKqzuYTM/yI3jo0pFzhiT16L2WX3xmNHS39XEoGKlJagyLHwH6qMyoo8GA4PK84ncRbOIHLiVFaN/tKea5+xZ1lFZsUCwGaliI1dJMe2D0VeK5oHFeVku4TKyvdShfbrThk7ittOqi6KPgH2FNlkJoRFGLry+5atzqJXCDDbvqEkGap7m6j2otUPncGvih33URx7dUhLKz+biGarlqJtj0Hm59IFqMqhrrakYtUlpC8jFO1Qugnk5M6VXQ6A3M1rYMqYF4Qubs1SPJRPMhr4SFzXCx8hO002GnMWJqN0BHLSzwxCM0TsU38pRHNmZ8qiN5ikC80xkX0gjyP65gZe3Ar+sD+TH56+9Pb7ahSBLOQL1Y/k0xnVNtKShQl1OKGL+CZXTl7gyjHLLdXoUWmUqq06vBGzD+PzAmi5XggdodzgyQm/PBvZHJhBSdCoY+Giy4UmF6RvFSpqXIbxWYM7WAkVTYLoitRZQD2MiP2Vko2F0noRbyhrZQtirQStAKmZGXsCcEWnFzRbNVrANjOf1oppqwtLLtHea2wv9ud+rVD6Iu/VRWIc2ywXMg4VwJ3Uou8HeT3cQZiBM44RHYBi2hqyaqj2XuZRkAvdJ3TKF0CrssRVTWoEIzFeMJP6HrlxysUbOyv5f6uyMisdh19JICdaQEpbKMGhU1+Iap+NQc2Qae8zZsj47nIJu3Nafi+MIqFLEdVL7Jjt5TSGwvOPScYEa1HbzaL2FF6+lht3jBc24HwjhiTtvhVLcOUTOnghD607uclHL4dCIbplpYQ3ohV68IuIyPReCsDcSYQoJCKjcbsRfSgt0fzvILT6IGA1lZMR83AUoPDlC/LVWgr1/kx+fCKNX3WeQAjSkq07EQ+degFnrCEPAXZHTMqkTSu/fIxgRVedVoLGUvaw2TixvCo+/aoHVWK0xmSYSu7cvAVIxR569XlZQRnBF/xG/PDccXb+VYvtl99aslXYo18447PsMzsxcMhRobwUB1VXggfEJAVgGOT0rBwqZ9KzThRsQU7HmRbq9gE2dtnXZy0z73zizaKZ2Vgl2zLfVxnthfk3/3/m3wuKXnT0a5g2BQM4lbHCyXbBnWXrogubTk9yE/u1LTt2eU56KjLcJJuHxZbLR3TmCxz3bDUq6lKgSwFYq6LNmC3fxCh0SUFuMhHKJkhAS9sLduPXWmzdDoJDTNcO3xm0E6GYCaJunEFkew6i1ais+AWcB/BeCsC6k+1NovgEKGnNZ+KPqiCV97hy4CAZI79TyuhRWvK0aknrSlaOx15Yr/OjGIrq0mWg5H1WpwJIjsU3oHLo84g+DdLmWyPchKwFiDz3gikpRbreyD3x8CgcgXlFOAg2lQ8HUeVWFQz8wMdXogjknEnHE1prctdIhS1rNOUceRjg3KOaSkgQp56sAxh5gdNVJ3JMJ0DhPGOGleAD9U4oxc2jWIsFCTmSbYGVEycr8cyfASzbZ8YbxXQl60V1LsWghFiERoIfTUjCAsuC+JOzUIWLcER8wQqHe3qvEIQooo9xwjSW8XmHcuJ6o0Zx+dVjxJ7jYoY5qxhF6yC7dUG9peOJjaglVZCbSsJV5XetDqAGKW7DnSo3rNyIw61ayEg6Susu1uKyEpxuarngrBTJ+TGPEHoUMCsXvXyqzIIdCJCY0cX80/apxINJUc09gowXwZEkPIldW6xZNBxGFfymVvgt6HF2RRagz2+Ev6GSAIXunczAqXO4/Sizuxe9iQkJvTsJu9OYL+ruS3enxiA35cwIjYL6YwvHAykAZOSGPxRSm1Hy972g9hizYAjqXLpHY0oBCKhxknViCIvabwYZ5YtU+dwEfhCikDHkTUe46cTr4N0jWWkhCRmN2h3kc4ZBCkDbSrew5wc+vhJFAJAVzSg2XHnVSgVMckMp1Yrr0Kkn3m5RppP9bMwwBDCK2FXCGKslLy+sKHMtnFtFaIxkzp0TKhZTzE6YhcZnxmuNVxfPOjNmuleZ/rlmuFNEZ1i9iZhB9to2lv10MRHNxgjxJ5Uqb6uFe46zcpGVkYcQigBFia3aZ/fUiF+8L6IWPcSlIzBjAdJI0IqIZ8YwJEYdwkYKQG4SOUEMFnsuYFuXCZ2sSaX7kUJhjlDvkZVZoUvP6zntpSDJjXyh6LpTEkxAy2yvo4BncV2TWkuspTjqKYr/gxMSj4vSfosyUoDcZC5jyUzhjSWkIzQssWYgiUWhFeWkHjTNO40dYLyS6HeJHs/UTx739iy0Xq0xuyAgWQEP9fv031UnN4vRsvcHuelCFLrtMAiDL2ix7MpJwN4s1mMawRYIUTj6IMShYZL3vMh9Vc5yHaQiJPJBuDH9KE7As2K2ri6bI7iMmQUHwwfyzZbUVUy3DfbgMW8epUisV1Igdnuyq+C9AqDqSp7/lzy+EkVAgbwpMS2qwdw1crKGKHiB0RJQ4izxdo3Wxap59o3rPak2gtirsvOvyiwJhQQjGwMdpAsIrZw67b1kyA13mskI2hwaOWma+8SQNeMdpMqw/Y0olNdKiWdblplTUVSQ4yS+AZsacitsx6FIQeuKnDNqKN10W1iGPmBeP1ED001DbA2mL6i3kQtNRwExY6tL4q/CDJnqLL9wqmR9F40Ck4mriI9i0GGDIqwz4614K9izxpwFgXdnGUFCq/Bd+T4WSXt+ENQ/1hqVZ2ZhcTFWsj3xawOqaOl9FvHVUTYKsRNTVXtSy9fFxizpS75TgvbXXExSx0xi9j2E7JToPdYR3QboLeap4AZFduzOWYJeYInnhmpp61FOnJ3HSUZNo2FVCAiTl61UmfnF5SeQx0kKQF3JTYaHRlpINXryxsrcH7Pc0MO03LTpekMqdvNqCjDLiMuJvowIgxwIqikkMmsWxZ8cFlE6D6UgJ9LdlrBt8Bsn1nf3x4XPkPdCDlKdMFOzD7KarpwUn6+827DWqKoinc9SXY2BmoX/LHLOSkC23REDxNt14epDWFfCCx8C7mgwG4WpL4w2HVkku/OO3yYAaamnjaZ5iFTHxOFrpjgYS+vZPGRWryJm0ow3isPXjbgTK2Fy6TGK7jwXiacxEMTNRth/FTzt4XGSU0SXUyfEwj+vpNs5D1II4hXTXUtY2cW9FismFHY/iJWV7zi9sMwe9+5ECS/RxKGwB10mVhk2Ara5gypCFrU4+YaVvB6zXHcW7aAET5kvWttnOIdlRZucRseEPsQSqyYzgunlPSALHTa2cnnNp/90JalNpgR3zBLhZCA34g+r/UV8FFYZfxMxGy/q0ceK7lND85CxZxlZqkPCnoIYiRYGHiDCr00t0d/F70/3GVbCGKQfyN6jOgGcSUhrPnk5QetKTnJn5RSvnbTxOZOuOvxGfAj0Ufb1KEXuROoeO1d0FNMFSCzsw9jIqKifTqKMNUYwpK4RU5qY0bvT4rSFlesp3q6Z7lpJtjpFqs/3S2eRD0fwQdiBZbRW6xWqmJXOQqMve3w1igBlPWOtOKRSuoPtirTuZO0yeeFxr1oYvaCrtRN9uNNiyRwFnLJjJp3F234OzZgJLrOHgPYZl2SNFiuFX2nat57153D4mmXaABUMKNp7cSSuDorzC81wo1m9DsRKM7yoqR81qrjS6DK3qcIak19GQ47k40mMHyonF8e5l9+zqaTzOZ7RT0cqWN5wFWVOj51d2GbVg1CMp60m1JeT1J7BjJeWerbxEoYdqKQWWm52RTzlwKeLRbgKogqsjgl79JjzDFZZwqYq7X6SE38ngKy9aomtXVx4s9H4q4rYqBLDpYmtWI+pXEJI2kL9Li5JyQg2kyrBNqarTO4iugmkoFD3FetPtMSSe6Ewu5M8RylOciqrmEFDXFeLDNweRghpQf71oZeObLuRwyQKKKcmLySfriVtO1Lr0L0vhVvWuKmkBKks31efh8X9J65qeY/Ocn0qXwr9TAevBR+weznY5nF3BhNFHTiVQrOW1eR5JK9bprtWuDCniHs4y3P1xVG4cALImXj/KExBY4SoVlWCDUxf9SxCWNY0+uZalHV9L5WsraWN9kFeOKWKXLPEQHUV5iBZd2ElN50dRHJrPCJ2MRIICXJDLWBVOUVBgLbxxlIdIuvPIsePDNOGkm6rSSbTPEW235NQzawV9ZMnNEb42klOn6wVjCOMBZDRipzK0WtEfSYtXDkCx2lhjOVVaTengNtPTFeVEIeitOF+Y+lfVoVoI2DazPcXFhzLKT/7+ethLgDl96zlJtGjwvUsMWvzZmEGVKdeo28qQeRilkLblQqaFakxeCupUfP+PFUSe5Yqse+OhV4804nNJONNqOfAEuk8khOehm8yqU6omwnrImFwpLNFnwzNW7FZmzbFCPVJhEKiFrSEruACZy+jVsFSqtcHVD8SbzZiKjqfzpsV4Xa97OiLNRO5MqTrFWEthiAalteAJLt+e/Ko0aOPArfnuiI15drb9V/wJiDJ12enUWPEnAUMJiYpAFuxLTP7QbYVSkkBahzm6UxuasZnbYkdCxJHvj/J959Zjk7WzXkYULPpaD+gupY8jCJkU+/RMH/T46tTBLTMPWiHurkS5HacCtKev2C0sDippIzfCt3W7AeZ5zZVkcJa2RJoRfvWlzgzAWnmVjRWwi6rDqJPl0hrSRS++nbi+JGlf66ILQhkaWgfIu27VMgmHnPyFzad1airDnPqpUKHAG2DalsRcBSn2tkxiRBlfpu8zJ7WyO9ZG2Hk+URsDGEl2oQZIOyfSQAI+iK5XZx8ixbfrzPZpeI+rL4gJU5uVuEVem1Usj7SgpMkJzebyhqV7EWu26eLBh+56XO5uObYrtAaZuqu8XnxJRBqsIi+slHLelMK2mw7nuDKUzWBabBwsriDpnpUC8gpK06oDhEdE6GzhJX8TPfoMbue3Ig9mH04o54O5O2auHKyeTmPcgNWcpNDYf6FJO38piZ082ESFsr6vJNXWqOCIPrkXDgrSObAFJY5Ple2rPwyeDC+yJOHQghqasG6Ri96g7kr2ArHQAqAY/hwTbZSANzbE7x6JyvAqhKXIW1kdDmdBcOonGygmobsPekgZiLKWfiSZuArUgSytGHN7MBjhFV37gVB3a5kHMARN420WoNHeQsZpqsKZzTmNGGPnlgb2tcRHSqmtdz8bu8xVblAy3oqtKqYhspaKZUgzXhlsENi/WnADobzS01shK+OkrRXd5RdtzmOUgSckVZxU8PHzzCfi7nD7AirjBaJ6mwJpfVFR2CMzKrWyLYBAQWVT1Q7j19bpiuDmTRuH1h9nji/cPiVnOhL1HahxssNo8VZqbgJgYxHZhKrcrjw9VWWEaDe5WLWKlsJO84EomLaWfbbKmWZhX0g15a4rqVrcYpci3CnfpREY+1FBxIbQ0A2G3Nu4ewQLHFoChU0IVaMO4c5ixFK/STkoDmO3Z0y9ZOsL6eNY7gRolX32qPPntxWkvIUMyRIL24I1+LUq59Oi+RXGY1qHNnJKjc1llSVkWuM2LcHWd01FWi7AHfAPwDaKS+ZAfN7mZVCPx7kc2qJHJtNPzGavF3L4TZ52B9lNdi1Yk2nFHp3BmeZnq9AKdzOU336SL5/RM1uQeMEyUghGIaiaszkU+lA/USa48e0uRycP+Dx1SgCmaLi6lGbjfzZWZlzxkleLGdlp57Fo98AepgwgyVbsX9OlZbQx6TJTlPfT+jJETqJDp+jn3VIJWVW2rRpXZiFRznt/NowbgyVTjT30l+fX2pSXQhFao7hanGdEzR8CtghEK4auQifX6PfPsmJUTkpclrLTT4bRmpFDnlxokmtI64raUP7UJ5vptol0BXDtSFZR7ULdG8D42SY1lwUgFla+dCC8uLtPwethI5i9skSuR4amC2/YyWkovZeuAlmiLJiLdZXEqtexrGYUcUOG0A1bgH5BHgFc/KLcCe9d5XNicLzDW3PMEeamUmRDhf7suYhL54Q86ZH8h8zsdUMV8L5qA5IIvLLrmxrFHaIZNMsmn97f5Ibbib/BAn/0FovhCZzEOxJ9aPcsOuVWMPNzLwQC1U4LYCu8EOmiw2eSqizcPjVqru4/va9tOddI9fDOIm3hNbQFs1MSOjTiVxXTM9FQm6PHvd6T358Ql1tic+uih+icAsoVPQcE/l4KCYoSQpAyqANSqv/f+gEhDCEj+SnHfpqi1Lvzf+FM5Brh+pHLBA3tTj+7EdpJBrRh093LfYUSFbix02Jj0pOUmdE9iuYgIwB8vc5ctqdEu4Yl6z7VCuax4gOLMUiW/CtJtSZaVNhJkf9GKjenbFPPakARLmtxU9wNpgMEdK0uL8qZ+FwkgvGF2dbrcBp8HrRoGdncDsPCaYrw3BncaeikCvA5pzKC/NNnyWNOBTKsRPgzYyqkJ4ysYZsc7EGF0AxVobNp4V7H0U6rXyU51bs1NGZ3FZQItbMY6JyBrITlN6Av64l8EOpkuhrFnciKUQS5ZaVYryS7scdBdgFwSqqUxIsR1HSgcrvZyUNKVmxHLPjLHl+rxi2Bu009uilADztZTyLUWZoZ8Xw0yjJFTiLc1CePfsK91/tT7ItaOrSFegiFS+U4n68BIS8zzW4uSKuW/ThLKSwYjeHBtWXjUItgPAiRDqcwYrpSKw17uCxb/bw5h717JbwbCPvx6kwHSd/cT46n+XPQOoFq1BGrOxwbtkk/KDHV6YIkJI48vhA2u3RRWQzAzac+yLMqFDHMyZn4rrGPJ6wKRFoi3GFZbp2X6DJUsQwQc0uxUrUZkkSdqd1caVtFMkanFPYU8IVequOmfatpzrMs38pBrro660iOkdya+p3/RJfNe9381lOAW7X4i04FWfidYeqHephJ5TP04ApghJSujDNYgK05NZ7y3DnGLcGHfMCtqVOLfN8tuVjdQYLehK/RYkAyxcufkbyCJEdvegmFMONIdn6Ms97CX9ZHllQeK21rLg06MFTpUyqjXABjMKUYquSaCHI8lrZUYg9s/uzMA/LJqPIjVWC4UoSoLMGe5atQDYw3EgHMD/n2UVIrMfUYnKiogSQzKlBOAetnMapraRLOJcTWaliZuvl83Im7w9L0ci1W/wFyKUTOvVSMJxQ3ClW47mtJSvgPIoormtJXSO04XMRGLU1ed1KzuBxQj3uwRji7ZqwcaLKfLOXQ+TuRgpAyvJ8i4nJzC/Ip5P8OWXZCBgjl71SUrx8+OqnEuf37JBV14n0dn8QUE1rYVDNK49SbVU/YmbxxDihBwdWY0/gr2QEAC7mGUZuWFtQ1qwEzLKDdAMiEWVZM6ZKlTw72UOrnNFTmQmDRFhno6gfA7ExhcFXwkX3o6Cxqwbtg/i8nU6w7kg3W/Rp1joEcuPg5e2yGprTb0iCumd0UcMJldj2kXqnGa/N4pRcHeQGiZW4A4HQoFXUsv73RVQUWMaDWIMyBSCcxLC03snaTTwEWVx5cgHzVGm1Q2uL1LkRmXAEd4xy4Z7KWhEWoU5WFQYumoM8r2whV4UnYCEVXwOQrsSvZXTQnuJUJOSu2Eg3Ue0h+vn9nXkHRf8xZEwfUL0XsHXVLpHi2Rli6wpeYeBqvcSBLaGex1MB6yrRFcymHCWKLPeD7N7r9/z8Z0FZccKiH4oNuJORb3wvOGTOIxwj+nFPTglur/BXDeYccG+PUmRurwQHKxLkhcY8cwAmj1qt5LlECTOdOwGqcqj2A+o9J6jf/PhKFAHIF6Wd0vJLhQCTWDAR4uKMkvtBUlZ1ljZMazAGfRoW5xZ7jovgZ6Glxiza9StNso760aNjlGQjL+2kjrnsyzP1HDHuNLnSmKcBcxhJjQg3GBR+bamOnvrNidlRdrGTDpHc1cSbDbpyYvn85h59vRUCynzK+0i4bonPV9jDdEGZfSCvGgGukghy1CC2YCokdJDocLlJivBIC4tQewkJ9UWAI/6JGXNQ2FPhHdRKbqj3zEjEmEW+TiVFnTLGB9QkUlxJ4pVLxq/EvCUr4WXY2V2J0rkkmMM49BTlYp9mXwYpMKEVuzG/uVinaV+4C2txfUqVbC9KU0JsEmbQS5JU1gIyRqcXl+TqKZRdvMiH/XYl6+CiJ4itqFCz1aTtezdxBj0EzOjL6Z4XoY4wQcV9KAdxCvriJSzgNkZfbMFrGR/UKJyWJTKsJBmpMWKejjIOXm2ZnnWYIQgoGSLp7rq4BfVFRCTbrNw1l1zEphaAeSrGO8MoXoNtI3oEH9BlTMD/4LvvK1EEFIVpl6WdwWgxHVVK6JupiImqSlZvc+vmA6ly5G0rvPQhkBojq7/iRixotJLWqMyLMwJu+ygvgL6cIK5PBSzLi4Y7rmviusY+ntGHgVw5jI/FUttKRNTjbvF/R2t5Y99luenbGq428PBE3h/ETKSsA9EKPQb8xjG8bMVZppdUo2xEvCNR5hl7vLyLZswkK+DmbEI6C2xSJaes7cEO6r3wFIgtpJKwNJ+wuYR9pOJeJG7LQh2OtcadIrbEfJte5LJ6ssJhUBJT5o6iJ/DbYpxZrL1nyTc+ooeE04qwssRG/B7GrV7SiFRGkiq0jDJhG6EpY8gkYh01aexZVoZmygvoWB1EN2BOfrlpxg82DHcWM2Xa14NsZZyVDsBqkjNkK2Yf8vMFpM21K8zBQRqXso/PqQjb8ux/Vk6YeWy1ZZSrnLTj72UUzODj8kgJfR7JxzPcXOFfXslz351lpNm00pmMQbqQ8vXZaQgJXWz4ct8v1ug5Cp6hi7RYKYW+uZIxoZDwftDjK1EE0HLT51B0+DnL2sPaBVnP3i9Ry3OhQCnUOEmazE0riLRPaK2IM400AmNe3gQxncxSNbWSJKEgbbBfF4DqIDFn2ZnF6zC7UonLPEjOVPsz6Wol8WOrVuTQMzMrRmnLjidxe111UEvVzuOISm7xrjejx1WW4UXNtLXoxuCcWSiwoopUmOuL06542suPUvky9szmGwsfPxQPhdJ2x1r+y0bUdyC4QGyEI2BHqHdpYVmK6m/mXGfUELDnCbPXiyGKvLAQtjV+Y4R1mAFtF0cdjCa1IkX2K0OcC5ZjeR4zWUnMRVlGB0YtzsM2LxoDFaUDQEP1JJ2QbC0Cua3oP15zfm4xXvAcff4iNJ5qAzFjD/6LGI7WqHGQvbvRl1F1XuVaCzP5S4vKdREhwRIRNkedpW3RAsx+ggVPYZwEH7rekK5XmN2A3h0FsKzdxZ7+vbVxnqXIRwEbs7+sJYkRvJcuuRyoersh5yx5hPk3dS7vPb4aRSAXEYZ2RW2Vl5ufFOWFVrLrzF0jAKIxJXNtxD6cmD7aEq7rhQCyJA9bhZkkGTZZiief+sIOWxJyM/VTXKKzdEiETS3gViymErG08HOhAjFtaERkQl3Jm1DsnbQx5H4gnc/QD+jtWogdWdrMPE1QZNIuZ3J1SzK6CHDk97CngL6x+ApyoxbJrS7GILMLb1byu80R4CoiJ2qR4s4nphmlMEj4R5Emu0yq5aYMK0X7NtE8ROqHETVGUifZiFkhOMyIzLizN56GrM3i7WeGJOpCpCMwZ3H/US5j+uL20xTSUMkUiE2GtmgHFJDA7gwqCbfD30T0ypNw+O3F67B+mFeMYu4RblrGG8e01rg+074VC3sSLLFhgB4jZl9cecq1BBmVorTaXXsB+ooRDGbm4uuLD2HtijFJKZQhCuhaiaU5WqHP75mTRlEDqhDJmxVp3Yo78fF84SGMXorKXGALbVufJ9TueOk4leILTMDCSFVKST6C96SnXdHY/A6KgFKqAf6fQF0+/9/KOf9PlFLfAn4WuAN+DvgTOedJKVUDfx74g8A98M/mnL/7W/2cfC5GIjOvPsrNn5MSBtQs98wS7glIcMS6wjyeqd6c8LedtEsAWS64eGXwrZiGzp51oVH4rSksOC+s0OsKkrSUyehCIoHprimOtUK3VV4uanIWUUmx1VKTl+oc0/J7KGtRzpEO8sblQYQmgmkocVAaipz0/pFKKeLNSmb+Q7+cLvWjJetiShnLTa8v67BpC2Gdys2vFqQ9GwEFq70wBlUQSrVKYHrJbAydpDXnqvAmtEZ7jZnA7bWMPVbhNwYw2JMRc47pPadcJVRhe/JUbyeh06YkRKk5U1IpzDGVIx500MLczKJwDOtENhl7MLijkhSjLOPL8LHn5uWenBVPgwS+uoPYw9X7SxR5qjRTJ/6H60+LU3POF1eg8lx1L8g+wygzdTEUnfMF5+QexulSAOYCotQi+LlElr1nMlqyI3JjBc0/TUvQyWzBpkIs8eZlg3Dqy6GX5BDUapEbLwzC+wP5cLwkDBeh2qKM0wqFWbwryFmERSDXXnzv/fpNj99OJzAC/0zO+VjSif+aUur/AvwPgX895/yzSqn/DfCngH+j/P8x5/xjSqk/DvzPgH/2h/6EeY8+edRS2TIZL/MzSLszV8aYyLWFmIkbS1Yr7K7HHkb8dVPWgvK57pgYryUKq96V7IAkoOF05Wh8FPXhSTNeO7Jx2JP4Ceogc3Doig3UlGSHD8JBh8UhhhgF1/CefBgL3dlAltXnXKGJiZwLv72kyBKTbEROsvpMK1kpKS/+fe4YiI0u/oOJOOqFUJOMnJ7JyY1MhjzosgXIkmDUyhxt+nIxRha2XrVTxFGRbC6vl6zjQLYssbNQdBax0oSV8DFsL5JhYia1RohahxKdXRiRFBkuIYovX1stoRuzd+ISa5ZBeX0JIc1CcBpeBjbP5WJ+erem/Z6jfZNp7yPuKJsbYLFhq54CbjdcZut1Kzenk0ODnBfgdqbuLlr/BCA3dT4V7cp2fSkS8+fMnpiDl5EOpJvo6oVLoaZw8Sl05vIz50fBtFQhwi3/ljOMZcZvVqA15uFIfnwSB6QSMZ6HgTxOpUPR5DGg6krGzhBlGwUySqf8O3MWyjJMHMtfXfkvA/8M8M+Vj/854F9GisAfLX8G+LeA/5VSSuUfNpQYvbQyCy6glbgFnUrmelPL+iYmuccLe22mCaeuEgbYGAkru+Tg6ZCpd4lprcXc4iTOPTbLynC8qanvh8I0zExbt3ydRFglqidf7M01ZhTBip6iKBjnU6a8kcqumC3Uc8EOUOL4u+gjIlBV8ntr0axnEOCzjDgCNIkyTp89trfinINgFtmUiK1JwlN8r4kmFdfksv9PkHUmXkXiWqG8/GcmtazpTC8gm56kNZfMAcn7E2xBOiLbR7E7A7JVy7pNpSTMRqMlGOZmRX6+IbZW3JqfJuzTGRDTzlQSpOSmLc9hkpWs8BtkFQhlRLCZ465FPVasPte0b+X5uWOUQNgC6uqQcfsBcxzFEKREfcdWYsIoIaSmDzJK3m7k+ffT4mORh1FouDGhrCHfbBen4dy4sqGRNd9CEirJUakTj399GooTUVrae30cl5Xv7KINSGFRCs7CN5Bxo0TybddgDfrtk5zoWjrInBKMI9mHC44RZXumNmvZqE1exoQkRii6qS8H6A94/LYwAaWUQVr+HwP+18CvA08555mB8Anwcfnzx8D3AXLOQSm1Q0aGdz/kB0gLM/kL8loEFcRI2h/Q11dfcG8FqcTkjPVRMgELcAcsJhvTRjqA5jFesvi8mHRko8hWkWqLOU+Y40QFpGIbJdbiCnWO1IeBcNVK2u0QxBx0dpzVQFLLC53XzTJPqvNQ3phJ3pyUSlejYd2JKGpyF0s1amkNfZCL2VmUUdiDJ3SaUGtsTmWdB8lmmncAivFGzFSzyUVFiJxcSWHOGhUloDWs5URToRiuakU9iOGo8RfAUY9pAVCFal0ERFHa/+m2KV6NqiQiqcXBJ9SqrAItpndistlJZyFiLrUYmyYLuS5FJbNkD+pR4d5aUPYLI84cGJucLi5QqWwUypi1qomNJbZGthRh3jAU7wcEA2LyciPm8udKLOHV5MXwBUSC3Ik9uDmMl5BRWHCA3NRyqu+Gi5uQ3ACSMqzVAt5lW7Cswhlg8gLwKdlgUdkLNrA/kfYH+bjSsinLqYzHRt4bHxbAHF8YkSleVu51YRT+Tv0ESrT471dKXQP/J+Anfztf98MeSqmfBn4aoNGrwn8u7z4ARV1XiSIs7/YFYa+kG3B2oWDmtkJ5teABM3lkbjVPLw2r15H2c1mTZGdAZaq9x3ciQ1XJoc9ecgVW7tKyzrnzCdybA2nbCkB2mgpnQBhzuRQFvTstacriJ98IYcdalCu+8FqLgcreFeZgIxTPYZSTovgUZnUpLOY80b7KjDc1qSqmpz7jzgl3guqo8G+EghuKdVpymTzIBTWHq6hQBDzby3pNxga1ZPslKzwBQeHlgo+1ITeyUpO/a3wruY1o3tsmCAtzKSZakRrLnNJketHRq6ALl0NuejWVMJQsZiIZ6RAExISZOmzP4rScjSraBhlRYiXmqPY08wcUbj+JH0DOiw2Ymvn/MV1We0Bed0JRn/n8ZRTL12s5JIZwcfidT1WlBJ+KxY5s1V46OViun0UsVERIahgF/BvGImQqK2Nn5fnFBLsD6dxLh6K1ALGmFAdrZUsxjihniw/nKArCgqctWwOtyX0v680vefwn2g7knJ+UUn8V+KeAa6WULd3A14BPy6d9Cnwd+EQpZYErBCD8zd/rZ4CfAbgyz3IuDqrKFotuV6HMRWab+wFO50IvLk7EjRMktJg3JKOZ02XMkPCdWfbjxw8NZqhpXp1g8GKRbYWf7TeO6crhrLr41Ze4MF2qdG4sygf0vidt5JQwj6eFDjqz6mZzELU/SUtpjQCCKQu1MyaUkpEnH46oGNE3VxJQ0dXkJC02ky904fJ61cJHMCtHNnLCqVxuvpjLzaexY2bs9ZK7ODsGzXO3uPkCCCiIFiOSPG9SikPy3KrbGdmGwtoTtqCNCT0p7KiWuDZgyUp0J/FJNGc58WbDjZmUZXsv3g7G0r7R+LMAhP46kW1G9xq0IrYJPSrqB037RmjSoZVxIlbSceggXg/V43TxEvRJjEIGOe3nuO9ZTbcIgEpIaK6trPUG8YJAadR2Ta7EXl7vixR8Hl1T+kJbL7oCJWs+o+V9nwtAcZGaHaSWcJqmlu1C4b0wG4WM740aBWtSXbsUAUDSrWJEYaSTKHb2TMU9WQlpKYcgmIBWMob+gMdvZzvwHPClALTAfxEB+/4q8MeQDcGfBP5i+ZK/VP7+18u//99/KB7w/iMncLXcIMUVRTWN7NW7Ttrl2SSyVPHcVuIfB9IeVzJH23OkqhT9jcFMcrP0zyz23ODuT9inM+GmI1WG+nEkzsk6WhUPeZl1ZxNRrCZ1NXoK4gNf3uR5fp/bP+WDgH/DZf0EgtAyjtJm5iRdjzFyMfSiMU9dDbUmWo0OtYBJBZBSQWKzYq3xa8Emqn1Y3HSyUWAz7iisPDOphRuRDMSGJapbIsgLoFhd5nLjyyk7ZzrkjNn1F418LdLbqA16jLixGLaspJuasxyyBV088JQPpE1Lqg1+I+7D9aPo7PUk9mC+U6VoZfSgMKMYiIRVxh411ZOifS3dxXCjCzVaqMHdu0T7esK9O5KdIWwvbfzCWpxzKnxJJHZWbsihgLuVk5t8nOR9SRlqyYbQx2IcWtD6hT6c5VSnzPUqZXjciyKwqeTjpd0vN9LFgRjEQGbWIiglRf88XHCkORGp61Cb1WUEyblslM7MztaqqgQrSFm6ZVjchHJJyQZ+R4zBD4E/V3ABDfyFnPO/q5T6ReBnlVL/U+A/Bv5s+fw/C/zvlFK/BjwAf/y3/AlZaMMKK21N1yxMLbVZX1xYQ5SbK2c5UYsFdGpdOb0EdJJ0m0R9L7TjcatxxTJ8unao0C4KRN2Ihrx6cyJsG8LKYlIJrjAXNplQPSGuZBzR5YRTc75djJf5LibyOF4Sh0zRfeeMKnxzNRM8Sl4cTSXuPcUWS3CGRqK+evHLJ4E7BFAQGqENu2MoUdmK3IkqzvYJHUqMWekW4qAYryC2BVAcMzYrgpo1B5D2Zc/fR1AI936+AUoGnwoZrQUbEHVkuYgLWWnOUfRbB3ojXUBj8VvDtC6sv2ixTpc05dn5WRSPdpCRIFUZt5PUZB3AbxTnDxTTjczk9b2i22U2v7pH9RPh2ZrpRm7Q6skvz2++aefiLDdDQM0eg02zRH3TFrv79epC7Z5lxDORqORkzhTgxVkpRuhaEbgdpGOdfQUF8S/uRTnLQVBXX8S3ZlFQ5ciHkTxN6Osr8u2VYABzN3MeFodi3TYySpQCwPVGNhmHkygi3wu9Qevf0Xbg7wJ/4Ad8/NvAH/oBHx+A/+pv9X2/8CgvYk4JlRNMRt4QEFrl7ZW02UVpSIiyHimGnWpQxO3/r72ziZHsuur479z7vuqre6anx45JImKjbLJAwYqsLKJskIB4Y9h5xYYVHxIsWBhFQmEJEizYEIGUBQhBIGGRDRIBIbHCJiDbcbCcWGBEjD1jz0xXd328z3tZnPNe9Yymxzaarm4ydaRRVb3Xmnvqvlfn3XvO//z/+ZB11mSQ3pCjd0ukyzeVgQ6afesgq6zebRj35NYC14wImeLdB0mokzVhf6JNJ7bqCNMCt6xgud5gxrPU2F31czR8wKajMGpgyHM4uKI3Vd0oRmK5xjsDvEy8Kv8C3cjhxp5kmSgzTohkRw0+78kS0aecYdLrmRv0AKJjaJt2rT79m9CDpUBEZcB6DQJA0ZMnlrTqVPBluLapN9EQ7cLsTmEy0kU3NF8BG71Bp5WEZNFp96X02wrlHKynzvIXEJM4VAZ6JSJgUJJuptECoTC+EZn9lwpK1j+2z+LjmYrIvK0VApxTkZGhESvRkp/xAvTBmq7Tp3euydh4eJVgpCSyNtafPngYOEorVK2+DpBhJQyVk5U2HyWJQciFuCoVZei8+gADqxRYAOgp5lZrxf4fXhuERaS2xOGqJC5VN9FNRsh0avJ2AZlNlHFouSYcnwz9DWIVKJozlgFcFsSgE4UNV8YbsFzpk7LIVW3l1h3k+gHd/gjJU1V7KVM9Nx3rvrpqCZnmAJqZ8c21enz8w5bqcET0QnrSEFJHM0twuSNdnIKNeqc/7Hiq8SP1UDvcfEko9mmnqWK8y4YwznBtN7DG9DwBpAmMC3yeE47mQ4KTYJnddYkUOd3BHnF/BOypvuHJmvS9BfgZzbjX/rOe/qhimyFzw3IdIETdExM3Sby2EBIwMFEkWQXDDWh5sMu0HNillijI5RQC0ZOUCVIHyIV2MtJ9fB2U7iz3tGPzIWqglc7yEk3QubFtVChSQq7l1KRWJuiQ+oFfgGwjjuIaiGHzvUQJnDdMyDnkt8W0JQPjm/pkXX1qT5WI1hrwk6P1IPApXUco0iHgx6j3gJTNgN0YWnyrxrgFM6QN2kTUKXqQvnwnClaj0a5SslSxIFa6ZrnW+nwvaNJvOfqKlwnqDAnKnnXagkFcLlVSfG9PYeh1o0/1LB1AZYAmAyeTzQp6NtX7rm6IR/NNJcAwN8poddmDQK8cm+c2McqiKl2mZZumgaMTvAjt/kgvWpYoHVlVqwKR09JdkjnKUcL6MKW4BUmM+GVN8c6C+nCiWeOjEigor6WETKnHENEM8LpBOgXGOExDzsRQ/a0F3SeuUF/Nyd+3LUG/NCzR4GVZXhJPnI5xiSfOj3WvZ6WjUFW4+bG21xY5YZzTzRSB5uYr0vdXxOsTTXKWm+aWkDjCyNON3LDs7qHQvrI99nGgHcmw8tDuwGBPaUfaqaKSrwPBC80sobzqBgqykECXOtKqgyYgrTLTYD0AftXimpRg3Y045Q0ENsEp6HjSBHxolKTTrrO0ARcjftBXdHATzeek1ipsTW+uRTUWjAFJdQi1/6OZJHTXesLXTiW8K+N77KHeWUI3US7BmHpCn0QG4iin29dVjitbFf8cKw+hX9YDJiDW9QYI1gW9N+tae1gy6//ot6ltq1n7K3uEca7AKdAAYsnG2DRg+S4leNBVSS9A4qYTZDrWgLJeE52Huh4SmIAmCUX0N9L7sSqJt+7QLZYadMQhLhBbyz9d+t4BIJyc6ASkufZo99uDtt3sx05WJF0gTHN96o9T3DpF2kB7JaMXxyhuw+qxhOpABSD65X2yqOkmKZ1RguVeWF/Xhg9XB5pZQnZH2Wdd0ykoyCvMNOxPcMcrsrfn1B/fp75akDmHW5S6V5uMNbE0P9lIlPfJmtkM1mvCyUKrGZkpwsyPoczxxw63N1V58ukIWZYk84pghJeAtp02HXihG2V0mRuIUJRbUJWVfK06Ae3YG9EqNFNjQRZIVkF7Ata6yvFlii9TO9cNVGm9tqI/Wm32toZqS+t2KFtJpYnLmGdDKzUAdYOzbVa0/gJdIWgwdG2AqZZii9smdzbzyn6cMug+NBNlSE7WVj4cac087XUH5g1+3W76GPr7qdDr3KshiQUgaYPRg2dGwNrRznK63OErTQbLukaqWkE6fR+LWQxBf8B9rb8LVr+PuhLcn2nJemWSdD24p1cZ6pviTH8irtd3nZOi0C3BYmnfx84Z/FpyZTyK82P9naQJslgRjubao9LfL6f5A8QBYdiq3WuXIwjYlwvrEpdmSK7NGT2H3QCwSTRyukVFLFICCd1epiSYTaCdpgMxSH4UqPYd9V5CftRQX8mGTHoYJ3hTfJUQqa7qXRcTWH+sYHRDcQBeRMlDRPXl4ihHTlbkb7W0j+8ru3Ceqp9tdzcjTZ7rqqDRCoHkOU6cZnWbZqMOA/qkWa5xo4xQJPgmNRHQDf9dNCYkt25JVgnVvmXjDdekrDzKCtwDZEKS0UyEslCNvqQMd0+7PR18pZ2CflGrCGaPaku8Zq0taTU0yXgHSdzAZkNU7oSJ6hC6LoW9wt4HknmFzNdKxpl4hUUnPQxaWZ/Lq954DHQb0GU9oxAkaxno1H0TScpIfqfVblAgpKovONzlSS/3bWVW5wZ4t6oTYSsSbQUPmVMAWdPh5iuTB1vpdSkKhRenWiLWGr3fzEWMGoCLQtWIrdQ4oFvLclPOE7GksOaP4mKl/BhZqj9UJ7olWK51i9xrFqYK3ZZxofiRk4WV0xMNGCcLwnptT38Z/i+C+jZsR86wyxEEgiKgYtsSjo/xh9dsqek2+7E+w5qlBqoIuKjLv2aaDjeP9sdrt1Z+HKhnjmTtSU9aysNsUO2JiT2dyo7Ru6qk00wSmpmw/lhBcVNITpS9KGQqHCFzkxNblyT/3QzIrh4duGl6Us43jPJJtQcVHiyJVxLI5RIZXxu0BrR2HBStOMkUiiuKXvRrw5Knnm6UED2DlLgzKa4oELzW8dvCGYmKKHWaN67+RhOHzXSsn9ed5g0E3ac/NsLXOekdXVprX7tm6qTpNEnWl7KmY+IoI+yNaKeZlv+SPj+hZCEAxW1DSXqv1YsiJYxSbeUVrQ6sDr3qPVr7MzDwIbgWXB1JbBuQroImGVNHO1HAlKdTBKeRbgDahi2iBCJekDogRJUUbzrIPd00s/ltTU2o1CQc6I8sy7RTMLNAX9W6EghBl/1ONkSfI93K9itDvNclvZF8APqQcKKvjZaMhwAQA7G0jH4MiM+GFTDiBtJSbh3p+dFIg8tqRSgrJEmHUmAPvFNSkQ+uzl+KIBCNWagnDYnLpWY+T9XS8V6X0McL5NoVwkifln5Za0bd+O6JCncNqS7vklQ58wogm7dUBwnNWEkiYyWQqXpQclIbrrzQUtZjOUWfJzBVnYF5tq8V97oBVX2qr1tx56RW7rQoHoOqEQMKflosCe/fxvnrtIczjfydNiz17D0xcYPyULKokapDEgdROfz6pBoC9dRIOq4I5WFUrcSIzUkkWQnNkQxwYwlQ3HFkx8osHKw5qJ14pAmktQJPpGfBMSALrf6TNCFOCkKemAy80bMF7bj01tnnbdvRTXJi5mgLTzP1hk0IpkOggUy7NDUZqMpLGgBGt03J2Ehiq6tanut5D6OTQfLMl/qDDqknZor0HIhG+gz8OKcb6/YxPa41MPQ6EM7pw6ZtldM/M/6IqtaSYi8Wak/aGIJ2g9p2VUuN2ufS9/ur1JiRfoaogKQYtFTYGotUzz8BqiB0yqSwZPNNxdzJ3kzvu1IpzgZCUdtqDojBrvvAVQBckiCgj6Jw97ZAnPYT2HGCtujGtkVuz5HHDwhFiisbkqWKi0Trtccpa1BIhGzewn5CM3FkbaB4v6G6mmqN2ursPXmHW9WMf9jBJyfWMZcM5T0JURmO+34AsH2/18i7WKgGXJbqxTV8gCY9OxO+HOnFDBrJw2JJ+J938XlK89gUQBl6wZbKyvrbFZ7y+oik7JBWgVASoLriaVNN5ilVGNT7ke4TJZNZSZG2VE1CVSdUq4zqJCFZOlylK4h2LKQzIT9RirU+249X6i231OV0LKym7QSKnDAd0+0XdFam9FXA39IkmKuUSmwozaWe6lpBN3KWCJSh2nGaWThZAWtFNLpa8wK+QlWkg6oPN1Y+TNYwfl+3A13m6HL1Pz1pN/yGQHCaCHTzlRJ4zCYWAFL8uhn4/WPqNQ9Q1tbkFa0JbIPAw/tNDz/QMwlJOtaV6VI1JOJ0pgneW0vd66fppiFO3FAqxBB9dAoTj3WDOFE9QXGa4fceN9Gkd3jnhoLnDq4MW86BLSgGwGlgtkQmzilUuO/KfUAwuBRBQMSWSP3nLDMIZK2Z0FO5AUlTaFvVlz/c00BQtfgqpXV6U3a5RtxkrUvqbK5lw3biyeYtxXsVne2TB1x57CnNG8ZvrykfKzZgoGGb4WF/hO+Malpsy+IccmUfFyJhtdKLNRlvsAFVDY3qJ8S9CbiJ5gCsEsLtOX6c0c7yQdBEBTEyFcI4qegmmUJ2+x9e2VHcjpQHCfVUSTmb/Ug3CTgfSX3HflHiisiiyTjygTUFjfeqOARUB6J8hEsF5WTHUSsHpcdniWbD6wbyVEE3mZbb2pl2pblG581XnXIIdEHzCUVGGGeaI0icNfrokztZmay5v5u1GTbJQAlR+QxWeuOuDzYowfwoMr7Zks5ra0aSTYLQJMZi6odcTg97DteuEG31mNxaKj7Dvo/K3GuwG6DaMQw//p7Hwm5WvQ+sgYcQNQCY2lTM003J2bAuelNalSdJFN/frwBi1OpXDFYdU5h5n0CMbUu4c4TLc+TaVXWtTwLaNgLR7Uds2oHJGhhe4wOERwDkwyJ6z9NE5D1gyYM6Dbdnh1y8H5fBB9j5ca/9f/fjx2OM1+89eCmCAICIfCfG+LmdH5fDh50fj44f7oP/ZGc729mPsu2CwM529ojbZQoCf3zRDphdBj8ugw+w8+Ne+5H049LkBHa2s51djF2mlcDOdrazC7ALDwIi8nMi8oaIvCkiL2x57LdE5Lsi8rKIfMeOHYjIt0XkB/Z69RzG/ZqI3BSR104du++4ovaHNj+visjT5+zHV0TkbZuTl0Xk2VPnfsv8eENEfvYh+vFJEflHEfl3EfmeiPy6Hd/qnDzAj63OiYgUIvKSiLxifvyOHX9SRF608b4uIpkdz+3zm3b+Ux9pwBjjhf0DPMpc/BSQAa8An9ni+G8Bh/cc+z3gBXv/AvC75zDuF4Gngdc+aFzgWeBvUSzk54EXz9mPrwC/eZ+//Yxdnxx40q6bf0h+PAE8be9nwPdtvK3OyQP82Oqc2Pea2vsUeNG+518Bz9vxrwK/bO9/BfiqvX8e+PpHGe+iVwLPAG/GGP8jxlijfIXPXbBPz6E6Ctjrzz/sAWKM/4RSr32YcZ8D/jSq/TNK8PrEOfpxlj0H/GWMsYox/ifwJvdhlvo/+vFOjPHf7P0J8DpKXb/VOXmAH2fZucyJfa+ztD6+YcfvnY9+nr4B/LTIA4QG7rGLDgKDRoHZaf2CbVgE/k5E/tUo0AEejzG+Y+/fBR7fki9njXsRc/Rrtsz+2qnt0Fb8sKXsT6FPvwubk3v8gC3PiYh4EXkZpVz5Nh9B6wOYo1ofH8ouOghctH0hxvg08CXgV0Xki6dPRl1fbb18clHjmv0R8BPAZ4F3gN/f1sAiMgW+CfxGjPH49Lltzsl9/Nj6nMQYuxjjZ1E6/2d4CFofZ9lFB4Feo6C30/oF524xxrft9SYqqvIMcKNfWtrrzS25c9a4W52jGOMNuwED8Cdslrfn6oeozuU3gT+PMf6NHd76nNzPj4uaExv7CKX3H7Q+7jPW4Ic8QOvjLLvoIPAvwKct65mhSY1vbWNgEZmIyKx/D/wM8Bob3QS4W0/hvO2scb8F/KJlxD8PzE8tkR+63bO3/gV0Tno/nrdM9JPAp4GXHtKYglLVvx5j/INTp7Y6J2f5se05EZHrompfyEbr43U2Wh9wf60P+KhaH3Cx1YG4yfR+H93zfHmL4z6FZnZfAb7Xj43upf4B+AHw98DBOYz9F+iyskH3dr901rhoprjXf/wu8Llz9uPPbJxX7eZ64tTff9n8eAP40kP04wvoUv9V4GX79+y25+QBfmx1ToCfRLU8XkUDzm+fumdfQhOQfw3kdrywz2/a+ac+yng7xODOdvaI20VvB3a2s51dsO2CwM529ojbLgjsbGePuO2CwM529ojbLgjsbGePuO2CwM529ojbLgjsbGePuO2CwM529ojb/wKALxmJfhmfiwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQEAAAD8CAYAAAB3lxGOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAATCklEQVR4nO3df5BdZX3H8fdnf2RjEgKJQAhJkF+hFm0JuCYBGaqiAmHGwJTSUFsoxkYRWhhtFbCjdMZO1dEwZRQ0FCRaSkCQIRVaCZFqVX4tv/KzyJIEkzUkQCAEGMNm8+0f90m4bHazm733nnvZ5/Oa2bnnPuec+3zvyeaTc55zcx9FBGaWr6Z6F2Bm9eUQMMucQ8Ascw4Bs8w5BMwy5xAwy1zNQkDS6ZKektQp6fJa9WNmlVEtPicgqRn4DfBRYAPwCHBeRKyqemdmVpFanQlMBzojYk1EvAEsAmbXqC8zq0BLjV53ErC+7PkGYEZ/G49QW4xkdI1KMTOAbbz0QkQc1Lu9ViEwIEnzgHkAIxnFDJ1ar1LMsnBf3P5sX+21uhzoAqaUPZ+c2naLiAUR0R4R7a201agMMxtIrULgEWCqpCMkjQDmAItr1JeZVaAmlwMRsUPSJcBPgWbgxohYWYu+zKwyNRsTiIh7gHtq9fpmVh3+xKBZ5hwCZplzCJhlziFgljmHgFnmHAJmmXMImGXOIWCWOYeAWeYcAmaZcwiYZc4hYJY5h4BZ5hwCZplzCJhlziFgljmHgFnmHAJmmXMImGXOIWCWOYeAWeYcAmaZcwiYZc4hYJY5h4BZ5iqagUjSOmAb0APsiIh2SeOBW4HDgXXAuRHxUmVlmlmtVONM4EMRMS0i2tPzy4GlETEVWJqem1mDqsXlwGxgYVpeCJxVgz7MrEoqDYEA7pX0qKR5qW1CRGxMy88BEyrsw8xqqNJZiU+OiC5JBwNLJP1f+cqICEnR144pNOYBjGRUhWWY2VBVdCYQEV3pcTNwJzAd2CRpIkB63NzPvgsioj0i2ltpq6QMM6vAkENA0mhJ++1aBj4GrAAWAxekzS4A7qq0SDOrnUouByYAd0ra9Tr/ERH/LekR4DZJc4FngXMrL9PMamXIIRARa4Dj+mh/ETi1kqLMrDj+xKBZ5hwCZplzCJhlziFgljmHgFnmHAJmmXMImGXOIWCWOYeAWeYcAmaZcwiYZc4hYJY5h4BZ5hwCZplzCJhlziFgljmHgFnmHAJmmXMImGXOIWCWOYeAWeYcAmaZcwiYZc4hYJY5h4BZ5gYMAUk3StosaUVZ23hJSyQ9nR7HpXZJukZSp6Rlkk6oZfFmVrnBnAncBJzeq+1yYGlETAWWpucAZwBT08884LrqlGlmtTJgCETEL4AtvZpnAwvT8kLgrLL2H0TJg8ABu6YpN7PGNNQxgQkRsTEtP0dphmKAScD6su02pDYza1AVDwxGRACxr/tJmiepQ1JHN9srLcPMhmioIbBp12l+etyc2ruAKWXbTU5te4iIBRHRHhHtrbQNsQwzq9RQQ2AxcEFavgC4q6z9/HSXYCawteyywcwaUMtAG0i6BfggcKCkDcBXgK8Bt0maCzwLnJs2vweYBXQCrwMX1qBmM6uiAUMgIs7rZ9WpfWwbwMWVFmVmxfEnBs0y5xAwy5xDwCxzDgGzzDkEzDLnEDDLnEPALHMOAbPMOQTMMucQMMucQ8Ascw4Bs8w5BMwy5xAwy5xDwCxzDgGzzDkEzDLnEDDLnEPALHMOAbPMOQTMMucQMMucQ8Ascw4Bs8w5BMwyN2AISLpR0mZJK8rarpLUJemJ9DOrbN0VkjolPSXptFoVbmbVMZgzgZuA0/tovzoipqWfewAkHQvMAd6T9rlWUnO1ijWz6hswBCLiF8CWQb7ebGBRRGyPiLWUJiadXkF9ZlZjlYwJXCJpWbpcGJfaJgHry7bZkNrMrEENNQSuA44CpgEbgW/t6wtImiepQ1JHN9uHWIaZVWpIIRARmyKiJyJ2Atfz5il/FzClbNPJqa2v11gQEe0R0d5K21DKMLMqGFIISJpY9vRsYNedg8XAHEltko4ApgIPV1aimdVSy0AbSLoF+CBwoKQNwFeAD0qaBgSwDvg0QESslHQbsArYAVwcET01qdzMqkIRUe8aGKvxMUOn1rsMs2Htvrj90Yho793uTwyaZc4hYJY5h4BZ5hwCZplzCJhlziFgljmHgFnmHAJmmXMImGXOIWCWOYeAWeYcAmaZcwiYZc4hYJY5h4BZ5hwCZplzCJhlziFgljmHgFnmHAJmmXMImGXOIWCWOYeAWeYcAmaZcwiYZW7AEJA0RdL9klZJWinp0tQ+XtISSU+nx3GpXZKukdSZpi4/odZvwsyGbjBnAjuAz0fEscBM4GJJxwKXA0sjYiqwND0HOIPSRKRTgXmUpjE3swY1YAhExMaIeCwtbwNWA5OA2cDCtNlC4Ky0PBv4QZQ8CBzQaxZjM2sg+zQmIOlw4HjgIWBCRGxMq54DJqTlScD6st02pDYza0CDDgFJY4A7gMsi4pXydVGa2nifpjeWNE9Sh6SObrbvy65mVkWDCgFJrZQC4OaI+HFq3rTrND89bk7tXcCUst0np7a3iIgFEdEeEe2ttA21/iy0TJlM288P4aW7p9J8wP71LseGmZaBNpAk4AZgdUTML1u1GLgA+Fp6vKus/RJJi4AZwNayywYbgt/NPozHp14LwDn/+RGeWXQSAIf8fAubTxrHzlaVNgyY+O8r6Hnllf5eqvFIvPjJmfSMLL2Hgx57DT3wZJ2LyotKZ/J72UA6GfhfYDmwMzVfSWlc4DbgMOBZ4NyI2JJC49vA6cDrwIUR0bG3PsZqfMzQqZW8j2FryydP5KYvz+c9I96xx7ovbprGVw56mFFNI3a3HXnvXI75m+VE9xtFljk0Tc2s/9IMfjXvm4xrHgXA/C1HsuQvpsPaLna++ioM8Ptpg3df3P5oRLT3bh8wBIrgEOhb87hxbPj+ISybfsug9+mOHv7ohkt415cfqGFlVdDUzJp/mc6Tn/jXt4QYwMYdr9INnPntL3DoN35dn/qGof5CwJ8YbGA7j568TwEA0Kpmzvn4L1l/+3t58VMn1qiyyq2/YgaPf+LqPQIAYGLLGA5rGcPdl3yD5y9q3PcwXAw4JmBvP189eDlfPXg5m2e8xkf2/wfGruvZvW7/Xz/Ljo3P1bG6knfMfIExTSP3us1hLWNo+/hmmm8/iJ7nnweg5fDD2Pq+vj92MnbVFnpWP131Woc7h8AwdnDzaJZ9/tq3tL3/sXN555++RLzRa8yg4MvCJg1uuweOu4M/mTGPkT95nuaxY9FN3fzymO/1ue3f/e79PHP2ZHas31DFSoc/h0BmHjx+EUtX7nlL9rN3zeXoKx8nttf+Mxsvn38idx/3TWD0oPdpmTKZnoXBPcfc3e821xz6CDNP+Qz73+wQ2BcOgcw0q4mPjereo73zvO9yzBsXccQVtR9Q7B5VOksZNMFvzzuM5e++dsBNz73iXn5689gKqsuPQ8B2++szf8avvnM0Ozbs8dmuurri6oUc0PQ60FzvUoYl3x2w3a488Ck6Lzqs3mXs4fRR25k50gFQKw4BK1TTe9/NZZf9qN5lWBmHgBUmTjqOWbc+wPljX6h3KVbGIWDFaGrmt6eN5m/HPVvvSqwXh4AVouXQQ+iYO3/gDa1wDgErROw/hlZ5cK8ROQSsEGMXPE+bWutdhvXBIWCFGNG0o94lWD8cAmaZcwiYZc4hYIVoVv2/vMb65hAAaGpGbW387gsnQVMzaJD/z9UGrSd8TBtV9v+BKD4wjU99/04OadnKsa0/Y9VnRvPD5z9A119OoOfpNfUuz6zmsj8T2PaP2zh3zFZOGQkHNo/mlJFw/ZRf0XnhhIF3NhsGsg6B5gkHM2nM1j7XdU/opmnk3r/+ymw4yDoENp5zNLcfdV+f69ae8W/EHx5VcEVmxcs6BKw4vjvQuBwCVgjfHWhcDgErhM8EGteAISBpiqT7Ja2StFLSpan9Kkldkp5IP7PK9rlCUqekpySdVss3YG8PPhNoXIP5nMAO4PMR8Zik/YBHJS1J666OiG+WbyzpWGAO8B7gUOA+ScdERA9m1nAGPBOIiI0R8Vha3gasBibtZZfZwKKI2B4Ra4FOYHo1ijWz6tunMQFJhwPHU5qRGEpTkC+TdKOkcaltErC+bLcN7D00LAMeE2hcgw4BSWOAO4DLIuIV4DrgKGAasBH41r50LGmepA5JHd3UftYbqy+PCTSuQYWApFZKAXBzRPwYICI2RURPROwErufNU/4uYErZ7pNT21tExIKIaI+I9lb2nBbLhhefCTSuwdwdEHADsDoi5pe1l08NezawIi0vBuZIapN0BDAVeLh6Jdvbkc8EGtdg7g58APgrYLmkJ1LblcB5kqYBAawDPg0QESsl3QasonRn4WLfGTBrXAOGQET8Eugrxu/Zyz7/DPxzBXWZWUH8iUGzzDkEzDLnELBC+O5A43IIWCF8d6BxOQTMMucQMMucQ8Ascw4BK4QHBhuXQ8Ascw4BK4TvDjQuh4BZ5hwCVgiPCTQuh4AVwpcDjcshYJY5h4BZ5hwCZplzCJhlziFgljmHgBXCtwgbl0PACuFbhI3LIWCWOYeAWeYcAmaZcwiYZc4hYIXw3YHGNZi5CEdKeljSk5JWSvqn1H6EpIckdUq6VdKI1N6Wnnem9YfX+D3Y24DvDjSuwZwJbAc+HBHHUZqG/HRJM4GvA1dHxNHAS8DctP1c4KXUfnXazswa1IAhECWvpqet6SeADwO3p/aFwFlpeXZ6Tlp/aprZ2Mwa0KDGBCQ1pxmJNwNLgGeAlyNiR9pkAzApLU8C1gOk9VuBd1ax5prriZ2c0PHnNP12Y71LMau5QYVARPRExDRgMjAdeHelHUuaJ6lDUkc32yt9uapZsPVQ/uB/5jLhvA30vLil3uUMGx4YbFwDTk1eLiJelnQ/cCJwgKSW9K/9ZKArbdYFTAE2SGoB9gde7OO1FgALAMZqfH1+QwK6owcoPR5/06W8657XOerXj7OzLgUNXx4YbFwDhoCkg4DuFADvAD5KabDvfuAcYBFwAXBX2mVxev5AWv+ziGjIfwYO+eFyZt97DgDaGRy+9kFooFKbXtvO3a+P5MxRv693KTaMDeZyYCJwv6RlwCPAkoj4CfBF4HOSOild89+Qtr8BeGdq/xxwefXLro6d27bR07mWns617FizrqECAKBn1W+47I4L612GDXMDnglExDLg+D7a11AaH+jd/nvgz6pSnTF1/jPMP/NIPjd+Tb1LsWHKnxhscD2bNvO9u06rdxk2jDkE3gYOfN+mepdgw5hD4G3gQ4c8Xe8SbBhzCDS45y47ic+Mf6DeZdgw5hBocK9PDCa3jKl3GTaMOQSsEP7EYONyCFgh/InBxuUQMMucGuETvZKeB14DXqh3LcCB1L+ORqgBXEdvb/c63hURB/VubIgQAJDUERHtrqMxanAd+dThywGzzDkEzDLXSCGwoN4FJI1QRyPUAK6jt2FZR8OMCZhZfTTSmYCZ1UHdQ0DS6ZKeSvMUFPoFJJLWSVou6QlJHaltvKQlkp5Oj+Nq0O+NkjZLWlHW1me/KrkmHZ9lkk6ocR1XSepKx+QJSbPK1l2R6nhKUtX+f7OkKZLul7QqzW1xaWov9JjspY5Cj0nhc31ERN1+gGZK31x8JDACeBI4tsD+1wEH9mr7BnB5Wr4c+HoN+j0FOAFYMVC/wCzgvwABM4GHalzHVcDf97HtsenPpw04Iv25NVepjonACWl5P+A3qb9Cj8le6ij0mKT3NSYttwIPpfd5GzAntX8XuCgtfxb4blqeA9y6L/3V+0xgOtAZEWsi4g1K31c4u841lc+bUD6fQtVExC+A3l9l3F+/s4EfRMmDlL7gdWIN6+jPbGBRRGyPiLVAJ318s9QQ69gYEY+l5W3AakpfXV/oMdlLHf2pyTFJ76uwuT7qHQK75yhIyucvKEIA90p6VNK81DYhInZNOPAcMKGgWvrrtx7H6JJ0mn1j2eVQIXWkU9njKf3rV7dj0qsOKPiYFDnXR71DoN5OjogTgDOAiyWdUr4ySudXhd8+qVe/yXXAUZSmnNsIfKuojiWNAe4ALouIV8rXFXlM+qij8GMSNZjroz/1DoFdcxTsUj5/Qc1FRFd63AzcSelgb9p1apkeNxdUTn/9FnqMImJT+gXcCVzPm6e3Na1DUiulv3g3R8SPU3Phx6SvOup1TFLfL1P6ev/dc3300dfuOrSXuT76U+8QeASYmkY9R1Aa1FhcRMeSRkvab9cy8DFgBW/OmwBvnU+h1vrrdzFwfhoRnwlsLTtFrrpe19ZnUzomu+qYk0aijwCmAg9XqU9R+qr61RExv2xVocekvzqKPiaSDpJ0QFreNdfHat6c6wP6nusDhjLXRzVGVSscCZ1FaRT2GeBLBfZ7JKWR3SeBlbv6pnQttRR4GrgPGF+Dvm+hdFrZTenabm5//VIaKf5OOj7LgfYa1/HD1M+y9Ms1sWz7L6U6ngLOqGIdJ1M61V8GPJF+ZhV9TPZSR6HHBPhj4PHU3wrgy2W/sw9TGoD8EdCW2kem551p/ZH70p8/MWiWuXpfDphZnTkEzDLnEDDLnEPALHMOAbPMOQTMMucQMMucQ8Asc/8PInkpU56yxuAAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "imgnum = 1 #10 for ns, 0 for s\n", + "\n", + "print(train_files[0][imgnum][\"image\"])\n", + "print(train_files[0][imgnum][\"label\"])\n", + "\n", + "img = itk.imread(train_files[0][imgnum][\"image\"])\n", + "arrimg = itk.GetArrayFromImage(img)\n", + "img = itk.imread(train_files[0][imgnum][\"label\"])\n", + "arrlbl = itk.GetArrayFromImage(img)\n", + "\n", + "plt.subplots()\n", + "plt.imshow(arrimg[0,:,:])\n", + "plt.subplots()\n", + "plt.imshow(arrlbl[0,:,:])" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "2c0866cc", + "metadata": {}, + "outputs": [], + "source": [ + "train_transforms = Compose(\n", + " [\n", + " LoadImaged(keys=[\"image\", \"label\"]),\n", + " AddChanneld(keys=[\"image\", \"label\"]),\n", + " ScaleIntensityRanged(\n", + " a_min=0, a_max=255,\n", + " b_min=0.0, b_max=1.0,\n", + " keys=[\"image\"]),\n", + " SpatialCropd(\n", + " roi_start=[80,0,1],\n", + " roi_end=[240,320,61],\n", + " keys=[\"image\", \"label\"]),\n", + " ARGUS_RandSpatialCropSlicesd(\n", + " num_slices=num_slices,\n", + " axis=3,\n", + " keys=['image', 'label']),\n", + " RandFlipd(prob=0.5, \n", + " spatial_axis=2,\n", + " keys=['image', 'label']),\n", + " RandFlipd(prob=0.5, \n", + " spatial_axis=0,\n", + " keys=['image', 'label']),\n", + " RandZoomd(prob=0.5, \n", + " min_zoom=1.0,\n", + " max_zoom=1.2,\n", + " keep_size=True,\n", + " mode=['trilinear', 'nearest'],\n", + " keys=['image', 'label']),\n", + " ToTensord(keys=[\"image\", \"label\"]),\n", + " ]\n", + ")\n", + "val_transforms = Compose(\n", + " [\n", + " LoadImaged(keys=[\"image\", \"label\"]),\n", + " AddChanneld(keys=[\"image\", \"label\"]),\n", + " ScaleIntensityRanged(\n", + " a_min=0, a_max=255,\n", + " b_min=0.0, b_max=1.0,\n", + " keys=[\"image\"]),\n", + " SpatialCropd(\n", + " roi_start=[80,0,1],\n", + " roi_end=[240,320,61],\n", + " keys=[\"image\", \"label\"]),\n", + " ARGUS_RandSpatialCropSlicesd(\n", + " num_slices=num_slices,\n", + " axis=3,\n", + " center_slice=30,\n", + " keys=['image', 'label']),\n", + " ToTensord(keys=[\"image\", \"label\"]),\n", + " ]\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "b61bb3d8", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Loading dataset: 100%|███████████████████████████| 4/4 [00:08<00:00, 2.25s/it]\n", + "Loading dataset: 100%|███████████████████████████| 4/4 [00:08<00:00, 2.17s/it]\n", + "Loading dataset: 100%|███████████████████████████| 6/6 [00:13<00:00, 2.25s/it]\n", + "Loading dataset: 100%|███████████████████████████| 4/4 [00:08<00:00, 2.25s/it]\n", + "Loading dataset: 100%|███████████████████████████| 6/6 [00:12<00:00, 2.06s/it]\n", + "Loading dataset: 100%|███████████████████████████| 4/4 [00:05<00:00, 1.40s/it]\n" + ] + } + ], + "source": [ + "train_ds = [CacheDataset(data=train_files[i], transform=train_transforms,cache_rate=1.0, num_workers=num_workers_tr)\n", + " for i in range(num_folds)]\n", + "train_loader = [DataLoader(train_ds[i], batch_size=batch_size_tr, shuffle=True, num_workers=num_workers_tr) \n", + " for i in range(num_folds)]\n", + "\n", + "val_ds = [CacheDataset(data=val_files[i], transform=val_transforms, cache_rate=1.0, num_workers=num_workers_vl)\n", + " for i in range(num_folds)]\n", + "val_loader = [DataLoader(val_ds[i], batch_size=batch_size_vl, num_workers=num_workers_vl)\n", + " for i in range(num_folds)]" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "f5c1f433", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "torch.Size([4, 1, 160, 320, 32])\n", + "torch.Size([160, 320, 32])\n", + "image shape: torch.Size([160, 320, 32]), label shape: torch.Size([160, 320, 32])\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsYAAADHCAYAAAAaq5U5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAADXxklEQVR4nOz9eZisWVrWC98rIjLmiIzMPVQV1VU9YDdCH5TTcFBAAW0UGhA+PIh6zgEEtJAWFUfA73O4OB/nQ0ERDwI2B0QcUVBBRoGj4qEZukGUoWnppruhq6ur9t6ZGXNkZES83x+ZvxX3u3ZW17R3Ze5d67mufe29Y3jfNb2x7ud+7udZoSgKZcuWLVu2bNmyZcv2UrfKRTcgW7Zs2bJly5YtW7bLYBkYZ8uWLVu2bNmyZcumDIyzZcuWLVu2bNmyZZOUgXG2bNmyZcuWLVu2bJIyMM6WLVu2bNmyZcuWTVIGxtmyZcuWLVu2bNmyScrAONsltxDCL4cQPvGi25EtW7Zs2Z67hRDeHUL4pGfxuSKE8Fue5z2e93ezZUutdtENyJbtA1lRFK+96DZky5YtW7Zs2V4alhnjbNmyZcuWLVu2bNmUgXG2S26E4UIIfyOE8K9CCP8khDAOIfxiCOE1IYSvDCE8FUL4zRDC77fvfUEI4W1nn/31EMIXJ9f9yyGEJ0II7wsh/HEPxYUQGiGErwsh/EYI4ckQwreEEFovdt+zZcuW7X6xEMJHhxB+KoRwdPbb+40hhHrysU89+72+GUL42hBCxb7/hWe/6YchhB8JIbz8Re5CtpeIZWCc7V6yPyDpH0vak/RfJP2ITtfww5K+StI/sM8+JenTJfUlfYGkrw8hvE6SQgifIunPS/okSb9F0icm9/kaSa+R9BFn7z8s6a/dhf5ky5Yt20vF1pL+nKSrkj5G0uslvTH5zGdJ+ihJr5P0mZK+UJJCCJ8p6a9I+oOSrkn6z5L++YvS6mwvOQtFUVx0G7Jle1oLIbxb0h+X9LskfVxRFL/v7PU/oNMfxt2iKNYhhJ6kkaS9oiiOzrnOv5X0H4qi+IYQwrdLerIoiq88e++3SPo1Sa+W9E5JE0m/rSiKd569/zGS/llRFK+8m33Nli1btvvN+A0viuLHkte/TNInFEXxWWf/LyS9oSiKHz77/xsl/c9FUbw+hPBDkr67KIpvO3uvotPf6Q8tiuI9Z999dVEU73ix+pXt/rXMGGe7l+xJ+/dc0s2iKNb2f0nqSlII4Q0hhJ8OIRyEEI4kfapOmQpJ+iBJv2nX8n9fk9SW9HNnIb8jST989nq2bNmyZXsediZ9+/4QwvtDCCNJ/4e2v8mY/xa/R6e/1ZL0cknfYL/JB5KCTqN52bLdUcvAONt9ZyGEhqTvkfR1kh4oimIg6Qd1+kMqSU9Iepl95RH7902dguzXFkUxOPuzWxRF9+63PFu2bNnuW/tmSb+qU2a3r1NpREg+47/Fj0p639m/f1PSF9tv8qAoilZRFG++663O9pKzDIyz3Y9Wl9SQdEPSKoTwBkm/397/l5K+IITwoSGEtqS/yhtFUWwkfatONcnXJSmE8HAI4ZNftNZny5Yt2/1nyN0mIYTfKulLzvnMXwoh7IUQHpH0ZyV919nr3yLpK0MIr5WkEMJuCOEPvRiNzvbSswyMs913VhTFWNKf0SkAPpT0v0j6Pnv/hyT9PUn/QdI7JP302VvHZ39/Oa+fhfx+TNKHvCiNz5YtW7b70/6iTn+LxzolH77rnM98r6Sfk/QLkn5A0rdJUlEU/0bS35T0L85+k39J0hvufpOzvRQtJ99le8lbCOFDdfpD2yiKYnXR7cmWLVu2bNmyXYxlxjjbS9JCCJ91Vq94T6dMxL/LoDhbtmzZsmV7aVsGxtleqvbFOq11/E6d1tc8T++WLVu2bNmyZXsJ2V0DxiGETwkhvD2E8I4Qwlfcrftky/Z8rCiKTzmrNrFfFMVnFUXxxEW3KVu2i7T8m50tW7Zsd0ljHEKoSvrvkn6fpPdKeoukP1oUxa/c8Ztly5YtW7YXZPk3O1u2bNlO7W4xxh8t6R1FUfx6URRLSf9Cp8c7ZsuWLVu2y2f5NztbtmzZJNXu0nUfVvkEm/dK+h3+gRDCY5Iek6RKpfKRzWZTsNeVSkWVyilm32w28bXNZqOTkxNtNhuFEFSpVOLfOzs7qlar8TOVSkW1Wk3ValXL5VJFUWhnZ0e1Wk2bzUar1Uqr1UpFUSiE0xrjRVHEP/4a9wshxPdqtdOhW6/X2mw2qlarsQ0hBG02G63Xa61WK63Xp4ez1et11et11Wo1hRC0XC61Wq0UQih9jz+05Wy8VKlUYh9pO2Pg7eL7GO9VKhUVRRHbnBr3rNfr2tnZie3h/unnmCN/f71ea71eyyMR3j765HNGm/gs169Wq3Fc0jHgPpvNpnQtvwdzd3JyouPjY63Xa9VqNTWbTVUqlbgG0rl28/XAH8bAx8bHKn3fP+PryecunWu/13nrkmfE++nPT7Vaje1gnPg+4+TrLZ1Dv5bPSfps+rMRQijNSfrM8G/mmuv4WvJxSNddGt1KP+dj4/eif+kzlt7Tv5/ew993o/+bzeZmURT38umIz/ibLZV/t6uqfmRb/Renddkuv9kzKEmt37rRy2qzC2zQ5bFChd7xSz0V5+y72S7GFppqWRzf/qOuuweMn9GKoniTpDdJUrfbLT78wz88AsWdnR0NBgPVajUNh0NtNhvt7u6qVqvpfe97n5588kltNhu12201m011u13t7+/r2rVrWi6XeuKJJ7RYLPSKV7xCjzzyiA4ODvQbv/EbarfbetnLXqb1eq2bN29qPB5H4MpmuFwutVwuFULQzs6OlsulJpOJarWa6vW6VqvTwgXdbletVkvL5VLD4VDValVXr17V/v6+ut2uNpuNRqORbt26pdFopKIo1O12deXKFT366KMaDAaaTCZ64okndHx8rFarFQHfZrPRcrnUYrHQdDrVcrlUvV5Xq9VSt9tVrVbT4eGhRqORNpuN6vW62u12bHNRFJrNZiqKQrVaLQKPdrstSRqNRprP51qtViVgtFgstFgstL+/r5e//OXa39/XbDbTfD6P9wdQzufzOCaAr2q1qvF4rMPDQy2XS1WrVZ2cnETQUqvVVKvVtFqtdHJyot3dXT344INqNBqaTCaazWYR7C0WC4UQdPXqVXW7p4fOrddr1et1Xb9+XZJ0cHCgo6Mjrddr7e3taX9/X+12O4JhAM98Ptev/dqv6Z3vfKeq1ao++IM/WK961as0m810dHSkk5MT7ezsaL1ex/46qAb84FhJimOwWq3UaDTUbDa1Xq81mUzimprP5zo+Pla1WlWr1VK73dZ6vdZ4PI7r1wG6pOjYSFKr1VKz2dTJyYkWi0UE99VqVY1GQ+12W41GQ8fHx5rP55rP5xH8sz43m41ms5lms5kWi4U2m02ct3q9Lkk6OTkpfXe9Xsd7SlKn0ynNZavVUr1e13K51Gw202q1Uq1W087OjlarlabTqYqiiJ/DarWaKpWKxuOxptNp/A7rtF6vx7ZIUqPRiI5T6jT6PNBOfg8cGNP3zWajVqulRqOh9Xqt4+Pj6BSxTnZ2dmJbd3Z2bltHOBw4p4Dmk5MTzWaz99yJ38XLbv673Q/7xe8Ir7/gFmW7aAuNhiq9rt72Na/Uuz71/0revXIhbbqMNtzM9Tkv+5iLbka2M/uZ4sef9r27BYwfV/lox5edvXauFUURgQGbEQCgXq9rNpvp+PhYjUZDvV5Pw+FQ4/FYx8fHajab2mw2Oj4+1mKxiCBxMplE4Njv99VutzWbzTQajdRoNCJYA4jx71qtpuVyqfV6rZ2dHTWbTS2Xy9PBOtuMT05OYnt3dnbUaDQ0n8918+bNuGH6Bg3bLUnHx8d68skntVwuS0BzsVhEUEQ7Go1GBK+SIgNdqVTUbDYjcAZIdDqdyPadnJzENhurFRnDRqOher2uxWKh0WgUmVRJJRC1s7OjyWSi8Xiser2uZrNZYnnp43q9jsw8YySdMnknJyfxe61WS5J0eHiog4MDhRB0/fp1dTqd0vcAmg7QFouFer2e5vN5dCTo32Kx0Hg8jmuANgG6rl27plu3bumJJ57Q+973PrXbbfX7fTUajdgHZ6cXi4WWy+VtzC9j6mwuQJ95ow8ALcam0WhEYDabzSIQxXmhrdVqNYJlxpjxoE+shWq1WlpnfM/BNiwvbeP78/lcIQQ1Gg21Wq0I5Jk31j7PHmCReaGPPH/cq1arxWvxf74nnQJeWHwfJwA2zhPXSxl11h+RgvV6HR0HAD+/I8wrzwTrEHDrkRkH4PTP598dQP4PsL4P7Dn9ZmfLJkmVdlvv+orfrl/949980U259FZVUO0Vjz7t+8V4ovWtgxexRdmezu4WMH6LpFeHEF6p0x/XP6LTE2/OtTQ8vFqtNJvNtLOzE0Pky+VSJycnarfb6na7ms1m8TWACcxqu92OoG86nWp/f1+dTieyR/V6vbThnhciZWOu1+saDAal8Df3Ozk5iUCGTXM6nZZkCPTJ5RbHx8d66qmntLu7G/uYsobOtPF9AJakCFolaTqdSjoFGL1eL4JRl3HwvUajEZk7gKCzfoDx4XCo/f392A7GstPpRHC3XC41n89VqVRKIWvGE+ZdOgWHgCuueXh4qMPDQ+3s7OjKlSsRpDp7z5hz/eFwqGazqWazGUGU95G5abVaETAxLteuXdPR0ZFu3rypnZ0dXb9+Xe12O/abMcPZ4lrMC3ORSmYY23q9XpJzAMhgn4+Pj6OzBZjy9b1YLCI4dqkNn3f5DuCUKIOk6CjwGYChM60urQBU+pqjz7QNxpq2A9qZF9Yiz4WDcMAoa4D1SF/4v69HlzjQd/rD9RgfxpDxOT4+1nQ6jcCXtrlshXXozqbLbbg2c+5SCq5HGx2o3wf2nH6zs2Wr9Hp6z5/5cP3qH/+mi27KPWHdSlM/8Obve9r3P+zN/5te/lWn0dDwm09qfXj4YjUtW2J3BRgXRbEKIXyppB+RVJX07UVR/PLTfZ6NlA0XEAEjXKvVYuiz0+lod3c3spgAH1hXGKFOp6P5fK7pdKperxfZWRgwZ1EBQWzmtIn27OzslPSItHW5XEZAAVgklHxeyBVwXKvVYhi/1WpF1g3WK4SgwWAQ5Qep5MH1tWzKw+EwbvqE7WFakRMANAEihNwJ7ztbd3x8rIODA127dk3NZrMEYnd3dyNIAUCk4BFw4XpsjwTA4A+HQx0cHMTrwuS7vpg+VioVwtbqdDqlULw7I4A7/j+fz+Oa6Ha7WiwWGg6HEVR3Op0Sw8+9AMH0D7YV5pd7Ib9xMIXDxfdxpFijrFlYdGQDx8fHkX1mTTBeDmRxFo6Pj0sRFweNMLYpKOa+rEXWtsshWLNcj3bB1C6XyzjmAHvYa9pnvwe3aXV5bmDm3dnA0aBfRHhY/0hfXPtMu5E+sT54zZ0Y2swz71GC9Xpd0rS77hvj2TvPob5X7bn+ZmfLNv7kD9Ov/KkMiu+U/crH/hPph0///erv/BK98t/NVfvFX9d6NLrYhr0E7a5pjIui+EFJP/hsPgtb5IloMMCwjAATtJntdjuCvcViEf8PkG42m5rP55pMJlosFmq1Wup0OhHMAQIc1DjIgxE9OTlRp9OJGz2gms8CfhqNRtx0YQhhprHFYlHSpKJlhUUFxAFo+v1+iV3EAHSE2QEA9NfZVKxarWo6nUa9NvdjLPgOMgt0q4vFIgLB8Xisg4OD2B6XG3APwIIz0w7gcWQARrVaTZPJJI4J4f4QQhy/SqUS5RHT6TSCO6IHziy7hIP7o1eu1Wra3d2Nc47UBrBLG7kGEgZkK/P5PIJDHBpAkjPHLgOgDbD4y+WyJEfxsUMuwXUAyoDpTqdzm6wAltaZ2DQCcfY8liQh3Id1gkPSbDZvS0yt1+tR900OANdi7XN/T5qkPaxXj2Awp9VqNT7HrDPALOww65L1BVMOs8981ev1uG75vz8vnpDnkQjWIWvFHQcHv55ImCYU3g/2XH6zs720rbq3p1uvvS8iJZfSfu3zvln6POm13/hGXf1vK7X/71/SZpYTGV8su7DkOzcSw1Jw6kCXzbgoipgIVq1WI9AC/AIqYbYmk4nm83lkpACUaBGREQCO2SxhNrkumzDvA64ASAA3AAgbfbPZjMlW0lb24FpI9Mztdjsy2tPpVPV6vZREBWsH4AV0A7QAbzDtkiLwxnFAStJoNOI4OxDgewBaxrNer2u9Xuvw8DCGv9FiS9twMt8jSWtnZycCF0kxGc0dGJjjZrOpwWBQqrhBW3FsYGABJThJrA0cF8B3o9EoAXgAJhGB4XAYGUi04s6sp6w1Eh7pNDkOdt1ZzlRa4tIexhsWlDazNl1GwjyzHq5cuRLXJmAfeYCkCPhoN06gs+AAQIBqCj4llXTXzia7/IHxw8GpVCrRaXFZRsr+44x5EiHRB6QMPKv+Gg6SO6g8d0VRaLlcRoafZ9NlUq7FZv2gfeY5JjnS9dBeXcMT9egX7xOdyZbtpWDHr3uV3vbFmS2+2/bLX3o6xr/t696o9pMbDb7rrSqM8Mh2d+xSAGPpFGSQZMcGOp1O1Wq11Ov1IjsHqCDjfTqdarFYaDabqdVqRW0pG9x0OtXR0ZEGg4EkxQ0PAAObxMbmCTkAxk6nE7WoHhpfLBbq9/txg5cUZQ8wXq7T5L5UmgDQApZ2dnbUarViQt14PI6bPwwcoM0rPXB92DBAR6VSidUpSGR00OBgzTWsDojQbQNuALGMm4+Jay25Z7vdju0GiI1GozhftP/4+Fij0SgCZu/Ler1Ws9mM+nG0uCSOASoBmMwrwNj7vdls4neWy6UODg7i3Ozv75ekBoAfdOAAuJOTE02nU+3u7sZKIePxOH6X7wGwKpVKlPPAZrqWFVANyGX9EXUgUQ79OtEJ1/p6iTbmnzYzT6xb3uNeJH4yLjhsPCNc06s94ACdnJxE58UrRLAmnVmmDTxbSH+QPfH8MT6VSiX+HuDgpW2H0aYtrp13dp31yxi5s8Cz2mg0YgUUl1t5RQpn63nNq1lky5Yt2522//YXTwHyhz/0Rn3Q3/kZabO+4Bbd33YpgDGbnusdpdNNfDKZxLq6fFZSKfTuiWCuF5VOgep4PI7VEHwDlbZg7jxwwsY8nU5LpaAANc7IeXiZTd8rW8zOwiCAfkqmdbvdCF7QkTp7TuUA14p6OyVFtg8dNqCGTR3GHAADYAPMUOoLIOXhY0CM62UXi8VtYMwdCcaIdsJAUuJtsVhoMplE0L2zsxMBd7VajVVEXEe7Wq00GAwiCKXU3mq1ioxlWknAATJzBthhnVCphO/CPktl9huW26ML3Lvb7UY236UVnpgpqeQIMW+sPRhP1wIz70gjZrNZXCPNZlOjM+2ZJ7wxH6xB18Kiy3WnAtaf+/IZZ3zTqg3OwrqUwce4Uqmo1WqVyp05iHVZA9GfdAx5RmHH6Suaf5ftSCo5hay9NPnQr0MfWJMeXfF1Tzv5jmub/RnIli1btrtpv/jnv0kf1nyjwlp62f/vzRfdnPvWLgUwZiMktOmJOrDBvV4vMkFewgpwQ4iWxCxAIOFY2EJYLDZxz+SH/fJEH5g7BxnOICJNgM0iBOwbPPcAUAF8SRSStslUbPIAE08WYgP3tjkIcKZV2mp+AV58jvC9dFqPmbZ6mN/ngWtRrs11xQ4AXerh1TgAOc5yr1YrHRwcxMoc6HgBx5VKpZTkNplMtLu7G5lXyrN5BQUkNAB0Z8rd8XKJA+Xfjo+PNRwOSwy9M9YAIGQRrnWFbSXJz8cOh4kScw50fY4cLNNGnw/GdzKZRCeNZ8N1zA5OcZKYcwf3yIa4DmvAow1clzXlAJf1h2PqGmYiJe12O0p8nPl1aQrXwbkh6ZZrer4B8+JOmT+/Lmnhul4hw5MU/fv0h3XNmsH4zfHEPBw25ixbtpeK1R56UO/4gnxQxUXZr7zxlD1+ze6X6JVf8VMX3Jr70y7FLzqbDhuMZ8WniTgOGgBPrkvm8+iQ0cjyecAxIXZAjbNGnhjFHxKgABOwhDCuhKP5DPdic0YHvVgsYmUNtK9ssABwZ8y85BigwEP9zhxL27rBHjLnHoyBM16tVkuDwUBFUUQ5gINexhbwCnBwUODh9+l0quPj43j4BO0HhABU6vV6lIuQZCgpOhvSNoFPUgTCzI0fJjEej9Xtdkugz50J1woD9JjPwWCgk5OTeFAIbXdniXUG8OQ9JDOewEg/WUvp53if+fWEOObH5xnJDZIVHL1msxk16SlzyXzwfUAmLK5r63F2AKX+WfrKmKUOEfPvax0QzRrEiSSq484WshDAJm1ONdrc31lkvx/tQBqU1i9mPP35cr0y8+rXdU2xJ+ql8+WRlGzZXhJWFNqcVJ75c9nuqv3y536jXjP4ElXmFf2WP/fTF92c+8ouBTAGrLJBArrYZF2v66wy7B6Axlk29JlUokgT7mazWQRLHmqHvYLVpCrEbDaLQI2EIZioNGnQk+oklZLzYM+uXbumXq+n8XisGzdulGoio8UF7NAfQIYfb8xnuBeha5L3YHQdPLtcBabOy44BgJx5rdVq6vV6UdcNWPBqDgA+qm2kCYl8BxADaF8sFup2uxHoOZvumlJOVINVR54xHA6jHp15czadufFIBBpxdKVebg3wz3U84ZGxoF8AQNabJ4r6eLOGuLavOweLOHX0EacM9tXZWyImyG28uoQnwAHMWTOczDiZTOL64F7eFsaDNcJ64rOMB88l9wAYwxKzTnjOAbSsZ1+fXmmC9rgcxuUn3IfXvUKGy1FYCx4JcqfVq2Xw++K5CN5XqZy4t9lsDzfJlu2lYKv3P6lX/ZOXSZ980S15adtOqOpdn/EmHa5nel3zy/SaL/nZi27SfWOXBhhPp9PIXDlAgUFqt9slgMLGBtPo2k82NdgcKgdwjC5gAemEHyTCRgyY4XUYy8FgUAK+gGJAFJ8HvAK8uA+b+Wq10u7ubtQbeyUGL7eVsmQAS3/PwdhkMolJaAAalzu4xtJ1lzs7O+p2uzo8PCxl2DtD6bVmAQw+/g6kCfNTAcKBhqTotPi9AIOAHnTjsODUmeUAD+r/ok925wVgDlBjvCRF0AtwI+wPs817sIWuS3fNsVd2gIXk3owLc+UsPdeu1WqlE/ywVOIDOGZNAn6JXrju3LXdrFMft9lsFgE1Tp2zww7oWR8uw8HZQNNN9RVnl/15dNDqUSDGDUcHB4l1SyUWZ+xZf4wxkRrWkycd+m8A5slzrAueWfpJH/keAN2jMymr72OWLVu2bC+m7VXbevOn/R197Lf+Ob3mT7zloptzX9ilAMaSdHBwoCtXrpR0ipJKABMdqes/XU4xn8/jhnx8fBxBB4DGa6V61jlMm7RlwhzYsKHOZjN1u92YTOaJVWmYHdaWEDunr7GpE8rnfUAlr4VwWrPXgYuDL8y1kvSNY56bzWZkdGH8/NQvvg+TiEQESYWH0ElA5DpUegCoABIZM4AtLKqznQ7auLcDLk9aY854T9om/0kqVfIgVA8YBajRfpg914/ikADu/EAPZwjRATs77Mym66i9UgHJbCTXSYoVMVxb73PK+vbXmDPWA/3wKAkg0sEgzHG1elpR5OTkRPP5XIPBILaN5wOgl8oPfL14gibvIU2q1Wpqt9uSVCqDyPpMD9lJ1wzPBWPu96I97jQg/5jP5/FZ9ueReXDGl9dZexwTzb3cifT140yzO6Q+1tmyZct2EfZQrav//Mlfr9/97V+m13zhWy+6Ofe8XQpgXBRFPOQhBcZsXiRGAXzY2NgQCRvDyHGalqQSIwRQcCADMIFl8vAyDFYIQUdHR5pMJlGfmMoTCOWyYcPgAt7YgJErUAnCGWva1+/3JSkeysE9XIoAqKHNDipTUOLfY3y9wgDjTWKb61YJF8OuwboBilLgmyaPMY/MB7IQHAJnYfmeJznxXS99R3toJ86OJ/fhmJCUSaIaDkPK9HoVA8BbtVotHYNNSTIHh17KjPWcAmUvgYa0hjlIkwKZV5dcAHwB2O4swp76nHtkgFq/Lg9Be586WX5//u1yAgDsZrMpjSHgERbb9f44HOiZPVnODz2hOkkqgQDgunTJmV2PLPkY4cD5M0JEid8LnlNYdFhn/+PPsyfi0SbWeLZsLxVr/Nw79GHf9MaYCJbt4u1lta7+0yf9XX3Ct32ZXvNFGRy/ELsUwFhS1JT6xsOGBsvFUcts9A68PON+PB5HYABrDIhCKzsej2OImA27Wq3G8KyDO4r/oyd1/a+01SUCXLkekgmS50hIozwaOmDYMcAZ4II+UO3AE+78/jgIAAmYQLTXgG5pe2CBS0FgCgEcHFzBmDA/sGuSYiJhWsaKueBeAEj0uF7ZoNvtKoSg2WwW2+UMHHMAKHGH4ebNmxHkweKh/0arDPvo48H6qdVqUbPMHPI5xgagLynqyhknDp5w4OjAn+u6dhX5ggNlZ6alcgKeM/2eDOjssOt+YU5peyrJIHmP+zFvtJHkNZwNT+BLk9WcZWZOvU40c0GVCb6LE4oEhOeDPqLDd3DuDhBr0fXi7oR4XkK1Wo0HwDAvaf9ns1msoUytbIy1jbQJR4Y+ewWPbNleSrY+Gmr/V3Mt3ctmj9a6+k+/7+/qE9705/Sax7Ks4vnapflFd+0lAMnZWo7G5Y8nVJHQBiO6Xq91dHSkw8PD0vGxAMR+v6+rV6/GDVPankTHpgrT5SWg+LwDUU8OAtSFcHq0LslgAHsAxpUrV7S3txflGbB/MK9stkgbOGAEoApDnh424qfUwSZiXAvQSngfllVSBLoAe+5DDWjuA0hARwwAdZYNZ4GQOcAUthdZA/MC8KJ9zp46C9hoNNTv99Xv90tOAoBR2oJQ2DzYPUAPa4t7+Zpj3LwKCH2nvYBkADnjAftNgp3rULk2cwiAb7VaJTCOA+JMNhIZ75Ov+X6/r16vF9eKnwbHM8X40jfXyXq1Ba++0e12Y8UQHDeXZkgqJWACPDlUhnux1jhS28E+EpX0pDrWiifZORDn9TS505llT6ik3jRSKNYo/Z1Op1H+4QyzM8gYa5n5dtY9W7aXivV+6Jf02v/zjRfdjGyJPVrr6s2f8vX6tb/3Oy66KfesXZpfdEAYjJpXXKASA8lVvhmxqR8fH0cQB2ADoDzwwAOlUmOcprdarXTr1q0IQpwx8kSy0WgUwQybPLpXaXtIAOwfGzwAik2UAz0A4UVxWiKNZC3X6gJCOIlrs9mo0+nE+0uKoNtLVAFcYDdhA+kfffNkLBg0rgEwdomAJ0U6eIXt87JcsMOARkqgAer5e7ValQ5UcEmBy0dCCBqPxzo6OtLu7m48+ZBQPkCFMm+AH5I66SPgkPHd2dmJLCtOQSptAYwRxWD9sPZS4CxtE8FcWkFfHXADxnHunAVlfj0qQUJhvV6PNY0BzV7FgvUxGo2iI9PpdGJ/XBKAAQhxiBgryrtNJpPYx/P0vjg67qgwxh59gQ0G6OME4MAyJt4GHAecLNf7OoPrOQPpWuIP/QME0/c0WdA1z84cu4yE/ubku2wvRdtMp3r0639eH9p4o972WJZUXCZ7qNbVz37W39HHzP+iXvXludbxc7VLAYwdSAFGpW0iFqeRwagBqgDHaAA5bKPX60VN6XA4jPpBWNdut6vBYKDNZqPZbKbDw8MY2oex88oE0+k01j1GriFtQ+bOKPkpYGymAN7FYqGjoyM1Gg0NBoNYP9h1ul7315PdPEydJnsxhh56lxSTEhk79JbUT5YUQTXfRUbSarUii4deG1BJHx0w8xnaxxx5+S5nhmkT5lU0qtXqbeF0yrLdunUr3htAzlHL4/E4nqrHuvCqJM7yuqwC0Mc8MO4emgfs0VbAMmtiOp2WwDHJc16JAUbVy/cBRr0qA697Uh7Php++x3r3vqasKvNFZRHGnvdgwLmHVzjhnl4FwrXErHHmwte+tD1N0p9pnBD65nILoia0n3FmTLyaBADZdfDeLpwXn3Pawji4XpvnHhaetnmCIPkDOBvunGfL9lK0zWKhl3/1W/Wp3/B79La/9Vv0rk/71otuUrYzu1rtaN3OTvvzsUsBjCXFDQgmCYbPARlspDNALhcAXCA9mEwmmkwmcZPb399Xr9dTpVJRv9/XZrPRU089pZs3b0bWdn9/X0dHRyWw7olyADXXOwLOJMXMf9eFsrFT8q3f78eELvTOhJU3m008OrnVapWA3XK5LMkzJJVq3roUAQAKAHBwTHvSMlWSIkDkc86YwYoDhhh7rwKBphvA7aXsYNIBP5gDKten0g9Y8slkooODgwgmHezwZz6f6+joKGqSpa32GTAM4GetwWROJpMS05vqsVkPHi1wtn84HMaxdOkF/efUQj9ABHYUXTeOCe97Uih/w/wDtJkTgCyRCubSjwr32sfO1LoO3/uHzIf2pTXFHSCS3Ee7PYHRZUbMuSchprp9PpuuFZ5/5omxcrDP/V3KwbPKe54PQBu9tB9OQ6fTiWDeowV+sErWGGd7KVtxstT6cKkP+ZL/ok+pbsP3v/2nj/U3H/iFi2tYNr39D36TftutP61H/0Y+Pvq52PMGxiGERyR9p6QHJBWS3lQUxTeEEP6GpD8h6cbZR/9KURQ/+IGu5aDLQZnrEZvNZtTQAlgAKlxDUon589PRDg8P1Ww2tbe3d9rxWk3Xr1/XAw88oCeeeCIm9iFfcNlArVaLhyzAZgF8CL9yVDDyBIDZer2OGk20xk8++WTUb7q2GYaM/jkrBjj0UmWUQ+t2uxEcAEi4f6PRiAdynM1b6Q/hYWQIVHCAsQbsOCB09s+1wZ4kxfhTVcOT8FarVenYZeYNptcdEE8cg3EHWDpLzzrgOpvNJspWPPzuzo6kKBVg/XHkMn/8VEKMuQf8e8UF18MDrvr9viqVim7dulUCZ0hPnEnHeJ8++lHgaKiZC9hV5AoARj/wAlAL2Gu1WhqPx7GaBeCYscHx8PY6Q4qMInUUuRZzBsvs/XGwzxrE8aNvfmiGS058/XHfVCvNOPFs4dz4b4U/Y7TBZR2AY54vHBvANu97tZV7we7k73a2bG7FaiVZhZZfeF3QJ+t/vMAWZZOkR4sMip+rvRDGeCXpLxRF8fMhhJ6knwsh/OjZe19fFMXXPdsLoTn0JCuvECCptHkCjJxdBVycnJzEGr7oZNfrtSaTicbjcdQpUuHg+vXr6na7unnzZkkygD7VE4IwNmZC/4BxWGCvewqwpFzbfD7XZDLR+9//fknbBB8/upr+AP4AIfP5XLPZTO12O27GlUpFu7u76na7EVjCMFcqlQjYPWTs7DvJZmhxvQIByYbOoAIgXL8MIHdgl4IRr37BtQBaOBqAOq8hzVzAHsKqXr16VZ1OR6vVSkdHR5rNZnGckKMwR15BIGUyea3f78fksNlsplarFRPZnJWlXawBKhpcu3atlJzJfNVqtZhsyfHVzLFXZmAc6C+VOhgjr8CC0R7Xs1MCDbCHM4eGmTWOMyVJk8kkyhv8Xu12O2q3iWjw3KEJTzXxvM/aZ86dXcWJ4nVnxAGqnmOQGmNE3x3o4ph4ZRsiLPQLh44xp21Ij3ztOnCmYk2alHleGy+x3bHf7WzZPqCZA5st271kzxsYF0XxhKQnzv49DiG8TdLDz+davrGzebHJsnkCEmGkOp2OpO0mzibKRu1hT9iyGzduqN1u6+GHH9ZqtVK329Ujjzyi3d1dnZycxPJpvuEDIGG7qtVqZAQJofsJYK6hpc2wbn7C2ng8jqAV5pH+wtZyPb7rukgSzKjty0ZOu5B0bDYbtVqt2A8MMB9CiNURAEj0AdkCQA8wDriGaeYwlV6vp06nU6rV7CAd1o8wNKy2h9qdjWfe02O/YWMrlUqUzTDPnhiIrMEBecrCAsRhBo+OjmLFB8r0HR8fR9Y9Tcqj/NdoNIoHWDAnrJPlchl17YB41g5r3itcsG5gggFqzJe0LRHoemnkDg4aXTONY8m49Pv9mLyJtMJBJ+uePuJgebWPZrMZxwsQ6Yl0AFzWN86L6/S9ygvg1hPx0ogDUSQHxfzxtnmSLOuQtc8c+m+Qr0Nvm48lx51zb+blXrE7+budLVu2bPej3RFxXAjhFZL+R0k/c/bSl4YQ/lsI4dtDCHvP5hpeTYFEJk+8cTbKM9upFOGgD1CL/tMP3Xjqqaf03ve+VwcHB1qv19rb29PDDz+sXq8XAS4bImDBs9I7nU4puQhg42wrFRM8PI5+FV3rer3W4eGhJpNJBCsAPq99C4jj79lsFqsN8D7t4vhl2EjXkLqm1ccJwOwsGACN/nt1iTTRCKkKIXOvEwsIZs4A6rDxyAMAOs5GAqS5DmsAQO0nIiINoO2Ml8tRSB6DKQasTSaTOJ6dTkeDwSBWS3DmlfECLJL4BzhCi+1rFaeI9yiphuPAGsW5S8GiA9a0djdl8nzN+hqAOZa2FUnQlI9GoygBabfb6na7sUoLiXAkrnoCJmsVMMgzSlUR5sSTYlmfzF0qa2G9ADR5llOdNzIrB7M8ky7R8MRGQD/OCfdjXFkP5CoA/AHkmOvjkTSl5eXuRbsTv9vZsmXLdr/ZCwbGIYSupO+R9GVFUYwkfbOkD5b0ETplJv7203zvsRDCW0MIb031tZIi0ALkehgXXSQ6XZgoB2SehEPNWMLbN2/e1Pve977I2l67dk17e3txM3XNJUDVM9Op7eqZ8r7JU+0A4MR1kXKg/UUWQHKUl48CbALG6AdgLz3dC1BAxj0VOGDcGFfP6JfKR9wydm4uIfBkL68iQt8AGmkSlMsDJEW2FBDGdVw+43NJ+1zf6QeMoJuF6Ucr6kl3DjZ9vQEC0YX3+311u90S+HMJA/PtABjj8wBG+kM/6/W6dnd3Yx8AmTiFLkVh/SDtcFkFjgprB6DG+gSEpvIBwCOHy6DnZ63AzLOOAcrMB5UwuB/HbANqmSuvw8ycuZzHtekOnnH+3DFyNtb7kWrmvc6ySzX86G3GzZNZPZqTtoF/s955FlPJ0L1od+J3+0TH530kW7Zs2e5pe0FVKUIIOzr9cf2nRVH8a0kqiuJJe/9bJX3/ed8tiuJNkt4kSZ1Op/BQN5saNXLTrHRC1Lu7uzFJilq1ziw6QD5rj1arlUajkW7cuKEnn3xSnU5H165di1pjEs8AbgA1NlKkBxihVdrkiWPcUypX3UhPxjuPIVsulzo6Ooq6ZfpFwhaMNpUXYIk98Y6KCA6KYc4ADF6DmXsDwtLKCV71wJMTASIAYgCyz6m0lb2QjOayCdejck9nAKXtUdLozW/evBn15p1OR91uNzpUjKU7TfwB6PH3er2O2t9erxeronjIHaBHGwFKsMIuu8FpYAwB5DgwyA9cU02EgXmB5fUEOPrDawBwNNMAXbTsXIvnwNfieDwuVWxAckFdZx83P4yD9QUAnk6nsW04Se7IkvzHnLJOPBriDrE7S4yds7VITXAQvSqGyynQ+qcstbPS7vS6Y+4gmPEBZPO8pg7bvWR36ne7H/aziDRbtmz3nb2QqhRB0rdJeltRFH/HXn/oTMcmSZ8l6ZeexbUkbZkiWC0v4+WJUoTAYd880ckZM2mb/Ob1VxeLhW7cuKHHH39c+/v7ajQasULF448/LukUzPX7/Qh4SUI6OTlRq9WKoIrDRJzxBUx5SDYFZgAikqK8fi1H8SI1gFFzQA3rOBwOVRSFrly5UgJckiJQhsX05DtvB9dyRhIDwDqTBmjx7H9PIKP6hpcsA8AhT2i1WhFAeiUFaXtwhutJeR02XtpWhXBwjEbYZQn87U5CmjAF4OUIbTTv1JCm336SG2vTqywAGmH5XZc9nU4jCHNpEOOLYwazDtuOdIKKKZRgo58uF0ilAM6SOnAEOANc6Y8zoK5v9vq/Hjkg+dDHGvDLXHn5N9rL80x7PULDGPJsM5c4yc5MM54ebXA5jUuE3Plk3LmWOz6w/FwXAO2RDJ4bf1buBbuTv9vZsmXLdj/aC2GMP07S50r6xRDCL5y99lck/dEQwkfotBTQuyV98bO5GMwOG6knWPlm6KzTdDrV/v5+qeQYm3EaakVXCKidzWZ63/vep4cffljXrl3T7u6u+v2+bty4UQISbLhelxeQAHDiiFk3NlivpcrhAX5d2FbPwvdqF/Sz1+tFqQTAjUoeVLrY3d0taaWlbc1b16e61hemsdFoxOQzBw0pW8zrzlzCguN0wChzqAbjBZhZLBbq9XqStqeXwURzWAdzx1gBkFxS4pIA1gnJci5/4T4A8BSEk+zooAfwTS1pZAtojGHtz6uzjUNAfWsfa5wsgDHrerPZRImJryWS6nDKSLjk+6xz1gHz7NdNx5J+83l3mGgvc8LYIe1wJplx9mRJl0DwvCAVcWcSR9Y1+ziuLk9i/TpQ9XVLW1NZC+3hWfS5xhnwRMMUNAPgHTi7ebWYe8zu6O92tmzZst1v9kKqUvw/ks4T2D2v2pcOftnkPNOdMCobFGzVarWKOlv0j16T1WUBngTmB0Zw4MZgMFC73dbR0VHMoucP+khPMGKj5pQ42Cnuzx+Ao3TKcnJIhzPDAC42eQDwdDotyTBwGqStLnI+n8c6zbXa6SEbaeUMAASMHEDp+PhY4/FYvV5PrVYrln1DRkKCmzsuzpByTYCFg1KAInMIuKUmtFfTQCdMQth8Po9ADlDmbDdseFEUsW6xpHhKIpIA2uC6Z8aSa3pVB2d5cUSq1WoEc161gz77Uduu6+W9VFqDwwHA9/Fzp3C12h4jzfperVaxiojX+mVcU9kR48t8w94iv/DoivdZ2taQZi6pIIKDw3V9LXgyJeuB5zuVosB8A0bdASPCARBPK7+4LAT5hc+LyyWYT9rmjg/PA2OA40WUya9FH+lPCsTvBbvTv9vZsmXLdr/ZpfllJ2TNxpuGOdk0MZg5ws6tVkuj0SgCJ098A2hy2AQbKRpJKhJcvXpVe3t7MZxNYhegDQALa8y1PZsdkOBAALAHu8l1KOk1Ho8j8KDdJENJiiyj13vF0BEfHx/r4OBAV69eLYW8PXQPuPfkNLTMgPxerxdlEABPyuBJWza11WophKDZbBbrJ8MKAqRgvaWtBtoBs5e745js3d1dbTYb3bx5M+pyAYYAXObQmUscGU7eQ14jbU88AwShi2UdFWcVK9Apez1bgBIyDWpbO3hjfdTrdY1Go3gvr7HtjC2abg/Hp8mKJIYB1gHCAErGE0dS2tZUxmnDufRrM8+w+/4+kQAOtHCHgjkCEHqi3nmVTaQyS+9SIRhb7s1zz/MuKa45DrHZ2dmJzyXrm3vhFBBZ8DwD//1g7QH+GTccOcaV2tWMN067a44ZX3/ms2XLli3bvW+XAhi7HtMTpRwgswk7u4Mkwlk13/wAloTyAbfO6MEYcuhBv9/XrVu3omaTMPtgMCiFjtkUnREGeLFRphnufgrZfD6P9WUBQr65s2nDgLp+kj+AMvoxHo8j0wyoKYoiMr6S4rjA+kmKzsVgMIgA3/sC4OE7gBtYV0AFVTDQ0rpeFTDiIIpT4Rjnfr+vq1evRtb94OCgBOoBT7PZLAIzTzxbr9elk+xcEgATiV5X2obYi+K0RGCr1dJgMFCr1SpJBZxpBJi6XERSdKCcrce5oA1IYKgZjVzHtbkAMy/d51pcr0ZC+1krfIdygRx3zFp3qQ5rhuiDtJUdeTSDZ+z4+Dj20edUUrwHbaW/OHP+OteGiXdNNusO55Zr0/ZKpRIjAV7GkHUJiHaHlDFlnI6Pj6PD4k4IAN2jQbDbLr9x9t3Xd7Zs2bJluz/sUgBjrNFolNgzD8MDSH3ThHUCWHQ6Hc3n85KkAWBdqVSinpHN15meer0eD4totVoaDocx+Y2DG7rdbgR9gBruAZPq9W9dSuBVBiRFQA+4QeZBPV7XgwL86AufZ9OH/ZpMJjo6OiodLiFtATpjSRkwTzhaLBaRUfcwPgx5Gu5mTJvNpnq9XjxS26UDXmMX1hxwAlAeDAZRswtLvrOzo93d3Qh8vc8kQTL2ABrGjnYDlpzpA6wBIJ3FXK1W8XREJB3Slo30Em2MD2vRQRmlAX2NuNaXfru0gzWCbIUEUta8h+/pr7SVZXAd15bjULAm6SfzRt9dH+zrirYCKr2P9MerOTAWyEMYq7Q8IM8c/aTaC2sxTValfd5+9Mb+PPBZxsTlO2nZRMbeQTyRC+qD035PBPSkPU9uvNcS8LJly5Yt29PbpQHGgC5pyw6x6TiAkbZaRmdzYGRDCJG5lFSqTlCtnp6Yhx4xLa/VbrfV7/fjkcu+kc7nc+3t7UU5gGfqA5xcQ8lmyd+u7wQcAPAADlRt8O+hnwZ4sCkDEjwrn2sAHsn+B6y6rIFyVtwDFjvd6GHVaDftdSbQZTDOKrqOlPJ63W5X4/E4AuZms6mrV69GIOmhagA9zC0sLIyvRxcYCy+xxnh4WbBqdXtyYaWyPYwFkM3R2DD14/G4lHxJ2/gbR4O1xj0At0QAvDKIr2/GlbYinajVajFqwVgSbWANsHaZB0Ai64i583JmyFAAj+n13GGk7R7RcLDo0gdn1hkP5AwutyDiQIk6l1AA2r3iCSCVZ8rv79EHT8r1z8JMu4YYCQnfcxDt4NhzFRgP2upzmKUU2bJly3b/2KUBxtI2q91D177hPt0mD8ACpPnJV9R2ZXMj/O8sHUw0G3az2YwJYAC7yWSiXq8X7w+YAMS4rtYBPMa1SaiTbj8wY71eq9PplBIMXZfK+ACCaTsbuCdScT1kIs6iAgJcB03VDEklKYInY6XSFoCJaz0llSQDANmDgwPt7u5qMBioKAoNh8OYLNntdlWv1+NpZDC6gBAAImwpINrD2rDOjAfz4WuJdgPQfDxZP0hSkC2MRqPSWEtbsAYg9VPl3GnysQwhaDKZlFhN1+NSfQQpCEl43h/GxFlYoia+Fl33mrKbLkdyp9EdC+nUGWm327c5Yc4wuyML+KQKBeufaIvreH3uXJfupxK6/IW16GudNhNR8NJ3vj74PNEHxg3HyBNJ/Vkm0c+fKWeR6bsn5mXLli1btnvfLgUwTjeZVBuahsNh6QirUmXAmWWYQdfJ8h4hd8LnhOGdEfRErqLYlpjymqzeToB4moAEKJC2VSQAZamdnJzo8PBQ3W5XnU5H0u3yB1g8wBFaVbSRnpXvmmB3DhhrQICDnJOTE3W7XUlboMupgZJiJRCAo4MwSoZ5oiCgfrlc6tatW+r3+3H8qb9bFIX29vbU6/X05JNPxhq7AJTJZBIrTzCGDm6dVXc21BlNzN9zdpq5dt06/z86OooSjXSMSfREa+16W9aItAXT9AvWHuBFAmAqsSG6wZzhfNF+l7Z4dIX58+oRzKf/DWBlrTGmPB9EGxgL5p71C7hEBsW8EMWAeXUJCOw/48b3GTsAqjsikuLYIbeRtrpqHLyUoWa+cNCc7ea58L4wdoyF10f2BEN3EDIwzpYtW7b7xy4FMEZmQMhc0m1A2EPPkkobHglYXu+W0lKAFa8bC5CSpMlkEpk6NmY2zXa7HZO80OHSFu7NZprKDbCUrSO87sCG71GhYjQa6cqVK+p0OhEMwGwCkgEXHB0NkKFyQLPZjJKFk5OTeKKbSxacOXcGk8QtZ2A5WATWDZDH/PFd2FbXh1LzGeb4wQcfVLvdjpUXVqtVlC4cHBzEseC45ul0qvF4HOUurVarBK5JOJMUQ+EOjryvPn+E2r02MLKZWq0WGVOkF91uN64x17mzHumzlyDzeWaMCNUD8HDiqMvMHFYqFc1ms8is4rCxRlnD9NsjEPzxsmc+J5JKn+P5gFEFhDuIT9czc49T4Pfz9ei1vPkeFWFg6rk/lTUYF0kxEpSeiucJkPztUSZ3BpxlB+Cz9p1lZ3yYv9RpIBrl+vcMjLNly5bt/rFLA4wBT4RHPeQLu8l7GBuqh9cxmDxJJX0oG6FXNZhOp+p2u6X7shm7tAMglko6SBrzEK60BR4ASRju9XpdOsXOpRXT6TRu9H5PGDhpW/qsWq1qNBqV6g7D7pHsRnITbfZkOjZ5T0aDOXU5igMX2uROgTsas9lM8/m8BPhhDYuiiEC+2+1GMAzYcQYUpng4HEbdL4Ae4AiLzny75MABvCdYwfjRH4AbIXfGw/Wrfl2v2MBceig/TR51R8vXrBvtQPoDMPckRtrhiXMksFWr1XgACA6TJxqy3gCK7hzQXmdPibA4UES/788sY4J2v1KpaDKZREfVHUwf+9RxIpoB4+ssu7O5flgKffBKL65R528/8dKZbsCtt9MT/2iDv7ZcLkva6DSxMFu2bNmy3ft2aYBxu92ObBesqicsAY5haglzssEDBlqtVky+AzzC4gFUAL5sqABiBwIeBvaDFADhtIfSXrBiHkKn3ZgDY8Ar7QCoYbzWaDSiPIH+8h7g1xlSgBtAhz45QAVUMJ4A03q9rna7HR0GgJmDEf7vTCggDeaQ44sZf8Ag0o/hcBjb4Iw/oBRJwWw203g81ng8juCdU+godQc4AQAxv8yDh9jpgyd3+Zz7gSMwl5yI50DOx4G2S6fgsdlsxhPl+A5r2kuWcR1ntF2nnOrGiVawjvgD4HVQjjPmDDZt8DFgfQLufL2zvtxp4pnwsXNQTTUOmGt31mB3XWYjbWUdrFuv+uHPHG2mTVTIcIfRJVeMLWPAd3H2XHPuZd64jj+zLpXySi+U1cvAOFu2bNnuH7s0wJgat1RUYDP1JDLP1p/NZnEDYwP08C41ZSkPBtBB1wpohMXymsKSSgAm1WF6SBag4LWMARIpQwvLeXx8rNFoFCUKMJKNRkO7u7sRCAFm2MS9+gQsZaPRiMdAj8fjUtKaJ+Itl8tYw9idCNdk4kzACFMlwWUsgGkHK4wXDKakEhBLx2I8HkfGHCBNuTdKpjlARkftoX4AGA4Un3GmmrXggBGHwHW2AK3pdBr7QzvH43FJz0wNZdfD41jBnMNi8p5HGVhfnrDIPLkOHBAJk0k7nX32SIBfm7XJfBOFoN04CqwN/u1yCtawJ865kweg9IiIl6qjffzhOg7qGQdYcHTFk8kkPpu00Q9JwaFiLJz99uu6nlgql59zDT59c71xqqNmXF0/Trt9vWXLli1btnvbLgUwlraMkesKAWBeNcJBMOFyB8388WoBHC8sbbWNhP75PMDYw+TUB3YtprTdKKVt2NUZbUA9IBh2ibbDcAO6PHEK5pwweKfTiSXhJJW0lmzMnU4nggCAlOssPQnPKxcwTtyTMmO026/HdwEoAFMAbypRQJICOPaQM/0FcMEM12q1ElNMYqTPk6TIRDqL50mWACeXeXiSlutTWV/ME5IAl8Ug9wBcwmw66IUl94oS9JeEPt5nXACUgOOUEZYUZSCMmSd4AvpgTPkuzwTOhx8nzZiwjh1cwvITgXDNP4CQOXCHNWWCvXaya5XdUuANY+vMuYN3X+/+LHkuAuPFeuXeDlpZ+/Td2+fRBebGk+5wYKmVTvuzxjhbtmzZ7h+7NMCYDRpw6XIB36Sd4XJwBePkCXMepiY5SzqtrICWFuP/6Fcp6QRjyv2cofK2AjzZkLlvmqTmjOZ4PJakKMHYbDYlDeNisYgsLOCDPsO6AuTq9bq63W4EDphXk4BlB0gwZgBrSSUwSageOYonQ3oCmIfvkWRI5VMF3QjtA1gPDg50cHCgTqej2Wym0Wikw8NDDYfDqFf28nIOIAGxnrQFMOfz1FlOnQfKsxFFACSlR2oD6lgT4/E46l0Jw8OMMn44c9K2OoTLKmi7t8kdrtSJIFFvMpnEcnhpghvRERIIkd5QCo/nxnXHOH4AQJ4l1qi/TrucdXVwz/tcA2mKJ92x/lzjz2fa7XbU3VOrGmeHfvpzhTwqBcf+rLEuvX2S4jPmvz+02xMlPQGVftAmZ9CzZcuWLdv9YZcCGKcJWAAGgIYzlB5e5v8e6m02m9rf34+vs3l5qHm9XsdKFGywkmI9XWmrfWTzdKAE4+jAeLFYxBrIDiS8lBjgCbDhIMKToLy6hh9fy31wFJbLZWQhYQ65Hywm4BS5gIMFr5BBCJyx5fQ310Ez3jDNaYUDxtoT9xwI8R3u79rXmzdv6vj4OCbaDYdDjUajOK6cWgjYcy2pH20MQHSW30FoCn4Ye2dGXTPqYByQBEvMXM7ncx0dHakoihilQGvsEhSAoAMrn3fYTDSxLv9Av4z8xcsIrlar6NwAFKm97ZIh5scPpEHK48+BywV8bFLwyPPhY5smyHriZTrmnpxIuTf/jkcZzovIVCqVCPgZu1Q6wf89GTNlyrkX8+2/QalMCzbZdePu0GTLli1btnvbLgUwXiwWOjw8VLvdLr2OvGBnZyfqGdlgnS2WyppHNlGAi7QFuK5T5e/pdBrr9yKf8KzzNJveQ+RssoAYACB1d/f390the/TOZLi77hMJhwNWP/Ia1lHa1rcFEMLoAiIXi0WsVuFjhcyAP5486Myeg/50rL190vZEMHTBHrp2BrZSqUTJAiAMoO/l15hHwL8nE3qbGDOPGrg5MGYOAb4ORJGnwDryPlEHgKAz3w5mSSpcrVbq9Xrq9XqRzWfeGcOiKGIonnF3vTp9ZK3xXRhjGFWcSAfy9J/16I6LzxdtBoC7PAIn1YGij6M7Op7MB6vKukJzzHPkLKwDZJ4JxtyfB1/3Dl496ZM1RvTDkxAZX5hl+sPzTaTGnRx3prlWKk1yh4ZrZsuWLVu2+8MuBTDebDalBCsAQloFwLPnXW/MNabTqQ4ODuLRzWxobg4E2CRXq5VGo5GuXr0aQQ3vc28Pv9MWaauVBKDRHhKe+v2+9vb2JJ1u8MPhMLYFcABbC8BD98rG7aACiQD/JpHOJQIw2s1mM5bxclCETMOdDQc6LjPxgzZgqrkOjkAa2nZw4ppenzvaD7ggGRE2k/EBTI/H45IGnNC6z6nPFa85U+8SDmf/YdlxxJBi0FeXnQDYUm0trDUglugB/eNwCWnLOrq8AyaeNnU6nRLwnc1mkd1lfDwREVBLu2BE00Q3n1eAMX0kOuGsK/1OIzYAZBINXXbhjDvtpF84HCkzT5k6nmWeewfmOCauX3Ym3yVPAHzPOwDQ+vPE+gHcp0mGjJdrpD1ilb6XLVu2bNnubXvBwDiE8G5JY0lrSauiKD4qhLAv6bskvULSuyV9TlEUh093Dd/cMWfNzu5TStpK9X0wcaPRSO9///t1/fr1uNH5UbCSSgwgGy9AFm0kwJwN1MPaJEEB9DwpzQFCevAI9/UKEyQ88TneB8zC9KXAm9JogAlAh1+/3W6XdMWAZj9S2kPFXjmCMYBNXSwWkUnkOu5AuMyB8YEVp68ATaoU8FnmYDwexyoUgDYAiOu9AVGALWdzU/aOefA14PPoUhckEp1OR5PJJLLfqRbY5QXck7lw4O0A3aMQvE9bAJYOKpkDyvUBurkuc+7jwxiwDv0ACh8j/j4+Pi5psXEGAMsOgp3B5dp8z5+tVH7AGvHKJ87I+rPurKzPDyw048hYANhxNADMDtR53l3X7Zp1jz4wLrzG9z3hlHGXtqfu8f97xe7Eb3a2bNmy3a92p37Rf09RFDft/18h6ceLoviaEMJXnP3/yz/QBRxQSFtNIRslG63/zSbLRrxanVY4ODw8jGAUAOuMl7TdLLkHVRDQXbKRAkypIOHXSrWWtN/bJm3BGhszpen4DMDRGUZP8IP98oMeqOcK+wbAc3AN80j7CIF3u92o52WsAY/SFgjwHUCdjxuAB60wwKvZbMY59dA3fecaztgC8Ji78Xgc2+YSiNFoFJligJzPhZfj8jakWmP+uHQFLS7z5LIMl1g4Q+8MqrPMh4eneIIEPR+DzWZTaj9zCPhLD48g4QzHhPZJivPtJwgydzxTvt7pB3INnAaiHs72s85cG8waS3X9zvDzHvf3/iN5oA+0jzXF/dy5ZG6YP77jsikcSQfy7mTgtPn88iy5PMLv75Ib/5t+ekTiHmWMX/BvdrZs2bLdj3a3qI7PlPSJZ//+R5L+oz7AjyysLppMSSWAk8oY2Lz4tzPLy+VSR0dHMZwtbUOrDqABiTBFq9VKk8kkMrhsxs6YoecF1FIdwMEi4MlBPWwgf3c6nail5H0AOG0lFI+m1A8ZoT0O0DxJi7ZWKhX1ej01Go3IHiKVYKxdDwprCjA4OTlRs9mM5dxoAwmG0qlEAHDpMg7exzzpzN9zzfh8PtdkMtFkMtFsNoustydE0i8qQTC/SBEcwHB9QA79hNmeTqcRZLHmAIuuo6Zfzjh7cppfG7DNcdzOoPs6QIsOkARUMsasTfq62WxK0hcfQ54Pnh1kNDgOHonxMmM4Kl4Pmfc8KdGjBDibrkN2YOzPmbPEjBUSIZ4vlwCdFw0C7LsT6s+SR2HcCcAA9XzXgTTJqHw+/Yz/SUEy7eB+qXzkHrTn9JudLVu2bPer3QlgXEj69yGEQtI/KIriTZIeKIriibP33y/pgQ94AZNLwJ4BdJx5ZQNz5heAy6YLsBkOhzGpxzd8Z/kAk71eT5XKaYZ7v98v1X4F9AFMADNsyLDLKfNLyNerGLjWE0ANKwZA975SFYLPOFtGCJzPAOQ8aa8oTqtNUFd3Pp/HRLfd3d3IwkqKmmzYScYSIN1qtTSdTm/TFXuZMpKppO0RwgA512/yuidHAvr4nOtKcRBGo1FkkilN56yxS0087M+Ysg683BjrxtuFjIFSga6PBcAyj+5oOZPuFTfcOQJYA2L5HgAOIMr8uSbe/00EYWdnJ1YQoVYxgNGfE54rNMEOXrkP2nIHsi6R4Flz9tyBsBt9ZgxYl4wBjqUz0j6W/lk/hdLHAQBPn7Hz5DS8DrD1BEYHz84e811+L+gXr7vW+h6zF/ybnS1btmz3q90JYPy7iqJ4PIRwXdKPhhB+1d8siqI4+wEuWQjhMUmP8X8Ps6e6Pd+UnLlzvS3JQw7oAJBIIlqtVmQLXUpB6TVOX+Oo5fF4HJkl13c6Y0W7nInjBDC+w+EOHkqmDWzK/jrjAPNHAhr9oaoFp95Rqss3c1jCSqWi3d3dUsgegO8Jd4A6wKInrNE+6gwDaqh+MR6Pb9MP4xw4OANEMMeARKpnAAxhL10rChACqJIo5mF7xs0ZvDTJivclxcMsPKEQx8pP5vPT21x+42sIcAbIdVbZJTWAPmeTAZz0A7Du38VwSiqVSimhzw/GSMfcr+POiYNExs914jyH9MVBKs6Qj68zs8w192PcXYLhMhjM++2A21naanV7aqM7NGnVCo/A8H0HwKncgmfb1xBtcAc9lXeldbrvAXtev9lS+Xe7qfZ5H8mWLVu2e9peMDAuiuLxs7+fCiH8G0kfLenJEMJDRVE8EUJ4SNJT53zvTZLeJEkhhIKQOWyds2oezkb2IKkEgl0n6uDHk3AAO8gNUiYOEEvST61WiwlVzrylYWXftB3osHlzkIcncsGIe1JeWvGCTRowwmYMMKbPvV7vNsYu1XC2Wi01m82Y2OanoiFzqFROj8YGCNL3arWqfr9fqiEMW93tdiUpyiAArLQb5hBA5ElO0laX6mwqCZCMEZ8DmACenMlzCYSDrhRY+Tz5v935osKEs6M4N6xTv54Dx9SYW+aB6EYK/BxkexURT/Lz9dVqtWL0gPVIXe5UY+uyCWeUAagpGPZ/0zacKo8Y8Lw60OQ5ow1pkiJ98mRSZ/kdOONoel/ov8sfnLV1aYsDY0B8up74DMl9Plb+TDmbzHtpv+8Ve76/2Wffib/b/bB/b3U8W7Zs2Z6FvSBgHELoSKoURTE++/fvl/RVkr5P0udL+pqzv7/3WVwrglPMNzU2QsCmpAi4XEPp3/WQOQwZoM6BgrQFaGSak2jEZwBhDohcvuEbOZ8FWKH5dbCPzKPVap2b1U5bAegeOkYGQgLR7u6uQgixioKzqIAPr34B+IHdBkRTRQJwTDUKKkIwlswL18RoE3Pi0hcHW+68uC4YOYWkUjIcIJsSZrDekkp6cJc9+PoBbMMIO1jDvC+wyB5ZgK2nL55oKZ1KR1x368DJWXJYbmciaau0rTfMGkq1tT72OIn+eX+GeB1WE4Ceanl93bpuG9DMHLEmvBJIKjnwZy2tDsG88Nn08/5MAYh9PJz99eiGOwD0kfu4k+CJni6LoR08F87S+zV8Prmv3/9esDv5m50tW7Zs96O9UMb4AUn/5mwjqUn6Z0VR/HAI4S2S/mUI4YskvUfS5zzThYbDoTqdTqligWtQXWJAqN7lAa75k24P2/Na+neq90SqEMLpEbWj0Ujj8TgCENcsI1lA7xnCtq4rYB1AVxRFrB3smy+AjI0Zcy20JwRKimXYAFiNRiOymN4W13k6y81rkiIwBgDDJHe7XS0Wiziuzs7zGqDRk+2KYnsoCWPl12C80SBzvxBCLJkHMAIU8sfBsleZqNfrtx2bnR5LzfzSBz9Iw8cYYLlYLDSbzUpMsoN3QF46vjDV7pjxfRwaxsmlF85cu3aV7/EZnos0SuEgm++5DIJnCAfCNe3OfNL+5XJZAr7SttawP2epU5cyqQBs14B7e9xhpf1cP2WdcbpcduSg1ceJezmIdemSr1dnjJl/Z7K9DZ7s5w7IPWR37Dc7W7Zs2e5He0HAuCiKX5f02895/Zak1z+Xa733ve/V/v6+2u12BBuuQ5W2IWHXCWKuO+ZvgBubM5/jWsgS5vO5ut1uSYfJd/h+qlV00EKy1GQyie/Rhp2dHfV6PVWr1Qg+uTesKuybg3zfjAG+sI0AQQdC/B+A7YdfeK3aRqOh2WwWK2c4Gw/oarfbajab6vV65yb9pdrhtP4y12IOGDfa4vMjbWUE6/U6Ohb0CwOEOMvsa+K8Um3ezhTMwKK63tklAn58dwrc3Jni3wB5Z3VhqnHmuC9r1dcQ93AnjXb7mndWl3sDFrkO4+3PCNdK++Nl2XA0WIcOJiVFB8ojJw4UAd4pUGQs6LNHMfhO6ry6Y+drgT7C6LuUwkEvY+xOhv8OuMSGMfG1mcpdfEzpE32+l+xO/mZny5Yt2/1ol6YyvUscnLnyUKVvSg4s+L5rFVNgm26igKjVahWrT8AipuFZB9ts1LBL6GUd2Ph10MvWajVNJpNYNo2Nmj7D5iJ1oG0ASKpY8Fqz2YxtTNlT6udSmgzgDiuKRhkw6CAEVo7rAHRTwOfsH30AnDG+9NGrgjAHXmoOB6HRaKjb7ZbkINzbgZFXVmDsGWfmxsEfgImxcCDrDCNrhjGCOXWZgyfoOeBjDh3IAuC8ioe0PbktZScdCPOaA2UHd/RjsVjcBghxhPzzzvD6WgYUe5IjRm1l+pK2n3u4nCK9j8sVvO18xtvJ51PZC9/zcfW2OThNnY2n+63hmXHn1sE7a8375eswZaGzZcuWLdv9YZcGGEvbqgHSlmWStqCMTZzNzJNznKVKN05nx9jsnK06OjpSs9nUYDAoAQUMICRt2WBPiuP+XjEAzSn3g4EFuFASDYDkWfGupyRhy8EH7Uf6MRqNIhAAHDvAR57gGksAsKSSE+KsMMy0AxlAMZ+BFXVG1OeSeaRqgjPurhVer9dxjJAy+CEOsLv0nwNOHDx6OTM/PIPxT1lljwAAjHAwWC/OhvocMQ5c3xltSSUA56DZASn3Zi58vs8DlFwXS6UF/tykiYnuvDDPXBN5DWDfHRg+585pKiGgfc4yuwMKGE6/l7aRP14VgrWGlIZx87rQzuz6c34eYGW+3LHy3xB39HxNu5OVRjLuNdY4W7Zs2bI9vV0qYOw6WjYjzDcjmFrfVNMQ6Wq1iscsU93Aw8awUgBjQui7u7uq1+uRVUWj6kwvLDEsrjONtJ9QsW+qtVpN/X4/bupombk3ZcNca+zsGTILpBUAnKOjI0mKoJg/rin1ELezwx7aB3BMJpP4f08qow/OHgMSHXC608LnAHDnSR6cMfeDWQDF0vbAC2lbEg5A546SA2P6DXB0XTBtB7hxP5faeIkxB8UAvPN0p2mZNT7v1RtcwpICWde5IjHwefMIhQNNjz4gp6Ft/vlU2uEAMO2/X8efRweifIfPpsxq6jA5sKSPDmhdJuNrx1lldxxdTuRzw/W8LYB3xszHjrFyJ5u2po53+l62bNmyZbt/7FIBYw/xelhVKoNFl0nArD0dO8SGfV6tUde9jsdj7e3taTAYqNFoaLM5LdE1n891fHwcjz32Y6ubzWZJ3gDwS8PSAMtKpRLrG3PKHhusH7EsqRR+93FARkEbKS02Ho+jzthLUqXVCxyUeEIdgGm1Oj30Y7FYqNfrxdP9SETjvlIZHHjCIeYAg/vBHEuKJwnS1nReSDKUtkdu4/CkWlZKhGEe6ncgj9Pg9YvPcyCcffdrOUsplVnqNNEPJ8IZbQfvLsVwYOug9Ty9LuPp0ROPsLg8AbaY92mDj4sDU5cQpbIiZ8+pmZyWXUvlEqkEwtfDeQ6DV64ABHNPHA+YdAeszvq69CIdP/+MX9elLbyXOud+DWeks5QiW7Zs2e4fuzTA2AExYAGgKZVr1zr7dR5r7Nfkddg3lz5wfeQDhN4BD/P5XNPptFSJgE2dz3k9V0+Q8zJai8UitpWkuH6/X9Ij81k23UajET8rbYHjarVSu93WYDCIAG86nZZC0QARAITXz2WzB9gwTtIW+AC2N5uNrl69Gtl5gK3Pl7OmqU7TwSFz6HIZB6weNkde4W1GhwyoSytfAGAdoKcgy8GQpNuqnhwfH8d5cu23z4HrVp3h5bppiJ5EvhQc0ycHlq6P5drnOSE+/t5G+p6WEPRqGev1OrL2XsHEwTgOkjsrqYQp1SL7uNA3rufscdp+d3LpnwNn3sdJdBbdZTku2fA17WPnzoDrpr1ftNWjClyD66YyjQyMs2XLlu3+sUsDjCWVwCGbHUAMwOlMEZ9JN2ZntjxcjbTCGTpYX5goQu+EXWezWTz0wyUcfJ5T8wCz1Wo1yi7YQOfzuYri9HjmTqcTT8ZzsOftJxENsAcTCWjdbE7rH1+5ckUnJye6ceOGZrNZTEDje5yW52wYulz6XRRFKeEPZ2E8Hms8Hmt3d7dUA9elCqlu1AECCXwOZpgb/k6rYTBHOBKMAe95GxkL7i1tq2OkThP3csmHs8Sw9ScnJxoOh/HzXsM3XV/nOWHp/dJ7u4QHZ8wdC4Aj68elHvzxBEl37lwSQP/8eykj71IXpCmsYb7rf/t33bF0Vh5j/F2ikrLOPm7pOPo401Z+B9yR8Dn2teVMMp/DPKnP2WK+m+YYuJPD+J8XjciWLVu2bPeHXRpgvNls9F//63/Vq1/96ts2eKlcvsk3LQ8l8zlneVJ9Lt+DrYW5PTo6iuDLN2KAaArG1+u1xuNxbB/HSANS2JCpNMERzkgEeA3Q4Cwf0gqvq+uMH2zelStX4qZ/69YthXB6IprXFYYF5Whp2goAms/nOjg4iOC/3+9H9hT2EWfA/ziwQ6IAkEvD/Iw/kg6OpPa5pwoE70tbkA645lQ9GETXEQNYHKyxFgBpOCAODJ1BdDaSZD+ArIMxZ2h9XTxd6J3PnidtSUEVaxMmN9UEM14paEXekEoAHPA5oHNgnEogfN6cxfU28jl/Hvz5cseQPqUgO2VrU12zf97n0Z0r3uf+HgHg3ucBcS8xiNQJx881xy6f8eiFj63LvLJly5Yt271tlwYYVyqVWOfXQ6WAQd+cvEzT0wERSZF5dJDgTBaHb3BiHGXbOHDCw9owyKvVKp4Cx4lwXv+21WrFjZLXAdDcu1arqdPpaDabaTKZxJrCgBPf4D2sDPjhdY55pt2Afd/MGTvALUwsAHo0Guno6KgkIWm321osFppMJprNZrEfzkZL29P7JEXJBgDcwQJMcMpeemUQ15PSV9qdlgMDYPqYOmMrKbYFMMznuI+k0ql9rAfXzZ53wIyztDgPXsEEYOdgMgVzVPs4Pj6Oc+SJZyloZl5Yx/55l3545Q+vouLPmCc/ck3X6rvkJHUsPDoA0GU94fz4971tfM+BtgNwdxBcBuJg23XYqfPla4dnjO/z3BL1cYeL17iPJyD6vLn8gvWYarCzZcuWLdu9b5cGGDvrJpU3dDYrQItrhR2UYM5SwVS6PtiZYYAczK5nrfsGvtlsImh25rDVamkwGMQNutlslsCo1xt26YKkCGrn83mp+sF8Pi85CPRxZ2cngmGYx8FgEPs0nU5jchxsqtfdZQzq9bra7XbUKHslAMLprVZLs9ksstoOJtIwuzOInU5Hg8FA0+k06rZToAfDXKvVYnt9jtFWw5p6sqFfBwae9jsAQ+aCo4KEBKdBUiz/5fIEZy9pA+31NenaXU9643ru5Dgb6glnDoZT8OwMtIf+YWeZS9dRo2l2dtzXMk4Bc8Z8unPhrHH6LDobzR8iD4wlOn0Hrc7Op6DYdemAT68A4vIRgH8aAeK7Pq6uvUYukkY3eM9/M+gnrzGOHmlgPFxW9IEc9GzZsmXLdu/YpQHGGBuQlyQDGKSVKQCgXu/YwYWkCCLS0HLKPhLe9tqwaEO9WsF8Pi/JFdD6uoa02+1GBndnZ0f9fj9WjECm4Pcmwc9Dt/P5PDLBntzFvQGCyEGGw2E8lQwgsFqt1Ol0tFqtNB6PNZ1OY0m6TqcTx9FD82zyMI7SNolMUpRQALpxBKgwsbOzo263q0qlouFwGJ0SQPbJyUl0RrrdbgS3VMKAwQwhxFrGHFTC2AFmnE120Mxcw8xOp9O4FphXvi8p1pTmNWe1nQEFUKcADBDMOKVaeB8/B7wp4+1r1JlKNMAAUWlbhs2BPt8HcPtYuEbW59VlJg6G3fy58qQ4wLVr7wGfgFmXcnh7+LxXF1kul5Hlp28Obn3OPSrh0YaUFWfsXafvURgcBQC3OwVcz5lhb5OXp8uWLVu2bPeHXTpgfHx8HOUJJKhRdcHZqhQMp5tTylTxWWmrHQTwSiptwISHvSIGoEpSLGkGO7e3txfr/8LIcnqaVE4KI8y92WxKpcvQDdOX2Wymo6MjtdttdbtdSVugQJIffeF7zvziMPD5xWKh2WwWQRBsMYleDvIWi4Xm83lk6UIIsXoHbDb9gs0FqNA2Z9VarVb87uHhYXwdaQYaYwxgDNBKS6Qxv+iMqTe9WCxKkpFUiuCOFdIXZ2KfjhEGLLE+lstlqYIFgNNZdb7jWvG01Jyz3KmO3dcCVhRFZPiZY3emSLTk+w5E3SFw3bwz1866st5YG9zPbb1ex0NsuAbAnXvg2HE9/k4dC48qwD77s+4RCb6PNth/C5wJ9jHG8QUMe6lAZ89TOZNHDxwcszZpSwbH2bJly3Z/2KUBxh7uRfdHKbPzdLMezpXKTDAg0WUEgBRPnloul5pMJhG8wBySCOalydignWmiFi4SCk8aQ0LhbWeDBci12+1SGBpmC9A+mUxi++gjIMJDwK7TrVar6nQ6Ojg4iJ9FIwzoddAym80i+wtoR/4AqACccj0YTJdWMOZ+GiD9r1Qqmk6npcoafrgJ4+UyFTfXcSInAXC5nIO5YlycIU01pUQkTk5OIoOPwVoC3ny9AcSWy2UE4V6iD8AN844D4OF/B5guCUr7IJXrOzvjzVxQ2cTXBvMQQlnv7M7EefplAJ7LLfw5pJoGbDDjEEKIziwRAE+yTGtOMz8OOokE+Dh53Wdnqd059AgCz547C7423bH1Z8cdNJ8b5jwdcy9Vl4FxtnvaQnjmz2S7OLuo35UXui7u8d/DSwOMpXK5NjYpNkFYT99kUzbN2S/AJuBB0m3gzYEFQFraygWcJeT6MJQA0fF4rPl8rn6/XwLe6Bi9ugUbNdfgMBCYRv6QhAhrTFKftGWCU12jl/1KmTh0upyu54whAIY2p/V2/QQ9mDvAPKXyXFrBvLlzkoIwwDbSDq6FxAImF9ADQwuIBoRJ0nw+j4AU4OPsrK8h7ku/qtVqdGZoJ21OJQ6uJXaQ5ubyAua90+mUksOYp/O0tB6ax5HDcCK8fBv35D1vj0tMHHRzLf52BwBn0J8XnkUvXQe7z/u02+UL9MudLu8bURnWa1Fsq0M4AOaPM9k+frSBkoi851El5sLH2pl0fj/OA7dEefgMenXWk2vKs2W71BaCQm170NXbv+W36V1v+L8usEHZnsk+/o2Pqf0Dv6DiZPnMH34BFna2e031wev6gZ/5/hd0vTe8+uNULE/uervvll0qYCxtE9ScEWVTBsiclxQkbTdLlxr4+1Rc6Ha7Eej4oRWVymlljMPDw7jZwbxxHcL+RVGUgCbtAuQC3prNZin5i0Q2NlRJEUjxGkCR0Pl8Po/AhwTB3d3dUvUEr0Xsh4PMZrMIWJrNZkyIg80DxPBv2E7ux5hUKpVYDcSTAF0e4Axto9GIrLnXIYapBYABsgDGjEfKbuKotNvtEkjlb8AuoIvPwHw7cEyPnQaAulMAmGOtudb0mcpz0U6/r0uBWAOeOIe5Y+GMKtIKNypj8B4gl/nkuUEWw3d4xlh3zoAyzq7h92cQSQ3t5n48ew5iXSvs4+hgnHXKevf5dqcplY+4lhhnEWfMNcI4fl6GjvXi0iOPBjl4Zt78N8BZdZegZMt2aa1S1cHnf7Te8tXfbC/+7IU1J9uzs5/4pjdJkj75D36eqr/ybq1Ho2f93bBTV6XVfOYPSvret/0H7YTqM3/wWdoP/dpP6qRY6zM/9Pc8pzZfFrs0wNg3WNgzrxDxgT7vGxUbqYeF2dicMfaMfWnLAq7Xa41GIy2XSw2Hw9LJYCnAYrOmBjKbbQghbviNRiPKBjxk7ZpPQKFrKQFrtVpNi8VCIQRNp1MNh0OtVitduXIl9m02m0UZiLO1kqJcwgEpYJp6xmhgW63WbWWv1uu1JpNJKUGPfuJQUAMZcOL67OFwqPl8Ho/WJuHOazkzJowZYW0v/+Ugy3XU0ha0+gErSF1cNsDn2u22Go1G6XQ2AB2WstyYJ3KmazGVAXENACafdSbW7+XrkTl0va1fC1Dnshp/fnDqkMek2mFnxF2rjHPhNardKfHx9zY6+MU5dYbd1w7rxwGy65CZP5wajzw4APbID2xz6jy4/MV/BwDd/NZ4UqG0zUNIne+UqffxyJbtMlqo1TT67I9KQHG2e8l+5F9/pyTpU1//hxSOxpKk1RPvv+1zYaeu6tV9SdI7vvSVevsXPNs5v3OgGNsJVf3LX/n3+sP/0/9LxWaj9ZNP3fF73C173sA4hPAhkr7LXnqVpL8maSDpT0i6cfb6XymK4gefy7XTTfG87G82xzTJiPd803K2zSsEnFd5ACCA7tSlG75Bwz63Wi2dnJxoPB5Hlk7aamEBCFwHUI4u05mr0WhUkj6gvQ0hxKOfJ5NJBAIOXgGZMMSwwkgu0EZ6+SkYO4AslSqkbfIUbPRyuYyyCkmR0YNV9jG6du2aOp2OnnrqqZIkZbU6PaRjuVxqd3e3pAPFKXGW1AGygzivfMA8wn46KHegA+B3h8TBN0wm8+5g1ZlBX0v+mRSQYYy9J3o6kEpD8O7AuWaXNgH2WSOSoiae8aedfM9ZZ7dUJuBrkWfHn0UvfUi0xBlq/u0SCGdk0+fSJQ04bcgiXPueap/pi0cv/DfCHUxPkKTPDs5pmzPFDuJdAuK/EazdVA9/2e1u/m5nu3wWajVNPvMj9ea/8y0X3ZRsd8B+8Mf/lSRpXWz0Bz7xs297/+bHPaCf/T8ujwPUrTT1Az/3w/q546X+2u/9Q1q96z0X3aRnZc8bGBdF8XZJHyFJIYSqpMcl/RtJXyDp64ui+Lrnc102LNfxOiPmmy8AiO+l2uSztnmbSwCpOEsE80QjpAOSSppO1+2GcJodv7+/H7PkHdT5Zg+YBMTBAKKZ5bQ8AGxRnB7XTCiedp6nbwUk+oEnJycnGo1GsXyb60aRdEjb2qvcg88RKgfMIRNxEOTX9TYBtPf29nT9+nWtVis9+eSTajabMSkt1eumgBeQDGhrtVpqtVqlxCyv/ODzDVPJ+nGNNJ93yYqf3ncesPVkK2cQXSvsrL/rcL1SAtdKpQcpC8m1XH/rQNm1wu6kudwHEOvsKmvZ54v7OtPt447z6PWb/XRG2P00MVFSjAiwdhlrxsBlHvQ3jah46USvN+0gnD4wPy6hgRX2MfTogQNmLzmYOlvc1xP53Lk6L5p1me1u/W5nu4RWqWr6GR+p/+f//AcX3ZJsd9iqoaIf/E//+qKb8aztIxt1vfFHf0R//zM+Q+tf+e8X3ZxntDslpXi9pHcWRfGep2POnos5a+iMFZpKB3GYh0y9DZ7Iw+ZIshmMIdZqtUoArl6vq9vtajQalZhPNt1+v68rV66o3W6XkoUA6GkSEteECYXhBPTAQpPY43rq9XodAbMnuhF2dgaMU+tgeZEXLJdLTadTVatVTSaTCCSw9XqtdrutdrtdqjssbSUFXhYMwEtfOVCj3+9rMBio0+lELTLaYKQu55VBA+QCUADGaJUnk0kExoCZ6XSq6XSqzWYT6yfTVhIOuT73B3gRfk8Tsuivn5jm4+vm8gNAkwN/199yHyxNdHQJjIM/fw4YN+Qv9I3v8CzgCNAGIgMuXXEmFcbVkze5L8ZadkmRJ6/yeeaH9vDsIDdKtc0Oxl2O4uA1TS6kLWnOAc8e/XWH2UEyf1KH1qUqrmF2x8bbdY9LKe7o73a2y2W1hx7Qf/7GDIqzXQ77tPZC7/+en9C/+txPUvHWX7ro5nxAu1PA+I9I+uf2/y8NIXyepLdK+gtFURymXwghPCbpMf4P68QBEGmI0lnizWYTASaMqbN5znABBNj4jo+P41HOgE+SywCpDlJarZa63W4peY7rEbbn8A4vVeYAEjDjIVuXAtBWgGC32411hqnhzCZO8hwsMMBQKtdnBtRxwh3/BwhOp9MIUNnkGS/G+2yeShUqAMrcwxMjGb96va79/X09+OCDunHjhkajUdQpdzod7e7uRgDpCYse1qevrVZLvV4vvj8ajUprgTkHxDuw43OMnYfOcVQcgHrSWuqceD9dPgBAdRDIOK/X67hGdnZ24jw93bp2SQmA26UIOAzMCWvNZQs+x75WO51OPOwEIM/YuDPniXMAYJc9OAj1g1eoKCJt2WzG2+VDrCPai4PHazD9AGHvpzPxDmBTmZXX1/aokDvSXIvrMp/uwPD6ebIaXnfm/x60F/S73VT7RWlktudhlapu/L6XX3QrsmUr2Rftvl8H3/FT+r6/9klqv3cm/ewvXnSTzrUXDIxDCHVJnyHpK89e+mZJ/7uk4uzvvy3pC9PvFUXxJklvOrtGIZ0yRzdu3IibrUsfPITpSUke3mWDdMaL95wh8tPXNpvTKhNslGzUDkAASZI0Ho9LFQ8AQn4iHQDj6OhI1WpVR0dHEVgDgDlsg/6hE202m+p0OlFKQYk6gBKHfcBoTqfTqMd0QORAnQ0eAIPW10P36/U6Jgl6uN6rEDigcs0ngLjT6ajT6USH4sqVK7p69aqeeuqpeLDH/v6+9vf3Y7UAB8aMu5e/ApR2Op3oKPC6s3geene2ESDrTkjK6Ho1C4CZgx/mkzGh/4xvq9W6LXkPQHa2vqPzxNi648Q4cz9ed429y4m4JnNHDehKpRIdP5c4ABQpx8fx2rSLfvsaTfvq7CztYix5HpkXvsua87lxh8UBPVp6l1vwN2MXQohjmpa/c4kGz4mXH6RtXId59d8NZ/2fjgXmM/7b0mw2NbrHMq/vxO92P+zfsx7B/W7VfvdSaU2zZcP+0v479Ze+8Z36vPd8vN7/Fz9C4Sd/4aKbdJvdCcb4DZJ+viiKJyWJvyUphPCtkp5VQTw2GxLJnJ1y5g8wQijdAUDKHPm1z5NnwFoirXBG1lnldJOfz+cxjH90dFRiEwEOq9VKs9lMq9Xpccyw0oTvOeqYjR7pAv2EEQe0nI1tiRFfLpexjjIAwQ8dAVCgrSS8THk1PyQDBhiHAC0yQNolKi7BANi1220NBgMNBoN4306no16vF99rNpvq9/vqdrsRACLpcN3w8fFxBKvOzHmtYubQmeBULuFAC920f85BdMoE87fruAFT6Yl5SEpYtwBF5Cyr1aokJ0EqgKX3p50k3+E0sX7TBDJ06e5Q+qElrCOM9hGhYH275Id7EL1hvZ+cnMQKJ+cBdu7J/ZwRd9lNyurTdhxHX+ueT4DzxLxyP9YH8wGTz5pivlLm2383fIxdWuBAOP2NgQG/B+2O/G5ny5Yt2/Ox73z5T+izv6auX/vXH6sHf3J8qdjjOwGM/6gsHBdCeKgoiifO/vtZkp6VmMQBnzNMgGFADqCRTfY8UOyaRoCKb8TS7eAIsAMDu1gsIljhPQ+zhhA0mUx069atuGnDHPP58XgcQTHh3MViEbWU9Pf4+DjqmGHOAD0eXj8+Po6AB4YX0EafYAxd1wqDCLBkfJ0NBWjCUAKMCZd7shlOBAYo2d3djQmJkmJy4e7ubqzH7ICl3W6XkhJZBy5RQDLCEcywnScnJ5EphyVE+kC/uR71klkPjHuqMwe8uZwAAAjA9fC/a3t9XFg3zsI6MHXtubPKDiZdH+z9qdVqkdlnXTNvgFjWi0sCHMTSVv7GAXQZBoasBEeqWq1GNhYnkiiFrxGcKe+Ts80uQXKpDn1hPQNqvRoGkhmPKLkUBxmF/57gYHoUwOeF9U9bXZrl8qfzkihT2dc9YnfkdztbtmzZnq999wf/mPSXfkwf/ymfpRs/9bGSpFf+kye0fse7LrRdLwgYhxA6kn6fpC+2l/9WCOEjdBqSe3fy3rMyNlU2UmeJPLnKWSVnjjyRizAtGkv/rLStAEAoejabRRDlJdbYKAEfgCU0vl6mDUkFANPrMTu4AoROp9PICgKYnd3yihKABEA276UgQdJtzBrAiM878PCQPCXhiqK4LbOfsDyAHeYbhvjq1ava39+PEoxGo6F+v6/1eh2vizyCA0f4P86QpMiw0g8AGHPBQSchBPV6vVj6DofI14CH01M9sQNcjwwwJn4gBt9D/7parUoHeDD/fJ45TrXvXMcjGP4Zb3daRQHgTl9gc9HKNpvNWF6PPjHnXNufISIT3v+0agVrkWsh9eHgGZ6DtBwdEQnayHuNRkOdTufcdcrhK8ikpG1ZPdpIO1jzXjlE2jLkOB+MrTstzDvPkuv/XXrkgNjbmjrZ95Ldrd/tbJfHNvOFXvm9j+ldn/mmi25KtmzPaD/x4f9G+vDTf3/oaz9Xy/f+Tn3I1/z6hdU+fkHAuCiKqaQryWuf+4JapPJGk2aHu+bQw7gAEwd7gJNOp6PBYBCBqFeDKIpC3W431iNGx8r9HAg5oAM4LpdLzefzqNXkEATXQtMuB6eAMmQbgCM2YQ/le9m0oihi/72EGowmsgYkG1zXAaKDNNdvc/Q09/FxZA4AJYAJxkE6BYX9fl+7u7vxuvV6Xb1eL7ZzNBqVtNA+x4ATH/dqtRoPCPHqB1yv2+1qb29P/X4/AloYQuaQ++CwAGQ96Yz7eSgdoMgYMscwxoBPT1pjvmEnqTWMdtllEAA5B+6ptjUF3Q7imBNn//15oa0AZdf0OtvJPd1ZSyMrtBFnAUeEyAInGPIdr6FNP2gP1UsajUZ0emCBXbrE9wCj3ifWAX1z3TPfdQbck/9SiQ7mjouPvzPhPid81yvb3At2t363s10eK46P9WH/3/dKn3nRLcmW7bnZ2z7uH0uSXvvo/6qX//ETrQ9vywG+63apTr5Lk2AkRXBBOD8N5adaUt+IHQC5xrPRaMRjoWFg2+12SfbgiWlYKi9wPbEDBxhDSrqdnJxoOBxGbS+HXNAf2gQInkwm6vf7EewiQwCgNptNFUWh2WwWwQ0ly3Z3d9XtdkuJiYBLGDwHR66RhI11TbfrM5GwwCASWvfwOIAHiQNjjW55MplE9tcZcELkztIx/6ksxvWvJOb1er0I6mazWQRTfrodUgnGmdcAXYwHY+anwEnbE91wRFhz0rZMGfV9AedegszHCcDMmgCMur7XGWX64I6WV0ORFB0a2gqIpcShOwMu3fDvuD7bHQMcOKIFDtL5Ln2SVJJCMYeMD/NNmUNJkXHmd8DnYr1e3xa5oB2MNcb6dg26j5/3K3VC3GnCUtkF1/C58s9ny5YtW7YXbr/8Mf9U/9M//hzNjj9Ij/zht6uw3/m7bZcGGLO5sIHCRgGMOa6Yzc7Z0zSZJv03+uBOpxPlApJKJ83x+TSk6iFkD6fDMDuAYzMH7Lo+czabxfD/bDYrgWc2en+fRCckG14vFnDkmtnxeByBX7/fj+11DSWsoX8fh4G+A9Rcb8v4pWAKYNntdmNFCph4wB0JZEVRxHrE8/m8VE8asNjpdEp9Pj4+Lo27a2eZT9YKoBHQ6gCGNtN+5gwWMa2p685DqiulrBhA1x0zaRvGRy8Oo+sJkVSI4HM4SYwzQDfVrgKs/bhp1i5Jlw4C03C/O5M+7n59xtAZWqIV1M8GxANUndEFrOMAcV2X4TC2ODa0gfUPEHbQSVudnW+1WiqKIq5ZHzMkSD4eDtTpB8y7f4/vuITL2+DzzrOVLVu2bNnurL3ldf9SkvTJP/Lp0ic9Lr1IJMSlAcbSdpNPNbYeVgdkpBshbKdUlgoQ1t1sTkuhXb16NWb6T6fTknwBMMf3zjPXxAIcfcN2/S6JSuv1WoeHhxqNRhHwUlUD8Oo6Zmc9YZUBLM6a+cYNy03ikYedU2aQA0xgddHyzmazWEnDx0La6r6dvYfBbrfb8bS7fr8fx8UdCxwBpCeAQNqL1hVg4qftOUOHrpgKG7zuAJ614t8FBLtmdLPZRE0rABKnB7DmyWU4B3zOQSSyCuYKJ8DXFYlusMq87hpYbzsMvQPRarUaj0B2Fr1SqUSHwyUb7rixfpkT+uh1rx0IOmPtumeSQJENMV9+GEuj0YhjJ21BZbfbLdX/7nQ60ZH0ccaJdYkQ/XGGHcfLn1eP4ji4Bhy7E86c4QAQHXC9us8ra8Odb+Y+W7bLYpVORy//twcX3Yxs2e6I/ciHfr8+780fryc/5sUpi3mpgDHmzFaqdfSQpm9+fDatluCfo74puktAFRIDT1hygOwJe4STASiw2pvNJuod03bCVAIq1uu1er1eZItT3SkAgM86q+uADqkAQJPNXNo6DIvFIpaC4xhqKlvgQLDZhxA0HA4lqaT3dWCUjivW7/e1v78fJQ2wf7B2VNGYTCY6Pj5Wq9XSYDBQr9eLfQ4hqN/vx3akzgkacLTFAFqXQfjfMM8w8mmiHOY1hAH6Xr/Zx90dNW8Xn3MgyLHIlUolOh9IAKhP7fIG2o6jQP+QfbiTwX1ZZw6C/Rny9rBeAJSsa9YtDiTsr7OrHpmZz+fxOeBegGqXp9BHXmu1WvFkRxwh5oXrMMawwchvPM8AR2SxWNzmJLrW2BPm/LfE5Vq+fpgPn1/AvfeBOaTf52mTs2W7SAs7NX3Twz950c3Ilu2O2T989D/qU/W6F+Velw4Ys3kT6oVdm81mkso6S8p1eWUGZ5kdMPkmKG2z9NGQoi1OM/LRijqIgHXzGr+SIpPqzBvgAI3marVSp9PRlStX1Gg0Ymk4wDahdkLw6/Xp6Wkk1DEOXuPYQbiH5AFVw+GwpO0FDDsz2el0Igh3ptDBl7PyAF1JEeju7u5GsMTYudYXUCxJ3W5Xg8EgAn4v28ax14B9T+YC6MI44jTAXvraYT0BTOv1eumQChyMdrsdHSMqmLBGnJUH+LojA2OILMRLicF8so6Pj49LyXgeymeds17b7XZsB/dPQaRHLwCZXJfv+NqUthIYnx+uwzPkjgMMOsCcdTybzeJhMy7ZcEYfxxFWl7mC6We9sz54nmHXWXsAYBwbnlUcWuYZh89BLmvKEyVdZiNtHWEcDn4ncIox/w3hfb9PtmzZsmW7O1YNFX36Lx/q+1+7d9fvdWmAMRsQtUzRD8O0skmhzwTgAIzTzHCXHwDovOyXh0jZ6LkPGz2brrTVHi4Wi1KyFq+n4ACA4sCd1+gHwHU2m0Ww5SfoMS5sxAAFr7Lg4ByWk2OTV6vTUnAAUkA0DKmDMcAVfyifxuZPez0hCpAbQojA08GFJ6ZNJpN4vHWr1dLe3l48Gpox9WQor01M8hhjGULQfD5Xq9WSJPV6Pe3v72uz2cRDNXCgaBOsuAOn9Xod24JMxzXYrBVP6GSccRQA8DCxOEPoZJEQ8F0cLE8oREPP2kF/S5Il+nqeB9rEmnJwjRPmJ/jxx6Ux7hC63INngGfDJTkefZlMJmq32/G5BPzyOeaOaAb9YR5cL01bqIji68xZXp5p9MGLxSKuYZd04Hx4vyuVSqmvtDkFvoBfB8/8wTlirbIOspQiW7Zs2e6+/em992j3V6f6p7/1ZXf1PpcGGGNshFRqAAAAiPiDVhUW1kuLIV1gswa0AUY4cY3kIGlbHcA3Q6ksSSAk68wdIIXvrNfrWJcYDS/aWPoBkJIUgSuHXwwGA0lPf9qWb84paw14Ho1GqlarUYrBeDjY9iTBNHkInehkMindnyOo0UAD6gaDgfr9fhwrZ/vb7XasX4yGttfraW9vT+12OzokrhNm3Pr9vur1ug4PDzUej0tSDua/1+tFrSpjBrOOfAFWWFJknJnbdrutXq8XnRQfe2eFXffOe8w3DoSvAa7lDC7zSR+QHDSbzXgaIOPqc4+e3eU93AdQhvPnwM0TxDypFcfN6x07AOX+aNbRfgN0kQRxPDf357ngufOyivwfAJ9Wh/DvecIo4B19Nm2EoXdHgXXNWPsJfS4HwZHluy6TYazTsnWMoydVEgXIlu2y2fpoqDd8yh/RD/3wv7jopmTLdkft8/o3VX/7Wv/wQ15+1+5x6YAxm7IDScKkbLLOhLr8QdoyrF6RwBONPCHKmTaXSACkpXKYGLCeSh1IyuE1dL/nARQ2bWcYvUav6xZhhmGVcQII+zM+zqzxGglSXl0gHQ9kCmkoGDAB2AIIhRA0nU4jGGg0GhoMBvEkNB93l2fM53O12211u93I6DkLjtMBI79er+MpehybDUNN+B1Q4+w8+s9WqxXBrlfKAMjx+Xa7rX6/HxPAuLcDXdYMrLPrhllD0hYYpjr3w7MajD4HrAkAJwCc8fCKHM7Cp6Dc1xXPjjtBfBeH0ZlcP3ade7tUiKgFQLEotodv8F3a6Lpl5sbBJY6Oa+BTppZnLQXvRDlwnHj+XS/NOPnYpmUJvd/0j3nxhD7azrPiMhdAtevBPaqULdtlsWq/r+/8gW+T1LnopmTLdsftt9bfL+klAIydpQKsAew86QmWmPJUaXKcgwaYOpgqwq2+ubLxcT1nOwGqntCVJkCl1SIAkePxuMQuA5jZSOfzeUygQ3bAddj0JUVnwKUQRVFoOp1GLTEAwPWzAEn0nhxTzWbvGf7SVvrgelYADeAdgIpml0oUsLZc05lhr3zR7XYj44yu2svRHR8fx+OO9/b21Ol0IuAGhDSbzXiYx3Q6LWm36QvgeLPZRGkKfUCvjDzEmWDGzWU2MKbIG9xhcmDKvJLUSYQCHTYAGCDmaxUwzvrEQQBUArhxBHAOcBqksnwHcOzr1MGia6f5HOvDAT/9A0DTb/rmz1K73Y46eUAxY+Mlzri29wejjf7Me7URj7gA+Pm3g1ScQSIfyDNoO5IK18z7fPgzlbLM7nDjnHkSarZsF21hp67v/pUfU7uSQXG2+9M+otHQF7z9PXeNNb40wJgN2HWQXoeUTTMFtlK5BjIhV4AhGzQspUszPHEGZoxNFTAEOw2odZaQ2r3OOBHmdTbLQ95edspZvFqtpitXrqjb7aooipiIBIsIY8zmzWvNZjPqa70MGuAKQAAI9aQjb4/LBGAeAQcOLvgsrCyJaz4uDmyQMcDCM2/T6bTkXDAfnuzogBi2knmp1+uRAaa9gKROpxPD4rQJMATwdeAImGUM+CzjAYgiIQ4HgTbTf9YqJehchw2j3Gq1SuF3d+LQJ6cJfPyf+XRtrEszHNC5DjZ1egCNkkoyA67nzhXridepN81nJ5NJdJQ8cdMdU09s8zXobcLJpS8+ry7JoD2sMeay1WqpXq/HSAnXYR3y/AFicT69jjKVa3CkeT5CCPGavm5w8DxilS3bhVqlqh9+z89Kql90S7Jlu6vWrhxLIdyV2saXBhhLZRmEtM3GdxbLN1QHB84a+Sbs9XZdbsBmlpZycmaQklB8liQh9MmDwUA7Ozsx2QmmzsEI+trJZBI1rQAINnWAFJIEQK0De0/wAqQAhGAxYUQ9aQxwATPOGAI+cRjoe7Vajayt19UFkPR6vQgSSaiivwApvuv3BpAyJ4vFIjJ2gEbXEDsorVar6vV6cb7QceM44GjM5/PSqWonJycaj8elAyoYb0kxcWo6nZYOfoGt9c+5/ASQ5tU6WB+SoubZqyZwLLnXr/YSeqwHX9cAN+Z8uVzGNtAOXz/cxyUpREwA+jxTqdzAq2Ww5lw/7xICku4A6j5GPCvO4DNWMMSu1cdR9QNKGF//XXBdMk4DERSXMvF7wDVclsLa4hlj/lKdvkswJEXnhPtzHQfm2bJdBvvB33yLpMozfi5btnvdPqMz06//0qF+6LWDO37tSwWMpW0SkW/MUpnJ4t/OFMOOOdBzoIpmcjabRbDqoX/XAwMMfHP30DkVFtbrtdrtdtzMPSzLxoneGBBBmDkNOTs7yuEjy+UylvsCnBJ6brfbMSsfYIZUgQ3fJSaMC4Cae8LAuqTAdc4+HwBivlOr1dTtdkvJaw7eXRsKk+dJgABbQJ2kCOI42MLnHXmHH8QA+4nMhtJxtGE2m8XXYdyplezsMNcCRHud61arFRlJ1hZrIw3J4/zgWHlInvrIrpX3Ork4cGkymdcL9nq+jB/AOIQQmX2PUjC3rHVPUqONRVFE/TyJqM7oMl7Ml4N3HBfXvjNGjI+zt6xPHEaeD0+g9TJzOCV+XTTarAscBtaLV+egH5Ii28+YAIS5LnPommWXVnkUyOt0Z8uWLVu2+8MuFTBmwyaEnIJfGCcHzJ5sxCaHnAJ2iD+wXM4MeSIewCfVvoYQ1O12S+CCzbzb7cZQLpu6J27N53ONRqOo23UQCrvp34PtI6TuiYOud6Y9DnL5v6TbABwAAsAlbZl2Qv6w3iQoAeLQYDszDIgaDAaxwgRzx/cJjzsjSEJYmqznyYt8n0odkiIwAYjQdj9aGWkFQM7LvLmuGPYZwAx4czCZMrI4UYwT3wP0omf1OYAVlRTBGyDUpTwAcyQSPgcpMPb61bTPpRUO3jyxjnsx/6kUwxP2XEftjDxr16MIlIXz5FYALmvOQbFr0NFfIxuCNccppT9c3+UrHkE6TzoymUxKa4Xr0d/NZhPnDZDuvytpdMmjVlzXnYBs2S7aag89eNFNyJbtvrBLA4y9MoJXaGBz98SoFNw5q8MmClDx0KiHcSnfBQCVdBsI5bMAbXSjfmiHh+95DV2ltJVzUOWB8C7/TrPwAbKAY9pE/wFsAHEPOwMISc4CXAIIPdTMtTwpzY/a9jC5J+sBbhlvDnLgwBAYOUDQ8fGxhsOhDg8PY0UKnBZ3IPg3DoykWN/Zdd8whwAo5pz7clIaLDRzw5x1u13t7u5qvV7H60sqlS5jvXD0MtdhXCaTSZTGdDqdWEbM9bqAYuaWfsBgkhDJ+sMxY134QRmUcmNcXUebhv39+fEoBOPl+lhf4zhCaGxhZH3NpJUbcCCd6fbyaoBsgD73Y64AyLSZ97gXbDbXgZnlWfLnlPZ70ijX5LeCceK6VDGpVCrxueWaLgnx9cx68DJ8GRxnuwz2v/zHt6gasowi20vHepWFaq94VKt3/8Ydve6lAcaYs26wwzBcqcTCQ7sAND88wLW1nuAE2ARIepa5tD16mM9yShubIxstyW9og0nq843ZM+JhoOnbYDCIwIU++YbLBu2gSNpWwmC8pG2CH8y0Jz+5HMUZM1hWPusMmMtLGBcACCCbzzD29NePFkanjTQBYAzzx3jDajMP1Jr2SguATa9MwKEmgLL5fF5KOERzy7HC3W5XjUZDo9GoVGWD/qGhBeQyVozRfD6PiZCw2CT7eY1kwCIadNftwvJ6OTXXV7uevNlsand3V8vlMspCuA6Al3lw+Yq0lVA4K4xTQtTDWX4HvOfVFE6TDpmDVDLDGkE64qyrtD2mvCiKWKsaGYhLVOgjDoZHN+ifVE6oo72MvTtQgGnWB0mhDorpqwNg3sNx5Fn25ypbtou27/yQR/RHHr+RwXG2l4x90e779V+/+wm9/aPu7HWfFTAOIXy7pE+X9FRRFP/D2Wv7kr5L0iskvVvS5xRFcRhOd6tvkPSpkmaS/lhRFD//bBuUahodvPqmjwGCO52OHnzwwQhgOEbWS1s5YwcLDRjzcm4cHsHm2e12owyh1+uV2C0AFyAFZowNms2d78DgEiYnVM5nuLdroB1YwBg7gPCkNml7KAn34fMeJvbrklDI5/z7nliWajsBvQ4i5vN5PNzETyjESeF6qTbTQ+e007/r+u2dnZ0I8EgWBJA7i+6yBk/SKooiMvKsD0/a5Ghl+u1yAgehtVpN7XY7OgXU963VaqXKCKw1rkGFDeo6U02Ee7J+AMXdblez2SxKfzzRlPnziArOmb/OunFpAmw2YBcmlTFzPTRjIamU4Ml6AbDy3KUyDOae97inSywcYHs/GT+cLZ5r1vDJyUmU4gDU/bmmL65Tps62V9zwSJRHbegzziPOWJoHcZnsxfzNznY5bPX6j5SUpy1bthdqz9a1/A5Jn5K89hWSfrwoildL+vGz/0vSGyS9+uzPY5K++dncwIGPVM5kZ0N0Jsw/D0t67do1Xbt2rXR8MRt0vV6PbKEnpQGG2PzT0mhXr17V3t5eBFX9fl+9Xi8CZNciwyYBHJ09JuTuAAFgSViXDZdqBmhLYeHY+Al9A0YAxs4eSiqxwABH7okMZDabxT9+LQCXtAV3VKbw09C4Nqwb4BHAx3WRfwDGvPyVtGXpADXoTbku4+JMKuF1gDHsdb/fjyy+a0L9sArmC4DJfEnbRE++R/9ZR2hTKdfnB4ugz/XkNXfAYIupgtHtdiNAo7+A5263WwJ8/gfAyh+cMsadY8C9mgSAlGfI2V9PuKOvgEzWAOPE9zjsBUeDSiGpjtn77ODe9eE4U/5M40z585k+/y4RcYafduNE9Xq96ODCZjNXLtny3ANPvEVfzfrwyE7623VJ7Dt0l3+zs10u+95/9PczW5wt2x2wZ8UYF0XxEyGEVyQvf6akTzz79z+S9B8lffnZ699ZnO5MPx1CGIQQHiqK4olnuk+asc+m7iyypNLfbPQkVTUajRjydqaOP4S2AZrcj00ZFni9XqvX62l/fz8CMA+H+2Ea0vb0r06no9VqFcPeq9Uqlg8jvA7odtaWGqwAI09Gg5UFcLiMwk8H81JbvJ/qtGHYYCcJd3NNZ+wA6M7mAuba7Xas9AGoRZPKgSaule33+7cxyui2XdssKTocAByqC+AAAbD4DGuB8el0OhFQUeEDp4W54v9evxoQDsAisQztr0cxqNAB20y7Aaq+JgDS0laugTMEGBuNRvHztAsnDuCH/IJnwuU3gH3mnP7x3Ljm21l5f5ZYG4yJJyA6SHYQjqOBc5gmqtF2vsdaZlyLoigl36UJcClb7AmjgHCvRsP65dlj/F1iler2Yfn5HeG5ow2eMMu/uY/rpC+TvVi/2dkuhx3+sY/RTnjLRTcjW7b7wl6IxvgB++F8v6QHzv79sKTftM+99+y10o9sCOExnbIT0brdrmq1WgwtpxniHqIF5LH5dTqdCNiGw2G8pm/OsGBs4BgbNvIAEsw6nY729va0s7MTAQXgB9DgDBubK6XWCH/DLpLQheaWttMv+uOJhLDOhKidXR6PxxEcS9vjpqWtntglBeiCXcrBvbmOgxdJkY1FVkHSWKvVUqfTiQd8AGAIV1cq2+N3SVKjnFe1elrea3d3N4IT18u69AMgShk6GHk+y/8BVi5PQcs6m80iiMbxQD/u7DRSDJwrl7ukII37Mu6pBt7XH9/DMWBNA0BhX1mXPp6APe7nlTl43zXKDtJ9bl0qkGq0aYNLGACOAEuXGQGm/Tn0ZDqe1+Pj4+g8bTabmLSIYwFL786gRw4A59yLZ5kky/TZllSqasIYObPurLRHXCSVTll0SRFA3KMLfB+H5R6xF/SbLZV/t5tq372WZntO9t1f9bVqhO5FNyNbthfV3rac6Yd+/KP0Kv3UHb3uHUm+K4qiCCE8J6FdURRvkvQmSQohFGhXPUzKRu56XQ/BSrotVCyVQ6mABxLSJEUgCYhDWuDsNCB2MBioVqvFUmAAVNdo1uv1yFZTng32EbYRHbIzs+lGC7uafhZA5aF43mezp+1s4v5/Nm9YP4AuDB0MMvIGvk+I24GxA7Z2u61+vx/H1pO/PDzO3ALeqLSwt7cXGW80uoT/AaW1Wq3EKNI+2uqVH3wd8Br1plkvXh3BwawzgYA12uAaXdeqOsPp4NdD8M6guq6ZMWZO6ZdHIbgm7CRrlggDAM4rofghLjChruPl3jhgvoYAmV6FxJ8/Z4/T59RLyzH2VP3AueMIb67LOFOWD2024BV9L4wsa9pL3XkVEBxLB7uuwef/PFMAbN5j/t3B5L4upcCc3b/X7Pn8Zp99L/5u98P+5RNXvwTtvV/5sdqt3FlgkC3bvWA/Mv0wverL7/zafyHA+EnCbSGEhyQ9dfb645Iesc+97Oy1ZzQHVvz/vPelss4QUOTgg82Oww8AXoTyYcn4PJuwM1SAUBihzWaj8XgcPwd44KSzer0eD//w5Cs/rcxBUxpmpoKFAxb+AHx43ccDkOAgzOvz0n/uBeNKnxg3tMCe4IdO2JO2aGO/39fu7m4sVwagOT4+1ng8jiXNACez2Uzr9VqdTic6ErTZw9PIXAB/nkjFGMLqO0PJdRhLak17+J3IAP1kDOmTy1tgSFkbzu6n8hyiCqw9ZAJIQBhHWEwYSQfnzAXXQyvvFTy87q60Pe2QNeH1tF3/6g4An0V2w7x7XV8HiOdVfaD9tI91jmQIln61WkWHEadEOnUCZrNZdDhd64+D4Eeas6a9NrH/PjBX7tQwn6nsiftUKpUI3mGiHey7pTpxniUciXvE7vhvdraLt3/42Ddot9K66GZky3bf2AtR6n+fpM8/+/fnS/pee/3zwqn9TknDZ6NVg3Vi42Pzc32kM1+uLWUDRh88nU41m81KEosQQgTADjZhzzzU7Al0gGMkAx7qdWaZZLzpdKrxeHybXEO6nb1yoMnmTZ/SMK8zd66bdV0loAMGmFAvDLRXXuBebPgAQELlMI5eeQIgCjO4t7en3d3dWDOZpMXRaKThcBiZ3uVyGWsZr1YrtVottdvt20AI95RU0vA2Go2YPAVjClvoAAVAd3x8rMlkEueBMQGcObMMo+nJaYwB7CTrxMP0IYSYcAdj6evLE9VITGNdOgvvTLc7ZRy5vV6vI9NarVbj2DE2foCN674xZ7nprzP3OH1IdBqNRgnQsw4B4B7x8HYCFgGJfAc5S6ojP4+t9TUMoGW8cdxYty5lYo15aUDXn3uUxJ3h2Wx2Wz1inBD/4xIunAccTnfM7gG7o7/Z2S6HfdHf/7M6XM8uuhnZsr2o9svLuf7R3//Uu3LtZ1uu7Z/rNGnjagjhvZL+uqSvkfQvQwhfJOk9kj7n7OM/qNOyP+/QaemfL3i2jSF5zEPdqTyCzdrZO+l0Iz44ONB8Ptfh4aFOTk7Ubrc1GAzU6XQkKW6EfgKZa5ldLwiY8MNC2OBdioEsoF6vazweR0DoofY0Gc7ZKICmJ365FAEGEVBYFIVGo1GppBagADAAc+aMJMAF4ACj5uN7fHx8G4CCfQMAtdvtmJTIiXdFUZTA3sHBQaxBzPePjo40m83U6XQigPV6uIz/2XqLoA3taSo3cGZT2jKOrmdl/DxRi2s6W8x7Hsb3CgeMJQA6hNMDYqhIgQaaShBIgnCEYK0Bmzhb0rZsHfMD4IRVxlnxBDMMJtwPyQDQM64uO6JvLuPge8hzfH3SBxwF2kdNavrP+mW80mf1PEvlTrSZ58bXiFdLYW7cQeY7Dmz9t4E++ecZP2eJPUETWQ+sujvL/P10fbsM9mL9Zme7ePugr3uzxn9mo72Lbki2bC+ivfPkiq5/05vvyrWfbVWKP/o0b73+nM8Wkv7U82kMG9h5rJ7LK1xW4EcF37hxI4Znw1l5sH6/Hw+UgEVutVolhgrwykEVAGQSxjyxx5ngavX0aOZ+v68QgiaTSQTFUvl4XGevnBl22QKAnxJknnAHCAeEwe4BSrwyAfeA/QPMEdL3Y7E9NO4gjbbCjrvm+qGHHtLLXvayeEAJIAJgCFvN/3Eq6AsSDal88uB50hSYatcR+zHDtu6iEwDL6WF7nA4YYZelAEA5PIPjrfkujhBh9Ha7rd3dXfX7fUmK8pxUH8t3kSp40p9HCjzpEFCMFIc1Ryk4l8/AXLMOkDWk8hBkJC7P8TaQ7ErUxTXsDkaZDzTjVAjxkxz9JD8/VIPvMY5pTgBVJCSV3qtUKqUoD3PgMg//vDPQrnt3AJwmDXIfpBfStoY2+Qk4MlyXsXLH9zLZi/Wbne1y2B/+8r+oH//av6d25Z5JBM2W7Xnbu04m+ltf8cXq6GfuyvUvzcl3bDCegARoTAEQn4GtAkh4map6va7r169rf39fkjSZTGI42nWvkmJYvNvtRkBEyNRPJ2Mj9NAp4fT5fK7hcBgZQ0DxeRsoQD5ltTCY2uVyGduBA+CHSABK0NzCLsPs8j73nc1mGo/HpYMzuB+sM8AQIARYAEj1ej1du3ZN169fV7VajaBwOBxqPB7H8SmKQsPhMB6AQh84VpsDVFxKQPs5NAMngXWBBpujmplDAKOHwT18z3dg3B3sIYEA3MPKOsj2REAAIZKFVNPuyaCwrcVZhQXeJ2IBGw2gZixcH+3sLgAfLTMMNu11OZDLVLxNmDtF3k9ANmsYEMn6cwDPe6xj2j+bzWLlEtY6z3Sq1WVemTfXbLsD4A5bCkQB5P7b4M+VS5f4LmsLJ9LHh+fL59rL7bl0izHKlu0i7YE/+S41Ql6H2V4aNtzsqPM9dwcUS5cIGMNuegUA15x6hj6gjk0LVoikOvSvV65cUafT0XK5jIDQE5BcQ8iGDKjg1DEADMDJtaAArvV6rRs3bujGjRtar9dRekEoH+CFFhQQCkgADNEGPg/IcXYP0EJpOgdX0inT5cfxOkhwZtlBBu0BGCLvcDZeOgVTu7u7unr1aqy7jN756OhI4/E4amABv8hjqGCB9AMnhTZIW2kATJ8nV8IaMkcwvDDnSE8ALtSiZi4BkMy5l+7zusbMKwDL9ew+91TcwCFxoOlA9+TkRJ1OJ+qFnfV0uQF/JJUY9c1mU3K00pJ6AFln913rC+jl3zxH6GVpe6rb57Opdpj16MmMzgYjqWB9nqfTddDqDDftd0DtjpP3w2UYOEkAXMbAozv+DPHs+xy7vEXalm7jmfXETP/j0axs2S7K/t4rv0fVXK4t20vAnlpP9Zf/1zcq6L/etXtcGmCchlnZbAAsgDQv79VoNNRut2NCU61WiyDkypUr2t3dVbVa1eOPP673v//9WiwWETB6gp+0DaXC6HEimeszndV1gLNYLKK2GPDoekbYTAAnDB9lvwBS6GoJ3cN8I+ngM7u7u9rd3dXOzk5kRgHtzhqn1RYALYAT2gOzSlIdbG1RFGo0GpG57na76vV66nQ6UcdLwh1A0Z0J5pM+oJMej8dRcuFgE6ACcMbBgJ2DaT0+PtZoNIptxpGg8oODX6/E4YxgGspHHoBcwEvgeX+KorgNpHNtnBmAK2ONHnk6nZbu61Uv3PlIw/xeuYS/WTfME2vZy5fxWfripdsAuC4xcIfPATCgFjlGyrx7RAdnkWfHnQqvXezyE5fFEAnxCA3t5Dlk/NJKFunzmUqwHDiniY8u+3BJC2OA7MXrPSMZysA4W7Zs2e6+zTZLff6nfZHCf7t7oFi6RMAYkOMAmE3bk88ARIQ30fsBVHq9ntrttvb399VqtTSZTPTUU0/p4OAgXh+mECbLE70AgWyUbLh+ZC1AAbZ6NBrFwwy4HsAM5m29Pj04QlKphFgIITJbrr2EvaItsGcwr4PBIGbjAzDQoXJEMayjZ+W7xtSlACQaOUO2Xp+WVgvh9OQ6JA6cVgcoBuTCbqKHBmBTUQLtbnr6mmtxYREZZ5fH4EigXQakenibuZK2gJJ7AHSk8qExOCsArbRihLQFYbQRwAu76cldMMkcR4xEx/+wbtPa1a5hlRR1vIBl+gxTC0gF7LJ2cCAcdAOAPUJC/5Av8CymzC7OAI7MbDYrRR4AnTir1K12lhw5AqCeUmmsdZc5AZS9prJXg/EqJP6ey0joKwyzy634HuNAMmeqOeZ3gHllHFhrHOmeLdtF2Rt++UgPV/NhK9nub1sXG/2h3/XZ2rz7V+/6vS7NLzobOmDTQ5wkY3m2e6ohRBtLfdxu9zSsdHR0pKOjIy0Wixg6TuvCenIaUoQUxPqJZYA0r1xAKS1nPwHKgE3fyD37nWRB12sC4NvtdolBhIEFTHKABRpa7kN1DsbVw8bOcgESAC0AH4AH0ogHH3xQe3t7sY9+fLW01W/SfhITW62Wrl27FoF1CCGCIsC+64F5zSuE0GecCJdo+FwC7PwACMzBEnMIIG02m/GerlPmfT9wxdnlarUaPwtg9cgCoJh5dmeJfjpzz7zwfT+aGQOU8X2eD9cPO5BkrGGW3Wlx/S0SGthUr6bhYBIAyTh7AqmPLd9hrryiBu3CuZHKyZM4fIy/zyMMss8Ha5r7e1sklSJNPAewwgBf1627g0pfF4uFJpNJdOD9vj722bK92PbvP+GD9dk//0t6WS1LKbLdv/YZH/kGrd7/Gy/KvS4NMIa5cWaMjdwBFSyeA0mAHJs2oAWJAwyfl6Pi2oA3au06YIHZdC2kh865JsC31+tF4O1MIKwffaC/Hv4FkAC2YOOc3Qb4AigAFw6giqLQeDzWaDSKgAQZBYDBnQMAMAeeMDbSKbinNu6DDz4YtcXubMDGeZUHxo8kvk6nE2UH9BlQT0ida1CdgEND0AUD0AA4ODGeXEcIHjYVR8KTq7w6BEAMkIQBeBzsY55ECAjGOWG9eOQA6YCzlO7gOVBGcsM6Yz5Zv6wd18fCBvsRzi7RYIwAkshavMoHAJC5cVkHr8GM1uv1KJ1BD+zJhO5wudPCGvfoAM8IkhovwccaIrEyZfvpD3KLVM4h3V5BwpMA+b3w69Jm1nIKinEUuF4ahciW7SJsffOWNs/8sWzZ7kn7tI/+NG0Oj7SZPvmi3fPS/KL7ZubAAEDJIQmezNXtdiM4QErBtY6OjuKmSEgfUOQh516vp1arpfF4HO/pjBrgDwbRgSR6ZSoj8FlP+vFNHFCeOgCuffVTyABD3i5JGg6HJZDQ6/WipACwBrAAaEjbULXX0wU4Axxoy2w202w2U7VaVa/X02AwUK/X03q91s2bN3V4eKgQgjqdTkl3S9IhmmqvdYvDMBqNdHh4qFu3bkUmv91uR7Dh9Y29egHACikBIXvvW6r5dAbU9aLSVqvr1RAYv5TZJ+SPpMcrjkjbsmqMKRVNPEkLA3gyf65VB+ghh6AdaHEZH8C6H8RByB85icsoAPNoz89zjkgk9IiApBJYpo2z2SyuUb7vkQZn0DG+x/rgXjxXOJw4PzD4AH6cJOYbc7mEG05nmkAJO857RISm02lJTuF6ccbT5R5ci2hLtmzZsmW7c/ZpH/eZWr33PS/6fS8FMHbGzqtESNuw8GQy0WQyiQCY0+bYDCeTSdS3AlL4f7t9qr/y5BxpC1r5AxuM5tiBqpfNAhDDNnvY3UPhnhAFyHF9KWDHWWlJJdkFABP9MIDC2TkHfA6maAubOcyefxam2Zl3wu+TyUSdTkeDwUAf9EEfpCtXrsSxXq1WkU0mKRAAAWAkfA+zvVqtNB6PdfPmTd28eVMHBweq1Wrqdrvqdruaz+cRQMMqsj4A9JSFo9qEH9jBvDO3jKFXuJC2jDBa4NVqFQ+BcTkIn91sNhG845wAjNBvw+p6JAPw7PPlNZs9Qc6Pk3ZpBYmm/jy4HnY2Oz3xCnDG2OHoIOlxJ8IdIQeuHqXw9evjB4BcLpe36at5LugT88JnxuNxqYqFjwHAmPUCAKauMpEU5pb2Ma4OVs8znAo/BRA2PF07/lvBaZokdfrhLTzbGRhnuzALQf/7r/+sHs0yimz3ia2Ljd7wOV+o8JO/oNNziF58uzTAWFJJLuDsH0fippnrftQzzE2j0Yhlu2D42OgBEbC2MEewTYBFQMRkMomMFff244l3d3dLTJWz3I1GQ9PptJQFD2CazWa6efNmvJdLADzxDjbS2TQvK4Y5w767uxs3eTZ9Zwm9jbCS9AsHYjqdxuObSZq7evWqut1uqWYvY+d6S0+iIwlxOBxG1vOJJ57QzZs3NRwOtVwu40EelKljzp25lVQC+uiBAb84C57w5fIO18kyXpJi4qAzsawdrx5BZKHX60U5DKAMUAvL78DQtcDOWjKnLrPw95kTgLvPP0CT61IGkPs6S4tW3bXwaSUQ7olD4Mdb00+vREHCpTt0JMniGHhFDYA2VUN8PDCeeR835spZYsab1+mPO4KAY8aTdjJ+/PGIBOvDfwNwxIhOMKa+Nv13KFu2i7DH3v5OfXRj56KbkS3bC7bj4kQnxVqf/tifVuMn33KhbbkUwFgqn04Gs4luE0YOq9fr6vf76vf7cZNuNptROwnL5Il1rr/cbDYRSPvmXq/XIwgkHA1YlxT1svzxygok/9Xr9XjAAUDcmePFYqHRaKTZbBY3VRIOOXmNthImp8+AFACYJ0cVRRGvRZ+90gIADl0rumhAEqCYwzomk4mkU3C1v7+vwWCgdrsdgRgAimO2GUMS6QAnk8kkgqNbt27pqaeeipVFAOmerOXsKUw0jgWnGlKVxJ0ngJ1LRJCJ4BAwF5IiqwqABgQBsAHAOC+MK9fabE5PIByPx1qv15E1BFwB0pw1BlClulbWj7QtVwjrjswD8Mna8KhIt9tVpVKJMgfmH1mPzwtVS+gfzw+OEa9T7WS1WkVHjz4URREdOk9KpT8+5qxTP21xZ2endDIhBtB35tblOZ6s544y48Ka4jXXkePEwTz7oTt+HS9Rx3zyN84d/eU3JmuMs2XLlu352+F6ptd/9V/QtW/5KTV0saBYuiTAGOAD8Gy325E9dGDhFRsAoYBDmGE2LpiylAXy0lVoLtEGNxoNDQYDdbvdCNAAlgAokqu4FjV1YUhhAh30eR8JdcMkAzIJ08KeOeNG6BcQQ9kzNKDcw6sFAMQ9AQzg5Nn4JK41Go2o/wSAtlot7e3t6aGHHtKDDz4YxxVdMcdAM0fj8TgCaoA2zkGlUomVKGirJ315yTfmDIaQseZeHGAibaU3Dk680oNruN08FE6Yn5J3HiFwWQRtZyxhT12i4qx2KqXwJE6cEk+A436wkmiJPeKAdpe5J/mNe/GMOHMNK833qcLBekDHTyIc/eIe9AknhLWDI0dfeBbROjN/yDaYE496APT5rJc/4zOebMk44pjBKLukwueb8UCCxfPH2JLk6aw3Y+fmSZg8k0SOnk6+kS1btmzZPrA9sZro93/jX9YHfcubL7op0S4FMJZON3BqELMxOhuLAYwBMJKihhfmEk2uazqlrf4SBhNtqycCoXMcj8eSVALBgACXOozH41iVwCUhAAQ+C3Dxcl6u65UUmUoAFOyl1w1mfFwq4QCTPkrbUnReUgwQBihm/JBBwBbP53P1ej3t7e2p3++r1Wpps9mo1+upWq1qOBxqOp2WKjKMx+Mov+j3+xqNRqVKALT3POAD0Ab0ML+AoclkUooEkPTocwQ4SsvjOdAFtOFE+EmELjVhXJxZ5XVO+qOWb7omXAaSap2dgWQ9AFiZS64B4HTQ66F8IiU4HS6ToO1+WIbLN/ygHEA9wBTHiDWMjAJw6Rpdd7y8bjZANo0EAWzd0fU1CuhkLFnL9MF/B3AI+Jzr5V0X7bINH3d3lP159ecRh93BN+PKOvR2ZcuWLVu2Z7b3rib6+ePr+vJ/8kY9+rcuDyiWLhEw9goG0ikoAaAB6vgcjLHrTD0su7e3p263Wwors+GfnJzEpKF2u612u62jo6MIllarVQzXw8wSQiZs6lnsN27c0HA4jCAGUFCtVkvso8siYK48IY4N2LW6gK5qtRoPEaEkHPdwIEW4ejablQAejKGDVL8G4e7JZBJP8Gu1Wtrf39ejjz6q69evx74hERmPx7p161Y8cZD2Ig/x2rHIUTxB0UuO0V7q7VLz2KtTcIAKunLXeUoqjTGg0Fm+tJoB68blEUhMms1mBELubDBv4/E4JmORqCkp6mgB/AA/l3swjilAI6rBWnO9L8mOnuiGc4fudzqdRkfKNcHeR/rpshHWOMDUK2Ogw8dZo0+AdBwSaesQ0EaX7jC2lUqldMoi8+EgFnDqUhKPungyIE6CJz8yb4wBvx0+Dqw7HELM9diMswNil+z4MdHT6fRO/ARmy5Yt20vCfmM10Sf+u7+gV/+pn9GjulygWLokwLhSqajT6ajf72tvby/KE847chW5A9UBeB+2Ci0smz36RBL4YJVIqPLDERyQppUFXBN7fHyso6MjTafTCFhhw5AEAFyQW4zH4wiCHeQDGAFJUllv6ify8T1PJAPMALj4f7vdjiysa2kxAIUfZDIcDqP+dzAY6IEHHtAjjzyiwWBQ0vDOZrNYHQIwxDx6jV9C8rTbWeu0L85eo4FFZwww4dpch/Z4vWmADvPFZ/zACAAw44CkAvDmACi9BmvJ9bI+ngAuWFBJpfWbzgF998oL6N2lbQUNZ765HsCMQzRYs14dBRDIumK8PdrAugOUp7rjoigi4wxLizH+PiaMhSfKSdtDTnjNIyau78UR8n464HWgzmd8/QOKcaAA8Wj8+bxLIGCaPcHP+8EYetWOzWYTHe5s2bJly/bM9q6TiX7vD/15veZP/cxFN+Vp7VIA4xCCrly5ouvXr2t/f1+PP/54qSA/mx9JVbDFzu6yyXoJKUmRQU3DxiQU+SbLNWE+AReAKlgidJgw2jB4sEcACyQABwcHms/nsbwbzGuv14sn+gGgvWIAIJ5QPoCHBCUAO44FyVBpeNo3dsaGSgqezASIQGbyspe9TIPBII4L4fLhcKjDw8PI8AIw/Ghdjm12AO+sqc89CXbIYLxkm5fUcr2tj7kzjmnJNmnr8MDeIgVw9pC1wH3SpE0YTKIOXurOK0r40c6w2n4fl4/QJq8I4oDegSHg3Ss2uN7YZTcws75OnP1mzbhUBVBOkh7lAQGqVGBgPbJmXYYCOKUyCa+l65Cx5ZlmvHCYvCIG7zG+zL+0rVLBe0g9UicDR8XXqieQcl0HxavV9uhxf3YcvLMW0iTCbNmyZct2u/3GaqLf+6Nfptf8yZ+96KZ8QHtGYBxC+HZJny7pqaIo/oez175W0h+QtJT0TklfUBTFUQjhFZLeJuntZ1//6aIo/uQz3aNSqejRRx/Vo48+GkOw1Ep1fSCJZ3t7e6rVahoOh1H7id7PdbWEWmGTea9arcZNEfBF+TI2d0klYOYyCrS1sKFstvP5PDLI7XZbs9lMo9Eo9oXPITfg4AuAxHK5jEdAE8qWVCqZlSY0kSBISJ8kJweP5zHUMKAASfTAAIsHHnhAL3/5y9XpdGJlCem0hvHR0VEM76PJlsoHiHA9l1QARiRF5g7pgldwQLMJkEW/zb9JsATMoPF1IIj+VlJJ80ubYFsBQoBlQI/LH2gTbWSMXDqTjoFXr/AKGDDBrEmSGWHZAYdpsqnrtAHZXjfaHSpe93FiPOkv14Jt98oPsLde+YMxZsxgdFn/rG1POpS2VSW4tycGMq9eMSSVUHB/l494zoEz4shRPBmROaFtzvSnOQGMt5dpk3Sbo+QRnsuqL34xfrezXayN//Dv1CM7b5GUy7Vlu9x2uJ7pDb/4eXryN/YvPSiWnh1j/B2SvlHSd9prPyrpK4uiWIUQ/qakr5T05WfvvbMoio94Lo2oVqt66KGHtLe3pyeeeELj8TjWk3XjUA2qRsAWdzqdeCKZb95e/gkwxHXQMXK0LXpjQsOwqsgZYOIAv7DIMFqSIosMw0k5LzZPpAutVivW73UG2JO4XJ8KMAZwUQ8WUOCnpAGCvLYu7YNt5xqc5oVEYLM5LWPX6/X0wAMPaG9vL4Jm2oUGGWmG95/2TqdTTSaT25KwAE8AJcbWEye9bi+sKzpcxsLZX+a1VqtF3S9gzEEmjLRLP3yc3ekA+HB9xovx8aQ41zR7mB3A58lhXIv7UB4QJhZg7EDbJQGMEaDYHUfu5SfTuebYxx1AzzUZP18zOBWe5Edtb4+KcH3u7+PuMhmAMfMKaHX5AuPkjhHv03ZnkL36B0wuzwEgOK3xTH+4Zio3ARizxnGmeY9/OwN+XhWLS2Dfobv8u53tYu2z/uqP5hrG2S69TTYLve6H/qxe89hbtHvRjXmW9ozAuCiKnzhjFPy1f2///WlJn/1CGlGtVnXlyhXVajUdHR1pNBpFxsz1mdRglU6ZSypHwCJ5CSxCoCRN8TlkAp7gAxPdarVKJcO89Bu6V9hfZwYBJIAGSqkB6JrN5m2HdXjSEmHv9GQy+k9SHa+n2tsUjHFNABdaUsANAAGQD1uGDnNvb097e3sqikLD4VCtViue8Ec1Bq5HeN/ZSlhzAI+z6gAKWDvC/rCcOBXStiwa4+ZVBgCJ/X4/6ov5LADJJQyur2VeU71oWl7NGUv64BUZ3DnC3JkDdAGyXSPsCXeMS1rRwqUczk4yLv4ZwCZrA4BPX1zG4ddz1pwxpl3ueFHdAt04iYeMoTO09N1Bayp5cQDNmnZ5iR+b7kyzS1fc4XLH15MLeaaQZ7gEx+Vazkan5eUwnw9YbZd5XCZ7MX63s12cPfWnPla/o/1NF92MbNk+oL3y+x5TOK7oNX/2py+6Kc/J7oTG+AslfZf9/5UhhP8iaSTp/1MUxX8+70shhMckPSYp6oLH47GefPLJUqIZG6knThHmBKC5Rtg3PF5jI3R2UdrqPJFgYB6KhWWl9qtv3DB8MEwceessHYDSmd1UNkD7AfBoc10PDNDgjwM439QdkPhx2H59gJWHln1cSF4E5ANQAP+e0ITxGeQjAGKALv2mL4ApgDkMv4NRQvsAcO7hcgl0116VwUE648V68gQtN5dhALY44hhmFGCEvha5Swr23FnyZE7MGWHGxFlgTyL0deL6auYKqYzr1AGgzlD7M8R1PaGM58TlF16isFqtxiiDP0usOT9t0hl3Z/49kdGrPVDNw9llPudzzXgBlj2S4iDaJUbO0ONwONvMeKVlIhkTny/uhXPla/setBf8u91U+7yPZHsR7GP+2M/r4/NJ5Nkusb36H3+JXvPlP3XRzXhe9oJ+0UMI/29JK0n/9OylJyQ9WhTFrRDCR0r6tyGE1xZFMUq/WxTFmyS9SZKuXr1arFar205FczbGj3AG2Hk4lJDpeZuWh0n5HMCFTZdN1bP6YUUBiuhqHThTXxig7qFZdL/OUMJgOTAK4bQuKiCadgD6eQ3ZB6CJz3jpLhgwQDGlx2CRYWhh9+ibJyy6ThuNdlEUkREnxMw9YdDm87kmk0kp89/DzM50A3q8hJxLM5whda2r991lDjhJzsSneljAn7RNcktBJW0D+HnJL+aL+QCQueSFz+KcuYPH/Vl3qSSAseDzRAsYf38eXCLj7KmDYpd7sEY8gc9lFM4W0ybWB06h6/49Ec31zF7dQSpXlGDcGR+eA0/8pN2MM4fvSCqB9lQb7mx/WpYwlXjwbxxIpFJUPPF2uFafdYlj7nKZe8nu1O92P+wX6fvZsmXL9mF//4161VdfvjJsz9aeNzAOIfwxnSZ3vL442/2LojiWdHz2758LIbxT0mskvfUZrqXJZKKbN2+W9KuAFNhJjmH2UCngixPA2Ew9E11STCbi1C5pyxi75hFQiBaVJDlKYtHe5XIZ5RwpMEjD5M6cUQ2DNsA6AlC9UoFXDUC7S19c5+pAAxYN+QPX8KN2zwOjkmLZOQcbgAfC6CTRuYyC+RiNRqWjfwGWtM9LXwHmfNy5N/eFrWS8nbnDXDIDgw3LKKkEYgHYgFbXiQJuWDO0HSCEfIZrArQBRjgb9BPGHvbTQSmJlq519SgA84JzwLy4Zvc8UAbw82Q7dyy9RJ2fguigj8+TKEgkZTqdRrYY54zkOT+mO9UEezKdg2TGEIcAh9SlKy5zcIeQ/rHGWC8u5ahWtzXCXXOM8X8cbp4nl5GkrDTrxX97HKTfC3Ynf7ezZcuWLbXf/rVv1CN/995kirHnBYxDCJ8i6S9L+oSiKGb2+jVJB0VRrEMIr5L0akm//kzXK4pCN2/e1I0bN2LSEBvR2XXVarXi4Q4csLBer6M2mKNZ/dhgDyV7ohebJcwPQBxwDXsIMCBUD5u0Xq91eHgYpRN+YpvLGhxASFvWu9PplELilOtyiQIgBpYb8CVtQX4IocS2OSD3ihfT6TRqJj1Jyh0H2gigBsTM53Pt7OzEcLek6GBIKgFjHATGE6bPtbM+Hq63TVlv+uTVExgPNwfMkkr3gfFG5+oadECXh9jpk0crHPjATgMCAUZIabzKB/NG/3CEYLd97XufYfsBlfTbZSjuyMEQOzPtunxPSmO8kET455hLgDdrP00iZUyZWz+Ax+UOrCln2H3sU32zr00H9zgjvObSKoC/R0DOc0zRsLPm0YfjLOEMwyZzP57RVNbh65C+3Qt2p3+3s12c/cpf+3B9zzf8iv7n7m2kfrZsF2av+6ov0YNv+hmpuLeDSc+mXNs/l/SJkq6GEN4r6a/rNJu5IelHzzYqyvt8vKSvCiGcSNpI+pNFURw80z02m40ODw/jSWoeIoZl9dPQOOmrUqnE6g4OoGBcAQlskp7U4yFswAtAADat3+9H3eV8Po+h1sPDQx0cHJTYOsKvftRyypByah9Al+90u101Go3I+rKxA+gJZXuVDE8aQ0YAeOCaAGdPwAJUOXgFEPhRyoAX1y4D/mG8YUcBxF7lAMDiIWtnMvkbRs4POnGHSNomsQEw6bszkjCqnuTFew6SHKi5thlnyZlAQKmvEwev9JEqHLzHmqXd3Hs+n8djs+kD4+IOgyd1YjhgWDqWrCfGzJ+tVNdLVRPm2nW4JIwy1kRGSNhk7EheRVIAO+vt41lMHQycEZ8r7u/OWuoEsSb8er42XIbBukXqxDwAzNfrdaxk4wmMtN3nI70Xn3ed9GWzF+N3O9vFWeOH3qJf/9prOpWEZ8t28fZRf/VLdP07f07F5t6Slp1nz6YqxR895+Vve5rPfo+k73mujQAYUzCf8LuDDA7CALRKWw0rGx7saa/Xi4ddUP7LAQPAjzA8x1E78JZUShyiDYeHhzo8PNR0Oi3pbF1D6iFyWETAuifD8X+YRRKsaCv981JingTkrBagrVbbHsSAoav2a5w3JgALD+sD9vwgCAAh7OdsNoul3wC6sJ3OHqZJZSlohRFl7DCvPHC2ziKQcV2t63MB7KkD4CwgYwzb7olszAX99XA884y8BAkJbWGsaTf3nUwmJTmOA23+BqwCzvjb9c8OIGkL7bRnsTSOALvzxtM1x8vlslRKcLFYxGgJn2XsuGYq7eHZYq0BJHG00iiI63id2UZK41U2HERjfI5rMmY4asyZO15UYGENMaYpYOf3yV9zZ/KyAuMX43c728Xaj3/u79Trvvvden3r3gci2e5t++i/8iW6+s9/XsXJ5azr/lztUqRTI1XwZCU2ODZdSTFcjZQAWQSsKcyh63XTWq9+T5guTvkCUMHMegJTp9NRtVqNQIjNnU0d5smvCxBZLpdRpsFGD4Cl8gGJfc5wA2CQVzSbzVICEv1B9oAcoNvtRuCWsqtPB64B84vFIh424eWtnG0HcEwmk5h46NIFaRtOd10zTGlRFLGKgR/44UlaHjKnv856wkg6w+sl7gBcACZAUaoZlU71zR4tYB36tR10AmTX67XG43EJ8HpNY3d4cPrcYB8Bci6HcW2uj2saTcEAn+lnpC3wZe7RD7scxyUSgFNAMcmUrCO/flpuzv/tkggHj9wXRpfn5+k03Hw/Taajzz7HjKsneXpJOdfgs07ccUzBruulfYy9P5cRGGe7/634L7+so3VHmTXOdlH22//mG/VBP36g/V/7eRUW0bzX7VIAY8K7KUPnTJ7XFEbiAIBk4wYUekk3D306m8Tn04QbAByAjc16Z2dH4/FY4/FYJycn8bQylz9gAC9P/HPw5QAeoAxAALDQBwdEKcsJ0KTtKfPJa2k9VkAF4NDZVJ8PmPJ+vx/7AkMMI0uIn8M1pC077MAMIOkVBKRtWTAHnw4+UoDqbfWEOBhogAwsPX983n0sGC+va03yJuuG77MOAJNoV/2+6XVduuGOjjPJgH1nPUnQS9nLpzOXVqQg3u/hsiLm38vUsU7X63VMLmUsWYcpu+4MrjscGPPrSZup9tiZYtrJ+Dlj7FIbPsM9WUvuDLusiX6g9/ZEQJ5jbxdj4s4lY+1a6HutKkW2+8e+/ff+bn3wf/7X+ggrnZkt24thH/5336iX/YOf18aIk/vFLgUw9jA7ANCBIPrVavX0hDwP9brGdn9/X7u7u7eVuEIT6+CF1x30eNi11WrFUlXcH/as0+lE8OB1jWkPIBAZSLVajVINzKUAlMGCCe90OpG9Po9xgzUDLACGAMGu0fTQrwMkAAoA1rXWsPdopvkskgGkBgB3StVxT8A8INgZSQelzvABMlJG0tk6B+7O/KL95h7OLDO/zpDTX6kMYP2gERh+xt4lGw6cAFtoV9GEcwIjiW7Mb6qvlhT75eXcnF32OU7XQpr8lTLurBPuT/SF9c5nuD9zzby6JAIHwp0b2oqkydleIhDr9fZIadpImzabTWSQXYvebDZL69ZlIO4o8AzxnidbkjTqkSieMfpPv9Lnyq+Dk+Ta41S2ki3bRdjqvY9rqdu1+Nmy3S374O/6k/qQr/41PTx8qzb3iXQitUsBjNlYUqkDG+h4PFalUtFgMFC73Va/31ez2dRsNtNwOJQk9ft97e/vRxkATJuXAPOMdTS/kqIWmc2v0WhoMBjo2rVrkcFDTwvg9XCuV2hwjTHAqt1ux7aT0AQryMbdaDSiNlpSrM4B6GdM0Go6Q+g6Z8YRHTWggLA18gJAMfdno4cJrtfrunbtWpSZHB8fR/aQ9k2n01JFABLYGJudnZ0IDAGy0vZQCqmcNOavOZuIE+TsuSe1MTaeWOVMJAmPAGIAH/ND35GFSColSXJNDOcAIHlychLlFH4kOSDKGWHXn3siJECcsXM9tQN9N2feXd/O95gL7uF9dUDJ50kOdQ05a5XIBPdxiQhzyvpnPlmnXp6Qz/jJcZJK65T7sB55NmnveREFj/Yw7+jcPXKCQwtg94Q9HD6+g513Px+3Z2Lzs2W7m/bXP/R36x/89x/To7XuRTcl231sH/qTn6tXfP479erlW7Ve3RuVeJ6vXRpgDHODzpENxxOaAI+9Xk8hhAhoe72erly5EssuSYobH2BY2tY2RWPY6/VKpZzYDPf29nTlyhV1Op3YRsAUIPK8o4ol3ZYhzybPcdaumSSjv1araXd3N9Zp5l4w1GiTAS1eocJrucJ0uc5Z2p6klybDOSBmrAEsjUZDV65c0bVr1yQpJthxHerauiba9ccpwyZtawSn4+XMLGCJdrlUwsP10lbjCsB0SQBrptPpxGPEF4uFxuNxBFowitIpMAPEe0UJIgXcC5DqJdiQPQD+YYppo+thuZczwiTc+Vh59RRnqIloAPxwnIgyMO4pKObeqfSB8cTBgy1GE+1OK+uY9c/R39TLZp5wkJhzvy/XAnw6g+6MONIHqngwJh5x4LoeceKZlLYOLyx+6rjRd19jqaPnwJl7eBJellFku2jbLBb6E6/4BIVK0A+852dVDZlBznZn7Xf9tz+oRz/nl7R5iUTHLgUw9g2djSaVDoQQ1O121e/31el0Sock9Ho97e7ulg5BYFMHiMEc89re3p7a7bYODg5UqVQ0nU61Xq/V6/V07do17e7uql6vR6AIg+YlyVyHykbrmzevdTodXblyRa1WKwJqwAla4729PfV6PU0mE00mE41Go8jQcigIgA72MWW7XAcKwE5rCHviGuPXarW0Xq91cHCg2Wymer2uwWCgbrer1Wql4XCow8PDeK2jo6NYVs+ZTdd3AiBSoEGtZz+NLi195Yy81zambwB6wCGAFXDJvdBwS9tEMk8ohB10VpZ7eGWNVAMtbat4ACJhi2u1WinxjARQIgGr1So6GNL2ZDkYVtfbMh4+tjhJRBNwLFh37hw4iOM58LlxGQH1wHkWvDScjwnrjTloNpvRUfVT8T6Q/tZlDV7hIZWqAJ7dwaUPLkVyzTF/3EHDiWFuXN6B1KYoijgvXN/vwbj5GmBdEAXKlu3CbLNWsZE+9eHXXXRLst2H1nmJlTW/FMBYOh8Ie5iy2Wyq2+1GVhhWFbAMwACkpKweeuLNZqN2u61utxtZ2KIoNJvNtLOzo263q+vXr0eGiQQzQCMsl7N2Doq5j6QI2jqdTkk37OCnVqvpypUrun79uqrVaqxycOPGDY1Gowj6nG2rVColBswTF2H1Uj2ts3GwmTgJLkOoVCp66KGH9PDDD6vdbsfDHQC40+k0HgvtmtGUoeT/jAXWbDZvC0W75ANw60l0zni6tpq+uqyFsa3X61HTTR1egBbtQx8LCGYOU6eCcZfKJ+NJWyadOXHgCKPriaIw7axJ1tBisYiyEQfWsM/j8TjqZmFsAfh+UqG3mXa75AQpCZKaoijUbrejzAfJkDsqPl9pgiJ9YF5wPr2qhstlPNmR6zGuOCfME20IIZSOcvfxd0eHOeIaOF5ec9qlFS55cecSeRJzkyba0SZ3OLJly5Yt2/1hlxIYY2w4sH8kvbmUAc0x2kff+AHFngwVQoiJdZ7Utdls1O/39fKXv1z9fj8C89FopKeeeqrEzrEpspkCkgEKlUqlVEWD8nHINlx60Ov1YjLhanVa63Y4HJaqXThrBaDx+zhw9IQlH1MPaft7AJLpdKoQgq5evarr16+rVqtpOBxG3a0nmzEnjLdXEkiT/bhPs9nUYDBQvV6Ppw16e72dsMJcG1CElne1WsX5Yy14u0h6xIECLAL0+L8DGg//ozV1Z8QBIveFded+sMK8xni5XhZW0iMLyDAAYlK5xBrX81rUJPpxDfqJxpZ2ss6caXfZB89GtVrVfD6PCZZpAqRreJk/1jvODSwskQLAsz/jPC84ZKm2nLlkrgCqPHfpGnedsifqwTK7Q+UOpjuvrFnXnHulCu7J932tA5izZcuWLdv9YZcCGJ+3ufj/q9XT45r39vZi1QkAR7/fLyWTHR0daTKZxJD9er3W3t5e1CR3Oh1dvXpV3W43Mp+S1Ov1dP36dV29elXNZlPL5VLD4VAHBwcajUYRzNTr9ZiU5MlCMI0AA9rd6/XiwSFII0hoo1/NZjOydc5iemkrT9TzU8YALWhE6XcKNr2SgEsTPNzd7/d19epV9fv9EkgB9PA39/DKFJKiLMRZbFg1HwfAdjpeACrXUTO2OBbOZEoqRQc8CTGEEAEcDpG0ZTw9wc31w6kGlc+4JMATtZA3pOXGJJXqAm82m8i8MyfSNpHPJQ7eL/7PGPC5nZ2dOBaMP2DX/6RyGw//E8nAwUqri/jnWTPOAMMOw5rjGHAtwL5HAQCraVk31pKz5YBPl4GkyXb0mbFy4OvOoMuIfN0zRshRUobY17A7kzir6bOWLVu2bNnubbsUwJhwsbM/Upkx3t/f15UrV1SpVDQej7VcLtVut2OpJ0k6ODiIYLfZbMa/Ydp2dna0v78fj0tmE6W+6pUrVyJbjIQAcCydstNsyLB4rVarxBhL2/qoHMqBJAOgByiGZYQB9FrGMJjOVLkUAPPkNwArEg7Cwe12O46xh4/Z3GE8SQCUFOcD8JDqRSlrBugE5KOF9uQmNODVajVqpyVFBwGw6ocyAJAo8+U6ZAAPjJ6PgbSVCwDApG2dY9pGJRHAK9di7NN7YYxXCq4Brc6eA0ArlUrpIBSXPjAfLnlIwbtXdPDkTpfI8FlP5HM5hkcKvCwbzDYVJmCcAZPMuSd1EsVwGQhzAINfFEWpHjfPH/PlEgZ3RtyxSeUrOHbetzQ3gc87m+vSEv/Nwdl15htnAMmT39sjM6nePFu2bNmy3R92KYAxm/F5oK9ararf7+uhhx7S7u6uimJ7Sp5vnjCyACLYHwdVMJoOOmu105rF/X5fjzzyiDqdjsbjsabTqZ566indunUrVmlotVo6OjqKelVKegFoaAv9gMV0DS0AmhA2OlTaK6n0PQCfn/JGWBnwwvVg8Bw0tFqtCKpTcARAA6QzB8gzAEGSIjuKYwAoBojRTgciADXK6/mBGM6Uu2TAAQegxauTAFS4jzP2zmLjHCC9AexIijIM74/LChx4O8ilbWlCmYf1vaqGn1ZIlQfG2wEpLLxUrqWL5pikMcAla8MTVVMQ50wvjDVrFAcKeYWkeCAOANvBJuvRq604C+2MO2sMx4xxO4+9ZbwcKLtcAsMRcX1v+juBeeTAk3Bdg+xjhkyH9fR0yZa0wwE3c5krU2TLli3b/WOXAhhLWwYmDUs2Go0Y3t/Z2dHBwYGGw6EWi0WUPKzX65jUhPaSTcuPn221Wup2u7HsGRtlp9OJlSg44OLmzZs6OjrSdDqNoMn1qZVKJTJiAAM/SQwAy8bpiURIMgD5hLI9JO7aVWQEAFgSpXiNsLikuLnD9HY6nQhGAHi8DgAC8ABA0YrSFoAw14XN9YNOmDcPb1M3FgdgNBrFRDX64CF6SbGN55VpIwnLteEAY5dK+OEMADyvZMF9WW+0F+fH++oygHStOlsJwPMqCK63dUbagRsA2A/IAKCmdY/dscF5wbnhvjgBjFnabm8zTiRzyprzpEnvC8cueySDcaLtPH9+QqA7F56I5zIdf/YdwPI9XwO8zvfcQeY6qZ7YpRAuz/AcA9rvY+YA2Z8Rb0sGxtmyZct2/9ilAcbnMTQAUg6+mM1munXrVjzUw0Oro9FIw+EwsmqABpK2YPBarVYEEGgeO51OTAzjIAvuA3jw0C8hYU/WATDAiFJiDRkHbQAEVSqVyLry/mQyKQF8QKWzW1wX4MjrnU5Hy+UynqLHa17SDIBDn+mXJyK5BILX0LsC3gBCOBKE4HFSXBYA8KWG8Hq9joCahC9K5XlI+jxnIpWr0C/ACk6LS3L4nCdMcW1vL+zuer2OsgeXUfB95BKMEWCL5E5epy9es9hZVMAZINKrTTizzPwB2ljPzij7c5My74yXs96se9aVs918x+/PuuP67gQxP3yXteHAl3u7tMNZ4vMAsQN4IgPuBKS/FT5PqdY4ZZgdSPv6wCk8D2iniXb+zGRgnC1btmz3j10qYIx5ljilpCqVikajkW7duqXJZBLDy57MtVgsSmwxiWAAE0BxChCQUqAtvnXrlg4ODjQej2NbnJ0FxABaXfpARj/AFDYYEAeLCXhD2zidTnV0dBQTtCg3BliXttIExsvrEPspbWiZATZodfk+SXqAXcbovIQzB6CAKEAtbKqzflyP/yPhgJGsVqux7N5qtYoJiYApQIi0PSVNUpxXrpWG/b1yBqCTPtAW5twBGvdA0jGdTmMCmmt7MQfrrvelbdyH+wKccEhYT67T9cQ95sHlMs6Ccx+eF3dmcLBcduLJap64mJbBcwad9jk4lhTlKA6ouZfr0dPEPfrMuLkkgdccwHKNVIJEe1wn778X3n6fa3dw6JtXqUiZ37R9vObm7z8dSM+WLVu2bPeePeMROSGEbw8hPBVC+CV77W+EEB4PIfzC2Z9Ptfe+MoTwjhDC20MIn/xsGuGMDhuX16JFJ0oNXYzNEdaRELiHp/1gBGdw/ahbDlhYLBY6OjrSzZs3Y/1ZQCAgGgAH++oMMJUjqIeMjANg2el04pHVgMFqtarFYhEZathepAYeppe2iYoASuQiAAmvYwtgca0qzKtn7aMrlranfaF9dvBNe7kW2lkABdflb0B6etSyH3vtelSprBF1kAx4InzPISvStqIB93ZWGXbVQeHTAafpdBorkPjcOfBMq2I4yE1lIRhadGeXcU4cALMuAGuw817hwbXlq9UqrneXdMBu84fPOVNN2/nbQSnzARAtiiIeAQ6j7WN7nnyDfnAdn08H4yk4ZQ0wlqm23OU+/PG55Lr+Hv/2Z8i1zv6MeYm3VNbl6yeNaFw2ezF+t7Nly5btfrRnwxh/h6RvlPSdyetfXxTF1/kLIYQPk/RHJL1W0gdJ+rEQwmuKoviAsUbfgDzhyo9CZnNn03cGcTab6ejoKCbbAVgBZrxOgpNrPs/aHeUYTz31VLwWjCFMmAMJBzqSYla/pFJCD2yh12BeLpfqdDpROzyZTHR0dFQCy/SX8fGSX67j9FJ1qf5ZUilsTrs5qQswgJPQ6XSiMwED7+FjDxlT4cFlGs7MSYosrrSVEXAPnAgHoNK2TJhLMmg/7DT3ZJ6ZSweCrst1AMy4eJk5XyubzSZWbAD8Meep3MfBMdpg1g39wElgvJHHSOUwPOuCNeDaYsavXq+X2umOAOPj4JZ1Tf9dt53qkh2M8xmvm4xEyNl1+sTnU6mEA3AAMWPj0iR3hBgLB/wun2BtpL8fKcvrQDm1VMLhgN0lE+n3GS++447bJbTv0F3+3c6WLVu2+9GeERgXRfETIYRXPMvrfaakf1EUxbGkd4UQ3iHpoyX91DPcI4IaT0Jio/byVmyA6IWLotBwOIz6YkqxoXEEnFABwbW+3Icw/2w2i6XgnE2VthpNZAlcH1A6m810fHxcqg6BTrjb7arVakXpANfj/8gnSFZDJ0xIHeBDqbPVaqVWq6Vr165FjSn9kBRZbhhxwIQDI1hI+ull7cbjcal8HuAHZpSx8kMmAGEpMAHESopzCUPNvCAlkbYaVgAfQN7BlFSWxRRFEdlXD+2nrC5aWT8Mw7/HWvEyZkgtXALhAJlKGPyh9Jczya77Zbwpd8c1HPCl8gzGT9JtEQE/KMQ18Kx11zen5jpyXwup1MSdUr7n8g4Hwt4Pl8awTnASvPpDKqtwUOwMszsKtN3lGc4Up9KslC1OJRL+fcYglfbwG3UvaIpfjN/tbNmyZbsf7YVojL80hPB5kt4q6S8URXEo6WFJP22fee/Zax/QYIeRBUhbfakzbGzUACdPlptMJqpUTg+S8HDrycmJer2eWq2WJEUw22g0SiwvyWHT6bQUZvUwOsAGBhuZAgwr7JekKIkIIUQQx8EgrVYrggNKzAH0act8Po+gkOuhQ5YUZRkw14Abxsw3edrKtQiJM97OyI5Goxh2d6AhKSanASwllZhNdzpSq1Qq6na7EbCv1+uSNhrA5I6MJ6dJ2xC5a15dNgPAdM0o1/AEMsrtSVt23xOvGG8/VdDLcjnD6lpidO04GKwd2GnW8WQyiTIS+pb2xTXLjNFsNivVGsZpApyTnMea8FJljJ1Xs2DdEGVIGV6X5rjzClAGdNMegCQOFYDYowkpKAYs+/h7xCB1vADKzhKnbHIqwfG1zDpKf3+ejl3mOh6hOg/430N2x363s2XLlu1+tGfUGD+NfbOkD5b0EZKekPS3n+sFQgiPhRDeGkJ4q6TIlvZ6vdOGnVWkGAwG8TADNlRPTlosFppMJpGBhO1zWQEJfM4uAlQBGvybezjzxL8BxSTMAQL8KF5PDgIgwLDBEIYQSuy0SwxghZ0VpFzabDaLAAXJSJzIM3Dh7DqJiXzPS8ehg+52u/HUvaOjIw2Hw9juNJnLNbDO5PtYAM4BM1iz2YwOAuCW0nOw7oA2TmRDj+yHcTCvx8fHkVmn/4Awry/NugJoo8/ebDaxlnJRFCXZh7R1JqRtmS6fD2c7JUWHBNAOUEvHZLFYaDQaRS0zgC+tpcw1+Jsa0ABy7kfpQf8+Eh2qOdAfJES0DcDu7LZLM/i86299bACJjH36HuMCyMbh45rcz6ULaZWK86pKOLPtTK9HCXxuUokH1362gNYZbZeMYE8Hqi+h3dHf7RMd3+HmZcuWLdvF2/NijIuieJJ/hxC+VdL3n/33cUmP2Edfdvbaedd4k6Q3SVKtVitarZZ6vZ5qtZqGw6FqtdPjnhuNRgRNgE9AFlIEKkHAnrF5UQHh6tWr8aAL2GKqDwAK2Lgd4Lp2t1arRYBNYh4bKyAWsO66W1hKAAEgj2SmzWYTwQ2giUQydKfz+TyWdpO2J/XB3gE8PAkLsIQsxAGbOx2VSiUmGyItoO0epvZ+AkA9/O36XY7NBli22231er3IfOLYIN/AISmKItaa5rqARBjz2WxWAksAOeYV4IohK2DMj46OomyF9jI3sLCM+3q9juA8TcBzEMnrngzorCLOAwmNfmKgy06cHWfs6A/1ghkPwL5/lrlD1gFg4/nxcXEHxxlY+u9OKM8I682PQ3dQzNz6a8WZhh0w7AlszgTzXcYMZ8SZ7Kf5HSl9F3suLK5/1kFvCqyfzjyacJntTv9u98P+PeMRZMuWLduztecFjEMIDxVF8cTZfz9LEpnP3yfpn/3/2zubGMmuq47/Tlf1V1V3VXU8HxolEdjIEsoCGStCQYqiCMRHvDFIWZgNWUQCQZBgwcIoEoRFFiCRBRIiAiVSQCgfBBDZIBHAEitsAtiOncjJAJaINcS0Z6prqqZ63D1zWbz3v3Pq0eVpxpN+dUfnJ5W66lX1q3/dV3Xf/5177rlm9imqSRyPAs+dZp/9fp/BYMB0OsWsWtii3+/naJ5OxsrZ7ff7zOdzJpMJt2/fzqXNNCwOlXm4ePEig8FgIZcWyEPpihrKSMqMyeRev349G8nd3d08cU25vTJRfva9jIr2I4Mqcz2fzxdyMxV9vHHjBtPplMPDw/w+SveQ2VIbqCoEkCORimgpeqg28yal06mWaNZkwPl8znQ6ZT6fL5THk3lV9NlHj5WXKzMuQ6d29BHzXq9Hv99fmKzoI7u68Egp0ev1silWGyrSeXBwwHQ6XWhrP1nMm/nmMVCqgVIYZN404uCX4tb/6oLFT5j0kWIflW5G2DVp0a+K6C9UlPJw0qQ5+L/1gf2kPl2wadTDl63rdrsLvxVvZH0Kks+nbppif5Hlfu8Ln89fDImT8pSb1SN8NFcR9Cb+Is4bZB+1ln5pahrZ5v2THjff0+/rbqbaG2ZpLMEYfy/67SAIggeNuxpjM/s88EHgnJl9B/gt4INm9hiQgFeBXwRIKb1sZl8CvgEcAx9Lp5jZ3OlUyz73ej0mk0meXKeTtB+W7ff7eYLd1atXmUwm2VCNRqMc/V1fX+fcuXNcuHCB9fV1Dg8P80lWw/Cbm5t5yH4+n+dcVJ10U0rM5/M85K+UCFUXkJn1ucWz2Yz19XUGg0E2PvoMvV6Pzc3NbGhlNOp2zuZC5tw/r9co+uqrMfj3UPUK32Y+d9RXMjg+Pubg4ICjoyO2t7cZjUY5z1nGWKZSUcfbt+9UbfDHRrmtMvc3btyg260WAVG03ufGqkSeTJhSVBTx1GsVZR2Px0yn03yMfA6p0jI2NjaYzWb5/Xu9HkA2xTKsMmWKxGrFN7WlDJ5yqhXN9pPxFLmVadV3Qzm0flKcDLWG+xUt9SkAvhSZzDcsVlCRcdUFi/bpc4L9ctiK1nrT5lNA/KQ2P9qhCyu1h7T5HHIZaj/h0htKGWuZzWber8/Z9ebW4/OndYy8ofbVJfxn0s3nAy+jafD99+A06AJHv+lV4Sz67SAIggeR01Sl+LkTNn/mLV7/SeCT/x8RyplVdNQPW+tEePPmzYVI8ng8Zjwe50jf+fPn2drayidvpVDIiGqBDuVqHh8f0+/32d3dzWYEyBFnRUQ1tC0jKmMh0+QrM+h9FCn0E3+k3Vc1OD6uFpRoVjLQ8td+39qP8oLhTmRR+/KltryJUITWm2wZQ73HcDhkOBzmY7C2VtUululSZNmnDyi9RTWONTFPFSZ2dnZyiTFFmpUGolxsRemVA678ahkvTVC8fv16bneVC5NGRb/X1tZyuoXaQ1FhrSboo59KT/DpIv47p/fX8dNrVTdaJrKZsiDzCneqSPg0Al/xRN8hXxrNpwX4qL90NKO3iuorWqyLI28ofUUF7a+Z/wxk4672V4Tam3ifF6w2g+VLJHuT6bWclAbRNNm62FAaia/77A219qn0jObzyyLBvub2sujzMry5XzXOot8OgiB4EFmJle90Qrt27drChDdFA3WS99Uk9vf3GY/HdDodzp8/z2g0ynm6GxsbjEYjhsMht27dWpjkpuHnbrebl4G+evVqNsveKCj6p//VydMvZ6zosZkt5Awrt1U1e/2wu2oEz2Yzjo6OcrR0Pp/n6PfGxkY2if5krfrHSkHwkT1tl9n15ljRRF8dQSXXtra2uHTpEkBeREVRckURp9Nprugho3d8fLxQ7UEXBlClMKj6hiKqMug+F9fXala1DKFJh8q5Xl9fz9FnXRDt7Ozk/OXxeMwbb7zBbDbLNY51/GRI/WiAbjJH+h9FO32lCJkmn5rhj40uDLwR8xPRmjm8MtpeG9zJ01WE1v8OmqkWPufbl4STfj32lVI0quANqL9Ya0aLvQlXJL1pOpvR5yY+Uuxzhn00uTmZTcfOR311fHyahjfG/oLGV1PxFz5ek89xbpr70+D/PwiCIHgwWAljnFJiPB7nfE+dgFWxQEPJijhOJhNmsxmdToe9vT329vbY2dlhOp0C1WSvwWAAVKWxlJ6h6LAmeW1vb3Pr1q28ap4qP2xtbeVJb3ofH23t9Xq5tJmiljJJ29vbOa9WaRrKm1bkcjweM5/P8+sfeuihbGgGgwG7u7sLE+f8pENF/WQ4Nayu4W5FMf3wvDdhfoKZqlUoBUXl4FTho5nTqfJuMiubm5u5PJlWn5MJ1kQ4vyiErxiiFAmZdbU1kC8gZrNZ/hy9Xi9HsJVSoVxppUxMp9P8HVBEWuZbxsdXDtF7yRTDnQilz7H1aSlqF7Wz2kXbvAFXfnRz8po3lr78XNPAK8Kt5xXBFv7CyBtIH3n2qTT6/NqXTLJMuD6j2sFHwqXFG2M99ubaG1zf5n4EpanZm1Lp8qZZv329t7/Y8cfUt7s3q00Dr++1n8R5t9ziZiTZG+owxkEQBA8OK2OMFV1ThGx3dzcbHkVhB4NBNrLKix0Oh+zt7S3M1h8Oh6ytrXHt2jUmkwn7+/tcuHAhn7w7nare7NraWl4cZDKZMJ1O81Dy4eEhV65cyUO4a2tr2TSrDNrR0RH9fj9PelKupips9Pv9fAJXPrJSAjqdDqPRKC8drcVBhsMhW1tb2UwDefheJ31FVWV8fFTQn6hlMt58880cNVfE2UcTVcZsMpnkJZ5VNs9XM/CTubSan0+h8LmwKgGnsmKqYazqEko7UDk5X19XEXWltGjVQhk4VcDQBZBGGw4ODhYmxqmtdNHiKz34XGs/cU0pF748n8ywjoevEqELD0VWfS3ek8q9NSuHCB2zZj6vRhpklL1xlBFslpPT8z6CqtcL/53xUWo/UdM/p3xf7cundTRLxsk0yoTqc+m77NvnJFPpUylkXNV2Psru9UqzLnybucLNx950380U+//373UvUeYgCIJgtVkJYwwsnLx3d3e5ePEiOzs7OWKoyXn7+/s5FUImVNEkDXN3u91cEmt/f59ut5sn7cnoKhqtaOXBwQHz+Zxut5vr+c5mM4bD4YIOn6esKg4pJabTaTYQvvauX8VLJ3ylWmjyn1/4YzAY5EirzKbMgUyBDJMm88n8Avk1Mh8ppRx9VvtqX4o0Hx4e5pztmzdv5v3KBHvT682QTKyvJ6zPrgsMlV9T6slkMlkwN/p/pTToeOgzDgaDbHK9IdNkO5ltGX+fKyzdy4b94U40U3Wm/QQ9LSLjjaYMoK8RrAsHP6ogndLYHHKXHr+Yh6L5Ol7S69/TRzr98dBn8ZHwZRPJvCn0kXGfa+wjqdq3R2khvubySSkL2q9/3pv306CREH+x4aPOat+T9nuSoVWb6rfQbJ+TWGawte00+wiCIAhWH1uFDt3M/geYAftta7lHzlGudihbf8naIfS3yf3U/n0ppfP3aV9FYGbXgVfa1vE2iO9ue5Ssv2TtULb+M+mzV8IYA5jZ11JK721bx71QsnYoW3/J2iH0t0nJ2leB0tuvZP0la4ey9ZesHcrWf1ba73VJ6CAIgiAIgiB4oAhjHARBEARBEASsljH+o7YFvA1K1g5l6y9ZO4T+NilZ+ypQevuVrL9k7VC2/pK1Q9n6z0T7yuQYB0EQBEEQBEGbrFLEOAiCIAiCIAhao3VjbGY/bWavmNllM3u6bT2nwcxeNbOvm9nzZva1ets7zOyrZvbt+u9e2zqFmX3WzF43s5fcthP1WsXv18fjRTN7vD3lS7V/wsxeq9v/eTN7wj33G7X2V8zsp9pRnbW828yeMbNvmNnLZvar9fZS2n6Z/lLaf8vMnjOzF2r9v11vf9jMnq11ftHMNurtm/Xjy/Xz39+m/lWmtH47+uyzo+Q+u9ZTbL8dffZ96rNV4L6NG9AB/h14BNgAXgDe06amU+p+FTjX2Pa7wNP1/aeB32lbp9P2AeBx4KW76QWeAP4GMOB9wLMrqP0TwK+f8Nr31N+hTeDh+rvVaVH7JeDx+v4u8K1aYyltv0x/Ke1vwE59fx14tm7XLwFP1ds/DfxSff+XgU/X958Cvthm+6/qrcR+O/rs1rUX0WfUmortt6PPvj99dtsR4x8BLqeU/iOl9CbwBeDJljXdK08Cn6vvfw74mfakLJJS+kfgamPzMr1PAn+SKv4JGJnZpTMRegJLtC/jSeALKaWbKaX/BC5TfcdaIaV0JaX0r/X968A3gXdSTtsv07+MVWv/lFKa1g/X61sCfgz4cr292f46Ll8Gftws1ns+gQel344++3tAyX02lN1vR599f/rsto3xO4H/co+/w1sfxFUhAX9rZv9iZr9Qb7uYUrpS3/9v4GI70k7NMr2lHJNfqYetPuuGQFdWez3E88NUV8DFtX1DPxTS/mbWMbPngdeBr1JFRMYpJa2F7TVm/fXzB8BDZyq4DFbuOJ+C6LPbp4g+w1Nyvx199r3TtjEulfenlB4HPgR8zMw+4J9MVVy/mHIfpekF/hD4AeAx4Arwe62quQtmtgP8BfBrKaWJf66Etj9BfzHtn1K6lVJ6DHgXVSTkB9tVFLRE9NntUkyfIUrut6PPfnu0bYxfA97tHr+r3rbSpJReq/++DvwV1cH7roZP6r+vt6fwVCzTu/LHJKX03frHcxv4Y+4M/aycdjNbp+qg/iyl9Jf15mLa/iT9JbW/SCmNgWeAH6Ua6uzWT3mNWX/9/BB442yVFsHKHudlRJ/dLqX1GSX329Fnv/0+u21j/M/Ao/WMww2q5OmvtKzpLTGzvpnt6j7wk8BLVLo/Ur/sI8Bft6Pw1CzT+xXg5+uZtu8DDtzw0UrQyN/6War2h0r7U/VM1YeBR4HnzlqfqHOdPgN8M6X0KfdUEW2/TH9B7X/ezEb1/W3gJ6hy7p4BPly/rNn+Oi4fBv6hjgwFixTVb0ef3T6l9BlQdr8dffZ96rObs/HO+kY1o/NbVHkkH29bzyn0PkI1i/MF4GVppspr+Xvg28DfAe9oW6vT/Hmq4ZMjqvycjy7TSzUr9A/q4/F14L0rqP1Pa20v1j+MS+71H6+1vwJ8qGXt76cabnsReL6+PVFQ2y/TX0r7/xDwb7XOl4DfrLc/QtX5Xwb+HNist2/Vjy/Xzz/Spv5VvpXUb0efvRLai+gzaj3F9tvRZ9+fPjtWvguCIAiCIAgC2k+lCIIgCIIgCIKVIIxxEARBEARBEBDGOAiCIAiCIAiAMMZBEARBEARBAIQxDoIgCIIgCAIgjHEQBEEQBEEQAGGMgyAIgiAIggAIYxwEQRAEQRAEAPwv7mW0TSjLBDEAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "tensor(0.) tensor(2.)\n" + ] + } + ], + "source": [ + "imgnum = 2\n", + "check_data = first(val_loader[0])\n", + "image, label = (check_data[\"image\"][imgnum][0], check_data[\"label\"][imgnum][0])\n", + "print(check_data[\"image\"].shape)\n", + "print(image.shape)\n", + "print(f\"image shape: {image.shape}, label shape: {label.shape}\")\n", + "plt.figure(\"check\", (12, 6))\n", + "plt.subplot(1, 2, 1)\n", + "plt.title(\"image\")\n", + "plt.imshow(image[:, :, 2], cmap=\"gray\")\n", + "plt.subplot(1, 2, 2)\n", + "plt.title(\"label\")\n", + "plt.imshow(label[:, :, 2])\n", + "plt.show()\n", + "print(label.min(), label.max())" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "5197d7dd", + "metadata": {}, + "outputs": [], + "source": [ + "device = torch.device(\"cuda:\"+str(device_num))\n", + "\n", + "max_epochs = 500\n", + "net_channels=(32, 64, 128)\n", + "net_strides=(2, 2)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "98bd21de", + "metadata": {}, + "outputs": [], + "source": [ + "from monai.networks.nets import UNETR\n", + "# model = UNETR(1, \n", + "# num_classes, \n", + "# image.shape, \n", + "# feature_size=16, \n", + "# hidden_size=768, \n", + "# mlp_dim=3072, \n", + "# num_heads=12, \n", + "# pos_embed='conv', \n", + "# norm_name='instance', \n", + "# conv_block=True, \n", + "# res_block=True, \n", + "# dropout_rate=0.0, \n", + "# spatial_dims=3).to(device)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "a32f40bc", + "metadata": {}, + "outputs": [], + "source": [ + "# model(check_data['image'].to(device))\n", + "# model\n", + "# check_data['image']\n", + "\n", + "import gc\n", + "gc.collect()\n", + "torch.cuda.empty_cache()\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "2591bee5", + "metadata": {}, + "outputs": [], + "source": [ + "device=1\n", + "def vfold_train(vfold_num, train_loader, val_loader):\n", + "# model = UNet(\n", + "# dimensions=3,\n", + "# in_channels=1,\n", + "# out_channels=num_classes,\n", + "# channels=net_channels,\n", + "# strides=net_strides,\n", + "# num_res_units=2,\n", + "# norm=Norm.BATCH,\n", + "# ).to(device)\n", + " \n", + " model = UNETR(1, \n", + " num_classes, \n", + " image.shape, \n", + " feature_size=16, \n", + " hidden_size=768, \n", + " mlp_dim=3072, \n", + " num_heads=12, \n", + " pos_embed='conv', \n", + " norm_name='instance', \n", + " conv_block=True, \n", + " res_block=True, \n", + " dropout_rate=0.0, \n", + " spatial_dims=3).to(device)\n", + " \n", + " loss_function = DiceLoss(to_onehot_y=True, softmax=True)\n", + " optimizer = torch.optim.Adam(model.parameters(), 1e-4)\n", + " dice_metric = DiceMetric(include_background=False, reduction=\"mean\")\n", + "\n", + " val_interval = 2\n", + " best_metric = -1\n", + " best_metric_epoch = -1\n", + " epoch_loss_values = []\n", + " metric_values = []\n", + "\n", + " post_pred = Compose([EnsureType(), AsDiscrete(argmax=True, to_onehot=True, num_classes=num_classes)])\n", + " post_label = Compose([EnsureType(), AsDiscrete(to_onehot=True, num_classes=num_classes)])\n", + "\n", + " for epoch in range(max_epochs):\n", + " print(\"-\" * 10)\n", + " print(f\"{vfold_num}: epoch {epoch + 1}/{max_epochs}\")\n", + " model.train()\n", + " epoch_loss = 0\n", + " step = 0\n", + " for batch_data in train_loader:\n", + " step += 1\n", + " inputs, labels = (\n", + " batch_data[\"image\"].to(device),\n", + " batch_data[\"label\"].to(device),\n", + " )\n", + " optimizer.zero_grad()\n", + " outputs = model(inputs)\n", + " loss = loss_function(outputs, labels)\n", + " loss.backward()\n", + " optimizer.step()\n", + " epoch_loss += loss.item()\n", + " print(f\"{step}/{len(train_ds) // train_loader.batch_size}, \"\n", + " f\"train_loss: {loss.item():.4f}\")\n", + " epoch_loss /= step\n", + " epoch_loss_values.append(epoch_loss)\n", + " print(f\"{vfold_num} epoch {epoch + 1} average loss: {epoch_loss:.4f}\")\n", + "\n", + " if (epoch + 1) % val_interval == 0:\n", + " model.eval()\n", + " with torch.no_grad():\n", + " for val_data in val_loader:\n", + " val_inputs, val_labels = (\n", + " val_data[\"image\"].to(device),\n", + " val_data[\"label\"].to(device),\n", + " )\n", + " roi_size = (size_x, size_y, num_slices)\n", + " sw_batch_size = batch_size_vl\n", + " val_outputs = sliding_window_inference(\n", + " val_inputs, roi_size, sw_batch_size, model)\n", + " val_outputs = [post_pred(i) for i in decollate_batch(val_outputs)]\n", + " val_labels = [post_label(i) for i in decollate_batch(val_labels)]\n", + " # compute metric for current iteration\n", + " dice_metric(y_pred=val_outputs, y=val_labels)\n", + "\n", + " # aggregate the final mean dice result\n", + " metric = dice_metric.aggregate().item()\n", + " # reset the status for next validation round\n", + " dice_metric.reset()\n", + "\n", + " metric_values.append(metric)\n", + " if metric > best_metric:\n", + " best_metric = metric\n", + " best_metric_epoch = epoch + 1\n", + " torch.save(model.state_dict(), model_filename_base+'_'+str(vfold_num)+'.pth')\n", + " print(\"saved new best metric model\")\n", + " print(\n", + " f\"current epoch: {epoch + 1} current mean dice: {metric:.4f}\"\n", + " f\"\\nbest mean dice: {best_metric:.4f} \"\n", + " f\"at epoch: {best_metric_epoch}\"\n", + " )\n", + "\n", + " np.save(model_filename_base+\"_loss_\"+str(vfold_num)+\".npy\", epoch_loss_values)\n", + " np.save(model_filename_base+\"_val_dice_\"+str(vfold_num)+\".npy\", metric_values)\n", + "\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "5aa4ecfe", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "----------\n", + "0: epoch 1/500\n", + "1/0, train_loss: 0.7591\n", + "0 epoch 1 average loss: 0.7591\n", + "----------\n", + "0: epoch 2/500\n", + "1/0, train_loss: 0.7524\n", + "0 epoch 2 average loss: 0.7524\n", + "saved new best metric model\n", + "current epoch: 2 current mean dice: 0.3267\n", + "best mean dice: 0.3267 at epoch: 2\n", + "----------\n", + "0: epoch 3/500\n", + "1/0, train_loss: 0.7471\n", + "0 epoch 3 average loss: 0.7471\n", + "----------\n", + "0: epoch 4/500\n", + "1/0, train_loss: 0.7411\n", + "0 epoch 4 average loss: 0.7411\n", + "saved new best metric model\n", + "current epoch: 4 current mean dice: 0.3427\n", + "best mean dice: 0.3427 at epoch: 4\n", + "----------\n", + "0: epoch 5/500\n", + "1/0, train_loss: 0.7369\n", + "0 epoch 5 average loss: 0.7369\n", + "----------\n", + "0: epoch 6/500\n", + "1/0, train_loss: 0.7330\n", + "0 epoch 6 average loss: 0.7330\n", + "saved new best metric model\n", + "current epoch: 6 current mean dice: 0.3518\n", + "best mean dice: 0.3518 at epoch: 6\n", + "----------\n", + "0: epoch 7/500\n", + "1/0, train_loss: 0.7293\n", + "0 epoch 7 average loss: 0.7293\n", + "----------\n", + "0: epoch 8/500\n", + "1/0, train_loss: 0.7266\n", + "0 epoch 8 average loss: 0.7266\n", + "saved new best metric model\n", + "current epoch: 8 current mean dice: 0.3558\n", + "best mean dice: 0.3558 at epoch: 8\n", + "----------\n", + "0: epoch 9/500\n", + "1/0, train_loss: 0.7241\n", + "0 epoch 9 average loss: 0.7241\n", + "----------\n", + "0: epoch 10/500\n", + "1/0, train_loss: 0.7231\n", + "0 epoch 10 average loss: 0.7231\n", + "saved new best metric model\n", + "current epoch: 10 current mean dice: 0.3572\n", + "best mean dice: 0.3572 at epoch: 10\n", + "----------\n", + "0: epoch 11/500\n", + "1/0, train_loss: 0.7221\n", + "0 epoch 11 average loss: 0.7221\n", + "----------\n", + "0: epoch 12/500\n", + "1/0, train_loss: 0.7180\n", + "0 epoch 12 average loss: 0.7180\n", + "current epoch: 12 current mean dice: 0.3572\n", + "best mean dice: 0.3572 at epoch: 10\n", + "----------\n", + "0: epoch 13/500\n", + "1/0, train_loss: 0.7166\n", + "0 epoch 13 average loss: 0.7166\n", + "----------\n", + "0: epoch 14/500\n", + "1/0, train_loss: 0.7144\n", + "0 epoch 14 average loss: 0.7144\n", + "current epoch: 14 current mean dice: 0.3568\n", + "best mean dice: 0.3572 at epoch: 10\n", + "----------\n", + "0: epoch 15/500\n", + "1/0, train_loss: 0.7133\n", + "0 epoch 15 average loss: 0.7133\n", + "----------\n", + "0: epoch 16/500\n", + "1/0, train_loss: 0.7137\n", + "0 epoch 16 average loss: 0.7137\n", + "current epoch: 16 current mean dice: 0.3558\n", + "best mean dice: 0.3572 at epoch: 10\n", + "----------\n", + "0: epoch 17/500\n", + "1/0, train_loss: 0.7101\n", + "0 epoch 17 average loss: 0.7101\n", + "----------\n", + "0: epoch 18/500\n", + "1/0, train_loss: 0.7088\n", + "0 epoch 18 average loss: 0.7088\n", + "current epoch: 18 current mean dice: 0.3549\n", + "best mean dice: 0.3572 at epoch: 10\n", + "----------\n", + "0: epoch 19/500\n", + "1/0, train_loss: 0.7065\n", + "0 epoch 19 average loss: 0.7065\n", + "----------\n", + "0: epoch 20/500\n", + "1/0, train_loss: 0.7055\n", + "0 epoch 20 average loss: 0.7055\n", + "current epoch: 20 current mean dice: 0.3537\n", + "best mean dice: 0.3572 at epoch: 10\n", + "----------\n", + "0: epoch 21/500\n", + "1/0, train_loss: 0.7031\n", + "0 epoch 21 average loss: 0.7031\n", + "----------\n", + "0: epoch 22/500\n", + "1/0, train_loss: 0.7021\n", + "0 epoch 22 average loss: 0.7021\n", + "current epoch: 22 current mean dice: 0.3529\n", + "best mean dice: 0.3572 at epoch: 10\n", + "----------\n", + "0: epoch 23/500\n", + "1/0, train_loss: 0.7008\n", + "0 epoch 23 average loss: 0.7008\n", + "----------\n", + "0: epoch 24/500\n", + "1/0, train_loss: 0.7002\n", + "0 epoch 24 average loss: 0.7002\n", + "current epoch: 24 current mean dice: 0.3524\n", + "best mean dice: 0.3572 at epoch: 10\n", + "----------\n", + "0: epoch 25/500\n", + "1/0, train_loss: 0.6977\n", + "0 epoch 25 average loss: 0.6977\n", + "----------\n", + "0: epoch 26/500\n", + "1/0, train_loss: 0.6965\n", + "0 epoch 26 average loss: 0.6965\n", + "current epoch: 26 current mean dice: 0.3526\n", + "best mean dice: 0.3572 at epoch: 10\n", + "----------\n", + "0: epoch 27/500\n", + "1/0, train_loss: 0.6921\n", + "0 epoch 27 average loss: 0.6921\n", + "----------\n", + "0: epoch 28/500\n", + "1/0, train_loss: 0.6899\n", + "0 epoch 28 average loss: 0.6899\n", + "current epoch: 28 current mean dice: 0.3550\n", + "best mean dice: 0.3572 at epoch: 10\n", + "----------\n", + "0: epoch 29/500\n", + "1/0, train_loss: 0.6894\n", + "0 epoch 29 average loss: 0.6894\n", + "----------\n", + "0: epoch 30/500\n", + "1/0, train_loss: 0.6866\n", + "0 epoch 30 average loss: 0.6866\n", + "current epoch: 30 current mean dice: 0.3509\n", + "best mean dice: 0.3572 at epoch: 10\n", + "----------\n", + "0: epoch 31/500\n", + "1/0, train_loss: 0.6823\n", + "0 epoch 31 average loss: 0.6823\n", + "----------\n", + "0: epoch 32/500\n", + "1/0, train_loss: 0.6840\n", + "0 epoch 32 average loss: 0.6840\n", + "saved new best metric model\n", + "current epoch: 32 current mean dice: 0.3595\n", + "best mean dice: 0.3595 at epoch: 32\n", + "----------\n", + "0: epoch 33/500\n", + "1/0, train_loss: 0.6775\n", + "0 epoch 33 average loss: 0.6775\n", + "----------\n", + "0: epoch 34/500\n", + "1/0, train_loss: 0.6772\n", + "0 epoch 34 average loss: 0.6772\n", + "saved new best metric model\n", + "current epoch: 34 current mean dice: 0.3601\n", + "best mean dice: 0.3601 at epoch: 34\n", + "----------\n", + "0: epoch 35/500\n", + "1/0, train_loss: 0.6727\n", + "0 epoch 35 average loss: 0.6727\n", + "----------\n", + "0: epoch 36/500\n", + "1/0, train_loss: 0.6690\n", + "0 epoch 36 average loss: 0.6690\n", + "saved new best metric model\n", + "current epoch: 36 current mean dice: 0.3675\n", + "best mean dice: 0.3675 at epoch: 36\n", + "----------\n", + "0: epoch 37/500\n", + "1/0, train_loss: 0.6663\n", + "0 epoch 37 average loss: 0.6663\n", + "----------\n", + "0: epoch 38/500\n", + "1/0, train_loss: 0.6637\n", + "0 epoch 38 average loss: 0.6637\n", + "saved new best metric model\n", + "current epoch: 38 current mean dice: 0.3778\n", + "best mean dice: 0.3778 at epoch: 38\n", + "----------\n", + "0: epoch 39/500\n", + "1/0, train_loss: 0.6607\n", + "0 epoch 39 average loss: 0.6607\n", + "----------\n", + "0: epoch 40/500\n", + "1/0, train_loss: 0.6563\n", + "0 epoch 40 average loss: 0.6563\n", + "saved new best metric model\n", + "current epoch: 40 current mean dice: 0.3816\n", + "best mean dice: 0.3816 at epoch: 40\n", + "----------\n", + "0: epoch 41/500\n", + "1/0, train_loss: 0.6529\n", + "0 epoch 41 average loss: 0.6529\n", + "----------\n", + "0: epoch 42/500\n", + "1/0, train_loss: 0.6501\n", + "0 epoch 42 average loss: 0.6501\n", + "saved new best metric model\n", + "current epoch: 42 current mean dice: 0.3847\n", + "best mean dice: 0.3847 at epoch: 42\n", + "----------\n", + "0: epoch 43/500\n", + "1/0, train_loss: 0.6467\n", + "0 epoch 43 average loss: 0.6467\n", + "----------\n", + "0: epoch 44/500\n", + "1/0, train_loss: 0.6422\n", + "0 epoch 44 average loss: 0.6422\n", + "saved new best metric model\n", + "current epoch: 44 current mean dice: 0.3937\n", + "best mean dice: 0.3937 at epoch: 44\n", + "----------\n", + "0: epoch 45/500\n", + "1/0, train_loss: 0.6409\n", + "0 epoch 45 average loss: 0.6409\n", + "----------\n", + "0: epoch 46/500\n", + "1/0, train_loss: 0.6397\n", + "0 epoch 46 average loss: 0.6397\n", + "saved new best metric model\n", + "current epoch: 46 current mean dice: 0.4045\n", + "best mean dice: 0.4045 at epoch: 46\n", + "----------\n", + "0: epoch 47/500\n", + "1/0, train_loss: 0.6371\n", + "0 epoch 47 average loss: 0.6371\n", + "----------\n", + "0: epoch 48/500\n", + "1/0, train_loss: 0.6344\n", + "0 epoch 48 average loss: 0.6344\n", + "saved new best metric model\n", + "current epoch: 48 current mean dice: 0.4055\n", + "best mean dice: 0.4055 at epoch: 48\n", + "----------\n", + "0: epoch 49/500\n", + "1/0, train_loss: 0.6302\n", + "0 epoch 49 average loss: 0.6302\n", + "----------\n", + "0: epoch 50/500\n", + "1/0, train_loss: 0.6323\n", + "0 epoch 50 average loss: 0.6323\n", + "saved new best metric model\n", + "current epoch: 50 current mean dice: 0.4119\n", + "best mean dice: 0.4119 at epoch: 50\n", + "----------\n", + "0: epoch 51/500\n", + "1/0, train_loss: 0.6287\n", + "0 epoch 51 average loss: 0.6287\n", + "----------\n", + "0: epoch 52/500\n", + "1/0, train_loss: 0.6240\n", + "0 epoch 52 average loss: 0.6240\n", + "current epoch: 52 current mean dice: 0.3997\n", + "best mean dice: 0.4119 at epoch: 50\n", + "----------\n", + "0: epoch 53/500\n", + "1/0, train_loss: 0.6238\n", + "0 epoch 53 average loss: 0.6238\n", + "----------\n", + "0: epoch 54/500\n", + "1/0, train_loss: 0.6207\n", + "0 epoch 54 average loss: 0.6207\n", + "saved new best metric model\n", + "current epoch: 54 current mean dice: 0.4199\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 55/500\n", + "1/0, train_loss: 0.6219\n", + "0 epoch 55 average loss: 0.6219\n", + "----------\n", + "0: epoch 56/500\n", + "1/0, train_loss: 0.6166\n", + "0 epoch 56 average loss: 0.6166\n", + "current epoch: 56 current mean dice: 0.4129\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 57/500\n", + "1/0, train_loss: 0.6166\n", + "0 epoch 57 average loss: 0.6166\n", + "----------\n", + "0: epoch 58/500\n", + "1/0, train_loss: 0.6170\n", + "0 epoch 58 average loss: 0.6170\n", + "current epoch: 58 current mean dice: 0.4114\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 59/500\n", + "1/0, train_loss: 0.6165\n", + "0 epoch 59 average loss: 0.6165\n", + "----------\n", + "0: epoch 60/500\n", + "1/0, train_loss: 0.6116\n", + "0 epoch 60 average loss: 0.6116\n", + "current epoch: 60 current mean dice: 0.4181\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 61/500\n", + "1/0, train_loss: 0.6118\n", + "0 epoch 61 average loss: 0.6118\n", + "----------\n", + "0: epoch 62/500\n", + "1/0, train_loss: 0.6110\n", + "0 epoch 62 average loss: 0.6110\n", + "current epoch: 62 current mean dice: 0.4113\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 63/500\n", + "1/0, train_loss: 0.6088\n", + "0 epoch 63 average loss: 0.6088\n", + "----------\n", + "0: epoch 64/500\n", + "1/0, train_loss: 0.6050\n", + "0 epoch 64 average loss: 0.6050\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "current epoch: 64 current mean dice: 0.4006\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 65/500\n", + "1/0, train_loss: 0.6032\n", + "0 epoch 65 average loss: 0.6032\n", + "----------\n", + "0: epoch 66/500\n", + "1/0, train_loss: 0.6034\n", + "0 epoch 66 average loss: 0.6034\n", + "current epoch: 66 current mean dice: 0.4020\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 67/500\n", + "1/0, train_loss: 0.5996\n", + "0 epoch 67 average loss: 0.5996\n", + "----------\n", + "0: epoch 68/500\n", + "1/0, train_loss: 0.6003\n", + "0 epoch 68 average loss: 0.6003\n", + "current epoch: 68 current mean dice: 0.4133\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 69/500\n", + "1/0, train_loss: 0.5968\n", + "0 epoch 69 average loss: 0.5968\n", + "----------\n", + "0: epoch 70/500\n", + "1/0, train_loss: 0.5970\n", + "0 epoch 70 average loss: 0.5970\n", + "current epoch: 70 current mean dice: 0.3998\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 71/500\n", + "1/0, train_loss: 0.5941\n", + "0 epoch 71 average loss: 0.5941\n", + "----------\n", + "0: epoch 72/500\n", + "1/0, train_loss: 0.5945\n", + "0 epoch 72 average loss: 0.5945\n", + "current epoch: 72 current mean dice: 0.3910\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 73/500\n", + "1/0, train_loss: 0.5913\n", + "0 epoch 73 average loss: 0.5913\n", + "----------\n", + "0: epoch 74/500\n", + "1/0, train_loss: 0.5916\n", + "0 epoch 74 average loss: 0.5916\n", + "current epoch: 74 current mean dice: 0.3831\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 75/500\n", + "1/0, train_loss: 0.5938\n", + "0 epoch 75 average loss: 0.5938\n", + "----------\n", + "0: epoch 76/500\n", + "1/0, train_loss: 0.5889\n", + "0 epoch 76 average loss: 0.5889\n", + "current epoch: 76 current mean dice: 0.3841\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 77/500\n", + "1/0, train_loss: 0.5904\n", + "0 epoch 77 average loss: 0.5904\n", + "----------\n", + "0: epoch 78/500\n", + "1/0, train_loss: 0.5856\n", + "0 epoch 78 average loss: 0.5856\n", + "current epoch: 78 current mean dice: 0.3860\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 79/500\n", + "1/0, train_loss: 0.5848\n", + "0 epoch 79 average loss: 0.5848\n", + "----------\n", + "0: epoch 80/500\n", + "1/0, train_loss: 0.5817\n", + "0 epoch 80 average loss: 0.5817\n", + "current epoch: 80 current mean dice: 0.4101\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 81/500\n", + "1/0, train_loss: 0.5841\n", + "0 epoch 81 average loss: 0.5841\n", + "----------\n", + "0: epoch 82/500\n", + "1/0, train_loss: 0.5803\n", + "0 epoch 82 average loss: 0.5803\n", + "current epoch: 82 current mean dice: 0.3620\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 83/500\n", + "1/0, train_loss: 0.5776\n", + "0 epoch 83 average loss: 0.5776\n", + "----------\n", + "0: epoch 84/500\n", + "1/0, train_loss: 0.5796\n", + "0 epoch 84 average loss: 0.5796\n", + "current epoch: 84 current mean dice: 0.3821\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 85/500\n", + "1/0, train_loss: 0.5780\n", + "0 epoch 85 average loss: 0.5780\n", + "----------\n", + "0: epoch 86/500\n", + "1/0, train_loss: 0.5718\n", + "0 epoch 86 average loss: 0.5718\n", + "current epoch: 86 current mean dice: 0.3692\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 87/500\n", + "1/0, train_loss: 0.5782\n", + "0 epoch 87 average loss: 0.5782\n", + "----------\n", + "0: epoch 88/500\n", + "1/0, train_loss: 0.5735\n", + "0 epoch 88 average loss: 0.5735\n", + "current epoch: 88 current mean dice: 0.3612\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 89/500\n", + "1/0, train_loss: 0.5722\n", + "0 epoch 89 average loss: 0.5722\n", + "----------\n", + "0: epoch 90/500\n", + "1/0, train_loss: 0.5710\n", + "0 epoch 90 average loss: 0.5710\n", + "current epoch: 90 current mean dice: 0.3747\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 91/500\n", + "1/0, train_loss: 0.5724\n", + "0 epoch 91 average loss: 0.5724\n", + "----------\n", + "0: epoch 92/500\n", + "1/0, train_loss: 0.5678\n", + "0 epoch 92 average loss: 0.5678\n", + "current epoch: 92 current mean dice: 0.3748\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 93/500\n", + "1/0, train_loss: 0.5658\n", + "0 epoch 93 average loss: 0.5658\n", + "----------\n", + "0: epoch 94/500\n", + "1/0, train_loss: 0.5631\n", + "0 epoch 94 average loss: 0.5631\n", + "current epoch: 94 current mean dice: 0.3769\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 95/500\n", + "1/0, train_loss: 0.5636\n", + "0 epoch 95 average loss: 0.5636\n", + "----------\n", + "0: epoch 96/500\n", + "1/0, train_loss: 0.5620\n", + "0 epoch 96 average loss: 0.5620\n", + "current epoch: 96 current mean dice: 0.3913\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 97/500\n", + "1/0, train_loss: 0.5688\n", + "0 epoch 97 average loss: 0.5688\n", + "----------\n", + "0: epoch 98/500\n", + "1/0, train_loss: 0.5657\n", + "0 epoch 98 average loss: 0.5657\n", + "current epoch: 98 current mean dice: 0.2983\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 99/500\n", + "1/0, train_loss: 0.5627\n", + "0 epoch 99 average loss: 0.5627\n", + "----------\n", + "0: epoch 100/500\n", + "1/0, train_loss: 0.5630\n", + "0 epoch 100 average loss: 0.5630\n", + "current epoch: 100 current mean dice: 0.3099\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 101/500\n", + "1/0, train_loss: 0.5564\n", + "0 epoch 101 average loss: 0.5564\n", + "----------\n", + "0: epoch 102/500\n", + "1/0, train_loss: 0.5568\n", + "0 epoch 102 average loss: 0.5568\n", + "current epoch: 102 current mean dice: 0.3134\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 103/500\n", + "1/0, train_loss: 0.5615\n", + "0 epoch 103 average loss: 0.5615\n", + "----------\n", + "0: epoch 104/500\n", + "1/0, train_loss: 0.5570\n", + "0 epoch 104 average loss: 0.5570\n", + "current epoch: 104 current mean dice: 0.3824\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 105/500\n", + "1/0, train_loss: 0.5554\n", + "0 epoch 105 average loss: 0.5554\n", + "----------\n", + "0: epoch 106/500\n", + "1/0, train_loss: 0.5595\n", + "0 epoch 106 average loss: 0.5595\n", + "current epoch: 106 current mean dice: 0.3672\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 107/500\n", + "1/0, train_loss: 0.5537\n", + "0 epoch 107 average loss: 0.5537\n", + "----------\n", + "0: epoch 108/500\n", + "1/0, train_loss: 0.5581\n", + "0 epoch 108 average loss: 0.5581\n", + "current epoch: 108 current mean dice: 0.3577\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 109/500\n", + "1/0, train_loss: 0.5538\n", + "0 epoch 109 average loss: 0.5538\n", + "----------\n", + "0: epoch 110/500\n", + "1/0, train_loss: 0.5482\n", + "0 epoch 110 average loss: 0.5482\n", + "current epoch: 110 current mean dice: 0.2989\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 111/500\n", + "1/0, train_loss: 0.5555\n", + "0 epoch 111 average loss: 0.5555\n", + "----------\n", + "0: epoch 112/500\n", + "1/0, train_loss: 0.5485\n", + "0 epoch 112 average loss: 0.5485\n", + "current epoch: 112 current mean dice: 0.3159\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 113/500\n", + "1/0, train_loss: 0.5476\n", + "0 epoch 113 average loss: 0.5476\n", + "----------\n", + "0: epoch 114/500\n", + "1/0, train_loss: 0.5454\n", + "0 epoch 114 average loss: 0.5454\n", + "current epoch: 114 current mean dice: 0.2656\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 115/500\n", + "1/0, train_loss: 0.5457\n", + "0 epoch 115 average loss: 0.5457\n", + "----------\n", + "0: epoch 116/500\n", + "1/0, train_loss: 0.5443\n", + "0 epoch 116 average loss: 0.5443\n", + "current epoch: 116 current mean dice: 0.2635\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 117/500\n", + "1/0, train_loss: 0.5444\n", + "0 epoch 117 average loss: 0.5444\n", + "----------\n", + "0: epoch 118/500\n", + "1/0, train_loss: 0.5477\n", + "0 epoch 118 average loss: 0.5477\n", + "current epoch: 118 current mean dice: 0.3123\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 119/500\n", + "1/0, train_loss: 0.5405\n", + "0 epoch 119 average loss: 0.5405\n", + "----------\n", + "0: epoch 120/500\n", + "1/0, train_loss: 0.5363\n", + "0 epoch 120 average loss: 0.5363\n", + "current epoch: 120 current mean dice: 0.2956\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 121/500\n", + "1/0, train_loss: 0.5432\n", + "0 epoch 121 average loss: 0.5432\n", + "----------\n", + "0: epoch 122/500\n", + "1/0, train_loss: 0.5379\n", + "0 epoch 122 average loss: 0.5379\n", + "current epoch: 122 current mean dice: 0.3312\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 123/500\n", + "1/0, train_loss: 0.5374\n", + "0 epoch 123 average loss: 0.5374\n", + "----------\n", + "0: epoch 124/500\n", + "1/0, train_loss: 0.5381\n", + "0 epoch 124 average loss: 0.5381\n", + "current epoch: 124 current mean dice: 0.2869\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 125/500\n", + "1/0, train_loss: 0.5379\n", + "0 epoch 125 average loss: 0.5379\n", + "----------\n", + "0: epoch 126/500\n", + "1/0, train_loss: 0.5369\n", + "0 epoch 126 average loss: 0.5369\n", + "current epoch: 126 current mean dice: 0.2921\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 127/500\n", + "1/0, train_loss: 0.5353\n", + "0 epoch 127 average loss: 0.5353\n", + "----------\n", + "0: epoch 128/500\n", + "1/0, train_loss: 0.5389\n", + "0 epoch 128 average loss: 0.5389\n", + "current epoch: 128 current mean dice: 0.2915\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 129/500\n", + "1/0, train_loss: 0.5351\n", + "0 epoch 129 average loss: 0.5351\n", + "----------\n", + "0: epoch 130/500\n", + "1/0, train_loss: 0.5329\n", + "0 epoch 130 average loss: 0.5329\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "current epoch: 130 current mean dice: 0.2862\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 131/500\n", + "1/0, train_loss: 0.5409\n", + "0 epoch 131 average loss: 0.5409\n", + "----------\n", + "0: epoch 132/500\n", + "1/0, train_loss: 0.5423\n", + "0 epoch 132 average loss: 0.5423\n", + "current epoch: 132 current mean dice: 0.3139\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 133/500\n", + "1/0, train_loss: 0.5362\n", + "0 epoch 133 average loss: 0.5362\n", + "----------\n", + "0: epoch 134/500\n", + "1/0, train_loss: 0.5411\n", + "0 epoch 134 average loss: 0.5411\n", + "current epoch: 134 current mean dice: 0.3242\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 135/500\n", + "1/0, train_loss: 0.5324\n", + "0 epoch 135 average loss: 0.5324\n", + "----------\n", + "0: epoch 136/500\n", + "1/0, train_loss: 0.5386\n", + "0 epoch 136 average loss: 0.5386\n", + "current epoch: 136 current mean dice: 0.3456\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 137/500\n", + "1/0, train_loss: 0.5288\n", + "0 epoch 137 average loss: 0.5288\n", + "----------\n", + "0: epoch 138/500\n", + "1/0, train_loss: 0.5286\n", + "0 epoch 138 average loss: 0.5286\n", + "current epoch: 138 current mean dice: 0.3222\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 139/500\n", + "1/0, train_loss: 0.5264\n", + "0 epoch 139 average loss: 0.5264\n", + "----------\n", + "0: epoch 140/500\n", + "1/0, train_loss: 0.5317\n", + "0 epoch 140 average loss: 0.5317\n", + "current epoch: 140 current mean dice: 0.2781\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 141/500\n", + "1/0, train_loss: 0.5319\n", + "0 epoch 141 average loss: 0.5319\n", + "----------\n", + "0: epoch 142/500\n", + "1/0, train_loss: 0.5296\n", + "0 epoch 142 average loss: 0.5296\n", + "current epoch: 142 current mean dice: 0.3038\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 143/500\n", + "1/0, train_loss: 0.5363\n", + "0 epoch 143 average loss: 0.5363\n", + "----------\n", + "0: epoch 144/500\n", + "1/0, train_loss: 0.5367\n", + "0 epoch 144 average loss: 0.5367\n", + "current epoch: 144 current mean dice: 0.2656\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 145/500\n", + "1/0, train_loss: 0.5292\n", + "0 epoch 145 average loss: 0.5292\n", + "----------\n", + "0: epoch 146/500\n", + "1/0, train_loss: 0.5252\n", + "0 epoch 146 average loss: 0.5252\n", + "current epoch: 146 current mean dice: 0.2603\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 147/500\n", + "1/0, train_loss: 0.5228\n", + "0 epoch 147 average loss: 0.5228\n", + "----------\n", + "0: epoch 148/500\n", + "1/0, train_loss: 0.5262\n", + "0 epoch 148 average loss: 0.5262\n", + "current epoch: 148 current mean dice: 0.2947\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 149/500\n", + "1/0, train_loss: 0.5271\n", + "0 epoch 149 average loss: 0.5271\n", + "----------\n", + "0: epoch 150/500\n", + "1/0, train_loss: 0.5230\n", + "0 epoch 150 average loss: 0.5230\n", + "current epoch: 150 current mean dice: 0.3171\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 151/500\n", + "1/0, train_loss: 0.5243\n", + "0 epoch 151 average loss: 0.5243\n", + "----------\n", + "0: epoch 152/500\n", + "1/0, train_loss: 0.5360\n", + "0 epoch 152 average loss: 0.5360\n", + "current epoch: 152 current mean dice: 0.2832\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 153/500\n", + "1/0, train_loss: 0.5267\n", + "0 epoch 153 average loss: 0.5267\n", + "----------\n", + "0: epoch 154/500\n", + "1/0, train_loss: 0.5249\n", + "0 epoch 154 average loss: 0.5249\n", + "current epoch: 154 current mean dice: 0.2570\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 155/500\n", + "1/0, train_loss: 0.5190\n", + "0 epoch 155 average loss: 0.5190\n", + "----------\n", + "0: epoch 156/500\n", + "1/0, train_loss: 0.5247\n", + "0 epoch 156 average loss: 0.5247\n", + "current epoch: 156 current mean dice: 0.2467\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 157/500\n", + "1/0, train_loss: 0.5263\n", + "0 epoch 157 average loss: 0.5263\n", + "----------\n", + "0: epoch 158/500\n", + "1/0, train_loss: 0.5199\n", + "0 epoch 158 average loss: 0.5199\n", + "current epoch: 158 current mean dice: 0.2530\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 159/500\n", + "1/0, train_loss: 0.5223\n", + "0 epoch 159 average loss: 0.5223\n", + "----------\n", + "0: epoch 160/500\n", + "1/0, train_loss: 0.5273\n", + "0 epoch 160 average loss: 0.5273\n", + "current epoch: 160 current mean dice: 0.3023\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 161/500\n", + "1/0, train_loss: 0.5210\n", + "0 epoch 161 average loss: 0.5210\n", + "----------\n", + "0: epoch 162/500\n", + "1/0, train_loss: 0.5201\n", + "0 epoch 162 average loss: 0.5201\n", + "current epoch: 162 current mean dice: 0.2946\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 163/500\n", + "1/0, train_loss: 0.5167\n", + "0 epoch 163 average loss: 0.5167\n", + "----------\n", + "0: epoch 164/500\n", + "1/0, train_loss: 0.5172\n", + "0 epoch 164 average loss: 0.5172\n", + "current epoch: 164 current mean dice: 0.2519\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 165/500\n", + "1/0, train_loss: 0.5234\n", + "0 epoch 165 average loss: 0.5234\n", + "----------\n", + "0: epoch 166/500\n", + "1/0, train_loss: 0.5199\n", + "0 epoch 166 average loss: 0.5199\n", + "current epoch: 166 current mean dice: 0.2553\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 167/500\n", + "1/0, train_loss: 0.5202\n", + "0 epoch 167 average loss: 0.5202\n", + "----------\n", + "0: epoch 168/500\n", + "1/0, train_loss: 0.5235\n", + "0 epoch 168 average loss: 0.5235\n", + "current epoch: 168 current mean dice: 0.2477\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 169/500\n", + "1/0, train_loss: 0.5248\n", + "0 epoch 169 average loss: 0.5248\n", + "----------\n", + "0: epoch 170/500\n", + "1/0, train_loss: 0.5212\n", + "0 epoch 170 average loss: 0.5212\n", + "current epoch: 170 current mean dice: 0.2505\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 171/500\n", + "1/0, train_loss: 0.5188\n", + "0 epoch 171 average loss: 0.5188\n", + "----------\n", + "0: epoch 172/500\n", + "1/0, train_loss: 0.5164\n", + "0 epoch 172 average loss: 0.5164\n", + "current epoch: 172 current mean dice: 0.2834\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 173/500\n", + "1/0, train_loss: 0.5145\n", + "0 epoch 173 average loss: 0.5145\n", + "----------\n", + "0: epoch 174/500\n", + "1/0, train_loss: 0.5130\n", + "0 epoch 174 average loss: 0.5130\n", + "current epoch: 174 current mean dice: 0.2412\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 175/500\n", + "1/0, train_loss: 0.5118\n", + "0 epoch 175 average loss: 0.5118\n", + "----------\n", + "0: epoch 176/500\n", + "1/0, train_loss: 0.5161\n", + "0 epoch 176 average loss: 0.5161\n", + "current epoch: 176 current mean dice: 0.2376\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 177/500\n", + "1/0, train_loss: 0.5122\n", + "0 epoch 177 average loss: 0.5122\n", + "----------\n", + "0: epoch 178/500\n", + "1/0, train_loss: 0.5138\n", + "0 epoch 178 average loss: 0.5138\n", + "current epoch: 178 current mean dice: 0.2378\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 179/500\n", + "1/0, train_loss: 0.5147\n", + "0 epoch 179 average loss: 0.5147\n", + "----------\n", + "0: epoch 180/500\n", + "1/0, train_loss: 0.5120\n", + "0 epoch 180 average loss: 0.5120\n", + "current epoch: 180 current mean dice: 0.2396\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 181/500\n", + "1/0, train_loss: 0.5136\n", + "0 epoch 181 average loss: 0.5136\n", + "----------\n", + "0: epoch 182/500\n", + "1/0, train_loss: 0.5173\n", + "0 epoch 182 average loss: 0.5173\n", + "current epoch: 182 current mean dice: 0.2755\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 183/500\n", + "1/0, train_loss: 0.5098\n", + "0 epoch 183 average loss: 0.5098\n", + "----------\n", + "0: epoch 184/500\n", + "1/0, train_loss: 0.5091\n", + "0 epoch 184 average loss: 0.5091\n", + "current epoch: 184 current mean dice: 0.3214\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 185/500\n", + "1/0, train_loss: 0.5119\n", + "0 epoch 185 average loss: 0.5119\n", + "----------\n", + "0: epoch 186/500\n", + "1/0, train_loss: 0.5160\n", + "0 epoch 186 average loss: 0.5160\n", + "current epoch: 186 current mean dice: 0.2807\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 187/500\n", + "1/0, train_loss: 0.5149\n", + "0 epoch 187 average loss: 0.5149\n", + "----------\n", + "0: epoch 188/500\n", + "1/0, train_loss: 0.5063\n", + "0 epoch 188 average loss: 0.5063\n", + "current epoch: 188 current mean dice: 0.2902\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 189/500\n", + "1/0, train_loss: 0.5085\n", + "0 epoch 189 average loss: 0.5085\n", + "----------\n", + "0: epoch 190/500\n", + "1/0, train_loss: 0.5062\n", + "0 epoch 190 average loss: 0.5062\n", + "current epoch: 190 current mean dice: 0.2854\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 191/500\n", + "1/0, train_loss: 0.5126\n", + "0 epoch 191 average loss: 0.5126\n", + "----------\n", + "0: epoch 192/500\n", + "1/0, train_loss: 0.5100\n", + "0 epoch 192 average loss: 0.5100\n", + "current epoch: 192 current mean dice: 0.3000\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 193/500\n", + "1/0, train_loss: 0.5076\n", + "0 epoch 193 average loss: 0.5076\n", + "----------\n", + "0: epoch 194/500\n", + "1/0, train_loss: 0.5085\n", + "0 epoch 194 average loss: 0.5085\n", + "current epoch: 194 current mean dice: 0.3106\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 195/500\n", + "1/0, train_loss: 0.5039\n", + "0 epoch 195 average loss: 0.5039\n", + "----------\n", + "0: epoch 196/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.5074\n", + "0 epoch 196 average loss: 0.5074\n", + "current epoch: 196 current mean dice: 0.2436\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 197/500\n", + "1/0, train_loss: 0.5110\n", + "0 epoch 197 average loss: 0.5110\n", + "----------\n", + "0: epoch 198/500\n", + "1/0, train_loss: 0.5145\n", + "0 epoch 198 average loss: 0.5145\n", + "current epoch: 198 current mean dice: 0.2361\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 199/500\n", + "1/0, train_loss: 0.5051\n", + "0 epoch 199 average loss: 0.5051\n", + "----------\n", + "0: epoch 200/500\n", + "1/0, train_loss: 0.5035\n", + "0 epoch 200 average loss: 0.5035\n", + "current epoch: 200 current mean dice: 0.2377\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 201/500\n", + "1/0, train_loss: 0.5061\n", + "0 epoch 201 average loss: 0.5061\n", + "----------\n", + "0: epoch 202/500\n", + "1/0, train_loss: 0.5032\n", + "0 epoch 202 average loss: 0.5032\n", + "current epoch: 202 current mean dice: 0.3256\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 203/500\n", + "1/0, train_loss: 0.5147\n", + "0 epoch 203 average loss: 0.5147\n", + "----------\n", + "0: epoch 204/500\n", + "1/0, train_loss: 0.5058\n", + "0 epoch 204 average loss: 0.5058\n", + "current epoch: 204 current mean dice: 0.3533\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 205/500\n", + "1/0, train_loss: 0.5010\n", + "0 epoch 205 average loss: 0.5010\n", + "----------\n", + "0: epoch 206/500\n", + "1/0, train_loss: 0.5016\n", + "0 epoch 206 average loss: 0.5016\n", + "current epoch: 206 current mean dice: 0.2533\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 207/500\n", + "1/0, train_loss: 0.5062\n", + "0 epoch 207 average loss: 0.5062\n", + "----------\n", + "0: epoch 208/500\n", + "1/0, train_loss: 0.5026\n", + "0 epoch 208 average loss: 0.5026\n", + "current epoch: 208 current mean dice: 0.2307\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 209/500\n", + "1/0, train_loss: 0.5029\n", + "0 epoch 209 average loss: 0.5029\n", + "----------\n", + "0: epoch 210/500\n", + "1/0, train_loss: 0.5051\n", + "0 epoch 210 average loss: 0.5051\n", + "current epoch: 210 current mean dice: 0.2232\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 211/500\n", + "1/0, train_loss: 0.5034\n", + "0 epoch 211 average loss: 0.5034\n", + "----------\n", + "0: epoch 212/500\n", + "1/0, train_loss: 0.5094\n", + "0 epoch 212 average loss: 0.5094\n", + "current epoch: 212 current mean dice: 0.2420\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 213/500\n", + "1/0, train_loss: 0.5033\n", + "0 epoch 213 average loss: 0.5033\n", + "----------\n", + "0: epoch 214/500\n", + "1/0, train_loss: 0.5107\n", + "0 epoch 214 average loss: 0.5107\n", + "current epoch: 214 current mean dice: 0.3597\n", + "best mean dice: 0.4199 at epoch: 54\n", + "----------\n", + "0: epoch 215/500\n", + "1/0, train_loss: 0.4990\n", + "0 epoch 215 average loss: 0.4990\n", + "----------\n", + "0: epoch 216/500\n", + "1/0, train_loss: 0.5171\n", + "0 epoch 216 average loss: 0.5171\n", + "saved new best metric model\n", + "current epoch: 216 current mean dice: 0.4238\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 217/500\n", + "1/0, train_loss: 0.5374\n", + "0 epoch 217 average loss: 0.5374\n", + "----------\n", + "0: epoch 218/500\n", + "1/0, train_loss: 0.5229\n", + "0 epoch 218 average loss: 0.5229\n", + "current epoch: 218 current mean dice: 0.1902\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 219/500\n", + "1/0, train_loss: 0.5239\n", + "0 epoch 219 average loss: 0.5239\n", + "----------\n", + "0: epoch 220/500\n", + "1/0, train_loss: 0.5247\n", + "0 epoch 220 average loss: 0.5247\n", + "current epoch: 220 current mean dice: 0.2816\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 221/500\n", + "1/0, train_loss: 0.5260\n", + "0 epoch 221 average loss: 0.5260\n", + "----------\n", + "0: epoch 222/500\n", + "1/0, train_loss: 0.5154\n", + "0 epoch 222 average loss: 0.5154\n", + "current epoch: 222 current mean dice: 0.3386\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 223/500\n", + "1/0, train_loss: 0.5108\n", + "0 epoch 223 average loss: 0.5108\n", + "----------\n", + "0: epoch 224/500\n", + "1/0, train_loss: 0.5168\n", + "0 epoch 224 average loss: 0.5168\n", + "current epoch: 224 current mean dice: 0.4076\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 225/500\n", + "1/0, train_loss: 0.5102\n", + "0 epoch 225 average loss: 0.5102\n", + "----------\n", + "0: epoch 226/500\n", + "1/0, train_loss: 0.5121\n", + "0 epoch 226 average loss: 0.5121\n", + "current epoch: 226 current mean dice: 0.3889\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 227/500\n", + "1/0, train_loss: 0.5104\n", + "0 epoch 227 average loss: 0.5104\n", + "----------\n", + "0: epoch 228/500\n", + "1/0, train_loss: 0.5089\n", + "0 epoch 228 average loss: 0.5089\n", + "current epoch: 228 current mean dice: 0.3539\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 229/500\n", + "1/0, train_loss: 0.5057\n", + "0 epoch 229 average loss: 0.5057\n", + "----------\n", + "0: epoch 230/500\n", + "1/0, train_loss: 0.5060\n", + "0 epoch 230 average loss: 0.5060\n", + "current epoch: 230 current mean dice: 0.3232\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 231/500\n", + "1/0, train_loss: 0.5090\n", + "0 epoch 231 average loss: 0.5090\n", + "----------\n", + "0: epoch 232/500\n", + "1/0, train_loss: 0.5046\n", + "0 epoch 232 average loss: 0.5046\n", + "current epoch: 232 current mean dice: 0.3021\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 233/500\n", + "1/0, train_loss: 0.5116\n", + "0 epoch 233 average loss: 0.5116\n", + "----------\n", + "0: epoch 234/500\n", + "1/0, train_loss: 0.5060\n", + "0 epoch 234 average loss: 0.5060\n", + "current epoch: 234 current mean dice: 0.2829\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 235/500\n", + "1/0, train_loss: 0.5005\n", + "0 epoch 235 average loss: 0.5005\n", + "----------\n", + "0: epoch 236/500\n", + "1/0, train_loss: 0.5017\n", + "0 epoch 236 average loss: 0.5017\n", + "current epoch: 236 current mean dice: 0.2673\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 237/500\n", + "1/0, train_loss: 0.5026\n", + "0 epoch 237 average loss: 0.5026\n", + "----------\n", + "0: epoch 238/500\n", + "1/0, train_loss: 0.5131\n", + "0 epoch 238 average loss: 0.5131\n", + "current epoch: 238 current mean dice: 0.2874\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 239/500\n", + "1/0, train_loss: 0.5053\n", + "0 epoch 239 average loss: 0.5053\n", + "----------\n", + "0: epoch 240/500\n", + "1/0, train_loss: 0.4950\n", + "0 epoch 240 average loss: 0.4950\n", + "current epoch: 240 current mean dice: 0.3038\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 241/500\n", + "1/0, train_loss: 0.4973\n", + "0 epoch 241 average loss: 0.4973\n", + "----------\n", + "0: epoch 242/500\n", + "1/0, train_loss: 0.4985\n", + "0 epoch 242 average loss: 0.4985\n", + "current epoch: 242 current mean dice: 0.2831\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 243/500\n", + "1/0, train_loss: 0.5086\n", + "0 epoch 243 average loss: 0.5086\n", + "----------\n", + "0: epoch 244/500\n", + "1/0, train_loss: 0.4960\n", + "0 epoch 244 average loss: 0.4960\n", + "current epoch: 244 current mean dice: 0.2683\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 245/500\n", + "1/0, train_loss: 0.4942\n", + "0 epoch 245 average loss: 0.4942\n", + "----------\n", + "0: epoch 246/500\n", + "1/0, train_loss: 0.4934\n", + "0 epoch 246 average loss: 0.4934\n", + "current epoch: 246 current mean dice: 0.2830\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 247/500\n", + "1/0, train_loss: 0.4944\n", + "0 epoch 247 average loss: 0.4944\n", + "----------\n", + "0: epoch 248/500\n", + "1/0, train_loss: 0.4946\n", + "0 epoch 248 average loss: 0.4946\n", + "current epoch: 248 current mean dice: 0.2604\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 249/500\n", + "1/0, train_loss: 0.4980\n", + "0 epoch 249 average loss: 0.4980\n", + "----------\n", + "0: epoch 250/500\n", + "1/0, train_loss: 0.4929\n", + "0 epoch 250 average loss: 0.4929\n", + "current epoch: 250 current mean dice: 0.2350\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 251/500\n", + "1/0, train_loss: 0.4898\n", + "0 epoch 251 average loss: 0.4898\n", + "----------\n", + "0: epoch 252/500\n", + "1/0, train_loss: 0.4951\n", + "0 epoch 252 average loss: 0.4951\n", + "current epoch: 252 current mean dice: 0.2492\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 253/500\n", + "1/0, train_loss: 0.4943\n", + "0 epoch 253 average loss: 0.4943\n", + "----------\n", + "0: epoch 254/500\n", + "1/0, train_loss: 0.5025\n", + "0 epoch 254 average loss: 0.5025\n", + "current epoch: 254 current mean dice: 0.2828\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 255/500\n", + "1/0, train_loss: 0.4902\n", + "0 epoch 255 average loss: 0.4902\n", + "----------\n", + "0: epoch 256/500\n", + "1/0, train_loss: 0.4859\n", + "0 epoch 256 average loss: 0.4859\n", + "current epoch: 256 current mean dice: 0.2849\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 257/500\n", + "1/0, train_loss: 0.4878\n", + "0 epoch 257 average loss: 0.4878\n", + "----------\n", + "0: epoch 258/500\n", + "1/0, train_loss: 0.4949\n", + "0 epoch 258 average loss: 0.4949\n", + "current epoch: 258 current mean dice: 0.2686\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 259/500\n", + "1/0, train_loss: 0.4869\n", + "0 epoch 259 average loss: 0.4869\n", + "----------\n", + "0: epoch 260/500\n", + "1/0, train_loss: 0.4884\n", + "0 epoch 260 average loss: 0.4884\n", + "current epoch: 260 current mean dice: 0.2438\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 261/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.4895\n", + "0 epoch 261 average loss: 0.4895\n", + "----------\n", + "0: epoch 262/500\n", + "1/0, train_loss: 0.4859\n", + "0 epoch 262 average loss: 0.4859\n", + "current epoch: 262 current mean dice: 0.2406\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 263/500\n", + "1/0, train_loss: 0.4860\n", + "0 epoch 263 average loss: 0.4860\n", + "----------\n", + "0: epoch 264/500\n", + "1/0, train_loss: 0.4870\n", + "0 epoch 264 average loss: 0.4870\n", + "current epoch: 264 current mean dice: 0.2581\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 265/500\n", + "1/0, train_loss: 0.4883\n", + "0 epoch 265 average loss: 0.4883\n", + "----------\n", + "0: epoch 266/500\n", + "1/0, train_loss: 0.4998\n", + "0 epoch 266 average loss: 0.4998\n", + "current epoch: 266 current mean dice: 0.2432\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 267/500\n", + "1/0, train_loss: 0.4869\n", + "0 epoch 267 average loss: 0.4869\n", + "----------\n", + "0: epoch 268/500\n", + "1/0, train_loss: 0.4902\n", + "0 epoch 268 average loss: 0.4902\n", + "current epoch: 268 current mean dice: 0.2861\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 269/500\n", + "1/0, train_loss: 0.4873\n", + "0 epoch 269 average loss: 0.4873\n", + "----------\n", + "0: epoch 270/500\n", + "1/0, train_loss: 0.4868\n", + "0 epoch 270 average loss: 0.4868\n", + "current epoch: 270 current mean dice: 0.3178\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 271/500\n", + "1/0, train_loss: 0.4879\n", + "0 epoch 271 average loss: 0.4879\n", + "----------\n", + "0: epoch 272/500\n", + "1/0, train_loss: 0.4924\n", + "0 epoch 272 average loss: 0.4924\n", + "current epoch: 272 current mean dice: 0.3043\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 273/500\n", + "1/0, train_loss: 0.4874\n", + "0 epoch 273 average loss: 0.4874\n", + "----------\n", + "0: epoch 274/500\n", + "1/0, train_loss: 0.4889\n", + "0 epoch 274 average loss: 0.4889\n", + "current epoch: 274 current mean dice: 0.2525\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 275/500\n", + "1/0, train_loss: 0.4868\n", + "0 epoch 275 average loss: 0.4868\n", + "----------\n", + "0: epoch 276/500\n", + "1/0, train_loss: 0.4864\n", + "0 epoch 276 average loss: 0.4864\n", + "current epoch: 276 current mean dice: 0.2555\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 277/500\n", + "1/0, train_loss: 0.4835\n", + "0 epoch 277 average loss: 0.4835\n", + "----------\n", + "0: epoch 278/500\n", + "1/0, train_loss: 0.4935\n", + "0 epoch 278 average loss: 0.4935\n", + "current epoch: 278 current mean dice: 0.2858\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 279/500\n", + "1/0, train_loss: 0.5006\n", + "0 epoch 279 average loss: 0.5006\n", + "----------\n", + "0: epoch 280/500\n", + "1/0, train_loss: 0.4855\n", + "0 epoch 280 average loss: 0.4855\n", + "current epoch: 280 current mean dice: 0.3082\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 281/500\n", + "1/0, train_loss: 0.4878\n", + "0 epoch 281 average loss: 0.4878\n", + "----------\n", + "0: epoch 282/500\n", + "1/0, train_loss: 0.4862\n", + "0 epoch 282 average loss: 0.4862\n", + "current epoch: 282 current mean dice: 0.2835\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 283/500\n", + "1/0, train_loss: 0.4814\n", + "0 epoch 283 average loss: 0.4814\n", + "----------\n", + "0: epoch 284/500\n", + "1/0, train_loss: 0.4842\n", + "0 epoch 284 average loss: 0.4842\n", + "current epoch: 284 current mean dice: 0.2729\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 285/500\n", + "1/0, train_loss: 0.4801\n", + "0 epoch 285 average loss: 0.4801\n", + "----------\n", + "0: epoch 286/500\n", + "1/0, train_loss: 0.4807\n", + "0 epoch 286 average loss: 0.4807\n", + "current epoch: 286 current mean dice: 0.2726\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 287/500\n", + "1/0, train_loss: 0.4842\n", + "0 epoch 287 average loss: 0.4842\n", + "----------\n", + "0: epoch 288/500\n", + "1/0, train_loss: 0.4782\n", + "0 epoch 288 average loss: 0.4782\n", + "current epoch: 288 current mean dice: 0.2568\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 289/500\n", + "1/0, train_loss: 0.4791\n", + "0 epoch 289 average loss: 0.4791\n", + "----------\n", + "0: epoch 290/500\n", + "1/0, train_loss: 0.4819\n", + "0 epoch 290 average loss: 0.4819\n", + "current epoch: 290 current mean dice: 0.2459\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 291/500\n", + "1/0, train_loss: 0.4822\n", + "0 epoch 291 average loss: 0.4822\n", + "----------\n", + "0: epoch 292/500\n", + "1/0, train_loss: 0.4841\n", + "0 epoch 292 average loss: 0.4841\n", + "current epoch: 292 current mean dice: 0.2301\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 293/500\n", + "1/0, train_loss: 0.4797\n", + "0 epoch 293 average loss: 0.4797\n", + "----------\n", + "0: epoch 294/500\n", + "1/0, train_loss: 0.4790\n", + "0 epoch 294 average loss: 0.4790\n", + "current epoch: 294 current mean dice: 0.2207\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 295/500\n", + "1/0, train_loss: 0.4812\n", + "0 epoch 295 average loss: 0.4812\n", + "----------\n", + "0: epoch 296/500\n", + "1/0, train_loss: 0.4785\n", + "0 epoch 296 average loss: 0.4785\n", + "current epoch: 296 current mean dice: 0.2290\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 297/500\n", + "1/0, train_loss: 0.4774\n", + "0 epoch 297 average loss: 0.4774\n", + "----------\n", + "0: epoch 298/500\n", + "1/0, train_loss: 0.4805\n", + "0 epoch 298 average loss: 0.4805\n", + "current epoch: 298 current mean dice: 0.2449\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 299/500\n", + "1/0, train_loss: 0.4801\n", + "0 epoch 299 average loss: 0.4801\n", + "----------\n", + "0: epoch 300/500\n", + "1/0, train_loss: 0.4858\n", + "0 epoch 300 average loss: 0.4858\n", + "current epoch: 300 current mean dice: 0.2638\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 301/500\n", + "1/0, train_loss: 0.4769\n", + "0 epoch 301 average loss: 0.4769\n", + "----------\n", + "0: epoch 302/500\n", + "1/0, train_loss: 0.4830\n", + "0 epoch 302 average loss: 0.4830\n", + "current epoch: 302 current mean dice: 0.2833\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 303/500\n", + "1/0, train_loss: 0.4845\n", + "0 epoch 303 average loss: 0.4845\n", + "----------\n", + "0: epoch 304/500\n", + "1/0, train_loss: 0.4762\n", + "0 epoch 304 average loss: 0.4762\n", + "current epoch: 304 current mean dice: 0.2456\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 305/500\n", + "1/0, train_loss: 0.4873\n", + "0 epoch 305 average loss: 0.4873\n", + "----------\n", + "0: epoch 306/500\n", + "1/0, train_loss: 0.4802\n", + "0 epoch 306 average loss: 0.4802\n", + "current epoch: 306 current mean dice: 0.2245\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 307/500\n", + "1/0, train_loss: 0.4813\n", + "0 epoch 307 average loss: 0.4813\n", + "----------\n", + "0: epoch 308/500\n", + "1/0, train_loss: 0.4789\n", + "0 epoch 308 average loss: 0.4789\n", + "current epoch: 308 current mean dice: 0.2463\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 309/500\n", + "1/0, train_loss: 0.4864\n", + "0 epoch 309 average loss: 0.4864\n", + "----------\n", + "0: epoch 310/500\n", + "1/0, train_loss: 0.4777\n", + "0 epoch 310 average loss: 0.4777\n", + "current epoch: 310 current mean dice: 0.2470\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 311/500\n", + "1/0, train_loss: 0.4763\n", + "0 epoch 311 average loss: 0.4763\n", + "----------\n", + "0: epoch 312/500\n", + "1/0, train_loss: 0.4780\n", + "0 epoch 312 average loss: 0.4780\n", + "current epoch: 312 current mean dice: 0.2394\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 313/500\n", + "1/0, train_loss: 0.4801\n", + "0 epoch 313 average loss: 0.4801\n", + "----------\n", + "0: epoch 314/500\n", + "1/0, train_loss: 0.4745\n", + "0 epoch 314 average loss: 0.4745\n", + "current epoch: 314 current mean dice: 0.2419\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 315/500\n", + "1/0, train_loss: 0.4735\n", + "0 epoch 315 average loss: 0.4735\n", + "----------\n", + "0: epoch 316/500\n", + "1/0, train_loss: 0.4754\n", + "0 epoch 316 average loss: 0.4754\n", + "current epoch: 316 current mean dice: 0.2473\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 317/500\n", + "1/0, train_loss: 0.4773\n", + "0 epoch 317 average loss: 0.4773\n", + "----------\n", + "0: epoch 318/500\n", + "1/0, train_loss: 0.4759\n", + "0 epoch 318 average loss: 0.4759\n", + "current epoch: 318 current mean dice: 0.2294\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 319/500\n", + "1/0, train_loss: 0.4729\n", + "0 epoch 319 average loss: 0.4729\n", + "----------\n", + "0: epoch 320/500\n", + "1/0, train_loss: 0.4763\n", + "0 epoch 320 average loss: 0.4763\n", + "current epoch: 320 current mean dice: 0.2304\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 321/500\n", + "1/0, train_loss: 0.4718\n", + "0 epoch 321 average loss: 0.4718\n", + "----------\n", + "0: epoch 322/500\n", + "1/0, train_loss: 0.4739\n", + "0 epoch 322 average loss: 0.4739\n", + "current epoch: 322 current mean dice: 0.2043\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 323/500\n", + "1/0, train_loss: 0.4717\n", + "0 epoch 323 average loss: 0.4717\n", + "----------\n", + "0: epoch 324/500\n", + "1/0, train_loss: 0.4745\n", + "0 epoch 324 average loss: 0.4745\n", + "current epoch: 324 current mean dice: 0.2054\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 325/500\n", + "1/0, train_loss: 0.4704\n", + "0 epoch 325 average loss: 0.4704\n", + "----------\n", + "0: epoch 326/500\n", + "1/0, train_loss: 0.4735\n", + "0 epoch 326 average loss: 0.4735\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "current epoch: 326 current mean dice: 0.2225\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 327/500\n", + "1/0, train_loss: 0.4741\n", + "0 epoch 327 average loss: 0.4741\n", + "----------\n", + "0: epoch 328/500\n", + "1/0, train_loss: 0.4694\n", + "0 epoch 328 average loss: 0.4694\n", + "current epoch: 328 current mean dice: 0.2377\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 329/500\n", + "1/0, train_loss: 0.4709\n", + "0 epoch 329 average loss: 0.4709\n", + "----------\n", + "0: epoch 330/500\n", + "1/0, train_loss: 0.4812\n", + "0 epoch 330 average loss: 0.4812\n", + "current epoch: 330 current mean dice: 0.2301\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 331/500\n", + "1/0, train_loss: 0.4748\n", + "0 epoch 331 average loss: 0.4748\n", + "----------\n", + "0: epoch 332/500\n", + "1/0, train_loss: 0.4716\n", + "0 epoch 332 average loss: 0.4716\n", + "current epoch: 332 current mean dice: 0.2410\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 333/500\n", + "1/0, train_loss: 0.4698\n", + "0 epoch 333 average loss: 0.4698\n", + "----------\n", + "0: epoch 334/500\n", + "1/0, train_loss: 0.4711\n", + "0 epoch 334 average loss: 0.4711\n", + "current epoch: 334 current mean dice: 0.2620\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 335/500\n", + "1/0, train_loss: 0.4847\n", + "0 epoch 335 average loss: 0.4847\n", + "----------\n", + "0: epoch 336/500\n", + "1/0, train_loss: 0.4703\n", + "0 epoch 336 average loss: 0.4703\n", + "current epoch: 336 current mean dice: 0.2750\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 337/500\n", + "1/0, train_loss: 0.4691\n", + "0 epoch 337 average loss: 0.4691\n", + "----------\n", + "0: epoch 338/500\n", + "1/0, train_loss: 0.4779\n", + "0 epoch 338 average loss: 0.4779\n", + "current epoch: 338 current mean dice: 0.2559\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 339/500\n", + "1/0, train_loss: 0.4732\n", + "0 epoch 339 average loss: 0.4732\n", + "----------\n", + "0: epoch 340/500\n", + "1/0, train_loss: 0.4685\n", + "0 epoch 340 average loss: 0.4685\n", + "current epoch: 340 current mean dice: 0.2349\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 341/500\n", + "1/0, train_loss: 0.4794\n", + "0 epoch 341 average loss: 0.4794\n", + "----------\n", + "0: epoch 342/500\n", + "1/0, train_loss: 0.4674\n", + "0 epoch 342 average loss: 0.4674\n", + "current epoch: 342 current mean dice: 0.2243\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 343/500\n", + "1/0, train_loss: 0.4665\n", + "0 epoch 343 average loss: 0.4665\n", + "----------\n", + "0: epoch 344/500\n", + "1/0, train_loss: 0.4757\n", + "0 epoch 344 average loss: 0.4757\n", + "current epoch: 344 current mean dice: 0.2205\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 345/500\n", + "1/0, train_loss: 0.4660\n", + "0 epoch 345 average loss: 0.4660\n", + "----------\n", + "0: epoch 346/500\n", + "1/0, train_loss: 0.4654\n", + "0 epoch 346 average loss: 0.4654\n", + "current epoch: 346 current mean dice: 0.2103\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 347/500\n", + "1/0, train_loss: 0.4664\n", + "0 epoch 347 average loss: 0.4664\n", + "----------\n", + "0: epoch 348/500\n", + "1/0, train_loss: 0.4705\n", + "0 epoch 348 average loss: 0.4705\n", + "current epoch: 348 current mean dice: 0.2143\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 349/500\n", + "1/0, train_loss: 0.4644\n", + "0 epoch 349 average loss: 0.4644\n", + "----------\n", + "0: epoch 350/500\n", + "1/0, train_loss: 0.4723\n", + "0 epoch 350 average loss: 0.4723\n", + "current epoch: 350 current mean dice: 0.2176\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 351/500\n", + "1/0, train_loss: 0.4676\n", + "0 epoch 351 average loss: 0.4676\n", + "----------\n", + "0: epoch 352/500\n", + "1/0, train_loss: 0.4782\n", + "0 epoch 352 average loss: 0.4782\n", + "current epoch: 352 current mean dice: 0.2344\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 353/500\n", + "1/0, train_loss: 0.4766\n", + "0 epoch 353 average loss: 0.4766\n", + "----------\n", + "0: epoch 354/500\n", + "1/0, train_loss: 0.4653\n", + "0 epoch 354 average loss: 0.4653\n", + "current epoch: 354 current mean dice: 0.2520\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 355/500\n", + "1/0, train_loss: 0.4646\n", + "0 epoch 355 average loss: 0.4646\n", + "----------\n", + "0: epoch 356/500\n", + "1/0, train_loss: 0.4674\n", + "0 epoch 356 average loss: 0.4674\n", + "current epoch: 356 current mean dice: 0.2471\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 357/500\n", + "1/0, train_loss: 0.4685\n", + "0 epoch 357 average loss: 0.4685\n", + "----------\n", + "0: epoch 358/500\n", + "1/0, train_loss: 0.4660\n", + "0 epoch 358 average loss: 0.4660\n", + "current epoch: 358 current mean dice: 0.2094\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 359/500\n", + "1/0, train_loss: 0.4755\n", + "0 epoch 359 average loss: 0.4755\n", + "----------\n", + "0: epoch 360/500\n", + "1/0, train_loss: 0.4635\n", + "0 epoch 360 average loss: 0.4635\n", + "current epoch: 360 current mean dice: 0.1779\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 361/500\n", + "1/0, train_loss: 0.4724\n", + "0 epoch 361 average loss: 0.4724\n", + "----------\n", + "0: epoch 362/500\n", + "1/0, train_loss: 0.4674\n", + "0 epoch 362 average loss: 0.4674\n", + "current epoch: 362 current mean dice: 0.1714\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 363/500\n", + "1/0, train_loss: 0.4730\n", + "0 epoch 363 average loss: 0.4730\n", + "----------\n", + "0: epoch 364/500\n", + "1/0, train_loss: 0.4686\n", + "0 epoch 364 average loss: 0.4686\n", + "current epoch: 364 current mean dice: 0.1901\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 365/500\n", + "1/0, train_loss: 0.4663\n", + "0 epoch 365 average loss: 0.4663\n", + "----------\n", + "0: epoch 366/500\n", + "1/0, train_loss: 0.4656\n", + "0 epoch 366 average loss: 0.4656\n", + "current epoch: 366 current mean dice: 0.1681\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 367/500\n", + "1/0, train_loss: 0.4766\n", + "0 epoch 367 average loss: 0.4766\n", + "----------\n", + "0: epoch 368/500\n", + "1/0, train_loss: 0.4644\n", + "0 epoch 368 average loss: 0.4644\n", + "current epoch: 368 current mean dice: 0.1916\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 369/500\n", + "1/0, train_loss: 0.4671\n", + "0 epoch 369 average loss: 0.4671\n", + "----------\n", + "0: epoch 370/500\n", + "1/0, train_loss: 0.4653\n", + "0 epoch 370 average loss: 0.4653\n", + "current epoch: 370 current mean dice: 0.2272\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 371/500\n", + "1/0, train_loss: 0.4701\n", + "0 epoch 371 average loss: 0.4701\n", + "----------\n", + "0: epoch 372/500\n", + "1/0, train_loss: 0.4618\n", + "0 epoch 372 average loss: 0.4618\n", + "current epoch: 372 current mean dice: 0.2400\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 373/500\n", + "1/0, train_loss: 0.4647\n", + "0 epoch 373 average loss: 0.4647\n", + "----------\n", + "0: epoch 374/500\n", + "1/0, train_loss: 0.4606\n", + "0 epoch 374 average loss: 0.4606\n", + "current epoch: 374 current mean dice: 0.2311\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 375/500\n", + "1/0, train_loss: 0.4720\n", + "0 epoch 375 average loss: 0.4720\n", + "----------\n", + "0: epoch 376/500\n", + "1/0, train_loss: 0.4697\n", + "0 epoch 376 average loss: 0.4697\n", + "current epoch: 376 current mean dice: 0.2196\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 377/500\n", + "1/0, train_loss: 0.4628\n", + "0 epoch 377 average loss: 0.4628\n", + "----------\n", + "0: epoch 378/500\n", + "1/0, train_loss: 0.4684\n", + "0 epoch 378 average loss: 0.4684\n", + "current epoch: 378 current mean dice: 0.1948\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 379/500\n", + "1/0, train_loss: 0.4627\n", + "0 epoch 379 average loss: 0.4627\n", + "----------\n", + "0: epoch 380/500\n", + "1/0, train_loss: 0.4624\n", + "0 epoch 380 average loss: 0.4624\n", + "current epoch: 380 current mean dice: 0.2091\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 381/500\n", + "1/0, train_loss: 0.4720\n", + "0 epoch 381 average loss: 0.4720\n", + "----------\n", + "0: epoch 382/500\n", + "1/0, train_loss: 0.4602\n", + "0 epoch 382 average loss: 0.4602\n", + "current epoch: 382 current mean dice: 0.2164\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 383/500\n", + "1/0, train_loss: 0.4695\n", + "0 epoch 383 average loss: 0.4695\n", + "----------\n", + "0: epoch 384/500\n", + "1/0, train_loss: 0.4583\n", + "0 epoch 384 average loss: 0.4583\n", + "current epoch: 384 current mean dice: 0.2340\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 385/500\n", + "1/0, train_loss: 0.4613\n", + "0 epoch 385 average loss: 0.4613\n", + "----------\n", + "0: epoch 386/500\n", + "1/0, train_loss: 0.4657\n", + "0 epoch 386 average loss: 0.4657\n", + "current epoch: 386 current mean dice: 0.2569\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 387/500\n", + "1/0, train_loss: 0.4625\n", + "0 epoch 387 average loss: 0.4625\n", + "----------\n", + "0: epoch 388/500\n", + "1/0, train_loss: 0.4631\n", + "0 epoch 388 average loss: 0.4631\n", + "current epoch: 388 current mean dice: 0.2439\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 389/500\n", + "1/0, train_loss: 0.4602\n", + "0 epoch 389 average loss: 0.4602\n", + "----------\n", + "0: epoch 390/500\n", + "1/0, train_loss: 0.4632\n", + "0 epoch 390 average loss: 0.4632\n", + "current epoch: 390 current mean dice: 0.2315\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 391/500\n", + "1/0, train_loss: 0.4688\n", + "0 epoch 391 average loss: 0.4688\n", + "----------\n", + "0: epoch 392/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.4597\n", + "0 epoch 392 average loss: 0.4597\n", + "current epoch: 392 current mean dice: 0.2269\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 393/500\n", + "1/0, train_loss: 0.4578\n", + "0 epoch 393 average loss: 0.4578\n", + "----------\n", + "0: epoch 394/500\n", + "1/0, train_loss: 0.4564\n", + "0 epoch 394 average loss: 0.4564\n", + "current epoch: 394 current mean dice: 0.2291\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 395/500\n", + "1/0, train_loss: 0.4612\n", + "0 epoch 395 average loss: 0.4612\n", + "----------\n", + "0: epoch 396/500\n", + "1/0, train_loss: 0.4622\n", + "0 epoch 396 average loss: 0.4622\n", + "current epoch: 396 current mean dice: 0.2294\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 397/500\n", + "1/0, train_loss: 0.4575\n", + "0 epoch 397 average loss: 0.4575\n", + "----------\n", + "0: epoch 398/500\n", + "1/0, train_loss: 0.4547\n", + "0 epoch 398 average loss: 0.4547\n", + "current epoch: 398 current mean dice: 0.2410\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 399/500\n", + "1/0, train_loss: 0.4596\n", + "0 epoch 399 average loss: 0.4596\n", + "----------\n", + "0: epoch 400/500\n", + "1/0, train_loss: 0.4602\n", + "0 epoch 400 average loss: 0.4602\n", + "current epoch: 400 current mean dice: 0.2424\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 401/500\n", + "1/0, train_loss: 0.4575\n", + "0 epoch 401 average loss: 0.4575\n", + "----------\n", + "0: epoch 402/500\n", + "1/0, train_loss: 0.4691\n", + "0 epoch 402 average loss: 0.4691\n", + "current epoch: 402 current mean dice: 0.2191\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 403/500\n", + "1/0, train_loss: 0.4606\n", + "0 epoch 403 average loss: 0.4606\n", + "----------\n", + "0: epoch 404/500\n", + "1/0, train_loss: 0.4553\n", + "0 epoch 404 average loss: 0.4553\n", + "current epoch: 404 current mean dice: 0.2057\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 405/500\n", + "1/0, train_loss: 0.4581\n", + "0 epoch 405 average loss: 0.4581\n", + "----------\n", + "0: epoch 406/500\n", + "1/0, train_loss: 0.4572\n", + "0 epoch 406 average loss: 0.4572\n", + "current epoch: 406 current mean dice: 0.2033\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 407/500\n", + "1/0, train_loss: 0.4592\n", + "0 epoch 407 average loss: 0.4592\n", + "----------\n", + "0: epoch 408/500\n", + "1/0, train_loss: 0.4588\n", + "0 epoch 408 average loss: 0.4588\n", + "current epoch: 408 current mean dice: 0.2137\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 409/500\n", + "1/0, train_loss: 0.4557\n", + "0 epoch 409 average loss: 0.4557\n", + "----------\n", + "0: epoch 410/500\n", + "1/0, train_loss: 0.4537\n", + "0 epoch 410 average loss: 0.4537\n", + "current epoch: 410 current mean dice: 0.2167\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 411/500\n", + "1/0, train_loss: 0.4557\n", + "0 epoch 411 average loss: 0.4557\n", + "----------\n", + "0: epoch 412/500\n", + "1/0, train_loss: 0.4552\n", + "0 epoch 412 average loss: 0.4552\n", + "current epoch: 412 current mean dice: 0.2166\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 413/500\n", + "1/0, train_loss: 0.4564\n", + "0 epoch 413 average loss: 0.4564\n", + "----------\n", + "0: epoch 414/500\n", + "1/0, train_loss: 0.4585\n", + "0 epoch 414 average loss: 0.4585\n", + "current epoch: 414 current mean dice: 0.2333\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 415/500\n", + "1/0, train_loss: 0.4553\n", + "0 epoch 415 average loss: 0.4553\n", + "----------\n", + "0: epoch 416/500\n", + "1/0, train_loss: 0.4536\n", + "0 epoch 416 average loss: 0.4536\n", + "current epoch: 416 current mean dice: 0.2391\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 417/500\n", + "1/0, train_loss: 0.4583\n", + "0 epoch 417 average loss: 0.4583\n", + "----------\n", + "0: epoch 418/500\n", + "1/0, train_loss: 0.4597\n", + "0 epoch 418 average loss: 0.4597\n", + "current epoch: 418 current mean dice: 0.2160\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 419/500\n", + "1/0, train_loss: 0.4568\n", + "0 epoch 419 average loss: 0.4568\n", + "----------\n", + "0: epoch 420/500\n", + "1/0, train_loss: 0.4554\n", + "0 epoch 420 average loss: 0.4554\n", + "current epoch: 420 current mean dice: 0.1993\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 421/500\n", + "1/0, train_loss: 0.4513\n", + "0 epoch 421 average loss: 0.4513\n", + "----------\n", + "0: epoch 422/500\n", + "1/0, train_loss: 0.4518\n", + "0 epoch 422 average loss: 0.4518\n", + "current epoch: 422 current mean dice: 0.1990\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 423/500\n", + "1/0, train_loss: 0.4531\n", + "0 epoch 423 average loss: 0.4531\n", + "----------\n", + "0: epoch 424/500\n", + "1/0, train_loss: 0.4531\n", + "0 epoch 424 average loss: 0.4531\n", + "current epoch: 424 current mean dice: 0.2074\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 425/500\n", + "1/0, train_loss: 0.4523\n", + "0 epoch 425 average loss: 0.4523\n", + "----------\n", + "0: epoch 426/500\n", + "1/0, train_loss: 0.4577\n", + "0 epoch 426 average loss: 0.4577\n", + "current epoch: 426 current mean dice: 0.2108\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 427/500\n", + "1/0, train_loss: 0.4501\n", + "0 epoch 427 average loss: 0.4501\n", + "----------\n", + "0: epoch 428/500\n", + "1/0, train_loss: 0.4511\n", + "0 epoch 428 average loss: 0.4511\n", + "current epoch: 428 current mean dice: 0.1948\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 429/500\n", + "1/0, train_loss: 0.4595\n", + "0 epoch 429 average loss: 0.4595\n", + "----------\n", + "0: epoch 430/500\n", + "1/0, train_loss: 0.4519\n", + "0 epoch 430 average loss: 0.4519\n", + "current epoch: 430 current mean dice: 0.2129\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 431/500\n", + "1/0, train_loss: 0.4639\n", + "0 epoch 431 average loss: 0.4639\n", + "----------\n", + "0: epoch 432/500\n", + "1/0, train_loss: 0.4499\n", + "0 epoch 432 average loss: 0.4499\n", + "current epoch: 432 current mean dice: 0.2210\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 433/500\n", + "1/0, train_loss: 0.4620\n", + "0 epoch 433 average loss: 0.4620\n", + "----------\n", + "0: epoch 434/500\n", + "1/0, train_loss: 0.4499\n", + "0 epoch 434 average loss: 0.4499\n", + "current epoch: 434 current mean dice: 0.2172\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 435/500\n", + "1/0, train_loss: 0.4490\n", + "0 epoch 435 average loss: 0.4490\n", + "----------\n", + "0: epoch 436/500\n", + "1/0, train_loss: 0.4502\n", + "0 epoch 436 average loss: 0.4502\n", + "current epoch: 436 current mean dice: 0.2120\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 437/500\n", + "1/0, train_loss: 0.4510\n", + "0 epoch 437 average loss: 0.4510\n", + "----------\n", + "0: epoch 438/500\n", + "1/0, train_loss: 0.4505\n", + "0 epoch 438 average loss: 0.4505\n", + "current epoch: 438 current mean dice: 0.2086\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 439/500\n", + "1/0, train_loss: 0.4535\n", + "0 epoch 439 average loss: 0.4535\n", + "----------\n", + "0: epoch 440/500\n", + "1/0, train_loss: 0.4548\n", + "0 epoch 440 average loss: 0.4548\n", + "current epoch: 440 current mean dice: 0.2175\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 441/500\n", + "1/0, train_loss: 0.4504\n", + "0 epoch 441 average loss: 0.4504\n", + "----------\n", + "0: epoch 442/500\n", + "1/0, train_loss: 0.4500\n", + "0 epoch 442 average loss: 0.4500\n", + "current epoch: 442 current mean dice: 0.2358\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 443/500\n", + "1/0, train_loss: 0.4537\n", + "0 epoch 443 average loss: 0.4537\n", + "----------\n", + "0: epoch 444/500\n", + "1/0, train_loss: 0.4565\n", + "0 epoch 444 average loss: 0.4565\n", + "current epoch: 444 current mean dice: 0.2376\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 445/500\n", + "1/0, train_loss: 0.4544\n", + "0 epoch 445 average loss: 0.4544\n", + "----------\n", + "0: epoch 446/500\n", + "1/0, train_loss: 0.4483\n", + "0 epoch 446 average loss: 0.4483\n", + "current epoch: 446 current mean dice: 0.2256\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 447/500\n", + "1/0, train_loss: 0.4482\n", + "0 epoch 447 average loss: 0.4482\n", + "----------\n", + "0: epoch 448/500\n", + "1/0, train_loss: 0.4474\n", + "0 epoch 448 average loss: 0.4474\n", + "current epoch: 448 current mean dice: 0.2071\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 449/500\n", + "1/0, train_loss: 0.4513\n", + "0 epoch 449 average loss: 0.4513\n", + "----------\n", + "0: epoch 450/500\n", + "1/0, train_loss: 0.4518\n", + "0 epoch 450 average loss: 0.4518\n", + "current epoch: 450 current mean dice: 0.1989\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 451/500\n", + "1/0, train_loss: 0.4519\n", + "0 epoch 451 average loss: 0.4519\n", + "----------\n", + "0: epoch 452/500\n", + "1/0, train_loss: 0.4500\n", + "0 epoch 452 average loss: 0.4500\n", + "current epoch: 452 current mean dice: 0.1958\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 453/500\n", + "1/0, train_loss: 0.4478\n", + "0 epoch 453 average loss: 0.4478\n", + "----------\n", + "0: epoch 454/500\n", + "1/0, train_loss: 0.4482\n", + "0 epoch 454 average loss: 0.4482\n", + "current epoch: 454 current mean dice: 0.2008\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 455/500\n", + "1/0, train_loss: 0.4534\n", + "0 epoch 455 average loss: 0.4534\n", + "----------\n", + "0: epoch 456/500\n", + "1/0, train_loss: 0.4578\n", + "0 epoch 456 average loss: 0.4578\n", + "current epoch: 456 current mean dice: 0.2036\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 457/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.4469\n", + "0 epoch 457 average loss: 0.4469\n", + "----------\n", + "0: epoch 458/500\n", + "1/0, train_loss: 0.4465\n", + "0 epoch 458 average loss: 0.4465\n", + "current epoch: 458 current mean dice: 0.2113\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 459/500\n", + "1/0, train_loss: 0.4487\n", + "0 epoch 459 average loss: 0.4487\n", + "----------\n", + "0: epoch 460/500\n", + "1/0, train_loss: 0.4466\n", + "0 epoch 460 average loss: 0.4466\n", + "current epoch: 460 current mean dice: 0.2139\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 461/500\n", + "1/0, train_loss: 0.4493\n", + "0 epoch 461 average loss: 0.4493\n", + "----------\n", + "0: epoch 462/500\n", + "1/0, train_loss: 0.4478\n", + "0 epoch 462 average loss: 0.4478\n", + "current epoch: 462 current mean dice: 0.2204\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 463/500\n", + "1/0, train_loss: 0.4520\n", + "0 epoch 463 average loss: 0.4520\n", + "----------\n", + "0: epoch 464/500\n", + "1/0, train_loss: 0.4457\n", + "0 epoch 464 average loss: 0.4457\n", + "current epoch: 464 current mean dice: 0.2247\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 465/500\n", + "1/0, train_loss: 0.4471\n", + "0 epoch 465 average loss: 0.4471\n", + "----------\n", + "0: epoch 466/500\n", + "1/0, train_loss: 0.4532\n", + "0 epoch 466 average loss: 0.4532\n", + "current epoch: 466 current mean dice: 0.2267\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 467/500\n", + "1/0, train_loss: 0.4438\n", + "0 epoch 467 average loss: 0.4438\n", + "----------\n", + "0: epoch 468/500\n", + "1/0, train_loss: 0.4504\n", + "0 epoch 468 average loss: 0.4504\n", + "current epoch: 468 current mean dice: 0.2166\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 469/500\n", + "1/0, train_loss: 0.4469\n", + "0 epoch 469 average loss: 0.4469\n", + "----------\n", + "0: epoch 470/500\n", + "1/0, train_loss: 0.4514\n", + "0 epoch 470 average loss: 0.4514\n", + "current epoch: 470 current mean dice: 0.1896\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 471/500\n", + "1/0, train_loss: 0.4472\n", + "0 epoch 471 average loss: 0.4472\n", + "----------\n", + "0: epoch 472/500\n", + "1/0, train_loss: 0.4451\n", + "0 epoch 472 average loss: 0.4451\n", + "current epoch: 472 current mean dice: 0.1884\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 473/500\n", + "1/0, train_loss: 0.4580\n", + "0 epoch 473 average loss: 0.4580\n", + "----------\n", + "0: epoch 474/500\n", + "1/0, train_loss: 0.4443\n", + "0 epoch 474 average loss: 0.4443\n", + "current epoch: 474 current mean dice: 0.2116\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 475/500\n", + "1/0, train_loss: 0.4499\n", + "0 epoch 475 average loss: 0.4499\n", + "----------\n", + "0: epoch 476/500\n", + "1/0, train_loss: 0.4497\n", + "0 epoch 476 average loss: 0.4497\n", + "current epoch: 476 current mean dice: 0.2344\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 477/500\n", + "1/0, train_loss: 0.4608\n", + "0 epoch 477 average loss: 0.4608\n", + "----------\n", + "0: epoch 478/500\n", + "1/0, train_loss: 0.4467\n", + "0 epoch 478 average loss: 0.4467\n", + "current epoch: 478 current mean dice: 0.2277\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 479/500\n", + "1/0, train_loss: 0.4462\n", + "0 epoch 479 average loss: 0.4462\n", + "----------\n", + "0: epoch 480/500\n", + "1/0, train_loss: 0.4500\n", + "0 epoch 480 average loss: 0.4500\n", + "current epoch: 480 current mean dice: 0.2136\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 481/500\n", + "1/0, train_loss: 0.4554\n", + "0 epoch 481 average loss: 0.4554\n", + "----------\n", + "0: epoch 482/500\n", + "1/0, train_loss: 0.4558\n", + "0 epoch 482 average loss: 0.4558\n", + "current epoch: 482 current mean dice: 0.1888\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 483/500\n", + "1/0, train_loss: 0.4470\n", + "0 epoch 483 average loss: 0.4470\n", + "----------\n", + "0: epoch 484/500\n", + "1/0, train_loss: 0.4452\n", + "0 epoch 484 average loss: 0.4452\n", + "current epoch: 484 current mean dice: 0.2020\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 485/500\n", + "1/0, train_loss: 0.4447\n", + "0 epoch 485 average loss: 0.4447\n", + "----------\n", + "0: epoch 486/500\n", + "1/0, train_loss: 0.4453\n", + "0 epoch 486 average loss: 0.4453\n", + "current epoch: 486 current mean dice: 0.2381\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 487/500\n", + "1/0, train_loss: 0.4430\n", + "0 epoch 487 average loss: 0.4430\n", + "----------\n", + "0: epoch 488/500\n", + "1/0, train_loss: 0.4448\n", + "0 epoch 488 average loss: 0.4448\n", + "current epoch: 488 current mean dice: 0.2464\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 489/500\n", + "1/0, train_loss: 0.4426\n", + "0 epoch 489 average loss: 0.4426\n", + "----------\n", + "0: epoch 490/500\n", + "1/0, train_loss: 0.4513\n", + "0 epoch 490 average loss: 0.4513\n", + "current epoch: 490 current mean dice: 0.2502\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 491/500\n", + "1/0, train_loss: 0.4416\n", + "0 epoch 491 average loss: 0.4416\n", + "----------\n", + "0: epoch 492/500\n", + "1/0, train_loss: 0.4472\n", + "0 epoch 492 average loss: 0.4472\n", + "current epoch: 492 current mean dice: 0.2678\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 493/500\n", + "1/0, train_loss: 0.4433\n", + "0 epoch 493 average loss: 0.4433\n", + "----------\n", + "0: epoch 494/500\n", + "1/0, train_loss: 0.4444\n", + "0 epoch 494 average loss: 0.4444\n", + "current epoch: 494 current mean dice: 0.2634\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 495/500\n", + "1/0, train_loss: 0.4429\n", + "0 epoch 495 average loss: 0.4429\n", + "----------\n", + "0: epoch 496/500\n", + "1/0, train_loss: 0.4447\n", + "0 epoch 496 average loss: 0.4447\n", + "current epoch: 496 current mean dice: 0.2277\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 497/500\n", + "1/0, train_loss: 0.4427\n", + "0 epoch 497 average loss: 0.4427\n", + "----------\n", + "0: epoch 498/500\n", + "1/0, train_loss: 0.4449\n", + "0 epoch 498 average loss: 0.4449\n", + "current epoch: 498 current mean dice: 0.1953\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "0: epoch 499/500\n", + "1/0, train_loss: 0.4428\n", + "0 epoch 499 average loss: 0.4428\n", + "----------\n", + "0: epoch 500/500\n", + "1/0, train_loss: 0.4439\n", + "0 epoch 500 average loss: 0.4439\n", + "current epoch: 500 current mean dice: 0.2030\n", + "best mean dice: 0.4238 at epoch: 216\n", + "----------\n", + "1: epoch 1/500\n", + "1/0, train_loss: 0.7635\n", + "1 epoch 1 average loss: 0.7635\n", + "----------\n", + "1: epoch 2/500\n", + "1/0, train_loss: 0.7545\n", + "1 epoch 2 average loss: 0.7545\n", + "saved new best metric model\n", + "current epoch: 2 current mean dice: 0.3238\n", + "best mean dice: 0.3238 at epoch: 2\n", + "----------\n", + "1: epoch 3/500\n", + "1/0, train_loss: 0.7493\n", + "1 epoch 3 average loss: 0.7493\n", + "----------\n", + "1: epoch 4/500\n", + "1/0, train_loss: 0.7413\n", + "1 epoch 4 average loss: 0.7413\n", + "saved new best metric model\n", + "current epoch: 4 current mean dice: 0.3687\n", + "best mean dice: 0.3687 at epoch: 4\n", + "----------\n", + "1: epoch 5/500\n", + "1/0, train_loss: 0.7344\n", + "1 epoch 5 average loss: 0.7344\n", + "----------\n", + "1: epoch 6/500\n", + "1/0, train_loss: 0.7269\n", + "1 epoch 6 average loss: 0.7269\n", + "saved new best metric model\n", + "current epoch: 6 current mean dice: 0.3930\n", + "best mean dice: 0.3930 at epoch: 6\n", + "----------\n", + "1: epoch 7/500\n", + "1/0, train_loss: 0.7234\n", + "1 epoch 7 average loss: 0.7234\n", + "----------\n", + "1: epoch 8/500\n", + "1/0, train_loss: 0.7186\n", + "1 epoch 8 average loss: 0.7186\n", + "saved new best metric model\n", + "current epoch: 8 current mean dice: 0.4053\n", + "best mean dice: 0.4053 at epoch: 8\n", + "----------\n", + "1: epoch 9/500\n", + "1/0, train_loss: 0.7126\n", + "1 epoch 9 average loss: 0.7126\n", + "----------\n", + "1: epoch 10/500\n", + "1/0, train_loss: 0.7102\n", + "1 epoch 10 average loss: 0.7102\n", + "saved new best metric model\n", + "current epoch: 10 current mean dice: 0.4151\n", + "best mean dice: 0.4151 at epoch: 10\n", + "----------\n", + "1: epoch 11/500\n", + "1/0, train_loss: 0.7063\n", + "1 epoch 11 average loss: 0.7063\n", + "----------\n", + "1: epoch 12/500\n", + "1/0, train_loss: 0.7028\n", + "1 epoch 12 average loss: 0.7028\n", + "saved new best metric model\n", + "current epoch: 12 current mean dice: 0.4237\n", + "best mean dice: 0.4237 at epoch: 12\n", + "----------\n", + "1: epoch 13/500\n", + "1/0, train_loss: 0.6984\n", + "1 epoch 13 average loss: 0.6984\n", + "----------\n", + "1: epoch 14/500\n", + "1/0, train_loss: 0.6966\n", + "1 epoch 14 average loss: 0.6966\n", + "saved new best metric model\n", + "current epoch: 14 current mean dice: 0.4319\n", + "best mean dice: 0.4319 at epoch: 14\n", + "----------\n", + "1: epoch 15/500\n", + "1/0, train_loss: 0.6930\n", + "1 epoch 15 average loss: 0.6930\n", + "----------\n", + "1: epoch 16/500\n", + "1/0, train_loss: 0.6920\n", + "1 epoch 16 average loss: 0.6920\n", + "saved new best metric model\n", + "current epoch: 16 current mean dice: 0.4396\n", + "best mean dice: 0.4396 at epoch: 16\n", + "----------\n", + "1: epoch 17/500\n", + "1/0, train_loss: 0.6886\n", + "1 epoch 17 average loss: 0.6886\n", + "----------\n", + "1: epoch 18/500\n", + "1/0, train_loss: 0.6877\n", + "1 epoch 18 average loss: 0.6877\n", + "saved new best metric model\n", + "current epoch: 18 current mean dice: 0.4455\n", + "best mean dice: 0.4455 at epoch: 18\n", + "----------\n", + "1: epoch 19/500\n", + "1/0, train_loss: 0.6842\n", + "1 epoch 19 average loss: 0.6842\n", + "----------\n", + "1: epoch 20/500\n", + "1/0, train_loss: 0.6814\n", + "1 epoch 20 average loss: 0.6814\n", + "saved new best metric model\n", + "current epoch: 20 current mean dice: 0.4496\n", + "best mean dice: 0.4496 at epoch: 20\n", + "----------\n", + "1: epoch 21/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.6793\n", + "1 epoch 21 average loss: 0.6793\n", + "----------\n", + "1: epoch 22/500\n", + "1/0, train_loss: 0.6776\n", + "1 epoch 22 average loss: 0.6776\n", + "saved new best metric model\n", + "current epoch: 22 current mean dice: 0.4531\n", + "best mean dice: 0.4531 at epoch: 22\n", + "----------\n", + "1: epoch 23/500\n", + "1/0, train_loss: 0.6751\n", + "1 epoch 23 average loss: 0.6751\n", + "----------\n", + "1: epoch 24/500\n", + "1/0, train_loss: 0.6756\n", + "1 epoch 24 average loss: 0.6756\n", + "saved new best metric model\n", + "current epoch: 24 current mean dice: 0.4555\n", + "best mean dice: 0.4555 at epoch: 24\n", + "----------\n", + "1: epoch 25/500\n", + "1/0, train_loss: 0.6752\n", + "1 epoch 25 average loss: 0.6752\n", + "----------\n", + "1: epoch 26/500\n", + "1/0, train_loss: 0.6739\n", + "1 epoch 26 average loss: 0.6739\n", + "saved new best metric model\n", + "current epoch: 26 current mean dice: 0.4584\n", + "best mean dice: 0.4584 at epoch: 26\n", + "----------\n", + "1: epoch 27/500\n", + "1/0, train_loss: 0.6690\n", + "1 epoch 27 average loss: 0.6690\n", + "----------\n", + "1: epoch 28/500\n", + "1/0, train_loss: 0.6672\n", + "1 epoch 28 average loss: 0.6672\n", + "saved new best metric model\n", + "current epoch: 28 current mean dice: 0.4611\n", + "best mean dice: 0.4611 at epoch: 28\n", + "----------\n", + "1: epoch 29/500\n", + "1/0, train_loss: 0.6676\n", + "1 epoch 29 average loss: 0.6676\n", + "----------\n", + "1: epoch 30/500\n", + "1/0, train_loss: 0.6670\n", + "1 epoch 30 average loss: 0.6670\n", + "saved new best metric model\n", + "current epoch: 30 current mean dice: 0.4624\n", + "best mean dice: 0.4624 at epoch: 30\n", + "----------\n", + "1: epoch 31/500\n", + "1/0, train_loss: 0.6655\n", + "1 epoch 31 average loss: 0.6655\n", + "----------\n", + "1: epoch 32/500\n", + "1/0, train_loss: 0.6616\n", + "1 epoch 32 average loss: 0.6616\n", + "saved new best metric model\n", + "current epoch: 32 current mean dice: 0.4670\n", + "best mean dice: 0.4670 at epoch: 32\n", + "----------\n", + "1: epoch 33/500\n", + "1/0, train_loss: 0.6628\n", + "1 epoch 33 average loss: 0.6628\n", + "----------\n", + "1: epoch 34/500\n", + "1/0, train_loss: 0.6610\n", + "1 epoch 34 average loss: 0.6610\n", + "saved new best metric model\n", + "current epoch: 34 current mean dice: 0.4704\n", + "best mean dice: 0.4704 at epoch: 34\n", + "----------\n", + "1: epoch 35/500\n", + "1/0, train_loss: 0.6590\n", + "1 epoch 35 average loss: 0.6590\n", + "----------\n", + "1: epoch 36/500\n", + "1/0, train_loss: 0.6608\n", + "1 epoch 36 average loss: 0.6608\n", + "current epoch: 36 current mean dice: 0.4677\n", + "best mean dice: 0.4704 at epoch: 34\n", + "----------\n", + "1: epoch 37/500\n", + "1/0, train_loss: 0.6584\n", + "1 epoch 37 average loss: 0.6584\n", + "----------\n", + "1: epoch 38/500\n", + "1/0, train_loss: 0.6582\n", + "1 epoch 38 average loss: 0.6582\n", + "saved new best metric model\n", + "current epoch: 38 current mean dice: 0.4798\n", + "best mean dice: 0.4798 at epoch: 38\n", + "----------\n", + "1: epoch 39/500\n", + "1/0, train_loss: 0.6554\n", + "1 epoch 39 average loss: 0.6554\n", + "----------\n", + "1: epoch 40/500\n", + "1/0, train_loss: 0.6525\n", + "1 epoch 40 average loss: 0.6525\n", + "saved new best metric model\n", + "current epoch: 40 current mean dice: 0.4799\n", + "best mean dice: 0.4799 at epoch: 40\n", + "----------\n", + "1: epoch 41/500\n", + "1/0, train_loss: 0.6538\n", + "1 epoch 41 average loss: 0.6538\n", + "----------\n", + "1: epoch 42/500\n", + "1/0, train_loss: 0.6529\n", + "1 epoch 42 average loss: 0.6529\n", + "current epoch: 42 current mean dice: 0.4754\n", + "best mean dice: 0.4799 at epoch: 40\n", + "----------\n", + "1: epoch 43/500\n", + "1/0, train_loss: 0.6521\n", + "1 epoch 43 average loss: 0.6521\n", + "----------\n", + "1: epoch 44/500\n", + "1/0, train_loss: 0.6506\n", + "1 epoch 44 average loss: 0.6506\n", + "saved new best metric model\n", + "current epoch: 44 current mean dice: 0.4914\n", + "best mean dice: 0.4914 at epoch: 44\n", + "----------\n", + "1: epoch 45/500\n", + "1/0, train_loss: 0.6478\n", + "1 epoch 45 average loss: 0.6478\n", + "----------\n", + "1: epoch 46/500\n", + "1/0, train_loss: 0.6430\n", + "1 epoch 46 average loss: 0.6430\n", + "current epoch: 46 current mean dice: 0.4905\n", + "best mean dice: 0.4914 at epoch: 44\n", + "----------\n", + "1: epoch 47/500\n", + "1/0, train_loss: 0.6424\n", + "1 epoch 47 average loss: 0.6424\n", + "----------\n", + "1: epoch 48/500\n", + "1/0, train_loss: 0.6395\n", + "1 epoch 48 average loss: 0.6395\n", + "saved new best metric model\n", + "current epoch: 48 current mean dice: 0.4968\n", + "best mean dice: 0.4968 at epoch: 48\n", + "----------\n", + "1: epoch 49/500\n", + "1/0, train_loss: 0.6417\n", + "1 epoch 49 average loss: 0.6417\n", + "----------\n", + "1: epoch 50/500\n", + "1/0, train_loss: 0.6388\n", + "1 epoch 50 average loss: 0.6388\n", + "current epoch: 50 current mean dice: 0.4895\n", + "best mean dice: 0.4968 at epoch: 48\n", + "----------\n", + "1: epoch 51/500\n", + "1/0, train_loss: 0.6395\n", + "1 epoch 51 average loss: 0.6395\n", + "----------\n", + "1: epoch 52/500\n", + "1/0, train_loss: 0.6355\n", + "1 epoch 52 average loss: 0.6355\n", + "current epoch: 52 current mean dice: 0.4891\n", + "best mean dice: 0.4968 at epoch: 48\n", + "----------\n", + "1: epoch 53/500\n", + "1/0, train_loss: 0.6336\n", + "1 epoch 53 average loss: 0.6336\n", + "----------\n", + "1: epoch 54/500\n", + "1/0, train_loss: 0.6287\n", + "1 epoch 54 average loss: 0.6287\n", + "saved new best metric model\n", + "current epoch: 54 current mean dice: 0.5048\n", + "best mean dice: 0.5048 at epoch: 54\n", + "----------\n", + "1: epoch 55/500\n", + "1/0, train_loss: 0.6326\n", + "1 epoch 55 average loss: 0.6326\n", + "----------\n", + "1: epoch 56/500\n", + "1/0, train_loss: 0.6278\n", + "1 epoch 56 average loss: 0.6278\n", + "saved new best metric model\n", + "current epoch: 56 current mean dice: 0.5056\n", + "best mean dice: 0.5056 at epoch: 56\n", + "----------\n", + "1: epoch 57/500\n", + "1/0, train_loss: 0.6281\n", + "1 epoch 57 average loss: 0.6281\n", + "----------\n", + "1: epoch 58/500\n", + "1/0, train_loss: 0.6250\n", + "1 epoch 58 average loss: 0.6250\n", + "current epoch: 58 current mean dice: 0.4960\n", + "best mean dice: 0.5056 at epoch: 56\n", + "----------\n", + "1: epoch 59/500\n", + "1/0, train_loss: 0.6267\n", + "1 epoch 59 average loss: 0.6267\n", + "----------\n", + "1: epoch 60/500\n", + "1/0, train_loss: 0.6215\n", + "1 epoch 60 average loss: 0.6215\n", + "saved new best metric model\n", + "current epoch: 60 current mean dice: 0.5131\n", + "best mean dice: 0.5131 at epoch: 60\n", + "----------\n", + "1: epoch 61/500\n", + "1/0, train_loss: 0.6211\n", + "1 epoch 61 average loss: 0.6211\n", + "----------\n", + "1: epoch 62/500\n", + "1/0, train_loss: 0.6172\n", + "1 epoch 62 average loss: 0.6172\n", + "saved new best metric model\n", + "current epoch: 62 current mean dice: 0.5149\n", + "best mean dice: 0.5149 at epoch: 62\n", + "----------\n", + "1: epoch 63/500\n", + "1/0, train_loss: 0.6188\n", + "1 epoch 63 average loss: 0.6188\n", + "----------\n", + "1: epoch 64/500\n", + "1/0, train_loss: 0.6198\n", + "1 epoch 64 average loss: 0.6198\n", + "current epoch: 64 current mean dice: 0.5072\n", + "best mean dice: 0.5149 at epoch: 62\n", + "----------\n", + "1: epoch 65/500\n", + "1/0, train_loss: 0.6186\n", + "1 epoch 65 average loss: 0.6186\n", + "----------\n", + "1: epoch 66/500\n", + "1/0, train_loss: 0.6162\n", + "1 epoch 66 average loss: 0.6162\n", + "current epoch: 66 current mean dice: 0.5053\n", + "best mean dice: 0.5149 at epoch: 62\n", + "----------\n", + "1: epoch 67/500\n", + "1/0, train_loss: 0.6171\n", + "1 epoch 67 average loss: 0.6171\n", + "----------\n", + "1: epoch 68/500\n", + "1/0, train_loss: 0.6127\n", + "1 epoch 68 average loss: 0.6127\n", + "saved new best metric model\n", + "current epoch: 68 current mean dice: 0.5164\n", + "best mean dice: 0.5164 at epoch: 68\n", + "----------\n", + "1: epoch 69/500\n", + "1/0, train_loss: 0.6121\n", + "1 epoch 69 average loss: 0.6121\n", + "----------\n", + "1: epoch 70/500\n", + "1/0, train_loss: 0.6129\n", + "1 epoch 70 average loss: 0.6129\n", + "saved new best metric model\n", + "current epoch: 70 current mean dice: 0.5184\n", + "best mean dice: 0.5184 at epoch: 70\n", + "----------\n", + "1: epoch 71/500\n", + "1/0, train_loss: 0.6112\n", + "1 epoch 71 average loss: 0.6112\n", + "----------\n", + "1: epoch 72/500\n", + "1/0, train_loss: 0.6079\n", + "1 epoch 72 average loss: 0.6079\n", + "current epoch: 72 current mean dice: 0.5146\n", + "best mean dice: 0.5184 at epoch: 70\n", + "----------\n", + "1: epoch 73/500\n", + "1/0, train_loss: 0.6098\n", + "1 epoch 73 average loss: 0.6098\n", + "----------\n", + "1: epoch 74/500\n", + "1/0, train_loss: 0.6069\n", + "1 epoch 74 average loss: 0.6069\n", + "saved new best metric model\n", + "current epoch: 74 current mean dice: 0.5185\n", + "best mean dice: 0.5185 at epoch: 74\n", + "----------\n", + "1: epoch 75/500\n", + "1/0, train_loss: 0.6060\n", + "1 epoch 75 average loss: 0.6060\n", + "----------\n", + "1: epoch 76/500\n", + "1/0, train_loss: 0.6040\n", + "1 epoch 76 average loss: 0.6040\n", + "saved new best metric model\n", + "current epoch: 76 current mean dice: 0.5195\n", + "best mean dice: 0.5195 at epoch: 76\n", + "----------\n", + "1: epoch 77/500\n", + "1/0, train_loss: 0.6050\n", + "1 epoch 77 average loss: 0.6050\n", + "----------\n", + "1: epoch 78/500\n", + "1/0, train_loss: 0.6010\n", + "1 epoch 78 average loss: 0.6010\n", + "saved new best metric model\n", + "current epoch: 78 current mean dice: 0.5393\n", + "best mean dice: 0.5393 at epoch: 78\n", + "----------\n", + "1: epoch 79/500\n", + "1/0, train_loss: 0.5974\n", + "1 epoch 79 average loss: 0.5974\n", + "----------\n", + "1: epoch 80/500\n", + "1/0, train_loss: 0.6019\n", + "1 epoch 80 average loss: 0.6019\n", + "current epoch: 80 current mean dice: 0.5277\n", + "best mean dice: 0.5393 at epoch: 78\n", + "----------\n", + "1: epoch 81/500\n", + "1/0, train_loss: 0.6033\n", + "1 epoch 81 average loss: 0.6033\n", + "----------\n", + "1: epoch 82/500\n", + "1/0, train_loss: 0.6043\n", + "1 epoch 82 average loss: 0.6043\n", + "current epoch: 82 current mean dice: 0.5234\n", + "best mean dice: 0.5393 at epoch: 78\n", + "----------\n", + "1: epoch 83/500\n", + "1/0, train_loss: 0.5991\n", + "1 epoch 83 average loss: 0.5991\n", + "----------\n", + "1: epoch 84/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.6002\n", + "1 epoch 84 average loss: 0.6002\n", + "current epoch: 84 current mean dice: 0.5114\n", + "best mean dice: 0.5393 at epoch: 78\n", + "----------\n", + "1: epoch 85/500\n", + "1/0, train_loss: 0.6011\n", + "1 epoch 85 average loss: 0.6011\n", + "----------\n", + "1: epoch 86/500\n", + "1/0, train_loss: 0.6045\n", + "1 epoch 86 average loss: 0.6045\n", + "current epoch: 86 current mean dice: 0.5246\n", + "best mean dice: 0.5393 at epoch: 78\n", + "----------\n", + "1: epoch 87/500\n", + "1/0, train_loss: 0.5962\n", + "1 epoch 87 average loss: 0.5962\n", + "----------\n", + "1: epoch 88/500\n", + "1/0, train_loss: 0.5950\n", + "1 epoch 88 average loss: 0.5950\n", + "current epoch: 88 current mean dice: 0.5292\n", + "best mean dice: 0.5393 at epoch: 78\n", + "----------\n", + "1: epoch 89/500\n", + "1/0, train_loss: 0.5974\n", + "1 epoch 89 average loss: 0.5974\n", + "----------\n", + "1: epoch 90/500\n", + "1/0, train_loss: 0.5924\n", + "1 epoch 90 average loss: 0.5924\n", + "saved new best metric model\n", + "current epoch: 90 current mean dice: 0.5466\n", + "best mean dice: 0.5466 at epoch: 90\n", + "----------\n", + "1: epoch 91/500\n", + "1/0, train_loss: 0.5920\n", + "1 epoch 91 average loss: 0.5920\n", + "----------\n", + "1: epoch 92/500\n", + "1/0, train_loss: 0.5921\n", + "1 epoch 92 average loss: 0.5921\n", + "saved new best metric model\n", + "current epoch: 92 current mean dice: 0.5504\n", + "best mean dice: 0.5504 at epoch: 92\n", + "----------\n", + "1: epoch 93/500\n", + "1/0, train_loss: 0.5901\n", + "1 epoch 93 average loss: 0.5901\n", + "----------\n", + "1: epoch 94/500\n", + "1/0, train_loss: 0.5903\n", + "1 epoch 94 average loss: 0.5903\n", + "current epoch: 94 current mean dice: 0.5230\n", + "best mean dice: 0.5504 at epoch: 92\n", + "----------\n", + "1: epoch 95/500\n", + "1/0, train_loss: 0.5869\n", + "1 epoch 95 average loss: 0.5869\n", + "----------\n", + "1: epoch 96/500\n", + "1/0, train_loss: 0.5979\n", + "1 epoch 96 average loss: 0.5979\n", + "current epoch: 96 current mean dice: 0.5366\n", + "best mean dice: 0.5504 at epoch: 92\n", + "----------\n", + "1: epoch 97/500\n", + "1/0, train_loss: 0.5912\n", + "1 epoch 97 average loss: 0.5912\n", + "----------\n", + "1: epoch 98/500\n", + "1/0, train_loss: 0.5918\n", + "1 epoch 98 average loss: 0.5918\n", + "current epoch: 98 current mean dice: 0.5293\n", + "best mean dice: 0.5504 at epoch: 92\n", + "----------\n", + "1: epoch 99/500\n", + "1/0, train_loss: 0.5897\n", + "1 epoch 99 average loss: 0.5897\n", + "----------\n", + "1: epoch 100/500\n", + "1/0, train_loss: 0.5910\n", + "1 epoch 100 average loss: 0.5910\n", + "current epoch: 100 current mean dice: 0.5251\n", + "best mean dice: 0.5504 at epoch: 92\n", + "----------\n", + "1: epoch 101/500\n", + "1/0, train_loss: 0.5886\n", + "1 epoch 101 average loss: 0.5886\n", + "----------\n", + "1: epoch 102/500\n", + "1/0, train_loss: 0.5863\n", + "1 epoch 102 average loss: 0.5863\n", + "current epoch: 102 current mean dice: 0.5374\n", + "best mean dice: 0.5504 at epoch: 92\n", + "----------\n", + "1: epoch 103/500\n", + "1/0, train_loss: 0.5854\n", + "1 epoch 103 average loss: 0.5854\n", + "----------\n", + "1: epoch 104/500\n", + "1/0, train_loss: 0.5846\n", + "1 epoch 104 average loss: 0.5846\n", + "current epoch: 104 current mean dice: 0.5381\n", + "best mean dice: 0.5504 at epoch: 92\n", + "----------\n", + "1: epoch 105/500\n", + "1/0, train_loss: 0.5878\n", + "1 epoch 105 average loss: 0.5878\n", + "----------\n", + "1: epoch 106/500\n", + "1/0, train_loss: 0.5844\n", + "1 epoch 106 average loss: 0.5844\n", + "current epoch: 106 current mean dice: 0.5427\n", + "best mean dice: 0.5504 at epoch: 92\n", + "----------\n", + "1: epoch 107/500\n", + "1/0, train_loss: 0.5830\n", + "1 epoch 107 average loss: 0.5830\n", + "----------\n", + "1: epoch 108/500\n", + "1/0, train_loss: 0.5832\n", + "1 epoch 108 average loss: 0.5832\n", + "current epoch: 108 current mean dice: 0.5225\n", + "best mean dice: 0.5504 at epoch: 92\n", + "----------\n", + "1: epoch 109/500\n", + "1/0, train_loss: 0.5858\n", + "1 epoch 109 average loss: 0.5858\n", + "----------\n", + "1: epoch 110/500\n", + "1/0, train_loss: 0.5817\n", + "1 epoch 110 average loss: 0.5817\n", + "current epoch: 110 current mean dice: 0.5389\n", + "best mean dice: 0.5504 at epoch: 92\n", + "----------\n", + "1: epoch 111/500\n", + "1/0, train_loss: 0.5825\n", + "1 epoch 111 average loss: 0.5825\n", + "----------\n", + "1: epoch 112/500\n", + "1/0, train_loss: 0.5785\n", + "1 epoch 112 average loss: 0.5785\n", + "current epoch: 112 current mean dice: 0.5290\n", + "best mean dice: 0.5504 at epoch: 92\n", + "----------\n", + "1: epoch 113/500\n", + "1/0, train_loss: 0.5827\n", + "1 epoch 113 average loss: 0.5827\n", + "----------\n", + "1: epoch 114/500\n", + "1/0, train_loss: 0.5810\n", + "1 epoch 114 average loss: 0.5810\n", + "current epoch: 114 current mean dice: 0.5328\n", + "best mean dice: 0.5504 at epoch: 92\n", + "----------\n", + "1: epoch 115/500\n", + "1/0, train_loss: 0.5809\n", + "1 epoch 115 average loss: 0.5809\n", + "----------\n", + "1: epoch 116/500\n", + "1/0, train_loss: 0.5783\n", + "1 epoch 116 average loss: 0.5783\n", + "saved new best metric model\n", + "current epoch: 116 current mean dice: 0.5537\n", + "best mean dice: 0.5537 at epoch: 116\n", + "----------\n", + "1: epoch 117/500\n", + "1/0, train_loss: 0.5832\n", + "1 epoch 117 average loss: 0.5832\n", + "----------\n", + "1: epoch 118/500\n", + "1/0, train_loss: 0.5762\n", + "1 epoch 118 average loss: 0.5762\n", + "current epoch: 118 current mean dice: 0.5375\n", + "best mean dice: 0.5537 at epoch: 116\n", + "----------\n", + "1: epoch 119/500\n", + "1/0, train_loss: 0.5807\n", + "1 epoch 119 average loss: 0.5807\n", + "----------\n", + "1: epoch 120/500\n", + "1/0, train_loss: 0.5766\n", + "1 epoch 120 average loss: 0.5766\n", + "current epoch: 120 current mean dice: 0.5275\n", + "best mean dice: 0.5537 at epoch: 116\n", + "----------\n", + "1: epoch 121/500\n", + "1/0, train_loss: 0.5787\n", + "1 epoch 121 average loss: 0.5787\n", + "----------\n", + "1: epoch 122/500\n", + "1/0, train_loss: 0.5783\n", + "1 epoch 122 average loss: 0.5783\n", + "current epoch: 122 current mean dice: 0.5333\n", + "best mean dice: 0.5537 at epoch: 116\n", + "----------\n", + "1: epoch 123/500\n", + "1/0, train_loss: 0.5777\n", + "1 epoch 123 average loss: 0.5777\n", + "----------\n", + "1: epoch 124/500\n", + "1/0, train_loss: 0.5778\n", + "1 epoch 124 average loss: 0.5778\n", + "current epoch: 124 current mean dice: 0.5421\n", + "best mean dice: 0.5537 at epoch: 116\n", + "----------\n", + "1: epoch 125/500\n", + "1/0, train_loss: 0.5692\n", + "1 epoch 125 average loss: 0.5692\n", + "----------\n", + "1: epoch 126/500\n", + "1/0, train_loss: 0.5682\n", + "1 epoch 126 average loss: 0.5682\n", + "current epoch: 126 current mean dice: 0.5425\n", + "best mean dice: 0.5537 at epoch: 116\n", + "----------\n", + "1: epoch 127/500\n", + "1/0, train_loss: 0.5708\n", + "1 epoch 127 average loss: 0.5708\n", + "----------\n", + "1: epoch 128/500\n", + "1/0, train_loss: 0.5678\n", + "1 epoch 128 average loss: 0.5678\n", + "saved new best metric model\n", + "current epoch: 128 current mean dice: 0.5580\n", + "best mean dice: 0.5580 at epoch: 128\n", + "----------\n", + "1: epoch 129/500\n", + "1/0, train_loss: 0.5676\n", + "1 epoch 129 average loss: 0.5676\n", + "----------\n", + "1: epoch 130/500\n", + "1/0, train_loss: 0.5680\n", + "1 epoch 130 average loss: 0.5680\n", + "current epoch: 130 current mean dice: 0.5486\n", + "best mean dice: 0.5580 at epoch: 128\n", + "----------\n", + "1: epoch 131/500\n", + "1/0, train_loss: 0.5646\n", + "1 epoch 131 average loss: 0.5646\n", + "----------\n", + "1: epoch 132/500\n", + "1/0, train_loss: 0.5663\n", + "1 epoch 132 average loss: 0.5663\n", + "current epoch: 132 current mean dice: 0.5515\n", + "best mean dice: 0.5580 at epoch: 128\n", + "----------\n", + "1: epoch 133/500\n", + "1/0, train_loss: 0.5668\n", + "1 epoch 133 average loss: 0.5668\n", + "----------\n", + "1: epoch 134/500\n", + "1/0, train_loss: 0.5646\n", + "1 epoch 134 average loss: 0.5646\n", + "current epoch: 134 current mean dice: 0.5467\n", + "best mean dice: 0.5580 at epoch: 128\n", + "----------\n", + "1: epoch 135/500\n", + "1/0, train_loss: 0.5574\n", + "1 epoch 135 average loss: 0.5574\n", + "----------\n", + "1: epoch 136/500\n", + "1/0, train_loss: 0.5654\n", + "1 epoch 136 average loss: 0.5654\n", + "saved new best metric model\n", + "current epoch: 136 current mean dice: 0.5613\n", + "best mean dice: 0.5613 at epoch: 136\n", + "----------\n", + "1: epoch 137/500\n", + "1/0, train_loss: 0.5569\n", + "1 epoch 137 average loss: 0.5569\n", + "----------\n", + "1: epoch 138/500\n", + "1/0, train_loss: 0.5604\n", + "1 epoch 138 average loss: 0.5604\n", + "saved new best metric model\n", + "current epoch: 138 current mean dice: 0.5709\n", + "best mean dice: 0.5709 at epoch: 138\n", + "----------\n", + "1: epoch 139/500\n", + "1/0, train_loss: 0.5604\n", + "1 epoch 139 average loss: 0.5604\n", + "----------\n", + "1: epoch 140/500\n", + "1/0, train_loss: 0.5566\n", + "1 epoch 140 average loss: 0.5566\n", + "saved new best metric model\n", + "current epoch: 140 current mean dice: 0.5719\n", + "best mean dice: 0.5719 at epoch: 140\n", + "----------\n", + "1: epoch 141/500\n", + "1/0, train_loss: 0.5593\n", + "1 epoch 141 average loss: 0.5593\n", + "----------\n", + "1: epoch 142/500\n", + "1/0, train_loss: 0.5550\n", + "1 epoch 142 average loss: 0.5550\n", + "saved new best metric model\n", + "current epoch: 142 current mean dice: 0.6442\n", + "best mean dice: 0.6442 at epoch: 142\n", + "----------\n", + "1: epoch 143/500\n", + "1/0, train_loss: 0.5565\n", + "1 epoch 143 average loss: 0.5565\n", + "----------\n", + "1: epoch 144/500\n", + "1/0, train_loss: 0.5590\n", + "1 epoch 144 average loss: 0.5590\n", + "current epoch: 144 current mean dice: 0.6006\n", + "best mean dice: 0.6442 at epoch: 142\n", + "----------\n", + "1: epoch 145/500\n", + "1/0, train_loss: 0.5553\n", + "1 epoch 145 average loss: 0.5553\n", + "----------\n", + "1: epoch 146/500\n", + "1/0, train_loss: 0.5550\n", + "1 epoch 146 average loss: 0.5550\n", + "current epoch: 146 current mean dice: 0.4930\n", + "best mean dice: 0.6442 at epoch: 142\n", + "----------\n", + "1: epoch 147/500\n", + "1/0, train_loss: 0.5654\n", + "1 epoch 147 average loss: 0.5654\n", + "----------\n", + "1: epoch 148/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.5500\n", + "1 epoch 148 average loss: 0.5500\n", + "current epoch: 148 current mean dice: 0.6097\n", + "best mean dice: 0.6442 at epoch: 142\n", + "----------\n", + "1: epoch 149/500\n", + "1/0, train_loss: 0.5597\n", + "1 epoch 149 average loss: 0.5597\n", + "----------\n", + "1: epoch 150/500\n", + "1/0, train_loss: 0.5462\n", + "1 epoch 150 average loss: 0.5462\n", + "current epoch: 150 current mean dice: 0.5345\n", + "best mean dice: 0.6442 at epoch: 142\n", + "----------\n", + "1: epoch 151/500\n", + "1/0, train_loss: 0.5571\n", + "1 epoch 151 average loss: 0.5571\n", + "----------\n", + "1: epoch 152/500\n", + "1/0, train_loss: 0.5513\n", + "1 epoch 152 average loss: 0.5513\n", + "saved new best metric model\n", + "current epoch: 152 current mean dice: 0.6497\n", + "best mean dice: 0.6497 at epoch: 152\n", + "----------\n", + "1: epoch 153/500\n", + "1/0, train_loss: 0.5464\n", + "1 epoch 153 average loss: 0.5464\n", + "----------\n", + "1: epoch 154/500\n", + "1/0, train_loss: 0.5448\n", + "1 epoch 154 average loss: 0.5448\n", + "current epoch: 154 current mean dice: 0.5849\n", + "best mean dice: 0.6497 at epoch: 152\n", + "----------\n", + "1: epoch 155/500\n", + "1/0, train_loss: 0.5416\n", + "1 epoch 155 average loss: 0.5416\n", + "----------\n", + "1: epoch 156/500\n", + "1/0, train_loss: 0.5493\n", + "1 epoch 156 average loss: 0.5493\n", + "current epoch: 156 current mean dice: 0.6211\n", + "best mean dice: 0.6497 at epoch: 152\n", + "----------\n", + "1: epoch 157/500\n", + "1/0, train_loss: 0.5459\n", + "1 epoch 157 average loss: 0.5459\n", + "----------\n", + "1: epoch 158/500\n", + "1/0, train_loss: 0.5366\n", + "1 epoch 158 average loss: 0.5366\n", + "current epoch: 158 current mean dice: 0.6117\n", + "best mean dice: 0.6497 at epoch: 152\n", + "----------\n", + "1: epoch 159/500\n", + "1/0, train_loss: 0.5373\n", + "1 epoch 159 average loss: 0.5373\n", + "----------\n", + "1: epoch 160/500\n", + "1/0, train_loss: 0.5452\n", + "1 epoch 160 average loss: 0.5452\n", + "current epoch: 160 current mean dice: 0.5932\n", + "best mean dice: 0.6497 at epoch: 152\n", + "----------\n", + "1: epoch 161/500\n", + "1/0, train_loss: 0.5343\n", + "1 epoch 161 average loss: 0.5343\n", + "----------\n", + "1: epoch 162/500\n", + "1/0, train_loss: 0.5386\n", + "1 epoch 162 average loss: 0.5386\n", + "current epoch: 162 current mean dice: 0.6317\n", + "best mean dice: 0.6497 at epoch: 152\n", + "----------\n", + "1: epoch 163/500\n", + "1/0, train_loss: 0.5390\n", + "1 epoch 163 average loss: 0.5390\n", + "----------\n", + "1: epoch 164/500\n", + "1/0, train_loss: 0.5364\n", + "1 epoch 164 average loss: 0.5364\n", + "saved new best metric model\n", + "current epoch: 164 current mean dice: 0.6534\n", + "best mean dice: 0.6534 at epoch: 164\n", + "----------\n", + "1: epoch 165/500\n", + "1/0, train_loss: 0.5337\n", + "1 epoch 165 average loss: 0.5337\n", + "----------\n", + "1: epoch 166/500\n", + "1/0, train_loss: 0.5340\n", + "1 epoch 166 average loss: 0.5340\n", + "current epoch: 166 current mean dice: 0.6462\n", + "best mean dice: 0.6534 at epoch: 164\n", + "----------\n", + "1: epoch 167/500\n", + "1/0, train_loss: 0.5300\n", + "1 epoch 167 average loss: 0.5300\n", + "----------\n", + "1: epoch 168/500\n", + "1/0, train_loss: 0.5296\n", + "1 epoch 168 average loss: 0.5296\n", + "current epoch: 168 current mean dice: 0.6478\n", + "best mean dice: 0.6534 at epoch: 164\n", + "----------\n", + "1: epoch 169/500\n", + "1/0, train_loss: 0.5317\n", + "1 epoch 169 average loss: 0.5317\n", + "----------\n", + "1: epoch 170/500\n", + "1/0, train_loss: 0.5298\n", + "1 epoch 170 average loss: 0.5298\n", + "current epoch: 170 current mean dice: 0.5491\n", + "best mean dice: 0.6534 at epoch: 164\n", + "----------\n", + "1: epoch 171/500\n", + "1/0, train_loss: 0.5449\n", + "1 epoch 171 average loss: 0.5449\n", + "----------\n", + "1: epoch 172/500\n", + "1/0, train_loss: 0.5719\n", + "1 epoch 172 average loss: 0.5719\n", + "current epoch: 172 current mean dice: 0.6076\n", + "best mean dice: 0.6534 at epoch: 164\n", + "----------\n", + "1: epoch 173/500\n", + "1/0, train_loss: 0.5758\n", + "1 epoch 173 average loss: 0.5758\n", + "----------\n", + "1: epoch 174/500\n", + "1/0, train_loss: 0.5622\n", + "1 epoch 174 average loss: 0.5622\n", + "current epoch: 174 current mean dice: 0.6207\n", + "best mean dice: 0.6534 at epoch: 164\n", + "----------\n", + "1: epoch 175/500\n", + "1/0, train_loss: 0.5369\n", + "1 epoch 175 average loss: 0.5369\n", + "----------\n", + "1: epoch 176/500\n", + "1/0, train_loss: 0.5478\n", + "1 epoch 176 average loss: 0.5478\n", + "current epoch: 176 current mean dice: 0.5266\n", + "best mean dice: 0.6534 at epoch: 164\n", + "----------\n", + "1: epoch 177/500\n", + "1/0, train_loss: 0.5437\n", + "1 epoch 177 average loss: 0.5437\n", + "----------\n", + "1: epoch 178/500\n", + "1/0, train_loss: 0.5496\n", + "1 epoch 178 average loss: 0.5496\n", + "current epoch: 178 current mean dice: 0.6189\n", + "best mean dice: 0.6534 at epoch: 164\n", + "----------\n", + "1: epoch 179/500\n", + "1/0, train_loss: 0.5428\n", + "1 epoch 179 average loss: 0.5428\n", + "----------\n", + "1: epoch 180/500\n", + "1/0, train_loss: 0.5436\n", + "1 epoch 180 average loss: 0.5436\n", + "current epoch: 180 current mean dice: 0.6322\n", + "best mean dice: 0.6534 at epoch: 164\n", + "----------\n", + "1: epoch 181/500\n", + "1/0, train_loss: 0.5346\n", + "1 epoch 181 average loss: 0.5346\n", + "----------\n", + "1: epoch 182/500\n", + "1/0, train_loss: 0.5364\n", + "1 epoch 182 average loss: 0.5364\n", + "current epoch: 182 current mean dice: 0.6017\n", + "best mean dice: 0.6534 at epoch: 164\n", + "----------\n", + "1: epoch 183/500\n", + "1/0, train_loss: 0.5286\n", + "1 epoch 183 average loss: 0.5286\n", + "----------\n", + "1: epoch 184/500\n", + "1/0, train_loss: 0.5300\n", + "1 epoch 184 average loss: 0.5300\n", + "current epoch: 184 current mean dice: 0.6215\n", + "best mean dice: 0.6534 at epoch: 164\n", + "----------\n", + "1: epoch 185/500\n", + "1/0, train_loss: 0.5318\n", + "1 epoch 185 average loss: 0.5318\n", + "----------\n", + "1: epoch 186/500\n", + "1/0, train_loss: 0.5259\n", + "1 epoch 186 average loss: 0.5259\n", + "current epoch: 186 current mean dice: 0.5838\n", + "best mean dice: 0.6534 at epoch: 164\n", + "----------\n", + "1: epoch 187/500\n", + "1/0, train_loss: 0.5304\n", + "1 epoch 187 average loss: 0.5304\n", + "----------\n", + "1: epoch 188/500\n", + "1/0, train_loss: 0.5254\n", + "1 epoch 188 average loss: 0.5254\n", + "current epoch: 188 current mean dice: 0.6171\n", + "best mean dice: 0.6534 at epoch: 164\n", + "----------\n", + "1: epoch 189/500\n", + "1/0, train_loss: 0.5303\n", + "1 epoch 189 average loss: 0.5303\n", + "----------\n", + "1: epoch 190/500\n", + "1/0, train_loss: 0.5216\n", + "1 epoch 190 average loss: 0.5216\n", + "current epoch: 190 current mean dice: 0.6386\n", + "best mean dice: 0.6534 at epoch: 164\n", + "----------\n", + "1: epoch 191/500\n", + "1/0, train_loss: 0.5178\n", + "1 epoch 191 average loss: 0.5178\n", + "----------\n", + "1: epoch 192/500\n", + "1/0, train_loss: 0.5173\n", + "1 epoch 192 average loss: 0.5173\n", + "current epoch: 192 current mean dice: 0.6300\n", + "best mean dice: 0.6534 at epoch: 164\n", + "----------\n", + "1: epoch 193/500\n", + "1/0, train_loss: 0.5214\n", + "1 epoch 193 average loss: 0.5214\n", + "----------\n", + "1: epoch 194/500\n", + "1/0, train_loss: 0.5176\n", + "1 epoch 194 average loss: 0.5176\n", + "current epoch: 194 current mean dice: 0.6314\n", + "best mean dice: 0.6534 at epoch: 164\n", + "----------\n", + "1: epoch 195/500\n", + "1/0, train_loss: 0.5129\n", + "1 epoch 195 average loss: 0.5129\n", + "----------\n", + "1: epoch 196/500\n", + "1/0, train_loss: 0.5145\n", + "1 epoch 196 average loss: 0.5145\n", + "current epoch: 196 current mean dice: 0.6318\n", + "best mean dice: 0.6534 at epoch: 164\n", + "----------\n", + "1: epoch 197/500\n", + "1/0, train_loss: 0.5152\n", + "1 epoch 197 average loss: 0.5152\n", + "----------\n", + "1: epoch 198/500\n", + "1/0, train_loss: 0.5138\n", + "1 epoch 198 average loss: 0.5138\n", + "saved new best metric model\n", + "current epoch: 198 current mean dice: 0.6628\n", + "best mean dice: 0.6628 at epoch: 198\n", + "----------\n", + "1: epoch 199/500\n", + "1/0, train_loss: 0.5174\n", + "1 epoch 199 average loss: 0.5174\n", + "----------\n", + "1: epoch 200/500\n", + "1/0, train_loss: 0.5098\n", + "1 epoch 200 average loss: 0.5098\n", + "current epoch: 200 current mean dice: 0.6618\n", + "best mean dice: 0.6628 at epoch: 198\n", + "----------\n", + "1: epoch 201/500\n", + "1/0, train_loss: 0.5103\n", + "1 epoch 201 average loss: 0.5103\n", + "----------\n", + "1: epoch 202/500\n", + "1/0, train_loss: 0.5080\n", + "1 epoch 202 average loss: 0.5080\n", + "current epoch: 202 current mean dice: 0.6444\n", + "best mean dice: 0.6628 at epoch: 198\n", + "----------\n", + "1: epoch 203/500\n", + "1/0, train_loss: 0.5118\n", + "1 epoch 203 average loss: 0.5118\n", + "----------\n", + "1: epoch 204/500\n", + "1/0, train_loss: 0.5081\n", + "1 epoch 204 average loss: 0.5081\n", + "current epoch: 204 current mean dice: 0.6567\n", + "best mean dice: 0.6628 at epoch: 198\n", + "----------\n", + "1: epoch 205/500\n", + "1/0, train_loss: 0.5082\n", + "1 epoch 205 average loss: 0.5082\n", + "----------\n", + "1: epoch 206/500\n", + "1/0, train_loss: 0.5071\n", + "1 epoch 206 average loss: 0.5071\n", + "current epoch: 206 current mean dice: 0.6285\n", + "best mean dice: 0.6628 at epoch: 198\n", + "----------\n", + "1: epoch 207/500\n", + "1/0, train_loss: 0.5099\n", + "1 epoch 207 average loss: 0.5099\n", + "----------\n", + "1: epoch 208/500\n", + "1/0, train_loss: 0.5068\n", + "1 epoch 208 average loss: 0.5068\n", + "current epoch: 208 current mean dice: 0.6569\n", + "best mean dice: 0.6628 at epoch: 198\n", + "----------\n", + "1: epoch 209/500\n", + "1/0, train_loss: 0.5054\n", + "1 epoch 209 average loss: 0.5054\n", + "----------\n", + "1: epoch 210/500\n", + "1/0, train_loss: 0.5079\n", + "1 epoch 210 average loss: 0.5079\n", + "current epoch: 210 current mean dice: 0.6500\n", + "best mean dice: 0.6628 at epoch: 198\n", + "----------\n", + "1: epoch 211/500\n", + "1/0, train_loss: 0.5026\n", + "1 epoch 211 average loss: 0.5026\n", + "----------\n", + "1: epoch 212/500\n", + "1/0, train_loss: 0.5005\n", + "1 epoch 212 average loss: 0.5005\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "current epoch: 212 current mean dice: 0.6435\n", + "best mean dice: 0.6628 at epoch: 198\n", + "----------\n", + "1: epoch 213/500\n", + "1/0, train_loss: 0.5048\n", + "1 epoch 213 average loss: 0.5048\n", + "----------\n", + "1: epoch 214/500\n", + "1/0, train_loss: 0.5087\n", + "1 epoch 214 average loss: 0.5087\n", + "current epoch: 214 current mean dice: 0.6563\n", + "best mean dice: 0.6628 at epoch: 198\n", + "----------\n", + "1: epoch 215/500\n", + "1/0, train_loss: 0.5038\n", + "1 epoch 215 average loss: 0.5038\n", + "----------\n", + "1: epoch 216/500\n", + "1/0, train_loss: 0.5033\n", + "1 epoch 216 average loss: 0.5033\n", + "current epoch: 216 current mean dice: 0.6462\n", + "best mean dice: 0.6628 at epoch: 198\n", + "----------\n", + "1: epoch 217/500\n", + "1/0, train_loss: 0.5067\n", + "1 epoch 217 average loss: 0.5067\n", + "----------\n", + "1: epoch 218/500\n", + "1/0, train_loss: 0.5012\n", + "1 epoch 218 average loss: 0.5012\n", + "current epoch: 218 current mean dice: 0.6476\n", + "best mean dice: 0.6628 at epoch: 198\n", + "----------\n", + "1: epoch 219/500\n", + "1/0, train_loss: 0.5037\n", + "1 epoch 219 average loss: 0.5037\n", + "----------\n", + "1: epoch 220/500\n", + "1/0, train_loss: 0.5039\n", + "1 epoch 220 average loss: 0.5039\n", + "current epoch: 220 current mean dice: 0.6448\n", + "best mean dice: 0.6628 at epoch: 198\n", + "----------\n", + "1: epoch 221/500\n", + "1/0, train_loss: 0.5002\n", + "1 epoch 221 average loss: 0.5002\n", + "----------\n", + "1: epoch 222/500\n", + "1/0, train_loss: 0.4997\n", + "1 epoch 222 average loss: 0.4997\n", + "current epoch: 222 current mean dice: 0.6379\n", + "best mean dice: 0.6628 at epoch: 198\n", + "----------\n", + "1: epoch 223/500\n", + "1/0, train_loss: 0.5026\n", + "1 epoch 223 average loss: 0.5026\n", + "----------\n", + "1: epoch 224/500\n", + "1/0, train_loss: 0.4974\n", + "1 epoch 224 average loss: 0.4974\n", + "current epoch: 224 current mean dice: 0.6332\n", + "best mean dice: 0.6628 at epoch: 198\n", + "----------\n", + "1: epoch 225/500\n", + "1/0, train_loss: 0.4980\n", + "1 epoch 225 average loss: 0.4980\n", + "----------\n", + "1: epoch 226/500\n", + "1/0, train_loss: 0.4969\n", + "1 epoch 226 average loss: 0.4969\n", + "current epoch: 226 current mean dice: 0.6536\n", + "best mean dice: 0.6628 at epoch: 198\n", + "----------\n", + "1: epoch 227/500\n", + "1/0, train_loss: 0.4964\n", + "1 epoch 227 average loss: 0.4964\n", + "----------\n", + "1: epoch 228/500\n", + "1/0, train_loss: 0.4969\n", + "1 epoch 228 average loss: 0.4969\n", + "current epoch: 228 current mean dice: 0.6445\n", + "best mean dice: 0.6628 at epoch: 198\n", + "----------\n", + "1: epoch 229/500\n", + "1/0, train_loss: 0.4962\n", + "1 epoch 229 average loss: 0.4962\n", + "----------\n", + "1: epoch 230/500\n", + "1/0, train_loss: 0.4968\n", + "1 epoch 230 average loss: 0.4968\n", + "current epoch: 230 current mean dice: 0.6566\n", + "best mean dice: 0.6628 at epoch: 198\n", + "----------\n", + "1: epoch 231/500\n", + "1/0, train_loss: 0.4937\n", + "1 epoch 231 average loss: 0.4937\n", + "----------\n", + "1: epoch 232/500\n", + "1/0, train_loss: 0.4919\n", + "1 epoch 232 average loss: 0.4919\n", + "current epoch: 232 current mean dice: 0.6602\n", + "best mean dice: 0.6628 at epoch: 198\n", + "----------\n", + "1: epoch 233/500\n", + "1/0, train_loss: 0.4950\n", + "1 epoch 233 average loss: 0.4950\n", + "----------\n", + "1: epoch 234/500\n", + "1/0, train_loss: 0.4921\n", + "1 epoch 234 average loss: 0.4921\n", + "current epoch: 234 current mean dice: 0.6545\n", + "best mean dice: 0.6628 at epoch: 198\n", + "----------\n", + "1: epoch 235/500\n", + "1/0, train_loss: 0.4883\n", + "1 epoch 235 average loss: 0.4883\n", + "----------\n", + "1: epoch 236/500\n", + "1/0, train_loss: 0.5018\n", + "1 epoch 236 average loss: 0.5018\n", + "saved new best metric model\n", + "current epoch: 236 current mean dice: 0.6862\n", + "best mean dice: 0.6862 at epoch: 236\n", + "----------\n", + "1: epoch 237/500\n", + "1/0, train_loss: 0.4881\n", + "1 epoch 237 average loss: 0.4881\n", + "----------\n", + "1: epoch 238/500\n", + "1/0, train_loss: 0.4934\n", + "1 epoch 238 average loss: 0.4934\n", + "current epoch: 238 current mean dice: 0.6849\n", + "best mean dice: 0.6862 at epoch: 236\n", + "----------\n", + "1: epoch 239/500\n", + "1/0, train_loss: 0.4937\n", + "1 epoch 239 average loss: 0.4937\n", + "----------\n", + "1: epoch 240/500\n", + "1/0, train_loss: 0.4909\n", + "1 epoch 240 average loss: 0.4909\n", + "current epoch: 240 current mean dice: 0.6713\n", + "best mean dice: 0.6862 at epoch: 236\n", + "----------\n", + "1: epoch 241/500\n", + "1/0, train_loss: 0.4911\n", + "1 epoch 241 average loss: 0.4911\n", + "----------\n", + "1: epoch 242/500\n", + "1/0, train_loss: 0.4887\n", + "1 epoch 242 average loss: 0.4887\n", + "saved new best metric model\n", + "current epoch: 242 current mean dice: 0.7016\n", + "best mean dice: 0.7016 at epoch: 242\n", + "----------\n", + "1: epoch 243/500\n", + "1/0, train_loss: 0.4883\n", + "1 epoch 243 average loss: 0.4883\n", + "----------\n", + "1: epoch 244/500\n", + "1/0, train_loss: 0.4879\n", + "1 epoch 244 average loss: 0.4879\n", + "current epoch: 244 current mean dice: 0.6330\n", + "best mean dice: 0.7016 at epoch: 242\n", + "----------\n", + "1: epoch 245/500\n", + "1/0, train_loss: 0.4906\n", + "1 epoch 245 average loss: 0.4906\n", + "----------\n", + "1: epoch 246/500\n", + "1/0, train_loss: 0.4869\n", + "1 epoch 246 average loss: 0.4869\n", + "current epoch: 246 current mean dice: 0.6713\n", + "best mean dice: 0.7016 at epoch: 242\n", + "----------\n", + "1: epoch 247/500\n", + "1/0, train_loss: 0.4895\n", + "1 epoch 247 average loss: 0.4895\n", + "----------\n", + "1: epoch 248/500\n", + "1/0, train_loss: 0.4861\n", + "1 epoch 248 average loss: 0.4861\n", + "saved new best metric model\n", + "current epoch: 248 current mean dice: 0.7051\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 249/500\n", + "1/0, train_loss: 0.4901\n", + "1 epoch 249 average loss: 0.4901\n", + "----------\n", + "1: epoch 250/500\n", + "1/0, train_loss: 0.4861\n", + "1 epoch 250 average loss: 0.4861\n", + "current epoch: 250 current mean dice: 0.6890\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 251/500\n", + "1/0, train_loss: 0.4873\n", + "1 epoch 251 average loss: 0.4873\n", + "----------\n", + "1: epoch 252/500\n", + "1/0, train_loss: 0.4867\n", + "1 epoch 252 average loss: 0.4867\n", + "current epoch: 252 current mean dice: 0.6810\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 253/500\n", + "1/0, train_loss: 0.4854\n", + "1 epoch 253 average loss: 0.4854\n", + "----------\n", + "1: epoch 254/500\n", + "1/0, train_loss: 0.4844\n", + "1 epoch 254 average loss: 0.4844\n", + "current epoch: 254 current mean dice: 0.6415\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 255/500\n", + "1/0, train_loss: 0.4862\n", + "1 epoch 255 average loss: 0.4862\n", + "----------\n", + "1: epoch 256/500\n", + "1/0, train_loss: 0.4844\n", + "1 epoch 256 average loss: 0.4844\n", + "current epoch: 256 current mean dice: 0.6598\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 257/500\n", + "1/0, train_loss: 0.4844\n", + "1 epoch 257 average loss: 0.4844\n", + "----------\n", + "1: epoch 258/500\n", + "1/0, train_loss: 0.4812\n", + "1 epoch 258 average loss: 0.4812\n", + "current epoch: 258 current mean dice: 0.6250\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 259/500\n", + "1/0, train_loss: 0.4843\n", + "1 epoch 259 average loss: 0.4843\n", + "----------\n", + "1: epoch 260/500\n", + "1/0, train_loss: 0.4852\n", + "1 epoch 260 average loss: 0.4852\n", + "current epoch: 260 current mean dice: 0.6856\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 261/500\n", + "1/0, train_loss: 0.4772\n", + "1 epoch 261 average loss: 0.4772\n", + "----------\n", + "1: epoch 262/500\n", + "1/0, train_loss: 0.4826\n", + "1 epoch 262 average loss: 0.4826\n", + "current epoch: 262 current mean dice: 0.6745\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 263/500\n", + "1/0, train_loss: 0.4811\n", + "1 epoch 263 average loss: 0.4811\n", + "----------\n", + "1: epoch 264/500\n", + "1/0, train_loss: 0.4820\n", + "1 epoch 264 average loss: 0.4820\n", + "current epoch: 264 current mean dice: 0.6817\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 265/500\n", + "1/0, train_loss: 0.4796\n", + "1 epoch 265 average loss: 0.4796\n", + "----------\n", + "1: epoch 266/500\n", + "1/0, train_loss: 0.4815\n", + "1 epoch 266 average loss: 0.4815\n", + "current epoch: 266 current mean dice: 0.6969\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 267/500\n", + "1/0, train_loss: 0.4789\n", + "1 epoch 267 average loss: 0.4789\n", + "----------\n", + "1: epoch 268/500\n", + "1/0, train_loss: 0.4805\n", + "1 epoch 268 average loss: 0.4805\n", + "current epoch: 268 current mean dice: 0.6824\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 269/500\n", + "1/0, train_loss: 0.4781\n", + "1 epoch 269 average loss: 0.4781\n", + "----------\n", + "1: epoch 270/500\n", + "1/0, train_loss: 0.4829\n", + "1 epoch 270 average loss: 0.4829\n", + "current epoch: 270 current mean dice: 0.6630\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 271/500\n", + "1/0, train_loss: 0.4777\n", + "1 epoch 271 average loss: 0.4777\n", + "----------\n", + "1: epoch 272/500\n", + "1/0, train_loss: 0.4761\n", + "1 epoch 272 average loss: 0.4761\n", + "current epoch: 272 current mean dice: 0.6859\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 273/500\n", + "1/0, train_loss: 0.4804\n", + "1 epoch 273 average loss: 0.4804\n", + "----------\n", + "1: epoch 274/500\n", + "1/0, train_loss: 0.4789\n", + "1 epoch 274 average loss: 0.4789\n", + "current epoch: 274 current mean dice: 0.6854\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 275/500\n", + "1/0, train_loss: 0.4782\n", + "1 epoch 275 average loss: 0.4782\n", + "----------\n", + "1: epoch 276/500\n", + "1/0, train_loss: 0.4775\n", + "1 epoch 276 average loss: 0.4775\n", + "current epoch: 276 current mean dice: 0.6477\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 277/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.4797\n", + "1 epoch 277 average loss: 0.4797\n", + "----------\n", + "1: epoch 278/500\n", + "1/0, train_loss: 0.4736\n", + "1 epoch 278 average loss: 0.4736\n", + "current epoch: 278 current mean dice: 0.6980\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 279/500\n", + "1/0, train_loss: 0.4753\n", + "1 epoch 279 average loss: 0.4753\n", + "----------\n", + "1: epoch 280/500\n", + "1/0, train_loss: 0.4787\n", + "1 epoch 280 average loss: 0.4787\n", + "current epoch: 280 current mean dice: 0.6882\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 281/500\n", + "1/0, train_loss: 0.4770\n", + "1 epoch 281 average loss: 0.4770\n", + "----------\n", + "1: epoch 282/500\n", + "1/0, train_loss: 0.4753\n", + "1 epoch 282 average loss: 0.4753\n", + "current epoch: 282 current mean dice: 0.6636\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 283/500\n", + "1/0, train_loss: 0.4806\n", + "1 epoch 283 average loss: 0.4806\n", + "----------\n", + "1: epoch 284/500\n", + "1/0, train_loss: 0.4739\n", + "1 epoch 284 average loss: 0.4739\n", + "current epoch: 284 current mean dice: 0.6798\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 285/500\n", + "1/0, train_loss: 0.4766\n", + "1 epoch 285 average loss: 0.4766\n", + "----------\n", + "1: epoch 286/500\n", + "1/0, train_loss: 0.4745\n", + "1 epoch 286 average loss: 0.4745\n", + "current epoch: 286 current mean dice: 0.6596\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 287/500\n", + "1/0, train_loss: 0.4721\n", + "1 epoch 287 average loss: 0.4721\n", + "----------\n", + "1: epoch 288/500\n", + "1/0, train_loss: 0.4684\n", + "1 epoch 288 average loss: 0.4684\n", + "current epoch: 288 current mean dice: 0.6480\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 289/500\n", + "1/0, train_loss: 0.4703\n", + "1 epoch 289 average loss: 0.4703\n", + "----------\n", + "1: epoch 290/500\n", + "1/0, train_loss: 0.4730\n", + "1 epoch 290 average loss: 0.4730\n", + "current epoch: 290 current mean dice: 0.6745\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 291/500\n", + "1/0, train_loss: 0.4725\n", + "1 epoch 291 average loss: 0.4725\n", + "----------\n", + "1: epoch 292/500\n", + "1/0, train_loss: 0.4715\n", + "1 epoch 292 average loss: 0.4715\n", + "current epoch: 292 current mean dice: 0.6659\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 293/500\n", + "1/0, train_loss: 0.4703\n", + "1 epoch 293 average loss: 0.4703\n", + "----------\n", + "1: epoch 294/500\n", + "1/0, train_loss: 0.4733\n", + "1 epoch 294 average loss: 0.4733\n", + "current epoch: 294 current mean dice: 0.6551\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 295/500\n", + "1/0, train_loss: 0.4718\n", + "1 epoch 295 average loss: 0.4718\n", + "----------\n", + "1: epoch 296/500\n", + "1/0, train_loss: 0.4721\n", + "1 epoch 296 average loss: 0.4721\n", + "current epoch: 296 current mean dice: 0.6558\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 297/500\n", + "1/0, train_loss: 0.4704\n", + "1 epoch 297 average loss: 0.4704\n", + "----------\n", + "1: epoch 298/500\n", + "1/0, train_loss: 0.4686\n", + "1 epoch 298 average loss: 0.4686\n", + "current epoch: 298 current mean dice: 0.6818\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 299/500\n", + "1/0, train_loss: 0.4708\n", + "1 epoch 299 average loss: 0.4708\n", + "----------\n", + "1: epoch 300/500\n", + "1/0, train_loss: 0.4661\n", + "1 epoch 300 average loss: 0.4661\n", + "current epoch: 300 current mean dice: 0.6938\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 301/500\n", + "1/0, train_loss: 0.4705\n", + "1 epoch 301 average loss: 0.4705\n", + "----------\n", + "1: epoch 302/500\n", + "1/0, train_loss: 0.4666\n", + "1 epoch 302 average loss: 0.4666\n", + "current epoch: 302 current mean dice: 0.5685\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 303/500\n", + "1/0, train_loss: 0.4691\n", + "1 epoch 303 average loss: 0.4691\n", + "----------\n", + "1: epoch 304/500\n", + "1/0, train_loss: 0.4637\n", + "1 epoch 304 average loss: 0.4637\n", + "current epoch: 304 current mean dice: 0.5549\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 305/500\n", + "1/0, train_loss: 0.4691\n", + "1 epoch 305 average loss: 0.4691\n", + "----------\n", + "1: epoch 306/500\n", + "1/0, train_loss: 0.4639\n", + "1 epoch 306 average loss: 0.4639\n", + "current epoch: 306 current mean dice: 0.6633\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 307/500\n", + "1/0, train_loss: 0.4639\n", + "1 epoch 307 average loss: 0.4639\n", + "----------\n", + "1: epoch 308/500\n", + "1/0, train_loss: 0.4644\n", + "1 epoch 308 average loss: 0.4644\n", + "current epoch: 308 current mean dice: 0.6927\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 309/500\n", + "1/0, train_loss: 0.4656\n", + "1 epoch 309 average loss: 0.4656\n", + "----------\n", + "1: epoch 310/500\n", + "1/0, train_loss: 0.4634\n", + "1 epoch 310 average loss: 0.4634\n", + "current epoch: 310 current mean dice: 0.6853\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 311/500\n", + "1/0, train_loss: 0.4670\n", + "1 epoch 311 average loss: 0.4670\n", + "----------\n", + "1: epoch 312/500\n", + "1/0, train_loss: 0.4651\n", + "1 epoch 312 average loss: 0.4651\n", + "current epoch: 312 current mean dice: 0.6558\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 313/500\n", + "1/0, train_loss: 0.4637\n", + "1 epoch 313 average loss: 0.4637\n", + "----------\n", + "1: epoch 314/500\n", + "1/0, train_loss: 0.4635\n", + "1 epoch 314 average loss: 0.4635\n", + "current epoch: 314 current mean dice: 0.6627\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 315/500\n", + "1/0, train_loss: 0.4635\n", + "1 epoch 315 average loss: 0.4635\n", + "----------\n", + "1: epoch 316/500\n", + "1/0, train_loss: 0.4631\n", + "1 epoch 316 average loss: 0.4631\n", + "current epoch: 316 current mean dice: 0.6580\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 317/500\n", + "1/0, train_loss: 0.4637\n", + "1 epoch 317 average loss: 0.4637\n", + "----------\n", + "1: epoch 318/500\n", + "1/0, train_loss: 0.4630\n", + "1 epoch 318 average loss: 0.4630\n", + "current epoch: 318 current mean dice: 0.6564\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 319/500\n", + "1/0, train_loss: 0.4652\n", + "1 epoch 319 average loss: 0.4652\n", + "----------\n", + "1: epoch 320/500\n", + "1/0, train_loss: 0.4634\n", + "1 epoch 320 average loss: 0.4634\n", + "current epoch: 320 current mean dice: 0.6676\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 321/500\n", + "1/0, train_loss: 0.4595\n", + "1 epoch 321 average loss: 0.4595\n", + "----------\n", + "1: epoch 322/500\n", + "1/0, train_loss: 0.4625\n", + "1 epoch 322 average loss: 0.4625\n", + "current epoch: 322 current mean dice: 0.6791\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 323/500\n", + "1/0, train_loss: 0.4646\n", + "1 epoch 323 average loss: 0.4646\n", + "----------\n", + "1: epoch 324/500\n", + "1/0, train_loss: 0.4599\n", + "1 epoch 324 average loss: 0.4599\n", + "current epoch: 324 current mean dice: 0.6858\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 325/500\n", + "1/0, train_loss: 0.4604\n", + "1 epoch 325 average loss: 0.4604\n", + "----------\n", + "1: epoch 326/500\n", + "1/0, train_loss: 0.4615\n", + "1 epoch 326 average loss: 0.4615\n", + "current epoch: 326 current mean dice: 0.6688\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 327/500\n", + "1/0, train_loss: 0.4606\n", + "1 epoch 327 average loss: 0.4606\n", + "----------\n", + "1: epoch 328/500\n", + "1/0, train_loss: 0.4536\n", + "1 epoch 328 average loss: 0.4536\n", + "current epoch: 328 current mean dice: 0.5728\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 329/500\n", + "1/0, train_loss: 0.4635\n", + "1 epoch 329 average loss: 0.4635\n", + "----------\n", + "1: epoch 330/500\n", + "1/0, train_loss: 0.4601\n", + "1 epoch 330 average loss: 0.4601\n", + "current epoch: 330 current mean dice: 0.6546\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 331/500\n", + "1/0, train_loss: 0.4603\n", + "1 epoch 331 average loss: 0.4603\n", + "----------\n", + "1: epoch 332/500\n", + "1/0, train_loss: 0.4607\n", + "1 epoch 332 average loss: 0.4607\n", + "current epoch: 332 current mean dice: 0.6771\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 333/500\n", + "1/0, train_loss: 0.4558\n", + "1 epoch 333 average loss: 0.4558\n", + "----------\n", + "1: epoch 334/500\n", + "1/0, train_loss: 0.4556\n", + "1 epoch 334 average loss: 0.4556\n", + "current epoch: 334 current mean dice: 0.6809\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 335/500\n", + "1/0, train_loss: 0.4570\n", + "1 epoch 335 average loss: 0.4570\n", + "----------\n", + "1: epoch 336/500\n", + "1/0, train_loss: 0.4596\n", + "1 epoch 336 average loss: 0.4596\n", + "current epoch: 336 current mean dice: 0.6775\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 337/500\n", + "1/0, train_loss: 0.4570\n", + "1 epoch 337 average loss: 0.4570\n", + "----------\n", + "1: epoch 338/500\n", + "1/0, train_loss: 0.4527\n", + "1 epoch 338 average loss: 0.4527\n", + "current epoch: 338 current mean dice: 0.6746\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 339/500\n", + "1/0, train_loss: 0.4577\n", + "1 epoch 339 average loss: 0.4577\n", + "----------\n", + "1: epoch 340/500\n", + "1/0, train_loss: 0.4594\n", + "1 epoch 340 average loss: 0.4594\n", + "current epoch: 340 current mean dice: 0.6664\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 341/500\n", + "1/0, train_loss: 0.4583\n", + "1 epoch 341 average loss: 0.4583\n", + "----------\n", + "1: epoch 342/500\n", + "1/0, train_loss: 0.4546\n", + "1 epoch 342 average loss: 0.4546\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "current epoch: 342 current mean dice: 0.6665\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 343/500\n", + "1/0, train_loss: 0.4552\n", + "1 epoch 343 average loss: 0.4552\n", + "----------\n", + "1: epoch 344/500\n", + "1/0, train_loss: 0.4543\n", + "1 epoch 344 average loss: 0.4543\n", + "current epoch: 344 current mean dice: 0.6764\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 345/500\n", + "1/0, train_loss: 0.4538\n", + "1 epoch 345 average loss: 0.4538\n", + "----------\n", + "1: epoch 346/500\n", + "1/0, train_loss: 0.4542\n", + "1 epoch 346 average loss: 0.4542\n", + "current epoch: 346 current mean dice: 0.6854\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 347/500\n", + "1/0, train_loss: 0.4556\n", + "1 epoch 347 average loss: 0.4556\n", + "----------\n", + "1: epoch 348/500\n", + "1/0, train_loss: 0.4514\n", + "1 epoch 348 average loss: 0.4514\n", + "current epoch: 348 current mean dice: 0.6833\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 349/500\n", + "1/0, train_loss: 0.4536\n", + "1 epoch 349 average loss: 0.4536\n", + "----------\n", + "1: epoch 350/500\n", + "1/0, train_loss: 0.4519\n", + "1 epoch 350 average loss: 0.4519\n", + "current epoch: 350 current mean dice: 0.6783\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 351/500\n", + "1/0, train_loss: 0.4562\n", + "1 epoch 351 average loss: 0.4562\n", + "----------\n", + "1: epoch 352/500\n", + "1/0, train_loss: 0.4572\n", + "1 epoch 352 average loss: 0.4572\n", + "current epoch: 352 current mean dice: 0.6408\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 353/500\n", + "1/0, train_loss: 0.4538\n", + "1 epoch 353 average loss: 0.4538\n", + "----------\n", + "1: epoch 354/500\n", + "1/0, train_loss: 0.4511\n", + "1 epoch 354 average loss: 0.4511\n", + "current epoch: 354 current mean dice: 0.5716\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 355/500\n", + "1/0, train_loss: 0.4551\n", + "1 epoch 355 average loss: 0.4551\n", + "----------\n", + "1: epoch 356/500\n", + "1/0, train_loss: 0.4535\n", + "1 epoch 356 average loss: 0.4535\n", + "current epoch: 356 current mean dice: 0.6567\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 357/500\n", + "1/0, train_loss: 0.4595\n", + "1 epoch 357 average loss: 0.4595\n", + "----------\n", + "1: epoch 358/500\n", + "1/0, train_loss: 0.4549\n", + "1 epoch 358 average loss: 0.4549\n", + "current epoch: 358 current mean dice: 0.6510\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 359/500\n", + "1/0, train_loss: 0.4507\n", + "1 epoch 359 average loss: 0.4507\n", + "----------\n", + "1: epoch 360/500\n", + "1/0, train_loss: 0.4485\n", + "1 epoch 360 average loss: 0.4485\n", + "current epoch: 360 current mean dice: 0.6331\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 361/500\n", + "1/0, train_loss: 0.4524\n", + "1 epoch 361 average loss: 0.4524\n", + "----------\n", + "1: epoch 362/500\n", + "1/0, train_loss: 0.4532\n", + "1 epoch 362 average loss: 0.4532\n", + "current epoch: 362 current mean dice: 0.6761\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 363/500\n", + "1/0, train_loss: 0.4508\n", + "1 epoch 363 average loss: 0.4508\n", + "----------\n", + "1: epoch 364/500\n", + "1/0, train_loss: 0.4517\n", + "1 epoch 364 average loss: 0.4517\n", + "current epoch: 364 current mean dice: 0.6787\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 365/500\n", + "1/0, train_loss: 0.4491\n", + "1 epoch 365 average loss: 0.4491\n", + "----------\n", + "1: epoch 366/500\n", + "1/0, train_loss: 0.4489\n", + "1 epoch 366 average loss: 0.4489\n", + "current epoch: 366 current mean dice: 0.6754\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 367/500\n", + "1/0, train_loss: 0.4493\n", + "1 epoch 367 average loss: 0.4493\n", + "----------\n", + "1: epoch 368/500\n", + "1/0, train_loss: 0.4511\n", + "1 epoch 368 average loss: 0.4511\n", + "current epoch: 368 current mean dice: 0.6650\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 369/500\n", + "1/0, train_loss: 0.4476\n", + "1 epoch 369 average loss: 0.4476\n", + "----------\n", + "1: epoch 370/500\n", + "1/0, train_loss: 0.4504\n", + "1 epoch 370 average loss: 0.4504\n", + "current epoch: 370 current mean dice: 0.6639\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 371/500\n", + "1/0, train_loss: 0.4487\n", + "1 epoch 371 average loss: 0.4487\n", + "----------\n", + "1: epoch 372/500\n", + "1/0, train_loss: 0.4529\n", + "1 epoch 372 average loss: 0.4529\n", + "current epoch: 372 current mean dice: 0.6731\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 373/500\n", + "1/0, train_loss: 0.4518\n", + "1 epoch 373 average loss: 0.4518\n", + "----------\n", + "1: epoch 374/500\n", + "1/0, train_loss: 0.4472\n", + "1 epoch 374 average loss: 0.4472\n", + "current epoch: 374 current mean dice: 0.6767\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 375/500\n", + "1/0, train_loss: 0.4482\n", + "1 epoch 375 average loss: 0.4482\n", + "----------\n", + "1: epoch 376/500\n", + "1/0, train_loss: 0.4491\n", + "1 epoch 376 average loss: 0.4491\n", + "current epoch: 376 current mean dice: 0.6654\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 377/500\n", + "1/0, train_loss: 0.4474\n", + "1 epoch 377 average loss: 0.4474\n", + "----------\n", + "1: epoch 378/500\n", + "1/0, train_loss: 0.4507\n", + "1 epoch 378 average loss: 0.4507\n", + "current epoch: 378 current mean dice: 0.6482\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 379/500\n", + "1/0, train_loss: 0.4509\n", + "1 epoch 379 average loss: 0.4509\n", + "----------\n", + "1: epoch 380/500\n", + "1/0, train_loss: 0.4498\n", + "1 epoch 380 average loss: 0.4498\n", + "current epoch: 380 current mean dice: 0.5422\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 381/500\n", + "1/0, train_loss: 0.4494\n", + "1 epoch 381 average loss: 0.4494\n", + "----------\n", + "1: epoch 382/500\n", + "1/0, train_loss: 0.4449\n", + "1 epoch 382 average loss: 0.4449\n", + "current epoch: 382 current mean dice: 0.6585\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 383/500\n", + "1/0, train_loss: 0.4480\n", + "1 epoch 383 average loss: 0.4480\n", + "----------\n", + "1: epoch 384/500\n", + "1/0, train_loss: 0.4454\n", + "1 epoch 384 average loss: 0.4454\n", + "current epoch: 384 current mean dice: 0.6762\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 385/500\n", + "1/0, train_loss: 0.4466\n", + "1 epoch 385 average loss: 0.4466\n", + "----------\n", + "1: epoch 386/500\n", + "1/0, train_loss: 0.4484\n", + "1 epoch 386 average loss: 0.4484\n", + "current epoch: 386 current mean dice: 0.6804\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 387/500\n", + "1/0, train_loss: 0.4475\n", + "1 epoch 387 average loss: 0.4475\n", + "----------\n", + "1: epoch 388/500\n", + "1/0, train_loss: 0.4458\n", + "1 epoch 388 average loss: 0.4458\n", + "current epoch: 388 current mean dice: 0.6593\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 389/500\n", + "1/0, train_loss: 0.4455\n", + "1 epoch 389 average loss: 0.4455\n", + "----------\n", + "1: epoch 390/500\n", + "1/0, train_loss: 0.4485\n", + "1 epoch 390 average loss: 0.4485\n", + "current epoch: 390 current mean dice: 0.6046\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 391/500\n", + "1/0, train_loss: 0.4463\n", + "1 epoch 391 average loss: 0.4463\n", + "----------\n", + "1: epoch 392/500\n", + "1/0, train_loss: 0.4438\n", + "1 epoch 392 average loss: 0.4438\n", + "current epoch: 392 current mean dice: 0.6463\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 393/500\n", + "1/0, train_loss: 0.4446\n", + "1 epoch 393 average loss: 0.4446\n", + "----------\n", + "1: epoch 394/500\n", + "1/0, train_loss: 0.4409\n", + "1 epoch 394 average loss: 0.4409\n", + "current epoch: 394 current mean dice: 0.6698\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 395/500\n", + "1/0, train_loss: 0.4481\n", + "1 epoch 395 average loss: 0.4481\n", + "----------\n", + "1: epoch 396/500\n", + "1/0, train_loss: 0.4460\n", + "1 epoch 396 average loss: 0.4460\n", + "current epoch: 396 current mean dice: 0.6548\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 397/500\n", + "1/0, train_loss: 0.4470\n", + "1 epoch 397 average loss: 0.4470\n", + "----------\n", + "1: epoch 398/500\n", + "1/0, train_loss: 0.4413\n", + "1 epoch 398 average loss: 0.4413\n", + "current epoch: 398 current mean dice: 0.5618\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 399/500\n", + "1/0, train_loss: 0.4472\n", + "1 epoch 399 average loss: 0.4472\n", + "----------\n", + "1: epoch 400/500\n", + "1/0, train_loss: 0.4445\n", + "1 epoch 400 average loss: 0.4445\n", + "current epoch: 400 current mean dice: 0.5995\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 401/500\n", + "1/0, train_loss: 0.4462\n", + "1 epoch 401 average loss: 0.4462\n", + "----------\n", + "1: epoch 402/500\n", + "1/0, train_loss: 0.4465\n", + "1 epoch 402 average loss: 0.4465\n", + "current epoch: 402 current mean dice: 0.6648\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 403/500\n", + "1/0, train_loss: 0.4466\n", + "1 epoch 403 average loss: 0.4466\n", + "----------\n", + "1: epoch 404/500\n", + "1/0, train_loss: 0.4449\n", + "1 epoch 404 average loss: 0.4449\n", + "current epoch: 404 current mean dice: 0.6703\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 405/500\n", + "1/0, train_loss: 0.4425\n", + "1 epoch 405 average loss: 0.4425\n", + "----------\n", + "1: epoch 406/500\n", + "1/0, train_loss: 0.4435\n", + "1 epoch 406 average loss: 0.4435\n", + "current epoch: 406 current mean dice: 0.6728\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 407/500\n", + "1/0, train_loss: 0.4451\n", + "1 epoch 407 average loss: 0.4451\n", + "----------\n", + "1: epoch 408/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.4433\n", + "1 epoch 408 average loss: 0.4433\n", + "current epoch: 408 current mean dice: 0.6659\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 409/500\n", + "1/0, train_loss: 0.4470\n", + "1 epoch 409 average loss: 0.4470\n", + "----------\n", + "1: epoch 410/500\n", + "1/0, train_loss: 0.4378\n", + "1 epoch 410 average loss: 0.4378\n", + "current epoch: 410 current mean dice: 0.6657\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 411/500\n", + "1/0, train_loss: 0.4430\n", + "1 epoch 411 average loss: 0.4430\n", + "----------\n", + "1: epoch 412/500\n", + "1/0, train_loss: 0.4433\n", + "1 epoch 412 average loss: 0.4433\n", + "current epoch: 412 current mean dice: 0.6664\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 413/500\n", + "1/0, train_loss: 0.4394\n", + "1 epoch 413 average loss: 0.4394\n", + "----------\n", + "1: epoch 414/500\n", + "1/0, train_loss: 0.4429\n", + "1 epoch 414 average loss: 0.4429\n", + "current epoch: 414 current mean dice: 0.6515\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 415/500\n", + "1/0, train_loss: 0.4430\n", + "1 epoch 415 average loss: 0.4430\n", + "----------\n", + "1: epoch 416/500\n", + "1/0, train_loss: 0.4413\n", + "1 epoch 416 average loss: 0.4413\n", + "current epoch: 416 current mean dice: 0.6482\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 417/500\n", + "1/0, train_loss: 0.4416\n", + "1 epoch 417 average loss: 0.4416\n", + "----------\n", + "1: epoch 418/500\n", + "1/0, train_loss: 0.4419\n", + "1 epoch 418 average loss: 0.4419\n", + "current epoch: 418 current mean dice: 0.6624\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 419/500\n", + "1/0, train_loss: 0.4417\n", + "1 epoch 419 average loss: 0.4417\n", + "----------\n", + "1: epoch 420/500\n", + "1/0, train_loss: 0.4453\n", + "1 epoch 420 average loss: 0.4453\n", + "current epoch: 420 current mean dice: 0.6704\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 421/500\n", + "1/0, train_loss: 0.4394\n", + "1 epoch 421 average loss: 0.4394\n", + "----------\n", + "1: epoch 422/500\n", + "1/0, train_loss: 0.4381\n", + "1 epoch 422 average loss: 0.4381\n", + "current epoch: 422 current mean dice: 0.5595\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 423/500\n", + "1/0, train_loss: 0.4369\n", + "1 epoch 423 average loss: 0.4369\n", + "----------\n", + "1: epoch 424/500\n", + "1/0, train_loss: 0.4357\n", + "1 epoch 424 average loss: 0.4357\n", + "current epoch: 424 current mean dice: 0.6276\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 425/500\n", + "1/0, train_loss: 0.4387\n", + "1 epoch 425 average loss: 0.4387\n", + "----------\n", + "1: epoch 426/500\n", + "1/0, train_loss: 0.4401\n", + "1 epoch 426 average loss: 0.4401\n", + "current epoch: 426 current mean dice: 0.6608\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 427/500\n", + "1/0, train_loss: 0.4398\n", + "1 epoch 427 average loss: 0.4398\n", + "----------\n", + "1: epoch 428/500\n", + "1/0, train_loss: 0.4359\n", + "1 epoch 428 average loss: 0.4359\n", + "current epoch: 428 current mean dice: 0.6603\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 429/500\n", + "1/0, train_loss: 0.4396\n", + "1 epoch 429 average loss: 0.4396\n", + "----------\n", + "1: epoch 430/500\n", + "1/0, train_loss: 0.4439\n", + "1 epoch 430 average loss: 0.4439\n", + "current epoch: 430 current mean dice: 0.6487\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 431/500\n", + "1/0, train_loss: 0.4366\n", + "1 epoch 431 average loss: 0.4366\n", + "----------\n", + "1: epoch 432/500\n", + "1/0, train_loss: 0.4380\n", + "1 epoch 432 average loss: 0.4380\n", + "current epoch: 432 current mean dice: 0.6633\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 433/500\n", + "1/0, train_loss: 0.4357\n", + "1 epoch 433 average loss: 0.4357\n", + "----------\n", + "1: epoch 434/500\n", + "1/0, train_loss: 0.4349\n", + "1 epoch 434 average loss: 0.4349\n", + "current epoch: 434 current mean dice: 0.6599\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 435/500\n", + "1/0, train_loss: 0.4407\n", + "1 epoch 435 average loss: 0.4407\n", + "----------\n", + "1: epoch 436/500\n", + "1/0, train_loss: 0.4343\n", + "1 epoch 436 average loss: 0.4343\n", + "current epoch: 436 current mean dice: 0.6125\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 437/500\n", + "1/0, train_loss: 0.4342\n", + "1 epoch 437 average loss: 0.4342\n", + "----------\n", + "1: epoch 438/500\n", + "1/0, train_loss: 0.4392\n", + "1 epoch 438 average loss: 0.4392\n", + "current epoch: 438 current mean dice: 0.6673\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 439/500\n", + "1/0, train_loss: 0.4373\n", + "1 epoch 439 average loss: 0.4373\n", + "----------\n", + "1: epoch 440/500\n", + "1/0, train_loss: 0.4391\n", + "1 epoch 440 average loss: 0.4391\n", + "current epoch: 440 current mean dice: 0.6709\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 441/500\n", + "1/0, train_loss: 0.4340\n", + "1 epoch 441 average loss: 0.4340\n", + "----------\n", + "1: epoch 442/500\n", + "1/0, train_loss: 0.4344\n", + "1 epoch 442 average loss: 0.4344\n", + "current epoch: 442 current mean dice: 0.6784\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 443/500\n", + "1/0, train_loss: 0.4362\n", + "1 epoch 443 average loss: 0.4362\n", + "----------\n", + "1: epoch 444/500\n", + "1/0, train_loss: 0.4366\n", + "1 epoch 444 average loss: 0.4366\n", + "current epoch: 444 current mean dice: 0.6740\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 445/500\n", + "1/0, train_loss: 0.4380\n", + "1 epoch 445 average loss: 0.4380\n", + "----------\n", + "1: epoch 446/500\n", + "1/0, train_loss: 0.4346\n", + "1 epoch 446 average loss: 0.4346\n", + "current epoch: 446 current mean dice: 0.6772\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 447/500\n", + "1/0, train_loss: 0.4329\n", + "1 epoch 447 average loss: 0.4329\n", + "----------\n", + "1: epoch 448/500\n", + "1/0, train_loss: 0.4373\n", + "1 epoch 448 average loss: 0.4373\n", + "current epoch: 448 current mean dice: 0.6635\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 449/500\n", + "1/0, train_loss: 0.4364\n", + "1 epoch 449 average loss: 0.4364\n", + "----------\n", + "1: epoch 450/500\n", + "1/0, train_loss: 0.4325\n", + "1 epoch 450 average loss: 0.4325\n", + "current epoch: 450 current mean dice: 0.6724\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 451/500\n", + "1/0, train_loss: 0.4344\n", + "1 epoch 451 average loss: 0.4344\n", + "----------\n", + "1: epoch 452/500\n", + "1/0, train_loss: 0.4356\n", + "1 epoch 452 average loss: 0.4356\n", + "current epoch: 452 current mean dice: 0.6778\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 453/500\n", + "1/0, train_loss: 0.4325\n", + "1 epoch 453 average loss: 0.4325\n", + "----------\n", + "1: epoch 454/500\n", + "1/0, train_loss: 0.4333\n", + "1 epoch 454 average loss: 0.4333\n", + "current epoch: 454 current mean dice: 0.6727\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 455/500\n", + "1/0, train_loss: 0.4367\n", + "1 epoch 455 average loss: 0.4367\n", + "----------\n", + "1: epoch 456/500\n", + "1/0, train_loss: 0.4325\n", + "1 epoch 456 average loss: 0.4325\n", + "current epoch: 456 current mean dice: 0.6733\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 457/500\n", + "1/0, train_loss: 0.4336\n", + "1 epoch 457 average loss: 0.4336\n", + "----------\n", + "1: epoch 458/500\n", + "1/0, train_loss: 0.4328\n", + "1 epoch 458 average loss: 0.4328\n", + "current epoch: 458 current mean dice: 0.6692\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 459/500\n", + "1/0, train_loss: 0.4346\n", + "1 epoch 459 average loss: 0.4346\n", + "----------\n", + "1: epoch 460/500\n", + "1/0, train_loss: 0.4309\n", + "1 epoch 460 average loss: 0.4309\n", + "current epoch: 460 current mean dice: 0.6657\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 461/500\n", + "1/0, train_loss: 0.4312\n", + "1 epoch 461 average loss: 0.4312\n", + "----------\n", + "1: epoch 462/500\n", + "1/0, train_loss: 0.4344\n", + "1 epoch 462 average loss: 0.4344\n", + "current epoch: 462 current mean dice: 0.6705\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 463/500\n", + "1/0, train_loss: 0.4347\n", + "1 epoch 463 average loss: 0.4347\n", + "----------\n", + "1: epoch 464/500\n", + "1/0, train_loss: 0.4312\n", + "1 epoch 464 average loss: 0.4312\n", + "current epoch: 464 current mean dice: 0.6666\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 465/500\n", + "1/0, train_loss: 0.4365\n", + "1 epoch 465 average loss: 0.4365\n", + "----------\n", + "1: epoch 466/500\n", + "1/0, train_loss: 0.4363\n", + "1 epoch 466 average loss: 0.4363\n", + "current epoch: 466 current mean dice: 0.6142\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 467/500\n", + "1/0, train_loss: 0.4351\n", + "1 epoch 467 average loss: 0.4351\n", + "----------\n", + "1: epoch 468/500\n", + "1/0, train_loss: 0.4341\n", + "1 epoch 468 average loss: 0.4341\n", + "current epoch: 468 current mean dice: 0.5474\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 469/500\n", + "1/0, train_loss: 0.4355\n", + "1 epoch 469 average loss: 0.4355\n", + "----------\n", + "1: epoch 470/500\n", + "1/0, train_loss: 0.4299\n", + "1 epoch 470 average loss: 0.4299\n", + "current epoch: 470 current mean dice: 0.6224\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 471/500\n", + "1/0, train_loss: 0.4289\n", + "1 epoch 471 average loss: 0.4289\n", + "----------\n", + "1: epoch 472/500\n", + "1/0, train_loss: 0.4340\n", + "1 epoch 472 average loss: 0.4340\n", + "current epoch: 472 current mean dice: 0.6540\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 473/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.4333\n", + "1 epoch 473 average loss: 0.4333\n", + "----------\n", + "1: epoch 474/500\n", + "1/0, train_loss: 0.4307\n", + "1 epoch 474 average loss: 0.4307\n", + "current epoch: 474 current mean dice: 0.6550\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 475/500\n", + "1/0, train_loss: 0.4312\n", + "1 epoch 475 average loss: 0.4312\n", + "----------\n", + "1: epoch 476/500\n", + "1/0, train_loss: 0.4267\n", + "1 epoch 476 average loss: 0.4267\n", + "current epoch: 476 current mean dice: 0.6763\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 477/500\n", + "1/0, train_loss: 0.4337\n", + "1 epoch 477 average loss: 0.4337\n", + "----------\n", + "1: epoch 478/500\n", + "1/0, train_loss: 0.4310\n", + "1 epoch 478 average loss: 0.4310\n", + "current epoch: 478 current mean dice: 0.6749\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 479/500\n", + "1/0, train_loss: 0.4308\n", + "1 epoch 479 average loss: 0.4308\n", + "----------\n", + "1: epoch 480/500\n", + "1/0, train_loss: 0.4258\n", + "1 epoch 480 average loss: 0.4258\n", + "current epoch: 480 current mean dice: 0.6692\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 481/500\n", + "1/0, train_loss: 0.4289\n", + "1 epoch 481 average loss: 0.4289\n", + "----------\n", + "1: epoch 482/500\n", + "1/0, train_loss: 0.4298\n", + "1 epoch 482 average loss: 0.4298\n", + "current epoch: 482 current mean dice: 0.6653\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 483/500\n", + "1/0, train_loss: 0.4277\n", + "1 epoch 483 average loss: 0.4277\n", + "----------\n", + "1: epoch 484/500\n", + "1/0, train_loss: 0.4293\n", + "1 epoch 484 average loss: 0.4293\n", + "current epoch: 484 current mean dice: 0.6596\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 485/500\n", + "1/0, train_loss: 0.4361\n", + "1 epoch 485 average loss: 0.4361\n", + "----------\n", + "1: epoch 486/500\n", + "1/0, train_loss: 0.4260\n", + "1 epoch 486 average loss: 0.4260\n", + "current epoch: 486 current mean dice: 0.6737\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 487/500\n", + "1/0, train_loss: 0.4277\n", + "1 epoch 487 average loss: 0.4277\n", + "----------\n", + "1: epoch 488/500\n", + "1/0, train_loss: 0.4293\n", + "1 epoch 488 average loss: 0.4293\n", + "current epoch: 488 current mean dice: 0.6769\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 489/500\n", + "1/0, train_loss: 0.4286\n", + "1 epoch 489 average loss: 0.4286\n", + "----------\n", + "1: epoch 490/500\n", + "1/0, train_loss: 0.4271\n", + "1 epoch 490 average loss: 0.4271\n", + "current epoch: 490 current mean dice: 0.6775\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 491/500\n", + "1/0, train_loss: 0.4304\n", + "1 epoch 491 average loss: 0.4304\n", + "----------\n", + "1: epoch 492/500\n", + "1/0, train_loss: 0.4266\n", + "1 epoch 492 average loss: 0.4266\n", + "current epoch: 492 current mean dice: 0.6773\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 493/500\n", + "1/0, train_loss: 0.4258\n", + "1 epoch 493 average loss: 0.4258\n", + "----------\n", + "1: epoch 494/500\n", + "1/0, train_loss: 0.4268\n", + "1 epoch 494 average loss: 0.4268\n", + "current epoch: 494 current mean dice: 0.6742\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 495/500\n", + "1/0, train_loss: 0.4250\n", + "1 epoch 495 average loss: 0.4250\n", + "----------\n", + "1: epoch 496/500\n", + "1/0, train_loss: 0.4288\n", + "1 epoch 496 average loss: 0.4288\n", + "current epoch: 496 current mean dice: 0.6827\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 497/500\n", + "1/0, train_loss: 0.4256\n", + "1 epoch 497 average loss: 0.4256\n", + "----------\n", + "1: epoch 498/500\n", + "1/0, train_loss: 0.4273\n", + "1 epoch 498 average loss: 0.4273\n", + "current epoch: 498 current mean dice: 0.6814\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "1: epoch 499/500\n", + "1/0, train_loss: 0.4251\n", + "1 epoch 499 average loss: 0.4251\n", + "----------\n", + "1: epoch 500/500\n", + "1/0, train_loss: 0.4251\n", + "1 epoch 500 average loss: 0.4251\n", + "current epoch: 500 current mean dice: 0.6591\n", + "best mean dice: 0.7051 at epoch: 248\n", + "----------\n", + "2: epoch 1/500\n", + "1/0, train_loss: 0.7869\n", + "2 epoch 1 average loss: 0.7869\n", + "----------\n", + "2: epoch 2/500\n", + "1/0, train_loss: 0.7795\n", + "2 epoch 2 average loss: 0.7795\n", + "saved new best metric model\n", + "current epoch: 2 current mean dice: 0.1477\n", + "best mean dice: 0.1477 at epoch: 2\n", + "----------\n", + "2: epoch 3/500\n", + "1/0, train_loss: 0.7697\n", + "2 epoch 3 average loss: 0.7697\n", + "----------\n", + "2: epoch 4/500\n", + "1/0, train_loss: 0.7610\n", + "2 epoch 4 average loss: 0.7610\n", + "saved new best metric model\n", + "current epoch: 4 current mean dice: 0.1524\n", + "best mean dice: 0.1524 at epoch: 4\n", + "----------\n", + "2: epoch 5/500\n", + "1/0, train_loss: 0.7520\n", + "2 epoch 5 average loss: 0.7520\n", + "----------\n", + "2: epoch 6/500\n", + "1/0, train_loss: 0.7460\n", + "2 epoch 6 average loss: 0.7460\n", + "saved new best metric model\n", + "current epoch: 6 current mean dice: 0.1663\n", + "best mean dice: 0.1663 at epoch: 6\n", + "----------\n", + "2: epoch 7/500\n", + "1/0, train_loss: 0.7389\n", + "2 epoch 7 average loss: 0.7389\n", + "----------\n", + "2: epoch 8/500\n", + "1/0, train_loss: 0.7280\n", + "2 epoch 8 average loss: 0.7280\n", + "saved new best metric model\n", + "current epoch: 8 current mean dice: 0.1788\n", + "best mean dice: 0.1788 at epoch: 8\n", + "----------\n", + "2: epoch 9/500\n", + "1/0, train_loss: 0.7259\n", + "2 epoch 9 average loss: 0.7259\n", + "----------\n", + "2: epoch 10/500\n", + "1/0, train_loss: 0.7255\n", + "2 epoch 10 average loss: 0.7255\n", + "saved new best metric model\n", + "current epoch: 10 current mean dice: 0.1833\n", + "best mean dice: 0.1833 at epoch: 10\n", + "----------\n", + "2: epoch 11/500\n", + "1/0, train_loss: 0.7202\n", + "2 epoch 11 average loss: 0.7202\n", + "----------\n", + "2: epoch 12/500\n", + "1/0, train_loss: 0.7168\n", + "2 epoch 12 average loss: 0.7168\n", + "saved new best metric model\n", + "current epoch: 12 current mean dice: 0.1842\n", + "best mean dice: 0.1842 at epoch: 12\n", + "----------\n", + "2: epoch 13/500\n", + "1/0, train_loss: 0.7151\n", + "2 epoch 13 average loss: 0.7151\n", + "----------\n", + "2: epoch 14/500\n", + "1/0, train_loss: 0.7134\n", + "2 epoch 14 average loss: 0.7134\n", + "saved new best metric model\n", + "current epoch: 14 current mean dice: 0.1847\n", + "best mean dice: 0.1847 at epoch: 14\n", + "----------\n", + "2: epoch 15/500\n", + "1/0, train_loss: 0.7127\n", + "2 epoch 15 average loss: 0.7127\n", + "----------\n", + "2: epoch 16/500\n", + "1/0, train_loss: 0.7085\n", + "2 epoch 16 average loss: 0.7085\n", + "saved new best metric model\n", + "current epoch: 16 current mean dice: 0.1852\n", + "best mean dice: 0.1852 at epoch: 16\n", + "----------\n", + "2: epoch 17/500\n", + "1/0, train_loss: 0.7089\n", + "2 epoch 17 average loss: 0.7089\n", + "----------\n", + "2: epoch 18/500\n", + "1/0, train_loss: 0.7055\n", + "2 epoch 18 average loss: 0.7055\n", + "saved new best metric model\n", + "current epoch: 18 current mean dice: 0.1867\n", + "best mean dice: 0.1867 at epoch: 18\n", + "----------\n", + "2: epoch 19/500\n", + "1/0, train_loss: 0.7028\n", + "2 epoch 19 average loss: 0.7028\n", + "----------\n", + "2: epoch 20/500\n", + "1/0, train_loss: 0.7028\n", + "2 epoch 20 average loss: 0.7028\n", + "saved new best metric model\n", + "current epoch: 20 current mean dice: 0.1896\n", + "best mean dice: 0.1896 at epoch: 20\n", + "----------\n", + "2: epoch 21/500\n", + "1/0, train_loss: 0.7005\n", + "2 epoch 21 average loss: 0.7005\n", + "----------\n", + "2: epoch 22/500\n", + "1/0, train_loss: 0.7004\n", + "2 epoch 22 average loss: 0.7004\n", + "saved new best metric model\n", + "current epoch: 22 current mean dice: 0.1936\n", + "best mean dice: 0.1936 at epoch: 22\n", + "----------\n", + "2: epoch 23/500\n", + "1/0, train_loss: 0.7006\n", + "2 epoch 23 average loss: 0.7006\n", + "----------\n", + "2: epoch 24/500\n", + "1/0, train_loss: 0.6976\n", + "2 epoch 24 average loss: 0.6976\n", + "saved new best metric model\n", + "current epoch: 24 current mean dice: 0.1990\n", + "best mean dice: 0.1990 at epoch: 24\n", + "----------\n", + "2: epoch 25/500\n", + "1/0, train_loss: 0.6944\n", + "2 epoch 25 average loss: 0.6944\n", + "----------\n", + "2: epoch 26/500\n", + "1/0, train_loss: 0.6933\n", + "2 epoch 26 average loss: 0.6933\n", + "saved new best metric model\n", + "current epoch: 26 current mean dice: 0.2056\n", + "best mean dice: 0.2056 at epoch: 26\n", + "----------\n", + "2: epoch 27/500\n", + "1/0, train_loss: 0.6955\n", + "2 epoch 27 average loss: 0.6955\n", + "----------\n", + "2: epoch 28/500\n", + "1/0, train_loss: 0.6909\n", + "2 epoch 28 average loss: 0.6909\n", + "saved new best metric model\n", + "current epoch: 28 current mean dice: 0.2121\n", + "best mean dice: 0.2121 at epoch: 28\n", + "----------\n", + "2: epoch 29/500\n", + "1/0, train_loss: 0.6892\n", + "2 epoch 29 average loss: 0.6892\n", + "----------\n", + "2: epoch 30/500\n", + "1/0, train_loss: 0.6872\n", + "2 epoch 30 average loss: 0.6872\n", + "saved new best metric model\n", + "current epoch: 30 current mean dice: 0.2178\n", + "best mean dice: 0.2178 at epoch: 30\n", + "----------\n", + "2: epoch 31/500\n", + "1/0, train_loss: 0.6862\n", + "2 epoch 31 average loss: 0.6862\n", + "----------\n", + "2: epoch 32/500\n", + "1/0, train_loss: 0.6845\n", + "2 epoch 32 average loss: 0.6845\n", + "saved new best metric model\n", + "current epoch: 32 current mean dice: 0.2204\n", + "best mean dice: 0.2204 at epoch: 32\n", + "----------\n", + "2: epoch 33/500\n", + "1/0, train_loss: 0.6774\n", + "2 epoch 33 average loss: 0.6774\n", + "----------\n", + "2: epoch 34/500\n", + "1/0, train_loss: 0.6806\n", + "2 epoch 34 average loss: 0.6806\n", + "saved new best metric model\n", + "current epoch: 34 current mean dice: 0.2279\n", + "best mean dice: 0.2279 at epoch: 34\n", + "----------\n", + "2: epoch 35/500\n", + "1/0, train_loss: 0.6767\n", + "2 epoch 35 average loss: 0.6767\n", + "----------\n", + "2: epoch 36/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.6740\n", + "2 epoch 36 average loss: 0.6740\n", + "saved new best metric model\n", + "current epoch: 36 current mean dice: 0.2371\n", + "best mean dice: 0.2371 at epoch: 36\n", + "----------\n", + "2: epoch 37/500\n", + "1/0, train_loss: 0.6735\n", + "2 epoch 37 average loss: 0.6735\n", + "----------\n", + "2: epoch 38/500\n", + "1/0, train_loss: 0.6706\n", + "2 epoch 38 average loss: 0.6706\n", + "saved new best metric model\n", + "current epoch: 38 current mean dice: 0.2433\n", + "best mean dice: 0.2433 at epoch: 38\n", + "----------\n", + "2: epoch 39/500\n", + "1/0, train_loss: 0.6679\n", + "2 epoch 39 average loss: 0.6679\n", + "----------\n", + "2: epoch 40/500\n", + "1/0, train_loss: 0.6637\n", + "2 epoch 40 average loss: 0.6637\n", + "saved new best metric model\n", + "current epoch: 40 current mean dice: 0.2531\n", + "best mean dice: 0.2531 at epoch: 40\n", + "----------\n", + "2: epoch 41/500\n", + "1/0, train_loss: 0.6624\n", + "2 epoch 41 average loss: 0.6624\n", + "----------\n", + "2: epoch 42/500\n", + "1/0, train_loss: 0.6588\n", + "2 epoch 42 average loss: 0.6588\n", + "saved new best metric model\n", + "current epoch: 42 current mean dice: 0.2728\n", + "best mean dice: 0.2728 at epoch: 42\n", + "----------\n", + "2: epoch 43/500\n", + "1/0, train_loss: 0.6605\n", + "2 epoch 43 average loss: 0.6605\n", + "----------\n", + "2: epoch 44/500\n", + "1/0, train_loss: 0.6563\n", + "2 epoch 44 average loss: 0.6563\n", + "current epoch: 44 current mean dice: 0.2664\n", + "best mean dice: 0.2728 at epoch: 42\n", + "----------\n", + "2: epoch 45/500\n", + "1/0, train_loss: 0.6590\n", + "2 epoch 45 average loss: 0.6590\n", + "----------\n", + "2: epoch 46/500\n", + "1/0, train_loss: 0.6535\n", + "2 epoch 46 average loss: 0.6535\n", + "saved new best metric model\n", + "current epoch: 46 current mean dice: 0.3047\n", + "best mean dice: 0.3047 at epoch: 46\n", + "----------\n", + "2: epoch 47/500\n", + "1/0, train_loss: 0.6470\n", + "2 epoch 47 average loss: 0.6470\n", + "----------\n", + "2: epoch 48/500\n", + "1/0, train_loss: 0.6482\n", + "2 epoch 48 average loss: 0.6482\n", + "saved new best metric model\n", + "current epoch: 48 current mean dice: 0.3092\n", + "best mean dice: 0.3092 at epoch: 48\n", + "----------\n", + "2: epoch 49/500\n", + "1/0, train_loss: 0.6445\n", + "2 epoch 49 average loss: 0.6445\n", + "----------\n", + "2: epoch 50/500\n", + "1/0, train_loss: 0.6455\n", + "2 epoch 50 average loss: 0.6455\n", + "current epoch: 50 current mean dice: 0.3010\n", + "best mean dice: 0.3092 at epoch: 48\n", + "----------\n", + "2: epoch 51/500\n", + "1/0, train_loss: 0.6421\n", + "2 epoch 51 average loss: 0.6421\n", + "----------\n", + "2: epoch 52/500\n", + "1/0, train_loss: 0.6376\n", + "2 epoch 52 average loss: 0.6376\n", + "saved new best metric model\n", + "current epoch: 52 current mean dice: 0.3098\n", + "best mean dice: 0.3098 at epoch: 52\n", + "----------\n", + "2: epoch 53/500\n", + "1/0, train_loss: 0.6341\n", + "2 epoch 53 average loss: 0.6341\n", + "----------\n", + "2: epoch 54/500\n", + "1/0, train_loss: 0.6353\n", + "2 epoch 54 average loss: 0.6353\n", + "saved new best metric model\n", + "current epoch: 54 current mean dice: 0.3219\n", + "best mean dice: 0.3219 at epoch: 54\n", + "----------\n", + "2: epoch 55/500\n", + "1/0, train_loss: 0.6309\n", + "2 epoch 55 average loss: 0.6309\n", + "----------\n", + "2: epoch 56/500\n", + "1/0, train_loss: 0.6330\n", + "2 epoch 56 average loss: 0.6330\n", + "current epoch: 56 current mean dice: 0.3126\n", + "best mean dice: 0.3219 at epoch: 54\n", + "----------\n", + "2: epoch 57/500\n", + "1/0, train_loss: 0.6273\n", + "2 epoch 57 average loss: 0.6273\n", + "----------\n", + "2: epoch 58/500\n", + "1/0, train_loss: 0.6290\n", + "2 epoch 58 average loss: 0.6290\n", + "current epoch: 58 current mean dice: 0.3150\n", + "best mean dice: 0.3219 at epoch: 54\n", + "----------\n", + "2: epoch 59/500\n", + "1/0, train_loss: 0.6278\n", + "2 epoch 59 average loss: 0.6278\n", + "----------\n", + "2: epoch 60/500\n", + "1/0, train_loss: 0.6240\n", + "2 epoch 60 average loss: 0.6240\n", + "current epoch: 60 current mean dice: 0.3181\n", + "best mean dice: 0.3219 at epoch: 54\n", + "----------\n", + "2: epoch 61/500\n", + "1/0, train_loss: 0.6209\n", + "2 epoch 61 average loss: 0.6209\n", + "----------\n", + "2: epoch 62/500\n", + "1/0, train_loss: 0.6216\n", + "2 epoch 62 average loss: 0.6216\n", + "saved new best metric model\n", + "current epoch: 62 current mean dice: 0.3333\n", + "best mean dice: 0.3333 at epoch: 62\n", + "----------\n", + "2: epoch 63/500\n", + "1/0, train_loss: 0.6159\n", + "2 epoch 63 average loss: 0.6159\n", + "----------\n", + "2: epoch 64/500\n", + "1/0, train_loss: 0.6198\n", + "2 epoch 64 average loss: 0.6198\n", + "saved new best metric model\n", + "current epoch: 64 current mean dice: 0.3468\n", + "best mean dice: 0.3468 at epoch: 64\n", + "----------\n", + "2: epoch 65/500\n", + "1/0, train_loss: 0.6185\n", + "2 epoch 65 average loss: 0.6185\n", + "----------\n", + "2: epoch 66/500\n", + "1/0, train_loss: 0.6161\n", + "2 epoch 66 average loss: 0.6161\n", + "current epoch: 66 current mean dice: 0.3158\n", + "best mean dice: 0.3468 at epoch: 64\n", + "----------\n", + "2: epoch 67/500\n", + "1/0, train_loss: 0.6162\n", + "2 epoch 67 average loss: 0.6162\n", + "----------\n", + "2: epoch 68/500\n", + "1/0, train_loss: 0.6122\n", + "2 epoch 68 average loss: 0.6122\n", + "current epoch: 68 current mean dice: 0.3318\n", + "best mean dice: 0.3468 at epoch: 64\n", + "----------\n", + "2: epoch 69/500\n", + "1/0, train_loss: 0.6108\n", + "2 epoch 69 average loss: 0.6108\n", + "----------\n", + "2: epoch 70/500\n", + "1/0, train_loss: 0.6125\n", + "2 epoch 70 average loss: 0.6125\n", + "current epoch: 70 current mean dice: 0.3206\n", + "best mean dice: 0.3468 at epoch: 64\n", + "----------\n", + "2: epoch 71/500\n", + "1/0, train_loss: 0.6174\n", + "2 epoch 71 average loss: 0.6174\n", + "----------\n", + "2: epoch 72/500\n", + "1/0, train_loss: 0.6064\n", + "2 epoch 72 average loss: 0.6064\n", + "current epoch: 72 current mean dice: 0.3321\n", + "best mean dice: 0.3468 at epoch: 64\n", + "----------\n", + "2: epoch 73/500\n", + "1/0, train_loss: 0.6067\n", + "2 epoch 73 average loss: 0.6067\n", + "----------\n", + "2: epoch 74/500\n", + "1/0, train_loss: 0.6074\n", + "2 epoch 74 average loss: 0.6074\n", + "current epoch: 74 current mean dice: 0.3386\n", + "best mean dice: 0.3468 at epoch: 64\n", + "----------\n", + "2: epoch 75/500\n", + "1/0, train_loss: 0.6065\n", + "2 epoch 75 average loss: 0.6065\n", + "----------\n", + "2: epoch 76/500\n", + "1/0, train_loss: 0.6084\n", + "2 epoch 76 average loss: 0.6084\n", + "current epoch: 76 current mean dice: 0.3357\n", + "best mean dice: 0.3468 at epoch: 64\n", + "----------\n", + "2: epoch 77/500\n", + "1/0, train_loss: 0.6069\n", + "2 epoch 77 average loss: 0.6069\n", + "----------\n", + "2: epoch 78/500\n", + "1/0, train_loss: 0.6000\n", + "2 epoch 78 average loss: 0.6000\n", + "saved new best metric model\n", + "current epoch: 78 current mean dice: 0.3510\n", + "best mean dice: 0.3510 at epoch: 78\n", + "----------\n", + "2: epoch 79/500\n", + "1/0, train_loss: 0.6016\n", + "2 epoch 79 average loss: 0.6016\n", + "----------\n", + "2: epoch 80/500\n", + "1/0, train_loss: 0.6003\n", + "2 epoch 80 average loss: 0.6003\n", + "current epoch: 80 current mean dice: 0.3381\n", + "best mean dice: 0.3510 at epoch: 78\n", + "----------\n", + "2: epoch 81/500\n", + "1/0, train_loss: 0.6000\n", + "2 epoch 81 average loss: 0.6000\n", + "----------\n", + "2: epoch 82/500\n", + "1/0, train_loss: 0.5988\n", + "2 epoch 82 average loss: 0.5988\n", + "saved new best metric model\n", + "current epoch: 82 current mean dice: 0.3580\n", + "best mean dice: 0.3580 at epoch: 82\n", + "----------\n", + "2: epoch 83/500\n", + "1/0, train_loss: 0.5956\n", + "2 epoch 83 average loss: 0.5956\n", + "----------\n", + "2: epoch 84/500\n", + "1/0, train_loss: 0.5968\n", + "2 epoch 84 average loss: 0.5968\n", + "current epoch: 84 current mean dice: 0.3234\n", + "best mean dice: 0.3580 at epoch: 82\n", + "----------\n", + "2: epoch 85/500\n", + "1/0, train_loss: 0.5920\n", + "2 epoch 85 average loss: 0.5920\n", + "----------\n", + "2: epoch 86/500\n", + "1/0, train_loss: 0.5956\n", + "2 epoch 86 average loss: 0.5956\n", + "current epoch: 86 current mean dice: 0.3160\n", + "best mean dice: 0.3580 at epoch: 82\n", + "----------\n", + "2: epoch 87/500\n", + "1/0, train_loss: 0.5971\n", + "2 epoch 87 average loss: 0.5971\n", + "----------\n", + "2: epoch 88/500\n", + "1/0, train_loss: 0.5977\n", + "2 epoch 88 average loss: 0.5977\n", + "saved new best metric model\n", + "current epoch: 88 current mean dice: 0.3660\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 89/500\n", + "1/0, train_loss: 0.5915\n", + "2 epoch 89 average loss: 0.5915\n", + "----------\n", + "2: epoch 90/500\n", + "1/0, train_loss: 0.5930\n", + "2 epoch 90 average loss: 0.5930\n", + "current epoch: 90 current mean dice: 0.3317\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 91/500\n", + "1/0, train_loss: 0.5895\n", + "2 epoch 91 average loss: 0.5895\n", + "----------\n", + "2: epoch 92/500\n", + "1/0, train_loss: 0.5972\n", + "2 epoch 92 average loss: 0.5972\n", + "current epoch: 92 current mean dice: 0.3508\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 93/500\n", + "1/0, train_loss: 0.5953\n", + "2 epoch 93 average loss: 0.5953\n", + "----------\n", + "2: epoch 94/500\n", + "1/0, train_loss: 0.5871\n", + "2 epoch 94 average loss: 0.5871\n", + "current epoch: 94 current mean dice: 0.3448\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 95/500\n", + "1/0, train_loss: 0.5868\n", + "2 epoch 95 average loss: 0.5868\n", + "----------\n", + "2: epoch 96/500\n", + "1/0, train_loss: 0.5870\n", + "2 epoch 96 average loss: 0.5870\n", + "current epoch: 96 current mean dice: 0.3591\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 97/500\n", + "1/0, train_loss: 0.5818\n", + "2 epoch 97 average loss: 0.5818\n", + "----------\n", + "2: epoch 98/500\n", + "1/0, train_loss: 0.5841\n", + "2 epoch 98 average loss: 0.5841\n", + "current epoch: 98 current mean dice: 0.3229\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 99/500\n", + "1/0, train_loss: 0.5852\n", + "2 epoch 99 average loss: 0.5852\n", + "----------\n", + "2: epoch 100/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.5824\n", + "2 epoch 100 average loss: 0.5824\n", + "current epoch: 100 current mean dice: 0.3389\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 101/500\n", + "1/0, train_loss: 0.5822\n", + "2 epoch 101 average loss: 0.5822\n", + "----------\n", + "2: epoch 102/500\n", + "1/0, train_loss: 0.5793\n", + "2 epoch 102 average loss: 0.5793\n", + "current epoch: 102 current mean dice: 0.3477\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 103/500\n", + "1/0, train_loss: 0.5863\n", + "2 epoch 103 average loss: 0.5863\n", + "----------\n", + "2: epoch 104/500\n", + "1/0, train_loss: 0.5770\n", + "2 epoch 104 average loss: 0.5770\n", + "current epoch: 104 current mean dice: 0.2972\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 105/500\n", + "1/0, train_loss: 0.5782\n", + "2 epoch 105 average loss: 0.5782\n", + "----------\n", + "2: epoch 106/500\n", + "1/0, train_loss: 0.5809\n", + "2 epoch 106 average loss: 0.5809\n", + "current epoch: 106 current mean dice: 0.3307\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 107/500\n", + "1/0, train_loss: 0.5785\n", + "2 epoch 107 average loss: 0.5785\n", + "----------\n", + "2: epoch 108/500\n", + "1/0, train_loss: 0.5739\n", + "2 epoch 108 average loss: 0.5739\n", + "current epoch: 108 current mean dice: 0.2986\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 109/500\n", + "1/0, train_loss: 0.5846\n", + "2 epoch 109 average loss: 0.5846\n", + "----------\n", + "2: epoch 110/500\n", + "1/0, train_loss: 0.5752\n", + "2 epoch 110 average loss: 0.5752\n", + "current epoch: 110 current mean dice: 0.2751\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 111/500\n", + "1/0, train_loss: 0.5718\n", + "2 epoch 111 average loss: 0.5718\n", + "----------\n", + "2: epoch 112/500\n", + "1/0, train_loss: 0.5796\n", + "2 epoch 112 average loss: 0.5796\n", + "current epoch: 112 current mean dice: 0.2541\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 113/500\n", + "1/0, train_loss: 0.5734\n", + "2 epoch 113 average loss: 0.5734\n", + "----------\n", + "2: epoch 114/500\n", + "1/0, train_loss: 0.5709\n", + "2 epoch 114 average loss: 0.5709\n", + "current epoch: 114 current mean dice: 0.2735\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 115/500\n", + "1/0, train_loss: 0.5689\n", + "2 epoch 115 average loss: 0.5689\n", + "----------\n", + "2: epoch 116/500\n", + "1/0, train_loss: 0.5683\n", + "2 epoch 116 average loss: 0.5683\n", + "current epoch: 116 current mean dice: 0.2387\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 117/500\n", + "1/0, train_loss: 0.5673\n", + "2 epoch 117 average loss: 0.5673\n", + "----------\n", + "2: epoch 118/500\n", + "1/0, train_loss: 0.5678\n", + "2 epoch 118 average loss: 0.5678\n", + "current epoch: 118 current mean dice: 0.2088\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 119/500\n", + "1/0, train_loss: 0.5665\n", + "2 epoch 119 average loss: 0.5665\n", + "----------\n", + "2: epoch 120/500\n", + "1/0, train_loss: 0.5687\n", + "2 epoch 120 average loss: 0.5687\n", + "current epoch: 120 current mean dice: 0.2247\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 121/500\n", + "1/0, train_loss: 0.5688\n", + "2 epoch 121 average loss: 0.5688\n", + "----------\n", + "2: epoch 122/500\n", + "1/0, train_loss: 0.5644\n", + "2 epoch 122 average loss: 0.5644\n", + "current epoch: 122 current mean dice: 0.2160\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 123/500\n", + "1/0, train_loss: 0.5630\n", + "2 epoch 123 average loss: 0.5630\n", + "----------\n", + "2: epoch 124/500\n", + "1/0, train_loss: 0.5616\n", + "2 epoch 124 average loss: 0.5616\n", + "current epoch: 124 current mean dice: 0.2206\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 125/500\n", + "1/0, train_loss: 0.5635\n", + "2 epoch 125 average loss: 0.5635\n", + "----------\n", + "2: epoch 126/500\n", + "1/0, train_loss: 0.5608\n", + "2 epoch 126 average loss: 0.5608\n", + "current epoch: 126 current mean dice: 0.2074\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 127/500\n", + "1/0, train_loss: 0.5565\n", + "2 epoch 127 average loss: 0.5565\n", + "----------\n", + "2: epoch 128/500\n", + "1/0, train_loss: 0.5542\n", + "2 epoch 128 average loss: 0.5542\n", + "current epoch: 128 current mean dice: 0.2070\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 129/500\n", + "1/0, train_loss: 0.5565\n", + "2 epoch 129 average loss: 0.5565\n", + "----------\n", + "2: epoch 130/500\n", + "1/0, train_loss: 0.5550\n", + "2 epoch 130 average loss: 0.5550\n", + "current epoch: 130 current mean dice: 0.2344\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 131/500\n", + "1/0, train_loss: 0.5582\n", + "2 epoch 131 average loss: 0.5582\n", + "----------\n", + "2: epoch 132/500\n", + "1/0, train_loss: 0.5554\n", + "2 epoch 132 average loss: 0.5554\n", + "current epoch: 132 current mean dice: 0.2052\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 133/500\n", + "1/0, train_loss: 0.5527\n", + "2 epoch 133 average loss: 0.5527\n", + "----------\n", + "2: epoch 134/500\n", + "1/0, train_loss: 0.5531\n", + "2 epoch 134 average loss: 0.5531\n", + "current epoch: 134 current mean dice: 0.2361\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 135/500\n", + "1/0, train_loss: 0.5575\n", + "2 epoch 135 average loss: 0.5575\n", + "----------\n", + "2: epoch 136/500\n", + "1/0, train_loss: 0.5503\n", + "2 epoch 136 average loss: 0.5503\n", + "current epoch: 136 current mean dice: 0.1814\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 137/500\n", + "1/0, train_loss: 0.5510\n", + "2 epoch 137 average loss: 0.5510\n", + "----------\n", + "2: epoch 138/500\n", + "1/0, train_loss: 0.5527\n", + "2 epoch 138 average loss: 0.5527\n", + "current epoch: 138 current mean dice: 0.1734\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 139/500\n", + "1/0, train_loss: 0.5460\n", + "2 epoch 139 average loss: 0.5460\n", + "----------\n", + "2: epoch 140/500\n", + "1/0, train_loss: 0.5437\n", + "2 epoch 140 average loss: 0.5437\n", + "current epoch: 140 current mean dice: 0.2001\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 141/500\n", + "1/0, train_loss: 0.5503\n", + "2 epoch 141 average loss: 0.5503\n", + "----------\n", + "2: epoch 142/500\n", + "1/0, train_loss: 0.5494\n", + "2 epoch 142 average loss: 0.5494\n", + "current epoch: 142 current mean dice: 0.2149\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 143/500\n", + "1/0, train_loss: 0.5488\n", + "2 epoch 143 average loss: 0.5488\n", + "----------\n", + "2: epoch 144/500\n", + "1/0, train_loss: 0.5474\n", + "2 epoch 144 average loss: 0.5474\n", + "current epoch: 144 current mean dice: 0.1637\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 145/500\n", + "1/0, train_loss: 0.5468\n", + "2 epoch 145 average loss: 0.5468\n", + "----------\n", + "2: epoch 146/500\n", + "1/0, train_loss: 0.5469\n", + "2 epoch 146 average loss: 0.5469\n", + "current epoch: 146 current mean dice: 0.2197\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 147/500\n", + "1/0, train_loss: 0.5487\n", + "2 epoch 147 average loss: 0.5487\n", + "----------\n", + "2: epoch 148/500\n", + "1/0, train_loss: 0.5434\n", + "2 epoch 148 average loss: 0.5434\n", + "current epoch: 148 current mean dice: 0.1681\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 149/500\n", + "1/0, train_loss: 0.5481\n", + "2 epoch 149 average loss: 0.5481\n", + "----------\n", + "2: epoch 150/500\n", + "1/0, train_loss: 0.5398\n", + "2 epoch 150 average loss: 0.5398\n", + "current epoch: 150 current mean dice: 0.1639\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 151/500\n", + "1/0, train_loss: 0.5413\n", + "2 epoch 151 average loss: 0.5413\n", + "----------\n", + "2: epoch 152/500\n", + "1/0, train_loss: 0.5394\n", + "2 epoch 152 average loss: 0.5394\n", + "current epoch: 152 current mean dice: 0.1753\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 153/500\n", + "1/0, train_loss: 0.5373\n", + "2 epoch 153 average loss: 0.5373\n", + "----------\n", + "2: epoch 154/500\n", + "1/0, train_loss: 0.5411\n", + "2 epoch 154 average loss: 0.5411\n", + "current epoch: 154 current mean dice: 0.2182\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 155/500\n", + "1/0, train_loss: 0.5409\n", + "2 epoch 155 average loss: 0.5409\n", + "----------\n", + "2: epoch 156/500\n", + "1/0, train_loss: 0.5386\n", + "2 epoch 156 average loss: 0.5386\n", + "current epoch: 156 current mean dice: 0.1895\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 157/500\n", + "1/0, train_loss: 0.5404\n", + "2 epoch 157 average loss: 0.5404\n", + "----------\n", + "2: epoch 158/500\n", + "1/0, train_loss: 0.5389\n", + "2 epoch 158 average loss: 0.5389\n", + "current epoch: 158 current mean dice: 0.1695\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 159/500\n", + "1/0, train_loss: 0.5365\n", + "2 epoch 159 average loss: 0.5365\n", + "----------\n", + "2: epoch 160/500\n", + "1/0, train_loss: 0.5364\n", + "2 epoch 160 average loss: 0.5364\n", + "current epoch: 160 current mean dice: 0.1738\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 161/500\n", + "1/0, train_loss: 0.5340\n", + "2 epoch 161 average loss: 0.5340\n", + "----------\n", + "2: epoch 162/500\n", + "1/0, train_loss: 0.5337\n", + "2 epoch 162 average loss: 0.5337\n", + "current epoch: 162 current mean dice: 0.1812\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 163/500\n", + "1/0, train_loss: 0.5355\n", + "2 epoch 163 average loss: 0.5355\n", + "----------\n", + "2: epoch 164/500\n", + "1/0, train_loss: 0.5338\n", + "2 epoch 164 average loss: 0.5338\n", + "current epoch: 164 current mean dice: 0.1691\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 165/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.5333\n", + "2 epoch 165 average loss: 0.5333\n", + "----------\n", + "2: epoch 166/500\n", + "1/0, train_loss: 0.5316\n", + "2 epoch 166 average loss: 0.5316\n", + "current epoch: 166 current mean dice: 0.1605\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 167/500\n", + "1/0, train_loss: 0.5370\n", + "2 epoch 167 average loss: 0.5370\n", + "----------\n", + "2: epoch 168/500\n", + "1/0, train_loss: 0.5306\n", + "2 epoch 168 average loss: 0.5306\n", + "current epoch: 168 current mean dice: 0.1338\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 169/500\n", + "1/0, train_loss: 0.5347\n", + "2 epoch 169 average loss: 0.5347\n", + "----------\n", + "2: epoch 170/500\n", + "1/0, train_loss: 0.5314\n", + "2 epoch 170 average loss: 0.5314\n", + "current epoch: 170 current mean dice: 0.1742\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 171/500\n", + "1/0, train_loss: 0.5360\n", + "2 epoch 171 average loss: 0.5360\n", + "----------\n", + "2: epoch 172/500\n", + "1/0, train_loss: 0.5327\n", + "2 epoch 172 average loss: 0.5327\n", + "current epoch: 172 current mean dice: 0.1259\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 173/500\n", + "1/0, train_loss: 0.5260\n", + "2 epoch 173 average loss: 0.5260\n", + "----------\n", + "2: epoch 174/500\n", + "1/0, train_loss: 0.5298\n", + "2 epoch 174 average loss: 0.5298\n", + "current epoch: 174 current mean dice: 0.1705\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 175/500\n", + "1/0, train_loss: 0.5299\n", + "2 epoch 175 average loss: 0.5299\n", + "----------\n", + "2: epoch 176/500\n", + "1/0, train_loss: 0.5248\n", + "2 epoch 176 average loss: 0.5248\n", + "current epoch: 176 current mean dice: 0.1488\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 177/500\n", + "1/0, train_loss: 0.5264\n", + "2 epoch 177 average loss: 0.5264\n", + "----------\n", + "2: epoch 178/500\n", + "1/0, train_loss: 0.5290\n", + "2 epoch 178 average loss: 0.5290\n", + "current epoch: 178 current mean dice: 0.1506\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 179/500\n", + "1/0, train_loss: 0.5245\n", + "2 epoch 179 average loss: 0.5245\n", + "----------\n", + "2: epoch 180/500\n", + "1/0, train_loss: 0.5263\n", + "2 epoch 180 average loss: 0.5263\n", + "current epoch: 180 current mean dice: 0.1418\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 181/500\n", + "1/0, train_loss: 0.5223\n", + "2 epoch 181 average loss: 0.5223\n", + "----------\n", + "2: epoch 182/500\n", + "1/0, train_loss: 0.5213\n", + "2 epoch 182 average loss: 0.5213\n", + "current epoch: 182 current mean dice: 0.1571\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 183/500\n", + "1/0, train_loss: 0.5285\n", + "2 epoch 183 average loss: 0.5285\n", + "----------\n", + "2: epoch 184/500\n", + "1/0, train_loss: 0.5245\n", + "2 epoch 184 average loss: 0.5245\n", + "current epoch: 184 current mean dice: 0.1372\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 185/500\n", + "1/0, train_loss: 0.5224\n", + "2 epoch 185 average loss: 0.5224\n", + "----------\n", + "2: epoch 186/500\n", + "1/0, train_loss: 0.5213\n", + "2 epoch 186 average loss: 0.5213\n", + "current epoch: 186 current mean dice: 0.1300\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 187/500\n", + "1/0, train_loss: 0.5206\n", + "2 epoch 187 average loss: 0.5206\n", + "----------\n", + "2: epoch 188/500\n", + "1/0, train_loss: 0.5199\n", + "2 epoch 188 average loss: 0.5199\n", + "current epoch: 188 current mean dice: 0.1648\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 189/500\n", + "1/0, train_loss: 0.5187\n", + "2 epoch 189 average loss: 0.5187\n", + "----------\n", + "2: epoch 190/500\n", + "1/0, train_loss: 0.5201\n", + "2 epoch 190 average loss: 0.5201\n", + "current epoch: 190 current mean dice: 0.1318\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 191/500\n", + "1/0, train_loss: 0.5166\n", + "2 epoch 191 average loss: 0.5166\n", + "----------\n", + "2: epoch 192/500\n", + "1/0, train_loss: 0.5165\n", + "2 epoch 192 average loss: 0.5165\n", + "current epoch: 192 current mean dice: 0.1609\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 193/500\n", + "1/0, train_loss: 0.5188\n", + "2 epoch 193 average loss: 0.5188\n", + "----------\n", + "2: epoch 194/500\n", + "1/0, train_loss: 0.5148\n", + "2 epoch 194 average loss: 0.5148\n", + "current epoch: 194 current mean dice: 0.1418\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 195/500\n", + "1/0, train_loss: 0.5146\n", + "2 epoch 195 average loss: 0.5146\n", + "----------\n", + "2: epoch 196/500\n", + "1/0, train_loss: 0.5169\n", + "2 epoch 196 average loss: 0.5169\n", + "current epoch: 196 current mean dice: 0.1529\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 197/500\n", + "1/0, train_loss: 0.5182\n", + "2 epoch 197 average loss: 0.5182\n", + "----------\n", + "2: epoch 198/500\n", + "1/0, train_loss: 0.5152\n", + "2 epoch 198 average loss: 0.5152\n", + "current epoch: 198 current mean dice: 0.1126\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 199/500\n", + "1/0, train_loss: 0.5159\n", + "2 epoch 199 average loss: 0.5159\n", + "----------\n", + "2: epoch 200/500\n", + "1/0, train_loss: 0.5145\n", + "2 epoch 200 average loss: 0.5145\n", + "current epoch: 200 current mean dice: 0.1477\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 201/500\n", + "1/0, train_loss: 0.5141\n", + "2 epoch 201 average loss: 0.5141\n", + "----------\n", + "2: epoch 202/500\n", + "1/0, train_loss: 0.5124\n", + "2 epoch 202 average loss: 0.5124\n", + "current epoch: 202 current mean dice: 0.1256\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 203/500\n", + "1/0, train_loss: 0.5126\n", + "2 epoch 203 average loss: 0.5126\n", + "----------\n", + "2: epoch 204/500\n", + "1/0, train_loss: 0.5130\n", + "2 epoch 204 average loss: 0.5130\n", + "current epoch: 204 current mean dice: 0.1340\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 205/500\n", + "1/0, train_loss: 0.5103\n", + "2 epoch 205 average loss: 0.5103\n", + "----------\n", + "2: epoch 206/500\n", + "1/0, train_loss: 0.5155\n", + "2 epoch 206 average loss: 0.5155\n", + "current epoch: 206 current mean dice: 0.1558\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 207/500\n", + "1/0, train_loss: 0.5097\n", + "2 epoch 207 average loss: 0.5097\n", + "----------\n", + "2: epoch 208/500\n", + "1/0, train_loss: 0.5123\n", + "2 epoch 208 average loss: 0.5123\n", + "current epoch: 208 current mean dice: 0.1150\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 209/500\n", + "1/0, train_loss: 0.5116\n", + "2 epoch 209 average loss: 0.5116\n", + "----------\n", + "2: epoch 210/500\n", + "1/0, train_loss: 0.5096\n", + "2 epoch 210 average loss: 0.5096\n", + "current epoch: 210 current mean dice: 0.1423\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 211/500\n", + "1/0, train_loss: 0.5109\n", + "2 epoch 211 average loss: 0.5109\n", + "----------\n", + "2: epoch 212/500\n", + "1/0, train_loss: 0.5102\n", + "2 epoch 212 average loss: 0.5102\n", + "current epoch: 212 current mean dice: 0.1327\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 213/500\n", + "1/0, train_loss: 0.5095\n", + "2 epoch 213 average loss: 0.5095\n", + "----------\n", + "2: epoch 214/500\n", + "1/0, train_loss: 0.5103\n", + "2 epoch 214 average loss: 0.5103\n", + "current epoch: 214 current mean dice: 0.1644\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 215/500\n", + "1/0, train_loss: 0.5143\n", + "2 epoch 215 average loss: 0.5143\n", + "----------\n", + "2: epoch 216/500\n", + "1/0, train_loss: 0.5090\n", + "2 epoch 216 average loss: 0.5090\n", + "current epoch: 216 current mean dice: 0.1211\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 217/500\n", + "1/0, train_loss: 0.5142\n", + "2 epoch 217 average loss: 0.5142\n", + "----------\n", + "2: epoch 218/500\n", + "1/0, train_loss: 0.5073\n", + "2 epoch 218 average loss: 0.5073\n", + "current epoch: 218 current mean dice: 0.1287\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 219/500\n", + "1/0, train_loss: 0.5073\n", + "2 epoch 219 average loss: 0.5073\n", + "----------\n", + "2: epoch 220/500\n", + "1/0, train_loss: 0.5079\n", + "2 epoch 220 average loss: 0.5079\n", + "current epoch: 220 current mean dice: 0.1364\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 221/500\n", + "1/0, train_loss: 0.5088\n", + "2 epoch 221 average loss: 0.5088\n", + "----------\n", + "2: epoch 222/500\n", + "1/0, train_loss: 0.5034\n", + "2 epoch 222 average loss: 0.5034\n", + "current epoch: 222 current mean dice: 0.1533\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 223/500\n", + "1/0, train_loss: 0.5056\n", + "2 epoch 223 average loss: 0.5056\n", + "----------\n", + "2: epoch 224/500\n", + "1/0, train_loss: 0.5060\n", + "2 epoch 224 average loss: 0.5060\n", + "current epoch: 224 current mean dice: 0.1206\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 225/500\n", + "1/0, train_loss: 0.5016\n", + "2 epoch 225 average loss: 0.5016\n", + "----------\n", + "2: epoch 226/500\n", + "1/0, train_loss: 0.5035\n", + "2 epoch 226 average loss: 0.5035\n", + "current epoch: 226 current mean dice: 0.1003\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 227/500\n", + "1/0, train_loss: 0.5058\n", + "2 epoch 227 average loss: 0.5058\n", + "----------\n", + "2: epoch 228/500\n", + "1/0, train_loss: 0.4990\n", + "2 epoch 228 average loss: 0.4990\n", + "current epoch: 228 current mean dice: 0.0964\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 229/500\n", + "1/0, train_loss: 0.5083\n", + "2 epoch 229 average loss: 0.5083\n", + "----------\n", + "2: epoch 230/500\n", + "1/0, train_loss: 0.4992\n", + "2 epoch 230 average loss: 0.4992\n", + "current epoch: 230 current mean dice: 0.1165\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 231/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.4976\n", + "2 epoch 231 average loss: 0.4976\n", + "----------\n", + "2: epoch 232/500\n", + "1/0, train_loss: 0.5010\n", + "2 epoch 232 average loss: 0.5010\n", + "current epoch: 232 current mean dice: 0.1275\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 233/500\n", + "1/0, train_loss: 0.5042\n", + "2 epoch 233 average loss: 0.5042\n", + "----------\n", + "2: epoch 234/500\n", + "1/0, train_loss: 0.4993\n", + "2 epoch 234 average loss: 0.4993\n", + "current epoch: 234 current mean dice: 0.1239\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 235/500\n", + "1/0, train_loss: 0.5020\n", + "2 epoch 235 average loss: 0.5020\n", + "----------\n", + "2: epoch 236/500\n", + "1/0, train_loss: 0.5009\n", + "2 epoch 236 average loss: 0.5009\n", + "current epoch: 236 current mean dice: 0.1147\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 237/500\n", + "1/0, train_loss: 0.4979\n", + "2 epoch 237 average loss: 0.4979\n", + "----------\n", + "2: epoch 238/500\n", + "1/0, train_loss: 0.4989\n", + "2 epoch 238 average loss: 0.4989\n", + "current epoch: 238 current mean dice: 0.1227\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 239/500\n", + "1/0, train_loss: 0.4983\n", + "2 epoch 239 average loss: 0.4983\n", + "----------\n", + "2: epoch 240/500\n", + "1/0, train_loss: 0.4962\n", + "2 epoch 240 average loss: 0.4962\n", + "current epoch: 240 current mean dice: 0.1052\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 241/500\n", + "1/0, train_loss: 0.4993\n", + "2 epoch 241 average loss: 0.4993\n", + "----------\n", + "2: epoch 242/500\n", + "1/0, train_loss: 0.4970\n", + "2 epoch 242 average loss: 0.4970\n", + "current epoch: 242 current mean dice: 0.1199\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 243/500\n", + "1/0, train_loss: 0.4968\n", + "2 epoch 243 average loss: 0.4968\n", + "----------\n", + "2: epoch 244/500\n", + "1/0, train_loss: 0.4979\n", + "2 epoch 244 average loss: 0.4979\n", + "current epoch: 244 current mean dice: 0.1237\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 245/500\n", + "1/0, train_loss: 0.4929\n", + "2 epoch 245 average loss: 0.4929\n", + "----------\n", + "2: epoch 246/500\n", + "1/0, train_loss: 0.4951\n", + "2 epoch 246 average loss: 0.4951\n", + "current epoch: 246 current mean dice: 0.1382\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 247/500\n", + "1/0, train_loss: 0.5004\n", + "2 epoch 247 average loss: 0.5004\n", + "----------\n", + "2: epoch 248/500\n", + "1/0, train_loss: 0.4956\n", + "2 epoch 248 average loss: 0.4956\n", + "current epoch: 248 current mean dice: 0.1059\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 249/500\n", + "1/0, train_loss: 0.4937\n", + "2 epoch 249 average loss: 0.4937\n", + "----------\n", + "2: epoch 250/500\n", + "1/0, train_loss: 0.4917\n", + "2 epoch 250 average loss: 0.4917\n", + "current epoch: 250 current mean dice: 0.1207\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 251/500\n", + "1/0, train_loss: 0.4955\n", + "2 epoch 251 average loss: 0.4955\n", + "----------\n", + "2: epoch 252/500\n", + "1/0, train_loss: 0.4922\n", + "2 epoch 252 average loss: 0.4922\n", + "current epoch: 252 current mean dice: 0.1344\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 253/500\n", + "1/0, train_loss: 0.4955\n", + "2 epoch 253 average loss: 0.4955\n", + "----------\n", + "2: epoch 254/500\n", + "1/0, train_loss: 0.4978\n", + "2 epoch 254 average loss: 0.4978\n", + "current epoch: 254 current mean dice: 0.1211\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 255/500\n", + "1/0, train_loss: 0.4928\n", + "2 epoch 255 average loss: 0.4928\n", + "----------\n", + "2: epoch 256/500\n", + "1/0, train_loss: 0.4899\n", + "2 epoch 256 average loss: 0.4899\n", + "current epoch: 256 current mean dice: 0.1385\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 257/500\n", + "1/0, train_loss: 0.4925\n", + "2 epoch 257 average loss: 0.4925\n", + "----------\n", + "2: epoch 258/500\n", + "1/0, train_loss: 0.4902\n", + "2 epoch 258 average loss: 0.4902\n", + "current epoch: 258 current mean dice: 0.0751\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 259/500\n", + "1/0, train_loss: 0.4895\n", + "2 epoch 259 average loss: 0.4895\n", + "----------\n", + "2: epoch 260/500\n", + "1/0, train_loss: 0.4922\n", + "2 epoch 260 average loss: 0.4922\n", + "current epoch: 260 current mean dice: 0.1052\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 261/500\n", + "1/0, train_loss: 0.4893\n", + "2 epoch 261 average loss: 0.4893\n", + "----------\n", + "2: epoch 262/500\n", + "1/0, train_loss: 0.4899\n", + "2 epoch 262 average loss: 0.4899\n", + "current epoch: 262 current mean dice: 0.0747\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 263/500\n", + "1/0, train_loss: 0.4917\n", + "2 epoch 263 average loss: 0.4917\n", + "----------\n", + "2: epoch 264/500\n", + "1/0, train_loss: 0.4848\n", + "2 epoch 264 average loss: 0.4848\n", + "current epoch: 264 current mean dice: 0.0972\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 265/500\n", + "1/0, train_loss: 0.4883\n", + "2 epoch 265 average loss: 0.4883\n", + "----------\n", + "2: epoch 266/500\n", + "1/0, train_loss: 0.4913\n", + "2 epoch 266 average loss: 0.4913\n", + "current epoch: 266 current mean dice: 0.1070\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 267/500\n", + "1/0, train_loss: 0.4853\n", + "2 epoch 267 average loss: 0.4853\n", + "----------\n", + "2: epoch 268/500\n", + "1/0, train_loss: 0.4867\n", + "2 epoch 268 average loss: 0.4867\n", + "current epoch: 268 current mean dice: 0.0992\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 269/500\n", + "1/0, train_loss: 0.4848\n", + "2 epoch 269 average loss: 0.4848\n", + "----------\n", + "2: epoch 270/500\n", + "1/0, train_loss: 0.4858\n", + "2 epoch 270 average loss: 0.4858\n", + "current epoch: 270 current mean dice: 0.0840\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 271/500\n", + "1/0, train_loss: 0.4902\n", + "2 epoch 271 average loss: 0.4902\n", + "----------\n", + "2: epoch 272/500\n", + "1/0, train_loss: 0.4851\n", + "2 epoch 272 average loss: 0.4851\n", + "current epoch: 272 current mean dice: 0.0711\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 273/500\n", + "1/0, train_loss: 0.4879\n", + "2 epoch 273 average loss: 0.4879\n", + "----------\n", + "2: epoch 274/500\n", + "1/0, train_loss: 0.4868\n", + "2 epoch 274 average loss: 0.4868\n", + "current epoch: 274 current mean dice: 0.1099\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 275/500\n", + "1/0, train_loss: 0.4812\n", + "2 epoch 275 average loss: 0.4812\n", + "----------\n", + "2: epoch 276/500\n", + "1/0, train_loss: 0.4825\n", + "2 epoch 276 average loss: 0.4825\n", + "current epoch: 276 current mean dice: 0.0767\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 277/500\n", + "1/0, train_loss: 0.4843\n", + "2 epoch 277 average loss: 0.4843\n", + "----------\n", + "2: epoch 278/500\n", + "1/0, train_loss: 0.4858\n", + "2 epoch 278 average loss: 0.4858\n", + "current epoch: 278 current mean dice: 0.0655\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 279/500\n", + "1/0, train_loss: 0.4832\n", + "2 epoch 279 average loss: 0.4832\n", + "----------\n", + "2: epoch 280/500\n", + "1/0, train_loss: 0.4872\n", + "2 epoch 280 average loss: 0.4872\n", + "current epoch: 280 current mean dice: 0.0877\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 281/500\n", + "1/0, train_loss: 0.4845\n", + "2 epoch 281 average loss: 0.4845\n", + "----------\n", + "2: epoch 282/500\n", + "1/0, train_loss: 0.4808\n", + "2 epoch 282 average loss: 0.4808\n", + "current epoch: 282 current mean dice: 0.1008\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 283/500\n", + "1/0, train_loss: 0.4824\n", + "2 epoch 283 average loss: 0.4824\n", + "----------\n", + "2: epoch 284/500\n", + "1/0, train_loss: 0.4824\n", + "2 epoch 284 average loss: 0.4824\n", + "current epoch: 284 current mean dice: 0.1075\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 285/500\n", + "1/0, train_loss: 0.4832\n", + "2 epoch 285 average loss: 0.4832\n", + "----------\n", + "2: epoch 286/500\n", + "1/0, train_loss: 0.4784\n", + "2 epoch 286 average loss: 0.4784\n", + "current epoch: 286 current mean dice: 0.0825\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 287/500\n", + "1/0, train_loss: 0.4789\n", + "2 epoch 287 average loss: 0.4789\n", + "----------\n", + "2: epoch 288/500\n", + "1/0, train_loss: 0.4771\n", + "2 epoch 288 average loss: 0.4771\n", + "current epoch: 288 current mean dice: 0.0722\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 289/500\n", + "1/0, train_loss: 0.4816\n", + "2 epoch 289 average loss: 0.4816\n", + "----------\n", + "2: epoch 290/500\n", + "1/0, train_loss: 0.4803\n", + "2 epoch 290 average loss: 0.4803\n", + "current epoch: 290 current mean dice: 0.0710\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 291/500\n", + "1/0, train_loss: 0.4775\n", + "2 epoch 291 average loss: 0.4775\n", + "----------\n", + "2: epoch 292/500\n", + "1/0, train_loss: 0.4776\n", + "2 epoch 292 average loss: 0.4776\n", + "current epoch: 292 current mean dice: 0.0719\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 293/500\n", + "1/0, train_loss: 0.4778\n", + "2 epoch 293 average loss: 0.4778\n", + "----------\n", + "2: epoch 294/500\n", + "1/0, train_loss: 0.4795\n", + "2 epoch 294 average loss: 0.4795\n", + "current epoch: 294 current mean dice: 0.0648\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 295/500\n", + "1/0, train_loss: 0.4819\n", + "2 epoch 295 average loss: 0.4819\n", + "----------\n", + "2: epoch 296/500\n", + "1/0, train_loss: 0.4793\n", + "2 epoch 296 average loss: 0.4793\n", + "current epoch: 296 current mean dice: 0.0609\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 297/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.4781\n", + "2 epoch 297 average loss: 0.4781\n", + "----------\n", + "2: epoch 298/500\n", + "1/0, train_loss: 0.4768\n", + "2 epoch 298 average loss: 0.4768\n", + "current epoch: 298 current mean dice: 0.0774\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 299/500\n", + "1/0, train_loss: 0.4754\n", + "2 epoch 299 average loss: 0.4754\n", + "----------\n", + "2: epoch 300/500\n", + "1/0, train_loss: 0.4761\n", + "2 epoch 300 average loss: 0.4761\n", + "current epoch: 300 current mean dice: 0.0912\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 301/500\n", + "1/0, train_loss: 0.4753\n", + "2 epoch 301 average loss: 0.4753\n", + "----------\n", + "2: epoch 302/500\n", + "1/0, train_loss: 0.4767\n", + "2 epoch 302 average loss: 0.4767\n", + "current epoch: 302 current mean dice: 0.0665\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 303/500\n", + "1/0, train_loss: 0.4726\n", + "2 epoch 303 average loss: 0.4726\n", + "----------\n", + "2: epoch 304/500\n", + "1/0, train_loss: 0.4757\n", + "2 epoch 304 average loss: 0.4757\n", + "current epoch: 304 current mean dice: 0.0637\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 305/500\n", + "1/0, train_loss: 0.4756\n", + "2 epoch 305 average loss: 0.4756\n", + "----------\n", + "2: epoch 306/500\n", + "1/0, train_loss: 0.4737\n", + "2 epoch 306 average loss: 0.4737\n", + "current epoch: 306 current mean dice: 0.0576\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 307/500\n", + "1/0, train_loss: 0.4724\n", + "2 epoch 307 average loss: 0.4724\n", + "----------\n", + "2: epoch 308/500\n", + "1/0, train_loss: 0.4708\n", + "2 epoch 308 average loss: 0.4708\n", + "current epoch: 308 current mean dice: 0.0777\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 309/500\n", + "1/0, train_loss: 0.4744\n", + "2 epoch 309 average loss: 0.4744\n", + "----------\n", + "2: epoch 310/500\n", + "1/0, train_loss: 0.4697\n", + "2 epoch 310 average loss: 0.4697\n", + "current epoch: 310 current mean dice: 0.0619\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 311/500\n", + "1/0, train_loss: 0.4721\n", + "2 epoch 311 average loss: 0.4721\n", + "----------\n", + "2: epoch 312/500\n", + "1/0, train_loss: 0.4753\n", + "2 epoch 312 average loss: 0.4753\n", + "current epoch: 312 current mean dice: 0.0570\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 313/500\n", + "1/0, train_loss: 0.4709\n", + "2 epoch 313 average loss: 0.4709\n", + "----------\n", + "2: epoch 314/500\n", + "1/0, train_loss: 0.4738\n", + "2 epoch 314 average loss: 0.4738\n", + "current epoch: 314 current mean dice: 0.0690\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 315/500\n", + "1/0, train_loss: 0.4710\n", + "2 epoch 315 average loss: 0.4710\n", + "----------\n", + "2: epoch 316/500\n", + "1/0, train_loss: 0.4683\n", + "2 epoch 316 average loss: 0.4683\n", + "current epoch: 316 current mean dice: 0.0685\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 317/500\n", + "1/0, train_loss: 0.4729\n", + "2 epoch 317 average loss: 0.4729\n", + "----------\n", + "2: epoch 318/500\n", + "1/0, train_loss: 0.4723\n", + "2 epoch 318 average loss: 0.4723\n", + "current epoch: 318 current mean dice: 0.0999\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 319/500\n", + "1/0, train_loss: 0.4732\n", + "2 epoch 319 average loss: 0.4732\n", + "----------\n", + "2: epoch 320/500\n", + "1/0, train_loss: 0.4700\n", + "2 epoch 320 average loss: 0.4700\n", + "current epoch: 320 current mean dice: 0.0796\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 321/500\n", + "1/0, train_loss: 0.4709\n", + "2 epoch 321 average loss: 0.4709\n", + "----------\n", + "2: epoch 322/500\n", + "1/0, train_loss: 0.4677\n", + "2 epoch 322 average loss: 0.4677\n", + "current epoch: 322 current mean dice: 0.0738\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 323/500\n", + "1/0, train_loss: 0.4682\n", + "2 epoch 323 average loss: 0.4682\n", + "----------\n", + "2: epoch 324/500\n", + "1/0, train_loss: 0.4676\n", + "2 epoch 324 average loss: 0.4676\n", + "current epoch: 324 current mean dice: 0.0607\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 325/500\n", + "1/0, train_loss: 0.4657\n", + "2 epoch 325 average loss: 0.4657\n", + "----------\n", + "2: epoch 326/500\n", + "1/0, train_loss: 0.4676\n", + "2 epoch 326 average loss: 0.4676\n", + "current epoch: 326 current mean dice: 0.0590\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 327/500\n", + "1/0, train_loss: 0.4665\n", + "2 epoch 327 average loss: 0.4665\n", + "----------\n", + "2: epoch 328/500\n", + "1/0, train_loss: 0.4688\n", + "2 epoch 328 average loss: 0.4688\n", + "current epoch: 328 current mean dice: 0.0738\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 329/500\n", + "1/0, train_loss: 0.4656\n", + "2 epoch 329 average loss: 0.4656\n", + "----------\n", + "2: epoch 330/500\n", + "1/0, train_loss: 0.4690\n", + "2 epoch 330 average loss: 0.4690\n", + "current epoch: 330 current mean dice: 0.0896\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 331/500\n", + "1/0, train_loss: 0.4643\n", + "2 epoch 331 average loss: 0.4643\n", + "----------\n", + "2: epoch 332/500\n", + "1/0, train_loss: 0.4660\n", + "2 epoch 332 average loss: 0.4660\n", + "current epoch: 332 current mean dice: 0.0674\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 333/500\n", + "1/0, train_loss: 0.4680\n", + "2 epoch 333 average loss: 0.4680\n", + "----------\n", + "2: epoch 334/500\n", + "1/0, train_loss: 0.4683\n", + "2 epoch 334 average loss: 0.4683\n", + "current epoch: 334 current mean dice: 0.0592\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 335/500\n", + "1/0, train_loss: 0.4673\n", + "2 epoch 335 average loss: 0.4673\n", + "----------\n", + "2: epoch 336/500\n", + "1/0, train_loss: 0.4670\n", + "2 epoch 336 average loss: 0.4670\n", + "current epoch: 336 current mean dice: 0.0551\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 337/500\n", + "1/0, train_loss: 0.4660\n", + "2 epoch 337 average loss: 0.4660\n", + "----------\n", + "2: epoch 338/500\n", + "1/0, train_loss: 0.4640\n", + "2 epoch 338 average loss: 0.4640\n", + "current epoch: 338 current mean dice: 0.0761\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 339/500\n", + "1/0, train_loss: 0.4665\n", + "2 epoch 339 average loss: 0.4665\n", + "----------\n", + "2: epoch 340/500\n", + "1/0, train_loss: 0.4657\n", + "2 epoch 340 average loss: 0.4657\n", + "current epoch: 340 current mean dice: 0.0651\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 341/500\n", + "1/0, train_loss: 0.4648\n", + "2 epoch 341 average loss: 0.4648\n", + "----------\n", + "2: epoch 342/500\n", + "1/0, train_loss: 0.4662\n", + "2 epoch 342 average loss: 0.4662\n", + "current epoch: 342 current mean dice: 0.0636\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 343/500\n", + "1/0, train_loss: 0.4664\n", + "2 epoch 343 average loss: 0.4664\n", + "----------\n", + "2: epoch 344/500\n", + "1/0, train_loss: 0.4651\n", + "2 epoch 344 average loss: 0.4651\n", + "current epoch: 344 current mean dice: 0.0516\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 345/500\n", + "1/0, train_loss: 0.4637\n", + "2 epoch 345 average loss: 0.4637\n", + "----------\n", + "2: epoch 346/500\n", + "1/0, train_loss: 0.4645\n", + "2 epoch 346 average loss: 0.4645\n", + "current epoch: 346 current mean dice: 0.0653\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 347/500\n", + "1/0, train_loss: 0.4627\n", + "2 epoch 347 average loss: 0.4627\n", + "----------\n", + "2: epoch 348/500\n", + "1/0, train_loss: 0.4621\n", + "2 epoch 348 average loss: 0.4621\n", + "current epoch: 348 current mean dice: 0.0518\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 349/500\n", + "1/0, train_loss: 0.4627\n", + "2 epoch 349 average loss: 0.4627\n", + "----------\n", + "2: epoch 350/500\n", + "1/0, train_loss: 0.4593\n", + "2 epoch 350 average loss: 0.4593\n", + "current epoch: 350 current mean dice: 0.0742\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 351/500\n", + "1/0, train_loss: 0.4641\n", + "2 epoch 351 average loss: 0.4641\n", + "----------\n", + "2: epoch 352/500\n", + "1/0, train_loss: 0.4647\n", + "2 epoch 352 average loss: 0.4647\n", + "current epoch: 352 current mean dice: 0.0738\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 353/500\n", + "1/0, train_loss: 0.4604\n", + "2 epoch 353 average loss: 0.4604\n", + "----------\n", + "2: epoch 354/500\n", + "1/0, train_loss: 0.4599\n", + "2 epoch 354 average loss: 0.4599\n", + "current epoch: 354 current mean dice: 0.0803\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 355/500\n", + "1/0, train_loss: 0.4619\n", + "2 epoch 355 average loss: 0.4619\n", + "----------\n", + "2: epoch 356/500\n", + "1/0, train_loss: 0.4617\n", + "2 epoch 356 average loss: 0.4617\n", + "current epoch: 356 current mean dice: 0.0697\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 357/500\n", + "1/0, train_loss: 0.4575\n", + "2 epoch 357 average loss: 0.4575\n", + "----------\n", + "2: epoch 358/500\n", + "1/0, train_loss: 0.4622\n", + "2 epoch 358 average loss: 0.4622\n", + "current epoch: 358 current mean dice: 0.0682\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 359/500\n", + "1/0, train_loss: 0.4612\n", + "2 epoch 359 average loss: 0.4612\n", + "----------\n", + "2: epoch 360/500\n", + "1/0, train_loss: 0.4593\n", + "2 epoch 360 average loss: 0.4593\n", + "current epoch: 360 current mean dice: 0.0657\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 361/500\n", + "1/0, train_loss: 0.4635\n", + "2 epoch 361 average loss: 0.4635\n", + "----------\n", + "2: epoch 362/500\n", + "1/0, train_loss: 0.4622\n", + "2 epoch 362 average loss: 0.4622\n", + "current epoch: 362 current mean dice: 0.0346\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 363/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.4588\n", + "2 epoch 363 average loss: 0.4588\n", + "----------\n", + "2: epoch 364/500\n", + "1/0, train_loss: 0.4595\n", + "2 epoch 364 average loss: 0.4595\n", + "current epoch: 364 current mean dice: 0.0479\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 365/500\n", + "1/0, train_loss: 0.4598\n", + "2 epoch 365 average loss: 0.4598\n", + "----------\n", + "2: epoch 366/500\n", + "1/0, train_loss: 0.4587\n", + "2 epoch 366 average loss: 0.4587\n", + "current epoch: 366 current mean dice: 0.0584\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 367/500\n", + "1/0, train_loss: 0.4610\n", + "2 epoch 367 average loss: 0.4610\n", + "----------\n", + "2: epoch 368/500\n", + "1/0, train_loss: 0.4599\n", + "2 epoch 368 average loss: 0.4599\n", + "current epoch: 368 current mean dice: 0.0587\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 369/500\n", + "1/0, train_loss: 0.4578\n", + "2 epoch 369 average loss: 0.4578\n", + "----------\n", + "2: epoch 370/500\n", + "1/0, train_loss: 0.4582\n", + "2 epoch 370 average loss: 0.4582\n", + "current epoch: 370 current mean dice: 0.0506\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 371/500\n", + "1/0, train_loss: 0.4568\n", + "2 epoch 371 average loss: 0.4568\n", + "----------\n", + "2: epoch 372/500\n", + "1/0, train_loss: 0.4590\n", + "2 epoch 372 average loss: 0.4590\n", + "current epoch: 372 current mean dice: 0.0554\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 373/500\n", + "1/0, train_loss: 0.4580\n", + "2 epoch 373 average loss: 0.4580\n", + "----------\n", + "2: epoch 374/500\n", + "1/0, train_loss: 0.4562\n", + "2 epoch 374 average loss: 0.4562\n", + "current epoch: 374 current mean dice: 0.0407\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 375/500\n", + "1/0, train_loss: 0.4599\n", + "2 epoch 375 average loss: 0.4599\n", + "----------\n", + "2: epoch 376/500\n", + "1/0, train_loss: 0.4557\n", + "2 epoch 376 average loss: 0.4557\n", + "current epoch: 376 current mean dice: 0.0666\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 377/500\n", + "1/0, train_loss: 0.4566\n", + "2 epoch 377 average loss: 0.4566\n", + "----------\n", + "2: epoch 378/500\n", + "1/0, train_loss: 0.4551\n", + "2 epoch 378 average loss: 0.4551\n", + "current epoch: 378 current mean dice: 0.0587\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 379/500\n", + "1/0, train_loss: 0.4529\n", + "2 epoch 379 average loss: 0.4529\n", + "----------\n", + "2: epoch 380/500\n", + "1/0, train_loss: 0.4543\n", + "2 epoch 380 average loss: 0.4543\n", + "current epoch: 380 current mean dice: 0.0676\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 381/500\n", + "1/0, train_loss: 0.4563\n", + "2 epoch 381 average loss: 0.4563\n", + "----------\n", + "2: epoch 382/500\n", + "1/0, train_loss: 0.4559\n", + "2 epoch 382 average loss: 0.4559\n", + "current epoch: 382 current mean dice: 0.0634\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 383/500\n", + "1/0, train_loss: 0.4524\n", + "2 epoch 383 average loss: 0.4524\n", + "----------\n", + "2: epoch 384/500\n", + "1/0, train_loss: 0.4531\n", + "2 epoch 384 average loss: 0.4531\n", + "current epoch: 384 current mean dice: 0.0640\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 385/500\n", + "1/0, train_loss: 0.4543\n", + "2 epoch 385 average loss: 0.4543\n", + "----------\n", + "2: epoch 386/500\n", + "1/0, train_loss: 0.4517\n", + "2 epoch 386 average loss: 0.4517\n", + "current epoch: 386 current mean dice: 0.0837\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 387/500\n", + "1/0, train_loss: 0.4576\n", + "2 epoch 387 average loss: 0.4576\n", + "----------\n", + "2: epoch 388/500\n", + "1/0, train_loss: 0.4530\n", + "2 epoch 388 average loss: 0.4530\n", + "current epoch: 388 current mean dice: 0.0759\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 389/500\n", + "1/0, train_loss: 0.4541\n", + "2 epoch 389 average loss: 0.4541\n", + "----------\n", + "2: epoch 390/500\n", + "1/0, train_loss: 0.4531\n", + "2 epoch 390 average loss: 0.4531\n", + "current epoch: 390 current mean dice: 0.0655\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 391/500\n", + "1/0, train_loss: 0.4517\n", + "2 epoch 391 average loss: 0.4517\n", + "----------\n", + "2: epoch 392/500\n", + "1/0, train_loss: 0.4515\n", + "2 epoch 392 average loss: 0.4515\n", + "current epoch: 392 current mean dice: 0.0601\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 393/500\n", + "1/0, train_loss: 0.4543\n", + "2 epoch 393 average loss: 0.4543\n", + "----------\n", + "2: epoch 394/500\n", + "1/0, train_loss: 0.4530\n", + "2 epoch 394 average loss: 0.4530\n", + "current epoch: 394 current mean dice: 0.0479\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 395/500\n", + "1/0, train_loss: 0.4542\n", + "2 epoch 395 average loss: 0.4542\n", + "----------\n", + "2: epoch 396/500\n", + "1/0, train_loss: 0.4505\n", + "2 epoch 396 average loss: 0.4505\n", + "current epoch: 396 current mean dice: 0.0436\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 397/500\n", + "1/0, train_loss: 0.4537\n", + "2 epoch 397 average loss: 0.4537\n", + "----------\n", + "2: epoch 398/500\n", + "1/0, train_loss: 0.4487\n", + "2 epoch 398 average loss: 0.4487\n", + "current epoch: 398 current mean dice: 0.0422\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 399/500\n", + "1/0, train_loss: 0.4503\n", + "2 epoch 399 average loss: 0.4503\n", + "----------\n", + "2: epoch 400/500\n", + "1/0, train_loss: 0.4497\n", + "2 epoch 400 average loss: 0.4497\n", + "current epoch: 400 current mean dice: 0.0552\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 401/500\n", + "1/0, train_loss: 0.4493\n", + "2 epoch 401 average loss: 0.4493\n", + "----------\n", + "2: epoch 402/500\n", + "1/0, train_loss: 0.4477\n", + "2 epoch 402 average loss: 0.4477\n", + "current epoch: 402 current mean dice: 0.0644\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 403/500\n", + "1/0, train_loss: 0.4484\n", + "2 epoch 403 average loss: 0.4484\n", + "----------\n", + "2: epoch 404/500\n", + "1/0, train_loss: 0.4504\n", + "2 epoch 404 average loss: 0.4504\n", + "current epoch: 404 current mean dice: 0.0561\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 405/500\n", + "1/0, train_loss: 0.4491\n", + "2 epoch 405 average loss: 0.4491\n", + "----------\n", + "2: epoch 406/500\n", + "1/0, train_loss: 0.4480\n", + "2 epoch 406 average loss: 0.4480\n", + "current epoch: 406 current mean dice: 0.0596\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 407/500\n", + "1/0, train_loss: 0.4495\n", + "2 epoch 407 average loss: 0.4495\n", + "----------\n", + "2: epoch 408/500\n", + "1/0, train_loss: 0.4504\n", + "2 epoch 408 average loss: 0.4504\n", + "current epoch: 408 current mean dice: 0.0515\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 409/500\n", + "1/0, train_loss: 0.4480\n", + "2 epoch 409 average loss: 0.4480\n", + "----------\n", + "2: epoch 410/500\n", + "1/0, train_loss: 0.4470\n", + "2 epoch 410 average loss: 0.4470\n", + "current epoch: 410 current mean dice: 0.0569\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 411/500\n", + "1/0, train_loss: 0.4485\n", + "2 epoch 411 average loss: 0.4485\n", + "----------\n", + "2: epoch 412/500\n", + "1/0, train_loss: 0.4493\n", + "2 epoch 412 average loss: 0.4493\n", + "current epoch: 412 current mean dice: 0.0578\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 413/500\n", + "1/0, train_loss: 0.4450\n", + "2 epoch 413 average loss: 0.4450\n", + "----------\n", + "2: epoch 414/500\n", + "1/0, train_loss: 0.4504\n", + "2 epoch 414 average loss: 0.4504\n", + "current epoch: 414 current mean dice: 0.0591\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 415/500\n", + "1/0, train_loss: 0.4462\n", + "2 epoch 415 average loss: 0.4462\n", + "----------\n", + "2: epoch 416/500\n", + "1/0, train_loss: 0.4483\n", + "2 epoch 416 average loss: 0.4483\n", + "current epoch: 416 current mean dice: 0.0676\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 417/500\n", + "1/0, train_loss: 0.4466\n", + "2 epoch 417 average loss: 0.4466\n", + "----------\n", + "2: epoch 418/500\n", + "1/0, train_loss: 0.4484\n", + "2 epoch 418 average loss: 0.4484\n", + "current epoch: 418 current mean dice: 0.0621\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 419/500\n", + "1/0, train_loss: 0.4472\n", + "2 epoch 419 average loss: 0.4472\n", + "----------\n", + "2: epoch 420/500\n", + "1/0, train_loss: 0.4468\n", + "2 epoch 420 average loss: 0.4468\n", + "current epoch: 420 current mean dice: 0.0620\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 421/500\n", + "1/0, train_loss: 0.4432\n", + "2 epoch 421 average loss: 0.4432\n", + "----------\n", + "2: epoch 422/500\n", + "1/0, train_loss: 0.4453\n", + "2 epoch 422 average loss: 0.4453\n", + "current epoch: 422 current mean dice: 0.0614\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 423/500\n", + "1/0, train_loss: 0.4461\n", + "2 epoch 423 average loss: 0.4461\n", + "----------\n", + "2: epoch 424/500\n", + "1/0, train_loss: 0.4454\n", + "2 epoch 424 average loss: 0.4454\n", + "current epoch: 424 current mean dice: 0.0614\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 425/500\n", + "1/0, train_loss: 0.4451\n", + "2 epoch 425 average loss: 0.4451\n", + "----------\n", + "2: epoch 426/500\n", + "1/0, train_loss: 0.4436\n", + "2 epoch 426 average loss: 0.4436\n", + "current epoch: 426 current mean dice: 0.0383\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 427/500\n", + "1/0, train_loss: 0.4447\n", + "2 epoch 427 average loss: 0.4447\n", + "----------\n", + "2: epoch 428/500\n", + "1/0, train_loss: 0.4450\n", + "2 epoch 428 average loss: 0.4450\n", + "current epoch: 428 current mean dice: 0.0465\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 429/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.4439\n", + "2 epoch 429 average loss: 0.4439\n", + "----------\n", + "2: epoch 430/500\n", + "1/0, train_loss: 0.4441\n", + "2 epoch 430 average loss: 0.4441\n", + "current epoch: 430 current mean dice: 0.0582\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 431/500\n", + "1/0, train_loss: 0.4436\n", + "2 epoch 431 average loss: 0.4436\n", + "----------\n", + "2: epoch 432/500\n", + "1/0, train_loss: 0.4416\n", + "2 epoch 432 average loss: 0.4416\n", + "current epoch: 432 current mean dice: 0.0602\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 433/500\n", + "1/0, train_loss: 0.4435\n", + "2 epoch 433 average loss: 0.4435\n", + "----------\n", + "2: epoch 434/500\n", + "1/0, train_loss: 0.4458\n", + "2 epoch 434 average loss: 0.4458\n", + "current epoch: 434 current mean dice: 0.0530\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 435/500\n", + "1/0, train_loss: 0.4448\n", + "2 epoch 435 average loss: 0.4448\n", + "----------\n", + "2: epoch 436/500\n", + "1/0, train_loss: 0.4427\n", + "2 epoch 436 average loss: 0.4427\n", + "current epoch: 436 current mean dice: 0.0577\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 437/500\n", + "1/0, train_loss: 0.4436\n", + "2 epoch 437 average loss: 0.4436\n", + "----------\n", + "2: epoch 438/500\n", + "1/0, train_loss: 0.4439\n", + "2 epoch 438 average loss: 0.4439\n", + "current epoch: 438 current mean dice: 0.0524\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 439/500\n", + "1/0, train_loss: 0.4412\n", + "2 epoch 439 average loss: 0.4412\n", + "----------\n", + "2: epoch 440/500\n", + "1/0, train_loss: 0.4428\n", + "2 epoch 440 average loss: 0.4428\n", + "current epoch: 440 current mean dice: 0.0491\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 441/500\n", + "1/0, train_loss: 0.4437\n", + "2 epoch 441 average loss: 0.4437\n", + "----------\n", + "2: epoch 442/500\n", + "1/0, train_loss: 0.4423\n", + "2 epoch 442 average loss: 0.4423\n", + "current epoch: 442 current mean dice: 0.0559\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 443/500\n", + "1/0, train_loss: 0.4422\n", + "2 epoch 443 average loss: 0.4422\n", + "----------\n", + "2: epoch 444/500\n", + "1/0, train_loss: 0.4439\n", + "2 epoch 444 average loss: 0.4439\n", + "current epoch: 444 current mean dice: 0.0553\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 445/500\n", + "1/0, train_loss: 0.4448\n", + "2 epoch 445 average loss: 0.4448\n", + "----------\n", + "2: epoch 446/500\n", + "1/0, train_loss: 0.4385\n", + "2 epoch 446 average loss: 0.4385\n", + "current epoch: 446 current mean dice: 0.0649\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 447/500\n", + "1/0, train_loss: 0.4453\n", + "2 epoch 447 average loss: 0.4453\n", + "----------\n", + "2: epoch 448/500\n", + "1/0, train_loss: 0.4422\n", + "2 epoch 448 average loss: 0.4422\n", + "current epoch: 448 current mean dice: 0.0591\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 449/500\n", + "1/0, train_loss: 0.4446\n", + "2 epoch 449 average loss: 0.4446\n", + "----------\n", + "2: epoch 450/500\n", + "1/0, train_loss: 0.4412\n", + "2 epoch 450 average loss: 0.4412\n", + "current epoch: 450 current mean dice: 0.0647\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 451/500\n", + "1/0, train_loss: 0.4395\n", + "2 epoch 451 average loss: 0.4395\n", + "----------\n", + "2: epoch 452/500\n", + "1/0, train_loss: 0.4435\n", + "2 epoch 452 average loss: 0.4435\n", + "current epoch: 452 current mean dice: 0.0505\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 453/500\n", + "1/0, train_loss: 0.4403\n", + "2 epoch 453 average loss: 0.4403\n", + "----------\n", + "2: epoch 454/500\n", + "1/0, train_loss: 0.4398\n", + "2 epoch 454 average loss: 0.4398\n", + "current epoch: 454 current mean dice: 0.0537\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 455/500\n", + "1/0, train_loss: 0.4417\n", + "2 epoch 455 average loss: 0.4417\n", + "----------\n", + "2: epoch 456/500\n", + "1/0, train_loss: 0.4383\n", + "2 epoch 456 average loss: 0.4383\n", + "current epoch: 456 current mean dice: 0.0499\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 457/500\n", + "1/0, train_loss: 0.4383\n", + "2 epoch 457 average loss: 0.4383\n", + "----------\n", + "2: epoch 458/500\n", + "1/0, train_loss: 0.4401\n", + "2 epoch 458 average loss: 0.4401\n", + "current epoch: 458 current mean dice: 0.0570\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 459/500\n", + "1/0, train_loss: 0.4402\n", + "2 epoch 459 average loss: 0.4402\n", + "----------\n", + "2: epoch 460/500\n", + "1/0, train_loss: 0.4395\n", + "2 epoch 460 average loss: 0.4395\n", + "current epoch: 460 current mean dice: 0.0531\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 461/500\n", + "1/0, train_loss: 0.4390\n", + "2 epoch 461 average loss: 0.4390\n", + "----------\n", + "2: epoch 462/500\n", + "1/0, train_loss: 0.4392\n", + "2 epoch 462 average loss: 0.4392\n", + "current epoch: 462 current mean dice: 0.0427\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 463/500\n", + "1/0, train_loss: 0.4385\n", + "2 epoch 463 average loss: 0.4385\n", + "----------\n", + "2: epoch 464/500\n", + "1/0, train_loss: 0.4379\n", + "2 epoch 464 average loss: 0.4379\n", + "current epoch: 464 current mean dice: 0.0563\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 465/500\n", + "1/0, train_loss: 0.4356\n", + "2 epoch 465 average loss: 0.4356\n", + "----------\n", + "2: epoch 466/500\n", + "1/0, train_loss: 0.4384\n", + "2 epoch 466 average loss: 0.4384\n", + "current epoch: 466 current mean dice: 0.0572\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 467/500\n", + "1/0, train_loss: 0.4405\n", + "2 epoch 467 average loss: 0.4405\n", + "----------\n", + "2: epoch 468/500\n", + "1/0, train_loss: 0.4379\n", + "2 epoch 468 average loss: 0.4379\n", + "current epoch: 468 current mean dice: 0.0733\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 469/500\n", + "1/0, train_loss: 0.4382\n", + "2 epoch 469 average loss: 0.4382\n", + "----------\n", + "2: epoch 470/500\n", + "1/0, train_loss: 0.4378\n", + "2 epoch 470 average loss: 0.4378\n", + "current epoch: 470 current mean dice: 0.0700\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 471/500\n", + "1/0, train_loss: 0.4373\n", + "2 epoch 471 average loss: 0.4373\n", + "----------\n", + "2: epoch 472/500\n", + "1/0, train_loss: 0.4392\n", + "2 epoch 472 average loss: 0.4392\n", + "current epoch: 472 current mean dice: 0.0705\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 473/500\n", + "1/0, train_loss: 0.4396\n", + "2 epoch 473 average loss: 0.4396\n", + "----------\n", + "2: epoch 474/500\n", + "1/0, train_loss: 0.4372\n", + "2 epoch 474 average loss: 0.4372\n", + "current epoch: 474 current mean dice: 0.0509\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 475/500\n", + "1/0, train_loss: 0.4390\n", + "2 epoch 475 average loss: 0.4390\n", + "----------\n", + "2: epoch 476/500\n", + "1/0, train_loss: 0.4364\n", + "2 epoch 476 average loss: 0.4364\n", + "current epoch: 476 current mean dice: 0.0476\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 477/500\n", + "1/0, train_loss: 0.4379\n", + "2 epoch 477 average loss: 0.4379\n", + "----------\n", + "2: epoch 478/500\n", + "1/0, train_loss: 0.4373\n", + "2 epoch 478 average loss: 0.4373\n", + "current epoch: 478 current mean dice: 0.0512\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 479/500\n", + "1/0, train_loss: 0.4354\n", + "2 epoch 479 average loss: 0.4354\n", + "----------\n", + "2: epoch 480/500\n", + "1/0, train_loss: 0.4369\n", + "2 epoch 480 average loss: 0.4369\n", + "current epoch: 480 current mean dice: 0.0569\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 481/500\n", + "1/0, train_loss: 0.4370\n", + "2 epoch 481 average loss: 0.4370\n", + "----------\n", + "2: epoch 482/500\n", + "1/0, train_loss: 0.4325\n", + "2 epoch 482 average loss: 0.4325\n", + "current epoch: 482 current mean dice: 0.0582\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 483/500\n", + "1/0, train_loss: 0.4371\n", + "2 epoch 483 average loss: 0.4371\n", + "----------\n", + "2: epoch 484/500\n", + "1/0, train_loss: 0.4356\n", + "2 epoch 484 average loss: 0.4356\n", + "current epoch: 484 current mean dice: 0.0681\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 485/500\n", + "1/0, train_loss: 0.4364\n", + "2 epoch 485 average loss: 0.4364\n", + "----------\n", + "2: epoch 486/500\n", + "1/0, train_loss: 0.4362\n", + "2 epoch 486 average loss: 0.4362\n", + "current epoch: 486 current mean dice: 0.0621\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 487/500\n", + "1/0, train_loss: 0.4372\n", + "2 epoch 487 average loss: 0.4372\n", + "----------\n", + "2: epoch 488/500\n", + "1/0, train_loss: 0.4348\n", + "2 epoch 488 average loss: 0.4348\n", + "current epoch: 488 current mean dice: 0.0776\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 489/500\n", + "1/0, train_loss: 0.4348\n", + "2 epoch 489 average loss: 0.4348\n", + "----------\n", + "2: epoch 490/500\n", + "1/0, train_loss: 0.4354\n", + "2 epoch 490 average loss: 0.4354\n", + "current epoch: 490 current mean dice: 0.0678\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 491/500\n", + "1/0, train_loss: 0.4348\n", + "2 epoch 491 average loss: 0.4348\n", + "----------\n", + "2: epoch 492/500\n", + "1/0, train_loss: 0.4375\n", + "2 epoch 492 average loss: 0.4375\n", + "current epoch: 492 current mean dice: 0.0777\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 493/500\n", + "1/0, train_loss: 0.4376\n", + "2 epoch 493 average loss: 0.4376\n", + "----------\n", + "2: epoch 494/500\n", + "1/0, train_loss: 0.4352\n", + "2 epoch 494 average loss: 0.4352\n", + "current epoch: 494 current mean dice: 0.0691\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 495/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.4361\n", + "2 epoch 495 average loss: 0.4361\n", + "----------\n", + "2: epoch 496/500\n", + "1/0, train_loss: 0.4332\n", + "2 epoch 496 average loss: 0.4332\n", + "current epoch: 496 current mean dice: 0.0495\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 497/500\n", + "1/0, train_loss: 0.4349\n", + "2 epoch 497 average loss: 0.4349\n", + "----------\n", + "2: epoch 498/500\n", + "1/0, train_loss: 0.4365\n", + "2 epoch 498 average loss: 0.4365\n", + "current epoch: 498 current mean dice: 0.0645\n", + "best mean dice: 0.3660 at epoch: 88\n", + "----------\n", + "2: epoch 499/500\n", + "1/0, train_loss: 0.4352\n", + "2 epoch 499 average loss: 0.4352\n", + "----------\n", + "2: epoch 500/500\n", + "1/0, train_loss: 0.4336\n", + "2 epoch 500 average loss: 0.4336\n", + "current epoch: 500 current mean dice: 0.0426\n", + "best mean dice: 0.3660 at epoch: 88\n" + ] + } + ], + "source": [ + "for i in range(device_num,num_folds,num_devices):\n", + " vfold_train(i, train_loader[i], val_loader[i])" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "1fd1e392", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "----------\n", + "0: epoch 1/500\n", + "1/0, train_loss: 0.7399\n", + "0 epoch 1 average loss: 0.7399\n", + "----------\n", + "0: epoch 2/500\n", + "1/0, train_loss: 0.7025\n", + "0 epoch 2 average loss: 0.7025\n", + "saved new best metric model\n", + "current epoch: 2 current mean dice: 0.3466\n", + "best mean dice: 0.3466 at epoch: 2\n", + "----------\n", + "0: epoch 3/500\n", + "1/0, train_loss: 0.6769\n", + "0 epoch 3 average loss: 0.6769\n", + "----------\n", + "0: epoch 4/500\n", + "1/0, train_loss: 0.6662\n", + "0 epoch 4 average loss: 0.6662\n", + "current epoch: 4 current mean dice: 0.2852\n", + "best mean dice: 0.3466 at epoch: 2\n", + "----------\n", + "0: epoch 5/500\n", + "1/0, train_loss: 0.6644\n", + "0 epoch 5 average loss: 0.6644\n", + "----------\n", + "0: epoch 6/500\n", + "1/0, train_loss: 0.6556\n", + "0 epoch 6 average loss: 0.6556\n", + "current epoch: 6 current mean dice: 0.2716\n", + "best mean dice: 0.3466 at epoch: 2\n", + "----------\n", + "0: epoch 7/500\n", + "1/0, train_loss: 0.6573\n", + "0 epoch 7 average loss: 0.6573\n", + "----------\n", + "0: epoch 8/500\n", + "1/0, train_loss: 0.6482\n", + "0 epoch 8 average loss: 0.6482\n", + "current epoch: 8 current mean dice: 0.2875\n", + "best mean dice: 0.3466 at epoch: 2\n", + "----------\n", + "0: epoch 9/500\n", + "1/0, train_loss: 0.6459\n", + "0 epoch 9 average loss: 0.6459\n", + "----------\n", + "0: epoch 10/500\n", + "1/0, train_loss: 0.6427\n", + "0 epoch 10 average loss: 0.6427\n", + "current epoch: 10 current mean dice: 0.3244\n", + "best mean dice: 0.3466 at epoch: 2\n", + "----------\n", + "0: epoch 11/500\n", + "1/0, train_loss: 0.6338\n", + "0 epoch 11 average loss: 0.6338\n", + "----------\n", + "0: epoch 12/500\n", + "1/0, train_loss: 0.6291\n", + "0 epoch 12 average loss: 0.6291\n", + "saved new best metric model\n", + "current epoch: 12 current mean dice: 0.3563\n", + "best mean dice: 0.3563 at epoch: 12\n", + "----------\n", + "0: epoch 13/500\n", + "1/0, train_loss: 0.6261\n", + "0 epoch 13 average loss: 0.6261\n", + "----------\n", + "0: epoch 14/500\n", + "1/0, train_loss: 0.6192\n", + "0 epoch 14 average loss: 0.6192\n", + "current epoch: 14 current mean dice: 0.3460\n", + "best mean dice: 0.3563 at epoch: 12\n", + "----------\n", + "0: epoch 15/500\n", + "1/0, train_loss: 0.6239\n", + "0 epoch 15 average loss: 0.6239\n", + "----------\n", + "0: epoch 16/500\n", + "1/0, train_loss: 0.6177\n", + "0 epoch 16 average loss: 0.6177\n", + "saved new best metric model\n", + "current epoch: 16 current mean dice: 0.3589\n", + "best mean dice: 0.3589 at epoch: 16\n", + "----------\n", + "0: epoch 17/500\n", + "1/0, train_loss: 0.6086\n", + "0 epoch 17 average loss: 0.6086\n", + "----------\n", + "0: epoch 18/500\n", + "1/0, train_loss: 0.6018\n", + "0 epoch 18 average loss: 0.6018\n", + "saved new best metric model\n", + "current epoch: 18 current mean dice: 0.3733\n", + "best mean dice: 0.3733 at epoch: 18\n", + "----------\n", + "0: epoch 19/500\n", + "1/0, train_loss: 0.6034\n", + "0 epoch 19 average loss: 0.6034\n", + "----------\n", + "0: epoch 20/500\n", + "1/0, train_loss: 0.5996\n", + "0 epoch 20 average loss: 0.5996\n", + "saved new best metric model\n", + "current epoch: 20 current mean dice: 0.3887\n", + "best mean dice: 0.3887 at epoch: 20\n", + "----------\n", + "0: epoch 21/500\n", + "1/0, train_loss: 0.5865\n", + "0 epoch 21 average loss: 0.5865\n", + "----------\n", + "0: epoch 22/500\n", + "1/0, train_loss: 0.5940\n", + "0 epoch 22 average loss: 0.5940\n", + "current epoch: 22 current mean dice: 0.3815\n", + "best mean dice: 0.3887 at epoch: 20\n", + "----------\n", + "0: epoch 23/500\n", + "1/0, train_loss: 0.5820\n", + "0 epoch 23 average loss: 0.5820\n", + "----------\n", + "0: epoch 24/500\n", + "1/0, train_loss: 0.5749\n", + "0 epoch 24 average loss: 0.5749\n", + "current epoch: 24 current mean dice: 0.3807\n", + "best mean dice: 0.3887 at epoch: 20\n", + "----------\n", + "0: epoch 25/500\n", + "1/0, train_loss: 0.5764\n", + "0 epoch 25 average loss: 0.5764\n", + "----------\n", + "0: epoch 26/500\n", + "1/0, train_loss: 0.5768\n", + "0 epoch 26 average loss: 0.5768\n", + "saved new best metric model\n", + "current epoch: 26 current mean dice: 0.4032\n", + "best mean dice: 0.4032 at epoch: 26\n", + "----------\n", + "0: epoch 27/500\n", + "1/0, train_loss: 0.5782\n", + "0 epoch 27 average loss: 0.5782\n", + "----------\n", + "0: epoch 28/500\n", + "1/0, train_loss: 0.5727\n", + "0 epoch 28 average loss: 0.5727\n", + "saved new best metric model\n", + "current epoch: 28 current mean dice: 0.4050\n", + "best mean dice: 0.4050 at epoch: 28\n", + "----------\n", + "0: epoch 29/500\n", + "1/0, train_loss: 0.5580\n", + "0 epoch 29 average loss: 0.5580\n", + "----------\n", + "0: epoch 30/500\n", + "1/0, train_loss: 0.5547\n", + "0 epoch 30 average loss: 0.5547\n", + "saved new best metric model\n", + "current epoch: 30 current mean dice: 0.4340\n", + "best mean dice: 0.4340 at epoch: 30\n", + "----------\n", + "0: epoch 31/500\n", + "1/0, train_loss: 0.5497\n", + "0 epoch 31 average loss: 0.5497\n", + "----------\n", + "0: epoch 32/500\n", + "1/0, train_loss: 0.5371\n", + "0 epoch 32 average loss: 0.5371\n", + "saved new best metric model\n", + "current epoch: 32 current mean dice: 0.4481\n", + "best mean dice: 0.4481 at epoch: 32\n", + "----------\n", + "0: epoch 33/500\n", + "1/0, train_loss: 0.5432\n", + "0 epoch 33 average loss: 0.5432\n", + "----------\n", + "0: epoch 34/500\n", + "1/0, train_loss: 0.5453\n", + "0 epoch 34 average loss: 0.5453\n", + "current epoch: 34 current mean dice: 0.4338\n", + "best mean dice: 0.4481 at epoch: 32\n", + "----------\n", + "0: epoch 35/500\n", + "1/0, train_loss: 0.5300\n", + "0 epoch 35 average loss: 0.5300\n", + "----------\n", + "0: epoch 36/500\n", + "1/0, train_loss: 0.5191\n", + "0 epoch 36 average loss: 0.5191\n", + "saved new best metric model\n", + "current epoch: 36 current mean dice: 0.4492\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 37/500\n", + "1/0, train_loss: 0.5239\n", + "0 epoch 37 average loss: 0.5239\n", + "----------\n", + "0: epoch 38/500\n", + "1/0, train_loss: 0.5143\n", + "0 epoch 38 average loss: 0.5143\n", + "current epoch: 38 current mean dice: 0.4215\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 39/500\n", + "1/0, train_loss: 0.5129\n", + "0 epoch 39 average loss: 0.5129\n", + "----------\n", + "0: epoch 40/500\n", + "1/0, train_loss: 0.5058\n", + "0 epoch 40 average loss: 0.5058\n", + "current epoch: 40 current mean dice: 0.4387\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 41/500\n", + "1/0, train_loss: 0.4995\n", + "0 epoch 41 average loss: 0.4995\n", + "----------\n", + "0: epoch 42/500\n", + "1/0, train_loss: 0.5066\n", + "0 epoch 42 average loss: 0.5066\n", + "current epoch: 42 current mean dice: 0.4312\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 43/500\n", + "1/0, train_loss: 0.4953\n", + "0 epoch 43 average loss: 0.4953\n", + "----------\n", + "0: epoch 44/500\n", + "1/0, train_loss: 0.5086\n", + "0 epoch 44 average loss: 0.5086\n", + "current epoch: 44 current mean dice: 0.4294\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 45/500\n", + "1/0, train_loss: 0.5069\n", + "0 epoch 45 average loss: 0.5069\n", + "----------\n", + "0: epoch 46/500\n", + "1/0, train_loss: 0.4942\n", + "0 epoch 46 average loss: 0.4942\n", + "current epoch: 46 current mean dice: 0.4034\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 47/500\n", + "1/0, train_loss: 0.4819\n", + "0 epoch 47 average loss: 0.4819\n", + "----------\n", + "0: epoch 48/500\n", + "1/0, train_loss: 0.4927\n", + "0 epoch 48 average loss: 0.4927\n", + "current epoch: 48 current mean dice: 0.3835\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 49/500\n", + "1/0, train_loss: 0.4891\n", + "0 epoch 49 average loss: 0.4891\n", + "----------\n", + "0: epoch 50/500\n", + "1/0, train_loss: 0.4820\n", + "0 epoch 50 average loss: 0.4820\n", + "current epoch: 50 current mean dice: 0.3572\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 51/500\n", + "1/0, train_loss: 0.4761\n", + "0 epoch 51 average loss: 0.4761\n", + "----------\n", + "0: epoch 52/500\n", + "1/0, train_loss: 0.4774\n", + "0 epoch 52 average loss: 0.4774\n", + "current epoch: 52 current mean dice: 0.3901\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 53/500\n", + "1/0, train_loss: 0.5038\n", + "0 epoch 53 average loss: 0.5038\n", + "----------\n", + "0: epoch 54/500\n", + "1/0, train_loss: 0.5077\n", + "0 epoch 54 average loss: 0.5077\n", + "current epoch: 54 current mean dice: 0.4385\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 55/500\n", + "1/0, train_loss: 0.4988\n", + "0 epoch 55 average loss: 0.4988\n", + "----------\n", + "0: epoch 56/500\n", + "1/0, train_loss: 0.4873\n", + "0 epoch 56 average loss: 0.4873\n", + "current epoch: 56 current mean dice: 0.4184\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 57/500\n", + "1/0, train_loss: 0.5016\n", + "0 epoch 57 average loss: 0.5016\n", + "----------\n", + "0: epoch 58/500\n", + "1/0, train_loss: 0.4905\n", + "0 epoch 58 average loss: 0.4905\n", + "current epoch: 58 current mean dice: 0.4236\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 59/500\n", + "1/0, train_loss: 0.4847\n", + "0 epoch 59 average loss: 0.4847\n", + "----------\n", + "0: epoch 60/500\n", + "1/0, train_loss: 0.4855\n", + "0 epoch 60 average loss: 0.4855\n", + "current epoch: 60 current mean dice: 0.4171\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 61/500\n", + "1/0, train_loss: 0.4784\n", + "0 epoch 61 average loss: 0.4784\n", + "----------\n", + "0: epoch 62/500\n", + "1/0, train_loss: 0.4729\n", + "0 epoch 62 average loss: 0.4729\n", + "current epoch: 62 current mean dice: 0.3829\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 63/500\n", + "1/0, train_loss: 0.4674\n", + "0 epoch 63 average loss: 0.4674\n", + "----------\n", + "0: epoch 64/500\n", + "1/0, train_loss: 0.4750\n", + "0 epoch 64 average loss: 0.4750\n", + "current epoch: 64 current mean dice: 0.4281\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 65/500\n", + "1/0, train_loss: 0.4693\n", + "0 epoch 65 average loss: 0.4693\n", + "----------\n", + "0: epoch 66/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.4585\n", + "0 epoch 66 average loss: 0.4585\n", + "current epoch: 66 current mean dice: 0.4099\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 67/500\n", + "1/0, train_loss: 0.4521\n", + "0 epoch 67 average loss: 0.4521\n", + "----------\n", + "0: epoch 68/500\n", + "1/0, train_loss: 0.4619\n", + "0 epoch 68 average loss: 0.4619\n", + "current epoch: 68 current mean dice: 0.4173\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 69/500\n", + "1/0, train_loss: 0.4546\n", + "0 epoch 69 average loss: 0.4546\n", + "----------\n", + "0: epoch 70/500\n", + "1/0, train_loss: 0.4608\n", + "0 epoch 70 average loss: 0.4608\n", + "current epoch: 70 current mean dice: 0.3502\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 71/500\n", + "1/0, train_loss: 0.4505\n", + "0 epoch 71 average loss: 0.4505\n", + "----------\n", + "0: epoch 72/500\n", + "1/0, train_loss: 0.4461\n", + "0 epoch 72 average loss: 0.4461\n", + "current epoch: 72 current mean dice: 0.3666\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 73/500\n", + "1/0, train_loss: 0.4516\n", + "0 epoch 73 average loss: 0.4516\n", + "----------\n", + "0: epoch 74/500\n", + "1/0, train_loss: 0.4443\n", + "0 epoch 74 average loss: 0.4443\n", + "current epoch: 74 current mean dice: 0.2996\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 75/500\n", + "1/0, train_loss: 0.4491\n", + "0 epoch 75 average loss: 0.4491\n", + "----------\n", + "0: epoch 76/500\n", + "1/0, train_loss: 0.4418\n", + "0 epoch 76 average loss: 0.4418\n", + "current epoch: 76 current mean dice: 0.4180\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 77/500\n", + "1/0, train_loss: 0.4575\n", + "0 epoch 77 average loss: 0.4575\n", + "----------\n", + "0: epoch 78/500\n", + "1/0, train_loss: 0.4543\n", + "0 epoch 78 average loss: 0.4543\n", + "current epoch: 78 current mean dice: 0.3449\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 79/500\n", + "1/0, train_loss: 0.4433\n", + "0 epoch 79 average loss: 0.4433\n", + "----------\n", + "0: epoch 80/500\n", + "1/0, train_loss: 0.4635\n", + "0 epoch 80 average loss: 0.4635\n", + "current epoch: 80 current mean dice: 0.3689\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 81/500\n", + "1/0, train_loss: 0.4529\n", + "0 epoch 81 average loss: 0.4529\n", + "----------\n", + "0: epoch 82/500\n", + "1/0, train_loss: 0.4504\n", + "0 epoch 82 average loss: 0.4504\n", + "current epoch: 82 current mean dice: 0.3976\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 83/500\n", + "1/0, train_loss: 0.4528\n", + "0 epoch 83 average loss: 0.4528\n", + "----------\n", + "0: epoch 84/500\n", + "1/0, train_loss: 0.4410\n", + "0 epoch 84 average loss: 0.4410\n", + "current epoch: 84 current mean dice: 0.3751\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 85/500\n", + "1/0, train_loss: 0.4431\n", + "0 epoch 85 average loss: 0.4431\n", + "----------\n", + "0: epoch 86/500\n", + "1/0, train_loss: 0.4383\n", + "0 epoch 86 average loss: 0.4383\n", + "current epoch: 86 current mean dice: 0.3313\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 87/500\n", + "1/0, train_loss: 0.4477\n", + "0 epoch 87 average loss: 0.4477\n", + "----------\n", + "0: epoch 88/500\n", + "1/0, train_loss: 0.4354\n", + "0 epoch 88 average loss: 0.4354\n", + "current epoch: 88 current mean dice: 0.3827\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 89/500\n", + "1/0, train_loss: 0.4380\n", + "0 epoch 89 average loss: 0.4380\n", + "----------\n", + "0: epoch 90/500\n", + "1/0, train_loss: 0.4409\n", + "0 epoch 90 average loss: 0.4409\n", + "current epoch: 90 current mean dice: 0.4092\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 91/500\n", + "1/0, train_loss: 0.4453\n", + "0 epoch 91 average loss: 0.4453\n", + "----------\n", + "0: epoch 92/500\n", + "1/0, train_loss: 0.4394\n", + "0 epoch 92 average loss: 0.4394\n", + "current epoch: 92 current mean dice: 0.3996\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 93/500\n", + "1/0, train_loss: 0.4357\n", + "0 epoch 93 average loss: 0.4357\n", + "----------\n", + "0: epoch 94/500\n", + "1/0, train_loss: 0.4327\n", + "0 epoch 94 average loss: 0.4327\n", + "current epoch: 94 current mean dice: 0.4051\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 95/500\n", + "1/0, train_loss: 0.4332\n", + "0 epoch 95 average loss: 0.4332\n", + "----------\n", + "0: epoch 96/500\n", + "1/0, train_loss: 0.4397\n", + "0 epoch 96 average loss: 0.4397\n", + "current epoch: 96 current mean dice: 0.3668\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 97/500\n", + "1/0, train_loss: 0.4311\n", + "0 epoch 97 average loss: 0.4311\n", + "----------\n", + "0: epoch 98/500\n", + "1/0, train_loss: 0.4386\n", + "0 epoch 98 average loss: 0.4386\n", + "current epoch: 98 current mean dice: 0.4241\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 99/500\n", + "1/0, train_loss: 0.4514\n", + "0 epoch 99 average loss: 0.4514\n", + "----------\n", + "0: epoch 100/500\n", + "1/0, train_loss: 0.4294\n", + "0 epoch 100 average loss: 0.4294\n", + "current epoch: 100 current mean dice: 0.3919\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 101/500\n", + "1/0, train_loss: 0.4231\n", + "0 epoch 101 average loss: 0.4231\n", + "----------\n", + "0: epoch 102/500\n", + "1/0, train_loss: 0.4295\n", + "0 epoch 102 average loss: 0.4295\n", + "current epoch: 102 current mean dice: 0.4315\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 103/500\n", + "1/0, train_loss: 0.4246\n", + "0 epoch 103 average loss: 0.4246\n", + "----------\n", + "0: epoch 104/500\n", + "1/0, train_loss: 0.4382\n", + "0 epoch 104 average loss: 0.4382\n", + "current epoch: 104 current mean dice: 0.4101\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 105/500\n", + "1/0, train_loss: 0.4197\n", + "0 epoch 105 average loss: 0.4197\n", + "----------\n", + "0: epoch 106/500\n", + "1/0, train_loss: 0.4261\n", + "0 epoch 106 average loss: 0.4261\n", + "current epoch: 106 current mean dice: 0.4031\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 107/500\n", + "1/0, train_loss: 0.4353\n", + "0 epoch 107 average loss: 0.4353\n", + "----------\n", + "0: epoch 108/500\n", + "1/0, train_loss: 0.4222\n", + "0 epoch 108 average loss: 0.4222\n", + "current epoch: 108 current mean dice: 0.4256\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 109/500\n", + "1/0, train_loss: 0.4229\n", + "0 epoch 109 average loss: 0.4229\n", + "----------\n", + "0: epoch 110/500\n", + "1/0, train_loss: 0.4252\n", + "0 epoch 110 average loss: 0.4252\n", + "current epoch: 110 current mean dice: 0.3819\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 111/500\n", + "1/0, train_loss: 0.4314\n", + "0 epoch 111 average loss: 0.4314\n", + "----------\n", + "0: epoch 112/500\n", + "1/0, train_loss: 0.4185\n", + "0 epoch 112 average loss: 0.4185\n", + "current epoch: 112 current mean dice: 0.4204\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 113/500\n", + "1/0, train_loss: 0.4409\n", + "0 epoch 113 average loss: 0.4409\n", + "----------\n", + "0: epoch 114/500\n", + "1/0, train_loss: 0.4325\n", + "0 epoch 114 average loss: 0.4325\n", + "current epoch: 114 current mean dice: 0.3882\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 115/500\n", + "1/0, train_loss: 0.4210\n", + "0 epoch 115 average loss: 0.4210\n", + "----------\n", + "0: epoch 116/500\n", + "1/0, train_loss: 0.4241\n", + "0 epoch 116 average loss: 0.4241\n", + "current epoch: 116 current mean dice: 0.4271\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 117/500\n", + "1/0, train_loss: 0.4161\n", + "0 epoch 117 average loss: 0.4161\n", + "----------\n", + "0: epoch 118/500\n", + "1/0, train_loss: 0.4297\n", + "0 epoch 118 average loss: 0.4297\n", + "current epoch: 118 current mean dice: 0.3512\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 119/500\n", + "1/0, train_loss: 0.4234\n", + "0 epoch 119 average loss: 0.4234\n", + "----------\n", + "0: epoch 120/500\n", + "1/0, train_loss: 0.4320\n", + "0 epoch 120 average loss: 0.4320\n", + "current epoch: 120 current mean dice: 0.3893\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 121/500\n", + "1/0, train_loss: 0.4333\n", + "0 epoch 121 average loss: 0.4333\n", + "----------\n", + "0: epoch 122/500\n", + "1/0, train_loss: 0.4263\n", + "0 epoch 122 average loss: 0.4263\n", + "current epoch: 122 current mean dice: 0.3929\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 123/500\n", + "1/0, train_loss: 0.4227\n", + "0 epoch 123 average loss: 0.4227\n", + "----------\n", + "0: epoch 124/500\n", + "1/0, train_loss: 0.4219\n", + "0 epoch 124 average loss: 0.4219\n", + "current epoch: 124 current mean dice: 0.3946\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 125/500\n", + "1/0, train_loss: 0.4210\n", + "0 epoch 125 average loss: 0.4210\n", + "----------\n", + "0: epoch 126/500\n", + "1/0, train_loss: 0.4232\n", + "0 epoch 126 average loss: 0.4232\n", + "current epoch: 126 current mean dice: 0.3764\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 127/500\n", + "1/0, train_loss: 0.4193\n", + "0 epoch 127 average loss: 0.4193\n", + "----------\n", + "0: epoch 128/500\n", + "1/0, train_loss: 0.4176\n", + "0 epoch 128 average loss: 0.4176\n", + "current epoch: 128 current mean dice: 0.3526\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 129/500\n", + "1/0, train_loss: 0.4142\n", + "0 epoch 129 average loss: 0.4142\n", + "----------\n", + "0: epoch 130/500\n", + "1/0, train_loss: 0.4147\n", + "0 epoch 130 average loss: 0.4147\n", + "current epoch: 130 current mean dice: 0.3492\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 131/500\n", + "1/0, train_loss: 0.4142\n", + "0 epoch 131 average loss: 0.4142\n", + "----------\n", + "0: epoch 132/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.4259\n", + "0 epoch 132 average loss: 0.4259\n", + "current epoch: 132 current mean dice: 0.3234\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 133/500\n", + "1/0, train_loss: 0.4134\n", + "0 epoch 133 average loss: 0.4134\n", + "----------\n", + "0: epoch 134/500\n", + "1/0, train_loss: 0.4169\n", + "0 epoch 134 average loss: 0.4169\n", + "current epoch: 134 current mean dice: 0.3407\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 135/500\n", + "1/0, train_loss: 0.4270\n", + "0 epoch 135 average loss: 0.4270\n", + "----------\n", + "0: epoch 136/500\n", + "1/0, train_loss: 0.4191\n", + "0 epoch 136 average loss: 0.4191\n", + "current epoch: 136 current mean dice: 0.3862\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 137/500\n", + "1/0, train_loss: 0.4157\n", + "0 epoch 137 average loss: 0.4157\n", + "----------\n", + "0: epoch 138/500\n", + "1/0, train_loss: 0.4143\n", + "0 epoch 138 average loss: 0.4143\n", + "current epoch: 138 current mean dice: 0.4185\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 139/500\n", + "1/0, train_loss: 0.4213\n", + "0 epoch 139 average loss: 0.4213\n", + "----------\n", + "0: epoch 140/500\n", + "1/0, train_loss: 0.4196\n", + "0 epoch 140 average loss: 0.4196\n", + "current epoch: 140 current mean dice: 0.3070\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 141/500\n", + "1/0, train_loss: 0.4152\n", + "0 epoch 141 average loss: 0.4152\n", + "----------\n", + "0: epoch 142/500\n", + "1/0, train_loss: 0.4156\n", + "0 epoch 142 average loss: 0.4156\n", + "current epoch: 142 current mean dice: 0.3192\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 143/500\n", + "1/0, train_loss: 0.4146\n", + "0 epoch 143 average loss: 0.4146\n", + "----------\n", + "0: epoch 144/500\n", + "1/0, train_loss: 0.4109\n", + "0 epoch 144 average loss: 0.4109\n", + "current epoch: 144 current mean dice: 0.3604\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 145/500\n", + "1/0, train_loss: 0.4303\n", + "0 epoch 145 average loss: 0.4303\n", + "----------\n", + "0: epoch 146/500\n", + "1/0, train_loss: 0.4112\n", + "0 epoch 146 average loss: 0.4112\n", + "current epoch: 146 current mean dice: 0.4221\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 147/500\n", + "1/0, train_loss: 0.4152\n", + "0 epoch 147 average loss: 0.4152\n", + "----------\n", + "0: epoch 148/500\n", + "1/0, train_loss: 0.4068\n", + "0 epoch 148 average loss: 0.4068\n", + "current epoch: 148 current mean dice: 0.3006\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 149/500\n", + "1/0, train_loss: 0.4123\n", + "0 epoch 149 average loss: 0.4123\n", + "----------\n", + "0: epoch 150/500\n", + "1/0, train_loss: 0.4195\n", + "0 epoch 150 average loss: 0.4195\n", + "current epoch: 150 current mean dice: 0.3688\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 151/500\n", + "1/0, train_loss: 0.4295\n", + "0 epoch 151 average loss: 0.4295\n", + "----------\n", + "0: epoch 152/500\n", + "1/0, train_loss: 0.4042\n", + "0 epoch 152 average loss: 0.4042\n", + "current epoch: 152 current mean dice: 0.3665\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 153/500\n", + "1/0, train_loss: 0.4275\n", + "0 epoch 153 average loss: 0.4275\n", + "----------\n", + "0: epoch 154/500\n", + "1/0, train_loss: 0.4123\n", + "0 epoch 154 average loss: 0.4123\n", + "current epoch: 154 current mean dice: 0.4140\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 155/500\n", + "1/0, train_loss: 0.4104\n", + "0 epoch 155 average loss: 0.4104\n", + "----------\n", + "0: epoch 156/500\n", + "1/0, train_loss: 0.4165\n", + "0 epoch 156 average loss: 0.4165\n", + "current epoch: 156 current mean dice: 0.4070\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 157/500\n", + "1/0, train_loss: 0.4070\n", + "0 epoch 157 average loss: 0.4070\n", + "----------\n", + "0: epoch 158/500\n", + "1/0, train_loss: 0.4105\n", + "0 epoch 158 average loss: 0.4105\n", + "current epoch: 158 current mean dice: 0.3681\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 159/500\n", + "1/0, train_loss: 0.4037\n", + "0 epoch 159 average loss: 0.4037\n", + "----------\n", + "0: epoch 160/500\n", + "1/0, train_loss: 0.4034\n", + "0 epoch 160 average loss: 0.4034\n", + "current epoch: 160 current mean dice: 0.3770\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 161/500\n", + "1/0, train_loss: 0.4103\n", + "0 epoch 161 average loss: 0.4103\n", + "----------\n", + "0: epoch 162/500\n", + "1/0, train_loss: 0.4011\n", + "0 epoch 162 average loss: 0.4011\n", + "current epoch: 162 current mean dice: 0.2963\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 163/500\n", + "1/0, train_loss: 0.4088\n", + "0 epoch 163 average loss: 0.4088\n", + "----------\n", + "0: epoch 164/500\n", + "1/0, train_loss: 0.4088\n", + "0 epoch 164 average loss: 0.4088\n", + "current epoch: 164 current mean dice: 0.3386\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 165/500\n", + "1/0, train_loss: 0.4013\n", + "0 epoch 165 average loss: 0.4013\n", + "----------\n", + "0: epoch 166/500\n", + "1/0, train_loss: 0.4077\n", + "0 epoch 166 average loss: 0.4077\n", + "current epoch: 166 current mean dice: 0.3153\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 167/500\n", + "1/0, train_loss: 0.4194\n", + "0 epoch 167 average loss: 0.4194\n", + "----------\n", + "0: epoch 168/500\n", + "1/0, train_loss: 0.4099\n", + "0 epoch 168 average loss: 0.4099\n", + "current epoch: 168 current mean dice: 0.3452\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 169/500\n", + "1/0, train_loss: 0.4060\n", + "0 epoch 169 average loss: 0.4060\n", + "----------\n", + "0: epoch 170/500\n", + "1/0, train_loss: 0.4183\n", + "0 epoch 170 average loss: 0.4183\n", + "current epoch: 170 current mean dice: 0.4278\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 171/500\n", + "1/0, train_loss: 0.4072\n", + "0 epoch 171 average loss: 0.4072\n", + "----------\n", + "0: epoch 172/500\n", + "1/0, train_loss: 0.4011\n", + "0 epoch 172 average loss: 0.4011\n", + "current epoch: 172 current mean dice: 0.4352\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 173/500\n", + "1/0, train_loss: 0.4133\n", + "0 epoch 173 average loss: 0.4133\n", + "----------\n", + "0: epoch 174/500\n", + "1/0, train_loss: 0.4006\n", + "0 epoch 174 average loss: 0.4006\n", + "current epoch: 174 current mean dice: 0.3277\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 175/500\n", + "1/0, train_loss: 0.4151\n", + "0 epoch 175 average loss: 0.4151\n", + "----------\n", + "0: epoch 176/500\n", + "1/0, train_loss: 0.4047\n", + "0 epoch 176 average loss: 0.4047\n", + "current epoch: 176 current mean dice: 0.3586\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 177/500\n", + "1/0, train_loss: 0.4197\n", + "0 epoch 177 average loss: 0.4197\n", + "----------\n", + "0: epoch 178/500\n", + "1/0, train_loss: 0.4094\n", + "0 epoch 178 average loss: 0.4094\n", + "current epoch: 178 current mean dice: 0.4180\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 179/500\n", + "1/0, train_loss: 0.4035\n", + "0 epoch 179 average loss: 0.4035\n", + "----------\n", + "0: epoch 180/500\n", + "1/0, train_loss: 0.4123\n", + "0 epoch 180 average loss: 0.4123\n", + "current epoch: 180 current mean dice: 0.3642\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 181/500\n", + "1/0, train_loss: 0.4033\n", + "0 epoch 181 average loss: 0.4033\n", + "----------\n", + "0: epoch 182/500\n", + "1/0, train_loss: 0.4060\n", + "0 epoch 182 average loss: 0.4060\n", + "current epoch: 182 current mean dice: 0.3461\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 183/500\n", + "1/0, train_loss: 0.4158\n", + "0 epoch 183 average loss: 0.4158\n", + "----------\n", + "0: epoch 184/500\n", + "1/0, train_loss: 0.4059\n", + "0 epoch 184 average loss: 0.4059\n", + "current epoch: 184 current mean dice: 0.3056\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 185/500\n", + "1/0, train_loss: 0.4106\n", + "0 epoch 185 average loss: 0.4106\n", + "----------\n", + "0: epoch 186/500\n", + "1/0, train_loss: 0.4001\n", + "0 epoch 186 average loss: 0.4001\n", + "current epoch: 186 current mean dice: 0.3324\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 187/500\n", + "1/0, train_loss: 0.4059\n", + "0 epoch 187 average loss: 0.4059\n", + "----------\n", + "0: epoch 188/500\n", + "1/0, train_loss: 0.4100\n", + "0 epoch 188 average loss: 0.4100\n", + "current epoch: 188 current mean dice: 0.3503\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 189/500\n", + "1/0, train_loss: 0.4015\n", + "0 epoch 189 average loss: 0.4015\n", + "----------\n", + "0: epoch 190/500\n", + "1/0, train_loss: 0.4014\n", + "0 epoch 190 average loss: 0.4014\n", + "current epoch: 190 current mean dice: 0.3469\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 191/500\n", + "1/0, train_loss: 0.3985\n", + "0 epoch 191 average loss: 0.3985\n", + "----------\n", + "0: epoch 192/500\n", + "1/0, train_loss: 0.4026\n", + "0 epoch 192 average loss: 0.4026\n", + "current epoch: 192 current mean dice: 0.3224\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 193/500\n", + "1/0, train_loss: 0.3966\n", + "0 epoch 193 average loss: 0.3966\n", + "----------\n", + "0: epoch 194/500\n", + "1/0, train_loss: 0.4029\n", + "0 epoch 194 average loss: 0.4029\n", + "current epoch: 194 current mean dice: 0.3367\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 195/500\n", + "1/0, train_loss: 0.4119\n", + "0 epoch 195 average loss: 0.4119\n", + "----------\n", + "0: epoch 196/500\n", + "1/0, train_loss: 0.3970\n", + "0 epoch 196 average loss: 0.3970\n", + "current epoch: 196 current mean dice: 0.3384\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 197/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.3971\n", + "0 epoch 197 average loss: 0.3971\n", + "----------\n", + "0: epoch 198/500\n", + "1/0, train_loss: 0.3958\n", + "0 epoch 198 average loss: 0.3958\n", + "current epoch: 198 current mean dice: 0.3333\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 199/500\n", + "1/0, train_loss: 0.3968\n", + "0 epoch 199 average loss: 0.3968\n", + "----------\n", + "0: epoch 200/500\n", + "1/0, train_loss: 0.4193\n", + "0 epoch 200 average loss: 0.4193\n", + "current epoch: 200 current mean dice: 0.3705\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 201/500\n", + "1/0, train_loss: 0.3950\n", + "0 epoch 201 average loss: 0.3950\n", + "----------\n", + "0: epoch 202/500\n", + "1/0, train_loss: 0.3974\n", + "0 epoch 202 average loss: 0.3974\n", + "current epoch: 202 current mean dice: 0.4104\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 203/500\n", + "1/0, train_loss: 0.4281\n", + "0 epoch 203 average loss: 0.4281\n", + "----------\n", + "0: epoch 204/500\n", + "1/0, train_loss: 0.4119\n", + "0 epoch 204 average loss: 0.4119\n", + "current epoch: 204 current mean dice: 0.4477\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 205/500\n", + "1/0, train_loss: 0.4025\n", + "0 epoch 205 average loss: 0.4025\n", + "----------\n", + "0: epoch 206/500\n", + "1/0, train_loss: 0.4070\n", + "0 epoch 206 average loss: 0.4070\n", + "current epoch: 206 current mean dice: 0.4056\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 207/500\n", + "1/0, train_loss: 0.4056\n", + "0 epoch 207 average loss: 0.4056\n", + "----------\n", + "0: epoch 208/500\n", + "1/0, train_loss: 0.3972\n", + "0 epoch 208 average loss: 0.3972\n", + "current epoch: 208 current mean dice: 0.3606\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 209/500\n", + "1/0, train_loss: 0.4079\n", + "0 epoch 209 average loss: 0.4079\n", + "----------\n", + "0: epoch 210/500\n", + "1/0, train_loss: 0.4024\n", + "0 epoch 210 average loss: 0.4024\n", + "current epoch: 210 current mean dice: 0.4468\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 211/500\n", + "1/0, train_loss: 0.4103\n", + "0 epoch 211 average loss: 0.4103\n", + "----------\n", + "0: epoch 212/500\n", + "1/0, train_loss: 0.3986\n", + "0 epoch 212 average loss: 0.3986\n", + "current epoch: 212 current mean dice: 0.3723\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 213/500\n", + "1/0, train_loss: 0.4057\n", + "0 epoch 213 average loss: 0.4057\n", + "----------\n", + "0: epoch 214/500\n", + "1/0, train_loss: 0.4008\n", + "0 epoch 214 average loss: 0.4008\n", + "current epoch: 214 current mean dice: 0.4484\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 215/500\n", + "1/0, train_loss: 0.3965\n", + "0 epoch 215 average loss: 0.3965\n", + "----------\n", + "0: epoch 216/500\n", + "1/0, train_loss: 0.3978\n", + "0 epoch 216 average loss: 0.3978\n", + "current epoch: 216 current mean dice: 0.4226\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 217/500\n", + "1/0, train_loss: 0.3965\n", + "0 epoch 217 average loss: 0.3965\n", + "----------\n", + "0: epoch 218/500\n", + "1/0, train_loss: 0.3956\n", + "0 epoch 218 average loss: 0.3956\n", + "current epoch: 218 current mean dice: 0.3418\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 219/500\n", + "1/0, train_loss: 0.3961\n", + "0 epoch 219 average loss: 0.3961\n", + "----------\n", + "0: epoch 220/500\n", + "1/0, train_loss: 0.4060\n", + "0 epoch 220 average loss: 0.4060\n", + "current epoch: 220 current mean dice: 0.3307\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 221/500\n", + "1/0, train_loss: 0.3981\n", + "0 epoch 221 average loss: 0.3981\n", + "----------\n", + "0: epoch 222/500\n", + "1/0, train_loss: 0.4046\n", + "0 epoch 222 average loss: 0.4046\n", + "current epoch: 222 current mean dice: 0.3748\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 223/500\n", + "1/0, train_loss: 0.3995\n", + "0 epoch 223 average loss: 0.3995\n", + "----------\n", + "0: epoch 224/500\n", + "1/0, train_loss: 0.4004\n", + "0 epoch 224 average loss: 0.4004\n", + "current epoch: 224 current mean dice: 0.4160\n", + "best mean dice: 0.4492 at epoch: 36\n", + "----------\n", + "0: epoch 225/500\n", + "1/0, train_loss: 0.4021\n", + "0 epoch 225 average loss: 0.4021\n", + "----------\n", + "0: epoch 226/500\n", + "1/0, train_loss: 0.3939\n", + "0 epoch 226 average loss: 0.3939\n", + "saved new best metric model\n", + "current epoch: 226 current mean dice: 0.4578\n", + "best mean dice: 0.4578 at epoch: 226\n", + "----------\n", + "0: epoch 227/500\n", + "1/0, train_loss: 0.3915\n", + "0 epoch 227 average loss: 0.3915\n", + "----------\n", + "0: epoch 228/500\n", + "1/0, train_loss: 0.3893\n", + "0 epoch 228 average loss: 0.3893\n", + "current epoch: 228 current mean dice: 0.4158\n", + "best mean dice: 0.4578 at epoch: 226\n", + "----------\n", + "0: epoch 229/500\n", + "1/0, train_loss: 0.4048\n", + "0 epoch 229 average loss: 0.4048\n", + "----------\n", + "0: epoch 230/500\n", + "1/0, train_loss: 0.3945\n", + "0 epoch 230 average loss: 0.3945\n", + "current epoch: 230 current mean dice: 0.3420\n", + "best mean dice: 0.4578 at epoch: 226\n", + "----------\n", + "0: epoch 231/500\n", + "1/0, train_loss: 0.3901\n", + "0 epoch 231 average loss: 0.3901\n", + "----------\n", + "0: epoch 232/500\n", + "1/0, train_loss: 0.3966\n", + "0 epoch 232 average loss: 0.3966\n", + "current epoch: 232 current mean dice: 0.3236\n", + "best mean dice: 0.4578 at epoch: 226\n", + "----------\n", + "0: epoch 233/500\n", + "1/0, train_loss: 0.3940\n", + "0 epoch 233 average loss: 0.3940\n", + "----------\n", + "0: epoch 234/500\n", + "1/0, train_loss: 0.3992\n", + "0 epoch 234 average loss: 0.3992\n", + "current epoch: 234 current mean dice: 0.3833\n", + "best mean dice: 0.4578 at epoch: 226\n", + "----------\n", + "0: epoch 235/500\n", + "1/0, train_loss: 0.3931\n", + "0 epoch 235 average loss: 0.3931\n", + "----------\n", + "0: epoch 236/500\n", + "1/0, train_loss: 0.3962\n", + "0 epoch 236 average loss: 0.3962\n", + "current epoch: 236 current mean dice: 0.4451\n", + "best mean dice: 0.4578 at epoch: 226\n", + "----------\n", + "0: epoch 237/500\n", + "1/0, train_loss: 0.3923\n", + "0 epoch 237 average loss: 0.3923\n", + "----------\n", + "0: epoch 238/500\n", + "1/0, train_loss: 0.3965\n", + "0 epoch 238 average loss: 0.3965\n", + "current epoch: 238 current mean dice: 0.4139\n", + "best mean dice: 0.4578 at epoch: 226\n", + "----------\n", + "0: epoch 239/500\n", + "1/0, train_loss: 0.3875\n", + "0 epoch 239 average loss: 0.3875\n", + "----------\n", + "0: epoch 240/500\n", + "1/0, train_loss: 0.3857\n", + "0 epoch 240 average loss: 0.3857\n", + "current epoch: 240 current mean dice: 0.3808\n", + "best mean dice: 0.4578 at epoch: 226\n", + "----------\n", + "0: epoch 241/500\n", + "1/0, train_loss: 0.3924\n", + "0 epoch 241 average loss: 0.3924\n", + "----------\n", + "0: epoch 242/500\n", + "1/0, train_loss: 0.3974\n", + "0 epoch 242 average loss: 0.3974\n", + "current epoch: 242 current mean dice: 0.3944\n", + "best mean dice: 0.4578 at epoch: 226\n", + "----------\n", + "0: epoch 243/500\n", + "1/0, train_loss: 0.3914\n", + "0 epoch 243 average loss: 0.3914\n", + "----------\n", + "0: epoch 244/500\n", + "1/0, train_loss: 0.3924\n", + "0 epoch 244 average loss: 0.3924\n", + "current epoch: 244 current mean dice: 0.4192\n", + "best mean dice: 0.4578 at epoch: 226\n", + "----------\n", + "0: epoch 245/500\n", + "1/0, train_loss: 0.3860\n", + "0 epoch 245 average loss: 0.3860\n", + "----------\n", + "0: epoch 246/500\n", + "1/0, train_loss: 0.3876\n", + "0 epoch 246 average loss: 0.3876\n", + "current epoch: 246 current mean dice: 0.4021\n", + "best mean dice: 0.4578 at epoch: 226\n", + "----------\n", + "0: epoch 247/500\n", + "1/0, train_loss: 0.4037\n", + "0 epoch 247 average loss: 0.4037\n", + "----------\n", + "0: epoch 248/500\n", + "1/0, train_loss: 0.3934\n", + "0 epoch 248 average loss: 0.3934\n", + "current epoch: 248 current mean dice: 0.3671\n", + "best mean dice: 0.4578 at epoch: 226\n", + "----------\n", + "0: epoch 249/500\n", + "1/0, train_loss: 0.3888\n", + "0 epoch 249 average loss: 0.3888\n", + "----------\n", + "0: epoch 250/500\n", + "1/0, train_loss: 0.3910\n", + "0 epoch 250 average loss: 0.3910\n", + "current epoch: 250 current mean dice: 0.4063\n", + "best mean dice: 0.4578 at epoch: 226\n", + "----------\n", + "0: epoch 251/500\n", + "1/0, train_loss: 0.4035\n", + "0 epoch 251 average loss: 0.4035\n", + "----------\n", + "0: epoch 252/500\n", + "1/0, train_loss: 0.3941\n", + "0 epoch 252 average loss: 0.3941\n", + "current epoch: 252 current mean dice: 0.4133\n", + "best mean dice: 0.4578 at epoch: 226\n", + "----------\n", + "0: epoch 253/500\n", + "1/0, train_loss: 0.3988\n", + "0 epoch 253 average loss: 0.3988\n", + "----------\n", + "0: epoch 254/500\n", + "1/0, train_loss: 0.3977\n", + "0 epoch 254 average loss: 0.3977\n", + "current epoch: 254 current mean dice: 0.3336\n", + "best mean dice: 0.4578 at epoch: 226\n", + "----------\n", + "0: epoch 255/500\n", + "1/0, train_loss: 0.4026\n", + "0 epoch 255 average loss: 0.4026\n", + "----------\n", + "0: epoch 256/500\n", + "1/0, train_loss: 0.3939\n", + "0 epoch 256 average loss: 0.3939\n", + "current epoch: 256 current mean dice: 0.3476\n", + "best mean dice: 0.4578 at epoch: 226\n", + "----------\n", + "0: epoch 257/500\n", + "1/0, train_loss: 0.3957\n", + "0 epoch 257 average loss: 0.3957\n", + "----------\n", + "0: epoch 258/500\n", + "1/0, train_loss: 0.3901\n", + "0 epoch 258 average loss: 0.3901\n", + "saved new best metric model\n", + "current epoch: 258 current mean dice: 0.4797\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 259/500\n", + "1/0, train_loss: 0.3977\n", + "0 epoch 259 average loss: 0.3977\n", + "----------\n", + "0: epoch 260/500\n", + "1/0, train_loss: 0.3879\n", + "0 epoch 260 average loss: 0.3879\n", + "current epoch: 260 current mean dice: 0.4013\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 261/500\n", + "1/0, train_loss: 0.3937\n", + "0 epoch 261 average loss: 0.3937\n", + "----------\n", + "0: epoch 262/500\n", + "1/0, train_loss: 0.3904\n", + "0 epoch 262 average loss: 0.3904\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "current epoch: 262 current mean dice: 0.3300\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 263/500\n", + "1/0, train_loss: 0.3930\n", + "0 epoch 263 average loss: 0.3930\n", + "----------\n", + "0: epoch 264/500\n", + "1/0, train_loss: 0.3880\n", + "0 epoch 264 average loss: 0.3880\n", + "current epoch: 264 current mean dice: 0.3069\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 265/500\n", + "1/0, train_loss: 0.3924\n", + "0 epoch 265 average loss: 0.3924\n", + "----------\n", + "0: epoch 266/500\n", + "1/0, train_loss: 0.3918\n", + "0 epoch 266 average loss: 0.3918\n", + "current epoch: 266 current mean dice: 0.3143\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 267/500\n", + "1/0, train_loss: 0.3852\n", + "0 epoch 267 average loss: 0.3852\n", + "----------\n", + "0: epoch 268/500\n", + "1/0, train_loss: 0.3891\n", + "0 epoch 268 average loss: 0.3891\n", + "current epoch: 268 current mean dice: 0.3640\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 269/500\n", + "1/0, train_loss: 0.3891\n", + "0 epoch 269 average loss: 0.3891\n", + "----------\n", + "0: epoch 270/500\n", + "1/0, train_loss: 0.3865\n", + "0 epoch 270 average loss: 0.3865\n", + "current epoch: 270 current mean dice: 0.3636\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 271/500\n", + "1/0, train_loss: 0.3898\n", + "0 epoch 271 average loss: 0.3898\n", + "----------\n", + "0: epoch 272/500\n", + "1/0, train_loss: 0.3887\n", + "0 epoch 272 average loss: 0.3887\n", + "current epoch: 272 current mean dice: 0.2782\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 273/500\n", + "1/0, train_loss: 0.3852\n", + "0 epoch 273 average loss: 0.3852\n", + "----------\n", + "0: epoch 274/500\n", + "1/0, train_loss: 0.3827\n", + "0 epoch 274 average loss: 0.3827\n", + "current epoch: 274 current mean dice: 0.3517\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 275/500\n", + "1/0, train_loss: 0.3974\n", + "0 epoch 275 average loss: 0.3974\n", + "----------\n", + "0: epoch 276/500\n", + "1/0, train_loss: 0.3854\n", + "0 epoch 276 average loss: 0.3854\n", + "current epoch: 276 current mean dice: 0.2819\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 277/500\n", + "1/0, train_loss: 0.3796\n", + "0 epoch 277 average loss: 0.3796\n", + "----------\n", + "0: epoch 278/500\n", + "1/0, train_loss: 0.3862\n", + "0 epoch 278 average loss: 0.3862\n", + "current epoch: 278 current mean dice: 0.3186\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 279/500\n", + "1/0, train_loss: 0.3916\n", + "0 epoch 279 average loss: 0.3916\n", + "----------\n", + "0: epoch 280/500\n", + "1/0, train_loss: 0.4079\n", + "0 epoch 280 average loss: 0.4079\n", + "current epoch: 280 current mean dice: 0.2890\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 281/500\n", + "1/0, train_loss: 0.3840\n", + "0 epoch 281 average loss: 0.3840\n", + "----------\n", + "0: epoch 282/500\n", + "1/0, train_loss: 0.3864\n", + "0 epoch 282 average loss: 0.3864\n", + "current epoch: 282 current mean dice: 0.3266\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 283/500\n", + "1/0, train_loss: 0.3783\n", + "0 epoch 283 average loss: 0.3783\n", + "----------\n", + "0: epoch 284/500\n", + "1/0, train_loss: 0.3822\n", + "0 epoch 284 average loss: 0.3822\n", + "current epoch: 284 current mean dice: 0.3509\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 285/500\n", + "1/0, train_loss: 0.3937\n", + "0 epoch 285 average loss: 0.3937\n", + "----------\n", + "0: epoch 286/500\n", + "1/0, train_loss: 0.3804\n", + "0 epoch 286 average loss: 0.3804\n", + "current epoch: 286 current mean dice: 0.3527\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 287/500\n", + "1/0, train_loss: 0.3887\n", + "0 epoch 287 average loss: 0.3887\n", + "----------\n", + "0: epoch 288/500\n", + "1/0, train_loss: 0.3845\n", + "0 epoch 288 average loss: 0.3845\n", + "current epoch: 288 current mean dice: 0.3058\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 289/500\n", + "1/0, train_loss: 0.3843\n", + "0 epoch 289 average loss: 0.3843\n", + "----------\n", + "0: epoch 290/500\n", + "1/0, train_loss: 0.3879\n", + "0 epoch 290 average loss: 0.3879\n", + "current epoch: 290 current mean dice: 0.3606\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 291/500\n", + "1/0, train_loss: 0.3774\n", + "0 epoch 291 average loss: 0.3774\n", + "----------\n", + "0: epoch 292/500\n", + "1/0, train_loss: 0.3933\n", + "0 epoch 292 average loss: 0.3933\n", + "current epoch: 292 current mean dice: 0.3598\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 293/500\n", + "1/0, train_loss: 0.3820\n", + "0 epoch 293 average loss: 0.3820\n", + "----------\n", + "0: epoch 294/500\n", + "1/0, train_loss: 0.3859\n", + "0 epoch 294 average loss: 0.3859\n", + "current epoch: 294 current mean dice: 0.2841\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 295/500\n", + "1/0, train_loss: 0.3798\n", + "0 epoch 295 average loss: 0.3798\n", + "----------\n", + "0: epoch 296/500\n", + "1/0, train_loss: 0.3833\n", + "0 epoch 296 average loss: 0.3833\n", + "current epoch: 296 current mean dice: 0.4150\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 297/500\n", + "1/0, train_loss: 0.3827\n", + "0 epoch 297 average loss: 0.3827\n", + "----------\n", + "0: epoch 298/500\n", + "1/0, train_loss: 0.3790\n", + "0 epoch 298 average loss: 0.3790\n", + "current epoch: 298 current mean dice: 0.4186\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 299/500\n", + "1/0, train_loss: 0.3889\n", + "0 epoch 299 average loss: 0.3889\n", + "----------\n", + "0: epoch 300/500\n", + "1/0, train_loss: 0.3816\n", + "0 epoch 300 average loss: 0.3816\n", + "current epoch: 300 current mean dice: 0.3519\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 301/500\n", + "1/0, train_loss: 0.3827\n", + "0 epoch 301 average loss: 0.3827\n", + "----------\n", + "0: epoch 302/500\n", + "1/0, train_loss: 0.3866\n", + "0 epoch 302 average loss: 0.3866\n", + "current epoch: 302 current mean dice: 0.3203\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 303/500\n", + "1/0, train_loss: 0.3968\n", + "0 epoch 303 average loss: 0.3968\n", + "----------\n", + "0: epoch 304/500\n", + "1/0, train_loss: 0.3782\n", + "0 epoch 304 average loss: 0.3782\n", + "current epoch: 304 current mean dice: 0.3118\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 305/500\n", + "1/0, train_loss: 0.3886\n", + "0 epoch 305 average loss: 0.3886\n", + "----------\n", + "0: epoch 306/500\n", + "1/0, train_loss: 0.3912\n", + "0 epoch 306 average loss: 0.3912\n", + "current epoch: 306 current mean dice: 0.3152\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 307/500\n", + "1/0, train_loss: 0.3844\n", + "0 epoch 307 average loss: 0.3844\n", + "----------\n", + "0: epoch 308/500\n", + "1/0, train_loss: 0.3950\n", + "0 epoch 308 average loss: 0.3950\n", + "current epoch: 308 current mean dice: 0.3793\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 309/500\n", + "1/0, train_loss: 0.3912\n", + "0 epoch 309 average loss: 0.3912\n", + "----------\n", + "0: epoch 310/500\n", + "1/0, train_loss: 0.3849\n", + "0 epoch 310 average loss: 0.3849\n", + "current epoch: 310 current mean dice: 0.4143\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 311/500\n", + "1/0, train_loss: 0.3902\n", + "0 epoch 311 average loss: 0.3902\n", + "----------\n", + "0: epoch 312/500\n", + "1/0, train_loss: 0.3915\n", + "0 epoch 312 average loss: 0.3915\n", + "current epoch: 312 current mean dice: 0.2802\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 313/500\n", + "1/0, train_loss: 0.3896\n", + "0 epoch 313 average loss: 0.3896\n", + "----------\n", + "0: epoch 314/500\n", + "1/0, train_loss: 0.3837\n", + "0 epoch 314 average loss: 0.3837\n", + "current epoch: 314 current mean dice: 0.3152\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 315/500\n", + "1/0, train_loss: 0.3942\n", + "0 epoch 315 average loss: 0.3942\n", + "----------\n", + "0: epoch 316/500\n", + "1/0, train_loss: 0.3848\n", + "0 epoch 316 average loss: 0.3848\n", + "current epoch: 316 current mean dice: 0.2899\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 317/500\n", + "1/0, train_loss: 0.3974\n", + "0 epoch 317 average loss: 0.3974\n", + "----------\n", + "0: epoch 318/500\n", + "1/0, train_loss: 0.3909\n", + "0 epoch 318 average loss: 0.3909\n", + "current epoch: 318 current mean dice: 0.3599\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 319/500\n", + "1/0, train_loss: 0.3852\n", + "0 epoch 319 average loss: 0.3852\n", + "----------\n", + "0: epoch 320/500\n", + "1/0, train_loss: 0.3829\n", + "0 epoch 320 average loss: 0.3829\n", + "current epoch: 320 current mean dice: 0.3446\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 321/500\n", + "1/0, train_loss: 0.3832\n", + "0 epoch 321 average loss: 0.3832\n", + "----------\n", + "0: epoch 322/500\n", + "1/0, train_loss: 0.3828\n", + "0 epoch 322 average loss: 0.3828\n", + "current epoch: 322 current mean dice: 0.4130\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 323/500\n", + "1/0, train_loss: 0.3897\n", + "0 epoch 323 average loss: 0.3897\n", + "----------\n", + "0: epoch 324/500\n", + "1/0, train_loss: 0.3837\n", + "0 epoch 324 average loss: 0.3837\n", + "current epoch: 324 current mean dice: 0.4001\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 325/500\n", + "1/0, train_loss: 0.3861\n", + "0 epoch 325 average loss: 0.3861\n", + "----------\n", + "0: epoch 326/500\n", + "1/0, train_loss: 0.3865\n", + "0 epoch 326 average loss: 0.3865\n", + "current epoch: 326 current mean dice: 0.3385\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 327/500\n", + "1/0, train_loss: 0.3821\n", + "0 epoch 327 average loss: 0.3821\n", + "----------\n", + "0: epoch 328/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.3810\n", + "0 epoch 328 average loss: 0.3810\n", + "current epoch: 328 current mean dice: 0.3314\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 329/500\n", + "1/0, train_loss: 0.3890\n", + "0 epoch 329 average loss: 0.3890\n", + "----------\n", + "0: epoch 330/500\n", + "1/0, train_loss: 0.3784\n", + "0 epoch 330 average loss: 0.3784\n", + "current epoch: 330 current mean dice: 0.3388\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 331/500\n", + "1/0, train_loss: 0.3867\n", + "0 epoch 331 average loss: 0.3867\n", + "----------\n", + "0: epoch 332/500\n", + "1/0, train_loss: 0.3855\n", + "0 epoch 332 average loss: 0.3855\n", + "current epoch: 332 current mean dice: 0.3139\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 333/500\n", + "1/0, train_loss: 0.3834\n", + "0 epoch 333 average loss: 0.3834\n", + "----------\n", + "0: epoch 334/500\n", + "1/0, train_loss: 0.3804\n", + "0 epoch 334 average loss: 0.3804\n", + "current epoch: 334 current mean dice: 0.3392\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 335/500\n", + "1/0, train_loss: 0.3852\n", + "0 epoch 335 average loss: 0.3852\n", + "----------\n", + "0: epoch 336/500\n", + "1/0, train_loss: 0.3806\n", + "0 epoch 336 average loss: 0.3806\n", + "current epoch: 336 current mean dice: 0.3487\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 337/500\n", + "1/0, train_loss: 0.3861\n", + "0 epoch 337 average loss: 0.3861\n", + "----------\n", + "0: epoch 338/500\n", + "1/0, train_loss: 0.3790\n", + "0 epoch 338 average loss: 0.3790\n", + "current epoch: 338 current mean dice: 0.2895\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 339/500\n", + "1/0, train_loss: 0.4003\n", + "0 epoch 339 average loss: 0.4003\n", + "----------\n", + "0: epoch 340/500\n", + "1/0, train_loss: 0.3732\n", + "0 epoch 340 average loss: 0.3732\n", + "current epoch: 340 current mean dice: 0.3267\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 341/500\n", + "1/0, train_loss: 0.3890\n", + "0 epoch 341 average loss: 0.3890\n", + "----------\n", + "0: epoch 342/500\n", + "1/0, train_loss: 0.3800\n", + "0 epoch 342 average loss: 0.3800\n", + "current epoch: 342 current mean dice: 0.2803\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 343/500\n", + "1/0, train_loss: 0.3826\n", + "0 epoch 343 average loss: 0.3826\n", + "----------\n", + "0: epoch 344/500\n", + "1/0, train_loss: 0.3859\n", + "0 epoch 344 average loss: 0.3859\n", + "current epoch: 344 current mean dice: 0.2685\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 345/500\n", + "1/0, train_loss: 0.3800\n", + "0 epoch 345 average loss: 0.3800\n", + "----------\n", + "0: epoch 346/500\n", + "1/0, train_loss: 0.3867\n", + "0 epoch 346 average loss: 0.3867\n", + "current epoch: 346 current mean dice: 0.3550\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 347/500\n", + "1/0, train_loss: 0.3879\n", + "0 epoch 347 average loss: 0.3879\n", + "----------\n", + "0: epoch 348/500\n", + "1/0, train_loss: 0.3818\n", + "0 epoch 348 average loss: 0.3818\n", + "current epoch: 348 current mean dice: 0.3819\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 349/500\n", + "1/0, train_loss: 0.3750\n", + "0 epoch 349 average loss: 0.3750\n", + "----------\n", + "0: epoch 350/500\n", + "1/0, train_loss: 0.3812\n", + "0 epoch 350 average loss: 0.3812\n", + "current epoch: 350 current mean dice: 0.2978\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 351/500\n", + "1/0, train_loss: 0.3786\n", + "0 epoch 351 average loss: 0.3786\n", + "----------\n", + "0: epoch 352/500\n", + "1/0, train_loss: 0.3827\n", + "0 epoch 352 average loss: 0.3827\n", + "current epoch: 352 current mean dice: 0.3100\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 353/500\n", + "1/0, train_loss: 0.3826\n", + "0 epoch 353 average loss: 0.3826\n", + "----------\n", + "0: epoch 354/500\n", + "1/0, train_loss: 0.3776\n", + "0 epoch 354 average loss: 0.3776\n", + "current epoch: 354 current mean dice: 0.3142\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 355/500\n", + "1/0, train_loss: 0.3833\n", + "0 epoch 355 average loss: 0.3833\n", + "----------\n", + "0: epoch 356/500\n", + "1/0, train_loss: 0.3829\n", + "0 epoch 356 average loss: 0.3829\n", + "current epoch: 356 current mean dice: 0.2901\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 357/500\n", + "1/0, train_loss: 0.3756\n", + "0 epoch 357 average loss: 0.3756\n", + "----------\n", + "0: epoch 358/500\n", + "1/0, train_loss: 0.3771\n", + "0 epoch 358 average loss: 0.3771\n", + "current epoch: 358 current mean dice: 0.3240\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 359/500\n", + "1/0, train_loss: 0.3842\n", + "0 epoch 359 average loss: 0.3842\n", + "----------\n", + "0: epoch 360/500\n", + "1/0, train_loss: 0.3778\n", + "0 epoch 360 average loss: 0.3778\n", + "current epoch: 360 current mean dice: 0.3200\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 361/500\n", + "1/0, train_loss: 0.3778\n", + "0 epoch 361 average loss: 0.3778\n", + "----------\n", + "0: epoch 362/500\n", + "1/0, train_loss: 0.3774\n", + "0 epoch 362 average loss: 0.3774\n", + "current epoch: 362 current mean dice: 0.2724\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 363/500\n", + "1/0, train_loss: 0.3886\n", + "0 epoch 363 average loss: 0.3886\n", + "----------\n", + "0: epoch 364/500\n", + "1/0, train_loss: 0.3766\n", + "0 epoch 364 average loss: 0.3766\n", + "current epoch: 364 current mean dice: 0.2606\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 365/500\n", + "1/0, train_loss: 0.3821\n", + "0 epoch 365 average loss: 0.3821\n", + "----------\n", + "0: epoch 366/500\n", + "1/0, train_loss: 0.3781\n", + "0 epoch 366 average loss: 0.3781\n", + "current epoch: 366 current mean dice: 0.2722\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 367/500\n", + "1/0, train_loss: 0.3787\n", + "0 epoch 367 average loss: 0.3787\n", + "----------\n", + "0: epoch 368/500\n", + "1/0, train_loss: 0.3764\n", + "0 epoch 368 average loss: 0.3764\n", + "current epoch: 368 current mean dice: 0.2901\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 369/500\n", + "1/0, train_loss: 0.3812\n", + "0 epoch 369 average loss: 0.3812\n", + "----------\n", + "0: epoch 370/500\n", + "1/0, train_loss: 0.3876\n", + "0 epoch 370 average loss: 0.3876\n", + "current epoch: 370 current mean dice: 0.3135\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 371/500\n", + "1/0, train_loss: 0.3749\n", + "0 epoch 371 average loss: 0.3749\n", + "----------\n", + "0: epoch 372/500\n", + "1/0, train_loss: 0.3760\n", + "0 epoch 372 average loss: 0.3760\n", + "current epoch: 372 current mean dice: 0.3096\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 373/500\n", + "1/0, train_loss: 0.3895\n", + "0 epoch 373 average loss: 0.3895\n", + "----------\n", + "0: epoch 374/500\n", + "1/0, train_loss: 0.3860\n", + "0 epoch 374 average loss: 0.3860\n", + "current epoch: 374 current mean dice: 0.2607\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 375/500\n", + "1/0, train_loss: 0.3765\n", + "0 epoch 375 average loss: 0.3765\n", + "----------\n", + "0: epoch 376/500\n", + "1/0, train_loss: 0.3836\n", + "0 epoch 376 average loss: 0.3836\n", + "current epoch: 376 current mean dice: 0.2814\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 377/500\n", + "1/0, train_loss: 0.3779\n", + "0 epoch 377 average loss: 0.3779\n", + "----------\n", + "0: epoch 378/500\n", + "1/0, train_loss: 0.3732\n", + "0 epoch 378 average loss: 0.3732\n", + "current epoch: 378 current mean dice: 0.2991\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 379/500\n", + "1/0, train_loss: 0.3767\n", + "0 epoch 379 average loss: 0.3767\n", + "----------\n", + "0: epoch 380/500\n", + "1/0, train_loss: 0.3861\n", + "0 epoch 380 average loss: 0.3861\n", + "current epoch: 380 current mean dice: 0.3018\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 381/500\n", + "1/0, train_loss: 0.3830\n", + "0 epoch 381 average loss: 0.3830\n", + "----------\n", + "0: epoch 382/500\n", + "1/0, train_loss: 0.3796\n", + "0 epoch 382 average loss: 0.3796\n", + "current epoch: 382 current mean dice: 0.3026\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 383/500\n", + "1/0, train_loss: 0.3884\n", + "0 epoch 383 average loss: 0.3884\n", + "----------\n", + "0: epoch 384/500\n", + "1/0, train_loss: 0.3777\n", + "0 epoch 384 average loss: 0.3777\n", + "current epoch: 384 current mean dice: 0.2902\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 385/500\n", + "1/0, train_loss: 0.3788\n", + "0 epoch 385 average loss: 0.3788\n", + "----------\n", + "0: epoch 386/500\n", + "1/0, train_loss: 0.3827\n", + "0 epoch 386 average loss: 0.3827\n", + "current epoch: 386 current mean dice: 0.2766\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 387/500\n", + "1/0, train_loss: 0.3849\n", + "0 epoch 387 average loss: 0.3849\n", + "----------\n", + "0: epoch 388/500\n", + "1/0, train_loss: 0.3849\n", + "0 epoch 388 average loss: 0.3849\n", + "current epoch: 388 current mean dice: 0.3246\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 389/500\n", + "1/0, train_loss: 0.3729\n", + "0 epoch 389 average loss: 0.3729\n", + "----------\n", + "0: epoch 390/500\n", + "1/0, train_loss: 0.3766\n", + "0 epoch 390 average loss: 0.3766\n", + "current epoch: 390 current mean dice: 0.3231\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 391/500\n", + "1/0, train_loss: 0.3802\n", + "0 epoch 391 average loss: 0.3802\n", + "----------\n", + "0: epoch 392/500\n", + "1/0, train_loss: 0.3812\n", + "0 epoch 392 average loss: 0.3812\n", + "current epoch: 392 current mean dice: 0.2753\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 393/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.3773\n", + "0 epoch 393 average loss: 0.3773\n", + "----------\n", + "0: epoch 394/500\n", + "1/0, train_loss: 0.3786\n", + "0 epoch 394 average loss: 0.3786\n", + "current epoch: 394 current mean dice: 0.2755\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 395/500\n", + "1/0, train_loss: 0.3815\n", + "0 epoch 395 average loss: 0.3815\n", + "----------\n", + "0: epoch 396/500\n", + "1/0, train_loss: 0.3820\n", + "0 epoch 396 average loss: 0.3820\n", + "current epoch: 396 current mean dice: 0.2705\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 397/500\n", + "1/0, train_loss: 0.3755\n", + "0 epoch 397 average loss: 0.3755\n", + "----------\n", + "0: epoch 398/500\n", + "1/0, train_loss: 0.3753\n", + "0 epoch 398 average loss: 0.3753\n", + "current epoch: 398 current mean dice: 0.2867\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 399/500\n", + "1/0, train_loss: 0.3829\n", + "0 epoch 399 average loss: 0.3829\n", + "----------\n", + "0: epoch 400/500\n", + "1/0, train_loss: 0.3771\n", + "0 epoch 400 average loss: 0.3771\n", + "current epoch: 400 current mean dice: 0.2981\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 401/500\n", + "1/0, train_loss: 0.3798\n", + "0 epoch 401 average loss: 0.3798\n", + "----------\n", + "0: epoch 402/500\n", + "1/0, train_loss: 0.3782\n", + "0 epoch 402 average loss: 0.3782\n", + "current epoch: 402 current mean dice: 0.2920\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 403/500\n", + "1/0, train_loss: 0.3814\n", + "0 epoch 403 average loss: 0.3814\n", + "----------\n", + "0: epoch 404/500\n", + "1/0, train_loss: 0.3740\n", + "0 epoch 404 average loss: 0.3740\n", + "current epoch: 404 current mean dice: 0.2716\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 405/500\n", + "1/0, train_loss: 0.3848\n", + "0 epoch 405 average loss: 0.3848\n", + "----------\n", + "0: epoch 406/500\n", + "1/0, train_loss: 0.3728\n", + "0 epoch 406 average loss: 0.3728\n", + "current epoch: 406 current mean dice: 0.2279\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 407/500\n", + "1/0, train_loss: 0.3795\n", + "0 epoch 407 average loss: 0.3795\n", + "----------\n", + "0: epoch 408/500\n", + "1/0, train_loss: 0.3789\n", + "0 epoch 408 average loss: 0.3789\n", + "current epoch: 408 current mean dice: 0.2255\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 409/500\n", + "1/0, train_loss: 0.3748\n", + "0 epoch 409 average loss: 0.3748\n", + "----------\n", + "0: epoch 410/500\n", + "1/0, train_loss: 0.3797\n", + "0 epoch 410 average loss: 0.3797\n", + "current epoch: 410 current mean dice: 0.2839\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 411/500\n", + "1/0, train_loss: 0.3832\n", + "0 epoch 411 average loss: 0.3832\n", + "----------\n", + "0: epoch 412/500\n", + "1/0, train_loss: 0.3801\n", + "0 epoch 412 average loss: 0.3801\n", + "current epoch: 412 current mean dice: 0.2579\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 413/500\n", + "1/0, train_loss: 0.3758\n", + "0 epoch 413 average loss: 0.3758\n", + "----------\n", + "0: epoch 414/500\n", + "1/0, train_loss: 0.3782\n", + "0 epoch 414 average loss: 0.3782\n", + "current epoch: 414 current mean dice: 0.2692\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 415/500\n", + "1/0, train_loss: 0.3744\n", + "0 epoch 415 average loss: 0.3744\n", + "----------\n", + "0: epoch 416/500\n", + "1/0, train_loss: 0.3765\n", + "0 epoch 416 average loss: 0.3765\n", + "current epoch: 416 current mean dice: 0.2997\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 417/500\n", + "1/0, train_loss: 0.3757\n", + "0 epoch 417 average loss: 0.3757\n", + "----------\n", + "0: epoch 418/500\n", + "1/0, train_loss: 0.3756\n", + "0 epoch 418 average loss: 0.3756\n", + "current epoch: 418 current mean dice: 0.3309\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 419/500\n", + "1/0, train_loss: 0.3723\n", + "0 epoch 419 average loss: 0.3723\n", + "----------\n", + "0: epoch 420/500\n", + "1/0, train_loss: 0.3835\n", + "0 epoch 420 average loss: 0.3835\n", + "current epoch: 420 current mean dice: 0.2444\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 421/500\n", + "1/0, train_loss: 0.3739\n", + "0 epoch 421 average loss: 0.3739\n", + "----------\n", + "0: epoch 422/500\n", + "1/0, train_loss: 0.3854\n", + "0 epoch 422 average loss: 0.3854\n", + "current epoch: 422 current mean dice: 0.2501\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 423/500\n", + "1/0, train_loss: 0.3782\n", + "0 epoch 423 average loss: 0.3782\n", + "----------\n", + "0: epoch 424/500\n", + "1/0, train_loss: 0.3763\n", + "0 epoch 424 average loss: 0.3763\n", + "current epoch: 424 current mean dice: 0.3492\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 425/500\n", + "1/0, train_loss: 0.3802\n", + "0 epoch 425 average loss: 0.3802\n", + "----------\n", + "0: epoch 426/500\n", + "1/0, train_loss: 0.3812\n", + "0 epoch 426 average loss: 0.3812\n", + "current epoch: 426 current mean dice: 0.2860\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 427/500\n", + "1/0, train_loss: 0.3797\n", + "0 epoch 427 average loss: 0.3797\n", + "----------\n", + "0: epoch 428/500\n", + "1/0, train_loss: 0.3763\n", + "0 epoch 428 average loss: 0.3763\n", + "current epoch: 428 current mean dice: 0.2892\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 429/500\n", + "1/0, train_loss: 0.3744\n", + "0 epoch 429 average loss: 0.3744\n", + "----------\n", + "0: epoch 430/500\n", + "1/0, train_loss: 0.3786\n", + "0 epoch 430 average loss: 0.3786\n", + "current epoch: 430 current mean dice: 0.2749\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 431/500\n", + "1/0, train_loss: 0.3778\n", + "0 epoch 431 average loss: 0.3778\n", + "----------\n", + "0: epoch 432/500\n", + "1/0, train_loss: 0.3787\n", + "0 epoch 432 average loss: 0.3787\n", + "current epoch: 432 current mean dice: 0.2235\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 433/500\n", + "1/0, train_loss: 0.3773\n", + "0 epoch 433 average loss: 0.3773\n", + "----------\n", + "0: epoch 434/500\n", + "1/0, train_loss: 0.3731\n", + "0 epoch 434 average loss: 0.3731\n", + "current epoch: 434 current mean dice: 0.2173\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 435/500\n", + "1/0, train_loss: 0.3727\n", + "0 epoch 435 average loss: 0.3727\n", + "----------\n", + "0: epoch 436/500\n", + "1/0, train_loss: 0.3739\n", + "0 epoch 436 average loss: 0.3739\n", + "current epoch: 436 current mean dice: 0.2394\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 437/500\n", + "1/0, train_loss: 0.3781\n", + "0 epoch 437 average loss: 0.3781\n", + "----------\n", + "0: epoch 438/500\n", + "1/0, train_loss: 0.3873\n", + "0 epoch 438 average loss: 0.3873\n", + "current epoch: 438 current mean dice: 0.2642\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 439/500\n", + "1/0, train_loss: 0.3747\n", + "0 epoch 439 average loss: 0.3747\n", + "----------\n", + "0: epoch 440/500\n", + "1/0, train_loss: 0.3734\n", + "0 epoch 440 average loss: 0.3734\n", + "current epoch: 440 current mean dice: 0.3113\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 441/500\n", + "1/0, train_loss: 0.3832\n", + "0 epoch 441 average loss: 0.3832\n", + "----------\n", + "0: epoch 442/500\n", + "1/0, train_loss: 0.3701\n", + "0 epoch 442 average loss: 0.3701\n", + "current epoch: 442 current mean dice: 0.2508\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 443/500\n", + "1/0, train_loss: 0.3758\n", + "0 epoch 443 average loss: 0.3758\n", + "----------\n", + "0: epoch 444/500\n", + "1/0, train_loss: 0.3735\n", + "0 epoch 444 average loss: 0.3735\n", + "current epoch: 444 current mean dice: 0.2857\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 445/500\n", + "1/0, train_loss: 0.3822\n", + "0 epoch 445 average loss: 0.3822\n", + "----------\n", + "0: epoch 446/500\n", + "1/0, train_loss: 0.3754\n", + "0 epoch 446 average loss: 0.3754\n", + "current epoch: 446 current mean dice: 0.2897\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 447/500\n", + "1/0, train_loss: 0.3818\n", + "0 epoch 447 average loss: 0.3818\n", + "----------\n", + "0: epoch 448/500\n", + "1/0, train_loss: 0.3776\n", + "0 epoch 448 average loss: 0.3776\n", + "current epoch: 448 current mean dice: 0.3025\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 449/500\n", + "1/0, train_loss: 0.3813\n", + "0 epoch 449 average loss: 0.3813\n", + "----------\n", + "0: epoch 450/500\n", + "1/0, train_loss: 0.3728\n", + "0 epoch 450 average loss: 0.3728\n", + "current epoch: 450 current mean dice: 0.2795\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 451/500\n", + "1/0, train_loss: 0.3766\n", + "0 epoch 451 average loss: 0.3766\n", + "----------\n", + "0: epoch 452/500\n", + "1/0, train_loss: 0.3744\n", + "0 epoch 452 average loss: 0.3744\n", + "current epoch: 452 current mean dice: 0.2906\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 453/500\n", + "1/0, train_loss: 0.3741\n", + "0 epoch 453 average loss: 0.3741\n", + "----------\n", + "0: epoch 454/500\n", + "1/0, train_loss: 0.3755\n", + "0 epoch 454 average loss: 0.3755\n", + "current epoch: 454 current mean dice: 0.2541\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 455/500\n", + "1/0, train_loss: 0.3710\n", + "0 epoch 455 average loss: 0.3710\n", + "----------\n", + "0: epoch 456/500\n", + "1/0, train_loss: 0.3700\n", + "0 epoch 456 average loss: 0.3700\n", + "current epoch: 456 current mean dice: 0.2445\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 457/500\n", + "1/0, train_loss: 0.3759\n", + "0 epoch 457 average loss: 0.3759\n", + "----------\n", + "0: epoch 458/500\n", + "1/0, train_loss: 0.3793\n", + "0 epoch 458 average loss: 0.3793\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "current epoch: 458 current mean dice: 0.2499\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 459/500\n", + "1/0, train_loss: 0.3724\n", + "0 epoch 459 average loss: 0.3724\n", + "----------\n", + "0: epoch 460/500\n", + "1/0, train_loss: 0.3695\n", + "0 epoch 460 average loss: 0.3695\n", + "current epoch: 460 current mean dice: 0.3084\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 461/500\n", + "1/0, train_loss: 0.3861\n", + "0 epoch 461 average loss: 0.3861\n", + "----------\n", + "0: epoch 462/500\n", + "1/0, train_loss: 0.3747\n", + "0 epoch 462 average loss: 0.3747\n", + "current epoch: 462 current mean dice: 0.3450\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 463/500\n", + "1/0, train_loss: 0.3836\n", + "0 epoch 463 average loss: 0.3836\n", + "----------\n", + "0: epoch 464/500\n", + "1/0, train_loss: 0.3690\n", + "0 epoch 464 average loss: 0.3690\n", + "current epoch: 464 current mean dice: 0.3047\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 465/500\n", + "1/0, train_loss: 0.3770\n", + "0 epoch 465 average loss: 0.3770\n", + "----------\n", + "0: epoch 466/500\n", + "1/0, train_loss: 0.3761\n", + "0 epoch 466 average loss: 0.3761\n", + "current epoch: 466 current mean dice: 0.2665\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 467/500\n", + "1/0, train_loss: 0.3784\n", + "0 epoch 467 average loss: 0.3784\n", + "----------\n", + "0: epoch 468/500\n", + "1/0, train_loss: 0.3788\n", + "0 epoch 468 average loss: 0.3788\n", + "current epoch: 468 current mean dice: 0.2703\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 469/500\n", + "1/0, train_loss: 0.3785\n", + "0 epoch 469 average loss: 0.3785\n", + "----------\n", + "0: epoch 470/500\n", + "1/0, train_loss: 0.3770\n", + "0 epoch 470 average loss: 0.3770\n", + "current epoch: 470 current mean dice: 0.3105\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 471/500\n", + "1/0, train_loss: 0.3765\n", + "0 epoch 471 average loss: 0.3765\n", + "----------\n", + "0: epoch 472/500\n", + "1/0, train_loss: 0.3781\n", + "0 epoch 472 average loss: 0.3781\n", + "current epoch: 472 current mean dice: 0.3485\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 473/500\n", + "1/0, train_loss: 0.3791\n", + "0 epoch 473 average loss: 0.3791\n", + "----------\n", + "0: epoch 474/500\n", + "1/0, train_loss: 0.3747\n", + "0 epoch 474 average loss: 0.3747\n", + "current epoch: 474 current mean dice: 0.3376\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 475/500\n", + "1/0, train_loss: 0.3766\n", + "0 epoch 475 average loss: 0.3766\n", + "----------\n", + "0: epoch 476/500\n", + "1/0, train_loss: 0.3762\n", + "0 epoch 476 average loss: 0.3762\n", + "current epoch: 476 current mean dice: 0.2715\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 477/500\n", + "1/0, train_loss: 0.3721\n", + "0 epoch 477 average loss: 0.3721\n", + "----------\n", + "0: epoch 478/500\n", + "1/0, train_loss: 0.3724\n", + "0 epoch 478 average loss: 0.3724\n", + "current epoch: 478 current mean dice: 0.2834\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 479/500\n", + "1/0, train_loss: 0.3750\n", + "0 epoch 479 average loss: 0.3750\n", + "----------\n", + "0: epoch 480/500\n", + "1/0, train_loss: 0.3795\n", + "0 epoch 480 average loss: 0.3795\n", + "current epoch: 480 current mean dice: 0.2701\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 481/500\n", + "1/0, train_loss: 0.3695\n", + "0 epoch 481 average loss: 0.3695\n", + "----------\n", + "0: epoch 482/500\n", + "1/0, train_loss: 0.3698\n", + "0 epoch 482 average loss: 0.3698\n", + "current epoch: 482 current mean dice: 0.2594\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 483/500\n", + "1/0, train_loss: 0.3798\n", + "0 epoch 483 average loss: 0.3798\n", + "----------\n", + "0: epoch 484/500\n", + "1/0, train_loss: 0.3720\n", + "0 epoch 484 average loss: 0.3720\n", + "current epoch: 484 current mean dice: 0.2782\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 485/500\n", + "1/0, train_loss: 0.3701\n", + "0 epoch 485 average loss: 0.3701\n", + "----------\n", + "0: epoch 486/500\n", + "1/0, train_loss: 0.3777\n", + "0 epoch 486 average loss: 0.3777\n", + "current epoch: 486 current mean dice: 0.2726\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 487/500\n", + "1/0, train_loss: 0.3800\n", + "0 epoch 487 average loss: 0.3800\n", + "----------\n", + "0: epoch 488/500\n", + "1/0, train_loss: 0.3676\n", + "0 epoch 488 average loss: 0.3676\n", + "current epoch: 488 current mean dice: 0.2876\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 489/500\n", + "1/0, train_loss: 0.3706\n", + "0 epoch 489 average loss: 0.3706\n", + "----------\n", + "0: epoch 490/500\n", + "1/0, train_loss: 0.3693\n", + "0 epoch 490 average loss: 0.3693\n", + "current epoch: 490 current mean dice: 0.3021\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 491/500\n", + "1/0, train_loss: 0.3720\n", + "0 epoch 491 average loss: 0.3720\n", + "----------\n", + "0: epoch 492/500\n", + "1/0, train_loss: 0.3675\n", + "0 epoch 492 average loss: 0.3675\n", + "current epoch: 492 current mean dice: 0.2794\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 493/500\n", + "1/0, train_loss: 0.3753\n", + "0 epoch 493 average loss: 0.3753\n", + "----------\n", + "0: epoch 494/500\n", + "1/0, train_loss: 0.3708\n", + "0 epoch 494 average loss: 0.3708\n", + "current epoch: 494 current mean dice: 0.2790\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 495/500\n", + "1/0, train_loss: 0.3688\n", + "0 epoch 495 average loss: 0.3688\n", + "----------\n", + "0: epoch 496/500\n", + "1/0, train_loss: 0.3734\n", + "0 epoch 496 average loss: 0.3734\n", + "current epoch: 496 current mean dice: 0.2845\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 497/500\n", + "1/0, train_loss: 0.3684\n", + "0 epoch 497 average loss: 0.3684\n", + "----------\n", + "0: epoch 498/500\n", + "1/0, train_loss: 0.3707\n", + "0 epoch 498 average loss: 0.3707\n", + "current epoch: 498 current mean dice: 0.3067\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "0: epoch 499/500\n", + "1/0, train_loss: 0.3679\n", + "0 epoch 499 average loss: 0.3679\n", + "----------\n", + "0: epoch 500/500\n", + "1/0, train_loss: 0.3712\n", + "0 epoch 500 average loss: 0.3712\n", + "current epoch: 500 current mean dice: 0.3314\n", + "best mean dice: 0.4797 at epoch: 258\n", + "----------\n", + "1: epoch 1/500\n", + "1/0, train_loss: 0.7298\n", + "1 epoch 1 average loss: 0.7298\n", + "----------\n", + "1: epoch 2/500\n", + "1/0, train_loss: 0.7040\n", + "1 epoch 2 average loss: 0.7040\n", + "saved new best metric model\n", + "current epoch: 2 current mean dice: 0.3959\n", + "best mean dice: 0.3959 at epoch: 2\n", + "----------\n", + "1: epoch 3/500\n", + "1/0, train_loss: 0.6859\n", + "1 epoch 3 average loss: 0.6859\n", + "----------\n", + "1: epoch 4/500\n", + "1/0, train_loss: 0.6727\n", + "1 epoch 4 average loss: 0.6727\n", + "saved new best metric model\n", + "current epoch: 4 current mean dice: 0.4353\n", + "best mean dice: 0.4353 at epoch: 4\n", + "----------\n", + "1: epoch 5/500\n", + "1/0, train_loss: 0.6605\n", + "1 epoch 5 average loss: 0.6605\n", + "----------\n", + "1: epoch 6/500\n", + "1/0, train_loss: 0.6596\n", + "1 epoch 6 average loss: 0.6596\n", + "saved new best metric model\n", + "current epoch: 6 current mean dice: 0.4562\n", + "best mean dice: 0.4562 at epoch: 6\n", + "----------\n", + "1: epoch 7/500\n", + "1/0, train_loss: 0.6510\n", + "1 epoch 7 average loss: 0.6510\n", + "----------\n", + "1: epoch 8/500\n", + "1/0, train_loss: 0.6483\n", + "1 epoch 8 average loss: 0.6483\n", + "saved new best metric model\n", + "current epoch: 8 current mean dice: 0.4570\n", + "best mean dice: 0.4570 at epoch: 8\n", + "----------\n", + "1: epoch 9/500\n", + "1/0, train_loss: 0.6497\n", + "1 epoch 9 average loss: 0.6497\n", + "----------\n", + "1: epoch 10/500\n", + "1/0, train_loss: 0.6437\n", + "1 epoch 10 average loss: 0.6437\n", + "saved new best metric model\n", + "current epoch: 10 current mean dice: 0.4581\n", + "best mean dice: 0.4581 at epoch: 10\n", + "----------\n", + "1: epoch 11/500\n", + "1/0, train_loss: 0.6424\n", + "1 epoch 11 average loss: 0.6424\n", + "----------\n", + "1: epoch 12/500\n", + "1/0, train_loss: 0.6423\n", + "1 epoch 12 average loss: 0.6423\n", + "saved new best metric model\n", + "current epoch: 12 current mean dice: 0.4594\n", + "best mean dice: 0.4594 at epoch: 12\n", + "----------\n", + "1: epoch 13/500\n", + "1/0, train_loss: 0.6388\n", + "1 epoch 13 average loss: 0.6388\n", + "----------\n", + "1: epoch 14/500\n", + "1/0, train_loss: 0.6342\n", + "1 epoch 14 average loss: 0.6342\n", + "saved new best metric model\n", + "current epoch: 14 current mean dice: 0.4625\n", + "best mean dice: 0.4625 at epoch: 14\n", + "----------\n", + "1: epoch 15/500\n", + "1/0, train_loss: 0.6336\n", + "1 epoch 15 average loss: 0.6336\n", + "----------\n", + "1: epoch 16/500\n", + "1/0, train_loss: 0.6332\n", + "1 epoch 16 average loss: 0.6332\n", + "saved new best metric model\n", + "current epoch: 16 current mean dice: 0.4779\n", + "best mean dice: 0.4779 at epoch: 16\n", + "----------\n", + "1: epoch 17/500\n", + "1/0, train_loss: 0.6262\n", + "1 epoch 17 average loss: 0.6262\n", + "----------\n", + "1: epoch 18/500\n", + "1/0, train_loss: 0.6209\n", + "1 epoch 18 average loss: 0.6209\n", + "saved new best metric model\n", + "current epoch: 18 current mean dice: 0.4809\n", + "best mean dice: 0.4809 at epoch: 18\n", + "----------\n", + "1: epoch 19/500\n", + "1/0, train_loss: 0.6184\n", + "1 epoch 19 average loss: 0.6184\n", + "----------\n", + "1: epoch 20/500\n", + "1/0, train_loss: 0.6155\n", + "1 epoch 20 average loss: 0.6155\n", + "saved new best metric model\n", + "current epoch: 20 current mean dice: 0.4982\n", + "best mean dice: 0.4982 at epoch: 20\n", + "----------\n", + "1: epoch 21/500\n", + "1/0, train_loss: 0.6097\n", + "1 epoch 21 average loss: 0.6097\n", + "----------\n", + "1: epoch 22/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.6152\n", + "1 epoch 22 average loss: 0.6152\n", + "saved new best metric model\n", + "current epoch: 22 current mean dice: 0.5081\n", + "best mean dice: 0.5081 at epoch: 22\n", + "----------\n", + "1: epoch 23/500\n", + "1/0, train_loss: 0.6128\n", + "1 epoch 23 average loss: 0.6128\n", + "----------\n", + "1: epoch 24/500\n", + "1/0, train_loss: 0.6090\n", + "1 epoch 24 average loss: 0.6090\n", + "saved new best metric model\n", + "current epoch: 24 current mean dice: 0.5081\n", + "best mean dice: 0.5081 at epoch: 24\n", + "----------\n", + "1: epoch 25/500\n", + "1/0, train_loss: 0.6063\n", + "1 epoch 25 average loss: 0.6063\n", + "----------\n", + "1: epoch 26/500\n", + "1/0, train_loss: 0.5961\n", + "1 epoch 26 average loss: 0.5961\n", + "current epoch: 26 current mean dice: 0.4763\n", + "best mean dice: 0.5081 at epoch: 24\n", + "----------\n", + "1: epoch 27/500\n", + "1/0, train_loss: 0.5952\n", + "1 epoch 27 average loss: 0.5952\n", + "----------\n", + "1: epoch 28/500\n", + "1/0, train_loss: 0.5896\n", + "1 epoch 28 average loss: 0.5896\n", + "current epoch: 28 current mean dice: 0.5021\n", + "best mean dice: 0.5081 at epoch: 24\n", + "----------\n", + "1: epoch 29/500\n", + "1/0, train_loss: 0.5856\n", + "1 epoch 29 average loss: 0.5856\n", + "----------\n", + "1: epoch 30/500\n", + "1/0, train_loss: 0.5860\n", + "1 epoch 30 average loss: 0.5860\n", + "saved new best metric model\n", + "current epoch: 30 current mean dice: 0.5351\n", + "best mean dice: 0.5351 at epoch: 30\n", + "----------\n", + "1: epoch 31/500\n", + "1/0, train_loss: 0.5797\n", + "1 epoch 31 average loss: 0.5797\n", + "----------\n", + "1: epoch 32/500\n", + "1/0, train_loss: 0.5754\n", + "1 epoch 32 average loss: 0.5754\n", + "current epoch: 32 current mean dice: 0.5088\n", + "best mean dice: 0.5351 at epoch: 30\n", + "----------\n", + "1: epoch 33/500\n", + "1/0, train_loss: 0.5694\n", + "1 epoch 33 average loss: 0.5694\n", + "----------\n", + "1: epoch 34/500\n", + "1/0, train_loss: 0.5681\n", + "1 epoch 34 average loss: 0.5681\n", + "current epoch: 34 current mean dice: 0.5321\n", + "best mean dice: 0.5351 at epoch: 30\n", + "----------\n", + "1: epoch 35/500\n", + "1/0, train_loss: 0.5606\n", + "1 epoch 35 average loss: 0.5606\n", + "----------\n", + "1: epoch 36/500\n", + "1/0, train_loss: 0.5570\n", + "1 epoch 36 average loss: 0.5570\n", + "saved new best metric model\n", + "current epoch: 36 current mean dice: 0.5451\n", + "best mean dice: 0.5451 at epoch: 36\n", + "----------\n", + "1: epoch 37/500\n", + "1/0, train_loss: 0.5644\n", + "1 epoch 37 average loss: 0.5644\n", + "----------\n", + "1: epoch 38/500\n", + "1/0, train_loss: 0.5521\n", + "1 epoch 38 average loss: 0.5521\n", + "current epoch: 38 current mean dice: 0.5222\n", + "best mean dice: 0.5451 at epoch: 36\n", + "----------\n", + "1: epoch 39/500\n", + "1/0, train_loss: 0.5505\n", + "1 epoch 39 average loss: 0.5505\n", + "----------\n", + "1: epoch 40/500\n", + "1/0, train_loss: 0.5505\n", + "1 epoch 40 average loss: 0.5505\n", + "current epoch: 40 current mean dice: 0.5114\n", + "best mean dice: 0.5451 at epoch: 36\n", + "----------\n", + "1: epoch 41/500\n", + "1/0, train_loss: 0.5489\n", + "1 epoch 41 average loss: 0.5489\n", + "----------\n", + "1: epoch 42/500\n", + "1/0, train_loss: 0.5474\n", + "1 epoch 42 average loss: 0.5474\n", + "current epoch: 42 current mean dice: 0.5091\n", + "best mean dice: 0.5451 at epoch: 36\n", + "----------\n", + "1: epoch 43/500\n", + "1/0, train_loss: 0.5474\n", + "1 epoch 43 average loss: 0.5474\n", + "----------\n", + "1: epoch 44/500\n", + "1/0, train_loss: 0.5398\n", + "1 epoch 44 average loss: 0.5398\n", + "saved new best metric model\n", + "current epoch: 44 current mean dice: 0.5510\n", + "best mean dice: 0.5510 at epoch: 44\n", + "----------\n", + "1: epoch 45/500\n", + "1/0, train_loss: 0.5415\n", + "1 epoch 45 average loss: 0.5415\n", + "----------\n", + "1: epoch 46/500\n", + "1/0, train_loss: 0.5440\n", + "1 epoch 46 average loss: 0.5440\n", + "current epoch: 46 current mean dice: 0.5129\n", + "best mean dice: 0.5510 at epoch: 44\n", + "----------\n", + "1: epoch 47/500\n", + "1/0, train_loss: 0.5319\n", + "1 epoch 47 average loss: 0.5319\n", + "----------\n", + "1: epoch 48/500\n", + "1/0, train_loss: 0.5272\n", + "1 epoch 48 average loss: 0.5272\n", + "current epoch: 48 current mean dice: 0.5232\n", + "best mean dice: 0.5510 at epoch: 44\n", + "----------\n", + "1: epoch 49/500\n", + "1/0, train_loss: 0.5287\n", + "1 epoch 49 average loss: 0.5287\n", + "----------\n", + "1: epoch 50/500\n", + "1/0, train_loss: 0.5318\n", + "1 epoch 50 average loss: 0.5318\n", + "current epoch: 50 current mean dice: 0.5084\n", + "best mean dice: 0.5510 at epoch: 44\n", + "----------\n", + "1: epoch 51/500\n", + "1/0, train_loss: 0.5271\n", + "1 epoch 51 average loss: 0.5271\n", + "----------\n", + "1: epoch 52/500\n", + "1/0, train_loss: 0.5314\n", + "1 epoch 52 average loss: 0.5314\n", + "saved new best metric model\n", + "current epoch: 52 current mean dice: 0.5563\n", + "best mean dice: 0.5563 at epoch: 52\n", + "----------\n", + "1: epoch 53/500\n", + "1/0, train_loss: 0.5202\n", + "1 epoch 53 average loss: 0.5202\n", + "----------\n", + "1: epoch 54/500\n", + "1/0, train_loss: 0.5252\n", + "1 epoch 54 average loss: 0.5252\n", + "current epoch: 54 current mean dice: 0.4823\n", + "best mean dice: 0.5563 at epoch: 52\n", + "----------\n", + "1: epoch 55/500\n", + "1/0, train_loss: 0.5306\n", + "1 epoch 55 average loss: 0.5306\n", + "----------\n", + "1: epoch 56/500\n", + "1/0, train_loss: 0.5286\n", + "1 epoch 56 average loss: 0.5286\n", + "saved new best metric model\n", + "current epoch: 56 current mean dice: 0.5661\n", + "best mean dice: 0.5661 at epoch: 56\n", + "----------\n", + "1: epoch 57/500\n", + "1/0, train_loss: 0.5185\n", + "1 epoch 57 average loss: 0.5185\n", + "----------\n", + "1: epoch 58/500\n", + "1/0, train_loss: 0.5249\n", + "1 epoch 58 average loss: 0.5249\n", + "current epoch: 58 current mean dice: 0.5638\n", + "best mean dice: 0.5661 at epoch: 56\n", + "----------\n", + "1: epoch 59/500\n", + "1/0, train_loss: 0.5129\n", + "1 epoch 59 average loss: 0.5129\n", + "----------\n", + "1: epoch 60/500\n", + "1/0, train_loss: 0.5230\n", + "1 epoch 60 average loss: 0.5230\n", + "current epoch: 60 current mean dice: 0.5561\n", + "best mean dice: 0.5661 at epoch: 56\n", + "----------\n", + "1: epoch 61/500\n", + "1/0, train_loss: 0.5139\n", + "1 epoch 61 average loss: 0.5139\n", + "----------\n", + "1: epoch 62/500\n", + "1/0, train_loss: 0.5191\n", + "1 epoch 62 average loss: 0.5191\n", + "current epoch: 62 current mean dice: 0.5404\n", + "best mean dice: 0.5661 at epoch: 56\n", + "----------\n", + "1: epoch 63/500\n", + "1/0, train_loss: 0.5143\n", + "1 epoch 63 average loss: 0.5143\n", + "----------\n", + "1: epoch 64/500\n", + "1/0, train_loss: 0.4995\n", + "1 epoch 64 average loss: 0.4995\n", + "current epoch: 64 current mean dice: 0.5562\n", + "best mean dice: 0.5661 at epoch: 56\n", + "----------\n", + "1: epoch 65/500\n", + "1/0, train_loss: 0.5045\n", + "1 epoch 65 average loss: 0.5045\n", + "----------\n", + "1: epoch 66/500\n", + "1/0, train_loss: 0.4954\n", + "1 epoch 66 average loss: 0.4954\n", + "current epoch: 66 current mean dice: 0.5491\n", + "best mean dice: 0.5661 at epoch: 56\n", + "----------\n", + "1: epoch 67/500\n", + "1/0, train_loss: 0.5034\n", + "1 epoch 67 average loss: 0.5034\n", + "----------\n", + "1: epoch 68/500\n", + "1/0, train_loss: 0.4951\n", + "1 epoch 68 average loss: 0.4951\n", + "saved new best metric model\n", + "current epoch: 68 current mean dice: 0.5814\n", + "best mean dice: 0.5814 at epoch: 68\n", + "----------\n", + "1: epoch 69/500\n", + "1/0, train_loss: 0.4955\n", + "1 epoch 69 average loss: 0.4955\n", + "----------\n", + "1: epoch 70/500\n", + "1/0, train_loss: 0.4890\n", + "1 epoch 70 average loss: 0.4890\n", + "current epoch: 70 current mean dice: 0.5325\n", + "best mean dice: 0.5814 at epoch: 68\n", + "----------\n", + "1: epoch 71/500\n", + "1/0, train_loss: 0.5098\n", + "1 epoch 71 average loss: 0.5098\n", + "----------\n", + "1: epoch 72/500\n", + "1/0, train_loss: 0.5177\n", + "1 epoch 72 average loss: 0.5177\n", + "saved new best metric model\n", + "current epoch: 72 current mean dice: 0.5917\n", + "best mean dice: 0.5917 at epoch: 72\n", + "----------\n", + "1: epoch 73/500\n", + "1/0, train_loss: 0.5109\n", + "1 epoch 73 average loss: 0.5109\n", + "----------\n", + "1: epoch 74/500\n", + "1/0, train_loss: 0.4940\n", + "1 epoch 74 average loss: 0.4940\n", + "current epoch: 74 current mean dice: 0.5352\n", + "best mean dice: 0.5917 at epoch: 72\n", + "----------\n", + "1: epoch 75/500\n", + "1/0, train_loss: 0.4958\n", + "1 epoch 75 average loss: 0.4958\n", + "----------\n", + "1: epoch 76/500\n", + "1/0, train_loss: 0.5003\n", + "1 epoch 76 average loss: 0.5003\n", + "current epoch: 76 current mean dice: 0.5671\n", + "best mean dice: 0.5917 at epoch: 72\n", + "----------\n", + "1: epoch 77/500\n", + "1/0, train_loss: 0.5045\n", + "1 epoch 77 average loss: 0.5045\n", + "----------\n", + "1: epoch 78/500\n", + "1/0, train_loss: 0.4911\n", + "1 epoch 78 average loss: 0.4911\n", + "current epoch: 78 current mean dice: 0.5655\n", + "best mean dice: 0.5917 at epoch: 72\n", + "----------\n", + "1: epoch 79/500\n", + "1/0, train_loss: 0.4931\n", + "1 epoch 79 average loss: 0.4931\n", + "----------\n", + "1: epoch 80/500\n", + "1/0, train_loss: 0.4943\n", + "1 epoch 80 average loss: 0.4943\n", + "current epoch: 80 current mean dice: 0.5696\n", + "best mean dice: 0.5917 at epoch: 72\n", + "----------\n", + "1: epoch 81/500\n", + "1/0, train_loss: 0.4928\n", + "1 epoch 81 average loss: 0.4928\n", + "----------\n", + "1: epoch 82/500\n", + "1/0, train_loss: 0.4890\n", + "1 epoch 82 average loss: 0.4890\n", + "saved new best metric model\n", + "current epoch: 82 current mean dice: 0.6008\n", + "best mean dice: 0.6008 at epoch: 82\n", + "----------\n", + "1: epoch 83/500\n", + "1/0, train_loss: 0.4816\n", + "1 epoch 83 average loss: 0.4816\n", + "----------\n", + "1: epoch 84/500\n", + "1/0, train_loss: 0.4763\n", + "1 epoch 84 average loss: 0.4763\n", + "saved new best metric model\n", + "current epoch: 84 current mean dice: 0.6149\n", + "best mean dice: 0.6149 at epoch: 84\n", + "----------\n", + "1: epoch 85/500\n", + "1/0, train_loss: 0.4743\n", + "1 epoch 85 average loss: 0.4743\n", + "----------\n", + "1: epoch 86/500\n", + "1/0, train_loss: 0.4661\n", + "1 epoch 86 average loss: 0.4661\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "current epoch: 86 current mean dice: 0.6055\n", + "best mean dice: 0.6149 at epoch: 84\n", + "----------\n", + "1: epoch 87/500\n", + "1/0, train_loss: 0.4729\n", + "1 epoch 87 average loss: 0.4729\n", + "----------\n", + "1: epoch 88/500\n", + "1/0, train_loss: 0.4756\n", + "1 epoch 88 average loss: 0.4756\n", + "saved new best metric model\n", + "current epoch: 88 current mean dice: 0.6151\n", + "best mean dice: 0.6151 at epoch: 88\n", + "----------\n", + "1: epoch 89/500\n", + "1/0, train_loss: 0.4888\n", + "1 epoch 89 average loss: 0.4888\n", + "----------\n", + "1: epoch 90/500\n", + "1/0, train_loss: 0.4626\n", + "1 epoch 90 average loss: 0.4626\n", + "current epoch: 90 current mean dice: 0.4658\n", + "best mean dice: 0.6151 at epoch: 88\n", + "----------\n", + "1: epoch 91/500\n", + "1/0, train_loss: 0.5009\n", + "1 epoch 91 average loss: 0.5009\n", + "----------\n", + "1: epoch 92/500\n", + "1/0, train_loss: 0.4856\n", + "1 epoch 92 average loss: 0.4856\n", + "current epoch: 92 current mean dice: 0.5295\n", + "best mean dice: 0.6151 at epoch: 88\n", + "----------\n", + "1: epoch 93/500\n", + "1/0, train_loss: 0.5260\n", + "1 epoch 93 average loss: 0.5260\n", + "----------\n", + "1: epoch 94/500\n", + "1/0, train_loss: 0.4896\n", + "1 epoch 94 average loss: 0.4896\n", + "current epoch: 94 current mean dice: 0.5624\n", + "best mean dice: 0.6151 at epoch: 88\n", + "----------\n", + "1: epoch 95/500\n", + "1/0, train_loss: 0.4979\n", + "1 epoch 95 average loss: 0.4979\n", + "----------\n", + "1: epoch 96/500\n", + "1/0, train_loss: 0.4834\n", + "1 epoch 96 average loss: 0.4834\n", + "current epoch: 96 current mean dice: 0.6061\n", + "best mean dice: 0.6151 at epoch: 88\n", + "----------\n", + "1: epoch 97/500\n", + "1/0, train_loss: 0.4649\n", + "1 epoch 97 average loss: 0.4649\n", + "----------\n", + "1: epoch 98/500\n", + "1/0, train_loss: 0.4594\n", + "1 epoch 98 average loss: 0.4594\n", + "current epoch: 98 current mean dice: 0.6010\n", + "best mean dice: 0.6151 at epoch: 88\n", + "----------\n", + "1: epoch 99/500\n", + "1/0, train_loss: 0.4578\n", + "1 epoch 99 average loss: 0.4578\n", + "----------\n", + "1: epoch 100/500\n", + "1/0, train_loss: 0.4566\n", + "1 epoch 100 average loss: 0.4566\n", + "saved new best metric model\n", + "current epoch: 100 current mean dice: 0.6194\n", + "best mean dice: 0.6194 at epoch: 100\n", + "----------\n", + "1: epoch 101/500\n", + "1/0, train_loss: 0.4540\n", + "1 epoch 101 average loss: 0.4540\n", + "----------\n", + "1: epoch 102/500\n", + "1/0, train_loss: 0.4465\n", + "1 epoch 102 average loss: 0.4465\n", + "saved new best metric model\n", + "current epoch: 102 current mean dice: 0.6213\n", + "best mean dice: 0.6213 at epoch: 102\n", + "----------\n", + "1: epoch 103/500\n", + "1/0, train_loss: 0.4509\n", + "1 epoch 103 average loss: 0.4509\n", + "----------\n", + "1: epoch 104/500\n", + "1/0, train_loss: 0.4523\n", + "1 epoch 104 average loss: 0.4523\n", + "current epoch: 104 current mean dice: 0.5910\n", + "best mean dice: 0.6213 at epoch: 102\n", + "----------\n", + "1: epoch 105/500\n", + "1/0, train_loss: 0.4641\n", + "1 epoch 105 average loss: 0.4641\n", + "----------\n", + "1: epoch 106/500\n", + "1/0, train_loss: 0.4502\n", + "1 epoch 106 average loss: 0.4502\n", + "current epoch: 106 current mean dice: 0.5908\n", + "best mean dice: 0.6213 at epoch: 102\n", + "----------\n", + "1: epoch 107/500\n", + "1/0, train_loss: 0.4630\n", + "1 epoch 107 average loss: 0.4630\n", + "----------\n", + "1: epoch 108/500\n", + "1/0, train_loss: 0.4691\n", + "1 epoch 108 average loss: 0.4691\n", + "current epoch: 108 current mean dice: 0.5802\n", + "best mean dice: 0.6213 at epoch: 102\n", + "----------\n", + "1: epoch 109/500\n", + "1/0, train_loss: 0.4688\n", + "1 epoch 109 average loss: 0.4688\n", + "----------\n", + "1: epoch 110/500\n", + "1/0, train_loss: 0.4772\n", + "1 epoch 110 average loss: 0.4772\n", + "saved new best metric model\n", + "current epoch: 110 current mean dice: 0.6245\n", + "best mean dice: 0.6245 at epoch: 110\n", + "----------\n", + "1: epoch 111/500\n", + "1/0, train_loss: 0.4422\n", + "1 epoch 111 average loss: 0.4422\n", + "----------\n", + "1: epoch 112/500\n", + "1/0, train_loss: 0.4660\n", + "1 epoch 112 average loss: 0.4660\n", + "current epoch: 112 current mean dice: 0.5887\n", + "best mean dice: 0.6245 at epoch: 110\n", + "----------\n", + "1: epoch 113/500\n", + "1/0, train_loss: 0.4538\n", + "1 epoch 113 average loss: 0.4538\n", + "----------\n", + "1: epoch 114/500\n", + "1/0, train_loss: 0.4354\n", + "1 epoch 114 average loss: 0.4354\n", + "current epoch: 114 current mean dice: 0.5803\n", + "best mean dice: 0.6245 at epoch: 110\n", + "----------\n", + "1: epoch 115/500\n", + "1/0, train_loss: 0.4543\n", + "1 epoch 115 average loss: 0.4543\n", + "----------\n", + "1: epoch 116/500\n", + "1/0, train_loss: 0.4421\n", + "1 epoch 116 average loss: 0.4421\n", + "current epoch: 116 current mean dice: 0.5448\n", + "best mean dice: 0.6245 at epoch: 110\n", + "----------\n", + "1: epoch 117/500\n", + "1/0, train_loss: 0.4587\n", + "1 epoch 117 average loss: 0.4587\n", + "----------\n", + "1: epoch 118/500\n", + "1/0, train_loss: 0.4323\n", + "1 epoch 118 average loss: 0.4323\n", + "current epoch: 118 current mean dice: 0.5819\n", + "best mean dice: 0.6245 at epoch: 110\n", + "----------\n", + "1: epoch 119/500\n", + "1/0, train_loss: 0.4792\n", + "1 epoch 119 average loss: 0.4792\n", + "----------\n", + "1: epoch 120/500\n", + "1/0, train_loss: 0.4278\n", + "1 epoch 120 average loss: 0.4278\n", + "saved new best metric model\n", + "current epoch: 120 current mean dice: 0.6387\n", + "best mean dice: 0.6387 at epoch: 120\n", + "----------\n", + "1: epoch 121/500\n", + "1/0, train_loss: 0.4200\n", + "1 epoch 121 average loss: 0.4200\n", + "----------\n", + "1: epoch 122/500\n", + "1/0, train_loss: 0.4371\n", + "1 epoch 122 average loss: 0.4371\n", + "current epoch: 122 current mean dice: 0.6188\n", + "best mean dice: 0.6387 at epoch: 120\n", + "----------\n", + "1: epoch 123/500\n", + "1/0, train_loss: 0.4314\n", + "1 epoch 123 average loss: 0.4314\n", + "----------\n", + "1: epoch 124/500\n", + "1/0, train_loss: 0.4225\n", + "1 epoch 124 average loss: 0.4225\n", + "current epoch: 124 current mean dice: 0.5984\n", + "best mean dice: 0.6387 at epoch: 120\n", + "----------\n", + "1: epoch 125/500\n", + "1/0, train_loss: 0.4240\n", + "1 epoch 125 average loss: 0.4240\n", + "----------\n", + "1: epoch 126/500\n", + "1/0, train_loss: 0.4279\n", + "1 epoch 126 average loss: 0.4279\n", + "current epoch: 126 current mean dice: 0.5754\n", + "best mean dice: 0.6387 at epoch: 120\n", + "----------\n", + "1: epoch 127/500\n", + "1/0, train_loss: 0.4556\n", + "1 epoch 127 average loss: 0.4556\n", + "----------\n", + "1: epoch 128/500\n", + "1/0, train_loss: 0.4163\n", + "1 epoch 128 average loss: 0.4163\n", + "current epoch: 128 current mean dice: 0.6343\n", + "best mean dice: 0.6387 at epoch: 120\n", + "----------\n", + "1: epoch 129/500\n", + "1/0, train_loss: 0.4186\n", + "1 epoch 129 average loss: 0.4186\n", + "----------\n", + "1: epoch 130/500\n", + "1/0, train_loss: 0.4246\n", + "1 epoch 130 average loss: 0.4246\n", + "current epoch: 130 current mean dice: 0.6311\n", + "best mean dice: 0.6387 at epoch: 120\n", + "----------\n", + "1: epoch 131/500\n", + "1/0, train_loss: 0.4231\n", + "1 epoch 131 average loss: 0.4231\n", + "----------\n", + "1: epoch 132/500\n", + "1/0, train_loss: 0.4226\n", + "1 epoch 132 average loss: 0.4226\n", + "saved new best metric model\n", + "current epoch: 132 current mean dice: 0.6390\n", + "best mean dice: 0.6390 at epoch: 132\n", + "----------\n", + "1: epoch 133/500\n", + "1/0, train_loss: 0.4229\n", + "1 epoch 133 average loss: 0.4229\n", + "----------\n", + "1: epoch 134/500\n", + "1/0, train_loss: 0.4131\n", + "1 epoch 134 average loss: 0.4131\n", + "current epoch: 134 current mean dice: 0.5621\n", + "best mean dice: 0.6390 at epoch: 132\n", + "----------\n", + "1: epoch 135/500\n", + "1/0, train_loss: 0.4178\n", + "1 epoch 135 average loss: 0.4178\n", + "----------\n", + "1: epoch 136/500\n", + "1/0, train_loss: 0.4185\n", + "1 epoch 136 average loss: 0.4185\n", + "current epoch: 136 current mean dice: 0.5463\n", + "best mean dice: 0.6390 at epoch: 132\n", + "----------\n", + "1: epoch 137/500\n", + "1/0, train_loss: 0.4165\n", + "1 epoch 137 average loss: 0.4165\n", + "----------\n", + "1: epoch 138/500\n", + "1/0, train_loss: 0.4106\n", + "1 epoch 138 average loss: 0.4106\n", + "current epoch: 138 current mean dice: 0.5467\n", + "best mean dice: 0.6390 at epoch: 132\n", + "----------\n", + "1: epoch 139/500\n", + "1/0, train_loss: 0.4273\n", + "1 epoch 139 average loss: 0.4273\n", + "----------\n", + "1: epoch 140/500\n", + "1/0, train_loss: 0.4110\n", + "1 epoch 140 average loss: 0.4110\n", + "current epoch: 140 current mean dice: 0.5896\n", + "best mean dice: 0.6390 at epoch: 132\n", + "----------\n", + "1: epoch 141/500\n", + "1/0, train_loss: 0.4134\n", + "1 epoch 141 average loss: 0.4134\n", + "----------\n", + "1: epoch 142/500\n", + "1/0, train_loss: 0.4096\n", + "1 epoch 142 average loss: 0.4096\n", + "current epoch: 142 current mean dice: 0.6002\n", + "best mean dice: 0.6390 at epoch: 132\n", + "----------\n", + "1: epoch 143/500\n", + "1/0, train_loss: 0.4101\n", + "1 epoch 143 average loss: 0.4101\n", + "----------\n", + "1: epoch 144/500\n", + "1/0, train_loss: 0.4074\n", + "1 epoch 144 average loss: 0.4074\n", + "current epoch: 144 current mean dice: 0.5642\n", + "best mean dice: 0.6390 at epoch: 132\n", + "----------\n", + "1: epoch 145/500\n", + "1/0, train_loss: 0.4283\n", + "1 epoch 145 average loss: 0.4283\n", + "----------\n", + "1: epoch 146/500\n", + "1/0, train_loss: 0.4116\n", + "1 epoch 146 average loss: 0.4116\n", + "current epoch: 146 current mean dice: 0.6182\n", + "best mean dice: 0.6390 at epoch: 132\n", + "----------\n", + "1: epoch 147/500\n", + "1/0, train_loss: 0.4119\n", + "1 epoch 147 average loss: 0.4119\n", + "----------\n", + "1: epoch 148/500\n", + "1/0, train_loss: 0.4345\n", + "1 epoch 148 average loss: 0.4345\n", + "current epoch: 148 current mean dice: 0.6024\n", + "best mean dice: 0.6390 at epoch: 132\n", + "----------\n", + "1: epoch 149/500\n", + "1/0, train_loss: 0.4180\n", + "1 epoch 149 average loss: 0.4180\n", + "----------\n", + "1: epoch 150/500\n", + "1/0, train_loss: 0.4059\n", + "1 epoch 150 average loss: 0.4059\n", + "current epoch: 150 current mean dice: 0.5778\n", + "best mean dice: 0.6390 at epoch: 132\n", + "----------\n", + "1: epoch 151/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.4164\n", + "1 epoch 151 average loss: 0.4164\n", + "----------\n", + "1: epoch 152/500\n", + "1/0, train_loss: 0.4325\n", + "1 epoch 152 average loss: 0.4325\n", + "current epoch: 152 current mean dice: 0.6240\n", + "best mean dice: 0.6390 at epoch: 132\n", + "----------\n", + "1: epoch 153/500\n", + "1/0, train_loss: 0.4144\n", + "1 epoch 153 average loss: 0.4144\n", + "----------\n", + "1: epoch 154/500\n", + "1/0, train_loss: 0.4380\n", + "1 epoch 154 average loss: 0.4380\n", + "current epoch: 154 current mean dice: 0.4815\n", + "best mean dice: 0.6390 at epoch: 132\n", + "----------\n", + "1: epoch 155/500\n", + "1/0, train_loss: 0.4843\n", + "1 epoch 155 average loss: 0.4843\n", + "----------\n", + "1: epoch 156/500\n", + "1/0, train_loss: 0.5080\n", + "1 epoch 156 average loss: 0.5080\n", + "current epoch: 156 current mean dice: 0.5219\n", + "best mean dice: 0.6390 at epoch: 132\n", + "----------\n", + "1: epoch 157/500\n", + "1/0, train_loss: 0.4823\n", + "1 epoch 157 average loss: 0.4823\n", + "----------\n", + "1: epoch 158/500\n", + "1/0, train_loss: 0.4465\n", + "1 epoch 158 average loss: 0.4465\n", + "saved new best metric model\n", + "current epoch: 158 current mean dice: 0.6584\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 159/500\n", + "1/0, train_loss: 0.4376\n", + "1 epoch 159 average loss: 0.4376\n", + "----------\n", + "1: epoch 160/500\n", + "1/0, train_loss: 0.4604\n", + "1 epoch 160 average loss: 0.4604\n", + "current epoch: 160 current mean dice: 0.6536\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 161/500\n", + "1/0, train_loss: 0.4297\n", + "1 epoch 161 average loss: 0.4297\n", + "----------\n", + "1: epoch 162/500\n", + "1/0, train_loss: 0.4366\n", + "1 epoch 162 average loss: 0.4366\n", + "current epoch: 162 current mean dice: 0.6312\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 163/500\n", + "1/0, train_loss: 0.4238\n", + "1 epoch 163 average loss: 0.4238\n", + "----------\n", + "1: epoch 164/500\n", + "1/0, train_loss: 0.4451\n", + "1 epoch 164 average loss: 0.4451\n", + "current epoch: 164 current mean dice: 0.6153\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 165/500\n", + "1/0, train_loss: 0.4325\n", + "1 epoch 165 average loss: 0.4325\n", + "----------\n", + "1: epoch 166/500\n", + "1/0, train_loss: 0.4208\n", + "1 epoch 166 average loss: 0.4208\n", + "current epoch: 166 current mean dice: 0.6483\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 167/500\n", + "1/0, train_loss: 0.4195\n", + "1 epoch 167 average loss: 0.4195\n", + "----------\n", + "1: epoch 168/500\n", + "1/0, train_loss: 0.4270\n", + "1 epoch 168 average loss: 0.4270\n", + "current epoch: 168 current mean dice: 0.6380\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 169/500\n", + "1/0, train_loss: 0.4376\n", + "1 epoch 169 average loss: 0.4376\n", + "----------\n", + "1: epoch 170/500\n", + "1/0, train_loss: 0.4148\n", + "1 epoch 170 average loss: 0.4148\n", + "current epoch: 170 current mean dice: 0.5554\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 171/500\n", + "1/0, train_loss: 0.4615\n", + "1 epoch 171 average loss: 0.4615\n", + "----------\n", + "1: epoch 172/500\n", + "1/0, train_loss: 0.4167\n", + "1 epoch 172 average loss: 0.4167\n", + "current epoch: 172 current mean dice: 0.5597\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 173/500\n", + "1/0, train_loss: 0.4085\n", + "1 epoch 173 average loss: 0.4085\n", + "----------\n", + "1: epoch 174/500\n", + "1/0, train_loss: 0.4798\n", + "1 epoch 174 average loss: 0.4798\n", + "current epoch: 174 current mean dice: 0.5344\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 175/500\n", + "1/0, train_loss: 0.5450\n", + "1 epoch 175 average loss: 0.5450\n", + "----------\n", + "1: epoch 176/500\n", + "1/0, train_loss: 0.4774\n", + "1 epoch 176 average loss: 0.4774\n", + "current epoch: 176 current mean dice: 0.5773\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 177/500\n", + "1/0, train_loss: 0.4854\n", + "1 epoch 177 average loss: 0.4854\n", + "----------\n", + "1: epoch 178/500\n", + "1/0, train_loss: 0.4995\n", + "1 epoch 178 average loss: 0.4995\n", + "current epoch: 178 current mean dice: 0.6149\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 179/500\n", + "1/0, train_loss: 0.5020\n", + "1 epoch 179 average loss: 0.5020\n", + "----------\n", + "1: epoch 180/500\n", + "1/0, train_loss: 0.4833\n", + "1 epoch 180 average loss: 0.4833\n", + "current epoch: 180 current mean dice: 0.4641\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 181/500\n", + "1/0, train_loss: 0.5335\n", + "1 epoch 181 average loss: 0.5335\n", + "----------\n", + "1: epoch 182/500\n", + "1/0, train_loss: 0.5124\n", + "1 epoch 182 average loss: 0.5124\n", + "current epoch: 182 current mean dice: 0.5360\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 183/500\n", + "1/0, train_loss: 0.4993\n", + "1 epoch 183 average loss: 0.4993\n", + "----------\n", + "1: epoch 184/500\n", + "1/0, train_loss: 0.5011\n", + "1 epoch 184 average loss: 0.5011\n", + "current epoch: 184 current mean dice: 0.5177\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 185/500\n", + "1/0, train_loss: 0.5328\n", + "1 epoch 185 average loss: 0.5328\n", + "----------\n", + "1: epoch 186/500\n", + "1/0, train_loss: 0.5111\n", + "1 epoch 186 average loss: 0.5111\n", + "current epoch: 186 current mean dice: 0.5741\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 187/500\n", + "1/0, train_loss: 0.4940\n", + "1 epoch 187 average loss: 0.4940\n", + "----------\n", + "1: epoch 188/500\n", + "1/0, train_loss: 0.4891\n", + "1 epoch 188 average loss: 0.4891\n", + "current epoch: 188 current mean dice: 0.5691\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 189/500\n", + "1/0, train_loss: 0.4857\n", + "1 epoch 189 average loss: 0.4857\n", + "----------\n", + "1: epoch 190/500\n", + "1/0, train_loss: 0.4747\n", + "1 epoch 190 average loss: 0.4747\n", + "current epoch: 190 current mean dice: 0.5924\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 191/500\n", + "1/0, train_loss: 0.4786\n", + "1 epoch 191 average loss: 0.4786\n", + "----------\n", + "1: epoch 192/500\n", + "1/0, train_loss: 0.4670\n", + "1 epoch 192 average loss: 0.4670\n", + "current epoch: 192 current mean dice: 0.6082\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 193/500\n", + "1/0, train_loss: 0.4638\n", + "1 epoch 193 average loss: 0.4638\n", + "----------\n", + "1: epoch 194/500\n", + "1/0, train_loss: 0.4625\n", + "1 epoch 194 average loss: 0.4625\n", + "current epoch: 194 current mean dice: 0.6088\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 195/500\n", + "1/0, train_loss: 0.4530\n", + "1 epoch 195 average loss: 0.4530\n", + "----------\n", + "1: epoch 196/500\n", + "1/0, train_loss: 0.4431\n", + "1 epoch 196 average loss: 0.4431\n", + "current epoch: 196 current mean dice: 0.6273\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 197/500\n", + "1/0, train_loss: 0.4416\n", + "1 epoch 197 average loss: 0.4416\n", + "----------\n", + "1: epoch 198/500\n", + "1/0, train_loss: 0.4553\n", + "1 epoch 198 average loss: 0.4553\n", + "current epoch: 198 current mean dice: 0.6187\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 199/500\n", + "1/0, train_loss: 0.4709\n", + "1 epoch 199 average loss: 0.4709\n", + "----------\n", + "1: epoch 200/500\n", + "1/0, train_loss: 0.4479\n", + "1 epoch 200 average loss: 0.4479\n", + "current epoch: 200 current mean dice: 0.4350\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 201/500\n", + "1/0, train_loss: 0.4568\n", + "1 epoch 201 average loss: 0.4568\n", + "----------\n", + "1: epoch 202/500\n", + "1/0, train_loss: 0.4628\n", + "1 epoch 202 average loss: 0.4628\n", + "current epoch: 202 current mean dice: 0.6309\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 203/500\n", + "1/0, train_loss: 0.4831\n", + "1 epoch 203 average loss: 0.4831\n", + "----------\n", + "1: epoch 204/500\n", + "1/0, train_loss: 0.4477\n", + "1 epoch 204 average loss: 0.4477\n", + "current epoch: 204 current mean dice: 0.4793\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 205/500\n", + "1/0, train_loss: 0.4647\n", + "1 epoch 205 average loss: 0.4647\n", + "----------\n", + "1: epoch 206/500\n", + "1/0, train_loss: 0.4432\n", + "1 epoch 206 average loss: 0.4432\n", + "current epoch: 206 current mean dice: 0.5824\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 207/500\n", + "1/0, train_loss: 0.4396\n", + "1 epoch 207 average loss: 0.4396\n", + "----------\n", + "1: epoch 208/500\n", + "1/0, train_loss: 0.4374\n", + "1 epoch 208 average loss: 0.4374\n", + "current epoch: 208 current mean dice: 0.6156\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 209/500\n", + "1/0, train_loss: 0.4306\n", + "1 epoch 209 average loss: 0.4306\n", + "----------\n", + "1: epoch 210/500\n", + "1/0, train_loss: 0.4202\n", + "1 epoch 210 average loss: 0.4202\n", + "current epoch: 210 current mean dice: 0.6296\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 211/500\n", + "1/0, train_loss: 0.4149\n", + "1 epoch 211 average loss: 0.4149\n", + "----------\n", + "1: epoch 212/500\n", + "1/0, train_loss: 0.4149\n", + "1 epoch 212 average loss: 0.4149\n", + "current epoch: 212 current mean dice: 0.6123\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 213/500\n", + "1/0, train_loss: 0.4360\n", + "1 epoch 213 average loss: 0.4360\n", + "----------\n", + "1: epoch 214/500\n", + "1/0, train_loss: 0.4112\n", + "1 epoch 214 average loss: 0.4112\n", + "current epoch: 214 current mean dice: 0.6409\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 215/500\n", + "1/0, train_loss: 0.4142\n", + "1 epoch 215 average loss: 0.4142\n", + "----------\n", + "1: epoch 216/500\n", + "1/0, train_loss: 0.4092\n", + "1 epoch 216 average loss: 0.4092\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "current epoch: 216 current mean dice: 0.6570\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 217/500\n", + "1/0, train_loss: 0.4115\n", + "1 epoch 217 average loss: 0.4115\n", + "----------\n", + "1: epoch 218/500\n", + "1/0, train_loss: 0.4118\n", + "1 epoch 218 average loss: 0.4118\n", + "current epoch: 218 current mean dice: 0.6361\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 219/500\n", + "1/0, train_loss: 0.4093\n", + "1 epoch 219 average loss: 0.4093\n", + "----------\n", + "1: epoch 220/500\n", + "1/0, train_loss: 0.4092\n", + "1 epoch 220 average loss: 0.4092\n", + "current epoch: 220 current mean dice: 0.6441\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 221/500\n", + "1/0, train_loss: 0.4198\n", + "1 epoch 221 average loss: 0.4198\n", + "----------\n", + "1: epoch 222/500\n", + "1/0, train_loss: 0.4117\n", + "1 epoch 222 average loss: 0.4117\n", + "current epoch: 222 current mean dice: 0.6369\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 223/500\n", + "1/0, train_loss: 0.4016\n", + "1 epoch 223 average loss: 0.4016\n", + "----------\n", + "1: epoch 224/500\n", + "1/0, train_loss: 0.3997\n", + "1 epoch 224 average loss: 0.3997\n", + "current epoch: 224 current mean dice: 0.6171\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 225/500\n", + "1/0, train_loss: 0.3980\n", + "1 epoch 225 average loss: 0.3980\n", + "----------\n", + "1: epoch 226/500\n", + "1/0, train_loss: 0.4026\n", + "1 epoch 226 average loss: 0.4026\n", + "current epoch: 226 current mean dice: 0.5931\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 227/500\n", + "1/0, train_loss: 0.3990\n", + "1 epoch 227 average loss: 0.3990\n", + "----------\n", + "1: epoch 228/500\n", + "1/0, train_loss: 0.3968\n", + "1 epoch 228 average loss: 0.3968\n", + "current epoch: 228 current mean dice: 0.5802\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 229/500\n", + "1/0, train_loss: 0.3956\n", + "1 epoch 229 average loss: 0.3956\n", + "----------\n", + "1: epoch 230/500\n", + "1/0, train_loss: 0.4159\n", + "1 epoch 230 average loss: 0.4159\n", + "current epoch: 230 current mean dice: 0.6456\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 231/500\n", + "1/0, train_loss: 0.3978\n", + "1 epoch 231 average loss: 0.3978\n", + "----------\n", + "1: epoch 232/500\n", + "1/0, train_loss: 0.3963\n", + "1 epoch 232 average loss: 0.3963\n", + "current epoch: 232 current mean dice: 0.4755\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 233/500\n", + "1/0, train_loss: 0.4024\n", + "1 epoch 233 average loss: 0.4024\n", + "----------\n", + "1: epoch 234/500\n", + "1/0, train_loss: 0.4167\n", + "1 epoch 234 average loss: 0.4167\n", + "current epoch: 234 current mean dice: 0.5688\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 235/500\n", + "1/0, train_loss: 0.4386\n", + "1 epoch 235 average loss: 0.4386\n", + "----------\n", + "1: epoch 236/500\n", + "1/0, train_loss: 0.4780\n", + "1 epoch 236 average loss: 0.4780\n", + "current epoch: 236 current mean dice: 0.5473\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 237/500\n", + "1/0, train_loss: 0.4413\n", + "1 epoch 237 average loss: 0.4413\n", + "----------\n", + "1: epoch 238/500\n", + "1/0, train_loss: 0.4078\n", + "1 epoch 238 average loss: 0.4078\n", + "current epoch: 238 current mean dice: 0.5981\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 239/500\n", + "1/0, train_loss: 0.4027\n", + "1 epoch 239 average loss: 0.4027\n", + "----------\n", + "1: epoch 240/500\n", + "1/0, train_loss: 0.4145\n", + "1 epoch 240 average loss: 0.4145\n", + "current epoch: 240 current mean dice: 0.6134\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 241/500\n", + "1/0, train_loss: 0.4279\n", + "1 epoch 241 average loss: 0.4279\n", + "----------\n", + "1: epoch 242/500\n", + "1/0, train_loss: 0.4032\n", + "1 epoch 242 average loss: 0.4032\n", + "current epoch: 242 current mean dice: 0.6065\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 243/500\n", + "1/0, train_loss: 0.4152\n", + "1 epoch 243 average loss: 0.4152\n", + "----------\n", + "1: epoch 244/500\n", + "1/0, train_loss: 0.4340\n", + "1 epoch 244 average loss: 0.4340\n", + "current epoch: 244 current mean dice: 0.5843\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 245/500\n", + "1/0, train_loss: 0.4674\n", + "1 epoch 245 average loss: 0.4674\n", + "----------\n", + "1: epoch 246/500\n", + "1/0, train_loss: 0.4089\n", + "1 epoch 246 average loss: 0.4089\n", + "current epoch: 246 current mean dice: 0.5612\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 247/500\n", + "1/0, train_loss: 0.4106\n", + "1 epoch 247 average loss: 0.4106\n", + "----------\n", + "1: epoch 248/500\n", + "1/0, train_loss: 0.4076\n", + "1 epoch 248 average loss: 0.4076\n", + "current epoch: 248 current mean dice: 0.5461\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 249/500\n", + "1/0, train_loss: 0.4229\n", + "1 epoch 249 average loss: 0.4229\n", + "----------\n", + "1: epoch 250/500\n", + "1/0, train_loss: 0.4120\n", + "1 epoch 250 average loss: 0.4120\n", + "current epoch: 250 current mean dice: 0.6261\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 251/500\n", + "1/0, train_loss: 0.3987\n", + "1 epoch 251 average loss: 0.3987\n", + "----------\n", + "1: epoch 252/500\n", + "1/0, train_loss: 0.4393\n", + "1 epoch 252 average loss: 0.4393\n", + "current epoch: 252 current mean dice: 0.5762\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 253/500\n", + "1/0, train_loss: 0.4038\n", + "1 epoch 253 average loss: 0.4038\n", + "----------\n", + "1: epoch 254/500\n", + "1/0, train_loss: 0.4017\n", + "1 epoch 254 average loss: 0.4017\n", + "current epoch: 254 current mean dice: 0.5716\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 255/500\n", + "1/0, train_loss: 0.3941\n", + "1 epoch 255 average loss: 0.3941\n", + "----------\n", + "1: epoch 256/500\n", + "1/0, train_loss: 0.4368\n", + "1 epoch 256 average loss: 0.4368\n", + "current epoch: 256 current mean dice: 0.5723\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 257/500\n", + "1/0, train_loss: 0.4399\n", + "1 epoch 257 average loss: 0.4399\n", + "----------\n", + "1: epoch 258/500\n", + "1/0, train_loss: 0.3983\n", + "1 epoch 258 average loss: 0.3983\n", + "current epoch: 258 current mean dice: 0.5970\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 259/500\n", + "1/0, train_loss: 0.4121\n", + "1 epoch 259 average loss: 0.4121\n", + "----------\n", + "1: epoch 260/500\n", + "1/0, train_loss: 0.4036\n", + "1 epoch 260 average loss: 0.4036\n", + "current epoch: 260 current mean dice: 0.5447\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 261/500\n", + "1/0, train_loss: 0.4165\n", + "1 epoch 261 average loss: 0.4165\n", + "----------\n", + "1: epoch 262/500\n", + "1/0, train_loss: 0.5114\n", + "1 epoch 262 average loss: 0.5114\n", + "current epoch: 262 current mean dice: 0.5339\n", + "best mean dice: 0.6584 at epoch: 158\n", + "----------\n", + "1: epoch 263/500\n", + "1/0, train_loss: 0.4249\n", + "1 epoch 263 average loss: 0.4249\n", + "----------\n", + "1: epoch 264/500\n", + "1/0, train_loss: 0.4252\n", + "1 epoch 264 average loss: 0.4252\n", + "saved new best metric model\n", + "current epoch: 264 current mean dice: 0.6669\n", + "best mean dice: 0.6669 at epoch: 264\n", + "----------\n", + "1: epoch 265/500\n", + "1/0, train_loss: 0.4067\n", + "1 epoch 265 average loss: 0.4067\n", + "----------\n", + "1: epoch 266/500\n", + "1/0, train_loss: 0.4367\n", + "1 epoch 266 average loss: 0.4367\n", + "saved new best metric model\n", + "current epoch: 266 current mean dice: 0.6720\n", + "best mean dice: 0.6720 at epoch: 266\n", + "----------\n", + "1: epoch 267/500\n", + "1/0, train_loss: 0.3987\n", + "1 epoch 267 average loss: 0.3987\n", + "----------\n", + "1: epoch 268/500\n", + "1/0, train_loss: 0.3994\n", + "1 epoch 268 average loss: 0.3994\n", + "current epoch: 268 current mean dice: 0.6442\n", + "best mean dice: 0.6720 at epoch: 266\n", + "----------\n", + "1: epoch 269/500\n", + "1/0, train_loss: 0.4062\n", + "1 epoch 269 average loss: 0.4062\n", + "----------\n", + "1: epoch 270/500\n", + "1/0, train_loss: 0.4039\n", + "1 epoch 270 average loss: 0.4039\n", + "current epoch: 270 current mean dice: 0.6488\n", + "best mean dice: 0.6720 at epoch: 266\n", + "----------\n", + "1: epoch 271/500\n", + "1/0, train_loss: 0.3985\n", + "1 epoch 271 average loss: 0.3985\n", + "----------\n", + "1: epoch 272/500\n", + "1/0, train_loss: 0.3899\n", + "1 epoch 272 average loss: 0.3899\n", + "current epoch: 272 current mean dice: 0.6391\n", + "best mean dice: 0.6720 at epoch: 266\n", + "----------\n", + "1: epoch 273/500\n", + "1/0, train_loss: 0.3913\n", + "1 epoch 273 average loss: 0.3913\n", + "----------\n", + "1: epoch 274/500\n", + "1/0, train_loss: 0.4118\n", + "1 epoch 274 average loss: 0.4118\n", + "current epoch: 274 current mean dice: 0.6494\n", + "best mean dice: 0.6720 at epoch: 266\n", + "----------\n", + "1: epoch 275/500\n", + "1/0, train_loss: 0.3907\n", + "1 epoch 275 average loss: 0.3907\n", + "----------\n", + "1: epoch 276/500\n", + "1/0, train_loss: 0.4023\n", + "1 epoch 276 average loss: 0.4023\n", + "current epoch: 276 current mean dice: 0.5871\n", + "best mean dice: 0.6720 at epoch: 266\n", + "----------\n", + "1: epoch 277/500\n", + "1/0, train_loss: 0.3987\n", + "1 epoch 277 average loss: 0.3987\n", + "----------\n", + "1: epoch 278/500\n", + "1/0, train_loss: 0.3899\n", + "1 epoch 278 average loss: 0.3899\n", + "current epoch: 278 current mean dice: 0.6646\n", + "best mean dice: 0.6720 at epoch: 266\n", + "----------\n", + "1: epoch 279/500\n", + "1/0, train_loss: 0.3974\n", + "1 epoch 279 average loss: 0.3974\n", + "----------\n", + "1: epoch 280/500\n", + "1/0, train_loss: 0.3887\n", + "1 epoch 280 average loss: 0.3887\n", + "current epoch: 280 current mean dice: 0.5832\n", + "best mean dice: 0.6720 at epoch: 266\n", + "----------\n", + "1: epoch 281/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.4077\n", + "1 epoch 281 average loss: 0.4077\n", + "----------\n", + "1: epoch 282/500\n", + "1/0, train_loss: 0.3886\n", + "1 epoch 282 average loss: 0.3886\n", + "current epoch: 282 current mean dice: 0.6655\n", + "best mean dice: 0.6720 at epoch: 266\n", + "----------\n", + "1: epoch 283/500\n", + "1/0, train_loss: 0.3930\n", + "1 epoch 283 average loss: 0.3930\n", + "----------\n", + "1: epoch 284/500\n", + "1/0, train_loss: 0.3899\n", + "1 epoch 284 average loss: 0.3899\n", + "saved new best metric model\n", + "current epoch: 284 current mean dice: 0.6738\n", + "best mean dice: 0.6738 at epoch: 284\n", + "----------\n", + "1: epoch 285/500\n", + "1/0, train_loss: 0.3883\n", + "1 epoch 285 average loss: 0.3883\n", + "----------\n", + "1: epoch 286/500\n", + "1/0, train_loss: 0.3978\n", + "1 epoch 286 average loss: 0.3978\n", + "current epoch: 286 current mean dice: 0.6286\n", + "best mean dice: 0.6738 at epoch: 284\n", + "----------\n", + "1: epoch 287/500\n", + "1/0, train_loss: 0.3868\n", + "1 epoch 287 average loss: 0.3868\n", + "----------\n", + "1: epoch 288/500\n", + "1/0, train_loss: 0.4051\n", + "1 epoch 288 average loss: 0.4051\n", + "current epoch: 288 current mean dice: 0.5364\n", + "best mean dice: 0.6738 at epoch: 284\n", + "----------\n", + "1: epoch 289/500\n", + "1/0, train_loss: 0.4939\n", + "1 epoch 289 average loss: 0.4939\n", + "----------\n", + "1: epoch 290/500\n", + "1/0, train_loss: 0.4957\n", + "1 epoch 290 average loss: 0.4957\n", + "current epoch: 290 current mean dice: 0.5206\n", + "best mean dice: 0.6738 at epoch: 284\n", + "----------\n", + "1: epoch 291/500\n", + "1/0, train_loss: 0.4905\n", + "1 epoch 291 average loss: 0.4905\n", + "----------\n", + "1: epoch 292/500\n", + "1/0, train_loss: 0.4433\n", + "1 epoch 292 average loss: 0.4433\n", + "current epoch: 292 current mean dice: 0.6157\n", + "best mean dice: 0.6738 at epoch: 284\n", + "----------\n", + "1: epoch 293/500\n", + "1/0, train_loss: 0.4116\n", + "1 epoch 293 average loss: 0.4116\n", + "----------\n", + "1: epoch 294/500\n", + "1/0, train_loss: 0.4147\n", + "1 epoch 294 average loss: 0.4147\n", + "current epoch: 294 current mean dice: 0.5744\n", + "best mean dice: 0.6738 at epoch: 284\n", + "----------\n", + "1: epoch 295/500\n", + "1/0, train_loss: 0.4266\n", + "1 epoch 295 average loss: 0.4266\n", + "----------\n", + "1: epoch 296/500\n", + "1/0, train_loss: 0.4562\n", + "1 epoch 296 average loss: 0.4562\n", + "current epoch: 296 current mean dice: 0.6449\n", + "best mean dice: 0.6738 at epoch: 284\n", + "----------\n", + "1: epoch 297/500\n", + "1/0, train_loss: 0.4121\n", + "1 epoch 297 average loss: 0.4121\n", + "----------\n", + "1: epoch 298/500\n", + "1/0, train_loss: 0.4001\n", + "1 epoch 298 average loss: 0.4001\n", + "current epoch: 298 current mean dice: 0.6457\n", + "best mean dice: 0.6738 at epoch: 284\n", + "----------\n", + "1: epoch 299/500\n", + "1/0, train_loss: 0.4000\n", + "1 epoch 299 average loss: 0.4000\n", + "----------\n", + "1: epoch 300/500\n", + "1/0, train_loss: 0.4345\n", + "1 epoch 300 average loss: 0.4345\n", + "current epoch: 300 current mean dice: 0.6426\n", + "best mean dice: 0.6738 at epoch: 284\n", + "----------\n", + "1: epoch 301/500\n", + "1/0, train_loss: 0.4084\n", + "1 epoch 301 average loss: 0.4084\n", + "----------\n", + "1: epoch 302/500\n", + "1/0, train_loss: 0.4073\n", + "1 epoch 302 average loss: 0.4073\n", + "current epoch: 302 current mean dice: 0.6117\n", + "best mean dice: 0.6738 at epoch: 284\n", + "----------\n", + "1: epoch 303/500\n", + "1/0, train_loss: 0.3947\n", + "1 epoch 303 average loss: 0.3947\n", + "----------\n", + "1: epoch 304/500\n", + "1/0, train_loss: 0.4314\n", + "1 epoch 304 average loss: 0.4314\n", + "current epoch: 304 current mean dice: 0.6143\n", + "best mean dice: 0.6738 at epoch: 284\n", + "----------\n", + "1: epoch 305/500\n", + "1/0, train_loss: 0.3901\n", + "1 epoch 305 average loss: 0.3901\n", + "----------\n", + "1: epoch 306/500\n", + "1/0, train_loss: 0.3905\n", + "1 epoch 306 average loss: 0.3905\n", + "current epoch: 306 current mean dice: 0.6417\n", + "best mean dice: 0.6738 at epoch: 284\n", + "----------\n", + "1: epoch 307/500\n", + "1/0, train_loss: 0.3859\n", + "1 epoch 307 average loss: 0.3859\n", + "----------\n", + "1: epoch 308/500\n", + "1/0, train_loss: 0.3874\n", + "1 epoch 308 average loss: 0.3874\n", + "current epoch: 308 current mean dice: 0.6229\n", + "best mean dice: 0.6738 at epoch: 284\n", + "----------\n", + "1: epoch 309/500\n", + "1/0, train_loss: 0.3961\n", + "1 epoch 309 average loss: 0.3961\n", + "----------\n", + "1: epoch 310/500\n", + "1/0, train_loss: 0.3916\n", + "1 epoch 310 average loss: 0.3916\n", + "current epoch: 310 current mean dice: 0.6038\n", + "best mean dice: 0.6738 at epoch: 284\n", + "----------\n", + "1: epoch 311/500\n", + "1/0, train_loss: 0.3824\n", + "1 epoch 311 average loss: 0.3824\n", + "----------\n", + "1: epoch 312/500\n", + "1/0, train_loss: 0.3856\n", + "1 epoch 312 average loss: 0.3856\n", + "current epoch: 312 current mean dice: 0.6069\n", + "best mean dice: 0.6738 at epoch: 284\n", + "----------\n", + "1: epoch 313/500\n", + "1/0, train_loss: 0.3949\n", + "1 epoch 313 average loss: 0.3949\n", + "----------\n", + "1: epoch 314/500\n", + "1/0, train_loss: 0.3851\n", + "1 epoch 314 average loss: 0.3851\n", + "current epoch: 314 current mean dice: 0.5817\n", + "best mean dice: 0.6738 at epoch: 284\n", + "----------\n", + "1: epoch 315/500\n", + "1/0, train_loss: 0.3887\n", + "1 epoch 315 average loss: 0.3887\n", + "----------\n", + "1: epoch 316/500\n", + "1/0, train_loss: 0.3864\n", + "1 epoch 316 average loss: 0.3864\n", + "current epoch: 316 current mean dice: 0.6047\n", + "best mean dice: 0.6738 at epoch: 284\n", + "----------\n", + "1: epoch 317/500\n", + "1/0, train_loss: 0.3859\n", + "1 epoch 317 average loss: 0.3859\n", + "----------\n", + "1: epoch 318/500\n", + "1/0, train_loss: 0.3896\n", + "1 epoch 318 average loss: 0.3896\n", + "current epoch: 318 current mean dice: 0.5941\n", + "best mean dice: 0.6738 at epoch: 284\n", + "----------\n", + "1: epoch 319/500\n", + "1/0, train_loss: 0.3830\n", + "1 epoch 319 average loss: 0.3830\n", + "----------\n", + "1: epoch 320/500\n", + "1/0, train_loss: 0.3913\n", + "1 epoch 320 average loss: 0.3913\n", + "current epoch: 320 current mean dice: 0.5847\n", + "best mean dice: 0.6738 at epoch: 284\n", + "----------\n", + "1: epoch 321/500\n", + "1/0, train_loss: 0.4142\n", + "1 epoch 321 average loss: 0.4142\n", + "----------\n", + "1: epoch 322/500\n", + "1/0, train_loss: 0.3897\n", + "1 epoch 322 average loss: 0.3897\n", + "current epoch: 322 current mean dice: 0.5875\n", + "best mean dice: 0.6738 at epoch: 284\n", + "----------\n", + "1: epoch 323/500\n", + "1/0, train_loss: 0.3887\n", + "1 epoch 323 average loss: 0.3887\n", + "----------\n", + "1: epoch 324/500\n", + "1/0, train_loss: 0.4315\n", + "1 epoch 324 average loss: 0.4315\n", + "current epoch: 324 current mean dice: 0.6384\n", + "best mean dice: 0.6738 at epoch: 284\n", + "----------\n", + "1: epoch 325/500\n", + "1/0, train_loss: 0.3881\n", + "1 epoch 325 average loss: 0.3881\n", + "----------\n", + "1: epoch 326/500\n", + "1/0, train_loss: 0.3850\n", + "1 epoch 326 average loss: 0.3850\n", + "saved new best metric model\n", + "current epoch: 326 current mean dice: 0.6825\n", + "best mean dice: 0.6825 at epoch: 326\n", + "----------\n", + "1: epoch 327/500\n", + "1/0, train_loss: 0.3976\n", + "1 epoch 327 average loss: 0.3976\n", + "----------\n", + "1: epoch 328/500\n", + "1/0, train_loss: 0.3870\n", + "1 epoch 328 average loss: 0.3870\n", + "saved new best metric model\n", + "current epoch: 328 current mean dice: 0.7235\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 329/500\n", + "1/0, train_loss: 0.4197\n", + "1 epoch 329 average loss: 0.4197\n", + "----------\n", + "1: epoch 330/500\n", + "1/0, train_loss: 0.4144\n", + "1 epoch 330 average loss: 0.4144\n", + "current epoch: 330 current mean dice: 0.6395\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 331/500\n", + "1/0, train_loss: 0.4614\n", + "1 epoch 331 average loss: 0.4614\n", + "----------\n", + "1: epoch 332/500\n", + "1/0, train_loss: 0.4011\n", + "1 epoch 332 average loss: 0.4011\n", + "current epoch: 332 current mean dice: 0.6479\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 333/500\n", + "1/0, train_loss: 0.3973\n", + "1 epoch 333 average loss: 0.3973\n", + "----------\n", + "1: epoch 334/500\n", + "1/0, train_loss: 0.3850\n", + "1 epoch 334 average loss: 0.3850\n", + "current epoch: 334 current mean dice: 0.7121\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 335/500\n", + "1/0, train_loss: 0.4658\n", + "1 epoch 335 average loss: 0.4658\n", + "----------\n", + "1: epoch 336/500\n", + "1/0, train_loss: 0.3810\n", + "1 epoch 336 average loss: 0.3810\n", + "current epoch: 336 current mean dice: 0.5552\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 337/500\n", + "1/0, train_loss: 0.3933\n", + "1 epoch 337 average loss: 0.3933\n", + "----------\n", + "1: epoch 338/500\n", + "1/0, train_loss: 0.3964\n", + "1 epoch 338 average loss: 0.3964\n", + "current epoch: 338 current mean dice: 0.5309\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 339/500\n", + "1/0, train_loss: 0.3961\n", + "1 epoch 339 average loss: 0.3961\n", + "----------\n", + "1: epoch 340/500\n", + "1/0, train_loss: 0.3894\n", + "1 epoch 340 average loss: 0.3894\n", + "current epoch: 340 current mean dice: 0.5345\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 341/500\n", + "1/0, train_loss: 0.3861\n", + "1 epoch 341 average loss: 0.3861\n", + "----------\n", + "1: epoch 342/500\n", + "1/0, train_loss: 0.3931\n", + "1 epoch 342 average loss: 0.3931\n", + "current epoch: 342 current mean dice: 0.5623\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 343/500\n", + "1/0, train_loss: 0.3811\n", + "1 epoch 343 average loss: 0.3811\n", + "----------\n", + "1: epoch 344/500\n", + "1/0, train_loss: 0.3846\n", + "1 epoch 344 average loss: 0.3846\n", + "current epoch: 344 current mean dice: 0.6039\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 345/500\n", + "1/0, train_loss: 0.4204\n", + "1 epoch 345 average loss: 0.4204\n", + "----------\n", + "1: epoch 346/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.4350\n", + "1 epoch 346 average loss: 0.4350\n", + "current epoch: 346 current mean dice: 0.6983\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 347/500\n", + "1/0, train_loss: 0.3927\n", + "1 epoch 347 average loss: 0.3927\n", + "----------\n", + "1: epoch 348/500\n", + "1/0, train_loss: 0.3928\n", + "1 epoch 348 average loss: 0.3928\n", + "current epoch: 348 current mean dice: 0.6585\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 349/500\n", + "1/0, train_loss: 0.4265\n", + "1 epoch 349 average loss: 0.4265\n", + "----------\n", + "1: epoch 350/500\n", + "1/0, train_loss: 0.3834\n", + "1 epoch 350 average loss: 0.3834\n", + "current epoch: 350 current mean dice: 0.6185\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 351/500\n", + "1/0, train_loss: 0.3933\n", + "1 epoch 351 average loss: 0.3933\n", + "----------\n", + "1: epoch 352/500\n", + "1/0, train_loss: 0.4572\n", + "1 epoch 352 average loss: 0.4572\n", + "current epoch: 352 current mean dice: 0.5357\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 353/500\n", + "1/0, train_loss: 0.3893\n", + "1 epoch 353 average loss: 0.3893\n", + "----------\n", + "1: epoch 354/500\n", + "1/0, train_loss: 0.3876\n", + "1 epoch 354 average loss: 0.3876\n", + "current epoch: 354 current mean dice: 0.5544\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 355/500\n", + "1/0, train_loss: 0.3797\n", + "1 epoch 355 average loss: 0.3797\n", + "----------\n", + "1: epoch 356/500\n", + "1/0, train_loss: 0.3845\n", + "1 epoch 356 average loss: 0.3845\n", + "current epoch: 356 current mean dice: 0.5075\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 357/500\n", + "1/0, train_loss: 0.3874\n", + "1 epoch 357 average loss: 0.3874\n", + "----------\n", + "1: epoch 358/500\n", + "1/0, train_loss: 0.3821\n", + "1 epoch 358 average loss: 0.3821\n", + "current epoch: 358 current mean dice: 0.5473\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 359/500\n", + "1/0, train_loss: 0.4404\n", + "1 epoch 359 average loss: 0.4404\n", + "----------\n", + "1: epoch 360/500\n", + "1/0, train_loss: 0.3796\n", + "1 epoch 360 average loss: 0.3796\n", + "current epoch: 360 current mean dice: 0.5543\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 361/500\n", + "1/0, train_loss: 0.3791\n", + "1 epoch 361 average loss: 0.3791\n", + "----------\n", + "1: epoch 362/500\n", + "1/0, train_loss: 0.3861\n", + "1 epoch 362 average loss: 0.3861\n", + "current epoch: 362 current mean dice: 0.5480\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 363/500\n", + "1/0, train_loss: 0.3889\n", + "1 epoch 363 average loss: 0.3889\n", + "----------\n", + "1: epoch 364/500\n", + "1/0, train_loss: 0.3835\n", + "1 epoch 364 average loss: 0.3835\n", + "current epoch: 364 current mean dice: 0.5150\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 365/500\n", + "1/0, train_loss: 0.3860\n", + "1 epoch 365 average loss: 0.3860\n", + "----------\n", + "1: epoch 366/500\n", + "1/0, train_loss: 0.3741\n", + "1 epoch 366 average loss: 0.3741\n", + "current epoch: 366 current mean dice: 0.4571\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 367/500\n", + "1/0, train_loss: 0.3842\n", + "1 epoch 367 average loss: 0.3842\n", + "----------\n", + "1: epoch 368/500\n", + "1/0, train_loss: 0.3785\n", + "1 epoch 368 average loss: 0.3785\n", + "current epoch: 368 current mean dice: 0.4599\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 369/500\n", + "1/0, train_loss: 0.3837\n", + "1 epoch 369 average loss: 0.3837\n", + "----------\n", + "1: epoch 370/500\n", + "1/0, train_loss: 0.3830\n", + "1 epoch 370 average loss: 0.3830\n", + "current epoch: 370 current mean dice: 0.5742\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 371/500\n", + "1/0, train_loss: 0.3823\n", + "1 epoch 371 average loss: 0.3823\n", + "----------\n", + "1: epoch 372/500\n", + "1/0, train_loss: 0.3790\n", + "1 epoch 372 average loss: 0.3790\n", + "current epoch: 372 current mean dice: 0.5989\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 373/500\n", + "1/0, train_loss: 0.4185\n", + "1 epoch 373 average loss: 0.4185\n", + "----------\n", + "1: epoch 374/500\n", + "1/0, train_loss: 0.3965\n", + "1 epoch 374 average loss: 0.3965\n", + "current epoch: 374 current mean dice: 0.6138\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 375/500\n", + "1/0, train_loss: 0.3809\n", + "1 epoch 375 average loss: 0.3809\n", + "----------\n", + "1: epoch 376/500\n", + "1/0, train_loss: 0.3782\n", + "1 epoch 376 average loss: 0.3782\n", + "current epoch: 376 current mean dice: 0.6191\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 377/500\n", + "1/0, train_loss: 0.3828\n", + "1 epoch 377 average loss: 0.3828\n", + "----------\n", + "1: epoch 378/500\n", + "1/0, train_loss: 0.3948\n", + "1 epoch 378 average loss: 0.3948\n", + "current epoch: 378 current mean dice: 0.5938\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 379/500\n", + "1/0, train_loss: 0.4379\n", + "1 epoch 379 average loss: 0.4379\n", + "----------\n", + "1: epoch 380/500\n", + "1/0, train_loss: 0.3825\n", + "1 epoch 380 average loss: 0.3825\n", + "current epoch: 380 current mean dice: 0.6403\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 381/500\n", + "1/0, train_loss: 0.3798\n", + "1 epoch 381 average loss: 0.3798\n", + "----------\n", + "1: epoch 382/500\n", + "1/0, train_loss: 0.3816\n", + "1 epoch 382 average loss: 0.3816\n", + "current epoch: 382 current mean dice: 0.5936\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 383/500\n", + "1/0, train_loss: 0.3790\n", + "1 epoch 383 average loss: 0.3790\n", + "----------\n", + "1: epoch 384/500\n", + "1/0, train_loss: 0.3758\n", + "1 epoch 384 average loss: 0.3758\n", + "current epoch: 384 current mean dice: 0.5733\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 385/500\n", + "1/0, train_loss: 0.3857\n", + "1 epoch 385 average loss: 0.3857\n", + "----------\n", + "1: epoch 386/500\n", + "1/0, train_loss: 0.3849\n", + "1 epoch 386 average loss: 0.3849\n", + "current epoch: 386 current mean dice: 0.5220\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 387/500\n", + "1/0, train_loss: 0.3793\n", + "1 epoch 387 average loss: 0.3793\n", + "----------\n", + "1: epoch 388/500\n", + "1/0, train_loss: 0.3857\n", + "1 epoch 388 average loss: 0.3857\n", + "current epoch: 388 current mean dice: 0.5320\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 389/500\n", + "1/0, train_loss: 0.3779\n", + "1 epoch 389 average loss: 0.3779\n", + "----------\n", + "1: epoch 390/500\n", + "1/0, train_loss: 0.3827\n", + "1 epoch 390 average loss: 0.3827\n", + "current epoch: 390 current mean dice: 0.5306\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 391/500\n", + "1/0, train_loss: 0.4395\n", + "1 epoch 391 average loss: 0.4395\n", + "----------\n", + "1: epoch 392/500\n", + "1/0, train_loss: 0.3829\n", + "1 epoch 392 average loss: 0.3829\n", + "current epoch: 392 current mean dice: 0.5617\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 393/500\n", + "1/0, train_loss: 0.4337\n", + "1 epoch 393 average loss: 0.4337\n", + "----------\n", + "1: epoch 394/500\n", + "1/0, train_loss: 0.4113\n", + "1 epoch 394 average loss: 0.4113\n", + "current epoch: 394 current mean dice: 0.5893\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 395/500\n", + "1/0, train_loss: 0.3907\n", + "1 epoch 395 average loss: 0.3907\n", + "----------\n", + "1: epoch 396/500\n", + "1/0, train_loss: 0.3863\n", + "1 epoch 396 average loss: 0.3863\n", + "current epoch: 396 current mean dice: 0.6185\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 397/500\n", + "1/0, train_loss: 0.3835\n", + "1 epoch 397 average loss: 0.3835\n", + "----------\n", + "1: epoch 398/500\n", + "1/0, train_loss: 0.5174\n", + "1 epoch 398 average loss: 0.5174\n", + "current epoch: 398 current mean dice: 0.4304\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 399/500\n", + "1/0, train_loss: 0.5229\n", + "1 epoch 399 average loss: 0.5229\n", + "----------\n", + "1: epoch 400/500\n", + "1/0, train_loss: 0.4826\n", + "1 epoch 400 average loss: 0.4826\n", + "current epoch: 400 current mean dice: 0.6377\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 401/500\n", + "1/0, train_loss: 0.4296\n", + "1 epoch 401 average loss: 0.4296\n", + "----------\n", + "1: epoch 402/500\n", + "1/0, train_loss: 0.4694\n", + "1 epoch 402 average loss: 0.4694\n", + "current epoch: 402 current mean dice: 0.6467\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 403/500\n", + "1/0, train_loss: 0.4394\n", + "1 epoch 403 average loss: 0.4394\n", + "----------\n", + "1: epoch 404/500\n", + "1/0, train_loss: 0.4245\n", + "1 epoch 404 average loss: 0.4245\n", + "current epoch: 404 current mean dice: 0.6480\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 405/500\n", + "1/0, train_loss: 0.4133\n", + "1 epoch 405 average loss: 0.4133\n", + "----------\n", + "1: epoch 406/500\n", + "1/0, train_loss: 0.3992\n", + "1 epoch 406 average loss: 0.3992\n", + "current epoch: 406 current mean dice: 0.6351\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 407/500\n", + "1/0, train_loss: 0.4043\n", + "1 epoch 407 average loss: 0.4043\n", + "----------\n", + "1: epoch 408/500\n", + "1/0, train_loss: 0.4055\n", + "1 epoch 408 average loss: 0.4055\n", + "current epoch: 408 current mean dice: 0.6136\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 409/500\n", + "1/0, train_loss: 0.3954\n", + "1 epoch 409 average loss: 0.3954\n", + "----------\n", + "1: epoch 410/500\n", + "1/0, train_loss: 0.3866\n", + "1 epoch 410 average loss: 0.3866\n", + "current epoch: 410 current mean dice: 0.5879\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 411/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.3926\n", + "1 epoch 411 average loss: 0.3926\n", + "----------\n", + "1: epoch 412/500\n", + "1/0, train_loss: 0.3871\n", + "1 epoch 412 average loss: 0.3871\n", + "current epoch: 412 current mean dice: 0.6163\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 413/500\n", + "1/0, train_loss: 0.3858\n", + "1 epoch 413 average loss: 0.3858\n", + "----------\n", + "1: epoch 414/500\n", + "1/0, train_loss: 0.3983\n", + "1 epoch 414 average loss: 0.3983\n", + "current epoch: 414 current mean dice: 0.6496\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 415/500\n", + "1/0, train_loss: 0.3955\n", + "1 epoch 415 average loss: 0.3955\n", + "----------\n", + "1: epoch 416/500\n", + "1/0, train_loss: 0.4024\n", + "1 epoch 416 average loss: 0.4024\n", + "current epoch: 416 current mean dice: 0.6570\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 417/500\n", + "1/0, train_loss: 0.4773\n", + "1 epoch 417 average loss: 0.4773\n", + "----------\n", + "1: epoch 418/500\n", + "1/0, train_loss: 0.3871\n", + "1 epoch 418 average loss: 0.3871\n", + "current epoch: 418 current mean dice: 0.5205\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 419/500\n", + "1/0, train_loss: 0.3902\n", + "1 epoch 419 average loss: 0.3902\n", + "----------\n", + "1: epoch 420/500\n", + "1/0, train_loss: 0.4784\n", + "1 epoch 420 average loss: 0.4784\n", + "current epoch: 420 current mean dice: 0.5012\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 421/500\n", + "1/0, train_loss: 0.4475\n", + "1 epoch 421 average loss: 0.4475\n", + "----------\n", + "1: epoch 422/500\n", + "1/0, train_loss: 0.3958\n", + "1 epoch 422 average loss: 0.3958\n", + "current epoch: 422 current mean dice: 0.5852\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 423/500\n", + "1/0, train_loss: 0.4144\n", + "1 epoch 423 average loss: 0.4144\n", + "----------\n", + "1: epoch 424/500\n", + "1/0, train_loss: 0.3996\n", + "1 epoch 424 average loss: 0.3996\n", + "current epoch: 424 current mean dice: 0.6217\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 425/500\n", + "1/0, train_loss: 0.3855\n", + "1 epoch 425 average loss: 0.3855\n", + "----------\n", + "1: epoch 426/500\n", + "1/0, train_loss: 0.3921\n", + "1 epoch 426 average loss: 0.3921\n", + "current epoch: 426 current mean dice: 0.5976\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 427/500\n", + "1/0, train_loss: 0.3937\n", + "1 epoch 427 average loss: 0.3937\n", + "----------\n", + "1: epoch 428/500\n", + "1/0, train_loss: 0.3988\n", + "1 epoch 428 average loss: 0.3988\n", + "current epoch: 428 current mean dice: 0.5556\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 429/500\n", + "1/0, train_loss: 0.3930\n", + "1 epoch 429 average loss: 0.3930\n", + "----------\n", + "1: epoch 430/500\n", + "1/0, train_loss: 0.4062\n", + "1 epoch 430 average loss: 0.4062\n", + "current epoch: 430 current mean dice: 0.5407\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 431/500\n", + "1/0, train_loss: 0.4367\n", + "1 epoch 431 average loss: 0.4367\n", + "----------\n", + "1: epoch 432/500\n", + "1/0, train_loss: 0.3889\n", + "1 epoch 432 average loss: 0.3889\n", + "current epoch: 432 current mean dice: 0.5209\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 433/500\n", + "1/0, train_loss: 0.3959\n", + "1 epoch 433 average loss: 0.3959\n", + "----------\n", + "1: epoch 434/500\n", + "1/0, train_loss: 0.3940\n", + "1 epoch 434 average loss: 0.3940\n", + "current epoch: 434 current mean dice: 0.5272\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 435/500\n", + "1/0, train_loss: 0.3863\n", + "1 epoch 435 average loss: 0.3863\n", + "----------\n", + "1: epoch 436/500\n", + "1/0, train_loss: 0.4497\n", + "1 epoch 436 average loss: 0.4497\n", + "current epoch: 436 current mean dice: 0.5361\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 437/500\n", + "1/0, train_loss: 0.3782\n", + "1 epoch 437 average loss: 0.3782\n", + "----------\n", + "1: epoch 438/500\n", + "1/0, train_loss: 0.3972\n", + "1 epoch 438 average loss: 0.3972\n", + "current epoch: 438 current mean dice: 0.5425\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 439/500\n", + "1/0, train_loss: 0.3845\n", + "1 epoch 439 average loss: 0.3845\n", + "----------\n", + "1: epoch 440/500\n", + "1/0, train_loss: 0.3816\n", + "1 epoch 440 average loss: 0.3816\n", + "current epoch: 440 current mean dice: 0.5510\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 441/500\n", + "1/0, train_loss: 0.4452\n", + "1 epoch 441 average loss: 0.4452\n", + "----------\n", + "1: epoch 442/500\n", + "1/0, train_loss: 0.3777\n", + "1 epoch 442 average loss: 0.3777\n", + "current epoch: 442 current mean dice: 0.5520\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 443/500\n", + "1/0, train_loss: 0.3814\n", + "1 epoch 443 average loss: 0.3814\n", + "----------\n", + "1: epoch 444/500\n", + "1/0, train_loss: 0.4366\n", + "1 epoch 444 average loss: 0.4366\n", + "current epoch: 444 current mean dice: 0.5684\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 445/500\n", + "1/0, train_loss: 0.3825\n", + "1 epoch 445 average loss: 0.3825\n", + "----------\n", + "1: epoch 446/500\n", + "1/0, train_loss: 0.4576\n", + "1 epoch 446 average loss: 0.4576\n", + "current epoch: 446 current mean dice: 0.5749\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 447/500\n", + "1/0, train_loss: 0.3818\n", + "1 epoch 447 average loss: 0.3818\n", + "----------\n", + "1: epoch 448/500\n", + "1/0, train_loss: 0.3783\n", + "1 epoch 448 average loss: 0.3783\n", + "current epoch: 448 current mean dice: 0.5925\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 449/500\n", + "1/0, train_loss: 0.3869\n", + "1 epoch 449 average loss: 0.3869\n", + "----------\n", + "1: epoch 450/500\n", + "1/0, train_loss: 0.3935\n", + "1 epoch 450 average loss: 0.3935\n", + "current epoch: 450 current mean dice: 0.5879\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 451/500\n", + "1/0, train_loss: 0.3784\n", + "1 epoch 451 average loss: 0.3784\n", + "----------\n", + "1: epoch 452/500\n", + "1/0, train_loss: 0.3806\n", + "1 epoch 452 average loss: 0.3806\n", + "current epoch: 452 current mean dice: 0.5851\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 453/500\n", + "1/0, train_loss: 0.3794\n", + "1 epoch 453 average loss: 0.3794\n", + "----------\n", + "1: epoch 454/500\n", + "1/0, train_loss: 0.3792\n", + "1 epoch 454 average loss: 0.3792\n", + "current epoch: 454 current mean dice: 0.5818\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 455/500\n", + "1/0, train_loss: 0.3839\n", + "1 epoch 455 average loss: 0.3839\n", + "----------\n", + "1: epoch 456/500\n", + "1/0, train_loss: 0.3755\n", + "1 epoch 456 average loss: 0.3755\n", + "current epoch: 456 current mean dice: 0.5767\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 457/500\n", + "1/0, train_loss: 0.3768\n", + "1 epoch 457 average loss: 0.3768\n", + "----------\n", + "1: epoch 458/500\n", + "1/0, train_loss: 0.3768\n", + "1 epoch 458 average loss: 0.3768\n", + "current epoch: 458 current mean dice: 0.5728\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 459/500\n", + "1/0, train_loss: 0.3732\n", + "1 epoch 459 average loss: 0.3732\n", + "----------\n", + "1: epoch 460/500\n", + "1/0, train_loss: 0.3755\n", + "1 epoch 460 average loss: 0.3755\n", + "current epoch: 460 current mean dice: 0.5583\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 461/500\n", + "1/0, train_loss: 0.3752\n", + "1 epoch 461 average loss: 0.3752\n", + "----------\n", + "1: epoch 462/500\n", + "1/0, train_loss: 0.3837\n", + "1 epoch 462 average loss: 0.3837\n", + "current epoch: 462 current mean dice: 0.5794\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 463/500\n", + "1/0, train_loss: 0.4421\n", + "1 epoch 463 average loss: 0.4421\n", + "----------\n", + "1: epoch 464/500\n", + "1/0, train_loss: 0.3824\n", + "1 epoch 464 average loss: 0.3824\n", + "current epoch: 464 current mean dice: 0.6003\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 465/500\n", + "1/0, train_loss: 0.3820\n", + "1 epoch 465 average loss: 0.3820\n", + "----------\n", + "1: epoch 466/500\n", + "1/0, train_loss: 0.3767\n", + "1 epoch 466 average loss: 0.3767\n", + "current epoch: 466 current mean dice: 0.6012\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 467/500\n", + "1/0, train_loss: 0.3775\n", + "1 epoch 467 average loss: 0.3775\n", + "----------\n", + "1: epoch 468/500\n", + "1/0, train_loss: 0.3747\n", + "1 epoch 468 average loss: 0.3747\n", + "current epoch: 468 current mean dice: 0.5612\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 469/500\n", + "1/0, train_loss: 0.4258\n", + "1 epoch 469 average loss: 0.4258\n", + "----------\n", + "1: epoch 470/500\n", + "1/0, train_loss: 0.3796\n", + "1 epoch 470 average loss: 0.3796\n", + "current epoch: 470 current mean dice: 0.5807\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 471/500\n", + "1/0, train_loss: 0.3835\n", + "1 epoch 471 average loss: 0.3835\n", + "----------\n", + "1: epoch 472/500\n", + "1/0, train_loss: 0.3771\n", + "1 epoch 472 average loss: 0.3771\n", + "current epoch: 472 current mean dice: 0.5936\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 473/500\n", + "1/0, train_loss: 0.3732\n", + "1 epoch 473 average loss: 0.3732\n", + "----------\n", + "1: epoch 474/500\n", + "1/0, train_loss: 0.3761\n", + "1 epoch 474 average loss: 0.3761\n", + "current epoch: 474 current mean dice: 0.5946\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 475/500\n", + "1/0, train_loss: 0.3746\n", + "1 epoch 475 average loss: 0.3746\n", + "----------\n", + "1: epoch 476/500\n", + "1/0, train_loss: 0.3761\n", + "1 epoch 476 average loss: 0.3761\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "current epoch: 476 current mean dice: 0.5627\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 477/500\n", + "1/0, train_loss: 0.3742\n", + "1 epoch 477 average loss: 0.3742\n", + "----------\n", + "1: epoch 478/500\n", + "1/0, train_loss: 0.3816\n", + "1 epoch 478 average loss: 0.3816\n", + "current epoch: 478 current mean dice: 0.5623\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 479/500\n", + "1/0, train_loss: 0.3742\n", + "1 epoch 479 average loss: 0.3742\n", + "----------\n", + "1: epoch 480/500\n", + "1/0, train_loss: 0.3779\n", + "1 epoch 480 average loss: 0.3779\n", + "current epoch: 480 current mean dice: 0.5715\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 481/500\n", + "1/0, train_loss: 0.3738\n", + "1 epoch 481 average loss: 0.3738\n", + "----------\n", + "1: epoch 482/500\n", + "1/0, train_loss: 0.4082\n", + "1 epoch 482 average loss: 0.4082\n", + "current epoch: 482 current mean dice: 0.5747\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 483/500\n", + "1/0, train_loss: 0.3749\n", + "1 epoch 483 average loss: 0.3749\n", + "----------\n", + "1: epoch 484/500\n", + "1/0, train_loss: 0.3768\n", + "1 epoch 484 average loss: 0.3768\n", + "current epoch: 484 current mean dice: 0.5609\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 485/500\n", + "1/0, train_loss: 0.3826\n", + "1 epoch 485 average loss: 0.3826\n", + "----------\n", + "1: epoch 486/500\n", + "1/0, train_loss: 0.4254\n", + "1 epoch 486 average loss: 0.4254\n", + "current epoch: 486 current mean dice: 0.5430\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 487/500\n", + "1/0, train_loss: 0.3736\n", + "1 epoch 487 average loss: 0.3736\n", + "----------\n", + "1: epoch 488/500\n", + "1/0, train_loss: 0.3706\n", + "1 epoch 488 average loss: 0.3706\n", + "current epoch: 488 current mean dice: 0.5476\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 489/500\n", + "1/0, train_loss: 0.3766\n", + "1 epoch 489 average loss: 0.3766\n", + "----------\n", + "1: epoch 490/500\n", + "1/0, train_loss: 0.4270\n", + "1 epoch 490 average loss: 0.4270\n", + "current epoch: 490 current mean dice: 0.5465\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 491/500\n", + "1/0, train_loss: 0.3760\n", + "1 epoch 491 average loss: 0.3760\n", + "----------\n", + "1: epoch 492/500\n", + "1/0, train_loss: 0.3795\n", + "1 epoch 492 average loss: 0.3795\n", + "current epoch: 492 current mean dice: 0.5623\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 493/500\n", + "1/0, train_loss: 0.3757\n", + "1 epoch 493 average loss: 0.3757\n", + "----------\n", + "1: epoch 494/500\n", + "1/0, train_loss: 0.3727\n", + "1 epoch 494 average loss: 0.3727\n", + "current epoch: 494 current mean dice: 0.5676\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 495/500\n", + "1/0, train_loss: 0.3788\n", + "1 epoch 495 average loss: 0.3788\n", + "----------\n", + "1: epoch 496/500\n", + "1/0, train_loss: 0.4210\n", + "1 epoch 496 average loss: 0.4210\n", + "current epoch: 496 current mean dice: 0.5604\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 497/500\n", + "1/0, train_loss: 0.4133\n", + "1 epoch 497 average loss: 0.4133\n", + "----------\n", + "1: epoch 498/500\n", + "1/0, train_loss: 0.3760\n", + "1 epoch 498 average loss: 0.3760\n", + "current epoch: 498 current mean dice: 0.5922\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "1: epoch 499/500\n", + "1/0, train_loss: 0.3784\n", + "1 epoch 499 average loss: 0.3784\n", + "----------\n", + "1: epoch 500/500\n", + "1/0, train_loss: 0.3987\n", + "1 epoch 500 average loss: 0.3987\n", + "current epoch: 500 current mean dice: 0.5552\n", + "best mean dice: 0.7235 at epoch: 328\n", + "----------\n", + "2: epoch 1/500\n", + "1/0, train_loss: 0.7510\n", + "2 epoch 1 average loss: 0.7510\n", + "----------\n", + "2: epoch 2/500\n", + "1/0, train_loss: 0.7060\n", + "2 epoch 2 average loss: 0.7060\n", + "saved new best metric model\n", + "current epoch: 2 current mean dice: 0.2929\n", + "best mean dice: 0.2929 at epoch: 2\n", + "----------\n", + "2: epoch 3/500\n", + "1/0, train_loss: 0.6770\n", + "2 epoch 3 average loss: 0.6770\n", + "----------\n", + "2: epoch 4/500\n", + "1/0, train_loss: 0.6647\n", + "2 epoch 4 average loss: 0.6647\n", + "saved new best metric model\n", + "current epoch: 4 current mean dice: 0.3698\n", + "best mean dice: 0.3698 at epoch: 4\n", + "----------\n", + "2: epoch 5/500\n", + "1/0, train_loss: 0.6548\n", + "2 epoch 5 average loss: 0.6548\n", + "----------\n", + "2: epoch 6/500\n", + "1/0, train_loss: 0.6520\n", + "2 epoch 6 average loss: 0.6520\n", + "saved new best metric model\n", + "current epoch: 6 current mean dice: 0.3889\n", + "best mean dice: 0.3889 at epoch: 6\n", + "----------\n", + "2: epoch 7/500\n", + "1/0, train_loss: 0.6491\n", + "2 epoch 7 average loss: 0.6491\n", + "----------\n", + "2: epoch 8/500\n", + "1/0, train_loss: 0.6448\n", + "2 epoch 8 average loss: 0.6448\n", + "saved new best metric model\n", + "current epoch: 8 current mean dice: 0.3939\n", + "best mean dice: 0.3939 at epoch: 8\n", + "----------\n", + "2: epoch 9/500\n", + "1/0, train_loss: 0.6425\n", + "2 epoch 9 average loss: 0.6425\n", + "----------\n", + "2: epoch 10/500\n", + "1/0, train_loss: 0.6404\n", + "2 epoch 10 average loss: 0.6404\n", + "current epoch: 10 current mean dice: 0.3911\n", + "best mean dice: 0.3939 at epoch: 8\n", + "----------\n", + "2: epoch 11/500\n", + "1/0, train_loss: 0.6399\n", + "2 epoch 11 average loss: 0.6399\n", + "----------\n", + "2: epoch 12/500\n", + "1/0, train_loss: 0.6374\n", + "2 epoch 12 average loss: 0.6374\n", + "current epoch: 12 current mean dice: 0.3935\n", + "best mean dice: 0.3939 at epoch: 8\n", + "----------\n", + "2: epoch 13/500\n", + "1/0, train_loss: 0.6334\n", + "2 epoch 13 average loss: 0.6334\n", + "----------\n", + "2: epoch 14/500\n", + "1/0, train_loss: 0.6330\n", + "2 epoch 14 average loss: 0.6330\n", + "saved new best metric model\n", + "current epoch: 14 current mean dice: 0.4019\n", + "best mean dice: 0.4019 at epoch: 14\n", + "----------\n", + "2: epoch 15/500\n", + "1/0, train_loss: 0.6299\n", + "2 epoch 15 average loss: 0.6299\n", + "----------\n", + "2: epoch 16/500\n", + "1/0, train_loss: 0.6293\n", + "2 epoch 16 average loss: 0.6293\n", + "saved new best metric model\n", + "current epoch: 16 current mean dice: 0.4144\n", + "best mean dice: 0.4144 at epoch: 16\n", + "----------\n", + "2: epoch 17/500\n", + "1/0, train_loss: 0.6243\n", + "2 epoch 17 average loss: 0.6243\n", + "----------\n", + "2: epoch 18/500\n", + "1/0, train_loss: 0.6225\n", + "2 epoch 18 average loss: 0.6225\n", + "saved new best metric model\n", + "current epoch: 18 current mean dice: 0.4281\n", + "best mean dice: 0.4281 at epoch: 18\n", + "----------\n", + "2: epoch 19/500\n", + "1/0, train_loss: 0.6186\n", + "2 epoch 19 average loss: 0.6186\n", + "----------\n", + "2: epoch 20/500\n", + "1/0, train_loss: 0.6240\n", + "2 epoch 20 average loss: 0.6240\n", + "saved new best metric model\n", + "current epoch: 20 current mean dice: 0.4412\n", + "best mean dice: 0.4412 at epoch: 20\n", + "----------\n", + "2: epoch 21/500\n", + "1/0, train_loss: 0.6134\n", + "2 epoch 21 average loss: 0.6134\n", + "----------\n", + "2: epoch 22/500\n", + "1/0, train_loss: 0.6112\n", + "2 epoch 22 average loss: 0.6112\n", + "saved new best metric model\n", + "current epoch: 22 current mean dice: 0.4453\n", + "best mean dice: 0.4453 at epoch: 22\n", + "----------\n", + "2: epoch 23/500\n", + "1/0, train_loss: 0.6018\n", + "2 epoch 23 average loss: 0.6018\n", + "----------\n", + "2: epoch 24/500\n", + "1/0, train_loss: 0.6022\n", + "2 epoch 24 average loss: 0.6022\n", + "current epoch: 24 current mean dice: 0.4389\n", + "best mean dice: 0.4453 at epoch: 22\n", + "----------\n", + "2: epoch 25/500\n", + "1/0, train_loss: 0.5973\n", + "2 epoch 25 average loss: 0.5973\n", + "----------\n", + "2: epoch 26/500\n", + "1/0, train_loss: 0.5923\n", + "2 epoch 26 average loss: 0.5923\n", + "saved new best metric model\n", + "current epoch: 26 current mean dice: 0.4482\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 27/500\n", + "1/0, train_loss: 0.5908\n", + "2 epoch 27 average loss: 0.5908\n", + "----------\n", + "2: epoch 28/500\n", + "1/0, train_loss: 0.5864\n", + "2 epoch 28 average loss: 0.5864\n", + "current epoch: 28 current mean dice: 0.4434\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 29/500\n", + "1/0, train_loss: 0.5852\n", + "2 epoch 29 average loss: 0.5852\n", + "----------\n", + "2: epoch 30/500\n", + "1/0, train_loss: 0.5782\n", + "2 epoch 30 average loss: 0.5782\n", + "current epoch: 30 current mean dice: 0.4202\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 31/500\n", + "1/0, train_loss: 0.5740\n", + "2 epoch 31 average loss: 0.5740\n", + "----------\n", + "2: epoch 32/500\n", + "1/0, train_loss: 0.5745\n", + "2 epoch 32 average loss: 0.5745\n", + "current epoch: 32 current mean dice: 0.4013\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 33/500\n", + "1/0, train_loss: 0.5634\n", + "2 epoch 33 average loss: 0.5634\n", + "----------\n", + "2: epoch 34/500\n", + "1/0, train_loss: 0.5605\n", + "2 epoch 34 average loss: 0.5605\n", + "current epoch: 34 current mean dice: 0.4124\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 35/500\n", + "1/0, train_loss: 0.5591\n", + "2 epoch 35 average loss: 0.5591\n", + "----------\n", + "2: epoch 36/500\n", + "1/0, train_loss: 0.5487\n", + "2 epoch 36 average loss: 0.5487\n", + "current epoch: 36 current mean dice: 0.3864\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 37/500\n", + "1/0, train_loss: 0.5435\n", + "2 epoch 37 average loss: 0.5435\n", + "----------\n", + "2: epoch 38/500\n", + "1/0, train_loss: 0.5490\n", + "2 epoch 38 average loss: 0.5490\n", + "current epoch: 38 current mean dice: 0.3913\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 39/500\n", + "1/0, train_loss: 0.5504\n", + "2 epoch 39 average loss: 0.5504\n", + "----------\n", + "2: epoch 40/500\n", + "1/0, train_loss: 0.5413\n", + "2 epoch 40 average loss: 0.5413\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "current epoch: 40 current mean dice: 0.4029\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 41/500\n", + "1/0, train_loss: 0.5323\n", + "2 epoch 41 average loss: 0.5323\n", + "----------\n", + "2: epoch 42/500\n", + "1/0, train_loss: 0.5321\n", + "2 epoch 42 average loss: 0.5321\n", + "current epoch: 42 current mean dice: 0.3871\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 43/500\n", + "1/0, train_loss: 0.5295\n", + "2 epoch 43 average loss: 0.5295\n", + "----------\n", + "2: epoch 44/500\n", + "1/0, train_loss: 0.5255\n", + "2 epoch 44 average loss: 0.5255\n", + "current epoch: 44 current mean dice: 0.3885\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 45/500\n", + "1/0, train_loss: 0.5232\n", + "2 epoch 45 average loss: 0.5232\n", + "----------\n", + "2: epoch 46/500\n", + "1/0, train_loss: 0.5244\n", + "2 epoch 46 average loss: 0.5244\n", + "current epoch: 46 current mean dice: 0.4063\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 47/500\n", + "1/0, train_loss: 0.5297\n", + "2 epoch 47 average loss: 0.5297\n", + "----------\n", + "2: epoch 48/500\n", + "1/0, train_loss: 0.5129\n", + "2 epoch 48 average loss: 0.5129\n", + "current epoch: 48 current mean dice: 0.3472\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 49/500\n", + "1/0, train_loss: 0.5238\n", + "2 epoch 49 average loss: 0.5238\n", + "----------\n", + "2: epoch 50/500\n", + "1/0, train_loss: 0.5068\n", + "2 epoch 50 average loss: 0.5068\n", + "current epoch: 50 current mean dice: 0.3968\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 51/500\n", + "1/0, train_loss: 0.5031\n", + "2 epoch 51 average loss: 0.5031\n", + "----------\n", + "2: epoch 52/500\n", + "1/0, train_loss: 0.5075\n", + "2 epoch 52 average loss: 0.5075\n", + "current epoch: 52 current mean dice: 0.3493\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 53/500\n", + "1/0, train_loss: 0.5026\n", + "2 epoch 53 average loss: 0.5026\n", + "----------\n", + "2: epoch 54/500\n", + "1/0, train_loss: 0.4988\n", + "2 epoch 54 average loss: 0.4988\n", + "current epoch: 54 current mean dice: 0.3753\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 55/500\n", + "1/0, train_loss: 0.4989\n", + "2 epoch 55 average loss: 0.4989\n", + "----------\n", + "2: epoch 56/500\n", + "1/0, train_loss: 0.5048\n", + "2 epoch 56 average loss: 0.5048\n", + "current epoch: 56 current mean dice: 0.3407\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 57/500\n", + "1/0, train_loss: 0.4987\n", + "2 epoch 57 average loss: 0.4987\n", + "----------\n", + "2: epoch 58/500\n", + "1/0, train_loss: 0.4922\n", + "2 epoch 58 average loss: 0.4922\n", + "current epoch: 58 current mean dice: 0.3348\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 59/500\n", + "1/0, train_loss: 0.4873\n", + "2 epoch 59 average loss: 0.4873\n", + "----------\n", + "2: epoch 60/500\n", + "1/0, train_loss: 0.4863\n", + "2 epoch 60 average loss: 0.4863\n", + "current epoch: 60 current mean dice: 0.3803\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 61/500\n", + "1/0, train_loss: 0.4905\n", + "2 epoch 61 average loss: 0.4905\n", + "----------\n", + "2: epoch 62/500\n", + "1/0, train_loss: 0.4864\n", + "2 epoch 62 average loss: 0.4864\n", + "current epoch: 62 current mean dice: 0.3013\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 63/500\n", + "1/0, train_loss: 0.4844\n", + "2 epoch 63 average loss: 0.4844\n", + "----------\n", + "2: epoch 64/500\n", + "1/0, train_loss: 0.4770\n", + "2 epoch 64 average loss: 0.4770\n", + "current epoch: 64 current mean dice: 0.3005\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 65/500\n", + "1/0, train_loss: 0.4862\n", + "2 epoch 65 average loss: 0.4862\n", + "----------\n", + "2: epoch 66/500\n", + "1/0, train_loss: 0.4769\n", + "2 epoch 66 average loss: 0.4769\n", + "current epoch: 66 current mean dice: 0.3071\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 67/500\n", + "1/0, train_loss: 0.4705\n", + "2 epoch 67 average loss: 0.4705\n", + "----------\n", + "2: epoch 68/500\n", + "1/0, train_loss: 0.4731\n", + "2 epoch 68 average loss: 0.4731\n", + "current epoch: 68 current mean dice: 0.2388\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 69/500\n", + "1/0, train_loss: 0.4739\n", + "2 epoch 69 average loss: 0.4739\n", + "----------\n", + "2: epoch 70/500\n", + "1/0, train_loss: 0.4681\n", + "2 epoch 70 average loss: 0.4681\n", + "current epoch: 70 current mean dice: 0.2617\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 71/500\n", + "1/0, train_loss: 0.4719\n", + "2 epoch 71 average loss: 0.4719\n", + "----------\n", + "2: epoch 72/500\n", + "1/0, train_loss: 0.4645\n", + "2 epoch 72 average loss: 0.4645\n", + "current epoch: 72 current mean dice: 0.2142\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 73/500\n", + "1/0, train_loss: 0.4598\n", + "2 epoch 73 average loss: 0.4598\n", + "----------\n", + "2: epoch 74/500\n", + "1/0, train_loss: 0.4671\n", + "2 epoch 74 average loss: 0.4671\n", + "current epoch: 74 current mean dice: 0.1777\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 75/500\n", + "1/0, train_loss: 0.4793\n", + "2 epoch 75 average loss: 0.4793\n", + "----------\n", + "2: epoch 76/500\n", + "1/0, train_loss: 0.4663\n", + "2 epoch 76 average loss: 0.4663\n", + "current epoch: 76 current mean dice: 0.3074\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 77/500\n", + "1/0, train_loss: 0.4747\n", + "2 epoch 77 average loss: 0.4747\n", + "----------\n", + "2: epoch 78/500\n", + "1/0, train_loss: 0.4566\n", + "2 epoch 78 average loss: 0.4566\n", + "current epoch: 78 current mean dice: 0.1597\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 79/500\n", + "1/0, train_loss: 0.4544\n", + "2 epoch 79 average loss: 0.4544\n", + "----------\n", + "2: epoch 80/500\n", + "1/0, train_loss: 0.4568\n", + "2 epoch 80 average loss: 0.4568\n", + "current epoch: 80 current mean dice: 0.1969\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 81/500\n", + "1/0, train_loss: 0.4518\n", + "2 epoch 81 average loss: 0.4518\n", + "----------\n", + "2: epoch 82/500\n", + "1/0, train_loss: 0.4560\n", + "2 epoch 82 average loss: 0.4560\n", + "current epoch: 82 current mean dice: 0.1720\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 83/500\n", + "1/0, train_loss: 0.4466\n", + "2 epoch 83 average loss: 0.4466\n", + "----------\n", + "2: epoch 84/500\n", + "1/0, train_loss: 0.4484\n", + "2 epoch 84 average loss: 0.4484\n", + "current epoch: 84 current mean dice: 0.1837\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 85/500\n", + "1/0, train_loss: 0.4444\n", + "2 epoch 85 average loss: 0.4444\n", + "----------\n", + "2: epoch 86/500\n", + "1/0, train_loss: 0.4425\n", + "2 epoch 86 average loss: 0.4425\n", + "current epoch: 86 current mean dice: 0.1555\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 87/500\n", + "1/0, train_loss: 0.4415\n", + "2 epoch 87 average loss: 0.4415\n", + "----------\n", + "2: epoch 88/500\n", + "1/0, train_loss: 0.4439\n", + "2 epoch 88 average loss: 0.4439\n", + "current epoch: 88 current mean dice: 0.1158\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 89/500\n", + "1/0, train_loss: 0.4487\n", + "2 epoch 89 average loss: 0.4487\n", + "----------\n", + "2: epoch 90/500\n", + "1/0, train_loss: 0.4307\n", + "2 epoch 90 average loss: 0.4307\n", + "current epoch: 90 current mean dice: 0.1301\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 91/500\n", + "1/0, train_loss: 0.4365\n", + "2 epoch 91 average loss: 0.4365\n", + "----------\n", + "2: epoch 92/500\n", + "1/0, train_loss: 0.4304\n", + "2 epoch 92 average loss: 0.4304\n", + "current epoch: 92 current mean dice: 0.1230\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 93/500\n", + "1/0, train_loss: 0.4392\n", + "2 epoch 93 average loss: 0.4392\n", + "----------\n", + "2: epoch 94/500\n", + "1/0, train_loss: 0.4413\n", + "2 epoch 94 average loss: 0.4413\n", + "current epoch: 94 current mean dice: 0.0455\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 95/500\n", + "1/0, train_loss: 0.4568\n", + "2 epoch 95 average loss: 0.4568\n", + "----------\n", + "2: epoch 96/500\n", + "1/0, train_loss: 0.4526\n", + "2 epoch 96 average loss: 0.4526\n", + "current epoch: 96 current mean dice: 0.0916\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 97/500\n", + "1/0, train_loss: 0.4411\n", + "2 epoch 97 average loss: 0.4411\n", + "----------\n", + "2: epoch 98/500\n", + "1/0, train_loss: 0.4370\n", + "2 epoch 98 average loss: 0.4370\n", + "current epoch: 98 current mean dice: 0.1196\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 99/500\n", + "1/0, train_loss: 0.4279\n", + "2 epoch 99 average loss: 0.4279\n", + "----------\n", + "2: epoch 100/500\n", + "1/0, train_loss: 0.4256\n", + "2 epoch 100 average loss: 0.4256\n", + "current epoch: 100 current mean dice: 0.1353\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 101/500\n", + "1/0, train_loss: 0.4266\n", + "2 epoch 101 average loss: 0.4266\n", + "----------\n", + "2: epoch 102/500\n", + "1/0, train_loss: 0.4262\n", + "2 epoch 102 average loss: 0.4262\n", + "current epoch: 102 current mean dice: 0.1587\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 103/500\n", + "1/0, train_loss: 0.4261\n", + "2 epoch 103 average loss: 0.4261\n", + "----------\n", + "2: epoch 104/500\n", + "1/0, train_loss: 0.4258\n", + "2 epoch 104 average loss: 0.4258\n", + "current epoch: 104 current mean dice: 0.1447\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 105/500\n", + "1/0, train_loss: 0.4282\n", + "2 epoch 105 average loss: 0.4282\n", + "----------\n", + "2: epoch 106/500\n", + "1/0, train_loss: 0.4310\n", + "2 epoch 106 average loss: 0.4310\n", + "current epoch: 106 current mean dice: 0.1735\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 107/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.4220\n", + "2 epoch 107 average loss: 0.4220\n", + "----------\n", + "2: epoch 108/500\n", + "1/0, train_loss: 0.4222\n", + "2 epoch 108 average loss: 0.4222\n", + "current epoch: 108 current mean dice: 0.0974\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 109/500\n", + "1/0, train_loss: 0.4264\n", + "2 epoch 109 average loss: 0.4264\n", + "----------\n", + "2: epoch 110/500\n", + "1/0, train_loss: 0.4243\n", + "2 epoch 110 average loss: 0.4243\n", + "current epoch: 110 current mean dice: 0.0592\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 111/500\n", + "1/0, train_loss: 0.4255\n", + "2 epoch 111 average loss: 0.4255\n", + "----------\n", + "2: epoch 112/500\n", + "1/0, train_loss: 0.4217\n", + "2 epoch 112 average loss: 0.4217\n", + "current epoch: 112 current mean dice: 0.1373\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 113/500\n", + "1/0, train_loss: 0.4179\n", + "2 epoch 113 average loss: 0.4179\n", + "----------\n", + "2: epoch 114/500\n", + "1/0, train_loss: 0.4228\n", + "2 epoch 114 average loss: 0.4228\n", + "current epoch: 114 current mean dice: 0.0880\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 115/500\n", + "1/0, train_loss: 0.4407\n", + "2 epoch 115 average loss: 0.4407\n", + "----------\n", + "2: epoch 116/500\n", + "1/0, train_loss: 0.5362\n", + "2 epoch 116 average loss: 0.5362\n", + "current epoch: 116 current mean dice: 0.1638\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 117/500\n", + "1/0, train_loss: 0.4306\n", + "2 epoch 117 average loss: 0.4306\n", + "----------\n", + "2: epoch 118/500\n", + "1/0, train_loss: 0.4911\n", + "2 epoch 118 average loss: 0.4911\n", + "current epoch: 118 current mean dice: 0.3439\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 119/500\n", + "1/0, train_loss: 0.5028\n", + "2 epoch 119 average loss: 0.5028\n", + "----------\n", + "2: epoch 120/500\n", + "1/0, train_loss: 0.5038\n", + "2 epoch 120 average loss: 0.5038\n", + "current epoch: 120 current mean dice: 0.3496\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 121/500\n", + "1/0, train_loss: 0.4571\n", + "2 epoch 121 average loss: 0.4571\n", + "----------\n", + "2: epoch 122/500\n", + "1/0, train_loss: 0.4693\n", + "2 epoch 122 average loss: 0.4693\n", + "current epoch: 122 current mean dice: 0.2190\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 123/500\n", + "1/0, train_loss: 0.4632\n", + "2 epoch 123 average loss: 0.4632\n", + "----------\n", + "2: epoch 124/500\n", + "1/0, train_loss: 0.4600\n", + "2 epoch 124 average loss: 0.4600\n", + "current epoch: 124 current mean dice: 0.2123\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 125/500\n", + "1/0, train_loss: 0.4652\n", + "2 epoch 125 average loss: 0.4652\n", + "----------\n", + "2: epoch 126/500\n", + "1/0, train_loss: 0.4615\n", + "2 epoch 126 average loss: 0.4615\n", + "current epoch: 126 current mean dice: 0.1925\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 127/500\n", + "1/0, train_loss: 0.4516\n", + "2 epoch 127 average loss: 0.4516\n", + "----------\n", + "2: epoch 128/500\n", + "1/0, train_loss: 0.4406\n", + "2 epoch 128 average loss: 0.4406\n", + "current epoch: 128 current mean dice: 0.2114\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 129/500\n", + "1/0, train_loss: 0.4406\n", + "2 epoch 129 average loss: 0.4406\n", + "----------\n", + "2: epoch 130/500\n", + "1/0, train_loss: 0.4367\n", + "2 epoch 130 average loss: 0.4367\n", + "current epoch: 130 current mean dice: 0.1869\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 131/500\n", + "1/0, train_loss: 0.4367\n", + "2 epoch 131 average loss: 0.4367\n", + "----------\n", + "2: epoch 132/500\n", + "1/0, train_loss: 0.4298\n", + "2 epoch 132 average loss: 0.4298\n", + "current epoch: 132 current mean dice: 0.1738\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 133/500\n", + "1/0, train_loss: 0.4257\n", + "2 epoch 133 average loss: 0.4257\n", + "----------\n", + "2: epoch 134/500\n", + "1/0, train_loss: 0.4172\n", + "2 epoch 134 average loss: 0.4172\n", + "current epoch: 134 current mean dice: 0.1024\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 135/500\n", + "1/0, train_loss: 0.4300\n", + "2 epoch 135 average loss: 0.4300\n", + "----------\n", + "2: epoch 136/500\n", + "1/0, train_loss: 0.4187\n", + "2 epoch 136 average loss: 0.4187\n", + "current epoch: 136 current mean dice: 0.0590\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 137/500\n", + "1/0, train_loss: 0.4135\n", + "2 epoch 137 average loss: 0.4135\n", + "----------\n", + "2: epoch 138/500\n", + "1/0, train_loss: 0.4077\n", + "2 epoch 138 average loss: 0.4077\n", + "current epoch: 138 current mean dice: 0.0661\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 139/500\n", + "1/0, train_loss: 0.4150\n", + "2 epoch 139 average loss: 0.4150\n", + "----------\n", + "2: epoch 140/500\n", + "1/0, train_loss: 0.4129\n", + "2 epoch 140 average loss: 0.4129\n", + "current epoch: 140 current mean dice: 0.0518\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 141/500\n", + "1/0, train_loss: 0.4225\n", + "2 epoch 141 average loss: 0.4225\n", + "----------\n", + "2: epoch 142/500\n", + "1/0, train_loss: 0.4128\n", + "2 epoch 142 average loss: 0.4128\n", + "current epoch: 142 current mean dice: 0.0456\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 143/500\n", + "1/0, train_loss: 0.4152\n", + "2 epoch 143 average loss: 0.4152\n", + "----------\n", + "2: epoch 144/500\n", + "1/0, train_loss: 0.4135\n", + "2 epoch 144 average loss: 0.4135\n", + "current epoch: 144 current mean dice: 0.0475\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 145/500\n", + "1/0, train_loss: 0.4455\n", + "2 epoch 145 average loss: 0.4455\n", + "----------\n", + "2: epoch 146/500\n", + "1/0, train_loss: 0.4207\n", + "2 epoch 146 average loss: 0.4207\n", + "current epoch: 146 current mean dice: 0.0524\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 147/500\n", + "1/0, train_loss: 0.4249\n", + "2 epoch 147 average loss: 0.4249\n", + "----------\n", + "2: epoch 148/500\n", + "1/0, train_loss: 0.4377\n", + "2 epoch 148 average loss: 0.4377\n", + "current epoch: 148 current mean dice: 0.1484\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 149/500\n", + "1/0, train_loss: 0.4085\n", + "2 epoch 149 average loss: 0.4085\n", + "----------\n", + "2: epoch 150/500\n", + "1/0, train_loss: 0.4081\n", + "2 epoch 150 average loss: 0.4081\n", + "current epoch: 150 current mean dice: 0.1477\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 151/500\n", + "1/0, train_loss: 0.4184\n", + "2 epoch 151 average loss: 0.4184\n", + "----------\n", + "2: epoch 152/500\n", + "1/0, train_loss: 0.4091\n", + "2 epoch 152 average loss: 0.4091\n", + "current epoch: 152 current mean dice: 0.0720\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 153/500\n", + "1/0, train_loss: 0.4134\n", + "2 epoch 153 average loss: 0.4134\n", + "----------\n", + "2: epoch 154/500\n", + "1/0, train_loss: 0.4134\n", + "2 epoch 154 average loss: 0.4134\n", + "current epoch: 154 current mean dice: 0.0586\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 155/500\n", + "1/0, train_loss: 0.4091\n", + "2 epoch 155 average loss: 0.4091\n", + "----------\n", + "2: epoch 156/500\n", + "1/0, train_loss: 0.4200\n", + "2 epoch 156 average loss: 0.4200\n", + "current epoch: 156 current mean dice: 0.0518\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 157/500\n", + "1/0, train_loss: 0.4119\n", + "2 epoch 157 average loss: 0.4119\n", + "----------\n", + "2: epoch 158/500\n", + "1/0, train_loss: 0.4084\n", + "2 epoch 158 average loss: 0.4084\n", + "current epoch: 158 current mean dice: 0.0372\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 159/500\n", + "1/0, train_loss: 0.4136\n", + "2 epoch 159 average loss: 0.4136\n", + "----------\n", + "2: epoch 160/500\n", + "1/0, train_loss: 0.4046\n", + "2 epoch 160 average loss: 0.4046\n", + "current epoch: 160 current mean dice: 0.0720\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 161/500\n", + "1/0, train_loss: 0.4113\n", + "2 epoch 161 average loss: 0.4113\n", + "----------\n", + "2: epoch 162/500\n", + "1/0, train_loss: 0.4372\n", + "2 epoch 162 average loss: 0.4372\n", + "current epoch: 162 current mean dice: 0.0548\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 163/500\n", + "1/0, train_loss: 0.4100\n", + "2 epoch 163 average loss: 0.4100\n", + "----------\n", + "2: epoch 164/500\n", + "1/0, train_loss: 0.4062\n", + "2 epoch 164 average loss: 0.4062\n", + "current epoch: 164 current mean dice: 0.1206\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 165/500\n", + "1/0, train_loss: 0.4096\n", + "2 epoch 165 average loss: 0.4096\n", + "----------\n", + "2: epoch 166/500\n", + "1/0, train_loss: 0.4038\n", + "2 epoch 166 average loss: 0.4038\n", + "current epoch: 166 current mean dice: 0.1523\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 167/500\n", + "1/0, train_loss: 0.4062\n", + "2 epoch 167 average loss: 0.4062\n", + "----------\n", + "2: epoch 168/500\n", + "1/0, train_loss: 0.4055\n", + "2 epoch 168 average loss: 0.4055\n", + "current epoch: 168 current mean dice: 0.1736\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 169/500\n", + "1/0, train_loss: 0.4050\n", + "2 epoch 169 average loss: 0.4050\n", + "----------\n", + "2: epoch 170/500\n", + "1/0, train_loss: 0.4004\n", + "2 epoch 170 average loss: 0.4004\n", + "current epoch: 170 current mean dice: 0.1120\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 171/500\n", + "1/0, train_loss: 0.4032\n", + "2 epoch 171 average loss: 0.4032\n", + "----------\n", + "2: epoch 172/500\n", + "1/0, train_loss: 0.4102\n", + "2 epoch 172 average loss: 0.4102\n", + "current epoch: 172 current mean dice: 0.0635\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 173/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.3959\n", + "2 epoch 173 average loss: 0.3959\n", + "----------\n", + "2: epoch 174/500\n", + "1/0, train_loss: 0.4066\n", + "2 epoch 174 average loss: 0.4066\n", + "current epoch: 174 current mean dice: 0.0585\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 175/500\n", + "1/0, train_loss: 0.4026\n", + "2 epoch 175 average loss: 0.4026\n", + "----------\n", + "2: epoch 176/500\n", + "1/0, train_loss: 0.3968\n", + "2 epoch 176 average loss: 0.3968\n", + "current epoch: 176 current mean dice: 0.0344\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 177/500\n", + "1/0, train_loss: 0.4018\n", + "2 epoch 177 average loss: 0.4018\n", + "----------\n", + "2: epoch 178/500\n", + "1/0, train_loss: 0.4037\n", + "2 epoch 178 average loss: 0.4037\n", + "current epoch: 178 current mean dice: 0.0375\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 179/500\n", + "1/0, train_loss: 0.4018\n", + "2 epoch 179 average loss: 0.4018\n", + "----------\n", + "2: epoch 180/500\n", + "1/0, train_loss: 0.3980\n", + "2 epoch 180 average loss: 0.3980\n", + "current epoch: 180 current mean dice: 0.0401\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 181/500\n", + "1/0, train_loss: 0.4051\n", + "2 epoch 181 average loss: 0.4051\n", + "----------\n", + "2: epoch 182/500\n", + "1/0, train_loss: 0.3963\n", + "2 epoch 182 average loss: 0.3963\n", + "current epoch: 182 current mean dice: 0.0567\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 183/500\n", + "1/0, train_loss: 0.3921\n", + "2 epoch 183 average loss: 0.3921\n", + "----------\n", + "2: epoch 184/500\n", + "1/0, train_loss: 0.3888\n", + "2 epoch 184 average loss: 0.3888\n", + "current epoch: 184 current mean dice: 0.0250\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 185/500\n", + "1/0, train_loss: 0.4047\n", + "2 epoch 185 average loss: 0.4047\n", + "----------\n", + "2: epoch 186/500\n", + "1/0, train_loss: 0.3983\n", + "2 epoch 186 average loss: 0.3983\n", + "current epoch: 186 current mean dice: 0.0321\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 187/500\n", + "1/0, train_loss: 0.4011\n", + "2 epoch 187 average loss: 0.4011\n", + "----------\n", + "2: epoch 188/500\n", + "1/0, train_loss: 0.3945\n", + "2 epoch 188 average loss: 0.3945\n", + "current epoch: 188 current mean dice: 0.0166\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 189/500\n", + "1/0, train_loss: 0.3945\n", + "2 epoch 189 average loss: 0.3945\n", + "----------\n", + "2: epoch 190/500\n", + "1/0, train_loss: 0.3992\n", + "2 epoch 190 average loss: 0.3992\n", + "current epoch: 190 current mean dice: 0.0117\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 191/500\n", + "1/0, train_loss: 0.4006\n", + "2 epoch 191 average loss: 0.4006\n", + "----------\n", + "2: epoch 192/500\n", + "1/0, train_loss: 0.3973\n", + "2 epoch 192 average loss: 0.3973\n", + "current epoch: 192 current mean dice: 0.0117\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 193/500\n", + "1/0, train_loss: 0.3947\n", + "2 epoch 193 average loss: 0.3947\n", + "----------\n", + "2: epoch 194/500\n", + "1/0, train_loss: 0.4001\n", + "2 epoch 194 average loss: 0.4001\n", + "current epoch: 194 current mean dice: 0.0110\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 195/500\n", + "1/0, train_loss: 0.3878\n", + "2 epoch 195 average loss: 0.3878\n", + "----------\n", + "2: epoch 196/500\n", + "1/0, train_loss: 0.3947\n", + "2 epoch 196 average loss: 0.3947\n", + "current epoch: 196 current mean dice: 0.1302\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 197/500\n", + "1/0, train_loss: 0.3872\n", + "2 epoch 197 average loss: 0.3872\n", + "----------\n", + "2: epoch 198/500\n", + "1/0, train_loss: 0.3869\n", + "2 epoch 198 average loss: 0.3869\n", + "current epoch: 198 current mean dice: 0.1387\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 199/500\n", + "1/0, train_loss: 0.3963\n", + "2 epoch 199 average loss: 0.3963\n", + "----------\n", + "2: epoch 200/500\n", + "1/0, train_loss: 0.3915\n", + "2 epoch 200 average loss: 0.3915\n", + "current epoch: 200 current mean dice: 0.1322\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 201/500\n", + "1/0, train_loss: 0.3926\n", + "2 epoch 201 average loss: 0.3926\n", + "----------\n", + "2: epoch 202/500\n", + "1/0, train_loss: 0.3886\n", + "2 epoch 202 average loss: 0.3886\n", + "current epoch: 202 current mean dice: 0.1304\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 203/500\n", + "1/0, train_loss: 0.3895\n", + "2 epoch 203 average loss: 0.3895\n", + "----------\n", + "2: epoch 204/500\n", + "1/0, train_loss: 0.3936\n", + "2 epoch 204 average loss: 0.3936\n", + "current epoch: 204 current mean dice: 0.1327\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 205/500\n", + "1/0, train_loss: 0.3907\n", + "2 epoch 205 average loss: 0.3907\n", + "----------\n", + "2: epoch 206/500\n", + "1/0, train_loss: 0.3867\n", + "2 epoch 206 average loss: 0.3867\n", + "current epoch: 206 current mean dice: 0.1329\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 207/500\n", + "1/0, train_loss: 0.3975\n", + "2 epoch 207 average loss: 0.3975\n", + "----------\n", + "2: epoch 208/500\n", + "1/0, train_loss: 0.3927\n", + "2 epoch 208 average loss: 0.3927\n", + "current epoch: 208 current mean dice: 0.1209\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 209/500\n", + "1/0, train_loss: 0.3841\n", + "2 epoch 209 average loss: 0.3841\n", + "----------\n", + "2: epoch 210/500\n", + "1/0, train_loss: 0.3912\n", + "2 epoch 210 average loss: 0.3912\n", + "current epoch: 210 current mean dice: 0.0274\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 211/500\n", + "1/0, train_loss: 0.3866\n", + "2 epoch 211 average loss: 0.3866\n", + "----------\n", + "2: epoch 212/500\n", + "1/0, train_loss: 0.4310\n", + "2 epoch 212 average loss: 0.4310\n", + "current epoch: 212 current mean dice: 0.0126\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 213/500\n", + "1/0, train_loss: 0.3911\n", + "2 epoch 213 average loss: 0.3911\n", + "----------\n", + "2: epoch 214/500\n", + "1/0, train_loss: 0.4036\n", + "2 epoch 214 average loss: 0.4036\n", + "current epoch: 214 current mean dice: 0.0260\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 215/500\n", + "1/0, train_loss: 0.4176\n", + "2 epoch 215 average loss: 0.4176\n", + "----------\n", + "2: epoch 216/500\n", + "1/0, train_loss: 0.4056\n", + "2 epoch 216 average loss: 0.4056\n", + "current epoch: 216 current mean dice: 0.0199\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 217/500\n", + "1/0, train_loss: 0.3975\n", + "2 epoch 217 average loss: 0.3975\n", + "----------\n", + "2: epoch 218/500\n", + "1/0, train_loss: 0.4073\n", + "2 epoch 218 average loss: 0.4073\n", + "current epoch: 218 current mean dice: 0.1508\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 219/500\n", + "1/0, train_loss: 0.3994\n", + "2 epoch 219 average loss: 0.3994\n", + "----------\n", + "2: epoch 220/500\n", + "1/0, train_loss: 0.3927\n", + "2 epoch 220 average loss: 0.3927\n", + "current epoch: 220 current mean dice: 0.1483\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 221/500\n", + "1/0, train_loss: 0.4023\n", + "2 epoch 221 average loss: 0.4023\n", + "----------\n", + "2: epoch 222/500\n", + "1/0, train_loss: 0.4353\n", + "2 epoch 222 average loss: 0.4353\n", + "current epoch: 222 current mean dice: 0.1554\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 223/500\n", + "1/0, train_loss: 0.4330\n", + "2 epoch 223 average loss: 0.4330\n", + "----------\n", + "2: epoch 224/500\n", + "1/0, train_loss: 0.4039\n", + "2 epoch 224 average loss: 0.4039\n", + "current epoch: 224 current mean dice: 0.1520\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 225/500\n", + "1/0, train_loss: 0.3985\n", + "2 epoch 225 average loss: 0.3985\n", + "----------\n", + "2: epoch 226/500\n", + "1/0, train_loss: 0.4004\n", + "2 epoch 226 average loss: 0.4004\n", + "current epoch: 226 current mean dice: 0.0284\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 227/500\n", + "1/0, train_loss: 0.3976\n", + "2 epoch 227 average loss: 0.3976\n", + "----------\n", + "2: epoch 228/500\n", + "1/0, train_loss: 0.3951\n", + "2 epoch 228 average loss: 0.3951\n", + "current epoch: 228 current mean dice: 0.0356\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 229/500\n", + "1/0, train_loss: 0.4128\n", + "2 epoch 229 average loss: 0.4128\n", + "----------\n", + "2: epoch 230/500\n", + "1/0, train_loss: 0.4115\n", + "2 epoch 230 average loss: 0.4115\n", + "current epoch: 230 current mean dice: 0.0367\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 231/500\n", + "1/0, train_loss: 0.3957\n", + "2 epoch 231 average loss: 0.3957\n", + "----------\n", + "2: epoch 232/500\n", + "1/0, train_loss: 0.4033\n", + "2 epoch 232 average loss: 0.4033\n", + "current epoch: 232 current mean dice: 0.0400\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 233/500\n", + "1/0, train_loss: 0.4032\n", + "2 epoch 233 average loss: 0.4032\n", + "----------\n", + "2: epoch 234/500\n", + "1/0, train_loss: 0.4025\n", + "2 epoch 234 average loss: 0.4025\n", + "current epoch: 234 current mean dice: 0.0355\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 235/500\n", + "1/0, train_loss: 0.3926\n", + "2 epoch 235 average loss: 0.3926\n", + "----------\n", + "2: epoch 236/500\n", + "1/0, train_loss: 0.4010\n", + "2 epoch 236 average loss: 0.4010\n", + "current epoch: 236 current mean dice: 0.0137\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 237/500\n", + "1/0, train_loss: 0.3943\n", + "2 epoch 237 average loss: 0.3943\n", + "----------\n", + "2: epoch 238/500\n", + "1/0, train_loss: 0.3907\n", + "2 epoch 238 average loss: 0.3907\n", + "current epoch: 238 current mean dice: 0.0103\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 239/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.3889\n", + "2 epoch 239 average loss: 0.3889\n", + "----------\n", + "2: epoch 240/500\n", + "1/0, train_loss: 0.3910\n", + "2 epoch 240 average loss: 0.3910\n", + "current epoch: 240 current mean dice: 0.0092\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 241/500\n", + "1/0, train_loss: 0.3927\n", + "2 epoch 241 average loss: 0.3927\n", + "----------\n", + "2: epoch 242/500\n", + "1/0, train_loss: 0.3927\n", + "2 epoch 242 average loss: 0.3927\n", + "current epoch: 242 current mean dice: 0.0093\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 243/500\n", + "1/0, train_loss: 0.3839\n", + "2 epoch 243 average loss: 0.3839\n", + "----------\n", + "2: epoch 244/500\n", + "1/0, train_loss: 0.3898\n", + "2 epoch 244 average loss: 0.3898\n", + "current epoch: 244 current mean dice: 0.0142\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 245/500\n", + "1/0, train_loss: 0.3903\n", + "2 epoch 245 average loss: 0.3903\n", + "----------\n", + "2: epoch 246/500\n", + "1/0, train_loss: 0.3873\n", + "2 epoch 246 average loss: 0.3873\n", + "current epoch: 246 current mean dice: 0.0182\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 247/500\n", + "1/0, train_loss: 0.4209\n", + "2 epoch 247 average loss: 0.4209\n", + "----------\n", + "2: epoch 248/500\n", + "1/0, train_loss: 0.3944\n", + "2 epoch 248 average loss: 0.3944\n", + "current epoch: 248 current mean dice: 0.0187\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 249/500\n", + "1/0, train_loss: 0.3888\n", + "2 epoch 249 average loss: 0.3888\n", + "----------\n", + "2: epoch 250/500\n", + "1/0, train_loss: 0.3792\n", + "2 epoch 250 average loss: 0.3792\n", + "current epoch: 250 current mean dice: 0.0126\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 251/500\n", + "1/0, train_loss: 0.3934\n", + "2 epoch 251 average loss: 0.3934\n", + "----------\n", + "2: epoch 252/500\n", + "1/0, train_loss: 0.3824\n", + "2 epoch 252 average loss: 0.3824\n", + "current epoch: 252 current mean dice: 0.0141\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 253/500\n", + "1/0, train_loss: 0.3841\n", + "2 epoch 253 average loss: 0.3841\n", + "----------\n", + "2: epoch 254/500\n", + "1/0, train_loss: 0.3883\n", + "2 epoch 254 average loss: 0.3883\n", + "current epoch: 254 current mean dice: 0.0114\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 255/500\n", + "1/0, train_loss: 0.3810\n", + "2 epoch 255 average loss: 0.3810\n", + "----------\n", + "2: epoch 256/500\n", + "1/0, train_loss: 0.3873\n", + "2 epoch 256 average loss: 0.3873\n", + "current epoch: 256 current mean dice: 0.0105\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 257/500\n", + "1/0, train_loss: 0.3853\n", + "2 epoch 257 average loss: 0.3853\n", + "----------\n", + "2: epoch 258/500\n", + "1/0, train_loss: 0.3819\n", + "2 epoch 258 average loss: 0.3819\n", + "current epoch: 258 current mean dice: 0.0081\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 259/500\n", + "1/0, train_loss: 0.3829\n", + "2 epoch 259 average loss: 0.3829\n", + "----------\n", + "2: epoch 260/500\n", + "1/0, train_loss: 0.3942\n", + "2 epoch 260 average loss: 0.3942\n", + "current epoch: 260 current mean dice: 0.0065\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 261/500\n", + "1/0, train_loss: 0.3910\n", + "2 epoch 261 average loss: 0.3910\n", + "----------\n", + "2: epoch 262/500\n", + "1/0, train_loss: 0.3895\n", + "2 epoch 262 average loss: 0.3895\n", + "current epoch: 262 current mean dice: 0.0043\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 263/500\n", + "1/0, train_loss: 0.3865\n", + "2 epoch 263 average loss: 0.3865\n", + "----------\n", + "2: epoch 264/500\n", + "1/0, train_loss: 0.3840\n", + "2 epoch 264 average loss: 0.3840\n", + "current epoch: 264 current mean dice: 0.0083\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 265/500\n", + "1/0, train_loss: 0.3788\n", + "2 epoch 265 average loss: 0.3788\n", + "----------\n", + "2: epoch 266/500\n", + "1/0, train_loss: 0.3811\n", + "2 epoch 266 average loss: 0.3811\n", + "current epoch: 266 current mean dice: 0.0056\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 267/500\n", + "1/0, train_loss: 0.3809\n", + "2 epoch 267 average loss: 0.3809\n", + "----------\n", + "2: epoch 268/500\n", + "1/0, train_loss: 0.3812\n", + "2 epoch 268 average loss: 0.3812\n", + "current epoch: 268 current mean dice: 0.0028\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 269/500\n", + "1/0, train_loss: 0.3853\n", + "2 epoch 269 average loss: 0.3853\n", + "----------\n", + "2: epoch 270/500\n", + "1/0, train_loss: 0.3796\n", + "2 epoch 270 average loss: 0.3796\n", + "current epoch: 270 current mean dice: 0.0023\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 271/500\n", + "1/0, train_loss: 0.3843\n", + "2 epoch 271 average loss: 0.3843\n", + "----------\n", + "2: epoch 272/500\n", + "1/0, train_loss: 0.3747\n", + "2 epoch 272 average loss: 0.3747\n", + "current epoch: 272 current mean dice: 0.0025\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 273/500\n", + "1/0, train_loss: 0.3805\n", + "2 epoch 273 average loss: 0.3805\n", + "----------\n", + "2: epoch 274/500\n", + "1/0, train_loss: 0.3773\n", + "2 epoch 274 average loss: 0.3773\n", + "current epoch: 274 current mean dice: 0.0028\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 275/500\n", + "1/0, train_loss: 0.3876\n", + "2 epoch 275 average loss: 0.3876\n", + "----------\n", + "2: epoch 276/500\n", + "1/0, train_loss: 0.3787\n", + "2 epoch 276 average loss: 0.3787\n", + "current epoch: 276 current mean dice: 0.0030\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 277/500\n", + "1/0, train_loss: 0.3819\n", + "2 epoch 277 average loss: 0.3819\n", + "----------\n", + "2: epoch 278/500\n", + "1/0, train_loss: 0.3754\n", + "2 epoch 278 average loss: 0.3754\n", + "current epoch: 278 current mean dice: 0.0040\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 279/500\n", + "1/0, train_loss: 0.3759\n", + "2 epoch 279 average loss: 0.3759\n", + "----------\n", + "2: epoch 280/500\n", + "1/0, train_loss: 0.3808\n", + "2 epoch 280 average loss: 0.3808\n", + "current epoch: 280 current mean dice: 0.0033\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 281/500\n", + "1/0, train_loss: 0.3758\n", + "2 epoch 281 average loss: 0.3758\n", + "----------\n", + "2: epoch 282/500\n", + "1/0, train_loss: 0.3753\n", + "2 epoch 282 average loss: 0.3753\n", + "current epoch: 282 current mean dice: 0.0025\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 283/500\n", + "1/0, train_loss: 0.3808\n", + "2 epoch 283 average loss: 0.3808\n", + "----------\n", + "2: epoch 284/500\n", + "1/0, train_loss: 0.3765\n", + "2 epoch 284 average loss: 0.3765\n", + "current epoch: 284 current mean dice: 0.0025\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 285/500\n", + "1/0, train_loss: 0.4305\n", + "2 epoch 285 average loss: 0.4305\n", + "----------\n", + "2: epoch 286/500\n", + "1/0, train_loss: 0.3746\n", + "2 epoch 286 average loss: 0.3746\n", + "current epoch: 286 current mean dice: 0.0060\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 287/500\n", + "1/0, train_loss: 0.3789\n", + "2 epoch 287 average loss: 0.3789\n", + "----------\n", + "2: epoch 288/500\n", + "1/0, train_loss: 0.3753\n", + "2 epoch 288 average loss: 0.3753\n", + "current epoch: 288 current mean dice: 0.0100\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 289/500\n", + "1/0, train_loss: 0.3831\n", + "2 epoch 289 average loss: 0.3831\n", + "----------\n", + "2: epoch 290/500\n", + "1/0, train_loss: 0.3814\n", + "2 epoch 290 average loss: 0.3814\n", + "current epoch: 290 current mean dice: 0.0081\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 291/500\n", + "1/0, train_loss: 0.3781\n", + "2 epoch 291 average loss: 0.3781\n", + "----------\n", + "2: epoch 292/500\n", + "1/0, train_loss: 0.3811\n", + "2 epoch 292 average loss: 0.3811\n", + "current epoch: 292 current mean dice: 0.0097\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 293/500\n", + "1/0, train_loss: 0.3771\n", + "2 epoch 293 average loss: 0.3771\n", + "----------\n", + "2: epoch 294/500\n", + "1/0, train_loss: 0.3815\n", + "2 epoch 294 average loss: 0.3815\n", + "current epoch: 294 current mean dice: 0.0094\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 295/500\n", + "1/0, train_loss: 0.3798\n", + "2 epoch 295 average loss: 0.3798\n", + "----------\n", + "2: epoch 296/500\n", + "1/0, train_loss: 0.3786\n", + "2 epoch 296 average loss: 0.3786\n", + "current epoch: 296 current mean dice: 0.0086\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 297/500\n", + "1/0, train_loss: 0.3804\n", + "2 epoch 297 average loss: 0.3804\n", + "----------\n", + "2: epoch 298/500\n", + "1/0, train_loss: 0.3780\n", + "2 epoch 298 average loss: 0.3780\n", + "current epoch: 298 current mean dice: 0.0051\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 299/500\n", + "1/0, train_loss: 0.3762\n", + "2 epoch 299 average loss: 0.3762\n", + "----------\n", + "2: epoch 300/500\n", + "1/0, train_loss: 0.3728\n", + "2 epoch 300 average loss: 0.3728\n", + "current epoch: 300 current mean dice: 0.0032\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 301/500\n", + "1/0, train_loss: 0.3729\n", + "2 epoch 301 average loss: 0.3729\n", + "----------\n", + "2: epoch 302/500\n", + "1/0, train_loss: 0.3715\n", + "2 epoch 302 average loss: 0.3715\n", + "current epoch: 302 current mean dice: 0.0025\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 303/500\n", + "1/0, train_loss: 0.3721\n", + "2 epoch 303 average loss: 0.3721\n", + "----------\n", + "2: epoch 304/500\n", + "1/0, train_loss: 0.3716\n", + "2 epoch 304 average loss: 0.3716\n", + "current epoch: 304 current mean dice: 0.0031\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 305/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.3695\n", + "2 epoch 305 average loss: 0.3695\n", + "----------\n", + "2: epoch 306/500\n", + "1/0, train_loss: 0.3762\n", + "2 epoch 306 average loss: 0.3762\n", + "current epoch: 306 current mean dice: 0.0039\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 307/500\n", + "1/0, train_loss: 0.3707\n", + "2 epoch 307 average loss: 0.3707\n", + "----------\n", + "2: epoch 308/500\n", + "1/0, train_loss: 0.3704\n", + "2 epoch 308 average loss: 0.3704\n", + "current epoch: 308 current mean dice: 0.0053\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 309/500\n", + "1/0, train_loss: 0.3760\n", + "2 epoch 309 average loss: 0.3760\n", + "----------\n", + "2: epoch 310/500\n", + "1/0, train_loss: 0.3728\n", + "2 epoch 310 average loss: 0.3728\n", + "current epoch: 310 current mean dice: 0.0027\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 311/500\n", + "1/0, train_loss: 0.3729\n", + "2 epoch 311 average loss: 0.3729\n", + "----------\n", + "2: epoch 312/500\n", + "1/0, train_loss: 0.3737\n", + "2 epoch 312 average loss: 0.3737\n", + "current epoch: 312 current mean dice: 0.0024\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 313/500\n", + "1/0, train_loss: 0.3791\n", + "2 epoch 313 average loss: 0.3791\n", + "----------\n", + "2: epoch 314/500\n", + "1/0, train_loss: 0.3722\n", + "2 epoch 314 average loss: 0.3722\n", + "current epoch: 314 current mean dice: 0.0037\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 315/500\n", + "1/0, train_loss: 0.3735\n", + "2 epoch 315 average loss: 0.3735\n", + "----------\n", + "2: epoch 316/500\n", + "1/0, train_loss: 0.3786\n", + "2 epoch 316 average loss: 0.3786\n", + "current epoch: 316 current mean dice: 0.0028\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 317/500\n", + "1/0, train_loss: 0.3741\n", + "2 epoch 317 average loss: 0.3741\n", + "----------\n", + "2: epoch 318/500\n", + "1/0, train_loss: 0.3702\n", + "2 epoch 318 average loss: 0.3702\n", + "current epoch: 318 current mean dice: 0.0014\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 319/500\n", + "1/0, train_loss: 0.3785\n", + "2 epoch 319 average loss: 0.3785\n", + "----------\n", + "2: epoch 320/500\n", + "1/0, train_loss: 0.3724\n", + "2 epoch 320 average loss: 0.3724\n", + "current epoch: 320 current mean dice: 0.0019\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 321/500\n", + "1/0, train_loss: 0.3783\n", + "2 epoch 321 average loss: 0.3783\n", + "----------\n", + "2: epoch 322/500\n", + "1/0, train_loss: 0.3791\n", + "2 epoch 322 average loss: 0.3791\n", + "current epoch: 322 current mean dice: 0.0036\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 323/500\n", + "1/0, train_loss: 0.3760\n", + "2 epoch 323 average loss: 0.3760\n", + "----------\n", + "2: epoch 324/500\n", + "1/0, train_loss: 0.3780\n", + "2 epoch 324 average loss: 0.3780\n", + "current epoch: 324 current mean dice: 0.0025\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 325/500\n", + "1/0, train_loss: 0.3775\n", + "2 epoch 325 average loss: 0.3775\n", + "----------\n", + "2: epoch 326/500\n", + "1/0, train_loss: 0.3743\n", + "2 epoch 326 average loss: 0.3743\n", + "current epoch: 326 current mean dice: 0.0015\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 327/500\n", + "1/0, train_loss: 0.4214\n", + "2 epoch 327 average loss: 0.4214\n", + "----------\n", + "2: epoch 328/500\n", + "1/0, train_loss: 0.3845\n", + "2 epoch 328 average loss: 0.3845\n", + "current epoch: 328 current mean dice: 0.0055\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 329/500\n", + "1/0, train_loss: 0.3749\n", + "2 epoch 329 average loss: 0.3749\n", + "----------\n", + "2: epoch 330/500\n", + "1/0, train_loss: 0.3789\n", + "2 epoch 330 average loss: 0.3789\n", + "current epoch: 330 current mean dice: 0.0120\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 331/500\n", + "1/0, train_loss: 0.3835\n", + "2 epoch 331 average loss: 0.3835\n", + "----------\n", + "2: epoch 332/500\n", + "1/0, train_loss: 0.3802\n", + "2 epoch 332 average loss: 0.3802\n", + "current epoch: 332 current mean dice: 0.0038\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 333/500\n", + "1/0, train_loss: 0.4097\n", + "2 epoch 333 average loss: 0.4097\n", + "----------\n", + "2: epoch 334/500\n", + "1/0, train_loss: 0.4250\n", + "2 epoch 334 average loss: 0.4250\n", + "current epoch: 334 current mean dice: 0.0646\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 335/500\n", + "1/0, train_loss: 0.4270\n", + "2 epoch 335 average loss: 0.4270\n", + "----------\n", + "2: epoch 336/500\n", + "1/0, train_loss: 0.4129\n", + "2 epoch 336 average loss: 0.4129\n", + "current epoch: 336 current mean dice: 0.0211\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 337/500\n", + "1/0, train_loss: 0.4132\n", + "2 epoch 337 average loss: 0.4132\n", + "----------\n", + "2: epoch 338/500\n", + "1/0, train_loss: 0.4043\n", + "2 epoch 338 average loss: 0.4043\n", + "current epoch: 338 current mean dice: 0.0294\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 339/500\n", + "1/0, train_loss: 0.3872\n", + "2 epoch 339 average loss: 0.3872\n", + "----------\n", + "2: epoch 340/500\n", + "1/0, train_loss: 0.3909\n", + "2 epoch 340 average loss: 0.3909\n", + "current epoch: 340 current mean dice: 0.0250\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 341/500\n", + "1/0, train_loss: 0.3996\n", + "2 epoch 341 average loss: 0.3996\n", + "----------\n", + "2: epoch 342/500\n", + "1/0, train_loss: 0.3943\n", + "2 epoch 342 average loss: 0.3943\n", + "current epoch: 342 current mean dice: 0.0293\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 343/500\n", + "1/0, train_loss: 0.4023\n", + "2 epoch 343 average loss: 0.4023\n", + "----------\n", + "2: epoch 344/500\n", + "1/0, train_loss: 0.3835\n", + "2 epoch 344 average loss: 0.3835\n", + "current epoch: 344 current mean dice: 0.0266\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 345/500\n", + "1/0, train_loss: 0.3882\n", + "2 epoch 345 average loss: 0.3882\n", + "----------\n", + "2: epoch 346/500\n", + "1/0, train_loss: 0.3881\n", + "2 epoch 346 average loss: 0.3881\n", + "current epoch: 346 current mean dice: 0.0227\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 347/500\n", + "1/0, train_loss: 0.3850\n", + "2 epoch 347 average loss: 0.3850\n", + "----------\n", + "2: epoch 348/500\n", + "1/0, train_loss: 0.3780\n", + "2 epoch 348 average loss: 0.3780\n", + "current epoch: 348 current mean dice: 0.0142\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 349/500\n", + "1/0, train_loss: 0.3940\n", + "2 epoch 349 average loss: 0.3940\n", + "----------\n", + "2: epoch 350/500\n", + "1/0, train_loss: 0.3891\n", + "2 epoch 350 average loss: 0.3891\n", + "current epoch: 350 current mean dice: 0.0057\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 351/500\n", + "1/0, train_loss: 0.3840\n", + "2 epoch 351 average loss: 0.3840\n", + "----------\n", + "2: epoch 352/500\n", + "1/0, train_loss: 0.4057\n", + "2 epoch 352 average loss: 0.4057\n", + "current epoch: 352 current mean dice: 0.0636\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 353/500\n", + "1/0, train_loss: 0.4044\n", + "2 epoch 353 average loss: 0.4044\n", + "----------\n", + "2: epoch 354/500\n", + "1/0, train_loss: 0.3868\n", + "2 epoch 354 average loss: 0.3868\n", + "current epoch: 354 current mean dice: 0.0211\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 355/500\n", + "1/0, train_loss: 0.3843\n", + "2 epoch 355 average loss: 0.3843\n", + "----------\n", + "2: epoch 356/500\n", + "1/0, train_loss: 0.3837\n", + "2 epoch 356 average loss: 0.3837\n", + "current epoch: 356 current mean dice: 0.0211\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 357/500\n", + "1/0, train_loss: 0.3721\n", + "2 epoch 357 average loss: 0.3721\n", + "----------\n", + "2: epoch 358/500\n", + "1/0, train_loss: 0.3751\n", + "2 epoch 358 average loss: 0.3751\n", + "current epoch: 358 current mean dice: 0.0141\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 359/500\n", + "1/0, train_loss: 0.3768\n", + "2 epoch 359 average loss: 0.3768\n", + "----------\n", + "2: epoch 360/500\n", + "1/0, train_loss: 0.3712\n", + "2 epoch 360 average loss: 0.3712\n", + "current epoch: 360 current mean dice: 0.0175\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 361/500\n", + "1/0, train_loss: 0.3788\n", + "2 epoch 361 average loss: 0.3788\n", + "----------\n", + "2: epoch 362/500\n", + "1/0, train_loss: 0.3751\n", + "2 epoch 362 average loss: 0.3751\n", + "current epoch: 362 current mean dice: 0.0187\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 363/500\n", + "1/0, train_loss: 0.3762\n", + "2 epoch 363 average loss: 0.3762\n", + "----------\n", + "2: epoch 364/500\n", + "1/0, train_loss: 0.3766\n", + "2 epoch 364 average loss: 0.3766\n", + "current epoch: 364 current mean dice: 0.0049\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 365/500\n", + "1/0, train_loss: 0.3781\n", + "2 epoch 365 average loss: 0.3781\n", + "----------\n", + "2: epoch 366/500\n", + "1/0, train_loss: 0.3740\n", + "2 epoch 366 average loss: 0.3740\n", + "current epoch: 366 current mean dice: 0.0048\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 367/500\n", + "1/0, train_loss: 0.3700\n", + "2 epoch 367 average loss: 0.3700\n", + "----------\n", + "2: epoch 368/500\n", + "1/0, train_loss: 0.3724\n", + "2 epoch 368 average loss: 0.3724\n", + "current epoch: 368 current mean dice: 0.0054\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 369/500\n", + "1/0, train_loss: 0.3701\n", + "2 epoch 369 average loss: 0.3701\n", + "----------\n", + "2: epoch 370/500\n", + "1/0, train_loss: 0.3705\n", + "2 epoch 370 average loss: 0.3705\n", + "current epoch: 370 current mean dice: 0.0095\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 371/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.3718\n", + "2 epoch 371 average loss: 0.3718\n", + "----------\n", + "2: epoch 372/500\n", + "1/0, train_loss: 0.3778\n", + "2 epoch 372 average loss: 0.3778\n", + "current epoch: 372 current mean dice: 0.0067\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 373/500\n", + "1/0, train_loss: 0.3735\n", + "2 epoch 373 average loss: 0.3735\n", + "----------\n", + "2: epoch 374/500\n", + "1/0, train_loss: 0.3707\n", + "2 epoch 374 average loss: 0.3707\n", + "current epoch: 374 current mean dice: 0.0130\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 375/500\n", + "1/0, train_loss: 0.3771\n", + "2 epoch 375 average loss: 0.3771\n", + "----------\n", + "2: epoch 376/500\n", + "1/0, train_loss: 0.3746\n", + "2 epoch 376 average loss: 0.3746\n", + "current epoch: 376 current mean dice: 0.0155\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 377/500\n", + "1/0, train_loss: 0.3785\n", + "2 epoch 377 average loss: 0.3785\n", + "----------\n", + "2: epoch 378/500\n", + "1/0, train_loss: 0.3709\n", + "2 epoch 378 average loss: 0.3709\n", + "current epoch: 378 current mean dice: 0.0128\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 379/500\n", + "1/0, train_loss: 0.3693\n", + "2 epoch 379 average loss: 0.3693\n", + "----------\n", + "2: epoch 380/500\n", + "1/0, train_loss: 0.3733\n", + "2 epoch 380 average loss: 0.3733\n", + "current epoch: 380 current mean dice: 0.0026\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 381/500\n", + "1/0, train_loss: 0.3710\n", + "2 epoch 381 average loss: 0.3710\n", + "----------\n", + "2: epoch 382/500\n", + "1/0, train_loss: 0.3703\n", + "2 epoch 382 average loss: 0.3703\n", + "current epoch: 382 current mean dice: 0.0011\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 383/500\n", + "1/0, train_loss: 0.3736\n", + "2 epoch 383 average loss: 0.3736\n", + "----------\n", + "2: epoch 384/500\n", + "1/0, train_loss: 0.3726\n", + "2 epoch 384 average loss: 0.3726\n", + "current epoch: 384 current mean dice: 0.0010\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 385/500\n", + "1/0, train_loss: 0.3716\n", + "2 epoch 385 average loss: 0.3716\n", + "----------\n", + "2: epoch 386/500\n", + "1/0, train_loss: 0.3689\n", + "2 epoch 386 average loss: 0.3689\n", + "current epoch: 386 current mean dice: 0.0009\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 387/500\n", + "1/0, train_loss: 0.3719\n", + "2 epoch 387 average loss: 0.3719\n", + "----------\n", + "2: epoch 388/500\n", + "1/0, train_loss: 0.3664\n", + "2 epoch 388 average loss: 0.3664\n", + "current epoch: 388 current mean dice: 0.0010\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 389/500\n", + "1/0, train_loss: 0.3734\n", + "2 epoch 389 average loss: 0.3734\n", + "----------\n", + "2: epoch 390/500\n", + "1/0, train_loss: 0.3677\n", + "2 epoch 390 average loss: 0.3677\n", + "current epoch: 390 current mean dice: 0.0010\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 391/500\n", + "1/0, train_loss: 0.3671\n", + "2 epoch 391 average loss: 0.3671\n", + "----------\n", + "2: epoch 392/500\n", + "1/0, train_loss: 0.3730\n", + "2 epoch 392 average loss: 0.3730\n", + "current epoch: 392 current mean dice: 0.0006\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 393/500\n", + "1/0, train_loss: 0.3735\n", + "2 epoch 393 average loss: 0.3735\n", + "----------\n", + "2: epoch 394/500\n", + "1/0, train_loss: 0.3769\n", + "2 epoch 394 average loss: 0.3769\n", + "current epoch: 394 current mean dice: 0.0008\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 395/500\n", + "1/0, train_loss: 0.3664\n", + "2 epoch 395 average loss: 0.3664\n", + "----------\n", + "2: epoch 396/500\n", + "1/0, train_loss: 0.3699\n", + "2 epoch 396 average loss: 0.3699\n", + "current epoch: 396 current mean dice: 0.0014\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 397/500\n", + "1/0, train_loss: 0.3740\n", + "2 epoch 397 average loss: 0.3740\n", + "----------\n", + "2: epoch 398/500\n", + "1/0, train_loss: 0.3663\n", + "2 epoch 398 average loss: 0.3663\n", + "current epoch: 398 current mean dice: 0.0010\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 399/500\n", + "1/0, train_loss: 0.3688\n", + "2 epoch 399 average loss: 0.3688\n", + "----------\n", + "2: epoch 400/500\n", + "1/0, train_loss: 0.3673\n", + "2 epoch 400 average loss: 0.3673\n", + "current epoch: 400 current mean dice: 0.0016\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 401/500\n", + "1/0, train_loss: 0.3716\n", + "2 epoch 401 average loss: 0.3716\n", + "----------\n", + "2: epoch 402/500\n", + "1/0, train_loss: 0.3737\n", + "2 epoch 402 average loss: 0.3737\n", + "current epoch: 402 current mean dice: 0.0017\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 403/500\n", + "1/0, train_loss: 0.3759\n", + "2 epoch 403 average loss: 0.3759\n", + "----------\n", + "2: epoch 404/500\n", + "1/0, train_loss: 0.3711\n", + "2 epoch 404 average loss: 0.3711\n", + "current epoch: 404 current mean dice: 0.0015\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 405/500\n", + "1/0, train_loss: 0.3699\n", + "2 epoch 405 average loss: 0.3699\n", + "----------\n", + "2: epoch 406/500\n", + "1/0, train_loss: 0.3756\n", + "2 epoch 406 average loss: 0.3756\n", + "current epoch: 406 current mean dice: 0.0047\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 407/500\n", + "1/0, train_loss: 0.3700\n", + "2 epoch 407 average loss: 0.3700\n", + "----------\n", + "2: epoch 408/500\n", + "1/0, train_loss: 0.3704\n", + "2 epoch 408 average loss: 0.3704\n", + "current epoch: 408 current mean dice: 0.0036\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 409/500\n", + "1/0, train_loss: 0.3680\n", + "2 epoch 409 average loss: 0.3680\n", + "----------\n", + "2: epoch 410/500\n", + "1/0, train_loss: 0.3694\n", + "2 epoch 410 average loss: 0.3694\n", + "current epoch: 410 current mean dice: 0.0030\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 411/500\n", + "1/0, train_loss: 0.3708\n", + "2 epoch 411 average loss: 0.3708\n", + "----------\n", + "2: epoch 412/500\n", + "1/0, train_loss: 0.3700\n", + "2 epoch 412 average loss: 0.3700\n", + "current epoch: 412 current mean dice: 0.0061\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 413/500\n", + "1/0, train_loss: 0.3700\n", + "2 epoch 413 average loss: 0.3700\n", + "----------\n", + "2: epoch 414/500\n", + "1/0, train_loss: 0.3738\n", + "2 epoch 414 average loss: 0.3738\n", + "current epoch: 414 current mean dice: 0.0078\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 415/500\n", + "1/0, train_loss: 0.3774\n", + "2 epoch 415 average loss: 0.3774\n", + "----------\n", + "2: epoch 416/500\n", + "1/0, train_loss: 0.3657\n", + "2 epoch 416 average loss: 0.3657\n", + "current epoch: 416 current mean dice: 0.0024\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 417/500\n", + "1/0, train_loss: 0.3726\n", + "2 epoch 417 average loss: 0.3726\n", + "----------\n", + "2: epoch 418/500\n", + "1/0, train_loss: 0.3680\n", + "2 epoch 418 average loss: 0.3680\n", + "current epoch: 418 current mean dice: 0.0007\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 419/500\n", + "1/0, train_loss: 0.3685\n", + "2 epoch 419 average loss: 0.3685\n", + "----------\n", + "2: epoch 420/500\n", + "1/0, train_loss: 0.3690\n", + "2 epoch 420 average loss: 0.3690\n", + "current epoch: 420 current mean dice: 0.0010\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 421/500\n", + "1/0, train_loss: 0.3689\n", + "2 epoch 421 average loss: 0.3689\n", + "----------\n", + "2: epoch 422/500\n", + "1/0, train_loss: 0.3705\n", + "2 epoch 422 average loss: 0.3705\n", + "current epoch: 422 current mean dice: 0.0026\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 423/500\n", + "1/0, train_loss: 0.3721\n", + "2 epoch 423 average loss: 0.3721\n", + "----------\n", + "2: epoch 424/500\n", + "1/0, train_loss: 0.3653\n", + "2 epoch 424 average loss: 0.3653\n", + "current epoch: 424 current mean dice: 0.0033\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 425/500\n", + "1/0, train_loss: 0.3691\n", + "2 epoch 425 average loss: 0.3691\n", + "----------\n", + "2: epoch 426/500\n", + "1/0, train_loss: 0.3857\n", + "2 epoch 426 average loss: 0.3857\n", + "current epoch: 426 current mean dice: 0.0045\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 427/500\n", + "1/0, train_loss: 0.3743\n", + "2 epoch 427 average loss: 0.3743\n", + "----------\n", + "2: epoch 428/500\n", + "1/0, train_loss: 0.4226\n", + "2 epoch 428 average loss: 0.4226\n", + "current epoch: 428 current mean dice: 0.0318\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 429/500\n", + "1/0, train_loss: 0.3688\n", + "2 epoch 429 average loss: 0.3688\n", + "----------\n", + "2: epoch 430/500\n", + "1/0, train_loss: 0.4219\n", + "2 epoch 430 average loss: 0.4219\n", + "current epoch: 430 current mean dice: 0.1295\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 431/500\n", + "1/0, train_loss: 0.4239\n", + "2 epoch 431 average loss: 0.4239\n", + "----------\n", + "2: epoch 432/500\n", + "1/0, train_loss: 0.4000\n", + "2 epoch 432 average loss: 0.4000\n", + "current epoch: 432 current mean dice: 0.0140\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 433/500\n", + "1/0, train_loss: 0.3730\n", + "2 epoch 433 average loss: 0.3730\n", + "----------\n", + "2: epoch 434/500\n", + "1/0, train_loss: 0.3702\n", + "2 epoch 434 average loss: 0.3702\n", + "current epoch: 434 current mean dice: 0.0405\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 435/500\n", + "1/0, train_loss: 0.3788\n", + "2 epoch 435 average loss: 0.3788\n", + "----------\n", + "2: epoch 436/500\n", + "1/0, train_loss: 0.3780\n", + "2 epoch 436 average loss: 0.3780\n", + "current epoch: 436 current mean dice: 0.1527\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 437/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.3763\n", + "2 epoch 437 average loss: 0.3763\n", + "----------\n", + "2: epoch 438/500\n", + "1/0, train_loss: 0.4267\n", + "2 epoch 438 average loss: 0.4267\n", + "current epoch: 438 current mean dice: 0.1496\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 439/500\n", + "1/0, train_loss: 0.3758\n", + "2 epoch 439 average loss: 0.3758\n", + "----------\n", + "2: epoch 440/500\n", + "1/0, train_loss: 0.4223\n", + "2 epoch 440 average loss: 0.4223\n", + "current epoch: 440 current mean dice: 0.1543\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 441/500\n", + "1/0, train_loss: 0.3739\n", + "2 epoch 441 average loss: 0.3739\n", + "----------\n", + "2: epoch 442/500\n", + "1/0, train_loss: 0.3732\n", + "2 epoch 442 average loss: 0.3732\n", + "current epoch: 442 current mean dice: 0.1664\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 443/500\n", + "1/0, train_loss: 0.3729\n", + "2 epoch 443 average loss: 0.3729\n", + "----------\n", + "2: epoch 444/500\n", + "1/0, train_loss: 0.3755\n", + "2 epoch 444 average loss: 0.3755\n", + "current epoch: 444 current mean dice: 0.2721\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 445/500\n", + "1/0, train_loss: 0.3746\n", + "2 epoch 445 average loss: 0.3746\n", + "----------\n", + "2: epoch 446/500\n", + "1/0, train_loss: 0.3704\n", + "2 epoch 446 average loss: 0.3704\n", + "current epoch: 446 current mean dice: 0.2937\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 447/500\n", + "1/0, train_loss: 0.3722\n", + "2 epoch 447 average loss: 0.3722\n", + "----------\n", + "2: epoch 448/500\n", + "1/0, train_loss: 0.3710\n", + "2 epoch 448 average loss: 0.3710\n", + "current epoch: 448 current mean dice: 0.2690\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 449/500\n", + "1/0, train_loss: 0.4309\n", + "2 epoch 449 average loss: 0.4309\n", + "----------\n", + "2: epoch 450/500\n", + "1/0, train_loss: 0.3759\n", + "2 epoch 450 average loss: 0.3759\n", + "current epoch: 450 current mean dice: 0.2846\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 451/500\n", + "1/0, train_loss: 0.3719\n", + "2 epoch 451 average loss: 0.3719\n", + "----------\n", + "2: epoch 452/500\n", + "1/0, train_loss: 0.4061\n", + "2 epoch 452 average loss: 0.4061\n", + "current epoch: 452 current mean dice: 0.4293\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 453/500\n", + "1/0, train_loss: 0.4036\n", + "2 epoch 453 average loss: 0.4036\n", + "----------\n", + "2: epoch 454/500\n", + "1/0, train_loss: 0.4206\n", + "2 epoch 454 average loss: 0.4206\n", + "current epoch: 454 current mean dice: 0.3744\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 455/500\n", + "1/0, train_loss: 0.4125\n", + "2 epoch 455 average loss: 0.4125\n", + "----------\n", + "2: epoch 456/500\n", + "1/0, train_loss: 0.3831\n", + "2 epoch 456 average loss: 0.3831\n", + "current epoch: 456 current mean dice: 0.1539\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 457/500\n", + "1/0, train_loss: 0.3740\n", + "2 epoch 457 average loss: 0.3740\n", + "----------\n", + "2: epoch 458/500\n", + "1/0, train_loss: 0.3804\n", + "2 epoch 458 average loss: 0.3804\n", + "current epoch: 458 current mean dice: 0.0614\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 459/500\n", + "1/0, train_loss: 0.3750\n", + "2 epoch 459 average loss: 0.3750\n", + "----------\n", + "2: epoch 460/500\n", + "1/0, train_loss: 0.3734\n", + "2 epoch 460 average loss: 0.3734\n", + "current epoch: 460 current mean dice: 0.0467\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 461/500\n", + "1/0, train_loss: 0.3808\n", + "2 epoch 461 average loss: 0.3808\n", + "----------\n", + "2: epoch 462/500\n", + "1/0, train_loss: 0.3964\n", + "2 epoch 462 average loss: 0.3964\n", + "current epoch: 462 current mean dice: 0.0328\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 463/500\n", + "1/0, train_loss: 0.3750\n", + "2 epoch 463 average loss: 0.3750\n", + "----------\n", + "2: epoch 464/500\n", + "1/0, train_loss: 0.3745\n", + "2 epoch 464 average loss: 0.3745\n", + "current epoch: 464 current mean dice: 0.0239\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 465/500\n", + "1/0, train_loss: 0.3767\n", + "2 epoch 465 average loss: 0.3767\n", + "----------\n", + "2: epoch 466/500\n", + "1/0, train_loss: 0.3780\n", + "2 epoch 466 average loss: 0.3780\n", + "current epoch: 466 current mean dice: 0.0233\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 467/500\n", + "1/0, train_loss: 0.3700\n", + "2 epoch 467 average loss: 0.3700\n", + "----------\n", + "2: epoch 468/500\n", + "1/0, train_loss: 0.3736\n", + "2 epoch 468 average loss: 0.3736\n", + "current epoch: 468 current mean dice: 0.0162\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 469/500\n", + "1/0, train_loss: 0.3720\n", + "2 epoch 469 average loss: 0.3720\n", + "----------\n", + "2: epoch 470/500\n", + "1/0, train_loss: 0.4159\n", + "2 epoch 470 average loss: 0.4159\n", + "current epoch: 470 current mean dice: 0.0162\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 471/500\n", + "1/0, train_loss: 0.3725\n", + "2 epoch 471 average loss: 0.3725\n", + "----------\n", + "2: epoch 472/500\n", + "1/0, train_loss: 0.3758\n", + "2 epoch 472 average loss: 0.3758\n", + "current epoch: 472 current mean dice: 0.0295\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 473/500\n", + "1/0, train_loss: 0.3722\n", + "2 epoch 473 average loss: 0.3722\n", + "----------\n", + "2: epoch 474/500\n", + "1/0, train_loss: 0.3785\n", + "2 epoch 474 average loss: 0.3785\n", + "current epoch: 474 current mean dice: 0.0300\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 475/500\n", + "1/0, train_loss: 0.3816\n", + "2 epoch 475 average loss: 0.3816\n", + "----------\n", + "2: epoch 476/500\n", + "1/0, train_loss: 0.3838\n", + "2 epoch 476 average loss: 0.3838\n", + "current epoch: 476 current mean dice: 0.0242\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 477/500\n", + "1/0, train_loss: 0.3742\n", + "2 epoch 477 average loss: 0.3742\n", + "----------\n", + "2: epoch 478/500\n", + "1/0, train_loss: 0.3783\n", + "2 epoch 478 average loss: 0.3783\n", + "current epoch: 478 current mean dice: 0.0329\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 479/500\n", + "1/0, train_loss: 0.3778\n", + "2 epoch 479 average loss: 0.3778\n", + "----------\n", + "2: epoch 480/500\n", + "1/0, train_loss: 0.3791\n", + "2 epoch 480 average loss: 0.3791\n", + "current epoch: 480 current mean dice: 0.0158\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 481/500\n", + "1/0, train_loss: 0.3728\n", + "2 epoch 481 average loss: 0.3728\n", + "----------\n", + "2: epoch 482/500\n", + "1/0, train_loss: 0.3937\n", + "2 epoch 482 average loss: 0.3937\n", + "current epoch: 482 current mean dice: 0.1723\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 483/500\n", + "1/0, train_loss: 0.4309\n", + "2 epoch 483 average loss: 0.4309\n", + "----------\n", + "2: epoch 484/500\n", + "1/0, train_loss: 0.4433\n", + "2 epoch 484 average loss: 0.4433\n", + "current epoch: 484 current mean dice: 0.0476\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 485/500\n", + "1/0, train_loss: 0.4248\n", + "2 epoch 485 average loss: 0.4248\n", + "----------\n", + "2: epoch 486/500\n", + "1/0, train_loss: 0.4099\n", + "2 epoch 486 average loss: 0.4099\n", + "current epoch: 486 current mean dice: 0.2678\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 487/500\n", + "1/0, train_loss: 0.4126\n", + "2 epoch 487 average loss: 0.4126\n", + "----------\n", + "2: epoch 488/500\n", + "1/0, train_loss: 0.4011\n", + "2 epoch 488 average loss: 0.4011\n", + "current epoch: 488 current mean dice: 0.2109\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 489/500\n", + "1/0, train_loss: 0.3959\n", + "2 epoch 489 average loss: 0.3959\n", + "----------\n", + "2: epoch 490/500\n", + "1/0, train_loss: 0.3922\n", + "2 epoch 490 average loss: 0.3922\n", + "current epoch: 490 current mean dice: 0.1651\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 491/500\n", + "1/0, train_loss: 0.3827\n", + "2 epoch 491 average loss: 0.3827\n", + "----------\n", + "2: epoch 492/500\n", + "1/0, train_loss: 0.3833\n", + "2 epoch 492 average loss: 0.3833\n", + "current epoch: 492 current mean dice: 0.1326\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 493/500\n", + "1/0, train_loss: 0.3893\n", + "2 epoch 493 average loss: 0.3893\n", + "----------\n", + "2: epoch 494/500\n", + "1/0, train_loss: 0.3743\n", + "2 epoch 494 average loss: 0.3743\n", + "current epoch: 494 current mean dice: 0.1314\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 495/500\n", + "1/0, train_loss: 0.3813\n", + "2 epoch 495 average loss: 0.3813\n", + "----------\n", + "2: epoch 496/500\n", + "1/0, train_loss: 0.3861\n", + "2 epoch 496 average loss: 0.3861\n", + "current epoch: 496 current mean dice: 0.1069\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 497/500\n", + "1/0, train_loss: 0.3791\n", + "2 epoch 497 average loss: 0.3791\n", + "----------\n", + "2: epoch 498/500\n", + "1/0, train_loss: 0.3790\n", + "2 epoch 498 average loss: 0.3790\n", + "current epoch: 498 current mean dice: 0.0895\n", + "best mean dice: 0.4482 at epoch: 26\n", + "----------\n", + "2: epoch 499/500\n", + "1/0, train_loss: 0.3762\n", + "2 epoch 499 average loss: 0.3762\n", + "----------\n", + "2: epoch 500/500\n", + "1/0, train_loss: 0.3801\n", + "2 epoch 500 average loss: 0.3801\n", + "current epoch: 500 current mean dice: 0.0658\n", + "best mean dice: 0.4482 at epoch: 26\n" + ] + } + ], + "source": [ + "device=1\n", + "def vfold_train(vfold_num, train_loader, val_loader):\n", + "# model = UNet(\n", + "# dimensions=3,\n", + "# in_channels=1,\n", + "# out_channels=num_classes,\n", + "# channels=net_channels,\n", + "# strides=net_strides,\n", + "# num_res_units=2,\n", + "# norm=Norm.BATCH,\n", + "# ).to(device)\n", + " \n", + " model = UNETR(1, \n", + " num_classes, \n", + " image.shape, \n", + " feature_size=16, \n", + " hidden_size=768, \n", + " mlp_dim=3072, \n", + " num_heads=12, \n", + " pos_embed='conv', \n", + " norm_name='instance', \n", + " conv_block=True, \n", + " res_block=True, \n", + " dropout_rate=0.0, \n", + " spatial_dims=3).to(device)\n", + " \n", + " loss_function = DiceLoss(to_onehot_y=True, softmax=True)\n", + " optimizer = torch.optim.Adam(model.parameters(), 1e-3)\n", + " dice_metric = DiceMetric(include_background=False, reduction=\"mean\")\n", + "\n", + " val_interval = 2\n", + " best_metric = -1\n", + " best_metric_epoch = -1\n", + " epoch_loss_values = []\n", + " metric_values = []\n", + "\n", + " post_pred = Compose([EnsureType(), AsDiscrete(argmax=True, to_onehot=True, num_classes=num_classes)])\n", + " post_label = Compose([EnsureType(), AsDiscrete(to_onehot=True, num_classes=num_classes)])\n", + "\n", + " for epoch in range(max_epochs):\n", + " print(\"-\" * 10)\n", + " print(f\"{vfold_num}: epoch {epoch + 1}/{max_epochs}\")\n", + " model.train()\n", + " epoch_loss = 0\n", + " step = 0\n", + " for batch_data in train_loader:\n", + " step += 1\n", + " inputs, labels = (\n", + " batch_data[\"image\"].to(device),\n", + " batch_data[\"label\"].to(device),\n", + " )\n", + " optimizer.zero_grad()\n", + " outputs = model(inputs)\n", + " loss = loss_function(outputs, labels)\n", + " loss.backward()\n", + " optimizer.step()\n", + " epoch_loss += loss.item()\n", + " print(f\"{step}/{len(train_ds) // train_loader.batch_size}, \"\n", + " f\"train_loss: {loss.item():.4f}\")\n", + " epoch_loss /= step\n", + " epoch_loss_values.append(epoch_loss)\n", + " print(f\"{vfold_num} epoch {epoch + 1} average loss: {epoch_loss:.4f}\")\n", + "\n", + " if (epoch + 1) % val_interval == 0:\n", + " model.eval()\n", + " with torch.no_grad():\n", + " for val_data in val_loader:\n", + " val_inputs, val_labels = (\n", + " val_data[\"image\"].to(device),\n", + " val_data[\"label\"].to(device),\n", + " )\n", + " roi_size = (size_x, size_y, num_slices)\n", + " sw_batch_size = batch_size_vl\n", + " val_outputs = sliding_window_inference(\n", + " val_inputs, roi_size, sw_batch_size, model)\n", + " val_outputs = [post_pred(i) for i in decollate_batch(val_outputs)]\n", + " val_labels = [post_label(i) for i in decollate_batch(val_labels)]\n", + " # compute metric for current iteration\n", + " dice_metric(y_pred=val_outputs, y=val_labels)\n", + "\n", + " # aggregate the final mean dice result\n", + " metric = dice_metric.aggregate().item()\n", + " # reset the status for next validation round\n", + " dice_metric.reset()\n", + "\n", + " metric_values.append(metric)\n", + " if metric > best_metric:\n", + " best_metric = metric\n", + " best_metric_epoch = epoch + 1\n", + " torch.save(model.state_dict(), model_filename_base+'_'+str(vfold_num)+'.pth')\n", + " print(\"saved new best metric model\")\n", + " print(\n", + " f\"current epoch: {epoch + 1} current mean dice: {metric:.4f}\"\n", + " f\"\\nbest mean dice: {best_metric:.4f} \"\n", + " f\"at epoch: {best_metric_epoch}\"\n", + " )\n", + "\n", + " np.save(model_filename_base+\"_loss_\"+str(vfold_num)+\".npy\", epoch_loss_values)\n", + " np.save(model_filename_base+\"_val_dice_\"+str(vfold_num)+\".npy\", metric_values)\n", + " \n", + "for i in range(device_num,num_folds,num_devices):\n", + " vfold_train(i, train_loader[i], val_loader[i])" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.7" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/Experiments/ARUNet-MiddleLines/ARUNet-3D-Middle-ExtrudedNS-VFold-Test-Copy1.ipynb b/Experiments/ARUNet-MiddleLines/ARUNet-3D-Middle-ExtrudedNS-VFold-Test-Copy1.ipynb new file mode 100644 index 0000000..dde7c08 --- /dev/null +++ b/Experiments/ARUNet-MiddleLines/ARUNet-3D-Middle-ExtrudedNS-VFold-Test-Copy1.ipynb @@ -0,0 +1,2582 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "scrolled": true, + "tags": [] + }, + "outputs": [ + { + "ename": "ImportError", + "evalue": "cannot import name 'TubeTK' from 'itk' (/home/local/KHQ/christopher.funk/miniconda3/envs/myenv/lib/python3.9/site-packages/itk/__init__.py)", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mImportError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m/tmp/ipykernel_2576751/1503744359.py\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 38\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 39\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mitk\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 40\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mitk\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mTubeTK\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mttk\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 41\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 42\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mnumpy\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mImportError\u001b[0m: cannot import name 'TubeTK' from 'itk' (/home/local/KHQ/christopher.funk/miniconda3/envs/myenv/lib/python3.9/site-packages/itk/__init__.py)" + ] + } + ], + "source": [ + "from monai.utils import first, set_determinism\n", + "from monai.transforms import (\n", + " AddChanneld,\n", + " AsDiscrete,\n", + " AsDiscreted,\n", + " Compose,\n", + " EnsureChannelFirstd,\n", + " EnsureTyped,\n", + " EnsureType,\n", + " Invertd,\n", + " LoadImaged,\n", + " RandFlipd,\n", + " RandSpatialCropd,\n", + " RandZoomd,\n", + " Resized,\n", + " ScaleIntensityRanged,\n", + " SpatialCrop,\n", + " SpatialCropd,\n", + " ToTensord,\n", + ")\n", + "from monai.handlers.utils import from_engine\n", + "from monai.networks.nets import UNet\n", + "from monai.networks.layers import Norm\n", + "from monai.metrics import DiceMetric\n", + "from monai.losses import DiceLoss\n", + "from monai.inferers import sliding_window_inference\n", + "from monai.data import CacheDataset, DataLoader, Dataset, decollate_batch\n", + "from monai.config import print_config\n", + "from monai.apps import download_and_extract\n", + "import monai.utils as utils\n", + "\n", + "import torch\n", + "import matplotlib.pyplot as plt\n", + "import tempfile\n", + "import shutil\n", + "import os\n", + "from glob import glob\n", + "\n", + "import itk\n", + "from itk import TubeTK as ttk\n", + "\n", + "import numpy as np\n", + "\n", + "import site\n", + "site.addsitedir('../../ARGUS')\n", + "from ARGUSUtils_Transforms import *" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "scrolled": true, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "62 62\n", + "53 4 5\n", + "53 5 4\n", + "54 4 4\n", + "54 4 4\n", + "54 4 4\n", + "55 4 3\n", + "55 3 4\n", + "54 4 4\n", + "54 4 4\n", + "54 4 4\n", + "53 4 5\n", + "53 5 4\n", + "53 4 5\n", + "53 5 4\n", + "54 4 4\n" + ] + } + ], + "source": [ + "img1_dir = \"../../Data/VFoldData/BAMC-PTX*Sliding-Annotations-Linear/\"\n", + " \n", + "all_images = sorted(glob(os.path.join(img1_dir, '*_?????.nii.gz')))\n", + "all_labels = sorted(glob(os.path.join(img1_dir, '*.extruded-overlay-NS.nii.gz')))\n", + "\n", + "gpu_device = 0\n", + "\n", + "num_classes = 3\n", + "\n", + "max_epochs = 500\n", + "\n", + "net_in_dim = 3\n", + "net_in_channels = 1\n", + "#net_channels=(32, 64, 128)\n", + "#net_strides=(2, 2)\n", + "net_channels=(32, 64, 128, 64)\n", + "net_strides=(2, 2, 2)\n", + " \n", + "num_folds = 15\n", + "\n", + "num_slices = 32\n", + "size_x = 160\n", + "size_y = 320\n", + "\n", + "roi_size = (size_x,size_y,num_slices)\n", + "\n", + "num_workers_te = 0\n", + "batch_size_te = 1\n", + "\n", + "model_filename_base = \"./results/BAMC_PTX_3DUNet-Middle-Extruded-NS.best_model.vfold\"\n", + "\n", + "num_images = len(all_images)\n", + "print(num_images, len(all_labels))\n", + "\n", + "ns_prefix = ['025ns','026ns','027ns','035ns','048ns','055ns','117ns',\n", + " '135ns','193ns','210ns','215ns','218ns','219ns','221ns','247ns']\n", + "s_prefix = ['004s','019s','030s','034s','037s','043s','065s','081s',\n", + " '206s','208s','211s','212s','224s','228s','236s','237s']\n", + "\n", + "fold_prefix_list = []\n", + "ns_count = 0\n", + "s_count = 0\n", + "for i in range(num_folds):\n", + " if i%2 == 0:\n", + " num_ns = 1\n", + " num_s = 1\n", + " if i > num_folds-3:\n", + " num_s = 2\n", + " else:\n", + " num_ns = 1\n", + " num_s = 1\n", + " f = []\n", + " for ns in range(num_ns):\n", + " f.append([ns_prefix[ns_count+ns]])\n", + " ns_count += num_ns\n", + " for s in range(num_s):\n", + " f.append([s_prefix[s_count+s]])\n", + " s_count += num_s\n", + " fold_prefix_list.append(f)\n", + " \n", + "train_files = []\n", + "val_files = []\n", + "test_files = []\n", + "for i in range(num_folds):\n", + " tr_folds = []\n", + " for f in range(i,i+num_folds-2):\n", + " tr_folds.append(fold_prefix_list[f%num_folds])\n", + " tr_folds = list(np.concatenate(tr_folds).flat)\n", + " va_folds = list(np.concatenate(fold_prefix_list[(i+num_folds-2) % num_folds]).flat)\n", + " te_folds = list(np.concatenate(fold_prefix_list[(i+num_folds-1) % num_folds]).flat)\n", + " train_files.append(\n", + " [\n", + " {\"image\": img, \"label\": seg}\n", + " for img, seg in zip(\n", + " [im for im in all_images if any(pref in im for pref in tr_folds)],\n", + " [se for se in all_labels if any(pref in se for pref in tr_folds)])\n", + " ]\n", + " )\n", + " val_files.append(\n", + " [\n", + " {\"image\": img, \"label\": seg}\n", + " for img, seg in zip(\n", + " [im for im in all_images if any(pref in im for pref in va_folds)],\n", + " [se for se in all_labels if any(pref in se for pref in va_folds)])\n", + " ]\n", + " )\n", + " test_files.append(\n", + " [\n", + " {\"image\": img, \"label\": seg}\n", + " for img, seg in zip(\n", + " [im for im in all_images if any(pref in im for pref in te_folds)],\n", + " [se for se in all_labels if any(pref in se for pref in te_folds)])\n", + " ]\n", + " )\n", + " print(len(train_files[i]),len(val_files[i]),len(test_files[i]))" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "train_shape = itk.GetArrayFromImage(itk.imread(train_files[0][0][\"image\"])).shape\n", + "\n", + "test_transforms = Compose(\n", + " [\n", + " LoadImaged(keys=[\"image\", \"label\"]),\n", + " AddChanneld(keys=[\"image\", \"label\"]),\n", + " ScaleIntensityRanged(keys=[\"image\"],\n", + " a_min=0, a_max=255,\n", + " b_min=0.0, b_max=1.0),\n", + " SpatialCropd(\n", + " roi_start=[80,0,1],\n", + " roi_end=[240,320,61],\n", + " keys=[\"image\", \"label\"]),\n", + " ToTensord(keys=[\"image\", \"label\"]),\n", + " ]\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "test_ds = [Dataset(data=test_files[i], transform=test_transforms)\n", + " for i in range(num_folds)]\n", + "test_loader = [DataLoader(test_ds[i], batch_size=batch_size_te, num_workers=num_workers_te)\n", + " for i in range(num_folds)]" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "tensor(1.)\n", + "Data Size = torch.Size([1, 1, 160, 320, 60])\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAADKCAYAAABe4wDhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9W8htW7YmCH2t9d7HmJd/rX2JE+d+yLQoScUbSqIPBZJQCKKFiaCiolSpUE8W5Q3NqhefhAJBzNfECykWqKigQqIUQj34klVmUZBUXjTNKs8lT8aJ2LHXXv//zznHGL335sPXWh/jjxMRJ+NERrozWQPWXnvNf/5zjkvv7fK1r31NzAyfjk/Hp+PT8en4R+vQ/3+fwKfj0/Hp+HR8Ov7+H5+M+6fj0/Hp+HT8I3h8Mu6fjk/Hp+PT8Y/g8cm4fzo+HZ+OT8c/gscn4/7p+HR8Oj4d/wgen4z7p+PT8en4dPwjePzCjLuI/CdF5G+KyN8SkT/3i/qeT8en49Px6fh0/OFDfhE8dxFJAP5fAP4TAH4XwL8O4L9kZn/t7/uXfTo+HZ+OT8en4w8dv6jI/T8K4G+Z2d82sxXA/wbAn/0Ffden49Px6fh0fDp+5Mi/oM/9DQC/c/j37wL4j/2kN5fT1cq7LwEBpAM4JBPi/28KmLx9XTpfs8yfw/z93T9nvNl/Dv9s8T92+Nv273pzCD9Pq0HMT03jnASW/Hc7IN0g1T9EhecrPMfjZ0sH0A8vmAEq6EVhCuhmkGZ+3rL/Hb8ih9/D4ZqbQcx4XlkOv+PvazzHN+c3ft8v7nifjvcqjv72NakdqPVwcQKo8u9uQO/j+/abfXjv8R6Yn0NSQBWWeP7S+tv3R7YZ/+7xAP2awXuB3vidOfn7ul+X7dekyn+3DlgHRIGksJxgKnxbN55DNyAp2imhFcAS711a+H2WBD2/vcy0GmTrkK36/ZXDdYs/B3m7JrH/GN34zOLazPZnaP56Uj5vEUgzaO37PfL7ZIl/evL70w9rId5mAFrf1+qb+3J4rga+Fuevwr0h8Zy5LrgO1X9uXDvA2zV2PHy9mR73sb29FhX0rPueB//uGUAySDKIX4CZwJoAVbjnBLBsfJ/w56iCP2RvDvbgaHPiGZnsP5ewNf3ws9gbPfay/yzRXpjg7d47flbj3pdu+/0Uf+7N95PwNRPB8+3v/MDMvosfc/yijLv8mNfePEoR+WcB/LMAMF2+wL/nP/vfRs+AViDf+da00aiaAvUkqGdBKwKthnIzpIWL+/ZLivpE46UrUF75+z0D+cEN1oqgF97ANgFtlrE4dON70sLv61nQJv9ZBfLDML00pEeH1o6eFH1SrO8Uy3uFJX7P/E3D/NWKdN9gJaFeC7anhF7k8KANWg269mGI88uGnhXLd2as7xXTc0d+bdC2f1c4LwDoM+8DHzAXRnlpmL7ZkL55wErC9sUJ23saKF0NvdCAzD/ckF9W9JLQ57Q/j8ZNZEXRi0KqIS2NryU3tOCmHYs+CdLHFen7H2D3O6AJsA6ZZ9j1DCSFvNy5IEuGuZGV2oDahhGHCNAasKw8mcsZ/f0F9WmCFUX56gZZKuxU+PtrBbrBTgWmCn2skNuDi+w0w84TZNkgH55h6wp5/w52OfE8WocsK+yxQETQf/kLWErQlzvw4RnYVmCeIdcL2pdPaNfCe/GyQF75HfW773H/tRNefj2hZ+D8/Y7TDxvaWfH4TNGL31MDrn+3Yf5qQf7qFfJY9g3QOp3I9Yz62RmWFVA68WF0O5BeVuhjRT9NqJ/PkG7I3yxA7zzvtaKfMrbPT1g/y5BmmL6p0KVBWh/Gsc8Z9ZKxfpbRZoFWrvV86+OZSjek1w26VJgqkBWybNCXB+z1RkdzmmGnicamNtjlhPrFZTjAPme0WZG2DqmGdkqol4SeBWntSHdaeFOMAMOSoBcZgUzztSrNMH/TUD6ukK1xjQKon81Yvii4/VIae3r5QvD4pQ77lQXTicFG3RLqS0H+OqO80Iivnxna5xXpUukbvzcj3bm2dRWkxQNJBZ9HbJF4JMXoSJR2I78IyiuQbwbdaHPaSdAn/s7ph7wGacB2VTy+EP7c10i+0fagA3kxTC8d89fbeMb9VNDnDCggW0f6uEC2CpszbC74V/61/+H/98fYWn72T/rBz3n8LoDfOvz7NwH8neMbzOwvAPgLAPD0nd8yCKDNvV2NSNy9lfsK85ttHt2HkUmbodWI2DC8Y70K2gk4fWWYXjuNduEG6uUQzQ8van4OHoV5ZKbVYCJokzI674Z8rzDJqGdFTUBPQC+CPiek+wa9b9CskEtitJR5TvkRUbQb06zY3k3QtSE9GvSiWJ9ozPMrRiTE89vPWQzoCvQC9CQwTSMj0EdFWhraSkOjW4dlRcuCeklID2V0p0ID0IxZQ1G0iYZcu8GyQOp+b3pWGpTKjWvN0M8ZaSqQ1oCpwG4PWK2QdYOVzGusFaIKzBMNmghEZET1psLohutij2b9ZzZlZggAjU5KkF6BZowCw0HUBrRG479VWO90GvcHkBPsPMFOE2Qq0NZhrzfIfYU9nYGSIfPEPbxuMNyQAMCuaGduMG0zZN2ga0X5WHGeBOsTjVI7cW2kzSDG6xGPOK0oHZMbRGYQBqwbcDnBJkU9pRExt5kBg26G9NizIlOuQWBGeqEj7OeCPqWxpnguybNg3mvdOqR1pKUj3zode/K9IkDeujsDPuN+puUxEahl2HmmQbndYPc7RAU2T7Diz0iAfs7QtY2ovM0JKp3RqnKP1ZMCBqRH9/VLo94zI9qeuedG9pWB7ZoATNC1Iz0q9GVF/maBbB2mJ9y/VECA6YPBRHEvMx7vFZo7I/MegRX/SBcsyLQXyVA2QXrseyyttC19AtqMPXsF/z8tAt08u+iHyLvTDmmL99L2rO8FrSTMz742+sGWKdBOfG9a/dkVQT0l6D1BH3xuMPN1r7Di3kb1bVbxY45flHH/1wH8u0Xk3wXg9wD8FwH8l3/iuzuj7TbRu/JC/WfihtMXiSWgJcHmN10afz+tDn941GOJEbolIN8EaePHaQPSi0ErH16bxd/LDanV6EnhPxOHZBqNXb0klJcKWTuyNkwv6hvOzzExNZa1In+MtLmgnpTOZVagd2gYTgPaSQ8wCh9yz9ykcT3txO/QdU+AYmFFZiPvFLpliDGKKh83mEfhYoBdE9qsaKcM9ag8Uj2pAQFxwwEKdeM5ovbGrIZwhX+mCvrTaWTacjnBXl5hL6+Q64XROwqjdNA4S8nAVhmpi0BOMw10zpCksKmM6xtpuRlka7ArHQYejXsuMfVHyXRUtdHwnGYa8G6wiDI7YCdGyJgK8FDIugF6Rr9MUAByS8BjoZNZVuhjRp8zLDGSRU+QZkhLR3npkBYGimswLXw+uoH3D36PzgWiygjUDKiNUI3IDlfEe7OvdYcgJCXI1pDuFfXLGeukyFmha4dlh1qURsw8yADSWEs4J+jWGanfGywxehTb4UKpHXrfgFPm9Rbd4SIAiiuN+u0Buz0YAJ1nPj8Dz0Po+NPS0SdFm5l19sxrggAVDB4CvgxIJX4eQRW/NyCThOxRvT4q5L4i9Y7564TtMqHOglSB8/cZpCwo6HMH0p7BmwBSgdz9u5AANUbeLzTO9eJZ/N1gGVjf0UDbwUpKwyHgAdKdSENabUDKeaF90QZsVzqYuvF94WT4nA7wjENQpsJ7dy0jyOkTs38VQ0oCNKBPaTf0P+H4hRh3M6si8t8E8H/jXcT/wsz+rZ/0fjFCLLrReGjl5okIBrLjzhGVt5mLOT12fC61Hd9qMzdcuxj/P8UqprGeXgx1o4GtF/9cvxu6OeaV9I2H7goa8p4xbSvS64bZgD6MNyON9G5G7oyIdWtId0bvbRbURE9uWVCe64Bm6Fx2w92Lb77mmzztGx9mw/CJ8d505TWv7zOkE/YBAF0aIyr/zO2iqNeEDEb03Y3E0ZCaqtc4BGJ9RNUwQzLHPAVICw2FlQSbC7BViCmx6VZhuEFKAVLiM4zIoxMHl5QGhmg5EXJOSpzWISNdGqN2x91NAJQEmfh9aAYkx9WP2HpKsKlALic6kccCFYG58dK5QPK+/PucYSpIZhBxjNgM2Cp0bdxgU4KaAdWhjGZIGzzyZDbI4KFDFxubtU2Kngr0lJEe1SEGnq/J7tBH3ahzH3QVtEtmluXfua/tjHzvHvDsziCeszlsAHFjpgrpHbo25FuDpQRLgvRoSK8bs511gyQBTgWt6MDLo06hdSaktazApsBc6Fj9ufSTQl4N2jt07ej5YHwcS28TnWFaud9jTcc5h7GPfQcLJ8QP0HNBAmBZIVtHuTGrZkYNTN+wBlEvgj532GTol45tU+gmKK+GyQRifF7pwcCS9SiHOTugCzDBsMLhXEcJCGe5kW+eXa3+WqcNkQ6kzii9zZ4FFCA/BPNzhzZFrQzIIJ7h2f7sze2M9AQ0/rtPinYC0pKRbyv0sR1jgh97/KIid5jZXwLwl/6e3tyB/OjDoMEAXTt062hzgolBmkfE3Q2xOjZ3KAqZ1x4Aesb6ZKjvOtbXhLQI8t32h9QM07NBKyO/7cKUKJyALoapdS7G7DioL1DLXEC6daTbhvLClLp7QW17yoCdiFkDSGuHPQQQRZtoyAGF1IRyq6MYBy8kWRJ0oZcX4WYNOEk6z3k4grh838T1BOhTpoOqHenR/O+Kes2AMHvQjcVX2YzG2Ys0WrnpAF4nmtCAwp1oNVgBDaqxWGhJ0U8TVJUbfypAU0AUVj1SjY2eBJYzYMSP0RqLl6dCY7xVRvHAwHElCoQeJfaskJIgEf02rgNLUURhlG2aHabZYL1D1g3yqMCcCfXk7N/hEW5JjOBF6EyaZzdrZdSalBj/7Y7cCTlsWiCzF/RMkLpBF0N+NEg31FPas66NGLTUTkx6JTRWrxl9ooMIgxf7YHsiLJHulettIaxiCaiXyIaOG49rWyMyPgRG3F++bh+CdlY6/9vKWkTrwH2FThlySmiZlT/dFKgKmzPkcvaMKY3NFnUf87WLDQ4DkSQAuOELWNXPK1tAoQLTH61eYqw587WtibBnQJWWdRQfEbWnV2bYaWHEu77v6O8rti8MWhPyXZAeXEvbk9AZL8D03NFfBPcv3egvQL47ajDzb/HrkMpnqc0j/cWzfaHzYl2QCER+JTxsGaiz4PShQ7cGrQppXDe6MdrPDwa1gSCYCGwKJ+t24JSg50LYd6l/6H4dj1+Ycf9ZD2mAwrHtmQsqjAwNmkE3enfxNAtKryjd/z/wPRwWUjZs7w3lWZBWQKqhnhTaOvK9IT0MvRTUEx8AUzY3yBtxyzbreD1S33qJyLJi+rgBWgh5FEG9KMQKDWD3CLgaF5UBdmZK1k4K3XRnq8AhoG6OOXs2kwwoe3Qm3Uhg6IwUtToE5ddcTwItAmlM19PSGPn5d9STOB4LJDk4CvWi2tqZ6ncbjAVLjvFZOMgdqrEEGu2SIFYg59NeHE0eoR6iOEsCUYUlHYbfZq8wJcfbu0H8fLBuxHxzGoVEKwnyEMIqzhgZLILCKFuaANcTo7p147k/FugpM+Kcin82seI2JUjrsK0x0lWBPFbICwup7ToTmskJqIx4+5SgZ2XkmQCLlH2jQ0UHelGPth3/rf5cgJGG1zM3cNI9KgRYCN/esSBZXlhL6YmGuRV5Y9iZ6Rmsc+3A/z3qGUoIJy8NaXEI0bF/eay8PznRmbWJWWV2A22J57s11lfw9nvjuTbH1XVtnrmy3sNTEocRiXe3SRzK6tDKAKZNstfcfD9o4+UwayHUw5qVO5ODT8h3Gtl6JqTSi2A9KzB1bE+K+YeC8uC9Red3xX4vr4aeM7ZrZD7MzKR7LONZDG2RY+yVf9MoG+qcub9BQkhaaYPooPg88q0jPTrKTVFn1gxI6Oh0Gl6MhnpdwjObNgke3ynoWTB/JdDnx4+xpId78VN/+g/oEDgMEfjyLLCUUZ69QCOe7m4AxFiPchw46EVRIB1RRKR1AOqlo50T+svBOM+CfBPke8P03LFdycYZrBTHIwkV7XhaOiyqNiukKXRtKB8Fcs2wKx3B9qQAMhd34JYeTfUiqLOgngGtCeneoCMCV6QVO4zkkVjAL3HDxOmZZvAqPc+9J4Eq0GEQFbSuA05I9wZ5n9CzYrt4sc3rCcHUGI7IncygoZnRYB6oeAOmUEFPgdEri6eneTe6AAtAebdElgRSMm+10x57VmgS6KO6Y2H2IetGjNoMsjTIlNFLgpTMn7UGieJsdqw5K+GXzQusKmTQVP7bSoLF768bnXDazzc+DyKEm+4rtCTCN+9O0NsG6R1padBKkNiRA0bhRYG7QZeK9GCdI1ggMEGaBfmVxc7IQtvM5zg9c5N3IRzXswAnrqe0dJRbZfBzTtiuOmpVYgY1QmnhlMPgAwHPePa3NuCceL2qzKC2DdILZKlIj0q8PIyn15OsJGAqjPK9kG2CEZwQtgS0dTq4lc5BBFAh3CRmO01YHerYOnRjZlEhY//ueLY53dCJDpGhx9/KrDugWtaTHLNOCfU9aCydXVOcpRK4dy+C/Nowf90gPaHOdIS64tAMZIOmGQY+gjHpQH40TM+KNpPF04ogPzqk77bFEu9/fvQ3WTL893Ul5VZrH3vCHJKN2hrtyoz5vv00s/rtMO6AF4EsHjyNn0naF2gnVTGKLNZtVNhH0dULqBGp6ArIKrBi2K6kLWnd07x2YqWcrAQa1FFg8vOQZqOIqc0GdQtw+GRimh1/1AtsrQhwVeQHRkETrUNNkFaHgDIx8HRvxFU7oLVDl456TYNDq6tBZgxeP4BBrUQlS4DFWscr0/7eSOXgRVam/Vx4pIUq0qMReik6ornB1xeBFRpvU8BwcAgAjXntnrK6gT2RR2rqxcuOvfDp9zTYQntqz597EgZ5eD0iCaN/p09KJx01MrcR/TurwGPWERFDAU0ekXt2EMwbKOsAvC9tZGNSO/H8TOMnGyAbsXKcCtqlEJZbqxc6O7IXNokh+30tLITyfgF22jPDnmkUy21fr8SjDWkRpKUjLQY77VmjKc8v3xrSwmvYLopW4A7fobIbI9GA7DT6BMwptW488qOhF0V/d0KqXqA247UuDVJtp6QHz17pDCxqEl5bSgshJlMdMJB674Q6dCfOXDEF1IMlFlE9c187SjNIYybEzzVCiwHreB0g6gs8OQxqLkC4Ma2ekZr4fk0ewPD79EHjXMHgcL0qpNF5Ts808G3yrNts7MXB5vHgb2QtAvSkKK8VloDlMwZCEd1bIr26Fxk1ApIaMGihUhkMMHNigKJzgvQ0vtcU2M4C+TJD7PoTrCmPb49xz8FM2XG2NkUa654yjKTRkJlX1Y9/t8mdQSUskW6K9tTRTkZ+6cOjK5CaJU95PIS2yVhwx0OjsSDYD2HcI/oY9KS30E0vjJxzc361R1Pp3jHBN3PmgsXDebwqyGtF2vowqAKgvArSRqcgHqUxmzCPQGxE7yNT8HS2nh1Cqn3PHiagmaBPfLMuFVgAORVi7XEYnceRzYPKQjG80UKqQfqOjduUCa144TWacHoOxk8Fat/rJYpBG4wIURc35iUzwnaGCQCgdmgwfWQ3OEGtFIeg6MR11AfgdLJ4D/ruXILrjc7vYUZwKFm1DlkqcLUB06UkNJI3nlc70TmasAC2PRVMH0gzTI+ENu/NT0gAhJBcvndnaDHCq2d/3muHTBj1FCSg54ReaESC2SXdWR3eYMSiO416GEKpLHSOetG6Ib9szCjOBcAVmhRyX7yI7HRaeIDl97pPCdozZAGCbaW1o6uwMD9FgTWam7xwmgzRBNRFxl6AMdtEAVKH95J4X4Y5ZLO0wchpB0ZXD7IF/HMVEN3rRqPQaXR8bcIgXED24mibGBGbJpy+xl7bSMqAEeJkDUPqXpc7bhERh4c9+v+wQR3+TXfvC0ngPtIdcop9bF5jshRMNIxAJr1uSEWhJxnPFUKnLkGW/wnHt8K4ByJhiQ9+7zZ1vjkIS2hlRJkieg6DHhFrLJ4EJMct0yI7HzczLYsbVGeGf2ml48gPjI3UD9H5m2jzcKh33TGiwehci660cAIIQwxeU340Fr1mh0ccs5baYb5q0q2OApKpAA8WYbTsDzk4/jsGqnvqL0KD28Lp6eF8vECUIpIAGRyePfRz3uGUKMh5Cg07dIHa+FpgM0a7AOzMyJaF2h0WGLBMVS8WyEi1o7AZ0Tg7R8lXx1RIZxz3sjPTcL44aYruYFsHOovxESRYdqhoQDc6HGk8H7RDtgI4Z77zc1WcAeQZluxOEQ9AWkd+NaSFeHCb2EHZTgm9JOjWkO8NfSaHuXtXczdmUGkRpI0FNTKaBOWig75YY2P787BkADJrRmuHVkWD13GMeHN6KPTWh7EXEeLg3aPfJJD7xjVWEtrTBEuKVDLk9U4a6C3vEfHg7Ccacqd1RvQOHCA7XysWzzftmSZ7HDwT9ozmyDaSyrWffH2xHuJrru/rN7LSHnUD39PdiQdk3wHl3iHGaDnNns23iLT3QKgXeHOXYnp227Hx3rMTOdhrtEVdMZ6jhEOFIj8EsnZMHzakOZEdVTvQJ5iWsR5tUEFlQF8mCqDs3bnLCv3mhgkYazWuGXBCyU85vhXGHR7dmezNDCwG8ce8cZ7iVWcDbJ4y5Z1GNiQJgidrfJjRgcYHKl6JdmeS6XEjCoouuT4p07AsTpHU0d4fny11hxZ60oHRM0rE4L9bEu6NzlXJdNMj3+SeP5OPPuQGGqNJBdDO2dO2jryxQBdwFMyxumqQllAvxGBHdND3glo0jABumP1+IIx+64yqk6DPMpxWdwc3GscCDnGnYkkhqY8GHakT+pxdTsGbaLoNXJ/Rn+PCeoienToIb1uXTfdC6hG//3FidxJ8d4fJtnboJs6QuUHuK432lNFPidCDR03SyG6xTJ693B4Ykgji98gbr6LJzbKynd0zheSdvzon1DPprv1ESIgURIU+0aEzE/Fn4FFquREDrifBehW+f2MmGtiwdEAysL6jA2HRz1Ab10ObBdsZKDcBbp6hTNkzvj3zlDkjPxx+SYo2JbTPZ/RzRgEg9wV6W2BzQssZkuAQoBunS4FuyesYZNqY6Nh/Fuuq7/sbBqjuqbEcsPagQvZCmDAoo2gGmxNsymPdR9eoCZuApHphVICWAIuApRuy88tNDdUj9bQ4hfUPdZ8C20WgTZHvfdz7NqQOZPTTDFp21PY8KNQ1Y1pJVdSles2oDhZcvaadGBGSFZPvZcjIkLMAaauQlxtSY6YPnLBd0+hu/bH74HB8O4w74B19O+OFxprYVFSKxRwicZaINQZ3A/tqgIK0KlNje/wKyG3vSO0TRics4A9J90JJQA3E/MIg+vl1GvjYZKGFIr0zwHWcMTy5io2F3oERJqSFNLjU2kjFaCzcSXSDdRqNSG9Ng//Poks7p2HgpXXktbkRLbB3R1ySeCg7dtOQIYgFPSIsVrz8RYaVEvcnWEiGUTwitY54u5XkNRAd2PQouhYBxDti4Y6sKNAzFGC3cdYRHUeDiKlCkgKrwzFHbROA2YJFhG8eZTserGD0vjSggM5iLjuW3gw2K1AwWukBGppeFHbK7GR9rEMm4I0OTqeBGvUXUWDj9eVv7uhzgdSC7bOCek6ERLaG/FqR1rw7MX8I3SNb6aTg1RONVr0o5g910CPbxAi/m7DjOVGqIi2GfHes/0QDX2dFLopcPYiILlhfn+2UkW6sCcimwCmRj58Fsp6RnWbKOkMejh7AgJ6sKPsCVo9Os45rs1Fk32UDYm9Ik8H6SisLr+wj0PG5thKeEDPAHZANPnwEA26gM2BrBB7itTcZhc/8iKhPPXMmlk/6KTwAASBsXtrOAq0y2Cs40QA3Y3CmrvvUM4Ds3cheE6gXRbkpM7ru69YMelsxCWDpNFAJ2F7Di274sW9lYkH69Q7c7lAVTGaQduIaFRwrvT/2+HYYd+HFShOImkeyvtidUXfsIg0YJTyouheOph8gsGyDBY7u0U8F/MHx91sBo+nuKZefj6UIz/n9/O6I4Jyp4oYYzdzxsOWZ0bIMIx/ROFMvGnFsUTVv6EnH9wBhUEkpC8Gn4LmmBdAtnEIaDA9ZNmjvyAL0Mr1hAaR71A0Am/eFNFLZoDHW7in7jxhbF56ikdoplc2bcoKdYueJ0XsLvZLdKEVhTcR2hxH8ehVG2tHQFPei2xsKJRIN+Rt4LKe9mFo7edAzu0gZmfP+tBM7W/W57/BBEtiUif+LSzH4msI88XMDngFcMiEekp9i5oPNnfot+vEOdby0ewTfzozepbH9P10T2mz7dYqM58UMks9tvRJ7j4AmmmnEAxrqJZG3Pb10mKpLYLAzMj/SGzgw1haI6qCfMtLHB3ZhNv68XTJ0O0M/3iFLg5462inBgtEmuxGSKSEFPBPwpb5dr7K20SmtizeEBXNnC8ZRR2+JzVMq6J6t6oP1mRF4RbOXB1ja6MzaybNmz8jbDMpndDZvhTxAROtiRibMJOO+28L71magus5MXgjNtEwbgG7AFsyXg93xZ9KLoJ4zZO3spjWDpQRZN6RXIF/K6JsZTCYLCCucBjvhtU5I3xTY4wE8vyJ1A5RsnHAaP+34Vhj3gEvigYUHa5M37Hh2bEFlsmjm4c1I952FoKt70TPQzgBg0NXhhUyctS3Yva34920YWNyQEJBD1AobHF4eLB5JN8gGRBu5tGBzRBocadieyjEr2KNZPmg6Ce3szO1FWTQMIzLJKLzkV0ZKuslwcMgKVG6UYDlQAE2hsw38lvCIX5PLOvRolHD6YH2a6MC8kCUeqYZz0rXRGflGDB58e5pdJbI5NLJDGJGaMxPbQw4xY51BBdg6pLkOjdkofiK48G6IR41BveM1O/7bCMfYnJzpRNbDDjEVRqrOcrHszqJ3mMNubN11hsVURnELvTszxGsF4azheHE1iBr69QR1qCLdK59lIjVSFmLv5eaZQDhYZ2b1sq9hFmXJ6x7Qmu5BRxj77ax0JmY0RAvQzuJFQkVanE4aZIQev8t6jmayCwI2ATySnDPkVIYRIRzDQGo4Co+yAQz8fdQG4Os9C/Te9nW+NOi9wmZScqMuIo0NcYP7nxR2crgy4IuiI4OPTk7qvJAz391Q/yjMIo11tdjb24XrPz92KmJamGW3wsi/HxxnKQGz7oJfAU/2gEDNg86NLLx8V1hTrkk4QN/Z9CizS2hY9O/Y7rAOGXXPSl2fu/PZW4MsG+9RQF0/5fhWGPeIcPvxbDzqbIWRTPIqd0+CfgakM0VltykfMsCHpM07Rd8BfTKoy7ASIjHoLE4bg29SV4T0zyCPlt1rPfH31ITpvNcEpIt3zYKt7t5dqJvzVM3Qda8J8DoN6I57zy7Q5TIBgcHhgOFBhJEwMOQLWmGKXG6Vv6ug45oSvN7JY6R+QL2y9Vpd/0KaRyHeVNEnIa7vhh+yMz/SvSHd28hAehGUb9hFamlnk5gAyDTw+tj24q0/y0Hh3BpSIzWOPPsOdiCbG15vyw0tmhMN8mhMKgny6vBKkaH7ku4b5LZAHgtkS6PRSEVcAZPFTLw/oXz1Cn2+Uxtl5UMXp20mgIZcXewrKZt8/Dmw8GzoZzdqjjHXC7OFXs5I9wnpzusYlNSkQOZ1ltc9yj72LoSmijYACyGCepKxLgEyO/LNn68b+Dor8qMj3ztKISZrrmzasyBve0yStu733bPIoId2Ug7Nm9f6pJDLxGh5SBF4gB6S1KNWw6K+NHMBNTfWEZECg36qD697LBkyF7RrQXuaaPjrzs9HYkG6zRlDqlr2ln32gshhrWOHTxuRsl7cBhRBfoQjiD+Knl3MKzqwm0fqDsG1Iihrx/TcAdFBoe7F3DbsETwANAhStp02GnsjK0x2vSTd2n5fvJv4WCfc15WgTxlpngZZAQ4HC2Sn9P6E41th3IE9sgUwvO/AyJ0KCQBwHnGfyAo4aj70vGPlof/QLqQJSvVCTDI++ePGy2xWCMGwQa/0OgDbqkGM359ZLwJ1Lm07J3bWNUO6C4o3cMjWoBqiSYGd++9P8XBlGM6gkZWX+gaaEM9Q6szrTasi3wXaGtB3GKM7C2JwhyuorHdhYS4Vc3gEwAmMRmb/+ZogWx/ZREQu0gz5dcP0jaHNad+E1qCCN+JFPSna+wl6KQcoyp2o0yhl684s2he/ri6glbzjVBVmnnpOGe1p9mha6Y/XBH2sMFQAM6EYAfLWWAjtRkVIM8jdoOeCdqYD3t5nGt/XO2l/bYddYCdElyvAa7MpA+dCAxAGam1kxnhXaqh+whkVvHfqz0RGp6d1Z6l0Rtm9HiAqj9qCgZE2qiqsT9RB4ff6Gs97UbDO4mtPBl1YtzgH/m2PeD4CSUpNoMaoup12EzBmEnhkHpLQ0UgzMosNXkQNTRcPaLbGYr6TFvK9D/hhrOfagI8vQDekpwv65Qts75JnioZyq0iv27gvy2cFoZAJANuTDJE29mkIAv+ObnV1CiQAZy1xHSa1AXW2me+ZnveofejKuCYPO2gdCl4MOQu2S8BSYbjcVjn23wtcG8dhvq1xDbkj6vktBAvzgBDOmotsLn48s7tbGqHDY93DQ5GfeHwrjHs8+DbzpumKQYMkLGJvb0g8zCMf219TBBWR0UlrgM0deN9hlSFkqwLZgLQGTAJujqbUiV+jyOVUreQNKvP+dbF4gsPaJkHvMhqf8q0yBTPQ+Je9iBSQDTvQ3JAkQb067HJjimtF0TKlEtLDIFegngGYIq2JDR/9kG43RhiMBHZWQT0BdhHoJsgLN2++c9FbEtQZUG/iyLc2rps6OIry0ciK8IEVslagdaTayWnPSr0TZzv0yRf36G71SM5ZLFa4mfvk4lWv3tFiRk578NldR75dy7hvAIDrxGhxWQcLgQW5DF1Yf5DFN8NUIEtDulXYNbPrsiRoySyYhjGvFfL8Sk9eMiEwhyd6oXEfaXCSsSE7BM27DwPfbi5JQH63YB9Ao0M5NCJvSLAx3Ig4Be/YaBf0XX3D23a8eeL6bY2fyVkHhDTxI47GsqBBke7VmUEJQ4Kgg8GCX189JQ+ADuJeSciaCaxYHMqJouGd6315x31WJoEuhFqkeeF9nqDTRPnglxt0eYeeZ6zvdmZQ+rhSf2VKgBQ27ZxYJ2snYLsCYqwlWWYQQ9iV9zNUYrUBtQBWImt3vfaAvM7iHcG7iJmYDajQVFDP6nAm+xEAfdMsGPDcwPpP/J1eWNyXbfX9nQZxoBcWdsXpuuoNZ2/6S+D3ONacwziyVFhK6CcFflFUSBH5LQD/KwC/ytuJv2Bmf15EvgTwvwXwJwH8OwD+C2b29R/xYYNW1LPDG66yVi9gRPSKvQEBh40xAcExD8ZL3CRp/uZiyKcNpTT0rnjghFaTMy74p54E6eSLwjUl4tAGdLHBCQ9sLN/daPl5DfnSWdEs+2ajQh4uzkRoe6TQvaFEvChESQBgOiekWx2wUXSFcnCJop0M6xNZGNm7S8dj9oKkbnvBOYpblrkZ0oNGwlY6VAobeTZjID5bDclYiCXzZKPmyhFuqT4QQgU4TdBTQjvRIDES9Wd5lCnuHdhABoYXhcm/NpiyzVjaA0iKPpMvT8e6d4+KUTVSWmJD0+qt2ucMaTOdw7bBlhXSZuhcRodsnxTtkpHnCXiso0iLlPj+rcJKZsQU0FBigSuMMvXRPZXv3kR20CQHXCNlY4Qen7HNFKh7M7xlsLbCaNsoDFY37Edd8XSnIY65BgHNRMfxkU8estdF+UzRwUEv54x05/pqM69xMEMA9GC7zDueNrjo+QC1HDHfzlrLIDpk4t3TOaHfFHpnYGDnAusX1jkej+EQGIAQ0ikfM/KHO+ci1BnwLlI2GgH1YrBilD3eAJsjy7dRTJ0+EIpJClTPdoasyIHnjjOwdUG+8f63wbLZ7cLQlHHfJ+2Q4IVhPxj4egYeXyTAZpxvzgiJwKe4Nk41ZvqP6k40cWoUgGjTNtdJsiszyqH/0xrSHWiX6Q/b0sPx80TuFcB/18z+DRF5B+CviMi/AuCfAfB/N7N/SUT+HIA/B+B/8NM+aEAyDsXswvU7ntUT0ZSB3Ya4kgLrOz7UKBQFLUkM0EXRLg0pGS7zhtYF6zmjP5TF2pBFnSj9m1agdAzJ1uicHefq3ron2bvwmuvDexpcBx6b2PXZyDqxGYQeet9hJC/IxPSndhLc14xLZQTR097Nx4IZudAsIOko5AEuzXvQgin3BrEMbYrtiS9rEVgoTva9UYPOBcg3ReptZAS6uiGrDYI2IItRrW8NMOe8exYTnbIAXD3PvChGgy2d7f69JTe2heqEtXOjbnlELFYSneWknOTzCGjHB4esFbg7d97piDaV3cCv62Dv6NKQnIkg371iCizdaZZD5tevbxdL4/rcLkyp8wNjghFMhiJgDX0fZ3qFdk9qGA62XtiFCg8O0uLrKcb2NUG5GfILDeX6WR61KD4PASoni1EqGHvPRgLUjZBVQ/PMsJ7I26amkQLvsEsShBPwfD/WHNT1bryAOdrk4aqibad/WkmkUyrrOlqBzWchLJ8ppE8oLvNgAHCdKTHhMgb5xkas9TNgMcHphwXpdWU2sZnDhxG0UDp3PRm2dx2n79PAhwO0ZE4jZeZOLv1+fy1jb76Ds+WuGDTUQejwAG7oubiDzI/d8IsZWnD2D8+gnmOPZJSXM9I3j5H5hQiYuINM9w16WyEbO4WDwhntFabOZHMdJgiZZehACvjgJxx/bONuZr8P4Pf9/59F5K+Ds1P/LIA/42/7iwD+VfwRxj3SSTgjoychF3Xecb7j7EFtfGhpNW6WJ3py2QRaGCXlOyCbp66VC/dcNnQTfHS7ZAFbKdCUle56EufFHrODoErSwbQZwMyFErTIaDc2AyQD9Uw1yXxLZLA0G9o0wRxRn8zS5mjT5+1Y3wnSmlFeaHiCvpUehikbhwjMXmxbveBWqMsyeMxu+NkkghFVdAFwZhSflj3raAXQ2esYTUcUKaElvpHySAGwtIcuIR41FwSF9DhNB8JIN4w3FLCcByQT8AOQKEkMoCRF+nDzIh0zFMw0lmQJdY+2BVgb9PnBASDRNFMy7HrmazF4o5OaVow1knpOKJcZ8nxnpF4yNeL70ejJyFQCvmsTmRzRDEdpZYMmIKns6pwKdgBvhwYbrxMRVoDXR+hojzANpyS5gd/y/uwag5BgZll0ZWPPeoG3hcyeMBytVEAmrk1dM9LamWWpIHVKFdSZxec2UbOmzfEFwCAfTIK+UjWzexd1dqMjzca+5Hm51tKsbjzNqZBnauqbIb9smD8mimt5ltQuE3StJAFUoA8DbNAlrp/7ND18b5pgLXy9z+bqshgR+081QaH34hDMsR4HOEIw8/6Wm0Nnjf9uIqNnI5gzPbGZbH1fUIR1mu6ZYy+CfhKkItDNo+/OQitqrDuFwYu9Qf0Vgc3Z4Z4G+wdRUBWRPwngPwzgLwP4FTf8MLPfF5Ff/iN/33aPGRECq/eCnt3bRbt3B6ybezVw4WcDnir6LRErpYsbHlo2Qd0S1pZwnVaodrTJ0BtpkpZo6fuEIfvbvOkpqFHijJzQoujZaWi+uUN/Y0T6/t2EcogxRzoXmGVaYwyZQObD9aWAURjhHWsL/D5xmpzjd62h5wQpLJbp1rk5Jx3dq2nxubCyF+VMxKlybog89ZaAHlxgSrY60m4+rwK7nNj56ThtpJyRvvbBq4vr9ULtlNHOmWwcb8yKWZU9JlpNCfLu5M+uuRHaB7cwcvHofS6j0PmG95uUDUo+xMNmj4q2hvJS0Yuivj8hm0EeG3HWOQ99HNkaJLOAi2BbufGmJwZrGMJsIj1Y86intDfMqSD7ItyL3tj56sFa8nsVxcF6UpSZuiTl1bC+P/CqDwYdwqxBHMKM5rKAKPdIUsdwDMAhyJX3OrjyAB16nwXr1SWKy9uIWUP33nSww6JgLFtnP4Xz9NNCTrnWwP4PAUMnvGgT9eQBwkLllcHVdhWUdwXT153d6J6ltzMgVTB9A1hSbE82Ok7zHWgLM5V2DsOMQa7Y949H8z32pzs9h9ei41fcIXN4DLyBCg75mneq+sSllVAMmxB3Jw0F1vdeLF4ZoYXyatiGekmAeU3HezhkaZBMJ2hZyfmH11KVKq/iVN+fdvzcxl1EngD8HwD8t8zsoxw7+X767x0GZH/ORdB3XBgSzRseAUQgGNViwWhZtmSYLyv0ybAuBf17Mwszi1MVAZhRxEvFMJ82bLcCW0IEH7DCsDzf+FqbBNvAUT1I3TzirjKYOW1SJPQReR35qhLyAsEcAQZOGcViYI/8dROkFM1VhHfynbz3ED1KgdN6dDBGgNneGSg+Ti3a/6cXruTg97ZZUK87DBAKmBGZmmJgyj0rUiJf1yp3iQA+SUlYKHJY7ainz2vdI8ho9kLREck1d9h5oYFkd6HAdII+FejWkV+38VnkGTvjBDoKubEpQqEQa91FxkpGv0xop0zOdTSeAd5cNCMv/n7JnB96XMMObVg0V8kePfNadfQDAOROhxOwSNEl2Fx+j0+MONGF8rSRLLRgz2DniG/sPt1+5L5Glhf86rzsRdgQ1RrBz2CicZ31JFjeKc6uZ7NmGvSeqca6PREeHA0/nRmfdRmjIcUAdfoyM5kZ84fkgQ2DJVKUD4NDvH+EMrxC4+5drernEnLc6/sEqRPSvWF6obRx9S7Z9DBMH2U8p4AYpRvmD4K1yYBpIyCTvD+fmN62vhd0RwHyIzTVPVALOV4DpLMXgNPfokOdstjmDlYrB+XAIbfYP20WbK4UF9m71oP0sRJSjOBQe2Uz351Nfe1CzZ+Qv4h+FMucBfHTjp/LuItIAQ37v2xm/0d/+Xsi8msetf8agD/4cb/7ZkD2F79lNHDxQ7yJfgFfqMGzrfviHsM5THCeF6TU8XLN0DV7cwSGYY36T0kN6dTQuqBHpC94Y5hiY/biEUOjE4hiZBj60IYB4KqVXixbY1ABHcDYaPzPzpTx68z3PiKcUEkc1+ibVtxpxPeQV2/kLjcavp6EuGsNh8MoJC02vhfCtLmd6LjybS/GSaNjyK+bwyZsnpKkLITywTMSXyokkTHD1w9rI+5pgrfg+wDloBm6U2V/g6K4BET3+0KtHBkFdrJ4PK09Feqp1w7JSnpZBiA+YlAE6o1HpoU890n3+1ONxb3sQ8E/O/PcQjlyXAN7FSz0TA4QiCW8kZSI1znoJOaPGiUBorkmDgV6NtQroJWFv5DfiEIfB6rIUC5M647lH2m7QTyQ5tPMJsH6jvi3/cj5AhE587PqaZ9OFrBRzBWuJzqxMI6IYqLG+bN2Q0YPI1ytaVyHNBwCDwyDOXo5om9EwEYod4BpIUS4nRVlUqRH9WIviQf1zPdMH9lhGhGybmAV0JjZcvB0GGyMDuB8A6ZXDss4fwXcvptRTx79v3aUl+qNY6C+TTdIS9CasHmdTA72ae8bMAq4bTz/UZSFP8tmkCSQB9eVbjbuTzB0+ECF17BuzMjnjHbKkM6sUu8b0Az9Ut40A/644+dhywiA/zmAv25m/5PDj/7PAP5pAP+S//1/+nv6vOCye8o7mjmikHNcqCrD00mnrK/8kmHKDUkNL8UI1SzerCSAiKG2hKVmTLnhdF7xEENLGVjcwCv2tAoBFeyFqp4BzSCW79hcTwIprp8tQB/sCAD1aO38Mz29D0w2WA1poYA/mQPO1d8MY+hC29vQcWAWhdaGVIM4o6dFNOQNUlw8MWE9ahrAcja0C1yO4QAHiXD0Wm3o706on5+ocPfVM+z+ACrxd1lW4tuTV2s9ojseTJMV0jNy2lPSuMfsIlTUi0dJjQJaQETqCeXFW9Rj5uakxOIf1RkFUcA2Bo1zgvWJnaiu/x4JrGX1wR+MRttMK02apzNChoQzaxf1pD5fwJ28G7bQB+8zOxlDaC6tLuY1E2LgWsAo2rEDVXY4KgE5BierHeAV11950PoG3ZIQgjts2SGIBA8ShCdfz3v0HVrzJiGLQbgmP5qzfeADZAT1AtQrX8v3vW9kDP12qE29UGxCo7tWRX7YkKVG8yCmyC7r/+jsHwktI9ljON3M2wV4z7arIr8I4ambYflcBjMo3zrmBW9a+U2AtAnkxRVeAeSbcc6qF7R1M+TXhvJx8wDohOXz5P0jHfl5GfLMlhTptg0J4DIrtifd+f6V8t3aaODTiRlG8gxtQFmyZ+/MUna2lTbfp5F5JxIFJHHObdi8Nif2oqyVcEynPMNPO36eyP2fAPBfBfBXReTf9Nf+RdCo/+9E5L8B4LcB/Of/yE8SjCp20ALrGhoyGBHgvgoweKuh6rjeC9pVccoVWhp6ydwolZi6AWhdsbYEEUNJDTUrMAt7WFYdjiQM/Ih45BBpbvSsETnZ+Jlvgha4aqhP7mn2kE2NhokjzUyCPdH/kMJkOkyDSit5UkfqqIlARmubQ1UiQAgxHTrm8qNj/sZwa5kDtT83tGlPbcngcWO5rNCc0M6F0fLlxE25boyKvR1fbgU6JaTFlRCzjBFwY8jBpBRBjEVdfX6tsItwVUap2bnL+c7zHhQ2YNy/noRzTs12nR1vowcC0uDDi+ajdK+kToL1hB7dIJ1GmlObfB6s3zd1DXOL7uBph9vGulV2iMKcSliiKQ1j/i4NsI9me3DkIwODva0/NMKls/+AGWCwsaLWskfgACE63dyhF0Ja6aUjvzRfm4kyHK41vndZYmTHlLSVAfFZPmQmk6EaIJVUwXzf92NAYcngRVmM/RDZZcATIealLtOhLnIXjrRPnNSUjOP2qL3u3HqHLCKqt8xMuj0E88c+yA8B03ahEmTMfkgPQ3mtzlTZn6u0Dlk2TB8UkMmlt70ofF8h54nKpI8KsZXDzU8F0IL1XXqDnYdsCGtuhQZ9pR6/LnGd6uu6Uz5ki/oVWBz1Jr6QErHiMM5SkQqz0zYn6ItBfexjP/2C9NzN7P+BN4n4m+Of/Fk/rzuHOK2G7UmQX32ReLU76GB/iP1jYBFyTaiN6fl0qnicM9qagZhb2sXFAxUiBtXuvHfhQILqHadHo+6GPibFHKPSgF6Cj2zG6DktnVXxTFx5FBQDax+R1r7xxVu8xTqnsd/6MMaxuYMvzeIncdN2Ih44ZQG23ckMjXYvzgbuGY1U6VFx/gFQz3nQtsIQt0nw+CIhv15QlpXSr9sMan7PUKXmDWoD1hWmFEXSpSK5Xrt5xBt6QZxoo2QHrJFx+aCJxkixz0yz2ySYngXo7NI0JTymLusaOvmU0s0ILZ8OcHO4AYMItANSmd7qEg/O015X9rOswNJHK3cvyuKtCOCZT3e+eB8CaHukaCWob4qMPoKAepbByx4yuOaRexS4vYjeEyDeiU2tHyDElFLMEY6u6xWDkRG1kdSN3cGTQL2Inu4d2WtChGqiAc6xY/NgxbMeUmu9kfDACbdio7YVQ5+P8tqU33Ya7yQorwZ99J2h49nMKPQKWAwPTj64z0x0vF+8/hSjLDnftGH+Rt40+pgKygtpu7xvMphtgZ1rtdF5rXeOW9yZXIJ02zAJHyRtkEFe7xyqXjKzUxFonbgm58T7WuSNo+Uz6oTlegQeHfnmjmVOqGcGELI1woptj86J8rDRyQAgJQwszDWPLIz+snHs408ny3w7OlSBfbGId92tn/Mh5YUpaL3suGd6uJHLNqJfdKB2LpCUOmTq6KcOacGeAXpX3NfCTlKTN+QKasX45ovOv2MHGvaUOGZAjk62JGi+0SJiicJkWvcCKACMoR6yR/CpYxRXLBvSzWCyY6Fdd2Md0V1oT7SZmy/dWKzpQ042YA3WYmLocHMRrXxrOH2dsD2RVhn3EEpnVa8ZJSXgcYe+rLB3MxsqToauFzJMvLMzZowmpyq2+fSmXsDMYWcSBftBmrfhF2D7svLa7gogMWpNNCTVQ+RyN3cODodNiTxxT8u7CtNpBUoP2IQRvdQOlTYKsNFdOQSYXKyqTzqKmt3cmHuNI55XjGochU9nW4ntxfhQKgQOeDDCIIKbf4Xrd+/PKronIwOTF/8Mj5ije3XIHgDsAi2C7awczt5j+IxhuwBbcSqfF4Xb2Vw6w2GXkbFFx+ueRZCDv8vjSmeDX0TocU3AnlVExhkFRA4vkX2fu47QcWYtf8j3pLUzStfIzvfATxcZ+7GP52FIjZpSuu7GX31uQnQ3a++QxzbWuU2OYz82TGZYP5vQLxPS823oCdljAXqDLBNVV4vC8gyJwE0O594N6VYhcxpkCRjXXgpKo9er5LFw+HrJsPPMIMMzbkuEsbDwc49BJTvCE8kD6z8MM1Sj4NJpZC174eTC6I0DOrxN+2hsw0gAQBPcbzMu0wYRg6TOtLf4xgzWjQHrmtGrQnOHqocPHUgPlyiNKN0xVfwUDzkicg38b3cOzYcw5OUQKQbW6BDUkIcwntxojKqUKUWWYSyOjRbBLmqzYH1KxP42HzDg1FmFuUY3hjNpmZh1vrNQlV93CYTQx65XwfJZQvnyitwa5LFQic7x6X4qu5R0L9T9vi+McKygPG8smrU04LTQvw+6azxvdTVOPVfM5w33PKO+KtIq0Gjo8EgRAmgRZxzIYSar0xf7rsXf5gRZqRnPeaCd79XYLKTZBRatSx+MmDDa0WWaNkO+BdyGETWP6UGNTlYbDqyjoMdRb0hX8WEsbhP8WWK10bxGmiUG06Unrn/x2lPQIDkYXXYWjMrQwSc7J5GKGNo3JSJyx9bfEZeXKkg3ylIM9o3EWmQthrWwgA/9+yo7oo9F4mMAoyuHk/D/G/ShqNe8zz9NwnpU3/fPKAD7Z0YvQ0yNMiOkOD17jWql8yJm7Z3TiyEBTiF0Ib4f2buyUVmR981VRTuj+qKEifT9FfLx1fdlh60bA4iUoJcZacmjbjYOY4AQPS02MfuzSdlbEtm7YNR4bNt4uVOhNMGBpWVJGbxuDWrbmEgFEdhlhiw8p592fDuMOxhFxWAMdC+0XWWP0qkRNfC1NzIEBuiqqLeM53lmYdVx997Mi1RC/Q0o+ppgK3VbcKojBDku0CH/m3c6JtwY8Q37qVMXAh6J2OhY3Y3mrl2hYOfg8ffNaZ/aAlMH+qwjAg+KGsBzygvfq9W8s1QwnalBMzj3HT6rMmar7hS99Z3CnBtGCVe/pKiVRfR5zshToeFeVohzQts8o11nqEc+WN24d6ac0VINYBR841r3xh9eZ86CfMvYuuD95YGcG15uGWlJSMkNIJztoAJN2IvDLuwTQ8hjI/ciqD6yLN0VCSvktrKCin30X+jDjHZAwaCTDujDIbm8GNoDu3EStsz3ElDhbmx7gfdMGLFmZ3XsXcnwSDSiXAY0ETlzrBtPieJVXmtwhku574Z1FMHT/tx6FqTJKbXek9FOzJD6qQPvN2jpgAm2W4Y8lM1wixt6Vzvl7ASukQgqRoNWJD8ajvrACIqovrvhtcphIaEV5ZO7+F438tWg/ai35BOZXjeynOYEXQQl97E/swc0IVcsWxvn1U1HQVpqR0z3spQg2Ni7sWzopwzLGel1QX4m9bBdJ6TemZFuG2tMrVGe4r5C54zkGjH01G69R7NchzU6jnpOgHP8WYQ+Xrcx820NQN7XVhJYB2nIW6OmvXlvwMwamJa093f8hONbYtxjY/FfaXU9CI848h0orwzdjgXOAVE0cGNXxfKYkK4PlNJQ50boRfy+N+JYtilkUWDdBZfGZ+p+HiEKZmJQOG/XoygAo5CpzXbHZD4PcwFajw3A1S7GiAtgSh1NRflu++f6d7ZZB+uA+L0gwuW0eeRypzPp3nVISuPOK2ZjmLjBllE/2K4uy2oYrdTHtnnAI89LQrnOg1YYsqP64AJr5wLdGuWRzTAGTnshqHxj5Ikfpuigg9GNiyZBydyxJSFpx6+8e8HLuzO2Gx9wNNDAxOmoO5uE1+hQ3LoPEYk+AZxDPqC8KWBxEpQNhtG+DKO4eHj+8ey6Ia2Ue91HwgH90KkcPPYIQKQLDDaKlGEEo72flDj47FSwc9ifkQGUrc1+/b7e2wzPVuhwKItAiYHgp/OeyXD+bWZNoxdmsmUiWyyJ4ZYnrLmg3ekd8m3vDZEOlOe9kKoh45uEM20NQ4Yj3r9nNJRz6JZ3bf85kWboHECO5sPIuqSDRs2L0qriTWwVYxi0eqbn2cE+4csj48YGR/GGPFNSg1F9WHhJxNJb43ruHmWXBL0RWhxqoCn5Z3ZgWwFjQ58uFTGox0KGAxiGXnqDLF4HOiefpetqoHeBFoUVsl3MjI5my5SztsTpZPD7XNI+q8DF16AcqPJm5u+POb4lxv3A+ujE1KOA2osAd3agSacOyjC6GhCFd8k1QXskPFJh01Ey9Gn3bnSsCjSBVDcWXYfR7BNb+zndyQZ0MqIkeXvO4gs8ONkRRaUtOhY9Ai4s9OnQjfZN4kp7jIr6MMrBNglO7RFjxCywV2LPRboXzBwnv6Rx3nHuLELun2tCCKG6QiQpnTK6ViOSt8yRYfWpoGzzPgy5Mq3VJOhKaV9ynx0z9MhDts7mIG+8aKcMnLx4VL3ztRm0KNLdIPeE2zLhqaw4XVY8LoWyEX7TA3PuA4PkeesmkOkwq9UOFL0k1Be3DF3LgAr6lA5UtE4HVOiAIgML7ZDBPALx7ra5AXdj24txlF8XqGLUL8SLvzoyQDqK8CXMUAVJ2cRVbhi4dvOof8wiHQuY/64nx97XOAc2Hi2fC9o5hlgQCjIlxk5RLQOUAYYAyKkj54ZaEvqS9qLpfV9z+WGYXkO0zgu+CYB3gI/mwhbsokP2I5xKpKtLRnRDPydUEbYlhODbtLOYGIm7dLXfe12rzyqgYZRKwS29x6QjYf0n+OLRMOekCAA0+t4FCodkpHmAkaj+qfeNcAfAWk2GU2o3WB/dkC6B0dAF43v3ANE/u9MYazPU5DIO3psSA92l+JSlZYWo0rgXnvTQthG4iio7UqPe14q6HMJPPr4lxj24oPxXpIOD3y4YFfQk9hbr8shdGiNGrIoNE6T0gb0LmWqePcn4DhoHjG62noH6xOJRvrlR2faqeBR93zTrOAd9dKcCo3iTFqZSMb1emwwhLa00ICFoxMKLF6BO+oeU/shplj0qbMQc80OwJTqD7aJjBKEQskRMXyIslMYACDlj1Ac4yQqIwR9RpCcMkKDXaTT5yMriqT44sKMHQ2ZQudg9J81x7k4gXz0tZnQbXaIOzTzYSHVfCu6ngrlU3IsP9Ih76oYnlDxpZBzDNL4eLe662kGQTQmJbC4bnIQj48Qj0Uqtdck6ZogO4S9fKwHRsGmFgVwgdYPWOhusCuqZ0XG6C9Iio3DJWgBGBNwDisn78033gND2Ivob+BH7njDn2w82mLOntic6heh4BoB26a7DwvvVqmKrzJR8+431zecRPRweHLhkAKv/GGysGN04MsXIPOMchQGCzMIsUxxGgqBaQgr1yVgPG3zcohtsN7zDuAXLCeEoiUmjCjHrYOEAuyHvcG2kMIyOW+dE0TjbP89K4sAXAJhc9lmEEhYaRiAefMB64PcKHcSYbxDZz0Y70LNfUzjAJK59BGLvwn9LIc1SQNhGzI271yksOlXTW+bQjzu+JcYdw4gBwJhGBLxZLIzSdyMajRRSwYfoqTvuCVaFxdTckbShRxepGO+7yaiah3MYkMSJhjQEiWB7BBy83VaYMejSEcUSbfuGDN0U6nGwqNm7M1fuEUUwOomCZzAJ9jby2PiOs/u1a3TdGpxt4lBP3iPDFGJDEcEvHfNHwBIFmtpMBcz8MEwvNib3HA2KKaPJNrNAhWZQFc7M7J2bRnjv93F5/jyDLmnGqCQiVpcPiD6AGPabFsFym/BymgiVZHuDK5u68xs4Lw7Xt1MT2fRDWeB6dvGriZNwIo1l8ZIGJTvt1DKGWFZP4oHA3vwSLJ/xfT4vQFeMTl81hz+eSHGTJjgqDUYxNpq9THGAbDC6Uenow0i9DSpGcTkycjl+lsFmg5XO7mufH2xT58mFs1oVa84Q8cKss4ICa48O2DF/4Njtmpid9MTApzhks0sgv93TsS5jXODbYrSOoM5EoFmAzadzmYwInFLNGeb9F6ZgtH3Kg19uPrMXnapG0pgBMPhqpDQCkBC9U4W5subojyiJ99yjd0ghmuAd2ua1mTCwI9jZ2HltKmiXAlEhXFlJwcz3CksZPQu1nkJNMydIzrBtg1VOIZOl8LvCSRyF7Nzwx3i+sGk/6fiWGHc3vM3QzAtSZf9RzDYci/wAVYg3wxC+YOqpi0K2BJsMdgYwVSQ17y7fowwBEJOMjo6DovsekUdn3kojm1YbiozSKe4EYGyAUJMbhV9Eei/ebizID9md0oCYAsclfJPWne1gCdAFKEt/Q4PkF8MzBH5nK+It9u3w3fyd/NpQJsV2dZaIG7C0uDZ93wuJgz6aCW30wLYX3zBrHSkwoydGRhEJcdFXDoSICVFwWOGihKmCPZK86PhNwcdywfX6YMYVz8TvAcD3HWsiwykOJgLlGDRE3C5KrXAViBUk76Bcrx4BCQBhwTpkY0O3m6wbuFohv3tv5IlCu1M25RicGPpMKYB8d2XCjtFNCcQz9AJrdLWuhrZyjQSko17QPKqmRrYaA5+jYYyRsUHPlUZ7IbsJEbUbCEkuCa0J7mtCOW/Q3NEEgwqcH4Zy78yO3LEdm5SCUhv1hfmj9ywcaLjcz+zsbJOO7HhMVAvIIYqI8LW/CNlNHSNaN1B5sp3SuH8xYxVgtE9cGiOylj0x5L/bblC5kHUfBh9GOyuNPhtiSBAwc+ZKpoR0sGwOXfLYKqQ2JDOODTw7zBSYfMfoNtelsfs7xuadZsZp/p2yVdqupO7dZdSL4vzY3NR2B/8Tjm+HcY80xaOT0LUQN4AxYcmOUc8hXQ3dZgBA6bBNoC4KhlWBi3PfPVKJyEirMxdiwwRnyYCeWeTK277R8sOQ7zt+TVaEDgMVuiVvuhgPR2wMppP8vHoRRNdgm6kyqauhoKOV5FofHtU92MEaMqrBXOCg8IAh3CBP+qawqo10r1mA9d2MerJdcW/lTM9QpAQwimrRSDIKXpIgvVDwybs/qeVuHCagAkmJDIDWgLn4DEkZmQ+AoSsTzls6oZntNaOdFepyruLEG0am7MAchTuRoUWTVtv5wE6xUzc4PSvHo1lCLn0UGfm3a5Zc+Fp5BeRm4zvqiQ1A0TUb0XpqgHqfRXDUA2cPla9wqumB3Vkeqa9wgbrz/u+hYijuTB6E36QZ9Ow6LgdYss2CevZ1rFz/83mDquGRJrR7ot6/cvOYKdAADcZYIR24iXdAu2HPLxwgvj3p3mzn+yD2aZu5PtISsgoGm3boMGQx1COpsabC/kcB+yCiRaPJCGnADpEZ+jNPyz54vc9s/FHXi+eapeEeey5RFRTd2DQU8OGc0MvOSbcmxONDq8LXv6gCSSGNDUZHOvPA+2uD3BfIdkU/Jdglsa7g/RZA2C0hh/6xUq20ZNrw6lTHRkelWb0OpLvz8nsmwmwr9tJPOr4Vxt0UHKVlXOz1YmjnkA4QMj4WT/U9eg+WzFB+23xFiaen1b1AB6wrgI6cOjtUvRCnK2jIJ280cgMvmVGSdNlHm0U7daduRZuCWigjWm+uP58fBl1YrIli0RGnNxGo9aGaNwpV/r26AboYppeORRXbOy4kRo02DHjAMW/S/JEByI4xKv8Op0M51mjaooiSroa06YgCgT0LMS+gmQKiwCYZyWdx6qAR+sbc6oBj4GP5jpstLX3XC/cCYjSpsNlH0Lsg5Ybt1GEpjYEW5r53TLIfhfB4Vt21TxxWWzrS6hK8rljZZofIJkrDNtfxie7MiF5xYBG1s43RajDB6QcuP+F6MOxD8HtWBbIeH3bUPbA3xdn+pxdg/YzOgcqEdCIji9i83gLPWgSwGWhVUCt/f3sSbE+Geu1Ip4bzvOJUKqZc8ZJmZ4lhzDCQ6hi4CrZrgl4aYbBgoizstMbW0U5ldDZTYwXQ0w5h9uLzBzYdztQ8Cu5g5C4OrejWBywXJxTZC6vyHbol2CM0VYRYemOXaWTsQxrXRcj65Jj0AZ4LHX6p2HH7jmHYh5JpjLxzppdNFJ+Da7wAIG0zJWZAh9+lYFgi1OPKqZwqRlpjmxVpC+pm7DlnvaxOLU5kzohnAyiZdm5rVF1Vnq9YZQNWiNtV1vV+2vGtMe4xSCL0LfpkHIxhQHNxfjHHPisFgdK2Y3jRiGEGPvBLYFWG7uOrhp+LTXMYYjEyAP8eDtXmZkt3G9FKYMV5sTFd/phqxvUAfKBpMeh5j3bYju/GaCO9LiiREBmFF3bK0oisSbA9UYN7iEWpjPb+Yw0iCnytRCaCIdlAjJNsnr4yrR/CZG5sxrCCuJYRZe1/t/kwiFtAqttauVBF2DlXD+EPMJgPYjam9QQHe88WBLoqSm745fcv+J0tYV1OOH9PBmTWi6BXP/eAddxoQwCrBjmq5YUeTQzR8IyrXjiuLZx6aKlIV0pFewYGx8X7ubsEr4z1ElCIukwChFOC4Eqj6cG6zcDdQ7fl8IcSwA5zvALlhfdn73FwrvtmmF47li8SqmPe5nTa9QvD+ssV82cPXE4rzqXiXDYUZbZ6XybUqmhbGnUm7hkAD0U/KSUtijHzCm64MPiQmfcxOrSpRuprcOK9XDeuz/zaKGyX4EaJLDAbEIerrWYZnbpBPw01TdZg+qAhikNK5VYp9HbMjJtBA6b0utCQ0zZAeyc7yq8LUWhd2DVaLyyc6tahrdHwn8qAbMZgaoAGPOkIZiCAFYXxIZEm+diQH5kzaFUGS0cdlutzRr+cOK923faxjkmBqYymKlkr1AztOvnsVYUsC2LGLyHlfwiM+8Df0r7oj7zDwLB7wi4jCuy0veQp8yLoMz0rpk7cNv341EU6cWw4tjeKWjEVxwusHKqBYch6EeTXhmkzjtPz0+SA7TBWTNt0azDlom9F0A4G8qjlHm3kPfFz2lEq1XyDn4AHBEDap7UfUvw3o9gqdspcaNIE9S+GcDi/f3SMVqegabBIMFLl49i8wEEBDJZDP2VIRErFJ7WvG0I+V7pnUKGmt3IwQ0864KXj8XRa8KvXj/j4fsbXt4z6XPh8fVxa9wlbMWu3F260nl19UKgz0p3ZoY1BAlUeeS+r0wNjzm6wWXqxnRJ5LOqXDjx1LDmjvKSRNR6fQ0AwzDiB/Io3AnNRnIexsN/bTlXkcHiHmBY38EkG3p9WOUBahn5l1gExbE+G8xd3/NYXH5C0Y2kZ3QRzqjhdN3xIHa/LhMUEvSprBEmombYo2msB0h5F90nRzpnnNuSqWVuIubDt4Rmi38/VBLrRuJNfr2P+6PS8QR9edHzKLinM+56WQ9E2kfgiRsMojZs7LZ4JdvZIxGQiTn6i8W3nQhhnZJ37vjcVDmLp7L+Qu2eXTaD1hBhcw+IpnZIV4t5WEh1dpnGKgfBHnN5Y+Bj7LL1S4qBPPqCkdbcH7nhOGbbNkJTe1Cj6KaNdJkjrSLeN84GDTpxkT/47M1rRH9k4P3L83MZdRBKA/yeA3zOzf+qPMyBbG6Po4YgOWW1Eu2PMngLBpokiTiuEWtIi6IvCigEngzqe2F0sLIkhpUa+r0UjEFCdu5xWjFFkg7a2Oac4ClbR7t0M+d49/ZLhBKSLD8XImJIg3xvKS/PsREcBLFg3Ry76UaOjOec/JAxM2M6+fCEoHzEcyREHDYMkwN4qDqC8dG/R3w3s4OV6MXevEzAjyCtTagt88rAIA+rp2bnUws1jhalWNiNcA4xIJyL9uM4+DJW4YfNi3ovgUjb8icsP8S4v+Df1N/Dhw3e8KWd/Bq0ELLcbT/UoHMnhvXlXlRxsk0w52/rUAWUdY/Aa4T8/8bXoRmaHtAIzKYWcyOMwR3SGOizDrJKZ5fyN88OTjOcRE37InDJCVP69fXb5kU4DD+8u3p4EbfP16dBhO3XUszOoTg1P5wV/6rPvYdaKf/v1O/jqccVqCXOquE5kiixL9vXljs3XmCwKK30U6utZRw2pnnkfCfvpCBaCZx/Ne6bRXSuQtXvA4TMDboq8tLEG27Q7rV44cW1kxj7z1SQy246GtAdR3qzGQekRtPDfA0Zx+DZklTkESNBKgpwSCgD9SJhD14Z2mgDXF5IR+VNnCAbInJFq94EuMuiUvJeKPssux5GibuCNWa2Phj32O/iQmcsMscl7ezofvDrOHkPLX9fRyS3ehIXeHas/6Nf8hOPvR+T+zwP46wDe+7//HPCzDcgOHHhUvyvYZu4DrEMf4w3NyrwrsRqSF8VY7GLrbrsIUupIqaM63zcMPTQaPSKlJuMmrT4A4BWDrVNenbni2DD1KqjBHMUgVUbwUQeop12CVV4M+bV6R6qgX1x7JLRu1Bu3NsffPZ1thUY7spIwKPUUmGnAM1zM2gQt2ta7R1TO9T59BUI+k3I+pUcUkYnosv/eEM1qrDccG6AAh4qWneVCZ8vP3p5I9zoByDHn0av9urKFXKJ5KQvEq4s7z98pkTXjl8ozfqV8xHOd8Zc/+wz5taAHBRQY8BY/4PByCIZFJB7NWe4YELi3ACZei/D1gGQDj+/Oqe+J8Ip9o2gb58SST05DfTTsEMfMXxk0lFsfxdo4z3hmQWmkDDAbyyJ4GSMQvWehFlfO9KEfsgGyCfq7RkivsGj5Rbnhi/yK1zbj0QpetwlbT1BhJ25KxhEDVWBqsBONIJpAoMNA11nQig6Z4zBWPHkMNlFcU1A4pXutpwUNOGQsFLoqUnPdFQ0oygdZr3SIaTESJ2JtdbDWJRz40idqu0/frDtG7kZujKuMge7AGELN03QYMwnkaUJZGRFHJkvD68ZTfF0O6CUNrn0/ZXRvxhusveqBlGvAR32J+0ahwZAy4KhWaFnRzoXBasxe6LY3/RmQbuvORusG9I5+PaGfHcr5KcfPZdxF5DcB/KcB/I8A/Hf85T8L4M/4//9F/D0OyE5bNF+4rsUmI0oB8BZXlp11MPBuAdBZdJKHol0UuAI5N7SmyKk7HdKAYsOgsGFD0CYbkqZi4Pit7qqUS0e/7BBMyKRGd6rWhr56EakI6imhXoAQcCrP2z5oAxFx8/qC4968SBxNNJaA5oZIK8eK1SuwXR0//iAot0MLuN+f0SgShSrzhe9QUPz/3inpwy/64R4jjDyxZ0tROPZrsP1cGe04kOvPoZ0SxNj4FPNOozs0oq70EGSPJNuJxfPyys99fsz4bn7GO33gb0/fhZwa2pwhzYvIYjvzQvdriYIyPKvbLg7PzBjYeFqAdOf1UEbVWCpROvmhiePyF0FxzK/787JkFOg6In6Bo/sa2SmPNjT4e3KZioFJu0N77IbkyF/vLpGsG9dCPe1OOD2APgvs1JHmhqQdj17wZXrBv+/6e8jS8NuvX+JeC6opaiP90aogLXxW7cmfSeW1y6GxKjk8GVo5YjtNNuol0XNh0Y27RQbpBVinb7JBSNFd6jlqQFQ05e+0mVLP5cUGfDXqVH5P6swB3tAJ5aUCzdAuGWnh8GlLAoSciO11ixhck0RQrwn1kiB2Hro1wT7bVJC/ArRV9FNGwKe9xzhAbuAe8gpefxDzTldn0RyHx6hLLwwp33i8ZrBGyKZNGTan4WjCoQ2hMFWOCYy+EWfOtPkXC8v8TwH89wG8O7z2Mw/IPsIwuhnKi+wNHxH0eLQ1Ih+nDuYbLziMmm5Mp9NNYZ8Tp1L1yOZ0R0kNL7cZ7VI4JzKYCNEs4pjoj/7ZhxR46joRd02PRl51BdAaTNPO18/ERfOrIN0byouiTQnbxWEfT/ujMBsdoxxYgtGUxPSUhkEuLPzVKzte0+hQxCjq9TD0Xj/rhQuOOLyMdHYwC2Q3YsE9B9zABz9aMHDS6XlPoSwgqpcNbVJslwy5JleeVOQPHXp3waVMzQ4raXSScsABIG4wdQO6Cd7pA1dd8CfOP8DTZ3e8fFMgXVlYXnDgfmNs/tAkCQedF0M7E8IZVDzPELIbeCvsjbADFzyw5D45BPFw1tTL7nhD/Es6RhNd1GzSCm9akuEMea/c6fpw8yPtNN+A6L5N674uhmid7RE/wCBo+qDY3gv61LHWjOd6wq3POMmG9/mBU95wrwW3reC+FtQ1A6sO6rBYQrt2Njlhz6BMHQ4UOJPEDXv2LCX2wWFvHBuW4Hz8kMJg41PCkLN1PXsxoL3rsEvFVhXrNwnn73GaU+jWR7MZwO/cLsLI2ou77aw+PMOd3qwud2BjXavzwvPLCnHddlPH6ZPsjiAJjbA3RA1oJQS6ApIJmyWyG/bYD+LFeGeK6YOKjjYXYNqHfIxu1Vgbgn1EpitiBrWTsE13+FSBrXoB+Ogu/vDxxzbuIvJPAfgDM/srIvJn/hi/PwZkz6fP9/qp7UbvaNgtiqm+qNpMLFCvhAJiuEYcugpbvIF9OEdqmLQi545lNmzvhNKy6/57A6ONhMCC/9vJcKmG7ZpI3ezA+atgl9iIAnYMmw87JhsRuvF00g3xYHAIsAo3XQ/s0sDCTBLgEOnZidFu8wHg4hhz1Ak4lg2D9fLGWPu5DcOYKFtAx7KzgiJNHROLbP+MkCMegzGc654Wn0LjYlttTkhzgnzTgfuDdLJ3l33mKg5MHi8aixGLfu0T/mT5Af7E9AN853rD8/WKfueg8Ho6dH5G4UxokAKqCdYPMWIZxdO0AuUWi8uwuTyyVG8ysyik85p7BqRQ/5wwlUetGeiZTiRVGYNF1Idr9CRoV4HO+/DqcN7d73GwpDjAw9eH024t75IWx47ckCvg+wT6AOot4ePrCb97+xy/OX+NXynfoEhDN8HrNuG2THg8CgXzogu1CawZOd0ZpPmFnINDWlwHPlFMo6+CkA73hhMCfKMGFMjJYc56WY8GnoNQxtrsAisdp6cVZsCiM9alYPsgPmyDUFRE/3FsZ0FP+ceOsOtZoAcFVW3cu9mAVDvS6waZEmWBp/0z42gutUHpC15DXhzjr506N3NCqL9KdeXL2oHk3bVJwOY+6sfLspL1MyWOgJwUXThTON1WpPvGaWez1wxcTXNvznIa4GDpONS5/OIi938CwH9GRP5TAE4A3ovI/xp/jAHZ7z77TauneED7n/HeoJA5ptzhrIdZYHe82YyxOAGgV0VJDY9HwTfrBVNu+JXLC1QZrQ1Z4RQt1IA6rmh+k81ZLwDoNYMp4losjy8STl8zEu6FwxJa2TfkMKLAnmoGfOmLryE2kwy6XESaabV9UPfsUIFjo9vVF7btr0cRmA03jMKj8Hw8ggnUAXQfCDxeD+jF0+h9gO8O/+TbBm2cLtPPGekjh2qfjUY9Jk3FPFJb3YOeaE0Jk3TOhWz7NdcT8OtPL/hOfsFJGhIM76YF6VzR5wzcnH53coPYMPj8PYtrqO+dxaNt3j9/NLA1oFeXQJhoKOGMpzdrrxg2v+/5Jh7xchmE3IQpzyOaeY6GeGDBUeQ7wIt7IxD1ffI92v73qLie8QZ6iq5cQphwZdCEtcz4vct7/O7lCxStWJw+ZQCWNaMtCXDjHvcfRrZMN4Gd2n6fzJ3Y2VlkrkI62vSDmdVjz9gQFNvhOxuBBbV1BDbRMNeZa1ZXAF1wmjZc5xXPU8XH7R2WrzPSQzl9LIyaf1++E1JlMLMbZxMgbaQSj+a4KJCKq6C6HEDIPbdZB/9eX9qop0U0H/f7jQa9N+MRjvHounaIM1hCBlhd/lpceTKgyfSow3H0KVHxcq1IvUNsohbSIAn496nQeYigvzsj6KN/1PHHNu5m9i8A+BcAwCP3/56Z/VdE5H+Mn3VAtp+nbkCGMfo6bMq9eOd6Ix5hxUCMocxYBXYcK2ggzt4V7ZHxzesZ76cFc9nweuoUNWqRyjPiHZ91pMF5CjXSs8M5B16nQv7ueqXxGafgfGSEkfRouidBigEloVfjk3u6O7H8uhvboNz1Yoyc1AuGmyB0S3oxWBPUTQYrRYyRICOMTpqZ+eL80VZ4iSnuNiCTNzBVHMcW860T8pnJz02vG2TrqJeMdqYmjc18KPZYoNF2Dd7ntBp0U+rmN+Kwc664yopAKd+XB95dH/hwmoaxPOLbZM+ITxFyHrrLPbDXALAixPa7IN0PBrx7QbntMgLRSzHuy7yzhggJeVQN2h2ym/jc9CyYnm10KreJ56VRY0m7YTUh9MOCrIyhzscgxZRidmQTuWH252/O6KHIXcYP03v8G+k38YP3V0zasLaM+1qwfHOCvuyMk57hXasOA9591OThOQf/n2uZ2H9QglvANolGPz0APVApY7CMNKAESeBY63FHqyugD8XWErJ2PJ0WvFxPqE8Z24u/1x8yawCGcqeTbLNivfqe8Uy7qRdmN4e/Ep+7C1XDtIxg6zhsYzijrVMQb8gSBLSmsFWBAjZM6Q6d6Nahi/d1GKGXGOUnPxpYV1IcWZtL+9g8j9ClGSRhOAwAfi7eBQugnwvqpWB0pv+U4xfBc//ZB2TD4YSNFfbtYoO7fDwC/rVEbvD6GTnk5bUz5d6AGkYwA5oN12nFD3EFNsHyKPjB7YKtpfGZIYREvNGNW0Qq/v3Ryq/eJWfH83rz/+ICVM55T5yERKkD2yN3YBjn/HCFSOxF4iGJ4NZjRNNy+AOMAQ8AYZqeAdsM2WGq0Zi0kS+ra0M7s508oJVgFJhgsEwiak9OadMsgxERmi2RQrIzN6GVE/K9IT0/KC45J/QxIJwCScDCqCSkkpeG6SWhvOpoOukZOKUNF12wQfHcT8TgTwte3q/AH5wRk7mOxugN37xFMAA2tgBAhz8b7L0MPfBtv/8mGMqYgHc9G+RSIWqop4x+S8iv8MlKcIaIZ17F2XIGnL4GdIku5p19NYq+ghHZtmt3+EExfy1Id0bJ1DgiJ/9N4xH2CDsmWaUH0F8SvvrwhNYV12lFN8GyZXYzbs6QSUA/2aFGID7tbKc0DlqwR4jNvzcv3Bs9CeBDRXoHhedkZ2dF1zbXOm/mmAb2IwVrGFArs4ckhlQa2omyHMdOdFMgL1zL6eGKq0IGC4XMdr68Vv6c+vsyGsEgZNVFn4apjIaxgFd02WCWgczO1RByg3fL9mnXuNGts0iclaJfjw1yaICykmCXExdFTqRJBqQiguads0OzvXbi8nkX2muRCTwqpHe0c0a9kDn0D0R+wMz+VZAVAzP7Cj/jgGzO0iRtjHRD7OwN98o07ALBnt4G1Q3wTtIHBs0qOlPXlmBdII8EvCb88JFQntbRtOGKBVwA5+ASm3fIeeR0VqdhYQwsAI6GEGTqVBsf2N1pbJ2hYLkxeuZQibQXiAGE8l/AT33yoqbjvzGNSCqZHoFhEhuNhQrApy31xEJud22ekWYGRmixsfub1PYPPZeNKazMLqXbbBiXekrDIDPCZOqbXl0Lo3p2MSnslKGlwFRh60rhJF+YpSjya8J23esm17ziV9OCV68MdwhUDJq6d8RGQXU3kP3g0KKQN+aYCvYGqLJnhpZ2LB3CjtV6YedxSPVKB5AMuTRsJrBNR9SnttcMWgIsG69DBPkOnL7uSGvDdlEyd9zAS+gAgOeApwoTwyITO3RfAHHdoTYbBfC88UieaaAsAy0b2tkflhFaqh8n/OCR8fWpYp43tKb+fGy8z5KxhmOAdIEszF7U91IvQcOMNQZU4/3Id4zstrmTggHZm7WqDwuJASYw2UXc0h7cxN+6CZbnGd8XYCrVe1L8+ua97hSziFPm+MX0aJjNAGR3TDackwlQ7qRJt5Nie0q7QFunEBlnCbPUYA9gFFWDjXIuO2NsKGNSLrqeXVEUcEp0op5Sd1qlwbF3RbtOozAKAH3iUHdL6g2KClwmyNIYpQsIv7hUdZ/pSKwp0GUgBW2SwRj7Sce3okM1PFA968AXBxxhoJEKjrN4QUciCuJnpJXpd5v2xWVNcF8LoqKf7oIqGTUboD7AIGMwEgIzHLok9woriu06eeMRhavS2pEfehAK2yvrafUMLfRLukFMHWbpwxEcKYVpJaTEmxGMChusjPwqI0KlcZVh1Nn4wQ1rztY8NkOxKKXEqz0iDyw9hhgHh3kvwIp3aVKXncNIbEz3AYB2opGL6J6yEcQRZesDE2T0maGnCfKaAZ+AoyHB/MgDp46BElk6LiJ4l4Av0wuqN6G9vz7ww3cX9K8jddlhlD0rskHJg9honhpOKB+dKKGv/IBDEIJ+arAi0C0xxX8I1jVB54o8VWw5kbu88QOPxdCanNZpxP7xgVBfm/jeiNjjucXfkjtyaVjfKbZbAb4X65kG0U4Nkg22KuzOBW/KtdtPfGhSleuqCWwhJ//RBCl3oHSn7vl9asF+iYKkQU0gzvKJvpK4tyOz9RuZH46X4xBYWBh9d6KeRbUJ6H1fC7B9/YsHRnJPePQTltJJ1Uzm+w2jEE2Lz05drQL0aBy0YXzHsKZGCFKXBrHk2v6MgN8w8PSQ7YXa5NOJ6Yjs1783Le39HfAaT8wGQNZ9NquvTTGufQgNenDY65VmdwznSQIJdUq4jTt02w51y4Od4cL5yYEZ8C0x7gBG+jq0o+P8O4auSKgDigZ4t9/oiHDTBGzvHZtfEj58fYU9EnJjappvwHpRct29yzIUIuPzhpcHhsZIP+pVLIbskcLOs5ch9lVPihraIEVQQaxXOpUU04YhVhazKiP968lH7lViwIEgUWdbdqqdT36yfNhg2J1iwBChx2LB5w1Ou3WIyZ6FJEGXOM9ddkCquNPiG5NPb2onxXplZ3DgoL14kSgMqXhD1JRgpxl6mqlb/Vi5YXIaqe+ANyaDSsfDDL+STkjS0Y2R+5wr+qVRp31iMVHMhnBXNFoNNoezZYL7rpugFhpbjsDb723ylnoyOAx9NsAHW+OhbMRJ3RklTBfG86OsjouRdXYSfy6YnhVz0NnMYQ6VNxz6OImUOtKlYnvHUXTqUB4jV2F/hhMBxLNBc8OtU+PMzk0d/AekKvo90zGUDrtWWBPIpsjP3rB04bVEJnIcKtL6Lg5G5hMYhW8uj+AOLbKmnj1Q8AasvUlu39+W8RaijMjTAFkVWHSwaCJjOPZkwITzf1UwgSyY4NJL78ACVOd+ixmhDDOkOaEnZzZ5MBLAfxhorQYV8WZlwj3wyN2O8IfADfi+R2BO7QUIs2SBuTEP9cph9BUO23h2cyjcxvzj2DsjaHSxsciIaTN2BOEnHd8O4x6da6IDn7S8G6mI7FrQ1gz7nEEVwMgzzz6eLwwUqgAfC8YU95VFqZ4z6me+ssIoRodrxWhSiCG2EZ0HwwOAY6R4kxpJN6R7R7m5UfNUtHvxN61AisYHN85tEkqs3g3bE4ux6dV1xC+AFRva8rGxB1ygYEGwsZA6mnvC/tgh+nL5UM6wNPSckFbBmPYSRTKzgXEObQzXrU4rNwdbwHXI9kazVy/cKIMi5gMFTMGC62mG3B9ArZA7gJygU0by+9Ezr7dIx81hi6usmBJvsgq1yus1o3/jwUAN44IRoR97JKKNnYbJX1euqyO/P9QgdRG0uftAaXemrwnbOXOodKfBTw/Hu/tB32asSa7femZNqHvEqhuLftE1SxkNGcJ201RxPxXUcxrywtLAeb9L0Bi9CaqQm69zQ0qdEgbRwAMhBasKbFXI1KFzg3WhgfdBIL3wBozGwR7BAAa+z34EGTALWVp7BjeyZ9klprX57VWg6z6fgRo5PL8Y72jKawnmTtxbBjq8Rz2y9CAnGKCN4/ba7HIZrseTrQ92DhQ+Eq+PupZ4FspzpzJpO1EXZ5ce2DteKSusqNjrTQyk3Ot4na17dNUnHU2Oeicf3XxAN7ox0BEPRKLXpe/LEuE0E5+hxOhBH/5BQ2+jF+KnHd8O414bTj9YsV1OWN8puqveDaqVD8sw9a5N29kHADDoSd4cEXxkRgoRfXLR6QLkSTDE8G1PD6ngF7CDYH1fkB+NGteyU58UgPTEdMo3qHZWBKI9X2fBETaKBpZk2I3ZBOAE5GWPyNt5N0KWgep1BXEOXL34+LTAUW3Xp6FOhezXE3ULAaBBTfSiTuFy4sKPyBs0NM4xDtnSgGXCaAcVLKJ1skF4zrgmZy7FVHo6yj47NLNusGUB1hXIGVIy8iPmZhohBAg2UygEF13wLi/4Pp7QTZCnhu2pY/mMRYe0YO++DQRmdOT69S97d2UEDLxJ8MHRvOdSAdm4afupswHthfh5f8noc4esinzna7HO4GuL/79HrRTIwqivRMQFeOF9ZvZoS8JWMnJpQGKU3AJiWAX60LEPLAE2+WzgqSPlxuw8/njWYgG/uFAYnDAA+N5x+IRWfq9hdG9UsuP4xwgm3AJ1l7YeRX6A9QtvICQ9EkADsfDQD0oRoQLwRipTjIJ1z+wQy7eoaMczNDTPpnkfvT+lKuocjVECBffemKUacMohS5DGOQaoLn3t84rlkkb0HF3bkZUAAnFSRdSoIuAJBp05lLIPOEko1aCvq2dsiiEV7LIlhC67SyUDwagLZUwkP3+nVfKLPKBY8Q9H5G69I70s0DoPWGTw2lMsPEOvAvMC2YAy4EZzcUPXaTilM221uTt/OWFMt3E9D0tvN2fg9tLNsXs+kHTvKDW0qPlaKNuJbyKt5gWqQwbgDUsAgGFsaIzTRgdCOCHohzIib54ntXWQIrr26UzRMi8YWLhU38ASBt+ffA4utgyWQJscjvHCH4C9xnGkGCYwxQwqaLMRVcQkoApeg3RxLRyBrmmn9QG8X6cMvUxIjxV4fYWtG5ASNGeU54b0yIwSp4atJ3zVz/jYbwAKiouZNBP2KJw7tvcKMeqSHyfuxP8fp3lF8xuAncaoAMw4LPwse83D7ytKR72q31tBelW0Q9Selr24HHTWUAYdrfiNmkQWDBzHmaMQ3r0ZClVQl0RsunlPw8kj1LozYvKNTmHzz9OpYZqcn9492jR1A8DPghqwKSy6aDelNo2v+aDdqu+nI/unT6wFhQZTFP57Amzesx4AkJlBFYkDGHWzvf7Bc34Ds4BO4XxdcJk3vMwzHv2E9hCkICYUG45ZjU5Pp+iW1tHpG7AnRyy6sXWRvzfY+hFhcQPdJ8H6xGCvvDRAvGh5GIgjfk+PzZbSgbT1IR3RQ+vF99Z+ke5sWqxNGTIUnENA+EVHLcwhnhTYu2Jw5atLKO+Ev594fCuMO4DdywJ7hHWISKIAA2A0/0SEG1hrtErvsIWhvKOLq9sZbUojQsmvMm5Q8sxAV4zGCU4z4oLJtwZ9uId23Yzm0YgYNbyjmYgL4S0edqRemcaAbO7y7jM784PQTH3IuEZEvaHJzrgMqKXY6FZ8AzNExhMQge2RLOfMOlbotY3R3n7cdIeidc/sHdDmDSHVfG6sDWYRMwKnlHWgnY8t4zaw/nYu0KkAorCtAluF5Yz8vKK8TkBnAfDeCv5u/QzvZcGHdkGWhjlVLDVDtUMmUjprVae+7cZnFMIOWVNEweF4j9gy9chJR1XX9wcAKR390rBtgvIaCpEHSmjdv4+qoTLWEIXdmAlqdZGsIgNPjefUHVqRLrBHQl+JmZvubf57wc8DiRVQ74dQNUy5Iid2X99TwXqbiL17tkqtFSEdshJ2OjZpHUzQwN1jOH2fuM6kC1CdtWWg3PDE85e+UxYt+TrxYCT2Wlr4Wc2NJI7GPhtO04YvzzdMueL7VdHuaWTUhIi8h8W1f0hfDuPvEEY8287r7KaQ6nTdqJf5vhLgEPDwe+oMbEZlWXaFe6NU3tfRmyJw9z3aDAJD98Y9ACPT5feRox4ywdEUGN3i5ptu4O2NiqpWMcZTtlMG6gx9rMPAtx+RC/5xx7fGuNvB070x5A4rjBschn/cZBvp0xgb53AOTJBLw2fXO/7uvaB+1GH8j5ElqXUc/jEKLiKoozGGkqUxVaVNOiAOGkBP14wLvA0Z1N1ZvWkEst34hMCXGKPBfKMC4JBTkDAmvjjVKV8AbOqwRNlY2VwzxCGb49EKI4ARzR+cZrSJR4Q50te+33NTLzRFjcAiY7BBQxu00u4YeHEM0zH3KFyly4x0OUOWBbaunEiz9REVlqniVgv+1uNXsVnGoxec04bfuHyDS16x1IzHfWLzz4l1kLTw3qfgJKe31xAyvRzC4ZF156ZvF35O3QSa9vWmucPOhr4q+npQHR3PAUGgYLBg/I7gZ0evhHSgSjA5DoZ1OGNmmqOV/JB5kDNOVhcU6NVlFyqx91YVrSvenxakecFjzviBCdZVx/WHkddNqJHjujxjRrGvxRhlGbUH8wagdjI0jWzY6wt1N6xiHqk7fq4rIF4DSasPH9nMpaH39TVYTgKYCZJ2fHG6Y32X8YMXkugDWjU1wp8Q1moCsgx6Zd0/k01j0WdC1tvYgw5PBg03MukIJhmwkQkV7JuQMaaz8eK/B5eWSVQYRdOgcR+UJvkg9k5tad4geIJLiuyBKR0BgNaRKrH6eineDDgj3ROhm2qwE/7I6P1bY9yPw5UBDBZJ4OIDLjhEBOFBR5PCCgQFaShLiuE75xs+PF2wnQoXuABw/F28gDjSzgpnYHhk7TgaR8h59H7NO54ru5GG8L27VOohGnasbKTlyQsxLitgrzIGUABucIsRsukHTqvxmiSGbUwdOJEm11ZFMt1VIj3yaxOwXRQ55q+m8VHD8B4Hf+BHxxmO3ncZ7JvUeT3R4m9u/KPZ5g3lLyLVWdHeT9DHdRh3tDYyGwCYcsOjFfy1l1/D7y5f4KwrnvKCf+/19/F8OuFWJ3x8PWHVPBgHvTtf3THtNgah+NpxNkdPpPwhBp67Q7LZ0GIObTaIUotIs2E5JfQXRWpA6LJEQcyExrs5oyg/GK0z07QRFUYPQ2RazDx3Z2vJCB16M9G4X0HbdE47yQUOC70oqmQspwxcgHdlwWfTHd0Ef7Al9EZdILbdC9LNswnvmWD3bgQXe3AiyshTFzq7duL6kZM3523GfeORuolRssMhuxi+0if2jUhzXfZlN+ykpO7igGvNWFrGOW+Yc0W6bmhth8pGFtn5y8fMyxKQvaktYMFopkqzYHqR0V8SAeTx7wFLVWZ4dRYk2YvefTrWaxz2xb4G2sQgpntGPyQ7XOaAUJQSHvLIPi3ds33dqccj8xcO8mp9FINrSagnShuke3N6r4xM4Scd3x7jfl9ZaOwYXZcpinSCkVYFzj7mn2aBzeBNvPkD9iKnbIJtzZi04t3lge9fzuivesC1beiMDNoZgMFDhzuVRA+NLYqEe3YR6d1RJmHMynSjJ/I24/hD758oOZwWQ767dnfQGOedWRMdkdoE2Ay6KuzSUOaKlhKaHYy6HoyEj7PrVYZBBECtfOGiHhK0box+NPqPawW4gYMZQWEoGcZoZABOA+uHhdszm5/S0wnp5Qx5efUP7OPe5MQb/737O/ze62eYU8Wf/vK38evla7Si+DvXz/D1+zP+YEtsKAotbX9uURQUv1+cSuXP0I3E8FUeQJiftxSvKQTVcKy9/R4g6I9BF3V2V3oA5W4oLw4ZwO9XZGheqIyAhOwtoWzv3GHoQPUBzMFY8dF3lm04KRizTvsogCQs5wm3a8Hn8x2XvOGL0x23pwmvami3DFsVuiSXKeDzigYY3WRkBVEX6D6eUQ8Bj7lEQr1QpiOkPgCuT5iMxrgo0oaiZr0KawUe7QJhNGn8rRhaU7yu3PRZO06nDa9LgkUKFlpQXk8Yn3Ng1kUPBw2uB00TI+Zy6z7dio1N8SyDLz4wfbcdoVsTmevYy/FM3R4RlqU9GdCwi6ypAbpWQHVE9T3p+Mz0MJjYrjLqmTXfy+vWpXm2ZKzPHZqc/qHC3Pvf/m3M333C86/nvaCqe5FnRNcOfQwDJBjdbINN4FG+VkFdMqolXKcVP7g0KhW6mmJadtU6AIjCx4i4fDoL8VGFiFCtzQJXA+Kpj4US53bA3M3z9/jMUHwMYx0aObFx0gODYmjJ0K4E1vPduyk7oGCxtRtQSoOqURzKDUk8/MFzV4CcZgzaXrBtOASEziBS0uCKR7s85UmjnX7HyaIJCwLvwuS1mrCbeGQKwVroijYn6OUEOc0wb9su9w6tirUmnBKlan/4ekFODcvnGRdd8F4f+Mcvf4CvlitelwnPS4JtGdhwuNmHjMMwIAEtGPTVoCoG9DUmExnvC1ZF1czByMdC66Hwnu+gvIS4WJnSILKD04W0fFpU4Mch6RsFx7SQhmdnAybjMJ7k8JrtNEGbSMG0A2c/33lP+1Tww/kKM8F3Lq9QMfzS0ysu84qX84zX5xP6Q72IhzfZMEAHHyMXj5IHAxqNIKcQ/mPB3IaBtblTYvruUQz8fm9C/fq869APzN5n2G7vOnBqUO3YmuJRM5IYSmqQ5ASFjTUfZHOWEB3xkGFwSYlRZwqH7AFUM6b9psb51hszxS57YT2ktUetzh95OOFADgacabGv/XffkBBkRxkOGULUnepZnQod+Lv3k0y66z11Y4cqAFk70oPRer1Qj94O5/fTjm+NcbdtRb1m1CvHoAFc/OpKe2Wh0RMDtotjmz8Ci/QEDmBIYbgA2xRLzTATblbsEZscojDgsDhG88CRzyuA2pgmlB+ci9qLF0hihmiP6BrAtndIxgMfzIpqO50zjI2nxNOzRwZnYumUSjBPY+VNzQFdoNo9yowdu/9vbKbtCTDVEWFDgHYokoVT6AVjuPaAHzRwdBnRZ0Q7gA88sXiPDcjJ+q7tQQPnYm+nhHwq0BMrg7JV5NeOdEtYt4ysHXOqaF3x/OGC3/nyC0zvG/6x8hGv9nu4vZ9Re8L/uylu2xX6cDzTYnAzjWDyQRdZbEwxiixmpPVqjAxLR2/kkutNYZXGSbZQijxE4+40Qkhre2K2pRvlhGl4bBgdC6ZM2/9EbagXwXpWwKmNXQC7JTqAKGyHoz1AgdG0l58FW5rxVVUsNeFX3r3gV87PwBn4arri98XwfMuoVQAVylcIDnLDMhgtafVAY47nRcOf1j1q7cXJB1HATgYrFU0T7MFFHnWNVGWsLbPdKPdCw96+qLi8f+B6Yi+DiqEH7CgGeSjyzdfMuwYo6yPttF9Dm5lFBEQTmXNkoYRoQumRFErZzIMYH9Q+788nba6T41TPtBmweR0tmiyTkYN+yMY5tcudRN/7Q2BAnwmrtJMO2QN2Nu+8+YDFdDOIEx56FiQRlxsmVr++1wHvhbz0Tzq+NcYdAGLWZMAZ9WRIIoNDTX44RkdiUBmlc/0zbfSW6pDdXRR/8PKE6+ysfy8asmKNsVH2NC1Oxh8ssDMBNiAUHsfPh4C/HVgqgdc4WSHtkXRQCsuNUEzMmdyeuMmmF8P8sXPxzop0FaavkapLiBk5g8aNjgg4Li6Car8erYwsw/C+ySh+pG4Q8EXPhFCPxj2YC1FP2Dbe6/IKaOvQxVAEI/XsOZqHInqXvVnqlNDPBfJ0odqdyz2UV+DjhxPqryjeTw+UxA39vds7/Pb2HfyJ/DU+1xt+bfqA713e4wfXK+7PJ7IKVA73n9fEGa/25nUxqiyOAlsCBUbUYCbQZ9IrTTxi7GRW5Yd/hkd2kRWkRfaW+8JnGmsqviOYIzvzhZ8TmuzSHALS/f3BFZe20+8Cy67hYCowfRSkJaG+KJ5vGXNu+JNPP8Tn5YZrXrH2hMdnE7ZcUJ8U+lDi+v77+YXGe5xP2dda0ITTgwZyMETA96aVPTeX9w8sc0FLBbp4ZTYK1xsQfHU4XAcRtGvH+y9f8Vuff8Dn0x1FG5oJbnXC7/bPdwd2p7OwrOjnvp9b37OvUNYM3DuiZzoZLvhegHpS0p3jHo8MnHskrQDu3NfdNenD8UkzVN0NfLDFho6RZ2pkwHjU3ZLDN2weDHolENAWEDN2I5tE5WeHPayXBGk6aMgAhqLsL1R+QEQ+B/A/A/Dv53LDfx3A38TPOCDbPwwxqT7dnVrndLF+iIq1uUHNZBLQE8dn7IuPo8xoXV9eT8Sjm+LYsBHvIyfYPze64A4bNBoZohATkXcwboIdEx2L0gQpFOXATkXKF4RqnU+Rf5BjXc+++M6kVU4fKkrZJw6Zr0ZK0sa52YgI1zUTmimd3ZUzz5ffb5DZNdAPCpMRXR3ppYELp8WfRzB2BvuI72t+vqGaCPB9WinJGkwhc8fcgIPT9oLzKUMvMxdo5oT7+WtD/irjh48rfvPpA7683vBYC17XCf+fxy/jPzj/Dq6y4VfzB/zm/A4/fHfBV89XLB8zrPA+Dy7+wcGPJWYAKlUWbT6wKIbGeTjzoBFGNIe9YUn2Zz4c6CbDkPeMvaHrsB73EXTAkeo7HMbR6TociQaku6IWj96zYXvfESMa00OQXyP7EvSccF8L1S39OOcNn7+/oV4Vy5axPCbURwI2RXpOoZ7NblJXerRMjRyA3HpdsF+4/69WMrvW14Tplxou84av6hPEMu9V3N60/+qoTwmA0vGr757xp959D19wegoeveB7y3v8vr5n7045ZNSxrydDvcILsjZE9rYnRXll1hmYPpR1DXTPJpU6TzmmnnlTUkCP9cRMJvu6UI/kxQu5CPaVU2jx4jBmrOsi7DoNyCoJ6jkN2mbQpIEw7j4z1oPNQRxxAkcIhAG77AdtT2SAv9jI/c8D+L+a2X9ORCYAFwD/IvCzDcgGgBCgN4m0z4tVwZl1LxzaHG0yKv45Tcsy90g0XGgF6sSf128mPD8XIDbtAcoBXDvFXyf+FovK0yof3xaDlhXgw1+pDNeT7DxmCPLSh5QowDQqDnEN6BgUHJo18VBbgXNinbVQBd2lDyJKj4i7Z1rbWhNy7lDtaLnDckI77QYF2KOdcd6PuP44BwzjtPlA5yiORdNORBdtNmgSzia9MSKSifcroJAwqkGX1ANbJKY19VOBqg6nefqm4fRVxg9vZ/zq9SPOecNp2tC64IfrFb9Xv8Bvla9w1QVf5hf88vyMd5cHHqfTTk8NGQKHmSKbi/uGDtjccfnuK3pXPL4+0biL87kFHqXKYE9RtsJGsTYKpNL3wtYokGcB6i4VG/UPbQbrQI8CHnYny39gh1880o3vllVgE51PeyJ8I8mwrYry/YLpg2vBfyN4/YMr/sbll/EbT9+gdsXSMj47PXDNKy55xYf1jN/75jO8vp7QOtg8FQXW0aHqNYgW+2O/xkESaFwX+cY6SckNKXc6gw1jWlXUlfYNsP97zhW/dfohfqv8EA2CZ5e4/Fvpl5ByQzt1bO/Uv9v2SAR+DpWGm1IP2AeVY88+0HelV1OM2bdp7E/sxWSv3QWsKvdoLMKojdWrOHXZIVlvPqp9hzxr83nAjc5ju+wRRvSzpHuHtk657ImB0N4TIg75YkT6Jgwydgnw6JX5yccf27iLyHsA/3EA/wwAmNkKYBWRPwvgz/jb/iL+XgZk8wO9oIC3f4qMBRLwyMB2Z7atD867e8y9ocWFliqx6/Twyv3hIQ8qn8MuKeY+HjpLt4tiu3IzlxdzXPWgzubv61nYgCACadRgmTJgKbGR5keeha4cwbY5dgvjAl3f6SjOlWcMDRcMg850HeDv9E2xoEBTR3la0V7yaJP+cYduMRgcfi88onJmTWzi7nQ5reAQ5EME306GughKATbPJvIdmD+24RCDChbpPPsLOvKNrKN+zuhzJqa4NcxfbbheFX/w4YLbFxNUDJ9f7mhdsfSEv7N9gc8TGTZFGs5pw7t5wQ9ODZaCGimHCAhOlZQBMZh38abUMZeKh5yc+bFH30HxEwPUDX7c61GoPTA/aLzdEDsXnDr9hnqSvVgdNNtZ9uliGaRfFlo8K50NX7NQquLhDWBuES0b8twwnzb0LrhvbNbJNycJvCi++ngFADSXTP7yfMN3Ty/4vNxwThu2nvB7NeE+JdSr87SFiotSI8L2zFdCqO6QfSX2lOS7oXwkI+36/gXLJeMxn1GeuZa2s8HO4aRkEBjSIkBV1K44yYbvpBecZMNrmvDcT3g3LZjnDfWS0Fbu7xDIGwyncMBE/oZhHQKA6o8zA1ZlBIbblbBu8vUfkFo47JCezncbe0SaIXVDuSmNe9n3JEdgHnTjz+JUakX5WCnxbUFCcFNhBm3E0e3sa8HF1noSz+aZOUcvTT0L8sMwvby1kT/t+Hki938MwPcB/C9F5D8E4K8A+OfxxxmQ7cfp//Kv4bvLn8bzb5bxsNb3b0efDUz5UL2muNEeXY0hvgemw7FjNIYba4XPY6VxU2e6BPsj0jUWGt0ZzP7zgD38c9vEP/nBGZLBiNHVSMWKwc1tT01160iLYHpRShk0DOYPPA1LDx+0kBj5ibeUv9Hnrsrg04HEmCg02A6BnyegPAid6GYjgh6bRNkuL5m/vHfAEkoZ9Y2NCpLH5hcWy7jIy3NDvtP51XMmVOVZB40gR46NocQCSOtI9w2nrzPwkvG8zriWFVk7Wlfc6oTvbe/x3fweRRoeVpDAwmsuDa3YiNxHhrIdrj8MfTHoLeF2m3E6bUDuwEM9feczjsL86LG4H9bPIevLrt9P+hx/pbywBT/fO53gtDsbkd1BjuKf4/2a+AWtkRVSz7uw1oBtEiBzw3c+f8FvvvsAFcPfyL+M5/yE/sOM8lFQPiq2377i908XCos9bfjyN274lfkjfnP6IX55OmEzTj/6ngkeAFBZ0O1VqM4Y+L+vL3UWlwmzNcpNeDC0APc14Zw3fHG543eun6G++rPePOt0BzakN1ZAFsW9FhRp+DLdOO/VSIdUGLJ2qBrqpQGrF31i78e2FvLx+0Qd/uULQXnGcNDde1XSAy5mZoB3nWLemx7LDajd6YZnBnH55sb/ICk8GHK+r0wwuOsxUpHEjh3eFc/i6inWjuzBo3KvL++TF1l5jfUkLNKf9jUoHehe7yo3jBrYTzt+HuOeAfxHAPxzZvaXReTPgxDM39NxHJB9wiVe5F9hRLwpaVxgYJwRpXcave5aJ+WVcrqP77iYVRXIg11242Hf9lRsNJV4Bbz769EkEYb9TeodtD7ssxp5TnunJ2dE6tCaTg9Dwi40NCRALbo899SxQbC+E8jVI53FUF7YFk0KGYtHgvDeQl52J+3T/D6FKiH8/8MhBjVRDkZQDs6T77G92NqB3rmxdcNBOyWomoKaicNv74HtmvB+NUwfVjZhJBbwYjaorob0qJDa0U4ZPTnFdKnQ24rz7zWUD5/jZaFxV5BB8dXjio/nE177jJNuSOgo2vBUFsynDS/nmep+bReOG9hnXH9kaKugfphwewoKEwMBjag1cOJgPh3qExZZQYHPYN0zRhNgembDzCgmi3pktgcmfWK21CegO5TQq7ftO6e7XTssUxArolY0wLrgOq341dMz3uc71pbJGqpX5Hsmo+xrpSBaBjYDtp5w0g0n3dCgeMorTnlDKRVLKUDpSJ451FumsYcHEhFANTc+0aPhIxmnjwa7ZXQT/PLlGX/3N97hgSvKR6Xx96asCKYAD3ieBd9/fsKtz3gnFV2A32sFP9je4Zv1hGXLe6I7CkO7kyDk6Ewer69ZKDQOxwmIY/BBnQT8/Qb0QYSwUWSOuhOLqf0Nrk0phZhrwNe2C+GYenKn4c93eadIS0a+NZTXju2cxgDxdnLY1ecexGCfnkKfyTODmbC0bjLqPeZNMyaCcv/pNvbnMe6/C+B3zewv+7//96Bx/5kHZL+XL/c7eGCs7MU+v6DAKqvtWN5BGyUMbZuBPnfoosiuCNiunQ/hyZBuHqmCmy0J0JsboDs/g+qQjgdHCnSI2uLhxoCOMQPVsfOBVy88X/WhvKFL07MMGuJQCozGIw36oI2sZEAbB/yTQ51BrFYMVhVYYy7sAWfH/jt9ApYv2P03PRvygxHmaKrx5hn+Agb9TVzXQ73LUR67E+zTTq3DO8H2lDB9I8BhOMVgJMXEG4/aLYsXLg3yWIGakF85ZEV9AdxWzrD7q/h1vNYZn5cbGhQJHde84v35gdfzmbrcrjeUXVIi+N31TCipzYb8KijfJGzJyJSJIvtKQ9qdujcKz5EGN4fFw1CncHQAnNHEQiNvehTE2ixvnMbQtDkZ2qlzzTSFbaAqWHyHd6baOEdBA1C04Vfnb/DL5SMAoJribzXF0i6Yv5+8yOrpfk54XmY8NzrGW5+wtDy2jGbyyVN26eBNuY48O2wOEQVscIS8WNQFph8mfO/5HX7pu6/44t0N3/uyoPaJXbE3Ge/Ld0I5EGD+WvH81QW/u37BWhmAR5/wYbvg42PGtkX7MLxWJrBCIcC+crPnV3/WINzSZ0PfDnCk8LXtHXHso/5QL4BN3tgVe2TAJry+NvtMB9eDCeXW/Niff+jPtElGthMOYrvwWQZEyt4Hw3YRtClRDjpkwYun2q7rw0DRaOBnG2uR83Kpqd9+UZG7mf1dEfkdEflTZvY3wdF6f83//NP4WQZk8wMBeBHR4YLoBgtM8M1rRuOWVhYaohmpTYLtncEujZzZRi/bxCPSoEL6A9XwiBlokHHDQpPClJGnBS3ywDCJfyfP00zVZ146rrcw/MvdyHkfNK29dTii3+CjB8c4Lc4dT35tY0CHSxuUSGVsOLYRIblsbZt2KpcCo9AZ6R5nkR42A/b7isrFNaRfBbCRnh4cb2DbkdVM3sZ9ZrNYm3WwnYJ51M5cdu2kbN/uBl1nlK0BtWH+YPj6wxkfriywvbye0Ps+SPl5nnFKG97nBZNWfDY/8NVlxXrJ6IsiP3autagzkq6u0eKbchSoIwtpbrw6U2kBxtphA9eeNWpjdtYzjX152fHbfO9AN45juyjq2Z9XAnoDU3EX3bJggyxRNwraH4MTK+7ROzCk47rgUQs2SzjJiqe04PPpjvfXB75/nmFJB8zWvIB8Xwt+sDwhoePWJ3y1XPHV7Yr7fULzHoGqxj4zn+jEyMSGY9QYLjLWLJ9zXgz5VfHx+Ywfvr/gaVrx+tkdz03Rc0a+ESrJd0O5Gcorm3JgBdu7gr/6j/86fuf9e5xkw/frO/xwvaC2BOuEYnRqRMt8CEk03Ynr3RsTYMIuOXo09v3QM2BPbH7SxRloER17xKwHSfBjxtaKjNmsGv0wEYzpj2Dv7rBDqrydBWsDdnzLH99B6EzOsmftDhEFJDayQQ+0QneG58vP0fp27/7o8fOyZf45AP+yM2X+NoD/ml/NzzwgOw7d2IpeZ+xyno3Y5HbeWSXpcYimHFvthbTC+mWFnhrskXZj1wHMXmCNRiDAw3f//1gMXkVPjw42S3ClmB4iZ8GgM6XFgIuiNcIq430RhReG/KMjziP3SHejGSG01tPCQmtPgn7x5+3ve4O5K6OFGNPWlJHLSP895U8rhrGj/C7T26V7d1xo3tjuADlxR9A7oSDLocy3X3842QF5ZEMHo9U+83qHNkfcbqUeB7FFtmZTIsCjw94xf2Mof1DwB09PmKaK7V6AKniI4XYuAC6UAT6BEEPaME0Vi4+TazOG/knPgvpkHM6SDLIqenWILhuFtaocpCTs0M4e1+o1D+O0Ld34bGpomzxsBBi6dEIXGdjOjlGf9kh30OkOPQZwauOAhtzhW6HBZ2azt8k/asbWE5IYfn36Gi/nGR/WM14/n/D4JiO/ytBykQ4sa8a/8/Ilfvf1c9xrwfc/PuHxMgFLYgdoMjTJzJR8WhOUstJWjA1a0VsR+833C+EZoD8SbtvE7lKARnmiRLYYRfnUIQ5thtPXDefvCf7tH3wHf+NXfg3fzc/4/e1zvNQZKoZp3mAmaE3RFCysbgqJweT+fFIFmjujPhnaZe/1sKBKuvKm3gXTN8o57Q7dmNeXRmf4lXtqu+y6MzDW0VhTwoBSBrvq0Mcy5Cac6VJdwZOZqw1qYwRH6eGFadf86RlA9/kOizMGJypPjgDk+OenHD+XcTezfxPAn/4xP/onf+YPE7rgIUIlGEVTcdx9b1TAobmAhisgk3YS6Lny4/wzLJl/lg3Kmq5hMIFRcHP2QvXJLOnRkB4dJQu06T5AxPYUPIZdlBr4ecL6JKPKbm7ENMcggcP9c9x9b4iB1wpYlKP2hA4Gy86zF0hE02pQdbErs8H9jWn3vXgDjm/0oKWbG/kBR4Sh9iymw+dqmt+3HFEHhvZP1EGGkYr3Jgw+Ph1GZCl8jn1iBlJP/Ds/2LCl72fomlFuHafvZ7zOVyzXBn1J3m3Y8dgCUiiYtGHWhkvecJk2PJc+eglihu5uRB26UqOa39whc4PVPK5bsEen4awGVOYZZPLuxl6YEYTcRL51pEdHWjqzley9BScMZcNRv/E1KIfO17iXUTzTh6JLp3zwi6tAzgb7TseUGpaesVmComPWikkr5lJxu/Qxpi+K3+uj4OvbGY+1YHkU2IcJ6a6jeSkao2pOkAdZZZaBHk7Zzxe2F8aDWcI9CaAqblvBVQznaUO7KO4G1EtC/4ZZTvVgQxqf5/TR8OEPLvhLv/wfwK+dv8FrndFN8EtPr5hThYrh43LCbSu4rwX3+4R+P7l8iAdHlTFOOMx6MfQzO46RbNQx0AVNE+omb55pd0ye0h+ekXhUH4GJVqAdhplE/8doLgt7NTY2PPq3vV4X73VK8Di6jIwGgK8pQffJZtxrzOx1JYyUb3vg8dOOb1WHKgDisF5RHtSziHizDEOnFWyPA3ZIAu6Ru1Cy9cDoGOlN4MkK76Jz/rI/zD6mpGBoTmjdW5XNI3m257PiHo0zbEzq6JlYfXKaZVTQo2uTVDqPzGdSnKJSHtkKwPfkBzvjBm0uIgTbr9u6oDcvgim1SPrGYRY6cH2+93g/oy17RNajxgHKOIRsqWCPhhI4+CHuezA53jitiGZkOF1ejxt4f05xn4lfCkeQFWps5FfD9LWiLl40E6BPGc+nE+6ZG+G+Zah0PJUF12lFmhssFxbHXX7V1KP4R2LjkgD93CCnBk3GBqsESAx+9aU3GBeeeseoxxBEo/yADG61riEXHWk03txX6Z5xRdBhh2g8Br4LKKnRGeuQwsuiagz60GRUT9QKRUcSQ5IOFUNSAyaOCMz3KMgDtvz/qPuXWNu2LUsMan2MMedca+19zrn3vReR8cmwMDgtSCghZCEqWEp+BSArFECyhPgUkJAsISEg5IJLlkAgqFDFSiPxMwiJrJFGQqJCgpCRlcbIlp1BRkZGZLzfvefsvddac84xRqfQeu9jrvt578V9EdKNJd1379u/NdecY/TRe+uttZ5xvc9YXxeUH0+YP5qP0Q7TAgCaMpoC5c5GaFcmEE4hjVF8dSRWmoH9BGwfFHJqaF2wtYyt2uARMcrsE9/PaX7lxICWN8Xyk4x/+x//Jj59fsLzTIjpryyf8MPpDVk6/v7tR/jZ+oQv1gt+Kk94kSX6bD2bEenuiZlwQtW7HfNSIcLEp3fSNTWlIYyyZKfNvKbj2q1Pige2nbBq9TXgiu2vcfgPe8i1OZ5g+vccq499ZRGY09AUaeIks7wOW4IwvGveNzCY6OCm+k2v711wn/7Nf4DTu38K62cp2A6AZe2uDHMmDb4S7GCZ5JqDo9sWjfmPnp5pATHsA50rJZtwA8DhFM1iTVcJBdnXHNkUMV4LsAB/Yxrmi8cPCfVhDd6gS8yOOH5vKM/qhWXhdDWmRgX6ifeAsz31UI2AVEhlgJLcoSegJQUkG40SEBudB+VgaT8km+GEHlxSEwb1TKzVKZGWwsfHDl8N2OepQDJzsGRQVdp9J2AENbufnj35c+vmpQ0w659fea/2J4nn31ZBq5nqxZbQu+DlciJjJleU0rBZkPYKDSB/u98pEdepI10qcun0G7Kg24tAij5s2NBOHJIMz8p8YAdH4nGtAEC7lMjc3ZwuWDuJYxJjFrD9vTYDML8S7MOfXnbnPiu9vzP97j8sNzznFbNRQnfNqD2jtjQgHn8mFUCzw38XKqA/AeWqcV/VZPa6+dBvY+5Yk71cJbjuRytuz3rbuSPPDVMmbXVvGbWyj6CLYn8ewdEPTK+6yxvw+uWCT+cF75c7/sryCX/t/Kf4QSH3/benL/DSz/iiPuEPnn+E/+unfxptXaCVOLp0iXmzalYH82nH03lFTorWBbd1hnaBVJINcFjKfQa290zsvIrZ3ylgA0IirnRFM098d5KVw/o9JqOpAtmuqc0wkRjjx0hmxj8hIjxUccOgTiLmHD2xvAf5i17fn+DuI+B+9nNSyarN7uwIMr9awyQ1e5AAb8SukaUBAKpwoIAalFAcP8Aop/rYsC4xFuXf9xPTs/PjhBW1BookL7GEjpHKfkFuSlzVua7mgR5NXP3KZ1ZXv1pgbIq2JOxtnPyp0R1hzLc8VCFJbRBygSaFzJ0Z7NTRa0K/a7A28qpIxlzIy7B4OCom/b54taMZ0KnDbWCHrzxGRWAiHl+bPDCbDS0YC9GZRke2RTKog9L8sZmmNxvIfacq0KXk+61gt0HPrSa8rAs+zDNaT9xs/lkOMMeD305Ng3JoGz345qIo10Qvc58F6hu5YSgCxSA547nz0GW5U8+j8pNufiVhT+1Jgz4mCGKMmKwck3dDNMGbURoBPvfLVHHKO6ZU0ZBw7xNe64JbnbDVDNkIq+Q7g0O3ZjEANkizAjIqUlHjdnsmGgcRED0hV8raPUhOP3S7jqVjmitK6rhuE+63GXXNZDGcGvb3AH1WYNWmoBrNN22sqvaWcSkbfmv5iN+bf4Z36Y4ZDb9bvsSuGV/2C35z+oQ//N3P8Qf5R9hvjJKay6Hxbc8mKebSMKWOe+XN05oGpRBjPbRFgRPXnlQmT3puTEjcU15AXYdpADIE2uPRRR/F91DaGFOSDfBuM8VoxM0ByUzqHFVoM1DPbh1s991sLfLdVKs+Texw/b8kcf8eBffDy4dN+HQkycINnQB3mIsGlQUYx35VgLQmC7iktqnJ9JEJ1UAO9q6+X5vasGUzH0p+Uw1OcXfIQ7nd5gQ8gQtqU6TazXHLmqYRaexfB8lw2P4e4BXfXJoeJ/qQmkWqJc2TTHULIVNgTSzjBKjvGsplQykdbxsHTfQMswcYFYhUcHAFPINQZn1WhjsOTWNqfi08ZnC4ZlvcHgj8c0aTFuPnuXBHw9dppEPte/i7RkctOaFe7ODbBWhizAlWVVvNeN0XrK0QCjBGxcPL+y6AHfwJOTsbSglBmZiorxzM4ZCGN7zjAHLzqINpU7MZnGlR7M+DYeGHpUvYU7Uqr0j4nWsCsQWHDW1oSKqClhX93IGFN1ayYpkqJunYe8GX7YKP9YKf70/4tC2432bkV3qslBupe20B0p0aCNTEhvrC519utq4jY/Ss1oRwR6KHQXruWx/9AxFg4nW54IxD1jOfxbmZHzytgAFAysC5fQ9MueE3lxf8zvQlfpjeMElDhuKSKiZsOEnFphl/7f1PsNaCL65n9C50BV1LDEqHAq0l1JaRhJl7rYmN812iF6UT4jNo0eh1tbMCNrBFkRjEE59PTx2yZx7YOCRrtoedSHFUcoeYMIH2ysaG8lcvTAz2PYWKNlhvbcAzDgcd3+fh+XzD6/sZ3BfBfrHJMZv5O3z1lIogMMoUx6vTJsGUieBe2GBBPixM+zvR+cYIat5Ai2kthheLSuBopE06lY/MGZ9gTkbOUSqsMRQE4H7qhTRBV74NLI3lYTvxbyiskeMzNysHNbM5RxvX6dWCZkkopeOybLifJvSpYExQQnT4v8p/50Ixm2NjUHh1wh0oD/TH4P4rYmP5mLpkBwR0GB2ppRndqh3Anu3RUvlbXpHpK+izopnPv3Sse8GX9zPe1hnbdSJtNelXgq+in6zBtidOrSreCLAAP3c23syrKG1kMvh8Vmc0seGW7LCyrG6mBUOqwPZBjL4qMZVJjyX7BuSDNwkrJ6vAkkKNEy2VUCFKx+X93UYMazRTv6gXrFrwk+0d/ujtM/z80xP6y4T5ymyPgjOzPH4TbFNBtmHfbR5ZN33hRxByYRwwvITChsIy0lCCG9UWymvbO8f+aUuElJoExn2k6rqHi2P+fe64zDt+OL3hN/InnMJwB2gqyLbwsnQ85RU/OF2RRLG2jNvlhO0zJjcMeIq6Z7zdZ9xzQa0ZdSscQ+lJYKwpFzd24AQOs/Eq38ODCtQzwMT9p3Kw3T4E92Pvz7/mrB5PjNLGStrV8b4naKV98B1qB4o3vHKXw17RSEy/7fX9C+7mrtZcjm8ccD+Vj0FlTMWByfYP5f5q6tKp8ySeO0TYXOmzok0C399UbR4OEM+0ndMecIMCvSM/pwhS8X6VHiBSFX0ybneUV3jgSzuFzOlYsvnBwX8/WAaYutJd7mQXpHuyBhV/P+0SPYi00d99zhSlmDEkvNfQD0HdF56XqB7kPcv0QSU6wwLm46NKVrLnOw8n9+gIiAXMRsraA57aLynsZINRlPCYsRyqmz65yIPQSb4l4M6Drp+BdZ3QWsL6uiB9KjyYrDejRgHVAsilQXJHNwVmuxek2R5wVkJZnmn18dnKXeMQcojOx7h18wTxkWyiNkXLoY/QA1iwtHueqt3r+VBRKHjimzo4ekSZA6STIBqWP1+p6J5Swx+/fcAff/ke2xcnzD/PmF4RVEU/fPJNMKUUlaBmmuqFRW3mNXVBQDhMAnpwuN1qw6EZ7X44s5raW4bsyqHlRtmTBmAXJjp+wNk6o4WBNaSzYikVl7ziKa1YpGG17GvVjKsWvPQTvmxPeLMO9qnsyKmjnHbszfx77ITqa8a9C1JW9CbQ1eaxwtZxPvy7MFPnMBC7xuSbDzGDNkKDB+kDhOWvaJLaodisOy+On9896eCGbPOoXHzvHdW/0sX8bXQkA1+pEH7R6/sX3AEcS/ev0SIPWHmMx+sjsKuw/BGwKeTQgpjYR0yYcRzaEKwTe/sh1hjmYKLEkXMH9ncZ+2VgyFBhj2DLkKbk96axCADPAD17HbYG3nnHV4KuB+R2ElPC8XvJBhjk1ZrM88gumRkK+dh2UnkvAThkwIemmNO7/Pt+j9Pu2ZvQQjZpNNCcZueCjpDo9/EM6jlHmRn+HP5MI9BY0HTTMsvOGWRN3WlslXoeAjQuEW4+bYKqBViJlRMS4wcu5gUOAGlubLi2BF2TqdoQJXfKDdoTEQo5VG+hL0BYCHsw90PfDx+n4jHGmEGWN2ThScTYxPB/BAMawaFKS0AqHXNpqI249FYLfqKC684F8dPXJ1y/OGP6ImP+QjC9DPdKl7uzqTsEgM24034gkWZn98Mzzj4Cva8jCgwRVYgnWGiCdSUsVqth7f57e3ro5TgLyfdrOyswKYp0cLCeIouiKb1m7n3Cl/2CP94/xz+8/wD/+PYOb3VGls65sc93vGaNAR+3lxP0xhGMzVhVfNYSgTfuOUbVlCbD2c3KQzsPrWRq2G6woQuh8p3rgnv48Hl9386CZP5PTnMuNxqGpWYkgzx+LxhjHpHlMMrSx4/uA51QwS+zc/8eBncflG0LcUwC4reD224wRkw+t4adKJsXlOMDUojRauM31UrImM6SDhsZcfhbwNUxZsuybdFuGPEja4alFQUb3hzNhrF7IPMZid5AfbAcFb7fw63II5iwm85SrdwsI7Wg4t11QiAM7v4Kb3KMe5jb2Gj4SvAHLLNsvBndxUsGbfSVjakoxw9YIG1t+RzqOY2AsCsbrF0hWuL9iPcimqCQUQJTATkOtnZSNlXvptW0vomqQKRHyQzA5npyTURgATDPXCxbmqjEBBjYC02qOrrRKBGDqd0QKjQShw0lnc+4mmrSWUzekG8zgnLo0GGMQfTD3ZvigAXXIagCAElgsBNFrRnbveB+n/Cl+THVNSO9FEwvdCwt95EZt9Owqc5XBDTnw9t1Alo7NEuBSHJkB7IOxg8btNyf9G8RY5EBsiXU+4RWM/qebODEyFpTlfAiomfKOKjbmVVTTp0KcYu6dy34x/UD/sH2I/zD+w/w919/hD95eYckwHna8dnphh8ubyip4fWyYM5UpP87+2+gvhWSDADe2yN8cvzHDjCPD5I7A/ue4nsp6J+8rumFilu6M2oolW1JxqHnzXOf2MXMvZv/u/D3LCGILNzX9LECMKw+WxL1tWH2v+D1/QnufgzpoOz1CdieJSYABbVsH37ZsWl8PWV7GFXIx74J5cuHtDztHLfli9o59FHmeFU2pWj00fAn8/S1gCUd5APb9ZL/zmDgjJP4WesbBN6X4nJshJcPRbBNXwydMdFQn/l+5WqeGsKvBwNAx7W3lrC1jNYSUh8HgWaY+hGRKXvSYYVN/A1fqKmCKsYiEfi85H6oCOxQTMb59yHR5Q4OJu4KmL9OvvN7Ab/4EjAFo1SQ+mfPRQugs+OdaWSAokiiSKmjLx2tEedln2Xgl2mnx/ZSGn5wueFnbxdc3xY2Zu2Dx4Ho96YgFM/hCKh+nQaRm4Xv9u6Q9fZxEPgs0gy7l1A0E1gxc1ZrVhujpdt/G5yjCUipY8oNCqA1gf584fP07xvs4tRM6Tbda/Frtwp384clkJOvM0U9AUWNw+1VXGLPAOamWK6wg8PZaxKePSHSaXZy7cmmS8Ga/o/rJA4XmwrWF3L111bwsV7ws/aMDMXP2jP+eP8c/9br7+APPv0Qf/LFe2wvM9Kp4bd+9BHvJ9ImP5uuWPuEp7Li1ib84ekzvMgJSS24Z439fOzTJVdyK9A1QVWgiRk1js+iGdPFAvD0CVg+dsxvHiwSmVKHQyOEko33hYN9KHLjelTMb3Yvndpte9Qnlw3q9SHhtOZ8725b8Iuj+/cnuB9eQUucJUz/VWAUO30QE3iJHFztBOhi/HbhDe5VIOCQXOkSmadn1X4oAGMhctqTxNdc/Qo1e86dNzkUphXwgSNH29m8KsqNWAJx+MesHWJ8cmRMpQdkQ7MuGHNGH1R0PporGnRGtXPR0L4VvOYFfU/IDqF4p11GJaBGaEi2gJ1FE8G9GYa/gsHSm9N2DFCgJfDeAqsEz3C5QCkOS+hVkTrBS9o2dGb6wk0leRwuYkrIvCtatWeRlFRBHxYtDIySgHluEAG2LqSrWWVGGiwhib5ndAUu04b9nLBtBXsrhq/yQFSz/A2mVAbErAj6NDZ4BHoPsEYVBNjP0Yd1NA7yr2WOOHzdYRDf0HbATFNDSR2b+a2Um6C82P03zNjXs7N5ArM/vDwZ4jSi8ftu7eGzVKEsIN2fvtzU2DcdR6/0gGac0KDg/bNmvw+hh4q9pwd3zmHQszW4Dd/+6esT/p3Tb+JH0wvu04R/sP0I/8an38P/92e/iS++eIb8dMZ8FWy/xWtYUsVzXvH59Ia9F5zSjmueqVQuSqq0L1XH1AvQYc1yu74+c12P3hYXvxhzjDx/xMCa6apYPjWUNxtavaR4lpG5+0ECmBCxo7wR9KclA9fQdGPlBIw+CS0OLHb5M7PK0bU02YVMf1HDOv7cX55au8S+KkTE1HOH8tZ5ngIz/pEw7GGQVgZLYz0c6YXcaDqwVPOpbjZqKyiC1uQjtDAYL/w5snCYvdlGsQAvB653UKCUgY59g28GyTj9xaYulYENRlaUwIAlDlMMWb03yZxqqAlobwW3DuieHjf6MYOy4cJ5FaS30eQ7UrmS/Sw/m4ygk0Hv++NCVgzFnCJEGX5QsTI6ZNNNyYPPguYzJy0TZoXWGbkB3HzOqD2jwMphlYgCpTS0paEpQo3G2ZoWMDeKa+KetwS9sQwZNElyxEcgAhiwEY3WcldMrzzcNQmqj2xroDBuAXIXYrN3hDWGO0NSD8Eg3CcAzdepfUbrE/mou/fLsD1ue8LpRbB8hLHDEI6DDsUwMx6Nfl8fMcnMtQS21h0q8j1RNpg4iL9XbsB07dFQ9vWQKuGGchPz90fM8IWOwCgNo4ry95oU+VKRciOUUwW324x/9PoBf6/8Vfx4eY+fbO/wJ9f3eL2egJeJttc3wVYTtlqw9oJrn/GDtKMLIZ1daSyHGOxhtFkAtPIQQpL2DJw9g9UPdZiz63hWeaXmolwHtJLvNo8g20zWXdEOfQb/rD178qXIO7P2llOQRHz+qh7MyVIzfyjfiz4D1oVOljDmI334W17fn+DuL0kRJI6GPE5FHNRF//mBIfog3j4rkJST3i0LVfD7KH0EaPsb3tAUHcFF1EpUtSEbVknsy7i5hFE0fgfKZiqzFWuICNBOHOCshsNFA9f+HZvUqhNEcHFu9cj+vKk5HrRt9DMXZlsU+VNGX9NDF56DjhGdfKfhtZkDQY5OmZGBVGauns37/e4z0DoPXG2+eMfvBxZ7tBqYU3xPi0B6Qtk6ulCZWhdBcVGLdpSbebWcE8o1Ib+lgKaC5ZCJ8a8r7YGdcshscmxYAJBdsO8Ft0qfkrZm0ionPmPZLeO8MzA7N1kL/57fwzCcahLVIjqQVj8MuQldgHWk6vbJAoZ5/dAbPZnDJ8zL5rgXlK7JBj8BzNrSbrCPQV8+zGbYZiAO9bSTzeQuo9UP5ISHhqm/7/Sm6OtYn6yUGUjaLHGQp8bsON/5zFAlIBDy4Znxpt0OnBP/qZeO9Lzj8nTHUhpergvWTwv2a8Ef3ws+3U74cL5jrQWvtwXby0zYyTD7dE34+HLGH06fo2rCby7EmJIotl5w28voI1WJatYzcW8Uk+UFyOTPis/AXTzdT2d65T2ZX/oDZTmydevLpZ2JXZAW7HA8Mq1ETVBoIznLffDaeZAYdGMZvjPFfEYze0jex3uk+37T69cK7iLy3wHw3+Tjxt8DXSEv+C4Dsv1l0q9jc8L/rVloY+ql/eHg8pvaM6Bzj6w9OyXy0oGlIZWOvmRozkFXiuzUM1Z/eHlkRd647WV4nQi+fno+jN7zzD0TUw+eqniVMQJ8GAr5Z7Z/ADvYrJR2KwDCATJ+d2Jzqi/MBPPNhVg8/IqpHvsM79vFffbOuze5nLqlVm08VH+GOWiht7h0QO7jOUljhuR/c3Cn7Y/4cypirCKjvppbHmnGAmxAed2QtoxyK5jeBH1j0K4XRX9SpBMfSt8JufmhmVbLwJ0hAgCditZP9wX3bSI23IX8ewUzZ4MUIiB7I/9QdgO0MshrR2oyWEzVJP1mwZBXZmL+/kxSTBm6K3SFNc8kmCNIysa1DZqBCl5vC7IpP3UzHA0Uue3vDBK683BxO+GYJdoHtJI3t5HgPcn3w70RNWydY9yAg6WxJ1W2rHumOtsD5XSj5W99zqQT2zjLYIdsXJ8+Y0BnxbxUnKaKU6l4lQXYEsqnDPky4/bTGW+Xd1BjurhlgB9a5U1Q//SMP9oyPn444fr5jDlVbL3gbZ+Z6W+JjXcFZKcVSQT3/REBoL2HsVlWc4acRlI0vRGKSdugKjNBSaBqmt/XwgH0ce99/wrgwshuths+a5i24ilsvtPaUV42vkdJaKdC4zWzL0FnEuV9vAeV8ze8vnNwF5HfBfDPA/jrqnoTkX8VwH8ZwF8HvsOAbH/ZdCIPFkfJu9MXoTbO7m4/K8ZtNj8Zz8LcPGl/BjB3TOcdpXTcbgXtnFHPEo2mvLLkLlGCGlZr+HhbzCdm4sIvahOW1o52SsMUrDoVbVgaqFjWfx6wBMTLfkQ10rzzbpsnu2JUPfuh0s9PevXm2Uyzo/q+UYxzzSivHB3XFkQWkmOj2ebOh3trB0S2w8Xpe1/ryNvn0TS+TxWtlcKHDeA/n8ySgYFFIrvtUxrDICzg19PIuv1vuWFVNiMnsTGKuXR0JdNBzQr5cQj6OGjTDtQ9475NuL/N9FuZO+SJ2AQdEBNgA559vY0GvZXygeV6FjX+u6wKfRmZGxTsm/itKHY7O6u6fAfyjBj7qLBrLgAqq4h9K9gW28VO481+/wjlMYnRgJGaHRAUwnhA4SxPspqYQ3kTzyeZHempQMKeDweAv2ytwrxzpAHzix02Uob1wcqDZXlhJtoWAYROkfNccZl22gMbvl3s91SAulGV3M/dnoOiKdk7eaV6t94XfLpn/P2ecFk27DVj3Qu2V3O8tB7CsfoHMJq9XgEmfk2zAsoRlHrnM+0ZmF+d4eKfgfucdgVGENjM2sAG1hxpijHwupnY0dgyYge/J0LJmqVprZCtQqfM53bKYz8qk6eAcxJ+4evXhWUKgLOI7GDG/scAfh/AP2vf/1fwqw7IPr6cGmT/7RiuQxLSAXW3Q4MMuhtpAaGyDBqj0c1ypkscpo42s8zkia6HQGITkwSAeGZpgXdCNNmCRpkGpAJrdBA+smxSGWB6XL8MuMJPZGDgvN4ctnvgUmcAB6GWmxpJNIHapUMuFXmicKmvEpa9gXcCsVDSbtdrgTC8ZA7Tk0aJKfwc3TJKjO+3E21tl08IfJBDD/yDwf6mslNnIrW6CNI5PVyTi2ryZmyBSgOHcmcASbsyiLyHcdM70FJIBMTw8z6bUZUJULrRE/W14OqTjjKdDN+9v0EBXK8LWp7Q7sdmICLJKDeHNwxvt9vEQeZq1SStmr1aaRPIpBGrOk04lCeYjS/HM8b77IJkgzucvtlMINS7QJKinWhVUy+K+uQw1Xhm3ZhW3p/wPozfZ6k06xJl1tltklC+W4ZqwT0VDXuAcGnF4e8cgs30qjhlCVZJuSFgoFQVaVWUG620pQum3PA8r6g9oVZCbtMLML3w82wrq6hq1VNauZc1eZ+Ma1JQ8KZPeFtO7LNUQb6l4KK7Ne7XoFCMNQ8B+gJU5dr261aMZyOdyuG2JMAg2J4Bcfq1WWU0s+eVh7gE08QkNqXNMlpqjz0E8FmkrVOKCgviW0PaOnI085V4/07413Uz3/b6zsFdVf+RiPxPwIEcNwB/R1X/joh85wHZAAARYk8bwLsjY56g80LtRCaWBhP0sOudDHOQyt8JR8gm6F2QM9j4cYw+8ed7YWM1zQLRZIFN4uG0oy1oG74hoaIUQFoaAc5Kp4d7Zk06tzpwGMlf3rgDjMFi9DSnvJGJo+P3JoUUYwZNilwUZWpU4U4F+cbP2G14tGedznrw+6cJQObiDlzSziViu1YtVGcZ2fUXZoDBCDnw1IOpYJl+nyQatH4gslxGeK+4/bB0cJEnoM/ZLIB53fuz/d01YctTWAYACOHJYJwweJFxxQwRdyvTLxXv3t/w2+8/QVXwcd7xZTlj2y6QlmycGYIOmu+K5ZOXwyOjlaYHrxFFIq/SGtRcNz6CsJ34LKC2Dg9sk6E4FI6L89FqSTHlhjwp9q2gPk/0p5kAiEaVE0PcMZ6fHJ4D8XIGiemNeG+qwPbEhMEpxswuO9LESOjWzBSbYVAKDYKj/4na0GY+v8FoIx5d7hyGPr0pZOU17i3jVifUtWC2/kS5DTJDn8UGQrtIbhwwrGrBKlAyIRJlUneEc7MdKkdGXDVRoPesBoOMSVzYS1tWnwvQOwfMxHhNO9jUEpcwCTw2/H2tW39mMMh63GcXMZHW2CGtAyXFXhrp/zhAstGK5a7Rx/q2168Dy3wO4G8C+CcBfAngfy8i/9yf4fe/PiAbAFTZgBRjFWT6QfsGceqfl856yEwcV9OiaGdFta65Zh4SeqCyHOBGfik5LJIfYAVamj7SGx2WsA8SRmduPuS42hAPMXPw9/Ig7guCg3cRqkL3mk9mquUqVWlkJ7Q+Dq24lkMDQoT3QJ0F5Jxxm+t6rIyi8dZYJHF4h8b9DWbQKg+UySOjRw3HDas8W/y+KB+eexv8XFYmAz/0ez69NaTaoVNGn1LYnzpNFAqUlwx9zeiXDjxVWgmooB0GGrvM/DiNxxt/01Lx2+8/4T/44U+R0fEPb5+jpI5/vBfsdYE0wfRmz8DXm32unqzJZffmgcEVlFW1+anA/qxwppEKIDMCQvEgE4O9Ky+xnXhgT1PDed6RRXE/FbydTiOLjsrNAqsHGG/w7mazm0bgT02Rb8D8sTIDzBMgEhz2tBFGCe3HYUB9XseajnucSFmVFw4H/ypcIGqsKAB5K8hrwsvrGUlAi+KPE04/EVx+wiZ6W8yuwKE4GId/9QPI3rew2Zk3nyZ2WOMYMNp0JdQqSrfV7TnR+dXsQx6gUYNcg56soPI8j0BMG14+8Law6enzGpwF44drJFGHV9qpUuXMZcK5Ze3ItwapHf1U0N0XRUZlwCS2Ib/thvcL8l+gn/t/CsAfqOpPeB3yfwTwn8CvOyAbQOC0oHHQKF3sdN/0EU6wQBcndALaU4c77cmacJR3H99HCQUiJNECODbsw5yPM0ePG1kLhRIh38/CjNMz1gSyIR4YP0Dz5mlC+MlDx0ENIPBPxwYBWyyVwbQWpTrGuv9S6WAnJuppns16U/XEAHJ00DzCLwDhj3znf3vm4gE9Oa1r5cJ37cGDE6QffF6NeOnuDA0Zma43sfNGhsCR+++DxIlXJsOAB70v3AUV2LJAn4CUjGqGHLhqPINZyayx98TccTlt+MFyxe8uX2DtE77cL1gK6XndkoK0s8l4vGfUXvhhL0iqQ0wigu2Z+LF7lzgcdxSjxJCU5ut2QDOB6YMHdEqU4ydRtJbgTCC1e+l7INlgmLDpsMEOMbHM9sYRVw+XUv1Kxq/j++O6NQ76o0YjKs3dM+whohrvxefJ4eGC223C29TQWkK+JRQPwE0Bo64mI0Oo7Tn/HOVqdiMnXsdkvv9urevrMa88ZMu1Y3qtkNqRlwygRPO+Z07TOh4InrQELh+QlqKswPTSkG8V3fsg9twd1vWqNkgE/ve8ImodPadgwyRX2SubqN0SmmAMFlInxUZ6SmPm3qeMryrav/r6dYL7HwL4j4vIBYRl/gaA/xeAN3yXAdmHV9468pbZ1fchAYmBZ3plecJZnLBJKoQOfM5jO3XIuSHPBlH0CehsqOXSaWy0H4K1QR7BXgEsw5UQQgHjgR+ZLB4A+X0N9kcMu8XYDA9GZM4a8bhwLM1tk8f1HbIh37DeLOIX+TO9JpuAMzZlZNjm0ZKAyLwd5tJ0CAJtyKUBmIp3ZJiAV0s6BB7bUQz2qAx1bxa/D84w8uea1o58q0jJylAdDCSd+IfmLysHSjxn7BcOLCe90u5d7iilj88Of6ajl8B7rtDSUU4Vp3nHOe94l+7Ye0EHsW1+CKuS3hTLR0IPbTpM6JrGgZ6yYH7rSJv58L9L2D4Dphfeu8DCi2HxRrck3c3+1uRaCgksnwclHQ6/uJ5xmmp8LoeKaE4mD1WBv8I2YHUq3nGdfT0oaLYs2/2UrKqCGBXY2GlhjDc72QDGeTe8futG/TV/JXNKVYMbpk9A+5MJ288mSAfOPxacvmyYXitFQU8pWGPTixuMmb//nf0OXi/XCvsCTlEUqMEqeT30D1ZWgsjW57C1HnPbN3m4J/4sovq2ZZXvnQyu+w7IApxdiGLw4s5rCspiO8SM4z7wdWTwXqx3kTic1RbO1xranRtYyl8gFVJV/x8i8n8A8K+DA+/+32Am/ozvMiDbNjYApGqneLIMxAKwBzsGWFOIJjaX2om8dgHpZNPCaTv77mkzoFvC2mfINUfDNbBEF1pEyTuqgLhEe0AHR9JoNrktcWDKkFEFpLEh4wCYGXASxLy11SoQBq5yVWKUXbG/y7GBscMCqsm/hRTIdgLnqCaNkXsR2ItyeAkwOvnikJNVN67Ia+Nz+n/rQQHcDerx7IYGSnYvrEcR96qSTeTVh2fnyWxjgXGY+fN2jyCdzJO/KsrrZjF7wbII6kbsdPe+S1ZMxUrlmlHPmdmAInzakbgh8tywnAhzlMRJRlk69p7xtk3Y7yWYFmSbOMPByniHuFy9bDRBqoY1hEQqRpnNfri6eM42cLKs3io49iUMbzY4SWpCvRfcVLDmgt5TZPjiE5ccFrLzKzBfwYAeCpCgsf6Y6aaHPocfaFwjErCCmoI3ZhynxySI1yvUQzgkZsmP+hqcchzU01UhfzqShfnTWAsawY7MNT+gAM/EHxXgPkje11Fe/bDk32bil5DXDGzGGrJE0S1BwpY5WUVmzcuIQWKfz9aoH3xSOyvMPO5VuTt06A8DsafynUkMvacSUJi1w/YJSR2KLgbvdDXL5s4BLjqgoYeY+QtevxZbRlX/RQD/4le+vOK7DMg+vDxLcCybgyX4veDe2k0jy0KhS0dvzOrgA6NTxzQBTbhR0DOwAvmahpnPjdnBfkLg32FG5iIVjICXVzxy8HUoWIFRegMjUMXv+4kB+7sG3wAY9DQPKnZ9YiyVyMKzZe6342Jmmi52k7o+crzjgDzcQ/98fj/92geGT/pcNijMaaCO79OfZ+Cw3mzToAhaNrcZna3kMFTzTDLaBAa/xABwVbQlcwNtDem6Q1QxifcvSGP14SVz7rR/zR24AFcA9ZTJoHCf/qljPu+4nDaOX1PBT+7PAH4bX2wX/Htf/BA//+k7pC8nlDcJ1a/aM3IH0l4kxCp9gR3e3IwxEP3CIC/KirJdOjDxgKE2IMXB7IZwgGXyRQcO3AB5KejXjGaiLUwcs5h2kBFkQ5Nd2ORwlq9PHPZ/L4h01RuETkP1jD4CWefBzMO4h+WFH8CxV33d2wHBOaZD4UnBz8gyCcGMRIgVnC9MC9TKz15WqjW98e+f4UhPLW+dwfUkEaDrabiutkXQlhxrX5qSgXWzbL6xqoAAeCrQLMhbR3ltFH2ds/H6LVHZnSBvkMq1jRssdl9tALzvWc5WbkhbBd0eOwf9KCHmbJVFn1KYCkoDvZiqApXvkXZruGaB5hTJ8Le9vn8KVQCyt+CGe1kW+PqFi7Hc/CS1OtYEINpBOIUVJUpp3BT30XQ5cpbzriMbLaDi0lQ7zQ+XyJZGL4CWA0pXwgNE48yCvBv2aGrN1OxnLdvKq9fr9qHVSs4XflYvcwFYU8uaZwXEv6simdJRLgOKARAeKb5JpBOGGhCUXasN/wiJdkbMe4xDqWtMJGqdmWtah69NaraJZstIOzC/AtNrN6GPDQy3zD1UsEaL1CKoKaO7R4ffK8P4mUE1oHVIK1FRUe2owNIwTQ05cZDFlBuSKK55xn4v0DUDU8dy2fHh6YanecN1n7DuBX/08hn++PUDXm4Lrh/PyF8UlDcxRSSvRbOEctTvSVDr7NBtsyDPKTIrzRoVETKoPZg68tTR54Z9LpCVOoS0UxGriSKjfqIvjvvM0GRNjCTQgaWjPQPSss04NbGQmX61HUhu7ub7JoN/IxIEXmcEyn5ISLIcGuQIsWC4mR4as8GUkrEvwmtIbW3LuF/SgPmtmyWIBpyY124Y83FdsXLVrMHrP7JRHN8nZq2HkjShTQKYbqOeBOmZDy5t3WwtgLQ2BuwrqU7tMiNnCbsKamw6pCWDJjUOKmkNsjdISbSe9peyv9A3Vp1ONnBoSNYGnXIY6AGJ7Bcbjs2LHL0nTTIgpaBPp6gWnE75ba/vaXBnKd8t2BxFID1xobGDfBBZJLPxNZik94Scdsq2DRZhedwB5PCMmK4d9ZRtUPCAGQLPFrB02gdO7DTJek4RbGAMCs2AbEBaWZe6SMGhBzFHt/FhB4Zb7nYo5HFgOEPIR6Z545cGaHrA9ISUKxUOkE4azbegkgnCU+aojuXNRQQCmfhZwvLUMlfdTSHn/N+jwMpYBmnzrL0H66jNKRqRyTxZ4FYMKtYgkqiOvAIAeM80Z2DKqO8W7M8J+5P1WU6KNHEICwA6RAohmlIaasr8WFlxOa14t6zI0qE6475N2NYJ7WVCuiZMdzGfFD9UeD/2i2C/5BHcBfD5loBl51b+ey+mPXXk9ztyadbgVogocu7oPWGbGup9Qn8tMa9Vi6DZAc0RkA772JpTo9yeFZi7BY/xM8eGbLJdLaa+dKWsr2mfY3CkE0vHoWLGYH7sPTDzPvsIQcOPo2FI8sFRUQ2oedcIREYD2H2D4tC3+xnboTPJCYx6B9lFOuyL5bDuPejlrdu1HSpjjISLvbGOtHoJoCNA9o6UEtKSg5brLyZlPBj4s/4ZyUO3hcdMGkC6VqQs/GwlGR+9I90qZK/QhWy8fG8oVzZ6Ce25WZ1BVpAR5/YW76vGpJHWkdZvoOMcXt/L4A7D1VyS79xSZlL8nBzTNU7/6ETBfu7IjvEG49SBU2enGYaTd43mHE2bJPBChxoECFMfpww6cwKwReb83MwsTA7BD4esD7DM3cpKxwjbCcCbdcXFHvQsAQnkOw4bjwE+bZ5hMJuua0ZbKnJpaLnEoXb0X+/FVK4JlNqbj4oWo3JmACY60pyiIYcwSbP3tUpD7JkEI8gyKsAhAssG06gmmMWnaMYxsCAWOeTwLHuHLhntPGF/V1DPtFhtC6G4nFgR1ZawJTOOAoOhNsIyIhyYvOSK2hMDRRe0NWP6IqO8HX1HvKrjIvDp9c4Mym43vR/ookDgpACAojidN7w735FE46P44XPdJ3wJYL/mh6Z+qoCu9tk9OAlo27wBKSe0i0EjBs84591hSz94XEjjf19dI+IYvTfIu1OLj41Xf1aGBVuiVRc+s7IyW85Om8wHGAIIrxWvbn2vabYGZ+uQvSPXg5I5cd2J6oFM4M31FOsp93FNYji0OOzja6yPyudIUpCqSPc6Gpf+Sp7ZN0gto7FclcPUxYZs7A3SO8LccGfFwWbxgEqkaowdzk35e63Z9zqZXfbfqN0++/GCPE4ww5e9RdXA9ZX4te0vYXDvcybGawvQJf1QiSEHzfBOzjeVUQJao1IbN3zJnb2gSYGFTIk+FT4MIV7tWCcAeKPrAW/3xWFsEkmCVoafdb7bXsn8W7Wn4ckhoyvu0BIU5i1BA65ujZw2Dzk7BDY6DIZNUjHXFipCPVvOm0ZAki2ht4x52WlxmtUyY74ngGiw8nNJYJkeULrT9w6sF4elolR3Zo33Jvw+HQKjZ+1enjo0xc8jcXACzIqQRnDsy9GmQdDnjP39hO1dwn5BGDsBQO+CbS3YhNYCk7FKWksPkGTrtoFFcZl2rHPBiiWcCyPrPDQppSOayZotdthBGwOzZRxQ0ZwsHcu04/284mlaMedGZ0dwTJ7IBa9lQXUfd3vxsLB1uQyhnQeqtCvanhjJxbJSZ+708Zw8MFIcg4AIfQ1nm+PZBBz+crdAjXEPgBFEAQQnXEUAO/DT/YAVL3lUnMaN9/XCRQKE4ZYzdnoHcoLOyQ77kcywUjbBjnJjDhbWoc+TDYI12MR7cbr74WTf8+vqPaZ4AcyESTdMxuLqkZVL7ZCJeLyYTXUkH6qQ3gdU42wvGZAKAKS10lKg9vH9bgF7b+bAZ3vERGGoh/vljd3egdaRlJWstAbsfwmDe70U1LMzK4DpOrLBtgjVqvPIAgPCmLpxzQW6J9SajRlCClyaG+Zlx60sRmkbTRgkHfxoHAKZl3/2ikCXhpuj2ObuhXAGoNj7MBhzvDm43tY49e4/wJ/xYA6DJbyxNni3GphmL2zoueAjr4K6CXrjeC+xwRpJD9kRHj8Lu/5iJQHivYNxAMShGg01+/FkBy4zMQp68kaYq9waKXOLHFR4+pBF+XuxDO+HzcY+RWSvIuhLRj0nNspmh38E+TWhYUIvjLK7KLZTQS6NzBJ7qQpaF9SeMOeGH5zeIKJ4uy7o84RQNjZA1kNfxQOU/x2rwFyVWe499BC9CKrZUEhipXAuO364XPG+3JCEtr0/35/wti/jj9r6IKOKoqOe9cFCwCvAvAnqlliBegVkFr9izAti3YfAvhkrZMeA6JrtCRF7Xj0qFTgUYIkMYAnQdDC+s+tKFqAkT6wYHOYAyI6JoRMeoL0M9rXoWoCEtqTRy/Dsu3sWbJCL2U77Xhi9j0GfJUNLY715BcLrHsHXM+e+TGTzWKMz3xohjxsDp1Rr2G7NLDUBDvVggEdtkNoIINgB4pk8RHhI7A30vyp8X8vGUfl1NIq80t6Q9gyVNLL2bmssJf7cfWPOeWAXftvr+xXc7YLbKQeGy03Eh8dFzB89SoTdEVB80d8zUBOq0SDVmq6SiXv6qLOYnGSZjytCPQilhjhFfWMfWSvOIJks4HkDq02C5EOF/Tr9EDoExgh0loW4oCKMqyxTOgqEAM/Y6CH9YGq1CY7Vm1viuoEWAxhxSU2evfNmeqZKlexwnWwzn4lnpTEEu4JjwyqC/uXmayxXD481sic9HCDWH3BqWR+QwBHC8ozOm8l+0LGhnrBXQT+lWBetJujJsnYbl4Yu6J3TduZU8WG6o6SOL5/O+PKzmSrYXVCu8sCW8hF7DnGEQtlhKyGTBCKQ5I1Lu/WiOJUdT2XF59MVl7ShQXDrM7aeUSszwrYoB4KIrcFdkCDodk8cooCy30RrWQ+SPg9Y0HdCFg9cd3dztGeQ4GubvZ+8KcqbNRmBOMw8g+RUJ+LG9SRBMTxWdc6E0WRGWhubhgpvoFti0Nh7YMU8RIIwpaar0n2PPLwUQTvs88Ck/SDw2QC25Efg93XrDdmJWTrHczITFlVoV4i9KSmOZLbEzypxb+kdSAm6ZGi2RutegdaIp59mHhZh9WB4uQf8nMmY2atVLRnIDNpoxPRl75zcZfeSwwoSVBXSE3Dl+6H88tD9/QruMbADg6XSx9c9sB4DR/C/i1KgpIKmAtkFfc2c1avMzOn5PbJjh0golpKwNeD4tLE5PKBV66R7ieqTfrzB5JNSvprxBd8cx8/0+Hm8Emjnwxg9V95WGb9npbrj3JpB3/Vg3Vgga99gGgb7uQ4IHA83jNYOtCNX3/85DkRxx0q3BKAboQxXTC+jfYCJZ4F1BHzi0wgaYDMxyBBByQhMSQY8cKh60psdQLv5/vi90fBeMnM1S7B6QtWEOTWc845dEz6c77j+YMY2z9CPnEOarI/gXi3BJnERT3P82SsS/psCp3GjS+o45x0/ml7x29OXeJdvuPcJf4DfwG3nvFFN7H8cPVE6xlqXDuSbIN9Gli42hi9gKV+HeTxrHoYa/3amlUORKXnF5NmhUTwNgjhuxWaBvS7WEA9dCA9dSczQ3TdFOt2F+pTQzimoh6wCOjA5tsIL6VMKP3/eT42kKERv9jd07wPftj2QbwyIhGSIYUtNgLF+2pIG0yfbh2+WNXfDvr3XkxKrkc2Cr9oB5BBS69CTZfo5QfcOtAa9r5CUCNOUBLIFDr8HDEx9r5Bt52c/Feh0CPi1E+ayg8EhGVe6I2dItuvvffztb3l9v4I7APfDdo6sM0taYOP2YxaAVQCdFGlqyKWh7gWyM7hrJUzB7h8A8dF4OPC5YWWXudm5OtOyAoBzXNvJZlJaUyo2koxgF5RFefz+kdPuwZXBe/QV/GfahLC0jUzGm8bemHV4IyAfyzKNS113crzTJo+HDMbnVfDnu8/sBA70R4xN7gylw2E73Z3DTh572hOKuSV+NeuiuIQwDWCfwSfMK7HGuqTAa+PAc1wWPBj4foCrEp1fn1fazZL2BqSToG+Gr/va6awSugqqJry1Gfc2YckVn7+74ucK1DfjQqtXRhJWvD6zN6pGa6aLAiWP3/GAI0mRU8ecKp7zHZ/lKz7Lb/gST2gq2FsiOrB09KSQe0ZMwvJAPA0RT7krIbtDdu/P0vtPwfKyaV0dgu5woePAwudZwcEoZK1wrWtJ6MuojLu9QTsl1HN6sFCIxKKwQvJDIQ5vq8zaJMglAWhDr2HX3S3IuwyfWo1DM14Oa9cTBaugdB7J1vTqIqJuFGpj5wAc3Wg4f7Br7O+R0tjHcu38H7G/A7GDoNuh0YEYrpINdjk0QrU2SKqQvQ1x0xF66WQAyrrZvspRAWhPkE0he4XUAkz5cd86zp/Fsn0eSvqXLrjD7AdWW9yGS+9Pwk1sGy47E0VAD47MrFwNenBsT5wKaZa/rs6MjWiZoEMHwDhYIugmGXJzZwLAgroippr7KLg+AX1/zJqjUdfHwcLNJg+HgPcR4jBwFoeObI4+3J4xInjffeH1tz0h3S24p+OiBpybHVN/QmY9VlN4t7RxeLhFQbaGIgdAkNIGObAtTJAUwdzfF8BQoErAPEH/SuPHvIrwTFMswE5Xg+a8UX1QKjp1Uv25bIRYtPB+7HvG3jKudcYX6wVrLVhKxYfljutpwks5BW2OmaxlynU8Ox+IHb7+EJTFrFf9MLTn2FUwSUeGYpKKyaLmW12wt4xcGpbTht4T7p8W9FeS07V0O9yMiurUTINEQtLehG6fMyG6CJBe9fpzlgGhOLQFgDNGLcj2TAfGnoVCu1i0dsg5bGQBtmdzSVzoOd4WO0yLAKuv1cOBIoCLvfzZw2yx25zG+vLqSA2Ln9PwXgECh9bMBqxXjOyPMdNNyv3e5xIB3tleabds1xuUamVeMu76pqNkMaXoQ8UcxoN2j1KClgyZJqDaRVZm/iJimbdtvpv97daZEUwFfS6jJ+EHzeH9vfqAsXs0Jegy8Xf2CmwHutY3vL5fwd0WRNr7MEKCZQLFWCIzzPHuMXhChfMY18zADwBZkSeSfFWFeDsQUcRxP6nwcZ0xi/WoMg0fEwXkjRmqrrbaFQ/eG90ohdIEzUVGbTRQe6ayUu296I9jAV0PwR2HoOLWwYeGE69NuQCycddneqzUW4FPd/dAwYEaCD8WP/w0Dzpdtmv1OZNhCmbVSd5478td2YRbG3FJs7rVJNCJ6tBya9YQ63YAy1DgTV/9HAgoxlk10tSMlQSorBCmN0HeCQ+0adgvxGHpZmwbzbuSGZS1U8J+L7ieJyiAl/uCkjqm3HCedo57MydRfaHgy4OkWwMcq6/I1I1Jk9wmdkIwkVpPuLUJ1z7j2hfM0vBmeHtJHfm04bJs2GrBthb01SCR2e7XmoCeghXieD5FT7Y2qpjb5eGZ2vr2qtd52iEEykAzOIsGXykqyFTJ6EHhfnIKpCcVDxOZClAvpFZ5xt93Rba+Wd46IMkqA4nn741T6Qps/SGJYeJE8V43//S0dfjMFRXfCx31lMyUTYilb8KP7/TN1oGUjVpJuCOtlVWvBdPIhhOAHQz4IhQaJdIN6UeUoIlfG4Y0tninYkHZjY7EYB0P5o3Z/8b/1n2HPF1CFRssnL1CUKL/5NXFeC/xcgrRTPXp2t/y+n4Fd+fEbizDmwUBd5lzJ0KnSjXze2YXRdH3NIYjT4q8NDydtxh2MOUWQ5IHzQzIXSM74UCMQ8YrbFi1E8IVsdxcRGEZbmfwckVtX4DeEEZdjsnT1+Jg+HMISiFDt2w5zMgcY24gR90d6JRwibsd9lmBqUOSN8e4IGjOhSj7H2ATh3Um4qSpCsorbDYsIqAlE2/5MIfp1qOR2JYUTd82004VSCh3Bnc2+Ya60YOJUwjdnOphepE3sU0Mkvdq2LBjXV/5DMceRFIkU+SmHUET1Jrwel3w+nZCqwnLeQcuN8ypIqfOAS5nO1BMxNSrw222PK2Kc6pd4NtmCUv6Ltfhx9sJfzK/x7vpjkka3vqCn9Z32FrBMlU8zxt+eHrDF/cLPr6c41lKVmgdAjKuP/6jBQ/cdeBQWTikhVH58KKBYzKuIkCmulc0RZ/Is2ZXa3uV4sSCnh6THu4hCRpvuVlz0oK1205kEw31OYU0/1iNHumZ05XN3e66CLCy4BQpv5Y+MjF4VXnAMJymqEAPOmIja6V1S4bk2IaKpPKIqTu1MhIPFSgMo6+d1EcAOpeAZpyeKI7n+6tW6LYx254n6Dzx9wAycPaKMByL5q1CVvLjNeUhZLJm8cP1f8vr+xXcAVBFw8WrJ2A7MbDXC0ZzyyAZD9BIil4TdE/E2jOgp47zZcWH8x0fbyfsGFQG9alNnilj/PtICXQKoytDHSaa3hpEnRvrwUWivNTEDN0DS3JGSxtWB0GpLNxofphQkj4OMcfXSVVjKU6apG2kbpj7qSP53MmsaE+d3iO3FHTOqAgU6EIoJvjdFlSTOQk6vh+HSx0c4jDSmlJsjKhwJjJnehbaOKgCRQhtTfT9aG512v09RmSKRra9IvvHCP4uO2+Vfw92MHfn9VvAi4NzVqAK9i9OSLdEKf9MqmISxalUzJcd+1sZTew2xEDHCsODpQdTZ9RUX6OTAjXhdp/wj9M7zKlh6wWflSvWXrD1jCyKc6Er5WtuY+CIAnrPtCbYAdlhg6UF+xMP8GmTEJE5oynEcr7j7cDrM59L3tVm4vIH2mIJjIzn7gPOPViGJbBVnVCJ6jIsCbwH5Cwo9b9HzDmrIt1qMEWoX5Bgq4h5p5R7Z/LwVpHuDf2UmSwtzKpdvcyL5/2moNAgC3tfZIGCuDgVokw68m2neGnKaOfCrT9PQO+EOjxY5gSdC/qUkW87woZ3ZrBPd1phSOXvwfY9pokQTO9kz2z8XSwzjuIkVUUqhZRIX9vWyEXJzPr3hnzb2HR1wdSeEboAw+9/WdYO/ArBXUT+ZQD/eQA/VtX/iH3tB/iWIdgi8vsA/ht8DPjnVfX//EuvYrwZ5D/6H8Lbby1m+DPohgAi0MXGjQYjee2oif89KcrzjufTGnMaAcRYL58Yc8QRYarRmBJ/8iYdNy3ARc6F6PQv/r43j5plV1DL7jKDsKtbAZbH7jzneLbbAXgDMO0SVMk+AerWsVbF+Lg/3jODApIlNNZ3QGY2rj5XtFoVsWAIZxobzy6KCUjEK0IrlzkBZrBfVIRwjI0jTPXgzyMja3S8UXlZcc80s8lHMZQrYMeB58HUnfTS1lDnHLjymAA/DlZmtIJ+oP8RkqF+AS0j30l33D505MyGZ7dDpZSGberMkiLz1dGTibVnsIv1YfYnVpftBGyf8VCFAvttwiuAP52esfWMHywnLPZ+JXUUi1ZrK2yAG0UVVcJ3qM+wSoj9FAWGSMfJAIdrc1V39CsSONDBIU77x33mpRPiKT4fwQ96gwVo2KfIiRtFrT9TVsJyoVVYgXJtSGsL2X3g8LexvY+WEr4fpHYkMYn+vSHtbUxWss/BYTM09CJluUNaDqFTXo2DbhTLCCddIVtHulc2NqcDV9V/pjWr4BuDbFOkxjmmjiSINVWpCiXOLVMxaEWItzdlUK+EXiAJkhJ0nhjwQ7TlHhDdyBW2R0rmPb+twLpBDcMXaxDHKyUeSvvO4e6/4PWrZO5/C8D/HMD/8vC1/wHw9SHYIvLXwSHZ/2EAvwPg/yIi/7Sq/vJjxl59pmd3PSH8s8ds1LGI22eC/cmk9I2bQpwZ81RxvqyYUsda7ZS0AN8P3hOeHRP/c6WeGiwzcN3Bp+Uiayfj/RY2oJr4zx7gHDU81upUtRL+KBDqM4OP2uAN9ey1YXiB+yEmDCbeOD0OxOBGV/Qm6DXjYTCJHTR553WyGasDktpgTVULKEVGY9mrDsfguw6bAHh229FswTqdL0p3/7dgcI1FvvJ1XkfZezA9NAumt4ryaR1ycTN1qosEZJWqYn5TzlxtKXoHOgHbB433cDaQT1WCICyCa88QUSqZl05ILbvMfVRd0Q8wbxx6EZGVUZsNiH7ukHPlAXvL2JvgY+lYcgtbhLUViCiqZnzcTvh4P6HfM9KNjqbRCM0a9yJETtYTcbYVYH0Qh7HmQ9Jj9/Y4utAP1thr2Q58xdAhwJt4tk7ED2Cu4+ROhXbQuakWAOjMA78bn9xplvG4D+Ko0VQfxnrSuplqNUxvgtrzEM7ZfXGWDQ3AEod87GTj9Nn457spZ5OY6dYjq4TeRhlYG2Stw+mxd6S7zUz0xqdIuJNGNu3r/fi3Ww/OOxenVbRTgUwFTv1ESvC+gIrw/e8rg39w3onT81rBYL/xuuR8YhbXFTJ71vvNr18a3FX1/yYi/76vfPlvAvhn7b//FYwh2H8TwP9WVVcAfyAi/y6AfwbA//2XvY+/2qlgfzYjKntJZVbN/8PgSA93jNmYnnlkIM/cTM2CZU6KvQH7nqlcPGQplPabWOrakKqiLSU47I6Fp4rYVOzwP3KHg2eMEZyjdBUApjilLwoisGmxzDsrZLfs0nxkWlA/xQy/OAWpG60TwMBZN1Yu6tOnLCuPaTyVWVyfHyXvPLQcWrGGq4ySHeIye6smEq8n37moy62FqRStTc0a9QgTYPy3dFNLNgTtzceIISt6YlDIt4r0ukK2Hf2H77BfSkxACktbIN6zza4wFvRZ0YtizIQdk5NinfWEt33B2grWdox4h0NMEM6hsMMtNTYkqQw1yCKx2a8LnR/brfB5bAk3OeHHAPo7QRLF2jKW3FB7wqYZr7cF+WNBeTUhlgDbh45+ZrOxvwnCu90huqbonplbkxvJDv7pK+tw54H9YK2ro48Tw9pdgeqQpFWJDoMWs/2lFYhzw2HVQ7f1nUIoRLpoQnqagtYYAqo2kp3jEJhICuxv57U/UgLTkR0DGwfZgSRhIxASf9WhDgWAkh9Mt9D7YKgcUs+oNnOClikYOLLuDN5+ub0TW6+N7z8VZukikDuAaYKeF9Idd44ylHliALcsXgAGcg/oyuxdTdwF+75uG//dOsQz/6lA5hm/6PVdMfdvG4L9uwD+7uHn/si+9iu/KByRyOgAWMYEZifGMDkyE2Qdm1rNia+ZQVQSRckNUjOpkkYxO1Lcyq1j/liRrzvxtV7Y1LN752U5AGzPKSbMAxbvfXH4prKfPTYwI3P3Q8Boad19ugEkY3hQKIXA8J0L3xZrnAJ2yDGg5VWAu/GbF1YCaaV1bXkTTra/cUMR5lKgMPN5sAMAgh3hZb9XI+WK6BVwwyVzyhufs9zNptiUge434iwZwLDdQ1nu1Uw6BosONpPuNN9pp4Ltfcb6QVBtUHm5AdOrYKkt7ocfIL0odFH0BOSrSe7Fm4Rj3XxcT2g9saEKVuE8kCn+ycZwCoqeXaO6940gRE2+UPueINfMEXECtDVh2wretok+8p1r8nVb8LrOuL8uyH7YJl57P3XIpZqymmIn2uR6kAYw8VrzXVGuPJT3JxkZv61FsqOssQ4JmIk9CkAm48M3seHUBjOZzYNbT7uQjCKjHkqxkbVbsmOB3QN5OD9a1ZNMSdqnNERiB48iAQ+LtDbr03yleeoDX6oi3xrSRs/5fipop4x8bwiKIzRw6rDBcBOu5n0cJZ2x2u/tPNVFBPCf3eno6L7q0jsbm9sG1MogOxUyZ0omHJM5jcpfcj4PmGfbR4b/8oZ+vUGWmYIwEUgpcKqmtg7ddmgl1IMkkNOJCtUjXPMNrz/vhuo3vds3AkNfG5CtCiTyZtE9sxu/HRvLpejTUChKfXzbumfcLDL/4OmKZtJzsa5pugumq007unWUt4Z83Smddmqfd/T7aGz2GdjeyUMW99VPGhJ1y/qdshnB+qAs7bOinyywXzPKTTC92mc4MxMTq/zcIfOrd9gPPunWZM0AutB7ZWUVcPzZeDXS6PoswY7pFqRpQXso4w1rhWHB2zseGPU0YX7JEbjTrii3imYbUpOgL2RJeCCkP/vIGL0Z5/xpANZsa2GqtL+bQkjWFoceuMHrluDWFITQrGfgfHCHI+RQRSmruDf5SuZTmT3nnYehq1U1i7GJRkar1jPw6gNi9/StoNx8yhEge0J7nfBlf0LOHafzhil37Cq43mdaZSghEHWIzWNC517I6yEIWvXYraLMd2C6Kar50rBRSjhFE0y8NxrhHlCdRgqrxCBKOqHFRGenOOzHKqCH9W3aGwNoFrRTQT3ZMHOjrUZ/xjNQ65Mw0+Y9/brCzl4HumE00xVsyk4H6EoY7AFBz8MCGc14685nT9YonTNNvG4bsW1VYJ4YlHOCrBZ0PXOuPKVk24H7yox624mHGxwj09dDqCYhK2bJ+Jrbo/0dsa/36w16uzGTL4VNWN8bjQdcOp+gan5EOY/qJP3FBPdvG4L9RwB+7/BzfxXAH3/TH/jGAdm9wae+RPbr03t2lqBtUezvBjbtZl+BJZppWM9UCb6bV7xsi/35BO3EbNPGTVFuHdm8UNp5Yjd981IfD6UqnRjtWu4CMd+bmKJuZbzz3aP6OJaglpkGlm4judLKeaRh0AU8MDX874E/btxaXhs36Riw4YG0vCGmxovxjfOmKK+CPWVuaCCw1W4NWb/3/p7OCElnXnM9A9kn+DRmannnwdJ8PF7XyO6Or/CZ8edrGbdTJV0Gr76IjWXh80Y5GJlMnzYJ9gvvbbUhLmmnXF/MUsHprS7Hr08KJGD7tGADxyXJ1FnR3a2RZ4GQ9FOhatgPn8C6lTocHfYMDoWF+Gs2K4Y1oWuBLh11athzw1YL6l6AxCZsrwajVSBdE3CbUVY2gKUDqIiZqHGgW7VEb5hEt8qFG7+nI9Ztz9/Wk/rhkOxszQ7/cV9kY0Y5myVsfwtPjGzuiKQ+JrRTRn3KaJNg/tTIknJ8vB/+Ru0GrSQcIZmYIWrujHDxWtdBpZzSA5RDeDAFPdIP/FhntYc6tJ8K2tPEhGC1Rmkm/t0vJ6AkoAqrWacsqjKoqzKYhx9Di6z6EMx4kLlgKWfolNFPk/HtDfZcN2DfmHVb5i0iQCkDbrG/N7D7DMwCcZHUwfgM61+MiOlv45uHYP9tAP9rEfmfgg3Vvwbg//ln+cPkvJqwxyAJZwf0MiCKVAeO56+8CnpLDFKnhvO847msWGuxQdkJumVMnwSXHzc8/fGK/PEOPU+4/+iE+pQCC44pT3ZNIfOfPZtndic2NcgD7RGScbjCA3wIQpztAFjUIBUr7IDvilIEm/dLLAsjq0cGrt4tY1+Adu6k4QHRnIvM0jD/8Cu5S3CnkXCYkarI7u9u79sXRbMqolz5GdvJs3o2OctVoas9E6Oy5jcrv43/7027o3oy2BuJwy6OPOp+KpAfvh+bKCLVYVPZgRvDGDaYl/igpTr+DjtI45lsKf6mbmnQRqMfwADPQRyWYDgC5FVBZmDf3rExDjOoa2e1mamK9JaRb/S/6ZnWEG99oeBuT7Rmniq0JsgtIa+JY/4aDymv/ESBfCNTJQauW7Pb57dOV3mouMSy/bAmsJ6Ki716wYMxmVTzCzJmVNo0xGhtTkZ91VAwq+Hs9Slje+KCbqeRqWoxM7FKjrm0Dj1w1McahlUvaTRZu5mBufT+oA3pGXSvtAqQvusIOmRk/gCx8IWuj7J3yMrMXKfC7Po8xUH18GqNy6PW0eyURDjsUI1AzNRrNfpiJkNGDY7MzQ6ZWsffksT3zgnSLszGHVN3cZUzi7xpOk2GvXdoW39p1g78alTI/w3YPP2RiPwRODP1f4hvGIKtqv8fEflXAfxboJ/if/tXZsqkjPzv/yfw+sNiEIZZ+xb7S+Zk2Cfrrq8yNqtjfNWC3QWAKKbUsVgnVlWIh96Secgo0n1Hut7RFmaH9WSYZn/Mxj0gcNMwjY/Aqb7IbROaqZNTG7OxM9rExZ6MoUKzJ0FtJpAIXNJmRxYgXYa/hrMkRGyDGuar2YY2LJ3Y/U6HQxceefbfnPUDDAm7GWv53M7gSxOOZ1NsUfSlI62WJdlIuPrEIJ9Pxl/fef+kA+efMyDgGMDlcMj5uD0r/6MBqEDYwwpGkwyHhrb9XPxMHs/fWS3OZmFjHtBFgWr9jklHVu9rvKUhrDmwffpkhlnLMC8bTUhWGfUC7O84oJ0XJuhzB8qAm3ivAdQUVsStmrnb1HG6bKh7xm5WwPnu82m5TpCA/EbrawBBP3XLZVhm7v47yTyVnKsf7qQ2I0HaiB8c1acxgHp+7XaAi9EqGWTd1zysBMw8i5BZose+AJskpPMwYCuB4389GB3plzHQBYAPCQmVJzdw/F5Y/YqpT7dGppQa08doidI6A20i4yWv5nFjNMZ+mSmSu+2Eaq53Xk4SboBaHz3TM4h3O9RiGbb2Dr3fga6QxfD3UL+TRaO3G/rrG+R8HodDSsAycw+sG6C2wQ2/P3rHw+iUum2Q0wLs9denQqrqf+VbvvU3vuXn/yUA/9Iv+7tfe/WG+hvvmcFloNtQCgARlNDlQZqvwIPfijRBt505TQ3vl3soEEXI08272GLmjdepoL5bsL7P2J4FeVVMJQWuGp/LOMQqbC7Oryw328F7wwODW4n7mDOXpjtOmkxQkiqQNjJcPMDRuAzR7IU37izoHoO6NwYxd+Rzg3bwAPNNE/iNsSEM608bML24ERt917mhhljEISOdldOrBOi3zIlQpiVQAbpqDFnW7JL/w307MG80IUysHCo4+obEc1b3qHFqG+GvugraNmA6P1ihhIV8MlWf2UuAZe6aDQZKw2fFLm4E9AakJocsEiFgoy/+uJm8NsJT+7Oyie3J3GKBvXRSdMFgixWAJLQ+ofk1lI5pqTjNO64HJo9TSp08cGQaxc8077VYtbYrCjp6ds8VbhwypewAqKzMvMoBgOlVsbzYaETTcPSZylVnx/A5KWRiBdSnBI6VTNif3Wef19QWmvwVY/J4IFYB4Q8XHTkjyQ70bo1SKqK7QUN+mn8FpvRHoTDlJhu8LqByhefRzgRAMGeOgd3/vtTGAA0A0wzJCVortDVCJqVATgv0ZMIks/l1T3enL6pBNLI3pDUhvdyhbzfofYXWipQT/855oUq1ZH7OalS0JOS8u1jJD7paAx7Su0vIf/Hre6NQlWWJhpqmMW3IZfM9Px7+asMotChklZio417b01TxXFZkUaytMGOqHEbs5bWWBL0s2J9LNDCRDu6EAGLwsDEQaA3MjKK7V3SCSfARqtHkuKjjvl/xhfFKI21Coc2hLCbW6bM1D/CObXinfCIByIq0NKTUUVtmNn7AzBnANEr1o+qUFyLoJlgJJob3AwTWnNN4/+O1S5MIEkevdfcscdiGXPMhOgqqmlcQAtoxJwvUNoHHWQ4am5TBiTQ5RDYdMIqLy6x07+aSeVwz/AAGTUBJg6tCDNcqCyqSk7GyJOiQkdGXIa7zio3NVglnzlQ6eqMgir7fEs3/dlKKzAqC2VVrhuw00dqfWRl5E7hceXjWk+OtCGFczwKxDDtooTfzZrGk56taBW/0pwrMrx3l2mN49P5cwpyNEFejCEgASCHLZU5oKaFeEtZ3iZWNjvtzrIoA+xwlxbALUWu6HsbzhaHY8ZWEz8Sb7jaUwwV++d6Q7juDnzFN8mre6knMQVHMwIsN1pi85GuqdsjdVKXbzoz5CHkcG6JegSR7MMkXDRjYm43T69Z0vu2QdYOuK/H4lHlNKcV1iDmdImfIPFM569m6v3/rDOyO96cEKQX6l8ZbprVYHG3hxgmJvoBX6uwHgyZ8k+T7Y5kNJYadXLikgtaE2LZBD70I2pk3shm0oIWPyjPAGCTh5aIFNfRBFfOBwdLNKz77746DyfnsobSF25Ryk8VwaP95Cxb5bgeO2RiMgwLQuQOlQzIdMVtL0FvmIWdZssND9AHHGL5r741kEGBjdpk2MyFzlsxhjfsUHz/08n1w6MOK2YKmU9bc8c8DDJu2tqk6gi8tDcZ6YAB3RkY/FzpMdlZaU3JBjkZDMQKvHRxuwhYaBat4YuD0od/hP5eUsA3Ae7U/jXvI5zCGTLt3OmDvv7lzI69tb4L2FG8X+HxqgDpt0sRarST0llBbiorLG7EcLtF5gO5p9C6cpeV9qIlvRDO3NvzWha6geVdWmbv733Dt8ucVy5d7+MDwnpj3ik8CWulymLJVUjPQFz7b/Tw0G+J+Nzqed966OYcapi3DMIzj4lLQZN0dVcxaIoJbBw/L2oGNVbc3e/PeIXcKiyQLiUE+V9Ql/ar0S1cFrQZ4CIh51KTbDrmv0HVjcD6yX0qBaI+M+mH6knHl476ZjYBMEzPv2pCud+jr22MQdvVvU1B8cxA+AaRkwhg7ImwwG2Yff6e1xwPgW17fm+CuTkECAusOz/Y0qjFgZPJwWELH1z3LrC3hy+3MwO44if8Rw2rbiQq4enrknwOH7NYClmdg0xu/Xy/yAAmlNoK3N+OO8njPmj0LD5Xl7qUzBiMBDGDZhVA23AJCdpYWRTpVzKdKtWNN6G8LyheFGL8RhrtRYUUlbGmjMevQjQd381HxoO5UM3Z6+f5OnfN7Q4jGGrMyKoOeLXM/VByiCoUMGMGFMF2jORaOfl4+p+FFUm4KUWvIycgOs7kI2lPj77kqswFpTVDncR/gUxU2i3WmEyIPbcJs0di1Zx7ePLZbouleWbnkTZDvfg8oqHGfm2MvpYPQj1Y26/WesM8TD+Y1h2hMi0Fu7h8kvrZtLRxEQBRr8Vpl7yzmtkQqp2Hy2e0CANTL6GGUa0O+UaGpU0Zfsq1JyvrLtcUgCTGjKy2C/ZzCHkSzDKz/MMOUh4OxXYyphYRQoKIpBA36NEGXAjefS3t/tItOtlaFME3eOmIwzHHua1Ng3RnsDbf2Q8qzXWJFDIrSgfS2Ib3ciF8nIfziDJacITmPPoBNPgo+fHtkzIRFgLNgth16vQ0rYK9C3Fzsxqao3NawK/Cmq/u0i/CadNuB/vX3+suTueuYCnOk40VD0YLQA1fbg5MHUcsapQm2dcKXdwb3ey0skY/KTLBUdF8YNSZLimA3sm4cYIxyUyvduXHLjXhlQEoygkG8zwGOOX6WpKB9q9GtXYFabmKGSuQe9zwCM6saxeVpw7vzHete8Gm9IL1mTC+8b6NCsPdP4xoCz/XADUTTjTizHjaU/aPAUd3p9yMm1DerWOx5+CzZyDJdvKEK0QG9HV/epCRskKIq0oSY8SnN6HABhY37Sj8c/o1QMO7cyGrVVTRkOxlHfQbxeEWU4iYSRBi+ucGZHXaihM5aZxYsCkwvGhBaqoReZEtAp9ZADntQKpCNVQOAQXVLNAtz21o7yzUBsqVosKaqYXecxGCdJkGPdDw7lMImQMp3G6Un1sy2BnFeLTNXNT/3FFz0vHXke43A6DYAodEofD5kdwHTrT80ydOqKPeGfGVwIy3SDndVgy8AaWWsDVO/8gt2sIswe96Jq6diNg27ce1F4H4rnE1ayZAx2wCnQ+o0YB9pRnPcdmDdGIznGdp1ZOj2j8zz49eOGDtsbWsn3FJKVAvBkAEC2pEkXKO1QmySUsAtkqCdf1e9iZszMXjP7rtyEpNDRYeA/02v701wzz/6ITbjokaWK6OkDcoWEDirbMJmlTr+yXJWNkHbMq4b/bvve+FEpjY2+SjjZZTweHwff6Wm0F0MMjCl6OQZHEtiTeKit7FxBYHFe1NUYb9n0540C9pOBkqbOUc1VaojiWfzAWqy0W4C6Kx4Pq34sNzx835Bu2fMrxSx+CEQbn6HoJR2RbOLE89sffCIZ+1eXQiM/37IGPTx3n0TBfQIzeRdRlUl1qATx+dNaWizOh1vV5OSD9MmEDboCkhB32TQH13UdTi4olLwnoYF0qjqMK4ffnv9GjMPCDUIyj/6kc1zhM9S5b4udx5O1el5DUimmnaIzwOj+/l45p1yIuxgojOpMEiLDKZyA+aP5Lcf+yYeyLOX7wlshJZR7eRVkVbTcVT69ov3OqyakmYzT40Nk+90PUy1E+KwmaF9LsMXyO5x3onLLy8N5XrIZjoPjnyvSNcNfS5ASZBqVrZmpwsl3EIfeat2v8aKEQbu+26BDSNYGm8eTWNQtY+fk22PLFsnL2H5s7I3Zs4eREumstT55TmHr4yWPA4PtxswjBwAs27jsovh5XEdzmHve4iPRIRCKDscnPEiotCqRokc8IseOe+MRojm41+QiOnP//WbP8T2WQkueVuYjeTrwR/FGl7JNpioBOe2Txplc6qcEn+9z1AVtJZGhheThyxoZht15393MztZNw2DZVsgXSw1xV5oQZANfsmromeFXBC0xmNmTIm2S8AfDxD/XGFJMLtnCUeheYnMIdTWCJo7Pix3XMqGP63vIK8F05s1YPMI7J7FJ6Pi0SRMEYO3q62PYxZ8DHYJEbzj/9vPdvC9svmaHJuNMQrRMiGHEtw4CpKgyTK4zmzeWTQ8HARp5aZHoxc3AHQTxDivnaIajXUBAG5+xfdHZM3hFWR73A9bsSb7UVj2TXoFhzjCpEswskwgMHHAILcqYQTm60uTC5FgB5TFCGVg93UOAbKtv/JGRgvFYzIoq0b7JGvIJzENGCFvfQT23TvsYlXXyJBpxVtCVZx3G2rRFGiKPhfO+vThEod+EqpZd3xZke812CfSiHOnV2N1zIU8d7dvdsMt91hpyip2s6bnnNCzCeHWFnRCVIFMGUgm9Dty4JXrCV0ZXKWP4J3TULrujRn7nXCITBOD91SGx4tx1ZnxF67vtYLj1ew9J7MIWC1zhx0CrZmK1RaejcUTy8LRGlk4d4NlLOgfIZYBu/THr3sw9/7FLxmS/b0J7jqXMAXi+DDuoHy1YOjzOYWBL9+H/4wzFvTAjEAVbNeZh7V5vScvtxsCduhG4aPMm1mY89bbYln0BsA5xV+BiZz3TAhC2JfLoC+IIsaEqSpViP0xSNBO1yOOBcdJUM8MhNkCvE+MRwLy0vD5iaTn633mHMk2SuZQmFrzT+5OseSBWZOgWUB2SmloSw6BLSiVHugK0KAGdyCuNw4zAD5Kz+XrLtziD2Ng64dMO2yQVSE2BxRAZHeyN/Q5w/sDzmbyCmMsIoxD3Pb6MUt3g7cug3qaNnrwpEb82rH5SCY8S3VxT1ML4hIiIm/kdrNG8CarHO4bwJ8tV66nZv0V0eH3En5H9v/bbH0NpU6hnfkZimks0kZNhHSgLSmUtGRz2fsfx0XCqlCjOKqpN/vCwEPKpNpBbBdfrJnoB7FDbcI1PL90lNeNQXMpfK57o9HWfYWeFnuWHT7sXmzYtD/jZNbReWXG28oMNRIAHFrxgNYoDntwPnXF6JET77CI0xxTJVxmfusxPKMUU8VaRmxsFhi0g5KiGoih2u7r0gmx6F55ew2G0fvKgD/NEIeX5pnCpfsKvLyOA8ErALf49f/vGbwemradFa34z00FeMW3vr4/wV0GzzUUdtUXumco8dMhMgpMHiBbJQ07XF0T7m3hib+lEK/E1JnDyLe8MkPKqxpvl1932lVsFsvYdJcDS0MQE9ntn6ALGnOgC8JB0Bty3ohts0SwEmUw6CpoFdDbEDIFvABgaxlVM+qeSSSaRzAB8ICB502DynfkwB+bqwq7183eT9Q2g5iVrAmd0mPgChdCy4bDP0cOARhjE3ck8sndcCrTQrkdhjOXqz3oBPhwBh8x6AFGwnrBvh64Pr4e5P2eWJXSD6s+7YJyc7hBQtHpAdLHI5Z7R74zgPSSI3v1wBt2z15VWjUxxuMxcSh3gx+6VR91rJX4zIqoquiVD7QzB7S72tTtM5wFs5+Na+6N+dk+rEEtPug5beb+KIRxRHXYBBynFaUE8THZe4MkzliF7x9LPMqtkkqYmHn7YewmW7CDXiUx6UGCPDSkeKCQsdTt82tUHLIbtOLwyF4BmQhjlMR5pR78/WW8cbVAGM1PhziOTc5pGo6RE2eaaslGa81DiLTtbGwmGRk0EJk4bxSDum6EYcQr/2kClhl6XuBOlNoVqcijba8fqHZPHl6qkGw9iHmiEdlXfWu+8vpeBHdJCe155iY5XJFn0r5ZvAvf20FevoBNMfYkOA7MxBZQgbzmhyx7YMAW3LNDK+T8uhlRzyODcv9pn9BOJ0mDaWxQRT1JlM0h5/YF91VoTBiUpHWUyr/lQiB6mOCBMx4Oet5HqYKf35/wss7oa6YnfDa/G8PQnctcVguW6pCJQxrjXh+piv67IQGvEl/vJ2bW8iKhsqXIh/fbAxmvlX0EV+oOKMAmw6uJoOb0EBiHiMrMuZo19CyzFNGg3YVeweEUHO+7jL4DRkWjAKvCboH9RVBudkhZYM6bRsYcPjObG2KRdpp3HVVf9Cj8MADcg6dP42vlzcRz3Z+vIomEBsDXYxzMtlZa8UEw9rkqbQim144+C7YzB8j3if2f1oRUyJlBPtWOdOPNSgDSAZtvE4eZp60hr23I/8350Yc962HQhTgrZud9DAbKakyVmE9qWagYjXJKkM2nGfHAVq8MjC6pXXjIWAUAYKg13TMdgOYZmjPf624mYKcFupQR7D3oApH5P7wMW9e5MJDXTqZKSvy8WYDN6IruCPkgtjF7XmsS6/H9AGDfoJ0DtAnveKYzYBdJVjUBYUGA3QaCJGG2butATEgl5zMNxn7J63sR3PW84Mt/6oR6MZxb2WAKYZLFF5+52ZsxS57MvlbARdYZ6HWyjGNLownb3IviUNpb5ppXYHpjZlYvKea15jcd7BhjCMQhY1ARYaShZPSXWFbZpxH4nGbYJlPJ7opy5YHS5ox2tvuRwYxV2FiTzqwpfGlqwss6Y90nyNTR3jf0jSdb2Ucpkxowf8nmLIeLWFA/NJE9gDFTtYxOQQixAloFXey+Zm5mr0j6yewJJh6omnmItCVzepWQ3RKWsZWLmYFdALeZODAvCEslVgiGkwaW2xWpdUhL1uS2+yWOv/P/O6wC8N8qoPdIYxAiQ4YVyPyJAXF/YmAtN9Jdy300ekflpvCB6v7yJINrDDQt6xq8bVhzOxt7Je/DVtehI2BUq2ElLY8Hk0NsTkGdrpxj2045GvywPkQ9KWTi4dZzwvSSkJLYUAswi3dYIwnS3siMaYp+YtDIzk2/mV/Kwczu2GvQbBnuvdrC0ciStdBAqz3P2J8LtAjyjeyclNg/6kuxBjDiPdJ9J8bdGvSyoE8TxIRBAY14D8cmH0kp0GVmEF03a2oqA7Rn/ceXHT5qwR22JqVk6EJHR6flyt0mI32LjQKU2LgA0Th1WwLpCrjvuk9pUoXkzEBtQVrNd0ZEoDlbPpWs6uiQeWbGfjoB55MdwH8ZqJBCsY6X9GmXaJo6Top9NLViQIYzNjCSYzVPD8fk+qLGXPAsDCGS8BLeD420dwsAiAZk3nSwO+y98qpRkvci2C9DiQlg4LwCQAQdOmAb9mf4c1aJ8Hd0vLcHE/XP+pUKYE14eTshJcXleUV63/H2ekK/LZAXBi2swPzCSUWaHDqweySHoGRldl4Bpw3qyWEaQVqZvfeZt1SqjRAsFJHVJ/O1sRmgUB509SIAmAGXtaO8VXp4dEWfJmg4QDoMhOgZtCXBXQwzOlzhe8xmna3B7BPoaXDofTSgCqEz/sIBQvKfuZFG+EBT9Sb5xjTfPYA8WCtYddCiQILXr8mhF2bh+wWDfloHhONCsp7Hf3sTNNTIlqwE+8erxTfB9GqDpO+G/9t99LXZZ4dkMJrqZqUhANApKqruYropkgmVNOeYO/rgfGiNUHrMPJp/eZYfUnyfI5ozdCropwnbhwnbO0JEM3Dwjbf76tDmUniAXzd6+QvhoX4uZPBIg9ww2CibUTVzhr57Qn9Pz/SYiNTZHH1wUnRs/agA9e8Bdg+S4enWlHU83CcpOS3OFaMAMfCcx33z8XmtAT5qD0C/3tDNPiAdryNomMnJX/wsxtRBzsA0s0fgQqu/IFfIP/fXcYHmdWTV9QIg0XnQM4a6CPZn4WBpyzD9JVWoNkwM9HJq0G2ybFMGDcxFFj4/EgCE1LxyY0BcPnbMnyq2D55O8b2iiTXbwGezWpbG5xNsio4IOOG+WB4rBw7WlsgQhyCHuKobNQEjWKQtodWM+bLhR89vuEwb/rAn3DIvpNwY3KarsSzM+4OzRscwhxAs2UU7i6OeLYNUQj0A0HdB996HsXDaWaGXBpmN1lUTsBuH3D5X6YQ0Hn1RFJLpYeIDs3n7JcYr5lVtYHIFTB0JBdqUD3xl+xyhXDWoZrNDKriMx8MWpvqkp7/z03txiG8EU1YVdu+T3/sGWVg5NEgcSFy3+pBt+zNMhz3oLB93ZwxfIoOach3PJawVdsX0xuuYX9SGovSguLp+oGc7lNX/nvcnHvcaffaZSEyfGvLHG9AV/QOnJqWdDJUHKKMZdGOHLJvBIGymFpi6Bd5mTJicsP7ohNuPMtdUIqOoLYLylpHXbgkVD1JSYLv5qnfo5YR2MeOvI1PEnRYnoxdOE/pCr5hUD4dSKXRTtIawB121rF6SOzoaDGIceQDQyb3fV2htxMY90B4x8ZRAXrHQjwYA9p3winbIsjBpersxw7+vPHRSJqRjhmNxvcrgIcmoVCkPeKlWwBrUX7Md/obXLw3u3zIg+38M4L8AYAPw7wH4r6nql/a9P/OAbJ+dORqAltlMzETU1G9pM3z7QuaAW+SS1cCMKl8p465PCpwblqcN+88mlBt54PmmQdGDGlfXNpBnYdFMM9odr9Fu2F2R76RdtpmzXj2rzCugdVxTMl9sYMA6vQxMFjBIx0yuvBmX7zio/XgtfZZRtndAmyCnjlPZcSkbUuIQjHJlAMgrKZ3d8FrAP7tVR1Oso6gWXEDGgM/S/SgeY1BkAN0uFginjjK3GPKM7tAPAGtMpqqBuXaTnLeTydenUfFoAppj/W7l2hoU3MR9TujLI0Y/KrBxOHqzslo12M4IAy6pQG6C+SOz4NSA9dkqk8xg5lCb0x2DtbRSsZmXjNryqB6TNRevfF67e8sbTOOWAL1IJChhUGaHjiRAVj6DbteAbtXj2zgc89rHBKIyKj336FEP8AnGOtJgLw3PIe9nKPK9Qtadwh+fe2oBUnNm89OwbvLA7X6fvFTACLjdMt3egfMJ7fMnrJ9lrJ9LmAAyiXEfdoXczdUxCXQm/q45EZ6YJ47tS9banTOz3WLvbRW4nmYOxhC7lpyA02KCMK/oDlbJOUErLMh3QkCw3y0J3fsL3qQ/LdDnM+/Dy9uoAFIyNWsaQR7E7CXn+H29r1SauoVAykinhbx949XLdPCUMWZN9C/2FK6ThKR+MRzjr18lc/9b+PqA7H8NwO+rahWR/xGA38evMyBbLBjY4jt6qHgG4w54bkbVbEi0WOmcV5at9NtQIClk6pimirZTHs4GKEJqTqGHQyL6kBHmjZJtx3OnK/HSfOdYr/2csD0Tu54/qWV6CEm2GP86LH/dgyMOI6OvebZowTzfgfmNmczy5Q4ozNhMwrIVACQrLsuG9/MdWyu432abv2oQkwX2erIMyxvTncrMVEmHdFzYX5p9Pq01jA8Ky2xVT4iciiLNXoYgoLAY8GHBps3Dq90Vpt3hCHl8b02AXE2Vet0h1xX64WLYcsJ+SSErzwfWE1SD1VLPiXCF3a/IjhvVv+UKLF+wstmeBfszkwEqgOktAzHqaLOAeufQZXTE0I68K0VV5XDvikF0yoM2vN8NguNhh1A0A1zb05s1cbuGaZ7TGucXBnMXrbh1AyEiy9KzcQh8DzVeXzBa9gbp3ebd8oAsNzPN2usImHZYas6QpMChkuTfbTxsWkE7E0fXuRj9kdi0nE/o7y/YPl9w/yxhfwb2JzWGkaC/8hAubxX5bbMAPUV1IDaBC2Ya17MgaQJqhy5TNG6DIWWwUUrE4jl5aRqZ7ZEmCYyhGlYl6Ps5sHzNgn7KcF8pePA+cOmDhQPAGTeyzOSdzxP/bYOw9XaDbjvaK31LZOJgDrmc2Sdw6MXhIju8gh3UGgd1ZGvE2eelMdqvyZb5pgHZqvp3Dv/37wL4L9l//018hwHZPvj4gRIGxIYM58GZWe7DRCMd/z5ipzoppqlh38vBWhRDZj/zxqSNIgof8hx+8ea41xee/GW1TLIrs05jJxw50HWhcKWb501qjgt7ZszsMhsu6xQ6DwTzK2e5Tp+24AX3UwHelaggwt0vKS7Tjjk1fFzP2G8TznfjKhu2W83/o9zIR85rN5w4M5O1jN7ZM5oE22fA/lln07Fyw4uCDV6rPJzbjQRuKGCUNsJfcD8b6RTf4FJG4DCcPCirdsAcrSby2pCuKzdy4qi+bkM/Dup9SKX0nZCJAsmUvLD/Pwm6MakAHvDnn5hvOYD9ryTUi5qoaIyhC377vdOQa21sfH9Y0M688HK3Qy2Nz8E1oZiuvLajgRtwqDb8Q4hBfTfF/ELh1v6UsT1ZNdsJT0nVmCeafIgF/MAw9tGBNSQdmK6K6c3mkXZCDZxIxMNzeuE8A/6CRJAMlsrxZYFEarfegEQmDMAEQJ3MkKcz2mVCvZAkUM8jEYt9sdrhbVg/r5nsHPTORmdKlnzYAXoqkH3mvN3WIoPVJPy9b2LE2GfzYMsKwz6fJGb9ImTwtA43MysvOy0KSoaeFwRfPg6GgatLTiZWyoNN47j4TpuDNE8M5B7Yl4XUS690nAY5m/GYHbaysRIIbr1rQLoO7P1bXn8emPt/HcD/zv77d/ErDsg+zlCdnz5//J6OIO9ZUS9A66Mcz3cBliFG8d/TBOwfOtLzzgEIXyy4vDlTxpV+CTmxaeYDN7o4xgpj6ERbgxu98uelKbYPJQ6ZvCmWj434/WKGSvOgLR49SWKzRznPzHJ+ZcZZ3hrKtZIv7AtHM9k7hvl6KX867Xg3rXjdF/z49Rlyy3iw63VBUwXOP62YP+6UtS+ZZbE+ep54gK9nhT6xk93nw1xKWPVxTOQa0FseAb4Yu+Uk0NeRqfdFbEDHgCWOTfHjc84rs7rkE3Oez6hPU0Aq8CCpfJ5pV+BOmK1nuhWGL/iOaEoDDHjlqlhe+LxuPyzYPgD1nQ2ltuElMeFoU0zXinyt6FPC/n5GO2cb6mK9hCbYnzLaLJjN4yWvTAYADlRvE5BtCEva9eF5lhuwfNFx/llDeSX22ydBWjJglFuHH5xldLRqEIcWo9od2f380jF92k2mD/SFs04BIN8aypc34HYnBJATpxT5867doJxuis0SX3dqahisWRNT73dmoyJo52L4OmjQlgFtgulFcf5ZxfzzO9LLlRj9eYHsmVn73f0wxBgyCtojJ7QClI9AeKkDI+Pdje/uQfwYLM06QfZmAdv8bM4n9PM8GsKd8CGMFQUR+q5PmQfeTsaMzz/V3pk15BTDrTFZw3Mqg+sPANNE2uvlDH33FIFZbitwu7PimSYcrQ9Gs7UHi8aHcBOyGvTUb3r9WsFdRP4FcE7S/8q/9A0/9o2o/3GG6tOPfk+DxubUxw7z7IZBGB4guEEZXE3J6RJ+YfalE6O13jPyWx6iGxlBbDS+DEooxH97FuSucBl8sDQsSMMEI+1EyGX5eJgOX5U9lyxj2LPo1+6KZ3jeFvfyefq0sUytLcaD9YUgatqBLEr65/uK33j3ilPZ8Wk7YbMMO/x4HDpRBpT5iw3l0x3taUYz57+wRNBxf+sFqM8Nee5o4VI44KZ2th6CUzwB9Gq2pP70BeDIOl7H/jRgCwrRyGDJ5nqpCdifzWfGhF0+NIIUPAtGq0FkU4lehtgwZsB7EnY4q5rfCyGefOdnKKtlx1tHOyXjoStC2Xx4TmJWB7Kz2mnngu2zgv2SDOogVFKRo78CBU5fNoqdgIBnnD6Y746dS+D4eWPFFrAPEJoAF9zx8+VYLzzAyVVPG6FCNiQlrKjzqihvLYRFfSloC9kw+d4xvdIqF94oBO8bjo6MvdN3Zi7oLuhx+FKGL5CYtwtaZ0Qp1lex2bKaANkFy5eCpx83LD+5I72tI3guE6sfq0jCC6aN/lgvQ/hGHvqBNw4wq85seDqbRpcZfZk4srHZ0HWX7S8z+rsz+nlCuu02mLrHs3LxFJIFWlO8Skq8Zz5gIwnpiXbNUc1UO0hEIE8XiqWSQE8LISgRHqC90264Vh6MvpdcZbvTJVLsurVk0kNPh5/9ltd3Du4i8l8FG61/Q8e8pz/Crzgg+/jSZPhkRzBZ6Isi6GfYcGQJ4dAwb+KIOffwcD4w5k7mRqNAJQ4Me79qB0WbJdgyLvsnPORGXhJ0t7RTcKGqFkC8JNbA7znxJUFsMLIbLR2nER3VoZqB6RWYPlXMHzfIbWd2MJXgB2/vrYxedVzL3PBuXjGniiRqjTRCEo7rk1MNTC8N5ePNNk2GD0VQU5oijcZxWwBk0GSt46Fh2Gcb5zcDyTBsCKBrBhbDArNCcoe0EnL6ehlTekSVjSy/F14tOcx21JwI0N6dhkpwsyC3dGhKkVnxjREWBtE3sbWUd1PnmpFWvrdgwbB5DvR7Qm+kfJY7lZ/5bgeHCOql4P6DgvWzZJCGPWurSgDDzDdy4Pl75PvnXcNcLtlB4RBbuRMeyZbla2ZvIt86To1/J+3dGtEjI/fZpd7b8Zm/2oSqYoUN32DA0ylzlOScLFHQESh9MLOzXg5BByZe6svw1RejIoeSdqfBmG4bR8A9Xfg7hyq4vAqmV8H5x4rTj1cmMF2ZVU9GPWyGcburLGhzEAAAUiJJREFUolltyN4gLcd6o22vzSk9TxAbiBFB3TPuZYKeZ8Kabrfrr5SC366Opx9w9bQ2+rxbkhWB/uxdYYOFUiaLxqEUNwuLdSk8NHKOQKynicraozNlkpj8JPdtiLb2Sl48QEhHBJgn1OcZfc5kKv2C13cK7iLynwPw3wfwn1TV6+FbfxvfZUC2lbKuinTXvXZCBIajz7p/rz6xnNY1B3e7PTGLwZ6Q3zhsmJxkQC1oA9b7UwuWzdg5GYGPRgPQ8egMsC3MYAVlYE67lYyZwpUYFwaEzQFZLqMUD+m6eYOkptxQe6XMOSdmP7YgqJpsqEtBW4D5xClTAFB7wjLtuJ4rmpXcnkUCztcm86EtA+KJLNlop2Qg8ff0WhgkGjN0Z/k4pNRny+DNPyfWRe7QllCuEhYCfSJrhXRTMVtXPtOeDw1oc8KMIDgNtkG+1sg+AaccdpR7A5pS+egImsA43Qy202uLbJM0UAHMjXK6KgdXW0UYjU9jDqXWQ0XrcJtTC9XYO20STDfF/ImZvAdartfMQ3btyDcG6v25jOywj/4FLQFS7IHyVsPsCom+SPTecbhO4RbInkF3TdZkHkFYbWReOAja31EB+umAXx+yQHEflakQyrEeQwIiYqi4f5AO3rdBEz6/QDrZQsvPBJefdlz+ZMX0xS0auFoM9lM1zNswdMfga7f9M64dAEfknUhxzLUjXfu4Bg/8lwXtaSbzpvYB+QTMNFljvvOzpAQ1m2rNNtTjq5i2+8RUEyjlBL2coDYH9WHeqsOB0zLsDcwfKlkSJxv7SRzw4fhzH3/HbH5Rq9E6C/p5ArIMCukveP0qVMhvGpD9+wAWAP+aNRD+rqr+t77rgOwjD5cLH6G6i6abBd0202djf1K0SwdsPmYIaooClsGkTTC9IjJlelUf/mYGVIV800OW6paqmg7NUKM4tnMyrFQDQyVuLKinFNCA266G1N8ODPeq8VK+XE3F5hvQOLTuuaIJmF7GotGsKLmjpIYlNZxyxVzsFvviNxoeAGZ4Jq8mk8isFUykVVZS95qXz5sEa4mjDEdVNB4SQOqh0s/Hv5yAvgnKlTz1PvHQqGeajTmvn0yUcVhA8WAN4TgugGiyarHA18DAvXakW2UjPA2+uTfbOZ92WAa4kRuhB/7dsnCYeF4BUWdU6XjPJOhLxvY+o54l2FV55XrxCV7zCwdbRBBRZu30demYXirS3h4P/TYqOU5TSjDExoZo7DRMWwqwAzjYBAB8RAmge6I1+lP3hjmJAA6fxNqRsSbSZLM7ky18s3mgd3oFUqLN75T4M87QAEbjtSvSvULeyAiRbA3K5IZ7iuUL4PRlx+VP7ig//hTZsCZblwLyye+WKZcMGMYt6w48LXHgSVfUp8nsnomtSy1I18KDwT6DH0p9ZtWX9sZegbs9AnCDO02C1Fn1AHagrAdM303OjhYMXQ0ftwOgJAb76gtnYP4Or/KPC+ReB86+74R0ClW16I2FfSmElewAQVkoXirm+tnMKvn2a4qYvmVA9v/iF/z8dxuQDWYg7tdSzwfDLM+gjd9cz0BfAGTD1jOA2NgKsax9ehErY61a8g3lzfI+MijHqmW3zev8aXv/8FfJI0BHM9bx3hhCLfE7Tpsbo8cU05sNU1hpy6oiB1UclVBHUVNqykZhBqCC3gX3NmHrBS/7gi9fL9C3YoIj88GxHkEqlHi7j8eRdTPdqHTcL/lwPwQt896GvzsM9gFCDEbpvKDHEHN6/sg1Y3rjs6hPgv2dmn2zuUmCAqIYWq2HSuOAeR83NKuyZLCCDYF4I9OiX+agq3rPZDhvUijlQjCO62uQvaMA0FfB+sHguZWsrPC28SBph7UzrRzicViHHHcG9RCbZWE14f2Datxx45EPXv8Q7n31s0fw6grZGvHo2mNkHDCjiyC5xN3f12eS5lFBRtMTBg9WHdCHN+56DwUrAOh5RnuaUE+ZdhBG7U0231bMaAzVeNdJINMJ/bJYU5IWCfMnYPn5ivKTF+DljQdIIpe8ncoI7DY0A2Ih6ZiVKvd52hXtlFHPrDLyeshev8FEyysY569rdg+Xw98+QijG40/rzgZxyV95MIcs1Jua1qxNzjByWMnuU4SQnAhh3VdOaNp2BG+1DhVsfBYfnO1/08cD7h25qzWHv+Jl85XX90ah6gMMqEIcpXIyS+jhEX4wq+oSkv1wMtwTygsD+/ziTbxBVxSlYtMz6/CeOcA+2awOQnloo9zS3tFqolT/8JJmDUkb15f30QhzKbnP4WT1cJiOA6CdaFqUS44Gl3TF/PM7pPXRDHOoSBncAeC6T9i3grQyCrtoKVgphzJahYdTCJMaglueKuX4D81FMb8NAe9zIjvEB1k8WO4KoHtCuSWkjYwQ8sc79Gy0zjVBdrpCplUMgrHfzaSG5g1DVeliHhsmEbM9b5VZizoEIiEGcwYT76uE8ZkmPgMY5KImDku79Xv0wDjJMAgmoS1prEWjLPJATzG/lINEmN36wUx6nXnhHGiL5a1C71Tc9jlxfyuCWeQvtwsIaAZgIHXOdmOFJ0BAAA9Dpg+Uubx5AsEEKhm0E8HfGn9qAU5PbNg1C+y+xqUSWkprDcdGtxqQ04kUyGdTSd8bdBOktSG/bZDrnW6J5v/Sz4U2EzXxb6xbNB39M6uNysuHcXqO5QOstnTK0PPMLHqjvUUcim5hnNJw57R7qlMO2qP0DN070n2DrJXWB19p1sb98qZpmYifZ7Jw/Nn3k1kl3LfB2EkGGybw0Nh26LryvrkgKQkHe5yWwfjxPkBK8d5IVl3cNh6Iv+D1/QjuFnx7Nh6zQSPeFHNRTDVhh2aYqVi2RWcH7y5AF5Q3ClXK1YVEBqFsGqPQgMFIcFjFVXNuAeCHDL08aHhUbt0Oh3H5TrF0XFruGm6RUMQ8Sy48vgeE4h5YRZJXc6IzH+l03cIoSfMFPnmozYoMWv6qCmozpkxR9EVRLzaRCRIqVx9bByBodMHCcCWmjRWEAihmruWB3GEav0cxb5U/Q4Wl0jN/Zda4PwP7s0JPHTI3aEuEQ6y3cbRpcMw598MQiQMEcPTfiNmrX11CHtMODJM2CROer2a2bcAV5TD8+mEG7IxgpACIdeQCsboMy4M+JXR7z7RZEzMhAowcgjLtn60hbP/fG7B9GjROvqndJG/UJQQeHT7rh3sRbCmF9QysOVgtuDtMc2xG75WZrLM9zjPa04L6VNCXFLCZdI1BHum6Myj59COA7JOnk1Ft2RsQux9y34dj4uWM9uGM/d3EoSxfNkIUrUPOOaCPoCJatgqAoqZ8qOoa2Oc6FYgIh27vdXw2uzf94EmvzfsCKfpgNOQjrCObNTAtM5cHmf+4d05FlNqDvsnDKI3nXRkzFHjM+i2gi3PXE/1ksMyEjTy4A4NSaTOmvQqUbaeVwS94fS+Cu6hn2Oalbg53XraTyYJhCqaI2ZQh47amJxWFCGtV6cSV890WSDNxjSJUoX2SCL6evQ1GBUbzaO/IqUE68VRCORoUNE3MPJP9zTbzGsvdONHGUwYQjAMPJn1K7IDrTAqYZxAApJ14GCyCduqYc8fesw3/FnpbT4q2EFogY8ayxU58jnNE/WsYjWkXbe1sXvOa7BCyoRPACBoOTwAg8GtYuWf3PkSlLWxuy2yYl3n+iI7n7Y3VerQGuA+x2FG0I1VpV7u1x2wWj4Hdn2HoCARhJwGHK6YUfPGAbyZBdVMvBdzCIKwH3Ito7YNp4u+fJeCfI6/eKXUU/ljgPjgLejXo4hnYrNxUbT6owyXN+gAlRWOuT95M9ezQqKtNbUCMMhDbwGg2L/0fP7CMYeJYdE7opwntzMDuQ6sdjoks/LZG4y8ofEY5JEHBDuAD3i8pQUtBv5xML2B4X1Oz2bWA6YeXNRWkdWboIg+cairNFT0n6ImJge50U9S5xDPQLKF0lWrYeZFgEPE+1MP3chxyOmXIrY/P4RbBJQXUKY7l5xxaAKmdsEtr41DFeH/+kLBKX2ar+niYwJW1zm7LmV73vfP+OFynj2vwm17fi+DumTtViIjhFaE8BQPO0YzJMVJ+gTEmr4K0wmTc3ODlrsFUYAmmUfo/NvAQmLxL1qN6cCzOBninNqG6pasYQ8ayXz9U6onZ33QdPHgAEFGTxcuoGvwwmZm55NcVcq3Q652WoCkFzNHP3MzXfYKqoPWEXBrq0rghrxJwQ6oHzBEMKj5NirYNEupgHjJexSAa0mkbnHaHD1x7kDcx73BLaDaJZni70C1SRKFbpv3yZlS9cF48iHLgfYmvZOYGvUjq9nvtcUybPT+6Pz4G/QfTLLFgXyS8650PDwCbPUMV0Jcl85eyBXR6utNRsdvhEN4/8H6QoIXLJw+itDKTJAxjNrKe2cqBnWHQT96tn2CGaQCTC5TEqUkljUO6GXsmkxTgGbpU0iDT28ogMxVomqm5QAckReOQtMEZujCL7EthxWnXwkqNGbvDK+6UqNXw/2kyyiRN3bQKRTcCBr6pQM4nIAnauwX1iVTJcjNv95QGXdDH5xW/xx3YAcmCLjnueV4HrKnJ4JmpQxfuofhdOcB5nlG7CCt5pWf0WhFCLWZIxr+dgIXZNN+DUJVOxNDh4iI7dHmLOfha7Hf65NUMqx1VhZxPpI2eZoQRmQ0JEWO3+SGlLUFkCihJzGJBpsOgj294fT+CO3gSOdfcHQldmAQAwWYR0Ju7jwxSswkXN5gLn0E8dZTxx+aoVI1uOQCzXj1QFT3oeyboDnt7Y/bp2OwBUmAJjLAhiPmrfkAJIsBQRYnR7FUEMwMK5FcMvM5Oflf7ISlqTXhbZ3Qz8i+lo84dbeYidejHR/QBtgEsi3U2kM+J7f7vmb0MMUw8W7A+Dtfwe+h9h7QLk/eaTAbPhnc9K1BIjZQtQcybPxlLx/UKaja8DiV4AxXOxbfNkjbDUvc2mBF5ZPbugeMwSgiq+njO0SRvang2NQKOnceasrXnNMZy61FN+NAWGoMRpkMn3519nBT89Hynp0s/T+hzRj1nlHujWZZl+I69o5ODn992pDeeOHqyRWSumO1EDDqZ/W7aquG9wsEOyfojHki2nVXBQvjPX8HqaY18cPcgN3qnJjH6JjdYqp18ch8q7YHdKXrOV/eqRA77Ngn0VNDzGToX7B9mYu1dkVbeO8fhdS7BAQ/owoaGoAvEvueJS15bCA1pGZwNEjNny30c9oSHqt3XofVwvyopyexGeMjRi0d575c5qh72d+w9gmJr+9Vm1KK2EDv1U0GfEhv5TYO3LqcT+rtzQDsBuTSqbPU8BcTFwwj8fEmge6eI6y9KxPTn+hIZPtc+OPgwNZ4/Q4xXM9CtZA7cW72ktyxbCNPInd9zVoKXisySRzCPZlwamzpZQKey0MyMaoeUFFVFTALKA5t2OIETng4HkNP1PGOwvz3KR6Oo7baYa7Np78QH2SwkSF1rRm/GGCgdpTSk3NASmxLDB/wgo3ZJfqPr4HF4iN/3tqg1fWxQyj4Cnh6yeh+G4ZmPNgH2FFVPOyt07kBNkDUhreMzAoReyt0PHcR9D7/z58mamKP5FxtgNS8Oz6QEYQ3REssgh2Z8LqtiiH3SccPX4SXjFFw1zH66UeGZ1z7gNIFBcB5ANLjzzooaLCcGE50y2nlCPWceANvjEJK2pHjuqXb66Wz7oOyB2aOa1bG7RboHjDQS5aV0iOaACmFUxSMM4xWcmGAp+OSmTGVlwJ/Nt4r8Zo3Fbli04b7xmmbIMpP+aH0dh9D4RwQ9Cfo0x6G4P5lQqxLDBxByfc9MgW5JFAVSVL5mSEnRqM33hnTd0c8jyHXLqlMzXLp3oPF+pOs2qhiUwVSqYGPVKisY84WKVkIj/vWHz24JCAC+T8cjY8fG6vUTIVxp9lm6svl8XtCeF6NH94Dv0BU6J7QThWP5VqNy84MLmRDWL4Nmvh/BHQif57ZYkGwAzY74/Wh4TcpDch6Yu7tGHktk/xs+Bk07AyqHTw+ZtnRroJkdQG6DHQPD5cvNTvGS0M6TLWK1bNJ6AsU6TyoxqNgPCADxXj7Nx0eUuY3voGNS0KH7zoVgh0Vb7PtN0O4FPXe69olCJDGLV79RA0bh9aXhGeI/ksb3j0It2h8LexrO5DjcZ9i9LncNy1lsZD0oSFHts0E/d1JSNQN96XHQhs9PltAyBCvsQo93zWxkpy2RCYSOdG/D7tQn5kw5slI/OH00om81gStUzUQLeIA3AP68sxLzpmHg5uIpnRnU+5TC8dIPZ5/DC4wD1YNLez5hfz+hXhjUJqtEHAfvkwXFqoRJVI3rXQIaQPEPCKRuWPpaB0tDbC0JeC9sjcXgZ1v7Wkbw4cxQ8q5huHu7zGFPkG875LbxPufMAOoZfkqEC20gh//dsGpu3WikCe1M07e2+HpSDm+59oCUYBObekm2poTstaYU+9jcUakZ+VZZRa970Es7AJ0SMfSukPuYvUp2VBt/x3yQtDgW7mIvBvG8NvLcO6vgPjsu340Cm+C9G1QMfB1AjCM007MepmRWcd5Wfo7LCf3phHrOQVbIO/F5LAXtwuom9nA6VEJqz3ExY7Vf8PpeBHcVOgfWJ9rNTq8MAJ6BB986kcUBc/BL7vuCEYCCJuWB3nF6Z2Fkio3C39s57wZHstwj/3z8bWbT/VSwv5/gfjCufDyOihODlaICaBoZMjFjwwrFrHCNEz+4w93sRxXo9LNwTjUzLAGqQK3j3HvCtiW0W4mxgjF8BJaV2UbjvR4QxLGnEYfPyoHRYQXgQauxcUvzL8Iq+4WfSdYE6TxEm5m5ySbId8uozh16akBN0KjQCAu12dw1DVLpWbB9MIx0txK4pFCFSsAHhdmNBcdm1MRolHeF7GNTECZpFD4th1F/tnZIpmDGX94ayttOO1j35baDqZ14zSlopAwSMWTFDnAAgUN7jyUajR2Aq5mz9R/ubXDYHebw4G6YbF65LsQy00G9TPQh8kCU/Z65EycZG92y/1QlKpG8N2ay5wnrD7m2p63H4GmX+asWiBtoGT7cT6OBGH2EQy9Li2C/JGzPiWMr78Dy0lFe28jaHW8vydS0id+L6qSOewDQFsAHcIswyMuEdio0BLz3qH5jDqoZrznTpZs9AuMBohfH56cI6wVruCbTGIj1AtgbTMGE8mEfOhWoFA4R8QlSSj1AulfOek0CnQqHkLi2ZTc4x2Ahb2iLq42bWrUqUcl7n+YXvb4XwR0w5elhDJpbABxVqkGE/6YDyxeUla7JIR0L4Kl2GxRhwz5mY0rAYYZBm6TdAUvKyIINo/fGlzcm2yLRiHT8XbpiutOkSrqinhnUUjK80Jq7kfUBgMEGD1PPPUgUL3kFaeN7Sm5szm4ZuqZoWKbNDh6Ho5IAxa9PAt/2HmvcO7WG8I1+K04/7QdKavDjbfgEp2CNIC513G+pCfkm2N916KUhTQ29GZPmJNjtIA5jKUUcuPUEpDZYU/7oJRuLIWf0M8vWwNiNeuiiLwDhWQO//r0RA7eg5Nz/sOPtQLl2TK81mo3uoQLLipv516iSAOAGY+79z2do1zxltAM+67CQqLr1/RAGuQz+kAnzmjoUCQlGhfONfuS7m7GXmrmWZiFzQySscGkAlpgdO3d975atJ+zvCu6f5bBChgj0NKO+P9HfvI7KRqdMVs1CJ8f8tg8c36HPRHx4e5ewfk56brHxgCOwE2KgENGuzeia0toYTO0mYUdYDgCsuRjkgCUFK47XSEZLUuWwDBH0y4J2KYRlvdhOAODWJ/0QRySwenHLhOc57CjyDWEoFu6TUwrBVDuVaKrLbaUidZoo9FoyWXrGEgQAnQva02TKdLtue94CACuAJaOds0G/f0mCe59lUPG8IWM3P+T6Ow8ANAQHG/CsXQfbwTNS9d/zk9y84y27VhrMPIzb80y7T4QH8q7ob4kS5Wk0mzQJ6hOnCamV6T4cYrrSSGp6qxQfHVSOTmPrszEkDKIhJa9bEElxSuO0wP3FYTh/AwAVaAd0S5B75qCOq2B6w4HWaQHIN7xhy8fGqOPn/B0aZ/kYvfDY98QngUrgxCHMbimcb/yDaTfcfuYf7xPQLx3lVHn2imHyJ/6fbnNd3d7BxUN9BuRuGbj3JabMPVDNSGvOQQf0qivfelAV20J/EB9KkdoBBrCAn9Cxz/ngLaMRaDkW0TJTy/LbMoRLDrFB2UPINzb3nL7ptMc+paCb4tCUlmY+8Z79NWXjMUlk5tLdHZM3PyiMBgXIXodKskjAePDAIkDeqt0HBs92SrEnBIDOCdv7CffP6PHv6tb2jrJ/56PnG5vWsAC0PxWuHxNpyd6sSZy4RuzQrGZtkW/Ue5RXm6M7Zwg0Dp5+LnHvAk7ZDhmx+7x4w/FgI9CWTAaOr+8s6JcZ2zv+zPyRhx5U0Z5nBk9njim8bItY5AwXCNh8d891sDpy2DD8eux6wohMCd9oMsbUdQOuN/YO3i3UEZwsuG/stcTnOLPScxKHU2FRG7AArUzB+orE8Fte34/gLo75OpMDI7BHgPbhGIbJHXsblqX7h/Us3AMTf8YMvpz6Z1lWseaeZ+IqA5Nn2awol4J2KcFyoXjC3CXnw0EEjIDn8uPEA6kXH9/3yLjwEX/h3TGROpamiX4SpzmqAbFuvFTSzQCBbGbU9Uofnfmj+87b9SSHDPzzITD3EPucEMKktFlgz+MZBEfcsmMkYZOyjca3H7TVBkOL0u8HCysMdtHo/dOzQLyaEKCsI1CqNaLzYUQfRAy3zdEQbbY5CAdosCdkb+E06Fg42TQNLgJyjUE3O4YwrNvMLMyZEaZ07EtGO6ewnU0VYwzibu/bOoBEMZexW2D9Hj4IHXCZKmTt/JbhiKTr2XqvR8xYqYY0TDrdiR2LZ7WnJarAGISymOL5Zpj1VOzrnGTl7pU6JWzvC+6fZ+wXiR4CVbkTfBxiMM7scGyWdebVsX4ZHHxYhTQzU64XfuS8GSV5awYZeVYKOwys4m4GY7xeoW9X4LP36B8uHAF4r9xTSxke64Dx2BED07cPM+rF/IA6IK1E8N6fCz2gEhAzDZrRbfWAqSc2vtNqjeTokQxXT4AHD94/0czMPj+tMgzS2Qxrbx0oBf3pjO2zGfszoca89VDMxpp2JfvWg/UUr3wwJ/zFsf37Edw1Iab8PGTtGJh5KFF3YtQ9K2Q+iGy+8mGlA+XeH9gqZMUweCWjTZa7Gt/Wgu4C1CkNBWJDeFl4EOgzcfs+gcEWCDaJM0igfhKnh8XAi7MNoQOf9clPMclFBHo5oZ/moBCmhgETVN9IZLa4o2K599EM7o/3Uipo7uX2sQ0WdEzEVWEdeOOCx73DgevOpne+GR1SYAItYP0gAV8oAJ2VwU4FrSagEu91f323RmCDFtZn4ei6+UXDRqDPxDmDThoLfMAa+bqHqVZdykgSgOi/tPOE+mTOkls3J0brs9zMZdIb21ZltVNmoDixAlpuVk1YMzntnUM2ekc/TQZLgJswkw1DCNDvtUEpRkeNARw5QZPBNk5jdMzbG6/+clgCoKL0VCIwMkMX5G7ZqBCiaZeC/ckqGZsEpmL9pwWHpjRQLzlon04eyNcdad3Rnhc75Oy+32tg1H0uDMC12/p3+q3rPfroC+wUaknv0Gy2zgrizHezI5AEPS1o5ynYaloOA9L3ykAvQ43dToLtOWN9n9AXIN8UqSakPbMq96HnYkl79uwP6CmhvzfGjH+2+0Yx0mkxX3uuQxI+1Ci7ZPmk2q0pzOcez7I2SMnQpzO2v/KE7X2G22REf8YqPTeViwqyI9wpNecB+TlG9gtev7jdCkBE/mUR+bGI/Jvf8L3/roioiPzo8LXfF5F/V0T+bRH5z/7yS+CrnoHwMzFqXr2Y7a9j8cmy++Jj0RC4WXBrbWP65nR5fV8y9ktCfbLAZiZQbtEaTbiGCCLuOe5QzlHC717V05W0uWDtVBfUPFIs885DhBa8frP4r3ylV4fDNfxiMvOgxmxVEc6SgSPvJgrqdlBdTQ279jB4AuzAtIwkLBDqgQMvA2bglCvF9MIpQaLGgHHevu8FVeOB0+zN8fPh+wGgCXTLaHuC7oSPyhuDu9sIA7DhF+6yaYrQ6nTGxHFtJ47Zq2fOUvWqp9wayscV+eONvuLTwQ+lD/FYnzIl9XOKSkCT8LN+qpiulWwcC4htyYQrfjhhe0f15/TGaVn5YJ6V185g20E1qB/qNvO1ngTRrDY/G11ycLp9U0d/pHfIbYW83cawaW6skdELm3KYJ7TzNEZGri2EdpEVi6CdJ+xPPKC6HUp9EtSnjO2dRBDm5CqDx2yqGGEnViZ9mcgDVzpXlusezcR+KsTmAz/moZbvtAHJNqUqKhrgwZYBBonleyXeXgrk+YL24YT9mVi2wzRk/7S4L16d9iK4fZ7x9jsJ199R3H+gaOYj1adka4d7t9nsBu4ley4JAfXle0X6eB0Omc8L6tNkfaaDf9Fl5lxXs8nQksJ6O6+dh5Qq9N0T6m+8x/pZCfuSEBkCIU6i51Qj3BWB/1AV2bNlZn+AL77h9atk7n8LXx+QDRH5PQD/aQB/ePjadxqQffQKB5glVhGagyUAbUAJwZoxSmSqnIrkAT5tI2hwpikbOO5l3syLPVsgObJlZDdPlaBRksXjnt0x2MPhvjZgg3A43Me10AKYgZ2lsJW2B2rb8f3LvTGrzkLcfa8QdYEJfybfKZQhhVKBpPZ5JTaWe4pAGAzFoEUxi+F8VxMuSdBG86rjWjovjmIkQXNqYwW573VUUm414EEj3xGNUx8gofcMuWcsXyRMrwgTJc/qQk3bmcE7JNYWXl89cfqVVyfOY0+1myx+j43Vp4GLp21oCXpx8Ynd+mC5OE5vJZjJ0+slY38m7bHYAVDeCInUd/PhPtk9aw2j5cjsN7QBOphTfRlKTv7eQb2sfgDoAwbMYEa2hJ4KM+UKKksLRVP5VpHNAjaZIlNUoVNBfSrYn6ziMlW32vB0v760GzzpiYnpIKa3UfV4NZI3a57uFOb0U0a9TGjnhHwrYUUMgBWYWSRv7wv7H68N+bpDXm+8mKcT1/bKr6Mr9P0TGVEm5GECVKl2VQV281eZSuy19X3C9bcFt99q0EmRX/PQlOydVdhJ4sBFF5y+UE6lAtDfz4AA07WifHmD3DfSbZ9OtD9OozcT8KRRMQFWlPWS7aC0gytn6PMF9QdPhGOekg378UOWzISoBD1bBwN+f54PGo9Gwz0AetBrfNvrV7H8/dqAbHv9zwD89wD8nw5f+5v4DgOyAQZsNgwF7uuhE5zmyey7KHTqwKRoCYAm6GpZtGPDQGS5yVhs9ZSNWcE/Vq5DYdkWOkuKZdRhs1s4yV4TOCihj2BRTwNm8VIy7YJU3CAMlinx5xz6KXeyCZpR4BzHBrh502allG3w8LcGLKM22KcJTcIW3rdkTcJuSta5a+B4VIzmYHX4WLp2yhFE/Z5JHz4sPoUqDrKNjdP5BWaJjGgkO9slb7BegrF1OkU7SILpk2D5Ge9tvZiuAKNkz+uYLdqN4u3X5kra8LTBoWLr1sSbExtVz/zD+X7MfATureMVihYe/NOnHWlvxjYZVUJb2Ah1Jky+t/BkV4PVRJ2SaBeVeK/Xz4hhQxxyGupW5y/7ugEwKG1eSblAxVwORZXMLeNM8w8wsEjtyLVTcOQJxtH50ZqNbR7Puc+CXhK2Jx6gqXKg93Q1osCZw9U5m9V44OZK6tfuXjV9LgzCZ2OiPU1INvWJg7B5z91SpNwwDoau4eWS1hrrvtsYuW5jAaeXHemNVrkyz/SiATj/9f0FfUrY3iXcflNw/ScqyvsNrSboLXFvKx4Grviey5VNeFkbqaRZML1UTD+9Uo1bMtqP3qFehmDIPf2DOplgQV7QJneZ5EGe3zhgu71bsH0+Y/2QY9aCJ4qaOMIxdBMiYyAKrDIXQb5xmLnuBVLpe3OE577p9Z0wdxH5LwL4R6r6bwRGzNd3GpBdPnyO1CQCbp+ZNWo2D/DOK9VJIaeGVJRTwXKiXL6LMWh84ZmrXwHmT0B9ytjPgu29ZXSxaBHimbiuziy7LaOcLnfF9NKOFw+AG5zKQm6OvEtsrja5oGZ4k/gmcWwtWBqdp7KeJZp9sKyrP9FCdboRrio3YHsvuD8D/V2FTB1VJuy3zAOmcuPy7HvE9QHAnRHHfQCgg83jSss+25SkxGqh3Hi4RGZ3XDm2BNIGZMtKOHdVkdaE6U2w/JxZ3JHa6lJ/qPcxGFh6Bia3gBZgf8e/5+PoAAuOHZHNuge6VEVyEY+4l4yO3xWEYRTUBjk0BWZY1p/CKyigtBsXSV/KAyPm+NLMcXT7c8J+GQwqD+yAH8yHDN2uxw+MpBTJFW+i2axQ9zpRwRjFaP7eyXy95bZBF2aetCaw5nKZwgqZ903DFpoQw2gMQ2yg9wnRLOd+ZHPZ7TL6lICikFaQ+x60QWDcw3oZh1g9S6jO/Wu8Z4nwY+9Mrqw/QPjDKquto3y8Qz6+QmuFfnjHv3G9Q1X58xf2DbbPFOX9htN5w/V1MYokcP+QkJ7YI3O6bb4Dy6eO6Ys76bGXCWnvmL68896LoH14wv6ehAZnYeV7f7A8qKdsa8L21EpCQ76xF9HeLdifJx7qFk98v9AksdDi4kpITYugHRw/c1XaTNw2VvK909+9DgfLb3v9mYO7iFwA/AsA/jPf9O1v+No3AkPHAdmn3/k9nT/y682CCpKV3juz+WY2tLkopfbIRl0cb+kug21hcKL6lDdxe2/Y9x3RhH3A0A1r86ZpeLAAmD9Shu7mUPuZLJl8d3iCQaA3H+7Ah+0ydsfGHOc9GpWFP3ZrZpebyOVNiYNwZzIfyp0pcj0J9HOgvmtY3q3oXbCXgrYo9idBvhFPzuYel1pHTdzZxLmzWS/YwaIKWMbsODbvid2iBuQdw2mzOTfdmCP2810VKNbgFmc/cSOn1Zqux4NUELCFw1f3HxI6OP94sJf2J6PSbYdeRqagqi2CtD12lhxzppmUcdI7s0WYYOzomw5V6JJD7u3j4Yqbha2jAoAxc9yfptxtYpLT+eaM7Tlhf8/3mV41mscOgZVbh9jn8OYr7Zyt4jHxjQBwbJ2lu7GgXGlpjVbn7sOETGT9cAYoen8Q7DizZb9gNP8bML+y31FPCfsTn+20DZW2CiAYMF49idkf96ggaOUsEGOGjTnFVh2rM9iMlluoaob54GjO0CXFrFc1emK+Vwby+50+NjacRO93wMYg7mfB7UeC+tsr/srnLwCA+21GmxX1AmxVotKkSI0jFqeXGoybtDUuDxHgPKPPhbNKfbZEM0vqvXNIjcF/bc7wyWtMBqr1DRTtaaYD5jL6fK6JaTObhOXekcF+CdXo5Oa7ViffdqSXO73ba+VUpkrbCTmO9fuG13fJ3P8DAP5JAJ61/1UA/7qI/DP4jgOykzXxeuHiGJmdQSYVwAnA0nE68/jflRN9pB7wej0sHoML2gkxDo1UPx1sgcRNt2dBbRKYIznd7vqH8F/vc4rMRhNQVEOI4IErhgk4nm6VxH5KplZ7DBjJ5M46ZbTLbB1ysgLa00wzMRDfxmIY9wnA3JGSotUM6Z4pA/uzoF4S8lZCuAUgDiYffjAycMfqDxHPG73WDDvCIW0RtLM1cG/j3qcGdCjEA2i2w/hGb/3pjffRg7UWEDcurETaCdifuAGmNwab+wdmwXkFlo8d5U5GERt9hEXisjuzcDEcU02wxgzrMb9wH+9pNZZHSMrtc29UKCdTCAKebfcwespVkT9tSOse4+J6kchS0zYalLzHCIGTVBviYayb8H4BWLXVDh9YHYZcgKlD+8jm/WtCXndfbFCEZfc6T+inHNbVIkyevGnqQ1ocxrx/TgVuvh9HSFpGbqriaoEq+wjDdUf/MNPeOjJytxMxkd9svSJz8tRjtd+NnhSDuGkhkMzFMb1upHyWQhfErmanyx5EP7OfsL9XfPaDV/zeuy/xui+4Xma8bBlbE7Qz40ReBcsXwPnnHec/3TD97I336YnjxNLWqED1odp+mTKqYFf/BbX0zJ/LKxlXrhzuJaFeygM9GwKkAnRIaFdcEZ22FoPIg5q792FvLQJ9vtgw7gS5f0vWfHj9mYO7qv49AL/p/19E/n8A/mOq+lMR+dv4jgOy/UqdquiYKqfkcIykTB1Tblj3QmMhw7e1YDQhZJSgroaElULlqsym7EBwOl3aFcUaoces2+dw8mExY6Ei1dzkhNkWvV8kWDUcbGDZfwbWCx9YudNTI98qXAAhraNfJrQnYsXSBbrMaO8XUtwM02vLEP30iY3UfSuodxtmHQ/EDxgejJoQWDbAjDpVOmaySWu2t4azDz47pw65pUObyVk+YvAugnJ+us6HTQvL2jfj9wuG3cAMaFEk663UJwZ2LYr5E3++ngTV4I10U2u8augUwn/INlzabDqTCPqHU2TDfh1UQgLuoe9QiA/ddnVrVFM+/SfBmBzNhGrJPpdlzHYY93lGfc62zhCjFMOWQgc/3gM7xS4Zbknroi3K3DM0T4BZL3iG2T97GriufV73qIcSkonhHmZoNqyr7fNj3AMIR1rWc8L2ngfSbKMu/cDrNq/AcfPpxsHj6U57Bi3J1kv/2h70pGt6Ux7QN9osBFMGAG2BbdpWkcH4saZpjKBrDdiF/PckkMsF+/+/vW+JsSzLrlr7nPt578U3M6u6qJ/bXcayZSFsWmBZAnkExu5Jw8wzD5CYYMkMGDSyhMwQJJgigYxkIYQngPAQC4GY0RjoTzXtprvtsttdn6ysrIzPe+++e+85m8Ha+9wb5YzsdrnaEZF6R0plZGR87nefvddea+1Vhe2LguWPfYi/8fo3UEvCO90JdqnCMEZsE6mKcRtQbVlNtR+OqM62kIsN9HDJ/knPajkdNqZC13IuU4XNe6D19I4BvGb1OqPeMGPPDZlZxWkWKBVA8cgK1o/ZkiHk+oRsTf5qQ/8g5Ewb4mUz+cUPnEMr4er79tH1PYP70wZkq+qvP+1rP+6AbAYHBg+tYB1MFFjGudOhoj/4OAYGNPMSz5UiulxdULjxTnXyLIrSfL7I7i8zl9Yz65oF9mHWmLKGVo4WCIwTPraCYclsPkfCF/VughDGVjAcciNqLskICCP5viqAmuOcK0lDVuRVjf6U+ClnrOIKrskhGYLUR6ALzIqcxhb84ZGp/M24kh3mCJpGGQWsWAvwn0UA5k2f/pi+P8MhcfT6Qsr3FDaKZ76zKsrpdc6GcStkjTP7YLtfYQSqc8HyUS4bgWTlDM4z0yLkCSojBTMXyljxG7EG9HyGKIDSvBzdNjXMvsaz81ERk2HwANx2mBtcKF8fTGqPAGhbUYq/qtAf8h7Wa6BZ06Z4OAhARIEk4Dx3JXNmXJkgaHTLX7oXahWhBwveN3V3xzzZ/prJWF5MWXzcDqbgpdlXXtXIbSBLJ3kvB1MCUNs1qOgTpDXQXEybOjPwMLtv9g7tLGsfs3G/KWhqzgakRcRwGK9AX/WlorlkYC8w0mi0UzPYolmW+d373IQ+oVgtbDtkVTqlZgWqFrpaYPtChe6lhJ958V38yOIhPhwP8DgeYFkNWLY9hmWFcRR7T4DVoxHtu5eQs0sUZ8wobGYHFLil2HEXewk21F0ZnQvF2W0VrC+ziEXkVZLMYIlhGYxjWfxgdEkTWDpVee75lBc1itWw2V3QQypDPdBds74ftszTBmTP//+HP/LvjzUg25t3hXkg/DgMDPgaFAKgHyukMdr3aMHWCwxjjSJ/OJGmBzLO2C7uY1OmOQHwIddiGVBhOCwCxqVZDVi3W5Lz331X9v6ANWsFNmCDN7ZeO2aaTVAyTYvJDUu+5px4al5WJeiGpEgVVYLBlHwIgOwi5JImX8F81wu108tjAbPaQUvAdwsEiBZ+8LxELKKe3isPw04XtPLNlQIyY54k62scmBrRNhifpOXWBgWyIIsQPjCcfjZTpRDGiR0TO5Osz0Rm3uBuLo3C6NOOkk4ZoJkqUd5tOLa/OMpNmWX6rOwFWSfqxkxmYqZRgJYBlj0GZfMPgPud+ODxHGnfUG9YoWmcQYyuZu0S4i4V3vWwCuWZkaQlg8yrFumgnqCOAPNzmVn4Slven+AZe4AZllWTZsLurdpxeNKTKwCNjUOMQNhNU8rYzJZZssB7XdmmCqD40kg2e+TLHXK9hLtTErJUtOckJMQuTW6WVURetKQYNgGpzGrVifkmQsbYroemRDERashiQWfFtsL2U4IHb3yIn3vwNfx48w6+G+9hkxs87lc4altsuhZjblCtBc0ZKa0YE4dktM00Ks8229T6+D2FG/mx2kglCSg2J2lSt2slGFp61vhS09kMy8nttuq0JJi0Hck22cl6IzLBjcUps/hQmS+8ZfkcF3r9uhUK1SIa8tLR8OrY82UeDaqRLOh3Ff3DA8h1F5b+EkFbXw/Uhns7FY2j0lAySg8+LmTSYHYC3tW3aiJXYjjxrNS0AEbRjgUsy2IdpxxWFhBbx1v5rdn8I4bDiRblXOo5s2U+YMQFM1QBMtCETWCTsTPM3xSsrCjseirMm2USGnmlEnd5BofN8EVYRm7BKFnFoCYgA6bGdckuGmMhgNduXFjWPtpkpoYb2HAwwUJhR057tVGKpdJU6fj1qte5qPice1+vM3zAuAtHGLyFBlrLugy15rlYFejZOLwioxYgdCN86DBpeA2yQW8etNloFkTl5ixuuypSvG7GJYN0e5bNZ8ak6gbJuECseJ+4ermenlkx9odWAemgRo70Js9xyupyPZlrsbIz4ZJvCmZd60NAvIlfGuTWaxpXdp8ibKA6q84wc9Lk9XX4EEW05pBVbimZD4OiuthBNjvog9UVM716DTQXiXTGmU0xXSwpfMrm0yKjXrlP0lOpqn0/De8QodqzrjAeL9C9oPgrL7yNN5qHeK3aYq0NVqHHMg6IIWPoKzSPIlbvKlaPEuKmZxKwqJGXBoVuB0vsIsYDGnLFwTQhu1RommLuoP6OzNWiwwF1NGGgIA/gs94fiiWu7GUEy/TdU8orSn/fVbwxHaBm0+wQIoAC34SUi4L8unVrgrsk8k6JD4o1niaYAaLIAwFDTaFI/mF/a1QbfMyflxpFtbXm0HYKlIC9TNkauUbPGpYB43J60QBrHpo1LcBjDN6IrbysByhSQRnvl1rBuOTfCFNGTbk3A/u48Cxa4SISnw8qfUYMUiwKABQOu4uwqg3piSWwFxgJRQlZYBcFaVX9VRyxQBN2/Wn8NLsvs83GRR/BNkxn2rg/vkZjIo1MKCWRF49sds4rIJsnPW0fWK5Hx3cBDCv+rKpT1OtJM8Bj9ux+morkxwiguACW+Z/W2HXut1MjJXNjCDvDflOC9Ep6oQikNWOmNpRNQpKi6vmiwz29AQRke0b5fDCJyFO148rRgYSB0JPqNi5rDEcVr1swDMutaM2f3gN7qql49KrBKxLv+TgkpWYxm80ILTf0hfE+SrTnQjKQj/ms51onRpNP3bL77zNjpeXhBcvaqy0bzQgwa4aA5snEOkltsMDO3+sCsOhqVhGkkyXGo2aiB1pSRGEQoDCKZzdwrsFc0FVXHMZ9eoDxsMbw53r8+OE7eD1e4ihERCiSBuxShXXfIJ3VOHgkWL2f0JzxHuelKXtb+sNzGArv99g69MbEwadpic0hdvsL2Kvr4rhhyViw8ExePBCzwq86Muea80Sbi48uf84DoGYFXq6Jgtl7BDLMnnjArOp8+roVwd2Tx1LSAxPFzuCTMAhSb2owfeqPKTufi2pCDzTnk0qxZMCYbHvdMZEMDgEsi3eBj9sOOP4sGZOyL7M9oIoyRHmChszIyTYSMne48zgs5CKGeuuS4gznXufWXPNkasYkc82MvZTJU660nSAhTMZW1i8Ig3AEoQ1RSCZIKROq1E2XJrGJc8wdBtLgzUZeV6dMpnJ/aFomyusTOynzSd2+IJtuwTP2uJtEU8PKIKzlVOX48cQdEG1YQlFeWkDVKPTGnkExhV0yg2Fgz5jPLi0vrTnuSW9BxLxTxmUoIrR64wZPlpGZv4gq6NRnTdZotr9uRZwr3genDXqwHi3L8+BM4VCAhgpF92DDn7M5UUZVZMgVMRKHa7OBl5cV7YWtL5AWPP6PitTYYJ+qMDflK4FdrJq9MogGhT1DzxO1zUOs+rS+1MGCQ0mMBht6RXOWmNVvbfDJ0QLDacvKtSI1NI5zuimDVtiNkF0PNc456po0yMUCulpgOGmxfSHi9P4Ffqx9B0dBkFWx1gZnaYnHuxUenx2g+TCifULYyL1tNAhtfytBGAMyKJgaD2k2FndMIurLkeMFHfePE3Npqt6l9CSCiaKq9YjhqMKwCoVNV22t6XppVNZ6ysgZNyaRm2TleEmZVQuqgPkFXUlunrFuRXAH/OWnkyDVoP7ygg/myIgjHnh0+lMELWroQuL3N2fkszLYT/L6eYkKoEit1RL/VE8sA+d+O6zjWUkxOTI2iQ+b0Nq/56qc/0rg9OzYnpPiAOclqZrJUu3GU2Hmg2EN4nH6E62B63gl51+mosyTbBCE062MlVDgMPu9nJ7jMALgLJhi3pYdBuK18IEPoWeQ9mvtDpOxg2Uu4HQm2DH75qDT7yBjA6WHMbYoBmeSs20GxlaYOTkiGufY8PFibZzd9yYRmhLHMwGFsqnpwiCgUA9h9rjeAIv9lACMB1UxnZpmqtoAjH4SuPgzRmhqqkySYbrF8sG9QcQFLdEEb2BjvTZYxRgrpGai0OSCOUfmdgrsDt2NLf8UqNN6QBynaM+di+58M42wpIEJkaustQJgM2+dauwK3gL9WQN3tGEmfA5h3vhDYfCMxy36YypmJWFKavyVyErzsc0O6HZQuyciwhF5yxbj6RKDmYOdLDucxg0iBJ1mPEkH+IPNffzh43sY31/g8LGg3tBa2SEt760xQAtQB1bUK27a3kCNlztyyYOwvxJCiTViDLqi5zA8vd6MJcvPNavpeg20Zwnt4wFx07PKNAy9ssa0xHAlLpWMXSwJ8FhnbCt+4V3A3IP7k/iOjyuBeG4pK9FoXhKvBHYxoQKU0El9SXFG7E18JJMq1HnZziIp1rCjThN2PNgrSnNRMmz4Aq4o+PzYvJnrZaxTMPlFKP4rwHTcPoTZBxgUibkJXMZVnK6B/U7fcNwcqnit2Oc4jYaS+tQEVGuWxZzyEycmTUC5Li5CoQc1LMiQO+hqyzDI5AVjHX/sjOLZqQnITMjkftQzWpxniHOeNcDA5lO4vNSlXSsvVmWzccXZCjGUhh+9+cMVTJK/y6Yb7RKP01gxJfOKAg0BomzUOd0utdH8PywAGwTlJmDeJKw35gDoP84z8xDKeQNTgz1XU1ApfuoZRRSUGiGJRgKaMU1BqOJ5+mbh2L0PJNG51W5S5NaqjuVEgXT75lyjQGhiinD/uTDOO+8j5wDsjnnOXhEWeqDBE5NdhW2yzQwG6tScIImxU2RFIkEyAkG1s6lk7tWiQBgSwm6gr8swFLaMxgipW+jKpPzHEcMxcNpucSA9EhQbBd4eTvF7Tx5g+/4Ki0cRzZmWfpbDVSUpzEAZmmP8/WqrqLd5stsFeOzFD8o3dfZc3JcpDkB9kSB9tsYsr0N9CbTnCe2TAdV5x814UZeRjXHj99c3/Dy92/48ewzxpCvjKlR1zboVwV0NI3fsXWZdYG/IaQTQZFRNQhpjGVjkePGVeaqjlf09CnYv4rJrg2QMz+K4N/DB6ic4qAijrOnqLyK9OGCMEhR1Wq5RprtUnZIHjomZUOCiNGVyVEJS1ATLDsWN7+Y0uT5DdgbP1IqscuWcpwtpD1o3kptfJtknk6e7dShKdjXxbiePHmcVaZTJPQ9WIXSGLVvWGaEFnyUEIAXiKS/RCMTR4BWzFciRk6nY3GPWrjUobArGp7djas9ZUQTzf/Fr58KyMqqwUBpZHkezn8217bhA8WPhRbYKa+C0IlTErF2W79WaQzTe72iybdQLD6rGVkmKCI5nTItwJSkpSsdM35vYG8U1RJsQxp+dTTdQekTi+O4ff5m9cvLmOd+jMLEznBkTrOKs7PMjOCu4M32BjTmMW553Wgb0BwH9iW3229l5NKGosENiYlJYZQWeYmBvLtLEjGkqG5TB84mDWoXAirXYKNggEu37yWYBgDQ15HCF4d6SFcUKGA4ULy4ucRp6ZAie5Aa/e/kyPvjwEPVZLB5SPjms2PXm8jhYwLfkzyrSsGNy5Uphr4jUgrA32XUG11YbwjFuHjZaktNeEOuP64HvuNlOD4exPI/ZeikOxzHw2eY8bzILpuHfabb5XLNuRXC/wpYZJ492H9qQGiCtMtrDHdpmxHqMpQEhBtkUWp0FdA6RsA2jmDZJaW4EC0AexF1mD8UV/xMqE/lyDjZVptpaNgBAwiQUKspUC/7FNzrMKg/VK/h47PJstqYCI0VNo1m0xl02Uy1MZaRYJusbXBTk7Ba87O7nZppswwnyfNPLoJBZ8PUGILm3RoEUIM0ywNhP9q311gU/joOhVAMAz9+frDLQI/G6uWIXQNkw2WxVKzsN1qhoA60moMpNwGjf4855Tgv0SsZ1AHGXUV32tOANAWIwWjbmQTCueRnlZpiuLltOHbL+Seg5InF3TMYUf7aWRrQN8kI1EI8PY4bsFFhVDBQGz6lMlVKZ0dsna5JZYlCotF6ROd46v88GCSa9ktF5Rk0GjjW4K0ACOEQdU2DPtRnndb5h2NCVHYVGqRHsVsYQW6CI1QAmL7me7rMPKnGetkYpWXI0fB4Z1uhmEzlH/30GRQ4ZoRsRur4MsUbO9JFRhVS0NpbVEun0EN39hsNvoiAtFK8snqAWYJ0V76ZjfPv8BehZg7iRqVkfwNF07hFj7xqTAvavgrJK9XikFWm1RfOgWlhSnPIlpTfhMBmvUSyq1HqjqM8Tky0A+bBBf9Jgd6/C2AqatQUF7xGZgC0XfYX9XFUAgVMfbSANMqhkfsa6HcHd8XN4FgTbQa3RFwW6SFi2Zs05OvDOwM4GCAOP+7GHWVnjrI5k3u4uK09GdStMk9EaSIa5u6mSZC0Yo+NrYbabetbLIIipi25Ze8HLMoyamcvPJYeWEIjs2LxJBzVUCHfUlyNyFdAfVWTgmL0xYSjLSErFA4TObFitacrGKiXqsAkxXgL6ctoa1DMRZv1jG0qjSHqyW+qNwT59tkYQbYVH8812KEtn5+vCjdCDL5ph4hqBVFllFuz4TbSWavKvwwBrRlM4Um0ykPhz5va+XrISa08Im4GWsE0NMQc9UTN6G2yEnU87MjxVlw2zsZ29VCLGfDJ9wzDh077Esv+wG8tmojIfoj6D+DLKtCdREHd1E6/yMk+Jh1dmrqZ2UzcAtqmFwprJBvkMK9MbeJU4TMyoYppluo9xZRtWN/ngdPepVC1D3nf2PJugqcBQdpzS53K/Y5dRWUO78OVb6g7c5pgCQYMizeJX1h0b2lmZsXY7ICVIDJBFCywXyMcrjCdtUYHnBkhHCZ9p30cA8G5u8X+7V/Hw/BBxHUrTPozTuws43TMzyTB4EIPdj5oDvYGA6OJAVah3z0OY/IeSTZYa8tTrmREwJvq1+fus6Lu/O43YncgVaNOroRJTADaVR1Y0TFp4jLLjgBNXID9r3Y7gDhToomDo3rwRNuOCjWsbUoQaJU+suVhtbLzcoFYyetkPUiRFZpSwCQP1IQX1hhgqACoK57i44bSpRuHOM+O2LzKfmYLDWzMqz9kyQOGNVx3VbD66LHSJGdR8EIMIGzom+hheXKK7N5XJcWeby6xSJ62T5dqVAQ5DJj64ajEetUhLnp/75Xhpr9YnmDamSebvPPTmwsRD3TQMmRQy4qj+/d7wDgNQQY3bPoMJmDCy2brwimEKRLniJqYV+fyAoj8gj9yve2ptgEecfjbPl1ar4jNGF+aXYCyMmGbXerTr7cwbk/q70+dwGGZeKry3tHt1nFrKufrUnFK9ZIXYpCpvXjNYkobplY7j4WXk43badYtFhm2+42KCBNV+ruqkRB5WAf0xfVZ4LaSY26UFMC4V0YRK7OfY/e34TI1LYPsSq0QyP3h8qRaIQ6OwwDZMFQN/l1sit8htKJW1D+4u2f7oG5g9Q9ue044AIAY2toHiJaNHB1B7dvuTqlhwjEugudfhKHTYKfD2eA9fvXgV3aahQnxLyBMwn5taSjVRrn+IpTGem4DuNBZ7jfoCs1GHTIzSkli5w5/+fZN9xFTRsDHN35OWEWlB2KqfVYCh16KnAADN3Cyi2y8Y/IIYICpmk8zAzut5R4K7mxhdwZKFL/+4VISo2A0Vdl0DdJFZXi+o18KMcsut2JuCuQZyAiRLCfhVR0+MksUH4+52uWRLxNLdGXKWqXnAGoHmMqHajjZGLdrLyczTTcmCKmSwJqXBBtVOC97K7JvDcVW8RAY0BFSXPSl7KSEvanQPIsYDKWyGcky2ofC8svGoaXzkmUDoEh/MVc2HrAlXIRXrRXjALZ4jmNgcZOfMBo64wMpMt5K7TA68ByEJnRhnjcW5zUNpzDk8MwIhXzWeyrUiWFXmdFjpUCA2z2J90yxMoW1CONtANh3ZFXW0nQsoNgOOX4fAjN6wXRkNNxXjcC8CFdCKYjjn/uSezToThQ6O5No7T1qSloYd4A37XPBc59EH87RvzxLq82ESrkQ2WykSI6zSnE+BfawMngwU0Vy+GrD+oYx8kCBdQHVBzJGVj93LtW3e5hPUnDFrzzWw/ZRgOE6ACt1WAwqtUStg9MC3md3DJgD9iHDRAVVEOGqu2oxb075s+L25aa4HhMuO19483X1JXZP62NTF/XLiffNa7O4r/vyLH+Ag7PDWeIIvXr6Bt84fAOc1mguZDQmZPHHCwME9oSfZwOe5jquI7l5Ef2wbnzIw+5QpWABWT5icKeWaA4PS3JZEZxn4uIgYjujvz6RFzDjOq1fvxWjB0wEmC0UVm/1dd/grXJlodd26VcHdJ/N4KQp1/rlCs2DXNUibCtIHw+bFmB2zbCaCL2RCgWFKZ3/nU+ZtQlLPjD12PmWeoqcG5IO77J3UNSnHyZmSI6SJ6E8rBvVEyMIzyNoUoOMyIImg2nFjiRvDeFXpBZIBiVJMqCQrwsYqhjqiv9eiP3JaFYqnuvcCimrQOM/uhgiA8EQ3MuAvK2t4uVeGq+5QbFaT2bR6MAPsXpQG40cGYMy8zaudVyz24ttL5TTKkGEUSykbt5YKzYKIThm4JCB0UqwLYjJ3ykwmR7IhxyWw24YTdiMHLQCcVBRDma2amwitI4LYS1MFhAtOpXenRTYAQ7Gx9Sqt3qjZI0yNeW8015XQkTGxRJesZAtlRV4xkSiioJH3ldOReA7NWtE+oYoTYEKQbczdYLYOTl+s1yh8aN9cciXo7gnWr2XUr6xRVRmbyxZjqJFWLqXnEHUZ3SNo2myHlWA8BLavjECbIdtoUKMiuE+74f3zirHoCXapTEniMzMFN2cUSVJEtcx0O9JDZzaMhg8sM3dRw8QdUg0TPTdHwXAEpAcDXj94gg/SId4bTvDm+St454MT1B8G1OfG1BmN0y9Tg5xDeZQZsQTsTjggvHtgyd6W9hFxa86TNijdRy8CKJvMfJZs1VHgJlHKOfOdCuwR+NB55e+YzwfWCIStlv5DqeQTrZDLfNvIBCItqz8G4zxt3Y7gblBitaEsHQHIhL5KYE4dLyxNc+zbdMqIQ68YV6G8cG6i5XBBtTWbW/FdnFSs6jIVkZPvjqSIzWXv3Cgmsx/u6rqqSvbvLBjyu4mlq6lKYw/UawZ2Gk6JlVw6OdK5kVImHqzLBuNhg81LNRkzHX9uc6nT8QBFsASgCFggRl8bGcD6k6Y0lOp1QrUmmyb0TnBWABWFQJYheYNIdKKROr6YFnHi8jr/2hgIPsRAhfJ2wHD0EhCme1r1zBiTqXUpzWbwqTbeS1HrP9B6wE2beO6TspFDrkfEsy1pjW0DeGDPGc66KBBMY7uJOTC6leqcEZErATLK7662zLrzUVWCe0ikq0IE1Xosjo2Fk+8isY7UTDpR0nrAefTLhwPqC0IT40GN4SiiPwgYDgT9CTAeWja5k+JZROdUNj13J4LtyxmLT1/gtdMz9DnikSi20eyruwi5qBAG47kvmQjFTtAfMRnaPUhoX9hi2FXQjeMvs1dUwSZvRrmOKlbJpQSfysRzz8UBEUB5FiVlxHUP6YYSMD1r1yi8R2OGjAmA9YlGc5+sAvRwgmSWxx2CZPz+7kW8efEKvvnwReSHC6weCdpzS8qsD1bteP+aC/LMYRh2XlZsmJ9MVXG1VbRPhqtMlDCrhou+YYLfyqZtMKfTXgvdeCa4izuiDHGXJ/8jG+gTNwNjATDBU42U4I5gHjTfI2P3dTuCO8DZgB1f2HFpJaHDSgoaZQ00yXIIwQNCaUyYms6Xj7Kr1u4qCPRH3tWnuVNxNXSLAX+InTPeZ4yrGj6MWzKmDjoMK7VB0m5kxVmbbGrWl/y59WbkCz9O6jT3tqjOBjaQBgZdPT7A8GCF9csNhgPic82FmRT5lCi/BpgCqjODqu1Ifrf1LBA8eFqWOyTCPkMCokBqtelVYWrqmegDIAbtnige+MKMWVCvrUFl5WWuAsZDUsxo2MYXPM+tDoapKvD7yGYXcWFv6HmzO+4mumWZrjTrXciQKTpZ21xOM/Xyl1QDzFSMo+CoB6DnOUSQjhfIVZj4xW6WlWfVUZ/Lhk2LYikjFmNHmA1NsGfTfo5R7KoNWRPjqkZ3n0FFkmLxYULzcA0AGO8t0Z9W2N6LSAu6cfanfLbjVmiwpka/NeVwd1+wfSkjvrLBp+9/iFdXZ9imGlXI2K226MYK7797gmrDrN3VwjIa1NIq0koh93pUVcbuIhJWY/wrKmKvtjCD1oI/QyFAFy3tiYcM1KHYKEgCA/SOQ+ALDdXdO0MosAd546yiUBFOY6M1Q1YNVAT9iaC/l7AKive2x3hve4yvffdl4DtLHL5NV9EwONwBIznY9b/smZRUAbmp0R/V6E6nZnm1USw+YBI297ihlsAdHe1Zd6WwsbfCjjTO4XRxRc9Q+namRq7XinpNtktuKX6r1yPqJx1k3ZXnpjzDIiUxoQguln6e++1ct25HcLeXW+b4NvgQ9keGhZv7IWmJgNYKdycErPEUYMpJ+7HBKV5kpAxHldl58neRexynbERQMMI4mJdIhg0qMOx1ZFamJkUOvZYJLWxUWqPIyksxe9iwGUqZpS09RAquNqaplLWZi8Mhb03sgPYil+AmYyYctQw2zZ59hcp9ZMaZBa4IsTnMSmV/Mb1aSAKx4b9FA7DTqTFom5yaSIUP7QQ7hMF/JzgMOwhwNJWs1RbW6J44104VdZ8OsSBSX9gxiquUeT/b81QaqdkgjmqdCq4tY7aJNZa1i3D+qPHXddlCm1V5ToApGdIlh1zkyhz3hoTxkHbLhdbnQh07XmdspAUQRoFeWlUzm1BP2CpwfJpVFbkKGI6I5YdBsfxgRPveGtIPGB8cYvtSg+7Ex8G5+tF6D52JubINLV+wMupeSTh45QI/+dLb+Mnj7yBrwHe6+xg1oBtrvLc5BAzGzK1iXLHjLYH04twocDygbhL6HeckFC+ZrbmZdrYJx1nvJKEI79JBw2euH4G6odDPrnO1oYAudIQgtaIvFFSZnRrlkD0bC/42YAZmCcF75E1Jvqg5Cy6GFo/XK6RHLQ4eEWcXnaxDPPFYfDBwnN7O2ExNhfGoZhLp1XivhtPnUtERalrwXc2K+pzVFZk/jFMMsvx6TuMKUzbeZYyIEGuEayLkI6MPFBJUfUL9eIvwwTl/b13xGGNgz8hgHgSB2gjI6+xXPrpuR3AHCgshmW+LVnx4cwtIshmeW2Z0ubWzmwlEvCQqjUFrctZbioRyM3lthCFjXHn57PCLvbwQNkPHqenH6UX28zYGR7S1De3ADMIwalgiDKAibBz5jtzUyIcN0rJiprkZKLPOxPhRNVaichbo4Xd3hbvtGDfC1Hh0aqZDTs5gQbYmTOUZe2bH39WZsJfMHuI8cz+E0JdEPXBaYHc+eY5AUCnZXxhyycqvLKVCuF5nkNoYbDwfzHxtUq5Wa0JhVceqxLNF1xJUG8IhaREhSre+aksYS0Yr9TcdN6u6pgBmaxl83QDLloOil/TipqUzA/94vECuA4qzImA9EW+SYYLcRoU2xjxZzTN7w66PaNXswhxWLrzP7J806I/43C0+TGjfWyOcb5CPluheatHdo65ARgZTWnEI6jNBc8brMy4Eu1NCNWmpkJMerxyf44eWj3EStzhLSwTJqCQjQ3DZtQi7QHvsVpkUZQZ42MD5WHGiV+oiYc+B4xrrS+vxjPS1KbYZdm1UBHlZ8ZnPJkJqq6lSHNnQDzteVzW/dthEpvIOl6Z7nl1/ZTCuIvKqwXBQoT+wKWgHI0JQbIYaZ394gsO3IhYf8Hlxq4bSU7vMqM7N28aq5bSoTCFq0N+GLLB6ncsGj5EDMfw9ka3ZcVsi5Jm4j9Ujn59ZNYWE5luEWBKEes2+mycIEKC6GBCeXEJ3Pb3qRRiVbYgLMp+ntKoKU4caDD5Xz1qi34eM9Qe9ROR9AGsAj276WD7B9QL253Pb1/N2Tvvzuf3rkz6nT6vqi0/7j1sR3AFARH5HVf/yTR/HJ7X253P71/N2Tvvzuf3rz/Kcwvf+kv3ar/3ar/26a2sf3Pdrv/Zrv57DdZuC+7+86QP4hNf+fG7/et7OaX8+t3/9mZ3TrcHc92u/9mu/9uuTW7cpc9+v/dqv/dqvT2jdeHAXkZ8XkW+IyLdE5As3fTwfd4nIWyLyVRH5koj8jn3uvoj8toh80/6+d9PHed0SkX8tIg9F5M3Z5649fhH5h3bPviEif/Nmjvr6dc35/JqIfNfu0ZdE5HOz/7vt5/O6iPxXEfm6iHxNRH7FPn+X79F153Qn75OILETkiyLyZTuff2yfv5l7pKo39gdABPBtAG8AaAB8GcBP3OQx/SnO5S0AL3zkc/8UwBfs4y8A+Cc3fZzPOP6fBfBZAG9+r+MH8BN2r1oAn7F7GG/6HL6P8/k1AP/gKV97F87nZQCftY+PAPw/O+67fI+uO6c7eZ9Abf2hfVwD+B8Afuam7tFNZ+4/DeBbqvp7qtoD+E0An7/hY/ok1+cB/IZ9/BsA/tbNHcqzl6r+dwCPP/Lp647/8wB+U1V3qvr7AL4F3stbs645n+vWXTifd1T1f9vHFwC+DuBV3O17dN05Xbdu9Tkp16X9s7Y/ihu6Rzcd3F8F8J3Zv/8Iz765t3kpgP8sIv9LRP6ufe4lVX0H4IMM4FM3dnQfb113/Hf5vv2yiHzFYBsvj+/U+YjIDwP4S2Bm+Fzco4+cE3BH75OIRBH5EoCHAH5bVW/sHt10cH+ad+Vdpe/8VVX9LIBfAPD3RORnb/qAfoDrrt63fwHgRwD8FIB3APwz+/ydOR8ROQTw7wH8fVU9f9aXPuVzd+Wc7ux9UtWkqj8F4DUAPy0if+EZX/4DPZ+bDu5/BOD12b9fA/D2DR3Ln2qp6tv290MA/xEsr94TkZcBwP5+eHNH+LHWdcd/J++bqr5nL18G8K8wlcB34nxEpAaD4L9V1f9gn77T9+hp53TX7xMAqOoTAP8NwM/jhu7RTQf3/wngR0XkMyLSAPhFAL91w8f0J14iciAiR/4xgJ8D8CZ4Lr9kX/ZLAP7TzRzhx17XHf9vAfhFEWlF5DMAfhTAF2/g+P5Ey18wW38bvEfAHTgfEREAvw7g66r6z2f/dWfv0XXndFfvk4i8KCKn9vESwF8H8Lu4qXt0CzrMnwO75N8G8Ks3fTwf8xzeALveXwbwNT8PAA8A/BcA37S/79/0sT7jHP4dWAIPYEbxd551/AB+1e7ZNwD8wk0f//d5Pv8GwFcBfMVerJfv0Pn8NbBk/wqAL9mfz93xe3TdOd3J+wTgLwL4P3bcbwL4R/b5G7lHe4Xqfu3Xfu3Xc7huGpbZr/3ar/3arx/A2gf3/dqv/dqv53Dtg/t+7dd+7ddzuPbBfb/2a7/26zlc++C+X/u1X/v1HK59cN+v/dqv/XoO1z6479d+7dd+PYdrH9z3a7/2a7+ew/X/AZ3S0TQIkf+RAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAADKCAYAAABe4wDhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAXpUlEQVR4nO3deZRU5ZnH8e9T1Q1NQyOLgNigLIGoGKPIqh6H6Ki4REwcM5hojHFkNJGgWYxG4zJOZkxcgtEoatBoRIlBNCYgigbHhUVB3BBZFCKbggk72nRXPfNHFdpib9TSb9Xt3+ecPl117+26v/dc+uH2W7fuY+6OiIhESyx0ABERyT0VdxGRCFJxFxGJIBV3EZEIUnEXEYkgFXcRkQjKW3E3s5FmtsTMlpvZZfnaj4iIfJ7l4zp3M4sDS4HjgNXAy8CZ7v5WzncmIiKfk68z9yHAcnd/1913ApOBUXnal4iI7KYkT69bCayq9Xw1MLS+jVtZay+jbZ6iiIhE01Y2fujuXepal6/ibnUs+8z8j5mNAcYAlFHOUDs2T1FERKLpaZ/y9/rW5WtaZjXQs9bzHsDa2hu4+13uPsjdB5XSOk8xRERapnwV95eBfmbW28xaAaOBx/O0LxER2U1epmXcvcbMLgKeBOLAPe6+KB/7EhGRz8vXnDvuPh2Ynq/XFxGR+ukTqiIiEaTiLiISQSruIiIRpOIuIhJBKu4iIhGk4i4iEkEq7iIiEaTiLiISQSruIiIRpOIuIhJBKu4iIhGk4i4iEkEZF3cz62lms8xssZktMrNx6eWdzGymmS1Lf++Yu7giItIU2Zy51wA/cvcDgWHA983sIOAy4Bl37wc8k34uIiLNKOPi7u7r3P2V9OOtwGJSvVNHAfelN7sPOC3LjCIisodyMuduZr2Aw4B5QDd3Xwep/wCArrnYh4iINF3Wxd3M2gGPABe7+5Y9+LkxZjbfzOZXU5VtDBERqSWr4m5mpaQK+yR3n5pe/IGZdU+v7w6sr+tn1SBbRCR/Mm6zZ2YGTAQWu/vNtVY9DpwDXJ/+/uesEooI41fODh0hZ8aeexHxWa+EjhF55u6Z/aDZUcDzwBtAMr34Z6Tm3R8G9gPeA85w93829FrtrZMPtWMzyiESabE4P1r6OseXV4dOkjMvVVWzKVHOVdecx14PzA0dp6g97VMWuPugutZlfObu7i8AVs9qVWqRLMQ7d+K0F94GiFRhBxjSuhSoJn7t3fyk3Ri6TJgTOlIkZVzcRSR7G88Zzr+M+/zZa3n8A8bstTZAouZzbJsEV/xwEnPH9GXao8PpeV10pp4KgYq7SCD/OH8451w8nbEd/x46SjCnt9vC6e0WMuzsd7ii5Cz2v1oFPld0bxmRADZcOJzTxs5q0YW9ttPbbeGa0Q/x92uPCB0lMlTcRZrZhguH89ULnuPKvd8OHaWgjK7YyDWjH2LVz1Xgc0HTMiLN5P1xR7Ctd5KzvvIc13ZZFDpOQRpdsZHSsx/gqpqz6PG/mqLJhoq7SJ598IMjqOoAl5z5WOTfJM2F09ttoe15E/npjvPY5xYV+EypuIvkwYYLh5MsSV0pPH7cBEa0STbyE1LbyPIqKsbdxrjt36fz73SpZCZU3EVybMuZw5h1xc3sFWsTOkpRO7Isxn1X3syYzRfT7k/zQscpOnpDVSTHnr3xVhX2HBnQqg0P3XQTO0+o80OY0gAVd5FcGXZI6ktyar+Sdjw28VYY8qXQUYqKpmVEsmFGvH9fiBnTp96fXlgaNFIU7RVrw18f/T2jjvl3EkuWh45TFFTcRbIQ79CB6bOmhI7RIpRanOmzpnDy4SOpWfd+6DgFLxfNOuJmttDM/pp+rgbZIpI30xbMgFg8dIyCl4s593Gk+qfuogbZ0nK00hRMCFaqSYfGZNuJqQdwMvC7WovVIFtahJL9ezJ94VOhY7RIM1bMI1ZeHjpGQcv2zH08cCmfNusANciWFiB28AFMm/OX0DFE6pVxcTezU4D17r4gw59Xg2wRkTzJ5sz9SOBUM1sJTAaOMbMHUINsEWkGDy55mnjnTqFjFKyMi7u7X+7uPdy9FzAa+Ju7n8WnDbJBDbIlopJvLWPkyd8KHaNF6xgvB6uv06fk4xOq1wPHmdky4Lj0c5FIiffrzc8emRQ6hki9cnI9kbs/CzybfvwP1CBbIswOH8C3H5zO0WWhk4jUTxeLijRR1cmDGXzdfLq3msPoio2h44g0SMVdpAm2nTGU4698nqu7vBU6iqQNu/QCOmyaHzpGwdJdIUWaYHv3uAp7gek49XW8piZ0jIKl4i7SiB1fG0r/bywJHUNkj6i4izTiwy/FebjPM6FjSC19J1+A79wZOkZB05y7iBSdL/z4ZTyZCB2joOnMXaQRHZckuWjN0NAxRPaIirtIIyr+OJcX/nB46BiSdsrSE8GTjW/YwmlaRkSKxg/WDqZ6xLrQMYqCiruIFLyEJ7ll4xdYMqg6dJSioWkZESloCU8yaWtXnjy4fegoRUXFXaQRsfJyqtuGTtEyJTzJY9s7MOmAHqGjFJ1s2+x1MLMpZva2mS02s+FqkC1Rs/LHh7Jo7O2hY7Q4CU/yyPaO3NW/T+goRSnbM/dbgBnufgDwZVKNstUgWyLFHKpd11Q3t7s392Ri/96hYxStbNrstQeOBiYCuPtOd9+EGmRLxPS8bjaDfzk2dIwW5eoNA3j0oC6hYxS1bM7c+wAbgHvNbKGZ/c7M2qIG2RJB3X4zm6E/vTB0jMg7+o2vccK+hzL3y6WhoxS9bC6FLAEGAmPdfZ6Z3cIeTMGY2RhgDEAZ5VnEEJFi1u/+C+nzs5cAaOMrw4aJkGzO3FcDq919Xvr5FFLFXg2yRaRJDvrt9+h75cuQTKS+3ENHioxsGmS/D6wysy+mFx0LvIUaZItIE8US6J7seZLtJ1THApPMrBXwLnAuqf8wHjaz84D3gDOy3IdIQeg09XVOmvt1tny5Cy/85s7QcUQalFVxd/dXgUF1rFKDbImc5PbtsOxdKta8z1H8pwp8lg6883v0nrgMXWSaH7q3jMgeSu7YQcX0Nzhmy39Q3TbO879Vkc9E27VOYsOG0DEiS7cfEMlAcscOSp+aT9u/LGDYpReEjlN0+t9/Id1mrgkdI9J05i6SBa+pYa8HX+aw9t8LHaWo9HtiDTUr3wsdI9JU3EWylUzQ9fbZoVMUFV0fk3+alhERiSAVdxGRCFJxFxGJIBV3EZEIUnEXEYkgFXcRkQhScRcRiSAVdxGRCMq2QfYlZrbIzN40s4fMrEwNskVEwsumh2ol8ANgkLsfDMSB0ahBtohIcNlOy5QAbcysBCgH1qIG2SIiwWXTiWkNcCOphhzrgM3u/hRqkC0iElw20zIdSZ2l9wb2Bdqa2Vl78PNjzGy+mc2vpirTGCIiUodspmX+FVjh7hvcvRqYChyBGmSLiASXTXF/DxhmZuVmZqRa6y1GDbJFRILL+H7u7j7PzKYAr5C6PfNC4C6gHWqQLSISVLYNsq8Grt5tcRVqkC0iEpQ+oSoiEkEq7iIiEaTiLiISQSruIiIRpOIuIhJBKu4iIhGk4i4iEkEq7iIiEaTiLiISQSruIiIRlNXtB0TyLd6/L5iFjhEdiQSJ5StCp5BmoOIuBauk+z48NuthSi0eOkpkLNr5EZcO/xq4U/P+B6HjSB41Oi1jZveY2Xoze7PWsnqbYJvZ5Wa23MyWmNkJ+Qou0RarqGDaghkq7Dk2oFUbpi2YwZ/m/4VYRQWxiorQkSRPmjLn/ntg5G7L6myCbWYHkWqSPSD9M7eb6bdTGmclJZ98xcrKeGLJ86EjRVp5rBVPLHmeJ5Y8j7VWs5woanRaxt2fM7Neuy0eBYxIP74PeBb4aXr5ZHevAlaY2XJgCDAnR3klguywAcyYNil0jBZrxop5jOw9FK9Su8soyXTO/TNNsM1sVxPsSmBure1Wp5eJfM7204fywq13Aq+GjtLizVgxj5MGfIXExo0NbvfeVUew+ILbG9ym2hOcUnl4LuNJBnL9hmpdlzV4nRuajQHGAJRRnuMYUuj++d3hzL7uNkCzdoXiz28+zWlDT6Vm9ZrPLF/32IEsGPwAADFeobHZ3FKL89c1Cz55fuoBI0hu3ZrzvNKwTK9zr68J9mqgZ63tegBr63oBNchuud6/5Ahm/dev9WZpgSm1OA/M+RPxA/sB0G1OeyatepEFgx+g1OKUWpy4Na1k7Nq+1OI8+NaTTFr1IvF+ffIZX3aT6Zn7ribY1/PZJtiPAw+a2c3AvkA/4KVsQ0p0rPr5ETxz/q9oF2sXOorUoWO8nFtn3MtOj9GntJTW1jYnrwlw69P3s9NjjD33IuKzXsn6daVhjRZ3M3uI1June5vZalI9U6+njibY7r7IzB4G3iLVNPv77p7IU3YpIkvvGMKdx91L39IX6F6iwl7I+pbm5/jset3/uedONiVSBf/SW86n262z87K/ls7c65wSb1btrZMPNfXUjqql9wziyWNvoX9p9meBEi0vfpxkUVUPbpo6il5X6KK6PfW0T1ng7oPqWqd7y0je7dN9owq71OnIshhj9lrL3WfewSGvGEsnDAkdKTJU3EUkuKPL4IZ9FvLQ8XeowOeIirvk1bvXD+fKftNCx5AiMawszgPHT2DZbUNDRyl6Ku6SF+/cOIxl9w9k/L/dy8nlH4eOI0XkyLIYk0++jXduGhY6SlHTXSEl51ZeN5wpp4/nUN2zRDI0pHUpU08fzxkfXUKvK9NvtJqx/NeZn9FXvBuj229azpU5Ku6SU2suO4K/fPsGvYEqWTukVRnTz76BU3ZemloQg3e+0fCtDxoyYVMlt3QY9cnzeBVU/jK6xV6XQkpO3bxyDgNatQkdQ6RR79Vs49QbLsWS0PW39Rf5TWcPp6pD0xvGlHzsdL67eS7rbOhSSJ25i0iLtF9JO169/HaqvJoRG8cC0P7B1H0Pt31jGMl0dbz8qj9wWtttTX7dxTt38N3tP8SSUDF5buM/kCcq7iLSorW2UubcOAGAEZvOx5Lw6E030TWe2dTiga3KmXPjBLYlP+arm1L/abSa8XLO8jaVpmUkpw5cUML/dJtNeaxV6CgiBeOEr38b5r6e89fVJ1Sl2Sw+vIZrNwxhR3Jn6CgiBePJqfcTH/DFZm32ruIuOffGyK5M2bZv6BgiBWX6zD8S/0LvZivwmTbIvsHM3jaz183sUTPrUGudGmS3YLG2bbn4xVl8u/2HoaOIFJzp/zeVkt77N8u+Mm2QPRM42N0PAZYCl4MaZAvcuOhpji+vDh1DpGBNe+Ex4v375n0/jRZ3d38O+Oduy55y95r007mkOi5BrQbZ7r4C2NUgW0REmlEu5ty/CzyRflwJrKq1rt4G2WY2xszmm9n8atR1PQr+sOpFfYBJpAmmP/sINujgvO4jq+JuZleQ6rg0adeiOjar81pL9VCNlodXz8n4umARyb2MP8RkZucApwDH+qcXyze5QbZEx6RVL7JXTIVdpJBkdOZuZiOBnwKnuvuOWqseB0abWWsz640aZEebGeNXzmZvnbGL7LHfPjKBxFcG5u31M22QfTnQGphpqWs257r7BWqQ3fIc2Ko8dASRotS3tB3J0hj5upyw0eLu7mfWsXhiA9v/AvhFNqGkSLgz8tSzmPH4A6GTiMhu9AlVyZwZX7prUegUIlIHFXfJyg37LAwdQUTqoOIuIhJBKu4iIhGk4i4iEkEq7pKV3k+eFzqCSFH60rxvUrZqc95eX8VdMudO/3MXhE4hUpQqfxEjsXhZ3l5fxV2ysuWbw0JHEJE6qLhLZsyoOmnwJ42FRaTprt4wgNj2/N4NN+Mbh0kLFouTPPIQnv3d3aGTiBSll884gMTS/E3JgM7cJQPxvdoz84/3ho4hUpSe2lGKVdc0vmGWVNwlI4t2fhQ6gkhRuuWoY6hZ8fe87yejBtm11v3YzNzM9q61TA2yIy6xcSM/GXxq6BgiRefDxHY+bX+RX5k2yMbMegLHAe/VWqYG2S1AvGNHpr82M3QMkaJS5dWcfdBIEh+sb5b9ZdQgO+3XwKV8to2eGmSLiNRh1P7DSW7d2mz7y7QT06nAGnd/bbdVapDdAiQ2buTEPrq+XaSpTqg8DK/J/5uote3xpZBmVg5cARxf1+o6ltXbIBu4C6C9dWqeSSgRkRCaaZ69tkzO3PsCvYHXzGwlqSbYr5jZPqhBdosQ79iRB5f9LXQMkYKX8CQn9jsyyL73uLi7+xvu3tXde7l7L1IFfaC7v48aZLcYHePqnSrSkM3Jj/jqwJEkt28Psv+mXAr5EDAH+KKZrTazem8D6O6LgF0NsmegBtki0gKtrtnGmSO+2WxXxtQl0wbZtdf32u25GmSLSIuWBBLLVwTNoE+oyh5LbN7CiPPPDx1DpCAt2vkR535nXOgYKu6SgWSCNs+8ETqFSMF57mO44JKLKflb+D4HKu6yx2Jt2/LhlP1CxxApKNN2lPGTay6k/NF5oaMAuuWv7KF4504su3U/lg38fegoIgVj0tbO3DT+G3S5f07oKJ9QcZcmi3fryuLr9mfFCN3HXWSXiZv34Td3fZ197pgdOspnqLhLk3mXTqw4RYVdZJcJmyq57b5RVP66sAo7aM5dRCQjd23el9vuH0XlLwuvsIPO3KWJ4p07sea4TqFjiAR368b9eXLDQayc0ZvK6wuzsIOKuzRRzQH78dpPbg8dQySYCZsqefuj7rwwYTCd755DJetCR2qQiruISAMmb+3Ihpr2/OlnJ9Dmzy/RmcK5IqYhKu7SJLGdCZ79KMaINsnQUUTy7qkdpVSTaiL3+2+djM9/kzZFdg9EFXdpmoWL+e/zvsOIB+8JnUQkrxbt/Ijxg/6FxKbN6SWfax9dFFTcpUmSQw/maRV2ibj1ie386IvH4FWbG9+4wKm4i0jOVHn1J49bW2nAJJk5e7+jwKPR9lPFXURy4r2abZy/31GfPH9y7avhwgjmAXr7fS6E2QZgO/Bh6Cw5tDcaT6GL2pg0nsKX6zHt7+5d6lpREMUdwMzmu/ug0DlyReMpfFEbk8ZT+JpzTLr9gIhIBKm4i4hEUCEV97tCB8gxjafwRW1MGk/ha7YxFcycu4iI5E4hnbmLiEiOBC/uZjbSzJaY2XIzuyx0nkyZ2Uoze8PMXjWz+ellncxsppktS3/vGDpnfczsHjNbb2Zv1lpWb34zuzx9zJaY2QlhUtevnvFcY2Zr0sfoVTM7qda6Qh9PTzObZWaLzWyRmY1LLy/mY1TfmIryOJlZmZm9ZGavpcdzbXp5mGPk7sG+gDjwDtAHaAW8BhwUMlMWY1kJ7L3bsl8Bl6UfXwb8MnTOBvIfDQwE3mwsP3BQ+li1Bnqnj2E89BiaMJ5rgB/XsW0xjKc7MDD9uAJYms5dzMeovjEV5XECDGiXflwKzAOGhTpGoc/chwDL3f1dd98JTAZGBc6US6OA+9KP7wNOCxelYe7+HPDP3RbXl38UMNndq9x9BbCc1LEsGPWMpz7FMJ517v5K+vFWYDFQSXEfo/rGVJ+CHpOnbEs/LU1/OYGOUejiXgmsqvV8NQ0f3ELmwFNmtsDMxqSXdXP3dZD6hwx0DZYuM/XlL+bjdpGZvZ6ettn153FRjcfMegGHkTozjMQx2m1MUKTHycziZvYqsB6Y6e7BjlHo4m51LCvWy3eOdPeBwInA983s6NCB8qhYj9sdQF/gUGAdcFN6edGMx8zaAY8AF7v7loY2rWNZsYypaI+Tuyfc/VCgBzDEzA5uYPO8jid0cV8N9Kz1vAewNlCWrLj72vT39cCjpP68+sDMugOkv68PlzAj9eUvyuPm7h+kf/mSwN18+idwUYzHzEpJFcFJ7j41vbioj1FdYyr24wTg7puAZ4GRBDpGoYv7y0A/M+ttZq2A0cDjgTPtMTNra2YVux4Dx5O6w//jwDnpzc4B/hwmYcbqy/84MNrMWptZb6AfFH6bml2/YGlf49MuDAU/HjMzYCKw2N1vrrWqaI9RfWMq1uNkZl3MrEP6cRvgX4G3CXWMCuAd5pNIvUv+DnBF6DwZjqEPqXe9XwMW7RoH0Bl4BliW/t4pdNYGxvAQqT+Bq0mdUZzXUH7givQxWwKcGDp/E8fzB+AN4PX0L1b3IhrPUaT+ZH8deDX9dVKRH6P6xlSUxwk4BFiYzv0mcFV6eZBjpE+oiohEUOhpGRERyQMVdxGRCFJxFxGJIBV3EZEIUnEXEYkgFXcRkQhScRcRiSAVdxGRCPp/sUfB1cEUW9wAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "batchnum = 2\n", + "imgnum = 0\n", + "lbl = utils.first(test_loader[batchnum])[\"label\"]\n", + "m = lbl[imgnum,0,:,:,24].max()\n", + "print(m)\n", + "if m == 1:\n", + " img = utils.first(test_loader[0])[\"image\"]\n", + " plt.subplots()\n", + " plt.imshow(img[imgnum,0,:,:,24])\n", + " plt.subplots()\n", + " plt.imshow(lbl[imgnum,0,:,:,24])\n", + "print(\"Data Size =\", lbl.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "# standard PyTorch program style: create UNet, DiceLoss and Adam optimizer\n", + "device = torch.device(\"cuda:\"+str(gpu_device))" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "scrolled": true, + "tags": [] + }, + "outputs": [], + "source": [ + "def plot_vfold_training_curves(vfold_num, test_loader, min_size_comp, min_portion_comp, p_prior, graph):\n", + " if graph:\n", + " print(\" VFOLD =\", vfold_num, \"of\", num_folds)\n", + " \n", + " correct = 0\n", + " incorrect = 0\n", + " \n", + " slice_correct = 0\n", + " slice_incorrect = 0\n", + " \n", + " false_negatives = 0\n", + " slice_false_negatives = 0\n", + " \n", + " loss_file = model_filename_base+\"_loss_\"+str(vfold_num)+\".npy\"\n", + " if os.path.exists(loss_file):\n", + " epoch_loss_values = np.load(loss_file)\n", + " \n", + " metric_file = model_filename_base+\"_val_dice_\"+str(vfold_num)+\".npy\"\n", + " metric_values = np.load(metric_file)\n", + " \n", + " if graph:\n", + " plt.figure(\"train\", (12, 6))\n", + " plt.subplot(1, 2, 1)\n", + " plt.title(\"Epoch Average Loss\")\n", + " x = [i + 1 for i in range(len(epoch_loss_values))]\n", + " y = epoch_loss_values\n", + " plt.xlabel(\"epoch\")\n", + " plt.plot(x, y)\n", + " plt.ylim([0.2,0.8])\n", + " plt.subplot(1, 2, 2)\n", + " plt.title(\"Val Mean Dice\")\n", + " x = [2 * (i + 1) for i in range(len(metric_values))]\n", + " y = metric_values\n", + " plt.xlabel(\"epoch\")\n", + " plt.plot(x, y)\n", + " plt.ylim([0.2,0.8])\n", + " plt.show()\n", + " \n", + " model_file = model_filename_base+'_'+str(vfold_num)+'.pth'\n", + " if os.path.exists(model_file):\n", + " model = UNet(\n", + " dimensions=net_in_dim,\n", + " in_channels=net_in_channels,\n", + " out_channels=num_classes,\n", + " channels=net_channels,\n", + " strides=net_strides,\n", + " num_res_units=2,\n", + " norm=Norm.BATCH,\n", + " ).to(device) \n", + " model.load_state_dict(torch.load(model_file))\n", + " model.eval()\n", + " with torch.no_grad():\n", + " i = 0\n", + " fname = os.path.basename(test_files[vfold_num][i][\"image\"])\n", + " prevfname = fname\n", + " count1 = 0\n", + " count = 0\n", + " for b,test_data in enumerate(test_loader):\n", + " test_outputs = sliding_window_inference(\n", + " test_data[\"image\"].to(device), roi_size, batch_size_te, model\n", + " )\n", + " for j in range(test_outputs.shape[0]):\n", + " prevfname = fname\n", + " fname = os.path.basename(test_files[vfold_num][i][\"image\"])\n", + " \n", + " if fname[:22]!=prevfname[:22]:\n", + " #print(\" \", prevfname[:22], \"Count of slidings =\", count1, \"of\", count)\n", + " if count1 == count:\n", + " if graph:\n", + " print(\" Winner = Sliding\")\n", + " if prevfname[3] == 's':\n", + " correct += 1\n", + " else:\n", + " incorrect += 1\n", + " false_negatives += 1\n", + " print(\" FN Patient =\", prevfname)\n", + " else:\n", + " if graph:\n", + " print(\" Winner = Not Sliding\")\n", + " if prevfname[3] == 'n':\n", + " correct += 1\n", + " else:\n", + " incorrect += 1\n", + " print(\" FP Patient =\", prevfname)\n", + " if graph:\n", + " print()\n", + " print()\n", + " count1 = 0\n", + " count = 0\n", + " \n", + " prob_shape = test_outputs[j,:,:,:,:].shape\n", + " prob = np.empty(prob_shape)\n", + " for c in range(num_classes):\n", + " itkProb = itk.GetImageFromArray(test_outputs[j,c,:,:,:].cpu())\n", + " imMathProb = ttk.ImageMath.New(itkProb)\n", + " imMathProb.Blur(5)\n", + " itkProb = imMathProb.GetOutput()\n", + " prob[c] = itk.GetArrayFromImage(itkProb)\n", + " arrc1 = np.zeros(prob[0].shape)\n", + " if False:\n", + " arrc1 = np.argmax(prob,axis=0)\n", + " else:\n", + " pmin = prob[0].min()\n", + " pmax = prob[0].max()\n", + " for c in range(1,num_classes):\n", + " pmin = min(pmin, prob[c].min())\n", + " pmax = min(pmax, prob[c].max())\n", + " prange = pmax - pmin\n", + " prob = (prob - pmin) / prange\n", + " for c in range(num_classes):\n", + " prob[c] = prob[c] * p_prior[c]\n", + " arrc1 = np.argmax(prob,axis=0)\n", + " \n", + " max_size = np.count_nonzero(test_data[\"label\"][j, 0, :, :, :].cpu()>0)\n", + " min_thresh = max(min_size_comp, max_size*min_portion_comp)\n", + " \n", + " itkc1 = itk.GetImageFromArray(arrc1.astype(np.float32))\n", + " imMathC1 = ttk.ImageMath.New(itkc1)\n", + " for c in range(num_classes):\n", + " imMathC1.Erode(10,c,0)\n", + " imMathC1.Dilate(10,c,0)\n", + " itkc1 = imMathC1.GetOutputUChar()\n", + " arrc1 = itk.GetArrayFromImage(itkc1)\n", + " slice_count1 = np.count_nonzero(arrc1==1)\n", + " slice_count2 = np.count_nonzero(arrc1==2)\n", + " slice_decision = \"Unknown\"\n", + " if slice_count2>slice_count1 and slice_count2>min_thresh:\n", + " count1 += 1\n", + " slice_decision = \"Sliding\"\n", + " if fname[3] == 's':\n", + " slice_correct += 1\n", + " else:\n", + " slice_incorrect += 1\n", + " slice_false_negatives += 1\n", + " print(\" FN ROI =\", fname)\n", + " else:\n", + " slice_decision = \"Not Sliding\"\n", + " if fname[3] == 'n':\n", + " slice_correct += 1\n", + " else:\n", + " slice_incorrect += 1\n", + " print(\" FP ROI =\", fname)\n", + " count += 1\n", + " \n", + "\n", + " if graph:\n", + " print(fname)\n", + "\n", + " plt.figure(\"check\", (18, 6))\n", + " plt.subplot(1, 3, 1)\n", + " plt.title(f\"image {i}\")\n", + " tmpV = test_data[\"image\"][j, 0, :, :, 24]\n", + " plt.imshow(tmpV, cmap=\"gray\")\n", + " plt.subplot(1, 3, 2)\n", + " plt.title(f\"label {i}\")\n", + " tmpV = test_data[\"label\"][j, 0, :, :, 24]\n", + " tmpV[0,0]=1\n", + " tmpV[0,1]=2\n", + " plt.imshow(tmpV)\n", + " plt.subplot(1, 3, 3)\n", + " plt.title(f\"output {i}\")\n", + " arrc1[0,0,24]=1\n", + " arrc1[0,1,24]=2\n", + " plt.imshow(arrc1[:,:,24])\n", + " plt.show()\n", + "\n", + " print(\"Number of not-sliding / sliding pixel =\", slice_count1, slice_count2)\n", + " print(\" Min thresh =\", min_thresh)\n", + " print(\" \", slice_decision)\n", + " print()\n", + " print()\n", + "\n", + " for c in range(num_classes):\n", + " arrimg = test_outputs.detach().cpu()[j,c,:,:]\n", + " itkimg = itk.GetImageFromArray(arrimg)\n", + " filename = model_filename_base+\"_f\"+str(vfold_num)+\"_i\"+str(i)+\"_c\"+str(c)+\".nii.gz\"\n", + " itk.imwrite(itkimg, filename)\n", + " \n", + " i += 1\n", + " \n", + " #print(\" \", prevfname[:22], \"Count of slidings =\", count1, \"of\", count)\n", + " if count1 == count:\n", + " if graph:\n", + " print(\" Winner = Sliding\")\n", + " if prevfname[3] == 's':\n", + " correct += 1\n", + " else:\n", + " incorrect += 1\n", + " false_negatives += 1\n", + " print(\" FN Patient =\", fname)\n", + " else:\n", + " if graph:\n", + " print(\" Winner = Not Sliding\")\n", + " if prevfname[3] == 'n':\n", + " correct += 1\n", + " else:\n", + " incorrect += 1\n", + " print(\" FP Patient =\", fname)\n", + " if graph:\n", + " print()\n", + " print()\n", + " \n", + " return correct, incorrect, false_negatives, slice_correct, slice_incorrect, slice_false_negatives" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "*************\n", + "Prior = [1.3, 1.0, 0.9]\n", + " VFOLD = 0 of 15\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsIAAAGDCAYAAAAh/naNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAACitUlEQVR4nO2dd7wcVfn/P8/uLbklvZJCElKpoYTQe5AgIKDYpaioqKjgTxH8gvULoqJ+VVRUwIaCBRSUDtJbEkINpCekkZBe7r25Zff8/piyZ2bOnDkzO3u33OfNK9zdmTNnzszeO/PZZz7neUgIAYZhGIZhGIbpa2TKPQCGYRiGYRiGKQcshBmGYRiGYZg+CQthhmEYhmEYpk/CQphhGIZhGIbpk7AQZhiGYRiGYfokLIQZhmEYhmGYPgkLYaakEJEgosnlHgfDMAwTn1q8hhPRQiI6sdzjYCoDFsJ9CCJaRUQdRLRb+ndjucflh4gusi++Hyj3WIqFiCbYx1JX7rEwDNP3IKIHieg7iuVnE9GGYq5NRPS4fX2b4Vv+L3v5iUn7Tjge53rr3N82EtF/iOhUuZ0QYn8hxOO9OTamcmEh3Pc4SwjRKv27tNwDUnAhgK32z9RhUcowTB/i9wDOJyLyLT8fwJ+FED1F9r8EwAXOGyIaCuBIAJuK7LcYBgkhWgHMAPAwgH8S0UVlHA9TwbAQZgC4UdhniOjnRLSDiBYR0SnS+tFEdA8RbSWiZUT0KWldloi+TkTLiWgXEb1IROOk7mcT0VIi2kZEv1BckOVxjAdwAoBPAziNiEbay28ioht8be8moi9L47uTiDYR0Uoi+qLU7ltE9A8iuo2IdgK4iIhmEdFzRLSdiN4mohuJqEHa5l1EtNg+F78koieI6GJp/SeI6E37mB60xx33nOvO6Swimk9EO+2oxo/t5f3s49hij32ec44YhmEU/AvAEADHOQuIaDCAMwH8MepaaMCfAXyQiLL2+w8D+CeALml/GSK60r5HbCGivxHREGn93+3o9A4iepKI9pfW/d6+b9xr319eIKJJJgMTQmwQQvwUwLcAfJ+IMnafq4hotv069P5FRNOJ6GH7Gr2YauApJROEhTAjcwSAFQCGAfgmgLuki9XtANYCGA3gPADXSUL5y7Aufu8GMADAJwC0S/2eCeBwWN/OPwDgNM0YLgAwXwhxJ4A3AXzUXv4XWBdbAtwL+bsA3GFf3P4N4BUAYwCcAuAyIpL3czaAfwAYBOvCnQNwuX2sR9nbfM7ue5jd9ioAQwEsBnC00xERnQPg6wDeC2A4gKfs8xMX3Tn9KYCfCiEGAJgE4G/28gsBDAQwzh7bJQA6EuybYZg+gBCiA9b14wJp8QcALBJCvALNtdCQ9QDegHU9hr2fP/rafBHAObCCHKMBbAPwC2n9/QCmABgBYAGsa7TMhwF8G8BgAMsAXBtjfABwl933NMU65f2LiFpgRZP/Ym/7YQC/lEU6UyMIIfhfH/kHYBWA3QC2S/8+Za+7CNYFjaT2c2E9PhsH62LZX1r3PQC/t18vBnB2yD4FgGOl938DcKVmjEsBXGa/vgrAK/ZrArAawPH2+08B+K/9+ggAq339XAXgd/brbwF4MuLcXAbgn/brCwA8J60jAGsAXGy/vx/AJ6X1GVjCf7yi3wn2OajzLY86p0/CuvAP8233CQDPAjio3L9P/I//8b/q+AfgWAA7ADTZ758BcHlIW/daaL8XACaHtH0cwMUAPgbri/00AEvsdWsBnGi/fhPAKdJ2ewHo9l8X7XWD7H0OtN//HsDN0vp3wxLxqvGEXW/72cuPsd+vAjDbfq28fwH4IICnfMt+DeCb5f48+V+6/zgi3Pc4RwgxSPr3W2ndOmH/tdu8Bevb+2gAW4UQu3zrxtivxwFYrtnnBul1O4BWVSMiOgbARAB32Iv+AuBAIjrYHtcdsL6VA8BHUIgajAcw2n60t52ItsOK2MqWgTW+fU0laxLFBtsucR2siAjs43Xb2/teK20+HsBPpX1thSWWx8CcqHP6SQBTASyy7Q9n2sv/BOBBWJHw9UT0AyKqj7FfhmH6GEKIp2F5ds8mon1gPaH7CxB5LTTlLgAnA/gCrGuUn/GwfLrONfNNWIGAkbY14XrbmrATlkiFbwxG9xANznV1q2Jd2P1rPIAjfPeVjwIYFXPfTIXDQpiRGeNYD2z2hhUlXg9gCBH1961bZ79eA+vxfbFcCEtQvkxEGwC8YC93HundDuA82497BIA7pf2v9An8/kKId0t9ywIfAH4FYBGAKcKyH3zd3jcAvA1grNPQPidjpW3XAPiMb39NQohnYxyr9pwKIZYKIT4M65Hc9wH8g4hahBDdQohvCyH2g2XXOBPeR54MwzAq/gjrWnE+gIeEEBvt5bproRFCiHZYT8o+C7UQXgPgdN81s58QYh2soMbZAGbDsn1NsLeJNYYIzgXwDqzor2psqvvXGgBP+MbcKoT4bIrjYioAFsKMzAgAXySieiJ6P4B9AdwnhFgD63H89+zJWgfBilg6EdmbAXyXiKaQxUFkzRw2hoj6wfKtfRrAwdK/LwD4KBHVCSFeghXVuBnAg0KI7fbmcwHsJKKvEVGTHWE4gIgO1+yyP4CdAHYT0XRYF3CHe2FFos8hK8PE5+GNAtwE4CrHK0ZEA+3zpaPRPnf97GNdB805JaKPEdFwIUQeloUFAHJEdBIRHWhPTNkJ6/FiLmLfDMMwf4QlNj8F4A/Sct21MA5fB3CCEGKVYt1NAK61gxggouFEdLa0/04AWwA0w4pIpwIRjSSiS2HNebnKvp76Cbt//QfAVCI6374n1hPR4US0b1rjYyoDFsJ9j3+TN4/wP6V1L8CasLAZ1mSE84QQW+x1H4b1TX09rBnB3xRCPGyv+zEs7+9DsC6otwBoijmuc2BN+vqjsGb6bhBCbLD7ygKYY7e7HdbF/C/OhkKIHICzYAnnlfb4b4YVXQjjK7AiEbsA/BbAX6X+NgN4P4AfwLo47wdgPqyLNYQQ/4QVpb3DfpT3OoDTI45vt318zr+ToT+ncwAsJKLdsCbOfUgIsQeWIP8HrPP8JoAnANwWsW+GYfo4tkB9FkALgHukVaHXwpj9r7ctGCp+au/zISLaBeB5WE/1AEugvwUrOPCGva5YthNRG4DXYHmK3y+EuDWkrfL+ZdvW3gXgQ7Cu0RtgXfcbUxgfU0GQ1xLK9FXIyrF4sRDi2HKPpdKws1KsBfBRIcRj5R4PwzAMwzDpwBFhhlFARKcR0SAiakTBM5dGpIJhGIZhmArBSAgT0Rw7mfQyIrpSsX4gEf2biF4hq4b3x9MfKsP0KkfBmkm8GZbt4hxh5eNkmIqHr9kMwzBmRFoj7Ek5SwCcCuvx8DwAHxZCvCG1+TqsnH9fI6LhsGZmjhJCdKn6ZBiGYUoDX7MZhmHMMYkIzwKwTAixwr5I3gEr1YmMANDfTjPVCitXX7H1yxmGYZj48DWbYRjGEBMhPAbeYgRrESwccCOsVFvrYc3S/FJImhKGYRimtPA1m2EYxpA6gzaqpNZ+P8VpAF6GlRJqEoCHiegpIcROT0dEn4aVJxYtLS2HTZ8+PfaAGYZhKoEXX3xxsxBieLnHoYCv2RJb2rqwfnsHhrY0YHj/Ruzo6MawVnUGrI6uHJZt2o2m+iwmjwgWL9ve3o0129pRlyHsu9cAAMCSjbvQ2ZPHlBH90a8+GFt6bd0O9/V+owcgS8GPx+lXxYFjwrNAOn0fOGYg3nx7J3ryAlNG9EdHdw/WbuvA4OYGjB3c5Gl7wOiBeH19YTvVOCePaEVTfVa5bkhzA8YM9mbHlPsmAvZ057D0nd0AgH33GoC6jL42xsrNbdjd2YPRg5owtKVBuV9nvIs27EJ3Lo8JQ1vQv19Qwjifx8RhLWhtrMP2jm6s2Wqd2/796rBrTw/GD23GgH7Bgpzy+Uwbp29nXMX2E3eMu/b0YNWWNvRvrMOEYS3atht37sGw1kZkIz63pDjHYPK7kSZh12yTT2MtrBKEDmNhRRFkPg7gersU7TIiWglgOqxCBy5CiN8A+A0AzJw5U8yfP9/8CBiGYSoIInqr3GMIga/ZEn98bhW+cfdCnH/keMx/axt2vL0T/77qZKzc1IZ3dnXinEMKwfLX1u7AWTc+jf1HD8C9XzzO08+DCzfgM396EXsBGD2wH5696hQAwMk3PI4Vm9vwry+foBTPE6681339+DffhYFNQQH2r5fW4bK/vqwc//zrzwg9Nqfv+defgVnXPoJ3dnXi7186Dq+t24Er/vEqzjtsLG54/wxP22e+OwfTr3kg0Lc8zr9+4VgcIAkted1HjtgbB40ZiP1HD8SBY602E6+6F0JYfferz+L1dTtw5s+tlMKPXj0bQ0O+eDhc9Lu5eHzxJvzPGfvi4uP2Ue7XGe8R1z2CjTs7cdPHD8dJ00YE+nrXT57Ako278etPzMIJU4fjny+txeV/fQUAcMr0EXh00Tv45QUzMXu/kdrzmTZO37dcfASOmRy3gnWwn2f+dw4a67LoyeXxzXsW4pITJmHckObQ7f67aCM+8fv5OGnacPzu47NC2z226B18/PfzsA3AQ5cfj6kj+4e2TYpzDA99/RSMGNAv9f7DCLtmm1gj5gGYQkQTiagBVnLpe3xtVgM4xd7RSADTAKxIPlyGYRgmIXzNViAgsL3dmguYF8BHbn4hID6dYK1qDvlX//6Kst+evNXYKLCl6Pegbz0YKoLj4ETvcnnhPhJQHUec0gErNu3Grx5f7lmWIeDKu17DWTcGa2c4fcv7cF5+7s8vBoRtoU9rxJ09endOPi+QdzoMOY5sxpI1Pbm8/TPY8Au3v4SzFePvDfIp1W5wztX8t7bhzy+sxhX/eFXb3nS3XbnCZ/DRm19IPD4TchVSxyIyIiyE6LFLFD4Iq8LXrUKIhUR0ib3+JgDfBfB7InoN1mO5r9nVuRiGYZhehK/ZXmR96tx3w0SrK4SV6wobyetztjIzuaV39uTQncuiPluIQe3ck84cRUdM5vLCHauwRyVnhxIGI3Wan3/LXKzb7s0aqbJ2uALY7lsWe87L+17bELo/p8fObn21+F2dPci751t9HM6jducLikp4dnTn8MraHYHlvUGx2i9D1he5zu480K8g9BUfixKKaCiPrztX2mkDqi8p5cDIqCKEuA/Afb5lN0mv18MqRcgwDMOUGb5mq3FEESlt1HJE03uDzuWFG2H005M3FwuzrnsUU0a04uEvn2C8jSlZnwAE4Krz7lxQmOpwRKbq2HRCyuk7H1N4d9tjjooI7+zodvsOOw73POScY6gMseVQbES4PptBZ0/ejdw6n5Fz3N/+90IMamrAl2ZP8WyXZLe5Ep+7tKLjxcKV5RiGYZiaR4hC1FbWcgvX78CuPd2BtjKX3PYi2rrU0UpHLOTzAjc8uBhb27oC62ScSWRp4wihvJCsEfZPWdCaRa7zuODWudi4szOwLqMTwvZPz2Eb7ND5krEnIiK8o6Pb7TtMQxUiwlafpmJuR3t3dKMUKFb6NdRZss2JnjvH5xz3755ZhZ88siR0++jAcWGETt+bdnViwpX3Yv6qrckGHUKphbYpLIQZhmGY2kW2NNj3XVkMnPGzp/Hx383zrPfz8BsbQ7t3Io5PLNmEGx9bhmvuft1d1xUR4UwTx+7RkxOS19kaW3fII+j7X3tbuXzpxt14cskm5Trdk3XhRmsL+zPROs4jeKOIcIQVxR8RNhVbB3/3IaN2xRJVxCyKBttW45wr59w53ujQ/SbYl/O7PXelJYBveXplgl7CYSHMMAzDML2KQgnDmnAEFB7VRj3Ol7VMLud9rC+L364SeyxlPBFh3/HJto77Xi2I38/+eYGyr+aGrHK5038YqoiwiTWiyz6HZhHhoNiWqcsmiwj31lP6YvfjRoTt37MO+5zVZ81MwvLvxrJ3dmO/bzyAF1ZsUY4v55sImraVoVImy7EQZhiGYWoeATkirBYNKzZbtoU4gSonauaIBnkymS4ivGLTbvz5hfQy8DmWhZ68cI+vYI0oHNAVd+qzCwB6wZPXnBylR9gkIuxENyNOvMcaEdKmzo6MdlesR7i47Z2Jls7vVrtt2anLRkSEfR/EfxdtxOwfP4H2rhx++ujSQjupTS4vcNVdr+IHDy62+zAb47xVWyO/1ADmk+U27tyDeau2Yt32Duzck76FJXlWZ4ZhGIapcDxZI9yfwRvwY4vfcfPNxnl8nfMLYSklhW7W/XtufAa7O9Orau1GhPMikAYu7ux/XRRVK+QU/l2TM9ntpjrTj7M7LwKT5XJ5Ky2ek6tYTiMn/yQyz6xQSoq2RrgRYUtodjhC2LgwhdXuRfspCACP/90/vNvnFopUmoj4He3deP9Nz+GU6SNwy0WHa9uaRphvfWYl/jZvDba1d3tyeKcFR4QZhmGYPoErQhT330Vv7yq0i+pHauE8gnczUkh6RCdA0xTBgDprhBsRjpmmSqdP9NaIoG3BRPg5Y44cpxDS/q2f1977Jg7730ewo8OKFDrnwTn3cqS+Ep7EpxUR7uz2RoR1kxhVyOeio8vsd9Hss7TG9eiidyLbm9pWOrvz2GMf7/ode4y2iQMLYYZhGKbmkbNGqG6/nihxDLHi3MvjRoTTRs4j7OAIEV2KtyeXbAoIFq01QnNuCtaI4DIdXYbWCLlvp98HF1r5if/47CoIIVyvrCuuXZ9rBYSDAQACD7z+Nj75+3mJtm7IeouPOELY/5nN+b8n8cqa7dJeLcj1+xbaLtm4Gz98cJHdLtoDrkPu96Yn9DV64kyWK6WfmIUwwzAMU7PI+sfNOKC4p/of5/+/v72Cf7y41ng/zo06o8hS0Rt4Ksv5RF9Y1ggAuODWufjrvDWeZTrRofUIO20MPMLb27tw5s+fwopNu6Xorf6Lg4A8odHLjx5egscXb3KzJ8hp7SqJvAAuuW0BHl30TqLtHWtEV86xRvTY773nbtGGXbjuvjfd9/6MKf4vP794bHmkr9ckIiwL6bkrt2hamgvhvBAl/RxZCDMMwzB9Ap1H2P84/84Fa/GVkLLKKgoiWxTtA02CM0lPFrECwLm/fAb3vLJeu62/epxOc2itEfY6k4IaDy3ciNfX7cSvHl/uCmGdYC/sw/tTZlt7F5zkCa7vWKpE5w8Kr93Wjj89n96ERRNSyxrhs0aoJmZ69+XdsWoYPXkRYYsxGKDUZvKIVm1T53f1qaWbsOydXaHthChtRJgnyzEMwzB9gII3wiQirO1J0cAJyP3r5fUYO7gZXzltWtHFExze3tGBO19ci8+fNDm0spuTRjaXz7uZE3I5gZdWb8dLq7dr+6/3ZRzQRd+cVRkC5q/a6goxQPqiYWCN6LRPWENdppDhIcJK4v2Mgh33SNHwQh7h8D7f9ZMn0d6Vw3mHjtXuN03kLwn5vEDGeJKbhT+PcHu3RggrzpFrjVB8xt09ee3vbFxrRJRwdiLC598yFwCw6vozQvarF+jFwhFhhmEYpmaRU6XpPMJxfa3B7QsbOYUH0rp5f+7PC3DDQ0u0VekK1oiC2DHNY+xEGR30HmEn6gucd9NzuODWue46dYllNY5ws4SwN3prgmqI8mS7Qlq7Qnv/No6I745RJrtY5CEkiXK6k+XsrBHOlweVENb9Tqv2HOVpj2uNiMoKUSk5nlkIMwzDMDWPJYQK9gVt2wSxXPmm3mGQQzUOToosnVApTJbLu+LfdLJegz8iXLQ1IrjMjzO2hmxGSvMW8blECOyefL4wQdDQdwwUiqL0BvIxJKmsVl/nzSPsdNGVywfOteqzenDhRvzy8WXKdao+vGOPHp/J0wAHYyFs1Co5LIQZhmGYmkV2Eqge3RfWyY+s4+9HFd1LIqhVFHIER7eRI8JRJYsd6v0R4YR5hAvnN15E2DlPJqLV7VcILFi9zXOM3YqIcMEjHJ5H2CQi/KHfPJeKn1j+NQn7UvGfV9fjgdfV5a+dfMHO+XPOdVdPPhBRd95++a8v40cPL3GX/+qx5ZERdeXYDX6fPdaPqC+chn8e/nZyNow0YCHMMAzD9AmSTARSRciU1gpFB2k90nXEj+5RetYTEbYwjQg3+iLCibNGuNYIeZm6vSPk6qWIcLQQK7BiUxve+8tnsXl3p7usJ1fwuPrzO+sinf7IpKrt8yu24pp/va4dnwl5X0R4T3cOV931Kra2dbnLL/3LS7jkNnX5a7eQiK+wSHcuHzx/9sq7XlqHZZKtRkB9jFG/L873hVN//AQu/+vL2vEB0ULYvGSzt92PJVGfBiyEGYZhmJrHyiPsFQ+BBgpMMhkAyR5zm5LJFERudJvCOHQlnmWSeIRVqAtq+NrYCxzRVZ/NuDInKjLbJhUhkcsCO8hZD3rcCXjRn4u/TSkzrnmEYh64++V1uH3uGnz//kVm29s/neiv83l09eQD5y8vwr+4qJZa1ojwfT+3YgteWr0NS9/ZjX++tC56rBHn0VgG+xr6f1+LhYUwwzAMU1W8vm4H1m5rN2orPw13NMHbOzoC7byz3QtvnElJUSitESkJqkK0N7pNj1Ri2VQI+7NG6CPnMSPCge2tn46lwcoIYCZab3hIHwmUt+92s0YUrBGh2xlEhNPCExEWwvVz54QVHX593Q7t9q4P2xXC1vLOnnzA6ywgsLmtEyrkcVx41HgA1jmLsj987s/eSPWare2eSLLXGqHtyvg8sxBmGIZhGIkzf/40jv3+Y/E3tG+oH/zN84FVNz62rNBMuvGqfLbq9Gml8wiror3e8QjXI7xx5x5cdddrAMyzRvi9szr7gy7y7azRFdTwR4R7csIVTKbR9/CxFawRTvTcbyFQ4U/b5m+apjCWe8pJ6dPyeYGr7noNZ/78af32TsTbHxHOKSLCeWCDoiSxEMIjUh1haWKlkX9VtrV14bgfPIZv3bMwMD5nP/Lr4GS+yN3Z7bwN/VaeYmEhzDAMw9Q8AtHRLrmtQ1S1LQdV6q809JMQwo32hkVjhSiI5d8+tRLb2rsBWHlhTfD3q/MI68SqSUEN5zTt6XaEcGGMcSbLKccmfQbOa5OUbMGIsHd9mrYX4YmYCjiaLi8EXnxrW/T28EaEne66evKBceaFwNsKISxvB0hCuEdvjfCzo8P6PXt62WZpfN79A1bWk4O/8zAefdNbTc94spzvPUeEGYZhGMYQT9YIwxvvxp2Fx8nmuU5L8zhdCG/5ZBV5IdyKajJdhhFW/9B1h9yjEatOP34frLdva2W7XRpYFq+ytWH/bzygGXHI2HLB9GkmpXn9lgy/eI+T31hFmGc6lxeFtHfCbPKYf7Kcs01nTw7Pr9gSaOucZ89y35ga67IAvJ+FCc6+5bLiKmvE7s4e7Ojoxuqt7crto2BrBMMwDMOkQBI5Y6pvSzVZLi/ZHsIitXkpIizTZehvjmMFMLEv6CLCzqo2JzeynP5MUs1tXfFzMVseVwvn8zD5XPzi3n/4ptk3wpCHMF+K+spCOC/Mqqe5QtgXEe7syePyv3pLgusqsiWNCJNC9IZ92fRn7Ahk59DvSmrnbenPe10sLIQZhmGYimH+qq14bvmW6IYxESJZ1DbEjBBYotJKaQSJ83JEOESE5qVJVzKmnlv/edGJR10ZZHX6NG+bQpaDYJEQJzJrEsVVcfvc1e74nGM36SmYPk2/3uG3T67AgtUGdgapw3+8uNbTryuE88IsIgyvqCyIzWDbvAj/HZT31Sh5hOOc+UK5bfl3Lxj9dpb4PczGf4++Zv6818VSl2pvDMMwDFME5930HABg1fVnpNKfqsRyHEwf35rnRI2//8Lj83AhrMJ0slxA+GmORWcTUKVP8+OWaM47Y3Qerzvpz0Si0sOAFRV9cOFGe5xOwQlpfCHd+r8w+COQqi8Uf3r+LVx735sAon9Xw44m5/MIm0SvnSY9voiwcr8i3BUvL3ciwlGV5fw44816osTyWAW+/LeX8fLq7Vb7QJo6wy9qvvd9OiL8gwcW4Zt3F5/QmmEYhqlNNu3qxKrNbcp1SfRVUmtEPm8+OS9q/65YCvUIqzNUmJew1UdEZfST5YLbh/mPHaHqpHirsw8ylzcThFE40WX/5DQVURFhv3Vi067OWMU1QqOyeeFaDXJ5sywKbtTdFxEOaxu2Xl7upM+TrSUmRFsjgLsWrMMK++/R70H2D217e1dolguZtD3CVRURfvPtndi8uyu6IcMwDNMnmXXdIxAiGKVLLq2CW6q0hV9M5Qw9n1HkhUBdJuP2GdamqH34J7QltUYoxhOQVvZbR0871oiGbMYtE1zs5DTAW1o5isAje39fCSOZUe1zUkYQK6WZSb9WG3/6tND9GoSEZWuEwmruQf5S4LzMZgh3v7wOowb0w8Dmeu/+JfxZQSzrRqHNMdf/F21duci/3ca+LIQb6jLGCcIZhmGYvkdAF0Tc2KMw1WRRUcXk+xfReYTzKEbpBzZNbI1wMxkUlvmbO+LIEUWFCnPkvk8nIuxYI6L7ChSi8G3jP2aTX6lbnl6JbW1duPDoCejfTy21rDzC9mtDIVzwYQfPtZ+wJwX+SLEjLHtyeWQzepEpfylw+shmCF+642UAwH1fPE7aEdDSkHUnPgaycwhvPuOwCZKlzhpRZUI4a+x5YhiGYZhiMbZG+Bo+v2IL1m0PVrCLS17ATY0WJhCTemod/MJPb42IGRH2dVYQwtZ7J7jlPJ7vySX3CAPWY3oh1BHhsF4DWSPsn+f+8hms3daBv1x8hG8n0eP47n/eAGAVarntk0co2+TzkLJGmP2uOU1U1o9gWxEqlOXlTvq0rpxAI+kHIX8pKFgjCickp1iv2tYau1l03d8mbY9wVQnh+ixxRJhhGIaJTVJtZTxZzneTv+DWucl26MOqGlfwzyr3rZkUZbYP73tdRFYrhEVQnPl7crp2IsJdOa8Q7s7HK+rgpy5D6M6JQgYKqa+wfgMCzT7El+xJXsGIcLzHDC+FZJbICV/WCKPJcl5LhIB1zKpIfT6vPma/e12uLNegSkgt0aMopyzbKc668enAetW2AHDFna9i555u7f6s8XpRpQoshqqaLNdYl+GIMMMwDGNMsbdMtZAIUmxUNgwrfZq9D40QLm4f5h5Y/+NtGZP0af6csq5HuK4QES7GI+yWa86bWyMiC2pErI8i7MtDLi88UfRYBTUkj3BTfTa8fchY5X3JeYSjTr382TgTJ7P+Gt3uPrzRYtXnevNTK/U7BAJ/cJmQ/SWlqoSwY6ZnGIZhmDgkjZmabpc0921kv0JdUMNfrayYynZhUVsVca0R/t7zPiHniCnHI5zLi9B8ySbkfULbhKgSy8H8t/HGFFbhTxa/ubyZJcS1RjhCOA80NaiFcFiRjj3dedz76tvu+0LWiHykGJfXu0U9wsYaiAgHW+4yigh7t0s5IFxd1gieLMcwDMPEgYqMHiX1CKdFXhRSbIVpu2InlwVSnGknxEX3o0+fZgs/4Y0Iy2IsDZtHwRoRbtNw+Mrf/RXZvARS48X8rHURYUjnzCx9mve48kJECOHoTgl2oDEX7il2kL80OHosTJflhfeJjCoirJogl88Lj/3Bfwh9OiJcn2VrBMMwDGMhhMBvnlyuzD2a3j7M2pXq1iSE5QEFvALVm6+1OI9wHGuEbj/OKOTt/drHeetEfQOT5VLKI9ztZo2Q9m34Yfrb+YVs3OGFCkWpmlzOULQ6FCbLIdQaIelsLRki1GcJPbl85JMNeYgd3ZaIDRfCvoiwP09fCH6d5z8tKevg6hLCDXWZ1JJtMwzDMNXNis1tuO6+RbjkthejGye8bajTTwks3bgLD7xeeLzsz5Gq7TOG4JEry8kRNY/5oMhbYhxrRFQBB/94Alkj8uqIcIMUEdb5kGXqNM/ITSqvheHfJJBHOKYGCY0IS9aFvIiOxgKq9GnhEWHLMhPdJxHQWJ9FR3cuVrS7w47mhgUo8wKekLCp9zsghAPWiD4cEZZnNjIMwzC1y39eXY8tuzu1bRxBsruzJ7RNsbdM1b1bADj1J0/iktsWuMuK8aRG7T+riAh72xRZvCNORNjAGqGzI/gnezmip3CM5ueyXpNGy80jnOAbULAQRHHWiDChmJMiwnkR7HfB6m3Y0+21DjhtFm3YhfN+9Sx2d/aERoRNi3QQAYOb67GtvStWtNuJCHd2h+X/9XuEDSPCPfqIcLYvZ41wvjF2sk+YYRimprn0Ly9h5rWPaNs4gaFiJopFoepbtbs4AuLkHz1u3DafF27kM2yyXLEPScOKXqjb6mwTBVHnLgvzCDuT5Xqsn04dBwFh/Ai9XpPqq1B5LXwsofjaFWuNCCtLLUeB8/ngl5n3/vJZfPPuhd6h2W127enB/Le24e0de9AcFhGGYUQYhKGtjdi8uyuWyHdEenhEWHi+iJp+wYk63yk7I6pMCHNEmGEYps8QfU+2y9Oa9JV0DKplioHFERBrtpoX2hACkZXl5DRcSfAfj06wxI8IC59ot147QtW5n2fcUsPmEXNdhTHXzpCCNcIvZP2f9U8fWYrv3f8mAOD8W17Av19Z790+JHhnHXrB4qDitXU7fGMLtmsM9Qib/V5kMsDQlgZsbeuK9aXStUaEHJ8Q3smqYV8I/AT782539KRhxmM0obqEsB0R5swRDMMwfZMFUnEC9x6rub8Wayc0jQiXau5KXgg3T6u8D69HuLh9f+vfVhW09x061u4v2OZDh4+z9xu9L39qN2+1MfunY42w7+eOYBLQ5yqW0Voj8smtEf7j7/A9+vef7588sgS/fmIFOrpyeGrpZnzh9pc863VZI/zp5AJjiRgbEO6VtqLMBtYIEIa2NmDL7s5Ykz739NjWCMPJcqZ/IzprxLffsz8GNtebD9KA6hLCdSyEGYZh+jLv/eWz7mu/Dl6fQkljPyodobqd90oe4dCsEenYQ5wvDaropDMGs4iwd5n3vTci3OVGhAttTAWTLiKcF05WBmnfhqLY366jy+tBDxueU1J7SEuDZ7nOOqCKonvG4luuahVW0MJ0slyGgKEtjdje0R3riXtHl9U2XAh735v27e9P7ibtjBFAFeYRBsJ/qRiGYZi+hyMWjr7+v5FtYvdt2Fcx1dB0tHXmsGZbO4DSVZZzcMSoaj+uH1uzvSp9moCAavKcsyxojYjjEdbH8qxyzeovDzp0EWHdBDRHCI8e1A9b27oK49DlEbYJi4L7d6X63ZPtB9kMeQpdmIh/ImBoawOEALa06Seoyvgj5f4+hRAe4WocEbbP14MLN6ChLuM55mLzgquoqohwPVsjGIZh+hQ6ASs/Tg9vg8g2OlSRXlVfpbJGnH/rC7hrwTprHz6B6dDVU1wRCgdCeOGOwrpo/7A3fZr33NzzsuWf9U9my0ifUxpZI4Cgd9pUCPuPsV0q+mBFmtXbXXjrXADAXgObPMt1eXadPa3Y3GY0FtUxyNpQzqhgnk2E0NxgxUXbOsPFrR9/pFymLkOBghrdhp/rb59cAQD4zJ9exMd/N88bETYenTlVJYQ5IswwDMM4uNYInUe4yFun0gah2GGpKsttby+UoA0rqOFPsZUUnTXCFao6a4Q7Nm8E+LnlW9z3Nz62TJkhgaTJcqaTqnRZIwBbCCf4WAIRYUkIm5QhHtG/0fM+7Hh6ctEe3oAQVrSRbSV1vopsJtozQ4W/pTi/x9s7wssjZ4gUHuG80ZOZ+1/f4Hkvb5J2DmGgyoRwI0eEGYZhao4nlmzCjpCbqlbkulHE6JtrUp2qEj29OVnOZB97evLJQ94ShVLO+sfvYRTK/3qXXfzH+Z52qmBWQb+ZF82KiggL6J8omCJbAEzEtV+smRTUCMO/WnU8GZ81wsGKOJtYI6jwJSjG7/E2yf7hx4kIy/TkBCZedZ9x/w6l9ghXlRDmyXIMwzC1xfb2Llx461xc8ieD6nA+nGiviVhOjKJvtW+4yP0YEBatkyOWxVCICIev0+FmhIjw5TqToWTRJkfu08gj7OzbY41QfHKtjcGpUv4xy9aInlx0kQr/+tDJcnmDghcCmPT1+3DpXxY4bwPIX1L8EWHTyXKq6oVRbNEI4UyGbI+w/Lma9+31dhdep1xLw+oz/S5LR32W8wgzDMPUEs7NcfHGXcr1Rv7fEopQtehVWCPKGBHu7MklShPmx9EYqqigmcVEERFWjKvTTrvVKGV9cAtqiPQ8wvAJQdXvyUVHT1Bs5m0of9HoyUdbI/xri4kI54UVIf/Pq2/b74NtZHHojwibQChEhOP8HusiwtkMBQpqmFaWA4A26ZzL579Yq5OKqhLCHBFmGIapLZwIVthNMq2qcYknyxlaI3Qz6NOiJ8QjnFZE2IkK6rJG6ChMlouICHdbn3U/qRCEJ4+wafq0SGuEOmOFjKpcry5rxAd+/ZwnI4SKV9Zs97x3quf5MYkIB9ZGWCPk1wJmVockmR0Ar1j1kyUKDDVORFgW2dvaC6/7vDXC+aPpjQsOwzAMU3qcCE+S9GOluCn6Mc0j3BvkcrKoK7ze051LJSpuMllOh7OVqTXCExGWK8ulUFDD6SvqvKiEcDBrRCE7wvJNbbh97mptnwvX7/S816VPizrSQPo0RZuwyXKmleWI9F+CHD59/D7K/ajIhHiETZHFrzxhtM+nT2ux62m3p/Ttl2EYhqkMQvOoGmxrEjUudR7h3iDsy0JHdzpPSXVZOMwmy1k/vdaIII41Qo4IF7JSCOQMPcLZKI9wyP49fagiwr73/oh73I8/zCOcE9G/S2bp06TJctI5MfUIy5PldEJYjsAP92XG8GNFhL15hHVfdicNbwEAzN53JAB4ou5bJVFcNo8wEc0hosVEtIyIrlSs/yoRvWz/e52IckQ0JO3BNtum9nZN7jqGYZi+TqVcs01wYlamE6RUrN+xB6f86PGURuRFFR3tBTuwElkg+tOnpRMRtlTG3FVbg+sMtndE3SNvbgwsk9FGhGH+dCCsopq8b8/+Fd2aWCP8wbe4BUxC8wgbZKAIRoT1tpW6jFfWmcSErfRp0RFhuZJfpBDOOOnTzCZBXnX6vrjzs0fhpOnDAXgjwvI5KIs1goiyAH4B4HQA+wH4MBHtJ7cRQvxQCHGwEOJgAFcBeEIIEfxLKpIm+9tjnITPDMMwfYlKumaboIoiqtZHsXyTuiBB0ZTLB6FAhLxOK4+wFkNrxItvbcNbW9rdZarP1fEIN3o8woX1pj7VqMfzPXnh9VUrPky1mPZbI3KatXpOmT5CO1ku6lD9XyRUWtLrEfauMzmVBHK304nVfvUFyTiwqV7bZ1ZhjchprBHZDOGw8UPQWGf9TmxtU6dTLEUeYZMSy7MALBNCrAAAIroDwNkA3ghp/2EAt6czPC/ZDKGpPssRYYZhmHAq5pptQqRHUtMiTmAuqZ5NIxtDqdnTnU7WCJ3IMBEg6owPqoiwImuE7BE2jQhHCOEjrns0MD4/mZiT5cL6UfGeGaORoXAxmos5We7Nt3eGeoStksbBiLDJYJ3tAcuuEUaT9MVFtrWocLNGSKe3WyOynXZOSrx12zr0g04RE2vEGABrpPdr7WUBiKgZwBwAd4as/zQRzSei+Zs2bYo7VgBAS2NWO1ORYRimj1NR1+woSu23Lbb7IhwbqeNNBVZ4k9YEcp3WDVvlyVsLgeYGr0DSTZZTeoQhjNNs1UV4hI36MPAId/rO7ytrtxv1TQTUaSb05WNOljv9p0/hzbd3BtqEFdQADL8Akvs/bZYJOYLfZCCE/Z+9LtLvjNuZALli825lu3JVlot+blDgLADPhD1iE0L8RggxUwgxc/jw4aZj9NDcUIf2To4IMwzDhFBR1+wo4s6aj99//A5kLVFJ8eCwsezpzqfjEdatC1kpR1S/duerARuAerJcuEcYMSLCcUWRMppqkDWi2zceOYuBjgyRtuhHzu9hVmDiRyYqZNf1fzkw2T5DsjXC237KiFb3dT9PRFgvH7MUzCOsK53tfJbOF5MVIVancqVPWwtgnPR+LID1IW0/hBI/Ymtu4IgwwzCMhoq6ZpcS3T0+IDBiCEV5Fn65MkSo8OTnlZanFRFWicIoZI/tmq0dmL9qm2e9EMD+owd4ljkR1rA8wml5hE1QeYT9H3nSIl4EhVVBwmiynGadc/jyIfgjwr94bLl+B7DG6ZbXls79bZ88And+7mj3fT/pi0tURDjjTpYzw7VG2PtYvbUd44Y0BfstU0R4HoApRDSRiBpgXTjv8TciooEATgBwd7pD9NLaWMceYYZhmHAq6podRal0ZqG4Q/xt5VttuTJERBHIGpFCn9qIsFR9TMYvvPziJy8E6rMZTylj1xohCSuPl9Qw32xWIzJVqL7UKK0R/u9QSU8u6e0b1mS5CI+wZn2LfU49leUSCEU5oixPlps4vAUD+hUmxXkiwg1R1oh4tiJH4NZLn+mYQUEhXIrU4ZG/RUKIHgCXAngQwJsA/iaEWEhElxDRJVLTcwE8JIQo0dRdi+bGOs4awTAME0KlXbOjiLIuhPlio7Z11iQRMd6oU+Uo4bCRJI1YBtB5hEPW+YVwLvAZWf/kZlqPsDCvHhtVYdmP6vyp8win85lniLRR655c/PRpMiPsFGYZIjeimySqn6FCiWs5Gu/vyiOE6yKEsBThN6HgES7sVBbhDmUrqCGEuE8IMVUIMUkIca297CYhxE1Sm98LIT6U+gh9tDRw1giGYRgdlXTNjiRO5ocYkbo4ohnwPeqV7rUVFREOyZ9mWjghCt1jZ4JaJwcmZ9nj+Mq7ptrvrcHJ7bRZIyDQlTMLdsWNCKv7iI4IJ4WgnyzX2ZOPX2IZwGn7j8RzV52MoS2WEJbFYRK7CNn/Ad4vMuT7xGVfcFNERNixRpieS2fY8vnqrxTCZv3FoaoqywHWZDmOCDMMw9QGxaRP0+EIWNOt5RusJx5cQUJYPhee1ykKt/CV6rV+8ex4TAe3NLjLBLyC08kj7I0IF9KndRpWyosdEVacp6gUbHGYNrI/Jg5rcd8T6YWpv2KdCpVQrstmsNfAJjeKaxXEsEhyPJSB24FsZ9BFhKM8wnWuR9jsl9MR8w0eIRzM8Fsuj3BFMay1AZt2dWpTfDAMwzDVQZxHw/6muk0doWg62U2+vco322rIIyyMiglHE6UxVI+l/ULPuTVnJWErhPecRlWWCytJ7KdUEeG8QTYHFXsPbQ4ck0647enJRUaEVVrH6dP/E0gaES70IXuE/Z+3bIeInCxHVkEN84iwnTVCskaohHBZPMKVxpjBTejK5bG5rbPcQ2EYhmEqlLgTnmQxId//Kynm4vVLF16nNUb/o3DvOjNrhPNo3Vku7P9U1oh+IZXljCPCKUQHVUJViHTOKZE+gmlSGlu13h/99UyWS+QRLnzy8ncQ/9D7NRQkY2NU+rQMYdOuTmxp69K2c9s7k+WiIsIlUK3VJ4TtWYS9WXWEYRiGKQ1REdd3dnVi5x4rb2vA96tREbc8vdLu35BQa0TlKOGwocTxYurQaSjTyXLO+XIie/m89U8ZEa6Xo6eF7U0jwnELaqhOUVhBjTipv2S8wpe09o2O7nx0iWXFMmcXTsSWqJDRI5E1gqTKclJE2C/i5S8ucuRbRdxx+CvLAUBro8IjXIKYcNUJ4dG2EF6/fU+ZR8IwDMMUS5TeOOmGx3HM9f+12sbo94cPLkacjbwR4VI8gC0er0dYWp6WVtdOlouXPs2xLTimDaVHuE7hEUYhYhxFbNGnOFFyH24UW4hALuOGCOHnIJ8jKxtDRERY+iQbFKpZ9UXMjQi7grggEHV5i0PHDJKsEfJkOS/y5xX1Oxf3sylYI/QRYZ4sB8saAQDrt3NEmGEYptox0XC79qgzBcXRf1E37rDJckkjg6Vk8YZdnhRjQqTjZE6iMfx6xwnm1kmiUviyRuxxskZIEWH3y0ec9GkpqCJ5XB+YOc4ZQuD3pdFgZp7stQWs3yndGP3WCH/qOUBt0XBTpSk8wokjws7+POnTvH3J0Vr/WP2HGfezcfR7fYRHmCfLwcor17+xDutYCDMMw1Q9cawHSQodmErEsNtrJelgIYANO/bgtP97Et+853V3eVoeYW36NFI/lg6zRsgRXut9oY3zxUbOE+taIyBc60QUcUVfVB7hgngPfgFKEhGWI60qLCFc2I/qS5fq99fpMqPwCJtOlrvh/TO8/dmbeWwpvq4cAT59VP/A75xf+CaNCMsFNXorIhzcSxUwZnATC2GGYZgaoLeEZpQgDhMsFSWEAWzvsCYfvfjWNml5siwHfnQiI2yVP3ODYymoKyhbCOEVRjvarWMY2FwQwvK+zQtqpDtZzmONSCyEvRHhMGtEXYbQ0Z3zCErVR6iqzuZ8IXG6lo/BtKCG3EzObiFX9VN19ciXT8Dw/o1orMvgzIP2woMLN6A7J6z9SgeTWAjXyUI46BHmiLDN0NYGbDWcicgwDMPUBkExGy3+TPVh2P21kqwRQhREkCyg4pSy1aGTGHLUUMbvGHDTp2WdiLD1nyxgdnRYkx8HNckR4UI0Nu2IsFy1zo884U6OYgvfEEyEsGwxcPoLm8/X0liHPd35yN9PlV2CfAKYpB2bWhI8Fg6oP3uVV37yiFYMbKpHv/osbvzIoRg5oJ/dX3j/ZuOxfsoR7ZZGTp8WyqCmBmxvZyHMMAzTl0iiSU03CZsgVzky2EIV2c6n5RHWRYRJPV/fL7ycLw6OoHFyycrCaLsthOWIH0lC2DQibGoDkFO5+fFGhOGOIRARNqze4R9SmFhvachiT3d0HmH/pD2gIAYLHmFpAp1hJg3vpD5S/v6bnF5n+AEBHlOxuhFh6Ty3NtYFzl8pJrJWpTViQFM9dnRwmWWGYZhqp5iAa5xtIyfLhW5ovo/Sox5MVy6PPd3FV1xNIjL8j+Idi4anoAZ81oiObjTUZTxRVslJ4YkID2yqdyPIfkwjwpaEV6eYk/vISNaI5B5hM2tES2MdNu3u9FhaBjXXY3u7+li9+/COV96D6ZeDwDgVm5lEdf2ecIe4Rc+c7bMZwonThuOQcYMxsKke2Qx5vgywR9hmUHM9dnR0QQhRsWluGIZhmGhMY5kqD6zJls5m/vuyz9JYddYI+Xys2NSGFZvaiu4/urJccJk/EqgsqCGERxAKYUX7PIUgqHBccvo0na4zFsI6a4ScPk2yRviFnJE1AhTqvfXT3FiH7pxAd14gQ8D33nsgRg1swoW3zjXajzVeez+KFHBRyM3kPMRJ8Qt+VSRbv33h9e8/Pst97f/9Yo+wzcCmenTnBNoN6nQzDMMwlYu3Wlr4zdPUNxroP0Qu+2+ooZPlEu21NIiQ12mhrSwXssovvHrsyVaO99aNCPu2b2nMhlbzk60RumCXqShy2qm+1KjKE6sqy5laI+RzSAj37LY0WDl5O7pyICJ88PC9MbSlwWgfjmiUPcLObowjwoHPWmWNMIgI2z+D+aSNhhG5r6A1Il6/RvtOv8vS4xjswx6XMAzDMNWBaWGI9q5gOdp4wVpvY/+NN+z+WlkRYSG9Tr9/fdYIMkqf5hRk8KRPE8F2LQ11yiImfmuETveYiiLTyXJuEZAiskZ4KhRqrBHNDdYD+Y6unDs+c5FXEMCALwNEgoiw6r3pePKuNUK93BRTIZxCopDgvtPvsvQMtIWwiZeGYRiGqSw27NiD793/JvJ5b9ov3a2zrbPH2EYhE2aNCMztqYL0aYD8mD/9gaVRYrmQPs2SF88v34IVm9sCQqelsS4wYQsITpQrdUTYW1nO+vmRm1/AN+9+3dMuqqRw2H7DAskNddZ+e/LC/YJhWj64kDWisJ9CZbl4fRTeJ4wIC3VbU2uE/1j8BK0ebI0AUMg9yCnUGIZhqo//9/eX8esnVuDF1ds8y3XiTmWFMxHGTgt/34GIcMj9tZJ0cJQ1oqEug6kjWxP3HyXEVOfIfx6diLAjYO597W3ltkEhbP30W2B0Wsz0sbmzPMoaIUdTH3nzHU87VUR4/9EDwgcHABQuJp3sCD35vDs+04iw00zVtz+vc2gfBk9E4kjOsFLbUTjnIUw3By1MMQZlSFUK4f32GoC6DOGFlVvKPRSGYRgmJt091l0vnxfGvteO7vjWiHxe4I31O5R9ByNi6j5KEXlNiog4WfuPHoAff+DgxP0nKajhj0D22JXJ6nymYP9pbGnweoSd1/7sFzrh418X1rSQDSK4Tt5Gl4NX5RGOnFyoqSxXEMIivhB2oqhuirrCgZlGhE088ibjcfYcyBph+HfTIH0hUOE/nlIkSKhKITyouQEj+jfi7R17yj0UhmEYpgjk++Wh33k4tF0Sr+4tT6/E7XPXBPYDxJgsVzk62Cg6XYxO0IkMqWaDhyiPcBj12Yxyslx3zhcR1k7gMxNJ/nLPqnWAPuOCKiLsHxuRdycZCu+z3v6ikMsVio2YWiPk/MGA9YXPOQzzlHK+90qPsIk1wv68faenJ2f2h3P4hMEAgH71WeX63vAIV2X6NAAY3NKAbWyNYBiGqVqE9H8A2NUZnh/eyT7gX6bjdTsa7N2LhWn+/0qKCMuoRlWsRtBtT1AXXQj3CPsiwr7tMhRM4QUEhbA+IhwUSapcUk4fyuIUUhexhXBURNjIGiEkq4O+P7df+2fWjQgX1hn7plMKg4Z5hE3/bH74/hl4e/seDGttVK73j9P0y0IcqjIiDACDmxvw6rodFXuRYhiGYUKQ7mWml3AhROzrvS41WzAiRsqVcdNAlRIhCqIp7FwUIxSSRJP9WQr8HmGHYa3e1GD+amZO825fJFE/Wc77PuzYnT6inirohHCdQjlGRVX9eYVlZI9wIQ2adnjSfpyIcOG4nE2TFNSQ+4qLmz7NP1nO8G+1uSGLA8cODF3v75fTp0kMbW3Apl2dWPbO7nIPhWEYhknAc8u34LHF70Q3hDqiGyeLRMAaoZtoJZQvy8767R049SdPAgiJCBepEnRiKNQa4Z8sF+IRbqqvw6rrz3Bz5frPf3jWiBjjDWmrS58mj0N3/EqRHHG+9dYIS349t3yLNO54n58zXjnSbVwBz/8+4a9OwRqhfjIQRZQA7408wlVrjTht/1G4++X1OPUnT2LV9WeUezgMwzCMIc697KePLg1vQ17h4p9YZ3I/9M4t896YA5GmsD4q6Knjcql6nDMs/3kqziMcf5vgZDl1RLgwIczrb3VwhFTAI6wTwv59hLRTVeNTbaOPCAfXqVp7fs+IQvP6NthfFDp78m6mjNiT5SSB75xXUyFsmjUFAJ698uRQYVuYLOdbbvh3E3XMQY8wWyNcWhurVsMzDMMwEdT7HkUHI8IUaauQb8bPLPNmGfLfTz032ATWjd7GEVyyoCcUKYR160JCwkFrRD4wLrlvOfetpx/7bSAi7NvphUeND2xTGKN67K5gVKwz9QirBK3KCuF9H56Jol6VhSJ0776xOF8mFFkjTPMdm04WBYDRg5owbkizcl1oHmHDP5woYRtHsCelaoVwCwthhmGYmqXe92g9L4Q38llk/8GMA9IbjzWiQpWwTZoRMm3WiND9e9/7C2oU+nbaO35Yv2hUR4T9/R8wZqC0zkzMqQSjahtd+jTdujBIY42oUwhh08/SaeU0l0WnsTXCzFUSifNlMzhp0mz7qGP2W2w4IswwDMNUPSb3soBQEPClpirWD+sbU4gUqNiIsGSNcLCCtsnPS3ReXNUyf0RYnU7LaecIprASv92+R/BRvuWo8cnt5K6dyXvyNn7RJaMStF88ZUpoe8CZEKhe5/+iJ48zCjdVmjNZTso8oYo06/qIu28/oXmEjT3C+vWmFqZiqFohPG5wU7mHwDAMw5QI/w09cF+laJGqW63MASv1HbrfCsGdrZ/iZCJ9zl51xDgsf2xYRDgs323YZDn/kLyZJvzHHhIRtpfLVpkHLjse//nCsZ7+406WO2naCFx09ITQbfzWiLGSblFbIwwjwuT9UpEXcI8jqTUi8URL+5Tu7bNOmFojovYbnNTKEWGXEQP6Yc7+ozBhqNq3wjAMw1QvDf7KZPZ/Dka3Q829OOgvlRZUgzVC4c0sNseqLjoXHm31R4Tztmj2t3P2QZ6f/vVBa0R4RDBsXZj/2xsRbsQBYwYaF9QwLVThGY/PGnHTxw7DjHGDAIQIYdOIsNs+aPlInDXCbNcBnD1fcsIkvO/Qse7y46cMT9ijl2BluVS69VC1QhgABjbVY0+3oRGFYRiGqQhMBJvfGuGPzJqkT9OtD+ZRDemjYnWwNbC0vJ7+vr733gN969SP+VUeYbUlwGuJCBOrwcpy4QS0pE9sF8Zu/VR5hHXC2rsv9TqdMCNf1gh5vqHKGmGKP/OG/LdhHBFOKdLqRNnr6whzDhjlLr9izjRMGt6SqE+ZOJP6Eu8j9R57kaaGLNq7wisRMQzDMNVJ1GS5jEHWCB0BD2uINaKS0qfJKGfrKyKxcZC/oJhXOfM27M4JZIlCrSdREeGuHr1H2OuJVosk/9AL1gjF+E0jwiEnVj7OqSP7B1LZyePPUKHARpJKdf52bqRb8gg3ZNWliv2EebTjIhfUkPuoz2YwelDxFtaA9afoHoNUtRDu368Ouzt7jE3ZDMMwTHUQeHTsK7FsckPUadjgY3V1jxWqg0M9wsWgE5lyNFNGGRHOhEeqCyLO309IRFhzeGEiOSw1m0oryOPQzTMLywfsMGf/Ubj05Mne8YC86e0kYayyRsTNGlHwCIvYeYT9n2ZSW01h0ib5bDrpwHmEIxjYVI+80NenZxiGYSoLk3tZcLKcV8T4kkgoiSOEw3ROpcZZ3Ipe3oAwipEg2oloIdsMa23EydNHuO97HGtEoG/rp5s1IsT76RfCwTEWXgczf6gHK5ciDvQnNc4qyig7hJUuPueQ0QCAr86ZphBt3icPhIJlRFmgI2ZE2PmZJH2aaQ7mKPJS+rRABpMURGtvVJareiEMADs7uss8EoZhGCZN/NYIIbw2BZNIrdYjHFgQEhGu1MlyNmnOovf6ZQM7CskaQbj+fQU/cS6ftx+TqyOOYdYIR/BETZbTrQurWucsV36SUtswsQuER4QPGjsIq64/A5OGtwa7Jq+Qk8VhvcoaYZo1wm7n7HPSsMK+dcfgHVs6AtNrjZCPNZ3fy0D6NBbCXgY1W3kAt7V3lXkkDMMwTJoEJ8v5I8KiKP9ucLKWul05rRG6m74sQOT2RXmEPdHWYERY1bVlmSis6ckJ5TgKk+TUYtWfPs0RdEGLRXTUOtQaoSyoERyDw4B+hcJdSU4rwSsOM1TYX0MRWSOcPk7bfxT+9flj8P6ZhWwNYYL9mStPVvZR2HdxCjOTMX+KEK9f9ZedNKnq8mxjbCP26q3tOGjsoPIOhmEYhjHC5F7mFwp+K4SJZSGeRzisj/Ip4SwRekL2X5gs511ejEzwP9pOsl1PXqBffUYRcfQK4LDz32XnIa7PZtCTz+kjwoEJj2pziCp9mn8bIPgYfnBLA3bu6bHbhQ4jFP9kOUjC2LTEMpHi91jq82A7HZtD2Be6Mb6Ja7rf/1999FDsNrWcSpM2o4LRymOJwB/hTtESX9hH+l32HhOHtYAIWP5OW7mHwjAMw6RI/37e25PwZY3wT56Li2lBgXIaI6wx6kcgj7v4PMKaaKsm2iwv7snnkaHwzAVhE9qc4+ixrRH1WUJHt97LGjZZLiw1XqBYh2/sfm06rLURb21pt9uZnVvPhE4ihTXCeq2uLKdYhuBvQJhgjjNOP/K5PGTvwRg1sJ/Rdl6PcPo2hkBEuAR5I6raGtHUkMXogU1Yvml3uYfCMAzDpMTZB4/GidO8Cfn9kSTLGqHvR1tZrgqsEZq5W6Ft0np0bJpVw7/PnrxwxYsqwuz3Chf2Z/3scoVwxruhcoy+cfh+Bnau7CNc/B8zeZhJF6EQfNYVaR+mBTWU4ljVzv5pGjHVpaWLE3WVSyxHRoTNu3Xxe4RLERGuaiEMAPuPHoDHFr8TOdOUYRiGqQyiojpH7jM0cKPOC+/EtWIFqqnQU/lKe4uw3LUy3glKxVojvH5W7zogrHd5qRBq+4NzfgsRYW8fbvo0xyOcJWW7sPHKfQd9xbo+Cq/9ZaEvOGq8UR9h+LNGZKQJh8o8wob9mn4p0Y7N/wUqQR9AwTqUzZAiels8gcl/LISDHDVpKHbt6eHMEQzDMDUCIXgz9mdvENL/w9Bp2IBYCosIa/dQWqJy1wJmYtl4f3JU0FDUCBE8d86YvOLKty+/99NWI105YYmqEL+vPsUbKfs2RRaHPzjvIAyxJ+Rb+/W2nTwimCXCTyC3rvRFRZX/2VjEar8cGHWhKHgS/iVIRyEiHL1dkqcVgd+TEkyWq3oh3NJg+cjau3JlHgnDMAyTBqp7Xd43W67YSK3q0fA1Z+6Hi46e4FleVmuEwU3fbz8oKmuEJI50PlTddgDU1gj7Z6EAg7qP7lzeEwXUiaew1FpxToF8jmVx6i8T7T/GOz97tLI/eXIlkS99Giz7AJH6C4zynKuWaSwUpscex3utw520qfQIFy9aA59x0T0GqerJcoDlEwaAjm4WwgzDMNVA1P2RKPjwVwhvTHjisBYDkRreIPjElfDJYycCAO5csNaz33JhUjUujpc3CpOJaOoN1WMiaapXWNTY3393Lo+GbCbU86qNMhN5fprgtUbIotgn5AyfIHja+MZCZL3P+ibR6fo09Q07mP62BkSr9DpJ1FWdOxra90b9+iYVckRYQbMthDkizDAMUxtY1gjvMr8ebazLFmdb8E/CCbkblj9rhB5/xLEYPGIo4CEN7z0gct2kwXIbvaCRSyzXZc2OKcwCEScSGSYAo0Rd2GfjyeJB6qwRGYWfNmzc5kU24hH2JQIAKIEytOws8beL7DfOF7KEVL0QbnKFMJdZZhiGqQVUIiPvT59mgD6PsPd96GS5MtZYViQWCJBmyirSCFdobBeByJ/CohDWxqFQWU54iqnovNxhj/fjnIMwa0TUY/6wXfitERnfOSUnIqwSvYbj1rUz/RvRZ42I/0vkRLuj2sQlWGKZI8IBmm2P8L2vvl3mkTAMwzBpoPK6dvXkcfpPn3TfB/IKK9CtNo00VXpE2Cu0itufbiKa6XZA4dx6+vCJVJ0Qq/dFUT3tdJXl3L5NR+7t3+sR9u/Xi5F/G97IL9n9WhkWVO2VnQRQ7Xtoa4O9LnJYynbe82rWh4zSGpGCZi1Fn36q3iM8cVgLAGDd9o4yj4RhGIZJA6JghPatre3Y1h4vO5DO3xuMNKrvsJU+WS5Nz6TXJhBcFxY1DxOJqslmYRXx5OOoy2bcwhq64wsTycGMCKFdeD53WQhHfVEyOe0ZUpTAtifMqSPCKmuEYsyKZX/4xCz8d9E7GNraGD0wKM6RL81bXLIZQr96v7r3R9EJcb9aOjaZbIaQy4uSeISrXggPbKrHjLEDjcptMgzDMOUn6vFmhiggQLsVVcGKmchm+qi7rHmEjSbLed8XZ43QRVvNBambNULTJvDI27euJxc2DqldwGfs/RkXT9aMFIQwEMxEkclYy5ST5VRjUixULdtrYBM+esT44IoQFM4Xbf9hTBvZH4s37gIRuU/o08T5/OfsPwr7jR6A1sYS7MOkERHNIaLFRLSMiK4MaXMiEb1MRAuJ6Il0h6lncEsDtrd39eYuGYZhKpZKv2ab4L8Z9/iiHaLoEsv695WAkRBOceA6mwUplhW281kj3KJwXluAp7/AZEX1o3mdKAsT60l9pFr/sT9FXNgTBE2fhMIEOtUYTaOdaZQZDuSJTmiLuf3TR+JvnzkKQGHOVqFPX2Pp/cHjBuG0/UdG9u/8Lo0f2ozPnzTZeFxxiJTWRJQF8AsApwJYC2AeEd0jhHhDajMIwC8BzBFCrCaiESUZbQhDWxrx+rodyEulHRmGYfoi1XDNjoKIAtHeJNVDtSWWNQUFPH2UMSJs9vjdG8UsZjKRbsJU6EQ5xXJVMYxA1DgkmuusCzsOr31DHVVOegq0fUeMPww5al2XzdiliGOkT1OI3qhdz9l/FB5YuEHbxt+F//ybMqSlAbMmDgFQyOJlwhdOnoxT9jURwpYSLoU32MEkIjwLwDIhxAohRBeAOwCc7WvzEQB3CSFWA4AQ4p10h6nn+KnDsHl3F15YubU3d8swDFOJVPw1O+qepopn9OT8leUMJsvpskb47n5hMZRy2u7MSix73xejF3QT0XR9m/itdcLXv40ue4NnmxBLqu6xvxbZdhERVDPtU+5ncHM9yF6WZkVAPzedfxj+9MlZ2jYZIvztM0fhdx8/HEDxk+UAoN6X5kTXjen3y1KeJwcTITwGwBrp/Vp7mcxUAIOJ6HEiepGILlB1RESfJqL5RDR/06ZNyUas4MSpVjDja3e+mlqfDMMwVUrFX7OjIAQjgmlHhINCL+xRd6V7hMPtB3HRWgMoXJT6o5Zu1gefLUAmLI+wta9wURYWtf7fcw4oRIQTngl/8Qvvfs0i5DLCt51VcrngFfZj6gc2zVihXU/ArIlDcNK0EYH9pJWiTNeN6V+Vo61L+YXURAirDsU/pDoAhwE4A8BpAK4hoqmBjYT4jRBiphBi5vDhw2MPNoz+/SyHx+qt7WXN+cgwDFMBVPw1OwqV/utWeoRTnCwXctOupqwRllg16/uw8YMDy/yizbNOI6z8+6zLRiu6gEdVep3VZjBQi+SPHTleqiwXOlQtJrYL932olUa/jwnDWjBpRGtIiWWzKLxpxgodSSf/FYO8C1PLkWONKOWkVZPpd2sBjJPejwWwXtFmsxCiDUAbET0JYAaAJamMMgL5D6qjO4eWEswqZBiGqRIq/podddO10kx56VFEhF9Zs0Pbj+5mazpZrqzWCKPJct73xVQi8wpB3zrNFwX/KucRubxc50m13kvWCMMod3ge4WSqTp81I1GXAS6bbX3fVP1uqiPC5haVOI3SLM1dStyIcAn/EE0iwvMATCGiiUTUAOBDAO7xtbkbwHFEVEdEzQCOAPBmukM1o40rzDEM07epqmu2muBN2W+NWPrObnz/gUWJ92AuBMqnhE0mfye1RkQ9ho9VptjX1hXCGqtBwBohqRFtZDrEGgFIn2GErSEM7RcBEGaMHWjUj4OjdU+ePgI3vH9G5Jjk45k+qn/4OGM+KVD2EegzssvYOJ/H2QePxtVn7OvZh+lflXMcZbVGCCF6AFwK4EFYF8q/CSEWEtElRHSJ3eZNAA8AeBXAXAA3CyFeL92ww2nvzJVjtwzDMBVBtV2zVWQUj/i7c/HvhLqnqYEIZUa9rpzWCJXDwE/SyKVK+Gc8EVHFNiF9+xfXKXPk6scZXupYvU/VGMMiwv7oa/+Qp8YekR1ILwbcfemx4YPRcOtFh+O8w8aGrnfSj8l7/PcXjsWi786JHGcYUU10Hu20cLo8efoIXHzcPgn7cIRwea0REELcB+A+37KbfO9/COCH6Q0tGe1dLIQZhunbVPo1O+qWS0QB4dSTjz9ZLmof3jEV3su33HIW1IhfYjmGmFEJXc2+4xTUKESEw9vohJg3lZf5GFVtVMz9n9kh22msERF9FoOTfkzeZX02g/psmEfYxDKjb9Obx1dIpyf9jRn+WTmHUW5rRFXw6/MPAwDc/PSKMo+EYRiGKQbVTbm7J0FEWPMANqATNB7YNPnWWfsZt41rjQCKFDQa4UqKZYW23hWqyXL+JYHKciGWhziT9AqT5fRnwV/4QTXINCr2xZ3MqRS4Zovit0nh+ExR9206Wa4CrBHVwoyxgwAAq7e0l3cgDMMwjJbIEsuZ4M2zK0H6NO0+dOm7pOVp34APGjfIuK1JDtVA9TZja0QQb1Q2KFQdUTp9VH/0qw+XD3UZxWS5gGgNf29VXlNv5/cPf+mUKfjPF471tI1KfRaGPrpeyphpOOqIsMF2UR7hhOcoijGDmjT7iN+fs0nZrRHVwKiB/QAA89/aho6uXPg3PoZhGKasRFojFC2SWCPiFNSQ9yg8r9O9AcfRAiZZI7IJw1lRwUddVHVQcz0+Pn0ifvX4cuX6ejsirJ/0Fv5eJ8j9XH5qIetfQQgnE3VhRT3kvqPoDSONSYaHyMwsKY3Fz0OXH4+O7py9D2svqr9DU11b8AinMjwlNRMRllm9laPCDMMw1Yo6fVrKgtR0klnKN+B42Rii2wTyCBunT1PYFzST5awiJ+HbyijzCPvQeoQ9oVn/OMJxxqX7/jC0pUGzvTwe8/2WEnV2iejtSjH5zYSWxjoMa2203mjOoXlBDUdMs0c4FmlPqmAYhmF6DyIKiMBEleXiZI0ItUZUdkQ40H8R+keXPk038c2PzhrhRNh11gg5a0icrBhh1giZhy4/PnJ79X7jn9g0fnVUuzX5vSiXcDcl9mQ5tkbEo41TqDEMw1QsSR7bJkqfpp0s5xM6nu3Ur9Mgjp4y8wh73hU1jqhsDc6iqGE11CmyRvjGFqwsJ9kSItK4XTZ7ipuZwtOHIjuBn6FOtFKBvJ1qsmA5UO03buntcuP8DclfJkwtR842KU8R8FCTQnh3Z3e5h8AwDMMkxLqJe2/kqspyUWg9woaThdIORMWp4JUkClmc/An35vpFre68KPMI+2wVuv5lkezviahQnS2wD3fs6uVRyAIzqUe4NzCKCGuaXHzsRLT2QgVeZwjF2BqcL0VsjTDk/i8dBwDY2cHV5RiGYaoVouCNvDvl2TLaR//S8tStESUUVNZ5M/QIK5rJy1RiS1nuV9FPnSpa63vv717enzcynSDKnfAk12flMRQvhNP4zVGd82KF8FdOm5Zalgj9GDRPXUytEU6JZRbCZkwY2oKGugxeX7ej3ENhGIZhQtHfhNXWiEJEOI0Z/KaPvstYWM5oUlScCHPUdipPr2pt1PmvVww8qpJZWGW54ISr8J2HRYRNiZosaEQvFGAxsszEyL9cyfRGieWaskY0NWSx/+gBeH09C2GGYZhqxaos50XOGkEwFKiaRn4x0XtZI0rTFvD6eJP07c1AETw/qr5Vuq8QEQ6KZ8cbqssrLFcWTGIlSUPnBSKmJRCPU0e2ulXlQsehWGbkEdaEOZN+eUoT0z8r53cyx5PlzJkyohWPLd5U7mEwDMMwCVGJNDkinCEyelSqm5Dj30eYuEg/a0QMYdfLgiXMHuK+d3y+iqweMoU8wuFtgl9ESLnOtAKg3DYNW0NgfPG7iIwOP3T5CZFdJM8aUf6IcMEjHFxn6vl1v0CxNcKcoa2N2LSrExt37in3UBiGYRgFUTfiDFEgIpfEGhG1D++Y1J2mPlku7YiwP3BZxLnRZU3Q7DKAerKczwqhmYwmC704gdmwiXhJSCN9Wjok8wjrmvTWkfifAiTZsfM5lNJxUnNC2DnP59/yQlnHwTAMwyRD9Rhe9gimESkNCLOQLlOvLFdCawQQPDdhfURNfAv2U1gS6RGuU+QR9vUbzCOsFr+xRC35fhZBpaRPU1HsZLnyifr4OIeaK6FJuOaEcFePFTVYubmtzCNhGIZhVETdhiNv0ynMWwp6VMOsEWb7MqXU6dP8hB1X5GegEYJR29YrDKqB/jRfRLIholi1nWqMSSfLecZTyenTTCbLGZyn3kber3lBDWsrLrEcg05bCCdJvs4wDMOUnygPqumNXHcX0EUkPX2U0xqRaAcp9KHYLk5qtjqFR9j1i7qV5cKtB7pJezr8uYqLIXHWiJRJ6hHWRdIrwiNs+KSlYI3giLAxHzx8nPv6wYUbyjgShmEYJgkmHuJiiUrn5ZD2DdgTWY04DBMR6ImyGfSp27dnmcZ7HDUuJ2uE13Ost6J4cgeH5BRWDMvXh227SEHZGGcV8ZF2VULVbostsdxb1ghyRWxwv3HzCJcya0TNCeEDxgx0X7+xfmcZR8IwDMOoiLoPZ6MiwsbWCPMSy+Ee4XSRxUDUYaTxiD/UI6xcRsrX/m1U277xndPc16o8wkGrRfgXkWwmWXTX2SaNL0q6YhC9SSkiwr1F4SmA/T7BkNgaUSSqmasMwzBMZZPNkFYApWGNCHiEeyt9mhz5LIFYCVgaQs5WVFRQJVxdcarYtLmhkI3VjQgrrBEO/kfj8rnIaCbm6S0zYX7o+Oc5Ttq2MEoVxCx2slwlENcjzNaIhGze3VnuITAMwzAxiRKIpo92dfdO01yz6U+Wi96nQ/9+8VP9mxaCUEaENcLVuyDKGhHuuwgX5oXXHo9wYBjR3tdSTDI0FdNXnj696H1H7bdahXCSIbkFNThrRDJ2d+bKPQSGYRjGR5SoqMuS9q6Zxj3e30eveYQ9Ik9/JHsNbMJVEcIqMrIbup1+mcoa4FZ7i/gAGrLh6dPCJkmFCuEEii6N34+kWSOOnjQM5x85PoURhO/XTAjLVpMyqWJ7t6q/oeH9G426cIae9pMZzz5K1nMF0NHdU+4hMAzDMDGRH40rSTBxKbAPnzjwl/h1SL+yXNgbNYeOH5y8/yIIRGJ9UVrdaXFsiZ5tIjzC8vuspEziVIlzJ8v52py874jwjUL78r6Pc15JIwDjotqvie1TbvLkFScVPY4kOJ9pwSNsvf/M8fvg+KnDzfrwTbgrBTUphJ/46okY1FyPNo4IMwzDVB1RESxjUaK5e/oFlZwlQBYw+TxSRWs/ULWP0bfqcMOFY3BFVGU502VDWxu0fStHQ9JkN01luag+AK94/s8XjsWsiUPMO0GwD6vvyvEamHjLnfPdWJfBmEFNpR6SegwhwzxuipkIBnonIhzfgFQFjB/agn1HDUBHFwthhmGYSsMsa4TOC6rvYHj/Rmza1RmRR9hM6KR9A5a7i/ZCx+8/KvJqum0wYqtuJx/PuYeMQWdPDpNH9I8cV2C99FrvEY7uw2vx0O83jDiR6FKi+r0stsRyuVB9PlEMbbUsFPvtNSD9AdnUpBAGgOaGLDbs3FPuYTAMwzAxicoDq7qRjhnUhA8ePg4/fniJkfTTl/gtnTWiRwoxmwiCOALSem8m4CKFkl9Q+0Syqt+ffPDg0O78+/N7hZ0SzgL6ynI6nM/NX5wjjiaszxK6c6KoEsul1qBGnt9KEsK+P6E4Q5s8ohX/+vwxJRXCNWmNAIDmxjq0dbJHmGEYptqw0qeFk7RssK4PWVt4rBEpP5Ht6il0GK1FyaBVVB8hy1U2B816S/yScl3ovjURZtW+nf61Ok+zjhRNMhFPF/xcetIUAEEfbhxBfvFx+2D/0QNw1ozR5hvFoPryCFu/86T6gAw4eNwgNNSVTq7WrBAe2tJgPRorpcOaYRiGiU2kNSKTrMSyP8+t7vLv76O38gh7I8IGXs+oiLBnfTCSGQdT/3ISIRyIAGsi116PsN+iEW2Z8Ub3zcbq8KXZU7Dq+jPcXMhJGDekGfd+8Tj3sX4xvO/QMYFlxVaW6y3Czn25ylWHUbNCeOzgJrR15bCzg6PCDMMw1YS/vK2faLuA1SAsVZfVR7gQ81oj9PuKS0tjwZEYGREmk6hxVB/piA55LKUQMkTkfumI8oiH92H9lK01xcfU5Z56n8tPnYozD9rLsyzq7wOojIhwGJXmX65ZITzaniV5/q0v4McPLS7zaBiGYRhToirLhYmSOOIpaI1Qb5vWU8WBTfX4+yVHYdLwVneZmUe4RNYIdUmN2P3o913YyjmNX3nXNPTvV4d9hrcE2jttwqLzgP6cqYR6JuLpAgDM/fopeOmaU7VtelNXyn5YIkK/+qxnfV2UiR7lm9ynwv8nVEkZOIAaniznpAt5de0OvLp2Bz525HiMGNCvzKNiGIZhoiKKOiEEmNsFtNYIXx9hUba0Klo11GVw+ARvGq+kxTC02ySwLZhum9TjKXPitBF47VunadskjWb6rTGmfZloA6eXWy+aiY6ulHPqSSz89mnqynwSBjq4IsSmP4+wcxYrYGgeaj4i7PDgwg1lGgnDMAwTB+vRePh6U7uAvsSyb5uQTv06+O7PHxOxd3OMIsIx+hNC8SUjzKdZjJfYtF3CfWQ0lhD9cwJHaBVaZSnq6YIZTp8nTx+JM3xWhTRpaaxDY11W26ZaSiwfM2UYgGDqswoYmoeaFcJDW7wJvUtZp5phGIZJj8RZI9yIoD8SpWob3xrR3JDFjHGDNL3Gw8gjHNFozgGjitpH3PFYP816lVuFfRYzFZXzkpYEdscnLctk0hGFlSTeqiVrxHtmjMbL3zjV/ZtRRewrgZoVwv5Ha21cXINhGKYyiLgRRlaWM5yNrvL3ThwW9KYC4RN4ShlEiVMhLIzh/Rtx9Rn7FtoHIt1hAj9iv5qxpalj/vCJWXj0/53gWaY7L7pxqUospyUIK0m8mUyWq5ThDmoOVhmsnNFZ1KxH2A/nFGYYhqkOshHpElSrhDBLHfbNs/ZDQzaDPT3e4EhvpU+TMcl+EX1MxfmpvW0LjVsb63DZ7Cm47fnV2Ly70x1P3D6jaGms80wgBJJnFVBFrJNGlwN9V5B4q5aIsB/XYl5hQ6vZiDAALPruHFw+eyoa6zJo54gwwzBMVRA9WS65+MtmCEdPHqbIY5ssclocaUUrC/34eyzGGnHZ7KmYMiKY5cLcI1xoGec8ykLPH9XXfbaO+POmwjPfr45KEm9x8k9Xoim0gk4lgBoXwv3qs/jS7Cno7Mnj98+uwpqt7eUeEsMwDGNwd44bgRMwu8G6/foah2lvOSKctiiOCuyZpVfzvzf078ZUI/5DP//I8Zg+qj/ef9jYeB0ZQNITgUDqLc12Gfej9U2WqzTlVSZmjB1Y1v3H9Zj3Fn3GGgEA9732Nj5zwqRyD4NhGKZPoyt04aCN/IWEcNyCClqPqXp5mO+ylPOskwjdwHpIWTKU25tHuk325fQ5elATHrjseKP21tjMT2TWU1nOeLNQj3A6WSOK7qIsyKWi//qZoyrCJlppp7JPCeF3dnWWewgMwzB9nmIjq8UIG/L9dAgTzyX1CBsch1Eb2QoQ2D6d8VDI61IgfykJFmMI305VYjnKZmNKOT3CSX4FG+syuPSkyXj3gYVUb/3qs4HiHDLPXXVyZOq2YiiFxzwN+pQQ3rWnu9xDYBiG6fOY3Nh190rVjVSVQ1e5n5DHs6F5hPMCGSpNZDiViDB5jzpolYg9rOjBGJuEi9tNXFxrBHmXpZI+rcLEWxREhK+cNi3WNnsNbIpulAKVNPEQqHGPsJ+dHT1YvGEXe4UZhmHKiJk1wiw66d3G+zPO4/jwiHBhLGmLoajuKBV/azrWCLm5qZBJOnR9VoTwdYXJct6sEX1RCFcilZpHuE9FhN/ZtQen/d+TAIBV159R5tEwDMP0TYq2RijupCJQyDVE7DmPZ33Lw3zHeWFFhEuRdyiNSUMk9WOlkEtXZahsF6UWMklTfzmfYUnyCFdYFJNJjz4RET5m8lAAwILV28s7EIZhGMYoTqtLgWUSSY3q199E5xEu1yx3ayKcft9R1edCi48kOKRi0qfFIZMhNGQznn36x6DbH/mEcF+eLFdJ9NYXqbj0CSH8u4tm4aKjJ5R7GAzDMAziR4QDIlVxI7WKT/g8woq+wm0V4daIlOZbJcLIR5xwXZJ9JSXOZ54h4LcXzMTnT5qEfXzFNnRDdD4nz2S5tDzCxXfB2FRadL1PCOGGugzGD232LHthxZYyjYZhGKavY+ARll77U5upbqMCIpARQlViudCHt5fw9GmibDfuiAJ7VpuEleXUHuGIviL6DGsflywRxg1pxldPmx5rO9cjLPeVVtaIytJuVUmpvPbF0ieEMBD8Y/j9s6vKMxCGYZg+jlHWCPnxdsa/Tn0nJZ8S1uXVDVoj1ONwskaUi+isEYVGvVVFzHiynNQszth0Kc90Yl01Wc6fVSM5FabeqphKK//cZ4TwjLGDPO937Qkmld65pxudPVyKmWEYppTEFWwmEWHl+hiZEXSFJ8p14zb24mrXmY/d1HtdqZPlwvzf1Z41Ik72k2qgwnSwmRAmojlEtJiIlhHRlYr1JxLRDiJ62f73jfSHWhwzxg3CK998l/v+OYU14qBvPYSP/PaF3hwWwzBM6tTCNVuWZf4IoUooWXmEfcs0vQayRoTcnHNClOzGbdZvcTuPM3Zjy4OxNSLZ2LMaZaL3CDvWiPQ/sErQblefsS+ev+qUcg+jaCrhXMpEpk8joiyAXwA4FcBaAPOI6B4hxBu+pk8JIc4swRhTY2BTvfs6lxfYuacbA/rVe9q8+Na23h4WwzBMalTDNVvn3VXht7ZFRXWdn6qqcH77hIMua0QmLLdaiTHNI6zNpJDecKS+EvQa4zNPnG2CvD+lHhP15+mhAsKYg5obMGpgv3IPo2gq4FR6MPnrngVgmRBihRCiC8AdAM4u7bB6h21tXe7rfCkLyjMMw/QeFX/Njps+LWwiW1ifTus45ZHD8wiX19MYbVcoRECTTIDz7iu8rRDxBUzS06b7vHV9FjzCyfaro8K0W5VTWWfTRAiPAbBGer/WXubnKCJ6hYjuJ6L9UxldCehXXzjkrW1dbmSivZu9wQzD1AQVf82OW2LZb42Imizn/Mznw3v2i77Q9GllnCxn5QiOyuQQr3JaS0MW86+eHbq/pMvSRJfpQSfWnXPl/+JS7R7hWqFSK8uZCGHVkP2XsQUAxgshZgD4OYB/KTsi+jQRzSei+Zs2bYo10LR44EvHuzmFz/3lszjlR08gnxdo6wxOnmMYhqlCKv6aXerJcjoqqaBGsTmCk9DUkMWw1sZEE7DCqvKZEGdvSU93xv1s0/t9KfRRYeqtiqm0M2kihNcCGCe9HwtgvdxACLFTCLHbfn0fgHoiGubvSAjxGyHETCHEzOHDhxcx7ORMGNaCD80qHM6KzW2Y/eMncPlfXy7LeBiGYVKm4q/ZJh5hWcz4I4QqG4PcpSNalB7hkP3JYlvWUXnFJLzewmS/UbmGgxkUdNHWIGq7hcHAIvaloyKtEZWm3qoQCvmiUm5MhPA8AFOIaCIRNQD4EIB75AZENIrsIyOiWXa/FVuxYvqoAZ73Kza34dnl1nD794ucP8gwDFPJ1MQ122uN8K+LsAs41ghtQQ0vstb2b1ZWj3DEri37hPn2hbmCKs9DRD+OkEnw1SBWZbmEXpSwyXKVJrz6OpX2aUSqPiFEDxFdCuBBAFkAtwohFhLRJfb6mwCcB+CzRNQDoAPAh0TcacG9zI8/MAN3zFuDuSu3epaPGdRUphExDMMUTzVcs4stsazWNcFOVXOg/Zkl/MvV+48cYmkgSv2RfFJN6Im4m0aEk+2qiDzCIf7vhOPw9p1CJ30c11pTYefSKPxpPzq7z7fsJun1jQBuTHdopeW9h47FWTNGY8r/3O9ZvmjDLnzs5hdw28VHlGlkDMMwxVGp1+yXVm/Dko27jPypuqwRYfdR/3LlY/2QbWWxG8dOUGoiI8IoiGV13mSfrcStQqeyjQR3Ju+ffD+jSJw1InFEuHSfU1mjyhUdVoxPpYVJ+7QPoD6bwVH7DA0U13h62eYyjYhhGKZ2OfeXzwIAjp40NNZ2gUflYVXg3NW22NPkEQ5MlpP2EbBGlCiNcKTFw7yj8FUh1giTtuVCp4P1HmHrp1/kp5I1ovguiqYSxlAMlfL75afPlFgO43vvPbDcQ2AYhulT5Azytssisc6fPk3R3jtZziJWHmGDSVi9HckyLaahFbeB9snVSG9Ndkoa2XW+zPg/pzTsJZUq4qqRCgsIsxCeMKwFh40fHFj+7HKOCjMMw5SCHR3dkW081gjTynK+9zqrgE4gxomilppoa0TU9mbnzqivXjoTOiFsMoZS1Mfi9GnFU6lnsM8LYQCYMqI1sOwjv30Ba7e1l2E0DMMwtYmjbxZt2BVrO39EWCWUiGRrhPVTl/rL34XsQ66UrBFWsYzofWutIL73SY9FthuYp0+Tto8RTtcW1DCJ3JfCGlGpKq4KqbRcCiyEAdRlrd/wQc31nuV7upVliRiGYZgEDOhXH91IQSAirGijymoQzxqRTHyVmuiIb0QbM3u1vS7Cs+x8iTCM7SWNomYlZRJHM+m+ABUL6+DiqdQ0diyEARwx0Zq4ceCYgZ7le7jsMsMwTGokzdNe55utZmyN0BaDCLcMmFadK5ZicwTbrWKtjeMn9q4Lt46YEK+yXLIvJc6qkkQcK1PDVSWVFQ9mIQwAOGvGaDx75ck4Yaq3clJ7l1oI//ihxXhqaXlKRDMMw1QrJhHhzxy/DwCv4DEpqCEU67UFNWIIm7IW1DBQYL11LIWIcLz2cQmr8hdF2KTGdLJGsBKuVVgI24we1BR4/BaWRu1n/12G82+Z2xvDYhiGqRlaDSLCV717XwD+rBEBJWyEOo+weuM41dnSInpymkEfEVHjQHQ14XGa5H4O9Bd7CwtZrMfJAFGwxPiXV3fWiEqLoNYaLIQl/L/nP3t0aVnGwTAMU4sMbi6dR9izXuMRDotq6iKllVxiGYgXrYybkcFjiSiiMli8Esvx+wekSYMlkI6VEA+uUIutMZU6fBbCEg11WQDAGQft5S57e0cHJlx5L877lZUIvtJmOzIMw1QLcQSl3DSQR1jRjXxtLnhFw/v1Rwm1QrhMd8rIiXCIv153bkzGY/00+xy/Nmd6/J0gedaIsGNLQ4BV6kSvaqTSZBQLYYmTp4/AhUeNx7XnHOAuO/NnTwMA5r+1DQ+/sRHX3P16uYbHMAxT1cTJ4iATjAibiZI4+9MLrMpNG0FEsWwdWj1nmhbNrBmOnjwMd372aADA8VOHGW4VFbXWjMvNGlGbEeGqp0JPYp8usexn1MB++PbZlgge0K8OO/f0YEtbl7v+U3+cX66hMQzDVD1xCh14IsJZX/RWEcLxdE3hk+VCC2poxpJxI6GaRiWA7P9MMfFEp5ImLsZ5OGz8YKy6/gzzDeAdY6LJcr7lnEe4Mpg+qj9WbGpDc0O23EPxwBHhEO763DHlHgLDMExNESdSJwu4rD99mmHKMGVluRBRq0/ZVar0acVnhCDDftKk1BFy+QFAnAwQYd7wVEosV2o4s4r44Xkz8JdPHYHRg5rKPRQPLIRDGD2on1G7u19ehxff2lbi0TAMw1Q/SUvfmniEVevVEVL9NnHXlRSTiXKG58Ihru3g8lOnYuSARswYN6jXBLfOI6yjUGEvzdE4nZegzz5GS2Mdjp5kbpHpLVgIh9DcYOYa+dIdL+N99kS6Y67/Ly7+A9snGIZhVCT17JpMsvNUljPp319QQ9O2vHmEi2vjF69xK8sdNn4wXvj6bE8O6FKfjoxWCEcL+WD6tKKHxNaIGoaFsIaDxw3Srm/v6vG8X7e9A4+8ubGEI2IYhqleYnmEpdfBiHCENcLABxvHGpEwQBnKU1ec5E4iiyLyWBExWS7Qn9FutX2VWhMm/eJR2MxvjSge1sG1CwthDdeea02cO/eQMcr1+33jQfc1l2NmGIbRk3Q2f9Y/Wa4oVaLeWNdnXEuAX7j7GTekGYeNH2zUV9oCLGxCmcm+wr5EpE3W4IuMch1KZ40oZ/o0TttaWlgIa9h/9EC8ePVsfP99B0W23dbeFdmGYRimL5PUGhGICJtsFLOJvqBGZLceTD2u/lY/OC94rzHxALsC0KCQhEn6seg+SisK40S4VdsFfs3SsEYU30XRsD2jNLAQjmBoayMa6qJP09Y2FsIMwzA6cglnywXyCIcpAlsBaaO7bh/m+4/7qL4+m+zWetyUZBOJ4uURVqePM9qPwf7SIOlkOWcz/xeCVLJGsAitWVgIG3L/l47Trl+ztT2wbNOuzsT7+/HDS/D6uh2Jt2cYhqk04unggvLwC1GVJin28bFO6MQVwomzHkSUOA7fTrMuIITj7T/u/tJAb43QTZaz1iXNTqKD06fVLiyEDRnQVK9df8ltC9zX+bzA00s34/BrH8GjCSbP5fMCP3t0Kd5z49Oxt2UYhqlUYuURtnVHhlQR4YiNtP06EVHzCXj+R+7PXHkybr5gZmj7KI9wLGKmRwturv4SocuxHL6v3hGDiXcTYo2o9qwR7BAuLSyEDWlVpFMbN0SdFLqtqwdzV24BALy6thDVfWXNdizZuCtyXzn7r7gU32oZhmHKRZJrmrqEsN4aoY8aOv16l8eZLDdmUBMmDm8JbZ88D67ZMu96Cgh1HamkgiuxKjT5/FQUJgKmnzWiEuCodGlgIWxIS6N5ScBde3rw1/lrAAD3vvY2PvDr5wAAZ//iGbzrJ09Gbp/UR8cwDFPJxJosJ/0MWCMUekDuOe6EsIPGDsTw1sbQbVS6VrcP44iwQbNizQpxrBGmVKocc6PdJckakX6fTGXAQtiQOmnyw/Lr3o2l154e2vanjyzFxp2WP3jZO7sxd+VWPLFkk6fN6+t2oK2zR7V5rJsFwzBMtZAX8aOlGaKAZ7SYrBGqpnd+9mjPNV41hjj4070Zj8m/QASjo+OGNOHWi2aGb+PvM/AlIllqsiTtSoHWy21/hH4LThqWDo7G1i4shBOQzZB2VrATDZa58Na57us93Tmc+fOncelfFgTaAUAPR4QZhqlBhBDG0VJXvFAwIqvUNYaXTUfQyMImakTKiLBGXNVlzG6tSaTV/nsNxMnTR/rGYr6PNORcpYrCsMlyqRxzOT3CLAlKCgvhGIwZ1IQPzxrnvj/jwNEAgEP2HhSrnwcXbgAAzF25Vbk+z0KYYZgaJC+EcWoxR3dkKFhyN1SIuenT4kU9k1SqS8UaYdCpf5FfY1t5hC1UginNrBHC9WBrm5UU3Rhdr3RJ9lt+2J5RGoIzwJhQnrnyZM/7r542DZ8+fh8MaWnA+be8gKeWbjbq50t3vAwgPPLLHmGGYWqRfB6oi2kbIFBA2EYFXE0EQ5woqjoiHL590slyyrEEhGzwS0GcR/9xvyQo2xnvLX30OZPtyXIBa0Qa+2UVWqtwRLgIshnCkJYGAMB15x6I9x82Ntb2nT15/Oulde77C26diwlX3oslG3enOk6GYZhKIC+EuW2ACj8D1giFFBPyRib9h7x2+4rYn46zZoyO1V63n7D0Z0mJk2Gi2ijpZLn0u2QqBBbCKTFuSLOyPGYUl/31Zff1k/aEut89szKtYTEMw1QMQgD1hhFhRwBmSBHxLEKVJElRptLuOnF80dETcOdnj4o5MjXBNG/BDBraLBm+99qIcMIxVQrh6dNSmCxXocfMFA9bI1KkmEcnu6UMEt25fBrDYRiGqSjyQiSwRijsAVHbGDw+jzXBTOUR1u4DGNBPX4RJ1W8SS4fq/Oj2EWdffhx52Zs2Ab+o1eEMK58Hjp86HMdNtktWszWC0cAR4ZT5y8VHxGrf0mDlJ/7+/YvcZV0shBmGqUHyQqA+pjUCpLAHKESJ7AvVTqhSvfL155deSYpQmE4KjEvcsZiIepN1lYLJFxgBgT9+YhY+dfw+vTImprphIZwyR08ehq+eNs24fVtXDv98aS12dHS7y7p7atC8xTBMn0eI+JPlMorKclFz0aKitXGJO/eNQLGP09rOi4AIjYa7FhOSsyVE3zucY1FmmDAdZy/q5Ti2hsJkOf/yNEfE1BoshEvAuYeMAQAcuvcgLL/u3aHtnBQ7l//1Fdzzynp3uRwRfs+NT2PClffi/Tc9i2vvfQOvrNke2l9nTw57unNFjp5hGKY0xJks56DywKaha+JljYhnjQCAhpQiwmHRcPk8mqQUK7RNf0y9iUlBkFLkES4nHBorLSyES8DoQU343nsPxE0fOwzZDOGxr5wIAJiz/ygs+u4ct91h4wcrt39ZEruvrt0BAJi3aht++9RKvP+m5wLtt7Z14eePLsXxP3gM0695QDu2fa95AB+7+YWYR8QwDFM8+TiT5exmqohwMY/wCwU1wglkjVBOsNMLMl2luvDtogW3894JpBAiZsv5KCZ9miMwy5tH2GQdS0fGHJ4sVyI+PGtv9/XEYS1Ydf0Z7vs/fGIWRg5oxDfvXhi7365cHo8tegfNDVkcsc9QAMBVd72KBxduNNq+ozuHp5dZ+Y7f2tKGU3/yJO7/0nGYNLw19lgYhmHiYE2WixkRNlzmWZ9CrlyZJB5hE2uESa/B6LR5/0A8m0DUFwyn2FPigiEJiDNZLhNqjaj2mDBTSjgiXAZOmDoc00cNSPyt+uO/n4cP/uZ59/3Ojh5N63D+8+rb6OrJ4x8vrk02EIZhmBgIYV5sQs7uEHgUr+jCVC65c/BipBFLIsaTWCPMhLFtjbD7F0LEzJ+bXBT25C3bXm8KYT8m/u+8v6BGCcfDVD8shMvIV95lPqlOxRN23mH/H/2O9m5V8wBhFw2GYZhSYJVYjpn1QGWNiJA2SSKtOuJ6hInMxKJZujRvI8ca7PTfnRcxK8tZPw8eN9B4GwdbB6daOS+KOH7kQh5hhjGHhXAZmTlhCFZdf4b771cfPRQzxg7EEROHGG1/4a1z0dmTCwjZU378hPt6zdZ25bYrN7fhBw8sBqCPIggh8PNHl2Ljzj1GYwKA/3tkCS68da5xe4Zh+gaxKsv5fnrWqSLCQr8+0HEM4hbUAMzEooltQSHBARSsET25fCK/8+dOnIwHLzs+cowyOXvA2ZgTHoshVnGMsMlyHBJmNLAQriBOP3Av3H3psRjW2mi8zbSrH8C8Vds8yzbv7gQA3Pfa2zjuB4/h4O88FBDEF/2uIFT9ddllXlu3Az96eAm++o9Xjcf0f48sdaPVDMMwDkkmyxEpoqIRXeh1cMFyYU68bQiKaniG2wWW+RY5x37GgVYZZ5PCHd7trQ4yGcK0Uf1jbZsrg0c4DgWLSPqV5ZjahYVwBdKvPut5P3ZwU6J+XlptCeTt7d349r/f8Fwc3tpSEMZPLd0cuHDk8wKf//MCPPyGNQmP07IxDFMsIkH6tAwFZUyYsDGyRDgCO9Yj9/B+iiGRNcJ+f8Vp0/DSNadicEuDlEc4SEAU+vZ58wUzPe/v+PSRuOfSY5RjybsR4cr0CEdNaqzWyPDAJiuvgV8bMOnAWSMqkKYG743iqStOwsSr7ovVxwOvv+1539mTQ4//eZHNog278IMHF+Nrc6a7y3bu6ca9rxX64D9AhmGKJR+joIac5iwshZiMkB6ix5kIZ4LSI6xpn1hwGQlj62cmQxjc0mBvZr5Df9vZ+430vD/SzkakwokIl1UI69aFTZarUgHscNXp+2LC0Bacuu/I6MZMbDgiXIGcc7BVkOOhy4/HquvPABHhkS+fgMtnT3XbfPbESdo+LrltAdZu63Dfd3bn0a0p3fzn59/yvN/T7W3bry6jtVAwDMNEYU2Wi1tQQxERLsIaYdqHjLIaW7RVNXoMES2Lqf4Wus8iOqgEIawjLH2aQ2WOOpqWxjpcfNw+yFToea92WAhXIM4kuqkjC/6tySNa8aXZU3DwuEEAzOwS97++wX09d9VW7PeNB0PbtnflPELXb4V46I2NmHjVfdjdaZ6q7c4X1+KWp1cat2cYprbJ54Wxv1TnEQ6TNGYCOIF3t5dCikmsEqbb6bY3pSI8wgZfQMIyIXE+YUYFC+EqY0R/ayLd6IHJfMNh9OSFW9p5+abduOqu15TtFm/YiaeXbjbq8//9/RV89z9vAAD++dJa/OzRpekMlmGYqkQI84prbtYIMrRGCEjWiOh+46C2RmjsFyUUXFqbhsFDu2I0bK4CPMJaVJF7VL81giktLISrjO+cfQA+duTeOGbyMLx0zamedY98+QRMHZm8Qlx7pxUF/vLfXsFzK7Yo23zw18/jY7e8gN8/sxKPvmlWzQ4ALv/rK/jxw0vcykQMw/Q9kuQRVk+Wi0InUr0/TVCXWDbf3ng/Jm2U+eTC2wfSp8UYj59KsEbovoBE5RFmPcyo4MlyVcaogf3wv+ccCABoqGtwl59/5HhMHtGKTbs6E/f95NJNuO6+NzGwKTwdjzPh7lv/tiK9i/93DgiEhjqz71T7fP0+vPKNd2Fgc7yUPwzDVD95AfOsEST98Kk/9WS5eEInSREK477jNe/VvtOwRpRKCN/1uaMNq+Op4fRpTBKMrkhENIeIFhPRMiK6UtPucCLKEdF56Q2R0fHQ5VZC9PcdNhYA8LuPz8L17z0wVh9fPc2qcPf9+xdh485OLNm421139Rn7YsqI8Cjzu3/6FKZefT/+8sJq4/3d9sJbgWXv7NqDts4evPjW1liRZoZhglTqNTtORLiQ7zcoY4pJk5VEFJUqa0TQ8hG9oWrCVKysEUVowrzrES7Nw+RD9x6Mw8YP1rbRpk/L6CfLMYyKyIgwEWUB/ALAqQDWAphHRPcIId5QtPs+gPAZWUzqTB3ZH6uuP8N9f/C4QTh43CCcNWM0nliyCau2FCrIOXzuxEn45ePL3ff7jx4AAFi/w6oe19yQRXuXZZM4/cC98MLKrVj6zm6oWL6pDQDw9X++ho8csbeyzbSr7/e878kFr1Kzrn0UU0a0uvuRj4lhGHMq+ZothFrI6VB6hKO2MViZjaEI1RPU4h3HxKEtsdqHj8VsmUPAL1tEdLQSPMLaLyD2T/9kOSexHnuFGRUmX+tmAVgmhFghhOgCcAeAsxXtvgDgTgDvpDg+JiEtjXV494F74XMnTsbjXznRs+7CoyfgqStOct9PHzXAs94RwQAwemA/4xzCTy/djB8/tDiwvLPHm4otbEavX2zn8gKvrt1utG+GYVwq9pqdFyJgMzj3kDH4nCIdZKHwRVC8RYlQbUTYXjestSG8kQ9lQQ3t/r1rb71oJn5zwWGR+zHyCMcUsv6rbVGT5exLeaVOlnMmYjY1eO9ZTkR/fEpfRpjawkQIjwGwRnq/1l7mQkRjAJwL4CZdR0T0aSKaT0TzN23iEry9xYRhLW71oMa6DEb0b8S4Ic3u+pEDGjFZYX+487NHg4jQ3ROef1jmY7e8gJ/9d1lkO10+Y5mL/zAP77nxGSxcv8OofW9w5HWP4qM3P1/uYTCMjoq9ZltC2CuiTt1vJK6Qivn4yRAVFcmbPqq/54u/g0n2CmfuQ5QVI4qTp4/EoGZz4e3nsa+c6H5ZUEaEY/RVlDWiEiLCmgOYMXYgvnzqVPzkAwd7ltdnM/jtBTPxl08dUeLRMdWIiRBW/db5v2T+H4CvCSG0dXiFEL8RQswUQswcPny44RCZNJi930g8fPnx+M8XjnUvJF84eTIA68Iywf6m3L9fwS3jeLWeWW6WLs0UJ/L75ts78eyyzUphvGD1Njy22LrxXnjrXOzo6E51DJ09OXzkt8/j5TXbjbe58s5XsWHnHjyzTJ1Rg2EqhIq9ZudFUMhEFT8gCh6QUgtJ/chR072HNHu++MeRcI2uEFaMz6Cj/o3x5qOH9TlxWAua7CdzOg0qDPKnFWWNqIQ8whqICF88ZQpGDOgXWHfqfiMxon9wOcOYCOG1AMZJ78cCWO9rMxPAHUS0CsB5AH5JROekMUAmPaaM7I8pUpGO//euaa4X9/QDRgEAfnP+zMB2R9klN8+aMVrZ70VHT4g1jtVb2q19/vQpfOTmF9DRHbwXt0mFOzbv7sLvnllpv+7E3JVbsWjDzlj79LNkw248u3xLaL5kFXfMWxPdiGHKT0Ves52Z/H4NFSbeHMFMiB8RltvrJqTtLQlkFY4QVnqEDQTl3P+ZjTe+c1pkuzDkM+Nknowbnd53VH/P+2LmuVVG+jSGSReTr6vzAEwhookA1gH4EICPyA2EEBOd10T0ewD/EUL8K71hMqXmfYeNxSn7jsCg5gY8/bWTPL7en37oEGzv6AKB0FiXwXfO3t9TpW7S8BacNWM0/v2K/16rZvHGXfjvokJmiGeXBSPO/lnJzgX4pBsex649lkhedu3pOONnT+OKOdNwSswa7P9+1Rqr83TUuUlz5SGmBqjIa3aYkItKLW5FhM2iyPI27mu/v1h6/e8vHItNu/aE9tNYlw30p+woBL9XNQqduHYnfMXo7x+XHIUDxgz0fYlPISIcMxc0w1QykUJYCNFDRJfCmlmcBXCrEGIhEV1ir9d6zJjqwfGwjR3sjZI0NWTR1GBVsrvh/TM864a1NuLsQ8bg/TPHgQDs2tONumwGD7+hT4H2id/Pd19fctuCwPrzb3nB89658TkiGAC++o9XsXjjLnz1H6/im2fthyMmDsXV/3oN15y5X+SkiN88uQKA5R0DgGOu/687I/qG98/AcVPYusNUJ5V6zc5LEeFF352DL//tZdz32oZAzleHgjVC4Y1QEB5ZDn8/sKlemzc9LY9wGHG+eDunKU4Gi5kThgSWpVJZrowBg97e9a/PPwwL3trWuztlehUjA5MQ4j4A9/mWKS+mQoiLih8WU+kcPWkonl2+BfOvnu0u+9mHDwEALNqwMyCELzhqPP74XDB/cBg9vjDRyi1tHrsEAPzzpXUAgK1tXfjSHS/j4HGD8PKa7SAiHDFxCGZNHIKDxg7S7uel1dvx80eXuqnjAOB///MmHrw8KIQnDW/B8k1tGKXwnzFMJVGJ1+y89NSlX33WOBctIX4MU46sFiOcGrLFeYSjCBR+0KZBc75IFLfjNPIIV2rWiFJw2v6jcNr+o8o9DKaEcIllJhG3XnQ4XpREsMygpuDs6O+cfQBu+thhuPqMfQPrLp891S0MEsa9r76N/b9p2TE+MHOsso0jlJ9euhn/e++beM+Nz6A7l8cPH1zkmWzX5cuC8aOHl3jeL964y3OD2t3Zgx89tBj9+1mRow0794RGsRiGUSN81ghHkIWlU3TWZzIJLEu69GkxZHWD1iNceuR95N2IcLF9Fp9HuFQFNVScffAYnDJ9hPueq8QxacMllplE9KvPhuYXHjWwHx647DhMHNaCaVc/4C6fY0/ImzaqP86/Za67fNbEIZg6sj9OmDocTyzxpmj6yQdn4PK/vuJZdviEIfjb/LWB/W5r7wIAz+S7Wdc+gm3t3Zi3chvGDmnC8VOGG6Vje+D1DThl35E44YePYdOuzkCE+qE3NoZGCX75+DK8+fYu/NyOkDMM47VGAFLxg5Bsim5lOUPpE559wp+D2KAzG0cIl+qLb5TAF57X0R5hk2EWE8x1+s/2oke4tbEOt1x0OCZcea+1gHUwkzIshJmS4BTp+Ounj8Tr670ZHo6bMhyrrj8DOzq68d9FG3HkPpaP7Q+fmIV5q7bi/Tc957Y9cp+hePbKk3H09f8FACy45lRsbetU7nPz7q7Asm3tViR47qqtmLsKuGvBOqPx//G5t/DZPwe9yw472sPTuTmV/GpZCPfk8njXT57EFXOmYc4Be5V7OEwV4J8s5/yUI8JzFF8uMwQMNSx+kXRSWxiONaJbUQ2ztyfWuhF1VYnlGENJY9zl9AgzTNqwNYIpKUfsMxSfPHaict3Apnqce8hYz4X58AlDsPy6d7vvG7IZjB5kTdQ7YMwADGlpwOQR/QN9JWF4/8bQdc+t0OcK3tzWiR0d3bjpieW44NZCdFuOHPUYFg5xaOvswarNVsnqFZt2Y+XmNlx461xceeernnb/XbQR1977hqqLXmNbezdWbG7DV//+anRjhoHsEYb903rh/MUs+u4c/OKjhxY2kBIJnzB1OH5zvr4ym0DQfiF3kwQnItyl+FtOQwoa5Ue2KcYaseCaU/HV06Yl3t5PeQtqlG3XTI3CQpipOLIZcpPH19s3ohevno2/feYot823ztqv6P0cX0RmiB88sBgn/PAxXH//Ijy5ZBMuvHUunlyyCROvKsxPuv/1DQCs4h17unPax6vrtndg/28+iBNveBz5vMDJP3oCJ93wOJ5Ysgl3zFuD3zy5HAtWWzOXP/H7+fjtUysDXmdT/jZvDQ6/9hHk8wITrrwXP/Z5pJdu3IUbHlyMzbs78c27X8fOPcHod3uX5cfe1dnDfmnGCGH/uhYiws4K60e/+qxHYHlKLBPhXTEmLMlayR8BNRFSzjZOVhnV31opBJk2fZrzRSKBBB/S0lDIiZyChK/UghoMkwS2RjAVyU3nH4ZfP7EcrQ3Wr+jQVm/09qJjJmL80BZ8/PfzcNXp07FmWztue341AOA9M0Zjr4H9MKy1Edfe92ag7yvmTMPsfUdi3qqtuHNB0GtsynbJHvHEkk0Bf/MXbn8Jb21pww0PWUJzYFM9vvfeAzGifyP++dI6fPSI8Vi9tQ0nThuBr0uFPfb5umeyPwDguvsWAQAe+fIJ7rL12zswZnAT6jKEN97eiUHNDRhjR891XHnXq8gLK6oNAD97dCm+fOpU/Ouldbjsry+jqT6Lju4c7pi3Bpt3d+KoScNcf7fDbimDx7rtHRg7uBl7unN4cOEGvGfGaM7HzAQIeIQjJss5FKu5AlFXAyHoiM7GescakexLZ5o4Z0lfWS6cAfZk3yEt4eniTOlNj7AfvrIwacNCmKlITpg6HCdM1UdsT5o+wq2M153Lu0L4Z5I399xDx+CnjyzFn54vpG773IlWaekpI1qtiRhPr8Sra60JdJfNngIhgJ8+utSzry+cPBljBzdh6sj+OPeXzxofhyOCAWBHRzc+J/mO//zCauN+HGb/+An39aINO3HiDY/jMyfsg18/YeVFPu+wsXjPjNE4bsowjxj98cNL8PP/LsWK696NDBHyQuD6+xe56/8+f42b3s6ZbLh5d6c97qD3ereUz3npxt0YO7gZ19+/CL9/dhV2dnTj/KMmoDuXx88eXYqLj9tHm6s1jN2dPTjtJ0/iJx88GLMmDsHji9/BzAlD0BqzbK2fRRt24pllW0ItO0xpcIVwpjAJDggXb548wgbITyb0leWMugMge4RV1oj0JZnWGpEXoW1MRvK+w8aiK5fHB2aOi24cAXuEmVqChTBTE9RnMxg1oJ+bOcJhWGsjvnvOAfjmWfvhpieWe8pEExHOPngM3jNjNK699020dfXgkhMmQQhg9r4jsf/oAfjcnxfggYUbcNaM0Zhql6e+fPZUDGyqw7f+/YYyP/IlJ0zCTU8sT+W4poxoxYnThuO3T60MrPvHi9bEP0cEW8vW4h8vrsXFx07E1Wda9pGF63fgZ7aw/8nDS1zhIU8cfHzxJuUkHAB4ec0OTBi6BUfYpbYBoK2rIIQ32YJ59VardPY1dy/ENXcvdNdv3t2J8UNbcOzkYThgzEDjY39t7Q6s296BHz64CL/86GG46HfzcNK04fjdx2dha1sXHn5jA5a9sxtfPW266+U04ewbn0FnTx4XHT2hT+VDLTcFj6ttjXCrOuq3S/IJUchr4+3tMTpCuFNjjchQdHW8NChEhJP9zmYzhI8dOV65bmBTvSfFpElf5YKfNjFpw0KYqRmeuOLE0JtqXTaDS0+eolxHRK5odDhwrCXYbvjADJy9pCCCAeBLs61+Ljx6AgBgysj+WLmpDbc+Y4nVE6cNR1dPHrc+sxKXz56KF1dvw7pt7Vi+qS3yGIa1NmLe/5yCtq4cenJ5NNRlUJ/N4Pa5a1w7QoaAwc0NeOTN8Op9Nz+9Ejc/vRIfOWJv/EWKPP/sv8tCtwl72nn73NW4fa7Vx7JrT0ddNoMFb21316/f3lFIbaTg2eVbcPvcNZg+qj8euMybL3rjzj0Y0b9ReXO7/gErYp0hcr/gPG2X4/7UH+fjRbva0+EThuDzf1mA7pzAo//vBEwa3ho6FqAgatq7etzc0EzpET5rhCNRw/MIe7NLxEH+fQp4hA22D1ojgmN0xt1Ql8Ge7mTWiUC0WtM2ykJSDA9ffjzWbe8wbl9OjzDLYCZteLIcUzM01oXnNk5Ka2MdTj9QnR6MiEBEOP/I8fja6dPc5ZNHtOLqM/bFbZ88Al88ZTL++IlZuP59Bxntb9LwFhARWhvrMKi5Ac0NdajPZvC7jx8OwJr0svDbc/CnTx5h1N9fDO0X9772Nhas3h7Z7sO/fR7fumchbnysIKj/75Glmi2At7ZYkeJFG3bhHy+uxdyVW5HPC6za3IYjrnsUn71tASZceS/+Nm+NZ7tX1hTG8/jidwBYguSI6x5xRTAA/PapFa5QufmpFVi3vQP/eXV95CS+GzVfCpj08adPc0RglDUijvIxsQ3EiSiee8gYtDbW4b2HjAmsc6LFXz1tuvkAYyL/CqsyYgTbJxPLIwb0wyF7DzZuz09SmFqCI8IMkwKNdVl8/d3T8c+X1mOYPbHv2CnD3PWH7T0YXzh5Ml5avR2z9x2B6XsNwId+8zwA4O7PH4Onlm5Cv/oszlHccAEr6vmvzx+DloYsmhqy2G/0gNhjVD3+vPqMfXHDQ4tDI1p//MQsT3q4eau2Yd6qbcq2Jnzl71ZxlG+dtZ8bdX9goZVd44o7X0VjfQY9OYFzpfPwwsqteGHlVvf9xp2FPNLTR/X3jOf2uWtw+1xLUIsPw2OF8fPrJ1fgqncHKx0ypcE/Wa6QNSK9yXJOV55NYkRd3Ta22Nx7SDNe//ZpWLFpd6BNXTbjzlH47n/SSWeoE+nCl36unJTTnlAJx8/UFiyEGSYlPn38JHz6+EnKdZkM4f+9a5pn2YJrTkW/+gyaG+owY9ygyP4P9rX54smTMW/VNkwe0YpT9h2BScNbkcsLjB/a7EnjBgAfPWJvXHPmfvjLC6tx54K1+OSxE/HeQ61S1R+etTc+8tvn8craHRjS0oCtbZYN4cWrZ2NoayP+59374uE3NmLuqq2Iw8zxgzH/rW04cMxAXHvuAXjPjc+467717zeUGS6+dMfLAIBv/3thYJ2Ky0+dis/86UXlure2WFaUnlwe19+/CD15gVfWbve0eXrpZs8XFqZ0FPII+wtqqNsX0qcZTpbzbFx46X+MbyKkKjElYLEeYYZh1LAQZpgyMaTFrFpWGF/2CWuZZ688GQOa6pEhoLmh8Gf+iWMn4hO+bAktjXW4+9JjsXzTbgxrbURndw4ChZR1nzp+H1x49AT88vFl+OgR43Hz0ytw3OThmDyiFUd+71EAwHXnHoiPHLE39nTnMP2aB/Dp4/fBZ0+YhAWrt+GUfUcqx6jzJO6UslI4vPfQMZ4JfmMGNeHYyV4RO31UfyzasAuAlbFjwertyAuBxxd7U9s5fOyWF7D8unfzo95ewP9o3znjUd7XeFXTgsvk3/+k9FYE1MQjrLR/9KFf31Jk62D6NiyEGaYGGW2QT9iPO8lMkeqsoS6Dy2ZPBQBcdXrBTvDr8w/D+u0d+MgRewOwiiI4j4sBeETwY185ESfd8DimjGjFfqMH4O6X1wMA3n/YWPz9xbX43nsPRHtXDss37Xa9zXsN7Ic/ffII7DOsBUTAuMHN2Nbeha/bloZ+9Vk8/bWTMLCpHtkMobmhDvm8wHk3PYsFq7fjv4veiTzuO19ciw8cXnxKKUZPMI+wnT4tLCKMIibLSWLJP2/ARNSeNG0E7nppXepzDvzEOTR/1g0VlRfHZpjKh4UwwzCJOS1Gta+Jw1rwyjffhdbGOmQzhBOnDcflf30F3z3nAHzh5CnYe2gzACtn6wGjB+Lr/3wN7zt0LCaPKGSBuPzUqYF+xw5u9rzPZAh3fe4Y3P3yOtdqERz3SHzmhEn49r/fQGs/vgz2BmGT5cKzRnh/RhEmqJsSiNnr33cQLj91KlrsnNW9FYPUHavS/9wH6UvRb6Z34DsAwzC9hlxY49xDxuLcQyyfsiOCASsn9IcOH4fBzfU4dT+1rcKEMw8ajXmrtuLMg0ZjSEsD2jp7cMjeg/HwGxsxa+IQDGyqxz8/ezTfWHsJ/6P9UjziPnzCEADAuw8c5VaNbGqInxypoS6DcUOaoxsWSbxz4ETU+ReWYdKEhTDDMBVHJkOhaetMyWYI/3vOgYHlsrgOKyLCpI9Tnc1JO+ac+qh5aXGE39SR/bHq+jM8leCSRIT9lEp7Cp+ZQWd7yNuHpP6V7Z3f40e+fAJWbY7Oh84w1QTnEWYYhmFKTqedos+pAjhigDUZc2CzvqhJEhEqb1Jqn29vccq+IwDAKMNMqZg8ohWzi3hKkwYcEGfShiPCDMMwTMlxKvo11lnC9BPHTMTw/o04e4Y6d3ahhHFxyicNIVyqTAVx+n3X/qOw9NrTUZ/l+BXDpAkLYYZhGKbkdDlC2C5bXJfNuB5xFY5ITCJBZYtBGtaIcuG3TkSJ4ApMf5w6nD6NSRv+askwDMOUnM6eHICCR9iUYq0RTQ2V6xFOq1+2CzBMclgIMwzDMCXHHxGOopA+LUEeYWmTWvEIMxYs+pm0YWsEwzAMU3Icj7BpRJh8P5NSydaIn33oEPz2qRX44OHjQktNJ+GWC2eyl5hhDGEhzDAMw5QcxxrRGFOYJrJGyB7hFKwRpWLCsBZce24wxV9SHC0dVta8FuCAMJM2LIQZhmGYkrGjvRuX3r4Ab21pBxAjIkzJSyzLVHIeYSY+SawyDKODhTDDMAxTMh56YwOeWrrZfW/qEXYoVvf05xLaDMNoYBMRwzAMUzL2dOc87xvrYnqEi1TCLY3FC+FKj0JW9ujSpS8dK9M7sBBmGIZhSoYzSc7B3Bph/0x7QLVMX0gkzDApw0KYYRiGKRmyEG7IZmJHV4uJxu49pDnxtp4xpNILkwYVHpxnqhA2TzEMwzAlo1OyRnTn85qWXgqT5ZLt967PHY19hrW472+9aCYefuOdZJ2VCQ7wMkzpYSHMMAzDlIzOXEH8JhF2Kh0sDDo6dO/BnvcnTx+Jk6cnSytW6VHISvcwp0lfOlamd2BrBMMwDFMyOrvNo8AqWPgwDFNKWAgzDMMwJcM/WS4ORJURjSV2CTNMzcJCmGEYhikZnT05jBnUlHh7FqHmsKWYYeLDQphhGIYpGZ09+dhFNBwIySfLpUklRKV1VPjwGKai4clyDMMwTMno7M6jsS6LV7/1LuTz8WKWRFTxIlRm5IBGbNzZWe5hMAwTAxbCDMMwTMno7MmhsS6DAf3qE21fCdYI0xE8eNnx2N7eXdKxMAyTLmyNYBiGYUpGZ0/euKyyHwKQqaK71KDmBkyQchcnYem1p+PDs/YGEN/zy3mHGSY+VXSJYRiGYaqNrp48GuuzRfRQ/ohwb1KfzcS2g1STfYRhKg0WwgzDMEzJKCoiXCHp0/qYFmeYPgULYYZhGKZkOB7hJBCoIrJGMAxTu7AQZhiGYUqGkzUiKZUxWa78YzBBcCZhhokNC2GGYRimZBSTRxhUGXmEe5s+eMgMUzY4fRrDMAxTMrpzedQXoWapAkzCUUO46WOHYmBTQ+8MhmGYVGEhzDAMw5SMvBDIJBTC5ZfAZsw5YK+y7n94/0YAwDGThpV1HAxTjRg9ryKiOUS0mIiWEdGVivVnE9GrRPQyEc0nomPTHyrDMAxjQiVds4VI7rElAjKKcGxvO2ErXZDvNbAJT11xEq6YM73cQ2GYqiNSCBNRFsAvAJwOYD8AHyai/XzNHgUwQwhxMIBPALg55XEyDMMwBlTaNVsIUZTPtwKcEb3OR48YjwwBp0wfYbzNuCHNyPZFQzXDFIlJRHgWgGVCiBVCiC4AdwA4W24ghNgthFvTpgW9/4WdYRiGsaioa3ZeoAhrRGXka+htn/J+owdgxffOwOhBTb26X4bpi5gI4TEA1kjv19rLPBDRuUS0CMC9sCIMAYjo0/ZjuPmbNm1KMl6GYRhGT0Vds/NCJI7qnn/UeJwUIyrK1C4zxw8u9xCYGsVECKsuYYHogRDin0KI6QDOAfBdVUdCiN8IIWYKIWYOHz481kAZhmEYIyrqmi2E2udrwtffvS+OmRycACZ6+ZljJUSl+zp//OQsPHXFSeUeBlODmAjhtQDGSe/HAlgf1lgI8SSASUTE01cZhmF6n4q6ZueFSF1IcuGIvkdzQx3GDWku9zCYGsRECM8DMIWIJhJRA4APAbhHbkBEk8k2URHRoQAaAGxJe7AMwzBMJBV1zRZIHhGuFKp8+AzDaIjMIyyE6CGiSwE8CCAL4FYhxEIiusRefxOA9wG4gIi6AXQA+KA0EYNhGIbpJSrtmp0vMmuECr67MAyTFkYFNYQQ9wG4z7fsJun19wF8P92hMQzDMEmolGu2EMLKI1zlIdXKyF3BMEwpSFgAnmEYhmH0OJHbtK0RHBBmGCYtWAgzDMMwJSFvK+G0dPA1Z+6H1sY6V2CfedBe+MH7Dkqncx0cEGaYmoWFMMMwDFMSnMhtWh7hTx47Ea9/+zS356MmDcUHDh+n34hhGEYDC2GGYRimJBQiwqUJqfaWd7fKLc4Mw2hgIcwwDMOUhJJ5hNkkzDBMSrAQZhiGYUpC2h5hh48eMR4AcOK0QrW7jx8zId2dSHBAmGFqF6P0aQzDMAwTl7wbEU633wPHDsSq689w38uvGYZh4sARYYZhGKYkODU6qr+yXHWPn2GYcFgIMwzDMCXBiQizkGQYplJhIcwwDMOUhEJEuMwDKZIqHz7DMBpYCDMMwzAlwY0Il3cYDMMwobAQZhiGYUqCGxGu8pAwOzsYpnZhIcwwDMOUhFrxCHPeYoapXVgIMwzDMCWhVjzCDMPULiyEGYZhmJKQL1Flud6myofPMIwGFsIMwzBMSXAry5V5HAzDMGGwEGYYhmFKgmOtrfaIMMMwtQsLYYZhGKYk5G1vBOtghmEqFRbCDMMwTEkQNeIRZhimdmEhzDAMw5SEvJtHuMwDYRiGCYEvTwzDMExJKEyW44gwwzCVCQthhmEYpiQ4k+XYGcEwTKXCQphhGIYpCYWCGqyEGYapTFgIMwzDMCWhVgpq1GetW+V7Zowu80gYhkmbunIPgGEYhqlN8jVSYrk+m8HL3zgVrY18y2SYWoP/qhmGYZiSkM9bP6s8IAwAGNTcUO4hMAxTAtgawTAMw5QEAaegRg0oYYZhahIWwgzDMExJ4IIaDMNUOiyEGYZhmJJQKx5hhmFqFxbCDMMwTElwskZwQJhhmEqFhTDDMAxTEpw8wuwRZhimUmEhzDAMw5SEWskjzDBM7cJCmGEYhikJgj3CDMNUOCyEGYZhmJLAEWGGYSodFsIMwzBMSXCyRrAMZhimUmEhzDAMw5QE4WaNYCnMMExlwkKYYRiGKQnsEWYYptJhIcwwDMOUBNcjzEqYYZgKhYUwwzAMUxK4shzDMJUOC2GGYRimJDhCmKfLMQxTqbAQZhiGYUqCI4M5IswwTKXCQphhGIYpCYXJcqyEGYapTFgIMwzDMCUhn7d+shBmGKZSYSHMMAzDlAS3oAbrYIZhKhQWwgzDMExJyLsFNco7DoZhmDCMhDARzSGixUS0jIiuVKz/KBG9av97lohmpD9UhmEYxoTKuWazR5hhmMomUggTURbALwCcDmA/AB8mov18zVYCOEEIcRCA7wL4TdoDZRiGYaKppGu2W1CDhTDDMBWKSUR4FoBlQogVQoguAHcAOFtuIIR4VgixzX77PICx6Q6TYRiGMaRirtlcUINhmErHRAiPAbBGer/WXhbGJwHcX8ygGIZhmMRUzDWbPcIMw1Q6dQZtVJcwoVgGIjoJ1kX12JD1nwbwafvtbiJabDJIH8MAbE6wXTVQy8cG1Pbx8bFVL0mPb3zaA0mJirtmT/l+zf7+8N9G9VLLxwbU9vGles02EcJrAYyT3o8FsN7fiIgOAnAzgNOFEFtUHQkhfoMivWhENF8IMbOYPiqVWj42oLaPj4+teqnB4+Nrdi9Ry8cG1Pbx1fKxAbV9fGkfm4k1Yh6AKUQ0kYgaAHwIwD2+Qe0N4C4A5wshlqQ1OIZhGCY2fM1mGIYxJDIiLIToIaJLATwIIAvgViHEQiK6xF5/E4BvABgK4JdkmcF6avWbCMMwTCXD12yGYRhzTKwREELcB+A+37KbpNcXA7g43aGFUsup2Wr52IDaPj4+tuql5o6Pr9m9Ri0fG1Dbx1fLxwbU9vGlemwkhHIOBcMwDMMwDMPUNFximWEYhmEYhumTVI0QjioZWukQ0TgieoyI3iSihUT0JXv5ECJ6mIiW2j8HS9tcZR/vYiI6rXyjN4OIskT0EhH9x35fS8c2iIj+QUSL7M/wqFo5PiK63P6dfJ2IbieiftV8bER0KxG9Q0SvS8tiHw8RHUZEr9nrfkbE2XDjwNfsyvvb8MPX7Ko+vpq5bpf9mi2EqPh/sCZ8LAewD4AGAK8A2K/c44p5DHsBONR+3R/AEljlT38A4Ep7+ZUAvm+/3s8+zkYAE+3jz5b7OCKO8csA/gLgP/b7Wjq2PwC42H7dAGBQLRwfrEILKwE02e//BuCiaj42AMcDOBTA69Ky2McDYC6Ao2Dl5b0fVpqxsh9fNfzja3Zl/m0ojpGv2VV4fLV23S73NbtaIsKRJUMrHSHE20KIBfbrXQDehPXLfDasP1jYP8+xX58N4A4hRKcQYiWAZbDOQ0VCRGMBnAErL6lDrRzbAFh/qLcAgBCiSwixHTVyfLAmzTYRUR2AZlg5Z6v22IQQTwLY6lsc63iIaC8AA4QQzwnrCvtHaRsmGr5mV+Dfhgxfs6v3+Gxq5rpd7mt2tQjhuCVDKxoimgDgEAAvABgphHgbsC68AEbYzartmP8PwBUA8tKyWjm2fQBsAvA7+zHizUTUgho4PiHEOgA3AFgN4G0AO4QQD6EGjs1H3OMZY7/2L2fMqNbfEyV8za66Y6vZazbQZ67bvXbNrhYhbFwytNIholYAdwK4TAixU9dUsawij5mIzgTwjhDiRdNNFMsq8ths6mA9tvmVEOIQAG2wHtWEUTXHZ/uuzob1iGk0gBYi+phuE8Wyijw2Q8KOp9aOs7epmfPH12xrE8Wyijw2m5q9ZgN9/rqd+jW7WoSwUcnQSoeI6mFdUP8shLjLXrzRDunD/vmOvbyajvkYAO8holWwHoGeTES3oTaODbDGu1YI8YL9/h+wLrK1cHyzAawUQmwSQnTDqjZ2NGrj2GTiHs9a+7V/OWNGtf6eeOBrdlUeG1Db12ygb1y3e+2aXS1COLJkaKVjz168BcCbQogfS6vuAXCh/fpCAHdLyz9ERI1ENBHAFFhG8IpDCHGVEGKsEGICrM/mv0KIj6EGjg0AhBAbAKwhomn2olMAvIHaOL7VAI4komb7d/QUWF7IWjg2mVjHYz+K20VER9rn5QJpGyYavmZX8N8GX7MBVPHxoW9ct3vvmp3WrL9S/wPwblizdpcD+J9yjyfB+I+FFaZ/FcDL9r93wypz+iiApfbPIdI2/2Mf72JUyYx1ACeiMAO5Zo4NwMEA5tuf378ADK6V4wPwbQCLALwO4E+wZuNW7bEBuB2Wb64bVpTgk0mOB8BM+5wsB3Aj7AJE/M/4c+BrdgUch8Fx8jW7Oo+vZq7b5b5mc2U5hmEYhmEYpk9SLdYIhmEYhmEYhkkVFsIMwzAMwzBMn4SFMMMwDMMwDNMnYSHMMAzDMAzD9ElYCDMMwzAMwzB9EhbCTJ+FiE4kov+UexwMwzBMNHzNZkoBC2GGYRiGYRimT8JCmKl4iOhjRDSXiF4mol8TUZaIdhPRj4hoARE9SkTD7bYHE9HzRPQqEf3TrskOIppMRI8Q0Sv2NpPs7luJ6B9EtIiI/mxXpGEYhmESwtdspppgIcxUNES0L4APAjhGCHEwgByAjwJoAbBACHEogCcAfNPe5I8AviaEOAjAa9LyPwP4hRBiBqya7G/byw8BcBmA/QDsA+CYEh8SwzBMzcLXbKbaqCv3ABgmglMAHAZgnv3FvwnAOwDyAP5qt7kNwF1ENBDAICHEE/byPwD4OxH1BzBGCPFPABBC7AEAu7+5Qoi19vuXAUwA8HTJj4phGKY24Ws2U1WwEGYqHQLwByHEVZ6FRNf42ulqhesenXVKr3PgvwmGYZhi4Gs2U1WwNYKpdB4FcB4RjQAAIhpCRONh/e6eZ7f5CICnhRA7AGwjouPs5ecDeEIIsRPAWiI6x+6jkYiae/MgGIZh+gh8zWaqCv4mxVQ0Qog3iOhqAA8RUQZAN4DPA2gDsD8RvQhgByxPGgBcCOAm+6K5AsDH7eXnA/g1EX3H7uP9vXgYDMMwfQK+ZjPVBgmhezrBMJUJEe0WQrSWexwMwzBMNHzNZioVtkYwDMMwDMMwfRKOCDMMwzAMwzB9Eo4IMwzDMAzDMH0SFsIMwzAMwzBMn4SFMMMwDMMwDNMnYSHMMAzDMAzD9ElYCDMMwzAMwzB9EhbCDMMwDMMwTJ/k/wPrZJbR5N6crgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "247ns_image_2734882394424_CLEAN.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADDCAYAAAAya0IYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADaRUlEQVR4nOz9ebRseX7VB+4TETeGE8MdXo5VlFSqkgS2wKiBVuPFwhZgMzVzN7SEGzACSnSbHvAAiLYNhoWNGzDtXl5gFwYLMEaAmYdmMI0MXkaMhoWEJFoSVaVSZeYb7r0RcU7MEaf/uPfzi33Ou1k5vay8mfnda+V678WNOMPv9zuRd+/v/u5fVlWVAoFAIBAIBAKBQCAQCATeClrv9QUEAoFAIBAIBAKBQCAQeP8hBIVAIBAIBAKBQCAQCAQCbxkhKAQCgUAgEAgEAoFAIBB4ywhBIRAIBAKBQCAQCAQCgcBbRggKgUAgEAgEAoFAIBAIBN4yQlAIBAKBQCAQCAQCgUAg8JYRgkLgS44sy74ry7Kvf6+vIxAIBAJHZFn2mSzL/rU3+d4qy7KvfJvnedufDQQCgUAgcL8QgkLgS46qqr6mqqpvf6+v442QZdkvzrLss1mWlVmW/Zksyy7e62sKBAKBDzKyLOtlWfYHsiybZVn2apZl//Z7fU2BQCBw3/Cshdk3c7z4vTjweghBIRC4A1mWfY2k/0rSL5H0oqSFpN/znl5UIBAIfPDxmyV9laQvl/STJP26LMt++nt6RYFAIPAhR/xeHPhiCEEh8CWH22qzLPvNWZb9iSzL/tssy+ZZlv2TLMu+Osuyb8my7GGWZT+YZdlPtc/+8izLvvv2vT+QZdk3N47967IseyXLsi9kWfYrXXG9rXz9zizLPpdl2WtZlv2XWZYNXucy/w1Jf76qqr9ZVVUh6T+Q9AuyLBu/O6MSCAQC9wdZln1dlmV/O8uy69vv1P8iy7Ju420/8/Z7+HGWZb8jy7KWff6bbr+rr7Is+ytZln35mzz1L5X0W6uquqqq6rsl/T5J/+azuatAIBC4P8iy7F/Isuzbb79nvyvLsp9jP/v2LMt+pf3738yy7H+6/fvfvH35H2dZVmRZ9n/Isuzrsyz7fJZlv/H2O/kzWZb9G2/3eHdcbvxeHHhdhKAQuA/42ZL+sKRzSf+LpL+im7X5UUm/RTeKKHgo6WdJmkj65ZJ+d5ZlP0aSbqtY/7akf03SV0r6Vxvn+U8lfbWkr739+Ucl/Yevc01fI+kf84+qqr5f0ub284FAIPBBx17Sr5X0nKR/WdJPkfR/brzn50v6cZJ+jKSfK+mbJCnLsp8n6TdK+gWSnpf0tyT90Tc6YZZl55I+Ivvuvf3717z92wgEAoH7hyzLTiT9eUl/VdILkv4vkv5IlmU//I0+W1XVv3L71x9dVdWoqqo/dvvvl3Tznf1RSb9M0qff4fEc8Xtx4HURgkLgPuBvVVX1V6qq2kn6E7r5BfS3V1W1lfRtkj6eZdmZJFVV9Rerqvr+6gb/o26+iH/i7XF+kaT/pqqq76qqaiHpP+IEWZZlkn6VpF9bVdVlVVVzSf+xpG94nWsaSZo2XptKCiU2EAh84FFV1T+oquo7qqraVVX1Gd0Iu0+JtLffp5+T9P+S9I23r3+zpP+kqqrvvv1e/48lfe2bcCmMbv/079743g0EAh9E/HjdfOf99qqqNlVV/X8l/QUdv0ffLv6DqqrWt78j/0Xd/G78LBC/FwdeFyEoBO4DXrO/LyU9rqpqb/+Wbn/RzLLsZ2RZ9h1Zll1mWXYt6WfqRo2VbipbP2jH8r8/LymX9A9urWXXkv7y7et3odCNC8IxkTR/szcVCAQC71fctp79hdtgxJluRIHnGm/z79jP6uY7WLrJP/jP7bv2UlKmm6rZF0Nx+6d/98b3biAQ+CDiI5J+sKqqg732Wb3x9+QXw1VVVWXjeB95vTe/RcTvxYHXRQgKgfcNsizrSfqTkn6npBerqjqT9Jd084uqJL0i6YfZRz5mf3+sG3Hia6qqOrv977SqqpHuxndJ+tF27k9I6kn6Z8/iXgKBQOCe4/dK+h5JX1VV1UQ3LQxZ4z3+Hftlkr5w+/cflPTN9l17VlXVoKqq//mLnbCqqivdfI//aHv5R+vm+zgQCAQ+SPiCpI959oxuvkd/6PbvpW4KYeClN3HM8yzLho3j8b38do7niN+LA6+LEBQC7yd0dfPl9UjSLsuynyHpp9rP/7ikX34bcpPL8hFuFeDfp5vMhRckKcuyj2ZZ9tNe51x/RNLPzrLsJ95+Of8WSX/qtlUiEAgEPugYS5pJKrIs+xGS/k93vOffy7LsPMuyj0n6v0mi7/a/lPQtt6ngyrLsNMuyX/gmz/uHJP37t8f9EbppVfvWd3AfgUAgcB/xd3RD8n9dlmUnWZZ9vW4yxb7t9uf/SDehh/ltuPivaHz+NUmfuOO4/1GWZd0sy36ibjLH/sQ7PB6I34sDr4sQFALvG9x+af1fdSMcXEn6xZL+nP38/yPp/y3pb0j6Pkl/+/ZH69s/f/3t699xa+H9HyTdGVZTVdV3SfrVuvkCfaibX66bgWSBQCDwQcW/q5vv2LluxNi7Qrr+rKR/oJtfVP+ipN8vSVVV/WndhOB+2+137XdK+hlv8ry/SdL368aq+z9K+h1VVf3lt30XgUAgcA9RVdVG0s/RzXfjY91swfhLq6r6ntu3/G7dhB6+JukP6ub3UcdvlvQHb1vLyEl4VTe/H3/h9v2/+h0ez683fi8OvC6yqqre62sIBN4VZFn2L+jmF9nebTBYIBAIBAKBQCDwgcKtw+G/rarqh73BWwOBZ45wKAQ+UMiy7OffWr3OdVMh+/MhJgQCgUAgEAgEAoHAs0cICoEPGr5ZNxkL36+bfdTv6vsNBAKBQCAQCAQCgcA7xLsmKGRZ9tOzLPveLMu+L8uy3/BunScQcFRV9dNvd2+4qKrq51dV9cp7fU2BwHuF+B4OBAKB9x7xXRx4t1FV1bdHu0PgvcK7kqGQZVlbN9uI/OuSPi/p70n6xqqq/ukzP1kgEAgEnkJ8DwcCgcB7j/guDgQCH3S8Ww6Fr5P0fVVV/cBtium3Sfq579K5AoFAIPA04ns4EAgE3nvEd3EgEPhAo/MuHfejkn7Q/v15Sf+b13tzt9utRqORJOlwOAjXBH+2Wi1lWaYsy9LPq6rSycmJWq2WqqrS4XDQ4XCoHbfVOuolWZbVfsZnHFmWqaoq7Xa7dG7O22q11Gq10nl2u91T18ZxsyzTfr9X0/3R6XTUbre12+203+/Tcfk8n/V7r6pK+/1eh8NBrVZLnU4nvdfvg8/65/0e/Jiv9+/9fp/uy++NeblrHP3fnNPHyz/r7/N79s8wvlVVqd1uP3Uvfk6/71arpXa7ndaDj1m/31e321WWZdput9put7Wx5BybzUabzUb7/b52782xaMLvgTXq99lut9O9+NxzL/yc8fDx4tj+XDBGfNbH2K+zeT2Mz13zybU21z1j6ePP2DF+WZap0+no5OSkNgeHw0Hb7Vb7/V6S0s85P69zfr9Hvzbml/cwt3f9bLvd1sa9uQ4ZT9Y648h7+JmP5Wq1elxV1fN3Tv79xlv6Hpak9mhYfeIrDnrtOwfv6oUFAoHAW8FKpTbV+u7/Cd9/vKXv4vgeDgQC9xVzXd35O/G7JSjc9aVfY9dZln1K0qckqd/v6yf/5J+sdrutzWaj9Xqtw+GgzWYjSRoOhxqNRsqyTIvFQovFQrvdTi+++KLG47F2u52Wy6XW67Xa7bb2+72Wy6WyLFOv19PhcNBgMEik8nA4aLVaablcar/fq9vtqt1up9fLstRqtdJut1O73Vav19NkMtFoNNJut9N0OtXl5aXKslSv19NoNNJ4PFZVVdput9rtdtrtdun6IS6TyUSnp6fpHLvdLhEzyHS3203X2W63tV6vNZ1OdX19rVarpdPTUw2HQ7VarfT51Wql+XyuqqrU7XbTGEOWGIPNZqPD4aBOp1N7j3RDnhaLhS4vL7XZbBLB6vV66na72mw22u12Ojk5UafTScfjOrMsS/fdbrfTnJ2cnKgoCm02G52cnKQxyrJM/X5fm81Gi8VCkpTnuVqtloqi0GKxUJ7nGgxu/oe63+8T4WfMd7ud5vO51uu1ut2u8jzX+fm5Op2OlsuliqJQVVW6uLjQxz72MT148EBlWerJkydqtVqaTCbq9XqJRL7yyiu6vLzUfD5PpPJwOKjdbuv09FT9fj8JF/y8qioVRaH9fq/hcKiTkxOtVqt0j7vdTv1+X2dnZxqPx7q6utJqtUrEmHEYjUYajUaJFC+XyyRssZ73+306d1mWWiwWyrJMg8EgPTu9Xk+np6fp2nq9XlqDnU5HeZ6r0+mkczDPiBqIXvy9qirN53PNZrOaODCZTHR+fq7z83O1Wi0Nh0O99NJL+shHPqLhcKiqqrRarfTo0SNdXV1ps9nowYMHuri4UL/f13w+1+XlpXa7nbbbrVarVSL2CIXcQ6vVUq/Xg9zr+vpaZVlquVyq0+kkwWi/3+vJkydaLBZqtVppzE9OTpRlmcqyTM9AURTpOa6qSv1+P61P3tfpdNTtdvU93/M9n32L33/3BW/4PSw1vouV6+Pf9bP08ffrr+2BQOADib9T/fX3+hLeCd7a78TxPRwIBO4p/ofqv7/zd+J3S1D4vKSP2b9/mKQv+Buqqvq0pE9L0unpaQWx9eo/FWaqoBAD6YYAU22m8gi5QByYzWaJSFGthExzzN1uV6tQcm6I+W6302KxSMfOskzdble9Xi8JD71eT/v9PhHOZoW63+8nsr3b7RJJRvTgepxEtdttdbtdnZycJPJZlqXW63Wq9O73e3U6HfV6Pa1WqySCQERPTk6SQMHrfnxECb9n7jvLMm02m0SMvYKMoIA44M4KH1vmCQIrKX2WSj3kFSGGarMkrdfrNO7cM0IN997tdtPxINgXFxc6OTlJgsVut9PV1VU6/8nJSU3w2e/3yZXg48U98jPmf7/fazKZqNVq1YQpxrDT6WixWCTxptvtJudLv99Pa1tSur7VapXmi3Ww3W61Xq/TmLsjoNfrJSK+Wq1qghmk3Cvt7h5gTVZVlUQ4rtNFBd6LIwCxb7lcajabpfsbjUYqikIPHz5M4hXPAc6P1WqlJ0+eSJJGo5GWy6WWy2VyizCnXIM7JFyoYr0x576me72ezs7OdHJykkRHd/b0+/10H9xvv99P88f3C2vU3Q3vU7zh97BU/y6eZBfPPlQnEAgEPtx4S78Tx/dwIBB4v+HdEhT+nqSvyrLsKyT9kKRvkPSLX+/Nh8NBi8UikaD1ev1U5ZT/xuOxJKUq73q9TseAEA4GA63X6+R0OBwOms/n2m636vf7qaIJkVutVpJUI94QkKIoElnt9Xqpio4wsd1uNZ1OEwnjc9KRqPI614k44pZvRAm3tUtKhI3qMGPlBJ578rYPzkuFnbGE/LsN3j+H2IE1fLVaJUIL0ZOUrh+xo9frJcKLi4H7cDs697ler2uOB44FyeO4CA8IHScnJ0lEorKfZVlaB+v1WpvNJhFTFyHKsqwJTpBTqtY+3qyd/X5fI7E+Du12O4kdvO9wOGg4HKrT6SSnhztCEIi8HQNRYbFY1OaH+0f0YoyZTwDJz/M8zQ9zwTUhlCBU+TwiGrXb7eQOgFy3Wi3leS7pKIAxd8vlUvP5PIkgjx8/TvPU6/WSqNPr9bRcLlWWZZrr1Wql2Wym9XqdBLeyLNPc4MJhHHhWttutFouFVqtVEnoQ0vb7vfI8T3PB8+2iAMdzAVJS+u5AZNtut7UWkfcp3tL3cCAQCATeFcR3cSAQ+EDjXREUqqraZVn2ayT9FUltSX+gqqrv+iLv12q10mazSdbt3W6XCBQkGyI1GAxqvdZUIqk6jsfjRCCpjG82G83nc202G1VVlazfkC6uA0AmEBWKokg/wxUwmUw0m81qVdg8z3VycpKIWVmW6TOeCeGEHFLtr0HEeS92eMQPBAZILSScirYLE81MAH5OxZwKMdfZdDTgeIBI+/X7dTT/Y2z5PGSZ8eFzzSwA2ky8deDk5CS9xnVRtXdnAyQScoxwQFsE5+Zz2NupUOd5rsPhoF6vl9Yh52FsIKRUs4fDoSTVXh8MBqmVpZm/4NcMad7tdskt0O12k/PBq/Pu1EBk4Toh3bQ4+Hk418nJSfoZThvOxRph3XvLA+PBORAAOD6umf1+r+vra3U6HQ0GA/X7fU0mEz148EC73U6PHz/W9fV1WpOLxSK1LiBkbTYbzWazdP2sV9wyiBH8G4EIgQPB5eTkJD3/2+1WeZ7XhCTWJfeJ8NPr9dIaQqR6v+Ktfg8HAoFA4NkjvosDgcAHHe+WQ0FVVf0lSX/pTb43WZ8lJZK13W4TaaFi6JVhqpZYlKk4QgrLskwEptvtqixLTadTVVWVLOJewd5ut7XqOsfGsk5WAWSRIEmq+FSkqbJTffYQvaY4Agl0sufBj4geOC/IM5BuRAUEEqzmzbA6xALvS4c8Mvbe7gGp8upwM/CROYJ8IQQ1XRJ+H5yTVgWyH9brdTq2kzuuE+KHTR3CyHVRBXfgcCFbgMwK7s3nHUKMcDEcDtN4Q163220afyr6tEK02+3kWkEAIMtgMBg8FVrJWLAe3FmzXq9TRR1SixhDm0K/30/jQO8/RLsZGsl4ensAxN+FDoQa1hJzwLx4wKXPM+vAUZZlGnv+G4/H2m63ur6+TlkJtC9A+slWwL2COMA9IQrxc6631+ul9g9EPZ6nw+Gg5XKZXEjeJsJcuTMFUYE8lOl0+kEQFd7093AgEAgE3h3Ed3EgEPgg410TFN4qnGyPRqNEqiQlkgaBRDxwm7Kk2p/D4VDD4TAFAkLuCWMjZA/CQugfRMvbD+jT9wBBKrBNoo2AQD/8YDBI5AUgjkhKwon3jkPEed2rrr5jAGOy2+2U53myvBNG6AGCngfAGHk6PgQbIQFyhZgCwfS2h2a/OTZ5bxFg3LhnRAsPL/T2FncDcF4EJQQm7mm/3ydxB7TbbS2XS0nHvAQq6rTBQPQ5H3kRiCSICpBrxAiCH7fbrYqiqOVCIGqwRqjk44RxcQW3Bu0IjCn35GuaOabVAFGJ8XFHSdMJAfknKwHBzHdm8Hnk2hG3ED0g71y7t7N43gHjSEjldrtNYw3Jp4WIc3D8y8tLTSaTdH04cfy7AdEAUcZDGbmO5XJZa01BmOE7gDmgZYpx4/pwx9AeRO5DIBAIBAKBQCAQeBr3RlCAuEpKFn8IDHZmJ7/8h4XdiTPEazwep2BG2hf6/X6qWDe3JURUkI5kive4fRyi3+v1EpGk556q52q10mg0ShVkSCbBdrgoEA6argFe88qpZyLggoCs+xhSkfWcBN4D8XJSKB1Jpe9u4On6CA1e9fbP+jG4fw/V9HA9MgE4n1fAJaWdF2hdcNGH83h4p3QM08SyD/nsdrsajUY1F8lqtUqkHeHHnTAQYJwKuA9wuiAqMPbNzAHv8R8MBqldgHFBJHDRxVs2cGMMBoNUkYeguwDD+mRdsHb4DGPcFK9ceGNuuHaeNcJDIfee74Dgw3j73DO/7LrC+3BWSErHp10EJ8FsNtNwOEwCiYt6vub8taIo0u4nHJsdN3wLS1+PiFze0kKrCJ8hN0KSPvvZ9+smD4FAIBAIBAKBwLuLeyMoQMi8jcHbESDs2Mt5D6QPK7dXLrFce2/6aDRKuw4gHniF1V0R0pEwcT7IsHQMPkQ08M8igDiR4rOcG7GAz/mWjIgg9Kc3WwGwwHsuggcXEujXJEe+Y4B0bJvwMEdaHTxg0XevcOLI+3x3Bm+hgPRCEqXjTh7uooAo+lhwTN7jOQyICi4G7Xa7FDiIeOBzAImcz+fpNez5kjSdTpMYw5rC7YLl/nC42YI0z/Nk12eMyCTo9Xqaz+fJFTEcDlNY4Hq9TttS+jj5jgpFUSR3AzkchE2ylpvBjsydB4GSEcA6Znx5zVsg+Az/XiwWybXhu6kgYCCieGsE80TLAoLJfr9PAiHr1YNPuR5aGTw4EiHIW3NYH9Xtlp3X19dJPFosFrVQVxdNeNZ9jXLvbAFLu0+WZcrzvJarEggEAoFAIBAIBOq4N4KCb2XoRNKD9ejVh7y43d0rrFRGIc8cA/s7JIn2BUg85BciKh2r4vzcyTVVYCexEJZm/7vb0bGvQ4JOTk5StRRRwNPryXxw0ultBs2KNaQIEugV96Yt3t0HnJdKvQcRuvDhW2ryWa4LcuiEzXMpIP+eI4CY5HkLkEqEGtwBfNaPA6G9K4fDrxnnB60PCAD8h2WfkEAIJRkV6/Vas9ksVdZXq5Wurq5qFnsnvsvlMs2rdNMms91utVwuNZ1O0z15ICbZErhDRqORut2uiqJIvf8uCElHMc7HysWWJqlmXHCuULH38EueD9/1BAHPsx88b4N11m63kyDBeLGm/DlinjyzABcP7TtcG+/lXlkftGnMZrOUF8L4s9tG8/ukKdAxHwggo9EoPVfNHTUCgUAgEAgEAoHAEfdCUMAZAHF1KzxVTCebVKOlI3F0e/12u9VsNquRArf/Ny30nk/gW+o5Ufb3+laCvnc9wYj0rEOEPEiP672rqk51nIrz4XBIvfrb7Vbj8bgWtOhug2bvvBNIzx7wDAbGj2q2dMyLwOKPANNskaAtQVIip35cWiMQRTwEkJ976OPJyUkST5oE0tsrmgGMjB9OFKrufj3uaoBEUg2nhSHPc41GIy0WCy0WC+V5rvPz8xop95yBi4sL5Xmu+XyeWlhwOvBeMgOYU85FfgC7bJDxICm1U5A5cXJyoslkok6noydPnqRtFr1FiLGmQs94I5T5uuW8zAXPmrfyeMYFDgFvtWm2PLDTBOPEGkK8ub6+Ts/QYrFIu0YgwLCeGE/fFpQ153PANZ+cnGg8Hteuk2u9vr5O10cmCutJUu252W63ms/nms/n6bnxFohAIBAIBAKBQCBwN+6FoCAdq6YQDelo7Yc8zWazWhXaLdWQUqquTiCGw6Fms1l6DcLjVXkXGaiEIyhIx60Tm1kHnB8xxJPxvV/e3QH+J9VSD+qDpHU6Ha3X67T1JATTe/UlJZIH8fI+d8aQa/dWCSz82LsJwoOcMo4uXNCLDumk1QIHg48PY+utCt7HDqF0YYUKNePooYIcx6vLTp77/X4SFVxQ8c/xGbYV5P18nsA+dgdwZwfODMSIPM9TTgdjwtz7mBZFke47z3Odnp5quVym8EhIL8/AyclJyhlAiGELxtlsljJCWAvMGc8Rx+XfzBUOBtYK4gTXjKsAEcnzQXAqeBAja7/dbif3BXOGcIL4tlwuk2sGAYr1wv0Mh0PtdjdbeSLCkD+BO4l74d9kiXB9PJPL5bL2M2+lQpBDkKDlgcBIHEGs30AgEAgEAoFAIHA37oWg4JVjfvGHXEJEaVfAQn44HDSfzzWZTBIRp1+e93k7gm9R6MTGyam7GQaDQSInLiogNDQT4gHkEFLu7gYn+9i1Ib0E4EHAOA7nLstSg8EgtW5QFeb4EE8nkNwXFm6quIy5pOQGQMDg88PhMOUAkBOAcEAfP+AzjJHDx5Z7RhTyCjljClnc7/cpQ4AKM4KJZwhwL80tEr0ajzjBugJsl7her7VYLDQej9NWmAg57qTgHtxF0e/3UxDgXTsgIGaRq5HneXIqsI69sk4mhzsDWJfMe9NN4G6du+aBY7hjhHFar9dp/fp94Wjh+eFZoUWHtcyz57sk4CbI87x2L2yxuVwu0xrgT+6v2+0msYVn2d0wXMNwOExCBxkX3CvztVgsas4dnB+4FNxR0QzO9M8FAoFAIBAIBAKBu3EvBAXpGEgI+aO6SVo+lU8InPf6Q8IJbczzvLbNpAfvQWLoo4ew8jMntJAcSArXBRnjdQg8oDdeUro+SbWKuQsAEDfcGVTO6UnnmAByNhqN0n1zvRB0dqBwwYBcBqrQWOS5BoCYgYDhxB3HQVmWSWBwl0jTpUAYIw4H+uu5xsFgkBwBy+WyNt5cMy0v0+lUi8Ui2ffJPGB8OL4TQoQmb4Fw4YVdH6SjIwbHSFEUta0lfWw8tNNFCnr0qXRDqLfbrabTaXIWsE0olXbWE2DecUwgmlBxZ10zHy6Osd4Y/6azhmvHybDdbtXv99OOC96SQ5CpO1wQ2/i3b3eJ2wTXwksvvaSyLNN9et4D10mQqj+Dy+VS19fXOjs7qzkVmGMEKZ4TFwBwIOFW8sBVhAdEHD8n887z7WJNIBAIBAKBQCAQeBr3RlBo9thD3n03BnIKqFhCEqhwQmYgbJACdjnwcDpIjFe8eZ1jeRWd82ADR+hA9KBy6m4LyJxvXyfpKUu67xaB5dsJoAfYQWZPTk40GAxqLgUq/NjHaWloJvhjp4fIQpqaQX9nZ2e1Cnkz1M/FGCdqXnWmKu3vhfQjMrBLxnq9TseQVNvhgq0fcU0gYLiDhDXD3EOOfUcNCD+CBdZ37t9bMahW3xUWSjW/2+3q9PS0lidBOwA5ALRtVFVVWyu+a4gLZKwF4IIUY+YCDfeKeOJkGSFtvV4n8QkQvNjpdHR+fq7z8/PkYmCcJWk8HqcWmCzLNJlMUtuAt9eQIeKhl55FgIiT53nKqvB785YJBAfGy58h5sjH0Z0k/NufRT8H3x2cG5eCby3pTqNAIBAIBAKBQCBwN+7Nb8sQCelYjfdQRa8menCiV/ohVbvdTqPRKBFiyJ9Xz+ndXiwWiWh5uKBX330HB98qDxs7W85RSfWqJo4BCBctA5ArHBPb7Vaj0UiTyaS2taCkGvnnfrGU48bAvu47YJCez5jggODfVPgZF4gY1npvB0Fs4XhUpCF0OB2cxPF3evJBnudpXiTVdrrwsdlut4nQe6glxLOqKi0Wi1qOg3QMbvRdN7yCj9CDA4Qx5NjMMc4DDwREoPCWGkI3PWfAszX6/X5y0eCGYH1Tufd54d+MEfeLWOKtMx46yJh76wztK7QHICY1hRzyOM7OzlKgKM4RxpT3DwaDtA0kYh/zyDPD+bwVgt0rfN24uMZY0yrCPSwWC/X7/eRu8GcfZ0VRFDWRw9cM849A5I6SJnB7INq58ygQCAQCgUAgEAjUcS8EBa8IYofebrcaDofK8zyF2uEcoL/eCYx0TIP3XnSqppAECB3BcZBDjuEZDp7rAIF1cglxRZwYDofpZ1TbnQjneZ5I1Hw+l3RMkeca6A/nupqWa6z0kDRID7b6zWaTthukEu/b8fkuGR5c6FkMjCVEn+vzTAuIF/eI+0E6ig9eSffkf5wCEFIIJkLFer1OZNyJM1s1+laRzC3HcFGB6jgiBeeHnPuWgswLmRj0/0uqZQBw77TUQIwRYMgH8B0WuH/G2TMpcMmwUwVrnWtHZOA5oVWC4yIu+U4dPgdcN66V1WqVxANaSZxEs/5Wq1UKgGQte1sSIkpZlrUgUebh4cOHtd0tWB+sH87DPTKuzFOe57Xn3ee8KSr4jhzuQPB1R5uOt7sggHlGi7e/+I4rgUAgEAgEAoFA4GncC0EBcgARaOYHeA87ZPhwOOj09DQRKciZuxS8/x7iB4GksklIHaSo2Z7gr3lAoQsKrVYrbdeH4ODZA25P7/f7uri4SAQOEYUQudFolIgZ9mupnqFAVRkiyjmxtRPYNxgMUgiepKcyJ5ycNa3yzItXePnPbeC0WVC95l6ZCw+opNrsbQrY3iGMvjMARJDKdp7nmkwmNaeJOx+YCwDpdVeIt8j4/SFk0R7R7/d1dnaWxAaugbXYarWSKPTgwYMk8HgLibs1WEfcK0IQ94uTwHdS8Hvxyr6TXDINaDlhzTOPniGR5/lT40A7CjsxLJdLDYdDjcdj5XmeBAPpGGiJyIBYQNYE50as84BR1oWLI71eLz2rHrrpPyf3g3aE5ncG4zIej9PuDogCnm+BQwJxRDp+37AWuE7PmnAHRiAQCAQCgUAgEKjjXggKVFOl+u4D2NCxOrvTgComVUWIAD+jou6fhxBCJAaDQar4Qk7JZ+CzVF4hfr79HGQaJ4B0bE/g7yTgc15JyTKOTRsCwzaFkEYPVPSqPeOAOABxgjRBIiHGEDls+IgyvMfT+SH1zRBD7ofKPFkWEDaqzrQq+LkYA+aQ+4JgE47JuA4Gg0TyWA9Y1RkbPuOVb79WxpXdM7gu1pV0dKFAJj38kBYW6bhzAEIIzhAnu7hTWAuMIWPN/XKPXB9ODVw3uGhYMwCSTi6Bt36wFjzLACAwef6D7+oAIccNUxRFcreMRqP0HHEuxJWiKFJQIkIR88wc4SbBDePtILgRJCX3DOPAekYIZP27w8bzJNyRNJlMas+mZ3mwFljLnm/C/PCf7z4SCAQCgUAgEAgE7sa9ERT8F3z6yUmfdzIuKVnh2+22JpOJBoOByrJMPdLSMTgQEg4BhtxBWHAbDAaDmkXaAx4h5p5KzzVwXc0QPSdLXIeTK98CkIwBP6dnNXiQpNvD2daQayQjoSiK5NqAmCJIMDZeEXbRRVJNTOD9PleSUvgjggKE0APxmEOvyrtwwWfdqs/4IOL0+/1U+cc9wG4EbrX3rRfdRcC4ePAh/3E8rst3B+DcfIYKuQsOCDXsnNEM5aSn37fK9NwDdzx4YKG3KtD+MhwONRwOk2gDoUaIqKpK6/U6HS/LsnTNiFyeneGBkIwBY0ImyHg8Tg4e/mSdz+fzRLxdUDg5OdF4PE7ryDMSGCfuk9YRHA9Ndwfw4E+EBb4bPPCy1WppNBolQYF163kZvBchC5GD9YZzA9EnBIVAIBAIBAKBQOD18bYFhSzLPibpD0l6SdJB0qerqvrPsyz7zZJ+laRHt2/9jVVV/aU3Oh5kgipic1s3T2WHBEHMh8NhrTrf7CWHTLANItVcKr1ZlqXqL4GBkEHvyabi7BVWCDPH4nohJFSZsZQ7ofT+7ZOTk0T6OSdkB3GBsDuOSUUd8tvr9TQcDlNIom/r51spUq32nnUnvHe1EkCivZ3E3RuE+PG6E1Qq0NLRbeFZEN5W0dypAwLtohL3yzppJvEjEHC/nmfAufm7z5lX7n1e9vu9iqKoOS8QYejbJwwQAk8mBj+H3NPS4uKNdBShcKbQ0sL45Hmu0WhU246UZ4HWF+4VYWk2m6V14y0t/h8CCOtMUgqKpGXm+vo6CQbM4Xw+1+XlZRLFEPOurq5Syw1tPKyXsizTDiaj0Si1HBFsisjhIanj8bgWjIhIxX+IWL7LCWPiO1u444V54l55fr0tA0HOhcz7imf9XRwIBAKBt4b4Hg4EAh9mvBOHwk7Sv1NV1T/Msmws6R9kWfbXbn/2u6uq+p1v5WBO1D2gDeLtOwcgLECSITVY2D3AzQn/cDhUlmVaLpe1bSHdMs3WjVSJqcx6RdgJpKSa8ME1NlsGqIhCGr3twHvH+TeiCRVeiCKfo2rP/TEew+Ew5QxAzKlWI9hQQS7LMlWJEVlGo1G6DiedEEzEASdlCDG0QzjZPTk50XK5TJ+BuHPPTTHAq8hUnT2sk7ny1g9vfaDaTtuEbwPIODJPPr+MDRV3/kNU6PV6tcBFjgWpZU1JShV9+vUZP8IQGUt3KfgaGwwGSfhAPEFQ8J951oSLcO7icFcKa4r3eYsH1yWplmFCKOpqtVJZljo9PU0C13w+12KxSO0MrVYrzTXzM5vN0hrZbDaaz+cqy1JFUeji4iLlW5DDwHoty1K73c3OJXmeJ1HBxRqeVQQkF/+8taHpFuJeO51OLSOBNYSrxNfKPccz/S4OBAKBwFtGfA8HAoEPLd62oFBV1SuSXrn9+zzLsu+W9NG3ezxIt6TaPvT8TFKN/JycnKSqPzZncgSc7Det8RwTcte0x/N3qu7e88/7m9vKIWBAYN1BASlGHKD6C/HOsixdr2dGQJKAh8d5sj9Emwp6v9/XgwcP1O12k6Wdaj5bMI7H45o44C0Q6/U6uQi4Dkio7z4gHV0lknR6eprIIU4M+uFpw2Bs2JXCQx5dPPC8iuVymcikV6AhhKwP5pZzuh3eQyBxPjTbHdw5It1UriHDjDX3hEDlAhiVbubKK+ScE+cI78nzvFbh5z65fq7J54G2Csh5URS1wFIXETwc1HfH4Dy+u4O3hrhzhfvmfRD8wWCQnAWA467X6zR20+m0FuTpIlir1UoiH20TuCtYR7iKWF+sA/IefHcLd8+w/mmzQFTgu4BjsdZw/iBK+m4w9x3P+rs4EAgEAm8N8T0cCAQ+zHgmGQpZln1c0v9K0t+R9BMk/Zosy36ppL+vG8X26g0+Xwuwc1u372RABRyizWuEt7GjgVdlPfCRyjYVeRwDTVLpGQgQNIghBGa1WiWiyD1wHunY9gCRwoGwXC61WCxS1V06bjvZ3OaPSq6kWq4CVXeIKH+/vLxUv9/XeDxOpAky9uDBg5SAT/ZBnudpnKl0Y7f3doHmrgLsqCEdwzOHw2ESIhgTtmFkFwJ3V/T7fS2Xy0QAIe0eAHlXP71b0Pk7rRGcU1ItMJJ1w/gByPpwOKxtAcoauby8TAILYgptEoPBIF2DOxMQcZhHtoWk5YbWkOVymV7j+BBytllkrPkPVwjrzsUoxoi1jbhWlmUtx8DzG5pr1ttEPEwTEaksS02n0ySIsb6Wy2Wt9cZdBPzdd15gzc1ms9oWjovFIgluEH93pDTnD4GDe+A8iGich/Yf/95gfNwNw3t8G9b3G97pd3EgEAgE3hniezgQCHzY8I4FhSzLRpL+pKT/e1VVsyzLfq+k3yqpuv3zd0n6pjs+9ylJn5KUCBUkfjwea7/f6+rqSqvVqha05rsVQLCwukN+nQhQ5Yase5sCve2e9u52eK6Hz+A8gGxJStZ1euRd8IAk+7mpUnNsJ9EQUe4H0uiOCEmp2g1Jg2yVZamrq6skLEhKAg22cQgmmRG4CnzLQ0gwn0e04Bq9/QFC2e129fLLL6uqKl1eXtZs+IgqiCPcCwIDghBzx64dHJ8dHqR6QKTfO2TYsxvyPE/Vb67bq/N83vM1fB6pgm82m3SO0WiUAiYZD59Pd0mwDhBx8jxP9+ftLxx7MBikCj4ho7RbNAkwooIHHyIscG8IBp5JwHNCjgatFjyHfA6Cv1gs0nrDwUK+A2ucOcXx4iGKCCyMA+uBdV0UhU5PT5Xnecpp8N1EfNcHtoAFuH5w4HibA5kMXBMCoLeasGb8e4Hjso48j+W+41l8F/eVf+kuOBAIBD5giO/hQCDwYcQ7EhSyLDvRzRfnH6mq6k9JUlVVr9nPf5+kv3DXZ6uq+rSkT0vSeDyuPEcAAkwfNQQOuz9iAASnLEuNRqPalm+SalkKy+WyRuCqqko98bzP2y5urzH96T39fH6326UKLsIFlV+2D2y6JaQjCeO8BClCNCHZk8lE8/lcs9lMm80mVX8lJcGB8ep2u6mNoCiKGgHP81xnZ2e6uLioBQRiDed+aCOBFGZZpqurK+12u0TOEUcgqNLRpUAw5Ha71Xw+r1nqIW0+bwgxXg2nys24I4hAJBkbrmW/36cgTyrTm81GRVEkAonI41tXIlZA1hFcLi8vU3sGogGtKmz36S0pnmXhggZEmHYOBA7PIOA4nPv09DStJYQMb/2hfceDR6mmu4jguRy0XrgINh6Pk7Dg+Q3edsI6xWmACOHuGpwW7PDBnBFw6M8S6x0HC60Ou91O0+lUnU5Hk8lEs9ms5hhgbdGi4vD1gzjGWvEdHjjWXbs2IOj5PeCgQfR5P+BZfRdPsov7n0IZCAQC9xDxPRwIBD6seCe7PGSSfr+k766q6j+z11++7SWTpJ8v6Tvf7DHZIvBwOGgwGGg4HKosy2ThtnMkokAvuYfnObkhRM+Jum+th0DhpAkSR3ZCs/ILCaFtwt0TzfA//xyVV0kpABBizxaFTqQgXjgsuC+IkYcDTiaTNCbuKJCUyBTiAb39OCY8jJKWB+7H3QueWQDJ4zpms5l2u52ee+45STcZFVVVpR57SDTj48TXHQTsltHtdrVYLDSfz2ukzl0qXmmm2sy90pZCtZmwQ67ft+Wk0u/XhxDDfDDP7Dzg44towHgihHDdiFi+1WZVVWncySQ4PT1N62A0GqkoipRTsFqtkhC0WCxSNgDCBWPJ88O53SXjjg9ELOaUz3FM30KVrAKeT1+PTsT9nt0tgCuBZxNBBEfGarVKYtRoNErH9LFHyLhrO1NEKp4X7gUxy3fS8HwJ5pB5JUSz2+2mVpT3g0Ph3fguDgQCgcCbR3wPBwKBDzPeiUPhJ0j6JZL+SZZl/+j2td8o6RuzLPta3di7PiPpm9/oQE7sN5tNsjFTIb68vNRqtUoVbIgGGQtsi9jv9xMJgjjwJwGOvE9SEiA4jnR0D3iFF0BI+NxisVBZlilAjx55t/pT6cQmDunERi4dd3DApTCfz9VqtXR+fp6C+7DVQ6Tdwk4o4WAwSC4HKsVcc7fb1Wg00mg0SmMGucxuE/0ROLwdg6R+MiGwniMo4CCgWl1VlfI813g8Tsfm9f1+n3a4gABDiCGFOCW4Dq/G+/2wZpgzrpV5Zc7pxcc94M4CRCrWEi0RbEGK2ACJZ64RLTgGuz0wl8PhMAVlsnPG6empJpNJavXAgk/rCdfIPLAGcb6w3aKk5FrxMFBJNYdBM5zR3SOMM64T3Dscx0UAhBacAP484YhxwY3zIkogPgHmyQNYEU4QeTxMk7WC8MAuIIB79VYLvifIQWA7U97XDPT0nTY4H+uo6Yq4p3hm38WBQCAQeFuI7+FAIPChxTvZ5eF/kpTd8aO3vL8u5AVRgUohv+xjj3fS71Vges6bAX+es+A2dwh3v9/XCy+8kLY89OwFz02QjlV+CLCH4B0OB43H42RdhwT7loaSkvMBAQLiTKUXAkeOAS6G0WhUu3+IEe4AhIs8z2vOAirKbo/37QTdkeDEVFIi3W57p+2kuZ3e4XBQWZaazWZJDKLC69tFOsHtdrtpnjku107rAte+WCySe0FSeg/XiFDg7THMmY+DiwhZlqWtJSHGtAb4PCAYQKoRewih5H5Yx9LRsYBAxFo7OztLAZU4P/I8r53PBSlvk2EccMawltzV4fPK/XPf+/0+zT1iiQdusnNFVVUpy8B3PXEXhLcyuOsH0cjHgmfPn81mMCbjxDUxphzT15nnNzjh91Yo5tAzTbrdrsqyTOOLiONjjCOBZ9sdHPcZz/K7OBAIBAJvHfE9HAgEPsy4N78te2VcOm6B52QUAgrRhbRDNCCAHlhH1ZZzSKqRL9oFiqKopfVD2hAEEAm4TidaVH2pLrfb7ZQsL6kmlkBYyD2ARFLNhni5FRy7+V399F5J5z3L5VJXV1c6Pz+vETjIN1V2t8FDQn0OPKjOK8+SkijilvDlcpns8R5K2KxUN8URzondfjAYJBeIh+a5YIOjwEMZAVsP+r0xzu7E6Pf7mkwmKcySKjzjBIHm+N7PPxwOk4DBf3cF/SGU4O5wUk81nvf7bgjAcyhoI2FMmQvfXQFhzUUFjsN7+Tfr2EMtIfW0VDBHCGB8HsJPC42fj+cVQcCfW/+T64C0+44tLj64uMeziUCCKMQ5NptNcvMgFDFerAlvVfItUbl3b9fwZyAQCAQCgUAgEAjUcW8EBUmJTEMI6YF38gn5gnAjGBASt91uU5+697a7EOAtExBXbO2QDQgVfe6IBpAcD3x0Agk5WiwWidi5dRwiuF6vU4XVbe1+Dlox3K7fDLqjYkvmBONUlmWyfvOapFpQIWQLEuvkm8qt28kRCWinGI1GNXv8crnU5eXlnaSM15bLZTqGdCSJvIZAwq4IuBcQA8g18NR+z2Ho9Xop3JB8DcbR8yq8159gxvl8nq7XBQXEGgQHxhxXA5kUXs1mfbGLBAKUuyU8BwMCjEjEziaSkgOnKApVVZV2/2BNcb08N5eXl7W1w/UwhohgLgaxNiWlP5kXXzu0I3hLA3PI+xGMmu4C1gBCBOflMzyj3nLj68dFItptBoNBEmVcAOH+aAGSlFqCuLfVaqU8z2u7UjAOiJTN5y0QCAQCgUAgEAgccS8EBSzwuAHG43EiGRB3yJ10rGpD2iBUHqbo1VfIMcSC8D63b0MiqJIjKkhKAgXVVyq6Hm4ImnkQ9Gy7NZ0UfyzvtFwQYOh99Nw/53RRwQUAHA6MCeSKPnnpWA32RH/G34UE6Zg/AFlEoGHsSOsn6JBzExiIg4Fx4D0e+icptSpAUpk/CDrkmWPSIjAcDpOgQLsF9zIajTSZTFKluiiKNCa+9SKvMRbeDuBhnZI0HA7T2HrLAo4Qts7kuli/JycnGo1GSdwhE+Pk5ESLxULSkThDcheLRcrVgETzOuuaVgW/h06nozzP07pEkIOQ+y4G3oLAuEHy+VkTnt/hxB+BxtsfeB9rF+eHZ3FwDsbbg1K5Then/D4QELbbbcqHYI37evdxoMXDXRus7WbuhAc7BgKBQCAQCAQCgbtxLwQF39KPKjSkxHdskJSqxJA/yBS2f8jhbrdLx5SO/fRSvQLrggV2aUhFdrvNoW/z55V6jiEp5S/4ThCQ4+YOB7gPFotFyjUg1R9HA0SaY3r4IvfBsTg/BAshY7lc1naZcFcAx4b4+5aVntrvWwr6LgZUiCHH/jo5EWdnZyqKQg8fPkwkFbfIarWqCS2eIQERpNUDIsj2joQzUvFnXbi7gO0dd7tdcikcDoe0tSctDLhcGDfyJJzIIlIgAhRFocVikar17uTYbrcp80K62THg+eef10svvZR2caClw50CnpWAmIWI42IXBBhxar1ep9dpAZlMJrXtJSHx/hrhl2RKkDXgYgCCB3Pmu124oIAwQYClZ5ggjDRzF7g3juG7TXjrT7P1gZ8jFHrWCIKVB0XSyuHuAxcwEbtYw+yk4a6JQCAQCAQCgUAgcDfuhaAgqVaF9y38/O8QKJwIrVZLy+UykRxIQTP4TTpWKyHsVNQhV1Til8tluh5s/PTRS0d3BOfhGBBSCJrvRsE5qHo7WSUMD/KL0wCC7j3k3m/uooLviNB0L1CFRfBgHLlH6VidhjT669w/5+cYuBEYdw8mbLVamkwmta0fy7JMlXXs5O7e8HlzJ4aTvzzPkwOAa+p2u0m0YWwYJ4j99fV1Irre/uItJvP5vOZs8d0hyFsgaBI3DOIDtnnGGEGD9oaLiwt95CMf0WQyScfHhVIURRJyGAeIsodgekBgc/7W63USj3BJQP7n87mk45as3LMkjUajNJ48Gy6WSUrPi68l36UD8cl3LWmCliJEH9pIXDSD7Pt9sj58fTEeiIe4fXzLWZ5nBCdf/8w37UFcUzNk1J+5QCAQCAQCgUAgcDfuhaDgoXZePZdUS/OH4FEJxrrt/fReLXf7NK4FHAhs5+gVSEQBT3mnXx+yJSm5IkajkSRpOp0mcg0x9q3pmrZpnAZeCe31ejo/P08tBVRbETMgwdzf4XDQfD6vXb/vgiEdhQYq4Vi/qW43yRzECnKG24DqLuMJeW7uNCAdHSSj0UhnZ2fKskyz2axWRUfAgAT79fZ6veRG4DUIuG97SUYAggNZCgg4EGF67KlEU8Wn+jybzZLo4VVs1iXiETs1MM7sGMC9I2zgsMB1stvtNBwOdXZ2ppdfflnT6VRFUaTjEtKIc4L7RtxizSMUsN3jYDCohYji8OBPXAx+Ltp0vHWC8eHZ4HXO5+GkrBfcHh5S6uuOseM17gsBZbFYaL1eK8/zmhPA2yF4tu96jn1t+NphLNxNg8sF8cJbGniN7JSmk+f9sMNDIBAIBAKBQCDwXuJe/MaMnRsy5jsdUAH33mjIj++SgEuBiiuVdsgKYgAVd6+Sl2WZ7Oz0xuNgoPIPyaCfnd0I+v1+IqROfCHYACu7dNyFAPK2XC6TrX80GqXtATkfpAsHhFfoqeByPnd6cJ9U1e/KlnDnAuPV6/U0GAwSOeO6qU5LxxaPuzIoILXn5+eqqkqvvPKKptNpTViBiPtrvn0fBNTt626ld3GD0ESu93A4aDqdpntlRwZEAY5DLsFisUgZDIQ+SqrNAWIMYgjuAdYGFXfOv91udXZ2VgsvHI/HaYwIdnRXhodGIpqwdr0ViJ0NWJ/L5TKdF6LPGEHMccIgriDw8MyQ51GWZbo2F9RYFwhBBERy/d6i5Od2oYD5bLoFmnkVPLO8n7F18Iw2nRvupvB5bLfbKYzUhUQcM+6e2O/3SZBxt0YgEAgEAoFAIBCo414ICvyST583JNJJMzZriC9ElKojgYaTyaS2PR1kwqueVNaxhUPWERgGg0HNpcA1Qjq4zjzPE0ksy7K2DSOCBMRKOobdQfgRSejjn0wmevDggSSlirW7Nai4emsI18N7IYK0aDBG/ByCS4sFIgPHcBJG5Z/xRoRxsYXgSojqfD5XURSSboIM1+t1ahXwnRA8U4HzQdARUUjv9503IHncn293COFlPUD0aUFgvFkX3K9X2p1Mcx7myHflYFwhsAg33A/5HmQ+sIYQWS4vL2vnZS52u11yvnjgJ9fDXPpWmYgFXAtrvLljhecpMH/MPe6Pfr+v6+trTafTGiln7Lzaj8PEnzd3LLgAyM4V3BvXgluEHTZ8rfOft30gyHioqDtKGNNmCwN/9vv9tPZd0PBnhFYKSU8JGYFAIBAIBAKBQOCIeyEoAEL9ZrNZrWfa+/MhmvwbMknaPtZ2Poet+smTJ4nYUqGEMFEdRbRoEjmcEPS6O0GRbirqvV5Pq9Uq9XN76BzElGM7AYQEcWxcChBDz5LwoDmOTzXVe/ilY5W3WemGIEJIy7JMRI5MCLaczPM8bV84n89reRWQZ4grfe64GSC9tD5MJhPt93uNx2Mtl8s0jhA4Pg+ppxqPmETrxXK5rAVBck+tVis5RrD1z+fz9D5aTBh/1hrXS46Aiw44H5jHsixr/f18zok3AsR+v9fl5aUkJbcHpBqRA6cAQhZ/0jKCU8GJM+MFGfatHD3Y0W3/iHOsawQB5ovtJC8uLrTb7fT48WN95jOfSXki7HDCM5fneVpnLtaxFhFGGHvCL93N4O0EPs/+THqIKGvKXSj+GkIGApe3T7GuXKD09hieEz+m/ywQCAQCgUAgEAjcjXsjKHi1lZ5tXveQPsj6cDhMRIRKczNkUTrandmybzwe14iKtw9IqlWpIXaIEM3KtFczm9tCcm5EEAgzjgIIlKQawaIKDAH2ALrFYpHO17xHSCPnw+YPcXIyJx3DE6n4AsQFSCbXx/i7oMD1ehgh+Qt8bjgcajKZaDweqyiK1E4BmfYdOtgNoNkeQvWeYEcPkXSCDfr9vlarVUrsZ74g/8ylt3tMJpOUzcEYewsC14QgwTx6DgbHwtFBcGWv19NsNtN8Pk8CF2OMSOOkGAGFuWR+PaQU94EHOfr84djwrAkXlry1AicNIZZZlun6+lrX19fa7/e1Fg+OPRwOk9DAPSNeITa1Wq1E8NlBBSGtKRTSiuIZKowz98W4+e4VLu6RgcK8+far7KqyWq2SWOW7lTDf3krDugsEAoFAIBAIBAJ3494ICr6LghNmJ1EQCGzLWMU9iR0yAYHodDo6OztLhNL7qP2z3m8u1dPdqebvdrtUpYZQNdsvmpZvyK4LI5AmSPVwOExVd943Go3S+7lX0vxxL3ivOP+RX4CLg/e4xd2FkSzLEsHu9/spE4ItLLkuxBIINUn9TrSpVI9Go0TaqFrnea5+v6/5fJ4cHe6oYG5oP0EckY4kHYLp9+LXw/1wboIWm4IDlXkINoTb3Qhuf/cgx/l8rtVqleaaTAPfFYC1BIlGgJlMJmkHBuZkuVxqtVqlsYBkI7Ywj5yP9eA5CB7UyTPh640xckGANeJz2Ol0NB6P1el0dHV1paurq5rgwDiS8cHa4LqZG9aB75Lh65U55f6ZV29T4D0uGDJfzLd0bEnwtcG/uScEKOac0ExfE6ydqqrSfEYoYyAQCAQCgUAg8MVxr35j3mw2tUR4HAQQDcjUcrlMVWNvDXDChGgwn881GAySfT3P83RcdnxAECBfAGLSzDCgGozbATIG+Wi2QpCq71vruSsCksR7fetD+rwh2ofDQXme13IaIIKQfQimW+Td1k61FWIIieI/7r/f7yey520lVPghu9KxP95DNZk/iODJyYnG47FGo5GePHmS5og/T05OanPujgCCBLGzc+1ubWeeqPKzxWOn00khgxBR3BCIHTgVVqtVEhT8nvk7TpVmFRxined5ze3h/f5kSjD/uC6Wy6Wurq7Suve17lkfrDHWFgIH88p6ob2A3SF4liDvCCHurmHsmEOubzQaaTwe14Q3roe8ku12q/F4nEg9IgqiFvfEFo08By4QMf6sn6YzCfcObQo8m4Sn4obw9gaAk4EWk263W2u38dYR3BY4Mmj18VyHQCAQCAQCgUAgUMe9EBTcegzRoFXBQYX29PRURVHo+vo6BfZBBiEhq9UqVd49NA5ChdsBIgWxxyYNabzrWqVjRgCfGQwG6RohYL4lnrsUIHnSsfIMuaG6DHmnFQCLfbfbTVv5YcleLBa1SrCn3nO9fl2IMG7p5/24FIqiSOQL4ulODaztu91O8/lcs9ksjSvX6f3t3W43tZuQE+DVaq+wI2rQPgIZ9PXB5xkfKvGEJ+IgYQwg3x7eOB6Pk0PDwyXdRcK49vt9nZ6eJnLO2mMLRwQFXBxkfTCf6/Vas9ks7TbA9bpjxLdDZF2u1+tElH3XBL9fSLaLCr6Wm60uzQBO1iluCc9myPM8Hb/dbieRCaEBsYUxu8vJQ5aJi2e+vSeiAs93U/BCVGvuttHM7yCw03efYDwZn2Y7iWdfNEUshLVAIBAIBAKBQCBwN+6FoADZhQS4COAtBMAJEm0AvnMC5GS1WqWgxouLi1SpdMIHyVgsFpKk09PTlA+AyOEOBq+qQs5oo8iyTEVR1HrV+ZwLBVwHJBEyS89/r9dLlX1ECI7vpB5iJalm/fegSYiZ7zTRDKSDiEEQqeKzPSYiDNs5ErLnroyiKHR2dpbEEtoafMtPQhN9jlw4gtAhCFDh57wulpA9MB6PNR6PNRwOk4i02Ww0mUw0GAxStd5bJlg/ZAaUZan5fJ6I+Hg8fkrM6na7Ojs7S1X4y8tLrVYrTSaTpwQlnB4IK8zPZrPR1dWV5vN52u2A9cecQeYZC7IkEF2YI3bAoAXBHSKcD6HAdwHh/l3Q4L+iKGoOCq7fW25cEKKtSDrmbLDeeV2SRqNRze3B2kec4Hpc4JCObUhch1/r4XBIu0x4WwbPIt8h7sZgbfs6Zz0hcvi8s24CgUAgEAgEAoHA3XhHgkKWZZ+RNJe0l7SrqurHZVl2IemPSfq4pM9I+kVVVV19seN4DzvEAuLu+QlUaKXjL/s4FLx6PZ1OU+UTm3ee509V2d1mjnBwenqaXAAE+0HGqFYSEMiWgIgK0jFUEkK33++TA8JDBCGFtHHwPkSFZuuHtzowFk78mq0LkpJ9n/FCAMBhwN/dsg9ppPLvrQlUbhlvrPreH881S0riCfeb53ki+tjm7yJ9iEGMH24DHAecEzcCIZRFUWg6naooikT0XWjiM4xNv9/XcDjU6empptNpIrjSMczT++g5D+IURB7iC0H1vw+HQ7Xb7bQmqqpK14DA4pkfkpJY4KGFXoFnbLkv2gw8c8TFJcBa4+8eZspaKIoi5WewBpkTvx4PTuTeVqtVLdNgvV7XxDOEOQQOxCnyO/y59nWHKOIiBz9njjwI1dsffDcVBEDumc9LSmPlz9n7yZ3wrL6LA4FAIPD2EN/DgUDgw4pn4VD4SVVVPbZ//wZJf72qqt+eZdlvuP33r/9iB+AXeML/fBcEyBfk1ncyoNINueffs9ksEV5IOn3hzQR3J8Ge8i+pZtH2RPmqqtI5IY6IAuxUsNls0nERPejTL8tS2+02bSEIocyyLLUZUKWG2EGIvHef9gnO48n3tA54JgTknjBDxgD3wcnJiebzeW0nB1wakEDcAswNYwMx9Io28+QV58lkotFopNlsluaaMZCOtn9CK3EE+O4Rvm4Qfc7OzpJQMZ/Pk2CBSIIIAgF2cjsYDDQajdL1+vaKWPk9n2E0GiVHBGSanAR2KGH8XARw1wj3hjDQarXSuoX0ItLgdhkMBsmxwLwhcvAZ/s3z44GU7o6hDcMDIRl7xpRzeMuF70iCCMFa9VYWxszFNX+2EOMYV+YCQQDBx/MYvHWJ+XeBgWvmGeB1nk9ENNYX48V8sC747324w8M7/i4OBAJfOkz/jz9eu164oN4Mdn/mO97rS3iziO/hQCDwocO70fLwcyV9/e3f/6Ckb9ebEBSePHmiPM+TQwBCAumBfFFBlJSIONVR3/LPySP9606uIKOEu00mkyQqTKfTROK9BYBjIoAgVECGnfRAXiBNEBTuCTJEqj4VVw+l83YLCLq7ASB6ThSlY6AfP/PeeAQPWiS89QES7O0a3kJBsGWv11NZlloul6nKTXUfwukkETGIBP2LiwttNpskPLxeGB+EzueT4yPMcC/tdlvj8Vjz+VyLxULT6TRVycuyVFmWifD6PCLO0C/voYiS0j3vdjstFoskSrFDAo4DRBp2ZsDhwXuYW0QxxC7fTQIHhWccsFYQJ6i2Q35pjWHMORdClgd1sj4Hg0ESHDzngt1GELx8TSNe8bqHRuJa4Z7cRSSpVvnnPsngwBnDHPI88XecP34Mdxu4oMD3gKT0zLpoIyk5cJq7fjSdNsyROzzeh3jL38WBQODdxfLnfZ2mX37zq1f5sYOq9vv6O+ZLhv1fea+v4G0jvocDgcAHHu9UUKgk/dUsyypJ/1VVVZ+W9GJVVa9IUlVVr2RZ9sIbHuTWti0dCQxE3ivLkKblcpmIKDZxT8Mfj8eSpMePH6fXESX8vVRiJSXiMp/PVRRFIm+QV0gTpNFT72sDels1hpwMBoNE0jwxH1KFoEG1lEq8uxUQDjxPAhu8/51rZkzIbXD7PCQeYujkaTgcpowDxBQnWRDpPM9TNgVkeDqd1toYIPK0eXA9rVZLo9FIp6enklTbIhLLPqSSa4Uscu8QUQQhSal//sGDB3r8+HG6FnY9IA+C+/BqtBPo5g4ICAOS0lrBiUEbDZ+F/EtKu0IQJsi5fQ3gnvC2GNY6881ncbwgfLiLgNBCF3LYRQKi7CIEz5K3MrRaLQ2Hw5SDQUYFuyS4AMFuF4wf685zGBAhPFiR8WPdVVWV3BTT6TStT29t8TWPeOjuH+4V4s/cScctZBEUXAzx43IuzufOoPcRnsl3cSAQePew+llfp1d/fFv73tOBz4EPBOJ7OBAIfCjxTgWFn1BV1RduvyD/WpZl3/NmP5hl2ackfYp/Ozmmuo64QLUYEtJMtZeOYXiSUm/8fr/XfD6XdLRx43LA+UBoH1sNLhaLRPI9EA7BgWp0415qVm9InKfNHw4HlWWZtpwkKwJhA/Lj56PH3O8foi/V+785D/Zu/u1iAkTPcxsgtOwW4BkAkhKZ9p50dtSQjpV8SDtYrVYqiqKWF4EY1Ov1kujDvKzX61oyP5/pdDpJyPEqdq/XS9sR8v5er6fJZKKyLBOhdjcChH673arT6aQ2mdVqpbIsa+STteRBmFwr4w6R9m07Eat8zNzV4e9hPbMW2dEBos98+TqhLQiRBddEu92ubSvquzr4531HFHf6+M4O7JJCuxCCghNxn1MfD87vLQUeHsr5PCOh3+8nhxFrjDXM+XAFeTAlQY1clz8XvsMD52QsWQvMA88c48h3kLfivA/wTL6L+8rfresLBD68+PH/kj7zvx3q0JUO3XAkfIAR38OBQOBDiXckKFRV9YXbPx9mWfanJX2dpNeyLHv5Vol9WdLD1/nspyV9WpJu1dwEr6C7Dd3D0iAVnhFAFRaXwnq91mAwSCTOHQlNYgdZoW2AyvdwOEyEEscCBIxQPa+Kco1O3iFdXDvkBtIkqVYR5f1s2YedHLIvHbd4vCuMjvuAHDWrsaCZnO87IAAXJvj3aDTScrnUdrvVfD5P9ywdydxsNkt97O12W88991wSR2azmSQlUYVqN2PGOPFZ7hmCm+e5hsNh2j2A3n/yJK6vr1OwIMGe3nqC2EBgp2cNVFWV2j5oe+G++awHO3JOJ8C4HhAthsOh8jxPxBkRB+dBWZZaLBbabre1HUMQKxAE2AEDxwzXgajg20ZyPwhvktJWl5zLBTAXRNhlA4Lt6wZhhPlDaOBZ4rOMu7soEGqYZ9Y998Q9eyAo3wU+DzwHPt7e7sF7Wq1Wys9gTbvogDOKnyOm4JbytXXf8ay+iyfZRbCdQOAZov01P1z/7H83VNWJR+uDjvgeDgQCH1a87fJblmXDLMvG/F3ST5X0nZL+nKRfdvu2Xybpz76Z47nt3av3khIZ2Gw2WiwWifiyZSBJ+dJxe752u53C85ohcpAcJ13SMWHeCXWTjEPWIbu8DhF2Yo0AQS89W/xB5nArQJw8sA9bN33tXrmnmsxxIZJOmjyXwRP6JT2V/A8xg+wiiPi4+X2y5WKe54mYcVzes1gs9PDhQ73yyivabrcaj8e6uLjQ6elpClB0gcRDMskrKIoiORd8jLw9wavfbq93ccYr6uPxOIUb+laR3B/k1ndnYD15O4gHVEKWqWgvFgtdXV2pKAqVZZlEislkorOzM52dnaV1yXVwLQgHjL+vI9Yu1XN2qOB1shaYN29RGY/HOj09TeICIg6tGx60SRsDaw+Cj7MG4Y417Ds7kNFwenqqF154Qefn52q1Wum47hBAiEPMI3vC3UkIB5D74XCYhDzuxYUFxornNMsyLRYLlWVZa8Xg2UPIcHcT18Gau+941t/FgUDg2aDz8S/T9/6K8xATPgSI7+FAIPBhxjtxKLwo6U/fktaOpP+uqqq/nGXZ35P0x7Ms+xWSPifpF76Zg33uc5/TZDLRiy++mGz29NdDYCQ9Re6p0kMu6EsnkX8ymdTI2mKxqFmyIZtYw93C7gTI3RGQIYfnHDR74KmQQ6qwrlPBn0wmko5tA972QdI9JAihoLl7AiSKoD9IkbdIMG7cG2PIeDN2rVYr5QP45yCqWOLJh0CM8GBMSamSfXZ2lkj3+fm5lstlCnVsBhO6M4CQPd9S0O+B+ef8TSu9h3JSJc/zPO2IsFgskhvEd8BgfBETVquVxuNxulfWEhkViApcA8d+8uRJLfdgMBgkIaEsS11dXWmxWCTiC4Glcu75HAhYnnsA+YVMS0oClbefkD/BNpYIBxwDsYF79hYIqvzMO+vKnyPWBa0WHqrIs4CQ5k4X1rK7erg/D5KUjq0bjLcfg3t3cK2Sag4Gnonms8lziVDGGnqfhDI+0+/iQCDwDBGbOHxYEN/DgUDgQ4u3LShUVfUDkn70Ha8/kfRT3urxdrtdsllTRV4ul1osFlqtVprP52q327q4uEiEAlLd3M6Ofnt/DYLm5AvChmhAAjziADs7LBaLRGwgjJJqx/LcAYg5pBMySIDfdDpVlmXK8zwFG1L59dBGCJZvlwexkm6CJLkGSK2LIAgQ3Id0DB0kC0FS+pykRDT53MnJSU3QYNzyPNdisUgEDZs/RJNxv7y81GQy0Uc/+lGdnZ2lMeEzkFWIuu+SQQWcueBcbMVIDoAHK0KKnYx75X0wGGgwGDwVxohY4OvC54PWF85NS4XnVbDeIMWr1UpXV1cppPLi4kJnZ2cajUZJCEDUINSQCj3iDKKI7yqx3++1XC7TfEKIGT92LEGY8R0ZWMfMa57nevDggR48eJDuESLt67XdbifRAYfH4XBIrQmscd/6Mcuy5PTgGWT+uSfaIPw5cGGL8eZ97mRizJouAoQWng++XxC1er1eWnfMG/9m9wm+Y1gf9xnP+rs4EAgEAm8N8T0cCHw40H7ugdRuv/EbnxUOlfaPHn3pzvc28W5sG/m24OF3kmrWbN8FotPpaDAYJILkvc/8t91uNZvNNB6PUzUXwtzMYwBexfS0fN5L/7pXUKXjLgnY/z34rSzLRIjyPE/kjKDIfr+v0WiUEutxI3Advq2ht1XclfnAtfiuDhA7z2uA8DLeBPmt12sVRZH+7r3mzdYOKvy0BvCz5XKp6+trzefztFsA1fjZbKbT09P0mclkoslkoqurqyTSIJR44KPvakGQI8dlPNhRAuGBdgnEAObMW0ncqs+YQsA9vBNCzrW4BR8Sj3jDmI5Go9SacX19rfV6rel0qs1mo/Pz8+RS4HpoEWDu6ft3EQwRiIq+b9nJddMO9Pzzz6fsBQ+mxCHAGmG9nJ+f66WXXkqZCQgdhGqSNcGuFYgY3DdOB55fxoLxZxcK7ov1u9vtkqhAG5KLQmAwGKTtJX3HC88zQYwhcJTWD8Q5RMbms8R6c1GN1xD1AoFAIBAIBAIfXnQ++hFVg56+75te0n7wpXOvtleZvvL3j97ZQa6m2j+5fDYX9Dq4V4ICRGK5XNYqv25PRlCgiusVfOloi5/P54m0QAohhFS2qXJCzLCwe+Cb9+xLSiQFgoYTwgMEncAul0sNBoMaycHKj6UegurW8Xa7nQglBA5xwi38EDKIn+9O4JkA0jEvwbdgZPcKd1pwDdjmPb+ACjp9/FTNIYWPHz/W5eWlXnrppVQl3u12KopCq9Uq2e4nk4lOT09T/z5hhO6OcIJ3OBw0Ho+TAOLZCPwcAYAsCCeQHM/FIA/0lI7uE9wM/Nt3iZD0lPjAfVGR515wKCyXS1VVpevray2Xy0SOT05O9ODBA11cXCRBZ7FYaD6fa7FY1EQTF85wgnj7AEGTs9lML730ksbjsebzeVqjzeeE9cEauLi4SK03vm0ia47PSErz5TskjMdjXV9f1wJHEQIRHCaTSQrzRPyjhcEzTRBqstudLPI8T1tVckwPHkU09FYfFw55znyOETo4ju96whj4jh2BQCAQCAQCgQ8fOl/x5frMN3xUqxcOutkd9kuHfb/S9/5bL76jY5x/50t67h/N3vT7269da/f5H3pL57g3goK3EVCtxIYOgaQCiaDgWw1SuaQiXZZlsrRT9WyG9XnLA39C/KkUQ6q3222qaiMqQFyxUUMkJaWebAgT9muEAd8u0LdqRMyAJEIG2Xqw3+8n0sP7IUIQVwg+xyJ8DvLv7QEILP1+X2VZJvEB0cOzDRgvb+mA5PKex48f69GjR1oul6kfnesry1Lj8TiNMbsfeLAkggItL8wnY3B+fq7VaqXpdFoTRhCJXOwhvd/FFe/Jp9qPM4B7aYonvnuAE3zOiaOB9UG2BBXuy8tLrddrXV5e6uHDhzWRjDHY7/e6vr7W1dWV9vt9avtB0PIMDdYX9+0i1Ww20263S44ZvzdvgWAeIemERkLii6JI+Q+np6fpnpu5Aog6BDfiSmDdM0eILZ7JwJrnmZaOO3m4o8iDGD0ElDVxOBxS+CUiSKvVSjs4sFYRDxATeZ6YO0QertnXfCAQCLxVVPNCk+9rafaV9z/cNRAIBAJPo/1Vn9Dnft5Lt2LC+xNXP7LS1Y8cv+n3T77/VBf/9KXaayd/8x+r+iJFtnsjKBwOB/3zf/7PU385pItf7n0HAX75l467A3AM376Rqi190ZAJHAGQF+lIznu9nkajG2sJLQDuUPCgOOzbVJcJU4RA4VLwarK3PyyXSxVFUQsd5L65HwQH+sIhlE6qqNrievAWBbYulFQjy82AP0gVnyuKItnlGXsfc8aVqjDzcHV1pUePHqksy+TMwP5elmXa7YLrQejw/AHPseAecRNw7dyzuxoQNsgX8DYKjuOtIO4wcBEGtwoE1KvY/JwdB8qyTBV9CG6e5zo7O6uN72w202q10quvvppEInZfGI/H6Vq9jYJrIHvAW4LYepKdFxBQZrNZymugnYbx4B4QH3zNICqwLhB5eB5YVy4ouDBCq0dRFLX2JUQzni13JDBHiA3NNhLWiW/jyPPvAg4uHp4/niXGH6GJHS1wnOCa4LoOh4MGg4HKskzXEC0PgUDgbWO/V2f5vgh2DQQCgUAD7a/+pD7/s1/U4iPvXzHh7WD2yYNmnzypvfbScz9OrW0l/an//s7P3CtB4Qd/8Af18ssv6+LiQpKS7drt5rwXsrnZbBJRxWbtFnSvKPN+31IOsgYJ8iBHnAOQPa4B4u1VaELqIIKQVyrgfszhcJjIMcGTkCO2saPSzvuchHvveHN3AEgpn6Niy3VTcYVY4oKQjnkJtDJI0qNHj5JbBHGFe8IB4ONeFIUePXqkoih0fn6eCBk7WDg5dKGk1+ulajp/IiDxH5kULlK4ld1FD68s4+KApLImEBPc8cExOB4BfRBWxhtBwSvmHCPPc11cXKRxB48fP9Zrr72moijU6XT0wgsv6CMf+Ug6Pi0ytGtAghFwmrkezB1jgrC1XC7V6XR0dnamF154QY8fP04BmN7Kw/qbz+darVa13T54Llgrfo+IGhyDTIPBYJBaHHCDsNMHIhuiFte+Xq+TowOxz50nHJ/XCIXErcD6GwwGydngY+KiA2KepOQqIccERxBtTy4CBgKBwNtBdnaqyx8VgkIgEAi839D5xMf1uZ/zohYf/XCJCa+HV/9lScqkP3X3z++NoACwzlNthJj4NoDNnncquVQaSc4n0Z9KbLPq7X3a7nqAUHpivXR0Q3g4oVfnqehLSvvYO5HleiHsVEHLskwk2a3pHihYlmUthJJ7QDShdYCsAkibbw8pKQkGiBa8ByIFyaLP/+rqKlXwPU8CMslYMHfY7ouiSAQQkvfkyRNJx+wC2jGw/VM5Xy6XibTjYGDbzaurK00mk7Q+IMk4H+h99x09vFWBccV6T1sFYpLb9jk/LgAnt/zcnSfu/mDHEheZNpuNrq+vE5klXJSx5TieQQAxdheECz48CwgeRVHo8vIybYH44osv6nA4aDqdpm06cQ2s12vN53M9evRI19fXKZCUdh3P5ODecC0goDVdIjgTEA8I7UTg8jYF7h2xwndr4We0y+AG4vuAOeHeh8NhEqx4bljLzDXHZi5ZF4ynrxcEq2h5CAQCgUAgEPhwYffCJMSEt4B7IyhALNyN4PZ3t1tDRiBZ0s2OCePxOIXWsSUehGGxWKTzUEGVjr33kB3PLWgGsmGRb7VaKXn+5OQkVUZdBGjuqAAZcyLI+6hKt9vtVK3ncx46yHV5wCBjRZXVx5Kfu6DhffjkSzjJdvcGlWB2uPDjcx9cL2MDyb++vlZZlsrzXEVRpGA8doeANA8Gg5S1sFwutVwu09jQEsB4MG4ugiCEuIAAGfWdOLj+zWaj2ewmmIR5QzQg/I/7QciAbLIlJufEFeMVf++7Pzk5SQGURVFoOp3q8vIy/RwBZbFYqN1ua7lcqizL1E7i64RjI3pwrTwnrAt2lJhOp8nSj4uDeyf8sSgKXV9fazgc6gtf+ELK0GCrVhcrqPL78+MCGm0P5HT4uuQZob0Ioo/w5UKQpBRe6ttEepYIAhJzw/xvt9s0li609fv99HN3MXAOrol7436awaCBQCAQCAQCgQ82Ol/x5fqBnzqSFILCm8W9ERQk1UgglWmq8tjL2RKS7IL9fq9er6cHDx7o9PQ0ETHvC8ex4MGP0rEiiktBOjoLcAkASAhhffTcI0S4LdwD9JwIQ1hwTHhInFvSOS6klfvh2JAxCDoEn2A7KqzcczPBHtu3p/cj1vBZKtFuHff2DxcdaJ/geMvlUq+++qpefPFFXVxcJIEny7JEVCH4fp5+v59aI6QbMnp+fq5Op5PIJy0hXvFmvrw1hXvgfMy1txSw9SI5EwgLzJe3W7hYgMMAEt/cBQJyTKDg6elpIvCvvfZaEiZwpzx69Ci5CHASUFFnTXp7R6fT0Xg8TmvC23ZovyF4E/I9GAySW4T34yj5whe+oM9//vN68uSJzs7O0vW504A8BIQhhCgEtqqqNBgMUvAi4oJvX3l5eZl2J/H2BjIWEOqc1PN+fs6fnvfBfXEunnFvg5KkxWKRvgs4DvfD+Pj3A99JgUAgEAgEAoEPB6p+V5vzEBPeCu6NoADxdoIIyYVEQ/whBW5PHgwGKVXeHQ3+d4gU1UmIP1vSQfI9+M9JItV33BGTySSRR6qlza0bvXoKuSNF3x0DHibpPfyQK2zZiA6QbLekYwWH8ElKNnYnxVwHve/uZnARxEMMvXpLpZx54RhUxDudjq6urvTZz35Wi8Ui2eOx7jN3ZAcwd80tByF9ktJYeWAn8Iq07+rAnBHAh1hEBR7nBW0kkEqCJp10shZ9PSB8bDYbFUWR+vshzM0ciOFwqPF4nDIi1uu1FouFdrudFouFrq6uNJ/Pn9qZoaqqRPKZG47rAYk4ZhhnRB7aV2azma6urpLjgPW23W716quv6gd+4Ad0cXGRPvf888+r0+mklgPyPoqiSGKWpNo2kJPJJIVBujhGxgPzg6jE/HjmiW9lihDFXDQDO1mPPAceSOrtPRxvPp+rKIrkemEOeL7Iq2AeAoFAIBAIBAKBwOvj3ggKwKvr3pPu4X/L5bImGEAYIL0cw8mlpORwQARgyzjIqu/MwDH6/f5Tzob9fq/lcpms8NvtNu3AAAGlAs1x6dXHog0pLstSw+EwVXS9zUM6BlNKSnkNECj+hGghXvAn1+zp+D5eHmTIMSB30tO7IvAezguJZJwhqvSsz2azmtODFgdvA3nw4EESCvx4zHNRFBoMBrUdITzvwZ0nrAkcHMwz5N1zLXznDndocDwXTyDEzXH2FgvWBs4If7+vP+6lLMuUZbDZbPTKK6/o4cOHqd2h2+1qPB6nYEjfiQInD9shksUhScPhUA8ePEhbTnKvh8PNlqXj8Tg5LCaTSdrV4Pr6Wp/73OfSVpYXFxcaj8fqdrupTaIsy9rzybrygM5er6ezs7MkWNDSQ7An7pKTkxPleZ5Emna7nXbGYG4g/DhrPMODZ8T/5Fnw1hwXdJgPxL3m1q6sDdwbvrYCgUAgEAgEAoHA07hXgsJ6vdZ3fud36sf+2B9b20pxOBwmB4CH/UlKxBZiRZsDRAOSgf0dqzsk2u3P/OmvOzl31wDbIEqqnRMy0iSnHgpIX/1sNkvCA8GEVKUh1bgmqJojCvh9UMWlPYHjuEDS7/eTHZ374xq9wouTA+JF73ue5zUxwt0A2P1dUFitVnr48GHagQPnBOOO0+Ts7KwmSri7wIkqbQnMhzsvcJ7wn/feS6r16CNE4NJAyGC3EO6P/AZJiQAjLrVarbQ9ogclInqQb+ChnLTo+LXi3GAdL5dLXV9fp3MSEImIwDxtNptUQXdxhPmnhYRx9lad0WiUHBHe7rPb7XR1daUHDx7o/Pw8bWdJuxHnvbq6Ss+gtxng3kE0wWVAJgbCiecykI9By8Hp6WlNUKiqSnmeJ0eJt/j4883c7Xa7JNggxPEseeaFh60yL4vFIh0TQRCRLBAIBAKBQCAQCNyNe/PbslcCqTZipcZGDhngl3366iHOEBG3T0v1be4gZt6T75VxJ2/ejgBRpmoKMWRnCXdJePYC1Ves41SKpWPyvaff43qA9BMm2e/3E+HyLe+8VYKdLJr3zPV4oN5isagRN+loXef9zIFvQcnnGR/GHbGA8263W02nU63Xa52fn6cQv/l8niz57Xa7NofuTHGBQroRm0ajUSKTWPxbrZam06mKokjtKJDd9XqdjovI0Ov1Uh4Hc8c4kcnRbDNpOjq4Bpwso9EoCSHeiw/ZJRditVqpLEuVZZnELUIhfZeJsiwTSedPbxFhHSFM8P6qqjQej1MLiaQ05nz+/Py8JpBxfklpLnq9XgrKhJBLxy1XP/nJT6YQTXYfub6+TuPEsYGvI8aQdhmEIxfBcBLRfsTnve2EteYBrXwv+Dah3DfOEXbW8JYRxDkEBD9OhDIGAoFAIBAIBAKvj3sjKAAs3tjmIarN8D1IJ7/4N6v5EBqvVnrwoGckOAknTwEi4X3dbjOnzxyiwzVCYiQlN4F0FDNwMLCdHkSG5H6q+xDG6XSq3W6n8Xis559/Ptnfp9NpIvcuAGAPp1rNOdla03MJvNWBcfCWCm8L4PjePgGho/KMMOFtJt7z7m0a7p5wt4U7FBBiIIg4LSC5vg0gVXdaA8g38KA/xms8Hqvf76cdCKiuc70IEbSp4FTxthuq/5B45hMnB/cEoZ/P55pOp5rNZknMYR4ZA7ZTRDS6y27vWRGIC/P5PN2rjxv30xSbfCtW370Dwj2ZTNI4+zkh8Xme6+zsLOVMXFxcpHXI+HluCW0LbM/q/3HN/J11wvOO4wLhgnXL8+oCA/BnDWEBsYAx9meA3ATpGMrK/bowEggEAm8J2526V60I9woEAoHABxr3TlCAsED0sJR75d/t31j8IWHYmkmYp9JPFdir9E5g3fIvHXdVgERBePg31wXhQESgQs5xqLJyvRB26RgcB7mCCK9Wq9pWjNj+sek7CcTK7WQL9wA/hzBDxJtZClw37/Mt8xgv+s0hZpPJJFn/vfLs1+Ckn+o65BfHx3Q61Xw+1/X1dbLlQ6Z7vZ4mk0naUhGizy4T7g5xVwIklmOQW8G1IFohKPj2h8yLpHQ+sgxYe5BOz/hgdwiEMDISZrOZHj16pFdffVWXl5dJLGJM2dVhs9mo3W4nMj+bzZI7BlLMumJtY81nbbF2fEcI316VNcBnJCWBhftifXkGRHObTp471v3p6Wly1rTb7dR+IN24GriW5npnTTCujCnPibt+mF8XDjz/A1cSjgXWMeuX4FCeSYQ1xoJrdCcO4x4IBAJvB7sf+oI+8YdP9Jlv/KhWz4eoEAgEAoEPJt62oJBl2Q+X9MfspU9I+g8lnUn6VZIe3b7+G6uq+ktv9fhUUN2B4C0COBc8xA/XgBNuPk9fOf3y/Iw/PUEf+/t6vVae50nggMBSafWkfAgsRAri7tkJoGnbh8SxnSRBjVTBEUogXRAnvz8XXNzmDWHDSUGV1res9LYJFz0QJghSxImANd9DLrkO3AQe0ojoQ0XdK8C+ewDEfLVapYoxTgu3tnMer7T7fFIN95083LlCawmZDHzGQy79/XcF+rFbB4IOY+G5BlmW6fr6Wo8ePdLjx4/18OHDFALIWpzNZomcs0bJX0Bg4hp9jj1c0qv0TqhxnLj7hPXNaycnJ8ldgcjjQZwITdvtVmVZpnBGBBDcCuPxWFmWaTqdJgcG7iDGlHF0RxBjxzrk+mkJQfBhTXhbDfeCyOJBmewugjh1enqaPsP4I+ogAhKIyZrzNXWf8W5/FwcCgbeP3T//rD7yty70A7+g915fSuBdRHwPBwIfHGSzUqPPPa/iy0IIfrN424JCVVXfK+lrJSnLsrakH5L0pyX9ckm/u6qq3/k2j6vbY9Yqpk6WsL9LqhEf/k01mgqmt0y4SOGOB+mYaeDVS84HASbrgBYCSDjva1r1nWh7Fdxfh8ixqwGJ+ByfyjAiAsSX63KHhRNLJ+6MD9kPBBISdsdnvCqNY8BdDpA0hBzf9s+BC4SsBwQFMiF83BEeGC9v1ZCOogKVb+7LCT+iQTP3wM/FNpnumPBwRsgnQgrHYj4h7ow9opUHXfo1Mt7X19eazWYp6wCRqt1up/F0VwBCD6TaXTFsH7lYLLRYLFIgJ/eP8LNYLFLeB3PphP1wOGgwGKSdFrIsS8KRv3e9Xms6nWo6nerq6iq12hAiOhqNUgCjdMzO2O126dis2abwwbPCz71FwVudyrJMW2pKSmGZHryJoIAjAkcLa913BXG3h3TcHeSuMEZ3RNxXvFvfxYFAIBB4c4jv4UDgg4PdD31BL/3t5/R9X5a/15fyvsGzann4KZK+v6qqz77dil7T3kwKPEQAMut7w3sl1S3Pq9UqEWNe8z5uSU8RYKqp2OkHg0GypxO+hwgB6XPRAvIiqbZNnYfB8TPcARyTkEAC+yTVyBXEFVLvVVU/Hsener3ZbBI5d6K2Xq9rO0ZAzLhe3zGDe4GoMkfN63B7vpMwyD/knM+7eEBQngsMvkMBokSr1VJZlskZ4GuFceh2uymUkLFzuz6tHM2gSVoIuAeu0YM5+ZxU7+Pn/JJUFIWurq7SuclicGGK+5GU2h0g+Nw/gZuLxSKRXxwLtFTM5/PkROA6m24Vnhnf2pLr7vV6KfCUZ2i1Wmk+n6cAzOvra7322mvJYTGfz/XgwYO08wriCM/Ba6+9VssUoXWJcWrmjxD0iPDFukcUIXQSQaHX66WxY/6bLh3GCKHLt2z1gEjCUT2zAbA+/PvmfYJ3/F0cCAQCgXeE+B4OBN7n6Hz2oc6+5yt0/SNi+/A3g2clKHyDpD9q//41WZb9Ukl/X9K/U1XV1RsdwAPoILiQHYglxAgyRJXZCas7CyTViC6fZwcBr5biOuA1r3JDengvRB4S6QF9XrWGBEJcPBDSCWCv13uqN9xJOxZ8qs7N3Rn4jLdZYBNvWuFxFXgIXtO50WwX8ftwUu0iio8N14Vd3236jLufw9P+m1s0QgyZY7ZL5LiQPo7tLRr8jK0L3a2BM0E65kd4vgbCiosMHI8x8i0aOd9isdDjx4+TeIHbAHLtbTCSatV4r+JDwHEZIFCwRaKLCVwrORdNtwpV+6argrVHhsLhcNB8PtfV1VVas5eXl3r8+LFeffVVvfbaa1qtVkls8OwC7oXn0tsT3HVBWw9ZEy44cW2IAtPpNLU6zOfztF0lc+EtKqxjjr9er2vtFIgTjCECD8+uXyvPvK/19xHe8XdxIBAIBN4R4ns4EHifY/fKq3rpz1aqWp/Q9KtDVHgjvGNBIcuyrqSfI+lbbl/6vZJ+q6Tq9s/fJemb7vjcpyR96o7XEyGFfDlJ8jYCsgAgLP1+v9ZXLh2Jk1eqqaZKRycABI7qJWQRMndX6CHXCkGXjoFvTtKpOENeuA8n19zTaDSqXS/Xkee5rq+vE4lHzPBx8Uo+QYMuqPD+uwL+IJyMhwOnh2/jiMMD0QCyDHmFjG+3Wz148CBV2r1KDwFEnPHr9OND+HzHAAQer2RzPxByr2B7BdrJNVV51hjrhXUnqUZ2s+y40wgigYsu6/U63Svv57iDwSC1srBuIL/NPA8/F60OzLnnCSBG+ViQ58E1UeVn3JjzPM81Ho81Ho91OBx0fX2t6+vr1B6SZZkWi4Wur69VFEW6VlpzcFQwl76uEG4874P1h4DCXEhKjhnElqIoNJ/P09zimOH5xjXEfLloiAjA94KktPMEa4J7oHXH5xKx4/0mJjyL7+K+wt4XCDxrnPzj79fzX/4v6tGPfa+vJPBuI76HA4EPDnavvqaX/lSlwy/6Ss0/cf9bYN9LPAuHws+Q9A+rqnpNkvhTkrIs+32S/sJdH6qq6tOSPn37vsper/1J1ZZf9D0PwMkf1WCIrBM4D/DzKiTV4O12mxwJkDAIBtZnyAV2eCdK/IlLwnMgmpZ/r0RDIj2/gK34uAeC74bDYRI7IMIETGLn9lwBJ8AeaAgRB16pp3UD4s8YeE+9dGzp4J5xdFDV5n4gt5BDyN5kMqkJEAgqED0XTJgfWgO8z52dC9jZAKEHwg5oOXARZrFYpDlwwcrnhOPzmosp2OerqkrknpYargOiTkghAYiQb7aVJAjQ+/j9GmiFwVHg7/G2AifK4/FY3W43iQyLxULL5TIJcYRS5nmetkTdbre6vr7W5eWlHj58mFoLEIlYy9PpVO12W5vNRg8ePEiOBdwT3l7EsRECWIfN8ETPq5CUMidY397WsFwu03PS7/fTePqziWAnqdZmwfNJ/gRiH4IG73+fuhPe8XfxJLsIGT4QeMbYz2Y6/9P/RPvuv6TLHxWP2Acc8T0cCHyAsH/toT7yh9f6wV/5NVp8NESF18OzEBS+UWbtyrLs5aqqXrn958+X9J1v5WBuafaKJwSC6mYzjM6J53K5TASXfALIEwTF39t0KUBu6Lenck++gu+G4ASd3QwgRZ4/QJ8+5/DQPQQPt86zdSMp+sPhMKXsu8BCBRpxwXMXvELrlWOAoOICRJPQev++/xvHAoIElXcyG3CJQMwQAySlOWGLSAQCju+gGs3uF7SnQJY9K4C5Q0DBXQJ8JwHaQZotGZ57wRyXZZmcH00LP1V75tl3luj1ekkI4T2dTkd5nmu326Xefkgwx/OdLCDfbPnI2rLnLQlRzP1sNkuhibS+rFYrFUWh/X5fq8TTVsTYl2WZWgzG43ESC9jZA4GE9orNZqPz8/M0B/P5PJ2PefDWAs8ZYe3t9/t0Xu6H7Ug9e8HbWAgulY7tRRwX0YC5Zn5Z494Kw+d6vV4SoTwIFRHpfYJn+l0cCASeHQ5lqQd/5B/quW5Xn//VP0qLj8Qvph9QxPdwIPABw/56qh/2e/6RPvtrv1br5+K7+y68I0Ehy7Jc0r8u6Zvt5f9nlmVfqxt712caP3tTaFb+vcIPOYDgu93ct+2DmLiDgf8gtlQuOSZbydEHDnHEuk3lE8LhSfHefw+pdbeAux4QIfb7fY2MQsq5PvIARqNRIuGQU2+VYKywj3Nur/hKql2LtxfwM/IA3JLe7LvnXt0V4m4LSB4EmTaA+Xyu7XabtsOE1Pr5cV1AqgeDgVqtVnI34IRgZwFEBLaddBBciHWdNeLtGKwhHB6j0SiJAmwVOpvNaoGGCBVOVl1w6na7Go/H6vf7Go/HtXM379vbZnBN+HaJZGHgcPCsDl93LhTtdjvNZrNUvaetAlEHxwVOCdYr55nNZppOp8k9gojmWRbehoJjQFKt5WK5XCZXBc9ic64RCrlGF704NjkpzZ1EcDUgeLCWPQAV0cBzTzybBAEB54QHWLK23i8uhXfruzgQCDw7VOu1qvVaH/ldf0dZK8L63gqe7Mr3+hLeEPE9HAh8cHFYLPSx/+Tmu/v7f9v/WocTMxJ9kL/Ob2/zh//W79VhPtdnXudt70hQqKpqIelB47Vf8g6PmWzs9Ij3+/1EVF1AWK1W6vf7T6XXs0WhBwR6yB3CAPZxr7YPBoNEZCEh3tdPa4RX9CHw0rFv29PnvT0AIoidHmKD/br5n1f+sdJTWYV0esYDrQCeMXBX2J9b9Lk3F0j4swl3ZFCNd4s4AoO/Z7fbper42dmZqqpSWZa1a3b3Q9P1wBhDIM/Pz9Xv99OYUSlnzVA9n81mWq/XNZcGzhZEJ1wU7fbNbhuMO2uA8eV9rBfWJCINczsajZKbwIm+BwS6U8J36PCtDofDobrdbvq3BxF65oQLCxybNhNELxcA1uu1JCWRptk6slgskhCA44Y553gIKYvFImU8cBxvI/I5brfbGgwGtZ0oPEjUdxVhDTRDH3m+OAbPVbMVxx03rEvECEQVSWncmyKGO33eLw6Fd+O7OBAIvEs47FVFkeut4X3QBBDfw4HABxy3392f+PV/O73UfvEF/bN/95P197UqVS29b5EdJB1ufvf+6v/6kfbf+33af/GPPLNdHp4ZvG+fX+ip+NObDfFwQrHf79Xv91Pl1VsHaInwvnoPdeS8CApYpp3Y8Bne73ZtiD7Vf+kYKHnXzgKQbMgilWpCACGqzcouwodvEQnh8iotpIwqvLcbQIwhnk03R9NR4a0OgPvBEYEwgYDCOSGlhOUxJrvdTo8fP1a329XZ2ZkGg0EaT6/ke4AhTok8z3VxcaHRaJQCIWk72G63KoqitpsH4+HCgIdMuvtgMBgoz/Na8CLzynpyxwMZHThacJkgcnEvVOFZr1j2WRPMJw4Bxi7Ljjs8sE6Yc3Yr8BBC7nWz2Wg6ner6+rq2htxJgZtgOp1qMBioKAq99tprevTokVarVcp/QJxx0cF31aD1wIUg5gtnCls0cg++2wXPCoLhYDB4qlXC2xNofWqKPd7a4OuUzBE+h8CCoCgds1gQM3FctNvtJD4EAoFAIBAIBAKO/WsP9cl/72Httfk3/Hg9+VFvzrZw6EiH7nuomFZSZ1m/1hf/7l6DP/t3JekNhQRw7wQF77t3iz3BchAI7Pa+Y0O/30+EkHBBD3l0UQGLP6FugF55hALe62nw3mogKZF8Prff71NvOtfOlo0A0s3xIESetSAdMw08N0E6VlfdLu7b50GefLs8J5IQKyrtWZbVkvSbLRWetyApCQQIF5A0qv9U0r2Fg/HBhr7b7XR6eloThqiC+5gjALAzAS4SLPguGNDm4LkVtK+0Wq1absVoNEpZBpyLirSLEcDbCvi5z6mLLy4iYdl3EozN3sWaZmCht/44afZdDdxR0nTOMO4IVDxXzNF8Pk9OBUIQfYcKRAHPnSB4McuOO2rMZjN1u93a1qu0DxB+yFpHeOH9rB/uwR0/CFHz+TzlojgYp7vyN7hXRC3mAPEFUYN5c+cT69fXeyAQCAQCgUAg8EYYf9t3aPxtb+69+5/0Y/SFn9B/dy/oi6C1kz762//nd3yceykoePUbEoCFXVLaHnE4HKbqL/Zseqo9mK9ZzW06HCASnN+3T2wSCw89JLRROhJPz1Zw+7aHOtKuwT3yec9UQDzw3QQgjVwz/e9eZcfRIR13N2D8PGzOXRdUYiHj0tPbbUJQ/b55L84RPuftDpJUFEUau6urq0TgOTdjwvk82BAhAPcA5NDbFTw4cz6fqyzLJCQwRl6dpj9+NBqp3++rKIrksOC+WS/SDSH3LQ2b65WKNuA8rAd3ufAZbzeBELPOWDfulHCRgvvmPL5DAgKOP0O4IFwkybJMT548SeS9KApdXV1psVjUsjfm83laTwQneouPrw1aCxg/xoIxcOeBj6+va9YybgPEKtoruAd3TtCS4ZkWnMcdJt6K0xQFvd2HfwcCgUAgEAgEAu8W2n/jH+pjf+O9vop3jnsjKPALP2TJiYN0DBqEPEo3uwUMBgMtFotEHD2/QFKqSJdlmUjW4XBI4YDN3n2pLmq4ndwrxu4E8DYBCJHvOCApVXqxirO9HySVCiq7AniQJCQTMuk7PDTbMtgG73A4JPKHSIIDoem4gOhB0DxTgs95ECTX3Ays8xBKzoEDgDkjB+H09LRmfccx4OGS3Cfb+mFRh/wvFotUZceJwZrxdhAn1Fw7ZJOwy/1+n4QDxpzxcFLqrQ24OubzeRKunDxDtr1NwPM4IN/MEW0UjJP/zAm8E2O/T+A7I9wV4IiggPjCcRGFPOeD6+ff7HzgbhMPMiT7giyTsizTeRHoPAiV1gOEQfILcFU01xnrcL1ea7FY1NxBnINdJnCqIDhwfHeX8Mxyb03RJRAIBAKBQCAQCLw+7o2gAJphdU5wh8NhIo6QRqrlzcp9p9NJrQZZlqXAOwjJZDJJAYdY4JvWe4iPW/idyFEVh2A1Q+sQACCFCBsECXqugTsCmu0akEmv3DZt87QfQIjZFhEy5Vb45XJZs8G7Y8JJM+SMMfIwQndNSEdnhGcUIA75DgHL5TK1LYzH45Qp0el0NJlM0rxB0HGdsC3iarXS48ePdTgcdHV1pYcPH+rq6ir16rvY4kTd+/W9jQGnS1VV6vV6qVWFUEa2ePSKN+GCrJPlcpmcG2z1SRDlcrnUbDZL19Lv99NcUpln7rydhWv054HgQ19nrD3P0OBzkmqikVfnD4dD2sGC9eeOGdY2u2dwPS5eITZB7AleRMDpdrtpbL0Fwx0tkHqyNnB7ILC5q4jxRmBAIHLXCkIQWRfeQoIrxEU1fubhpX6P4VQIBAKBQCAQCAReH/dSUIAYkmcg1a38kBwIBOTD95tvWu8hKxB6quM4F/wzTiD5PID4Ewa4XC5rJBYSA0GBcLfb7dRPznm8NQPSSHgdhMjT5zl/09aNGwJi7vZ6rp3tL/kc48e5uV4qxjgAqPZKN+SbeSAzwQPtvBJ8V1AkhJ2tMCHm7vRwgsf2jaPRSK1WK1nunzx5oqIoVBSFZrNZukbWzXg8rrVMMC9cq+8M0uv1dHZ2VstioDrd6/VScCEuC1wwTtIh4mR7DAaDtOuEjzf35eKTO0y8DaXVatXyMxDVEBXcBdPMHuBa/JlqtqF4WCdz504AWgoQgzxzAILPdXiVHycI19Hv95OAwHPrzxhiQDMzwt0m/r3AunXxwHdI8fYm1iDnd3cT44CzwcUHd2C4yBIIBAKBQCAQCATquHeCgnQk7ZATiBzCAGTqrn52Pi8pVdupOkPuaAvw7QQ9HBGy49b55m4DTsw8gR/CAmGj+trv97VYLFJ+ABVt6SbgsCiKZBWHhEFolstlbUtD6ehQwCHBPUKmILdNlwIk18kw5JVrpW0ER4S3MPh2hW7Zh9B6pgSfJ4Dv7OxMo9EoORR6vV4aU87DfDAntCFArLfbra6urtJuBC5AcC8IBIwRZJL5ZR3RYnB6eqrBYJCIKv8hjEyn09r9rVarp3rwIZ6IJIhW/OkikKRa+w2igIdn4hBAVGg6FpjXwWCQXBIuMHkLgO9u4eGOLkqxbr3dwR0BPFu0ebgA4OPAOTieiwQIU96uw1h4axPndaECAYdx9u8DX8+8h/n1fA3G18UExtKfV3dDhKAQCAQCgUAgEAi8Pu6doEDPPGQb4gURwPruW/75bg/evgCRzfM8kQgq5XwGwcDbHZxQIGwQjkhlHuu6W+o9SBECtdvtUntFr9er7eyQ53kiQbwXez+tGd4PTktAt9uttUV4hd+T7CHGHtgn3eRKOJmTVHN3SMeeem85aWYnMDYesMfrXkXudDoaj8eaTCYaDodpbj2cj/nyIEyfD9YFQgtz73PlbggXeFarlcqyrL0f0o0rJM/ztLUghHixWKjdbifyzN9xpbBLAcQdV4Lna3hl310Hnk3gW2uyfmhNcfeDt7sgtnhOh4cU0tLiQoCPqZNwBAcEEMbAxRhfHzxnPt8cw+eGteihkpB81iVrlvWMyNLMjOC6veXIW514vwtqfh9cE2vTWye4P64TQcKFlkAgEAgEAoFAIPA07p2gQDhfr9fTdrvVbDar9a57aB7EDUIG0cFNALHCjYDAQCuF93VL9UopgJggZHiVk23yIIJU9qWjQwESxPuloyMCosn7AY4Dqs7Y7SGpWMS9ou+kixYOD0L0LR55n+9MgXMBW/1isVBRFGkXAcgZve+QfLe84zJgfBEUfNwZI3bsYFeOVquVAhKd+DuB5L3j8Thtd4hgALlsWv4ZBw9txDXAzxFpELKowvvOFb5lIaIBTgSvkrODhK8Rd4X4HHE97GCAgMW6h8z7GuG+aD1h7UvHbR49G4C11wx/5L4g5vv9zVanPndcLxX85rrjWN7+sd1u0/34VqneiuOuFxd9ENYYC3dHMNYIBh7cyLERA3i/pPRerpVr9IBGzsHzwHx51kYgEAgEAoFAIBB4GvdKUPCQOnqhIUVOyLznHLLnPd+QSA/jo8ruFnqvvnpVH5Li1d5er1ezzkuqkRx3KUjHqieV4VarlQgbwXOQVAiNk1vcDPznWQq8D2LorRx+fq7Bq/subPgWf4RE4nSAiAFvTfAkfOm46wLEztsBnJRxzcyr961zzbgUvE9/v98nsn84HHRxcaH9fq/5fK6rq6s0Pr5zBWIAc4hA4+4K7os1RL5Dq9VKhJ4xy/M8vZ8/ub7lcqnVavVUlgdVeNZOszXA11tzjAkQhHR7+0JTKCNDwMfecxokJUHJdy7xuSFwk10mXMjgunFL4ORg7bkrAGcL10ELCC0Knk3CHLtjwJ8Zz75A1Fqv18lhs9vtlOd5EoFcMHGB4XA4qNfrpWfV3ROIQHyvcL/MhWdRBAKBQCAQCAQCgTrulaDgFU8nCFT/qXpCHmkjwCK+Wq2SbdsrjhAxr/Cv12uVZZmqkViusb6PRqNE+CHZHOsucGzvf/ct+iDcVE7v2pKuSXKbLQve8+6VZhcWEBuo+Pp7uAbfRQDi6uMnHSu7bot367ukWo7FaDR66t68P53rXi6X6b+TkxM9ePAgbTFIZgZV5MFgkIilj9FoNEoE9PHjxzXnAaGWzZ551gguANYBhB3RBUGBFgkq4d7q4eO82WxUlqU2m42Gw6GkuoUe50NZlrWqdzODwMWZsiwTyWWNezsHuyeQueH30GzfYVz6/X4SjrgP1pgHdyLaMHae6cBzhbvFgzT5jAskd4HPewgl40GORzPQ0+/Lf0b+BMIEa9bdCQhKfC/wrCPC+Fg1wzHd+RMIBAKBQCAQCASexr0SFKRjeNtyuUw97OPxOIX4YV2HaDWzD5xAe3XXCT1VZQ+eg6TkeZ7IJsTW8wY2m01quTg5OUl98BCduzIG+JlX7T38TqpXvH2LRv9ztVppsVioLMtaTzx/cn8eUOd5ANvtNtnkuTfS971y7eF+CDlUyBEpXBBpihROBj1fgOBJHB2SVJZlIt2SajkE7lBB8IAgjkYjTafTGtnExdDcMpDj8293UEAeuX5IMpX2Xq+n0WiUdpegNYDxpzq/Xq/TOZhX1qhngviuFt7ygrjBuHFPrHHPFcBlg8jkWyeShcC9+f3yPHg7iD8jXsVn7pq7PzCXOA84hgcmuluFMXeXjTuOmgGO/uzdRea5VzJGNptNWs++Vvw5IhS1Gfzo3xOMLW4Iz5AIBAKBQCAQCAQCd+NeCQqQNO8vhxAQrIhDwW3R3lctKZFgqV7198+QJeA2aIgeFekmkS2KIgUIUvUl44B8AcgwpBPLO4QSdwV/516bDgi3eSOmsEWeB9Z5BoSTYxwFEHTvx/fEfMQbLPneVoJQ0KxYU/H3CrNXj/39How3n8+1Wq1SCwlzQ9W9qqq0E8Z+f7M7xGKxSOGVtBXgZqBNgcoz8+nrCXAvCEAeUgnBbToymEfmsigK7Xa7lDOAC8Sr24fDIWVfQPqbNnzmjRYTxADp2D5CeCWkvCk++Ht5DecGLg3fmcJ3PkB4YntQF7U8i0RSckc0gxI3m01queA+EUR87hHrfKxw4HBO/mNOPIS16eThmXIXEkKGt8ogzrl4x3twvzD3d8FdP4FAIBAIBAKBQOBu3CtBwVPWITne1gAxoZoKyXJSTmI/lfGTk5NEvCAX6/U69V27xftwOCTxAnFgsVgk27v3c1N5Xq/XtcBDcgC8daO53SMkkfulCtrv92uEXtJT5NvdEux40CTRiB3c63w+r5FaSen+3F4PwcSqj7CyWCzSdREGSB89gXqMLyS2SbI9UBC4QAF5hKxKR8GlKIpE8sfjcXKRMFfkCHhyP2MByfXdNTxLgxYDX2NkDUDS8zyvzT1Ve9/S0d0hm80m2fc9U8Gt9Heh0+loOBzW2nWc2COeeaW/Sbgh+c0wRwQlHAw4VfzZ4drLskxuFknJuQFR9zXHenNnEGPIOHHN3jrk4Gc8i+6q4Lw8n7yPZ4k58ABJxBraWHzHGBdhGCPyH3jt9eYnEAgEAoFAIBAI1PH6zc63yLLsD2RZ9jDLsu+01y6yLPtrWZb9/27/PLeffUuWZd+XZdn3Zln2097KxSAUSDfkazwe6/z8vBYUB9nw7d8gLGQfDIfDmksBguYOBe/75nyIBBBj2gHouaZSTEUWwuOVZD8ef7J1JeTXq5+eGQCx49oRBhBOsixLBNdFCe7Rg/s4Pg4LiNdqtdJsNktuC88DcDIIYW+SYBdtcFBARpstGJ6h4AF3kHjcAtybXzvjvNvt9OjRI33+85/XdDpNP8O5MRgMntpi1KvKTri5J98mcr/fqyxLXV1d6erqStfX15rP54mQIiAgRiBqzefzJOgMBoO07sj54J4RFxg7/kPAYI4g+qPRSJPJpLaFpXRsiWA8ceXwd3ef+Hj7Ovc1hujl70FgKoqititGU/QBiDyei+AtHbTpkB/BMTy7guMzzqwZXDA89+5CwtHBveLc8eeOsfDvCb4HGNfFYqGrq6u0Fsn2uEucug/4Un4XBwKBQOBpxPdwIBAIPI03FBQkfaukn9547TdI+utVVX2VpL9++29lWfYvSvoGSV9z+5nfk2XZm957rdvt6su//Ms1mUxq2/hJRzsz/dBeDYYk5Xmeth500t5Mtec18ggIYxyPxxqPxzWhwvvBfQcGAgSx5rvtHpHBt0uE+CKYUBX1jALPhYB4cS8QLX7mbQteVfVwOukoBDixpAWCIEonYV5Nb4ovwCv9fNYdE7yfareTWIgs18G1MB60nAwGg9Q+MJvNNJvNUrsIAgbjzFpAMGFMnNC7sDMYDHRxcaHRaKQsy1SWpebzeTqPXzNjwnEhnqvVSlVVqd/v13ZccDcGDhF3oPAfa4g5hmCzvslNaFbfPfQTsQi3CffMeDJeZCM04ZV/6ehk8AwKbyVphih6fkTzGfNWi7uIubuCGGOO4w6CpniCA4F59Z1H7hLGEKpc/ED0WSwWSWzbbDZpXn33l3uGb9WX6Ls4EAgEAnfiWxXfw4FAIFDDG7Y8VFX1N7Ms+3jj5Z8r6etv//4HJX27pF9/+/q3VVW1lvTPsyz7PklfJ+lvv5mLyW4DCMfjca06DvE4HA6aTCY1GzpEgaqz7zwA6W5ufwhJKcsykXps4NJRcPBKsldTm4FzZDtIx50GaB/wPvMsy2oBiIgGkGKIJv3hnM+JE0TMyZrnSngAHpVe779nXO6Y55QPwZj7DgtO2CD0nM/dGT5nZVlquVzWduRgtwHuh3aMPM/THErHdodWq5WECqr7jDsiDNdEpZ/x4O+8B8KPowDRAgHB74359Mo9uzmQo0CLxHK5rFnzGQcq9GQleGXe599bF5riAVV25s1bSDznw3f/YJ24ENacd2+b8JYcxo31wOc9+4DjIgL52mftegAixJ717CSf1xFdOEczGwWBxV05fmzfuYPn0ds0GCd3MvC94D/HAcE1NJ+d9xJfyu/iQCAQCDyN+B4OBAKBp/F2MxRerKrqFUmqquqVLMteuH39o5K+w973+dvX3hRoeSAET6r3NLfbbU0mkxTE5z3sHoAHKaES7pVeyExRFCrLstZOAMngfL1eL1XW/RqbTgfvWff+fCro/J3qL0SNVgmui60XOcdut0sWbN5LCCTCBGGKHnTnjgLPU/CedMbB++jd2cB2kk7kIZ3ugvDqczO4j2ovBJ42A1wYhEF6NdizMiCFkFnmc7lcPtViwd8hoRBr8iAYVxwnkGKq0mQmuPOE8abFgTyNqqrS7g9kPLAefOwRFFarVS33gfnCreGhgv5ZxAcXs5gvWiU8y0Gq79DhQgHrmWM33Qe+1SJziWvABTkXRph/RAm2cOTzCDse2Ohj5K0yzVBNvzefa66P54rn3O+3+X2A4MGz13zmXQjy7I/m+N1TvCvfxYFAIBB404jv4UAg8KHGs/5t+enSt3TnRu5Zln1K0qfSmyw0EPLgWQBuL/dtD6WjzZoKJOTNj+27GSwWCxVFkcIE3cUA0UK88D7zZsXee73X63UiW/4n1XFvsaDvntBDyI+TXgQIdjbgfcvlMlX+fbeA2zFNx+E1Agv9mjzLgO30INcE40H0IVbNe+HcPsYOJ4ODwUCTySQFKkIyIZjeE++tFj7WEG0/pwtFHoaIQOPhgL6OEKuYj+12q06nk4QDCHmv19N6vdZsNkvCDf/59psuBHirAS0bbH9KewyENcuyJI5wn95a4EGBXuHn3pkHH2tJT4kJjA/HQBByRwnX526Cuyz/3Ds/9+wEBIW7RAIPsvT2CBwnvBehy9c21886wAXhYoLvlIEQU1VVEsYkJXFOUq2txPNBvJ3n9UIk3yd4W9/FfeXv5jUFAoHAhwnxPRwIBD4UeLuCwmtZlr18q8S+LOnh7eufl/Qxe98Pk/SFuw5QVdWnJX1akrIsq25fS0KBEz/Ij7ceQDYgEfR/8x4nT/TSL5fLFEboZBki6tV2LPpkA3goo4e8QSxv76NGQnBctNvtRF4JIoRUeluCiylce/M/WgnomffsAN9tAUs9ggL3BKGFTOV5nsbRA+wA49jMbmi6ExhLSLa/7rkB/X4/zR9ZGORe0NcuHbfXdDGjqipNp9OnCDnXwtaEtJvwHtYH98M1+naZiDBFUWi/36f2GdYV19kMCKQPn7XLvHA8HBBsgckYMdaIKtwTP+OaEQJYn82AS1/jHKff72s4HEpSGp/XExOapJkcC66HuWIuIe6e59A8jredtNvt2s4THrrpjpfXC5Lk355L4VvBcr3kk3iriruGWLcITX6/rG/e08xgued4pt/Fk+zizl92A4FAIPC6iO/hQCDwocbbFRT+nKRfJum33/75Z+31/y7Lsv9M0kckfZWkv/tmDwoR8YR9Fxako5Ua0YHKtKQkJlD597yE6+trvfrqq3r8+LF2u53Ozs40Go1qpJzjkZ1wcnKioigSWYWMeo+427/5t6REKpu98Vw/goVU7433kLosy1LiP1kCCBxONnEULJfLRKYROrzKn2VZCiUky6DX6yWXQL/fTyQbkQEiB5l054D09G4WkN9Op1NzI3i7gY8V+RJU9pl7iKiLCofDzRaW3me/WCyessefnZ2lHn8IJPfKvXMfZFa0Wq20o4d0Q3g94JF2Darc8/k8tV+s1+taewRj5mGC6/VaRVGo0+mk1hYcNYfDIbVluMPE14y7L1arVW3O3MFAiwtrG7EFB4LvYODr09eoCwq0VrBGEWncXcCzyGcZc8YXwY1nxoMnPVTR3R4eoOitOqxlb0/wrAjGiOO6M4f751wuHPhzzTq8K2vkHuJd+S4OBAKBwJtGfA8HAoEPNd5QUMiy7I/qJmzmuSzLPi/pN+nmS/OPZ1n2KyR9TtIvlKSqqr4ry7I/LumfStpJ+reqqnpTJb5Op6OXXnpJ4/G4tkuCE4NWq5Wq0HcRHqqVTizYopCqflmWkpTIJY4ByAVEleNIR4cExAQHANdAv7/v/uCVbs9ggHRS8QYepOckZzgcpnEoiiL1tFMZlpSInYcqci1Uz7le8idarZaKokgCTLfbVZ7naTtEBIcnT548tfOD28Jv573mBoD4eRigE2TgLg2uc7VapS0Y+/1+GhMXHTiHV+w99wIXhPfsIxIR6sl5GScnsh52iROBdcn9l2VZ68lH7GAt+nVRLV8ulxoOh+m6PAPEwwyZT47PdoYuXiFKuTug1+tpOBxqPB6n58ezRtz+34SLaQgAXKfPKXDhwHMbXODiutyxwFwihCCQuXDIeTm+uzY8iBJRxa+F56D5XPOdwnt4xpuZIv594wLffcCX6rs4EAgEAncjvocDgUDgabyZXR6+8XV+9FNe5/2/TdJve6sXUlWVHjx4kKrxg8EgEXdJtb57iAnECut1015N1Z/wQpwMeZ7r7OxMk8kktQpAhiAwkKqiKFLonvdmcz7pmFDvoX6E/DVbKbiWwWBQ62F/veC78XicyH/T6o6Lg3Gaz+cpwLFpm6fSzw4UCC1Otl1wODk50Xw+r53Lwx89UA+Syv3wHgQYHB5U/CGD3tICAURkwWFB9d9t+V6BbtroB4NBmgNv16BqTyuDuzjuIsJcQ1VVydXgLSlcA0TVd8WAnHpYImvPK/aIQ/T6Q/pZc/P5vLYzQZPoe2YCc05OBSIJawnR6y4xiGM5yfbMAunY+uIE210FjJ/vcuHPR9Od4IKgPz+IKR70iIuEY3tbhAs2kpLLBMGFrVsRX1gv7rjwfBQfi/uGL9V3cSAQCATuRnwPBwKBwNO4NxHmWPX5e7/fT1V4xANEBUiCZxJAJJvEgb58SC7p/Hmepy0KpeP2jL4rgu80IB0r7h46R0WbY3gYIGIGJKiZzE9vfpPAQf4hvJ7kT9uFpLRbBFVYCCPXSQAlrzXt7ZAmKv/YwRnD1WqVhAZvZ5CUsiSw+EuqCQT+GuO32WxSFd+dE81qswsiPu7NlhOuv9VqpZYEdl5ojpeLBwgRTas8wgbXNBqN1G630zrBLXBycqKzszNJxzDDq6ur2q4dHjjJeBPQSMsFxJe1wQ4OZDksl8t0HzgkaKMg+4H7595xJzTXqK9zF2f4uY+Ft99A+p28czzPiGA9NPNJfF15UCRCAmPg7Qe+lvzvzawHrrv5LNIC0mzRYEx4xnmNY3urBe+7Tw6FQCAQCAQCgUDgvuHeCApUJdvtdto2EkKIK4BecyrG7hyQjrZs/vT+bOm4bR5VeMirJ8m7YwCCPhgMaq9DNiCmVVWlfn9P8Yc0QqiofiMSLJfLRFYhQZ1OJ7kzyDeAXCKKQGIhU57bAEny7RM5BzkGTgolJecAO2RAgrGsQ/QZTwi/OwS4dq9SMx77/V7L5TJdA20EtDgQdkmAJcdpJvx7DgMiAMGXnkMByfVMAtwHLgBNJpPUAsG6YRz8viH5voMEc0RbSVmWqbXFdwphzRHKyZgiTrDrBy046/VaZVnq+vo6zSdCmV+ft1r0+/30THA+RCLWMTuGuPhFe4BU3+6Ue4BYuxOBc/Meb1ngNSfx6/W6llfgrSoIJk03gDuM/DNN90BzjnDB+PcA68e3J8U1w7k5T/P4TUdQIBAIBAKBQCAQqOPeCArNSqCHsvnPve3Ag+AkJTcCZBNCAdmE4OFmcJGA90FO9vu95vN5sstD0r2vmupq0wHgpL8Z8IYV3aupiA9YwYfDYdpR4Pr6Wq+99loirG5Xd6It1fvcIXref+5J9vwbUQCyDRBFaI/w+0b8cNu9z5kH5pEn4NkXUn17QK7dQxshm4wfwGXg49jtdhPxhDi6S4S2iW63m7YPPRwOqUWCe/ceft+2sCiKWqXe112zt5+xYy3h4mBsqcxzX1TpETH2+31yxiAasROJj4s/H4PBIAkKnU7nqawNFwJwAyC+eAvBcDhM8+UOE3cLIELgVvHsBFweZDe4+8HnCGcDAZx83tsk/E8PawTeuoFI5WKJZy0gxvH88n7fvcLXrx/f25UCgUAgEAgEAoFAHfdGUKCK7H3oXqmmWut9zlR2Ic1UYem99/wCCIb3m0vHKqtfg4fYUR2GXEpK9n+pvkMDhInjeoI/oYcQOLawhLhznl6vl/rgr66uNJ1O004T3kcOOfd7dPEFdwKCiBNEr9x6sCFEmvvhutwlwPE9nNGDEhlH374TQQGbuW9B6T3s0pFwu5jk74GsO8ml4uyuhuZYQPB9G0eq98vlUrvdLrkFWGdFUTy1owEtG9vtNrVRzGazlF+BcMH5OTfjwmvuCqHNhDXNnHi7CE4OWnwg7Q5Iszta/Hz+WcaatcqfzJe7AFgz7HTC6xDwZqAhx0XI8XWHgMK5EBp4fnhvs33E1xjX68JFM+vB15Zv68kxXExxB5SvMRctA4FAIBAIBAKBwNO4N4LCSy+9pPPz89TSQL94UxiAADa3ioTwLJfLGhGR6mn1WMipfNKL3txaDgLHtbidGms5xMOT7HE+QBYhtBy/1+ul+4I873Y79fv9tKMDbQfr9VqXl5epXaDT6aTPcf2QW89VcFLkZJ0+92YVltA7CLELA5yTscPNgFNAOoo1kF+3kHNNkDkq5PyHSOOEj89wzQ7uyXdIYOypeCMAufjCublOWghwBLgAA0mlbQICDhlerVa1VoTr62vN5/MUIOhtJS5CMaa+g4QLXr4TBq0cXCfrEWGJoEE+CzlerVa6urpK7TUQcN+JxJ8Jxod/U733efTwRAQwF2y436ZIRSYJ50NkY6xdFGFdIDB4oCPriFYIzzhwAcavywVDxAtv+WGMm04bF6p8zQcCgUAgEAgEAoGncW8EBbYuhOBCCj24jj5pSbXdDDyxfrFY1Kz2TZIDea6qKm39R/De4XCoVaAhJR765hVSD22DbHGtTmbX63UipQQEjkYjFUWRyCxCBFv/bbdbXV1dpaqwn4vrgvR6NdmJudvxnThCxjwI864qse8q4CSPczipdDcDBNDHvmmxd2LatLN7qwr31WyVYC1wXNaJW91pNSAEEWGDnQZwtdBOAIlnHZRlmYg7FnmOgRMGsUm6EQ36/X4iwQhc0s3uFb7rB/OBiME9ed4HohXXx38uWjCmHBtHC60GCFqII5Jq53ZXEOPHMzEYDNL8u2uBuXGxwZ1FfixvjUCMQrhijbJ+/FlGeOHYuF1cHOTacbTgeqEl5nA4pPYWD4nk394a4U4Ef55YI4FAIBAIBAKBQOBp3BtBwQmKW+URFaSjYNDMDYBMUE2czWbJaeBkBjs6JHA2m9VcCJAgD3WjMkulmco0ogSkh5YMiJe3PEBmIDmQeSz03LPb5LHhk6vgIoGTxP1+n4QEJ/0QpW63WwvR22w2tZYD39qQirH3jzMXXu12ogfZGwwGtXMxp693Xe6SAB4C6OTUgxghq2VZJlHJswVceGKtUNnmOjxkkjny3Q0ISyT3wdcja01SOh+uFbakZOvCsixr7pN2u62iKJJQ08xXcFEJwut5Bqwj5sGFJdY6TgSuz3MqGGPG0/MrgIds+tqWlNbGXf92F0CzRYG/++v+HPE+7tm3hOWZ9PYOro/vBW+H4vO0+bjgxtj52nQhC3AM5sG3Tw0EAoFAIBAIBAJH3AtBodPp6MUXX0xVXKrckC0ItIfUjUajRDywz2MPXywWNTcBpM/DEsuyVFEUiQhLxz51PxZVacgLVWgqwhASCKnvRMAxsXfneV4j12Qr8HlJSWSYz+fqdDo6OztTWZYqy7KWAwChxiaO/R7ySysFJApy6ts+npycaD6fa71ep606OQa7FzS34vQKO/fr70EY8TA9t59LqrWwMFae6wBB5piIMQgDRVFoOp2mz7MdJU4Bz91waz8EGBHDtwVlDMuy1GKx0GKxSETWswZYf37NiABs18j1lGWpwWCg0WiUqv1kKjAutAAQLulVdg/L9J0qEG3YvYPXXXjwVg9ew0XC+qX1gDn0dpjD4ZAEEV+fjK2vcdYF64fn4q4x51oQtfwZZp79uXOnilQXnTxIk/NxrS5GIZA180A8B4T7Zu1zL5GhEAgEAoFAIBAIvD7ulaDgvfwQQar2VCshZBAgCAf/hvxBSiA7HiRIAN9qtUruBK9m+i4CHONwOKjX66UqNOfm+rrd7lM9+NKxB3w4HCaC7AQJoshrm81G8/lc+/1eFxcXqQpelmW6lvl8rvl8rizLEjl00g2pJbuB8YGgci/eH97tdjUcDtMcQMTYbQKSTI4ABBpnCP9Bwrvdbk14kOo7IXiwpFeOIblumfeKPjt5sJtHr9fTYrFIYYvcC+fkvJLS3OBEQDTwkE7v8fdWC66T/1hjCE0eXIiYsNvtUq4CFXTfJpSxgji7I4Q5XK/XtW0yEUfcCeDCQTPXwtsqTk5ONBqNNB6P1Wq1UmvEbrdLQhLiFw6Y7XabdpDwrApvg0DwyPO81sLirQWMkbexcK38nfwEf+6c8DfdK8wBfzazFnwnh+aOHPydf7uwwpzRbhIIBAKBQCAQCATuxr0QFPhFHmK5WCwkKVV8F4tFIr5skQdpAJCYLMuU53kimRAfHAsE9zmxhQTOZjP1+/1a7zgEnC0GPWROUu1YVF4RIwBVewiob1MHUQQQuTzPdXp6qvV6narxhFEWRVELh8S5ALn3PvbFYqFut5tCAReLRRISqO6TITEej9PxEGIgWL7toAsFnU6n5vLwe25WuBFrIJ3kG3iIImSe6jN/Ms4IG+RhIB40iXEzP8Lt8BBFeu/dPcB7nVx6iwTvYw65VoQgxA53r/g6YU03rfb8G/GEXUB4DlgvTqYRiLxNqNmy49kHo9FIDx480Gg0qgkk5Azw/CByIN71+/2aQOTZC8y1u204N2PN/XmLgbeQMMd+bubG78vzPVjzLpwwzog1CCIu1iFS8jw2x4615tcdCAQCgUAgEAgE7sa9ERR8S0js371er5YOT3XVrd4QxqIoUivEaDRKFWv+hPxAcN39sFwuE6mCsGEjXy6XaTtHqpZUaD1TwO3w3W43Va59C0WuFZECoYP3QTpJx4fotlotrddrzWaz1JYB2eX9ZDLwfg/aa2YgeHjhZrNRnudJdOj1ek+FAyLecF6utdPpJFeDV6EZZyd7OCio1jfh1yopvZctOvf7fRJ9yrJM22HiTJGOVWjmh/wNxgnySFsJNn1/DZHH7fTepuLtCdznarVSWZaSlEScpnDk9n/v43e3CtePkOVtH6wXF1d8hwx/JhDXeJbIuDg7O9PFxYVGo1E6DqCFxkUX3Aruymi2GXDd7njJsqy2bWhzLL21hb/7uuC4rD3f2YQxu2vsWPMIIVyL54UgfvCcuMDlbTLNVotAIBAIBAKBQCDwNO6NoOCEGDhx8pYDqridTieRuXa7rdFolIg2BJRqtosPTSs+wgFOBHZe8Oo9u0DM53O1Wq1ERL29AMu3dBQsIOmSEsEty1L7/T61LYzH49r2hE6Wr6+vk+BBxZX3uvvCQxSpvGLtxurOlodeZWacGTf6+t0+7tVjdkFAIPAqNNfuwYir1SqJQ71er7YlKPeCYALBp+3ChRgyL66urrTb7TQejzUej1O/+3A4lHQUMhaLRboPnydvn2g6NxAimrkLkmrtDJvNJlXtyfpAjPBrgJT7WoNgIyyRfUB4JASaefIWBs+i8NBKCPdgMEjBox7m2Ov1NB6PdX5+rrOzM00mk+SqmM1maSvW7XabWnc8xBKHjWcfIBKwhlzA8ABFxg4g2rnbgj85twd5ujjm3wuIHJ7Z0QxiZc0iiuB4aLax8Ow0xRJ3KgQCgUAgEAgEAoGncS8EBYgpVUTpWMmkhxmSCcFwmzNkw4PXPDeByqsTLYi2b3tHnzitBdjhETHKstRyuUyBeYS2NXMafGcK356QCjsZCZwTYuN99YgQiCJcD9VgrqcsSx0OB41Go5rt3B0EL7zwgobDYY3MedUd0uTkmdeZBwgrwgoCj5NHb7egcr9er5M4Apn3dgEq8bzPq9wQ6t1up+VyqYcPH2q5XGo0Gmk4HCZST0uCdAwTJE8BkelwuNm9wXe4YP5ozeD678oBwEI/m82SCDAcDtOaxaHguwc0HSnuLiD8EbEB0os4geW/WdF3cCzECObCXRDdbje1CQ0Gg5TlwfgjvLE9qaRUrXcngGce9Hq9mjDFZ1arVZqHZgijpFrIorsxECG63a6Koqi12ni7EuPqYgPH9rYUFyt4JnDZ+DHuCtd0wYG2jUAgEAgEAoFAIHA37uVvyxBNyIqnra/X69p+9by/1+tpMpmo1Wrp6upK8/k8EYh2u63hcJjIq1fuCUWUjgTNe+khNpKSIAD5QQyQ6lZ/CCvkxIMEsZZDauir97A6CHhRFJrP50kQgQSx7eWTJ0/STgw4B5y44iKYTCbqdrspyJCwRt/msVlJR2yBfEqq7W6BKOHiA2NJeCY5B7gAvHrN+WgN4PNOCp3YFUWhsizVarU0Ho9TpR2iiVC0Xq9VFIVarZZGo1ESg5h7nBKIPr6DB+sHtwTzB+l+8uSJptNpug9acnAIeOAma5S1zPEQSubzeRKDOp1OGiNcAx6oidMAAYD1y3hDhoFvucj6JViRtbXb7TSdTvXkyRMVRZHWEeKYV+u9nYetL70Fw7MMIPM4Q7wVgoBJHDi4NXwXC+6FdcfxcL5Ix/agplPBxUgELNp5JCXHzOFwSE4ZFz48Z6O5rWUgEAgEAoFAIBB4Gm/423KWZX9A0s+S9LCqqh95+9rvkPSzJW0kfb+kX15V1XWWZR+X9N2Svvf2499RVdWvfqNzeMibZx3wuhPZ+XyeCIkTOQjwZrNRWZa1Ci/kC8LhOyJAKiARkhIB8taDoiiSrZ2qtFupm9Zo33mCLAdIMWQLgkf1u9fraTQa6fT0NLUFcD0QW0hYWZa6vr5O7gSvjCOMEOw4GAxSdZv2kuFwmI4LaYL08r4syxLphpgzpovForbLwXg8fiqh38eE1zyPgeozhJp7hqzSckKbCK0OLuQ01xBOjm63m9oicJZ4uwHtKzgZEGTcNTEYDJKzYTabJUcB1noPqWwGEFLt5to5B+twuVw+5U5g9xEq482sAp4PRCc+Ix3FMHeheCWethOCOB89eqRXX31V19fXaV4YVwQsdwPx3Pj5PL/C3RM8u4gY/Jxrweni65XPcXw/Lp9j3hDQPEeBeUUI4E/yPXze3HnhYpSHNPJs3qcchS/Fd3EgEAgEXh/xPRwIBAJP482U375V0n8h6Q/Za39N0rdUVbXLsuw/lfQtkn797c++v6qqr30rF9FqtRKR8iA5qtudTifZsiFhvV4v9cj7bge4AaieAghxt9tNxBni4b3hVMgh2fSLN4MYIVvSkUx5MBwuAcL+5vN5IpEEw+V5ruFwmKrcWLS5F6/AAojsdDpN+QS+u4OTdSr0EDHvIYdsEVgI0eTcCCWQZna5gKh6b7tXchkjSTXijxPBgwSB98J72wjzS7XdMxVWq1V6PxkTtCKcnJzo7OxMDx48UKvV0nw+T9eJGEIeBQST9UR7hc8nYhKvUQ2/vr5OAgYCgLtd+DdklXXh1XrIPkTe21GczPvfWSOIGJBjzsV4Md8e+DmdTjWbzfTqq6/q8vIyiQfNnSxcWPI55WfuDCB/gblD8HCRyJ0sfN5FJ5wtvjsG3wPNtUbLD+9DGPBn2f9kPXG8ZgCoh6OyHgeDwZ25Lu8xvlXv8ndxIBAIBL4ovlXxPRwIBAI1vKGgUFXV37xVWf21v2r//A5J//t3chH8gu+96xASqU7OBoOBJpOJ8jxXWZapskq/NeQdQcFbCdyCLR3JoSfQex+9W6mpyEOePc/BLeF+D26rRyjhPjl+dRv2x7Vg0W4SM8QJ78+nuo2o4P3wCBa0OvAZ2isgwHzOMykYr/V6nfIehsOhhsNhEgQIXfRKNUSZ93jvPGMnKYUOYuv3c0pKOQIQTm8PoeLPDhhO2LkHtv5k+07Gqt/v13ZhgLxyDcvlMuVVMAeIDD5fuAy4Rl9Dzd0tfN5Y65zTrfu+YwJhjy7ceBsIgkKz1YHzu4vASfV8PteTJ0/02muv6eHDhyrLMjlpuDfPGEEMcLcE1zgajZIowC4qnvHB2uN47g7yrAe/f8aR59Pfwxh6qxEOHsbVBTiuF9HIc1QYW8bJ1z3jz/r3n73X+FJ8FwcCgUDg9RHfw4FAIPA0nkWD8DdJ+mP276/Isux/kTST9O9XVfW33ugAkC0nh5B5SFOn00nbRg6Hw0SAsE97awGkECLiafl3WeV5HWID4YB8QEi4LqrDToyo8DaDBt2VQCUV4kWVdbFYaDwePyVuSEdChNWbCjakEjJIdZkxcJEFwcKv2au+d7kGvPLf6XQ0Ho81Go3STgzeY8+4fbFqLueGXOI2QQxh/Bg3J3LeqpBlmfI8T44O3u8izXA4VJ7n2u/3qXrumREIAVwva4mcC8aairkLTIhb/KwZlMhrd7UJeBBgcx0yjh6C2BRLJCVXiec1IGIwRuQEuANlvV7r8vJS0+lUjx8/1vX1dXJmsIYI0WR9+pz6vxEL/JljPTWdNVwL652feyAo4ovvrOJuBz6Dw4i8BW9b4Ny+xhGuWGuDwSCJM369zBPX7euNlp73Cd7xd3EgEAgE3hHiezgQCHzo8I4EhSzL/h+SdpL+yO1Lr0j6sqqqnmRZ9mMl/Zksy76mqqrZHZ/9lKRPSUpWeq/2U+mnsg1pwEZNpR9CQBjf9fV1IhDNVgXp2MsPiXSbNVVwzkWFGjEB4QBXAAQLMosjgdR/bPiSaiSSP2nzgDBJquUAlGWZ+vzdTeG93u6qQFDgmiCXtApI9bYM33ayMTfabDbJnUCuw3g8ru1QQDik28nvCrGD5HlOAPfkPf7cg6T0b8i7hy5CYn1uXTAhl4LxQBxqugVYP2RmuG2feXMi7JV/bwtxcQJy733/fMYFCUk1cuvHb+YSsEZwXrhjxc+JmwLByQMJce7M53PNZrOU2eEBiQSAevsG44NDgmwOHBIIO56nANyV4D9z8Y774DnjNW8f4bO0O3DP1W0Yq48/72dsEfcYR8QLz09xpwRCA8+xuyDuM57Vd3Ff+ZfqkgOBQOADhfgeDgQCH1a8bUEhy7Jfpptgmp9S3TK0qqrWkta3f/8HWZZ9v6SvlvT3m5+vqurTkj4tSWdnZxVVZsgJZAULMq/RA+8hbBDN6XSq6XSq9Xpdcwk4EXeiiKDAcTqdTkq8963smlkJVHXZ4q7f76dr8HYHHA0QyeVymYgy1v2qqnR2dlbbOhPy5m4NiCTtE7dzkEgQ19fMCvBtKZtb6rmgQFVYOrY7kKlwdnam8Xicqv7cM3PEtSD0uH0fEsd1+g4a7taAtLIzhItA3r6C0FSWZU1QYYwI24Rg+3zzXs+bYM352CASIGBBet0t4wTZ2xm4TwQc5orX/J5ciGF9AsaCtYNAMBgMaq027vbwtoiTkxMNh8OUGcI6RwCSbkSb0WikwWCQxDBcI5yDe2U9cx+sF9+hwkURX0ueryHV2x48J2O/39fad3ynD+6p0+kkB4sLWAhHje+Y9Dy6M4e2CZ8PbztxMZHQzvuMZ/ldPMkuqubPA4FAIPDFEd/DgUDgw4y3JShkWfbTdRM4869WVbWw15+XdFlV1T7Lsk9I+ipJP/BGx4Po84s+vfae2o7NmV/ym+4F+u4hJrwPEgRxgUR6NZ+KrjsjIF/D4bBGHrkWzgOBpWrvcBs+VVEXH6jScxwIsbsGeN1DABkzt9ZDMKlkMwYQULfpu/vDcwS8yksYY7/f12g0SqTRr43KMiIAzgZ3fHi1WFJNcLhdM5KOWx0ybuyQ4O4DflZVlZbLpdrtdro/xB/mBkGkSQghlE4kuRfm1J0EjBHChI+DtxpI9UwOjkHrjbtCWHv8jPtjLHC+IKYhlgwGg5orAjGBNg1v78FFwz248wZhZTgc6vT0tCY6+LPgjhF+5tfIXOKC8HNzXn7GPHpbAiKHt0HQTsSuHAgJ/MzDRX0HB78+z91gjSFKMgZcI88lIh+f9zG7z3jW38WBQCAQeGuI7+FAIPBhx5vZNvKPSvp6Sc9lWfZ5Sb9JNwm2PUl/7faXdrbC+Vck/ZYsy3aS9pJ+dVVVl290DoQCktX9F3/pmCpP3kBRFOl16YaMFkWRyDZJ/di37woddLLgfdn8R0WWqqkH3HnlO8/zVJl3e7vvSICwAFnC8r9erxNJzPNck8kk9aVzbdjcl8tlrQUD8s390ybR6/XSGPrOFQgkuA6koygBGfPqMlVgwhgh+Fw3YgKE3YUDiDbkF1LKMX1LQwg75/U/IYjN8EGIv1fGIfOSkrCEhR5Sy7h5+wnXwpyyswjrqOlMQLzCneLiA+0w3ANEFwLNHK3X65TjwNrCqcBccj4ELNoSEMGYT2/94FpZz1yLt9QgUGVZlnYB8V1GINf8x3PRdHN4KwrjD0nHIeK7peDecXcCx2m1Wqk9wwUDb2NhnFarVfoMa4NzeR4H18Z4sMuLt3Ewry5gemuO/+w+4EvxXRwIBAKB10d8DwcCgcDTeDO7PHzjHS///td575+U9CffzoU0CZlb3t1mzm4L/MwD9pwouHjgVmuEAQg3BAbS5LsxuAOAY0Mo1+t1IkFut4bA93q9WugbhMtJuzsYEBsIEoSQE74IWXaSy3FxPECm/D+C6AinY8tMr0BDvIfDoaR6zgREzEUa6YacF0WRKryQMB8HqtAe7se5vDef8YOw366lmjPE58kDIREDDodDmpeyLGuBi4wfbgrEHkIuN5tN2ioS8o7QgSgFCV+tVprNZlosFmmuuRffzhDhx0MNcUZ4Rd2dCd7mAoEGrFV3I+DCaLoTCGP0ZwunDuu+3+/r9PQ0CR0ekMlabD4Xvt0johPndGeDpBRG6uPrW1i6WMBz7+IA14F4wDkYc55Txo1nBTHIf97tdlOQK6IO65gAz9VqVcv6wP3kO0681/hSfRcHAoFA4G7E93AgEAg8jWexy8M7hhMFJ2TSkVhSOfUea+lYnecYnl0gHYn7cDhMzgdJtYovlvbD4aCiKJKQAKGAAOJQ4JjkCNxllfcqvyfaS/Wt/SQlVwHE323g/qffs3TMBQC+RSDtAL1eL1njm5VsjrVarWokGtcB2//t93tNp1Ntt9tkpadC7u0OzCW9+2QdMA7eLgGRhGA3bfOAsWJeIZxUjrHqb7dbzWYzzWazmh2eOeE8ngHAMfn8aDTS2dmZut2ulstljZB6FRtHhd+zCwPeCuL3y3p0kQEHh/fzs75ZB4PBQO12O7XVeA6D51BAzH0dcA0QbrZ7xEXj21/yDHqmha9v1j2iBuuEPAJ3EZCJ0sxt8EwF6dhCxDwwNjyfjI87RJrjivvHA1u55l6vp+FwqPF4nIQod2OQkYGgxRi4syUQCAQCgUAgEAjcjXsjKLCTQJ7nmk6nidB7Fd8DGiHtvi0dVUkn/hADz2agQs57vKJN1bXf72symdTS7an8erUXwgUQQ2jLcPLUdEFQdYdUuVvA7e9e6QYumvhrbk3HSk/V3lsK2J5vu92mrSFdJPBqM4n3bNFJ+wV5Df1+PwUp4mro9Xoqy1KbzaYmFkAOIYCMo9vkIYvcE7tleKuCt6VkWaaiKNLuBWRI4NBAVGmGJULGGUvuhR5+CDQkHULP2qR1xNcargYyO7wdgvYBt9JDerHps84J7Ox2uzo9PU3CDyGjXKfvdOHbSZLB4OITlfrBYJDaLpgj5t9bJXxNIW5IR1cQzxrXTdYHQoPngSAG0UrhuRi003ieCUIe63kwGCQ3EK0rrFHEFNYg7g3miWwSxoX7JOiU54JzMafenhEIBAKBQCAQCASexr34bRkS0dze0CvDkl7XguytDtKR4Hkv+mQyqe0y4H3o/jnQrKB70B7V/yzLNJ1ONZ/PE+nxsLxmTzeCggfkudV/tVolAtxut9OOExBUiJo7E6gmU5H2XR+kG+v59fV1LSBPOuYUQEipJmP9p5rLeTudTnIekDVAi4RXxREXnNS7iyLP85otn3FlnJutDhDE7XabBCbmnPtYLpcp06D5c4g8ryGwNB0Tzd0hPAfCd6Dw9eZrjcq3t+pIR+GHOUWg4N5Ya05eD4ebrRlbrZYmk4nOz891dXWV5inPc+V5nsYLgYb2FsSj5g4X4/FYL7zwwlO7QyA+OYlmfXqQJyKeCwzunMHx4M8rY8TaQBhwV4aPLWDdMxYu5jE3zK27FMjCoLWBliFvp8HBQhsEmSW0QjTFpUAgEAgEAoFAIHA37s1vy9j+ndxIx73jN5tNqnhC4KhmQx4hDJAeyFa/369VyXE2uB2cajOVUt8ZgWomAYqIBGVZajabqSxLnZ+fJ9s7JBkCjJWbNg6OjZACKfXMBirSi8VCy+VSs9ms5mrgfiC2uBogXBCr9Xqt5XKZrp1KOmMMQaVCjbOC0ENEnDzPNRqN0nj3+/2Ur0C7BlVjKsKMt6RU+Xb7vQcjUlWWlMgcc0RLC+91Uo4rAILrgZ6sKd4nqVZBhyx6rka3201klPOVZSnphuR6v7+3j7gQQgYHlXDs+xBvrgmhBus95BpSOx6PdX5+nkQZiPFoNEoOEMj02dlZcjZISg4U/y/Pc/X7/bRmi6KoBS96cCjz5sKKBzS6kOXXNJ/P1W63dXp6qvF4nFqI2u12eg9jJ9UDIzkHY4WQwRj69pq+IwTXx/O6WCy0Xq91cnKSxIiTk5NahghbcHKfLhwikDXdGoFAIBAIBAKBQKCOeyEoQASbWQNOjiEiToj50yunTrr3+32qiEKSsP977oJv54hDwNP3+bn3ySMU+PaR/X4/WdU5rnTMAfDkfn7mW995IGRVVVosFskBcXl5mSrgfn53TbilO8/z5Gzw9hGEFo4BKUTAgECyrSAEK8/zRP6YK/5stVq1FgFJtd0gIMO9Xq/2b98pgPcSdMm94DLxe3TXgOdXeBWaeXc3CmTdq+scz7MWPBiSfnvPFZBUExP8GJ4FQOuMV7m5N8gtnxsMBsltcXJyouFwqIuLCw0GgyQ8IAq5tX+z2ejs7Cy1dQCu18k7rhpCEsm/8HtmjnGrlGWZAhwJtkSs4Jlizrmf8/NzjUaj5JhgjobDYRJXGEOeZ+YWFxGiDuKRjyFzi6ME4o8rg8BL2pYmk0ntOhCs+M7wtiLWczMXIxAIBAKBQCAQCDyNeycouG0fkgdxRASgV5uqsFf4eZ90bJugurlYLGq7HXAsT8WHaEAuqUhDsiDSXnGm8iodK+GAfzfbEagG0w7huQHcGy6DxWKRtkL04/u2eRAuzwYgbNJ3OPBKN/cH+YeMtVotXVxcJGLl5JT+dd+ZodVqJScEFWRIK24KbztwokZF2VsafE4lJXcIcwyxZxtLxpbj834XSSC/i8UiuV28wu5tGD4f3mKDuMIY+FadHIO582txAWA4HKY5wj0D0SafIcuyVFkHtJwggiyXy3TvHN/HnHtzhwFtGWSGcHy/X29B4P5oVXBhzHdIYc7J2Tg7O0uOCQ9lpEWB97tYg8C02Wxqgh/PHwITc4JbydtFmOuqqjQYDHR+fq7T09O0xj3cETHB7x2hKhAIBAKBQCAQCLw53AtBAWIFiYRYYgOHdHjwGtZ7CIrb+Kn+U+kdDoc1MuzhgB5UyDnd6QBhhpBDOiEjZCc4eSJAEOBkwEoNKXRngocoQuT4z3MUuE4IowsunhvgFdmqqjSbzVLKP64Ijsd7JaVKsgdfIhBASKfTqRaLRS2YkqwFvybvc/dqshNKgg7JpWhuCYgg5NVw3BvenuI5AvTSz+fz2u4FkGvaJHCVSMeWDAg149jMq5CUxgP3hDsafKcGJ8qIOwhWVOXJQ+h2u2krSvr7fZ1xPZ1OJ2UE+Pafq9VKy+UyrUmeJ1wDJycnSYDx9entOGyjyftohxmPx0nwYJ25cOXr7vnnn9fLL7+s4XCooijS+JGtgTjA+sBdcnJyksQE2jZoq2HuaAXJ8zw9twgOvt57vZ7G47HOzs6U53ltTnl2mkGnLiSwTnzsA4FAIBAIBAKBwNO4N4KCVzwRDpxEUoV0q7LbtSFoEFfpSBKpUPqOEG6Dd+dBq9WquQHcns21NLMM2FqRSiwk1gGJ9QBIyBnEnbBAQg090BDxA8cBVX/IvKRE2iCG3KOPh5NryCX341v/8XNINZX3q6srPXz4UPv9Pgkk7vpAEPDdERB2cDE4mWQMPO8AYuj97L5WGGuvLJ+cnGg0GinP85pQcTgcNJlMavPg64XMB8/MYP5Go5Ek1Qipk2i3w3sbCSID171arRJJdgcDwgHCmYsiVOARClgXnU4niTkuZHlrA6Sb8yE60OZAPgNZCghWrDEq/d5i0XR3NHfj6Pf7eu655/Txj39cL730UhKYXJgjywRByHcUIb+jKAodDgeNx+M0L95e4t8J7HYhHXcQYT7Pzs40Go3S2mVcvDUIcG2sK+aH5yoQCAQCgUAgEAjcjXshKECovQJPCwKVe09rJyjPdweQlAjG4XBIVW2IFUQWMgRp8F53iAbk2AUFPw+28qqqUnW5LMtUIcY9AHwHg6YAQu/3crlMJBEb/H6/13w+Tz3fBDMiVkDefVcBxtJ7/blvCBXEvizLFITogZKQSsYXl0ZRFHr06JGur6+Ti8Ht8ZJq7Q2QdOz7TYLmc00lH2JI+wtCjBN4Wi4YP0gkAguWee7LMzkYIzIJTk9PE6FvZmvgJPB2FcgsAZO+FWIzHBQyC7mGtEKOEVF860XWAFV8SLlvf+ktLu7M8YBCfs64sNZ9zV1fX9fCS3GtSMeQVNZFURS1LSYRgxAc8jzXc889p49+9KMaDoeaTqdprQ6Hw1ouyXq9TjuY+JzN5/O0q4O3TPBMsqYYM2/zwa0yGAw0Go3S+kQM4rsBJwPuGdwyvpuItxE1d58IBAKBQCAQCAQCR9wLQQEyR8V/NBolC7RbogeDQdrWUFL6hR/y7ISBPvp+v59aHZz0+d/d2jyfz2vp+ZAX3gMZ9PYK34LPsx8QDyBFvgsF1Xd69ouiSIQPQsU2kpPJJFn03XYvKV0DFVsEBoIfuRb+jlhAywDtJJAo6ejG8N0QDoeD5vO55vN5GksPKYRYnp6eKssyzedzSUoODsQBnzc+w3wwRn5sCB0k3q/TnSuSUobAer2u5SpwT5BFjjUejzUajdRqtdL8cc2exYH44z32vp543eea3AlaI/y4kF+/dta+hz8iUPV6PY1Go1TZb97bYDCo3SNzTqsBjh/+bLVa6XlzRwVjS5sJawbxiWfPW3N83l966SVdXFwoy7LUYnN6epocF4R3ssMEzwuhnIgptFj4WvSgU66NNUn7AmuNz/KcuZOB7AnPB+HZppUEMYfxDAQCgUAgEAgEAnfjXggKVCghbViv3T2AnR/yQK84n/eqMn3atEQ0SaZXhSErCAWQaN9ajhwD386Oyi/961Q8sYdznbQpSHqqUjwcDlO1d7PZJIGB6iqJ/1RdB4NBcnE4mXVC6NZ8r5xj559Op7WWAhwdkF4qtk7w3RWCO8N3RlitVsmiPhqNNJvNaj34VVWpKIpEGiHO5ADgQmCMIJ8e+kfF2FsOcEPQPuJjzjizJgi39GuHfLKe+JlXsVmDXDPtHM1158TUsz18xwHGivYCDyn0bRibuRinp6fJBeOBo4QW5nmenAzb7Vbj8bjWJuLZEjxDEGaItY+Xu0wQlsj1YDxZQ4gA5+fnevnll/XgwQOtVisNh0NNJpN0ru12q+vra11fX+vRo0dpe1LyKHj2+c+FP59z2iZw9fCskcHBOCNE+PcC3wW73U6j0ajmcPLASYQ7npFAIBAIBAKBQCBwN+6NoADJ9r3lITLY0um1hqR4awGkDCGBYMblclmr/kMMIY2QF4i6hzN6IJwTR4gZVuvNZqM8z5NbYTqdJkIN6fRgQXq2abOAGFLtJXgPEYRzkwdBqF7TmeDVfHcfQBrpxadiSw9+WZa1yr+3CUCosO17Pzx9/u12W5PJJFXROQ+tDjgifJywmTP32N8hsz7uzd08mi0JCAkQdUk1gYJ58rwGquYEAa7X6zSevu0jY+phkk7GXQCjtQTHgF8D2556i4ETZ9ak76jBHI3H41RZZ/6YQ0QzciwYG+aM97pgsVqtUmAlAoxfE9fFtfr2n5JqJL7f7+vs7Eyf+MQn9FVf9VUaDAaaz+e1tiEP8ry8vNTV1VUSChnLPM9rAZeSamQfwYHnmlwKnuE8z2vODA8+9dwNX2d8P/Cc8ey58yYEhUAgEAgEAoFA4PVxLwQF6RgkR3UQ0kImAf36kD1J6TXIAYKCb+1HYr2kFNIGiWE7SSrLiAoQE0grlcrRaJRIvVvXW61WCtd7+PBhep2ecZwHkhKRwhpOyKK3MkDkaEtwEu2uBOmYUwDh8twBzi+ptkvExcWFxuOxJpNJImaQXT+eg/nAAYIwA9HE8TGdTlUURSKmy+UyCSwQbkm1Lf6YU87p44HIgVXfWzQkJXeHt0H4eHU6nURsGaN+v6/RaFTr3adqjRuCuZCOYZfMOa0I5DBwrS5mMV4eksk6JHSTHIamKMbYejDk5eVlEkTc9t9utzWfz5NgwucQIGjpAGVZajabpeBRd3TQMoBw57sdINx4uwVtIy+99JK+7Mu+TM8//3xq/xkMBhoOh9put7q6utJqtdKjR4/06NEjLRaL5CRwwYxx85BShDkXE5bLZcpEIZvB21G8tYNnHUGM1hLWtIer8j3Dz1xQCgQCgUAgEAgEAk/j3ggKHoro4XsQfBwLCAinp6e1HmmqkZCR7XabCPl+v69ZnMkZgKR4Yj3b+HnCvKTUhgAJpFosSZPJRJPJpNZ3zXFwEEhKxJ02A+lImN1dAGGCuDat/HwOlwbwCjIVb+6V6iwErNlCwXsJ0aPVA4LONbBjA24LtsRcLBZpJwBJiZRyH4gVjF1Zlin/wqv9zIk7Jvg75Ba7PdcFyfYqvOdp4BTw8MJOp6PVaqWiKFJrCW4GxAB2uRiPx7VARFo3aJnwLS49t8LhTge37XvwY9OpMplMUh4F98A6h0BznQhViC1FUWi73Wo4HCbCvt/vNZ1OkwBx164iLqJxPp4nrhXhpN/v6/T0VJ/85Cf1lV/5lXruuefSM8fPsyxTWZa6urrSbDZLQaZkZyDsIVLhAkG4wTHEc+4CoTs0GBecP7h8mH/EE2/nANw3/7G2XJALBAKBQCAQCAQCT+MNf1vOsuwPZFn2MMuy77TXfnOWZT+UZdk/uv3vZ9rPviXLsu/Lsux7syz7aW/mIiAtXnX2PeU7nU4t3M4rwxBQiCQCAdvSQdY4DwQdu7b3SkPiPBlfUq3NgRA5AukePHig8Xhca5ugXYJtDJ3ocT2QY3IZPPuBRH2q5wgLXh120kvbhW/V59ZvSemcbgWXlMiWOwEYQ6zgEPN+v68HDx6k6j7tJEVR6PLyUtfX14mgErRZFEWttWE6nery8jJViz0IEYLIemBsfBs/CCuZCJ6L4A4EJ6ysGX4+GAx0OBz05MkTzWazROSpmCPesEYgxpJSVsZwOEzCCtcOWcVB4O0IEH7WAz93J0a73dZ4PE7uESr2EOvmc0IIJWPJ1pmME0GeVN/ZXYE8C8aGAE8ItD8zdwlakPuTkxNdXFzo5Zdf1tnZWRLd3C3w8OH/v71zi430POv4/7F3x/YcPDM+rbM5bqoQKSAUIhQhgapeIGhzE3oXrnqBVC5aCS64CKoE5aIXIAo3SJVSFaUg1AoJEBVXFATqDSIESNK0JTSbRso63l3HhzmvvV5/XHh+r5+Z2HsI9sw32ecnrdb+1p55vvd759U+/+d0Xe+++66uXr2ayg1840QyeEqlUhLyJKVyJ/+ZYS/Qf2RlZSWVkpD9UqlUVCwW02e92+0OrBFrzecaEQFR0tvk+0vkgVGcxUEQBMHJxDkcBEHwYe4mQ+FlSX8m6S+Grv9plmV/7C+Y2VOSXpD005IuSvonM/upLMtu6Q4gAlBOQOQZR5yoMA4FDpRvDucdMB/d5PVxkslYIEIvaSCNnEZxZEfgXOBYd7tdHRwcpHF4/A5R5NnZWVUqlZTNgEDiyzV8TwDvYCIo0PfBl374RoFeWOB77pd/o48CadzDTRt9mQc15Dhj3W43vSa16sViMUXrcegpZyBtfH5+XlNTU2nEpc/ykI5KHQDnjTUYthURxa8FmQ2UTJCpQVM+M1Oj0UhTCXw2APYg0uBIk4FAJod0lHlCCQ2ZAdVqdWDfDvfHoDcDzyfLsjQKdLiHA1kW9BHguh85ObwGhUJhYC/S9JP3QEhjb+IY0zuBbBIEMexCmGKd+NwhZrFv6RNRq9W0uLio1dVVVSqVdD9kkTQaDV29elUbGxtqNpsDvUN83xSev5+2gTDG80PgMzscQ4qYw5QHMoGwgb2J4OTFNf85ISuKz5DPYqLEJUe8rBGcxUEQBMGJvKw4h4MgCAa4o6CQZdn3zOyxu3y95yV9O8uyXUk/MbO3JT0r6d9u90sIBzgERNNxrEihJurso7VEv8k0uHHjRppkQHNC79iSjcBrW79hoqTkzPoGfjhbOC04iER1cQglDUw1IPrM7/DefnyipIF+BDhUiAedTic5Vjg+vt+Ad86980hvA+zgmo/ISkrZDWRKcD/tdls7Ozspbd2/FgIPGRTcm6SUleFLGHh+vA/OHA44jS993waeKc+aNZSUnG/S8G/dupWcy1KppEKhkBxm9hZp/Kw3a0e/jfPnz6f19SMIKXvBqSfTxE8uYF+Squ/vAWeU6Lt/5ry2d25xqr14gljie0Ww99inXJubm0v3MT09nUQzbKa/BXsbwQQxpd1uD5TgsD/4LOGQI1zU63UtLy+rWq0O9Djpdrva3NzU+vq6tre3UxkMexShDSGmWq2qWCwmIa3RaCRBkbVB9PLZSYiQ7XZbCwsLqd9Et9tNwgnTU3yJDiUl7C8P+4a9NVweMU5GcRYHQRAEJxPncBAEwYf5/xQIf9HM3uinf9X71x6U9J77mSv9a3eERnk4Sl4E8KP4pKP0fe947u/vq9PpaHNzU51OJ0WwaVSHUyId1UzjCOM4ExXu9XoDGRL7+/updpvILkIDUW3q0YlQexv5GS+E4AjiVHmH1jvNvAbp7b1ebyASiwMsaaCfgk/1xynGMcQZ844+qf6tViuVJPjO+Di8OIOIEGRu8PyIsBeLxYEIP6n/iD+SBvoZ+L4DTIVgrT1+OgLlGLwf6469tVpNFy5cSNkiXuDwoxOBdWS6AoIUPSAodWCiAM+a1/UNPxEFvKCBUIEA4sdfUmrj+12wnyQlG5j6wLojSPisBgQGnpekgf3LXqnX6yqVSmnNfWmK39esM5+dUqmkWq2mSqWSPrOsX6/X09WrV/Xee+9pbW0tlbwgovg+CTj2hUIhZWNQ6sCzHi4VIjtpf39fzWZT7XY73f/BwYEajYY2Nze1ubmpVqs1kGVE5gGTPHyGju+V4M+VCeFUz+IgCILgnolzOAiC+5aPKih8TdInJD0taV3SV/vXjys4zo65JjP7vJm9amav7u7upnR3IvDeYSItmmh7//cHHDci+r57PWKCn1svHTWAxMn2DEfsSY8nRV5ScoJ8rwfS0n2E2k+Z8M0mpaOpFrOzswPOGxFhX7Pum0xKSpkIpLvjaBFtZ438dAxfAoKYguPKe9MLgUg1Ke/cHxHhRqMx4MiSyVEul1MWAxFzSiRwrP2oREQKnGFJyR6yAvx68dylo1IPxAwyKdrttsxM1Wo1Ocy8r2/8idOIECQpOfg+/b7T6ajX6yXHn/fCNl9iwve8FhkhPhPB917wvTnIkkFMkZT2GBMNyuWylpaWkvDgGz0ifPnRoIgWnU5HjUYjlQ3RTJHRp75xpu/L4Msd/NpUKhXVajXVajXNz8+nLJO9vT1tbm7q2rVr2tjYUKvVUqfTGbARgcw/e8ojaFrqmzD6vYJo0Ov1kmggHU5v4XO0s7OTxlZiL6VJlJsgKCA88X7Do0z5O+ec6ll8U7kq8QiCIJgE4hwOguC+5iPl82ZZdo2vzezrkv6h/+0VSQ+7H31I0vsnvMZLkl6SpAsXLmR+fCMOX6/XU6lUUqVSUbVaTc4gzg1RRiLOlAtIR6ny9CYgPR+Hl6i/pORw4qQS8Z6dnVWn00mjHX29ve9BgJOCXfRg4D5wWhFImLLg0/NxtPn94dIAP6XB20rWg3dsiVATlcWpo/ZcUppwQFkFryNpIKMDUcb3Heh2uwOTEkivR7jBmWbtW61WSjFn3XD2uBfeG4d6WExgfRGRvNBEzwfEoKWlJdXr9dQXwDvX/AxZJ0xp8KUkvm+HT5nn/ryY4Z+rdDS20jvDvlcA2RKIZl6oQBRjEgLPvdfrpWyAcrk88BnwGS4HBwfpWfLs6cXhJ6TMzs6mXhd+/CnZOYgI7F/2/szMjGq1mur1etpfPHfEpmvXrmlraytl+SD4FAqFAfHG9yTxUxpYZz6bCHVeBMRWynDIwmi1WqnhJILdwsKC5ubmUiYD70+2jt/niBgIjZOQqXDaZ/G8LRz7n90gCILgeOIcDoLgfucjZSiY2QPu289KotvtdyS9YGYzZnZJ0hOSXrmb18SBxAHHQcQxIJqK80k0ttVqpeZrOFo4Cjg90pED4Z1sMhYQBIjKDzdi9JkIOLekluNsEsX15Qncx/AEBurpe72ems2mJKXu9ETivaCAo4itkgacakQGPwEAhxbni4wBRIBGo5HWDSfeR3VZN54J90QGCDZIRxFi1pmO+6TDm1nKVsDJJt0dR5LfJVru+034xpS+lAAnl54ITBEgA8CLRj47xDvOrPXwz/F+7AfffNNPPRgWUEjrJ1uFvTg9PZ3KQOg1wXMjUk82C2tPL4CpqSldvHhRq6uraQqCpAHhywty3FO3202CGPfBs6WcYzhDhbX3jQqJ8tdqNVWr1fQaXKNJ59bWlra3t1N/jU6nk36OaQysnS8jIsOFNR7OGKHvBXuQDAeEIjNL+0Y6FM5qtZoWFhZUrVZTKYjvU8Fz86UP7BdfRuT3TR45i7M4CIIguHviHA6C4H7njhkKZvYtSZ+StGRmVyT9vqRPmdnTOkzdelfSb0pSlmU/MLO/lvRDSfuSvnA33WwRAUiH9o0W5+bmNDMzk5wJnDhGKu7s7KQ6eh/RJyJMdFZScuDodu8bEeK8kppPczxEAYQN+jpQxkDKNtkFOKtMPvDlC7w+vQqIntfrddVqteRU+i77/r79FAre29f740z6HgXUqmMfJQyIA8Od/emB4FPdcTB9dgACECn7RP9pIInQ0uv1Uqr/3t5eWneehW9W6UtWqMuXjko+2BfD4/9wCs+dO5emDZBJ4fsG+HKE4eeMKDA8qcD3bNjd3VWr1VKr1RqIqlNq4iPlCFrSkXiyurqq1dXVdK9ExIvFYtonTNpgj966dUuLi4taWVlJIsHwmEf/fHzpg8+4wA5flkPaP3sMocaLPjQaZTIF7zk7O6uFhQXV63VlWaZms5mmOfDZvHnzZsrooXyCcavYMTs7mzIeDg4OtL29PZCB4TNDeMbsG+yk+aVfP0pT+Lz7ZoxeMGEd6KXhP6d+/GUeGMVZHARBEJxMnMNBEAQf5m6mPPz6MZe/cZuf/4qkr9yrIT7C6qPzRGSJthKtprs70xeIvvdtkKQ0Kq/X6yVHmUgszhN11MMjFHkdnFIi8EQwiYZSTkApQbvdTmMlEQQQK3CA+fepqSlVq9UkJvgxgfxup9NJ90jaNw6Szzogi8E3z8PBHK6vJzrt+zTgTPOzOFg4+745Hg43TiECh2+g6AUZnGvEEhxwLxTQjJCmkzh+0pFjS2SaLAH/jNkD/B79D2iuiXOISEAzRelotCMiB9kJvgY/yzLt7Oxoe3s7ZRHQlLFSqSRnu9frqdPpJIcf4WdxcVFPPvmkVlZW1Ol0kjONc9ztdlPk/9y5c2o0GpKkarWqBx98UMViMQlbZD540Ya18mUMlKpQDkHWis+yYJ0QH3iNYVHBZ85MT09rfn5eFy5cULlcVqfT0fXr13X9+nVtbm5qe3s7NWNk8sTe3l56/mT6zM/Pa3FxUeVyOZVIIABhK9kJPluEchSfkYStPC/fn2F4Sof/XcQFv799eVOeGNVZHARBEBxPnMNBEAQfJhcz0XByiOz7VHHpqAM9DjFOAFFPP3pwamoqpVf75n44JaR1S0pp1DjEOMU4T5Rf8B5ElnGCqXknKuqj/pIGHHMf2Sc1v1gsamVlRYVCIUWkiaQiKBCV93bhABGJlZRKLPykgoODgyTIYNOwPX66Au/Le1KugONM1gLPjGezv78/ILj4ZpI0GESEIeJMU03ei7KLg4ODJAoQpZaOOv77MY5eFPCTDljLdrud+hH4pnylUiml2nO/7AfWyvfSmJmZUaPRSGICQhelC/V6PTVKROihrKVQKKharerRRx/V448/nhxd3nt3d1c7OzuSDktHEDRKpZLOnz+v5eVlra6upj3rmwiyNohE2O8zMnxTQS8m8HnzE1X8Zwj7+Hu41GR+fl61Wk1Zlmlra0vr6+t6//33dfXqVTUajVT2wmeGRolQKBTSpAjWnHGR4MfI+j4bvoeC38PsU98Hg3IOv4cRLlg7snj8PvKjQIMgCIIgCIIgOJ7cCAo+tZ/IINFonHii15QN4CQTtfX9E7rd7kB3/Onp6YFrfnwdzolvwIcz5mv5ERe8U4LD1mw2kyBCWjcRVl83TukCIw3L5XKqlfc9DPza+CaSvjzBCwzeNmynRMM3HPRZBrw2AgDNDb0A46casB6k8rMOktL6EYVGMPD9I3Z3dwdS4LkXhB6yGbwj7MdK+rGMZGfgcPosBD8pAoGJMZ+UZiBu+GwHSenfJKlWq6lcLuvmzZva2NhQu91ODQ3r9Xqq1Sftn8wXhA8z09LSki5evKhLly5peXl5oIzgxo0bunLlShIpEIGmp6dVrVZVLpeT4ESZBfYTsfeiAuuN08911lE66g1BFgPvJ2lAyENQYn/xuSQ7oVarycy0s7OjRqOhy5cv65133tHGxkba/5QqkE2EYEdzx3K5LOlQlPLTRdiLvrwBgYd7IruCEZrD2Um8rn9fymCazWZaJ/a6/6yRQeMnaQRBEARBEARB8GFyISj4FGxJKfpaKpUGxiPeunVL8/PzKXKPM0AUVTqKytIMsVgspjn3RNJ99Ns7mXt7e8mhkJQcGSL42MB1X2JAtgKp8jQL9EIC70lk2zdI9Gn2pGf7EgLWiD4J3oHyDeaI5Ppad36HdUKQoMEjoyf99AI/ppFnwMQHxBuegy9XIZ3fT+xAbJGUosS++R8lLDjIrKvPQPD3S28NRkV6Z7PVag3sJe6T5+GnCkhH0f2pqamUdr+/v5/KGG7evKkPPvhAzWZT586d09LSkhYXF9OoR56Tb1jJv83NzemRRx7RI488oscee0z1el2tVivV+uPUS0qiF2UCMzMzabSjz1TZ3d1Nkzl8DwrpKDtkbm5u4Dn7iRwIJkT2h/sV+J4S/DtZI5QB+PGbzWZT6+vrWltb0+bmZhLraH66vb2dpj6wL0ulUhIbyCZByEIY8c02eU0/kpVSDoQL9pHP7kHg8yLj5uamms1mymRARKDBI6/H3g+CIAiCIAiC4GRyIygw7g5HolAoqFgspgaM3W43TQkgUkvqONf86DzSnHH4SCOnl4CfKoETg1OBI9ztdlPaNY4Wjprv9SBJOzs72tvb0/nz51O6Oq/hRQDfOHJtbS39Pk4P98YoPhxznCjqz70NPqrLWvj0b+z3AslwqYMXE7yzLSk5fZKSQ4lDxzOg1wRjNP1UCxr+kemAQ0x3fsQESlD8qEf/DLlX7/R5UQdRBcGITAYcf543Trv/nrKTGzduqFwuq1qtampqSltbWynqvrKyosXFRc3PzydxhQyURqOR+mlUq9WUYbCwsKDl5WVVKpWUtYKwwX0z8YE191Ml/MQQ+n8gluFQ0wyU7BffCJSsHRxuBAz2l9874K+xJxBI6E/AZ3Nra0uXL1/W2tpaGs2ImNVut9MkEUpPGCXqm3DSC8VPLiHDBYGMEgTfcJJsIl/CgDC2u7urZrOZMivMLDXUpMRDUvps+N4jfi/5Mo0gCIIgCIIgCAaxPNQIm9mGpI6kD8Zty0dgSWH3KAm7R8+k2n5adj+aZdnyKbxO7jGzlqS3xm3HR2BS96g0ubaH3aPlfrf7fjqH4//EoyfsHi2Tarc0ubaf6VmcC0FBkszs1SzLfn7cdtwrYfdoCbtHz6TaPql2j5NJXbNJtVuaXNvD7tESdt9fTOq6hd2jJewePZNq+1nbPXVWLxwEQRAEQRAEQRAEwceXEBSCIAiCIAiCIAiCILhn8iQovDRuAz4iYfdoCbtHz6TaPql2j5NJXbNJtVuaXNvD7tESdt9fTOq6hd2jJewePZNq+5nanZseCkEQBEEQBEEQBEEQTA55ylAIgiAIgiAIgiAIgmBCGLugYGafNrO3zOxtM3tx3PbcDjN718y+b2avmdmr/WsLZvZdM/tx/+/6uO2UJDP7czO7bmZvumsn2mpmv9t/Bm+Z2a+Ox+oT7f6yma311/01M3vO/Vte7H7YzP7FzH5kZj8ws9/qX8/1mt/G7lyvuZnNmtkrZvZ63+4/6F/P9XrnmTiLz8TOOIdHSJzDI7c7zuFTJs7hsyHO4tESZ/HI7R7/WZxl2dj+SJqWdFnS45IKkl6X9NQ4bbqDve9KWhq69keSXux//aKkPxy3nX1bPinpGUlv3slWSU/1135G0qX+M5nOkd1flvQ7x/xsnux+QNIz/a8rkv63b1+u1/w2dud6zSWZpHL/6/OS/l3SL+R9vfP6J87iM7MzzuHR2h3n8GjtjnP4dNczzuGzszXO4tHaHWfxaO0e+1k87gyFZyW9nWXZO1mW7Un6tqTnx2zTvfK8pG/2v/6mpF8bnylHZFn2PUlbQ5dPsvV5Sd/Osmw3y7KfSHpbh89m5Jxg90nkye71LMv+q/91S9KPJD2onK/5bew+ibzYnWVZ1u5/e77/J1PO1zvHxFl8BsQ5PFriHB4tcQ6fOnEOnxFxFo+WOItHSx7O4nELCg9Kes99f0W3f3DjJpP0j2b2n2b2+f61C1mWrUuHG1HSytisuzMn2ToJz+GLZvZGP/2LlJ1c2m1mj0n6OR0qhBOz5kN2SzlfczObNrPXJF2X9N0syyZqvXPGpK3PJJ/Fk7xHc30meOIcHg1xDp8qk7Y+k3wOS5O9T3N9LnjiLB4N4z6Lxy0o2DHX8jx24hezLHtG0mckfcHMPjlug06JvD+Hr0n6hKSnJa1L+mr/eu7sNrOypL+R9NtZljVv96PHXBub7cfYnfs1z7LsVpZlT0t6SNKzZvYzt/nx3NidUyZtfT6OZ3Hen0HuzwSIc3h0xDl8qkza+nwcz2Ep/88h9+cCxFk8OsZ9Fo9bULgi6WH3/UOS3h+TLXcky7L3+39fl/R3OkwPuWZmD0hS/+/r47Pwjpxka66fQ5Zl1/oflANJX9dRWk6u7Daz8zo8gP4qy7K/7V/O/ZofZ/ekrLkkZVm2I+lfJX1aE7DeOWWi1mfCz+KJ3KOTcibEOTwe4hw+FSZqfSb8HJYmdJ9OyrkQZ/F4GNdZPG5B4T8kPWFml8ysIOkFSd8Zs03HYmYlM6vwtaRfkfSmDu39XP/HPifp78dj4V1xkq3fkfSCmc2Y2SVJT0h6ZQz2HQsfhj6f1eG6Szmy28xM0jck/SjLsj9x/5TrNT/J7ryvuZktm1mt//WcpF+W9D/K+XrnmDiLR8dE7tG8nwlSnMOjstfZF+fw6RLn8GiZyH2a93NBirN4VPY6+8Z/Fmdj6P7p/0h6ToddNC9L+tK47bmNnY/rsCPm65J+gK2SFiX9s6Qf9/9eGLetfbu+pcO0nJs6VKJ+43a2SvpS/xm8JekzObP7LyV9X9Ib/Q/BAzm0+5d0mC70hqTX+n+ey/ua38buXK+5pJ+V9N99+96U9Hv967le7zz/ibP4TGyNc3i0dsc5PFq74xw+/TWNc/hs7I2zeLR2x1k8WrvHfhZb/0WDIAiCIAiCIAiCIAjumnGXPARBEARBEARBEARBMIGEoBAEQRAEQRAEQRAEwT0TgkIQBEEQBEEQBEEQBPdMCApBEARBEARBEARBENwzISgEQRAEQRAEQRAEQXDPhKAQBEEQBEEQBEEQBME9E4JCEARBEARBEARBEAT3TAgKQRAEQRAEQRAEQRDcM/8Hlx1RTYcSDZMAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 114171 0\n", + " Min thresh = 1000\n", + " Not Sliding\n", + "\n", + "\n", + " Winner = Not Sliding\n", + "\n", + "\n", + "247ns_image_2743083265515_CLEAN.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADDCAYAAAAya0IYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADevklEQVR4nOz9e5RleX7VB+4T933uMyIys17dUqulRgiBJEtCSPIYBMJCYBAWHmSEF8iAkZgxMwMGDGg8GDzLBg8vM+MFuFlgwRhLgBmGl0CABhlsPZAEwqgRklqi391VmfG670fce+aPiM/v7nMysiuzKqsqsuq718pV8bj3nN/5nd+5FXv/9nd/s6IoFAgEAoFAIBAIBAKBQCDwJDh4qwcQCAQCgUAgEAgEAoFA4NlDCAqBQCAQCAQCgUAgEAgEnhghKAQCgUAgEAgEAoFAIBB4YoSgEAgEAoFAIBAIBAKBQOCJEYJCIBAIBAKBQCAQCAQCgSdGCAqBQCAQCAQCgUAgEAgEnhghKATedGRZ9oEsy77qrR5HIBAIBPbIsuxDWZb94sd8bZFl2ee8xvO85vcGAoFAIBC4XQhBIfCmoyiKzy+K4nve6nF8OmRZ9kKWZX8jy7JPXP/x+563ekyBQCDwdkeWZd+QZdn3Zlk2z7Lse97q8QQCgcBtxNMWZl/tePF3ceDTIQSFQOBm7CT9XUn/3ls9kEAgEHgH4VTSfyPpD73F4wgEAoHAHvF3ceCRCEEh8KbDbbVZlv3+LMv+SpZl/0OWZZMsy/5FlmU/I8uy35tl2StZln00y7Kvsff+hizLfuz6tT+dZdm3VI79n2ZZ9slrBfU/csU1y7JWlmV/JMuyj2RZ9nKWZX86y7LOTWMsiuLloij+pKQffAOnIhAIBG4lsiz7sizLvi/LsvPrz9T/NsuyZuVlv+z6c/hBlmV/OMuyA3v/b7z+rD7Lsuy7siz7zMc5b1EU/6Aoir8s6RNP83oCgUDgtiHLss/Lsux7rj9nP5Bl2dfZ774ny7L/yL7/D7Ms+1+uv/5H1z/+51mWTbMs+/ezLPuqLMs+lmXZt15/Jn8oy7L/4LUerzrW+Ls48OkQgkLgNuBXSPp/SzqU9M8kfZeu1uZLkv4LSf+dvfYVSb9c0kDSb5D0x7Ms+2JJyrLsayX9J5J+saTPkfQLKuf5ryX9DElfdP37lyT9vjfiggKBQOAZx1bSb5d0R9JXSPpqSf/Hymu+XtKXSvpiSb9S0m+UpCzL/l1J3yrpV0m6K+kfS/r2N2PQgUAg8Cwgy7KGpL8p6e9Juifp/yTpL2ZZ9rmv9t6iKH7+9ZdfWBRFryiKv3T9/fO6+sx+SdI3SXr/6zxeIPBYCEEhcBvwj4ui+K6iKC4l/RVd/QH6h4qi2Ej6DknvybJsJElFUfztoih+qrjC/6yrD+J/6/o43yDpvy+K4gNFUcwl/QFOkGVZJuk3S/rtRVGcFkUxkfRfSfo1b9I1BgKBwDODoih+uCiK7y+K4rIoig/pSth9SKS9/jz9iK7KFL7x+uffIukPFkXxY9ef6/+VpC96XJdCIBAIvAPw5ZJ6uvp7d10Uxf9P0t/S/nP0teL/VhTF6vpv5L+tq7+NA4E3FCEoBG4DXravF5IeFEWxte+lqw9dZVn2S7Ms+/4sy06zLDuX9Mt0pcZK0ouSPmrH8q/vSsol/fC1texcV7Vgd5/mhQQCgcDbAdelZ38ry7JPZVk21pUocKfyMv+M/bCuPoMl6TMl/Qn7rD2VlOlq1ywQCAQC13+zFkWxs599WK/vc/KsKIpZ5XgvPurFgcDTQggKgWcGWZa1JP1VSX9E0nNFUYwkfaeu/lCVpE9Kepe95d329QNdiROfXxTF6PrfsCiK3hs/8kAgEHjm8Kck/StJ7yuKYqCrEoas8hr/jP0M7XMPPirpW+yzdlQURacoiu99w0cdCAQCzwY+Iendnj2jq8/Rj19/PdPVRhh4/jGOeZhlWbdyPD6XX8vxAoHHQggKgWcJTUktSfclXWZZ9kslfY39/i9L+g3XITe5LB/hWgH+M7rKXLgnSVmWvZRl2S951MmyLGtfn0+SWtffBwKBwDsBfUljSdMsy36mpP/DDa/5XVmWHWZZ9m5J/xdJ1N3+aUm/N8uyz5ekLMuGWZb96sc5aZZltevP2rqkgyzL2te1xoFAIPB2wg/oiuT/p1mWNbIs+ypdZYp9x/Xvf0TSr8qyLL8OF/9Nlfe/LOm9Nxz3D2RZ1syy7N/SVebYX3mdx0uIv4sDj0IICoFnBte5B/9nXQkHZ5J+raS/Yb//O5L+n5L+oaQPSvq+61+trv/7u69//v3XFt5/IOnThdUsJE2vv/5X2pdfBAKBwNsdv1NXn7ETXYmxN4V0/XVJP6yrP1T/tqQ/K0lFUfw1XYXgfsf1Z+2PSvqlj3neX6erz9o/pat8nMX1+QOBQOBtg6Io1pK+TlefjQ8k/UlJv74oin91/ZI/LmmtK6L/5yX9xcohfr+kP39dWkZOwqd09ffxJ65f/1te5/GqiL+LAzciK4rirR5DIPCGIMuyz9PVH7Kt62CwQCAQCAQCgUDgbYVrh8P/UBTFu17lpYHAU0c4FAJvK2RZ9vXXVq9DXe2Q/c0QEwKBQCAQCAQCgUDg6SMEhcDbDd+iq4yFn9JVH/Wb6n4DgUAgEAgEAoFAIPA68YYJClmWfW2WZT+eZdkHsyz7PW/UeQIBR1EUX3vdveGoKIqvL4rik2/1mAKBtwrxORwIBAJvPeKzOPBGoyiK74lyh8BbhTckQyHLspqkn5D0b0v6mKQflPSNRVH8y6d+skAgEAg8hPgcDgQCgbce8VkcCATe7nijHApfJumDRVH89HWK6XdI+pVv0LkCgUAg8DDiczgQCATeesRncSAQeFuj/gYd9yVJH7XvPybp5z3qxa1Wq+h0OsqyTLVaTZJUFIWyLFOWZTo4ONDBwYF2u522262KolBRFKrX66rX6yqKQpvNRtvtVgcHB8qyLL1Gkg4ODtL3HHO73Wq326Wf1Wq1dI7Ly8v083q9/tDx+C9j3W636T273a70Pl7P2PneX1ur1Urj42sfr6T0X0kPzQXX7a/3c/jYOS7wc/Jz5tznfbfbld7jc8H5/Rw3uV+q73vU7z/da94oPMnYPt17H3XdBwcHpdfwOn7H/XqcsTxqDP56jnvTmvBz++v8977+/PtarXbjXPBaf7//vPpM+rgkPTQufsY69zXGXFbX5aPm4rXi+jgPiqK4+7oP9ubjiT6HJanW6xbv/aydXv7Rzhs6sEAgEHgSLDXTulg9+n/CtxtP9Fkcn8OBQOC2YqKzG/8mfqMEhZs+9Et/3WdZ9s2SvlmS8jzXL/pFv0iXl5dqt9vq9XqJXNRqNXW7XXU6He12O7388suazWY6ODjQ4eGh7ty5o0ajoQcPHujs7Ey1Wk2NRkNFUWi9Xmu326nVainLMi0WCxVFoWazqdVqpfF4rPV6rSzLNBqNNBwOtd1uNR6PNR6Ptd1udXx8rFarpc1mk4jXer3WarXScDhUs9nU6empXnnlFV1eXury8lIHBwfq9XppzJCi1Wql5XKp2WyWjpFlmYbDYSJiCBrSFVmqEstms6l2u63Ly0udnZ1pOp2m19dqNbXbbbVaLTUaDS2XSy2XS0lKx7b5T+fg+IgPnKPX66nb7Wq5XOrk5ETT6TS9ptFoSJIuLy/THHc6HdVqNV1eXmq9XicCidiTZZna7Xa6Vu5PZV0koWi1WqXzcQ03LjYj5E4iDw4O1Gg0bhREEEokJVGKMSLw+LlZi5Bp/x1z32g0tNlstFwuS+eq1WpqNpvq9XpqNpu6vLzUbDbTYrEoCVC1Wk2bzUaXl5dqNBo6ODjQdrstrT0n5E7cOT/rk3We57kajUZJBFiv1+k1nJv7J0nz+Vzz+TytZdbxarXSdrtVv99Xu91WvV5PY2EeDw4OdHl5me45x+Afz4AkdTod9Xo9tdvtdHy/5/V6XZvNRufn55rNZmndHRwcqNlsqtVqabvdajqdpvcxjlqtpu12W1rfryYIVcUYRMvNZvPhR77xduNVP4el8mdxW7ne84Ffrvc8q3+2BwKBtyV+oPjut3oIrwdP9DdxfA4HAoHbin9Q/E83/k38RgkKH5P0bvv+XZI+4S8oiuL9kt4vSaPRqICMr9drHRwcJHIFwYaYSCoRbkhEq9VSu92WtCfL9Xpdu90u7Ww2m81EYtvtdiIcq9VK8/lc7XZbjUZD9Xo9vbbqTIC4rVYrTadT9ft91Wq1RNg553q9llQmrpBwxA1I1HQ6Tefm9bvdTnmep+tcLBZJgGi1WokEQqRwSKxWKx0cHCRyx3ggaRBTSDvEEfAaHBYQcsbmxB2CDRnHIcL9c9LNcZvNZiK9vMax2+202WxKO+bcE9ZBdeeZ62E9cExe1263tVqtkvjhjhQIJ2Op7sqz5jiuk92q46DqLqiOkfNyru12m9Yja/2mtVar1dJ6QvzgPIzXybSkJEJwPq7Bj8H1Ifo0Gg01m8209t2p0+l0EoFnTC6wMPf8jnWMwIBY02q1tNvttFgsNJ/P03ppNptJCPT1iKDBvedzgGtHWOCZq7p/fI4cN7kp/F5X5/UZxat+Dkvlz+JBdvTm2oICgUDg7Y8n+ps4PocDgcCzhjdKUPhBSe/LsuyzJH1c0q+R9Gsf9WJIhJNBdhiXy2XaKfRdUemKbGw2G9VqtfR7yC2ECMLU6XQSCYTosHMsKe2qttvtRG4YE+QO6zVjmEwmiaxB0iC2EEDIlqR0XL9uiDgE23emOS67/ovFQhcXF9rtdskBAfGZz+eJGPl7nYBvt9t0vEajkcSCxWKRxusCDseGZDqZrdr1EWaqRNN31PkHcaw6B/zYm80mrQMEHifGN5UWQAhdzMAVgWNjtVql9zUajRLhZK1URQQIr9+v6jxwPayN9Xpdep3P1cHBQSLnXnrDOuM8iCnMJUSbNcYx/f7udrsk2rjIVavVtFqtkmBXLcnxNcs94h74z9xBws/d7cIa4x4zd7giuD+sWcSGw8PDJER4qQ3naDabpWcJBwTH4/4g0FTLKfwe3PR9tUSjKhI9o3iiz+FAIBAIvCGIz+JAIPC2xhsiKBRFcZll2W+V9F2SapL+XFEUH/h074EgsMsO8d5sNprNZpJUcg94KQHEB3FgvV5ruVymXVp3LPjuN8fi55BoJ3Hs3EKgVqtVIlSUR7RaLUn7XU/cFdvtNn3N8TkfborLy8tErCBCWMAvLy/V6XTSeKfTqZbLpebzuer1uvI8TyIKbgcXFLxEg9cgwECeWq1WOreXWDjJpQQCUutiAWTcBQLm1QmzuwIYG9/7cQBzhwiEAMTvqhkY1fuMAMT7Wq1Wum6uwe8pZN5dBy7sIAZtt9u0Hqs1/77TzbEhpD5eRApfR34dlEVw7E6nk8p0KNHx47uQRLlEu91OJL7RaKSyIdajpJJwIkmLxUKXl5dqtVpJlMAVs9vt0pwxl4DfOSnn9/7MXlxcpHMjDlCG1Gg0kiOH++1jdJGBOfZ1x32uChHV56HqqPB1UxXAqrkPzxpey+dwIBAIBJ4u4rM4EAi83fFGORRUFMV3SvrOx3xtIlWbzUaLxSLtnm82G00mk0T62C2XlMQEiAQkptVqaTablUh6dSfVd9yxYjMOJ4TUxCNwIGRAQCld4DoQEpwQQ5zW67Xa7bba7bbyPFetVks5B26x9x3iy8tL5Xmug4MDtdttLRYLbTYbrdfrVPrQ6XQSQXJhxHf0vSwAQu2kdrPZPLRDXs0ccLLGsX2Hnx1iHBCeC8ExmCcXX24qNQBu2/eSFyd61UBISlrImoDwQlhdQGCMEF13TzBvHBdijNDE+6rH4lo4Fq+B2HJdHI9r8p8zf6xdiDlkmJ/7Tj33mmtxt0y9XtdgMFCe5ynHgzlj/nALFEWhPM/V6XTSNfAsZFmmbrebSoY898PHhujAPFBew/r1cojlcqmLi4s0xy4i8fy6cMO1eYCru0z8ddWsCQQbnqGqIOVlDtXvn0U8yedwIBAIBN4YxGdxIBB4O+MNExSeFOwoS1ehcLgEEA22260ePHiQghAhaB606JZyJ36QAidv7F4SBEeYobS3WNdqNc1mM2232xJBciu7l0JA5t0W32w2E+Gfz+elWnh2zhEvGD+7wJB/6tbzPNd8Pk8/Zze6Xq+r1+uluWO+2Gmez+elHITLy8tEqqs7u2799117yC/vq+4KMx+egVC9vy4eOMGr7tJXd7urWQxuv3dbPr/j9d1uN9XWE/iJkIP1X9qLEJ7HgRAB/D70+/20LphPJ8CQaoQBSk9Yy+RaFEWR1hWiA9fgjgrWS9VRwTrzUE7GI+1dFbvdTsvlUq1WS4PBQIPBIK1jxs6cMV+1Wk2dTkd5nqefrdfrkvMGIQpizjwxXheICKWk7MTXD+4ackxchJCUQi5Zr9yrm9YU4gjHrt5bL4NBRKmKYlXnQyAQCAQCgUAgELgZt0ZQcHK3Xq91cXGRXAPeGnI2myUyAUG7afcS2/dyuUz17AgFkCBJqWxhuVymHVws/u12WxcXF6VSCEgOBNF3mXEheIAfYZF5nmuz2aSUe8bCtXOdEFMnkC4o9Pv95OBw2zklEIwDcuWElnnBVUFuhAsx7hpwgQFhhPINSSXXAOfjmFyXt/xjHNj2gZ/TSyEQAiSVrtfdKNwHxuPnkJR20hFgyOFwUg+Rhrj6nHkpBiKDZxDU6/VSNoCXfnCsdrudhCDWhxNgunK40wChyY/FWqNsg3O6M8BLORCEEGyWy2XqNNHr9VJQJXNKngaugcVioXa7rcFgoOVyqfF4XArxxLVD9wfP3mCO3XlDxxDvcOJiFt0fIPxch3fh8BBGSel59rXD9eCu4LODn3l+igs2Pq+s22fZnRAIBAKBQCAQCLzRuDWCgu9msiOKCAApRGyA3ANIE8QKMgOZXy6XaVe13W4nQQFiB9HzfAKvFd9sNimRnmM6+XDiLu3bPUKS3GoOiYNg4lSAdDEX1ZpxSBpBjJB85or34XqA3DsBZkfXCbfvFHvpCXONmNFoNNTpdFIXCe6Xk3m/fwgYEDbfPa6OC9LsWQmIK4gKy+UyuU6kvcOD63R3A/82m00SQtyR0W6307H9+jzMs9PpqNPpJJLLffVSCLfYcy+ZA8JEWTNZlpXcIy4GsS5dPHDBiTEhKrgDxstDXETy54lxrddrTafTlOHhog736+DgILUinU6najQaGg6HOjo6Kol46/VanU6nJAaxFrxcZrfbaT6fS5K63a4Gg0Hq8OCv4bjuIKC8CXEBd0e32y25U9xZ4KU0PAdeMoGohjOB+WQt0sGF97jIEwgEAoFAIBAIBMq4FYICu4XsEEsq7Th6yJ60D+xjB9wDDyHLkJ2qFR3yBnmk3hvCBXmDUJCOj4Dgu/rsjOZ5nkQIT7/3+nKC9SD0EETIEiIE/7wtobQni56E7zXkHvon7UPvPJDOyfhNmQU37dqT1cA8dTqd9FpJac5cVPEyEJ9LiDK1/1w/x4Ewc+38FxHGx+vXVRUlfBebc3AfKX2pXmur1VKr1UpktxosyVriHLhkEAw8LNHFBeaK7yHrLoL5/UQgqQZSzufz9DxAiF0k4ZlhjVO+gwBHmQeug3a7rW63Wyor6fV6qSPGeDzWer1O+SWHh4eSlEoTqqU4zIuLH14GMZ/P0zNAxxUCI/l6tVqV8hUODg40HA5TOdJqtZKkJG5JShkk1RKg6npkLbvjiTXE1+5cYU78OgKBQCAQCAQCgUAZt0JQyLJMvV4vkQLp4QR6xAJqvgGE3cnobDYr7cpDrr0m2oMcIVEQYTIc3NrvO/aQUDo+ICrwGoiSk2qIHoTYcx/YUa7CSwjcys7vfJeb6/M6fY7pLgHm00mXlyVUv4dQuzvCbe2Ua7jF32vd/dpd9PB/1bwLv28IAN4G1K/RXQ9+PIQK5or76QS8WlJA1gXfk7dAS05Iuq89drWZF8pcuHfcA0SM9Xqd3CmsORd0HuUawI1SnZ+qq4RnxHfnnWjj9liv1zo6Okpzj2jD63a7ncbjsTabjabTqRaLhVqtlu7cuaNPfepTyaUAuffsAX9+Wdur1UqLxSI9b81mU5PJJDlGuB7EATppeLkNAooLQO12W+fn56WwUebVRb6iKHR6eppam/rcIzgwb9xPd6QEAoFAIBAIBAKBh3ErBAWI/mAwKKXyQ1arreakq51XCJ+HznnQm+/6LxaL1GYR0uy2dXa1IT6cF/IiXZGbxWJR2qX22nxJpdZ3hAJi++ZYlE9ARpmDateKRqORRAyEFsAOrrTPnfDrgThXA/d4PcQewsd7IdUeXMk/gvrYuV6v14m8n5+fl+r8pX0dOnPmO8IIDLhSvGSFWnlJqc7dSxQYDzv2VafFTXMrlbsesFZ8/VHmAqnlWB4ICeH2shks+p7vQQaCl33UajX1+/20thBlgO+EM1fcw2rYYJ7nyaXggYMQYeYQhweiEM/KarVSq9VSv99P1zwej3VwcJDyPnzt+fOFqOPiBY4BBDCeDUklgu6uDUSky8tLHR4epnvNNdH9od/vq9lsKs/z5GTgGez1eunesZ4oYanmKdTr9eRoqJYaIUhx/7hvuEECgUAgEAgEAoHAw7g1ggK7sWQc8Ae/k5pqaz66M1CzvlwuNRwO004sJJ2d2+VymYg/pJYdXALr3Ikg7csrIFPU1LNzTFtJdj6rpRtkOHhbQEg8ZLyaG0GbP6/fdnHEf+eigaSSJd4t+U6YXLCBbLkTotVqpVp/SCvnpfaejhXswiPSbDabEvH0++u7vYyBr70Ugp1vfueBeQgJ7B4zLp8TSDoCiKQUysc1Qa4huH48jk+3Aw9eBJTUeF4Ar9tsNonAep4B85TnedqBZ3eedcq4PTMEccWPw84+IZlOermXnjnBGBEmIO3D4bDUdnQ8HkuS+v2+JpOJFouFJCWhTVLKGXBRj+eI9c/6Y31wXncKUWa0WCxSaUNVIPESJnImLi8vNZlMJEnD4VDdbjeJAtXuHMwhzhE+E6plJTwjnLdaFhEIBAKBQCAQCAQexq0QFLbbrabTaamswTsIQNAJ04NUVjMQZrOZNpuNBoNBImXVgMTJZJIIFTXZkhIp6/V6iaRBDKW99dpruSF6WMjzPNdwOJQknZ2d6fLyMrki2KWXlBwUHAP7O2QUAgYB9x18DwHEGcHuuBN/Lw1g/L6z7/kEvjvvtv6qC4PXdbtd9ft9nZ6elkoNILIcw10SnnnBsSHFCEIQPMQV3733DgruXCmKomS599e704P3IwAhKng2QjWLgiBI6YqQLxaLtCvuJR9VS7wHN3LtTqobjUZqC+qkvEpeqyGN7lRAvKIUgJDDaqtEz+3gON5ukTIV2kPudjvNZjN1Oh0NBoNSzodnCng5i99Ldv8JpaQsgTFz71hvfqxer5fawrrYwzxA+r1LRLfbVa/XS6IY7Ty5do6NSInAg1DIGvCwRmnvqgh3QiAQCAQCgUAg8GjcCkFBkk5OTnR4eFgi1V7bDHHt9/uJaEAO3ebtQXy8RtqH/nl4nAeubTYbLRYL9fv9tAPLjjnEiBpzD+nzcMJut1vqDsG1QJpns1kqCeDcHNPJE4IKjoUqSeSckHB3Fbht2/MPfLe10Wik3WtEB4iqlxFISgTOHQ0cg1wCD0ZkjqtZDBDpm0iyB18yBhwBXjbgZJR7yJy520HatxDFCZLneTr/dDqVtC+NgDTicoAoV8fEHCIU+Q47gX9O/F3AYWwuJK1WK81ms7SzX70uz3gALqhwb31n33f/uX6ukeuSVFr3kjQYDHR0dKRWq6UPf/jD2m63GgwGpXvA+/w5Q5BgffT7/fSsUprgWRO0bfTuDVwXogHj9XBQrqXX66X5Xq/XOjs7S7kMeZ6r2+0mMYq1zPqSrpwlu92uFPDIfOFgqK69QCAQCAQCgUAgcDNuzV/LEG5IWpVELZdLzWYzNZvNZHGGtDjJQQSQ9rv/EAaOI6kkUnAs2tt58j6kzokiRIMdTUg8RLrdbqvT6WixWKQdW3al2cHHij2bzdTv99NuqZdqsLMKIN+Mf7FYpDBBdpghlhA8yDD19E7uDg4OUukCoolb452k+06yl1dAWDmvCx+e1cA4vD0iYLfdMysYkwc8Mh4nt56dwPkIy4RIUlZAVwN3FbCz7msBN4KHcrrDgNc58fU58514RCN3M/Bz1uNNpRuQcb/f3ipVUhKDEExms1kSXDxvBAGL9qccl7Hwun6/r3e9613JrbNer1NGgQsUnJfnT1Iqc9ntdjo8PFS9Xk+uHMpweH58vNxP7hUdUXBwMFc+vxyb8pjZbJbuEUKiC1EIaIRC4j7g+t0N5SKO53AEAoFAIBAIBAKBh3ErBAXfSXSS5q34ms2m5vO5JpNJaYddUmlnnh1eiDu7+173Le3JCQQZokRYnYfL+c681+lj7SYQkWup1+vq9XqpBpzgOg8YBOyIVsUC/uvlBtvtNhGmWq2Wshsgq7TDZMz8l4A+rsuJGfPjWRPuwsDe72GPiDQcD1u9Zw1wDZ4N4GKGl3ZQluD5Du64gABSn8/rOSbrAJKM/R+xpdlspt1xuhIwLs/Q4Np7vV5yMvgYuT8QbtYAbhLuvwtRjI+59TIB5se7SHB/PXeDe1R1qdD9wsUg8ifcsk9ZDGuaUE3EDF+Dx8fHkqTFYpHKCnxd+tg53nK5VLfbVafTSYGRg8FAi8VCJycnaa4h7vV6XcPhUMvlMv2O8S+XS2VZlrJQECx4rlycoM0k7/EgTJxCuHS8y4ekJAZW3TJSWYAJBAKBQCAQCAQCj8atEBQg2dTwU7/Oz73l3eXlpcbjcQppw5HgIXDL5bJka3eS573oPUyO8Dh+Tx6D1+VL++yCoigS+UOUYLzsuHv4nVvR2aVlPN6hAZHCd9B5Pzu+WMW53vl8rjzPE4nymn4PsXSXgteNI6b47ra3qsTp4aRWUhJJEDQIxoS0usjjbQ59nJ4L4DXr7NQz/97SEbeB51k48V+tVmn9ME4/pzs03NHiHSeYK59Hz4FA+ECs8DBBqSx0MHc3lXv4a8hTaLfbms/naR5ZZ7zH8xF4LSKMzwVdD+r1esnBwvMxmUxK4aOIcIeHh7p3757Ozs4k7csCptOpVqtVItwIdxB75li6EkGGw6GyLNN4PL5x7RwfH2u32+ni4iLNO2sacadWqyUhgOeO9cbngrtxXORBWEFEQ9Dz+WfeWXM+z176EwgEAoFAIBAIBB7GrRAUJCXC0Wg0Uk6ChzNmWabBYJAIJHXSkAPIADuWbgffbrcp3wDRwEm/hxdCsLy1Xr1eT6Tm4OAg7cxmWZbaKOJugPxJ+9Z4jEdSiaCwKw+RhfS4/d7t/V4CgYDg9ewQYQhZdW4ZkxNASBuiSKfTUb1e13Q6TcfJ8zwd11sC7nZXyfkQO+r5IZ50isA9wdxBtqtij4/DS1H4WbvdLu3Idzqd5FTgGrkvCDV0ooA4Mn7vWEGZSlFctbj0zhUIB+6Kcbs8x0HI8vtcLWNBoOBeVEMKmR93FLhDxd0tOCQ6nU5amy7acHyu2fMWEBbG47HOz881Go3SMReLhRqNhobDoUajUXqft9mUyiUxlCMxHuaK59MDU5lPxuK5KdX1Wc3yQIxwIc9Lkfx3zAdCC6VOLsq484I1wT/WZAgKgUAgEAgEAoHAo3ErBAVIPWSRHVF+xx/+3h5O2gfwQfikfZmAp95jeYYgVFPfCcijbh0Si3OgSth5HaQOss2OcDUQjw4OkGfO7zZ/SYnc+867Oym8QwF2dLdnV8MsPTARkuQ7wIyVXW7mi0yH09PTZGf38hEP9yMQD3s55HY+nydhBNGD3WsnllybEzoXbNwGj62eEEmIt2cVIBZxn11w4mer1SqtB9YZY2FHm3mDmLqdnvvFmBF3JpNJKYjQMx88sNHFKdaDi0esKxcVJJVCNiWV3B6EiFIq4s8F94A2mhxnOp3qwYMHSTxgx55zDIfDVI5ByQwiCGsRsQInBM8Dgt1wOEzXMJlMSp1TarWaer2ettut7t+/n+aBOfCSEeaJn3MMnCF8NnAf/TOCZ4L76l1IqmvacxX8tYFAIBAIBAKBQOBhvGZBIcuyd0v6C5Kel7ST9P6iKP5ElmW/X9JvlnT/+qXfWhTFdz7OMSEpg8EgEXnIFX/4Aw/W4/uDgwN1Oh1J+4A+/nlQHxkBWJ2l/c7ofD5Pv3eLvZMbBA//WTX0sUqYfTfaQwud0HoJgof58TMIKjvvHNMt6JDc63tU2oGHhFFqsVgs0k4yO9DU4A+HQ223W81mM81ms/R+5gQ7vjsQ3LVBDgFikXeYcNu/7wJDkPmaa0AowCHgYZgIA8y5Zzh4VkSz2UzCD/PkJS2Mx8fn68+dGMwTpJU5BIvFIpF41o8HdnppDOGdnh/BevCOB+4MYQyUhHBdvA9BAcv/TQIXIZgnJyfq9/s6Pj7WSy+9lDpGkPsxGAw0nU7TOrtz5056zWKx0MXFRZovnl8vSaC1Zbfb1Ww2S2U7nnuB6DAej9P6reaKeLkJa4DSKP6NRiP1+/10fkqhmFfWUvXzhDlyoYjn0z9zbiveiM/iQCAQCDw+4nM4EAi8k/F6HAqXkn5HURT/NMuyvqQfzrLs71//7o8XRfFHHvdAvoPo5NXr26u5ARASCCn16eyYe+2+tC8ZcHIF2WU3ld1OdpAhL+xKsyMrqRRQ6MIGzgVe45Z+/kuQo1Qmo5yLnWmO63XhjBti5r+TlJwKzWbzoTmGnFZbbJIDICnt4He7XfX7/ZSm72GIHliHMOOWfnbtKVlxEYKdZOYeou9tGpknnB2UdiAAeO6AuwC49176wO+Z68FgkEpYEDmYM+bed+PJJ0CU4D5C7jk35Jtx+br2AEmOxe+4T57NwfVCZln7lFSQL+CiFGvU20Kyw14NVmRMi8VCZ2dn6nQ6eu6559JOPyUvntNAl5JGo6Fut6vVaqXJZKKiKDQej9PzsF6vSy4dXDcch3IGxBXu2+HhYQqZXC6Xms/nms/n6X2+vr3rQ5ZlmkwmpUDFTqeTBEbPTCBDg3WH64FrY/65V5TAPAN4ap/FgUAgEHhNiM/hQCDwjsVrFhSKovikpE9efz3JsuzHJL30egdEuQKEAyLpAWxOyPjH6yBXTrYRE2gLiWUaIg+5hqTZNZYC3NiVd4EAYomrwPMYvAYcwuP/dcGAr50s+Tgg0ogkkG1InNvx2YWXVBoXx+GYdGjwjhmQaOZ/MBikPAnIutvQuY7qTm6e5ymokTlnnshpoKwDYkgXDog7ZLIoyu1BuedVYs+OOOP3Lg7ML8F8iAoIJggHjA9RxwUjLxtBnGE9cE3tdlvdbje5RrgW1iTX7CGYjMXLO7i/zG2e56mzB9dbdXYwXg8/ZE4klRw53JP5fK6TkxN98pOf1GQy0QsvvKDRaKT5fF4KZeSflzWQD0IrSkkppNEDDvkvxJ21zHXWajUNBoPkcpnNZiUnCdfqYhL3g3uyWq10cXGhXq9XEn5cTHFBgbWAO4H75dkjtFS97XijPosDgUAg8HiIz+FAIPBOxsGrv+TVkWXZeyT9G5J+4PpHvzXLsv8ty7I/l2XZ4au9n64Ky+VSi8VC4/E4kRJa0bkN2UmF78R6i0B2J2nFh6Dg5EfaE12ICyQZogFpJ5gQm78LG4yD/7KDP5/P084+FmtPlPddVcbLGNxe7/ZryDzk1VsK8jMXUbg2gvPcGg+BhhD3+/0kBHCN/X5f3W5XkjSZTFL3AU/Bx9Xgu7ueOdFsNtXr9VIrTUml4EGCEKv1881mU3melzI1fM4RdtbrtebzedpN7vf7iVhCJj3fwcUoP95qtUrr0MfINTrZ9LKD+Xyu8XhcyuXo9XoajUbq9XrK8zxdh5dCeOAizo3JZKLJZJJ+TrkO4+F5QDhwZwNCE46daqCkl7dA+Ferlc7OznT//n2dnp6mLg7D4VC9Xi+VXvi6kq5EhjzPk6Oh+gwwPp4XdwYgcLBmmSPmm7XiAae8D5cEz6akVK5DLoi7GLherpnPh2oQZDUAlRIPd7g8C3i9n8WBQCAQeH2Iz+FAIPBOw+sWFLIs60n6q5J+W1EUY0l/StJnS/oiXam1f/QR7/vmLMt+KMuyH6LWeb1ea7VaaTqd6uzsTMvlMu1Se4mD179jnaeeHhLAz6lnp1SCHV6+5nts71jhs+uwQuzz0r59HjXm1R1TyJ3Xk2PxdrLNzink0ztJUHbBcck6mM1m6VheUuHlGLSUHI1GpXmqBk0yH94aEdJ/dHSku3fvqt/vJ2GD3Xfs6OyEe/4AwozXrXONnrYvKY0J0YSde0QI39WGZFbLX9xKzz2hlIRrwSngzg0n8xBdxumWfS93IVeBa2cuXShCDIOIUhrAvzzP1e/30xxAsF3Igpx7+Ka7a7zzgZfmsPYg6N4e1PMrWC/VdbdarfTKK6/owx/+sF555ZVU8nL37l3duXNHeZ4n0u6OD+af58LXA8IN56w6AHwO2+12EuyYc5571oM7HDwzg0wED7R0sQbnBzkOlLRwz8gAcQGC5wSx41nBU/ks1urNGm4gEAi87RCfw4FA4J2I19XlIcuyhq4+OP9iURT/H0kqiuJl+/2fkfS3bnpvURTvl/R+Ser1egV/yHvw4GKxSK4DdmnZ5SU8sLo7Ku0t9E5Au91uEhD4vRMKiBK7zJwXcuG71hBiiBU5Ali4/fzUgXv+gduwIdwcw3fq2XVFGHHnACSKgEYIHqSUenXcC27/x/3BrnhaDNfZB76TvtvtkqADYWdXH8JIuYKkEmn3++F5B5Q2sAPN6z1XwOvr+X65XKZrYc6yLFOv10tzXa/X9cILL5TmzgERZ64h5dxzJ6KIGbVaTYvFIt1jSUmgcuJO9wgvq/AsC8opaBPKz/iaQNHZbFYKjkRMoSyH93BPEb5Yy5QVcL08G4zLz1uv11NYIm0kZ7OZBoOBBoNBaSefOZ9MJun7RqOhwWCQ1ieCCeSf68dFhBsFQc5zJbiHXCfHQrTwAFAXYrIs02g0SmIFz7iX2VxeXqZshclkUnp2/D4hgNA141lxKDytz+JBdnT7UygDgUDgFiI+hwOBwDsVr6fLQybpz0r6saIo/pj9/IXrWjJJ+npJP/o4x8PS7N0TcAewG80uN0THWxdWwxTdEQCZoOWgkxW6JbBTjUuCgLput5t2p90RwA4rXzsphvB4uYGTbw/pcwu+ZymQESDtSbqTWQgz76UcwglSu90uZSlIewKGU8LnvCiK0g6u1+RvNhvleZ7GB7njmLz+Jht+9WdeFuJtCJkvLO/sirtDgGMiargY4NdIeQBOFtaQz5N38mANeq4GIgjjo4Wil8BQmsG5yaWglMN356V9pgFrrBoayXV5aCTvc3D/PV+DOYY4I3QwB07MJSVBB/Hi5Zdf1sc//nEdHR0lMWAwGKRSIb93LlR5lgHPFs8qJRrdbjc9W7iPEG2Ojo5SVxAEB3evIJBR/kFwK8GfdKRwlwICIOv/4OAgdY/BoTGdTpO45ZkL3s2EY95mPO3P4kAgEAg8GeJzOBAIvJPxev5a/jcl/TpJ/yLLsh+5/tm3SvrGLMu+SFIh6UOSvuVxDoatGTJG+cFyuUwBgZJ0eHioPM9TeNtyuVSe5yWHQTWsEcsztfZZliX7Mzui3kYS8lqv19Xv9xMh9rHyeogHRNdT/Z1kQy59B3u1WiXrfzXA0QkZ5N8D/VyM8F1gyFStVlOv10sEjeMyNs7tHSJ819yvZ7vdJus3oYcE1vkuLqKHiy3ecQIBhPnz3XLmC9LIsREtcAuwY+9iS7PZTO0CvSNDv99PrUBxDzBe3/2X9FDwJ9fh5TRkPuCOYdyQUK4bEgqB9hBP8ggg1F67790IpH0rUWnvZHGnCf+VrgQHnBd876U53Fs/P2sMIj+dTnVycqKLiwvdvXtX3W43EXUva3H3g3TlrOD6mSdyEdxRcXh4mNwXuIXG47Emk4mef/75NBbgeR+IFqvVqtQNpNvtljp6eJcV7/Ayn8+TCOThkuPxOLlVEIZwFOEKeQbwVD+LA4HA2wP1d70k1Z8Nl9WrIft489Vf9NYiPocDgcA7Fq+ny8P/Iim74Vevub+uhyF6Tf56vS61rGu1WolY8Hvq6j1QDaKEc4FwPAgINfaUVywWi9KOMYTCCWxlDkpdF7Dns6PaarXSsbFX83Pfuffde2nvQGDnHSs+YZUeSOctDhE9fHcdksRYSev362He2BV3sYTfSfsdbXa/p9NpqSUkc8Ecer4EJS0cx0UI5pfrJugQMg4og3DgNqBGHsLr93Y8Hms6naaSDuZ2sViUXAJeGlI9j99bdx8gAHg+hJdCIIh5FgBk1okva9XXsAsNzCf/PN+DHXrWvOcXuLOFceEiIE+D8cxmM73yyiv65Cc/qdFoVHIK+bPkLhueLa6f6/EMCcTBfr+v4+NjTadTXVxcJFFhMpkkF4OLOIyVe4Q7yTtddDodtVqtVHLipSyId6wh706Cc6JWq6V17O4gnhPKPW4z3ojP4kAg8Gyj9r736oPf9Jwuu28P9/zyjzZe/UVvIeJzOBAIvJNxK/y87OxKSmTJwY4ku7StVkvL5VJnZ2elAEDIc5ZlyvO81O0Ago0dHBLmnQ74GmIGSSEU0C37WNMhiZAsyCVEH0KCNZtdY3ZdnRR6vTt2b3b3IaCUF3jwHEn21U4J7LpCWKX9bq8LGFwTREy66uiwWq1S0j8Ez23ynMOFEeaGXXDG7ufN81ydTkfb7VbT6bTkFIAMS/vgQsbHtTCHACEiz/NSt4k8zzUYDJJ4MJ1OSw4GSgsg7wgqHI8yAhepODYiEbvx5ExwXxAQuOecw4UJzsMx/brY7Xcbvwtbbs0H3sHBXRLcW0pGpCunQp7nGo/H6b1Zlmk6nerBgwc6OztLjgHKM2gRSSYJOR1e0lNt74nDZzKZaDabqdVqldxBuIG2261Go1Hq9sD1Qeq5H3me6+7du5pOp0ns83WACELeRTWPg3vJ5wxfT6fTdBzPVamWmgQCgcCzgI/8qud12X0mHFaBQCDwjkT9+ee0ft+LT/y+5ofu6/KjH3sDRvTacSsEBancvpFwOklptxzrvBPHXq+X3iMp7f5LV60DsZXT6YGdZ14PYYUYs6vqDgks7lULvKREMiGSXrvPedxm7zurEB8XEaR9yz0AkUSgqO4ae1YEu6y++++kq9lsprDJWq2WasfdUQCpXq1WybGR53m6PnZ1ERa8EwFf01IQQn1TsB2kHocJZI+dZZ8TBBfEIhdhfN4g98wF5HUwGKT7OJvNSmGUzCOE37sEuIhExgf3HxJMsCH3nNBC1hjndeEAUYy5xm3C9SAGVLMfWHPVOaSUxl0Q7PbPZrPS7rsLPwhfrG+udzqdajweazAYSJKm02kSfhjver1OYg3XxnOA2LLb7dTv91O5ymw202QyUafTSaIB5UCILqPRSLVarTSH7rJh/ghVZJ5Ydx4W6p8rlDp4aZF3qsDlwH3wNREIBAKBQCAQCDwpLr/6S3TZubn0bPpiTeef9+QussFPfYYGH3pyIUKSuv/rT2p7dvaa3vvpcCv+WvYaesgAwgCdBSBx1PZjZ240GqV6dEofCG6s1+u6uLh4iAj7uSHDED1IvZdUSCrtDkv7/vUQHOzlTrxJt2+325pOp6WyCg+543geeCeVyxcgP7gIXFzw8L3qtTF2r+FnB7bqzsDtwY40hJmuBhBF7oOfy0UOxB/viIHwQDkFRJixVN0VHjjoLQI5HpkS3g3AOxMgKoxGo5SfwU494lL13kGKuedcL+QdV4GXdnCvms1msvgjgLCr72UJ3AccCb6+fN14eKaXwTDHkF2EFM83QACBKHu3Bl9fLigBsg3IJ6EExcUq74Thc8C6cTfD8fGx2u22Tk9PdXZ2lhwsZFIsl0vNZrN0L7Ms0+HhYToOP3exrdFopFaawMUXfw5YK97ikmeOsqZq60kXqwKBQCAQCAQCgcfF5S/6Es2fb+jBF2TatR4lGry2krTxZ+80/uyHS/EfB4cv/Ew1ZlfnHXz7D0jF0ymLuzWCgpNz8gCcrPOHv+9Set4Cv4d0u9VZUsmGTiCi17NLSu6IRqNRam/HOb3bAu/zXWHg48yyLOUgNJtNTadTzefz9Dp20yFKkGuusRpEB5Hj9b6T77v4Xorhtv5Wq5UCDD3Qz8P//Hqm02myuDNvPgZ2hiG8XA/nwhXAPHIeumb4ObHwQ7Kpz/egRy+NkVQK4UNQQvxgHJ5DAbms7lx7vTyvwzrv+QbVNoiE9/H7RqOhXq9XKhPAmbJer9Xr9dI5aaPI/UcAQHioEn+uj/l38a3b7aZ7STYEY2GOELS8JMHXMM6PxWKhs7MznZycpBwGRDsPpyTosvoMIfKNx2NtNpt0Tc8995zOz891dnamTqej0WiU1vV0OtVsNtNoNEphpJRvICS6c6Xf76vT6ej8/Dw5MDz7grWI64KAV0o7eHa4XsQnDyi9KTclEAgEAoFAIBB4FDa/+Ev08V/Q1GWv0GsVDd4onP2s/XhWgy9XVkj1hTT6C9/3uo57KwQFad//vbrDDsmk9hmSDHGAHPmut2ctSEqkDoECguWBi05uq5kJCAQQe4iYW6L53ssRuAYnuhwHYaJaduH1/S4oeKkEZLnadhJHAvZ/764A3IVBDbsTQoglZG4ymej09DSJLThF6GBQFIV6vV6p1hwizHU7gWdHmzaMfq8Jy4Ngc93VkhCuF7KLGMH9dTKIK6XVamk2m6WfkwEh7cMeDw4OklsAsYf5804A3CN+z/VJUrfbTZZ+whuZL8bKjjjEmTXBPCCGMR4ve6mWQPh8eCtL1ki/30+iEs+XZ5L4XCyXS61WK00mEz148OChEEyuwdfVarUqhZDSZWW9XmsymaR7jFPh6OhIr7zySurMstlsUjnFZDJJc4yo4gGkPNeIB7SipKUlP/e2rQhndISRVDo2nwfT6VSXl5fq9XrpPN5lIxAIBAKBQCAQ+HTYftUX6+Nf1XwmAnEvPvd68/sy0+J3fKUkafTBS3X++j954mPdir+WIYKQpWqonZcEVHd2PbndHQe+e3t4eKiTk5NEzMgiYNcb+76H8HEubwWJhb06pmoJQNUuDYGEzHkbP64XQgeRhNR46QXjgGA5ID8uMjhJ9twID5BEaMFqzpxzXyBbzAeCz3K5TLvd0lXaPud0qz6OCWnv1siyLBFtxoQI4YKHB0siyCCauEjBffDuGdXSAHde8I97z047JNPXJeNz94znHzAWXCCew0EIKITXwxEZL6GXCAGsIV/Pfo/dweMlQl7OUhSFLi4u0rprt9spJ0HaB266CNFoNHR2dpZCGM/Pz9O9HA6Hpbnn3F6+0ul0dHh4mJwT2+1Ws9kstRftdDoaDoe6d++ezs7OkshXq9VSzsPp6amm02nKbuD8OAxYB4yB+fGOE6xn2q36fJ6enqbyExwJ7s7xLBZvRRkIBAKBQCAQCHw6FF/xhfrI17S07dx+McFR1AvN3nUdOn+3psYXXIkLn/k3zrT75z/2WMe4FYKCpESosJ2z00gi/Hg8TuQbkkg7Oq+1911Ffift6+xdVGCX3V8HSeR41IkTNAhBkvZE2HvVeyCidLWDTIidl0lAxqtlF5A0t8WzUw/5IdfBQwpxA3AMd3TQKpPxMF+NRqNUd4+Y4Y4OEvq5Hs+gILcBOzqt+Bgn43MnRqPRUL/fV61W0/n5eRIEcJlAgJlf2jNSxsJ9RdTxEgh29xEy3PHBbjvEv9vtJnGITh6eB+DZEZKSmOKOFHcceNaChyn6ffHSGdYK18vOOzb88Xhc2vl3kauaEeCdShqNhobDYZorbxOKW6Ner+v8/FzNZjO1UiVwkm4Hl5eXqZ2jh3Z6qQn/3ClCqQL3aTKZaLlcajAYpLEdHx+nVp6sl5OTE52fn+vBgwclFxHXRlvXbrebykwQ57xMgfXInPIM9Ho9TSaTUncIyla63W7KiPB5RnwLBAKBQCAQCAQehYMv/Dx98N/NtWs+W2JCFbtWodV15sMHv3Gk7N//CknSZ//BH9VuMnnk+26FoMAf9pB9D+ir1WopuZ8+85AXyBffu9NBUiIckHEIMBZvCIPXh7P77Lujy+VS3W5XzWZTq9UqWefdKeAlA5LSuLBc+66/pJIQAQGH1HnpBO/hugg8hPB4nTfky9seshNOZgTjh2RDEn0Xn/dzTMojILbusPAuDogj3W43tQtEyHAxCGLbaDRKVn92timN8IyHbrebRI08z9Nc8HrvsuHdDapuDd/RJ8BR2gtA3EsveSCHwX9OKQouGW9XWA0PxTmBI4P7zf1yVwcCkYdIDgaDkjuBcfn6w3HB/Wb3nY4W3H/KAZgbhJqDg4NUnsB9ogTBy3AQD3h+GCuOE9Yfa4j54HfNZlP9fl/D4TCR9UajofPzc02nU33qU59KggTrBgFhOp2m1pI8Q/5fRB/EOkpxGBNOC66R7hvMC/PdbreTeBgIBAKBQCAQCHw6FPWDZ15MqMLDJH/y9/3sqy9+5/9042tvhaAg7dPdIS++OwxRpb6bXUp2ZCWVSLaTclwMhMlJSi0RvQWklyBUXQaQj263m8gM46p2LCDsrtodgpaNN8GzIRAaqh0bJCUnAIn+XKcfB/HAOxgwN7gWEFY8e4Dj8DPmhQ4Ci8UitfIbDAbK8zyJPJ4B4QSNMD+C+rgG3Ce9Xq/k3kBUctLuJSeIG5QSSEqkcD6fpzr4wWCgfr+fyiIQHrhG78bh6wzxg2tgt9vXpLsjEJHYUa+G/TEvnAOnCfkUHmLprpFarabxeKzxeKw8z5NLx104wEtZPKzRg0m5tt1up2azqV6vl3IdEIAoi0D4QGRbrVYpRBE3g7eo5PkYj8cpaHEwGOjo6EiLxUKSkqsH1wRjoJzHOy6Mx2OdnZ2lsiQcNox3uVymQMbpdJpyTbgPnU6nJDxyn8kAYf177oI/o9w/1kYEMwYCgUAgEAgEHoXa53yWfvw/6L/Vw3hDUdQ/vVhyKwQFdnk9UFHa75RCzjabjWazmc7Pz5OVG6LnwXpefw6RkpTa/hECB4HymniILcSVnV9In+/e8zu3/ftutbdz9K4RUrlLgVRu/TeZTEpODO/qwHmp867a330H3ufGd8AhxdVOGe42cDGn2Wym6+S9iBSdTieVjnA/qoKIizWS0u+q5Q1cE0QcV4B3FqCbQr/fTzvv4/FY8/k8/ffo6CgF+0GMOX9VLPIdetqTepkCIoA7KObzeUlMcHGgXq8nokoZB0JPr9fT6emplstl2vH3LA/EAkQFzjWbzVI5ibQPDnWbPuNerVZaLpfJpYCTx4ULBAHWP2uae4rQwDNIeQ1iE5kP/JegzrOzs3QshAWEitlsVhJCvDwJsQEh4+zsTIeHh2ne8jxPIY84ISgFQURifJRxuIjBZ0q73U6hn51OJ7WqlFRyRbjI4M9dIBAIBAKBQCDwEN7hFbK3QlCo1spDppyYQ/YgJxDho6OjtPvY7/cTiYIgQKgkJUGA0DzIAjvD1aBFJ17z+TzZzavdISBqnlMAgeP6qNf3zANvjSntCS/ECjLqbe+8pIFdf3cYSPuddq6F66Dm3TtXuMBAcj7HqJJrJ2AeGOitDSHUi8WiFHzI69frtabTaXJBMO/eyYHj0AWBfANcJTg/jo6OVKvV9OEPf1jj8Vj379/Xc889p3e/+926c+dOKexSUiKXfl+4Fu4togp5AFUxAvKMEJFlWdq192NK+y4IiF+UeeDc8GwFd1F4CQxlFIhdLo7lea7FYpEcMdwz1hoiFudjx57xMDfuOgCeRcKxcBMMBoN0fxjTcrlMLhHmotfrpTID1hjdPWazWcqdYH1wnMlkkrpA4KBA2GD9eH4JnSBwIiF6EProgaEICzxbngXBZwFlSp7REQgEAoFAIBAIBB7GrREUSL73rAD+mIeIAEjler1OO5hux5b25QHsop6fn5fIXbfbTaSfDAcnEOy+Qz5wNHh2g5N1jkVWAGUHkC5S7xEjINAeWljtSMDvIbzMAcScY/k4IJOcAwECl4HPIddbzXjgfnhrQUotPOjOBReEh+FwmH6GAMQ99laZ/j3uA3dv4ELgHjQajTSmxWKh8/NzjUYjdbtdDYfDFPLHffauFbhUIPWz2azUetO7a/hOPDv+lHUw981mM+3ac686nY4ajUaJ2EPuseTjMoAcczwveaGMxEMzJaUuHx7E6dkGvE9SItJkDkhKLpKqGIV45eC+UCJAtwbEjMPDw5SDwDURbjqfz9MayvNcnU6nVJ6CsLBYLJJIJyk5ShDO5vN56VnmdZRR4HJhnfF54QIF17fb7dLaZe56vZ5arVbJyeDzwH28qaNKIBAI3GbU3/0u7Rqv/rpAIBAIvD5k9bpWn3H0Vg/jLcetEBQg6N7CT9qXBfhOpLdC3Gw26vV6yvM8lTywu0hHAWzzuAwQD0ajkXa7nWazmTabTXI2SErvZWd8Op2WdokJa1wsFum87MT7NRHwxi68l1kAdxdAJL1mXFJppxpCBin1DhHSvn0j8wcZ8zwCD7VknIyNXV7G5s4N76BAWYILGs1mM+VbsPvNMSDm3h0BAohzYD6fl9wE1NqT2M81zOdznZ6earvdajQaJXv/crnUyy+/rPPzcw0Gg2T/h0x75wtP8Pex+ly6UONkvNPppDXGWvCwTJwBEFiEEFwgzAFCjDs7JCXBhTnwkhN2070kBTAm1rCXorBeuWYyNDxPgPnx7hS4KBAeLi8vdXFxoePj4/Qs+RrlOLvdTuPxuNSucrVaaT6faz6fa7FYaDabpXtLtwVcKLPZLD1rvJcMBQeCi7s8PNSVOSeUkvnzzwbv8oGQQMvJyFAIBALPCurvfpcuXzrSh39BT6vj3au/IRAIBAKvCwfHR/rQrwgF99YIChBUSBMtI72O2XeJW61WIlYQN44l7ckVXSIIx2NXvt/vp9d5yz/s4ZAc2uBVcx6o5fZOC7777mn3nJcdaw9KZOyQWnaGPSCuXq+r1+tpPp+XsgncceBdALDVMyZJqdbdyz+89ALLvwdJIrJwbySlfInFYpFei2jC9bdarUQwGROOEh8v94L3IMywG489nS4JkpLYQQcCiPxgMEjk+JVXXpGkdM7lcqnZbFbKm+Be4iZZr9dpF5vfMw++TsgvQCRAGJnNZsltwbUxfmz8q9VKg8EgtSytBmvyPhcw6NbgLh53K/DsVDtTIBwxTuYDJwHrk11+1oSLXfV6PYVvzmazJCh4+Q7rlHWBA2i5XGqxWOji4iK5h2azmU5PT3VxcZGugdd7KRFj9OeLueJ+UX6CK4M5RBDi+rgPODi86weuCBcg+JxBCPNshUAgELitqH/mu/Xxr3u3Ju/dSQoxIRAIBAJvHl6XoJBl2YckTSRtJV0WRfGlWZYdSfpLkt4j6UOSvqEoirNXHci1XX+xWCQSIJWJstc640ogcwEyC+nA9eDZAKTKszu/3W6TZdx3h7Fts0vb7XaTe4DzQVKr6fDeGcBbMnJNEHN+76SWseV5rn6/n0gcdn3IjYfzeemEtHcVuFMDVwEOA6+n52fM3Xw+T6F1uC8gnJBTdq393iFY4HBwMcDJIITZSRy5DuyO45QgUJFyAgIgIaB062i1Wqmrw3a71enpaRJVvFUoDgnulTsDuG+sARdkIK/8DvfKdrtNhJSdc66L++ElEghXlFPgevGMCdZ6t9stCTC8DkKMA4KxuXvG55X5Ys0vFgttNpvkJqFMA5IOyYfI87p+v59cCt69AxcHQqC3I53NZrq4uEiZC5QyMFeUK1Hi5PPO6xBRcCaR+YG7Q9q7ENxhggDIvUKIqa79Xq9Xeo4kaTqdJnHvWREUnuZncSAQePaw/Ox712JC4K1CfA4HAoF3Kp6GQ+EXFkXxwL7/PZK+uyiKP5Rl2e+5/v53f7oDQEzIMYAg4VTAIeA7zOzc+k4tu5XsuLPbCanyto1YvquZBZx7tVqlHUwcA5BkScmh4IKBOwa8tR4CR3Un1LMROCdkjvFCqhkrxItQPt9dhkRlWabBYJCs3pJKnRnIf2AMnOvy8jIF3kHyIF7stCOsuFjgrfkggJA2Sjg4FzXwDnb/2eFGBJlOp8rzPF2ruxAQnriXBHPisphMJqUcCc5DmQYEHEcB3QKYX1wq3hWBOWPnXrpyZ0DUKWtg7tjxZ/64V8wp78M9w/G9DAQRwu8t692dMHzPmvKSBw9/ZH5Yt8y3t2/0UEIcM4PBQJvNRtPpVNvtNrV3vHfvXiofctcLzwRBjc1mMz2L3APcP2RosFYZhwuICB2sQ4IxEXYQk7g2She8SwguCDqDIKbxXwQLykPq9fojW73eUrzuz+JAIPDsof5Zn6lPfElL4Uy4FYjP4UAg8I7DG1Hy8CslfdX1139e0vfoVT48t9utzs/PdefOnUQuIHX+Rz+E3i3iWO2pl8fOza4srodms6lOp5N2o6udBXg95NgJm5cn8DW14FLZKQD5w9IN0eecvNbP5S393LbONXNNkBsvC6la3T3Lgd1fciK8bt6t4uQfMAeQzqIoEnGmJAFCiKDjtnRKOpgTCHKtVlOe54lo0t7RxSPOR6o/7QsvLi7Ubrc1GAxSyB/dDTxLgDn1hH/mgzEQHsh99eBOrP9cH/PPHPna43tve+jlCggYrCtEBy/LcfLqrQndQcG6rwZb+prx1qmsAQ81xaXjwO3Cey8vL5MjgOtz50a329VoNEr3h0DFBw8e6MUXX9SdO3dS+CP3hX88l94Wk1IaHBmMiWwOnBvVeWQdeecL1me9Xk9hm3ymICBxnz388/LyUuPxWAcHB6VSF4RI7/jxDOOJP4sDgcCzh+1RT/MXQ0y4pYjP4UAg8LbH6xUUCkl/L8uyQtJ/VxTF+yU9VxTFJyWpKIpPZll271UPck1+fMfUyaYTOIgQwW3scB4cHGg+n2symahWq+nw8DA5ExaLhfr9fnJBkEUAMWcM/Ldqc/d6c+9AADklDd8JnLd99BDDR12/70JDDDkXO78IDL6bjHUe8UXaJ9RL+8wBDx1EZKla7b31oYcOUnIAeWNs7PAjAHloIGSVLAVcDdw3yJ+3JgRkMrBrPZlMNBwOUzI/zgwPraSbg79/Pp8n4cR3wbku5hERg3lCDEKAYey4GSih4X4g2HAvKV1hp5+dbu8+4MTWu5lwLzgea68a/OkuHsp2vC2kl454qQfH5XnwTAlaUCJQMCaufzAYqNFo6OLiInXwIMui2+3q8PAwzQfHZC165gIlEYyZOfYcjuq6RIRgbOPxWEVRJPGJ+UHQ4Png2eL5QZSjtMdLKvj86Xa7uri4uPFZvcV4Kp/FgUDg2UP2gZ/Si//oC/WJn/8Ob4T+1iM+hwOBwDsSr1dQ+DeLovjE9Qfk38+y7F897huzLPtmSd/sP0M4cDiBghhA6rC+9/v9RFIg9RCK6XSq1WqV2tx5jgBlC9PpNJE+hATfHeX8nrVAmBykExLnLfQgllwTTgV2w31H1sMdPcnf7ere8hLSJqmUTcAx3PItKYkbrVYrpe2vVqvSbjy73G7NRzjge+z0VXs7O/tu25eUOgiQJYDDYDwel1wbCCeQSxwRkkrZGtWwPN7P+uG9Hq4IMXWyzjy5KNXr9dLuO5kWiEVkaXB/PE8DdwVrx1uceiDno7pL8DrGhTDkHQuYPz8mx/B587lHMPCOEwgRN4kTk8lE9Xpdo9FIeZ6XSnna7bYODw9TwCIuFco2uAcIN4vFIrlhEGlYYzg2vB0sz44/L6w17inlDtvtVt1uN5VOcFzvyoBAwT3ychAPKN1ut5pOpyXBCEfGbDZLc/4M4Kl8FreVv8qrA4HAbcNuuVTz4lJSJI2/xYjP4UDgHYbtK/f1M/78Hf3ENw3e6qG8pXhdgkJRFJ+4/u8rWZb9NUlfJunlLMteuFZiX5D0yiPe+35J75ekazU3kUUnrF5CsNls1O/3E9GFkOA8oN0iJQ70lt9sNkl4gERBGLfbbdqZrdVqaTeenVKICA6E5XKZAgv5Gen/vpsMuaMlJeNBPEAEQKiAUHI8xoBQIe3LDiDMk8kkXQ8lBLRQZDe+2laQeZaUykrIV/CfV7MHvExA2osjHA/y6FkS7BpDzHy3mXvjoouTPo7Jmliv15pOp4kYE4aI7d0zA3BrsE44Tp7nms/nSfjA3UFmBKIS18F8kKXB2vRWhfzeHRasC/6RKUEZQbUriZN8J8JO+jkPc9hsNjWdTtP7ObY/M77Lj+jg5S5kQXAOHCbMCWvBRSfaO7rzgpIJv1+sw4uLC81mM02nU/V6vXRe1jtOB8+r4DkiyNQFNtYG8+hBjh6y6femWlrhWRSsb8bQarU0HA7Ta5+Vkoen9Vk8yI6Km14TCARuN+rf8yN63/9a18mv/WKd/pxCCrPCm474HA4E3oEoCmXThVQM3tGfu6+5yXqWZd0sy/p8LelrJP2opL8h6ZuuX/ZNkv76Exzzkb+D2FQT+3EbrFYr5Xmuo6MjHR4epjwACIl3gICg+M6x11uTBk9XA4gU5MfdAF6rjfsA4u+2dOq/u91uqU6eXVa+d1LIsbwTg4scvjMvKe2US/vd7/Pzc0kqWeAhgpQVTKfTZBX30o1HASLneQOIKNjcmRNKE6h5J3Dw6OhIg8GgFErp5LdKaHFVEITJjjKdPuhEgAODbAfmx90R3W5XR0dHOjo6SmGB0+k0CUO81p0B7XY7dRaBZHqYJOIG5wTcNy+fYW59zpwES1Kn01G/31e3203X2G63NRqNdHx8rMPDQ3W73fQexodzw0McIfqQfOlKgJrNZskpA/H2NqqsXx97o9HQnTt39NJLL+nu3bvJQbPZbJKzo+o24Jg4d5zQI3C4UwFhwDtO0J0CIZHnYDabaTwep2fSSxc4v2c3eCvYaskH11ivX7VppcTjtuON+CwOBALPGHZbFauVjv7779PwJzNlW10Z8ANvCuJzOBB452L7wX+t9/3FibJ3cJTN63EoPCfpr13/QV6X9D8WRfF3syz7QUl/Ocuy3yTpI5J+9eMc7KMf/ah6vZ5efPHFRNL5Y97/6PcQO4gS7QO73W4iWRAOCKqTewh+NYhQutrRRLTgnL7zSU6DiwAQUWznnrfAufk5BJb3ImgwBpwTHrjI9ZOVUK2LR5SA5LO7DbmD9PnuOsQN8YRdb+aVHWB/L7/zefHv/b+ei+HXiqhRq9XU7/eTSIAtHzJYbSW4WCw0mUxK7UIhlwcHB+p2u4msUx/v7RLZ/W42m+l3rBVcCzhWEBIgnZB5XCbuLnBnAiKKuxsg9BBsd6Z4NoK7M7g/Tman02nqjNDv90vPAu9tNptJGFoul2kNcUwvzaFbhrTPUyCbwvM/uA53jCA+VMuRPJPChYPLy0udnJxoPp+n54Kfu8jnpRrcL+aXFq04gxD+/PrcdQKYf87pThyELHfdcK2UbjwjbSOf6mdxIBB4tnH3T32f7kr62O/9Sm2Gbw9V4Rn4Qz0+hwOBdzCKH/6APiv/N/Svv66tov72+Nx9ErxmQaEoip+W9IU3/PxE0lc/6fE81I4/8CF2EAjfcXbiB8GGiOMmcALlwXDebg8Cy3GlsiV7sViUiBm7/r6TXg2O5BjujoBo4XbwQEgnax5uyNghjBDWxWKh9XqtbrebdtIhcBAgSGqtVtNwOFS73U7z5CQXEcK7LHQ6nUTWnDRyXb5jjeBAyQVgnlerVSkPge4YzDsdG2iZ6cGHCAQuQjBG3xmv1+vq9/vJrYJA4PefOfK15UIBx0JwgmCz80+ZC3PAfWJsCFaIOKzNqtDiO//shHtWhe+od7vdFEboAg2iRr/fTy6RxWKRQjM92JPxOpF3B4C3WgSescCaQnzDvdHpdLRarTSbzVKJyW6302QySfkmOHwQD87Pz1MmAveZ8zNGzypxhwXPImsLsYFyHYQCxEXWCw4H/zygrII59Y4SLvLxzNx2PO3P4kAg8PbAu/7g977VQ3hqeKWYvfqL3kLE53AgEDj4x/9M7+7+XH3sq+ratd5ZosIb0TbyNcHt3gDyw06zp9gTrIZtWlLatacent1MdsDX67U6nU4iU75bz38h4XmeJzJBeGGj0UjWe3c1SEqk33eem81m6ijBji/kB1JTDd3zXVsP24Ogs5O+2WzS9Xk3BQ+nLIpC7XY7ZQQwz8wXRGs6nWq5XKrX6yVrPOPyjAeIHQ4Lz3jwkgHPCGBePRySjAsnqtJeWOHY0j6rAScF7hAEhCqpXC6XOjs7KwlOuBIou/AOH+xaI+C4A6ZeryfXC2NENPLuIBxrtVolco4bxUsevEyFeSVvgDlm3kGz2Uxrkc4D1Pvz/vl8rouLiySYsbvPWJ04eykN+Qfj8TjNP+uCf4yHchIXPniGEN2kffcEBD4fg7emRNiivIaMCndz8Cyyhinj4ZnwbBJElna7nUSOavmNO54QGjwvwrMsXFwMBAKBQCAQCAReDc2/+4N6sfFlOv28upbHhXbNd4awcGv+WoZAQljckeDEW9rvLrNbLT28u8xut7SvJ1+v1yUbO4RF2pNezpXnuQ4ODjSbzUodBnAXsDPMMbx0wtP5ESncns3OOKUGECTPRPC2gb6rzjX66yWlVH7mZTqdJsEEcuhlHxwPYorVneNUy0O8vMG7aPh1YzV3Yurz6zXzkDbmg/vGtXtdP/cQKz4p/NjbORatDbvdbiKszAnzyVyQs+CiSL/fTzvb7GZTYoDY4IIRoMwCtwJrGeELMYl1jeDg5NlLY7he7lOj0dDh4aGkvcPDBTZacdKNod1up4wMRICqwwenAQIZx8S9gDvE3Si+BgA5BjhMyFHYbDaazWYajUbJMTQej9Ma8dadq9VK3W43uTX8M8G7MnCv+Tm5CF7GgJDoJSGLxaIkyrEmWGve8YRxew5EIBAIBAKBQCDwOGj/zX+iF/+mNPk1X67F0Rv3d+T8pUKX+RsvWPQ+fKCD9ad/za0RFNx6763aaKUHwYMYQW7YBXVrvrsYIMSQayf6VcLqu8j8wz7vmQIEHPK7Xq+XhAovWfAyhurOte/0Qm7c1s71+W6/j4saf95D+QDXWnUVICZU6/txNDgRRnzgWpyYe2cIXlvdVff5ZKzVkEXG7AF9XO9isUi/R8Bhd3o+n+v8/FwXFxdJlKHePc9zDYfD1LmA++auD88AgETiTqD8gfuCO6HT6agoirTrjSCEWOJrzztp+HpCdOI+8D02fgQExA0cNdzLXq9XCqd0kcjzCBqNho6Pj9Mzwe9c/PL3ebYDzgbaOtKikRICxrJcLpNLgw4PHIvXeikQwh5dKjg364sWk+12O60JxBSeZb7GYcJz4+1OWWM8F7iDWP+UPrnDoiqIrVardN+qTptAIBAIBAKBQOBx0P+O71f/DTz++mt/ruZ3H03lV6NMk/c+WQBN6/RA/Q+VRYrjv/kBbc8vPu37bpWgcP/+feV5rueee07tdjuRLK+H951wSKGLCB7SVrWRQz58J987RazXa/V6vYdEBkiQ5xlAjjg/lm12e6u7u9jti6LQnTt3SmIGxBmyXXUEcH525Bk/u99cPwIGu/vYwr2Foe96+26tCw6+uwvx8zwLwI4u8wjx82NwHlwBXm5BjX1R7DtpUAJB+KTXx5NrMZvNdHZ2ljo6DAaDJI50Op2Sld7FBESdPM9TC0jKN2jFydpptVqpy0Kn00njmc/npbDE+Xyu8XhcEp6q9fnSPugP8ouQUw2tBN79gJIVBI/xeFwS0vy/rVZLo9FIjUYjdUDgOAgZ3BvKR3jfdrstleO4kOPBo9w/D8v09emiFcdm3r2bAwTeQxq5doQWxoMYw7kR3tx140IXc0JQJPeA32VZloI86/V6ej7d6eDCRiAQCAQCgUAgcFvQ/Ls/qOan+X39pRc1+bnveqJj5h+fqfjBf1H62eP8JXyrBIWTkxMNh0MdHx8nQgxZIC9gvV5rNps91CLPa6ohsZAVSaWdYq/z9zDFar6A79DzfggTOQvs/OIYIGBwuVwm8YIxIj4QoAdpYVc6yzJNp9NE0iFp0t5ZgUDgookTWEgQO890lahmVCA8HBwcpFaW1Ok7kfIWm94ik2NAOt2uz7ggfLzHnSTMLdeY57nyPE/3EbcKx+Ba2LU/Pz8viUWISRBTb4nIzjQkHCeH77R7foMHAnoJAPfORYXpdKoHDx481HGhSkYRRqR9Vw5EgGqeh7tVvPsBa9fdEYyTch7+4X5YLBYaj8cpp4B15t09mBM/P7+n1ICSBkmlEM/5fJ7yM5hLF/A4nwsDnEdSCj6slracnZ0lEabf76c5wtGAW4K1xhhZ+zxvXsrhoo8LlbgYWG84HPzzIBAIBAKBQCAQeFZw+fFPqPPxTzzRe15rAcWtERSkvWWcXUVIKiQJR8J0OlW321W/30/kD7KFqODHoba80+mkVoFFUaR8BIgLhA8CR8gex5XKJRN0Q/BcA88KcLGCY0KYSO93wgXxpfUfxJFrwIXR7XYTISKFnx1/32Vlh9bJl9vHXSjpdDpqNpuaTqcPBTEyx/zzLgwQSwgxr3VHA+TOQ/d4H/ctz/N0XTgTPDTPO2VIStfKfWEHm7HgFJGUCP5ut9NgMCiVeSAkuHVeUiLUEFJJSeSiu8Fut9N0Ok2BiFxv9Tisgar7gut0t4IHbAJfR81mU71eLz0fvsNPyQBrGPFtNpslIYdjI7BsNpuHWnGyRlnbCBPMvYtBBC0SiEr5hKTkbkAU8XXk+RHeipNx0xECMaHT6aTfIeiwthgPogBrgVwLf679c4H58NKXxWKhXq9XKrsKBAKBQCAQCAQCN+PWCAqQonq9XtqZ9RBFr+v3TARpX8fuGQUQne12m0LqqLcn3X46naYa9U6nk8QBD7HzFnuQf2z4WMcpwyBnwevyIU8QODoduIXc3ROcn119rxtnRxnSBzk7ODhI4ZHsWldLFryjAvPl7gEInmc2IM4sl0stl0stFgsVRaFut1sqFWHMiAxeeuLlBpQ2cF7GRWkBhJBgRYirXxcuBCzuHk5INwfEAGkvBGC/d2eLE23mhqDAs7OztN4IexwMBsmp4GuX9cr9lvb5H4gV7NB7xwncAZzbu1J4VxOcEohMnGO5XKZQRNYBhBmXBtdJaCTE3PM6KLvx90O0ERSqeQOEQfI8ejmEixGz2VW7L+6LB076GqX8hGuiPIKSCY7LOkR041y+FrhHy+UyrUF/lnBfdLvdtMZYp7TBRLAJBAKBQCAQCAQCN+PWCAqA3V3IYrV230sVJCWiAVFgN56WjdijB4OBJJUIsxNdSOxisUjEy8PZIFKQZFwNtKljBxbST0kGZMh32quuA64bSzrlB55MLym5DxBZPLTPO0d4SQTv8/Ng+4agQQ69nh/CTzkEBN1r6Z3M8X6Owb3jvJQ7QFxxKEC48zxXr9dL53DSDPF1lwIWdx8X7QKZJ8olWCdukeee83vuJa4H5oacgU6nk+z32+1W5+fnafyNRkObzaZEyplHOjxAZne7XVpjnGswGGi32yUBBOGBOeZ+E27IemAOOTflM75bz2sh2Twn3C8PoQQuDOD2mE6nSQyCvEPsXZRiHDgg5vO5JpNJEt7o9MA5ES18jVCaQBcOBBfPmUAodHGEMbs7xL/3a6Msxo/B+xEVQlAIBAKBQCAQCAQ+PW6NoABR8J16J+Gek0CInwOixK4mRMl3shEQ2B1ldxiSzg45hIkdbWroAS4B6Wr3tNvtJqHDBQ8EBYgZ4PeQQe+GgDgAUWXXGXLulnEPsvMxQRw5josvLqawUz6fz5XnuTqdTno/pJ7xQNq86wPdACCLklLwICR/t9ule+H3mHvjgXmeb8GcMAYEBUQJ7h9rg04DOAc4VtWxAdFGsPD2iuzUM77xeJxyFnq9Xnpdu91O84YjhfGzFhBZ/N6xtnDOMF/kaXBcz9ZAROCavCwBQcODFbMs02QyKTlHcLdw33F+9Pv90vkRKPy4kpJYw1gQc6rlSTgyPEwVlwDXXxU7ELfcEeQBorgJvESI9YHwiJCIu4d1ynh4vXfOwN3j2R88f1wT9yoQCAQCgUAgEAjcjFsjKHiQG2KB26EhhRDBahYAJBgy0ul0Up6CEyuIirezuynd3cmI77RjU/d6eUi0VHZAOIF30kS9ugccOnnxdnjMBTvvlB5gyZb23RY82A4y7vXpN7XBg1ytVqt0LieTHMPbP3JPPLmfjg5kVDBmDydkPihxkFQimZzbxQOAkODBfp1OJ5HI8XicCCNuA893wNngdntIeKfTSUTVMy+Y66pYRUDgZDJJ70WY6HQ6iVQzftYEx/A1yPoZDofJvbBarXRycpLuAy4B1iMuBMIRV6tVcjLUarXkCPCyArIS3EHiZUM4JHBUQNB7vV7K9pjNZul3lO3wzLnox64/cziZTFLuhLsaqi4K76TCs4hoNp1O01zijOEYiAh8hiBU+LPpZR+UtHAf3fEk7V0OXGMgEAgEAoFAIBC4GbdGUJCubMw/8RM/oS/5ki8pWZMXi0VppxoyDZnw3Xr+FUWRbPTe8g9buzsBvH0hhAQbuaTkCGAsnuRPzsNNWQ5874IIY4WkQ/5xIyBkVHfnW61WidyS6s8cQXad+GLjpmzBU/qrhN27CUgqCRI4N+hcIanUpSDPc83n8yQ6eCihB/R5eQYEm1A/AjJdjOE++XERJXCrIL5A/LysopqLwD3AwdFutzUajdK9RbAi3NC7bUCmGbdfF2PzgEfGAtm+SayRrhwuBFJyHffv309rmPtF6CGCBXM3nU5TRkG1RMcFKcbB3HhJCvPBfeCauS7WN04Q8gkQEyD03sKS+03Zg5en0GaTsoiiKJI45GCu/DzuIGHd4jKgnMhDLf2zgWfRBRDv4sD7vZtJtTtKIBAIBAKBQCAQ2ONWCQrSnoBDcpwMeG257/66K8DJuwfOsasKgaF2nVpsCE81X8A7AiyXy9TWkRp8LyfgOOQyAHdH8FoECdwWBPFR9014H+MhAI8dbHcQeMtLt3BzHYRSImAwJmzrCADMjXcbYG6dBHumBd8Ph0PV63V1u91EWhFBILrcH35PDf1yudTJyUmy3/u80dqQ++h19NwDDwtk7fB61pBncbA2cBVQ+uHBieyEexcDciqYc9aX5yNAaP2e4GCgDAYxQJJ6vV76B0nGbcB8sS7dbeLC0vn5uTabjbrdbnIUuGhDaQprDUEGIQWCjVuFuUD0ohyENYVgxbPJuoHw8yxwPMQYyh/8WfN/nIe14m4DHAO4T9y9wbkYE6KQu4I8tJFncblclkqK+B6xyZ1QgUAgEAgEAoFA4GHcKkGB3VIIC4AMsEPNDqyHIEIiOQbkjjp0CDRt9iBKHpLIjr60zyHwr6k9r9frSYhw0uEWeciY70hzHf4zygSwcZPYz3V6Mj9ECJGB3WiHE2dILnkF7GwjrGBv9/aUzCmkuEpgIcgu3EhX5QeeIUGeQJ7niRT7/HEPOPZ8Ptf5+Xkpjd/dHmREcJ8gjRB7yC3lLYyTtUJXDSfJ5HF4sj9lAU6kPROAuW82mxoMBmn+IaME+XlXEgQCxBIyDYqi0OHhoe7du6dOp1Pa9eea3B3j5SbuUECcGI/HJbGA+4Dowf3lur0rBuuc+WAtVZ0srAF/Nln3rLVer5fCGxEb/Pm4uLhIbhSedxwF7hJwh44HSvozWS19wA1COYM/xy4+eNBpNUuhKmgEAoFAIBAIBAKBm3GrBAUPd6O+Pc/zRA6cSHs+ATvK1ExDBJw4UrtNnTthjBA771bgO8u8xq32EBgnIVUxxHfDnfhXCUq11EDa5xrQXQGyxg45AgHv964FkE93LDCv3raPn/sxgZO46XSaSKOH33FuxA93QDD3vtvsJSmr1arUJnG1Wmk6nSYBBdLPNUEcvSsDpQU4HbyNIS0HGQOhft7NgPGQHXB5eak8z9O5GZu7M5xwep6Bw8MPfb3ivsiyq3am5HcMBgMNBoNU7nB+fq7z8/M0dzg0mG9yCDabjc7Pz3VxcZHWI50nuBcuEElKAhKOGBwDrHMvk+B77j3iDK4HBCXyHQhedCcE+SWIbx626IKfpNQG0u+3h0n6ePy5cacG84DLhOcKtw1iDM+tO51cOOFrSjcCgUAgEAgEAoHAzXjNgkKWZZ8r6S/Zj94r6fdJGkn6zZLuX//8W4ui+M7HPKakPUl2272nt7PrKu0JugfqOcmnC4PvvnrwI6S61Wqlum7pYUEApwO77BA9xgaBg/Bg/fYwSSdu7lLwAD2+h8QhhBwcHGgwGJS6FfDPcxgghOzks0NOyj5Wc+aXXf7qOLyu3u3hzB3vcYJXDaTkGhF5IJdeHuJOBYQGJ+tO/J3E4lDodDra7XaaTCaazWYpWJDgS8IvpX3nD+4TpSmM3Vso+vm8qwZgPSF6sJ5ccEIUIoeC++DrA/cC94EQQ8Iiuf+IPjhLlsulxuNxIuLSlXtgOp2qKAq12+3S/XRnAzkdXhLANbow5J0RvLyHHBG/N7we8QBB0N0wHr7IfWdteHYIwoM/I9wnDy/1chPWr2cj+Fr2bA/OU/388NwOv8+3HW/EZ3EgEAgEHh/xORwIBN7JeM2CQlEUPy7piyQpy7KapI9L+muSfoOkP14UxR95wuOlHU7fhfbyBq+D5jUQoutxpNd76nye5yVyjGWdev48zxMZ5bxOtD2TgYA6dmm9NaETM96Lk8GdDoyf7yF67IxCmt3KTT4BpJKASEoiGJfvxEpXRL/VaqnRaKT8BWm/++7Eil1e7oU7QyDxCCtuqYecu6jAMSDLktKONYQQEok9vpoLAenmPXwv7dt1cl2LxULz+TztcuNuQciAvHJeb/lISYyvHZwUzDU74tUwQ9Ydc4j45CGP3HtcH16K4EGTiEJcMw6F9Xqd2nquViuNx+PkxJhMJuk6t9ttcpR4iQTjJSeDkhbcAZ7n4e1WWbusT16HiIHw4u4BBAQPWfRSFL7nPvNeRBkvN3C3hM8/7hN3k5Br4gIAnyXV0hkEE1+n3BP/3l1QtxlP+7M4EAgEAk+G+BwOBALvZDytkoevlvRTRVF8+PX8AV4lAIgC3jGB/1KX72UHvMeJH+S03W6XCL93MZCUdt09g8At0dI+BNAJYqvVSt+7xZ3XQfilvUBC8j0Ejd977T+kDlJIq0Xmol6vP/Q+5oZrIHdAKte+83vmjfN4oCTXioDhhBPS5+UnHIM5hCDzXy9jcKs65/G5h/hhW/f8CF7rBHS9XmsymSS7e7fb1WAwSEIBmQAIF5SRtNttHR0dqdlsajqdprEhrszncy0WizR3CC5+fb7u/HoQpDygEQKLeOKlI9zLfr+v0Wik8XicxundPVarlS4uLlKZgXciYAw4CzyUlLIfnhlJqXUnwkC1BMGdLJ6n4IIFDh/PeaArCz/j3rGWETmYZ8bMM4a7wUUg5t6fI66N58FDRzm/Ow5cFMQx4Z8TjK3qhnnG8FQ+iwOBQCDwmhGfw4FA4B2FpyUo/BpJ327f/9Ysy369pB+S9DuKojh73ANBMuh6gN3a67r545+dbsgDu69+LO8QQFAeJA/C6uTLrfqPAg4GiGOj0Ug5BxAzyGxx3WIPsoIFfzqdpvMjXEC6yAVwezptBYvrbhcufPi8sXuLxR7LPIQUscPDBD3l33ewnfAyR5yP85BrQF0/pK3T6SSxBnEEdwbEl3DFavgfhH2z2SRC73XtPpdePkIg4J07d9Tr9SQplYtI+5wLzk94Jg4WjgMp9laTngHBOHyH3ev3vYSB9QdRdsLKuNjVX61WqZUlPwMIDjgxuJce/sm9gnx3u91S+CTvpQUlmRHuqEHQ4VolpfUoKV03948xUGLBuFmj8/lc8/k8uXkQAHB9eNgn66FagsLrcXh4p4qqQ8ndCF4exFhZJ9VSEH8fz5ILPc8QntpncSAQCAReE+JzOBAIvKPwaNb8mMiyrCnp6yT9lesf/SlJn60r69cnJf3RR7zvm7Ms+6Esy37Ifw6x9vpuqWxXhqCx2wyRxhq/Xq+1WCxSm0W3wUOOnIj6DiZE5KbaaXcQUEaAGADxQGDgWBAoCCC71bgUIPSMWbpqJTgajVLHAcbou7sQP58naujH43Gas6IoUtAfpRHV3ATG4LZ17oGH4rFr7GF1kMTLy8tShoGXiXh+BPfKwy+9tMDDNLmniDR+/TgB8jxP5QC0TeQfZSCeueHXxnqT9sGe3CtEDM+ZQFSAlLvjAyAy9Xo9HR0d6bnnnkuhi34NPqbVapUyILj//X4/iUJexsJuPtfe6/VSNkPV7u+lFORJ+Dm964HnGvCcedmBCyNeCsD9InQS8WixWGg8HieXB86XVquVxozLyN0C6/U6jYVn38sgeIbJXeAZ8pyLaikKeRaescDx/L7zHsY/mUySaPks4Gl8Fm+0uuklgUAgEHgMxOdwIBB4J+JpOBR+qaR/WhTFy5LEfyUpy7I/I+lv3fSmoijeL+n9168rnAhADLxOn77yvmPs5QJVYujtAyGW7Kb7LvFNJMy/rooO/M53db0mHDLMTqfXgdOmkl16CBOWfN/hxoHhtd04ABiLCw0ETnobPZwDs9lMtVotEW1JKfSRLgjszDMmz6Bw50Wj0UjHhkj6bjvj8n8+r5D16/ueiB73DmHAAzkh44hJfm8oBUEoIDshz/NkvYcMc12bzSYRYFwZbt3nWj2Dwd0s0+lUu90utfvk2tvttg4PD3V4eCjpqoxmNBqlTASu/+DgIHUaoUPFZDLRZDJRll0FNVKOwHXiAKkSeHd3cE+8ZMBDF7k3kkodRKrlP6B6X3lW3L2A8IBoRInMbDZL4osHLpJZISllXnieiLtTuB4XFHCDeKinl0rxPc9SVYzjHrqrgbXhAhplJrzuGcHr/iweZEe3P4UyEAgEbi/iczgQCLzj8DQEhW+UWbuyLHuhKIpPXn/79ZJ+9EkOVg1oczLPjnY15NBzFyQlS/NsNlNRFOr3+5JU2m2X9uRyPp/r7Owstd2rigmQNnbiqzv1jIlxt1qtNF7KFSAukLhqazt2TZvNpvr9vrIs02w2S2Qny7JUjuA5CxAuxk0Xiul0msg+pLrX6yWiXXUDSPtda89E8Dn3ueN62JHma47nLRqZC1sjJXLn4YwQckh0s9nUarVK48D94WUdrVarVM5CRwQXHRhnNaAPV4aHQjKXnhfhHRM8L8NLZtrttobDofr9fhJscKxQboAw4GucOSBXwzMivCSAMbrwwj33XXnuOWvc34tYxTV53gLX5eUd/Iw15iSbNehrgtdR+uDuEnf2IBh5C0kX4ig74HlmLTJmn0euEZHDSyGYL+8IwTldgKnOn7tsniE81c/iQCAQCDwx4nM4EAi84/C6BIUsy3JJ/7akb7Ef/z+yLPsiSYWkD1V+9zjHTO0AfTdeUiI70n5nFEIA8YaMYb2n3tsJo6QSkac8guR/SKi3fvRwRIgzlnzvEODiBuNHPIAska+AKOGkCss853IRhNdVLdtch7dJrAZEsqPdbrfTzrCkNC7ECq610WikOfNgO34Hqe10OqVSChwZnU6n1PaROcIlwvgZe71e19HRkZ5//nn1+/1SGGOWZal0BfLr2QEQQ0QGBAYPDYTkIkp0u10Nh8NUWoGDQ1IKLmRNHRwcaDabpUwDLx+A1PZ6PR0fH+vu3bulaySnAGcGbR29FIZxQaApDSD7wIMQsfvneZ7I9Gq1SvPgzwA7/R5m6AKViyS73U55nqf7wdrh+XBRz4UsJ9+ID6wX5gFBwl0ejNMzHLzkhLnwsqdqwGJVIOAcPHdcu4tLuHjcweACEfOMQwKx7bbjjfgsDgQCgcDjIz6HA4HAOxWvS1AoimIu6bjys1/3Go8lSWmnEuIEYaAGm5IArO7sNELQ2J1stVopGNDLAjiX25uxaE8mE0lKhJ6ddsbgzggvxyDLgffy/ip5klTa0ZVUyoVwoggBglTSoQBCBKn1XWJ+xlzsdjt1Op3UHcEdF8wDZJsyBHaD+X01z4L/Qtw5F84M7l+1TASS6+n/iCPs5FOq4OGTzWYz2efdDYFIAllfr9fqdrvp/avVKgUrIpSw445ohTDiIpUHVEJgIZzz+Tw5ICg34Nq63a4ODw/V6/VSvgKEGtI/n881m82S2IGQgDNE2jshPNPAwzXdteNZFvyctYpQgDjCmHmPC0TVnXiu28eJm8VLeHDR0DGD47l7Bfi659pYL/6MVdvCVuElT9xnL+fw0hZ/3qtOEy8DqeZBgKqgeZvxND+LA4FAIPDkiM/hQCDwTsXT6vLwVOB/2EsqtTZEUEAkgExUHQvUqxOkBylntz3LspJ1HdIHUef7Kpn0Xc0q0WC3F4KIELFcLjWfz9MuJ4Sn2+2WOliQreBlFV6XDuF2ssvYIGS8v9PplFwNfgypXP9etXfjcqjWzTN3vqNMCQbzzhx7hgTvX6/XpTBNT9BnrghRxM7OGkCgwWXiYgr2fQhqp9NRv99PXTcg8dzzxWKRHCIcg7IBScmCzxr0UovVaqXpdJqyD46OjiRdEfbRaKSXXnpJzz33nLIs03g8TiIOGRYXFxeazWZJ+MmyTNPpVOv1uhREyM66z58TZdaGlzJw3ykTYX2wZhHXuIc+l1wDQgOEnfN7y0fWFKIXc0qwJ3kQ/lzgiuE6WH9cE/91IcFLEJh/hCCeWxd/GC8uDXcqeHtLF8pc4GKsjMfDVp/BtpGBQCAQCAQCgcCbhlslKIBqKCNknSA8CIWTXQ9sWy6XKTBPUomMSCqRUO9CAGGGlENOeL2TPHbQIUTUdBfFVXu+VquVBAXO7aUUHk7oYohfl3eUQHSA0LkFna/Z0a/X64mk4kJAdHBbvdfne1K+79JC8rxuvtlspo4aXBPX4bkALnR4RwHuJcdj97xWq6VjetlIlXQyTu4H64H7UQ3u9DwIgLvCXQq+5qTybjbn8VDNRqOhwWCgu3fvajAYqNPpJLcBIhSiAdkZCCEHB1dtTsfjcamloZeBeA4A5BZRi3uPAOJrm/vqr2cdIegg6nB8zuutPHE8SCoJCp47wPu8G4ILAoRWuhBCGQrXwfpn3rzUyOfAu0y4AOKiHGKKCwrABQhcTh7I6BkgVSElEAgEAoFAIBAIPIxbIyh4SYLvjvI1JIl/kLSqawBSAdlzCziEneP5jidWdhwQkBkPf3SSx84vhNRryqu2c0ml3U4cC07cIbJeE+9jQ4RgnJvNRpPJJAkbhPNBinwcXCdk3QMFERkQJshBAG6PR1QhA4LdaQgyAYmSUuaBw0sxuH5cAoPBQI1GQ9PpNIkRCCeUNxA46VkWCCa73a5UgsHc4fhALECkocVkt9tNhHu9XpdyNLz8g4wI5gvR6PDwUM8995yOj4/Vbre1WCySK4GuDB4YmOe5ut1uchN4SCdiGesToYGSANZ9tWzGv+a+IBRJUqfTSa8j24L59GBQF0u4l547AHF3Ms89RCiilMSFA8Q6BANEQBfS3EHg1wM4F/eR+eTZ8GfWMyS8/SlfIxp4KCfH9RwTrjsQCAQCgUAgEAjcjFsjKACIKZZtB9ZzCDdfQ/Yh9L4TCTmGNHOOqtDQbrfV6/USQfG+9b5rvVqtEjE/OjpKtfTsTkPiqnXnTiohXVjsPcgRwus2fASDg4OD1PpxNptpOp0+tKMKGZdUIl2MSVKJYFXLS27KWaCcwbMkqufo9XpJXPHQyCphQxBBKGg2m+r1eur3+6rVaqWafBwBPj5vAwkh9W4WzCGiA3Pj48nzXKPRKIUyIkx49wvGxj3v9Xo6ODjQYrEouTMGg4FGo5F6vV46Px0OmJdqfoC3aeTnrFUIOOUZrG0n4h5M6P/FaYLrgbn23X9KPbwMxe8X54JUIzywjjzg0kW36jVIexHAXT6cy9tO8sxyTC9j4Pr550GZiFfuYql2sXB3kpcA4VCQ9u4KDzzld89KhkIgEAgEAoFAIPBW4NYICm5xB5Bj7My8DpIP+fCEfN9l9bp0ggchPZ4lAMmjtp5xsKPpmQmbzSaRSXagIbV5npda2UGMvBSDgLzqDinnrJZfeGCilz+wqw3BZvee9yGIQAxxMGD3vsktwC49RNBLPBBvnOxzHi8J4Fq9DaC7NQiJhBAybxD2yWSS5onARb5GZOL8XDvz4YSYUMRWq1Wqoy+Kqzaig8EgZQGwC+95BhB7iDcikHc9IIiRVpEIGe7+QKxgV3+5XGo6nSrP83RcxooAQNcN1gRrwB0GOCXI4fD7NJ/PJSnNKwIOzxgOG89z4BngXjlh55ng+ZjNZiUXBPcIEYduGYgEkHoIvZfBSErPkosUrC9pL4Q5KHNhnbugIJVboLoI4e4b7+rggiOvcbdLIBAIvBHYfM2Xqgjd8lVRfO/3vdVDCAQCgcAjcGsEBQAZc/eA74o6kWy326mdH7ugvjsJ0UAYcECqIDeQKwgoggLEDlIHgS6KQvP5XP1+P9XvE7ZIFoC7G3a7nZbLpbbbrbrdbtohZWd8uVwmEu8dGSA8/nMIHO6IqnUeIsR7ut1ucjCwQy/tRROvUXdihWDhnSwWi4X6/X4ivsw15+N6va0jgghOEMZB20k6RkD+GNdsNkvjYKefeSJXwGvcuV+sFc+R4HXdbldHR0fpeJ4hgLPA7f3ucPF2lXme6/DwUP1+v9Qa0oMy/d6zk79YLCTtbf28z8Ukn3/cKcyNt4NcrValsghv38hcE4roeRG8T1Iqa8CV4Tv0CAw8G+RcnJycaDKZpPvK9SGQUKrCPXDXjLtIqvka/vx3Op0ktnBNHtLqpUv+DLN2eP58Djm/C1yIkbzexQdKNgKBQOBpY/Xv/FxtujW9/POk4uEqr0AF6w+E6hIIBAK3FbdSUPAWjexqtlqtEnmi9n42m+n8/LxEQiQ91GGBnX1EB6zUEB5p38IRokSrQHaEyW/g/RBYcgecfLhYQYcKyDvv4fWIBr67XRVAIJIeqOfhkRB8yCNkmFaKCB0HBwfqdruSVOq4AGmcz+elc7PDznwtl0ut1+vU5WC73Wo6nabXeEcJb8noZQSQVYIzcQPgnoAcz+fz5P4gX8AdHQhF7EZjXfe8Acgja6fX6+nw8FCdTqcU+ucOAkoDEBy4HklpB340Gqnb7ZY6FXimAPfFO2pAbBGmuFYvCUD4wbWAu4TSA4QUhA8n4sxfp9NRvV5PeSCIVzgy3PXhDiDINKKNOwZwGCDWUB7i119tW8p5XDA4ODhIz5kLfeQweH4Gz2LVaXCTOOifHy4mcS5fL+5sYny4efyYXtoTCAQCTwPrX/KlmryroYv3SbvWze1xA4FAIBB4lnBr/1r2NPlqCQAEAgFht9ulnV/qw2ezWbJzs0sJyXMiCWGBpCwWC11cXCTCRN22W7o9RI6OElW7NCTUQxY5BqUDTrg93Z8WfJB/dmfZSYUM+g4uggBjhbxDIjkXVnZEkdls9pCl3MsDvMuBdxvweeWcwOvq3V4P6ez3++m/3uLS7/t8Ptd6vU477P1+P7kdIIAICLPZTPP5/KH7iqjD6/M81507d/TCCy8k6z7j9fdK5dIbjoGrotls6vDwMBFe5sjnCjKNmISggojjBNbLYiDDkkprlmfB1wv3g9ewLigfcTJcq9WS0EC3CXc8kJUh7TMgvHODr3nG58GKCBmUV/g8+lyyBrwcCFGDNY4wxvzxe67X55v3ca0uJHn44uXlZQoKRdzwVpNekuFrOTIUAoHA08Lma75Un/j5DV3mISQEAoFA4O2DWyMoVLs8dDqdEmGBQGD19jp9SSVXg+9SQp69VtwJL9kAlFeQ0O+tDSHsiBq+w+lBhU5MGDvngrzRym8+n6fd+WpXBbd4s+NL7fl8Pi/93Imzh+VR2tDpdEq5E8ylVG5j6aiGYXoCv+dVeJtN3+2FsHEcSgjYnWbnnRIR6Yo8M3bvyMB5fIwIBLPZLNn/+RliAjkHvq7yPNfdu3d1fHys+XxeCmv0sgK/ft/J5p4w/0VRJCcMO+6QccZDngHlEH4/vGOFpJSvcHl5WeqWwHXUarVSDkin0ykRXtYZ68nzCMhTqOZ7uGiBuOAlNO7OcKGJe+nuh2qXDUg945b0UFCmOyTIrOB11XVGkCiCBWUd3J/q5wBzSAmS56YwX4wBMcYDLLnfgUAg8DSwuFMPMSEQCAQCbzvcmr+WfVcQYgSxlPa7xJA2yIoTeK/Bh7DNZrNUow9JhfxTagDJgCyz6wzRIjEfQuM2cw+lc+FBUiJ3boPfbDY6OztL1+F2eQ+322w26vf7Go1GiaRB8HAfcD2+Y8vu93A4LAUOunWd3XbmwssSKDWgtSHX6iQUpwSEjTaWABLvYYjcV4i4t9pk/NT2QyC32206B+4ExoNTg/vgYsVisSi10OR49+7d0wsvvKBer1dK9vfODnmepxwGt8hnWZZ2+F2MoiOIt5TEbn9wcJBKEyQlG787LViLkGnELY63Wq1Ku/2eWyCp5JjxdeYdPDqdjvr9vobDYbr/OCcIzuRYvqZpA+nPoXfn4H4STIn7gU4YrG9/NmlhWXXVVHMgGJcHePo94V4hsvlnh7eB9QBW7gvPm5fpcF38Tto7GAKBQOD1YvM1X6oHX5hJCkEhEAgEAm8v3BpBAXgrPM9QYBeenXo6FkAu3E0AGYMYQey8JZ60r7X3rhAeIFi18kt7ezzAceCt+/y/EB+IGXZzSKCTVj9XtdQAwojF27MIINOE/jkJ9SBJPzbnXCwWqUUhu/7z+TztklNu4kIJDgDcH+6ggBwz1xB3bPjuBMDajr3e70WtVlO3203EFYIKEfWWgBzH55j7juBCiUWe56WyDbIhEBToQgGpp8yB3XDP02AXXFIpxwErPgLAYrFIa478AS/Rgfj67j/3yQMv3dbP/aiWirCe3BFwdHSk559/Xu12Ozk3WDPugGm1Wuk54XqcUPM1ohbvabfbyVE0n8+TMORCHGPlmfIyDdY3AgPz6mvZc0vcPcB18jnAZwD3l3EsFot0zTy3CB3uPPF2ni4eBQKBwOvBtnmgXTPEhEAgEAi8/XDrBAVpH6zmoWgICpBxxADIhtu8IRrslkIMISW9Xi+RDt9BhuxCziFowFvquTWanzEW4ATMuyJge3eLPSTL69ghO5IS6aeMAWLcaDRSJgH2ewglO+2QMj8mpRLME8LIZDJJc1IUVy0WfVfZBRMn3bhGfA4QMSBqkkrzSb4Dc0gdvwtFkPnJZFLqSMEYPADSA/c4P/dzNBrp+PhY9Xpd0+k0hSKyBnzsEEw6UiBc8DtIqXekwNnCvEG4OTYiy2Kx0GQyKa0jaS+guTBVdX1QNoOAxTqFBDOX3GvvzkAGBZkE9XpdvV4vCQGQba7ByT1ziWvB54HSlU6no+Vyqclkoul0+tA9IF8B14EHYFKa5MIZY/ESHV931efXuzl46Qv3hzXS7XaVZVkaI89hu93WcDhMzhjKLaqCYiAQCAQCgUAgENjj1gkK3oUBQszuN8TpJueAA9ICYZGUiC87wZCRat2+d2o4ODhIO+wQQkmJaEG+IH+cE2LHeT1UbrPZpLpviDa7qdUdZ2zfq9WqJCj0er20m+z1/BAoCBEknzIISKak1K3Bbfr+ryiK1A6x1WqlnXfGCXHzY/p9AhBr5mg2m6koCg0GgyRQLBYLzefzdHy3x9OWkx1z38GHfENQq9Z8SalbQr/f12AwSIGPOFW8VaOvPb9n3DdJySHi4X0IYJBbbx3ZbDZT61HuI/cFsOac4FJ6wLwyl7Ts9KBGv14/DgKVX5+fk7XEz1nLLuQhWHhXCTqmuOPA21guFov0rHIu3B2eM8K4uaecyx1DCAO+vphjhAN/dhAkWCv8zsfrghfXg4uI93rb2kAgEAgEAoFAIHAzbpWgwB/v7DZCvLzG3QmV5xdANiC4hMqx6ws5gQBhO3d7v1udGYtbs731nbQPnZOUarnZzWYcLlZIe2u2ByJCOCFhHkaHbd8T9yF0kCGILcfxdpeSkvCByMHvsX3791w7pRpkMSAoMCYvLSCcr7qrzb0B3gKQueAeMF+QTkklKz1kFdLngYueqcHa8bwFWkUeHh5qt9ulueQ+eE5ClmWJXCL8IBTx+36/n+bH7z8uBVwULsBAgP3eesmN53mwbnAxeA4HJRZVwuw78l4+46U1zBdiwr1799TtdpMIgACHmMV93e12ms1mpWBJnDQ8FzxvrBFKcpzQe9aDCyE4HVgjiGDMga8Z3uNiizsf/NnkOmivSucWRC93WfT7/VSWwzziZAkEAoHXi/piq9qqpm20igwEAoHA2wyvWiCcZdmfy7LslSzLftR+dpRl2d/Psuwnr/97aL/7vVmWfTDLsh/PsuyXPMlgsixL9ulut/tQMB0dBdhZ9vc5cfLUd2zOEKRqT3ppb833Vo8c0+F17JA2xlK1znvHCmrpIUleu14NpYPgQ4ggzIvFIpHV6pxVrffL5TIRcO++AKHHseDlA4gmEGVS+30MvoPtO9a+q837PHeBbgi4IiQlwj2bzRJZddGn0+loMBjo8PCwlOSP6OCiBGvEXQ4e4IfTgdINhBjWkpceIIoQwEi7QcgoFv+joyONRqOSVd/vP+U20r60w3MmAO/l3njJhu+SQ9J7vV5y20hKc4WQ4+sB0szYKCHI81yj0UhHR0fq9Xqpcwnn4hqZs2oGwmAw0HA41HA4TBkYp6enmk6naQ202+2SKMGzxbVzH3EHILDMZrMkVLljg+tFVOF4vV4vtR/1kFHEgsFgoKOjozRWnhOEBMSm0WhUcuRwvV6i81bjzfwsDgQCTxf17/5hHf9vISY864jP4UAgEHgYj5M49m2Svrbys98j6buLonifpO++/l5Zlv0sSb9G0udfv+dPZllW02Oi1Wrpve99r3q93tXgjOjxvZMlaR9e6F0g2NHsdrvq9XqJNHlQnpNzFxQ4lhPl6vmlfcaB74jP5/NE0r2u3XdwPVeA91Zt2Iy/GgoHSfbQO2+Xh+2cYzgp864WzBlj8B1w5gwnACUJLk44ub++7+m93qqPYzO2zWaTsgkg68yJ51Ywb4hL7P57a0PvtgFh5t4T5seaGo1GunPnjrrdbrqPkF5v2+kZGpTGIAwQEjkcDjUajTQajVIGgdv02V3nfcyNtzdlDDgwIK/edhFRyDtBsG54nYdRuljhWQyIQbTJ7HQ6eu655/QZn/EZyaHAeu10Our1eilzAQdGu91OIhMZHmQiOPn2vAacRN6dwd06iHOsc+904jkd3r0CsYL2l9JeYGAcHJf8jeFwmISpPM8lKTlxECO4j9UWrS4K3RJ8m96kz+JAIBAI3IhvU3wOBwKBQAmvWvJQFMU/yrLsPZUf/0pJX3X99Z+X9D2Sfvf1z7+jKIqVpH+dZdkHJX2ZpO97nMFAViHdBKSx8wsZgXh6sCAkwBP6IUCj0SjVeftOvXdsqHYxgJwRysd5PSTOSb+XA3gXBq5hNpuVxg7p8dIKxu+7t55Az07/dDpN4gHknkA8yjxwEThZdhs8u/CQYa4dcsrxyYOotjjk2jyYD6GAe8f8sbvvooPnLnjooztDcJ1Arr1EwVt3kl/QbrdLrRcZ22AwSKLSYrFIoZa+a+674bhKvCSh2+3q+PhYR0dH6na76na7pW4W7gJxQYPyAM/acJs/83RwcJAED0Ibs+swQ9YuLh0X1uiiwLPhgoiLUeQQ9Ho93bt3T4eHh+lZowMG72cH37tvMF8+Z7VaLZF0SiO4PheMcObgXuH+VTMKEEg8y6Tb7aZzSfsyFcaAMOSOJdYGDotqNxLmj/ORScLnAM9UNevircab+VkcCASeLuqf9Zma3zuQtHvV1wZuL+JzOBB4myLLdPkLv/ipHa71Lz6i7f37T+14tx2vNUPhuaIoPilJRVF8Msuye9c/f0nS99vrPnb9s8eCh9z5Tj47tZAPD4rDvu+k38kau6xYl9ntZjfZzwl5gBhC4ik/uKkMAgLGWJ1k8zXlApQFuOjA+ziO18pDDFutVrKl0+oRxwPzgYsAkuRuDUg+pQDUtEPkV6tVym7gtey0873fF3dm5HmuwWBQEke4vioZa7VaKZPBbfy+q+8lDdvtVvP5XIvFIo2bnzMXXn7BbjIujUajkRwqZDFAgnu9XilXwAku10GpSVEUGg6HqfwCoYP7M5vNSl0eCF9krL5Dz/y4oMPccE3L5TLdR+aHdqPescTXPOPGfbHdbkulEDgsRqNRyoBwMYH5YbyNRkOTySS9xvMvWAfuaFmtVilzwJ0pOFz8ullLPGer1Srd9+FwmAQA7zDBWiIUExGGcpb1ep2eNc8y4f3ME58JPA88by5wLZfLUgnPLccb8lkcCASeHurv+Qx97Ote0vQzQ0x4myI+hwOBZxiLX/ll2tUzffJ/9/SCuA/f+znqnLz3kb9vP1jr4B//s6d2vrcaTzuU8aY7cWPRYJZl3yzpm2/6nde/V0sOIEeQaK+bh3DxX7eUez96dsw9bwEyB1kk5M+t48DzBxAofHeVHX9Pyodc0iJP2lu6IbSUUXh+ASSInV0Ip5cBEFrI7nCz2UzXh3vDd3Xdcg55xBmB9Zx74EGNXv+eZZlarVayyFdLLCDPnI/XHh4epjlmDOwEQ5IheYgnkEXmF3Lr7QMlJSLINeMCgYRK+xaWnU5H4/G4JE7Y2kxixnK5TLkB7JavVqtk+6/X6zo5OUk7+cwP80B2BvPsIpHvnFeJK4LFer1OjgVfj74mId8QYK7Zg0bJX8jzPGUDuLiyWCxKGQjZdbAoDqFqZgXjpjzm4uJCy+UyPXdO7hG+GBNri3WwWq1SeQuOAi/7QWwqiiJdE88fZRqs04uLi3TMer2exBmeJZwliBxVd4evgTzPk2vkGcRr+ixu69YLKIHAM4X6u17Sx77+XZp+RogJ70DE53AgcIsx+/d+nta9A51+QaHicUIAngBnn1/o7MaPgCs0Jm0N3vsVN/7u+C/9M+1eQyj4+a//ChVPoIkc/oXvl4qnk+3zWgWFl7Mse+FaiX1B0ivXP/+YpHfb694l6RM3HaAoivdLer8kZVlWXP83BRzyPQRnu92WdhIvLy/TjihkDSs7O/oQG0nJmo71HNGg2vYRMoso4MSY92PBp+wC0syuLI4KL5GAiHkKPU4Jjrter0ulEk526H7A7jukiWMgklTmOJ2HMbowAqkn/JJrdtHBuzoAiCZOB35GyYDXwuPuoJ49z/OS+4Rr4pzeyQC7fL1eTzvXHJtMAK7JSarvbkN8GRdzybl999t3/bHrQ2IRMyCix8fH6vV6qbvHdDotzTPj8nmFMPM94g+lOVybl+4QUuiZFNK+hAFyX80ZYLyMwYUV5qrb7aa1Ph6PkzhXzclgDfEMIgwgRuDS4Jq89MU7gCDmMGYH5R3D4VCdTkfz+TyVjbhLhuviuSbLwcVBnmWeDy91YA2Ri8GYqu4j3BLPAJ7qZ/EgO4rUuEDgKaH23D195Bs/U/MXQ0x4myM+hwOBZwzTb/hyvfIlmXbNt+Zx2/QLnXzRzb9bD79Y2WuouB1/9u5mGfORY/iKhyTO4U9v1Po7P/jE536tgsLfkPRNkv7Q9X//uv38f8yy7I9JelHS+yT9kyc5MHXp1MQjEPgOLSSeXVZ2Wr0+31sWQiBOT09TazuIkrepQwTwrgKeHs+4sMFLSu/x1n3S3nZftelDXBAFII8eusc1S/t68Gp7SYgiJBAiSqkG54JkY633Tha73S6dh7KQqruCY1S7YnjJgZePVF9PRgA7z5wHhwOiwWazKYlAWOE3m03qBJBlWSr3mEwmKWSQNVAURSKv0r40hntNSYUHevI6SgC4BnfJcA3z+bzkhMnzXOPxWBcXFzo/Py+VzVTLEdhVhwgjelB60ul0kniCG8VDGT3kk7WNYMM1sPbZ1Z9MJlosFsmx4i4MhKRWq6X79+/rwYMHybGx2WxSGQf3l3Wd57nu3LmTOrF0u910XQSQQuARY1wg9PPjIPFcEZwbLqKw5iSVjocYwH8Zozt/PCvFy2yYS89EkfaOGpwczwDesM/iQCDw2pA1mvrYf/Kl2tWl1Z0QE94BiM/hQOAZwlstJrwaJp/15vx/Y/zZD59n9lJdzS/4Sr34j2bKvu+fP/axXlVQyLLs23UVNnMny7KPSfrPdfWh+ZezLPtNkj4i6VdLUlEUH8iy7C9L+peSLiX9x0VRPJbGUqvV9NJLL2k0GpVq8SE9kN3lclmq48YKD2HF4eA71ev1WhcXF7q4uNBqtUpExUUHz0potVqpRAL4Dig76OwIQwA9yG02myWXAYSWYEJIrXcqcNs6BMnLMbgezg154r2SSiQKAukOiptKGrh2d0/QHtFzKrheae+uwCkAKUMo4XweDgiBg9Qx795FAULsBI/7gUvl/Pxcs9lMk8kkCUqe+g9JhUhCutfrdXJKeE4Eog+En3viRJ01NJlM1G63S06L8/PzZPenHIVQQ5wyiArVbAXOjdAyn89L3TT4h/jC63zN8FpEN9YR9386nWq326nb7aasAgSMPM+1Xq81m810fn6eShMmk4lOT09TjgBrDWfCYDBILRZdROAeMDacHdX8EBxFw+EwXS/POeuxKoR5JxI+A3BmuKuG+eLn/vxWA1h5Pn098hnAWve1+FbjzfosDgQCrwNZpg/9Z1+qzeD2fHYEnh7iczgQePaxPLy9YsJbjW2n0KJT6ENfl+uzFz9Lux/5l4/1vsfp8vCNj/jVVz/i9f+lpP/ysc5uyLJMzz33XMnS7H/4kxMAWauSVg/yWywWqSad72ezmRaLRanOfTqdarFYJJKNPZp0e3anJaXAPd7rO5yQGwi1tCf3bsvH4cB1edYAJMit+pyXrgW+6y0ptQ+EzLpdn1IIHAEcm38QLHce+O8Z42w2S8IDgkRRXHWVOD8/T2TXuyYw/mazmcQfrOm4DAiBxGHhNnkXPiQlAjybzdLOPdfsnQ+81IF7L+1DNqnTJ1OD47vA5GQe58VqtUo5Ar1eT6PRSHmea7lc6uLiIjlWXISi8wVE/+LiIrkZILJOaHGbQOp9950AR+63ZxogTLgbgrVGhw1JWiwWiSy3220dHh6qKApNJpPk9kAIOz091cXFRVobrIF+v6/BYKDRaFQKh2QNuHvA16mX2UD4/bn1UhtJSeRABPIOJBwbMcThYpYLWC4SudOBPAbmzMU7d+zcFrxZn8WBQOD1YdMPMeHtivgcDgSebUy/4ct18b4QE14N23ahD/7aod43e6+2P/nTr/r6px3K+LqA26C6Y+6haRAs7OGQE3b82QWmg8FyuUyWbsodIMWEGCJEQKrm83kSExAU2JHf7Xbq9/upe4S072vvBMnJnZcAOOlmDLQlhJhD/t32zw6vOwy8PINgSGrEXTQATqD5HQIHtfDssHc6nVJ7TQgg/wjKo+zAiTwlAhBlXByMlfnk/mw2m1RyUK/X1e12NRgMSr9rtVqaTqelMgCvz/fzIwBwfogk94d74jv91eBJxBbmh3t8eHio5557TlmW6fT0VCcnJykfATcHBBuhA4EHwcBLMrjXl5eXKS8BccUFBc8rcOGIa+FcXv7CXCAccF9Ho1EqK/AMCXIjJpOJLi4u0vNxeXmZ7l+32y25EZgzz9xwYYe1yPtx3rD+eQ3CH4IOHSboVFGFi3LVsht3zFBCw1pC3GMde/mRrwtEGQSeQCAQeFVkmX76v/5yKYs/VgOBQOA2YleXitqrvy4g7RqFfuK33NPn/rGlLj9+Y/xLwq0RFEhVHwwGKX+gSpCo+YfQus2dXfNqzsB6vU47/FioIR987xZ3L4OAFOFEgGjU6/Vk5WasvJ5d1E6nk8gYpEdSEkMoJ2C3GeIIQeZ6vV0f/yA7fM+ucKvVSgTY3R2QaEiTCxuels8OM2SduXCCCBHj+Oya+5g8xwJnwL1793R0dKT79++nnfzZbKaTk5M0r+zEj0YjHR4eJjFFUmmnmPvFONitZx6o/XdAyqm193vGnOBG8NIOFxtoezkYDNJxttutWq1WColkjXq9PvNMaQBuA0QHSbq4uNBkMpEkDQaDtBYh2eyoM2a/Zs/i8O4l1d11zscz5eUsOEcuLi5Sq87FYpFEm0ajUSrhYV1wbtaDlyK4iOaBktK+zMbdNASd7nY7jcfj9ExA9OfzeRqP511wvThRuC/u8qlmorgI5WJENai16oIIBAKBm5C1WvqpP/DF2jVCTAgEAoFbiYPaU+/m8HZHcSD9q9/xGfrcP7jR9v79R77u1ggKkhJBZHfRw/SqO+0QCggOJQtONCEZkAVpLxJwPg9wk/a71eyo4l7wXAffVWbHGWJY7YqAgOHOBEgKZJDz9Xq9RPggt+4YcEcERBtSRykIu8HeZcJLK3w316+HGnYs4N6pweeMnXpq8CF7vNZLTSCs9+7d02g0UqfTSeOghed0Ok33qtVq6e7du3r++ec1Go10fn6eggKXy2XaLfZ7xLx6ZoIH8XlOgWdsVOcCQgtJlZRaLeKcGQwGOjw8VLfb1XQ6TV0PCAr1EE7WJiJGq9VSt9sthYcy9vV6nbIORqNRyjtg7XnnBi998YwBd7O482IwGKjdbuv4+Djt1M9ms3Td1fBSnDjVHJI8z1O5CB1F+J1nPbCemBMXNVijXAdlSIvFIj0HCAq4Lvie8E5KaXimeYYQDl1Q4bmmC4e7EiiH8NBJzutZGlVhKhAIBKqoDQb66d/5+dq14vMiEAgEbiuWv+xLdP9L3upRPIPIpB//1s/W+37XmbS5+SW3RlCgs0E1PJDdS0iL/9yD3ySltov9fj+RFu9IwC4zAXmQIt9l5fjsxrq7ADLE7ivHQExwgiftXRLVgDkEEuzrThAh4u5OqKbku9jAGJw8S/t6c3Z2vSUm11i9Tq8x95IAn0M/B4IMQYO4ErDX06nj+Pg41exDQJfLpabTaXJDNBoN9Xo93b17N2VpeHvIxWKRvkYAIUgR8s0YcA9gc6eUxEtoOCfkkXBI5pi1xTW22+2UHcBcsVsOmfd6f9wqw+EwiT+dTicFSSJSbbdbnZyc6JVXXkkiid/nzWZTcpMAd6GwViDmHkw4HA41HA713HPPqdlsajabJbI/mUz08ssv6/z8XIvFInU6QcTASdHpdJIwQUkQa7bagtNdP7gFvJQA0Ys5nM/nmkwmKVwTxwL3mDVFW05EES/hqJav+BzhhFkul+r1eg+VZnDNrO1q1kIgEAi8Gl75hs/XZR5iQiAQCATevjh4z7uln7z5d7dGUPg5P+fn6IUXXkgEFRLuO83S3mEwm83SrjNWfWquERR85xUy6+F1np2AsADhhqyyYysp5RzQRYDgRidIbv/mdYzbywX43ndTfVeV66Rcg5IAr5uv7qBCBHEoSOUwSeYCh4S3tGSHtrrLL+1LCYA7Qvhdt9tNrg3G3Gg00r1gLhAwIJ/8nh384+Nj3bt3T1mW6ezsTNKVAHN2dqazszNNJhMdHByo3+9LUgru8+wJRBSuh/NL5W4azCO79uv1OnXsYGwQ9WazqcFgoG63mxwZ3CMvoeC9zWYzhUB6lxK6KbAGET6Wy2XpmugqMZ1OU/kJ65Tr4P4hLOGwYO11Oh0Nh8OU+9But9NrX3nlldTNYTqdpmvwTBIyJwhjRICZzWalNpI4KhA/KJ+YTCap/ITXk/XAubgu3DcIPIiL3EvCO2kbulgs0nE8wwGRjnniej23wUufOF913fN+L9MIBAKBm3Dvf35Zk/c8p8tuiAqBQCAQeHvix//j56TfdvPvbs1fy0VRaDqdSiqXArj9GCIoXZE48gFcBMCaXRRFaVe7avnnv5A5yE232y0Rff5xbi8JgBRJe9cBu7aUKLggQcBctX5bUrL1Q+ja7bbm87lms1kiiO12W5PJpJQtAHwsTvghdARM8nN2gN3x4WGNVQFH2jsuPETPU/s9z6Fer6vf7+vo6EjdbjeN0bMX+v2+hsNhIveQ8H6/XwrPpK0hQYHcBwgg144lfzKZaLvdqtPpqNfrlYI+GRtrADFhPB6n3+PCQAShjSaiCaUcvqONyIAQJu3FC89SIJix3+8n4j2bzZLAwHEZEyKBv441xRrga3e9tFotDQYD3blzJ7k+sizTZDJJJQAPHjxInTp4/jxgFCDa0UKSdelCFPeB62SNelkQ94H1z+82m01JTMG9gTjFuaQrIZG59SBNL9tpt9vp3jCfzC1zw/FxULigh9joz2cgEAg8CpOffVe7xqu/LhAIBAKBtyNujaBAdwbIDDuU3iKQHVLISrWWX9oHz83nc43HY52fn6c8AezUTiaozaZEAHJI2QHE00MTIaLuJMAu764JCDg2b89IIDDSAxqpyWe3HTLV7/fTTvfp6WlJvHB7tgfd8Y9545hO+D2TARJNCQUE13d+cUhIe2cA56UunzKAXq+XumF4gj8EFDFoMBiUyiYoZYBYEhSIO6EoihR46aULrBkPjOz3+zo8PEwlENTws4O92Ww0m800mUzS2qMkAeEIItvr9VLnEHbJsdIvl8sUZCipFMTo5BRHB8JJu91OZBlBBrHi5ORE4/E4iRnY/GnlyXxy/1yEozzjzp07ev7553Xv3j31+/2USTGdTjWZTPSpT31Kq9UqCSeIVcA7IvjzgeMAl4Z386iGXvI8cX3M6XK5TNfHWnTRh3uPeIJwwH3q9/vq9/sPCV7kmTAfCHyereD3grXupSIe5lgV7gKBQKCK/K/9gOpf+JVaR1/zQCAQCLwDcSsEhXq9nuqnCbLrdrsqiqK0G8/OI2TAk/K9raQ7D7D3Q44gJ5B5iBCklPe5M4B/nU5HjUYjkV3GLqlUU+8W+0ajkVwPvV6vVLft4YDuZMABQTZAr9fTcDgshf/xNWOp5k4giFCbPhgM0o4w467VaskSjsuDcXFdPq/urEBk8FBGxB1KA5rNphaLhU5PT9P9xLruc7VYLNLOMWScnfj5fK6LiwtdXFyksXtJiRNAH+NgMNDdu3d1eHiY5pL5h+RCrHEN8H7G4esRp4OkJFYhJHAM5ptMBezzlE1Mp9NUOnF0dKSDg4O0Q8918L7T01NtNpu0644z4ODgII0XwccdAgRjEiB5fHyc1g5OD8ojuI+sPw++JDuB+8S99meCeSTbgEBOxDayH1g/nrlxcXGR3Aae4+FrjOcEkYC1j2CCE4lnyEuAEI3Ic/CMBwRB1hLn84wNFxYDgUDg1fCu717oQ7+iHV0eAoFAIPCOw60RFIbDYSKp5BSwQ7jZbNLOsrRv80btPPZxCDlEYDqdljoDVK3M3hECQo1rAes65JfSCrdiM163tSMe4DzgvbzWyyik/a4q8CBKSRqNRnrppZd07949nZ+fl/IWIJYQXxdSuLbLy0t1u91EADmnVG5L6N0SGCtOAsaH2IC7gHsEKcNm72SZbAJ2qZ0g4vY4ODjQcDhUr9dLu9fr9Vrn5+d6+eWXdXJyknI1COnjOrybBiUdOFfu3r2rTqeT5puATeryz8/PNZvNktOAY0CmF4tFEj3IENhsNhqPxzo7O0tfQ9I7nU5yjXjo4Hw+18nJidbrdXIO1Ov1dF4PuoRw00IRJ4OHeyIYIYKxHlnf3W5Xg8EgOVskJTEBIQInDIKGt86EtCPYcd88f4O1yr2k+wVOFZ5rxDXKaWazWSqvwC1E6YKvO8a12+3U6/XSs4OrZTgcpjWGIDKbzdL6ZU1yDyijQIDhM4Wxcc84P9/7sxkIBAKPwvg9bRUHISYEAoFA4J2HWyEoSA+3jJRU2ullx59ANnbeKQWADLH7Op/PU7kEZK3a0pG6ezoMdDqdtCNJyYWTI0gN1mhvW4jg4DkEeZ6Xdme5Hi+ngNB4+CRiCW0LDw8Plee5zs7O0m40Fn5EAoggAgOZCbgNmJtqNgAkXdqHLzohQxyhvR+/Z6eX90Ji2TlmRx4CS1nKwcFBIt44Qlqtlp577rnUCYJAQiz6ZAk4IIWUiUAeF4uFGo2G7ty5o8PDwyQCQChxSZyenqZrolyh3++nbAfs9Nwjgj8RIBBKLi4uSrX5TvwvLy91cXGh6XSqi4sLSdJgMFCn0yl1oZD2YYWIBXSWYE15bgTriHXH93Q8oWMK3Qy2262m02kql+G47PoTXMn9laR+v59KdHa7XcpX8PXHdeOIaLVayalRLanxNYT4RymQZ4vw3OMg6nQ6qdvDfD4viRQcGweKiyUumvGM4H7x0hREQi/vYY4plwgEAoFPh7Nv+gqd/mypqL36awOBQCAQeLvhVggK3iaP/7Lrih0cyzVEg51bdssJYIPQQDCrQXkOCAO7sYgNEDEPXoT0e/kFQYK0JoRQQmqx5ENM2XkGiCjVVpiIC3meK89zjUYj1ev1tNuNPZ0ac9+Bh8xV20Fiv0cswDWAIwQi7B0wEB8kaTqdJiGHlo6AHX0nei54eHtMyC6CwGKxUKfT0Z07d9Tr9ZIoMplMdHJyorOzsxT+CEFlLZA34GLTcrlMwY6eZYBAsl6vdf/+fX3kIx/RycmJptOpxuNxuqe9Xi+VNzCvzBmZC955AJEHQQpSy2tms5mm06nm83mpnSkuEtYgawXyv9lsUptDJ9Hcc9YR6xyBbTgcajQapcwM5vPll1/WdDpNz5KLbDwbOEQg+eSAEGzK73D/XF5eajQaJeGBuUZsQ3jjmWXMBDwiIngOBmU5uGN4znEiME84IbxFqa8RSk+8OwZzRfmLlyvxHtZWvV5PJRyBQCDw6TB/PlNRjwDXQCAQuM3I/+EHdHTvC3T6c8JN9lrwM//Yx/ShR/zuVggK0r5+uWqvxw4O2WJHml1NiDxkfblcJoICgZCUyApkCoLptfjYviGEu90utTP0lHgPKGT3nzpzdm99p9MJJiKEtG83yFi8A0Se5xoOhxoOhyUSihCwXC41nU7TeKkdp3QDMsh4EAAg31yrCzWXl5fq9XrpnlTbSnqWglvLvZxjtVqlefeAQ8SEO3fuqNlsajwe68GDB6n2ntwF77yAWOK1+5BfF2Z2u10SWmhzOBwOSyUWPt/n5+c6PT1N4gDz1u12E0Emc4NSjs1mk0g0wtLp6WkKSoQkk3/h3QgoT/AMjep8IhYgcHhbSIQtbzFJKY93OiF7pLrbf3p6qvv376f7iwDHcVlzo9EoCWuMnY4QdAZpNBrJZVOr1dJzKO1bNPq4eSYQthCWIPN+nS7mIfT1ej21Wq307DG3rBEP6iTjAjGLeWYcfK4g3DFG/4zAkcRzxO8CgUDgUXj3/+tH9K9/9xdpMwhRIRAIBG4rdrOZ6ssQE14rtp/81CN/dysEBUg+tnT+4GdXUir3j8+y7CHyU+0g4Mnw/Nfr6CFRkGmv24aEs1MLAXMyhLjBWCHN7KZDjCH1EOx+v5+CHRk3O7/+D9EEkj0ejxNphigRJIh44LvPCAe0JsQpAMn2UgzGC1GGVHHd3lUDNwf3pNvtpvwLd0owPre1d7td3blzJ3XruLi4SKQRQWGxWOjs7Ez3799PHRBoOYjln5p4Fxm4X61Wq9SKEiLMzjmiE4IV1vvRaJRaXCIWsRYgnTg+OJ+HOeZ5roODg1Tm4YINJSjeHYQdc8aGSLRYLFKGwaOeCd9RZ2ef3Ajfeef1dMhw0QoBCefBbrdL5RhkEyBa0c6V8gqyGA4PD5NjgS4t7rxABMFR4+vTnTBO7LlPw+FQ3W5XnU4niT64RBgPDhBKg3iuuKabQlk9CJU1gBBVLYeSlISbQCAQeBR287my+Bs1EAgEbj0G3/4DWg2+XBc/o5AeNq8HbkIhfe7//ce1vf4b+ibcCkGhmswO4fLcAknJxl0URQqL4/UQbXaosUDTc55QP+qxvRQBsQESDGGFpLitnF1S2ibyM1odQkCdKEFgqXGHGEG4cDd4eQXdAGgfeXZ2lsgwJA1hhHnyZHsPWWQXmt1wn3d2jz0TwuvkV6tVspXneZ4EBVwaiBS+y0xOAV0JcJXcu3dPg8EgOTjY4R6NRilA0Ms5JKVgQuaan+NCcVt6q9XSnTt3dHR0lDqCML/U2c9msyTMZNm+7STlCAgAvAb3AWIA8/LgwQONx2M1m00Nh8OUNQBxlfYBm3xPjoCLWdK+PSF5DIgilMm46IMYxA4+AgGlK3TuYFe+KIrUUaHT6aR5wNFDKYKvO0oILi4uNJlMUltVXu+dICSlwEmEKF93tIfkHC4A+nz5nLEuEAwp5UHAQ+Qaj8c6ODhIZREuhPAanlMPY2WNE6y52+3U7XbTvfCyoBAUAoHAq+ETv/MrtQ53QiAQCNx+FIXu/unv0/a3faWmn7ELUeHTINtKKjJ97h/717o8O/u0r31VQSHLsj8n6ZdLeqUoip99/bM/LOlXSFpL+ilJv6EoivMsy94j6cck/fj127+/KIrf8jiDpj7a29M5CfDuD+zgSkoEy7MNvPUgBAmyD3nmnLwfksGuNDZ03AG4ECQlYt/tdhP5QJTw1nVeOiHtg/cYj1uxcQGwM41AcHl5qclkkuzkPn5IveclcN2IJYgDdj+Tg4MdWogk1wsJZtec3f9ms5kEhWpXAEitd8HAobDb7dTpdBJp9zyHer2uw8NDDYdDbbdbjcdjnZ6e6uLiokT2er1eIsF5nqe5zPM8BSeSncAuvbdulJQIKfNCGGGv1yt1RCDbYbPZKM/zVI9/eXmpxWKROhUgZrDGEBy4p95JBJcBY0WAgtAz55Tx4E7wuUKgYm166YDf8/F4nIQFdvQZC6GIk8kkza+PmUDMBw8e6OTkRMvlUr1eT7VaLWVBLJfLFMLIXPkz43khs9ksuS78WeT5o6SG9evrmOcbAcRDIRnHaDRK4hEtRimHQVxAfEE8kpScJKx/5tKFQO7PbcGb9VkcCASeDC/+ke/VR37/V2o9DFHh7Y74HA4E3h54/r/5Xn3id32l5i+EqHATDlaZPvuvjFX88Af0aF+Cvf4xXvNtkr628rO/L+lnF0XxBZJ+QtLvtd/9VFEUX3T977E+ON3KTVo+hLpa4wyJ9t1LyF69Xk+Ber7bLykRHr6HMHNOCCpfEx4ImWEMbkuXlOzdklJ3Cc9qgBx5xgIkxn8GueF6IV7YyRlro9FIu7ck+kN63cbPMRgnBJpdYog/YyGzwe3yHAOxgHlkPJBbd5Mg7kA+cQiMRiMNh8M0h4RneoAigYTj8bhE9rheBA0P5PSa+zzPdXx8nDpNAO6Dk3cvpeh0Oup0OonEQ4ZdDJjNZjo5OdHLL7+sV155Je2M0xmEkhTELgQvz1egSwRWfBwgEFfWIiIJZNzXBffTBQTWBuUNHGs+n2symaRrwXVAyUJVEFqtVjo/P0+dKdwFg9BwcnKSRBECSCeTSRrner3W2dlZ6qLBOmBMno3CevKOINwXxjudTpNLwsuMLi8vS88PbTHH43HqXOHinj+Dy+VS5+fn6RoR8zg+rgqEo1uEb9Mb/FkcCASeHLW7d6Nl5DsH36b4HA4E3hZ48Q9/r/JPHqh1ciDFR7gO1plaJ1fz8Z6/tVDxwx947Pe+qkOhKIp/dK2y+s/+nn37/ZL+9499xhvAbmC/30+2/Cp5oPQAEuVCAdZkcgdo0QhpoYVku91Olnx2fql/xxlBazqOA/mjlps2g9I+5A9yxZipw+f3uBggKwgXCBGQTNwGWOO95l9SyiKQ9uJKdR5wPfh5vR0hLpDr+5gII/PLeSB25CZAWqmTp6sBAg8CBLv/0lWJyuHhoQaDgfI8V6PR0Gw2S4JBlmU6Ojoq7YC//PLLun///kMlB1yvlwIgknANtHukKwDX4mUrCESSkjBF8J8LN4vFouT8mM/nOj8/TySdEhHILIQX4cMdGohVOAXYDWfdcl4EFNaWB1969w+EIUoKOBb3K8/zVEZRPYfvuCO4sfYh2H5/KBdBUFgsFuk54tkk5wHnAO6Sg4MDjcfj5ObAKUPJBm6KxWKhPM9TfoOktJbX67Vms1nJTYFgh9sHEYU5wEnEPfbSEEQKXsvnj1+HO0Zu6g7zVuHN+CwOBAJPjo/8xvdp0w93wjsB8TkcCLy98OIf/l5J0qd++1eqeMSffKujQpfdt6HiUEjdj+29Bb1P7NT/ju97TYd6GhkKv1HSX7LvPyvLsn8maSzpPyuK4h8/zkEgvpA/CBmkDBs4tnC3OUM+CFDEhu3tJyELvivLbjKBer5DCumeTCZpjByL3UzIHwSesguIqNfPS0pkjkR6iDGBeQgNjBNiA1mH3FOP7iUhnqvADrCn1jsxctJf7dxQdTXghEBYIcUf5wBzh5MB0ovD4/DwUP1+P73u4uJCp6enmk6najQaGgwGGg6HOjg40Hw+L+0wM5e4BLzkhHtI8OXx8XH6RxYD66nb7aadbNYFjgTs8JRIcJ9Wq1Upk2AymaQsgvF4nEQoaZ/94cdCOPJ2j4yVvA4n+6wpz35gTeA64Z7c5E5gDL1er9Qpg7ID7huZIlw799pzFch5oPyGfIfJZJIENJ4Xwk/JkJjP5+n97nBAcJD2nUbI51gul8lxxH3yvAYP0aREicwEsjp4JujQQRCmO5rIIiH7ghIM7+SAW4j145kjzwCeymdxIBAIBF4z4nM4EHgG8fwf/95H/m79S75U489sPNHxpu+WLnu3R4TofOpArbPyeLJCOv4zj77uJ8HrEhSyLPu/SrqU9Bevf/RJSZ9RFMVJlmVfIun/m2XZ5xdFMb7hvd8s6ZslJdJKCzpPvGdXHku8tCeZ7NZCinAmsMMq7cmhhzBCIugK4AnwECZvrQdxJNkfUgMB5Lw3lQd4aQS/HwwGarfbOj8/LxFc2v51Op0SAcOuzzV4bT1WeLeTUwYCcauWf7hQ4WICx0mLw7pvSCqVN1DDL6nkuuCayTI4OjpKpRSXl5c6PT3V+fm51uu18jxXv99XrVbTbDZLwZM4OSCjiAsQWeYFwkk+w/Hxsfr9fiLstVotOSm47sViUSqjyLIsrS9CEefzebo+Sgcgz/yX+fH2oQhU3AvpSmygFIbcDdYG5JvddQ/EvH5GktMAIYH/+mu5H5Ra4LCYzWa6uLhIc5nnecopYF14KCmih6RUBkKGyHg8Tuuda/ZsENacixeIDax/RDDWCSUdCCI8Rx4+6oIBZQ7eiYNOFP6cunCBGEkwK+NDuOH6GeN6vdbFxUUS8J4VQeFpfRa3lVd/HQgEAoHHQHwOBwJvTzS/64d05wnfc/gLv1iz55uv/sLHxLqf6fzzPr1Ake2kuz/0iPH88Mva/sRPPbXxVPGaBYUsy75JV8E0X11c/0VeFMVK0ur66x/OsuynJP0MSQ9dXlEU75f0fkk6PDwsIHi1Wi3V3hOal+d5InYQeCzfEBnIymw20/3795NrAcLGjqRU3qGX9onzLghgc4fEQO4IRuRYkEp2USHxXpMN+YLMYWPHSUEwIF0U3FKOTX8+nyfXAin+7lIAkF3O7aF9XJc7KSDC7uhwK/z1vUrf84/dbXcC4ABgd9sDEtfrtU5PT5M7gd+TF0BtP/fLRSAIdb/fTzvflBVAqGn7mOe5Li4uErmnnALL/uXlZdrFXq1WqeUg6wWxxctPvL6fOYXYQs6ZJ/JAWBuQbDIG/N57lgICCGJK1XWCAOZODSfOuHZYp9xLRAKeLS+fwPmAmAQp535KKq09Wn9yDxAJAGKMt0RlThA0GDs5GpRWuCDBvDB+hCDuqQdWMj+sT+aEzwied8QJ1jnPD888pQ6TySR1J3HR5DbjaX4WD7Kj2yOnBwKBwDOC+BwOBAKO2j/8pxo8zePdOVb/y9776V9USK2/84M3/mp740+fHl6ToJBl2ddK+t2SfkFRFHP7+V1Jp0VRbLMse6+k90n66cc4Xqn9owf+UcbALiut6gBkDMs1bQGdcEhSt9tNqfS+E4+4AMlwOzc7n+QOQBQJbYTg4FaQlKzYHo7Irj42c4gPJBLined5qZ6fnWt2aCUlKzukl+Pxe3auJZUyEZzY+e+Zc8hf9b0A676LDKvVKpFQduJXq5W63a5Go1EikLvdVYs+yjskpeyCLMs0nU714MGDlFGAMOOCDHNHjTzENMsyDYdD3blzJ2Vw+Jggn9TOI3YgWNBB4uTkpHQPcU5Q7gDxhFCTC+FhmDgjOA7iAAIZ98tzFwD3bTabJXcEa4ScCK4fEedR1ymplG9A0Cg5Ar7+eX48c4R14teOk4dxeagpmRSEcSJYsU4ogfEdf0g+83J5eZnKKvzZrOY0cN0ellot58HZ4segg8hqtSp1QPEOEzxbrLeqY+c24ml/FgcCgSfHu7/rXD/1DUNtO8ED34mIz+FAIPBGY/vgRK3vPHmrh/FIPE7byG+X9FWS7mRZ9jFJ/7muEmxbkv7+9R/ztML5+ZL+iyzLLnUlhvyWoihOH+McaYfQdwZ9V92t2dUyAtwF1FsDdjrJHoBkeLK9lwxATLIs03w+12w2S44BiLRbyyG+jA/SzQ60tG8VKSmRYnZGcWAQJAhZrtfrmk6nmk6naWcbYkM7Q0mpTILxMl9eooB4geuAa/S5qNaQAwQHwgaxwFdbcPI65r7X6yUB5+DgIAVZEtZHqUO73U5lC6enp6mVoe9iszPP3DGnHtJ5eHioO3fuJLLPXEOeIaB0yWAXn5BH7iHv63Q6qSMFFnnIO+9nDF4Cwnl89x0y22w21e12k/OF+yrtS0uqWQlewsL9qLoSWF+euYAgwHtY69xf3Bie0+FroCiK5BS4uLh4qJyFc+CyYP0jQLgzxl0Z3voSoQwha7FY6OzsLK1jXEHMDyKLBytSFoGA4OU5vI81jhMEcQZBCacCQaiU7yCY3KZQxjfjszgQCDw5dj/yL/U5i89R0ahLB9JP/IejaEP2NkV8DgcCgcDDeJwuD994w4//7CNe+1cl/dXXMhD+6PegQ4QGCJLb7VutVtrBRzRwCzRCgbQPfGRHFKIAWXZrM6+DUA0Gg0Rks+vUeyzzkD5cDMPhMO3Is/PJexEs2In2tH/+UcsP2UJUQNCYTqdpB5rcCbpJ+HVWXQaQYcg/O7KenQBxonyE+XTRACFkOp2mjhrsflM2QekKDgO3ryMYeXDhgwcPdHZ2po9+9KOl7AI/N9fKNflOd7vd1vHxsY6OjpIdHseI504gdkAe1+t1yrIABCuORiMdHx8nZwHz22q1SgKMk3eudTabpRKHxWKRnAW0uiQk0Ykw6wPBg7yQangoZJqxeBgor8XFwxxQouPH4ppwF9C1BPFOUrrPl5eXSfhZr9cp6wQyjqjgQYoeRIq4wFgh8tXSHVpZ4trh3uJI4r56bgJz6OU5Xr5RLf9xYYRxcP8prXAHkc/HbcCb9VkcCASeHNsf/2D6+mf+iXe/hSN5e+L05fWrv+hNQHwOBwKBwMN4Gl0engq8ltlt6RAyujeQWdBoNFIpAHZtSJIT6VarlcQHCAu7uRB/d0BwHAhFr9dLJRfsnkNK2VHebDaJmFALDhEj/A1y62SGnXHq3xEqIEwQcAgTlnpJiVT7dXtdvNeQV9PqIeocE/HDg/G8vMN3wUnlz64T9RF3OAbE2XfWfcecca1Wq2RBp3VglmWplMTT/L0TB+OnXKDX62k0Gqnb7SYxwsmutC8nQEihTv7u3buq1+upzAJR586dO+p0Oon4uxMFYu2iEjkDHNfbheJMQBCAfHMP2FWHWONQcecNThRvU+r5F6wTF98kaTqdajKZpNaPzDFrAhLNXLKW/TkgE8JzIViTklK2Ca4Hrok14fNPS1bKXFhHHsTo+SQ8u4D1T2cMbxOJG4XnjPnlc8WfAZ4TnAguDHKfcDI8K6GMgUDg9uDywx99q4fwtkNRbF79RYFAIBB4S3ArBAX+wGcHFFcAu6yQF0iw78BCBCBltVot7dzzNbXw3t1A2ndh4LjUckMgIbMQSSelXttPbgCEEccEIYuQUK7RwwYpC4C4YOeG5NF+0QMBSfJH5PCuApJK1n7fHYY8QdQ9TNLDJaslILgscE7M5/MkJnjQH06Coig0nU7T7jE5ExBLwhQXi0VyN9ApAFK43W5TiQCOB989X6/XajQaOjw8THkNnBtRBeGG9dNsNnV2dqazszNJSmIPaDabKSgSosz56/W6JpOJTk9PtV6vNRqNks1/Op2m2nvurWc94ARh9xwhx8MA1+t1yXUAwZauSls8YLTVaqU16Q6SaqcOdydMJpMkzHiWhu/oe96AlxlQqoIjhTmrlkwgBvDs8TOcEuR+SCqJOH7PXITh2XDxzrs+IK4QusmzwOcDzzcCpHfIQHTjergfOB1ckAsEAoFAIBAIBAI349YIChAhiDQEkvpzXAXsWPouLyKDt1n0sDVJqXyAXWBpb1n3VHuCGGu1WiJf1FZDTBEIOLaHB0IECewjMJEdT3ZGuQavhd9utzo/P9d4PE7Bf5BPSFU1LM6dAIDda4g4IoFUbiHJTr6XXjAnkhK5o0sDogxz50SM+8IuObvNiB+4Otydkee58vyqPRK74+yaQwSlfVYEQgvX0+12dXx8rG63m4QWsgkQLchaQGChVp4WiogkBAciMnAcXAsekok4Q4kDO/8Qbg8PhPAyHneceCYCwgPjG4/HyrJMh4eHarfbKcsBuN2foEd27LknCEvuOPEuKZ6pwXrm+aOjA4KTpNQpgtfggODZYF3fFL54cXFRatXIe3AEQPabzWbK63CBj7WHS8NFDRwSrDdECg+k5Dn00E4PGPXQS//9bQ9lDAQCgUAgEAgE3krcCkGB3URaDvZ6vUREJZWEAU+0h1BBOCGjBPBBnCCg7CB720knHBAnSB+lEtjeJSViRqaDt7Dj556Wzz9IKKRU2hMvdnQXi4UuLi603W4TOZWU6tx9J9pzGKo7qZBFRAXIFu/j+j0UkN1gz0+A+FN3zrgRD1arVaqnh8AVRaHxeJyEEt9h9vwGzsn4cFxQx84ufKvVUr/fT8IJ9nuEIf51Oh11Op1S8j8kl51/1gFtJikFYDyUJiwWi9QRIs9zLZdLvfLKKzo9PU2hkpvNRufn56U8CeaTdo/+NfNOSYe3g2SNsAOPMNBqtZLQ5AIHpRxkDEDy3W3B15D37Xarfr+ffl8VE7w0gPeS94DY4rv+l5eXOj09TfeC9+Js4FnAdcCawmlweXmZxAN3F+V5rtFolEQsHAmEPbJGOSbX588j8845pL0bieeda/euEJRl8HnAPAUCgUAgEAgEAoGbcWsEBXbdsc27e6C6sw9xhXCyk09dNuSK3Vle7yUAkBsnntKeLEOO2AmG/PtxqnZ2SaWAREgJu6+e1eDHoCSArg7elpIsBboGOGmEZEPS+Vrad5TA6s08S/sSExcUXAhhjiFtEEnaB2LBd3eEd2SQ9i6JLMtSVwMn7lyjpGTl5x4zH7vdLpF82oES3sfckbtwdHSU3uP/fBec9xG6yLrDDdJut0uBf5BaAhaZq1arlSz7RVGkcheO5bvzrAXWg88z65J7hFhCLT9ijXeEuKmmn7nj9xwfEYh1jtMFcePy8vKhNokuxknSZDJ5yJmDSIQo4g4XLzHygE/IP+IbohFCCgIRbWIZOyIT5RTMHwKYZ40QCIorwoNEeR9uFcaBaMkzwXX7cxAIBAKBQCAQCARuxq0RFKS9+8BrvKU98YKYeYmEW5c9cd7r7atOBF7rpQIQH8gd33NOCJvv2rvDoLpzWu0CAdHBtk6dOHZ9wgm3221yaEBaPUEfQsQOLCTcW/+5s0MqE1onWJ67wHEgWpB/5gOy5WIM5NbDGvM8T+OHAC6XS52fn2u73Wo4HCZ3QJZlGo/Hmkwm6R5xTDISKGWZTCY6OzvTZDIppfNDJBkH5NtdJhyDnfZer1fqjgGRPTg40Hg8TrvukPnJZJLcBZxzOp1Kusq4QHioklPcDJBpzyxwQcdFM79frBfvfuJrABGC54XXOBn3bADPKcBhMZvN0npGBHDBYLFYaDAYlIQzd6PgEGG+GIM7PzyDw9chIs9qtUrCIE4PrptSERfvGo1Get1sNktr3Z9tnmF3F0kqiRi8zoVCf35xOwUCgUAgEAgEAoGbcWsEBcg+te1ObCH+kHbPEECAYBef0gDIG7ufvJ8wxOVyqV6vlxwJbsPH3cBOqYsP7PxXjwlJIvsBEgVBg8Rx7DzP1e12U9YChJradR/nbDbT6elp2t2HeEPw3JXgteg4LNj1l5R2wasdGMiqYC7cMu/hf/wcp4LX/XseA4R4vV6X8ivu3LmTrnmxWOjs7Eyr1aoU5Icb486dO6lGnvICXBIQ0sFgoMFgIEk6OzvTgwcPUvClt2CkbAShwl0sw+FQ/X5f5+fnqU7fcyPq9boGg0Eit8xhnufpWFy/tG9diIjFz7y7iLtDEHJYg6xnyi7a7XZpV51uI57j4ZkYk8kkiSUIY5JShgA/p8uGO1fc1eLH53vOxVh9DXmJj5e3MB8Ed/IMIxoguHmHEc7nnV24JvIVXBBEFOAZk/ZCJCAjA6cGQk21nIq5cmdKIBAIBAKBQCAQeBi3RlDA4g+ZgRhg2XYi4mUIEALIHzuYEBkPTvSd+VarpdFolFocQkAhbp6rwDHYbSXcDyGBencXGbB+szPuu77s3hNKCAnr9XqJ1NClgLp6Qgo7nU6qOYdcYmEHEGmILmPn9eRAII44aXRrODvr1fp8d5EQWMkYvObcbfx0CSA0j+tDAAIQacg37gccEL5mRqORXnrpJXU6Hc3ncz148EAnJyele0Mg4ng81ng81mw2S0II7gVI/mw2S04DhIOiKErZA8vlUuPxOJFcOh14vgFlA95u090BnrnBMTwXg/OsVqu0jiSVjuHOFXbsIemsFw+IdGeDE3cEO+4f92g2m5UcLjiEEEh4pvw589/5a7heWntKKjkEWIfcf3dBuAi4WCyS4MYzWA0ZdUcCnyO4N1hn5Fqw7l0MYe4RoKLkIRAIBAKBQCAQeDRuhaAgqeQMkJQIHUGNEC9vLQeRgPh4mzovk/B0eMjGaDTSYDBIJQAewkZ3BK/JpxafOnuIqaQ0PgQPSSkxHrIGgWP8tKX08gnEBbITIOPskhPUCOnynV8A0YXMr9drdbtdSXt3AkSNsbmAAPlDIPE8AreEczzfQWYOXBDCMk7YXqPRSOOX9vkSvAc3Azv1dDyYz+eS9nkb7XZbL774ot797nerXq/r/v37euWVV1K7Si+Nubi40Msvv6z79+/r8vJSo9Go5KRwwkqZCeIKWQaIBMxpnudpbbFGcbTgVvDronMF6xTnDAKDCz+UVGw2m0TCEW4gwezebzabJArNZrNSpgACmDstmHPIsmeIUKqCYOHlC9zDVquVBCTml2ulXMWzQjyTwZ0SCBjV8g5cCIyN95D1MBgM1Gq1kruBOfP2j176gzhBjgb3izFXQ01xL5DrwedRIBAIBAKBQCAQeBi3QlBgd5DdUez8kDfs+pCzXq+X/tDH/gyZgPiyKwkJhKDgbOB9vKf6e5wPEC4S6X3XnR1ZghXJC8Dp4GUCToAkpdcQ1MeYLi8vdXFxoclkkkQFcgI4h7smAATNQ/G8IwXzADnkZ9K+bAMCxvUyP76D7QF7HJ9QTB+L7/Q3m031ej0NBoPUQhAhxVP5nex5uB4ElHE0m03duXNHL730ko6Pj7XZbPTxj39cL7/8crrviCDL5VIPHjzQxz/+cT148EDtdlu9Xk/Svu6e8dKyk1197rkT+vV6ndaOCzSISxB9n2O/V7hpEJZYF8vlUq1WS3mea7vdajwep4BSiDklCXR18PWEc4J7wrpDLKFMAqEFuz8iGa4WnCzugnHxTlIpS8HzT/zYzJU/P2SFUGaBkMDa5HvG7tkOnqlBSQjXwGcBa5tninn2HBTEFMQKnvNq61fuT+f/3965xEaaXmX4/apdvtTVHvfQcxW5KCwCQkOEIiRQlAUiyWxCdmFDFkhhkUggwSJRJAiLLEAkbJAiJUqUgCAREiAiVgQEygYIA0ySCWHIhExEz8Uzbl/q5na57J+F6/n8VrXdPT1xV/2VPq9kdXe5XD7/93//p37Pec971tayX0YgEAgEAoFAIBCYxK2W8XMAhIsxeRALCALVfv9PPjJvqvZO5FzajUGdS5qXlpbUbrdv8Qzwaqt0NumA8XzT7vaQV/q/XTEBKXKFgqQs+aeq7yaQEOHDw8OszhiNRlpdXc1Ghki6qfoSl8eJHJzf6coMrs2NFVlzQFX+PJNGyCekkdYBr36TDEKdUK/Xc9LB/RCmvSYgcigo3GST38P9v3btmh577DE1m00dHBxoe3s7V/WJodfraXt7W1tbW9re3la3283XN61u6fV62tnZUb/fnxgvWalUsjHjaDRSrVZTq9XKigCUE56YYB9xL1G4kOByGb0nfhh/ynPAWrt3AIkLEiv1el2j0Si3c/hEB5/yICnvNzdU5F7zTNE2QAKFNgv3M+H62E8oIVC4eCsCiTA8EHxiBeuFt4U/89NeBiTVrly5ktedxJM/axepi2gjGgwGWcHhrTtulum+Dqh7AoFAIBAIBAKBwK0ohUIBMkAlc5rIY5xIJZhEAP3U3W43Ezk+A6Jy48aN7GQPaDegkukTHCBNJCMg3JBBiJInECA6KAqofPK5/ByEnOuC6JBwQC7f6/Umqs0QMki6G/pJZ54NrBPvQXXBdfg0AbwmfBzmycnpFASIqreQ+JhMr1y3Wi3VarWJqQLcH3f+d+k6ZJbYqDb3+30dHBzkyvTBwUGuzLs0fXl5WQ888IDa7baq1aq63W4mqv5z7IFXX301m0Jy3yHIeA5sbW3laROoM6iOM86TvUBFHVKLDwcJEJ9+QfLIe/793vFvT44RA0kVSbnFgn1CMqBSqWh3dzdfn4/r9DYAqvuVSkX9fj8rFvgMYvG2ExJCPDve1gDce8Qr/Sge2C+oMdzThHvO9UpniQTiYS+j1iBZxfOE6oA4mejBWpM48JGY5xmSophw1Q57IBAIBAKBQCAQCJyP0iQUvLKPjHllZSX/Zx/SgbM+4xVTShPTHSCDg8FAnU4ny8LdWHFtbS2TWR/fJ906ScIr+t77DTl1otPv97Oc24mOV8NJeHhPN6Tv6Ogo98GfNwWAhAUE2ydMULmGKHsCw8krknMmFzC9gNcYqUi12SvskvIoP+ms1WNpaSlPSIA4Oqnld3ulnOQH5A/yPxgMtLy8nGXm00qLlJI2Nzf1+OOPq9ls5qkQXLePOxwMBtrf388k38cBkvDZ2dnR/v6+tre3swKhXq9nNchgMMgGhaurq+p2uznZg3+Bt8GQjOJ6fRQmexD1B9fOXvfr9bGn9Xpdy8vLmUy7zwf70j0QINw++pQ9jfJlOBzmz/S2BhIo7vchTU5AcO+N6VYIknokEnim+DmeKeL29/v4RvxSuFckClhjEhkkHOr1en4G3PSS60f54s8jyUP2xvQ5gaIjEAgEAoFAIBAInI9SJBSks0qtpCzlp0LPf/jb7XYe8ScpV6OnpeeVSkWdTkf7+/uZ9LnpohMPl/RDatxckb/T5gB5gnBATKiSe1Uf0ILhZow+gpEed6rq7mWA5B1ZOPDe9On+fSrjEDESLPSiVyoVNZtNtVotLS8vZ0K6urqaR1b2+/08fnA6yeKKBf+9rCnED0LbaDQyQfQ+eNQSPloSAglJd1NIYmk0Gmq321paWsotCkjjR6ORXn755aw2oF2G5AqkeWlpKRPnF154QcfHx3lvNRoNHR4eToy0xN9iNBrlz3bjSEClntfcK4D9w/Xxbx9XyhqgeOCeSMr+En7P+/1+XuP19fUJbwvff5D4Xq+XVRWS8lr4lAVaHbif7EMq/ZBzFChuEOrPGtc4bRrqvwfDRH+W+Dmf0EC7hCuC2GeoIa5cuaLBYKCDg4OJsZlu5uoeG+xrV+lgluljLwOBQCAQCAQCgcD5uKOHQkrp8ymlV1JKz9hrH08pvZBSenr89aR976MppedSSs+mlN71WoKAMELCp13bUQOsra1lMgpBosJM/3S9Xs/EDNM2J9dI9CEPToAhvFRUIT8+4g4CQoVYOht1iAfAdAWXL+TvTpq8177f72cJOOuCSoDKNBVxSdnsEHLoZHBlZUXNZjNPjiAp4Z4M7XZbkiYk8ZA3Ktm+DtKZJJ0EjLdUQMwgmJA6X0OI32g0ykkOfhck3a/dEzNFUaher+vatWva2NjIxJ02gH6/r52dnfzlkwogrVTGDw4OdP36dT3//POZqPp6oXSoVCpqtVqqVqvq9/va399Xr9fLJJ3YafWgrcBVKd5igt8EayWdqV86nc5EYgpFDmoJEire9kN8JFi4R3hO+NhJ9qZPTWGPSsrqBPY6ewzFircgeKKEMYwk01Da7O3t5f2IcoP9j1KBZ5bYiYX7TtsEbSy8hyQU01F8LKqbqfJeYnMlFOvnyUGeU4xeXb00b8ziLA4EAoHAxYhzOBAIBG7Fa1EofEHSH0v6k6nX/6goij/0F1JKb5X0fkk/KekRSX+fUvqJoihuO8wdgkGV070KIGmQYIhctVrV3t6eut1urobTykByYNq7AOk4BBsiyntIVkiTRGbaywAyJ531gkOc3OCQpAgkxqu3TiYZQwnhR87tbRfNZjNPGwAkWPgc7yVnNOLh4WGeGsF4zEajkSdldLvdTMBWVlY0HA7V6XS0t7enoiiyusCrzSQQIIn8rHs2OKGmFYHX3UQP8kkFmS+X5UPcK5WKrl69qqtXr+YEAv4GvV5Pe3t72t7e1vb2thqNhmq1WibXTlRpk0D1sbKyos3NzZxg8b59TAUHg0EmzhDpg4MDHRwcqF6v573l/hU+fcAVOMTA5+EtgAoG0g3hxudhOBxOjFokMeAEmHXFq4O9garEW2MGg0G+f67wwCzTDUR96orvX4wVeYZcbcNz6sk4vudGm8RAC4L7GrCffK+RxDk8PMyeH6gTeA6mk3KukpCUPwslAok0nlcSKCifSoIv6B6fxYFAIBC4Lb6gOIcDgUBgAndMKBRF8bWU0hte4+e9V9KXi6I4lPT9lNJzkt4u6Z/v9IM+utBd7SH6PkLPK5SQCCcBEEzv5acfmn7qabLH7/F+btQBRVFkB37k1sjxnYSsrKyo0WjkKjVyfkmZ+I3XVNLZpAWUBVRSeQ+kDdd6fx2yBhmkXQIFAhVoiCDJBLwAUkrqdDo6ODjIChD3ApCUVRg+aYH34DVABZ22D4i0GylynawT9wMlCYaHrBl7gOo6iYfl5WVdu3ZN7XZbJycn6na7evnll7W9vZ0r4vv7+9mh30k292p1dTUTeUY1bmxsZD8O9zBws8rhcJhbQPCXwGASLw33cOAekxghqUEyhftC2wUJGB8nyn4n+UFbiu9dn1bAniKZwPQT7juTHHx6BtMXeA3iTgzcS59eARHnWmktSWM/E5QEnrwgVk9MsYfdO8GTiq7g4b3Hx8cTagWSe7S++MQW1oR1l5T3P3H4M4LJpl+zq2zmjVmdxYFAIBA4H3EOBwKBwK34YTwUPpxS+lVJT0n6raIodiU9Kulf7D3Xx6/dEZAPCFi1WlW73c6Eyf+TD2nodruZ8ENW6KGGxELAINEQjenxecjIkYdP915D0t0IEeJJJb3ZbGai5NMUSHYQI8RJUjbKo0ov3doeQCKCtSEB4lMKWAeq0BjW0YbhppaQSEzxiNcl77xX0sR1UOmmp55kD8kPV1540oC+fZeX+/WwJpBUby0hzo2NDTWbTS0vL6vf72t3d1c7Ozva29vLRonD4VDr6+vZdwAyLikTdMhxpVJRvV5Xu91WvV7PVXqvkjv555qYxoGKgeo2VX9XVqBwgdC6xwLJFHwjms3mBOmXlA0m2ePuZeAmiJImPBk8CcX+IRHia8K9AV655zO4L97C4caHPvoTFQotSrzG3nAjRG8xIIHHnvbEg0/K8L3uPhK0zLiigTXh7yg6SFzxnJOkkM4SFK40WQBc6lkcCAQCgbtGnMOBQOC+xR09FC7ApyW9WdITkl6S9Mnx6+mc957rapZS+mBK6amU0lOQEHwEIPG0FzBN4OTkJJsFbm9va3d3d2KKA5VtyACkGOm3j5aUlKvukDiqx5KyFF/ShHcDyQw+AxLkxnK87oSLz4fsQVSJ2VsjqNBC2PmdEHAqvlTZva/dq+Xe+kF1G5IPaXP5PpMV1tbW1Gq1tLS0lAk+ayydEVTihaiiPEAN4mR0uoXF1R/cC66NtZv2mVhdXc0tGK+++qp+8IMf6MUXX9TOzk5ufWHf8JnTn0vSBK8KKuS8j/vBlAgq1/1+P68x6yKdkWTfuz5NgqRBt9vNbS0QYNodXNLvCRr2OsaJKA98WgftCW4ECsH3Mao+ShVVD9fGtbA3fS9zD/wZc5NSNzNEtUOCzv0wfOIDyQT8E1wd414k/AzPJckXEmrVajWPniQeTx5MT9fwyRjsL4/bFUwLkkiQLvksPtLhPQkyEAgEfoQR53AgELiv8boUCkVRbPH3lNJnJf3t+J/XJT1ub31M0osXfMZnJH1GkjY3NwuIo6sKIIYQckZDHh8fZ8O38WdlgoBkn0r49HhGKsqQ1mq1OpFQgOhSCaXNge9BVCBafAatEpAR/nSFgZNdyJhX/2kv8LGBTnogn1wr/0bqzTotLy/nGCCqkiZGbjpR97GKtGZAHpHruzcEpBKlB9Vl74mHkPHztEhAHvl53utTD5wckwjwJE6n09GNGze0tbU1YSKITN89Glwy7xL9lFJWYJBoIEGzs7OTx1dKypNE+Bxim67YoyTAS4EkhHsyeJuLt2NIyokYb51wuT/fw2CTe8t6kvDgvrtyB/k+sbOv2J+uoAFulOoE3a/fkwxO9Kfbe3iOSTJhpujjMlljT2JwzTwX/A4SY65o8VYg9g5JPU+Q3Lx5M+9Xfh/3GiUKz7PHX0Zc9lncSg+U+4IDgUCgZIhzOBAI3O94XQmFlNLDRVG8NP7n+yThdvsVSX+eUvqUTg1o3iLp63f6PMisO7tDNPg+JEtSrh7zPSfd3W43G+1BCjCIc3IPmaLXHrJEFRdyyPt9FB/EFrJHNdYJIoQZdYNX6CHOuPdD/Ny0TlImj3gdONFyEu5O9JA8KtiuGnCSB9lmHSCBXIebPELSIWQQQtpIIM5ubOkks1arqdVqqdFoTCQpIIYkAEiCsBeolFP5RyHS7Xa1tbWlg4ODTMLH+zL/OT2CENLJv0maECuEdn9/Xzs7Ozo6OlKj0Zhow2Dt+/1+ThbR7uDfJzEByef+sLYkCoiFtZCU2yloqXDjQPYtySX3neBZICEGKfY9hZeCGy+yN9xkk8/jnnhs7gnC/vFEhbf8+PXxLPI+njuPz5NA/ty7ioBnmHtKq4KPB+X58ESUq3b4fFczSMo+JOxj7mWZcdlncSAQCATuDnEOBwKB+x13TCiklL4k6Z2SrqaUrkv6XUnvTCk9oVPp1vOSfl2SiqL4dkrpLyT9l6SRpA8Vr8HNltF3kDCIBgZ/7sAOAUECD3lGpu6SaEmZ6EpnFVKk7T7+0auXjO1zYzuq+NOJDm9hIDkAkVldXVWtVsvEzKc/4CcwXrecGOFafAweyRNIEyZzPkXCpxiQFPE2BEgY5M8VDJ70cAIsKcfhigPWZm1tTcPhUDs7OxoOh1pbW5swxeNnaDvBiR9lgxNwJ/wkVKbl/VwvEneSRpB093dwM0mvqLtBIGQcNQq+DJ1OJ1e6uQeQXe4H95DPgKSiGPH77QoDbzHwNhfWmRYJPBSmp1O4MoUEENV1WijYq9NTSlgvEin4hhC7tzjwu4ArLUgkeSuJJxRcteAJBRIsPDdcM5/riggUE9NTIfh8b6UhUUJihNj5HokpV1F4+xJnDb8D5UTZPBRmcRYHAoFA4GLEORwIBAK34rVMefiVc17+3G3e/wlJn7ibIJCfQ85cGg5ZwqGf//RDLqhS9nq9W5zdpUn/gkqlkskV7RA+epGeeQgzvf7IxRuNRq6II5O+SCqOcoGRgyRKjo+Pc3VWUibvLoVHQYBJIEkBrlk6I1yoC0gG+LjMer0+USXn+076fZQgBBGQ2PGf52dqtVpO4HS73RwL5Hu6DYGpCH5/aQ+APENUSZCsrKzoxo0b2dQQxQAJluXl5Wxoye/CA4BK//Q0ANaPe8aUBfYYSojz7qkbJPokDW+FwEAScs4edB8PN+r0hIInYqaVASQJnMgvLy+r0WhobW1tYp+6sobkBe9jwgmJNH9mIOqsGSR9NBrle8eeZy8RC4kDwPckTUw9YS/7pArWnQQT8bihI8/wdGsRCQOSJXwmn4XvBm0onB1HR0e5lccVLOxt1sNHxM4bsziLA4FAIHAx4hwOBAKBW/HDTHm4NFD5dzILqYEoS6eVbp+GgIQZPwWq3lR+MSIkMUC1tlqt5qo5hBeyOBqN1Gg0MsHr9XrZ7LBer+f2BvchgJxAKE9OTtRoNNRoNHJMfEGCID9USyFtJDS8SoySwk3nPElCogRiS9UaAoqvBEkBJ261Wk1LS0sTUnDiwsjPJfXSKTk9OjrS/v5+/rlarTbRZuDTMIrxVAOuxVtCqPo70USJQQvCaDTS1atXtbKykv0MSF7QnkDyhkRLv9/PSgaSRiSjuP8kbGq1mhqNhiRNVLp94gEqlaIocgKKe+3tCKhqfNoAihJXf0BeWVev2PN9foYxnZ7gWlpa0ubmpjY3N1WpVNTr9TKpZ//2+/38DLRarUzqXR3jqgSfbECSw1tCXKFz3l5yNQXPhauN2FfTng3ua0GSw9syvIXG22PYv3ic8Hm8t1qtqtlsql6v572NcsGNJ0nyuZrHp8kEAoFAIBAIBAKB81GahAKkxmXvEKwrV66o0Wio2Wxqf38/y+aHw2FOJkDS3YcBSXdKKTvtu8kcBMhl741GY8L1/+Tk1MiR3+9tB64GmO5Vr9frWeKOlwFVWNQR/L0oiqyOoCqLz4JLsM8zyJPOki4QNWKEPA2HQ3U6HUlnknT6ylljiCRVYCrqJDhc6YGvgXSa2KjX6xMVYu9z57rxsqDiDXns9XoajUZ5vSCaS0tL2t3d1fHxsdbX1/XQQw/ldgPk+iSI+H2QwsFgkM0aqWAz5hNFB+0AKSXV6/W8f1z14YkB9wOQlAk8pJY2E+Kg0o8yBfAZrBdJCVQMqCXcJ2A4HKrVauWWCEna3NzUQw89pI2NjXy9rBukn+QCozZpG3FTQ1eUeJLAp3eQDGJPTI+CZM+4cSRAbcK60QZEEgszTE8IQOTxdyC5xu+RlPduq9XKCTgSASQkWq2W2u123nMk1bjnvsfZE7S5eFtIIBAIBAKBQCAQOB+lSChIZzJlVAf8J59ReVTAIZFevV1aWspVc6TyKBNQDtCbLin7BUDYcPn3kY9OpDc2NtRqtXJywiuxqCVOTk4mDOKuXLmimzdvZiIPyatWq2q321pfX1e/38+EGw8Il61DfC4aZ8d6IUWnSk8iQVJOvEDqvVXCWxqkM+WBdGbwx2e7gZ905k2BN4JXtPlyc0kSJjdv3rxltKWrKvjd+AEsLS2p2WxqbW0tq0WQpPvoS+msnaDb7eb43CRQOpvMwFpSkfZ7OT3NwJNG7IvDw8PcOkAyxhUZeGG46aLL90lwjEYjra2tqd1uSzo1HOUedTodDQaDiTGSnU5H7XZbrVZL6+vrWWnBtUGwWVefrOHJApQA094HbiBJwoNr47r5eZJ/3tripo++X7huH13qk1BI4pFMWFtbU61Wy8lA6WxSg6RbVBeg0+nke8M6SadJA9YRzxZMUXl+3dOEfRIJhUAgEAgEAoFA4GKUJqEwPd3AJdBI0iHcVPyRJddqtdxPL2mCMI9GI3U6He3u7mo4HGaSggGjdEYcq9VqniBBNbvRaOTWiOnJAd6WQB8/RO/k5ER7e3saDAa5QkyVl+QC1zgYDLS9vZ17ziHkbrrnrR9O9qm6knTheqjmui+D98p7LzmSb7wHcNVHoUHM/Dwk0pUSkEfWiGuh4tvv9zUYDHJ1WjpLAKyvr2dDR+BtLvV6PSdeWq2WVldXs3Ghy9LxaSDhRDLBkyn8DjcAPD4+VrfbzYaJ3BfIK/FwDZ6sgZhD3kl6dbtdHRwc5LVDwSBpIjHmPggk0STl1h72QLfbVafT0dHRkR599FE98sgjWl9fn1Da8LMkAdxckHXBvwPfDe6ft+Owl9y4k3U6Pj5WvV7Pigc3lvRpKW68yXVA6Lnv3mLA9XoMq6urWb2A2oi9xnNJIpCkFYaZDz74oK5du5bXnmeO84JEA2cJCTESFOyXSCgEAoFAIBAIBAIXIzmJm1sQKb0qqS9pe96xvA5cVcQ9S0Tcs8eixn5Zcf94URQPXsLnlB4ppa6kZ+cdx+vAou5RaXFjj7hni/s97vvpHI7/E88eEfdssahxS4sb+z09i0uRUJCklNJTRVH87LzjuFtE3LNFxD17LGrsixr3PLGoa7aocUuLG3vEPVtE3PcXFnXdIu7ZIuKePRY19nsdd+XObwkEAoFAIBAIBAKBQCAQmEQkFAKBQCAQCAQCgUAgEAjcNcqUUPjMvAN4nYi4Z4uIe/ZY1NgXNe55YlHXbFHjlhY39oh7toi47y8s6rpF3LNFxD17LGrs9zTu0ngoBAKBQCAQCAQCgUAgEFgclEmhEAgEAoFAIBAIBAKBQGBBMPeEQkrp3SmlZ1NKz6WUPjLveG6HlNLzKaVvpZSeTik9NX7tgZTSV1NK3x3/uTHvOCUppfT5lNIrKaVn7LULY00pfXR8D55NKb1rPlFfGPfHU0ovjNf96ZTSk/a9ssT9eErpH1NK30kpfTul9Bvj10u95reJu9RrnlJaTSl9PaX0jXHcvzd+vdTrXWbEWXxP4oxzeIaIc3jmccc5fMmIc/jeIM7i2SLO4pnHPf+zuCiKuX1JuiLpe5LeJGlZ0jckvXWeMd0h3uclXZ167Q8kfWT8949I+v15xzmO5R2S3ibpmTvFKumt47VfkfTG8T25UqK4Py7pt895b5nifljS28Z/b0r6n3F8pV7z28Rd6jWXlCQ1xn+vSvpXST9X9vUu61ecxfcszjiHZxt3nMOzjTvO4ctdzziH712scRbPNu44i2cb99zP4nkrFN4u6bmiKP63KIqhpC9Leu+cY7pbvFfSF8d//6KkX55fKGcoiuJrknamXr4o1vdK+nJRFIdFUXxf0nM6vTczxwVxX4Qyxf1SURT/Mf57V9J3JD2qkq/5beK+CGWJuyiKojf+Z3X8Vajk611ixFl8DxDn8GwR5/BsEefwpSPO4XuEOItniziLZ4synMXzTig8Kun/7N/XdfsbN28Ukv4upfTvKaUPjl+7VhTFS9LpRpT0Y3OL7s64KNZFuA8fTil9cyz/QrJTyrhTSm+Q9DM6zRAuzJpPxS2VfM1TSldSSk9LekXSV4uiWKj1LhkWbX0W+Sxe5D1a6jPBEefwbBDn8KVi0dZnkc9habH3aanPBUecxbPBvM/ieScU0jmvlXnsxM8XRfE2Se+R9KGU0jvmHdAloez34dOS3izpCUkvSfrk+PXSxZ1Sakj6S0m/WRRF53ZvPee1ucV+TtylX/OiKI6LonhC0mOS3p5S+qnbvL00cZcUi7Y+P4pncdnvQenPBBDn8OwQ5/ClYtHW50fxHJbKfx9Kfy6AOItnh3mfxfNOKFyX9Lj9+zFJL84pljuiKIoXx3++IumvdSoP2UopPSxJ4z9fmV+Ed8RFsZb6PhRFsTV+UE4kfVZnspxSxZ1Squr0APqzoij+avxy6df8vLgXZc0lqSiKPUn/JOndWoD1LikWan0W/CxeyD26KGdCnMPzQZzDl4KFWp8FP4elBd2ni3IuxFk8H8zrLJ53QuHfJL0lpfTGlNKypPdL+sqcYzoXKaV6SqnJ3yX9kqRndBrvB8Zv+4Ckv5lPhK8JF8X6FUnvTymtpJTeKOktkr4+h/jOBQ/DGO/T6bpLJYo7pZQkfU7Sd4qi+JR9q9RrflHcZV/zlNKDKaX18d/XJP2ipP9Wyde7xIizeHZYyD1a9jNBinN4VvFafHEOXy7iHJ4tFnKflv1ckOIsnlW8Ft/8z+JiDu6f/iXpSZ26aH5P0sfmHc9t4nyTTh0xvyHp28QqaVPSP0j67vjPB+Yd6ziuL+lUlnOk00zUr90uVkkfG9+DZyW9p2Rx/6mkb0n65vgheLiEcf+CTuVC35T09PjrybKv+W3iLvWaS/ppSf85ju8ZSb8zfr3U613mrziL70mscQ7PNu44h2cbd5zDl7+mcQ7fm3jjLJ5t3HEWzzbuuZ/FafyhgUAgEAgEAoFAIBAIBAKvGfNueQgEAoFAIBAIBAKBQCCwgIiEQiAQCAQCgUAgEAgEAoG7RiQUAoFAIBAIBAKBQCAQCNw1IqEQCAQCgUAgEAgEAoFA4K4RCYVAIBAIBAKBQCAQCAQCd41IKAQCgUAgEAgEAoFAIBC4a0RCIRAIBAKBQCAQCAQCgcBdIxIKgUAgEAgEAoFAIBAIBO4a/w8l0K98gy+XKAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 227580 0\n", + " Min thresh = 1000\n", + " Not Sliding\n", + "\n", + "\n", + " Winner = Not Sliding\n", + "\n", + "\n", + " FP ROI = 236s_iimage_1139765223418_CLEAN.nii.gz\n", + "236s_iimage_1139765223418_CLEAN.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADDCAYAAAAya0IYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADb40lEQVR4nOz9eZyk2VndiZ8bGXtERmZlVfUqgRa0gAALEELCgJnBxpgde2DAHoMBW2AbDDZgDLbB2L+xZxAGGxgWeQB5WA1m8IJlFmNjYFjEJmGEJCQkoa3VLdWSmbFmRsT7+yPze/PEraiu6u6qzqyu53w+9enMiHe52/t2nvOc57mpqioFAoFAIBAIBAKBQCAQCDwW1E67AYFAIBAIBAKBQCAQCATuPISgEAgEAoFAIBAIBAKBQOAxIwSFQCAQCAQCgUAgEAgEAo8ZISgEAoFAIBAIBAKBQCAQeMwIQSEQCAQCgUAgEAgEAoHAY0YICoFAIBAIBAKBQCAQCAQeM0JQCDzpSCm9LqX08afdjkAgEAicIKX0tpTSn77JY6uU0gc8zvs87nMDgUAgEAicLYSgEHjSUVXVC6qq+sXTbsejIaX0KSmlX0kpXU0pvSel9K9SSpun3a5AIBB4KiOl9C0ppTellPZTSm9IKX3+abcpEAgEzhputTB7o+vF38WBR0MICoHAemxJ+v9JekDSB0p6mqSXn2qLAoFA4KmPkaRP09E7+Ask/cuU0kefbpMCgUDgrkf8XRy4LkJQCDzpcFttSukfpZR+IqX0Q8cRqf+RUnpuSunrUkqPpJTekVL6RDv3C1NKrz8+9i0ppS8prv13U0oPpZTenVL6q664ppRax9Gvt6eUHk4pfU9KqbOujVVV/UhVVT9TVdW4qqorkv6VpD95+0YlEAgEzg5SSi9OKf3acTTqoZTSd6aUmsVhn3z8Hn5fSunlKaWanf9Fx+/qKymln00pvf/N3Leqqm+squoNVVUtq6r6DUm/LOmlt7BrgUAgcCaQUvrAlNIvHr9nX5dS+nT77hdTSn/Vfv8rKaVfOf75l44/fm1KaZhS+l9TSh+fUnpnSunrj9/Jb0sp/aXHe72yrfF3ceDREIJC4Czg0yT9oKRzkn5X0s/qaG0+KOkfS/peO/YRSZ8qaSDpCyV9W0rpwyUppfRJkv6OpD8t6QMk/aniPv+npOdKeuHx9w9K+oabbOPHSXrdY+tWIBAI3LFYSPrbki7oiNB/gqS/URzzWZJeJOnDJX2GpC+SpJTSZ0r6ekl/XtJFHYkCP/pYG3As+H6k4t0bCASeYkgpNST9R0k/J+keSV8u6YdTSs+70blVVX3c8Y9/oqqqflVV/+b49/t09M5+UEcOr1c8wes9GuLv4kBGCAqBs4BfrqrqZ6uqmkv6CR39Afp/VFV1KOnHJD0jpbQtSVVV/aeqqv6oOsJ/19GL+GOPr/M5kn6gqqrXVVU1lvRN3CCllCT9NUl/u6qqy1VV7Uv6p5I+90aNSyn9GR29mG9WfAgEAoE7GlVV/XZVVb9eVdW8qqq36UjYvUakPX6fvl3Sv5D0eceff4mkf1ZV1euP3+v/VNILb9alYPgeSa/VkcgcCAQCTyW8RFJfR3/vHlRV9V8l/bRO3qOPF/+wqqrZ8d/I/0lHfxvfUsTfxYES9dNuQCAg6WH7eSLpfVVVLex36eilezWl9OckfaOOnAY1SV1J/+P4mAck/ZZd6x3288XjY3/7SFuQJCVJG4/WsJTSSyT9iKT/paqqP3wMfQoEAoE7Fiml50r6Vh05ELo6+nvht4vD/B37xzp6B0vS++uo9sE/90vqKGr2xzd5/5dL+mBJ/1NVVdVj7kAgEAicbTwg6R1VVS3tsz/W0Xvy8eJKVVWj4noPXO/gx4P4uziwDuFQCNwxSCm1JP2kpG+RdG9VVduSXqWjP1Ql6SEdFYkBT7ef36cjceIFVVVtH//bqqqq/yj3+zBJ/0HSF1VV9Qu3rieBQCBw5vHdkt4g6TlVVQ10lMKQimP8Hft+kt59/PM7JH2JvWu3q6rqVFX1qzdz45TSN0n6c5I+saqqvSfUi0AgEDibeLekp3vtGR29R991/PNIR2IuuO8mrnkupdQrrsd7+fFcbwXxd3HgeghBIXAnoSmpJem9kubHboVPtO9/XNIXHhe56cqsWMcK8L/SUc2FeyQppfRgSunPrrtRSumDJf2MpC+vquo/3pbeBAKBwNnFpqQ9ScOU0vMl/fU1x3xNSulcSunpkr5CEnm33yPp61JKL5CklNJWSumzb+amKaWvk/QXJf2ZqqouPdFOBAKBwBnFb+iI5P/dlFIjpfTxOqop9mPH379G0p9PKXWPi4t/cXH+w5Ketea635RSaqaUPlZHNcd+4gleT1L8XRx4dISgELhjcFz34G/pSDi4oqM/Ov+Dff+fJX27pP8m6c2Sfu34q9nxf7/2+PNfTyntSfovkq5XrOardJQm8X3HFW+HKaUoPhMIBO4WfLWO3rH7OhJj1xXp+vc6SoN4jY5ydb9Pkqqq+ikdFcH9seN37e/ryHFwM/inOoqqvcnevV//BPoRCAQCZw5VVR1I+nQdvRvfJ+m7JH1+VVVvOD7k2yQd6Ijo/2tJP1xc4h9J+tfHO0RQJ+E9Ovr7+N3Hx3/pE7yeI/4uDlwXKVITA09VpJQ+UEd/yLaOC4MFAoFAIBAIBAJPKRw7HH6oqqqn3eDQQOCWIxwKgacUUkqfdWz1OqejCNl/DDEhEAgEAoFAIBAIBG49QlAIPNXwJTqqsfBHOtpHfV3ebyAQCAQCgUAgEAgEniBum6CQUvqklNIbU0pvTin9vdt1n0DAUVXVJx3v3rBTVdVnVVX10Gm3KRA4LcR7OBAIBE4f8S4O3G5UVfWLke4QOC3clhoKKaUNSX8o6c9Ieqek35T0eVVV/cEtv1kgEAgErkG8hwOBQOD0Ee/iQCDwVMftcii8WNKbq6p6y3EV0x+T9Bm36V6BQCAQuBbxHg4EAoHTR7yLA4HAUxr123TdByW9w35/p6SPum4j6vWq0WioqiqllPLnpXsipaRaraZarZa/9+OXy2U+Z2Nj45rPuAbn+M9VVamqKi0Wi3x+rVbLn3OvlNI1n9EmvnNUVaXlcrlyHNedz49qBXLucrnUcrnMbeBz/i0Wi5XvaAN9ob/l2Hi7OdfHhs+rqsrj5r/7tauqWhl/v7+3k2P9c++jt8/bVa/XVa8fLcvFYrHSJh8bvl8ul7mNZVv8OB/Pcn7WuXTWfe7n+tgyx+X5zPm683wc/DuuV7aZMV93bDmPZVtZc4yfX492+nXK58L7UT4L5Xh5e2u1Wp6b5XKp+Xx+zXr1dvuaLo+lveV5N5o7H7d1zybX9v6XY7xYLN5XVdXFa2509vGY3sOStNHvVc965lIP/37ntjYsEAgEHgumGumgmqUbH3km8ZjexfEeDgQCZxX7urL2b+LbJSise+mv/DWfUnqZpJdJUrPZ1POf/3xNJhMtFgs1m01J0nw+XyFqzWZTm5ubarVaK+Sn0WhouVxqOp1qsVhoPp+r3++r3W5rPB7r4OAgkzQIzsbGhhqNhhqNhmq1mg4PDzWfzzUejyVJ7XZbvV5Py+VSk8lE8/lcrVZL7XZb8/lcw+FQs9lMktTr9bS9vb1CmCEyh4eHOjw8VK1WU6vVUqfTydfd29vTdDrNbZjNZppMJppOp6rVamo2m2o2m9rY2FCz2dRoNNJ4PNZisVCr1ZIkzWYzLRaLTMSn06nm87kODg60XC5XCDpjynWrqtJ0OtXh4aEk6eDgQK1WS71eL5PHZrOpVquVj3VC6iQxpZTvtVwuNRwO8/GNRkPtdlvtdlvT6VTj8ViHh4fa2NhQq9XSYrHQwcGBJKnf72t7e1tbW1saj8eazWZ53GezWZ5PSZpOp9rf31e9Xs9jOpvNsjDBuhiNRpns1ut1tdvtFQJMHyCVCD3MH+Nbq9Vy/zc2NnJ/U0o6ODjQbDZbS35brZYajYbq9XoWCubzuabTqabTaV7jHJNS0v7+fr5vo9FQs9nM30nK67dWq2k0Gunw8DC3358N1h3jt7e3p6qq1G631Ww2871rtZoODg50cHCglJI6nU5+LlhvPJez2UxVVeX20h/GkTZ3u109+OCD6vV6ms1meu9735ufcUmq1+uqqio/e41GQ61WS/P5XLu7uxoOhzo8PFSz2VS/39fGxkZ+llnDrKVS5Fgul/kZoJ3cJ6WU191sNlOz2VS73dbBwYH29/d1cHCgWq2mTqejer2uy5cv//F133RnGzd8D0ur7+K2unrG6z5Vz7hT/2wPBAJPSfxG9Qun3YQngsf0N3G8hwOBwFnFf6n+7dq/iW+XoPBOSU+3358m6d1+QFVVr5D0Cknq9XoV5AwyjEOAiDdkaWNjI38H+YHAQW4g4YvFIpMCjp3P5yuEj0gq5JPv5vN5FgIgyZCljY2NFQLlkXKiwGXUH0IKqeEzBwRbUr639xeyBeGF2HIuY+jRaNrNeEC6l8ulWq2WNjY2sqAA4T04OMjX8ug/IsTh4WEm9fTTiTgCCIIQYg/gOrVaLQs0i8VCh4eHmkwmmShz7fl8nkmsR9YRXZgD5hMiWUbvOW46neax9+i9jxFE2yPizAVjOJ/P1el01G638zFcx9cRooo7GTY2NtTtdpVSyqSd7yHQjJ+7Pphnd7i4U4C16nOPyIboM5lMNJlMskDhc0GbGdtGo5FFJ3eLcF3Gjnszh7PZTNPpVJ3OUYSl1WppMBhoY2ND0+lUs9ksrzvWD4JMs9lUr9fLY8I7odPpqKqqLCowNsyJdCTK8DsChD+TtJk58GfZx49xKB0tdxhu+B6WVt/Fg7Rz64vqBAKBwN2Nx/Q3cbyHA4HAnYbbJSj8pqTnpJSeKeldkj5X0l+8YWOOCY7/ce/WcidqEApEB3ceNJvNfB6uhE6nk50GROmJOCModDqdHGl20gFx8egwkXtJ6nQ6OYrvRM77BdHxiDhiRdm/er2e3Q98Rl87nY4ODw+vcUJAjiB1RGVxMHj7IWSMGeR9Y2MjEzba7QKKjwPj6FF6osKIGkS0XVRotVpZOHKXiKdzHB4eZtJPuxg3rosTQ9KK+OD98fQIt9JzL5wuTkYh0R6t55+noPh5uDparZam02kWXyRlBwJuA87DWdPr9TIJR2xCPGo0Grm9oBQ7aIv/7qkDnm5A/yDzuG5oH/PBeCG2MF6z2WzlmXRHBPOAeDebzTSbzXTp0iW12+0sjrXb7SxijMfj3F/ai/DUbDbV7XbzusGpwNpB0Gm1WiuOGfrMOsM94oKKu04Q1BDwEH4Ycx/7OxCP6z0cCAQCgVuKeBcHAoGnNG6LoFBV1Tyl9GWSflbShqTvr6rqdY92DuS03W5nq7N0EnmXlIkqpMLzpP1zCPzBwUG+jufnQ5i9loE7Adw27YKGtJqPD0nifl6bgIi6E1Laj/uhJCuIDkRpIadlvrqTPoi1136oqiqLIi4GQCghk5Asj9x6xP7w8DALG/TdiWYpPnCMp1qQysG4rHNnEBmH2CFKMM4eCfc6E05ky5QLF3XK+gOMB2QaIBS5MwJXSjn+rVZLBwcH2VnB3CEC+Dw6eWU+EEpw0LiT4PDwUJ1OR51OJ6dGlK4XjudcFw+Yd8YcsYB74saBRPu6dUcOKTDuzChdIp7CwbziQlgul9rf39eVK1fyuLE2cLDgPvD2Ix4gKLDOptPpSuqMu4ho/+Hh4YqwSBqQpyiV7UWgKOs+3OHuhMf1Hg4EAoHArUW8iwOBwFMdt8uhoKqqXiXpVY/lHM9dL8knJMRJC5F6J92QS0g39n63ZjtxgKxwXplXThqAR6fdmg5xabfbK0SE2gse/Sa6TrQXUkxk1B0K3Jc+evulE/dASinXGjg8PMwk3ok4lnnOcTLsKQOSVqLAkFm33Xu9BNqHiMM93WFCf7gH1nknvYwLee0+/+7icPJbFudzAojjwS367oDwegkuQHibcUlw7dLxADHn84ODgzyHtK/VaqlWq62ke0DOcUAw3s1mM9vzIcas81arldcx7Xc7votgtJXP6StEm9QGjvE14+uFMcOV4E4dF5Q8pcSFOtJHDg8PNRwOswOI73H3SNLe3l4e25SSZrNZrrvR7XZXUmd47rrdbh4TrxfBXLiIR1oNz5y7LhDZWO/ueHoq4PG8hwOBQCBwaxHv4kAg8FTGbRMUHgv4wx/i4DnxfAeB4+daraZer5ftzPV6Xf1+P5NALxpHoUXpJOrs9mbInadLQOSxaRPp9ZoN2PUpeueRbAgS1myKv3F9j6oSaUXgQECA+POduxDcFQFhnE6nOjg4yBZzJ8kQKK5bpghIJ/UQ3Enh41vOlwscEDHG1x0miDuS8rg6aWPsO51OFiTcTu81H4hyI/y4i4T70UYXJFw0QEzxfHr/nXliftxST/tcEPG0AifcCFs+hu4uwQXgc8oYsSaw7rvo5e31IqaIBp5u43U9EOiYY9pOP2mXu1TckcPYI4p46gv39ToafIbTxXcM4Znhmdzd3c1jjfOG8aKgJGPM/CDW+Dpnrbs4iaiwv7+fC576M+Qinwsk7joKBAKBQCAQCAQC1+JMCArSSWTcidZyudTm5mYuXueRYoradbvdTBLY2WEymaxYyssIMcTRbeCkILTb7VyIDjIF6SDyCSAqnU4nkyVIjRfhwz3Ajg4QesgZ94IY0T/I8Hg8XnFN+I4BtGEymUg6KSbJMb4LA0TTo+sINGUE3slUSUYhdZBSt9lDKr3gHgQUQcYJL6AviEQuUJDSUZJ9z9kHzAGk0O/vdSu4LsSTeSLdgnOwySMe4R6gToIf64IPbXf3wWQyybsnkHriKSNE0nGDeDFFd2L4uDOmnjZCGzylhzGGtOPOcKeH14bwuhhcjzXn48p1WZfuBEHIQZii3gFrkvHrdDoajUaaTCa5PTzT3W53ZXwRAN2p5KKPzy0igb8LSKthHeNS8PHjc+4bCAQCgUAgEAgE1uNMCApeX4A//r2avEdHvfbA5ubmSh40pIzCcxTe29zczFFpIq+QUrfKQ/C5FxFLUhogZx7dJdJK5NnJjZMc6YTs93q9bHsvK9nTPqLbkHq3ZEP4pJO6Bj4O7G7BODq5B07QsKPjhPA5KesRlPcrRQpJmeSXtSlKmzzuD18HRJ49bYIdA8qUEHcJeLpAKei4QIMLZbFYaDQarZzHzgfuLsAJ4U4HSC0iiJNy3/0D0HfSIvwenOP92tjYyKKYFy30ccO5UK5RxDgcIPTDI/Be6LOswYCY4QKSuxZYi5zj7hbu544BdxwxDzxbtM1rnnj6BPNCe3m+6AtzU9btYP1xTwQIF/O8XgVrtCzm6g6SQCAQCAQCgUAgcC3OhKDgpJP96yEiTiokaTKZ5J+73W7etm86nWaCDzFgz/tut5sJnacTEHH1YnEQMcg57QNOykhlQFDwVAgnR04eJ5OJer2eut1ujlx7kT0n7wgL1BYgok2eOcdIJwKAt7XRaOSIsDsrPOXAbeTSCSmm354P76IC5NBz9xF0JOXK/JKySOCuAyeCbitn7Ikke/0Id3FAVj1dhutCKqvj4pS+fmir74Lhkf7xeKx6va5ut5uLNnqKAyQWlwJrlLHz1Ar65X2aTqd5JwlPG6GfXv/Cbft8RnsQOzh3uVxmwszYeboOaTzr6ki4KFAKP75WEMic8LuIwO9eh4T7lG4QniXagzujLNDINqIu2vBfRCvmnXXhqSVlCpLX1wCIcPTTxah1bppAIBAIBAKBQCBwhDMjKAwGA41Go2xzplAapBCrOKTciSkEAlJAdXyv6k4ROMgYLgFILyRGOiEfkBPaWKYGQHharZa2t7ezkAHhXrf1I22QTgg/zgTfCs9TBOgf9m2i9Y1GI5NHr39Q2tLZzpA2e/0E+os7AELnOxF4ugDtZcs/xpXK/NjvIYhYyHu9nlJKOecdosouBy4aMO5e7wJ4PQP/L4SbIoLUtECIYbxdCOG+EFsi23t7e9mJgsjk49tqtVZSSRhXn19IKsKVp9Z4gUXOZc3QJgo6ejoJIkNZS8Cvh7jGFqm0mUKTzL8LZtJJDQx3tfi6Yuw9FcLFLC8UyXzw7CAqsG0ozy4FIRFW3GFTOjhoG+uJOfRnku0qXZDwgo2MHePpIgV99d06GOdAIBAIBAKBQCCwHmdCUKjX63rggQf0yCOP6OGHH86fQXAhYdj4Z7NZdh94GgAWZYgWZAvLMyRNOiHakBtPgfAIM0TOo8O4EiDT2KIhXBRT7PV6WiwWuXYCxJJIMaTJo/xERr22Ac4NdpKYTCa5n9JqjQPGAgJHX4lUQ8hKUcFTOVyQcFHF0zncZcA51B9oNpvq9/t5qz8INmMD2a2qSuPxOBM4n8fSfg/43MdGOhGESsu9k3C2Blwulyu7cnA+8PF0J4cXRXTxhXbRJtrtIg4OAdYr8+/t950Hyr54lN5FEnYaYW49hYA1C0nudDortTtomwshPBf8jhjg5N/nie9LxwNrmXbzHWKg9wURgGfOhQDgzgSKT9IvxEfWYOkKcvGGdnoaDsfhePDtW70NgUAgEAgEAoFAYBVnQlDY2NjQzs5OFgTe+973SlK2Tnu03IsNjkajHEmEkEGkpKNoLZFW32GB6Khbz32HCVILykr1XiAPkQBSv7e3l4k/5E1SJimSVkgz5NZz9YmS0jYnqN4vCC/pH4wRQgQ1ApyEuRgxHA5XBA3gBJJoOeRsXa0AhBTs5fxOHYvNzc083pPJJI8VbhPIpKeMuBsBUcV3jkC08AKeXq/CnSu0m3XgwhBuF4e7HiDQDvrvdSZ8DQMXMQ4PD3M7aC+CQylCeGoB1/FCmdzHyTsEmvlG1MJt4TtF8HzgiCn7D6mGpOMOwlVCexDmEDzoK33wdAEKUHIcKTvu/vDxYlx9bl1soPYIrgzWNc+HuzJcqFtX9NTFMne5lDVQAoFAIBAIBAKBwHqcCUFBUq7uf/XqVUknEUly8nu9njqdzoptHjhhmM1mGo1GOW0AsguZ6nQ6ORUBYiFp5Xpch/tDaviHGCBpxeUwHo9XigziqCAyy/WIUgMi90SeseBT+4GtMOk/BBsS6f91Iu0Ei77inoDAeQ6/jwHneEoB8Fx9r3XhooaLKlevXtVkMlnJsad+wWw2y3UL/D4luaQ9bCcoacXpgQPDnSoQXBd66DukmnvwXyeTrEPuj8viepX/XRQgDx/SDVH1nR1oF+ur3FqRz70Qps9nGUEnQs95OElINWCdeW0PaXXnExw4LkJwX8bURSbuS3vcscE88F3p9HHSzhoqBRRPT3BHjzsPGHM/l/441gkonM99WD+Ih+FQCAQCgUAgEAgEro8zIShAmDqdjvr9vprNpsbjcY5GE8Enwr29va35fK5ut5tTD9w27bblZrOpbrer2WyWBYVyW0hpvdWaSCjOBv7haIDQ9vv9TFadaHH/fr+fiV29Xs/HY92WtJI+QVS43++vpH5AfMpdD4gOA4i758mX1ewh1mWxPydv5Zg4EXUrO+MHod3b28vj3G631ev1NBwO8xwwRm6dR6RhHCCL9MMJr6cSuIBCJPzg4CDPRRnh9q0MfftJJ6weYed3yDAkFQLK+vUChYwzn3kbuBafecFMxCNJK+4IjvPfWefcj3a4iMR5CFIUx2T9cx3a6YIL4069CHdc+Brw4pJemJH749BgrhHDOM7TU3z8va8uVvi6pn/ulqAf3gZ3Jvh8lTU4mD9PCVq3Q0ogEAgEAoFAIBA4wpkQFCCUKSV1u111u91c9E9SJi2tVisTUmoI+B7yEA6IDJHiRqOR97nHjk/ONakMEKV2u51FA2oAOFn3KDrF77a2ttTpdFaIOXAxBKLiVmuPNPd6PUlH1e9pV0nAEQTcNUHU3ItF8rOTLQQaSJmLJ1xHOkk1gPBR6NAFhdIq7ikjpDIQ3Wb+vIYA92m321lEoS0uhLgFnT57pBxhwLcMROihv7TT5xBwfHkP5tHTVBBNpJPUA+bcRQH+W9Z1QDhjDHDRlLUIuIeLPuvEDa6LCIO4UKYPMIcci8iBeOFrDAeQ747BmqOvkGwvcMh4sJbKVBo+d/HF0wxcAHKSz7Ps69JdDYyVi4CIS7SRNrto5oKRO1W8D6UzJxAIBAKBQCAQCKziTAgKWNmpzE/lfwr6OSmEuBCB9CJyEENIFAXp+v2+Ll26lInx5uZmPh8LuhNw0hIgLLgB+J66DU64t7a2cnTTiSOkGZHEi+ZBcIhY46Do9/va3d3NJMsL3JG64VsOMh6kTUDg+K+PiUefIW6SsoDCmNJGj3B7nQpqPHA8KKPj3APRh+/dVu5zISmnL9Ae4OTOx5hrQCRJG/E58Cg0pJXPicAzjswjLha2IvU0Ee7pv3sRRa5dCjsu4FAbw0mz1ypA6PLoOYQcQYFruaPB6wWUdUBoW1lsNKWUhSpJK4UzEdh8LZECQWoL13NHAfAxcseAFz9kG0rgY+WCDP31OhLuHCKNhufO55qxZIwQsVjL3gcXZAKBQCAQCAQCgcB6nAlBYT6fa29vb8Vx0Ol0Mqn06DekEQLM9+12O+/o4PZqt8PjOMClUKvVrom2SkckAnIO0fHcapwMvV4vR0Il5Z9920CvG8AxvV4vk012bOC+pEhwL5wWkF36QxQfMu6Wf0/LoDCfuwo4HnLv1n+PDntRRPoPWfTtAyng6BFmruf34xi+c8EB4kafPRpf1hVw+HFeE8AdBNzfUyQA4pWk7Krge85HtPBrcBwklHXhfWGO6YMXD3TCzz/fptHXHBH2MrLOcSWB9zZ5qo67K5gLdyI4wXdy7TUGPDWkLHJJf70+gxN/jnGhwAWedePCeS5ouZDCGvZr89wiBOFoYnxpH6IC6SDlevL0jUAgEAgEAoFAIHAtzoSgsFgs9N73vledTieTAEj3cDjMQoDnnhMlnc/n6nQ6OVUCAYACeBAgxAov7Ofk3AmQdEJ2sHqXudRcc3Nzc2VLRs6F0CF2kDLQaDTU7XYzgZSOUifYjWIwGOTt/UajUSaQEDr6BKH3HQe8zRROlJTHxEUA+o4VnHQSbPCefgCRdtJa2toRe3A1MFelcODCw8HBgcbjsZbL5YoYwzh5PQKv4eD3d2eAR5YhxB7Z9qg814ZM9vv9ld0GnOx68U7WCUSfzxBCvBaAiySe6sIYeWQdUcPz931sSyGkJPZO/EtBwK/DWka4cycE6QLuBKKNfp2yzS4KMRdlLQp/rnxsOBenBuNankN7PM3Cn1dfay6kNZvNlR1OXPjh/uyU4WIKc+uuiUAgEAgEAoFAILCKMyMoXL16VefOnVshNN1uV8vlUvv7+yvV4j3d4ODgQMPhMLsFKCwHQSHfvtls5p0JOIfopac4QLqcqEi6hoRvbGxklwKF67iXpyJAat1WLZ0QQojzYrHQeDxWq9VSv9/PWx16yofb03FQ0D4ntFybn3FyuAiAIEI7q6rKAgSCAPeErEEamYuSBEM06ZOTPO7ptQPI43dCjPCC+8LdCfx3HYF2guoF93zuPPovnaR5UNiTrRLdBUAfsfcTxXfXBmPta8iFIOmkKKbXovBUDRdFXBjhOwi6k2sXPFgXXsDQ/4sA4HUQqEvizyHj7AJCmW7BXHp6iM/ROgGCf6XD5HrHlc6U0p1Rrh8Xa+jfZDLJ80Wazng8XnGXsB4Q1vz5dFEjEAgEAoFAIBAIXIvHXXEspfT0lNJ/Sym9PqX0upTSVxx//o9SSu9KKb3m+N8n3+hay+VSly5d0qVLlzSZTFYcA+zk4IXyIM9EnyeTiSaTyYqlXDrZ0pHfIRfL5VLT6XQlOt7pdDLB9h0jpJPdGijwSJFFRAK2ppxMJtlt4MSH+gadTienWThRd2K4t7en8XislNIK0YX40S5P/YCUMpZu82+1WtlF4WRJUu4DpNCJGcciRnB8v99Xt9tdmSNJ15DN6/2z9ZNFDQiyjwekHfGiLL5XRrP9s9IR4CKPuyq4/ng8zlF7t7hD2lkbXp/CxxuXQ6vVWrHnQ1CZc3ay8GMRJlhjXseA+1M0kfZTawNHj48r5NjHq3TpMF84QRB4OJ/ny+tKULcD548TcHdolHUQfH274MRYr3MGuXDk4p6nR/A7zzPPE+lMKR0VlxyNRitbwCI0rlsjZT2VOwW38l0cCAQCgceOeA8HAoG7GU/EoTCX9FVVVf1OSmlT0m+nlH7++Ltvq6rqW272QlVVaW9vT1evXtVgMFjZiaHRaGhzczOTP4gdRAc7PiJAp9PRaDTKxKtWq2kymazkekvKJPrg4ECbm5uSjgQBiteV1nrqE5T56gC3BKTJrd+QRbfhj0YjjUYjHR4e5oKFFKF0cURa75Lwa3NNHBmSVtIMfMzoE6Ss0+mskClPpaAPvp0kxe6cWM9mM83n85WdBNw9wHiXFv2y9oLXZ6jX63nrUMagFCQ84u1FGkklcSLL+CGyeKTerf7urPB6D15UEiKKyAOZxalC1NwJNATd0y0YM4+4t1qtvJa8yKi7HiD37hDx+gDUDnFXCWvQdy8pCz66O8CdOu12O/ffnxueQdbXbDZbGXMXCUrXCp/z33VOAHf6MJ++fkuHBuuJwpyIOPQb948/Jzxn/g65A50Jt+xdHAgEAoHHhXgPBwKBuxaPW1CoquohSQ8d/7yfUnq9pAcf7/UODw91+fJl7ezsqNvtqtVqaTQaabFYrOwoAAmBvHthPIrq8TmRdgieF1qD4HBNyCE7OngEluuUhBjyRjFISJikLAZIJ/ZwBA7agktiY2NDvV5P7XZbk8kkV6nHnUEkvrSVe8TWCSB58r47BaTJxQQIL1te4v7Avu9bMTrpJMLMvNVqNV29ejVfv4yq+/2c3DvpdnEIUsjYQlQ5lmt5SoXnvyOQeFqApxAQwR6NRivz5nUSIPfMN64A5pqaE5Ky88B3I/EoNw4AcvgZF5wZtIECkS5kINx4NL8UPYi6u5MDxwdk3QU1RKPSxeAOH3cH+Ngtl8sskCDG4LjwVBnOKQt+usjgaRnXq7NAO70tCF1c051LLgoxDszP5uamBoNBFjA5l/XnY8h3d4Jb4Va/iwOBQCDw2BDv4UAgcDfjlmyynlJ6hqQPk/Qbxx99WUrp91JK359SOnfDRhzbxHd3d/XQQw9psVjkreg8P9/TCKTVnRkQFLz4oBN5ryKPSEEaACTZ7diQudlslsUFyBjt9WKKECi3sHNN/5nfnUwSAUdUQCBx0cCt41i3j8c+39dJGSSLKDzEH/LngoenTEDMvOgg94HQIXZsb2/r4sWLOn/+vPr9fp4HHw/SPUpXB/fwgon0k3szR9K1RSAdzLekayz8EG4XOFxs8rFyQsucUVCTa5fbQbqjohSf/HqkvEjKa8rXste5YHx7vV4u4FnOg2+z6LUG3MXhu40gfvkYlc4AF4yI6uPYcddDt9vVYDDIAsO6lI8yXYHn0XfEYD25QFemzbiQgpjgopCnvniKDPfj+jz79Xpd29vbWehw10er1VpxfngNjDsFT/RdHAgEAoEnhngPBwKBuw1P+K/llFJf0k9K+sqqqvYkfbekZ0t6oY7U2n9+nfNellL6rZTSb/GHPi6FyWSSd1Dgc4iR54ETvYaMzWYzTafTFaGBXRW8VgAEgoiwkxgnWRA5yK+ka2ohkLrgBM9JmbsnPJUCok2019vk5JdjabuTNI/40vZGo6F+v59JEWNHkToi8aUl3ne9oO4CkW+P/jMeftzOzo62trbU7/dXah9g2/c8dUgubXZS7ztKTCaTHA33qPON7Og4LphvPmMrUq6/WCxyfYoyLaMsBsjPVVXl3UScdPLPHRR8xzVwPHA/d3MQhffaB6zzdekDtJOxJC0IEc7Xho8VQsRsNltxmXAcwhNjxr0h6+U6436sDZ4zHxNP3XHng4t7ZVu5nhdodceCPxfefoQFf1+w9kejkcbjsWq1Wt4Vhna5A4N1ys93kqBwK97Fh5o9Wc0NBAKBpxziPRwIBO5GPKFdHlJKDR29OH+4qqr/V5KqqnrYvv9Xkn563blVVb1C0iskqdvtVltbW7p06VLegWEwGKjb7WaBALJVVdVKOoS7AchlJwfdq8K77Rvy3u/3NRwOc2oA52Fxl7QScXWy0Wq1NB6PNR6P11a59+KCkvIxXMsjsJBJosIlKaOAnefJe2TXI9WkSbiAQeFB+uNbNLpbwgWR0hpPO+kPhSzpx/b2do4g49zgfhB66UTgkLRS5NDWDOsjR8XpD3PtqQ3812sLEDGnJoVf23P4ER9SSrlwn7tQaAdjzzW4B8SYtQkJZjcF+uIizubmZk5/AF5DAsdKq9XKaQQlnOxDwssx5v4eoffil+6AoX/MB+vSxRafK3e6TCaTvAOG14tgLSEKMSZO/H3uuC5ryOfKn5tScKGGRykquLuGcyj4ur29rU6ns1JA1Z9J5t1TJ846btW7eJB27qjiEYFAIHBWEO/hQCBwt+JxCwrpiGl8n6TXV1X1rfb5/ce5ZJL0WZJ+/2au12q1tLW1pdlspqtXr2pzc1PNZlO9Xk8ppUz8ia5C6iAPw+Ew56FDfvb397W5uZlJoW+TCHFiKzl2fIBYtVotdbtdjcfjfL7n2peugV6vt9IfJ5TUSvDK9r5jBPeGcHleOQSLPtM+iCzH0R+PoLsYIymncGC9ZyzKgo2QeE+bgOT5rgIIK1VVaTAYZJI4HA6z0ELBQy/2iDgA+eR3ry3AfZlnB+PvZA9ngKcd+DUZJ8g4Ag8uDI7hGp5KwjUQYJiLg4OD3Ecv7ujz5C4Mt9OzRjyFxgt7Mof8K8k8TgtcCuzA0Wq1smsHMUha3U7TRQoErEajkecM0c7dFH4+48TYsc4Qclj7LlrQb09NQpDieqxTnwt3fbijwdcKBVNLx4tfg2KZjUZD8/k8r1cKf+K68WcPMeOs41a/iwOBQCDw2BDv4UAgcDfjiTgU/qSkvyzpf6SUXnP82ddL+ryU0gslVZLeJulLbuZiRGWrqtJkMtH+/n7O097Z2VG9Xtcjjzyivb29lQjx4eFhzgcnuispEx3yoiHw1XGRtvF4rMFgsFLYj7QAz9OG9LrNHLJYkjon6hAUoq7T6VTT6XSFrPM9BSIhS9wLMsNn7XZ7ZRtH7k1EuNfrqV6v68KFC5rP53kLSlII3AbO/SDJklZ2jGBOaBsOALfiQ2SdzGOFh8AxJ9SHgKxKJwTSBQ0nhcAdFcyLzzMCi9fOwIFCG3zMPBLtkXhcCk5iPd2FtiKsQJ5xQrAuyl07GCNcBNR4cGdMrVbLrhoXltz1ANyNMB6P89pijfMcubvC55TruxsDocIJtW+x6MD14vPFWvSaJRzrBThxEjFPnU4nP/NeU8PHn+dXUh6jw8PDPDbs6kB7vE0IC4g+4/E4O6AYQ9aFz70LWncAbum7OHBnYvkxLzztJtw1aDy8p8Wb3nLazQicLcR7OBAI3LV4Irs8/IqkdeG7Vz3eazpx3NvbyxZ+J/i4FCAqkBhqD0AwISJO0jwNAVGh1+up1WrlrfTc+g7x9Yg493QC62QN8sJnFFmcz+caj8f5eBwP9KNMYyjz7yHRuB08IuuEj8/YGhHRpd1u5zFAUPDou7S6M4Vb34nqInK0Wq1rCkN6XQai5ZJy9Jft+xgPRBJ2uYBsQmgh617k0NMKIKae1kDfnGg2Gg3t7+9fIwy4oICA4RX9vYCjR+iZF4o1MhasOQqKdrtdSUc2++l0qsFgkNMEcHt4GgCiAyKDi0vch7FhjBkXXBKz2UzdbjePvdfskE4cEqxRL3pYq9XU7/dXxBccHfzMeHhxRX73sWVMWaP0w2sq+DawbJW5WCxWUig83YI59/QXdtvgXsBTdvyZwrkxHo/z84Q448+sj1Mpbp1F3I53ceDOweQzX6xFs6b/7198z2k35a7BJ7/xk1X7iudr+XtvOO2mBM4I4j0cCATuZpyJ8JsXz5OOoq67u7uZeEFQGo1GjsY6wfKosddKICopKX/mUdfpdJqJGQQGEoKFHcLlBNDrANAOznGy5aKApBwhhSB6rQQfizKvXDohd+12W81mM5M+yJSnDmCZ5564ODgHONkDXszRd0ogmgtZp2ijF7Wk/RyfUtJkMsnjNZlMciFKr1fhBRLpK23DbUAaAVHjbrebRQLmgp8ZMwQMxCIXBHAAeCqH18rgGl4bw1NeaBtziWhCWxgv1iCCCteCVJf38DGGrDMnjAkiC2sBsQrRwwlxuY2ji2o8Wz739JsdJ3xNeuFOT7NhbBDK3NlCW70mCON/cHCgyWSS+9tqtfJz53VJXIhw8YF+uePC55R28H7guqQfeZ0UF3cQBkvBLRA4S9j7vJdofE9N//GrvlnvV++fdnPuKrzqea/Sx738s9T72g/S8jV/cNrNCQQCgUDgVHEmBAVJK0SFSGW9Xs+1CbxaPO4Dt0VLRyTOi9txLa9mX9Y2wMbfbrdzRJdI82QyUbfbvcYi7znvKaVM8Gez2QrB9kJ2RMydYHrE2cUMJ5oQQIgs7fVoPGIBggVCCJHyw8NDdbvdfIwXnPOcc9rppMwFAuYJAo6oMJ1ONRwO8xhLyvUisPYjsBweHq7ULcBh4ZF3iPdoNFopvCgpO0ggoLTdUzcQTlgj3W437wDiufzc03ez8Dl2hwDz77sUsC4QFPg3nU7zWDHnpYCF0OU7GNAGxttrL7gbgHFkrHAkeJ0DzimfEdpV1hrgPC+GyLHuQEA0YCwYIy+A6rUf/HwEJNrpzhLWEmkxPqelY2ediOV9YR26AwNBjncDO54g7njxVMSadQUxA4GzgMtf9FL9/a/7QX1mbygpxITTwC99yE/pY/6PP6/Nr/1ALV/7+tNuTiAQCAQCp4YzIyiQsiCdFFGD2BMt549+iDtk0POdIZqj0WjFJZBSWql+LykTM65NmgDkjsg6QofnZ0NCPWJcCggQKc8LZ1cB/9zz5CFsntMN0StTHfgZYrm/v6/RaKThcKjt7e1cH4CtM0ejkWazWe6j/3ORQToRBDwqDTn1Aotsv3f16tVrCtjhLMDKj82da7vrg76SSoAwBGF1EutiiDsvmAfuxbpotVorwpQLSkTCSzcMY858loUY2a6RMaaGAmSVGgQQe9YGRUV9JwJPXZBOdjBgTdEvjnVxBDGM9Qqp5jsn3owfYwBR93XobgPaIp04AVxkYr16PQ7m0dssnbgraCPXoG5Jr9fL7WWduNBBv0qRwK9dCkvuOHEHBIUh3Y2AgOM7x1DrJBA4a2h+zsPHYkLgNPErH/r/6iUf8qXaeu1ptyQQCAQCgdPDmRAUUkqZUHhBPAoqQsj4454t98i/BhTAIwrspM0JYkkgOI8K+RBLChmuq1VQVt73wnTSkUCCYwLLPRFoLzJHeyAwkFL6u1gsMqnDBeHV8F1IgWzu7e1l4sp1IaCl3d3rGRBt5zuP3LojwK351BDo9Xor47AuncBz4rk3tRIgqJBpxmYymWTxxt0aFMqkPR4Rh7BzHE6Nsggl/Smt/cyp7ybgu3IMh8OVFBpcKtRScMLqRSC5lqdouFDFd7hLnDQ78SddYDQa5TnDtYIIxjVdPCMlxut0+HPFPFdVlXc3QRhxUcRFJhfQcMB46gFg3bug4+vBazowf2UbS/HH1xLClLtHmEfaR8oEY1yKfQhlPF/uTAkEAoF1ePFX/rbe9HtRTyEQCAQCdy/OhKAgHYkDFGBESBgMBur1ern4nleOn0wmmYBA3IlIs92k581Djj1VgWvN5/Oc28+uDpAzot/9fj/nYTsJdPLk5AOyDGkpq+JDnlNK2U0BGZZOdnYodxjAqs0xkCfuv1gsNBqN8tabTmgRAHyXBregYzmXTkQed4B4rQsnqxsbG+r1etrc3MykktQKjw575BurOfdg3jyNoN/vr5BWFwMgtz4+kG/qLRweHmo6na6IJW6X9/VAf7wAo0fCSUMgBWY4HOZtIhE0SG/wmhhlMUPaUt6H4xAjfIcRCga6a8bdM+4ecVGLPnpNDtrna7asVcD8kJqDEID4Ve7uwbkIV8y9u0mAu3n8/rSbdVa6OLgvbeV71rCLYy5EuLhCDRJPpeAYnk93W/C8BAKBwPXw7Q/8pv7pD+3p//v052n+trefdnMCgUAgEHjScWYEBeoleGS83W6r0+loNBplezr2fQgVEXpJmXw1m82cWuBR0U6nk8mZF1OEgHiePOQeizuEl/tAIKUTout2caL8kCKIO+e4td7JsRMuiBI1EbiWt5frQnixlY9GoywccF0IO8cNh0NdvXp1pb8UU5SkXq+XUyXcYeHuBs7tdrva3t7ORTM9DQExw4kzIg9kz4tA8j0E0MfBiaU7KUApMBD5RkzwNAavleB1Ajxqj6DB76TmkDrihBVLvX/m1/P6BvzOzgPSSR0RhBDs+aRYAD5LKWl/f1+LxULdbjfPTVnzwFMGvC+ePsAx7sRg7XvEn/UvaUVUQBhAyHF3As+Z76zAdUvBwUUW1pevGXfTuDDj9SdchCDFgt0gWq1WFonc5eDOC/rBuyQQCAQeDV9/4Y365O6fOO1mBAKBQCBwKjgTggIW68FgkAkN6QYICJcvX9b+/r4Gg4EGg4EODg60v7+/ElWlKKETPGl1j3ns85DqyWSSCQ9CxsHBwQppISIMcYWkeJ47BNgjvhAxiJxjPp/negEc6zsMeJQbguVW8TIHvdFoqNPpZDfAYrHQ1atX1Wq18ucQ6m63m4vkkY+PZb/T6Wh7ezvvvNDr9TQYDLS7u6vRaLQSWYcUMiaQe681gPjiNSc88k/dBJwRWPMZRxdCqqrKrg7s64B0FcaNtjkZZr5wXTgJ5d70hTn2e1MDwQs9OmF3AWud6OO1CiC4XszRU0am0+k15NjXBOuSFB0XA0pRhfXpxUAZXy8KSju63W7enpH1x/3LNIlWq5XFOQp0lqkPzHvplnHHitfaoM6Gi2v0xdNbAP2jDV54lHv4NZl/REYcCr4NJe0rd0YJBAKBdXj5q/61vuYjPkWLS5dPuymBQOAOx+xTPlLv/pPXUrRn/oNXS8vFmjMCgdPFmREUfB94CB5/zA8GA3W7XV26dEmHh4fa3NxUrVbT/v6+xuOx5vO5+v1+JmKQxjItQToh46QjEG2FgEDcIcgQQQgo5x8cHOS6AV7TAAJJ/r50UkgQMoYIgP2avuNEKC3znEfk2C3ZTpogujg4iOhDkrhfGRGeTCYr96feQEnc2amA9kG2R6OR9vf3884cCBZE2BkXdxVQSNDdAtzDre6ScpqG2+gl5bZBZIl8MzasH8QPBAkXLyCZHs12BwGiAt/Tb47xufI2uesAgcfTGXCEuLW/rD3A9fnMa02wTubzeS62iaOD/vjaoe2+XSXE2cUqiHa3283k3usWsN6rqsqiB+uLscFNhEBGX3j+qHdA39xl02w2s8vD3TAuqNAOxBBPk6Bf9JH15+sdQcPrZbhzhTFmPAKBs4bNT3un/tavfaS+/YHfPO2mBI7xgmZHqm3c+MBAIBA4xlu++aWq0povapWqWnXNx3/0f774pq/93H/yOi329p5A6wKBm8eZEBQgxaPRKEerIUm4FCBKk8lE4/E4k0KIIpFSSbnKPsUZqcIvnZAFP9/FDAghW/9B1mezWS6U5znpkHMKRXIdL6yII4I2IFZA5DnPC985UXUSLUnD4TBH+rHfczwFEqm1MJvNVrao5F5eSJDifty30Whoa2trJerOtpOSMtF0sutpERTGRIxBPPHjuQ9j7KQOYg/xYw04SWbdEO33YpiIAk5qXVQi7cML8rm4QaFFdxUgIBB9p49lwVBIMYTXd7DwgpIIIYg3jCcEn3kHXG+5XKrT6WRC7AUi6Tf1KlyAITK/rp2enuHFO3HxsFZwEDA/jAdiFzUmmHPuUaY40B7WnDtycB/gcFknBpZFHWm7pwyxlsodLdzl4KkUnI+jxtNvAoGzhurwQPOqfdrNCBR41Wt/Xp/0/i9WdRjOpkAgsB6pXtdbv/EjNe9VUrpWNHg0VPWbP/6N/+iD1n6+/caki9+3KkZXETwJPEGcCUEBYkLOMgRgOBzqypUrGgwG2tra0ubmpvb29vIf/ZBASKhHPMmdh6CUkUpSGCA7h4eHGg6H+XgIMSSOqCkiBfCCdt4ujvfILqR6PB7nNAWvpeAOBbfhu1XcUySIcNMHzmMMIb/ci3ZMp9McMafeBIUih8OhptNpLpbou054dByyjchCMUjGj1oMiDse6UUM8eg1xA83APNHXxFIIIWkJXAf2iopE2HqE7ALAutjuVyq3W7ndBfuTcSdefE6Hcw59ycvv16vazQarYglHOvrh7WCy6PZbGpzczOvTV8rzJVHzT19g2N8bXtqBGkkXn+Dz8bjcd7BwdMGSmcEu3e4EMf884xxL5/3brcrSSsOEdY4Apo7DLyYIrUXEGpc/HBBzZ8JbzvX9R1P/L2ACMIcIRJ5SoVvG4ngEgicNWxcOK/eRljrzyI2nv6A5m9522k3IxAInEHUul398d9+oeb9J2FL6nXOB0lXn1/p6stftPLZ815xSXrXw9ccWy0WWo5Gt6N1gacYzoygsL+/n3d6gGRAhiFsbkN2ouPR5PIYxAEntG4f558XfyOC6akMtMUt1tIJgZN0jcXbI79cM6Wk8Xi8ktftpAq3BITGrfWQNi9MSHQe4k5NBCLgRJMZKwr+QaI2NzdzMUEcIJcuXcq7LCCAeP0DryWB26IUWmg3dQYYAy+G6ce54MH4+viXLgB2/mDsPKK9sbGhwWCQBRLEHEQbr9/A+oE8ulMF+71/Rr/dVcF16Y9HuHF/MHZezwBRyHefgBB71NwLdPp2laS2lMS7rFFQrkVJWTzxgo0IebgUWH8HBwc5naUsKlnWlkDQQhBgneGkmUwm19TQ8GeWZ4RrsFZchHCRhzZ40VJ3XyBUlLU/2EHERQZPS2LsXcgIBM4C6u//dLV+cKqX3/e7p92UwBr8u1/+SX3qgx9x2s0IBAJnDBvnzukdX/yBml14EsSEx4g3vuy8pPPXfN5+pKZn/D9vuyX3mD/0cNR/eArjTAgK0lGKAJb5nZ0dzedzXbp0KRdf9KKCLg5AcNw27W4BSdltQG47tRaIiCJelLUQvLAe13XhAXJHJBtbvkd6AYIAZM+j7ZKy2wBi5LULIFVEpRkDiBQV+SmyCGnj87I2BASQ+7JzgXRElq9evZrHrtVqrdQ04L/z+Vzj8VgHBwc5zYLceY/Ku6ACyfP5cwJJpN63ziyvQ7uYY6LjkEzEBggx2456kT+fawgmAgJiC6SUMXWXAkTVhR//HWLq6SCsFwgx1yXthC0XvRglwpcXc2QtQLa92KXXBnCCzLjh1HCnSxml9zHxbRa9HgjRfR9HRCzajCNkPB7nZ5E+zWazlXHydcDYu8vDUyV8XfjzRftdSPT59tocngpCOxlHFxfL+hiBwFnA67/pHr3lA77vtJsRuA5qSpp98keq9aqobxEIBI6wce89evf/+gEaP3j2xIRHw/Sepd7w1e93S6717J+4qPqV8aMf9N7LWrzv0i25X+DJxZkQFDx1AYJKFf1arbZSM8GjrBCbZrOZ88MhOJ7bDvF2ggExongjVnRJK58dHBzk84j6eg44ZA4i5M4HPneLv+d9ryPOXI+IrI8R55EPX0Zv6TcuBOlk20YIdUm8IFXk3bNTxpUrV9RsNjUYDFaIGNFzv04ZMcdqzv3JbaeAn6eT8Fmn08nuCo4v4TUOcCUw554jD9Hl2t4WiCoiQVlrgLoTOC+c3HIdxn06nebUArY8pf/uCKAmh7siPHJer9ezG8QLeCIEeU0NL8aI6OE7IfCzX8OFMVIfJF1Tp8DTdXxXBE8Lor2NRmNlhw/67QURuTfn8gwgZjnZd7HG2+JzxJh6/33tc5yLSzy3/i5AMHFxhP+6Y8nrWQQCgcDNYCPV9EPf82364vf7mNNuSiAQOCPY/VPP0v4z7ywx4Vbjjz67I6nzqMfs/I8L2vmDIsXiN/6HFAGeM48zIyhADqbTqbrdbt7ODcLBNpKgJBe+CwDA9TCdTlccABBuoqTubpB0TSRUWiWjHgl2wgNBLwvrQQidGNJWUhbKQoweueUaiAeQZIhpWZ+gFFEomEf9BPrsaQpO4ubzuYbDYe4fgg1CgBfTg4BLygQcJ4QTOv/nLgXGi+j2cDjUcDiUJPX7/Vx3ArGBcWc+cBSU7oBSmGG8y3x8SZnQ0l5qXEC8XQTwyDUpKowPQpQXrPR1U1VHxUO73W5uz2w2y7sklGkfvp7LQoROjplfxoG15OuGtchY02+P8ntfGXMcGJKyA8WfQS80OZlMsgvIxQyKhrZarZUCityHIpcIbi6GMG4+l+4eKp0K9JN7eG0FF+hoL/3gnx+7bq0EAoHAjbBZ29C7v+aj9cDLf/W0mxIIBE4Z9We+v4b31yTd3YLCzeDyh1S6/CHdlc+evvMipUWl2rxS/Rd++5RaFrgRnpCgkFJ6m6R9SQtJ86qqXpRS2pH0byQ9Q9LbJH1OVVVXbnCdHB0cjUba2NhQv99Xt9vVeDzWdDrNEWWPJDvpgNyU1nNSACDE2Nq9XoL/zH9LEuKWbY+eE7X1OgoIJO4IcOIP4fMoNIUHvUI/KRnSiYsDIaDT6eT7lWPhNQvcXSFpZdcLHAcIB+7CkI4I5Hg8zlHtTqeT20VBwzJtgzHz3QD4DoHDK/m7U4G0CXaMkJQdADhQPCff6xT4DhWMg0excQR4BJ2+lhFwjiddhHHC5u8E1tMeXDTBzVBeE9cEDgtPu8HN4evFBS13U3gdAdYafSPNoKqqTO5d/OB81rFv78l1mGdPtcGpUIpBjBHjxXlevNN3XGDrSk8n4lzqSTiR5z6Mo687TwnxOWXuffx4bzC2vivJunvR7jsBt+pdHDj7eOCn63r5i56tr9n5o9NuSuA62Kp19C++9Hv1zS//kNNuSuBJRLyHA+swfu5FDZ8RYsLjxTv+zHHgc5507/mXqHV1rsbP/dYptypQ4laUMP+fqqp6YVVVlAz9e5J+oaqq50j6hePfHxVEwSEgRKnLHGn/hy0dMo9t33PIKUK4u7u7skWjpw+0Wi31er1M/Jz4UscAkgoB4l5cnwi9EzSs4URePbK6t7enq1evand3N+eXp5RyXj2kx8kPO1fQV87x6C33Ybyc+BFFhiAyTqVrgOtwLcYM0tzr9fLOCswd89fr9dTr9dTpdNRut3PkHrGHrT0Z9263mwkobo3BYJDdFJzn4gGEdmNjQ51OR9vb2zndwPvoApPXlmArUhdh3KHi7hPWmoseZSoK7WG+yhobODUYD9ZJp9PJ9SmcXCM8OLxNLg7QD9YtKTTUyKCvpCSQwoNrh7HieHcgLJdHBTXH4/E1DhQfFxcVWKMuIvj3rEUEijKNw2sdlEIPz6OnOfHOcEeDj5ELfZ72w7pmLLxoI4Ilx9D3OwRP+F0cOPvYf3BDH9R+12k3I3ADfEhzT2/6vz7qtJsRePIR7+FA4Dagqld6z0uld358Q7M/95Gn3ZxAgduR8vAZkj7++Od/LekXJX3to52wXC61t7eXCeZoNFqJRnsutaRsfedc6Shivbm5qel0qv39/UwuyHUvi/dxvWazqX6/L2m1Ij/XXEcuIMqQFSrce1E6iCXRWN+lAPImHUXgt7a2cgFAyLKTLd/RAGu7OwNooxM7SCoEjvb7zgKkkXihR4QQSFu3281bSHruPCkmZQE8SKdvEYi1HGs+44Bw4IX0BoOBdnZ2VKvV1O/3syDhxJu55Z7dbjeTQ5wInnqB5V5SJrkUbkQcKJ0CiBGsP9wNkHbmyIUEiLunIzA/uEKYI7bbdJeCCxe4DcqCo6xdb5sXwvS6BX681w5YJx64GwLhw90I3W43r2F/Fl28oz3SSa2TdakD7rZwNxFrkOu66MM9fM48zYhr+S4rnkLhNUvKrSTZ+cMFGhcH72A85ndx4Oxj/8Nm+pTu9LSbEbgB7tno6Us+7r/qv6p32k0JnC7iPRwI3EIsOpUe+pi62s/9aN3zOxPVfjl2PDoLeKKCQiXp51JKlaTvrarqFZLurarqIUmqquqhlNI9N7yIEYNGo6HRaJRJKFXYPVoJwWu32ysWaXLDsTI7MWfnA69V4AUFqbIvnZB4yKWTRez/RITZLpDtCakzQP45bfKoM+1nZ4aykKMfS5QZUgz5cfKJY4D++taCkFM+h0yxjV+5i4DXX0BQ6Ha7uc++UwUk8fDwMI9Hq9W6ZlcFyBmCCPdAlPGChWxXuVwuc5oFxNLTHZhz2kkKCCSRwojrCDXk0kUnItPSie0fAuquBsbaCT2OGdwAXsiRnRtcbOJ+iC+k87iYRd98PbpI4ZZ8376TOaafnO91Kzgesswc8YxRiFRS7ps7X3h+6L//XBZBdMeLp1F4/1yE8DHwtCBEgXI7SHeL+Px6yoMLX1yLf5znjiAXm+6gGgq35F0cCAQCgceNeA8HAk8C5t1Kw2dUml5s6xmzD5Fe/T9Ou0l3PZ6ooPAnq6p69/EL8udTSm+42RNTSi+T9DJ+98isdJLi4OTaCxN6LjoEClLoEU9Ixu7ubiZOHg09ODjIaQ3SiRjhhIxjR6ORFouFer2jiIOnNJC7XpId7ocQQnSavHwnkz4WtMFz6hkTyKQTLOmkaj6iA/UHPALuBQy73a6Gw2EeA0QVr6/Q6XS0ubmpTqezIgxwTyd4CB9OGhuNRnYOIBJIygJJp9PJEXF3LhwcHGQxYzQarRBQrO8e4cY5Qf0GSLE7TNx2z+du1Wc8XRhB5MBdwBoajUYrwhTtkpTHXjqpT4CA4nNLn31HDq7p22NCypkbxt+j6lzL3QZec4BnivXhDhfa7q4gwD0ODg5WRJYyfcgdNS5guVjA+vXaFrgLOMafW+bKRS7eE6w/hEh32NAOL2jpDhfu5Tul+LGMk6+5OwC35F3cVvcGRwdOE+/4Bx+t/+9//mZJ/dNuSuAm8OXnXqef/E9/Sec+5U2n3ZTAk4N4DwcCTyLmvUpv/fN9PXv6fC1/76Yft8BtwBOqoVBV1buP//uIpJ+S9GJJD6eU7pek4/8+cp1zX1FV1YvIM/PcaKK2ENHSDt1ut3NOulegH41GOW0AmzlEHmszBJTPECOoiwAQCryOAbtDsFMC21siMHhEtqpWdyZwK3az2VxxOUCCfEeA4zHK9/cc8DLfv9Fo5LoFiCNsz+hix2Qy0WQyyYSytPZ7NNlJN+130YPx9yKLEGXP7/cceAilpxWwZaQ7ObxoIg4Eai6wAwjHe0FB7sM1cH/QtzLi7D+zFvy+oF6vZ3GG+5Ril9e/8BoJPmYubniahO/y4QTb54Dr+FpxWz61DjxNiL7we7mlJ+IJa8ifFRf4XBxAyOP4sm++HnzOPU2ivIenTHj/y+fA15TD3TJ+L3dwuBvI+8v9EViYE19TdwJu1bu4oda6QwJnAI/8zY/Wq7/0W3V/PcSEOwXdWlPP2o491e8WxHs4cF3Eroe3DYtWpTf95XOqP/P9T7spdzUe91/LKaVeSmmTnyV9oqTfl/QfJH3B8WFfIOnf3+T18n/LqLenATSbTW1tbeUtBSHRi8VCu7u7unLlivb391dIuKRMLDwCS22C8XisxWKRi7yxI4S7JUoS48Su3+9rMBhkgg1Rg8hzbUkrhRW73e4KcXWCQ70C37KRmgMQXqKpkrLDwOs7cJ/RaKSrV69qPB6vkLJ6va5er5drVzC+ZRSaeSnrApTpD+7OwCXgkV4n5F5o0aPStKuqKu3v72t/fz+7RphvF4RINXDyS2qLf4cogQjlFn8XfJxIOtnlXMbc00dcmCm3oKSP7lhBkPBdLrwgYQlf/4hWLuawjj11g/lxYYz7Mdb1en0lncVFC8QN+uGpFvy3fCYAzxDX9FoMwFNQcLL4GvB14WQf4caLN/p4uEBAXzyVgesy58wd65/7eP2Gs45b/S4OnEGkpEVL6tfap92SwGNETZVS/Uzs0B24jYj3cOB6aP7sb+m+Xz/tVjy1UdUrveHL79fGxYun3ZS7Fk/k/3L3Svqp4z+465J+pKqqn0kp/aakH08pfbGkt0v67Ju52Nvf/nb1+309+OCDarVaeatIJ6xEq4nUS8pkkSitdORWIJoNuRmPx5kYeVX3yWSSC0JCOp1UlnngvnOAdOKW6HQ62elQq9WyeOHkHeJX2rYhge12Ozsb+B6C4w4B7g3oCySO9hP1LtNH3Bbebrezi6GqqhxVLy3tvjOA28WBOwZ86z6EHci1p6wwxpBzSbmfbCvJnNI+1oLb++kL7cahwRqCmJbOAx8bLwZI3Q7moLT6++4IpUuGGgSz2Syn5AAnu56qAKFmXft33NPXu1/PU35I2/DUAIi2ixdem6C8Jt95+pGvN8aEz5yIu8Dg6Sk+vp7e464HxAf6UhJ5T7PxlBG/t9ecYF2xBoCvPZ67sj4Fc+jpImcct/RdHDh7GP2FF+v3vvq7TrsZgceBH3nmf9MH//hf0oN//nWn3ZTA7UW8hwPXRe2wUlokVXdMFuUdiCSlbojup4XHLShUVfUWSX9izeeXJH3CY72eFz7sdruq1Wq6evWqDg8PNZlMMknEbu2F6qSTCDqfUZsAEYBiiaUdHiFiOp1m0sb12u229vb2tFwus9Dg0VKKD3a7Xe3s7OT0BuoTeO43xIo20P5SKPH7O7H3yK2N9UpRRQikdFSEcjweZ+JP3xgnt9PTHn53UQKXAbn+ROBpLxZyru0FExlf5o2CjOyK4SkpXsSPPkPqIJDuMCnPoX8U8/T0hpIY0kfIq3RSv8CJubtUpBNrvbsNuB4kljUMgS/HFnLvqSF8T8FHrw/A3OO0KLfz9LE4ODjIAgftZz2U1+NfGYVnPvxepbNn3fPGtbgnaxWxr6xfcD13QylyuOji93QHkz+XHMc8sX79mu6+KJ8Dd3ngrjnruNXv4kAgEAg8NsR7OPBo6P7Ub+ie1kv03g9PWjYi/+F24Q1f+aCe+/cvaXkcjAw8eTgzPrz5fK7hcKjRaKR2u61+v6+DgwPt7+9n0tpsNrW9vZ3dAMPhcKWoodcgODw81Gg0UrfbzdZuoqqQPemk4OJkMsl2eidrTuQhoUSpvaI/JAoy0uv18mdOuBEcvLAiLgcIt+fyu2UcwkMevNdlkJQj4jgoPHJLugTECRLo9SEk5dx/iBWpC/R9Op1mF4OTbaLK3IO5gJSRtoHQ4NFkF4hms1nOd2esfYvKkgyXbgn+y1w6sXfBhCi+OyPcHo8Q4OIIY+2uGAQd5pbxRMyRTgpXksbiDgVPJcAdUZJgxAI/riwa6hH2Xq+XdxlBUCgdI/yM+8UFAM5jrTA2gLHzQo7uivG2Ocm/nnhRpnT4ODvx53qeLuFFL329uzvIRStvj7tnGEfu5wJIIBAIBAKBwBPB5o/9upYbL9GlPxGiwu1EeubTpde98bSbcdfhzAgKVVVpPB5rb29P9957rwaDgSTlIoKQBArkQZix4UMk3Aa+v78vSStbGlZVpb29vXxfSDm1FMoUAXcNQITLYyDMEBQIDGQOMgRRI32CnQi8MJ4TV85DRHBy7MSN9tBGLOlOuCGAiByz2SwX8fNIPaQWUWKxWGg8HqvT6WTSXNr23VVQkl8cC2ztiMvB8/wpzsh31J24HqlzF4G7A1hHoEwJ4DN3CzA2EGfO9+tgged8Sep2u9k9g6hV1t1wJ0O5ZSHXd1cMcPeNiwWIHAghZfQckWBjY0O9Xm/FvcP692M4310fGxsbeUcPLwjqY+x99FQKdxB4+gBjgPjAZ35/T5VhzZdiC9fzQqllagiCHCKQu1P8efXnlD7xGSkSISoEzgI2zu/oPR91ZxQHDazHC+97l973kR+i6jdja7NA4G7G1g//uqSX6H0vTKrq8ffF7cAb/+o5fcBXbUjLxY0PDtwynBlBQVK2KENqO52OarXaym4PpBg0Gg1dunRphdR42oDbrNvtdi6aKClvjwj5hnROJhPV6/WVyDPkCRJGO7wegkew3a5Oe70WgxduJGLvaQIeIYUQcV1INtd2AYOxIzLtEVsIrVvgq6rSZDJZ6SuflySQVA53BTAu3s7JZJJdBqSDICogmtAPyCVikRcElJTTAbyYnvf78PAwk2SEGK6LwOTRbk8v8LQObw/zUDoaINej0UjSkQiwtbWVC2+y7SNrq9lsrghALlJ4/QpcDmUNgxJOrn2tIQo4aWbMWE9O7HFc8Ix5cUtfe75rR1lvwefKiyC6uONCmPeXZ6sk6ggk7iYoa2PwOe3lWXBxxNeVFwPlXO7N9Uq3hI9v6ZwIBE4DG4OB3vANz9VbPvu7T7spgSeAH3rGL+qZX/gyPfc3T7slgUDgtLH1w7+uK89/qeaxYU/gKYQzIyjgUIBIEE0l2o7Nmy35PId9Xe4z1xkOh5rP5+r1eplckF7A9SATRPW9Kn2z2czWaieHnlbgxAQS56QJkYO2O3HlMwig58N7Pr1b7z3vnraUTgeEglqtlmsYeMX/cstITxfx7327zFJUcOu4JM1ms5yGQr9dSIBUuigzmUxWxAlPNaCv13OMML7usiidI742JOVCnfTF0z8goKSeMJasAZwKh4eH2tnZWandwHphbr0Pnr7AOvL0C/ri6S6sJV8DwMm71yVw9wptgBx7ukOZfuBRfr8XbS/rJ/gxnlbhdSd4Xl0I8fVVClj87s+B1zrg+nzOuS50lGKMp0t4KktZb8HFBU+hYT68qGMg8KTinvN6y2d/z2m3IhAIBAK3EPf/6lzv/ISNKNIYeMrgzAgKkjJ5IbqIE4EouRM9oqgQOM5lu0DIk3RCZty67eTbI5gQPMQJdxhAzFJKarVaOSXASQ3FGxEb3JngIog7Gjyn3+FFJznOrf5cEzdAp9NRr9dbifYjWLCbA9f1Y9w5QTqEpBVS6kSXce52uyupD9KRqLC3t5dt971eb8XuXkaHmS/Gn/lFNMJJgUsFQBK9pgWk3seR+7CmnEgyZ06Q3dZfFqpsNBqaTqf5OsyBR96x7jOuJZkvnSzcy8WT6zkWGDdf/27/Zz69vgZjTNvcncC69oKPvvZ97XmNCif5jBFigQt05Zp2MQ5HQpnK4CKNz7evm1LA8/kod3rwOXfxh/t5sVLWlKcJ1Wq17EwJBAKBQCAQeKJo/eff1DOHH6a3fFZLOvu1nwOBG+JMCQqSciqBR92JLFJPwQkw5AqyQh4+BKS0XLuoQDTaI7kIBx7h9y0jvZ0e3fe6CgDShOjBPSFxkFa+ow2tVmslug7JxiLP2FBokch9u91Wr9fLUXWIJZ+5jRuCC7nysWb8O53ONa4E6YT8ed0KFxwgrhsbR7tdEK3G5cA9IXCkI5BiwnhzLVIoSFNhi0oXM7yOhosF3KOMMntaR7t97TYznjJAWgIpI7hT3G3iwgbXd7dKSWJ99wVfS9KqWOLimEfq3QnhIhPCTZlq4eNM/1woc0eH73iCeOBuDdaEpyP4s+H1NNaNhddSoA9e76GsucA1XeThWBckXOhwkYN7cj93RLhgxM8u+ni/AoFAIBAIBG4Far/8u3rO+AV60/+2edpNCQSeMM6MoODEgIi0pzawtSMEi2OdQPBfzllnFfeccz/OreFcezab5Zx4iA9kCoLa7XYzsedcaXVrPnZJKOsEuH3bixlSWwFiDrmD0LnzADEEcYTUBiKytNlrBXgbnTx5lHY2m+V0iRLL5VLj8TiTTAQYb+NoNMoCEOPDGE+n01x/gvFEEGg2m5l0l1tLzmazHGn3iLoTRNpEWyCFLmT4lqKMmadK+Bh5AUSvEQBBZZw9HYUxWlfbwKPiTujd8u/1MlxQcteBC2OMka8tFzfc6s89XIhzAUY6Sf1xAs8zULoVgKffuMOhLLLofXIHhIsUkHvmC0HFUza8roKj/J3jy5QUBCBvr9cXcREkEDgtLN/xbn34P/nr+p1/GDUUAoFA4KmG6rdfp+dNnqs3/rWd025KIPCEcGYEBcd0OtUjjzyi7e1tpZRyvQOI/Gg0ynZvJ8Qe2YQcENV2V4CklYgov3t+tRM6Uh+o68D37lCAVPp2kqVzwR0TfI5oQH4+hJztA72fEDr+IShwP1InSL2ADDpJpV9e4A4yOp/P83nSichB3QmOgfjxmRNI2oGo4SkGCApsB1pVVRaNvO6EE0ZJ+TsKZzabTbVarRXXCP/lWlzDiTDOC8QgXB9Ertk9wms8lOIC9Sk8t57rOHllnKiPgeDEWLkjpnQNeA0M3BndbnfFwu/j5WttnUjBvHvqDSCS730tCyLiXvFnpYQLB/58+HPmbfd6CD7nPqc8A+6iWHfv67XF13gpRni9EkQjX3P+DggETgvVbKZ7vv939GG1v6Hf/fvfddrNCQQCgcAtxuIP/lDPe8Vz9MaXnT/tpgQCjxtnSlCA7EGyIYCQV/7Yh9B5ZXjpJK2BlAcnIpCIsiibtBpdnUwm+Wd3M7RaLXU6nXxfSXlXiPl8rsFgoPF4nHc64LoeBUV04PrcD1KLsADJ9v56NNgdCY1GQ7PZbMXuDTH0c9wxQZFFdidwAtfpdDLBYkvOdrudCe1yucyFLiWtpB9AIr3mAKKHzxPiACSX63qdBUgsNRa8sCH/heRyDuTYXQbuWHDBwMksTgbIu9c9cLiYw9gwH15vg/V7cHCQxY/SHePzhAhGe/nHtV00KAWpkiyXopH3AeGrFHC8ToY7KtzB489L6Xbwwo3uPmAcSzeQr23azLPrDgX6Ta0SdzyUKGsruMDha8zvhcBTikzrHBiBwGmhms3Uezi2vwoEAoGnKhavf5Oe93/X9Ma/eu60mxIIPC6cKUEBEjGbzXLKA587GZJWo65sASitugXcSg0h8kgnJMq3bPRCiB7xJ9pNnQEnUJCvdrudUzOk1a3oPELr0VFSCyA8iAuQHs6DvLpdvtvt5mMgwJAvIvhem8CjtYwx3wF3FHiuu/fV8+yp+eDV+SG4FIIkz9+LBXoRQgQM6mMw39PpVJcvX9Z4PF7Joe90OhoMBis7JKwj6xBkxpTPvV7AOtcKP/Md/YQcuzBVCk8cy9j72vZ0iRK+tn2c3XnD96TGOEF2IuyuGI7D6eNpE2Wfvb6DixXcx4WydakGvlY8zQSXizsenOB76kPZPtwfrB/fOrTswzoBwEUV2uDPhfcdh5A/d4FAIPBE8aGv/jw998t++7SbEQgEzjAWr3ujnvPDH6w3/cV+FGp8AkiRqXoqOFOCwnK51JUrV7JNnV0NsJC79Rqi4QSZ6DPRWo/oYmmWTorgQbJLq71HNV1QICpOgUCIXWkRd2LoOecO7oPjgfvR1zKFoRwnagD0+311Oh3t7u5mwuUuAcamXq+vkDIs+/P5PB/H2Lj1XlqNoEP6KLJIHQL67mPJuS4YQNbK/H13FUyn0ywCOJklFaSsW+GCkXRCIn1emGfWEdFvFx24l8+L998LWDL/zAMFGl1YILLvxNXFI0+BKcUAruHFAhknH2MfI9aJ94PfuTbCg4sdnmrgxRg5nnWBwFKmP5SpFV7A0T9nBwzGAKEMhw3r3dvMsQgJgDl1YdHPA+U57pAoHQ1l8cby/EAgEHg8WC5r0jJcJoFA4NFR/dbv61m9D9PbPvkopbiqV6pqNzgpsILn/MPf0zLet086zoyg4EXcIH5Y2bE9kxbA8b1eL0dT+c6jqi46SCc58MCL30GqIHLYwDlPOtkWsqoqjcfjfB0KvEFMIe8e6VxXBZ/vIEsQe/roRRWdMNLGbrerzc3N7HSgDe4WgLRBMN0Z4PB0BO9vrVbLhR7dlu9zxrU8laHdbmfSP51ONRqNsgPEHSeIE+6ecLcJIoikfE12GnBC6f2BBDIu7lAAnM9Yl4C401aPpDt5RaDwugR8Rx2J8nPG20m5//MUEMi5R+7dLcE40V93BiBaAOae8xgDhAN2CqnVahqPxyv9d7EK4u/riXbRN9YOqS/uDPHvvf6Gjy3uGWo+uBDDPdxt5MKKpxqVqTjc11NFfN24c8XFwUDgNLExrfT6g7E+sNk97aYEAoFA4Dai9t9/V8/670c/X/7Cl2r/mavfV0ma929cT+puRH2UpDUu4MDtx5kRFKRrLecQKrdHz2azvPtCr9fLkW9qH0gnEVps90S2ndRDMso0iPIYovvUCkB4aLfb6nQ6K6KApGsiv17kDWGBfG0n1F5cUlKO+hMNJj8fQkffKBTpVm3fchFCXlr+Pa2DMfKxd/s593MxpkwxYF68vgNiD9F86hR4+gL9hXQizpC64WPDeDHO2OldBKFt9JM0C9wI0okdH2KOY4G+Q54hlQglRNgZj1IEoEAmLg+uXaabIDY4KS7dHTgfaC9z52kifOeiBWulHBP6VopkLniVO4TQf5/fjY2TrUCdbLsbwtc688bYu6DAevf2s1aZV9a7X8+v79uVcj2O8R03fH79vqWY4QLEOndQIHAaaP/0q/VXzn2VXv5N362Pu3aX28AZxtvnQ43f1T/tZgQCgTsQOz/wayr3f0iNpt7x1S+6Jdc/HFRatJ8a4kTrck3P+M7Xa3Gcdh54cnFmBAX/o77VauW8/E6no+3t7UwePdrd7XbVarU0HA5XCA4F8ahPsLm5qW73KLKzLjoPqXMCR3vcwQDRIM8cEg4hdcLmRQJLYgf5KrespB2Q73JnCAhos9nMhRLLCD9tc3s/BRghi26H55qMvUeVIVydTicLF5PJJJN0iDXbeU6n03xP6k0sFguNx+O8zaT3FVEEAo/YwDHs6AEBb7VaeQcE7uXFE52kMnfsDOHzQD0MCOd0Os3jTT9oC3UduBdz6sSVOS3n2YsQcl+KOZaCirtzyhoFXiiSNvs1vegk92U7T08B8HQJov++5plPJ/xlLQUEF6+HQPuvNzZ85oUXyz56DQYXTvhuXUHTdekI7vrwmhc8j6UY46kj3hZ3TAUCZwHbP/hr+sreX9c/+eof0Kd04w+mOwV/9x2frud8+W+cdjMCgcBTBNXhgZ72z371llxr+qkv1u6zrqWCVU0avv+dE+nvPFzT+//rt2h+5cppN+WuxeMWFFJKz5P0b+yjZ0n6Bknbkv6apPcef/71VVW96kbXK/9w94KG/X5fh4eH2t/fl6QcvXbS6+eQ30/Ut7yeV9Iv7dF8Vhb3I8JdVUdFCHEHECH1dIN1fXGxAdIM8ZaUCzlCeEoreRkVJ0e9JMJEj92BwXXZdYBz2+127jdCAGKOF7rkeggTh4eHK9skEr0vt9iDlCEMICj41oDSCeF0y7p0tIsGqSOePkLKiefP87kX5GSsERSkk0KbHhlfLpcaj8eZLHs9iVLscZeGR7J9fXnkHsLPOsPKX17X596v7eKIbztZFnH0Z8DXYemccVFCUl5/5Xp34cFFEYQfxIEydaN0S7gDw587T21hbEg/8fEpC0GWZL+sg1DeVzpxtjD+tIG14gIb1/T3xFnHrX4XB84uLn7Pr+nvN75Ii7/1Sn16b3zjEwKnitcdTPQ7//15eqZ+7bSbErjNiPdw4E5E+6dfrXWmt9Rq6dJf/PCVz8b3JU3vOXsiQ/ddNb3fv32n5g+957SbclfjcQsKVVW9UdILJSmltCHpXZJ+StIXSvq2qqq+5Yk0zKPNjUZDvV4vk9Hj++fvy/xsChFi/XZngacPuOXc88u5h9u+IU5uyy/ztL2onaQVMlbmebtg4KkPTmzKrQtpP32FTBGFn0wmK9Z7SSupEhA7hAOvPUBxwl6vt2LT97ZOJpMsKnghPlIaOM6JJoLD1CxI7XY79+N4/aw4E3ysKQSIcOKiBqTXCS9rgHWDkMKackLLNby4Itegb/478+Jzh3OiTD2g7bhC3AnC2nbByF0bXtuDtYHrBkELIWBdrQTWsJP2MkWjdNKw3vgv6SusO84hhaZ0CfhcOko3DAR+Xe0L+lKKRO6sWDcfZRqP95Wxx6nj/S6fy/Icf8bOMm73uzhwtnDvd/yqvrH6K/qKD5rrpz/5X+oFzc5pNylwHfz0/ofqmV8fYsLdgHgPB55KqGYz7fzA6rvrwoc+X/vP3br22CS956XpVHam6L2jpqf9h4c0f9vbn/ybB1Zwq1IePkHSH1VV9cdP9A9w/+O+TDHAFeAEx6OVHsXlM6rISycWdEi2kyHIDeQDEk49AKr47+/vZ3JD5BlrvaRcy6DMw4YMU9dAUi6eB2l0EYE2kZPfbDa1ubm5kvpBGoNXp/caBfRTOol+83mj0VC328338DoBEEY+81oCjPF0Os2pAJPJJKeXlGkafn0XKNzJQdQcQacshIegQBoLAoB0Qp7d4eBW9rKeAPNOH/x6KaUsAOBsoO++owgFC72w5PVIrhNvbxvrzgUk+rpuDDimHCOEIBc0PD0HlOKZuxdcjGFcXATw2g4cwxp2Au7t9Oe3TLvwNVaOgc+ht8v/664HX1O0ZV2qhItO3LMs0OiCxfXm4A7ALXsXB84u7vnOX9U9kv7S3/oqHVz7913gjKB1SbpHt8aaHLijEO/hwFMOy997g3q/t/6799+9cU2Hd/2phubdW5dG2ntnTU/7j+/R4s1vvWXXDDx+3CpB4XMl/aj9/mUppc+X9FuSvqqqqptOauGPeScJkIwyCurR66qqMuFcLBa5Wv1iscgFG7vdbi4MWG7x5zs1EKmGTJHiUKvVNBwOM8FqNpvqdDqZNLu12tMIaAeiAkUUS/LkIodHyfkHaaRg3Xg8zuQMoYRxIHIunUSPvR4EZJtilbPZLIsv7nIgyu7OC9/q0qPn3COllG3xXhTSxRfugbvBr4dIsrGxoU6nk90bHqV3UYidN3BCOGFnHllHpWuCflOnwWsI4GTw83BiSCfOEo530u1kGcGH7RH9urSvTLsBTsbdRVB+D/l1wYLxdmeAX4u55DouFkC4Qem28WeTPtF/X9elsMH8I5QhPniqUUnoyz/I3MVAP8oUiPK94YKS99/PdWfEHfxH4C17FwfOPu799iCrgcAZRLyHA3cVGj/3Wzc85lkPf6CWrWtp5+T+jt718TcfwGldrunpP7uv+nv3NH/rHz+mdgZuH56woJBSakr6dElfd/zRd0v6J5Kq4//+c0lftOa8l0l62ZrPV1wHbrWGzDkZkE7sy+5GQACgEN7GxoZ6vZ5qtZomk0km/n5Pvx7pC5D/dvt4T9hjwl6r1TQYDHJRQYgu7YVE014nUR5Vh8xyLu4Bcv1xMdAmaiRMJhMNh8P8Pc4DyCtkzkWEsk4B9/DigQgDHuXGteG57k6qPWLN8Xt7e9li7iQZUuwkF+GCbT65jkeXOc7b41sTUkeCCLi3pVwrklYcCv65k1/ffhHBiPYjPiDiOFn3tUS7uCc1GDxKXopItMFJfilOlGvWnwvWE+sMkYb58766MOCfObEuC1/yDIAyVYN28ns5JoxhmcZAMUkfR3cW+Dhzbpn6tM7NgFjFPco+ebs8fckFvjsBt+Jd3FZsSxgIBAKPF/EeDgTWY/na16/9vNft6nlveOCmr5NmB5q/7e2a3/jQwJOIW+FQ+HOSfqeqqoclif9KUkrpX0n66XUnVVX1CkmvOD6usnNyBBdLP9Hy8XisZrOpXq+3UkzOc+6xOUP4IA1s9Uj9AN+u0SOrDo+Suj0a54ETFCdk2NIhmwgJXIfz1kWqfctF+gD5arVa6nQ6eWxGo9FKe71fuAScCHob/X4AZwBCBOSzJKAICAgQLoh44UAXBxhPJ3p+L0QHxo9ruBACYURwKSPYtM/P8a0PJeUxoU6AzzXClUe+uS7/PCWGe3gKC8f79paM2eHhoTqdTnZuOJHnnvTRXSVep8KfEdYerheP+JdOG59H2o0bhbHwHSZ8lwe/rq8FFxVoj4trHPdo6SDuMGA9rqu7wLX8fB8LFzV8LN3VUW7VyW4VDnc2rHsnnHE84XfxIO3EthaBQCDw+BHv4UDgMWA5HktvfPNpNyPwBHErBIXPk1m7Ukr3V1X10PGvnyXp92/mIk7i3NYvHYkBw+FQe3t7Wi6X6nQ62TEgnVj5OVZaJTj1el39fl/nzp2TJF26dCkTIq8R0G63M6mFqEBAIEpeDwACRmoBDonlcql+v5/TLfz6HIs7YLk8ydVH8EBM8OJ7i8UipyhAHieTyUoUutVqZYI5nU7zTgguJnAtCBhjB7HylIAy/937Jyn3nzH2NA1ST4gGS9fazH23ASewjDWCQtl+5kNa3UGDY0gn8bXBdXBXeH5/aeN3kcrJMGvC4YTVa2p4BBwxgVQbn4cyFcHFGR93ngcXWbgfc+Lnris4CHguXCBwcYO+uyBXuoLcLeBuIvrtBSRx4pS1GEr3iq8/Hwt+Zr34OvOaE1yb9cL69jHw+SxTqPxzhKk7YZcHwy15FwcCgUDgcSPew4FA4K7DExIUUkpdSX9G0pfYx9+cUnqhjuxdbyu+u9H1JGmFaPoOCKQNkPcO3LrtKRNeGJHCijgYOA9ihYOBKCbtgSghJkirkWjPvXeiS20FcvqJbDsxc9HCr+ffdTqdTNqJ3nr6BK4EnBwIF+PxOEede73eyjgzLk7sarWaut3uSgoFtScQLygquVwus9jh/fNCgYgdTs5pX6fTycchlBBlhjyPRqNciBPngBNIL4RJtJ314vUpIPfsxMB9nfCzRlxg8PXoZJvj140nn1PUECeDr8WS3EOUceFwngs+ZeqJ78DhqSRcFzGN41xs8x0mOMfH1EU9UIoJDtqBuOA/S8oCmu/IwRyVzzH3dCGA55P59H5xzjrhB3eBuxpIfXCXQikyMCd3mDPhlr+LA4FAIPDYEO/hQCBwt+IJCQpVVY0lnS8++8tP5Jpuxe52uzmaSh2Ew8NDDYdDbW5urljJIQfYv6fTaSYvvV4vpwtQP8HJ+Xw+V6fTyQSWCKsXQfRChE7E16UGeORXOiF4TrjdWUAbaI+TMpwKnAO5Z4vIXq+XhRK3fFOgEpREFEKGmIBAUOahu61+OBxmNwJ9IgLNOSVph7yVkV4v8Ec7INeIB8wr3/Nf3AuMEyIT7XIhw8UB+o8IxDyzdlyUcgeMuyw4z+fXI+e+RSbHlHUEPIrurge36HO+Ow7WXc9THNalFnDdg4MDtdvtvGUnaTTeTq5Zpgy4yOVt8oKH65wQnsLhjgZ3f/i9r5cCcr0UGBeYyvv6uPga4/frOSFKke9Owe14FwcCgUDg5hHv4UAgcLfiVu3ycMvAH/bdblfb29s53YGig9JRBHgymeSofa12sq3fbDbTdDpd2dKv0Whk4usRXd8hAcGh1WplQcOjxF75nrxzj2g3m82VNAF3R+AgkJTJMm2jqCPn4mqAPLHDgosJw+Ew28l7vZ56vd5KX9i2UtJKrQGP1ErK7fC6FHt7ezlyjBBQklzqI3hUv3SIeJTXd9RYLpdZHCqt/uxcgShEn3wnhXI3Adrq0XqKQZa5+C5qsLNFmc/vFntfjz4GpeMBcu71LtxlwNpzZ4zPE6IO9/H+eXoK53t6gdfn4J4ujni6gddV8Pv42lhXrwC424L14aTdBQP/b5mu4k4Kvy7rlzVW1jjhHu548bZ7wUqfuzLNoey3izbrUjsCgUAgEAgEAoHAepwZQcH/cG82m+p2u+p2u9ekAICDg4McCZZOSAkR7tLKDKH0IouQ/UajkUl7SVScrHAdFxsglggO3NO3CKQmAsXvnHi54AHRx40wHo9X0g4g4xBWajJg8ed8d22QAjGfzzWZTK4Zm1qtpn6/r36/n/vo5Mznpaw14KSbe/vODAgBHvX24z3ST1oJaRoUfGRcIcKlPZ3re3oBY1amFqwji+X8sjZKuzxtpS20xy35ZR0PT+cAnmrhYgLnMzfuRihTgCDatMuj6h7R9/55+gfryIn6OqcD13Ihgj5wj3LOmROeLSfw3MtTO7z2xjpRo1wjXmRznTDAeSU4x3dB8QKO/g+44BUIBAKBQCAQCASuxZkRFCBDbr8nio14UFWVOp1OtraT2uDbGEontu1Go6FOp6N+v69ms7mSd4+gAJkn15uovJOjVqu1EnHnO4okSsokyS3YkCNPdyiJj4sDbH8IuaYWAeIF7WL7SNrsUXbEBMaBazN+fAfRLYs/QtogsSUR5b8Q2jJn3okp40p/ynOqqsquEwQP+ku/fLzdReCfIfKwhkiJcGLqaRH+mReMZExKIaper2s8HudaHIw7ggdjzbpi/iHMZbqCz9U654CnRvg40Hd3jdB/F4jc3YBrge+9vYy9R/KdZDNm/jxw3+tF8kvBx2sk+ByWx9Je/7wUszgGZ1Lp5LgeXOzgufR5vp4LoRQYAoFAIBAIBAKBwCrOjKDgNmjIdRlxhQg0m001Go1rCjVCYt0ijqXfSb1HzSnW6AKGt4kigtQRKCvVE30mBQPHAKkL3K/RaFyTW8/vpC74DgfY+YfDYS6s2Ol0VmoMeE0AJ/nrSJCTTtqNMFPm5nMNz+2HPEPAnTiX7gPIKqKN1z8o7euILh6JRzRhDTSbTaWUsrvDUwR8a0TaWtYTYCy9z+5AAGVBR4QARB/GTjrZ8YL5K+s2eP0IH09Pk3D3De0kz78k5oyfR9YZb/rsAow7SLyORAm/F+1HrPP58QKY7j5wN0BZe8Hb4OkY5fHed5/Dso1cz+tzMAbefm9XWXfBj+fn0p3gokMICoFAIBAIBAKBwPVxZgQFh1ejh9TjMIAgOKkgmo/Y4OKEEzAIi2+R2Gg0MomczWZqt9tZjDg4OMjnNhqNlch/mTcOye90Oup0Orl9nl/vee3SSWoCuytIyv1wWz1jQp0G0iecVHqaw7qifRsbG2q1WiuWbwg0bfGxdpGBVAQvSkm+u48HRM5z47mGb7XJWPhWggARAdGD6L1fw7c8dFGkTE2hX5w3m82yuMSYuhizrnCkr0HaheiDqwGxinZxbfrpKQ70y50VZd0C5ovzfGtEP4+2uSukTAdw8cyv4U4PTztwEYkxYMyZYxeL3M3ibgHOWxflX1enwcWL8jjvH8+cpx2VIkXpMCnncZ0zoUx94DPODQQCgUAgEAgEAtfizAgKpb0ZYoO9H+FAOiLvRDyJWFZVtUKYIXsQAk9JIGpOOkOj0dB4PNZ8Ple3281pFR6xdKJBHjspFxwDae92u1nk8MJ5tJ8Ckk6A2cFCUk7V2NzczKTfo+uljZ374yDwqLGPRbPZvGarPh+fqqpy6gMCy/7+vkajUXZNIEC48FGKIdIJeeZnRA4vXui7W+AWIZ0A4QSyixsAQokA4LUTpJM0DyeOjG1ZV4DjGDcKQHoaAe2jsGRJfiHkDuYWUQr3DLtisPY85cDrEXAv5gdxqXRx+Nx7rQGvW+DHOpFeN4Ye2S8FhbKAZpka5Ncv6yCs290Bga9MVXBBBYeAOx38dxct3MFAW1xQKV03XItjPQWiFMYCgUAgEAgEAoHAepwZQQGU0cVms5lTDjw63G63M0GECFLrYDabreTEk36wWCxygUTIBOkTHHNwcJAFDI+6e50Gj7x7TQbIL8QcR4G0WueArfvcqk7qBm3a3NzUhQsXcp/Z4cGt+JxXRp8h7RBWhAzGF4LY6XRWHApciyKOpTPBt2V0FwjXoA2+5aMLB3yPGONpB7hAKE5JNJm2OBHlfE9doC1OImkTBB2xhHWDeABR96KK7pDxdelFIn2+XahywYYxcDGKNeT9cYHDxTJ3k3B/dwtcL+2E8YP0l2vWiyo6OUfccScE4+VCiqdvlOke61I2SjcA93X3R1lfwYtb+n3XzQtj4C4kFyW4NnNbrskyfaL8byAQCAQCgUAgELgWZ05QAG7ZZts9Sdds9edOg3q9nrckLHPWJ5OJ5vO5Njc3c/qERyEhlRBxT2WYTqfZweDRbQiqpJwmsFgsNJvNMlnnXtIJ4fXK/5A3rk0RxcFgoPPnz2uxWGhvb0/7+/u5fRBpIrzY771YpUfavQ6FR4Dr9bo6nU6O0k8mk2zhR0ThnpA7j+SSYuLEVdKKLZ65LKPmEEZPP2i325JO0hQgkBD9ZrOZ2zSdTvOc++4UZRHEer2uXq+X712KIcyHt5PzPD0EsYBjfL49Wg/x9mKPvqZdAIF8e3udjHMdakjwvQsUZZ+4j9egcAdJ6WJBYODYMn2CHUzcpeDHuIuAdpRFSGlnmf7g1/C+MEbc34UCFxC4h4+fO1nc1eDpJvV6PQtepfjhaQ7luAYCgUAgEAgEAoFVnElBAdeB72oAqYD8OolpNps56g/5g1yuq4jvRMTt39JqfQWINSTO3QYlEXTrPdci2u62cE8VoK+0DyLYbrfV7/fVarWyEALZxz1Rq9VykUIKSiKsMFYeOaaIIH1AOPH6Ay6iTCYT7e3tqaoqtdvtFZEG+z3XYV5K27mTfVASRQQMCDuuCC+86AS3jPCX6QKlNb5Wq6nX6604OviOMfItIEsSylrweUcIgWy6cIN444JCKRL42NFmJ/kIWutcHMwtIgDpM+U2n06eaaun17gYwhrFyeH9doLttTEY/9JN4XPl7aHv7kjg+l5TokwD4p+P3zrHAed6+32Oy3QPFyTKVAmwzmkRCAQCgUAgEAgETnBmBAWPBvKzW909Mu91CSBVpEAQmU3paMeHdrudxQbpRERwu3lZEA7CCTkfDof5c1ITIGvuUihJFO06ODjQxsaGOp1Otqw7aSM9Yj6fq9FoaHNzU9vb22o0GhqNRivE0gmeuxMoJglBdzdFKZrQVgSFMtq9XC41Ho/zVpM4REiHoEBlWahPOkkJkJSJYaPRWJlPF1iYL0gyEWbfDcFTEXAM0HZ3d0BUvc5ArVbLLgzay7aSENLSCcE1GVvGqKwBwJhxDu4U32KTdvva83985m6bco07CeZe7nRwYcXXMff0nTbcFeAiEu0pxQvuxzkupK2r4+Br1FMa/JjSAbGuLS4ouUPEi1z69+vqRJQCIuuJNetrHpSuhBAUAoFAIBAIBAKB6+PMCApOaoncQg75nWgs1m1JOQKLiOC1DCiSSOHFqqo0nU5zLQLPwadOg5MUSD7t89oApdUbUsN2ll7wrqpOCkSmdLT9pJMd38EBFwLF+yCotIv2+O4FEC3EDY/kc6yTMd/hAXGAcZzP5xoOhxqPx7neA2PE8SXZ5zvGgjliftrttrrdrkajUS5iyRhz3mw2y+MiaaW2A8fyu6cpuGjB+NJP5sMj4lxrnd3eRQWOWywWeSy9VkMpQJBKULoaHC5GIBYgajGXvs64vtc1uF4RQ++zCxMlwS4FEW+rXwfxwMUv78P18FgIuLelvC59deePiyguyvCZdCKglE4N35HCUy/W9QdRIVIeAoFAIBAIBAKBR8eZERQAEftut5sFgNlspl6vt0I83KZPVB4ihaAAafZifJPJRJPJ5JooM2kDbusuSRfEkXSKRqOR3Q8ICFjV2YnCreEePec6tVpNg8FArVYrixjdblf1el37+/saDocr6R+TyUTSKkGksKT/7lsBIibUarX8ne9aIJ0IKJPJJG+X2ev1cg49ogtFMieTyUphO8QZdzn4ODG2iBYewXZ7v8+bzwXXp61eE4KCnF4oEXhdB3cFUJcAYYL54xxvizsTPNqNWHRwcJAFBQgo/XJhx4k+ffEUCcQA1ofXI3DHQunE8YKh7ipwd8e6GgQ+thxTpnxwHX+uvO0+JhBwdyBcT2DgeggX7iDytrobx4UAn1cEF+7r/XRx0rf1dMeJt/fRaj4EAoFAIBAIBAKBVZw5QUE6qbLv9QVms9lKHj+R3ZIQe051s9lUq9XKBfQODw81Go00mUxWiIkXpPN8dLeKAy9mJ2mlHV7l3wsEOpGFwPr1EBY6nY7a7fbabSE9+u41C0jtIG3AXQ+MkzsGGBPSGJxAuU2fdkDYcHuwtWOZVuA7PXjag1vbnWCylSIEcjqdZmGgtNrTH3Z2YBwQPug/80i7+cdcOeFfZ9t3R4qPOYS7hEfI/dq03Qkp3+OyYR0Dr/HB+nKhhl1KEEHKGhKlw6esE+GiTCkEuAjA2nNHSzlOfo6fy5jRDk9TYI34fcrtNhkPd5eUuzSUhT453tvkbS0FBo7zPpVChB9bPv+BQCAQCAQCgUDgBGdGUPA/6D2v3vPJIQK4ETwC6+6A2WyWSWa321Wn09F8PteVK1c0m810+fLlvMPB5uamGo1Gttx7tJadHTy679sYSickZjab5TQMCBHHlZFfj666rbrVaqnf7+ciiB7ldVJFLQdJ6na76vf7WchA4CB9gLHic9IvGB8n+aSSpJTU7/eVUtJkMllxWXi+OhF03B3MgxdZ5Lpe8NDvWdZAQJjwKD4EuSS2XAMxgc9IFyG9AvGCNiA8lVFurgOhpo/SanoHLhBvv1vpfU4RxFgbrAc/1gsqetFMT/NAsHLC7sKBjyviUGnt9yKjknKaj69Z5m0ymeRjSxGsjNqXgoSTfi82ioBQruvyOj6nPEdcg98ZTx9nd5F4XQaEJ09X8rF1QaEU2DydIhAIBAKBQCAQCKyidqMDUkrfn1J6JKX0+/bZTkrp51NKbzr+7zn77utSSm9OKb0xpfRnH0tjUkrq9XrqdDrXRIURC9xRQH0BzoV4OYGXjkjCZDLR/v6+9vb2dHBwkCP1REFLgjkejzUcDnNUnGMo8ghRZ0cCSDNR6Hq9rtlspv39/Rxdhnj6rgRY7zc2NtTv97Wzs6PNzc3cf+opQM48uuz1InAhICZ4AUR3Kjgx9Qg3Y+gRf+mkZgFpFTgKnPg6qfOie0SXp9OpptPpSnSd8V+X6+79QeiZTqc59aPdbucxZvzKfrrw4oUSmV8XDDzlgDQCFz0gsIeHhzkFh/5zPcD4Q2KlI0GDcyaTSf7Z10PpbkA88fkpa0GAcicEjqV/fl1+d/eO/yN9iPMZVxcJ/HlFUMGJwNjRTsSr8touQnAdLxzKsT6+6/ruc+VryPvvriN3gfg6uV5h1rMkKDyZ7+JAIBAIXIt4DwcCgcC1uKGgIOmVkj6p+OzvSfqFqqqeI+kXjn9XSumDJH2upBccn/NdKaX1fvECEPFnP/vZ6nQ612yvJ2kll5vIo6S1JAgySdR9HeknFYJzICZul/eUikajoV6vp+3t7bxjw2Qy0Xg8zjUFnHwvl8tMZj1C6wTJd6no9/vq9XrZ3u95/E6KIDtcbzKZaDgc5oKTw+Ew5+A7wQMQL8gv/9iNgug7woSkFYu6F7YsXQX0yy31vlsBx5N2AfkrLfkcX1rzIamdTkf9fl+dTiePj4sDCAD+X67t44hw4c4RF0YQgrxQIvUSPK0DlIJWeZynCfixnqbixLl8DnweOM8FgbLmgzsofE1R/6NME/JnYV17XADysXKxwvvPc1OmFDGWPga+flxMKce5vJ+vFxc//Bn2teSOH78O/fH5P2N4pZ6Ed3EgEAgErotXKt7DgUAgsIIbpjxUVfVLKaVnFB9/hqSPP/75X0v6RUlfe/z5j1VVNZP01pTSmyW9WNKv3WyDqqrKZJgtBJvNZiYXtVpthSQhDkBqISOz2Sy7DKqq0ubmZs5fR5jwavBl9N+t6U56IUdch9QCdmhAAPC+eC64bxsJee90Oup0Omq1WtmGznaRXuF/OByuCB9sSekEn75g4W+325JWaxnQB4+STyYTjUajayriS8pFEt1uzrm4NXBqSMqCQZl/DkllnKST4pTeLubCiywydgAiXBJzCCFj4G4EJ8Hci2sh+OBoYC24wOGkF7eER8Z9q0McM6Ujxe310kmxQR+T8hgvSMm1S8dAebxH4d2Z4aSbc9yJUc5VibJt7qDw2hW0sUwr8TXtffC14mIC4k0pNrGenfy7w6QUKPjMBQWvueDj4WLWWcKT/S4OBAKBwCriPRwIBALX4vHWULi3qqqHJKmqqodSSvccf/6gpF+34955/NlNwZ0IRP1rtVp2LEDeISWeew9BoXDgcDjM0Xo+a7fbWiwWmbR7GoUTszISSkR1uVxmAu3bQ0KAPRrtW1fiVvDtLrHuU8eh2+2uRHI9iusOAiff1IYYjUYajUaZhLtDACLFPRmLjY2NFfs+Vvx+v79yf5wQXmDPnSLHa+AaAufpB4D7I8h4sUevm0HbERQYWwfjy7yUaQfu7pBWi+v5/Uhjoa2kVviWkCWxROzi+k74y3Hnc5woTrARzny8+N0/I82EdjgRXxdFd7LNeLh4xjHUG+GYw8PDa9rO80C7ys+8DZ6W488z84fohKjh48k1yvoHtM+fC1/P65wiXrvB52PduDHWpQuGdt8BuC3v4kAgEAjcNOI9HAgE7mrc6qKM60J6a33DKaWXSXqZ/S7ppLgiYkC/38/Ej8g4qQVOKquqWrHRQ9jm87kajYa2t7ezCMB5o9FIs9ksEzYncl6cEQeAfw9x9zSA2WymTqezUiMA0jwej3PhRnZK6PV66vV66na7a23aEFx2pvBot9c4wI0hKQsnHoGXTogSUWPSMdiGkvGESOOi4BzGGRAJRpgBHqnHbeCAWCOUcA4uE+a3TLFgHL34I8TX0wZYR+V2i5zjKQIIK4y7F/rztAbqNKws6mPSCkqy7SSVFAPf3hRRxu337sgoiW5J0lmzTuYZB98pxHfccLCWcGMgoiCW+e4MZV+8PV4HgflAMHCC7wIgnzuJRzAoxTx3IXAs7SjFFF8LZd0JP6es31De00Wocn3fQXhc7+K2urezTYFAIHA3Id7DgUDgrsDjFRQeTindf6zE3i/pkePP3ynp6Xbc0yS9e90Fqqp6haRXSFJKKb9gSVfY29vTaDTKpK+M1rPFIkQXMoR93e3v1CdIKWUCjTAg6Zqop4sBRKwhixBtUhxIZ4D0ekSfFIvlcqn9/f0cAe71etrc3Mw1E+ijuyFKwYToLrZu3yIR1wFkiDZJJxF2yCqiASKEp2TUarW800UZMfaob1lrgGg/Igf1K/wc5gOi7+SP9kMeXbBhvHGW+E4BZTFJFwxcAHBHRVlvA5Lp2yRitUfwICXB1wj98TQZX1NlrQNEHq/z4NF44JF0rlPCC5E6sXZCzG4kvt1kmdqAeOMum3Jur1c/wdNKPPXD6y+UgokTeHfRuBjjRJ916bUWyhQPT7OQTtIV3IXg1/X0Ck/58Ov7PPI+OsO4pe/iQdo5c4UjAoFA4Iwj3sOBQOCuxs0UZVyH/yDpC45//gJJ/94+/9yUUiul9ExJz5H06sdyYQg0REg6IkqTySSTe8/ZdmcDUXMEBoggNnsIrZPxktxC6Khr4Nb4lFIuxOgFDHu93gqBhaBAiqSTNI7hcJgJ5s7Oju699171+/2VQo7UhfD0gMPDQ3U6HQ0GA3U6nZU+eKFIjwy7ZR5CK60WceQ4otUUYoRM+i4S0+lU4/E4uy28joWnU3Q6nTwmzIW7CBgPrPicR1Qd0UTSyrzgbvAikBTc9LGHEFKTgnFkvnC70Jf9/X0Nh0ONRqOVIo6kg/guEV5HY12aDOPJ/DEerDWv9SCd1ILgPMQoJ+0l0Xd4TQ1+9+vQPgfjhqDgKR6l2OL39NQWL1IpnThP6LcLKpB7niX65wUffd58/HAc+ViXNU3Kugk+vqVYUM6XOytKJwefn3HctndxIBAIBG4K8R4OBAJ3NW7oUEgp/aiOis1cSCm9U9I3Svo/JP14SumLJb1d0mdLUlVVr0sp/bikP5A0l/Q3q6q6Kb/wxsaGPuADPkD33XefHnrooUxmq+poy0cs/5B9IrAuEgAirhCblFKOMnoEE3JCxJ7ovZO/ZrOZ8+U95xyS3uv18jaU0kkqgBef8yJzx+Oker2edypwcumpBK1WK4sJi8UiCwe1Wm1lhwt3I/g9veAf/+bzufb29rIowq4SLiR4+oNHwSnI6DnpHin238tUh9L+7rUFSAGZTqdZTGk2m5nsQighnBB+7PyePgDZRKDwKL2LGdzfRarSEeEEulwXkHyuyZpj7JiXVquV+1/utOBRfIpoekTco+yM+7p6Ei6WlGKMjwnt8Eh9WePC++fwZwZA3F0M8N/deVCKJH4NT0+gfQgLOF34V6bysKbXtdHdEe4k4b7c08fF++epFmcBT9a7OBAIBALrEe/hQCAQuBY3s8vD513nq0+4zvH/u6T//TE3pF7X+7//+2swGOiRRx7J5GixWGg0GmV7vtv3IWgQBd/GESs+KRBOOiCORGoh10SSiaw2Go0clYf0eZ45hHBjY0O9Xk/L5TLnn0N6IVUQUO7barW0ubmZLdvumICc7+3t5RQP6kCcO3cuCysHBwcrlni/vtu6ie7j9BgOh7mugDs06DNj72SU6zrJZYwRfhgb7iutFmKkrxBWxq3Vaq2QPyLTzNe6OgEl0fN8/06nkyPcOEnoL+kYvpUlghEiFe32QpSMFf2mr5Bo2sP68bQNzuG/LkYwP4w541OS7hLuSqC9PBvSiWji0X0XfEiN8HQAT9EoU1uYU++v1z1wAdDJuzsn/FrMmT9T61JRXLRwrBMAXGjwe7NmEOu8LZ5i4eLQOlHltPFkvYsDgUAgsB7xHg4EAoFrcauLMj5uOGkhek9+NoXjIDFuE3ciRNFDCAo2f2ohcJ5bvstUB+6D1dpJjpM0z9n3HQqkk0KOOBeIrHoEm/SJVqulqqqyWwE3hW/pKCnvBrG5uZlt/rTFU0CIcE8mEy2Xy0ysGWPIkhM+FxT6/b4Gg0FuHyDqzzaUOAfa7ba63e41QoaklVQRruECgUfyGWOIJe4M5sRTP6rjApztdjvPOeIA7UJI8ug5c+jpGmX9DYgx9S882g58K0Mn5F7Toqx9QF9Ys3zGtd19cL2dEphDj/iXqQ0IJJ7244S5HH+EKSfwzB1t8nu6i6MURSStuBTcKbBObFi3FlxE8FQJniuv61Cr1bITqBRYfNy9T4hLPp600edlnWARCAQCgUAgEAgEVnFmBAVIBHn9nU5HkvL2j76N3+HhYSZ8vgOBFy6EmDqJdrLCddY5DjyXm+tTqG+5XOaUC8jTYrFQu93OZJctLyEuEDOi9YPBIBNzLyZH2yGW1CqQVnPlndy6fR27uxd2XFcYr9lsXlPQENGDWgz1el2z2SyT78ViseLeaLfbajabeYcKjnP41pakeSyXy9wnUjzcGs9cNBqNfE36wPXLOgaeTiKduAukE0cKx7szA1cFDgWPSLvA4GkEXJ/+eds5lnNpl4sETsCrqsouFq7jNSGYZ9+Zo6xt4cICBNuFKObYU074DDHKr8WaLlN3OIf7s5sJ33PdMkXByTnigK9f76cLFdyL+3ntCdwVLqTwrHMfFyu8ZgPH+705hzXh16zVavmdFAgEAoFAIBAIBFZxZgQFdwGQT84f9y4mOLnpdrvqdo+21yFtAfLnlmwvypbS0U4P+/v7K7scuAABoXKSxraQEF7IJkQZ0kw7iZxjtZZO6gVA2J1QTqfTlbSA6XSad4Zga8mUUk7ncILEfT0S7wIAJG1jYyNfx4te4pxAULhw4YIWi4WuXr2qxWKh8Xis+Xyed8ug314gEQIISWfcy+iyb+FY2uedlHuqAZFlj9pzPHNNTQXf8g9Cz3VJRZGOBCvmCTeDjyV9cgcKc+akm3vRZ1wwToJ9C0qu4cUqvX2MDUC4cmGCe7grALhbw/vhhSx9vP35c7JfihglQef+HtV3R0uZFsO1uJc/lxzPfcrfPdWlfA+U68jv72vK0zXKFAoXIDjPxbNAIBAIBAKBQCCwHmfmL2Z2KDg4OFghI27/hmBANrvdrra3t/N5vgUekVLcBZ6bzpaAECBy7suCjR7FpnifkznIEgQL4ujHQ2SIWm9vb+vixYsaDAYr0W0i5UTl9/f3NRqNMklttVorFnbOKx0YkEvfJhJC7OkXtBd3B2keg8FA29vbuRAm6RvlNaUTYk9KCg4A314SgYTjy+i7R4KZ43IOPYrs/9yGD0H0GgJcB3EKMabVauXx6PV6K20qd4xg7sraGuui4Z4+4/UQWNOIT9LJlo30z8ei1WqtzAmClRNd3y7R21yKZ56KwT0k5XXtzpBut7tSXNLn2K/vBJ1ruRjgjgTmhJQgd+T4Nfmcc/13T09gvMoUEn9nAJwJ7mzwdroTonQmlFuPBgKBQCAQCAQCgWtxZgSFD/qgD9K5c+d06dIlzWazXEgRYgj5gnxCzom4e3V+J9geQfVaDHzmhdicVEgnUVa3fSMgEJEll9/TNSDh1IAgysw/ChFOp9MVBwPnLBYLDYfDXCiSnRiIplMTARDx9px3ahBAqEnTkJRdFyW5arfb2traUrfbzaIA6RsUVmTccCcw7l6Dwq3xHuUmRaBM23DSCiFGZPEaERBHCC/94TuPnPv8lhFpj8K32+1r5t53zSjt9ZBU+ui7h7j4Bajn4HUKuLavJ+7LlqD039vF515okTl2crxOZPHUDRwqLpy5qONkn/FygYE15wIJbhyvm8D3CAqexuCOAh8Xfi7JvDskSqGkdDYgOvDPBQ93vXh7fB35M1GORSAQCAQCgUAgEDjBmREUFouFdnd3NRwOM2kk4n9wcKDZbKaqqnJkn8KNkF9cB8PhUMPhMH9PaoLXAYCsQBYgxWXEk2i71x5gRwKirTgWnNATfZaOSAmiAykPCAxE4bnnbDbT3t6exuOxhsOhFouFBoNBdidAKr3AoBMzb2utdrTrxXg8zvdkJwpqPiCCQPzYvhGi5ZF7d2tA5r2/68goZI3jETlcnPH6DqUDATIOYfaouqcOQGaduErK6R4uGLh40e12syjCtpleW4Ax9TXjJNz7WkbyAWKROxboKzU1mM9ms6l+vy9JeXeKUoDx1AvmztNLEA08XcfPpb/ePsQhRCuvTcG40j93jrhrw3emYLxIo/DUgXVpCb5OXEhwccLXIPcoUx187sqUD19fPqalm6NMuSgFokAgEAgEAoFAIHCCMyMorIsieoE5bOMQe8gRZGc0GmVBYT6fa2trS9vb25mQj8fjTMZLwnx4eJi/ww4PUfYdFCC4nANR8wi2k5BGo6Fer5drJviuB2UUHZcFaQ9E9LnffD7PO0FAkhFZ/HfGpaqqHD0fDAYref4e+XaC1uv1JCkLONReaLVaOV3CdzdwO7oXmYRAUlEfR0kZOed8jmH8mV8n0ggwjA2RaUQf5gYBieuXufHch3oSuCr4jPZ5CgnH4JzADu9EmHktd7Vw0usOhkajkV0f3BNxgfuUaQc+jr6rBmIY89Xtdq+pWUDbWLvUYmBt+vkuKDAHrMOSrLPucWAAFxRKsQVhwo8tz6P/pVuo3F3C00y8RkLpWGBt+nVd3PE28KyEQyEQCAQCgUAgEHh0nAlBoV6va2trS9IJoXDSW+7GAOGErBA1pTDjxsaGNjc31e12M2EaDoeSlHcd4PpEuXE09Hq9TJ5dUCgrxfO55/x7jQPcCIgIvo2hpBzhJU++JKeMC0T08PBQW1tb6nQ6Go/HK7tOkGKBMEL72ELx8PBQo9EokyS2FfRIOS4GxBvqS9AehBvmxLdkbDQa6na7uQ+IP07KneQ7waRNXAf3iUf2IfVsw0mf2UlDUm4/hN7rZnBtiDp1CnC3QLwh+KQb+E4Z1OigPS4ouOhAzQPcEb67A/PqbgqPkDNXjD3X4TsfNyfKzDf9ZB7dXQCJLvvrRR+ZH4/ye998R4eS7LujgfXvz2gpbpTn+b05p3SVuPPBXQe+RsriqC4O+fgxN/4d4NlnvAKBQCAQCAQCgcB6nBlBod/vr9i2nUi7S6DVamXSJp1E07GsQ6J6vZ52dna0vb2dUydK8uIW/JSS+v2+ms1mtnT79YjA+/aDnjpBMUX6wLU8hxxxwUkXBJcdCrrdrtrtdib97C5Rq9Vy7QWKNVLRHxLqxNMLTHIMpAkxAaLbaDTU7/fVaDTyOOJQKFMhnMC56wJBwdsFCffaF7TBo9QuprjTgx0xyhSI5XKp4XCY573T6eQ1AQl0cYe2Ihh0u938s9eAcOLqdQxIHWGO3JHCz6wFhA2IrBNwr1WA0DUajbKA4EKMCzkuZuFkYf1RsJF1SnFThBavjcCa9mKQZdoJz4aTeXcbSKupNqy9UsChEKgLCFyvTG1xl44LCr42aH8pZLjjx9vN9y4IlmKC116g3/ShFDsCgUAgEAgEAoHAtTgTggJEwIndcnm0dSI7DUBsifoTlXfxAVLl9RV6vd4K8Yfwk9oAuRoMBlnUcEGBNkESIUlOOHBQQKw8mgpphpRTewCiCDlz6z4pC9SFODw8zKSZ6DH3cvLvRNYj507+6JeklQgyP4/H4xURB7u72/w51nPosdnjgED0YG48l19a3fpPOtmdgTbSH2m1NgTuEVJbPJefcSxz6onYQ8C73a6azabG43He+cFFGOag3++vuAWc7LrrAaLNcZB832nE6xFQIJN5ctt9md7gxTAZN3dG4J6o1Y6Kana73bxmPDWEcfQtLP1zd0Z4LQnvu4sLXg/Cx1s6Ie/uyGCMWQ/uCnDBg999TPnOx4gxdQGy3OnEXREIWJ7m4Ocz/z4fZSpEIHBW8Kbv+Ch90ktee9rNCNzB+Llf/DA9+2t+7bSbEQgEAoGnAM6EoOCugZRSJtKTySTvnADBw6ItKQsK0upODJ4aIZ3Y/7GhI05AOKiuT3FFt7p71N/JFKTH0w086guBoU8URSRvvdVq5ZSF6XSat7F05wIiAI4HLPpOyDy1Acu/V9z3dAsi5vQZ8L2kXMPBySTXcrIL6YJUM6YQ7DIH3udZOhEUnHRyDOkt9HM0Gunw8FCbm5v5Hk5eERJYB761JyKAk1z6xK4aPt6Mq3+Gu4H+4spAmPGoPO2h7WxHyhpBWGKteWoFIhdz5bUkGB8vEkgqAs8Az4avaz+etePXwpHCOnLhg/lzN8p8PtdkMllxlLj7wmtZ+Fx7fRQvgupuA68HwRggjCDiuctDWt1+tKwLwvot6z943RDmcl0tBtZZuBQCZwXv+tqP1t/9wh/Xx3d/Re9X7592cwJ3MN76Of9Fv/xpz9C3ftfn6N5v/9XTbk4gEAgE7mCcKUHBLdXY5YlsY3+HaHh0GsICwSM9ADcA93CRgFoK/nlVVZpMJiuV/Z1clkXg3F5P5J5I+Wg00ng8liRduHBB3W5Xm5ubmZxubGxoMplkyztEfrFYqNPpZBK6XC7V7/dzegYpEKRYuJOA9rm44e4CyBntlFZrGsxmM43H45XIrBM+F1bKlBDPe6cfkEvm0dspacXt4WSWKDpOjdFolNvC+NI3xp8ClM1mU71eLxeY5J5O+n0smF9JmdiXwlG9Xte5c+fy2LJWcQe4+0FSTlehj9KqI4N1w/wyHpBfnzd3TpRpGVyLdBQ+oz3cF7ibgHEfjUa5baTFIHh4qgWiAvcs0yBcOPL0Ak9bQujydQB5X+cE8GNdION5LFOY+Ixr0RfSZFjbtK3ctYXPEANZszg3AoHTwuQzXqxv/xffoXs3fkX31/uSQkwIPDE8s9HXMxvv0//81d+sv3Dla7T9g+FWCAQCgcDjw5kQFCCJkCxs99IJ8ZFOCgE6MSJtgBQASZmI4krgHogRJaEmEgzhcfdBmUftkXkim5AUyAm1D4bDYW4LhQvb7baazaaGw2HeHnK5XOZ6ABwLySM9o9/v5+tOJpMVe7gXAeQfRHMwGKjX663k83u0mWtIyuS4rBFQphZQ5NF3KoDcD4fD7CrhM6+ajzDh0WZ2t3BhAiLtpNsL73mOvZN3BAXf/tLFJhcs3OkA6fRCfggmiDmcXzo2fB5oz2KxWKnT4MSe70lbKIl+WZdBOtli0S3+nO/FP31LyNKh4EKEdO22o+40aLVaknSNYOXPEoIQhJv5LdMpGEfmoEwd4efpdJpFAcg/bgSvK4ErxmsgsD58fjxNxQs1slbK7zyFx+s7BAKnhY0PeKZ+9Bd/RA29Wt1aS1LrtJsUeIrhafW+/ts/+5c6/GcLfe6nfrGWr/mD025SIBAIBO4wnAlBQTqJ4EIifZtIFxS8BoBHm6n4D5Hwgnu12lEhPhcIIH9e3BGCRp6+R5Rd2Gg0Gup0OpJOCBMRZc6B/HNsr9fLdnkXBmif2/YPDw81Ho81n8/V6/W0tbWlXq+n2Wym3d3dFcGF9kHYnPh5GgQ7YPj2jT72k8kkb8no/WJHCbfA8z3XYB4mk0mubeA1Kmiv31M6iTx7jQR3QTDPtJn5Pzg4yO11EWlzc1Obm5tZHGBspNX6GV7hn77VajVtbm7mNUIqAO6YjY2NLJRwv42NjZymUtbkgHB7X31dIRCUkXnWr7skILYQZnbhQAhjDvx+ZWFD6aRAIwTdd/JASGBrUsQJxsjTFqiXISkLPl47gvXkIgjzSDukE9eLuwT8fjg2SkGJc1108z64q4YxdidHKUgxXqTKAK/xEQg82djY3tKrfumnJHVOuymBpzi6taN3839+1Y/okz/us7R481tPuUWBQCAQuJNQu9EBKaXvTyk9klL6ffvs5SmlN6SUfi+l9FMppe3jz5+RUpqklF5z/O97brYhEFjfzhDC0e/3tbOzo263m0kGlfoPDw+1v7+/QnyxLUO6nagSffUce46F9ELwsYETQS8L9LlLoIyGI26QqkE0v16va39/X3t7e5lkHhwc5Mi+uzQk5a0vqdxPqkOZt+4RawgV90boYDxJgYCUTadTjUajTA6dPHpUGCs47Tp//rwuXryoixcvrtjEETK4j3RC2NzC7yISc4EwQ1pIq9VSr9fT5uZmdieQKsL8tlqtLCaUxQ7ZgcNTFRAoIL/NZjOfC+mn5oHXjPDighBo1qLb8L3wYpnO4ITVr8M8+n89baBcj17rodVq5RogXBe3BmuZufeIPyKEFwz1+gesb09XwNFT1r7wtrsIwtphHnHMuMsB0cu3VnVhxVMs+MdYlyKVj6WLUy6wuODAdRFnmMfSzXEW8GS9iwNnBA/ed9otCNyFeNUv/ZQ2nvMs1Z/24Gk35Uwi3sOBQCBwLW4oKEh6paRPKj77eUkfXFXVh0r6Q0lfZ9/9UVVVLzz+96U30wiPbg+Hw5Xq+NQe8MizR3vJ+6daPwTPiaukTGrIqXbSQA4+hMnJW2l15/6IA26ThuzhsGi327p48aLOnz+/svWi11yA9LmVHfdCOq71QF93d3c1HA5X0ju8or1H9iG2RNZJZSCdAmECBwGCBv+8VgQE0qP+3W5XFy5c0Pnz57W9vb3yfbvdznUfQLPZzLs2sKMAcwypZCy4hxNL5mw6nWp3d1f7+/uaz+fqdDra3t7WuXPn1Ol0lFJaqTHhu2A4yYT0IjBBwn3dsFYkrawl2sSuCswR7aWvHpkfDAYaDAYruzZAdF1s8joP7l4oxRfazRqCEHsBRebNRYdOp5P7Tx9ImeCenn7hogfXLrfc5PouZvn69D7iovA0IebeU0l8BxKug8DgKQ2lIwchp0wZ8bXr7iN/9jzVxGuEnCG8Urf5XRw4I6ht6FU//29OuxWBuxSv+u//r37k1/+t0os+WLUPfv5pN+es4ZWK93AgEAis4IYhuKqqfiml9Izis5+zX39d0v/yRBqBRdp3OvDCaf1+PxMM3+Hg4OBA+/v7unz5svb29nIeOd8dHh5m8kOdBo6B0CMCcC+Im0fQJeVruoUa4gP5hqDPZrNsDYfoQlrop7sc3OmApZ0q/5IywcdBIJ3Y1EuiBFmHIO7v72d3BaIGRBvRxAUKSSuRWSe7CBuSdO7cOe3s7OS5mc1mKySPYoySspDTbrdz0UvaDqFjfiDM1CJwgsp8D4fDLBAgOLXb7Xw+fWPM+dnrTNAuyLKTSC/Wyfp08Qkizlpgvl2gILWCYxnTq1evrow1UXF+Zm2W0Xfax/ywW4iPOeuQ8SddAyHM2089D8adPnANF3fKOgXu+kAQon+sL0/78JQEd77gWvAUD3/eGHtf74g0OE1IG/K1SvtoOzUzcNfQZt9Vw10/pF+cMTHhSXkXBwKBgCRt1Tr6mf/wQ/pP47a++W9//jXf9179Ni0efuQUWna6iPdwIBAIXItb4en9IkkeSnlmSul3Je1J+gdVVf3yzVxkNpvl7ei8mB/RVyz/BwcHOdJ/+fJlvec979H73ve+TJghSCUZINoKgZBOcv+5F2RI0jXbQXrk1n92p4QXnyOnv9/vZxv4dDrV3t7eihMCAQXCi2gAyTw4OMhEUDrZ6g5iTj+8BoOk7A6A+EGu+R3ChyUeS3u3281CBukLkC+IVkpJvV5P99xzj3q9npbLpR555JFrKu4jyDhRdhGBNAmPJEPwGVNJ2dlwcHCg0WiUazRAjL2AIMSe2hQuDiAYQPxJVfCdGHznDK6J68DHn7XGWsLhwj24Rrvd1mAwyEU/cYKsKwTo4kkZYQeeUuGuCObQd8tg7ug/NR94xhhXF5doB06WdTsc+K4diBs8V7PZLDsj1okS3I+xIeUHN5A/YxB8T03wNcvn/vwgGpUOA9wUnENaDWPv7wUXdLzddwBuybs4EAgEwKd0p/qU733FNZ8/+8e/VOde9+z8+/l/FbtEHCPew3czXvKht/RyG298hxZXrtzSawYCtwNPSFBIKf19SXNJP3z80UOS3q+qqksppY+Q9O9SSi+oqmpvzbkvk/QySTnSuL+/n6POEAiIG5FnChUuFgvt7e1pf39fk8lkpdgcRBSS4OTfLe1E8d1h4NFzt7mXBNDt4BAprwHR6XR0/vz5lQJ2pENIR6RxNBrlyLCkFfKUUsrFByFSTsJJGaAtCBaMHwKAR7m5/3K5zDZ3CCbj6zteTKfTbJH3CHm73dbW1lZ2X9BGJ7fu/HBS2el08vz6loIQYIQHd6LwO5FmUhEg9lzbRRNEG8gmAsVyucz2/9IJgIDkYpQ7HZy0snb4zCP89JnaDNR/4Hiu6/UAOKf82euJME+eJoNjwLcgxY3ga8nbi7uCY4jQI/x44UPGjc9oO88X648x4Tzu684AnkWcG61WK1/fC2yWtRJcTOB+LqDhVkA88foZPMOl4wBnh4+TC1AuXvA+Ocu4Ve/itrpPVpMDj4K3/8OPkvTbp92MQOC6+KPPWS0H8Pyn/Q2lpdTYl+7/1l89pVadLuI9fHdi+bEfpnl3Q0pJb//EDenaWNDjxoXffb66Dx+7fX/hNaqO/54KBM4aHregkFL6AkmfKukTqmOmWVXVTNLs+OffTin9kaTnSvqt8vyqql4h6RWS1Ov1KiLuTgI90u1/7OMeuHr1qvb39zNJlE4i8uyuUK/Xc6oC0Uiv7H/clkx8aAN1GfidaKfnaEvKBJjK+x79xlXh+9kTCR6PxxqNRtkZIWmlDbSJav5O6iH/klZIFg4M+g1pQmwgEozQAilzqzxkkzQJIsiem7+zs6N77rlH/f7JXuhY+xuNRk7RgKzSzk6nk23mi8UiF9N0R4GTP7fJQ6ypc+A59kTcIbSj0WhFgGENTCaTTGTb7XYmiu5+QVByyz194L4UW/TtJ72GBf3u9XorW1h6cUuOd8GHNvs69UKfEGTG0HeaYNtRdw6UUX2EBY/G09Yy9cbThnxHCeaBa/rapIimP6uMEcIHzxNixGw2y8Ka7+bgzg3a5I4H36UCF5O7k1yEcdcD//X0CX/frLvfcDgsX19nCrfyXTxIO3eUJeOpiDf9y5fojf/Ld0jauOGxgcBZwRv+2ndJkv7wcKQ/+9y/rcEb67rv2+4eYSHew3cnDv/0R+idn9DUon17pux9H1YJqnbPzotUW0hpUan3k79xW+4XCDxePC5BIaX0SZK+VtKfqqpqbJ9flHS5qqpFSulZkp4j6S03up5HKSWtRGEpGicpExX+sUWh29YpKojdWzrJgS8LDbrFGRKCMDAej1eI8eHhodrttjY3N9XtdrNIIWnlWEm5WJ90IiIgJJBzPxqNNBwOc9t99wL6Sn8RASStRHylEws+qRGQeunEocHxXkTPd5OA5FFjwW37Xhuh1+vp3LlzetrTnqaLFy+q0+nkeg1Onn37SUhqq9XSYDDI4z6ZTHI/PQ3Co8XUtPDUC86hNgDzQqqG1+BgbBF6GBMvIMh1Szs80XTfqYDvut1u3lLTt7z0XS04DvGJf56Ow2fHz84KacdJ4qIa8+27GLho5cewZplXX1OMN/CUHBdQXCgBpONwbwQU5q/T6eRCqaw7nj1Eo3a7rV6vl58P2u7XdvcA1yfthGeVZ81rYXAP2uVuiTJFovwv53LfOwG3+l0cOH38/Gd+ixqpf+MDA4EziOc2enrrp79CPzdu6Ktrf033//OnvqgQ7+G7Ewd/9kV698c1bpuYUOKRFx/9Ny2StrdfuvLdzh+MlX7ttU9KO2433vl1H636R52keTzwuW/V0rZtD5xN3FBQSCn9qKSPl3QhpfROSd+oowq2LUk/f0ygfr06ql77cZL+cUppLmkh6Uurqrp8o3ssFgvt7u6u7A8PGYR8OMmF9EN+IGJERbH0DwaDlcjtujoKRMQRNSD+WN0l5XsR/Xc7+mw2y4UPnQxLyq6A0sI/mUy0u7ur6XSai9KNRqOcvuFiB4ICBLFMkSBXHVHAyZBb6IE7PHwrTK+T4JFpUhcQBJ72tKfp6U9/ura2tlZcC+wg4JFiCBppGF5P4nhtXROJ9s8RDIiIu1PAU1darVZ2SyBKeTSeGhIUcMQa704SJ86IDDgzaA99q9frunz5sobDYZ4D0jAY8263q16vlwtyQoJ9e1LGm+tDjLHrOzH2FAB3Z7hjxaPq7kbxNeBpMy4wIB6whj0dxOeIlAm2bEUwczHLXQhlbYRarZaFFoQQd9vQR9+RhPl0kYp2MCfrRAHmzsU4TzXxtUbb/Llyh81ZwJPxLg4EAoFbgU/sHurb/sb36u/Mv0T3/cunjqgQ7+GAJB1+4pGYMO8++cGHakO68sGr9x09vafmiz86//7gD71Bi0urS23jwnm96y8976bv0xhWOv99t742Suu/36d+/fqppN9w/3fqT7ZPAllf+Isfq9mio4cnm6r/6bff8vYEbg1uZpeHz1vz8fdd59iflPSTj7URXq+AP+aJ7HpEuVarrUTVpZPtCCEvEKV+v59JpluvIZBYxSH81FLwvGsiopBRyCHnHR4eajQa5dz1dQUMnahBriFiHI87gaKUZSoGpI8+ePSUKCxElPGECCEc0A8EGRdA3ILu22VCfheLhS5evKitrS1duHBBFy5cyA4MIvhO0DxdBScHc0gbaE+z2VzZecEJtu8i4DtMOAFmpwAEACfing7CvPR6vTwHbG9JDQJ3DuCM8W0RaQPFNXGFUCSRehnpuGglqSeSNBwOs7WfSH6v18v99S0VcRXQF9IcXPDw9cX8e/FSyLNvE4lDwh0BkvKcz+fz7GZAXPMCnYwjz5WnFrRaLe3s7OQ0nV6vl4k7wkvpOPI0IV/zvh69jb5eEQy8TkpZ8JP15TtnuFjhbg+vseBixFnCk/EuDgQCgVuFT+gs9L1f8R36suGX3RZichqI93Bg8fEfrnd+fEOLztlxMh5sLXWwdfL72/7G85WKcgtVXZrt3PzuVWkhTb7uSKQ4//q5Ov/u1Y+7fe/+qQ/SFz7n1yVJX3Hud7SRao9y9Op3P/B+R3VMD6uFvuP3n6MffuuLdOHT/vBxtyVwe3Ardnl4wvBIYKPRyEUFyUOnSj4kAdICmYU4siXe9va2tre31e/3swXeK/dDFIj+ez415Bsi6qSl3W5n1wGkzIUQ+lHeD9cEgghiAhFpr/zvW/BBLImoUzTQgSPCCRnjRloDaQu0E7IJCQVubZeOxAhSMDqdjnZ2dnTu3LmV6vjMA330CHFKKYswHj12ez7t8poJzLWkTOTb7bZGo1EmsAg+bEk5n89XinFKyvUgiGS7SFCr1XL6yng8XikI6HUSylQJ7PwQcFwObF3JNXBkUAhzOBxqf38/k3TfShLBpUy9YE1tbm5mIs26dWcCggRzOZlM8viwtaQTbgQG1n9ZjJTUB8Q30lN4NhGBGJter6fz589rc3MzrzfEEtroZJ0+IAq6iwIxkbGk3S72lCktXnfEgZMipZSLoa4Tm7x+hLexfB4CgduNj/jdpZ5Rj4JsgacOXtLe0I98w7foC/f+jvo/EXnfgTscL/lQ/fEntbRsnR0xYR0ei3BwPVQb0vSeo+s8dG5DtY84SrN41k9c0fL33nBT13jTd3yUXvkp36sPb/66+rX28aeP72+rRtrQ39l5i162/Qf6nbe09QU/9zI990sfv8gRuLU4E4KCdBKthgRCQkl58Bx1yCOR2X6/n8WFfr+vc+fO5Xx9L3DnhfbYptKLHvoxRJdHo1G+N+kKs9lshWx4UUWI6Xw+V6fTkaScqjCfz1cKBtIXzoFMIY4gOnjRPLeR+5Z9vuWf5+vjqPAoMATU28dnEFdqUfix1ElwRwjpE+y4wbww9l7vgTQSJ5cIEu50gDBSJ6Hb7ea5YOxpE8f4Dg6+G4ILNETwp9OpGo2GBoNBJpSli4QUBNIlcDLs7+/rve99rw4PD3MxQNwwKaV8PPeiNgiiEYQcok+aAvUiGCcXWYi4Q55Lx4kLX16Y0VMiXHDy9AtEJ9wMCHakDOFoweHgxU+Zi+3tbd17773a3NyUJJ0/fz6vbcQzHDYuYCBw+E4liAC0vxQKvO6F7wjCePjaYlx5lkhj4D3D+JUpROBOqqUQeGrgxf233CByEwjceXhuo6ef/tZv02e/98u08Yu/c9rNCQQeN5aNjTMvJtwOLBuVlkexOr3pL59TWr5Uz3n5H2rxvkvXPedt/+Sl+v3P+pfq1pqS2tc97rGiX2vr49rS6z71O7X79gN90rf+Xd33L56ctKoX/q70led/ZeWzf7v/Av30C849Kfc/yzgzgoKT4263m6OjvV5Pm5ubK3UWIOGeVw/hpnDg9vZ2zsHGvg9BoeL/7u5uJoaSMqHxnHG3aUNcKfoIEep2uyu1GOgPkXJSIxAUvD4DYgLkh6KIklZs8JKyrZ+6ApxD1NnJsFfk9+02ERgQaohGU4fAC0NS7PC+++7LhBHRgTmAmI7H42zrJwWA/kGAsdE7cWfuIJe4AyCVjA/zSP9YF0TQZ7NZnifmAleBR/I9xYPPGFPmDUcDx3mEfzKZ5PlvtVp5W0hJOW2Ctk8mE12+fFlXr17N5BtBwWuFlHUM3CXDnK+z37sQVavVcooKYhKCjtcj8fGWlJ+HMmUF8Yi+ImZxDiJFp9PRxYsXtb29nd0aXgQT4u6FI1kT7pjAlcGa8MKLnkbD7zyjw+Ew95W1TQ0LHB++nStpL2XRRq7rdRRoayDwZCDV66rpiUeVAoGziHMbXf3sD//f+rQ//b9q8fo3nXZzAoHHh9B7VdUrVZLe+PXP0XO/8UDL/f3VA1LSe77ypfqDL/pObaTm2mvcCnRrTXVrTf3O13ynXnrlb2rnR35b1eHBrb1JbUNpY0MP/cSz9Vsf+UNqpA1Jq0WTv/zcH+tL3/UWfeobPkPpkx5RtVhIy7vvb8czIShAMDc3N3X+/HkNBoMcHWSLv/39/ZwWQOSWQoCQj36/r52dHZ0/fz7ns0PQfAu+w8PD7E5wlNXlPUfeXQ0QDSLRgGgpUX1cD/v7+xoOhyv27cViofF4nB0InlYB+XHrP32m/9R1QOjwHHH64hZ/xtgLAEKYKSBIn313AAotNpvNXECSdhAtHw6Het/73qfd3V3VarW82wNjgYvBK+rzz63rCCqdTkebm5t5nhAI3Nrv7hOPnrPzBKKDpJX+e3oI5JMoOPf3dATpJHViMplof39ftVpNW1tbOnfunDY3N9VsNvM2o6wVtkH1dUYqT1k3AnEFko+4QXQdtwuOh3XPD3UxWOu+DrygJGPFeoJkM17Mkacc0EZPuUBQ2Nra0n333afBYKCDg4O8XnDk8Hx4fRJPi/E++LriXogF3NfBukck4tmmvTwrvvVlv9/Pa5NnuBQRGDcXCAOB24mN7S19zC+9R5/eG9/44EDgDsVGqmm+09PZqk4TCNwcah/8fL35M1un3YyzgyT94T9+gZ77Da87ERVqG7ry+S/Wa7/mu/RkqS8bqaZX/7Pvlv6Z9Imf/VdU/8N3SZIW733vE7puarX0lm/6cP3h53+3pFfr0bZybqQN/ewH/rT0x9Iz/93L9IHf+FYtr+7eeoHjDONMaG1VVanT6WgwGGhnZ2clFx1yCnmAYHkROizZ/X5fW1tbuZK/tJqGcHh4mHPZIV4QTKLBkGiivvyXqKrvgABxo5ih75hAdHQ8Hmt/f197e3sajUY5TYA2008IdVnYkaguxMYr+iNGuDWeY7ziv5M13/3AHQH1ej1HjT3dpN/vazAYaHt7Oxc/5D6M59WrV7W/v5/P9Zx4jyx7Lj3Afo4bg7771o6skUajkR0BOFhwa+BqKWszuB3enQEQTfqM4ODjwVziOICs4oLZ2dnJwgf1EXytICrQFq7FGJZuDdwpPtdeW8NdChxDn1hX7vxgDWxvb+v8+fPq9Xq5r6xrxh9xqtvtajAYqN1u560xvYAn48AOEpubm+r3+/k58vVR1unApeDFV3E/MEalI8DdCL7jAtvG+lzzTAKeM9xJg8FAg8FgpWiopy7584iroaxZEgjcSmzce482XvA87bwq6esvvPG0mxMI3Hb83E+8UhsXzp92MwKBx4RUr2u+fets+08lvOkfvUAbFy9KkpYf/SF69T/97lNry8/9xCv1qtf+vP79a35GGx/03Md9nVq3q3d81UcciwmPDW/9zFfoVa/9eb37b71Itfbds2bOhKAgSf1+X+fPn88RdXZkoLggUf7ZbLZiE/c977HtQxrYEYLK+qQBDIfDTD5wApCTDWlykomt/+DgQOPxOBNF7PFEwon2Ikg4AaONROypb+CV9333A7d+41jAnk6aAqKJW8y9CJ47H6STrRSJuEMAU0oaDocaj8c5au/CQ6/X09bW1kq/iL7v7+/rypUrOjg4UKvVWiH6WOKJtCPAsKvAOpKNe4LPfLxwpPR6vRzlZx5IYaCGAMUQ3W1RbsdJm7xQposwklYcK9RAGAwG6na7K0QWUYc5o48QfXeFUNTTdyHgu1JQ4HfcIIhWXgfAd7fwGhStVktbW1u5QClryR0ZFI9EtGOs2GWDgp4+76RRnDt3Tvfcc09Ob2E9VdXRFqxeo4H174Tf6x9IJ04lF04Y/7JAImucd4FvD+v9dDcTggr1OsrrIuog0LAuAoHbhTf+vWfpVT//b/RDz/jF025KIPCkYf9jP+C0mxAIPCZsPO0BveUv3D3k8LGgqklv+poPUP0Z73faTclopA298md/QMuP/bDHfG6t19M7vvyFet2XfdcTasPvfdV36aGXffhdIyqcCUFhY2NDFy5cyPZ96gz0+301m81MSLC/e4E5/uCv1+va3NzUvffeq3vuuUf1el1XrlzRww8/nMkuEWCvCu+E20k7EdjlcqnxeKzRaJQFDUhKs9nMFfgh8JBeL8znpISt8mgvKRtOcL0CPiQ7paTxeKy9vb0VhwZiB0St3ILRHRi+0wFiBON99erVTMggwOywcfHixSz2eLrAcDjU5cuXtb+/n48nmk+fyu0gGX9IuO+QgKhTuhMQDMr6CowRVv79/f2cGlPm+bvLgIKT1NJAdJKUayeU2xRS5HEwGGhzczM7EcoCoS5aEPEuXSBeA6PX66nf7+fvuadv34mYQfFEr/OA4ICjBELMfFCgFIHAayFQ64L1SlsRSxCufDcE336V9CR3FrBLBPU0hsOhrly5oitXrmixWKy0kbXqqUY4LHxu3YWDkOipEDyvjLfXPqAGCs/purQJnjN33niNkEAgEAjcOvzy//W9So3bl1sdCASeXCwbld70sge1++zOaTcl456Nnv75D363Jp/x4sd0XvWBz9Tvf8UTExPAa/7ed+ldf/PD74r33ZkQFCDXviNBt9vV1taW6vV6zk+HDEBgnJw5AR4MBloul7py5Yomk0mOUBIF9pQD8vEhusPhULu7u1kgWCwWmkwmK7nwHkmv1+uZwHY6HfX7fXU6nRx5p9CkF/cj9/zixYs5cgwBJ6pO9BWCS2FHbN4UnYM8QXycbHl9AJwTbvuHuE2n09w/+tJut3MbL1y4oF6vt1K4bzqdan9/X6PRKI+j1yjgWuXuE7SJdBai44wRrhSv9O+pCLgD6CvXxg1AfyGg7hhhpwHy+93BIikLGbgWvEgi8zsYDNTr9fIccV8EJiLmXqQTFwskmvHqdrsrrg8vQihpRSRCAPG1jJiEkIXbgVQGxALftcN3kvBdRbwuR6fTyXONmIPYMZvN1Ol0dN999+n+++/XYDDIjpCqqjQej3X58uW868eVK1e0v7+vw8PDLBpwP8QE+uPpRcw9zzu/+zX8uaU/5TaQjAN1Ezzlxt0JnOsFHHH4BAKBQODW4h1f/aLTbkIgcFNIrZb2Pvz+027GmceiU+nyJ05Puxkr+NBmW//gn/+Adv+3l9zU8bVeT2/+3P6ND3wM+L2v+i7VtjZv6TXPIs6EoABRIGJZr9d14cIF3X///ZkIeC0Br1Dvec6bm5va2dlRt9vVcDjM0XwnlRBUFyKkk8r3EFIcBuTCs4+9iwRsK0jBwcFgkAkyJBJS5zUder2e7rvvPp07dy6TnbIAo+80gYtgd3dX9Xo929gh7qRSeF46keLRaKRWq5WJODZ52oL7AgLMWA4GA21tbeWIPO1HkMENQOTec+Fpl9dkQBzhGjgT+v1+FkcYM9wK3ieIIYUNnbD7GvDijiUZJE0DwupRf+7jtn5IL0SefkI4qZGBmwVy7lub0nci66SSOJmHBPtWip4S43UwEG5cOGKd0T4n3LSXbSsRr0iJ4LnDudBut1eEKCL87BhRVZW2trZ0/vz5LPgh5BweHmpvb097e3saDofZ/UGKBIIHoiEOH3Zd8BoG5ZavPI8ITzw3ZV/K3RtYC6Xjg3Hlv56iIp0IKQhbgUAgELh1eM2XfcdpNyEQuCnU+j29+2OjlOidik/sHurvfMOP6vIXvfSGx9Z2zunNf/F7bnkbXv+Pny3Vrl/U8amAM7HLAwQJYjwYDPTAAw/o3nvv1ZUrV3K0EcLlUVZIQb/f1z333KOLFy+q0WhoNBppNBplQtRoNFai5dJqfrZbniEoRCy9JoELCkRkJ5NJrgFBYUAIHsIF9viqqnTvvffqwQcfzH3Cjo1rotxtwi3cbFXY7Xavsdt78b+DgwONRiNNJhP1er2cRw/xg/AT4ZaUU00QZtjFwIkyEXvcB4ybp5B4pB3yz7m4T9j2EZGBdAqPmEvKKSm+wwP3d5eJ7xrAGDq5ZKxYM55n7/fxz8nNx13haQ6kISAa4CTxex0eHuZ1gFhGPQLWpK99TxEp0x8gzl6bg5QFFzjK+heLxUKj0Uh7e3v5GovFIgs3rAXG0d0eEHKfD4o8bm9vq91u5zFgXZEWxPrywqZcm7VBAVR3Q7jA5/32opSMIfPgtRDctYLjhPng2XYhgbFzMRFBwwXHQOBWY/IZL9bn/8+/dNrNCAQCgUDgKY3P6e/qH3/qnvT91z8mNZp653fcHifBWz/zFfqkr3ixqqfwdpJnwqFQVuRntwbs2mUxN0krf/x3Oh3t7OzowoULOd2ByKjvOuDEQVKOFEMgiHJCorx4IvvXE+EnCj8ajTSfz3Ob3T4unWz3CInc3NzU/fffn9MIPKJOW4jA+vaIngvO9n6ICV5UEhKFnT+lpJ2dHW1vb2fCSDrCeDzObghJmQBub29naz9kHVKGkADhhoR7QUkEGRwIXusBWz2CjdvZyx0YJOU+YcWvqiqnoPgWifS/jOoTeaZuA210hwPneaSadYI7pSSdOEBwwCCkeA0M2iVpZcyIftNXxpZr0293fvCcQLBJmaDuiN+3Xq/nugnUx3ByTx2N0uLPs8YuKKSguLuCNdjpdLJYgROBYqf+vHqBTfrLmvPdH3iO6RPPuNdIQVDw9eh1QjjOC6yS2oIrwlMefNxd0GFdu5snELjVuPz8ur7x4h+cdjMCgVNBI21o9DPPOu1mBAKBuwTf+qE/rvf87Y++7vfN/7Kj1774R5/EFj21cGbCbxC5Wq2mc+fOaXt7W1VVaW9vL++qAPjDn8jw5uZmJsG1Wi3b+LkepMxz6CGQfA+5hMRLylZ3SJsXcEQ4wI2ws7OjWq2WyS7fkzvuWwJCyLDfO3GbzWZZvICIexFIBAOiwMvlMm/351vnIWr0+33t7Oyo0+nkaDI7Y4zH42w357wLFy7ogQce0NOe9rRcvd+3QfR0EYQg2ufFKRESUkqZdC4WC3W73SxgeCE9BJzJZLKS2oJAwBwyvhSi9Ig8pJq0Gb4jyi8dEVyEGCeikGYK/NFvUjqkEzLMeaxBCC5j4sIY/fJ2IRJ5vQbmpSwWSlsdvqZ9C1PpKLLf6/VyYUVIvlv3uTcCEe1aLBb5eHde4FigHgSpBru7uyvboXqqgRd5pF3lzgs8H8vlMgtqPu5efNRTJdw1xLzRL+7F9X3bSwQVFxw5HrBecEtMJpPH+CYLBG6M6ae9WP/0r77ytJsRCJwqfuyD/h99sT7mtJsRCARuAZadpf7tR3+vpLNZgPATu4dqf/l36Ssnf10Xv+fXJEmzn3uGPuaeP9JGWuqbLv7MKbfwzsaZEBSwj49Go7y3fbvdzts0QvJcFJCULdODwUAPPvigHnjgATWbTe3u7ubcdnLIndAQhZRO0h/KbQIh0b5bgxdB5JiUUibPbi3Hyk20HkGBbfqqqtL+/n6OWlNpn+iq27+n02kmSdIREUdkYeeBdrudi99BsHE5EPGdzWZ5e0jGle0W2Xni4sWLevDBB7W1tZWdDtzPxRcnydIJIYcc4grxbT1xX0ir6StuP0ck8flgLKkjwY4Uvn58lwGIPp8z1+4WoC3uCiC6Lp24GIiA02a+o24GtTnWCQrUI/CdLkjFgExTENN3pvBtE2k3RNfrXzC2LiiklLS1taVGo5HnDhHH620g3jDvnt4zmUyyk2RjYyOLQRDtjY0NjUajfH9It6dv4ELgmWFeuYfvUOFrwB0TnhrCsV6o0ueftVK+U8pnh/u4g8ndRO5IoH+BwK3GdHtDn96LtRUIBAJnGanV0lu+4nmSYsenG2Kj0ke0zqaYAD6uLf3g3/tWvemrLkqSPrHzanVrZ7vNdwrOhKAgKUcRcRy0Wi3t7u5mu7JX56fIG7UG2B6PqOzu7q7e85736PLly9m9IJ1YqF0oKPPiSR/Y39/PTgOIFUREOsnjxl0wmUzyrgcQSUnqdDra2trKkVXfChNRgKKEpCh4CgMkDKHAdwAgT7zf72tjY0P7+/taLpc5/QIyTPFFxhPHACKLdBLZfvDBB/Xggw9qe3s7k0YnwKRLMD5ekwEhpd1uZ7cEjgPIIYQbUt/v96+5PgTdi1Wyy4ULRU7Ky10mvNih59V7YUQ+J3oN2WY3EIi1j7cXTKRonxdNRAzxQoaci5hAsUrSJiD+/Bdnh6QVV4wLFlwXkaCqKnU6HW1ubmbxgGKRHrmnlgHnI7K4GOB9oW8IU/1+P0f9+edFDj31hX84WXj2gDs+GDd3IyGqUXuBtnE/ruE7bHgfgNelQAybTqcrKTuIC5zHMSEoBG41Fv/Th+vf/e8vl3RrK0kHAncanlbv6y+8/hH95Afec9pNCQSui8PNEBNuhKpR6TV/7tslnZ1tI6+HFzQ7ekFzePzbkyMmfPLH/wVVh3/0pNzrtHDDGgoppe9PKT2SUvp9++wfpZTelVJ6zfG/T7bvvi6l9OaU0htTSn/2ZhrBH/HkLXc6HR0cHGh3dzfncyMGjMfjFbt6vV7PokGtVtP73vc+PfTQQ7py5crKsURk9/b2NJ1Os8Wabe5Go5E2Nja0s7Ojev1kK0iIFMTGq8P3+/2cq37lyhVdunQpnwMx3draynZzdmio1Wra3d3V5cuXdXBwkK/j1fqJykKyPepNxHmxWOT0COko8s52j9QcINedPHe310POqqrKO0FQvNFJsm+vN5lMtLu7q0uXLunKlSva3d3N6QeIBkTw9/b2skiyvb2tnZ2dnLLBOHpuPO4CChqShoIwQUSdf+U2kQgMXJdoOtfmmggBXieDf6xDUl/cYeDbGpIKg/1fujbn3634kHjScTxVwIs4cm8vForDxfvEuOC+YYcGUjqGw2Fei9Q68BQNFwG8hohvZwnRx2WDUDQcDnPxRa6DGIBggHvDXSGMv7sRgItP7hryefFaHYhr1BbhGeMeLix4nQ6cC4hH7gbxtBEX/M4Knox3ceD2Y7mRdH89xIRAQJKe3Xz4jqp+Hu/hQKBAJb3ps75bW7WzLyacGi5fPe0W3HbcjEPhlZK+U9L/U3z+bVVVfYt/kFL6IEmfK+kFkh6Q9F9SSs+tquqGZS0hUhcuXFC9XtdwONSlS5dylBz7MRF1SZnsUMitqqpchI7tEiG4kGoIAlFP7PyNRkPnz59Xr9fL9QmIzPpOA0QyqYNA0TeK3lH7gNxvt3yTyvHud79b73rXuzQejzOJ8+guFnfI9Wg0yudvb2+r0Wjo8uXLOY3AbfZbW1u6ePGiUkqZvL7vfe/LBHPdbgeQVXZ3IMKdjnfcwHWwXC5XhAlIIPd2kebKlSv5GhSzZLy8Or9HjSHQXhQRQcILQiIe+M4DkvI2lggXjB9zCfn1Gg7MG2ktrCXSCLwugDspSFHhHp6m4a4G36kBZwZ1GRAd6FtKKYtAZTFAd8Rwz/39/VwHo9/v55oXtN3rH3jtB+lkq1bWG+sUR4jvsuDbUeJYYX1zHOtBOhFeBoNBXiteq8HFEhcPEAh8dwdENa5BepCkawqDIki4AEZ76B/1N3g2ETZw0VBPxFMvzhBeqSfhXRwIBAJPFj6hs9BvvXZP//VDeqfdlJvFKxXv4UAg43n/51u08blnosb/mcRD86FUPYrLpbah1FhPxytz9Z513FBQqKrql1JKz7jJ632GpB+rqmom6a0ppTdLerGkX7vBPXI6wPb2tjY2NnTlyhW9973vzaTpypUrOR8aMtRsNtXpdPJuCTgQrly5kr8j2g6h4XyPfB8cHOTUBMQMSXl7RiK0FF2UtGLFn06n2VqOOwCS1mq18jk4CahjQP2FRqORXRhEiklN2N3dzSka586dU7/fz9FtjqU/g8FAW1tbeTu/8Xisvb29HP2GEEsnhf1wOGxubuqee+5RvV5fKbrYbDZzkT8IO+dKJ1Fjrw2BCAT5Y1cBj4iTduAOAD4nVYAosuflA1wCvV5vbWoBZB/hwYsyQrQRPBCMPD3AdwNhRwTWiqSVdBLP7+d6XiyQdUbePkKC9w3Hg29HisCAYCIpCy5ePLLb7eaCpKPRKAsD5daKvjUma9gLXroDx8eaOYNg0062Yt3f389jyfgxZqxD2opwyLr1ApNlDQmvl8J/XewgLcZ35uDdUO6YwWek5iBqIB6w9jxVwtf5WcCT8S4O3F6kel3jexun3YxA4EyhvzFV/cHnaP6ud592U26IeA8HAidY9hb697/zn6X/f3vnFlvpVd3x/7J9ztjH9/HEM2EyDckQJoVAQ5RSJFpKL6IBVFIeKqUPBQkkqgp6eUBVKlBLpfLQVlDxAghEW9Qiokht1TxVpYheeKCQ0iSEQiAhk5lJpplxfDvHHh/fdh98ftvrOHPzjH2+72PWT7Jsfz6X9e29z5bXf6+LyvO/Utl4/33v08ZLP3jZdRsYUN/4mBZ/4Q6dfbO9/IlJOvHxH0ibSRtzcz2w9Pq4HknpQ2b2RCf8a7Jz7aik0+4xZzrXrsjQ0JCOHTumI0eOaGlpSWfOnMl5+hThQ1Dgn/zBwUGNjY1pdHSrb+js7KxeeOEFtdvtfN2f/uMk4WD6cPGJiQkdOnQoO/KkNACv43PDiUxAGJicnOzqLuCdERxZ2vKtrq5m+9vttubn53ORRE5JffHEkZERNRoNra2t6dy5c5qfn+9yijj95aSasHfGzufhS8q1J0i18EUqcd4bjYamp6c1NTWVQ+1pW1mv17ucswMHDmh9fT2H1iNUEPaOA47jThqJjwDASeX+SQdg7j28RqPR0Pr6uhYWFnI3AyJBJHU53zi8RAUwrziShM7jtOKIkzaAMIOj6+/fF4PEIWYsKbrIPJlZbp3JnJDuU6vVsiDDaxBBwfusrKyo1WrlcSaigUge1jpOOGk71KRgLfCa2IDY5n+Xtts0kpLBGmCMGQecef5G9A9/93UniBDwbR69wOFtQwjwRUF9mokXIkipodYH74m4wXyBr7GBqMG8+2iWkrOne3Gwf9idr9I3/uKzRZsRBKXigxOnNfrwypUfWG5iHw5uOL799k+pZiEm7Bar1bX2lp/SUx999cXFBEky6amPvlpP/8GdGjj6it4aeA1cq6DwGUnHJd0t6aykT3SuX2xULhrnYWYfMLNHzezRjY0N3XTTTTp27JimpqZ04cKFnKc9MzOTnWLfKYBTWVIACI+Xttr1DQ8P584KiAdEKZD+4Fs2UjjRtzfkNBfHAgfLtyiUtoQNHFMcr849ZkeLYnnNZlMzMzO540OtVuuKWOB0utls5joQFKqUlEWW/v7+fDpP8b3JyckcDt5sNrWwsJBTNHaecjN+2I3TynjVarU8jj7knagPHDWiG2h5SZtMHkeEB+OGCMK9+qgR30pRUld4vo9uQDjBfsabooGDg4PZCWU+qBNBKsiFCxeyiOHHxRcI9DUhcFB9LQCfNuDXiaTs9PKdMeY1OcH397+6upoLe+4cEx5Lbr93oHH4EU4QPzjBHx0dzcVAGX8v3mCDF518oVLGw0cU8Fwf7VCr1fJ7+HaYzCEiEJ8XLxzwfEQi0mdw8n3XE58S4T+HCAcUq6SOA2IXa4AoIi8K+RQaxkBSV7vNkrKne/GaqhNeVzWsVtfZXzxYtBlBEOw9sQ8HNxz1W5ZUs0h12C02MKC1n3udTv7q1UUrbgwmPfOBV6r/Vbfts2XXxzWthJTSiymljZTSpqTPayuES9pSX4+5h94i6aIxbCmlz6WU7k0p3XvgwAEdOXJEx48f1/j4eC7GyAm7L65IO0Q6GeDwdl4zdz0g35tifoSbIyhIyk7z1NSURkZGskOHI+fD5HGeOAH1LSPHxsayEIAjJyk7RPV6XSMjI1pbW9PMzExXy0Fy4Yl02NjYyJEJ5MFzIkynhvX19SyYcD++28Pi4mKumeBbVuJUDQ4OanJyUgcPHswnydJ2m0NSPIh2ICSd8Sf6gsKFiBjc08jISNcpti9kyfj5HH3fWQDHnbnka6fAgx1eLCA1g6J6vpgljjl1E7hfRADvtGMLtlJ3whd/RNChdocXJ3whTcaN96GWBCIAkSWsKSIxGFsEAE77ERuITBgaGurqFuHrRvB+vJZ34pkzf79eSMBh92kARFGMjo5mUc0XkkQUIO2FtqgIKthDpASiAUIEqRA+ZYT6FIyDn0tf9NKLCYwhER/MOeIK4pyve8H+4X/GrjKz13txTaUXUCpL38S4Hnvw00WbEQSl5M0Tz6j9zp8u2oxrIvbh4EZj7PZ5/fubPquRvsGiTSk1933/nbKF1vaFvn61f+nuqxYTYG1sUycfuFn9r3n1Hlu4d1yToGBmN7tf3y2JarePSHrAzA6Y2W2S7pD0zSu93sDAgE6cOKFbb71V/f39mp+f1/z8vJrNZg5TJpScnH6cKZxISV254v6EGqcbx4JTdELBJyYmVK/XsyPPyTIOho9oIPUhddr0UQCQ98Fxxx5O+1NKWlxc1Pnz59Vut/NpK+HwOOm+yJ93kiXl2glEVXCijKMmScvLy/k9cNAQKgi5J9WCdAFSLUhD8KfoOPmIKxQl9A4XDj7iCvUUiMAgJcJ3ruC0f+dpM50PvMOMY+i7LfjTce4TZ5WaBYzjTgHCFx/knpgv0lW80+pTFVhf1L7ADv941hi24gz703e/NqiTQKoE9+PrJ5DOICmPOw65r/eAPb6WBGud9eLFE9I0fKQF6Q5e6PEiE/Zzwu9t8aIQnyXec2hoSI1GoysqgXnz78+68GIHMC6+EKnUnfrAGNZqtSy0kMLkI5pYC74wJIIRc132lIe93ouDIAiK4Hcmn9PM+6vZpjf24eBG4y/veljT/ZUppFoYa396pKs2jNUGdOq+a/u/sj21qefuP6S+u+7cK/P2lCvelZl9WdJbJR0yszOS/ljSW83sbm2Fbp2U9FuSlFL6rpk9LOl/Ja1L+uDVVLOt1+s6ceKEhoaGdPbs2ZzusLCwkIvMcQraaDTy6bwv9icpOyH0uydFgk4JVHjHufPFHTc3N3O9AsC5IkKCk3LCpDnBxnHCySE0nNNeHOmFhQW1Wq180o+d0rbjiZPmxREzU6vV0srKSk4n8NEEOGhra2taXFxUs9nsOjFnTLCN6AFJWbDxBSwZEzPLjjnO5dLSkpaWlnIYuq/4j4OOo8zpfmcdvaxbg6/XQK0BCljSupB54PRd2naI3Rrtul9SGnwhQGzx13ybR59e4J3YncUWcYxJD/FFGhFLEGiA+SaSBGGDoovcI0IHUQDDw8NdAoVPsfA1IRB3eB0iCxAVEDT8ZwLBgPUjqauQIWufNUa3B+qKcJ++WwPzSN0L/1nwES87Iw38uuD52MJc83n3IgHREYwdnyE+z75TC8+X1PUZ84UXvbjla0uUhV7sxUEQBMGliX04uNF51evP6ERtUVJ12x/f+fXfVN93RvU37/uU3nigd4WS53/9Ddf1/JXpTc2/bkJjT175sb3maro8/MZFLn/hMo//uKSP78YITtxXVlZ06tSpXHSQDgc+/xnH1Z8W+5xtHOqdLRWXlpZyJACn++Scr62taXl5WbOzszkEHaeHU09/Ys51SV1Omo8YwNEhhWF9fV0vvfSS2u22hoeHu05gfWE9f0KKs0Wou6RcN2Bn7r+05Ui3Wq3siOHs+tNmwtb7+vqy4z0+Pp7bRRIOTyg/jjlpBDh9OGM4eZKygOLbE3I/vAbviZPOOJCeQgQFtQH4G6KOT7nYKdpw8ry4uJi7DniH2Rdn9NEgrCnSELhHnGocfQQFijT6dpdetMGZ9y0M+Y5Q49t2+jVDFAPOL2uIjhnMK3Ppox2ww6dY8L6Iav7+SeugwCZ2Mr+IG3wmiAxC/EFU8uIOAgifD6JDiCbyRS+BiBLaPvpaBohl1EIgRYgaGHw+uV/fVhOhzIs4fj/xthOFsrPeiI+OKJpe7MVBEATBpYl9+MYira7qtkdW9ey7yp3+2CtO3H1Knz3+sG4eqK6YcOI/36ORrw5LlvSeb71Pja+N6Osf+ZQaffs8x2Y6f8/1v8z8HX0av/cupUfLpSqUIp6XU9bnnntOp0+f1uzsrBYWFrrqHhARwD/4/f39Gh8f18TERBYUcLz9qb8vFihttW6cnJzMVd/r9brm5+fzqajPx+a5Gxsb2TGp1+s5x7/dbmcnlhPS4eHh7DjhXLbbbc3NzWVn35/M+7xxwtp96D2OKraT/oBY4nPeGS8KFdJuEucbR5JIg/n5eaWUctE+7/gR8cBYUl+C6BGcLyJEEAx2Rh74QoF0IqB7A043980c+3oJzKkXR/wpPNcZv+Xl5ZxDzxh6pxFH2XdB4PQacYkIFH9iTXg+749wgk0+EsMXL/RCAzUXvMDCnLB+cOJZ50RVIGjsTCHA4cfJ53V9FIfvlIHgkDpFQRFHeA735z8/1OIg1YAaDdwvY8B8sA4ldUUVefGJMSQ9ArGD9Up6EePB80gRwl4vJvG59WlNPqKCFAcEO4Qk/oa9zJ8XxoLgerCBAf3kP79UtBlBEATBbkhJ9SdOSu8qb+56L/mZgyf1ExUWEySpMbiq5iuHtTGUpOeHtTZSnoOjq2F1clMr00Olq7RSCkHBzDQ7O6uzZ89qZmZGrVYrh9oT5u4jEghJPnjwoMbHx7NT4B1BOhBIUqvVynn5FCPEoVxZWcnO4tjYWHZSOPHk1JTTYELbfW49jnCtVsvOue9UsLS0pOXl5a7TYV+ITlJXK0Ifyu5rFfiTceB3HDtO5L0Ag6PmQ+EJMSe1gPuYnp7OERRra2v5tebm5jQ7O5sr929ubuZIh52iAA7hzlN8aasOBKIJ9iPk+Jx/BBucV+/gk0JCygiOfrPZVLPZzOMrbUdv+DQV63R68HUmfMFGxCWcTCr9+9NqL1QgevkuFETO0DbRn7Izx9iGc02tCR+Cz5qh2OSFCxdyZAi1B3DkfftEX8yRDii+QCLrWdpO6/BRKDjW2Mp7+WKTjAPP9cUwGQ9EOIprsl5WV1dzJAlRK14EYT1Q+4Gx8J9Noix8GhCiAWPE2LA2GW+f0sB6pKaKT50Igr0gra/r8Q/fI33p20WbEgRBEAS75rX3nNTvHnxUUqNoU66Zj557neafH1Pf0HaU7PIrNnXXv/62fvS2SwYaBVdBKQQFSZqZmdGLL76o2dlZzc7Oqtls5tNWH6qPo0S1dk7j+eJ0EkfZnzzWajUdOXJEfX19mpub63J4aW+4tLSUIw18EUCcQe84+qJxg4ODmpqa0tDQULaZE91Wq5UdOQQCTmxpccipq+84gLODQML94ez4UHccbOzh7zuLTCIwcEI9Ojqanb3Dhw/nDhk4bmamxcVFLSwsaG5uLjv5vD7RB9wDJ9rS9sk4IgbdNnzuPQ4wDq53OFdXV7W0tJQf4/P66bzA/FAEkFQMPz9EEDD+pFf4NcXY+sKaiCNeONgJ9+6jIShQSFRHf3+/xsbGNDY2lkWdnUUi/fP83COg8HrMLWvH24UdRB5wzYskrOWxsTFJyrUIeD9qavj0Dz4bCB+Mu6Q8vjj7iAQ47aSv+EKaiAhEnvjWpqw5aTtNxKfF8LpekCGKgeghSfl9d3Zy8J1O1tbW1Gw2tbq6miNjECx9tEMQXC9Wq+uTf/1pSVEROwiCIKgWx177f3ro+CNq9FVXTJCk86sj6mu/PPLU5npXR2EveP7nB3T77OulbzxRtCmZUggK6+vrevbZZ3Xq1CmdPn0652f7U9Dh4WGNjIzkDgXT09M6fPhwzqvGccAh5ESfvPyRkRFNT0+r0Wh0FWccGBjIbfDoXY+zT0FIf7rKKTCnsIRaT09Pa3JyUimlnNpABX7uwZ/WExUhbRfA86ei3oHjtBhHHnuXl5e7igFyT4SuE7VBugHviaNFXj5h6UePHu36G+/ZbDa1uLiYuzOQv47jyMn5zu4YiAKNRiOLAL6rBI/zHSa8vb6OAUICjh4n7ggtOPaMnY/iwEnGEcUOHF3mwBcg5DrpEL7VJa9PZIakPHfMFc745uZmronAa/roAN8mkjXi629Q54DfeSzvQwi/73Dg60v4iAJENcSxVquVPzvcC58B5sl/rrxw4osnEunjBQnWFKf9CAXUM1lYWMj3js0+ikZSFsmwod1u5zUrKc8FnTO4X0QlP2aIRsytF+vopsL87Iz6CILr5e9+9DUdiorYQRAEQcUYe7pP58+9Qo27ImqzLGzWk1J/n8qUrGFlqGJuZuclLUmaKdqWa+CQwu5eEnb3nqravld235pSumkPXqf0mFlT0lNF23ENVHWNStW1PezuLTe63TfSPhz/E/eesLu3VNVuqbq27+teXApBQZLM7NGU0r1F27Fbwu7eEnb3nqraXlW7i6SqY1ZVu6Xq2h5295aw+8aiquMWdveWsLv3VNX2/bY7SpgHQRAEQRAEQRAEQbBrQlAIgiAIgiAIgiAIgmDXlElQ+FzRBlwjYXdvCbt7T1Vtr6rdRVLVMauq3VJ1bQ+7e0vYfWNR1XELu3tL2N17qmr7vtpdmhoKQRAEQRAEQRAEQRBUhzJFKARBEARBEARBEARBUBEKFxTM7D4ze8rMnjazB4u253KY2Ukz+46ZPWZmj3auHTSzr5jZDzvfJ4u2U5LM7K/M7JyZPemuXdJWM/vDzhw8ZWa/UozVl7T7Y2b2fGfcHzOzd7i/lcXuY2b2NTP7npl918x+r3O91GN+GbtLPeZmNmhm3zSzxzt2/0nneqnHu8zEXrwvdsY+3ENiH+653bEP7zGxD+8PsRf3ltiLe2538XtxSqmwL0n9kp6RdLukuqTHJb2mSJuuYO9JSYd2XPtzSQ92fn5Q0p8VbWfHlrdIukfSk1eyVdJrOmN/QNJtnTnpL5HdH5P04Ys8tkx23yzpns7Po5J+0LGv1GN+GbtLPeaSTNJI5+eapP+S9Kayj3dZv2Iv3jc7Yx/urd2xD/fW7tiH93Y8Yx/eP1tjL+6t3bEX99buwvfioiMU3ijp6ZTSj1JKq5IeknR/wTbtlvslfbHz8xcl/VpxpmyTUvoPSbM7Ll/K1vslPZRSaqeUnpX0tLbmpudcwu5LUSa7z6aUvt35uSnpe5KOquRjfhm7L0VZ7E4ppVbn11rnK6nk411iYi/eB2If7i2xD/eW2If3nNiH94nYi3tL7MW9pQx7cdGCwlFJp93vZ3T5iSuaJOlfzOy/zewDnWuHU0pnpa2FKGm6MOuuzKVsrcI8fMjMnuiEfxGyU0q7zeyVkt6gLYWwMmO+w26p5GNuZv1m9pikc5K+klKq1HiXjKqNT5X34iqv0VLvCZ7Yh3tD7MN7StXGp8r7sFTtdVrqfcETe3FvKHovLlpQsItcK3PbiTenlO6R9HZJHzSztxRt0B5R9nn4jKTjku6WdFbSJzrXS2e3mY1I+ntJv59SWrzcQy9yrTDbL2J36cc8pbSRUrpb0i2S3mhmd13m4aWxu6RUbXx+HPfiss9B6fcEiH24d8Q+vKdUbXx+HPdhqfzzUPp9AWIv7h1F78VFCwpnJB1zv98i6YWCbLkiKaUXOt/PSfpHbYWHvGhmN0tS5/u54iy8IpeytdTzkFJ6sfNB2ZT0eW2H5ZTKbjOraWsD+lJK6R86l0s/5hezuypjLkkppXlJ/ybpPlVgvEtKpcan4ntxJddoVfaE2IeLIfbhPaFS41PxfViq6Dqtyr4Qe3ExFLUXFy0ofEvSHWZ2m5nVJT0g6ZGCbbooZjZsZqP8LOltkp7Ulr3v7TzsvZL+qRgLr4pL2fqIpAfM7ICZ3SbpDknfLMC+i8KHocO7tTXuUonsNjOT9AVJ30spfdL9qdRjfim7yz7mZnaTmU10fh6S9MuSvq+Sj3eJib24d1RyjZZ9T5BiH+6Vvc6+2If3ltiHe0sl12nZ9wUp9uJe2evsK34vTgVU//Rfkt6hrSqaz0j6SNH2XMbO27VVEfNxSd/FVklTkr4q6Yed7weLtrVj15e1FZazpi0l6v2Xs1XSRzpz8JSkt5fM7r+V9B1JT3Q+BDeX0O6f1Va40BOSHut8vaPsY34Zu0s95pJeL+l/OvY9KemPOtdLPd5l/oq9eF9sjX24t3bHPtxbu2Mf3vsxjX14f+yNvbi3dsde3Fu7C9+LrfOiQRAEQRAEQRAEQRAEV03RKQ9BEARBEARBEARBEFSQEBSCIAiCIAiCIAiCINg1ISgEQRAEQRAEQRAEQbBrQlAIgiAIgiAIgiAIgmDXhKAQBEEQBEEQBEEQBMGuCUEhCIIgCIIgCIIgCIJdE4JCEARBEARBEARBEAS7JgSFIAiCIAiCIAiCIAh2zf8D/LUwqngqt1cAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 319628 117879\n", + " Min thresh = 1000\n", + " Not Sliding\n", + "\n", + "\n", + " Winner = Not Sliding\n", + " FP Patient = 236s_iimage_1139765223418_CLEAN.nii.gz\n", + "\n", + "\n", + "236s_iimage_1327616672148_clean.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADDCAYAAAAya0IYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADLBklEQVR4nOz9eZyt6VnWi1/PWrXmVVV77E4PSTqJSYAgRIhhEBHlKIMghKMy/Q75YTQoouhxAvSAeBwYAug5QDQKB0RG5SCI4SBwQNCAEDAISQgZSEInnTQ97Kpa86qq9/xR9X3qep9au3vv7r13rd37vj6f/emqtd73eZ9pra7ruq/7flJVVQoEAoFAIBAIBAKBQCAQuB40zroDgUAgEAgEAoFAIBAIBG4/hKAQCAQCgUAgEAgEAoFA4LoRgkIgEAgEAoFAIBAIBAKB60YICoFAIBAIBAKBQCAQCASuGyEoBAKBQCAQCAQCgUAgELhuhKAQCAQCgUAgEAgEAoFA4LoRgkLgliOl9OaU0ieddT8CgUAgcIKU0rtTSv/TNV5bpZR+31N8zlO+NxAIBAKBwHohBIXALUdVVS+pqurnzrofT4SU0h9NKf1GSulKSunRlNKPpJTuO+t+BQKBwDMZKaVvSCn9bkppN6X0npTS3z3rPgUCgcC64UYLs0/WXvxdHHgihKAQCKzGWyR9SlVV5yTdK+ntkl57pj0KBAKBZz6+Q9KHVFW1JenjJX1BSulzzrhPgUAgcKcj/i4OXBUhKARuOdxWm1L6+ymlf5tS+jcppb1j9fNFKaWvTCk9fByp+hN27xenlN56fO27UkpfUrT9t1NKD6WU3p9S+vOuuKaUOiml16SU3ptS+mBK6Z+nlHqr+lhV1Qerqnq/vXQgKSy6gUDgjkBK6eUppV88jkY9lFL61pRSu7js04+/hx9JKX1jSqlh9/+54+/qx1NKP5lSeu61PLeqqrdVVTW2lw4V372BQOAZiJTSh6aUfu74e/bNKaU/Ze/9XErpz9vv//+U0n85/vnnj1/+9ZTSKKX0uSmlT0opPZhS+qrj7+R3p5S+8Km2V/Y1/i4OPBFCUAisAz5T0vdIOi/pv0v6SR3tzfsk/QNJ/8KufVjSZ0jakvTFkr4lpfRRkpRS+lRJ/6uk/0lHX3J/pHjO10t6kaSXHr9/n6SvvlqnUkrPSSldkTSV9DclfcNTH2IgEAjcVjiQ9NclXZL0cZI+WdKXFte8QtLLJH2UpM+S9OckKaX02ZK+StLnSLos6Rckff+1Pjil9BUppZGkByUNJH3f0xhHIBAIrB1SSi1J/0HSf5J0l6S/Iul7U0ovfrJ7q6r6xOMfP7KqqmFVVT94/PuzdPSdfZ+kV0p63dNsr+xz/F0cWIkQFALrgF+oquonq6ral/RvdfQH6NdVVbWU9AOSHkgpnZOkqqr+Y1VV76yO8J919EX8h4/b+bOS/q+qqt5cVdVE0tfygJRSkvQXJP31qqoeq6pqT9I/lvR5V+tUVVXvPbZ2XZL09yT91g0ddSAQCKwpqqr61aqqfqmqqv2qqt6tI2H3lEh7/H36Xkn/VNLnH7/+JZL+SVVVbz3+Xv/Hkl56HS6Fr5O0qSOh4nsk7TztAQUCgcB64WMlDXX09+6iqqr/V9KP6+R79Knif6uqan78N/J/1NHfxjcE8Xdx4GoIQSGwDvig/TyV9EhVVQf2u3T0pauU0qellH4ppfTYsUr66Tr6YpOOcrp+19ryny9L6kv61WNr2RVJ/8/x60+Iqqoek/Tdkn40pbRxPQMLBAKB2xHHqWc/nlL6QEppV0eiwKXiMv+OfY+OvoMl6bmS/pl91z4mKekoanZNOBaN/7uO/h/wtU92fSAQCNxmuFfS71ZVdWivvUfX8T25Ao8XKWP+vXzDEH8XB0qEoBC4bZBS6kj6YUmvkXT3sUr6eh39oSpJD0m63255tv38iI7+MH1JVVXnjv9tV1U1vMbHb+jIkrb1NIYQCAQCtwteq6Po0wuPCyR+lU6+a4F/xz5HEvm1vyvpS+y79lxVVb2qqt7wFPqxIekFT+G+QCAQWGe8X9KzvfaMjr5H33f881hHgTDwrGto83xKaVC0x/fyU2nviRB/FwcyQlAI3E5oS+pI+j1J+ymlT5P0J+z9H5L0xcdFbvqy+gjHCvC/1FHNhbskKaV0X0rpU1Y9KKX0OSmlF6eUGimly5K+WdJ/P1ZlA4FA4JmOTUm7kkYppQ+R9JdWXPO3UkrnU0rPlvTlksi7/eeSvjKl9BJJSiltp5T+zJM98Pj79kuO20wppZdL+suSfuZGDCgQCATWCP9NRyT/b6eUWimlT9JRTbEfOH7/TZI+J6XUPy4u/qri/g9Kev6Kdr82pdROKf1hHdUc+7dPsz1J8Xdx4IkRgkLgtsFx3YO/qiPh4HFJXyDpx+z9n5D0f0j6WUnvkPSLx2/Nj//7d45f/6VjC+9PS7pasZr7dJQSsSfpN3RUafwVN3A4gUAgsM74mzr6jt3TkRi7qkjXj0r6VR39ofofdXTko6qq+hEdFcH9gePv2t+U9GnX+NxXSHrn8XP/jaT/8/hfIBAIPGNQVdVC0p/S0XfjI5K+XdIXVVVFXYJvkbTQEdH/bknfWzTx9yV993FqGXUSPqCjv4/ff3z9X3ya7Tni7+LAVZGqqjrrPgQCNwUppQ/V0R+ynePCYIFAIBAIBAKBwDMKxw6Hf1NV1f1PcmkgcMMRDoXAMwoppVccW73O6yhC9h9CTAgEAoFAIBAIBAKBG48QFALPNHyJjmosvFNH56ivyvsNBAKBQCAQCAQCgcDTxE0TFFJKn5pSeltK6R0ppa+4Wc8JBBxVVX3q8ekNF6qqekVVVQ+ddZ8CgbNCfA8HAoHA2SO+iwM3G1VV/VykOwTOCjelhkJKqSnptyX9cUkPSvoVSZ9fVdVbbvjDAoFAIHAK8T0cCAQCZ4/4Lg4EAs903CyHwsslvaOqqncdVzH9AUmfdZOeFQgEAoHTiO/hQCAQOHvEd3EgEHhGY+MmtXufpN+13x+U9DFXu7jRaFSNRoOftbGxoY2No64dHBxof39fh4eHqqpKKaVT97vLIqWU/1VVle/x3w8PDyVJGxsb2tzc1Llz57SxsaHFYqHRaKTlcqmDg4PaM/25/lpKSc1mU5J0eHiog4MDHRwc5L5wfdkObTcajdprNifa2NhQo9Go9bnsA89pNpv5en9uOQbaY3w+Du97o9HQ4eFhvsbb8vGwbvSP56+a93I+SneMj6ect7LtVb/Tj3Kv+LPKPl/L3lk17ymlU/eX7fi8lPNRrks5Du/DqrZ9HOX+4B7vn8/Fqp/LPV62Vf58tWvLfVBe69eU+7QcHyj3/rX0t5xP3vO9U46pvI/29/f3H6mq6vKph60/rut7WJKaw0H1/Ocd6oO/2bupHQsEAoHrwUxjLar56S/92wPX9V0c38OBQGBdsafHV/5NfLMEhVVf+rW/3FNKr5b0aunoj/vhcKiUknq9ns6fP69Lly5pMBhob29Pv/d7v6e9vT3NZjO1Wq1MdiHdCA6NRkOLxULtdluDwUCSNJvN1Gg0MpEej8eaTqc6ODjQ5uamPv7jP16f+ZmfqRe84AUajUZ6wxveoHe84x26cuWK5vO5Dg4O1Gw21ev11Gq1NB6PNZlMJEnD4VC9Xk/dbletVkvT6VSj0Uij0Uiz2UzNZlMpJS2XS83n8yyUVFWl+Xyu/f19bWxsaDAYqNlsan9/X4vFQoeHh+p2u7p48aLOnz+vRqORn1uOGbJ14cIFXbp0Sf1+X41GI78/m800Go3UbDbV6XTU7/fV7XY1mUx05cqV3Id2u63JZKKdnR2llNTpdLS/v6+9vb2jxauq3DfalaR+v69Wq6X5fK7Dw0O12201m00dHBxoY2NDrVZLkvL7jH9/f1/7+/tZ2JCUr0do4RrWbzAY5DWez+d5nRGfmNfd3V3t7+/nvUI7+/tHhz30ej11Oh0tFov8Ovun2WzmPvuzS4LMPHCvw69nr0lSq9XK45/NZnkOeX1/f19VVanZbKrb7WqxWORrGB/XdzqdvO/29/c1mUxyf7luuVxqMpmoqqosNvlY/TNEf328AKEJcYk58GuZi8lkovl8nvdbu93O1zebzfxZYBztdlsHBweazWb5OY1GI7/XaDQ0m83yOHiNNWg2m3ndUkp5DlcJgDz78PBQvV4v71PWR1IWBw8ODvI+fOyxx96z4vvsdsCTfg9L9e/irvp64M2foQdu1z/bA4HAMxL/rfqZs+7C08F1/U0c38OBQGBd8dPVv1v5N/HNEhQelPRs+/1+Se/3C6qqep2k10nSxsZG5QTm8PBQi8VC29vbOnfuXCYJrVZLy+VSkmrEqdVq1SLri8VCnU4nk67FYiHpiNS0220tFgstl0uNx2O95z3v0dvf/nZduHBBm5ubGg6HarfbarfbNfKVUtLGxoa63a6Wy2Um10Q9m82mBoNBjvRDXpvNZu4n13pfy983NjayQwLC3W63NRwOswOi2WxmMgThhPBxzd7eXiZ5zB/kibH0+309/vjjms1mud9O9ujfYrHIBLPVamXiBrF3d4ljf38/OycQHSC9HmH2qDDRaieLzA/tsUd4NuSQezY2NjIxLYnyYrHQdDrNY/G++pq5k6Ak2IyV15zEujvA9vqpyHe325V0JLT4HmLtU0oaDAZqt9saj8d5nREFfE8igiCAIbBAtH1czWYz713fM8wbfUdkcCGF6/3ZvMda7e/va7lc5s+wO1nchcBnh2ez31qtVv58NhqN/FlcLBZZACpFBXcdbGxs5LExfvrOGBeLRW1/eBu+3qXYcBviSb+Hpfp38Va6cOOL6gQCgcCdjev6mzi+hwOBwO2GmyUo/IqkF6aUnifpfZI+T9IXXO1iJyeQWIhJr9fTcDjUdDrNJNSjwqWN33+mXUk14tButzMZHY1Geu9736vnPve52t7e1vnz53PUVKqTTukkig6pOzw81GQyUbPZzNH/fr+v6XSaBQEXAEri7OKDdBIhZQwQ3WazmUUObw+CyJxB0CRpOp1mggoBm81mms/n2trayiQQweXg4CD3G9cC17gbAqEGwWI6narT6dSIGGPyKDbE0Mkd43DHhVvTuc5TMlx04Pder5d/5l7G7Q4G6ci1cnh4qOFwmPuA8OMiQin2lKIC/fPrpBMxwftIhN77x97yFBnm+uDgQJ1OpybeIFxIyiLPfD7PToVWq5XFIReA/DPGeBF3mCMEAMi9C1AILPQF9wd7rUwjgrQfHh5quVyeuob+OIlnDXjOdDrVfD7P/e50OnmucFywx8u0oDI1wwUs/9zxTNwhnqayKg3lNsR1fQ8HAoFA4KYgvosDgcAzGjdFUKiqaj+l9GWSflJSU9J3VlX15qtdn1JSq9WqRROJJHc6HfV6PQ0Gg0yApJN6BdIJqXOLOr97mkGn08mRbMjH/v6+PvCBD+ihhx7SpUuXsjBAX4jU0i9JmRxzzf7+fk6tYCzuNICcu+Xc7y0j491uN5NICJM/D5Lv89doNLJzot/vazAYZKs4aSBOVjc2NrIbQzoi2Z7bPx6PayTR3Q6kgGDdZ56JGB/vgRzRhsR6xBxC54TfRQVfS19DCKULHcvl8lTOfSkqcb+7ClyU2tjYUK/Xq+0Z7PbL5TILSZBqj7izJ7w9F4/ok88T77vo5e24eCMpiz4uSLEejL/b7aqqquzigTAj8pCGwD7jc8Yauc3fP4vsL/YBgswqAYnxIH54DY5VtREg8nwmcBG5A8bnCZHj4OCglppCu8yF7/Wy7gSfTXdiuHjgNVtuZ1zv93AgEAgEbjziuzgQCDzTcbMcCqqq6vWSXn8t1zrpg2SQY44QMBwOa/nZHs30yKNHWIncQyYl5UiuOxem06kefPBBXbx4UcPhMFvNcR4QjXWSSx9ItyCaCslxkgwB9tdcRIHUQf7a7XYmZZ5SgDDBPDFm2kVQIN1jOBxqNptpPB6rqip1u93sQmDsJaF1kjabzWouBcgq9SDcFQBxo59W0C73SaqLPwgbqyL/Tqx5Nm4Gt8Mj0sxms1NtufOD9zydwVM5nESX80x9ApwA7p5wx0S5n51ku6vC+1gKE/yMI4F+s4dd9OFnSDR7ysUSr2PB++y7stip1/HAEePCXLvdzi4XnolY5GkEzI2LBe5C8r4zB4gS1IfodDpZkHKXROlAon2uKUUs5tRTZ1hX/rnYhqBSFla9XXE938OBQCAQuDmI7+JAIPBMxk0TFK4HnuOeUsqF0yDTuBRIJSDPH9IAeYPcOSH36DXiAnUV3KUwmUy0u7urfr+fCy3Sn3a7nSOzED3ppGZASkmLxaImbiA4SCdF7SBtkGBv238vXQP8oz+QPd6nLzgGIH+MQzqxcUO6PE2j0+nU+kAkuFwjRJ/5fJ6LIna73dxmKQLwXHdvuOjiTgWIupM65pq1wjlCX8sCik5QWQefDx8LRNzJuq8ZbfN8iDWFBrnX9wFz7OsEiIi7SODXe9oEczifz3NtAQQPF3bcvu/E1yPwjAu4ONDv92tt8Qyvr7DKgYBYsFwuswjAa36dt+f1Ixijk3b2uItFVVXluhDeposBzDViH4IVY3IhxgVI/87wmhSg7G8gEAgEAoFAIBA4jbUQFKQTUuYkjroJ58+f13A4zBX8IRlEMj2VANLX7XZr4gRReCftLjbM53M99thjGg6H6na72tzczKcFeMTTC805OZLqxxy6bb5MA/B8fAitixSeW+8RZCK8XsRuMplkYgVJnkwmWVDg1Ae3eBP95SSKRqORRRZPF2Hsbhen+B9FAhFvmFvWorTOY13nelwfrAH9cNHBo/q+Dp1OJxcqZF4Yv5NvSCtpGR49Bx7pps+MB+GG+WJeWHe353s6hTshEJvKOgtc53UIyjoMCAqIW4yP1AvWtKy7wZyU9RuYb+mk1gGfE2oduHPBUzvYwwh4PJuTV3iNfeF7pnRnMNe+vz1VablcZrGKveNr6581F368FoPXfyhFF0+1cRGDefS+hKAQCAQCgUAgEAhcHWsjKPgf7pAAjl8cDAaZVFFokOKBCApYuVdZsXE6eITYi8oRhZ3P5xqPx+p0OhoMBhoOh9rd3ZV0uigf90E8ynxrJ1EuNEgn6RBO1CRl23in08mEEOdDWTiwdDc4GcOB4Bb3+Xyu5XKZLeUQS2o00DfmCfHCj8704njT6bQmrpS2dD9Zg34zFuYfEupiitcW8JoFzC994JjB2Wymfr9fm3d/ZlmTwSPUXO9FBiXl6LufoOARdNaO/uDo8HZ5lu8bUgncueL9pZ+ey0/9C0+XQRArBQQXTZhLr/vB/Z5qUhYtZW9TX4G+ughALQbaKlNjXCRypwbrvKouCfcjYPlau5DjnzffE7zOvPu6056LCrTF6+4icnHBP5+BQCAQCAQCgUCgjrUQFDzaSFSYKvSPP/645vO5hsOhLly4oMuXL2tvby/b7pvNpjY3N08V3oMotdttTafTTOyd1JQEZLlc1qKjkGc/WcFt09JJKgBE08cjnRzzh1AA8aFdJ5DYrzc2NrIdfW9vr+ZsgLxLyhFcUh88Mr1cLvXoo4/mlISSrEMancxD6BiXk1Dp5ChJThNAhIHMHh4e1lIgvJI+EWbIuj/P60H4yQNE0N1KTz8Gg0EWLcrjCcu18TVx8l5G3hFoVkXkGZ+TdHcMeEFDFxFYT07FKOcfEguh9toD5Z6AxLN/GTso6yx4xJ6TF/wkDBcLPCUEdwQuBCfe/IzgRP0K2luVOsDnhrUvQV8ptOifEcQn/0z5Pi2dMOU1zIG7UDylw2tqcK8LjYFAIBAIBAKBQODqWBtBwXOx/Sz63d1dve9978tH/G1ubmp7e1u7u7u5ngJF1SAebjnnqEJIBKQL8gmRgxxDkCH1uB4g6qtIRqvVyn1hDE5egKcPeMQZooab4uDgIAsK1BGgr41GI1/DfEgnRyECr+DvNnDvI9FkroPMOSEso+ZE8n0evH4BpNALATLH3W43F4R0eDTfHQkHBwfq9Xo1sais8UCRRubI0x+8CB/7TDpxl7hI4HPnp3a4DZ5r/ChO0kWY3xLeblmokd9dsCIi784WCgciXNAfnwd3D7ig4W6BjY2NfOqH95v+uBji8+LikpNvr2ngJ4n4XLCmCCJebJLxIJq4EITIV4pCfi194R5QCjaeEoSAQ/9x47jgxh6IlIdAIBAIBAKBQOCJsTaCwmQykaTsDICcjMdjPfTQQ9rY2NC9996rwWCgCxcuaG9vT3t7e5mQ+SkRkAOIAvUBIEJOdvgHufAItKdNkBvuBeYg4QgIRHYh6ogbkHKIL+169JvnSSfW7O3tbaWUNB6P8/Ue6Wa+sJ0zRidOkEyElTLS7wJC6WBw67h0EvV194V0QuZcGPBxScq1BmjLnRsHBweZMHPdZDKpRe/L3HtfN4/IT6fTXBfA0x4YD/PsKSWsjQslkG6OWaS/zAP1PdwNw55AFJFUE2Okk+KM7Hv+63b70uFAYUmKZ4KyVgNtIebQH0AxRj4zniLBGvjJGf7ZYi+xn11Y8PGxp/wz5OkI9M2FCwQtF6/cNeEihd/HeD2VxOtj+H71uXbwHmKHOz7K+QsEAoFAIBAIBAJ1rIWgIJ1E1HEqDAaDfFzf3t6eHnvsMbVaLV24cEHD4VDD4VDtdvvUMYLSyYkH0klUuIzEEukkei6dRJ6xhnsUHJIDQYV0QeiIFkPSykJyPLPRaKw8ecAxn8+1WCy0ubmZi0dKR2SNopGj0SiLF55WACmDCIJer1cj8RTiK4m6dGLz95SQMuedueS/novPP2z2i8UiiwVO/qUTQsdaeMFIJ5qkd3APRLGsIeCRei/Ih/PE9wj7wwEBnkwmuU7HYDDIY0IooF8820muE/UyXQNiXr7GutE2fVx1eoLvs1V73U+ScLHI04nY00ToIfYIcAhXODXKugL00V039K8UmPjZi3eWQgNHUfprPo5VooKPwcUe5t4FBRccEPsc1Ozwz0EgEAgEAoFAIBB4YqyNoAAJcFt6u93WaDTSzs5OJl3nzp3LRztCtpzkezQbQJicOENMPMpKlXov0AdZgXghILj12oUB2inv8bx7J5PudgDUQGi1Wjp//nzub6vVUq/Xk3REEPf29vJc0ZYTdU+VcBKOqMC9nqfvUXKP6no7VVXllAwIrNvIcQcQUUekoX0nme4KIYLd7XZzDQ3uhZCW9nUnkt6fUgjhPSf/jM+PGZVOCC+nSMzn8+ycKWtAlCd0+Poiynj6BWvHc3z92Vf8Y++QDuMWfMQs3/vuUnDBo3RJUOyyrBPgx7G6KOSOCR+nf6ZAmS7j683zfK/j8PHUB1xB3p73oaqqvJd4BuvpJ7e40IVgwPu+BmWb7L1IdwgEAoFAIBAIBJ4YayEoQFxKog55n81m2tvb08bGhubzeS7O+J73vCeTdo+QQ5hAWaiRyDekGRLq1n53THiO/mAwyDZrTi0gWgrRlLSSNDnZLyPSLjIQLYa433XXXRqPx/k5g8FAm5ub2tvby0SdSL3XIvB8cE+zQFSh/zwT4ut5+F6pv4zg8jy3ufP8skikR9XplxcIpD8U2ux2u/m4RwSWMg3DxaCyGB99Zr15FqkDRMBpx6/30yU4aYE9hkjgaTPMMfDUFpwVEGV3OqyqR4BIRu4/hN4FKl8v5tH778II4Br/vPl+4/rFYpGPHXXRpUQp1vAMb7esjcJr5RqWhRd5n88AxVHZb147wk/HcCcR40KoQvzhM0DNERcUfFylUBIIBAKBQCAQCAROY20EhU6nk/+4x2aNRX02m2k8Hud6AhcuXFC/38/Wf9pwQPyc6HmKQknIKE6IPdrzu8uihLSxWCw0nU4z6aF2AkTJc/IhKBAbz0d3SzsEi/66A8LJGgRtPB7n+7xuAISQufHc9LKWhBNv2vJ8ehcqWBfacBu6R8zdhi/VCbBb/EvhgaKRtO2uB8YC2WeunayWxBmnBLUISDehzoK7Abz4H+Ms6w2wFvP5vNZ31gt4u4hcZe0Jd8Fwv+9j5ggizDVl7QX2tR/H6MIO1/p1CBTMAWNmDUqxohQPgDsHfG+5g8HTS6ihwIkqq4ofcj8pSP75Ai4E+Px6/2in3DsuWHi/S5GiLNYZCAQCgUAgEAgE6lgLQaFMG/DK9K1WK9cU2N3d1UMPPaSLFy9m+z/EUNIpMiWploMOKfNIcZkG4USw3W5n8up9JR2DQoeLxeKUIAI891uqR4rLXHKP2EL0qB/Q7/fzWMr0Dsgt4ymjz0TZGRvk0q3y9JG0D0kaDAa59gH95b8lASSqD1HzkxA81aF0FDBHnhePS8Lt6u6AgPy7w4CxerScdWu1WllUQFggUk2f/KQFXxuew5zwflmvwB0o7C/6wBySusF4WJsyhQCC7MIU7fraMU6Ise9ZF6a4js+Ep4/4+7y3KnWG9nnN94GPyVM8Dg8Pa64Wfz5pDTzXhQhfy9KxVKZNeL99Dfw7gPvdzeROkzKdIpwJgUAgEAgEAoHAtWEtBIVGo6HhcJhTEcr6BxSI29/f1yOPPKIHH3xQly5d0mAw0Hg8zkULPY+8LPq3KnoNCYGgEDGFgLgNHYLsKQG9Xi+TZ4ijk+eyZoDXKoAUQjaXy2XOYW+32xoOh1nMoC3mgXGVef1E9cEqcrUqwozrYn9/v1awD0HHazCUxyg6OSb1Afs5RBTxheKI9M0JbXnyAmvKXCN4cA8k3tfe38MtQhvY5im0OJ1O85GUrJ+nd5SCAqKC7xsfJ/309AUXODwlwYUM6iOwNi7CeFqH713ga+lpKH4MYrkfnFS7g4X3Pc2FsbAfVj3X6xj458rXg88Ae5nPCXPIsawumHmfWUfqiLhTwQUP5t9FsnI/lo4bXy8XNfz1QCAQCAQCgUAgsBprISgQTaWomhMqPy5vOp1qPB5rZ2cnR+eJnjuZ5HfP0y7JKPCIPiQMggdR8uJ6RKoh4tvb27mWgVvaPapfRkDLqv39fj8LJikldbtdbW9vS1Im4R49595Op5PvLVMKeE5Z3I8+uEXef+ZkBp5JkcRVEWEnoggaPMtFEwpMlsLAKvGIeSaaT588+g0BLUUft7h7rYL9/X11Oh31ej1VVZVPD2Ee3KXi+0dSbSzucvFIellk0dMMGCfj8FoXvvfK+ShPVChPdnC3CIKI98PdAL5OpYW/dAV43wDPLgUlnlXWISifSX+8lgWiAu4Z1tBPZqB91tzFCu+/Cwp+2gnz6MII7qcylaZ0g5TiTSAQCAQCgUAgEDiNtRAUPHIKIA4QNKL4+/v72t3dVafTycQEMu5koIyq4jAoiQKk2fPPcSJ4njx94cx7Ui4QO/b29jKpZixl7n95ZB1EiGP6EDIk5Yj6fD7Pef/lWOiDFzR00se8+Hy6cFEKK06evShlt9vNEf/ZbJbnxI/cpJ4Ec0n/Z7NZza3Ac/13F1mYJ6zyTp4RCDznvkxRcHs+JzV4/QO3u9PmqtMbmCei/JB69lBZK4C2+J1+8hrtIGBwvaRcV8BFAXdBsJalg8FrOLhI4+uLmAGhd9cD9/la0Ndy3n0+fN/4GpbpLLTnc41YxGfE0zharVZedz4L/pl0d4WLRgiB7P2yjgdzSTulAOL99rX03wOBQCAQCAQCgcBpPGU/b0rp2Smln00pvTWl9OaU0pcfv/73U0rvSym96fjfpz9ZW1VVZeLpUWf+qC+LpXmRRghsedKDdHKKAO2QVuA1ERqNhrrdrobDYa7H4JF0RAzg5JDc/MFgkAk0xeb8mD8s9xx1WRZ7g9z1+/0skDSbzVzDwKPjkEDEDhwE3W43j9+r/juBY7yQJ+baxRcXVri3dDSU88jrRJIPDw/Vbrc1GAzU7/clKacxuOuDvjAH1KOgbx6d5zlY550clyKCr62fkuBFHN2xQX9YN+aKezx1gtdLFwLzVaaUeH0KxJgyyk5/cHGsSpOA4DNeF1VWuWAQCvzECH/d19AFOa9/4J+7UqTyiD79crHC4YUV2d8+r2XaiRc+LVMtVs1x6cBwx8nVTj8pxYTS3ePXrztu5HdxIBAIBK4f8T0cCATuZDwdh8K+pL9RVdWvpZQ2Jf1qSumnjt/7lqqqXnOtDVVVpfF4rMVioXa7rVarVatV4BHEMm+93W6fEgj8Humkujyk1o+Q457BYFAr0OaWbC+85zZ80i78+MhSAOF1Pzpyd3c3k0vvH4BYX7hwQQcHB5pOpxqNRqqqSsPhULPZTKPRKEfUnXg64eK/ToghSGWhSUk5gu8nRHgE3qP7pDHgUuB4RIhht9vNBQIhoX4ag8+t59izHlxHhN1JpEfKEQsWi4W63a56vV7tmE+/xlMCEBGYdxcLWG/phAz73CFK0E6ZOkHbLsawrt4vhAFPiWAsvqZE3T3dwZ0okHAXAVwccEGA51EU0Umzf848bYK+ID4htJWCkAsXq0QPd014qgP3zudzdbvdvJ/8xBTvI6JBmerjQgwCl4+pFBr9OwXHjbtMSuFnjXHDvosDgUAg8JQQ38OBQOCOxVMWFKqqekjSQ8c/76WU3irpvqfSlueBS6eLKxLNhMiMRiNtb29nAiwpnyvvJMj6msmwR9ZdIGi1Wjp37lztmLxOp6NOp1Or8O+FFyEgbomHfFF8EBKFm6LT6ZyyjJMi4EcMzudzNRoNbW5uZkeGE0/SLBAqmDfImtdwgNx1Op08Zo92e37+xsaGer1eFkoQD/ze0uXAXDHXTsq73a4mk8mp3HREHXLaWWt3G2D5f6LINXZ3xCBcJl4Q0h0U7j5woYh1pQ/u1PDCgfST9WHMCByst6dfMB7m1Emqi0+kZdA3xAgn1avSVPxUlDI9w0m+O2Y8fYT98ERCThnhL+sx8JoLRKXY4HNd1qRgLhD8/HugTKVwV4GPk+f4OMp/5Xy6SweRjN9d1Fln3Mjv4kAgEAhcP+J7OBAI3Mm4IeG3lNIDkv6ApP92/NKXpZT+R0rpO1NK56/h/pqV3vO13XYOCZlOp9rZ2ZGkTPqxU0M6iT67pR/CLJ1EcL1AIikHkmqEjnQCyFCr1VK/31e/38/EnRoCnnPvTgLpJL2C0xn8hAlPXeC9lFIuvNhut7W7u6srV67ksYxGIz366KNZbIDokj7ihI+5pU2e5QQREaRMCWAdGBvz4fcimDAf1C6gPSz/0+m0lv4gnQg+nU6nVpehJKTMoefQs8bMNeIP6RpE+8sClEToydXnJAqvFYFo5PvFxY8yRYD+0UdqT7DHXSBx0WB/fz8LXewRXuN1d1ewB72egDs4PLLOHvf0AifsXnCxrBdAm35N+T7j8tMXypQE5og2fD3oh6+5ix9lWoePhz20SthYJYB4nRF3npSOJp7JcbW3E57ud3EgEAgEnh7iezgQCNxpeNqCQkppKOmHJf21qqp2Jb1W0gskvVRHau03XeW+V6eU3phSeqMXuvOc7tlslqPkkAFeH41GuRDicXs5XaIkdUSpIRlu3ac9J8tSvXo/xNUjuQgWEHMnRH68XUl4SClwUYJ7W62Wtra2NBwOa+OgBsPBwYH29vZ05cqVTHZGo5F2dnY0mUxqVm5Il9decJu+14BAdKF/TuKA122gX06qXTyQjo5nnEwm+R4I5Ww2y+vq/WX87jpxUohThT46kYYQIjb5HioLHbpjZLFYaDKZZHdLWT/CC/056eV9XDPY971GhAsyvvZOir1vEF5EBelEBPIjS3EOME+tVivX2vAUGp7v93nqg3Ti3vDaFz4++ufuA68fwTjpB0eDej99H5U1SeiPu2a412te8HnjWeW+LGtFeL0I5q4E7XuRRq+hwfu3k6BwI76Ll5rfqu4GAoHAMw7xPRwIBO5EPK1THlJKLR19cX5vVVX/tyRVVfVBe/9fSvrxVfdWVfU6Sa+TpMFgUPV6vRxB98iodJL775blvb097e7u1iKjXgHfyRwEmBMZPLK6WCy0u7urvb09zWazTNytn5lMlkQbcg6Zgzy7O4JIvRPnXq8n6SiK75Z8BI1z587p/PnztSKTVVXpypUrtej2fD7PRyBubm6esoaX6QUUdGRc7tqg32WxQp7vjg1IKVFi1obrNzY2NJlMtLe3V4sGQ/IggT4+r9PAz6x1Ca8lgGgEGXdRyp0DiBJl9NyvZT6YX/oFgXehivEDt/uzFz2q7iJO6XLweWFM7ENvx1OCyug+KSfuuGF/ehoHApKLD15ksaxX4PvJ4WkNrAV9X7VmXquA3xkXNTvcleApDS6GuWvF+8JcMPerxBHmrayvULofPM1ilRixjrhR38Vb6cLpxQ4EAoHAkyK+hwOBwJ2KpywopKO/4r9D0lurqvpme/2e41wySXqFpN+8po5YxBlhADJH8UX+yIcAj0YjdbvdWk42ln7IBYIDhFM6IRguBOzu7uZjD4lcckRkVVW12gkAUlOeDIDIUDohnLz0+311u91TBKnZbGo4HKrX6+X+kQawv7+fbf3T6TRH+onkUszSianPmZNlj1h7gcAyV92jx1xDWkl1XF+BcXvkHJLo5M774fPoTgcnfb1e75Rd3ueQuYcs+ykPfp+PySPsPu/87I4SJ6WkebAviX4f73lJRxb5g4ODXIySveCEG5GE/66Kkpdj5Bmk0fhcSScOGmqEUPATAclTA0qBAFcBjpHyRIdSoKJvVxMbriYqrBICuJ573LHB/vITSLwt7wv7fNXz+Jl/vif5rLhzx0+FKFNJ1hU3+rs4EAgEAteH+B4OBAJ3Mp6OQ+EPSfpfJP1GSulNx699laTPTym9VFIl6d2SvuRaGoOMOkGUTkjo9vZ2fo98/52dHR0cHGhzczMXp5NOiCBEi9oIkEFs9ymlnOKwv7+v8XicST7Ezk8BcEGB/HsXPiA2TvRKoQSBgNx8H7+7FC5cuKCNjY3cT/qEgODky9M2POLtufKl1V6qpzTQjhcS5Bq/n2eQqjEejzMxY72ImNNPIvTMd1kk0R0BnodPO56+URLMsnYBRNTfLy37EH1PUymt7S4ssBcRSiTldaEAJqc6uIuAfeFikUfRmRN+d6cGz2MdKWA5m800mUy0WCxyv5rNpnq9Xt5XnlZAPQ7cJO5EcZfC1WoolG4Xrvf0BHepuAhVOkRWteeOgLJQpM+HOyd8b5btuevA57cUNNgTrFV5fdn+muOGfhcHAoFA4LoR38OBQOCOxdM55eG/SFp1SPvrn0JbmTyWZNCJGUcC4gg4PDzUeDzWcrnMDgZIHoXriNxvbm7W8sKpQTAYDDQYDNRoNDSZTLS1tZX7JJ2QOn73Qm8e/XVBwS3toLS5O7ksI8EuXvBsJzpOij3a7+6E8rmeDoDw4pFwJ4Ce0uHtQ/i8JgFk1QUFr2Xh6+UnMfg4XFxwwu3982McXRDxAnyelsI8ktZC3zwq7acdlGKKuyF87T3VohSOJOU6HxB2F1TcDcJrXgjSn1OuQ7lOPucUvaReCM9m/5FmUdYTcOLtp1IwZk9z8T3G3HkU30/a4L8uIiCseDoL8+y1D1yAKAs1luKAt+migIsG9Kd0fXhfON2B9njO1VJu1g038rs4EAgEAteP+B4OBAJ3Mp5WDYUbBQgAR+ZJJyTNq8t7HYDyuLnZbFYr4Ee7kLvBYCBJOco7Ho8zESJiC/n1YnFeL8CfiytAUv4vpNZJi/9M3yB1RLspvlfmzHtRPo/eewoA5BECBtHDWeECjZN7xuDHDEKy/GhCSB7pF4zB+8S4/R7GTjqKE9KyQKCnGDjxK/PXS0Lp+4c1ZA6dLONAYHzsCwoJlnUTGI+frOAOD9opI+blfnVi7vuqFCIQj1zQYF18LXz/l6kkpejl19GeX8eauFjhhUud5Du593XhXq5blZ6wyvWwyhnDf108cJHO01FWpV14/ZRyfRDmgLtGfI+4EMF4b5caCoFAIBAIBAKBwFlgLQQFqR4tL/PKvZgeZI8/+PnZyR7kQjqJglMNfzab5aMX/Vg4j+RD3EjDqKpKe3t7tZxtCGBKSfP5XNPpNBPAsvCbF5XzQn6rrOMUcfRTEabTaS1fH0LokWCeSX0D3BmScrFIxImSjDH/jL8URZxYsh7MqTsD3DJe1r/wQpIUBgR+DwKPE/hVxNbnGkLKus1mMy2Xy5qrgXu4zkmqCyLuNmH8nrZSCgrUtnD3go/LU2RwZ5QCjAsY7pTwfe97xom3u1zYI9QQKWtBsK6lI8bFF//dI/SeTuKnUbjYUjoWSmcB+8RFAd97Pm9l6gLwuff7eKa7KUrRgOdyjQs7pchRuogCgUAgEAgEAoHAaayNoEBOeEopR5P7/f4p+7dH6iHQ7XY7k2WICKRsNBqp1+vp0qVLGgwGWiwWGg6HunLlSu34Qj/hgPYh5153oaqqfNwiZNLt05IyoZeUi/R1u90aOeI5kNvFYpGfMZlM8vGHiBWe5uEF5aST4whpF9u7tLo+gFQXJjzVAGLqZNRdE070IWJ+rCICiUexWSMi9Tg6PPrubhHgIhHPceLnZK90sbgoA1wsYn38fSeoq9IA3GXhhJeihk7WvY/MBXuctSmdGMzBbDar1TVwIYs2VxUSdOeB74ly/UrSX/bV58lTSlxkKd0P7s7xNAZPm/GUjXIvluvpa1K6CEoHCD+TClLW0Sjbc/GjXNvyOSEoBAKBQCAQCAQCV8daCQrSCTE4PDzMOeFOVvwPfGoncJ+7EyCji8VCe3t7WiwW6vV66vV6GgwG6na7uVDdbDbT5uZmPoIQV4KkU2QZgolA4Fbr+fzk7GCEBwgkNR06nU4tPQPS1ul0ctrDeDzWaDTS4eFhfg3BxC39njvOM13YcJeDk0wXGMrIMqKME0jphIyX7gva9eKBXmjPayNQ8JJ+YT0vI83eNxeT3DniAgLpKn40op9m4cTc58ddLIgZTnaZF9ry8dNPF3c8B99Jsqe6sH+YL++XOzJ8PlykKGswuIsA0s4zyjQUj8p7xL50K/je8jH7M0pRoUyfcEHBxa2ydoLfy2et3BO+Xr4m3p9SyPI14jr6UIoHiF6+N31OA4FAIBAIBAKBwGqsjaBAZByCgNV/OBxmi7xH9RuNoyKKBwcH6vf7kk7IEGSG62azmXZ2dnJ6BKIB5Gw8Hmtra0vD4VDtdluDwSATVCzvkGuvQ8DxgDglPKcd4oPrIqWUq/D7+4wHF4Mk7e3t6cqVK/noRYj+eDzOdv7yGMoyQnt4eKjJZJLvQdxwQaYk/A7mx9NJvNiluwZKEs5rXmQPUFPBr/dIuAsfTqRdVIAseo0Bf1ar1VK32z11YoWfglGmtnjfnVB7fQV/zfuwKrXACbyTfBcNeI319VMsXCwq7f3uJilTTUphqEwZ8DlYNb8u6LmbokyNKQUad0ywdqVbg8/mqvQKnn01ocPnwsfp/feTXsox+XohILCuvpe5zl06gUAgEAgEAoFAYDXWRlDAmk8U3yvZ93q9GqGABELupZNK9l6MjogogkKn01G3280WfM/t96KLvV5PrVZL4/H4VP45hRI5IWI4HGo8HufnS6cLuTkJ7XQ6+Wg/gNgACZ7NZhqNRur3+zUy7ykaLiY4uA5yNZvNNJ/PT5Gr0ulQRphxVfhRntRD8AixW+NX5dbTp9JRUNbAKE/TWFUQ04m/R9L9WRDhTqdTs+g7QfT1YV3dWeG1HFxwQIQoURJ+39MIUvTN6zkwX07uPZWCdBhQOlI8iu59IBWHMfh7ROC9/oaT+zKVwYuVlnMPEAlW1dJYNR/l3F1tPsvUhlJUKd0m7MsyFcOdCKVwxeurhIsQFAKBQCAQCAQCgSfG2ggKREYhshz3N5vN1O12ay4F6YQkco9b9CHhRMqrqtJ4PNbe3l6t0n6r1dLBwYEmk4n29va0ubmZ0yg6nY4k6cqVK5n0QcTn87kmk4nOnTtXy8cHHvEsLfoQGSLIXvQOgQNnAaQGQu7E3vPpXchA8GDsi8Uin8jg9nPIs9clcAcI84Twwj2e/sF4GLOfUsGclJFsPxqUtXbS52kOrLWnNDj89AhPbaBf3k9cAwgLKaVcuNHHCxmFeNM/nuHFQkvRpHQEeFqIn6ZRzltJXFeRWyfKTtrdpVG2cXh4WNvv9JN/vo+cdJckn7ZwuqxyF1yrWOBtXu193wul4OEpN16LwkUCX+PSOUHbLsR5CklZZyIQCAQCgUAgEAhcHWshKDgZcXIFmaYYYq/Xq90DuSeNwY96nEwmuVYB5NZTECBSEJD5fJ6j+ZJydH65XGo6nWYSUlVVdjwMBgNtbm7mdAKPMu/v76vT6dTOt+c5AELrhewgUovFQuPxOI/fjwl0IluSMkQHRADP8acuRa/Xy89AyKDvZUoEhMwj+DhIINzuHiBthbnF1eHrSloBzyMFhf4zR/1+v5aWMp/PM4H2ooW06fvGyaD31+eQue12u9nVgABDX/x5XhvAjzelvVXCQJmL7y6E0tbP+35veeJGeTxkWQOgTDvw15h3xrfK/eBEn/VGqIJk4/7w+hbluBlzWcdgVSoD8HQIF2L897JOQvl8BLGycKaLBS4Q+skTCG/legUCgUAgEAgEAoHVWAtBQTqJIEv1KvruNvCopOeC+zGTbrff39/X7u6uqqrSYDDI5HAwGOj8+fO5HgECAIUPIZmQZSLzuBF4bbFYZCu4iwKeTkA7HN3ohA0S42ka/HMRgTQHIsu9Xi8XcXTSSJvMF/3ySDQigQsqLqpQf8BPqiANhVSPbrerbrebT+NoNpuZtEP6ysg7BNSLH0LspBORxAs70u7GxkaN6Ps1wB0RXpvAXQclAWWPQCTpo9/P3qDOBevupyl4qgR7lNSWktTTR1CmazB/i8Wi1qbXF6Fv3F+SXifF7j7hfvawj21VbQh3kkjKc4WA5mvA9aUoUKZxuOuGdBAX40oXRlk4sxQIXJzyOeF19pHXtSj75OKLp0uUjphAIBAIBAKBQCBQx1oIChCLVaQCog+Z2NzczO85EYOgeOSb1yH0RL4hhxAiJ9RlTrt0kjvvxx8eHh5qd3c3E8iSPLn9n5MqqIEAcUOQGA6HtbnAXo7N30mb2+39eMQyd30+n+eIOikkoNls5meWqQK4CRAVgJNBjj/0VI5Op1MrYOiR9vLEhdKJATH0Uw+kk1oHGxsb6vV6WThifd0JIZ3Oq2cdiL4zDu4p00gQFRBLXDDxuVt10oTvQcaI6wLQT6/h4K/xLNrwOhsupnihREQydxdQq8Of43NPO2WtD14vCTdz62Ia88D6lqkJpdOo3J+sS3nUpKc6uMDhQpWLCWV6CWtc/kyfS9dImY7k+6XcT4FAIBAIBAKBQKCOtREUsN4TmXUi7lFkjmuE/EHmZrOZOp1OLuDIe5B4jyq32+18ogMOg8PDw+wiWCwWmk6np6zzzWYznyhBn65cuVKrNzCbzfKY/ChDakJAxnkmEV/IOs+HODEfWNqn06n29/ezTb8kT076VuXsAwQSov84B6TTRfacxGN/9/x8SXl9/DUniMyF14Q4ODjI6SRVVeUTMLwWBGMso9Ml6Ktb2oHXqQD8jCiD84J96FFr2ud61sVrODCfTph9rX192AslCS+j+GXNBifm7iTAZVMSZv/dhQ7fLw4/btKJfXktjp12u31KBPK++32+h7xP3Od9K69jrdxpwl5j7sqUoFViQzmX/nzaZW15VqQ8BAKBQCAQCAQCV8daCAruNsAqjl384OBA4/E4R2gRBCDd0gmhIBJOxBZnwnQ61ZUrV3T+/PlMXHu9XiaOnjMOqYMAe1pB2V9s+LgdIMTY00trd6vVygKHk5zpdJqj2e5uKMmaR4WdDHnUGeHBx8Pr9Il2cFx4GgTHQjJOyCWAKDMmjwD76QFeUNBdHZJOkU3Wlr6x7qSfOEmFbDrJ9LoYkFC3t/tzERwQEPxYTFJdypMfPF2AOUG48f3AvJURetbGry1TNtwJQO0Oj5SXNRFKMuxk2wtuulPHSTTikMPFidLtU+43L/TJmAHPZB25blXNhfJ+nzvGWhbuLO91scnbcWGhFNfcWeHtcY/PQyAQCAQCgUAgEFiNtRAUpBMSAoHwPHuIOz/PZjPNZrNaITmpToho09MCKKZ48eLFXDCxJKkckddsNnMKBCQQMg1J2tjYyMUcB4NBdku4BZ++YzGnkKR0kg7AMznJwp/t8wPh95oRqwiPuwSYIy9u5wIFJIrIOYUvIaGIM+XRjj7HLo64C4QxurODsbudXVJtnoFH+Vkj2mTt6Cs/Q/TLSD8oCa3vnVX1F0rRivl0Mus1KWjLU15Kh4SP09MKvD++NrhfSjK9Ks3ABSg/gWQVGUdMcQLv4/T0Aj5D7jrxz1/pnnAxx5+7Kp3C+7fKueCimJ+OUgofpQDgc+R73/esi188h73Lfg4EAoFAIBAIBAKrsRaCQhl19vPhPbK7XC4zofCccienXhiQ92ljPB5rd3dXk8lE3W5Xg8EgP9Ot+0Svq+roRIfpdJprEeAw6Pf7p04F8Nx6ChxKyvb25XKp8Xis6XSqlI5OS0A8cOu8Fx10QstpFoy1fB8iSKRfqlv7ESyYTweEjeKVs9ksk0gKNTr5J+LtUXAnll6TwdcYcsc4nXy7s6C0xiOoSEcks91u5+uoscEz3RHhefIlQS7JokfyXThgPb12gJNQXBIuQDhJd0HDBRPuLR0XLjggWKxaMyfK5TNZp1XCAz97SosLVD4v7pLg/lXk3dfdazq4yFGm53i/XKThfXdneOoLa40TyAUQhzsQfB24hzHgVOI6d/SEQyEQCAQCgUAgELg6npagkFJ6t6Q9SQeS9quqellK6YKkH5T0gKR3S/qzVVU9/kTtONGTVCOe/C5Jk8mkdlpCacWGvEAMvdBdSkcFHvf29jSZTNRut3NU3iOrs9lMk8mkVotgPB5nB4GTWwr4OVnhNUgz7VAUcjabaTQaZXLM0YjuruBeSTWCC7nzvjH+Ulxw4g7Z89oA9N8FBq6BEE4mk9wmBL6qqpwGAtn19SqjwU4o3b1B33CFcDSoW9whtm7nB54/j6jjqQdltJ5rvR0vLkmqiLsUvC4DQhOpLYA58Dl3ILq4yMLv7lrxefNTOspTD5yc8/oqQcEJvH+O/Hd+Lt0GZf/ZPy4A+XzyM+Ng/Yj2O3kv6ys8kaPA/7HPPBWhPFXE+0Kf3SXinw//zJTunbJPtwNu1HdxIBAIBJ4a4ns4EAjcqWg8+SVPij9aVdVLq6p62fHvXyHpZ6qqeqGknzn+/QlRkmgvEljWOYBI4DyAHJZiAsSHNAkinYvFQjs7O7l4IsTaCQvCBWSQnGoi4RClbrerfr+vVqtVO90AN0Cn08k5+RBSP7kB0kPdCKl+AgDP9sisVD8KkvFTAwAHhadlIKZ4333MLgr42HBD8ExSUSBoFJkkpYP6C2UkmvUpc9gbjaMim6Sf8F6n08kpJFzrRR1LscCdBF4rwPP4nTT7kYfsDcbGHnNiyZ5j3ZyIutDiKIm6R+19HZ3IsqYuFpTuitK6z9qtEm88mu9zVda44Fk8ryTx3j/fA/7ZdeLt7iLmyD/Hq8QnHyP3eGHFcq3LufB59/1WOlVc2HEXiIskfFa97sdtgqf9XRwIBAKBp4X4Hg4EAnccboSgUOKzJH338c/fLemzn+yGw8NDjUajTJAgbJDalFKO8EMeysh4afn36KtH/quq0mQyyacLQKydRHkfOp3OKQeBpxFAziVlEkL/yiKHEJTS4u5EzWsfQIT8d0i85+77OHFBUPjR3RkUGETscDEFIYD+k/7A/JfzToTXUz48vYSxMV7G4JZ6Ujh4DuQZoYFn4/BgXNSQ8Mi0Cyue5886Qi4RWrzGA2vJ8901QJtet4KxcZ/PCSjt+54S4SKH7zkn4J764u+VJHpVfQwXAxjjKqeGR+m5h/2EyOLFPN2F4/vOBYtSXEBM8X3NM53gu2uh7AtFIP0+H1spkpSfL+bZ+0HfVokx5X65jXHd38WBQCAQuKGI7+FAIPCMx9OtoVBJ+k8ppUrSv6iq6nWS7q6q6iFJqqrqoZTSXU/aSHVUq4DCfdJJpNpJnR/B6HZm2iiJAWTGSQHP2tvbyzZ7t887iSMFoNVqaTQarYzoQsapOSCdkFNEgpJ8ldFSJ5algMAYSnJDmzxfqkdaGZMLHl4vgj5Uxznk0okzBHcIz3XSST2F0mmxKv2kFBToo5P4brebxRDmj3s47WCVQOK1G0rhhfQHAFnlv1jyud9TAvz55d6CvPOaOy6cFJcpEP7P19b3gsP749F0FzN8Xkvxwtv06H8pvrgTw4m4H/HI77yGSOZjcBfEKqcGzywdGas+T/4zzh53CbAHvWYGbZVjchHRx1i25/eWfbyNBIUb8l0cCAQCgaeM+B4OBAJ3JJ6uoPCHqqp6//EX5E+llH7rWm9MKb1a0qv5nYggZAciD5EmQgzRLYlSaZt2Aux1DKiPwNGTPBPiTuQekoEoAAmFoF/NZu1W6/KoQEnZ7cDrjK2saVBVVSb41Hpwso744U6N0qYvnTglEDg8kg5poy1qRHh/pBMxx9fEUxjcGVK6AzipwcUWxolgw/w3m80sHLjw4G14FP9qhN8Jtq/Rqii+94mjEL0/jIUIN6/jynBRw4WIVSKCk3QKjDIWd0ewHiUZZ6y+752Ee3pKSZR9b7gQ5++XKF0EEGxP83AhiNeYLx8z/XIXi8+Rf6ZLIBIdHh7mz7Of8kHfPd3Fx1CKbA4Xasq9cpvhhnwXd9V/kqsDgUAgcBXE93AgELgj8bQEhaqq3n/834dTSj8i6eWSPphSuudYib1H0sNXufd1kl4nSSmlCmJCBLzf76vdbms+n2cy4VHGkjw70XJ7NYTaj2uEPLtTAFJzeHh0wgFkF1EC94SfToANn3Z5ZkopE85er5ef4fZ47zcEDxLpRxDyvo/ZnQNlUclV0W4nyE5cSwLsgoVHiYlS+3M8Ugzhd2cAZHO5XGo6nWbhxl0o9I+CiD5OFyPKWhjUpShdCKwfP5O6AryoIASW57qrwGspSHXSCSGeTqf5OaREAF8Dt947aMeFCK7zufd94AS8/Awwl2W/G41GjfBDwheLRRaquMfdGuUa+c/+WXmi+1x08vnzQo285v3z01x8DL5upZuhFNvKz7aLjN4fd32UbdLG7eBSuFHfxVvpQhxrEQgEAk8B8T0cCATuVDzlGgoppUFKaZOfJf0JSb8p6cckvfL4sldK+tFrbC+Ty+FwqOFwqE6nI+kk8ugR5rKgGqQTJwPXeA56GVGFVHvxR4QCahVIysUV/QQE6SQf3FMCpBPLO3UfqFvgTgdJtbQBJ7Pe7/J1dxgsFgvNZrNaagT/vG/0iXtxRXiE19MXDg4OaikcXmMBeNTeBQqcBKW7wIUhIsz0XzoSXqilgBCwt7en0WiUU1M8Uo1A4q4O71uZfsK8eLQckQnBw6PjOEQQQvxECgp2lnB3irtAaI8aIGXtC18nj/K7GOIig9dMcLeL72m/r0yNKNMTcOz4e+4K4l5P6yif7YKVk3EfXymclXUkEDjcGbJKNPQ1Yi19jtyd5Ck/pVPD940XcHTxZpWrYd1wo7+LA4FAIHB9iO/hQCBwJ+PpOBTulvQjx3+Ub0j6vqqq/p+U0q9I+qGU0qskvVfSn7mWxvb29jQYDHJ1f4g3JA3yWkYjnbxBaKuqqtVfgNC72AApJRWg1+tJUr5/Op1qOByq1+tlwcFFA8SL2Wym6XSaiRQnFhCx9+dweoIXVkwpZdJKzQAA6ZLqxeWYA0/XcLcB9zB3fuqDR/bL6LEfsedpDp5u4aTOnRaTySQfqwgx9KKPvk4uBs1msyzY+LhxilA/4WqWfyfdzIHXdaA9d4bQf9IcynSb0jXAtSXJ9zXABVMSYb/HhTE/PaRMN2DdvM++7qWlv7yvFFi4l5+dMLvA5X1lDUqBwufHC1O6UEO//F8pPtC+n7Lh/WZu/fPOsxH6JGXRcVXaBiJFmYLh7/N54XXSXsqUkjXHDf0uDgQCgcB1I76HA4HAHYunLChUVfUuSR+54vVHJX3y9bbnpx3wR75XWsfqDOG/GrHCheBRYGojuHUfBwPErkwz2N/f1+OPP66NjQ31ej212+2aGwASTYQbpwNkutvt1gh7eTylE1i3ekOAGLuPiaKUXigPcldVJ8UVfXzMJUdekjKBgOHk0ufQBQX6uerYROmEbENI/QhITzmhjfl8nudhOp3m0xw4rs9PdHDngKeyMB9en8HXj70iKa9X6bBw18Ziscjz50KCiziIPz5nXnOBOXSHjO9v1pzrsP+7gAHJRXTyIxR9rRkn4yjxZETYo/RlWoCLJMw9n0t3XPDZxAlQClUlwff55Ge/FuHJ52pVepOvCWk27p4oU0V8T0jKn3UXHEuxxse67rjR38WBQCAQuD7E93AgELiT8XSLMt4wVFVVs8Lv7e2p2+1qPp/XCCORfyfDXhjPI6teU8CjoBARniud1EagPazty+Uy10GgLcgT1ne3+vd6vVMRfEQLTjQYjUaZeEIiJWVHA2KBiwhOosnb9xQGxsCYIPIeHXZHByIHJFo6IY2MCYJPuzyfftMvd0lwn5NpnkXfZrNZfjZiByQaMWE2m2X3AM/w0yyoW4HIw3tu2WcNVuXSu4vBo/AuCpSWd2/D947vm5LgM+e8j9jgKTm+PuVnwl0C/s+Jcpnj7zUzuMaJcnm0pwtbLmpQ26I85tHH7vPi5L90a/h7LsgwP/SJvV+m6KwSjZizsk++H72uxxM5N8o6IYFAIBAIBAKBQODJsTaCgpPO0Wikg4MDdbtdTafTU9F6/vAv87bdsu/XOCl1p4Nb7w8PD9Vut3M0uNFoaLFYaDKZqNfrqdPp1GoacI3bxYlge6S0FDTcHg55gli764BIfukakFQjw81mM8+P54u7tb3b7dbIIDZ7f69EVVXZSQAxhKB5pX+v98A84FLgmbwHyUNQ8H+kP4zH41y/wV0FOCtwa+A+4L8uspRE0dfICS/zxHvlfvTItdeM8DnnWi946WTbnRkuqpSCF22548HTBZxYuzjg43LBoyzA6QJJWRh0lXMCQYFreN3FiLKP3icXbVZdz+fDnQHuPGBv++s+Rm9vlajggoWLGuVeL9v1f+VaBgKBQCAQCAQCgTrWRlBwArJcLjWZTGrE0qP9RKhJL3DrOSQEJwPX87Pn2ZeRUa8ZQLrEdDrVfD5Xt9vNpJUotD/b0xk8au/RTojTxsZGdl94fQii/x5dJ9Jb2ukRQKSTVATu8Yhso9HQ5uam2u12ThFgXnEFcFykkzL65TUdygiwE8lut1sj+k4knYi7M8SJJELDZDLJTgjmeVW6gotHPudO/Hk26+vRfn++t8seKZ8J6aZopAsSLmI4YXUHjd/jzhRPZWBu6Tu1L7z/Tp7L55S1Lnz8XhOidC54u6uEGOCfL/+Zz66Le96+z5PvZZ8vFy1WpWOULorSFUOfvA6Ei1UuxPiceR/9GeyhUmgKBAKBQCAQCAQCJ1gbQeHw8FCPPPJILWef6v5OXrw4nhNaSTllwlMGIJE4EkoyBSnFdk8dBDCZTDSZTNTv93OuuEeLIXpe/8EJkUeyPed8MBjUbNvYy3EA4GQoo81Y/Z1ES6oVQWR8/Jd0i7LeAOIN93hEG4KIAOARW0gd6ShO4FgPr4HBe4gmtOfpB/v7+1lEWuUW8PnjNeoL0PcS7kzwEyx8/F7EkDoYuC88v58+ldZ7J/dOchF+3Mniz3F7fZkO0Gg0crFBXCoQ5/KkhJKYs4/Yk/5eGakvUypK9wBjcuJdpk64g8KxKiWiTCdYJb7wGXQhzYULF2IkraxXwefT03543YWEcszeN3cpBAKBQCAQCAQCgdVYG0Ghqirt7Ozo4sWLGg6HOUoNuYL4UMTOyZsXkYNAeKQZC75HN528QK4Wi4VarVYWIiAmnGDQ6/XUarVyOgIEF9LtNn/GhJixv7+fawNU1VEBxeFwWItCl/ZwotouhJRztlgsdHh4qE6no06nkx0WpDWUEWKfJ9pwd0MZreU0C7+W9zjl4mqiwnK5rDkcSoKLgMI4ptOpFotFXhsv/limEzipLKPzPg4Xf8rTH3y+XTRA+HCS62kOPl9O7B2sqffd++1OAC/UyTM9vcPTFkp3g8PTTpxUl84DFzac6JcigPe7FBW8HfpdEvPS5VG+7v1y50Xp2GD+uaZMRfH+uOMDYc5FG9ovHQuBQCAQCAQCgUDg+rE2ggLwdAAIUmkLh0xBnL0mgFQnJJ4mUEaxnZRBMKbTaXZCuO2ZYySHw+Gpmg6lbdzh0WpPCcAJsar/JQmUlMmRuwkQM3iv0+nkApKkIPgccB/1INxNAJwUcp/3z2sCICi4COBCiFfrp20/EcILT06nU81mszw37tbwOg8IDOU8O8FkjjzyXrpafI5XEUvmt6zJwFwwj55S4WtezqfvlZJIN5vNU2knLh4gNiAueJ89el/WCXH7P4KaH72K22GVu8A/Qw766ylG9I95cyGihAsTpXuCezyNgTGV6SSr4CkkXoukFFNciCgFldIV4ae/BAKBQCAQCAQCgTrW5q9l/pAnyk7OvUclPUrNH/tlnQLagvhJ9WPsPBLtEVaImJ9D32g0soV8Pp/XTjygXfpGfQJ3T3g+vKdhlJFb3vccc3cIuM3en++Ra78Pp4SnGHjEl1SBlFLtJAWu87Y8tYO5pt4BYgBzK6l2zKHPMWMsyTb343Tw9eTZXv/CCa1HvJ2QQgjLueVYQoQFimSWBJZ/fh334ygp9wFr5XvNhRWf33KvppRqx0eyf0l3WHVkpMNTa1h3FyzcVeD74mrtcZ+7OfxZCBP0eTqd1sSm0kXAOFfte79+lcOhfG65f7xuRulkYG28z+408c+qz9WqE1ICgUAgEAgEAoHAaayNoAAgAkTjKVwoKdcQgCCWToQyGokbwMmGw23a4PDwMN9XFsjjmEjPP+c6CKgXgyxdE04uV0U+ndB0Op1MUJ0Eew0I5skBofejJmnbI72QZB+H1xhAcGBOXeRAiKDNsm6CR65LOLl2QYExMp5VpxT4uq1yV/Bzp9M5ldripNPJa1nXgXX0mgtEvhGcVqUBMBfeHwQMhAFIdxlxd8HMHQnc5zU9SrGpdFt4kU/vH/c6XDCivx6xLx033g77jP5STNOFiJKUly4AHxPXlg6ZMs3BP/ernAfcu2rsq9rxehL+vq9JIBAIBAKBQCAQWI21ERTKnGpJNdIIQXACS3Td7d1l3jco874h1f1+X5JyEUInu7QB2XDnAxb9w8PDXKwRx4SfkLCqMB5HJCKa4IpwogTJarVaNTHA88D9fr+H6DHpFKWYwnNIffBjGyH19NfrN1D00mtCpJRqqRuQUz+qEuGgrNFQpiH4WjmRdLhL5WruBwpfcq1b9L0+Qjk+7xNkHYHJr+NaRBsEKMCaMwbEAa/x4e+7IFG6Wti3rBPts44+Dk9lYO9erXaAk2qvN1J+btwt4CSbPUUxUoqVloU/naT7Gpe1HJgXBBz/rNC38jPk3xelC6n8/Lpw6PvbXSllLZMQEwKBQCAQCAQCgSfG2ggKTozcPr8qbxwyU6YZuI27jDA6aQMQdj/SD3ItnY7qIxJAED2a7+4ICClFJHEW8CxIPuSd55ekh2s8iup9Yx6cPPNao9HIz/aUBX5vNpvq9XqZqJZCSkme3Qq+KjrM8yHXfvwmtSO8cGMZHWdMkHdO1XCC6bZ9TxWgbXdaeCpGWZCRvVO6GCDbkFgnrGWKgPfD18XnrIQXSWQ9fOylcNZsNjWfz9Vo1OterIri+2u+D1yUcau/iyyOUtjz1CG/hrn1693ZsEro8GfjbvB0HT/m0dv2/e7rxZh4HuJbKUD4daWjo/xuWeVyCAQCgUAgEAgEAquxNoKCdHRE3lve8hY98MADmeyTZuAE1sk9RM6juZCpbrdbI6P7+/s1mzbRYM/J95oBnrYAaYQce+qFEyFOdVhlOfcot59+4ISrjBJ75H2Ve4PXut2u+v1+zaHAfLilvzzaseynCx+LxSKTdeaCPvozPE+f3xeLRb7HXSTUyPD0AneVME/SSdpDeTKCE1BINu4KFwsYmxNpr7vhz2U/LBaLlaIBhL9MY2Eey+M1y5Qc3nOBqyyKWKaXeKqFux78VIUyjYHxOvwzU6ZV0JdVRJp19TQPX2v2pp9UQtsukPjzy5oGjFtSrsngQpr3j3s9HcZdDC4gMC++t12cKoWKVXDXQiAQCAQCgUAgEDiNtREU/A98j9zzmtvgy/tKkocN38mTRy0hlZAkL2I3mUw0n8+1XC5zSoTnrI/HY43HY41Go5w24dFgJzn+GvdL9VMrnIivqhOAQOER+BKIL048nYyXlu8y6o7rAqEA0l9GZ8sCkLgtIOz0w5/jIsDBwYE6nU7NfUFBP+kkjcCLJ7JWvhd8D5Buwf2+Br6fnKB6WgHXlnNbpom4g8T3k6PcY57O4a6ZUjRyUjydTmupNwhErC97yC3+fi39o7+svxNu3ndXiotx/nkDLgqwZxiDO0AQCny+XCRZlVbh81eugbsrPC2EviAA0S8XB33v01b5vVCuZ+lMCIdCIBAIBAKBQCBwdayNoCDVyZGnIXhag6Qa6Snv95/9ev7rJJGUCQhbGfVELICULhYLzWYzjUYjTafTTJ6dnEC6Of6Sa5x0ObxtHBQQRy/ySJoEpJHIMaSx3W5n0tnpdHINA47fJLrrDg1JuW23gpduAO9zGc32eXehoIST3na7LUm56GDp9ChdDS7+lJHm0vLPs9z1gXuB5/qasbecdJbRbsZaCj7sAeZ6MpnUhCS3+Xvevs8Z/XXBzPuEYwShxff1qtSH0nnB+y7arEqdKFMdXOjy+XIRhHQM6SSdot1u5zSUqqrykaLlZ6U8+pO58tQeHwOfSXeelH0shcRSHHGhDadOuaZleyEoBAKBQCAQCAQCV8daCQpSPXq+XC41m800n88lnc699yhoSQKcGBweHmYi7W6G5XKp8XicibZHc0txA5LmxziWVfHd1k3ee6fTkXREnt2qznjKNt1m7ykQPjc8m/9CxP067ivJY6PRyMQa2zvjpOhit9s9ZfOvqio7N6SjFAvvU1VVtaKNkHJ3ApTr7O4Rjz5zPaTU++5HMxIJL1NinPyTtgGp9zoOpQBSnpjhfSb9wPtGigLCUbkGzAv98n1UXlMe/cm4XJwoT7soRR8EJ9+TpK+kVE8RKokzQg4oRSNPhWHO/MQSd1XweXJhoKxVsMqhwHyWwpt/xj2Vwt9jjt0BQ5suTJUCCW1wvffXrw8EAoFAIBAIBAKn8ZQFhZTSiyX9oL30fElfLemcpL8g6feOX/+qqqpefz1tQ+ypU4CQ4NFrJylSnXQ4WfGIqEdYnbRA+iFyRO2JPLurgQg75KWs8+BRaCfUXqiRwoX+3nK5rKV58BrjKckqr3kKh4sLpfXfjyuEaEKwmSPGVtrYIWQQaSeq0knaQBnld1cBY3ZSXEag3XLu7fq+8Ps9FcXvhTj7MY/uFvA5cyHI++EpE/58t8T7nOISYX3onws/ZQFM4AKYiwG8hujkaTFc4ykbnubCdZzAQBtlKoL/l76U6Qlex6E8epV97Ok75RzzDB+jj9vHy2ev7KcLbS6GrOpLq9XKc+Vr4583/+7gGlJtXLi4WprROuFmfhcHAoFA4MkR38OBQOBOxlMWFKqqepukl0pSSqkp6X2SfkTSF0v6lqqqXvN0OuYkqt1u5yr3s9mM59dyvz2yXb7vJBUS6Pbq6XSqxWKRq8Q7kfDoK6QDYo2rYTab5XZLW/sqC7kXoVuVv00fPKLsfUZMIBrLv9Ie784Hb9vFAwi3F6eE2OGq4PmQ+YODg5UFL8lRL4mliwxO6q/mvuB5fo9UP46RaLbvE4/mO4EuRQJ/th/j6EUKy71Iu+5GYe+5Q8CJc+mg8dx9L1hZRu9Xnbzhwoif0OBj873BPoRIu7Dkc+V7FQJephS4EFXeU6YX4AihfT5T7Ee/d5Uw4PPl4obvX3+2iwJlW+xVxsRau1jHvS4WkWZUnryyrrjZ38WBQCAQeGLE93AgELiTcaNSHj5Z0jurqnrPKivz9cKJG+Sq2+1mYkQKBHCCJp1EtiGdTpYk1dIbcAzMZrNa7QLpxArOz5wcUeb7u0ggHaVSlAXh3BnBte5q8DFA5MsTLriH5/d6vUz+yF2nXx4592ix38+zXUhgLPP5XNPpVPP5/FReOmtE6gn/vB2v8E+fVhUUXGWBR6jw9fC1QJRwi31JLr29VS4WPxWEfpf2eHca+Hh8b/CeE88yN9/dD4zLx8Ec+b5DvPLn+Rh83PR5FfldJQL4OJygr3JjlOtV1pco9z7XewpLmRpEv1aJCi66lPO8SvTxsfg8lC4mP67Ti4vyTN+rfu9tiBv6XRwIBAKB60Z8DwcCgTsKN0pQ+DxJ32+/f1lK6YskvVHS36iq6vHraczzwYl4+9GF5Rd0adN2G7hf7+kTnU6n1g7OB2oE4AAoUxggSNjb/ZQDFzLod9nPMhWgqqpaBBlSO5vNTqVG+PObzWYtX9wFBY+ig1JQcLu8R34pBDmfz3MfXFShH/TfbfQUJCxrP+Cc4H7Em1Is8XXySLyfdMAzcEOUufu+zvTbixmWAoLf5+TWCbHXNGA/uYDl6QjMu8+BR/zd8VG6L5zAliKZE+Jynkqhh9oTZXqCfxac4DuxL0m2u0AYv6e04J4oxRfeL2s6eF/LvvH5dSHFUx1Wgc+Zp7W4OLbqu6Ksz1AKf37/bYgb+l0cCAQCgetGfA8HAoE7Co0nv+SJkVJqS/pTkv7t8UuvlfQCHVm/HpL0TVe579UppTemlN7orztJPb4uE3asyB7ZvZoToEwjcEs/0f3t7W0Nh8Ocaz+ZTLJdu9vtZjcCxSEpxIejAXs3BNaL9dH3w8OjI/am02lOraB/4/E4CxmQ3+VymdtwUtput9Xv93ONA3dvOBGCDCEKeIFEz+n3WgQlkWaM3Ov1H3jmwcFBnoMy6r3KIcB9/ozSIeBRc9qk0KOf0EDhSIoheppHCYQIry/Bs3yfMSdlVBrhwgv9MSb66o4EH4dH0Utiy/z7Pi6JrP9MiooLM7zv+4AxlQUYPd3DI/LMWeliWEWmV4kOkmr7JaWUhTgf/yonSkneXezweff94Xsdoarb7WbXkX9+riYs8rPPSzlHq9Zs3XEjvouXmq+6JBAIBALXgPgeDgQCdyJuhEPh0yT9WlVVH5Qk/itJKaV/KenHV91UVdXrJL3u+LqqtDCXKQweUed3ahA4mSsL93lBNkgJKRSdTqdmofZ7PMJNe5AV/ovYwf30VTqpvYBA4kdDQlQ8klxa1t0qDnHq9Xq5aF1pdecfosZ8Ps9FLRkj+ezL5TITcSdzRJs5ZnHVKRr0jfkoj0UsCavthVoRR55XkkQnep764ASPtel0OrU54B7apa9Owt3xgFOC8XktBr/X3SylKLIKCFg+Lz53XONj9vmRTlJjyhSA0o3gc8k/HAP+z4USBBBfqzKa78KBfybZd/TXXTnsMT6XuH3cZeG1Jvxf+Vy/Z9UeKVOOvDAkbibmkesd3n5ZT8I/e7eZS+FpfxdvpQu31YADgUBgzRDfw4FA4I7DjRAUPl9m7Uop3VNV1UPHv75C0m9eb4OlHdst7V6Yrtvt1qKy0gnh8or3ZWQaosjRh+12W7PZLBN1SfkEB+kkCo27ANLtaQRexV9Sjoo7IffTCLzWwHw+r0WieTakqNvtqt/v1+zdkDO3wNPX/f39XP+gPBEBIQBi7WOkngSCSVkbgP5C4soIf3l8paOMajvB9/67K8NPoigJvTsGmE93CrgIxdqUY3FrvbtKyug6r7kLohSSyrF6WgaODvpNX4GLLy6K+fs+ry6qIWr5M/yecizcL9VPrXD4Z48+k1Lj93vKQ3n0KU4aih8yf/75LZ0W/llxZwF9KgU2T1thH/me9XlCQCnbLdcNuNByG+GGfxcHAoFA4LoQ38OBQOCOw9MSFFJKfUl/XNKX2MvfkFJ6qaRK0ruL964J/BEPYYUkeKQVUsH1TibKnHknVx7l5H0iyTwTAuURYxcEyqKKAEHBn+3jcVJcOgAgPH5SA+B3+ko7WOYhWk6qvbYDoktJkOhnq9XKIsJsNsupEkR6/XSLRqORnRWMGQLp42d+wKoIMEQYOEmHgDrhZ22cKHu03GsjuM2dPpX9hrjyDAQD+kqbZU0GFylo099L6eRYTtpkPTzNwH920azVap0SOLzPwGsaeLoLYovXbnAgArig5M9ykcH3CCKB18xAeHKS7uvmQkpZ9LTcG6yHz5WLArRDqouk/PzS4bFKVPD0jrLGA/f42G+nlIeb9V0cCAQCgWtDfA8HAoE7FU9LUKiqaiLpYvHa//JU2nI3AmSWyKenMHhklp894gspIM2h3+9re3s72/0l1cQCJ1GSaoSYZ0BueT6ECheBk1juW2XjXnUM3SprOQ4FFy8kaTqdnsrz5mfG5FF65sFdBaXQ4cX+EBQmk0k+ScNJGm1jxYeMuS2d5wJP8yhJ3Kr8fX53K7pH1j21o6x3AJmGjK4ihNSBcKLO/oL8l6kgpWPAx05/PW3E0yp4Fi4YX/PSqcDa4L5xV0dZX8H3HM9BSHJHg+851sBdLf55cveI71NEDq9jwXgRVEqXgYMxuYjDGtG+OylKQcpTELxv3p6LAWU7nqbBXPp6loJf6Zy4HXAjv4sDgUAgcP2I7+FAIHCn4kad8nBD4ATQo59O/NwS75FRry1AfQSimb1eT71eL0fepZPIpTsPpJOIO4RwsVjUBIWrRe49j7w8upH7IfdYv534E93vdDpZDPHaC15pnwitn2IA4aNdt/OXpNUdDi4q8Cx/3etUeMS/TCNh3Njcyyh0KWaU6+3zn1LKogquBISl2WxWGxvP9fx+F3c8BQZ4nQv/nTGXdRLKExvc1cLzXNxByELcYI90Op3a3JQWe9r39AL2CPPvjgp339BemeqA+MP1CA/sWZ/HUmBCePD96cIBe2W5XNbEvbI4ZimwlbVQVols3IcQt8rNUYoCfooLz0McKou3lrUTVqV++LMCgUAgEAgEAoHAaayVoADp9Kg6pMft/p7+QITUo9eSMjFvt9vq9Xpqt9tZTPB7KR5Hrrfb1cs8cn+Ovwbp3N/fr50+4NF7KvRL9fzs+XxeEyfKEwWcfFG3AXLtpxdAiPgHmeVaxuzRW4/y0x8nXV74DiLs4oq35f314obY/Us7eRkVBjzTrfjMGekWHk3nmU70yyJ+nj7BmJvNo2M3mVcnjr6/XFSA1LpY4XUtGA8iTEn4XejgWk/5oH3mnDoBkGVfN65jTd3F484H30se6actPnPu2vC9sip6758Lb9udG17bwEUa7vVTPnz+uKdci1IAKMUQ31O8Lyl/Dt3J5GtUigykXNBGCAqBQCAQCAQCgcDVsTaCQhmt5Y/5g4MDtdttdbvdTGqJYE+n0/zHv3RC0DqdTib27Xb7VBR5f38/F0JEUHByVaZBuE3aiaN0Ypd3stjpdGoEbVW7kMCyQB5tl1FbSDPuC8YKYSJFBAIHoVt1fKDXniC6PJlMahFpP6LQ0xa4d7lc5rQIP3HBbfidTidfi3jzRHUSPBUCpwNRcJ9zHCJOfL2uAfsH0sj8euV/d3SsclPQJmKCFyJ0twj99p9xmNBnrz9RkmD2F20zxnJtndy7A8BTBXzPlo4PTy9wQag8CtSFEObAXRM4h9gTLgq4cOCuCPbkE6UQuODUarVqaTpXS10pXRbuXCnFEhcP2Hfu1vC1WSWoBAKBQCAQCAQCgdNYG0EBQHi8uGCv11O3283kn8jwbDbL9mxIMOkNTmicdEKWIJFOKng+JOZqUXQnvU40pSMi2Ov1cnTZC+nxM33HGQHxhsAgcBwcHKjT6WTBgvFBwjn6kXYWi0UunEfBQBwKngrhZIr3XTTwVAaPfDOfOAVczEG44ZpOp6PNzU1VVaXxeJzdIYzTSZwLKfTLj+n0onpO1IHXQHCLPsTR15axeVqDO2B8v3j9AU+DkZTHw73lP4/Q+x4px+xHlXI98NfK9J8Sq+aS/3of2IOewuIRfOaH/pciAwLTKkFhlWDCmq0qNOkpFi4e+PvA94A7HHxPu4NkVd0QP07T61uUtU1c0AxBIRAIBAKBQCAQuDrWTlAAblf3qC3kBLLlpJ+cf8i8EwNSHLgWQIq5FiLrufNOyjziyvPLyCzEjPQFxAPIoxecRAhxC/aqIzBpD8GAnyGbi8XiqvMCYUOocOLM+N0J4Oke7g5wN4HXgChTLnBS9Pt9SUdiw3w+P7WWTuh4zdv2+gHSkX2dNrkOpwDXO0Etyb07GFbl+dMmcwXRpJ1ut5tTTjztwQUYT28oCbvv4VKs8b57NN/rdPDc0jFTpla4gOIE3/coqUKIYjzH++dj9M+Y7xevT1AKbKtcGWWNCndheOFVf16ZosEedjHG+1Cm76xKp/C96k6dVW6IQCAQCAQCgUAgsBprJyhAAEhrgAySw+4nIHC9dEJ4ERQ8d9xt6xBYJypS/YjAg4MDjcfjU5ZpbPTk30NEnLhBoFqtVi4MeXBwoPl8no/qo/ghZKzf79eK8EG+ea6nBEDEqdNQklY/2hJC51FbP7aPgodPth48G3Jeuj9K0txqtXLKCaQRsaNMIwGedkBfG41GnhfG0u128xr6PauK7PkYnHyWqQGe1+/PZ/0ZP+95TQj2nItfZdFFT7fxsUN0SeGgf4yPdAMv7ujr4eka7p7gefxzBw77z9MevE3+lak9Zf0H7kUgcEHAifyqcXvtB173efdn+/2+Zuzjct35/LqwwZ510YX2PLWFz3H53EAgEAgEAoFAILAaaysouMUc1wDElFxurveUgna7rX6/XyOdVVXlmgk4Ajz6j1CBnXs+n2s6narRaOT0Ccgceff0y8mY26MpsEg9AyK6Xt+ASD61HnAazOfzXIOAmgXuUuh0OlmEWCwW6nQ6p6LW5Zx6RN6LDLqLg2ulEzLnpB8S6GIPcwIg2IPBQJ1OJ4sjHvkGnlbihN7f9wg26wCBdTihZm3579WO6/Rxes0Ofz7tMW+SagUxyzVCvPBxer0Md2T4vJfR+LKfXEPbuHBwu5Rz4UJPCfa8i2xglRvBx8A1pROHOYbk+x7jc+giks+3P8fnycm9jwXRYFUKiIsS7pioqupUgUpv62rzFSkPgUAgEAgEAoHA1bE2ggLk0kmAdPKHP7UTvOCd1wKgDWoYeOqCR3JpD6cBIgUiBGRsPp9rNptl8cJzzF3MgIB4P8o0CBc2fGyIIzgZPDe9PP4Ook5RRndplOSZ13g2zyrrRUh1Yud2cSd/2MGZP8bV7XZr6wAJ7XQ6tTEhBLjToySofooGLgBPb6EApD8PuFXfUxdc5PE5KtfO56J0r/g8eBqC18ig/074uddTbjxS7hH8kqB77QSP5LvzxPeX981t/L7f3BFR1gYp58Kj+S4slCkJ9NVTENzlUfbb++DtrRJxyvXye7xddzl4rZTyqElvm58RYxBkXOAKh0IgEAgEAoFAIPDkWBtBAZQ50E7KnKxIyhFwj/JSuJCjACHoklZGXN0hADn0/HmEDO73KKbnaTsBwf7Ne7TnZFeqE2PGx7WkKXiEtN/vZ2cCY/OIbBlx5mc/0cBPZ/DTHkqQOsL88s/rBVAgkve8KCZk1FMBPPrtJNKdC26dR0CifxA/CDMiDW3yLEQgovBO0FfZ+XnP++L7royCI+44AS0FHX53kksfnei7E8Tt+4yhdFe4U0U6iej7fPrYSldAuUec5PsclmIM+8T7XoolvEZKiMMFPU9ZQKBxx5CLdz7GsnCif3ZcqCk/l1zr6434gVjmRVZdyAhhIRAIBAKBQCAQuDrWTlCQ6rnN0gnhdQeApByxL4lzacEuC9dBBqUT0uoRbqLiXqwNJwF9m81mmk6nNQIMCZvNZprNZrlvtOGk2Ymun2pATQaP/pJigDvBLeXz+Ty35WTV/+tzUhIzB+TQT4LwNp108V6r1cpjbLfbGg6HGg6Hp0598LE4eI92JOU56HQ66vV6NcLc7/c1GAw0n8+1WCxORdI59cKfDTF1QchdJ+5w8D56WkWj0aidVFEKA7zGP3fb+OkGpSDlwgW2fBdeynQPd7/4OnhRylUiAc/zMbno4/U52Jd+Le2TvuP1H1ywc/GE8bsToRTOaMOFhFIQK50FLs64qMG8l2lQq/rlaS7eVqQ4BAKBQCAQWGdsPPAc/Z3/98duWvu/Nb9XP/yhd9209gPPPKydoOCWbU+D4A/92WyWCSKpCpAWSH+73dZ0Oq3Zz0kT4EQF6g5IJ9Fpih1CTqfTaY08QeqcFJX1CiD5CA6IBE7ynIx5OgT9dXKLK4D+ls4NBAWvIeCRZFIQSjGgqqo8H5PJJDsXms1mFgUQR5gX1kc6qSPgQkCn09FgMNBgMFCz2dRyuayRdXc4UNSyjC4zP4eHh1nA4R/t93q9PK9ezwAy7YUcnaySJlIWKXRSCSkvU0Oc5JZRcM/BZ5/4vQgdiANu2XfBwWtR0I4LCcyfuyz8GatEtLKWQ9m272tcOk7I2af+c5ky406AUgDwa32/ly4R3698nj31ZhXRL1NHfE3YY15M1IUZT61yB43vBU9vCgQCgUAgEDgLvOItv6fPGr4t/95MSXc1BzfteZ/Yfb8+872/nX//Qz/7V/XCV/7aTXte4PbH2gkKnqMOWYbU88c+ZMnt3xBJrOAQnUajoX6/X4u+QtAlZRIpKddfgICXJAYSu1wua9Fq7/vBwUEuGkghSJ7j4/Mq/aPRKJPhra2t7JiA9JPq4BFl7nXXgfcXQuYnLHikHMJUphqQ/sEzcBp4QcL9/f1Mfnkmc+r3uzMD4sg10tHRg9RK8D546gJz6e4T1tfBnul2u7VIuJ82UVVVdjYwD9zrp1d4OoW7NRg/e8HXvQQklrlx0YN9zX7xUyGuFiF3gQnS7fvJxZiy6CPP8lQG9ht9ZS6YG+9LVVX59cPDk6MeEbRoo6x5wDz6CRl+VKbvPz8C0x0XwIUHfw0hwU+28NNReM9ri7A2ntLhYhBj93kOBAKBQCAQuGlISWnj6G/c337NR+ltf/rb8lut1JQ0vKXduWfj5Hnv+uPfqeX7jv6O+kNf9WW68H2/Kkmqlqe5UODOxNoJClKdpGJPLyORTog8Rx5yOJlMaoX8eM+JtJMFTlzo9Xq1I+QgOp6y4Ln8HPMIOZSOSPNyudRoNMrtdDqdWoqEE/nlcpmJNsIB6PV6NYJfpjVg3XerOhFjSBOEyW3tfv98Pq+dglFa5su0AlINnJBC5vnZ5w+C1u12tbm5mUWBVqul6XSan+M587QrnZBcj9aXlnY/qhKhwvcJYoK7RNzR4fuEtXVHgKcxcD/PdyHCo+sIMog67sLwmgN+GsKqUzqYE6/t4HubufO0mbLGgDsySrCvfE/43mFsjIv9iNBDG1yPA6CsecI1CIB8tsu6E+488FQI9oJ/Pr1vwAuElmkp7mTgXhcUynQLd3gEAoFAIBAI3HA0mhq/4mX6L//nvzh+4ZclNZ/ojluOI1FD+uV/8lrpnxy99ul/9E9Lj+1Ikg5+7/fOqmuBNcDaCQpug8ey7FFXiB11EJzslyc0YLknUu3kzvP+OYZxa2tLnU5Hk8kkkzMAiaEPkCJEAifjTvTLEwnKo+7Izce63+/31Wg08nGLTt48lYEUBRwRzBEEl/963Ycyt51nME6vAYAzAIeCR/UZEyJDScqciENg3Q0A0WN8XrOA9z26DjnEOSIpH59JxJyjKqkV4fNLqgNiDjUaeCYk1dMm+J3nuP1eOhE5fB96tB2RoNvt5r3i81BG4Zlz5s/XzG38vM/+crHJ542+k17APLlo4/uJPcXJKP7588+CC0Z8Xt1hwRg9/cDH7O4YJ/ulk8cFEU978s8Wz2Is7lBwMWGVE4F2SxHD57+8PhAIBAKBQOBGovmSF2v8/G0TE24fvP5n/50k6aH9kV71aa9SlZISf3M9ekX7H/jgWXYvcAvxpIJCSuk7JX2GpIerqvrw49cuSPpBSQ9IerekP1tV1ePH732lpFdJOpD0V6uq+slr6YhHNyF+XpiwqqpaoUDIqh93KCkTbQQF6Ygg9Pv9HE0lekoUe2NjIxf7g/B45BnCRR9XHVFYkiZImefY+9GRkG4IIff5cYC9Xi+nB0wmk1wHANJMSgFzxTxCbonYO+nzCLr3kblh/svceM8v5zQHj2pzPzUXcFYMh0Pt7Ozk4yOd3PkceuE+FwS82KAflzkYDLSxsaHZbJbn3dMTvA5CmUZQjsnn0F0ckmp9pM4Az+N91tVTC5wYu/CCE4Z9sapWQHkiSCmQsM4uHnnqA3vLLfvMA9F7PjsuOPheL/euO0iYC653IYO+Ocn3vnsf3EUg1Y825Rk+l7Tt8yqpdopKuf6stwtp9MNFnlIAKR0L64Bb9V0cCAQCgdWI7+HAjcL+H/toHXQa+rnv+Jdn3ZWnjXs2hnr9T/1g7bWX/OIX6u7X3r/y+tZP/+qt6FbgFuJaHArfJelbJf1re+0rJP1MVVVfl1L6iuPf/05K6cMkfZ6kl0i6V9JPp5ReVFXVNVU2o4YA0Vus5h7VhICXgoJ0FDXe29vLRAliQFTVyeBsNstkCuK7vb2txWJRi3AeHBzU6iXgcuj1eprP57VTIMrIbelGAF4Pgvx+zx/3sW5sbGTCxLi8ngHPws4P0UMg6Xa7Go1GNULPvEH6ILwQQj9akAi7R/E3NjY0HA5r7ZTzRWR/OBxqMBjU0hbK6LPns0v19AfGzokevV4vz/FsNtPe3l6tpoPXLfAigD5fLto4XEyiDSfWftIHLoZSEPGItwsXPi4XyyDXCEfMvRcOZB+V6RbeDxdEPB2DVBYXLValjThRd7HA+1+mYnh7LnqUa8kzVt3rY/E1ccGhbNdTbLyOiLfr80977ogoRYrSybCmqQ7fpVv0XRwIBAKBlfguxfdw4Gli9Gc/Vj/+Td+s883+WXflpuHNH/e90setfu9jvuIvSRbrG75voY3/N0SG2xlPKihUVfXzKaUHipc/S9InHf/83ZJ+TtLfOX79B6qqmkv6nZTSOyS9XNIvXmuHIFF+OgAkqdvt5si0EyPIAgX3IEsewXWCvspmTeSf+3jfSTvF9TzizPVeMBGHgh+nB2HCqeB5/16VnzkonwFR9+iqky0nnI1GQ71eT+fOnVO329VkMqk5ErCbl7UKpLpDoGyT96uqym4ByJwTd2zzOCS2t7fzdb6u7nAoa2K4QOHpEV40czQaablcajwe1+bHLev0mXlnflfl1pfOAukk1YU+keJAnQLWw4+6dEECAawk8BxvievEUxEQaMrPxSq484W2+Uwwd9zvdTa8poLPQylWOOl3lAUTyzQe4GkkzOeq9stUB6+L4oTfXTwUVvW18JoZ7jjw39lPjN3dFb73fD7WAbf6uzgQCAQCdcT3cODp4tG/8HH6wb/3jTrfvLVFFtcJ/+3rXlv7/Wt+7yX64e/7I/n35/zwQzp4x+/c6m4Fngaeag2Fu6uqekiSqqp6KKXEYaX3Sfolu+7B49euCU5eIZ1Euj1CjL3eLebUBIB4eG4+bSMaSKqJA2WONaKGRzMh+U4iebYX3aMvFBskF90FBYhvt9vNBRw57QBS5ETR0wGcCHo9CBc8GCtpB0TDIXPk9JdH+PFaSb5cBPBidV5osCTx9LHX62lzczOfjIHlv91un5onCDvz7WIDa9/r9XL6SlVV2t3dlVR3MrijRTpyrvCvJNjsFX+mk1uu96NGXYjyveCOA3cgHH9OsvDiIglr6I4K+udj4LWSJLtwBUq3AOSbfcg9qwQGn5uyeKlH/ssxcU8pXLhw4MUnr5aGIql2P/DUD09tKR1M5XyXzwF+ncNFjjJlY01xU76LA4FAIHDNiO/hwDXjC778J/WC1p0rJqzC115+s772y9+cf//wj/lCTd/zsXrxP3ibDh5//Ax7FrhW3OiijKv++l75F31K6dWSXn2V92o5zBBXfsYevru7WysIRxpDmTbQ7XY1HA51/vz5nHfPiQSeay+dnLoAQfVceYg4RO7w8LB2DCIixGKx0HQ6zWKCR2k9Aky/cSNALP0YRQovurgAqYQo8j5zg4WetnBBMD9O/mivjDjzz3PTET/c7cG9JfHy9cNZQK0KBIHpdKrRaFQjil7AkONCO51OTimhH6vIuqeM+NohZjiR9RSAUhhgvbkX54EXqIRsutjUbrdz6gXihgsF1OwAjJd6FPTL585FBUg5fXeBgX1VOhz8s1CmedD+qpMl3K1B+6XI4K+X5JufIfku0pWC3ap942kUZaqCO41oz/vGPaVLgfminXLv8NxVn9PbEE/pu7irZ679MhAIBG4x4ns4UMO7//eP06cMv1lS76y7stb4zY/9XuljpY96wedqPH22Dg8aev4XvOmsuxV4AjxVQeGDKaV7jpXYeyQ9fPz6g5KebdfdL+n9qxqoqup1kl4nSSml6vg1Hf9eOwmg1zv64EEme71eJtEUXsR2Tv4+JAHCv7m5qXPnzmVS4VZvFxEg8aUNuswjx2YNUZ7P5/nEh8Viofl8nmsPtNvtUwSPsdIOtQrc7QAJhQjjXCBfniJ21HAg8k97iAqbm5t5nBQx5DrGVM69W83dfeCk38mWE3k/rYBoeEpJvV5Ply9f1mAwOFV80SP6LujwngskzKUXXSTaD+l3Ucqj2yWR9Ui4j7Ws38GYKfaJGIVggoMBIuxuEU8J8ai6CxGsd/n8VTn/ZYqBp3bY56s2RkQrv6bEqv3u6+vteN0Pd6kgMLlbgc8j+8ELOfK8q42phDuLGLO7Ivhc+3rzjFKsKeFjYQ5vA0Hhhn4Xb6ULqy0dgWcUpj/5PA3b8ye/MBC4Rhz8sYekqzjC7gDE93DgmvDRf+y39JJ2iAnXil972VGhx4PqUJ/5s58hSXrru+7Vi171xrPsVmAFnqqg8GOSXinp647/+6P2+vellL5ZRwVoXqijw1Svr1MW+T48PKzZwj3dgeg9vyMISMoke3NzU5cuXdLly5d14cIFLRYLzWazmkMAoj2ZTHIbXvVeOok4Q4Q8FaDb7eb7JpNJrY6DR5QhOwgPy+UyFy70VAUnr0S3Pbfbo7IQWCfQOAFoq9vtaj6fZ7Lk0dz5/OiPSk83Ya4PDw/zfyH4zWaz5siA/CIcsF4HBwe5aCXP6HQ6On/+vPr9fhZLcFgwfndnQOiISLtowf1e7BFiWgoKiBDlaQkuGEDevSAia+2RfMaJE8TbZ15cfClPmvBnllF1xu9pNyU8nYI1cGeFuxog/J6KAbjf9ydj8ZQPJ/9eILLch3xGcGF4kUhP4SldBz72ksC7E4LfXVDAjeTtMCf0tXzP59FFl9KlUs7rGuOmfhcHbn+896s/Xv/z5/xC7bWvufzv8pnigcCNwN/61T+g//FRZ92LM0N8DwcCNxHN1NDrX/x6SdJDLxjp2950VO3xR7/vD+veb3jDWXYtcIxrOTby+3VUbOZSSulBSV+joy/NH0opvUrSeyX9GUmqqurNKaUfkvQWSfuS/nJ1jdVsU0ra3t6uHUeIU4DoO2Tz8ccf12g0yhHfMpLvUVBy+IfDYXY6lBHR5XKpyWSivb29HB2HWHu+OW0SwSUi7lFbSDTEz+tAOBmEFKeU1O/382tObn1MkmqFD2nXyZanLuDk8DESXce+z7w7ieMkBfrgBQ0PDw+zk8JJI8SLvnI99RG479y5czp//rx6vZ4mk0nO60eEgGwjtjiBZP4ODg40m800nU41mUzy2BGanPS7bZ31WZVSsMr+zvh9fkpCzH+p8cAJDu7e4HQM1ow9wD51Is2+IrWB9umnCzhe4NOdDDgC2E+luAKazZMTINwt4cTai3OWaQ4uzvBsT03wvrt4VxY/5Ll87lxUcvcJLg4v6OlrWwoBfi+iCqIQbbvgUO73dcSt+i4OPHPw0N/4eP34q75hRb5uiAmBG4tvfNZ/1zf+5gv00x++edZduamI7+HAU8Vvf+fL9CvP+WeSBmfdldsa92wM9Q/v+g1J0hf95V/SW/7C3ZKkb3/l/6z0hl8/y67d0biWUx4+/ypvffJVrv9Hkv7R9XYESzykywGhaLfbGo1G2U1Q5kZDvPx3Tw0gck4+vqcR0B6R9WazqX6/n50HXnvAT3QoSRSABFPID7gtG9LvdQPogxNiSbkGgDslGNNgMKilanh9CIjWdDrVfD7PJN0j4BByHBIevU8p5RQOnkf/KfQI0SbthOu4v9VqaXt7W3fddZcuXryYn9/r9XJ9BwSBsq6B96WqTo7H5EQPt92XxSt5r7Tas9+cqLMfIPIe+S4t/U5eWcdOp1MTV2hrsVjkuhP8cwGBsQAvoOmkmM+EW/udEDMur1mAqOBOFq5lL/l+4H72m7ddHs3obg5JeR+sEmwk1Yi+7y3gToCy/gF99P5527S16lQL/8zyOgIk9/l3iLt9yrSes8at+i4O3P6Yf/of1He89lu03fivunQHVxIP3Fp81ub/0E/rD511N24q4ns48FSxdWGsS80QE24kXtQa6EWtkSTpZT/wbZof/ym5qBr6aw98/Bn27M7DjS7K+LTgkXhIMYBULJdLjUYjTadT9Xo9NZvNTH7I1S5TACSdIspuOa+OC+1B5D0HvCR0kEOwKupNqgCnLBB1J0LqUVrqQkCWIeRO3jytw08y8Mg4bgDa5N9kMsmpHE7a3JaP+8OJGwRxf38/F04cDAZZ9HErP6kH7izA/k+NgH6/r8FgkIUGIsZlsUAn/9R5QBghveHw8FDj8Vij0SifHMG+oR+IRcw9dTMg6/485rmMrjNP/M4+IG0FBwwii88fEXdqfDhB9X0JuZWUXSPeh5IY01f/vaqqmlvFSX4Jfz7tOjmnPRccuB6HhNehQDhhb/re87QMr0/hbbrg4PPuAo7vEXdw+IkY5bwxvrIehKdqlIIHe4c0plWpEoHAuiP9wd+vn/yX365OCiEhcAZoNKXDCMIHAiUOq/UJUDwTcf9G/f95P/LgUXbRNz76Ur3hD1jdiurwTq73ctOwVoICJAmCTTTTixTu7e1pPB7Xjr0rCRFktN/v58gxIJLvhJP0AgiYkx4cDhAOSIzXcuBeyA4k2osbet4/JKnT6ajfP6rmCwlyUi6dFJPzaDuiycbGRibpELtWq6V+v69ut5tJ+HQ61Ww2y3NJ35kDUjc8fQTC5mTcaxmUY2J+IPjuEOn3+zmdpdVq5TnAoUEqBtF85sKPcySFgnFSP8Nt//SDefPXGPcqku2FGYEXSCxJuDsDcGCw7/wf/fJ94A4Id1KwHu6GYC/6f51wO3G+Fps+e8nv9xQMXmft/ZkuRq06phIRjn1CnxEFPH2iJPKr0kx8POX1fH59jkrhj2e588fTg0p4Wz6GQOB2wsaz79d//NHvkdQ6664E7kC8qDXQq37rHfqOFz3vrLsSCKwd7n3FW/QF//WP6vue97Nn3ZU7Av3G0d9xX3P5LUflUY/x4u/4S3rBN70l/35wZedWd+0ZibUSFKTTFevdKUAEEbLjZMFrHpTRZScn2NAhMWURQE+J6PV6mfBAeCEb3W43E2jvg//j2Z5/viry64UkIfGcGODWcs/f95QHj/YPBgNtbm7m9I7ZbHbqmEMv8OiOAc+9Zw1ms1km5O4EWC6Xmk6nWi6X+QhICD/rRnu4ExBPynx/z19nbamtIJ2Qb6+P4MUznYAyN743PB2gPHaxBM9iHAhKnlbAmnnBQSfkzBHr1m63a6dalG4I5kJSdit4H4DXCihrGPg4SzGC9so6AuWJGS7QuOuG5+G88T3iY2ccPlc4WBhXmWLBNf6Zoa8+br+2FGLKcXvfvQ/s89L5gdhDP/wElCc6FSMQCAQCdTRXn4oYCAQCa4G3veq10qtOfv8Tf/qV2nh4d/XFV3Z18Mijt6ZjtznWRlBwgucEBSLrVmuPDnNvSUA6nc4pIsjRjk6wy+fhkCDqz39xPeAAaLfbtYi4kxSINL/zs9d+IB2C8fAMSDIOhDJX3Mftc4P9nn+NxtEpEePxWJPJpFbkz3PjXVhxoijVRR3SLMq0AO6D6HkqCff5sZkIM9zLGiEWECFOKeX55ZnMT1m3wfvDdX7agDsImFcEG0cZ6eeEDI+ce10CXDOM2/uIm4UaGrgvJNUINQSW8eJO8XXy8a06qcL3vV/r4oa7E8rrvRihp/y4gFSSfncIeHvuxiA1AeHN0xdcZGPNEXwQLryuA89ylw9rVIoi3hfGx3yVzg6Et3I+3X0TCNwWSEm7L7vvrHsRuMNxrjlW46UfpsM3veXJLw4EAoEzxn/6d9991fc+8pc/X3e95tlqvf39Ovjgw1e9LiCtTZLw9va2BoNBzdZPLrNH61fZll0YgHRDkj2C74Tdo/xOJHAmIBpAKFNKOY3CTzpw8ui1G9xpATHh1AavUl/mjAPa9miz1xxwwgXxbLfbGg6H6vf7qqpKs9lMs9ksE0KPQnMfz3V3hEeA3UXg8wXBZo7LQnaQdk6U8GJ/q4r3SSdiDrUxSlLtJzzM5/PcTmnJ9/oOvld4ZlnHwNfBiza6MAR8Dtw1wc/+O/NQri998xQUajv4qRAlXEzxdIxSKPA1dLgLpHRyAP/csMdKQYF+s499vWmP/3IkK2KRr7k/290SzLmLVatAP+iD74NyfT29qazlUIp/PtdXe3YgsG5o9Hr6hW/7F2fdjcAdjk/uHegj/q8QEwKBwO2PX3/59+unfui79NaveUAb9zzrrLuz1lgbQYHof5nf76QCouSF2SDzkCVcBd1uV91uN4sCkmoE3avlOzFCMJDqrgknTfSHf07ySImoqpMii/yDKEK0IeJXK9bnhecg2xB0TxNwqzbXVFWlyWSSizW60AKxKoUO3AOcOgBZW5V/7hF7J2Ne+6HT6WRBSDoSE1zg8Ai1r4fb5d1h4oTdiWMp4Lh7wd9zUuwCDdd46kjpjKG9MrXBo/o+h8wfdnvmiz77nvJI+tUi4mV9hrKdEqXIwmtPlPLBnPA59LX3+XEizu+l8MK84Cbwz1q5btzvKT3eJ1A6dXC+uLjmjhHe89NWVs0LbSLs+NpeS22KQGAd8L6/9NKz7kIgEAgEngBv/PkP0VsXk7PuRuA68Tuf/Tq95aufo+bdd511V9YWa5Py4MTCo8sQuvl8rslkkvP5KbiHoOAkETGBoxvLAmsuKmCz9mgy9vSS4BCthfQhJEyn05orgnsQELwoJKc/cLKCR0XdccAcIJAgkvjc0M8yottsNnMkHwJJ4UUnkl5ckPGSkkE/IYVlrQPuY5wQvNJy7vb2yeToS5Tf3UHhrg13GPj8eOFGJ+KgFJ1WpbS4IOBtl4KIr3cZrS4Jva+1OwPYywgKnlLhYkxZ66MkvbhL3PlwNTLu9yBwuUNjlTBE35kLF+y8v/xzcWWVaMPasafcjcD1Pj5PeXF3BuMqayK46OHpEJ4O5alG5brzzz9jjNEdUlcTHwKBdcJ7v+bjddCr9Ntf9O1n3ZVAIBAIPAGe95W/qJ/4zA/Xh15411l3JXCd+J3Pep2e1/7z+tC/MY9CjiuwFoJCo9HIKQbtdrtmk4ZEcroDxAxLv9u3vVAhleudGEDu3OVQFnfjmZBWJxSQYK7n2slkok6nk1M23FlAhNRf6/V6OWJa2rUPDw9zvrnXNkAQgNBD5iFsfr0kjUYj7e3tabFY1Kz7nlfvNQgODg5yjQnWwfvmIgQE2eev0WhkZ4TfC0l3Qt5sNrVcLrW7u6vxeFwrmCepFtEvj2HEPcGzpRMi6OMpo+UlPOru7g3EF+5zV0S5Z2nHn+P7q0wX8FMmEFtYQ/bwqjQFT2FAfPH94qKBk+tSHPGUII7+9NoG/vxyzDzvaq/zs6fXcB2CntcyQCj0/eHtMiYX9RiTuw9Wral/rrxfLm7QP3fUrNozISgE1hnvfM3H6pc+9xvjbPNAIBC4TfA9r/1Ufdbf/ga9oBVH+95u+J1P+1f6kM3/Rc/7orfrcDY76+6sFdZCUGg2mxoMBjntQVImTQgL4/E4kx9JmQzhWKAAYLfb1ebmprrdbiYt7jjgHt5DFIBQUEAOy76TaUjPbDbLbgFIuEd3Icy4CiBU8/m8lnPu6Q7SSUoADgis2qQNdLvdXEfAc8IpouckdW9vT7u7u6qqkwKQPMOt86V1H/Lb6XRy5BmrelWdnLQB+eZefzauENaDKDJOkOVyqfF4rJ2dnWyJL4mbizllqoPXcfCCiJJqoolUj0y7Nd8t+E48fb3LaDbt+9jL/cHeIp2F/notD8bHnnARpKyNUdbV8HofpSjipJtCj+U88NxGo5H3Gv31ugdeA8JrbHjtBoQA+g75L09MYb7cRcQ95Vz7PADmwIUTRBHm3FNwXGzzvc3cuNDD8bM8s9Fo5CNJXQQMBNYNb//Wj9HP/6nX6FIz/igNBAKB2wV3fdsb9IVX/qZ+4uu+Weeb/bPuTuA68Vuf8D369PYnSiEo1LAWgoJ0QhYg5rPZTPP5PFvlJ5NJJjlEqnERcB8EnpMOyGFHSNjf389kQTpxGMzn80x8IB4QYogQ189msxrBdheEkz8XOFJKtRoL0glJQkBBKGDMKR2dVMERkES4pdM55k6U9/f3tbOzoytXruRjLrGHe60EJ+OQUYQMxAmPrDth9D6klHKKCfPXbrfV6/U0HA61tbWVUzAgnwgKnD5BXxytViuLQTzPSaO7B1JKWTDBJk8kvyTlEHJ3bZT2fk9BWVX3wP8LgXXXhtf94PeS4DebzbyH3c3BZ4GaGxBdT6twIYr97wSaMfrr3OsulrKeiDsFXJRgHTx9BjLvc8FnhDlHHEH48LQZd7aUrhLEHn+f91wQ4fPnNTN83PTXnR2eRlG27+KeixCBwLrh7f/nx+hnPvObdP9GiAmBQCCwzqg+7iP1gY+vu8jue91v6HMe/XIddJN+/ttfd0Y9CzxVvOhnJ3rry5IULtaMtRAUIKW9Xk+SNJ1OM0HDAQD5hEz60Y9u96YtBILlcplPBfDTCyDfPAfyhv2bFANItkcsIV8UMPSoNWQF8gIh8wg35N0J1nw+12w2q0XlOXECEoSlfn9//1QNAYgQhRh3d4/OVGVuvECkH7sIEWcuvXCe2/Cd0HqUHNEE4WA+n2tjY0PD4TCndvA83AiTySSnOniNAZ7Hs92VwD+vewApZP3cqQA8LQQyjcDiNRLcTu/ElmtK9wCvsYZe/8PhJ42sEnCcTHtk3otxOmEvRQ6377M2CAFOqssUES/GyVx4kVNfY3dgeF2Mq803glz5ufSxONlnnhBOXNBxkdEFAReU3FniqUz+eXRXiqTszPA0jDLdw4WMQGBd8M7XfKx+7rNeo+eEmBAIBAJriebdd+ndr/59kqSDbqX9fv1vw3f/r79f6VBSJX3ap3+BRs/f1C98a5zSc7vgn97zRn1K+mipChcrWAtBQVKOcBPJLnP7IZ0QCUh7WXCOyD71EA4PD3N6AnCyVpJI7P4QeQib58ZDInkd8cEjsrTrZNqjw/SXMe/s7NTqMzSbzXx8JXUkEDA8Ai3VCd9isdBoNKqJGgcHBxqPx7WjFpkDTmBg7B7h9dekE2LoKQ6bm5va2trS5uZmJpy9Xk9bW1vq9/uZZDvB80g67yHMMHbWyUmer62LCO4AcGLN3DjxxTlCBNyf4eN3Vwrj9vdYV09noE3GyTzhVmDc7BtELMg3dQ3YH762XtjR9y79c0HIhSwn4IyxTB+hTdpijvgMrcIqos08MR5Sf+hvmSbBGHE88BrXeYqCu3Kc/JfpMr5XV6W7lJ8Z+lymyZSOhUBgXXB4aRliQiAQCKwpGpubesdfe4EOuld3OC7OHb9XSe/8s9tq7SX9yT/46Xr/Zz+g//53o8Bu4PbDWggKEJrpdJqdB5A+J9kQRv/jv7S+e4R3sVhklwKR3bIoY2kX73Q6tWMDpRNCAlEinQJCicjgRMRJmtvEOQkBp8Ph4aGm06lGo1EmUF6sjgg+dRpWWbd5DsLLYrHQcDjMJG5nZ0eTySSTUkm18TC3tFlGzt1C7sUve72ezp8/r/vuu0+dTkej0Uiz2UydTieLCY6S4OHywH3irgtSPyDZXouAdafv5ekM5d6i0Kek2pGIXiDRUzsYt0e1uYY9NpvNsvhEegZ7i/Xjv+w7z8mfHedeeY0J9s3+/n5tP7nI5JF+F8mcyPtrJSmGaFNLA7HD7f2sDelApYDHf8uUB57lqRj+2eP5PLOsV8HaIzL5nPm4eI4/z1/z+S/v8e8SnycXFVycudq+CgTODCksloFAILCOSK223v7VH65q4xq/p5N00Kt00K30u5/3gO75lv+ml2x/qd78ZSEqrDu+493/Wa96ziecdTfWBmshKEgnwsDh4WEm3x7Vh/R4dNMj5pA7yBnR+M3NTZ07d06bm5va29vLpBpXAVHi8oSIsmCfpHxPq9Wqndjgp0oAJ8FemM5JDoSN4x2lE+IDcR6Px9rd3dV8PtdgMMjPcmcF5I48d+4nQjybzbKV3QmYpzcwZ9JRGgPXQ/zc1cH8t9ttbW5uajgc5rmnwKUTf8QBnBq+frzmhR4poumE0/tMGoK7KPzEBF8LF0rKKDXXlSkL7mpwgQgxArLPnnNyzdi8DU8x8TmlTVwDpWW/PHXB0y54Hr/7uvB8PhurHCGefsF1iAbUR3AXhbsfEATYD54agjDk9Rc8ZcWFmicCe9lTI3imzwlrxH9dVHCRwF/3NS/hjodwJwTWCo2m3vn1L9e7/vhrz7ongUAgECiQWm29/es/6qmJvkka33eod7zmD0o61Cf8lS/Rw39mql/5hH+hYeqomSK4sW640GifdRfWCk8qKKSUvlPSZ0h6uKqqDz9+7RslfaakhaR3SvriqqqupJQekPRWSW87vv2Xqqr6i9fwjFwA0aORkK5ut1vLh/ZIopN2CI9Ho7vdrgaDQX4dxwOkCHLS7/ez/R9S5S4GRAGIMsS42+3mCLXn4ZfRXo/8eyoFxQmrqsptLZfL3BfqP/g4nXhCKCFQrVYrR83n83muzSBJw+FQGxsbWTgoI8IeJXZbPkKPE/JWq6XNzU1dvHhRFy5cyOPFgeG1BhAOIJzMgz+DueJaFxO8Tx5xL/PmXWTwVASEKXcheK0M30s+l+7GYG4RkBgDDoqrRcP9uEscDOx5RBhPNbga3B3gKQ7uICmJe1n3AtLvrgEEJRcMcI6UnzcX3FhjXvO++N5094NfS7FNT13wn90x4eMqayL4+yVo090+LiC6uOBiRfn9si64Fd/FgfVE6nT03r/50XrHF0bUKhA4S8T3cGAVGpubevtXf/jTc5BZDOOhT0jSQ339mc/9S/qQf/ZmvfLif9WBkl7eaT39zgZuCH553j3rLqwVrsWh8F2SvlXSv7bXfkrSV1ZVtZ9S+npJXynp7xy/986qql56PZ1oNpu6cOGCrly5kqPpVVVlu7XXJnB4/rwTncVikYsFDgYDDQYDVVWl0WiUI+FOmrrdrvr9fq61ALmCEPIsT4/wyC1FIj0C6tFzou6kDEgnxQIheJBd/vV6vVqKx8bGhvr9fiaGHM14eHio8Xgs6SRdA+dFKSYMh8NanyHKRILd7YBrwsUdrm02j47UvHDhgs6fP6/hcJidHzyP8S0WC+3t7eV19eKY7lhAxGHOyyh/KTR5FLm0r9MW7gHvf5lHj3uB+/wUDK8vwJpsbm5mwks9C9ov3ScuovAeAgZuF3dk0Ldyn68SNzz1heu9YOiqNAavB4GQ4LUNXJjx+1gf9iafR8QtT8VgL3tR1LJQpa+bpxW486BM52CNvYAmv69Ki3BhhTlhX7koxX72UzgQ2JirNcJ36SZ/FwfWE6PPfKne8pdDTAjcHrjU2lN62cfVXmu843d1cGXnjHp0Q/Fdiu/hgKF59116x197wbWnOVwH3vmnu3rnL3y03vGvnq90ZU9f9Qs/rs3GQh/RDjJ71vgnL/wDkqIoI3hSQaGqqp8/Vln9tf9kv/6SpD/9tDqxsZFzyaWTVACvUF8KCh4dRTwg6rhcLnXx4kXddddduvvuuzUcDjUajTIBhETyO+QTAurHU0JsIBjSSRV4oq2QaM/R3t/fV6fTya+VxQI9jUA6EQPI2acoZLPZ1GAwUL/fz2SU+gXk8u/v7+ejGyHA1F2YTCZqt9s57cOLRHouu6TaqRMeTeeZjHVjY0Pnz5/Xs571LG1ububTOcpjApnj2WyWBYVVpzaQguJzW/anXHsnwawP/UVQYC68DoOnongaCvvAxRV3MyCi+BpAQsvTKBAIIL8uSrEnINLMCXvC6yyUYogLLOzjEmVaQPk66RrlPDrp9oKNXIeAxZr4/vF9VNYn4XPKPDO3fMaYQxeRyuM+y1QPamvwPcF8eIqS7y9fI3crlMIN/fOUEL6T1gG34rs4sEZoNDX7kx8tSXrk9z9xilAgsE74Wxfeqb/1Y++svfai7/5LuucNx6miP/Frqq5S8HfdEd/DgRLvfvXve8ICjDcCb/vz5yWd1xf96Jeq2qj0Tz/1e3TloK8P7m/rb11455PeHwjcbNyIv5b/nKQftN+fl1L675J2Jf29qqp+4cka8Cgn0XE/FrKqqpo13vOw2+127YQFCMtgMNCFCxdq0Xrp5FSD+XyuxWKRyTqCBkTST3Zw4lESHUigk7IybxyS0ul01O12M2lEbKBPEKder5fTPDwajBDCmCXViJLb9TkV4vDwMNv0iSB7RNuPjySK7cc4evoCNvXt7W1dvHhRly5dqhV/LOdpsVhoNpvVUi+Wy2Utv15STtM4ODjI15TpGB6VluoEErJKe0TT6TciERF8J51OvL1ugNdkkJQFBfrpYoKvNWS0FDBYQ+a5TElgvL7v+ef9ZGz+TMeqooO+tzxFxl8nJcj3Ju3h9PFCpRB6P7nC0zdKhwHz7YIDoopf744LXvcjJX1v0WYpLvl8uZOB30kH8nnmfXdwXK3OwhrjaX8XB9YHH/zLH6M3fWW4EgLPDPz2K18rvfLo54/8+i9Va1zp4r/6xbPt1M1BfA/fQWi+5MU6aN/a1Mi0n/TXf/yL1N5pqPeBSt2/8nr9wd679LHdEJ4DZ4enJSiklP6upH1J33v80kOSnlNV1aMppY+W9O9TSi+pqmp3xb2vlvRqSRoMBjn9APKHNR5y78SeyCMEHkIEid7a2srOBcgTJLXb7WZyS/uQPCLlbtWGdEj16vOQU/rlxfy4z+sBeD/LXHq3uZPa0G63tVwuM4FEQPAClJ53X1VVdkoQkfeIPSkkEHbEBp+DjY0NTSaTPCaPBlPvgUKMz3rWs3Tx4kV1u90aqXYBgIKTrMtisTiV848Qw7y4pR1i63PFWpTt+Py7s8DFKIQC9oTn0OO+8OKV1BpgnyHqSMrpCpLyXnLiLJ3ULWB8XtQQ0cfnYMVnpJa+4GkKnhZQig4824H45uLPKtLtaRG03W63NRgMTp3u4GKCCwMQfhcHynG5CFAKhb6P3IHiIpfXZHCxwQtZ+h7gPdbf60CUwpCv+ZqlPFwVN+q7uKv+repy4InQaIaYEHjG4tf/zrfroDrUR9z1Zbr/H7/hrLtzwxDfw3ceHvzUi9of3lx3wtWw2D7UYlv6p//p09R77p4+5blv1SsvviHSIQJngqccfkspvVJHhWm+sDr+i72qqnlVVY8e//yrOipO86JV91dV9bqqql5WVdXLiMZTRJE/8CG+bgl3u7ZbpKUT10Gr1cqk3MUAPyEBsuKnNrjd2SPLDkQCIrkeZYawlZF6SbUoaxnJ5me3diM6OCF1Kz4iCESR+gVOnn1ulsulJpOJxuNxTkEYj8dZaCHlgj5TTJDxTiYTTSYTtVot3Xfffbrnnnuyfd/FHubLxQsfC/1m7G6JdzEBIYA+uIXe9mDt9/J0AebV0xq8JgNzX645c4C7wutL8F9PqfDigfQDR4gXh1x1r6+vE15Px3CCXKZq+D4rry33Hw4ZT4/xgpcu3LD3+Sz1+/2cZuOCAOMu55PXXUjx01N8r0mnT+ooj6T0dfK19Hn0fUGbrFnpYnAhiz3sAqL3ed1xI7+LW+rcqm4HngC//e0ffdZdCARuKpqpof/2pd+sd37jxz35xbcB4nv4zsPhJ7xUi+31KNw8fc+m/v3Pv1xf/BtfpLcuJmfdncAdiKckKKSUPlVHBWf+VFVVE3v9ckqpefzz8yW9UNK7rqVNrP6cmFDar72YHiBK6RH5RqORyY87BiCbRHeloyMfh8OhpNNF9CCyTlScOHENTgrIiRNlv29VpNMJkrsYINdOyLBl405AePFikW7/dkFkf39f4/FYOzs7uZYEooL33QvR0d+DgwNNp1ONRiNtbGzo0qVLevazn63t7e2cquHP5j6Oq/S0EY8me60AxAPWsyR4nk5Sikq8DnGnLgGnY3g9AsSkVVFzn38nu8wHwpOnTDA/LhKV0XDqLni9AXeVOCCy7oTgHgoilveWef/MiV9DmwgJ9Ilxeg0In2s+k8PhMNf0YG3L+iKliOX/SPVg3/qzQSn2uHOE/eLfB6TJrEpJcHcFnwccOA7W0p0RvO5CyDrjZnwXB84eb/6Mbz3rLgQCNx3DRldv+LzX6AP//kP1O193+woL8T18Z+Kxl/S03FwPQQFceccFfe6bXqUH90dn3ZXAHYZrOTby+yV9kqRLKaUHJX2NjirYdiT91PEf7xyF84mS/kFKaV9HpS//YlVVj13DM7S5uSlJ+WQAyIP/Ye/kwS3uTsC3t7d1+fJlDQYDSSe507QDSdnY2NBgMDh1EoAXjQOQK095gOBA8inW5xFhFy+cXM3n89p1jBOiB0GDxLp1mwKWWO4hnBB6RI+yYN3+/v6pooikO7Rarfw+hBKCjCgwn891/vx53Xfffbr33nu1ublZq8lQjmcymdQKMTYaDfV6PVVVldMtII1l/YOSOLpowjpxLWsH6cbVgvMCRwRk0gUJR1lIsDwRwet0cD+iEs9zN4WnP7CevO5uAu+P1zJAUHFCjKBQuilAWR/C23UiTzoKe6F00bgA1O/3NRwOa3VFyjoP7qTwVCMHe43xUagSlO4Eb7tMgXC3CO+Xa+ztAk9Fkk4EHF8nd5GsG27Fd3EgEAjcStzVHOjXX/79evNLp3pF9b/qeV+53nUV4ns4IEnLP/EyjZ5z1r1YjfHvbOuT51+qX/r4f67zzUifCdwaXMspD5+/4uXvuMq1Pyzph59KRyBK0+k0EzO3ILuYAJEgkgg5ajab6vf7On/+fCZGx/3KEXjuwcYNYeX5flSi26o9cu72cEk5+iud5JVDyl0UITq8s7OTBQN3UCBu+KkAkGJJuVgjzgAIFs/CmYA7YDab5fGVR0P2ej11Oh0Nh8Pa6QbML+0jnlA74fLly3r2s5+tXq+X18nnBHcAKRLk/lP00gWNknSW5A8STxFCdzV4DQ3Ir9enYM3dFu8RaNJKEIN8v/jcc1xkeToCAgx7z48FLYk99QQQE3BkuKOg0+nkfnrRxdKi73vM3+d5LnwxNk5ogOh7ug7rgGDh89zpdLS1tZX3H8VNfU+7KMG+Yl9zj9cCAU76PW2BvvscusvE94ynfDgQCtz14HVLXKB0N0qZYlT286xxq76LA4FA4FbjJe2efvTzv0mfM/+bes7fX9+6CvE9HJCk6aUN7ffX5++DEvvv7+vPfNGX6Ye/59u03eiddXcCdwDWIgyXjgvUjcfjXMTPI7AQtzKVAPIEEe73+7p48WIuaEjE1Ek1z6NiP4QCMi7VK+VDsiD6FBpclWftpMWLM9IOUdiyQF673c5pGtJJxXxs4pwsICkTNvrnReuYn+l0qitXrmi5XOY6B25n98J0w+GwVoRyVW0BSTp37pweeOABPf/5z9e5c+dqkWnpiHjN53Pt7u7qscce05UrV7IowNiYY08lYJ7oD6INZI+UFAg7pH1VHQLEFIQCSKy7IJzoS8qCQaPR0GQyqYkGiDxlxB1S7kUcWXPWDbLuxyv6XuU57j7wvpXRdxdPAM+lQKfb992J0+v11O/3c9HNyWRSc5YgaNAOIkGv19P29rY2NjZOuUrcMcRrV0st8JoGpUPExR3EGdpxcaGsfeHfAfzD/cDrnsqD48TTHBC6eI++espEIBAIBG4NPrTd10/9uW/Qu75oqL/91X9R2//ml866S4HAKSz/xMv0yEcmSesrKEjS735yR920FjQvcAdgLXba4eGhxuOxHnvsMY3H41OF3SCSkPEykkgkeTgcajAYnKpBINXJdxl1hHx5igLtOoGaTqen6ipA/iEyUj3SjpiAs8DTHdxi73Z6+oLlnOdIymkRThwhek6q5/P5KcFBkrrdbnZwEDH2Qo24EmiTsfT7fd1777167nOfq8FgUDuGL6WjExImk4lGo5H29vZyVJooebfbVaPRyP1ijF4LAEcHEfDhcJiP/ZROTiGgTcbO/X56BfO5qmjf4eHRKQTdbjcTbaLyXpgQQcELeeLCmEwm2frvqSdlsUb2z2w2q7lAnIAjLrFnXUxgLyKe+ekOiGUIGL6v/BrGgMCBOOfP7/f7mdhz3+bmprrdbs0JUKYalGkhOEX8M+yFKN194+4LL7ZI/RPWknUsvxdcqPDii+5OYM+V9R34HHnKDM/yuV8nh0IgEAg803H/xlD3b0g/8U++WbN/fPR9/+c/7s9KD55xxwKBYxy0Gzq8xUdFPhXsDyq94iM/Va//Hz9z1l0J3AFYi0PWDw4O9Pjjj2s6nWYCxh/1pZ3cRQGi/hSbgzRx2oMTAyfXkHzSHiAgXlhROiIq3W4311qAQPFMSTUSgr0fEs4zPXe+jLDSF7ezb2wcHR25ubmpfr+f3RUQaSdXTrKI7s9ms5zWQb/39/ezmHDu3DlduHBBFy5cyO4H/pHiQKRfUi7G+KxnPUvnzp3LQoTn+u/t7enKlSva2dnJ6+gRcu5xcun1L2iHdSYlg7l1ocDrGUAUmTtcEdSZYF09J99P5cDtQa0I6aQeA2uJgIOYgDPBxQxIbykm+ZrjCuAeFyw8/cDnxlNeWBsvHlm6NPgZcI3vDY/IS6oVjaR/nU6nVojRT+ngM+JHbCJu+FhYb//cugPAP//+XK+b4WN1ocDnycUJ3x/skXKNysKaXmvCa6G4SBMI3GykjQ29+rffpR9/36+q32ifdXcCgTPF+WZf92wMdc/GUD/2yz+uF37E+Ky7FAjo8BNeqgf/2FpQp2vC4c7eWXfhGYsfeu9/OesurBXWxqGwu7ur2WxWI5wQDa/6zh/6RGapHA/ZmE6n6vf7mYhBgPz4QiLv5K1jS3cSB4mHFBLVJWLr9RaIsPIzBewgI269JnLvJMvt3FxL30j3WCwWud4B5K/VauUUEbeOk/++ubmpXq+n+XyexZHz58/ngoopJe3s7Gg8HmcbvDsUGE+329X29rYuXbqU+yQdEbDpdKpHH300pzmMx+P8vrsTqHXheexeT8GL9DF+XqeuhkfspRMiCPFjbfv9fn4m88p6IcBAPIlgu8jjjgPIqdeI2N3dPVWIkfbK3P/Dw8NcS8JTA0o3g4sJXmuBPsxmszynXk+Ee8u0AJ9/UloQTRBWpBMHQ6PRyCJJo9HIKRAuZiGQMZdeqwIRh7XwGidlLYRSUHCHDkLAbDarOYx87C7auAMHx4XXb/C5cKGBefMCnn4f90TaQ+Bmo7G5qdTt6hN+5r36n4e7ktb7ZJFA4FajmRpKiu/iwBmj0dRhp6nbaSs277p01l14xqKlppqXLurgkUfPuitrgbUQFPjDHngOsxMUf93JgYsDRLfJG4cUeP2DqqrUbrdz5JyaCB6d9EKPFBo8PDxUp9OpRe69IF2j0cjPnE6n+RrP45aU88MRMDza7K4I6iFQW2Jra+tUlLbMy5/P51oul7k4ZbPZ1JUrV9TtdrPjwd0V3O8nV7gtHev7+fPntb29farewu7urh5//HHt7e3VhAbpJNLfarWyMEJ0n3+sLXBnANf7iR/uRIHQ+kkenl7h7ToZZv/wu4tBfj2iFeIWEX4vxEjhSxwV9AvgrmE+vVCkp0YgPni9BZ7PNfSrTI3xKLwft1kKc4gS/jlyVw/rymeprJNBWgbzwHrhBpFO6ogwzna7nftUFr30dXFHQ/k94L97epF/Blys8fkC/l3BuNjzuFqYK7/XBY1A4GbgXf/qeXrbH/7XZ92NQCAQCDwBGh/2Qr37M1pPfuEa4f/+5R+VdHv1+XZBv9HWP/3VH9Nfee4fOuuurAXWRlCA0EgnxFA6iRbyM2QFQYFr+W+v19PW1lYm35CExx57TKPRKD9jOBxqa2urRiAgRRx5yLO9UJ1HST2iyUkItOHuAydMjMsjuF4cstls5tz1yWSS6xtIJ+IEZJh5m06npwpPcoIF0XOECj8hwgsL0lcXKMhnZz4ZKznuk8kkpzp4IURIKqkbKaXcz/KoxdLJgaDgjhLW3R0nq6zoCAWMz+EuEqLypExAzhk/BJO5wiFRpoZg+edIRifcrI0XAmUdvGiir4WTYxfQIL1+j6cEQdxdnIHQQ5ql+gkkngri6+BryHw4Sfe0GHdasPdcNOv3+zWxq6zzsEow4DlXq13g4+OYUIQYf467J/gMlPPsYoKf9uDiYiBwM9H8fc/T/RevnHU3AoFAIBAIXCe6qdLhJ7xUjf/yprPuypljLQSFw8PDWtE6/ugvK8JDEjyXGwLUbre1tbWlZz3rWTp//nyOZEvSfD7XaDTKVfwHg0HODy8L3EFkR6NRTh3gmauKwPmxim6xl05I5CoCB9n2qCoEiL55Xj9Em3oOkDsXBJgzxAXINWJAt9ut1XAoCWDZDvUPzp07p4sXL2aho91ua3d3V4888og++MEParFY5P5Rv8GFH4oYUrhxOp3WCgMC5shdKR7x95x55ovnuCjEGCHuXhfD8+i9eCd7xZ0ypDh4qoyTfPap14hwwYE+eFFBF008FYf6G4y5zP+n7/zu61imj3h9gVUuEE/pYA65309F8SKU9JM9yf5CpKJN2kCMKUUYF0Y8VYVx+JqsAmMjpaU86nTV0aLujGDP+TMRFHCTeFpEIHCz0PzQF+oDX9/Qr33YD551VwKBQCDwBGh0uxq/YOusu3FdGDxvR431KJX3jMVzNob6i9/5f+t1L3r+WXflzLEWO63MhQdONiAg5HdzlB+kZnNzU+fOnctHALqlfH9/X+PxOKc6DAYDDQaDnBsvnViiIekQKKKVTjLcVVDarT2vHkGB+yE91CTY3NxUp9PJUfuDg4N8rZN9CkgOh8N8z8HBQU7DIGWEQpRe1I6TDDY3N3NtBwgiZJPIPwIEa9FsNnXu3DndfffdufYCp07s7Oxob29P8/k8z0kZgSYHfzKZaGdnR7u7u9lxwRzxz/PtryYiefScKLNHmp2krnJBQGaZY+YO4u8g7QXxw08NYV/52vp+9SKDTq4Zp+8l1r60/nvdAXfp0N+ysKfPPfuOeShrF5Quh9IlArH3NBX/x9pubm5qOBzWBLNut1s7/tQdG+wLTy/wGhQucKxyoPjnwdOT3AVEe6xP6Uagr3x39Pv9fJJIKSYwpkDgZuC9f+qyfu1lISYEAoHAuqPxrLv0vk9aC8p0zfjpj/5XaqX4G+Zm4wWt39NjX/xxZ92NM8fahOGclJdF7coc+8FgkIlcv9/P9RLInfcI5Xg8zgUfcTGcP39eg8EgR3Ahil6Vn/4gUJT530Q0nbxAarzyPRF9z8/e2trScDjMdR3cJcF11GDATt/pdLS1tZVdFNQscLLs/fATMLyKPSSOCDTXeK4/BRBbrZYuXLig++67T/fee6+Gw2HOxb9y5Yomk0kmiO4wwdnhRf1ms1ntSFB3IEDSPSpcRpZdTMC9Ue4PT9mAdPuRjMvlstYnJ9slgS3TB1hPTkvwIwrZq74WfupCWafBya+n+UiqCSr0yftWiglOkPnceJ9KEcTh9RdYb4QIao0gsOGEqaoqiwZ85lysQXhhDdwx4KeeuBvJ04d8L7vjwt1BLnjw3LLugZ8Cwrr4KQ6+l3iOu4joSwgKgUAgEAgEbie85KPerWGK1M1bgZd2Ovq6v/c6/c3+l+iub3vDWXfnzLAWggJkzSuyS6oRT66DYEvK4gBHzXk+uHQU0RyNRrpy5YokaTAY5JMP3E3AMw8ODjLBJwq6tbWl/f39TPCl+qkN0gnpd8JE5N/fg/yQ0kBNAUmZ2FMkcjqd5pQBr6J/eHio8Xis8Xic+40AwPGZOBOwhVOEUVIeH+TJTzGQlOeEfnJc5MWLF/OpDpPJRIvFIreBGwCCRzFBTyMgyg+ZduJYOhO8WKGnGQBEDZ4Hgff/utjgln6ve+FzISmLLV4o010bXmOhLFToffV6BmW03fuHM8EJtc+NH+9YOkDYMy7AeTqIk2gvROiiw6q6ASmlLC4hSPh8sreGw6G63W6t9gRrzVyvclIgyKxKa3Bnib/mNUs8hcXrXzjc7cE43NlUuhoQiLxuhO+LQOBG4/ATXqpP/NO/dtbdCAQCgcAzEP/wuf9e/Ub3yS8M3BB8cu9A//Cvf6f+bvPP6e7/4+xEhd/5gY/QtRxO9vv+2sPaf+gDN/TZayMoQNLdKeDETTohQUQ1z507l08e4B6i9imlnLM/m83U7XZ17tw5bW1tZZJIsT3PN4fkDQYDDYfDXK+gLHbn/yCeWKc9fx8wDizWkC1IjEdPGQMnBzhxf/zxx/OpCuUcUfMA0keEFhI1mUw0n89r5AyyiVUcQkgU+sKFC7rnnns0HA61v7+vyWSixx57LBNvUijoM/2gcCSnISA0uIOgdGa4Jd/FJa+jIJ3ULyjt7WXhPxc13DFAX3FYlPUMuN7rA/B8FyjYd/zupNRJtv/XayZ4n3yf+Lyy51xowIFSEulyHKTK+EkPjMELFyI8MDf0zwm/1/Lo9/saDAa5v6wdAghi0yoHSZnSwueJZ3iqD0KHCyUIaJywQZt8L5SpMzg0+HyVJ2P4vPBMT7UKUSFwo5H+wEv0Md/6q/qHd/3GWXclEAgEAs8wPPunDvSuz7ikj2iPzrordxT+ZH8m/dXv1Le94o/pyj9/jjZ/8JeecluP/IcX6e7h9a/fb7/42k6M+v/98Cfpsfm9OqySqj/2vut+ziqshaAg1Yu3rUp1kOrHNG5sbGhra0ubm5uZBHu+POT30Ucf1d7eni5fvqzNzc1ce2G5XGZBwU9egIxzrKRUL/QGWUbAkJRPlzg8PMz2cM8jh1z5KQT8TpE+iAvk2wWJ+Xyudrut0ehoc00mk1MW73a7rc3NTW1ubtbcBtjYOfpyNpvlvHfGjH2c9w8ODrS1taW77rpLz3rWs7JoMx6Ptbe3l2sgICRwQofXO3C7v1fbx6nA65B+n0/IOkKKz0dVHZ2eUBYbZO281oYfDcncIxzxrzyikjlz9wZjgmh6Pj4EnpQBxr6qqKCnZCCwPNFnATg5pm+l8MZ1zHFVVTki32q1Mkn3tBQ+K55qw/uebuDpADhlXEBAVHF3kI/BUwr4nX3L5wfxD+HCx146B1ykoj/lfPM9gfPC0z7KwpolyhSTQOBGYnGxG2JCIBAI3CZobm3pd77wfkmnazutI+76qnfpj3QfltQ/667ccfiT/Zn+5Itfr3//D4d641c+T2/8Cy9V9SvX9v/73/7nL9cXfuwvSpL+t8vfq85NTFn5Nw/8XP75773p9+t/7Nyn+R95eo6FtREUyLOHtEF2sEm7tbrZbGpra0vb29uSlE8R2N/f13A4zK/t7u5qOp3mnH7IJO6FnZ0d7e/vq9Pp1E6MgOBDpuiPH5FHJNdTFa5cuaLd3V1VVaVer3fK2k9dAenk2Dsnz2UU2kUS+gxxk+qkCQHE8/xxGriN3SO1iAij0ejUfGxtbenSpUu65557dPHixSwoUDsBEYFoP6RROonqQjidWHqhRC9qyFgQH9wB4mKA12LA8cDacD1E3QnkqkKIXqvAc/IHg0FOHfETGpbLpSaTiSaTSU7rQLBAHAHsVSfZpPWU9RqAux+4xiPkXtyTsfk42Be4Unq9Xt6bCDFeu4DPkqcHuFvB54Z5dVGGvQfB92M+fYxXGy+faa9xUa6lH0lZ1mZANPICm7QLmKeyNoJfz++r3CJX63sg8FTQfNEL9Hdf9x1n3Y1AIBAIXCtaG5pfun3+Fnjls/6rzjdDTDhLfPZgpM8e/IZ+/gd/Q48dDPW6l/9BHTz++MprH/zKj9c/+nP/Wh/T+S+6Z2N4/Oqtq3/xD+/6Dc0v/5p+4u3n9bVv+Qzd9Vm/9ZTaWRtBATEB0lBG6p3gb29v6znPeU4+knA0GuWaA5Atoun7+/va3NzUYDCoWc2plyDViScESarbzyVloYH+8Vqn09FkMtHe3l4tjYE2IcleYJGIuKTatW7FHo/HNSu9F/ArCZgfk0nxPE6imM1muQZEWXySmgxXrlzJqSH33XefnvOc5+i+++7T3Xffrc3NTY1Go+wMQDzAWs9xgpKyxd7JGPZ9CC3z5jn8foqCFwos891ZQ7fBc+qGF9zzXHsXGkiT8NcRV5bLZY54Iw4Q2cZiz3X9fj8LGjxz1ekJ7B3Wgv3slvpybDgRPO2A/pfuB8QB9vB8Ps8CDCd8sF/4R0qCOzDYC37Kg6fueMFC5pBaEy4ieNQfUcWdDl6LgRQNPgtevJH1xAHCPirdDoiB/kxPOfEUh1V9Q5BhDeiXfz4CgRuB5uXL+uc//d16Tv6DIRAIBAKBG4fn//BMP/mHf7/+ZP9XzrorAUmf2JWkkT7yTf/hqv6WC403HAtAZ/e3QSe19NmDkT7tZd+jl3zfX9ALvuBN193GkyYIp5S+M6X0cErpN+21v59Sel9K6U3H/z7d3vvKlNI7UkpvSyl9yrV0wv+w98J4TmYgAIPBQBcvXtSlS5dy1BwxAreApFzYEOLkEWZSHSTl2geeXkCfXEzwaKnntzcaDc3nc+3s7GQLPWS0LNTHqQ/uPoB4u6UfgjabzbITgKKLfgThYrFQs9nMdRlwMVAXArI1m81q9y+XS125ckWPPfaYHnvsMU0mE43HYx0cHGh7e1vnzp3TxYsXdfnyZZ07d06tVkuj0UiPP/645vN5PoWC+6bTaR57KSggQnAEI+TXi0Z6EUDp9HGGrOF0Os3Hf0LQJdXmFaHAC016rQhIMEeH9nq9WoFEhA4XIaijwDhwl7Tb7VoBR/sMaD6fZydFp9PJYpKLTYzLSbGfakC7Gxsb+RpEChcg2C8Umex0OhoOh9ra2tJgMKgV3vQipKv6w7jKo059/ugD/UT4QbjiGU7GXYBCdKNPOF6kE+cOYoOP1/vQaDTU7/ezUOAii4sH7CWfr/IEChetvCDouqU73Irv4sBNQKOpRr+vH3nT60NMCARuc8T3cGCd0VgcaL+K06nWDc9rDfWCq/xbJzdJJ7X0tj/ynfqRB39Zv/v3Pl5qNI/+XQOuxaHwXZK+VVJZ6eFbqqp6jb+QUvowSZ8n6SWS7pX00ymlF1VV9YR/mUPWpJOCeQ7PrT9//rxe9KIX6UM+5EP0yCOPZIILAVsVvSeS/Nhjj+XoLyTD74HUHI+lZiGH8HPUo3RytCF1E+iDp2mQd97pdNTv97W5uZlJuFvMia5DcIiIN5tNXbx4URcvXtRgMMikcGdnp3ZKAGOCHEG4ichCfhFWaJ+6CdJRtPf8+fO6ePGinv3sZ+v+++9Xr9fTeDzWzs5O7VQKJ7MUx0MkYA0hixzbeXBwkMkqtnZPbXEy5wKDrw9pG7hMPFqNQOMWeK9V4OkkCFQu3tB/XidtoBQ3EEL8tIuyngHiA9d7HQDag7w7eUXU8L3gRNr3pN/n4gl73muDMKeSaqkLzK+nm7BvPJ3EC15ynX+OcD74iRcusvjepD1OT/E6Bgg43rY7V7xPXONOEK/n4HsKcY4++Fp5uhNin9eHWCN8l27yd3HgxuO73v2fj22McYRXIPAMwHcpvofvKCRLZw0Enulopob6qa23fOm3S1969Nof/9wvVus33nX0y+rMjScXFKqq+vmU0gPX2I/PkvQDVVXNJf1OSukdkl4u6Ref5Bk5Cu9Essx5brVauuuuu/TAAw/o8uXL+sAHPpAj0ljTIbFE73u9ngaDQSZ4XgCQCLF0clyiF77jdalOuiTlIxSdDEFkVpE5bNxE5BFC6INHY7mPwpPnzp3LJ05AzOkLrgNP1aBIZLfbzekBCAmz2Uyj0Sj/Q5igncFgoAsXLujee+/VpUuXVFVVdnUwjuVyqd3dXT366KOaTCY6ODjQ5cuXdfHixTwGJ/nMK2Pyon4cUckach8EGNHB23WBADLvBTm9hoNX/IeIchqHiyvMG3PfaDTyKRsIA+wV7vdaAQgd7j6BCLM3fFztdlvD4TAXJCxrGiBg8TmgTear3I9eb8RdN3y2cLogPrHfACSfZ+LCwe3CXlsFBBlSQhASvKYB4o+k7LLB5cJ8eBqEF7v0dAsXJrxWCG3zswsxnpLBdwqfFebM953PwzrhVnwXBwKBQODqiO/hOwup09Fv/e0HzrobgcCZ4qd+8P/KPzfvWX3N0/mr+ctSSv/j2P51/vi1+yT9rl3z4PFrTwgcCqvcCRBRIreXLl3SffcdNQkR9Cii52tDXrFWEy12kk+xOsgNJNBTL/wkBkiun5Ig1aPqTvidGOOUgKhJyoUUifRDluh/v9/XhQsXtL29nfs1Ho81Ho9rlnkXSfr9fiZtvD6fz7OAsLe3l1NCvKr+xsaGLl26pOc973m6ePGiNjc3sxtiNBrlsYzH41y3ArLd7/drkV+e69ZzJ4usGWTOxQTqWzCf0+lUe3t7kpQj6MDFAy8K6Mc/ulDja+av0zeIKqKM1ywgVcKLQXqtAQQJrxXhz6OfCEXD4bBm2XerP/1gHhETmFOescoFg3DFvnR3AukXnubA89jjPv+rakT4vK/67Hq0n73nYhBOHwQISbnmA6khOB54H8dNWU+lTHegP4yXz7HXIgFeM8LFS6+d4G2vMW7Yd3HgBuNjP0Kt9XK5BAKBm4P4Hg4EAncsnqqg8FpJL5D0UkkPSfqm49dX/eW08i/ylNKrU0pvTCm90aOKZSE0FxQGg4Fe/OIX6+LFi5rNZtrb26sRYs97J++cEw0gvdikIWLYron8O1FyO76fnlCMQ1JdUHASR3oEZJMTKegPxzyWboeqqrJbAFGEPHWOBYREMiZIE+QMAYL0hvF4nN0GiAGe037+/Hk9//nP14te9CLdfffd2dZPfYXDw0NNp9N80gO1DIbDYU4N8BQUF2XciQFJ4/5er5fdAIg/buXnZ8aF4MKa8xwngayvR/cZg7sLfH39+M2tra2cJsIY/CQNxARIv0f93eni7hDSI7rdrra3t9XpdGq1NLzP9M3dBf7Piz16PQqINp8n34eMj/3K/PnJH7gN3FHAZwkyTj997vnsOPHnOTyDf4gMiCvtdlv9fr82t76eZcFL/9z5HikFIp7lzh0/qpNjNUv3Q1mPYc1xQ7+Ll5qvuiTwFPF3v+9f61JzcNbdCAQCNxfxPRwIBO5oPKVTHqqq+iA/p5T+paQfP/71QUnPtkvvl/T+q7TxOkmvk6RWq1UhBqyKJFPE7/7778+2+kcffbRGwiEFkCPII5HaMq0AAk6E3aOrpagBQcL27yRU0ikyC0lcLBY5J5xoN8Tu3Llz2tzcVLPZ1MMPP6zRaJSPtnRHg9u2Z7NZLf2g3+9rMBjkwpBO6tJxYcDJZJJJKeKAn1bAuHu9np71rGfp+c9/vra3t3O6BMck8uzHHnss167AudHv92t595BJIsyke0C6IZNOZlkn75eTY8igr6GvLz8Tnfc0B/YIAoB0Up/ASSviyIULF3Tu3DmllPKxmggKtMk97BmEktKd4M84ODjIYsLm5mYtTcDHwvjK40Hd7cJYt7a28j2+D7kPMYm0AuZ/Pp/XRIJGo1E7icPrKQyHQ7Xb7dw+BUARPLzGCP8APyMcsJdLQaOs3eD1RVxQ8Lkvvy94n7lhP5X1KhC4fN/5HLJ+ZbHNdcSN/i7eShduC0tGIBAIrAviezgQCNzpeEoOhZSSZ1C8QhLVbn9M0uellDoppedJeqGkX76WNrHCr7IYb2xsaHt7W3fddZf6/b4effRRPfzwwzlyS0S11Wplkk7kWDohm9QvIDrv/8rj45x49Hq9TIakE6HDj93jGaWrodvtZns7YkGr1dL29rYGg0EWICDnoNPpZHJMmsTOzo52dnZywUCcC6UTot1u6+DgQHt7exqPx1oul9mFASmEOB0eHp2ccf/99+uFL3yh7r//fg0Gg0z8mCvEhb29vXw0IfO9vb2do9ue2gFZ9oKNbknHteBiAY4AL5gH4ZRUSyuRTgirnxxBFN6PCXShpyxo6OuJW0KSJpOJrly5ovF4nMWqUlBABCJNAHGA6xBHIOhbW1s6f/68Wq1Wjew7YUaMcjECQNhxtxDV91oTPi84WrjP5xdhgnHxOXBhzo/jROTx1BT2utc5KPvLZ8/rHjB/PMNrT3g9CYQD+s06lYUk+ecClTss/HQVXDwuSPj+YG5KR8M64mZ8FwcCgUDg2hHfw4FA4E7Hk4bfUkrfL+mTJF1KKT0o6WskfVJK6aU6sm69W9KXSFJVVW9OKf2QpLdI2pf0l6+lmi2R4zJ3GWv1YDDQ3XffrRe84AVKKekDH/hAPu6QHGvy2zkW0WsYELnnKL/xeHzqGL6SwJDnDUn1Yy1TSvk1XBJujUeEgPRtbm7mfnn+PCQ0paRer5ejvogJHItHigM1Fig2SRR2VX48TgQs7OPxOJNxr8bf7XZ1991360UvepE+7MM+LAsfjIeo9d7eXibXPIuUjH6/n8dBn0ajUe4v4kdKKddioD4ExM5FDkgi77mQw3pBet01APlFyCj3k6cpQCTd2YIFXlIuXrm7u5vXxAUqJ8rT6TQ7IbzuAHsQ4anf7+vcuXPq9/saj8f59Aup7ozxdAOe6cJVt9vNR1763Pm8sH+pk8F+Z47LWgROzp1se6qPF7lkfOW60Ff/DLvYULpCmBuvtcF8OOi3pzJ4kUXWEnGF/nN9t9vNBSC9fRcQqdvgroV1wq34Lg7cWHzZt32pfuGvf5O2G72z7kogELgBiO/hQCAQOI1rOeXh81e8/B1PcP0/kvSPrrcjWNsdRBK3trbyMYbj8VgPP/ywHn300RyVb7fbGgwG6vf7Oc/f7eJEz8vTCiTVCut5tBNiCOHxivc4D9w2D1GHPFPfYHNzMx9FCLkkwko/IYu0Tw5/Oj69gGi1HwFJzjzkDIJP3YO9vb18/d7eXhZfPA2BeXv2s5+t5z73ubp8+XKOFkNGPd1hNBrV8tG3trZyKgf9wlLP2LwII3OASOMFMxlnKRZ46sJsNqsVycTdgM2ddSPNg6i4E18n7DgfvCYA9x8eHubxuuOF/nhxSK/LIKkmVNHXXq+nCxcuqNfraTab5ToUXF8Se3do8D5E2Wsm8GycBcyLpNqxlt4nFxP4DEDWicpzHXsXUYs5IFWBVBsEjXLNvMgkLgDmhXZ4Pq8zp6vqILCenl7jRVJ5Nj97Gy4+lqdveKoD+4E9sy64Vd/FgRuHe77pDZp8+YG21+/QkEAg8BQQ38OBQCBwGmuTIOxkHvIB6b148aIuX76sXq+nK1eu6L3vfa8eeeSRnCtNNL/dbp+ykXtu/mg0qpGZMk9fOimeiOhAVX9s/xA2j5JCUDh6kUr7CAtl7rvniksn0Wms7BBPXAbgasUJOYKw0+nkVAccA1V1cuyj28YRRe666y7de++9uvvuu7W5uZlJMsUjJ5OJdnd3tbOzU6sNwHGckE/WinsXi0Um7fQTwtlsNnOBTOkkNQHC60UAmSfSCZhr5pd19H9en8FTXxBKXBiCANN3CLKTWO4ngu3vI1CwNk5oKTo5GAy0tbVVOzVjZ2cnC2JO7r0NP+nBnTN+9CnzgmsGd0EpHCG20C57nHmXVEtvQPhpt9v5aFDuxYXC/aTFsDe534sxSqq5I/x+PmtlSgmCk6dh+Pt+mgTP8BQX/25xMcHdSaW7wmtAeM2NQCAQCAQCgXXG9H8f6W/d9dOShmfdlcAdhrUQFFYVdIMknDt3TnfddZcuXLig5XKpd7zjHXr44Yc1Ho81HA5zDjbk1gsOIjIsl0vt7u7WLNOSMomHNHjEGyJGhNZPgSDfHEu4pJrYQOT44ODoiEdy54kqO4Euo8X0mf65w8KjxhRsZP4geRRfhIhSiBEizRxgm798+bIuX76cTzVIKeW8e46HHI/HOb+eqPBwOFS/389j8VQBotl+GgNj8b5D/ukX7ZeEbzabaTqdZtLMHEE2STVhzonUOzEsc+T7/b76/X4WnKj7QHuQeo/iHxwcaDKZZLFmlZjg9QVITdne3tZwONTGxoauXLlSc294wUFPJXAxzEUB3mM/lLUz2L+sC/PgUXvGhujm7hzewwWBiIJTg88PjpzpdJodNLgHvK6Fpw94vYWylgafDT9GkjoILtAgVLlLwos9AncPMReeYoEwVDoQqL9A+yEoBJ4OXvgrHd3V7J91NwKBQCBwB+Bzn/1GPa8VYkLg1mNtjJgQH3LNNzc3de7cOV28eFEXLlxQq9XSBz/4QX3wgx/UaDSqRZk3Nzd16dIlNRqNfJzk/v5+zb5PAUCInZ9xL9XPpIf4EAGHNLmFnkg/DgnIihewm06n2tvb02w2q+V3Q/hwKHhhwrI6PUTJ7etuO3dLPIUbSevgPkgv5KnT6eQil/fff7/uvfdenTt3rlbgEXcEZB6nRKvV0nA4zCkfbvM/PDzMKRJldJ9nexFAiJ5H+pkjaj+QvoC7odfr1QovIkb4EZhum/f15R9iCqSVOgyQ9JJEknrCsZteT8PX0Z/l88yeo4AoR256AUG37hONBxQI9LV3co3bhGg9hUbLdri3rC+CmIAQQLpOVVU57QXniDsgEFdcKPA+ryrEyHUuJHG91xRBCOSz52kgXmehLNhZrgOCiKRa/1lv35OlQ8P/GwhcLx745Z7+2b2/qGZam//NBgKBQOA6UM3n+pB/+r6z7sY14f6fOdS/ffCjz7obgTsUa+NQIBrqVulut5sJJBX3d3Z2NBqNMnnp9/t6znOeo/Pnz9eiv/1+X91uV/P5XKPRSJLyCRAUZ4OkQTjcot3r9fL1kCYIJBFit1q71Xs2m52qeu+uCC8sCKH0QnWe703KAn1wBwcErNVq1WoHeOQc4uc5571eT8PhMLs/tra2csG+2Wym3d1d7e3taWdnR+PxuJaH32g0dO7cuXySBJHf5XKpxx9/XI8++mitcv7V1pv3sO0jWHhdAPqMeLO5uZnrRDA2LzDJvECavQig95XUFBeIECJ8Tb2eg9elcFHJ7fpe9JAjKP2kDkQSxATW2i39rFHpKGB87pjAxeDpENSaYE9635gDn3sXpRBXEBMQhugvogXpQ6Q6rBK5WAvgDgjqZbirRzoRBPwzgDMCeJFVRLoyzcQLj/I58poTLqQgJHpNBZ/XQOCpoPef79a33/cTISYEAoHAbY5qND7rLlwTmotDzQ/j/zmBs0FahwhcSun3JI0lPXLWfXkKuKTo961E9PvW43bt+43q93Orqrp8A9pZe6SU9iS97az78RRwu+5R6fbte/T71uJO7/ed9D0cfxPfekS/by1u135Lt2/fb+p38VoICpKUUnpjVVUvO+t+XC+i37cW0e9bj9u177drv88St+uc3a79lm7fvke/by2i33cWbtd5i37fWkS/bz1u177f7H6HNyYQCAQCgUAgEAgEAoHAdSMEhUAgEAgEAoFAIBAIBALXjXUSFF531h14ioh+31pEv289bte+3679PkvcrnN2u/Zbun37Hv2+tYh+31m4Xect+n1rEf2+9bhd+35T+702NRQCgUAgEAgEAoFAIBAI3D5YJ4dCIBAIBAKBQCAQCAQCgdsEZy4opJQ+NaX0tpTSO1JKX3HW/XkipJTenVL6jZTSm1JKbzx+7UJK6adSSm8//u/5s+6nJKWUvjOl9HBK6Tfttav2NaX0lcdr8LaU0qecTa+v2u+/n1J63/G8vyml9On23rr0+9kppZ9NKb01pfTmlNKXH7++1nP+BP1e6zlPKXVTSr+cUvr1435/7fHraz3f64z4Lr4p/Yzv4VuI+B6+5f2O7+EbjPgevjmI7+Jbi/guvuX9Pvvv4qqqzuyfpKakd0p6vqS2pF+X9GFn2acn6e+7JV0qXvsGSV9x/PNXSPr6s+7ncV8+UdJHSfrNJ+urpA87nvv/r737d5GrCsM4/n0JaxATEEVlSQRXSScSUwRBsRIxaVa7dCkEGy0s7ALiP6CthVgEEdOomFIRxE5FjWsk/ohaGLJkCxG1UdHXYs6QIczMZmDmnnPC9wOXuXMzhIf33HmKw81kL7BR1mRPQ7lfAl6Y8tmWcq8DR8r5fuD7kq/pmc/J3fTMgQD2lfM14BPgodbn3ephF68spz08bG57eNjc9vBy52kPry6rXTxsbrt42NzVu7j2EwpHgYuZ+VNm/g2cATYrZ1rUJnC6nJ8GnqwX5arM/Bj49ZrLs7JuAmcy86/M/Bm4yGhtBjcj9ywt5d7OzC/K+R/ABeAAjc98Tu5ZWsmdmflnebtWjqTxeTfMLl4Be3hY9vCw7OGls4dXxC4ell08rBa6uPaGwgHgl4n3l5i/cLUl8H5EfB4Rz5Rrd2XmNoxuRODOaul2NytrD+vwXERslce/xo/sNJk7Iu4BHmS0Q9jNzK/JDY3PPCL2RMQ5YAf4IDO7mndjeptPz13c8z3adCdMsoeHYQ8vVW/z6bmHoe/7tOlemGQXD6N2F9feUIgp11r+bycezswjwDHg2Yh4tHagJWl9HV4F7gMOA9vAy+V6c7kjYh/wNvB8Zv4+76NTrlXLPiV38zPPzH8z8zBwEDgaEffP+XgzuRvV23xuxC5ufQ2a74Qxe3g49vBS9TafG7GHof11aL4Xxuzi4dTu4tobCpeAuyfeHwQuV8qyq8y8XF53gHcZPR5yJSLWAcrrTr2Eu5qVtel1yMwr5YvyH/AaVx/LaSp3RKwxKqA3M/Odcrn5mU/L3cvMATLzN+Aj4Ak6mHejuppP513c5T3aSyfYw3XYw0vR1Xw672Ho9D7tpRfs4jpqdXHtDYXPgEMRsRERNwEngLOVM00VEbdExP7xOfA4cJ5R3pPlYyeB9+okvC6zsp4FTkTE3ojYAA4Bn1bIN9X4y1A8xWju0FDuiAjgdeBCZr4y8UdNz3xW7tZnHhF3RMSt5fxm4DHgWxqfd8Ps4uF0eY+23glgDw+VdyKfPbxc9vCwurxPW+8FsIuHyjuRr34XZ4Vf/5w8gOOMfkXzR+BU7Txzct7L6BcxvwK+GWcFbgc+BH4or7fVzlpyvcXosZx/GO1EPT0vK3CqrMF3wLHGcr8BfA1slS/BeoO5H2H0uNAWcK4cx1uf+ZzcTc8ceAD4suQ7D7xYrjc975YPu3glWe3hYXPbw8PmtoeXP1N7eDV57eJhc9vFw+au3sVR/lJJkiRJkqTrVvufPEiSJEmSpA65oSBJkiRJkhbmhoIkSZIkSVqYGwqSJEmSJGlhbihIkiRJkqSFuaEgSZIkSZIW5oaCJEmSJElamBsKkiRJkiRpYf8DgPWNgfd1zyIAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 58233 565483\n", + " Min thresh = 1000\n", + " Sliding\n", + "\n", + "\n", + " Winner = Sliding\n", + "\n", + "\n", + "237s_iimage_24164968068436_CLEAN.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADDCAYAAAAya0IYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADeuUlEQVR4nOz9ebxtWV7ViY65+712c5rbRERGphmQkJRiaSoWBVZZ4kMFLASp9+SBPlFBE7SwAxv02b+PPhUFtapEkkKxntKWhaJShZSaomUmQtqSIghINkZkRNx7mt03Z5/1/rjnO89Y657I6G7EPZH3Nz6f+4l799l7rbnmmmvHGeM3fmOmsiwVCAQCgUAgEAgEAoFAIPBy0HjYAwgEAoFAIBAIBAKBQCDwxkMICoFAIBAIBAKBQCAQCAReNkJQCAQCgUAgEAgEAoFAIPCyEYJCIBAIBAKBQCAQCAQCgZeNEBQCgUAgEAgEAoFAIBAIvGyEoBAIBAKBQCAQCAQCgUDgZSMEhcDrjpTS+1NKn/GwxxEIBAKBS6SUfjql9Etf4nvLlNInvMLzvOLPBgKBQCAQuF4IQSHwuqMsy08uy/LdD3scLxUppb8avwAHAoHA64eU0mFK6fmU0j992GMJBAKB64YH/Xvpyzle/F4cqCMEhUDgoyCl9F9LetvDHkcgEAg8YvjTkn70YQ8iEAgEApeI34sDVyEEhcDrDrfVppT+aErpu1JKfz2lNE0p/duU0ttTSr8/pfRcSulDKaVfbp/9jSmlH71470+llL68duzfm1J6JqX0dErpN7mCmlLqppT+bErpgymlZ1NKfzml1P8o42xJ+h8kfeVrMxOBQCBwPZFS+tSU0ntSSicX36n/Y0qpU3vbr7j4Hr6TUvralFLDPv+lF9/Vxyml70spvfVlnPvTJf1sSX/1AV1OIBAIXDuklH5mSundF9+z708pfZ797N0ppd9k//4NOLZSSj9w8fK/TinNUkr/z5TSZ6SUPpxS+gMX38k/nVL6ta/0eC8w3vi9OHAlQlAIXAf8Skn/P0kHkv6lpO/TvbX5pKQ/Lukb7b3PSfpcSWNJv1HS16eUfr4kpZQ+W9JXSfqlkj5B0i+unedPS3q7pHdc/PxJSX/4o4zrd0n6gbIs/80rv7RAIBB4Q2Kne9+BNyV9uqTPlPRba+/5Akm/QNLPl/T5kr5UklJKv0rSH5D030m6JemfSPq2l3LSlFJT0v+ke7+wlq/yGgKBQOBaIqXUlvR3JP19Sbcl/TZJfyOl9Ekv9tmyLP+bi7/+3LIsh2VZfsfFvx/Xve/sJyX9eknvepXHqyN+Lw5ciRAUAtcB/6Qsy+8ry/JM0nfp3i+gf6osy62kb5f0VEppX5LKsvx7ZVn+ZHkP/1j3voh/0cVxvlDSXy3L8v1lWS4k/TFOkFJKkn6zpN9VluVRWZZTSX9S0hddNaCU0lskfbk+uuAQCAQCH5Moy/J9ZVm+tyzLs7Isf1r3hN37RNqL79MPSvrzkr744vUvl/T/LcvyRy++1/+kpHe8RJfCb5f0g2VZvu+BXEggEAhcT3yapKHu/b67KcvyH0r6u7r8Hn2l+ENlWa4vfkf+e7r3u/GrRvxeHPhoaD3sAQQCkp61vy8l3SnLcmf/lu596Z6klD5H0h/RPadBQ1Ih6d9evOdNkn7YjvUh+/uti/e+7562IElKkpovMKY/L+mPl2V5+nIvJhAIBN7oSCm9XdLX6Z4DodC93xfqJN+/Yz+ge9/BkvRWSX8hpfTn/JC6VzX7wEc555t0T1D4lFc1+EAgELj+eJOkD5VleW6vfUD3vidfKY7LspzXjvemF3rzy8SfV/xeHHgBhEMh8IZBSqkr6W9K+rOSHivLcl/S9+reL6qS9IykN9tH3mJ/v6N74sQnl2W5f/FnryzL4Quc7jMlfW1K6SMppY9cvPaelNKveUCXEwgEAtcZ3yDp30v6xLIsx7rXwpBq7/Hv2J8h6emLv39I0pfbd+1+WZb9siz/2Yuc81MlPSHp31187/4FSZ968T38QuJvIBAIvBHxtKS3ePaM7n2P/qeLv891T8wFj7+EYx6klAa14/G9/EqO54jfiwMviBAUAm8kdCR1JT0v6ezCrfDL7effKek3XoTcFDJb1oUC/E26l7lwW5JSSk+mlD7rBc71dkk/V/fyFt5x8dqvlPTdD+xqAoFA4PpiJGkiaZZS+s8k/ZYr3vN7UkoHF1bY3yGJvtu/LOn3p5Q+WZJSSnsppV/9Es75v0t6Spffu39Y93J13mGutUAgEPhYwA/qHsn/vSmldkrpM3Tv98xvv/j5v5L036WUiotw8S+rff5ZSR9/xXH/WEqpk1L6RbqXOfZdr/J4IH4vDrwgQlAIvGFwkXvw23VPODiW9GskfY/9/H+X9Bcl/SNJPyHpPRc/Wl/89/ddvP7elNJE0v8p6cqwmrIsnyvL8iP8uXj5TlmWy6veHwgEAh9j+N269x071T0x9qqQrr+te20Q/0r3enW/WZLKsvxu3QvB/faL79ofkfQ5L3bCi75f/949lbS17+BAIBD4mEBZlhtJn6d73413JP0lSV9SluW/v3jL10va6B7R/2uS/kbtEH9U0l+72CGCnISP6N7vx09fvP8rXuXxfLzxe3HgBZHKMkKUAx+bSCn9TN37RbZ7EQwWCAQCgUAgEAh8TOHC4fDXy7J884u8NRB44AiHQuBjCimlL7iweh3oXoXs74SYEAgEAoFAIBAIBAIPHiEoBD7W8OW6l7Hwk7q3j/pVfb+BQCAQCAQCgUAgEHiVeM0EhZTSZ6eUfiyl9BMppa95rc4TCDjKsvzsi90bDsuy/IKyLJ952GMKBB4W4ns4EAgEHj7iuzjwWqMsy3dHu0PgYeE1yVC42N7pxyX9MkkflvRDkr64LMt/98BPFggEAoH7EN/DgUAg8PAR38WBQOBjHa+VQ+FTJf1EWZY/dZFi+u2SPv81OlcgEAgE7kd8DwcCgcDDR3wXBwKBj2m0XqPjPinpQ/bvD0v6L19wEK1W2e12dX5+XvmDeyKlJHdSpJQkSWVZVt7TaDTUbDbVaDSUUlKr1VKj0dD5+blSSmo2m/l9krTb7bTdbrXdblWWZf55/bj+b87LGFJKOj8/rxyj2+2q2+2q2WxWznN2dpbH2Gw21W63lVLSdrvVZrOpXHP9uhuNRr4Wzl+Wpc7Pz/MxGctud2+7buaC97darTwmft5sNnV+fq6zs7PK3Pu1+r8bjUblOGdnZzo7O8s/q3+O+a7fJ0l5rPV7xZ+UUr4mrsE/y8/Lssz3fLfb5TnhePX75veOz/O5ZrOpXq+ndrstSfm+8hnmFvj5mG9fv5zDz8N4mRde83W92+3ye7hmvz7mwtc11+pzXf+vH0+S2u12XodcA/eFe8v653Vfp1edy9emv4fxchy/Zh+ff96fy/p3Au/zdc469mP6+/2e+TH44+/jOMvl8k5Zlrf0xsPL+h6WpOZwUH78x53r2R/pv6YDCwQ+VpEaDX3iz5497GF8zOGnP7TVnaNdevF3Xku8rO/i+B4OBAKvF97+cxYv6/3v+zfrK38nfq0Ehau+9Cu9FSmld0p6p3SP1Pysn/WzVJal1uu1lsuljo6ONJvd+59yu91Wo9HQbrfTZrNRSkntdjuTB0hGs9nUcDjUeDzWcDhUr9fTwcFBfl+73dZwOFS/31e329V6vdadO3d0fHys2WymTqejTqejVqulyWSi9XothI7tdlshGk7+zs/PNZ1ONZ1O1el0dPv2bX3SJ32S3va2t6nf7+vk5ERPP/20nn/+eUnSeDzOpHU4HOr8/FxPP/20JpOJzs7OtN1utdvtMqk9OztTr9fTjRs3JEnr9Tpf02Kx0Pn5ucbjsbrdrna7nabTqcqyVK/X097enrrdrtrttnq9ng4PDzUYDLRer7Xb7VQUhSTp9PRU8/lcy+VSs9lMm81Go9FIjUZDs9lMq9VKktTtdjUajXTjxg31+32dnp7qwx/+sObzuXq9XhYazs/P82c4B2i1Wmq17i291Wql8/Nz9Xo9jcdjpZQ0n8+1Xq/zPV4ul/lYvV5P/X5fm81GZ2dn6vf7mVD2ej1tNhstFgttt1sNBoO8pna7XRZCXFRpt9vqdDo6OzvTbDbTdrvVrVu39NRTT2lvb0/Hx8c6Pj6WJHU6Hc3nc22320xyZ7OZ5vO5yrLU3t6eRqORdrudZrOZzs7O1G631e/3VRSFyrLU8fGx1uu1Op2OiqLQbrfTYrHQYrHI5LjT6Wg6ners7EydTifPa6/X02q1qtzfVquloijU6XS02Wy0XC7z2FqtVr733P/6/N+8eVNve9vbNB6Ps1jCGrp7967u3Lmju3fv5ufr7Owsr5PNZqPtdqtGo6F+v5/vV1mWarfb2u12Wq/X2mw2+dr6/X6et8VikcWo3W6Xr304HKrRaOTjt1otDQaDvKYajUZ+NlarlcqyVFEUGgwGmkwmOj09zYJFs9lUURT5eW21Wjo7O9N0OtVqtVKr1VKn08nHZjw8S61WS+9973s/cMX32RsBL/o9LFW/i3sq9NT7P1dPvVF/bQ8EHiJab35S3/Xe71bROHjYQ/mYw6d+1ode/E3XFy/rd+L4Hg4EAq8LGk193/e972V9pPnET1z5O/FrJSh8WNJb7N9vlvS0v6Esy3dJepck9Xq98uzsLJMmfunHPSDdqzD2+32VZZlf94rw2dlZJpNUWiVpPp+rKIpM0iEMnU7nchIuCIv/vNVqabVaabPZqNlsZrLV7XYlKRMnqsatVku9Xk+NRkNnZ2dZkDg4ONDh4aG2263m87mm06m2222uCrtoQrX0qmr9arXSfD7XaDTScDiUpHxNy+UyzxOfx/WwXq+zwIIo02w2NRqNMjFEFIHQMcebzUbj8TiT5O12m+caUgw5Rezp9/uV6jwEFMLPa3UXwWq1ykLR+fl5PqYLN8y5pFyRXq1W6vf7arVaWTTq9Xp5vl2MwhnglXHub6vV0nA4zALB8fFxJuONRkOr1SqvAeada/f53mw2eX3gMkAcgpC74wDy3263K1X/0WiU7+tisciOFwSG5XKp9Xqd5xpiz5ywDnHMcM5ms5ldF+12W4vFQrPZTAcHB2q1Wjo5OdFisdB0OtVisdBqtdJqtdJyuczPJuKFC2xcI+S8fp/W63X+bK/X02g0kqQsjrjIMZvNKm4i1ifn5z7ipuC54v50Op3sCDo/P9d6vc5iCs8JIpeLjY1GQ4vFQpvNJq/HNzhe9HtYqn4Xj9Phgw/VCQQeEfzF/+s7VDSGD3sYgeuHl/U7cXwPBwKBNxpeqwyFH5L0iSmlj0spdSR9kaTveaE3l2WpyWSSq784C/b29nIFGivycDhUq9XKFVgq/W7f32w2ms/nms1mmkwmuQoOUaAa77Zujnd2dpaFBACxgKS43Z/3QooQKqbTqY6OjrRardTr9bS/v6+DgwO1220tl8tMfiBrkGhaCnq9Xj4WJB43wmAw0Gg0yk6LRqOh7XabyR9EE5Hl/Pw8t2Gs12stFotcIYfsQZipIp+fn2enAkRRUibI0+lUJycn2SWQUtJms6m0BPg92W63mkwmWi6XeU6xlPsxZ7NZtqR7BZz7Q0UflwYknmNBELmXVNLdrs+cMg6O1el0tLe3p3a7rdlslsUerp1z1YUn1qPb9Llm/9Nut3MlnXXbbrczSfa11mg0sojAOmMd8znAuHBt4ArYbrf57/xBxHBXz+npaXY2QKrdhcBzg/MjpZTXJyIAAiBCEfe30WhU5o91xvUhMiGWFEWhVqtVGS/rg+PxnSHdEwb6/b7Ozs50dHSk6XSa73+3281rhucW4c7bbFgzLmjyPPn3wBsQL+t7OBAIvHJsf/kvUPGG1yADrxHiuzgQCFw7LH/lpzywY70mDoWyLM9SSl8p6fskNSX9lbIs3//RPgMB2m636na72tvby6QNwleWpbrdroqi0GKxUEpJnU4nEyQszpBYt1RjmaY9YbvdZkv/xZgzSaEC7b3xVMDdlr5erysOA4g37oY7d+7o5s2b6vf7Go1GOjw8zELDZDLRYDCo9Kw7IESStFwuM3n2NgIcDu6g4H3umIDoIYQsFgsVRZGrspIyAabCj/iAE6Hb7WZCC6k/OzuriDsQsH7/Xt+f5we4nRwLf711ZL1ea7vdZqGEsUrKY8fh4OTVbfDNZjOPE7JYJ/+4ByDzXP/5+bk6nU4m65PJpOIa4JwQYsg9bTHSpXWf90v3XC24Anq9XnZbtNvtPOfcQ89VYA1AiOtVc3c6MJeeW4CohAhAGwHVet53dnamu3fv5nvF/Z3NZln8ckcO58aNwL10YQYREGcLDhbW6WAwUKvVys4MBAbajhqNRm5V4To3m01ez4wddweuiel0ml0ZrDPcI5wDF4zfU+4Hgh5rZ71eX/l99UbAK/keDgQCLw/r//a/0OxNLX3jH/gLeqIV7oTA/Yjv4kAgcN1w/Bs+Xf/kT/xFSe0Xfe9LwWvV8qCyLL9X0ve+nM+Qn9DtdiutAhAhiCEVSUgU5HO32+UqJyR2uVxWrOkQBVojqNzP5/P7yKeHtXEObPqQGMbmIXuQ2eVyqePjYxVFoaIoNB6PdXh4qMVioclkkgks57uYt3y8fr9fqYY7yRkMBup0OhoMBjljALIH+eOYEDf+u16vdXJyouFwmAkl5E+6R95pAaFtguNAvCGd9KhjM0fMQFSoBzZC3iCPkrIwBGl2Yk9lHgLrAgCgV9/zBrxS7qGCjMfHxXERhTg2VWrGjkOlHvbprhMP5sRxA6lfr9dZLKEq7+4SjudrAaLM2uTeutvAHQ6IIaxHdwp4qCOV++VyWXEt0D5C6wStFbvdrtKCAvn29gLP9qB1BjD3tHwwTxyL60BQ6Ha7Wfjz3AvWnodocgzPO/H8hGazed/3R929wDPAvOFSqAt9bzS8ku/hQCDw0tH76qf17v/s70nqvOh7A48u4rs4EAhcFzzz1b9Q//B3fq26afDAjvmaCQovFxBKSPjBwYH6/b6Gw2H+pR4SRwV9sVjc17sNMcSSTdAhlVNIMZX8Xq+Xw/toUXB3ANVsJ3rSZf+7tz+kix0bsP+v1+vcGoB1uigKjUajikUdCzmhgRC03W6nXq+XiZCPG4s6Nu71el0Jq4NwQl65dsgxIYR1QoWA4wQN0gkppaoM6dxsNup0Orl9QLokeHyu3mrAOfzfjIvcgMFgoG63m1sWnMyzZiCtrB1P6ScnAHEJMcRzGyRlIjsajTKBh7RCgCHm/JsqvGdB+H2BGNNOUhRFFoq4z1wLAoEHGnY6nTwGwht9JwIq7NxXF4Y4LrkVOFV8BxK/dy5S0AbDWvc2D9aHk3hENelSEFytVhoOh3mO+C/3iecWQcnFLkQWWp3cpYDowbOFi4P7iZvDBS9JGo1G2Q3Cc9XtdrPohQiBq8LzVVgjgUAgUMfd3/zp+t1PfvvDHkYgEAgEAi+KZ77qF2r69jP9n5/zZ3Sz+WAddddCUIAUEja3WCx0584d3bp1q0KaJWVy46TLHQKeQVAURe7Fx1YNieWPdI+YQmC8bx8Sc1WYIxVvJ6/SZQ8/RJPWBsYIySexnyooxBFhhYpvURQ5hJHsAG8D8BBH6bJVghYDqsYQJa6Lyj9E1AFpdvHFRRVIInZxSbkq7YIHZJ656Pf7WXBwgohIQbV+Op1qPp/ne89x/XMeish8eV4E9wQSXQd9+QhI5+fnWcAi0JG8B+ky2wALPxVuyCjCwHK5zER+MBjkuVksFlk08uMxL5B6MgAQY9brdV5rBEgiZpGPgI2fe8m988wGD/yk5YHcClpbuCaIPS4RJ9zeVsSadzGPtY8DiOcKUYTdLzg/69a36XQBgc95mGWn08nPAnOIkET+B88h65D2Ip4LxDrWAQIc7SbuVggEAoE67n7Zp+t3/e7v1BeNjh/2UAKBQCAQeEHc/bJP1/ZXnujr//Nv1Gf2d5IefHvetRAU+MV/MBhoOBxqPp/r5OQkV3HdoYBtG4HAbckECvJ3shhIgEdQcBLtQoOLFlRN3aLt4YsQDg/l8/FB5qfTqUajUSaFXIdXTL1tot/vq9frabFY5HaNwWCg/f393BJwfHycXQE+LyTpe989lXiunzYP0vGxh7vzgByAdrudSbq3GHhIJmBe3NXAloaeT0HvvHSZscD9Y6cFD7v0nSS8zx0S74GI3usPEea+QDR9rXhQJ+n+bPPIfDJvXgmvu1i4FtwltIJAWMmGYGwIMd76AHFmNw/uu29rCLl1Nwf33OfIBQWOw5aXiFfj8Thv7YiAg8NDUhafEO5c+EJscOHMXQb1NpVut1tpr8EtgmsIkWa1WuXngvMwdoIaXRQ5Pj7OjiXOz1rw/BS/H2SDEJaKmOjiwVUtNoFAIABO/1+fpt/7+75VXzg8fdhDCQQCgcDHILr/+HENW9Ucr3/+3k/S2776vS/62dbHvVV7f32S//1lt177/19dm9+WIY8Qg81mo9lsliuITnKlSyeAk30qlvT/+3aOkB+Is9vEPeAPUgHxpHLppJWcAMi5nwsC69tWHh0dSVI+BuKF99G70wISuV6vdXp6qna7rdFopJs3b+q5557LgZROxH1bR44hXYo1s9ksZzJ4RZeKM38HHNtT9pl/SLGfX7oUca5yRng2BdfuYYFeGcaSz/jdLcKcMUYEIRc36hVmdzQgkjAPiDKMebvd5nVYF30824BMBFwH9Z0mttttFh04jl8P7/GdDjqdjobDYQ7u3G63OQOA6/B2ibOzM02n01yF91wKz1BAqGm325pMJnms/X5fe3t7klQJzVytVppOp1m84dwIOd424M8i6wPHCO0fiGSeAUGLjotwOHZwenCMmzdvZvLPDiasJRxFRVHk9g5amNxhwveLP98EYuJeYD0RoukiWiAQCEjS8ld9qv7EH/umiypPIBAIBAKvHj/+P/8C/bZP+4f537/j4F+omaou2Z9889/R3/6sn/Oix9pr/qC+bO8jD3yMHw3XQlBwG76TcirKkIh6Dzh2cE+Up2WCyiaE5oUq9FRtpWp/v/dru9UfC78TTcbjfe4QXWzgq9UqV3V95wDcAd5agQhCv/nzzz8vSRoOh7mCL1V3PICYuTW8nkvA8REP+AwEV1KuWlOdBy4OeO4CcFEBwYD5g5zj0mAu3R3CfCL6MNdchwtJXIvPMe4A5oX1AolE9PHsA5+jzWajyWSSCTw/Y1wIMJ1OJxNV7h1EF/huC/WwQa6LSr2vS3aNQFSYTCZ5G1WeBRwDzWZTo9Eoj52MDog/wZgensi9Q2A6ODjI4hstFMwbW6u6kMb6YCtLf27c5YNrAtJ+dHSk0WhUcU1wryTl7THdBcH8MK+3b9/OjgE+y7Wyu4Ok7FbAkcLn+TuCCwIeIgztVr4dqa/rQCAQkKT1qBliQiAQCAReNe6889P19V/zDZKkn9X+v3Sz6SGJ97fcvq091Fcd/tTrNLqXh2vx2zKuAX6Rh+DUtxSEAPd6PQ2Hw2xXPzu73GMeC/dwOKxsX4i93K358/k8HwNBw1PwIed1a7cLCljNpapTALJFXzoVeSf/npzvifX8vdfrZXI/m82ymMLrkGVEEcYqKffJQ+Kn02nOaPD+d0g5xAx4xZY5lJQr01SUvR0F0u+hgJzDAxRdSGGO2u127ov3fnw+4+0NtCdctSsCn+XfjIcQTyeyCBEeernZbLRYLPL5nah7ewh/uG5CF3mPV+NxMfg6QGzxHA/WGUGUtD8AxsNxvK0Cgu/CjrdpMM9FUeSxTafTvKsDRJ/132g0dPfuXc3n83w93l7AGvLdG5hP1o5vJ8m6Ya48iJJ7ISm3Q4DNZqOjoyO1Wi3duHEjryvPb/A8ksViUQki9eeRv7OevRWH7xt2KuG/rOlAIBAIBAKBQODVoPXxT+l/fvdflyQVjfdor9G/+MmD23HhYeBaCArSJaGo9+tDCkiQ9/DB0WhUqfRCsqjsj8fjCsGCTEMwSfSnpxpCgkAxGAyyRd5JsIfaQf4hYb5tIee8ceOGOp1O3gYPZwV/3JkAkfXdErim+XyeiR9kmmugfcDbGNyyjqVfUg7KY5ycmznwPAipmg9AVRfSSC86Y8JC7q0KviNB/bh+fN6LkONiDmuBYD2OCdnlXkiXzgFvc3EXg+9S4FZ8F5dSSloul3k8zJWfA0Lt5wZUw10QYd3yfnd5cD1Y7YuikKR8T2gv4H0IUu4+8J9JyuIT9wu3DnkFtHdwPYgjzCf3kZ0O3OVBmwZCA/eM9enbbTJWghoJT2RdIgIh4iGMIAjudjsdHx/n8dM2xLh4Vpk7wit5/vxeuUDmuSaIjsvlMmeLuPMjEAgEAoFAIBB4MaRWS7J2ha//D+/WJ7Tv/R7f0L9QMz34UMSHjWshKHjAoaT7qsaQkHpVE0LoIgDvhRBA/p3w4YigsunVdggOhJA2Cw8QhDS5lV5SJua0VHBN9HXjbMCFAYlFVIBEQ6zqwX1lWWZXRb2Hn2o4JI/gPa9mM09kMpDZwLkYGzs2ePCiV5s9zR/yxnW6iMEczWazHPjnWwj6zhjep49o4U4Ozsv9c6JPFdkJLGCcEFZ3j3CPhsNhFg/W63UWS6is4yzhXjMuKtj1dQDYPQHyzbUyZifivr58q0KehX6/X9nVhPlhnSIoAFojEMVYAzhmmCd25EAAYJ1Ryef5QfxAQEGgkS7zF1hbnU4nOzZwKpBL4MKX7+xAa4evfW9zaTQaOVyV/BN2M+E5cYcPAonnTXirD2uFe+BOCg9tre+AEggEAoFAIBAI1NHo9ZRGI33oXbf0b//Lb7WfFA9tTK8Xro2gAKlDXMD67uSAar2nsFMt9e3m6nb1vb09pZQy8SGMDfIjXYby+RaTEEYq6xAtSBG5ANKlHT2lpNFolD8D8aJdgR5zyJakLC5IUlEUuRrNe9wBQP+7W8W9ug/ZghCyYwE/RzRgzmezmSaTSf4Z8H5zzzzw/nLvy/fx0LsPwWPO+Rzzh2jB511UYQcAP4bb/Z0Uci88bBEyyn2B8Hr/Pdc5HA4rwgcCgX+GdbjZbPL14TbgPbwfgWC1WuU2A4QhwPrFLSApZ0m46MF72QmCqrnvUoILg10hdrud+v2+BoOBRqNRng9EhdFolDMTGD+uGQQSn0vfNcRbNzwfwrdARfxAsPAMBpw73jJBnglz4NdE8CL32a+d1wjARFRxt5KHcnr7hwuYjNu3omSMkaEQCAQCgUAgEKij+cmfJEkqU1IqS/2HLznUf/h13/CQR/VwcG1+W6YSCtlvNBpaLpcV4g1pgHBC3kjlJ5/ASSmvDQb3elPm87nW63XF8lyvbPJft7pDyOrBhhB4qub0cBdFoaIoKgn/pN0jiNSt/E54e71eJejRyaikHK5Huj8ijO8asF6vdXh4mKvhAPKOhZwgy/rODhB1XA+4ICBpkipChqf2QwaZH7IJIJjSZYCjW//pZaeVgvuGg4B2gXq2g7sbGBetHZLyDg5OVhFRlstlnkMP46Ny7YSY6/TsDCfTjInjz+fzvAMBY2FuOp2OFotFvi7PnKDy7u6DehYHx+IYOE84lxN+zwwgN2GxWOTgRdYEa9vbaCRlhwFj5Bll3iVldwu7LtAC5GGl/B1BD0cGQZeMlbnitfr69TVQb0dxMYLPIhQgzPm4vf0EwcIzOwKBQCAQCAQCAbD57P9C/+ivfNPDHsa1wbUQFDxgzQk+P/MdCdxqTT88JFqqpurzHvr3sfl7pZtAOqqwUpWweJ8/JJLKrtu2aYUgh6HX62UiCVGFYFEBhyQWRaHdbpfFju12m4n0arWq5Cw4kYK8OVHFeYA1frPZ5Iq0B97V55mx87o7ASB4vJ8wwNFolAkh7/XMAOYIck8bAQ6K+XxeaWvgc91utyIA0EvvlWqHtzRIqpBHBABEDeYRUsv42UGA+eY9zAkkFSHG2zUQE7yijdBCsCJroe48YO3UAx8994K5ZMw+TsaGuHTjxg0dHBxkpwKZH7yXsSJ4lWWpxWKR8yUQN3gfghDtDIwZ0YDn1tuHPGuD93PffM1xX2nfWSwW+RrdxVAP+GRu2ZGh3i7F2vc2HASeRqNREZY8E8OvDcHDxx8IBAKBQCAQeHQx+8JP01k36Z/9qf9JV+3E8KjiWggK2NK9tQBiA7GT7u+dhxB0Op0sCDghgxRDJPf29nR+fp4t/hBA/tCHDTHyarxXpZ3sQpYZP+RrNptVshPc+XBVoCGCyHK5rPSQUzHluhkbrgzPf2Ce2GaQ3SFu3rypwWCQK/+QNa/QIhKQIcBce7+8h016K8hwOMxVdQizBz56WJ9X+9m9w5P0mQvEEIjrYDBQs9nMwgyiAmsE0onTAxcKYXs4Wcg6cOHDMyw8HwICjpgAIeacZGVwLI4HacblgBPA3R68l7YHzuPXwf3xlpHhcJjvE/kVCA6r1Sq3WRwcHOQ2DMQObyE4OzvT3t6ettutZrNZPifXyXi4DgQGni0P5yQzwQUJb4+ob5fq7SE4MLyViGed55c16NuLIjxxHDI2eC7YSvL8/Dy3IHkblOckeO4H5/dWq0AgEAgEAoHAo427v/nT9R1/8Gv1tvZQISZUcS0EBchoPejQLdhOtqjuQ0yxYpM9ICkHMvquCePxWIeHh2o0LreIhEBAeiEXTtKd3F1FMOipJx0egjOZTHIlGHhV1Lexg/BAABkbNmyvikP++/1+pVLrbo7hcKiTkxMtFgudnJxoPB7r4OBAJycnldBESKSkCkGmtx/nBY4Pxu2hk+5mIA/AyauLN/4zFwUA93EwGGg2m+Xq+WAwqFjfPbizPn4q1FS+IaQu3Pi2n8yzz6+3pHiwI6KAt83wORcWEKgQLGazmdrttobDYV7PCDMQ5bqIhSBBVX2xWOT3cx2cl/WyWq1yEGSv16sEGTLvXNNms9FgMMhrhWwNfw4lZeGKXBPPKsDZUd8OkrnhHiFqMH+0mrC2uH7fgtIJvT+HCFE4fuotJ8w9OzY0Gg2NRqPKevN7y3y704fnIDIUAoFAIBAIBB5tfOR3/kJ942//Hy7EhEAd1+a3ZU/xl1QRDdyh4JVviB6VTg/KYwtAKs9nZ2daLpfa29vT/v6+ptNpJhuQCYh7t9uttBm4VdszGqTL8Daqpb6H/Xw+12w202g0ysF/HowIWawn4XsQICn87hJotVoaDAZZUPDdAcgoKIoiCxsnJye6deuWbty4kXvnmU+qum6PZytNhArEHjIJEBy4BwQC9vv9HBjpIXwQObIc/N9uUZcuree4Tqjw4wRxRwn3lnnx++C7hHiIp7fH1NtafKeCeqBknUBLqpBY1h4CilvxPe+C+WYefc16a4ULCpx7uVzmcEbEMg8bZB3gyPFtHyHk3PP1eq35fJ6FqW63m5073ooBuR8Oh3ktIuAh2uEIQDBhDnCZIC5Il20oiALe6kKeBi0HkH4IvqT8bCKcIK4hCCH8+Pvm83meN8/OcDGBz3Q6HS2Xy8qWkoFAIBAIBAKBRxef/Kt/VJ/Wa774Gx9RvGK/RkrpLSmlf5RS+tGU0vtTSr/j4vU/mlL6Tymlf3Xx51e8hGPllHVIsVeMIVpeGYekeKgbxJxq+mQyyYF1kEDyFHq9XrZbcywIE3Z2CBvE0avjkA92bhgMBtrb26uk2y8WC02n00obg5M+yCz/9Wo/DgFEgeVyWam2U4Emzb8oikxUEWGGw6EGg4HKssw7aNy4cUOHh4eZ1HmGBBV1t+0jLmCn5/oRaPhvSkn7+/u5vQIRB1Lp4ZKIQhBCxAi/p+5qcMcBwgGOCBeduJ7BYJBbPOoBnVe5JdzuLym/DzeAOzRcRIDkszMEbhTm1Md6dnam6XSqyWRSCX5EoHAHCi4NX7OIFKwDqvPcewI/XYTAycCxeTa8NWQ2m2UXCqIaggD5CqvVKgc+4gJBfEGAoW0FUQrxB/EMAYp7hAsCF8n5+bl6vV5uXfIwVr9+Wljc/UGWibcssK5oleEcvmZYE/yM+eLZeKMICg/yuzgQCAQCLx/xPRwIBB5lvBqHwpmkry7L8l+klEaS3pdS+v6Ln319WZZ/9uUcjGqipEpPfT3N38kjP4ecQsAgadvtVpPJRIeHh+p2uxoOh5koe3sD5IaqKtVKtrCrW6R5v6RK1bfX62k4HGYCfnZ2pvl8rul0qoODA0mXVnvG7tfhoXAIH8DbINzVgA3cg/zoR+/3+3k7Tl47PDxUSknT6TQTT9+pot5b7mOGjFJJ5r2IGJyv1Wrl40MMqTi7nR7xCHHEW12wsUPO3UrvBBLy67skuMsEsj6fz/Mcszbc6QLh5loQsTyg0u9D3X5PHobv5sB7eR9OD4QfF3MQGYD38iNEcX8Zs+8EAiDpOCSYV3bJYO5ZDxB+d0Eg+lDNX61WWbTg3vDMcd0IaQgM5Iksl8uc28Fad2cKbgHWn7sIPDyVY5O50el0ssDA+xk3x5aUhTZ3OxBq6c8W2Rw8+7hs3iCiwgP9Lg4EAoHAy0Z8DwcCH8M4+so36W98+w392tHdhz2Ua4lXLCiUZfmMpGcu/j5NKf2opCdf6fEgDJCcbrdbCcFzsgAJkapJ+fUKPpV93AtUICErHpQoqUIkeL/vQuBWdsicdGmVbzTubU+JHZvgPFofaBVg3J494KFwkGeuA2ECQrhYLDJ594pzSilvv7fdbvPPGCNhkhDe+XyuxWKRRQGOQ9WW6/T7cnZ2lqvP0qWFncr23t6e9vb2MtGlwg1plJQt9txHbzPw9gJINttgco85L+vBxQF+hhiDJR5C7+0xVMOpVvN+5guSyf3yYD9EBe4pIZz9fj+/z0UowOuee4BTxkmsV9+9LaDuaEFA8HaM3e7ejiEeZgj5RzhZrVa5PYV7h0C02+1yECZtL4vFQsPhUEVR5Dn3zAPuhbe7AM8JcQcBQpHv5kBrAq4B1gACDPfDAxgRuHDRIKLgOmAt+PastGkwzy7o8BlvtbjOeNDfxYFAIBB4eYjv4UDgYxvlv3y/vvVzfpE+8R98lz61237xDzxieCARlSmlpyT9PEk/ePHSV6aU/k1K6a+klA5e7PO+hRtk1skhIkK73a6QWQ8FdDLkRMoJsqRsq+a4Hj7nRJT8hfrxqQ5TBUcIwdbtlm9vf6D9AtHDq9R1+G4DXjmHXLrV3m3g/X5f/X6/knHA8XBr0IIB+aKlYT6faz6f53mQLoP0IKkQckiWuzsI2XMCxhxREV4sFlnA6Ha7KooiOwn8vBBQiB7OBNaB77qASORhnYg73k5QFEUmnrvdLrcL+HaW3pbhtnjfBaLT6eSdFiTlkEEIel0w8hBEXC9OxCHjOAAk5fvjYkf9j1fkfS2Rr8Cag5hzD09OTjSfz7NIcHJyotPTU52enlYCID2fIKWU7x3PEEGkhEXyWdaNCyeIZu484OeMjWtAYBkOh/kcHgjp+RJ8hl0mCD9l7mhhIhuFe4FY4s4GroNnivX3RsOr/S4OBAIvjN0v+fn6W3/iax/2MALXHPE9HAh8bOLsp35af/QXfJZ+xc/5TO3K619wej3xqkMZU0pDSX9T0u8sy3KSUvoGSf8fSeXFf/+cpC+94nPvlPRO6XLrPkArAKTRyaJv64dd3l0E6/U6Ewu3iUOgvQIMwYMUQ1Al5V51RAy3VkPiIVBURaVL4jgcDvMYIZtUlSVVCA4kkeNTqfWWAtLsOb/bzZkvb6FA5MAJ0Gg0NJ1O9ZGPfKSyLSPX6XMPccbZ4cGN9NMj2EA4z8/vbcfJXEHcERVwR/h8jUaj/JqHNXId9VYHxJ66s4E1QNUcdwmhle4EwF3Q6XRy7gDzgDUfAYm1SYuAJI1GI/X7/cq5OC7bL7IjBeTXdyrAieKEmmp9v9/Xer3WdDrNBNrDR8kW8d0faCVxEWVvb0+DwSATd3e/cB94VqbTaWVHD0mVDAFaEKbTaW5jYb673W7OCamP06+fZ5Z1wlzjeun1evk8BD7yWb4HWM++PrlHOBVY957X4NkJ/j7COREBuV5vI2LtvFHwIL6LeyrqPw4EApKan/xJ+p6//o3qpkj4Drww4ns4EPjYxu7ukSTpc9/+i/Q9P/4Dr+gYf/ruJ+uffsq48tr077xZ7/7Pvyv/u52uDoDcledqpuu3ZeWrEhRSSm3d++L8G2VZ/m+SVJbls/bzb5L0d6/6bFmW75L0LklqtVrlxX8rZO7ifZk45UEbEfftHSEBnvAPOakH2kEyx+NxbkkgqZ5jQUiw/jMGJ/OMgzYE34EAYgPJgRAiCABaGlw4gSh7GCLtB561MJ/P72udwNYNiUPcODs709HRUQ6UdAs9FXpEFdo/cBwgMGCTL4pCe3t7mfStVqvslGALTe9Lxy3ihM93ZeA6CdjkPvMZyDEZBRBGchZ8pw5JuSrtOzYwby4KuSPFq+ressDnF4tFReRCAKnb7llvLh65u4L2D+43O1hQaZ/P55pMJpKUwwc9UwB3CuIOYg9oNpsajUb5nk0mk0rgJGPjuDhPmHN3mSCQ0EbBM9nv9yvC02KxyPehLgwhQnBOXAOIGlx/t9ut5B/4+uS66i0IzDdtJh7AyDjY4pN2DekyS4F2GXcKMQbPWbjueFDfxeN0+MazZQQCrwfKUqfnG91uhtU1cDXiezgQeHRwPp/rc5/8lFdxhGp22vCzf0qfq8vjfe1Pv1eHjbPKe37Fv/jN2v3zA/3gb/06DRs9XSe8YkEh3ftt/Zsl/WhZll9nrz9x0UsmSV8g6UdexjEr/dRUp7E1Q9whBpAzdzi4C4B2A2zj6/Vai8Ui73tflqV6vZ729vZ0fHxcaSEgq8D7+2mXcNTbJiD1iAEQNHdGeIUaUgMxckCQgBNnd0tIyv9FKEDQaDQamVxOJhPNZjMtl8vccsDxIdFcOy0C8/k8kz7Ow1x61ZmQvul0el+qPlkQzWYzzzHiCm0jEHraC2j1cBHH+/t9FwrmGzGFrADuG2NHLOH43D+cFJzfBSscJ9zDyWRSyWXguOz4QQuJu0t4D9V5dxP4mmCtuKOBe4hoxH3iPP1+P98rBAeEob29PfV6PS0WCx0fH+dxsLZYKy7g4TxA+GG+h8Nhnn/EMEQAnkt3AkjK7S6EZ/ruDKwdRDKeS/IPWGesaRcqeG58+8lGo5FzSwD30rdi9aBTf3Z9rfouFP78XVe8Ft/FgUCgivMf/yl93td8td77tX/5YQ8lcA0R38OBQOBB4vc89Wn3vfaEflSS9I6D36V/9kV/Vrebg9d7WC+IV+NQ+K8k/TpJ/zal9K8uXvsDkr44pfQO3bN3/bSkL38pB4MUUAGGWLoNG9JAb7x0WQWFaEFGSGuHuC6XS02nU+3v7+dKKOIB/fQnJyeV9gPaJSCIhCC2221NJpOK7Ryy42GSEH4C8gDEiZ70siw1n88r2/oxDogpBJv5wS4OCaUKyzH4ubcdEBjJnECiINIICaPRqFJV910LvOqMCMC4NpuNptOpJGXb+2AwyCSe8XJvEVzqbQEetCgpfx7ix44ekENaIurtMN5C4s4CPuM/87wDJ68ITxB6RAHmgzFDpBFHvAUAwQGiD1H2Nh5J+V6wjnAvkAfgLTpStU2k1Wpl4Yhsg/Pzc+3t7Wk+n+vo6EgnJyf555BlD0r0nRp4lliXtKjgRmBNjsfjHIDq2SUAUYEWG8QTSdm54A4i1p2LOt6G4OKdzzGtH57P4Dka/mwwx/yX4yBUfbSAyWuKB/pdHAgE7kfjqbfot/6h//VhDyNwfRHfw4FA4HXB237Pe/RpxVfp3b/yz+lntK5HG96r2eXhn0pKV/zoe1/h8SrE1ivVvC5d9s9Ll/3tTuz83xAKCCrVeQ/Vc+t7t9vNtnt2Q4A8n5+fq9/v68aNGxqPx/rQhz6Ue8d5L+SZ89G24LsFSMohfAgHEHz6+iGE3ibhlWTIDiKC5xhA6CDwVGydXDnBli6r1tI9Yoqdnfe4XV+6DGuUVBEJmCfumaTcKgLJRIBAUKDS75V6BJr6GIDvGoDrgeq0CxMuyrhwwPXSHsHPPHuDdYbDhbmpiyGIAL5rAeMDCAg+3+fn51osFnm8LsrweSr6uAI814HjkkFAu8R4PM73a71eazAY6ObNm3r++ef1kY98RLPZLL+HMUPoWbv19ghvQ8ApxHyv1+ssyBHk6E4CgkJZP96exDUgBiBe8Gx4qwrr6qqAThdiyJfgPpG74G4PD5Mko4H1wri8jeW640F/FwcCgfux+4n/qG/5ys/Xl/wv3/ywhxK4hojv4UAg8HriE//7H9Qvbn6VPuWTf0rf/HF/R3uN/kMdz6sOZXwQgIBA7tNFwKLvqOAEAkILsQaQhtVqdZ/tmqo+1mxC4JbLZWULOsaBE8JzGdrttt70pjfltoef+ImfyKTE+/KplCMoEPzGOSCvVI+ff/55rVarTKLcdeCkjuNDLCFY0qWDg7/T2+7josLNZ534+/HOz8+zOLJYLDKpbjQa2fpORXo2m+WdEty9UCd6EDkEEsge2y26WOJtB6yHurDAPCOSkCvgwYeIME48sbXzM8i75zz4rg6SMhElcJJ5gtxS8fc/rBdvsYC8ehWfe8y52HKUdY9owrp010u73dZoNMrz67sjQKpxihweHmo0Gun555/PORi+9Wej0cjrVFLlWTs5OcntPi70EGaJGwihxFszWDOMu56BAInn+SYXgrl2pw9tLy4CEMzKHLgghUOHc85mMw2HQ924cUNlWeZdV/gOqbtWvOUmEAgEAoFAIBC4Lnj7V/xzTSX9vG/5Sv3oL/vL6qaH9zvrtYiJ9DYHSAwk1vvUvd8fEuMEE/LBZ93yT2/56elprqRC1uoEFBLi2xdCZEajkW7fvq23vOUtKoqiYsWnncB73j17wXeUaDabGo/HunHjhobDYSVwzqu89XnB0QBxYnycE+C4kC6JEtfMazgxIGiMgWo0c+NzgosCEj+ZTHIuAO9h/BB2bxvw9hC2kuTnnMddI16d9vYBbxPwkEkPORyNRpUtQjudThZ1rsqigEx6kKOkiusFN4CPi3F4SwXziOPDRQEEIrZ45HUX0ZhLrhdXDUR5tVrlbUARJZjj4XCo8XicBRx3KgwGg9xic3R0lMNAGQcOCbf773Y7LRaLHFxKJgbCH3NOPoKLOqyHwWCgoijy+mft4gKRlJ9Rb0Vyke+qlhsCUnl2WMuIOb6GCRVl9xa2LWXHB0QRhJK6MyYQCDza6H3wRJ/+r//vD3sYgUAgEAhkfOJveJ9+5v/62x7qGK6VoMDfIfMQGie5vA9SAkFxQg3B8r53SA4J+rQpcHwnu3VyC+jv39/f1xNPPKHDw8OKXZrtIQlY5PzsmuD/BRBf7/+HnEKSIKreBuJE2gMF+TnEEps+88kYyoudGRAVpEsBwe+Lj2W9XmdCiW2coEffRpHPuhAC6UQIcvKG4OGtCG7x53ge1sh8eNUf8YD1gfiBAOJrph7WyNwzd/U/3H9Ipq8dFwCkasV/t9vllgCuub7lZT0Q0kMBmQOq9rRV7Ha7nAvCfJFt0Gq1clAjhJ2Mhf39/eya4PPenkPIIeueecIVgXNnOBxqNBpVWlmYSw90dNcNQhDz5+4LrpFz+faRPFv1bTBxKLAuEYZcJOMaOM50OtXdu3fzdRAsyfwyb7S11B0VgUDg0cXux39SB7+7pU953xc+7KEEAoFAIJDxib/jvfqZ3/hbH9r5r4Wg4ETN0+whBDgWcAm4QABZgCxSgceZAGGDmJ2dnen555/X6elphdRgb4b4OGH1NHi2TLxx44Zu3bql4XBYCW+cTqdaLBb3bePnWQKQFghkv9+v5CB4cJ10SbSc4DtR8350iJekXHmlXYIwQd+twoUbjokA4NX3qyz6bjt3QcCr0x4O6eGSOCjc0u7tEVdZ5D3TgmP62ul2u5kgushAEJ8TTXdKcH0+fykl9ft9DQaD3EbAuAhXvMrtwf3iftKGwW4iiDzezuP32ttvCEl0oYLtFz3nwMMiJ5NJbrdBTOKaCObEZUGAJNX44XCYgwl9jXGvuCeNRkN7e3s6ODjI1+M5HIgVbLtYF71cUOBZ4/rIjGA7WNYdwhPz6y4VfsZ98fvhLhLW6mw202w2yy4IxuDhpc1mM7sfAoFAAOze/2N67GuSPvVf/uqHPZRAIBAIBDLe+id/+KGd+1pkKHhbg5NpD2gkXA1bNPkA7myAnLmFnmq6W6ePj491cnKiw8ND9ft9zWYzSZdkzlswJOVKpif193q9bJmGLG23W02n00wIvbrsW9/Vt39kjFRafctFd1948rxnNQA+A4n3cfOahyV6FoLbu30HCUkVsu5Bj8wpYoG3F0D8r9ousyzLTPSXy2UWBhAJ6vPDvalXvz3rwN0gtIQw/wgkVwVBMjaunblHmGg2m+r3+3k9egXcXSGbzSbfZ9wjnoOBS4K1xTE4NzZ/xgG5Zh35ziMcm3uJwINj5PT0NF93PcSU8ERcCf6e0Wik4XCY5xSXAu0Q3m5ARR9hBPLNWnJHDbuasNZ4Xr3tAcHOdxQhC8XzFRAh+BzbQvruL+v1upKngYCD+MLPPaeDNYx41+l0cktOIBAIOHbv/zHd/KpP0Gf9pc/V9/3Mv/uwhxMIBAKBgMqzrX7hV32F/tnXvf7bG18LQUGqhgR6dR9C6QGCbqPnPb61nvfwO3nFzr1YLPTss8/q1q1bevzxx7Ver3VycpKdBL1eT8vlMvdgt9vt3ANO5dKrwC5AUAGlmuxhg5Iy0YEY4TIoiiK7MKiKOjn3sL8XgofSee6Dp+iTH8F7Ic5UfyVlNwPElWryYDDQfD6vtEgg6rhDBOHAW1lc/MCWT2Al1WTfXQNix/11a707HiCrEFjfkpF1A2kmf8KzJlhH7hRgtwgXo5jT2WyWzw1R5ZoQcXzstJUURZGFCUi3r3t3LED0WX+M3V/zir+HWK5WKz333HMVd49nW4xGo3y81WqlbrebWyUkVSr0HN9dAqvVKq9pHDC4PpbLZRb+WHM4GlhjtBH4uvBtMDk2rRo4Zur5GqwfdpCgjQRHDmsEJw4uFd/9hHvOeXndd0J5I+zyEAgEXn/sfuwn1PrSt+hLvv2/0f/y1h942MMJBAKBwKOOstToO39Iv2jz5fon/+M3vq6nvhaCAnZrfqGHcEHYIRcuNrgA4ZZm6XJbPRceILqQmsVikUnzwcGB7ty5k8kplWHIUL2PfrFY5Ncg/DgbqPqzawOvLZfLypZ7HgiJ4EHl1be9czs5FWwniRAirhfxAUKHNZ95Yy69TQACBSlmNwyEAsQTqsgeAOiCCgTf+//dOu95DH7vcGU4qfb8BISKTqej+XxeaetAjBkMBpU2BKrlzCeE0zMFIKUcCzLPWCCkuAUajUZenzhlOBfz74GZ/X4/2/FXq1XertEJuqQK2UbkYZ45Ny0NOCGkS7HAWzdWq5WOj4/zGLif3IPBYKBWq5WDByeTSXaceDuCb93prQWESiKouKNnsVhoMplU5pLPkCMxn88rLUHdblfD4VAppZzF4eu3nsmxXC61WCx0cHCgfr+v5XKZnTe+fpgf8lFYG74dK4KRX5OHnvp3SiAQCNRx9oEP6c7nHuq/7f0K/bZ//A/02cX6YQ8pEAgEAo8yznca/djJ637aayMoeCghRAlBoW7rR0yQVPmvb88I8eaYHnTXaDRy4vt2u1Wv19N4PNZiscjb1kFqIbME4lENdbLtTgDfwcBbFiRVyBEEF1EChwLv8aC5Xq9XyTmQlF0DHMt3FfBgRgg2wgWkmuMjttQzK3BoeCYBYoXfN2/hICeiLgjwXgQbrguyTTWZY7ld3kWRTqeTxRC3+6/X69xS4NfIOWir4HMeiMhcIwpRmfcxIIb4+CH+7NjgooKT8KIo8jgnk0meS782H/dms9FgMMgtDJ4XgDumngnCGCTlUNDlcpm3lHQ3DdeNY2UwGOQQUb+Xvmb4LOND7PDxsU4QnVijiHi+OwTHoFWCMMRer5cdHcyBzw/k39ctoo0HuLLumRtcSlwTbqZ+v6/1ep1dJwgPq9Uqz4O7WQKBQKCO3d0jSdL8vCspBIVAIBAIPHq4FqGM3sPulXf/t6RKVdsJmX+WSi9bykEmndBAcu7cuaOjo6O8hSOBdf1+X7dv39be3l4msp6B4EF39VR836oOsO3eer2uVPNpf/AgSG8T8OtZr9eaz+cV4uvBjJIqIgcCAyKAB/sVRZEJ12KxyBVjhBrIuIckQvR9hwW/T97f77tleNAh1Wfp0j1SF3y4HhwRfh2+Q4SHd3oWAsQfJwn3yK+f9dNut7W3t6dbt25pf38/O0UI6vN1xRwMBoPcAtHtdjUej3V4eKjxeHyldZ9qOyKCO3AQPCDHOAcIDKSNgH5/Mju4Xndc4CzYbrc6Pj7WM888o2effVanp6eaTCY6Pj7OWSH9fl/j8Vh7e3tZKKs7SWhB8WBMtqNEtPK1SYglYZQ8rzxvOAsQrnybT55RDwp1oYkcC4IxCXxsNBoaDodZNKsHPnobjD9ntNrg+PBcDO4riG0jA4HAS8G73v7x+snt7GEPIxAIBAKPOHbv/zH9337Db3pdz3ltym+QJAgkv8hTkaR3GkAKfRs/XuPzVED5Q2UZe/90OtVHPvIR3bhxI4sJEFYfF7kKTqTYcs979rF5e78+1wGxJ+PBRQjI0mg0ysfkmjzx3kMimRuvoHJtHvI3n88rO10QKAlZJ7eAUEUPOPR7ARmbzWb5PiGw+BaKEHqs6JA8rpXXfFtPD39k/O4moPUEYacoiixUuADj/fCci88jCiD4eH6FZxKwRryVABcEQZy0JHhmhLfi8F+uux6ACBCacIL4dpO4AlhvkHDPPECgmM1mWq/XGo/HkqTj4+Mseu3t7eV7I0n7+/sajUaVlhRcQO4iaTab+bnDndBoNFQURRYH+v1+nkN3qbD2/Nnk+YPccz/n87lms1l+/sgv8YyUdrudwyIROqbTqYqiyCIh69KdC7QXsVYQTrhed8UgnHA/ESzCoRAIBF4qfmj1Fr2tffywhxEIBAKBRxzN9U4/uZ3pbe3h63K+a/PbMsTPHQiQQCdp3jbgFX1+8ff8AXqu3U3Q7XZze8F6vc6p+PSWk90AIcQKzR8I3GQy0d27d3NrAP3wkFDv6ebfnkdQlqUmk0l2A3hQIuQbFwGVYg8zpJpNbgHEjeozafbb7Vbz+VySKqF+kHOOC4qiyMn23kfO2Dz40EMDeZ0x4sKAiEKovd3Bd1jwOWDOuIfucoDw+nE9BJF74GOqZzkwfzgh/Lx19wXHIRcD4QchAMcD53KXAtdIm0y92g1BdgENsustI75rie9mgpCxWq00mUxyZoLnUUjKwYmTyUQnJyd5pwfyFqbTaaUlgDXGWnayzfPBvWS+aNnwXUs4P6/RJuFCRrvdzu1H7lRy8YF5KYoiPwvkNdy4cUNFUWSRiffS1sH4PW8CV4Yf210OPg/hUAgEAi8Vf/WT3qrP+/CzKhqdhz2UQCAQCDzCaPzjf6lf8wd/j37wT3/D63K+ayMoeNK9k3LPS/DWB9/FgUqxV9UBVXis5UVRaDgc5raIu3fv6s6dOxViCKG8Krhwu93q5OREJycnOj09zaSKqrqTIEQGr3QiUECCt9utZrNZpYJdr55SLYY004fPfEF+yTBgvBBht3v7vHnV3/ve9/b28k4OkHoPhuR9CBM+DvrPIdtY1zkef/ddBSCbjMHFGYgzWRGeOcEc4r6o52r4WBERcKCwlhAU3E3h7hDvw/dKPATU1yrCgI/H3RPMJ2Pk+Igp3irD/efn/Bfiz9xI0mKx0N27dyvv81yB/f19DQYD7XY7HR0d5Sr8dDrV6empjo+PdXBwUBmzCzUu8qWU1O12s7OF+0IrB/fVW3t8DvweeasLAh8uHgQPshW4d+QsICoMh0M1m838TEvK5/StO90ZQoZGPWyVdVkXKwOBQOCl4is+9Etj14dAIBAIPHT0757pWya39RvGz73m57o2goJXZp2MeOUZku/EX9J9RMbBzyC2kI/ZbJZ3eiDIzsUAxuRVYUl527ujoyPN5/NMiqiyMwYqorQv+C4Odas5Y5Mu+8f5HMQOkg1pTCnlsDtJ2f6NqIJI4Cn/zJHv6CBVWygYF0TRq9SQaqq/7hjxtorValUhyO50qFffma+6cES1n+t3mzrzyTnrIgxkEocLrhBaFthVgfGQmcBrWODdeeAhkozJgwBZY5BxX7Pu7kC0YB7qAgJj4l7Vsyq4TsgvYsjp6Wk+DusOh0qn09FwOFSr1dJyudSdO3fUbDZ1enqq2Wym+XyuVqulxWKRt5WULreFxI3AeBiTOywk5RYPv8ceJuq7fCCikEsB8fe1wnx7CxPnwZkxnU61t7dXyZbwQE1vAfLPco/cueLCV11ACwQCgZeCZ3/hVJ/xfb9K7/7Zf+thDyUQCAQCjzC63/tD+qbBF2j6R/8P/baDD7ym57oWggKV106nk6uMEENEBK9uAidgkDmpGqSG3ZyKJoSSXvCzszPNZrNKaGNRFFl8qFuwd7ud5vO5JpNJZRcG6bJtwx0S9XA+qr71MEHIGUFxvE4V1dP8Ifq8RtuEk39JlZ0tut1uriQ7aaVv3kmg5z54QCTiCRkCjBkBA+HD2zg8zFFSJmw+P3WRAcHDRRXWAsfGcQGx53Wuu9/v5zWy2+0q+Qe4ElxU8T56z6Jw1wCtFy4GuOPA2ys8mBLyyvaMHj7JeR11qz9E3J0u7gZhp4OTk5O8pjgOrxPAuNvtNJ1OtV6vdXx8rOVymdcC7UHevuFuGr8eCH9dtALcD+aLa3YxC9cBLhfENG83wl3kn/O2CeYA1wXXjeDhzxHz4vPpzgV39LjgFwgEAi8ZZan+531EH/eXLgOxft4nfED/2yd8/0McVCAQCAQeRQy/6wf1ra3P0df9sjP96f/6u/SFw9OXfYxPfs+v1eK0f/Gvr7nyPa9KUEgp/bSkqaSdpLOyLH9BSulQ0ndIekrST0v6wrIsP2pKEb/cO3GBdF9V4b6qyg2hppoNYaSiulqtdHJyopRSTvQfj8fZWj2ZTDQcDnXr1q1MnLxHfLlcZuEA0oyDguoo7QFeSZWqpJA0fxwGTjh9SzxaI9zZQEo/goPnRVw1p54vQR89gXeQc7fuM7eM1+fdxzQYDLJAA3Fk+00n24gB0uVOHghGHuToDhDEDYIH2UEAbDabHB7J/e52u5X75YISggLvo+3DibmTRt9RgjYW77+nks59Q1TgviP2+Dk4D/cWEYC1ylx7BZ/KP+0tVOhZQ9w3WncYL2SYMW02G02nU00mE41GIzWbTS2Xy9yyQ+Anuy3gdPDA0PqOIsyZj9PFGMbhW5Ny3Ty3Lgy4gwOBB7JPAORVrSMcD9GC8fgceFiquw+8jYbjee4G4Y5vFDyo7+JAIPDqcb5a6e1f+sP537NP/7n6pM/9LZX3fOuv+Qv6lO4b5zsm8OKI7+FAIHAdMf6292r8bdKf+bJfoz/08fdee++X/DkdNIsX/Mwvef/n6+l//iZJ0tv+4k9q9+y9tokPvsD7H4RD4ZeUZXnH/v01kv5BWZZ/KqX0NRf//n0vdhCyCiDnXiWHTPlOB94n7y4AjgOBgOjgRoAs3LhxQ6PRKIfJnZycqCgK3b59O1fzj46OMllfr9daLBZqNBqZSHNO72evV/ohsJBCqupOurBm1/vPeT8EHsEBQQG4lZ6qr+cC+FioQrsFHMEAV4bPv+dW4GhwezjEGVu8V+n5PNVuhACOB+mD8HHvzs/PNZ1O8/GoTEOwvXXEMzTY9YDrQpDBrg/p9so144HIe44Hwg/3iDkA3DfOh2sEtwtrgznhWpbLZRaWyI+oi2SsO+/z93lDjGDXg7qbwrNEdrtdbm3o9/taLBY6OTnJO4oghiC6gZRSDp9kvJyDHAVvxWE9ePsBf3gfJB8Rwp0X3vLEs4VwRd4HwiNrg+OTk8B5CIX09c95PbMCVwTH8XXLsd5AeCDfxYFA4MEivedf66n3VF/7LT/+O7QdRUvVS8V/+MjXPewhvFTE93AgELiWuPHN79GNi7//0g9+tc7bL/z/oMfec6qn3nfvf1z3l63vx2vR8vD5kj7j4u9/TdK79SJfnp6+7pZ4D4nzqrdnKQBIOOQEAjSfzzMhTSllu3e329XNmzfV7XY1mUxyRXxvb08pJQ0GA00mkzwGdktgSznPI4AUQ1Ahpo1GQ/1+v1JV9QwAEu6Xy2UmntJlKj9286Io8rndmQBh5fo9uK7T6eRrZlwQsvruEE6UIVZefWfXABwAWN4ZI9eCo8CDHKkwn52daTweZ4HC++jLsszHQCzo9/tZBELwYCs/8hA8lBGCjWBEECNiEs4I5s/bQmjZ2Gw2WSzinAgFVPu5526f5372+/18/X6fEC+4V7SeMO6rWmW4p/531j6hgsxn/f4xdsQWQj1PT0+zI2exWOT2Bu6F/9tbPhijtwm4sOLnrDtO/HWec3cDIET4dwFikHTPKcEuJYPBIM85x/HdM5hXF4qYW9/ek+d/MBhkRwzX52Oqt6K8AfGyv4sDgcDrg4O/9p4Xf1Mg4z+W84c9hFeK+B4OBALXDje/8aP/P6j8qD+9H69WUCgl/f2UUinpG8uyfJekx8qyfEaSyrJ8JqV0+8UOwi/uw+G9vTIhvbQWQEAkZeJeT273zAUne1QvPbAvpaSTkxMdHh7mLSS9Gn7VVoQQLunSFs95ec1t6/4ehBKIixNgKuBcG2QZIkuFGicF18c4IX31vnwq5F5drjsPvKLtlXq3rXvwIC4E/oto0Ov1cjI/ognzCXHFfYC1vZ55ATmE+PV6vRzW52Dcg8Egt1NQ7fZr8c+zDpzYch/q68V3d0BocMLqOQZOvtvttgaDQSai9XBCv1bWh2dk0LrANeICwG3jVfztdpuFps1mo9lsllsAQF3w2e12Ojk5yXkFPD/cb3eB+Fxi/fd7x1x4ICPnhJj7tpPMOUKN510gPnCPPECRsfnWp+z4QHaGC0j+PYFjx1uLaB9BEGScPB/uQvEcjzcIHsh3cSAQCAReMeJ7OBAIPJJ4tYLCf1WW5dMXX5Dfn1L69y/1gymld0p6J/8mtd+rn05MIWeQgjopcSLvJMMroE6e2Pau0WioKIpMaObzeaW6KqkS3ocgcZUdGkLvY+N1jufiAaRdUs4uIO+g1+tVSK9XpyH6OCAgvRBEr95CrLk+F0morENEIVde7ffAPVwUfo+63a5u3bqlTqeju3fvZrLGZ3kf1WPILa/7bgmIK/W14GGGnq3BHHn7CcfBqeHtKDglfFcCBCfEIIQZXBn1tUWmA0SXcXU6nUzw+SxWfUgw8DBHr6az1nAWIBp4Lz9zS9WdAFHPjqiLMFwn4g7rnDXHOvNnw+dztVrlNcZr8/k8t6X4c7Fer3PGBMdzEeyqzAp/Rjz7wIMgERXciePZHjznXBNihoscCAbkLpyenua1wtwiPIJ6iOg1xgP5Lu7phfvpAoFAIPBREd/DgUDgkcSrEhTKsnz64r/PpZS+W9KnSno2pfTEhRL7hKQrN7+8UG7fJUkppZKwOfrtIS+4Dtxh4HDXAf92QcED3zwAD3LoW8gRWuiED8K6WCwkXRJAD6HznAfvqffsh/oY6+0H9eA7sgJ4nTF6pd1D/uoBkFSg2+123vEAV0BRFCqKIgsI5Dx4W4mH7zE+SPF8Ps/XTGsBu2ZMp9NM4iBjvtuDtzwgpnhgHvPbbrc1HA4rlXfG4dv7SfeEgt1ul4MOi6LQaDRSURSVvni2RvR8Au41uw64IwFwjYhQiCC0CCAaICgwbz6Xfm1154eLSbzGPcX9gRui/jlvq6EVhTlmvBBpAhg9eNBdEh4OyvziQvGWjWazmXc68RYejjWbzfI1SNWtLL3ij3vGHRvkl+BmYP64R6vVKotNuBkQDFx4su+ZLBr5dwdZFjgbXLSpu0reCHhQ38XjdPhyXW6BQCAQUHwPBwKBRxevWFBIKQ0kNcqynF78/ZdL+uOSvkfSr5f0py7++7df4vEkqbJLg9uhfccG/vA50t6xKiMquPXfLdBe+V4ulyqKIpMpqrHeB09LBOKDExavtONOIDTPxRBvXfDsB79+CFm32620SXglnHO6zRtSCxlGyJAu2z6oPJdlWRES+FMPrYOIMVYEGYQMSDSOhn6/n+fRHSaQXndCSJdhkN7iQcgfr/F+/rtarSotJoyP7TbPz8/12GOPaW9vT3t7e+p2u5rP5/n47kLw+fO15c4Rjs+193q97Abw1g2Oh6iwWq20Xq8r95L7i2jl+RYITKxjKvy+xrmHvi4ZB6Qb0QphDmEAxwEBhC56uajga5jARt8OEodAu93WfD7PLgdabzgGRL+el8GY6iIGYoAHs/J8IqqwrnBYIKJ4awLiie8mwblcpOBnu90ui2NkMbAWWPNvBFHhQX8XBwKBQODlIb6HA4HAo4xX41B4TNJ3X/zC3ZL0rWVZ/h8ppR+S9J0ppS/Tvd0lfvVLORiVXaqUBPJBWKTL6jx/IIAkutfD4fg51ncnDJCTzWaTCd9ut8vE1HvtnbBwTJLsIWjeCy9dEhkqw0VRVCq5UtXu7aSOP/R7MyZva6i7OBgTVV/vS6dFgwo/DgUn/97vvtlsKttJeu+8V8bZQhIxAZLnxLwulCD0MM7xeJwr+165r4syRVFkQUO6bKHg+LTHpJQ0Ho+1v78vSZmYIgjUXRcci/XHehkOh/l4LmzRbsNr/Hu9Xmc3AbtptFotDYfDSvuKZ2lwncwNYtN0OtVischCFs4DqvTMP+NhLSAQ+LapPEfuunAxBbi4gUvAhYtWq5UJPrkNtJAg2g2Hw5xbgdgAWFebzUa9Xi+P38UZXCK+CwrPujtcEHFof+IZc2eMCxr1deCi23a71Ww2qwS5egvKGwQP9Ls4EAgEAi8b8T0cCAQeWbxiQaEsy5+S9HOveP2upM98ucf7d//u3+kd73iHRqNRJWCR6rD3P0uXYW5U2CGxLgC4jZrPOiGFZENY6DP3SjC2cYgKAgZ2eumyZ91bKvi3pGzJ7vf7GgwGWYyAwHjmAoTKq6/T6VSr1Urz+bwipOAQ8HwEb5GApLldnFaC8XisRqOh+XxeqYjz7+12m8kwrRkE4zk55ZzkHvR6vdxW4BVz2hG4lykljUYj7e/vq91u5zlhNwtIn3TZEoHIUc8IQCzgGshPKMsyt6qwXqikQ1Y9o4Pzcn8RmXybTlwJzHGv16u4HOpzwLV7dgPH8WO60OSODO4Z/66HTwJvrWDecS3U3QzMv7diQMYReoqiqIRLMu/L5TK3eyCwIVzgVmH9+mdx+PA8uEvAc09YC4gwPvcIYC4YIoJwfeQh0JriQLSiTYS59zEwbkSiq9xE1w0P+rs4EAgEAi8P8T0cCAQeZbwW20a+IrhzQLqshEuXpBXXAP+GJELkIeeQC/87lU23sXt/Oa9DYug3xyoNkYEUDQaDLHrgSpAuiR1jWywWldYEqZr7wPaOngvg1XCqr4vFQsvlsmKlZ9u7uuMBtwH96bzGdUO8Go3LLTB9a0hIuO9E4S0BkH/Ph6iLKt7/7m4G32mh3+9nd4i3urgN3+eca2JNIARxnZ6XwBgguLgKPIsAwu4iTV3Qmc1mOY+CMU2n0yw80AbhGRTD4TBb86miez6Br0nWHdV/b81AIEPgYZ3hhPAgQq7ZhQCfJ9aVz5HvjODtJIh4CDrME3Pt7Re8B8EJl0p9VxIcB96ihJhDJoW7FFwk4LmldcWDI3EncVxv7+A1ng+fJ4RId07wd+bc20MCgUAgEAgEAoHA/bg2goJ0WZmFnGBp98A4SZnUIgiklDQYDDL5hkxRfUSsgKTxOr3uOAikyyA7t+DT8+4Wc3ZXqO9XD2GFFEH6aF2YzWa5itrtdjUajSqtHBA17wnHOTGfz7Pd250QDu/5huxB/LwNwnvMvVIOqZrNZrk1wivF3W63kkHAGNjiU1K+Zp+XetjjbrdTURTqdrv5HuKG4Die6cD4OBZzSiuJ74axXq9zZb/X6+X7CvGEQC+Xy7wTg/fdc49drMGR4OIAokK9lQX3CMIIc8x9daLrW216n79vHepCF1s4cnw+hwjgbgMIPffVRbirWja4d/UWCqnqKnDBgvVGcClOHASieisLbTmci+Ow20R99xTPAKG9gjF4AKZnieAq8WeEVg5fs36Nfp7lcqnlcvmGyVAIBAKBQCAQCAQeFq6NoEDF3i3HVMUhrxA6KoySMgHx/ABIytnZmebzeSUAj1YASVqv15rP5xoOh5m8U40FHlbIGKmqjkajHOwIWaW67cFu3qcNiaFyPh6PM9H08ERyD5wwcQ7IOXDXBXPJ2CXlVg0cArvdLhNp74HnfZIq9wHXAm0HVIXJGoDcIubsdru8faCLGAgS3W43Czf0viM2QKQRBrgmevc9i0BSpe8dsYgKs7dSQDARHlarlWazWd41wFtHfM59HhFD+v1+blPw+4ko4TtWsGa4P/UdSNxJ4H93J0Y90BABhGPX1wZr39sj6gIAa9OdA9w37pOLQL7zAyKGixI8Fwg5CDLcM87tQak4A/w+1ndUYXxXtR642MTxuXebzSbfN15jfvg5n3H3EPPiolsgEAgEAoFAIBC4GtdKUPBt/Lwq7VVdCAyuBSzrjUYjhy9CFuijRyAgt8B3blgsFlosFvn16XSa2wogbZKyoOBV8qIoNB6PNZlMtFwuJSmH8kEc+fxms9FyuczuhF6vp8FgoPF4nIkYhI3/rtdrzWazfD0QQLfXuwsDqzmZEswlBND72zkf5+J1zuOuCezpkDJIdFEUGg6HmeC7Y+SqzALGiEjh214ybq7Bd2DwFgrGwBrx7f6oiDspJkzQSSVVaNoZUkoaDoeV8zJGqdqCwj2mEs9cMX8IKS4osb7r/3YBytca89bv9yvPggsTfizWJ8KAiyHuICFfwoUTF7fcecA6k5RbA/zaWHfu3KB1g3N4+wkCAufjmhFSmGMXZHAyeCim44UcBMwXx61/l3g4JmvJ3Q/1IM5AIBAIBAKBQCBwNa6NoCCpsoWc94ZTLYS01MkZ8H5uSTnpH0IMOfNt5BaLhSaTSQ5pIz9BUn4NEgoQM9h54PT0VMvlMrcjEMoHiYPUQMiwyddD6JxM465ArKjvCOFODQ+t6/f76vV6eYcCgg7n87lGo1F2FOAO8PFwbZIqW/BJ90iluz0ghogXLg5QbfatMiFunBMh6OzsLIssiA/17SL9vl0Vrolw4tV45qbb7Wo2m1UEEm8/qO/c4WIF44SIe9UfV0N9nSKUIOjg+vB2GVwynrHgxNUzQhgnIhXuCnIH/LrdyUCLAnMIUacdw+eQMTjxRhhCDGi325V2BM/tQBxg7mezWX6WWC8c64Wq/jwL7uhw1NsXgAsb9ff6NXmrD4KhO6L4GWKOr+FAIBAIBAKBQCBwNa7Nb8sQAKrDXnGFYNV7r+up+V4l5Zi9Xi9vDyldOg0834DdC3xnBMbgx/cdIchRGAwGOjg40HQ6zSTesxU4F+d2G7pXiCHVg8FAg8EgZ0hgy6/PlaQ8BoLs2FGg0+lUquzsEEHbA4TLLfmQsn6/X3EvQOTdDQGB9DA/nBQILbgCsL9DrhEysP1zTM+toHLMnHMvEAg8mb/u0EBwgLwzXx4y6Fb+Xq+X3+eBiJBhiC19+YhGHAvyzjVxDdzzeusEpNkzAXxu6y09CBC8jzwPhA6/Ps/hwIHA55hPF2eYv3ql30k4Y3VxCfh5JFWuC6K+XC7zvXCBgvN4joK3vriARyCmZzq4g4V5ckHAHRYeGMq/3SlSzxVpt9saDAb37RIRCAQCgUAgEAgEqrg2gsJ6vdb73vc+Pfnkk5nIeWXT+9Tpyy7LUkVR5BR/iLcTVK+K+k4RkjLJQVTAueBBd96CAQGGCCFY7O/v6+joSMfHx/l1SLr3t0uqkHA/hrdC4DCgNYMqL+93JwCZBP1+X8PhsOI28K0x3ZHArgic1wMCqZr71nkck2twqz7nOD09rQgbHAMXB60n7FTBLhVuj4fcukvEAwl9B4b6LgOsEe+7R8DApk9II60aCEpura+3DPgOEjgQ+LnnG7gQxvxwfCrirDmvpiNOMd+IMB5gydpDoEK4gMD7ziKIBJ4tgHDiO6jwGmGVXtHnXjC35FdwLO4La8zFG0kVAcyzCjzvwp9T1iRr2cfu7TcuGNUzD1wg8JBOf465Ht5LyGX92vme8byVQCAQCAQCgUAgcD+ujaBQlmWu8kOyIOMQAq+28jMIMRkF9SwFT+aHgHmIoVdTIc0QWqqpkCaIHgSH14qi0GAw0HQ6lXRp9fYk+n6/n8kz1yhdVsURRbCks01fvW++3u7B54uiUK/Xy0R2vV7nnSHId5AuSRwZDpBpxAREBsaN26PVaqkoinxO31JQUibE2MUHg0Em0hAzWjeowCOeMP+QR5wA7qTw6jTk1EMYpcuWD0gpVfzFYpHHiYsDpwbriHmjqr5YLPI1p5QqAsdms9F0Os1bh3p7gbscvPLNOuPnOBmYz3q7AXPE3Mzn8/t2E/EKva9p1pA7LCDzrH/O6/kWHId14m0mCFO0sNSDDPmsX0f9Z5yTn/u6dvHNnSt+jdx7F0x8dw6+J+p5FrzPz8+Y/LnnGCEkBAKBQCAQCAQCLw3XRlAACAIQXEgRZBJHgucKQPAJsiNXwEMRPcyR153Eet82ggCk0AkrTgIEAwjJeDzWbDbLxI8cCE/8HwwGeRtDCCDiCYn4kDyvDrs93UPtuLZer6fRaKSiKDL5I5yQLfC8cu+Bhk5m6/eBir2H1NVT9Xlvq9XK5+r3+5WEfZwfkjJJRkggN4I55b6wC8V4PNb+/n7eQcLDLhFoEEwGg4FGo1EWVri3XtlmDIgjOFR2u3vbg3Ju7j+VfBwWiC2ebeD3s97OwrUjbjEuFw4g4oyX+4s7wh05rBkXmljrrCN3cXCNrH2EGYQNRAbGgSvC76vnanCN3nLEOnDXCLuuNJtNLRaL/Iy5A6QeOAnqLSsuMDE+rs2360SEq69z5s7FhKucDp6tEQgEAoFAIBAIBF4c10pQcBLggoCH00E2vOLqgW/eb+1CBO9110PdIu5heFRtOSc2aCdl/JGqrQrY7ckVwDHR7XZVFEW+FsYCUUIMWC6XuSJOtX25XN537QgW9fwJMiMQNs7OzipbIzJuPoMQ4Mn3vkWnpApx5hjr9briNmDXDOlyO77z83MVRZEJq1QNz4R8cn8IQqQa3mw2NRqN1Gq1NJvNsugAccZhsdvtVBSFDg4OdHBwkB0bZGpMJpPcJgApJgCz3+9rOp3m9yAscE+YK4QqXx8EarKmnKzzX66HnSx4D4KZV8e9/9/FCe4jY2EOr8oAYI59zTPH9VwAf05cEOF5IvyRNY/AUa/gu/NBqopv7grienznFj5HFgVCk2dg0JqBIIdAVd+JwXMpmB//r69N3u+vuUPKnQuBQCAQCAQCgUDgflwbQcEDFSGoEF+vVLqAwGuSKtvheU85hA9SB2mCxECiIXOQIN9e0kP9IGVY6v392PxdAJEuWwSojLPbgaR8PRC7xWJRmQfs5YgHniuB6OIkfzqd5lBFiKD3p3uF11Pvp9NpZYcAt8P7HHCvcGhIyi0EHnSJ5Zx7xBxwbEQcr2q7Lb1u3+d+nJyc5DWDiIBQUhSFRqOR9vb2NBqNcoAjoZE4D3zOqKJPp9O8laRX/amus14QVnCx+BaR3HcXPJbL5X0tBtJldoLnNdTbc1j/7K7BXEjKwgZOD+bD8wC8Cs85uGYEEXfxuGjiIhX3zvMTriLbvF5vJcF9w9rwwFW/FtYeghnj5U89N4EsEtapCxOICt4S4d8lHorpgiTj8S00A4FAIBAIBAKBwNW4NoKCpEwOPIUfIk9v+2az0WAwqFSK69VSDw2E/AMqrf4ZD3DEju8OAN9GjmPQB79erys7DpRlma3qkrJFncBECAwVZoQH3u/2+/Pzc43H4/u2hnSbN2NYLBaZ+NEuQl7A2dlZJSPAiRRjhLRKykSQbAqs5GQu8FlECQQPSZVqsf/d3Sf1/AruGaTOczCcUFJx53ogsAcHB+r3++r3+zo4ONB4PFa/38+EnVwF1ovfK7/HzD9ZDNwHSRUxxUMaPV+D+wlZhqAjCrmAwjXWt2LkmnmdbAp+zhwg0vh94n2Qbd8Fo34OJ+AICFwTzxbzwvUwR7QzuKDAGvbgRW9dqGcz1J93bz/CzeFr3kUdFwT5XvAWIF5HLHERhtfdfSRVWyd8Hq5qBwoEAoFAIBAIBAL3cG0EBbfzOwGgr9t7rgn7q28h6JVJ7/+uW7QhLl6J5t+r1SqLGdj56aPHxg2Z8u0l3fJdr37XAwi96uu9+xAvqv9U3VutlhaLRa6G10kOx/Ccg7IssyOBY0jKQYUQ2na7rfV6nccCmQSQZ1o3+v1+Dm5MKWXxwgkhVnl2FuB8uAx83rkfXtGGxEqX5BEnhd9LyOLNmze1t7eXBRTG5tV379vns8ydixvuROF1bPhOYr2dhDHTHsCuIYPBIJ+L+SVjAycNYoM7AlgLuCWorHNv3ZGC+Objuqq67uTeXQtOrH2u/L7Vt2HsdDqZgCP21VuDELo84LBO0j3E0kU5jrXb7fLz1+12K4IXa8PP6y4KxsR3iotfwFuf3DHi+RAhKAQCgUAgEAgEAi+MayMoSJfV3zr5hDg6kfMEfqrrECAXAyRVSDKBep454MSWHmonG1Ssh8NhJuH1HAVyD/ivt16wRSL9877VnjsdIMte2cfm3uv1NJ/P77OZ04Kx3W41nU5zrgCEz3fLQEyAeI/HYzWbTU0mkyziNBqNTNz4N0SWcbLdI3PGOHg/1+Hv4byIPYgmvt0hBLm+FnASIKj4HLTbbY1GI92+fbtyLG/T8Go15N5bKKjmIwK5K8ZFCA/IrAdu7na7TJ5Xq1UlB8LnhzmUlHMePJPBW3AQrXC5+A4JTnQ9FBHCjqDAWvbMBj8G8+otLU6oPeSR8a9Wq/y6txtst9vKris+r759pLtbeE7dGSFdOnW4J4g1rCXWkaRKa4/PBduYch6HOxo4t7dK1TMpAoFAIBAIBAKBwP14xYJCSumTJH2HvfTxkv6wpH1Jv1nS8xev/4GyLL/3pRyz3r7gdm3vvaeavL+/n3eEcOIHOfJef0L4vArq7gQA8fadHXAmFEWh8XicQwK32222W69Wq7xFI6n0tB0gCHQ6HS0WCy2XyywyDIdDnZ6eajKZaLFY5J0XII+evu+kH6cE1WJJ+ZwIMN4qQXX8/Pxct27d0u3bt/WmN71J6/VaJycnuZrO8SGxPo9slzgajdTv9yvtD7g2IK7Y1r2tgvf7XHuY5sW6quQncDzcAH4ujkluQqvV0mq1yjkSrAPWB+RUUiW4z9sDmH/GDNncbDaZsCIoXeV+YJcIzkcgJdfpLS7cV9+KtL57AnPEeN1Zg7hBtshVNn13M3AfcTxwnwir5JiQ/qvcMC5YtNvt/HmEOr+P7hBhfOxEISnnjTCXV20pWXfMeEuJr3vPxXBHBPPjx65/luvx1/m+qQsR1xGvxXdxIBAIBF464ns4EAg8ynjFgkJZlj8m6R2SlFJqSvpPkr5b0m+U9PVlWf7ZV3DM/Hd3EEBanBxD1nq9niaTiabTaYVYIBpARLGkU82vuxMcbv33IEZs/EVR3EfG2B1gPp9nQYKqZ1EU2aGAgwHnQVEUOj09zceSLqvCnsjvFVkEBVoPIIEQS47d7XYr228yP61WS/v7+9rf39dsNsttAj4fVH0hs6vVKmc1IHx4pRgi5lkEiBLeDoLjof7+q1pSGAfVbkn5uiD3fM5t+Z6J4WKECwROlOuhhX5c/znCVL/fr7RMsJZ8u1I/F04F1pEHcXo7hI8NQYv58vwH5pNKP7t6sN44nr/PhR7eg9DgOy7U3TEIDzxT3lbA2nL3gZN3WhI4JiIB46lvh8lackGD17hfzAHiEOfwbBBQb39wNw3Xz3nqzh+ePUS864zX4rs4EAgEAi8d8T0cCAQeZTyolofPlPSTZVl+oP6L+ctFvVK9Xq9zOwCECWIDqWQXB0QIJ3X8G0InKRPAevXVK87+b8gWgkK/39dqtdJiscgVa8gax/VQOhwO9IPXhQp3JNR3lYD0MQ4+5wSa131rPyrtzIl0Sei63a729/e1t7eXyRnhgQg47NRAQCUujPV6rfl8nufeAx+lKgH2FgYngvWgPu6n727g1WVaCHzHCu6FpNxq0u/3K5VtPwbWftwITijZIYRWBO47ZNZFJ1pYyI+YzWbZiUL1vdvtVog0x2INevgk643tPv1eedUeQuyiD88IxJy5dzs/x3GRxKv8kHU+S2sB1+rtKJIqQpc7cTgvDh8/vz9fLt54PoeknCnBOkBU8XXCXPo9Ap6t4Y4Oz5NA6PLPeCuFz2XdUfMGwQP7Lg4EAoHAK0J8DwcCgUcKD+q35S+S9G32769MKX2JpB+W9NVlWR6/1AN577dXWt3S7TZ5fun3Xm+v8kJ4vErvx3NSd1XPNFV2jl9vRSAvgWN64KJbtjmG5yq4LRxCCkEtiqIyJ5AqJ11uz3Y7v+cP1C3brVZL/X4/b6vI53BdIOKwawQEuSzL/J56fgTz5AF50iVx5eeQufPz89wywdz71pCbzSbPtQdf+rX3ej0Nh0P1+/3sQqCfn+vmfuAKoSWFMUJcEU08yM/bPRCkILKsM9/5gZyNdrudBQ7vxXeS65kBzBtuGrIYuDdch2cKeC6Dk2Y/LmuUtVB/xrgHnjPiu6ogbEG4Wade9edZYizMIcKMCw3urmE98B7mkHPhugFkjnAePl9vkfLrrItxwJ0bHMvFQBwuvj7eYHhg38WBQCAQeEWI7+FAIPBI4VU3CKeUOpI+T9J3Xbz0DZLepnvWr2ck/bkX+Nw7U0o/nFL6YV4jJM8JnAsEF5/LZBqyiLAAEakLCpvNRovFQvP5PNv+bRwVsuiuBEn5vd1uV6PRKAfvMZ7tdqvJZFLZ7cCPCVl0OzctECklzWazTIadkDkRBx4O6JVoyJB0GcKHzZ/3MF4nvvXecV7DiYCFnPaKXq+n8Xis/f39HFAJaaMVQlJ+r1e3OT+tIVT1uZZut1tp36C1gbnmPRBez6Bot9v5HvvOB4gjCAo4Xbw1xkMzuR7aGsbjcd6CEsGDe4KwQbbF3t5eFjh8i1HpsoWFvAuOx/pASHBHC+vZHQruJHDByAMxPR/E13OdfLOOOActERyHAE0XywCuIW8j4HiemYADx8fp99jHxFiZj3pLir+HY+52u/ysuDhQF1QQ8fy+1NtfcEpwXS6GvVHwIL6Lt1q/HkMNBAKBj0nE93AgEHgU8SAcCp8j6V+UZfmsJPFfSUopfZOkv3vVh8qyfJekd128L//mDtn0CrGTYg/O2+12Wq1W9+2aICmH47GzAcepV3nd9k0VvN7DT8AgWxO6m6FekXVBAgs1bQQcr9PpqCgKNZvNvMuAdFnltTmqHNNT6J1keWsHFn/fptIrtRBlyDrtBm6vd0s55+DcrVZLe3t7ef7JBMD9gWDhSf/07fu9JOeBewfhRmjw8EzpcqtCPlsn3YhLWPYZ03w+z0KS29mZMwQKJ7eeUcE9dlEGNwAiCAJEv9/PY2W3EO41ApITc1wbnrPgpLfuqmGOfL7ZSYP58ayIq9aSw10H/l+eIVoRWO+s5/pn620FCBKIEjwDtNBIl7s4eO6DZ17Un3/mxd1FHjAJ3DHBZ3FbsIaZ8/p3S/3e1F97A+BVfxeP0+EbS0UJBAKB64X4Hg4EAo8cHoSg8MUya1dK6YmyLJ+5+OcXSPqRl3ogSAuE6aqdGKjS+mtY56kgX2XFvxhbhcBAOviMkwwIBWPq9Xra399Xq9XSdDrN1dHZbJbHACGXlMkTBGm9XqvX62UixraE0+lU0+k0kzjf7hELv4sQhErOZrPcvuBkGEFhNptpNBpVqr6NRkPj8Vg3b96stAo4QYXQQ/T9ZxBpKsQe0Oe5DpBJiDpEEXcHRNR71CHoXOvZ2ZmWy2UWAIqiyIIDlW7pMlvAbfkIClScCS1knfjYuddOuJl/34KTc7kLACHE+/m9baDdbms8HldcFL6rgO9OUpZldo7grHDizBrrdrs5awERgnn2FgjuCeP2UEXWKVkirHnmzF0+fqz6Dilcq+cguBsBEcWvgfXgAhNOCa7bc0hcXOG/fCf4dwDPE2P1a3IhiPfy7/o2mi6elWWZxb43CB7Yd3EgEAgEXhHiezgQCDxyeFWCQkqpkPTLJH25vfxnUkrvkFRK+unaz14UEBaqylI1T6Fe8YeMQO68Ou1E8arUfP59FTmB+LjNmoq/dOlMIAzQK/r06A8Gg0xC67tK4JSoJ9BzDq8US8rVealKqtxNALFjO0vIENfW7XY1Ho+1t7enbrer5XKZwwCXy2VuWRgOh5kYLpfLyq4F3iqAOwESS+uEE0lIPNV4J2zcU8inC0LT6TSTYK/c4wbxlgbfWYC5wgq/2+00m82yoNDtdivrgXFz77vdbib2nglRz++A1HuWBq/5XBRFoaIo8jm4R+6U4d6PRqMcMAqpRnTBJeNCjGc+9Hq9vP7571XbXzL/jBdRgrXInDC3zD1r2IUDDw6VLlsS/DnyNh3O4cGciEAc0+fJBZ76dfj8ke3Bsw+8XYqxc2285i0ULjTh/HmjOBRei+/iQCAQCLx0xPdwIBB4VPGqBIWyLBeSbtRe+3WvakS6R2iWy6Vms5l2u11uD/DKLLsstFotjUajTG6o7EIU6NlfrVYVou6kwfvXPVywXo2nQo4D4Pj4OI/B7fjb7TbnDex2u+wGcCJLnzgVaRdPXEiAFNKbDylyAYMqLuSc657NZkop5eDIfr+v/f19HRwcqN1u5/mFbDEmHAF1Iubn9dR/ju+2ecYFCfY+fG8VYMy+FST3ytsscID4zhHSpXUeR8BoNMrtD9xTxgvJR2xiDLRm4M7wVgfPI/DKNXOCe4Ofk0XA2sExwVgRcHx9MQdFUajVurdFp+cPQILdMeGBle6OYU3xWUi+Zxt40KnvZsA4vW2CdhXPKWD+eeb8ueW+IbJwrnoeiu/04Ou83m7jzgF3N7B2XIzg/S4e+vncpeEuC/9e8PYfvmfeCHitvosDgUAg8NIQ38OBQOBRxbXZE81D2iBqHhjoVVIq2avVKofl+a4JTnIkZUKx3W4rVXCIB0RFurROu8DgYsB8Ptfp6WkOYgTY8yXlnnq2ZWQ8y+VSm80mE1KvvtcFBa/OejCh7xLhmRDeMsG8+e4AbHdZFEWuwHtFeLVaaTab5TGRg8C8ueV8tVrd1+sPweZ6cCYw1slkkseKi8GPv16v831mbJB7326T6+acnU4niwPkHjQajSz0eIuCt5Bwf3EssPacfHPPmUM+yzFxR3heA3NChgWtG+fn5zm4knXoc+StC5yDFhnWJ4TXt+VEOOv3+3lNpYvgT+YJW78Te58TF0oQmPgM8+vhpLSb+HPreQSeH+LPkqTszuD9vr5ZO55RwvOJ2MVzwHnqziOAcOJCC4IHzznj9+eceSdrIRAIBAKBQCAQCLwwro2gAJzMUZXFzk2WAaRxu91mizqBeBA333KSY3k10y3YBMZBLiXdJyis12udnJzo5OREzz77rE5PTzPJoqLu9uhut5u3foSQ0VogSdPpNNv8IVEecifdI6XeG+45AXxOuiSKHmDH+7H+93o9DQaD7OZgbiBuCArY58ksYNxu96cqDgl12z/uBq4FMAfMixNYFyRcWKJFwbMXEBeciHI/WRvMEfPo1XnpchtCdmhAvFoul5VMBZ8jyKsfu952wjqp5114LoiPyZ0VOA5w1Pi8eT6Gbx9ZD9Ost21wrziGZwq4o4I5xY1St/kjrLA2mGPG4gIN8+oiBPdNUiVgkrWKY4hnkLnw+8bcIbq4QEG2Rx0uFCLY0SLlx3TxxHNBmM9AIBAIBAKBQCBwNa6VoOC5ARDFOuEeDAbq9/taLpc51b/X62k0GlXCB8uy1HK5zCFvEFSv8PtWfCmlTMLIIXC7+HK51N27d3VycqLpdJqru9Il4YG4eWVduiSCuBjcXu62dr9uyDRz4rZt71t3MiddWr8Bx2KnAYQWquu4HKbTqWazWSZ0q9Xqvi3+IJDMFePznnT68gkidHs7zoTRaJRzDiB0iC1lWWo+n1d2YGg2m7n6zpaLXHc9UNH/zvVzHG9hgPTWxQOCEp3w07JBtgECh4s7Hs6IIIPIwjkQrnAmuMMgpaTtdqvFYpFbKGjf4Tp2u53m83klq8HDIyHN0uX2oZBmFxt8vSEm1HcYcfHG76HPO3/3devtLogsvoavujf1Ngd3GtA+cRW5dyeDuw/8Gvx9iB2sa+4J70EwYmweYBkIBAKBQCAQCATux7USFAAVXSfZTog6nU4mat5/T390o9HQer3WfD7PFfr6XvSeRu/VUQjefD7PJOX8/Fynp6dZFEC0oFq62Ww0n89ztRkxAUKNzVuqbv1YJyyQtHa7reFwqMFgUGn/gDB6Zd97x72aDRHzHnnPE2BLTYIlEQJ6vV5FIHAnANXoeluI/6ECjGME4YK2BNwLPh8IHKenp5KUd2XgHrk7AFGCNpGzs3vbg/p4PPPC7y/kkXnATVAPAER4wCnQ7/fzMet5EhB6qtu0GzBH3E9vN3A3gqQsKDBXCAUeCskcIF7VdxUB7p7g2fFsDF/3LrY4XGBgHLhV3K3AugM+J56JUCf9fp+Yfxf33CXAOfg3c8z7PeDTx+LnZ17qzzvP8VU5DO7iCAQCgUAgEAgEAlfj2goK/EIPIYdo+K4B0mV6PMQb0kNoIyQSqzbvhyj4LhEOT7Q/Pz/XfD7PJBCCU2+JoCd/PB7nLRsh7Iga9KBDaiDpXBMV6X6/r8FgcJ+IcBWcYNVD5mgPgbTjlthut5pMJjo6OtLx8XEOn4OIewsHgoZb7yG/bmvHVUGWgffR19s0PH8CRwRkmhYLb/Fg3Mw/AY6c363r3W43O1mm02kmnF4x9/BHggxpU4C4ew8+gpNX6BFquK+ICryPa/QqvwdoMqcIS7gJaMXwPn+fc0QVdyAgtvAMLJfLisvCW3/cWcFaJN+D8eJUqZNsd8kw79xDxASq/y46uNPCAy5Zm8w553S3gYthV/2M87ko4YILYg7weWPM/iy7YFN3PQQCgUAgEAgEAoFLXCtBodlsajweV36Z90q5V3Kxj1PhhmxCYF/MXg0RHQ6HGo1G2WoP+aiTRwivdLm1o3TpnoDMNhoNjcdjFUWRxYTFYpGzBXAuQHYYr5MwKreeCwEpZx7qLRVeYfcdJ2gPgDAy1u12q5OTE929e1fHx8fabDbZwTEajXLFF2cEBIx5JIRQUqXyDxmlpcTvLcTNr8Wvz7ct5L474eY6OR/bdeJYgNzTcoCjAGLvTgrGPZlMKtftIYj1Xnq2AqUVwW309QDJ2WyWRRrEFs/u8DXFmJknxAnWKu9br9dZ8PG2D29F4ZmBnDtp9zWAOMd5PBiRUELf3cFFBL/XHmaJwNJut7N45c4BjukZENzn+v3383iWgruLEDEIv+S47qxwcQgxktYW1pG/HyHRRblAIBAIBAKBQCBwNa6NoABxvH37dias/DLv1mzve0ZgmM1meeu/2WymxWJRISX18D5eo7Vgf38/9/8jGlDtlVQJiavvbsDP69Vbxgox4e++HaMHP0rVtH+q+Z7cT8gfTgCyGOrCC6IDRBsi2ev1slAym810dHSku3fvajab6fz8PF8bQgaZARzbBQ0PaOR9/Axi6QGEkG0q5IgeiBbu+nCCzA4GzFGj0cjOiOFwmHevABBlWhzm87kWi0XFBcJxcL/Q6tHv93M+AevExRrfrhBXCteKA8bbXNj+kc+6cEAbgbezMAe+7SPvZf25u8Xh9x54XoPfJ38WvJ3Er9EzEOqtJ55Hwv10IckDMf08kPar2iVc8HOxhs/6jhG+3uutERyLf9dzEfgucEeE73KBaOMZKYFAIBAIBAKBQOBqXKvfmCGezWYz99rziz1VU8QDt4VPJpO8bd5sNsvvqff41/+NC4CQR29zcOIsVS3f3oYAsfLedSquEEAPhuR4WNIRRSBUhA5Kyk4CiBSEySunXmn23QGYQ9oJOp2ODg8PcxvF8fGx7ty5o5OTkzyf7Kjg81UnmwgduDSu+jmkn3BBthmkBcLbTObzec5XwHFBdZ/wx/F4nF0l3iICgeWeeDDgYrHIYgJrQboMFXRS7g4EyCbXAQnn8z4nV/Xae7XdgyoRd6jQ+w4T3obA+DkuYZC4B2hF8DwD2iE8dNTXB9fWarUqz0V9vL62vJp/VVaHiwzeAoJzgmen2+3eF3zJ+d3xwjXxcwQSzskz5IGpHNfdBTyDHthIiKY/x/zdz48Y6A6PQCAQCAQCgUAg8MK4VoICaLVaeWtBbONe2V2tVtrb21NRFDlcjcr2arWqOA2AW+0hXWyl2O12M2lzIucVTwikb5cnKVeTPcyQMdSJGZVm/lClly4D7WiJgIhSUXZru/fI93q9vKMCOzU4qYK8F0Whg4MDFUWR7fZY9z1ID/KGKMA5PXwQcirpPgu9V/4JxPTchO12W+mTh5TiuvBzFUWh8XisXq+XBQZvCcHxsNlsKjtirNdrTafTSvYGrSw+N1S+eR0HAaQbEo+YgZgA+WackvK4IcXcs9VqpXa7nXe28LXE+oEIQ8TdAcF98t0JfCyeYyHdawPBHcK1u5DFs4AI5rkNdadMPXOBe1VvHeHnHBdSzj3hmaHVADcSogJ/RyRwMYHjM688S55v4OIXz1L9eqVqNgv/9usAvg1rIBAIBAKBQCAQeGFcK0HBdy+ok1y30PNvFxnOzs40n8+1XC4rgWueGk9F04+PVX02m+X38x4XFzg35MjdFG57x8a+2Ww0GAwq+91DXjzEEWu+E0wqycvlMmcGsAsD/8aNgKCxt7eXySq7W2w2mywCDIdD3bx5U6PRKIsObl+HHCMG+HXXx8bPttutptOpyrKshF6y/SHEUVJ2LEA4mQuvHvt2iLRs0O7gwXqeQ8C/EU1wsSyXy5xnsd1u83wg0tCiATnlfiIysIuIt3BAhiXl3ARQ30YUouw7gyA6OTmut1a4m4LjuPOASjzrkPvDXPsz4/cOuJDj94HXEBfYhtJzGbx9g7Ykbx1wuJMCAQRBifvuz7y3Mfi18h4n/4hrPnZ3UviY/fP1deRiHnPvThcXjwKBQCAQCAQCgcD9uHaCgrccOOmFSENehsOh+v1+fq3eI+6VWarqTiAgi/1+PxPGwWBQqfZ6rzV/d5u2kzWqx5BaSMtsNtN0OtXZ2VnOT3D7vZ/Pt9uDWEK4OAefdQcG2zRi0YcMM2e4GPb29jIJhtT5TgLeJ+/5ApBar5BTbZaUnQkukLiFHgLImHFfeCWcrR85xnA41OHhYZ5DBBjGu1qttFwu1ev1NBqNdHBwkO/fbDbTfD5Xo9Go7JRBNR8xAYcDAhVbGDJGz4RABGI9sm7c+UDmhosCVOs9MBTXAescMaDubGCt7+/vq9frab1eV1wetJh4mCJrhPHjEHBxzde352F4+4a7cRift7uklCrBhqwbxgx59zF7VobfR+ZJUnbtMF7WmudyME+Ic4gA3hJUz/Dw58jbJvhOcLGJe+b3KRAIBAKBQCAQCNyPaycoQDCoEPILPYSs0Whk4uRVUj4P+fH+eMi298oToAeRRAQgq0G6VyGezWZXblnodnInPN4Dz9aVXBPEj+vgHM1mM/fYQ0x3u11lpwmpWs32bft8G0AItodaul2eaqwH7wHe59dbP46kSusFDg1vg/B2i2azmZ0j3Bsn3wgc8/k8b4mI2wEHCqS0HlK42WxyW8R4PFan08kZGoyN47lrou6U8BBE5rrucHGhQVIlINHzDDiW7/BAGwZhoRBs79WnPQAXhBPpoijU6/UqrgfWQ7fbzYGaZEogoPi9xYHgeRe8xx0K3MPlcpmFKZ4R5ox58BYi1gVODMStyWRSmW+eNUQajsX69YyFesgk2RbNZlPr9TqLCL6mmQdEBJ4P372j3vrg2SfuDvFAzkAgEAgEAoFAIHA/rpWgIClXHCEN7Grg8J0WIPQIC/wM4kgFmVYEr1rW+6chZJC3xWKh2WxWCeHD2g4ZJ9CQfvTFYqF+v59bMNhaEZHDLdSQIMbnW90VRVEJCeRaIVGQSemy8g75JdgRosTn66GGHqpHVReHQT10kKoyIg/tFIPBoOJQ4P5xTZBxb3+g95/MAuYVkt7v97W/v6/BYKDJZJJ3qXCrPPebVodGo6HZbKbJZFIh5Z7J4EIT18/5aL1AiGB+uQfu/PAdCZgT1oWvVZ9bxDJ3fXgriedBINJA5ushi1yLbxvKfHMPpEvHC2uTNcTa8+wG5skdI+SAcH6Oj5iAAMW1MhaEt+Vyqfl8nl0yHMPvgd8LxuXPcV0UQcBxJ5PPt3+G7wVvo/F2EMQHRD7mgrm7ajeNQCAQCAQCgUAgcIlrIyjUg9OwH+92u/vs5V4V9gA7DwfkmJA1z1vgXO46ICV/OBxWMgyky2q19/07EYGwE5TI59xaDUGk8uukbzweqyiK7IiQLrfbqyfZIxIwV8vlMrcE9Pv9TJDPz881mUzy/DJH7lJwyzpkGELqZMrFhrrlvNvtajAYVHZ2IFOh2+1W8gQ8iM8DKhmLty9wDZvNJu/YkFLSaDSqWOZd6JjP59md4HZ5D3HESeHEEbHJ2xB8twsfb90NwjW4YOJtCz4W6TIrwUMEqZq70MM6xzHju1PUt4j0Z8dFM35GJoHfX29v8RYQHBDcSxe5EDAQczyEU7ps7yAzgvd564hvk+nPK+vHHUqIAzh33BGBm4E553nxXUau2onjpQQt8nx4bkQgEAgEAoFAIBC4Hy9afksp/ZWU0nMppR+x1w5TSt+fUvoPF/89sJ/9/pTST6SUfiyl9FkvZzBUPyGR9Nmzi4F0WcEkAd8t+fzdcxE8HwFy5u4GevHPz881GAw0Ho9z0r5Xk6XLMDrOx3vod8eyPp1OdXp6mkkw7RVlWeasAOkyTX44HGo0GmXiCZGhsgwxdacEJNy3R4SUI4q4FdzdDWwzWN/lwXMhcGpAQj300rMkcAggsEDYIOoQQ2+L4HiINuzgUBSFRqNRvn8QU9+5gxaAbrdbmS+v+rvzAzJLYCbjcBeCdNlDv1gsKhkF0r2Wi/l8XrnPHmLooZscizXjLhFvr2Ct+64QjB+BwncP8WMiBrAeEQlYCzgpuM9X2fb9XGyZ6uD6Eds4Lu4UiD7vAb47CbtWIC65I8YFEpwP9fDRuoDm7Rm4iXAyuGuoLk76muQ9CHX+Pr8HPBMevPmw8Xp+FwcCgUDgfsT3cCAQCNyPl+Ln/RZJn1177Wsk/YOyLD9R0j+4+LdSSj9L0hdJ+uSLz/yllNJL3swdokFl3/vYJeWtCM/OznJl3vMEIAn16r6kCungz263qwgX+/v72t/fz4KCpFyJ7nQ6Kooi5zFAQqjk1oUND1UEkFb+i5MBO7hX+N22Xa+Q1+dpuVzm1gDIu/e4Q+ogsavVSvP5PM8d4gG9/lTbcWLgNKDqzPwi3gyHw0zMfccKrqPX66nf72dRB2GH4xBm6bkW2+02k1gXWRB9POvBK9feOw8p9PBJB+QTAYvdIcjJYNcK7peHUHpbDS4UCDr3mGtzQcpJOH88sHG9Xms2m2V3QKfTqQhAdbEEUYV7SssHa4Zj09LgGSH8zNsV+KwLH1zTdDrNWReMnfWHMISwxfkQy+rtO5zTwzF5tlk7TvLJVqjnMPD9wFwDF11Y/6y5eqtHfc3yeY5xjfAtep2+iwOBQCBwJb5F8T0cCAQCFbyon7csyx9IKT1Ve/nzJX3Gxd//mqR3S/p9F69/e1mWa0n/MaX0E5I+VdJ7XsJ5crXXXQEQCggXZJoqLNVsLNBuafdEf6qhkESOjX281+vlYD+IBLtAeIsBggXiAVVqiI6LCFTieR+igIsMkCMXCLyfn3mB6ErVXRI453w+V7/fzwTIK/q+CwSihHTZj08vPOdxyz33AoGC65eUhYBOp1Mh/tJlqB2kjuNBpiF4iAAuhDAPVLqZv16vl0WJxWKRq/b0wjM22hC4B5KyaEC+gwc84oTgHuKA6PV6+frJcaBy77syMD7It7d5MCeei+BtJpB+1iqkmutsNBpaLpfZOeHOBM+n8NDHoijytfHseA6Ci1TMBe0zrAv/L+9zAYL1gHuE+wCpZ20yl7ynviUkAgtz4Of154Zr4PguNCKMufOA++6OBf8+8fuPa4G1yXH8/l4HvF7fxYFAIBC4GvE9HAgEAvfjlTYIP1aW5TOSVJblMyml2xevPynpvfa+D1+89pJQt0XzSz02aGzgEDfpklhgTXY7OY4Gsg6kauWSymav19P+/r7G43GlZQIRghYC74l3qzwiAEGInJMqNsRauiTaHlAHYXKyD4n3jAZP2IeUj8fjTHwhZd7G4aKBW+chzPSsM9fstMAcQdRpdXDSRX4CBJHrIgPDdwfw3AWuxXdZ4H7sdrtswXfrP1kaPu8c54VaUFyAYStJ2hlYLwQH4j4YDAY5EBOnBOuI++yuFM6FcOCZCk5kGeNqtdJsNsvXzVrmPC7CSMpOjdlsll0auCc8w8PdC8wnx+UZcRHCcxg8G0NSxT3CWFzwkJQzKchXYM362K8KYfT7hQCEOMH6Yg5oc/JsCRfaXCzgOeKYfH9wLBf3eK69XcPH5eO7ToLCC+A1+S4OBAKBwEtGfA8HAoFHGg86cewqf3B5xWtKKb1T0jv5d6PR0OHhYbZ4QwYQFKjiu5jQ7XYzQfKgPsiJ26U9YM4D7yBnCAopJS0Wi3zclJKGw6F6vZ5OTk4yQaOiz7hwSVDBdcdCvUoqqeLAYLyMS7q/p99FEG8lGI/HeUeMzWaj09PTLBy43R8hgYo243Wyz7z6+DgGZBeS12q1NBqNdHh4eF+uAveMHnd6/Lk3vq2hB+X5vyHGCECdTkeDwSDnXpRlmdskCLM8PT2t5Ae4Y2E2m+VtIxELcC1g0ZcuSS4E1MUJF7iYI37uf5zUOsk+OzvLLTa4SZgvt/Tj2Dg/P9d8Ptd0Os07LjD+/HAZ6WVdQuJZB4hkntvAe3kmXGzy/Au/L54p4s6GeoCktw34WnJhweFZKC5ucG2+nSNCjosCzIMHQHq7hD83/GFt8VnfZtRfv2YtDy8Hr+i7uKfitRxTIBAIPEqI7+FAIPBI4JUKCs+mlJ64UGKfkPTcxesflvQWe9+bJT191QHKsnyXpHdJUkqpbDQaefs/Qvok5eA+SAKW8ZSSBoNBpRpKBoAHwvF3KrhU4L3nutvtajwea39/P7cJXIwx2/q73W7uE4dwQfIg594K4KQYeF8/5IfzcAyuk4A933aSiiqf9VYGxJfZbJbf41Xk09PTLEJ4lgLzQ8UeQkjV3UmbV9URYYqiyHkM3AdQzy2AgDPHkOzdbpezFXq9Xq72F0WRBYTtdput84wTkrxYLDSdTvM9Zv4hz7gQXMjAESCp0gaAwMRYOa67YBhD/d4SIMnPEHmouiNGuAAAGffx8jPWwXQ6ve98nJNjsaZZI6z5zWaT7znXnC4CMJk/5ti3ifRju+hTDy+sCwq0RrhI5aKJw0UbX2vewuDZIe4C8TlEDOHZxNFSD3NkjhEKOBdCCuu7nqdwzfFAv4vH6fANcdGBQCBwjRDfw4FA4JHGK91k/Xsk/fqLv/96SX/bXv+ilFI3pfRxkj5R0j9/KQeE5JBx4OQCEuCtAdJlfgFkBMLlVVRI22azyaF17LQAMfHwOIIBaQkYDAYaDAaVNgCECAgLTgfPHvD0+fr2elKVpGEvd5v7dDrV8fFxpdUAgYIKO3PE5+n1XywWki7zGc7OzjSZTDSZTPIYsPFTFXcC6S4D310A8tjpdDQej7M7wu+RH4O/0w7CeTk3ZHk+n6ssS+3t7Wl/fz9XuhFMRqORRqORut1uvv9U4pfLpe7evZvnirXkgYHT6TTnC0iX4YP0zyNkDIdDDYdDdTodrddrHR0dZYFmMBjk3UYg0z73iDmIJZ5XwVjcheDuBd95gs/6NqPuoOD6WH8ecogI4YGGrH9It7d8+DaSPAvuKmDMHmLo+RO8D5GsHorprSKIG7gL6qTdwzq9bcJ3NvEdPVhzV+2UUc+24JlkTboDAkEBEYP3+XmvOR74d3EgEAgEXhbiezgQCDzSeFGHQkrp23QvbOZmSunDkv6IpD8l6TtTSl8m6YOSfrUklWX5/pTSd0r6d5LOJP33ZVnurjxwDbgBpMtKLGS/2+2q3W5XchRojcC9UK+sIxiQAwCJWK/X+bMA4cAJOpVqxAXIFO+BcBMW6AGGkBInlC4m1C3WkirjQTgh2X+32+WQPsgbY4EIYm2HMDGXtEPMZjMVRVEhat66AdH3Xn8PkORaqOLv7+9rb28vz+nFWqmIDhyr3+9nRwQCBSRuvV7n1hXEJFocCBf0a3NnhzsypHv5B55x4KIFOxP4HEGGcVwg6mw2G81mM00mk9xC4Q4A7ilrESFnu92q0+mo3+/nn3Meb4tBEMD5QC6EBwZC6OfzeRY+EMh8vbijgbXFGncBjOPhBkkp5WvjnIgMnonBWvdMinoGAnDxxHeL8HwPb2vheLReMHbP4ai3WPh8IsA4+JlUdQpdtaMD1+DiI+/3+bwueL2+iwOBQCBwNeJ7OBAIBO7HS9nl4Ytf4Eef+QLv/xOS/sQrHpARJ0SG0WiUSZEnvVPxdJszBAFBwQUABAb+TXgi29pRrZSUCS6EDyv7xTVmckRl28muiwlck3TpROB9vlWjA8LNVoW9Xi+7N1yM8N0sID5ebUYEmc/nWi6XGgwGmUi6y4Nrot/cSZQH5oF2u62DgwMVRZG3DHSS7VVuBJn5fJ7FCMQY3BeQWObNgyE9mA+S6r3//Hs8Hmtvb0+z2awSEkgbAkSR62b+sL9DPs/PzzWbzfKWpFT8PQcBRwf3re528Xvsc8H1uH2f+a67FhBg6muofm/qWSM8O5BnbxPyrU1xDHBM7ls9nLDe6uCvQcDdbeDX5eKV5xEgZvmz3Gq18nxyLgQPzzvg595mgYDBPaoLFnymHuboIoI/277efSvKh43X+7s4EAgEAlXE93AgEAjcj+vz2/IFPF2+1+vp5s2bGo/HlT7rfr+fA+4k3UdU6Bf3EEEq45ATt1qzXeRsNtPJyUkWD3APSNWKsPf9Hx4eKqWkyWSSyaakbBf3JH3IGq97WCIBjpKyPZ1+916vp729PfX7/Rx22O/3K5V/FzImk4n6/X4l1d9D9HzXCO/B9+quCzMQYMga5ybvAoHCswY4N+SabRd9ZwvuFbtFSMpVae6TB/3R0uAEs9FoaDAY6ODgQN1uV6enpzkTAqGDNcK8+haOdWcIpNaD/7z/nnN6tRsyi9DBvXc42XaHBq0O0qWQxH3gGIPBIFfn6+TXd7ZgbB4I6ffS76nnC3iQpB8f0o1Q4mvDq/+cl2vw59jhuQje1nRVewFiiId0MjaECFxFvOaOEw9r5LvAd3lgPfBexl8Xe+rXEAgEAoFAIBAIBC5xbQQFKtnettDtdvMOC1SZu91uZetASBzVbumS8EEwsL/7rgNlWWo4HOrJJ5/UzZs3lVLK1WzaDAh/JCCR40OI2GKQ5H7IvucjUHlnXGVZZss5ZApSRAsH4Y8pJY1GI735zW/W3t5epVpN4OJyuczzQhAg14qw4uPg2DgsJOV5JwSwLkBst9tKxgDzD5n2nnjORasK55zP55VjMieeG8D8Q3g9GBIMBoOcp8DYyV1ga0iOWa+u4wTgjzsKIOWQTIQRqtVuxXfiiusFtwn3kTlxQsqa4h55vz7wOaX1w0MGmTved5WLAVKPEOPZEVwP98jzBLyVhGtkLXi7A+N21wBASPDcBZ5vskzcrcCzKV0GUbpYwzrimNLllpW4OlzA6XQ6lfXJ8fyeMXbPl3AHhrciBQKBQCAQCAQCgRfGtREU3v72t6vT6eQ0fggvJM5bBCAQviuChwc6uaAqDXGCNA6Hw1zZZscGAgJPT081mUw0m80y8aJ9QLoMkKQVAzJ6dnZWCZZz5wQkzLeSxM7NrgKICWxv2O/3dfv2bd26dSvvMsEc9Pv9bPc+OztTv99Xu93OOwJ4hdgrtsvlUrPZrJINwPVTnfXgS0lZTBiNRhVCjtXfRSCuvd1uq9/vS5IWi0V2OEAWvdotKecFIJBwv3BppJTytpFU9WlHKYoizx8iwVVZGkVR3Ncb7/36tAB4SOZVQYd8ljXKHHKv+TkuCM9sQFDApQKZdueMV9t9hwiOwfhpY+A+MmeMndcYF8epZ3AAF0S81UOqtjzUxYS6g8DnlbYjFzdczOLZZK45Fg4GxAHmqR4myc/c8cLPcPn4zxqNRm6xaTablUwFxlS/tkAgEAgEAoFAIHA1ro2gANlYr9d5G0J+macC7NVirOv1HmcnoVR/nUzR9kB2wmg00maz0cnJiY6Pj3V6eqrZbKbpdJqJL/+lZ9sJPKRJUqVyi0vCK95kPeCa8FYIxA62iux2u7px44aeeuopHR4eZlu9B0UyL5B3D03kdenSGeFVbfrpqdT7+d3BQGDlY489lrMkON5isaiQOb9G5gaiztxA2r0dg1wHXCAIBB7sh/ACAXS3Cu0QuFT4N2QVIQcxhzlwku/bOTI+Wgq8FcWzKnxHBu5pXXiqZyh4iwXnr7eIYPdHdKo7QLxlwrd45A+hjN1uN1+bZzzwmTrZZnw8K5zXxQQEMxc3pMsgVT5TdyI4yUeA4l7yjOE4cMKPYMe8cU7WlnQZGOqZDS7c4L5A9PBwTcaDc8nbSkJMCAQCgUAgEAgEPjqujaAAsauH/EmXae04AabTaSZMVKohq2xT58QNQC729vZ0cHCgJ554QoPBIG89OJ1O7yOi9cos5I/qsleFnVSnlCrJ/7zuVWNJmdiwveFsNtN6vVZRFNrf39eNGzfyNoYQrHqFHuKzXC5VlqWKolBRFJVtNBFV3H0AYT07O9N8Ptd0OtV0Os1uC3ZNGI1GOjg4yISMyjZVcggr48PRgSjjVWMqze6gaDabWchot9s504LjQNypVjN25pytFSGSzCWEczAY5EwJ37awHlApqUKCWQd+/xlzPReDir47HxinpCuFBKr3ZEggdrgQxOe4hwg/Pg+c38F1uvMCQYXjcC+9pcEzFjwvxNc+x/C5wXHB/CEe+LxyTT6v3u7jxL+eP8LcunjnggcCGPOFcweBwF0V9a0h/R7xLPvcBwKBQCAQCAQCgatxbQQFQhZxJ3i/OD3xi8WiYq2n0ghRgNz6zgceeAcJHY1GOjw81Gg00m630/PPP6+nn346E3IqsRBgyBfncyJdt0vXQ+TqNnCu1a/7/Pw8iwk4AAaDgW7evJnHwTVTrQdsaUm7AJVzRAyyHRBk6sSTUEeEFBwekrKL4/DwUEVRVKrttDHMZrP8d6/U04IgSXt7e5Kk6XSq3W6noijyeagMT6dTrddrjcfj7Lzo9/v5nrgbxfvhvd2C60B0Wq1W6vV6lTYUD6mULrekpOru97L+d2+B8B0TPJvAQwGdqHul3N0XXGe3263MPdudOkGGhOPAQVhi7iHzhGA6QSY/BNGN9cR4PLSQOeY5Yu2y9skZuaq1Q6oGevruFb7mmXdv6fDx1ENBGZOP8apARxwP3nriooLfUw/sZFyIJ97qEggEAoFAIBAIBK7GtREUqKhChLz6S4XaxQUPO4T4EHYHMUZ0kC63moOo37hxQ81mUycnJ3r66ad1584dNRqNXB2nYg+hYCwQNggLr7tF3omYJ8VDJOu7BSwWCx0fH2s2m+Ve//39fQ0Gg2zdZk68nYI+eZwQfk6q0YvFQsvlshKS6M6AxWKRgxid/BGIub+/r/F4rKIoKkIK80wgJeSWKjFZELQ++K4cnhEg3SP18/lc2+1W/X6/0spBa0u3261Y5r0yTdV7Op3mXToQZkajUZ4LKuLel49IATnl714xr+8kwOvexw/Z99wKchWc+LrDoNvtqtfr5fvCPCEWsM4RMDi3iwEc33M52HqT6+n3+znE0Hcw8FBGzy2phzt6KwH3ifP5bgqcz9tMfP68zaIeWAnc/cBaYk64dq6XMXHeeksJ8+5tIy/UxlB3orgoGQgEAoFAIBAIBK7GtRAUIBb05EvKxI+sAkDvPJZlPks7BJZ+r5Z6Cv7BwYEef/xxHRwc6Pz8XKenp7p7964mk4lGo5GKolCn09Fut9PJyUnFDVG3tENunYzTP857aAGQVNnaDxeBpEy+qVjv7e3p1q1b6vV6OUTRAxSdvDqJggwicviWji7GMHebzSY7EyRVrPYuKAyHw9x+4KIJooIH6eFQ8G0iqZi7A8GD7wjP475xLEQSSDctFB7Kx5/5fK7JZKLj4+NMeAeDQSW4s76Vo+cfeNYF7/X2Eg94ZM16wKOTa8QE2lGuaslhPSJEYdGv2/PdBeDChHRZYeeeOFnn+lz08hwR1qS3QDAmbzGoh4u6yOCCQN3dwRywHl+o3abuJvC55Of1LAmEFdaf7wTiQpALEC58+Jj5U7+HXGsICoFAIBAIBAKBwAvj2ggKzWYzky0qtE5IID2QQMidtztAqCClHg7HeQ4ODnIrwXw+1/HxcSaqZBy0Wi2tVqvcYkHV3AlpnWS5jRpywvG4Nic+dQv5drvNvfSHh4fa39+XpLzzhAcxci1U2j25noo97gTmk90Q2CKRueEaXbRpNBoqikLj8Vij0Uj9fj8TYndXcI2IPnXy3Wze21qTHSoQiRj3YDC4L/cCEabRaGg+n1eyLHyeXDiBXBJoKSnPOySde0MLC/eQ+XAHiFfqB4OBUko54wHyixjgZJhjch995wfO75kNVPDdvcB98BwChCbuAQGSPBOQYs7DeX0HA85RDy/0nBJfx36PPRfh7OwsPyOSKuNw1wSfl6qihbcIuSDjgoRnf1w1Vs7LeLkXPlb+jjiGsFV3lPgx/RguHgYCgUAgEAgEAoGrcS0EBSdyVFQhnvXqKiQEYoad3UPYgJMQdkJ47LHHctDh6empTk5OciW9KIoc3IfI4NXNq6q73t7g5B2y6tVx8g2wm9MaQMYB/fSDwSCLEKenp5nEebXdx8UOD2wr2ev1KnPSbrdVFIV6vV4lxZ+dFZy0Q86Gw6GGw2E+lu+MABE+Pz/P/f8QQW8DGAwGOT+BVg5aGfh8vVXDnRvg/Pw877zhzgHPbOAPeQKe2o9ww3sgjc1mM68jBCUnpdwPshkQhSCx9ao6gsnBwYFGo1HOkYC8IlK5y4LrcycBryN+IGy02+3sVqG9p95+4I4Az3TgHC4EIC6Q3+DbWXK8q3Yq8RYe3u9EXboMTfSAR173tg4Xd3z9ec6Fz3k9m4Lr4b7xfeKumXoLhz/LvJ/zeiCk79gRCAQCgUAgEAgE7se1EBQkVQhCvRovXYoD5CzM5/MsRDhh9+O5M6Hf7+ddE8bjcbbhr1arSgigVN3Xvt/v52BELNtOaNjyjr93u91K64BXdnkNQk5rAP3+3lOPRXw2m+WtGyGVbMPIXNGisVgscmsEaDabWRyAfM/n8+xOgPByTczDzZs3dXh4mLceZPcEBArcF0VRVFwlVPGZ8263q/V6nYMuO52ORqPRfVs1Mm+IOljmmd/FYqHJZJKFFBcvEEfI30DgqOcK1HecIFCSe+oigRNb3A+4BQh2ZE3yWqfT0d7envb391UURW7BwYVB6CaiE388sNHDIrnPw+FQo9Eo53f4enJR4CphTlJF5GFOeW+v11Oz2czr0FsfOL5vl+ptKZ5hwTmuCsvkPrCuWSuIC/VnBTiZ9x0+/FlHYGNMCCHuHMIdsdvt8rPB2D1s1d1DLkgEAoFAIBAIBAKBq3EtBAW35/OLvfevS8rVYbeNQyYgMXUbNf+GLI7H47yF4MnJiSRl+zxkYrFY6O7du7lizXaDpPJDctrtdh5LfecASRWCglOACiivn56e5qq7V0nZcpFchU6nk8UEt5dLyiKIByP2+/1MqDqdjobDoZrNpqbTqU5PT3OII4QX0tVqtVQUhQaDQXYneOUaMumCBYIGBNKdI5zX74UTfe/dpyXDhQKqxdPpVHfv3tV6vc5hlZBgWl1wJgyHw+xO8LYU8jm4R+wEAcl014K33LCTBfMECWaXAsZPawdbdhZFUXFHeHYCQsz+/r4ajUbeJcPHO5/PlVLS/v6+Dg4OsnDD2vKcDhwf7ijg3lxl26fSj4izWCwquyDw/Hh4Y6/Xy+/zin89y6Msy/xc0mLSaDRyDgeCCmvd20IYQ701woWW+s/8muqCCg4iX2+tViuLNT4Xfg7muD4ngUAgEAgEAoFAoIprIShIqhAkAgEhhxA4T7CH0Ln934mEdCkqQDQfe+wxHR4eZvLYbrc1GAxypRzCBMnncxAjxAt6yAmQJHPA0+vpefcQPQ9VnM/nFRGFaj7iCgSeVgGORbCjdOm8QLCgSg65ZAxY+wkthIjTTgHx9LlHlIBYemgg5JcdA/g87ofz8/McbklbhRNm3BeQbCrlOBi45vPzc52cnGgymejOnTvZucJxaUuB2A6Hw+z8wD7vLRFU83e7nSaTSc7H8B0QfM1Iqswtx5Iu2xRoR2Fs7iYpyzJfO60dtFLs7e3p8PAwBwty/LOzMx0fH2uz2ejWrVu6efOmbt++XQlvvHPnjubzeb6/iFGepeCZBDwntDww1uFwmAk/5N6r+awx3A9cJ/PgGQa06LiAwb1BkGg0GnlnjXqgo2c9eDsG98ZzFjy4k2tDTEP88l0aGKfnbSBAebgmx2beer1e5WeBQCAQCAQCgUCgimsjKHgFm2BCtvyjf51dCyApTtR9d4V6sFy329WtW7d0eHiY2xfcYu6ED3eApGwzZ+vG5XKZib90GSYJqfH+fK9Ou2DgYZGMF5eEdBkcSCWXVgUXEjg+pAqxpd1uq9fr5So6hIptHk9PTysOhbOzs0p4IMd01wFVccbmOy9A5Nrtdm6JYNwQcqr7CD0QSloUCFns9XoqikL9fr/SKrFarXR6eqr5fK7RaKRut6v5fJ4zFSCF7XZbBwcH+VyIPbgTZrNZFmVoPSBXA4cCZNT79D3TA4HFXTDsREK1n90dIO3cc/IV2u22xuOxbt26pYODA02n03xeRJ/VaqVut6vbt2/r9u3b2f3Q6XRydsJkMsnZH9w37inPBNePyMBcF0WRxRd38Hhwoecl0E4jqSKU8Qy5O8FJPBkbg8HgSucB7+d55HngOWRteVYJ1+ef5Xh+f2hlwGHgjhdaX64KfGXOPN8iEAgEAoFAIBAIXI0X9fOmlP5KSum5lNKP2Gtfm1L69ymlf5NS+u6U0v7F60+llJYppX918ecvv5RBUPWnr5oqLxX76XSatyHEKVDfTaEevOZOhV6vp8PDQz3++OMajUaZtNeDHKmcS8oBgpIyiYN8eSDgVf3i9Yqx78KAjd7bHHA8+NaEEGLcDJPJRMvlMleKaYPo9/uZwDNnVPgRBRBDyAzg2plrd0AgIDhhc9s+5Je8AuYdF0lKSUVRKKWUBYY62XTxwZ0gg8FA+/v7+R4hBCDwcD+Oj491dHSUHR7kJozH43xfnCAvFovcikEwYkpJo9EoH9PXIgQXUlmv8nO9CArkPnCfCZ7k/nlQIa0Oh4eH2QlCjgGZGmVZ6ubNm3ryySd1cHCgvb09PfbYY3rsscdy68twONTh4aHG47H29vbys4Jzp74LQ11sQDChet/r9bIjqNPp5GcQwo2ggACHyOetPsw784Wgwvn8+fT3M1Zfd6w9dxbUBR2cM1yjZ0N44KK3M9RzE3gP7oa6AMacXQe8Ht/FgUAgEHhhxPdwIBAI3I+X0iD8LZI+u/ba90v62WVZ/hxJPy7p99vPfrIsy3dc/PmKlzIISNz5+bm63a729vZUFEW2/08mE02n00rInVc73bZc3+6t0WhoMBjozW9+s5566imNx+NszSdoj2NACofDoW7cuKF+v58JE8QPG7T3s9fJj5M4yD5E17e3hIB6zoAn9HMMyLBXuX3rPloGqJT7NpdY6hETOC+EcTgcVkgffyBqCBSICG5Jd/FjPp/nXAtaLE5OTvIcQFKxy0PcaBdhRwhyBdbrdUX84DqXy2Wu4iPS4FCA6EL0N5uNnn/++dxCgAvAgyVxuzCn5BEgFvFzSC1k1/MQnBCzBgmBxEXDHAwGA41Go3ytiBo4XKjqv+lNb9LNmzfze2/duqXRaJSvlbU4Go3yPeQZYLwIFJBtRBauhbXIdUCyEQLc6eO7b7CmaKHwtgvmjvXYaDSyqFTf+tHzCXh2GIOTfm95Yn55jfXI88Ozx+c9j8W/LxB8uD/cW29N8fDVa4Jv0Wv8XRwIBAKBj4pvUXwPBwKBQAUv2vJQluUPpJSeqr329+2f75X0/3g1g+CX+ZTu7apAmB+k9OTkpEIuvWUBguokx9Fut3Xjxg09/vjjOjw8zIF3R0dHms/nmexDONJFEF63281VeFL23f7vFV/p/q3nEBl8KzrGhvvAq/tOpLwKDlHHbeCVVUga4ZGe0E/gI4RyPp/r7OwsE1HmBiIuXWY8QKYgy8vlMgs6g8EgE/Fms5nnAcHD2w3cKYBowVhWq5XKsqxkZSCEzGYznZ6eZmcBZJhMBYIhmS/IOy0xzA+ZEbwfAaPuEoGQLxaLHNSIMMWxuca6NR+yyhrwjAHPyYCQIyTgLuFeUFHv9Xp67LHH9MQTT+jGjRsqikKj0Ujj8VjT6bTigBkMBjkYlDYJcjcg3GRUQKIJGWXnjOVyqU6nk4k0DgPGhPjE8TabTW6/cXcG76/vtsD5PSySNYEIB+rrHwHjqh06+MN4660WPMv1PBV/Tv19iAnb7TZneTBP1wWvx3dxIBAIBF4Y8T0cCAQC9+NBZCh8qaTvsH9/XErpX0qaSPqDZVn+kxc7ANZl+svpFT89PdWdO3d0fHyck/C94ksFkV78er8zpOvg4ECPP/64BoOBnn32WR0dHWk2m+VqLFVbKpuDwSATKEk5xwCLtwdIOvmihcC3w3Pyz/sYmx/LiRLvRdDY29urWMadSEFgGRvVWwQF7z1vNBoajUYajUY6Pz/PeRRsLYlN3TMgyJQ4OTnJ7yuKIgsm3naAA2C9XqvZbGZ7flEU+biQbHIY2E0CMsnnvbUCwYTgS0QUiDuiCUQX4WI2m+V7wPx67z5tEswvx4EEc34q4ZByXBm4N7g3uENwBywWCy0WC202m9ySMhgMcvUewox4QVDi7du3dXBwkHclGY/HeXcCjldvHUDMIN/DAxEh0fXWitlsVmn3gZT7HCMSsVb440GUrPf62sQNwr1nrC6k1V1GzCUOEt+NxEU33sfzxZzgmuA6EDa474griAisCZ47BKdut/tGzE941d/FgUAgEHhViO/hQCDwyOFVCQoppf+3pDNJf+PipWck/YyyLO+mlD5F0t9KKX1yWZaTKz77TknvlC6tz5C78/PzLCbcvXs3Ex+vctIm4GnzXu2UlAWKg4MDPfbYY2q327l3n5/TQkClkqrrZDLJjgCECyrbLgI4KcEqjiDAsSHHABLkPeEQIGzaVPI3m03OQ0B4QchwAul948vlMhN3r95ybYPBIJMvdmRg3D5OLPFHR0daLpe6deuWxuNxJqXT6bSy7SVV781mk8P7qMS3Wi1NJpPcduHWes+0YAxs1zibzXJln/dCkKnOc0xCCiGh0r1tNXEauJjQbDY1Ho/1+OOPq9vtajqd5uo795PgSMjsYDDILRe0TdDi0Wq1cibC+fl5btmYz+cqyzI7QwigpOrv7SyDwUBFUejmzZva39/P72fdLZfLfG9dVGCd+jaMhF/W4XO2Wq2ykAJJ9ywN2kkYo889bhaeQxfgEEhwHfGHeZeU59oDET2LAZEPMcEFCa61nn3iO5Z4PkQ9YBPHBIKDZ2XQmoPgdp0yFD4aHtR3cU/F6zXkQCAQ+JhCfA8HAoFHFa9YUEgp/XpJnyvpM8uL3/bLslxLWl/8/X0ppZ+U9HZJP1z/fFmW75L0LklqNptlq9XSeDxWr9fLJPb4+Dhb4z0Qz46RbewQFUgj2yYOh0PdvHkzVzupnvf7/UpwnoctQgipaEJOCS+kUu1hcd5/f35+nkkjY8cu773qkjJJhmxB4iCjPlaIE1Vhqrju0KBqTxsIBIsxIypwfYguw+FQs9lMk8kkV5o3m00WASDMVG4J6lssFplU0p7hIXkQNifCXsmH4LZaLS0WiyyWnJ+fZ4cBQpN0GShIRgKtHB7W5/eEFow6eSQnYzwea7lc5muBQG632yzKEKbY6XTyNeA44H72+/0setAiwk4M3GtcHx42enp6qs1mk0n6jRs3snAjXbbFEFDpwZrML9dLewLnwZ3A/UBY4Xp9hwQXp3hNumyr4VnwgFGOzXOFywjxAJeDpIpjh3tCOwtE3rNJ0sWuDXyO8fD8IdpxvxkfAg9zh6Dg7+e6cEswLzyPjUYjt+XUQzuvIx7kd/E4HV6r0IhAIBB4IyC+hwOBwKOMVyQopJQ+W9Lvk/SLy7Jc2Ou3JB2VZblLKX28pE+U9FMvdjwquEVxT5Wl8u2tBfVKoVuUPYEfYtnpdLKdvt/vZxs9hBZnAdV7SHu73dZ8Pq/sJrHdblUUhdrtdiamnhqPzdvt5dimIdYIGZJylRTyM5/Ps42c9gVCC8fjce6lh0h5JVVSruIicFCBrvd/MycICrw2Go3U7/ezo4HqLyKApNwqAdFDtIDMInb4Tg685+TkRNPpNGdW0BYCqQSQb9wMy+Uyt0zgPKBqLynvvMF98eyJi/WYBR3PB0AM6Pf7WTRx8u+7QWy329yqwOuNRkN7e3saDoe5Eu9bMZLF4FtQeh4BgtHx8XF239DW8cQTT+jg4KByHbvdLu/0gbMAYcPbbjwPgPtI+wXH8YwLzsGc+FasCAGsIdpN+BkuGnIHELPIHmBt+NzXxQR2BeHZQyTxFgUXiuq7V/D8MybaFVgHiBusUR8PP2d+yJ5wd9B2u9Xh4eELfm9dBzzo7+JAIBAIvDzE93AgEHjU8aKCQkrp2yR9hqSbKaUPS/ojupdg25X0/Re/7L+3vJde+99I+uMppTNJO0lfUZbl0Us4R+63X61Wms1m2YYNWay/36vQkCjftpEAusFgkG3dVGTZahGRwSvHZDdAjrHR0y+PJR6hwdsU3LYNgfIdKSB5/sd73blWbPa9Xk83btzIu15Q9W2325nQQnIZP4RzNptVchsQOQhARIDBxeEtCOwOwbFbrZZGo1FFBHCC7gIM109VGGEEcQAiT/WZzyC6IP4gsiAKeWhhr9fLBJA583531oDnW0A2uc7RaKRGo6HT01PdvXtXq9WqEiRIJZ/sgZRSDgelBYP5IFiy1+tpvV7nAEscEeQIjMfjLAyRYcDYcSfcvn07i1oIRtvtNm+fSdvD6elpbkvwnSkQ33y7T2+N4D4BzwxgriDk3sqDywSxAlHJ7zthhh4ICen33AJ3rxBWiTtht9tVdj7xHTeazWZ2RCB0uFMIscHbIhAIaBHh2r31gWfahSqeM8Sd64DX47s4EAgEAi+M+B4OBAKB+/FSdnn44ite/uYXeO/flPQ3X+4gEAAgshBWKvpepeT9/houAbdwuz2bajvChNuiXWjwbAAqt149hvRgIYek4IKgLaFuF4eYQXAgUoggjBUCvlwuc8/+Y489VgmFTClpOBzm15977jntdru8HSHJ/cvlslLR9a0lvVWEkEAnnYglHkqJqwPS1+l0VBRFFgwYG9kJ/KFtoNlsVrIgGKffB28ZkZTHy7zT6sD7er1ertYzJtpYIJy+ewiiEMR+uVzq+Pi4QpR9S0XGwM4Tzz//vNbrtW7duqXBYJDf1+l0cpgorgPWBmO+ffu2bt26ldtmPDMCYefmzZuVVg6IPGuSdof5fJ7XLeQf4cd36aAtBeHB1yNk3XMXCMSkVQHBptVqVZwk7pzgueH9LsbQ4oMowHzRnkFbkiTNZrM8l9wnbwPimcJlJF1mlPDMsy48UFK6DDL1QFSeN9/ClTmihWhvby+32lwHvB7fxYFAIBB4YcT3cCAQCNyPB7HLw6sG5MKt5l5dd+LkwoJ0adn2170yTBYALRTb7fY+twFjgMh5q4WkCsFxuzaVZbbOo62Bz2H5d4cAIgUkHHJGbgOV7f39/fyHLIbtdqvRaKTHHntMt27dyqRoOBzq4OAgE7n5fH5f/zhZCf1+P4cK4uCg6utzzlzRW58uQgrdvu79+dJl2CRVfarVBAuydeNms8n5CPWMCnram81mJW0fOz3bS7qgM5/PK0QUIu9Wd9wXtHiwEwa98qxBiCXiCA4XnB/kJTDOTqej/f393D7hu1gwn48//rje+ta3ajweqyzLnF/gO20URaH9/f3skGk2m9kVcnp6qpOTEx0fH+f2Ed/pAjIO+ZeUAzIZM+vOMytoH2m329lFgtDEc8QckpPgz4R0uXUmwoCLS6yFfr8vSdnJ4nPsa01SbpngvBzDnxnEI9aI7zDh7gvPAiGU07f19B09WDscC1fO/v7+S/sSCwQCgUAgEAgEHkFcG0GBCjgVeoiNkw3gTgT+DSF054K3MTz//POZRN+4cSPbojkO1XffSo/QQt7n4XOQRXq2aX3AIu5VeOlelf+q6jnX733c3q7hOQmQ11u3bmk0Gun09FSNRkP7+/sajUZ65plnst1eUib1EGpcIN7G4BV4d3ogQgwGg1y59Qovcy1VHR+NRkNFUagoikrKvnRpJYcUcmzPf4AoMy7cFOyg0O/3M/FbLpc6OTnJ95X5xXHg5JBjDwaDnGFwcnKi09PTyvzQ6uK7JqxWKx0fH0u6J3qwQ0NZlpUqNoSfAMVms6lbt27prW99q5588sksnlABn8/nms/n+bo2m41OT081m8301re+NbtJEBROTk40mUwq7h3EBO4DjgdEL9a3tyhwD4fD4X1bM1KtZ/2zlt3J4+0krVbryq0jXRRi7gndRJBZrVZ5BwnpXiuSCxMcA3GGeUPkItjTd3zg3J6vwN9pr/B2pfPz88puHYhURVFkJ0sgEAgEAoFAIBC4GtdCUIAcUS2GaDtxr7c98Bqvu12dPnsI5maz0Z07d5RS0lNPPaXhcJhJym63y5b/+XyenQxU5amKS6pscycpOwcQJAh3bLVamk6nuRrrYgKkyJ0VbKHn1W/vSafS3Ov1cjUcwnxwcKDRaJRzE46OjiotBufn55mwdrvdLIpgsR+Px5UARe+/x1HB9Xo+gt8LJ3S+2wXvoV0DMkjf/mAwyLZzSCBCg4+13+9nkYJ7gfhDawfEF9s+8+PbFLJGVquVjo6O9Nxzz+XATVo1fDtBBJiTk5PK/SnLMrdosI3mycmJnn/+ed25c0cnJyc6Pz/XaDTSm9/8Zr3lLW/R3t5eFnMg6ByTrTwJamy1Wrp9+7YGg4Emk4mef/55HR0daTKZZALu7hC/F6wvF+UQdjyLAIHGXTde3YeEcw5+hssDVwvzhMjD/fYgRZ4tHB3cK99Bgues0WhkgQOyL6ni5kEYcFcJ4gTfCQhzLi4iQLDjCt8tLnp5KwbOikAgEAgEAoFAIHA1roWgIEmTySSTYcgLVXFvd+DvkiqvQ1LZQYDKabPZzBVetvWDpHvqvu9oQAWe40FYJpOJptNpzkOArFBhhdx44B62ckg1RIYedrd149KAaJ6fn2s6nWaCT8vCYDDIlnys56enp7pz545OT0+1Wq0q4Yu0HTC2RqOh8Xic+/4hb8x13XZOQB1VeyznOEN8dwBCB7kuHAbr9Trb8Wk7IMfA+/PZBQKhhTBDRCJe92o14sV6vdZyudRkMsmCEuSae8EYaE0oyzLnIXDfWIMQWwIime/pdCpJevLJJzUej3V+fq6joyN9+MMf1p07d7RerzUYDHTjxg296U1v0sHBQSWgk4BFgjc5P+6DJ554Qnt7e2o0GtlFcXp6quPj47xGmX/WDdcEQa/vrIC9n3vH/CBmcS8RxyDWkiqVfOYQRwv3hbXMuTzkkNdx3vA8eauMt2uQk+BtEZ674I4Y3AYErPJ9gFuIZxURwsNR69th8izjsmHrzkAgEAgEAoFAIHA1roWgcH5+rslkkvvqSfqHaNaFBKnqWCAUDwJJNXI0Gqksy0po33g8riThS6rYn6mM+3aFbH14fHycK9pevSdckPaK5XKZCTSkiLR9T9DnT6vVytV6Qh/JlJjP5xW3AlkAtAVAhKfTqZ577jmdnp7mbAdI0nA41P7+fu4nHw6HevLJJ7W3t5fJPm0CEC/pnp1+Pp/n+YTESapY1bkfiDW0cEDqqMKTkdButzUajXKOBVVsKsNUkaXLXR04LhkEhP71+/1M/H17TrZwPDo60mw2qyT+n56e6tlnn9VisaiIFNPpNO/wAaiMs3ZYT8PhMLdPnJ6e6plnntEzzzyjk5MTtVot3bhxQ7du3dKNGzdypZtzsEUlOQDkNCBa3LhxQ61WSycnJ7pz505upeBzCE+0rTSbTR0fH1dIOu0a7gTg2fBgyNlslu8d6w/STvuBh0v6lqs8e4zdnTecF3eEdBmm6jufNJvN/Ie17DtH0CKDIOHOI98mFAcMY+fnCI1FUeSdKhDJ/DuF8W42m8q1u9gVCAQCgUAgEAgEqrgWggIkkV74TqdTCXarA2ICCcUyTgWz1WplAkFP9Hg81s2bN9Xr9TJx8vBESZkAQ9axhE8mk2w37/f7Gg6HkpSt3JAr36UCkaDdbmcSVXdcUAn21gYyBOj1hiBDrMfjcXYokKh/enqq5557TicnJ9nmjvOCXnkIUq/X08HBQbbqQ+Doy0esmM1muVJM5Zp2DK7VLfK4Dth5AVAl73a7mYB76wHWfCrttBlAmHGZeIAfn6GazvmYV653sVhosVhovV6rKAq1220tl0vduXMn737AVo+0T0By6wSZseHw2N/f197enubzuU5OTvTss8/q6OhIq9VKBwcHWVBgXeJMwC2DC2V/f1/j8ThX08fjsQ4PD3MbxfHxse7cuaPnnntOk8kkrwUXllijbGnJnHOfmB8CLX0rRUl5zn0LS9YPzw9E3QUKxCHpUpRDuPD8DIg9zxrPA88ywhqiAMIAx0Xo4pn0XAWuj/vmgaE807hzPMjTM1Tc7eCilrdZBAKBQCAQCAQCgftxbQQF+t0hO5AS6TJ80e3KkBAIgIe/AW8fQAiAoHIMKpZY57HwU7mGtLhVnGP43vbe+12WpYqiyPZudo5ABKHlAcLlGQSII4PBIFdyIY8HBwd67LHH8o4StGn4DgCScrsDhJMKOX39t27dUq/X02QyuS8fgLYIiDhOAd+ukQBJrgkhB6IHufM+dKrEkFfIPlV1SJ+3XnDdnm2AMwKxZbFY5KoyxJ9tNjkHAouk3EKAIOFrgHsBMYZgUuVmfeF+2W63Oj4+1t27d/X888/r9PS0sjvAaDTK1z+dTvMODVjzsdX3er1MonEc4KJ4+umn9ZGPfCS3vjAnLijgXJAunQm0gODc8HaFsiyziMSzxTUzB5Bs7gXPgqQ8fs7jIYeIOswZRJ7nu74TA6Ian623XjDGXq+Xn1+IvrdXsAZdhPRcDhdRcAV5vgLX6S4Kv1eBQCAQCAQCgUDgflwbQYFwN9LcnfB5VgKkAaLhpBOS4T3SCAG+cwCfp2JMHzvvpbrptm7INjsvUK11scN3V/BqPf3dCAeegI/VGwK9v7+fx0JPPLstHBwc5EDJ+XyeBYWjoyMdHR3lVo3BYKDhcJht/xCrwWCQXRqLxUKnp6cVR0RKSdPpVPP5PAsJjNX7zLGGE4SHe4Gf0zbh20AixqSUNJlMdHx8nAm/98pvt9tMaKm+45TwsMHFYlHZ0YK1gfjA/Ox2uxxIuV6vNZlMsuuDlhU+i/vCK+qQXEl5ftnO8ejoSMfHx3lnBumemLO3t1fJsED0IYODdpDBYJDbD6R7AsNoNNJut9Nzzz2nD33oQ/rwhz+s5557LrteCKj0lhtcMuRrcH8gzwgqLlz5usAVUJZlnnvfQcXdIeQZuAMCgcidCQhvfI417riq+u/OAd9FBIcOIgJuHz8nfzgnz7kHN0rK3xc8k/4s10WmaHkIBAKBQCAQCAReGNdCUJCUyRyVzo8GFxi8cl7fppAKP6/xXgLw7ty5UwkwhDx7cj3VTEgcJNlJL5V57OJFUVS20uN6cF6klPJ2dB54Nx6Ptb+/r3a7reeffz6T1IODA+3v72t/f1/S5W4YbH0IOecaR6ORDg8PNRgMKoGCtDp4LznzDgHl2NLlbg6emE/FF0JPMB+iAGIOO0tA+HCLrFYr3b17N4dWUpnH8s49Ym7YxhMiyzE8RwGizL3GteA99WRdEIRIRgWE0sUECKZb81lvuCwIb5xMJhVCf3BwoIODg0pOATtA0EYC4UaEYd0Oh0OVZalnn31WH/jAB/SBD3xAzzzzTA5i7PV6leNKyo4YCDwiDIIbuyfwujsPqPR7aCI7jHjLAPOLm4SfQ+h9i06eHa6N47tA4eICz5LvuuDOJJ5dnDH+PNXdPmSV8CzyOdYrbU6My0U9jiOpImoypkAgEAgEAoFAIHA/ro2gAIkjkE3SfRVNdwNAdn17Qqr9ECgIKASS/87n80xqsfoTROhBgk5YOp1OFh6o7lKZd6JF3z8kiWs5Pz/XYrGQJO3t7andblfyFvr9fhYNCAecTqe5VePg4CBXn70CTXsCBAmXw2OPPVYJjERkIKsB8YNxse0kRBULOXMpKVexfctGrtdFBXcjQMqazaYWi4Xu3r2bd8pAXOHvnCullEk6rhXOB4nFQeEZFU6MvTrP2DkHO1tgy2+1Wln4gFBz70Gj0cgiEw4JHCR8DncCOQW73U6np6e6e/euTk9P864SRVFoOBxWiCzjPD4+1nPPPacPfvCDeuaZZ/KOElTpO51OdiX4s8DaxtbPnDNm3yJRUhZcuKcIBxBuX+OQeRcvEHAQFPw6IOm8ByA4uJiAW4DPeosBTgTGSzijixM8X+6YqIsAvhUq99p3/eA4HiLpW2AGAoFAIBAIBAKBq3EtBAV3BvBLPzZpALFxUue2dN4Doe73+5pOp5WQRgjX8fGxnnnmGS2Xy1xN9j3qIRdUwWl16Ha7WSSgn92JNBVk/s01OLmCbEuXlm9aLiBq8/k8b8tHmwJbDzI2WgHohcedcHBwoDe96U0aDoc6PT3Nr7MrAXZwyCZEd7Va5fG6GMK1UO1HGIDwc2zmBkLJ7hhU+CGkfA7Lvu8IwC4RWOixqq/X60orBsINIhDbBuKOYG49h4NxSZfbkSJWkDPg7Sfef+87B7BdpW95KCnPA+KUCyEnJyf3bT2JmMP10DJzdHSk5557Lucm1N0DOAUQirx1AeLMXLirRFI+BvkXfg2+TSihhIgyCFiQco7p7RB1p4BvkeptS4Bz+i4RuCo8j4TjsbWlO4K4x3XRxIM/EZv8uPzbx85nufcc03cyCQQCgUAgEAgEAlVcC0EBQH6pXAPfds5D+iAF/J1K/P7+vrrdbiZMg8EgV6JPTk70wQ9+UHfv3tX5+XnuW6c/GwcDf8g2gHBBUhES5vN5FhMgYhA7CFin08nVfMZR7zWHVM3n89xKMBwOdfPmTb3lLW/R/7+9c4uR7LrK8L+7u6rr3tWXufS0PROPE8sKeBwbKyKAoiBFJLGEnLygRJGIFMCIJAgkQEoUCYJQQEASXoCIRIlyEcRCAkTEEwGB8gDBuWAndoITh0RibM/0tbouXVV9Ozx0fbtW1/T0eJyeqlOe9Uutqa6uOmedffbZ9v/vf601NzcXd+NtXQHI2tTUlKrVamxVyLhApIvFoiRFN4UlppA1CC5E1NYxsGQSMkpnB4ogYm1nrBAorPuE7wGIXKFQiPeAXWpIIjvp9vu2uwDv2xoBtn4G3TYgvXzXihSQfM4HyUTEYtxxSTAXpX66DvORe9zpdLS5uRmLJoYQYqcLxpx0nZ2dHTUaDa2vr8fijcTBWHBfbPFDBCIcMhBkBBviooYIYzYYr/0ex7VdG+xzwDyxgoY9l62/YQuR8nnIPcKTLcTJvbMui0G3gI1tMG3BrhUIBnwOwQRnkU21sGkitiilw+FwOBwOh8PhuD5SIyhAiq0NHnu0tUlbMsL/+EM4SB0ol8txh3xw53tjY0NXrlxRu92ODgPbJaLdbsc0AnZ52a217SVtqgUWcXau6dBgW+Phcsjn85FgFwqFQ2SG+gB0LZidndX58+djXQVIESSaWgIQpkqlovn5+UiMIZm2aCXH39vbi1Xs+RvpJhBkqU/ucF7Y/HQEBXZy2d3m/Dgh+B27vE0xsE4PdqKpbQBZtQUTt7e3I4EkZiuC4Fzh3NS+ANlsNu5+1+t1NZvN6CyQdKiLBHHYXXo6BlAngzoOkFfpwK3AtTQajXiPmJc4LqzY0mw21Ww21Wq1VK/X43jaziPWGWDrhNjCgbZlIiILQgCCgwVChd2Jh6wjekxMTBxqN4mggVjAc8A8tjUQpH6qjHUO2MKng4UWGU+bxkAKjnVGEHs+nz9Um8E+mzZOW/zVnh/ByopB3E8XFhwOh8PhcDgcjusjFYKCLdJmdzrt34HN0YdYkA/OLuzZs2cl9ckW3RHa7bZWV1djq0QIPmQJK//m5qakPjGEXLJbTWvHer0euzggHrDjakkeJB0CXiwWIxGF7EDoIMQLCwtaWFiIbguKB3K9tssCrQxnZmZUqVRiWgI7vNPT07HzQavVii0hiZndcdpHIu7YgoEIBVxXsVhUpVKJhRetQJMkSawvQIcFW1gQsi312xwi6NhdZkvou91udIPY9pODNnzb5tJ2BmBccYFcuXJF6+vryufzyuVyUdAhpcHa9zkutTS4/5JicUlEL9JepIPimbbFITvijUZDjUYjkmQ7/rZdp03T4L7Y+gC8tkIBggfHtu0RrZgAwS+VSpL66Td2LkqKc862C7XtFRl/Wy/ECoCci/cQeqx7wLZzRDzheFa84JiMJa1RbQtXxsOem/cRIO0zRwqEdR3ZYpxWjHI4HA6Hw+FwOByHMXGjD4QQPh1CWA4hPGXe+1AI4bkQwhO9n4fN3z4QQng2hPBMCOFNLyYISxYongiRgYiwq0ludiaTiZZzSIEkzc3NxQ4HmUxG8/PzKpfLymQy2tjY0OXLl7WxsaHd3V0VCoVYQ4G8b+ouFAqFWFGf2gzFYlHValWVSiUWVaR6PKRI6luyrV2flITZ2dkjW1PaFnWVSkVnzpzR2bNnNTMzEwUUSB3uhFqtps3NTXW7XWUymRib1BcmEEXo4ICQQH0ISCwWdmLD5i8pjrWtczE9PR2Jc7vdlqRI9CHRkGts83Q2kHSI9HJ9lmgilgw6RkqlknK5XKyzAKne2dmJ6Qs4VRizdrsd6wrs7u5qZWVFGxsbh1IQSGewYsIgAWV3mxQPBCjb5aFarSqXy0WRhXuFEJYkSXQiWFHJ1gQg1cKOkd115zkZ7Mpgd+J7z2L8PMe3DhDmhk1ZsKkEPIfMOzqDWIJvY+e+WhJPHLgQeFZ4XmyrV9uRgpjttdhUCO4P4hRdGRgL282C49iWmDh9bHFPnhPqkhxV+2GUGMZa7HA4HI7rw9dhh8PhuBYvxqHwGUl/LulzA+//WZIkH7FvhBBeLentkn5M0jlJ/xJCuCdJkmN7r9mdTnZb2V2FcJArbtMMJMVOBhMTEyoUClFAmJiYULVaVbfbVS6XU7vd1vPPP6/Nzc1om69UKrHzAV0VOB8729LBbnelUom5+5lMRrVaTfV6/RD5sLZ8Wy2e45HXznvsQPN9dknpyMDuPkUP9/f3I+mt1+uxUwWFKCuViiYmJmJaA4IMqQy4GmxLPBwOFFycnp4+VHkfsk/RSknR0UFtCMSDycnJSKAlHapJwPF3d3ejzZ9xsikMCDGWXPO5mZmZeG/r9bq2trZiPQSug9QQCGWz2dT29nZ0aVAgUVK8J/b71m6PIAHBt/eLApNca6FQ0NzcnMrlcnRUbG1txY4a1C+o1+va2NjQzs5OTCOhzSXiCC4D5j/E17ZyJKbBFIbBZ4qd+ME6BIMpRbg9EJMQNEgrabfbUVijToItZGiPN9j+kc9YdwWfB1wzbgObXmSvhTlqayDY2hqMsy0YiVghKRazRJSwxSR5bTtHpElQ0BDWYofD4XAci8/I12GHw+E4hBsKCkmSfDmE8IoXebxHJD2WJElX0g9CCM9Keq2k/zzuS1iqIXK2dR3Ew7Z3g2yx2wphrFQqsfUitn92HdfW1rS6uqpGo6F2ux1bMZZKpUM7t5JULpcjwZieno6tAAfbztk8dwQI3rNWfazltqghRe6SXnV/dldzuZwqlYqKxaJKpZIqlUokSe12O+6k12o11Wo1JUmicrkcr4XOAqQ7WJs95BBHgrWJQ8asRZ7vQ6zZsWUXGeJHuoXtkgEZs21AIXGQctuBQlIkhnwWezwtGRFzNjc3VavV4lyA3OIgYFxxCSAW8L1OpxM7eyA82NQQxoO6G5JiygnXzTza399XsVjU7OysqtVqnJect91ux/nTarW0vLyszc1Nlctl5fP5ONakygwSWH7HiWDTCejyYYk537GEmftuCzPaZw8hB8HA1rmwaTXMA0lRaOFeM452TtlUFCuiDYqCVkxkftqiqwgDiB3cN66LFqCIXhyPecF6Yes12DaZtr4CY8Jrm7o0agxjLXY4HA7H9eHrsMPhcFyLH6WGwvtCCL8o6WuSfitJkg1JS5K+Yj5zuffesSAvHqs4xNCSc8gHhJc8Z3bI6TYAUUNkoCjexsaGNjc31Ww2NTk5qdnZWS0uLqpUKqlWq8XdSXbosb6zi2wLtUHkSL0AEBicDOzq2sJ6pEOQWsBx2LEulUoqlUqR8GI7J6++2+1qbW1NKysr2t3dValU0pkzZyKhZ0cecQaHAvnv/B0rOERM6tviSfkolUqHOhHYFoqkJeCOIAXA5stz/MnJyUi+rYMAcsg4kBrAWGYymThOvN9qtVSr1dRsNmNKiiX9Np3EFq2kM8bOzk78DATVilhWYBhMHyDNgnk5OTmpYrEYx8p2QKD1J46TJEm0srKi5eXlOK8Gc/8pamhFBe4h6T0Qc8aLe0KM/FgHD4LAoBPEtjOV+m0lJcV5jpsFgQtniS2OSLoAzwz1GSDrCHXExNzk3IgFNkUIERHHAM8gIgzzmbmOQwYwlswhnl3bdtQKCYwZY8+8wimRcpzYWuxwvFyRvO5+JZPhxh88IUxs70mPf2to53OMHL4OOxyO2xYvVVD4uKQ/kJT0/v2opHdLOuq/1kd6hkMIj0p6VFKsmg9RsDuxkA+pv4sMobK7kzMzM1pYWFC5XJbUJ8d0M6jVapHwlstlnT9/XufPn4+2fVoVQp4H7d+2sr614VNbAGGDGK3LAoHBknj7O8JDqVTSzMxMtOLb7hTSAcmmS8XW1pZyuZxOnz6thYWFeB1bW1vqdDqRSEl9cshus9S3xNsdWnapqX0AKbNiCnUAdnd3NT09rdnZWeXz+bgDjovEOk64dzgMbJV+W0CPuCTFGLDd25QNzs2uvk0XsLUAEBMY5729vbhDj7MEtwQ74kdZ3ImZ67buD+aubStKAUkEh8nJSa2vr2t1dVXdbjd2nuB6bHcE2xKSezM9PR3bXnJdCBtWbCEeW5OEeJkPg90/uFeMiy2Kybhms9nosGE8JV3TvtMWieS+Ii7gWLFCAY4URB0cB1bc4VoG0y1wZvB82m4v3AfmK9dtu5hYccM6GLh+YrFpGinFia7FORVuTZQOx4iw88afUHcuo8/96Ud0d6Y0lHN2kx391DfeqYWfH8rpHKOHr8MOh+O2xksSFJIkucrrEMInJf1T79fLku40H71D0vPXOcYnJH1CkorFYkI7v94xDxXCA5aQ0l4PVwFdEcrlsra3t9VsNiPJwZkA4T916pTuuOMOFQqFuJOMvd52j7BFAokLu7vdjaeOA4X5IMHY+yGQkEa6NkAmQwgql8uqVquxsCEWe9IIKOa3vLys9fV1TU5OamFhQUtLS6pWq9F9sLW1Fcni9PR0TEugCCPEHgGFa2PXHWeEjZd7AKFm17ZUKkXCLCkW77P1G6R++gDjhSsDYQXHADvn1MMolUpKkuRQzQcKCiK4MDb7+/vR5TIxMRGFFVsfwnagIC5JsSOF1C8ESOz23kP8bZHEweJ/jDPCValU0s7OTpwvjC/pBLhHSHvB9cKYWFFpa2vrUBtKW7DRFme0AoVNLbEkvlAoHHInDNY44D6TbkIhTK6VecQzYcfJOiSsKGfTGKwTgftna1VwDAQAxtkWYOVzOA9segRCGMVFedYYK85LUVBb0JLYeIbTjJNeiythLlVFIxyOHxX3/tHT+sulr0gajpggSfd9+Zd11zueHNr5HKOFr8MOh+N2x0sSFEIIi0mSvND79W2SqHb7RUl/E0L4mA4K0LxK0uM3Oh47xZACqZ9Pjw3ZWpLJs+bv5XJZp0+f1qlTpzQ1NaWNjY1YE4FaA51OR/v7+zFF4MyZM5IUiytCSEm1ICZ2etmJpX4BxF3qW+tLpdKh9AGItCW+7DZTgwHieebMGc3Pz0eSRr47OftbW1taXV3Vc889p52dHVWrVZ07d06nTp3S7u5ubGFJ+ohtB0g3AmsNpx4DxB4xhKKWlhQiJNjuFezM4xLATs/nIai02eSctr6ApEiYpX46S6FQULlcjikB1r6Pk4Pv2N14BCDbAYLxhtRy3/gd4YnvIWph/R8sOGjbdzIXJUWnBPNydnY2ii3NZlNSv0gl8whnDK4OiDIxWwcM7UwRJthVR0hg/CH4CArWVWOLn0o65Aayn0dMmJycVD6fV7FYvKZDBIDgM04IUAgjxMRzbtMaeEZsygmfs2kzluwjXCAysE5Yt8tgm04rXgyKG1wvIgzuo0FhKa046bXY4Xg5Yf3dr9OvVT8/1HPuJHsuJtxm8HXY4XDc7rihoBBC+IKkN0haCCFclvR7kt4QQniNDqxbP5T0q5KUJMnTIYS/lfRtSbuS3vtiqtlC2CBbtkaBLfAmKdqd7W7uwsKCLly4oHPnzklS3I1stVq6evWq1tfX405npVLR4uKiyuWytra2tLKyErsFQOAhXRBoWlCyQ9xqtWKNBsj21NSUyuVyFA/YZYZwdzqduEsOcYWI23aSEPd8Pq9CoaBut6tms6lGo6G1tbWY6jA7O6uZmRlNTU3FmEIIkQBCxu0YIm5AuCBh5NcvLCxobm5OUp+845CAABMzaR3s2FPQEDLKGLJLD/FDfNne3o6OAsijLbrHDj2iC+4FhAzqZNhWgVb0wUpPpwxcI1KfsGJpR1AhLx/B56jCfZB45tnW1lacm7SCpKimLQzIeXvPidrtdiyeCRFnPpN+gBDSbre1vr6uer0eRSHEF5t6QZw2BYLrGiTduA+OSjlBVKGGB84L23mBOWLHkO8zTtZBgTjAfbQuIEQHW4SV4yC22PtmBRHmh71HViyw1zPoOOI7/Nj4gBVPRo1hrMUOx8sJ2V+4qrcWm0M956W/+nWd138M9ZyO4cHXYYfD4bgWL6bLwzuOePtTx3z+w5I+fDNB2Nz1wdx3u7uJtdmSmFKppAsXLujee+/V3Nxc3MVdX1/XlStXdPXqVbVaLWUyGc3MzGhpaUl33XWXstmsVldXD7WRtOQGkpHNZmMrQGoUNBqNSEogz/Pz86pWq5HQ0AnB7sgOkhOs6MVi8VC3AlIfSHOo1+tqNBpqNpvKZDIql8uxjSWCA0UdIeO23aakaO0m1xzrN3EUi0VVq9XYYhOSliSJtra2oouD2gbsDocQYryD+e/FYjG2stzc3IwWf3b12X1nfKyoA3nkfnc6nejmKJfLMXYINa4OxBt29604Ya3529vb8Xy2NSPzLkkS5fP5uKONowJCS+oLIockbW5uSjog4gge7OqzCy713QyMA7UCqEkAYcYts7q6qnq9HsfMFgLlunktXZu2IfV39CHNVoTg7wgP0kENC8SxwZaaHB9BwY69TWuw83zQ4WLFBEB8rAM2BYYfhAbrTLA1Pux8t5/nPY7Nd4iH5xbhkfG0Yz1qDGMtdjgcLx0P/OF7dP4vvID/yxm+DjscDse1mLjxR4YDyAO57xADCIHN34d0ZDIZLS0t6aGHHtI999yjSqWinZ0d1et1rays6IUXXlC9Xo+k5PTp07r77ru1uLgYrejscEo6VOUfMl6pVOLuO+kOrVYrEmOEgmq1GgvX2VoPtlOFdT3YHXlIPqQVRwStCSH1e3t7sUUhpB6nA+TZFnu0tQ+kPqEazLmnEwGkm5QGhAkcGYgy1JlAiCHHHoKYzWaVz+fj2OFwsPbzqamp6PCgRgJOBxwQjDn1LxBfqNoPESQ9BNcBKSs4E7C+2zSTbDYbOzTgtLC71BMTE1EY4FyWvCMWSAckH6GJayAVoNPpxPkCmBOAuWCdH4zL2traoRaZ9r7ZZweyz3VaIG7Zv9mUCWBdEqQgkZ6CuGdriyDs2TG2O/4ckzG16SQcY1D0QhiwxS+ZE9ZxYO+HnQsIjbbbh70+GxtinxV7bHtQxCSHw+F4MVh87BnpiMK+DofD4XC8nJEaPy8tIFut1jWV1W3BOGsfn5+f14MPPqj7779f58+fV7PZjOkB9XpdtVpN3W5X09PTmpub09LSku655x7Nz8/r8uXLMa0CQO55D6K9t7enZrOpjY0NNRoNdTqdQw4EajKwO05+P7u3fBbSZYv7IQBQ02BmZiZ2TSDFgB166jwgHNg0kUwmEwk65JxxJS0Awm9bDdKWEjGBavpY3dlZpgMFxfwQEMrlcvws3+VcvM9O/iBRpNMB94iaDHT84Lpp9VgoFGKlf65rf3//0H2DMCM6SH1HACkGuVxO1WpV2Ww23k/mAiSVczEv2a2myB8CCdfI/WNHGxEBV8vOzk50ZCCCMI+twMP86HQ60Z1iuxXY+g24dqS+NR+CzLGsE4WUBY6FYMRY2noRtmaCfeYYV5wjzD3GGULPHOf5RaxAkLApDVLfpYEIZ+tVIDQMpiQMpmxY5w0xITQMxmEFGH5sMUhb4NLhcDhuhNe/51Hl178+6jAcDofD4Rg6UrP9BoGi/sEgLFmE9N1555164IEHdOnSJZ0+fToWrqvVanFXGxJ06tQpXbhwQRcvXjxk14d85PP5uOMPIZ+bm1Mul1Oj0dDy8nJMp5D6u/3ValWLi4uRWNKhAOs+tnqOj+iA24Aijp1OR4VCQefOnVOhUIjOg8Fq+xAsdnmnpqaUz+dj/Qa+g82cApKQYalv+S6VSrHl4cTERExZmJ2dVaVSiddoW3LmcjlVKhXNzMwcKuDIDrbdGbYtHbHE407guvm9UqmoUChEwWR/fz+6VUifKBQOWimxa26dCLbtodQvAAgBbbfbh85Fe1FaaUJ07f3b3t5WvV6P6Ri2pkC321Umk1GpVDp0XRR+pJ4CcyabzSqXy8WWoNw7K1IQL04Yuo8wh/jsoMWfYzFXLMm2rhvmLWSZIpK2eCPXYutvIKZwD3hOKNpoUylsnQlb2JNz8zdiQvSx50ScOk5MGHQy2LoIg0Ud7fVZAdGuLYPfs7UcHA7HeGLmnTX9zpUHhnKu0ndr0r4LkA6Hw+G4/ZAKh0KSJJGA2RQEqV+wcRDZbFavfOUrdd999+nixYtaW1tTo9GIbfVarZY6nU4kiGfPntWlS5cUQohEzVajJ5ceAjs9Pa1qtart7W2tra3FeguQY2oJVKtVFYtFSQdkFqs/LS3tzjZF5KhZsLCwoGw2q3a7HX+vVCqSDncBYHebY5GOgOOAVIAQQow/hKBWq6VGoyFJ0f5PygE7/pbI5vN5zc7ORkLPeSuVSnRXZDIZzc/PHyK/uA8AwopNMSB1otvtxm4Y7AwjuJRKJZXLZSVJonq9rm63G3fSqYVAVwQcBRBUiCUCg22HiGhA/QnEBIpZSv0aHaRC7O/vx1QPhADaTpK7n8/n4zUiSDCHcJ10u934Xe4hY2RdJIg5CE5817omcDhY8m5TbDiGrUWAo8EWHqReAjUTGL/Bzgu2wCLuCOKlxgTCBAIYceLSsbv8tssCIo4tkmgdMba1o42dYw66ILhOW/fAppYwH/ksY8T3bbqFFVfsvHY4HOOFvbV1tfZyt/w8P/vuX1H221+95edxOBwOhyONCGnYgQshrEhqSVoddSwvAQvyuIcJj3v4GNfYTyruC0mSnDqB46QeIYSGpGdGHcdLwLjOUWl8Y/e4h4vbPe7baR32/ycePjzu4WJc45bGN/ZbuhanQlCQpBDC15IkeWjUcdwsPO7hwuMePsY19nGNe5QY1zEb17il8Y3d4x4uPO7bC+M6bh73cOFxDx/jGvutjjs1NRQcDofD4XA4HA6Hw+FwjA9cUHA4HA6Hw+FwOBwOh8Nx00iToPCJUQfwEuFxDxce9/AxrrGPa9yjxLiO2bjGLY1v7B73cOFx314Y13HzuIcLj3v4GNfYb2ncqamh4HA4HA6Hw+FwOBwOh2N8kCaHgsPhcDgcDofD4XA4HI4xwcgFhRDCm0MIz4QQng0hvH/U8RyHEMIPQwjfCiE8EUL4Wu+9uRDCl0II3+v9OzvqOCUphPDpEMJyCOEp8951Yw0hfKB3D54JIbxpNFFfN+4PhRCe6437EyGEh83f0hL3nSGEfwshfCeE8HQI4Td676d6zI+JO9VjHkLIhRAeDyE82Yv793vvp3q80wxfi29JnL4ODxG+Dg89bl+HTxi+Dt8a+Fo8XPhaPPS4R78WJ0kysh9Jk5K+L+mipKykJyW9epQx3SDeH0paGHjvTyS9v/f6/ZL+eNRx9mJ5vaQHJT11o1glvbo39tOS7urdk8kUxf0hSb99xGfTFPeipAd7r8uSvtuLL9VjfkzcqR5zSUFSqfc6I+m/JP1k2sc7rT++Ft+yOH0dHm7cvg4PN25fh092PH0dvnWx+lo83Lh9LR5u3CNfi0ftUHitpGeTJPnfJEm2JT0m6ZERx3SzeETSZ3uvPyvpraMLpY8kSb4saX3g7evF+oikx5Ik6SZJ8gNJz+rg3gwd14n7ekhT3C8kSfKN3uuGpO9IWlLKx/yYuK+HtMSdJEnS7P2a6f0kSvl4pxi+Ft8C+Do8XPg6PFz4Onzi8HX4FsHX4uHC1+LhIg1r8agFhSVJ/2d+v6zjb9yokUj65xDC10MIj/beO5MkyQvSwUSUdHpk0d0Y14t1HO7D+0II3+zZv7DspDLuEMIrJD2gA4VwbMZ8IG4p5WMeQpgMITwhaVnSl5IkGavxThnGbXzGeS0e5zma6jXBwtfh4cDX4RPFuI3POK/D0njP01SvCxa+Fg8Ho16LRy0ohCPeS3PbiZ9OkuRBSW+R9N4QwutHHdAJIe334eOS7pb0GkkvSPpo7/3UxR1CKEn6O0m/mSRJ/biPHvHeyGI/Iu7Uj3mSJHtJkrxG0h2SXhtC+PFjPp6auFOKcRufl+NanPZ7kPo1Afg6PDz4OnyiGLfxeTmuw1L670Pq1wXga/HwMOq1eNSCwmVJd5rf75D0/IhiuSGSJHm+9++ypH/QgT3kaghhUZJ6/y6PLsIb4nqxpvo+JElytfeg7Ev6pPq2nFTFHULI6GAB+uskSf6+93bqx/youMdlzCUpSZKapH+X9GaNwXinFGM1PmO+Fo/lHB2XNcHX4dHA1+ETwViNz5ivw9KYztNxWRd8LR4NRrUWj1pQ+KqkV4UQ7gohZCW9XdIXRxzTkQghFEMIZV5L+jlJT+kg3nf1PvYuSf84mghfFK4X6xclvT2EMB1CuEvSqyQ9PoL4jgQPQw9v08G4SymKO4QQJH1K0neSJPmY+VOqx/x6cad9zEMIp0II1d7rvKQ3SvofpXy8Uwxfi4eHsZyjaV8TJF+HhxWvic/X4ZOFr8PDxVjO07SvC5KvxcOK18Q3+rU4GUH1T/sj6WEdVNH8vqQPjjqeY+K8qIOKmE9KeppYJc1L+ldJ3+v9OzfqWHtxfUEHtpwdHShRv3RcrJI+2LsHz0h6S8ri/rykb0n6Zu8hWExh3D+jA7vQNyU90ft5OO1jfkzcqR5zSZck/Xcvvqck/W7v/VSPd5p/fC2+JbH6OjzcuH0dHm7cvg6f/Jj6Onxr4vW1eLhx+1o83LhHvhaH3kEdDofD4XA4HA6Hw+FwOF40Rp3y4HA4HA6Hw+FwOBwOh2MM4YKCw+FwOBwOh8PhcDgcjpuGCwoOh8PhcDgcDofD4XA4bhouKDgcDofD4XA4HA6Hw+G4abig4HA4HA6Hw+FwOBwOh+Om4YKCw+FwOBwOh8PhcDgcjpuGCwoOh8PhcDgcDofD4XA4bhouKDgcDofD4XA4HA6Hw+G4afw/f8tUTSfzHvAAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 0 161293\n", + " Min thresh = 1000\n", + " Sliding\n", + "\n", + "\n", + " Winner = Sliding\n", + "\n", + "\n", + " VFOLD = 1 of 15\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsIAAAGDCAYAAAAh/naNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAACKUUlEQVR4nO3dd5gb1fU38O+RtH3de8M2LpjeTO+9JpBGCaQQCCEJIaQbfukN0l4CAUKABEIKhFASEpsSOgYDtinGBRfcey9bVea+f0zRdI200kqr/X6ex8+qjEZ3tOvR0dG554pSCkREREREvU2s3AMgIiIiIioHBsJERERE1CsxECYiIiKiXomBMBERERH1SgyEiYiIiKhXYiBMRERERL0SA2EqKRFRIjKx3OMgIqL8VeM5XEQWiMjJ5R4HVQYGwr2IiKwUkXYRabH9u73c43ITkc8aJ9+Lyj2WrhKRccaxJMo9FiLqfUTkaRH5sc/tF4jIxq6cm0TkReP8drDr9n8Zt59c6L4LHI95vjXf3zaJyH9F5Az7dkqp/ZVSL3bn2KhyMRDufT6klGq2/bu23APy8RkA242fRceglIh6kfsBfEpExHX7pwD8TSmV7uL+lwD4tHlFRAYBOBrAli7utyv6K6WaARwM4H8AHheRz5ZxPFTBGAgTACsL+6qI/E5EdonI+yJymu3+kSLyhIhsF5FlIvJ5231xEblRRD4QkT0iMldExth2f7qILBWRHSJyh88J2T6OsQBOAnA1gLNEZJhx+10i8mvXtv8Wka/bxveoiGwRkRUicp1tux+KyCMi8lcR2Q3gsyJypIjMEpGdIrJBRG4XkVrbY84UkcXGa3GniLwkIlfZ7v+ciCwyjulpY9z5vuZhr+mRIjJHRHYbWY3/Z9xebxzHNmPss83XiIjIx78ADARwgnmDiAwAcD6AB3KdCyP4G4CLRSRuXL8UwOMAkrbni4nINOM9YpuIPCwiA233/9PITu8SkZdFZH/bffcb7xvTjfeXN0RkQpSBKaU2KqVuBfBDAL8QkZixz5UicrpxOfD9S0SmiMj/jHP0YqmCbynJi4Ew2R0FYDmAwQB+AOAx28nqQQBrAYwE8HEAP7cFyl+HfvI7F0BfAJ8D0Gbb7/kAjoD+6fwiAGeFjOHTAOYopR4FsAjAZcbtf4d+shXAOpGfCeAh4+T2HwDvAhgF4DQA14uI/XkuAPAIgP7QT9wZAF8zjvUY4zFfMvY92Nj2BgCDACwGcKy5IxG5EMCNAD4KYAiAV4zXJ19hr+mtAG5VSvUFMAHAw8btnwHQD8AYY2zXAGgv4LmJqBdQSrVDP3982nbzRQDeV0q9i5BzYUTrASyEfj6G8TwPuLa5DsCF0JMcIwHsAHCH7f4nAUwCMBTAW9DP0XaXAvgRgAEAlgH4WR7jA4DHjH3v43Of7/uXiDRBzyb/3XjspQDutAfpVCWUUvzXS/4BWAmgBcBO27/PG/d9FvoJTWzbvwn967Mx0E+WfWz33QTgfuPyYgAXBDynAnC87frDAKaFjHEpgOuNyzcAeNe4LABWAzjRuP55AM8bl48CsNq1nxsA3Gdc/iGAl3O8NtcDeNy4/GkAs2z3CYA1AK4yrj8J4Erb/THogf9Yn/2OM16DhOv2XK/py9BP/INdj/scgNcAHFTuvyf+4z/+6xn/ABwPYBeABuP6qwC+FrCtdS40risAEwO2fRHAVQAuh/7Bfh8AS4z71gI42bi8CMBptseNAJBynxeN+/obz9nPuH4/gHtt958LPYj3G0/Q+bbeuP044/pKAKcbl33fvwBcDOAV121/APCDcv8++a+4/5gR7n0uVEr1t/27x3bfOmX8bzesgv7pfSSA7UqpPa77RhmXxwD4IOQ5N9outwFo9ttIRI4DMB7AQ8ZNfwdwoIgcYozrIeifygHgk8hmDcYCGGl8tbdTRHZCz9jaSwbWuJ5rsuiTKDYa5RI/h54RgXG81vbGc6+1PXwsgFttz7UderA8CtHlek2vBDAZwPtG+cP5xu1/AfA09Ez4ehH5pYjU5PG8RNTLKKVmQq/ZvUBE9ob+Dd3fgZznwqgeA3AqgK9AP0e5jYVep2ueMxdBTwQMM0oTbjZKE3ZDD1LhGkOk95AQ5nl1u899Qe9fYwEc5XpfuQzA8DyfmyocA2GyG2WWHhj2gp4lXg9goIj0cd23zri8BvrX9131GegB5TsishHAG8bt5ld6DwL4uFGPexSAR23Pv8IV4PdRSp1r27c9wAeA3wN4H8AkpZcf3Gg8NwBsADDa3NB4TUbbHrsGwBdcz9eglHotj2MNfU2VUkuVUpdC/0ruFwAeEZEmpVRKKfUjpdR+0Ms1zofzK08iIj8PQD9XfArAM0qpTcbtYefCSJRSbdC/Kfsi/APhNQDOcZ0z65VS66AnNS4AcDr0sq9xxmPyGkMOHwGwGXr2129sfu9fawC85Bpzs1Lqi0UcF1UABsJkNxTAdSJSIyKfALAvgBlKqTXQv46/yZisdRD0jKWZkb0XwE9EZJLoDhJ95nBkIlIPvW7tagCH2P59BcBlIpJQSr0NPatxL4CnlVI7jYe/CWC3iHxHRBqMDMMBInJEyFP2AbAbQIuITIF+AjdNh56JvlD0DhNfhjMLcBeAG8xaMRHpZ7xeYeqM167eONZ1CHlNReRyERmilNKgl7AAQEZEThGRA42JKbuhf72YyfHcREQPQA82Pw/gz7bbw86F+bgRwElKqZU+990F4GdGEgMiMkRELrA9fyeAbQAaoWeki0JEhonItdDnvNxgnE/dgt6//gtgsoh8ynhPrBGRI0Rk32KNjyoDA+He5z/i7CP8uO2+N6BPWNgKfTLCx5VS24z7LoX+SX099BnBP1BK/c+47/9Br/19BvoJ9Y8AGvIc14XQJ309oPSZvhuVUhuNfcUBnG1s9yD0k/nfzQcqpTIAPgQ9cF5hjP9e6NmFIN+EnonYA+AeAP+w7W8rgE8A+CX0k/N+AOZAP1lDKfU49CztQ8ZXefMBnJPj+FqM4zP/nYrw1/RsAAtEpAX6xLlLlFId0APyR6C/zosAvATgrzmem4h6OSNAfQ1AE4AnbHcFngvz3P96owTDz63Gcz4jInsAvA79Wz1AD9BXQU8OLDTu66qdItIK4D3oNcWfUEr9KWBb3/cvo2ztTACXQD9Hb4R+3q8rwviogoizJJR6K9F7LF6llDq+3GOpNEZXirUALlNKvVDu8RAREVFxMCNM5ENEzhKR/iJSh2zNXDEyFURERFQhIgXCInK20Ux6mYhM87m/n4j8R0TeFX0N7yuKP1SibnUM9JnEW6GXXVyo9H6cRBWP52wiomhylkYYk3KWADgD+tfDswFcqpRaaNvmRug9/74jIkOgz8wcrpRK+u2TiIhKg+dsIqLoomSEjwSwTCm13DhJPgS91YmdAtDHaDPVDL1XX1fXLyciovzxnE1EFFGUQHgUnIsRrIV34YDbobfaWg99luZXA9qUEBFRafGcTUQUUSLCNn5Nrd31FGcBeAd6S6gJAP4nIq8opXY7diRyNfQ+sWhqajp8ypQpeQ+YiKgSzJ07d6tSaki5x+GD52wiIpegc3aUQHgt9CUITaOhZxHsrgBws7EU7TIRWQFgCvSFDixKqbsB3A0AU6dOVXPmzIl+BEREFUREVpV7DAF4ziYicgk6Z0cpjZgNYJKIjBeRWujNpZ9wbbMawGnGEw0DsA+A5YUPl4iICsRzNhFRRDkzwkqptLFE4dPQV/j6k1JqgYhcY9x/F4CfALhfRN6D/rXcd4zVuYiIqBvxnE1EFF2U0ggopWYAmOG67S7b5fXQlyIkIqIy4zmbiCgarixHRERERL0SA2EiIiIi6pUYCBMRERFRr8RAmIiIiIh6JQbCRERERNQrMRAmIiIiol6JgTARERFRL/b422uxaMPu3BtWoUh9hImIiIioOn3tH+8CAFbefF6ZR9L9mBEmIiIiol6JgTARERER9UoMhImIiIjKbNy06bj12aXlHkavw0CYiIiIqALc8uySbnmeuau2Y9y06Xh79Q5kNNUtz1mpGAgTERER9SLPLdoMAHh12VakMlpZx6JpCvPX7Srb8zMQJiIiIupFMkrPAsdignSeGeFP3vM6fvjEgqKN5d6Zy3H+72Zi9srtRdtnPhgIExERUY8xb+3OsmYQS0Gp7i1P0IzgNy6CTCa/537tg224/7WVRRvLgvV6/+J1O9qLts98MBAmIiKiHuPDt7+K8383s9zDKKpujoNhVkPEY4KUVprSiIym8OqyrSXZdzExECYiIqKymr9uFyb93wxs2KVnBSfeOAO3P997Oiho3Z0RNksjRJDOMyMc1avLtuKye9/A4o17SrL/YmEgTERERGX1l1mrkMoovLh4CwAgrSn8+pnu6aBQDn9/YzXGTZuOXW0pAEB3920wO0Uk4lLUyXIdqQx2tiUBAK2daQDArvZU0fZfCgyEiYiIqKyUEQpKmcfRXf7y+ioAwJodbQC6PyOcsWeEi9g+7dJ7XschP/4fACBl7LcjlQl9THeXhbgxECYiIqKi0zSF9TuzE6CefG+DlS30bGsEQzEpbSi8Ymsr1hrBZznVxvXjNLOx3R0MmpPlYiLIFLFG+O3VOwEAbck00saxdabL254tFwbCREREVHS/fW4pjr35eazd0YaNuzrwxb+9hWv//jb+OWcNZi7NTqJq6Uzj+ff1vralTgmf8usXcfwvXijtk0RQm9DDr2S6PIGwWRoRjwGpEtQIL9/SamWac2WEy42BMBERUQ+ybmc7nl24qdzDyOnlJXq97+Y9nWgx6kXX7WzHtx6Zh8v/+Ia13XcenYftrXqmWND1VmKvfbAVF9w+0woyy6G1M20dsx8rEDYzwt1cJZwp0WS5YX3rAADLNrdY+40aCJf4y4BADISJiKiqrdle/q/Ci+nDv5uJqx6YU+5hRKYUkDa+fq+Je6Odtbb+sTERdLVk9UdPLMS7a3dhyabydSs46EfP4IAfPB14f21cD7/M0ojuXuXY6iNc5PZpfetrAAA72pLW77yDpRFERETl8doHW3HCL1/A42+vLfdQimabkT11Z05Xbm3Fb55Z3O2LMwTJZviUlR1MxLxhR10i5nhMPuNfs70Nd7ywzPGYMQMbAKCstcCZkMhW05RVC50tjejujLD+c97aXehMFRaortne5hm3WQ6hqWzJRWeBpRFrd7Rhwo0zSt5+jYEwERFVrfc36G+i766prpXIAHhm+1/1wBz87vllWLO9PCt0uZlxsFJAZ1oPhvwywvZAOK2pvLKjn7t/Nn719GJs3N1h3TZ6QCMAhL4O7cnuq1tt6UzjhcWbres3Pv4enjNqos2JZPlmhN/fuBun/vpFq/0aADyzYGPkLLiZEb7/tZW4+clFkZ/XHvie8MsX8J95G7Bk0x6rRZoZ2GuasibhFTpZ7n8LNyGjKTw0e3VBj4+KgTAREVEPZK/t/Pc767C1pRNA8VpxZTSF3zyzGK8v35bX4+as3I6H3lwNMbKeH79rFpZsagEAJOJ+GeG4dTmV0fIav1lbbA8k+9YnAGRbk/nZ1toZ+Tny9aun33dcv2nGIlxx32xrWeiHZq+x7rMmquX5K7v12aVYvrUVr32QnXR49V/m4sxbXo70eHvG+t210T8kugP2Xe0pnHnLy7jorlkA7KUeyjq2QifLJWL630+pFvwwMRAmIqKqVRlFAqVhTrRatrkFX33oHews8uIMj85di989vwz3vLw8r8d9/K5ZmPbYe44GEE/O3wggG9zY1dVkQ5FUntlDM/CyB1tmpjzsK38zgO6KcdOm4+czvNnUO174wHG9zcg+m4GwnZVBzfPDi7m9FDjDLFPgh6W0q564f4NeE7x40x68uWK7ozQi38lybuaHpmL2OfbDQJiIiKqWsgKG0j3HgvW7MG7a9G5bSjYec/agdQcaxcoIbzLKDQY21Rb0ePtrbn4VX+OTEa53ZIRV6PjdNalm1tEsdchoyhaMBe9nd3twR4d83B3hQ8Leg5sA6B9Y3MySkXx/Y2ZsaL7G+a4OpxUQXKYzGna0OleJs+/loj/Msj7IaEpZQXNYacTcVduxI6C3dNzKCJd2sh0DYSIiqnpSwga1M97bAAD438KNJXsOO3cg7JZPkLN5TwfGTZvu+IrdlOnihwj7a56xdSlws2eEkxkttKeuu+dtNtjKYPPuDky4cQb+aqzaFvYyuDObxeJ+7d9avcNqlbbap3tJRypaRviJd9fjqfnZvy9zc3PSXWtIqzY/QRlh84PGrc8uxbhp0x3H871/z8fRNz3n3I/rdTQ7UGi2DyRBGWGlFD72+1l4xegp7R6SWU+e1hRueGwe5qzcHuXQ8sZAmIiIqpZyZc6qgbt20n1s+SyQ8PQCvR/xY2+t89xnBkHFSDCbgZdfRtg+WS5XjfC/3s6OU9nqUNuTmlWHbJYihHViCOvqsLMtiXtfWV5QJ4fWpDMg/eidrznKBdzW7GjDh2+fmbPF33UPvo1r/jrXum6OzfxcEdaz2E/Q8Ztj/e1zSwAA89fvssb273fWe7ZPpf0z9HpphPmNhf+HjqTrg5z79x43Ooxsb03iwTfX4Ir7ZgcfUBf0uEC41ClyIiKqHuZCBaWMg7u7W5mZVU0GLM+bz9fkry3Ts3H7jujruc8MXgst0fQvjfDrGuGeLBe8z28/Os+6bK8d7UhlPEFoWEAd9mHhxsffw0+nL8LslTsCtwnKuu/p8Aak2cle3sf8/Y3VmLd2Fx58M7/OCOaxTX9vAzKaQmtnNus664PckxuDXhvrw5Vx/cO3v4oTfqmvxGf2CLZz9yA2A+yM7UOKWf7h5g6Q3cG5+YFv4y69RKd/k/f5i6FHBcKf+dObuPju18s9DCIi6iG6MyNc6MSlfJkBwraWJDpSGU8AETUQXrppjzWJraEm7rnf3E2hNcf2lyMdUhpRb58sl1GOeNG+FLN3fNkN21MZtHkC4eCxhWWEzfrhsEleQYtQ7O5IeW7b2W72fQ4ez95DmoPv9GEO/7G31uGeV5Y7PgRceo83TlJK4Q8vfYCdRj1u0PGHLa7Rx+jG4dg+oP5XKWU9hxnwjps2HT/570JrG3eAHPR3tn6X3gZvYFNd4Ni6okcFwvU1MbT4fNoiIiLyY7615hOkPjx7DcZNm17WJXrDmF8ZX/SHWTjvtlc89a5RSyO2tmQnKZnZ39eXb8O8tTv127Ro9atRWAtH+NxnL5dIpp2lEZf/8Q1rqWY3e8Dfnso4sqJA+LjDaoTNP5WwxwcFkn4Z4S179FZtYZ0a/EpGwtjHtmJLa84a4TmrduCmJ9/HtEff0x8fcPjZchvv/5dmn0A4qKODPmkxO5nTLOX448wV1jburh7uz2/mvs3XdFCBkzZz6VGBcHNdTd51MERERPnkam9+Su8D65fdC1OK1cHWbG/Df+etx5yV27F6m16raW9B9sGWViQ9dZrRAnh7MGeO/ZK7X8eHb3/VuF+/r+DSCNur3m5kV3OVN6YymidYNvsju9m7EXT6ZITtv467XvoA46ZNt66H9aY1g8Cwww76sLHH529msxEIhz1nPmWfM5dutSaYAXp9cNTJcltawoPytFVu47xfKYU+PqUR7jpfk31luY605vhdrdnehnHTpmPOKufkN/eY3OUnAxpLEwh7w/sK1qc+wUCYiIgiK0ZsqpTCz2cswgWHjMIBo/p57i9lRcS5t71iZcSO2XsQHrz6aE95gTu7GbUjgj3w8MtwmlnHQlptAc7XxQxS/YJBe9DlN1kuqI2WvQtDeyrj+cbYvh93m7Ow0gjz5S1ksl1YRjjs92LPrGY05VtCYrr+H287rs9btxMnTR4SuD2QbVFnliMEl0b43/6Lpxb7lkYEBfdKKev31ZnKOALm5xbpEzT/MmuV4zHuvzN3trlPfUJfnjrktSlED8sI64FwpayjTkRElc2cLNeV2XKtyQzueWUFLinDHBV7YGVmVROuCWfuYMSdIQ5ib33lF/+YwZJficBH73wVX3/4ndD92wNhcwlev6/S7bv36yNslg24+9Gu2NJqXW5PatZzmMJLI8ICYXGMK5nWrJ7KALCjNYn3N+62rh9z03NYv1OvY3WXZwDAZuOxYcG3/b7L733DcZ87w+8uKVizvR2/eMq5mp1dRyqTbTOXo12bWRftLo2466UPHP2eTUHlQ/Z+zp1pzbGdvbOE+zF27sBYUwoX3z0LV/25uN0jelQg3FSXQEZTga04iIiI7Nz9VqNwb2lmtoL20F25mXhM8NKSLVi1zdlqy/31dNTSCHsA7Zf1zXaN8N731uqdvi3XgvZvvm/79Su2P3Uyo3lqEszsqCcQ3poNhDvSGZ9AWM9En/rrFz0ryWU0Dbs7Unhzhbc3bUyyjweAb/zzXRz18+eQzugB3aE/+R8+eU82WN2wqwMvL9kCpfwXA2k12rmFBd/2bPcs15LW7a5Je34LVGwLWSlvyveewkfufA2A/jrpz+c/FnNhErfBzbWOD07Xnz4JQEgva+VcWc4+ZvPv1f1aua+7X6+0prC1JYk6n4mdXdGjSiPMQu2WzjQaaov7QhARUfXqypepZjYrVyxdaNeI7a1JZDSFIX3CZ8WnNYVH5q713h6wyEQu9gycXwBnBseFdi31C5L8amvNrP0+w/oglfa2TzNrot1dHFZsa0U8JqhLxNCezHgCRKUUFm/cg+W2gNk+jq8++DZeWLwF1506EaMHNOKiI8YY9+rPZ74mT83XF0xJayqw3++0x95DS2faWjzDT1hGOCxI7nAFp0F1uVHkygi3+QTCx00chK17ko6yCfNv1fx9ThjShA9sGXr7ynIdqYwrI6xfnrfWueR0RlNYsH4X5qzcgcuPHovZrgU0NE1he2uy6JPmelQg3KcuGwjnOmEQERF1pZTOfKgZYIXVbRZqa0snpv70WQD6rPi53zsjcNuMpvlOqvJ0jYhYGuGoS1XK+nrffX+U13BXWwr1tTFHT+Cw4M7O3H1tImZMlvOvEXYHujtak2iuS6AuEUNHKuOTYdRLKv1kNIVlW/QFOG57fhkAWIFwUI1wZ1rDg2+uCTyOt9fsxBFjBwTeHzZZLixIdmeEu8J8DYOez92LGdBfww27OpCxjb/G6FxiBrXu11kPhLOlEfZWaUFZ5IxSuOrPc7BhVwdWb2/D4287v3FIpvXyl0KX/A7S40ojALCFGhERRVJIH2H3tmYGrhSB8Hu2rFjY19uAHkj5ZVTdt4X1grWzB45KAcfe/LzzftviCLkc/ONncOX9cxy35Wo/97Hf61/Xm3vXA2HlyQibr/vDc5xBaGtnGnWJGGriMaQ17+M0FTzpLK0p9G/wD6jMMhr3/u55eTn+9OoKn0foxOcxdpv3dOKkX70QOJ4ghZSDBn14MbPqQb/TNp8a5/qauKMdGgDUJMzlj/XbmvwCYXtpRMqeEfZ/bk1TGNSs/04emLXSc7/Z8aJXB8LmJ449nfm1tCEiot7JfMuVAoojzMyk+SaeT51xVPn06E1rylGnaXJn2IIWOfDsL3KNcLTxzVzmrP/NVas8d9UOAHrQJqKvOpdMa4FdKn7/4geO663JDOpqYhDRX0dvy6/gsaczGvo1+K9UJlZGGJi/bpcVuG3e0+G7ffZxEvr73NrS6anvto8niD0j/I/Z0VagS2sKLy7ejAtun+m43cwIB73GZncP+196IhZDOqMcwXrCyAibEzO9gXD2968pZ6Y5eIIdcMDIfgD8g2Wz+0axA+GeVRph1Aj7zcokIiJy69LKcmbXgEx4IBw1lD3zlpew/8h+uOXiQzzjiyKd0Xwzh+4gKuqCGhlXaUTQ/blKIwJbcUUch1J64BWPiW/wrCn/52jtTKOpLoFkWvMNev2CY1NaU55AOJXRUBOP2TLCCuf/bqbjMWE27e5AMtMndJsg9n27/8zsE9i+YyyIkUtHKoPr//EOdrb5Jw6DDsWvRjgRE6zb2e7o02x28nj0Lb1m3VMaoTkDZ3O1PiC8NCLsW5etzAhnX+gWZoSJiCgCM6tbSBxsvo93Ghm5rpZGLNnU4ql7zKeCOZnWIk1Ai1oaYQ9U/AIjM7sZVr8KeJfKtfYfcVKXgkJMBDERZDRv5wVNU77H3dKZRm08hpiREXY/LiwjnNEUmuqck+4ff3sdOtOZwJXlcr0Ob67Yjl8+tTh0myD2fde5JtyFLfVsV2Nrq9eZ1hAP+fTnPhZzmWu/GmGzXd8OW1Bd42rh534t7TXCgHNxmqCMsObzu7czV0IcVOSllntUIMwaYSIiyof1vlpASth8U7YywiV4x3S/8W9r6cRfXl/lu21nWvOdcOUtjYiYEbY9t99X5Wmr32v4/oJabiUzGo6bOCjnODSl/3oSMTGyuO77lW+nhNbONOpq9AyuFpARDl44QvN0w/j2I/Nw04z3rYyw+7FRJ/8Vwr7vjpSG255barseLRC2T1R8duGm0Jpz999MfU0cIv6/y4TPB8CEa0noxlpnRjijOT8I7ba1tgtaGC0T8vsyiQB7DWwM3SZfPSoQNksj9nB1OSIiiiBbI1z4Y80a4bAMW6HcQd/XH34X3/vXfMeCDaZkWvNd+cvbb9U/49aRyuDqB+Zg2eY9AICMLVDxbZ9mrSyXvW3xxj249dmlju06AjJ8nWnNEZwF0UsjBPGYIO2zoEZGU751z5rSs6dBNcJ+WWJrnxn/4PqDLS3WZybP69qFtmW5uAPA//e/JdbloNXe3OyZ5GmPBZdQjJs23Vr22a6pNuFbeuoOegFvRtgdLCvbZDnAGQgHLV2uaSpnq74xAxqL3j63RwXCdYkYEjGJvKY2ERH1ckYglF8Ma9SIaq6McBcC4eBlip2372zTs3gdKQ0rXf1vO9NapMlyQX1m567agWcWbsL3/rUAgLd9mpvfynIX3z0Ltzy7xLFdUMayM6V5vub3o6AXCceMyWbezK6z/OOuyw+zLtcl4oiJ+C5moangGuy0ppD0KelQKvt7dmffc2UruyLqYhthorzWYRpq49nJcrY/db+McI0rOHYHy5pSSGkaao3bd9u+yQ+a5+VXFuM2aWhz6P2FiPSqicjZIrJYRJaJyDSf+78lIu8Y/+aLSEZEBhZ7sCKC5voESyOIiEJUyjm7kuTTNcLeNQDI1sAGxcFR9hzUC9b9vm/WIWc0DSf/+kXHfcmM5lv2ELU0wkwiNRoZNXtgN9tnhTUzDtSUwuptbVi6aY9vZjYoEE5mNPSt9+/MYFq4fjf+8NJyxESvRdXH5K71ddYID+lTb12uSxilEZozc20+LqhNWEbzb0WnoKzfs/tDR0lLI0KC3ajPG7aYRxRNtXGrDtfOrzbeHQjXujLEGaV/EOrboH+TH1Qa0b+xxvaY3KURQ/vWh95fiJxdI0QkDuAOAGcAWAtgtog8oZRaaG6jlPoVgF8Z238IwNeUUt7/VUXQXJdwrL1ORERZlXbOLreuhC5WjXCOBTWiPIffbHz9OZzXzecIWnzBbzKTe9s1O/xbdJljaDTm29gDrLdW7/SOzeojDJz06xegVHZhK1NnOoPzbpvpeazJDISCnHvbKwD0DyrZyXLObTKuGuGhtgW16ozaVr8yCL1uOKhrhOY7aSujKetDkzsALV9GuHsC4fGDm/Dsok1Yva3N8TvwK41wZ4ndgbGmKWxt6cSUEX2xtSXpKIew1yE31MSxEynrMbl6VrsD7mKI8qodCWCZUmq5UioJ4CEAF4RsfymAB4sxOD/NdYnAQmsiIqqsc3a5daV9mlUjnPaWRsz6YFvOPrl2bT4BrP4czjf+bEY4PKtr585s/m/hJs9SwEopPGksFdxYo2eEzUA3qBmGvX2a+Tq65+gETZQz9cmRETaJ6Mee8Z0sl816f/6E8Rg9oMGqUbUywj5lEKHt0wJqhDWVfT26szQiE/K78CuH8ROlHjvMp48dBwBYu6PNcax+pRFu7kB4V3sKnWnNmthmr0m2dxmpr8mOWVNhJUTGWHyC8q6KssdRAOzLuaw1bvMQkUYAZwN4NOD+q0VkjojM2bJlS75jBaBPmGMgTEQUqKLO2eVmBpqFdD4Lyggv2rAbl97zOn42fVHkfQXVRbrjNHOhgqDMWKtP4OkXkO9oc37F/dKSLXh6wSYAsCYbmVlIv0z3Lf9b4qgRHhTQuzXX1/Z966MtVxCT4Mlymqasco+j9x4EEUE/Y1W4ukQMsRgCa4TD2qf5tvGy1wh7JsuVPiPsDvQWrt/taFsWpqs1wk1G5wf7txf7DOtjtU+zc38ocE+e27hbX3zkuAmDMLRPHebZVlC0rzJnD4SjlEa4A+5iiLJHv9NH0Eg/BODVoK/YlFJ3K6WmKqWmDhkyJOoYHZgRJiIKVVHn7HLLZoQLWFnOeLA7I2zW+769ekfkfbWngjLCTrEcpRF+wZu9S4QZDHl6C9tXkbP1B47HxHdC2a3PLbWC8YwGNAcEtLmy4vaMcGPIbH+B3pUjV/s0MxAya0vNyXL+fYTD2qf5B8KaUlabPHfdblA3jmIwn6vG9aHk3NtecXSQCNPV0gjzA5FZfvPZY8fhkS8e45sRdk8cdQeoG3fpgfBegxrxscNHO+7rtL3uDTXZx+XqI6w/T/FLI6J8VFsLYIzt+mgA6wO2vQQl/oqtub4GKwOWKCQioso6Z5fTlO89iY5U4cFLdrKcGQjr182Z8Pm08gzOCDvf+K2v5fP4Gt4e5PZvrMGm3Z2eIM8e1LUlM9jdkUJaU4iLBAZ49tKIoI4ZuXoW97EF0H/41OH41B/f9N1OITtZzrd9mjsQNlaF05dYDu4jHBRY/edd//8SRo8RAOWpEdYzwvrfSq4V/dy6mhE2A15zHtaU4X3Qp77G+pYC0OuIP3X0WOw3sq/zsa5A2ExYDu1Tj31HOLe1l6Q4MsI+9eHeMZYnIzwbwCQRGS8itdBPnE+4NxKRfgBOAvDv4g7RiZPliIhCVdQ5u5wKDYLNkM9aWc6oaTSDFfOn2cEoSrwSNFnO/dhs667oY7dnZc2JXu5Mrb2k4pG5a3HQD5/Bno6UnhEO2K89cxyUUHfX2bqDN3tGuKkugSF9/FcFM4PtjObNCCtbjXBtQh9IXzMQTmRXlvP0EdbyW8IacO7H/QGhlF0jzCDbnvHMd+zFygibMZZZQmMvjejbUIPPHT/eU2oUlKkd0FiDfYcHLzvdkG9pRKIMk+WUUmkA1wJ4GsAiAA8rpRaIyDUico1t048AeEYp1eq3n2LpW5/gEstERAEq7ZzdXZ5esBHv2eoQ3QqZLOeuETbLFcygzJ2UCXuOqJPlzF188W9vRR6nPeg1L7szwubzD27OBqLbWpJIBJRGAM4+wkEZYXew6C7JsHeN0JdR1i+7s4SAbbKc6zXJKG9GeHBzrXVd7yOcX0Y4yObdnZj+3gbj2MqQEbZlPPN9tnxaBPoxA949RocHc7U4ew25OZnNXWoUVLvbWJvAxKHN+N75++G75+3rud8xWS5KaUSZMsJQSs1QSk1WSk1QSv3MuO0updRdtm3uV0pdUvQRujTXJdCR8l9vnYiIKuuc3V2+8Je5+NDtwW28CgkSzPdkM6hMGUGf2Uu3PZXBc4s2RdqXuQ93PJlv1s+PffKRmaH1ZISN0gz7pLf2VAbxkJrLbGlE8GRDd2lEp2uRCnsf4biI9XsYP9i7TG485myfZo5VUwrJtDNQ3Ge4Hkiv3dFuZYS9NcLZY7jzssMiTZhct7Pd+oCT6dauEUagb8t4Rn2+Uf0bAHg/VOXLXRph1nTbg8+grHhQIKyv/Ce48vjxGNGvwXO/c7Jc7mMuRY1wj1pZDsgW7HNRDSIiiiooW/vcok3YvLsDR/38WZz925cd25qBlVkjbL5J28sBrvzznMAFJeyCAgjz5uMmDgodZ5ikX0Y4480IxwToZ1vAoD2ZCW2NZR5vJiQj7H6eOaucEwjtgbA9mVfvavWloAfKemmE/rzTzpkCwOga4SqNOGyv/gD0r9YlcEW6bJnFyP4NebcX8y5dXcKMsBF024POXz39fqTHPvj5o/H6DacF1td+6eQJkfYTN57bzAibpRF+GWE3e4Bq/k3pHT2yt/vFyg21zslyuQLhcrVPqyjNRjNvdo4gIqKofFtpKIUr/zwHF/1hFjbt7sT7G/e47td/uksjgvrLhmV3zaDaW/+q3zB5mF5HWUh3i86UZmXvzNIEc8z/fmcd1u5oQ2tnBo21CUcGrj2VCV022uwaoSkVOC4zQL3sqL0AAFfcN9txf52tK0A8JlagX+/TQcKdETazjPY+wuZth+41APdfcQS+ceZkIyOsv5Z7DWzEDz60H847cIQjSxyT/FvoeWuES9g1wposlx3kPa+siPTYhto4hvfzX3GtsTaO0QO82Xc/QRlh+5iC2vrZM8Jm8Gv/WwP8/7btH4iiLLHMjDCyhfe72lknTERE0fjFcWbAFdSJyPyq2fy6PxVQdmC+eYctBhCU6TJvNYOQQt7mOzOaNQnNfJ5URs+sfvWhd3D+72aiLZlGY20c9bYJVe2p8IyweTyaFlIaYbwW5x04wjHxyWTPJuqlETp3RtjctjOt4WO/fw1ANqDSlMLC9bsBOAOuk/cZiqa6hFEjrAdR+4/siyuOG4+YUfucXahCfIP+kf3q8eb/neZ7bO4PPLk6ZITJFYTbx1novvcZ5p2Upinl2wfYj3uyXGONnni01y0HZ4Sz25h/U+6/B79jq7H9PVZyH+GKYvYOZCBMRERR+SWagrJPZrhmvidbGWFN4Q8vfYC/vbHatR/nTz+Bb/DGzebX0oWURnSmMhjS7OzGkMpo1nh2tqXQmsygqc6VEU7mqBG2ZYSDEnVmINxYl8DrN3gDSnvwE4uJlRV0Z/aU8i7sYQZUq7a14d6ZK4zHecMWc2U5fVU4MW6Do1wiJuL4mt4Uj4tvAA94SyH8VqKLyp0d9T6XWUNeSCCsP+b60yfh4S8c47ivua4mchbVfL13u0oj7IF0UHmIfZu4lRF2/q78YtiEq+wi15olLI0AMKBRL57fGXGlFSIi6n3cmSu/9+9cX8O6a4TTGQ03Pfk+Zi7b6tjOnOh0y7NLsHxLC5ZvaYGmKby4eLNV+hD0XObtUZaxDZLMaI5uEIAevNuD77ZOPSNs7zXbmkyH9mU1J4uFdV8wSzFq4oJ+jTXoU+dcnsB+WHFbkNfq00XDnTE0A6qV27KNTWp9AiGxTZYzd5FddtnItMb8s7L3X3Gk78p6gLeFnb0Tx+NfOtb3MUGCevz+85pjMKJfvZV9LuSvwHzdEvEYjhw/0Lp9ZL96PHT10ZGzqDFXRripzqgRtv1egj7Q2f9+43mURthf+4xSOZdYdi84Ugw9LhA2M8I725M5tiQiot4q5arn9JtRn6vk0wyi7BlhP/av0E/9zUs49Tcv4YFZK/HZ+2bjCWPhhqBkovlIMyAoZBnfzpSGproErj99Eh79op4RTGY0R/DalsygyVUj3NaZCf3K3r6yXNBnBvNDghmgjujvrFW1Bz8xydYInzx5KL5w4t647tSJ1v3uDwP2jLDJr49sNujNBoXZ4Di7jTvQ/uLJEzBhSHNIa7jgjhgHje6PYycM8n2cn6D47ohxAxETyTkRb1T/Bvz+ssN875OASO4rp03CxKHNkRehMF9vcw6WX/nKZ44d67nt++fv5+jKkggIhP1eZ3eQzdKICPoZTbSZESYioiDuN9R8SiPcj+l0TZZzS/m8ea/YqmcxzaVm7c+lHJf1n2bwUMjX78mMhtpEDNefPhmHjhmg35Z2BcKpDOpr445AIpnRwjPCWna8QZOkzI4Z5n6H9vGftAXoWVkz7qlNxHDDuftioNEiTUF5ShfMr8HN19L+PI79CvDump1YsbXVCuzN3sLmuGOSDcrNempzX0HZePffkL1Hcr6JybByzlgsd9uwRFxwzoEj/B8fEMhb7c/yrhFOoaEmbv0+zJGdvu9QXH2itwPF+MFNjpIecz/ukpO4zzi3tHRal6P0fY5a75yPHhcI19fE0VATx842ZoSJiMife2EHP35vupptFTV3jbA7y2zyWwXODI6zK8Vln8sMeh6evQbvb9QngZm1uoX0yO9MZayv3mMxQSImjhphQC+NqI3HPAFcUFkAYJsEGBKgdBqBsBmghNXCxmPZPsLm89ozxkE1wrlui7myzvpP5ypx9sU8zL67W40gLOg1SGW0wIA331reoQEr6gF6gGj+DQXtNqx0Juguc/W9qHW15ociTWWDaP26+bv3fyIR57jNgNddI+w3TvuHnFQ6d0bYrzSmq3pcIAzo5RHMCBMREeBd1hfwZtj8ag/93nM7bF9/Z2uEM8bz+D+/X/Bq1teaAYI9o2p+Df7tR+fhgVmrAGQDnSgBvFsyozlqUGsTMaQyzhrhHW1J1CVi3mAzwoIaGS24dtNcxtoMUGpDlsCN20ojsrW8trG4xuYXoPoFoPbbxAqEzdXmvF0jxg9uApBdGCW4NVxw/2S7S4/cK+c2lx89Fv/9yvG+98Vi2dKI4EA4OFwLGqP5DXrUulr7691gC4TNP92gscVsC6UA2Q91Da4WeX6TFQ8a3Q+A3vGiM6MFfvNgKsVkuUTuTSpPv4Ya7GAgTERE8P9a2Z2l9Xt79Qugpz36HjYY5QzuPsJBkj7Bq5k9NoMUeyDpVw9qdo3wyy7n0pl2BsJtyQzueWUFjt47W8Pa0plGrbHKl/N5QzLCtv7IQYk6d2lEWA2nY3EFq5ZXrOcImiwHAJ8/YTzakv4Ll9gPIWYF2voiG+bLac8InzJlKCYObcYlR4wJHCtgZoQFQYsdm38fowd4V0xza6yN44BR/Xzvi0eoES6kJMBczMRciCwX+weRRkcQGz6RT+/IYd+PfsVdY2z//X73vH1xzIRB2GdYH1x21Fh8/9/zsX5nh+P/yZXHj0dnOoO/vp7t0sLSCMOwvvXYuLu93MMgIqIK4BdEuG9TSl9cYu8bplvBm1/sYU5u0x/j7BoR+Pw+watZCmHGFvZMVyajPEF4VzLCSulZYLdnbcs/d6Q0/9IIV/BpnwBmvoZhpRFmBt3sBxsWCNv7CMes0ojs/e4gxx44nbn/cPzsIwf67je4NCKbERZbjXAiJvjyKRMxqDm4XAHQf4dR5plFqZIIKxmJiWSX4A4IN8NLI8IzwgNty2oHUcpsb6dfb6hNOO4Le56YOMdtdY1wZ4RtDx8/uAn7j+yHRDyGkf0bUJuIIenKCE8Y0uxZDISlEYZxgxqxcmub76d5IiLqXfyCNM9kOSj88qnF0BSwZU9n4OOc+9V/JtNaaCDiVxph9oW1FoVwZIQ1T8AbtwLhwnrV+i0f3OxqZVabiIVmXQFg7KAm67LVNSKkrZVZGmFOyArNCIvYSheyt9nvd26fvRwaCMa8l81FNsw4IR4T61ijTnRLWhlhf+JzDICeTR3e1zlpMCwQXr8zd2LPXRLw2WPHWZeDa4T13/+gpvCAHwB++OH99OcxdtZYY68R1n8GvRRiy7bb9+HJCNs2cv+d1Mb1ch57GX5dIub5oMaMsGFE/wa0dKbRHmF9dyIiqm5+GWHv6m/Zy5f/8Q20dqZzzjWxVpbLaOgT8vWyXxY3ZdUI62/c9sA8oynPcr1m8JDWFCYNbXYEOlH4ZYSbfANh5zbuwMIen1gry4WURpjvwzUxMyMcHrC6g0dzPAreoNxexhEWYPvXCAPbWpP4zqPvWc9nL5uIIpXRQvv6ZjOlwLfP3se6vbE2gRvP29exbdCiHQCwpzPbUzloaO7X5qTJQ6zLQcG6+eHIXavrNve7p+Mjh452PI+9NOL0/YbiY4eNxg8+tL/v42OuyXLmeBpq3ZPlgn+fNfGYp/e1XsrjfK6oreDy0SMD4YHGohrbWtg5goiot8v4BKKeumFb9nfVtjY8+OZqnP7/Xgrdr7kgQzKtoY9Rb+nHHdQC2XIJv9KIlKYCM8LJtIZ4zH854DB+Cza4XwL/GuHgYMVaWU4Lbp/WmTLGa4w/rOZY7xrhfB5rPMr7WEeWMSzAdmSV4dyv7Xb7RLoo3J03wp7/SydPxM8+cgAAODLRJncHhXy5P2DYA8lCViO0s78eZqBpD57rEnH85qKDMbyff2s8/Xef3Yf5TYu3Rjh72T2psjZhBMLKGQi7f1dRW8Hlo0cGwgOMepcdbKFGRNTr+QVp7kDTvcWm3R0596spZfX1Dc0Ip4NrlGN+GeGM8mSsE7b2aTGRvL8C9ssIL920x3G9Ju4NLNwlB/b7zZdV8wnsTB3pjCM48esV67dvq32a7X73Y52LNISVXHifwz0Me/1r1DLTdEahLo8A1nwt/V6psIywXdCr5/7AYv/7KGRZZju/DxKNObLIzsc7fwfm376na4TteWrjzvtq4nqNsL0Ep87nG4x8PyBG0TMDYWN1ue2tDISJiHo7v64RuRbU8Gvl5KGyE+XCSyN8+gi7M8KuGmH34hxmoJPKFJoR9gYuT87f6NrGG1h4e716M6lhpREdyYwjOxkPCeDjsWyNsF99rbc0Ins5tOTCd7KcN8B3d6rIZXdHGpqmcOLkIaGTtMznilt9eL0vlnviWKCAsbk/sIS9Hq98+xQ8df0JoU/zxZNtC2M4Mu/6MTTWRm8qJrbabyD7t18XsrKc+3ddZ2SENVdG2PMtAZdY1pmtQFo7WSNMRNTb+dYIa+4aYVfgGSEY0oyyCAChpRF+q8GlXTXC9uf/9TOLvRlh4w1+R1sKsZhEzlqa7Bnhf15zjP828ZgnkHAH0O44wwxyg9q6daQzjiAx7HW1d42wJq4ZD1VQPqURtoxwaI2w97I3kxgcJAfZ2tKJ3R1pjOrf4JsZNmvIzeeyMsI+Hxr8livOhzsj784Q240Z2Igpw/s6bnvre2fgxnOnAACaauP4ztlTrPvsr5W1KlxeGWHnZDmzP7M7C24fsjuQ9+t9XedXysOMsM6cCdtqKzAnIqLeKUqNsIJr9asImSUtYkZ47Q7vrH/3ynL28cx4b6MnELaPJy7ZN/zT9x2ac5wAMLApG6hPHTvAdxu/mkt3Rtj9uphfkQf1ue1IaY6v6cO7O4gn4enXdsu6z54Rjtg+LCjY1bOW5jaBuwrYv97KK/B+V320X0Y4n8DSj/vlD3ud/QxsqsWIfnq/Y3dwab9uDr0xYikH4G2fZvbV9vxthWSEa+IxaMpZ0lSXiHt+j1F7IuejRwfCexgIExH1en41wu7SA6X8Z7aH0ZSyMqFNeXxVrD+/uzTCdb8rsrEHNprKBldBE5TczCAHCP7q369rhKekwnW/mdVzv56mdldpRK6Vv8yAyW+1Mr9yhij7DVpQw85ebhL2uzeXX3Y/1r44iZs7y62UNyscdbJc0MhWbmt1XA/rohEkrA+wKWn0hc43I2zftfkhz50Rtv9O3DXf5jca9m5g9r/XI8cPxDvfP8PTErAYemQg3MSMMBERGTJ+XRtctym4v1rOHQgrlc3k5jN5CLCXRujX3VnCsIxwRlNWYBwlYI8JMKRP7l6xtT6T5dxf+XsyxsZxu0tNTJ3u0ogcr6vVJMK1SINS3ixn12qE3dtkv5oPe0n/fe1xvvs/ZkJIIGzVCJvH4i3ziDpZrn+jfwnOqm1tjutR/n7dgh5if/3MMp/8aoThGwi7eyc7SjBCumCY7KU8MQH6N+ZeGKQQPTIQronHUJeIoYWBMBFRrxdlZTn3VP5ogXB2RbWwBRH8mIGjGT9mNGVlG4f3rfdkWO0ZsrSmrAAgyrpRQ/rURcoQ+vVl9ZtkZ2d+AAgaR0dKc06WyzNACytXiTkC4Xz7CHuzy1EywjU+tbcxkcByE/v+7F0jzjlgOL5w0t7WNlH/fr5z9hRPD+kpw/vg3k9PddyWb2kEEG2SoFkTn1/XCOdkuXTG//+M/ffrHr+9xt28q67G+8GtFHpkIAzoSwe+snRruYdBRETdrC2ZRmc6+xWqX9cId6CpKRVaj+pHU9mShkIzwmYgndEU6mtiuPTIvZDWvO3T7ONJZzSrnlJB4dQpQ/G7Sw8NfK5hfaOVT0SpEXZnrnNN8upIZVBj6wmbazKT2I4LsGWEEb6gRvgSw97Lfm233JlbP35t62KifxN9/MTBjtvtC2rY96sphUQ8hhvO2ddaYc6vz7OfptoErjphvOO260+fjNP3G+a4rVQZYfO/krkqXbT9OifLJa2McPC3DZ6uEbYPOmZQ7LckeCkUv9iim2ze04nNezqxYVe7ozaKiIiq237ffxqThzXjma+dBCCofZqrNMLdPi3CG6yC6kJphOZ43oymf11el4ihM53x9Dm2B2DmtqY/ffYIAMBXHnzb97nCJvLZ5aoRvuakCZ595aoV7Uhl8soIm/e6g0i/x9qvhe3XrzTCb0ENq344ZHx+gbD53H+96ijs7kh5lps2nyphtU/L3vfol47FvDU7I7dsEwmfNGgqpI1Y0Gvod3O/huAuKX6PF59X1VsjnL3saQdn+zB16JgBUFDo21DjKJ0plR6bETbtag9fIpOIiKrPkk0t1mX/JZbDF9SIQu+fW2hphCsjrBRiIla/VHcNsyMjrKm8vhKOuuysf/u07GOvO22ip01XrtrWjrTmKCfIdyEQe1gaNlkuLJD0zwgHl0aE/S34lkbYnqBvfY2nVtWvRtg0qn8DzjlwRMgzOomEvw6mQtqIBf1N+b22+QTC4soIm8JKI9xBuX2BjWMmDMJDVx+jLwDTDSnhHhsIf//8/QAAezpYJ0xE1Ju5M3RA7gU1oiyda68Rzrf9lZkRti9TnIiLvpRsRgvsI2yOPZ+AMmq9qN8Sy/ZgJSaChtr8MsIZTTlLI3KM5ZC9+gPIBlrm5kp5jzlqrOdfI+zeJhs8+v29mPwCr1wvb8wTCAdv+8g1x+C3Fx+C0/cdijsvO8x3X+7j9nv+iJ99HIJeT7/99w3pm+37eJ99ePoIh3SNcKxOaBsQSyNCHGYUru/pYEaYiKg3c2eE1+1sxzMLnauqaUo5AgG/cgo3e9eIqLP+rTFZNcLG8ymFuAhq4zEopU8ys3N3jZA8vhKOWi/qV3NpzwgnYoJPHT0Wf5m1EiuNLgVRSkJqIi6oAQA//ND+uPSIvTBmYCMA/7KGoOtBfLtG+NQbZzt4RNptznEo6379Z1gfYdPUcQMxdRxw4aGjAp+rEjLCffPOCHv34c4Ih02MdE6WC/6bKIUemxHua9QxsTSCiKh3cwe1Z/6/lzDjvY2e7exvqVECYc2WEc7VH9fN7BqhbJPlYjGx3vDdXY/cXSOsWtoIzxW1p6zfZDl7ABI3xmdfftevJMRvMYSg+/zGcODoftb1sOAoKmcvYu9t2fu8pQtRhAW29ueyd40olD1z7d6/XWGT5aI/Jp9SIL1G2Ms9QdB+XJ6uEY6/Iee+ga69prn02EB4eL96xARYsbUt98ZERFS17BlhTVNoTWY827iDn6CV0uzsXSPcwUmucgQrI6xlA+G4USMMePvg29/8/foih4kaFI0e0OANsuyXfdqL2TPhx00chK+fMRlDmp09i2vj/jXCUeIue92u+zWNWh9q/9Vm+876lDgYw/RbgCVMwOrS1muXT2mEn9ED7IuhRMuMF1I7W6oyA3f7tLs/dTg+d9x4zxgdmV5mhLuusTaBcYObsGzznnIPhYiIyshe8xkU5LhvjRJsKpXtGuGuycyVMTMDbXPOXjYjrD/uR/9Z6Nje/oYfJUi3i1pP3Ke+Jq/gFHCWRpwwaQiuO22SJ6BKOOo7sy9UlFHZF9iIUhvrx75YirkP37pas0Y4x8v74jdPxhdOzPYADsoIm7eaQWD+EwV1T19/onVZIBDX31rRSiNKFAnrwXv2+pHjB+L7H9rP+/whY7b/f3LWCDMQDtWvoYaT5YiIejl74BhU8uAOZqIEm8rWNSIuggc/fzQ+edReAKJPnjMz0ZpZIxzQT9ZbI5wdQy5+nQ5ev+E06/IR4wbg1ksOARAtsLCPxRGgBLQms5dGHDFugHU5SsswCcn++bXk8mN/jczH+B1ntu46/EUdN7jJWsEWyF1GY75chSxyAcDxXDGf0gi/3ZaqNGLaOVNw1fHj896v/XcV9HsPm+Bnb9vnCIS7IUrtsZPlAKC5LsHV5YiIejl7djcoe/fX11c7H5PJHWF++9F5uOOT+sz+WExw1LiBOHB0PyilMGFIM346fVHOfdgX1KhLBAfC7oyw5FEl7F6uFtDLB03TzpmCw8cONI4j5+4cmdlmW5AWFEfZA+ER/RrwyDXH4ON3zYoUxtrjuUIzwn78grFshwrv9r/42IHY1pq0rmcifLiynisk+M6X38Qzv2Mp5oIadtecNCH3Rp79OrPYwd0pggfQ7PgwkDuoLqYeHwhv2t1R7mEQEVEZKKV3V7DXcEYtK7h35opI2728ZAuA7Jtzc10CN330IDw8e02kx2e7RujBdG3AxLaYKyOcj1yZyKCay7P3H44TJw9BU23cUVdtD7L2HtLseaw7mK71tD0zM8e5xx5aDxq1NMIW2WZXrPNuZy5x7dcJ4+Ij9grcZ/SMcNfTlzHxvm6+k+UKCBCt30shAwvhniwXtP/QQNiWEa7NowtJMfToQLipLoEWlkYQEfVKyYyGukTcsThFR8o7Ua4rWpL6e0yU1b78mEGUpikkYoK6moDSCOlKIBwegPll2JrrErjrU4cDAP739ZOwZnub7/bjBjdmxxgzA6ng0gj9OeC7nR+/jg9+4whjf7XM+NXvkd87fz8cOX4gjtp7UM59XnnC3rjt+WUAQibXmc9lTpYrsEbYThCtfVpXJssVuwODO4sd9HsL+zO1r3A4sCm7YAlrhHPoU5/AzvZU3q1QiIio5+tIGotW2ALH7bavt4vBTLZ4W1pFrV+1tU8TQV1QRjhgd5FqhHMEYLkWKBjZv8ERHNqDD3uHiOyqbc7Hu1vLxbKRcE5htaWRA2Gf18gvUKyvieOCQ/z797r1a6jBzz9yIIDwBTiArtcI20nM+6GrWHPcCm1Pl4s7i11IaYTdwGZ7INyVkUXTowPhCUOa0ZbMYN3O9nIPhYiIulm7kf21B8I725y95X/vs3pXPsx5KO5sVtQ3aKs0QlOIx4IDaHdJRz6T5XJ1K3BmXXMP3Fm3K+jfaKwCZ2aE3b2I4/6BW741wt7JctHYu0aYHzyKUVtqxvc5a4Rd7dO6QuC3Kl5xosFSZVc9k+UCfnNRn3+QLSNsHXsJ8509OhDee3ATAGD1dvYSJiLqbfwC4d2uRZbO2G9Yl57DygiH9ES1s7fdAmyT5ZRCPCZoT+n7G9qnDgeM6mtt536fzydkiecojfDLCId9k+o+1kajc4R5zO6xeUojkEeNcMweQLnuE8EFh4zERwJWYTPZD8X8UyhGJtF8XXP1HbZWlitCoOnuyWvff1eVqsrAvSx0cEY42v6cpRFdGFhEPToQHmC8WO4MABERVSf719TtxgQvezbVvdpoV7N0ZkY4ympfAHD50WMd1zVbjXBMBIOa9FKDzxw7DteeMsnabmS/ekw7Z0pBYyx0slyU7QGgxuh0EbRqW02iCzXCIc8LAW695FDccvEhofvwqxEuRvYzakbYWlCjGDXCPruwH8vhYwcUvO+gDzJdJbFopRFRM9v2DhLdoUcHwuanhgdmrSzvQIiIqFvYs3PmJLlMSCDc1a+VW43Jcu79BO3XHXhnu0boGeGDx/THf79yPL540gRPCYLZumqwrS5XRfhOOFdpRL6BsCfQjZuBsPjuw50RzicItb+OhbZPsydsw7pG5Ms8jqBA2Hwuc9zFqBH2nRhnu+2vVx6FWTecWrR9F0PMNVkuav/nIN3RMs2uR3eNMOuWXl++vcwjISKiUvn2I++iM63h1ksOdQQlylZ/a9pd5E5C5lLIUScweQNh5xLLAHDAqH7GPrw7+dtVR2HCkGa8tGRz5DHmzgjbLhsxa1h47T4Gc/9BgbC3fZrz57NfPykwmHSOrbDJcoD3b6I4NcL6PoJ6U5uKWSPsv//s5YbaOBpqG4I3DlGqrhHu9mmFvgy3f/LQwFLXKB8IC9WjA+G6RByDm2vRmcpvXXYiIuo5Hp6zFoD+Nbnm6Bmrs9/mrhHuqlQmu7KcXWCLKHEHwsZPY4llx7Y+38keN3Gw43qkyXJ51AhHCRA9ga5R+mC1T3PtIqhrhLnZxKHNCOLICHvuyzlUAO6MsHMMXRHPkRE2FbePsHfcxUqQlmqJZU9GuMABn3/QSM9t3ZEd7tGlEQBw3oEjSvbLJSKiymKPSezLF5vcpRHF4o5xgt51AjPCSnkyt2Fv8vl8vZyrfVqhNcLmeM0FDoIe6i2NgLF9lOfyH2fUsQKuDwtm14hIjwxn/i4zOXJt2Ux5158zV41wV5SqNELEVSNckmcpnR6dEQb0Xn+7O1K+n7aJiKi6OEojrNuy95cqEPYuqOG8/ufPHYnWzrQnc2xOlsv4ZYQjBCZRvhDO1TXC/rxR3iatDKcRYJs/g2uEA0ojcj+VK0iP8IAczNdrZxH+Do4aPwhD+tTh2lMn+j+XVYZh/ix9jXDX9q3/LHak5O500c0lvl3W4wPhAU21UArY0ZbEINsEAyIiqj6ao0bYmxEu1Wqj3tKI7OWT9xmCkyYPAQDs6XAGYI4+wnm0xTLnwAztk31fe/lbp2Dhht245q9zHdvWB6xW5/c8UYIqM+g3M73mz6DSCPey0ZJPJOz3uDzGCrj7COs/V21rze/JffRrrMHs/zs953ZdnRzm3JdXsXJ8pZwsZ1eKcoZSrpvW40sjRhprh6/f2VHmkRARUanZu0b4T5YrVWmEf5BWG4/h3k9PtW4PnSyXR0b4jP2G4ZaLD8b1p0+2bttrUCP2Gtjo2O7s/YfjQwd7ayvt4nlm68xAxgyAa+PO9mnF7BoRCxlbV7pGnLZv1/pHRyHW6+G8ff+Rfb0b57lP523FCSxLtTZFKb+M747sco8PhMcN0hfVeGXZljKPhIiISk3zLY2w9RY2FtkoNm/WS/9ZVxNzTBbzTpYLDoTD3uRFBB85dLQ1US3It8/exxOI+u0raHx+zHEmXJlhzVUKYHK3bxPXzzD2qo5CM4v2wM4c40mTh2Dlzefh5H2GYES/+kj7yZdfh4oXvnkyHrr66IL36XfMlb7Ecne3Oyu2SIGwiJwtIotFZJmITAvY5mQReUdEFojIS8UdZrDJw5oxuLkWyza3dNdTEhFVtEo+Z3eVX0bYXhqRSofPbPpojlXKgkTtGhGUEU5lVJcyp0Gi1RB7A+Gwr5rNza3SCCMYTxnF2N4llgO6RkTpWQz72PzHkYsjI+w6rvuvOBKzbjgt2o4KZD/M8YOb0Ke+pqj7r/TJcj1dzhphEYkDuAPAGQDWApgtIk8opRbatukP4E4AZyulVovI0BKN12986N9Yi44SZQGIiHqSSj9nd5W9a4TmUyOczISHhos27inoeT1dIwJiCs9kOaXXMiczmie7W0hg4n5Ig7H8cRh7QBm3+ggHv07muMxJcObPpPEhwz3qwJXl8piYp29faEZY+V6uFsUKYAss3a4IpfytRskIHwlgmVJquVIqCeAhABe4tvkkgMeUUqsBQCkVvRN4ETTUxNGWZCBMRIQecM7uCs13QY3s/akcva4OGdOvoOeNWt/rriVWSllLQLsXnujKN9WjBzTgb1cdZc2TCWMfUz59hBOuGmGzp7J7F+5Mdz4Bl7NsI8ID/KiAy1WiaH2Ee2BGuDtGHCUQHgVgje36WuM2u8kABojIiyIyV0Q+7bcjEblaROaIyJwtW4pX09tQG7fWnCci6uUq/pzdFc72ad6McDokEL7vs0dg2tn7FvS8QTXCuWhaNjj3BoyFv8031SY8i28EybePsPm6urtGmMeRq31aPqURYRnhqMoVB3fXc/XmQLg7RGmf5vfKuX//CQCHAzgNQAOAWSLyulJqieNBSt0N4G4AmDp1atH+hjrTGt5dsxOpjJZz0gARUZWr+HN2V2R8lhGzB8epkNKIwc11OSefBcmn44NdRimk0s7AMruP/MdhtlU7bGz/yI+J55l1NV/DbGmEq0bYtX25M8LKUTfe/X+mxQgv//Xl4/Dqsq2+9xW7j3BPYv69Tx7Wp2TPESUQXgtgjO36aADrfbbZqpRqBdAqIi8DOBjAEnSDd9fsBAA8/vY6XDR1TPjGRETVreLP2V1hL43QfALhZEhGOBYrPLtWcEbYqA8GvLW0hQQ4I/o14MmvnoC9hzRFfoz9aaI8Z9qVwa5JGDXCgRnhoMlyuceWb49jPz4Ly3WrYjzlIWP645Ax/X3vK16NcPkj4QNH9cOR4wdG3n7i0D546OqjA1+bYojy0Xg2gEkiMl5EagFcAuAJ1zb/BnCCiCREpBHAUQAWFXeowZpq9ckCLy+pjK/uiIjKqOLP2V3hWGLZpzQiTDwmgUHFRw8L7ybhzqZFXURBqWwm1VsjXFhgsu+IvqhL5J4kZ4o7aoRzb28GvGb7tCPH6YHLASON+mpPjbB/+7QoudKgPsJfOGnv3AM1+HxJUFWKlcmtgDgY//nK8fje+fvl9Zij9x6E+giTQguVMxBWSqUBXAvgaegnyoeVUgtE5BoRucbYZhGApwDMA/AmgHuVUvNLNmqXp792Ivo11GD19rbuekoioorUE87ZXZHxnSwXLfyJifgGFW997wz8v4sOCXmc36pnkZ4SmlIhNcLR9tFV+dYIm/35LzRazZ227zC8+X+n4URj9byxrkU93O3TTPken/3DxScOj/7trv23X6qewWFK/WsMyuQ21sYxZmDuyZIULtISy0qpGQBmuG67y3X9VwB+VbyhRTd6QCPO3G8Y/jl3LVZsbcX4wdG/MiIiqjaVfs7uCnv2V1m3RXusHgh7gwp3yzPP/T5Rr7s7RJCMFhwId9fkpXzLD0b2b8CSn57jqKce2icbYP74ggNw+n7D8OP/LMS6ne2e4zJ/HVGOLubocew/5lzMuuDzDhqBK44bH/2BXdRd9chBr8V7PzyrR7ZCqzRVM7NsiLEe+4d+N7PMIyEiolJxZoSN0ghXJBwUOMRj4r+EbY53Qr/gMSxQS9juVApIBk2W66Z3YL8JabliuLBJhQ21cZy1/3BrRTl37XM+8WFQkJ5PPevAploAwEcOGVWy1dPKKWzxlqgfyACguTaBcw8cjns+MzX3xr1IpIxwT2D+p23pTJd5JEREVApKKd+V5TKuyKs2EUNHyjtpLi4SsIRt/hnhsHznXgMbsXxrKwBnaURtojg1wl1hHn8xcplmJj3hen3M2u0oh2cvh7Bvn88rM+2cKZg4tBmn7dtj1oXJS9G6RsQEd152eFH2VU2qJiPM/nhERNUtoylnqyz4Z4TzrVnNlVTzK50Ie8zvPnkoTtlnCMYPbgqtES5H8rKYGVMzG+kpjTB+HVEmFAb1Ec7nPb2xNoFPHzOubF0RSv60DG9KqmoCYf6dEBFVt7SmHKvIhWWE/QQFgbmCLr+7wx6z/8h+uO+KI1FfE0dGy3ZhcAfo5Qjcihl8J2KCuPHPbkCjXqrw+RNzd34Ieg16Qm6ruzpUlOoD07+/fBwe/PzRpdl5D1I1pRHD+nb/TFEiIuo+mlKerhF7OlJYsqnFsV3QwkpBgXCuoMvvcVECtXhML+ewFqgoQh/hrirmc8ZEPK3TAL2GeOXN50XaR08IeMutVH8nB5ewN29PUjUZ4Y8fPhoAcJLR3oWIiKpLWlOOrhGaUrj8j29i0Ybdju2CAuGggKKQGuEowUlMRC+NSPtnhEtdGvHM107Erz9xsOO2YsZU8Zh0eTXXwN9JD5j01l0jZOlnaVVNRjgWExw+dgDSWvCqQkRE1HNlMq6MMLIri9oFlUYExVa5Ag2/+yNNBBOBprKlEd3dPm3ysD6epWmL+ZzFCYT9b+8JoV93lUZUahz8xLXHVcX6DVUTCANAXSKGTp+ZwkRE1PNlArpGuOVbGpFzslxYRjgkGoqJe0EN1wpsZQhwih8Id21/QRPqKjX481fawVZqRvig0f1x0Oj+5R5Gl1VNaQRgBMJpBsJERNVgzsrtOPU3L1rX3V0jgqJQ91LGpqCv24MmbB0+doD+uAIzwnGjNCKZLu+CGs7nLN6+4tL1jHBQD+dKDf7sTpikl2IONdYxKJUeUCXSo1VVINxcX4P31u3CjPc2lHsoRETURb95ZgmWb2m1rmcCuka4BZdGRI8o+jXUYOwgfSnh0IxwyC5jItA0WJPl3OMqZx/hYnyvH49JYKu6qIJeg54Q+11/2iS8Nu1UjHEtOV1sPeFDQU9WVYHwkGb9U9mX/vYWHp69psyjISKirhja15lp0wNh+2Q5/8cFtk/LI6BQSlkBiF9GzrotJKAUT2lE+fsIWyvLFSESLmmNcA8I/mIxwcj+DSV/nh7wUvRo1RUI276e+Paj87B+Z3sZR0NERF3hbovp7hoRFMwFdo3I4x1PqWyQ5l9SkUfXiMAa4e6PcIq9oEaCNcIl1xM+FPRkVRUIHzdxkOP6sTc/X6aREBFRV9W7MrvujHDek+VyBBSn7zvUkaE0M8KhK8uF7DIeC+8aUcygNKpiBlUXTR2Ny48e26V9BA2HoR91l6oKhA8a3R9n7z/ccdu2ls4yjYaIiLqiM+Oc/JzxZIT9BdWt5qq1vPczR+D1G06z9m1uXmjXiFRGw9xVO9CRzACorNKIYjj/oJG49Mi9urSPQns7ExVLVQXCgDcrvKMtVaaREBFRV7jbYaY1zRkIB6SEg1p6RVmkwZ4xFatGuLAFNcxa5X/MWYOm2rgnoC7PEsuVFWAGZoQra5hUxaouEN7WmnRcT2XYTo2IqCdKus7fmoYudY3w88I3T3ZctyaTKWVdLnSJ5Z9/5EAAwKbdnejbUOO5vzwZ4cqKMIO7RlTWOKl6VV0gPNw1uYKBMBFRz+SbEdYKnyznZ/zgJsd1M+hVQGjXiCjx5JiBjdh7iL7/vvV+gXA5aoS7/SlDBXaNqLrohCpV1f2pXTR1DP702anWdQbCREQ9kzsjnNGirSyXT0bYzSxX0LtGGIFwWI1wDhOGNAMA+jZ4F3ItZyAc9Np1t6DykAqL18vmd5ceWu4hVL2qC4RjMcFR47N1wsl0hfxvJyKivHSmMo7r7q4RQYmOrizyYO+za02WK3BlOQAYZyzK0ccnI1yO7GxPKTlgyzDdhw4eWe4hVD3vR9QqYM8GrNjaiqF966xP5URE1DP4ZYTtE+Takxn3QwB0LSNsz9KaQWNoRjhHvDbKWHDBL2gvR0a4Ji4478ARXe72UGpcVpi6S1UGwgnb/6AbH38PALDy5vPKNRwiIipAMu0KhJWzKrgj7Z8R7spqZzFHaYR+W2hGOMeXjqMH6Bnh3R1pn+cqeJgFExHccdlh3f/EeeopmetS+fPnjuSiYN2kKgNhfqVCRNTzdabdk+WUo7ZVC2yf1pUaYf2nQjYTHNpHOAdzCd497d5WnpXWwaGS9PaX5qTJQ8o9hF6jKgNhIiLq+TwZ4YxzQQ17Bwm7oD7CeVHZYMyvNCLqM4waoAfCJ+8z1LuPXh7smfrUJ/DFkyc4buNrQ92lagPho/ceiNeXby/3MIiIqECdaWcNsDsjHNQUqCs1wuZEu2tPnYh2Y7KeXwlD1Gxuv4YavHHjaRjUVOu5j99e6t774Vme23p7aQR1n6rrGmG65eJDHNeDViAiIqLK5M4IpzXNUZJbitKIWEyw8ubzcN1pk0JrhPMpaxjWtx6JLoypN+JnBOouVfs/s6nOmex215oREVFlmb9uF8ZNm45V21oBeAPhZFpzJDWCEhyJIs1CC+sawYRlabF+mrpL1QbCfetrMHFotmXaH2euwK72FMZNm44n3l1fxpEREZGfR+auBQA8t2gzAG8CQw+Es9cDSoSRKEaNMMK7RlBp8RWn7lK1gTAA7Deir3X5V08vxsqtepbhnpeXl2tIREQUkScjnNEcyypnAjPCxXlrM2t4/bpGMDYuLb6+1F2qOhDe6WpX09qp93Fko24iosqX0rwZYXsWuKRdIxB90QwqPk4kpO5StV0jAOC75+2LWVOGYq+Bjbji/tn45L1vAOB/MCKiSiai1/+64mAkM5qjm0DQZLm4KyM8/brjsa0laV3/8+eOxGf+9GbOccQYBxNVvaoOhCcP64PJw/pg464Ox+1+X3MREVF5mZPffvSfhfjJfxd6Jkwl05qjNVrUGuH9R/ZzXI+6WIHvJDlDc20Cp04ZiiuPHx9pX0RUmao6EDYN61vnuM4wmIiosmnKm/FNpjVHa7RMQCRcrK4RJr8OBrGY4E+fPaKoz0NE3a9XBMLuUgi2ZSEiqjy5ur0n0xoaa6O0T8s9/eXVaada80aCmO8VfMsgql5VPVnO7pmvnWhdLtKEYiIi6kbJTHD7tBNt5Q5RJsuN6t+AycP6hG7DGmGi6HrqB8ZeExLuNbDRujyouS5kSyIiqhT72tpgurtGmO3TfvCh/XDnZYdZtxdrFbdsRriHvsMTdaMFPzoLC37kXS670vWaQLi+Jm5d/mBzCzpSmZCtiYiou/lVOpx/0Ai89b0zMKp/g6ePsFkaMbCpFnW2SXRFW1mOGWGiyBprE55VfXuCXhMIA8A/rzkGw/rW4f2Ne/Dxu14r93CIiCiHeEysQNe9spw5WU5EHMFq8VaWYwhMVO16VSB8xLiB1rLL89ftLvNoiIjITvlMlzOTu7VWIJzdxiyTEDiD1qJnhBkQE1WtXhUIA3rqnoiIegYzwK1NxIzSiKy3Vu8AoAes9li1WIEru0YQVb9eFxU298D6FSKi3sCvRtgKhOPe0ojlW1oBAAJxBL9xERw/cTAuPXKvLo2HXSOIql8vzAhnJ8098e76Mo6EiIjs/NbHMFcCNUsj/JZVdldCxGOCv151FM47aESXxiPMCBNVvV4XCB88pr91+boH3y7fQIiIyCGd0Ty3mUFuTdxbGmFyB6rFClyt0gjmhImqVq8LhD9x+Gicvu9Q6/q2lk7c+8rywBWKiIioe6R9UsIxV0ZYKW8G2F28EC/6ZLmi7I6IKlCvK5gVERw1fhCeXbQZAHD4T58FABw/aTCmDO8b9lAiIiqhpG9G2DVZTinEYwItkw2a3YFqsdqemfmRUgbCT1x7HPrW15TuCYgoVK8LhAGgrsabCI/zIz8RUVn5lUaY5+Y6c7IczNpdWyDsekyxAuFsPXLp3h8OGt2/ZPsmotwilUaIyNkislhElonINJ/7TxaRXSLyjvHv+8UfavHYVyAy/eX1VVi9ra0MoyEiKq6ees5OZbylEWZMm4gL0hmlZ4Rdga67XVqRKiOsUJt5EqLqlTMjLCJxAHcAOAPAWgCzReQJpdRC16avKKXOL8EYi64uEffc9sCsVXh6wUa8cePpZRgREVFx9ORzdsovI2xEtfFYDGlNQfOpEXbHqcWqETZrIxgHE1WvKBnhIwEsU0otV0olATwE4ILSDqu0xgxs9L190+5OrNnOrDAR9Wg99pyd9skIm2UONXFBRtMny3kywK53sliRAmFmhImqX5RAeBSANbbra43b3I4RkXdF5EkR2b8ooyuRw8cOwI8+vD/61Cdw/xVHOO474ZcvoC2ZLtPIiIi6rMees/0ywjErI2yURkB526XBXRpR5MlyzAkTVa0ogbDfGcD9sf0tAGOVUgcD+B2Af/nuSORqEZkjInO2bNmS10CL7TPHjsN7PzzLNzv8rUfm4YFZK7t/UEREXddjz9kpv/Zptj7CaU3pGWHPQJ1XizX52WyryYwwUfWKEgivBTDGdn00AMeSbEqp3UqpFuPyDAA1IjLYvSOl1N1KqalKqalDhgzpwrCLp4/PksvT523A9/+9oAyjISLqsh57zk6lg7tGxGOCtKa3T3OXRrjj1GIFrqXvGUFE5RYlEJ4NYJKIjBeRWgCXAHjCvoGIDBfjzCQiRxr73VbswZbC0L71SATUk+3pSHXzaIiIuqzHnrPTmjcQNoPempjoGWH4TJZzRb7FmiyX7SPMUJioWuUMhJVSaQDXAngawCIADyulFojINSJyjbHZxwHMF5F3AdwG4BLVg5Zq++91x/vevruDtcJE1LP05HO238py9q4RSunb5MoIF600oih7IaJKFmlBDeOrsxmu2+6yXb4dwO3FHVr3mTK8L2679FBc9+DbjtunPToPf7nyqDKNioioMD31nJ0JqRFOxPULqbSWcwGNopVGsEaYqOr1ypXl/Jx/4Ag8NX8DZry30brtlaVbyzgiIqLexbd9mhEJmyVsvhnhHKUSXcWuEd3nH1cfjbU72ss9DOpFIq0s1xvEYoI7Lzvcc/vFf5iFFVtbsbWlExt28T8nEVGp+GeEs5PlACCZ0Xzap5WGxoxwtztq70H42OGjyz0M6kWYEc7hjRXb8Ysn38dTC/RM8cqbzyvziIiIqpNvjbC1oIaet/ErjSh1wpZxMFH1YkbY5ez9h3tue2VpeXseExH1BprPfD2zRtjMCKcymrcmuESharZrREl2T0QVgIGwy8Fj+ntua01mun8gRES9TDpkZbkac7JcxmdluRIFqtkllhkJE1UrBsIunz5mLPYe0hR4/9SfPtuNoyEi6j38aoTt7dMAPSOcq2tEsWSXWCaiasVA2KWpLoGfXXhg4P1bWzq7cTRERL2HX42w1T7NVhqRq2tEsSgwEiaqdgyEfRw4ul/ObVZta8X0eRu6YTRERL2Df42w0T4trDSiROMxh1OqjDMRlR8DYR/NdQl8//z9Au/XNIWTfvUivvz3t7pxVERE1c0/I+zsI5zya5/GrhFEVCC2Twtw+dFj0dKZxtMLNmLB+t2O+5K2CR1KeZu7ExFRfjRNwW+R57i1oEa2RtiboS3NOXhQUy0AYHBzXUn2T0Tlx0A4QG0ihutOm4TrTpuEzbs7cOTPn7Pu60hlu0ikMgq1CQbCRERd4ZcNBrLZ3ritNCLWTRnhi6aOQUNtHOcfNLI0T0BEZcfSiAiG9q3HTy88wLremc5mhO3Z4Yk3zsDHf/9at46NiKga+HWMAOwZ4eDJcqWq4Y3FBBccMsoaAxFVHwbCEY0fnG2pNu3RedblpC0oTmsKc1bt6NZxERFVg4xfXQTsNcJmaUT3TZYjourHQDiiI8cPtOrEXlicXWnuaWPpZSIiyt9bq3fgn3PWIJPJEQjHbRlh1zacpkFEhWIgHFFNPIb7rzjCc/sNj72H5VtayjAiIqKe76N3voZvPTIPac27qhwQsY8wc8JEVCAGwnk4YFQ/axax3XxXVwkiIspP7hphe9cI5zbMCBNRoRgI56lfQ43nto272sswEiKi6mF2jUjE/CfCORbUYAaYiIqEgXCe/vRZb3nEz2e8j/nrdlnXM5rC26s5aY6IKCozI1wTd74txVxdIwBvBpgrvxFRoRgI52nc4Cacc8Bwz+3n/26mdfmOF5bhI3e+xmCYiCiibCDszgjrP+OOQNhVI8w4mIgKxEC4AK3JTOj989bq2eGZS7d2x3CIiHqcd9bsxLhp063rZmlEbcL5thQ3olx7pphdI4ioWBgIF+CSI8YAAF6/4TTf+5XRD/M3/1vSbWMiIupJ7n91heN6xqoRdr4tmdlfe0bYtQlrhomoYAyEC3DugSOw8ubzMLxfve/9mk9j+BnvbcC4adPx4JursX5nuxUsExH1Rut3djiuW6URriXrra4RtpIJd+DLjDARFYqBcBc9/42TPLfZl2BOG0swf+lvbwHQ+w4fe/Pz+NOrK7tlfERElWi9q9tOyjhX1rony1l9hG2lEVxZjoiKhIFwF+09pNlz22sfbLMut6f864lnr9hesjEREVW69TudgXDSCIQDu0bEOVmOiIqPgXARfOrosRjVv8H3vvZkBsm0d8Uk88StlMLsldtZKkFEvYp7/QzzPOkJhMWnfZprX+7AmIgoKgbCRfCTCw/As18/CUeMG+C5rz2Vwc62pOf2J+dvBAA8MnctPnHXLEx/b0PJx0lEVKmygbCrRthnslxQacSzXz8Rz37dW65GRBQkUe4BVIuG2jj+ec2xjnZAAHDSr14Mfdzyra0AgDXbuTodEfVenQEZYTPorbHVCLsX0DAzwhOH9inhCImoGjEjXGTPfeMkDO9bjxvPnZJz23RGg2Z8Pyiiz5q+79UV6EyH9ykmIqo2Zo2wp4+wkQmOxcQKij2lEaUeHBFVLQbCRTZhSDNev/E0HDLGWybh9p1H37NarcUEeOyttfjRfxbizhc+KPUwiYgqSqcxsdjbNSIb5ppZYU9pBCNhIioQA+ESGdhUk3ObR99aa00YiYlgd0caALC7I1XKoRERVRwzI5wIWGIZyGaHPV0jmBMmogIxEC6Rwc111uXlPz8XFxwy0rp+1v7DrMt/nKmvriQiVucIntSJqLcJ6hphD3rNIJlLLBNRsTAQLpF+DXpGeGS/esRigps+eqB134DGWs/2MQGUyl4GgJuffB/n3fZKycdKRNRdlm7a4zsPwgyEzdKIy4/eC+//5GzHNgkrI+x8LANhIioUu0aUiIjg71cdZS240VibwIOfPxpPL9hofQVoFxOBgn672UD+rpdy1wrvak+huS7haC1ERFSJOlIZnHHLyzh932Ge+9wZ4ZgI6mvijm3isex9duwjTESFYka4hI6dOBjD+9Vb14+ZMAg//PD+aHSd3E2PvbUOgPdrv4N/9Izvghud6QwO/tEz+OETC4o2ZiKiUukwJsQ9u2iT576XlmwBANQk9DOg3xpDZo9hLrFMRMXCQLgMvnbGZM9tP3hiAd7fuEe/4jqr72pPWT027TpS+m2PvbU253Pu7khh/rpd+Q+WiKhIUpngFTTnrNoBIJsRVvBua02WgzsjXKwRElFvw0C4DJrqEjj3wOEAgG+dtY/nfoF4MsAL1u/2bJcySiyiLM585f2zcf7vZlp9i4mIulta836gd3O3T7Mzg2RvRpiRMBEVhoFwmVx65F5IxATHTRzsue9Pr66wWqmZPvb716CUwhPvrsf/Fm7Cno6UVVOn+XyH2NKZxkE/fNr6unH2Sj3b4lefTETUHdIhGWGTlRH22TSofRqnSBBRoThZrkxOmDQES392ju99ybSGZxZs9Nw+/oYZ1uUR/epxzUkTAACa0lel+9fb63DhoaMQjwmWbNqD3R1pXHHfm3j7+2daj+tMa54JKERE3SHKB3F3+zQ7q2uE+w4GwkRUIGaEy0hEICK474ojPPd965F5AIDhfes99wHAhl0d+IE5SU4BD8xaiW/88138Y/YaALBKIDQFfP6BOdbjXjYyxERE3S1KRti9oIbffe4MMEsjiKhQDIQrwCn7DA2874Erj8TxPuUTdppS2LKnEwCwvVX/mbbVAr+zZqd1+SsPvt2FkRIRFS4VISNslj/4hcxxa4llTpYjouJgIFwhzMlzbsP61uPiI8aEPlZTCne+qPccNt8g7JmXpE/HiXxkNIW5xoxuIqJCRQmEzfIH3/ZpAaURjIOJqFAMhCvErZcciv1G9MV9VxyB/zt3X+v2fg016GusUgcAR40f6HmsvRHEr55ejFXbWq1+nQBwwKi+ju3HTZuOxWarthyef38TJtw4Ax/7/Wu4/N43oh4OEZFHOkLXmmyNcEj7NC6oQURFwkC4QtTEY5jx1RNwyj5DMXGYvhqdmSWusRXE7elIY9ygxtB9XfyH17GjLWldb6r1zol87n1vQ3s/ryzdal2euWwrNu3uiPQ4tyfeXY8lm6IF30RUnfIpjfAT1D6NXSOIqFAMhCvQsRMG4bPHjsPVJ+pdIQ4fNwCnTdHriD9/4ng01YU3+9i4uwN3v7zcum6vETa1GO3ZLrv3dRz182cD99W3vsZxvbUzHbBluOsefBtn3vJyQY8louoQtqCGyb18sl08sDSCkTARFYbt0ypQXSKOH354f8f1P34221liW0vSd4ENu6WbW6zLfqvSfbBFv//VZdtC93Prc0sd13e1p0K3JyIKks6jj3nYEsueYJlxMBEViBnhHuhzx43HXZcf1qV9PL1gEz5x12vW9a0tnZEe517oIwr3KnlE1DtFyQiHlftma4SB+2zJAZYIE1GhIgXCInK2iCwWkWUiMi1kuyNEJCMiHy/eEMktFhOcfcCIvB+310BnbbG52hwATP3ps9iwq91xv1+3iUIywlEmyBBR8VTqOTtKjbAZ0/p9fk7EsjXCp0wZ6nkMEVG+cgbCIhIHcAeAcwDsB+BSEdkvYLtfAHi62IMkf2fvr0+mu+7Uifjz54703ebHF2RLLGpCGtUDwDE3PW8tyQw464G/c/YUAMBuVyCslMLHfv8ajrv5+cD9drV9GxFFV8nn7LQWIRA2TlPKp2uEuaAGu0YQUbFEyQgfCWCZUmq5UioJ4CEAF/hs9xUAjwLYXMTxUYg7LjsMS356Dr5+5j44afIQ6/brTp0IANhnWB+cd2A2cxzla8nP/OlNq5ShxQiErzp+PK44bhwA4NfPLHZsv2D9bsxdtQPrdrYHZnsYCBN1q4o9Z0c5B5n8MsJBk+XYNYKIChUlEB4FYI3t+lrjNouIjALwEQB3he1IRK4WkTkiMmfLFi7121XxmKA2kf0VHj52AMYNasTh4/Rew6mMhkHNdTh0r/4AgGtOmhBpvz+bvghf/OtczHhvAwBg6riBqK+JAwB2tmUzws8t2oTvPDrPut7WmYGfpC1AfnXZVoybNh2vfbDVsU1HKoNdbZyIR1QEFXvOjrLEclgHiJqgleVYHEFEBYrSNcLvDOM+m/0WwHeUUpmwr6iUUncDuBsApk6dysLRInv0i8cCAN5buwsAMLi5DgDw+JeOs7a5d+ZyLN/SGrqfe2euAAA8OX+jsZ9ax/0Pz16Djxw2Clf+eY7j9pZkGv0ane3WAGdG+H8L9f7F9726EsdOyC4d/bHfv4YF63dj6c/OsTXUJ6ICVOw5O0qNcJi41TXCeTsrI4ioUFEC4bUA7Gv8jgaw3rXNVAAPGSfUwQDOFZG0UupfxRgk5Wf/kX1x7SkTcaKtXML0xLXHY+Oudizb3IJr/voWAOCOTx6GI8YPwCNz1+KXTy32PGYvYwGPo/ceiNeXb8e3H53nO2nuk/e8jpe+dQrmrd2JDbs6cNb+w/Gz6QsdWWuT+2tPsx3c9/89Hzd99KC8j5mILBV7zs4nEPaLuoOWWCYiKlSUQHg2gEkiMh7AOgCXAPikfQOl1HjzsojcD+C/DILLJxYTfPOsfXzva65LYOLQPpgwpNm67dwDh0NEcMo+Q30D4SFGZvnYCYPx+vLtAPzbra3a1oZbn12KW55dAkCfYHfPKyvyGvuDb67BmfsPxyn7DM29cRE9PHsNbn7qfcz5v9MRY8Eh9WwVe842O8j0rU8Et2IMbZ8WUBrB/7JEVKCc30ErpdIAroU+s3gRgIeVUgtE5BoRuabUA6TSsL+RmJcba+Oe7R743JHW/fb64D8YK9fV1zj/hMwgGAB+8dT7nv3d/9pK45LC3FXb8dT8jdhpWw4aAO6xrYrXXW58/D1sb036Lj5C1JNU8jk7Zfz/8iuhMoW2T7O6Rrgfw0iYiAoTaWU5pdQMADNct/lOslBKfbbrw6LucNflh6GhNvsnMLJ/g+P+J649DgeN7m9d39PhLYcY3FyHtTvaPbfnohTwsd/P8r3vtQ+2YfmWFuxty1oHmb1yO7bs6cS8tbvwzTMnI1FgfbG+UpVCRyqDBp8PBEQ9SaWes1NWRrgGgP95w/zg7ds+zSqNcAa+/BKHiArFWUm92NkHjHC0XauJx7DipnOt6/YgGADONVqxffTQ7AT0/Uf29e1hfMvFB4c+93Pvh3dsOvU3L4Xeb/rEXbPwpb+9hbte+sDRAxkAlmza41kkJIiZYepI+3e+yNf6ne348O0zsWVPtBX7iHqDdEZDIia48ni9MqN/SGbYjznfwB0ks48wERWKgTA5iAje+f4ZmP1/p3vuO2XKUKy8+Tx893y9N/9Vx4/Hby46BCdNHoKlPzsHL33rZGvbCw4e5Xl8sX3j4Xcd15dubnFcP/OWl3HMTc97Jui8sHgzdrQ6yzGsQDhVnNKI+15dgXlrd+HRt9YWZX/FMnOp3r5u/c78s/hEXZXKaKiJx/DRw0Zj5c3nYUhzHeIxwScOH+3d2Kc0wmzj6O5NzjCYiArFQJg8+jfWYkifusD7BzbVYsVN5+K75++H5jq9tKImHsPYQU3WNrGY4LVpp0Z+zqF96vCHTx2Ow8cOsG77w0sfYNYH2/D3N1Zj3LTp+I1tMY+lm/Z4gsy3V+/AQqP7hLIVGH7zn+/ilaV6trg9mcEV983GFffPtu5fvHGPFQC3J/WM8MZdHb6lIFFVaobqjzP1+uv563aVeSTUG6UyyqrzBfRe6ImY4PMn7m3dFvY/p87ICHsC4cr870ZEPUCkGmEit6BA77EvHWtNchnZvwGPXHMMPnvfbNxw7hScOGkIXlm6FRlNQ0dKw4mTh+C6B9/GgaP74def0Esp9hvRFyf88gUAwE1POifb/e75ZRgzsBG//d8SfPQwbwbp6QWb8PSCTfj22fs4ul/8+531+Pc76/Hs10/CAOOr2IXrd2N3Rwq3PrsUf5yZ7WzxsxkLsXp7G9Zsb8deAxvx8rdPse7bvLsD33l0Hr52xmRP2Yibcs302d2RQjKtWb2dy8VcLdDMrBF1p7SmOfqEx0RQG48ZNfpOfu3TrIxwxh0IMxImosIwEKaiOmyvAY7rU8cNxPwfnWVd/+RReznuf/prJzqujxnYiMnDmrFkk7PMwfTtR/SV7G5/YVngGPxawAHAC+9vtvofJzManp6/0REEA8Cry7ZZl1dvb3Pc95Ppi/DC4i14YfEWvH7DaRjerz5wDO62caf++iVsbenEM187EXe99AFO33cYzt5/eLe3amszMt6rtrdh5dZWjBvclOMRRMWTSivUuDPCcbEmwQHZ7K77wySQ7VLTWaQSJiIiBsJUcVZtcwago/o3YGBTLd4L+Tp/7yFNOVfM+9mMRY7r33pkXsCWWfe9ugKfmDoGP3xigaOcYP66XY5AeOmmPZg0rI/n8UrpPZfNvstn3vIyAOCxt9YBAH578SG48NDS1FNva+nE1pYk9hmeHVfGmLX/vX/NBwCsvPm8kjw3kZ/OdAZ1iey3EfGYoCYeQ9wnEPZTn/DPCBMRFYo1wlRxfnzB/pg0tBkzv3MKvnDi3njxWyfjj5+Zat3vziofO2EQfvih/Usylh/9ZyGO/8XzeGTuWqzYmg20f/3MYrxgdL7477z1OOOWl/HMgo1Yta3VMRHtL7NWYupPnw3c/9cffgcfvn0mjv/F83hj+TbPJL6otrV0WmUPpg/f/irO+u3Ljts0V5Zt/rpdeHv1joKekyhfyYxm1fkC/oGwKaw0orNI3V2IiJgRpopz8RF74eIj9GD3hnP3BQAM7ZvNvk4Z3gcfPWyUlVW99ZJDMaRPHWICaEqvM97RlsSGXR04cFQ/NNbG8caK7b7Pde6Bw9GWzODESUPw4/8u9N3GvpDIJUeMwUOz1+D9jXtwxf2zkYiJtVrW1X+Z63ns+l0doceqKWDeWj3TfPHdr6NvfQLzfniW77YdqUxgbe/hP30Wowc04MHPH43trUkcPKY/1hkBeUcqgxcXb8GxEwd5+q+e/7uZAJyZ4WcWbEQqo3DeQSN8n2vDrnZMn7cBVx4/Hgs37MZ+I/qyRpMi6UxpjiXX4yKocZdGhEyXC5osR0RUKAbC1GPc8cnDcPsLy3DhoaPw6WPG4bG31mFInzqrw8X8H52FVEahqTaOD7a0YkdbEkfvPQgAcNOMRdZqeHbfP39/q8QhKBA2XX70Xph2zr54aPYa6zYzCM7X1LEDMGeVNxO7uyONP81cgfZUBks27UFrZxqXHTUWu9pTuP4f7+DFb57sqOvVNIWnF2wEAKzd0W5NNHzjxtOsbW55dgn+8JJ+7EElyb946n185+wpALIB/dkHnOubqfvK39/GnFU7MKi5Fl/7h97C7pVvn4IxAxvzfRlyWr2tDaMHNHDZ6yrRmXZmhGMxIBGP+f5+/VaWqwton0ZEVCgGwtRjnHfQCEeW8pVvn4I+9dk/4UbbKnn2ulhAzyx//sS98bfXV2PF1hb8/KMHorUz42gTd8+np2LVtlb8dLqzlhgAfvXxg/CJqWMAAP+85hh865/vYqWrljkft116KI69+XkAwKlThuJ52wIj7oD82UXZ+07+9YsY3FyLOy87HEeOH4jH316Hb/zT2U8ZAI76+XPWZTMIBvQMtJnVtvv9ix/g22ft48jszlu7EyP6NeDyP76Bn3/kQBw5fiDW7Wy3AvjbnstOWPz4Xa/hG2fsg72HNGHquIH6c2kKX/jrXIwZ0Ijvf2i/6C+OYfW2Npz4qxdw3WmT8PUzJqMjlcGOtiRaO9PoU1+DYX2DJytSZUqmNd8aYb/Jcn6syXIMhImoSBgIU4+VbwZycHMdvnr6JOu6PXAGgDP2GwYAuPzosfjev+bjgFH98Ohba/HoF491tHw6YtxAPHX9ifjbG6vxk5As8kVTR+OXHz8YF901C2+udJZmNNUm8InDR+Ofc9diYFNtXsextSWJi/4wCx8/fDRWFxCMD2iqxdF7D8Try51juvvl5Y7663tnrsD0eRsAAF/621w8+sVjcdKvXrTut9dMb9rdiW8/qk8+fHXaqRjVvwFvrd6B/y3cBAB4e80O/PXKo9BUl/uU057MoD2VweY9elnJbc8txdfPmIwv/+0tx4qEYRP9/vX2OuxqT+Ezx46zbvtgSwueeGc9rj99Eks5yqQznUH/xuzfeyIWQ21c8q4RZkaYiIqFgTCRS31NHL8y+hrbAyn3NlcePx7nHTgCtz63FCdNHoLjJg7Cmu3tOPe2V/ClkyfgK6fqQfdDVx+N6e9twPbWJH7wxAJ8+OCR6NdYg1987CBMGdEXHztsFC4/eiwWbdiNGx57z3qOjxw6CnNX7cBxEwfjwTdXe8bwyNz8Vq3r31iDnW0p9K2vwUNXH4MVW1txyq9ftO6/6cn3Hb2bzSAY0IPv7zzq32VjwpAmfGDr2LFk0x6M6t+A5bZA+e3VO3Hbc0tx7MTBOHHSYIgIVm9rwyfvfR2721O46aMH4cf/XYBzDhiB+19bCQCO7P/8dbs8y3Jv3NWBf8xeg48dPgqj+jdARKBpCr99dglue17PVv/giQW44rhx+NoZk3HVn+dgxdZWfPKovTCsbz0uvONVHDS6H358wQF5vY5UOHdpxBdPnoCOVMYRCJ99wHBcPHUMvnHWZM/jWSNMRMUmfr0au8PUqVPVnDlzyvLcRKWklPLNOCql8PaanZ5ey3Yrtrbi+fc3Y0BjjbVoiFIKT7y7HoftNcCqAXY7fOwA3HbpoahPxPCRO1+zeiAP71uPjbs7MKp/A8YOasRrH2zDN86YjK+cNgmaprD3jTMAAHsNbHT0Tf7uefv6loj4WXnzeehIZfDfeRvwTZ8yDbdT9hmCI8cPwi+eej/ntvn46mmTcPjYAfj0n94M3e7Zr5+I259fhn+9sx5A4S3kRGSuUmpq7i2rQzHO2af++kXsP6offnfpoY7bO9MZ7PPdpwCE/z62tnRi6k+fRW08hiU/Owfjpk3P+RgiIiD4nM2MMFGRBX3tLiKhQTAAjB/chCuPH+953AWH6L2Gn7j2OIwe0GiVU+xqS6FPfQIi2ef9xpmT8dWH3gGgt6Izs8q1iRhe+2AbRg1oAKAvg73ipnPxxLvrcdb+w/Hn11ZaGeFLjtwLR+89CP+cswYfOngkPn7XLN/x/uRCPZtaXxPHUeMH+m7z2JeOxUfvfM26bi5KUmy3Prc00nYbdnVYQTAQ/MGFiq8zraE27u3amYhF6+QZtLIcEVGhGAgT9SDupZ37GUtG23344JHYa2AjDhzVD4l4DGfuP9y6b+Z3TsHIfg3WdXuQ/YWTJuCiqWNQm4ihqS6BA0b1wwGj+gEA7rviCDwydy2mz9uAp64/AeMGNXlaudknHppuPHcKDttrAKadMwVLNu2xWt4F+ftVR+GI8QPx1qodeHL+RqtMwm5U/warNVyQTxw+GledsLenjzIAfOqPzozxk/M34twD/VvFUXF1pjOoq/EGvVGbgtQn2PqeiIqLgTBRlRERHBqQeR49IHyC4YCAiXun7DMUp+wzFHd8Mvix9TVxrLz5PKQyGlZta0W/hlorOL7mpAkAgB+cvz/++sYq/OrpxXj4C8fg4DH9cPTPn8PBY/pjyvC+OGbCIIgIjtp7EA4fOwAXHzEG63e2Y/SARqzZ3obT9h0KEcHLS7bgzheX4fXl2/Hd8/bFEeMG4oI7XgUA3HX54Tj7gOHoSGXQXJfAafsOxZgBjaHLclP3cNcIm6Jm5BM+2WQioq5gIExERVUTj2HiUO9y04Cewf7yKRPx5VMmWre9/f0zfbdNxGPYd0Rf7DuiLwBnS7wTJw/BCZMGY+2Odqt7yENXH42auODwsXqJRn1NHG9//wyr48enjxmLjpSGfo01+GBLC37y34X4y5VHoTlCJwsqjs60c0GNQnz5lAk4eZ+hRRoREfV2fAcgoh5JRBwt9MzFU+zsbe/sqxMettcAPP6l40o7QHJQSnn6CBfiW2dNKdKIiIgYCBMRUTcwJ7j5lUYAwOn7DsP5Act6ExGVCgNhIiIqOXM1uKBA+N7P9JpOdERUQTjzgIiISq4zFR4IExGVA89IRERUctnSiK7VCBMRFRMDYSIiKrnOVAYAutw1goiomHhGIiKikms3AmH3QixEROXEQJiIiEquwwiEG2oZCBNR5WAgTEREJdee1GuEG5gRJqIKwkCYiIhKziyNYCBMRJWEgTAREZVcO0sjiKgCMRAmIqKSa0+mATAQJqLKwkCYiIhKrj3J0ggiqjwMhImIqOTaU5wsR0SVh4EwERGVXLaPMN92iKhy8IxEREQl15HKoKEmDhEp91CIiCwMhImIqOTakumiT5Qb2FRb1P0RUe+TKPcAiIio+rUntaLXB7/wzZOtFeuIiArBQJiIiEquI5Upen1wv4Ya9GuoKeo+iah3YWkEERGVXHsqwx7CRFRxGAgTEVHJJdMa6hIMhImosjAQJiKikktmNNTE2TGCiCoLA2EiIiq5ZFpDTZxvOURUWXhWIiKikktlNNQyECaiCsOzEhERlVwqo6E2wbccIqosPCsREVHJsTSCiCoRz0pERFRyqYxiIExEFYdnJSIiKrkkSyOIqAJFOiuJyNkislhElonINJ/7LxCReSLyjojMEZHjiz9UIiKKohLP2cm0hlq2TyOiCpNziWURiQO4A8AZANYCmC0iTyilFto2ew7AE0opJSIHAXgYwJRSDJiIiIJV6jk7lWGNMBFVnihnpSMBLFNKLVdKJQE8BOAC+wZKqRallDKuNgFQICKicqjIcza7RhBRJYpyVhoFYI3t+lrjNgcR+YiIvA9gOoDP+e1IRK42voabs2XLlkLGS0RE4SrunK1pipPliKgiRTkr+RV1ebIHSqnHlVJTAFwI4Cd+O1JK3a2UmqqUmjpkyJC8BkpERJFU3Dk7pWkAwIwwEVWcKGeltQDG2K6PBrA+aGOl1MsAJojI4C6OjYiI8ldx5+xURo/DubIcEVWaKGel2QAmich4EakFcAmAJ+wbiMhEERHj8mEAagFsK/ZgiYgop4o7ZyfTeka4hl0jiKjC5OwaoZRKi8i1AJ4GEAfwJ6XUAhG5xrj/LgAfA/BpEUkBaAdwsW0iBhERdZNKPGenMkYgzNIIIqowOQNhAFBKzQAww3XbXbbLvwDwi+IOjYiIClFp5+xsRpiBMBFVFp6ViIiopMyMcB0zwkRUYXhWIiKikkpmmBEmosrEsxIREZVUKq2XHzMQJqJKw7MSERGVlJkRZh9hIqo0PCsREVFJsX0aEVUqBsJERFRS5mQ5LqhBRJWGZyUiIiqpFEsjiKhC8axEREQlxT7CRFSpeFYiIqKSYvs0IqpUPCsREVFJpTJ6+zQuqEFElYZnJSIiKimWRhBRpeJZiYiISiqVYfs0IqpMDISJiKikrECYpRFEVGF4ViIiopLqTLOPMBFVJp6ViIiopFLsGkFEFYpnJSIiKqlURkM8JojHWCNMRJWFgTAREZVUMq2xLIKIKhLPTEREVFKpjGLHCCKqSAyEiYiopJIZDbXsGEFEFYhnJiIiKqkUSyOIqELxzERERCWVzGjsIUxEFYlnJiIiKqlURmPrNCKqSDwzERFRSSXTiqURRFSReGYiIqKSYmkEEVUqnpmIiKik9MlybJ9GRJWHgTAREZUUa4SJqFLxzERERCXFPsJEVKl4ZiIiopLqTDEjTESViWcmIiIqqe1tSQxsrC33MIiIPBgIExFRyWQ0he2tSQzpU1fuoRAReTAQJiKiktnRlkRGUxjczIwwEVUeBsJERFQyW1s6AQBD+tSXeSRERF4MhImIqGS27kkCADPCRFSRGAgTEVHJbGnpAADWCBNRRWIgTEREJWNlhBkIE1EFYiBMREQls6WlE3WJGPrUJco9FCIiDwbCRERUMlv3dGJwcx1EpNxDISLyYCBMREQls6Wlk/XBRFSxGAgTEVHJbDEywkRElYiBMBERlczWliSG9GHrNCKqTAyEiYioZNqTaTTVcqIcEVUmBsJERFQyyYyG2gTfaoioMvHsREREJaFpCqmMYiBMRBWLZyciIiqJZEYDANQl4mUeCRGRPwbCRERUEp0pPRBmRpiIKlWks5OInC0ii0VkmYhM87n/MhGZZ/x7TUQOLv5QiYgoiko5Z3dmMgAYCBNR5cp5dhKROIA7AJwDYD8Al4rIfq7NVgA4SSl1EICfALi72AMlIqLcKumcbWaE6xgIE1GFinJ2OhLAMqXUcqVUEsBDAC6wb6CUek0ptcO4+jqA0cUdJhERRVQx5+xsjTADYSKqTFHOTqMArLFdX2vcFuRKAE92ZVBERFSwijlnWzXCcQbCRFSZonQ5F5/blO+GIqdAP6keH3D/1QCuNq62iMjiKIN0GQxgawGP6wmq+diA6j4+HlvPVejxjS32QIqk4s7Z5/6iav9++H+j56rmYwOq+/iKes6OEgivBTDGdn00gPXujUTkIAD3AjhHKbXNb0dKqbvRxVo0EZmjlJralX1Uqmo+NqC6j4/H1nNV4fHxnN1NqvnYgOo+vmo+NqC6j6/Yxxbl+6rZACaJyHgRqQVwCYAnXIPaC8BjAD6llFpSrMEREVHeeM4mIoooZ0ZYKZUWkWsBPA0gDuBPSqkFInKNcf9dAL4PYBCAO0UEANLV+kmEiKiS8ZxNRBRdlNIIKKVmAJjhuu0u2+WrAFxV3KEFqubWbNV8bEB1Hx+PreequuPjObvbVPOxAdV9fNV8bEB1H19Rj02U8p1DQURERERU1djThoiIiIh6pR4TCOdaMrTSicgYEXlBRBaJyAIR+apx+0AR+Z+ILDV+DrA95gbjeBeLyFnlG300IhIXkbdF5L/G9Wo6tv4i8oiIvG/8Do+pluMTka8Zf5PzReRBEanvyccmIn8Skc0iMt92W97HIyKHi8h7xn23iVFMS9HwnF15/zfceM7u0cdXNeftsp+zlVIV/w/6hI8PAOwNoBbAuwD2K/e48jyGEQAOMy73AbAE+vKnvwQwzbh9GoBfGJf3M46zDsB44/jj5T6OHMf4dQB/B/Bf43o1HdufAVxlXK4F0L8ajg/6QgsrADQY1x8G8NmefGwATgRwGID5ttvyPh4AbwI4Bnpf3iehtxkr+/H1hH88Z1fm/w2fY+Q5uwceX7Wdt8t9zu4pGeGcS4ZWOqXUBqXUW8blPQAWQf9jvgD6f1gYPy80Ll8A4CGlVKdSagWAZdBfh4okIqMBnAe9L6mpWo6tL/T/qH8EAKVUUim1E1VyfNAnzTaISAJAI/Sesz322JRSLwPY7ro5r+MRkREA+iqlZin9DPuA7TGUG8/ZFfh/w47n7J57fIaqOW+X+5zdUwLhfJcMrWgiMg7AoQDeADBMKbUB0E+8AIYam/W0Y/4tgG8D0Gy3Vcux7Q1gC4D7jK8R7xWRJlTB8Sml1gH4NYDVADYA2KWUegZVcGwu+R7PKOOy+3aKpqf+nfjiObvHHVvVnrOBXnPe7rZzdk8JhCMvGVrpRKQZwKMArldK7Q7b1Oe2ijxmETkfwGal1NyoD/G5rSKPzZCA/rXN75VShwJohf5VTZAec3xG3dUF0L9iGgmgSUQuD3uIz20VeWwRBR1PtR1nd6ua14/nbP0hPrdV5LEZqvacDfT683bRz9k9JRCOtGRopRORGugn1L8ppR4zbt5kpPRh/Nxs3N6Tjvk4AB8WkZXQvwI9VUT+iuo4NkAf71ql1BvG9Uegn2Sr4fhOB7BCKbVFKZWCvtrYsaiOY7PL93jWGpfdt1M0PfXvxIHn7B55bEB1n7OB3nHe7rZzdk8JhHMuGVrpjNmLfwSwSCn1/2x3PQHgM8blzwD4t+32S0SkTkTGA5gEvRC84iilblBKjVZKjYP+u3leKXU5quDYAEAptRHAGhHZx7jpNAALUR3HtxrA0SLSaPyNnga9FrIajs0ur+MxvorbIyJHG6/Lp22Podx4zq7g/xs8ZwPowceH3nHe7r5zdrFm/ZX6H4Bzoc/a/QDA/5V7PAWM/3joafp5AN4x/p0LfZnT5wAsNX4OtD3m/4zjXYweMmMdwMnIzkCummMDcAiAOcbv718ABlTL8QH4EYD3AcwH8Bfos3F77LEBeBB63VwKepbgykKOB8BU4zX5AMDtMBYg4r/IvweesyvgOCIcJ8/ZPfP4qua8Xe5zNleWIyIiIqJeqaeURhARERERFRUDYSIiIiLqlRgIExEREVGvxECYiIiIiHolBsJERERE1CsxEKZeS0ROFpH/lnscRESUG8/ZVAoMhImIiIioV2IgTBVPRC4XkTdF5B0R+YOIxEWkRUR+IyJvichzIjLE2PYQEXldROaJyOPGmuwQkYki8qyIvGs8ZoKx+2YReURE3heRvxkr0hARUYF4zqaehIEwVTQR2RfAxQCOU0odAiAD4DIATQDeUkodBuAlAD8wHvIAgO8opQ4C8J7t9r8BuEMpdTD0Ndk3GLcfCuB6APsB2BvAcSU+JCKiqsVzNvU0iXIPgCiH0wAcDmC28cG/AcBmABqAfxjb/BXAYyLSD0B/pdRLxu1/BvBPEekDYJRS6nEAUEp1AICxvzeVUmuN6+8AGAdgZsmPioioOvGcTT0KA2GqdALgz0qpGxw3inzPtV3YWuFhX5112i5nwP8TRERdwXM29SgsjaBK9xyAj4vIUAAQkYEiMhb63+7HjW0+CWCmUmoXgB0icoJx+6cAvKSU2g1grYhcaOyjTkQau/MgiIh6CZ6zqUfhJymqaEqphSLyXQDPiEgMQArAlwG0AthfROYC2AW9Jg0APgPgLuOkuRzAFcbtnwLwBxH5sbGPT3TjYRAR9Qo8Z1NPI0qFfTtBVJlEpEUp1VzucRARUW48Z1OlYmkEEREREfVKzAgTERERUa/EjDARERER9UoMhImIiIioV2IgTERERES9EgNhIiIiIuqVGAgTERERUa/EQJiIiIiIeqX/D6yUcq+erW2nAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "025ns_Image_262499828648_clean.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADDCAYAAAAya0IYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADtsklEQVR4nOz9eZRteX7VB+5z53vOuWNEvPcys7IyVSWpBMJIYFpGsOiWlzAGmsFiNTTCICa7hGlszCiJNjY2jQwNBrebBlws0xIGg0QbLAYxt2XwQqJBGBYqapCqKqsqKzPfi4g7nnPuFPee/iPi843vvS9eji8r4+X77bXeejHce8bfuSv2/u7v/kZlWSogICAgICAgICAgICAgICDgraDyXh9AQEBAQEBAQEBAQEBAQEDAk4cgKAQEBAQEBAQEBAQEBAQEBLxlBEEhICAgICAgICAgICAgICDgLSMICgEBAQEBAQEBAQEBAQEBAW8ZQVAICAgICAgICAgICAgICAh4ywiCQkBAQEBAQEBAQEBAQEBAwFtGEBQCvuyIoujjURR903t9HAEBAQEB14ii6KUoin7um3xtGUXRV77N/bzt9wYEBAQEBATcLgRBIeDLjrIsv7Ysyx96r4/jjRBF0a+KoujzURTlURT9T1EUDd/rYwoICAh4PyOKomYURX8miqJZFEWvRVH029/rYwoICAi4bXjcwuyb2V74uzjgUQiCQkDADYii6Gsl/beSfo2ku5IKSX/iPT2ogICAgPc/fp+kr5L0gqR/U9LvjqLo57+nRxQQEBDwlCP8XRzwegiCQsCXHd5WG0XR74ui6C9FUfTnoiiaR1H0L6Mo+uooir4riqIHURR9MYqin+fe++ujKPrE1Ws/G0XRtx9s+3dHUfRqFEWvRFH073nF9ary9UeiKPpCFEX3oyj6U1EUtR9xmP+upL9WluU/KMsyk/R7Jf2yKIo6785VCQgICLg9iKLoG6Io+uEoiiZXn6l/PIqixsHLfuHV5/BZFEV/OIqiinv/b7j6rB5HUfS3oyh64U3u+tsk/f6yLMdlWX5C0p+W9Osez1kFBAQE3B5EUfSToij6oavP2Y9HUfRL3O9+KIqif899/+uiKPpfr77+B1c//hdRFGVRFP2foyj6piiKXo6i6PdcfSa/FEXRv/t2t3fD4Ya/iwMeiSAoBNwG/GJJ/72kgaT/TdLf1uXafE7Sf6FLRRQ8kPSLJHUl/XpJfyyKop8uSVdVrN8u6edK+kpJ/4eD/fwhSV8t6euvfv+cpP/0Ecf0tZL+Bd+UZfkZSeur9wcEBAS837GV9NskHUv6RknfLOk3H7zmWyT9DEk/XdIvlfQbJCmKon9H0u+R9MsknUj6h5L+whvtMIqigaRn5T57r77+2rd/GgEBAQG3D1EU1SX9NUl/R9IdSf+hpD8fRdFH3ui9ZVn+76++/LqyLNOyLL/v6vt7uvzMfk7Sr5X0sXe4PY/wd3HAIxEEhYDbgH9YluXfLsvyQtJf0uUfoH+wLMuNpL8o6cUoivqSVJbl3yjL8jPlJf4XXX4Q/5yr7fwKSf/vsiw/XpZlIek/ZwdRFEWS/n1Jv60sy1FZlnNJ3y3pVz7imFJJ04OfTSUFJTYgIOB9j7Isf7Qsyx8py/KiLMuXdCnsPiTSXn2efkHSfy3pW69+/u2S/suyLD9x9bn+3ZK+/k24FNKr//1nb/jcDQgIeD/iZ+ryM+8PlmW5Lsvy/yvpr+v6c/Tt4veWZbm6+hv5b+jyb+PHgfB3ccAjEQSFgNuA++7rhaSzsiy37nvp6g/NKIp+QRRFPxJF0SiKoomkX6hLNVa6rGx90W3Lf30iKZb0o1fWsomkv3X185uQ6dIF4dGVNH+zJxUQEBDwpOKq9eyvXwUjznQpChwfvMx/xn5el5/B0mX+wf/DfdaOJEW6rJq9HrKr//1nb/jcDQgIeD/iWUlfLMty5372eb3x5+TrYVyWZX6wvWcf9eK3iPB3ccAjEQSFgCcGURQ1Jf2Pkv6IpLtlWfYl/aAu/1CVpFclfcC95Xn39ZkuxYmvLcuyf/WvV5ZlqpvxcUlf5/b9IUlNSZ9+HOcSEBAQcMvxJyV9UtJXlWXZ1WULQ3TwGv8Z+0FJr1x9/UVJ3+4+a/tlWbbLsvxHr7fDsizHuvwc/zr346/T5edxQEBAwPsJr0h63mfP6PJz9EtXX+e6LISBe29im4MoipKD7fG5/Ha25xH+Lg54JIKgEPAkoaHLD69TSRdRFP0CST/P/f77Jf36q5CbWC4f4UoB/tO6zFy4I0lRFD0XRdG//Yh9/XlJvziKop9z9eH8X0j6y1etEgEBAQHvd3QkzSRlURR9jaT/4IbX/K4oigZRFD0v6bdKou/2T0n6rqtUcEVR1Iui6Je/yf3+WUn/ydV2v0aXrWrf8w7OIyAgIOA24h/rkuT/7iiK6lEUfZMuM8X+4tXv/7kuQw/jq3Dx33jw/vuSPnTDdv/zKIoaURT9HF1mjv2ld7g9EP4uDngkgqAQ8MTg6kPrP9KlcDCW9Ksk/VX3+78p6b+R9D9L+glJP3z1q9XV/99x9fMfubLw/j1JN4bVlGX5cUm/SZcfoA90+cf1YSBZQEBAwPsVv1OXn7FzXYqxN4V0/YCkH9XlH6p/Q9J/J0llWf4VXYbg/sWrz9ofk/QL3uR+/zNJn9GlVfd/kfSHy7L8W2/7LAICAgJuIcqyXEv6Jbr8bDzT5QjGbyvL8pNXL/ljugw9vC/pe3X596jH75P0vVetZeQkvKbLv49fuXr9b3qH2/PHG/4uDngkorIs3+tjCAh4VxBF0U/S5R+yzatgsICAgICAgICAgID3Fa4cDn+uLMsPvMFLAwIeO4JDIeB9hSiKvuXK6jXQZYXsrwUxISAgICAgICAgICAg4PEjCAoB7zd8uy4zFj6jyznqN/X9BgQEBAQEBAQEBAQEBLxDvGuCQhRFPz+Kok9FUfQTURR957u1n4AAj7Isf/7V9IZhWZbfUpblq+/1MQUEvFcIn8MBAQEB7z3CZ3HAu42yLH8otDsEvFd4VzIUoiiq6nKMyL8l6WVJ/0TSt5Zl+a8e+84CAgICAh5C+BwOCAgIeO8RPosDAgLe73i3HArfIOknyrL87FWK6V+U9EvfpX0FBAQEBDyM8DkcEBAQ8N4jfBYHBAS8r1F7l7b7nKQvuu9flvRvPOrFURSVURTp7bgloihStVpVtVpVo9FQvV7XdrvVarXSdrtVWZba7Xba7XaSpEqlomq1qkqlYl9Xq1XtdjttNhvtdjtVq1XVajVFUaTtdqvdbmfHFkWRKpVLHYZt8vV2u7Xf+/85BkmqVquKoshezzZ5nb8G/n0cL9vl2EG9Xle9XldZlnbeURTZdmq1mhqNhrbbrYqi0Gq1sm1zDWu1mjabjTabjSSp2Wyq0WjY+fl97nY7RVGker0uSdput7q4uLBj9feHf7zOX0fO2x8z18gflySt12tdXFzY/eD3bNef83a71Xa73Xv/xcWFoihSo9FQpVLRxcWFbc/fR38PuFeH++QYK5WKarWa6vW6/c99rNVqqtVqWq/XWiwWWq/X2mw2D90btsOa4Di5z4fXza83f4xsi/3668A/1qA/X47j8J4dXg+/Bv3xc+398fltg5ueb17v33f4DBwe2+u917/v8Lm96bVcM38+h8e52+3OyrI8eWgntx9v6XNYkqppUn7oK3a6/2Ptd/XAAgICAt4Klsq1LlcPf9g/GXhLn8XhczggIOC2Yq7xjX8Tv1uCwk0f+nt/pUdR9FFJH736Wq1Wa4/kute97o5qtZqGw6FOTk7U7/d1cnKisiz10ksv6fz8XJK0Wq00mUy02Wzs9WmaqlarKY5j9Xo9SdJ0OtWrr76qJEn0/PPPK0kSLZdLLRYLrVYrLZdLSZfEql6vq1qtGsmFNJZlqV6vp3a7rYuLiz3xodlsql6va7fbabVaabPZqCgKVSoVxXGsarWqPM91cXGhsiy12WyMrDUaDSVJolarpXa7rWazqXa7bduL41gvvvii0jRVlmVar9eq1+u2j2q1qhdffFHValWf/vSn9fGPf1yTycSuY7vd1p07dyRJn/3sZzWZTHT37l298MILGg6H2m63qtVqStNUjUbDzpvrt9vt9ODBA83ncxMiyrJUtVpVs9lUq9VSrVbTfD7XfD6XJKVpqsFgoCiKNJ1OtVwu1W631Wg0jFA3m02dnJxoMBhoMpnoS1/6krIs02q10mq1Ur/fV6/X03q91mg00mazUaPR0HK51GuvvabdbqfhcKi7d+9qtVppPB6r1+vp3r17kqTxeKzRaKQoirTZbJRlmfI813q9lnQp1ERRpOVyqd1up1qtpm63q16vp1arJUkaDAb60Ic+pLt37+ro6MjWzXq91snJibIs02c+8xl9/vOf16uvvqrJZKLVaqV6vW7CBl+v12vNZjPlea56va4kSdRsNlUUhYqisDXF8fLMLBYLXVxc2D06OTlRu93WcrnUZDLRfD7XZDJRlmWqVqvqdDpqtVoqisLWNYJQtVq1895utyYyse1arWbXgmudZZk2m42JLTy7m83GRBtEkLIsTZzg+UCgQeTxgt56vTaxDvEEYYi1Yh8yV9uWZPvmvPzrEBH5mmt6KDJFUaQ8zz//uh9Ctxdv+Dks7X8WtxTrxY//Ir34pP7ZHhAQ8L7EPy7//nt9CO8Eb+lv4vA5HBAQcFvx98r/z41/E79bgsLLkp53339A0iv+BWVZfkzSxySpWq2WkITDyq17vSRZRdtXUCG3FxcXRo74HcSj2Wya2wAngiTNZjNtt1sNh0O1Wi3FcWwCQafTMWJDpR6Sn+e5Wq2WkTIqwAgB7XZb1WpVq9XKjr3VapkAsF6vjWRB1iBI1WrVSBAVUwgXVfBKpaLtdqtWq2XkfTabqdVqqdPp7JGiSqWiPM/1hS98QScnJ2q1Wup2u1qv10Z8F4uF5vO5jo6O9Oyzz+ri4kJ5nuv09FTb7VbtdltxHBvB5PrP53PFcWzCwnK5tHPmfkIKq9Wq2u221uu18jw30pymqV0XhBruwW6303K5NNKdpqkJOePxWJPJRNVqVXEcm4iz3W7VaDTU7/c1mUzMkdHv9034WK1WOjo6UqPR0NHRkdbrtZFtri2OglarZeQ3juM9YQdUq1X1ej01m007z7IsNZlMzPXSbDaVpqmJIQgo1WrVhKVWq6WTkxM1Gg0Tljj3ZrOp3W6ni4sLc17433McrNMkSVSr1dRqtcydUKvVNJvNtFwuTVCTLkU3/5z5tdNqtWxdr9drVSoVE6oajYatQdYG+0F4QzThefRCGfDOCp5lXBteZPTPPgIGYgDHjaiA8MHX/hn17gWOyztrDj93nlC84eewtP9Z3I2GT/QJBwQEBNxCvKW/icPncEBAwJOGd0tQ+CeSviqKoq+Q9CVJv1LSr3rUi7HOQ6L52eFrbrJlQzipjCdJokajYcSbbUJwsPzzOknK89yq/q1WS5PJRHmeazAYGGGhIsu+1+u1iqJQrVYzAp/nuVarlZEwSUakKpWKlsulVe+9tX2z2Wg+nxsBpBrr2zE84YJAQe663a6q1apVinERcL689vT01Mhtp9NRnueq1WpaLpcqisKcGGmaqtfraTqdajQaqSxLDQYDcwxA2Lj+0+lUjUbDRAccEtxXTyjr9bo5GhaLhcbjscqyVLvd3iN1VIsRSur1ut3XZrOpZrMpSTo7O9P5+bkR5kqlYgJMHMd76yNJEsVxrFarpbOzMy0WCw0GA7XbbXU6HW23Wy0WC9sXogbtNNKlkyNNU3W7XRMDuB4IUhDmer2uoij2WkjSNLW1w7mzVhaLhZbLpY6OjnR0dKTVamWuBN+agGMA1wfPCqITggvrU7okzY1GQ91u14S39XptwgjkH2GB92w2m701u1qtTPTCFeGfL3+s7Nu3SdRqNROMNpuNkX3exxpfrVZ2/1kPiDq+jWmxWJgYx7Xgd+yP6+M/A24SMHken3ARweMtfQ4HBAQEBLwrCJ/FAQEB72u8K4JCWZYXURT9Fkl/W1JV0p8py/Ljr3sg7g9/SMPhH/b+95CVsiy1Wq00nU6NQAwGAzUaDXMbSJfkqCgKq/BOJhMjgRcXF8qybK8vfblcarlcmp3e26OpnmKpTtPUiHRRFMrzfI+EQoAuLi60Wq1M+GBbtDn4DARIGO0FkDsq8BAzyBMtE4vFwshjHMeq1+tqtVpm2z8/P1e/3zdBIc9zSZfCx2Kx0GKxULVaVbfb1W63U5ZlyrLMrj9knq/TNLVz7na7Gg6HqlQqms/n2mw2VoUnSwA7fa/XM5GFe8dxcu8hqIvFQkVR7PXB4whYrVYmKiAgcd1arZYRR8SCJEnU6XRUFIWm06k5Ue7cuaM4jo3AU23nuiOYcM6DwUDNZtNyJRBwaDnJsmyP3HM8y+XSHB04BXyeBO6X4+Njc0ZMp1MTElj/2+1Wy+VyL7uBtgzWxWKxMOEF4aPVaplzA2cPwgTOjjzP9wS03W5nosdqtdJ6vbY1gKgQx7ERdI6TYwXeCYCjwmdIICJA/Gk74Z7zfEuyLAqeF1wbPuMDF4LPl/Db4P2sOe73Ye7Hk4q38zkcEBAQEPB4ET6LAwIC3u94txwKKsvyByX94Jt9vc9Q8EF0N1ULvaCAjXmxWOyF5GHD9hX9+XxuggG2e4g5/fPeZr9cLvcyAyAmvmrKzzqdjpbLpbkUiqKQpL3KqXRd9eU8qJiTIeBDBX14pHRJ5iBMvg/dhwXiwCiKQrPZzNoJOL7lcqnNZqPBYGCkebvdqtlsarFYKM9z2x8kEjGEdgaIbxRFJhbQvoCAASnnfUmSmDhAewLHzfVCbODccDdIsqo81xuhCEJNW4MkI8ftdnvPLo/jwLeF0CJD+4pvD6CKzvsQAshQgHR2Oh2laWrXpNVqmZji1yitN41GY88FslqtbB2yNufzud07xBi2g2PGrydaKvzPuSaICf74ut2uZrOZORDYDyIJIpJff7RHcF/J6NhsNiZEeQcBx8XxHDqMvKiAS4F2Gt/O4d0ZuE84J7aJkETLiX82D8UCXBCHwZL+uvrPmicZb/VzOCAgICDg8SN8FgcEBLyf8a4JCm8F/KHfbrftD3+fzP+o1yMeQGAgNVTrISm1Wk1JkpjdGyK7XC7VaDQsK4FK+GKxMIHBkzof8sY/8gII0CMIjx51et99CF1ZlkY2Obb5fP6Q+wD493phw7c1IEBAchEONpuNjo6OrCpPMF+/39fR0ZG5Kqjq45iAbHFtOF+qxtjV0zRVs9k0pwGkExu6d3fwvouLC5vI4ScmeMIMQeb8EUsOJxuwVsilgHDiKEiSxPaL2IIzhfWAsMCxeGFhPp/b+mLfbFuS3XteT8uEdBn46Cdf4Gzh2rTbba1WK3OVIKhIMjcNIo0ntqxtnwcAwW80GnZdcCBAsn37DOIG58D2arWaer2eOX8IZ/QZEoRW+mwR357AmvTPqif/PmDxJscBjg7/GeDf7wMVEdK8yMRzwTPkJ2h4kYHXeUeM38/7qPUhICAgICAgICAg4F3BrRAUyrJUURQmBEBaIZGePEjXI/N88BpkE5eAHw3IttI0tZwASEhRFEYg2R8kczKZ6OjoaC/x3pNaH5oHQcM+ToWaFHrs614syLLMvo/j2KrQfvygb9ngNT54Eqv4YrGw7306vw9q7PV6JppMJhOdnJyo0+nowYMHVhlG7OCckiSxzAPaASQZeea+UR3HZcE5QexwnnD9Dkf6Idp4cs+EA3r2fVDi4bhKMheoirMGut2uOS3IFeCYEAFYb4gD/B7XBP+zvrwTwk8QWC6XOj09VafT2QuORBjw5P9wxCbXh2vhWy7Yvs9KoOXAt8N45wtAwGGNM2HE55Z4B8DFxcVepkSlUtkTKWq1molmZHj4c/NOmZumPtz07CMc0LLBvWJN0F6Ek4DjQijga/aJWOADGxH1WCve4cD18uIlPwuiQkBAQEBAQEBAQMCjcSsEBemyIuudAITa8Ye/9HDCu6/ceyJCQCMBeaT30/8OcYaMzudzdTqdvWow1ezJZGIEj5YAT0Kw6z/zzDNKkkRJkijLMnMvLBYLdbtda8OAwDWbTa3Xa63XaxtFOJvNHiLa7Jf3sF/IXHQ51s7Ikm8Foa/cBxJ2Oh1tNhtNJhMTQGi54JpKMlGh1+uZOMPx+CkMq9VKnU5HSZKY6OCJJpMhsPxzXsC3r0A+cXi02211u131+30jz1xvXAHce6rziD2r1craMJrNplXgOTdej7DAmkAIkWTZGPP53NpxttutsizTYrHQ8fGxCUk4ZfI813K5NHKL44Vr50eM0uaCQOQzQjgG1ohf+wgy3imBIwFHBefNaEkcMz5/gWvPvUIUIXgxjmNrx/DHgsMDccQHK3L8tENwvghnCCN+woJvY/Brw+cr8Ax64YJ9SLL7iTNH0t4+ERcQN/znCt/7ffg2kYCAgICAgICAgICAm3ErBAXvFpCu7ezeGu3D0/j94bg8Ko6QK0/yNpuN4ji20Yw+DI9Qxm63u1cNL4pC5+fn6nQ6ki4rmIyIpD+fijojHKmo4xwoisJaJyA4iBLemg0hy/N8jzBS3d9sNppOp+r3+ya6QPx88j/EHzKEQDIejy1XotVqKcsyTSYTHR8fq9fraTwe21QA30KAFZ9jROTxlfayLE3sqNVqlgvAvph0QIWb11Fp5h4SfthqtbRYLDQajdTpdPTcc88pjmMLjbx//761BFB9li6nKCDYeKcIZNmH8/n1BTn2ZJlWmKOjI+V5bvvj2pBP0O12re3Diwi0kjBqEWcAkxw2m43yPFeWZXvTDiD1uEq4fj6k09vzETOYjECQJsGJZDvgmMEFhOMgTVNz53BPF4uFCWxcT9pheA4QdFj7PvcA10Gz2dRqtTKBzed+cA/8M819wNnAuvbCIS4U1pF0HcCIiMj1pS3DO4MOxSz27XMVFouFCWeHmQoBAQEBAQEBAQEBAde4FYJCpVJRp9PRfD43ciDpxj/mPQHxye6+qi9djuCDHGLRHo/H6na7VrldLpcmQGRZZtV6//vxeKyjoyN1u929KQx+xBz5Affu3VOSJEbifVXaW60rlYrlFEBycDAgflAZhcgjIPgecO/c4GtILJVoKvuQNemSeBPcWBSFkVJaFhAHyKWA6Ptrj0uBlH/fl44rATGi0WjYpAJ+B2mEFPqcBvIoRqOR7t+/r6OjIwtDxFmBK4N8gJumLUBwqVjjGsHG763uCAy0qTAO9O7du1osFvr85z+/JwSt12sTofr9vpIk2QtBZE1NJhNzICAG4ExgLflgTC+ucL1w1yRJYiSZe4VwhgiCG2QymWi321keAgGMiEztdlvT6dRaaSDTkHZEDVwAPEv8DtEAoYHr53MUfHuPF8oQA3gPDgjWGNkPPDtsi+eP1iCui89rqNVqNq2D40Qg9BkVN30GsZ7Yh2/HCAgICAgICAgICAh4GLfir2WS8rfbrabTqf1MejgdHkBg6fn2BHq322k+n5udndGG5Cv4cXKQJVoDIFHsI89zvfLKK3vtAT4PwAclSpc2+Xa7/VDuAhXwdrttVWeC76TrsZlMnIBcQ34hbePxWEmS7JFiSD6ECzcA1dzdbmdTFbDop2mq2WymLMuMrHJc7Ne3ktCOgn0fkEHg3QrSdf6FdwiwbdwiaZpKug5d5HpQnV8ul5rP5/rc5z6nWq2mZ5991toQHjx4oPl8bsfhRxzSXkHoondeUGXv9/smrKxWKyOlEHlEiU6nYy6ExWKh2WymF154wcIeESiGw6GazaaFazIRYrPZaD6f27XsdDrWOnPowFksFpZfgIgEQWZyBOdWqVyOkyT/giDDNE2N9OMe6Pf7qlarms1mdmyAdUXeRZZlti48iee+IhIgBPisEh8OKsmcD96BdCiE0RLB+uTZ8hkifgID655nBXcK9026Fm688Odf48e5+jXs8zM4x5ChEBAQEBAQEBAQEPBo3ApBQZL12xM66CudN42cAzgamBqASLDdbm1s4nA4tDA/Uvi9/RkiO5lM1Ol0rCefHIHpdKrRaKRer6ckSYw0eeKxWq0sw4AKrO8Th0jTxkBaPr8nkA5ySeUZazlZCVTRqUjTxsF1OAzeky5dC6PRaO/YOI48z+24qbwDtjufz41UR1FkAY6SzDkBISevgn5+3AY4NrgPtIMg1HBfIX0Q6+l0qslkoldffXWvZcOLA5BayCXVZSzw3B8q1EVRKM9zJUmiRqNhzg+cIoRZsi4Z8QjZnk6n5nRZrVaaTqcaDodGdOfzuaIo0t27dzWbzTQejzUej7XZbNRut3VyciJJGo1GRswRlryLBIcF7SMEMTabTXMz8Lx4t44kcxOw3v112G63JipkWWYOCoQLxnDO53P1+/29rALELR++6dtWIPKQdsQk7zjASYK7Z71e7/3ssHWH7XLuXtSQrsU4/7lBoGiWZXvPK2uMbSBwsGbInpCux30GBAQEBAQEBAQEBNyMWyEoQLh9CwAEgiq/73Wmsitd5y1I11VqKsz0bw+HQ3W73b2edsgZRJxK6Xq9VpIkeyF4VLn7/b4Gg4EREIgw24XE+2wESAnEj+DHarWqdru9N7UBsk2VnekCiADNZlOLxWJvrB5uCJ/UzzVk8kJRFJrNZntE1GcprFYr2y//IHhxHNv59vt9SdJ8PjfhgQT+xWKxV0knl2K1Wuno6MiOk9+NRiPtdjv1+33duXPHriWEnn3jinj11VdVr9d1fHxs1nzpOkyPa9/pdKwSTxZAo9GwHAJaAJbLpSaTyd54TloHEG2iKDLizfVarVZ69dVXNRgMLFuD8M4kSazdgVYQgiUJckScOTo6UqPR0Hw+N9KPi4X77l0wiD5eVNntdrZWESQgxQhRhy4c1kQURUrT1O7tfD5Xr9dTp9MxkYGARsIvuUZeMMN946dR+JYc9skxsrYg9DynCA3e1cN7cb5A7nEKcR+5LgghHAfnytrw2SJ+UsShWMkzjAASEBAQEBAQEBAQEHAzboWgUJal2ddvciPQry9d2+N9zzbVfyzL2PMh64w2xMWAeADh8fuF1EOgqK5mWaZKpaJ2u20EVZKRekg5FVlPqvy4QlwEAHKGawAi64kgZMnnMtC+QasC4sRhPzv950wVYCoArRer1WpPyOA6+P51nAX03x+2VnCsnFulUrFqcZZliqJIR0dHRta5j+v12jIRuK5+9CEW93a7rTzPNR6P1el0TFDw14frUa/X1e/3tVgszC0BeUWIOTo6MmGGZH9Je8cxn89NJPLkGPfCq6++qiRJ7NgePHhgEzRwdTBdAacEUyr4Wa/XU71eNwGEEZXb7dZadnAEEBhJWCJkHJGJ68F9p3UHYYD7yHtwqEiyoEi2CWEn3JD1B8gYIQeD54driWDB8wO5p02E3/sgSt+OwHVi/bLmWYeVSsXEG84RR4QXAKIosnYo347DMSAsstZY7zzDkvYEp4CAgICAgICAgICAfdwKQUHS3og5P9HBJ/NLl4QBBwBE0I/Boz2Af7gUqM4zCg/iR4XSW6vZpnSdBI+zYTgcKk1Tq+IiDux2O81mMyM6TJOAyHB+WLx9SJzPLGDCAUQdS/xhICIEkpGQTASAKEvX/f3Y34ui0IMHD/ZcCNjmPRAUsNL7a0IlGsEF0QZ3B04E3zs/n8/VbrfNrs495H4uFgutViulaWpiBBV7P4lhtVppNpup0+mo3+9rMploOp1akOZsNjMHQL1et5aSw3GVvJ7RkggT9XrdRmA2Gg299tprVt1m/SBg0fpwdHRka9GLIQgmCEQ4J7h/VNVxUEwmE5uMMJvNtFwuNRqNFMexOTC88OEr/IhIvoXH5wxIsvwKnh0Eqna7rWq1akIHln8EBRwKtAH4yRp+PfjtebeCH5dKCw1uC47Ni3feOYFrybtecBzQ0sK1ZI3iaPBr2buF+N7/HrEEYZJj8i0XAQEBAQEBAQEBAQEP41YICt6K7P/gP5xm4H/mv5dkUxkgD5ATSDcECBJCdoA/Br89/7V3KdTrdQ2HQ2VZZgF8kBAmN/hRi4giBDdi/V4sFpZb4PcDqYQ8eas3oXa0O7BdevMhbNj0ETAIYaQSPZlMdHFxYdVZ9st2vUMDkQdy6SvVXkyhqkzl2Yfmcb4EKjKaj33S/87oTW+Vx3ngv06SRMPhUGdnZ5Zr4Cvyi8XCnBKIJYgx3g0Sx7Ha7bZOT0/t2OM4Vq/Xs/GDs9nMxiviHPDXg+sN8Wc6RJ7nFgBK9b7dbpsTgX2Tk4GAQxX/9PRUWZZZWwO/l64FBVpCfGsELUG0JvgxqAhZvI57ieuE1gMCKbn3bI/7LGlPqOKZPJyUwLFyzxGdDqv+BIry3CAW+EwD2hlwzhRFYS4b3Cf8z+cIz553Afl2B5w1rDfug59AEsZGBgQEBAQEBAQEBDwat0ZQgMjy/aMqgxBs31bAz7GoY8mXZDb18/NzIyaetEM+PHGAfOJg8KPvlsulhsOhjo6OjLD7YEJIECQQxwDkBcKHAIKbgWtAxXW321lV2Pd5417gXLheJPwvFgtr8fDtCL7FgXYNiJW/Bz7YEOJGVblararf7+8RLQQargU/x07uRYfVaqU4jk1k8AF97AtRg2Prdrt2bLhLOL+TkxMTjLgmnvQerhu2A7FsNpsaDAba7Xa6f/++kWLcCHfu3JEkI/ZHR0dqNpsajUYmKNTrdcse4NgJr0RI8dM6sizbWyMIT91u186hWq1quVzq9PTUpmpwXoguTMhoNpvqdruSZOsJyz7rpt1u2xr1rgAq+7yn0WhY+wUiFOGgPtsE1wLrj5BOL1LgbkGcYlvr9VqLxcKeY7Z7OHbShyYiLvmRkuv1WnmeW54ELgue68MWBwQF1qqf6nHY6sA+gqAQEBAQEBAQEBAQ8Pq4FYKCDxLk+5v+B5CBw59Dag+dDZAISC7VfCzbnjj7fnkIGV/nea75fK7nn39ezz77rDabjUajkW2baiiZBvV6XfP53JLmveuA/frK7iEgv9jPITwQVa4ZIkSv19NyudR4PJYkqzLneW4kFlLo3RPS9XQB31IhyYg/wgnp+UwmwJJONgPWeara/X7fWiJoP8FNADnFWYFrgfBGxij2ej0TOsbjsRaLhR1Lt9vVfD7Xdru1aRKMgoTkcn5+0gPnjqhA5kGe5xbiiePg7OxMs9nMXAaS9PLLL+v8/FxZlqnRaOj4+NhIMC4DHCEISLTBcK0RU3A5YOUnlwMxDKGNc1osFhY4SfXfw4eBQtrjODai7dcBQPBIksSmifCccB0RalgPaZqaQAEBRxCRtOcowcWBwIKbiJBQfoao4IUm6dqVgXjEudBO4x02CCX+WfOuGQQl7xri+Hkvvzu8tgEBAQEBAQEBAQEB17g1ggJ/vN/UenDT6wGk32cuUN32UxzICqDVgb56qtGM1POjGyG23oqdZZkk6e7du1aR3+125l7geKgiYzlH6KAv3E+ngEARNunPJY5jpWlq5A2yjKBAkj+EsNPpWEsHoxclWWAkBBvyC6GiQov44sfyMQUAZ8Bzzz1n18xXzRFdpOtwPNocmHLA9cO9MJvNtFgsbFoB24NgLhYLDYdD9Xq9vWR/xjpWq1U751arpSRJ1Gw2NR6PLb8Awkpegied2P273a5ms5myLFOe5+p0Oup0OibqSLIKOO0W5+fneumll/ThD39YH/zgB9Xtdk1IGQ6HunfvnrIs03q9toDIXq9nOSGQey9+EXwJ0UawwLVBsGSapup2u+r3+0rT1LZTFIU5TRCBWL8IU5LsOWH9sQa8KMPzBdFmXfD1brfba1lhXdP+QbDlbDbba8FgzdKuw1rgmnBdeB3HGMexqtWqCXQILZKUJInda4QYnz3ip1LgVGDUpXfy+LYRP00mICAgICAgICAgIOBhPFwWf5OIouj5KIr+5yiKPhFF0cejKPqtVz//fVEUfSmKon9+9e8XvtG2aFfwo90gMl5keOjgr/74p+p4mMXge8chj1TWGfUoaa9P27cX+OopRIRKe6/X0507d6xKTJo8JHixWEi6nKaQpqna7bZVfBEP/OQGkvV9n7ckxXGswWCg4+NjHR0dqdvt7rUY0OLA9aOlgAo/JBFbuM+X8BkNiC5UmL31nCp6lmV65ZVXNJvNjJB5CzkVeIg9leokSTQYDJQkiVarlU5PTy3Xgsq5b3fhns3nc43HY2VZZn3tfhoEAoA/9jRNrQVB2g/a22w2Ojs70/37983lwGSKwWCger1u0zDYbqfT0cnJifr9vpHOVqulO3fuKIoiffGLX9QnPvEJnZ2d7RHadrttrTGEDCI20AbiwxS9Y0WSuQpYr/xsu90qz3M7xouLCx0fH+uFF17Qs88+a+4R3Absy2eT4Hpgnfm1RCgi7/NtCH6yBKICawTXCe0JrHdamRDCEL5owZFkbRVpmtozh0OBc+AzoN1um3jAM0KwJ+sAsQiRDOGA8+Ga44bxz4X/7HhSQhkf52dxQEBAQMBbR/gcDggIeJrxThwKF5J+R1mW/yyKoo6kH42i6O9e/e6PlWX5R97Kxg7nwkN+fF7Co0CwIdVNX3WnJ5pkeqqevnpL/zg96FQsqexCmHExQKiHw6EePHhgoYAICWQBJEliEwMIjcMO32g0dH5+bpZ0H4jI/ng//fmEDhZFYfbz9Xqt6XSq+XyusiyVJIn18EN+Je1VXTk3XkPYIkIA7QfSNYlst9uaz+eaTqeaTCZ7lfGiKGziBQKP73uXZJkSTEdYr9f64Ac/qHa7bT/HLeKPqyxLjUYjEwl8sCJkWJIJOjgwfEijJHvfZrPR6emprSuCEJnuwOSIXq9n59dut9XtdjUajexed7tdO+9Pf/rTeuGFF0z4ATgfhsOhptOpZrOZtbBI120CkGDOm6o8xBvBiDWwWq00nU6VJImOjo5UrVZ1dHRkVXvcG55I+9GRZHvgpJFk7SdRFKnf7+/tF/hMAwIZ/X33LhcIO44c31rDeuL+8Ow2m00Tgrz44keIVioVE1r4h9Di2xZ4D+0dPFs+ENK7L3yII8+Ld3HccjzWz+KAgICAgLeM8DkcEBDw1OJtCwplWb4q6dWrr+dRFH1C0nNvd3sQPt/f/UaBaIfp8t6hIGlv9CDEEvLmZ9NDfiFAkBGfK8B2yShgagG9/VTmsXEzztFX6hmXB/mlVYJ9eUKMoyKOYxMbyCOYTCaWk4BgMplMbKJDkiQ2NpGMAn89D5PufZjeISHD1p4kiZHL+Xyu+XxukxJI5Pd9594aT3ghbo3z83ONRiMj24zhLIrCrikuC95P6wCVfB8ASfYCIoKvqh+202CHL4pCRVFoOp2q0+kY+ac1g/YIggQJvpSuSTHBl7PZTJ/+9Kf1/PPPW7gioY0EEt65c8faRtjGarWygMNer6ftdqvRaGRiEYLCYrEwBwhtCwgHp6enGo1GevbZZ/XCCy9ou93q5ZdftnVFUKV0KT75SQaLxcLcBJIsQ4LrD+Hn3LfbreI4tnVAdgihn951c/hss0ZwW3hBwE/i4HUIIFwHxBHfluA/B/iddzcwFaXVau2JTzwDtD4gSCBE8ll007ncRjzuz+KAgICAgLeG8DkcEBDwNOOxZChEUfSipJ8m6R9L+tmSfksURd8m6Z/qUrEdv4lt7FU2fRjdo9wJvvfct0v4KiPkGcJLz7Z0bYeHMEE8fJsFAgfHUxSFxuOxXnvtNX34wx+2PnsfJAcRRVSAiGLlxw7e7XatTcL3fPPPW7K5Pp1OR/1+31wKVJzzPNdkMtkjgxBbn50AcADQbsH5Qrp8vgJODarHOBiWy6W1e7BNfz8gazg3CEAcj8darVYaj8fmAiD3YTab2WQHT17Jt+A8uKeQUq45RJ2gRs7F/95nEnDtIO9pmppgAgml7QK7PmvLC0j379/XZz7zGZ2cnGgwGOytt1arpWeeeUaTyUSnp6dG2qVLkp+mqbkvJGk6nWo6nVqWgHe1sEbIozg/P7dtnpyc6Cu+4itsagXhijhwyrLcE5e4VggqOB8mk4l6vZ6tZ++iwFHDsSPY4Qbg3gP/LDLWEREQAcJnMvg17yewkKnAM8g+b/o8QBDgGBEH/HH5TAiefz/NxOeqPEl4HJ/FAQEBj0bl63+yPvMre+/1YTx1WP83P/JeH8KbRvgcDggIeNrwjgWFKIpSSf+jpP+4LMtZFEV/UtLvl1Re/f9fSfoNN7zvo5I+Ksn68b3TAKICYX6U9dgTGsgw76EyTbUdkoytnK/LsrRUf096sGtDpKRL0jKfz/Xaa6+p3+9b777v2YbgLpfLvUorrgjaH3gfwgaBhT6ksdVq7Y1ZhBAjAtAiQnWZKm+n09F0OrXWAMgbJJFKPCIMx0IFPUkSC79bLpdWrYVUE3KI3Z3/ESk4X0/mIXW9Xs/cEwgetIXwj953jp8MByrsjB/EEk++BQJRURSazWaWa4ADBdIZx7ERaTI8WAfcj/V6bSGFTCdAVOF6brdbzedz5Xmu09NTPXjwwKr53EucAs8//7xWq5XOzs72WlwIpURU2G63KopCeZ5blZ1rSQgix5xlmabTqUajkY6OjtTv9/WBD3xAkvTaa69pPp/bvUA88gKOJAvV7PV6JhQhShGWyP596wKiCM+Wn9DBmmN9+m2wbjkXWlu4z9zPQ6eQ/3y4CQhAPv+DNijfiuPbnw4nX3iXDcLfk4LH8VncUvzlO+CAgCcItXt39anf+RVSJJWV25+t8n5DefvNYpLC53BAQMDTiXckKERRVNflB+efL8vyL0tSWZb33e//tKS/ftN7y7L8mKSPSVK73S6pPvpQRCr1vhJJBZKvIeS+ok6vt6+Y+0wGd3wWskilfDgc2kz72WxmFd4kScxav1qt9Oqrr9okBz9tgZYJwheLotizaENsqMxWKpW9kEgyG7yrwQsmWLXp8fZ5AoxnxL6P3d2LM9jHkyTRer3WbDbbm3YgXffbE5i4XC5t2kCapkbU+DkkFVeCJBNMuC/eUcD0iel0as4FRCXcDxyvd5EwupHfI6Qw1QAQHFiWpb221+vZNeU6Ae4Z4kOapnuCAi4FHCEQ4jRNrbVht9tpMpnoS1/6krWI+NdWKhXduXPHXANcC/IMWAuNRkPD4dCCFznWdrtt94814gWf1Wql7XarZrNpeQrr9dpELenabcP99i4AshTIuqBdw2ea+EwDniNEEc7Tt5vwet9q4EUBnknunXeh+DYE386EGCBdT2dAeOCZ5nfsm+NgnfIztnMo/viWE9bMbcfj+izuRsPAlAICDlCJY33yd1+KCQEBj0L4HA4ICHha8bYFhejyL/f/TtInyrL8o+7nz1z1kknSt0j6sTfaFiFtnng8Kj/BVyd9toF3J0gyy/nhz6im+vcTskjVv9Pp6Pj4WGma6sGDB+ZSwGFAmN9sNrMKJ1Xp9XptZBYykmWZarWa4jg2YkPOASMgqYJDqOI4tko7x87+IUBUuRErIKFe5GC8JA4HSZacH8exlsul5vO5OQd8FdpXcbMss+uIYMOxcw8giBDzbrcrSXbM3vXhp07gupBkBBshAcGFPv3BYGBODS8S+co51eV6va7pdKqiKKyFotFoWLsA7ggINdeT64KDJUkSdbtdExR8VTuOYy0WC8t5IN+CKj0il3RJsAeDgbWncN1wpuD8wHkBeSfHgDXjXQCIErhuyDI4OjoyB8hyubTKPaIEDoTZbGZtBARGEpQoXeeQcHyIKEzJ4L55Vw3vZ9oFWRg4TniddzB4EZD9It7xOu41z5YPYuR7/tH649cjYhbCHc+NF9343EDQ8sGWtxWP87M4ICDgEQhiQsDrIHwOBwQEPM14Jw6Fny3p10j6l1EU/fOrn/0eSd8aRdHX69Le9ZKkb3+jDfGHO7Z1X230/x6VpeBn1VPdhLz6aiyOBqzjtDdQqadymaap0jTVycmJyrI08odtXpKRbGz2ktTv9y1rwafjQ5QgKRAtKqbtdtvIpe8bx4VwWE3HTh5djfjzOQLT6dSuExMUIHG0CdACAHGeTqcaj8d7gZGQeaq0vu3Dj/vLskyr1cryILCvQ14RNng99xdBA4IOWeccaZGglx3yj+uD3vhDoslxV6tVy0PACZGmqQaDgZH/8XhspNNfc46X+9jv960FBNFns9lY8CEuGkQQBCKmV9BSgJjF+EyEk/V6baIU157zYI1wfN6hw/n7KQf8vFarmTBGkChOBX7vnwl+xpSP5XJpwgNZC+v12oI4a7WaCSGAkZ7NZlPT6dTOmwwI6dolwXHznHtBD3cMP/cjRVmH/mueB0IyDwMWvVuG+8qa4XOH58y3WTyqteIW4rF9FgcEBAQEvC2Ez+GAgCcYtRc/+KZfe/HSF97FI3ky8U6mPPyvulmz/8G3sz1Eg0MyAOF5lJhwdSx7ogMkAnJBdRTSLmlv/jyVXEjK2dmZJOnu3bsaDofW0+63iw2eMDfI+HA4NPs7gW7sm/BF6bJa3ev1VJaXYxERD6i4Ytvn55BRSCbtHH70HY4GbztHDPCV/vl8bsdMpRqCfRgsyf3wx0eFmEr9er024uidGz6RnzR/iDGV8kajsRei6AUbX3W/uLgwJ4VvAfFE0beHIGyQm4DjgPvz8ssvazKZqN1uGxFF3IjjeM890Ol01O12TZhg3+yD9YsQ4KcfzOfzvVGguCGY3sAa9Q4B1iPCS7fbtX2xBrnv5E8gGDE+lNcTNsn69qRZum43YJsIOH7qB20yrMNms7nnvuF1zWZTvV7PzokMC3IYEAL8mvCCGe4K39rh1zL3CNcAx4MYhcuE7/2zQZsPjg/WLsfuszZwYTwpeNyfxQEBAfsot1t1PlfRtikVz77+9KmApxPhczgg4MlD9SNfqbJ5+ffuJ39d/0070b7qz3UUbbaKtqW2H//Uu3eATxAey5SHdwqfcwChQETwOQivh8NqIqTEk2Kq2bgW2A85CoT10QaQJIniOFa3290LjeMf1ntC7KjQxnFs1WxJRmgk2WhEhIN2u61+v69Op6PxeGwtARz/YTYDdn5II2TMk2mIuA9jpPectgzpkkzyc5wGWZYZybyJVLF9Hw5ILkC321WapqpUKhqNRprNZnsj//y9hhzTfrFer22yAUID1xmbPxMZOCdaDRAVfKYGTghIN9uK41jPPPOMFouFzs/PdX5+vmfXxy3A16PRSO1228Zx0joCYfWTCXa7nYqiUJZle2uWtpNms2lrHIcK9nvOjSyEoihsP1wL1nitVjMhBrANBAyEG4g0U0Q4Py+IcCxsAwGCZ4dj5/7j1knT1PbDtYbU4yrxLQqcD+dAFocfy4nIwJrlmH1mg3c3rNdrC67EHcF7fQgjzz4iGuvlsF0GESqOQyhWQEDAJcrVSs987J8p//k/VcWzT0g6YEBAQEDAjaj+5K/W5ijRS/92SxfJW48s+fFffRnQXllHevGv/zRJUn1UPNXiwq0QFPyEBiqjiAmHNm9JD9mS+Qd8RdODaqWv3vsxdrwXK/98Ple329VwOJQka3Hw+4eg+YBAvx+q1lR1IZ1kDyBApGmqdrtt5Irtsh3IFcQQezihgzgxsHFTbaflAcGDMEXOmyR/ch8QEdgf54agQWAfBJoq/HQ61Qc+8AEdHR2pVqtpuVyaSwMXhM+1kGSCCBV7cg24N4zxlGRCxXQ63Wtr4Bg4Vkgya4rKM98TcHh0dKTFYmHOE99ewahHSPBoNLLQTsQgCDTVfAgu0yUIKiRskntI/gHbwnnCseNM8EQXAYXX+EwBzgnxiuvKNSRg0l9X1gDv9ZkD5Fm02+29tgwyCDgPQikRDnyLD204RVFoNBqZSORFH9YY58Y5cww+j8MLjD4rxU+HYW3h6kAk8VMmeK93KvEsc9957tg/9zUgIODpRVSrafaLv06v/awnpg0qICAgIOAGVH7q1+jz/8ehlnd2uuxEevvYNUp99pddFtyaZ22dfMU3KPnxkbaf+onHcKRPFm6NoOBzECALkoz4+l5vCNhNgsHhNhEkvAsCVwEkyYsAkBvC7OI43uv19+IHhBJLu/8nXbc6QASpwEIAIX79fl/9ft/IH8fsQxol7bU1UH32QZGAc/CW+263awTMHzOkE3eCJCPJVHsRASDJWZbZe32eAIGU3W5XSZJoNBpZ1R2Xh7e8k6lA9Z/z5R+iAucE2ZzNZkYcIYZU55mY4Mm4t9xPp1NFUaRut6vj42M9ePDAplUwSpKKPM6N6XSqLMuMpHY6nT1y71sEfGsLYyYRfxAqWHdU+Vl/ZGBIl+4RX73nOrOefJsH4yW3262NnkQ4QezAbYEYI8naIFhvbBNHiG+lQJRin7gBeJ7m87l9jfPk3r17tnZumrLCz2mxQQjyYyO5Nv5585kk/jnzgZk4b3yAqHf0eFGB7/3aY7RrQEBAQNRoBDEhICAg4AlH5ad+jb5gYsLjxep4p5e/uaL4J93R8z9Qavvpzzz2fdxm3CpBwbcg+J5uSA092N61cJibgMX5UEg4DGvzIX++bxzCjRuhVqvp+PjYCDDkSbpuZSAzgGo7v/MBh5BniOdqtVKe59Y+wMx7LO+cc1EURuwRVCBUBDpK2rtWPtdhNptZ6j496hwD4gVBlFTHOX7fqgFJ9tVuwNhLBBLGQjJykWuPVV+SOSJwVlSrVXU6HZVlaRV+ghUhyH4CgA9w5P4yPUHSnjAA6ZdkWQVpmqrf75sbheDCJEl0cnKiJElsDZ6dnVl+wsnJiY0L9dkMEHJfEWcM4nA4NIcBQhDXFndEo9HYa9egVUPS3npAzOF33g0ynU51dHSk4XBo65uWk/V6rTzPtVwu99YA20eA8C4S7wLgOPmf9coa9+MYyb04OTnRer3WZDKxdh1/zw7FQ9aCD2nk+BFCWEt8FkjXIaH+WWP9EEyKIIOjxzuVfMglrhfu16EAEhAQEBAQEBAQ8OSh+GD3XRET9vbx7E5f+Ja7euEvbXXx2Zfe1X3dJtwKQeGwWkggn58w4CuIEAHvAJBkxMYn5QPeC+llvB1kHTIIGafiPpvN9OKLL+r4+FhFUViPvKS93nbIXrfbVbPZ1HK53Ot1z7JMRVFY1T2KIuV5rizLbL8EG/qqOwTSJ/pzLkwT8OSOa0Z1nTGA9PX7MX3swwsKHI8XHdiHv0cQNAQdzk+6FBTSNFWSJCZ+QEzJbWCEI332foKEn5Thsw3YPtfBBwfyfkZCMrYSFwOOAsYycr37/b4k2blPJhPdu3fPWkQg44xKnE6n6vV6dm9Zq7SBtFotq6pXKhUVRaE4ju2+Xlxc2GsQFlhHiFmz2czuDe0JCGW+XcELaEVR6Pz8XMfHx3shnVT8GVk6Ho8t64CRl2zTiyRcT0Q7nit+hsOCZ4lrwdfsn3YhnBYIIH7MKOfAZ4F3YiC28Tuuqw8H5fPBt/0gzLHeDwUazsMLQT5vgWPznyEBAQEBAQEBAQFPHipf/5P14GfUJL37wbqLeztte8kbv/B9hFshKEiXVW5vc8aiDBGF2Hk3A+QaoiVdOwMgOJAH30fNpAAqpFRmIRGexGAl7/V6unfvnsbjsUajkQkTiACLxcLIGWTrMFAPOzaEDuGC3/EziG9Zlmbjl67H8kHAPeGmmtvr9ZQkyV4VmYptnud7TgcyJC4uLkwEWCwWRqp4H+6Hm+z23LPVaqXpdKqiKCxokfPx1enFYqFms2m5DUVR7FWOSeunas72IMeQdar2VM9pJ+h2u3uBlGyL++WJIi0MvV5PlUpFeZ5rPB7rwYMHunfvngaDgYkeWZbZNZSuyehhAKFvteDnRVHsBWNy7jhEqML7kEaCQhEzyMZYLBYmViFKcB3W67VOT09tLSFQcN7cF54Bpkewnrk3jGP0bRa4DnxrDS0RHIsXCfzoSp5t/9ytVit7hjlGpm340FPvkuH58S1SiGc+hDLP8z2RxLuXeK4RJv394r4iZPjWmYCAgICAgICAgCcTF52m1r0v3990L31LVx8++4Auvvjyl22f7yVuhaAQRdGe1R/7NPZ6SI4fdwfp9Wn6fsQh1VDIjCSzvyMSUOmErHniGcexLi4uNJ1ONZ/PNRwO1e121el0VKvVNJ1OrbpMvz0k34f0QRQhnp6UQ+ixaUuXBKlSqRjB5vdcCyr71WrVKuOENfrKsyQlSaJut2vtIlTpeZ0f1SldtglAnLmOPuiu0WjYcUHqIJSbzUZZltmYRSq/XCP2wbhECG6SJMrz3MIqD1sjfHuF76nP89ycBty7ZrOpu3fvqtfrWRaBFzwQK1g7ZAGwXi4uLpRlmUajkYU1EqbJPYUMs34ajYaSJLHcDb+mWcM4Dqj0kzFBlgbXiuPHfcI9XiwWFuzZarXsHrHmOa9qtarFYrE3GYTWGK5pu93WZDKx69zv903EomUHEcw/m4eTPdgvZN+Tc+8K4Lxo/6jX65ZJ4gUp3C4IYaw772xgnfn31Wo1JUlia4XPCFqMaDPiXnJcvr3Ht0bxPe/zrSEBAQEBAQEBAQEBb4RNp5TqT8/fkLfmTOkd91VXCJGvmkvX1ufDnATIOtVUqqPe4ozb4ab34gSgmkoA4Msvv6w7d+6o3W4rjmPr6Z5Op2b7hqx4AuezA2g9gLQWRaFutytJJhZAlnzlnfd4dwMkFwLurd0QLKrUhEoiTGRZZoIAKfiQzyRJ1O/3dXp6ahMgIPYQ6kPi7CdcZFmm09NTI7RcVy86EOTnq9tUwrMsU57nNgEBIYkMCNoU0jSVJE0mEy0WC7Pjs13uMe9rtVpWgfeEFhKMm0KSjWycTCYm4ADfakGApCSrekN8uS7SZSU8yzJzIsRxbOJHo9Gw0EzcJ71ezwQXngGf2eEzJXxoIG0NXDOOAzEiTVPFcax+v6+iKOzcION5ntu6R3zgeuI+OAwxRMhoNpsWvslx8vpDss6xsr7ZJ84HBAQcBeyT7317A+sToePw/bgUCOWMokhpmlp7z3w+3wuNRATy+QrBoRAQELArCn3NH/mCPvk7P/heH0pAQEBAwFtE5ad8jT7zS5vv9WG8r3ErBAWfj0CVnzYBXAP+j3zA6wGvX6/X6nQ61jdOVZ33Q06kSwKCAABRK4pCvV7PXAfn5+eaTCZGrqiSZ1m2NxYREYJjgeQjZCBuUJleLpd7ZIhzkmRECZs9QgOVZAgj5+8T7aVraz/bgSghUkDkkyQxgQDyT8WfzAMvckC4vUiCrZ98iclkYtfXXwNEI98Lz/lTkada3mg0LFgRAsz9JlSRdg3EEyrLnqhyfRBGcDUwQhMSfPfuXbtOjDscj8cmbnFvqLhT5WY90TbjxS7uNU4DRlAeHx+r1+tZRgNrIUkSxXGs4XC41w5QFIW1PjASEaGJfSEo9Pt9cxlA3FerlTkY+v2+VquVzs7O7NogIEDYIep+PCbEGwHpMPiwLEsTuFjPPkDRPxd+coMP2kQQ86M/yTVA0OJesP4QNHD8LBYLC7X0eQysX16Hs8JPUkHQ8+ImxxkQEPD0ohLH+uTvCGJCQEBAwJOKMgzueldxKwQFKuSe5PswOF4DfGYC5IX/IeC9Xk/SdesC/exelMAa7ckTrQPYqReLhV555RV97nOfs+Mjm6AoCuV5vhcOByFlXCATECSZNZ7jlK7t1r4iutvtFMexZQBMp1Ozc0O4/LXyAoy3hEMGG42GhUyyD4gXwgsE7jCJ31vaOUbf6sE5+1GYEEscH7y3KAqVZalOp6NOp2Ok9yYCSusIbgQ/7hAhxI+rxNLONQBMO6DVYTqdmoPBj+6sVCoaDoeaz+daLpeaTqeaTqcW2uhDIP2kDtoE+D0Ch7+fPnRwsVhoPB4rTVN7n3dLSDInAw4dsi0QThBPyNrAcdNsNhXHsdrttpHsdru9N2IxiiINBgNdXFyYqwAiT7sBYhOBoJyzD9dk7XF+XrDhHCD0PH/eUYHo46ey+GvL8fq2Gi9SNZtNmyTC630IKtfrMDuFa+KDHnkv58haCy0PAQEBhjA1MiAgIOCJRLTbqbKKtGuWb/zigLeFW/HXsu+RhgT46qmvch/i0LVAz/d8PjdyRDgiFWOIDNuFECMw8H+321UURZrNZnr11VeNqPmKLpb0TqdjbQ+r1coEAVwPkiwskeNh0gRVUqrJiBtY/OlBp+LOlAm2T4UbIYT2CcggbRlUXRlPiVMBpwFk0F9biDj791Z+7o2fzIAosFgsrH0BYWY+n1tQH8TXuw64v4g/fsIEwYQQYcIwm82mnT/EHAKLUOVbCDabjUajka0xshKWy6UGg4Gee+45a0OYTCYaDAZWtSd3oSgKcwogKkHqvSjlpyP4/IHZbKbZbGYk2ectQNjZNi4D/klSt9tVmqYqikLz+Xwvm6PZbCpJEqvGc8wIT170kGQuDfbtnTGEJB4GWnI+OFO4n0yNwJXhAxYRq8gt8UKEF6+8yEAApneJ4BCRLsXCk5MTCzdFPGDN4Wrxzzzn02w21e12ba0SpMqaIcCUax4QEBAQEBAQEPDkYfuvPq0X/8ZP02d/WWh7eLdwKwQF6bqvmiqhT4EnswCLNxXNQzEBEPBH1ZT/+TlkmEosZM5vE6LcbDaNlDJS0VerqawiAECWvOPCV6zpc/cEUZKdH20LHAsVVU/SIE++mowFXpK1bSA80K/ve/7ZFon2jH6EWEI0aTvgPLg2ngBzzyCYkHmIKIIKQgxEjdwCjhFLO9egKArLrmAahCSrqvd6PRNyTk9PlWWZrQ3fokEgoCSbhuBfK8lyDfr9vo6OjmyaRxzH6na7e2sPGz1kPc9zE38Qqfg9JBU3Bn390+l07574UalcK0IYGTPJOuFYEXQQCnz45mE2Ac8Sa9C3qiAoIDYQMupbNwjOlK4nIrBmaC3yAgbn7/MQvMsAV4B3aPi2BH7GGuMZ8+03iHNemOCas574HOEaeJBZQWsJn0E8877FIiAg4CnGbqf41YqKZ0KmSkBAQEDAG6N1WpFW6/f6ML5suBWCgq/gekItyUgR5M+HM/r8BACRYXKCzzyAwNP64J0L3p1weFxJklhl2osGvM9XRf24RQLxeC0kpdlsqt1uG2Hz/7w1HfJIzz+5Blj9sflL2tsGDo3ZbGYEqdvtajKZWJaCJAuIRODgvZ6g0a6B+IALApLJNeX95FX49H5PkjudjgkazWbTrP9ZltlUCj9Kcr1emxOBa8O+cS+QRUCqPyIM7/FuhyRJrK2B1zE5g9cMBgMj2Vwz1gPrA5HEB2ryGkQn6Zp8k3FAFsJsNtubaOIDCCG+bMe3GRB+ORgMzOHBPeWaUZ332QOsVe8EkS6FHAQoP+KS9ZymqQWW+pYZsFwuNRqNbHrHYUsPz5DPEmHNkjvi801ov6BVg2cdVwVrnjWEaIVo5/dRrVY1mUz2hBA+R5h2QlsRgh7vZ9zoTa6ogICApwu75VLPf+9P6FPf+aH3+lACAgICAt4G6ue5Wg/aWt758gjDz//NqS6+9MqXZV+3AbdCUJBktv5Dmz5EHxIPaYeEHP7B723zVCepDkMw6dGn+gl5IDAQ2zqTDwaDgbUDrNdrywng9d4pQdUZ4ndIBpfLpQU+Ho7B9A4JLPlU132wIhMMfN4DlnfEEsYqlmW512/OxAD2PZ/Pra+eY4BYQUz9hAnfU07IZJqmFppJ77rPAaDqjKDQ7XaN5OJY6Ha7arVa6na7iuPY+vdpb6BqzDFmWWZtLbgUaF1APILMYs+nut1qtVQUhZ1Tt9u19hYmLgyHQxuDuVqtjKQi7JC/sFwuLTQUEu4nW+AgYcJAWZaaz+darVaaTCaWh+CFLdwrkH3aK5rNpjlPaB/hnniijOjkrf6Q4yRJHnJR4CxYr9fmtvChmbSnMK2CNhmezel0amKCd3wgkDENgnXH+SF2+HYZjott+QBPto3ogKDAcfC5wb1I09TaX1g7fHbwbHhBg2fPB2LyeRQQEPD0IqrVNP/ZX/FeH0ZAQEBAwNvE9l99Wscf6uvlb373w7Y7n6uoejbV0/QX5DsSFKIoeknSXNJW0kVZlj8jiqKhpO+T9KKklyT9irIsx294IK7CKsn6wKn2H4YwgkdlK0AkPPnwM+4h4IgGvtec/wls7PV6e1VzyCTWdx8+B8mjDcFXymmdYLpDq9Xas25TZYVw+WPkHLyV3E9cgNzSN06QYxRF1nN/dHRkpN+TtCzLzCHiiRv3BPJNRR9CKsnILqTQBy9WKhUVRWGjGrmeaZqaowHxIUkSm9wAAZ1MJiqKQkmS7I24hDgvl0vleb43CcCTTsisD+vz7RCIK7QQkMeASFKv15XnuYqi0GKxsOtIKwVVe5wj3qZPBoEPLISgk9mR5/mepd87IXgfogRuDvbJyFJaDXg/xJqWFtYt4sJwOLTRlRw7zxBrg3wPnh3pOpzT51P4EE3ew/EjyiEGetcGIogfcYmbxbsVeN4Pt+vJP9eaZ5pnEidDp9MxEcdPnPAighdC2A/n+qi2qtuGx/lZHBAQsI+o0dArPye4lQJeH+FzOCDgdiP51JmSj9xT/oF3z6XQ+VxFz/3AF3XxxZfftX3cRjwOh8K/WZblmfv+OyX9/bIs/2AURd959f13vN4GqOhC6CA6VIP54/8wm8C/34sKPtndCwrSdUI822JcX5qmZpOGoJCcf/fuXeV5rtPTU81mM3MHeGLjxzliLfdZC7gN8jzX+fm5ER5/Lr7PH8cGxB9CnWXZXtUWtwUZD77qS/sCVeXhcGgCja/CkstA0CHEEnGCFgvpekQi17LdbtvoSW/9HwwGVn2vVqtK09SyDzhH7iktEvT2S5d9/vT04/RAgKFtgJwH2jJ4jw9k9H34tAjgCMCZMp/PtV6vNRwOjUjTSkFwJiF9vV7PjgPiiWDhR4ceTv+QZPkEkG8EIbbDmvN5AmyTNZCmqbk3aG/AUYBbQpI6nY4JQlmW7bWicO9YG37SCGuH19Ou4NeoFxNw7FxcXCiOY7uvCDoQfknWTuDFH5+TggDk8wyAb3Xyx+LbjlgPtI74tprNZqP5fL7ncuF6+4kSfN7wzN7UVnWL8Y4/iwMCAgIC3hHC53BAwC3F9sc/qw/8QKkv/rJnHnsmTvt+Rc/+w0L1l8918fkvPtZtPwl4N1oefqmkb7r6+nsl/ZDe4MOTP+7JKphOp0ZEqFpCKCAqj3ImAN9CQBXUBy4ysx5idjjCkGpvo9HQYDAwsks43eExQK4g/pA/wvL8WMv5fG4kChs8gFjT1831YUwjwgVVdYhYWZYWNghZRVSg8t1qtdTr9WziAk4AX0GmZQMRAVKFI4PRhFjeaSkgZA8kSaI4jvcIP2M08zy36rrfPvZ6toXFn0kKvIcKt2/1qNVqdlxU5Qk6ZNs+tR/xJMsyFUWh09NTq2b7MExEpclkYmIMJBuhxk9WIO/DT83wbhJEJH5GKw8hk34CA60F3pnSbrf31px3F3iLPtcCR4GfvIE40263TVTzGQt+QoN37PjATJwePsOB6+vbgngdzxRCBeuTZwPhB9EAoYHn2Lf3+JYnRAm2UZal5WNUq1X1ej2labqXpeEzWXzGib9+/P+kOBQegbf8WRwQEBAQ8FgRPocDAm4Rtj/xOX3w+y606yT63K8YaNN5+3/nVdaRvvK/vzQcVbJCFy994alqc/B4p4JCKenvRFFUSvpvy7L8mKS7ZVm+KkllWb4aRdGdN9zI1ahFCCMkEKIDmaJi/aiqoe+BhrBhAW+1WiYgsH2IHOTHExbC9prNpgaDgdbrtcbj8d50B3rPIUZ+X5A/PwpTuh6JOJ/PrVLtx+L5dP/tdqvZbLY3RjJJEiPL9LYjkEiyCj/Xjf0xIpJ9ejcEUwQ4HwL2INC+ApxlmY6OjtTv942E8hruAfb6JEk0mUxsekQcx0bet9ut7t69q263a8IReQ98TYsK++e+c48OXSns0x+vr1rTOsE1R0TKskwvv/yyCUG+LQTCzD3n/BAtyrK0kYkQXIQeHAN+ioEfHeoFEdoqvLsCYu6r75yjdz/gKmA6B1V4RC2fJbJYLGxNkT8hSbPZzMQyn+HAyE/EBk/iWS88bzgCEIhwS+DoqFarJlAgUNH+w33wkz5wKPH8EJzpWxd4DnFjsD4QUBC8aC3iPT6s0guX/l7z3D0heCyfxQEBAQEBbxvhczgg4AkADoIPn9+TGpeFxk/+1uekN9nZ9pH/131Fmwtpu9PFy1+SJD0xfy2+S3ingsLPLsvylasPyL8bRdEn3+wboyj6qKSP8j2VRZ8VADGFtByGs11txwiyFxogO6vVSovFwsg9ZIaeawQBBAVIBL3fksz+zjQByBHVfIgIhCaOY7NsQ448+eUYiqJQr9d7aCqFr0B7274kI0iEBQ6HQyVJYufrrwtEFnGG4EIq6LhCer2eZQxA1Khe+558XB7e8UCfPrZ6SZpOp1qv1zo+Prb2CEZQ7nY7jUYjLRYLNZtNDYdDO2buh3Rp/8dN4LMRfFXeZ2NA9snImM/n9rooioyMt9vtPVKcJInG47HOzs6sLYT1BFH36+pw6gDrCJcGQpVvifCVc+6xD3DEJcAIxziOLYMDEUy6Hi1Kuwa5DwQecl4ISIgmZFggOk2nU7ueZHyQaSFdjxlttVrWRsJED/+s8UzyvBIIyZpn/W63WwvdRGhB9ECcoVWC++5bfXyLBdujHUeSjTb1YyIR6FhnuDIOBT5/3bwIx3OAQPcE4LF8FrcUv1vHFxDwxGJXFPrIn3igT/3mwAUDXhfhczgg4AnCxauv2dcf+f3Zm37fdhxiUA7xjgSFsixfufr/QRRFf0XSN0i6H0XRM1dK7DOSHjzivR+T9DFJiqKo9FVu7NP0XPtpA4cVQ1/pPfw51WqqjQgGN20L6zVEU5K1C3gC6Hv+fZUWMkRFmX5ynxLP5Apf7Z9Op0bYJNl2OWZIapZl6vV6e8n0PsAQAiZpj9BSEYYY4YDgWkDCfTYB4gXn7c9Vkr0mSRJJlwQ1z3ObsMB0BN++4d/PiMLxeKzFYmFkl3PlfzICIJZsh/uGqBDHsbWS4HRhPxB8rru0H17or7evmHMuvM9X3704hNtFkrlrvD3fA2EnSRK12227JwgXtF8MBgNb/4hfrAdcBJD+brdrYoA/P1pEcKBwDt1ud28CCY4bv8a9aIYIRctPs9m01h+OAeGKlhvEtyzLTBSpVqvm5JAuHRH++SPYEkKPOMFz5Cc58AwD2ldw9LA2uOaTycTGgyZJste2xOeDzxzxLqQnpeXhcX0Wd6Phk3HCAQFfZmx//LP6yMeq+tRHj97rQwm4pQifwwEBTy6CSPDO8LZnZ0RRlERR1OFrST9P0o9J+quSfu3Vy36tpB94M9tbLBY2TQCRgAqrD7V7PQsyJMLPl6d/2lv4PZHwJOymhHlf2UZQgIizH6rg9IhTRfYkGXKWJIltF4u7r3ZD1iCfHG+e52ZVb7VaNi2ALIU0Ta2dgePi+kGqyAGAnFNFRuDw5Kq8mjaBuMP5QHQRNHivJ73T6VSj0Uir1cpCGzkuqvKz2UwPHjzQgwcP7HX8jvs1mUw0nU5VXk2NYBqHr1YTlNjv91Wr1TSZTLRYLIwQM5WDME+q4qPRSKPRyEgy1XjElSiKbE1GUaR2u61Go2EVdUQlQhvJl0B02Gw2e+sWkYbr7a39XNc8z20EI6/xkxp8tgXBjLS7JElirgICGmezmTkifCsNzg9EGCZzcDycF1/7sZW0QazXa00mExuZiUuCvAvfYnIo9tD24cdF+vYFrhO/595xnXDs8Gx4sYy2Cq4/zxotITglmLKB08ELSqx9WjFuOx73Z3FAQMAjsHlau2MD3gjhczggIOBpxjtxKNyV9FeuSHxN0v9QluXfiqLon0j6/iiKfqOkL0j65W92gxD8er2uJEms8ks4n89IABDaQyGASiMW6yzL9hwD3g7vQ/IA7RLT6VRFUexV0SF8PhxOuq4MT6dT3b171zIDOC9fteaYd7udkiRRs9m0yj5VXz8qEwIHIUySxMgyLgNf2fctF5PJxMgXYoJ3O/jASIQFP6oQpwbVeZ9P4O+dzyCYTqdWGea6kQNBdf7i4kKTycSEAt+jf3FxYdVmiGS73bY14ccN4lJYrVZ6+eWX9wIe5/P5XtUaMopQgMDTbDbV7/ctJBMRAHLc6XT28h1YQ4g9OBqazabZ/7HOI754EcivX/7PskxnZ2cmgrG2uKcQXhwofiQjwgIiwHa71WQyMYLuAxeTJLG2E59J4EMlJe0JAIchj4go6/XaWgp2u51lMdBewHr1wY5MquDa4rJhO74tiRaIwwBWniNe768FTgkcFLSTHDoOfDsLYh7CCs4IHzR6i/HYP4sDAgIeRrQrVVlH2jVCATngIYTP4YCAgKcWb/uv5bIsPyvp6274+bmkb34724TM+MA9/uB/lPWY/vTD7VBxhsSBQ1Lhib4XNCBiVNKpoCM+0NuNfRpyCdFmUgFEC9IKOc/zXFEUabPZWDAexHS9XptQQJWVfm6INFkBZClg86dqfzidQboWDFqtlvr9vl1vrjnjAi8uLvbCGqnGe2GE8+TaIeB0Oh0j/hDaZrNp16TVaunevXsmBlBth8Bx3yHHRVHYWEcfYOmr8kzL2G636vf7Oj8/twp5p9Ox68r181MlqtWq+v3+XpWcf6wXRBafqYDw4SvsXlDAfcL+cN54Ica7ZHjPbDbTaDTa25903WaCO4BWAvJBfIYG18kTaUnWylCv19XtdnV+fm6BmeyHfXKePr/EBy+SCYFQBDhX/wyzthBp/DYRaPwa4vnk+nLNEMB4xrl/kjSfz21fZCmQI0FuAjkQXCeEEZ+dQmuFH2952/FufBYHBAQ8jIvPvqQPf3+iH//Vnff6UAJuGcLncEBAwNOMW/PXMn+8+6q/H/HmycQbbUe6DEZkbONyuTQyB/HywgLVfMgQCfONRkN5nuv09NTCA6na08ftw+E8qTusGFP1hwhh22eM3507d7RYLDQajYzE+PF6EFcqvH48og+i833/WN4hbL43HDcBffbAZy7QZuBH/Hlxgp522i5oMaHFwU/T4Ji63a663a4qlYrm87m1SEDmIJr0u3vCjsOEFgRGKEJEG42G+v2+Vc3jODZnx2w2s3wEL/7sdjv1ej0TXmazmY2GpC0EkceLWz64z4869GQVIEpAcj2JRWhhO7hiaJOBMHOOkGMmQ8znc6vE+ykoPkCRthHvREAgo71GkoU2+uP16xehwrdE+OeTNbHdbs0Z4IUxtuunU/j8E64J2SB+cglCnHdQEIaJ2OafbzIduA+0jvAZg5OB58+LOz4Xg/UeEBAQIEmVYq3GpKJ1/2nP9A4ICAgICLjErREUIB30QEOA/Gi6QyHAkxngCQck04fWUbH0rQre5eDJDRZsWhG80wBHwOH4Qp9874/HBxzSp79arTSbzWwUI0LF4UhDiDzXhMow2+bc+NpPSsjz3PIPOCYEBtofOC4InK86x3FsYkwURXY8VH8BjpA0TTUYDNTpdIzU+dyKVqtlQYJf/OIXdX5+rqIorO0DgkgQIOMNIbNcB0QFrjGV7Ha7reFwaMfNuEqmPnjwHtYJLQ7L5dKmG7AmfZCjFyN88OThtfMOEOmS1NK+QGsI/yC53F/CPblvrDfuFW6S0WgkSZZXwO92u51NG9lut5ZPQqWfdoTtdqssy+x7iD8Cy3w+txBI1jsCkhc7fLsNv0cgYVqLdy94FwKClZ+s4N0dPpgSIQPiz3PA63xbEesUlxJtLggv7NsHbfI1a9C7mwICAgK2n/hxPfsPu3rpF9ff+MUBAQEBAQFPAW6NoABZgARCtA5JBDboN9oWIYwk6iMg+BYCn33gRQFvteb3EGOEBiYOjEajPQGD7SMs+DaJyE2taLVaNjry9PTU3ktgHYICxEzaH4UJ4SOfgG373noIGiQOcB09YWb7iASNRkPNZlOdTseC9QD990yz4HwQBNI0VRzH5lKgKs99bLfb2u0ux0eenZ1ZqF673d5ruYjjeG8KBbkO5Apw7H4yBEJDt9s1MSnPc83ncztOHAysE3r+IbbcbwQEH2LIPaXC7XMCIMNUxrmubIN14AMIsfgTninpoWkGnKcXgGazmZH35XKpXq+no6Mjy4Tg+aE9howGP36UcE8/HYRr71sfcFQgNiCkeMfLYrGwdcmEBog718uTeoi8Fw9Yv2RYAKZFsCYRAqIosuvD9fLHRnsIx0hbiX8ODnNZOD/EiSdlykNAQMCXB9WTE41ebEgKnw0BAQEBAQHSLRIUPEHxwXW+BQKCzWtuAlV830N9fHysRqNh6fyQfirdvieebdNjD+mfz+cW/uaPF0LmnQm+/QCSTnWWMXwQ281mo7OzM7XbbWvR8On6kHMA6SNQD7LmBRHfp+8J2mq1Upqme0GUEFxEB0i8n3yw2+00n8+NUM/nc00mE7O2H9r3/VQMrh/iBteaHnVPDtvttjkbIHWQYs6La0PV21ebuS+0Q1C1R9DYbrdK09REl6IorKLPdnzrjV9jHEMURep0Onb9uG5++of/2mdCQHIhz975kaapuQ6KojAxAkJPOGK73bb8jizLNJvNTFxoNBo6OjoyMu9t/6xdnAqsJR9uKWlvKgRiDeM7ERRoSfAZIeQ1cM84Hkl794x1w+hKplWwVjk37yAgVJV2Fcazcj98DgUtSAhcrEn+95MjFouFCTtecGP/AQEBAYfYffCORv9aEBMCAgICAgLArREUJO2RfOnaDi1d95BDzhEOHlVB9CMVsXJTsSyKwgi5pIe2BbGGLM3nc41GIyNFVLjfTGAbogO2bQAhhQRNp1PV63UTTCBFnU5HaZpKklW/D0PzcG9wbJAhMgB8Yj77BlT7qQJDxiGLiAj03bdaLY3HY7Pa0/5B6B3bwTFRFMWeCONDHDlPT8w7nY5dZx9yCbHFas95NpvNvVGdcRybq4PvIZBM60CYIKSPVgEINgKOn3jh3RW9Xs/aMCDYuBz89d1ut3Y9EWpwNCB0IIpApBHCEETImKASj/MC4kwYYRRFGgwGJo7gqvCE3E9g8EKOF6VwedAyghCEQMCEDNYn7QTkJeBI8ELV4TVh/Z6fn9s9WC6XFr7J/Ub4QhDyjqE8z+358s8wzh3uJ69HhED0wFHBGvaOokNxLiAgIABUPv+ahv+yG0SFgICAgICAK9waQQGC4+3KPuSNajrCgifnNwFxoNlsajAYmFUcUgFBuUmQIPmfSQiTycRcBXmeG0GhGu1JsSc9iCHY4Q/T9OnNJ5wREcOHzdVqNRMUfDgjoyURDahu0z5A7/18Pt+r5nL9JFnVerPZWKW40+no+PhYURRZqwCtDBD5JEksByFNU2vDmM/nqtfrGo1GunfvnlntIbmIO7RpSDJnQJZlWiwWtl2Om20vFgvLsYBw3jS9A6GH+9JoNNTpdNTpdMz+z3U9Ojraa19gnREGiavB52EwXpJ7JUnn5+daLpeazWaK49gCJRE5hsOh+v2+3UOuJf84riiKNJ/PTZCJ49gyDoqiUJ7nGgwGSpLEgi8h92mammjEeiQTYjabaTKZaDQaKc9zG8PKOkDEQkDIsszWYBRFRvK5l1mW7WVwcF6+jchfV9oMDgUCgjK53nme23r078FhU5aluV1Y5741BmEDoWmz2ajZbJqIwX7zPLdnyU+w8IIC1++NPmcCAgKeLmzPznXyVz+tMvpqjX9KEBUCAgICAgJujaBQlqXm87kRf/6wh3D7ADs/pu4m+NFyVNYhJkxvwObs0/il6zDGbreru3fvarlc6vT0VK+++qq63e5ePoG3SUvXYX3e9u6Js6S9pH8IJxVS7yKAfNFW0Gq1rCq+2WwsuDFJElUqFRVFYaQKpwO2eAh0u93eI9wcgxc6cCNwvWaz2V5VfjKZKE1TnZycKE1Ttdtt682HPEKA+/3+3shAH4rpwyqpgBdFoW63axV0SC+hgvP5/KEAQK6BP3ZcAzgasPxL13kIiAM4XqhcQ4pvcscQKNntdq2lgLX4yiuvaDKZqFKpKE1Ts/3XajUNBgPdu3fPBANaBvyaYx+IN965kKap8jw3UaHb7ZpwAWn3gY/cy/V6vScmjMdjLRYLy2Mg7BGnhSQTDBaLhfr9vp0HmSS4A3BfDIdDG2HqBQVaCTgO38KEWIWIxTOKA4e1iaDk3Tx+8gkCg2994RlAmED4wwnE+E1aqHD2ID7xnCJaBkEhICDgENuzc935y5/UrvE1mn51EBUCAgICAp5u3BpBQbpOyIcAQ5YgCn5qgHcX3DROEgIDeYCsUWVHEGB/bAfCS0AiEwLoVfftAj588VBIIOwPNwTkzc+7x0LvcyGozPIa38LgyQ7tEF4c4NgYmUiPuHQZeNjv93V0dLR3vBBvqvtY1SFxXEdcCev1Wo1GQ4PBQIPBQPV63azunDtEzGdekLtwcXFhIy/9+EEI33q9tn3HcaxOp6PZbGa5AoRhQujJxOB3zWbT+vkbjYa1uNAi4Edf0j5Add0Td5/fQJtGHMcaDAbmvKjX6+p0Otput5pMJjo/P9dsNtOdO3d0dHRkRLxararb7SpNUzWbTZ2dnVmVnHNgTbMmpOvJJ2ma2ihJiH29XleSJErT1NYKlXtcCVmW6ezsTK+88oq1ohDkyLUfDod714DWA/JHGo2GFouFhWfSIoPwsNvt1Ol09sQE3usnO0DsEQkPhQ/ulx+p6oNRCeb0IgGiE2vFOz7KsjThg+fJC2deNPMZDezHj6YMCAgIOMR2PNbdP/dj2v6Gf03Zi2GEZEBAQEDA04tbIyj48XqA/AEqiBAwSSYGUGX0Yx+p7h/OlIcsQ1zpsyePgPd70GOPDZztHI4cJFwPwpXnudI0tTYEEux9ICO28VqtZiQYMUW6Dofz4okXXOI4tgo7hAg3w3a73Wt3YPpCt9s15wI2cKYkkJq/WCx0dHSk4+Njc4ykaao0TTWbzazK3O12JV33x0P0/T2l2g7Bm0wmeu6551StVu13OD1wHiCSNBoN9ft9TadT5XluZJrrBqHlvJnqAPH1zgbCBskA4F5Vq1VNJpOH+vfJLGC8I64Q2mdofZFkQhWOj16vp3v37qnT6ej8/NzIOw4HMjwQ0Fh/0+nUhBNvw2csJYIC6ylJEnU6HWsDyPNcZ2dnlveR57lGo5HOz88fcjFwr/gf4s89wlmSJImyLNNkMjEyzpokA4LriMuEe4Qo40UrrjsChneo8DyzfYQI/4yTV8E+eYa9kwARiOwTnmGecUQoXA2+tQH3km9lCggICLgJu/lcz/ypH1VUrepz3/H12nSDsBAQEBAQ8PTh1ggKwIcyHibJQxIRDBhvhw3aTxFAUKBaS+UTkr7ZbGwbVDshOtimEQXSNDXS5ick+GBECOBmszGbOYGBvhcfYYFUf4gS2/YZDIfhiRCqi4sLy1WQtGcN9+MLp9OpptOphfR1u10NBgOtViudnp7aiD/IW5ZlNgHBuycgtYQyeqs8ogH2eyYrHLYW1Go1G5H54MGDvfdzfjgbIP5ca1oTpOvpGp1OxwQdSZaVABHG6UH7Ba0jkiyjgGvNceE6AK1WS0mSWICfn2oBOUcYIZthPp9bYCB5EJwfIlAcx5rNZnsjUtfrtYUvMqkCku8dIz6ckvvS6/WsWj+ZTPTaa69ZS8Err7xiwY1U4314IsfFOvWixXK51GAwMDHrMLPCj2SEsEP4pUtXCy0TCBqQ+MNAVQQG1oNvkeC4OQa/LbISEEW8sIDzgfP0oiOtFhw/54YYBQ7bmgICAgI8ytVKpaQXft8PS1FFn/lD3yBVgrPpsSNc0oCAgIBbi1slKEAeEAf4Y967FxAcIOaSrEoPoYCcS5dEZTqd6uLiQvP5XOPx2MQEKtA+F4H9UVXFRt9qtaw67/MQ/OQE8g287R/nAaQYkk51FSKPmME14Bj8dYH8QTQlmcPCCxNMbYAYNptNy48g6A9C6HvdCcWrVCq6d++ejSAsy9JEgjiObxzjSBUdQaFSqViVn0kQ2+1Wr7zyirrdro6Pj61yDJnk2AGiEFVoAh3JJeh2u1osFrZOOBcCEXe7nfI8V57nWq1WJnoA9ol4tFqtbMIFORSsD9+TL8mIOWvR5y5wP6h2s6YQSXxOAmuUe4GwhVjhXS2+FcI/I4z2JJtgPB5ruVxqPB5boCjukyzL7Br75wTXDuua1gk/WcVPTkDAYq3zPsZSZllmIhrnx+v9e/xEF9wptEr4diSf+XE4JhSHD2uSa8gzzL30zg8vIvprivjB2NggKAQEBLwplKVUbvXh3/XD7/WRvC9xVubv9SEEBAQEBDwCt0ZQgDRL19V4/mH9BliWfQ/+YWuA702nl50+cgILfTAfVndIB4F2TDGg8n3YUuFJD+ex2+3MGeAnP9DeIMmINtZxjtlvCxLFPv14P8gkwgqBgt5GT1UdktVsNtVut40804vfbre1Wq00nU41m82sYo3jwBNPRADEByr9iA2E9DH1AQGl0+koz3Mtl0u9/PLL2u12arfbNp3A99P7e8k/8hRwq9DCsVgsrALPdd3tdqrX6xb6x7b9a8iH8EF92PURRxALqIJDeqVrMYlJAlx7f72l63YISXuBmX7sKEIS40Wl60p5tVpVHMdK09TcOOyP86Itg2OgHQORgGkNiASQedanX7scM+IMx+iDG/119sIdbhfaHZhowXZ9hoIXy7g2CAaIXj4w1edE+DBVRCiEp8NJK97x4NtxEB85Fo7bu4W8eBgQEBAQEBAQEBAQ8DBuzV/LkBWq3pBmSIsnEf53nvBAKqRrQYFqOW6B7XZrFVdfzeR/SDsCA0n9CBKr1Uppmu6Funniw7GxP0DVGas6VnlaBiRZRZdKNL32VPrTNDWCBNlpNBpGxLzQwLkhODANAfJJSCG5AxwHzgaCECHxCDUIBxBGCBnVdKZo0PpBMCOknO0XRWFjBzl/Ahz9VAAEAc6Ba07bAxMGIPw+6R9SCpH110eSEWCfZ8A9gxSTV0AQ42QyURzHKopC4/FY6/VarVbLBBiuJ+KNd5zQOsE6ZMJHlmVGajlGhLDVaqVnn31Ww+FQJycn5nLg/nGsjUbDqvKcFwKZH6PJ670bAhGN//1a9KGjvgXHB3v6NiUv/PmcEoQw/zzwDPIM49LgefbPlxc+/PPu7zdZJohEXqTknPis8ZM2OHd/XLiYAgICAgICAgICAgIejVsjKAAq8SS6+2ovJOJwHB0uBT9izm+P1gis62QveKs95AqiDqGkys/XRVFIko6OjqzSDbwVnQo2ZApS5F0RVJw92fLuB9oe8jy31HxaDyDjOA64VpB36TrUkrYNsglwKEDW2ReOgVqtZlML+v2+TRJAeOF6+yoypI77xX3hvCF+9NoXRWETBhBZEH8kKU1TNRoNFUVhGQiQVzILILuHifxsn6A/xA5fbd5sNuZs8NVyb7GH1CN67HY7zWYzC92czWaWZwAx9q0Sg8HAwhohqUxfyLLMWhmYpMD68K0wq9VKx8fHStNUnU5nTxjz98ELAohXZEX4rIskSWzaAftD0PHr32+La05mCKIMrQacu3cS4czg+PyIUC8Ssk4BzxutJ9wL7r8n/14U8TkIXmxk37g5fAArIokXXfzzHMZGBgQEBAQEBAQEBLw+3ragEEXRRyR9n/vRhyT9p5L6kv59SadXP/89ZVn+4Jvc5h6h9z3pEB/EAcgw4xIhzoeEQ7oes+gnRviARk92IBeQOgijdG2TRiAgKd4TL79tn0/gz5Hz8NVcguM4N4gg5wEJpPKdJIldI8gfvepU8r0TAtLIOEsq3OyzWq2q0+nY9wgiTCdgzB/EzE+dAAgprVZLcRxbhgCZDuv12twXVJHjOFaSJEZ+uVfdbtfGVJ6fn+v8/NyuS6fTsUwGb3fHiVIUhU2FoC3Ei00QTMgwBN1nc5CL4AMvJWk8HqvRaFi7BCMmq9WqiSC0tnAO8/ncRAREhdVqZcJQu93WZDIx4YR9eTKM+ODbFA6nanCcEH7fLuQnihBWivOFIE/INgIMzwD7juPYsiMg2xzLYXsA5JzjRXDyxJ+2Hy9g+MDFQ/fPTevN/3/YvsHzyL0+FCi9uwLByAuSjKe87Xg3PosDAgICAt48wudwQEDA04y3LSiUZfkpSV8vSVEUVSV9SdJfkfTrJf2xsiz/yFvdJiTakwlPILC6e7uzJBMdDqukkAlEAKrUhzZ4JglAyHzAIdMCIEi+HcMTWf+9JyyH7RpY9xEwfG4C/eWIJJA5iBn/kiSxIL48zy1lX9rvg4fMebIN0ea6cM0QHCRZZR8iychCrjXn5vvPuWa0GvixkBBzxv01m00tl0vLWPDBmM1mU0mSaDAYqN/v272aTCZWUcadMJ/PVRSFtSX44EGyAnwQpRePqtWqiQ+IG5L2WkA4H1wcuFMQDvxarFQqStP0oUkYvV7P7ltZltYmgVjD7xBjNpvNngsF8DtENsgu9w8RwjsMeA0CgRfE+OfzMViDHBPPlRdyWq2WTYPA5cK1wAnjsxQOcxoORT4vHpIhwbXw7h3vQvEtFv7Z8efgwbN8KE7wHPM16xX30uEkituKd+OzOCAgICDgzSN8DgcEBDzNeFwtD98s6TNlWX7+8I/5twJPGnyYnrdK009PRdNXIgm9868visK254kVJIxt+Kq+D2iDRNLzThXTJ/8f2sB9BfkwGf/w597JwHlQ8fYiRJIkexMIarWaHQPhiRBByCWEFKcAlXhyDKi+l1cTIHyWA9XjJElsdCLEGnJGSwD95pBRAg8RJah2UykGnuBT8We0oif+kDxIdqVSUVEUGo1GVvXvdrsqy8sRhePxeG9aRKvVMreJD0vcbreazWYmKNRqtT2r/eEoz8ViYW0bnU5H/X5f0uVoSoSOJEns+nsXBGsMYQFhgP1I11Z97hnbJ8ODiQ2IIBwLLgbuJ9kNXrggw4JzgZSzP8g7x8j7EYtY6z5jwbcY0NZy2FpCSwFOEtYF9/bQYcGxeSHx8DPiMBeBZ5nryLa9WHJ4vpwnzgXWGefuJ6c8YXgsn8UBAQEBAW8b4XM4ICDgqcLjEhR+paS/4L7/LVEUfZukfyrpd5RlOX4zG/HkxgsKkG0qrATQHfbO+z/+CR6cTqd7bQGecEvXGQu4BbzN2ofF+eA7sg0Id4N0+eyDQzEBwo0AQesG5817vCsDItput43w8w8HA0GPPn+A86fSjVuBa4G9HidEWZbmnMC1QLaBH30IaYWYetLVaDSsfSGOYzt+XxWmRQGxAiKKTZ82jCiKlCSJOp2OkTsvclQqFSPYs9lszz1SFIXm87mFJRIiifMD8kjQop/EQU4BQox3Y7APvuZYcHpwnT3hns/nlufA/fIVccQKn2XAcXEcCFV+PCZtFl4A8GMY4zi2a0G7BOsccu+nVADcFQhn3t0iaS/okPP37hY/PcIHOrJ2vNDm/8jyohpZDfwet8jh58She8B/BiCg+NGTfsqDD6Pke//5IGnPwfGE4bF8FgcEBAQEvG2Ez+GAgICnCu94yHoURQ1Jv0TSX7r60Z+U9GFdWr9elfRfPeJ9H42i6J9GUfRP+Rkkxlf9fYCbFxV8SJ8n7WwH8sfISE9mJO1V0H2ivO/v9mMeIfYQdx9A6IkT9ncyBNgmJIuwQN7LqEL26fMbyEzo9XqK49h+d9jSAVnzYgnXh8yFer2u5XJp0xv8dfaOENocut2u2u323khOshCougMEjTiOTVTwggnv5dogXiD6INhEUbQ3vhJCjGBzGJg5m83sdVmWaTKZPDQqEoJOSCDOCu4n15XMg+FwqH6/ryRJLDzT31c/acI7D24ivuv1WtPpVJPJRPP53NwcgPWMqJKmqbrdrgkbvV7PQjK5hkweoc2l0+mo2+1adkOaptZ6gDPE50Pg3vEtAL4NwTsUyM9AODh043AfaRVYr9d2/ev1uoki5FGwv8PgVI4BlwfvwY3D9rn/hw4Sjhf4tiJ+7teOdwr5/QOfo/Iop8RtxOP4LN5oddNLAgICAgLeBMLncEBAwNOIx+FQ+AWS/llZlvclif8lKYqiPy3pr9/0prIsPybpY1evK6nsIxj4PAVf5fS5BockBVLn8xLW67VVir1d32ceUCHnZ+QUsA/pOjTxsB8b0gNRWa1WVmFP09Sq9JCgoiismk0GQpZlRuZwCXCucRyr3W4b8WT6Bf30iCbb7daI5Xq9tmvkCf7FxYUR8Gq1atumZ5xj73Q6Oj4+1tHRkU1lwO1B9d8LKRw7pBDbv6/wb7dbNZtNpWlq7RuQUKrc7Xbbqu8+NPBqjdg19uuEHv7NZmPOC9pU2C5Oi8lkYmII5NWPoxwMBjo+PpYkc8Ig/rBWOJ8sy/aOAdcK2/VZHbyHteXbbhCWEATcs7O3T87bV/oRFNiOF5q8xd87aBAUfPsJ+4aE8xr2y/rzYx0P7z375feINZvNRkVR2LH4thw/uUHSXngm7SVsl1wOnAdezPFCIC4M4F1DOHVo/aFtxIduAs7Lt848AXjHn8XdaPjE9XgEBAQE3CKEz+GAgICnDo9DUPhWOWtXFEXPlGX56tW33yLpx97KxiBeviLtk+sh877KCPHwTgOqxt4e7nvBeY9vT4BUYOfGCeFJFrZ93utfX5alNpuNEbQ4ji2gDtIDSe50OkZqEAd8eB/7QBBgDKAkmxAAkcS+DilkJGK9Xle327VtnJ+fG5nCVdDpdFSv121E4aHToFarWWWc/XD9fUuKr+YiUpAF4clekiQmnHCePseC7UN44zh+iCTSZuDDH7m+ntTitoAQk4mxXC7tHpHLUK1W1ev11O1294IlPfHlXHe7nU2tAGRf1Go19ft9EyvIhEAIWq1WSpJkb91y7+M4VukmMPAM8HtGRl5cXNh9Yl1CgH1bx6Ggw7PEtcTV0mq1TORBVEB04Rhwj0DkEcR4bmj34D76gEOfXQKp9yKAz8mgxQYBw5+LXwfeFcT9wVHEc4Fo459vhErvbDpswZAuhRQEnvv37+sJwWP9LA4ICAgIeMsIn8MBAQFPHd6RoBBFUSzp35L07e7H//coir5eUinppYPfvd62JF1XYj0J8HZmXvN674fg1Go1FUVhWQdUkSHwkoyEQnrAodUZQkd11AcOQu4h2pA0shl8/zxkmePyffV+nz5srl6v71VKvTBBKr5vF1kul8rz3AgRxwgZlmSOAAIQvSuAKQZpmqrZbFpWwdnZmebzuW2T6wFJb7fbunPnjp0/4xURQOI4Vr/ffygc07tJarWaXZ+iKDQcDtXtdk1UQVihnYOqP9fM98Z7ogjhz/Nc0qUoMZ1O7fs4jm1Kw3Q6NYeHdyX47bGtSqWibrdrx5LnuY6Pj611wd9H36ZASKYnuYgO3GNJRpLJmOB4u93uXjuGXxc+LBGBABGN9UmbSbvd1tHR0UOjRlnTrBs/0cNPHPEtNoxXZd8cDwLfYaCjdx7w+8NWJlwm3p2CQIIowXkhkhHA6fMP/PsRQ3zoK2vocKTlk4LH+VkcEBAQEPDWET6HAwICnla8I0GhLMtC0tHBz37NOzqi6+0YScDqfSguUCGV9NA0BSqjkCEC/w5T233VmAqxdJno7+370qUN3lfpIUKQGOnaKi1d5zTwtbSfes8/2g/SNDWiQ9iiHy0IwdntdkZ4OQ6qvsvl0nIjuI4QT15LaB9Bin6fkE/v2ECQQXDwYwLH4/FeuCP3BIIKcafifehmgEQe9rb7QDzaFhgJCblvt9tGcrkGvI57sV6vNZlMLHPBE3YvTCBAIYDQvuCdIIfHCSCpEFxfeWfd8Z5Go6EkSfbaa/z2uda0XOBuWCwWyvPchCLfSsG947jzPH+IeHsyj8jlJ4b4lhXcPIdtHhwXLSS0KEDqaavhOfGjLtvttrlpuEacA2KfJ/Vc68M1Q+sE54JIwL3neb8pG4X3H4L9cI6HmRJPAt7Nz+KAgICAgDdG+BwOCAh4WvG4pjw8Vvh2BOnateCt1r7iCoGVriuM5A00m02tVisVRbEXJEc1n9yAZrNp0wn8/n2wHe4GXxWFLFK99sFvEGwqsj4HgLaELMvU6XQszyDP873RfpC43W5ntnKOm9dAuMhWgFB7twTHI12LGpCtw9YOL8QQ4OiPh7A+CC8CRhzHe+F5kHFPbtfrtZFVnBPAt7iwHSri3qqOaML1Xa1We24L71Dwwgv3imPzVXjaB8ifKIpCrVbL/i2XSxNcuN8+dwM3CC0cEHsv0ninDOsYYn5YVT+8d2wHZwcCA+0AFxcXlsfBtbkpbBRi7Seb+PPAaYMwgKjiQyElmajAdfBuAFozpGvXDfcZR42Hb0fi/RwTYh/XFBGI9YnAwkQQjoX76u/9bDbbC55kTR46WWjr8LkUAQEBAQEBAQEBAQEP41YKClQMIW+0CXjCTmUWcnQ4Eg4cjog7bFGgaklVnjYJBABPMrMsswo3RIrfUW32lU6IiySrpDebTXW7XbOwr1YrdbtdI+hU4DneLMtMMPHVau8GQEzwpBFCBSHmWpFBAXmkWkwOgQ+ZpLq/XC73pmMwJpFJFvwO4opoQMXfV4UXi4W5MtI03SNzCD7b7daINAGL3lKPoDCfz5XnubUStNttO0fWDQINFWzCNuv1uu2f10NYF4uFEX8/epKWhENCjNsD90Ecx5ZVsdvtLJyQc+daedGFqjz3DNeHdzK02207f0QynAW+HcRP1KBlwAsgrF+fpeBJND9jTfm8B/961hLOCN7P9BJ/ntxDjovj9m4VP4KVZwkBoNlsmqsEofBwpCMCgReOWFd+9CjrjPM7FA14Nv1zGBAQEBAQEBAQEBDwMG6doACJJygPoucr/LgO+N5bmnEmeBLjHQwQP2+NZl/Sfo4B2/V2coi4fw29/z7Ez1eCmaJAxdcTH0/UvEXdV/Wp6vZ6PbVaLTtPJgpI2mtz8PZwH0rIPnwegE/M92Q7iiKrePsgTMQXzpt9kMmAq2EwGBgh3mw2Vi1mxCP3EWEEoknlnHNYLBYWNNhut43kUX330xCiKNJyudR8Plez2bTjhPB3Oh0VRWEtAd1uV1EU2ahDPwoUUgmhZd+IDd7tgQjAqM00TVWtVvcIMi0XOB8Iz2RsqLf546LhPdxj7xyhfQWBI89zEyxYj7gauFaIYRBrRA9EBEQYHBoIHL7qj7CFIwNHDKIUzxACIO/lWfJtI/zjWvuJFD50kc8Fts25c028C8MHgBIuyfsQlnyLD0Kib23guaPNKiAgICAgICAgICDgZtwqQQES4SuQh2ntuAJ8/7mkvXGQvNb3c0vXYkKr1dJisTCySE87AgOEEhLue7+9AAAh8gSH4/EBdofb9An+3uLP8R5mLyCScIwcV7vd1nA4VLVa1WQyuVGoYB9cEwQO/vE6qvAQLEgelV1fWYeQLZdLG4PJVIj1eq3pdKrj42PbBlVlghwhnxBBPy3CrwOuPdVvquppmlorCPediR4EKnJf/Ply77HW+2tMOwtOhlqtptlspu12q06nY+T0UEjgmrKOBoOBTXFYrVY2PWM+n+v8/FxZlpmLYbVaaTqd7uUK+D5/rP9U6rkP3CPutc9XwE0CcWYN+pYCT5IPwxVxUiACEazpwxg7nY6NE+XYuZZsx7f7+DYX/+ywXxwVPmvC47Clwq8RP2GFY/GBqPzjWfXPGqKkXws8E5zTYeZKQEBAQEBAQEBAQMA1bp2g4K36ECR6zSU9RMghmTgVqIZCXA+nKBzmI0DuIM4IFlR+qTTze+9O8GGIm81GrVbLesupFvN7TxKxqpPlAImCAEKWeT1jGCHo/K5er2swGFgFGxeEDyn0ogEuBAQOPwYQ0gxx4zrzGvZL5Zmef/ILEAiobkN8uVcICp58Q/oglLQ0UHXmHP0oR0nWM09rCkLQbDbTdDq1+41AQMXeT1zwNnjfxkIIaJ7nti3uCyQb4YS2BEg0kzEg3MvlUpVKRffv3zdhazabKc9zdTodcxb4KrkXhXyLyna7tXwEnC+sO7I4fBgl8PkJiEK4RbgX/nr79Q8x99c9SRJ1u13VajU7Fp/DwDrgnrBvnAn+ufHHyfr095/X4JrwIh3PlM/h8C4lH/yI+MP5sv59cCPPgR9pyedLQEBAQEBAQEBAQMDNuFWCgnRJcgjYg9BiOd9sNhZ058kQgXrY2alWUsH2YW2+7cCTFm9191MhCMSjSg58Cj1hiJKsbQCyDfGDLEKyqZh7oUG6TriHVGLbpz3B94h7e3yz2VS73TZyRJUdwlkUhcqyVLvdtmo+Vn8s7AgoHCs9+X4UJSF4kE4vlvhrTNWc/ULcWq2WWee5jn4CBteUbSE+4D5YLpfWMsB5+5aSWq32kFjBNYOY4qjw7ggvZuC2gITSPoBbYTAY2ChNSCdCFvvnuBaLhQUvckyMDIUsIybgeEDMQiTjHsznc8uv8NkcOAj8dAlP8iHWvsrvwx9924tfYx7cm3a7feNEC+BbGcgrQMjg+Tmc6OBbXvy/w1GSfl++bcf/jPMl4NKvOz+a07eDcB0PW2kOp8oEBAQEBAQEBAQEBOzj1gkKEHxIBX/c84c9VWXEhGazaT3rXgiAYPq+fGzX3kp+SBggXr4i7m3T3hLNMUoy0tLpdMxq76vnTGjwAXcQSGk/2d4TdN8acRMggOQpRFGk9XptpHuxWOjBgwdm8fY/RxDwx5Ykifr9vjkzAK0LXkDwkw0g4oftED5HoNls7pFmL6JAOpMkseo35I7tIiiQKQEx5V7VajX1ej0TNfjnLf7cGyrR0nVFnPtNTgDOEK59tVpVt9vVYDAwoYBtFkWxF8TINeC8aK+p1+vmKEiSxLaBuwVxyjsUuFZ5ntvxeZcJhPswcBEHjF9HvmWF54kWEdwIvhXkcK2SEYJoxO+8QIDQQ9sFzhAELp4z31rANUL884GV3rXBc+HBs8ix+rwG3DEcJ2KZH0cpXQfBcl35WRAUAgICAgICAgICAh6NWycoQFZ9OJvPDvBEEhLmxwr69gEvGvjQxMNgN1/N9ZVbP70BcnHYCy5dW7ip/vsedkl7VW72RT8/IgiVfAiQD3WErHkixLXimvjcCY4F4YDXeuu/z3+AYDYaDXW7XQ2HQ+t7Z7yhz6KQrskfhBSBB7eAb5HwFXIfosm9pQLvnRUIQ36ihKS9Kj0kmNYHXBpU7SGvbIeJF/7e+HYGrr93f/j1w/QJzpNJFJKs1YNwTKZxECpZlqXiOFa/37dwRrbhW2UQIbgmtEMQDOqnmXB9aUthTePy4TlivCJgjSNisUbZrl/n3j3iWxm4xohKfrqHFwQInzx8Zg4dFN51w++9gOHbdry4gJDonw8/ipTrgtuB+9pqtR4KBKXFg+ee/QUEBAQEBAQEBAQE3IxbJSjgRIBc+lR6CAwVaYiDJxw+1M5PS/Dkz4sMPncB+AkNh+0FvNa3SkCsIVa0EXCsOAJ8eCDVaogqZAwgKEDoIZGr1cqs+FEUmYDBtWs2m1ZtTtNUcRzvWc4Jd+S6QpIhpbg9JO2NzaMC74kbJIzt+jGE3Ed/D6Xrtg6fqcB1LYpCURSp3+9bm4gXO6jGj0Yj5XluwgcV5/V6veeA8KF9EO9Op6NGo2HiCGuGzAfcGX7KgK9k4zBgTaRpattgjGOe5+Y88CMmq9WqkiSxFp75fG7XwY9HpbWE642g5Uk554tbxzsyENcQKrju9XrdRmz6Nc898veJY/fwQhrPF4GIiG8cI9cNQcG38fhRlTyrnrRD8rnmCIysL47Diw2IJn7ihrQ/bYJn24sOrH1yGRjzipgVAhkDAgIeF7bf9NP16je23uvDeHLxX/799/oIAgICAgIegVsnKEjXZMNXPCVZi4MnIj69/rCloSxLC5LzY/O85R1idFMoHduDGEJiILzNZlOdTseEivV6rSzLrOrqxykS0AfhwZ0A2SqKQpL2xtdByPiZFxkYTwh54lghdIQZQlIhnZXK5bhGiCThgmmaqtvtql6v740exEFAKJ4ke4+fwOAFnna7bVMA/D79vWo2m1aVZ1qArz57YogrgSp9lmWq1Wrqdrt7hJ5sBh8A2W63NZvNbH0hKLC2mEqxWCzMXo84wLFDQnFhMC6T6SDz+dxaQriHVPQ5BkQhSCvw0zZwJXCufpzjo1pffEWedY8TxAsbkvayIDxBl2TE2xN4/z0CBHkg3GcEFu4X99EHL7KOvJjgz81PpLgpG8HDi3r+Nf4cCdb0LTWIZ4hfZF2w1nH48Due6YCAgIC3i9rzH9BPfPR5SdKuLu2a4TPl7WL9TPJeH0JAQEBAwCNwqwQF6dqC7p0CWKibzeYeaTocJQdRgRxBbHgfFUoq2Xzvg+h8VdxPPPDiBMSMY4I8Y3H3xwaBhKj6doNqtWrE1ec1QMIgwGma2vG22211Oh31ej31+311Oh2rMPvpDmxfkpEjLzpwXj6UkEDJ6XRqEw2Wy6XG47E5L3xWBS4EyBntAGmaWkhmlmV71vc8zxXHsdI0Vb/ftzBELxJBhpMk0Waz0enpqZF9XA1+lKefisG16vV6RlQRQ3Bi8E+SkXd//bnfnvxj4UckYT2UZak8z00UgfgjAvlMDo6ZSr0nrr6lx8NndCBqHE5L4NpB0nlGms2m+v2+ORYmk4k5I8i2gJiz5n1exOFY1t1upziOTTjyrSJ+SoUXBzh/1guOHPaFWHIoshxOWLip1cg7g7gn3tXB9llXuFwQ3HyGCfvgfd4lFBAQEPBWUR0M9On/8Hnt6uEz5HGgrL7xawICAgIC3hvcKkHBkzmEBNwB/o9/T8JoCWCqwmazscorRAYyXRSF9eO3Wi3N53Pbnw/oI2/hMFWeqnitVlOe5+ZQSNPUiPl8Pt8LdCQwzk+KgDTS2874PR8MCPliygFTGJrNphFyP/KSyjYOju12a1MZqOhyHhAr7zro9Xrq9XqWkI/DYrVaWRiiJCPOy+Vy7/gg+pCx5XKps7MzzWYzxXFs1xNC++yzz6rf7++FKtISQmWfdgU/1cO3NeBcQECiSk4rAteaNg+EEPIdEFx4z9HRkTkmqMBDbjkerk2tVrP2kMlkspcFwL7Jc2BCw2Kx0Gw2M2HIt6Mg7vB+T2w5TnIxeC78JATurX+Oms2mhsPhXqYHQhjX0GdaeDeJd8b4EFOOx2dPHE5kgIhzPVgvbJO2Ao6L/30oIkIA68bnp/A6xCfamQiE9A4GnyvCevDb9i0guHL8Z82haBkQEBDwRoiaTX3q935EioKYEBAQEBDw/setERQ8KeKPfKrSvlLIH/gE2RGyRw835AF4ggMB8eTFZyNQlWdSgxcGIFpMHGA7tC/ctF1JFrg4Go20WCwsLI/Ufiq82OJ9/z8V5uPjYyNWnU5HSZKo2+2apR3HBBXiWq1mkwTOzs6s4k+mAn362PzTNNXx8bHu3LmjL33pS3YdveDgWzQYe4mgwNhOhJIsyzSbzczVwHWkOk+7w+GEBkLxfBgilXTaNCCJZVnuhWZ2Oh0dHR3p6OjISGRRFFYJbzQaJqL49giyEHq9no6Pj43sQiyl68kjm81GWZYpiiL1ej0lSbL3Wmz2nrQuFguNRiONRiNzaOBCKctSWZaZs8G7DVhLtBf4UEHunSf3iB44MiTZOmE9eTcG91e6dvYgNrRaLcVxbM4eH7DIMXrxj+eDVqCiKPayORDbCCL1+Qw+R8K3frBNrgXrBdGC55O1xPOBKIfAdFN7xGEApHdDsd5Ym8GhEBAQ8LZwc9dWQEBAQEDA+w63RlDwgXMAkgLIAojjWL1eT51OR81m08YI8h4cB35qgx/bR1VVuiYXvJ9gQy8KQD4RL6gw93q9vcwDP43Bj/yDmNOG4J0PPkAP4uiPEdII8YrjWIPBwNoKaBmAEPb7fSNsk8nEyL/vpV+v15rP51qtVuZ0GA6H6vf7eumll5RlmR0bbQ5pmuri4mLvd+12W3Ec27axtfs2Bq6TD8dM09Re468dmRM+LBH3wWq1Up7ndjxc00ajYeug0+kojmO7d1mWmesBIs54Rwg6FX/cCD540H/v7ytVccQlchIQPfI8NxGC457NZtpsNprNZiZCbLdbZVmmoii02+2sTYPz9W4Z1g7kF+cDDgDurc/pSNNUaZruBRgifEGycdBAorkP5GAgpHCPfPAmz6bPTOC++jYi1jj3h7WKC4Rni3BH7muSJCaA+aBM38bA/Wm32yaMcB6S7P564QqnhA+DPAyG5Hz8sxoQEBDwZlC9c/JeH0JAQEBAQMCXDW8oKERR9Gck/SJJD8qy/ClXPxtK+j5JL0p6SdKvKMtyfPW775L0GyVtJf1HZVn+7TdzIN6RACCgkBrIG33cVCupKrId378NmWDqAVVi36/uLdWQLk/iCGzDpr7b7YywxXFsIX5Y6REx/JhIshy8PVvSQxZ/T6qxtlMV95V0CKHPWojj2HIQLi4uTFCg7cO3RkDSfP7BbrezirnPqYD4UTn24/7453MnEEj8SEQqxIPBQHfv3lW73d6bNgCBI2sCwsjIv8ViobOzM00mE3vNbreza+LDMSuVit1nyKwn+7gSuFZcI1phWq2WuUew4Pu8CdYg7gAcElT0R6OR2e9pdcAVwvVFiMLBcnFxYS4Vjt+7Q3BlsFap5PvRnIgt5G7gZvE5CRBySPn5+fmeW4O1znYkmVuBXAFCKRG7fPAkghjiT61Ws5GfrO04ju3cEC5Y8771xbdR4ORhzSMU+MBWnn//+eHbMIB3JfmwSBwK7OO2uRO+XJ/FAQEBbx/Vr/qQPvkf3HmvDyPgXUL4HA4ICAh4GG/GofA9kv64pD/rfvadkv5+WZZ/MIqi77z6/juiKPrJkn6lpK+V9KykvxdF0VeXZfmmGpEhilRCIeFULREYsIFDACB/vM/3PUPCqJ7Szy1pj0j4QEf2DSGJ49hIlU/ah8wjanCc3irtzwMhxAcz+sqot81j3/ZWdLZ1GGDnibnPerh37562263Ozs6M8Evaq9bGcWy2eKrnXNfD6Rme0PpJBNVqVd1u11pVaNWAEEJY+/2+er2eiQncU4g9LgJs9mC5XGo0Guns7Mzu3WazUbPZVLfb1cnJiRqNhjlYfPAhxJcqOO4IxlPi1GAdIKyQhUEQJz/3LQFMAPHkczqd2ljLNE0tpNNPLTm8Z5wrogukntwNjs2HHZLjMZ/P7RpR2ef4eE78lA3ey1pbrVa2DaY2eBcCogLrHscFz5/P52Df3vnAc4ezCDcLAgQ/k7S3JhEmuD7+WeE4EfF8+Kif1uLX68XFhYl2PLdcS9YJ//vXPGraxHuE79GX6bM4ICDg7eHT334ntDu8v/E9Cp/DAQEBAXt4Q0GhLMt/EEXRiwc//qWSvunq6++V9EOSvuPq53+xLMuVpM9FUfQTkr5B0g+/mYM5rFj78YpUydM03ata0hdP9fUQfgwkpNz3SbMtXiddCwUQeKqq7XbbKr0IF76fmwo91VB6zmu1mtrttpIksR5zqvqQpsPgvPV6becP4aJdgso7Agfkn+Pv9/vq9/tmqZ9MJprNZlZlxm5PKwPWfUIcEV18QKYH14DjIKiy0WgoiiL1+30Nh0MjdNJlK8m9e/fU6XRs+5B93AVkA2w2G2vpkKTZbKbxeGyBiJB3MgKogEuyXIB6va7BYLAXhEmQYhRF6nQ65tTIskzr9Vr37t2zsZKQ2263a+4D7i/nuVgsjNRKskDLzWaj6XSq4XC4FzrocwK4jrgBfNYDjhxEl0NHyWFYI2IY4w8RsCDIoFqt7gljy+VS0+nUqvIQdd8aUa/X98aTEqqJUALp9jkPftwpghvPG+eN6wLXD88g+/GZEIgBfEbcNJ0BRwv7OAyG5PwPQxdZg3zPeSBosJ5uA76cn8UBAQEBAQ8jfA4HBAQEPIy3m6FwtyzLVyWpLMtXoyjC3/ecpB9xr3v56mdvCN/ygJhApTLP873KK2LCcrm03nQ/GtGDSQ/L5dKIobfp+/R32iogJQQEemHAhzwiDGBPx3q+2+3seD1B8n3r5DT4bTebzT23xZ07d3T37l2rjnPu5+fnFmAoyUjxfD5Xt9u16i+tEhybr/pCZslOkGRjBRFcuHaQQUggjgIyDsqrEYuEM3IMVMTZDyIDBJ7r6cUUKtvNZtOmTpydnZmTwLecDAYDdbtdSbL7wFQJxB+Ozx+nD7L0IhbXxR834YuHrhX2NZ1O7TrThlAUhd3fdru9N4Wi3W4bGceJwFpmzVDN98fuLf8QYL/WvVuAdiCEH35PMCnXgdGdHDM5HoSTMqKU4EOuE+vcZ0pw/6XrqRC0MSyXS2tROXy+OV8vPNEiw/3bbDZ2bKxbnm0vzvAcsS2uGc8yoh6iyU2OJkQO7s0TgMf+WRwQEBAQ8JYQPocDAp50RJGKf+cb3vBl6d/8F9pdFRIDrvG4QxlvMvrd2IgcRdFHJX308Of1et0qz/RJ+4omLgRIDdZ7LNGeZFF1xMnQ7/fVbrct88An+UPW+JrecAQHXw2GABIcKMlIk3RNSiDY3rkAwcrz3MQGKs+MaSQb4LnnntO9e/esStrpdBRFkVXEpUuiWBSFjXbsdrtGhPyUg0PrNsGCx8fHGg6HWq1WOj8/N7cHoELO/fDEmpwA2jkI0fMj/GgZGA6Hajabmk6n1s6BGwPhRpJV13FZzGYzrddrzWYzq04ztYKwRwi6zxKAeELoGRHqgwX9ffVtHThHGo2GkUsIO8c8mUx0fn5uozG57/68WBscDxVyRBGumxdmaG0g26JarVobiL8vrFFGU/rwTVwBXqDhfHk+KpWKOp2OBoOBTeNgzXuBqNfrWe4Hrhn24QUxAiARrrj+rHufawLxpwWIzAx//7nmuBf8FBEvPPrpDr6NCCGGY0ySxNpwfH4J20ds4Z6zXZ7pJxBv67O4pfimlwQEBAQEvHWEz+GAgCcA01/9M7WrRTr/ujfOzhoc/TRVNtLge4PRyOPtCgr3oyh65kqJfUbSg6ufvyzpefe6D0h65aYNlGX5MUkfk6QoikofMkjlsla7HAfpiR8J+ZKMAGFRPxQFfKI9v4vj2CYVeKdDeTW6UdIecfHOAiY25HluhIXjgojT3kC1FgECQsY4w/V6rWazudfrjUOC3IajoyMbs8d1QVzw5K8oCiNlkLTFYrFXCfep9pBjqtSNRkOj0chEicOATNwT2OkhW5DNk5MTG0nJNcUNEcexWeZpT/H9+JVKRd1u17aNCEE1Ocsyq1IjBtTrdfX7fSVJYuSd+1mpVGzqAaGEOEJ8Lz5iFeSX+4gDgekDrDlEqSzLtFgsNJ/PdX5+rvPzc+V5LklK01TdbtccJb6Sz3r0VnvuCcKYDwj04Zackw8RJd+B60qeBdtjPXH/qO6T44A4lySJ2u22iqIwQQT3QLfbtawJnBxe0EPgabfb5kph/SZJYveYa+yDI3HY+NwIfk67hh/Z6kNCORbWKY4aH6ZKSw9CHfkdjA/l+u52O8sNQWTzAspNbVS3DI/1s7gbDW9XEmVAwBOGr/zzc/34r+mEHIWnC+FzOCDgCcTk275R606k+Yd2Kitv7rEbf20pldLmN/8s3fkT/+hdPsInB29XUPirkn6tpD949f8PuJ//D1EU/VFdBtB8laT/35vZoCf8jM+DFEuyALmLiwt1Op29MZG+B9v3dDM+zxMhxvtBYAjxwxWAAwDxwJMcjgfydzh+kqouzgMIFMdJxVi6zleQroUNiDHhgX5knq88Q8g576IotN1uNRwOde/ePbVaLY3HYyNKPhUfIuhbE/I81/n5ubUV0OePsCFdVt/98SIyDIdDHR8fW0gg0wp83gTwYZCMCMThgADBdaHtAWLnCeVgMDDHA2IK1WY/5pBqNwICGRMIF5BO+vV9FZzjIS8gz3NrvcAB4vMm/PqCpCIUeaHLr3ecK76loSgKW7vdbtfuMS4Cts0xIvyw5nyYpX8OfAWfe4EbgjWFoFetVk2MQWTg2cN5Qa4BFX0EGP/M+KwO7qdvveD4eO3hc8F7eIYXi8WeOMO5IRB6t4kXjhgp2ul07N7TNsPziGOEde6nvNxyPPbP4oCAgLeP8p//K+nX/Bvv9WEEfHkRPocDAp4wjH/tN2r0U6SytnvjFx8ikmZfudPut/0s3ftjQVSQ3tzYyL+gy7CZ4yiKXpb0n+nyQ/P7oyj6jZK+IOmXS1JZlh+Pouj7Jf0rSReS/i9vJc2WnnWfk8Af/FjvfUAbAoJvc/DEiB5w+tN9pRYChN2cSisVXAQKCDnk2Pdt+4kCkBbG9GVZpizLjJy1Wq29qQBX19aOl35+QvC4Bn40Xp7nWi6X1iLANAIIVa/XU6/X27PJsw0C/hBtsLs3m01NJhPdv39fk8nkoWkRVLx9z/96vdZkMlG9Xlev11O327UpFxcXF0a4N5uNiqKw0ZqSLIQxyzIj2t49QaXZtxdQKYZgdrtd9Xo9ExsYC0o7iaS9yQx+qobfJ4IQQk2WZRqPx3Z9IfhlWWoymWg0Gmk2m1krAteX9ZSmqYlUHLsnpT7jg3YZ9u3FIkkmrJE5gVDm76MXD2gjQDzy0xP4Pc+HF054rhDf/PhSf2wICdxjBCUmoLCvKIrs2nviz/+4MQCZD/576Xo6Cs8ILhOeP3/u/hqzL589gWCFWMB9qNfrWi6Xtl5xxyDAIIbcFnw5P4sDAgLeHr7we79Rit7GH6gBTwTC53BAwJOP6a/+mVdiwjswA0VS9vxOr/72n6Vn/mgQFd7MlIdvfcSvvvkRr/8Dkv7AWz0QbOYEClKV9qFuEHfsyZATH8wGAfFkhqwESCSk3ucnsD1IJoFyPuTucD9UzL2dHiKzWCz2hIxWq2WTDeI4Nus3+/dV51arpfV6rbOzM7XbbQtNpK0BSzgj/PxIzWq1qvl8bkKJpD1nRK1WU6fT0bPPPqtnn31WrVZLp6enZttnHCAEk+sO0Yek+xC93W6n6XSq+Xxu7gbaN5gswNQGxkZOp1NrS2Ds4mEOAqGbVOfZnx8TudvtbFJAURSWDYBTgGo6xBm7P7kDiEkELWZZZiQZNwDCSJ7nlouA4ECOAW6BoigsdJJRjT78zwtS7BtBhVaNwxwB7hvv8SNFEboQE2hXgNR7gu4zGi4uLjSbzex8GKfphSSun3TZ0oO4AxmnNYVnhTXiswl4XnB8kD3CcbA/n6/g3+uvj89F8M4gzo/PER/M6OHbhPgM4TOC54qcEC9K3hZ8uT6LAwIC3j423SAmvJ8RPocDAp58bJLonYkJIJLyD+z02n/8s3Tvv366RYXHHcr4tlGWpRFPCB8kDyJD3z/EYrlcPhQi6CuUVHNrtZqGw6FarZZNhcBm7XukcTxAIiAviAw+vI3X+3F4OBYg4d7OTSXdVzx9gKGkvUkKkFNJlnPA8UHYsKBDKMuyNGI/m820WCxsEgHiBgIF+QxFUej09FTz+VzStY0eUut7032bCKRSksbjsV1Xqr3ecYE4RIWYkETfMuJHb1LJHo1G+sIXvqAvfOELyrJMzz77rI6Ojixcj+oy7QtZlilJEp2cnKharerBgwdGYMlvkGThkPfv3zenBOfop4L4MM35fL7XxuCr59vtVuv12lpPiqLYcyMgauGW4FoiKCDKsK9Dksw992NKJdnxAO8u6HQ6ll1B24bP6iiKQrPZTBcXF5aj4MUJBAfWKM8bDhoyCLinuCcQFJgWwTH6wET/LHlwnSD8Hjw/rBWfN8G19G4cL8R4JxCilXfiICAiXPA6rn1AQEBAQEBAQMCTj9m3/kxNPvIYY0oiadd445e933FrBIV6va7hcGhExFesfesBVXgs2J544Bygeks4IKPiDgPYfO6CP452u23v32w2yvN8b4Sit43zdbVatcBByBKJ+PTRQ8Lq9bqJBd5FgTsBsjyfz7Xb7axlwldpsb0jevA+ev2zLLMQwSzLLA+h1+up3++bS4LXI7JQwYXoQ5ypSHN/uFZY972NvSgKzedzVSoVa6sgE2K73WoymRiR32635lYYj8daLBY2lvL+/ft67bXXNB6PLejv3r176vf7lvXAeEpcDP5ekG+wXq+VZZkJEEzFGI/HVoUmRHC322mxWNi9Zy1BYMlk4N7T2uAFAUQDn+WA0AVxRXwgBJDr4Ul5WZZ74hQuA5/LQL6Gb7UggyNNU9XrdXNWIG75MaOsr0ajoSzLLAtkt9vZGkNowEHgwxQBJJ7XL5dLnZ+fazqdmmDiwyJpBznMfMCBwbPd7Xb3rqUn/FwDvl+tViagHIqMtG1I1yGbPsPBj1Tl88aPnQwICAgICAgICHjCEemxh+YWz+z04CkPabw1gsKHPvQhtdttI0UQQYgc9m0f1Ofnx0uyUXuVSsVEAEgcggBEV9JeC4O0H8wGMYRYUjWHVFFp92TRW7IJf+R1iA1JkjxUQfUJ+n57kDCq0ocEVZK1SlC1z7JMDx482JvYQPYAyf2dTkeSdHp6qldeeUWTycTIOVkE6/Xa2ikkGfGFcHPNaHPguPg9wsudO3csDG+1Wmk6nZqAQCjeaDSye0Ov/Pn5ubU7QLx7vZ5ty1vWcRRI2rvPs9nM1gGOCfIlzs/PtV6vdefOnb0pBL71gPwAn4fgwyKr1epeWCLvk2TVbn/f4ji2XA8mcUBm/fb9hBOuFa+nUu9zOHxGgyQTSGjboLLPdcM5wH2NrkZvZlm2t2ZpNULw8hkIrFfcGqx/rsNoNNLZ2ZmND+X3vvWE10P4JVkrCmt3tVqZ0IMbhTYW6dqdwPtxi/DZgQAhycQZnjfWFZ8HCENcM0SpgICAgICAgICAJxuVVkvbRqRHTG8NeAe4NYICpILeecYFQmLJD6hWq1Zh9NVDqvRJkuz9jsrta6+9ZtvwbQa8lwosVV/ID4QHyzlOCY4XMsV2+B+rNXZ7xuchIEAaIdUQVB8ICfnhWHywIRVkpl70+31Vq1VNp1PNZrO9tgRGSVKB3W63ms/nun//vs7Pz43YNptNJUlipIyKMu6EWq1mffdcX7ICILg4QBCBut2uEebRaKTJZKI8z/eyLhjDSPvKdrvVgwcP7HtCJHEuIFiwfwj9er3WdDq1MEUEEUgi5J2JFkzkICuA7AjpetSiJ9ZlWe6NhfRrB6LupxoAb8P364L9sObImEAUI48BIQRhivvqwwyXy6W2262NLPWiBLkRbMNnNXDc0+nUjt1PHUFQQhQoisLECL/mJVlrxGw20/n5ubkiEEoO2xF4hljzCBWICpyXdx7559Q7FXB1PMo5QbsUOQ7cM+6Vb5nwggJOooCAgIA3g9ZZRYu7IUchICAg4Lah+Lk/VedfF8SEdwO3RlDwM+clWQuAD0ukEgsh8sTC2/K9HZoqJ6QQQn9xcaE4jk0swMrtidx2u1WapnvBbIe5C9K10+FQWMC+7Y+H191ks4bA+aqydB2I50MMeU+1WjUCOpvNNB6P98ZPImZIMqfG+fm5OQmo1ELc0jRVlmU2UYJjjeNYZVnaqEREE0LzsMlD3NI0Vb/fV5qm1qJBGwbEDSGAnn6260cE0qpBJZ3j9CILwgchhXmeK8uyvbYSiDvBi9vtVkmSqNFoaDqdWksEgYZe3GH94YBhHCICBIIJ+yJQ0U8LwFVA9d87LPgeZwEuidlsZsQaYYp1hEsFN89isVC73Va327U1C3FnpKTP+OD+4cDxDgAEBV/JZ70xWtQHTfpgVC8G8Fz5FiS2y5rhOWH7PkMCcdG7DLjuvJfvvRPpUbkHXG/gr6F3A/k1eeiCCggICHg9PP+DI3361/Ufu6U2ICAgICDgtuLWCAoQEV/VlmQEA8JAlVK6Ju5UcH2POaTLEwVaEiANED8s6LVazXIHfIAfwYJ+BB7HBeE4tIXzz7cw8HuIJQGGEB2q9ZwjveR++8Ph0IQWxIgoijSZTCxoz/fqTyYTI2wIB5BwCDGjHpnAkOe59cOTQdFoNLRerzWfz01o4T75sY/1el1JktjoSwQa7+7Akg65JMsBoosrwrsFvKDAvhaLhbkVfCWdEEVEA0QliCKEFOFgt9vtuRmiKLI14dsF4jjea43w9xb4cYq4T1iPCEisLQQt3BFcNwIRuT64LyDiPr+BcZ3SZXjn0dGRuSiq1aqFmNJGMJ1O7f56ocyPb0TYQgTgmvh2BYQ4nyPh8z3Im0D84h55IZBn14/NvEmA4/r5liI+M/ieY7/pviBI+Kkqhw4N72ryDp2QoRAQEPBW8OPf1g9iQkBAQMAtRPvVXM2znlbHwUX2uHFrBAVcBLVabS/Fnz/0yTbw4xs9sNBTyfdp8tJ1JVO6roTSeoAdHIHAB/ClaSrpmtR4hwOVTUlmMZeuCYsfgwe582PqsG9jC6cKDUmDnBVFoTiOdXJyYqM1/QjMoihsogFBepwzhJaRgL6C6yc6dDodHR0dKUkSzWYzG13pAwIho81mU4PBQIPBYC9hnyBAWju8oINNH8GFdgY/rQPnAA4Hqv9kP1CB5l4sl0sj49Vq1fZN7kClcjmKlOsCseS8Id3cE9YGAgzTRriviCq0FtCO4uFHN/I+LyD5wE5GiRZFYe4Q9uGDFyHbrCHWNDkXPojx6OhIR0dHe2SeEab8Y40gaJFJQIYJzhrfGsE95lqxBnkevRjAs4iw5Z8tP4kB+Gfab+NwqohvU/CtG4gs3ink2x9YizyXCCZcax9oyfnTFhGmPAQEBAQEBAQEPPkof/Tj6n3kZ+rB8Xt9JO8/3ApBAUKR57mq1ap6vd6NpITXUa2UtEdMvE0b8gjhh5T4GfN+qgLbphXi4uJij/QREgf58AQE4uGDFJfLpdrttlWpIZpe5PDEtdlsajwe23hHH/LXbDbtWOI4tn+Q0dFoZCMAJVkVHaLI+ULIILhc12azqU6nY6GB7A+3BL34k8lE2+1W3W5XJycn6vV6JmiUZak0TTUcDs01gLuDEE1cGkmSWOsD7SW+Ip4kifr9vo3ObDabunPnjvr9/l4bARM4qtXq3vSHBw8eSLoMJyQMkutItgPnifhBqwFOlZtyMmgTQZCg5cLff5wkCEQ+g4JjQeiQZH36tLIgaOAi4X56dwz3l5BG2iz6/b5OTk50584dtdtta2nAxeCdB4g1rAeulc+j4NwQW3zrAc+hJ/N++oV3Mfjj8NMXpOuJCofE/aaWCO84YK0gNPA5wNfcQ16PO4dnBgHEZyT4ENabRlcGBAQEBAQEBAQEeDSmFd39x9OnOurxVggKVF6xMJMs78fKQeKwxXthgSquzyBgu56oeJKILV2S7Y9QQizy/J6KrRcdvEPBJ9z7ivxh+r6kvWwE3ttsNm0fpOKzX6rJtDucnJxoOBwa+UQ08K+FfNJyEcexWd8RMyBsuA/SNDUiTGXYV4jH47Fms5nq9bp6vZ7Z6hlL2e/31e/31Wq1NJ1OLSwSMlkUharVqjkNaK2Yz+fWc1+pVNTpdHRycqKjoyOrkm+3W3U6Havg07ZBtb3T6dgECAg2bRp+AgQuAVo9qNDjOEBUYN1xXWm3QDzyYgDkEyEBcYr2gFqtZoGSfjoC95d2BU+SERm22+2ewwVxDbGJMabcy16vp+FwaMLLarWythA/ucITbv8M+bwIP92E4+N/1pqkvTGNPnTRhyDyjHnnkCRzeBzmHiD0Mf4Td4sPs+R+Iph5MY/74F1AZEf4/BUfdMrx8BzyfIYMhYCAgDeL89/4jSorT/OflAEBAQG3G8N/9IqyZz+g4rnHVzSqFZfuh6cZt0JQ8IFqVIEhEIgANwEiROXUT0Xwlm72AeljGgTkDOJHTzvtC2QnbLdbOx6IkycbPmhP2hcQILQQesQLP6qSrxFWaCMgQJBcgk6no+PjYx0fH9toRH/OnqxyfJBGP7XAW8cl7SXoe0cH13W1Wu25RwaDgYUtMvXh3r17NpIxy7K9AESIP4GZXEuEAUkWKNhutzUcDtVqtbTZbJSm6V4VHoGDbXJM3W7XzidNUzuX2Wy2N2aS1ggEGbITOp2OhsOhqtWq5QTgSsExs1gsLGsCouvvHU4T716I41h37txRrVbTZDIx0ceLX9jxOaeiKEysSJJkLyujVqtZiwgtQlyzu3fv6u7du/Ya7hsTUxAUOE5Je2KUn+LgiTvnyXQR34rEsft1x3XD6ZLnuQlyvM6HKXoxwYd8IjD6NYpwwDXn2eb3PN+sE9YhwoN3SvDscI4cP/ug7SEgICDgjXD27d+o6VeXIT8hICAg4Bbj4qUvqDF/To9rhlcti/TB739ZF2/80vc1boWgIF3bugnooyqMQ0F6eGoC75OuQ98OMwoOg9lqtZrSNN1LvvdtAITLUeFnVj0E9LDHmiq+d1X44EaOGTLN1/682B82fKrAvNdXn6l2+yorFWhIHz/3PeWcu/851nefR+DbCSCsvCeOYw2HQw2HQyVJotPTUxMKut2uORnyPFej0TCyzgQCf08Wi4VlHXQ6HRt96dsuyDmAGHL9CXCk+j8YDOycJVnLSp7ndv60XtB2sl6v7Vh5D9uZTqe2/eFwqHa7beSW9pDNZmP3HkcD64opFZVKRcPhUM8//7wRewQs1jCtBpLM1QCpp93Ct/jwfi9GHB0d6YMf/KA++MEPajgcmnOF0ZkIAIyW9JkR7A9RDSGE54Br78NJffsALRw4d7yQwjQMRAE/neSm/AlJe2MccRP4dh0EAbaJAMG6xdHBc+3PBYfDTe0OvkWCa+wDIAMCAgIehdPf9I2afWWpsvLGrw0ICAgIeG9x9/s/qdVHf5IW995Z0aiyivThP/4ZXdx/8JiO7MnFrREUsNhj+z9Meed/nzwv7WcoUKWUrkfWIQz4IMI0TU0EwJpNxZaQu8OgN0/A2D/78En+hz3+hL8x8YCKPOGOvt88TVOrDkMY2+22hR0ShCddOh9oN4DUcQ19BZlqKxkMfA8Bp2pMKCKZEX7cJIJLq9WyrAX2U6lUdHR0ZOGHjDrErcA195MgILc4GSD6BDEixnD8THxgEsh8PtfFxYX6/b6Oj49tbKOfrMH64P1cI6rs0+lU5+fn2m63Ojk50WAwsGwHRA9GMFarVZ2fn1t4JVV5P12AdhlcIJVKxTIlOp2Onae/7gSCQnQRX4qi0GazUbvd3hPIyOZAJKjX6+r3+7p7965lSBD8SKsD9xKCzr3keszncxM6EFp4DeSb5wyRJssyc75I1/kkuIsQOvz2/LVCGPCtFwgRvIdz8Ps/zJbgmfRtCYgptD94QYT3cj14vc9r8S4j/xkUEBAQ8Cise5HKamh1CAgICHgSsB2P9fz/85/rpd/59VoP3p6oEG2lr/wDP6btfP6Yj+7JxK0QFOh59uFukAQ/ghEign1a2g91o00BUsr4N6zeSZKYXd+TKwgy4YBUKiFD7MsfD20aED0IN3kIvlcbou/72Kk+U/nFau+zFCBCEFuq/IvFwvIHOGa256+RB+dAWwX2byq6tFoURaH79+9rOp0+RLJarZa1PEAA6/W6kfrRaKQsy4zIIaZwjn7cH8IJhJo1IMmOixGQXCfyBXBzIAKQ0XBoYfetHn6U4Hq9tokV/X5fnU7HJhwgxhwdHenOnTuqVqsaj8cWPJkkiV0Pv32cI5BTSRoOh7pz545NzEiSROPx2I6Ra+/Xuw86ZIynH1HqJ1akaarj42PdvXtX/X7f2iMg4j5kkDYKf23yPLdxoxB+juMwhJKgzfv372u5XOrk5MTWEGsOAcPnguB+8OvIZ4wgHh2SfB+KiJDCmsM5wwQW74Lw0yRY7+RmcJw4GQ5bpHyLjw8wDQgICHgUTn/TN2pxN7RGBQQEBDxJ2BWFPvh/+8eKKpE+893/O+1qb7Jl7Uo7/srv+mfabdbv6jE+SbgVfy1DnH2ooM8qIJkeQkFIGwSIdgM/BpHq5Xw+N2Lf6/UUx7FVK5ma4CcBMOWBQDtG/EnXRIj9YsPHXQBp9mP/qLz7nnwIIj3mTFHI89zaBKhyEySINd5X6QnN43h9ZdpXWiFKED3p2mlRrVbV7/fV7XZVq9WMZPIettdoNNTv93Xv3j0lSaLJZKIoioyMl2WpoihMZKCCTSWeDAlEC4ITX68CXK/X1e127TWz2cwmJJB5wDGPRiMLUKRtBCLp22RwATBuMEkSJUliVfLFYqE0TfXMM88oTVPN53NNJhPN53M7Fh8wiPMkSRJJsvuAeNXtdq0NxedUIHohAlGtZyIELRhRFGkymey1CJCBkCSJ5UHwM7IDEKV4PnCO+DDT2Wym0Wik9Xq9lzvB88c6xtEwGo00nU732k8g8ggXkkwIwk2BSOJFrkNxiWPz54nTB2EPF81ut7PMDD/ikmvJZwSOHp+dwJrnHKT96RX+f65nQEBAwKNQViMpCu6EgICAgCcOu63KnfSh3/3DiuoN/cR3/+tv+Jav/u5PajseP9UTHW7CGwoKURT9GUm/SNKDsix/ytXP/rCkXyxpLekzkn59WZaTKIpelPQJSZ+6evuPlGX5m97EPtRsNq26KT08GWE+n1uFkQq1n/DgRQRvLfcVSZ/AX61WjUxCjCAiFxcXyrJMi8Vir6VBkrkEqLCTscC2PUlhPKEPmPNEzTsAiqKwajHHD2Ht9/s6OjoyZ8V8PjcC1e/31Wg0NJlMNJvNNJlMlOe56vW62fUZMcj5StdEDlLLRAsCMWktgcAxYYJJChcXFzbpod1uazab2XvjOFar1TLnhb/HVMLb7baNPfT5AIfXD2GC68KoyyRJ1G6396rvZEIgLkEwqZCzlggMhMCzrqRL18BgMFCv19NyudQrr7yiL33pS5YLkGWZkXOIMscJ8W02mzo6OlK327U2l8MWBD+1gPVJ1bzT6dgkDPr4EWd4HSITwgQjMMlfgMznea6iKMyRwdpiXKckc5AgoPksEUk2npMQUO4t157MA3ILWG+4ChATEDK888AHnNJmw30hwwGxgiBLrgF5F0VR2PPtRQ6mceA6Ya3xecG5STInDS4Ov3ZvC74cn8UBAQEBAY9G+BwOCHh/otys9eHf9cNv+Low++tmvBmHwvdI+uOS/qz72d+V9F1lWV5EUfSHJH2XpO+4+t1nyrL8+rdyEFSuO52OWdd9pRTiAan3VnFI2aGrgWo9JHM4HKrX6xl5ZHJCs9lUnud7gY9Zlun8/Nwqob6vHPGAajZEBos3gYFMlIDw+WkO9IizPcg9BBtxghaD4+Njy1eYzWZGihEMKpWKtRtA7DudjpE+qswQKcQCiJjPnfAOET+W8fnnn9cLL7ygRqOh6XRqoxYJXzw9PbVpFrQBcI98xfmwReVQWOE6Q3LJBICE+ikdCA1MkkCoQDTBReLHIyJGdbtdc3L4CSBxHKvX66ksS41GI73yyisaj8d2HNPp1Fog4jg2J4EkG6uJe4J9rFYrO06CJpvN5t6YQj+yk2vIdYnj2NaWdzFQQUc8wbUym800m81sLY5GI52fn5uA5EdO+mwP3DYQeEQtn8MAmfftDLRlIJgxEQQxhMDP7XZrLQg8B6wFHA3eWYH4wPrk/jEGtSgKzWYzE4hwJxB86kdDcj4+kwFhLE1TOya/znwryi3B9+hd/iwOCAgICHhdfI/C53BAQEDAHt5QUCjL8h9cqaz+Z3/Hffsjkv5P7+QgEBTopyZUzRNBn5Hg/9CH0EMcqOb6UXHtdlu9Xm+vraLT6ezZvNnebrfTZDIx+3wcx3tZClSi2X6v11OaphZwR5UXq7WkvRA/4EP6lsulptOpZrPZ3jmlaaqTkxOdnJyo1WpZ2wej/+jnH41GZgefzWba7Xbq9/vWcy9dVmvpB8cizjn51P/DVhOu1fHxsbrdrpFRn9mAO8IHZHpnCGScfxBUn/3g7ylCAj/zggS/K8tS8/ncKu/r9dqq9ARCUpn2bR9+yoMP3Yzj2Fof4jhWnud6+eWXdXp6aqGW1WrVjt2HMqZpurceaQNh0gNtE0wV8G02rJdD272/J61Wy9wfhGvi9uCcd7udTk9PbbrDeDy21g6uEdcSkcOvUcQXyD3XDaJP5Z79E9CYpuneawji5BmkvYAJHH6KCWuT68prOAbpuh0BUQnBBeEPx4IXChCHcD0gwOE+kmSBo5yPH9sJvJhxG/Dl+CwOCAgICHg0wudwQEBAwMN4HBkKv0HS97nvvyKKov9N0kzSf1KW5T98MxvxFmMqpVSw/YQGRsh5oijJCKofYSfJ+tuPjo7M0kwF3YfcAVL2CdpjDKDfF5XWOI7V7XaVJIkFJFIp9/3gEGkECX8eiAmIKJBrsheGw6GJGlS5mUDQ6/U0Ho81n89NzKDiX61WVRSFLi4urIJMYCKiAC6NJEn2Kr5UssmpGAwGGgwG2u12yrLMrg9VcT8NArs9Tg5GOBKuyHFA6AGWdC8Y4XjgnnJ9qEQzKYLzxCmyXq81mUz2BCZJe6GdSZLY6E+cIP1+3yrX5CZIUqfTsbGYPj/BOwWka3JKXgSk9/T01NoFfGsMVXMyJ7xd37eG0IZAaCX7QCyr1WrmACiKQvP53BwJhCX6DAnfAkQeCIIM50j1HnGBNc9zw/ccL60WAGIPUcetgCCHG4H9eycS98pP6/DiF6II+/PuFh/myv987fMVuOaIbKw/v0451ycIj+WzOCAgICDgbSN8DgcEBDx1eEeCQhRF/1dJF5L+/NWPXpX0wbIsz6Mo+tcl/U9RFH1tWZazG977UUkflWT97Ov12qr/WI69TRl7N5VXH4zok9l9n3atVlO329Vzzz2n+XxuFVRaIiCVkE7ffw3RhoRxPFEUmSuBPnkfLIco4MPf2AeWesYzzudzzWYzEzU4byrdBA/y2izLbOIDkykQATgXjhmSvd1ubRwm13i73drYxWazqYuLC43HY02nU9sGbQf9fl/tdlvz+VwPHjxQnufqdDpGULGce2s55yJdT5j4/7d3fjGyrWlZf76u6qpa9b+q/7s3MwzMzAUaMxJDTDRIohEYL0buhisSTdAEEr3wAkIiaMKFRvRCE5IhENAYiAkaiVegkXBjxAGHYUY8zAAjnHP2n67uqq6/XV3dvbzo/r39Vu1/Zx/37q7mvE+ys3tXV9X61re+tbKf53ve50XMoPWg7/KA+MKcISbQxcE7KiDeiEGIKDgXyL+AOPsSCzpuUN7RaDTU6XSs5eJoNNLx8bF6vZ7m87nq9boJS8xvoVAw8cALQIgM1+tb8/lcg8FA77///lIQo3TjBEF0yfPczlG6IeS0xMRdgQPDCw4EU+LSITthOBwufSfr3pe/+NBDfy9BxCHg3h3EfHMNOKYvrUEk8F1LfFtYBAnuOd+ikvnxrg3WEcKLzzpgbTFvhFL6ZwffyXF9cCjv5dmBYOS/d93xpp7FFVVva8iBQCDwgVGc3PUIXo14DgcCgY8qPrSgkFL6AV0F0/y1/JpB5nk+lzS//vm3Ukp/IOnTkr64+vk8z78g6QuS1Gw2c98l4OLiYiksDzIGqaH23YsHPr3elxdUq1Vtb28bMb0+9lJAok/gl2Q2coQO374QmznEX5JZvb2zAtLCrjIlHI1GQ41Gw2rQfWkGO8CUCVSr1SUC5R0HZBccHR3p+Ph4KShQuupu4UsFIKCQvVarpYcPH5rzoNfrqdfr2VzjGMEJkVJSv9+3DhDsChOUuErO/HnwB7JKfX+hUFCr1VKz2bQyAElmlWe8ODPYWYbEc83864vFQqPRyFoL+l1/5pfPlctldbtdtdttW1eHh4c6OjqywEIIPGT97OzM3CMICuQ6sB5YHycnJzo+PtZ0OjWxg/EyRwQc4vLw3TEgyxD6RqNh88M94s/Hu09wrXgxwa9ZSUa2ERSYJxwI3Iu+7Sbvwz10enpqc+xDLn2JC+NHwPDn5kUH70JBAEIQ8lkbXuDzAYu+XSTz5kUqwli5v73jyLenpQSF8a073uizOHUjuDgQCNwpWr+f1Py/y2Lu0fF6KwrxHA4EAh9lfChBIaX0PboKnPmreZ5P3es7ko7zPL9IKX2LpE9J+sMP8p0k9fsdfogGYgLE1Yf0SVr6jA90Ywd3e3tbWZZZxwJ2vEmK5zjSTekFJIXyCRwH3rLObr8PYiTxn1p8drbz6xaStKCknp7gRMbgSwUQFDhnjp9lmYkAR0dHRtB9yYe3fheLRbVaLbPPFwoFHRwcaH9/34IGT05OrB4dMoVDgkDIXq+n0Wi0FG4J8fMiQrFYVL1eV6vVUq1Ws/NmrigNodyi0+lYaYnvesCO9nA41Gg0sjaS1O3T+tHnCkCqPbFEoGBNQUjJp6hWq5pOpzo8PNTTp09NuJG01JUD0k+7RlwinDcuCeaLMhVvx0ew8YITv6N0grWLywGy7t/LmuT8/HocjUYmznm3CO+HaPNZXCU+FwPRQtJSxoW/VyhpgICzDsj68C4i3Cp8jrIC366VeUJwIG8Bki/dkH9JS8GsfCf/9h1X+BxiBaIHIp+/z/l+ylbWHW/jWRwIBD44Dn79SDtfyvSNv5npIlv/Z8Y6YnO4oY/96vTm3994qvP33r/DEb0e4jkcCAQ+6vggbSN/UdJ3SdpOKb0r6cd1lWBblvRr1zvitML5Tkn/JKV0rqvOGn8vz/PjVx2DYEHpxh6P24CUe+nGQu9rrXkvZILdTEmWuL+zs2P14f67JVmNOTutPlGedPrpdKpSqWSuBVpcIiQQvkcLRZ+BwHh9VwMEhna7LUkaj8dGqjY2NpRlmdrttprNprkR+A7mYjgc6ujoSP1+3zIJOCd2hCFR1WrVSiekK0J8cHCgUqmk9957T4PBwOrxIacIII1Gw8oZINpkJaxmICBetNttm3NJtkNMN4jj42NzQbRaLRMoEAm4Buzc485gPmq1mmazmYkrtK+sVCrWxpDz951BKIe4uLhQrVbT3t6ehVdS6kCYoy8NQBg4OztTs9m0P4R2IoyQu1Eqlaykw68DxASIsg8drVQq5vCA6LI2EYo2NzdN3IAQz+dznZycLOVOkGvBd6+W6/h14oMpV8sxuHbMnXeE+HkliwFRgzILv+69O2FVnECAAFxXH+bJeFfvfeYRIcE/N1YdTH4c/vNeaEFc8fOyLriNZ3EgEHg9XHz1HSVJn+x9Ul/72zu6LK3Xc2NtkUuf/rmBJCnNz3TxtRuevc6FZvEcDgQCgWfxQbo8fP9zXv7ZF7z3lyX98usOgjruRqNhJMnvKPIffAiLFwakG8J6PQZ7jQR+cgR8KB65B6PRaKl7giSroYZEzmYzNZtNLRYL25WG6LKryW4z7SPZOSd8jrEhJrDL7S3fuBra7ba63a663a62t7dVLBaX3Buz2UzD4VBPnjyx1ylp8EQVYkpWAvbxdruter1uXRLm87larZbZ/ukIkFKykg2flu9DG6Ub27ovI9ja2rJrSSnC0dGRjo6OLIMB4kgg5Hw+13w+t+tDq8TBYKCLiwsj8IhH3glC3gWtGQn749pAxmezmYkQ7XZbhULBOmx4ZwKhh5QQ0LIRgaBer9v6qtfr5kbJssxCCCuVivb29rSxsWG5H6wRiC/XCAcHJDyltFTGkmWZKpXKUt4AJTPe+UIHB+4Dn8nAsVadCBBwXw7hSzKYB+5JhAHar+I2wJXgXRTMvXcFMC7cDf4+RzBaLXny9zfj98GN/N6/z5+zdyOwjjk33usFLUSKdSp5uI1ncSAQ+HC4eOfr+vS/mkmFjVe/OSBd5jr/k3fvehSvjXgOBwKBwLN4E10e3gh8CzsfxMZ/+H27t1V3Au/3pRB5ftW6EZECMaHRaBj5IaTREwcfypa7VHwEBEQAH6ToSyEkGUEslUomIEDwfXvD/DqIzzsTIKj1et2yBXznCbo3kJtAXXiWZUsJ/pAsyifYRc/zXNVqVZeXV+0eyTKA6OZ5brv03oLvSwWwpfuSEX7PHHc6HXMDMA9HR0cm4CAEVKtVazHIfELMCZOkHICSDcYB+ab8gM9Xq1Uj9X733HfnQNAgWBDiDunk+vgWoY1GQwcHB9rb27O5wa1Qr9eXLP8bGxtWmkEHBOa5Xq+bW4L1wvplPeOamc1mJhhwXX23AnbcEdDIQWDH3t87uBVwSJBFgjiEE4b1yhrm+q6WGnlC77usIBAh5vhyi9XyD59XQE4E7gy+lzEyfnJMCO+kHAkBgXWxmqcg3ZSHIELiCuE6+4wUvi8QCAQ+CM7ffe+uhxAIBAKBwK1jLQQFiK+3e/vdRSzokoysrYoPvv5euiEn1LNLst1tMgeo34ZMcUyyGny3BognYYoIBb7dJYSHdoLUf/twRogMRJwsBYhmp9MxssuuOrv3fMd4PNajR48sxZ8SCyzilCRQstBsNtVoNGw85C3gFmB3n1aKJOgjauCQIEOA+aGmH0I8n8/Vbre1t7enTqdjnRouLy/1+PFjDQYDywPwLTchmIhAdFzgenMsv1uOm4Ddb7ohIK5gq/ckn2wHulb4UE5KWbDs+/A/xry3t6eDgwPt7OwYYaUUBtLscwN8JwH+jZjBHLO+fCkDgATzPX6eyEvgO32Ji38vY+E41WrVRAJEJ/IqfEtI8iA2NjaWOqiw1hkXa4r7ElHDZ4T4drCcl3cdXV5emvskvw5n5b0+L8HnQXCtfHkC4ZKME5GB93EtCWb05+KzO7Iss7lAoAkEAoFAIBAIBALPYi0EBV+yQM6AdLObCQHxtd4+EM7vevJ9hAHiPvCkvlQq6ejoyIQGnyR/cXFh9nL+zQ4q3wWR5zt9XTiCBISY78eC78UESCStGdvttn2WmnzfQQJXweHhoQkiKSXrYOEdBAgUtD30OQiEUlKy4efg5ORE0+lU7XZ7KQ+AdpuELbZaLeV5bi6JyWSiPM/VbDbV7XaN6ON4oD3mYrGwDhYQe8YBiYVY4miQbtoDUjrAbjJkenV94JSgpeHm5qZqtZoJB+xMU9KAoDIajZZyE05PT82Gf3BwoIcPH1rrUnbOpeV2hT6Lg38jdvjdb5wAdPFAyGAN+PKLQqFgwppf8+VyWc1m08pVIPUIL17wIKQUx4YPMOQ82KmHbOOw8EId4gnH8XkLfIZ7mvvUO1t8DsNsNlsKVOSaMBe+XaWkpdaZ0rKbyQs6zJsP1fTZKtJNlwsCNHFlcO/6+yMQCAQCgUAgEAg8i7UQFKQbhwE7xOyckkHghQXqp1f7x0NMIKWlUsl2cn3dOmGL0g258C4AAvewh3uSjj2eXe0sy4yAPi90zpdFsJMPCSMbwL9eqVSWOhnQAhECNhqNNBgMLN8hyzLLIYA4STdWfDpcXF5eajabaTabLbXJ87vGw+FQw+FQm5ub2t3d1e7urqQbEl+r1aztZalUMqcHIkSWZdrb21O9XrfzPjs708nJiUajkZG2ZrOphw8f6uDgwMIax+OxOTsIV+z3+xqNRkYsLy8vNZlMLHix1WqZ8wK3xfn5uV17sjO4duyWe/Lf7/fNWeGzJ1gjiFM7Ozva399Xp9Mxku1bDeKAYEecUpbZbGbtGzudjra2tmxecDjwftaCLyOAlNNuk917SD1ZDlxHBAnfTpL7yztxfHmFvwcpXaC8xK8VRATf2tJnMEg3XSP8+/w9gPB3dnam09NTzedzK+fg3qRFKOIBY0EAxD3g512SzZmkpZIj3w7Sd3XwbWQRR3C3rLpFAoFAIBAIBAKBwLNYi/QgH4jmE/almx1eX+JAvbgk27ElQK7ZbKrVaj1jaeY4JOev7sxT/80OO/Z633GB8DlcBZVKxYgT34+gAOmE/OKqgOh40omI0Wg01Gq1rEYfMoQN/PHjx+r1elY3ztjIdRiPx5pOp2bbxmnhswI4T2zjEMGTkxMdHx9bRwufj3B6emq5EKvlEwQdIhSQUcEc+/IEL5js7e2p2+2aPZ7dYt+pg/aSviyAFpfn5+cql8uqVCoW3kfnCcpdCDHEucAxyuWyNjc3NR6Pjex7x8J4PDbRplgs2ni3t7etbp9j+QwJzgVSPhwONRgMNJ/PVS6XtbOzYyQXNwFtMZkDiLoPVkwp2fXBGUH5Rr1eXyo78KGFdEoAnDcinHcmcM1ww0g34gD3IPPk211CynFacF1YWz5o0h+L7+Se8CIBBJ+1i5OC7JFVkQOhgnuadeHnhTEyDi+msLZ9mQ333uozJBAIBAKBQCAQCNxgLRwK7J5DsLFVU+cNcAyklDQej58JiMP+TZs+CAnHkK7yB4bDobX0K5fLZucvl8uq1+tLu6qtVsuOB3lifBBviDrfQYeI4XBo1nSEAx8W57MIKAF4+PChOp2O1YNz3uyYcxx23En3n0wmRlKr1aoJLnweAYM6enbh+Qz5ELVaTc1m05wZ2P4lLWVDQJohmvV6Xfv7+2o0GkvlFz4kkF31/f197e7uanNzU8Ph0Hak/ZxQlkF9PUGFhDRy/pKWci3oEECphW9DCYFF0Hn06JGm06m2t7dtd34ymajf7+vk5MRKKra2trS1tWXOiZOTE0lSlmV2fK4rbo3pdKper6fhcKiUkjqdjuV5UPqR5/mSa4QcBMowEKgGg4E5MHyApm81SYgjpN+T7NVOEJB5336SOaTcwYt8vjTC37NeTOC7/HX2QY5cE9Yi46QMRboR5OjM4rMdcCQhcPiOHIiKvqSBTA3vYGB98UzgvQgf3BMIjP65EQgEAoFAIBAIBJ7FWggKpPmz48uOpSceq6nzvBdQf08Lv3K5bM4CbNanp6caDAYaDAZGUvwuJbvykDxCCReLhbUjZEcUwiPdJMfzO0lLO5zslPodYXbWabPYaDQsR8Gn2/tac8i0dEWEGo2GarWa+v2+dSmAoHnyRvtBb0X358zOOGIC3SXOzs6sUwNBin4nmWsHCdze3jYi52vZfcBdp9OxTgmUL7Cr/rwx4bSArNN9wpNezhNLPoIOLgNAjoIkPXnyRCcnJ3bs6XRq3TQ4DqUT1WpVGxsbVn6yWCzU7XatmwG5C9T+4zpAUOp0Oup0OkZYWRteNEGQYD6Yc9pt9vt9nZ+fm+uEdUW3CJwWCG5cG64PWROcI4IQa5qwTh/q6DtcsH6Zcy82IFzgFPLZJ6x3hAXmh2tNeQb3KKIVaxg3EtcZ4ciLGR5eaMHlwXrHtSHJ1gvjR3BjPTD2EBQCgUAgEAgEAoEXY20EBWz1EByIC6SCHvUIDexKSje73xCUZrNpJI6dfYgIzgbIwqr125MKdkpXiZUka3VIuOHZ2ZntAJPb4EszvHUcgnxxcaF2u63d3V1Vq1V1Oh2Vy2XLLJCu8gvIEuA7qZPH/s1uLZkOCCOQeNwfEDYfjLe5uWlCDK0luSbserPj7a8VVnY6DXQ6HTWbTXMv+I4dkqwVZbvd1sHBgQqFgpVYQGC9IIDFndp2v6PuLfW+nSBdLS4uLtTv95cIMp1ECC98+vSpxuOxOVAWi4XlQUCeaV8JER8OhxY82Wg0lsQn1hnEeDKZWFlCpVIx4u+FC3bBEU+8AJBlmRaLhZU64C5ZzUU4PT2130PO/W6+JHOsnJ6e6uTkxNYrpTs4hHBacAzWD8IQwoG/D3iPd4Jwf3B/8Z2819+3fK/vjEFwpBcxcEQw1760wzsjECMQ+fx692UY5GpIMkEG8cELDRHKGAgEAoFAIBAIvBhrISjwH3laR0KSqcPHEdBsNo2U+XZy7EpSY80ueEpJR0dHFn7oa8exlkMgfFI9ZLbT6UjS0lioB6cMAOICmfGEBZs5tfmIIxApjkF3h2q1avXb7JIOh0MdHR1pNpvZ7i27p5RmYFNnDKuEEBLHPEqy86CDASTZlxt4EcI7AtjRh0BXKhW1223VarUlcYaAwclkosFgoHK5rN3dXXW7XQ0GA/X7/aWwS8QNrtFqlgMEkXwExBo6AtRqNdXrdR0eHpprw2dXkIPR7/c1HA4l3YRy+u4C/noSYsiay7JM9XpdWZYZ4V0sFhoOh5YlgSgGsUVg4XtGo5EJW7gxpBvrPiGaZDngVvAEnLKS+Xyuk5OTpU4pkGgEI8SE0WhkIgtrjHthPB6bKMVY/K49QGCA0K+KBrzGNaPMBIeCd2PwM0CA810dfCcOxJvLy5v2lV5g4VqT2+EFLY7jg0u5t+na4ksh/PUIBAKBQCAQCAQCz8daCAq4AaSbpHZS4Nl5rtfrtlM8m82M0PjdehLhm82msizT8fGxer2eRqPRUhI8O4+QSV9qAaGtVqtKKWkwGFhrRG/9hmxAgvmb3WdKBMrlsk5OTnR2dqZSqWR29XK5rEajod3dXfs8YsRisbBzPT4+Vr/ft913wgR9HTykzdeys9Pr7fGQcMgopLlWq9lYV8P9vEsAcnd5eanRaKTpdKqUkpVq0BLRlzqcnp7q8PBQs9lM29vb2tnZ0WKx0NOnTzUYDOz9PmlfuiGHksziTllGrVYz4YNykHq9rm63K+kmT0K6ETWY3/l8bqULzBFuAL8jnWWZCRd0bpCudvubzaaRT59V4MteIPFkbyD4eEcDn/WdSiDSw+HQds3r9bq5MFh7uBN8y02yJRCPJJmLhdafiAQERVIa4Mk942He2f3P83ypZAHxiD+r78FJ4DtXIN4hNngBhjF7dw33HuPxQYzeacO1RsBhLvx69rkirKvxeGzdNBDppJuuMz7UMhAIBAKBQCAQCCxjLQSFQqGgZrNpBMYHEEJqa7Wa7bJC0GgtiQUeQaFarVpeAjuakArficHXT9dqNbVaLUmy1nPD4dDq6SWZxR8ys7m5qWq1avXpWMrPzs5UrVbVaDRs97RYLKrVaqnVapk1nVIHCCCkBpI9Ho+tdr5ardocIE5AKiHw7IDj5mi1WkaiSPxHWIFgUyoCmYOgITYACH2e59YGUpJ1pqB9JqIDRK7f76vf76tYLKrT6ahYLOrx48d67733tFgs1Gq1zPXgSzUQSvyOuG8l6F0si8XC3AfMvxcRfGnEdDq1XIhut6tut6tqtWoZBByj1Wqp2WzadZ3P52bF944Wxs2YcIFQCnNycmKlDzhKxuOxZrOZuQ4o45Fk3T0oAaLLgXcK+FIWrguCRqFQWHLN8DuEKsbFesHJ4gUNRAGfDcIagNSTaeLPgXvEt2oEPieDc+Ca+tfIK6HcA+EFV4MXE3wQI84cWof6Ug7axvpgSOYJYY0ASO4BhItqtfohnmiBQCAQCAQCgcBHA2shKOAyODs7s91gCA277CkljUYj60oAsUNIYPe/0WhIkrXio558td0joWx5npuYALGkFSJuA8COKkSN3WoEDIhqu93W3t6eSqWSWe9xTvB+ShwkGXmBnJFi3+/3NZvNVKlU1Ol0VCqVNJvNVCgUVK/XLecA9wSkc2trSwcHB7ZjK8m6H0g3RNK3zoOcQWw5Rx/OJ11ZxjknBJJGo2FhmXQLuLy81GQyUa/X03Q6tXKE0Wi0FK4IsWTH35c34D7g5yzLluaHAMN6va5yuWzlBKwb32mA82OXvtFoaH9/X81mU9INiUS82traMnLvyx04fzqOEPTIHDFniEHME20WT09PLYwSQYo1j3uGNc314r5gnHwPr7P7z7WEKPs2i4gBvlWpLz2QZIIRYo6HDy5k998fdzV0kTXN9/rv8aKeJ/6QfOnKZUJXi3q9bi1bEVl8cCkCD9eWUhlcTt6xAThPL9pwjyNIkScSCAQCgUAgEAgEno+1ERQgueyYsvPIf/YHg4F6vZ4Wi4VKpZLZ/30Lxv39fbVaLc3nc6tpB34nE7AziY0eMoszAiKKY4AddOzrWP3Pzs6MJJInAPmH9LJzTf29B50XqtWqEfLpdKqnT58qpbTUdUG6amVZqVSsRaGv/2+1WrbzfnJyosVioXa7bV0lPGlbtbiPx2MLl8TJ4K/L+fm5BdjxecIvK5WKCRzM+8nJicbjsZHCYrGowWBg4Xue1EH4fCcL30aR411cXKjX62k8HkuSms2mtfX0ZQeUAJDRgGBBp4tWq2UiDcS8VCppa2tL3W5X9Xrd8gkQRCjV8GICoggdIwhDPDo6su4PlJoMBgNzH3AtGPtwOFShULC1QzkC54R7hfsDcct3VeD8+Hlzc1Pz+Vzj8VgnJyfP5CEA3g9J57r7PAzG4ksg/LpAvPJlDj7zYbVbgs/HmEwmdlwEI98eFQGhUCiY8wTBkffg2ODeRHQhA4S/EQR9TgelDqvlEZubmzaOQCAQCAQCgUAg8CzWQlAg5JAdULo4QPghC+ziUk4AGbm8vFS9XjdL/aNHj3R4eGi7xrgaPFH2qfDs3nvCRWgdZBd3A2S4VqtZjf3h4aF6vZ6RfwL72KmXbtwNEG9a2NXrdduphvicnZ1ZBwRIO50asixTu91Wr9fT0dGRETjpqnSk0Wio2WxaMJ0k675AOCOk04c3EhK4ubm55Bag3t2TR85ja2tLe3t7Ojg4kHTlCplMJjo6OrJAycvLSysfgBz73W12qQnuG4/H5iJBmPBkEOGGMhCII+TVE0DmHEcIx6MjBe9hPJRTlMtlzedzy2JAbIDEIjhBuhHAcFTglDg/P7c2nswntn0I9+npqblpEIr8bjrXh/vEl+1IV6ILoZR0q+A6SrLOFdwnXoRgfa2WJ/hjUxJAKYMPOvRZG5KWshn8e3Ar+PIf/pAn4XMMOA5CH505+CzCFutQkjlZEK54VnD/+tIX78BgHHRm8QKXFzYCgUAgEAgEAoHAs9h41RtSSj+XUnqaUvqKe+0nUkrvpZS+dP3ns+53P5pS+npK6Z2U0nd/0IFA1lbruSEP0+nUyB9tDiGeENtaraajoyM9efJEw+HQ7OUQC3Yy/U62b/UI2SWcUZIRNdoOYiPnc71ez6ztkPHFYmE1+T6ArlwuW1DhxsaGtre31el0zLVwdnZm+QR0Ieh2u1ZDv7m5af/2dfiQbXISPOHqdDrWNYDMBebDh0tCpCj9gHRxXXxLPnbSP/axj+nBgwfW4QGBZzab2a4zwYd8zu9Ms5tMtgDE2rf+Y175fq6rdyGQqYHgsdp+0RNc725BuILoUvrisxy8SET9PoIR1xXXAaIXAo+/JpwnJNh3BMHF4ufGOxF8OYMPxvTig88IAeSIkCvB3FAKgDjixQSOyfs4T9aNDy5k3VCyAOn3HRUIjfQdE3xrS37P6/yMcwjRAWGDEEnmkRBVHD4IZ74cxIsJq+AZg2DnsxRYV+uC23oWBwKBQOD5iOdwIBAIPIsP4lD4eUn/WtK/WXn9X+Z5/s/9Cymlb5P0eUl/VtKfkfRfUkqfzvP8Qi/Barig/5tdVOrzq9WqsixbskF3Oh11u11dXFzo6OjICBpkzAcwYpNGYOC7JZmFHZIBEeI7IOEQv8lkouPjYw2HQyNAfNaTl42NDdXrddsVr1arevDggTqdzhLRoUSAhH92Skejkebzufb391UoFPT48WP1+32r84bw0drRlwOQKeGDGzl3Shwgp41Gw4IfvTsBEs1u8ubmpnZ2dvTw4UNtb2+bkDAajXR8fKzRaGQCAuUcxWJRWZYZQVttJ8j4VnfoKRdAYECUIGMAkg+pZZ0Qzon7g2PiAhmNRmo0GksWe37HueNaYJc8z3P7Tsp0CCBEAOMaFAqFpbXK7xF8cFn4cgscEjhEIP18lkDH8/NzK2FBFMGi7x0BuB84hu+gId2UOgDuGYQJzgsHBoIIAhDfyZz7zgrMzfVz4aViAq4J3pdSUqPRsHISMg1oCUk+RKVSeW5wJGsJYcD/jrEjFuFwIQSTcgjGsWZtI39eb/lZHAgEAoGX4ucVz+FAIBBYwisFhTzPfyOl9M0f8Ps+J+mX8jyfS/qjlNLXJX2HpP/+sg9BBlfb0kFMeA+75PV63Yh4qVTS3t6e2u22Hj9+rOFwaDvD7LBCvDzJ9zu77M7jPuD91Oz79n64Ii4uLjQcDtXr9SRdkXdcC568QdYJ5js7O9Pe3p7V7yNSQMSx9Htydnp6au8l1BB7d6VSsfpzX7deLBaXSBlEzIdSMtc4Dvb39y3DAUI4m82MBFPScHBwoE9+8pN68OCBisWixuOxBoOBjo+P7TpCQqlRL5fLyrLMdpzJcoAwp+tuHogO7Ha3Wq2l60a2AKII5Qocz7cR9GF80+nUiCOtSBEafCYEcwQ5B6utFSGkzDVjoYQAEYRyE7oPrLaK5BgQZMo/cBGwDmezmQaDgZUUSLL38HlJNqc4C/jZXwvg174vBeJ3zKtvy7gKzsO7AaQbMcS3d/RdJ3wnD64/woK/D71jgfP1HUh8tgnn450v/ly9YMLvyCvhWYI7wwtf64LbeBYHAoFA4MWI53AgEAg8i1eWPLwEP5xS+vK1/atz/doDSX/i3vPu9WsvBXX9PmgNguFt1auBa8ViUTs7O9rZ2dHl5aWVCbTbbWuZ6He/fWtEyAdE05cEQHIhd5ClLMus64Qkc0/Q7QGyCEFjZ5ld7pSSarWaut2uESbOpdfraTQaGYn340QcoKUeQYcIFJPJRNJN6zyS7tk99rvOnijN53MTK2hrSCtGnA7MDan7WZbp4OBA+/v71lJxNBppMBhoNBoZ0aYUgXkkLwJCyXnOZjNrE1itVs3CTvgfrftarZba7baVEOBAIBzRE2GIoyQL6ByNRhqPx5pMJhbMiAOGnWscDlwXCC5rU9KSK4KMDk+mfalEvV63DhgQVcA8rNr3CaJkzJDo4+NjC9lE8EJ48uIYQhHiiXdAQLJ9+Kh0kyPgW5fiAOG7fckG87PqAsKNwjxIsrniGJw3x/f5EBzbd/PgO3yGA/c150aXDN/1wYsJq44LXz7CHPj8Eq6LD7hcc7yxZ3EgEAgEPhTiORwIBD6y+LCCwk9L+lZJn5H0SNJPXb+envPe53qGU0o/mFL6YkrpixBn7yiwDzvLMWUHkJFCoWA7wMfHxzo9PbXSAk/i2NH0NnEEBUihP+7qjqzfEfe7tBD97e1tEzo4lg/6q9fr9tlOp2PtCGk1+fTpU02nUwsCnM/nZvEulUq2a0/OgE+8R4Cp1+uq1+uq1WomfPgafMgRZJK69I2NDWvpSPYBXQv6/b45GxA59vb29ODBA5tLcioon5C01M4yz3PLvMiyzHaEIX5edPBBfswP5SKtVssCDpkTyiokLRFKyisgoj7IkeuIGwbhQroJFaQMhIwGQgNZH5QkQOglLQlSZ2dn1iYUl4l/L6UgfA43A+6LwWCgfr9vbRDJlmBH32dUQI65pj4AEZdLlmWWs4Gg4DtgIGTg0uFeYX5Zh16Q82sLAcK3eEWQ8fkjXFvm2JcrINRw3XgmcG/yGb6Da7R63fxzw+dB8Npq1xLEIJ91Ap7XnWIN8UafxQvN38ogA4FA4E8x4jkcCAQ+0vhQXR7yPH/Czymln5H0n6//+a6kb3JvfSjp/Rd8xxckfUGSisVi7gnT8wCxubi40GAwUKVSUbPZVLlctt1a6uUrlYoGg4ERVbIEIHwQSx/q53MSPAFh1xbC63e/IV1Zltn3YqWnw0K1WrWdderpsakT4IgNH6JEoCB19VmWmXsAwl+tVpfqzavVqpF23/JxdRdWknUi4HsajYaJG5PJxBwT4/FYjUbDyGGr1dLOzs5SVgS74aTkU+eP84FshmazqclkoqdPn+r8/Fw7Ozu2k+1JryRzSWxubmp7e1utVmuJCHI9cGPQVWGxWBgxR/DwgZjeRk/nD3a7IaS4K3xOwmqgIJkR1PJz7RAeNjY21G631el0lFJSr9db2j0nkJEAylKpZIGClI/gEkH4YM2t2v45ti+h8M4WOmF4sowQgLjCeLxAwHewDn3goyfpCBE+SNO7Obzg40tSfBimdyd40cJnGXjnwarLgOvjszcQDHGZIF5xPI7h7xOf5cD5PS/IcZ3wpp/FzdRdq9CIQCAQWHfEczgQCHzU8aH+t5xSOnD//D5JpN3+iqTPp5TKKaVPSPqUpN981ffxH3pvf/a/g2x463Oe5xbgB+Fip5f3SFfJ/dVq1borUGPt7eU4ECDivu0eZEdaJlIQNogw9mwfGLmxsaFWq6VOp6NarWavY+/f3Ny0HVhIFq4B322CcbGr67slUK7QbDZNuPA5CpAmCPJ8Pjc3AR0ysixbCtZDJOA4EG+cDD40kA4clI5Mp1MNh8OllpGdTkdnZ2d69913NZlMLFMBdwChh5Ks3eV8Pl8qGeBcEQakK+GBUov5fK5qtar9/X3t7u7a+ZZKJdVqNbXbbXW7XTtXdrWf505ZDeTzQZySrAsHYo0v3zg/P1e5XFaj0VCWZXY+iEaIIYzLtx+lO8dsNjOS7EMZWZv+3zgzfIYEa7Pdblu2B4IY5QecT7lcVrVatXuE8wVenPK79axZ1h/iBmICaxdRxudacG4+LNXf+6vikX8OrLoG+NnnN/j3ePcJnRx8iKPPbuCPz4Xwz6J1xJt+FgcCgUDg9RDP4UAg8FHHKx0KKaVflPRdkrZTSu9K+nFJ35VS+oyurFvfkPR3JSnP86+mlP69pP8t6VzSD72pNFtPPmjthq2fGnjKHCBlvJZSsi4EkqzuHuJBvTh2ckQHRA6IFsKDJCs7QEzwIYkQ/3q9biTWk/utrS11u11r5+fLEvyuMESQ3VUIf7VaNVJNGGCj0bCchdPT0yURhlwCnAmTycSCK6vV6lLtuCQbAxZ8ykuYdzoOnJ2dWUgkIsB0OlW/37dAwu3tbV1eXurJkyd68uSJzs/P1Wg0jMixQw9ZpEwCNwTdFfjDGphOp1bmQmnJ9va2tre3rV2lb+XZbDbN5cF1IDyR8/JdCRCP2LnmWkDgeY25w4LvuzssFgsNBgONx2Mj+pBXSbZ+CVRk3bp7z/7GPcPaI4vArxdek2RlIhB0dvARNfLrbh+UKXgXBut8teMJc88fnCAIZT7wkk4Oq8T8RV0TOEf/HlxE3jXBuftz4l71DgQvMHDNvAPC5yngSvDXfR27PKzLszgQCAQ+qojncCAQCDyLD9Ll4fuf8/LPvuT9PynpJ/9/BrVKbPjbd3ZoNBpGAn1QG20XfVo/wYXUlHsrNuQHUkgv+tVANog7VvWzszN733g8NvECC/7GxoaVIrBLWygU1Gg09PGPf3wpL8GHUvqadBwYhM5BgBE/KI3IssxCH5kL5guiRCnCycmJ5vO5tYiEDCJqQAIhgIgTvB8nAXNKfgJZCuzc4xSQpD/+4z/WkydPNJ/PzTHCtUC08DvrlLN46znEPV0HTdJiE1K8tbWl/f19s+9z7pubm5YvMRqNTJDyghDHx7EC2URQ8i4RBAmEDspWINwIGBsbGxoOh+YG4XsZG8fGGeC7HqxmDnAtWR9+Rx+nDgLGdDo1hwTzDDlmjXGNcZ2Uy2UTt/z4SqWSXU+ENx9q6UM0Kashf4H7grIjSc91K3CfS8vOAl+SxHu86wAXAWIA54PAwJqhDMW7D7zw4EtbOI/FYrEUUrkuuItncSAQCARuEM/hQCAQeBYfKkPhtsAuObuNEDbyAtgVrtVqKhQKFmbnA9uoQSfgD6JJ2QMBj3RK8HZodoUhubSixNqfZZkRRurMsfFj14eQEOC4v7+vLMt0eHhotfUbGxtLQXu+1MHb6j2RxQpP/oAXQSDqZANw/r6DA1Z37wzgvRA1SkfIhahWq0ascYaMx2P7flwg1WpVu7u7KpfLev/99/Xo0SP7nlqtZt/vW/v5HWifj+DDHyGGuEgQUlqtlh48eKBms6nRaGRkGPKKE8DPoSQj/j6zgjDJVXcA64hricDBmL2Dg9aYw+HQyKu35vvjehLN35VKRfl1204vLuBQ8dkDZFRUKhVNJhPL7Nje3ra585+XZON+XlcN2oqy1skiwUWBe4eSHd/mFTGB9YxIw33mhSovDqy6F7jnfGiiL5PwYgL3g89YAD6UFZHBC4U8N3xeAyUZXpALBAKBQCAQCAQCz8daCAr+P/OeYBKw51s30jGgWCxqPB6r1WppY2PD2hdiW5dkRAQi5bMFyuWyarWapeMTComDAYKJtZvd/Ol0aiKCJzOQY0Ig6UIgycoLtre31e12NRgM9OjRI52cnBhBxhpPpkCz2dRisbBzguhja/f28DzPrf0hFnRIPiSU+vbz83MjnZB7QhV9WQWEXpIRd98OkGtC3X+v19Px8bFKpZL29/fVbDZ1enqqx48fazQaKcsytdtt1et1+7wXiSDsCBnn5+dG+JgffocIU6vVtLW1pd3dXbVaLQtKhAh6y/xwONRkMnnGFcBuf7lcXnKL+DBO6YaM+9ICBA/EBMg01wNHiS+NQJzxO+9+LFxX70ApFot2PX0ZDuuk0WjYcQnZpOMHIaY4QBATcG3gqqFshO8sFot6/PixdayQZGVElAx5kQUxATFlNpuZe8Rnj7BufAij/x1gHa6Seu9gQNziuq06HbhPuJbcR9yPPnPBXwMvcHiXUiAQCAQCgUAgEFjGWggKwBMHH17nk90hEuPx2HZSJVl3Agiir4uG+EpaCjKETGEV97vBtL+TrjIP6ITAcdjJxP5dLpfV7XZNkECUSCmpVqup2+2q0Wjo/Pxcjx490uHhoSRZmcZgMNB8Ple327VWmP1+30g6LSLZTZZurN8QcMaBo4HxQdohjrVaTZ1Ox+YRyz47wtLNbjElA4gjxWLRyhEeP36syWRi5QeIPVtbW5Kkw8NDzedzExMomeDa4OQoFosaDAZaLBbWIrNarVpniOPjY9s1xn5fqVTU7Xa1v7+ver1uJSSS7Psh9pRkZFmmRqNhO+bD4VAXFxdLXTTo1AHBRIjxQtF8PjeSTimM3yHnc741JNeBkMnxeGxjZb4RDxB5KHfACcI1hSQjADQaDRUKBXU6HRPiELQoZfCtFen+UK/XTdzIskx5npvQ4ANMETQQeSiv4D2+1IAOGtynPofCB5z6+927VTjm6us+R4F5oozDCweSbAyIgax95ph5oxUrx/J5CSEmBAKBQCAQCAQCr8ZaCQrSDbGiW4J04yyARBEKiAXft0ZkB5vafIiyr8/3nQLoVMCuNDXphC1C2Mrlsnq9nnUpkGS11lmWaW9vT7VazdwPkCuCDyFAg8HAcgwKhYKm06mOjo7U7/ctzK9YLOr4+FhHR0fWNYDSDMoBODa78IVCQdvb25KkXq9nbSs5Z4IMNzc3tbW1pVqtZrvePriSHX52eGu1mokrlG3U63UNh0Odnp7q+PjYauUrlYo6nY6VoyC8eDeFLyFAAKE8gPdBiPM8t++nPAMyiTiA1Z98hHa7bdduPp9bdkOz2bQ2o7gqcKQgXFAG0G637T0QeLpoSDI3CNeKDA5/rpBh3DPSVQvRTqezVFqCYODDFRG5mDPIPNeZ60AHjXa7bWsWMY35o3SCMUtXYlm9Xle73bZWqFzzRqOhYrFou/nMJdeXcgzvZPFOAwSLUqlk9yXuIspQOB/WA/PohTrO07dx9W4D7mnf9YR7EtcE97kX3arVqlqtlokkz+segRgYCAQCgUAgEAgEXo60DinmKaVDSRNJvbsey4fAtmLct4kY9+3jvo79TY3743me77yB71l7pJRGkt6563F8CNzXNSrd37HHuG8XH/Vxf5Sew/F/4ttHjPt2cV/HLd3fsb/VZ/FaCAqSlFL6Yp7nf/Gux/G6iHHfLmLct4/7Ovb7Ou67xH2ds/s6bun+jj3GfbuIcX+0cF/nLcZ9u4hx3z7u69jf9rjD1xsIBAKBQCAQCAQCgUDgtRGCQiAQCAQCgUAgEAgEAoHXxjoJCl+46wF8SMS4bxcx7tvHfR37fR33XeK+ztl9Hbd0f8ce475dxLg/Wriv8xbjvl3EuG8f93Xsb3Xca5OhEAgEAoFAIBAIBAKBQOD+YJ0cCoFAIBAIBAKBQCAQCATuCe5cUEgpfU9K6Z2U0tdTSj9y1+N5GVJK30gp/W5K6UsppS9ev9ZNKf1aSulr13937nqckpRS+rmU0tOU0lfcay8ca0rpR6+vwTsppe++m1G/cNw/kVJ673rev5RS+qz73bqM+5tSSv8tpfR7KaWvppT+/vXraz3nLxn3Ws95SqmSUvrNlNLvXI/7H1+/vtbzvc6IZ/FbGWc8h28R8Ry+9XHHc/gNI57DbwfxLL5dxLP41sd998/iPM/v7I+kgqQ/kPQtkkqSfkfSt93lmF4x3m9I2l557Z9J+pHrn39E0j+963Fej+U7JX27pK+8aqySvu167suSPnF9TQprNO6fkPQPn/PedRr3gaRvv/65Ien3r8e31nP+knGv9ZxLSpLq1z9vSvofkv7Sus/3uv6JZ/FbG2c8h2933PEcvt1xx3P4zc5nPIff3ljjWXy7445n8e2O+86fxXftUPgOSV/P8/wP8zw/k/RLkj53x2N6XXxO0i9c//wLkv7W3Q3lBnme/4ak45WXXzTWz0n6pTzP53me/5Gkr+vq2tw6XjDuF2Gdxv0oz/Pfvv55JOn3JD3Qms/5S8b9IqzLuPM8z8fX/9y8/pNrzed7jRHP4reAeA7fLuI5fLuI5/AbRzyH3xLiWXy7iGfx7WIdnsV3LSg8kPQn7t/v6uUX7q6RS/rVlNJvpZR+8Pq1vTzPH0lXC1HS7p2N7tV40Vjvw3X44ZTSl6/tX1h21nLcKaVvlvQXdKUQ3ps5Xxm3tOZznlIqpJS+JOmppF/L8/xezfea4b7Nz31+Ft/nNbrWzwSPeA7fDuI5/EZx3+bnPj+Hpfu9Ttf6ueARz+LbwV0/i+9aUEjPeW2d20785TzPv13S90r6oZTSd971gN4Q1v06/LSkb5X0GUmPJP3U9etrN+6UUl3SL0v6B3meD1/21ue8dmdjf864137O8zy/yPP8M5IeSvqOlNKfe8nb12bca4r7Nj9/Gp/F634N1v6ZAOI5fHuI5/AbxX2bnz+Nz2Fp/a/D2j8XQDyLbw93/Sy+a0HhXUnf5P79UNL7dzSWVyLP8/ev/34q6T/qyh7yJKV0IEnXfz+9uxG+Ei8a61pfhzzPn1zfKJeSfkY3tpy1GndKaVNXD6B/l+f5f7h+ee3n/Hnjvi9zLkl5ng8k/bqk79E9mO81xb2an3v+LL6Xa/S+PBPiOXw3iOfwG8G9mp97/hyW7uk6vS/PhXgW3w3u6ll814LC/5T0qZTSJ1JKJUmfl/Qrdzym5yKlVEspNfhZ0t+Q9BVdjfcHrt/2A5L+092M8APhRWP9FUmfTymVU0qfkPQpSb95B+N7LrgZrvF9upp3aY3GnVJKkn5W0u/lef4v3K/Wes5fNO51n/OU0k5KqX39cybpr0v6P1rz+V5jxLP49nAv1+i6PxOkeA7f1njd+OI5/GYRz+Hbxb1cp+v+XJDiWXxb43Xju/tncX4H6Z/+j6TP6ipF8w8k/dhdj+cl4/wWXSVi/o6krzJWSVuS/qukr13/3b3rsV6P6xd1ZctZ6EqJ+jsvG6ukH7u+Bu9I+t41G/e/lfS7kr58fRMcrOG4/4qu7EJflvSl6z+fXfc5f8m413rOJf15Sf/renxfkfSPrl9f6/le5z/xLH4rY43n8O2OO57DtzvueA6/+TmN5/DbGW88i2933PEsvt1x3/mzOF1/aSAQCAQCgUAgEAgEAoHAB8ZdlzwEAoFAIBAIBAKBQCAQuIcIQSEQCAQCgUAgEAgEAoHAayMEhUAgEAgEAoFAIBAIBAKvjRAUAoFAIBAIBAKBQCAQCLw2QlAIBAKBQCAQCAQCgUAg8NoIQSEQCAQCgUAgEAgEAoHAayMEhUAgEAgEAoFAIBAIBAKvjRAUAoFAIBAIBAKBQCAQCLw2/h+gqawkJ4q/XAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 90035 14591\n", + " Min thresh = 1000\n", + " Not Sliding\n", + "\n", + "\n", + " Winner = Not Sliding\n", + "\n", + "\n", + "025ns_image_267456908021_clean.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADDCAYAAAAya0IYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAD2TUlEQVR4nOz9e7RkeX7VB+4T74hzIuJExL03MyuruqsbNTRIgMRI4iE84MEG4cEwMgsG8EIMYKSZgRnb47F5zBoPtpcZ7AGDZ82A3WAPzBgjwEZGPAYMYsRjCQkkxEOvlrqlVndVZebNG69z4h1x48wf936+9xtRWV2vrMqblb+9Vq7qvDfixDm/8zvRufd3f/c3KopCAQEBAQEBAQEBAQEBAQEBAe8GpWd9AgEBAQEBAQEBAQEBAQEBAc8fgqAQEBAQEBAQEBAQEBAQEBDwrhEEhYCAgICAgICAgICAgICAgHeNICgEBAQEBAQEBAQEBAQEBAS8awRBISAgICAgICAgICAgICAg4F0jCAoBAQEBAQEBAQEBAQEBAQHvGkFQCPjQEUXRD0VR9Euf9XkEBAQEBNwgiqIvRFH0L73D1xZRFH3Fe/yc9/zegICAgICAgNuFICgEfOgoiuIri6L4rmd9Hl8OURTdi6LoO6IoeuP6H7+vPutzCggICPioI4qiXx9F0XdHUbSIoui7nvX5BAQEBNxGPG1h9u2OF/5dHPDlEASFgIAnYy/pr0v6tc/6RAICAgJeIIwk/VFJf/AZn0dAQEBAwA3Cv4sD3hJBUAj40OFttVEU/f4oiv5CFEX/TRRFeRRF/zyKop8eRdHvjaLoPIqiL0VR9Mvde39rFEU/cv3an4ii6FuPjv3vRVH04FpB/Te84hpFUT2Koj8URdEXoyh6FEXRfxFFUfNJ51gUxaOiKP6YpH/0AS5FQEBAwK1EFEVfH0XRP4iiaHL9nfr/iKKodvSyf+X6e/giiqL/WxRFJff+33b9XT2OouhvRFH08XfyuUVR/K2iKP68pDee5vUEBAQE3DZEUfQzoyj6ruvv2R+KouhXu999VxRF/4b7+/8qiqK/f/2//+71j/9pFEWzKIr+l1EU/dIoil6Louj3XX8nfyGKon/9vR7v+FzDv4sDvhyCoBBwG/CvSvr/SOpJ+gFJf0NXe/O+pP9Q0n/pXnsu6VdJ6kj6rZL+SBRFP0+Soij6Rkn/B0n/kqSvkPRLjj7nP5H00yV99fXv70v69z+ICwoICAh4znEp6d+WdCLpF0r6ZZL+t0ev+SZJXyvp50n6NZJ+myRFUfS/kPT7JP1rkk4l/T1Jf/bDOOmAgICA5wFRFFUl/WVJ/6OkM0n/O0l/Joqin/F27y2K4n96/T9/blEUSVEUf+7673d19Z19X9JvkfSZ93m8gIB3hCAoBNwG/L2iKP5GURQ7SX9BV/8A/YNFUWwlfZukV6MoSiWpKIq/WhTF54sr/B1dfRH/C9fH+fWS/l9FUfxQURQLSf8BHxBFUSTpd0j6t4uiGBVFkUv6A5J+w4d0jQEBAQHPDYqi+P6iKL6nKIpdURRf0JWw+yaR9vr79Iu6alP4jdc//1ZJ/9eiKH7k+nv9D0j66nfqUggICAh4AfALJCW6+vfupiiKvy3pr+jme/S94v9cFMX6+t/If1VX/zYOCPhAEQSFgNuAR+5/LyVdFEVx6f4uXX3pKoqiXxlF0fdEUTSKomgi6V/RlRorSS9J+pI7lv/fp5Jakr7/2lo20VUv2OnTvJCAgICAjwKuW8/+ShRFD6MoynQlCpwcvcx/x/6Urr6DJenjkv5z9107khTpqmoWEBAQEHD9b9aiKPbuZz+l9/c9OS6KYn50vJfe6sUBAU8LQVAIeG4QRVFd0n8v6Q9JulMURSrpr+nqH6qS9EDSy+4tr7j/faErceIri6JIr/90i6JIPvgzDwgICHju8Mcl/aikTxVF0dFVC0N09Br/Hfsx3eQefEnSt7rv2rQoimZRFN/9gZ91QEBAwPOBNyS94rNndPU9+vr1/57rqhAG7r6DY/aiKIqPjsf38ns5XkDAO0IQFAKeJ9Qk1SU9lrSLouhXSvrl7vd/XtJvvQ65acnlI1wrwH9CV5kLZ5IURdH9KIp+xVt9WBRFjevPk6T69d8DAgICXgS0JWWSZlEUfVrS/+YJr/l3oyjqRVH0iqR/UxJ9t/+FpN8bRdFXSlIURd0oin7dO/nQKIrK19+1FUmlKIoa173GAQEBAR8lfK+uSP6/F0VRNYqiX6qrTLFvu/79P5H0r0VR1LoOF//tR+9/JOmTTzjufxBFUS2Kon9BV5ljf+F9Hs8Q/l0c8FYIgkLAc4Pr3IP/va6Eg7Gk3yTpO9zv/7+S/u+S/n+SPifpH1z/an393999/fPvubbw/i1JXy6sZilpdv2/f1Q37RcBAQEBH3X8H3X1HZvrSox9UkjXX5L0/br6h+pflfRfSVJRFN+uqxDcb7v+rv1BSb/yHX7ub9bVd+0f11U+zvL68wMCAgI+MiiKYiPpV+vqu/FC0h+T9M1FUfzo9Uv+iKSNroj+n5b0Z44O8fsl/enr1jJyEh7q6t/Hb1y//n/9Po93jPDv4oAnIiqK4lmfQ0DAB4Ioin6mrv4hW78OBgsICAgICAgICAj4SOHa4fDfFEXx8tu8NCDgqSM4FAI+Uoii6JuurV49XVXI/nIQEwICAgICAgICAgICAp4+gqAQ8FHDt+oqY+Hzupqj/qS+34CAgICAgICAgICAgID3iQ9MUIii6BujKPpsFEWfi6Lo93xQnxMQ4FEUxTdeT2/oF0XxTUVRPHjW5xQQ8KwQvocDAgICnj3Cd3HAB42iKL4rtDsEPCt8IBkKURSVJf2YpH9Z0muS/pGk31gUxQ8/9Q8LCAgICHgTwvdwQEBAwLNH+C4OCAj4qOODcih8vaTPFUXxE9cppt8m6dd8QJ8VEBAQEPBmhO/hgICAgGeP8F0cEBDwkUblAzrufUlfcn9/TdLPf6sXR1FUlEolFUUh75iIosj+/qTfS1KlUlGtVlOlUlEURdrv99rv9yqKQtvtVvv9/k3vLZVKqtfrqlariqJIm81G6/Va+/1eURSpVCqpVLrSWoqisJ9xPkVRaL/f6/Ly8uB3l5eXB+fE68rlssrlsna73cF7jq+HzyqXy5Jkry+Xy3ZO1WpVRVFot7vKGeTYlUpF9XpdpVJJm81Gi8VC2+3Wju2v6UnXeXl5qd1upyiKVKlU7HVcEz+v1Wp27peXl3Y9/ho4PtfBPSmVSnYt3KvdbqeiKOw8ONdyuazLy0tbE+7XbrfTarWy3+33e3sP92C/36tSqahUKh3sB9YpiiL7w3VwHn59/P5jfcvl8pv2UavVUqVS0W6303K51HK5PFh71oV1vry8PLgXnJ/fF5wDr+H9/M7vQ+4Ne2y326lUKqlWq2m/39tz4K/7+PqedGx/nf68uF+8xh+L+8795T6xh570mf7a/HPHZx/Dr51/7ZOOz3lwbpVKxe75l8PR/rgoiuL0y77hduJdfQ9LUjmJi09+Yq9HP9j8QE8sICAg4N1gpbk2xTp6+1feSryr7+LwPRwQEHBbkWv8xH8Tf1CCwpO+9A+UgCiKvkXSt/D3RqOhoiiM2F+/xkgV5P+Y/NXrdX3iE5/Q3bt3Va/XtVqtNJ/Ptd1uNRwONZlM1Gq1VBSFFouFff7du3f1FV/xFer3+5rNZvqJn/gJDYdD7fd71Wo1JUmiRqMhSVoulwcEvFQqabFYaDQaabPZmKBRq9W03W7VbDb1yU9+Uu12W7PZTNVqVWmaarfb6Y033tBisVC73TYCGEWRqtWqNpuNVquVkiRRHMfKsszO6fT0VPV6XXEcq9PpaDQaaTweq1wu6/T0VPfv39cnP/lJ3blzR5PJRD/wAz+gn/zJn9RyuVStVlOz2VS9XjcyVS6XVa1WVa/XVavVtF6vNRwONZ/PlSSJ6vW6NpuN8jw3cnx6eqpPf/rTunPnji4vLzWZTDSbzZTnuXa7nSqVihHr7XZrIsBms9F2u1W5XFaj0VCn07FzOT8/13K5VLPZNAJcq9WUpqkqlYqyLNNqtdLp6ak+9alPqVQq6Yd/+If1xS9+UbPZzAh0q9VSkiTKskx5nqtUKunevXsqlUpaLpeaTqfa7/dKkkSDwcCEkVqtpvl8rouLCzveZrOx++n35yuvvKKXX35Z3W5X6/VaURTp7OxMX/VVX6V79+4pz3N9/vOf12c/+1k7v3K5fLCnR6ORRqORKpWK2u22ttutFouFdrudarWanddyudRms1G1WtV6vdZisTggwrvdTrPZTPP5XLvdTnEcq9/vq9Vq6eLiQtvtVkmSqFqtajabaTKZaLfbGdkvlUpqNBomuiDWzOdzXV5earvdar1eqygKJUmiJElsP6xWKztXBINqtWoCUavVUpqm2u/3yrJMy+XSXlcul01EQQyTrsSBxWJh9z+KIu12O1WrVVsTrrtSqSiOY+33e81mM202G5XLZdtT6/Va0o3IJEnb7VabzUb1el3NZlOXl5daLBZ2XC8g+PMrlUrK8/yn3t3X363B234PS4ffxQ219OoP/Sq9+rz+sz0gIOAjie8tvvNZn8L7wbv6N3H4Hg4ICLit+FvFf/fEfxN/UILCa5JecX9/WdIb/gVFUXxG0mckqVQqFVSwfbXbV1Xd+w4+aLPZaDabablcqlQqWTW2XC6r1WppPp9rvV4fEKndbqfxeKzXX3/dKtn9ft9Eh91up/1+b4SrKArN53MVRaFKpaJqtWoV4c1mYwS0Xq+bMJJlmfr9vnq9niaTicbjsTqdjuI4PnAyQLJqtZqRLX7farWU57l9Rr1e12KxOCCeeZ6rKAo1m02dnZ3pzp07ajabSpLEqvylUkmtVkvValXb7fag8o2gUSqVjDQul0sTbaj4S7LqO0Sw3+/b9U6nU202mze5C/x9K5VKWq/Xms1mkq7EoE6nY86BZrNp7ot6va6TkxMlSaJHjx5pu90qyzJ1Oh31+31NJhOtVittNhu7ls1moziOVS6XNR6PNZlMdHp6ql6vp6IoNJvNlGWZoijSycmJGo2GEflOp6Pdbqc8z7Xf77VarVSpVJQkiSqVii4vL5XnufI8V7fb1enpqblEFouF1uu11uv1gaMEsYB1Zh0g7qwBghTXIcn2CWtaqVTsWlkvXDiQ5fV6bWLMarU6cH/EcWzPBs6X+Xxu+5nqPecB0UcMYt9Uq1XbE/ysKApbr1KppNVqpdlsZqKcd+8grnCdkux54ve4Xnjfdrs9cAjh8sAdggsBAYjzrVQqB2vPfcTBUqvVtFqtzFXxJLeG/+55DvG238PS4XdxJ+o//VCdgICAgBcb7+rfxOF7OCAg4HnDByUo/CNJn4qi6BOSXpf0GyT9pi/3BgiA/wc8/xsSBpH1FnCqoJ1Ox0gXrgEq8FmW6fLy0ggPZC/Pcw2HQ8VxrFKppDRNVa1WNRwOjbzFcawoirRer63SyrF8NdkTb0nKskzT6VRnZ2dqNpvK81zL5dKIHYQJIiXJyB1ElEosa8A153muarVqxBI3xvn5uc7OztRqtXR2dqYvfvGLms/nVolHINlsNraGm83GrieKIjWbzYPrhHxyj3ArNBoNbTabg8qud2xwfl5gwK0ByUX0QbSBfPrPaLVakqTVamUOE0QATxhXq5WtR5qmajabJjhQMZdkQkO1WlWz2bS9wFqvVitrqaB1oN1u276B5CM2IEJw7cvlUqvVytZ3vV4bkQesXZZlStNUSZIoiiKtVisjz+w9WldYt+12a8IW72PNEBYajYaJJfzs8vLSiPt6vTahgGo+YgLntt/vVa/XJclIfbPZPBAIEN54DtlHCDKIZY1Gw54P3waBS4a9gDjFvuJ1/B4xolwum7DF84Fw02w2td/vNZ1Obd/6Ng2eJfYee8u3ofDdcyyKPYd419/DAQEBAQFPHeG7OCAg4COND0RQKIpiF0XR75L0NySVJf3XRVH80Nu8xwgABPP4d1RqPXm/vLy0NodWq3XQQ16v163vHaKGKEGFdjKZWNW/0WgoSRKtViuznEN4Z7PZQdVXuskvkHTwc8632Wyq3W4rSRJtt1utViv7GVgul0aKOd52u9VyuTSy5a3pVPk3m43Zv6kaTyYTPXz4UPfu3VOj0dDJyYmJA5LM2cDxIY5U9z3p4rNo7yiKQvV6XfP53Cq8kMZms2ltAKvVyj6Lqm+5XFaz2TSHQL1eNzGF+8TxG43GwZp0u131+31Np1NzikynU/sc7iX3gDXm2nEVcOxWq6XpdKrxeKwkSdTr9YxwVqtVdTod21MIWpw/ThLEHda+KAoTjPI813w+N2cM94p9wf3kM7iPiBYQY66JVgRcJuwjRBX20ng8PngmoihSo9EwwYl7Xa1WlSSJtXcgKCA2kNPB80bGyHa7tf1DO0K9Xtd2uzVXhs9QQODgueI5wcnjxSifv1Cv103MwlUk3eSp4NiIokiLxcI+j/YhSWo2m9Y+xHv9d4kXUY5zJtiPCDxeCHre8F6+hwMCAgICni7Cd3FAQMBHHR+UQ0FFUfw1SX/tXbz+oG/ZuxB8b7Mk69P370VIgFTu93u1220j5bwGwgTRmkwm5jRIksRaA+bzuRaLhVarlTkd+Czpph3DB9BJN5buzWajR48eKY5jfexjH1Or1dJ4PLa8AESC7XZr7RRU9Wml2O/3arVaRkBZB64d9wCZC9vtVufn51a9Pzk50Xq9NjKOTdyvCVkAkCrW24sVkkzggCRT0V4sFkZSN5uNRqPRQVAiJK3RaJjzgmO1Wi2rnEOiy+Wy0jQ9sNr7wMXdbqfFYmGtIN59gbsjyzI1Gg0TC3xvfq/XU7lc1mKx0Gw2MwcK8CJBo9GwveFbXaQ32+rJaciyzFpw2EM+PJBKPBkaBGjS2x9FkWaz2QGR5b7jIKhUKpZt0Wq17DrJU/CV9kqlolarZQ4PjtHtdiXJWiXYe5IOhD1EBIQRBAHWDIHPP5+QcUQqnAOcF/sBgcWHZ/r2g+N2p1qtduC6KJfLlpfhnw2EI56P4wBM1uj4GfaiJUKkFyaeR7zb7+GAgICAgKeP8F0cEBDwUcYHJii8W/hKJCQFogK5gJx4EiLdOAI8mYIo+V5pn2APocbiTrYChKRerxtJoxWC1xAUR5UYKzzns91uzXEwHA41GAzU6XS02Ww0nU6telytVtVoNDSbzTSbzVSpVNTpdCxEkvPCvr5YLExYgDz7vAfs6sPhUI1Gw0QVbO4QKqrtVMep8vPHXwPniMCBTZ6fTyYTzedzNRoNE0o4T9Y4iqKDnIDJZCLp0OFBJXy1Wqnf7yuOY9sH3Bd/DVTqcUvQT4+AMp1OlSSJ0jS113q3BxkY9P7TykB7AcfldQhR7APOtV6vmziVZZkeP36s6XRqQYp5nltgoL8e3/+P6HBycnKwt46r4+y3ZrN50H6CIwNxgmeI56HZbKrX60mSXSchlrT+cL+594gJtJFUq1UtFgt7b6VSsbYD1tTvH/93HAu4CIqiMKeDnyJyPI2Bn7EO3h3i8yVwHnHfaNdoNBommCGS+fPy3x8ILTxbZFssFgtNp9On9j0XEBAQEBAQEBAQ8FHCrREUIFEQCk/g/Wg9SAEkwVevjy3XkEWqr/yeYxFsR/UVK7R/HaSbSu1sNrPqNQ4DpkD480cA2W63ms1m6na71k5BhRWLObkQTAXo9XpKkuRAQKnVapbLgCMBMg4Z9K6BPM8lycIOvQ2dtaX9QTpsM2G9sNZj9feCAgGIrVZLWZZJuiK2ZBf4fn+IOFkVEFc/cpL1oj3hpZdesso49/bYtSDJjkX+Q6PRUJ7nmk6narVaJk4QKInLgMwNevPn8/lBQJ8XtThPSCeEmhBEXkMmx3Q6tX2Lld7nSvB63AaMmxyNRup0OgeCAGCdvEjGfYMAbzYbPXz40PYxe7nVaqnb7SqKIo1GI61WKxPNms2mVfK9uISggkuj2WyqWq1qMpkctB0cCzU8k+zp5XJ5cC44UdgTiAO8D9cAbg7yIchnYC8THOqPgWjFc8GEEb8HyS8hjJTvDp8xwedzXQEBAQEBAQEBAQEBT8atERS87dhXh6WbfAIEBf8PfkgMxN6TPYL6qFhCUqh0+1GKCAez2cwq2NJNyj3kgkkEJOdvNhtrWYAQ+UR8SM16vT4YbUhl2F8H7Q/0xtNPTkWb0Mksy9TtdtXpdA7s3DgHqHrPZjPV63UlSWKvwQlAmwDv8/bver2uwWCgPM9tmgLklnBKxlt2Oh0tl0sjubPZzO4jFWnyJLDf08O/WCyMsEo3eRhFUWgwGKjdbptFHXEC8ufbKHCZSDKnxsXFhR4/fmx/r1ardt4IBvT2s8a0t3BOrHVRXI1OZLQlogIjEaWrYL/pdKrhcKjxeGzHhqDyvsvLSyPDfhoHQaCIU35UIu4QQiCZaIKQwD7r9XoHThbf5tLtdk20YxQn19NsNg+mKyCm8FxCtBGVaKGBmOd5br/3z6j/+7Fo4AVA9h7tNTyPfsqLFwHZS4h7/JxzoD2J7wREGK4XAQmhgTVGZOMZ8YGpAQEBAQEBAQEBAQFvxq35FzOkALGAaiYigA9m9Mnyfk49dm8I0Hw+t8ouYWtUTRklyXup0JNQ79sCIOCQQsgXuQvkF2B9h3xDxrBiSzqoUiMgENp3eXlpJJsebm/V9u0b6/VaaZpaiCAkiJYNbPmEMrJuPuARMok7wpPIZrMp6WZU5Hq9VlEUOj8/12Aw0Msvv3ww8tFb6x8/fmxjLmndWK/XJsa0220bH1kUhXq93sH0h/V6rdFopFardRDMB8FjDWiZ8HkFcRyr0+loMploMpmo2+1aywmuCZwIzWbTRBnaTlhrT743m416vZ7q9brlciDGkLOBsJRlmUajkdrttp0LThkEBVwLBFG2Wi3V63VNJpM3iVLsc+7/8SQT74hh4sFkMjHRAOdKr9dTq9XSYDB4057mWeA5kW4cEayxn8iw2Ww0Ho/t3BAVCIhcLpf2PPvpGD7DxAs4XDNOIO8Q4fWAnBVyHBhBynu8Iwk3jJ9+wTPkW0bYp5eXl+Y68QGrAQEBAQEBAQEBAQFPxq0QFHzQIFVMSW/qc+b3uA4gPbVazULYZrOZ5QYURWEVcyqUjUbDCC7uA08afHAb58BnkB7PhAjIiw9TpCrPcalUU3GFuC0WCxNBILJUSQnQq9fr5sDgfHy/OqKAD8XDgg7J9O6J1WqlOI51enpqr4njWEVR2OQErPnValVpmlpLCKR5NptpNBrp0aNH5qKA5EZRZFMtEDIgho8ePdJut7NRfWma6vLyUlmWHUwrgBTSAoDgwT3CgVIqlfT48WMTjxgd2m631Wq1dHJyotdee82OwYhFJjBw/FarpTiO1ev1jJxS+UdoWSwWyrLMpk7U63XLT/CjIiUdBBseOwharZbdI0SFy8tLdTodc0UsFgsTKWgdiOPY1pJxh7hKfD4EUypo1UH4omUAMWS9Xuvhw4d2DQgdEH4EL8QcRAH2e5qm1lbD87JerxXH8cEoVR+oidjGutCC4x1HkuzvCA1+EgTnwR9CLHEg+GcRB0ur1TKxaT6f21ojdPmcEL4T+PyPwNjIgICAgICAgICAgA8Ut0JQkGT/sIc84ErwdnxJ1g7hU/+3262NiGRMILZoyA7BfQgLzJ6H6OOKQNyg3xpiIV2JCt1uV6VSSdPp1EQF6aayi2MCwo+wgC0f+/18PrfKKcQMEkcF2bcm4EAg0I5Krs9uYB05Fuew2WzMcYCYAhnGDcFISJwIELNms6nBYKBSqaTRaGQiyGg0slGdBDHOZjMj76PRyCrOu93Owij91Idut2suDe+c8G0bVIw530qlcjBiEZGEqRqSdO/ePaVpakJNnufqdDo6OTlRkiQaDoe2T6bTqY3yPDk5MVHFE1fCOfM81263U7/fV61W03K5VL1et9DIer1u7gjexz5E1Gm1Wloul9Za4ycT0NLgszFYCyZ++KkKkqyFYrvdWltGr9ezMEGcAFmWmWvi5OREs9nsIGcDoU26cSfQguLzDhAU8jw3YYRzxYXihRbvHEBEkHQwmhEXEmIcgoAP7GSvI3b4iRkIAI1GQ3EcHzyz/X7f7o8XD73jgp8hVPFfnrmAgICAgICAgICAgCfj1ggKkowo0z4AGcXS70fD+d8zyhBygYXbE6P9fq88z40sQpAg44gWEDamLvAZtEcgFkBmpatcAZ9zQP89JIY/s9nMSI8fe+hHMUoyEgfhgixJelN//fHIO9YIQndc0WUaQZIkJpogCngLve95R0TBLcJxIIztdltZlmmxWFgFHdHGh2Tmea5ut6tKpWJV9TRNTWyp1+tar9f2mZ5gtlotW9dSqaTT01O7t+PxWJ1Ox4SORqOhfr+vu3fv6uLiQtKVwyWOY/X7fZXLZXNaTCYT9Xo9NRoNDQYDTafTAzELMrxer5VlmeVXIBwh6FxeXqrb7SpNU7P8J0ligoMXAch+wA2C8ASppjWF90G+fQ4D94lpEzwHCDpkYMxmMzt3RJt6va6TkxPLW5BkLTY4IXz+gA/UjKLI3s8kC9ZquVyaQ4XnVdJBWCM/x33DMyLpYEoLIoYPWWT/s08QDXjm4ji26wCcqyQ9fvxYs9nMXAo+ABJnhBce/TUEBAQEBAQEBAQEBLwZt0ZQgCDFcWwhi1j6fbsAFmsq2VQYfU857QPesk3//GQysTYETwZJ3ac/n3YI6cqej50f4sYUBAL2JBkJocpJqF+apkZiCeHDYi1dkR7cClS1t9utFouFEc1er3eQfI/zANKFAAAphbT6sZdkPfgQQ9wLSZIoz3PN53NJMsEFAkcfOyLCfr/XeDzW6empEelHjx5pOp2ai4CedBwguDLSND1wZPgcDMQXQh8hzVx/lmVmrx8MBjbKEBcA7QkIEJ1Ox64Hwnnnzh2t12v7rOVyqSRJ1Gq1zIbvCSb3dbVaaTabmTNDkgkqTBggEPHy8lJxHJtYxD4jIJT1Z+/TSuMnmUgyoQinQ6VSURzHtsepxvuJEIgbd+7c0Ww2s3YWxBJcMoyN9HkOvj2BliHEiHa7bWQdR4V0k2VCS0yapuZ8OR7R6DMgPHlnT+GQ8a4DwiDJOfDTH3hmEGXYq1EUmaBGVsZ6vdZ4PDYxB7EQ4QA3AvkarPWXvvSlp/pdFxAQEBAQEBAQEPBRwa0RFLwDgH5opgdQOaXCKemgrxpSCPGgNYC0d16PhVuSfY6vdB4Hz5GozzhHCCKEBvIHmYM0+Soq1WGq2ZPJRGmaGoGuVCo2IpLKtm/FWC6Xeu2112xcZLlcVqfTMfEENwd99qwjwXWQSdaj2WxaCCEtGDgJaHugBYNRgYQUtttta7moVqtarVYaj8cWPjidTm1KAQ4FXAv07s/ncw0GA2tTWK/XB0IS7QVkIjA+8fLyUkmSaLPZaDKZWKvC6emptVSwFwhYJLPA2+XJGbh//762263Oz8+V57m1CzQaDWVZdjD1QpJV8/31cK8h1H6ix3w+VxzHarfbiqKrcY2+xYRgSvI6OL7PFSD3wo9L5HqSJLFsi+P7Ll25Anq9nu7du2d7ivYP7iHCBPkQ3hHgx2Yul0tlWXbgFqAFA4dPuVy2rAL2OFkmOB38aFPWzreXSDL3ihcC2X9ch783Xiw8bpFZLpdaLBYmWDE+lPBWLxbxGlpyWMMw6SEgICAgICAgICDgrXFr/rXspxT4VgP6mX3F2Cfh+9F6VPx99oLPR6Dq6PMXyBzgfXw2xIP2Bj89gXOQZFXu45R88hsQB2iVgLxComiVkGQjLQECCpMW8jy3im632z1oiYjj2GzprGe/37c+ekISEVI4dyztkGTaExiXCMmmz36xWJjgUyqVdHFxYWMJqT7T+0+lWpKNyiQMUboKWOReEHrZbDY1nU7Nyo9LYbVaqdPpqNlsajKZmNuBzACuEXGGCj4tEuQMMNVhuVzahAzuEZV7xB/aDXChZFmmi4sL5Xmu09NTa1dAVGDPrVYrPXjwwKr6VPzZj5KsPYd7wD0muNBnDywWC7VaLRMnfAhhq9Uy1wQOB56PcrmsbrdrgYQIAmRbkMnAZ/CM0fJRrVYt+JDr4rx8FgYTKRC1vLuHc6RdhPd4FxEtLYgikuy+8DxwbxDq/OQLckdWq5XyPDdnQ6vVsrGnCAq4lBgxS1YD//UiD2JWQEBAQEBAQEBAQMCTcSsEBTIN/DQDyEKj0TCiJcn+8Q9Z5+fSjfW6Xq9btdKTOKrTkA8IGH8gfYgKCAr0ikOGfHI9rQ98PtVa6SZ4zpNOevch2ti7IZ55nhupg/jTC79cLo3ct1ot3blz5yANH5IJ4et0Our3+5rP51qtVkYqyYxg/RBVPKGk0s+a+wwHqtlpmmq322kymRz0oftWCarsBClGUaQsy+y4uAj8GM7Ly0sLvfTHZD24V9wvH8iHECDJyC3nmKapCS/sLUZfSjrI68CRgtDFXhiPx/riF7+oj33sY7p37561TlBtPw4LrdVqunv3ro0x9WQbxwGTJ+bz+cEegkRTmYfk85mNRsMcJ5JMWOAes3a019BiwH2kBYR76p0B7GfOg+MxUpX7wLPrhRLEB/IvaAtB9GGfcjyyJXB9+LBHSSaytFoty/vwUzUQwBBKEA29M4bpEn605XFbC3vGT3ZgLwUEBAQEBAQEBAQEvBm3QlCAYEBa/NhGnwfg++4Z64dN3BNdRAfeAyBAEK4nhT1CvBAAIET0djebTaui+rwE+v6xnfMHQgJJIdfACw2sQbPZNJIP0el2uwfuhsVioeFwqGazqW63q7t37xqJpX3A99rfvXvXphpQIaYthKo6a+arwZwrjgRyJ8gpoPJPG8J0OjXihtCCKAKxYwTkfr/XdDo1ZwOizHw+txBDPp/7CCH0PfjcW9aY/nnIPBMt1uu1jYjk/iG6LBYLGzXp9wtEmeNBPheLhS4uLvTaa6/p4x//uPr9vp0fawJRHg6HtofTNLXqOqMo+QzfRsB18TtELFoDfFvPZrNRvV43gSSKIuV5rslkYq9jLai44wLwAtRut3sT0eZesx5+HCYOFPY3z48k+1wP7iNtLowPbTabWi6X1qLEM+kFMu4TwgNin5+uwp5j0oh31BA8ymtwJdTrdc1mM3NCcCwfBMpnBwQEBAQEBAQEBAQ8GaVnfQLSjRuB6q0n4Z5EQMJ95oEn/5ATyCzHAL6i7acWQI52u51VkX0bBFMfqLSfnJyYHZrkfUQFXBEcN0kSey2CRZZlNtJQkv3OW7j5gxOAPAHaOS4uLnRxcWFk1Y+FpNLcarWsjx/Xxmw2M4K5XC7t9VSFPZGWbgik73/fbDYaj8fKssycCICeeloYWFfuK4ILbg1CHiG2jK5EnEDo4bUQd0j5YrE4mJhRr9eVpqkGg4FVzhmbOBwOTfhgTyFuIEYxQpP9g6sFkUWSptOpvvjFL+r8/FySjPDTshHHsbrdrrVfcC1kHyAu4Ebgc/kMrtE7NPg9AZrcb8QnRlaSXcH+8q01y+XSxApEKI7p/+ufG+6dzxbw+4EWHIIlOV+eMUQHHEGESBIoicPCrxHPtKSD3A/2ryf89XpdSZJYvgitFASr8v3C9TC6s9PpWOsRjhLERcQoSbbOAQEBAQEBAQEBAQFvxq1wKEAEIQF+VB42dFwJhLJBACRZhZTAREjOcYURK763RUs3oxepyPPZEBQS8rMsUxzHun//vj7/+c/r9ddftwBCSSaI+GA7kvC5Lp/bQN+4H1OIawGSyTli9YYYEX633W6tnSDLsoM+8mazqVarZSGBhPjxGWQT+JBBH7zHetFi0Gw21W63td1uNZ1O9fDhQ5voQCuIvz4IO//1jhAmYCCKIGJwvUyboC2CthfW5lhAwtrvgzXJKYA8k1NAcF+z2bTgyvl8buMgpZvJG4gsSZLYaMvLy0udn5/rx37sx0w4wHmBiwAxB0cC644wQCgj2QU4cS4vL03UIlAQZwbEGeIu3bgaWBfuz3w+N2GHCR4EI/r95nMUEFJwiUDOeQ+fx/31mRM+a8SPieT5Y7ykH3fJWiFUSDfZEpIOWjaKojAxiDBR3CuIbseCnncf+HYZnBk4dBhhyt7HhdNoNA6EpICAgICAgICAgICAQ7xnQSGKolck/b8l3ZW0l/SZoij+8yiKfr+k3yHp8fVLf19RFH/tbY6lZrNpPeTHNmMq1RCBY2IEvDXa29U9wSAgkT/Y/L2LYLFYKI5jq6Yy6WEymWi/3+v+/fv6xCc+oc997nPWyw7x9lZw72CAJALG5tHHTlXV50A0m007J/4OaWUqBNMtsHZDkAhwxA3g3RCSrFoOaaZ6TEK+J7p83n6/t5DE4XBoIwUlWdsAwsZyuVSv11OSJPY7rO30wBPQSGAeJBxnA8KSnwJANZ5zpHoO+eVeQOoJAPSVeh8oSNAkuQXH7hVez3lwf6fTqT73uc+p1+vplVdesXWGxJLrQGAgLohWq3Wwl3EA+LBC9g6VfSYu+FGPCF4IRewRQhDZT7Tp9Ho927++JciTadaWfYcYNB6PrRWhXC4rz3PbR7wewcVnGfiAUknmkJBk9wIhxbfI8PrFYiFJBy0qXkjhPnKMNE0tQwLnAc8c5+O/SxCVaI3xDhUCRLvd7pf76roVeJrfxQEBAe8cm1/xtZp8Re1Zn8Zzi7P/53c/61N4agjfwwEBAS8y3o9DYSfp3ymK4h9HUdSW9P1RFP3N69/9kaIo/tA7PRAkE6Lpe9kh6hAByI6vPnoQ5uarnlRFcTxAlHwlttVqmQ2dyi2BgRAOwg1fffVVvfrqq3rppZf0uc99zvq9sfM3m02r7G42G7XbbascHzsmdrud2bUZGwkxpGLvXQtUdSVZ2OButzMiThuAJ0mQI8QHn6wvyar/PmPC29ipghPIhyMCAg3xw37OuMjlcqnT01OdnZ1pNBpZ1Zy2BBwh4/HY7im5ChBnP/KSyvbxCEzOz09J6HQ6qtfr6vf75j6B3PuqO+4H7h+TAGazmVX4IdB+AsRutzOXAlM2jvcjIyL5XJwKXCcizXK5NGLsp4X4lg2Eg1arZecBIb64uDBhAnECdw2fdf/+fXOr4I4pisJGoiLM8WwgzJCtQOaDn7qCy4Cf+ecX8PySg+KdJzhHEF/8fqeNiGOwZ8gp4TniXrIfEHYQwdi3/N63TvkRqLTZ4NRg7QgmveV4at/FAQEBb4/o6362XvuftbXpFrpshpyV94RC2v7uXyRJagwLDf7kP1D0NV+p1375k0Xc7Z/6ng/z7N4LwvdwQEDAC4v3LCgURfFA0oPr/51HUfQjku6/1+N58iLdVNKvj2+EV9KB44BKryfruAo8QYP0Q4Qg8RA6SA85B9vt1ggyIgSCQq1W09nZme7evavPfe5zNhkC4YNKMuMAIYKDwcDs3FwjwgiihyQLlPMjLiFgrEW1WtVms9Hjx481HA4tJwECO5lMVCqVdHJyYpZ0qtHe3s0UBr/WrIWvoLN2fHav1zvoq18ul8qyTP1+33IW8jzXycmJut2u7ty5Y6Sa6Qf9ft/GfXJ9/JfrKZfLWiwWBxZ61psxoBDi0WhkOQulUkndbldpmlobgXRFjKfTqbWi+Io4TgScILPZzPYXbQXSzThPshS63a7Ozs6M+HINhADSgkO+RJ7nWi6Xtube/o9Ig9iAiDKZTDQej7XZbNTr9WwUI1NBINasEevFHkuSRI1GQ+Px2NwYnU5H5+fnB+NXESP8ddy9e1cXFxfmqknTVBcXFybkcO5ekEFMqdVqdvxms2ntBL4VgXVCKEMY4Zliv/psD1wEtG74MZc87/yezAfuA4IQzzrPBHkhx2LjbcfT/i4OCAh4a5S+6tP6/DclQUh4v4ik5d2rNVydSvPf/4t0WXtrgWZf/TBP7t0jfA8HBAS8yHgqGQpRFL0q6Wskfa+kb5D0u6Io+mZJ36crxXb85d5PtZB+Zf+PeAgkRItJBmQpQDZ8qwRkzBNeiAlkArdDu90+OBbkcTabGUGP49iIyWQyUZ7narVaeumll9TpdDQej606ClFst9uqVqs2XYEqdqVS0Xq9PhhdOZvNrBLNWtDfz+/oJUfgkK6I18XFhR48eKB79+5ZBZpJEEw2SJJEvV7PiJWkA5LrQy4RbSB58/ncKs5RFBn55xi1Ws1IIuIJZJTrS5JE/X7fCDGk7c6dO9rtdsrz3FwUPh+D8EI/0hCiTJYBxL3ZbCqKIhOHqN632231ej1JN+MIJ5OJXT/Va4jpcrlUs9k04loUhTk5WCcCCclHmE6nGgwGtg8ROXz1PI5jTadT28O02nA/GLN4PBITUaBUKmk0Gmk0GuljH/uY0jRVu93WxcWFvQYHBNMfuD5I/+npqWq1mjka4jhWr9fTeDy2z2L9EbgqlYr6/b6q1aomk8nBczmbzeyzIe84afwfLwog2nFO3uFAi5EXArnHtJrs93sTGxCFcOOwh2kRYc8iBOFOIVtkuVyaW+E4hJSsC99S9Tzg/X4XBwQEvDUqn3xVP/abe9rXnq/vhduOoixtuh8dgSZ8DwcEBLxoeN9THqIoSiT995L+raIoMkl/XNJPk/TVulJr//BbvO9boij6viiKvo8Eeoia72HnH/z8IdyQv/sWBwQD6UaI8BkKiAu0NUiyZH5JB5MWcCRIssppnud6/fXXNR6PVavV1Ol09PLLL5uzgj771WplAgJ97vP53FL1sV1zLqTXQyr5zCRJ1O12za0AIcOOznUwvUCSEa04jjWfz/XgwQNFUaRut2vTCnBFcAwIrCRzJeBaIIGfajgk+Xi03na7VZZlmk6n1qM+m810cXFhbpHjewSh7Xa7KpVKNnVivV5rMplY6CTOD0QLHAg+xNG3iCwWC2VZpizLtF6vFcex0jQ1sWg+nyvLMo1GI2VZZmJWURSaTCYajUbWaoHgQiZDFEUHUzqYkNFsNnV2dmb3C1HFV9uZ1IEg5u/3brdTlmWaz+cWroiQwXsQixAMaA3pdDq6d++eBoOBkiSxzIEkSSx0sVQqqd1u6/T0VJ1Ox54h9oQX5GhFYV1rtZrSNFWaptZyQYsNrUGISuVy2UI62d9U/H1YI3uLc+X+kXVAngX7hjwE1hOh5uzsTP1+/00tTpJsRCbiCkCwYKoFn8draAuhxeh5wdP4Lt5q/WGdbkDAc4XynTN99nfeDWJCwJdF+B4OCAh4EfG+HApRFFV19cX5Z4qi+IuSVBTFI/f7PyHprzzpvUVRfEbSZySp0WgUVOexWXtQtb9+n5EwfvakLAX/e15zeXlp1Wf65CGKPtHeW++xzpMwPxqN9ODBAyN5hMFNJhMTDSDF9P1DBCGAkiz8kbwBer6p8kJQIfHYyCHTXBPTAJh2gKui3W6bm+Lhw4eq1+saDAZqNBoWMulHbPrJAUzckGTtC7yeoENeA+HzZB3RY7vdajQa2ZqTr+AFo06no3a7rXK5rPPzc6sQZ1l2MOIwz3NzE9AOQbCgn97BsVerlYbDofb7vbkH4ji26RgQUog1LTC0alDdJ5ySyQy4Ri4uLiRdOVH8/fGuD8QWWjZ8y4oky4jA1cCegJT7TA/Irs9iuH7GbEQoxyfcFIGFfcXIRNoluK5er2eCwHEQp58+wXMC+SaEkwDNxWJhgghig28T4Xz9RIlGo3HQFuKdEn4ahX8+aFXY7/fq9/sHrg+cQgRVIr55Zw05HM1mU91u1+4RAhCf4UWG246n9V3cifqBLQUEvAWK50dfDHgGCN/DAQEBLyrez5SHSNJ/JelHiqL4z9zP7133kknSN0n6wXdwLHMSQIKoCvsKIeTIg0q7zxjgNZAtyCutA4zzg0BjoYeYQ04hrYwFXCwWuri40Pn5udrtthaLhTkdcB1A8knnJ/iO8Y60JkiyCQmcF4KAHxNIxbvVaun11183l4ZfE0nWQ+4nNnQ6HeV5rouLCzWbTaVpqn6/b6Sa0XgQV4gxRIteftZpvV4rz3OrgkPU6J2XZBMmEBWovHc6HcVxbCIGFX6q1HEcG3GlMjybzaxqvdlsNB6PbU2pqi8WCxN3EDb473q91oMHD2ziBOuFM4AWFFwvTLBgygIVbiz9tFFMp1O98cYb1gKQ57kJHhBUro1wRO4ZQYHcb35GZoV045RB5Hj48KGNyOQ+TafTg1wGRAjWiZYdyDUV/36/b/fRj37kODgzjsNAq9WqiR8+z4TjNptNdTode78kW7PjfAYcP5w3183/9m0XrB1uBX5GAKekg4ksHMNPRyHHgftKuwrnRcYIThifxcK53mY8ze/igICAgIB3j/A9HBAQ8CLj/ZTfvkHSb5b0z6Mo+ifXP/t9kn5jFEVfLamQ9AVJ3/p2B4JUQmiPwxe9WCAdTm3g78CLCVjs6fOmiknwHiSQcXFJkliqO+MceT9jLR8/fqzPfvaziuPYSAtTIiBUkFJ/Tn4KwZ07d1Sr1TSbzQ7aHchdkG5GZbbb7YOWj2azadZ47N/L5VJ5npu4AvlkIgbZBqvVysgXVv35fK40TW18YpZlRpxpRYAUTyYTO2cEA/rayQmQZNXzVqtlpJk8BZwCiEicG+0gWORxGYzHYxNKyBUgA6FarWqxWBxMLYAAdzodG0t5cXFh5JZ1QCSgOs+5ebcKwg7CyXq9Vq/X0+npqR4+fKjJZKLhcKg33nhDDx8+VK/XsywH7l+321W329X5+bm5E8geSJLkYLQpfyc3w4s7WZbZXmHNJJnzg2snNBQhBOHCuw3Ozs40Ho81HA5NzIjj2FwBjNGkzYapD9xXxlb64EUEJtorECTYP7QSeREJZ8F0OjWhgddxTySZQMf68vk867hHcO/U63V7hhCXyDphfSRpPp+b8wGw9/hM9u8tx1P7Lg4ICAgIeE8I38MBAQEvLN7PlIe/Lyl6wq/e9XxdRs7hGoA8Eo5GhRFCeexS8EGC/u+SDsLdJB2MFfQtExAnAvXSNDWCQ1WdXILz83Odn58bmabqmSSJlsulZSZQAfdWa5wL/X5fJycnmk6nJqZAYrHaz+dz9Xo93b17197PdRLAiL3diyM+eLLb7R5UlznXdrttUysQKphuQSZAkiSqVCrWzkFfPC0a5EFAGDudjqIo0ng81nq9tnGZTCHAas4687P9fm95B9joWavtdmvjOyGr2Ot96wphjJBoSGZRFLq4uNBkMjEi6QMwEZIguVS6EaT4GYKNdNXmcHJyokePHmk6nerRo0f6whe+YLkH7Xbbzj1JEt2/f/+gDcYHGbJ2uHOSJFG9XtdkMrEqOkGcuD1ms5lVz8l+oKVnv9/r7OxMWZZZewkiFWudpqlOT08P3CzkiHgyj6jAfeb6GDWJi4d9gTsEUQcRjOeIPcPeZBrLcrnUZDIxNwoCFued57k9D4PBwEQPP9mCc/BhlnwG7RdkcnBsHA5+7RhhybHJUbnNeJrfxQEBAW+BzVatN0pavPTRCQ8MeHoI38MBAQEvMm5FgzDW6zzPrVrLP+gvLy/NUQDRPM5MYKoDFm9eAyn0xB+ScHJyYkSN6QJUR2mLOD091eXlpU0nwMmwWq10fn5uJJzefl/tJtuACQRUSxmZx0hDSCHkjgDD6XSqx48fG4nrdDqaTqdGEhnPR1r9crnUYrEwt4F05QrwbROIBRA8SKS3ovv2EVowEEqoDNNqkOe5uRmopuNa4P6RnzCdTm2aAyMMEQeWy6Wm06m5CLgvkD+CBXE8kG8AMazX6zZdg/t+eXlpxBmLP0IItnj6/WmHwGVB9RsBhBGFPivh5OREg8HAxJ/z83NzKfi2iUqlosFgoOl0aoQeAu3JNuJWHMeq1WrmSEBQYMQmIyQh1+whhCzpqjXl4uLCnA60C3iRrt/vH7QNkD3AVAYyBXg+Jdk+xBVCKw73kryCzWZzMLHFjyUls8O3IuF6WSwWB5NQJFlGCe6MbrerXq9ne2A6narX65ljhe8PpsLQtsF5X1xc2Of4rAaEDvaBdyoEBAQEXI7HeuXbH+izv/POsz6VgICAgICAW4VbIyhIssokZBZLNCTSp+5LN60PPsyQMYZUWKmyMkVgu90qz3Mtl0vFcWytC4S8SbIqK8Tl8vJSo9HIwu9KpZIRRIgz5J4RhLQHENSHHZyWhHK5bNVoqsiQVsIamUaASMB1EK7HJAWIPevCa1m7u3fvKkkSI6nkAyDS+B521hGyhSW+3W5b7gG/n81mNt6S+xLHsbrdrgUfku3Aufv77R0lhFkuFgu1223FcaxWq2W28+P2ikqlYkJQvV43FwnVf46DGHV87oggiBkEajK9A4cB70G0Iguj2+3aKMztdmsjJCeTiZHz3W5ngsvJyYmdI8SePep/hmW/0WhoNBrZ2ErGfuJGGY1GOj09teBB1mC32ylJEg0GA43HY+V5bue+Wq0s7JKQRT6TfYAo5++/F+XISkDoY0ID7RGSNB6PzdFDqwx7AdHOOwe4l9JVq5IXcMrlsrrdrpbLpR4/fqzxeKxOp6MkSWzCCS4gHER8jnTlyiCskXtA9gnOC97Pc8z14vQJCAgIKLVaGv38ICYEBAQEfBSw/8VfrU36/nOyKstLVb7z+5/CGT3fuBWCAlVqiA3wie7NZtNIC+TET4OANPGa4zA8qudYp5k+0Gw2jcBDijmHVqulNE0lXYkMk8nEbPBFUVibASQFwtXv9zWfz7VYLA5s7Z5MIU5g54cEcR0QGdwHksxdURSFkiRRu902Gz9Wcelm1CYV9cFgYKP1aJOg7927N3zvO+vLuZKZgJDiw/MkWf4BQgktBcvl0ogmRB5xwGce1Ot1zedzzWYzJUmi09NTdbtdy8ogCJKJCbgrfCgmZJh7idDC8Y/DLyuVipFLxkgiMhG+yPGpoHP/OMfz83ONx2MTSWiJYdoG4kK73bZpE/v9XrPZTKPR6MBxwXkzCvLx48cmahCqyX6azWYaDocmYHFc2lbiONZgMLDcBsag+jYe2k/YQ4QasgcR4HCCsEcRrHyYod+DZGLgNvGOI//M7nY7G2XJ2FOOQ6YDx+n3+yYy4M5IksTGi3a7XRMiOEa1WjXnRqvVUrPZ1GAwsNGuOEjYk0yU8N8BxxNnAgICXkxE7USPv/ZZn0VAQEBAwHtF6ed8WpOvSiVJo58ZaZe8/4Eq5XVZgzu/QK2HW1X+9osrLNwKQaEoCuuB5++QWj8271gsOD4G5JfX0RvtXQ68dzqdqtvtHlifOSZ9+RDnO3fu2GdgKycRn4q/Dz2M49gS9/lsguKwfNO7zshET4wh64C2DM6bEMLT01NrwYDotVot5Xlu7QRZlhmZYpJClmVWYYZc0Y5ANZ6EfESKer2uTqdjBBOhBjt7s9k08opTZLPZWMgjjghIq+9xh0AyIjPLMiVJolarZffQtx74yR4IIqxbu91Wo9HQcDjUfD63XA6cCYDRhT4Q9NGjR6pUKrp///7BWEret91uNR6PjQS//PLLevTokebzue2d/X5vzoI0Ta2FgpYYxmt2Oh1zCyDckL3RarUUx7G1uXDve72e3VfEoTzP7f5wjCzLTHTC0bBer20kJu0ICHDkbvi19VNLEB586ws5HDgzqPg3Gg11u13leW5CVLfbtT3KWrLHyHTwjhNEDlqHEJD6/b6m06m19nS7XWtN8fcYoYoRqWRucL1xHB8ILawfe5TWKDJJAgICAgICAgICnl+Uf9ZP10/9qr5Wp/CrpzOd9bJe6PzrpMqspuRTv1CDf7ZQ9A/+6VM59vOEWyEoSDqo0j/JpUAIn2+HOJ7u4CulHBM3A5VLfo5TAaJPfzsBkPP5XA8fPrTK8tnZmVU1GY2HYLDZbFSr1YysQe4ZXQjRgfh4lwKVdYgzpOzy8vKAzCKsUKGFTKVpapVVhBScF5VKRfP53AIDX3nlFbtepmnw2RyXyjOBgL6vHtGEiQ3Y6e/evWstDbg8IPq0RSBmcB98nzuEG8FgPp/r4uJCp6en1v/vyR1OCv5Afvl5q9WyiRU4EHzmAgIPQgsVfnrsCVaEvHN+rOf5+bmFFb700kvKsszaJ5gGwaSNbrerwWBg9nqcGGQP4BSQZK4DCH+SJOYyyfNcaZoqTdODSQi+qs4+59olqdPpSJIJBoyc5DiSTGzzogiCV71etyp9q9XSycmJ7QFCFLfbrbIsOxAQPAip5NnYbDYHkyxo2ZhOpyYi1mo1ay/CPYM4QztQv9/X3bt3rV2ElgXWhVYZjkmAKe0duHH8mFBCGSVZa1RAQEBAQEBAQMDzifJXfEJf+LUnWvc/uFDdXVJo8mlp/lKsVzdfqeL7f+gD+6zbiFshKCAiQGL4L9VyyDUVRsgjBAiRAeGh0+kojmOr2PrKOUFt/K7Vatn76V+nMv3o0SMjcd1uV/fv39d8PrdwRDIU/Ei8PM+tqg/JphpOywL961Rf6UGHbCM4eELcarXsWvmcPM/V7/c1GAw0m82s2txut5WmqWU0XFxc6Id/+IctbJKefQQXSBakDKs+9nps8ovFwgLrcGdwHuQn4AgAEF5s5ZIOwu5wh/g+fqrV0+nURinyOqrjiAfcNz/ej4kbODoQFLg+8hl4DYGPiCqTycTaNCCzzWbTciSGw6FKpZLOzs40GAx0584dXVxcKM9zc7AgLpycnOju3btK09SIMuIChLkoCmslmc1myrLMXsMo0+l0qna7bfkBvnWDVgjahhgZSesD99I7fphsIukgD8FPPJB0kJFRFIUGg4F2u50ePXqkzWajdrtt+Q5MsmC6ByQdVwDPAXsPYSLLMp2eniqKIs1mM7vHiBk8/whIPPu4NhCFcErgdkIck27yWRCy/J5C0KHdw0+NCKGMAQEBAQEBAQHPJyr3X9Lnv/mutu0PZ0LPtrPXrl3XczF0/Cmi9PYv+eBByKCvRlItxIpMldQHrgFfnd5sNlZVRHzgfVSDISlMRsB27wPaLi8vdX5+rtdff13T6VTVatWS/alUY3XnfCD6PhiOa/GEjawBXATeqo3tXLpqJ1gulyZeQGx9QKV0lV8Qx7Gq1aqq1aplM6RpqpdeeklRFOnhw4d6+PCh2e0RKI5t5VRyEROYmAHR57yTJLEWhizLzL7POUAISd5nnSCbVKs9CH88OTlRs9k0wQbRhXPlWDgTqIzzGulmIgGC0Xq91mKxMFt9o9GwgMF+v692u21TO5hIwfoikjDWUZKGw6EePnyoy8tLDQaDgykCtLkURaEsy2w/epcCa9TpdOw8vYuF6RYnJyeK41hZlumNN97QdDpVqVSyyR1U7pMksWeGyR4EgEKYaa9Yr9c6Pz+3DBAcN7SN8Exyv5muwZ5I09SCGXH5EBxKtZ/19WMkadVgZGqn0zFnyGw2s9wHRCKef46FkwGRgGe30Wjo9PRUd+7c0dnZ2RMdQLh3vKCDW4XvkGNHRpIkiuP4/Xy1BQQEBAQEBAQEPAOUez39+O/6uLbtp9Pe8E7xU99YV+nnfPpD/cxnjVvjUIBYU9UkRO94sgMEhf8CqtzSzag6yKZ/DYCcUrWWZPZoSP9ut9NwONRwONQnP/lJNZtNy13w5JWqLv/bW+upgpJ7cDya8Vgw4Xy8SyHLMq1WK5tUAFmFNPkxh9jQaTHodDoaDAZ6/Pixzs/P1e/3lSSJCR7YvrfbrVVtyUhAUKBPH2JaqVR0enqqSqWi8XhsPeqz2ewgJJI1x6XAWEhEEarqfL4kS+snsZ/efPaHn8bBuMTNZmMCBm0h/J4JAeRKeIKZJIldN/8bQYUcAqrjkGsEG2z2m83GWic2m421AuAMiKLIQgO5DgQFxI5SqaRer2f3F2C/JwB0Pp9rPB7r4x//uLUyELKJi4Z9e3p6qlKppPF4bPkCCALsXSZSEOwIyfY5GjgDqtWqhYzigsGRwIQT1m4+nx84b3CUeGFmMBiYIMBEktlsplarZefA/UKA82MefagoDpNms2mjJC8uLsyl4PMhcCHxrHE8xAbyS8hiQUAKCAgICAgICAh4jlCKdNn4cMUESdrXCxXVF8ujcCsEBfqdsd1DRiCaviXCiwL+/RxDklXzj7MYjt+z2Ww0mUyMoCMUMJMe6/hqtVKlUjHSBvGgUg6Z9iMYIfoIA5wTxAeXBBVTiA+EkM+FDEtXVXFP7hExcGbQHtHv9621IYoidTodC/ZbLBYH7gQfEglZ5Hw5/mw2sx59T7Y6nY6R9+l0atMMsNL7yQPkTUC06/W6tUxATPkMznm/32symZjYUK1WrTKOOENmAb34nC9iTa1WU5qmB9M++EPry3q9VqfTMTGGvYGLZT6fH4QZEprInkySRGmaaj6fW1ZAs9lUr9ez/AcmOtDCwWv8+tNu4Vt52u22jY7k/m82Gwv+zLLsYIoB74XEE8rIvd5utyZiMTEDUQcCPZvNtFwuTVjwGRKIKJLsWqQbUVCSuSLIieC5ICQRl8ydO3fsuaCtYrlcHkyuwLUBeB3Pt3f0NJtN3blzR3meazqdmmDCVBHWBiGCdffuBMQGvnsQxgICAgICAgICAp4jVJ4dzf3xf72tT49f1e4nvvDMzuHDxK0QFKg8Q8io7kOsfUsApNNXHv10CEiU/7vPJ/AtEFTIAaQC8kOoG0IGFW/IIxVX+sHzPDeiCyFD1IDwSzogOFRhfT87FffdbqfJZGLr8fjxY3MvVKtVc2EgSPgK+dnZmZIksckF5CDQPsGUCj8SElLPeRRFoWq1qslkYiMYWUOEH1/txf7ONfv2B+/8KJfLVmFnasBisTASP5/P7fc4JBB8Wq2WBU9CgBElIMr081ONbzabOjk5seBN7r8kczxQifbODemmjYVzrdfrSpLkoHLtRyl64ShNUxNqxuPxgRsA8YJ93Ol0dHJyYgIHZJocjHa7bfkbkHXW6PHjx/rxH/9x3b1719acXAScF5Bv2nfYg7gi+EPeAfsEJ4Ykcw0x2QRhybe01Ot1u2fsZdoWCLoE9Xpd/X5f+/3e3CUIX61Wy1wTfsyjb3XxmRDkRyBqxXGsyWSi5XJpzyRr5x1QXIN39rAvfAZDQEBAQEBAQEDA84GoXtdnf88nn+EJPLuPfha4FYKCdDOR4fhnkg6q5hA9SPHxqEmcDpLMGk2PuA9gwyHANAOECCrHOAsgXpIUx7FOT0/Nrk31HNJGpbfT6Rjh8YSadgYqoowE9AQPggOpJchRkgXWMTWBa6JFgPR7yGS321W73bagyrcah8eIQkQS31JB6wRrSMUZMcULIVjIufb1en2QS+GD8brdrsrlsiaTibk7qH5PJhNrK8BGzzVEUWTTHzj3RqNhxNiLCnwWvfSDwUCTycRyA3CKEADJPvPuEu4Br6clBHcBYzPr9briOLY1IXSxKAqNx2Odn58fuGYg2RDmWq2mXq+nxWKh0Whkx724uLC+/jiOTZDwAZtZlmkymeji4kJpmtprqOwTqMhEEJ4TpkhcXl7a1AX2Ypqm1i5BmwJ7lOkd7GPfYkT1H/ECsWqz2ShNU7XbbWsRYs3m87nt6fF4bE4b1hjRgj3oWykajYb2+/1BbkqSJHrllVe02+00Go1MoOh2u5ZvwrkSoupdI9x/P2UlICDgBcdup9q0pE33wwn2CggICAgIeF5wqwQFb3P27gQIEvbmt2p7IGsBsQDSVqlUjET68ZH+czkGLgUINSRqtVqpVCqp0+no3r17BzZ9iCFhhvTcQ0joA8fSvV6v7fPIfqD1QZL1h/OayWRigYIQeE96qdy//vrrGo/H5mpot9s6PT3V5eWl9ZbP53MLxsNdAEEmmR8izloxhhGyRjUZgsf6kLrPeEgCJQmJRFCALLfbbfX7fXOmZFlmx53NZpJkn7VYLEwIIR+AvUDKP6AlhZGdEOVWq2V99EyswI7vx5J6m70/LgRakq27JLseRB4EAPby5eWlxuOxpCtbPuSWtWPqBW6I6XRqpJt9u1gszDHD3oqiSEmSaDAYHEzdICyTc8b9w0QQsgskmQOHtaJ1hFDHyWRi6wyR53oh5uxtqvx+PCQtDvycnAfcAowtxY3AxAqun7wRxDbWDNcOAgDPIp9brVaVpqnW67WdJ8GVuJ0QK/gsnkPvcuJ5CwgIeLFxORzpk3/yp/SFb/64m2MeEBAQEBAQcGv+tUzFEVeBDyfE4oyV3QsAPnQRxwJVZcg69mbIPmTCuxW8Q4LgPh+ASNgcAX6ExyEKcP6S7DgIC36iAZVjSBnnSYUWyzwiBfZxL0RALL3LAGKaZZlef/11q/xC4Bh36dsuON/FYmHtHJLM4r/dbs2x4Kv3EDMcDdKVe6JcLmswGNhkidlsduBsqFarlkmwXC7V7/fV6/U0nU7NIQChX61WqtVqlqXAaMXxeKw8zw+C/Dg+64uQ5PcDa+ZDJ5fLpTkcsNp7sYr9QjU7jmMLV5RkwtNwODxozZFuHBtkRpTLZU2nUz169Eh379611g0s+5DcJEnUaDTMlcJzQBsMhBc3BwS53W7bvqfdxjs0fFZEpVLRbDY7eL+feMB6cn7s/TRNDyZB4BjiOaPKT/YAIZA4M1gf7gGOIIQmnv84jpXnua0/zy6kH4GBPcXx2Gu0a3DPeH5wGNFig3OD8Ek+m2feh8EGBAQE7F57Xa9+W1U/9ete0vJuEBUCAgICAp6M+LWStFi+/Qs/Irg1ggIBbrgEqDhCXnyVEtJHxZL/DSD5fuY8fyAofqSkz2tYrVYWzggZ22w2evTokR49eqQ7d+6o2WyayEFFnfF9x1Z7zodz55ypEkOwqKD7a4EsEXLn/0g3bSJUYbluiF6e56pWq+p2u7pz544ePXp0kPng7dxpmtrowiiKjJQhFLDuy+XS3B/1et0IPS0Qw+HQggkhy+QfQMCXy6XG47FarZbZ3uM4PhgD6avKVKEJv7y4uLBAPd96ASHGEQLp9tZ8KuUQxt1upyRJrI1jtVpZew3H9gS21+tZTz73yOdIIFjhKOGaWKvxeKx6va5er2eBi+wFBIVms2kWftYBsYVrxpEgyf5LywV5FKvVyvIh/DPDPoO0k6MRx7GJRjgwECbyPLe2E0kHrTi8HiGHsZE4SghGpPUHUYBnpNVqWcuEdCV2QfgRPbgXfuwmfzgWeRgIBggjuCRwy3gHDS4cXBPkc/g9EBAQEAB2P/EFfezby/rSr7mjxUtBVAgICAi4lbi81MkPRLr4mg9/yoMkvfS3p9o9fPRMPvtZ4H0JClEUfUFSLulS0q4oiq+Noqgv6c9JelXSFyT9+qIoxm93LIjCYrGwijT/yKdSCOmSZFVzCKuHJ9y4BKhSY7H2wW4+4yDPc6vU4zqAKL/xxhtvspPT+iDdVP0hpTgAPImC+PrP5n9DUv1kCcgsIEDOW/OprlNZxbLNBIQ0TZUkifWvczxcErQsMGaSbAPcEVSZcR1MJhM1Gg07b465Xq81Go00Go10cnJi92+z2Wg+n9s6I3ZQSWfsX5IkGg6HZllHTCL/YDQaKc9zzWYzI7sQZYQZb7mfTqcHoxhZM7IQyA9gP7D28/nc9hxiD+SyXq/r5OTEsgJwRFAlZ4Rmt9s10kqIIns6yzK7PsZo8pnsE/Yv94c2CoSV6XRqx/GTF47PlzaZXq+n5XKpxWJhoZE8EzgFmGrC+2jNmM1m5g7hPnMsPwGCvdfr9UzMIFiS5w2hhGeB+yHdBGSyxxHMvIMIx4+fpuKnwNDWxN6j9Wc2m2k+n1u2BdeNoIAbh0wUJoQct0jdVjzN7+KAgIAvj8sf+7zSz51o8dILlroV8GURvocDAm4Pit1Og7/6WV18zU//0D87/ZFI5QcX2r39Sz8yeBqJY/9iURRfXRTF117//fdI+s6iKD4l6Tuv//5lAbGGvEMsqMgejxWEOPqxdE86Jm4B72KARCFg+Ko4lViIbrPZNKv/er3WZDLR+fm5JdhDqCEjEBhaIfznYhU/tn4DBAjfI5/nuebzuU2Y4PUcD0GDMEhIIX3hvB7ihKug0WgYCfRkDFs9FWWumyoxoxYZVejbAxqNhjkcqAjTe7/dbjWbzTQajayqzUhG7jUjIZkSAClELKHV5LhnvlqtmvtBkuVW8DPEGdaDar9fZ0iuH+kp3YhWCBA4JJrNpu7evatut2trhzCC44DxjpLsHGmTWa/Xmk6nuri4sGwKhC6/bn4iRaPR0OnpqQWA5nmuLMusEo8Dg72L4MO1s9fZ47ghut2uOp2OtXFwjPF4rPF4bCGgu91O0+lUo9HI7hvuDwQAzr9Wq+n09FQnJydqt9sm1rAPptOpiVlcH8864g/3kxwOH46J8OLbEviDKODBnt9ut7Zmfm1xQnhXB46N52zKw/v+Lg4ICAgIeF8I38MBAS84ej+2fqHcCdIH0/LwayT90uv//aclfZek3/3l3rDb7TSbzazy7yvn3v4O0XsSifG5CgABwlfSfV83hNKTkjzP9fjxY33iE5+w4Lwsyw5GQ1IRJi2f4xJu6C3qnA9ZDtixcWH4EERJRmA2m41Go5GJAOQpYKuHPGVZpjzPrWrL7yFdiAqQLB+syHlDYCFjiDs+BA9yReXXV++5b61W6+B1PgcDASBJkoPPQxhhLbGzI3YwucKHdnphpl6v2/QHX7WnlYKqONM0ttuttZfgiOF+Ih4QBInohEgyn881Go202WwOxlqOx+MD0cX3/3N9VNTzPDfRjPUZDAYWxOn3AveQ7IQ4jm1dvPuD4zPRBEKMu4DRjeyt5XJpIZytVsuOwV6AXJMBgfhCewv7FjcF4hTtFnEcq91uW/4C94CsAi8O+pBHv198ywyCGu0UiBaITv4Z5PxxRyC2tNtt+26ZzWYHLg7ahLhmWit8OOpzinf9XRwQEBAQ8FQRvocDAp4R9tNMn/iOjX7yV394/5br/7NItX/6k3rRErjer6BQSPofoygqJP2XRVF8RtKdoigeSFJRFA+iKDp7u4MgKOAmOE53h5RBSKQbt4EXGjy8dZz3QRjeKocBtwEk7M6dO5JkBAVyQSXVh9GRI4B7gHOHmEOEGYvImD6qrhAjSW8isVTbscZzLcvlUo8fP1atVtNLL71kxCrLMqtOUzWHpDNxAXHDB1sSOtlut82dAQHHHSDJRgZCJiFyhCh2Oh2bDOH77LkXrD0knio/4YJMGuh0OnY/cCXgZvAZBt1u14jpdrvVZDIxAkkv/3Q6NdLrQwePwwhxL5AdQatBs9m0FpDVaqVyuaxWq6V2u23ugEqlopOTEyPbBGwiLtH2AKFmtKLPK0A84Lx9ew0/5/WcO9eEk4IWlHa7rV6vp4uLi4MsCEQs9ppvqWFtLy8vNZ/Plef5wXmT18D9Zq8i/nFdnGetVrN19WNfCVD0bhr/PPmWHp43xBWEBnI+JNlx+P6QZC4P7lW5XLbvGdqBfOgjf2hTOQ7pvOV4Kt/FAQEBAQHvGeF7OCDgFqHY7VT5+z+oT+irPnBRIfliSS//xS+pmGa6nEw/0M+6jXi/gsI3FEXxxvUX5N+MouhH3+kboyj6Fknfwt+pelN5hbBCIvivpIMkfZ+rcAx63Alf833mkHn/X4CdO01TSdIbb7xx0Hsu3VjDfWXduyk4X4g8YgUk8uLi4qDdgvOFoEEYp9OrTQnxpuVgNBpJkqXa836Oz3U0m02rRne7XY3HY3Md0PcPqeLvURSp3W4ryzI7Nm4AggQhgQQc+lT9brerZrNpLQL00eN8oC2AlgJElfV6bQ4KyDrhg1S2qVAjhtBzz3pBhLnf7B2IIkSUsYJ+BCHrSQCjHyEIOaZdgYwB2iR8VsF2u7VpFOPx2EYwUnVHgEGwYcoG7TK4OHCl+PGTXqTwzhXuT71ePxCoOJ/1em3HRnhBeGDv8/l+nCjOAtpZcOsw/pL7j/Dk22hYT/YmPycA83h8KmIWx4DY0/bA+bFHEXhwaCBqcC/9yMdyuaw0TS3jAmGSvcxozcViYW0krMFzgqfyXdxQ64M6v4CAgICPOsL3cEDALUOx3ajy9/6ZPl79av3Ur3z6xvxqVtIn/+iPqNhstLsuor6IeF8rWxTFG9f/PY+i6Nslfb2kR1EU3btWYu9JOn+L935G0mckKYqi4jhQ0Pf/IzBA0iEOVC+xYUPOIQNUW7E2Q9L81ALej6UezGYzLZdL6y/H7u2D66bTqfXKe1s7VV9fUfZtAvv93kgN1W6s/rQLQL79KEofJrdYLKzPm8ozxDHLMiPfaZqq0+koTVPduXPH2jqo2lLx9UIIledWq6XJZKLFYqHVaqVut2tZBzgk/DhGSCNBg36yAz/zoZJMjOD6fI4ErRM+C4NrpKce4YW1hqDP53O7p5IO3of7hKo7DgfcJJBZiCZVbvZYpVKx/IJ+v69Go2HiC9MNkiTRZDKxUZ1+QgkCDgTcjz2UZJMkcFP4EaNMPojjWP1+3/Y45+wFON9ykqapOWIQQCDjfL504+phvzabTSPeiBW0fUhSp9OxbAl/XkzNQOzybh3cPgg7kg7usyTLmyAPBNEP9wMOE+4RgaI4NHCv+NGwII5jG9N5/d1jLRvsD4JJ/R667Xha38WdqP9s4pADAgICnnOE7+GAgNuJYrdT9W9+v+43v06v/xKXu/dOc3XdE/np//QndTme3PxgX+hyu3kap/lc4z0LClEUxZJKRVHk1//7l0v6DyV9h6TfIukPXv/3L72T40ES/Og9/kCO/ThGX1mHXD7JqUBF83gagHTTsw1Z8e+nilpcp/hLsoouhItzpdUBIkx/PcKIJ3jSDXn2UxSoABOGSLXfV0hxWHD9s9lM7Xbb/s75QrJwM8RxrDRNdXJycuCUwFLPzxA8CO3Dwr5cLjWdTg/s8YggJOdDFjm/er2uJEkOCBwtE+12W41Gw0QJiJzPecA54PMCcCDgaJBkbgFaD7DJ4y7gvvjj4BTAvl8UhQaDgTkk/L3inP3e8G0r0g0hzvPc9k7kJmIwXYNj0LNPRb5er5twQdsIrSS0GSA0EdTZbrc1GAwOKv9+IogX1RClcBYkSaIHDx7o8ePHKpfLSpLE2nbYn7Rw4HCAdHe7XQ2HQw2HQyP+kiznotfrmehGACStLOwZ8iZ8cCntOrhIEJ9w7+Bq4Tn0DiD2PvsOcYnXsraIV7hNaG/h8xGj2NPeuXKb8bS/iwMCAgIC3h3C93BAwC1HUaj5l/6hvuI7rv5d+fDf+oWa339nRaNPfvtK0Xf/U0nS7i1c8S863o9D4Y6kb7/+B39F0n9bFMVfj6LoH0n681EU/XZJX5T0697JwUiipyqKxRmbOaICgAB7dwL/+PeuA0i67/9GfKDy6SdBeMznc7Or+5GH0o09HKcEIkWv1ztoi6AVYrPZmFWbz9psNgetFJAszt+PmYSkHrd9IKxgY8cVgSNjt9vp4cOH6nQ6eumll3R6eqr1eq3hcCjppoqLy6JcLpuNHCJG2N5kMpF0E+x4vGasDYIFtnsfiklrwtnZmebzuc7Pzy0bAWLMvWFdaWnAaeJFkXK5rNFopE6nY9MpECwQJSDqfv2o/pfLZTsu5xbHsSaTiVXXIZcQ5dFopAcPHti99iGKPjOC80SooG3B/57jLxYLI8VJktg0B8Z+4lSoVCpaLBZ6/PixTk5ObF/gaiFw0z8Hkmz/00JBxsZisVCr1bJni3PE0cD+5TliUsV8PtdwODxoY/EjTHG54EZgXSHuTLfgWWL9GD1KyCjPAPuDPU2wpBcVELR8q4oXMRaLhb0fxwsiFIINziQEEN82cYvxVL+LAwICAgLeNcL3cEDA84Drfxff/SPf/YxP5KOF9/yv5aIofkLSz33Cz4eSftm7Pd5wOLSUfNoDJB24DyD+EDhvR/bWe4jY9flY5dZnBviq/LGtGZGCaiUVdh/+SK850wS8DR+7uh8RKcmuyX+uJ3gE5uEw4Bi81xNkhAaqwGQjMCJvsVhY1Xm1Wmk4HOrk5ESDwcBcHdPp1NpJPCmmlYRrg5hOJhMjh5wP6+gFHRwEiCjSlWW+2+2aaMSUCa7PT5bgeufz+QHp8/+bNZJkmQkIM6vVyvr72Qd+LRGoaFNBLEAgwtHBRAf6+5MkMav+gwcP1Ol0TKBhX3G9VMtxQkBQvQDGFAEfIMrvGo3GwShHMh188OTDhw+tys5arFYrJUly0GIBmWYCBnkW5AX4/AzOn6kmPhuB3IQ0TTWdTk2UStPUHAAcU5KJCvyM9h+uzQct4vjh/qxWK3s/18Fz7kU6P3rVh3b6lgUEAwSP+XxuzyJiBt8v5JMw7vJ5EBSe9ndxQEDA26Oy3Ku0rmhfD9WqgPA9HBAQ8GLj1vxrmcozRIOsAAiWt0dLepMI4Kuo5CRApj0h5b1fLtARMjuZTCwgz1vHIWVxHBvh5jVU2REVjm3bXiygFQOLd3Q9us+PFEQQ4bypyDYaDatEMzayVqsZEfIhkRA0zpGQRtwHkClJRr4gvJ1Ox9YI4QLyTa882RVYySHRiCy4Bshg2O/31upAYOPxPVkul1ZRxpLfbDZN0OAzfMYA687IxH6/byMjIau+D5/pDYy7JNeBCrufqkEgJe0OvpLuxSZEFFor/KhN1slPG0EsI5+BgEDyHVgLJnSkaar1eq3ZbKbRaKQ4jnV2dmbH9gIU95WRiKwD+5iWFl7LPeM1CEfsSZ7PTqejOI41Ho9tBCMiBWM0Jdma0ZbCKE6cA0wSQSjBweMdPYg87M/jZ85nrRDs6Z0gPp+ENibaM44FAz53Op1qPB7bGgQEBAQco/bX/5Feqn69HnxDWZdBVAgICAgIeIFxawQF6TBhv1qtWnWZiiM25mMxARJPldzPpfcjI/k9RNuPjvTngMX/8ePH9tmQO6qiVMCxrEMAo+vxhhyT/yIckJtAcCL9/rwGcon9m2t70gg7roN2hF6vZ+QVezzrxrVRyaf6zZhJJgcQbkcvepqmFrzHyD0cCJ1OxwiXrzwjjBRFYcGPjKpsNptarVZGbslW8O4ByCVr7l0m3k0AeZ1Op7ZWPuGfz/ZBn/P5/KD/nnvHWk6nU3ONIG4hxnjBZLfbaTqdKkkSyzzgnPy+hCwfV86Xy6XtSfY02Q0ICLVaTcvl0u4P5Jg1XCwWmk6n6nQ6SpLEcjcQmiDlviVov99baCX3DifIarUyAQXCj2CD2AChT9PUpjBIN6GNRVEoyzJJUr/fNxfGbDaz6QmQfT+tgsBInl1EBPaqH/mJ2MVe94GUXIPPTCEo04999RNffL4G7R6j0cjWMyAgIOBJaPzlf6i75a/Xw18QRIWAgICAgBcXt05QwLbsre/Y+L3NndcfV/+p/FKtLZfLVvHn9b6q/iSHAsQOYpEkiSQZuWu325ZCD2nzPfLr9doIMJVnyD1khvF72NlxHHjbOU4N6SYkUpIRV39M3yqBrZsgPR9E6UcB+nwAqukES/q+dYg3Iy2pJBPK5ycUHItB3W7Xeu99C8hms7HpD36KB8QXcYagQ0kH54vLAgKcZZkRafYCLQ1cAxV2xAKEDDIUEEKWy6W1Qnixg2P6VgXaKwg7pP0BgYB9QNtBs9k0QYGqP2sNeWfsJ20hs9nMWg5YXwg297rdbqvdbtv5IoBwH3AL+KwGsg9ms5llKvB8ISp5Nwj3wotn/G+EDtwTXghotVpvClblufOiF+9hXWezma1fo9EwEWa1Wpng5YUmSeam4Hc8E34iDJ/Pf33wIqIFrh/Ej4CAgIAnofk//EPdu/x6vfEN5dD+EBAQEBDwQuLWCArYr6lO8zP/j37aBxAcvLNAuknP570QeX7m3Q1vJSjwM5wNkBqC88h6gHASdodlHmu9H0Po2zUQPZbLpaSr6jAkMU1Tu6aLiwvLg6Dq7x0GWP+pukJ6l8ul8jzXYrE4EFt8ACWODW+3h6RWq1UbqYiDwudZcG3Y7zudjubzuVXbORecIM1mU91u14g7wkG9XjfhhVBJ6XDCw/E9hXxTaSfoj/vgp0GwdrxPOsy9qFQqJkBAmL2IwP7g3vtgUJwX3kHhRReEBFoYCG6k/cC3R/j8AsSgPM+t7YKcDIQXWhKw93PtXCNhmIRy+gwIckEg/ISH0lpCtgfrK8kCDefzuTkPOHeOjchSqVRMrFosFloulyYmcd4Ie34v+rwD7v18PrcJKN5hgVsENwMiF+c/m83MEdJqtSwAcjKZHLgQvGDp20MI0Fyv18rz/LkZGxkQEPDs0PjL/1Avb75Wl82S3vgXSipKb/+egICAgICAjwpujaAg3YyGo3oNIC4Qi2MhAVJHZRoSQLXW5xhA7BAX+Bx/TKzqECBIWp7n2m63ajabStPU+q8hbp6kSDfkWLoJO/QBfoTYMR4SJ8ZqtVKz2TQSiSWd0EXGNyIM4AKAtGMV9+uBbb3X61lFnHXgfHyVmPd4gYdqMIICf/gcjuenNfA+2iZ2u529DyLNtVFNx+7Pvff3i/uNSwI7O0TUE/nlcmnCAnsKtwJij28tocLPyMblcnnQpw/x9O0hjUbjIIOi2WxapR5njK+Wsx6cI3uQ3n0IMe4DKvG8frFYaDweazgcHgQxInRw3bPZ7GBPkofAM+aFAFqDOBffRoDLADGCZ8XnUiCo+NBTgiM7nY5d72q1MuGAHAn/vPBM+GwQ346CIMBnIDKwl1gnvgvYQxyHKR3sBe9iQqj07iAvygUEBAR8OdT+xvdJkj4x/hpdVkv6qf95yF8JCAgICHgxcKsEBYinJ4ySDqqZbwUvDHhHABVmCJ0XHJ4kJkg3fdcEG3oiQ2I/xAUSS5AdhAwCA1mFEEFaeA1VZz/2sVwuq91uK01TG0V4PDrST2bAwg9p8xVXSDMVX8YSUnFeLBaaz+cHrSSeMC+XSxMJ+GyCDLHke/gJG9w71p2ee9ol/OhNf9/5fF8tp3rt7zGElzXzZB7xotFoHGRpMK4QN0ae5zYekjGJiCkQaNos/HjDy8vLA0cClf9qtaper6flcqnhcGh7pFqtWnUeUQInAdkD8/ncJm/gWJBk4xF3u50mk4kuLi40Ho9t7OVoNNLZ2ZmSJFGz2ZQkEx8QDXy7jQ9nfCsxjGeD89xut+acwLXAc+GnW6zXaxNy+K/PKMA94EVD79IgU4TpJQR3+gkntBUdj41F+OM62D84DnxrkBepECb4buA8fchlQEBAwDtB6e/8gEpRpE8Nf9azPpWPFIbD0H4WEBAQcFtxawSFy8tLDYdD9fv9g5BFX51EWPBWfqrZkBNfyeT30o1o4N/L8b0I4e3V9MojFEB4RqORhc8xeUG6aanwwYqepGA9h6TwuVSUIbCXl5dqNpvqdDrK81yz2exNa0UPP44FP2FCkq0T68bUiv1+r06nY8SPn+d5rl6vZ+SzVqtZPgJrudlslCSJtWhQxcdV4kUbP9YyyzITGsh/mE6nqlQqFiKIQ8JXi30LBf/Fun8M3xZDDz72e45HbkG5XDZXCGJOtVq1/cWakEOBEwE3BuGU3FMyMfI8V7/ftwyKLMuMuCZJYp9PtgMBnThOfC+/F8VYS0Qhxh7iFDg/P1e321W5XNbZ2ZmJYeRLcP3cA4QBRBQ/lQTCz89pTeE+++eM+zuZTDQcDm186nw+N0GKtgEcKIhXTMHwe/ry8lJ5nh/cv9FoZFMk/OQWMim4Jt7jhY3FYmHPCe1C7FOeV9ay2Wwe5Jcct8sEBAQEvGMUhYof+KFnfRYfLRSrt39NQEBAQMAzwa0RFCQdBCdCsPxouycFpNHzjnXdV7N9C8ExfPXx2NJONZ2xdpAtKrFUfhEUfA+4FzN8gj8kEks3VWmqroTNQRxxK1DBp9IsyZwHiCkIKp4EEmjo2xoQLU5OTuwc+Pl0OjWRgOwDnBBY4Kl6I/Z4QcJPVYC0c+5U7/f7vdI0NefGZrOx93D+EEDfZkE4np/Y4LMu/CSGer1uYoFvdcGRwL6K4/igxeDs7Mz24Gw208XFhSSp3W7bWh27QKiysw4QXUQmHA3+3nMvEDCYnuAzHdg7CDdU36nA+/BCSRqNRnrw4IGd32AwMNcKe4v/MkYT9wZ5Ej7DAQcF0xmY0LBYLCTJ2jBqtZqyLNPDhw9VFIVOT0/t+JvNxgQDPp82DlwYjBFFJMAtwzPAZBFGePKcISbQuoPjApeKJHOoINZ4IcJP0PCjMo9dGYhLAQEBAQHPDq//nl+kzZ/+nmd9GgEBAQEBb4FbIyg8qe3Ah975vm5JBwSiVqvZuEY/ceCtKr8QdAgfBIqqL6SFMXkQM45PoOJxOKTv98a67x0MiACNRkP9ft+CAH3rA0KAD3fkXKlUc/w4jpUkiZFyzt+3irBOHAfSyLEhkgTu8V8C+yQZeeOzyDWYzWZ6/PixhsOhms2m+v2+tXowBYPRi/T0c88YDwnZpIpNuCGiCn/n/rNeZAaUy2VzeCRJYtff7XatHYH19OKLF4D8BIDVaqXRaKTxeGyCEqGYrEuz2dRisdBoNLL7TtsAYzgh956cxnFsexWhB5EmSRL1ej2Nx2M7LqNJeQ3CQ5IkZu3HJZJlmYbDoTkpWDdIMwQdUQJSjjvEh2P6rIj1eq3pdGouliiK1G63D/YtQgMiDveVCRg+i4LQScIzebaYqFKpVEw88UKEbxPxghNCIi4TL3aNx+ODEale6OFZ8u0a3s2EuMa1BQQEBAQ8G7zyR/+xXl8vn/VpBAQEBAS8BW6NoCDdTAegek/1l/5nTyiPpylACrEvp2mqVqv1liGO2LwhlbgBsKTT095sNjUYDN4UrkgrBETdH1vSgXuAii62foi2JEvAl/SmirdvN/DtG96h4Cu83sEB6YaUMyaRqjjECyBm4L5gVCZp/jhBGo2GkVHI4Wg0slGatAVwvs1m0+zthO75ajz3DGJJxXw+n1sWAyKKd6NQ7WedIYeQ3HK5rCRJbKSkn5pAtR2RwU9gwGa/Xq9tkoAkc11IOmiPgJxzTxEUfEAl5B+S71sK+N84XXy+QJIk5ubAOcLPINuSzBWAm4CRh+wVHBeezCOoEFiIuIbLB6JOiGOe57YXyDVgj9FqsN1uTeygTWIymZgbCEEBJw4CDHt+Op3a/fNTM9gnfkoD6yfdtA4hiPB9QDuDFxRoP0nT1I7FM48I5J8LJowEBAQEBDwb7FcrFUWYuBMQEBBwW3GrBAXIC9Z0P0aS/AGs4z4vQLpxOFCR7Ha7SpLEXAWQUl7rXQWQK9oPIGpYnhndSEUfwgpR8qQDocKnzkN6qYxy7q1WS51O56AloVQqaTabmYgiySqvtAbwM66BiQJU7MkFmM1m2m63arVaVh0/Dr4jbZ/rRtw4PT01Mse5+FwExuvxPgh3kiR2j6IoUqfTsXWl3321WilNU7XbbbsewhUhg5BE7xo5bqOA2HY6HXMxcC1UmWkBYQ/gfsDKHsexlsulOVwQZmi74efz+VxFUdj94nomk4k2m40Gg4GSJFG9Xjd3BnuO/v5ms6l2uy3pyvWB24O15Py479xz7yYgeHE6ndq0BoSI2WymyWRiLR+0A0DWcYmw3gho3sXiWytonfFilW/bOB57SYAnQgHOAj9ulDVGQELYwfXCc8A+ajabB9MgOD8EHNaHtg3EMsQrP70EJwKZFzw3XrhC5MHZERwKAQEBAQEBAQEBAW+NWycoQHB9Cr5PnvcTB47zCiRZ/3+n01G73bY0+4uLCyMH/vU+94BeeR+2B9FBDOD9EBhJRkjq9bqRQAiPD/SDZG02G81mM7Xb7QOCiaBA9d9XaxFZ+CzcHITdIbzQf+575Y+nLkAqWWtfTWcNO52O0jTVarXSeDxWlmXmAoFMc19wFdRqNXU6HavU4/xA0EAQQeTBzcD1+CkKm83GxCGfXwHp8+fq3SOexC6XSxsryev9JAdGDsZxfLAfEC+YRMHEgf1+r36/b/fChzo2Gg11Oh27/3Ec27EQsLhG76RgnyGg8TrWwE9D4Ly4VlwcjK5k/9Cusl6vNRwOdX5+rocPHyrLMhOMkiRRt9u18EJacfyECcZWIopxHWSM4PqQZDkEPEd+cgL3hN97EQ9XCKKAD189HsuJ+HLsGvDCGNkNvnWJ54d9xLPCH5+hwjltt1vN5/PgUAgICAgICAgICAj4MrhVggJE1U9K4A/VZk98Ly8vrXLsbcrValVxHGswGCiKItXrdX3pS1+y91E19vkMvoqKYEHFmHPz54lF2lvtIVK8FyL2pNBHSGSr1dJ6vdZkMjkQBGhBgPRAYhEyIK4QJwBZ92P0ECtIy8dhAclDGPFV+mq1qna7bSF3EE+Inz+3VqtlGRQ4AhAEvBWd9guIpXeY+NBNyGy5XFa3231Tbz/CD9MWfGAkJNeHH56dndmYzM1mo06nY2ST0YY+CJF7FsexWq2WhVsivPiwTO4nIx+ZgtHv9w+mK2C/Z515D2Sac5BkhBgXyX6/t0wQn/XBmrLPcLYgXi0WC52fnyvLMhtjuVqtlCSJuRh81R/BDBEA5wNgDXA08Cx4F4gXmfjfkHTulRcLmbTAM+MJvV8T3DM+mJJn2bdoIMj4ySucBzkjXjjgWfHXiKCHcyUgICAgICAgICAg4Mm4VYIC5MwLCZJMFPBhfBAdiLkPWJRuRAWIFnZ6H+rnk935O9VdPg9CAcnij2978OTdh9UhXGB5p6KMaCHJWiMkGbn3ldMnjdiDQOGCoIqK2EB7gg9WxJK+Wq20Xq+NdEOeIYir1cps/GQgQHAJ9oO0ebu4JMu76HQ6ZqGHtPv2CyzpkF/aRji2n9LR6/UkySz7/M4H6vF+cie4b6vVSvV6XWdnZ5pOpwe5DOQQ+FaRVqtl50ibC+QcEQUyS2BjFEX2O0QXqve0dECgfZuKz8rgd9wH8gP8Pff5C7Qa4ACQbrJEyHBgBONwOLT7zrnwejIVJpOJ6vW6ut2uZX2wt3nWeGZ88CnEnHM5bk3xrgRI/nGrEA4Pfo9LAXHECwO4K3he/PQKvid8XoPf0wg03APfTuRzOHBn0IrhRa+AgICAgICAgICAgEO8Z0EhiqKfIenPuR99UtK/LymV9DskPb7++e8riuKvvcfPuDpJ17sPiYA8QHQ8meC9VNmHw6EdA+HBh99JN5VOiAeVasg9VfPNZmOWeVofvI3dZzD4qutisTDLeZIkRrZ5HWQQou0r+KTNk2nAZ0GQILCIA4gdkGFGHlLh3u12RtArlYra7bayLLMgyizLNJlMrFcd6z9Ei8/1oYD8l6ouZDjLMgsFLJVK6na71uoA4UdgyLJMtVpN7XZb3W7XjtNqtZQkieVZMEXAV6+ZRoDAgMW9Wq2q2+1a+F6e5zYZZLVaaTqdar/f23hI6Yaw4lTheJBdHxDJ+EamgSwWCz1+/NiuHxcL+QrsNekm+4IwTPYKozPZj7R+NBoNE224/75aT94ArSlZllmYYlEUdr4EOyJ8+XPy+xHgkpBk7Q6EW0LWfUtQvV63ME72MsIRggMCDC4FSH2lUjEBBCHNB0yyz2n/YYKEz9fwgaUIJDgwms2miU2sG+GPPH9elPITYm4rPozv4oCAgICAt0b4Hg4ICHiR8Z4FhaIoPivpqyUpiqKypNclfbuk3yrpjxRF8Yfey3GPRzBC6nwvtv+9b1VAYICQ0U/ODHt+TzXYuyA4ZrlcNvINKZV00L99HGTHsbC3Uwn2LQp5nmuxWBj5oSIKGWfaA+/3AX1Y3CGYVO9psYBoIbrgloBw1ut1m8LANc3nc11cXGi73SpNU7PfMzZxMpmYmwKHghdNPMnkM+k5hxzu93tlWWbixd27d9Xv9y0YkQp0kiQHWQo4S/xoQQSe+XyuPM8PphMgKKxWq4OpCZ6QI6TQehBF0cG4SK6DdWSPcL8hu3wGwke/39dyuTSRhOBD1uns7EydTkdxHNs+4jr5w9pCriHBeZ4f3GsEIt9Ww76QZEKJz7hADEF4QFCo1+tar9fW+gA4lt+7VOqZ4IDbAbcCQgJuG8QFwjklWcuOD9z0bhre5/c6zzsCAueGYIDI59t/eI7ZG+12+2Bd2+22XdPxpBi+f7zL6HlwKHxQ38UBAQEBAe8M4Xs4ICDgRcbTann4ZZI+XxTFTz2NnmNPlrzV3AsKPoQR0ggxoPcfN4InVdvtVvV63SqPxwGNEDiOCUFDRMCtAHH2PdnH58d5L5dLGyXoJz1wjZxTp9OxID5Ikg965D3NZvPA5YBIQS6Cd0lA7HAp8J7RaKSHDx9qtVqpVqtZFX+z2Wg4HGo4HFqIJdZ6CJiv0mPdhxxC3Or1uokoBOP1+327xuP2CU/ecFd4SzvrSQsF4wG5r8fVa9aN11PVJ1uA6/CkFweMDz+kUs5ems1mKopCg8HAcjomk8nBsafTqV1Dp9PR6emput2utQz4NgvO0+cD0CqAoCDJ7jHX59sHcGVwjzkP3DY+xJKQTN+WwPpLN4IHAg7XWy6X1W63rZWCa0AoYP38ZyGK8Vz58a5evGGsqncYeKGO1+EQ4bW0QCCUcL98SCoZJeR3+EkiCCJcH2IGIhb7+TnDU/0uDggICAh41wjfwwEBAS8Unpag8Bsk/Vn3998VRdE3S/o+Sf9OURTjd3IQX3nl75AMn3cAIC+kuEOgkiRRu902W7YfeQhJ4LOOhQlJByIG1U5ICWRovV4fBAxKhxMCfLsCYwpJrueYEGJIHFZxKqpYwf2aVKtVm2ABEYUY+zwF0v8RMNbrtVniSf+/uLjQbrdTv99XmqZW5cdKjtiAjR7xxRMvhA6qvkwLqNVqmkwmB1MqcElst1tzLUD6IJiIBu12+8AWj3We13BMSQe2fardrVbLggJHo5G1dzQajYNgv+MMCu4d9w3CzOum06m1vbTbbct4yLLM3CBexOD62Vu0r3DfOCeuFTHpWCTxAYzehcC10F7ghTWeERwJXjxDgGAd/Hkhbh0HPzLqkXOnhYNzZRypdw0hDPE66cYJ4h0a0s2kCMQ6XosLwTsg2Ht+RKvfhwhUXkA4dkQgULAegPwRn9vwHOGpfBcHBAQEBLxnhO/hgICAFwrv288bRVFN0q+W9Beuf/THJf00XVm/Hkj6w2/xvm+Jouj7oij6PvezA6Ltw9UgHsdtDrQmeHLrcxAIvjsmCZBw3uNT4yUdWKohejgTCFiczWZ2LOnNuQwkxjO1AYeD7x2HbHp7d7PZNLLnxQrpqsJMCweZBljWPVGiqsuUBs6DCnqe50ZGJandbuvOnTtK09T6ySF+CA24H3xltyiKA4J8XHGG9OGOAJw3LgycDpPJRHmem0CCIMD5VioV9Xo9nZ2dqV6vGwHFPeHXUboJmaRin6aphUb6kZYIG51Ox47LFAnaZgimnE6nyrLM2l64xlarpV6vp06nY0KEz05YLBbK89z2AnuYex7HsU12kGSfy7jN44o54ynb7faBYwVRgmcgSRKlaWrCTZZltv/8OfAZBDRy3FarZffPB0Y2Gg01m03bY/5e4ERA1OLeSDLHDXuV3/G84Xhhv+EC8lkWxwGWuHAYAYqA4K8R1wetNghfXkzwwhYC0/OCp/FdvNX6SS8JCAgICHgHCN/DAQEBLyKehkPhV0r6x0VRPJIk/itJURT9CUl/5UlvKoriM5I+c/264vpnVrWFMEOOINb+H/8QiuO0fQhBp9PRZDKxdoNWq6XFYmGVXB+oeH0eRl6wVK9Wq4P2CEiXJ9qM9aNCutlsjGQhQGy3Wzs+hIsJFQgpkg7aHPwkCk9cWR8CChFcIFCIKpAswhapSpOg7/MYer2eVaD5L73zHNe3cBy3ivjz920H0o0NfTqdWkWf13U6HSVJYsLNcrlUkiTabrfWtkKln3sex7HlRRTX4x/96E8/FvDi4kKtVsvWYzAYmPtAusmugKzicGHEJK/ZbrcaDofWTsAoRqrfvC5JEtujCBS4P/I8NzLPCE/pJhTQOxlwDeCOiOPYxDA/QYT2HiYjkOHAcxTHsdI0takWZFAURXHgzkCo4rlJ0/Qgc4Sqv19jnwPhnxHvauAZXa1Wlk2CIOVbaRCjcOb443t3jm9/ou0CkYugTJ5L76rhnHEcIJQc51Cw7tzbY1fULcf7/i7uRP3n6oIDAgICbhnC93BAQMALh6chKPxGOWtXFEX3iqJ4cP3Xb5L0g+/2gBB3iAMWcAiNdwD4ii3VSz/WUZK1K0g3oxWlw2wFLxJwXEL8outpA8cBkRyHijxEhFwAKuycL+QKIkcvP+MQOR8EBMQIP3YP8tloNCxg0I/bg0jV63X7GeIA7R8EIjJ6ktA/hBTW7Ul2cHraGauIoAPZ8+F5fswhf1gzWhqSJFEcx5pOp0Yuabegso6j4rjXHhKOoMBnUeHmvuIEwf7PXlksFiZW7XY7a8FgTXCS4KbwgZxMO9jv95aZQMWe9UmSRKenp0qSxBwi3Js4ji0rgfPn3LxFHwdCpVLRZDKxCj7n3mq1TFSYzWZ64403dH5+ru12qziO7ffcT8Za8qz4kY04EZgCwXhMJjnwzPngTwQr3w6DoIEDgf3s21T8WFH/bHrHAvfY50hwPCau+PwS9jPHYA1xNXlBkLYKjuefL4Q6pn08R3jq38UBAQEBAe8K4Xs4ICDghcP7EhSiKGpJ+pclfav78X8aRdFXSyokfeHod28L/sHvSbtvcaBSLsn6xqmQd7vdN1n+eY+36CNM0BJABd9X3KnmS7JAN84BUk2VH2ILMZJktvDFYmEWfD+tgEooPeKIFj5tXroJusOhAGmF+PvjrlYraw3w4xg9sYYkr1Yry3RAVKGVA9s9Dgp3v20qwHg8tmov7hD65yFnXAtElnvVbDY1GAxsogNkk4wH37vearU0GAy02WzUarVsj0DsuU8QQNwQZAHw+f6eM5qQ++hdFzgBINuz2Uzn5+fabDbKsuxA9JjNZuZWICuA+xbHsY3b5LU4Djqdjk1s4H5xreSFIF51u12bwpHnuabT6ZsENfYa4xkRS2hT8W01ftIIYoYPPURoYK286+Z4koIP6qTNyIt5iGoIJ4hcT3IbsX8QdvxnEOrpMxgQE3w7BQIPx8aVwvPP3sQtxPPmQ7NwvPhzfh7wQXwXBwQEBAS8c4Tv4YCAgBcV70tQKIpiIWlw9LPf/H6OiQUZAuiDF0l9pwKKhdmHGNJ3zlhGqvTH6fo+zV26qYjiRKCaTc88JOS46i7dECOINL3ZfC6V1TiO7fjYvWezmWU8eIIDqfUuA3ryu92uJFl7QL/fV6vV0mw2M3Gi2+2qVCpZqwNuCZwKXA9VaUnK81yTyUSdTseIlyTLaoDkEx4JafPtDqw75+wJqc8LODk5seth/ThH1oZ+/na7bZX51Wql6XSqxWJxELjJcejDX61W6vV6arfbds20NEA6N5uNJpPJQVsK68y10aZAmCXXsVgs9OjRI9urrCHrEMexOp2OOUkQI2gtQADAIcD5UPVHyCFPg1GZy+XSWhy4Vq6HPY3DgntHW4xvL6Bq79tm4jg2sQoxD1cGogmCXa1Ws/vOXuK5QcRotVr2d5wfPhPBh2zS6oOABjhnfs45X3/XHHx30I7Cs0O+A+M8uU5ECEQnxDkvOnI9z0uGwgfxXRwQEBAQ8M4RvocDAgJeVDytKQ9PBb41ACICOYGo0psNmed9VFshyfSDHwcmevLlx9sxKtKHQQIIB1VbetghRz4zwFvvIe6SDpwTXjTwgMRB+HxyPVXdKIrUbDatCtxoNCxkEJIGcffvYY0g25BgbN3z+dws9bSYzGYzlUolI7LL5dIIKfcDlweVbUkmPPjUfqz2JP+zrrgSOE9EF86Z4MR+v6/hcKj5fG4WddaZAMLZbGb3pl6vq9/vazAYaDgcmpsEkYc8ATIHfCgnwpKf1sCUDj+9YzgcGhH359xqtXR6eqp+v69SqaTxeKzhcGhtCBBayDz3lzGbu91OzWZTnU7H7rUffcle8e05rAf7g9YX2iN8K4Z3QeCsQXDhnrKOuDQQLhDEyNnwOSB+agKuGdptvEuCAEYfJop7wYs+/MGNcNx6w+/9e9gDtIqkaWprRxgjzyH5J74dglwPzs27FwICAgICAgICAgICDnGrBAVJB1MdntS7z/9+EiAHVB2xeDNez4+M9IKFJ7mNRsNs44TXSTchdN42jV2cqjrVZ4gYnw/J9PZvbN20HVBdJ1eB3n4IMOJFmqbqdrtaLpdmne92uxqPxweTEPjjnR60hiB+UJFerVbKssyEAKrPnAtrSGgibQYQUAgy4YV5nltlF3KKuIAYgAjBfeDcEG1YuziOrSIu3VTDcXOwLt51QR7AycmJut2u8jy31yGqrNdrW3/GHeK88O4Azs9nYyDyrFYrVSoVa0tI09TWttvt2sQBWjBoSUCgwD0A2WXKBeuL4OMnHyAG0ELixS3fbkK1HzGH/w1BhuRDxhErcO3ggGAf+/wLJj4gWHnBjXtIFsF8Ptd+v1e73ba2BO9+4HmF5PsRlaVS6SBg0guAfp/4vBWfq4IrAhHP56D4SRvsX8QYgkC53oCAgICAgICAgICAJ+NWCQq+Ukh1mqo/AYSQbIg+1m1fYUaUgKAx1cCHMfrKo0+rp8oOgUaIkG6yFah0Y9nmcwkMpFee8/N96RyL8/fp9r5yS9gdhN2n/UP4+v2+2u229vu9JpOJptOpEazdbqdqtao4jm3NIOYQYgSO8Xis8XiszWZjbQKMF4yiyMYueuLvpy7QclEulzWbzfSlL31J7XZbg8HAKtOe2Pr+fCrYrDdrxlQOQgyfVJFGuECo8NeZJImNgJR0YLNnj3jBChIPoSSo0k/sYJwlExNYH8g/kwPiOLapGX4k42azUZ7nJoAwxhOXC78vlUrqdrvmfGFvAAQa785gzdivCEm1Wu1AcPE5Bzg5WH+uGyLvcxj4XAQl7qnPLPDZGVEUKcsyTafTgzwQL/pw33wmig87bbVaJlLxel7LWFX/HEk3oav+mUYMZO97dxN7AEHGj4oMgkJAQEBAQEBAQEDAl8etERQgFogJ0g3xh3wSwuhf68cp+tF1kCiINkn1fkwcZJ7qN6SVnm1yEvzIxONJE9KN+JAkiRF8D4jNbDazKjDvg0wCJkvM5/MDclutVpWmqVVZa7Wa2u22Wq2WhsOhCSfeiUEbh++T99Xgcrms9XptgkupVNJgMFCappJkZHI6nWo2mx1Y/r24k6apkiSxbAEqv6enp+Yk8On73IdarWbXSjsFVWxcBv1+39wmhPBB/uM4tgo4QXqMQyR7wAtHnphTpea4nlj6gELWzY8HZdSkF5QQMrrdrk1loMXDuwAIvmScKRkK3W7X1gWLP+/1z4EfpyjdtAcB9inigQ+FnM/n1tLAXvPPHsLV8bQMBBo/MYRn0eM4oHQ2m2k6nZqTBCKfJIk5KBDAcF3QgkLOBC0frAnPE9NQJJnTARcCYhn7nN93Oh1tNhv7DODzOrh+PwUlICAgICAgICAgIODJuDWCgoe3lUsyQgZxp8IMYfIEEBcA6fuPHz/WdDq1KQGeZEN0GdeHDdq3K0BUIcNe7KClACs9pAQSx7lSGfW2fOkmpR9ihr0fh0Gr1Tqoer/88svqdDq2Jr1eT9VqVa+//rqyLLP1ImSw2+2aw8Pb1X3+AMQJIp4kiTkXsLxPJhPleW4tEd4NAiGHzGHll3QwjYKWDz4bkrxcLpVlmRHG+XxuIynJOoDEQgzZH/TJIxTEcSxJ6na7FizJtfsASX5O4CIOkmNRgWut1+tK09RIK20UeZ4ftBXQOkH7DC4GwkIRTGgnGY1GWi6X5qIg58ALCFT7uWbEmlKpZK057CnvTsGdgFPnuHUAwQA3D9M+2PeIPExYYJ3JZKANh/vpJ4mw/xBdWAvfnuCnOtC6wXGlm+BPQjVpweAzeaY4f+8UQVDAReH3Jy6J9Xp9kOsAeKb9d09AQEBAQEBAQEBAwJNxqwQFXyUlU8BbsY+D1BAUJB0k21PlpuUB4tRsNhXHsREwqr+4G6iSQ7QRAKh8+8qwt//7fAIS/iFVkg5GKK7X6wPHBaTHuyYgtM1mU0mS2JhFqti+z5wefX4m6YAQIbAsl0tJN33l2OZ9qCRkkzaC5XKp4XCoR48eWahgrVYz4YMKs89G8MGTnA8hfrQQMIKQe4ygAGHd7/dKksSqwzgpILqQSSYJQFYJi8RlQQuGH8PIvVssFhqPx1osFhoMBladRkgBOAWolHsxS5KJCXmeW/AjLRKQbzIfqOovl0ursCMQ0P6wXC4PRov61h7ODVKN2wQBjPvAulSrVTtnxBwEG99uQN4DggbPD20ViEx+7XgWIOW+NYjMCZ67Wq12EEp63KrAz3gefNsR4gMCD6IF4BoQFH2rA++nTQbhDxGN7w4+m+OzZ49bowICAgICAgICAgICDnGrBAVIvx+V6FseyEvwrQuQV3reJdmYu+l0qvl8btVLkvNxIUCqESx8eJ6fhiDJ0uwhs1TNOW8IDW4KSJafXMEfyKIPkfPjKLfbrVm++QMhWiwWdhzIDsSOvATpJiiPqv9kMjEBBpcGr200GkYIvY18Op3q8ePHGg6HFmwIka3VagdBi9LN5Aw/NhNxBgGFUYeMPkTA8feayRUQ5qIotF6vbawlmQqQVNaD9e/3++p0OoqiyMYFIgQg4DDGkUo5goJ3EUBUuWaIMoKDt8cTruhdKlTVERQQoSDYiBTSzcQHWlX4GRVzPmcymUi6crP4vUiwI2KUt+/7NgcyG2gLYt8iOCB6cN98tgAiXKvVsr+TbcC4Rv7QVoDwxwhJxB/EOu+aYJ974Y6cCEQyn4Xiw0cJaJRusk6Wy+VB9sZxaCP7wbtfJNm94f0BAQEBAQEBAQEBAU/GrRIUIH0+9M+3P0BeIWwQLazRvmc6z3MLGoRo0gtOdRKbOqMI+QxIv4e36fvqp7eMQ4Clm152KtIQ3mazqVarddBSwPshh4gmHIfrJxQQAcVnSDDmkGtLkkSVSuXAvk5F3AsHnBcEEaGBz6PXn3DETqdjrQXHozt9NZjfz+dzG4fI/+50OkaeOTYjI7m/tCywhrSwICiUy2W1223bK5DfVquldrttdno/6hJSSVtGs9lUrVaz8ET2AO/xvyPTAVs+JNxPquBcELCSJLGfe8s/IyhbrdbB9AoId6lU0nq91mg0UrfbNadAnueWSUA4p3c++OBJhAkvHkCkj8eK+vGiPmzU5zVA1hmTiejBs+H3gA9WRMCK4/ggS4Q1xsHg9793XLA3cFX44NJaraZOp3PguEFg5Pk5dgchohRFoWazqWazqTzPDwIuEXp4fUBAQEBAQEBAQEDAk3FrBAXILP3ffjqCJ/v0jhOUJx2SBk8IGc0IcYD0t1qtN9nSd7udptOpJFnlG7FAuiFNkC563SFnuBIgjhBmCCwOAqz8OCckmeDh/zf2/yRJDlwaCBDNZvMgMb/RaGi5XKpWq1mFXpJVm71IAVmE4LKGiBeE99FnD7nudrvWerFcLm1igZ9ggchxPNmB+zebzTQej63qPB6PtVqt1Ol01G63TRhCMJlOp5pOp7q4uNB0OjWSB/lkOgI/wz0BMWVNJdm1ZVmmoiiUpqk5BrDDs9+43wga5EFIMhdCt9u19/kRpDhWfH4FQhGhjIycZB8iZNEOsVgsdH5+bi0itEOs12vV63VbKzIUOAf+6z8fQYaf4xjgXBDhyH7w+5J9QysKAoEf83jsJEIg4FlCAGJd2IM+5JJ1IKQS8YBzYR9KsrX2n+n3uReH+G7wog77xItBfN9wzRzXi2YBAQEBAQEBAQEBAYe4NYKCdBPyxz/m/dg3yK8PqpNkhIDqJJVGbNWSjAB51wHkBtJAkjzCAGIAJJvX8jsq+56IeJFjuVwehNTtdjsTE7Cn40zwSfKQ8dVqpfF4rCRJdHp6euAMgIxBgCGPVPnPzs6UpqkeP35sr+n3+3YdvuqPIAHRlGRCBcQaAePs7Eynp6c2/cCP4cRe79sEIJwcL4oi5XluYsFqtdJwODSChytBkhF1Jkw8fPjQCCgjLSHBkHEf1odognsFl4Z3J0B6ad3gOhFucDngtMCtwAQJsiQmk4m1YNAOwLmwRhBvn++RJIndE/Ym6wqBx11ABgaEHtGL1gTCQ/m8drutbrdr4laWZeZsIEuEdgXfQgAZJzsCxwOtG5Is40G6aQVqtVrm2PHPF3vT31MflMhakq/hBQCeST4H9wefj0uEXAT2hxeQOB/aUrwIyR7kuffiDE6f4FAICAgICAgICAgIeGvcKkEB8I94PxLPk1Vm0NfrdbPw+7YFRAYEAX8cCANkjVBDXw2lH95XnCEz/N2H83FOfuQeJNX32Es34wp9xRfi7sdReht5tVq1yQXz+dwIHrkGkg7IGxMVINUQOh9ACVmDfLdaLQvy4zwRchhZ2e/31Ww23zTCzwdVIrhACL0QxDoydWO5XJpoIt0ERnIPNpuNRqOR3njjDQ2HQ6vKLxYLGwUqydwT3IvFYqE4jo3osg5+PCY5DdVqVcPh0MZPUrlGAFmtVpYP4MciMhEjiiJNp1MTwhAdcGVwrxAyqK77FhGcHbzeT0zwewoy7bMb+C/3slS6mn7R6/XUbrfNpXM8lhURAcHAB1bipiGDgmfGiw24iXhuEInYEz63gedlvV5rPp+bmAaJZxqFFwZqtZrtM9aCPAb/zEH+WX8vSPj2JD91he8WMhl4fqSbaRQ8A1xDQEBAwNvhC//RL9Q+TJp9X7j7vXu1/uL3PuvTCAgICAh4F7h1goLvwYa4QRI8gYdkYWWGfFAp9uRnPp9bdd+PSeR/H1fWmZpA2CEkywcaems3LQdY7b1Y4Qm3DyaczWYWFEkQo+8VZ8IDVWRvN39Sv723szP+D/LcbDZtnY4DHVlvzoVRk4giVI2TJFGapjbOEXIn3eQ84JpgPff7/cE4RdbfV6p9O4En45Ks7SLPcy2XS5vGQDsD0wva7bZN7wDkEyA4TadTEzaw4UNOucd+IgIuAfbiarUyEcKTaNpTaEOgbYD1JxBzPp/bH4SHxWJxMD4xyzJrWfB7mP3hW2iyLLN95aeYtFotnZ2d6ezs7CBfo9vt2r7kHiBcIDQhEuEAyrLMnDa4CBBbOBfezxr6zAU+g9+zH9brtdI0VZqm6nQ6lgOBewfBR9JBzgiZFwRDcj20bfCd4Udv8t0wm80Oxkf6fSbJnt/FYmFtF35NAgICAt6EKJKikl7/d3++Vmd7FVEhhcEw7wtv/OJI0Tf8An3yv1sq+t4fvPrhPnwPBwQEBNxm3BpBwY9h5I+kA0s+NmdG5UE8/Kg/KqfHQXHeJUC+AWSIBHpJZo2nIotIABmBbCEyECZHhZPPhcx6AstxqJRT/YRQkvS/3W6NwFerVS2XS81mM2sJiOPYnATeScHn+DU4Hn0H+acyzJq02229/PLLZiFnvKC/B9j5j1sEIHhUsy8vL41A+jGRrA/n7HMxfNsIVWlIqT8P34bBvWNdmNjhwxb5TEi5nwohyarihE5yrd45gEjEfmItGGXqWyuKotBkMjFhAFEhyzKNx2MjtgBSi7h1LHBB3iUdtPLQ/1+tVjWdTi0fpNFo6OTkRCcnJybW3LlzxwI25/O5XQeCHOMiEagqlYqWy6VlViRJYi0SCAkIX9w/BAefhbJarQ7aM7gXCCo8u37cpM/ywImB4IVrAiCq+Qke3n0BaDFhz/PsIDwQcMn3DuIe3wkBAQEBx4gqFQ2/+es0+tmFpP3bvj7gHSKSikj6/K9vSr/+6yRJn/5PflLRo/B9HBAQEHBbcWsEBeAD17x9maotZBEC2Gw2re/cW8l9uj3vhaxB3CCGkFiq3sCHzUk3hNaHuiVJYq4BX0nmXPgMX3FlTCLnBzGUdNBHDrkiOBJXQ7/f171797RYLDQcDm29IG5FURyM7ZNkn+PHV0K0y+Wyer2e7t27p3K5rIcPH5o4ABH0lXzWgOo67gPvyiAMcDQaWf4Aa8h/vdMDsuozHiCLPqSRcEJeixABGW61WtZCQVsHEyIQQbw4sF6vNZvNTCDyIZxUzQkM5Lp8fgZrhLODe8U5IgBkWaYHDx5oMpnYujGqlPtE0CFTQSDG3vrPiEacLVyHby9hwgRkud/vW36Fv3buV71et+kLiEE4A/g9jgDcO/4POQjeOcSe8c+Mb7khT4T1Qwgik4Q15rp53niGcb0givlJG4haCAasH64VnhHESf5LKwef/yRxIiAgIECS5v/q/+RaTAj4oPGjv/sTWv3h5rM+jYCAgICAt8DbSr5RFP3XURSdR1H0g+5n/SiK/mYURT9+/d+e+93vjaLoc1EUfTaKol/xXk/MZwlQBYbgUTkkZA57+HEvNuSd41yf38FkhkajYSF1jUbDKsI+0wAiBPHwZFqSkRc/6g7RoFqtWkAeRB+iQ5sA10LiPVkG9H+v12tNp1ONx2MVRaH79+/r5ZdfNhJLCwOZARAmRvxBwDgfPzkDFwPiTKvVsuwA7Ofdblf9fl9xHB+M0/N98F50ocVgOBwaicexAGGVZKP/sKBzX/1ndzodE20g5rPZzAL4EIoglZBjiPloNNKjR4+U57kkHewfP2oQkYWfIS7RBtJoNOz8IZ3e0k9ryng81oMHD/TGG29oMpkcTPuYTCY21UKSrZkXFC4vL7VYLJTnuWazmWVmeMcOAgL7FAcHFXicCmQh0FbANSIsUfVnTCJ2f3IjcOXQYsIe4t5xftwLhJfjvcE+Z38iHCD4+LGhZHUkSWLTWdiXvnXHj7REcOL59S0Z+/1ecRyr2+3ad4V0E5J53MaEc8KLGbcFz+q7OCAg4BDlTkebdqiYv4gI38MBAQEBb8Y7+X/EPyXpG49+9nskfWdRFJ+S9J3Xf1cURT9L0m+Q9JXX7/ljURS9o1QziIB0U+mWbgQFPy4Q4ki1k/dAuiBcPsyN1x2HBEoycuUDFzkG1U5v6z6eivAkMcHnM/hsBvIHIPpkDNTrdZ2enur09NQCGP2xIfKMhRwMBka2IZFpmqrdbltVHOcDeQiSjPzzx0+IgOwjNiB8tNtt9ft9lctlC9VjTY8J2X6/V57nOj8/13g8VhRFRsj5fIQSWgWSJLHfE9boJ2ywDvP5/GAU6HEuA+vMvWc6A+frWwh8cCYuCUlG5rn2VqulNE3N9UBoIBVs/mw2m4Pxlj64ElcE99ALSuwXhCuI/XA41MXFheVHeNED4WC/39v0B1o/er2e7Qn2NW05iDfcMy8UHQd60qqAuDSZTExAQKwju8CLVIQaIjAwunKz2Zi41mq1rE3Jj7lEvGk2mwchowhKiCk8ez6w1e9FRAH+NJtN9ft99ft9c7r459J/1yBQIEjx3NwS/Cl9CN/FAQEBXx7rr/2ULr4muBNeUPwphe/hgICAgAO8bctDURR/N4qiV49+/Gsk/dLr//2nJX2XpN99/fNvK4piLeknoyj6nKSvl/QP3snJHOcm+CR5WhR4DcQUYghpxC1AS4EPIcSt4EMefdUZUofLQbrpcScvASHAh7bRf+7t2FRzIVOz2czcCVRKOe/j0ENIEJMcJNk5Yv2GIPrRle12W51OR6+99pqWy6VVjLGpQ7YgYJA0ggRZHwg65I3jSjoIQ6TNAhECUWi1WpmbxJM/xJiiKJTnuWVFMMIRMQIS5/v8JZk9nvM57umvVqvWQoBAIcnW07te6KkvlUo2reF4eoWfKIBIg0jFZyJYbTYbjcdja385zrLwUwhwVFDlZ5+wvlmWSbppGeAesw94Rjx573a7Ojs70507dyyAlFYfiDeCAW01VP0h40mSWKsF4hqOBUQgP9KV54r7SssPn8X1IA4hVHDNiHs+o4N2C9YVZwuCIPvOh18yFcK3VCC41Go1cx/VajULmuQavCMJoYdngUyO24IP87s4ICDgrVF/kKn58FTLuyE74UVD+B4OCAgIeDPea4bCnaIoHkhSURQPoig6u/75fUnf41732vXP3hG8Y8BnJXiC6jMOqObO53Mj8D5AT9KBi4EKP8QGR4G3R0OAff4AffRxHFtvOiQQ94TvtfbBetJV1ZvzlKQ4jg9GOVKhh6wlSaJ2u63Hjx9rPp8fpM3Td57nuVnLpSuiNRgMbGzidru1FgWf3l+r1cyJAGFut9vWKoBDAGIIWW00GiYCUJH2ZBLHgRcZjt0QBDjiykAswB0ym80OyDS2f6zykqzX3o/b9MKNJ8NFUSiOYy2XS6usc3+o7Pd6PZu4gKuDa5KuRAwvmvj+fD/604dtIj4x0pCwTc4XQov4xP0lo4Dz8GGF7NXjEMdKpaJer6dut6vBYKCTkxMTSBC+arWatdL4fYSwxTXj0vCEG7cK9xvBiz1Gpke1WrXcDZ4xn9GBAMHzjTPBj3pkH3h3j8988M8i+0OSuSp4jjlPzqPT6VgGBGIO54Ygw/UiSiBmeGHqluID+S4OCAh4a0TrrcqbZ30WAbcI4Xs4ICDghcbTDmV80sCkJ/oCoyj6Fknf4v5uBBQnAL3w/F66SeynHQH7tZ/s4I/pK6lU3JmSQIXUV5E5D1+9Z7wdpIzqMGIE5JPWBH8tpVLJCDr93EyV8BMSIJWXl5c2BvHi4sKuhXXY7XZ6/PjxQWAiAkEcx5rNZmYlh6D61gFIHP/tdDq6e/euiRFMIpBkkwsIAFwsFkbuPcErisKS9Hkf54YTAqu77/v3wYqXl5c2ohDRA7dCkiQ2VUHSm2zrPs/AOyJoLSF0EXKLo4T7ifOA3yM4+UkFfn+QKbBcLs0FgFDAHmAaxnw+t/XxwpN3XrBH/VQJWhb8+ZIrQThlpVKxfAQEAvYp58Y+63Q69tz49gYEN36Gm4VsChwBOHpoQWBcarVaVZqmJuoQuIjTwD9TiCg+PwQ3gXcfsV+5Z35aCS0yPCsIVY1G4yCc1QemMqUCkQ3nz2q1snXmmceVgXMDkeU5xHv6Lm6o9UGeU0DARwPrjUrrZ30SAc8BwvdwQEDAC4H3Kig8iqLo3rUSe0/S+fXPX5P0invdy5LeeNIBiqL4jKTPSFIURYWkN/VBQwwajYbZkakQIyh4EsExfHXWZyXQ9w/hpC/fuxggOxCNNE0PWhHoh/djKBuNhrUzQGq5FiYJQDwhYp6kSTKBYrvdqtPpWPsABBlyuF6vNRwOFUWR0jQ1woYAQvXV5wT4Hn5s6zgN0jTV6emp2u22FouFLi4u7Hf02VcqFU2nU83nc7VaLZs0wP3xIY7HFWUECIQYchB4L+IDRBbnxGQyMQJ9LCBA1qWbLAUfLsm99ZMycApwP3wlGmHKj0CEEPO57DsyCBAIfCDlcrm0e4joNJ/PTQzD9QERp8WEMEDpprUGUo6QgADBsyBdjfq8c+eO3SMyH3DYsG+KolCn07EsEPYEZJl9Sa6Bd3wcT78g6JPzxeUym81sTyZJYs6d/X5vWQqstc9BYT0RDxD+EFi8oMjaME3jeAQlIhTtTqw7zwffBd4d4506PpMhSRK7j7ccT/W7uBP1Q2N4QMDbYH+aaj141mcRcIsQvocDAgJeaLxXQeE7JP0WSX/w+r9/yf38v42i6D+T9JKkT0n6h+/mwFSzfUUVEuRbEwg49P3+2O2xizM5QZK9Bkt5FEUmCkA4pMNxhgQd9nq9g37r5XKp8Xis5XJpVV4/Us+H4fEZnjTiGuDzIPq+bQN7vq8iR1FkIwMhyD5U0FfZsaB74u8DC6MoUrvd1t27d3V6eqrtdmvBe154oUWB62q328qyzFwRfsyirypLsuo4FejFYqHpdKo8zy3ssd1um8CBHZ/Ri1SgWSvvRvDr3G63rcUEwg3Z5LqGw6G1vEB0IaC4Onw7gBeiWGfINNey2WzeNHnA53UgnnButLyQG+EDPzluu91Wr9dTp9NRuVxWnuc2EpOMCNa+1+vp5OTEBBl+R4sDe+P42fLhoQgvXCd7cLvdmmMER4u/Xu8m4Fh+ygjrgyjG/uM8eOZw6SDq8DqeNQ9cGNVq1aZLsNclmfjDeXGevAaBjdBNBC2+M7hO6WYCx3PQ8vCBfRcHBAQ8GdFPvKb2T3W17j/rMwm4JQjfwwEBAS803lZQiKLoz+oqbOYkiqLXJP1fdPWl+eejKPrtkr4o6ddJUlEUPxRF0Z+X9MOSdpJ+Z1EU73juGgIAPc1YvyVZRZJ/8FMBpeor3TgcPFmheorAIMnIOinukEeIKnZ8qt3X1ybpijgTsOit4T6MEZJEAB/TIejzhthybAQGzoW/c3xIJjZ8yM9yuTwQABBLWMf5fG5tCN46jw2cdodyuazRaKTRaGTnwPlLVxkQkqwynWWZ2eGZhsFncG/8eEiuZT6fG3FHbIjj2Crj3M/1em2OD+mmPYB7hLiElR3BwrsRqGhPJhM9ePBAFxcXury8tOo254TzAiIKoaUNgOujEk41nbaSOI4Pgigh0N7FgmuB1ydJYq+B9DNKsdVqaTAYKI5jjcfjg9wKn8uAmFCtVk3cunPnjl2jXzfuDW0OtGvMZjNNp1PLaOC5gFj7PAyELt8WABC3eD4YO4k7AReKz2So1Wo2jSLLMnPw4Epgff33Au1CiFeQfcQHPzkE0QJhzI8E9Z+PWHgcyIkz6Da1PHyY38UBAQFvjcssUy3f68mO9oCPMsL3cEBAQMCb8U6mPPzGt/jVL3uL1//Hkv7j93Iy/EOe3AEq3ZA6iISkgwqmr5YiDkBAqPJCLPgDufWkVboJVJSuyBFVZSYF4FCgkntcrfXECVLmrd3Y7ammQzap6EIa+dNoNGy0Hy4LAvTIZkB8GY1GJjD437MuXF8cx2q32zo9PVWr1dJ8PleWZVosFgfVenr/6Vsn14L7gcsDwSaOY6u8017gpxfM53Mjic1mU2maHgRvQkSn06lV9tkXiA+S7Jp8cCcCB4QUUWA0Gmk4HGq1WpnAg0BAICLZGpBQP1LQt85QSV+tVprNZgevgcxCkj05JV+CPYRzBacEhBcRpN1uW1sHeRYEX263WzWbTfV6vYPzgYRz3OP2Ct8e0Gq1TEjhPgLWA/Gh1WqZeOVFDVwTOGx8bgf7zwctItDwfOLG8JMeEL0YT+mnsnDe3EMEGEavTiYTLRYLa+PB+cKzxx6cTqf2XCFQ+EkyfiyldDNV4zbgw/wuDggIeGvsf8nX6MEvKukt2uEDPsII38MBAQEBb8bTDmV8z/DJ7JBLSQcEBiIdRdFBr7T05pGT9KFT5Zeues6pDvu+eqrFtD8wSQGiW6/XrZ0gz3ONRiMtl0s7FoC0SzIBhP5+nBOQKlwLpVLJiDbnhIix3W6tJ95XkX1vN/3o6/XaKtVUmJk6AKHCNl+v19XpdIzQjcdju3ZcGpw/TgBCFWl/gGhfXl7q/Pxc2+1Wr7zyiq0JRMyn70OIZ7PZQa7CaDQyAQLSNx6PjRRHUaTT01Mju5BzPgdizLpzT6Mo0mQyMQJKOwQiDPeOvQcQeRASqIpvt9sD4SVJEm02G3Ni+LGFXtTg+HEc29hRBC1CQhG5EIG8sEV1XdKB64N2hXq9bnvz/PzcSLx/LjgnP32E9hefN4AjgcBH2kb4uSRzdCAusSf5GS4P9jz3lvWmnYhsDAIQoyiyNh32OPkO3G9EKpwPiAm4Vlqtlq1zo9Gw9ilcGTxDHBNRgs/34ptvwwkICAgApb/7T3T35Ov14BcHh0JAQEBAQMCtEhS63a6azaZms5lVxiVZ5RB3Aa0KWJf9eDmqsGmaqtvtajqdmqvBV5SpflLlZVQePdqQLB8MhzuBBH0qzn5cIU4EhA/yGDzpZPQdlWI/CpOef98bDlmTbnq6fb84bRi0JkDyOC9/bpAlyNlsNlOe5zaBABLFf6niIqqw7tjKGbfItbJ2VLNxYUASseRDCPkdAsZisVCWZVZx9veE9hXEJcQFXBnSjRhApZtqNKR1Op0aafT3zYcA+l5+P0kDJwltIeQK+DXe7XYmYjDBw2do+IkQ+/1eaZqq3++bk4F76HMiaOdgDXAGRFFkUx5wxIxGI5v4gUOH4xEOyrjVLMtsbyFy+c/iunCDSDJSjrPBB6Cyz/3n0nbhP4NcA96PYMPelW7CHrn/uBNwzzACE9GMPd1ut5WmqU5OTmyf1et1EykRKv3YUR9eiRiJQHOc4xAQEBCw+xd/nh58QxATAgICAj6SiCJFb9PyWqzDqB+PWyMovPrqq+p0OgfkGPLhSYl0QxohsBAKiBakCCHB5yNQFaZ6TDjfbrczNwAWdElmf8beTxWZijfj6nwPvh9LCdEEVJSxhPMe3o94gsUbGz+959JNCwjHY83IS4D40kbhK9a8n9A6Xk8PuZ8oUa1W1e121el0bFQhLRtJkhgJ55oZhyndBACS7UAuBKSNa59MJhqPx3Z/8zw3kQDBKI5jOw+IPNkFEHzaIRAW/NQA7PFkSLB3cESwxtJVXgT3LE1Te68PbaRqzxQIPyITwo0QUKvVbF9zbrR2IAgMBgMj+UxnQLjyAgyEnwyKer2uu3fvqlQqKcsyawfYbDYW8lgulzWbzXRxcaHZbGYknbGJfiSjzxtAHFmv1wejHWnT4JnjmshJwInBGFBEDJ6Ver1u6xNFkTk22IO4S/wziLDGHsVN5Pcs4sRgMFCv1zMRjDyJ7XZrAgHrCPgu8KM0fRhmQEBAwJsQ9ISAgICAjxTKg6uk3f0n7+vHf1P81i8spJ/xB35ccgXhYrPVPs8/6FO8tbg1ggIg2NC7CCDSAKJFBRmCAmE5DlKEPEJuIF78HHt7HMdK09QcD35MoXRFNufzuZ0PxIvPIujNW+s5T0lvquR6covIwfvIB0BI4DyYPIGQgWvAT2Lg3LwwQHWcc+Y8eB1r4KvdiAKVSkWbzcayIxirCMk8OztTkiSSZBMgIJiMPaTqzblVKhXN53Mj0bRDIPhAfAmkJEdCumktYG24p7hPEFwQTvg5LgzuhRepuFeIEJKMkONCYHrCfD432/96vVa73TbhYTqdWhYGjpCiKDSfz43cIjqwvs1m03r7ue7lcqksy7Tf7+04CFHsB0/iccawb8ic2O12yvNcjx490nq9Vrfb1Waz0Ww2s/vgpyWwN3DKMCq01WqZqEQop3eaeBcN64zgAlHn3FhT9ieuGx9g6r8LPHCfcE+q1aqNxCQ/AXcS9x3xgXvKZ5GlgZDIOvrvhuPvnoCAgICAgICAgI8OKh9/RUW1os/+zjvv7A2R9Nn/06cOfpR8saSXv/01FZOpLifTD+AsbzdulaDAqD2q2T7s7pgYQoLoC/cEC5LtA/d2u51V2CEs3uZMeBsEi/8iBvB+2h3448f0QdxJwScLwY9W5Lyx+nOePjCQ693tdsqyzMYMxnGse/fuqd/v2+shboTYkRdBZZ5Rj76v3beJ+Ko05wrRo7ffixbYzSFeEFrGS7K+kFlyEHBJQOLJUoAYQuQJASS/IkkSDQaDA9LnBSIq/f7eQQipulP9R3CBNJMV4CvgPoSR85hOpzYlpFarWSsGVXWq8jgecBVQpZ9OpwdWe9aj3W6r379SQ8mwQCiCBHvHB8JCuVy2e0uGA8JEo9FQt9u1tgMmkszncxMEaBOgio+gwz6nFWY6nVrQIfuFqRP1el29Xk9pmlp7APsdd8hqtToIZ/QTIvxYVJ5b2g8QCREUfPgjog9rQqjier1Ws9nUYDDQYDAwUca3/rD3ASIKuSKsGfs2z3PlL7DaHBAQEBAQEBDwUUb5Z/10ffa39VWU3/61Xw6zj+31o//mS+r/8/s6+b7x1Q9/7Avau6loH2XcGkGBSiK2farEEByqs+v12qznvn+bSimVZ4g2VUj61v1IwEqlYv3bTDKgyuot0ZIscX+z2RyMp/ShfX4sJW0bOCd8xkOpVLIwOezgnDOOBsigJPV6PXNPnJycqN/vazKZWBUeccLb78kxQEjgd7QlQCj9eEhPpjudjk11IEAQIgepxdWAu2A6nWq32+n09FSSjMSmaao4ju11EEVyBFg7yB7het41QoCjFw18aCRuDq7Bt5AgdCD4IKTgqoBQ+/PwbQ2z2cxcEewp74zxJBghI4oiy0SYTCYHwY+0UzAeks9h3x2HMeIm4fy8YyDPc1sn73iAuGdZpuVyaSIS6467gNYc2n4Q7rybB2cB7gsCGxllinOHNUZMwHHAs4oDB6JOOCjtHAgHTIxA4AHcX98+4tfLC3pesPIjMLn/3o3B/ZJkgsV8Ptd4PFaWZe/6uywgIOCji/LJQOOP1RQmPAQEBAQ834i+7mfrx39toqL89L7PRz+70Ohnp5Kk+3/n56g+3D61Y3tUf+x1XT46/0CO/V5wawQFKqR+jJ0nCqTM0+MuycgcBJEKJgQZe/SxAEFl3Vfm6ateLBZmdYdwrFYrq8xCRKgQ+2kOkBuIpO/V59zIFPDhfhyDnvBqtWpVXLIJ0jTV2dmZWq2WrQ2iBsTLj/9jHXy1PkkSdTqdg3YMrpH30LoBaYVo8ocKu3docK5MxCBccbfbHbgrsiwzoulDAiF7rDV7oNlsqtvt6vT0VPV6/SB8D8GE6RO4HnwrBJVrL4RwPyDhvA9hB3EKYsw5Q+jZaz4kEfeFDwktlUqazWY2FYLMCT++kc+nBYL76ickSDcZIJB5Pg/iDWnHOSLpTRMN0jS1CRoEg/qwQoi3b62gxaTb7R4IKJ1OR91u18ZfQrx5RnEQ0WaDsLVerzWdTnVxcaH9fm/iB2tZrVY1mUwO2hQ4V9pyuI+8h2wUgIPJT3Vgf3MuCFfsQ7+PCfPMskzz+TxkKAQEBBxg//G7Gv7cICYEBAQEPO/44je2ta9/cOHbr/+SkqT6B3Ls3g//NJ39D4UuHz/+QI7/bnErBAWq4liTIZk+W8CPcvO98VQtd7udtSP4PAL6uSFyPh/B2959BZfj+qo01vokSVSv15UkiVVCIe+QJtoPaAegDQPCyfE2m42azaZlPSAK7Pd7s9lTfYeAQgIRVSBPvgUEgkTVPYoi1et1dbtdtVots3HTwgDhplpbKpWs9YBKMQIJggHiB2vsRzEy+pL7R4UbhwJAUECkyPPcJjYQ/Hj37l1zSvhcBI4L4fRiDK4E/qzXayOlCAxeNEBEoEqOqwPnAmST9gYcA9wXPxLUjxxlHChuAN4LafdTRJhcIsmIuM/vIDeEsEWCN2mDYFoE+5U9QPAhQhZjGhHPCB/0eQYIFuRn8GxEUaQ0TY38cw8R23xQJxMXfK7JYrHQcDhUlmUmBPH8NZtNC+9E8KIVgUkZCEacHy003C/OB+EJYck/zz57hGeFYFa/13l+2+32B/fFFxAQEBAQEBAQ8KFj841fp138/IrD459VaF/+Ct39cztdjsfP+nRuh6DgR8wxRYBpC4gFkg7s09JNrzYkk+wF6aZS6QksRPA4dA/SBLH2lV3OC4IRx7GSJDFLPmP+vIjhSSpOBj+CjzDC7XZr+QZeCJBk18JxIaUQRh8iiHDgRwD6HIlGo6GzszP1+30jVmQ0IG740ZtUcakKz+dzs/2zthAyzpf76CdnxHGsTqejJElsrREBvICEAIBFnWDL09NT3blzx0igF4b8faPnP4oiu3ccD/LIWkFYfUsLBB7Rwk+E4FpoKfFtCxB+vx+9+MDkkEajYdV47rPPy1gulzYmE3LMM+DFsmNhDcdIt9vVyy+/rF6vZw4bzodjAX5GmwWBmbTucH+Y7uBFD1wrCB9cb7lcNrGL9aSlxAdbcg+ZCsLraSFC3PCtSjxnfAf4sa6MsqTFyLuNOGeeAZ5/9i+Concjsa60NfV6vSAoBAQEBAQEBAR8xDD8yqouP0B3woeB6c8odPnNP1Mv/cl/qv11jtmzwq0QFBAGIHC+8kuFWZK1BiAg4Fbwc+0hZNvt1kiYdJPqD4HwRAuyCWmh6g589Zl2gCRJ7HyppPp2Cl9B9aF3EE7aISTZKD1ILJ/JtVApTdNU9Xpdk8lEo9HoIIiRkX4QNnrIaXM4PT1VHMdGWiFOWMP9OklXAglVc/IgsLgzes/39ONaQOBBACGLgfBKCKsfE8j/xsFRqVTU6/V09+5dpWlqrz9u6+A+Er7XarW0XC7NGUD1nFwO9op3pnhi6cd8QvwlWVsA7RQ+tJF95V0hXEuz2bT8BxwsfhQjbhQ/7YIARNp5fDBhs9m0lheEnGq1asGVfkIBn8N9oXLPM8R5sre8U8dfI04LXDmEFR47EXz+B206ZJ6wJ/x0ChwgXMdqtdJ4PDa3DZkTjUbjTaGKjUbDxDpyJBC8EEXYAzhnfLAoroY4js05gnuFXA/W2Yc4BgQEBEQ/+gXd/e6v0sNfFOZGBgQEBAQ8W8xe3Suq1aQgKFwRveVyaYTDj36E+ENAfNUYckk4IiRM0psmQUCkONbxmEZfafYVTMgNr/ekC3eCt3TjOqAPHMcF50L1GvIIofIVdMQEzmUwGOj+/fvqdrvWh04CP0S90Wgoz3OrzM5mM00mEyVJojRNrdJK28B+v1eWZcqyzGzxkHMcAQgX0+nUSGaWZWq1Wmq321bJ9aP4uD5+7scQUtEnX4B7DvlDqOl2uxZa2G63D9aMDAREJAQbPptqP5V1jo0YgHPC2+3ZU4gpvqLPvvJTRvzPIaeICz6PgZGX5HPgRmBPITAgDLGX/eQR3AC0rDQajYN2FqYTsFfYi2RUIAYx7YHzYx/4CRX+eUBc8WGLOFZ4LevQaDRsnXHwIIaw/32+CetGO8J+v9dsNjPxB2EMUQLRDLEJ50Kn09F6vVaWZSZsdToda+9AXGHdfahqu93WYDBQp9Ox7wtEKO6pD4QMCAgIkKTo1Zd18XNLCqGMAQEBAQEBV7g1goJvdYBUSbIKKK+hgulxbD+HpHMsSBKCgA9tnM/nlkaP9Z1AOcgqBBCiB9lAAIEwU0UlXJD3+VBIT9KO2wY86eIakyTRvXv39NJLL6lcLmsymRhxRlDwQoi3emM7b7fbJnjQi0/a/2q1Mms3xBbCPxwObeQh1WpJRmpxcfgRhVS9sZDjuuCcETOwv1Mpl2Thk71ezyYgIAgdB09CigmApLo8mUxsXxDKh+CEKEEbCnkW3lkB0fejQamq07vPvYKc+jYP2lOSJFG/3zcijAuFz0Rk8O4E7iEZCH4iSZqm6nQ65tphdCUiDESY4EEIuw8ApdWF++FHYyIWsD8YF0q4pm+/4BngfYglkiwbAQEDxxHPKevEdXnhI8uyg/3GNSB84CLh+eXv5C0wMYLjISpeXl4qyzKbmpKmqYkzPjSVaSa+tcQ7YgICAgL2jcpz3XcbEBAQEBDwtHErBAWqv34uPD+L49gq7lQdeQ//heBAQiBuEHOIN6MHAUTSE2WszrQQQDhXq5URNUkmUHgnAYTOty5Aerw9H/GBKq+3zGNRp4p6//593b9/X51OR9PpVNJNBZ0q87G7gmOfnJzozp076nQ6VqWlzcC3kvigOz9lgsq/D5cE3Idms6l2u30QmIdwQ59+lmUmHDBOEQLqST5tHe122wL9vLuE93gnwWazsVDA1Wql+Xxu92k+nxuZl2T7h6o6bTM+zBPLPE4RrgWLPOsuyX6GUIRNv1qtKk1Ty1tgn/gRmeQU+DwNQj0hwrTTdLtdDQYDtVotexaWy6XSNLU2EsQM7hHkneDF4xYfXo/whZsAEYDn4NhRgTsAsYLwVP9seLGKcE/aG3w+BM+On4aBcMSze3l5+aYgUFoeuH+Xl5fWDrLZbDSZTJTnuT2TtO1cXl5qMBhoMBiYqMQzwDOO2ONzOgICAgICAgICAgJuHW6Jvn1r/rVMSwAVbEbXUSmF+Pne9uORjH6ePNXN+XVPSZIkB+Tfh+IhSvCZPvhPkoUBSjIS6H8GuYZw+SkMkH6IlCfDkEwEBirkELg4jnVycqJOp2OhgaTe49jgmrwAQOWa/n2INuP6drudEbhWq2Xhh8Ph0No4EAgIxeNeQOBoHWg2m0qSRLPZzIgfrQSECWLt57q8k2P6/2/v3WNkzdP7ru+vq+vWda++nZ4zM7sza5vFidBiwIKAjCUQcSwkEwkJ5x8sBWQiEgmkIGHLiBik/BEgQERE0AZbm6DIDpITYqEIxaAgI9mLvU7WmzXOXjwZ7Zw55/Sl7reu7up6+aP78/RTPeecuZ3prp55vtLRnFNdXfV73/f3vprv9/k+32cwsCo2JJN2BAQDiN7p6emK7R1yDcG/OSWCtpJcLme2f9+eAdnudDoqFAomAiCsIP4wnpLRlQhHXCvEo3K5rPPzc5tswLoQk7ygwNq9WwVS7vcn2QkEHM5mMxOGfIsPozk51tlsZhX/+XxuQg8Em0o8rTv9fl/D4dDcCNxL3kVTKBS0u7trwaCITexbHD20+nDciFj+vuXe4lhxt0h6T9gl6/TnhBDWfr9vezWfz2swGOj4+NicPDg+aOXxmR4ILbgtaC/hs9irgUAgEAgEAoFPD9KFLsn4PTaipgvpn/pLj7RYgykP7ztkPaX0iymlo5TSN91r/3VK6R+nlL6RUvrbKaXm1eufTynNUkpfv/rzP33ghVwRLog11UE/OcETEklGZCSt9ExLMjIL6a5UKkaUvLAAaWZyAxkJEBaI+s12C1/tla6T6r2dHyLE+xEW6vW6VZel6+oofeusq1gs6uHDh9rf31ehULBxg5wTxJThcPie4ErcFiklDQYDdTod9ft9I6SQzuVyqXK5bE6GUqm04gbI5/NGVgnCq1ararVa2t/f197enh1HpVJRq9Wyirkfn0jmA1VtgvnIquBzcRP4VglIsXQ9TYO94rMIcECcnZ2p2+2adZ794cMYCenzk0G4Fn58IMJJu922kMBms2khl3xvsVhUrVZTtVq16jd7i5YdP96TNQ4GAxNYcIHgZGEPcX59yCB7GJKMyITjAaFkOByaAETuAtcVl8ZwONTJyYkFFvr7zYszntjTasC+RYBhYogX1Pw9dPM6cr2yLLOpIIz09DkVZBxwn+GyOT4+tsDM+Xyuk5MTdTodc3kg1hUKBcvmIMiRVpBer6dut2sjPn1riw9nvWvc1rM4EAgEAs9GPIcDgU8HHvz3v6Fi731p8NpiY570A7/Q0eKdR3e9FEkfzKHwFUl/WdJfd6/9mqSfzbJskVL6C5J+VtJ/evWzP8iy7EsfZhGQJsgc5IAqNKQFQu4zDah2evIDoWGyAoIB//ZjGslOoKqMjRqSxH+9MECVHtJEj/35+blOTk7U7/etR5510Qrhcx34TOzhN7MaHjx4oDfffNNIO+MbCdeDMCEOcP6o7kPIIOXkCZB2PxwObXKED8aEfOIIgGRxvhqNhur1uur1urUwcF69iOJzCzzBlGQjFHGjQMKlS7dFuVzW2dmZhUuen59b2B9VapwM3W5Xs9lMm5ubarfbOjk5MTLO3qEi768x17Nara709EOCsf7jTmBChq9yMzKR1geOp1Qq2WcTWoj7w59fBAKOHaEK0g65xTHggy7JaqhWq5JkAYz9fl9HR0c6Pj626Qdkc/jvwH0ymUw0HA6tfQKhCqcAoygZxUpFn+NfLBbWdoJgQxsPQgDOC8QbPptz4bMZED18OCTXk2MnE2E4HCqXy9kxHB8fS5JdZ44FZw/7i9YK33ZCuxXiD9dojfAVfcLP4kAgEAi8EF9RPIcDgU8FCn3prClln5CuUBhsKDmj63z75YR9b06T3vhbQ138/ndeyue9DLyvoJBl2a+nlD5/47W/5/75VUn/9sdZBEQJkg3x9eGJ9L7zbx/MCIGlesrPUkorKfh8ZqPRMDJETzaTGyCakqx6TkUU8uTXxxoJl4OAYEe/ae/2kw6wwGNB9+6HSqWiN954Q/v7+xbohxjAH1wZiAneEg7xZ0oCRA7RAZJFKj8Eit57bz/3GQG4EGq1mrVAcLw+nA+BhnOKoIAowbUhZZ9qOa4SBBqOi+o15wzSjrgCeffTGnwmRUrJRmjS159Ssso+opEXqZiQwVhMWgeYDEE7B0IHYhgBjltbW+Zi8C0qtAx48Yc9zflir/gwyJuZDog6i8VCT58+tfaJwWCgk5MT+3cul1O5XF5pVdja2lKpVFrJkMAJsVgsVhwufjwrmRi0XPjpK6zbV/W9m4K9giiSUjIhgPYU9ihiFv/GmYCwhosDAavX65krAaGJ49rY2LD9SPsDx81kB8QO7kfuEf88uGvcxrM4EAgEAs9HPIcDgU8P9v+H31D6D/+Iht+3fGmtD4XBhvLDy7+/9jff1uLdx/azJ3/2j2jy6scTFfKjpNf/j6my3/m9j/U5LxsvI0PhT0r6m+7fb6SU/qGkoaT/LMuy/+f9PgDbOv9jL12HyhH+hgCA3d/DByX6sXb045fLZUmyVoB6vW7kxwfAQch9CBz9/b5fHMLlLeDYvXEhkHmAjZ1ef9wUuDII2PNV/HK5rNdee01f/OIXTfyAtCEmQLwhQJAu6ZKc7+3t6ZVXXjFSSO8/IgRktdFoSJKGw+FKiB0tApLsPFQqlZXedirHXC/OT6VSWSHenCOEDcYB+s+AmJLr4EcfFotFtVotExBoO8jn85pMJsrlcqrX60YsPXBjbG1tmeWdvYIogeDgQ/io1jNO0zsJ+J7T01OVSiU1Go2VKRgEBNLC0ev17DvYF37iiG+FQNzAGVKtVo3Us/9pEWm1WsrlctauAAEmS8ILE1wzBCdaCwjM5Fqzp3ywJnvTCz4IZoRLsv9wuvjJK340p/8eHCiDwWAlCwSHCUIOYgfuEQQm9h2tC8vlciXrwq+be8Df575FA5cD7RO4f7im9wQf+1kcCAQCgY+FeA4HAvcIe//jbyj37/9LynJS/4sfPeFwc5xUfUfa+cZY+uo3JEk3U7he+Uu/peM/+S98jNVK7W+dKv3G736sz/gk8LEEhZTSz+nyfP2Nq5eeSHo9y7JOSumfk/S/pZT+UJZlw2f87k9L+mlJRuKoEhK8J8kcAVRIISWEKfo+a0jFTTGhVCoZUaAyK13nNkDIqXITZEglnIq6T8eHEPM+vpdgPHrAGT8JQeH3WQPH51sgms2mvu/7vk9f+MIXLLmeXIPZbGZ5BBBGBA7O4fb2tvb29tRoNOwYINxUgrHiezs+BI9Mhmq1ahVzbwU/PT21ij7OEUQXBAPs5YgchO5x/mu1mokJ/X7fqtqEGkJIyYzwr2HzR4ihgk8AJ8dFKwkiR6PRULlctso15+Ps7GzF7u+r9bgOyJbIssys9YvFwnITmIwBqcUJAQGez+dGwP1e9yIPpBpHAbkVN7M4IOmFQkHz+dxaPhAj+v2+JpOJ7UnEBAQ3JlHM53MdHR1ZdoLfx7Qg4XJgXd7NwDH70asIgj7jQroOM/V5FVz7s7Mz7ezsKMsydbtdjUYj209eRODZ4K8FriDEHVwxiGKIeDdHgw6HQwuh9JkkXGsCXdfJofAivKxncUlbt7XkQOBeInc0UPXthsaffznW1cCnB/EcDgTuJ7b/59+UNnIq/DuXZP+sltT/p18gLmTS3m+vvlR5Olfu7/+DF35Ptlho58u/+XGXu5b4yIJCSumnJP2bkv617IrtZFk2lzS/+vvvpJT+QNIPSPrazd/PsuzLkr4sSeVyObv6TLM1U+2GSPs2hhvrMLLvMxaozFIt9333PmeBav9sNrPqpndBFIvFleqppJWqq6+83pxAQEXZOy88wWcUpre7F4tFPXjwwNwJZ2dnVjH1hB+iDCGihz+lpO3tbVUqFSOCiA2k2pNXAPnqdDomrAwGA3sf60UwoGILUeaYOBee7PJ3quaQVogwGQSdTseIHjkHVOcRPjjHfAeOE8YDQm4nk8lK2CPjKWlf8K0L2NtJ/4eMIvrgBvFBgdjkOUeIELgxELnq9boajYby+fyKAwWhyVfK2YMQZUIgCSa9ud8lrZzb8XgsSZZjcXZ2puPjYxMUfKsL9xOujG63q3fffdfyAzj/EPbRaGSkmiwO9iOOkm63q/F4bOGd7HfuTZwxs9lMk8lkZVoD55NjZ9oDDhofNOr3BuIW70UoyefzJj4ghCCosP9oyfFBn/wOYkKWZRoMBhqPxyaIrTNe5rO4ntprMoAoEFhPLN55pFf/zoYmP7ivzh/Oa3oQwkIgnsOBwL3H8kL1X/qqJCm3s63aD7/5wrcX/+5vv/DnnzV8JEEhpfRjugyc+VezLJu613cldbMsu0gpvSnp+yW99QE/08QEnAe+r12S/d33k0MeIQrSavYBhM+n25+fn2symZggQKsCrgb6zH1OAyQGYcJXc332AWTMtwWwNt+KUSqVdHJyYsQc4r67u6svfvGL+tznPmdCCAn53W7XxvthK0e4oBef6j/W9EajYb3jNwMDWR/iyWw2s0kQTGrI5/Nm6T86OrJzzTWB3HMcPlwQ0ksFG2FE0sqkBc7P2dmZarWatQzUajUTd0ajkRaLhY3QPD09Vb/fV5ZlJjpsbGyo3W5rsVhoMBgoyzLbU5xLbO7sHelScPFtMYwjXCwWJkT4qR64XVqtlo0ZJUOgVqtpZ2dHlUrFxAmIONeI76F/X7pssajVarZP/KQQWmhuBhr697Gf+/2+iQze+UMLgCQ7d++++66dJ+452joIXeTe4B712SP9fl+dTkcXFxcWbImbyI+49JkWfloLIMcCgQ1hgWkPiAY4NnxeCS4FgiN5L8dL24YPV0Qs4ng4PnI8mJLhgyzXFZ/EszgQCLwYi7e/p+Lb39Nr33lTi736XS/nM4FOb32Fm3gOBwKfLlycdFT8u527Xsa9wvv+33JK6Zck/aiknZTSI0l/TpcJtkVJv3ZFcr6aZdmfkvQjkv7LlNJC0oWkP5VlWff9vgNCg61duu71pnUAouJJlaQVBwNkjcBEKp9UTiHm9EpDKnEu+Eo+ifw+rwEHABVz6Xoc5OnpqYrF4korhE+Tv+mw8C4DqqiFQkE7Ozt6+PChVavpWz85OdHh4aGePHli4xdp/UBoKZVK1nPf7/eNlBMgmFJSrVazFpDT01MjuYT50XeOBZxgQoglbgVIY7lcXunXpwpOOwFE14swkECq1wgji8XC2hIQAhhhSBAfYyWpTjebTZXLZc3ncwuYHAwGkmQiAq4TiOd0OrUxj4zClGTCR7/f13Q6XXEgYJ+nvYSAR8gv+7her2tvb08bGxvq9Xp27cbjsYUFIjj5vYyrgevNdIZKpWKE24sPiDOc78lkotFopH6/b0IQ9wvrpn3j/Pxc3W53Zdwo7STcAwgkCDA3K/Xsl8lkYmIC+6BcLlvgIu4HRCw/1YEWEEj8YDCwzAvuB9xB5H0gjtGKgJPi7OxsZYznzZ95scuLhfydnAkyKDhX3M/rgNt4FgcCgQ+Oi++8pbQ+IdufbmSzu16BpHgOBwKBwLPwQaY8/IlnvPwLz3nvr0j6lQ+7CP5n309DmM/nFt6HHdoH42FZl66JPgSKKjy2earIVPm9xVyS2aWpfI/HY3sPRJLvQJiAWNIqkMvlNJ/P31M9xhngxwB6ez/281wup62tLR0cHKjValkVN6Wkbrerb3/723rrrbd0fHxslW9yFPicRqOhQqFglWHG+1ENp9JNhZq2B6zpZA5wHJIsiJHKMtMLNjc31Ww2rZo9Go3eE3I5mUze0zfPGrC+QxgJx2O6AC0cEPbT01O1Wi1tbW0Z4S6Xy2q320Yga7WaWq2WhfzVajX7fNZDCOHW1pbtDyz5Pg+D/AtyFah4b2xsaHt7e+UYEDdqtZra7baFfi4WC2sJ4PpzPrxgQi5EvV43UYPch2azqY2NDXMS3CS4PjiTaQmQZEi8H93IsTDhAMGM/cGe43ydnJxY7gKtDuRt0GKCEEJAJi4gxpkiAnkRDrFwuVyutC7g6EHoYT81Gg1zfbDnC4WCtb0gCNDmgnDIcd4UB8gG8WviHkas8yMs1wG38SwOBAKBwPMRz+FAIBB4L9bCz0uVfmNjw0g4Y+78+EXe590JXoSg2g0RpPpOjzt2fl+ph9z74DYqoAgIELksyyxRHkcDbRCQXwiJdD1hwFftqdLiqODzc7mcWq2WdnZ27NilS6LX6/X0+PFjvfPOOyuVcqr/BCxSyfahieQE4Cg4OzszJ0Kr1VqZMkClmJwEggHPz89X2gvIQGg2m1bp9t9J0ON4PF7JTSBkkco/QXunp6cajUZ2/Ht7e9ra2tL5+bmGw6FGo5GNfby4uFCv11OWZTb5YTqdWhAiuQKMVURAgVQzIaDZbKparRrR9tMvWG+1WjVhg2tGS4mfXEAryfb2tprNpgqFgqbTqbrdrh4/fqzRaCTpuv2lUqnY+eC7EAbIK2g0Gmq326rVaitVdumakFNRx/4PQfbtC9j9aZ+ghYTzIWkleBQglLB3EAXYr+fn56pWq2q326pUKur3+zo9PVWtVlNKSYPBQLPZbIXoc/74k2WZZTTgYOH+Jc/E55ZI184lMh2ePHliY0b9CMvxeGx72Z8zrhs5FtzX0vXkCb4PoSkQCAQCgUAgEAg8G2shKPgkeAi4zwXwhIv2BP5H39vHISRMdiCMr16vW2Xa98UjWOA0oJr5rPGOWMUhNJAaqreSzOYPsfajKSEvkuw9PuuBMEWq3xDG2WymXq+np0+fWtDedDq1dP58Pq92u21Elgp3oVCwEEIyAwqFgo0URFBBNIFoUd32wYlY43FBMGUhn8+vWNVpT1kul/Y7nCtcI4RkkmMxHA7V7XZ1dnamRqOhg4MDNZtNbW5u2loLhYKazaYajYa5HshZ4FrhaiDnAbHAiyiLxULlclnNZtPODX/ol4dw457A5cEECY6D6RsQ9XK5rP39fVUqFc1mM2tPGQ6HtpfZv1Tw2UO8tlgsbMQlYZA+nwEijKMBYclb/HHo4BLBzSHJ9jufxXXmunmnz3g8VqfT0XQ6tfuFYE4Ev2azqVarZYIGx4eQRqglGRmEgSIyTKdTC2pkKghiH66H5XKpfD5v9x+Cy3A4VKfTsVYjJpIglvhr64VJ1ifJngH8GycR7/cTLgKBQCAQCAQCgcB7sRaCgiTr86f9AOIhyQgFdnufxi/JBAiIGVVwiF+1WtVoNLKfVatVFYtFq5rS2oCgQfsFfdztdlvL5VL9fl+SViqsrIGWCtorpOugSarg3p2AmICgUa1W9corr1h1nir+cDi0oD0cB7g4sixTrVbT/v6+6vXLYCjCGtvttorFolVsS6WSVbP5XsQRX0WWZIS1WCxaX74ktVottVotNRoN1et1TadTC4gkmI9xg4ga5A8w3rFer6tSqWg4HKrX66nb7Wq5vBx1+eqrr+qVV15RvV7XaDTS48ePLQui1Wrp/PzchAGcKSkla/WYz+fq9XrWAkKAH3uL4EPWeHZ2ZvkLi8XCHB7e6SLJqvk+4LFarUrSiquhXC5b68E777yjt99+W5PJxKr/EH+fOYGbgPPPvqWdhDYCnCq5XM6cGOR8cHy0zrAeiD0uA7INptOpZUvQGoSogmuBHINqtar9/X3VajUb4ch9hcsEpwzXg7wN3BcIO9zDm5ubmk6nNt7Su1Xy+byJTogNGxsbms1m1p5xcXGhbrerbrdrjhNcTD4fASEGt0m5XLYwRo7buzf4Pe4N71gIBAKBQCAQCAQC78XaCAoQLCqJuBMgXZ4kUkUmOR9SBgm8WRWHmC2XS6ts+1yAmyMgISdUYWu12kq/NYSTCRFUtv3UCRLm/ehEL0B4q/tyuVSz2dTe3p6azebKJIaTkxN1OpdJo6VSySrUVOdLpZKJGKTkE4LHtANfeaZaDoEkuJBWCgSUnZ0d5XI5s41XKhXt7OzY+nzKP3kGPtAPp4gkEwAgivP5XEdHRzo8PDShod1u6+DgQI1GQ5ubm+r1ehoOhyqVSmq1WkopaTQarfT+s17Wg80dAs9+Yg9xrsgooGeeFpZyuWyfzzXgmhHsyL6qVCqStCII4PigRQXnBaSa7/W5DggvEN2trS0bOck+8dV82i18HgOZGFTz2WvefeHHR3J9vGjnJ5iQscCEj52dHUmXoxa5P7zzBWEO4WMymeji4sLEP8Qz9vxsNlOn07H132xhgtAjIPBdZFgwjYRMEsQXchi4/xgP6gU03zZyenqqyWRi9y/nGxEK9xEhn4FAIBAIBAKBQGAVayEoQHghpPRp+75vn/pO4Ju3Q/uRd1Svy+WyCoWCBoOBer2e5QYwQUGSEU6+i/56Kvmk7NOHjwDA+ggZhOwAXl8sFiu95L6Xm7/X63UdHBxof3/fXBjValXj8ViHh4fWg+/zIaisS7JketLpq9WqORmo4ELkIdo+t4K2AXIHdnd31Wg0JF1W0y8uLlSr1bS3t6dqtWqEttfr6fDw0Czr3lFSKBSM5OFMePDggSqVio2/5Hu5Vtvb2yqVSur1eur3+zo/P1ej0TDyB1GWrkeDYpUfjUYaDodGjP3ewJnC5/hqOIGVvBfCXywWbf3eSbC5uWm5Cr6VAZFHupwWQYYAIhV5Bj7bApGL0ZLsV64R/2WNOHD4TO4Xppawp2+O6KR9x+9Njov2DtbIvpEuQy6bzaZlHdA6wedxzzCtA5HJTwBhzxOAOZvNdHR0pG63a204XBNJFlrqp40gLvC9CGfsG8QC75TgmvpRkwgFfC7rBhwD14Msi8PDww/9TAsEAoFAIBAIBD4LWAtBwfdyExDoMwaonFJlHY/HRoolmUsBkuht08vlUr1eT6PRyKzqCASbm5tmZ6fvnuqwJ7oIFjfXDMGHeEqyNfkQOUgoEx0gXIQ91ut1bW9vq16vm52cKr0PPeRz6d9HZGHUIZMpJK2Ma6SFAkGBdeHwYN04BV5//XVtbW3p5OTEAu/eeOMNbW9vr0wA6HQ6ZtP314NrBcGtVqva2dmxfvp+v2997hwHQol3InhxCNLLeS8Wixa8Sa4Cdn3IJ9cfYo1ThHUhUrBXsONvbW1pa2vLiCptEPwMwQvhgbaLRqOhwWBg2Q84EljDswL+fO4EZPZmIChTO7xbBwv/aDQygQZHCVkXuHwg/nzf5uamuQP8+hAJJNk+5Hr0ej3LK+BeYy9wnLTiFItFNRoNlUola7cg0JQ9jaAFufctEbhl/IQSXCK0JXFvkp2A4ME5lGS5IrRC0CZCSwYOF0krgqAXN3DZBAKBQCAQCAQCgfdiLQQFP70BIuot4rPZzKrps9nsPZVF/xnkG0DUhsOh3nrrLc1mM9VqNevz9+n+2J4JmeP7ILme1Pq59ZVKRbVazSziPlGe93lLfy6XU6fTMQs6FvCdnR2z+7P209NTdTodI6fHx8fa3Ny00EacAlS+vUXbj5z0YyoZq8n7CTPEUp7P57W9va1Go6HT01MbVfjgwQO99tprKpVKGo1G2tjY0Hg81nA4tGtF+wdVZ1oKsPDzPYPBwDIEsKhTCfd9/5KMENOSQe8/IZmcZ1+dZ3+0Wi1L+4f8Q4J9VoAka4XwThmfvwDBxEWB8EBwZT6fX5mwwf7xeRqQY8gtAk69Xl8h1vxhf/jQS1orqtWqms2mTbzAzcE5YBQmohxCG+1EkGkvbPFvvhsxBYEEAQ73gJ+8Il06AsbjsQVU0tqAYITo468HuSOS7H5CeOFe4nzQTjEejy0ThJGmTKRAaCQDhLYfPxqT1gnfXoEAhqDApBLfxhMIBAKBQCAQCATei7UQFCBxVGqp0EIoIQB+pCMCgnRdkSY7gJDDXC6nbrdrROOmpZwwu8VioUajoe3tbW1ublp1GWeCJ6KeiOGqgITdrEZ7u3+9XtdkMlkZI0muwO7uro1wlC7JJ5Xn2WxmoxMhSdjxEQdox4AgQR5ZK+IB54vzCeGkikwAHzkA3W5XtVpNr7/+urVg+DYLSSZoTKdTOx9cU4hdpVKxdoPhcGgTALD5b29vW8ghjhHf3z+bzTSZTGzkJ/kGkoxIerJIKOfJyYlV4tlLklYEBfr8Cfr0WQjsGxwIjIXk/LEHWEu/39fJyYkFexKEKcnaMfyeIp9jOp3a+xAxuG6DwUDD4dByLCDSHPtoNFpxICAOQOT5mSfPfD7X8fT0dKW1CGGB+wO3iG+j4LzwnYh83jUyGo3sewmH9Nka3M83gym9GwUxgH3AZ9TrdVWrVRO3CFXF7YTzAOGKvYWoRvsILTGcG59xUSwWV74/EAgEAoFAIBAIrGItBAXpeu67J0SQVwi4nx9PtbVYLEqSkfNqtaparWZ2bbIWaGegCk7FlF50RgmOx+MVhwIEC+KFeMDPJVk/th/j53uwW62WJFlfPQSKMYk7OzuWiQBBhEQjFviqKVZ+fkbLBn3qvj0D8kj1l9+hYn96eqrRaGQEt1AoaDwe6/Hjx7q4uNDe3p4ePHhg1XdwcXFhhMwn4ZOfQHsAmRcIF7RvQCQRWxBJTk9PTQBBrBkMBuZaQCyiek97xHQ6tR7/arWq6XSqTqdjxyrJxCof1sj3+AkBuVzOPhP3QbVa1e7urjkmyAgol8vKskyj0UidTsemUCCo0I8PUYUEl8tly6lgz9M6AwkneBF3AMGRXFdyFXwlnv2HkMJ7uEduuhEQMiD0CE3sK0JAcTZAsH2QoR9nmc/nNZ/P7Toj4PnQSe5B1sG9jNDDNfKjYnGiZFmmer2uVqtljqXZbPaee9Ovy7e9eMHL3y+sgb3N+72TJRAIBAKBQCAQCKxiLQQFKqg+nR4SD8nxs+4h1xBLUvmbzaa2t7fN8g0ZQGTAZj0ej9Xr9aynHeILuT4/P7fsBEkrxI62AkIHIbW+6k/KPe0V2PWHw6GJG3t7e3r48KF2d3ftcyBUk8nEKq6MrqMvHieHzyvAXo/A4ac5SNcZE77//CaBZ6TiaDTS06dPNRgMVvIUqKJjMSfXwgdRSpeEH7LJfzk34/HYzo0fb0i2RS6X02g00nw+twyA0Whk35XL5UwY2tjYULfbtayI4XCoxWJhIgTuBM6RJ5qIHIgiBB0iCjExYrFYWJYAOQsQeP7OVIhOp2NuGFoaJNm4yFKpZCMzCQzkZ5BnnDC4GLyDhlwHXAGbm5vmxrkphEDIfZuHJ+0Id3w3LRyQdq6vn0giaWWv+HsT1w33IsKRH7+K2MD3+NGchEEi/vHZiBHcg8vl0lpo/HSLwWBg4iNiGtMs/GQN/90IRT5jAkfCzUktgUAgEAgEAoFA4NlYi/9b9lMdfGUSYkM1FrtyPp+3QDYIUq1WU7vdtgkHuAXy+bxqtZrq9brZ2H0bBJVfgt2wzFMJ5rOoghKkSMAiQsPNRHqIMrkB3g3RaDS0v79voxmZAkFFm+ow0yk8sZWuq9OMtkQoof2AlgHvFsAhsFwuLfmeCrYnV91uV++++64kaX9/X3t7eyaScC6wkVPh5rsQbnyWhHRNqumfh5BKl8LGzs6OdnZ2NJ/PNRgMlM/n1Ww2LfwRMogYQ/vFaDTSdDpdGXMoydojIM5M48DNcnZ2ZoQZYQgnAdVpfubHCXK+CQKEgPf7fR0fH1vLBUQcMkzbix9/ydo4TwgwiATSZUsDVX6mjZTLZWshgYDjIOh2u7bnb2YDcCyQe9/iwD5nNCXXiPwNXA83wxtxdfiWH3ISuAcQBnwrkD8/3PuIOZLsPud3+B6CNi8uLixbhHYXn0kiyVwwFxcXK1kIrBV3Au+pVqsmNHG8N8WyQCAQCAQCgUAgsIq1EBQgFH6cH0KCJ38QRm9Th1DV63Wz7EP8GftIm4B03YftK80QXHr6IdsQJ4iiD9Kjqo2jgqqwr9xTRaW6Drnf3t7Wq6++qkqlskKUEAQI9js+PrYxfDgKPJnz4zIJI6TdAmIKKfLkqlaraXNz0wQGxkVOp1PLANjf37cgRt9mAvH2rR3kDrTbbQvj884JHAOENlINrlQqevDggV555RXl83kdHh5qOp3qc5/7nIkGXF+INQGPjNKEBHM9OQ9U5nG1kLvgAyz99A0EK/aeD+JkzxGI6CcvTKdTHR0dqdfrrYy0BBsbGytiV7/fNwGpXC6vXEtcN+QCMA0DEYH2mUKhoF6vp06nY9caAs2e9wLCzbwRSbZ3cGogms3nc8uU8FMfvOOEe5Z7A1EKsQm3gv9DbgY/436EwBNG6vMduPcRJmgD6ff7tv8g/rwH8QFhzY8DpXXIBzZeXFyYWIdrw2dk3JzuEggEAoFAIBAIBK6xFiU42hPonSe7AMsyUxFuVl6p8m5tbeng4EDb29src+qLxaJqtZp9Hi0EkkxMQKSANJO/IF0nzEMyIM44AnBUSNc95Td7y311nBGOkGJCC/lORvJRzfehgt5JQXUfuz4VYEbi4YRgRCa27VwuZ+cD8kS+QrVaNVfExsaGWq2W9vb2JMks7dJ1QKJ3SVQqFbXbbW1tbVnwJFb6crm8UpnG3dFsNrW/v6833nhDe3t7Ns0AcQNxheOkqry1tbXScuBHP2JVp8KOg4A1euFIkiqVinZ2dqx1hkp2rVazdePoaDab5ojxuRpMrfCvU23H+UGrCtkdCCt+j+FC2NjY0Hw+V6fT0XA4tGwCWj2KxaJN/RiPx9augLCwt7dn7T2Q9pvZHj4jgHUgJkhacb1wzSDhOAp8CCnEG2HCB0AymtVnHeBE8EIhoZn+3ELsAe4dPod8CMQeniUcJ0Icx4dwwfX2rQ7sc/a6FxQDgUAgEAgEAoHAs7EWDgXCAhENEAogNFSOn2VBxjL/8OFDbW5uajQaqdfrGYnzkwJ84B/kpVwuW+sCEwlwHNDnDdGCoNMq4APbqPRSJYWMQID9OLtWq2VV0VqttuI2yLJMw+FQjx8/tio8/fOS7PO9GAABY72QTN4LoZeuRwpCyMieWCwWGg6HGgwGajabeu2118xBQQvDxcWFTZyAWEoyIg7BnkwmFnK5sbFhmRCc93K5rK2tLWupyLJMx8fHGgwGlqUwmUxsMgICQa1WM2Fga2vLxgXStuAna1A9Tymp3W6rXq+vBC22Wi09ePDAJntQvea4EKX29/f14MED2xd+hCXnEMcM5xVxiuo4ffrY9NkTTKbI5XIrEx8YBTmZTMzBgsuGvAimPuDI2djY0Pb2toVNsu8JqiQ7gHYahDp+xh/cCQhmtBH4vJBKpWJuAek6YwExx09F4Z5DxPGuGj/SEmeBbznxThH/rPABi16A4NgRLRAS+R2f1UFrB3sRhwaOEfZ7hDIGAoFAIBAIBALPx/s6FFJKv5hSOkopfdO99vMppXdTSl+/+vPj7mc/m1L6bkrpWymlP/pBFuHn0XtbP4RVus5Z8IR0c3NTOzs7evPNN9VoNHR6eqrDw0ONx2ObiEBIH8QY0u97s+n5ZuwhZIpe7Zv2eE+KsFf74EA+v1QqaXd318gohAa3wauvvqpGo2EOBoL4hsOh9cMTBsikAR9ECQGCJNZqNfs+H7znK8O+rx6nQLlcttBIPgORgcBJn+mAmIFjgwpvp9OxzAcvlrBOhIB8Pq9Go/GeijsV5fPzc2uRIMyv0Wio2WwaeYXUY4n3pDWXy5lroFarqdlsmrCRZZm2t7d1cHCg/f197e7u2jEg3EAky+Wydnd3tb29LUkmIFBth7TWajUVCgUb98mIUvbK6empTk5O1O/3reKPgMMUCtoCer2eBVFCnH37BeJMPp83QeHi4sICH7lPcKz4CRxcRz9i0d9bOCr8PeFzKQjUvBkM6bMUOBZJK9kjiGZe5EKw4Nz6saRXzxL7Lv+swPmAiMO9THsFzxAEFMIVfUgqDgbWj9iDm4OpIevkULiNZ3EgEAgEno94DgcCgcB78UEcCl+R9Jcl/fUbr/93WZb9N/6FlNIPSvpJSX9I0iuS/s+U0g9kWXbxfl/iWx0QE3xwnXRNYKjwZ1mmVqul/f19XVxc6NGjRzo5OTELf71eV6/XMwJF778fh4cFHsu5r95ju4d4+AkG5BZAjObzuSqVilVNc7mc2u229Wqz9kajoVdffVWvv/66SqWSxuOxuQrOz88tNJJWDirEEHHcEYx6pIpNhgH5CFRuCVScTCbWUlEsFlcI1enpqU2geOWVVyw7YTQaaTAY2Pn34gokF5FEkhF6zn0+n1e/37cWCCrbtJoUi0UNBgM9efJEo9HIWgog34g4fB97g7YB+uEh47QS4LQoFos6ODhQs9k0cWJ3d1e1Ws1aTTgOKuXz+Vzj8VgpJR0cHOjg4MDaECTZd5NrUCqV1O12dXZ2ZlMnKpWKuTsIiMRpwIQQhB7CLLmmjBstFAoql8u2vpsCAeGETLLA8cC+ZoIH+472ED8NApHHBzsWi0UTG8hhwOEyHo9XXBfS9UhH3z7A7/s8BPbkzVYPP5KV47qZQYFYwL9xVnBfs485ZgQM9j/Hls/nrbVGkur1ujY3NzUej21KiHTdgsX+WiN8RbfwLA4EAoHAc/EVxXM4EAgEVvC+gkKWZb+eUvr8B/y8n5D0y1mWzSX9k5TSdyX9sKTffNEv4TqAjFDx98SCiv/BwYFNctjY2ND+/r7q9br1nEvS7u6uGo2GLi4uViqNkB9C3chDwDEAoaQHHvEBcoX1m35xSdbTzes4F3zPO2sn6HB/f1+1Ws2s5xD9brer733vezZyDzKNI4NqPpV2+sBZP+0YCByIHpPJRLlczqrY9K0jmJDMT+hfuVw2Uka1HgcA1WHC+CDWuEo2NjbMvp9lmfr9vs7OzlQul20MIFkYhE92u11zT+DOWC6XajabkrSSacF7aWcgIJF15vN5E2lwCZCBQeAmtn7OOyR7Pp9bO0G5XLYsBwgybS4IIuVy2QSdfr+v4XBoUw2YGMAUEMQUSbb+i4sLVSoVSZdiDS0u/D7nH/EBJwb3g598gnMCAo7Yxd6BLHMM5F/wflpw/ESVm+0utBXw/WRUeCGJnyHe0a7CsSDGcW/jBvDvA360KK4D3Ahcd0IoCeBkLV54wHWE6IODBpGFa46w4tsq1gm38SwOBAKBwPMRz+FAIBB4Lz5OhsKfSSn9u5K+JunPZlnWk/RQ0lfdex5dvfZCYL/nf/ohqysL3dxUo9HQgwcPlMvl1Ov11G63tbOzY6n4ktRut9Vqtaw6jnUe4kX1GrJCpZwKr+8tZ/IEPfK0JUDsFouFhdnxOu/Z399Xo9EwElQsFtVut9Vut9VsNu04qdiPRiO988476nQ6kmQCB1Xtcrls7gWmUWAJz+fz5u4gxHFra8sq0efn5+bAKJVKGg6Hdoy0MWxubqrdbmtzc9M+w4fj4dqAcJFF0Gg0rFUDclev11UqlSy8kYq7D7uD3I3HY52dnZloMJvNdHZ2tuIGka4D+eivp33Fj+uEBCPg4NbwOQfPCrKkkk4+BL9PVgXr4vg593zXdDq16Q1cN9pFZrOZta34Crgku66Q2sViYYIHpP/09NSmHyC0SdcjKRETcGAwNpF/0/aD8MXnImbwXbRODIdDGxG6sbFh13UwGNhrvA9HBK0q/v5lnbgeEAJ8GwOCC6IakyJwOvA+T/D5O2smnBPRSLp2byCaSJfCxdHRkZ1PhA2cSzd/D4cQ7Txrjpf2LA4EAoHAR0I8hwOBwGcWH3XKw1+R9AVJX5L0RNJfvHo9PeO92TNeU0rpp1NKX0spfQ2SCLHCmg3xQnDY29tTs9m0doRGo6FyuayTkxMdHx/r4uLCSMBisdDTp08t7A8rO+KCr37iVKBiDvGjMsz7qeZCSHAC4GDg85gIQBUcez0ZCBDharWqnZ0dnZ2d6fDwUE+ePDF3giezEPanT59qMBis9O0jOGDfh7T7PvJSqaSdnZ2VCjSEejAYmDVeuk66J3OB84YLgJYQRlASaslrtVpN9XrdKsi+8kwGBq0A3W7XKu/0w/t+d8QZevx9GCJihSQTdiCJ9XpdDx8+VLvdNgLLeFCyKOilJ6jx+PhY3W7XnB30/zOWkr3B9eCP37NU+gkwnE6n5hyhEk9IoSRr26HVAdEK5whCh2894H5AbMHCf3Z2ZmGc/X7fhJHNzU1dXFxoPB6vjG1kXRxHlmUmjEyn05XJDDenWPCaz1RYLpcaDocaj8d2v9wc74oTCcHFZ5fgymAKiM8y4Q+fgfMBss9avXvBv3+5XGo8HmswGJibiN/FVcN3SrJATcZqrjle6rP4XPNnvSUQCAQCz0c8hwOBwGcaH8mhkGXZIX9PKf1VSf/71T8fSXrNvfVVSY+f8xlflvRlSSoUChmkDcLvsxMKhYJarZZ2d3etOt1qtdRsNjWbzfTkyRP1ej0bD5hlmR4/fqyjoyP1+/2VUYu5XE6NRkMbGxsrM+oh2tjEIclnZ2fa3t42EgTxhsRCgLGCQ1qpsFOpxVIuXQoV7XZb1WpV/X5fnU5Hjx49styAUqlkKfdU2bvdrokN/ueFQmHFEUB1l2NOKdlnYEOHrHG+IXP071Md9v3tiA4IHeRU+CR/qv/pakQnwg+E0LeV0PtPKwSVZyz6tFLUarWVaR8ICzdDPDm/hBU2m01NJhP1+307J4gKm5ubJnacn5/r+PhYnU7HHAJMC0AwovUFIl6v11Uul63NAGLNmEwq7wgMy+XSRAkq5j6IkakZBENybejhp/XCt2dAlKfTqZ1bwgVpneA6TyYTjUYjcwKwT2+2VOAY8aMhaT1CDKKd4ua+p03IOxC4V/g+nEC0ShAEiUCHIMf9iKCCMMC55N6VrgNdEdFwGHA9aGvwTh32McKED89kHyPYrGPrg8fLfhbXU/uZ/7MbCAQCgWcjnsOBQOCzjo/kUEgpHbh//nFJpN3+qqSfTCkVU0pvSPp+Sb/1fp+3XC5X0u0lWbV5Y2NDW1tb2tvbs9YGiD1tAk+fPjWbfKFQ0GQysTBGqpWMoKOq7qc1QJIguZCL+XxuIZC4HvjjRyFCnDY3N1Wr1Uw4gPRD/CFBtG9cXFzo+PhYx8fHGo1GRiAhtJAz1obg4UdWNptNtdttq6r7MYWQPl/tpUqMVR6ixrmATPH+s7Mzq24jHiyXS6vyU8knDJCqN0QMW7y3+/vefESXs7MzC98rl8smGJXL5ZVgPt+fD5nN5XJWcd/e3rbpGUzd4BzggsDpMBqNNBwONZvNTLTCNcC6cRWQQbG9vW2CgiQjoYhZuBP8mEwfCsrUDCr6nU7Hzqf//dPTU1WrVe3t7alcLhsJpoq/WCw0GAxWcizOz8/V6/XMrr+xsWHBml4MowVFugyZHAwG6nQ6tge5Tog8uBpoW2GfMTrSi0eIAdxzXAPEBM4ZDgOuCXkO5+fnKy6ls7Mzu499wCP3EmICbh0EBdqPvLiF6OBFLo7L51qwV26OrFxHvOxncSAQCAQ+HOI5HAgEPut4X4dCSumXJP2opJ2U0iNJf07Sj6aUvqRL69bbkv4DScqy7PdSSv+rpP9P0kLSn/4gabZ+bOTVd1qFnPC7QqFgNnII69OnT01gKJfLFgQIIaEa6avH9EtLWiHbVHpJ3Cfg7+HDh1btPj09tZA/SA4V1XK5bC0ZEBsIEdVziCHEajAYaDAYWGYEJGaxWBiB9gTtZmBduVy24ELOAxVgWgkgkdjf6WeH5FIZLpfLK6F6iBd8N8SQvAM+l9wJRg5SFaa6PRwONZ1OLb8B4ojNHYLK64gy7XbbRjhyLiCpfgoIbQJcT5wTOF2u9qUdM8ISwsLFxYWReUg+eRG4DCqVimVfcAycW5wtuB/m87n6/b5dTwQFRpAimCFKZVlmIaLkV9C+w75HjPF9/14IwZWDUwKXCMIGZBqRqFqt2hhNMhNwoHBdOWd8L4SdvSDJhBFEG/aqF9po10DAQpTiPmcvsx4mdeASIv/Ci2z83Ttu/LXA7UF+BsII6+a4/NQURlb6sE7uo3XBbTyLA4FAIPB8xHM4EAgE3osPMuXhTzzj5V94wfv/vKQ//2EWQYVSWhUTJFnVnHA/SEC/37fwOIh1tVq1EEYC3ujnhsxLsswD+qZxJkB+IDzb29va29tToVBYmURARV2SOQKazaYFFFI1hcRVKhU1Gg1zAtCegCsDEkXiPwQSUuPPB6QIN4AkyziQZDZ8xljyOZw76bIqTUWa87C3t6d6va7pdKqjo6OVRH9fEZZklWWuHSIAUyk4hsFgoNFopHw+r3q9bq0NHA/Vb2/D39raUqPRUKVSsbA9n73AunB+sBYcG5wziDtZBAgTXAMyIba2ttRsNlUoFHR8fGwEHMGi0WioWq1aSwGW+EKhYNb/lJI5NsikYN2cJ4ITOWeQ8d3dXXPA9Ho9nZycaDgcWrWeUY3e7TAajSyElBYNiDr7ZD6f23dw7hDZfJAj58aHVvr3cwyQc84zx4eQgliBkMbvsDYyDRCQbrYSMI0lpaR2u22iD8fOveyvMaKZbwGRrttJaJXxbRi+tYRzPBgMbEKHb3XwrTnrgNt4FgcCgUDg+YjncCAQCLwXH2fKw0sHJA7rNBVZKqfY6RlzSBW4Vqup0WistC3Q+kBlHtLD5zYaDW1tba3Y8REhxuOxlsulZSGQIwDZ8CP5WBufh10dIlQoFNRsNldGQLI2etshdJA9yKCklYo8VX1v5cdNcHPKgbfGSzIyvFgsbNLFbDYz98T+/r7y+bxVrCWpVqsZAaMijGOEEZ84S/xoP+nSfXF4eGifQ1XcTy+gus61Id+iXq+bc4Q9gYAA8fXJ/JwziDKfPxgM1O12jWCSyXB2dqbRaKRcLqd2u629vb0VZwKEv1gs2tovLi5sP21tbWk8HlurCqTa525A5LMss+kcPtRSkur1utrttiqVikajkb73ve9pMBhIkuUFIBSwz8gDYB9L16GEBISyD9gnfAYOFvaVpJWxkYgtkmz6Au4ASbbvJdn+R4AA3gmDO4j2An7ux11yzfjser1u+43v9c4cSdZm4cNV/b3tRS3aa5jcsbW1ZYGmfmQqk1P87/mA1kAgEAgEAoFAIPBerJWgAHxPNVZ8wukgB4Sp+QkHVFx9fzsOAWzS/B7kHQII8WIsY6lUUqPRsM+hCkqAHY4CbNK4BSD3EJtms6lms2nTHprNprIsU7/f16NHj2wcnx+Rx7qpChOCCBmkcou4QK8/pIlWAiri5XJ5JSmf9gh+9vDhQ7VaLY1GIx0eHmo0GqnZbBqhxTKOIEJbBVMzsNxT7Z5Opzo8PNR0OrXjLxQK6vf76vV6Oj09VaVSUavVUrvdtuPGaYKzAgGBaRMQSGz1nGOIvJ+8QTsJrQNco1wuZ6LJ7u6utre3VSgUzOUBGT8/PzdnCe0E0rXodHR0pF6vZ2vwpJhWm1KppNPTU52cnFg7AiJDsVhUq9WyVoejoyM9fvzYcjQ4JxBw6dqdQu6HJAsv9NZ8f804N+wNiD5iAwIBLUPevcE6eY1zjKuF/chaWRv/ZQ8ijvm2B5xGtJ6Qs1CtVi24E5HKux98gKfPL/GjJf1eRIzjfiWXAzGBlhyeN8C3PQUCgUAgEAgEAoFnY60EBV+JJGitUqlYCB7tBPyPPtXycrls4w0hGQgPuAwkWZWfIDh6zCWtVHLn87nq9bokrfRl+1BCKshU7X0QI//e2tqyaQ6FQsHW2ul09M477xjh9aPucCdAbiDVzWZzxdrP5Amqq/P53PIEGGeI2EHAIMQKokXY5fb2ts7Pz/X222+r1+uttJlQTed8E1pIr78kcx6w3qOjIx0dHdn7Nzc3NR6P1ev11Ol0LACRvAkyMLa3t1WpVKxVxGc90OrAqESCAanOn5+fm9DB2MTz83NrxaA1gs+rVqt6+PCharWa+v2+hsOhhflJshyHlJKGw6GWy6VqtZry+byOjo7U7XatPx93APvLTz54+vTpyvQNghURrMrlsvr9vp4+fWrXiykGVMlxX+CE8KMYGaFJECOvSdeVdgIdOQdU5xkLiShHUCgOHUQs8h4g3Uwa8aGFfvoC9yCuDoQJ9jZ5C359vo0GBwOtB/6z2WsIXF40oD2IXA/2C3u3VqvZfTudTk1Y8pMz2I9kM+RyOfV6vZf6nAsEAoFAIBAIBD4tWCtBQdLKuEj62yuVygrBhTwiOlCl92MFqRRDNiC8VD2xxVPpxjbvAwaXy6Ul6fOHkD5JNqoSV8ByubQsB74L+z7V/fl8boTbW8g59sViYRVgggVbrZYFTuZyORNZZrOZkeHlcqlWq2XBfggdvi3CByLWajU1m009fPhQ+XxeT58+1be//W3NZjO12+2Vnn+IGGP3ZrOZhUnSKgGRxh0gydwJy+VS3W5XnU5H0+lUr732mg4ODlQsFnV6eqpisbjSFkJ1mco04xZxRUD+se1PJpMVos0EDuzztHpI15X0arVqZJn+fUQcv+/8OSDUk8wLSTYpgpYcCD3994xq9L3+9OpzLp88eaLJZGKfUavVTFxCOCFU1AsCtDGw5kqlYu4N/zp7wLfc4BZBOKhWqyoWixqNRiaY8XuICewnggt98Cjf6cUE7kMmlXjijluoUqmYo8i7AvzYUnI6/HQG396CGOhbKCRZuwZ7nmswGAzU6/XU7/dtP/iWKiaaIO4EAoFAIBAIBAKBZyN5An9ni0jpWNJE0sldr+UjYEex7ttErPv2cV/X/rLW/bksy3ZfwuesPVJKI0nfuut1fATc1z0q3d+1x7pvF5/1dX+WnsPx/8S3j1j37eK+rlu6v2v/RJ/FayEoSFJK6WtZlv3zd72OD4tY9+0i1n37uK9rv6/rvkvc13N2X9ct3d+1x7pvF7Huzxbu63mLdd8uYt23j/u69k963eHnDQQCgUAgEAgEAoFAIPChEYJCIBAIBAKBQCAQCAQCgQ+NdRIUvnzXC/iIiHXfLmLdt4/7uvb7uu67xH09Z/d13dL9XXus+3YR6/5s4b6et1j37SLWffu4r2v/RNe9NhkKgUAgEAgEAoFAIBAIBO4P1smhEAgEAoFAIBAIBAKBQOCe4M4FhZTSj6WUvpVS+m5K6Wfuej0vQkrp7ZTSP0opfT2l9LWr19oppV9LKX3n6r+tu16nJKWUfjGldJRS+qZ77blrTSn97NU1+FZK6Y/ezaqfu+6fTym9e3Xev55S+nH3s3VZ92sppb+fUvr9lNLvpZT+o6vX1/qcv2Dda33OU0qllNJvpZR+92rd/8XV62t9vtcZ8Sz+RNYZz+FbRDyHb33d8Rx+yYjn8CeDeBbfLuJZfOvrvvtncZZld/ZHUk7SH0h6U1JB0u9K+sG7XNP7rPdtSTs3XvuvJP3M1d9/RtJfuOt1Xq3lRyT9kKRvvt9aJf3g1bkvSnrj6prk1mjdPy/pP3nGe9dp3QeSfujq7zVJ375a31qf8xese63PuaQkqXr197yk/1fSv7ju53td/8Sz+BNbZzyHb3fd8Ry+3XXHc/jlns94Dn9ya41n8e2uO57Ft7vuO38W37VD4YclfTfLsreyLDuT9MuSfuKO1/Rh8ROS/trV3/+apH/r7pZyjSzLfl1S98bLz1vrT0j65SzL5lmW/RNJ39Xltbl1PGfdz8M6rftJlmX/4OrvI0m/L+mh1vycv2Ddz8O6rDvLsmx89c/81Z9Ma36+1xjxLP4EEM/h20U8h28X8Rx+6Yjn8CeEeBbfLuJZfLtYh2fxXQsKDyW94/79SC++cHeNTNLfSyn9Tkrpp69e28+y7Il0uREl7d3Z6t4fz1vrfbgOfyal9I0r+xeWnbVcd0rp85L+WV0qhPfmnN9Yt7Tm5zyllEspfV3SkaRfy7LsXp3vNcN9Oz/3+Vl8n/foWj8TPOI5fDuI5/BLxX07P/f5OSzd73261s8Fj3gW3w7u+ll814JCesZr6zx24l/OsuyHJP0xSX86pfQjd72gl4R1vw5/RdIXJH1J0hNJf/Hq9bVbd0qpKulXJP3HWZYNX/TWZ7x2Z2t/xrrX/pxnWXaRZdmXJL0q6YdTSn/4BW9fm3WvKe7b+fk0PovX/Rqs/TMBxHP49hDP4ZeK+3Z+Po3PYWn9r8PaPxdAPItvD3f9LL5rQeGRpNfcv1+V9PiO1vK+yLLs8dV/jyT9bV3aQw5TSgeSdPXfo7tb4fvieWtd6+uQZdnh1Y2ylPRXdW3LWat1p5TyunwA/Y0sy/7W1ctrf86fte77cs4lKcuyvqT/W9KP6R6c7zXFvTo/9/xZfC/36H15JsRz+G4Qz+GXgnt1fu75c1i6p/v0vjwX4ll8N7irZ/FdCwq/Len7U0pvpJQKkn5S0q/e8ZqeiZRSJaVU4++S/g1J39Tlen/q6m0/Jenv3M0KPxCet9ZflfSTKaViSukNSd8v6bfuYH3PBDfDFf64Ls+7tEbrTiklSb8g6fezLPtv3Y/W+pw/b93rfs5TSrsppebV38uS/nVJ/1hrfr7XGPEsvj3cyz267s8EKZ7Dt7Vet754Dr9cxHP4dnEv9+m6PxekeBbf1nrd+u7+WZzdQfqn/yPpx3WZovkHkn7urtfzgnW+qctEzN+V9HusVdK2pP9L0neu/tu+67VereuXdGnLOdelEvXvvWitkn7u6hp8S9IfW7N1/y+S/pGkb1zdBAdruO5/RZd2oW9I+vrVnx9f93P+gnWv9TmX9M9I+odX6/umpP/86vW1Pt/r/CeexZ/IWuM5fLvrjufw7a47nsMv/5zGc/iTWW88i2933fEsvt113/mzOF19aCAQCAQCgUAgEAgEAoHAB8ZdtzwEAoFAIBAIBAKBQCAQuIcIQSEQCAQCgUAgEAgEAoHAh0YICoFAIBAIBAKBQCAQCAQ+NEJQCAQCgUAgEAgEAoFAIPChEYJCIBAIBAKBQCAQCAQCgQ+NEBQCgUAgEAgEAoFAIBAIfGiEoBAIBAKBQCAQCAQCgUDgQyMEhUAgEAgEAoFAIBAIBAIfGv8/4RFGUjhS9AMAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 62034 0\n", + " Min thresh = 1000\n", + " Not Sliding\n", + "\n", + "\n", + " Winner = Not Sliding\n", + "\n", + "\n", + " FP ROI = 004s_iimage_73815992352100_clean.nii.gz\n", + "004s_iimage_73815992352100_clean.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADDCAYAAAAya0IYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADSU0lEQVR4nOy9eZykWV3lfW5Exh6ZWVs33TTddDfdgLYsI4qAozKCivs2OqAjKCAMLrM5r4rzzriNjg44LjMvKIiiI+7IDIIb4jjqsCkIYiPd0M3SrE1VV1VmxpoR8bx/ZH5vnudWZFVWVVZlZtU9n09+OjPiee5zt4iuc37n97uhKAplZGRkZGRkZGRkZGRkZGRknA8qe92BjIyMjIyMjIyMjIyMjIyMg4csKGRkZGRkZGRkZGRkZGRkZJw3sqCQkZGRkZGRkZGRkZGRkZFx3siCQkZGRkZGRkZGRkZGRkZGxnkjCwoZGRkZGRkZGRkZGRkZGRnnjSwoZGRkZGRkZGRkZGRkZGRknDeyoJBx2RFCuDOE8OS97kdGRkZGxhZCCB8MITx1h9cWIYTbLvA5F3xvRkZGRkZGxv5CFhQyLjuKorijKIo/3+t+nA0hhC8PIfxVCOFUCOETIYSXhxAW97pfGRkZGVcyQggvDiG8L4SwGkJ4bwjhmXvdp4yMjIz9ht0WZs/VXv53ccbZkAWFjIz5WJb0nyQ9WNKnSXqIpBftaY8yMjIyrnz0JH2lNr6DnyXpZ0MIT9rbLmVkZGRc9cj/Ls7YFllQyLjscFttCOGHQgi/E0L4tc2I1LtDCA8PIbwwhHB/COG+EMIX273fFkL4h81r7w0hPD9p+3tDCB8PIXwshPBcV1xDCI3N6NeHQwifDCH8fAihNa+PRVH8elEUf1QURb8oipOSXi7pcy/drGRkZGTsH4QQHh9CePNmNOrjIYT/HkKoJ5d92eb38PEQwotCCBW7/9mb39UnQwh/HEJ46E6eWxTFDxZF8d6iKGZFUbxV0l9KeuIuDi0jIyNjXyCE8GkhhD/f/J69M4TwVfben4cQnmt/f2sI4a82f/+LzZffFUJYCyH8sxDCk0MIHwkh/MDmd/IHQwjffKHtpX3N/y7OOBuyoJCxH/CVkv6HpMOS/lbSH2tjb94g6Uck/YJde7+kr5C0JOnbJP10COEzJSmE8DRJ/1bSUyXdJukLkuf8pKSHS3rs5vs3SPqPO+zj50u68/yGlZGRkXFgMZX0byQd0wahf4qk70iu+VpJnyXpMyV9taRnS1II4Wsk/YCkr5N0jTZEgd843w5sCr6frfzdm5GRcYUhhFCT9PuS/kTStZK+W9KrQgiPONe9RVF8/uavjymKolsUxW9t/n2dNr6zb9CGw+tlF9ne2ZD/XZwRkQWFjP2AvyyK4o+LophI+h1t/AP0J4qiWJf0m5JuDiEckqSiKF5fFMU9xQb+jza+iD9vs51vlPTLRVHcWRRFX9IP84AQQpD07ZL+TVEUDxRFsSrpxyU9/VydCyF8kTa+mHcqPmRkZGQcaBRF8faiKN5SFMWkKIoPakPYPUOk3fw+/bCkn5H0jM3Xny/pPxdF8Q+b3+s/LumxO3UpGH5e0ru0ITJnZGRkXEl4gqSuNv69Oy6K4s8kvU5b36MXiv9QFMVo89/Ir9fGv413FfnfxRkpFva6AxkZkj5pvw8kHS+KYmp/SxtfuqdCCF8q6Qe14TSoSGpLevfmNQ+W9DfW1n32+zWb1759Q1uQJAVJ1bN1LITwBEm/LumfFkVx93mMKSMjI+PAIoTwcEn/VRsOhLY2/r3w9uQy/479kDa+gyXpodqoffBT3qQ2omYf2uHzXyTpMyT9k6IoivMeQEZGRsb+xoMl3VcUxcxe+5A2vicvFCeLougl7T14u4svBPnfxRnzkB0KGQcGIYSGpFdLerGkBxVFcUjSH2jjH6qS9HFtFIkBN9rvx7UhTtxRFMWhzZ/loii6Z3neP5L0WknPLorijbs3koyMjIx9j5dKeq+k24uiWNJGCkNIrvHv2JskfWzz9/skPd++aw8VRdEqiuJNO3lwCOGHJX2ppC8uimLlokaRkZGRsT/xMUk3eu0ZbXyPfnTz9542xFxw3Q7aPBxC6CTt8b18Ie2VkP9dnLEdsqCQcZBQl9SQ9ClJk023whfb+78t6ds2i9y0ZVasTQX45dqouXCtJIUQbgghfMm8B4UQPkPSH0n67qIofv+SjCYjIyNj/2JR0oqktRDCIyW9YM41/08I4XAI4UZJ/0oSebc/L+mFIYQ7JCmEsBxC+IadPDSE8EJJ3yTpi4qiOHGxg8jIyMjYp3irNkj+94YQaiGEJ2ujpthvbr7/TklfF0JobxYXf05y/ycl3Tqn3R8OIdRDCJ+njZpjv3OR7UnK/y7OODuyoJBxYLBZ9+BfakM4OKmNf3S+1t7/Q0k/J+l/S3q/pDdvvjXa/O/3bb7+lhDCiqQ/lbRdsZrv0UaaxCs2K96uhRBy8ZmMjIyrBf9OG9+xq9oQY+cV6fpf2kiDeKc2cnVfIUlFUbxGG0Vwf3Pzu/bvteE42Al+XBtRtffZd+8PXMQ4MjIyMvYdiqIYS/oqbXw3Hpf0EknPLIrivZuX/LSksTaI/q9IelXSxA9J+pXNEyKok/AJbfz7+GOb1/+Li2zPkf9dnLEtQk5NzLhSEUL4NG38Q7axWRgsIyMjIyMjIyMj44rCpsPh14qieMg5Ls3I2HVkh0LGFYUQwtduWr0OayNC9vtZTMjIyMjIyMjIyMjIyNh9ZEEh40rD87VRY+EebZyjPi/vNyMjIyMjIyMjIyMjI+MicckEhRDC00IId4UQ3h9C+P5L9ZyMDEdRFE/bPL3hSFEUX1sUxcf3uk8ZGXuF/D2ckZGRsffI38UZlxpFUfx5TnfI2CtckhoKIYSqpLslfZGkj0j6a0nPKIriPbv+sIyMjIyMM5C/hzMyMjL2Hvm7OCMj40rHpXIoPF7S+4uiuHeziulvSvrqS/SsjIyMjIwzkb+HMzIyMvYe+bs4IyPjisbCJWr3Bkn32d8fkfQ5213caDSKVquloigUQlAIQUVRaDabqSiK+AOq1aoqlUrpOkmazWYKIUhS6R6urVQqqlQq8drZbKbJZFK6z8G13l7al/Rv2k7HAngOffY+pe1x73Zj9376tYyV9qbTaWxj3hj8+nnXeH98jP5snu/z7+PzcU+n07nj8z77M7g2XVsfr/c9nRd/FuvuYPx+bToO/3u7NtLnz5uTeY6geXvP+5F+Hra7P91z5+M+mtf/C0W65719sJPn7GafLhLHi6K4Zq87cQE4r+9hSap2O8Wtt8z0yb9vXdKOZWRkZJwPhuppXIzm/89y/+O8vovz93BGRsZ+xapOzv038aUSFOZ96ZdYQQjheZKeJ0mtVktPetKTNB6PFULQwsKCqtWq1tfXNRqNNBwONRqNIvGv1Wo6duyYWq2WZrOZhsOhxuOxRqORxuNxvH86nWo2m6lWq6nZbKrb7ardbkuSxuOxer2eTp06pVOnTmkymaher2thYUGTycahALVaTbVaTUVRaDKZxPaGw6Fms5kqlYqm06mm06nW19cjySyKQuvr61pfX1etVlO1WlUIId4fQohjazabWlpa0sLCQnwO7VSr1Uhe19fXValU1Gq11Gq11Gw241w2m03V63VNp9PYT16TpOFwqLW1NY3HY0nSZDLReDxWURSxb41GQwsLC6pUKvF9ns0Yp9NpJHnr6+saj8eqVCpaXFxUo9EokWf60mg01Ol0VK/XValUNJvNNB6PNRwOo9DB2i4sLGhhYSESUp4pbYlFlUpFCwsLmk6ncd2lLTFiOp1GcaBWq8X2aHN9fV29Xi+u8Ww2U71ej/OKYMO6TadTjcdjTadTVavV0t5hfugbczmZTOLzEQIqlUoc6zxxhLmhT4yn0WjEuWW89JG52U4MWV9fL80H850KVoyXvUG79lktiRX09WxEnzZdXPA1mkwmc+/3PVStVucKYNtd789IBZ/0unntMNY5731o2xv3N875PSyVv4ubauvmO79CNx/Uf7ZnZGRckXhr8ca97sLF4Lz+TZy/hzMyMvYr/rT43bn/Jr5UgsJHJN1ofz9E0sf8gqIoXibpZZLU7XaL4XCo9fX1jU4tLKher0dSAImBZK6vr+v48eN68IMfHEmjk10IGcTLySkkemFhQc1mU51OJxJuyJekEvlfWNiapoWFBdVqNY1GI1UqFdXr9SgmjEaj2AaEygnjwsJCJKDVajUS1ul0qkajEccKEZxOp3Eu6IOTLQSHyWQSyThkEAGiVqup3W7H8Ug6QziRFH9vNBqxr5PJpDRGF3X8+S6cbK5tnP/pdKrRaBTFCv5bqVQ0HA5j3xkzY/NrneAicFQqFTWbTYUQzhAkfK3oE2uPeBJCiPc4iXSiTx9CCBoMBnFOefZkMtH6+npcY9+DPLNer5/hVGEOXTiZR/QlRcEEscJJvRN79rW7PFyQSq+nHe7hPj4vaV9SAYS1necS4TqfX/8c8MOemzf/3o9UTPDncZ2Dsfn3x7nEhLO9f4Bxzu9hqfxdvBSO7LkdJCMjI+MKw3n9mzh/D2dkZBw0XCpB4a8l3R5CuEXSRyU9XdI3bXfxdDpVr9dTvV6PUXpIApFhiCIR48lkok6no2uvvVbNZjMSTe5Po8Dr6+saDodaWFhQq7VhIwshqF6vq9lsajgcRvICESFS7yDyTJS1Wq3GyPZkMtFgMIiuiHq9Hkkn4gBOBEkxKszzGCMiAWN38u6CB/PiUXCEAOYJUQGXhvdtMBjEMSEeeLuQUYigpCikQPZHo1Ekxd4fJ5uTySS2D3As9Ho9ra+vn2HTd+HHXRs+7y480YaLABBX5od95WKPR9r9d8SDZrMZ520wGJRcNN4+ohIk3VMj3O1Qq9VKwpmLMsDJvEfz6TvP5/3UlcHedXcH+w3nzzyiTn9Yr3S/zUtFORtcIGJc53I2MG53GqTXpyk/PmeevjRPbJiHNNXmCsJ5fQ9nZGRkZFwS5O/ijIyMKxqXRFAoimISQvguSX8sqSrpl4qiuHO766fTqVZWVrS0tBRt+mmUG/IGkRuPx1pdXdWhQ4fUbrdLxMMJpUfWi6KI5BrSUavV1Gq1og1/NBpJ2nIAjMfjmEYRJ21TGCCtAWLbbrcjWcPJAMFGBCHi74TTSbuLKpJKQoGkSKaJNkOGEFFSd4eT70ajEYUNRBVEB4i7R6CZe+YJYkibrBMCQuoo4X1JcQ1wBzCPzWYzklVPDfB0DNqCrLNn3Imyvr4e58Dt9vSB30nl4DpSRXwdiG6zts1mM7o8WHP2COMJIUTxyYmpi0JpOgfPqtVqc50xTqrdUcDvqagBmCP2Im0gbrhQ4cIL9zJX7EFPx2B8vvccqZvB+562Me93dxa54wj42D29hjlN+7AT+LXz3BAHFef7PZyRkZGRsfvI38UZGRlXOi6VQ0FFUfyBpD/Y4bUaDAaRqBNldes3hNpz/IfDofr9vtrtthqNRowSu30bgua2eCL0EFdEBVwOEEYs9YPBQKPRSNVqVc1mM/bTo7k4AHgOhKharapWq5VqEeCMgIT6OBk3UW5JpfoO0lZKAMRR2nI1OEEkyswYEWKYg3a7XXIXeJFKXvO5pM9ra2ulVBCPePOstPhiGoWnPYQNovxebwKBo1arRXKL8MJcuoODvrvjw0mt7x9eQ3wZjUZn1D7A9cB6dzqdKDCNRiPV63U1Go24T9yx4WTY00lY13kpBM1mMwoj21n+U7GGveLjZgy4FFIHhtc28LlyhwdiGvcz5/PSC+iL/81rPNPrIfj188BnBMFknljA/mcd3dF0voKCt+k1MRjPARcVdvw9nJGRkZFxaZC/izMyMq5kXDJB4XzAP9ohax5d9hx6CGK9Xo9EsN/vn1H80NtNC9L1ej1Vq1V1u11J5ci+R/EhgeTK9/v9+BrPd/KNSNFqtWLhPQgVooKkKFjU6/VI+jzC7znm3n9JkXS6ayFNV/Aotrsg6vV6FCAgkY1GI0bV01SOdG2I+ne7XRXFRoFA1sTz7F2ISF0jnnZAPzqdjlqtVokwQiQh1wgGzJ9H0J0Qe1FMItnMMW4D1teFH8QWXwtEEMQrHAasrztXXARDiOB33Ca+hqmNP02V8Hn3a9214/VBUlEB4cz3KD+eesPecXGGZyMW4azh+f65Sl0o7vDw8fvn7FzkPBV/WAcXTLzdVKhgj9DP1BkxDz6vqUCSkZGRkZGRkZGRkbE99o2g4OSBf+B7Pr7XA8B+TqX/wWBwRnE5t8N7DjtV/mkL+PMajUaMqJPKQBTb+wtpcwEAwu9uBwgeUXTPe4cIemTVUz08As9YIKxE2N0pAYHlv25XR6jxtA5IJ397bQHg6QcILF7jwYmttGXb517IGaKHCzGVSkXtdltLS0uSpMFgEN0LkkoRe0huSmCZG+5xEul1K+gvqSj0g2v8dAtPTfC0EAp5sj+Gw2EsZOm1GVxEYG7Sfc2c+Jr5a+448DH7WjLXtJ3WiUCs4T5cF7gl3EmR9tM/H5B0L5DphR59rVOHwHbpDYwtTW1g3hHq0nQchB6vLcL+pT3GAHYiKqRzn0WFjIyMjIyMjIyMjLNjXwgK0lY00iPLbkFOiRKnM+A6gExKW7ZriCgkH+fAbLZ19KOTKoh8q9UqOSYWFhbUbrcjGeSHZ3rOvke2OVoRctlsNlWr1UpWcgQCouDdbrdEgInWp7UBOPbRRQUizhBUxktfPdXDT5GgBoG0FelHdIBgUYyx3W5Hq78XrEwjyKlDgii6Oy6ob8F6cnwmJz+0222Nx+MoyvipAPNSREi1SEkh77E+FOKcTCZxD+EyYG6Zx9lsFsdJuguC1srKSslZkq6RiylO2FnTtA4B40uPymSMiDAulnCdi0/sp1arVUoFol0/FtXvcZGLZyIquOvCRQzG42vtEX8XRtI1S//rtSAQ4/jMNRoNDQaD0vs4SVyUcDHufFIf+My4QJYFhYyMjIyMjIyMjIyzY18ICk4I+N0Jmtvdh8OharWaGo1GjChTTwERAiIDkYKwYumnLc/ph/TwX1wJXtSw2WzGQnxpNBhSRXQd0ui2fMgsufZpwTqIrJ9CAeGnzUajUarkjyjhFfxdVOBnfX1djUbjDHs+BBgBwY+fhIx7NJ+IPiINpG3eqQI8g9cg7oxNUinKTxoLxNFPmkCEwarvhJ01dncFa+dHakKqmeNGo6FGo1Eauxeb9BQS5pP5c0HC0zC43msluCDiDgknrIhTiFwpaffUHch/q9VSvV7XeDyOp4swJ9Tm6HQ6cS9zjacEuJDCM9MjKn2/8JrXocAlwJjSEyK2I/WetpDey/72eiXuVGDv0N/0u8TnkNc9dSTtkwsVGRkZGRkZGRkZGRk7w74RFPwUgbPlMlM3AWLt5BHSCFF22zQWbz9aEvBcjxYvLCxoeXk5FtkDfkoEz+BvCtlB0klF8NxzSBi5/GnElxoSCBL87nUeaHttbS3223P0Ia4QXZ5BcUfvl7fr0WQvyufpGsPhMLoUqEXgkWgnccCdHKyXp7j4kZ6Mj2d7YUjIHqKNCw0IEF4Y0QUj1oh72BOtVisW0/T+jkajWHfBT7eYTCZR/KjX66XjIn3/pGSaeaGAZ3q8JkKVpNKeg+h7XQPWgTF4XQgXqCgcievG60Hw2cKV4AIYe8Ov8xQI30/uvPG+pmkzjpTM+zoz9wgjXhiTNfd6G56eQtv+3ZHWdfDnu5MmdZRkZGRkZGRkZGRkZJwb+0JQ8Px48rIhxFj3PSfarclELr0QoVulKajYbrdLx/MRhfcUBqKdpEogGEBMnSRCSui3/xfSSEFAr7bvEVOPYnvU2E9UoG+SYv+9wKOnTpA+QT+9uCXziNuBcdLner0e7f9eI8Ij61I5TcHHhyhERB4QrYcshxDi8Zwe3cadQToFUXj6524Fr2eQ2tO9jgHEFwHK22FNcI0Qda9UKhoOh3H9naj6+uGQIb3A5837zR71efJ0Fk9TYR/jmlhYWCgJHZB8BDGcHSGEWCuBAqX8PhgM1Gq1VKlUSiKWCx3uqkjrlbhQxdiazWb8nHG9E/J0TdzxwPP9fQQQP8XEx8z8ursmdRK4MOcuJXclzMP5pEVkZGRkZGRkZGRkZJSxLwQFj746aXfbPlFM/vHvxMGr3hPxlras1JAvL57Ie7Tjufdud6dA4zwrNMTfTwrwkwkg+KQ3pGkVfizevPGTWgGJos9Ex0kBcet5CCEKB17EkHnp9/ul50HCIMNpfn6a18/vkD6EAq9vwLw6QVxYWFC321UIG8dOpvb28XisXq9X2hOpiwRizjPSOghO9qWtgo4uWLD+7oqgvoQT5l6vV3JwuDBDfxqNRjxC0/cM+8z3Guvgbhjm2yPsbu9nzGlaBSLMcDiMdR1oE8cBtTIQBxhjs9kskXpIPnvW03n8BBBEF/aLr7unBSGGpKd5eL0GT58BXmSRa3EXsH7MX/pemqLhzgUvGLoTgSEjIyMjIyMjIyMjY+fYV4KCuxAgHJATz8GHiEuK9nFJJbKRVn6XFAsscs92Fn0vcudEBeK1vr4eCRTEkBoH3MdzOGbQj97r9/ulSLvnqfszJcXIujsvIItex8CjvVzvBRilDSu9iwEQTr/P6yRADjn5AEJOeom0VQTPT2PwFAwvYEk0nei7CwaTySQKCl4jwutMeNsUVqSvHGMJaN9TAFw0oj1PX/F5oCAk1xLdp1+0m0b901QH9rTXAuB1+l6pVOambvjnA0EoLUw5Go1iCgb3ufPC6ys0Gg01m83oLPD0H99bzAliAf312gTsVa9L4XvX++HCH0D4cEFvPB7HcbhwyGePVBUfP3Pj88r77jChr35Cil/vY8zIyMjIyMjIyMjI2Bn2haAA5uU+S2ViKZXTC4icQjQhV5AoroF8QQapqQDRTImEE2tIFEKBH/uI9R+nQqPRKJHIVqsVXQoQp2q1qtXV1ShkpEX6vD1JJWIEwet2u6Wcd8+Bh7yRL+9Czfr6ulZXVyNx8zx1t4nTTrPZlKSSCyDNbfdaFr4+zAHPgjw2m00NBoMoAng9AUQPF5HYG+4W4Hcn3owTMu3OlrTo33Q61draWuk93AmMGQcIz4egA8ZHioHXIqA/aT/ZZ77fvKhnenqB1yZYWFjQ+vp6TLOgj+4QqNfrsbYG9RX8pBEEAxcDeC77BTEJUcbTUbxgIkKB1zFxMcw/157WxJqmrgsfO+voP95eeg394jPG3HuhTj6ffoJH2i7/zQ6GjIyMjIyMjIyMjHNj3wgKnqc/rzga5IUIN2i1WiWi4hZz7N7YuImCjsdjNZvNmM7AqQLuVEjJLOTFiR8WcfoFWSayLW2ROieW/X4/9gOBwcUDj2Y7EcWWT5tFUWgwGESxIrXeE8GnXYQJSKh05vF7aYHFtMaE14AA88iX1zngdAzIHSScKLZH9yH93qanEHhKymw2i04F9pC0JVB4VDxNl2Ecg8GglP5B0cVms6nl5eVSH4ngM2cILuxJF5K4zwtJAhcYfH0YOw4OHz9z7nsRxwLOG983Pj+kTfAZQ+BxpwlpOdRDYG97XQzfJ56igZvB3S/u1kj3ib+X/hdhgzlyku9z5vvF5zoVCPgMpTU53Jnkey0VE7KwkJGRkZGRkZGRkbE99o2gIJXz+SEDTqwgB5CjSqWibrcbj8XzNAeIsVSOlBPhJX8+zVNHuJDKx9pB8ojS4nYgl9xzvznGEqJMtFzacB8sLi6qKAqdPn26RMB8nLTHvPA7fyNetNvt2AaEKi3wyA9tpKcguDvCo/+SSpFdaYu0AxdhtpvztCAi6RgU9/N+ci/Rbp+PNBrtaTA4OtxCz/3pcY3MD3sBgYqxTSYTdbtd1Wo1tdvtEhn10yW8+Cf3+RicEDPPfrpGSpI9fcDnI3V/8INTIS0cimPEC3Z6EcXULYCDB1EgrWdAu94HJ/VesJH3+dvX42wnMiDW4FAhrSgVFLz4Kv/1ufIaCewP/95wQSwVD+alO2S3QkZGRkZGRkZGRsb22BeCAqQAksYpCRAaiIaT88FgoH6/H4/2I4pKxB/iRzSbqDjigaQYQZe20iqkrZx1yBA/Kakbj8fxaD7IUqPRiIIBBMujoRSo63Q6pdQCnpkSTX/d7fmSoqgAeWOOuA8ChvjRarViX0mVYGzbuUMg2e70YDxpFB2yTnvMufeReajX6+p0OqXTDzylxUm6rx3z6dF8+uVr5E4PCCpCSSpSeTpJ6kZwEcTTYNJCj96OCyCMm+e6g8TTWryAIXvxbIICnwPcAQgLjJ25oH8c3ekOCAQO1pb0BUQpHAe4FObVlEDA8M8VBJ57XHRylwn71J0EjJUfb8vrljAvrJXPH2JKmsaxXX2ELBpk7DVWnvEErd5UOfeFBwA3veIuTY+f0Mf+3ZNUVM99veOGn3zTpelURkZGRkZGxiXDvhAUpHKROSLJWK450tCPi3RyJm1FTSVFWzoky485hEziIoBU+ekM0tapBggAtVotRk9rtVrp9AcixZCWTqcTUxGc/FMUDgLm+eyehsD1aeSesTspdTcBIgdIi01yDaICbXuxwPQ0C0/9SKPfXlTQSa7XDiDlgbQA2oekjkaj6OZI+9lut+MaNZvNWMMAYoio4KIPfYZEe/qGi0Re58HTXWjD3QYuBnnfvRClH7HoJNn7wx5FAKCPXrvCayawl/lczBMWJMV6IbSZkmxPl+n3+1E48ZQEd7B49D4VQ3wu2O+ewkIf/DPK81izNJXBnSh+/CXve3tp+ovvcdbE+873gKfK+GcrTeHJwkLG5cbJZz1R3/HCV+tbl+7f667sCm799GcrPHC73vONP6tGqJ37BsPDrv8XUiHVT1d00w9lcSEjIyMjI+MgYF8ICmkldirTE8UlAg0hxebuBduwdUtb4sR4PNba2lokdIuLi5GY8AwiyIgCRI3TPG8s5k6IIUpY5jkSzwk6xMjHmlrDITb+Hs+nLY/iQpzou+fG+zGSTsSI9kIaIX70A6HACzjyuxNZnwsEEOaM4yw9wu5jYE28+GS325WkGN12kouzAds6z0GAYC8g5uB2IBXF94WfZuGnDbg443PNc73uAv9Na3XgFPB23Z6fCgE4cXwN6JuTeuaUNWdtKZCIQ2We4OBR/dStMRwOYx0RwHqlIlYqSqTiin8GcQL48ZwQeRcV0tQFd4DQ11RcQ7Dgc+ZtIxh5X/zz684TflJXCf1lDrOwkHE5cPJZT9Tzv/81V4yYIEn3ftEvbf52fmKCJN3zjT8vSfrwZE1Paf8/uvV737yLPcvIyMjIyMi4FLhgQSGEcKOkX5V0naSZpJcVRfGzIYQfkvTtkj61eekPFEXxB+dqz0kZNQogKO12W6PRSKdOnYoWal6H+HmNAXcq0Dak3wkRdmgICtF1xAqIlUdRnRh51HY4HKpSqajdbpcs+hB/b8ejqpBDCLO7MIjKE6V2csd8UQeA+2kLUuSEiRMw6LsXMWw2myV3AlFyCBYiAaTPTwpwpwJuDtrmfa6HXEqKTg9SVbyonpNgL8JJ24xZ2nIq8F/apxgkThCfC0ilX4+gMM8en0azqcchbdW08HoQ8+5FbPLTGiSdUcjQn+82fxdkxuNxrE1BgU72ltcVQETC+cDeSo8y5b9OxmmP1AcXSLzPvi/99BD2BUKGiwfuCPB0Ek9L8RQgn1fvJ4KQ18xwQchdDH49f6dtH0Ts9ndxxuXByjOeoO964e/omUvH97or+w43LXT1+n/2Yn3pwvfotn/7lr3uTkbGOZG/hzMyMq5mXIxDYSLpe4qieEcIYVHS20MIb9h876eLonjxThtyizfkCSIjbUWyJ5OJVldXJW1FVCG1EHfekxQL/5H64NZnSA85+OT640IgAgwhw/qNIwCCRl8h9/1+v2RhdxLr/a5UKjHKv7CwEE+rIGrNc+lbGhn3MXkaRbPZ1OLiogaDQSTLpGnU6/UowpD/z/wjKtA24yLyjTjiue2kavics4YQOcQcF1S8GCRjdxeB7wnmwImsp7cgCvh+4X32BEeLOvx4QvrL32n03MUE758XrvTUCyfuwKPeCBesjzsLGJ+7JfgdCz9iEtf5sZVOzBkbqT6IK5JikUaHpyIwxnQMvO7zzTUuwiHwIG6kooLXiHC3wTz3APe4UMDfqRjBGNyRAOZ9Jl0sdMHD7zkA2LXv4ozLg+FXPl4v/JFf1Vd1+nvdlX2Lh9c6+sOv/yl9+eTfZadCxkFA/h7OyMi4anHBgkJRFB+X9PHN31dDCP8g6YYLaQty5EQTwgJ5h/C7vZsoqddD4B7eb7VapWd5NFpSfM7CwkIsEtjr9UqENbXNO8nieD0EAuo1uM0auziRVC9cyN+IHJBCCDukx63knraBKDGdTmO9glarFYvkEZFFcIBYOnEGfiwlxAvXBMUvmXui6IyBuQQ+PopFOvmD8LdaLTUajdKauRjB2qR9pT1/Ds9NI9f0F/eGpFhLgDHw33liAte5dd/n09M4Nj8Ppb2cnsLB6z6vjAGRodVqlYSAEIJarVZ8H4cGbXsNh1RcYey8z2ei3+/HNCJP9fD543d3jng9Ak+VYA+7AOJrRN+Yx9Rx4E6HVADyvZAKH7Sbuh74PYWny/i4XaRI99l+xm5+F2dcesz+8WP1op/7//T4xvmnBFxteHitozc+/UX6kt736qYfzjUVMvYv8vdwRkbG1Yxd8fmGEG6W9I8kvXXzpe8KIfxdCOGXQgiHd9IG5KzRaKjZbEY7N/+gR1Rwa78TICzkCAppBX7ImRNByAkkDdHi0KFDMb8c4gFZhyz5qQOkX3ByA+4ACKLXXpBUKubHOCA39Xpd3W5Xi4uLsZihpDNIDmOQFJ9BRL7dbsex8OOEvF6vR8LqwoKnWTQaDTUaDXU6nZgq0Wq1tLy8rG63G8ksTg7vX5qLT0qI5/kjhkA4cSIw54zLr0v2XMktwXoyRk858ZMqGDOODSev7gZI8/odaU2ENKcfwjoajWK6Bi4I4GkMXsMBUcznxtMHWEtfcxdDcHwwlz537FtEJ9wv6fvu8IDI8+OfMQQ00idwzCDAkP7APnBHgKcauLBAbQnmiPt9P9AP+uLCSupK8O+WealHfLcgNqVCxUHDbnwXZ1xaTJvVLCacB25a6OpNz32xPvkvn7TXXcnI2BHy93BGRsbVhosuyhhC6Ep6taR/XRTFSgjhpZJ+VFKx+d+fkvTsOfc9T9LzJMUj6ySVSD/EwCvpQ3YgGdzrpNBz6bkWcuPOAQgF5ARBAzcBgMy1Wq0zoqOQGwiaiweej0/0Vtqoyk+aAsTPc929v8BJrRen82i4R2mZt9lsFk+koL/c22g0YnoDhBGxhmsgbLQHefUcfO5nnvx4SRcVEFhYJ4i0n15BtBqy6uPC6QGhpk8eQefZ7AF3UXh9Ad8zpJ2khQSZD9aw1+tFp4qLKL4n3OJPH3DKeOqEp75wX61Wi2vp9n/6SFvNZrM0n4yRtSVFBPKdnnCBENRsNqMw4E4ET69wYcNTIBg74gL7m89Xu92Oz4G8cx/98bXwI0XniWcuvvjcuTDj97ljhXa8Td8ziDnsyYNalHE3voubal++Dl+FqN7xCL32V35eF1Kw8GrG4Wpbf/19/03r3zs963X//N4vV+/JD2z8UcykA/g5zjjYyN/DGRkZVyMuSlAIIdS08cX5qqIofk+SiqL4pL3/ckmvm3dvURQvk/QySVpaWio2X+O+UqE56cwjEInoQ74B0UrIHMKBVI54Qk7S2ggexfUoNfdD0j2fm6MMIU8cF0mhSM/X9/oQnuPOMxkTr6UnEKRFIRuNhvr9fhwLcxZCiBFdTyWYN78ebfZ6Dm6nn81mWltbk7RV7NCP9/P8esgZRBVxARHC19WP7nSymEbYSStA+GEsuB3c4ULb7k7w6zw9gDHOi567YOI2ftrz3H3W3msHcL2nKLio4FZ7HAEugPgRh07sSX1gbdmjrHEIIaYHra6uxjlm/5AC4aJEuq+ZIz+Rwsm91xZhnhmzpHhiijsHfD1cTHCRyNMOfJ29Lgf/dZcDQqALXf5d4QIh+5HPpqdquBvjIGHXvovDkczALiEmS83zPkoxYwO1UFUtVM96ze/d9gbpIxu/P+IVL9DDfuo9kqTp6ZUsLmRccuTv4YyMjKsVF3PKQ5D0Ckn/UBTFf7XXr9/MJZOkr5X09ztoK5JWIuKNRuOMf9hDsLiHH9IjPMo5mUzU7/dLhBcrP1Z42kmj1RAUjmH06DBkh746wYRMp+kWkqLwkY7B7f5egBGih7DghIqIr0fGvQBiGqWH6EGsPErtKSLFZs2E8Xhcei6OBNwXEEAi+BxFSJ8Yz3g8LhFRLyYpbUXhXSRx232n01Gv19NwOCyRa+bXST0kkpQZ2nfRyPebvwe5Tu3untrAfoTEu5jgNRhcVGA87CuP8Pt7kFrEEhdExuNxTE9hzMwN93qtB/qNMDQajdTr9eIzOZ2Cvcp6+fgRZjhpxedqNts6saNarcYTWNgbjI+0BXe7eD9dVErdBV43xD/nXlvF55LvDxccfG54Fv/1uhv+bMQ9io8eFJfCbn4XZ1w6VK+5Rn/w6l/Z625cNbjrOS+VnrPx+5O//dvVvuvM0zTCcKzJRz56mXuWcSUifw9nZGRczbgYh8LnSvoWSe8OIbxz87UfkPSMEMJjtWHv+qCk5++kMY5GJN/eI81ndNqq/ENG00KDtOHRyeFwKGmrsJxUrkyfEieEBS8CyXWQPaKbTlwgzi4yQJSJ/g+Hw/iek3evi8BzSYPwfHHI/3Q61WAwKJEpbPGdTicWRSQC7rnkjEfaInVEnAeDQVyXxcXFOPeDwSASvpRUE4VnTpkXiC7EnfFNJhMNBoNIBolaMx+ILGtra7HApEfzncBKW04QTo3gWX56BOvvUXEvEAi4n0g7KQJed6Pf36jQ7muX7ktPwXES70VBeQ7CjjtZ2KcQXYQb6in0er2SOOYFSukzNT1o28UPim56rQT2UKfTiQU1cUn46QnsRRcRUteLpFiXwwtPeroL+4WUAz+ZgnY9Vcb3rgsF3g4/wNMb/MeFQZ7LnLC/DoBbYVe/izMyrjT8+ctfPvf1H/zUHXrTd3526bXanR/S9OTJy9GtjCsL+Xs4IyPjqsXFnPLwV5LmMf4LOl83tRuvr6/HPGxSCJxMSCqRewBBaTabkbR45Nbt3xA7SAnPSHP9UzKS5rU7MfFj/LzSP5FzT8egvx6phhARxZ1MJlEI4ZparaZ2ux0JGfPjtQwosIi44fZ9PzqQsXuNCrfcTyaTSEzb7XaJELpVHEeCp6J4njukDCv9cDiM43IiCHBZuKABoWW+6Tfk23P/ESQ8NYL/MjdeKNKFFXdM+Dp7igppGrwPGEMqWrngg7Dga5a6TegPhL7ZbJZOD2EM9M2FKEQF0mi63a4Gg0EUuTylwWuMDIfDWE/EjxlN02VceKAtFwm8LsJwOCwJWP75cAHM03j4IWXI0xyYNxf32JP000WudD5TIdEdJH4UrKeP7Hfs9ndxRsbVgh++5k7pt+8svfaIX36Bjr1r43ui+7t/Lc32vaCYsQ+Qv4czMjKuZlx0UcbdgudxewQeokT6ghN30heIwkO8eA/SQnE/z/V25wCkImzWP4BUQdQ8mgyBog/0iTQBqVxUjjZIMfCChS5GpCcZOAF2Aj+ZTOK4ifyS9kE03XPqpS27ubRVD8DTISB8zLdHh3FiQGDJqae/PueQbCd6nquP24J7PaXA582dDy5E+Lx5DQrG4ykUCEvY4T2yjpMCwu398Yh0WkTR0yYotOgigAtbZyOwCAyAvejwmgfu/PAChjhoGBsiAGINa8YxkXzGmCNPr6APzK/XWvD9L22lEnhtEXefuHPAXT98BriXdni2p4qwhxizC3ysHfvT0464xutB8Nq8eed9xA/mg3lOnSsZGReM0Uif/+6v1V886jV73ZOMs+Cub3tp/P1RD/0OVYfSg/5bPrIyIyMjIyNjO+wLQQE7NbnyED1pK7q/trYWhQEIo4sKTnIQCfxoPWkrOu4kzyPKEEhEgjTqCfn2HHaIkT/HK99DSLiP/hZFoX6/f4a13eHkHpIkbZH8drsdj3BcWFjQYDCI5NLrSXiBRUgec0W0F1LHszxP3sfDmBFcPO/eo7lOyj1i7adKeOTf14L59GKO0lb+P84Idwyw1qSKuJjCWjsh9jVhXvwakDoNuN8FC69f4PcxV8yBH4XqBNmfSX/9d+bAhSEXBBiDrx+fJ69pQX+pY+GpA6RrsJ/dFYPLwcUIPh9pTQUfu9c1SdOSfC3TdKLUgQJ8PzOnLra5OMKa+t/pZ9/TbFKnE/N/EBwKGQcD05UVdf/t9dIb9ronGTvFu//NS7ReTHXHDd+l2umgh/znLCxkZGRkZGSk2BeCgrRBkHq9XrQeU6We3znNAHs/xACSNhqNSlHrSqUSSZiTQs/Zdis3xLRSqURruIsUkGdEiVqtpk6nE1MScClIKhVr9Px6CF29Xle3243jpj6AVC4SCVnEhQDRGo1GMereaDTUarVUr9e1urqqfr9fSnFwNwZEEyIIEWP89Xq9VBCPtAp3bED00nuJlEsqnVbA8/1ITJwUXAc8Ogx4Fu2xvoyPWgLeR9rH4eDpLJ6eAjn2tAwnlWkuPiR2NBrFPeJrlhJgF4lSNwXwVAUXrqQtV8Q80Yl94K8hDiEesG/dZcN1nq6Qvu6OGdqk/gcngaSuAJwHvO7iS5oGQx+pu+EpH763vJCj17sYjUbxej7bXqPCHRW0mX7m6bf/7iKGp0xkZOwaPnlct/z+t+sDXzk/pz9j/6EWqrr7mS/VPetr+qJH/CtJ0qG31nXNS9+8xz3LyMjIyMjYH9gXgoKTxNXVVbXb7ZLdmZoBRKo9j15S6R//2L55HSJBhDQlPBASntdoNNTpdGLBPY9gSuV8bEiWR969JgN94cQIJ5PcOxgM4tghVp7bTR+9z+TIY9H2Ux1S90Vq4YZ0e8oCDod6vV4imESeJcXnOZH2ugvMg9vyXYSQFOsAMAYEBp9XJ5DzaitwjZNarydAZJ33EHdoywtFurXfxQbmC0DqeZ2imj4XkFjvq5NWXxMXY7jXLf8uSPmzvS1pK4XH01g8FcHnNu2Ppxr4s4ti64hOhKmiKKITBuHI65Lw2fKUH09X4fPB/Hl6jbsMWGuvxcE4XHDwUyo85cSLlvL8dD58TlxYcuEqI+NSYXr8hG75nZulr9zrnmScLx5W6+reL36FJOnVT1rST3/1U6VfvEad333rrrRfPXZUK7+2vOPrV4YNXf81/7Arz87IyDjYCJ/9KH3qM7vz35tJR1+eBdCMS4t9IShIW+R1PB6XCjQSwVxYWNDi4qIqlUpMSZAU35O2CAORdqrgA0+DgIx4IT8IU71eLxWCnGd9xqZNv1NiCVHFXeH2ci/IiBMDQgPcju+v8bO+vq5+v6/hcKhOpxOjvenxjp5OwBiI4kOgPFeeExcAa0G/KWRI/3GI+KkMfoIDxQDpP84EXA1O6lgH5op5dwFE2jomEII5mUxi0UgfZ7peHqn2qL8XNUxrHHjUntcoUsmxmNKGWOJ1E3CiMC4vNggp9mezR/r9filNwNN7mAsnxfztBQgROlw88X3JunsKDwTex8rnj3G6qOK1JjxlIxV/qDOCMMGe9M8pe9bTHTxlh/t4Lg4Kns99qRPFHUhc56KCj9GFr+0+fxkZGRmS9PXdFX39o39Pv/qfjukt33eb7n3BbSr+5tynAX74h56kf/Ll75j7Xqf6gF503Rt33IdRsa5/89efV3rtr37jM3X9f81pGRkZVwuqt92ij3z19VpflMbLs/kXFdL4e56k+ulCR38xCwsZlwb75l/MkG9If7/fV7/fj6SDY+wWFhY0Ho81Go2iE8ELHNIWzgDPoYcce4FH2oCIQSIgGuR7pxFxroGkEN13yzWkhGMHIYSkSLTb7RIBd/IqbUXDpTJJdRv8cDiMJzHwrMFgUIq44yTwyDjEGqLWbrfjnDnxg8QxR6PRSIPBQLPZLJLoVqsVxRUEjMlkolarpX6/H1NZeB4nLCAeeGTbi1C6+8EdGETXESdYf8bPOnktDUQcd7e4RR/CnJL30WgU9xZCCGNAmKEtd5q4xZ9xeP0MJ/TbiT4uPkCQ3TkB8U8JOMIM80T/mEPmwJ017HN3UbBH2Gf0y9No/LmpcwRBxUUKiqcyL4x93p53QcFrkrCmjM9/3KXDZ9DniT4iSHlhVL+GucppDxm7ierDH6Z/+fOv2utuZOwSnrl0XM9cOq7X/+Y7dWLS1W8+8VGlIyfDZ32GvunX/ij+/YTWi/TwWmdXnt0INb3khreUXvu7f/nneufzHqKXv/Dr1X7N7jgnMjIy9icWbniw7nnmdVpf3EZIAEHqPWSm/vWSnvvELCpkXBLsC0EhhBALDHY6HfV6PZ0+fVoPPPBAJJTSVjoDZMYLFnr+PmTFLfteTM6j3tJWVXoIFhHQU6dOaTKZ6PDhwyVi4tFcXAaIB61WS7VaLQoUTqRxYHhBQk5qoG8emXZBhDEwZkhjv9/X6dOn1el0YpQXMjQYDOL8OmHy0zTq9XoUFHA6SFuFHN0ynkatKRbI+rlFHYED8WNlZeUMhwAE2fPhmfvBYBDngJoAEHgECHc2pKdLuCOBPUKf3RXhYglkHtcF4oCnRuA24JQHSZFs4whwku2pOPTDU3w8pYO1wAHifWPcqbMA8pvWWmAv4LhI9427bpgz7z9jTAUDr2/AWHgPsO58llIRA6HGayC4Q4WxuGOBcabpH+6IcDHO050Ylz/HC5Hy3cDz/bkZGbuF6rGjetGf/JruqLf2uisZu4wvbw8lDfXYv/1DzQo7/ji8SZ9Wb9uVuyMmbIdH15t6dP24Pu9nfkqn/2tNP/Al36Tp3fdc0mdmZGRcflQPH9b7vuuhmjbPLOi+HYqqdOqRhSrf+kQdfmUWFTJ2F/tCUPAIP3UFhsOh1tbW1O12SwXeIKGejiBt5UR7AUVy9rFnQ2o87xoXgudvp5by2WwWI/zACZWTHyKsCwsLWltbU7Va1eLiYnwupNIr8FPQLj1JgeeSggHpgWAPh0OtrKyUIsrAibO/7zUKcBUsLi7GlAH64kIN4gMkU9ogb8PhMFr0OZWjKIpShHk6nUaiDHEjwu9RdPqCRd6t6KSNSFvHBHpUHyJJ+oHXAkgjzX4aQ5oe4ZF0F4DSIz3TgpSkWuBESdMWfD5cTEkJK+3i4OAZXq/AazW4W8WdDrg00pM40r2bFolEYJI2HBtcg1Dh8+tRfN8fzIk7T0jRcZKOGIVAyDV+v68ve99TT7jGa6M4fG8x36wn+8pTjc5W/yIj46IRKllMuMLx6Hpzr7sgSbqltpFL/dt/9ipNVeifPezJKjaF6oyMjCsAlXBeYgIoqtK0fgn6k3HVY18ICpBQLPccA0jxQa/Y74TWiQy52EShpa1cd7fGO3ny1AW36tOOF4zzaKbnYHtePaTO0xxGo5F6vV6MeuOs8NoNzWbzjNxzz4WHbNN/J17UKvAIvRccZD68JoCTSU6cWF5ejvMFucOJ4GtEjQncF8PhsHQyAtcxd/4ec8pzIJWIJ0TSO52OQgjq9Xol0cHXyOfaU2Dm1bpgLrYjnfyXfpMO404Yahl4/QXfiwg/rBnzRtvsXSeo7v5wYYy1pQ+II/4eDhxPn0iLVDLnvn+l8lGV/jmaV7RwXopBSrJ9HIhHLtKRvsLrzJPXPEB8QFTzzyfXeVpQ6urwI0ilrdQW5oO+sF8QXNw14iKIpFKdhoyMi0XoZDEh4/KiW9n4/8D/uvev9DW3f4E0m2lmRwJnZGQcPIRGQ3f9+4df8P2nHlmo8fQnaPE333LuizMydoh9ISjwj3bIKuScnGv+4Q/pggxIW+kSnrJAdBcC7ATec7ERCHh+rVaLYoIXToTEQEpwPeBwmBd1doLotnGeg4iAIMKxmG6f99oQHvl2QkX/cDDwHCfQ0+k0tgupcjs7Y1peXo6nNVD3wEkqAoTnvvf7fa2srKjX66nT6ZQK99Xr9VI7CAycpMG1FMCEhNdqNS0tLalWq2kwGJTWiPmEoDvhSx0oqdvDo9tcQ20EyDNrOhqNSiKQ38t8uPuAOeUIS7fPMx/sD3+d57Gm7lJhDIgi9JfPSZqywBx4jQDml98RTcbjsQaDQRSrXLBBYGDf+/6XygUo02KGLp6kYA8xF+wJ9mCr1SqlpfCZ8joRvvf53QUBnsNc+DzyWUM0nM1m0fnidTcQlbwoaEbGxSDU6nr9m167193IuErRCDX94fvfpL8YSj/5pC/R5BOf3OsuZWRkXCAqh5alizmQKkhFPtAqY5exLwSF2WymXq9Xcip4lXUvHCepRITdkg9JGY1GGo1GkdRCgj0dAqQRbSeQkBVIT7PZVLPZjP2isKDnlEvl4xSJ8g8Gg2hR5xr+6y4Lj+7OZjP1+3212+0oMPR6vZLTwYvL9Xq9M47WpE3EEsg9BTCZE4ordrtdDYdD9Xo9DQaDKHJ4MTuPHq+vr2ttbU2nT5+OxRMRSni2k3x+R5SAzEOs19fXNRwO1W63S9FxaasOhtvnPY/fT0RwgcdrY9AHL5Lpgo+vuc+zn1zhBRZd2HGRgcg3a0yf/BmsMXsorRPAvmMsLhDRjtcecBeN722vQ5DWHUHMSZ0R7qagv/TZ9zGCGn3ytvwz5q/Th/F4HNNKfB4ZD/PmtSP8hJf0s+tAkER8RIhxIdFTnvyzz7pyXxYUMjIyrgR8flN67/9+t37vW75QklT9xElNPvLRPe5VRkbGjhGC7vq+W/e6FxkZZ2BfCArT6VSrq6uRYHmU390ATpBT+zMkRVK04uMCIJXCBQiPXrqDwfPUuc7THnAXYDfHlu99xQLfarUiKRyNRrFPCwsL0fIPKeLYRQQBCNRoNNLq6qqazaZGo5HW1tYkbUSJu92uWq1W6aSKfr9fSlOgH41Go5RXz8kQXieiUqlE0rW2tqbZbKbBYBBJF2NkDgD9GgwGMV3BI/q1Wk3tdjsSQ49eM34IpLSVv88cpBF71gOxCBLsP7zuDgS/D+eKOzvoG/2nT6SbcHwi7XsNAdr2FBjfP4gdjEEqW/H5e57Y5fvbUwnYs2kagLsRvPYEBNsLgeLo8ZM2XLDwNnk+c4sAyBy764IaIZ5Swly46ANZT50ZzCmfRXcX+Pww9nnpIy7YsMdItwkhRJeCp3G42yHdqxkZF4reV/wjSW/b625kZOh5yx/T8177a5Kkx7ztGTr0ihskSZ0336Pp8RN72bWMjIxzoPppt+91FzIy5mLfCAonT55Us9mMZNgJAn9LKkUQIVOcBkBuNhF2J+sIABDhNNJJJNKL/nkk3gkyhJQIq5Mc8udxM5BCQTE4t6JDeLjfq9tDgiaTidbW1kopA34Cghedw8re6/UiwYP4ImRAjiHKzAupJQgwOBh4j/65GFKr1eJ8Hz9+PFrhPR9eUjwRgWdBEp0MO6FzG72T9FRk8LHzHK+X4DUDAOvJvoDUMn9eEBCiSr99rdIijYhKLkRQHNHrBaT1B+Y5DzyFhrbpL2Nlfb1GBKQ/JcjMgwsZabFF0iJSd0FK6P3kDpxDiFDeV3deMBee3oEYhBjGnqbPfP7d2UF/GJ9/Pl2Yoq++VzzNaZ4wSZ89RelsDoiMjPPBn/33l0jK4lTG/sK7Hv8b0uM3fr/tVS/Qobs3fj/6irdJs1w/JiNjv+HuZx+5uHSHjIxLhH0jKPT7/fiPe49m8jfkgGhtCOGMqv6ep07KA+TMi64RjSdaL23lxKdF4fxovtRe7oUXscNDiNN87vTIQyeDEBonq5Ae5mY0GkXySwR/OBxqNBrF+YBwUgMAEaTf70cy7vZud1s4AXSy59Fa+oQ4gROEn7W1NS0tLUXS6PUqPKoNYaRdn1v6R5qF165AjHBRxlMHHE7s5xUR5N56va5OpxOdB7Trghb7oNFoxD1DWoC7VxC5qPnB/EH4mWcXx7yooveN+fFrfH+76OLHk0qK16Q1CNIUFCf6kGh+3FGR7pVarRaFN4QM9nWahkHf3T2EyOIne5Ae5HvfPyPMLfA0DHdruADln3v+RqTwAqtek4U9621nZFwM7vv3T1JF79jrbmRknBXv/+aXxt8f8dAXqDoMuvE/vWkPe5SRkZGRcVBwUYJCCOGDklYlTSVNiqL4rBDCEUm/JelmSR+U9I1FUZzcQVulSLF0ZmFBP90AYkQOOPZ+iBGExQUBJ1e0CamiSj/58pANt5J70UfIe71ej6Rd2iAtfvwi8IJ/kkrEGmcAJM2JLYTUI68QU45tZAwewXdXASQRAtdoNNRut+NRkVjgyVFn7lPLO/Pn6RouOnCf29h97j2txNMP0nQBRBOPujvRbLfbpboHqYPB9wtENM2Dd7LLvPgJIb4nWQcnom6v97oFCClpdN2dLgglLvCk7gTEMi+gSdu0k865O3do18l8CCGKQXxG2E9pP+kTQgHXeZFTal6wX6mLkO55nyc/IYT1TR0FXv/C54h555o0ZYS9lKbUpC6GVMzydAqvieL37Hfs5ndxxu7ijc//L6qG7l53IyNjx7jr2S/VqFjXIx/ynaqfqOrmf5/PrN8J8vdwxkFA8/6KDr37Ac3OfWlGxo6xGw6Ff1IUxXH7+/slvbEoip8IIXz/5t/fd7YG+Ee7RzMh9R61T4mjk2UnIkRIh8PhGcXx0kJ/tA1ZokjcaDSKpJRnU/iQ3G5s/LVaLR6fSEoA7c8roOcpDW7ZJ+2A150wOnGj/xxJCcn3Ixoh3K1Wq1QfgWeRktHpdNRut9VqtRRC0GAwiO36kY7AyZoXJUxJGAQccsvxfrgnWEMi36ytC0hY6mmfflAXgP65Y4Brpa20AHcf0N/JZKJ+v19KceB1h7tfGDORcAhxej99Yg58D0OUnRQ76WZ9Ecu8bgWpM+xl4A4Pvx/i744M1hznS7/fj58Zrx8gqSQG+by6CJdG/xGDaM+FLq//QH9djPFnkS7C59w/I9s5COalQKSimBd85LPoRTaHw2EUJTzF5IDgor+LMzIyMqSNkyE+8FUv0wfW1/Q1d3y7xu84rJt+JDsWdoD8PZyxr9E8UWj29+/d627sP1SqOvFtj9/x5UdfkYVWx6VIefhqSU/e/P1XJP25zvHlCfn3COW8egJSOXddUkxdgHy6y4HUB7/XyQsReQg5xQMlaWVlJZ7iAPGgDsL6+rq63W6M7EN4XHyAAPuPR68RCBqNRqlwHlH1NOoNufO6B4wPRwJV+73wnc+xp4tA8lutVhy7pJi+sLKyosFgUHJzIA5A0Pw0A08vcLIMWeV5jNOL5SHCMA4XgSDtTpg9fYXxSorjcCEIMQYRiP4jMniBwNQFw5q5oACYewgyfab97dwEkHHmygst+hq5qwBSzh70uaeP7gxwJwtuEsD+YS2YH6+NwPr5c3gWtTtYMz57vi4uFniBUy9myVzz+fRUA09NQphhf7ow5GKC/+2CCO+5MMac8V/vK/PCdxDPPaA47+/ijIyMDMctta7e9fjf0FsePdXPfclTJUkf/umHq/O7b93jnh0Y5O/hjF3D7a88pbuffeiC6yg076/ouj++T/nsqg088G1P1HhpczKDtPbQHfo2Cmn9Xz0p/tk6PtPyq95yCXp4cHCxgkIh6U9CCIWkXyiK4mWSHlQUxcclqSiKj4cQrj1XI5ALIoREsyEJTsbTKu+A18fjcSTKktTv9yNxdBLhBG0ymajVakWCR/T11KlTpWuJvnJUItXiKSYJaYVgO9lDtJAUSRjkyGsU8Cx3M2DFh/SkkfH19XX1+32tr69Hx4KfCoBgQzFJJ8c4LbD39/t99Xo9raysRDdGWhjQnSJplX8vxOeRbSeFFI3kh/d8TJ1OR5JixBiy7i4FnufpGU7oveCgF4j0azxvH+EhhFASerzGgNc1gKTSbz+ilLmBGDNnLqwgLqVuFeYU54uLCoyX50lbaTHMJXu42Wyq0WiUPj8uYDSbTQ2Hw9LepU1PyUhrDgB3l3hNB+B99FQfd27wOXCXBmkVXi/E9156IoTvZ9pnTXydPH2F+1xU8GNYEZF8vPscu/JdnJGRkTEPT2hW9YRb/rck6Y9+4k16zw/doDf88ydo9s737HHP9hXy93DGJcXszrskfc4F318dSZMP3bd7HTpACI+7Q/d98XLptdGRQsXCBSR/BGnt5q37+jcErd60ITBc97aRFt749ovq60HExQoKn1sUxcc2vyDfEELYsYcmhPA8Sc/jb7f3QyAgK07qXRDwH0gvxR0XFxcjCRsOh5EguA3co+g8myiq5/Z7f6QN2/VgMIj1C3jPCR/te54/BRQ9eu1F/NIieWnU3wUU5oLrSFXwEyMgSH4yAMTJI7KVSkXD4TA6EnApcNQl8wdp9TZpA2JK1NnJOMIBpwHQF4QWdwpwn7RVbNDHzvNoy10onh5QrVY1GAwiwUQ8ILWlXq9HAcHXzPejC0AQYuoOpCcnIAogZg0Gg1irgvtIO2FfQqbTug2IGaPRSCdPniy5JjydhjGT1uJ1JVzkoH9u/af/HG3K+nBSh6eQONFGeGC/sqfSmhaIG/TRHTaIewhl7AHWv9PplFJFfLwuTDkQHuedCuJiIn30PewCmH/efH0PAHblu7ip9qXq31WJL3x3T9dW85xmXFl4Wnukp7Xv1Re85r3qFXX958d8nmarq3vdrf2A/D2ccWlRFHrkf/mA3vt9t5z3rfWTFd3w8ndf0bUTPva9T9J4cf6/24qaNG1cmtHPaoWG124898NfVFflyU/Urb9zUrO/u3pSSy5KUCiK4mOb/70/hPAabRxA9MkQwvWbSuz1ku7f5t6XSXqZJIUQCoiM58VPJpNI6qQtq7LXCthsqxTxhtg7oYCcu4jg1nCOYIR0ELlPT14Aw+FQJ06cKEWlJUVCDYGE5EKsPWLtDgn640cZumgA6fN8dyeRFIvkPSLRKcmGtLXbbbXb7Uhw+/1+FEk4epLfndCNx+NIeCGljN1t7MPhMFrbScWAkHL0JadPeM4/zgOKajJeJ6N+OgB1MkijgBBKKtU2gGBzP1FwakVAlLmWZzDPPg8eZee57kLgPd9j9IV5w3GCgMVzqtVqTKWRtgoNugjAXuZ6F7Kos8D90oYQ0W63Syef8N+lpSU1Gg0NBgNJGwKD1z3g/rSgaZqKgRjF5xZBYTKZxIKfnkYQNmtEIAAitrRaLbVarVjLxAs4en0E5pa0IfYWIpKvkwsQfC7ph88f9/jn0sWe/Yzd+i5eCkcOjIJyEPDEzvtUDQfG5ZKRcV54XGPj/zO33/mHWi2Cvvuhn7vHPdpb5O/hjMuB6clTG16Y80l7KKQw0xUj/FUe++l6/zOWz3h9Vpvt+bGas0ahWUN637ccVpg9Ube/6G5Nj5/Y205dBlywoBBC6EiqFEWxuvn7F0v6EUmvlfQsST+x+d//tZP2IOY4CgBEAkIIgfajIyHr1BGQNohDp9NRo9EoFbKDTEgbRJhoKOQJEuO2cc/RbzQa0QlBSgBtQhClckE72qbQoFvdIVuQF3dqcNSgk1cIM+9DkJxEeeoABBWyhojgp1pAoCD5EEIn6R5VRhzwYxAhvNjHERRowx0UvV5Pq6urMQ2DAnwu8OAQ8BMOSIXxeXV7vKcO0I/NvVraX1zjBQiBR6j9NADWxB0Jnj5BtDudL2mLkHvBRtwZOBrYB/SNNfR0A/YgnwPfM4gxPJ81ZPwuZlBMlDkYj8cxZYZ94XVM+J3Pm4t1rLGLMrg/+Cx1Op3Yb/rA+uJEqNVqarVaUeCgnclkEoWytDgo9Utoj8+pn5bitURcGPP6J6wbwpcLdQfBobDb38UZu4MvfHdPn98893UZGQcd1y90db2k13307Xr12jG98o6HqZhcXVna+Xs443KhGI30iB+7W3e/8OFSkIqzadabQkJ1cGUcA7tw/XW669/drCJICvv732fFQqFC0l0/cLtCcbtu+/53qCBINTsYwarzwcU4FB4k6TWbZGtB0q8XRfFHIYS/lvTbIYTnSPqwpG/YSWOeo+9F9aTyMYLURnAyR569p0sQrYQYEN2HYLhjwYuvUY+gKIpoq4d0Q/4ajYbuv/9+nTx5Mtr8Uwu8uyHIz3cixrUIAGmOvqRIPj0C7UUL3fXg7gnGmRanq9frarfb6nQ6kcQ6MWUO3UGBcAAh9jnzgosQasg/tSsQBcbjsU6fPh1TKKijIKmUCoEw0Ww2S7Z7UjWISqd1CXg9FVjcIeIpFYhStA/ZJeLOXkAkgjy7Zd5JtdeSYB5Zx1S8QOzwvH2i8jwL8cgFDcgz8+41CCTFI0ApJkpfPIUHZ4cX4mQ+XEjgGp9D1nE4HJbSGzxFw9cm7ZsXFGU8iCBeMNNFI9bG64Z4yo67gLxIJQ4QTjNx14TvYRcp2XvM1UERFLTL38UZF4/qoWV1q1d+RCIjw1ELVT198aT+4e0D/fVTH6xiOLxiIqI7QP4ezrhsmJ54QA/7d29R9dMfrvc/86iKyobt3lEdBamQbnnhlXEaQfWaa/Te7715r7tx/ghSEaT3/ZfPlCQtrAXd+p/fpWI6VWEHBxx0XLCgUBTFvZIeM+f1E5Kecr7tfehDH9JDH/rQknsAGzP/2PdoPWQDEgBZ83x5iA/Eyu3aRDhTG7WkaA13ggPZh5AuLi6WajNA/v2oO8ggr3suvp+Q4EXtnIS5uwHySH0CikhynxdsLKwoI+QKp0K321W73Y7jJj1hdXX1jKMyIdBObL3qv5NoxstrXuwPVwdCAiJMmnvvRQF539M8mJPZbKZerxddD37U5GAwiHvIXRopEJaIUlcqlTinRNuHw2FMwaC9dP8xT+4aoO/MH1F/T+dBEEKkwUWCGEFdCJ5H2xBk3AJFUZQi+NRUII3G6wPQHv1mXOxpiLyLXjyf1BhPA6Hd8XgcSbs7PnBFpGkmfJ6pNeEFG/1enCVeT8ELiyI0sF6eqsJ8uOOi3+/HtlOxJi326j/7Hbv9XZxx8Tj0+oq+89DVWfgqI+OHr7lTeted+sy/+We67oWSPna/pidP7nW3Liny93DGXmD6nrt1y/dLk6c8Th/7x43Seze/+F2a9Xp71LPdxcL11x1MMWEOJt1Cd//Yo9X5SEUPefnfa7qystdd2hVcimMjLwiQbieVkG2ipxRsgyCkpIMIpRNzSCnpBU7W3QkglQvsYet3MkvEvtlsanl5OYoVbmMnqkk0FiKNVZyxQq5cCPFChT4+ov7MBSTb0yt8DNjfW61WJOyenw9xdpLf6/UiMSVy7STZiwdCMD2n3+tVQOhwI3jtAe8Lz4C04v4gkswY3W3hdTYoHOl99SMiPQ2DZ7OuLhBxooSvNeTYUzHYj14fAeGAvrptfjKZqN1ux0g5hSJT4p0WLJQU61rwOUgj+Mw94pe/TnoM8+I1NHwPpUIO13n6AM/mRAc+Y8xLpVLRYDAo1ajwYp++zi6QuZiRpvt4egPP9bbZa8wBeyxNEXGRwAUw/8yzpu7I8f5mZJwvKo9+pG5u58r3GRnv+Kzfkt4g3frq5+uRP3Kvpp/61F53KSPjisTCG9+um95Yfu1KKb64cOvNeu93XbfX3dh19B4y08e/5TN0/R9/XDr+gKanTu91ly4K+0ZQSJHWEvDoqRMhtzVzxB6RasiRn4TgRRghQ5AvFwFwOfhJCh5lbTabOnz4cMw/P378eKz94DnvqWXaj0p0W7zn60P2PdXB0xFSaz9k0k8aaLfb6na7Go1GJdKNMIODo9/vazgcRiLufSbNAZHDo93u7iAqz9x6BN+PYmRe3cVBf7Dg80zaZd79dAx3NngEn7liDSDTXtiS9rD/8xwfL/C59XYQZmq1WnRzuGhBmwgYTpa96Ge73S45HXDhMG+ILVzDfFFLAgGOfeliGfUiWCecBV7Q1GtCLC8vR5eEuzQ8hcD3KGIMz/Z6C57ewed1PB6Xam7w2UKgY3z++fb3veZDKhRQB4LnIVy4eOH7yEVGnsNrqTODz2dGxo7w+Efpup/7oH78QX+31z3JyNg3uPfrf0EPm/4LHXv7bTryP//+akqDyMjIuEjc/fzr9329hAvFym0zrdz2IB17x3U6+rr3Hmgn177617KTLv5BD7En8jscDiMxSPPSJZWinZ5fDYkZDocxSk/xOJ7p+dNOsD3K7/ZsnBH0F6LskXhIm0fLIWp+BKPXYPBaBdR0oI/81y3tab0EyN7S0lI8sQGRARLoBQIROSBVDrfoMw5IJqSWNiCjLkiwJtj/nei5GESRPObFU1bYG+5CcMcH75G3j/hCf9227uvDGnpFfyfNaWFE9oKTaBd90roNadTdXQmePoBY4gIB97hDw90Wvj4ufDCvpCggLvA7Y6ANxoj4ALlHfOBzQO0O7keQIa2h3W7HteI+XBx+P+kLXtwxFaH47CBqIIiQ6jEYDKLIldY8cOcCffXilD6G0WgUi2Ey/57qk7aVkXE2FE96jLo/8TH98k1/udddycjYd7jnG39e+kbp4Xe8QLf+4DuuqNzhjIyMS4PZP37s2YtOXiE4/pmFpEfq6O+/58A6FfbNv5Y93cDzsyHOXt9AUumoPaLsHNcI2SXyDWHiKMRutxuJCNFTSaVjC9fW1kqOAQiHuxYga4gTac6+H3uXVpvnuZBPiJULGVwLWU2JpDs3mC9+5wQLxr+wsKBOp6PFxcVYjDFNafC2IVQpYUXgwV0BkXeHgNvVq9VqKRrstTDq9XrsE0QWIYHjHL1NCDmnCoxGoxjRJyrtzgmfs7QORFrMD5cGhDJNEeAZLjZA8N0+z708w8fmaQTVajWm77gg5J8DiDkCgUf7vVBpWiiSvYYLx+uB0AcX44j6Q/D57LD300KM7EdcB7VaTYuLiyW3CG4h5sQ/D8yzuwmYM9r24pbsFRwwzEHqKEBI85NZeKaPlXl28cwdJvzO5zsjYye474s6+ofb3rDX3cjI2Ne4+5kv1Ze9+CmaZkEhIyPjHPjwl7RULFyZ7oQUxz+z0NG3XSNlQeHiwD/mvaAehM2JH7n5XqRtdXVVq6urpZMDINKexgBJhewQVR2NRqW8fciUtEWuPaceFwHkx6v1OzGH+M5msxgx9sgvQgZ1CyBwwO3j5P5DVN2KjoBBBBeSyliYp+XlZR0+fDj2s9frlaL3XgcgTdWQtorV4SKgbcbAmLwWAf3lGElJsVBet9vV0tJSJNYQTXdweG0KItyIF6yPzwOCgteVoO/8l+f76QVOMF0U8Dx6dwy46OJODPaEu0S63W5JTCDNo9VqqdPpRELv6TXuGmHePVXF63aw/xAQ+Oyk6Qd+MgJjQ8Dr9/tx/qj74HNIPYxUiIB812o1dbtd1Wq16Ipx8YL19FQi1soFMU/LYA8xVvZOq9WKNT98jT2dic88oovPibsOXAxLRTv6npGRkZGxe7jv5Q/Sg7/+1BV5dFpGRkbGheLjT7lW13/yUwfSpbBvBAXgkUYn2RD29fV1DQaDGPlutVpaW1uLFf+xWktbxwn6MXnD4TDWTSCKyykEnmrhxNXJhgsKks4gIZAl2kzzvaWtozEllSLDbp1PLfKkHXiaBW17rrnXb8BF4DUVOp1OrAFAznxvswqsE9p0bBA+76unMKTFCOkHY/D5pS/Ly8tRTCCFgDQQnunj90KUHpmG1LsLBLHG4dFy9gf/rdVqpXod7DcEFNbda0GkRJg2sPdDbiHOw+Gw5M7w4oWeHjMej+Me5XWeOZvNouWf1yXFgpbeF3fxQKoZG5F3dzuwN11o8RNU+v1+FDb4LHr/3N2AYOHOEPYU4gl9dQcI/00LLyLmVasbp1hQM8VdCsBPiEF89LoPvmf8s+3i5TxRKiMjIyPj4vHuz/l1Pa36eBVZUMjIyMiIWLl9pge3WgfSpbBvBIXZbKb7779ft9xyi1qtViRk/MMegjMcDrW2tqb19fVIlCeTSUx7gPR55BOC1Wg01O/3tb6+Ho8dlLbIynA4LBUWnBe99AJuwAmK55FDSFKrvZNX3uP5XqiR50P2PPrskXnAMyB3ENtKZeNIRAQF5sNJJ2NL0x+8DoGTMBce6CP9L4pCrVardHwf4JleN4E+Ioo46fP1c3LvLgJpi4T6OJg3J6hueadmAXvDxR9fV+YaQGKdXDvZ9yKELjy42MO8pYU53c7vIgKnOXB0KHM9mUziXCMoSFvHK0qKqUDsD9IC3JWBg6Df75dOVnBnCPPGenrBUHfKsF6ps8hTQiD57hxxR4jXlUhdArgUEAe9X/QFBwguF0Qc9o+05WiQVPruYE39CNeMjLOh908/Rz/9La/Y625kZBwYfObbhnr7P8oOsIyMjIwrAftGUJBUOiUBR4FHjT0C3e/3Y9E2ai1A9CCl3O+kG3IDMYNQ+3O8CKNULoboZBqxALIIOXJSntY2oA+Mw+3XPBPS6SRd2oqwe5SeeXEbuhcLHI1G0YUB8fT+pbZyalDQFnPHc1zIcAIMuWNNptOpms3mGTnpROXpS1q0EFLpBQghp15M0ms6ABcNIMsQVVIcXFTwdAJeS6PdqaDiIg6ReD+dgL/pG2TeawQgwLhjgPmfTCYaDAYx+p4WyfRTLlzochHN54c1w4nAfECkKUpIf8fjsdbW1mLBSvYJp1JwD2OhdgltMPc4CbzOhq9T6txxJwTrz/r4WiB8eH9c1OB7wB0g7Xa7JA4wLtYUkSstAEltjYyMc2F4uKKntXNOeEbGTvHD1/6tvkKP2+tuZGRkZGTsAvaNoABxcAJLpJp/6BPVJo8cUispWs09SupCAX9j9aa+AZFvjxYjHLhgAHHzonGeWgBBwrbvpC61nXtRQMA9XkzPC9NBUmnLiXpqv8d9QD8h7hBiP0VhXuoGffcIMe9B6mazWcypHwwGkchxP9dR/4ExQNYgmz7vfmQn7VDbgvc81QLBwwtESltCCPficPFUChcyPDLO+rpA5MX6mDfed8JMoUWewxwRRQfsL8g8bgRPbUidDDgM6A97TVJcXxeCEIf8JBDgew8xg/8Oh0Otrq5qNpup0+mU5giRz09NIT2DfY3TBlLfarWis8gLMeLC4LPqggvPZA09haHX68XPBy4K6jvweaFf9Nnn19ff55HreA2xKDsUMs6F0Zd9tv7gP75YUmevu5KRkZGRkZGRcdmxbwQFaSu/WtrKn3d7frPZVLVa1eHDh0unDzi5oaibW7M9OgnR9vf5G9JDFJ9aA7zvpI77vHiepBhF96gxEWLEAsbnYogLErgmIIb+3mg0iq9TqLHdbpee76kA9JdUkXa7rbW1NZ04cUIPPPCAVldXS0UQIV5pUUqi/cwbkVsn+l57wUmipyh0Oh0tLS3Fkw8QGxCDILRE6UlboFBmmlridSc8LSJ1mHgKDCkXuFGItENw2W/ukoCoImTRB98PRM1Zj8FgoOl0Go/9pP4HwpLvQ65J3SyMI32eC0cUQ/T2GBPzLikSfE9n8L2cpvMgPNAuog/RfBwYiAf01wtTdjodtdttjUajWPuB0zsYG3ONOMNeYm94vQXm39OHfH0YV3pNmo6zsLAQC1r6dw17fTKZlFJIMjLmITzuDv3xy1+iRshiQkZGRkZGRsbViX0lKEiK/5j3KG16HGKr1dLhw4cjcYUsOxnxaC+kJ4SgVqslSWecZOAWcWznkHsipxAgt7X70ZCQKCK4XnAOggRBcUHEbfRES0MIGo/HsWifH0Xoefaz2SwKEE6EIX71ej2SrtXV1egoOHnypFZWVrS2thbJNLn6CCsQymq1WsrDp98+d/V6PRJFxkvkmhMhSEVBZOB5EG9J0XLPvHrtAMbpKR1ep8ILJKYF9Txlpt1ux8g59TekDdHCCwQiyngtA2mLaHvhTk99Yf5rtVokxX6KiF/PXvBUBZw4KysrZ9Ru4Dru9zoUEGkINmkV2P47nU48StQFIBeuEBR4BmkrrD1rzT72MXh6iKcceLFQF60QVkjJaTQaJbEB0QVBjWfyPnvJRUT2J7Us/DPhSGtucFysu5ZSF1FGRorJYkONUNvrbmRkZGRkZGRk7Bn2naAAgYAQetQbUoNrAKJBNBJS67UOnDh47rZHUhETIO9+nKPDyaO0FZ2HTOGiwPbtpx5wv5NCj+RDtEhNkFQSJOgjKRWSSv1vNBrqdDqlIy/T4ntra2vq9XpaXV3VAw88oOPHj6vf78f54mQB5tbFDhcs/HhJ3B9uX/dUBUgh/Ze2HCNE0REw1tfXtbq6qrW1Na2trcV19XWjD8yZ9zUtMMmPpzGkRTdxtrB2jAs3hY+ReZY2TlXwsQEXJCiAidPFxQ53BHh6DOJPugeoG0DbjJf9wrhx1kCI2RcU5KTuAPvHBTjEPPrEGnp9EgQKBC93diCy4QCg/9zTarU0Ho+1uroahQNSRBCbeB0BK50LxubOCWmrdgjv+1r4e57OgriDE4FnuduC3zMyUizc+BD98a//0l53IyMjIyMjI+MKwEI/qDigqbb7SlBwYsbxjx4Z9hoEED0vvuc5+BDVNMKY5kRzPQTTCbxXzk8JKvnkkE3aoOAbJMyjwAgKnu9PVNzrOHgqB/dChD3C7YIERRchujgUuA6CxgkXp06d0qlTp9Tv9yMpQziAiEJUXewgesv16bp5AUPmxfsDUeWHecIZsba2ptXVVfV6vXifiyxEzaUtYj0ej2N/eZ73ydMd5rkupK10ACfSEE+3xPMcXARpnQnP1Wfv+L5AJPHijDyDsSJEefSf/e8pAswxbXrtCSfx3W5X7XZbIYTYtlQucugnYrgI5p8T9qkLCuPxWL1eL+5pBAKfBz/NhDXw1BoKqNJ3FxOYA9KFcD6kc52KCewrL1rKvnQgMrkTyIucpqJiRkZGRkZGRkbGpUfzeNBap5DCua+9EvCwX/2Upp+8f6+7cUHYd4JCSszmETZpizBARnEjeBQYoknbRDQheanYkBJjiBvXu43en0Xf/PhDxAZysT3PW9oSEryIJOOiToLnjvM8+uJ2bE8FgRS7i4A8fpwTw+EwHrM5GAzOIOFua3eniKegeIFEaeuUBhdsWDfvtx9l2O/3o8jBuN2x4EdKejqDtFWQkDV1AcPrcKR1Moh+I+AQoSYlwK39EFcKhHoqCQSY9fRUFsaE3Z/X05QExDCOeETEoA8QWz/NwtM5EAQYV5rC4yIKe4u6AYgXvJYWtuQUFT+tw8dHHY3BYKDBYKB6va7xeBzrM3hdEkQQ+sUYEEg8tYE9xdp4epGnlADSM3jfBSu+K6iJwj5gHMyZu2f4HLiDJCMjIyNjd/GMe79E0vG97kZGRsY+xnU/+ybd+5NP1Kx+5Qd3mvdXFPoH92SxCxYUQgiPkPRb9tKtkv6jpEOSvl3SpzZf/4GiKP5gJ216RNIdAS4u+BGREBrysZ00poTLo/AuBEAe0n4gCjiJhbQQeYZ0epFASI1H5KvVaiQ4RIKdwHONn+5An3mNvuNycAs/xNXrJXieOlHkfr+vfr9fet0juZBBF0tSG76TLAgZY3FSzRhpDzK4vLwsSXrggQc0Ho+jqECfnRg7sWOueS7t8TwXbCaTSbTRM0aIbZpLT4TcCxXyLHeB+FGkrLmn4yCYpIJGvV6Pa4aQ0+v1Sukt/E6xQ0QK1jV1uvjcMG9eJ8DdBJxIwRz5CQzsT+Ybpwt71I+2ZD8gSnG6A/NLqpAfG0qf0/SJtHaIO0Wod4KghCOGsfqYWWs+m+6coR8IJex39gDOm9lsFkUfF6AQPFKnxn7EpfguzsjIyLiUWPvClb3uwq4ifw9nZFwaHLlTOv5YXdEuhfbHK7rx9z6uyX0f2euuXDAuWFAoiuIuSY+VpBBCVdJHJb1G0rdJ+umiKF58QR2yCKSnH3gVeD/iDwKSnlDgudfzopEeSfeIqBNarOAp0Wy1WiWSze+0w3VE47192iPa7WIF/Yb4VCoVtVqtWEPA0yiKooi2+8XFxSgoQAghaRCpfr8fCzBCloikI7LQDydnrInXJaB/9APhhYg7efzUpaBvS0tLWl5e1mQy0crKSrS3c2KE59s7GfW+uFjkJxbgwECcIPWDGhFE2z21BDGGaD2kX1IphYJCme12u5Su4Dn97E9OePB0GUgwcw6pd7EFpw3pKU5k3Z3jKQMuvLCffG19P9IORDyt2YFIgrBVr9djzQ3qItAOY6DwoZ/OQJqR1wjxugVpigJrBrn3daGYI/31WiWMwz87LgKwli4OuWhBoU/GQ60E9rmLU/sdl+q7OOPsKFZX9fD/8yzd/QW/stddycg4ULjlD56rh0//dq+7savI38MZGZcGh371zTrxmCeouEIFhfZHK7rxtZ/U9P0f2OuuXBR2K+XhKZLuKYriQ2mO8vnC7fuedw7xgxxgh/fq9tKWs4G2PGrpudwQKicPbiXnGvLD/XVI3Wg0Kp1s4ATOI7vuGIBAuQWcGhA8BzIIIZe2jpbk+LtqtVqq3O+WfPpBkUX6SToBQoM7DLwavke4PUpPhFnaso5DlN1FwfhIwWi321peXtbS0lKpAGWaBsJ8UdiSuaBdCDe2eaLs2O1ZQ691wH1OwBFtOHIRQFw9FcZrERDJduHJ0wqcJDtBT+shsA6cbOAOCuYP54aTfp9r+oAohYDBXmK/8Gze988C80Sf/XNDv0ejUdx/1E7gZA767CdikK7jzhWEP/98IsKxpxByWCPcIAgB9Nf7j/jgriX2O89EeEMIklRybTA2Fw5dmDgIgkKCXfsuzjg7pqdO69afmkpfsNc9ycg4WPi07/+AprMrOp0sfw9nZOwibvyTiT78tH2Vpb8raH98U0y4+5697spFY7dW5+mSfsP+/q4QwjMl/Y2k7ymK4uROG4L8tNtt1ev1kqXbBQWIijsNIBCQLS+oB2mBgEpb5NdrNUBIiRSTQy4pkltpi0jjkPA8cLelQ3a8nzzbLfPSVl0AqXxaAOQV0gzpbbVaMf+fIpHu3qBOgueVe5qI1zbwQnQ+D2lxQx+/O0BcaOAHYtpsNuNJA6wTYoffD3knzYNaAl44ELJOVJ9iemmNDVI1fA8xjz4f1Lfw9BiIPXPiLgZ3G1Afw+cOocPTD3ytff0h6RQ3ZK29UCXPYx+5UwQCTEFOagWkdSwQj5gX73/qjPHneHrDaDRSp9OJAoCLN75H3IHgc+WpFS5k8FwEBVwBvtd4Bv10QcrXlr56fQ/e9/QZfvzziTiRpjocwH8M7tp3cca5Ubnno7rtVS/Q+7/5pXvdlYyMA4HP+Lnv0ENO/81ed+NSI38PZ2TsIup//De67eSjNFms64NfcfCPaq6fruimP1jVwvFVTe794F53Z1dw0YJCCKEu6askvXDzpZdK+lFJxeZ/f0rSs+fc9zxJz/PXJpOJjh8/rsOHD5dSH/yoP+zQ9Xo9ksy0UGKafiBtkVbIHkSCiD/XeBE/T1VIc9bdug65c+KGA8HTIijECCniGYwxTfXwUx08J9z7g4sBSzkE3F0JaYqDEzuPnHv02wWDtGaBiwbeX9bQo7wQ7G63G4/1pJYD5NHnI4SgdrsdHReSovhAez5WMK8Ao9dMcCcJJDYl24zR5wdBIq36D6nFEWL7Os6ZFx5Mrf6efoDAwfg9XcH3vzsP/HWv3+Bteq0Qd+bQdz/ak3UgxcAJ+bz0CT6PvoZpfYS05gag3+4+GAwGsX/uCmAMiEzuzuA5Lnr4s1gb1g6xjb3hjgT2A2vna31QsBvfxU2107czzoLpyZN6+E/erduURYWMjLPhEb/8Al3/polu/N/v1Gx9fO4bDijy93BGxiXC296t2sKCHvGRm9W/7bDue2r13PfsIzzi5Q9I081U/vG6Jh/4kA6cB/Ys2A2HwpdKekdRFJ+UJP4rSSGEl0t63bybiqJ4maSXbV5XbL6mtbW1SJS9+CEEBLv0wsJCdBz0er2NwWzmujuJS8kZ9nUi3JCTNCLqeeC85ikATtywkiNw+Jn2jIs23AXAe0TDPYrq5JZ2+SGP3MUICDiuCWz1w+Ew9hXbuefMS1s2/LTvTrg8fcQjvfztBBJi6YJGSng9Eu/2fKzufjShk2+v9eCnEkhlBwVrw+vuevBUAPZGpVJRu90+I32GcblQ4qKC74vRaBRz/9394ik7rVZLnU4n1rhIi4qyzxmj7wOvYeARdD4nuGXov+9XRAsKQyIacS3iAvuKz6Af0YrgxOeH++g/e4R183oi7BNPBXFnAUIhe4i2gZ+sMRgM4uvs3bW1tVKxUvqCs4nne30QFxtdFErTpg4QLvq7eCkcOVgqyj7A9PgJPfzH36svfdU36Z7vX9Ddn/+re92ljIx9hdv/xwt0+0/eqenKig7mCevnhfw9nJFxiVBMJpre9X41P9jQI99xuPTeB7/tVg2v2R/fMA/5s5m6f/Ph0muTj39ij3pzebAbgsIzZNauEML1RVF8fPPPr5X09ztpxPPbnbhBNBqNRiQfEH5yo+NgNom154BzwsH6+np8n0iotEUYiELzTCcdac4+5A37PfngtOGExK3ZDkgP1muIz2w2izZ+akggDGCB9yMYIVqkcayvr6vf78ccd08rIOqc1lrwiD4ugNS94P/16HUKJ8deGNJTRBB53MngIgbpCswTZJh1x83hUXsnhNjnWVfWMrW0I+A0Gg11Op1SHxFyAOkXDvrlaSZ+igdHL9LvVqslSXHfckqCF+GUFPcCgoLvRV8DxuRHfCKksEaQd+YvdfUg+PA3qTOVSkXNZjPOH4KTpwq4IIWgwBx7KpC7TRiDC1bD4TB+9qgr4ac9kM7hJ2vwbEQrX1Pf4/Q1TdFx14iLBy6SHcB0h135Ls44f0xPnpROntRtz1vSly9+mR78e6f18hv/7153KyNjT/EZb/lmPfS7T+q2k+/StN/f6+5cLuTv4YyMS4xiNDqDoN/0MytSdXvXwuhzHq4PffkupUsU0iN+6D3bOlmLzWDh1YSLEhRCCG1JXyTp+fbyfwkhPFYb9q4PJu/tCCwQFmeIFSQCMg7JgNy6kOBF5SBD7XY7ElWING2nVfWdhDiRJYoqbdmxvTCkF3tzF4OnTHAvOe+MiXshZkTUveAggkd6jCGEbDAYaHV1tZTKsblWkhTJljsluM6t/57ikKx5vBYChi1e2kp5QFBwUcHnI40Ie/Ta++UnUXgfPNLsNnlINa6PeevshBry3ul0opjgbgSIJ30ndSVNuXDL/2Aw0HQ6jYICdS7Ys17HwwUFFwc8XcHFGxcYuN6fj+uD8fuXHY4AxogYwhyzfpzoQH+pteD1SBhXmhqE64F1RxxzUYS1Za/7SRiIa37Shde+8P3laUfMvTsKPLXCRYPRaKRer1c6ccVFLeZzXu2L/YpL9V2ccX6YrqxIKyu67/Mb+tLwBEnSy+/+U11fzRbmjKsLX37XV+oh/+x9mlzB6Q0p8vdwRsbeYXYO0bL2xnfo9j/fvTSJ6VUmGJwLFyUoFEXRl3Q0ee1bLqpHm3DSDGHx4nheUNCJBoSEqCoEEoIEEfS6AKQ/TCaTSPjcaQDRSC32fiqBtFU3AXIIsRsMBpHwzTsBgN8RBby+A/UG3BLPUZGHDx+ORxkSeT59+rTW1tYiqZ0XZfWK/p6OAAEnmu3iw9mitTx7c/1LdQ4gZdjtPdfdC0IyDwgkUrnuAU4Erw/A8ZJ+rKA/jzmjX57yMJlMolOAAqAuWkFYvUDidDpVq9WK15CKgSDAkYnsJ9aNlBhEJfa3710XrZhv32s4HRgf+wDSzLqyx9i37HNe89oRjNHTGei/F5n0NfK940Tf14nXEAl4nheq9DoN7C0XLNxB4C6bVGByRwx7js+114/wgpr0iRQfF7Fc/EtrMuxnXMrv4ozzRzEaCSnvOTf94z3tS0bG3uCje92By478PZyRsY9RFCqyCHDJsO/O4HALPKTAI9oICtvVJ/C8+DR1wskiRIl8dye5aUTUC/WlBMML0HkU1oklZDqNsjNedwak1v3RaFSqlUC7VPZHcOG6Xq8XiTtpHl5Y0OfA+8rYfJxedyK135OS4YX0POJM254SgjgCqXUi6yILx3VySoWnwfhcQIgRNAaDQRRTPIXFbfI4VhgnbgHcC+kPYgJtVqvVeFoFRB3Ryus9QH7ZGz7vzBVrk9b88H1Qq9XiXPlnxMUt5sX3mTthWE93b1C3wEUNT+XxYya9HgLPQ6yjxgIilIsY1HZIT1KQtG0hRyf7nmJB3QTWm754aoULPf63uxP4PsHdwBy4WMN181KVMjIyMjIyMjIyMjK2sO8EBalsd3diBemELDrB5r8QdPKvKe5IekAKiATPpUaDR5M9iupRcO5Jjy9EmJA2CGu7vWF37W/acdzO7sUKvRYAJJHaDfxNZNrHM5lMtLKyosFgoFOnTml1dVWDwaDUBlFet3JDpuirpBJZox8+V440z9xrINAuZA0HAUKBF01kDLgQhsNhTNtwK75b1NkHiAleiNKFG4/Up/UKIPTUk6ANT9WAhLuw02w2SzUrvF2vZ4DoQl0PhCsvZCgpWu4ZIySffejXurji6yltFWt0p0Kj0YiimRfBZFzu4nBCjQiFaIOg4ClGpCXQB9bDxTrfQ7zvAgJ9cvGHPcC8r62txTbcucF1LrB5jQza5L50r7oI4w4nxBrGmpGRkZGRkZGRkZExH/tGUHACLymmCkCgqZ7vdQewyNfr9ZjWUK1WYxRcUiRU3N9utyOxc+eBpz+4Td5JMv3ynHbudaIOufIopxcaTPPReZY/FyKDtZ/2KCBIRJ0Cgh6hh4zRdxcr3BHhY+A9TwtxIui/u9Di/UToYWwQ/+l0qrW1NU2nU62srGhtbS3msHvbpAlA6L02gpNvXBn9fl8rKyux6KaLAF7rwvcUa+NHkBbFxukiDzzwgE6dOqVerxdPxGCe3bbP3vI5px6Bp3u4kAUB7/V6UVShKGNq8U8LMqZz4GvmKR+IKcwdbbl9308L8bQbb9OFLUQAHAx8ZpgfFxTcaePHoM4TsxD/EFEQF3Bs+AksadFOL9TJmlALw90lrBH7k3QV7mWMCCP+WeczcAALM2ZkZGRkZGRkZGRcNuwbQQFAMgaDQSQBRIMhqh5RdxKQWr0RGxAK/GQFniUpihY4AKjB4NHaRqMRCYxHat0eTaSctmezmQaDQTymz8eYEnR+IIkumkDMKpWKOp1OrJuQWthJEfDTCSSV8tV5poseDp7lFfXdsu/EFxC9hkx7HQDmhlMnVlZWdPr06Uh+XZzhOiL2iAPMbbPZVKvVikeGrq6u6uTJkyUngc8xfWG8vm4e6R6NRlpdXdWJEyd06tSpOIdeowPiX6vVomBFhHwwGESXCoSY3xEsIPTsh9XV1Vhjgf56kUnfny728LdH90kDwEXha0Tfpa0UGl8/rvV0obR2AYKYp69wL+0hQqR1MLwOBO8DxuBOpLQugzsY6B8CBPfhAHEnis8ndU78eS6AuBskdUIdlBoKGRkZGRkZGRkZGXuBfSUoeF2EXq8X/9FfrVa1uLgYK+U74eB9RAAs4wgDuBqIuHvRutTiTbV/Ugw8Ku7PdaLp0VYi9NLWyQP9fl+9Xq9UEwIyRPR53mkB2Pv5YRydTidayd2KzlggW16IzovYQZJSl4WnYTjp9pxySXOFEdryExD8ORDOtbW16KCAYHs9CyeM7qrwdUD46ff7OnHihE6fPh3TN9wd4ZFmoutpCguCD+T+1KlTOn36tPr9flyvZrNZcs/gomAuBoOBBoPBGTU9cBl4ocvxeKy1tTWtrq5GF4STe3d0pKcP+GkIzA8iSlo3g/mmLa4nJYTaGrzv6QSspacvsOc9RYe1QVhh7Ig2qegHWB8X0Lz+houCrJW7E3iPz7ELQwh6vAf4PPucuVjiNVDSPZ2KZxkZGRkZGRkZGRkZW9hXgkKlUtGhQ4diFBRLeb1e12AwUKfTiRFEiBEF5Ny2DfEh1QHyDwFyIQDisbCwoFarFY+WhJARtYRUQ8QajUbsH8SI9yEiEGeKAPoRj6QqYM/3FAjs2C4m+NjoN8QoJfuM1avqe10H4Hnsfr27C1KnAUSLuYHAsg68Tl/W19fjiRMQ6fRIS6/IT//TNA3WcTKZaHV1VadOndKpU6eik2Xe2JhPT/PgOgoFrq6uRiEqLQTJWvrRjP1+vyRUkN/fbDZLJwkwHk9LGA6HMeXB6w8gGLA/Parvrhw+F8wNwlMIQb1eLzolPMrvp1qkDhvmB4dC6pxxIcH3CmkVpE74fuA+CLsXSvQ0CE+r8BNO0vtcUEAAoQ88l7X04pWsj6c0MUYvXOkundQl5PsmIyMjIyMjIyMjI+NM7BtBAXJw9OhRtdvt0lGKUvl4OMgCxDstBugFBxuNRhQgiOBKW4RzOBxGd4K0ZQGHeEGS+a/nuXu02F0B1DZw0gg82u8pFynR8mMxIdLMk0d23RWR1kbw3HvPb/fxu/hAf/ykAUgVz3Viznx4ETvadoKMtR9BATHHfxzuJEkJHSLNqVOn1O/3S04KSCAk1C3z84gh5NLXDKHK0yT8GEtPD3BBx+fTSToCFm1D/FmbtNin/+0CFo6bNK2DPuD82C6dgd/9aEpPmfC94SKSC1Fe02AwGMRaDV5vgLFyLWIcP6nDgb3uKRxejDJN//A6DNSp4GQQxBU+L+lnhH3B94Y7P+g7YokLCxkZGRkZGRkZGRkZ87FvBAUAgaKAIkUJJZXs1fzu0Usv2ubEmeinHw3ZaDRizj7kxAu6TSaTmHctqeQwcAt8GtF0YuSkMSXPTr5pNy1A5+PiWU6ciXw7IfKiiR4thhhxCkFKlNLaCJ724eKCR5Uhui4yOKEPIZSK90GoWSMnm5B7rvU+ewSbtAGi/JVKJRJtT2/wegQ4Dtx14QUDSUlJo9/p3HgdBeY1rW3g6yJtFfH0fnMCh0fhU/IaQoj7jzV3Nwh7EBEBQcH3vx/LibDmY6dfrJHXSaDv7CP2kpNuxDR3+qTumXa7XXLgAAQcFwx8PhmziyzehxBCdK2wju6yQWBgv3KPixlpqo0LUjnlISMjIyMjIyMjI+Pc2DeCQkr2lpaWdOTIEVWrVQ2Hw0h+hsOharVa6ag+7vfaBl7zAFIJcfLnpZXdISaz2UaxN8/fd1u9Ex0XApwIQRqbzWbJcSCVTy3wgnJOxt0izmtu655XCwHwup984LUR5l3POCD6LigQtfWaDUSyG41G7A9CgJ8gwOsQSE8lkRTXMi0e6akWkFjqUjjph2QjTqT3DAaD0hrOEwsgoE42gb9P/4jw0xZzh8DhglfqUEAI8RQBd1V4e5KiOACx9+sg5hzF6a4e2vV0HfaSp+T0ej2FEGLBS3cBuXuF8fDMNH3C3S6ewkB/aJvPI04Nd5hwHe0x/lQwS2tkpKkOvpZ+j7fDGrs7If1c0YeMjIyMjIyMjIyMjDOxbwQFz3UmVYEijBDORqMR/7HvRf0klcQIiJjblyFAEF1PY0gr2E+n03jsoNcFgFzQrh/NyOsQOBcPvFCdkxgnwCkZA060vKAdc8JYeZ7XPSAazhz4/KbEmvbom8Mj0xDAfr9fEnEQHYi++8kcEF6OinRHBvULIMSQP0iqnxgBsSeqzev0m3G52wNBhXlzIYP3mWcvakhUn/voG/Phc+Pkm3ZJu2EuR6NRdBGkhNWLC/pecEHB3SFeP4HX6V9K7n1ePG2IIo3sId/f/gz2hjt8PBXBi3+me8fHQ1sIg37Sggt5jDVNZ2INXMThNRdfaDM9OcJFolSQYE95u/45nSfYZWRkZGRkZGRkZGTsI0FBUox2+8kMTiKdUBFd9QgkPx6JdRs7z0iJPQIGR/5hN8eqDcmBXECQvYBe+hws5hBsnuX9krYs4p6qQEQYwunpD04M+XFxAALmbUJ2XUxwAgsph3hLir9D/p3Asi6SSk4EjxR7rQgneAg50lYNA4iipzngzvBoslvQnazSVlEUcc2m02mpSGFKytlHXsCQfozH49hPJ+8pwXcBya3ykG0cA+k4U2eF1ynwPc7+Zr5oF5GEfeTpM27jpz1SXBAQ3M6P0MZ+Ze29OKKTbhd02MusBfvQP1uMj+vYS6wLgoKvI9czNv9suKOIOaE9r7fi188TBGjTa6CAeQ6ejIyMjIyMjIyMjIwzse8EhVarFck8OeJY1h1ppBJC6yQvLdIHUlLp1mpIFUXwpHIePJH/1dXVmB4AqSbK6UfyedE7J9hEk9MifE7GIE+IBp7TThtpfrpb7HFRQNo8ml+pVKILA2LpdQ94ZqVSiTUI0tQOxBY/KpJx8L4fdei2e+YTwp6KKr42bm1HWOI1bPRO7GkXNwDPY71o29MbmBts+NSGYLwQadaDNfIoOuIBhBunBM9OhSXGw7x7GgR9bzQapfFSDJI0IOba61HwjHq9HueV4y65z90uTtARGlxQkhTdJ7g3WA+vKeKCC/vcP4PMs7sffC/7unv//PPBHCL6+FqmYL58vF6ckbayAyEjIyMjIyMjIyPjwrDvBAWPYEPwRqNRKYLqwgGEBMLn1mpInOdHe2QWWzr3UOTN3QwQUy/2B4GB3ELMuSclThBCqXzKwsLCQhROnGxCehiHH3VI/+cd5+fCAxFxL0QJ2aYtf4Zbwt094U4IrvUoNOvhUfI0TcPdG05AWTcnm4gKnk6SOjXoo5NEUiwQADie0vuaklYi8ayF2+cZh7sInIC6Zd7TW9I6EggTfsqIrxv95zXu5xkukCHMeDHDeWMD3n9qOHAyhh/zyLy6cAapZ73ZR+4MSYUxJ/sU9UTAcFHL19E/+/NEP8btPy6kzLs2FW78eS4upvURsjMhIyMjIyMjIyMj4/ywrwQFSWfYmd16TXX9wWCgfr8fI6aQoLTon9vQIU6eY12r1dRqtbS4uBgJOpFet2UjQPjRkRC0RqMRI/TSFhl3O3lK3iDzpBOkRMrzuT1S6y4MSGi1Wo3PgfR7kT4vDkn7tDXP5u0igwsyXO91AVgTju5jDTxSzVjd5u9OhHmkzoUFns26pC4GXCXef9I3xuNxqTaGzyH7yItMpqSX9jxVgjX0ExP4QURi7pmboijinnXhZl46h6f2uGvDnQZebNBdLC4AsE8QlXi+F3f0lBfaTB0FLmTMZuWCi55S4yKYOyxSJxF7wtMj0jX3feBHVvKdwPN87jyNyIUER+pI2O46X+ftUiYyMjIyMjIyMjIyMqTKuS4IIfxSCOH+EMLf22tHQghvCCG8b/O/h+29F4YQ3h9CuCuE8CUX2jGIEGSSkxKKoojWbT8dgBMgiKTyAwGBHEmKkVos5e12W81mM9ZRcCcEhAhRwImn584jUtAP+uekC5IHEXdS5IUiPYrvZBxiSJSbOhMuqDA2t/u7NXxzjSTNj2p7pJprfB4Ze71eL9W7kMrHK3I98+fPRCiiFoBfk0b7/Qe42OJigp+WATFP3RT0kb3C852MetFKxsP7jBtxyfcK+5C1YL1wi6R1NrygZZqyQ1/TPe4Enf6mYgnzy17s9XqxIKa3zX2sOfPhqSgurDG3vh4+v/58xD1/Dte7QOP7mGv4LHA993iNjVSI8vlwbCdc+Xvp7/Pa2Q/Yq+/ijIyMjIwN5O/hjIyMjDNxTkFB0islPS157fslvbEoitslvXHzb4UQPl3S0yXdsXnPS0IIVe0QIWwUQ4RkVavV6ACAdGAf5wQDCFtKDp24QTxxOGBzX1pa0jXXXKOjR49qeXlZnU5HrVYr1iVwkt9oNEpRWMSH6XSqXq8XSTyEPyXk84gg/3XL+7w0Bggc5Nbb8dx4rnFiCkGu1+tRrPBc+5RIeTQcMsj8ea0GF0WcdKcOgjTdxAUPr/TvfXXxwesc8JoLCogQ6ckYXrPAXRk4R9JTBpxA+okZLuj4Gvmz6Cdj4weBZ21tTb1e7wzniQs9iAA+h6wF+8qLYvpapT8IGrgSSNlJRRsvOOoCgrflnyPm0uc23UP0yYWEdM18b/v8uuPC3QGeRuLOgXn7N93Lvo/TvenYjwLCHLxSl+m7OCMjIyNjLl6p/D2ckZGRUcI5Ux6KoviLEMLNyctfLenJm7//iqQ/l/R9m6//ZlEUI0kfCCG8X9LjJb15J51BUOh2u5FwkBKwsLCg8XistbU1ra6uam1tLZKreZFdJz5OVPm91Wrp0KFDOnbsmA4dOqRWqxWjzRBw6it4brlUrrVAekFheeacTpBauZ0sOZHzKLVHohmbEz/myY/Sm1d5n/8iBjSbTUmKBDqN3Ps9/NfJtgsQfo27EbyGRVonwAm9W9UBdnrEAebcLfgIF7hW/DmSSuQ3JZ0u0riDIRUOPKLthNdFGC8oyLOYW3em8AwvvoiQkLpgeGZaqNP3TXryBc93QSaEUHIoeL2FoihKDhhfexcB0vfS9fJx+/ynewN4e/PSEtgbKdK0nLStcyEVEc6W4jDv3nQce43L+V2ckZGRkXEm8vdwRkZGxpm40BoKDyqK4uOSVBTFx0MI126+foOkt9h1H9l87ZwIIejaa6+NTgEs4x6RdPu251F7tNOJOpFZbOrFZupCs9nU0tKSjhw5osOHD2txcTEWR4QUI2R4PQXuxekwmUy0srJSquXgBNxJEqdGUDTRxQEIHRZ1oueQTqkc6ZfK9n5vTyrXmyAi7c926/vmGp6xHrQtqZQ378QTAcWj/cyxr41HmdPncr3/OKlNybUXuXR3B8IGa+73pqKGpDOi6Mwva+4uhxBCrMOQugFSwu3FEl1kQSDyHxdI0vfStfE9lTpgeN9TJDyFwveMCwDpOszbA6nAsB1Sd4q7OOY9w+csfQ5zlc4B45yHc/XRxb0UOx3jPsWufxdnZGRkZJwX8vdwRkbGVY3dLso471/lc0N8IYTnSXoef9dqNT3qUY/SsWPH1Gg0IlHdvDYKBKurqxqPx5EcpZFxqZz3PxgMSuQU98Hy8rIWFxdj7QSKCmKtJsVCUnyN0wQWFxe1vr6ulZUVTSaT+Ay3safFIEm54D0v1khUmdQNhBGi0rTlp0p4lDw9LtCj/KlFn2t5T9oqlJha/JnHeSkZHoWfF7lmnE7MIZ2Qc4gjEXsvXskzmVPWmjYcLiB56oWvhRNG+kIKTZoC4oUY/V4EGd9zZyOiLsD4s1MnCuviYoK368KIzyOvMVaf73npJ6ljw9fMr0mLX7rQkboQGAtjA2nhxu3mJ33vfJ0B8xwV6ZqkIk2KeQLLdoLGAcIFfRc31b6UfcrIyMi4mpC/hzMyMq4KXKig8MkQwvWbSuz1ku7ffP0jkm606x4i6WPzGiiK4mWSXiZJIYQihI2aBh6V33wvRsNXV1djLjqvOwl3skb+OMTR7eIUefTih9LW6QhE9CGc5NxTS4GjAJ28UaMgtax7tfx5ueU+Rj+ur16vq9lsqlKpxDGORqNS5Bsi3mq1oigBMYb8SjrDLTGPhELi06i9E3Mn3hB3r2OQRuuZHz9ysF6vq16vl9I0mCd3NjBnzKuLF/MIYppn7+vAs32unbhulwLgxB1BQ1JpTC7YpCkA/izvc1rYMBUT6IO3wb72wpi+XpVKJQpOLmbRBkAESQtfpu6B9POXjsWvneeWcAFiXirFvGf5a9vNR4rthIJUNDkfF8IBcyvs6nfxUjhyINWTjIyMjD1E/h7OyMi4qrGToozz8FpJz9r8/VmS/pe9/vQQQiOEcIuk2yW9baeNOoGHHNfr9XhUoxcfJF+d4ndeiI4iiTgNms1mPMnBj4pst9slUu0nD0AYeQZuCY+WczxgtVpVt9tVt9uNLgSuBZ6y4FH59ESH6XQaUytwTkhbJzx4FX5qADSbTTWbzVjbgdMXGLeTYY8ce27/PGKYCgvu2MBWX61WYxFLv9cLIKaCAnPoJ2dwnZ9kgJsBEWdecUjG4YUkU+HG4eIF89RqtUoFK30/eiqDn37gqQS+vmlRRX++F4dMUwPSIoX87sUSvV7FvKKHKXF2YcbHjvtn3qkRvu7p+M7HaeDzl167U8ybw+0cDf5M/+9u9GOf45J8F2dkZGRk7Bj5ezgjI+OqxjkdCiGE39BGsZljIYSPSPpBST8h6bdDCM+R9GFJ3yBJRVHcGUL4bUnvkTSR9J1FUUznNrwN3I4OSaZGgVvaJUWiCuHzIniTySSKB0tLS1pcXNwY8MJCFBcgwpBaRAXu9SJ7kDLILydMTKdTNZtNdTod5qsUAcY5wO9E+Ykqu6BB/0iPwNUAwYQEch3PgTgiPvB7s9ks1VjA2eHCQeou4DV3V6QkmL4iDvCaCwGsJeTXj5n0GgdeqBHBgPHyGs+nrykxZ2ysf3oawDxyWa1WYyFOF3UYm6eN+B5jXMCLOnpdDPZUmm7BM9zF4u/5/Pm+cZdAej17eJ6IstNI/06w0yg/6+d7bV5ftmt7XsrCdjhXf+a5NHZy337E5f4uzsjIyMgoI38PZ2RkZJyJnZzy8Ixt3nrKNtf/mKQfu5DOOAEh8g6h5Ag+0guoM+A2c8ilW+s7nY6Wl5cjuZakxcXFeFQkxN8LQEJaOZKSIo1EpgeDgVZXVzUYDGJ73W63lE/udnSv70A6BeNFcOAaP45RKjsbKD7IDxF1T71Ij3bkOfNOiiB9Yl6FfRcr6APPY86Yp7QAoAsR9JsxeZTchQeIMePBoYKDwt0dzDP9wFkCmcaZwt7x8aapF37ChhN0b5s5cNGAcUnznQC87u/TDxduUpGAe1NHgJ/O4XPse98FHRcgzuUu2K1UgLStvUgzSJ+5XZrFQRQULud3cUZGRkbGmcjfwxkZGRlnYreLMl4wvG4AhLDRaJSq5EO6/VhGL4SYFg/kCMp2e6PATVEUajQa6nQ66na7ajQakrZIXKVSUafTiWSDwoNcMxqNSmJDCEHdbledTicea1kUWydJENX24oOeEuFEuSiKGC0n1QGhQNqKmOMKcLHC7fLMj9cQwIHgz2VMPl/zCh7SR0QAJ808k7Vwp4cTZ4/ik4qSRtydXKdFK/0ED4/wI954bQMv5DmPWCKU4AIh9QSHg58eQhtO2tOouztXXEDwPjD/fs0814DPGUDYSB0Q7gJwl8084SB1LDh2k1jvBUnfiYCQYqcui4MoOmRkZGRkZGRkZGRcTuwbQaHVaulBD3qQWq1WqeiiV66HbJH7DcGFMDlxDiGoXq/HOgm83+12dejQIS0vL6vb7Wo4HMbaBNIWGZ/NZhoOh/E+z10ncs61rVZLnU6ndKJBq9WKAokTfa9H4IQa8txoNNRoNCKRdocDxQl5Lu+R+uF1GZgDXpPOtNs7+acP/l+IPddC4mmH3yHm1GRIbf4uWMwTHHgW6+k1EXyOGK+nAqQ2eT8xArCPeA7uBI7y9DoS3j+fx1TM8Gd6X3xM7MF0TGmRzHnz5H/PS3Xg2d6neWIQ7bhr4UrC2VIozvZ+RkZGRkZGRkZGRsbFY98ICt/wDd+gxcXFUtoCoCAeaQ+SSpFyj5bzWr1ej79j12+1Wjp06JCOHDkSXQWSSkf7QUjH43GJJDrRhKQgGuBqmM1msd4Cz2w0GiUngpNtnj+ZTNRoNErk0Qmu1w/A5ZBa9SXFApQ8h7mkz5BkxBIi3ClxT1NJ/OQIxBR+cGNI5eJ86ToijqRiQ3qSRHqUokf2GS/iSXqsJnNTr9ejOyRNpcDR4g4Oh6eJcG+tVot7zOcydVgwbv72NfJx+3z7qRDMh4Oxns1lMO/11C1xtvsuJy6XqLHTZ2zXn/0wVxmXGZWqqrfetNe9iAizQpN7P7jX3cjIyMjIyMjIOCv2jaCQEmgi7W6rd4s/dRSI0ENYPXqMY2AymajZbGppaUntdjsSRC9WiCui0WiU8vylLVHC6yngFKjX69FN4Mc+OrFMyavb4N22Lm0Rb+bE4Udqcr2ffMBRmF6cUFIk0BB3SKsTZNryUyB4pkf7mTOu9aMk6bOf3uCk2lMm3K3gQgrOB2mr6GNaY4D58ug/feUeUit8XOkxkKyDOxLYQwgWPNNdDowvFVBcZECI8BQJf7avKX1wYYvrPSXGX/e9NG+v7FdCPE+EORsutQCRijD7dd4yLg2KJz5GRXVjzfvXN/R/f/YX9rhHW7h/2tM3P+M7VR2sq3j7nXvdnYyMjIyMjIyMudg3ggIEriiKeORhpVLRaDQqRdm51km42+M9iu/EzY+OlLZIYhq99/x0r00AifYIOU4BCjVSSJB2iIZ7zQdPP0iPO0QIQFBxsp6+7iJAq9WKz4FgE6GHsHoBQSf2Pm6v1+BzjDjghDeEEMdPKoanXDjRh1S7MOQCQ0qKvc8exXdCj3jiwhDP9/X04ozeH/ZK+lz6lu4N5p4557V5YoePWdIZjgt+97bORmTT56TXpikQ2123X3CufqU1KM523bz3L1QY2K/zlbG7mH3BP1L/QRv1c373xS/W9QvdPe7RfFxb7egNv/1K/fbasn72/92uDtzFobJeqP2at16StjMyMjIyMjKuDuwbQcEjzpzwMJ1OderUqRixhqz6KQJumcfuTnsQSo4sdJEBQunEnfb4wXHgJ0ek5A1nwmg0ii4BagpIWxF9CDhYX1+PrgfGJ6n0PC8y6akbngIB6fe5oeYDrguIP5FwP62BSLq7FdyVkNYLcNHGSbm0RfRTF4QTxPSUBxcBpK06EU7Y6Q/jQWygnXlHPdIm+4EaGSm82Cdzwhq48OKOAxdBvGAlr7kjwYUu76sLYu5+OF9s52aZd93lIswX86x5TovtxraT1I+MDMfoSz9bX/yTf6EfOHbX5iv7U0xwfGP3tL7xZ37+krT98cmannbT95Zeu/btfVX+6p2X5HkZGRkZGRkZVx72laBQrVbVbrfVarVUq9V0+vTpmM5QrVZjMT3SDjhVgcKAjUajJCggIuB4gAhDPP13qVz0D8JfFEU8XtDJp7RFRhEE6CNE3cfGD0TchQs/0SB1JEjlgoMuHnh0G7s/80G03ccKyfZ+SipZ/hEfnOQ6qXY3SJoS4P1xAQLyjyPD0yacMDppp/6BVE4LcCGJtrxOgpP7NIXD58rdLS4o+Jr4XLtI4uPC2eGpGL5mLoB4CoOLD77OaUrAdu6DcwkIXJMKQpcDF/OsVEDYyTjPhZzKkCFJw694vD73R99iYkLG9Qtdvev7XlJ67RvvfYre+VdPPPPiQrrlhW+WJC3c+BC97ztvvODn3vC/11X/47+54PszMjIyMjIy9g/2haDQbre1tLQU0x06nU4kjenRjZIiGXZrOq6G1PIOSV5cXNThw4ejY8GjzIgC7iogrQEhIk1NgMRCSBuNRhRCIKi4BQBEn/tarVYpgg8BJs0jrR8BYXXhxO37HunnPXdgQJhDCKXUj+FwGMdDqokfwSht1W8gxYPxzKsh4PNPP5hfPx0ihTsynLDTb+DuAUQInu9rx9+powPS6nUcfI2Yb3cX+L7w+XDhhTF7aoiLGl63wYUO3kvTFVJBwOc6rXXh9+1n7ITc7/YYvL2dPD8LEFcWiic9Ru9/3oK+/tF/rR9/0N/tdXf2PX771jdKt77xjNenxUy3X//tkqRDR9Z092e99IKf8R1PeYL+6BmPkyR92o+cyMUnMzIyMjIyDjD2haDQaDRiVJwI+XA4jKc68AORckKG4OACAlFi3AmLi4s6cuSIjhw5UiJ/kObxeBzt9E7+IN2SIiGmT546ICmeIuEpCk6OcTMURRGdE16sEfLO9ZBSv88j9jgmptNpnD8n8e468Od4+gbCgZN1r9vgQkejsZFz7EUp3a3hBQ8ZB2tJn93hwdhA2k/WwYmd1xJwYu7Xpu4HvwdHCvPlBT3d+eBihs+buxkoFpmKD76HQCoMpC4Lf227FIZ0btPxzXvelUCML3YM6f07ERcO+pxllHH6YW3d+8UXTn4zNlANFd37xa/YlbZecsNbpBveIkl6+u1fqI+s3qrFr/uEZv3+rrSfkZGRkZGRcfmwLwQFhAGILVHztbU1ra6uqtfrReHA8+lHo9EZ0W6PytdqNXU6HR06dEiHDh1Su92OhQ+LotBoNIpugLTwn1fod/I7mUw0HA5LhSK9SCCk1qPbHonGHeBCgqcUpEA0YGzpkYfz0gZIaeAoSkg2UXm35uPsYB1S8oW4Qv0HnxOvKeHCh6RI3HEPuEjh7hKvf5CeiuBWfz96kbExD+7McHcE/SIlJXV3jMdj9fv90lh8Hfw0B59DXvNUB//xdUzTFdI13m4t07QH3+Ne+JN+pSdJpM6RFOlnZieYl3pxvjhfsn6x5P5s92fh4MrGwq0366G/9Qnd0XndXncl4yz4zVv+TJL0r//ys3R6fVEfe8LqHvcoIyMjIyMj43ywbwQFrPD9fl9FUajX66nX66nf72s0GkWLO2R0NBqp1+uVTlxIyXCj0VC73daRI0fiCQ9FUcRCiKPRSIPBIFbwd1JKAcfpdKrRaFSqr0B+PQTSix6m+fDpj7ePS8FdF5BePyVBUqmQoke201oHENp6vR5FANwdKeHnXgQRiPc8gYb2cSfwnrTlekDokRSfz3PSYpDAT3pI6w84UqHIxQwvpuh1IIDXSKBP7AEECq8P4evBfLgTgv6k9S5S94TvhVQscJGFa1xsSWsteNvUC3HRwGtMbEeU56VIpO9vN//+fkbGQUDRamxEwjMOBH7m+o2aCr/63mP6kwc+Q5960qm97VBGRkZGRkbGjrAvBAUirdPpVOPxWCGEKBg44QecjgBRdvIPmVtYWNDS0pKuueYadTqdUm2F8Xis1dXV6DSAQNK229cllU5ycEcD5L/T6UQbPX2AEEIka7Va6chET89YWFgoRdFbrZbq9boGg4FGo1Ek8fPIshdcPJfTgVMrcAFAtFutlkII8XmQ3UajEQk/zgifH8ZEm9JWRBwnAMII/UuPnUSg8b1A1J40EHdT8MOYXGTh/oWFhdj3yWQSxSY/vYJ+1uv1kitCKrsGaNP7lb6WFlz0+gbzxC7fPzzbaz0wVkQJ+or4g1iD22Y794eLHmlBUb9nu/SKeakCWVTIOAioHjuqF73+lZJae92VjPPEM5eO6xmLb9SdH5jo2/7uWbr2q9+7113KyMjIyMjIOAv2haBQq9U0Go1iLQNpo2YBaRBOkHEWrKysaDgcloiRk8pms6lDhw7p8OHDMf/fbfb9fl/j8TiSMwQJL9BH6gUuCQgZxL7ZbGppaSkeFQl5dnHAT3VIibyf7ADRhbhDAEmPgJx6vQB3R9DfecX6tisyCMlGUOB0C8bIXKSOCO+nF5108cFTDnzemBfqZNCuH/mJQEEfiqJQt9uNogRuCy82ifiAmIADBKRiBPuONcAFwxynkX7m3x0RPreM1Z0KnnaDQOKFMfmdE0V4jhfSZD5YWy8qyp6fTCaxUKmvM3vSnSjuwODzNC/NIsU8IWG/1mg41zj2Y58zdhnVqu6oZzHhoKIWqnpso6q3fdar9Mhfe65u+5Z3SlnMzMjIyMjI2JfYF4KCEzDIOg4EXodQTadTra2txcg2JGp9fT3e32w2dfjwYR07dkzXXnttrBFAWsVwOIwEtF6vq9lsRmLmkWacEE56OQWB3zudjprNZjzO0iP8kD+ECo8QQ+AYL7UgILS0Lym+jxjAfPmRhhBgxuinEPBfSLrfD+meJ4LQb490+2tObElp8B8XeWibMTH/rJ0LAKzFeDyO69lqtWL0PU1RcYGGZzcajbg/ms1mKU0F1wICBuOStpwT9N3H7uP0sXn6ghfTrNVqarfbMT0B0cYFFj81hDUk5YVnuLiQCkipswLxh2NEfW29/obXbWBvnqvuQooLIeyXg9CfrV9ZTLjyEWp1/cHf/sledyNjF1ALVd3zhb8sfVS64799h2762XdKUi7emJGRkZGRsY9wTkEhhPBLkr5C0v1FUXzG5msvkvSVksaS7pH0bUVRnAoh3CzpHyRx0PdbiqL4Fzt4hjqdjrrdbjxKcTwelyzklUqlFMmVtlwJvIY4sLi4qOuuu0433XSTFhcXzxAJcEIQ1XVC76cQ4Jogcl2v10tFG9vtthYXF6Mg4QUG6YsLALzXarVKjoR6vR7HhkDAPTxvHomEINMOhNxPeKCoI0SZNnwenXC6GMAzIKeQfz+GkfbcrYAowXNZG3L/nXzjEqjX61GUGY/Hajab0Z3hpN5PqJBUIue856eG0Cf+Zo4ZL/sBcYdUCcaUuiJIkYCAM6eICrTnTg0Xd/w0D15L6zIwl/TX14I95aeS+H71+3HEePoDrgXuQwBLa324UEE/5yEl6Dsh7KmowN+7ITZs18Zutb+XuBzfxRkZ+xV3fvdLpO/e+P2p3/RsNe65f+vN2UyTj35sbzqWcVUhfw9nZGRknImdOBReKem/S/pVe+0Nkl5YFMUkhPCTkl4o6fs237unKIrHnk8nKpWKjh07puXl5UiuvYK+VE5pgBiltQrq9boWFxd17NgxHTt2LBZjXFtb03g8VrVajbUQnDAR1XcHAadMEA1HTKjVappMJrGQIekOELOiKEoFCSGt0tbJBxBios1eT4H7pK0TFfgvwocLAJCkZrOpRqMRU0Ww2EOWERwgqemYmV8IM44PnBL1ej2SYRcGXMxxQEC5H4HDyarXFuCUDCL7aZqEE0En6X4MJiIHbof0JASPwkMwSVFxZwb7ydeFfeB1DbjOT6BAfGB/+BGV7mjAiYJghYDh608/EQAQXVjDdB7dTeJtMB/zUjkajUZM50kLT/pczSPiXgNiXh2G7Yj9dq9diBgxr63tUh4OspiwiVfqEn8XXwkoHvdISW/b625kXEL86a//Uunvtwyn+qFvfFbptcp992v6yfuVkbHLeKXy93BGRkZGCecUFIqi+ItNldVfcz/pWyT904vpBOSLaG96BCGkD1LohQ4h8I1GI57qcPjwYV1zzTVaWlqK9RKI3vb7fQ0GA62vr8f0BS+WyH8h41jm2+12jNBDrDk1gqg0fZPKRBP3Q6PR0NLSkpaXl+OzWq1WFDkkRbHBj7JEOIBo42aAQDabTXW7XdVqNfX7/VLhQdr0kwyoHYFwwLOI4pPOAGFtt9ulyDyOAsi1H4PJc9214LUTnAgj1DiZ90h6Cgi95//7XqDfpEcgSmDpRxRICxV6isA84YJnuKvDSTquCl93imumtRYklU7xcAeCCyXUo/A94J8P1o0+u1vB18FrQqRE26P2Xo/Cj2L1e1MnAYJNenSrPx/sFpnfrh0XGq4A4WAuLsd38UHH6Ms/W2982S9IOrMwbcaViyc0q/qj1/5a6bVb/ui5uuk1N0uS2n92p2a93h70LONKQ/4ezsjIyDgTu1FD4dmSfsv+viWE8LeSViT9v0VR/OW5GiBvnNMOONlB2iJPECjex6IOgUzTHR784Aer1Wrp1KlTUVAIIWh1dVW9Xu+MnGqe52ICFnfy4KUtIolLADeAF5GUtqzkXiiy2+3q8OHD8XQEivVxeoSkKHIgMkCSKZ5IXYfBYKDJZBJFisXFxSieeOHGRqNRSk+QNk51qNVqGgwGcUwAJ4SnSPB875+fmJAWECRFBBLsEfo0qo3gkBaoTGsSuJPDhRBpq7hltVqNx4PyTApc4tSgb4gMaaFF3xMueLCGPg7EBsQv+tBoNOJ/uYfnI0JIW4TbxRRPgfA2GbvXO/D+uVCTOihSAcHrMvjfrPu8wqHeJ18jd/qcjdS708j7kl6Tjn2n6RCXKlXigOGiv4sPMk59yxP1Rz/+U6qG9l53JWMf4ANP+0XpaRu/f/pLv0PtTxQ6+oq3SbPp2W/MyLg4XNXfwxkZGVcnLkpQCCH8e0kTSa/afOnjkm4qiuJECOFxkv5nCOGOoihW5tz7PEnPk6TDhw9H4kfRxMFgEAszQu6n06l6vZ56vV4khjgTiNIfPXpU11xzjY4ePVqy5JPugEMhtYBDrtbX1+MJENjMqbNARF4q12Lgb0idF3PEfdHtdnXkyBEtLy/HsUIQvXI/OfybcyRpK52j0+mUhBZSPHAn9Hq96AwggnzGgm+S97QIJGOQFPtDBJ/3qf8AGfXneMSda0mNcAEhLXDohTid5LurgWd4LQLm0Ik9Jyq0Wq04jmazqfX19bhnIOyQcRdAED88jcbH5idWsG9cMHJxwt0O3MPrkko1QrxmRZrmk841rhfaosgl6SvueKANT++gHwgJqUDiTgSv5eCpO+6c8B+HiyWpeAHSopLpvczrbuB8BImDKC7s1ndxUweXjL/oh1+qw9WD2/+MS4f3vOAlkqRH3PQC3fwf3rzHvcm4UpG/hzMyMq5WXLCgEEJ4ljYK0zyl2GQARVGMJI02f397COEeSQ+X9Dfp/UVRvEzSyyTppptuKiA84/E4HtU4HA6jvX8ymajf72t1dTWmL5CjDnFst9taWlrSoUOHSjn/RIyHw6FWVlbU7/fV7XYjidocj2azmQaDQcwpT6PwHklOc/Ihx5A3RBDcAN1uV4uLi/F9iGp6hCOihUffK5WKut2uut2uRqORBoNBTGPg2EqeJ22lTTgxpd9OehEz3OZOOkPqWnASu12EPa1BQDsuJFADwK32iDV+0oQXTvRouEffcWAgolDYk2cA1pR1ctLvhBrxB7HD++1igo+ZIy69hgQCSZoOgDiF8JRG9J382+ckzq2n0/j+99QghK2UwDMm7mcuvC4JbbgjxNeUtI+UbKcFIL1NLxDJfPr+nudUmIeLIfg7af8gYze/i5fCkQM5WR/6kSfq1oW/ktTd665k7GPc9ZyX6tYjz9ft3/nWve5KxhWG/D2ckZFxNeOCBIUQwtO0UXDmC4qi6Nvr10h6oCiKaQjhVkm3S7p3B+1J2oja9no9ra6uam1tLRZP9GgqhMdPBsCp0O12dejQIXW7G/+o5LrFxUWdPn1ao9FIvV6vFKl1cjwYDLSyshJJoIscXicAgQMC7KQN0uUnIeBQIKpO392C7o6ClOiR7uCnP9TrdS0vL6vT6ZQKLHrOP/Pl0Xd3WbTbGyo410GMqZ9A31JxA7IKQUwjyjyHfkDeIZccr+nRdwgvrgPEDUkxRcTnmv74aRmNRkOdTie2h1vEn0NaA/2gfT/ikX3H+njU3wUZxkttC19HBBmcKh7V97bYN6w74HfEJxdt+Js59Wu93y7auEDizglPYWCsjAmhx1MqPCXB0yoQCtwF4mkk7sCgHW/DPz+e/pG+dyE43/tSt8J+xm5/Fx9E3PsTT9Trn/FiPWQhiwkZ58ZdX/MSPXL5ubrtn//tXncl4wpB/h7OyMi42rGTYyN/Q9KTJR0LIXxE0g9qo4JtQ9IbNv/xzVE4ny/pR0IIE0lTSf+iKIoHdtIRUgj6/b56vV7JpZBa0Imse9E8ah202+2ShZwINg6H4XAYyTNEvFqtajAYaG1tTYPBILZPvQYi2bVareQEgJSmed+8l57uAEGj3x6Rd7KZ5sDjsJC2RBJOmCiKIqaG8CzEBM/b56QG3BNeB8HFBCLrPq5t9oVCCLFwZXqcpddQgGRDgCHfw+EwElZEHC+8yVxBVP3EC19f9oKPkWsh1J62wpx5UUui/QgFPNPXkPQCByKQ7wmKhLrA4/vc3R7MhRcbdcLtzhjG7Hvf3TKpA4E557kuoDmxd9HB0x8QFVjneakNPM/FABeS+Fzwk7pM0j01D/65cnfKTt0N22GeSOEukd14xm7icn0XHyTc+xNP1P98+n/Vw2udve5KxgFBLVT1rie/VJ/z6ufoIV9/5153J+OAIX8PZ2RkZJyJnZzy8Iw5L79im2tfLenV59sJ/lFPQcTRaFSqn7DZdiSm5LxD5iBO2PdHo1GJCC4sLGg0GunEiRORGBVFEYshIhQgNhSbtRSouwDRGo1GsRgghI773DYPQWdsnDyxuLgY7/dUAI9ou5BAtNcjzm51x1KPW8JTA+gTzg2KNlI4EuLL706m6aOTTRdpAP1LTwWAuNdqNbVarZKrArLpVnrmycmiE3W30UPy0hoaPAuhhsi+W/95r9frxbFSL4K+UVzTa2BQC4L+uEsG4YjnUNcgrcWQwoWSeeSV+fGTJLwtxAQ+N6krhs+Df158/TyFw/uH6JDWDfH5T/eGr6N/Dvjb30tdB2fDhRD5swkAqYAwT8Dwz+1+w+X4Lj5oaD/ylO6ot/a6GxkHDN1KU2/6nF/Uk1793CwqZJwX8vdwRkZGxpnYjVMedg1OhinMOBqNStFYqXycHwTb8/6Hw2EkirPZTCdOnNDHPvYxnT59OhJBSDikCqINYYKkpSSd6znmkmi3pz1wGgURcAoydrvdSFZpEwIOSU2L1LlwQiFGos6Q+fX19dLpATgsiKp3Op1YU8KJIEKKF0B0R4inOkAGXcRJhRNJ6nQ6ca0g+7SFe2RlZaWUPuHPgsjyHD8aMo3S+3GhXrTR0zUgx6xXv99Xv98vFURkzZnLNAWk2WyW6gTQb3fM+HNwxbhg5CkIXkjRizCyxi6Y0T+ewbyx/72Ap9eToF4D17gQgzMH9wr7mP6mtQ/S4pEuYPGZQ3jbLqrPfWl6jL+/k1SDcxH9c7lqMq4c3PPiJ+gtj/spSdmdkHH+WK609NbPeYU+8zeer1ue8a697k5GRkZGRsaBxb4RFCAuLiZwNCKA8EC6IHfkzvsxfbQZQohOB8gbJAhiRVTaI+R+4gHP5FQHt7FzxKS7E3A+QJK63a6OHTumWq2m1dXVElF34ub1CFw88dMUEB8Gg4H6/X6J1K+vr8cxU6Sw0+mo3W6XxkQKhbs+nFAjpvB87qVtCCgODuap2WxqeXk5ph1AyAEuAEgsdnrvh5PU4XCooihKooRH4FutVix66WkBnnqR9tnrBLgwxetev4LncFTmbDYrFaV0l4MLOOwDdyjMeyZ7GrgY4HuANtIaEPTRa1bgxEBQoB9+tCWfDxdvPO3CUxZSdwI/uEI8PcYdCz7P8xwaju3EhHkCgDthtkub2C8pChmXFtPuTMeqWUzIuHB0K00dPbS24+snX/g4/dorf/ac1903beg/3PLZF9O1jIyMjIyMA4N9ISgQvfS6CV4Yz+HuAWkrtx0iM51O1e/3I8njHkklcksbRORdUBiPx7EmQ6fTiUcaIjzwHAg4+fCj0Uhra2vxdApI/ZEjR9TpdOLpESlp80i31w9IyaIXuIP4Q6zcqdDpdCLpw34PWaUN3AncR20Frx0AKfUaET53nv5RrVbVbrfjEZYIDu7EgIy3Wi2NRqMY1Sbi7akQ9IVUDE8NIAWB2gf0cX19Paa7eHTdhQT6QpFNxs0+g6h7TQYvnugiVrVaLQlH9CUVEyDhCwsL0U3hfUTcQTDjPpC6BrxmBaINfRmNRqV5xynjnx0XnZzw+4kR3O/knJQQRCGu9z3NPHkKxrxaBVxHX3x/nQtncxpkMeEqQAj60A89UR/4qpfsdU8yrgC8+TGv1i2//Bw9/DnvlGbTM94PtbqqD7pG//Otr1VF71A1nLv45/UL0us++na96MSn6y8+c1GFBUYyMjLOA5Xqnjz2Az/2eM3qZ/574vCdQUde+TapmElXwr83QpDCNkGfOd+HGRnbYd8ICqPRSKdPn9ba2lokl6QseBRZKhMKIqUekaUYHo4FL+DnUeUQQiT5pDNA9JrNZjySkXQECJv3jfSF6XSqwWCg1dVVDQYDLSwsqN1u69ChQzpy5IgWFha0trZWSo2AuEMmPacd4g9Z9GMmIeBeX4F5gegxPndjULsBAo6gwpxxjVv4IZFptN0FHaLqR44cOeNoTH92WjeBvpHK4WkYCDJO5r1mQrPZVKvVijZ/+oRjgtoG9B2xwQtSVioVDQaDUhqD99sdFKw/c+DpFPTNT0pIU1ekLbeJF850Qu01E4DXKECUSN9njr2WBXPmwhNrl4pWuEIQILwopM8Dn0XfX2lhUfrC2Nw5kgoHF5KC4ALIuRwK2wkZGQcbJ577BL3327OYkLF7+MCXvEKP+NEX6OZ//+b4WvXYUala1e+/449UDRVJ50dsaqGqHzh2l973V5+nT35x0HRlZZd7nZFxBaNS1eSfPFYf/Iraua+9JJgvFjzwqEIP/NRn68Y/narxh+84UKS7snmym+P+f/4Ynfq0M8daHQU97EfOTAUrxuMskGbMxb4QFKbTqU6dOqWVlZV4bCO27ZQceGQfcuMF53A2QPin02kkgml0mCKQ1DWg6CJCQKvVilHu8XiswWAgSTEFgnaJqK+urpZqENTrdV177bVaXl4+QzBYX19Xv9+PzyQiD6H1Ogle1BBxw4+AxHLebDa1uLgYUxwgwpBXXAIhBK2trUU3BYICooLXp3BHiBfcg6jXajV1u10dPnxYrVYrzjvjZH5YP8bJ+jFfpDBIKrkVGANrik0fUuv1LeiTFxKE4CMcIdQgGiBAeH+JvHthQU+9SQsNSopzxt9ex4G2/BSNlLTzfBcLvPgn68j8e70DPkP+nEqlUhJX/DPE307w0754zQUn8dSIcMEGRwRt+RymKRPgfNwI6V5G+PH53u7esyELDhkZGWB8eKrqHY+If//Q635Nj2/UJJ09Zetc+OWb/lKf/ztfq8VntTT5xCcvspcZGVc+wsKCpk/4jD0UE86N+55a1c3Dx6r2f9617wh29fBhqV6eu9Bp673ffd2cq+f/W2zaKHT3jz36jNdv/NOp2n/zofK1n7z/gvuaceVg3wgKJ06c0AMPPBAdABSu80KIbtX26vySYgQZwkHkmloM2Nwh5JJi1Jq6DbPZLBYxxBIP4XUCjaMCuzvHS0KW6Wun09GhQ4fUbDZj1J8+IECsra3FiPx4PI7uiNTWjvjh+e+e649YAMlOUw64jpMOhsOhVldX1ev1JG05JqSNiHR7U8kk6u22eSeQ9Xpdy8vLWl5eVrvdjmSV57G+jNmFCUgsAkGj0Si5Izy1xNND2Af0gUKKXrjQSSikGDEFID6lxDdNMUlTMVy0cIGLsXqUn/n0dBMXKFJC664Tik7yusPTKBAO3MXinxPu9dMp/Hn818URr90hbZ3eQZ8QMHwM/O0FNxHj3I3hAsa5iii6UOGuCt+T8+ZxJ5h3z4WIHhmXD9XDh7XysL3uRcaViA98zcukr/FXdo/M/MWjXqM7/r9v1s3/tq7Jh+7btXYzMq44VKqafc5n6N6vP/OY7v2GD35FTY/4yM2a3vX+ve7Khohw9JAk6UPfcL2G124fbLkY3PfUqvTUW0uvPeKlixLcZ7SuyX0fuSTPztjf2BeCwmw20+nTp6N4gPV7kqh+kDSIFMcEQpqxr+MsoKYBR0N6ZHoymajf70eHgqc6UDPBj5JMTzyAxELQEQW4rtFo6NChQzp06FAkdpXKxpGWx48f1wMPPBCfj6gxmUzi89PoKy4EL+4HqSN1wPvuJz34SRHUmCA1w6PgXmDRTy+AyDF+j5B3u93oTMD+jwgC4UtPT4Dks77Uq+CZkHtPD6H/ks4g+KPRKIo1KbjP0wbc1YDwQn88LSEVL9zpkKZG+LwzRk9RSI95dKTk2F0Y9M1PHHGHDm4Z/vbnSFvFC901khJlF0ZcTHDRB4cIRSfTOfXaCy4EuMCWtpemZ7gwkRYq9TFzzTx3wsWmO6RpRBn7C71/fLvufuZL97obGRnnjTuf+Crd/p+/VQ//f6ua3PvBve5ORsb+Qwiafe6jde/XNfa6JztG/7bDan6woWLTsXy5UV1a0uz2G/WpRy/pgUfz75ZLIyZsh7tecE38vX6qooe+bnmjb588pclHPnpZ+5Kxd9g3goKTME9h8FQBJ9DdbjfWSIB8kirBa2trazFNgei0H5vnBJf8fOzi1CnASu9iBPd6BN1zySXF9ANcA91uV7PZTKdOnToj599PV4DAOqFm3DzTia6TQD+tgT5QV8JPb2BeqKlAKgjiAcKEP8vTLiBqCwsL6na76na7sbYD/fVIuNcuYG7dUeB1HViPlETS/rx2GSuR87RIIAULEQKc1EpbAgXXep0DX3fWB0B8mSvfV96u98X3OvvF2/QTGmgTJwzXu0hE/9hnLnjxfJ7posW8z6C7ENJ9iDPBhR2fB+BOklTIYJzzToVIHSLpc7zWxNlSKfz69O+digTnck5k7A2q11yjD39FXpeMg4v3PfmVuu0/fase8QM3afLBD+91dzIy9hXWv+hx+tCX7gtasmPc99Sqblh4jNqvf8dlT32oLC7q1Jd9uj75OdJ2qQuXG+NDM73vny9KkpbuWdaR92ykWTTe8X5NT53ey65lXGLsm08uJFNSJMH+D3s/CQB7PETOyQMEzk8QcLJKpJkUBlIFnCxC+EiFKIrijLxxyBfuAqLk0gZ5arfbWlpaUqvVUrPZVLfb1WQy0erqajxiEfEizQ/3yKsLCTgXnBzRJ+AnNFDQsdfrqd/vx7ZIzaBuASkZzH2r1TojegyRZS5JDVlaWioVRiQ1AyeFz7sXYfSijl6TghQQUhRwHXgNiFarFY+s5HSJdrutSqWi4XBYOr7Ra1P4PkPIYV7d2i9tpXZ4YUg/0pE58WMXcbvg+vD9wJqyt9KaCLTvR2DiaOFanuVOBEQNCLjXTgCsDSQeAs/1niKTptvQLz9iMnUOMR8+hwhALhzw2QPuZvD0Ca8jwXfAPEEhffZ2IsC89/wefz/XVNi/mD30QfrAV758r7uRkXFReP+TX6kn3/HtamRBISNjCyHoQ0/bN5TkvPDRJ1d0XeOz1P2dt17Wkx8qRw9vign7EysPm2nlYRv/7j9606ercXqmzuv+VsX6+Bx3ZhxE7ItPLzUJIOrp0XtcA1HzSCyCgRM0orrYxN3Oj01+OBxK2khNQKxwQSOEUCryB+nEseBF/cgRhzTV63UtLS1peXlZnU5H7XZbzWazVMshFRO8PoAX9nMySeQa0cCJKsQLworo4rUSPEqMQELaCH3zaDtrQD6/R+prtZoWFxe1tLRUKjCIfd9JJ3OC+JHmxrsow3w3Go3o8Oj3+1EkabfbqtfrpesOHToUTylgTpvNZuwX10McOd2C/eb2fvrEuD2FAHGDecY5IZVdKy4meGFJT11Ia2DgJkhPcWDPIiJ4nQxpQ6BACKBvfgSqtOUYYS18H7iDgtMzaJd19poS3u+0XU8P8XQI9i97x5E6Gfzz7uTeBQV3sPiabYft3puXHpEKCtmpkJGRsdto/NuPa+Hvb8z1FDIyrhB84onS0fYTdPiVbz73xbuASqejjz/tBu0XZ8K5cOIxhaSgw0cep+q6dOhXL888ZVw+7AtBgfoHkDQ/ThGyA1lcWFhQs9k8owieF+bDVQAB8hx1TmtwYuepDw4/vtLdCUReKQSJmABqtZqWlpa0tLQUxQTIj9ckSMfppJ33vLgeKRmMAWLrbfB8Iul+egUpIp7WQBScgpa+FpxiQY0ASZE0t1otdbvduF6APrsY4vUVpLLjgaKXHolGTDh06JCm02lJiEEA4bput6tOpxPbRWiihob3DQEK5wl1JjhO1ItHIl6xR9yp4Kk5zImnYjB2hAKIN31JSSt7wt0KPpecZoIIxOfBU4D8GEzvU1qvgHlOn0UhTvYXnzdcGcwB7aTpHS4oeJ2DVMA4G5hT2nHXgItB280jz/R55T53O6Xtp+vgwliup5CRkbHb+ONPe52+9PA3SR8697UZGVcD7n/BE3W5c/93GyceXejwZXpWaDZ0+hEH798mJz+jkAppvPgkVUeFjv5iFhauFOwLQUFSrFdAZHkwGKjX60USiNjQ6XQiAcRBwFGH4/FYvV4vRkT9xAMII/Z/IrIeUfdotdv2acft6jzfxQTIdrvd1vLycqzzAAFkHP1+X/1+P56gAHmFuEHmvfBfvV5Xt9uN46F+gBNVaidQJJE5HY1GkRC7MIMLg8KGfhyk59STO8/zGo1GFEpo0yP59HEymUQnBvPGmPwEASfFCD2kNSAWISgwH0Tl2+12PMkA4seJG4gGfooG6+8nglAzwJ0EaV0FTlvwIouMw4tXptZ5d2Jwv8OFljR9x4UG0j9SwU3aKsYpbR2D6SKCk2r67mSbFBx3OXixThdTeM+LkHq/XQBMHQveZ38+e83niX77denJGE7+XZDy+WO+0pNiPBUDuFPFRYssKGRkZOw2vuRVb9KfPPl2TT/1qb3uSkbGnmP11pmUMw6vDgRp5baZwlQaft+TJEnL9043UkYyDiz2haAAefOjGldXV+NRjkR7O51OPMHBHQXtdjuSBk50SE9KQAAgJx3rOA4DyK90ZpFIItm049FS+i9tEXpqJiwvL8d6BJD7tbW1eMKCF2OEzPgpATyf6PThw4djX12k8Oi45+HzDI9+M9eIJqQbuM0fQYFCfMwLz6A/kuIcOBHz+gIIMR6phsQh1tBnhAGi4tSxmEwmpfoB3OsFOOkLdRgQRiaTSTw6FGcCzoVGoxHFF8bhRNNrFHCKg6TS3mOu0mi5Owm8vyAtKsjzvCioF+H09Ar6wZz5PZBf3Cik8zAu5tvHigPCU1K4PxU5cADxufH9n/Yz/bz4Zyqdr7RGgs+L7yHm1tMfGB9I1zBdExeM+Hz758LX19OlMjIyMnYL//rwB/WG+qfvdTcyMjIy9gRFVRpct/FvrdGRih64Y0NceOjrV1X89bv3smsZF4B9Iyh0u131er0oCjhhwa5PpNzJiRNMIqeSzigUiOuB0wYQCDx6mVqk07QKroGU+PPdCdBqtfSgBz1Iy8vLWlhY0HA41Hg81urqqlZXVyPhTck1z6IuA89rt9u69tprtbi4qMFgoNOnT0chICXCkGOvYeC1DyB7PCOtI0C/JJWs9ESyObGCNBAnfNSSYDxEtnnNj7V0BwAReNqB6K2vr8f6CaRXcD3E1YtAjsdjrays6OTJk5Eo8xrj9WKMiEq+D72OhM+Liz2eLkCEPSXuTqr99/SUB99TjNv3ntdPgHTX6/WS8MK9vveZq7W1tTNqdAB3J7gAwZ5JI/iSomDD3vNjW/0+39O+Pxkv4lM6l8yRu0B8TumPz+O8dAb2riP9bPNc5hgRy4ug1mq1LChkZGRkZGRcInzoh5+konKw0x0yLg6zeqFxfePfcfd8Q1fh6594znuOvqvQ0m+85VJ3LWOHqJzrghDCL4UQ7g8h/L299kMhhI+GEN65+fNl9t4LQwjvDyHcFUL4kh11YpM0k4KQRoAhUZBzXAakQGC9h/inJzZAdqkJABkmugmB8Xx3J5TSFiFyC7RbpElRaLVauuaaa3TDDTfEgoXY7x944AGdOHGiRNqdIBH9JbWASPHi4qK63a7a7XapiCGFBemfpxNAsP0Znhvup1zgDuHkDOAiDpFw0gOYO+z3XlfAyRxEm+tIPfA0hlarpVarVXIrsBYQV2+bfjL3s9lM/X5f999/vz7xiU+o3++r1+vp9OnTUbzxIyY5KQIBJY2IO3GlZgfpF7hmmEvmgX3kNQYQe3B6sBfcScCpGp7OkX42UiGAuUBM4HmsQavVinUlXADx4yj5fLHuiDn0yesl0D77jjZZs7Sv7Ge/n775832+XSCa517wa9L0FEkl5wXP4XPgwp8XwkzX3AUHnrmf0h0ux3fxfkZRyX7YjIyMvcXV/j18KTBrFDndISNiVis0bZz75/7Plu558RN0z4ufoPC4O6QQNn4y9gQ7cSi8UtJ/l/Sryes/XRTFi/2FEMKnS3q6pDskPVjSn4YQHl4UxVTnQFoFn2ghUfVqtaq1tbVSpJwc+vQISSKmg8EgkpThcBiL+xFVTZ0ATgLTdAn/2+sRkM4AGTt27Jge/OAH69ixY9EtsL6+rl6vp16vFwWAtL4B0eGiKEpHE+JOOHr0aCwouLKyotXV1dJJA1TfhwRBcGu12hmFJCHAXgySoyP7/X6sk0DU1q3zrBVOD2nLAeGReYgj9Qog5rQDaXcHAPNJhJj1Zr7pK33ysa6srOjUqVOltr1gJ2IL8+SEfp7VXlI8GhOnw+rqakkMothleuQp5NzXBlGF00WYDy9syZp5TQEXntw9MS8VgdMdqMOBYONtIQwgPJDywb5O4QIBDh/GxJyxr1zEw83hKTiIKcw/68/+97olvuZO8BlDWrSVPiLCeXFJ+pW6SpjD9BhO/47wop77AK/UZfgu3o9YuPEhev3//B973Y2MjIyMV+oq/R7OyNhXCBtpE5L0vm9elL554wzNR/zoXZqePLmHHbs6cU5BoSiKvwgh3LzD9r5a0m8WRTGS9IEQwvslPV7SWct4etRdUszpdvLR7/fjP/aJOCIsEPH0KCN58tRJWFlZibn4btF38kZfIBmSojsijYZCfIm4V6tVdbtd3Xzzzbrxxhujm4IIKWS8VqvF1A4vfigpiilOaB/0oAfp8OHDqlarOn78uE6cOBEr+bsbAAIEyU6LynlaB/AUCBcMqPgPGU1PfKCv6+vrpWKKkD2/DncAAgxr6mkORJL9PRdpvHbD0tJSHGNK9BGb2u12JMCM2QsXkk7jqQFuweeH6L2kSIZdyMC1AKlG5HIHCwIGAtJ4PI7X4a7xvcT8zbPr+wkIqZjAmBAk6CtriEOD/nY6HS0uLsZ5oQ+IC3w2vH0+T350JEIVJNz7RDFLT6fh8+wuEPaGuxb4r4shXOf3cA17F6HG63mw19OCkPzO/mLPsb4uFO0HXI7v4v2K9ZuO7XUXMjIyMq7q7+GMi8fCDQ9W0Wqc8XqYTDX54Id33tB0qoV+0KS9f1yUewozJtz1Hx+hR/z4Pbng7WXGxdRQ+K4QwjMl/Y2k7ymK4qSkGyR5QstHNl87KxAAIBHSmcX+KByYRlMhYURB06giUWEIhxNbJ03SVqE8yDnOB0hTmnsNCZ5MJmq1Wrrpppt03XXXqdVqxYKInmPu1eg9ZcFz6EnHkKRut6tut6tms6nBYKCVlZXociCiyj3Y2V0w8OJ+qd2d+WCuZrNZJP44Fur1enRFUMSw3W7H6DGEPHV3QDj7/X6MOk8mk+g4oOAj4y6KIqaF+BpJW5Z0UiMQkdwJQJuICU5eGae7MHAxIEoh7Lh9v16vq9PpqF6vazAYREcI+xXRCeGrVqvFIy09pUFSFGRIl6Cf7XY7uhcQmFg34EJCCuY9rafBHCJ4uGMAIafdbse9xeeI/eFE3GtOeAoA+4qx+j4n/ceLd+Ju8Gu9n2mBU09D8PlM00XYz3w3dDqdM2qBuICA8OWijH82PRXCRcR9jl37Lt6PqLTb+sPfeeVedyMjIyPjbLiiv4cvFRYecoOKK8Sl3vzU/CzyhYfcoPHN10iSPv3n3qUXXfe3Z1zzxkFVP/Gsb9nRcyp/9U5NT53WbS//qN77rx584R2+gnHXCx+mR/5sU5MP3bfXXblqcKGCwksl/aikYvO/PyXp2ZqfBTVXPgshPE/S8yRFEsjJBBAvLOOj0Si+D4kNm0X7PPoMkYUgbj6nFHmHoECUnAQ7qYNQE71NiT9W+l6vJ0laWlrSsWPHtLy8rKIotLa2FgkwxAUSA7mDuEEyW62W2u12vP7QoUM6dOhQdGisrq7GuSAaTG0Dj4yn9SCI2nKUJISaKC4/YbMQHcQYkj+bzSKhd+ECAulWdoji+vp6rF/As/xITz8Fgeg9UX5JJaLKaQwU6FtYWIgne3hk26PtuAGkrSM3FxYW4nqxFohZniLgYgNHTa6vr5fEHvYDRBYnC/uLNXZhA8LKEY0UV+Ra3vejMREv7HNTSushlYf1k7bSEPwa+lur1dTpdKKYAHFOnSteZ8MdBe7+Ye69j4yXdfOipO5woF0vukif2SN8JnFbIATyeXXhyGs6sMf91BLWxueHsfq8ushwQMSEXf0ubqp9aXqZkZGRceUifw9fIO597kM1qx/8gozdD1d03c+Wjz2sPuhanf6CW/WJrxrpni/85bPe/5TWVE/57Vee8znTYqbP/zffoepopu5bPqjWJyrxpIQMQ5Du/s6H6PZXtjR9z9173ZurAhckKBRF8Ul+DyG8XNLrNv/8iKQb7dKHSPrYNm28TNLLJOno0aOFEw8vnihtRdE9d36zjZJNGjjZIYrrVmoixkRMvQggkVXs7h699Jx/nA+z2UztdluHDh3S0aNH1Wq1Yj8oIOi2cHcIQMIhT04yq9VqFFpwJ/T7/VKUnDnhKE1Io7QVQebUCRdcKEgIEfWIO3NORHkymWhxcVGHDx+O0d/UIu5rBOHs9XoaDocluzt/+7oSXfcIOSClAyEDkkeb/X6/VKOBsQ8GA/V6vRgp93XHlZI6HBATcE4gTCBwkZvvp1Sw97yYJGvqAlR6XXoSgh/9iQODezwNw2sBIHJ5kUR3wrA+g8Egun8QZnC+ePQfNwApPC4SMSeQcwg7womndvgJCY1GI+6F6XQaC0+y5xDD3DUiqbQPEQzYWwg4iHr+ma1Wq6XTRtzJ4GuTfmfwPeIuC3dp7Gfs9nfxUjiy/wedkZGRsY+Qv4czHvyL79Zstukybbf1sW9/rFZvn+rer/v5XX1ONVT0f3/m5/UP476+9T98j258/QO6+zmHdvUZVwpmtULv/5ajuvV371Dx9jv3ujtXPM55ysM8hBCutz+/VhLVbl8r6ekhhEYI4RZJt0t62w7aK9U1SI9xbDQa0X6eRvw9Gu91CZz0ICxgpcedAImADFFosNPplOzoOBzcNk1BvoWFBS0uLurIkSNqt9uRSC0uLmpxcTEWf4SEkpsNsYVgu5sBQkshu5WVlXj0oVQuPse80L+0Wj3zKCmSMU4VwG4OiYU4jkYj9ft9DYdDNZtNHTlyRIcOHYoOCoghY0EQmE6nGgwGWltb0+rqaiSWHklmrRAS0qMm3WGCyEEdAK/PQAHJwWAQSaykKL7QJ+a61+uVjjv0OeEZCAaMjeNLOR6RefJCgpBfr0PAPSm8EKW7IxAfWBvIMevJHDLG9GjVeWICqQeIc9Rs6Ha7UfTyz4s7KhAUnGTz+UTAcecAQp+nHyGkIYKR5sH642BI0zv8da8L4XUpJJ3x2UYcQQBibLTJcxEKUrHA956fXLLfsdvfxRkZGZcHt//5t6pYXdvrbmTsAvL38NWNY+8IKjb/fR4WFnTXTzxK7/q+l+jer/uFS/bMT6u39aIffqk+/FVHtPS+C6JyVwWmzUL3ffHyXnfjqsA5HQohhN+Q9GRJx0IIH5H0g5KeHEJ4rDasWx+U9HxJKorizhDCb0t6j6SJpO8sdnjCw7wihR5lhIxBoCBbaX6525b9bxcUiLR6tBwiAumq1WqxBoAfsQgxoUYCJHtpaUndbleLi4taWlrSkSNHVK/XI+mFOPf7fa2trWk8HkebfrvdLtU4YLyz2Uy9Xi+SdI+mk+bA8YBEmalu70cZQuggzkS2SZ1gjoge496o1+taXl6OYoJfg7uDHwQZakPQR0mxNgKChR8Lmjo33IJO8UKPLiMsrK+vq9/vl459HI/HWltbi4Q+FaZ4zY+1RNTBno8o4EX50oKDODq8roDfI20dvUhkPyW/pGVwqkZ6fKNH8RExUkEKAQwxwQsIIvTMZrPouOFEFOYqrR/CPd6uOzm8VoM7ZEiP4T5cNnxGGAOfO9wgpDT4vLD/2YPeRxdU0rQm9p+/zmeeGh08K/2O8DlgL88THfYal+O7OCMj4/Lgtv8y1nRlZa+7kXGeyN/DGSmO/ekHNNkM3rzvlx+le59y6YQEx+c3pUd9+Xt14vsfqpXbzyz0mLGB9cVC6099nGp/+va97soVjZ2c8vCMOS+/4izX/5ikHzufTqS5/xBLt4oTlZYUXQX8ox+iC+lyIiGVz6WHCEOWFhYWNBgMNBgMtLCwoG63q0ajEUmrk3OIiBNB0h2OHDmiI0eO6OjRozpy5IgWFxejeIAw0e/3Y2FFj+Q6qaeGgNdpSIkVYsLi4mKsi+CRYvoOsfaxpkUbeTb/Zbw4NZaWliKpdxKGi4IoMH3Fug45xlXhxQ8h8TwXBwP3Qvgp6udRbeal1+uVij46aUxJIddQv4CUDy8C6RF29pnX1HCHCVF/2vZ22J8uivn+SQn6ZLJxvCRpHe4O8H0rbZF+dwe4wIP4AbmGqCMoIIowH6yjt8t9fgKHOxNc9ME54c9DOGB9cNL4Nal4xlzyw3Po3//f3vnExnVVYfw7GMeJPY4zJilxk5ImKCzaAm1AUSVQV/xpIqTABhU2RUJiUUAgBFJQJVQ2SIBgwwIBAqlCiIIEDUUsaIFGbKAlQP4qTZPQSpRETcB2PI6dOJlcFvO+yZmnGbtOxu/em3w/aTTj5/Gb75335sjnvHPO5e99wF9ODPgVJMotIvxdefBj+XPLrRWpUYUvTpH5fXfEliCEEABuXz8surP5T9fQnGwtUTj1u+04/cDisxL6zZfu/D0+uefzGD9imHxnev+3pEBzTcD/7h3Cxj/EVnJrczOrPPQVP/XdVxAwCBwaGmrfceV7GQD4QYEMZn0QwR5v7pel/xzgNjs7i2az2U4mMFDkHW8GjNwf78LXajWMjY2hXq9jeHgY9Xod4+PjGBsbaycvLl68iEajgUuXLmF6ehqzs7OYn59v331m4O2H2NEO/Ewf6LCqgVppO8434AwK6md/OYMs9t77gJKVDaxyYPvDyMhIR+Dn757z79jvD6AjaAeuB3J+CcnyZ/q71AzkWJng++J5LfhSfj/sjyXwPM/U5FstuLoBz83CwkJHOTztwr/1lRR+voAvi/fVK/5v+eyTGTzf3DcrCnje/YBLngO/4oWvmmAygckVHou/Tv0Q0XLioDxI0VdzMJng7VJePtFXWrBtg/vjbIurV6+2v4v8TCaJqMe3GZQHPPKZ10W5ZYHXM5OQADqSczzeXlUJ/tz6qgu+l8cn4rL/vn2xJQjRV+793mN428lDsWUIIW6SkZcn0bx8GQPP34m/vOMXuMFO8htm59AgVm9rYHj/CCYr/mwhPEkkFHwpc7nNgcvbMaDz8xZCCBgdHW0HUgwagc515xmY+SFyvLvKu8Sce+CDzZmZGTQajfZddgZXQKsnvV6vY926dajVah1VCrVard2zf/78eVy4cAFXrlzB1NQUpqenMT8/3z42Bphr1qxpJwUYBPk75Szt9yse+JYPJlnYzuArMXwygfvyU/YZ0LIygS0Y3YI+P9+Ay0r64Xe+rcIHmcRXlPDuOhM0vs1h7dq1bZtzm78b7ttReE4AdCz96G24atWqjpYCrirBBIufPcBj8tUKPD6eGw585HXqWw7KbRDU5dtzvC4OnGSSxMzaMzXYGuFnS/AzeI3Ozc11nOdy7z/nTfgkQHl4J7X4gJy/80kSXylQvjY5YJHzK8pJAA7Y9C0stD+/Y0ykea3eL/gkADXwmuI1Tq3lBEX5OuT7/D58a5WSCfHZdWw6tgQh+s6Gw1dwrVhxSAiRP9+4+2kMWJy2g9++5wf44OmvYPwIVKXQg7lNAbMffxC1X/516TeLGyKZhALLthlY+OCUgRzv4gLXe999RQOTBD7Q4LMPPhmMczt72Jl4aDabHdUEhD34bI0YGxvD6Ohoezjixo0bUa/XEUJrmcepqSk0Gg3MzMy0J+77End+JoD2nduBgYF2QsBXRLDM3gd85Tu55c9gsoDBFUvJmVBgAO+Pm0EptzP488dPuzPQ4/78KghcXcDr42tfxs/WDCZ1+GCQ7QNRJpVYocC7/76KglpZyeKrVlg54Uv+/awFBql+UCGDYR+s+2GIfoUQwsC3vAIG7eaHM7IyhJUJfrlS3tkvD0FkVcjs7Cxmih5cDsv0x8K/8StLcNAikzlMsrFdxicjfEKhXEnQ7e69X/nBJyX84FE/p4Lfdz+glPjkhU/4+OvJb/OtPL6qx/9NOQFR3p+vbMhhIOOtzideOoNPrT0XW4YQfeXd334ME88e6L52oBAiG7btu4zmyVdiy8DWwRqaI028+ZIqFHpxbTBgYaTbKq6iXySRUACu3+n0U+sZhDDIBtAOSAB03HEu95r7sm8GbHNzc+1p/WwP4F15BmkcgsiHH7zH5feGh4cxMTGB9evXtwcybtmyBRs2bICZodFoYHJyEhcuXGhXOPi+byYgarVaO3DhdH8/Z6BsE2rnMfogloEn989jZNBYLh+nLblKhB8myH34oNPfSWZrBANDBpDe1r41wt8VZyDNc+UrJXi+ec6ZzPEtLUw8cVlKoLMigMfp+/X5934uhr9GPN16+/kZ3K+fWVFu2eD7ePw8Pr6/vFyjb1Pg+fXzM3xbh58jwdkNrGZYvXp1R9WAT/b4u+08T77En+elPMiS9LKVn2HCpEq3QNzPcWBChoNK2ZJSXqmiPAejnMAoJxi6Xd9lreWfaYtyYi6XFR5uZT5ybErJBHFLMtgICFcWYssQQtwkb5q/ClzTjE0hAMBSKOs1s/MALgL4b2wtN8B6SHeVSHf15Kq9X7q3hBA29GE/yWNmDQAnYuu4AXK9RoF8tUt3tdzuum8nP6z/iatHuqslV91AvtpX1BcnkVAAADM7EEJ4b2wdy0W6q0W6qydX7bnqjkmuNstVN5CvdumuFum+vcjVbtJdLdJdPblqX2ndargRQgghhBBCCCHEslFCQQghhBBCCCGEEMsmpYTCD2MLuEGku1qku3py1Z6r7pjkarNcdQP5apfuapHu24tc7Sbd1SLd1ZOr9hXVncwMBSGEEEIIIYQQQuRDShUKQgghhBBCCCGEyIToCQUze9jMTpjZKTPbG1vPYpjZq2Z2xMwOmtmBYtu4mT1nZieL53psnQBgZj8xs3NmdtRt66nVzL5anIMTZvbhOKp76n7CzP5T2P2gme12v0tF911m9ryZHTezY2b2hWJ70jZfRHfSNjez1Wb2opkdKnR/vdietL1TRr54RXTKD1eI/HDluuWH+4z88MogX1wt8sWV647vi0MI0R4ABgCcBrANwCoAhwDcE1PTEnpfBbC+tO1bAPYWr/cC+GZsnYWWhwDsAHB0Ka0A7ilsPwRga3FOBhLS/QSAL3d5b0q6JwDsKF6PAni50Je0zRfRnbTNARiAWvF6EMALAB5M3d6pPuSLV0yn/HC1uuWHq9UtP9xfe8oPr5xW+eJqdcsXV6s7ui+OXaGwE8CpEMK/QggLAJ4CsCeypuWyB8CTxesnAXw0npTrhBD+DGCytLmX1j0AngohXA4hvALgFFrnpnJ66O5FSrrPhhD+UbxuADgOYBMSt/kiunuRiu4QQpgtfhwsHgGJ2zth5ItXAPnhapEfrhb54b4jP7xCyBdXi3xxtaTgi2MnFDYB+Lf7+TUsfuJiEwA8a2Z/N7PPFNveGkI4C7QuRAB3RFO3NL205nAePmdmh4vyL5bsJKnbzO4G8ABaGcJsbF7SDSRuczMbMLODAM4BeC6EkJW9EyM3++Tsi3O+RpP2CR754WqQH+4rudknZz8M5H2dJu0XPPLF1RDbF8dOKFiXbSkvO/G+EMIOALsAfNbMHootqE+kfh6+D+DtAO4HcBbAd4rtyek2sxqAXwH4YghhZrG3dtkWTXsX3cnbPITQDCHcD2AzgJ1mdt8ib09Gd6LkZp9b0Renfg6S9wlEfrg65If7Sm72uRX9MJD+eUjeLxD54uqI7YtjJxReA3CX+3kzgDORtCxJCOFM8XwOwNNolYe8bmYTAFA8n4uncEl6aU36PIQQXi++KNcA/AjXy3KS0m1mg2g5oJ+FEH5dbE7e5t1052JzAAghTAPYD+BhZGDvRMnKPpn74iyv0Vx8gvxwHOSH+0JW9sncDwOZXqe5+AX54jjE8sWxEwp/A7DdzLaa2SoAjwB4JrKmrpjZiJmN8jWADwE4ipbeR4u3PQrgN3EUviF6aX0GwCNmNmRmWwFsB/BiBH1d4Zeh4GNo2R1ISLeZGYAfAzgeQviu+1XSNu+lO3Wbm9kGM1tXvF4D4AMAXkLi9k4Y+eLqyPIaTd0nAPLDVel1+uSH+4v8cLVkeZ2m7hcA+eKq9Dp98X1xiDD90z8A7EZriuZpAI/H1rOIzm1oTcQ8BOAYtQJ4C4A/AjhZPI/H1lro+jlaZTlX0MpEfXoxrQAeL87BCQC7EtP9UwBHABwuvgQTCep+P1rlQocBHCweu1O3+SK6k7Y5gHcB+Geh7yiArxXbk7Z3yg/54hXRKj9crW754Wp1yw/336bywyujV764Wt3yxdXqju6LrdipEEIIIYQQQgghxBsmdsuDEEIIIYQQQgghMkQJBSGEEEIIIYQQQiwbJRSEEEIIIYQQQgixbJRQEEIIIYQQQgghxLJRQkEIIYQQQgghhBDLRgkFIYQQQgghhBBCLBslFIQQQgghhBBCCLFslFAQQgghhBBCCCHEsvk/+v34FrwwrycAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 272261 57557\n", + " Min thresh = 1000\n", + " Not Sliding\n", + "\n", + "\n", + " Winner = Not Sliding\n", + " FP Patient = 004s_iimage_73815992352100_clean.nii.gz\n", + "\n", + "\n", + " FP ROI = 004s_iimage_74132233134844_clean.nii.gz\n", + "004s_iimage_74132233134844_clean.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADDCAYAAAAya0IYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADMQUlEQVR4nOy9eZzlWV3e/5y7b1XdPSvLAAMMA4ICbiOL+UlCVFQSxYiCJBo0gqKJMSY/FY27iRrXLKLjT4NbBNS4GxUxuLEj+zIwMwwwMAwzPd1dd7917/3+/qh6n3ru6Vvd1dXVXbe7z/N61aurbn2X8z3n3Nv1POf5PCcURaGMjIyMjIyMjIyMjIyMjIyMc0HpsBuQkZGRkZGRkZGRkZGRkZFx6SELChkZGRkZGRkZGRkZGRkZGeeMLChkZGRkZGRkZGRkZGRkZGScM7KgkJGRkZGRkZGRkZGRkZGRcc7IgkJGRkZGRkZGRkZGRkZGRsY5IwsKGRkZGRkZGRkZGRkZGRkZ54wsKGRcdIQQ3hNCeMZhtyMjIyMjYwchhLtCCP94j8cWIYSb9nmffZ+bkZGRkZGRsVrIgkLGRUdRFE8oiuK1h92OMyGE8A9DCO8KIZwMIRwPIfxuCOGhh92ujIyMjMsZIYQfDyF8NISwEUL4cAjhuw+7TRkZGRmrhoMWZs92vfx3ccaZkAWFjIzleK+kLyyK4qikh0j6oKSXHWqLMjIyMi5//JKkxxVFsS7paZK+OoTw5YfcpoyMjIwrHfnv4oxdkQWFjIsOt9WGEL4/hPBbIYRfDyF0t9XPm0MI3xVC+OT2StUX2LkvDCG8b/vYO0MIL06u/f+GEO4JIXw8hPCvXHENIdRDCD8RQvhICOHeEMLPhxCay9pYFMW9RVF83F6aScoW3YyMjCsCIYRbQgiv316NuieE8N9DCLXksC/e/hy+P4TwX0IIJTv/67Y/q0+EEP4shPCIvdy3KIrbiqLo20tz5c/ejIyMyxAhhE8JIbx2+3P2PSGEf2q/e20I4V/Zz/8yhPC329//9fbL7wgh9EIIXxVCeEYI4e4Qwku3P5PvCiG8YL/XS9ua/y7OOBOyoJCxCvgnkn5N0jFJb5P0Z9qamw+V9IOSfsGO/aSkZ0tal/RCST8dQvgMSQohPEvSv5P0j7X1Ifd5yX1+TNLNkp68/fuHSvre3RoVQnh4COGkpKGkfy/px/f/iBkZGRmXFGaSvk3SNZKeKumZkl6SHPMcSZ8l6TMkfamkr5OkEMKXSXqppC+XdK2kv5H0m3u9cQjhO0MIPUl3S2pL+l/n8RwZGRkZK4cQQlXSH0r6c0nXSfrXkn4jhPDYs51bFMX/s/3tk4qi6BRF8crtnx+krc/sh0r6Wkm3nuf10jbnv4szliILChmrgL8piuLPiqKYSvotbf0B+qNFUWxKeoWkG0MIRyWpKIo/LorijmILf6WtD+J/sH2dr5T0P4uieE9RFANJP8ANQghB0jdI+raiKB4oiqIr6T9Jet5ujSqK4iPb1q5rJH2PpPcf6FNnZGRkrCiKonhrURRvKIpiWhTFXdoSdk8Tabc/Tz8i6WckPX/79RdL+s9FUbxv+3P9P0l68jm4FH5U0pq2hIpfk3TqvB8oIyMjY7XwFEkdbf29OymK4i8l/ZF2Pkf3i/9YFMV4+2/kP9bW38YHgvx3ccZuyIJCxirgXvt+KOn+oihm9rO09aGrEMIXhRDeEEJ4YFsl/WJtfbBJWzVdH7Vr+ffXSmpJeuu2teykpD/dfv2MKIriAUm/Iun3QwiVc3mwjIyMjEsR26VnfxRC+EQIYUNbosA1yWH+GfthbX0GS9IjJP2sfdY+ICloa9VsT9gWjd+mrf8DfuBsx2dkZGRcYniIpI8WRTG31z6sc/icXIITScmYfy4fGPLfxRkpsqCQcckghFCX9DuSfkLS9dsq6Z9o6w9VSbpH0g12ysPs+/u19YfpE4qiOLr9daQois4eb1/RliVt/TweISMjI+NSwcu0tfr0mO2AxJdq57MW+GfswyVRX/tRSS+2z9qjRVE0i6J43T7aUZH06H2cl5GRkbHK+Likh3n2jLY+Rz+2/X1fWwth4EF7uOaxEEI7uR6fy/u53pmQ/y7OiMiCQsalhJqkuqT7JE1DCF8k6Qvs96+S9MLtkJuWLB9hWwH+RW1lLlwnSSGEh4YQvnDZjUIIXx5CeGwIoRRCuFbST0l627Yqm5GRkXG5Y03ShqReCOFxkr5pyTH/IYRwLITwMEnfKom625+X9F0hhCdIUgjhSAjhuWe74fbn7Yu3rxlCCLdI+mZJrzmIB8rIyMhYIbxRWyT//w0hVEMIz9BWptgrtn//dklfHkJobYeLf31y/r2SHrXkuj8QQqiFEP6BtjLHfus8rycp/12ccWZkQSHjksF27sG/0ZZwcELSV0v6A/v9/5H0XyX9X0m3S3r99q/G2/9+x/brb9i28P6FpN3Cah6qrZKIrqR3aStp/DkH+DgZGRkZq4x/r63P2K62xNhlIV2/L+mt2vpD9Y+1teWjiqL4XW2F4L5i+7P23ZK+aI/3fY6kO7bv++uS/tv2V0ZGRsZlg6IoJpL+qbY+G++X9HOSvqYoCnIJflrSRFtE/1ck/UZyie+X9CvbpWXkJHxCW38ff3z7+G88z+s58t/FGbsiFEVx2G3IyLggCCF8irb+kK1vB4NlZGRkZGRkZGRkXFbYdjj8elEUN5zl0IyMA0d2KGRcVgghPGfb6nVMWytkf5jFhIyMjIyMjIyMjIyMjINHFhQyLje8WFsZC3doax/1ZXW/GRkZGRkZGRkZGRkZGeeJCyYohBCeFUK4LYRwewjhOy/UfTIyHEVRPGt794ariqJ4TlEU9xx2mzIyDgv5czgjIyPj8JE/izMuNIqieG0ud8g4LFyQDIUQQlnSByR9vqS7Jb1Z0vOLonjvgd8sIyMjI+M05M/hjIyMjMNH/izOyMi43HGhHAq3SLq9KIo7t1NMXyHpSy/QvTIyMjIyTkf+HM7IyMg4fOTP4oyMjMsalQt03YdK+qj9fLekz9nt4GazWayvr0uSiqJQCEFFUWg+n2s+n0uS5vO5ZrOZ3FFRKpVUrVZVLpclSSEElUql+OXXKIoinpu6MrgH1+B4jqVNDtrIPfz3IYSFn/0apVJpaZs4Pr0Ox6X3L5VKse3p8/BzqVSK5/kx3De9t/dD2lc8k4+Nn5v2dfr8y/ovvb63IT3/IHEhr51xWeL+oiiuPexG7APn9DksSeVOu3jUI+e6993NC9qwjIyMjHPBSH1NinE4+5EriXP6LM6fwxkZGauKrk4s/Zv4QgkKyz70F5hbCOFFkl4kSZ1ORy94wQu0ubmp8XgcCd9kMtFoNNJgMNBgMNBkMomiwmQyUaVS0dVXX63rrrtOnU5H7XZbjUZD9Xpd9Xpd5XI5XnM0GmkymWgymagoCo3HY21ubkbSvrm5KUkql8vxWMjzeDyWpCheFEWh2Wym2Wym8XgcxQ5JC4IGX/P5XNPpVJVKRevr65pOp+r3+xoOh5pOpxqPx6pUKqrX61EICSGoXC5rOp1qMpnE80GtVlO1WtV0OtVwOFxoL8/YaDTU6XQUQtBoNIrtdGEGIaBcLms2m2k6nWo6naooCk2n0/i7SqWiUqmk2Wymzc3NeA1EEkkaj8fxC5GFNrlgUi6Xo9iRCjLc38+jPSn5L5VKqlQqC0LGGSdl0gbutxdRYZkospffnSsO8loXEheqned63b0ef7bjUmEr+d2H99yg1cJZP4elxc/ihlq68T3P1o2rPwUzMjKuILyxeM1hN+F8cE5/E+fP4YyMjFXFXxS/vfRv4gslKNwt6WH28w2SPu4HFEVxq6RbJenaa68tJKlSqWhzczMSynQ1HNJYq9VUKpU0GAzU6/XUarVUqVTUaDRUKpXUbDYjYYR08lqj0dBsNlO1WtVgMNDm5qbK5bJCCFEU4NzJZBLP53UILMQXMlypVBZ+ns1mC0QZQlwqlbS+vq5yuaz5fB6J9XS6tbNhtVo9jfgicnB+URRRDKlWqwvuAIj/5uZmvGelUoniynQ6jW2bzWYLgoA/O0SbNtIeBAUn/LQXAYW+oL08P+cgjtDvjC39GELQZDKJYgZAnLE5tHAPd7R4v3t/cg7P7tda5lxY5hxJzzkfYr2X+5zp3P3ce7fzzuV6Z+qr88G5XmM/7U1xqYg4+8BZP4elxc/i9XBVtuxkZGRkHCzO6W/i/DmckZFxqeFCCQpvlvSYEMIjJX1M0vMkffVuB0PwyuWyarVafM1LGBwhBNXr9bg6f+LEiUgsERUajUYkpbgZuDZkEndACoQDHBEQX8g/ZDwl27VaLT6Luxaq1erCsbVaLboiRqORyuVydCvgroB4l8tl1et1hRCiM8DJD+1rNpva3NyMokKlUlkQGmq12mnP6i4DhAuu7Sv//OxCAWTfy0tKpVJ0cHCuE2UEgc3NzSh4eGkKfc81XZTxY9J540LBbqUU0mI5xdlI5F4I5tnKOvZCtM+HyO733N3OO9fr7VVQudiE3R0n5zqOlxnO6XM4IyMjI+OCIH8WZ2RkXNa4IIJCURTTEMK3SPozSWVJv1wUxXvOcLzG47EajUZcYYdAbm5uqtfrRUcAqNVqms1m6vV62tjYUFEUKpfLWltbk7QjCnAdzoXUQ6BZca9Wq7EcgGyGer0ef/a2QmSdUEGYed1t+E6WERlarVa89mAw0HQ61Wg0iq+lRLzVasXSDUQEfo9TwUm4E3v6ptFoLJQG4Ajhefx+adYDrgLcGtyjWq0uuDNwXtD3tMNLOejnZX2FQOD96fByhWUuEMYY0eBs4F7+/MvOO9v1LlTJw6qUFizDQbgDLgQO8n6XcsbGuX4OZ2RkZGQcPPJncUZGxuWOC+VQUFEUfyLpT/Z4rPr9viRpbW0trtA7kZW0QB5LpZJqtVoks/1+X81mM670Y59HoJhOpwvWeC9ZGI/HC7kCrOh3Oh1Np9OF1XQn3DgIECOkReLJMbPZLD7D5uamJpOJGo2GqtWqNjc3VavVYnu4TqVSOc1B4G4AjoFcI1qQgyDtlE84+XeXBuA5vPyB50UY4DhJUTRw1wagPRzjThOEAyf8iALcE0HBBRN+x8+pi8HdCcuyFlIxwF0PZys1SFe7dyOYfv9l19qrwLHsvFXCbk6Ms5WPeN8cVE7CxRBb9jtuq4Jz+RzOyMjIyLgwyJ/FGRkZlzMumKBwLpjNZjp16pRms5lqtZra7XYk1PP5XIPBQKPRSKPRKIYUQiqbzaYmk4kkxRICAhYpc6jX6wv3m0wmGgwGMczQV9edoLDyD/mu1WqR0Dqhxi3h5QguXvj1eM1DHF38cFKMQ4McBODlE/QDwshkMonn+PGSoqCAcMG5PDfn4JLw0ENpsTTFySHjxGu01V0IXrri91nWPy6cLBMH/LkZC+7jwk56jt/b8xeWjZWf6+c4ziZI7JWU7kXY2Av2QrAPIvchxYV2KlzKDoeMjIyMjIyMjIyMyxkrISjM53OdOnVK0+lUjUZDx44d09raWiSH7MhAZgL/UrbAqrukGNR47NgxdTqdmKXg1nZ2jaCUgjZ4ACAkviiKmI0A6a/X66pWq7Et2P5xB3hmQlFsBShCfr2cwFfdESYQGCDjiB20ycsE3AlRKpWi4MJOGb5zA2KHlxZwLkIGGQ1e3sBzpaKBk353EbioUKlU4thJimUZ0qJDwoUD+hKhgDaBNFMj3U0jFQpcoEkzF7g3Y5OW1fi90i1Ld0NKRpl3u517IcsbLsQK/l7au6wPzvTzQWG/z3uxMx4yMjIyMjIyMjIyLheshKAgSaPRSJLU7/c1Go1UKpXilofj8TgSvQceeECj0UjD4TBut9hsNmMY42Qy0YkTJ3TkyBE1m83TiDz2flwK8/k8bgeZrsY7AcetgEuhWq3GkgUnqhDQUqkUwxSdZLv44cfzPeQeELSII8Lbg1hBZoFfjzYgTvh2nLg8EB04FwHCt7mEEHtugQsKwPMoPDfBBQnGiHFCGPH7kl+BKOPBkIylOyC4Dy4R2u5lHjz3bDaLQZup0EDGBA6PNCSSfnMRaK8k1J0ZLp54G1x4OKiV/LOR/f3c60xuir1ez59/L/fZDQclVGQx4dJB8fQn65ofv1R38bx08KH/8Vit/683HHYzMjIyMjIyMi4BrIygAIHb3NyM5QidTkfHjh2L7gTINOURlDdUKhW1Wi01Gg2FEDQcDtXv99Xtdk9zHTiJhnzW6/VIdlmlhohLWrDfQzBxKmxubsawRADBTR0FrNpzDdwPy7Zw5BxpMbtA2hEfnISSEeHbXELA0/BDD0XkmrgjXHyhHek9l5VTVCqVuIWlOwpoI86Jdrsdj6PNjIu7AxijtGyC+yxzWiBk0Ge4SnyXDASqVFTwcXOnA+UfPp6OvZBjrp2WY3hfpi6PvVzzfOH39O/PdO8ztekgSx8OMjNhLxkPe21XxuGg8qDr9cy/+KBuqP2uvrJz6rCbc9njz3/wb/Xul27tcveaf/pETe+863AblJGRkZGRkbGyWAlBAcLGH/STyUT9fl/r6+taX1/XkSNHNBgMYqChk8zhcKjRaKROp6Nqtapms6lKpaLhcKhutxuvC5H2nRScRNfrdZXL5Vg2ICmKAO5aYOXb8xbYmtJ3daD0wQMXfaXcr9VqtSRJw+EwkhsXUdJ8BV+1d1JcLpe1vr4et4hku0xEAy/bcKGB46rVahwT3xXDnQLLSDXP544E2k8/eUmFl47wDAg4XIsyEVwdiAE8h4dB+k4WOEAQKnhGSilwP1CuwljRN57LwOul0tY2pMy3ZcR2t6wHP9aDKl3c2i2jwcd3L9gr4d6tDMN/Ppf7nsu9zwfncv0zOUkuVglGxsHgu+54pxphU09plM9+cMaB4Atam/qC1p2SpM99zW0aFVVtFmX9+KM/7ZBblpGRkZGRkbFqWBlBwXcTmM/nsayh1WqpVqup1Wqp1+vFletms6nNzc0oMozH40jOG42GpB2CDlEejUYxPyGEoFarFYl/vV5fyEHAup/uMOEk1UMLyQcgLwAi47X8kmIpga9WVyqV2GbffcKdCZxPSCTPDgmWFL+H/I9Go4X8CEgzpLtarS4EXdKOcrkcr83zjUaj07II6FcEG39mF1e8RIMATc7l907keTae1UsCfHXfSyUQjCD/HkxJn9dqtbgzSFEU0angXwgOXMvFlHq9HsMv0zKQZeGS0o4IhSuD431OeUlFeg0XG3Yjxy5Q+DlnKynwHUOW/T79fplIkh67KkjbmvZPFhEuDfzUXa/XE2pNbe20lnEYuKWO0DzT4z/yt/H1F97+VSr+0ccOp1EZGRkZGRkZK4OVEBScHPI1mUzU7XbVbDajqABhZuW/0+ksZB3M5/N4vKRIYEMIMUiRa7M1JKIArgMvkfD2SYu7FvhqP2S4Wq1GMYAV9bR8gNwDt+i7OOEBgdjkIbfSYngkwgcZEKzQ83tcArQJEu/H4Rzg2uycQRsoJ5lOpxoMBrH/IcW4DOhT3zWCZ06fnzZwDPf3fAXfPpO54aJCugJN7gH90Gw2FUKIZTE4UhBIOp2OJMVwT9rn7eD6Xn7Clqa0j/t5eGRK7H38vA+4rmdnMFb+jLsJBLs5Dc4mLHi7uIYLP7vhTO1YdqxnbFws0SFt4255DxmrjVCt6Qc/8HfbYkLGquDBlU78/k8f98fa/NiOW+0pP/gtuvaX3ypJKjYnF71tGRkZGRkZGYeDlREUPBAPx0G/31ev14uE2YkzlnknQhBoiLPvTiApns/veN1LFCTFXRGm02nMRvB7UMM/mUyiuCHt2OwRE3wVnn89L8Hr/30lHNcCxB0HgbS4XSJEkHIK2pgGJpJXkG7tCFnv9Xpx+0y393NvDz2EnJM54aJMGlqIOMDuHV42wZjXajUNBoOF0gTGhzbSp/Shr8inpQ30H6JCrVZTv99fIJaNRmMhQ2M8Hi+4KhBNaK+XbeA0IFTSnSO+nShtpV2+G0jq4EBwQMRhzNISBPrDr+27fexWMnEmpOcuEyd228Jz2bX8ft4Xfu1lAsdBEf795jPQjr1eI+PCoXzsmL7mDW+3lfGMVUU17Ajwb/2+l0nft/X9Fz3reQr3HD+QexSjkebd7oFcKyMjIyMjI+PgsTKCwvr6ujY2NiKpGgwGkhQDEyHYrNpTM++7LYxGI/X7fXU6nbgCPZlMNBwOI0nEqQBBhYwiDkiKzgHIMIAMer6BE2VpJ9Gf1ygjgLwShOjbSvqKMQTeHRM4ERAhsN9DTBEofFcDPz+12iPIeMkGggTP22g0FraQrNfr8Xdc3+/TaDSiGwDyy/URilL3greDTAMIrPcD9/dsBs89cJeA5060Wq240weCjLtKXBySdras9DISciDcPdJqteL5qbDhpNRFnNSp4m4L31WDfsZZ4+8RdzJ42UQqPJwrdhMiXJxyMSg9b5kLIHWR+PF7PW+/2K9AkYWEw0flEQ/Tp//+XXre2onDbkrGeeD//OkrDuxan/GWr9KDvuvsxxUhKPDZcvykpp+498DakJGRkZGRkbE7VkJQKIoihimOx2MVRRHr/yuVitrtto4cORJLH9IyAcIU+/2+Tp48uVAi4dsIYs/HpeCr3b6toq+4j0ajSDIhlZBFaac+3+3ykFuuiYsBV0NK1JzIQFLTHQ3cvSDtEEwPjIRkUnrBPavVaiTU9AttZcWe82kjJN3vixuBcwHPQv9yH3IhBoOBNjY2olMBIcLJuOcxeBmLj4eXFLiIkwoT8/lcw+FQzWZT6+vr8fldfKFv2+32gsDjO2Wkr/l8476MV7o7BqS/VCpFBwT97cGVPg4+f2iTjwG5FgSIujMjzVo419V2n1c+/4A7e85E+P18n5t7KZNwEcPLTOgXSQuvne1ZDgKrmA9xuaL8KY/RsV+6Tz983bsOuykZK4S//6xXSq8+t3Oe8PoX6PqX3aDmu+/OwkJGRkZGRsYFxsoICpBCX2kej8e6//771Wq1Ymhiu93WyZMnF4h3rVaLdffdblcnTpxQo9HQ0aNH1W631e121e/3IyHjnhA+t7B7CYMHNEJAfWcC3wkBgueZBdzDBQlC/VwskHYs826Hd6LoIgCuDElx5Z8v7tdsNuMqPq+xos89/LkqlUrsU7fSL3NLeGkDx/HMXJs2QP5Ho9ECkZd2SkuAk2hf4U9zBgiSpH+YOwgew+Ewbj/Kzh+IK369VqsVCTqhk/68uBDcAUL72XkCZ4U7ZiC/5Dp4iUa6Q4i7HFwYoX98XnnpBDkYaSCki1R7JcP+3Mwh2k1bmRfpdREB+N7noTsTzuSiSNuJwJIGXTL//PVlYsVBl1BkUeHi4P3fsa47b/ytw25GxmWA9zz1N6SnSo/8vRfputc/SpJ07FV/r2I8PuSWZWRkZGRkXH5YCUEBF0Gz2Vx4DafC8ePH1el0dPToUbVaLbXb7bgTgKRI8hAiRqORNjY2ouWdbQLH43EkZr667SGGkuJOERAhgvsgcZBQrPyQWcgk50FGvQzAV9YhKh7giDMiRbVajaUfkCtAGYWvWqdE2S32HvYoKfYRZQWIBt633i4EmNQGz7W5D+UeEOBut6sQQhSH2PLTnQg8G695qYRvnSkp9r+Xe3Au5Sq4A+g7D/6kVIM8CB8bSVGgSHeD8D5B4PBtLik7cefBsnZyTy/vYA6Vy+WFsgcEFp6J50FUoFzEnStO9lNC73NiNyGFduF4cXfFMpHAx8nJ/7JSiWWE319f5sBxJwhuk2XIpQuXHuaf9+l62s13HHYzMi4zfOjLbpW+bOv7xz3mm1TtBT3kx193qG3KyMjIyMi43LASgsJsNtNwOFzYuhHnAeUIvV5PR44cUb1eV6vViiQOYsiKMau7s9lMo9FIzWZTjUYjCgqICRByt7A7YaT23gP6IIhYznEvTKfT2HacBE76vU6e0gAP7oMc+co1ZNXJGORX2tkhANIGGcV54ORrOBxK2iLIXi6A+ICYQ9tHo5FGo9FC3/qzISy4KOEuDHdCtFqtOG6QZD9uNptF0u/kFmFG0mmCAqvfXnbh7gdEoGVbgKZiDCS60+lEwu6Cjrs5mD/0NWNeLpdjqQUknX5LcwK8bAKBycl2mtfgbgH6KxU2cOe4E4L+TEMrAWPJPPZ200+IRswd2sO8TUUFvzdzOd3Wc7e8Bsbd+8nfO17m5O9xF0wuhJCQ3QkXBx/+ooZefeNrD7sZGZcx3v+vXiZJevRDvlGVftCN3/36Q25RRkZGRkbG5YGVEBSoeW+327HcQNJpOwhMJpO4LWS3241hexxD+GGafu8WdX8NQuirswgVkmK9v8PJfblcVr/fj9spuoMgJUiDwSC6GdjdAAs7JM1JIXkDlA1A7p2Ycz1cF57fgLjCivd42+rppJC2eZBhmufgJRaeQZCOn6ToioAw12o11Wo1tVqtSMJ7vV7cOaNWqy04RrxmHyAU8EWWA2IJ7YcMl0olHTlyRM1mM+4egWjBuHv4JoS1Xq/H0hlcE2keAvMH0YGcCNrFPbw//B4uhDBnKcVwsu15DFzTn4+5Qn5Hs9lcKNvxfvMMhmVlFxznGQyMFfcgfBQ3hmckpA4ERDPeV1zP57rfy8fZRSIXfpblQZzJzXM+uFDCREZGxmrgjq/8ed0/6+vpN33TwutX/25La694wyG1KiMjIyMj49LFvgWFEMLDJP2qpAdJmku6tSiKnw0hfL+kb5B03/ahLy2K4k/OdC1yBUaj0Wmhf5BUJ36ELqZZAFj5x+NxrF+HmDQajWhd96wEVrSdBFHzDxEmN4GVXpwREDnffYDdEbiXpAVClWYiuLXb8xd4lnK5HEs8sNLTP5DBVqsVrwNhxvJP//lqPu3xLRrH43EkyLTH75GOC22HEPM77s8Xjox2ux3JN4GbCDfMAQgwRJa2hrATbMn4IZ5IivkMvsLO/PBV9tlsFksV3KXggoyTfMBYDYfDeA8vm2F+OMlmvH2HipT8Irow/93G7/2NY4c+91KFoigi2Q8hxNIKL6Fx4cjDFv1ZGAN3ArhDAmeOCxouKHh/LWuv/+z3S4UbL5lxYk+bfO55GznmfMWA9P11thDKVcBBfhZnZFwJuKbc1m3/4FcXXvv5T3uo/uDFTzrt2Nk/ukflI+vS77b3da/3v+dhesy3vHFf52ZcOsifwxkZGVcyzsehMJX07UVR/H0IYU3SW0MIZDH/dFEUP7HXC0GoPPiN1ce0vp5SCLZ/xFWABdwT8rHer62taT6fxxVriAduAQ9XZBWWXSOwrbuQMJvNVK/X48otdnhIPyu8iBWsAI9GI43HY00mkyhmSFqonXchYjabLazGu90bktNsNiM5Tp0WCDQeLpiSVieig8FA7XY7klAvKXHrPu3x0gWAyODiAoIOZH04HMagTF/B99Vy+gkSnJaQSIquCXaw8HZWq1UdOXIkbgnKSj/9wbHMO+7Dc7mLoyiK6AxxocvdLWRukNORhkbS9jSkkfvxHOPxOAZJ0h6ePSW7nOMBmP1+f4Fg0xeVSiWKFgh0EH8P+OT9xji6GFGv1+O8p98QVtISCJ7fHSbulkjdDen8pt/p41RgYr7wnGlQI/3kP58LfH7jqFlhHNhncUbGlYpvPPoxfePRj532+ve9/Qmqh0/opdfctq/rfuhRPf3S5z41/vzaH3qa2r+TBYbLEPlzOCMj44rFvgWFoijukXTP9vfdEML7JD10v9cbj8cLux+k2yU6+V1bW4thf9IOESLNX9ICWanVamq323FVfDQanUbCWdmt1WpRoGDVHlKBIFGtVtVqteLqMALB5uZmJLeQZw9cxEbu7gO3uUuKK9aQJA9clHbs975FJKUiHFsqldTpdDSZTLSxsREt/FjOIYMQM0mRvG9ubkbHg7eLvsdtgMXeSTjlDk406V+cCqzKI6IMh8O4w4SLF+6ScIs+pSKIJYhL7uzg/h6e6PZ7X+FPcyFwQ/h1XIBIyyWYQwAhhjlNH/kKO26FVCRjLo9Go9hHuB+8lIf78vN4PFaz2YwixGAwiP3h84Q+hSgjsrgwQtmEi0b0zXw+j6VCabgoYqDnSHiJg7shaD/vF5+37rxI3TyeFeIC37LSCHewLAuGXAZ/P9DOarW68oLCQX8WHwZu+okP6AmPecFWOn9GxgrhB659z3md/8hqZ2Er1Lf+xFv10R+9Kv78C5/2qZqv+GdMxtlxOXwOZ2RkZOwXB5KhEEK4UdKnS3qjpKdL+pYQwtdIeou2FNsTZzqfEgN2U4C4Qhw9+0DaWpVfW1vTfffdt1D2AGleX19fcAAgKnQ6nRjO6KTdV5QhcdT6dzqdSLiw6pPVAJklJLLX68Wt/pzUQLAgicu2Z8RhgTCQJth7cKSkaOUny4HyDCetkNFyuazxeByJnJdwICS4aOG7EPi2hL5q7Vsi0tf86yUeTtQZ60qloiNHjqjRaGhjY+M0hwICA/fwZH+uBclk9wuCJwH3ZceOer2+1HEh7YhKvqrO/EOk8PIGX72GwPuOIwAhyoMz0xIX7u9OAZwH7L4BOWeeezsZa1wUjJk7B3DOMLe4H+KMjys5EggAiDVeSoF4lL4v3YHgcxZhg2ekj9wJw3Mwf925wPi72IHjwd0lzA3aQPtxoiD2gd0yHBgb/wy5VHC+n8WHhdn9x/Xwrxnpmb//T/Wax//BYTcnI+OC4TPrNX1mvRd//rTb/mLh999211do/Hmf2NO1yo+/Wf/t//zyno796HRd//nRT9x7QzP2jUv1czgjIyNjvzhvQSGE0JH0O5L+bVEUGyGEl0n6IUnF9r8/Kenrlpz3Ikkv2v5evV5P3W5XkhYS7J1I+0pjq9XS0aNH1ev1dOrUKU0mk0gYIAMQpn6/H8kZOyVA9FjpRGSgJpvVU+7jbghWk3EHNJtN9fv9BfHDU/5dHPAadkg0AgJkjVIJX2FO4WUdrNo2m80FohpCULPZXAh7hOxxbc95oFRhNpvFLAUEB54X8YPdJghudCcBFnXILKv0PGsqTOAYcUGBPnIhxC30/jOr2ikh5b7tdjuuanN8uoMC1/XSDsYZ0irtOE9cdKHUwEUpyG69Xo/BnU6GEQmYg07yuQ7vg3S+eD9CiiHfrVYrvgcg4L7a7+e4gMH4Iy4RdIkIwNzy4/ne3tOxT3FluKDi44Pzh/N8h5a0fMFdFS5ieSAp/cJc9rwK3x1ktxBHz5vgGRBiLhUcxGdxQ62L1+AE835flS8Y6cVveKp+4YacwJ9xZeDR1c7Cz3/wmD/V4O7JLkcvohzerHronP1ASY+uznXL3W+KP3/2G1+oG577/p0D5sv/1sg4N1zqn8MZGRkZ+8F5CQohhKq2Pjh/oyiK/y1JRVHca7//RUl/tOzcoihulXSrJJXL5aLX66ndbkdSQEmDb4Xo+QPs9tDpdLS2trZQcz8YDNTv91UUxcLqJ5kJTo6Gw6Gm02nMQHDHg6S4qo3Vm5R76taPHj2qEEK0mQ8Gg0ievO7fn8PLOJxguqvBwyKdAPt1IYZuNW82m5pMJhoMBrGvnTi6k8ODESFsrIhzjzSQ0Z0UHny5PabxnhBkLPmQR+4H2aa97K7A2Ht7WDF3YcR3AyEjgufATeIOFMbPt5D0kg1/Bl4vl8tqNpuaTqexbe6Y2J7jcfXfxQ8fd1bluUapVIrXpezAST+gryG7Ph/oE8aJ+zIvERNSEQCiD7mnxIZ+ot0IVrQ3zTLwnTV87HFBAJwe7ghxkQBhygUez07x+zAXhsNhFAdDCNF15KUTPmfp//l8HrcTTd0J/IsI6TkmlwIO6rN4PVx1uAmU85nuumWo//TOx+67Zj0j41JHq1Q7+0Hned33PPU3pLt3fvf0b32xjrx6S2CYnTx1Qe5/ueOy+RzOyMjIOEeczy4PQdIvSXpfURQ/Za8/eLuWTJKeI+nde7hWJIEQMMoNPJuAnAUIHDsHtNttDYfDSEaGw6H6/b56vV60zxMqB5GHYLgVHxLqK8A4F7B9Q8ywfa+vr8ftEMlYgHR5LTrnQCrJNUgDFyFCLhj46qtbx3FhQP4gP5Bb3BKpe8Ct85A4rkd5AP3jZQZeGuJuCq6Zlmq4c4CdGBAyuDeksl6vx0DDzc1NNRoNra2txXb7yrmXCkBoIZfuJHAHirtdAI4MyiUg6+6AkHZKRNjlwXeL4Dwvi4C0832tVtPRo0fjaj2v8/y0kbkJqWVeen/6PX1sgDtWELF8xw2/rpcGpPPLCbkHIvoc9lwCn6O0DbFFUiyZ8H7lmul8o7TI25qWEjG2Hpbpu7jQh8wfd1SQkeLt9owW3wXkbLkLq4CD/CxeFfzVE5tqvPtR+ndX3XnYTcnIuCLwdz/7C/H7L/78r1IYjjW9867Da9AlhsvxczgjIyNjrzgfh8LTJf0LSe8KIbx9+7WXSnp+COHJ2rJ33SXpxWe7kK+yujW/KIpIBFkl7na7CzbsTqcTXQebm5sxx2A4HGo4HMb0/V6vp2azGe/HajUOBIjDeDxeCI+bTCaxFGM6narX62lzc1NHjx6NIka73db1118f24jrAdBeJ0PSzgo0uwSw0u59AegLVvxxSXiZAKQegsY9IJ6+K4M7JFK7uJNzzvUwREiqjxt96QKNE9O0BIJ2kf1ADgWrzS4W0S8eDujPw+o54+VCkZcXOKn2tjMmuGAYs36/r/l8HucYjpfUOu+hlN5nLmB4YCXXcOcBLg1W7lmxd1cC8NV8nCwQcEh8u92ORNz7yUtivJTDBSwXA+hbxqxer8fMihB2QgxdEPNxYtWfdrqrhvv6jijeHi/Z8K09mU+0x7dTRSxAmCHnxOd6Kny544T7LRM/VhgH9lm8SvizT13X/W97ov7T9e887KZkZFxR+JNXv1Kn5kN9xfO+SeXRVMVbMgfeAy7Lz+GMjIyMveB8dnn4W0nLNn0/5/11IXUOX6mH7LAlHuStVqup1Wqp1Wqp2+0u2LLH47H6/X60VFNTD8HwFVlfBZa0kIPA9otOPkejkTY2NnTixAn1ej0dO3ZMrVZLR44c0TXXXKN77703uh22+yoSRUgOJNmFAUicB+v5F0QJAu87RXjpBMQrrUWnXznGxQMA2VpW3047EF14DkkL2wL6+LnLwUs23CVRKpViuCXPNRgMFu7BqjXXxfIPmXR7P+KA7yhBW1KiiFACYfUsDq/3p8yGtjMefI+Awv29X5zYQ3RdIOEe/ozLwjl5Di+BYdyr1Wp0b/DciGy+6s485hmXWfpdmOD69B9bmSJs+fGeg0GfuKvCwbx1h4NnGHg5hm/F6eII/c/nAG3kvYeQ5w4NL8FwESZ18fh8XXUc5GfxquGtn16SPn7YrcjIuPJwpNTUq1/1cv3poK4feukL1fr4SKW/ffthN2tlcTl/DmdkZGScDQeyy8P5AjLt9dO+Ss8qJgF+DzzwgKrVqo4cObJ0lVraIgOUPhAAyOu+0intECL/GYKIEAG5qtVqGgwGGgwGOnnypE6cOKFrrrkmbiVJ9gOER1q0lyOEUIrhToR0hdjJLhkBkmJ4nmch+E4PEC0nQ05gPaeBXSwgsrPZLJJ1xoZ+42fa6SICxNNXp7kW93JxyMUTrgtxh1j7lpsucNBWdyoQusj9aCP3dueEgzmDNd9DBH03DPqd1Xr6BGcGcOs+c8h3aqA9HMfvEZYov4Bgc500K4Ex9Wt4lgZiUVoi4Y4Uxihdlffjybpgjni4InOcc7mvlzykfUB/ek6BE3rem9yD9lLC433jbWRsvPTG752GfZZKJXW73YVMD//y8c04XDzpTc/XO275zcNuRkbGFYlntcZ61s/8vL7j3ifrLf/+M1V5zVsPu0kZGQeKyo0P1+RhV8efy296r4rtBZOMjIy9YSUEBUlx5dvJRFonTv022QiQW1Yg0xporOmsUkMunPRg5YbUYEmHqDjxL5fLarfbsb29Xk/Hjx/X1VdfHcUNyi88oA/HBASnXq/HPAdWnZ3sO+lFfKCtTsY97wEHBPkT0k7avZMkaYeA014vBZjNZnEcIIVee0/WgpNHz3WgNICAShwHzWZT7XZbrVZrwX3C+e4KwWXCSjPtox9cbGKVntcajYY2NzcXCDur3dLibiEQWggzJRaE96UOk1JpK0yRrRURFphDENbU8g/5RdTxeepzkudE0GBM6SsP12Qcsf6HENRut2Of4CTwUgTIv7czLRHhveYCDC4A3qMuKCA+0X8uCiAKpU4Fd634/dyl4M/oAZyp8MGz0ofLQjR9rpXLZXU6nXgdypN8TjDfPSMi4/Dw4OfeoUfe+vX60Bf+0mE3JSPjisWPXf92veRHG/qL1zxVj/y9vvSGXIqUcYkhBI2+5LNPe/nkoyvq3bjzN8mDHvRkVYbL/+9v3tNX8db3XLAmSlLlkY9Q7wnXX9B7SFL7tvs1++C55RSVnvx4DW7Y284y7TtPavbeD+ynaRmXIFZCUIAUSzvkG4IJ2YQEsQ1ft9tdSHpPww+9Zt2JPPXcbp33wDcnqt4+SBL12J7cf/z48dgGSbGsAnLkwY4hhLhDhbSTrwDxp60QJbe0I5BAqnFMuLjgzgt+JnuB19waz2tcHzEAskx73LGQhhtCwAjYo1/ZecO3b8RJ4aTQHQfpGKS187SBOUNpg7TjmGAsOdf7AkcF485zQlyPHDmiarWqjY2NhXnhxBpiTzkIfeZZCogHEG2EKSfk9Ks7OBC03H3g7XPBizFDeGGl3p0rLqClGQUeYJk+pwsAiHL1en1pfoS/7yD/aaYC8y8l6u5CYA7gRqL/6R/OdRHOS128DT6/XBiTFPNXeHZyPRCG/HmYnxmHh2Jzosd/773SFx52SzIyrmz83EPfIH3NG/TlT/t8vf3Ozzzt98WorJu/8U1LzlzEB37+FoXGuZWTjb8vbyWbsT/0/9nnaFYPKoJ032ctO2LRufqJpwUtr16R6vcf0ZHHPmXXe4W5tPaKN+ypXd2veoqK8umvD64rqfeI+em/OGC0H/sgte+57pzO2bixpNG1e2tb8wnXaO3JV532+vor3py3qb0MsRKCgqQF0tHr9dTv93X06NEYzjadTtVqtaITYWNjQ7PZTNddd91ChoA7ETxoTTp9a0RJkUhAhJ10OvFxKznEkesMh0NtbGxEMsdKqdvu3eXAKj5tYFcGtld0ZwMkj/vRH77a7CQ3JWsenpjW3XtJBtfzgEr6wcsTnNz7rhfSothAeJ+HXrpIw1i5xX08HsfdIFJXBavwHO+hk2Rc4GaALDqx5nrMAfoVsYfMAYhzo9GIogKkFecGTgaejTIJRAUP4PTcBBeKvL9cMGo2m5GI8/xcN82CcALv5QCMm7s0yBKhzfzehRBEBnfLeBYGORdsSepiAGIdAh+/Q1AAHrJIe3kWBEB+7/NW2tl6NRWdJpPJwlajPLfPR8QdgjMrlUoc783NTQ0Gg5jVwdznGfr9fvpxlXGRMb/vfj3+516i977k5w67KRkZVzz+902vlm46/fXefKRn/elXx59P/NWDdMN/fp0k6c4fe6quf9LWDorv+dT/fs5bY97yk/fvv8EZVyy6z3uKPvmZQUXlYNyG42vm+uQ1u/8+zKXxkafu6Vqnbi5UlJb95sKLCZLUv2Gu/g3netbe2zZ80FzDB53++vjILQrbl6l1C63/r70JMBmrjZUQFCAHkIzBYKBerxeJAqv82Loh6L1eL+6OACkizA5C4RZwr/f2FVkve5B2ygyknW3zIHxONLwWfTgcLqT3s5oLGeVnaTHxn1VYyK+k04QD2uEElXICyJHXkDvpRmzhi+0zqdfneFa+PVDQ7y1pIVwPdwT5Dk4g6bN6vb6Qui/trFD76jgkHCJPW/y53eHhmQfuqoDIspWg5y14GQtOCgL8EJXIcECgmc/n6vf78frueFhbW4vtbTQaC1tC+qq6r+DTL07qpcUSABeaUlEMwQRnBES83W7vSnpdQPEMBh8Hd4GkbXbnAOJRWlbCXHD3jzsEvATJn5X3E+A8xDje8wgBlFB4ZkOaF8Kx9JcLCszJZf1D2RTtdMEr4/AxH4308D/dkF5y2C3JyMjYDZ1SQ3/7xP8df/67m+f6jS9/miTpp679KT2h1tz+zbmJCRkZ54rhl92ik4+uaHhdcWBiwl5QlKSTj8t/N5wJp27e6Z/SZlD/wVufEVe/e6Lan73lsJqVcZ5YCUHBCR5kst/vx90EJEUbOCQYcoboUKvVtLa2pul0qo2NDY1Go7jqDCHa3NyM1mlpZ0tB38LOrd7STrYD5zrRGI1GGgwGkRRLi8nwrEi7swEiBxEkKR9SDll2izYCCtZrnBD0hYsCkqJt3Akrq9SeV8DqujsV3N7toX7ARQvII0TMyxAkLWQqQLIZh83NzUj8/X48d7/fj+1M7xtCiLkYTogh/jgRfEw4F7IIYfawT8YXwWVZGQqCAH1cr9fjbgpsMwnJdiFkc3NzQahCZKHPIcjptpPsSOLz3kM/uQ/vH0g+feZhie5yYW6TN+AlCv4+QJTzTBEPunRRAWGL81nt9xwQngERgP7xfuE5eL/QDtqGU8SzHhA4UvHMBSnmXrqDBu4Kn2fSYpZExuGi8uAH6Rt+8/cOuxkZGRnngKc3Snr6Q1l9bJ7x2IyMg8L4Sz5b9zylrHn94qz0Z+wf82qh/g1bf+ePrqmqcsvT9PD/s5G3qr0EsRKCQqlU0tGjR2OQG0SXYDyvSccS72QZgkNgIDZmSiXSWnOCCDl+mesAEjYcDjUej1UUhdrtdiQpEBRWt32F2+vcnYhB8qn7hyz6Sq2LGzgMIDweGtdoNDSZTDQajdTtdmMgXrPZjNfC+t/tdmM/Qw6dzLmTwwP6IORO5v1nF0sQB3BO8Mzu1OD5IJqSYrshfggQrEZDNr2uHgItKZYsMGbMIWknm4P+dReAZytAsn3FHvs+lnr6jbGbTCbx+TqdTuwP2s34MQeYex5GSFs8uHDZNoU8OwJApVJRq9WKP3M/SD7P4aVAaV5DURRxm05pp+TId0LwsfYxx6VAOCVknveS78DQ6/VO2zUjLZ1BHHRXjQsGCAX8yzyif70kxUUpF0g4x0uFuC/XarfbMWjS50/GCqBS0Ze1e4fdioyMjIyMFcb0H32mPvZ5Fc2r2SVwqWHWKDRrFLrjK9YUvnyrbOSmH3+vZidPHXLLMvaClREUOp1OtIwTXMf+82zH2O/3T/sDH4IDmWe12IkVhA1S1u12I6nxlU/qzN0+j10eAtloNBZKE1JiBPGB/HqIHa9jj8e2DzHFbk1qfaVSiQ4GsgFYqeY1trDs9XpxZZ3gSO6PwwFiBwl0C7qXVHCOr2anIXdpaKS0uEWjb5HIijAk0cUgnB/8jpXi8Xis4XCowWAQHSG0l2uycp0GN0LgeV5/Np4FIaHVakVySZ8hZIUQouDh2wf63CE/oNlsLgR8umiBQOLkNy13SDMQUkeG5wg4wZ7P5zHTwIMdPQ/Agxm9bMazBhDNnMB71oNvxUgfMA4uXiBOITLRJ9yH0hyu66KbB4F6bgTXYl7gGvJwS95jHoTp21zyPLievA1eHsH885KkjIyMjIyMjNVF+VMeow983TVSqVBRymLCpYx5fWf8PvDdj4/fl8fSjd+Tw1lXFSsjKNTr9QViybaDo9Eo7goAAZcU66txNDSbzUjMfM96CKvX8bMDgRNqt957QJ20Q6CHw+ECGfUAP4iShx1SkoGlHbIH0UEscZs293MnwWg00tra2sIzup17NBrp5MmTsU3tdjsGPVISQikCZSODwSC2w4kbJL3ZbEa3A33p1nP60UtBvP88FM/D9iaTSXyN/vHsC0lxW81yuazRaKR+v6+1tbXoPoCkUrOPUIOoxNaiTmQ9sA9xBALpAgFzhna4jV7aIfyMJXOB7SbpFyfewIMpuacHL1JGIi06VTwQ010ilPPgpIFIO/HnOSDvPKMLMYhp/jyMD+Ic7gPa5e6etCzGXTnr6+sLzhXKYBC+RqNRFLfS8gLPNsFR5DtNeG4C7fVyEcpUXIziPK6XHu/Pkt0JK4Si0Kn5UEdK2TadkZGRkSGFSkWlo0d020sfs/1CFhIuN3j+xbQs3f5TWztsrN9R0vW/sLOjTDGbSTnz6lCxEoKCpLjVGyR6PB7r1KlTOn78ePzjn+OwT1OOMB6P1Ww2F4L9sK6z4uzlDBBryIXXs3ttPeTZV5VxTWCR9hIKX92lPMMt4ZApxAkEAV8th+CxqgzhGgwGMQDQV1VTl8L6+npsG7X3kD6IOIKLlwp42QcEE8dGukrO/XFvSFtBmqzOe6CltOPkcMs9hDwVFTxI0evfx+PxwhaZKXlMCaa7MpzIp0GDvmruJQ9cm50APABQ0kL5BMIE7hhJp10HpGIK8HHwnA/vfxdpmDeMNWODMOCODS9B8KBCfw4X65jPuAFonztW6At/r/g1XYQi3wGBy8siIP0eaulg7HjPuehFO/x33l6ELXfHUGLiAhrH8y995UJSxuFievfH9FVf9g360z/49cNuSkZGRkbGIaDUbivwf3Ip6Lbv/ZTddnfMuBxhY71x01wb/2VnD9BH//ZI4fXvyttRHiJWRlBgK76TJ09GYtfv92M4H2TGiSiEAZLvNdNevuCrv9TKD4dDSTtEzsPp1tfXY2Bir9eLBA3xgbwE314PAos929P/vURAWlw99V0IyuWyWq1W7BPII6KCixK0GfFlMpmo2+3GEgFEFbeMe605WRRepuGr8S7ieIilw4UWykT8nv4MLp7483koIWUM9AeiEWPIuZ4dgIjk7XCLPK6GNM+C+zvoC7+WbwXp5NZ3DPGSCwQvbPhO2HEacA+yGObzeRQ1XNhxUcEdEd525gP97eGmtNe3rPTMCWln21TcBmnQJu8h2u/Bli4K0EbvO3c/eE4Hc5nMDN4XCF7LghAZc8ab/BBe87IYH0ufp4hJvBfT++DASF0lGRkZGRkZGRcfpbU1ldbXJEkf/uc3avigHLSYcTru+IqGbtp8vPSW92ZR4ZCwEoICZL/T6ejIkSOaTCbq9/uxNMHFAq/zppRhPB5rMBhEwpOuujr5hOz6ai3hcqwYt9vtmFmwsbGxQIaknYyH4XCofr+v6XSqTqej4XAYRQkXBrrdbvyd7zDg+QoQMGq4If4ckzoXWDVHtKAPBoOBhsOhZrNZLCOh5AAi12w2oxPAd2CQFldoJ5NJJJIp+eL+kqLbgeBB7guB85Vi+tKJoz8fZQaTySSKOuyAARGG8EGW3YHhW3WWy+VYFsBqOwTRCbvX2APmGmKHl04wF1ht910kOIZsBc8mgAxzDfrdV+05jn5aRoQ9aJR5zvh5fzCHGHMPusTe72U23NfP95wPhJi09MWdLsxfxtUFPuYI84VSIT4DECO8XMRdDLxv3XEAaBsiUDr3GDP63NsPPLfE51HGaqDUHenHjj9G33H1Bw+7KRkZGRkZFxCldlvh4Q/R8c+6Rvd/BsJ+/v84Y3fc/vy2bio9QXrjuw6s/KF89VXSdVef1zXmH/yQiisgj2tlBAXqvzudjrrdbiSnrAY70XWrOmQUizUroJAI6qQRCyBDkEBWY92izrWazeZCaJ+0YxGHrLmIgJsAG/rRo0ejFf748eM6derUQlkFbYW8eB032zn61oUcx2o4ZK/RaMQgwX6/rwceeEBHjhyJzwqxov5c2tk5gL718EqeFSJMnoELAS7wSDu5A+44oIwhDf7z8gRpx7HhOw00m02tra0tBCwigLjbgbnDGNKO1FXhIYqQZvqU33tQH2CueIkBYPz8efyakH7fqcLdBFwPl4ILZdJOOCghm9LpuRXcC0cOxB8xxNvtoaAIFY1GY2GXCPINmIfe38wnd0q420HacQb4aj/P67uceMglwgLbQaYknvnm18PN4g4S5pCHoAL6OHVV8IzMCcbbg1gzVgOz227Xn7z0H+o7fiELChkZGRmXK0qtlnpf+Kn6+D8IkrJLMGPvuP2rWrr5nU3Nt8PKzwfla67W/c++WcefdH5z8MY/Wlfl/779sndOrMRfyxDlWq2mtbU19fv9GLqYEpCUvLhtXtICAXeSDqnxsEYnEk5ksF6XSlu7T7C7gl8XEt7v9zUYDCJBm81m6vf76nQ6Wltbi9fGbUHWAG2C/Hj5Ac/Fax5W6XX8tB0hhmfr9/vq9Xqxnh7yxHaaLrRAvLvdbnRp+E4AkEMCIdllIg0y9NXgdJXZ+x7RwgMTaQ/CEGLRsWPHVK/XtbGxETMn3K3iwoYLTT62qZgC4fdyDl+J9vZyPsfRLkQS2gsBTVe9PXcCccXFGRfFPJuj0WjEOYOrBKJP2KQLGNJiNgTXbbVakYjzHB7QKWlhW0/a5++J1PXjc9X7LwVzwcl7Kkq4kOFOId4X7gyiTV5m1Gq1TitlQcTBoYNYgYvHy6V8jnupRzpXMzIyMjIyMi48Qr2ujWc/UZ946mG3JONKRvnqqw5ETJCku55d1Q3Nz1Tjj9509oMvYZyXoBBCuEtSV9JM0rQois8KIVwl6ZWSbpR0l6SvLIrixFmuI2lnt4dOpxOt0ZLiqmpKdH03BWmnzjotUZB2wvAQKHwLQsix7+pAoGKlUlGr1dLGxkasHXdCDXkfjUaxDID2djqduHLM7hNeWuGkGKu7r+j7SrW0465YFvTXbDZVr9fj+SdPnlS73V7YOpH2kR/hBN53gaAP+Nft+ZDf3WrLIdBO8p20eVimlwIss7DzPJRCUDtP25gLHihIuyC63r8+7r4lIs/p45GGR9JPTkTJdyADIe0j+sPdGr6Dgs8Bdt7gWIIRcSMQOgrJhTS7i4V+gMRTduNbVuL+8JIJaad8hDnCF1kU3u88E32zzP3jfejOBI71XUh4b7qosBuYO4gFLihIWsjTmM/nscQk3YbVx5ff0W+UqiDyXAo4qM/iVUf7tuN64puer3fe8puH3ZSMjIyMBVwpn8MXCqFS0cnnfrru+8zDbknGlYzy+ro++ZzH6sQTDs4dc/czS3pQ6ynqvOoNB3bNVcNBOBT+YVEU99vP3ynpNUVR/GgI4Tu3f/6Os13ErdRYryEKhAgS4uYrkVjhWcWEkEEeJS2smPvKdVpXzbGTyUTD4TDukMAqJ9f0/ACCG7vdrq6++uoFcuzkkIwFtmtMibuHIrpdH1s7dfP0gZdB8Ay+/SKOA9rZarXU6XTUarXi7zzTgB0mcFs4wedeEGLfis9LR5zAsyrNCjt9nKbme7u9vh2CXKvV1Gg01Ov11Ov1FnaokBQDBxFasMLTPhdEPDcC0WZZOB/P0Gg0Yr+wwp0SUGz0CCClUimW60BeOZ55m4oK9CslM5DaRqOxQMCZ14wJ88cdCzwLIhOghAbHCu8vd9C42wRBxgMumbc4PHgm+jQl32kgqG+f6iJPGm7K98u2beS9zPuqVqvF7VxdiENkcSeIu1lSEbNWq8Vji2Jr55ZLSVDYxoF8Fq8yZh+4Q7U/fqp0y2G3JCMjI2MpLvvP4QuF+1/42Trx+FzikHG4CGudAxUTwCeeIl3dfKqO/crrD/zaB4nypzxGn3zaNbsf8P/99tKXL0TJw5dKesb2978i6bU6y4fneDxWt9tVq9U6bRUYUkB5wWw2i6GJvuqJNRviJWlh9ZJrtFottVqtSKg9Ob5er5/miiBDwe3YXr8/mUw0GAzU7Xa1trYWxZBms7mwfWKz2dT6+noUFXgWCFZqMee81KXgLg1KEJx8IYhsbm6q3+/HDAfIYafTUbVaVb/fj+SVlH9JkeQBSDjhfjggfEtMz6LwlXDPL+BaLjZ4ngGig/8OAu6lK/1+f8E9AZHExu5iUeqmcPHAy10cXC/NNPCSk1T8mUwmqtfrajabUYDybSGZX27tT0tREFQ8lwKXghN/2oZokbY9FeboBxw/Lp5Q4lCpVDQYDKJjwK/B+8JLi3ABQewpKXCnAGPtmRDNZjOKH/SDCwqINS5uMFZptofnS3AdSl3SvnChwUtAPBsCJxEiHdkSl5igkOKcP4szMjIyMg4U+XN4LwhBJz4liwkZlzGCdOLx0rHDbofh3n/9NBWL+eSatqXRtede7nu+gkIh6c9DCIWkXyiK4lZJ1xdFcY8kFUVxTwjhurNdZHNzU6dOnVpImXdyyeoy5BXylZIOjoW49Xq9SD4hMSGEBTs5xIzzIMOSYl4AuQK+Cs8K+ObmZhQJhsNhXDX1lWgITbPZVLvdXiBoXk/vJAfyyMqqb2FI/0CWIIwIJL4CS/gghIugSHc48Dzlclntdnuhz1iRHg6HCwTUwysh3j4eiAReRkCfI16wiiztiCc8r6/60z+QSg9SZAx5Dt/lAJHByyx89Z1+9vIZz8nwFX1W6T3DAjJNH1CaQD8yNyCsLl7498wVHA6IIIx/GhwJ+fX28Xuej/alv3enDmQf0QgXBnPR7+ltRJwYjUZxS0jPRkhLTXjGdrutEELcspT3OuNHv/DM6VhIOyU4CDYIHl62RHt4j6Rhjp774E6F1DXSbDbV6/WWfmatIA7ks/hSwHW/+wF9wXu+Vh/9trne9/RfO+zmZGRkZIAr5nP4oHH3dz5VCjmzKOPyRlEp9IlvfZoe9LOvu+j3Hjznc/TA4xYXUUfXzqXTd2rfF85XUHh6URQf3/6AfHUI4f17PTGE8CJJL+JndkvwGm5ppySgVCpFQQHrOcTAV54hEogKOAE41sUDHAkQ0Xa7veA+YPs4iCxEGuLOajXWaIgSggT3gQyxa8T6+noUO5zcbPdLJEYQerY+dBLmhBRRASLHdSD/s9ksOgokxdV0xJSUgDoppL8hnb6C7yQQEk8ZhJd8OLF0wURS3PZzMpksOFQajUZsJ0IKbaJvvO0E/OFQcdcDLhYfN+BWeOaXix70LUIU88LDOV1coiTHa/ed2NJuBAj+9XnPLifj8XhBfPGsBMbFd5nwzAoIdAhBrVZLo9Eo7pbhYZj0N0IMY4IggJjG/MBBgKDAXHMHAXOFvuU1hDzPSWC8mIuMs4sovL/8M8HdS9LOFrG0yecvwh197SGhPq/c4YKI52UjK44D+SxuqHWWow8fs/uPK9x/XKOvyXUPGRkZK4Ur5nP4oDG+OosJGZc/ipLUf/j8ookKpSc+Tnc+d8sTMa9L8+qFe5+dl6BQFMXHt//9ZAjhd7VV2XpvCOHB20rsgyV9cpdzb5V0qySFEAqvUfdQNa/F9wT4MwUX+pZ12/eKq52IBF4DnhIwVuRZlYbEszpOOQGWbwjdaDQ6zelAqj4klPu2Wq1IcNM24oqAdEFwnGQ5ofagPZ5HUiTA9N9gMIiiDaTK7eTeH7PZLOY9+D0htb6yj2U/zS4A9KkTeV8RpmyAtrETQrPZjCv7XuqAvd4JOvf0enjmA8Caz/zxcEFJUUxwsYS5hVuAa7uLgPNSscezNnzu4OzwPAbmLWPFPKWkxecD1n3eK+PxeGFLUM8ZwNnj/UJ/00Yv4/H3go+Vu1W4r4toEHJ3QDAGXgrBuC4j8ogK7HwBqU9LO7xt7jZJ8z1w+bjogtDkJSEOF7tqtZo6nY4uBRzUZ/F6uOqS8Zw+9lvfoc++4Sv15s941WE3JSMjI+OK/BzOyLjcMP3Yx3Xz/1zXB/7l0QNbvXcUJan3iLnu/LGn6qr3SEd/9eAzFcrXXqsP/vubVJS2XBEXA/sWFEIIbUmloii6299/gaQflPQHkr5W0o9u//v7e7leURQaDocLpAii5Sv2TiKxYTuRABAJt1/zGlbter2+sG89RJIVeUoXIMSs8kOkyF+AfDebzbjyy7NATrD7SztW+WazuUDSp9PpQiYBln7yC/zZWH2l76SdgDm2HfQV5Y2NjRhueeTIkYWQQPrca/1ZhXayuT3uCzXvkE/uKymGWuIK8DwMH1fPGaAP+V2r1YqOA3IbEA04B6JIv9E33k+QTa4DYeR5dgtl9Pp7nxs8t48Dz4YowpxxYs4Y0XZW65lnHMsYIKIwz5knEHD6D0Gh2+3G/AYfK8YYtwdODAQLXCeM9draWnxfIBpMp9MY1umlNIwB9/JATe9T3nucx3zh3rgwPOTTS4G8PIGx9n6ntMXvl46nC1dpXgWfC7hKXPygbauMg/4svlRQjMeaTMtnPzAjIyPjAuNK/RzOyFglhNOzvPeF+Tvfr5te9UTd8dzWaRkDB4IgzWuF7n+ydPxJT4kv3/xLD2j2/jusIef+QOX1dd32XY+WwsXVJc/HoXC9pN/dJg4VSf+rKIo/DSG8WdKrQghfL+kjkp67l4tB/iDsvqsAIXTD4VDtdluSYvghq6cEDHr9v+/ggO17PB5rOByq0+ksCA18SYqCQqfTiaSCNg2HwxhoCDkcDofRlo1FnG32PFvAyZ3v1ADxlnZWw90V4eSelWwn2NJiuv/6+nokYtwTAulOEAQNCCurvOQWsHpOjTp94wIGJSSMlTsXfOs9Vq8hxb4yj0AxnU7V7XZVKpXU6XRi/3F9J5mMse/mMRqN1O/3YzsQHNzW32w2F0pEOMbr9hFAGE/EDeappGjbd8eG5214H/mKPvPSRRnGFSB6DYfDWH4BKYbwumuFL+8r5hHzrl6vq9VqRWHLBTIEM9pD2QbvO7ZMHQ6HKooiBo7SXwgE7hZKMwoYL8aC8ziG/Al3xCB0eOkMogVzlX5LXTHLdojAuYCjI20b/Uu/ekbGiuNAP4szMjIyMs4Z+XM4I+OQcfOP3aHZYHAwF3vDO/WwI5+ljzzrQuxfsI0gFbameds3XCXpqq0fCunm//guqdi7MBAqFd32A48/2DbuEfvupaIo7pT0pCWvH5f0zHO93oc+9CE95jGPWdhpwd0HkPhyuayjR49GckFIHT9DIL2u3MP+CFDs9XrRAu5ED3IoaSHR34MSIYf82+v14oo8hM3dFpBm6rchYBBQiJGv8mL1d5s8gX+QWc73zANpkcTyOmSNa7lDw4MbvSbdiW6a9QDxhBhCWrmOtwECSF9ABt39wFixAo2bwvvN8y18DLgXzhC2e6T/0swEntlr8snakBTJ8bJyhFTAoX+9VMcdH2wduSxokLHiOpJingQuGM/j8DnvLgv6q16vRxEMB4u7FBAKEAvS8gTmPs+PoMLxXvbiIYw8H2U8Tu65rmc8+HsMNwLvCURA371BUnzv088AwdFFOZDeDzcHfYcAQl+lGRf03arjoD+LLyVsHG/r/llf15Tbh92UjIyMKxhX8udwRsaqo9RuK9x4w9Lfzd53+65OgMpopvK4qln9EKqQgvSBH/60i3/ffWJl/lqGWEBYWCWEPGAnbzQap4XKQQy4jqRIdL08wFfPWQnluqyGs0LPaqqvtPI7wvLc0dDr9eLqelEU0QngdeIQojSs0cmVtJh070QHcYQ+4N4edAhhZZcBD7vz1VxP7l9G+sh/QLDw/Aau5yu8y1akfbtF7u0kjjYURRFFGcZmOBzGL99JgX5yMYHcBUjlcDiM/ZiWNvhuClwTAg+Z9bID+rnV2gpJwjXA/OIcH0MPpUzdB9zTSwYg7Th0fPtGxDDf7cKFFf9yAQmhTNopsXE3BUIN5TRefuFbPdKvlMH4nGUeep5JpVKJz+BCl+cwMDbuJvL3hc83z2Xgvr5bCMKHl6csy25wQdDFOMaVzx3a5/M9Y3Vx89e/RZ/za9+i1z/jv+u6LCpkZGRkZGRckWjcV5KWbPVdWlvTh//Np+m93/xzS897+re+WJ3fftNSJ0Dpr96mG+qfpbufUdWsmf8ePBNWRlCQdrYa9FwDD2djxZR0e4gapNKD2CQtCA0uPmClxv4MOfVcAc5htV3aIWYIDrw+mUx04sQJhRA0Ho+1tram9fX1WGYAuYSw4TCArKS14h7wN7U3B2QKgt3v9yVpoS2+vSRuD56BZ2eFvlQqLaTiSzskzAUFF1d8ld1JGmTRbfZODGkz93HXB0Su3+/HkoFms6lms6nBYLBgbefevpKciiP+vF4ikpYh8G+j0VCv14v9SMglQhTP6qvh9CHXpx0IBD4HPT/Dx5yxRhSSFOc2z9BoNLS2trbQf34Pz2qgHYgoiCTeDx44iEhQKpW0vr5+mvsCMBfZopE5zHsWMs5cZS4U2wGL9Dn9w/ziWAc5HJ7N4GUiOI0Qq2jzdDqNW3TSTy5+8TrvdbIu6AfEnFSYy1h93PQv3qZff/en6d9ddedhNyUjIyMjYx9YvyPo1GOKCxKCl3Fl4MZXfFzTEycWXiu1Wvrwv/00vfeblosJkvR3P/sL+uy1b9JVv7w8HLH652/R+sOeqhOfeqDNveywMoIC5JBQOQLpxuPxQm32aDTSYDCI6ffSDjl1NwDX9Np1yALXw1bP7hEQJw8B9NBACJ60E2CIpb3X68X2zWYzXX311RoMBpHcI1b4arpbyKWdNH1pkdTRLtrGVnZuxfct+iD2WP99twa32DsJhXBPp9PowPCadc6FQNInEHvOcyLmIX30Gff3tH3s7D7Gp06diuGMkHv6ymv3ETuw3LvzgN+52MK9aVPqRCiXy2q32zFfAvGAkpN0VxEvV/G8C/qCoD8XYNyhwLUQFdyNwnHkC9DOXq+3IIRB9NmVxMW4tNSGcUNIYe5Drn1svRSI+cYzI5Iwh3H6FEURy5MQHhD/uD995FkTCB+0hfnmwYuIOz5vmW+U2nhAI7/zIEt2y/D3N3kK/OziQ8algf/x51+gf/7cn8wuhYyMjIxLENf+/Bt06ic/57CbkXEZIVRruuN7nqQP/MvdxQTw5h9+mT7tqpfoIT+xfCvHo3eM1XtEXZtr2aWwG1ZGUJAUCST2bMIO+UMfRwHlBBBUhARfSfawPwiJr2x6aB/nSTukmdVo7NROqshsqNVqGgwGCyUPCB3XXnut+v1+3C7SyWG9Xo/CA6UPHEN73GrNvQjng0BT6+4rwayge5aAlzT4ijqrzpBfiDqrt15KATyVH6INccP1MZvNFraR9IBA32nBcwd8BwwcJORS8MyQQA9aZHzJcEizDHyV2cUOL9kIIcQyCM8QcDeEh4XSFkkLZBxRgeBPyDztgyhDnJfV/NNmzzlwUozoQJlOURSxDIZnYN6Wy+WFUMe07MC3wfQ+cTcQbggX5WirC3bumiBQElHLt+nE3YPAxbjQbsZwmfuEdtPv7iRwIYb+c1GOccKl4/fGEcTPaVZIxurjpn/3Br3/y9q6Lg9XRkZGxqWHotCD/67QPZ+bLQoZB4AQ9IGf+XTd+ZyX7fmUt3zbz+qJx/6Nbvzu050K5df+vepPeloWFM6AC7EZxr7BSmyn04lOBXIAnNRIWiBOCAOIDhAXCBjw0gNcA/6zCw+e9M9qMPfFqeAEdjQaqdfr6eTJk3rggQfi16lTp6Ko4KTKgwadHKWr8IgF7XZbjUYjEkLKN3zXCFaxJ5NJdHFIUrPZjCv9JPTTHx48SJ+xTSCklT7yfAsPupS0sErtjgiezQkp/c6zcA4E1LdUdNLtggLuAyd8uDf4gkg78aWkwB0ZtIt+dDHB4WPiwgTPxFiwRSN9nYY7+nankHjPRfBcCM9VcDeGCz5cm35lrvmWmi5O8H7hPeeZCzwbY4nw5cSd3TsYG3eXkPPhmRC+FSrzHveRZ2UwNtKO+8bDON3lkGZ++FzzMEYX0KrVqlqtVnwv8D5wAcrLN1JBKmO18a0/8RKdmg8PuxkZGRkZGftA54/efthNyLhcEEq68zm/cE6n1ENVv/bV//UCNejyx8o4FNyWDGlitVTSwqo0ZLZWq0WbtZMIXzUejUaReOIsSO+L/R4S5tsfpmTFg+a8fpsV2lJpayeJjY0N3X///Tp+/LiuvvpqtdvtBds7JAfihWgBoeEePMva2tqCLXuZPZx/ERS4T7PZjCIGfZzW4nt+hRPGVOzgGZrN5kI4JEQVtwM5AOl2iJwPaSWAMHWA0FYXERgfSCqiD2PhBBEyiRDF/PEwQwi6l8OkpNyFBjItPIvAswVY5a7VarE0xp0anvvg5JcVccbTXTDSjljjAhTzm+shMqTiAHPFy2kYG88KYR7QJuaGl1Z46KG7FVwkoGyJvnKHCvOd3UVcDPS57MJB6uLw8WPeer6FO468hMlDHz2I0V0hLlKmORIZq4/rfu51GnznTEdWSibPyMjIyMjIuJQx/uLP1vD67E44E1ZGUJjNZnrPe96jW265RWtra5FYeZ2+byfHCq6v5ks7ZMddABAZtjmkTt9FCizoEF0PdPTcBXc0QNLcwUAbJpNJLIPY2NhYCM/D3TAYDBbIEUTPSaekBbLIij7tSEMs6YfxeBzJHavhPAt9QlkB5JJtHweDQcyw8EwHt//TJqzoboH32ndf5XWCu7m5GV0Q4/F4oQwD0QiSShtxRzjpTUtVQggLmRjejy4AOenkuXzHC0kLBLTVasX5yBi604A5RAkCpTsICxB2bzMkl/vzbIgQCBGeU+DBoWR9eAaGBzK6aETfu5OEsaVdPu+Yi5SxODw0knIRdluQdpxG3M9LKhBoaG8a5sk4UlaDu8evgag0n88Xch9cEKJf6WPPMEGo4r3kgkIOY8zIyMjIyMjIyAC9B1fyLg9nwcoICkWxtXUg5Md3MyD4EOLidu90JwQnKb6yHUJQq9WKoWxuIXfLNuUEEEes0jgmuK6LDF4K4DXu3GcwGEQBBCKOtd8dAdi+pZ0sAXdUUM5AxgGCQlo/LimWYZw6dUq1Wi06HHzLQy+3cDs6uy24SOBklefjXML9IHi+KiztbBGJWEM7PGPCywE4lvNI76cNvgrvwoq7IZx8A67L2HjYJOPgIgSr6YgDjIHnQKTlDEVRxHKdRqOhTqcT7wlhZXtMCK7nUHj5A5kITsyZZy5QMXdps4sr7vCghIESk+l0Gl0muD48rwLhwB0fvMfcIYBY5w4fD9z0Z+J7xBB3jzD+9DEiCPM5FfLc3QC8jAfwmeElFL7LCJ8ZaUipiyEZGRkZGRkZFw7FeKzH/twnddtLrjvspmRcgrj9hQ/Wo39mQ7PjD+zr/FPzob7/C/+5pDsWXh89+xaduvkAGniZY2UEBcAf8pIWSJqXNPgquRMMX4lOV0e5Fs4AD/cDCArck23qPEwOsQFSBen0EDlIY7fbVb/fX9gCDxLabDbjynuv19NoNFK/348r5b4S7/Z8SBhEjTZA0qXFnRx8NddLAiBivnMBZIu2+So27advcAG0Wi01Go2FbQm5LgGFkFLajyji9fJO+lj9dudIuoJPvoNnPCA68OyMCeILuyCkc4YxY+yx7LN9JFkZkFt22fASBXeBID7RN4gAzE+eEfGHccTp4nPbS3F85dzLbpgj5G0gRHAcc90dB8wNH1svt5G04G6AaDNe3Js5QX+5COdtdZeBCxO0iX7z+6QOEvoONwHzgnHzOcoY+jzwZ2XMEHP8fePwIMiMjIyMjIyMC4gHTkrKgkLGuWPaKfTB//BY3fT9b9N8NNKXfO6X6Y//9vf2fP7zn/xsze5fFBOmz/xMfezzyioqeXHpbFgZQYE/6vv9flzt9HIEJ1S+0sx5kEZyFzyHwMMDOR8SCdHw1Xhec6LqWx46cUcgcNv1eDzWyZMndd999+m+++7Twx72MD3oQQ+KlnpJkfSwcs0KOcIBK931ej3uGOB2bAgpZJU+9NVpnsHv6bX8rJDz/P5sXlsOKYM0QuLYXhLniANS6yUhTurS3II0h8BXvxEVPGSP3Stoi2/N6DZ4F33SMMq0HMMJLyUNXm7CnEMQQmjwlW0vY6D9zAt3WeCSoF8p3SHzwQMb6UOELe8XaWd7Q8+sYE74+HMMZSbtdjsKZSlxdgGA9wFf/hp95/PLhQfKkjx3weeBz0EvUfLrussC9wLzD2GNYzxToVKpxOfivYNzxbMomDeAZ+OeGRkZGRkZGRkZq415vdAHf+TJuuk73qLpnXfpi//hV+j3//KVqobdt4DaLGb60if8I81OHl/8RQiaV0tZTNgjVkZQkHZW1H0ngXSbNydvLhq4OyDNE/DdITwh38m1H7ObRZvtEH0VvdFo6MiRI5G8YMMejUY6efKkjh8/rn6/H9su7ewWwEo+AXwQOw/Q890mPIXeV/0hmLQXgo/gQAkJde3j8TgSXNwFCBqs/GOB94wC7kVpQEok02A9+sQDCLm328+5Lk4Pd4q4nZ1nbLVa8fkYQ/+SdspjPLiRtjWbzYWdC3xecZ9GoxGFKHeFIBS4wEQfI7bwPC5u4STwUhVKXHye+veQZY7zEEYv/UhX33E7+PhIO2UwuGAQRXDiMLcROjjX3R3+umc/eN4G/cW88bIcF578veUuCOYf1+J6CEAhhDiGIYSYxZE6DBgHL19KhUUXIJhT6edRRkZGRkZGRkbG6qMoSbf/2Gfpppe+TbPbbteXPPfr9Muv+B+7Hv/iz/kKzU5+QpIUtv/WDY97lD7wtUcuSnsvF6yMoOB2fl/J9JVYiAbkgzwEiD1gpR4yie2e1UlfZYWkeGmApIXVZ1bSJUXi5WF1HpAHKS+VSjpx4oSOHz+uXq+3QLY8BA4ijRvBLewQ12q1GsksZNuf06/r9nNcATwTxG1Z5oQn3qft5BqIMWm5iI+XZ1u4iEGZBKvMtNFXrvnZV+EhhRBPCDPjIEnD4TCSyrSUwzMj3EWAUECf0TduwWe1fzQaRZeIk1LmjKSYm+BOB/qanAgPY0Rw8SwA3wWCnIqiKGJ5SJp7gaOB/kAE8fMRMXgvMLaeweDlOggmvD/4nZcFuNDmLow0PDF1R3h4qIs/7hZi/nuAposJlO74DiBe/pLuegIQH5gf7oBirOlXd0PlDIWMjIyMjIyMjEsHRUm64wc/Q4/58duk2z6qb3jCF2ne7e5y9CdUPnZMqlV123c+6qK283LCyggKkmJ5AuGFkDXfTtLryd3qz88QIlaouYa7H7x0wmvMITlei0+73DHgu0vQBgibr3ojMAwGg9iONFAPwQDLf7pCSoCjB0Y6afWgQ66PCyAte+CL5yRYsVKpxGBI+q9Wq8USDEmxX1jN9V0LWD33cfGVaV9Zp8/c6SHtOAQQSZyQsrKNk8OzCJgPXBviSN+4SMVxiA88q9vs2XKz0+mo0WjEcoPhcKj5fK52ux3HmSwInycIV94+RCYXMry8xktJJMXSGN9Wk/5Mx9T7m3lUFIUGg0Fsc71ejyv6HO/ODcg07UUc875kPvq88vIgd/h4+Ym/F5jDpVJpYVcJHBXuMmJ+p9upIko1m804fwaDQRQLXHhwMc0dHamAw/uQecrzuNMiIyMjIyMjIyPj0sC8Vui279lKU2x9vKSH/9bdux5727c8RMXuVREZe8BKCgqtVmuBYEo7gYGSFogLK+YeHuir5E5AISRpuQAkBnhAnxMmbOhuz/bzfQXbdxhwkomt2l0InONb77mIAeHkHK//h3DTFklRYIAgeUbDYDDQYDDQfD6PQke73Y7iwObmZhwDyCxuDIQDBAHfCYL+8Xp5fsfxjB3Bj5VKRb1eL5I3D55E8JC2Vv/b7XYk+Dwn/eXk2kUEyCfjzfwZDAaR2LrTAQLc7/fV7XYXtup094ePqdfk00eIBy4MUL7g83dZ/kKpVFrIkoBIuwjgTpKUNCMKMI/ph0qlEoNKPbcgDcD0eemCm98D94uPBU4Ln4fep5RbuCjGM9JnHqCIeDIcDuM8oy+YY7xn6D/6guu5QMDv/D3tYhTHuPDmZRwZGRkZGRkZGRmXHgYPmev93/qQw27GZY19CwohhMdKeqW99ChJ3yvpqKRvkHTf9usvLYriT/Z4zbhS7+GC/n1q4a9UKnF3BA9ec9LiNmhWWCE5XjfvJA5BgewEt9VLOyGQTrx6vV58Fl91dsKUihy+ZSBWfb53YYRVYxceIPxp6J5b2D1QcmNjIwoKnMf2gaz4QmZbrZaGw2EkVr7S7GKJl6M4mee6CBW0BUs+ZR48hzswEDGYEwQkIqqAlPhB8F3s8NVo2slcobTC5wPHsssFAgrjyfyZTCbRAeDlEgQeIn4wn9wFA4lFVPGwSM+VSMt43KXjx/uOEQgC/l7h/cC/zF0XuXg/0V6u7yv5kHjmm5fKuLDl7QNeHuLknrns27ki8iDm+PvU7+tCgJdduIAHPAsEkYc5wn1cHHHxYtVxIT6LMzIyMjL2jvw5nJGRcTnj2HuDwlS6a5ff71tQKIriNklPlqQQQlnSxyT9rqQXSvrpoih+Yj/XdQs4xAIy7auUpVJJnU4nrrrzmq/+z2azSMrc3g0RceItLQbNQbghPNPpVP1+P5IyggE9fM9Ji9djDwaDGJIHaef+khZW0AmR4zr+upMq2upkHXidOK+7dZ+QP4ji2tqaJC0QW1wBEEl/PndKQMq5F84KLPeIERBnt+azywWOC/qIHRA8V8HLSTyMk9cg9MwF+pf54t/TnmazGckkoo+Tb/pR0sJOIe7acEGAshF3ayxzS7Cyz3OnIlA6P905gBgBGeZ4fzZ/L9E/tAuRCiFnPB7HEiMXANJSB3cFuNDngpbnHnAsggYilpdCeN+58EYeBKURZCO4Y4n3OfdnHo5Go4WdH5g//j7152IsvJQKR4lvbbrKuFCfxRkZGRkZe0P+HM7IyLhc0PpYSUfuWnTodv7wbSrG413POaiSh2dKuqMoig87EdkPWPEk0K/dbkcyBhnudruRCHiIGgSUVVVPfnehAbg9m+/JB6Cm22u/WX1m1d93oPBVUXdBbG5uxnazAu87MNBOXz2mH9xyzUoq5Ig2c680gNDb56utbuHmmTkeBwBkvtlsRkLqZRWeQUHtuWdPjEajKL5wHs/sDg3flhG3Bf0xGo0i4XSnA84BD/Lzmnsn+u488FVn2kN7GVvs9S7WuGMA277PIyfEtJ++9YwJ3/3D3QOUmaR5BGkYIa+Tc8F8Y57wDGRT0Aba5kKKOyzcWZD2nz+3B3SyBSdiG2Us9ImXKTH/GFNJC3Pc28Rz8bwILi4sueuD+VAURXxu3qPMVc+q8HwOfzbee+6u6ff7C22+hHBgn8UZGRkZGftC/hzOyMi4ZFAeB93wlzsLaI27Tmj2gTsWjjlbRPlBCQrPk/Sb9vO3hBC+RtJbJH17URQn9nohiFe1WlWn01G321W/34/CAMSJRH/IB64GX8WXdNo2hdKOuADpgAxCgHyfeo6XdlY0IXC+arwseJFzWDnHIu/hfOkOAuVy+bQVde5BmyFHIA0wxN0BCfNacd/CT1LcNpLjaCvXqdfrGgwGC+UTaVt8tR2S78SP8fFzAOPihJ/SEtwlaW38cDhcCHZ0QUHaWSHH2YIgxDE4JMg4oA/9XyfcCDNO8D37wM91lwxOBsQBhAWeyUsG6BteY5UcoWxZwCH96yGbPJe0E47orh5KWtg+cj6fx+fkGafTaRR6fF74fGcu8HzMdR9b32kB8u/btqbiQb1ejy4V7snv3P3i71lcD14SRUnDsnBV39HD+4/nGo1GGgwG6vV6C7u+XEI4sM/ijIyMjIx9IX8O7wOhWtM9z3+cpEvu/92MjEsOj/7tkcLmtiN+MtP87e+Nv9tPeth5CwohhJqkfyrpu7ZfepmkH9KWmPFDkn5S0tctOe9Fkl7EzxDvO++8U8eOHdN1110XV7DTLe98FdGT2iEdECpWWyEhbgH3VVgcCW7ndveB191DziAmrBRjKYfIQoYhhhsbG+p2uzEEkRA/3AleI889fWXYV6qlHbLG83ipBtcGvrrsJJHXcH8Q3IfA4ds24hZIiZukhQBC+qDVasWtFCGpPKevsENSnYiPx2P1+/2FkMI0P8FX3b3vIZ1ey++EmBIatlj0Y9ipAmIJcfWtGCHPiDaIX8zT1D6PmOFfAHLt45m6WriXOyXcleHCFaIFfR5CiG3kHpQODAaDhe1Pmf/uOJB2djvwHTnS91zq/vHcDRcCXYhAOPOskmazGfsg3c0jDXqkze5G8JImru2BmYgMwMUe7uNOJA9svBRwEJ/FDbUuSlszMjIyLkfkz+HzQClo49FZTMjIuJB45O9PVLtnY8uBQBnxAVz3IBwKXyTp74uiuFeS+FeSQgi/KOmPlp1UFMWtkm7dPq6QtohKr9eLq/0QIEiJb283mUxi6cN0Oo1BjlihHU6kWDlGFPCVyaIoYu22r656eQJfkG9pp6Y+dUvwxT24r9vLaatbzxEAIGCpkOFb6/mKOq4NXt/c3IxlIxBXrk9pB+UDvmMG5RmQZJwKEFr6MyXwiEKUdjQajUjKe73ewgo3GQ5pGQrzwEUQd544aefenl3g4+Ur1Iw75J9MBMgrrzFGEFDIqYsltAmi3Ww2Twva5LrMR4i7i1M+Z9L8Dx9bFzhSscveT3GOMT98vBBAfLtFSVG4wNpPv9J2+hTSTjsp/eHe9BviiztmvI0eNOoiDYJas9mMboo0x8FFMBfRmBdsLUr2gQsb9DnODN4fiAo+l5nPPqaXCM77s3g9XHU2V1tGRkZGxu7In8MZGRkrhxv+cq7OWz6i2X33a3YBAscPQlB4vszaFUJ4cFEU92z/+BxJ797LRXxlnpyERqOxQDgRFzqdTqyX9pA7UuodhCCyGgyx4F5eiw3RqNfr0WkAcRwOh7GuGsI2HA6jfRwSBNlrNBpxdwKIIbZur9/2HAAns5AxLx1AjPA6fRwWlAJApIbDodbX1xVC0Nra2oKw4aQV14DbwN1u7jkLvA6hlrTQTkg4x/Dl9+Q5IHKpnX5ZnTsgRNFzFcgRcEEBEukuAxeEnLh77bykBREIQgn5x41QFEXMMvC2uGWeOQAB9/wKyDRzl3wJ2p72L/3Dar6HGSIWcI/xdmCKl/kgwlAOwXsFASUVMyDblMe46OKCju+S4P3OHEI0oozBQ0zpa0owXLjw9zHtgfT7HPax9NKJdrsd3UuMGY4I3mOSTpuH7l5APEGIu0RwIJ/FGRkZGRn7Rv4czsjIWBlc9c6ga3773Sq23ecXCuclKIQQWpI+X9KL7eUfDyE8WVv2rruS350REIbRaKSTJ0/GXRyoPYds+Mq3f7kF3DMSarVatM07uYUAsusB520/WyRPEA9IKwQQUoPt2smHl2D4z16+4RZ2z3FIyzu4jpN3iCTEFFEBQQELu+/UAAlERHCyCinlXAQSrO0enEh76R9KJLwdkmLyfrpK7MIFJR+4PSCevqWjr+6T+QB5ZhvMwWCwUEbBtZz4stpMiYq7JSCsjAsE2nMWGF9/1qIoFnIJCHZkpR5nAPOI67pokLoN3A0g7eRQpE4X+sz7g2dzsu5uGYQGVvIZn9Qp4PkQ9CMuANrIuHj/uItB0kJuBELFeDxWs9mMJSfMGQQPf59yLZ4dAYbnoo+8NIdSIj47+Fxg/HnOtFSGue75GpeKoHDQn8UZGRkZGeeG/Dl8ACgkXTqVhhkZq4dtf1PrEyU99KfepGJeaD7fTyrCueG8BIWiKAaSrk5e+xf7vJakrT/2e72eHnjggUjafH/6RqMRbdvALd1eq87WhKwUs9qJa8BX9iFStMEJppNhaSeTAJID6YfM0CaIGNf2FWJfAWeVnPBDtpVEOIDsQCK5VqPRWEj+9xV4t9pD4iaTiXq93mk7WNCXfo6XhLBi71sfVqvV6HwgyHEwGEShhZwLJ7TSDnl2kQMxgD5hLBkL2g7B9504PL/CnQhujXcBhtV1iC6CkNft+04UuCLcheBiDJkT5XI5tocdMjqdTpwH3I+SCw91TO359DP9wDOkpQTMLS8f4Jlwwviz+Eo+YDzcAUNfuLAF6vV6nIcedOnvR3e3eDmQZyrwLO6OQBBI28Z88bnt4gj9xHvL81J8+1dEBa6Vhl36Pb0c5lLAQX4WZ2RkZGScO/Ln8PmhGI/12B/5gG77npsPuykZGZcmCqkyCLrxe17PjxcNB7XLw3nDcwEgifV6fcGO7quSXg4ACce1AFhtxNHAa6xyD83+4UnyaaK9hzBKWrDLp7kCaXgiJKZer8dVWSfVfhxk0MsMNjc3F+rZuTcZAPV6Pbov/Jk9qwH3gxPuNKvBRQh2F0AgoW3ssgBJdLGGe0Bwi6KIu0X4cRBvvoegu8OkUqmo0+mc5syAcNOeXq+nU6dOqdfrLbgfaL/PLeYNq+ReWjKfzyPhdNEIVCqVBfEGpwGk0/MHECHW1tbUbrclKWZ8cBxzycl0+uViCOUoXgLiDgV/BvrKd27g9/Q34+PlB1wHss7rnJ9mWTDW/r6k35z8Uw7k73F3H3COl1X4eLs44O8VH1fGnTFj7JnPLur52HqgZCru0V+XiqCQkZGRkZGRkZFxZaIyCNJcuvE/vv5w7n8odz0DvHbeSwP4Y98JDTXl7XY7rlCyslsqlaKbgSwG39ZR2tkFAmIOMYaQeK5Co9FQvV6PIXZeY91qbSXyeho9pIxjcCdAqqSdMDsn9uPxOJJSL+WgX0ajUSRCrJyzws4100BIr2uXFrcsdBcGJNVzGyDfZAPgJqjX6wtkjWMZIx8r7uuW88FgEJ0Y9GUqKnjmhI8L53e7XW1sbESCX6lUYv/RFwgyPiY4BgjidPeE50f4Pb1sw6/lzgDGmqwBL3ehfX4uYlWaQ+Bwsoug5XOIOQzIRXCnCSQd9wRuBSfcy0pS0v5otVoL24a62yDNYeD1FF6S5C4IUBRFfN956QfigreL9nqZCyKcizOIKC4yeRlHen93g2RkZGRkZGRkZGSsKmonSnrEf36Lis3JobVhZQQFSBXEy+ujqeFnG0Lqo9mC8dixYzEA0cmRhyJCsNLVbkkLpQpOGiHqBL05Qaa9OCNS+zdtxiHh4YzSTj08hJDSDk+dlxSdBh4U6KGOvsWdE1NIra/cOrCK+4o87UGo8dfY9tJXvn0lmOO8byCCnrkAyefZIKLePy4g+Zj4rhobGxs6efJk3D0Cso2bgPmROhV8DOhnrPK8hpOAcaLEhrZ7dgDtJEODAFBEEPqHee1BgL4jBmUQjPGyME4vK2COkZvhgYcesJm+x5inm5ubMWQ07adUuCM3hP5LBQMXFFwUSue7ixDck77hmdyJk+5mkc4HRCGEGcY/3cbVz10G79f0/ZKWiGRkZGRkZGRcIGxO1fxEScMH5f97MzL2guYnSnrYz71L80MUE6QVEhSknbp6BAUIlgeusYIJkfBtHvlKV4Q9Q4DvfTUWEua7J7CyOZvNFrbr81VdXAubm5vqdrvRyo8zgjKHTqcTr4/DAAEh3eIOMkSyPddDTHHbO+THk+t9NdszIdIMCHcwsMsFxMxTQHF2dLtdnTp1KroTfPXXsy5YofYSFu6Z7sLgq8Cs2rsgwf1pE89Jxka3212o+5cUnR0+hk58U/eEv05fIRjgUKD8xt0IaSmKE/q0xMAzBUIIUaiiv9Ix9VKAVADz9wbvieFwGEUVn6v+fB7sSJ4DTgAfE59X/OuZBWkGBtfnZ67j36flSTw74+TZFV7K4SVMnl+BMNLv9zUYDOLngLtpeE/5Zwft9vnNM3l5UOraycjIyMjIyLjwmG1s6BGvvFvv/9aHHHZTMjJWGq2Pl1Q7Vej6/32bZt3uYTdntQQF4BkCkhaIMULCcDiMrwF3CCAueKI7AXqDwSDW2UNoPITNV96lnaR6X9Gv1+vqdDqq1+vq9XoL9yckrtVqRZs4JMjJ3GAwiFs9QrpYeU1D8ijpgGz6CrQ/N6vknU4nkiREDG8/ogMkHUHBf+/lAYg43I/nYYUb0cK38WQsUwLvDgdfzYagQ8AJ2RyNRgsZB91uV/1+PzopGCsP6fP8C3d2QLTTQD7mEWOAmMNKNztwQJCZKxBXBCPKUTynguvSb+kKOgINIoUTXC9NmEwmqlarMV+C8fP2e6hk6ihAPEIkQRhJwXG4gdL+9z7wfAMfy7ScBzHEnQy8pxD0XIRysYF54GOJi4Gx9NwGd+u4COJ94dkJ6XxgLmVBISMjIyMjIyMjY5XQ/mhJD/u9j2t651268Ps37A0rJSiUSqVYWoDNn68QwsIuA6PRKGYKQDZ8pdrr8r3cAfLM6qxnHaTnY1EfjUbq9/sLq6/1ej1mN7DlpIdG1mo1NZtNNZvNha3s+v2+SqWS+v2+NjY21Ov1NBgMYsgdxDINg4RsegkBhI0MCMSEdrut9fX12PbhcKgQgprNZrT4O0GcTCaxDZA7nBfD4VAbGxtxFdzFHYQUt7nzs7RDMBFC6DsPBkR8gOC5FV5S7E/GC4GD5+B3kFNW711AgISmJB0wN+h7ntN3mnCyD+l1MopowxxKHRaQ3VSE8VKIZfX8XiIwGAzi2HFt7uUEGUHCn9nbgrDljgR3KJDLwXvO2+EuFu7NWNIXXBMBwN8XjDnP7uUUlA65qMaz+HvcHSfMEcbFSyaWlX2kpSTePs9ZWCbcZWRkZGRcPDz6NS9U5SMNSdJHj//0Ibcm42Kg1Grpvmc8VBc3nz4j49JA45MlXfuOTbU+cK+md9512M1ZwEoJCuVyWUeOHInEClJIaQEkCEJDsB2rqL666EQWAgoBYrUXMgupcPLlBIgVeo5JHRRevw0RJTsBoj+dTtXtdqNA0O/3o2V7NBothCTSLiewkHDq5REoILoEHCJkUEfPavNoNIoiiVvqx+NxdG+4s4DnRvjwVH/6HseCE2tfoQc4NCBxfPl5tBHhgjBGyLMLGayeNxqN6DqhTYhE3h7IKFtuQqhdhOL5ETQIV6TExgWLlGT6s3kOAu2h1n88HsdgS8bawx2Bl9UgiDBnJUUBy8mzv1+85Cdd9XcXStp+X+XnHp47QpvceeDZCLwvmMsIVMtEJURDd1G4S8eFGOa594e0KODR16nYQX8wd/hiTrhLgfeaZzosc3BkZGRkZOwfn/bTL1FlePbjHvf7H9H0o3dLku4t+he4VRmrgNBs6PiTspiQkQFK46BH/uHWB2blgb5m7/vgyrgSHCsjKDhRT4n92tpa3G6w2+0uWMolxR0IWKUlwJGtICEQEDhph0R5bbeTD7fop3kK7mbwVW2IPRkK7XZbrVZLjcaWwg6hnM1mceW/3+9rOBxGgivtrIqmq9OQcGrNfeXb+y8lSJzn5IjzB4NBXI2u1WqR8EHiKC+gn+hHJ1uQPMQEJ2Ws/EIw3QFA7kBaE+/kHMLoJQlOAr1eH3LrgYxur+c+adCh93Oad7BshTpdGfe5QBtc8BqPx+r1ejEzw/MDUvFjPt8J2mQeepmBb+s5m83irhs8C8Sdvk1LQJzQ059OtH0+8XvmrgeI+rMyZ/3942GOHmbK9dJdF7iXE33uy3xFIEj7jOMRbxhrF8d8zlM25fkM9FkaAumfAxkZGRkZ54dP/+GX6KG3vknFHsrJcsHZlYVQrenuf/k4STmQMSNDhXTzL59UmM00e98HJWklhQSwMoKCtLiNojsKOp2OWq2W+v1+JGiE5HkwHtsA+rleksDvlu0gAZlwcu4r+U5onDhBsiCHjUZDa2trWl9f19raWhQ2IO9FUajVasVdE3q9XiQ4tMeJDOSU0EN2HPDV3LTmnmdNyZGkeC2/rq8YSzsJ/JRoOIHn2t6fkFBpx0mAU8Tr5ik3ob24KnCY+I4DLoD4c/Cz1/Hv5ghgHkGmvb/cVQIg4KkowHOkYpfPkfRndzwglGDjp90IXr5ThJcl8Fz+rC5gIVBwrdQ5I2lBgPLnZ4w80BMnhLt8vA04UlxMYIwqlUocTxcnyEZI3QBck3mTjqcLILQtFQM534M0/RyfO7Qz3SbTx89zV/y1jEsD179+XdeVW4fdjIyMjCV4wn9/iR762r6uf+tb9yQmZFyBKAX1b8hiQsaViYf/2Uyt931i4bXphz96SK05d6yUoOBw0liv11WpVBa283PLNKuyiA3T6VStVkvlclnNZnMhuM7t2alFXDp9pdWJvhNLzvVU+Hq9rrW1tSgkpHZsQgRDCNH6Tp6DPxcCh4cd4o4g/M/t66n4MBgM1O/3Y2aCtxs3B9eAYLH9JSv8Ljx4fzt5T4m9By16yYOkWJrgWxwuy12o1WoLtnzuB1n1gEIvA6jVarGfCZBcFkro+Q7p6jNzyQMmfQz9fM+zkHbcCswZMhHI73Di7qUzwF0WiCJ+rJcBOLF2d0z63mAueTaBE3TcDcBLH9wJ4GPorgTaQ3+4q4Mx5Hvuw3uLc73sgznt4Br0hYtTLii4wED7XCRkXDx3woVDvnCJ7JbBkLG6+FfX/7XKIQtAGRmrhsf9f9+kR/7M2zUfDHJlfMZyhKAP/cfPUM5OyLjcUekHPfon33/a6/NeX9ND3vrxfLBygoKTX0gtZNFrnyGZR48e1draWsxKQHRIhQBWdL0cwG3zJO9PJpO4RSNkxsmf1+hDZCCntVpN7XY75iYACBrb+tFOiA4kdVkdvVva6/W6Wq1WJF4e7MfqMuUEkCInuqxIs3oO8XVyTR+TZSDtlC3QV2lN/jIiyP08BA9SC9EjzwI3AUhX3N02D0EdDocL7gkECt/CktV6J5nLQgoZH8aI37HCzm4Kvt2ot8nJvFvqEblcmPE+cQIOUad/XfxKCXrqEEnn0bKMAXeS0OfMQX8f8J5h21En4y4cIbww7rxHaSv3d7cH4oGLU/57D1303/OZwNik89+fmefwsiTmNGPsc2GZ68j7NuPSwJPfJj29PpeUBYWMjFXCo37nxbr5h9566HukZ6w+pq38f27GCiOZnje/9O37+ztxXmh2GX4erpSgQIkChN53MahUKjFAkGNTorEsuR4BIHUUpKn1LkggIkDqqEOHZDrxgMTV63UdOXIkBiK6HZx2prtVcL5nEUBUIbCscLt1mxXntJad1XruQdsbjcaCJdy3P6Q/cQZ4jb+0I8jwHP7cbnt367vb2ekv+pRVf9rCue70QLDhZ0oD6APyJwaDgcrlcnQvYMt3gcKJKcc4gWa+IFA5kfaSDXeZQKidMCNmkD0BeXZXwLL5zrz0fmXOuwPAgwbTAEMvzaGfve3MGw857Ha7cRtKDzqkbKfRaES3Cu8XFy/SfAkXDVzw4DWf4/6+o69d6PHdNXzeMQ70s2c/pKKMB0Cm1wcuLvp7Oi0fylh9XF/dyO6EjIwVwqyY67Gv/Xo95t+8KYuzGWfFHT/+FCnkeZKxWghzRSHhMS8/qfl7bou/m+fPtQWsnKDgSfrj8TiuUEs7BCM9FuLKiitbJ7JC7FbnNITOyTVEtdFoLKz2Oplnhd3D6dxVAdH08MBqtapWq6V2ux3JppMuJ0GsqlIfj2sCkpjmRPgqsbRDvp3ESafb0yFc/kwQOS8JQQxIV485T9ohwYTw1ev12KdcG8LmJNxdC95OL2PxrUN5bpwb/X4/knZ3KDjJdzcGc4bVdC/PYFXeXQ1pRgKumZRYI0Z5sCYkHZLPfOFcLxGgLb6bAePAcyMypTkI5Gn4fKB8hX5kLuLcoPTEbf1ckx1KKNfw+envGX9fMI+9X9L3KuNJ9olvC+nuF38u5h27c3AfF26YT4yDz0kENZ/zLr74+Pl1eD0jIyMj49wxLjb1tL9/gR79grcddlMyLhVkMSFjhRDmUmkz6Lq3zNX+7TdKylGhZ8NKCQrSTv2310l7kJ2kGPTmVm5q6gmHY6tCT/yXTt/dwWu3PV3fE98hNr5a7LtKcE8CGH31FoINwZxMJur1ejE/wYULt4o7IXNLO9kALrKwSg0Z5BzPhXC3gK/Aeg0793DhwQUXiJeHC0LCXSDxfk2Jt5evOMlO7fwuGCF+sI0lu2JAiiGlEGZIv2c8OJzkp4SZ8fR+8/ZD4F1IYu7QHrYL9fwAyHOaBwDxJ//D52atVlO1Wo3CEG3mZ67t48e1/T6SYjikB2AiPuFeQFBgbnlug5e4cE+/Pn3hYpuk6HbgGMI2fdy5t8/3dD4yx7h2+uy+o8uykgnmE+PAe8N3wXAHiM+fjIyMjIy9YTCf6Eve91xd808+cNhNybhEUL72Wilr+BkrgDCXqhsltT9e6OpffP1hN+eSwlk9oiGEXw4hfDKE8G577aoQwqtDCB/c/veY/e67Qgi3hxBuCyF84V4bsswSB0HxFXGIixNnSBbkmLKD2Wymbrerbre7UGKwLDcAQujEz1cu3WbtRCuEoGazqU6no3a7vVDuUCqV1G631W63I9np9/vqdrva2NiIK8VOprm+tBP854IC5NdD9iA/vsruJAoC73X0XmLA8W6l5/7+hSCCeyIti0hdD4yPt82FEO9zP4/jfScNdpwgxNLzDDjGy0TSjAhffXaBxUUrruHEmfNdGPB552UbvksFz+gih5fb+PONx+NYwuFlK7TVSy48pLMoiugs8W0gvU9dVEGQGY1GkVTT72k2hgdf8vzMeUqDhsNhfF53qXh5hZcl1ev1KCgw9h5Ymb63mCPMtfQe/jlBqQriXSoM+LGemYBzgjFN+3eVBIWL9VmckZGRsR+Mi019yfueq9rnf/iwm3LBkD+HDx63f/tNKnLFWsZhopBa95TUuaukh//A67KYsA/s5S38cknPSl77TkmvKYriMZJes/2zQgiPl/Q8SU/YPufnQgj72si9VCqp0Wio1WrFVU+3ertVGSIHuWdrRYgLwYaQcQ+/kxQJMiKAE2SvQ5cWySgCRrvd1rFjx7S+vh7dE2E7RLHZbEa3xGAw0MmTJ3X//ffr/vvv18bGRiRs/ky71X4jDDhx9pp3Shbc2k97II44NnwVn9VmD+qTdkizpAXxhWswTqk93AkZoD2UP/gxXNMdGvQ1rox+v69+v69er7cgxPhKthN+nydp+3gunwucTzkFX+PxOO4a4aUzbseHeC8rrRkOh+r1elGoQCxhVdy3lXTnBeczN10YgVBj6adPveyD33ublokiHjbJl+daOIl3ZwBigrs/3Mnj7xGfxzyPiywuyiwTFfy6zFE/zuGfC15OwlxizuLycXcHLhhyI1Jnywrg5TqEz+KMjIyMs+EL3/dsPe3vX3BZiwnbeLny53BGxmWDtTtLWr+9pIf8+Ot0/X973WE355LFWUseiqL46xDCjcnLXyrpGdvf/4qk10r6ju3XX1EUxVjSh0IIt0u6RdKepB5IL0SR1Vd3IDhBhAxAKur1ujqdjprNpiQtkDVIFQTKa+z5KpVKarVaarVaMZSO+zi5hhRWq1U1m00dOXJEa2trcfV9Pp/H3ATs3uQzHD9+XA888IBOnjwZa8Ah9b5Syso0RNxJ4Xg8jttSkt3g4Yl8D4FPXQ2eEYCYMJlMNBgMNBqNlm6ZmZZJpG3md6nA4NkJWM7dBQHhxAIv6TRiy7U3NjbU7XbjirU/swsmHoDp9/AdP9J5h1jDLiGsrtNO5kwargkZTwk/5TPdbleDwUAhBDUajejUoMwBguwBnm7Jx5kAAWduIXyl+RLuMkAEcLHDSTXzAtAm+iQVULysJRXBaCeCBv0xGo0W2uelKvQv5So8G9d20ct3ffHdTXy+g/Rzwucmz4kIQ7tTAWOZUHbYuJifxRkZGRl7wRPf9HwNB3U96gXv0DVLnKaXG/LncEbG5YEjHwiq9qRjr3qriu1y94z9Y78ZCtcXRXGPJBVFcU8I4brt1x8q6Q123N3br+0JuBHc8u4rrk4sJC0QWlbqjxw5Eh0NHpSH8ACh8d0iuF6tVlOr1YqChNdvA7fvdzodXXXVVbr66qsXUvFns5nq9XoMJxwMBur1ejpx4oTuu+8+nThxIm7LCCHEXeA7QCAoNBqNhXBGCBSigsMzHSCuCAmsvEIifYXfV7V5TncYQP5YZUesWLaTAee6u4HvfdU3dRdA+nxFeTAYRKLLSj/HecBeuhLv5R6+Us73/mxeL49LxV0aCB48C/d154CLF7QFd8N4PI7ZEQhAvhqeumcYd+Cr/i4iecYEc8bfLxzHfRBVINtpeQ3n89yp+JOCNqRbjnoWCeUViGKIAowvbfc8DPoyFbQYB8bQ3wulUmlBdPH55c/n13MxwZ83LeFZcVyQz+KMjIyM3fC57/xy3fPerY+ax/7QbZqdOHHILTp05M/hjIxLAO2PlnT0zq2/LTt/e4dm9x9Pd4PM2CcOOpRx2ZLe0rEKIbxI0ov4uVwu69prr9Xa2lpMgk9XOyVFscBr8iGIpNOn5FHaqcPHvg7h8YwAJ3sQcEiYr9JCkDqdjq677jpdffXVKooiljB4lsF4PI6lDg888IBOnDihfr8fHRE8U7VaXbCA4zDwFXhWViHy3MNJEc+U7oCREkPIltfxs0ruhAuSHbZzLCC1nofAqrFf1/sKYYDX+Te1xfu9Cb5ERHFLPPeBYCJ2+C4ZvuLveQLeRghj6gxhhZp2OoFdlseQCif0hYtD7jpwp4k7M3ger/NH/OKevsruxJvxp68kRbGHHTE8r8MFiHQ130k57WLcfQyZO1zTS4foy8FgoNlsFgUzzymgX3ifU0KEq8b7FbcDc4L3pfebZ2C4w4P+Sp0MjEFaEuFBoy48XWLY12dxQ60L2aYLgrt+6Kn6ws5PSWoedlMyMi47/N1orm/8uW9ZeO2GV59Q+x1bPHnlCsNWC1fM5/D54BF/NNSHntPIOQoZB4dCeuQfTE57uXb3Cc1u/5Ck/Nl10NivoHBvCOHB20rsgyV9cvv1uyU9zI67QdLHl12gKIpbJd0qSSGEAku4b3sIkYFQQZIlLVj9nUj7aje/h2RRF5/aywHk1Ik94Noc32g0dNVVV+maa67R+vq6er1ebAflDtT/d7tdnTp1SqdOnVK/31+wxzvp9lBCT9F3gSJdleV7J50cIy2GH3KsOy6woUPSfMWZttBOXz2nT1n9ns1mkQhDWBF+/NnS+0NeCdXDzj+fz2OeQ0rquIfvTkBfOYFM5lsUBnx7T6+xB77zgpd4cA/6wd0y3IPj3e0A0uwFd9546Y67L3w3A3fkIJK4s8P7xeGCQioseUmKl3h4f7i44KUO7uJgnnlWBK9zTNqnjDXneOmLi0y0mUBORCZ3luDi4Po+b93x4c/C/HXBiD5G1Er7cgVxoJ/F6+GqS0pBueuHn6pXvuBn9IRaFhMyMg4Kt7z0m1Ta3PooqPXmesjvL9YVr7xv6+Ljiv4cPl+U/vbt0pc95bCbkbHCCHPppl/v7v34otD87e897fUsIlw47FdQ+ANJXyvpR7f//X17/X+FEH5K0kMkPUbSm87lwm6t9xVCbPyQOAgWq5mQdFY2KQkgR2E4HEYy78TBV/chVXyxkwSEH+dApVLR+vq6rr32Wq2vry9kA+BeIBSSMEF2d/CyAl+phsCkFmuyJChh8Hp4aWdV3FfpPfTQwwR5Juz3kOxlNfJp0n0q0LgIgtvDV4zpLy9roP98RZ7nIEDSMzMQFNyq7zkVkD3f4tPzHvwePEvq8oDEOhGm3+kLF2iYI94PzFt+56UXtJ0VfNrrjgu/jotm6Up+6nDg+zTDgFV3sibcNQCWZQWkLhfuyw4ly9wZtAMyj0CC6JSOtd+DZ2LrSuaJn+OOCt9VwoVEruUiHfO2XC7HOU/7mN84lVxo8hIonmnFccE+i1cdH/nep+m3/vlP6Ym1xmE3JSPjksUj/+BFetSrFv/MPvZ/3yBduu6sw8AV+zl8ULj55+/VbS+5Pm8fmaGHvnautXd98rTXp3fetedr5E+vi4+zCgohhN/UVtjMNSGEuyV9n7Y+NF8VQvh6SR+R9FxJKoriPSGEV0l6r6SppG8uimLPgpATWYgnK+8EIGKdRmDgOCc5/F7asbX7ymW1Wo1hiayqAl/tRVDwFPparab19fVY6lCv1xfS7mkXdu9erxe3icT+vd2v8X79fn9hVdq3v/MVcggwbg1fVfaVfyeREEFW5bkuooMLLGDZVpZpOQWk2C37HO+ZCl5q4M9IOyG1tB/izT29lAIxwcMaPWgRAg4B5nVW5iHrlGwwd3yln+chn4J+og9pp5fB+LzxeezbXnoooreVfvIyB9rhuzJQPkMbvPwA4ky5hW/pmYYY+jjzXkvzGvy9A1xgSAUb5j+CDGKeE3iHlzZwL8bWnSTuUMDR4e8H5gsihQsJ3JP57temf3y3EnfXML+Y36uCi/lZfClg9JBpFhMyrjg860v/hUr9gwsQ+5R7b9fs+AMHdr3LHflz+MJgdsddkq4/7GZkXESUh0E3/fTtp70+39jQNIckXnLYyy4Pz9/lV8/c5fgfkfQj+23QdDpdWHFOCYSkhV0NIB24F3xF24kLlnpIj1+L6zhZI1RR2lldh7i3220dPXpUjUZjYUUYsQMbNyugTlAIbITkUIJBZgJthdB6GYSLJazm0xfY6LfHQMPhcCFs0ksKnDBCENNVasaBdrEyHEKIGRdO0lNi7Sv5Pk4QN35G8MCVICkGafq1XBjwUgH60YMZPbiRZ3PRwktHXAiAeCNUMQZpmYMTcLf++xz250MQWFYewffT6VS1Wm2B9LrdHhcLIkeaqYDwRk6Ih2Cm7fM2bG5uxuf19jC+wMWgNJOD9ntYqgdxMi+8r1zccWEHMYHx9KwH2oG4k7pE/BwX3LjveDxe2HYSZw3t9TwHF0pWBRf7s3iVcfd3PU1vf/ZPKucmZFwp+Idf9w1qvuVOFfe/K9t2DxH5c/gCoSj02B+6Tbd972MPrQk3vXKg0jsXCW6o1w+1TZcTHvdf79H83vt2XpjPNdveWS3j0sdBhzKeFyC8kD0IfFqe4Cu5RVEshKg5CYFwrq+vn7bS7hZ5SEqj0Yg7TUg7K+6IAhxDcKTnD2Cl9xVvrylPyzdardYCgSJDotVqnUay5vN57BecGp1OJ7Y/JX6QpslkEsULnklaDMYjpNJJGdfjmdxi744QrlmtVmN5ghN4fnbxhraMRqM4jp6u76vMiDzAHSyEF7oQwti74OQuj3K5HLduTMs5fHzcRcA9/dn9CxLKHPDSAyfzvJZa6NOQRVbFR8mHrJcmcA8EEUpY+v1+FLFcRKAduDI8y8DLVLwvfM56G5m/HAf5drcD87dSqSyIXGlZjfcHcwZhBIGMzwB3RTCPUkeI5yjwueAlLZ7f4M4ZnDteynMmISbj8DGvSUdKWUzIuHwxK+aaq9Bn/9i/1oNe9hbVNt+chYSMyxqzEyd007e/WZVH3KDbvuXBKoIuXAlEIYVt8+SD/7ZQ6/ffIs1np+eDDAa66dvfHH+cP/2J+tCX1S9s2y5VWJ8ee3fQVb+yWN0znedPsMsZKyMoVCoVra2tLbXjQ5wIFmRFnJVICBXEn9fZtpFQO4gUzgXqqkMIajabarVaarVa8dr8yzXL5bKazaba7faC6CDtECKIutdne06ApHgviBgOhUajoU6nE+u4sd97xkO9Xo/tdKLvq9UQbif4EEPa5vf2LTTpbyfKjI+0Y3FHqGBLS67F2HAd//KcBIhsqbSzraULHZBTF1yYF7TfCaUTYsgsBBpBwIMqXUDhebkfx9A2X3lvNpsL9/MgQO7t88dX/SHHadgnY8fx7s7wsXB3hAsdaSYAoYXuKnBy7GKHk3XfztHfl2mpCnBy7kKdi0AQ9GVOGEo4mO/ufHDHiQtDzAva7QIeAaGS4ucIz8XzulCC+NFoNKJAiHCYPkdGRkbGxcK42NTj/vCbdfM3vknX63W5HjjjysF8pumHPqxHf/uHVTztSfrQl16YHS9anwh60E+/7uwHbrcJlP7mbXr030jdr3qKPnmL8s4UkkqT7cWZXtDDfmiPfZpx2WFlBIVP/dRPVafTWSBpEEMS5IuiULvdlrSzAwHHeI0/5Q+shrPy7ZkCWMw5DudBo9GI5QLUWXMepQjsRsEqPWGJEBcPRYTI+DaPXp6Brb1Wq6nVasUyCsgafTGbzdRoNGK5Rblcju3kOjwb/cC/vpLuZQEefOjuCWlx1ZeyByfklIR4UKavSkOAfXeKRqOhZnNrVRFxCEDeva8g/og5aWCfk+/UpVGr1WLJCn2xLLU/dTCwqk1/uoUeEYc+g8SmJRYeaLlM7PCxSZ0HPvcRRLi/u3BcCPG+SPvBhQVf5ef33q/LMgo4N3VceAgi53iOx25InTC0i/c4pR2eW5GWyfi9fQzIRvC+WraDSVo+5O4nd2kwJzMyMjIuFk7Nh/qsv/4m3fyNObsv48pGeN079KgV5adrr3yDZvWn6vinSUXlypP8KoOgsP3n5iO+/00LokvGlYmVERQgIqyKpwnw7gRwoist2vQ9Jd/t2xALJ0EQ8FarpfX1dR05ckQhhNOC2Hz13e/pxBBiixUbgcHDA1ut1sIqMyvViBL8y+otBLEoCtXr9biSivPCXQZpCr9nF9CfEFQnyy58FEURBRiI2mg0imUCTrAgaJQdkNHgZJy8hkajEZ0JvtKMkwJ3CUhXpH2O0O8uYkAeOY92paKDW+y9n9KQQf71cylHcHcHVnrmC6vcXkLh1/PrIiilTgF3JXh2A+8LX2VPy4F8C0n60bdXdVHJXQMQ71Qw8Pckz+v35H3pgY2pk8HdF8CFrWXvYW8f4+n5C176whhR0kAf+3vdt+/0LIu0xMHFqjQnIiMjI+NCYlxs6mceeLxe/v6n6FFf/fbDbk5GRsZZcPRXX6/5C5+qE48PV4yoUN0oqTySbvy1D2t698cOuzkZK4SVERScIEBQIZVu155OpxoMBpIUV/PTlXRqsREH0qwC3w0BZ0Cn01Gj0YikzO+JHR5SLCk6F3yVmN+zWjoYDGLugtvpuTd13rPZLAoG1Wo1Oh08VNHbCBAeeEYECZ7bCZVnU0DwKDVIMx7odwcr1XxxPd8qsFqtxn4Zj8eRHFMe4YIM12D3grR0w0sceB1AMJ3wuThQrVYX3BpO3Je5Haif55m8X1xcIszPv3eBgLZ4fT4/pwKDOzrSkEfmE21154KPSypoSYvCHP/6Ob7jBEKMz0sX7nyu+i4n3MczFtzlwnW8zMafz0Ww9Flob+oyQTBISz38Z+Y2fY7g4aVTPFfqvPBndbEtdXVkZGRkHDS+4o5/rI/1jmj9i+7Qw/Wuw25ORkbGHnHV/3y9wr98qh74VKm4TKskK4Og5r1bfws9+K9Pav7292rlN9TOuOhYGUHB8wBqtVrcIhJhAJLlZQV+HuS80WhEAibtEBRIopPiSqWidrutVqsVrfuEwrmVnDKK9fX1KDoMh0MNBoNYUw/pL5VKuvfee9Xr9eLqvucJODHEYk+GA4TWSx2o9a7X6wtE2l0GEHrPmyiVSpEM+64GvrKcCifSIkmF9EP8uT9lItTtj0ajhVwLyCdj2Gw24++d6NEnkqIDxNsGofOxTle7fVXfgZPCCSZ97iSRe0FcpcXVcs/zYE65a8FdBLTHxQV3LKRhf6mV35/NxQN/Bncn8MVxaR7BMvizQfbpO3csAG+7ZyDwHnFHAu3gWG+nz1HvT/rRQxZpW71ej+VEqdDh7eI9wr1c2HFhxV0RnnVBGxBmfKxd7MnIyMg4SNzytudqMK7poV/+Hq3r/sNuTkZGxj5w7OWvV+kFT9H9n7EamQrrd5RU6R+cY6Jzz1S1P90KpsxR1Rm7YWX+WnbyRKYBK82QBQgT9nryFebzeSwHgCg4OXGC5WJCs9mMQZBeCgDhYaU9hKB2u6319XXV63Vtbm6q3+9Hsl2tVnX11VerWq2q1+tFMcHv56u4TgAh+bTdV4MhOk6CIcoeZOi15vQJfUppAuC4dCU7tdmnfYb7wleVB4NBFBToB3YY4JkIkQwhxK0QKRvwZ5YW6+udQKYCQLpqnJJ4kAoNfq6XP7hLICWvaakAIk8q3nCvZSvyHOelF17S47smeN97qQLX8vp+5lRKfnmN4z1zwLMDaK+HGzoJ90wBv7+XG/k9U6HP+90FGNrPz162kpaipCUafj0vc/IQxlRE8md0sYT3ezrvKcNxR01GRkbGQeGJb3q+uh9f06d85/s129g47OZkZGScJ478xhtUGX2O7nl6OJTdH1ofK+nIXVt/E63/1Qc1u+++s5yRkXGwWAlBgRV4JxP+xzwr99IOIfbwPCc8kBNW0NMyivSekDlq+EejkYbDYRQFKFnAyRBC0HA41IkTJ1StVnX06FF1Oh3V63XNZjNtbGzE83wFGkLjK+7c24koq/5YvNMVcrfde8aElyE4UYNseTCfr4RDCN1yjkjg1nO+uB8OjV6vJ0kxLJO8B0o0Wq1WXGUmk8GzD5zsIZLsRiw9MyIVSzyLwPvBnQk4LAjvIzMCYcPLYyCrHowIUkJPPzphduLqFnr6ularLewWku4KQYkIzgkvEYBcuyPAx5B7Mc7ukvBcBd4zy9wQ7gTwshiu61tDehkBcAeBr/i74Off+1i5k8EFDD+GzwIvj0qdHN4Wxg24y8cFDS8dybs8rCbmn/fp+twvfsdhNyPjCsInZ30949b/sPR3L3ren+jfHrvrjOd/x71P1h/+76fFnx/5Gx/X9M735W0gMzIuI7R/5416RPezNKuVdPczL+xiRHkcdMNf7oRGN+46odkH7pCk/LmScShYGUGBcgBflWXFk7ICMgu8HMJXKaWdvANWhb2W21fqySyQFImktCUo9Ho9DYfDmLHASju/hwxNJhNVq1UdOXJEjUZDGxsbC+GAvqItaWHnibT2n9C98Xisfr+/NAzQCTDt8gBE36KRzAZKMchFIETQV9ZdZEAowAnhOzlAoDc3N9Xr9dTv9zUcDlWtVhdEDcSHI0eOaH19XbVaLYokiAYIJWmbvMbfSy68nMID+BzT6TQGSPqKN32PoIRYQl/SfvIffF4iNrgwBJwM0+cufHib3UXgu4VA6N1+z7V8hxJ33fAzwoELVvQn7XQyz/vKiT/tpL+5X+qYoNQI4u7OC5A6JnjP4kxhDJhrXl7h9/R28Tt3Z3AvL8txJ4cLB2mJjLTjXPBnd+HFnS05lHH1cOLmhl79sL877GZkXMb4lFtfovZHdz43yhPpYb+2PG7+997y+fr1h5z5T6kjH5roYX+5c36uP87IuDxR/fO3qFap6KZPfoqGD27qY884OGHh0b89UtjcXkCazDR/+3vj7/JfKhmHjZUQFCDT5An4qryvwlN+AMn1Y3y127MG3NngX55JIO0QL98yEvIHUer3+5FAsWNDs9nU+vp6fBZ3PrANXrVaVafTkaQFa/Z4PD4tRwDyxeo7jgHIDqSMQEpIslvYq9Wqms1m7CdKFSjD4Dpu2WcM+v1+fE4XEiC+uBdclOCaIYS4o0O1Wo3bYEIGWRXmWQaDQRRM+L0TcCfUgFBOxCeeRdqx5PO9zy+IdJph0Gg0VCqVopjgv3Nhy3+XruY78fVVdReUEATq9XoUxDxskfnNvSHuaSmCr+77KrtnWFACk2YupCUULhgwNxGpPHMEocvJubsAXHDxMgLGy0UkxsbLIDgvDQdN3Qoersh1XFiQFIM0XYDxciMXY9Lx9GdJnzEjI+PyQG8+0rNf/K/PeMwj/+bdey5FqP+fN6t+9sMyMjKuEBTTqfSmd6ndaumx73/IgV139oE7JP4+OrCrZmQcDFZGUGB1mcR9CIZnKUAM03p+T+SHwKZJ8pAlB4QecgG5q1Qq0bLPSv94PI75AJ1OR+12W9dff33MToDg+k4LtItcA1/B9ntBoFh99wA8iCb902g0oljAirG0Uwri4grZEkVRRMLsjgS3tU+nU43HYw0GA/X7/SjMOAlz0o9w4bX0nANhZneL1E0AQfV+cgLOWHtbfa64nR5S7u1AJPAMABc0IMqEaNLvrOy7u4Xj+ddFC8A4MI+ZK953IYQ4pxg7runnIEh55gJfqYjjJT2QaOa6ZzUgUHhZRprpwLyVFB0J3MOJvb9fcR34dqG0EUHGS1HcxeFlFN4mhAcXkbzMIe13b5MHlXKeuzKW7Wbh9/FSIdqy7L4ZGRmXHv7R13y96vcPpaJQ/R1vPuOxWUbMyMg4X8wHA+m22w+7GRkZFwUrISgAL31YRtp4LQ1lBG6jHo/HGg6HC/XW9Xo9ug8g7ggGuAnIAECAcBINUaf+/aqrrtLa2prK5bImk8lCzbqkBTeFpLjKDaFK3QkuJnhGBHkMjUZD6+vrMcuB5HxcHPRL6syArE6n0+i4gNxBACeTiYbDYRQe0hwC+iDNAYB8uUBRKpXUaDTUarUk7RBCQhtns5kGg4GGw2EUgKQdIgshdXGE8U0DHLm318nTt27NZ14wj+irUqkUHQ++O4FfK93hAQdAGobobgPmMKJLulMHx7qTwolvel/mAmOaOj78Gi5kePBj+jsXC9xl4PkdCD5cez6fRxeNZ3RwHCVBPCPvKQQL3pv+vnUBydvDGPj7ifeYOy84n5IaxgfBys9PxQr63//1ueTnZ2RkXFp40n95iW541V2SpOrH/17z/F7OyMjIyMg4cKyEoOBBiqw0bm5unrbzQblcjo4FSAzkxbMTCA10cgHpS2um3ZINSeZaTl44H2J/1VVXxXwArusEsF6vq91uRzLmJQeSFra49BVyyDBBhpVKRWtrazGPgNV32sVKMgIIhIh/EQoQH9IsBCdLvprs/TWbzWKmBKv4PDfEjvHxPAHGbjeHgrSYbeDzASEGB0aaGyDpNOLpK/bLMg8YayeW7g5gDjhSlwOEmLmQHgtZDiHEeeoBhF4W4PPKMxfcYeNlACmx9X71MgzEBg9PpB8YDyfZ9CN9gdvBXQleGkP7mUv8zHnuRKAfPNzSsxBoa+r88JIIb6eLPDgjeN94doOLT8xDLx9Z5jxg/uZSh9XF6Nm36K+/72cl1c56bMaVg1mx837+9De/QA993ockSQ+avFHTeX4vZ2RkZGRkXEishKAg7ZBDCBer906o6vW61tbWYpiin8tWk5AW6vz5nbQVxucWaRcvWBVvNpsx2I8VV3c5eDaA5yGwOgoJlHYcF4gFEC5WjCGQ5BLQDtrr5JwdEyA87jrwungXSHyV22vNsbu7oOAEjNVsiCirv5R8+C4BqWDgNe7c13MEpB0BiTZIWljV5/6ps4BdImazWVztx5GBsOKCg7eJf50kc56XWrDi7sQ7dWh4ToKLWIwHRBgXhNfqcz5iEed6WQk7YaSZAuluBFzL6/69z4Dfd9nqvAdfMo+5jo8L1+IaXrIASaeNjAHvE8bY3wdO8Jl3XprgY+U5CC7SMU/Svkqf3wWKtB+Atym7ElYP4TOfoL+69VZlMSEDnJgN9OFpWd/xyM+Jrz1Y78v1xRkZGRkZGRcRZxUUQgi/LOnZkj5ZFMWnbr/2XyT9E0kTSXdIemFRFCdDCDdKep+k27ZPf0NRFN+4l4a41dpXnSGxlCy02+1o1YeM12q1BRcCxHMymajT6SzUhks7xAzivWzFkpVlCNVoNFpYdZUUBQRfxR8MBgvBhRw3HA41HA4VQlCz2Yw7C3BvD7Pze/h2h1zLRQj6C5LKPQgaxBbuzgQny9zPXRq+qk9/4nKgXyC0bn/HceHWdMiZCxjpijlE1oUJr7UviiL2n2dV+NaiLpikLgNvj5NOyLOXLqRuCd9VYjdSzRzF5cBcdZKO+MH16APOd+LuIgpj5EGBaV96yYeTe9rneQlpX3lZi5N9d87QPz6HUsLtTgM/FicRYovvqLJM3ACpI2OZY8DdBOnvmXuSFt5Xu7kPlgkJLj6uAi7WZ/HKIpkjGVc23jqe6LtvfoaKzclhNyXjCsIV/zmckZGRsQR72c/k5ZKelbz2akmfWhTFEyV9QNJ32e/uKIriydtfe/rghHBCGCFKEGS39bPiS3gghBpXAWTbRQhWYFutVtxC0XMYvE6f+yBSQL4h79KOtX00GsX2DYdDdbvduOUk5My3I3SrOUST7AYnOcsC+abTqfr9vkajkQaDQRQuIGn9fl/Hjx/XqVOn1O12Y36EW87dTTEcDuO9WZ1flpOA2OHtSB0D6ZaQ6dgiPPAvBA9Cvds2kG6LdxJN2QklMcwXBIE09yEdM3dvkOXgYpOTW4g2Y8jzIeAgtjDnnKxTQuAE2gm1pKXzwh0Ty8oAUhEEN4GXBXj7l7kMECsQiAjkZEeRtB1pdkUqcvjqvpcgMcaDwUDdbjf2h881H+ezuQO4jwsh6fEuyHjw5bk6D1ZFSDC8XBf4szgj41LAK7rH9B8/4wuzmJBxGHi58udwRkZGxgLO6lAoiuKvt1VWf+3P7cc3SPqK82kE5AALOeKAb4nHqjTEkCC9SqWidrsd8wMgWqw0+4q/28/JS8B67qv4XjcO6fdtLRE0Tpw4EVP7fYeE0WikXq8XV6Z9BdXLASDW3Hu7byOB5r4IIl5mwPOnZRMc32w24y4VPAvkDYJFFgB96uTWa/v9XFaucY9wnc3NTbVarYV7ALaihMzzfCm5dpB14H0lKT4boZVprT19SF29k1VcDjwbgoA7CLx/cKAgljCvUiLNfOKLsgTOSfML3FXggg5k2csqUnHDiTHzAiGDY/w9xdh5BgLz3F0SLopIWmhX6vBIy0Z8fvh72ktluDavp6UJ/jvvs92wTERIsWxupc6HdN6c6XqHjYvxWbzKKHVH+oaPPl1PXvuIvvnoRw+7ORmHhB+47/F605fepNmJjxx2UzKuQFzpn8MZGRkZy3AQGQpfJ+mV9vMjQwhvk7Qh6XuKovibs10AMuSkkeyB1PLNajlb7K2vr2ttbU21Wi2SSEkLZQ6QOCcsfo90tdfb4wSb7RqLolCv19PGxobG47FKpZImk4l6vZ663W50CHgNPuTSV20hhi4yQBpdNPDtFRuNxgLh5XmLooir/5QetFqtuOrrpR2QeV+NdrcC7ZF2SLMTVO7rZBGxhmsVRRHHoN/vx/7g3pB5SgQg4bQvDYak7WQneB84/Br8jhp+3wXA288xiDOePeH9xhxyp4b3k88dCDZCGI6FNEwQkQOXBf3jeRZcj/YgjuGyob98rPg5HT8XE8hrcEEpFQo4l9d4vyLeuRDiIgFiDIJN6rQALvil+SYp2fdj0uukSO/h114mFvjxiCeXIM77s3iVMbvtdn3kc6S3fcOz9c0/8LLDbk7GIeAlH3uKPvT1N2p+1/sPuykZGbvhsv4czsjIyFiG8xIUQgjfLWkq6Te2X7pH0sOLojgeQvhMSb8XQnhCURQbS859kaQXSYrbybHqyjaLToYhM6yil0oltdttHTlyRM1mMx7vtnhIM+Qa0uruBEoC0p0gEBq8TceOHdPa2tpCOcZ4PFa1WlW/31ev14sr8WkQodeUp2TOSaiv7A4Gg4XabtwALjxwPmUP0+k05ky4A8H7z1feEVMg9+7moM1ueacttA9nxJEjR2Kt/MbGRgzJLIpioQTDHR+IQ4A2+Xaa9IukKCY44U5D+RAK6F/P4/BSC8od2E3Ew/rcReE5Gzy3C1O+ou62f2mHmHpOBHMBMaHf70eXDM+aZiB4/f98Po8lLLxv/BwX37x99r5byNJwoYLz/f5OxnnfufCymyvBz0nFhGVCQdqX+8VugkPq9lh2Hm0527GriIP6LG6odbGavG8ce/9Ij/zTf6UXfMYb9cPXveuwm5NxkfCVdz5Tp/79Q6V3vvOwm5KRsRRX0udwRkZGhmPfgkII4Wu1FUzzzGL7L/eiKMaSxtvfvzWEcIekmyW9JT2/KIpbJd0qSZ1Op5C2hIV2u61Go7FAcJ2QQICbzabW19d15MgRVSoVDQaDuBoKyDKArEGCEA9ms1lcvfaAP2lnB4BSqaRWq7XQNoLmJEXSfurUKZ08eXIhI8D6Kq5UQwLdBu42etpIrTk/exij9WEkTRB8RJJms6lut7uQTQCRxt7uhNJdGr4tp6+Y80ybm5sLYoKXQpw8eVK1Wk3NZjP24cbGRryfCxncn1IDxAbKXpzge54DQku9Xl8oQ6HfPX/Ad2zwnQAQC6bTaXSdeDaBlx442aYt0o5g4KUKvqrP3KItPCvXJG+D+eGiAM4DznPCy1zi2i6y0Zc8o7fHRRDGJt3pIyX87uxxccTnIHNL0mlixNlEgr0S992O8+svEybSEof93GPVcZCfxevhqpW3ZpT+5m26+W+kv/6yp+qxn/25+u5/9lv6mvX7D7tZGRcQX3HHP9bGd96g8Ia3H3ZTMjKW4kr7HM7IyMhw7EtQCCE8S9J3SPq8oigG9vq1kh4oimIWQniUpMdIunMv18RxcNVVV6nZbC7Yr7F3Ez5XKpXU6XTiFpIQOQLypK1VYHYgwPEA0Ww2m5GU+RaNy0hJuVxWu91Ws9mMgY44FsrlsgaDgXq9nh544AH1er3YbgiwPwPuBCeraW6D94evJEuKpJxznCxBKhEjut2uQghRgMAePxqNFkoy3LZOP0BucRKkIY2c44QcR8RoNIor8IgH3W43Ci3LggEh8f57X3X3UENCFMvlcszaQEzhur7rAdeFOLv4wPiyS4YLKy4w0AZ3TaRZCWnOBMKBjw0iAU4TxoASCC9LcIeLuyycuCPQcP1qtRpFlTTg0EtWfOyWOREcaTmDv74MaW7Bfkj6srKE3UoVzgYXYs7lHL/vKuNCfBZfKmj+3pt04+9Jt77tn+mnH1TWK//Df9HN1fZhN+uKw+e/75/o/t99mL7g61+nH7v+7Qd+/X9+1zO2xIS/O/hrZ2QcBK7kz+GMjIwMaW/bRv6mpGdIuiaEcLek79NWgm1d0qu3//hmK5z/R9IPhhCmkmaSvrEoigf2cA9VKpUoErhwgHUe8siODuQZQJIgaFjrIW/lcnlhK0DcCZA2SKLbyvmZc+v1uhqNRnQSuBAxGAy0sbGh+++/X71eLxIQt71DUJyAQvzSMEDO8QyI9JpeisB5EGZW+rvdriRF8k3Jx8bGhk6dOhWFFwi0CypFUajf70cnBYJOSvB9/CQtlHBQgoHAgbuCa6V29HRHBnIFvBSA8aVEgOBO3CmMJb9zZ0q6Ck8/O8FGGMCJkK62ez95KYqXbhRFEUs2nLg7sU/zLzjPSf+y+eN9hoPHr+8CQiom8Nzcl+dLcTbhYL/E/Fyw7Ly9OBx2I/9ncjfsJlz4eKyKqHAxPosvRbR/+41qS/qGu75Ns3rQvBL0up/++cNu1mWP77vvCXrND36u1m7f0HXveJ3e9vdP0s/84kn922N3Hcj1bz31EP3q9/wTdT4yUHjz2w/kmhkZ54v8OZyRkZFxOvayy8Pzl7z8S7sc+zuSfudcGwEJpbSAlW1CCJvNphqNRlyppX6clWXC3/hip4NarRa3FwRsPQlS+zhEDLs8ogIChWcrQEJPnTqlXq8X20YNP9dJLfkeuMdKt4cAWn9KWtyiD0HDSS/tgQBRww4Br9Vq8d4ER5JVAKHyEEQC+iCcTurd8o8VPxU30pV0+qxUKsWtHl3IQBAihJNzEDMQYhAmGDdcFP1+f8EVUhRFDFmkdIQ2e0AgJHs4HC70OwKHC1upsJA+m48Z7hHPuaC/fMUfAcSv784C+jENXPRx9/72sUnb6sLHsmfx+ZZivwT/IHAu7oKzHZv+/kzPtYrlDxfjs/hSRuOP3hS//4KPfu0htuTKQOXUSO33vFHIkuF179CfPf8p+pPO5x3I9cv9idrveKNWQ87LyNhC/hzOyMjIOB0HscvDgQDyX6lUIsGjDp1tISGlfEHaEBKGw2G0+tfrddXrdbXbbdVqtVgugBvAyTKkFseA17tD7Jww+7aLrJCzGwOrz4RBuqVe2lk59m0qPStimbXeV6txR0AqcSbQJwgTlHxwTwhot9uNGQT0u4dfusuB/pF2yHC600HqLvBVeX6mPeQqSIrX5zoICpBiShkYE0QX3Ce4INyxQB8hWpDxwHOkoY88B6KACw3c18fOAwl5bncCAMi7u054Pf03zWFIBSL63h0F7p7we7sI4a6EZe6MZTioMoODxLk6Is7U5sN+loyLh/C6dxx2Ey57zJa8Nn/n+3VQ77LlGwpnZGRkZGRkrBpWQlAoiiIKAJIWxIR6vR6zB6Qdyzg1+dPpVBsbGzp58qROnTql0WgUhYl2u621tbUFy7ivrkN6IY2ICGQCDAaDSBwJX6QUYTabaTQaxYBDyMzm5qb6/X50SXhOACvltAfHA46DZWTPLfDkSECW3UVAmQSr9qmbAPEB4k7piAsWEGDuh0jB8/Ka7zbhYxjCVjBjt9s9zaHhOzd4CQBj6dsLuhsDgQcBwV/jPEQYSmNwaZABwa4cvgMIbUZkcEFF2tlq0gMZOd9LBbzUwPtrWWmIlyOkZRNpyYJf2zMUXERKj02xVyFhN+yXgJ+rEHGQwkUWDTIyMjIyMjIyMjIuHlZCUJCkdrsdyaq7EHyrRWnLjg8Zg2QeP3482vglxdwFVvNTcpeSZid10uI+9F57DiGG1Ek7K/DU+J84cSI6FljhdrHBxQvfstED+fy6aa09RJqv2WwWRRe3zbvDgHINtrmEVIft0EbPkuD8NN8BsQEhASLPMZB4HAO0G7cI/YCwQp8Q5Aip97HAKQG5RzjAUUA/I4wwBjy/lzfQHs9vQGDxXTlc9PH+dMLv88kFE99lgfnhAoPPPWlxFwQvbwFOtNP5yHxJQanOYeJsTgGw7DnOV1xYBVdFRkZGRkZGRkZGxpWClRAU3P5PmF61Wo0hf+4soMwAwsiuBWxfWK/X1Ww2Y86Cr0IDJ9zUnuNA8KBHfk8du6/Ws0pMrX+/31e329XJkyc1mUzidoYQQQQEJ6QIApLiCrvfn3Zubm4ukOrBYKB+vx9DDr3PIMQ4AnBrsAJPGYHb93FmcH3q+30rQ8+XQADg+uwuQDii1/Z7sCWCAq6B1OkAIWc8IOq+8wJj6u4DyheKYitMkvHmepubmxoOh9HFgZDR7/ejmOAlAoxVGsDogofX2qclEu7cSB0Gu7kKzlTP72LDmUICvR/8fvtxJ5wv9kLqL3SJRRYXMjIyMjIyMjIyMi4sVkJQgIxVq1U1m81IokejkVqt1gIppyYeYWE4HC4QWQIUvR7dxQG3t0M2ScxvNpvRDeGhgZKiu0DasbPTnn6/r36/r5MnT2o4HJ4mJHj2As9G2/iCmDsZhNjOZjNVq9UogoxGIw0GA41Go1gGwX0QYSjbYPWec307SsoMPPjQcwp81Z42IeLwGkKCZyngBiDwstlsqlKpRPEFksuxaUggpN3LLIqiiKIKc4MyEAQCHAuIJgR84sLAKcG4pWPMMyKm0K9eZuD94cd7QKi7EBBl/Lk4L713it1cC+kxHqyJGOWuljNhL+04H5wLqd+ro2Gv1ziI62VkZGRkZGRkZGRk7I6VEBRKpZI6nY7W19cXcgAg8RBg3AhY/CeTSVytx16PI4FzWbVvt9uRSEK2fIWeML9arRYFBuzs7ixAAPDVdsIgPUwPAcEzFNxiDwlOyw0g9JBvv7e7ISjBgMiyIi9t5Ty0Wq24SwUiBn3kDgjfVtNX5mmLk2jIOfdKRQG/D/3ZbrejcIPww33pS0SDNDCTMcKhskz04DoEOtJ+8iv4nbSTR0Gbua6LNz4vaIvnUaQugWWii5clgGVlDmfCXl0Ffo800+JcsVvbzod4HyRhP2jyn8WEjIyMjIyMjIyMjPPDyggK11xzjTqdTiStns4PaR6Px1EkKJfLCwTdHQeICRBLLP5cEyLuq+CUBiAUQEzTOm8nmbQVt4STcXc5QMZZ3ee+tIX7+HaUlHRwDISdlflKpRK3zuRcSHmtVlvoI7ITnPQilrCNpgsDvvNEGiDJfSD3EHP6TNrZ1hN3BM+Di4BVfc/CSO360o7Fn3ZKiyGJLhAgAtH3HEuf4jjw5/R+97IL3wHCt/L0c3xe0F/uQEjdFvSXP9tu2C+Bp33ngjO5H5YdcyHBcx+EcyC7DzIyMjIyMjIyMjIuPFZCUKhWq1pbW1OtVtPGxoZOnTql8XgciXEIYcGe32w2Y9gfWzVKOwQSwk3dvrRIiiCNiAEEC1K/P5lMItH1leuU+EP6fZtExArfNWA+n0dS78Rf2imfcEu9l2nQLsg85Q+tVitmI9A2shQgxDg4NjY2YjkApQi0k7Z67oG3YTfSDRBWPMgRBwltQPhB1Egt+i7WeBt8e0faAbmH8C8Tc2g/5yCa+HOlJQpck+t6doLPnzTPwN0eKdK8hGV5BsuI77mGGvp5+8XFIOBnu8ey9+pBXn8/1zqM/ImMjIyMjIyMjIyMSwUrIShAhCHABOi12221221JiqUKrVZLzWYzJvY3m80YVCjtBPuRR+CZCZwjacH2DmmXTrf9Qyohg5B/CDZWe57B7wVYnfcVdFwBLlhQSgA59a00pZ0E/1arpVartXAOQgJtJtug1+vFEgmINAQbwuQ7IvguE9JOaKWLCU6yvNwCAQhhxvMUPFuAeyCCLAs+TIUGt/P78WlfuwDCmKTOE/rS3Qc+1n7fM63au6CQYq9BivshwBeC/O/1eqtS/rBXceJs52cnQ0ZGRkZGRkZGRsb+sRKCQgghlg9sbGxoPB5H10Kj0Ygr0SGEuIPD5uam6vV6JLR87yUSw+Ew1uWTH0CmAlkArKqzmp6WGUBYfZcELOxen49Q0e/3o7jh7eP+Ds8goB+w0Lsw4ltpNhoNtdtt1ev101blfatIRJbBYHBargEhifSriyhpKQjtpH3edvoEYQChADeJ5zb4dXgujvc+TssC0kwCBA4XedKgQ2nHhcJ8oK0ekLgsuHA34r/MmeDtWwb6k2dcdv39kNnzXcm/XHEh8hqySyEjIyMjIyMjIyNjd6yEoFAUhbrdrobDoXq9Xtz1oNlsqlQqRbt+vV6PdfnSzh/9nhdAvX6v11O5XI5lD5QwSFrYRpJzPecAAoEY4OGE3JNjWQmnLANXgO++sKy2nWwDDwyEgPrOBrSbHRs6nU4UAxBDcBl47gT5Bk6ia7Wa2u22Op2OpJ3dIihF4Lx05Z720R4/zksncAFQhpDmRPBFWYSkheBJ5oL/y3NyDRcffDy8nb5tJmPuAZBc38mif++r1mcilF4S4W1Ox3KZ4LGs7RcSB7USfzGcDAfZjhQHWSaSkZGRkZGRkZGRcaVjJQSF2WymkydPajQaqdfrSdoi+uQjsMKPwICFHht/rVaLOzhAquv1ulqt1oKgIGnBEUCZAI4FzzwYj8fRxTAej+M1KZPAml+tVqOL4NSpUxoOh1EE4F92roA4E8wIwYX8etmFb8MICW80GpGIO+mfTqfq9Xpx5wdfufeQwWazqbW1Na2trUVihViTBjZC5NOQQg+05F6IMC7KcD3Pi/BdKEqlUhQT+B39z7X82XGxuPgAlokvEEXfZSN1QEh722ZwmbNkmciQOgfcRXGmay17/bBKGg7zfhej/CAVilLXjR+TkZGRkZGRkZGRkXFmrISgAMnu9/tREIB0QiBxLEiKWyeStVCr1dTtdrWxsaHJZBKJrtfzp7sWSIrHISZgwUdEGA6HC1tBAie+WOrJLPASAGkxzI9r+eo/Nf48L+IJ96GMA9EBkYEvrkv5Bi4BSTEvgfvXajWtr6+r3W7HoEScBb6NJO13Yi4p7oQh7WQs+HadXANixv3Js2Bcycugzz2HwDMrQgixXzwrYTeC7+UivI44s0xMuFA4k9iw2+sXy1p/ENkBB0X8D9stcKFFnIyMjIyMjIyMjIzLHSshKMznc/X7ffX7/eg4gLhKW8S/0WhEyztW/c3NzbhV5MmTJ9Xr9SKJbbfbp+00gADghB63A+2QFK/tK5as1HuoI22bTCbqdrvxtXq9vtB+yDCCAffimhxPW3z7SHcucJ6XSyAIeMjidDpdyCmAZLfb7di3lDjQX4gIXqrhwgD38JIMtoRMV+C9JAOSxrls3+mZDQgAXsrCdRB9XExwIpo6Mbw0wkMel5UzXAyk5Q5pnoQHaV4M7CV/4Uwr9Wnfn09fnu3cHJiYkZGRkZGRkZGRsdoone2AEMIvhxA+GUJ4t732/SGEj4UQ3r799cX2u+8KIdweQrgthPCFe2kEAYIEBEJuIbjVajWuUkNGIdYnTpzQJz/5SZ08eVKTyUS1Wk2dTketVkulUknD4TCGE47HY/V6PY3H40hS2c4QYopbwcsfJMX8BifGkmLpBcTajyuKIuYTeA6CpIWf3Y3hNn/vH9rLFwGSODK4p2/3SFmECw7SImHEHcGOGoReQsyB7wwxn89P290CocLdBr4tJL+nr3it0WjE8QXlclmtViv2FWPB9eLkNQGC/qSf6Ms07PFcMgD2SvJdNEi//J67EfSDEBOWCRcu6JwJab+e6byDdhSc6dn3Ijic6z3OdM5BjcWFwsX4LM7IyMjI2B35czgjIyPjdOzFofBySf9d0q8mr/90URQ/4S+EEB4v6XmSniDpIZL+IoRwc1EUp8fpG4qiUK/Xi7syrK2txVIAhAWIObX10+lU3W43BgCOx2NVKhV1Op0YXEhpxGg0ioTdV+QJEEwJIdZ/3xkCgULacTJArHE4kG9QrVYXsgTcdTGZTOJzNZtNtVqtBYIu7eQJeCkB3yMmIGA0Go24hWSv19NoNIpCAaKEuwToP35uNBoLZR2Qfp7Pt5mUluc7uIiAGOQlCAgUvrMGooznH0iKjg12sdjtPi4mcD7Cw7LdGxjfvZLgZWUVfr/0+2XnnOl6y449n7KHZaLF2fIbpJ3dMNyRcpBYllOwX1Fiv+fu9ZxLwA3xcl3gz+KMjIyMjDPi5cqfwxkZGRkLOKtDoSiKv5b0wB6v96WSXlEUxbgoig9Jul3SLWc7aTabxQwEyDy199LOFn8QaXZxwPbPSjmhg5BkxAR3EKRbFXpNubRDiLlnuVxWp9NRvV6P7SHYEXLtTgNcAk7QIOSsolOO4NfEbeC7BrD6D+GDXHNtVvilLTHh1KlT8RruroA0TqfTGFxJBoWk6ALBKeEknb6iFMNX/iFg7pzwMfVSBPrKt8T03SG4FmPPuPtuERyLCOFZC5R6II4sW23eC2FMSyku1Kr1srKNs91nt/bvltngro9lx+/VwXA+2IuQ4m06l2vtBavsODhXXIzP4oyMjIyM3ZE/hzMyMjJOx1kFhTPgW0II79y2fx3bfu2hkj5qx9y9/doZMZvNdPz4cUmKZJv6f8ocvFYf4sjqeaPRiF/1ej2WGiA2QFx9pd3zASCorNz7aq8Tbd8q0rdp5Jh6vb6QB+AlG14OUCqVFnZsYJcJ3/EBscFdCggC7CSBOEKmBCv59Xo9iiIedjgajdTtdtXtdqPYQj9wfd/mEqeBl3X4jhCILvzrWzq6UOBkf9nOB36O7xxB+Qn96UKHf6U5CbvZ/Zet2Ker17QhLQNw+Hn7JeW7kX2uuQzed2dyHqSCUHpM2j8eMnoQONt19iP27Ld95zo2l6gAcWCfxRkZGRkZ+0L+HM7IyLhisV9B4WWSHi3pyZLukfST268v++t96V/oIYQXhRDeEkJ4C6vqlUol2t29LAESj9CAI6Ddbkf3AIKCpFgGgZgASfcdD9ziT9Cgr35D2FutlqrValwt54s2Jc8U74XVH9eCk2rPYBiPxxoMBgtOB99NwZ0JhDHiDkDkGAwGsdQhPd/JP32JO4H28Cx8SYrPQDnGcDiMpRBefkBfuJjAMTwjrgHffSF1N3jZibeJa/E737YyJX8pgXbSvkw8SI/lGJ8zKfH3+56J5DppX3bv3ZwQXq7iosZeiK67Nfx6acmB39fDLg/KrbBbuYj//lzvdTHcFNznEsOBfhZvanxBGpmRkZFxGSN/DmdkZFzR2NcuD0VR3Mv3IYRflPRH2z/eLelhdugNkj6+yzVulXSrJFWr1cJX7fmjnpV3MhAQDCaTSXQhEOSI2DCbzdTv9yUpkkJpZzWda6cCAuSVFfnZbKZWq6VOp6NSqRRFCkj0eDxeWMmGhEKoCTWEeNNWfu/5CqzOe8kE7ZW0YOX3drtTAjGBnRwIr0QU4Is2+faPLr5sj2kk+ggGnnngzgMvP/ASBCf+uEu8jMTLKdKMCNrDlpl+X3dUpOUqjt1I7bLX0+dysYNzlq32e5tSwSAVG/x7zvMSEe8zsi7SNpxNXNitL3brF3925ld6rTMR7LRsY7dzdnv9bNc/aFzs+10MHPRn8Xq46pK0aGRkZGQcFvLncEZGxpWOfTkUQggPth+fI4m02z+Q9LwQQj2E8EhJj5H0prNdz1dmcRLMZjP1ej31er24PSRfvgsBxItzIdmQo8lkEkWHlDRxX0icpEj8y+VyJOes7uOY6Pf7C+KAk3xKNhBHKNsYj8dRtOB67nRAkACICGQekLEg7Ww1yDVKpVJ0adRqtSiQeIiltJjm744FXA+ej+BOAc91cNKNiINwgGCDMwNHiJdFOKlLSywg2b5TBc/LuC8j/st+5hmTeXtG54LPw3SlPz3exSTa50Giu7kL/P7L2u+uCC/jcNHjIIHQs0wwOdu9dnN8nO3Y3V7bS6nExcKlUvpw0J/FGRkZGRnnhvw5nJGRcaXjrA6FEMJvSnqGpGtCCHdL+j5JzwghPFlb1q27JL1YkoqieE8I4VWS3itpKumbiz2m2ULEIKJkJ7AtIiKClxlAmCHx6Sq5r4xil8cBwHU8H8FX6qvVqtrtdiTL0tYWkeykAHmESHN93+HAt6X0/ABpZycISLVnLPixTsQh72nIISTUQyM960DSaSvR7kBI3QuIEl6KkFr0fXXeAy8JiqTfxuNxPM9FI/qTa/vqOsQaMG42J3cte/Brpbb/3UgtLg4PzfSyEndFeF86vD+WzUHvN/rD27vsGssEkfS1Zc/j1z8blgkm54ML6QBYdu29uA6WlX5cirhYn8UZGRkZGcuRP4czMjIyTsdZBYWiKJ6/5OVfOsPxPyLpR86lESGEmJ3QbDbjtolezw9BT0P6+D613UPeEAz8eMh2rVZTs9mMRM3LD5rNZhQH+BoOhxoOh1HEqNVq8Vpcv1ar0Q+xNAJnAYRe2tnCMd3qkH99ZwcPlsQx4X3nDgsvlUB0oA/oG89k4Fj6D+EmzUKgj9j2kSwLdz8QTFmr1aKbg7a7QMG1GCOEmXTl31ftnUz771w08HF2N4qXX7io4yUbfr4fQ18gmLiTZJnY4n3G96kzIxUbUngWRXq9ZXAXA8e7ULDMCbCbe2K3cy4GzueeZxIW9nNdFyNXBRfjszgjIyMjY3fkz+GMjIyM07GvDIWDBoJCu91eWGV3+I4Ckhas4W7Xd3LP1oyQOnZTwPXArgxesiDt7DTBtZ2EF8XOdo24CabTaTwHIjedThecCQ4IMs8OqffdFaRFkrSMyC5bKadMAecBuQw8C64IL7VgRZ5SDb+HE3wIOTtw0GYEGMI0EUPoY3dEpDtB4MzAEeDOBBcW/DV3nfgcol9TYr+bIJGSZ47DcZGWJKT5ET43U9KfllWk8Gv7veibZc6BZU4C7wu/z25EeJmjwwWWtG3LzlklpG29ENfOyMjIyMjIyMjIyFiOlREUWq1WJP++6u3WdnYTkHaIbqlUigQaEl2pVNRqtdRut1Wv1zUYDLS5ublAztlFwkPv0lpyfmZ3BcIPuS7E3MP1EBPSfASuB4HGzeCuAUkxhJA2QZR9O8W0fMDFlVRYcRFiNpvFTAkyITybgO8JdEyv4WUAvi0logXHcV3O9xKOlHTjRvGSlGVIyxe4z7KShtSl4nPI54C3g2t5/gavuQDk1/f5u5vbIHVZnImsu1tktzIEd2G4i8cFjdQFslvbll0/bVP6+oUk2buJI+dy7n5+f5iujIyMjIyMjIyMjIxLGSsjKGC1B74CDvmn5h5y7dZ9Sgvm87k6nU4MRdzc3NRoNIor8BBdyH6z2YzXX7ZdILtG9Ho9zefzWJaB8DEejyPppH24APw5fMWfsgB3U/j3wMsAEDa8xIEv4AIH53EMAgfPjYODPkHMYRcLz1SgTZQmcK/5fL5AlNNV89Q94cTNyxBwLTjZT8UBL3dZtvOBB1X68zvJdneLZ13Q1lTcWbZtZLo15plIKOTYMxrORGpdePJ7+PvC+4fnXOZMSHMceG038KxpcGn6PMu+P5NYkQoaZ+uvM13b8yzO1Laz/X6vbo6MjIyMjIyMjIyMjDNjZQQFSF6j0Yir3x7S6Ku8rGrz5aUF5XJZrVZLzeb/3969hMhRhVEc/x9C1GACviVE0SjZiIgGEUFxJT6yie7cuRDcKOjCRUSQuFTQraAoiIhuVHSpiOJOjZrESIzGB/gIiSLig0RFPxd9byyb7p506L4Pc37QdE1NT3P6q5qPqTu3qtb8544M+b/veWDiyJEjR0+JyAdy+c4OeV3E6KKC47euzKcI5Ec+WM2DCHmWwPD6APnCi/nz5J8ZzkYYHhTnn8kHhPlgMF+nYPw/7XmWRh5gyZ8HODrgkt83/5c7D6Dk0zUOHz589O4Vw9Mk8qBOPuAcP7Ukv8f4AWE+uM+GdR4OEgxPbxne5SN/nuGMgOHFKod3+MgH2ON33MgH85NmFeTPP75+eOeKoeEgS37tcHbC+IDJcKBo+H7TDvLHBzdyzYYzKIYDTNn4KR6TrjOSvz9tFsVKp2hM+5nxi0fOM9AwzJS31/AaIMeaZV7TZmR4YMHMzMzMbD5q4fxoSd8DvwE/1M5yHM7CuUty7vJ6zb6o3BdExNkLeJ/mSfoF2Fc7x3HodR+FfrM7d1kneu4TqQ/7b+LynLusXnNDv9mX2oubGFAAkLQjIq6snWNezl2Wc5fXa/Zec9fUa816zQ39Znfuspz7xNJr3Zy7LOcur9fsy849/V50ZmZmZmZmZmZTeEDBzMzMzMzMzObW0oDCE7UDHCfnLsu5y+s1e6+5a+q1Zr3mhn6zO3dZzn1i6bVuzl2Wc5fXa/al5m7mGgpmZmZmZmZm1o+WZiiYmZmZmZmZWSeqDyhIuknSPkn7JW2rnWcWSV9J+kjSTkk70rozJL0u6bP0fHrtnACSnpZ0SNKewbqpWSXdn7bBPkk31kk9Nfd2Sd+muu+UtGXwvVZyny/pTUl7JX0s6Z60vumaz8jddM0lnSLpXUm7Uu6H0vqm690y9+Kl5HQfLsh9uHhu9+EFcx9eDvfistyLi+eu34sjotoDWAV8DlwEnATsAi6pmWmFvF8BZ42tewTYlpa3AQ/XzpmyXAdsBvaslBW4JNX+ZGBj2iarGsq9Hbhvwmtbyr0e2JyW1wGfpnxN13xG7qZrDghYm5ZXA+8AV7de71Yf7sVLy+k+XDa3+3DZ3O7Di62n+/DysroXl83tXlw2d/VeXHuGwlXA/oj4IiL+AF4AtlbONK+twDNp+RnglnpR/hURbwM/jq2elnUr8EJE/B4RXwL7GW2b4qbknqal3Aci4oO0/AuwF9hA4zWfkXuaVnJHRPyavlydHkHj9W6Ye/ESuA+X5T5clvvwwrkPL4l7cVnuxWW10ItrDyhsAL4efP0NszdcbQG8Jul9SXemdedGxAEY7YjAOdXSrWxa1h62w92SdqfpX3nKTpO5JV0IXMFohLCbmo/lhsZrLmmVpJ3AIeD1iOiq3o3prT499+Ke99Gme8KQ+3AZ7sML1Vt9eu7D0Pd+2nRfGHIvLqN2L649oKAJ61q+7cQ1EbEZuBm4S9J1tQMtSOvb4XHgYuBy4ADwaFrfXG5Ja4EXgXsj4udZL52wrlr2Cbmbr3lE/BURlwPnAVdJunTGy5vJ3aje6vN/7MWtb4Pme0LmPlyO+/BC9Vaf/2Mfhva3Q/N9IXMvLqd2L649oPANcP7g6/OA7yplWVFEfJeeDwEvM5oeclDSeoD0fKhewhVNy9r0doiIg+kX5W/gSf6dltNUbkmrGTWg5yLipbS6+ZpPyt1LzQEi4ifgLeAmOqh3o7qqT+e9uMt9tJee4D5ch/vwQnRVn877MHS6n/bSF9yL66jVi2sPKLwHbJK0UdJJwG3Aq5UzTSTpVEnr8jJwA7CHUd7b08tuB16pk/CYTMv6KnCbpJMlbQQ2Ae9WyDdR/mVIbmVUd2gotyQBTwF7I+Kxwbearvm03K3XXNLZkk5Ly2uA64FPaLzeDXMvLqfLfbT1ngDuw6XyDvK5Dy+W+3BZXe6nrfcFcC8ulXeQr34vjgpX/xw+gC2MrqL5OfBA7Twzcl7E6IqYu4CPc1bgTOAN4LP0fEbtrCnX84ym5fzJaCTqjllZgQfSNtgH3NxY7meBj4Dd6ZdgfYO5r2U0XWg3sDM9trRe8xm5m645cBnwYcq3B3gwrW+63i0/3IuXktV9uGxu9+Gyud2HF19T9+Hl5HUvLpvbvbhs7uq9WOlNzczMzMzMzMyOWe1THszMzMzMzMysQx5QMDMzMzMzM7O5eUDBzMzMzMzMzObmAQUzMzMzMzMzm5sHFMzMzMzMzMxsbh5QMDMzMzMzM7O5eUDBzMzMzMzMzObmAQUzMzMzMzMzm9s/tWc1pLRGZ4IAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 796363 52526\n", + " Min thresh = 1000\n", + " Not Sliding\n", + "\n", + "\n", + " Winner = Not Sliding\n", + " FP Patient = 004s_iimage_74132233134844_clean.nii.gz\n", + "\n", + "\n", + " VFOLD = 2 of 15\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsIAAAGDCAYAAAAh/naNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAACRWklEQVR4nO2dd7wcVfn/P8+WW5Lc9EIaJEAChBJKCL1JBxEUlCaKgsjXgoL6E6woKMWugIiADQWRJhJK6L2FEhISEkJ678lNbt3d8/tjyk45Mzuz5e7eez/v1yuvuztz5syZ3c3MZ575nOcRpRQIIYQQQgjpbSSqPQBCCCGEEEKqAYUwIYQQQgjplVAIE0IIIYSQXgmFMCGEEEII6ZVQCBNCCCGEkF4JhTAhhBBCCOmVUAiTiiIiSkR2rfY4CCGExKcnnsNF5H0RObra4yC1AYVwL0JEFotIq4hsc/y7qdrj8iIiF5on389UeyylIiLjzGNJVXsshJDeh4g8ISI/1Sw/XURWl3JuEpHnzPPbZM/yh8zlRxfbd5Hjsc631vVtjYg8IiLHO9sppfZUSj3XlWMjtQuFcO/jNKVUP8e/r1V7QBo+D2Cj+bfsUJQSQnoRfwVwgYiIZ/kFAP6plMqU2P98AJ+z3ojIEAAHA1hXYr+lMFAp1Q/AZABPAnhQRC6s4nhIDUMhTADYUdiXReQPIrJFRD4QkWMd60eJyMMislFEFojIlxzrkiLyPRH5SESaReQtERnr6P44EflQRDaJyM2aE7JzHDsBOArAJQBOFJER5vJbReSXnrb/FZErHOO7X0TWicgiEbnM0e5qEblPRO4Ska0ALhSRqSLyqohsFpFVInKTiNQ5tjlBROaZn8UtIvK8iFzsWP9FEZlrHtMT5rjjfuZhn+lUEZkhIlvNqMavzeUN5nFsMMf+pvUZEUKIhocADAZwhLVARAYB+DiAvxc6F0bgnwDOFpGk+f5cAA8C6HDsLyEiV5rXiA0icq+IDHas/48Znd4iIi+IyJ6OdX81rxvTzOvL6yKyS5SBKaVWK6V+B+BqADeISMLsc7GIHGe+Drx+icjuIvKkeY6eJz3gKSXxQyFMnBwEYCGAoQB+DOABx8nqbgDLAYwCcBaAnzuE8hUwTn6nAOgP4IsAWhz9fhzAgTDuzj8D4MSQMXwOwAyl1P0A5gI431z+LxgnWwHsE/kJAO4xT27/AzATwGgAxwL4pog493M6gPsADIRx4s4CuNw81kPMbb5i9j3UbHsVgCEA5gE41OpIRM4A8D0AnwIwDMCL5ucTl7DP9HcAfqeU6g9gFwD3mss/D2AAgLHm2C4F0FrEvgkhvQClVCuM88fnHIs/A+ADpdRMhJwLI7ISwBwY52OY+/m7p81lAM6AEeQYBWATgJsd6x8DMAHAcABvwzhHOzkXwE8ADAKwAMDPYowPAB4w+95Ns057/RKRvjCiyf8ytz0XwC1OkU56CEop/usl/wAsBrANwGbHvy+Z6y6EcUITR/s3YDw+GwvjZNnkWHcdgL+ar+cBOD1gnwrA4Y739wK4MmSMHwL4pvn6KgAzzdcCYCmAI833XwLwjPn6IABLPf1cBeAv5uurAbxQ4LP5JoAHzdefA/CqY50AWAbgYvP9YwAucqxPwBD+O2n6HWd+BinP8kKf6QswTvxDPdt9EcArAPap9u+J//iP/7rHPwCHA9gCoNF8/zKAywPa2udC870CsGtA2+cAXAzgszBu7HcDMN9ctxzA0ebruQCOdWw3EkCn97xorhto7nOA+f6vAG53rD8FhojXjSfofNtgLj/MfL8YwHHma+31C8DZAF70LPsTgB9X+/vkv/L+Y0S493GGUmqg49+fHetWKPN/u8kSGHfvowBsVEo1e9aNNl+PBfBRyD5XO163AOinayQihwEYD+Aec9G/AOwtIvua47oHxl05AJyHfNRgJwCjzEd7m0VkM4yIrdMysMyzr4liTKJYbdolfg4jIgLzeO325r6XOzbfCcDvHPvaCEMsj0Z0Cn2mFwGYCOAD0/7wcXP5PwA8ASMSvlJEbhSRdIz9EkJ6GUqpl2B4dk8XkZ1hPKH7F1DwXBiVBwB8DMDXYZyjvOwEw6drnTPnwggEjDCtCdeb1oStMEQqPGOIdA0JwTqvbtSsC7p+7QTgIM915XwAO8TcN6lxKISJk9GW9cBkRxhR4pUABotIk2fdCvP1MhiP70vl8zAE5bsishrA6+Zy65He3QDOMv24BwG437H/RR6B36SUOsXRt1PgA8AfAXwAYIIy7AffM/cNAKsAjLEamp/JGMe2ywB82bO/RqXUKzGONfQzVUp9qJQ6F8YjuRsA3CcifZVSnUqpnyilJsGwa3wc7keehBCi4+8wzhUXAJiulFpjLg87F0ZCKdUC40nZ/0EvhJcBONlzzmxQSq2AEdQ4HcBxMGxf48xtYo2hAJ8EsBZG9Fc3Nt31axmA5z1j7qeU+r8yjovUABTCxMlwAJeJSFpEPg1gDwCPKqWWwXgcf505WWsfGBFLKyJ7O4BrRGSCGOwjxszhyIhIAwzf2iUA9nX8+zqA80UkpZR6B0ZU43YATyilNpubvwFgq4h8V0QazQjDXiJyYMgumwBsBbBNRHaHcQK3mAYjEn2GGBkmvgp3FOBWAFdZXjERGWB+XmHUm59dg3msKxDymYrIZ0VkmFIqB8PCAgBZETlGRPY2J6ZshfF4MVtg34QQ8ncYYvNLAP7mWB52LozD9wAcpZRarFl3K4CfmUEMiMgwETndsf92ABsA9IERkS4LIjJCRL4GY87LVeb51EvQ9esRABNF5ALzmpgWkQNFZI9yjY/UBhTCvY//iTuP8IOOda/DmLCwHsZkhLOUUhvMdefCuFNfCWNG8I+VUk+a634Nw/s7HcYJ9Q4AjTHHdQaMSV9/V8ZM39VKqdVmX0kAJ5nt7oZxMv+XtaFSKgvgNBjCeZE5/tthRBeC+DaMSEQzgD8D+Lejv/UAPg3gRhgn50kAZsA4WUMp9SCMKO095qO82QBOLnB828zjs/59DOGf6UkA3heRbTAmzp2jlGqDIcjvg/E5zwXwPIC7CuybENLLMQXqKwD6AnjYsSrwXBiz/5WmBUPH78x9TheRZgCvwXiqBxgCfQmM4MAcc12pbBaR7QBmwfAUf1opdWdAW+31y7StnQDgHBjn6NUwzvv1ZRgfqSHEbQklvRUxcixerJQ6vNpjqTXMrBTLAZyvlHq22uMhhBBCSHlgRJgQDSJyoogMFJF65D1z5YhUEEIIIaRGiCSEReQkM5n0AhG5UrN+gIj8T0RmilHD+wvlHyohXcohMGYSr4dhuzhDGfk4Cal5eM4mhJBoFLRGmJNy5gM4Hsbj4TcBnKuUmuNo8z0YOf++KyLDYMzM3EEp1aHrkxBCSGXgOZsQQqITJSI8FcACpdRC8yR5D4xUJ04UgCYzzVQ/GLn6Sq1fTgghJD48ZxNCSESiCOHRcBcjWA5/4YCbYKTaWgljluY3AtKUEEIIqSw8ZxNCSERSEdroklp7/RQnAngXRkqoXQA8KSIvKqW2ujoSuQRGnlj07dv3gN133z32gAkhpBZ466231iulhlV7HBp4ziaEEA9B5+woQng5jBKEFmNgRBGcfAHA9WYp2gUisgjA7jAKHdgopW4DcBsATJkyRc2YMSP6ERBCSA0hIkuqPYYAeM4mhBAPQefsKNaINwFMEJHxIlIHI7n0w542SwEca+5oBIDdACwsfriEEEKKhOdsQgiJSMGIsFIqY5YofAJGha87lVLvi8il5vpbAVwD4K8iMgvGY7nvmtW5CCGEdCE8ZxNCSHSiWCOglHoUwKOeZbc6Xq+EUYqQEEJIleE5mxBCosHKcoQQQgghpFdCIUwIIYQQQnolFMKEEEIIIaRXQiFMCCGEEEJ6JRTChBBCCCGkV0IhTAghhBBCeiUUwoQQQgghpFdCIUwIIYQQQnolFMKEEEIIIaRXQiFMCCGEEEJ6JRTChBBCCCGkV0IhTAghhBBCeiUUwoQQQgghpFdCIUwIIYQQQnolFMKEEEIIIaRXQiFMCCGEEEJ6JRTChBBCCCGkV0IhTAghhBBCeiUUwoQQQgghpFdCIUwIIYQQQnolFMKEEEIIIaRXQiFMCCGEEEJ6JRTChBBCCCGkV0IhTAghhBBCeiUUwoQQQgghpFdCIUwIIYQQQnolFMKEEEIIIaRXQiFMCCGEEEJ6JRTChBBCCCGkV0IhTAghhBBCeiUUwoQQQgghpFdCIUwIIYQQQnolFMKEEEIIIaRX0q2E8NtLN+G1hRuqPQxCCCGEENID6FZC+HdPfYjrHp1b7WEQQgghhJAeQLcSwg3pBNo6c9UeBiGEEEII6QF0KyHcmE6itTNb7WEQQgghhJAeQLcSwg3pJNoohAkhhBBCSBmgECaEEEIIIb2SbiiE6REmhBBCCCGl062EcGM6iY5sDtmcqvZQCCGEEEJIN6dbCeGGtDFc2iMIIYQQQkipdCsh3FiXBEAhTAghhPRWsjnFJ8OkbHQrIdyQMoQwU6gRQgghvZN9fzodh13/TLWHQXoIqWoPIA4NdkSYE+YIIYSQ3khzWwbNbZlqD4P0ELpZRJgeYUIIIYQQUh4iCWEROUlE5onIAhG5UrP+OyLyrvlvtohkRWRwuQfbkKZHmBBCClEr52xCCKl1CgphEUkCuBnAyQAmAThXRCY52yilfqGU2lcptS+AqwA8r5TaWO7BWpPl6BEmhBA9tXTOJoSQWidKRHgqgAVKqYVKqQ4A9wA4PaT9uQDuLsfgvFiT5egRJoSQQGrmnE0IIbVOFCE8GsAyx/vl5jIfItIHwEkA7g9Yf4mIzBCRGevWrYs7VjTWGcNlRJgQQgKpmXM2IYTUOlGEsGiWBSXwOw3Ay0GP2JRStymlpiilpgwbNizqGG3qU/QIE0JIAWrmnE0IIbVOFCG8HMBYx/sxAFYGtD0HFXzExoIahBBSkJo5ZxNCSK0TRQi/CWCCiIwXkToYJ86HvY1EZACAowD8t7xDzMOsEYQQUpCaOWcTQkitU7CghlIqIyJfA/AEgCSAO5VS74vIpeb6W82mnwQwXSm1vVKDzecR5mQ5QgjRUUvnbEIIqXUiVZZTSj0K4FHPsls97/8K4K/lGpiOVDKBdFI4WY4QQkKolXM2IYTUOt2qshxg2CNojSCEEEIIIaXS7YRwYzqJ1g4KYUIIIYQQUhrdTggPaExjc0tntYdBCCGE1BSZbA6rt7RVexiEdCu6nRAe2q8e67e1V3sYhBBCSE1xzSNzcPB1T2NzS0e1h0JIt6HbCeFhTfVYRyFMCCGEuHj6g7UAgOa2TJVHQkg0OrPVzwLW7YRw/8YU/5MTQgghvZBcLqhIIulu/ObJ+Zjw/cfQnqnuvK9uJ4T71KU4WY4QQgjphWQohHsMj81eBQB41nySUS26nRBuSCfR2pnlXSEhhBDiQPWCy2KW1/4ew6G7DAUAzF6xtarj6HZCuE+dWWa5yqF0QgghpDuxbGML5q4qTnS0dWZx8d9mYNH64goRZnMKF/9tBt5euqmo7e1+eoPa7yUkEwIAUKjud9rthHBj2hDCtEcQQggh0Tn218/j5N+9WNS2r360AU/NXYOrH36/qO1Xbm7FU3PX4LK73ylqe4tstvaF8OotbczcEYGceVNT7SB/9xPCZkS4hUKYEEIIiUxHxpihv3Jza+xtrehdsdaEcgVyM7l8lgGnRbKtM1v1SVcWB1/3NA6+7ulqD6PmsX4T1Q7ydzsh3LcuBYBCmBBCCInD6IGNAIB3l22OvW2pQrhcOK0Rzte7//BxHHjtU9UYkpa2zuqnBas0W9s6sWpL/JsqL7RGxGRovzoAYFENQgghJAZDzOvn1tb41VltIVzl8J1TiHtF+VYzterdbyzFkg3FeZlJdE7+7Ys45Lpnit5e2SHhMg2oSLqdEB7RvwEAsGYry0gSQgghXj5Y3YxxV07Daws3uJaL+bcY3WEJ4WpnbMo4PMI5jShXSuGqB2bhk7e80pXD6pWsKMJi40R5/laLbieEhzAiTAghhATywvx1AIAn56xxrxBTzBYR1U1IeER4S2un7UGuJM6x62wa1qKN2zlZrdbJe4RpjYhFH9Mj3NrR8/03hBBCSFyssrXppP4SX0xQt5BHePJPpuOLf33Tt/zDNc2Y+IPHsGxTCwBbixeNs6BGTiMDnKLqhsc/qLqnOYiF67ZhW3vvrJK7ta0TF9zxuj1pk5PlYpJMCOpSCbR09s4fECGEEBKGFZlNJ92q035XhPJISuHJci8tWO9bdt/by9GRyeF/M1fG3qcOpzUjo1HCztH98bmPql61LIiP/ep5XHDH665lt7+4sOg8zxZKKTw9d02XWlisG6+o/PfdlXjxw/V42vxuqn2v0u2EMGDkEm5j1ghCCCG9mNkrtmh9mh2mMEkl3Jd4KxpbjPCwto0bYW2qN57iNpcp+umMCOtsGl7bR9zJfQvXbcOfX1gIwEgzN+7KaXhs1qoiRlqYd5Zutl8rpXDttLk47Q8vldTng++swEV/m4F/vrG0xNFFp71ESwyzRhRBnzqjzDIhhBDSXXnxw3WY/JPp2F6kSPz4H17CYdf7Z+1bEeFUQEQ4qieztSOLeaubzW2MZXGFcF9TCBd7jF6yBa0R7vdxnRif+dNr+Nmjc9HSkcGclUZ09r63lsfsJT5WurVMkeHRt5ZsxFf/9bZtNygmV3SxtJWox2iNKILGdBLb2ymECSGEdF9ufHwetrR2YsHabWXtN+8R9ghhe7JctH6+fvfbOPG3L6CtM2tHWnUR1jBhXUkhrBtLqRaMbe3xU8uVAyu4V6yH+ot/nYFp763CliJS45VKqUK42nRLIbxw/XZMm7Wq6jMNCSGEkFIpdQKZlyBrhEXUK+drCzcCMIS1tY3Oe6oT1kop5HIKDWmjGmxzW/mtEbqxfOe+91zvEzE/XEtWSOxYcpx9+Mfd0mF8PkETHAthidFkwHdeSUq2RjBrRPH0hsothBBCeiaV8kbak+VSHo+wtV9TeGxu6cDn73wD65rz6UidosT5OiwirJu0ds0jc7Hz9x61+yiXEA4rqKFDBHhj0Ubc8tyCovdZ7m9JN2xLyKYTxQlwS4x2pd82ZY61ZGtEOQZTAt1SCP/09D0BANs7mDmCEEJIdchkc9hUQr7ackUff/jQbHzipvwkK1sIJ7zWCOOvJWrvfmMZnp+/Dre/ZEwO+++7KzD+qkexbKOR6kzZ20neI5z1yxadIL3z5UWudc1txiP7Uo8168oaUVhCZXIKn/nTq7jx8XmR+rcj3xWKUs5ZudWf3xn5lLCpIiPCNvZvqvLUmTdacSPC3rFV++F+txTCVi7hHz40u8ojIYQQ0lv5/oOzsd81TxZdSMIWwiWqln+8tgTvLd9iv+8wxapXVFki1NqvFdGzqrU98p6RHeF9c5KYU6Co0IhwftlbSza515l9F5M14vYXF+LZee70Z67JchEUVNzUXhbOnsspKk/5/Yu49K63fMtLtUZYdKWmrDeFcOkRYVojYmP9Th6bvbq6AyGEENJr+d97xsSsjiLFVqXoyJiP2T2T5eBJn+YtklFnXlwt8WgJFKXyUkUX/XVGic/8o7u0sSWSo0b9Plq3Da8v3GCnE/vCX9xFOpw2jCjWiNg3KWaXTpHdFTLNmizn+85i0pX5g+2IcIhNtbmtE1vbwifwMY9wEbQwhzAhhJAqY03EKnayT6Wu/52mME0G+E0tWWulV7MEpSXCbCFsi8Lw9GlhFoWsLsdZCMf+6nmcfdtr2uwHuZzC5pb88ihCOG5EOC/+Y21WMq2mrrG+k+WbWuz0bXGIOuy3lmzCuCun4Z2lmwo3DiBvjQjWZHtfPR37XD09tB9aI4pgzKA+1R4CIYSQXo4lM4uNaFkCuuxZIwKioPnJcsZfSyhnbCGccG1vH5ZyTJbTRYRDPoBi8+IuNX3K9Y4Jf7+YPg/f/Pe79vso1ogOjac5DLvLrhbCdkTYON7Db3gWp/z+xdj9RBWVz5uWkxfm+6sBRqU+ZWQEaevMYeayzZj6s6ewYVt7ga100BoRm6MmDgMAHD9pRJVHQgghpLdiCdhS0z9FnUB2wR2v43N3vlGwXYcnomvvx7JGmOI0ZVsjjPZWhM8bRVVQBSLCwVHXn/xvTsHx6rCE8JhBjfYyb47gSBHhmNYI52S5ct+ghGEL4RLTn0X229o5pYv/7VpWmvZMFj96+H2sbW7H7GKi2Mr4P/TKgvVdau2w6JZCGAAmjx3Y7ZM4E0II6b4kPB7bSvPih+vxwvx1Bdv5Irom9mQ5872Vc9YXEbaiqC5rRPBkuUoc/4ZtRjaOYU319jLvritijTB3ojT7qyRea0SxRB2z5Zop5RDr09ZkOSMiDAD9G1Kx+1EKeHbeWpx3++t2tpGupNsK4YZUouQkzoQQQkixWJJFJw6jECdrxHf+MzNyv7YQ9ozLmz7NmnhuT5ZLFZ4spwv+xhXCtz7/ER6dtSq0TcaOWudlivd4yj1ZbsHabbbNpauLPOSFcGmyLBfRbmM/hSjhOJPi9pQb+4/fj4Kyb3zmrIofUS6V7iuE00m0MyJMCCGkSliT5WLOB7Ox5GUUIfyft5ZH7rdQFou8R9gbETaFTcZtrVAIL6gRVwhf/9gH+Mo/3w5tY9k1nJ+NdzdRbkB0EeGgktbH/fp5176838vDM1fi5QXFe2rDaC1Cz6zc3IoDrnkSC9fljyeuri2/3I/fo1L5Utwt7V2v67qtEG5MJ5k9ghBCSNWwhFKxEWG7nwqVP/AOS3minZZHOOexRuQjwvntdB7h2Su2YMbijUVPiAvD0q/iUKNeP2uUGxDvZLkn56zBcb9+Ho+8tzJgC4M5q7bior/NcC277O53cP7trxfeaRFYn2smhpVjxeZWbNjeYfupgege4UTpAeH8PpX+dVRyCuhTZ0y8q0ahtG4rhIf3r8earW3VHgYhhJBeiohbSNYaQaLIWmqJIa9HuD3rtlY4rRFOPv6Hl3DWra/GighHnYBmRYQTZY4Iz1ttPHqfW+AR/H/fWRFhlOXDOpJMjCwX+fR2+W2ifhVem0wpOH8dOQX88/UlrrLdQft2bm8VStteROGVUum2QnjUwEZsbcsUTNRMCCGEVALbI1ykEK60DdUXETYFS84WuMZya/xWqrLOTH7CmPU3TDCVGhF+fPYqu6yzhaVfEy7V5PUIF46eFltZrquLpFg3U50xfDbWjYpVntlYZvwt9JTBuomL883NWr4Fv3zCX6ra+fUv3diC7z84W1s9b3NLhz4S79i+Gk/6u60Q3m1EEwDjiyGEEEK6Gkukfe/BWfj90x/G3r4U+RhlMleQNSLn+WsJWdFMfrK3C9ld3KIZXi69622c9NsXtH065ZxXb89ZuRX/eG1JaN9hQviZD9bgEze9pE8JFzP/cKkUFRE2/zrtBFEn+RUTEf7EzS/hpmcX+PbhfGt93hu3d/i2/9a9M/G1f72DJRvcNz3KMW5aI2Iwdfxg9KlLYlqBmaeEEEJIJbDExCsfbcCvn5xfdD+Rc786t4mwibeJ0/MLOItkuK0Q/spyKjwiXAbRuN0TCbRsD+7H/u79/HL6fPzwodmh/YZll/rGPe/iveVbsE3zOL7YSHKxWMcWxyNsbeO0E0T5XWRzCvNXN5sbRB9j3mPuWa7pRPd7WWvaJbZ6qgYqpeybnGpMlouf8K1G6Fufws7D+mLV5tZqD4UQQkgvJFFixQXlsSh41z3x/hocu8dw27vrJEokzxcd9EyWy4sv93uvLUAFjNGilDzCQRFMK0rtXFuMF7vTIdKDIpkL1m7DsH71rnXOz6ArUqlZu+iMc4xmU5cQjqBsf/PkfDz07kpnF6HcO2OZnd5Nt41uspzuI7OsN94aEMYDh+pFhLutEAaApvq09k6OEEIIqXW8EVonz3ywFpfe9Ra+cewEXH78RN96nV7yiuMgkRMUGbb67Mx6BWOBiHAJQjhoU0v05pThLd33p08W1b+zspzfKmIsOPOPr/i2i5N/uJzEiQhbh7PNEUWNotnfWbbJfr2uuR1zVm7FpFH9A9v/v/vec+9XKThNK84bhTAh3mhmhvBG6Z3Wm7bOrv/cu601AgCaGlJ4c/Em/KEIbxYhhJDezX/fXYHmEiZcl1gNNx+h1YiH9duMx8irtuifeuqEqS8y63j7+OxVeGPxRmNbW2SaEWHP+46MJ2Kn3KJ61vIt+NivngvebwyCtrUjwkphRQlPfp0WB++ewobt3E5KjPy3dGQKClxvdD4K1k/AHRGOx4PvrMCX/j6jcEPnfgPG4W7jX1ifMoSwNyKcC8hK0lV0cyGcBgD8qgRvFiGEkN7H3FVb8Y173sWV988qug+vNWJLSyeWbNgeux+lgOfnr8PtLy60l1kiTSDaR/M68eHXwfkFl971tq+d9Tdri07jvT8i7N7frS98hIXr8sdZSkQ4SAjnHGMqxZngtBr4rBEh8ivMUhGXST96At+4593QNnlrRJyIsN8jXEw6tLg3gwGOGxe6w3CWZPZuX440bsXSrYXwgMZ0tYdACCGkG9JiehFXBkRco+CNE570uxdw1C+ei7y989L/+TvfwLXT5ubXmSsTiWg2CN2yIG3hTaNmiT7vZDlne6cY3HloX9f6UrJGBOUC9kapi8X92N67Lng772fwwvx1JY0jaGJ/W2cW7ZmsY+Ji9OO1mrosohE29x533BsZX2GTCN/R+m2GBQMA2jxPHFDizU6pdGshPHX84GoPgRBCSDckn2+1eLwR4VVb4hV5CpsslxcXgoxGaEaxRgR6hO0JTZb4ypl9utc72zsXjRzQ6FpfUkQ4wArgjVKXg6g3CoB/wuDn7nyjfANxsMePHseZf3zF/nw7sypyBFqXcqyYj6vUrB9RKsud9cdXsGi98RTBHxGmNaJoRg1sqPYQCCGEdENsmVmK/7PEysjK/quxPph/E6J/zBxpslxQRNgjwL3RV+94vOnTEp7jLskjHDDITkcmi1LEcJhIC5NfXZVHWClg9oqtrrFF/TytVs7JcsVE0OPYMQDHjZRnHMY699MFi8WO3MG+rBGqazJzBNGthfDAxrpqD4EQQkg3pBzX3aD0aa8sWB+4TWtHFhf99U1XJTW3WHMLCRHoI8IaseRdFiT0vB5hZ4YG4727vfKO0dNfMRO8LIIny+VzGZcSLwzbNupkuVKIIvD61iVd7SJH2M1mLS6PcKzhGd2oeKnprM9UJ3rtpwoh27d4UqSV6gMvlW4thAf0oUeYEEJI8ZQS1A3a9rzbXw9Mv/XMB2vx9Adr8fNH5/oia0A+tZTtERbRikWtNaJIj7AzQwOgsVio8MIWcSLC3rZB29pFPVA4IhwmNp2iPih9Wtj+jTEUT5SPJpkQbXW2QugmyzlvoAK304wpTlQ4p4B3lm7KV8NzHGTW83RBh7dohqqyOSKSEBaRk0RknogsEJErA9ocLSLvisj7IvJ8eYepp6m+W6dBJoSQilCr5+xaIopgKERYQY0gIZBKWmWMlS+yBuQfG9vjg14saq0Rmkiufmxw7cPrx/UL6nCBHWRv0O/bI4QDtu3IuKPUYYTt3imwvGIrrGvnjUwpNokoVoVkQlztwvb34ZpmWyhb3/e2mJXldMQ5xn++tgSfvOUVvLN0MwD37zPK8bb40qfVeERYRJIAbgZwMoBJAM4VkUmeNgMB3ALgE0qpPQF8uvxD9ZNICC4/zkg0XopHiRBCegq1fM6uJawrhpQQEw4T0UGCIG0K4Uwup40IWxOJ7PEFRIR10cxCAta73OrW6xHWTboLtUaUEhEOEGD5Ms+FY4Vh653j9gquqJPlvBPn4hBFmyREXMcQdHOweP12HP+bF/DLJ+YByB/3dlfVt/wNVBziCOH5a7YFbmv7zEO60z1xqGkhDGAqgAVKqYVKqQ4A9wA43dPmPAAPKKWWAoBSam15hxlMPi9d19enJoSQGqSmz9k1R4UiwkECKGVW4ci48tTm11vXMjuPsOiFZmmT5dztraPw5hV2ts+FKMhsDKEYNSJsRz0jRYSDG6mI7fz7d0Zo3cc3b3UznpyzJlI/UXaZ8ESEg/y6K83CIu8u22z27b9xibI/3a1FMfmLLZzp86yPKp6urf2sEaMBLHO8X24uczIRwCAReU5E3hKRz+k6EpFLRGSGiMxYt660nHwW/c2iGs1tLLVMCCGo8XN2rVCOCFRoRDhAV+StEc4GDmtExmuNiO4RjuqB9ZZUto4j0CPs8emWNSIcNFnOkdu4kIAN2/0bizbar+N85c5xeQuMnPjbFyJXY4tiG0mKuAYXtI3127BKFetaFZt3OZb9w9M0o7FGxBmG70ari4kihHX/1b0jTgE4AMCpAE4E8EMR8RVHV0rdppSaopSaMmzYsNiD1WEV1djc2lGW/gghpJtT0+fsWqHYR8hOwiLCukwPQD4inM0pR2Q2v962RihrH0Ee4cLCIaiFbcnw9JEXyJ7lOfeyqJkfdEQVwh3ZvEWksDUi2v6vun9WUZHHUjJIRPmeEm4dHPiZtHYY42hMm0JY+1TA/X7e6mZ88paXXRPqdMQ5Ru9uXR5h+3X0T9pnveliURxFCC8HMNbxfgyAlZo2jyultiul1gN4AcDk8gwxnIFm5ohlG1vx9tJNXbFLQgipZWr6nF0rWNfaYifLvbxgfah4CIrqJc0kvJ2ex9kpc3neGqHs8ekirpEegVtC27N9Pn1aPursbO/dn3dOv1eoxYkIe5sWyhoRJY9wVN00bdYqbNweP2gWdnzT3luF1xducIzF89lF0Jd+a4S+Xav522iwhbDmBsma+Gi+v+6xuXhn6Wa8vmiDr60T7zHOX9OMW55boG3rFfeurBFFRITfWboJyzfl0wl29ZyvKEL4TQATRGS8iNQBOAfAw542/wVwhIikRKQPgIMAzEUXMLivkUv4S3+fgU/d8kpVkzITQkgNUNPn7FqhlIvtzGWbcf7tr+OD1c2BbQpZLjsdWQmUUkgn3fNdrOElRLRRxTgRYa//M58+zdunNXaPmFPeXLEeIRTjsXrs9GnKGHE1Cbvh+eq/3sbZt71mvy8mo4Y3fZo7+u6wzXiFsKYva39++4txs7Ng7Ta0dvqPx+uD/uTNL+PGx+f5lhtj8uzTZY1A4NiC2NTSiT88kxfdcbKQlIOC+ceUUhkR+RqAJwAkAdyplHpfRC4119+qlJorIo8DeA9ADsDtSqnZlRy4xW4jmrDfjgPtNB7tmZz9IyGEkN5GrZ+za4WsJxoahyillIMu5k4frl2QAEBdKoHWzqydR9gWIKIXmnEmkXm3902WE/d7XT5i5yKveI1jTfT27XzfnslPes9k80KukC6qtL+0MyAntA7vSJxj29yi/5y8NztZ5RaWpq3cFsJh1oh8Hl9zPI4JkW2dWRz3a32mRK8P2kpxpvsde5e4PMKenNRRaXUkPOjqiHCkRLxKqUcBPOpZdqvn/S8A/KJ8Q4tGIiE464AxthBu6chSCBNCejW1fM6uFay0XcVYI5yCLaz/6x6di3Xb2vHrz+xrL7eu8Z25XL5ErTKEMJAXO5Z1QpAXSUP61vlSnUXBK4S9E5qsjyBQOHutEZ59b9gWXQh7o81O0bPbDx63X3fESJ82d1VwZN5LMU+NO2MIM5/v2rHtYdc/o93G6xF2bmP0Z3xDrR1WRNj4reg+mbCCFmGRba+nPW+r8bf1HqMra4Tj5i4Ozt9BHKtNOegRFSmm7DTYft3SkbHtEoQQQoiOrCcaGof2CBHCrFL40wsLAcAjhPNi0560BoU60xrR3umOCOeUsoVB/8Y01m9rN7aJYo1wiG7d8kLeYWd7V8TSI5Tj+G6jVqXLZ40oHCE884+vRN5/MQQJSN134Fwya/kWzFiSz1rhzPfrREKyRjgP3Yqa3vLcR8gqhb1GDfD15S2Okp90Gf5D90aEdWOx8EWEY+YR1u4nF/z7qjTdusSyxW47NOGUvXcAkL9jIoQQQoLIOiKucWmPkLfeeWH/cE0z/vT8RwCcQthZ+9cRETajzZb4zWSVHXFLObykkawR0Ed4g/yjUQtqeCN2ljiPQjGT5cppfSimpyAPtG7ozqGedtNL+Mn/5hQek+cYXXmBHSNuceibPz2/MNQ7nrfd5G/4wnzrOi8wECBKQ77DYq0RrrHU4GS5bsGZ+48B4P6hEEIIITp0AmzN1jYsXr+94LZRIsJOkfLJW17BdY99gEw2X00uk3OUWIbxeBzIl/bNe2SVXaQgnUwEpjjTYUeEs97Jcv4xOpd7Pxsjc4M/6mexrjm6EPYSKX1a1+qiwLF42aZJSVaMaPd6sJ2CNR/ZVXh+fuFc3n6PsPFXIKGT0ILEpz4i7F7myhpRVEENzz5pjSgOyzxOIUwIIaQQ3oliAHDQz58GACy+/tTQbaMIYWcUcXtHXjDZEeGcslOmzV211ReVtTybmVzOfp1O5v3CUQqBWSPwpUPzRg09f7WT5RzvvUJlQxEpyey+AsSZMyJcTmFUjFANipZO/sn0UocDwPhsgyfLGa/nrNqKRZ6bNO1kOY+9xRbCAfmoLYLsH/tf86R/vGER4bzfp2hqLmtEd8GqtNLayQpzhBBCwvE+7o4T1WyLYI3QFaBwRjc7MzkkzevWtdPymessPWJ5NrO5vNBIJROBPl4ddvTZI3IsEZ3vy73cL5iUy09cTqESVE7Y/n5UebNCFFMbI44OL2aoORWcp9nqT/eb00+WMw5w7qqtePCd5a4nCGGfY5wUeN5unBPtbAEeuTc/9AgXSZ86Q9P/8bmPmEuYEEJIKF4xd+DPnoq8re6RuK//gCIYllDwTmCz8HqIc7l8RDSdFHRkchh35TTc//bygmOwhJJ3IlTekuH+G+QRznkiwkHitRiCHsk7s2OU85JeaX0QtcqdE6/1RGdD0Ql4ffo04+9rCzfi8n/PtJdncuGR9aBKiDq8x+ia6FaG30acsZSDHiSEjTvrNxdvwkfrtlV5NIQQQmoZS8xJEWkjCpWrBfRRU6eoc5ZYdm1nTZJz/M0L4fwl+y8vLy44hiCPsC8S7Pnrmyzn8bCWczJTIeGUU+X1jFY653BREeFccJ5m65V+YpyuL+9Nj9lntpAQLiUi7BfupdxwbG3LYMbifLaN5Ztaynrz5aXHCGHLGgEAKzcXTnZOCCGk92JdvIupsFxsRBhwRISzCroHyNZ2Oo+sUwjHITBHrMdHaokXf/q04KwGpVKoL4XyZo2o9DysYrt3WSOc0WHbxqJ7wuBf5v+uld1nuawRYZk/vLabYvjqP9/GWbe+io3bO7BicysOv+FZ/Pap+cV3WIAeI4T7OITw6q0UwoQQQoIpRVx1RMkjHGiNcL8PGpclTNwR4XiyXblEt3+5VwBbrbzRwe0dGY+PuYxCuMD3kMuVV7xWPiJcnDXCOS6nlg2bHKnbk/ezcj6BKGaynB53P9o8wiW4hFdsbgVgjHmTORHz6Q/WFt1fIXqMEG5I5YVwS4S7dUIIIb2XTAmV5aIIs1xO2SnR8tsVjm7mLRF5j7C1LBUzIpyfLKd/XG7nfHWMz9rOKej+9PxC33GUiyiPvMuaR9js6uZnPypbn67+i9jG64N2RYQdbaLszBcRtper0N9tKdYIl0e4jN9VMiF2IZAoN5/F0mOEcMJxxgmq3kIIIYQAjvRpJWwbRlYpNKSTrmUKbhGhjejZ1oi8ILb2l/Yq6wJY/Xsn5nkLanjfA25x481YUCgifM8bS13vj5o4LLBtIQFW7oIategRtiZRWjdlzpsDe7JchHy+xrae93ZEuZA1Is5kOc+2zqwRnsp2paCUsnM4t0Uoa14sPUYIA8Ci605BMiGsLkcIISSUUh7vR7nIZ3MKSU+4ecmG7VjXHG7dy3oiwtlcPqJbroiwVwB7PcPG/vOvOzzbF9JMVz4wy/X+mN2ChXChiLDXTmJRTCQfqLxHuJiQsDUmK6+0Li+vznKhO5bAktUFrRFxIsLe34NzvFabyN0FklP5Ko5W6fFK0KOEsIggm1O46dkF1R4KIYSQGsaeLFeEoooSVXz2g7U+sfa1f72D6x77wH6vEzdW5G9La6fxPpcrerJcvsSyfgKVd3JcUPU4r380GzO9VSIkkh0pIqxpkyhSCVc8IlyEElamNSJpCWHNYwOtR1gnhH0THc3ljt+Rjjgpy7zduCrLlcEjbKGUQptpiQiq7lcOepQQdhIl4TkhhJDeiZ0+rYhto2ipv726BFvb3PNVmts6C1Y/tca1eosROc6qvLioiz1Zzvjrryxn7starBFbTtHkFdJx6x2E3WwUnCyn9OI1pkvEpuJ5hIuxRsA4xnTCkGQ5TYQ1ujXC+12b1opc+E1ArIiw5707a0QZ/dxgRLgklm9qqfYQCCGE1CilTOopNqroL2zhJ6sU2jNZrN9mzJbP5nLFT5az+vTllnVHgnUz/Z2i2DvuuGInTLQW7ks/yUuKuoWJVpq6FIr5ZViT5ZJJf0R4zqotRr/a9Gn+vnw3PebfghHhEqwRrohwGT3COaXscubt9AhH56krjgJgVFUhhBBCdNgX7CK2LfYi77co+Ntkc8Dare2O9wqdphioS8W8ZFup2LyV4jy5Xq21zmbOR+Vea0Tcyl9hNobC1gj9jUfxHuFKR4Tj929NZEuZEWGnKP3iX2cYbTTd6vbkjwgbfzOFJsuVcIeg9QgX3VuenMo/3a+kt7vHCeFdhvVFQvKPlQghhJCfPzoX466cZr+3Lt7FTJrzCorRAxsjbee3KOgfba9yXL9yOdhRsUZPFopCWL17BbjXE6zzCDujkt5xx7VrlhIRVmX3CBe1WWSKurEy/1mT5XQ5ffV5qYM95hbOstlh31u8yXLu987fl/M3tWxjaU/mc7l8RLiS9DghLCLIKeCmZxfgg9Vbqz0cQgghNcBtL7hz4VrCopgIoXOTyWMH4q9fODDSdlFytWaVQnObMVFuQGMamVzOfiwcWwgHeYTNv/6sEfk2D7+70n7tL9Ec7zMr3SPsX16sR7hW06cppezJcrrfyfpt7b5lzn1Zn4euPLa1PNwaEWeynPfGSH8DdcSNz0buMwgK4RLxJgEnhBBCgBKFsCPu1yedjOzd9Xt19W2sZulkAlkFtHXmUJdM2EIp7jj94sg6dus9zPf5ds5Kcl7/aJziC0B49LZQRD4oj3Ax2T6s/ipJMdkSLI9wyvQIe0XpP19fgp/8b45/X45jsX4b3uOzKxUWtEaUEBGuoEe4KxIf9GghvK09gw2auyhCCCG9GytypRNiv3xiHt5fuSVwW+cmIsVlngCgVcJZh2BJJwVZMyJcn0rEjoIWzhph+aTdwtiLLyJcxslyBa0pZfcIF7ddZIqNCCMvZr15m//7zkrNVu5dWTcbfhuL+d2WscSyV+w7+y3nfUZO5SPCcW8C49CjhfCTc9bggGufqvYwCCGE1Bh5geBfd9OzC/DknDWB2zqFmUjxflVtRFgpO9KXTiaQNT3C9elk7Cio1b8372+QJSJooleQuIpKaZPlyusRjpsD2cvuOzSFri9GB1pR77Q9Wc49xrUBRVicX5clFL1fYdYREQ6zocTLGuHZVhMRLgfKzKACGJ/R319djNcXbihb/xY9WghbVDpvICGEkNpgS2snxl05Df94dbF2vSWqClkjwi7obm+mFB2dDBqfXWnMjAi3dcaPCIvE8QjHe5wdN/Vc2OdTcLIcyusRjiP4dBSKTBbvEUagR3hts/7JtvO3G3RjYEV6szn9DYXdLsYNQtghlpKW0ItRWc4Yl1LAj/77Ps6+7bWy9W/RK4RwJSuSEEIIqR2sSUV3vLRIu96bOzfowh0WqSxXcEU7699hjahLJpA1Z87XpxOxIsLpRCLvEQ4ssez9G+244kb9dONOJ4MzJFikElKSR1jXpNSIZSpACD8+exWAIivLwXgKEPSZFCrCAgQL9A7TWlCoxHKsG4SQpmUtqOGICFeSHimErz1jL9f7rph1SAghpPpYmRWCxIP9qDib907qCJtF79yklIiwbs+G8DNeJxOCj9Ztx5otbWhIJWPZAUTyOwhK2+YU4ipAcOqIb43wL2swv6ewyVDJhEAFeISjRIR1n1epEcugctGX3vU2gOIiwjmPR/jfby6LtN3yTa326yAhbKVFC7qhsIjznYb1U87JiM6IcCXpkUL4swfv5HrfQSFMCCG9itYAIWw9Ac7akWH99rqI8CsfrceyjS2uqJ9I8RkM9AU18h7hpoYUAGDGkk2oTxdhjTBfe4slWPt17t8QnNH6LotH2OwiLFCVsoWwf12Uz1z3eVUqImxRrEdYKdgFNVZFrIPw11cW26+DhmUVY8lk9RX67HaxJssFU6LzxLMf5hEuiT+ev7/9mkKYEEJ6B1ZEqiUg0mgLYIdXeP9rnvS306iG8/78Oo648VnXBLuESNF+Vf348sdw1cl72MsNj3CMiDDEFtS+ynIeewhgipuKCWH/MmvfYRHhVDKBnNI/0i86IlyiEB7arz50fTG2GSvqXUpmhKDfRnN7BkCEEsux0qeFRITLaI3I5eIJ9GLpsUL45L1H2q9pjSCEkN6Bs4AAACzb2ILlm/IVrqzl1oU/pxQ2bu/w9eOstPWDh2a5qtK5skbAEJ1FjVWjPHM5ZQvtvvX5AhoN6WSsPG3OyXJej7Aub3Aca0Q5CmpYPRSMCEMvvKLcFOiEZalC+KDxg3HN6XsGri/WGZBT+TzCxRAmopMJQbbA99uZzWF7ewbXPjIn8GmKRdghltcaEf03WQo9VggDwI1n7QMA+O797+HFD9dVeTSEEEIqjffCecSNz+LwG57Nr/dkiwjOGpEXaHe9tjRwf1KCR7hN43/M5HKOyXJ5IRw/Iuy0RgRFhJ3LKjdZzjtuaxIcUCgiLMjmFLZrhFmUT6ISEeFEQnD8pB1K6kNHNpcraLsII+y30dSQilBZTuHPLy7E7S8twl2vLQndV9hHWM48zUqVNx1bED1aCFuTJt5YtBEX3PFGlUdDCCGk0hTScrYINDVo0CPhsEfF3jzC5Uz1n8vljyGVzNsu6lPJmB5h8UXHvbgmyyHcQ+qkVGtEOpmwxxYeETYkyh+f+yjW/oL2C5QurATAiP71OHHPEdr1pUSEk4niJVlYRDidTCCTLSCEcznbhlAoS0WY/aGsWSOgYlcxLIYeLYS9ufe64s6CEEJI9SgU1bQ8wpYtIWhWujOdlDdS584aUfxkuaDxWccgYogYAGhIFxMRLuQRzi8zctkqTB47EHuPHhDat06chIl077jTybxIb+vMBkbUw8RdlKu5LsNDycJKBCKCH52mt0fETZ9m/bZyOYWIlbq1hH1WdckE/vPWcnznvvcC23RmFZJiVbYLF8JhWqrceYR1/5/LXXa5RwvhIycMdb1/am5wpSBCCCHdn0I6x4oEW+22d2S07ZwX+/6Nac8+nB7h8hbUyDoKaiREUGeqo/pUMt5+nB5hX2U566/TI2wsH9wnjbsuPqjgGL2EiXTvqrpUPsdxW2fOfnrrpRTPLABb2DlZurFF0zI6lt4MsjHE1YF1KbOaXE6VNPEy7LcR5XPM5HL2jUOhlGWh6dPKOVkuYKLkl//xVtn2AfRwITxhhLsUYuUqVRNCCKkFCs3atyPCVnaJdn10yZlyrL+Zxiy/E/fbslojvBHhlCWE40eEAWDW8i3YuL3TtU5pIsI5paCgXOI7bIxegvLrAv6IeTqZsPfdnsmiT12AEA6LCEfQW2FjKhZrYqQuApvJ5mKnT7OOMWsK4WIzR+hEv70uQp+ZrLKPbVu7/ubQIiwiXM7JbUopbQn0cn+tPVoIA8DT3zrKft0Vsw8JIYRUj8IRYUsIG++DKo86rRFNDcER4ZxS5bVGOPIIJ0RsodSQjhcRFjEmpJ1200u+p6H5PMJOj7ARLReRghHEuOnM9B7hfES4ISAiHOaZjWJBqIAOtr8DnUjvyOZi6wwrIpxTCpBo2TB0hIndKJPwOrM5tHQaAtiqzhhEmP2hnNYIpfw5sIFowj4OPV4I7zKsH47dfTiAfOUXQgghPZOCHmFP1oggMi5rhDsi7PLWorwRYa81wtJFsSPC4k4B58Ra6hX0OaWQkMLCSV/pLXgbnUc4Z2YEaG7rDLZGlBgRDouSFos1JJ0Y68jkAsd11MRhdgllJ1b0PWtbI4obc9h2USbhZXLKfjpSqKBHUEQ4lRBtBLdYckpfoKOcN55ALxDCAPDDj0+yX5fbZE0IIaR2KCRwdRPFdDgv9l6h5oxGKqWKFi9B48vZEeH8OGNXlkNwmWhv5gzAmixnie9iIsLRPcLWBMAv/vVNbG3LBFsjSvQId7U1wsiAESwSdRP1Usl8RFgC+o1CeB7hwttnsgrbTUvE+yu3hrYNEsJJR1q8cpBTSus5LvcNTq8Qwo2O/2SvL9qII258Bv+ZEa2WNyGEkO5D1PRphS7XzopW3j6dAjKnCQkPaEzj9H1HFdiDHsMaYbwWEVsIGNaIOBFhCazKpa0sZ0WEo4gmjTgJG5pXJFt2gOfnG/n9UwFKLTQiXGiQmv1G4fLjJoY3KDIinEyIdp0VJc7mFEQK2zmu/9Te2HV4P3zxsPGu5WGiPx1BCXdmc4ETR71oxWnCeHoR5h8+dZ+RuO2CAwLXe7+uLa2d+puuMivXXiGE61P5w1y6sQXLNrbiO/e9h5aIXzohhJDq4PTMRqGwNcL4W3BSneMC7O3T7xF2bysleD0Na0Q+Imx5LouZLBdojVDuvwAwa8UWbG/PRKqSpxNC8awRbukR5ElNhXmEo0yWK+IrKBSFttbqxtaeCZ4s5+13WJNRqrkuZQTqok6WO2fqjnjqiqN8eYzDNosihDM5he0BE0cBoF993h6k8wEnE4atI+z/36gBDa5+vHgP4cv/eAtzVvmj0+V8AgP0EiE8oDFt+4TvfGmRvXzDNn9ZTUIIIbXDLt97FOf9+fXI7Z3XYZ1gK8Yj7NWTrQ6LXU7pPcLFXquzKh8RTjgiwvWpZCwvskjwREBdieUL7ngDK7e0RRp3/DzC7vdWFLQhbUiQNVv1nlSdKJ2y0yD88fz9ESUmXIw1opAQtUSYrll4RDgvt35z9mScPWUsgPxnYf2OolojvMcWFj0vlAUEADZu78DG7R04wpN21sIZUNT9rJJi3EKFWY4yORUY/QeCBa732DhZrghEBL8+e18AwKL12+3lzCJBCCG1z6sLN0Ru643WBq0vdPp3zlb35uF1Vt4K8ggX62PM5eCICOcfpzekE6GPhP3aINgakU+fFi+ya48x5na69GkAMG5IXwDAwTsP0W6nEzyXHz8RJ+89suyT5SxBWmgba7XOptKRzQVms3CKOeckyLRjspzEmCzn/Wic2/k92dH6nLNqK/rW6SO2zsweuu/figgXKuMcFnEPOnRvRJsR4SLRmfFbOXGOEEJqljAh99aSjdp17ty4/vWRI8KOMLD34t6RydlCRGeNAIq7WFseS2t34rJGhHuEvY/qExL8+eULaujGXXicOrETNjZvn1Z0cVCfOowc0IBvBvhydfYDazdBx+YkTuTQspE0eXNGB+xfR3tnNtQjnO8jPyGxziWEo4/Z+3k7f29jBjW61kWxRlj0DbAuOCPCukmYyYQAEl5QI5PLhUaug2w5dSkK4bKg+yEUqqdNCCGkegTZ137z1Ic484+v4p2lm3zrVMSIcJysEbqUUJZIy+X0F/BirtXpRMJVYtkZYSvkEfZqRhGgMxOUPi14wmCUEsRRBLTTCxrkEc7kchg5oCFQHOmWWxHbKOMsJs3WuKF9Q9eHfQcd2WBrhDsi7PAa29YII2uE1f+UnQbFGodTQI8Z2Me1Lp2KI4TzQcMbztwbu+9gFCard0WE/dslE5Y1wr9y8tiBAICOjAr1fQd5f/wR4eAuiqHXCGEA2HlYX9fJ6dH3VuHlBeurNyBCCCGBBE2isrL+6IWu83WwEC5kMXUKLV1S/7RTwHguzEoVJ8JSScMTnC+okbdw1KeTBXy47pUCCfQI21XdNE9Fi507492/c6xBQrgjawijQG+o5jG65Y3NBEwEdBIjEGpj2TWKoSMTbI1IeqwRCW9E2LTYWMdcaNKezxrhWDByYINrXRSPsIUzInz2gTtij5H9AXg9wgHWiIRoJ9JZ22ZzuVCbRtDvuy4ZLPrLQa8Swo994wgs/Pkp9vvbX1qE82+PPgmDEEJI12EJ4b4ea1tYwn+3R9i/3tKGhSfLOTzCmqbWpB9D9PrXFxMRbuvMmhFh431CJHLWCJ8QDrFGWEK7uc2fOWldgapiQXjFidsK4G5rR4SzOVNA6fvUHa/VbWeEyg3F+LQbA3IaW4Td4LQXSJ9mkZD8Z2I99rd+R1bkODRyCk1E2PF2SN8617pCHuHj9shnoOhXn8JfLjwQVxxv2FWsLV1CWOcRDpksZwnxzpwKFbGRrRFlFsLhZpgeRr2ZpuSiw8fjDkf2CEIIIbXHejM6ObBPnXa9LipYaLJcMR5hne/RFRGGX4QWg1VtzRqbMy9rQzqBra35/sOGv0P/BjN9WnjWiK1tnehbl8R2h01wXXNxQth7zGGTt+pSxoLObA6ppERK2Zbvy2gbZbJcnKj8DWfujdVb2gt+d2Ea7MUP1/mKUfSpS6KlI+v9hdj9OB/7i4j9vmAaN89qp8Ac5BPC4aJ6eP96TB03GG8s3og+dUkcs/twHGNm2rJwTZYLzCMs2nWWkO3M5ELHEn2yXGAXRdGrIsIWlx9fIGE2IYSQqtPc1gkAgblHdZEp5yKl0YFRC2q4rRH+1rZHOGCyXLHkzMlyIm4hV59K2uG5gY1p1zaGMDbGeOGh4zD9iiMhIoH2Aati17b2DPp7+trS2lnUuMOEWaBHOKvMbAPR9xNnolScfs8+cEd847gJBSV5mGi/+41leG/5FteyB75yKB697AjXd5lK5CfLuYUwHG3iRYSdBtvhTW5rRCEhnMnm7M19k+XM5a7JckHWCNH/n6yzPeEFskYELPeOvyqV5UTkJBGZJyILRORKzfqjRWSLiLxr/vtRWUdZZpwn1aH96qs4EkIIKT895ZxtTWhe09yGcVdOw4sfrnOt13kVnZFe3UU5HxEO37d7spxGCHvyv5aLjOkR9vZZn07YY/JGyBMitrAfPbAR/RsMcRuYRxjAto4MlDLy7JeD0MlbAVkMOrI5pBKJWJHbMHH7u3P2DRxD9P7jRWILMaxfPSaN6u/qN51KOKwRbstEwhbIhTzCweuPmDAU++04ML+/An05C69406dZwr8+HW4ZMSwd+up5dkTYtMIEEXRMXmtEMf77MAoKYRFJArgZwMkAJgE4V0QmaZq+qJTa1/z307KOsgLcdN5+OHjnwdjWXtzdLyGE1CI95Zz9ykfr7cf0m1uM8/QDb69wZYXQCWFXQQ2dELbzCIcrYaetQCeo07ZHWGkvzHEv1XdddBAuOXJnI1qryU1cn0raEV6veHW2tPyTYR7hzS2dWG9+tt6I8CcmF1ca2j9ZLv++qSGNN75/rP3e+uw6szkzOqrvU/cNxYsIF26779iB+JOj7G8p1ggdlufY2W86IQ7B64gII++XDis8oR9H/tNKJgRfPnIXR9tCQjj/O3FmjXCOu6AwD4nsO58ApIvIGuGd7FeNyXJTASxQSi1USnUAuAfA6WUdRRX4+D6jcOTEYWjrzGF7ewZzVm7FDx+aHZoDjxBCugHd/py9aXsHzvvz6/jrK4t965xRzkIRYZ0QDism4cTZt24/1qSmnNKLo7hBq8MnDEV9KoFMTiGb84uXhnTCFiw+IezwDFtjMYRw8DH+8bmPfH3946Kp+P25+8UbuGMMTrx6Z3hTAxrNqKKVBaAzq5BMRi8iAcQr3BGl3x9+fA+cuOcO+T4imCMsohSqaDDnJjl/I+lUwu7Fa42wxuxMt2alH3ONIsQakRSPKC0wTKcQDsowUV8gBVvYDY0V9c7kcsVZI1Le7zV0KLGJIoRHA1jmeL/cXOblEBGZKSKPicieZRldhbHSpCxavx0X3PE6/vHaEqzfXtxEAUIIqRG6/TlbF4G1aOsMF8Iuj3BI1ojCleXChbAlYHIBEeFi6FefglLA9vaMf4JZMmGPyVsgSiB22i4rWiYQdGb8EeGzDhgDAFi6sQUAbBuFtY9i8fo2dR5X63v1RoSDhI1ucZyAYpTIofe7K/RVOtdbE8i+cNi4QB+7FaF3ivJUQEQ44Si04RTC/7hoqr9fzzid40omxXVchcS9lUhAh06w60hI8KRHZ7q88Mly4dvb+6pCRFi3R+9Z4W0AOymlJgP4A4CHtB2JXCIiM0Rkxrp163RNupTxZuLsr/3rbWzYbsxO3t7OIhuEkG5Ntz9nhz2Zc+a+Dc0TDL2AjeoRzhSIPKcdHuFyYdkUNrV02ELp5vP2xxEThkIkXzI5lUxg8fWn4nJHRbZ8RNhhjdCkGBvSrw71qQQ2tRjXPGdEOE7hBS9heYQtrO817fGMBkVu41ojvKui3J94BXxha0S+gSWEP3fIOJ+lwD+4/Mt00uERTuo/NytyOmZQo+tmRTcOwH1j540Ihx3Tt46fiJ98Yk/sa0adh3jmTVnbFpq8l0oG39DUedLlBVFoe4tqTJZbDmCs4/0YACudDZRSW5VS28zXjwJIi8hQb0dKqduUUlOUUlOGDRtWwrDLgxURXryhxV62tcgZs4QQUiN0+3N2WNUwZ0RY1y5qQY1CHuGcygs3rTXC4RH2Uuxl2hKlW1o7bVFw6j4j8Y+LDgKQtzqkHT5ga4fWKPIR4WBrRDqZsH3X/RwlhUuJCIelT7PwR4RVaMldHWHNvRHJKBHhMG+zfh95LKuHUsp+HWU/hhDWR4Tz1ohE6HjCxpn02BTCjujrx07AoL51+M6Ju+Ghrx6G3cxKcvltxewzpBO4o9le6tPGxs48yToCI8I1UGL5TQATRGS8iNQBOAfAw84GIrKDmEcgIlPNfjeUdaQVoLEu6fuPsrWNQpgQ0q3p9udsnfC0aMtkQ9s5xa/eGqEC13mZv7YZSze0aK0aeY+wvqMouXG913Mr8ueMCDuxCouMGNBg7gP5v+YwrGiZiGg/H4FRvazNjKw7I5KFcteGEZY1wsL6qOrsSmMKqWQi8FG37iYjTkQ4SuTQF0XWtHnim0dikllhzW2NMI6jPZNDY114WQZnv+lk/tfhFHmGR9h4bX0XgbaRkEOzcvpGaZsfU8KOCusoNHkvTOBOHNGELx+1M24574BQG1HQGu8NWpdbI5RSGQBfA/AEgLkA7lVKvS8il4rIpWazswDMFpGZAH4P4BxV6Ha7RrjNMVsUAC644w1sb/dX2yGEkO5ATzhnB2U7EMAWcECQRzh8slwu4mQ5ADjpty/iyF88G1BQw/II67eNIj68os6KCG9u6dRuf9JeO+DGM/exLRHONpZHOOGICAeNK51MoN30Dycdj7yd0cnj9hju2zb0WDxqQidYJwzvB8AtmsI8wtr9xBBSUbzbXsGu22a3HZps0evc/67m8SQTgsZ09Ly/6WRCX1AD+RuolB31D4gI+8adf50Ut90kTsGSIJoawoV+IqRCYDIhuOrkPbDjkD6hfQROtqtwQY1IleXMR2ePepbd6nh9E4Cbyju0rmHHwf4v5jv3zcTvztmvoDmcEEJqke5+zg6NCBeYLOdcFBYxjiKELbQFNRyV5YrFez3v32hckre0dCKpic6KCD5z4FjXe+NvvniIfdkKiiTCsFZYQtgpSp2prf50wRS0dGSw99XTIx1LlIjw3ZccjPlrmrFsY4urXZC41YnAOFkjolzCw7zNL3znGHRkPfOGHOtvPGsyTt5rJCaOaEKfAhFhV9YIhzXCGZFPJMTu35kGr1B/vnUJt/QtxUlgbTuoTx1+d86++MY972rbpRLBk+WiC/Ega4Tne62CNaJHM2FEE/72xan44JqTcND4wQCAR2etZglmQgipEuEe4ejWCF032RywfFMLVm1pi+yJ1RbUSFge4fBtw3yqQdaI5vZMJB+krok9WS5kG+djbuf4nIIjmZDQbAJB+7Xfa457aL96HLrLUJcwSiWCZZLWfx3ysfisEZE8wt4+8gt2HNIHuw5vci13Nu9Xn8JpZt7lBo9H+MtH7ow7L5yiHVw6KThw3GCcus9I1+Q0cYyn0PdY6PfhjggXj9WNUsCeowYEtgurEBhVtxbKQ2y3q0LWiB7PUROHoSGdxL+/fIi97PrHPsBmc1YtIYSQruHhmSvx7zeXBa53CeFCJZZ11oicwuE3PIuWjmykPLCAXpinI0aEw6JXXgnofPwc5Vrv3N4aRT5rRHAH6QBfsE9wuKKf++CDa06KLHbCPlrXY/y4leXCbix87yMI4ZiiKmisjZ6UdkdOHIaP7T4ivx/HZqlkApNG9cfN5+3vySOcj47n80EHRcsLjTNG4/CeABjWmzi+ZCdRP+LgPMTVnyzXa/neg7OqPQRCCOlV3P36UlchDa9YbcvEKajh798pngtNANJt4902eLKcQWjeW8/1PJVM2NkHoohDq4lAbNHvzBrhxPocBeISX860WN6qX84xNKaTaEj7J5hbRLFG6PoN8wjr06cFdhs7J7DRXzxRFbT/Bm8Z4JD91Hl8wfZrcUaC3YLYP47wcUfNGhEVVaCUeFLCbjuijSCoB+/NZLldqxTCIWxt5aQ5QgjpKv795lK8ujCfvOLvX5yK8w/aydUmzBqhlMJ9by0PXO9dFjUirJ8sZ0aENfP6xJFKKiwirBMzloCMFhEO7tMnshOOFFbOiHCANcLbf8oeV7SoX5iQd7YNiyTqCI+wRx9DlP70+9C392XcCHmbcvmC88sTkv/e7IhwwP6830OY8NZluoiKS1CHfaeelG1zf3oSjttjhK+PqPsKW86IcBeSSAj+8doSjLtyGmYu21zt4RBCSI/mu/e7n8I5K3ABAAT2JC/AL3QfnbUaL3643n5fqOBG1AnRWmuE7REOt0aEPsrXrEoWEJy67UV0eYTd26fsiLD7uN2i2BsRzr+2jiMo0usVSeH5YvOv0yGFGKLsJ6hfIC8OwzJgxNVUwZPXvMLU/d75O3B+Nt4KcAnnlxq6P/d776/QufqMffOFJb1e5qgo+MW2k1RCXP9PxCHqo84njSpwKYQrzJ6j+tuvkwL88KHZAICv3/1O6ExmQggh5SWZEF+kzRmd9Z6TN3rmdeguwB0OIV1K3txUxMpy4ZW0wiLCEYQw8uLWOlZL43o3d4pfpwXCNVnO83k4RZoVOQ2KoHqXRj3uMI/wLsP6abYN7DawslyhSGYcgrryp2EL68Mpft3b5CPB5vhiZNRw4jyucUP74v7/M+ZANcSYAOkan1Khv8lEQrDEUZxMxHls5dVO5U6fRiHs4S6zgg8APDsvX1J06cYWTPrR49UYEiGE9EpSSfEJDGfUyRep9ShfXUR4a1ve8lZKisx0AY+wRZxH+UCwtUG7vaZNkFhx5e4NiAKHiSsrnVtg8YuI4/D1mwgWNv931C74zJQx2n7v/tLB+OZxE1zrvFFY8fzV7r9M1oioVoWwx/zOyXLW9xVUurlQRgzvWqvKYGnWiOB23icAAokdEY76VUTJBhIHCmEPg/rWYVxA0mfnIzlCCCGVJZlI+ISKMyLs9e56r7e6SW5bW/PVQ0spKZyvLBfeLjTiqLVGmKsiCeHgiLJ3nSsiHJA+LYykR6AVIkxwOcVfTgUL8FRScNiu7srf1raH7DIEn9xvtHuDAJEZ9llGzmhg/Q1o7xOCnoZ2xbiEd7k7OmxtN3GHJlxx/ET84dz9ixq3d//W05NCFfCCKKRlvf9PjZTIEmlbi+heYgrhijO8qaHaQyCEkF5PKuGPCDvFrTci7BPGGiHsTItZijXCGpe+DHD+oh43ImxFaKNZIzTjsrMOeJYHWCCiThi0LRsRlOPZU8bip6fvFbjeaWnpzOQCRZ23Qpqx//zroAiw/d6TgUFHXFEV9L14f6f+yYOF2yXEHUW97NgJ2GGAXo94x+H9GXr3P3X8YJx30I745af30fYXhPOzC/uodBX6yuUR9n5/jAh3ATedt1+1h0AIIb2epE4IOyPCKjwirMv8s8UREfZODos7Nt0+PzNlDP558cG+dlGxhhRvspz78bpznYW7rHH8iLA1nkJWgnsuORg3nLUPBvWpC2zTnsln/ujM5oIzUXgyETjHAeg8wUH9BI837vcTOHmtgEc4b3nwDMZjPci/df+yxg3pg71G93e1deNur3si8PNP7o2xmmq6UVABkXvrsH1C2DFGFTEmHPWbYGW5LmB4/+CIcHNbZ+A6Qggh5cMbEVYqH/UV8UeEvZGnL/z1TV+fm8tujXDv9Hun7IHddmjK54ENzSOssTbE8Qh7/gJOa4RnvMm8cE87ct5GvRmwto8qHMPG77QZdhbwlvgjnSFCGN621vLgwcQNLgZFN/3iTG+V8EeE3dYI6713P8995xg88vUjtNvp2gcdV1Rriz0mO6qrtH1ax6ObLGhbIzxje+/qE/D9U/bQ7Ct4bN8/ZQ/sMbK/a0zlgkI4Jsf+6vlqD4EQQnoEv3/6Q1x5/3uB670R4c5szrZGpJMJnxWi0MQ1wBMRLsEaYUUAvWPwXszjRq/ipU/TCGnLY+x7nOzMGmHtI7oQtCueBamGEMHqpb3TIYQzwRFhTbeheW0TIvjN2ZP9bUOOsVx+00IRYettmEdYIf/5FvSee4WwZ31gcYq4QtjRv65Pa5nOGmE1946tf0MaQ5v8TwyCRpZVCl86cmfsOryfdl+lQiEck7XN7XhryaZqD4MQQro9v35yPu55cxle+nC91mubSiRcwiGbU7bwTHvylkZlS0teCJeSNaJfvTHp6MLDxruW+x6Jx7xoxyqooRF6wQU1xG7qiu5GHJ4d+YsoHMNaOa0RHVm/R/ixbxyBX5xleFm9vwunANT5cD+53xiMHthojiF/zEGUS1R5P5eg6HRYmrXObM4W5oVu6nx5hJX3hky/XVw7kNt241/fkTVuanSfoy2iNceiS+Mmot+H9X/e6od5hLuIf33poMB1Z/7xlS4cCSGE9Gw+e8frWlGbTLonS2VyClmlbMuEv7Jc+H6SCXFFhEsRwvWpBBZffyquOH6ia7lXiIZOltOssiOvxU6WS+jFn3uynFVlzj8ZLQhLSAcKR40oDcJljdB4hHcb0YRPTxkLwC8InbsvPFnO2qZ0a0Shj8n7dMEXrQ74/Jxv2x3R8UJC2Nt/1PR1xer+KCWWvYRF2+s1WUVEBE9dcZR9E2Rh2VWV3a7gcGNBIRzAobsMxeQxA2Jvt2j99gqMhhBCegZKKWTMKJLzopzJ6iLC7oIamWwOmZxCIkAIF8zp64ki16VKuKJGFBo64RgkVl3rYlgjnC29lcksUhohnJQw96wbe7JcZI9wiDXCIYT7N6ZDo+jeEtbO/Rf6iPJCOLhNkGAc0tf96L7QTVahPMLWe19ebMfvvsORQSNqpgUL731k0Gcj4p+AGhnnTYj3iYPmpjIfEfZ3Va+LCMMoovKJfUfZy2797P648NBx7nZlVsLFJZTrJfz581Pw+sKNOG6PEdiwvR3PzVuHH5iV5gBg/bZ29G9Ioy6VwPcfnIV/vr4UAPCPi6biiAnDqjVsQgipWX42bS5uf2kRPvzZyXaEpz6VQKdX8cDvEc6Y1oikCJKJhC9PcCHtkEoIOlzvi48FBQdG3eJUJzpSGhHvXBfWv2tfmjaFIsIK7uhuVOtGHO9yIRrMyXr7jh2Iy4+bGCpsvDc3YY/q/X7iwjcVuuOZdtnhGBEyaV6HVwcGZbTweoRbOvM2kfZM1t6vZb2JSpiFxD/W4N9fYP+ePof2q8e65nb7fX1KF+G1tvXvK6y9cz8n7TUy1jiLgUI4hOFNDThtsnFnMqauj+sOUSmFKdc+hVP3Hombz9/fFsEAMH/NNgphQgjR8PdXlwAwAglKAQMa09jS2hkYEXY+cs1kFbI5SyAD2WxMa4Q3ShpxstzkMQMwf802tDpES3DpW88+NUKzLpkILNCUiCE4dfFca38dnv5dBTVSVq7iGCmrEu7+LeqSCYwbGi8l11eO2RX9G9P4wmHjC0Ynw75T7/FbotkShWK3C0a3+z1H+Z8GF/o6/BFhr1XC+FvnEYAt7Q4h3JnD1Z+YiIkjmnDsHsPDd1iAsPF6bwij9KOUch3RMK8Q1lkdYG3r71d3oxHVFlRmZwStEXGYPHag/frb/zFmOk+btcrXrswTGgkhpMdgXeOsi+hIs2DA9nZ/zl9vRDibU8iZaZxS2ohwAWtE0i/iohA2Eci33ONM0F3UrXGEpU+LExF29mNtt73D/Xm6PMKOiHDUx8xW1gnvZ3HFCRMx/fKjopcPA9CQTuLiI3aO9Ig+7Dv1RYQD7AFBuZWB8k28CpsE59yPVwhnHE9C2rM51KeSOOuAMbEf/0dNn6Ybaxjughr512cdMAbnTt0Rh+06BID+/5LVXieExw7ug0e+frg9sdFJ4PDiz42NBIVwDEYNbMQBOw0CANz/9nJ7+drmNle7cs9oJISQnoJ1EV671RDCVuUsr3ADDLHrtkbkkM0p85G+u7jGlpZOtHZkfX24+ysuIqyzUARPRnIv13qENd5eb/tIHmHrr6OptX9vRNhVUCOZF7VRL1d965Ku/i184jNad5EJe4IfNYVY2DHGzeoRRKH8vNZq7wTNU/YeiQlmWjBnWrm4+G8YgsfTp87vz42Cs8emhhSu+9TeGNCYBgDUp/WeX2NsevYaPcB1YxDFymKsjzriaFAIx0R39zL1Z0+73lMHE0KIHksEbtxuPJwd1q8eQLSIsJU1ImlaJpxCePJPp+MPzywI37dHrETNGqETjIGTkez1ZtRVF/UNEU1FpU/TbN/psY2kXGWV/VkjCkUJhzXVR2pXbnYe2jdwnXckfp+sv930y48s6Rh0qcCAKHmEzYiw5zeXTibwvVON4hJWKrLixuUZT8gh/umCKZH7dR6H87UlfK0bLp3n184jHHHmX7WkE4VwTL72sV0LtnHezSilMHfV1koOiRBCug2WYLDSmA3uZ8y9aG7TRYQ9QjhrTJZLiD5rRCG8ojSqNSKV9LtxA8v5+tJmafqLJISjRIT9kWVru2zOGxE2BqIUkLbyCDuyRhQSh0GV0SrNQTsPwbPfPhqPXnYEfnr6np4xudsGT5Yz3wOYOKIJ8645qezj9OcR1gtjrzUCyIvI9s7wJxphhFXg87Kvw+ZZCMsS6qyWCOTH3GHecGknv0WQtk6RXGjuatRSzXHhZLmYTBzRhP12HIh3lm4ObOM8T9z9xjJ878FZuOuig3D4hKGVHyAhhNQw1vnRFsJ9DCG8vT3ra5dIiK+gRiYXnEe4EF6PcFRrhE5UBGaN8CzXCcewx/Fx8gjrdIa1P29eZuexurJGmPtJB4xpcN86nLjniHz/XsFXQIyWg/FmVHjSqP6efUfbuVeQ6VJ9lUqhiLD1OesEo5VKrKSIsOfgy/Vk+hOTR2G/sQMxdnAfbG3L5+C2jqMzJCKczxoRjHNd1GR+0ZP+RYMR4SK455KD8ZWjdwlc77wzm7ViMwBg8QbmFyaEkKQnIjyoryWE3RFhK4LpFISduZwREU4Y6dPiVpbzen0TInj3R8fj0F2GFNjOP6ksOGuEO0qra2dXedN0EbbOS754R76xLYQ91gjXZDkra0Qiv5+gSO/bPzwe130qX+DA2y5uvtty4tfBZtYIT7sSsuTl91VAfBW6QYgWES5eCHv/K5RzrtLYwUZWEGePdXZE2BLCSfz6M5Nd29ke4ZAfiXNVoSFX6rdGIVwE9akkvn3CbvjMlDHa9T+bNhdvLt4IIJ8MXPejVErhthc+wtqtbb51hBDSE7FEmxVdsiLC29r1WQ76m5NxAGDhuu144J0Vdvo0K11W1Gqf/pn9goF96gpGCLVZIyLqjLCCGrqQbiKGENY1yVsjgvPKpq0MEJL3PkeNkhaaXNaVxgm/RzigXRlFYZAW8/22oL9h0NlxJo5owjG7DcMNZ+7jW1fywMqI83O0o9hmRLgulcCn9h/jaR+z/8jjiNdvISiEiySREJy+72jtutbOLD5966uYvWKLfaLWnTvmr9mGnz/6AS67551KDpUQQmoGK3K2pbUT6aSgqcFw6Pkjwka7g8YPxgNfORSnO6pNWQU1rIjwW0s2xdq3RdTrqc5CUUhcDTQF/kCHkLfHEeYRjmGNCJssl/F4hJ1NreNJiNiCLar3N6KbxObkvXaIt0EMfGWGA60R+vblpFD6NOv70E3QrEsl8JcvTMXeRVSztfBaI+LcUEXF2ZVtjciGWCPMLcIiubd/fgrOP2hHDG+qL/j9MCJcg+w1OvxHu2RDi/3T1J3UrB/Q1lb/JBFCCOmJOD3CfepS9uzzbY70aXWphCvX7v47DnKlfFIwBFnOrDQXhcZ00idWoj4+TmrTp4Vvc/ER43HN6XviswfvpNk2WKQkk/GFsLOlNa6gR+UKyo7+JhzZMAql/7LHF2Oy3AfXnISbzts/cvu4eIdiHXJgPuEy7DOoD39E2I2dXUFTeKJUpo4bjB+f5p5IWIk5jc6fZEPabY3QWT6O2d0oLBamlSaOaMLPPrk30slE1TJuUQiXwIDGNBZffyruuugge9l+Ow60X3+4thn3vWXkG9Z52exoMb8FQkgvwZk1om9d0r6gbjOzRtz+uSk4YtehPmHmfKSczSmkEglkcjltaWYdg/vW+SK7uvRaOpLib1NIqKaTCVxwyDhtBDBskl4yRCR70flWg6wLzutMnSNrhHUcpUwcDKJBc/NRTvz2A/1Nke5z+tjuxVVuC7rt8lWW8+zSqiRYlywuh28Y9156iE9slntCGeA+Rssa0enwCHs5aa+RmPvTkwoGDQHTr16mccaFWSPKwOEThuKpK47EsH4NGNAnjZN/9yLmrtqK3z71od2mVZMWxfqPUYkfLCGE1BK/fnI+1mxpsy+mW1s7MaAxbV9ALWvEkH51aKjzCyhnxCmnFFJJQUcmpy3NrGNQ37Tv0WtUTZcQvxKOetbWe4SDox+x0qeJ+y+gz1tstMkvtyciuiLC0VPJ6ahUaqswomas0GnxP39uii3iyoH/e3a/D4ucVoKoN3nFUmdnjQhOnwYAjRGLdxh+9QLWCLhLZ5cLxiLLxK7DmzCgj+EFe+Trh/vWt2qqJllVkFiSmRDS0/n90x/i3zOWubJG9K1P2RfQbWb6tFQigfFD+mLkAHfxImdkNZdTqE8l0J7J4aUF6yPtf1CfOt8zc++F96wD9BOgdVfe6KWJ/e3szBCa9vn0aZG6t0YTuL/bLjgAVxw/ESP7N+T3b0WEHQogauTWX80t/DONy8tXfixyW58QDooIBxQ1adBUQysWb+DfFxHu7BohbOWIroQCdhXUSBW2RsQhkZDIv3lOlusG6E4ov5w+3zcZpMUqB8pSdISQXoJ1uuvMKvSpS9piZFu7kUUilRRcfvxE/OfSQ1zbuSPCxmP3heu24cv/eCvSfgf3rbN9s95IqvVXVzkUMMSfNU7LyhH1oh1aYlnTRypGRFif39i9bOdh/XDZsRNc+7JsJkkRO6JeCY9wMQR9BzqCMjMEti9l6AW29Ub5vc2t6HNd3NmGMXj4a4fhxf9n3EjoUuuVirughmmNCKssF4OkY+JmEJws1834y4UH+pZ5i3C0dhrC2DqvNDuSVRNCSE/EeTHrW5ePCFuBgXTSKJbh9da6IsLKiAhv74heietMR2qntKPKmpMgMSgA7v7SwfjmcRPsSHUpEeEwMZmf7R/dGpF2iCufpcTzOSqVT5Umki9KEj1rRCGx0nUWiSBrRJBNoxQb4iDziW9Q5NOfR9hjjchUPiK8z5iB2GGAEfkvZx5hC9fNlJX72PIIlxhdTyY0RvwugkK4Qhyz+3BMv/xIvHf1CfayN8zcwhatHcYPKCGCT9/6Cva+ejpemL+uS8dJCCFdydbW/A1/H5c1wggMBHlV6z0RYd3knCCuOX1PHDlxmC2Q0gFRuaCJZiLArsP74ZvHTbSzV0SOCAc8lg9sbx5mlP4tYTfCYXvwbpdK+oV13hohdlqvqBHhwM+oCirGZ9MI0ODppGDkgAb8/FN7F72vG87cB1efNgn7BZQnLmSxti0EFahqp6MS34bz87Z+w51lOi4jlV84TQ3hNyNF77usvREXE0c0oX9DPofkh2uasWxji/2+pSMfEX5zsZEH83N3vhE5HRAhhHQ3NjuEcN+6JFLJBFIJsbNGBE3G8kWEY6ShskSgJZTSARfSwGpxjkt0XggXHxHOp/PS+Yf9FfWCsETsyAF5IeyNROo+T6c1olwR4apMlgsYwwmTjNzF/eqNfAAiglevOjbYAx6BgX3qcOFh4wMj9d7PJedR5SftaYzp0F2HFj2GONjWiDL2qetr0kij7HXQzWVUnOW+g/jxJybh/520G46eWFzGjyAohLuQx2avxhE3PosN29oBAG1mJonlm1pd7UqpN04IIbWMs+KZNaO8PpWwSy4HRXq9WSN0nsThTfXaba3rq7VrS1Rbj/Gty29QUMt5fe5TZ4irqMJPL4SDPcL2ZLkIV+e1W41ryQ4OIexFF6mzC2ok8qk9o2aNKFhZrgvnvPjKGJvf5I9Pm4Q3vn8s+pnFWrpiRP7S0+7fx6G7DsXi60/FxBFNXTAaVHyynMVdFx2E+//vkJK/96Qjg0kQ/RvS+MrRuxb8DcaFQrgKHHDtU9j5qmm2J27VFneJZQphQkhPo6nen62zrykq69NJO52kVWnOS9qTR1g34/+Lh4/XbmsXkzDFSTrhjhB723lxXuT71hv7bYnoT9ZZDsKu49ZhRhEW1rVj1IDgCWa60smW6E0mBJPHDMTeowfgBx/fo+D+jG3jTVCrJM7P6AuHjcMJe44AYBzz8Kbgm4NK4BXC1X6wa6dPK6Nm1P0mB/WtwwE7DS6576aGFPpqzhFdAfMIV4mcApZ5IsEW1ixMi7mrtuLGxz/AHz97QFnTvRBCSFdRn06i2ZM5p48pKhvM6G4qIYGzz50RYaX0s9TDJrs5sawRXq3iFML9G1LYato1nNf/xrRx2YwqhHXRq7BHwFb2gSj65VP7j8adLy/CyXvvgNcXbcRTc9f42viEK/JR4oQIGuuS+J8m5Wfw+PQjO3SXoXhz8SaM6K+PyleKa8/YC4fuMgQ7D+vXpfv14hfC1VXClZgsV0luPGsf15gPHDcIh3WRjYRCuAv43Tn7YtWWNtz50iKsbW63l/9v5kpte29E+Ef/nY03F2/CzGWbcdDOQyo6VkIIqQQ64eqMCANAv4ZUYCTUmXbKsEb4gwLBEV3jr6VNvOJQZ1Xo35jOC2HnmK2IcLs/N7wOnTgPkyhWALcxQtBjr9EDsPj6UwEAf/zs/rbdzklYZbtixFJQBbVvHDsBn54yBmMG9YndJwB858TdMG5I39jb6UpYVwPv5xKx4GHF6GY62Jc3/D+XHtpl+6YQ7gJO33c0ACPS+6sn5xdsf8h1z+DUvUfi5vONGu3WhLstrUyvRgjpnugm0/RxeISB/OQmHT6PsGayXFC00p4sZ2eN0KdPc4oZY4Z6q7m9c8zGGKOmbtNFhPOT5fxYk66aHBOto5BOJrSiV1vQw5E1Ii5BPupEQooWwQDw1WN2LXrbWqBWI8Jdnc3jG8dOwIwlGws3rCHoEe5Cwv5b/OBUtz9r2qxV9uv+jcYJ8b63lmPtVrefmBBCugM6kWZ5Au2IcIgQdleWAxp0EeEC1ghLm9TZ1gj3WdkpZpyeZqeYOH3fUQCA4/YYEThWJ/3qUjjnwLGuZdaxDO5XF7xdgFe6HDitEXHxfsZV1nuhdOXY/JPlum7foXRxZPjy4yfinxcf3LU7LREK4S7ktMmjfMsGmCJ3cF//CfGNRcZdleULnj5nDS78y5v2+jcXb8S4K6dh0frtlRguIYSUDZ0QbvREhIMmygHu7AeBEeEAYWdPljPfpzyT5aytrKADAJyy9w72a2e3e4zsj8XXn4rddog2+z+REFznyV+7w4AGXHvGXrjj8/7CS23mHBErWl4JrAl0xaR+LVRQo7fis0bUiBLmt1UYCuEuZPzQvpjxg+Pws0/uhQnDDWP/D07dAyP612tPqp/506v45C0vo93h+1q+KZ+H+L/vrgAAPD9vbYVHTgghpaGTBZZHuCFKRNhhjcgGpE8rlP7MzhqR1E+Wc/pyP3/oOHzNfFxfqpjw+p4TIvjswTu5CmFYWPnl+1ZSCCeKt0ZELbxRC3SlZrc+SxHgwkPHYe/RA7pu5xqs7+n8g/Qe6t13aMKJe0Z7qtHToUe4ixnarx7nH7QTPr7PKMxb3Yyp4wfj01PGQimFA3YahLeWbHK1f2fpZrS054Xw1rYMHp65EoP71NletdbOYFd+eyYLpcBsE4SQqqIrFOTzCIf4Yp0RYRVQWS7oUb83Imz7jT1RO+fWImI/qStHblyR/O7CtKR1vrfO75Ug7SixHJdy53CtJF0ZlLU+ljGDGnH1J/bskn3+4qx9An8nqWQC8689ObDQxePfPLKSQ+tWUAhXiQGNaUwdn8+9JyI4d+qOPiEMAPPWNLveX3b3OwCABvPR4KotrbjpmQ+1iaaPuvE5bGzpwPxrTy73IRBCSGR0j4ptj7A9WS74ht1bVrXQZLmfnr4nfv/0Aqzf1p6PDAZkjYB7deD7UkiIIGt+BmHe3O1mRLiS1gijildxNgfvZ7fz0PiZHrqcLtDu1Sgx/ekpY0PXl7sUcU+FQriG2GOkYY8YN6QPFm9oKdAaaDMjwX9/dQkAYL8djbx72ZzCqb9/EedO3RGrObmOEFID6ITwqIGGNcCK9g5oDJ485hVguoppyYTgnksOxsrNrfjU/mPwxPursX5BPmWlNQKvNSJID6oIwjUq3mhzEFZ+4j4VLi6QSiaKskZY9pXj9hiBbxw7AXuPqa4FoNaoEWswiQFvF2qIPUcNwLxrT8LT3zoaJ0yK791ZuH47Nrd04I1FG/HB6mb8+OH37XXT31+Ntc1tGHflNPxnxrLQfu5+YykWrG0ObUMIIXHwCoQX/98xtr1hw/YOAMBOQ6Kn39KVFU6I4OCdh+BT+4/xLTfGEJ4+LWjM5fCaOvsItUaYQriSHmHAuJEoRuAP6GPYV5rbOmteBO8wwCjuEVZ5r1xwDmH3hRHhGsO6MBw/aQSmz8lXCRrUJ41NLeF5hH/40Gz88KHZ2nWPzV5tz4i+d8aywEcqSilc9cAs1KUStFMQQsqGMyJ85MRhGDs4L3rXmE+uwoSwN4o6ZlAfzP3pSdjjR4/by7wRTjuXqjVZzlxu+Sa96dOURxlb68uhcYzx+yPMj33jCFe2jBP3HIG3lmzCjjFuCnQ8dcWR2BxyzUglpaisEVZe++a2aAVFqskZ+45GU30aH9t9eJftszdEhE/dZ2S1h1BWIv03EJGTRGSeiCwQkStD2h0oIlkROat8Q+ydWBeJEf3rMWpAA5751tH46jG7FN1fY10Sd7y0CED+gvL3VxfjgbeXu9plzQktHZkcmttYwIOQ7kgtnrOdc+W8EVHLwhVWWWzkgAZfpohGT9S04GQ5yyPsiwjnt/vkfqPt12WNCDtfe9KxOQtRfOmInfH+T07E8CZ/xDsOuw5vwpRxg33LrWPqW5cqakKeFVBpbq/964OI4LhJI7pkgp91E9ag8a73JOZfezL+cM5+1R5GWSn4jYlIEsDNAE4GMAnAuSIyKaDdDQCeKPcgeyMH7zwE/7r4ILz83Y/hlauOxaC+dbjo8J2L7q8umcCTZoTZOif86L/v44p7Z7raOcs7O60VhJDuQa2es50RYe8krW+fsBtSCcEOmnRiFg3pJOb89KTQfQRWljP/WhHepCeLhJNff2ayXbY47yEuXUg5RXpYfyJiTyIsJ95d/umCA/CVo+MHV6zc990hItyVjBzQgG+fMBF/uXBqtYdSUepSiW6VOSQKUW5dpgJYoJRaqJTqAHAPgNM17b4O4H4ATGpbJg7ddagduQD0RTcKcfJeRlL4v76y2F4W5gvryOSF8Efrtmtr1xNCapqaPGc7Hxl7heBnD94JC35+SsELbKHJXd5H/WJbIzwFNOy8wv4+nGOrhke4q9hr9AAMD7nxCKI7WSO6EhHB1z42oWRLC+l6ogjh0QCcs6uWm8tsRGQ0gE8CuDWsIxG5RERmiMiMdevWxR0rcXDfpYfgLxf6qxJZHGt6osZpUtu88tEGfO7ON+z3a7e24f2VW9DWmXUJ4ZnLNuOIG5/V9r+5pQM/eGgWNpmTXLxMf381Xv1oQ6RjIYSUlZo8Z2cd3ohivKlOBvXR5xv23uRb77zC1xbGXo+wpz8ril2O1FjOHsqRhaJa9G80otVZTV5oQrojUU5Huv+x3v8BvwXwXaVUaPhQKXWbUmqKUmrKsGHDIg6ROPnLhQfi+6fsgSnjBuMYxwQAb4QhY56kNrfoheoL8/MXtak/fxqn/v4lXPXALPz33ZWuduua25HJ5vDcvLWuiSQX/uVN3PXaUux3zZNo7cji8n+/i6cck/su+cdbOPfPr4Uey/b2DMZdOQ2fvf318IMG8NisVa7o9P7XPGl7ngkhLmrynO20RpQiBO+8cAoeuewI7TpvxNjajbV052FGYMCuIBcx4lsO3eqMdtdCRLhYGlmcifQwohiRlgNwphgYA2Clp80UAPeYd9lDAZwiIhml1EPlGCTJc8zuw10C+LlvHw3AiPx2ZnPY2tqJlo4sZi7fjOfnr8PyTa3oV5/CtvbCj7GemrMGD76zwrf8ew/Owr0zluPuLx2MQ3YZAgB4d9lme/36be148J0VePCdFXjje8fiWU/J52UbWzC8f72vEtSKza0AgJcWrA8d1/srt+D//vk2zjpgDH756cnI5RQ2bu/ANY/MwUWHjy94XIT0MmrynO2aLFeCEvzY7sGpJYMKRFjC+6Zz98eMJRvx4dptsfZZDt16zel74ZH3VuGpuWvK4jkuFm8UPC4iggGNaVxwsL50LyHdjSgR4TcBTBCR8SJSB+AcAA87GyilxiulximlxgG4D8BXKIK7hnFD+9r2h3QygSH96jF2cB8cvutQAEbN82e+dVSkvpo9YnmUmafz3hlGZokf/lefmm2Jo/jHd+9/D9+9f5b9fnt7Bkfc+Cx+8KB/W2eEqDMbXCbaamZV3esIaVuIJRu248UPe64tRymFm5750L7JIL2SmjxnqzJFhL3846L85CSvwPbuZ0CfNI7dIy+kfZXkPAvOOXAspo4fjAsPHVfyOM/YbzR2Gd5XO66uoJyVz2b++AR8+8TdytYfIdWkoBBWSmUAfA3GzOK5AO5VSr0vIpeKyKWVHiApjoF96rD4+lNx7B4jMLx/Ax78yqH4zdmTcfVpk7D4+lPx+UMK383fc8khrvcL1m7DHS8tQi6nXI8gF23Ybr/Oei4ka5uNqk4vaMRna0f+qez2kIh1u+lbXrTe2I9TCGdiiuJjfvkcLrjjDd/yZRtbcG+BQiPdgcUbWvDL6fPxlbveqvZQSJWo1XO2O2tE+fo9YsIwjDMnKPmsEQHb2FkkbA+wniH96nHvlw8palKZDusj6M7WCEJ6GpFytCilHgXwqGeZdpKFUurC0odFys1+Ow7CfjsOst//5PS98J2Tdscvn5iHfccOxDf//a6r/TG7DcOOQ/rgz5+bgi/9fYa9/JpH5uCaR+YAAD59wBj8563lriIeI5rqXf1YKdga0klMe28Vjpw4FE3mrONWh+d3+vtrcMC4QVAK2Naewb5jB9rr2h3tvvCXN/DsvLyoXtPcjtEDo1cNsh7PKqVcjyc/86dXsWpLG07fd5TPwtGdsMTG5tbaz/FJKkctnrPdeYQrowSD+vVGfsOyRlSSXK58JZsJIeWBleV6Mf3qU7j6E3sCAI6aOAyzV27B+m3tuPzfM+3Kc8dPGoGfnr4nrn1krs+SsPeYAbj/7eWuC9x/3nIX6LAm5S3Z0IKv/uttHDFhKIb1q8e3TtwN7Z35/v7f/e+5tpv54xOQEKCpIW1HhAG4RDAAbNjmFsLNbZ148J0VOG/qjli6sQU7DemrTbnUnsmhwZz08fDMlVi1xUjo39qR7dZC2IqyZ7yheUKqjDMiXG6PrNVf0GQ5X/vAGHBl/98MMlNgWrl4CSHVh0KYADBO0EdMGAalFHYe2g/7OGrIf+6QcZgwvMmXBWKPkf2x56gBmLViS+T9vPihMTHugXdW4IYz9w5sN/kn0wEYkwHDchlf88gcvLl4ExaaOUj/9spi/HL6fCzb2II/v7gIqYTgkcsOx+479Mf091fb2/1v5kos29iCMYP74P/dlxfhLR1ZDNSkgWxu64RCPodmrWJF2ekRJrWGM/qaq1Ao1j9Zzsof7N6ft+RyOXT5H87dD1sLVOO85MidMahPHc46YEzpOywW3iMT4oJCmLgQEUx22BIsDtllCK771N646gFjItzIAQ3Ye/QAnDZ5pE8I929I4b2rT0Srmb2iPZPD5+/0+3Kdk+qCuPzed/HO0s2B699cbEygW7+tHZlc3u7w5xeN1GqZnMJ5f34db/3gOPz2qQ/t7b5z33v+zmAIYQulFGYs2YQpOw3CCb95AVtbO/F+gcpW5cRr34iC02ud9Xi5CakmzryzmQrloE34CmoYf717G9LPiMwO81i5SuG0yaMKtkknEzjvoB3Lts840I1BiB4KYRKZc6fuiMZ0EofuOgTDm4zJIxccPA4/f/QDV7u3fng8AKCxLomDdx5SsN/j9hiBp+au0a4LE8FOpv78aQDApUf5S4Zu3N6B8Vc96luuwzmB79FZq/HVf72NH582ybZO/Hr6PHzzuIlIJATzVjcjpxT2GNk/Ut9xWLB2G4779fP42xen4qiJ0fO3Osff2plFvwqUaiWkGHJKoSGdQFtnDtlc8ZlfdFgaL+jGzxuAPmPf0UgmEjjFrLxJCOm98CpJYnHGfq4CVWisS+LtHx6PBWu3Yer4wYHb/fLTk/H47NVYubkVc1Ztda27+fz9sHRDC5oa0jjj5pexemtb0eNbtrGlcKMQWjryEdWv/uttAMA9b+SzSfz+mQX4/TML8Ny3j8Ypv38R2ZzCzB+dAEkA2ayyPYBhvLN0E+auasZpk0faEwdnLN6I5Zta7c/X+oz+9fqSWEL4768usV9vb89QCJOaQSnjfNHWmUNnhTzsXmtEXhd7rRGCT2giuF09eY4QUn14lSQlM7hvXagIBoCzDhiDsw4Yg0w2h7XN7Zizcis2tXTgpL12QH0qiQkjmgAAvz93P5x926tQyvDT3fbCQgDAtMsOxy3PfYT2zlxg9BgAps1aBQC47NgJeGfpJtuTHJWzb3sN91xyML72r3fsZfPWNPvaPTV3jf2od/JPp2PkgAY7agwAXzl6F/y/k3b3bZfLKXzyllcAAM98sAa3f94ok33Wra8CyN9o1Jn5pV79aANWbG6NnBnj1YX5stbrmtvx5Jw1OHq3YRgzSGN8JqQLySmFhlQSQGfFyvN6rURie4TDt2MWB0J6LyVWfCckHqlkAqMGNuK4SSPw6Slj7YioxdTxg7HoulOx+PpT8YXDxgEADho/GHuOGoCbz9sft352f7vtowFlVgHgiuMn4voz9ylqjOfc9hrWb2sPbXPttLmu904RDAC3PPcRHp+9yk6X9MDbyzHuymk431FOWmf7uO5Ro9+tbRn774m/eaHgmDdu78Djs1e5ln38Dy/hBw/NxoV/ebPg9tXg10/Ox9tLN1V7GKSLsKwRQHgBnUpQSHb/5BN74typO7qKbfRUGPQmxA2FMKlZRg5oxK8/Mxl/uuAAe1kqmcAH15yE+deejEmj+mOv0f3RkE7gd+fs69t+9MBG/OHc/QAAOw/ti2e+dRQevewITB03GBNH9MPsn5yI35w92W5vXaSDuOX8/VGXiv5f5tK73sYRNz6Li/82A1fcOxOAO2K7YXsHtrdn8OlbX7GX/cmMgG915AHe1p7BV//5Nh6b5Ra6gOEJvv6xD7D/NU/i0rve1o7DKkRSiO89OAvn3vaab/mCtc0u73E5yOYUfv/0h/jULa8UbhzAovXbccW975Z9bKQy5BTslIWVigh7iRroHd6/Add9au9Y/7+7G4x5E6KH1ghS03xqf3+aIetiCgCPfD0fFf74PqPw26fmY6/R+dRvp00ehb1HD8CgPnUY0MeIPv/7ywdDKaMc66G7GKWov3zUzrji+IlYubkNx/zyOXv71793LK5/7AMcOG4wTtl7JE7ZeyT++vIiXP2/OZHGv2Jza2gqsz1//IR2+eaWTiQEdnq6abNWYdqsVfjwZycjlRB878HZ+OR+o7FsYwtuff4j3/YHjhtkZ9TI5hSen78u1GuczSn86/WlAIAtrZ12ntPZK7bg4394CQDwwneOQd/6JNKpBPo3pPH20k3YfYcm9KmLfxpxFlPJ5RQeencFTps8CulkdCHy9bvfxuwVW3HUxGE4fd/RhTcgVcNKX1ZvCs2y57kOyhdcpcIZhJDuQ8+9/SW9jmRC8K0TdsOJe7pngo8b2tcWwYDhI0yYs2hG9G/A4utPxVUn74H6VBLjh/a1LRkf32ckRvRvwG/O3teV8ujCw8Zr9/+5Q3bCtMsOjzTWv39xauC6n/5vDlZubsWI/g2uaDgATPj+Y7jgjjdw9xtL8Zk/vYqF67f5tv/UfqNx6t4jXcveXLQRW1o6scFj+bAEygNv5wuhTP7JdPztlcVYsLYZMxZvtJf/e8ZSHHDtUzjuV89jw7Z2fOqWV3DZ3e/69r90Qwt+8r/3Q6N+zkmJ985YhivunYk7XloU2F7HwnVGpPt/M1dh5eZWvLVkY4EtSLWwfgr15k1spsxZI4KwPcI0BBBCAmBEmBAP/3fULvjLy4tx4aHjAttcc8ZeGDOoEX3rUvjMn17FmfuPwZUn744+dSn84qx98J373sP4oX0DbQlHTBga2PedLxuCcN+xA+18p05eWpCfAPj3V5b41p8zdUfsNbo/npq71m5707MLcNOzC1CXSmD+tScDAC7+2ww8NXcNvnvS7i5hCuRLY/dvyJ8ibn7WiDyvbW7HAdc+BcCYNPjLJ+bhpmcX4MenTcIXDhuPy+55B+8u24yDxg+BCPCx3YfjuXnrsMfIJnvS3m+enG/3e6WZm/rDNdvQ3Nbp841bnH7TSxjRvwG3fW4Ksjll53x+au4aewLl4utPxcbtHVi2sQWTxw5ENqewvSNT84VQejrWTVHlrRH6fhkRJoQEQSFMiIfhZpQ4jAsO3sl+7W376SljccKeO6CpPoXtHRms2dqOFz9ch2unzUU2pzCkbx1EBD8+bRJe+nA9RICn5q7FtMsOxyV/f8u2Uuw1uj/qU0n84dz98OwHa/HAOyt842huz+Cg8YNx0eHj0bc+hb1GDbCj33ddfBAA4Mw/voK3lhg2iY5MDuOunObq44bH3XmgnViT9sK46dkFAIBfTZ+PLxw23q6udeldb/naLvjZycgp4G5HSjqL+99ejunvr8aMHx6HpAhSpk3ijJtfRmtH1szesQWX3f0OFqw1IuFf/9iu+MMzC+w+sjmFA3/2FLI5hae/dRS+de9MvLtsM/7v6F3wlaN3CRTZpLJYleQa7cly5VWmXzl6V3z7PzOxwwB3dpWgghqEEGJBIUxIBbA8tk0NaTQ1pLHr8H44/6CdcM+bS3HkBMOr+4XDxuMLh41Ha0cWKza3YNfhTXj5yo9h7qqtuPKBWbj8uIkADJ/z8ZNG4PAJQ+1Jd05uOm//0ApZ9//foTj95pcxc9nmguOedfUJeGvJJvzj1SV4+oO1AIxUcLc85/che+nI5LB8Uws6MsGPvXf9/mOhfTS3Z7DbDx5HU0MKt10wBc/NW4t3PeN+eOZK+/VYT1q4z9/5hh1tPPZXz9vL//jcR/jzCwuRySk88vXDscfI/kgmBO8t34xJI/vboptUBisiW6mIsJWe0YuVTs1bYpkQQiwohAnpIupSCXzukHG+5Y11Sew6vMl+v8fI/vjvVw9ztWlIJ/Gp/cfgqInD0NqZxZhBfTB7xRYs2dASqUzsf796GLa2deLoXzyHQ3cZgiMmDMUOAxrR2pGxs03cd+khaGpI4+jdhuPQXYZi4g8M0fqN4ybgOyfuhodnrsQ37nkXAPC1Y3ZFTimXQO7I5nD4Dc/G/VgAAMdPGoE1W9vw3nKjXHdzWwbn/tmfwcJLKinYZ8wAezunbcSLVdbXmvxncelRu+DKk/05n0n5yHkmy3V2kUeYEEIKQSFMSDdiSL+86N1r9ABXhoxC9G9I422z/LWThT8/BR+t22YXNQEM0f7ylR/Dys2tqE8ZUbzT9x2N0/YZZU80BIBvHjcRV9z7Lo7dYzgu/7c/Wg0Ajekk7rr4IPzmyfkuofqDU/fAqi1tuOOlRfjCoeOw5+gBmPyT6QCAdFKQU+GRw9+evS9O2msHfGr/MbjqgVm4+42l2n33rU9i/bYObR/nHDgWXzpCP/mRlI+vmVUarawgXZY+rUv2QgjpzlAIE9LLSSTEJYItRg9s9FW0c4pgwBDMN523P5RSaEwnsf9Og/DE+2tw6t4j8cpH65HNKTu12V0XH4T2TBYCQUc2h751SWRzCofuMgSH7DIEIoKHvnoYWjuyOGSXIQCMR9rtmRymvbcKM5dvxqaWTvxv5kpMv/xITHSM+StH74LF67fjmN2H4dBdhmLOqq2YOm4wdhzcB4mEoLmtE3tfPd1u//DXDsPOw/qxBHUX8ey8dQDyQrjs6dMCYPo0QkgheBUghJSMiOCkvYyUbdZEwo/vM8rXzoouW4ULUklxVfPad+xAX78N6STOPGAMzjQ9oFaRFCdjB/fB3ZccbL/3RsqbGtJ49LIj0JHNYWtrJ/YZMxCk67GsEV0dEWb6tDz0SxPihkKYENIrmDSqf7WH0OuxIvBxLD2lsOOQvgCAIX0L++h7OlGr7BHS26AQJoQQ0iUM7JPGQ189DBOG9+uS/V32sV2x39iBODKkqiIhpHdDIUwIIaRLEBGf/aWSpJIJHLP78C7bHyGk+8HkmYQQQrqEZILP5wkhtQWFMCGEkC6BOrj6cK4cIW4ohAkhhFQMZ4YI4YytqiHMqkyIFgphQgghFcNZcjtBIVw19ttxIADYOboJIQacLEcIIaRidGSdQriKA+nlTBk3GLOuPgFNDelqD4WQmoIRYUIIIRWjM8uIcK1AEUyIHwphQgghFcNpjaAOJoTUGhTChBBCKgYjwoSQWoZCmBBCSMVwRoSZR5gQUmtQCBNCCKkYzslyzGFLCKk1KIQJIYRUDGdEOEslTAipMSiECSGEVIzObF78ZnO5kJaEENL1UAgTQgipGK6IMHUwIaTGoBAmhBBSMZxZIxgRJoTUGhTChBBCKoZzslwmR48wIaS2oBAmhBBSMZzWiByFMCGkxqAQJoQQUjHcHmEKYUJIbUEhTAghpGKs39Zuv6Y1ghBSa1AIE0IIqRirtrTZrxkRJoTUGhTChBBCKsaqLa3260F96qo4EkII8ZOq9gAIIYT0XFZvacNhuw7BZ6aMxWn7jKr2cAghxAUjwoQQQirGqi1tGDWgEafvOxqJhFR7OIQQ4oJCmBBCSMVo7cyibz0fPhJCahMKYUIIIRUjm1NIMRJMCKlRKIQJIYRUjGxOIUkhTAipUSIJYRE5SUTmicgCEblSs/50EXlPRN4VkRkicnj5h0oIISQKtXTOphAmhNQyBY1bIpIEcDOA4wEsB/CmiDyslJrjaPY0gIeVUkpE9gFwL4DdKzFgQgghwdTaOTurKIQJIbVLlIjwVAALlFILlVIdAO4BcLqzgVJqm1LKypTeFwCzphNCSHWomXN2LqegFCiECSE1SxQhPBrAMsf75eYyFyLySRH5AMA0AF/UdSQil5iP4WasW7eumPESQggJp2bO2VlTayeFQpgQUptEEcK6M5gveqCUelAptTuAMwBco+tIKXWbUmqKUmrKsGHDYg2UEEJIJGrmnG2VVE4mKYQJIbVJFCG8HMBYx/sxAFYGNVZKvQBgFxEZWuLYCCGExKdmztm2EGZEmBBSo0QRwm8CmCAi40WkDsA5AB52NhCRXUWMM52I7A+gDsCGcg+WEEJIQWrmnJ2xhDA9woSQGqVg1gilVEZEvgbgCQBJAHcqpd4XkUvN9bcCOBPA50SkE0ArgLMdEzEIIYR0EbV0zs5RCBNCapxIdS+VUo8CeNSz7FbH6xsA3FDeoRFCCCmGWjlnWxFhVpYjhNQqrCxHCCGkIuTMIHOCQpgQUqNQCBNCCKkIjAgTQmodCmFCCCEVwfIIJ5g1ghBSo1AIE0IIqQhW+rQU8wgTQmoUCmFCCCEVIcOIMCGkxqEQJoQQUhGsyXKpBC81hJDahGcnQgghFSGTtfIIV3kghBASAE9PhBBCKoIVEU4yIkwIqVF4diKEEFIR8iWWqzwQQggJgKcnQgghFSGbY0SYEFLb8OxECCGkIthCmFkjCCE1CoUwIYSQipCPCFMIE0JqEwphQgghFYFCmBBS61AIE0IIqQhZRSFMCKltKIQJIYRUhGwuB4BCmBBSu1AIE0IIqQhZQwcjRSFMCKlRKIQJIYRUBCsinGDWCEJIjUIhTAghpCLYEeEkhTAhpDahECaEEFIRMowIE0JqHAphQgghFSFnZo2gR5gQUqtQCBNCCKkImSzTpxFCahsKYUIIIRUhxzzChJAah0KYEEJIRciwshwhpMahECaEEFIRchTChJAah0KYEEJIRbAjwswaQQipUSiECSGEVISsJYSZR5gQUqNQCBNCCKkIWUaECSE1DoUwIYSQipBl1ghCSI1DIUwIIaQiZJlHmBBS46SqPQBCCCE9kwsPG4dP7j+aleUIITULhTAhhJCK0NSQRlNDutrDIISQQGiNIIQQQgghvRIKYUIIIYQQ0iuhECaEEEIIIb0SCmFCCCGEENIroRAmhBBCCCG9EgphQgghhBDSK6EQJoQQQgghvRIKYUIIIYQQ0iuhECaEEEIIIb0SCmFCCCGEENIroRAmhBBCCCG9EgphQgghhBDSK6EQJoQQQgghvRIKYUIIIYQQ0iuJJIRF5CQRmSciC0TkSs3680XkPfPfKyIyufxDJYQQEgWeswkhJBoFhbCIJAHcDOBkAJMAnCsikzzNFgE4Sim1D4BrANxW7oESQggpDM/ZhBASnSgR4akAFiilFiqlOgDcA+B0ZwOl1CtKqU3m29cAjCnvMAkhhESE52xCCIlIFCE8GsAyx/vl5rIgLgLwWCmDIoQQUjQ8ZxNCSERSEdqIZpnSNhQ5BsZJ9fCA9ZcAuMR8u01E5kUZpIehANYXsV13oCcfG9Czj4/H1n0p9vh2KvdAygTP2V1HTz42oGcfX08+NqBnH19Zz9lRhPByAGMd78cAWOltJCL7ALgdwMlKqQ26jpRSt6FEL5qIzFBKTSmlj1qlJx8b0LOPj8fWfemBx8dzdhfRk48N6NnH15OPDejZx1fuY4tijXgTwAQRGS8idQDOAfCwZ1A7AngAwAVKqfnlGhwhhJDY8JxNCCERKRgRVkplRORrAJ4AkARwp1LqfRG51Fx/K4AfARgC4BYRAYBMT70TIYSQWobnbEIIiU4UawSUUo8CeNSz7FbH64sBXFzeoQXSk9P89ORjA3r28fHYui897vh4zu4yevKxAT37+HrysQE9+/jKemyilHYOBSGEEEIIIT0allgmhBBCCCG9km4jhAuVDK11RGSsiDwrInNF5H0R+Ya5fLCIPCkiH5p/Bzm2uco83nkicmL1Rh8NEUmKyDsi8oj5vicd20ARuU9EPjC/w0N6yvGJyOXmb3K2iNwtIg3d+dhE5E4RWSsisx3LYh+PiBwgIrPMdb8X00xLosFzdu393/DCc3a3Pr4ec96u+jlbKVXz/2BM+PgIwM4A6gDMBDCp2uOKeQwjAexvvm4CMB9G+dMbAVxpLr8SwA3m60nmcdYDGG8ef7Lax1HgGK8A8C8Aj5jve9Kx/Q3AxebrOgADe8LxwSi0sAhAo/n+XgAXdudjA3AkgP0BzHYsi308AN4AcAiMvLyPwUgzVvXj6w7/eM6uzf8bmmPkObsbHl9PO29X+5zdXSLCBUuG1jpKqVVKqbfN180A5sL4MZ8O4z8szL9nmK9PB3CPUqpdKbUIwAIYn0NNIiJjAJwKIy+pRU85tv4w/qPeAQBKqQ6l1Gb0kOODMWm2UURSAPrAyDnbbY9NKfUCgI2exbGOR0RGAuivlHpVGWfYvzu2IYXhObsG/2844Tm7+x6fSY85b1f7nN1dhHDckqE1jYiMA7AfgNcBjFBKrQKMEy+A4Waz7nbMvwXw/wDkHMt6yrHtDGAdgL+YjxFvF5G+6AHHp5RaAeCXAJYCWAVgi1JqOnrAsXmIezyjzdfe5SQa3fV3ooXn7G53bD32nA30mvN2l52zu4sQjlwytNYRkX4A7gfwTaXU1rCmmmU1ecwi8nEAa5VSb0XdRLOsJo/NJAXjsc0flVL7AdgO41FNEN3m+Ezf1ekwHjGNAtBXRD4btolmWU0eW0SCjqenHWdX02M+P56zjU00y2ry2Ex67Dkb6PXn7bKfs7uLEI5UMrTWEZE0jBPqP5VSD5iL15ghfZh/15rLu9MxHwbgEyKyGMYj0I+JyF3oGccGGONdrpR63Xx/H4yTbE84vuMALFJKrVNKdcKoNnYoesaxOYl7PMvN197lJBrd9XfigufsbnlsQM8+ZwO947zdZefs7iKEC5YMrXXM2Yt3AJirlPq1Y9XDAD5vvv48gP86lp8jIvUiMh7ABBhG8JpDKXWVUmqMUmocjO/mGaXUZ9EDjg0AlFKrASwTkd3MRccCmIOecXxLARwsIn3M3+ixMLyQPeHYnMQ6HvNRXLOIHGx+Lp9zbEMKw3N2Df/f4DkbQDc+PvSO83bXnbPLNeuv0v8AnAJj1u5HAL5f7fEUMf7DYYTp3wPwrvnvFBhlTp8G8KH5d7Bjm++bxzsP3WTGOoCjkZ+B3GOODcC+AGaY399DAAb1lOMD8BMAHwCYDeAfMGbjdttjA3A3DN9cJ4wowUXFHA+AKeZn8hGAm2AWIOK/yN8Dz9k1cBwRjpPn7O55fD3mvF3tczYryxFCCCGEkF5Jd7FGEEIIIYQQUlYohAkhhBBCSK+EQpgQQgghhPRKKIQJIYQQQkivhEKYEEIIIYT0SiiESa9FRI4WkUeqPQ5CCCGF4TmbVAIKYUIIIYQQ0iuhECY1j4h8VkTeEJF3ReRPIpIUkW0i8isReVtEnhaRYWbbfUXkNRF5T0QeNGuyQ0R2FZGnRGSmuc0uZvf9ROQ+EflARP5pVqQhhBBSJDxnk+4EhTCpaURkDwBnAzhMKbUvgCyA8wH0BfC2Ump/AM8D+LG5yd8BfFcptQ+AWY7l/wRws1JqMoya7KvM5fsB+CaASQB2BnBYhQ+JEEJ6LDxnk+5GqtoDIKQAxwI4AMCb5o1/I4C1AHIA/m22uQvAAyIyAMBApdTz5vK/AfiPiDQBGK2UehAAlFJtAGD294ZSarn5/l0A4wC8VPGjIoSQngnP2aRbQSFMah0B8Del1FWuhSI/9LQLqxUe9uis3fE6C/6fIISQUuA5m3QraI0gtc7TAM4SkeEAICKDRWQnGL/ds8w25wF4SSm1BcAmETnCXH4BgOeVUlsBLBeRM8w+6kWkT1ceBCGE9BJ4zibdCt5JkZpGKTVHRH4AYLqIJAB0AvgqgO0A9hSRtwBsgeFJA4DPA7jVPGkuBPAFc/kFAP4kIj81+/h0Fx4GIYT0CnjOJt0NUSrs6QQhtYmIbFNK9av2OAghhBSG52xSq9AaQQghhBBCeiWMCBNCCCGEkF4JI8KEEEIIIaRXQiFMCCGEEEJ6JRTChBBCCCGkV0IhTAghhBBCeiUUwoQQQgghpFdCIUwIIYQQQnol/x+D3ldFKbRTrgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "026ns_image_1083297968960_clean.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADDCAYAAAAya0IYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADPvUlEQVR4nOz9eZhlW3bVh451+i6azJt5763b1a0ecSVUhVBRVbKMbIGQ/ISwbLARNgJJUMIGY/vBQyCMkeEDZJDBfo+2+MQTGFCDMQgkPURjCwmrLyQslaRS9X3dNjMj4vRxzn5/RPxWjL3y5M0+IzJzju/L70acs8/ea6+1zr4xxhxzzlRVlQKBQCAQCAQCgUAgEAgEbgaN0x5AIBAIBAKBQCAQCAQCgfsPISgEAoFAIBAIBAKBQCAQuGmEoBAIBAKBQCAQCAQCgUDgphGCQiAQCAQCgUAgEAgEAoGbRggKgUAgEAgEAoFAIBAIBG4aISgEAoFAIBAIBAKBQCAQuGmEoBC450gpvS+l9CWnPY5AIBAInCCl9NGU0q+/wWOrlNIbb/E6t/zZQCAQCAQCZwshKATuOaqqeq6qqh867XFcDyml355S+lhKaZxS+kcppfOnPaZAIBB4kJFS6qaU/mZKaS+l9NmU0v/ztMcUCAQCZw13Wpi9kfPF38WBayEEhUBgA1JKz0n665J+h6THJE0k/ZVTHVQgEAg8+PgWSW+S9FpJ/56kP5xS+vJTHVEgEAg85Ii/iwOvhhAUAvccbqtNKX1LSunvp5T+TkppP6X0cymlN6eU/mhK6YWU0idSSl9mn/26lNIvHh/74ZTSNxbn/sMppc+klD6dUvrdrrgeR76+LaX08ZTS8ymlv5ZS6l9jmP+ZpH9SVdUPV1V1IOmPS/qPUkpbd2dWAoFA4OwgpfT2lNKPpZQuHz9T/1JKqVMc9h8cP4dfSin9+ZRSwz7/9cfP6ksppR9MKb32Bi/9tZL+VFVVl6qq+kVJf0PS77ozdxUIBAJnBymlz0kp/dDxc/Z9KaWvsvd+KKX0u+3335VS+tfHP//w8cv/NqV0kFL6T1NKX5JS+mRK6ZuPn8kfTSn9Z7d6vg3Djb+LA9dECAqBs4DfJOl/lXRO0s9I+kEd7c0nJf1JHSmi4AVJXylpW9LXSfqLKaVfLUnHUaz/p6RfL+mNkn5dcZ3/UdKbJb31+P0nJf331xjTc5L+Lb9UVfUhSYvjzwcCgcCDjpWk/1bSBUnvlPSlkv7L4pivlvRrJP1qSb9Z0tdLUkrpP5T0zZL+I0kXJf2IpO+83gVTSuckPSF79h7//Nyt30YgEAicPaSU2pL+iaR/JulRSf+VpL+bUnrL9T5bVdW/e/zj51dVNaqq6ruPf39cR8/sJyX9Tknvuc3zOeLv4sA1EYJC4CzgR6qq+sGqqg4l/X0d/QH6rVVVLSV9l6RnU0q7klRV1fdXVfWh6gj/SkcP4i8+Ps9/Iun/W1XV+6qqmkj6H7hASilJ+j2S/tuqql6pqmpf0p+R9NuuMaaRpCvFa1ckhRIbCAQeeFRV9d6qqn68qqrDqqo+qiNh9yqR9vh5+nFJ/7Okrzl+/Rsl/dmqqn7x+Ln+ZyS99QZcCqPj//qzN567gUDgQcQ7dPTM+9aqqhZVVf0fkr5PJ8/RW8Ufr6pqfvw38vfr6G/jO4H4uzhwTYSgEDgLeN5+nkp6qaqqlf0uHf+hmVL6ipTSj6eUXkkpXZb0H+hIjZWOIlufsHP5zxclDSS999hadlnSPz1+fRMOdOSCcGxL2r/RmwoEAoH7FcepZ993XBhxT0eiwIXiMH/GfkxHz2DpqP7B/2LP2lckJR1FzV4NB8f/9WdvPHcDgcCDiCckfaKqqrW99jFd/zn5arhUVdW4ON8T1zr4JhF/FweuiRAUAvcNUkpdSf9A0rdJeqyqql1JP6CjP1Ql6TOSnrKPPG0/v6QjceK5qqp2j//tVFU10ma8T9Ln27VfL6kr6ZfvxL0EAoHAGcdflfRLkt5UVdW2jlIYUnGMP2OfkfTp458/Iekb7Vm7W1VVv6qqH321C1ZVdUlHz/HPt5c/X0fP40AgEHiQ8GlJT3vtGR09Rz91/PNYR4Ew8PgNnPNcSmlYnI/n8q2czxF/FweuiRAUAvcTOjp6eL0o6TCl9BWSvsze/x5JX3dc5GYgq49wrAD/DR3VXHhUklJKT6aUfuM1rvV3Jf2mlNIXHz+c/6Sk//04VSIQCAQedGxJ2pN0kFL6FZL+iw3H/L9SSudSSk9L+q8lkXf71yT90eOq4Eop7aSUfusNXvdvS/rvjs/7K3SUqvYdt3EfgUAgcBbxEzoi+X84pdROKX2JjmqKfdfx+z+ro6KHg+Pi4t9QfP55Sa/fcN7/IaXUSSl9sY5qjv392zwfiL+LA9dECAqB+wbHD60/oCPh4JKk3y7pH9v7/z9J/29J/6ekD0r6seO35sf//abj13/82ML7LyRtLFZTVdX7JP1eHT1AX9DRH9dlQbJAIBB4UPGHdPSM3deRGLupSNf3Snqvjv5Q/X5J3y5JVVX9Qx0Vwf2u42ftz0v6ihu87p+Q9CEdWXX/laQ/X1XVP73luwgEAoEziKqqFpK+SkfPxpd01ILxa6uq+qXjQ/6ijooePi/pb+no71HHt0j6W8epZdRJ+KyO/j7+9PHxv/c2z+fjjb+LA9dEqqrqtMcQCNwVpJQ+R0d/yHaPC4MFAoFAIBAIBAIPFI4dDn+nqqqnrnNoIHDHEQ6FwAOFlNJXH1u9zukoQvZPQkwIBAKBQCAQCAQCgTuPEBQCDxq+UUc1Fj6koz7qm/J+A4FAIBAIBAKBQCBwm7hrgkJK6ctTSu9PKX0wpfRH7tZ1AgFHVVVffty94XxVVV9dVdVnTntMgcBpIZ7DgUAgcPqIZ3HgbqOqqh+KdIfAaeGu1FBIKTV11EbkN0j6pKSfkvQ1VVX9wh2/WCAQCASuQjyHA4FA4PQRz+JAIPCg4245FN4u6YNVVX34uIrpd0n6zXfpWoFAIBC4GvEcDgQCgdNHPIsDgcADjdZdOu+Tkj5hv39S0q+91sHNZrNqNpvCLZFSUqPRULfbVbvdVlVVWi6XWq1WWq/X+X1JqqpK6/U6n2uT46Kqqtq5U0q1Yzkfr/Nff8+vV1VVPo8fu16vr/keP3MMr/Ez1/f78d95jbE0Go3affnYymv4PXBMeSzjZhwc73O1Xq+1Wq20Wq2uus/yOD+fpKs+t+keyvnnvD4Hm9aonMtyXspjyrnxz/lcltcoz1He86axbbq/cnzl8axzOd5N9/lq57gZlN+JQA0vVVV18bQHcQu4qeewJDVHw+r1r1vr+Z/v39WBBQKBwM1gprEW1fzq/ynfH7i5v4njORwIBM4o9nVp49/Ed0tQ2PTQrzGVlNK7Jb1bkprNph577DHxc0pJzWZTFy9e1Ote9zp1Oh1dvnxZzz//vPb397VarTQajdTtdjWfz7VYLDJhdXFBOiLwh4eHtffa7bYajUZ+rd1ua3t7W91udyOJ7PV6Gg6H6nQ6Wq1Wms/nOjw8ahzQ6XTUarXy77PZTFVVqdlsqt8/+p/BarVSu91Wp9NRVVWaTCZaLpeqqkqr1UrNZlOdTkedTkeNRiMTd+mI4B0eHmo8HquqKnU6HY1GI3U6Ha3Xa81mM0lSq9XSer3WZDLRdDrVdDpVVVVqNBpqtVoaDAba3t5Ws9nUfD7XcrnUcrnMY2Ec3W5X/X5f7XZb3W5XvV5PkrRcLjWfz7W/v68rV65oPB7nz/R6vfzv8PBQ0+lUs9lMrVZLw+FQrVZLk8lEBwcHmkwmWq1W6vf7GgwGajQaec6ceLfbbbVaLbVarZqgxLwwV4eHh3nuXaxgbg4PD9VsNtVqtYRotVgstFwuJUn9fj/vBQQP9oWLHoyL9WTOWXuuxXHs49VqVXuduVytVjVxCHGDtW80GvkeF4tFPke73a6d18UnrslcsP9L0a0UH1JKeW9u+g5twrUEl9vFzZ73Ro+/3nHlGhfvfeyGB3S2cN3nsFR/Fvc00LPv+0o9e7/+2R4IBB5I/ET1L097CLeDm/qbOJ7DgUDgrOJfVP/bxr+J75ag8ElJT9vvT0n6tB9QVdV7JL1Hkrrdbn6wtlottdttLZdLHRwcaDweZ3LZ6/U0mUwyyYbsORncRIaazWYmjZsixuv1WovFQs1mMx/rBOTw8FCLxUKdTie/v16vMynneHcxzGYzLZfLLEJMp1N1u121Wq38O8RUkubzuXq9Xia+jMtFD44vCSXXhtwvl0ullGrvLxYLTadT9ft9NZvN2nuHh4c1JwBzhHgCoee8jG+1WuX75zVe5x9iCeS71+vVBKCUUk2Q4Zzz+TyLMO12O983AoOkPN+IRu4kYR8hOHBPjUaj5nqZz+dqtVr5s4yJ992x4XPDvuDeXXjw/dZsNmuOEd53lwhwNwn3x/lZJwSSTY4CxuOuEcZdOhtKUYF79Tl9NWxyRNwJgeFmz3Gjx19PTLgb4sgZwHWfw1L9WbydzodFJRAIBO4sbupv4ngOBwKB+w13S1D4KUlvSim9TtKnJP02Sb/91T6wWCxUVZVarVaO7EvSZDLRcDjMUWaitk6UIOkelS1TBIj+uoggKRPnxWJRi4z7Z6W6qACp9ci4pNpnV6uVZrOZJpOJOp1OJvhOPheLRT6/dORuaLfbWdhwy7sft1wuMwmfz+eS6qkc3W5Xy+UyCyWMfz6f5+u7WMJ9NJtNtdvtq+YGgYQoPMIGosZ0Os3jY55dkJDq0XyOg7wz17gCUkq1FBefN3eWrNfrmsDjjgnmgXXjPK1Wq5Zy4WISIoRfl2uU6TEcw1p4ioITeq7t64dIwDz6WJzcMj8uKriDgc84ytQLPr9JSPOf3S3jx7sQUcLv9dVwrwn7tVJBroUHVEyQbuE5HAgEAoE7jngWBwKBBxp3RVCoquowpfT7Jf2gpKakv1lV1fuudTz2bic03W5X0gnhhZB5JNwjyrzuZAwC5hFoPkdUFkLmEXIIPakRpYMBkuWRbz6L4NFsNrVcLq86pow4l6+5sIG44A4IHy+kGofB8dxnkcWdAy4uEPGHnDLHOAJ8HjkngoSne0CifY1K4QYS72vm1n8n2y6e+BpxDubDz83nnPRzL8yjuxTcUcBYmQcELXcxcI1SwHCXAZ/11AlfC9as3KMl8fW9zfvMj8/TtWpX+OfK+gulKHAtks91bqSWwp1wB9wN3Mnr3c81JW72ORwIBAKBO494FgcCgQcdd8uhoKqqfkDSD9zIsY1GI1v1nUhjfz88PMzpAJAFiKVHwyGyTtghgmVkt7SEE3mHGCMmQL5xHEDWj+9xozMCMgsgs56XDzwq71Z7SDLChnQS1fe8eb83ouEQSRwBXJ97XC6X2YrPvXHN2Wym4XB4VSFKrj2bzTJh9qi5pxy49d9JOWuNw8NdAz4H3Bvzw3/ZH91ut2bN90i57wfOi4OFe+H87CdqFDCmbrebUzU8daSsV+DXB74mHun3YqL+z9Ne2IucEzeMf9bTenzP+JyVqRQ+thvBJlcD2CREbEqh2PR7+d8bxbWOv1vOBz/vqzk07gfczHM4EAgEAncH8SwOBAIPMu6aoHAzSClpMBhkSz6pA4vFQvP5XLPZTJ1OJ9cgKAkqBM9f9wiu1wvwoo+ek+/RZo4nSg3JI8Lf6/Vqdv3SQo5wsYmM8R7HllZ4rweBuMJ4S5EF9wXEXDoRBzgf8+KODfLlGZOnGZDa0O/3M6F214OT87LwYBlldycH7yHSeMcI0gbcjVF2kiiLCyI6OdEHOAkk5fEimPjeYC8xDkSFlFKtdsOma3jKQdlVg9eoOcE8eDFHd2qUooPfJ8d5/Q93PJSihM/7JlyPgJdC250k07dK/u9nh0MgEAgEAoFAIPAg40wICh5NL8n54eGh9vf3sx2/1+vlXH4ILiSU7gWbcsSJ1Lv93n+WVCPm7lrwugiICk4y3S3hjgJ3Ezg5436dHJbpB5JqRQnLeg6cB2Ls7oRyXO6ocNGF60LyIdbj8Vj9fl+9Xi/PH9dHwOBzXMOj/KWwwLp6/QIn/XRdoI5B2cGAdYSUz2az7CRgHV2AYO4Zb7vdzoUg/V68lgECgBeaLAWnTZ/11AI/xqPxJRhb6TBAHChTN3zO/fylmFGijOBvEsDKz5aOmRKbnAflcTf7+53CrToW7pbTIRAIBAKBQCAQeNBxZgQFyBJR8l6vl8nOwcGB2u22dnd3M8GiXSJRWiLcWPLdheDXgDxybgQJdw64qODRfAQGj7ZDwqmdQN4+RJTrQZ4hniUxQxBwUFCQ++AziC+4C3AklGIBhLjRaNQKDFK7gPFB5N3tMJlM1O12c3tKL1To58Ul4S4AHy/3664P5pbxcF0+72kpTtZdVKDWBO02ESHcieFpGAgmnN/FJFomImCxDxF+fIzufPFxuhjmx7uQ4euP8OUik3R154rSveEOjtKZUKIUE9wZ498JT6Hg2p5e5CjTAa713quhTNG41jE34qZ4td9vFCEmBAKBQCAQCAQCt4YzIyhIR0QGl8F6vc455MvlMhNct8U7ueU8EEt+94KGXjCxzN+XTgi5R7khfp4i4NX33aLuEetWq6Vut6vFYpE7WPiYOb9HtstuABBPahFwXU8z8Gi2VI+OS9rohHAbvTsJvObCeDzOBRq9LgNj4j3mljQG7tXJKffprTc9jQGw7ogbpcXfiz0yl6RlbKprAVnmfJ4i4ekK7A0XdPw8TuZLZwpAKGH/cH9lKgXnuBZZL10gm2qD+LyVe/Z6KEUF4Ocs641cK72nxI2O4UaOu56YcTPYJOBtcmmEsBAIBAKBQCAQCNwczoygQF0AItlusceWjnPByX1ZcBDCtalGgKRMfJfLZY4eb21t1SLDTiwQHiC3myLnXIfjl8ulut1uLjSJ66LMhXdhg/OWBRuZG0iez1fZJcEdCpBoXvcijMxnSVD984g4kH93Z3j6iDsnNrUcZLxOrvmcO0C4d3dN+Prxc3lOUlAQmyDgzJULBqy57zFfi36/n9eH/ch/fQ8hqOC4cBGnrJPA/ON48A4Ukmp7CRKPSMK5mCNPofFOFTfqVCgdFv4983SfTeM8C2kBN3N9FwlOKwUjEAgEAoFAIBB40HFmBIXZbJZJwGq10mQyUavV0nA4zBFbijOSUjCdTnNUHeInKRcwhJRCqBEnnMhTCHI0GtWi+ozLiZZ0EuGF3OFMoNYC9QQWi4WGw6EGg4Fms5nG43HNReCOBog170H0PVp9eHio6XSaSaw7Mbgv7pW5Wq/X6vV6kurFAj0Sz1iAFymczWa1lAmOb7Va2UnCvPrcQdyZR6//wDoh5uACcWLupBxSy7hwQ7ioMp/Pax0dSidDVR0VuKSYJvPpIgTX8/mArJcpC6yX1/DgutJJOgdCBSKW//PxubDhKR+QeK+d4E4CT/fhGHet+Jj951Iw89SOTa1UXy21wQl7mbJzmiiFkFKMChEhEAgEAoFAIBC4fZwZQaF0AUjKhHYwGNQ6DEAqKaLHv5SSut3uVaTZ7edOLiBoy+VSBwcHNXs9ZNijuE7ineStVqtM3Ilwz2az3InAUzc4ZpO93js3AIQHXAHu4pBUcx64DZ7UA4oXQvwZg1/br+WEdbFY5PtgzETQIfhlsUNPj/DuGv1+v1ZXwYk64+12uzVhwVNVmAPIOKJSSkmz2UwHBwcaDoe19ITVapXFBv6RhkIrUlIJyvaNrFlKSfP5/KqimPP5PJPSXq9X68Lh50EcYpyb3ATMq9eeYB7K7hR+Da/h4J035vP5VaKCr3cpApQOEy9w6UUiy/1Spgp4TYjTwqYx+X8DgUAgEAgEAoHAncOZEBSc4DiZ3EQ0vZBfp9PJkXgXAiCekFbPn8ciD2mU6vny5bj8Z+9AwFiIxFMfwIULr78AOeUabjXnfheLhRqNRiaonoqA64G6Adyz1yRAiEBAGY/HGg6HtYg3cySpJkxIdaGD4ykW6W4MyLl3dijTEnxOIaZlVw2fG1wmknL3BhcV+v1+dkU0Gg11u9183ul0qvl8LkkaDAZXpa+UjgdPqfA5w1HgDgD2AGuOMIKww35CPPJCnaRGNJvNLHQxX2UhRBe5PH2mrNng3w+vbVDejzt2HH7uTeJA6RLBDcLceEFPX8fyPDeDO+kYuJ36DMDXIBAIBAKBQCAQCFwbZ0JQKFHmlbsDwfPjIbZl14KyoJ3bwD2P3O36ELBNaQ+M6VogiuzCCATZzwdx9gg4ogQR/8lkki36nU4nR9i5J2z+jKlMzyjnkHQPUgf4jHd+KMcOyYdYeUcCyLgTYe6pbKO46Rg/D/NdFjx08YG0CubLBYtms6nhcJhbXdIRgwKJnkKzWq3U7XZrzolNXTHKtUa4QLBoNps5jcXrOJA24KklpL8gfjWbzezo8P3tDhOfI8biRRIRx7gPJ/7Mmbf73OQwYJ58jdzhwHeDPeFCXqPR0Hw+rxUm9XM7blQouJPugRv5vgYCgUAgEAgEAoE7gzMhKEBMyvxvj95DhCTV6gqQ/kD02vPOPbrr9nBIJ84H6cQqvokc876LBV70z1sWQkClEzLseeqSavdEtF1SJmpup4ewMXa3/UNYEQs8as19Qnq9XaY7FSC43uoS0YHovhfrc9Ltc8z4XIgoiwAS1Xcy7F0HShcH80shR9aKz7ZaLfX7/Tyv+/v7tVoWPg7fB8xLSYC5h5KMks4ynU7z52lr6uchVYE1dHcGe4i1Zj4Wi0UWxKglQRtLdzP4fHvBUheuGBvryB50Mc27N7Cm/NddKKyDr4/Pnbc59bQbh8/lzUT8b+TYawkGtyokXMtlEU6FQCAQCAQCgUDg2jgTgoJUr0TvFn13KDi59GNLq7lHyQHkznPsIbHUBCjz3CFmTrhxB3hRQY4v3Q0IIF4fgePcYi6d2PyJdpcFEYlwl3n6EFEn+twfxLusKYHLoOy20G631W6381xwLY+ke7FL73zgc8y8UeOC8TQaDS0WC83n85oIAXEt3QUuULj44K0w+Qz3RHcCJ8WQek/BKFMGmDuPzvv41uujlqbz+bx2/jJtxVNpvOsIc4EwQqFGzg/xRyDy9AwXZRg38+UtRTm/d5jw9AU/R/ndYx/wGd+ffGc41oti8hrOCXe9lNe4Fjm/VvqE/35axP7Vxh0IBAKBQCAQCDzsOBOCghMmgAsBkuWdDGhnyHGS1Ol0NJ1Oay4HJwIQMz5XEsnBYJCJHHZ2z68nIsy5vDgirgaitpDWyWSi2WwmSbXoPGNwQutEHCLqBSCdcLs4QZSbsZX3xzUhwR6p9/lARPDUAi8I6akmnqpQzjP3DtF2S78T1zL/34UQPxeCj3cy4DO+B3Z2dtTtdmtrUrpUSjcB88Ace+qHiyDr9To7B+h+gUuBeXXHBXsV4cSLVyI6cD6uzX9LR4a7AbyGgn9PcKi4AEKaiM/BplQXd52U574WuS/FpnINXcgqXS3XS0nYdP1SCLkewS9FrjL1oixkGQgEAoFAIBAIBG4NZ0JQcJIBiSvJMySLn6kN4MR2UzE1J4wQf3cneLR9MBjUorGe5sDx2Mw5Z+kWKPPy3W7uFvGyQCH37LUgIPXlHL0aGSPXn3N6i0ZPBUCE8PnxTg4l6fcoO1Fq5s7HBYFzF4nXFPAODE7gyzQQj5h3Oh2NRiOt12tNJpOawOIEemtrq1aHATGFNpa853vEBQzGyP24qMD+42f2UrfbzfPqDhUvfMlr7rIhPYZWlj5X7jag7oO3FXXnRUrpqjF4mgROCNJvON90OtVsNquJeXzGhYtNDgEXETythe8TTh7v3MKclvulFH1eDb425fGliHCt2g6+b5jzVxMowp0QCAQCgUAgEAhcG2dCUPDcbc9jJzJNnjgE5lpEpSwi6C0Iyy4EkDnPafdq/ET1yxoGECZIt3TiCuC/m0QBH2tJoDjWI9YuRBBNdYeBEzKP3EJ2GQ/knVx9b6Hox7p4wXVdHHECxjU9p96JpxdudHGCcXJt1pDrEuH3aDv7gloJ3tnDHSOSctS/dEccHh5qNpvlf06AieKX98aaez0C/8x8Ps9pKbzO/bN3RqNRvl5ZjwBRodPpqN/vS1JtLTiOPcF9rtcnnT0456Z6CJzfRQXWqdPp5D1F/Qbf0wglZbqE71cXfny+yj1Z7n0XBfiM7wXfR9ci8+4ceTXw3S+fE77+/jzhutcS7AKBQCAQCAQCgUAdtywopJSelvS3JT0uaS3pPVVV/S8ppW+R9HskvXh86DdXVfUD1zufR4Clk8ix59C7hRzRwKPbkBe373thQic+7XZbvV5Pg8GgFv31Qn5YySXViDxj8lQIxlvWfHBii02fc3FdIshOkp2oleQesl7erx/rhK3RaGR3AW04IY6bumg4MeT3axUB9O4RZYQcwYH7L7telFFvPsdnfe1TSjnFgAg41/M2je5wYe1dOPI2l/xz0u6ClM81Y0HckI7qXcxms3wOF8M8Wo+ww3pDWqmN0ev11Gg0cv0OJ9UICJKykIIDpEzJ8TQG3zO4fXANdDodDQYDrddrHRwc1L4XvsdI5fAUm1LA8HX2zhDe1cPdN8CdN/6d437chXAtQWCTWFCmRbiI4S4YF7z4Dvl5gH8Pzyru9LM4EAgEAjeHeA4HAoGHGbfjUDiU9Aerqvo3KaUtSe9NKf3z4/f+YlVV33YzJ4PI4QqACJQpC8vlMndD8BSHksS7LRxSC1nDSj4YDDQYDK7qZOC5+U5o+R2S6BFr6aRgnefvcw9+/VIMYJyeZlCKJETD3cWxqX0g4+D10tJfEjmIPhF3z+13csV9e54/nTJK90cZiXaxo2xH6GSYc/i6lS6EsgUmRL1sp8k5Id4Ue5SUxRXW2NdVUm7j6ekwOCMY13A4zDUbSkcMhJ1r4rSZTqdXtYn0Qo1l8UTmjHOklHLRTsbu7giOpy0kaRbudGBvtFotDQaDnBJTuk24T9YLMc+/B07CfS2ZMy8e6YJOmc5T1rFgncv9wHsuVnBMufc5X5k+w17y1AcXKEqcdTHhGHf0WRwI3M9Ib3tOn/yyndMexk0hraQnvu1HT3sYgdtDPIcDgcBDi1sWFKqq+oykzxz/vJ9S+kVJT97KuZwcSycOAs/Dl46IxHw+zzUBIOCQFy825/UNnFxBpiDDEC3v3kCEH5LI62Uk3gtCej0GzjWZTLL931tLQmKdKJUEunRcePR5U50HTylwIcBJoOerl/PEfM7n83w/JdFnjKXI0u/38+dLBwLjcsu/3wOkuOwOUM4HIkCv17sq1cSdDcyzR58Zz2AwkHTU/pG2jjgLGAvOlclkks/jxJf7Yl/MZrNanQRcL8PhMI+V+Uwp5fso3SvdblfNZlMHBwc1scMLeZL24SIExznJ39S9wudKOiHVntrAXi1FHxcbWKPyfOW1EEjceUNLVd/L3CvfeXe/+He/JPyIBYAxe/qEf0fczeAuGBdvNuF+cCjcyWdxIHA/o/mWN+qDv3Vbq/71a7KcKVTSx7/lXepclh7/n0NYuB8Rz+FAIPAw447UUEgpPSvpbZJ+QtIXSfr9KaWvlfTTOlJsL73a591Of3y+TCZxLpQpC27rxk5dtgakGJ+TRT5fpiyUluz5fF5LHZDqxeggi1jIPf+cbgCSMlFutVr5nIyVwoYIDk7Y3aUA8SqJtNv2madNooKnSED6XaTx+0ZQcQLoZP9akeJut1sTcLgGNnsn+T7nZe0B7hUHBKRXUiaoTopxiHhKjK+r76d2u61+v58JMnU5OBbRgfmYTCZ5XlyEQUjhs/P5PAsro9FIo9FIOzs72QHAeRAfyqKcXJv7GI/HVxV25P1er1dLZfCx4BaBSJedJzg/9y+plk7Bvfl3A6LPd4v5dAHNU1TYy+5okZTn2sUwrudrBEpBaJPToEyZ8YKQ7vBxEQx4mtNZFwxuBrf7LA4E7kc0z53TB7/pV6hK0rpzH36fk7TYWWu5Jb3w+9+lR/9SiAr3M+I5HAgEHjbctqCQUhpJ+geS/puqqvZSSn9V0p+SVB3/93+S9PUbPvduSe+WVCt+6M4Cj+JjLZd0VXTUiT4kxqPy8/m8RnhK8QBLuEdGsdB7RXgn351Op9Y1wgszppQ0Go3UbDZzi0vuYX9/X4vFojbusnYEvyMS8DPjcLECcYPigp7+4AUk/XdQ2tuZe29DyXGIA2V02gWC0l3hEXgn+u7KYO193p0w93q9PA5cIi4osZ7cJ3UIPBUDgaLX69WcGh619rnBveKpNewdxgbRZvytVkvb29va3d3VYDDQ9vZ27joxHo+1Xq81nU41Ho9rQggClLfGdJcH991oNDQcDnNKjbs7uEdEEzpi4OahGCd7HPC94PVSqHB4TQq+M8yBp2Hwnotf7MnFYpHrYLj4h9iH08YdQp4WtKmIoh/nLhqO8RoPLkqy13wO73fciWdxT4N7N+BA4Bbw6T/8Lk0fLRwISaoa96GQUKBqSHuvX2v/296hR39a2vquHz/tIQVuEvEcDgQCDyNuS1BIKbV19OD8u1VV/e+SVFXV8/b+35D0fZs+W1XVeyS9R5IGg0FV1kqA3JD6QG64dyqA4Hs0GuIDKSJiOp/Ps8gAASHXPKWUyaZHhRmP/xc0m81cxZ/fISaehuAElHND9LhnCJ07MSBBXkOgtHy7gOCFBRm/R5y5lpM9t4aXzgh3frgtvLSpIxpAihkT40MgcIu5W82JrLfb7ZqlHjFlOp3mtojuiOD+PIXEHQlulfe6G8PhMM93dVybwtM33LFANwe/d58XFzOazaYGg4G2traymDAYDLLDYj6fa39/X81mM+8Z0iO4v9JJAtFGeBgOhxqNRrX6Bay1u0D6/b5SSprNZhqPx1kg6vf7OW2Cz5P64fPvTpkyNcHFGxf0EI4QBrxGgQuDZeFFd9mwhi5u4JLh/KWrgX3IevrzgDH7virhxT034X5xL9ypZ/F2On9/3HDgoUNqtfT87327Jq+5z9IZbhZJqprS82+X2uO3q/f975XWq+t/LnDqiOdwIBB4WHE7XR6SpG+X9ItVVf0Fe/01x7lkkvTVkn7+Rs4HqSByWVrxiXDO5/NsgS+JlxM9oqfSSf69k6KqqjKZ4jUivMPhMJMQiCjHePTY0wec6LitG6LX6XQyOZzNZllQcLIPQcfuT9oBYoo7GprNZq2WBPPgpMpJZ0kAPToP6XMStqlbhX/Oi+JxTu4dML8Qce7JCwT63HY6nZq7Yb1eZ1LM+x6RR4Bh7cp0ANYeAQfCzf7xqHu515hnztfr9a5KvSFqDnnu9XpZJOj3+9ldkVLS7u6uJpOJLl++nNMLnEj3er2a8wMRgPWXlAWLXq9X62xBbZHpdJrXvtfraXt7W5PJJAtxiC+k67C/QelMKEUr7hsHB6KF14Vw1wv7zmswuNvGBQwXc7i277VNggDz76kWgDEgeHFvZZrEpv/6HJSfOYu408/iQOCsodHr6cX//G3ae8MDLiY4kvTJf7+h187fps7/8bOq7P/ngbOHeA4HAoGHGbfjUPgiSb9D0s+llH72+LVvlvQ1KaW36sje9VFJ33gjJytztREVIMb+rySdZT44pMWLOkL8aCXplvAy2kxhPsiaR+Q9yi4pk3BIn1vPGc9kMskEp9/v53QJj7JDWjyCW0benbR7pJ+5Kos9ch7OWzoAnPxBnMr0Ey/yt4nQuTDh8+i1AjydxGtZ+DrSGaHVamXyz1zMZrNcP8Bz431/cO/9fj+LAMwx5/P7YxwIVZsEHp8jzs153SoP8WdvIZx4ccOdnR3N53NNJpMsnCGCeQoItSi4Ji4H9jCCgIs0OB6Wy6Vms1med+o54MJgnyB+pHTUNWJvb69GqkuxCJCi0ul0agUWEbsYk6ek8Dl3DXmqUJl2w3PABT/2jqc6+Jjc/eOCGp/xNCq/3iZxwX+/j1Ih7uizOBA4K2j0emo8/qhe/nee0KXnzrawd7fwsa9o6XXLX6XWv/55VcvFaQ8ncG3EczgQCDy0uJ0uD/9a0qa/uG+6v65H3iETUj1CCrF1QgyZxi3gNmuPVkKQqDUA0feWf0SIIWy9Xi8X2/Ocbo7xKKxH8iE2EJput5sjuE42PZefrgMuMPg5+NxsNquJKKXVu6wdUQog3nGBMdNdgPvAtu4pEi7MuGjgBNzTAjx/vt/v11wLiDqtVivfDw4O77jAGKnbgPjjdQu8FoavO3Pi88q9+Fz5fvEifax5WdTTBQXG6sUecSYQjfex9Ho9nTt3LtctKFNl/DsAWccJ4EU4mXcvNMh3wotEcq7RaKTJZJILQzIuhIrZbKbpdJqFNcayKarvAhFzIZ2kDfj5y7oZvpc8hclTasrv1SZRgfM6/Lvp4gHnKJ0Hm5wIm17zPXOWcSefxYHAWUBqd5Q+5/Uav25bn/qSxvU/8IDjI1/V0ev0uWr9yP8dToUzingOBwKBhxl3pMvD7QIyACnyQoJlvj+vuRXao/1OSpzUSCe2egibR1appwBhTSllkuvFADkH42NskF/OSQS63+9n0WATPLLrrgui4NIJyfTWjm7b9zF4VNwt48xzOa+QQVwDZbcJd0N4xNdrPPR6vfwea8K4SydFOY+IHF5okHNxftZ2sVjk+gCe9iIdkW3IPBZ/d7fgIPDoOfdJCgDFMrHPQ7SJmne73ZxuQAqLCwq0iuS+SZFgznu9nnZ3d/O5vagh+4bj3eXg9THY177uPn8IClVVqdvt5s4TXsiTgqOk90yn05ow4XvFCT9j4d65LwpXluky14ryIyq12+2rUk2YO09vYXysjadA8H3x4pncS1k7xPdLiU1CAvMbCATuDdb/zlullLQctfSJL2te9/iHCR/5qo5e236r2v/8vVI8lwKBQCBwhnBmBAUILb/7H/KQVtoCQlYgFV4fAXK3WCw0mUxq6Qhuj4bUeqQd4t9oNDQYDDJ58vxsL9jn6QYQSM83R+AgD54Cfy6EUBcCou5igFv5pZNuBZDHsnCe3ycoUxsg9xxDjQEXIJhPJ/9lfntZTK/RaGRi7HUMGH+73c5E10WATVFid2YgknjNALodtFqtHI1nTLSFbDQauYAnQhUk1p0lnuZCHQLI8Xw+r6UQeDFC0hEYBwUPy04SiBR8fjgc5u4hknL6AtdyIakUr9yd4+KTC0c4YviedDodbW9v1+oozOfzmmg2GAxq8+jpRtw753dxxYUi7oH9Rw0IT3fwdaIYZ5nCwucRatylwOdYOxcYmTcXaVwgYZ9ybCmclEVPyz0ZCATuLuZf8YX6xG9obo7xBiQdpT882f9C9b/3J097KIFAIBAIZJwZQcGjsG5rhkh4ITov9icdkQuKw0HaIKEU9iN3290N1ErgZ95DGIDQIVB4dJPoMVZ5jmf8XAvi5aIFpH2xWGTLuTsFsG6X5BtCBLH2cXikFnHACw6WaQfezYKifu4ocEHB1wly6aTXSZd36JBUi7Rz3x7NdoHFW0a60OBpFwg2/X4/d4eAKBN1d6dJt9utrTvnLcfION1h4qR9Npvl6+ES8DQa3AusN24VCiU2m83cSnQwGOR1oY0i9Q9IhWCdEHIQCXydy/1M5F+SxuNxntvBYKDd3V0dHBzk9eE63DcFJCHbHEfaCpF/d6ywF+juwXdMUnZ9uChSilUIChQX5TvNXkV0wOXDey4w8Yxwd4fX8eA91h7h0ruvuDByLVEuEAjcXXzqS1pSiu/a9fCpX9fQo4N3aPs7o6VkIBAIBM4Gzoyg4H/YOyklii8pF4Rzcg95JsIrnRRnnM/nOfoOYYO8eGQaOzzXcvJDHnpZKJBre2cE6cQu74UfPQfeUxsAZJrPYyd3Ylva/11QgfTzO9Flnx8nX3yG6DiChpM/xokQ4BFixsjYOf8m4l7OlRczhIQyF+X8etcBPuf2/tFopH6/r/F4rPl8nufQrwd5Z/2YW+a8TN+YzWa139lLrDOiDvsLRwTj9NoOXIO5Jb3Cj3E3BykTgLXytAZfSxwh6/U6uy/Yzy60NJtNbW9vS5L29/fzdX2+ytogvr9YN87nc8w9l21LWV/m0FOHfH8ynwgwns7Cc4HuHbge6Abi4o+nNyA+gfL7iSBTOpdcVPA19XkKBAJ3Fvu/7R2a7yRVrRATbghJeuELpcP+O3X+b/7YaY8mEAgEAoGzIShIypFliMxkMqkRVdIKvL0hJJfjSIkgIo7IAGmFtJQV3xEquD7HQ/b8fFjHnSRyfFWddBHwqvpuUfcaBE7QnYA6ufM0BKne/lGqkyXpxLLu0WR3KHghP8gZEXgIPpFnxuPFGr2wJPPj+fnMn6dqcBzzQ/TYo8Qc52tTigg4AJgrUg2azaYuX75cI/xex4EIt7sYOAZnBiSc+/J0DiLlXh8CV4w7F0gfgfACBDE+52LCbDarkW4vTuluGfa/R+J9biHezE+r1dJ4PM7fIxwSjNEdNXwv/DuGe4A5oIYHx7nwxvWd1Pt+dCHJ3Q+e2kB6COtCFwrppLgnx5cdHVxA8PofHOPPCYfPpbtBXq3+QyAQuDOY/odv1+U3tDR9tNK6E2LCTSFJl56rtH73O3XhPSEqBAKBQOB0cWYEBY/MEx301AYnBkRLnSi7FRwCA/GhbZ4Tf8+h9loEEBeIE9FPaiZAiJbLZa7A74X+vGYCBAyhQ1Itwl66JIiEXsvazXg9wu/Ex3PqPe/eo7teSA/ySFQcQYF1YA3cau9k2O/Fr+3n9Y4JfN4JvRNC5sxJqteSIArOHHAdUlJwo5SuCoo/EtF2RwyiD0TeUyRYC/YnLSkh8fP5XOPx+Ko2mIhT3AORbxw07F9cM+zZXq+nra2tWmcHT1nhPBzvdSa4jqcZIBTQWaLb7Wp7ezvXFvHzuyPHU1S4Ds4B1tM7r/h8eZ0D3yOILqTX+D7hWsyJF0v17xjpJqwf53M3jq+Zp2WwZpzb95eLCpzf78cFoUAgcGcweaSp8VObi6QGro+qIV15cyV94zt14a+HqBAIBAKB08OZERSoZyBdbVn2lndus/Ycf0iuV3snrx3LtBdNhDB44UUn1ETRIcIQH4g443Giw/iIUENUiIxD3BgvJM4dCV7Azu3nwOsqMA6vC1CmTpTOiPJ1vyapI04qIV3lXPNfFxdcpGGNWEscEBQK9G4OXpNBOuka4DUgptOpUkq1oosAsuxEkXtjP5HeAQFmHsqaCtTqYLwcx1yQWkABwsPDw9zBwzuFjEajvF5+X4gK7Al3ILBu3CP34m4FHBCsWafTyXUaEKKYW1w78/k8z/toNMpuCt/D7kTBSeL7iD1Rnps58C4d7pKBzLtjhr3j90hKBL/zOT7D99KfAZuKkpY/l/uIOeJzLiRwTv9+h0shEAicVVRNabETz6hAIBAInC7OhKCA3bnX6+U//iEnq9UqF3jz453kekQa4oxA0e121e12cwV9Jz98FvcBkVzphAw7GZFO2jQS8eY6s9nsqo4DwCOhknKkWTqJ4uJQ4J64Hy9m6IUEPQLvBIjClNyXOwe8Yr8LCk78uRZpIH4PPv9eCBFBwB0QZeTXSasT/5KwsSalgEFUH8eEd2pg3jwX3jtP+Pkgup5vX967E+NGo5FbQpbpLRBlCDvw1pJE/T11hb3DGjA/pEAcHBzkPeGCx2Kx0MHBQXaQDAaD/J1hLJuKXvJfxC7WFeKPK6MsiMk8+BxxLYQRF94QBsr0AebWz8l+dpcC9S5o11nWM+B3xAnfQ2VKiDuWGMMmp4/vfX89hIRA4O5h/Ft+rS7/ykhzuBOYPL7Wi7/3nbr418KlEAgEAoHTwZkQFKR6dwByvD1n2qPN7iYordAQL7f9S6qJFE7sJGWCNpvNMvEmIuotFTmPCxnSkcvh3LlzSinlaHEZOeV67qRwgUA6ibhCcLh/6erCchBzr3vgdR3I+y9JmTsO+LwLLC7cuJvB6y0wfubExQS36pf1Ilgf3BplEUapTmLZFzg+sMOTJuB1ETw1g/t3UYCIu5N5xCCOoz4G90uqxWg00u7ubt43nBNnAjUoiLBD6ssUFknZkUBBxXK9l8ulDg4OtFwuawIb+2c2m2kymdRqJjSbzUzwEXv4DOvDGtNVgnFWVaWDg4P8nWNMbv/nOwf4LtJS050tfHfK7y3OHt+rZZqMX7fZbGahyL8Lnr7A78Cv4d9731usnYtMFLMsU4fK+iSBQOD2sfiNv0afeVeK9pB3CkmqGjGZgUAgEDg9nAlBwaOwRJXpjuAEFQIEGfCoJ/nURHh3d3clqUZMvUgikXyind1uN7f584g77ggnh1zTXQSQNboNQHqxnLul3MUExAHO6bUC3EUA3M4PAeMzkHXG7UUGPSrvn3eC7FHoksiROlJVVW7R6ZZyBAUXHTxVwR0kk8mkVpiPf14PgEr/knJhTa/fwB45PDzUwcGB9vb2tF6vc8cOcvbd3s65EQCYT/aACwasNfc4HA41Go10eHio/f39qyz2zKunt7hjALLtnRr8Wn5vXvvD21D694ACobR0ZJ5wzRDRr6qqltbDWgJve+pChI/LxTkXgBByPCWDWgvsHXcMMPfeNYLvhrdXZZ+xPuxVT7XxfVtew8UCFxj8Xki74Rnh7hrvZhGiQiBwFxD8946iakqNXk9razscCAQCgcC9wpkQFKQTQuPESlKNrHpEHCJYpgVA5sfjsfr9fiZXZf0Cr6ngReO8gKJHxjnOI+BOKrvdrvr9fm7BiAhBpwkIUJkO4WSpjPi7jd0dEi5meFTVo8JO7onAAyK5Zd2DMsfdx+iV/t21UVrZ3elAFN7TLLgHdwJwz6w5x3k3imazmQWE6XSaU0xarVYm18z1aDSqFS4kpcULcyI++dqXa4RDg5oIFy9ezK0NWRePinPvLmR4m1KPwDOPEH5cAwAXQqfTya0m+T6UxQudMLNnyvoaTrTLlAGuwzh8rVwU4dq+jxARODfFTH1dPT3I6yD4PiD1gjSPstip30e73c57y+uMlDUkcE74s4MxuSOB8yLk8Wxx11QgELgzaE1Was7aWvUi5eFOYf/1a3V/69u0+79G2kMgEAgE7j3OjKDgUVt3JXh016PJ5Jx7/vZyudRkMtHBwYHG43E+D58vC+BxvslkkiOWFIejvSAEkM96VBphgTE6kSzt014AznO8/V4gcZAmiJYTMAiaOzYcCDKQ4l6vVxu7/5PqXSNKIoejAKcDnQOA29MRQcihl05SV1x4cKLmokWZy+41AJg3SblLwP7+vjqdjvr9fi11Y71e51oWvoae2+9z5OkePodE9Hu9ngaDgfr9vnZ3d/PaLJdLjcfjXDjQiz5C2svaA17rwlM4XJRw0QUnxXQ6zYIDc+4CGnuKyLo7fTy1h/N5agzE3Peik3f2gBNr1pv9wHsu3uEwArzmziLW04VBSL2LhO428LQFr51RClusMU4IdwH5PvfXeVb4774vAoHA7aP9Cx/T9lveokvPnfZIAoFAIBAI3AmcCUHBo6wQCLe8Q8yc+LZarVphO0jFbDbT5cuX1e/3r4p2Eiklsos1ns+Rk+6RV8+vdnHA7f5lFXzIjKckcJ+e1w45raoqR3Yl5QgvY4aYu4sBIQXyyrz4dTgP1/f5KqPYnkrha1G6EEoRBRLIP9wIXn/BW/txXtwALtowb06KnZi3Wq2cqjCfzzWdTvNYEIKISDsh5doIMrQ/9P3g+6TdbmcRodfraWdnR6PRKO+Pw8NDXblyRePxWJcuXcouh+FwWJsvriedCAruanEnDkUwfZ+5y4V6D8wr64XLYTab1WqAeG0JT/VgLO6U8PoMrDl7F0GB63jdAubZBTMvuIiowGuIH+U8uGjhgoyvH//1QooujLmjgu+tOy3cxeF73teLeWGOEV4CgcCdQfPCI3rpK9+sS8+FOyEQCAQCgQcFZ0JQWK/XOTLpEUmH59o7mS+LuUHAIUfeotBJGBbrwWCQ3QuQHyzVnmfP+SEongvvRJtzcC9Ecj1/nnNSu4HfERW89SNky50BUr2mBOPy48lNZyxeB8Ln0UUIxuypIRCuUohAaIFkQ/I8VYOUESetXNPz293S7uPx+XILPcD6zzj8PE5EJ5NJ7d5xNSAmUFzRCXu/39fOzo62t7e1s7OjwWCQ98ZgMNDW1pb29/d1cHCQizHigkAocDHEhRqi+syt2/rLvH+EF65BWgB7EMcB+xWRBjcCYhRz4YIWYG9S74P3WUuvOUEajQsInjbDvZZ1R1wk8HQl/16WRSF9n5eOARcVvAaLixKIHaDskuKCGc8F/z66qyQQCNw6GsOhZv/O52j8mrZe/vwQEwKBQCAQeJBwW4JCSumjkvYlrSQdVlX1a1JK5yV9t6RnJX1U0n9SVdWl65yn1rqxtCf7cRAAz4N2Mg/ZcWLR6XQ0GAwyYSkt1tiiiVQTuYTcEBEGTo4pZAexIcopqXYNj8r7sZ7OIZ3Ud+DzXivBhQ2PePM+5I68dAgS1y3FjE3w6zuxgyByHoj31tZWzU3iIgGOCE//8FQRt+LjpuDzLmz4GBg3/4Usk3bg1n+PhLvwg9DBWkCiIeuIJIPBQOfOndPOzo663W6NJHPccDis3QNdIzz6v4ncci8USCzdLKRSSKrV5GDe/XX2q6eTIDa4a0FSFtra7XZ28JTHI4IxFva4O1z4fvmasze9q4TvedaBehV8N92t4MU6/XvlxN/3mrsWvD4G6Q68xh7yPbcpXcidGWUqzFnGnXoWBwJ3Gqnb1cu/5Vfp5bdWkkJMuBvovtTQ+f/7ktbXPzRwFxHP4UAg8LDiTjgU/r2qql6y3/+IpH9ZVdW3ppT+yPHv3/RqJ4CEQCKJxrpVv4yUQ/SdmCNKQAi86jwECUIBCS+LKbo9H8LW7/fzdSFVjGU6nWo6ndZyr8v0CCL6XlHfI8TUOmDMnlfOXJS1DvjnBBMi5hXrPZXC0xE4j6Ra5NrTMnBQUOPBi+C5Nbwk8pzbSbKPh3tGVEC4YQ4Yg9vVXaRxoYk5xR0AkXd7P/fIHPhcsqZcEwcCXS3o7lAWQ0QQYG+QEuDCRZnW4GklLmyUaR0+N8yht9p0ckzrRva+pOw0KB0HPheIcu5g8VoJLt545N+FNFwWm4i3p0MgdLhI5KkLXK8UTjjOhYVyL5RpDaRWUPuDc7ug4fvD9xJjJA3qPsRtP4sDgTuNRrd7LCYE7ha6l6T1v/3F0x5G4AjxHA4EAg8d7kbKw2+W9CXHP/8tST+k6zw83R7uf9zzRz+kGGLuEWfpxAkwGo1q1nZs4BBjnAgQO8gQZBRrvKczcD7y0UsHxXw+12QyyWS4tKozFk+F4N4QRbxgoBNdiJyTMI5xh4ZXtfd0ED+Pkz6/jhcEdGfEpvoK5PJ7CgnzwJpACr2GBMdx/pJ0+2c8Yu0pElzTXSA+V2UUmjlGEPE0D/ab1wxgjvv9vra2ttTr9WqFOhuNhvb39zWZTGr7gL2FMIKw4NHx0nZf3o+7NtgjJXmGCPN55tzTCrwrCS0kEXm8dgTjQNgqC3lyPva5gzEgqiAKeJqDjx0xqiToXMfbabr45aIVv7uo4Gvp81U6NUqXCqKQp9K4A8bdPC6q3Ke46WdxIHBH0Wjqk7/7c6WInQceXsRzOBAIPPC4XUGhkvTPUkqVpL9eVdV7JD1WVdVnJKmqqs+klB693kmWy6UODg60tbVVi5QTOYaQeAQXsYAIbK/Xy20iIVcewYX8OdHhHFtbWzlvHkEB0jedTrW/v58j2RAOxjmdTjWZTPK1ISMelfVib2WHAY/ylvnaHqn3go+QuLKDQUnI3NEhnXSAAJC9shODuw88HYMq/dj0GSOfZx09RQPRAHt7WVzSC/ZJJ8X1vH4DdRKoRQG5dGHHo9+SavMKUfd8fZwlpASw/ltbWznFYTAY1CLvVVVpb29Pk8kk7z1v3UiE3Im6dxZx674XtwSsP/cDWAvv1MEcedqGp8i4mMV3zOfCP1+6Zbg+4oBfz9fKnUHsj1IwcYeO1yhxBwZ7xOtvlE6aMp3BU0oQNnifZwffC3ctILL4+RFEqqrKYhH3cB/hjjyLA4E7idRIGj8dYsLdRO+Fhl7z9z+gq+XfwCkgnsOBQOChxO3+xfxFVVV9+vgB+c9TSr90ox9MKb1b0rv5nRxuooLNZjMXV3Rb9Xq9zjnYkE0IFCTOq9pTcK8saggJOzg40Gg0yuQRgudpCkR7nbhwPiLVkHkIjxcihAxRyBDi5GMp6yQgMECQ3DEgnRBxJ8uQOZvjq6Ku/AyZ4jW/BlF3L7rIvbIWdNnwdAGfJyLi2M7d2k99AMbgKSqcn/E7mfT79wiy3xdE3IknogvXZJ2m02kef6/X0+7urnZ3d3X+/PkaAYaosh8vX76s/f39PPYyH5+fXdSC0EtXu1fYt36vnl7gx7P3XIhgL3u6gpNh9pCnWzg5L4tfeocRxuvuEo4vU4l4z10OfI9w41DcknlnDnjfXTLMoQsl3A/36bUXuEcEBYQo3y8+jz7fLjjxWWpM3Ce4I8/ingZ3a3yBQOAuoLGSVi++eNrDCBwhnsOBQOChxG0JClVVffr4vy+klP6hpLdLej6l9JpjJfY1kl64xmffI+k9kpRSqohMUtiuLNrnVm1JNeLttn5EACfsx9dTSkmDwSCTMiLUi8Uid3vwiGar1dJgMMjOBOkkVx9y2e12s63cI6FO2NyBgJWe9+bzeY38eX6/571LqoklTjZxRjixhQx7/rukPEZEgbLWQ6fT0XA4zMUWPXqbUqrVmWA8XgjQ12K1WmU3g9cXQEBgnAhEXhjTHRJe5NBFH6+7wbn4GVJZkkYvNsiatFot9Xo9jUYjXbhwQRcuXMjEElFquVzmdIcrV65ob2+vVtiQf6yZu1KkIydLmbfvc8F7kGOfTyLnToY5j38vaNPIOGileXh4mMUa9iIikZNwFxx8zX2eEWe4vtcm8Ln37x8CFQKEOzN8b7IOnuK04blxlUjGnHgqVPl9YC3Yl54ewXyWqUNeU+Ks4049i7fT+Uh2D9wxVIeHesuf+ZDe/81vOO2hPJiIb+uZQjyHA4HAw4pbFhRSSkNJjaqq9o9//jJJf1LSP5b0OyV96/F/v/dGzufEwq3UEHgK0znRwgZ/raijR43dHg/5Il2BGghexO34HnNhvjJKDCDQXrCvTGFwMkN3AD+XV/R3ogOZ41ifH4/aktbhwgCECGKFiABxd1LnBLfb7Wo4HGp7ezsLFV7I0G32Pi4+72QMYufRdBcE/DVPB/BaCXRNKIknAoPn3zMeT/1wUYp0DEj/aDTKewRBYTgcqt/vSzopbsh+oYaCC0zsVY/wu/uj3N+IMOv1Wr1e76p5dVHGa4v4vnNBhHVst9uazWb5viHvHA9Bv5bTw50WpANw/U6no263q/F4nEUMFw+utffZvwgviDnuTOEcXJP95sKXC1Ds4bJgpO8zdyOUhSCpO+ICi4tg/tzAeXTWcaefxYHAHcVxWmLgDqOSupcaeuLP/ehpjySgeA4HAoGHG7fjUHhM0j88JiYtSX+vqqp/mlL6KUnfk1L6Bkkfl/Rbb+Rk3iHAc/77/X4mdBAAJ/dUZCc9wKvRb8qD9ogmLgPy4SFFnN8JEXZst16TZ99sNmv1Hoji9no9HR4e5qisdNIis0yPoNOBixV+PY/Wur0c27//7q4NJ1YegWYeiUYTVfd73mQ39wJ25Zxyf6Xw4E4JJ35+T8wdjgvIpwsQ7jxhXVk3J+Fc190d3p2DtJN+v5+j+L1eLxNhBJjxeKxLly7llIXVaqXxeJzPvSnH3ufL5wghy3938ciFGIo7Mlf88/Vxxwf32e/3s6hQRuedyHNe5peUBFIRSieFuzjYi76/OKc7RfiHS8W/A07w2c+sKQKSF0h1Yc6/0+xjH0eZNsJcsWbuDCFdyYWxsu7HfZLycEefxYFA4Iyjkjp7DT39p0JMOEOI53AgEHhoccuCQlVVH5b0+Rtef1nSl97s+T7wgQ/ozW9+s0ajUS2v24muiwUQDezy6/U6R+qd1Dmxcxu7dGITR1TAoeAgas91IP+MrdvtZuIE6XTiLimLC+v1OgsHREqB555LqpEpiE5JxKQTogwp9PdL67yTQ3czuEWfOUIIoTOG1zdwez7nLAm0dOK+YCz+Prn6nsLiKQvlOSDajNdTZJh3FwSYYwojug1/tVppMBhk98twOMzRcVJgDg8PdXBwoBdffFEHBwf5mhB2Iu7urHCxhPn26LsTYR+r3yv3y7qyv7ztaFljgp8RSRAj3Mnj16DooK8D5+Vz3tLS95tfD+GF15hv9g3376kZ7AW+S8D3j4tRrJ3v006nU7snFwm5njsPEBdY+017tRyLiylnHXf6WRwIBM4wjp0JISacLcRzOBAIPMw4M2XMvdib//Evqdaq0PPJPboKIDF8HmLiEVkAgRyPxzm1wcmhixeIDy4YYOWGLEFEIGbeBpP3PZLK2J1AegoFgoKnMLhQ4YSnjGb7fZRWdo9we2qBR8nn83m2zHMsxB0y6f/lOOmkLWUZQd4kKDSbzSwE0WWD+8FuznjdAcL5SUuQlKPgRLqp30BhRI90NxoNDQaDqwQsxKXlcqn9/X1dvnw5W/0RHSDvpZjEuYmCu/DlNUG4Pz++jMJzLI4WCDRpAKUYwbyzN3DauLDi60CajYsTnU4nF0blPjfVI2C8iDUuoFErwb9n7lbYtBeYKxf6XFhycYZ97uvMMXzOHRSsGfNZij8ukHFfLgSVAlcgELg5VK978rSH8ECh/3xDT/6PISYEAoFA4OzgzAgK0kmUWjppQYf9vtfrZVII0Yc4Q05LwcAjl4gCkAii0x4FpeUkJJfPT6fT3CLQUymc+EnKEWvqPXhkvMzFZrycyyPtXpMB+3+Zb+73xzVdwHD3gJMkiKN0YvHGQYFYA7GGsDEm7gGS5mNgHC52eHE/J4s+B5JqZJxigZ4KUlr7ydt3BwZ7gfsbDoe5vsZsNqulwdBidHt7Wzs7O3mNut1uFjI8RQK7fL/fr6VxeHqIR+B9HVwocyGHSDlzxFjZn+wB9rSTXNbAibgLRqQNMK/UDPDvAevAPLN/GLuPw4U+F+c8vYAxQfTLdBXGWKaluHjh870pjcbHWzpscN24A8HbXpZz66lE5TF+T/eDQyEQOKtIrZZ++XftnPYwHhhsfaShx//KT0YtxkAgEAicKZwZQcFJjEfZIYu4AXjdSRmErCSwpYUa8kD0msgvJAJBgFaRVXXSfo5/knKxSCzwXmyOaLBbr90JIJ1E8N3G3W63NZlMsh3cxQJIq1TvcsG9cR7vlsCcOdGF1LoFvdFo5IKUnJv5m81mebw+l1wb8aEUEqSTivkeiXZ3BGIFBA/XiRNlL8RYCibUf3B7uu8jinqSR+/pHqPRSOfOndPOzo62trby/XQ6HfX7/bxu7XY7iwi0lST33lNuvFuGCx8QX1IoGCdigbsdXOTBTTCfz7MLAkHHnQXck9cf4T0X1yDPfK8gzO6+KfcFool3kUCQ4LyeIsPcl0Scz5MmBNH3VAmOd1eApy6VHSQYRynilEIE1+J1hLnSteD34m6j0gESCARuDtW60vmfS3rl84IC3y52fzHp0b/zs1of3h+dZwKBQCDw8ODMCArSCRlya7mkGlGDsLs1u6wdQGTb7eYexcWWvb29ncUBSGe3281CAZFqdyZAdiDLjKPf76vf79cECrdUe0TaawdIyuQfkaKsleDpER5N5Rp+XgjedDrNJMqFFq8JIalG7MuoOmTXrfQlyUK88PUr7ftOpr0AX1kE0h0kwKPXbp33PeP1H7wQI2JHq9XScDjU4eGhRqORHnnkET3yyCPa3t6u1Sjo9Xp5/Verlfr9vnZ3d3PEfzgc1uoUHB4e1gQk1srXvUy5YVykVTD/g8EgO1u82wH3RKFGBAVvf+nEm8+7M2VTagTjg+i7O6cUszxtxYskeg0JX1fqhPhacQxiirtdyjVzQdH3ern/XOTy74i7FFyQ8ucHQowLUgg7Lkb62AKBwE1ivdIjf/ffqPUfv00vfOFpD+b+xO4vJQ2fX2n0Q+/XajI57eEEAoFAIHAVzoyg4OQVODHnd7dlO9Hw44hMzmazHIF3SzUuhZ2dnfyeuwcouEd0E0s4JAwSIim3nyQSXkZJN+Vp8xoEy7squBDCvWyK0LrjgvO6S8Dt8U7yvY0fc36tNBFPuSjXBAGD1AO/FnPMWCRdJQL4NalHwPVLUuk1NUoLPeSa6DOf9Zx8XAmStLu7q/Pnz2t3dze3h2w2mxoOhxqNRpm8Hx4eajAYSFImvwgLiBtOnH2fuKCCWAPZZYx0ZOC8CD9ed8LFEsbgnUycdHvxS74fXNMFgXJPetFCFxM2uT583ikqCjlHnPC96N83H3eZ2sD5S5Gs3AuSao4D9h3CgIsT3jmDMbkrqEzF8TXid/ZGIBC4dVTzuc7/q4/rhS985rSHct+g/9mGHv+Jo/8/dH/pUzr87PNaXeczgUAgEAicFs6MoOCE2dsLluIBBBchAMLhJIHzeK950iUQDNxR4JFOnAhuKXdhY1PeN46G+XyuwWBQI03SCakmeiwpR5NdFOj1epmgE93lOK/H4GkRpVDC3EhXk0Kp7iJwAuaFIIGLGogPHiGXlFNCuFdPL+BYj057nr23CWXsJfEFLkjwOy0mIYJ00uB+3GVB9JlUh9FolMfInsK14evtr3txQ+bC98UmYQaiynyW68F53WFBhwUXzJbLZZ4fHDi+j3zdcHogElCUkv2G24IOJ07QcUY4nHi7IObfD67rxJ4UHHdYkDZUil++n0uXgV8Dl4vvOe9E4WtX1pcoxUB/bvizxtcpBIVAIHAv0Xuxodd+z6d0+JGPSZIiwSEQCAQCZx1nRlBYrVb60Ic+pGeffbbW7x44QfOINgTFI+sQBSK7i8UiCwkQUP4RSUUUcILocCIFIJz8XJIjxlXWfPCUCs7HWPgvhNvz8NfrdSaBpDN4oT9y/d0BwZwwRn73cTH/EEovVuf3ipvB6wZ4Sod0Uh+Cn5m7ch6x2DMPiDTctxdbLFNf3LngrgTG5EX/XBDodDrZfdJonBQcZKweGfc95YTWazvgVOD+3UHhe4D58zl3AYJ78qg4QheCgLs6vKtEmdLg9+9pJrgh+O5Anl2g8nNwThex3PHha+D/Ukq5vSeuHeYaQYH59NQMTz1w0WVT6oaPideZGy8GyT72bi1eI4I9w7hLIcHTVAKBQOBeoDlTFhMCgUAgELgfcKb+Wp5OpzmK7SRyNpup3W7n3GuIvJN3t5xLuir6DjkjrcIdBE6OID3klkMq3N7u0VLO6fZySB1jg0Dyj/MjdDj5gWzP5/Ma8Wo0jvLrGR/kC7LMXDFeWjByH9JJpBlC5vZyxgvB9vQTLwTI/W4SWPxeOQfz5ETPSZ3/4zXphDQ7OSyJ4rU6CnAfjcZRa8jhcJhJqxNsUhsg77ha6Ojh6Rw+5sVikSP+Hp13Yupkmz3GXHjk3N0iTppL8WQTsfdxAQQeRBrGBsnv9/u1VBG6p3jhSIQZzuH7lWv4vtkkzHiBT+oVcA3fW2XaAXPCPftzgPnjNdZLOqnnwHl87zJOvlOIcJ56wZjdDeVCWCAQuHUcfuZ5veXPLDX/Vc/oo1/Zvv4HAoFAIBAI3Dc4U4KCwyPY/OFPdJ6OANIJCdlESiEFbqf2do/L5TKnQkAIIZvz+bxGED0i75Zrt3Az5k01D8qINeSK6+I28GJwRE8hjU5O3anRbDZzbvlisagR/jKXHThJ5XdJtS4MTg4hgmUVfLfIQ47LOhLcj5N+f790UDgJdLLNmLymBR07nPCvViuNx+N8v6wxYszkuLCVd0fo9/t5TabTqabTaRYNvFMELpGDg4NM0hG7WEcXqDYV2fR7dLeNF0vkXlJKms/nmkwmV7la3N7vTgDWkPv1e+C87uTx9A3GxjiqqspiAuN158O10iG8WweioLdr9H8IcL5HNx3njhrff+4y8hQo/y6ynyiwWu47F8NcACudSoFA4BawXmn14otq/Z+v6Kn+F+iTX9q4/mceQnRfaeiJv/zeaAsZCAQCgfsKZ0ZQKEmDkwuvhUCkkc/wBz8RUKq0IwYQqYR0bbJrO3mALGIRd9LlUU3P4XanA9HYUtSAFEPOnVA7YffikERdKX4IsKxTjJAIO6kUngbhNSE8Su5klLF2u91atX4K70mqRae5Z6z4dM3wjgBlrQCIt3eLcOHB58ddDh4pLl0l1F0g6o4gAAGeTqe11ACEINwtCEfz+VyNRkP7+/t5HiHi3lkBcj+bzfI/37uMBwGDc/GPNBsnuawR8+iCFXM9m800nU6zY8DblLpIJumqOhAu9pDuwZ6TTkSqkoB7EUhfa87lYgnXhMz7PkHccXcAr3sqAtd1wapMNWEvl6kkLjJsEnPc9UKhVv55qgPn8s+EoBAI3EGsV+p930/qjT/Q1Mtf93Zdeq6Swgh0hErS+qiIZSAQCAQC9xPOjKAg1VvLQcCI2vvrng4AyYD8SfVOBN1uNxMNJ6te7A2iA8lyizZt/YiCYxfHCs7xm2zaJWl0QtntdjNpgwAjDnBP3pIQ0kNqBcTLXQ4UvoN00TnA3QaeJsDr3mrQK91zX5ty6CXVxsnrh4eHmfAi7nhk2QksKFsHuqBQEkuv8+CpGk7gcWogAHgdCtwtjHU+n2fC2+/3s/DAeYjuM4bpdJpFBUQHxtBqtbS1tZXnk7WbTCaaTqfZUYFANJ/P87r0er3a/vAo+mw20+XLlzUej2tOD0/t8G4diEHD4TC3pkRoYq24P9/z7Fvuxeea/c1npROhz8UIX0OfS87JPiO9yMfhbiN3CXA+Xwe+3+X3mj3jLSv53jJ+FxI99YLX+ZnrBAKBO4z1So98+49p9fvepYNnIh4vSa1J0tN/+kdPexiBQCAQCNw0zoygUEbRERScKHobR8+Xhvh5eoJ0Uj3fI5ue6+31AHjdiz0SGYagcKyTRY+kE8XlmNlspvF4nAmm58xTB8KFCekk/1+qd0xwG7nXcXCbN/fqxAjnAOSsFBT8OtwH8+rpIZJqxI/55DjEC0/h8A4apAuUEV8nsmVNBl97FxWc5OFEIN2Ez+HuYA1xIOzt7eX3QavVymTd15l94Ckgk8lEV65cyWIQTgXqNXhqDHOO6yWlpOl0WmtNyfV7vV7N2YDwwf4gxYJWl3wPENFIfWGN3Z3DnpZUS4XwNCDfz4gILuaVjhrGUK4hdUH83vle+OsuAkD2vcOJdyPxtAj2gH8HGJN/d1xgQEThXlw08O+ki40uoAQCgbuDR//yj+rR0x5EIBAIBAKB28KZERQABII/5nEpeIQc8gLxgJATpXcbMy0BPXoJWfJCip6b3+l0NBqNNJlMtLe3p/39/Uw2er2ems1mbvHohfQA5AzrOITWI9GeXuBRcK+5IKkmErhFG0BAy7QKzwnnuLJQJXZ1PlsSRyfxjpJIcj/tdrvWMcBrQJQdJBgTx3nqBWMtuyn4/nBy2Gg0NBqNskji0W7SQCRpMploPB7nMfk/T9VgjX1tSWWgYON0Os2pCZBzRAQn6lVVaTqdajKZZMcL80I9BFIlWAt3hCAo0IGEOea46XSa5wQhxO/J3T0AZwZpNr7O7vLwVAZfO+bFv6ecE/GA75evn89pmeLkzpVSLGN/es0L9sKmFCa+D+wl1tMLVfo+9jQH7gdRIRwKgUAgEAgEAoHAtXGmBAUnDxQ5LPPnPbe/7HAAsYLUQEywkjvxdkHBrfxESHu9nobDofb29nIagUeRIYVu1d8UsaWgnqdOEE2HIPl9eJTUSSDj4xivPeDF9pz0ef0Gd0b4tTySXboTyrnxgntO7Kj34C0UvdaCE0/Oj+jiHT08as9n/TNOej3/HkLujotut5sj3uPxWNKRm2AymeQ0AGo/eOrCer1Wt9vNJJTzsy6kL+BccSv+YrHITgIXF1xQYL75LGvCZ9yhgAuCvdLpdGopBAgPpHYwd4hwvV6vJk544VEv1oh44O4Fr8/g64h4V9azYP+UpNzdJe6C4V4h8p7GUHaA4DhPJfLze2qUF35kbPxcfh54vYTyOiEoBAKBQCAQCAQC18YtCwoppbdI+m576fWS/ntJu5J+j6QXj1//5qqqfuB65+OPfLfnSycpAFRnbzQaWVDA1t5oNGppA05C3P7NualN4MXZnKRAIobDofr9fq1CvVvKPRpfRvI9p7wk15Amdz3gophOpxs/D0GlFoC/50UYGRPzwxyVxMyt3d7B4Hhta+0sEVic/HP/TgBdDIG0lpX1ER8g0S7K+D173QdcJhBaP79Ur0GBsEB0/PDwUAcHB2o0GrlTgo/FRSii7JBzF6EYn9er4Bwu6HjknzWmYwTr4uKX5/X73qFtJe9DrhG3vLYGP89mszxGxk4NBq/1UNZLYByc3wUFTw/wehXlfmcfee0JL+JYXs9dJ07wfT7dpVG6gDa5Ccox+X36PDrcmcA/nin3S0HGO/0sDgQCgcDNIZ7DgUDgYcYtCwpVVb1f0lslKaXUlPQpSf9Q0tdJ+otVVX3bzZ7TI+OQR+zeXvtAOiGvXmfAo/Mc69H34XCYXQJeAwAi4vUYINJEsd1Kvilq6XZ9yLa/RuqCEyngUWCIapnHzTkgO57H7l0JPErd7/fV6/U2ih1+P5ucHpB55pj5LIkWhJ8x0drQhQVfO3c6MG7G4ykMfl7SKSDlkG3PqUdoKYEAgVjjDgjmsiwmyHnKegVOhBE4yjQS7/DBHqZDQ1kg050WvjbuPuH6XBsnA++5OMX+8j3IPPm4XEjj9bI+BeKKpwUg4pR1F5hHRDFSTNyJ4O4LvhvuePH7LkUc/pUOldJJsKk+h9cBKVOmXFxgfl3ouV/cCXfjWRwIBAKBG0c8hwOBwMOMO5Xy8KWSPlRV1cdu9Y9wj2K6PRsyJCkTJwgCkVgvpOiEqrT4e66/kxJILoRpNptlctHr9TQYDCQppys4eWPsTvrcfeDvcy+e308kF8u5OybKVAGcCGUROXcDeL56r9fTaDTKVvaSqHrrSekkAu+ujlKocbLHvXHfCAqIBGVuvKdx4LYg795FC86L2wBRBLHCc+GdqHpbxU25/YvFIosAjnKf+P3we1VVOXUlpZT3hK8vx/IaexmRhHthvtlrbsl3octdAp62wD73qL8XG0RAWSwWWYRhf3odAxcgXCghfYPz+X5mLtzZQNqOpygxB97ZobwXF5d8z3Nv7hTYtD7ML/uzTFfwOSz3nrthSmGB894vgkKB234WBwKBQOC2EM/hQCDwUOFOCQq/TdJ32u+/P6X0tZJ+WtIfrKrq0vVO4NbmUlCQVHMH0HZPOrHQSyeV3nndo5/SCclwsufkxImNV88fjUY1G3uZP+4kpLwfz+0mWg28daBf39M9yjoG/JdItV/LUyo6nY6Gw2EeO3OzqVsFcGLtqSUABwXjQQRxsutEzSPZkDqED+6hrBPB9SCbFCv0PeAR7dLCjkjhYybtAmLq43HHiKeWlPvDCW05h9wzJN3PxbHr9UltBgpy+nldVPDUFJ9/SC73Q1qLE3x38Mznc02n0xrp5nrsPW/zyfm4vqeqbKov4KkI7rYoUxg2OVvcCeDnciHA19DH78KLC4j+vfF5K9NLXAQr949fz/fjfYTbfhYHAoFA4LYQz+FAIPBQ4eoS/jeJlFJH0ldJ+vvHL/1VSW/QkfXrM5L+p2t87t0ppZ9OKf308e86PDzUpz/96VohPBcIvJgiTgN+hgg5yYHQQkg31TvwSC2fgUQ0Gg31+32NRiPt7Ozk1AcnnhQj9Ij8YrHIdnFPVXDy7cQLgohI4sc7YWMePLLLmG1er5ovvx+EAtIJODfpAxS442fmFmJPGgX3XdYgcMcHLgkvZskceBpL6cLwz/t4cYv0er1ahwYXgrzwoM8l5N+LN7IGZSS82+2q3+9ftac4vxdAdGLqwpTvU+7f98umtShrBTiR9nX3veZChtc7wMmBgIPY4GKBp4N4GozvgfI74uSf33HIIBBdS+xhnr3jg99HeU9cu7xfn1++ez737EnW2DuM+PjLtAr/2b9f9wvuxLN4qfmmQwKBQCBwA4jncCAQeBhxJxwKXyHp31RV9bwk8V9JSin9DUnft+lDVVW9R9J7jo+rpKM//sfjcSZPTpCc7DgJ9HaFJZlIKWWy5sTC7fwuJHgLRUhLaaHm/U3n9fxx0iaITkPeuB+/Rtkm0LGp6wGkrCRRbhMvyaekXNwQQs19O+H0a3nBROlEpPBz0gkBV4C7RRinF2uEOEN0GXNZiNPB/SFqeNTbXSPSifDC+Zh/T/fwugmkW7jI47UOyrx6TzFxB4KLGZyP9+gk4dZ7ujhwPV/7koy724G52+S2cQcGNTW4Z+aOsV0rLYi14Lu2qS5EmZbgDo3SVeHvXWu+PPXABTv/fOlSYPybUjlcHOD76UICz5MyVcKfHV549T7CbT+Lt9P5qy0bgUAgELhRxHM4EAg8dLgTgsLXyKxdKaXXVFX1meNfv1rSz9/0oCxK6jbr8j2pnmbgZGaT3V5SJllE2Z2E4EhAFOAatNdzK7aTdScqEBdPv/BWly4K9Pv9bNH3IouQptJuDgEviZtHlxuNhnq9nvr9fq3TAXnufN4FEz83hB/S7MS1rD2AoOPF+/isF0x0wcRFA+aUcyEW+bW5JwSFfr+f56uqqlq7So9Ue9tL5ob58vVmLKWQg2jE+163gP3A+DZ1ySjvjfNQ8JE5KefV00VKsQtxhrUqizv6Oro40ul0stOEa5RpG+wjh6cYOFzkc5dASfg3pTm4m6RMRSj3NP8t3/duI+6G8DnjPjfdU/nzpvssa03cJ7jjz+JAIBAI3BTiORwIBB463JagkFIaSPoNkr7RXv5zKaW3SqokfbR470bPm0kgpKskfFK9gJoTMame5+7HO6H36C5wgufnp1hhSUQ5BkeFd1pwUgT58+uUlmqPjiKmePQVsshrfj+dTieTPGz2ZS0Aj/ZChHnfbeR+LLUa3EHggLBeq4o+BHixWNS6WRD5huRCFDkHhRRTSjnNgvvsdDpZUHBRhDEwX4wXYelae6UUhlyAwQ2BoMA6cn3+Wwo93r3CUwHYz15Ak7FAtH2Pboq6+x5iH5bfDyf3pTPFRSuPzHMt/8f8IVJ4egUuHReifA+X9UtKV4Af724bFwzceePOFD9X6ZrZNA+bXAglNrkWrnXsWcPdehYHAoFA4MYQz+FAIPCw4rYEhaqqJpIeKV77Hbd6Pv+DH4LR6XRyAToIGf8kZeIGOfNuCZJqJLGMpJZiA/91N4OTxjJaT944xNZJTZm+QLTbLe7cs6c+cA9Y06UTkjWfz3NUuN1u5zx5SL2TW87JHEKSParvRRebzWauG+CuCZ8Xoutc14WE0qbPvZVrS4qEk9CybgDn9HnneOoaeHTbXRfct6d8XEt4ckGBOWT9ETuc4LIXmC/fN+568H3Ke55u42NhHfjn4oVfzyP7Ut09g2jg6Rk+Nq8dwVh8Dsu0D8QedzJwPr9/L3zK963sQOFuBuZ9k6PHj92UWuP7yJ0apVunXF/2gXeW8PoP5f500ax0R51l3OlncSAQCARuDvEcDgQCDyvuVJeHO4ZNBERSzW3gRAIyJB2RnG63W3MElFFTPoNYAElar9c5BUKq29MRNCBjXoOAto8QNooNugPBSQkpF9KJM0A6SaGABCEC+LiZH+BRW0g05+e+S3HBP1t2exgMBlnAkU5EEDoCQF4hg9xreW5v9ejuB+/S4eIOBL6sC+Hr5aST8Tv5K2s9cC0vTOjr4Tn6XNtBnQNIfrfbzeKRn8MJsgti7DH2sh9brqOnxpRCF+vI3HshSeaOa5eFDv01dyUwt3zex4wQQg0QxC0XcNzZwHwjaLgLpkzZ4b59r7twUDp6SjEFAQzBwwW0cg/6Hiprq/gabhISWZP7yaEQCAQCgUAgEAicBs6coCDVOxqUuehOyFx0gFBwDNFl3qeuANF5t/dDTKbTaa47MJ/PNZ/Pa+dAWIAsbyrs6BHdkog5ySxTD5x0lbUESGMoSTNkkIJ7brMv3Rje7cKLDkIYIc6+Bt4VwDsCeJE8t/P7HHj9BK9lgLgwHA6zw8PXHPLo68f1Ics+Lr9WSey5T4QPj1hzXki0CzO4M1arVW3e2RsOrlPuQ9pUMl6Oc0cG9+AOD6/94GSXvcB1SrHK78nXCJRzxD7w9Wb/sKbsbXcS+PVcuPH1L69TpmOUQoF/jxkndTl8vkm/8e+s3x/ncoFmU70FfvY1LN8v03cCgUAgEAgEAoHA1TjTgoKT/jLHvczxJqrvrgVa9fHzcDjMBepGo1EmtePxOEejvQ4CkWu3l0MauR4R/dIJIdWLvpXCAoSIqKtH4b0lIoIKqQ4e0XfC5mkcZTTcCzUiNHi7xW63m50dk8lE0+lUy+Uy2/ClExLoBJraCF53wqPGkvL4vZ6Bd76AvHt03ltacl53rbAmnubgKRReHwKhwJ0EvjalY8AJOWviqSGle4Bru2ggqSbeuCBEOomv2aYUBR+bk/hNAoJ/ruyowf2Xe8Y7LXgKgP9jn7Ie5R7zcfo8lg4A3/vAnTF+76XzgvO7SLBJ3Chrn/i1ypSaTakOjk1iQyAQCAQCgUAgELgaZ1JQwN7s0drJZJJb4XndBEk5wgw5gOhDiCH/VLofDocaDAaZYGMlh9xOp1PNZrNcSLDM8240GhoOh+p2u5Kk8XhcIz0IE7wG2eF3ahB4/rpHXCFauA6AR7i9ir5HkcuIr6d+eLcJ/3xpPWcefH4hnER9cVo4qYaguivBBQaEAIQf3CLUgej1elmwQaRBHHBbPAUaseX7vbF/PILv4gxrWKaEOPndlI4hnXSO8Ih2Kfh4W1N3kbhw5BF2L6zo+4d1Y29yTYQST2MoHQ/uHthU/6DcG+xJ/6zXxlgul1c5O3yOPRWkfN/nWlJtv5UOIz+mdFhschHwuq+VH+tr5w4NFxHKVJFNDqhAIBAIBAKBQCCwGWdSUPDopUd9Ifrz+bwW1Z3P55KkbrebiYznXZdR0Ha7fVXngEajkc9zcHCQo/QUKeSznLOqqlprRkQFj64vl0vNZrP8Gc9R9/oI3hWitOtLqhWgk1RzF2BPZ94AKQuj0ShfA7LIGP18tH+E6HPdyWRSS9EoUz0QA5ywezFFFxx8fb3wJIIAggIE1VM1iK77/JLr7xFqSDKCB2kq1KRgbE7C3UHCWkG0nTgDj96zhghWzIPfr9eScOGCzzIH7DNPv2CcLo4xBhdEfP/4fbEX+M748b4HyvG6IMC53Q3i8+yFGF0I4dp+fv8uuhPEHSZl1won/5vcBi7UuPBUzoffD+fz9ff3S0dLIBAIBAKBQCAQuBpnSlBIKWUC7FFEJyez2UyTySRHyj1vXjqpW0B0HFJIkT2PhDqqqspixXg8rjkDXEzgOp1OR6PRSMvlUtPpVPv7+5LqLR+9+KPnoZcku4yaltf1/zI3Hn32aLikGtmFkHv6ROl+oK3ger3WcDhUu93WeDzW/v5+FlnK3HKK8CE+QIJdNHEnBOMkauwOBh8n4+f3brdbI3dOWD1qzfyllPJa43JwcYbzb9p7JSF2Yu/3vimKXToKXBBxJ0IpHPi42K8+Jvad173w/VRem3EhqJQpDS66eCqRu13Yj2VUnzF4Sg2pQcwz42avkxJTigw+l2XXCb/3Td89F/h4zWs++Lr4d2eTu6G8bllzYdNeCQQCgUAgEAgEAkc4U4JCs9nU+fPnay0WITxljYSSAJUuBPLUPTcfkiWdEBknXIvFQvv7+5pOpzW7fZkq0O12NRgMNBwOM+F2AaJMO2BcEDdIskdR3Ynh91FGi93eD1mFBC0Wi42t+HAEuDUfYoq4QCcDt83T2YFxlFb0RuOkewTzw7XL7g+eS+9V+snRJx2F9xkXgsVsNqvtBZ9r5pl78vOXZJFjER5cYIFou5OBefbX+MdnSbHxGgneVcLrS3ghStYVJwJOkk0dKUqS68d5JwY+w3GeeuOuEb5H3rrSU4lIb/H5K4Uczl3u8bJjAw4E3x+lqOfE3QWBUuhhHksBwFM0yu+dj8PfcxHK58VdGJvGGggEAoFAIBAIBI5wpgSFRqOROyhAYCG0kHhqKUCqvCig56MTKR4MBrX0CScaELySbEE8INlbW1saDAZZeOj1etra2qp1KlgsFpm0l+kETpAozgeZ84r3Do+se2E9jyZDar3WASSac/Cek2ZSNsqItb8vKYslEDhPuwAQME9PwZ6PQFC2yiRVgfP3ej31er2clkAUnPEwxxzf6XRqpJWiknRocBGFMQKvBeBFF/v9fs1NwDE+V8y5nx+hCzFjsVhoNpvldBkEA3es4NBwAQnhCuGEe/PikqwBqRzr9ToLMe7kYH9zj3yGvV3WiHDRyms5lOkfLlRwDe6jnLfSGYBI5PvGXUVlWk2ZxsE+5VzMCeS/dHb499wFEVCKNFzXRYZG46jbCPsuEAgEAoFAIBAI1HGmBIWUkvr9fibvXpWePPjhcKiqOqqbMJlMMsFwu7iTCAorQnI9kj6bzbS/v6/ZbJavIdU7E/T7fe3u7mo4HGq1Wmk2m2Vxw+siSMrEEgIMYfdzOskto6llGgDnLK32biMHiBrSCTmFzBNB90KVbm336CxCwHA41NbWVib/dLjw8Ur11oPMPffiUXZe5zwe6Wduer2eZrNZFk9wS7hog7OAz7mA4WPodDqZqELgSyGBcSAKeFtIn1uuz5i45/KcLhgcHh7mMbRarRz9Zz4g97gMfM/yX08B8Ui61x3g/D5nrG/pIGAPeWqApz84EXdnAPPiHSR8njz1hn3n5/Njy1QmH4u7h5zwu5PDBRF3dzh8TF5Q1Off73tTnQTGj0gVCAQCgUAgEAgErsaZExQgh26/9kh7u93WaDTKJA0S7pb3xWKRiWtZMM6JBA4Ht7JDmug6cO7cOe3u7may64UBDw8PNZlMNJ/P8/Htdluz2SyLHJ6K4fn2FGyEPAG3tJe54LxeugI8dcPbZTpxZW69faE7M7gWc126ETwlgzlinj0FASGIeXZHAO93u90sAHkHBaLsCCqMwzs+8JoTPu8Gwp7pdrtqt9s5DcRz41lfHBROdN0ZQAqCzztr4XvFifN8Pq/Vqig7Q3iUHbHG4a4UhIEyTcBTD1gT7om9gVDBXneizzn8O+EpMGU3CHfduODFe1zfx+P7x+fX9xC1MlzQKEUVX5dy3X1M7jIo6yJwHsZSpkeVx/qYSbkJBAKBQCAQCAQCV+PMCQoeiXRi7S6ATqejXq+XbfBllBeyRqRYqtcicKEBgnHlyhVdunRJL7/8sqQjGz7OBNIwOI/nViNq9Ho9DQYDSSfdHbyjQ1VVuc0kJBmngYsKkGxPu+B1t6OTYgHphDh70cler5cFBCe0TnRLUaaqKk0mk1xLwgk/5Lp0grjNHhfH4eGhut2u+v1+tuUzf5Dvsgih1zPwaLinF6zX63x+OkPwuosBZe6/j89z5X3MZQE+t7976gH3y7mo11G6JkoSzr27oOVFET3NgzljD3snBN7fdG/AhaLSfeBpBO6y4GdScnxOXUTh8y5qlekPvE/KiO+5Ushirh2lGFHWRyjFh/KefA0dZR2IV3NmlOcKBAKBQCAQCAQCdZwpQUGq28idjEOWIIvkN0NSIDJlxNKjrVjXIaPeLnG1Wung4EDj8TgTcf4r1TsnEEXnfKRq4E6A8EqqjYnfERNwUUDW/T696J5buP2ckFfmDRLU6XQ0GAw0GAwykUf8mM/n2cHgRQCJYs9mM43H43wfns/PvXtKB0UVafmIQwGS3Ww2c30CiCrHMQcQcOooIKq44DAajdRoNLKAxHidpPpnuF/WzS3wkEgcEayvu1z4POkTzCFr74UN+bykq4io3yfCCONxYaNMHXDi63sPwcH3exm53+Qu8fPyuU0OCifwfn3mlr1Qdr/wtBl3bfj32efWUbo3Xk1oKME+dEGxFB78e+MOn02ODdJfXPwJBAKBQCAQCAQCm3HmBIWSgDvJ8iikF2aDONAqEOLjkX6O9Qg9UW+ILiRYUhYUcEtQR8Aj6JAZct2Xy6UuX76syWQi6aQmgsMJDdZ4SDmRXO5nOp1esxCikzWs/ZCh4XCY/5ED7jUAEB/4GcI4n8+zkOAtFxm3tyHkNSfr7q7wHH4ftxf563Q62WlRuiZcCPJ1QlSQlAUld0743M5msyw8+Jj5LOvrIgR7rHROUDCS4xhLWfjS3RKICZ6G4fuw7GbCefnnc+xCTGnZdzjxd7cB1/V72lQjwc/Jd4J78jQF/nl6iqdmsNaklbAXfA7LdIpSACiFlXKuuJaLFv79cPeMv+dikR/r8+qCSSAQCAQCgUAgENiMM/sXM7UKIKAQeuD5955H7gUMIcleEK/f72t7e1u9Xi/b1/f39yWdRPE9ckxEnggzhRe92B/pF+5OcBIKseWeOKcTNY/SkqZASodHUct5YSycazQa6fz583rkkUfU7XZrVn7G7JF5J3ur1UrT6VTj8VjStaPD14owlygjwU4iIaR0eKDmAXPc6/Vy3QSPlEsnLhXO4WMiBYSCnU46O52O+v1+FnX8mtPptJbTjzBFHQxIKwKK3/NqtcrkGdIMqUfEKR0mjMej4C6aleS6THnw+fCUFkh/eZyf13/39qNlhJ/vkNcz8XoIXt/E59rrQHBvuDT4frooVs4Tv3MOruV7CiHD59XnzR0XvgdcoCz3sqdVBAIPGprnzkmd9vUPDGj14svSenX9AwOBQCAQCFxfUEgp/U1JXynphaqqPvf4tfOSvlvSs5I+Kuk/qarq0vF7f1TSN0haSfoDVVX94M0MyHP0qbzv9QU8/9zz/iEsECU/F8ICaQm4D1JKtQjy8fhrue2kJ6xWq5zX7sTPre0UaIQMcaxHcr0A3TXmO5O2fr+fnRdubScyL6lm65eOCPX29rb6/X5tXrjvbrdbK1rnTgIXVDxyzHzjWtiU7w7xRGRBFID8IYww9l6vV6t/Uebhk2YAYSUthX1BZL2qqlr7SSefzE9KSb1eT9vb22o2m9n5gZjh7gV3W1A004EdnnEhQJBGwlp41wV+dtLstQ983d2F4w4Pf88FCObI14r3ED74HnibRQQV9oM7S7h+WUPBhSC/no/L74P18jFscsm4M6JMz+h2u6qqKgtjfMbnx8UTn5My9cHnw4UTFxE2CStnBff6WRx4cNB6/DF9/GvfoMlrru5oErgab/j7r1HrhT2tPvRR6Yw9BwKni3gOBwKBwNW4kQTh75D05cVrf0TSv6yq6k2S/uXx70op/UpJv03Sc8ef+SsppaZuAG4Rp1ghEeSS8JNuAPn1AoxEXd1CD4h48l5JDp0A8TpighMlSTnVwIk9pLmMSEOi1+u1ptOpptNpLb3CSZR0khbR7/fV7/czueP1MkefMUH2/HqIMJBHCLcXefR7KVNBXLxhnfx6iCZec8EJNmSVNApSEChiSWqG1ylot9u5fSive6FLzj8YDNTv9zUajfK/4XCofr9fcz70ej0Nh8Ps3MChwv4qibKvhRP60lHB/dPdA6dMp9PJ840IxVz6uSDdkF3v0lCm/via8zlPhXARzd0IHA/pZn35Hvjn3JmDAMV+8XVBmHOijkPDu4u4MFcKD2UdiHLO3elQppaU+9XPV7pHONbXzL/H5TOIZwv/PPXmDOA7dA+exYEHC62nntQnvybEhJvBh35rX+//fY9Jv/bzlN723GkPJ3C28B2K53AgEAjUcF2HQlVVP5xSerZ4+TdL+pLjn/+WpB+S9E3Hr39XVVVzSR9JKX1Q0tsl/djNDgySIJ0UU0Q0WC6XuXAgkW23XEsnEVq31hONhdi4GOBpCsPhUKPRKBfQIz3BiyS6Fdvz1j0SWnZIIMJPbjrOAeDEigg8Lg0vROh2dx9Pt9vN5BwxhOsjnkgnefkeZSePvtvt5nksI7mlwFASR4grtQk8VcHPx7lIO8FZQGcIry3ghQCZG/8vYx8Oh/lak8mk5g5pNBra3t7W7u5udm14LQLOx3XdLu8iFITZLfrMKaSX18pifi7ueE0HXxsn3awf5/T3AK+xR11M8BoMfh3m2WsWlN8d5pSfaW2JQMJe8dQIhAIcQYyDPeFOo3IvecqPOx02taDkfJzD57xME/Hz+b27I8aP4zXG5PNwFnBaz+LA/YXGYKDFOz4n//78c10dPBNiwq3gg//pQGktvW70NjV+5GdOeziBM4B4DgcCgcDVuNUaCo9VVfUZSaqq6jMppUePX39S0o/bcZ88fu26SClpZ2cnk1H+sKcGAfZ4rOi0NPRorkd8IZNeoBCyPJ/PNRqN8nU4f6vV0vb2ts6dO6etra1c0LB0ExBxRkwgWkwUF3IJ6Ye4e9TTrfhlpBbrPaKFCyNOmFwUaTQa2tra0tbWVo3wQZS9vaQTO8bc7XZz0UmIoVRPQfFigU5guVcvNuhE21NEmDOEB+84wT05KXeC7PNUpsYQTSftgn3EHI1Go1w/wc9Vdi5gTiDB3Fe73c5tQSmAybHME/dbRtW5Jx+P7ydex4FC6omLVD6fXNdJNufy8yE4lGkWJel2Mcg7bnCvnKssZsq1vWZDORcIYmUKB/vcx10KMawnLqFNogG/u8DnTpDSqbRJdOA+ytQH1v6M444/iwP3KVLS5D98u5aDpBd/jb8RYsLtoGpIH/mqnp4efqE6//SnXvXY2Ve+Xev2tTvTbP38i1p94MN3eoiB00c8hwOBwEONO12UcdP/STcmIKaU3i3p3fzebrf1pje9SefPn5ekXJAQZ4KkHH2eTCa5iJ5Hv52sELHf2dnR7u7uVY4DSdmOP5/PM5Hq9/tZUIDkQZ4hNb1er2Y559plYTlJOS2jtFg72eHenBh68T8IN4STY0rRgSh8v9/XZDKpiSykY7hogTiCQOIFCIn2IwBwbKvVyr9zDxDzMqIL0fOieGW9BK/twFg8/94JJp+VlIUhCOsm6z7OFBwMCAQQTLfjl1FrJ+c+RxBrR0liWVOvbcCe5LO4T/iMW+txfbjFn2szLhdz+AxEHwKPGOBEu4zMe20O9iNOF1JZmFdPDeE1rlHWZ/BjEZjcScQc+1wzJ6wN4pvXSeDfploe5XfLUyA2CTB+bX4ux7kpNeI+wS09i3sa3M0xBe4iLv3Od+jlz79v9+uZRtWq9MkvaemJ9tvV+yc/WXtv8Rt/jcaPH/1/75XPq1S9igY5eMPj6r/4mCTpwvf+glaXr9y1MQfOBOI5HAgEHgrcqqDwfErpNcdK7GskvXD8+iclPW3HPSXp05tOUFXVeyS9R5JSSlWj0dC5c+c0Go02tn7kZ1obeueGsnjcer1Wv9/X1tZWFhQgb27PJy+/qqrc0q/X6+ViiDbW7HxYLBaaTqc167wTXY8mE2XmmkRsIZmQYSexpeMCUuSFHfndxYStrS2dP39eu7u72abOHELOnOTxeSd73CPRaUQSbOJOyuiY0Ol0ss0dUukk0D+HGENKBvONCOJ1K3xOpLrg4uvu7hCO80KbiAoIFf6ad2NwoQni7XUSOLeLFZ4yw3h4nf3JuPyemffS5cBc+7o4mS5TBLxAodcFcddKGdX3vco9IS55TQjSg/jOMC6P9vv6lkKBu1T8+7lJ2MAlQ+0Lqd4VwlOMSreBX9udLS7WsY851tfFHR8Od3qccdzRZ/F2Oh+M9D7Ei//FO3XlTbF0dxPrbqXPfFFTjzffrv4/+klVX/RWvfjWgSZPVDoc3NjcT55ca3Icn56ff06NhfToX/2J6Chx/yOew4FA4KHGrQoK/1jS75T0rcf//V57/e+llP6CpCckvUnST248QwEIAdZ8bPpEzksyBZko8/yJpI9GI21vb+cCfFLd1kzqxHw+zwTII8jz+TxHvt2ujQhBFBXS3+12a1FcortOWqV6QTmi+e48YC68QKRbzZ34ebR7MBhoa2sr36sTPSdgRIGdtC6XS02n0yw6cA6EE8biPw8GgywEeMrIer2uFU8sixF68cJer6dz587p8ccf13A41Hw+1+XLl3PXBp8P/9lTH3xuWRtPMyhTMHytEXzYC15bgnnt9/tZIPAuA6Xg4WIFr7sVn6i63wcknTVl/3CP7HHWfr1eazwe5zUdDAY1gcDFIv9O+b5krOV6Mkb2pu/Ha4kIfMa/W3z/+G74+rjgAMFnjLhAcJG4y8Hn2uffr+mFI0vRpBQFOLc/R1yY4PX7QEyQ7sKzOHB/4bP/9bt08Nr15lho4I5i1a302Xc01XnLu7QcVToc3Xo6CXUtln/41yodSk9824/eqWEG7j3iORwIBB5q3EjbyO/UUbGZCymlT0r6Ezp6aH5PSukbJH1c0m+VpKqq3pdS+h5JvyDpUNLvq6rqhqV3CLt0Yglvt9uZ+EmqtecjEl0Sjk6no+3tbV28eFGDwSCTEnL3ISAUSoSIOLlAaJCUBQUipm4z98ivk8PSNQFxlU6K3nGcE28vlFhGlp2cQv4YX5mq4B0ViP43Go2cWsD5SB04ODhQSqmWGuKCDfeLuEEXBpwdpa282EM1VwTzMBwOdfHiRb3mNa9Rq9XSK6+8Ikk1hwr3x5ic7HnXBdbTC2F6K0E+yxywx0hZYfwuKGD/Z558nrkv9oVHx3m/dJKwr6gLABn3a+DC8Ug+1/WuCXSv4LvgEXoXDtj7ZS0LXxdEjDKdgX3n7hh+973vtSI8xcC/n/5dKh05nJc9yXq4S8M/4+f0lBLukXty541fhzX0OhfMF8fwnGE/nQXcy2dx4OzjpW98pyavSVpuhZhwL7HqVpo+fucCyNPH1lIlffxb3iVJGny60oX3RM2+s4p4DgcCgcDVuJEuD19zjbe+9BrH/2lJf/pmB+LRTIiCk2gIT7vdrhWKc6sykc5+v6/t7W2NRqNc9NDJTqfT0WQy0Ww203g8rhXqK8eC3Z22iN4RwYsyQt7K6vpSvR0k4wROxvw9Ugf4x2tlyoJ0UkxwtVrlYpW4DXB6IJgQsXbShzthOBzm+hCTyUQHBweZFHrEH0eGk0PuhaKIm4grBJh0j3PnzuU2jhTeY17LYpCdTqdW+8JJH+sznU4lKRcVRIQApJcgGlD53+tKOAl24ulRe/YT9+xFNumC4EIL5+Y83o6Q1ALmktohZYcQUkG8zae39/RUFF7z9BN3UngaDZ/hniDZjK9MBSi7i3gdBdbDyb+nNnj6irs23Hng4gD3gSjg3SA8VcFFl9IF424VPuc1MFhzH5+LL5sEstPCvXoWB84+Xvn6d+rKmytVjXBGPxBI0mLn2LGwJe1/6zv16E+vNfzffuKUBxYoEc/hQCAQuBp3uijjbQHi4EXpSjLbaDQygSmBoEAdBCLxKSUNBoOajRqrP/UYnIThjnCr9+HhYXYtQMYgfmVtAyKjTizLonuSakXnPHrvuef8Nx3XNuD+sMA76UEIIMLNcdSEgKi71ZzaB7u7uxoOh2o0GppOpzo4ONDBwYHm83kt8uspFX4PEEsnwy7KtNvtXN+BdJLBYKBOp6PFYqH9/f3auSTV1l06cjTgNIC8si7eNcNdCy5seD0Hikj6dTqdjgaDQV4HJ55O2j3y7TZ+nyeItacVcB5EFU9lgfy7kMLYEUbKbhsuKiEuIPTwee/44fuydE+4QwbXhad4sJ5+b8zjarXK3zVPBSqFBMZUzgNjoq6FiwWlOOEpSV4IlGv7zy6m8Dl3PHitD+DOiLLQayBwVrBuH3UfCDx4qBpHLojPvCspveMdev0/nCn9Xz972sMKBAJ3EzeTYlndpJDs577ZzwYCN4gzIyh0u12NRqMc4fY6ApJyhLi0d5d/8EPoPBec/GyPUkonBeL8PNjrPYWAY3q9ngaDQS3S7QUX+SypCNQVoCaA53YfHBzkSD4kvczbhixzjF8DMgwBgywSxfb5gFDRgtMJoHRUD6Hf70uSxuOxXnnlFb3wwgs6ODiQdBLxRwDgXihoCQmG5LF2JVHf3t6WJPX7/dx5oaoq7e3t6eDg4Ko6BqVTge4DzL8LGJBJb0WJU4Px4tJwIYhzeeqJpwxs6gzgNnn2jO8dF4e4n9Ke32w2s3vG9xpj5R48qs8+LOsmuMDirh532vC9cTHBUQpTiDuMj1aZnN/JOl06cLd4QUqvVcDclWkrLuSwp33sLqCQuuTz6M4IT2kq180dJrznAoY7OXjfxYZA4CwgtVohJjwMSFLVlD70H/f0pslzqn72F4IMBAIPGFK3q8ZoqPf/sTff2PGV9MZv/pkbP39K+uU/81ZJUvdSQ8/8ufcevbFaqbJAZyBwuzgzgsIXf/EXq9fr1UgpJAcCUboSyB/3WgW8Dvnxn7GjS8rRd5wDkIwyEu9Ertfr5TSK2WyWuzyUTgpIqqceSCdCBjZr76oAwXM7vdcS8OJ1EGN3RmDf93lw+3er1cruBT5HigMuitlspitXruRUB8jaYDDIbgdcAZyDKLUXzCS6y3x2u93cjrPX62mxWKjdbmtrayvXFaB7Bz97Vw0i5bgzSBvw1pgIR94e8tUcBJ4S4C1Bff5Ld8EmlAKUp2H43FDckXVD9Cq7N/A5BByKXLrQ4RZ+xKFSNIPQ93q9LKJAzsvWnOV9co6S4PNemeLhaTguongBVU9/QShivnDecM3SzYOgwGddCESMSCllp5GP0euRMH4XI3lG+JxxruutfSBwL5HaHTW2R3rpN71FV94cxPKhQZI+8LVbevPyLVq/7/0hKgQCDwCauztSs3kkJNyMOSFJH/jWt93SNefn1/mzF34m6ZHvf78kaX1l7ypxofnI+auvPZ5ofdxKfCNSUvP8uateXu8dqFoubmnMgfsHZ0ZQgGQ4WSVSCqmHjHk02XO0NwHHALUVsPl7/QPphEQ50XPrdqPRyK0oG41GFiQg/U5YIPcQXs4rnbTg49oIHFJd1CCCTvSdc3g0FZHFRQPvEMDn3VFBxB7RpNvtZlJ/+fLlPGbOt7W1VTs/kWDPZ2fdWBPPkYdwb21taXt7W8PhMI+53W7Xah/gcvC19iKJ3DPODTo6MLcuGHltiDKvnzVmjl20wOnhkfFyj5UihqcdeD0L1tQdJRB63xOe5pNSyqIV6T2kW2xKIfBrlXVFyroXkHjWm3so0xBwArn4BNyRgsuCVAtENMbEHHraT1nPAULPd4YUG+aZ7xQimjtw3LHCd8nFFj676XqIdC44IVi4QyocCoGzgEavp8lv+FX65L/f0DXa2AcecPzyN+zqzd/+Fq1//peOXkhJrdc+/eof2oTloQ4/tbFzYSAQuAdoPfmEPvhfvvaG283eDbz0tkovve3IFfG6f7xQ9yMvnbzZaOiX/qvHr/rMxfdKj/zraz871tsDvf/rdq96/el/ttLwF5+XJB1+7BMhij6gODOCAkTIrdcejeR3SGZJ9NxSXRZTg+QjKNAmcDwe1whMGTX2c3kkms4IEFaI+2g0qt0TYyAnG0u/W6lLcsh9uSvDC8x5njtjdiK8qSgkRM/FmE6nk/Pt5/O59vf3NZlMtFqtsthQpnAwPndaeM69F+GDSHIdItFbW1vZ3g7p9/uC5Hq0G4ECIougIJ0UNWQuSZlhbb0VI86AMsLv3T88ku5uBZ9LyDT7AcLMuZljvxdqXiwWiywoSMouF3dJsD7lGnvRSMZVEn72DSKCFz5EwHChoEzDgLwzB4g2/n1ykcy/M14s1UUjrsPPfl9eB4I5Zy18Xd1h4rVQ+Mdr3I/Pk6c64DzyYqp+jD+DyhSkQOA00Oj1NP3SzzsWEwIPM375G3b1pr/znNJyparb1i/99uFNn6NzuaFn/+F2/j19+kWtXnr5Tg4zEAhcA63XP6sP/44ndDg4O/WZPvJVHR11NX11vPgF0otfcP3jSnziy5rSlx197o3fuaPGbCmtdSKOBh4InClBwR0DbvP3SLik2h//Dj/OCRBpBf1+P5O32WyWOz0Q2cbaL6nWrUA6ISPdblf7+/uaTqfZou85/xBOIqmQqsVikQUFFwrcdcBYy1xv7wDgr3kKAPflDgLgogzRYFInEEcmk0kmhGU9CI/au6PDI9levJFxkOrA3NNqEpeCF4gsOzpASLvdbh4b4+K/nMdz6mm7COn3egGl26UsutjtdrOjAwLuRfx8bzEGL1LpZBoxwgsPetoAQs5isagJGl4MlHl0xwnOipLkM06cB8yhOzxKlHVI/J5Ji8DNUNYkgMT7/PraIPRwvlLw4xplqpG7HDalKfD9YJ8wPy6q8d1lD/i8+l7wNQHXcoEEAqeFxuOP6hO/vnn9AwMPBT7wn2/d1ucXu2v9skURz//cOe1+YKb2v/2QVnt7Vx3fGAx0+AVvuaFzp9Va6Uf/7W2NLxB4UNH8nDfpo199UYvdsyMm3Gt88GuORNC0kl73vW9Tc7pU9dM/f8qjCtwJnBlBQVKNYHo0vdVqXUXGPVLpr3kqBOdpNps5hx2LPWLCcrnMxQa9loDXOJBUExz29/e1XC41nU4zeYVgQboRIyDmZTqHE0gEAxcBXIzgPiaTiSRlso4QwnU9f55oN8Sd1ACcB+5a8NoKTig9fcMj6ZA7CCBuDSd8ED3STagJwDq4/bwUVHzdvQOCkz8IpBfx5N5xSxA5J+XA59jTFNxxsF6va0S3JJiMj3P4uvs9uevAnRbMnXfFkJQFHgQJr93h9UB8fd2JUzpQEKD43rDn+K+TaxcUNrly2LeMg+8YY3GXBHuMdeO8iBu+t3zdPWXHBRBfcz7DenqBSc7FnPL95X0EBXc5Mb+ePuTPkUAgEHjQ8crnVXrl87q6+Npfqe7ltfo/+LOqlgvN/x9fqColLYcNPf+OGztXY5n0xPm3q3NlqcaP3HjhuEDgQUfzubfo47/pEc0uPrxigqNqSh/+j7pqTXp6/PG3q//8VNVP/dxpDytwGzgTggIdHiBCEGDPYW42m5k4+jGSMnGnXWC3280kmLx0bPbz+Vzj8TjXCuj1etrd3dXu7q6kIzHBUxMg/cPhUKPRqEZMIWw4ICTlaLOPj3vxCLWkTLYhkNKJhb2qqkxW3Z7taRSQNidCEDwIIESJAng+x0T+EQsk1QogOumEeHmtASz4/PNIMvfA2vT7fY1Go+wS8fx4z5knfaR0b2yyppP6QDtPTxdwUojwUqY1sK+81aJ0Yr1nryFQ4TRh3H4eTwOAPPs+ducAxxOJJx0EgQQxABHIRQqcA5wDcu91PDwtB3eBCxKMv9Pp5Dn3NXbbv89BmaLghSQ9/aHf79ccLe428nn1VAzWzAm/11tgXbgPdx34nPreYh9zHGPGXVQ6i3z/egpWIBAIPOh48QskqaEL579AjcNKL/wa3VSxOElatyt98ksbao17Ov/0O7T10Wk4FgIBSVeeO6fpYyEmlDgcHD0zuq9saedNR8rluZ98XqsPfuSURxa4WZwZQWFraytX/6feQJlD7oTZxQXI3mAwyG4DSJlX1K+qKqc60NJxe3tb586dy9Z6FxOooD8cDrW7u6vBYJBJmkfsIS2cnxxuSF5JjiCsuAw4xltAbsrfRoDwSLG7AXxuyig970tHxMtbPnpUm3H6tTwC7XZ+RAnWCgLMGhKdRzDyDg2QURdAcHYwb2XRPNwQ0omggJuE/PxN7gInu4wNwu1CD/NQ1rdgHrjH9XpdO4+/xlqyDxg34/D6E+x99iwiA91BGI/PfRlB93oDCD3l94dxuAOmdChwXgQNjueey3aTpJaU73l9B+6B8UHafa+TDuPzyx7mu+tpMS4YcU13g7B33J1CQUrWZTKZ1EQUhANPp2B/XStdJBC4V1i/8JKe+OHX6NP/bqThBO4+Xnrb7Yuoh8NKL3yhdPlNQz1dfb7Sj4WoEAgEro35+bVeOG4scfDUa9S5Ui8KeeGv/9gpjCpwMzgTgoJ0RP48gi4ppxyUkUMi4h49JA1gMBio1WplUiap5gK4fPmyLl26pNlspk6no62tLXU6nRztLus0tFotDYfD3N2B7gKMrdVqZfcDEWfEDmoeQK4ZL632EDk2FSQEEO1Op5Mj/FjKyxxyiBVpHtQgIIKLI8EJGAQcou+CAaS1LBjYbDY1m810cHCg8XicXRmMxYsTMj+j0ahWlI9xYlGfz+d53iCFkDrmbZMQ4ffh9ncXOBgTc+FuF5wlkrLbxPeg15KYzWY1K78TdMSZlFIWpTxy7iKLu2aciCOoIJLgWGBtGZc7UPz+ELYg5C4YePoOe5DCj/1+X5Jq+9/3HudmHNw7pNzrI3jqiJN2iD/fj2azmffFYDCoCVreBcUJv4tdOBTK413gYC8zVlKUENtceNrkRAh3QuAsYD2ZaPSDP6cn0ufp018cokLg/sFid62Pf/lQzy6eU/Xe9532cAKBU0H1zs/Xy5+bFB16bgyT16w1eY29UEnLP/iu/Gv/xUq7fzsEhrOGMyEoQBYgg26lJlrI654zXxZ4o+ifR0qxYC+XyywmXLlyRavVSjs7O9rZ2VGv16u1eIQw4k7gnJPJRJcvX84kmlQHcsIhhN46T1It2ouLotFo1FrgeY0Dd1PMjnu+7u7uajgc5vchTdR9YB4RDPr9vnZ3dzORRVzhOHLRu91uzX7PeDkOMrZcLnNqAHUXLl26lLs0UCcBmzkiR6/Xy3MsKZ8LEeHg4CDPKfdLegAFCJkDt8R7KkTZmtFdDqxnKXZ4Ggjwz3i6BqSU6L3XgHDCSwSctBD+ufsAuGjkdS68/oXvKY7j3jaRXe+qAKn3OgHMm3dHwIHiQgL7ke+fi1+ersD7LgYwbo7blCbB92Y0GtUKdCICujPAHQ/SSVcP/rGXZrNZTfzxFCIXrlz0KAtmliksXpckEDhNpKef0Au/OlpGBu4/LLfX+shXb+sNs7do9b73n/ZwAoF7juV2W8uteHbfMpI0furELTp5PGn/j79Lj7xvpcH//hOnOLCA48wICkQtN9m9F4tFTlMgElk6FzalA/T7fQ2HQ3U6HS2XS125ckV7e3taLpfq9/va2dnR7u5ubnlH9N0L7JGWcHh4qEuXLumll17KxRG9uBxEzwvWQV6otSBJvV5Pw+GwFqEH7XY759I7kSdVoOyagDDBnBBh5t4QADwfnHmlCGCj0dB0Oq3Vq+A4iCxkjfNNp1NduXIlF6dETHCRgwj0hQsXtLu7m6PhdNiYTqc6ODjQlStXNJlMNJlMNJ1Oa2QZ18hisciuDiz+1CMoxSjv5ODtKhmTk3RPMYFAeqSb9eP4sn6EdFLc0duHYuVn3bgXFwo4h9v5+b3X62UBgHHwnrdNBbgI3J7Pd6IsyMj3xskz81Z2j0B88DoN7A8cApyX+2ZPen0E0noQnhDOcEZ42ojX6WB+uT77y9N92DeLxUL9fj+LODhFys4efk7mAhGGfedOoRAUAqeN1tNP6QNfd1GrbvxBGrg/cTis9IHfcV5v/mvP6PCjHz/t4QQCgfsYVavS/Hylz7yzoadmX6juD/zUaQ8poDMiKECKiVRCmKqqygXU6Mjg0V9IlhfwI88eJwDpCNPpVC+//LLG47Ekqd/va2trKxeDnE6n2fYPGSKFotlsZvI7Ho9r6RZlxNgJr3QilmBRRzDwlAIIMf/KXHavaQDJg8ATwT84ONBqtcrkeTAY5EitEySINSQPki8dRX9xOXiKBnDSjgCEzR5XgtvRL1y4oCeeeELnzp2rdbIgkj8ej/M/Ivs+D3Se4No4ILxIIoQcMWoymeTOHd1uN7sjiGQzdo5DDEG8QHBxS7wX8OM132+IEewdiK/XmvB5RqTw6LikvOcQDjz1wi3/iCukIFAPgvso3QbsS9wYEGu+czhOcJv4GnjLSnd8sMddGPG0CF836hhQtwTBxZ0z/l3AXeG1GdxV4rUTvI5I+b3yuivuFirFNb4TZfFT9logcKpoNkJMCNz3WHcrVa14ngYeMrz98/SJLzsTVOuBQ9Wq9Mkvbep147ep8a+iq8xp40zscuz9bqXGFQDRgVxCRgAEi2g1UXUs1dvb21osFrp8+bIODg60Xq9zkcBz585pZ2cndwmAPHAOqtVDQInkc13G7sUWITUQUIiqpNyastPpZFu/Ey8EA85HRNuL4XnRQz5PtL8kdW6Vd4u/11xA7ODc3lKP17z+gNcHGA6HeSyeTtBqtbS7u6snnnhCTz/9tLa3t/O8esE/nAre7rC0ozuxw87ONZ3MYnufz+c5zYV0lWazqclkovF4nCPgBwcHec29hgNpGl60kTWEkG+qDUB0n4g3c0Hhyul0mteidBp4bQreJ6Lv3TMQUHwdKTLozgt3D1BLgf3lNRBAWRekXHvfp/69k+rdLTiWdcZRg/iHM6Z0hXjKCPM6Go1qDoJS5HBhh++Gk3++R/xDLERcwAniwpDXhWD9AoHTRPOxR/VLf+CJ0x5GIHBH8P7/8jG95c8eaPXii6c9lEDg3qCRVIXR8a6hakgf/s1dvWnyedF28pRxXUEhpfQ3JX2lpBeqqvrc49f+vKTfJGkh6UOSvq6qqssppWcl/aIkEuV+vKqq33u9a3gxNsgQAgLuBMgOpAoQjUdkWCwW6nQ62tnZ0fnz53MUlG4EkjQYDLS9vZ0LBXItz3FnXMvlshZBh+A4gXTyW7Z/lJSj0QgKkOkykuxCAp8ngu7t7yA73vLR60VA2jwPHWKOILFer/MYPFcccplSyudKKdVaZkrK14LMeS2Bfr+vp556Ss8++6zOnz+vbrebSabn4EPky8r8zAH3f3h4mOfA62NAOLkP/jsYDLS1taULFy5oOBzmNqEHBwdZHFgulzUnAWQTkukdDiCkXo+iLBiIsFGmvFC4kvvxdAZfc5w2rJsX/WTPubBALQGEB+YVcA4cB+z15XKp6XSaUxTYB+wj32OsLSIS3032t4tA7nqguKcXBGWPMCZ3bCBi0BnDBUOEENabvce8eCHOTQIAx7jA58e5GOHz706Hs4J78SwOnB00H3tU7/8jrz/tYQQCdw4PgEYbz+FA4IwhSR/47UP9ipef1eGHP3rao3locSN/MX+HpC8vXvvnkj63qqpfJemXJf1Re+9DVVW99fjfDT043RYOaZJUK3BIfQEi8BCwfr+v0WhUq6jf7/drreim06kmk0kmjKRCUF+BKD+kV1IWCbDIQwCdtJOfD8HDro5w4VHOTRFcXi9TNrztoxd99FoFq9Uq5+0zLsYEQUZEweHBXEv1OgkQO48SeyoD13TXA+vkBfdWq5Xa7bYuXryoN77xjXrmmWc0Go3yuUvCC4mHNPpceO4+aRxufaf+BJZ5xBOKUZ4/f76W7oB7wVuCcr904xgMBtrZ2dH29ra63W5tXT2azf3M5/Oa2IQAwP4cj8fa29vLqRQ4HNhTzKPPJ+f2Gg+MhXkaDocajUZ5bO7acKeNiwDUdGDvIBL4nkCsQNiBgPPddOGA+fYCobguNqULuJDkggJrUKa38I/9z31Re4HvIPuGa3gdCd9XXMfFAs7pe7j87BlLefgO3eVnceBsoPXUk3r/N4WYEHgA8eh56f52f32H4jkcCJw5HF7Ykhpn6m+2hwrXdShUVfXDxyqrv/bP7Ncfl/RbbncgkDxIBlFoCAtkHWEAe/9wONTu7m6OBhORhQBDVKhhkI7b9dGCkeJtECxIi3R1WoNHhRkPx3ntAY/cQhwhSLgPPGrqRQURClarVXZfDIdD9fv9WmoHNSUQGqqqysellLLTQFKOunrknEKR3LcXD/SaDU5U3ZXh9+niwGAw0FNPPaXHH39c29vbtdoCRNPdYk8dBsZVjtNTHTxdgM/iMJGUUxwuXryonZ0dtVon7UMZg9dfYH0RDCCqXkCRzyPwuDXeO3SwH7mX6XSq8XicBRPP0ycS721DIb2LxULj8TjfE+Se/cS+JSXIa3kAOhp4ocThcKhGo6HxeJyJ++HhYR4X8+HdMvjeSMrEXlJO13GXiHeocGHFo/xeXNLTm7xzixfO9CKljBERkPlyIca/i9JJ8UXWyoUE/466m8drVFzL9XBauFfP4sDp4/3/zdMPRDQ3ECjx/t99Tm/+Y32tj4tb32+I53DgRtEYDDR+vHf9AwN3BB/8mqHe8pHzkVJ1SrgTNRS+XtJ32++vSyn9jKQ9Sf9dVVU/ciMngXCS840DAfdBu93O1nUIQ7fbze0U9/f3MyGB+ECoPZoKeSTqOZ/Ptbe3lzs3eBTaSZR00sISazhEiOO9yj+/exReOrHyI3pAXCE5EFhJtToAw+GwVkjRc+U5H4UYDw8Ptb+/n4vgeRQXdwTpBk60va2gt6j0a3qEGYLGe4PBQI899pje8IY36NFHH1W73c6ChXdO4Nrk2VMLwFNA+NnrEZRpJVTn9yKVo9EozwMCFMU0y9oCRP97vZ52d3dzvj9zhHPBiXK5DzxP3wUTCD3XRPTxeZNOUh3Y+9R6kE4EEneoDAaD7L6BCJP2gXDC9RHPtra2NBgM8hx73QN3N0jKNSe8Xac7ARAE3D3jrgB35JRk3J0wXvyw7Krha8qzAPGQNpNef6FcBxcaEEW8Q4ffO98L/467E+OMORSuhzvyLA6cPnbfn3Tpc6oQFQKB+w/xHA5IktJrn9Snft3ZSp0MBO4WbktQSCn9MUmHkv7u8UufkfRMVVUvp5S+QNI/Sik9V1XV3obPvlvSuyVl4uBEFaINqVqv17mwnXSSejAYDDLBgFQ7CXMCCnnA/i0ptyyUToomQir42dMFIINEyukUAKmCkEuqkcqyuB3n8SgoJI42iVj9S2s394JYUN6fF7H0ugmSMvkva1MQdSdCOxwOtb29fVXRQret8zlqBIxGIz355JN67LHHcgSdtAzcJwcHB9rb29PBwUEeM/NIe0pIIWIGv3v9BqLI3qaROXPL/8HBQRZXEB04F58j6o+7A8FAOmkH6RFt5tFJrHSSqoAw5Dn+HpFnX/rvXIvipKPRSKPRKJN29qy3AkUQ8VQZb0Xq94ZgxF5hbHwPmHdaOXpdjU6no62trSxE8d1iLC6KeccQRAXfhwgnLsB4VxHSLrytJONEVCNNx1NHOHdZ4NIFFMQv1h1BgTVmzd15dJYcCq+GO/Ys1uBeDTnwKtj6+FKXPudM1EwOBAI3iHgOBwKBhxW3/BdLSul36qgwzZdWx3+BV1U1lzQ//vm9KaUPSXqzpJ8uP19V1XskvUeSdnZ2Krdwr1arHMGGkEGSJGWyjx3aOztsbW1pe3s7k0PPm4YU4niQjgQFHAdl+0PqKziphIxCzCHiTr64rueEuwjh7f4gLRBRCKUXm4RcMSa6ETi8qKLfk9dg4D7cMQBZd8s5dSnOnTsnSXrppZdq9QcgbLR+nEwmGgwGuasDdROc4NIxYTKZ5I4bkOyypgD/iIRDMllDCCf3QsoGlnrmli4huFpYX9bM606QWgCBZE28EwV7xiP8xXei1m6z7Nzgc855vHAmgg1CAMIYAs9gMKh1lfB0CC+wKSl3MqETB2vhDh5SJyDZvIc7A9GBsXB+78TBvXFPCC3uBmCdPZWJ6+KqYE+z5xFB+C4gjEgnNSi8/gfX9P/6XnfnhHdbkU6cRJtqm7j74qziTj6Lt9P56E94BvCJ39AKd0IgcB8hnsMBR3N7Wy980QVJsZSBhwO3JCiklL5c0jdJ+nVVVU3s9YuSXqmqapVSer2kN0n68A2eM5O9yWSSo5bAK+PjRChbRfb7/VxUzwu1OfnH4i0pt/ODtCA0eGFA8v1JDaCgHXnwPn5JtQiqd4GQTtpASifpEZA0t/RjbUdMwOburRu9IKE7IDgn84mgwPi90B5j8eg70eDz589rd3c3W+edTErKYsKlS5c0GAz06KOP6umnn9aTTz6ZOxlAIJfLZRYkcAx4LQzIK0IRjg/EC7fbs/7UkaBOgVTvNAHpxl3iBTT9XrybAfuIc+/v7+exutCBgOQ5+lyzLIwIvKsB13Ci7bU1cNl4hwf2JvtEOqkR4KkEFH8kTcY7kLijxdNNmFP2vte2wAnEtXETeSqMz72vO9fm/pgbRLvpdFqrb0HKymg0yudrt9v5u84akapDHZHye+aCn4sEXl+F83EexDa+x7hIys4vZw1341kcCAQCgRtHPIcDJdLWSJeeCzEh8PDgRtpGfqekL5F0IaX0SUl/QkcVbLuS/vnxH+C0wvl3Jf3JlNKhpJWk31tV1Ss3NJBjskPeNpFmiBjEAyLkHRog1p1OR/1+P5Mst/Nz3rLA43Q6zQQKggapmEwm2t/fz8RFUj6XW615HZu329u96r8TSgQFT+8geo29GyIHuRsOh5JUGxPkyAsbSsqf8VaPvO+uDU/vcFGELgLMG8UqiYYT/T88PFS/39cTTzyhJ598Utvb27mOg6dS0H7TSTrj4Z6JevN5t89DMCGKdFhgDgH1E5hjL+63vb0t6aTIps+bO2AWi4X29va0t7eX0zmIyjNfHqFn/T1NABLve9iFBwciAeft9Xr5+G63WyPlLqC50wUXyHq9zvUviNIjhODq8BQZ5oK18vtAjHL3BuMjhcJFFFIiyrQeTyFgLX1fML+PPPKIdnZ28hyy57wQKUKPiwCIEYgjjAFXjNes8BoJfJc5zsfsa3ZWcK+exYFAIBDYjHgOBwKBwNW4kS4PX7Ph5W+/xrH/QNI/uKWBHBNJdwLwBz1EYjqdZvLgEVKs3E6MOKdHf4l2E1U+ODioVeJHHCBiTts/3AiQWXcGuIWbLg6QJK4HsTueo5orAfJGhLXRaKjf79faFHptAMgS80NBPbpaeHoA9ymdCA3YwN3ajSuBedva2sopI96+EjK8t7en/f19TafTXDjzwoULOnfuXK3uAXNJpBjbvc8hNvfRaFSzmZNi4I6S8hzeMWC1WuXIPmQa4o3Dg3QR7sedD5D2lJKm06kODg7yXLO+pOW4sOAFBT1Cj2vEu2CwZ7xGA3vCo+wIaIgt3K+Tf69ZgFMDgQlRBeGl2+1moc3bObrIxX2Urg2/VwQ3nA2MlTG5KOP35SIXIsze3l52KHS7XZ0/f14XL16s7UNSUSRlpxD7zp0FfPd8v5UpDOW42D/UBmF8Xs+CNTkruFfP4kAgEAhsRjyHA9dDYzjUR77+WUlnP2XyQcIbvmeq1cuh150WzkTVJydfkmpRVASFg4OD3AHCq7NDziEOEHovYoizAYIvKVvvEQucQCMIjMfjXNPAaylgl4csUTxSUi4AKCmLFw7uCzIKYfVuDeSQcw9uET84OKh1RMAiz/mYS+bOc/a5ngswkEe3mHe73WwrR4ihPeNkMsljSMdF/CDxnoLiQg7uEo/SQ45Ho5G2tray+4H6GQghuDSoY+AkkDlg/Sgk2ev1MtnknjyqDgH1AoRO2P36zD8CD69DPl0YcgeKu1Kw5fO6d4ng+jhKuP5iscj7kbQTCDniAN08Ll26lItcUmSR+6dlJbVGPOLuIhlCCAKO7wvEC08/4XvLmNkr3vnEBTh3EfCdRgSiXgf35fuSexmPx3nflSIZ8+puDcQNvn/e5cHbVDIu1tDnxdMoAoF7iTf/2V/W+//Ym6OOQuCBw1v+8vNa3actIwOBG0FqNjU/H2LCvUb7+Ss6XK+uf2DgruBM/LWMvVo6SQXw6GxZGK/b7UpSjXySew9pgEhR3NEt3IvFQvv7+zkKTeV/T61AxPAIuAsT3rKP60JUJGViBtHn3qQT5wSkGLILQSfdwFs+zmYzTSaTGqHCsg8JRciQTkQUov4QUC++yOuQLIh3o9HQwcFBnnvuk3mbzWZZZNjZ2dHFixd17ty5TOogyzhLvFAiJLDdbmcBgFx/bPtemLKshcHPLiBVVaXhcJhbiDLXRKlZH69J4P91x4d0QvCZn62tLQ2Hwzy/CALuFOCenbiyd9gziAKM2Z04RP7X63Xesz6Py+VSvV5POzs7+RyIYvv7+5JUqyuClZ/0Hsh9GbH3zhXcN2k0XuOC2h7uinEHAnu/7AbiKQmsF0Jds9nUcDjU+fPnNRqNsthAmgXXxik0sT9CuQ93PZR7g3tj/3ohVEk18c3TMlxc4VkTCNxLrF65dNpDCATuDq4cnPYIAoG7htRq6QP/3XOKYoz3EJX0xu8a6/AjHzvtkTzUODOCwmg0qkWhydeWTroFQLr4o98jny4oeFtISAQR7PV6rclkor29PV2+fFlVVeWK8tjHJ5NJrdibkz+3nUPEms1mLiRJVNgJrJM4Cg563rZ0ktfvRJafie5Pp9PauCCpEHcXOogAQw4RBDxXnOsyLgg8ZBSiSHqIOxOos/Doo4/qscce04ULF/K9IfRMp9NsT2ctWB+s+aPRKKciIOJQt8GJIl0API0Asgrhx+rvNQX83iDXPufcnxcNLDsC0JrURQfWvnQnQLZ9bv1Y9rsX7YTIe4oK4+AeqaGB2wCSjZhA3QSvDYIoc3h4WCuA6OTZawbwneN754KBF4P0uSqFEY5zh4iLfNPpVPv7+zo8PNRwONS5c+eygMZ9etoBbUbpXOKOA9aorFviYylFHe7Va6Xw3fM0KndBBQL3FI2mPvQ/vl1K8Qdp4MFCiqBt4CHAuh3P7nuFtJae/ScL6Sd/7rSH8tDjTPzFDHGCxLqY4K0BIVOQLoiqV6j3KDjE04koJOXy5cu1vHUn7nwWAsp1XOyAnEgnaRa8R6s+jwzjkGi1WlmwYFyefkC9BMi0EzMvPuj59ggK5JxDznEduAuBdAdAm0iPOlNXgkjzcrnUwcFBJnXSUX77uXPn9Oyzz+qZZ57JEWaI8mKx0HQ6zWvK66vVKqd1bG1t5fFCkHFGIAhNp9O8R6ix4fffbrd17tw5nT9/vlZgcTKZ5GshJiE2sI78zLq7kwS3CCSeehvsJ8i4Oy58jXjfRQT2LXPB66RUNBoNTSaTfB8eVUeESSlpMpnoypUrVzkTJNW6j0Co3d7farVq3SxcHMOdwH15xxD2OudkznyPA9afrhUuMiB2tNttbW1tZRHIU0GkIwFpOp1qMpnUXEY+J3ynvECkuxN8fVwA4T6YgzKVw+uLlAU0A4G7iUavpw9+y9tUteIP0sCDh7f85c/q8MUXT3sYgcBdQ2M0PO0hPDRIh0lP/dChmj/0b057KAGdEUFBOklfIDrtBIl8co/4e146RNzzvnEieKG49Xqty5cv68qVK5rNZpnUQEpKQLYgReT/uzsB0uUkFJEAkgpZIgffbe4QZaLo/X4/nwOi7VFxr1aPCEOxSumk5gSvcVxJjriPstaE55l7gbuyEv5gMNDFixf1zDPP6Pz587WaD4eHhxqPx7kLBDUo+NnrPnjHBo7HaQJRhei6u4A53dra0s7OTq2ugFvq6ZhBIUHOQbTec//ZI4guOF28swARbifAXuyTPcG+9BoD7CFf/7J2COejvSXnoVAn3TU8Yu8OFC8I6qkMvp/dUcF3xSP0EHj2vnd64LPsJch9+X3wopXe0YEWnHQxYewuWnjqC24Bnzu++7iVuAbPEHcyuMPCBTnu3YU8alaUImMgcK/w0T/yq7XuhogVePDQGidpFfnNgQcb7//vP+e0h/BQoLFMeuwn1up+/0+d9lACxzhTggLkTjqJhEKy3EruheUgA6Q8QAwQEzw67hFpSPFgMLgqB9uvX0aiy1QBj+R7m0eIpxNESZmYe2S61+vlFIJz585pMBhIUnYaSCcCi9cocNLvBNyLNvo4nVA5WcQJwXUg5qRmYJf3yPD58+f17LPP5vx33BFVVWVbO+OA6HEOyCckkxQLui/gJPCieVK94wAiCQUsmW8K+FFvA9LKHiPyTc0JXvO8f0nZnSCpVgyT/UBuvYtaZUSc+fV7hgDzM3vS02k85YA1oZUmaSGkNHhnEW+TyBwCyDPHIIC5iFGm6DB+77bAevp+cqGL71W3283rzh5CMKJwJo4irkUdDU9B8TVnP+K0kJTrbTgYC/fitRS8fgjnZu38vhG7JlE8LHAP0XtBWm5J1dlpLhII3BG87h/s6fBjnzjtYQQCdw3NN77utIfwUKCxSLr4byoN/8FPnPZQAoYzIyhghYboeItEr/ruAkGj0cgR/eFwmHPpITLebUA6sWKTCuApB5Ay7xrhdRXIx+dzbm2HsFDLwavee5E+t9sjhFCEcTAYaGdnR9vb22q327U6Bl7HAWLpleohd8xfmbaBSOCRY3LEEVhms1l2DbjwgNADEW02m9rd3dXrX/96Pfnkk9re3q61taQLxHg81nQ6zfdBCoakfA13WKxWqywMNRqNWv0DWgl6+kOzedRucjgc5sg5197b29NqtcqtKNfrda4/wbg83585pKUk44CA45IhnYBimF7HgXtyAoswwzHMpYslnhLjnR6kE8s910IIIZ3Daxsg3riTh7lyocNdNl4Y1Ft2egoA6Tf+HXHRz1N/EDj4rrGGXiATkcdFE65XOicoosp32YUGSfn5wPeYz3m7WO7fxT0/3mssuFDCWnkqRyBwt/H4D7+ig9eeU9WJlIfAg4PeCw019icKf0LgQcYvf+PjUfvmLqOxPBITtr77x097KIECZ0JQWK/XmYSuVqtMgJ28QMiJaFdVlQv6DYdDjUaj3C2AyL3b7CFpZds/CIbbxV1MIDo9n8+vIiJ8HpHBi0jS3aBMj/BOD7Rc7Pf72trayjnlJZnxqHGZGuLWbncj8B6k0As5EnVuNBq1lBIXGSBYuA0g2+fPn9cb3/jG7E7Auo4IsLe3p5dfflmvvPJKHifdKUixcCs880TF/263m1MvPNWhrE/Q7XbzejMnk8lEly9f1mKxyK4Eb1uJe2E+n+d1K63xLsDM5/PsBnBRCYLPHoOce1oAa+XOAXdDOCl3oceLNELQEYMoruh1EkpHCvPLuRE6yjofLnYgeEiqdXjgHpgfhCUXKdyd4OfjX+loQETDZcKeRNxgn9FRgvoh7o5hLO4gYjylg8idRS70+LPA0zf8OVEWTg0E7jY++lvOa92JlIfAg4P+Zxt65h+9oNUHP3LaQwkE7hrWX/y2EBPuMtLhUZpDOBPOJs6MoLC3t6e9vT1Jytbn8Xico7dlMT1s2FtbWznCPxgMVFVVLuzHPyKvkAlIFyRjUyoA1n3IMBF0t6wjMHgle8iOW9+rqsqReNwJuCqIso9GI21tbWWrNUXvOKfbtr3gohedlE4q80sn3Q0k1SLpjNlrLXBtSBxCwN7enq5cuaKqqnTu3Dk98cQTetOb3qSnnnoqX5Pc88uXL+vll1/WpUuXtLe3l+3u4/E4iwSQS0k1gkotC/YD8IKCCB3NZrNWE4F7G4/HWZRKKeng4CBfh0KYPg8eUS+7NLDu7pyRlKPmjNP3ET8jTOFAcHeGp6K43b9Mc2B/sT+9ToCLIC5OUGeB9zyNxwuKQua9toE7A5zol4U2GRdrAanHkQAJL90GzPVwOMxiASIM68z5Ebdc1HCRizHTxYL9zXi457J2BK+zLgg5gH3j4k8ICoF7icd/bKFP/Pp2FGUMPBDof7ahZ/7JS1q9/4OnPZRA4K7iY1/RU9WM5/bdRGOlEBPOMM6MoPDyyy/nCvdEzskTl67upNDr9XTu3DltbW3VahHgXiij2pwHEu5pDaXd3Emg13VgHJ5mIJ0QFq/VAGFyVwWuAsQPCgbyD2s/x3pxOeapLDTp6RaIBF6ZH5eBFwFEtOBY7zJAjv7BwUF2GkynU/X7fV28eFFvetOb9PTTT+c2n0SUF4uFXnjhBT3//PPa29vL0ebxeKyDgwMtl8sc+YbUcx/k1EvKjgCp3hLQ8/9JsXChicKJjAmhAiJNnYnS0QFBXa+PWouSOkGRSMhlu92udVpgfJBlXAqeauPiAsKIpwSwvtyn1xRwZ0sZoadgI9eBmFNrwQszSie1KtgvnmrBHudanirhIgmOAGojcG3uhTXwNB3OibiBO8GLH7IPXKxgTXid772vJffn3STKOhZ8L7kOY3GxjvUrU0i4dggKgXuJzg/+tBr/3ju1OhP/Zw4Ebg/DT1da/cIvn/YwAoHAfY60ll77fdPTHkbgVXAm/mxZrVbZVi+d5F9D+CHrXqBxd3c3V/enMF/ZqcHz472loqSa/Z5jIeVEtMnRBl48D/IC8fN8esYp1SvWS8qOBFr9tdvtTAYlZVu+uxycGB8cHGSCy7iJYkO8mLfDw0Pt7e1dlebgBTCpRUBtBm/fSGHFlJLOnTunZ555Rs8++6wuXLig+Xyu/f39TLrG47FefvnlnHLAvVPXANGD+0D4QUihneaVK1e0WCwyQXRXCKkZ7jDBKk/KDO4UjzTzGe9CAamGuHqdCeagrPjv7gFvU8r9IihUVVXr+uCk1MUH6iNwr5Jq7UQ3oWx/yF5kDhFsuG+u77UByrQErzdACoqnF0DcERPY0+7uoU2op/R4qk673c4FULku8z2ZTGpzQLoBhTxxzJBy4q4I5oLP+3dPUl437tFrOfg1eVYwXwhDfM8CgXuBS7/rnVqHOyHwAGDw6YYu/PAndHj9QwOB+xqXv/adWkfdm7uLSmr865897VEEXgVnQlDwfHRJteJwTqYhPeTPe3eEMvoNYVutVpm8u/WalANv5QghpHAfkU9JOertUWWPInsxRIQGOgpgwyfCjSMAkgsZ5Hiu7RFm7oX58SJ0iCDuakB8gDRBiiXVxASKWnrKADZ/RJDRaKSnn35azz77rC5evChJ2t/f15UrV3IUfzwe64UXXsjuAkgo0W8InNfGwALf6/U0n8/18ssv68qVK7VWiFKdqFPjQFJ2X3idBnexsA+YcxwoXveAyDvXwh3ipJrPkOLAviP9xEk5jg+u5ddjzP5f71qBGMU8uaOCfcV8+Gue6gAJ5548TchFrrJYZOmGwAnA54jme/qIk20/J/fkAgH73J0hkrIridQFrzuBWIQIAOH3VAYcG71eL3//vW2n14/wApR8Fxmf3zdzSGpNIHCvsP9sCtts4L5H78WGnvlfP6TDzz5/2kMJBO469l8bz+27ikp6y1/5bIiTZxxnQlBwMgaB21Q4zvPnIWyIC+12W+PxONv4IZZO4CGEnU5H29vbuS0ghAXyT+0G6in4GNyijohB+oDn5kPwvd6BCwmIGnRHgBxfunQpF4CEFHvUdVP7TCdakFOi5o1GI3dvYD4hZ/1+P0ediRS7g6PVamlnZ0dPPvmkXve61+mJJ55Qs9nU/v6+Dg4ONJlMcpoBaQK4C7iWpKu6SrA2pH0cHh5qf38/Ox4gcTgSiBazdm6Vf+WVV7LwwbWkk3z40p2B8wOyC/Htdru1NBhSG7w4H9f37hicj6g5bhlv58j8Qra9gKK7AngdgcdTINxtA8FnT3kxR8i47wuPvgPvHOLz4HUpIOGeJoPgxdjKGifSSbtJ9rAXBfWaD/yX+0Y8mM/neZ/jPindCYgWCCqScpqUz63fh7tVSqcH1+e7QR2H0vUUCAQCgWujvdfQa//qL+rw0qXTHkogEHgA8Cv+wid0+MlPnfYwAtfBmREUPK/Z7exOhiC5vV6v9jOExdtMQpBarZZ2d3fVarU0nU5z2zp/jQj3/v6+Ll26lC3YXigP8kNrSEgj0UwEBVr9EbF1gsJ4IJ39fj+TG1IDvMMBed1EWqWTThGe8+1F9BAhvCifpJrF38k2Y6Xbg3RExiD2Ozs7evOb36w3vOEN2tnZyW4BTxfAju6F9SCDLhKR6nBwcFCr2zCfz3XlyhWNx+NMur3SPySfdUfA2dvb0+XLlyUpn4t5Zv48HYA58zoB7BPGiZDANbxDxWg0qpHiMvKP2OVdGTbV4fA18ToBkrKY4s4EL/AIoUbYgnizFpBi6USQ4XuEWwN3BeNCdEEI8jQG72LCfJTiH3O1XC7z3vbIvjsr3DnE/bg7YDab1TqBIO45vKsD4o6nCvle8GcI3z++K5yLZwfPIAQbd/UEAoFA4PpIa2kVYkIgcM/x9D9fqf9D77vpz336G9+qg2fObneh1YsvnfYQAjeA6woKKaW/KekrJb1QVdXnHr/2LZJ+j6QXjw/75qqqfuD4vT8q6RskrST9gaqqfvB61yDS6cXRiKA6WZOUWys2Gg11u12dO3dOnU5H4/FY0klLP4jW+fPncxE7opk7Ozs5Mk+uNu0h9/f3MzFst9s5Ao0VvdPpqN/v1+zS0+m0ZvmGsHjUmah3t9vNRRm3trbUaDRq3SQgcJJqpI0xQMQgP5Bi/4yTVxdjILeQK+8mQRFDBJFGo6Fz587pNa95jZ588kk98cQTGg6HtRaTXuDPnQeQMRc1uC4CDqT24OAgiwNEw70wHmvqNQ5ms5kuX76sy5cva7lc5s4BiDF+H4yVcXjxQU+pIP2j2WxmYQPXRVVV2UniRNzrIbgLw9eH/1LfAIKLwOI1DxA3qPVBnQJfe1w5Ze4/BTknk0lef18fSTk1oNls5rSalFLuMsIYvbiofw/Y55wboo+YwflJCXF3h3fTYLwIMrhQ2Bd8d0i/8XQTTwPhHKRhTKfTWttP35teb8G/W75vERLW63W+B3cwnDbuxbM4cLp45n/4MX3kz75Dq+7Z2XeBwA2hkpqzpGf+5I+d9kjuKuI5HHB89r99l+bn7h0ZT3ap3osNPfnnrOvBeqVbGcnj//OPSekkiPWhP/eF0nE8smpc40P3AGktvfnPfkCrY4dq4GzjRhwK3yHpL0n628Xrf7Gqqm/zF1JKv1LSb5P0nKQnJP2LlNKbq6p61VLpbpeGBLiNH1I9HA5zqsJoNNJjjz2m4XCYI6QUw+M82P2lkzoERD8RAiAy4/FYV65cyakAuB68uj5kD1KKxZpzEF2XTlrrScoiAeM/f/58rh0AIaKYoFeeh8A6AXOy5/nqXjfCo9vc+3Q6zXnmnAtnCGKOuzIajYZGo5GeffZZveENb9CFCxdqIgTknfGyBhBORCKvH0AHBoQBuklgpfexQwC9TgUdLujoQF0KSKgXMiTC7SSUeyfC72SRAplEqynySMFGUgGw3/u946YoRR3Wite9a4BH7V0EQajB8cIx7pBBqPB9jUPE59ALEnpdivl8nok6gkGZalS6WPh+kTbCHmFsnN9TMLjPsoAoRJ61gNSzXi4+cX+cy6+J8ERqES4Wiqt6ioi7IBAWWCfqNbg4hLA1P1v/I/sO3eVnceB0kTodhZQQuB/RnCe97psfbDHhGN+heA4HjlE1lMn33UJjmcT/GF7/R39SWt/h7VNVkm3JN/yhH5ckNS9e1Af+0BuPDmnonrYzbiyT3vz/+YQOX3r5nl0zcHu4rqBQVdUPp5SevcHz/WZJ31VV1VzSR1JKH5T0dkmv+n+Zkgh7brenNtDZYXt7W0899ZTOnTsnSdrb29N4PL6qrR/nIi87Hbe/G4/HtfZ05LqT772zs6Nms5kJrLe0k1TLicfqLZ20OaQzgUejqfWws7OjwWCQ877pKDCZTDIp4769FoOk7CwgV146ibQ7ufX543MQdr8Ht8gvl0v1+/2amLG7u6uLFy/q3LlzGo1GmRy2Wi0dHBzkuZ7NZrpy5Up2WDgBZryIDYg6dPbAYo4DxAUSxokdHdcAv3t6A9fyz5M+UxJa9oUXUcQKXxZ49D3kxTsbjUYWnUjfgMAznx4NLx0lkGq397PuZWvQsnCiF4mE8OKOKTtG8DpiAuIShL4s2FmKUe5w4HvlDiJIvgs6LmIgWODs8O4T7FXEBOD1Rxhn2ZHF9zVzwDG877VXPE3CRS7WydOs2As4l84K7sWzOHB6aG5v68N/6Dmtw50QuM/QOkh69o8/HI+WeA4H7hWas6TGUnrDt39Shx/7xD2//urFF/X6bzoy3VRf9FZ9/Df2a+8fDqs77mBozpMaC+n1f/dFHX7ik3f25IG7itupofD7U0pfK+mnJf3BqqouSXpS0o/bMZ88fu264A/+slAaZHw0Gmk0Gmlra0uPPvqoLl68qOFwqIODA125ciUfC4mEtGKHpligpEzOnMys12sNh8PsToBYYjuHSDsRhaRDbCFWThghWltbW9rd3dXW1laOqpPqMJlMciSbc1GrAPeEt3eE6JJCARnyqDfY5ECAYC2XS+3v79daAEIE+/2+zp8/r/Pnz2s0GuU0E6Lg3GPpNCCVxAkmtncndXTMYLwuVniaB24BCKeTRO8igJDgpFtSHqMDwkuKBYICThHy9plHBA9IPAIXkWzvIOJOAfaa14bADYAgkY67ECACQaaZB+7BBSPvZiGdiDY+LuqJkG5ACoh3K3HxgfP4nPLdgHBzP07YS1HH6w/gpuC6fN5TcvgucU7cAqwxa8Ce8zXhXtg7FGL0ugkOXxMXTnBh+L7hu3eWUh5eBXf0WRy492g+9qg++rvfqOXW2c1jDQQ2ofdiQ0//+Z8OZ008hwN3CM1pUns/6el/sa/qp37uTHQ3SP/Xz+q1/1f9tRd+/7u02Lr5c80urq9ydTTnSe0rSU/86FSNf/UzCgvP/YdbFRT+qqQ/pSMTzp+S9D9J+nptNv5s/P9MSundkt59/HMmxZKyVRkL82g00vb2tra2trSzs6OdnR1tbW0ppaS9vT3N5/Oc7wyR8Og75Mrtz+5kcHJFDQZaR3r+txPGslibR2khUtJR1JR6CeT6I3ZQiJEIrIsDEFis794ukQhxu92uEVRJOaWAlAu3e9vc53mhpoELLCmlPF7SS/r9fk1Mgfi+8soreuWVV7JjgLEgduAqcOKIgODwqv3cx3g8zmJEVVV5jV144n2INGD+fB28WCLzwtoSEd/f389CEiTW9xN7xO393vEAIQJXBuSfvcF/yxQLryPCHHo3ApwCnBPXCq4cT5dgXb3NKfvGUwgQAnzve80Gdw74erkQxN731yH4OC+YO+aeMbg45K4D32fsDRcAmA936XirTl7jnGXHlNVqleesLKIqnYgc7A93i5xB3NFncU+DuzPKwKviM7/ljZpfCDEhcH9h8KmGnvrrP6f18kw/I+8F4jn8kGL0qbWmjyWt23dGUmtNkp74kUN1/ulPnXmR7tG/9KO39LkXft+7VBX1rrc/dqj+9/7kHRhV4LRwS4JCVVW5uXBK6W9I+r7jXz8p6Wk79ClJn77GOd4j6T2S1Gg0quPXctSTAorD4VBbW1va2trS9va2RqORdnZ21Ov1cptICLSTFAizdx7wegTH160REABhc4s61vvVapWJMpbsMhLqkVWi/RA/xknk/fDwqLXlYDDI5Iaxet4870GIECAgUU7Aer1erRK/j8sFF1o+euoHborBYKDt7W3t7u5mQQFxA+L9yiuv6PLly9rf388OC8iwW925rs8nv0MGvcggUf0rV65oMpnk+hkeyfbUDNuL+XrUCeAYz933yD73Qy0LLzxYRuuloy4MW1tbueMD6+wFCNl77owhJ596C8PhsOY2cDEBscFrG3gaAPUPINGk2DQajVyc0K3+7AHG6IIUY0PsWK/XedzsJ587L5rKvnV3grfWBN4RBGeFd0ZxJ4Z05KphXsv0Ja99wP6hEKQf6/vM6yP4d5X7Ys285kKj0cgC4GQy0VnFnX4Wb6fzZ/1vmEAgcAaw9ZGGnvh779dqf/+0h3LqiOfww4ut7/pxXX7TuzS/A0vWnJ6ICQ8yHv3LtyZEBM42bklQSCm9pqqqzxz/+tWSfv74538s6e+llP6CjgrQvEnSDUlOTvQRE7a2tnT+/Hltb2/nFosQXUk1QgLRcHs6xE7SVZFhosuIDvP5PFvHsbx7gTrPJeda3jXBI8qIDxR4pGigR1/H43Gtg0Cn06lFpz16zDVxWkCi6EoAwaI7BcXkSicFpAl3BMdAtrxln8//cDiUdERIadX4yiuv6Pnnn9fLL79cSwuRTiLfTuKYJ5whEEJ3ZXCfODcgxrTo5F6J+LsjxFMHqBMwHo/zXoKwexQdIu8iBHuKMXnKSKfTyeKWF8wk+s65OI+3QuWc7GHSanCIIBKxP9114qkK3oqz2+1mIs09k4bDnneSjcjAGpXOBAprUjfAxTYvnigdCSsIWghHXo+Ccbt4wJpQ08RrHyC4cG+IT2XaideokKTBYJD3PMfxXwSOTaIW8+stLxEzcdcwL2cZd+NZHLi3aLz1V2q+e9qjCARuDKOPNbT1yZV2/vWHomDaMeI5HLhdNOdJT/0fC7X/xXtPeyiBwC3hRtpGfqekL5F0IaX0SUl/QtKXpJTeqiPr1kclfaMkVVX1vpTS90j6BUmHkn5fdYPVbCFnFLnr9/va3t7W9vZ2Jp1eCI+WfpAFopr0pYewkN5A4TxJmdhBoonU93q9LBJ45Bl4jrYTPEgIRNAj4J5a4TnwdAvwIo58ziPq3A8EinGMRqNcr8DH0Ol0ai4P/iEiHK9TrZgd46OoHx0pLly4oJ2dHbVaLU0mE125ckUvv/yyXnjhBb388sva29urdWcoc/0hwtjJuQ4k3a/tYgsEW5L6/X4uYokbxFNivOuG10aAJHrtAI+GuwDAunF97sEt861WK4/DiwNStBOy6vfr8yEpzyvdPSgmiksF8Yn0E4Qi7sddB9RLQMCAqOPWcScBc8OeZH95O04cM6RSsNfZg56CwjwgaNBWkrnC9cHYEIhwFCEo8H31fcq9l24i5hshitoqpAEhJgH/GbeOF2D0PeAuI5+X0nl02rhXz+LAvcXLn78T6Q6BM4/+8w09+m8W6n/wJR1++KNnIq/7NBDP4cCdRmOZ9Nrvn6nxIz9z2kMJBG4ZN9Ll4Ws2vPztr3L8n5b0p29mEGV0sdE4alm4u7tbI/G8D5mHtHifeUk56usF9IiCugsA+7hX1Yd8u8Dh+emIFaV1nogtwoB3fEBsaLVauZjjbDbLpMhTHZxMMhc+T+12Oxd29Oh4ad+GYEHSnPhKygXnuLYX0+v1erpw4YIeffRRDYdDLRYL7e3t6fnnn9eLL76oS5cuaW9vT/v7+1eRMe4fUcbTR4hkTyaTXMCRe9hEfEejkVqtVu4+ARn1jhDSSQQfhwSks4x2+5pCvt1NAYHmvIgguAr6/X5N+HHhit99Tzja7XYubilJBwcH2t/fzy4SUntcQEJI8BaSnhKRjjtCMC+4DTw1xOFFRb0WxOHhYU5dSSlpMBjUnA3L5TIX3qSuCd8p5tzX3/egt+BknN7iFUGIuXc3AaKM195wQYXvk3fecKeKf5+ZU66D4wFRiXN6pwj2zFnBvXgWBwKBgKO9n/Ta7ztQ89JYqw98+KEVEkA8hwN3EmktveG791S9932nPZRA4LZwO10e7ii8gnu329XOzk6tjaGTQgomek427xGtpdAgdnkINyQaouLtAD2i7SQDMaEsVlfWC4AUQ1JxWmCTbzQamk6nmYhzfsYCvFidk15IGDZ3d2EwPsiyk7bSsQGZgpSR+8/Yd3Z29OSTT+qRRx5RSklXrlzRiy++mGsmXLlyRZcvX84pCR5Z9roV6/U614kgKj6bzTIBl+p1LSB/jENSJqxEtemI0e/3a6STOXGnAOTeuyl4SgPk2J0erDvzzt5ESHC3CdfwNBvWwvc1HTqobTGZTPIeoA7BaDTK7yPEsI+9FgLziJjgAouLTLzGWOnu4SkLCDyXLl3SlStXdHh4qF6vl8/PfeEwWK/Xua4Ae1c66dJBIVBSPagzgruC74535WAPci2EL2/Z6bUxuB++J+wfFxNcUPACj+5OQLRwIcKdOsx1KQwFAncaF//ZRzS78HqNnzo74lXgIUclveWvvyRJSstDHX74o1F1PRDYgCv/+Tu03LrF+gmV9Ob3vKTV+z94ZwcVCJwCzsRfy/wxDzHA5u7RcyKFtCmkcwCk0vPrITGj0Si7AFwU8DZ/JdEoazl4tXqEBLeTe1qDF3RzMYI878VikUminxvSxP15jjhkGVCPAcIJyfVcfSdtvDefzzPJh5TSjcILPW5tbemxxx7T+fPnlVLSpUuX9NJLL+mzn/2sXnrpJe3v72s8Huc2kZLyfUAgOZek7ARwAURS7X1cIMx5mbfOmhKN96i110SgLgLHrtfrPF/L5TKneVDIELGJug2IDZ6m4mPwrgPuInHSCsqODogFBwcH2tvb02KxyMUZifaz/ohiCDbezpH97s4QF0WYY0+Z8Xohi8Uiu2KqqtLBwYFefvllLRYLDQaD/397ZxAb11WF4e/Yij1RUiVtYldRW5UUVa0qhEoEFQLUFYI2m8Cuuy5AbECCBYugSqhskKgELJFAIEUI0Q0guqRCIHaUAknqKqRJIBKhbg2yPcTNaMbYl8W883wz9dgZa+bde+P/k0YevxlP/jnvvV855957bl0w8H/HtzZdX1+/7b6M+zvEuzfE92q89MGLCb4byGCRL27cGBdm/PX4nvQ4eYFksMAQL3fw8+PnxHV5wWBwRoMXlAZ3lhBiUrQ/8TCdefVgE/nw+PdvaA94Ie6AW/dPsXlg78XgjbeujVGNEOnIoqAAW4lkq9Xi6NGjdRLtSYMnQJ6UdDqd29ZCezLpCZAnBZ5MxQ0DDx48WP+dr6se3CouTih8XbmPonrSEU/5jkfL42TOmyf66Lj3HBjskxB/V/834kQy3rqu0+mwurpaJ+teSJiamrpt+ztPUuORYU/uPYn1woy//8iRIxw7doyZmZk6AV9cXKyXOfgsBU/sW61W3cPCP8unosfFkrgIE8+m8GUi8XIEP3c+28JH7OOtHD3RjEeoNzc36XQ6rK2t1UsAfBTe/95nlPh14f0kvDjjS2Pi5DguWsSj6YMFpng6frytpH/nbrfLysoK3W6XVqtVb8sZa+z1enUvAy8KecEm3gYVtmZOeB8C3+HBr3MfYY8bd/pr3stjaWmJW7du1UWPuMmjNw41s3pnlbgZZdx0sdPp1AUmj5G/7suT4ms/3rIxXhoTFxwGCzd+j8QFhrhfhxfG/HjsDXEBxK8v3xIyLkR4vH1Gh9/7QkyK3uEpNmdUUBB58PhL1/nf4jupZQhx1/PYt6+wEeT94u4gi4KCJw3T09P19pCzs7MA70tcPOnwkWTYSpw7nQ4rKyt0Op16pNUfnuR6MunTqj2RiNe/++wB/0y4fUlGvJ49HqWOeyJ4T4VDhw7VMwpWV1cBag2+Lt+JR07jUeJ4NDpO9PyzPKGKv5PrjxsUxv0AfK29J86zs7PMzc0xPz9fN0BcXl6m2+3SbrdZXl6m3W6ztrZGu92uZ3r4rAsf4d/Y2HjfFn6ecPssjsFlDfFuC75ThZ8Tj0ucDMcj5J4A+ui8bzUZT9/3awe2ZlN4LL0/QK/XqxsMDo66+7keLO7EvQ48cfWClcff9XW7XVZXV+l2u/V39ATdk+54a0ifmeD3wfr6ej1TwD83HkmPd2fwQooXjbxvR7fbrZs+9no92u12XTDwYoJ/L+974D0VPJbxUgEv7vm5j7+vN3KMt+T0fhFx/wu/nn3ZjV+7caEgnsHj+O9e4PDCYLzkxO+ZwSJEPOsoLibEs4q8SBYX8oQQYi/cu2AcP9ffCm7pix+j/Vi+ScTm2nupJQixL9i8uZZaghBjwwanBycRYfZv4D3gP6m17IHjSHeTSHfzlKp9XLofDiHMjeFzssfMbgKXU+vYA6Veo1Cudululv2uez/5sP5P3DzS3Syl6oZytU/Ui7MoKACY2eshhI+m1jEq0t0s0t08pWovVXdKSo1ZqbqhXO3S3SzSvb8oNW7S3SzS3Tylap+0bnUdE0IIIYQQQgghxMiooCCEEEIIIYQQQoiRyamg8MPUAvaIdDeLdDdPqdpL1Z2SUmNWqm4oV7t0N4t07y9KjZt0N4t0N0+p2ieqO5seCkIIIYQQQgghhCiHnGYoCCGEEEIIIYQQohCSFxTM7Bkzu2xmV83sbGo9O2Fm183sDTM7b2avV8fuM7NXzexK9fPe1DoBzOwnZrZkZgvRsaFazewb1Tm4bGafTaN6qO4XzexfVdzPm9np6LVcdD9kZr8zs0tm9qaZfbU6nnXMd9CddczNrGVmr5nZhUr3t6rjWcc7Z+TFE9EpH24Q+XDjuuXDY0Y+PBnkxc0iL25cd3ovDiEkewDTwDXgEWAGuAA8kVLTLnqvA8cHjr0EnK2enwW+k1pnpeVp4BSwsJtW4Ikq9rPAyeqcTGek+0Xg69u8NyfdJ4BT1fN7gLcqfVnHfAfdWcccMOBw9fwA8Efg47nHO9eHvHhiOuXDzeqWDzerWz483njKhyenVV7crG55cbO6k3tx6hkKTwFXQwh/DyH0gJeBM4k1jcoZ4Fz1/BzwuXRStggh/AFYHjg8TOsZ4OUQQjeE8A/gKv1z0zhDdA8jJ92LIYS/VM9vApeAB8g85jvoHkYuukMIYa369UD1CGQe74yRF08A+XCzyIebRT48duTDE0Je3Czy4mbJwYtTFxQeAP4Z/X6DnU9cagLwGzP7s5l9qTp2fwhhEfoXIjCfTN3uDNNawnn4ipldrKZ/+ZSdLHWb2QeAj9CvEBYT8wHdkHnMzWzazM4DS8CrIYSi4p0ZpcWnZC8u+RrN2hNi5MPNIB8eK6XFp2QfhrKv06x9IUZe3AypvTh1QcG2OZbzthOfDCGcAp4FvmxmT6cWNCZyPw8/AD4IPAksAt+tjmen28wOA78AvhZC+O9Ob93mWDLt2+jOPuYhhI0QwpPAg8BTZvahHd6eje5MKS0+d6MX534OsvcERz7cHPLhsVJafO5GH4b8z0P2vuDIi5sjtRenLijcAB6Kfn8QeDuRll0JIbxd/VwCfkV/esi7ZnYCoPq5lE7hrgzTmvV5CCG8W90om8CP2JqWk5VuMztA34B+FkL4ZXU4+5hvp7uUmAOEEFaB3wPPUEC8M6Wo+BTuxUVeo6V4gnw4DfLhsVBUfAr3YSj0Oi3FF+TFaUjlxakLCn8CHjWzk2Y2AzwHvJJY07aY2SEzu8efA58BFujrfb562/PAr9MovCOGaX0FeM7MZs3sJPAo8FoCfdviN0PF5+nHHTLSbWYG/Bi4FEL4XvRS1jEfpjv3mJvZnJkdrZ4fBD4N/I3M450x8uLmKPIazd0TQD7clN5In3x4vMiHm6XI6zR3XwB5cVN6I33pvTgk6P4ZP4DT9LtoXgNeSK1nB52P0O+IeQF407UCx4DfAleqn/el1lrp+jn9aTnr9CtRX9hJK/BCdQ4uA89mpvunwBvAxeomOJGh7k/Rny50EThfPU7nHvMddGcdc+DDwF8rfQvAN6vjWcc754e8eCJa5cPN6pYPN6tbPjz+mMqHJ6NXXtysbnlxs7qTe7FVHyqEEEIIIYQQQghxx6Re8iCEEEIIIYQQQogCUUFBCCGEEEIIIYQQI6OCghBCCCGEEEIIIUZGBQUhhBBCCCGEEEKMjAoKQgghhBBCCCGEGBkVFIQQQgghhBBCCDEyKigIIYQQQgghhBBiZFRQEEIIIYQQQgghxMj8Hw14jNKK0p1LAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 257164 0\n", + " Min thresh = 1000\n", + " Not Sliding\n", + "\n", + "\n", + " Winner = Not Sliding\n", + "\n", + "\n", + "026ns_image_1087766719219_clean.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADDCAYAAAAya0IYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADMgUlEQVR4nOz9e5RsW17XiX5nZGa8IzL349Sps885depFFVIghTwLhsgd2oo0ykUbr7RDvWhTeG30amOLeG3wRYs2aNvDFrsYcqFtHmrbKo3cRuA2F5VCXqIWUAVVRb2LOq+dOzPjnRHr/pH5mfldc8c++70z9t6/7xg5zs6IFWvNNedccfL7nd/fd6aqqhQIBAKBQCAQCAQCgUAgcDtonHcDAoFAIBAIBAKBQCAQCDx8CEEhEAgEAoFAIBAIBAKBwG0jBIVAIBAIBAKBQCAQCAQCt40QFAKBQCAQCAQCgUAgEAjcNkJQCAQCgUAgEAgEAoFAIHDbCEEhEAgEAoFAIBAIBAKBwG0jBIXAA0dK6RdTSl903u0IBAKBwBlSSh9IKf22Wzy2Sim98Q6vc8efDQQCgUAgsFkIQSHwwFFV1Vuqqvrx827HKyGl9FRK6QdSSh87/eP3tefdpkAgEHjUkVL6fSmln0wpjVNKP37e7QkEAoFNxL0WZm92vvi7OPBKCEEhEFiPlaT/Q9LvPe+GBAKBwGOElyX995K+5ZzbEQgEAoEzxN/FgRsiBIXAA4fbalNKfzGl9I9TSv9LSukwpfQfU0pvSil9Q0rp+ZTSh1NKv90++1UppV8+Pfb9KaWvKc79Z1NKHz9VUP8LV1xTSq2U0remlD6UUvpESunvpZQ669pYVdUnqqr6u5J+5j52RSAQCGwkUkqfk1J6Z0pp//Q79e+klJrFYV9y+j38Ykrpv0spNezzf+T0u/pqSumHU0rP3cp1q6r60aqq/pGkj93L+wkEAoFNQ0rpN6SUfvz0e/YXU0q/29778ZTSf2G//99TSv/69N8/cfryv08pHaWU/m8ppS9KKX0kpfTnT7+TP5BS+gN3er6yrfF3ceCVEIJCYBPwuyT9A0kXJP07ST+sk7n5tKS/LOl/smOfl/SlkoaSvkrS30op/SZJSil9saT/StJvk/RGSb+luM5fl/QmSW89ff9pSd94P24oEAgEHnIsJf1pSZclvU3Sb5X0x4tjvlzSZ0n6TZK+TNIfkaSU0v9V0p+X9HskPSHpX0n6vgfR6EAgEHgYkFLakfS/S/qXkl4l6U9I+p6U0ptv9tmqqr7w9J+fXlVVv6qqf3j6+6t18p39tKQ/LOkdd3m+QOCWEIJCYBPwr6qq+uGqqo4l/WOd/AH6LVVVLSR9v6TXppT2JKmqqn9RVdX7qhP8/3TyRfybT8/z+yT9v6uq+sWqqsaS/hIXSCklSV8t6U9XVfVyVVWHkv5bSb//Ad1jIBAIPDSoqurnqqr6qaqqjquq+oBOhN3rRNrT79MP6aRM4StPX/8aSX+tqqpfPv1e/28lvfVWXQqBQCDwGODzJPV18vfuvKqq/6+kH9TZ9+id4r+pqmp2+jfyv9DJ38aBwH1FCAqBTcAn7N8TSS9WVbW036WTL12llH5nSumnUkovp5T2JX2JTtRYSboi6cN2Lv/3E5K6kn7u1Fq2r5NasCfu5Y0EAoHAo4DT0rMfTCn9ekrpQCeiwOXiMP+O/aBOvoMl6TlJf9u+a1+WlHSyahYIBAKB079Zq6pa2Wsf1N19T16tqmpUnO/KjQ4OBO4VQlAIPDRIKbUk/RNJ3yrpyaqq9iT9kE7+UJWkj0t6xj7yrP37RZ2IE2+pqmrv9Ge3qqr+/W95IBAIPHT4dknvlvRJVVUNdVLCkIpj/Dv2NTrLPfiwpK+x79q9qqo6VVX95H1vdSAQCDwc+JikZz17Riffox89/fdIJwth4NW3cM4LKaVecT6+l+/kfIHALSEEhcDDhKaklqQXJB2nlH6npN9u7/8jSV91GnLTleUjnCrA36GTzIVXSVJK6emU0u+40cVSSu3T60lS6/T3QCAQeBwwkHQg6Sil9MmS/h9rjvmvU0oXUkrPSvp/SqLu9u9J+oaU0lskKaW0m1L6ilu5aEpp6/S7dltSI6XUPq01DgQCgUcJ/1YnJP/PppR2UkpfpJNMse8/ff8XJP2elFL3NFz8jxaf/4Sk1685719KKTVTSr9ZJ5lj//guz5cRfxcHboQQFAIPDU5zD/6kToSDq5L+c0k/YO//fyT9D5L+T0nvlfTO07dmp//9+tPXf+rUwvujkl4prGYi6ej03+/WWflFIBAIPOr4Mzr5jj3UiRi7LqTrn0v6OZ38ofovJP19Saqq6p/qJAT3+0+/a98l6Xfe4nX/oE6+a79dJ/k4k9PrBwKBwCODqqrmkn63Tr4bX5T0dyX9oaqq3n16yN+SNNcJ0f9uSd9TnOIvSvru09IychJ+XSd/H3/s9Pg/dpfnKxF/FwfWIlVVdd5tCATuC1JKv0Enf8i2ToPBAoFAIBAIBAKBRwqnDof/paqqZ25yaCBwzxEOhcAjhZTSl59avS7oZIXsfw8xIRAIBAKBQCAQCATuPUJQCDxq+BqdZCy8Tyf7qK+r+w0EAoFAIBAIBAKBwF3ivgkKKaUvTim9J6X03pTSn7tf1wkEHFVVffHp7g0Xq6r68qqqPn7ebQoEzgvxPRwIBALnj/guDtxvVFX141HuEDgv3JcMhZTSlqRfkfSfSPqIpJ+R9JVVVf3SPb9YIBAIBK5DfA8HAoHA+SO+iwOBwKOO++VQ+BxJ762q6v2nKabfL+nL7tO1AoFAIHA94ns4EAgEzh/xXRwIBB5pbN+n8z4t6cP2+0ckfe6NDt7a2qq2trZqr6WU1Gg0tLW1lf9bVZWWy6WWy2U+pnRY8DnA+6vVqvY7x/qPJDUajfzvqqryNTimqqp8jvKz/jnA+fxznK/RaKiqKq1WK61Wq9q5qqrS8fFx7Vi/BvdUtoffud9Go1H7LH1YVVVuW0opt8HP5WPi9/pK1yvbVo4D7VmtVnkceY3z3Iprhn5Z9zqf39rayvfGdTiG++U+/L1y/pTj5v2x7t5v1B7vB85Rnnfd3OIcN/rsut9L3Oz98tjY/aWGF6uqeuK8G3EHuK3vYUna6veq179upU+8q3NfGxYIBAK3g6lGmlez6/+n/3Dg9v4mju/hQCCwoTjU1bV/E98vQWHdl36NoaSU3i7p7dIJ8XviiZO2bW9va7VaaWtrS4PBQJcuXVKz2czvzedzHR0daTab1cgsgkOj0VCr1dLW1laNSE6nUx0fH+fPNRoNbW9vq9lsqtlsZpK7vb2twWCgra0tLRaLfG6EDYjoarXKxHNnZ0dbW1va3t7W9va2tra2tFwu8zGtVktVVWk2m+XXj4+P8/EpJY1Go/xaSkmLxUKj0Ujz+Vzb29vq9Xq5zdvb2/l8V69e1XQ6zf3De5PJRNPpVNvb22q322o2m2q1Wkop6fj4WOPxWMvlUu12O/fVYrHQcrnU8fHJpggQcs7R7Xa1s7OTj6XvF4uFxuOxjo+Pszjgv6eUcr/3ej11Oh0dHx/r6OhIk8lEzWZT/X5fkjQejzWZTHLfuhDEWCASLJfLLAa4cDOdTjWfz9XpdNRutyVJy+VS29vbajQaWi6Xms/nWiwWuX85r/djs9nUarXSbDbTYrHI7Vg3Drzv7WGs5/O5qqrS1tZW7Vi/R+YXghn9jqjDuHB9jj8+Ps7CDM9OKT5wre3t7dwmzrNODKEvec+PWSeC3Evc7nlv9fibHVcKM8V7H7zlBm0Wbvo9LNW/i9vq6rW/+KV67cP6Z3sgEHgk8W+rHzvvJtwNbutv4vgeDgQCm4ofrf7XtX8T3y9B4SOSnrXfn5H0MT+gqqp3SHqHJLXb7QpylFJSu92uEaKtrS0dHx9rsVhk4s7vJeFMKWVCdnx8nEm9r8ZD2iDOEMPj42MdHx9ra2tLnU4nHwcZgYj5Cr8kLRaLTJqPj4+zAAJ5k5TJHwQQQkwb/PruinDRxPtoZ2dHzWYz9wXgXiHP8/m8dq1Wq5UFgvl8nvtKklqtVj6XE9N1bgP6wQWW+XyuRqOhnZ2d3KfSCUlrNps1MYV7WCwWeSzb7bba7Xb+nc/SHtqB6EIb+B1RYGdnR7PZTNPpVFVVqdls5usgHvEZzsMYOsmG0CMs0FelK6N0OLj7gdeWy2UWlxqNRm3uMlcc9JOfw/vCia87KG6EGzkp3I3g8/xmJH3d9e+FwHC757jV428mJtwPcWQDcNPvYan+XTxMF8OaEggEAvcWt/U3cXwPBwKBhw33S1D4GUmflFJ6naSPSvr9kv7zGx0MGfSVf0gpZFRSXt31MgAXCLwUQlKNiLN6y78hmNPpNDsQcBBIdRs+ZBDnAUSPVWTACvNoNNLOzk7tHhFF/BqIEpBRyCzCBOQYouwr2u5+2N7ezuSZvtvZ2VG73c7ODJwEx8fHarfbeYXdSetqtdLOzo5SSvlzXHu5XGZBhz5ZJz4gYPA5P7+LAL7KzmuMdbPZzA6C0h3CeZz8+6o9151Op5rNZvl4F4c6nU6eDwgfEHgXWBqNhprNZnZlMHZO7F3IKssgvMwDdwHzpRQMeI3+5WedqMB9lv3KnLlRKQjvr3Me+HPD8eXrpWBBe25Gxh80YV/X9lfCIyomSLf5PRwIBAKB+4L4Lg4EAo807ougUFXVcUrpayX9sKQtSd9ZVdUvvtJnvEzASa908gd/q9XScrnUZDLJhBzySIkAhJaVeODEFzgJY3WaY46OjrS1tZWJ+ek9ZVLNtSRlJwDk31fX+ex8Pq+R6fF4XFtVd4GE1WtW3tvtdibLJXmjjW6/51o4GCTlNs/nc0nKK+7cg5cquIvD3RLcl98v53VBp3Q2lKTZ3RvL5TILLRDunZ0dtVotjcfjfJzfP+d2QcnHB8Go3W7n608mk5rDhPIP5pS7XBAdKItwAo/oRLu8HKF0Kfh/vZzBHSRlbkWZk7Euf8HHyXGjrIV7iXXXvJPP3W/c7fXWZVo8jLiT7+FAIBAI3FvEd3EgEHjUcb8cCqqq6ock/dAtHlur2z4+PtZ8Ps/Ed7VaqdfrSTojxxBVMgAkZTLopQycH8IKqQYeDkiNuSSNRqN8boSBkqBC7nZ2dvJqdrfblSRNp9N8jLsnIOrkJdB2auwRVhBG/HVJ14kKOBFoG/fj+QeQImz25AaUpBm3AJ+jr3nPSwicdHNdqV5/T1sQWHCheACjCxGz2SyLODs7O7kkg/uhbMIt9n4tX31HUOEaLkJwrJeFbG1tqd1uZ7GIOeNj7JkJjLcLQrTJ28O8YR4w7utEgdKxUpZFcAz9zDXWZSF4KYO/drdY5zYoX7vR7+V/7+aar/T6vcS6fnyYcDvfw4FAIBC4P4jv4kAg8CjjvgkKtwMIHMRVUhYVJKnT6ajX62k4HGbr/mw2y8St2WxmIoflHlGB83lAHlZ3yIivHPvvlChAKCGZtGt7e1s7Ozs1QaLZbOZ8AkIROad/nnZTYgDJbjQa6nQ6Wq1WueyAc0B+cSBAdMg+KEMj1wkRfMYFDgDp5d/06XK5zKIKtn+cBtwPogT9ishQ5iFg+2csXFAYjUbZbQGB9zIHBJiyDMDdAiVpLcUmjme8XIhhnL08AhEAl8TOzo6m02ktc6F0SjBHyx0+3AHhbpBSIFkXSOmuhzKj4XZs/Tcj4aXTYl3uwp3iTsn/w+ZwCAQCgUAgEAgEHhdsjKAgKZcpQPgg3teuXVO321Wn01G329Xh4WE+bj6f13ZZwELuRBcy7GGIXm9fruY7oaCunlVlVqR5D8JFWwhK3N7e1ng8zkGF5Wcg2YgFOAYg791uN5cVcA7KISCk0pkIQPvKMgMn4mQmcA8QZFa6eR3XAZ/3FXe/Z78nnAuMhQsVTvq9VMQzKSDaXqpRZhXwOS8f8XyHktiXThXGH0HKBQcPfOR3n4cppbzTBWIR77uDhXPi7lh3D2Xeh4sOCBs+Hv5Zv+9SkCifqTux7ZcOiBLrnAc3K4W401KJ28WdOhYedMZDIBAIBAKBQCDwqGAjBAUAmXRCu1qtNJlMdHR0VNs6ESKd0snuCh6eVzoJWFH3unv+zbmkG9u5IeEuQECAIbLSmUV9OBxmEYEtECGuvqsD5N8DI53QuQuA2n13IEhnq/6+lSGE1oUTD0HkPNJZfT/ZBRDpyWRSy0ygrfSF5wZQBoCwgbvAy0t8TMjHQHzgfthKktwIX9X3fua+t7e31Wq1stOBOcRYeF+6mOHuD7aV9F0c3FngAZqSclmLiyz0kW/huI7s+zxzwcZLNzz0sXSu8Fk+X5L5G4kL5TE+JuuItIsafs6bCRO3SszdkXE357pXQkWICYFAIBAIBAKBwJ1hIwQFJ24IA6wAQ7bH47FGo1EtnLAk6euCBReLRSaulAl4rTo/viUgxBlCzwo1bet0OnmFm/azej+ZTPL1+Cz3Va5EQyDJNKiqSqPRSMvlUq1WSyml/N/FYqHJZJIFiNKOjpjgZRv0jYc28h597hkBiA9kJbjVn3NNp1NJqoVmck4nuQgFvopNmQP5EtKZoOHODf+8uwpwELg4gpuDMeKzHvborgMXnPidDAzfmpRzuxuDMpVer5fH2kULJ/+IMOsEAdrg5Q8AYaUk7/Qj4+glHP7+jcjxOreCv+ZilgsWt+NuuFVifjslGo575UBY9/uttisQCAQCgUAgEAicYSMEBd/+D9LISrO7EUajkZrNZiaJpSMBEso5nVxTSkBpAZ/xfAC39c/n80z0u91uzc2AMAGJJq+gDBf0VWecA/zun/NcAEg3wgVt4/xsKcl2kXzGV9C5b4h7ee/ljgxO0GmTVK/d5z0EBUk5DBLgpED0oa2MI2Tat5zk2u6Y4N+l1d/JdlVVarVauQyGEEkXOnBpkD3B+Rjn+Xyu2WymVquVRYVS1PCgStpEVgafTymp2+3m45grLi6UpSNlFoIT93Wv8bs7Irx04pXgZT0eUlnCRSAfez+Pt6VsW3nMvcbtnNvbc14lGIFAIBAIBAKBwKOOjREU2HKRlVHprH4fws3qPfX/pPhDTn01G2eAr7BLZzX48/k85xhQEuHlAL5jAu3xsgnfJYHzOmHs9/uSlEP+vLSh3KrSSzIgmrPZTLPZTL1er1YC4GUHXIMSEfqBvpGUST0r74ghs9ksCyY7OzvZAeBtKFfRESWm06nm83l2T/j7tIf/Mn4+vtPptFZ+4f3AmLTb7RsSb98pI6VUK4XxAEvPj6Bk5OjoKIsMLki5MAKZZqyZE5RWsLtDq9XKfeEOBcbA5zf5FbPZ7LoyCM/+cKfBjbIRXKjwtt9oBd/Pi7DAs+J97E4SH5d159v0Ff7SPeRtjsyEQCAQCAQCgUDg3mAjBAWIHyvwrBaXcDIGAXLC5yTYhQd3K3AtCCmr907QIFtcg989P8Dr9iGbEDHugetJZ2GMlC9A4CHH0+lUrVartkIvKW9R6Q4MhABWy11sQDhw6z9EPaWUnRPA78vLP4CH821vb6vdbtfcAjglJpNJrS8ZJy+D2NnZyQKHuzjIQiCHQaqLN7SD0E7Pc/CyB/IQym0sveSD8hlJtZ07wLqVbSeiZC/4jhDT6VTj8bhWdlK2vXTM+BgjWpU7WDgR9nnvZSzNZjM7Mcr2+jW8P/we3R3kosIrYZNX+Etxo/xvIBAIBAKBQCAQuHfYCEFBUibalDzgGHCCBfEpyXpVnexMgIDgVnX/LMC1AFGH7EKmfXV6ndXenQJlrTzk3beM5HVW7mnfYrGohfNJqokK3JfX5NMuRAjKDmiTixmcD1HE+5I2cF0vDyiDBZ104goh8LEsVfASCd9G0sUKF1NwECAgsCXjZDJRu93O53WS7uUuHIsLgl02cA4QvMhnWq3WdVtjOmHnGj63PPdCOsul2NrayiKG919ZJuHzpXRc8D73xfm9Ldy/z0cCQJnv7owoBQj/b+lo8LHmNf/v7ZYZ3IuMg7vBneYz0I5bPUcgEAgEAoFAIBDYIEFBOtt6sQz7K8mQW7fdAYCgwMo3hB3HAsdAsCXlf/uOCL5jQUmGcSIgMvh7nNNJM+2ljcBJIDZzxANW7SGyiBNe/sHxnIvVb0IPPQfBtx90skpZhIci+paP7s7gp9Fo5LwA79NSXKAsQDpzjyAUsao/m83U6XRqY+aCjHTiIqC0g/OxOk95hOc28F/6m/KRTqeTr++uDEoxGFeEEM7jbUGUYMw53/b2di5RYR65AMJ5PLfCBQX6CGHL572LX2WeBZ9xIcfnbek2KHMRSiGlPNftoiTityoU3EsCfzeiQAgJgUAgEAgEAoHA7WFjBAVI+Xg8zivgvposnTkUIM8ID76ym1JSu93OVvz5fJ7t+JB8t7mX5My3hPSSCa7vpRIeOMj7kDSOcQIJ+fZyDC9ZWCwWms1mNYu871IAOXXSOZ1Os5sDwu2CwCutipdlIp7rICnv/OD3Tzs85A9w79jvO52OUko5vwD3CZkN7JTQarWyuAEof4HcU57g53FCzPnK0gLfbrPVaqnRaGSxA4eBjwtCQRnIWO4y4T8unkyn0yzMIAoxr8odH3xO+5y4USmCj53/lHkLLmqUIgKfd5QlGqXYUeI8hIJbxb2+5p2KK4FAIBAIBAKBwOOAjRAUShfAaDTKZBg48XdCBjFstVq1DAFeI+Hfw+4gz078IMfU6ZeCAtdnJdtX550I8lnPV3DbOcKC2+OxzUtnDgPyCcrVbK4BgYVId7vdXDZAu0pi7SveiBfcN9kGHlDpOz9wnNfvMy6eO8H16F/g4gt9TrlC2c9luQr3i5ugJNmMB+JBs9msEW0EHpwT9Es5Tzinl1pwP4zdYrHIny8FDIQShAC/Pn2PyLVOVPD5XZYicByv+bnLvvISkVJsKF8rsxO81OdGZPpmpN3v3f97K5+50e+3g3tdQhGiQiAQCAQCgUAgsB4bIShIysR6MplkUu014l5LDyCXrHpDUiGWnU5HzWYzn9dr1SeTiRaLRV5d9tV23/LRbfROTt05wYqwdCYmeMYAhNfDHT3YT1IWD3xLSa+d59zA3QCSsjjgK/lOEhEefHtEJ8oICnyW7AVA35HrIKkmAjgxxTlBqYUTS8iziwo4ESgfoI3ep9LZFqKIAwhB9Odisajt3MAxzCPmSNk3fq+UZuAu4HjKXRh/+s/LCrgmJRQuyHg/uGCyTjy52e/e/huRXb8PD6ksyba33TM6eG1decatlhXw/o2ut+7Ye4EoXQgEAoFAIBAIBB4MNkJQgKz2er0cLOj2f1aQnUSxyg65d5cCBNlt7VjWIcCQSLemszLc6/XyuXASODmCePk2kJBWzylgNZ57dMHASy6azaZarVYOFSxXw72NTu64P+r8cTXQT5R+IIiwS4av0NOHvlNAKYhA4Dkvx/M65JA+4By+pSYijfcj/UPAJONBzgJij+9MwY4QgN/n83kWRZxQQuo9tNHLTzzfodPp5M+78NBsNrPrwT9Truh7iYtv08lYMt6U1bir40Yr+iUZd2GA/vN2laKTZ0GUwoYf4+KUu3lu9tyWbVz3ewnPa3ilYzYB4U4IBAKBQCAQCARujI0RFKQTq/ru7q7G47Fms5nG43GN6EJMpTMb+nw+r22jKJ2Rkfl8nlft3Y5OiQGr+XzWCQ6ru56V4IF9EHP/nBNr6cwS76uyvgLsIX5cj1V4auo5zlfQESG4R/qDUgPPX1itVrUaf/rKBRonmlyjJLwEEHq5hDsw+Iy7Ari+CxjrnApsowl5935utVo5DwNHBwSe8gsEGe6Z8eL8XJsxZNwQWAhsZO44WWccXejxvuJ8Lm4B7snFBvrCx9N/dwcOc2CdS4Wx8zBLnDm8z1j4OK1zNfhc8DFbV4Kw7vPley5YlAIH/73VvIYS5blvtaTC8UrOjntZLhEIBAKBQCAQCDzquGNBIaX0rKT/WdKrJa0kvaOqqr+dUvqLkr5a0gunh/75qqp+6Gbn8xKAbrebydxkMpGkHNIonW3DBxAVnKxBoqbTaSZmnhHQbrfzSrjb5rkW5N5Jkuc8QNzdhl+STXcnQKL4L9kOlAZ4QKCLCZwPcuoEFMKIMEHbWH1nVRyyj/2de3Y4kXWyB1mFMHsApdfw0zZW+13A8GPcDUK5wbqdJDgHrgKEBg+mZMwYq36/n90OXg7DZxAynKAfHx9rNBrlrSW9bxGv6Ecvp6APOTcuBCfXTuK5FiIH9+j3TRtpm5dD0CbPVyj70Of4ujnr4+W5GGSHuEDGfHLXQ3m/LhCUgkLpvPDn4E5QCik3O/aVjnkl18E6t8WmuxTu9XdxIPDQ4/N+o57/zP55t2ItnvrR57V8z3vPuxmBe4z4Hg4EAo8z7sahcCzp66qq+vmU0kDSz6WUfuT0vb9VVdW33s7JWNF20kjIoIfjOenxHQjKAEdflSU7ALJDaYC7GlykcAIOAcbejzsBAYEVcj+HEywn574dZrPZ1Hw+zwIAO1EgBEB8naDx+87OTnYDNJvNTKBdSEFk8L7xPnLhQzorQfCVcxcpnPTnCWDbcJb94Ls28Bl3MXgpR7PZzGPvW07iRmg2m+p0OjURgT5w4orzpNVqaTQa1UpPuI/5fJ7b5g6UxWKRj/OSFulMGELIkM5EBoQP3+UB0YA5wHlwYuAa4bPz+Tyfj+s4QXehBhGM+y7DM31MuQ/a7GU0nnvB5xBtuAcXwlwoKUk39+ECBc8H9+/XKUWKmxH2srSidETcbsnF7WDTxYRT3NPv4kDgYcXWJ71eH/o9r9Zxr9JicHvupweF6aVXaWv2Kr3m779HyxdfOu/mBO4d4ns4EAg8trhjQaGqqo9L+vjpvw9TSr8s6ek7PZ+vmjtJxGrupQdepw8p9RwD6YzsrltF53cEAwiZExR3GXh9eaPRUKfTycGDy+Uyhz8iCkDMPbSQunm/h+FwqJRSFhYo78C67oKG2+UhrPSDCytecuDOjVKU8H5wgcbvF3cBY+HCipNGSkr8vBDgnZ0dzefzLHi4wLKOGPOZchvJdrutdrudyTdtdZs/Dpd2u61+v5+FFsYOQk/Zh4d9ev+U94bAgZDhK/HeXhcuuFf6gblMexiXTqejVqulyWRy3U4c3o+cb2dnJ+d7uABGqKfPe+7DQ0s9J4HzcS5KR6qqyuUg5bPg7gnuExGI58vdOjgxXCgrxaxXws3EgZuVL9zKOW527U0XFe71d3Eg8NAgJX3om96Wf11tVzrubaaQAOYXTtr3/j/5JqVV0nN/9adVmdgfeDgR38OBQOBxRuPmh9wcKaXXSvoMSf/29KWvTSn9h5TSd6aULtzs8+sIBqTZV6elkzwBfjiOlVuIbaPR0Gw2yyutiA+QH2t3rdwAUuQ/XqMPwYC0IhJUVaVut6vd3V31er1M3pxoOsEkg4AgwE6nUytX8J0efDWZe+G69IMHPXrmAeQXYcG3vPR+JgiTnS+cGE6n0/y5kgzSr7zupNXdAS4kIFasa7NnJiCW0G4cCBcuXNDu7q663a46nU4O0JTqK/L9fl+XL1/W3t6e+v1+Pi/Ch/cv4w759QwISXkMpbrLg/nA57yUptVq5d8ZC+aDZ0Awd4bDYZ5TLnTxDHS73dyulFKeNwgiiGs+95gn3Cdt8R0ygO8C0ul01G638zn8fC5guQDn5SntdlvdbjffD+4Hz6rw+bfu3/RvmeXgYo4/y6/0XXIjuNhY4l66HB4k7va7OBB4mPBr3/x5mu+u8s9xb7PFP8diUGm+u9L7/+pnn3dTAvcY8T0cCAQeN9x1KGNKqS/pn0j6U1VVHaSUvl3SX5FUnf732yT9kTWfe7ukt0uqrQI7CSpXa52AkkEAafZgOVb7WRmHSEK2KHdwd8LW1pYGg4Gm06mk+gpuSTx4j+siVuCmkFRbOZeUV7h9S0VJmeTR1nLFHgLqQgOrz7TdSfpqdRI6CfGEcEpnlnfpbKtLJ/cppSwocJ/8110MtK/s99Nxzf0PEadfEGgQQ3yHCdpaOk3oL7aEhERzbRwLiEdeNkMuANckwNLdCBBmRBZ3PkCwcQV4WQrnYP56UCZot9u5jZRaePkOfdZqtdTpdCRJL7/8sqSzMg1KFHAO4BphvrnQRIkKRJ5SGuZiOV89owEHQTrNZCgdLOVYu2PFRSy/N+Yt88XLMjwnhH738iPmq7t7fI5xnRsJEuW/1wkEt1JucSvHbAruxXdxW90H1+BA4C6xaj4cz+YrYdms9L5v/TxtTZJe+40/JT0k3zeB9Yjv4UAg8DjirgSFlNKOTr44v6eqqv9Nkqqq+oS9/x2SfnDdZ6uqeoekd0hSr9erKFsoV30hSl5ycHru61bxnfSUlnpWriG1kESvj8eCDkGFuEIMuR429G63q/F4nFfyyxXgG6EsQfAwQc7n9+UlDPQRq+q+iuzBgBBjF2m4JqS0DM7z+novB4CMe9mFk0p3LND/3A/tK4MIbR7UCNvx8XFtJwraAJmXlAnv9vZ2dntAnn3VP6WkbrerVquVd8pwt4V0ViLCvNve3s6r85S04CQZj8c6OjrKfeROA5+bjD1iSrPZ1MHBQRYoPACT/sGlgrMGt4bvUkEfUhrhjgv6xrMW6FfGnnnjQZle1kD2RrfbzeKICwA+brSJMUTwIbiSa7nowbV4pn1bVsbBRRO/H8QIn0NlSYYLW8AFulIYXHe8z8uHyaVwr76Lh+lisJlA4EEiSdWWdNyv9OG/8Da95lt+VtVift6tCtwB4ns4EAg8rribXR6SpL8v6Zerqvqb9vpTp7VkkvTlkt51q+eEEJeiAoKCW/UhLb6lpBMNX72nXp0Vcz8PJBhSA8koBYpWq6XFYqHJZJJfJyAPYuRBiZBqJ1EuNni+gm8XKSm3uSQ0kFdW+N0K7zb9GwkSknIdu4s3EGayCcr+93KM8Xicy0uks4wJd0xAIhmLUlzxWnz6hX8jBrGij9A0n881Ho/V7XZrhJ52dDodTafTLAK4IwVyK6lGvLlH+oD3GTNfYUdYoi28BkH1+QKh7/f76nQ6NSFKUs1VQykA5TLT6bQm9HQ6nTwX6I9yhd/LcfgvpQetVkvj8Tg/L6X7xAUZ3CKIKBzHXKa8htfKHU54dl3UK0sTGDdcLMxHBBTOO5lMam6O0h3EvPN5xv37c+y7XpT5Kj6G3ifeRy7+bCrux3dxIPAwYOeoofnuZmcm3A5mF1f66J/6LD3zd/+9VqPReTcncBuI7+FAIPA4424cCl8g6Q9K+o8ppV84fe3PS/rKlNJbdWLv+oCkr7mVk0G4Ssu/r1yW77vN22veIbHYxHmNJH9Ihq+4QkQgbRDT8n0nbJBZCB/uACzqvCapRr5wR1Cy4fX53m4nO16zTrvn83mtrt3JPX1K/9AG+qEUb1zgcDhR9tBIXAQeHMm9u7jByjXndeEF54e7KiCB3BP9s1qtNB6PNZvN8io47Wu321oul5pMJllU4MfFGxc6SneGOxYYX4QdxBnCEBlL7ysILNfq9/tZJIDMr1YrHR0d1VbdPW+g0Wjkecf2ptw/Y0U5w3Q6rV1ve3tbu7u7mkwmWfDY2tpSv9/P5Q8u1uDYoB2UlUwmk9wuxp5yJEnXCR6MbVkW4M9j+ez4nOaZ4Dl3EdBdCP5ZxsNfd6HIxTsvF2IelzkizIF1joTSlbGhuKffxYHAw4LXf9dH9O4/eUV6eMxEN8X4ykof/6Ofrivf824tX3r5vJsTuHXE93AgEHhscTe7PPxrrf/f+B3tr+vkAkIhnVnCJeVVUq8TL23MECYS+k/bWiMfThz886x4Q1jZJcBXnZ1gQrTYopCSBDIhXCRxt0V5DwCi40n8vs0ixIxjEQfWlTd4eQREyu/RgxN5310dvluAiw6+Isz5vOQEEQDgDuE6fn+ICrSZ+3LS5+GCk8lER0dHedW/qqocflhVlfr9fi4ZYfV7a2srl3Iwtv55RB+fG163z3hLZ+UQfA4SjEAjne1Gsbu7q4sXL2o4HOZ7ZS5QCkLbCYxsNpu6fPmytra2cmkF84gyCBwahGWW7hYEAEg0bXZhCadJKc4x9vSFu4DcweFiG6KHC3f0DfMXhwDjyvwpXRP0E+4Kz6vwuVYKAJ7NQBsQbRA8EPa8VMWFkYcZ9/q7OBB4WPDR3/WMpIdC9LstHL5upV//ijfryZ+8qvThT2h59ep5NylwE8T3cCAQeJxx16GM9wo4BxqNRt5GEVIsna0iQoQhz5JqpLu0L0NsIGftdlu9Xi8TWV8F9dVN7O0QN4gIooKXA1RVpaOjoxox3traUq/Xy4QTQLZ9lZV78Fp42gMhcwLr90rdOyvoECiEFdrifeJuAUi3k0lIKcGWJXlzkreuvMJ3UvCyFEm1bRx9Bw1Wzbl34LsqzOdzHR0d1VwGboFntd8dGswb3BUewumr3d7H9AEkm/d8y0jfWcR30Oj1ehoOh7p48aIuXbqkfr9fK58Yj8e1MabNLox4PxMseXR0JOmktKPbPQlsoizAXRbu0im3KfXtONvtdhbMSoLuc9TJOaKMZ2342Pt8duHLBSjO5yIMfY1wwVjSr6WYwLNxIwcDP4w3YkjpQvF7djdQIBB4OPDk33mnDr/tc8+7GfcF195c6dqb9/TEz+3p4r94T4gKgUAgENhYbISgAOHyFUxWVI+Pj9VutyVpLRGB8EEeIE6+Yg5pIkgRi7mkGqFiZRuSB+F2EQNRAXIFWWHXAulsFRTC6VsvQpicWLsFG7KL9Z/3vea+qs62aJzP53nF2Gvb1xEkJ1Rexw5hLvMDpDNi6kICfU+7XeDh/jgn7fASDi8BSCllIcTDI2kvPx46OR6Ps4vF3R64D/iMCxOsrLOi73PO5w9jsG7lnM8CHA/8HB8f5y0gh8Oh+v2++v1+HtPxeKz9/f0slJVbi7qQ5ddgTvMs9Pv9LGwh6JCB4CLScrnUaDSquSx814pms5lLMOhHF054HriGh02Wc4TX3S3A81cKG2XpAUKUO3HYmhUnieduMEalUFE6ldzl4nkn/t3hoqQ/LyEuBAKbj9mXfNZ5N+G+44XPlKrGJ+vSP/tFLQ8Ozrs5gUAgEAhch40RFPiDf90KsbsBpLOV9fl8nhP/IeQQJifHvvJK8jykXjojkIvFQqPRKB/DKilhdITHcQ3PXSh3kPDdA/jxdH63lXs/8OPkrATn9uuy3aUTMtwR9Juv6jr5d8GC+1xnA3dXBO3yEgiOgaRx/tIG75/jevQZ53ZXiIspnNvDBH13DcIzvb2IIr59IzsoeLsgzj42zBH6uywH8NyLVquVBat+v59FDtr9xBNPaH9/X6PRqFb24Ds4eLkMc4v/0ietVis7H7gnSjz4t+dMePkO23nifMCF444ezztgPDzI0IU7xsLHHrHInz/PheCnnJMuAnreBxklLkT4XF+3A4WXNrB1LM8Y84Hz0d5AILD5mH3JZ2u2d/L/gec/S49UfsKN8OJnVFruvEU7k5Pv4OH3/tQ5tygQCAQCgTNshKDgtf2dTqdGQPmjv9Vq1WzaiAqsXDvh990eytput2fzOhZ2CNdoNMrklPZgx5dUExGkM+LsK7iQGd6TlEktlm4vSwBuGS8DJL3u+/j4OIseoBRWvPygrEennVj2vX/oB89VKAmaB+k5aaRspbSzu7hQ5jB4zgQCCTkATh4h7r5bh6+i+3agXspAe9dtPwo4H33otnhW0clP8NIU2s586HQ66vV6uY0+v7vdrvb29nT16tU8hzqdTi1zgntHsGAcS9s+5RLuVHERyM+DyIBw0Gg0ssuh3W7XhBoXcJiH7krhB0EBcYH5wjU9oLR0u3jbJd0wgJH+9OfOSx44p/dLOcfLMfTvBy9x8jnpbQihIRDYHEx/1+fo45+/pWX78XMQXf3U03uupNnwbUpFF+y9d67tH/u5B9+wQCAQCDz22BhBgYC5Xq+nRqOh0emWSb7a3e12ayux6wL/ICtu2YYouF3dRQs/R1VVmk6n6na72XZdrsqzWu25AyXBkpRrwt21IJ2R2dKGDWn2VfFGo6HJZFIrTXALOj/kEDgBZ/XbMwxclHDRwlefyzKGdRkMfJbdAOirra2tLFA4eXdC7ETOd7jw87ZarbybBO2FFLLCvVqtNBqNrhsXxt3LWNYRQ3+NzAhEH/ql3GKQ/qHtiBTeB/wgzrjrYzgcam9vL98/x5b2fNrHuEHMfRtEnCbcM8e4CEBfsRUjz9XOzk7NRcEYl6Uy/JsyIif1nJuxYgy8tMXzMpzsMz/pc+Yc905b/Pnj3Ixp6Vpwp433BQKHP58+p72kYl3ZT4gKgcD5Y/qlj6+YUEM6yVcocfRsU623fr6u/Pg1VT/3i+fQsEAgEAg8rtg4QYHVUi8RgNQ5aYNosjK7XC5zKcG6rR8hg05ypLMAujIbYDabZULf6XRyWYGfD1s55IZVeOrdIbUIHBAZiKPnDThpcSu+pEx0EFDKzAUs/06e/bMuWCCCcA+Qdw9/XFd64TXwLj7g4vA6eBwdvtOApOu2x/Rru0iCEAIpRzxivLrdrnq93nWr0x486GIClnx/38fOHSZsnehiAdkE8/k8Z2twP7gh+Hev11Or1crk10stGKvhcJjbxL3gsmD+lvPC8yqm02mtzIO+dyLvq+3tdjs7FI6OjnR4eJidHD5uzJHyPBD1TqeThTSfqwhmPid5BspAS+6TMgRyEpgviFHMTy+HcscMz6w/J8wRL3VBGOC89JPDn+nS5REIBDYDk0shJrwSjnuVjnuVfu3Lh3rD9M1a/uJ7zrtJgUAgEHhMsBGCQpmVAGkpg+GcnLAqij19uVxmUgLB8VV23nfiI52RYgiYl1PM5/PrQvOwjbPiiQDh4XFOaDkX9wJpRMgoV4Q9g8Bt67PZLAc/OqmCmHopwjrC5ISsDKdbt1rrBJPVafofAoplv9Pp1EoGACQYUYXPTCaT68LxIH/0pQsf5F2Mx2M1Gg1duHBBOzs7Gg6HSinl3Q6kutOAazDerKYzvyCZZHEgyjCvfF46maecwvsgpZTFFcg+/c64QVh7vV4OS+T+ms2mZrNZ7gcvV0CU8DHysfayIHdmcG7EmXa7rdFopPF4LOlEEOn3+3luM/YuSPg48lz5FpJe0sAzx7yhFMMDIT0bgWecfAMvN0GMKcsmPPOAcUBk8y1efdcO2uoCkj8XnLf8LqL/yCcJBAKBTcdxr9Kv/sGLetPfe42OP/Ch825OIBAIBB4DbISgIJ3tPMDqMavi2LT5o95Ju9uTndRjJXdHgtfS+wo+x0OGJpNJPu90Os1EsNvt1gQO3BMQJM4lndnMpTPCz0q5k6QbrYA6USrdB7PZrJYv4dsEcg0PiPTMhfIaLj6U5RalKwIyCJHzPAOcIRBZdzhQ+uDZCrgo6KfSug4J9dVy+nY+n+etF3u9Xo0wQkYhsswrRBTml5cYuLgEiWSOMBfLsgx3HmCj9zwDX8Hnfhk3+hkrf9lu5g/XY1Xf3SOIVMxBF6A8hwThBrEEsQO3wng8rm1V6cKWuz4YC67BfXh4I3Axw10OuENcnMGV5DkQzHOuy7h4WQP9x7Pk4pf/zvtcF4cRokuZ4yGd5aFwX4iIgUDg/DD5ss/Ry78x3Am3ilWr0nu+9ore9NcnWr7wwnk3JxAIBAKPODZGUPAt9CgRmE6nmkwmklQTDDyYzsFqMCvilCtA6hAUJNVWICHMrIT76v9yuayl9a9WKx0eHtbECUgM7WEFHLcEpLHMS4DorgOElS0uB4NBjdA6caUtOCJcDHDrvJPzsj6c83ppBsQL0cbHCrs6RI/ShTI7AeJM2+kzygDKtH1JmVhCJMutO7lPSiMWi4WOjo7y6rNb3hlbz5Bw8YTz0T/cux/ntfgeYFk6CtxVAbxUQTrLImi1WppOp5rNZjo4OKgJEhyDc8D7mDHhfiDI7DzCfEZcQsjASTEcDmtCndv8XQzg+fJxLnce8TGjLwkBxS2EAML5cSNw71VVZQeQByHiYHC3gDsnvOzBnznEGc+b8AwP37HlRvDjEScCgcCDR/rMt+hX/8Dg9JfzbcvDhmpLes83vEFv/ouz2G4yEAgEAvcVGyEolPXOTl78falO0NyR4CSSVUxJ2UoO0eEckBdWdQl8hISzoukWeK+N95p/yJxbxiHdKaVMnFl9hXizklySUIgdpJeaeifHXirBuUt7uL9Wii/0F6SLvuDf7u5wcgehcxcF8HIKxsWdJE4IvYwDkunjwzhwTt8Ng8+TDzAYDPLq82q1yuUktJGxLVekvcxlNptlUso1PWyRc+IKcGv9dDrNc3BnZ0fj8bgWJOnX9dV7XDCTyUTNZjPnKbDzws7OTr6eh0W6fR93jnS2ZapnIiDc0JfNZlPD4bA2XmUgoxN5D230sNOS2HNP7l7gHH5+Dz9k/BHI1jl21okKtL10r5TuAnfNMD5eKuXztsyQoF/LXVgCgcADQmNLq/ZOCAl3gyS95y99it74dT8jrdYvXgQCgUAgcLfYCEHBCYCXL/AapGBd4JzX2UtnBA7ygC0dcg6R9Xpu7OYetAiJwjYO4XQyjzUfV4U7DnzF21eAIVwQUY7lHvxY7sUJrIf0Oal3clVa0n3F1S30XMfLNzhXuVLvdnKIqZcCSGeuDyd4WOrd5k4feju8H1w0KneHKFeXffWdfAPf0pMATHZCoJ+8X5zkcywCBcIKfYI44vfJ/PCyBWz7iEhloCbz2QUHruOlFi6y0ff0I+4OLyGhz1erlbrdbs5MoPRhMBhk4YH+KMsmuFfEsm63WxO1uB9EPc8k8BBHz0twhw7He9/5/HTBiowT5iX36mUYLtj4cwbYNpNnmswUd2O48MH4eY5EIBB4sNh6/Wv0nv+sffMDAzfF9tNP6fjDHznvZgQCgUDgEcXGCAq+m4BvFwipwWIuqUauvFzBa8uPj4/zSi9k2AmvW9D5L+dyC7mk2tZ/Hg7nddj9fj8TvdVqlcmtr/KTp+CECvjODh4cyao0K/4eNOgrr/SdEyss6963kEdfYaZOHPGF+3aC7Dsb+NaGkGKu6W4IPu+ZBlyP1XUXhspSFndLMGb0Lyv0HOer2L6y7jkDHqJJngJ9UIZ+IrQgBECovX3lrhaSsmBFqQBzYTqd1saJEhzAPGEnBs9ZcKLMcU6YfVtMhDTmdLPZzIICwkCr1VK3282CgrsgfI4jTng5BQIHz4XPI3fgUALBM8yY+We4B55ZLzvieMC88T5g3IHPIZ8PlKngCkIQYz4xpjwnPK9lxkYgEHgwSNvbmr3m4nk345HBe/7UM3rD14WgEAgEAoH7g40QFJxUsurJ6j2r/1jJ3VEAMXHRYD6f6+joSAcHB7Wacoivr5pCeiDrOzs7mbByDcgbBNZ3S2DldGdnR71eT5J0eHio8XicV3B9xwjIC6UQ3LsTNQhNuYrrBMvFjOPj4yyG0E53CDjpdQLGarm3w1eFpbPdB7geIgAihXQmbLjzgPc80NBdGBD5sgSFkouyDaDsyzJTAfJHnxDc5+Pp82xraytvhegZG6/kSPCcDBwrjA27OSAoQNQRuNxhMB6Pa/OJcSEPgtV4RKSybMZDLF1cKUuFmKfAQz65L3fsEEpKnzEWzCXHfD7PTg5KIQgyRWQoy0x8Drp4xpi1Wq3snnBBweeBP1fuxKGMAgGI7whyNugrhBYPSkX4oG/cbREIBB4gGluaf9Gn64P/6c55tyQQCAQCgcAtYCMEBbd8ux0dMtDpdNTr9TSZTDJJK23rTiyPjo50eHioXq9XExOonYbEuIDhNf9cF/s5KAknZJutExuNhmazmQ4PD7PNGpLJ9Uphw1dVveSgDLwrdz5wt4I7GyDsvqLsNepOvp3k0xfcF+dkZd4DLb1sw/tEqtfx+/aMkLPynG65d2eF90XpfoBUU3+Pq2U6nebjcadAbks3wXK5zKUS7XY7k3zOJdUDHAnHXC6XGo1GazMEvBzHcx84H2OCKML2jYRLOlFeLpeaTCb5PXcPeEkCYgTPxsHBQRbHIPoeLIlDweG7KmxtbdUCE3nOINs+jswBRALEExflEEZ8rJnrfn2fb+528JwQwDPNs8G1fB7Sbt/W08NCec/DQckr8S1n/fkMBAL3GSlp+iWfqY/81sbNjw0EAoFAILARuCtBIaX0AUmHkpaSjquq+qyU0kVJ/1DSayV9QNLvq6rq6s3OxSqr2+lxKVDHjU3bBQjIha8oT6dT7e/v54A76WwHCALqWJl20uuCgtvf+bzvpODp8a1WKxM/yDjElAwG6vPdUg7J8VIF3AZluKKv+tIntMuD5Jw8Q/rcieA7Qni9PO0vrw8R9fDGsj+lM5LH9XFhQEBxFEh14cTLI7zEAVLHOFOG4GUxnkFBXxfzM7eDFW7f/QACiVDg4+y2/263q729PV26dEmS9OKLL2p/f79WguNjxdxhnuDeoG88VNFFAhcjRqNRnvfce1kW4iUJq9VKk8kk797g94SAg6jkAhNCV6vVyi4b2kr7OcaJPC4AxqksHYCk4xrybBEvU0KccpcQggcOCOZr6RjxXBR3E3CP/vwyR1yM9BBH5rNvW+vhrJuOe/ldHAicB0a/93O12k76xOedd0sCgTtDfA8HAoHHFffCofB/qarqRfv9z0n6saqqviWl9OdOf//6VzqB/3EvKRMOr7l2goy9WzqrPfdAw/l8rslkosPDw7MbPV1dZTU0paR+v6/BYJDrqSHnhDnSNgidZyGQX1CuFLutHvhqqa8a+8on5/csBQgkbgcn+JyDtnhoo4fVee26lxggMnDOXq+XSZuvSDvph4whDCB0eIAfbWfFmxVg+o3j1uU4eE4G5/EyDFwdPsbMF58LOBe4PwgiZBTRgPNQ6oIzwMeg0+lob29PTzzxhJ588sl8PpwntNWFEQ8kdDJM211YcqeFpDyeiGv81x059JeHXtIf8/k8OyjoE2/fuuwK5g9iGtdht4r5fJ6DE8tSHdwdCCIIgszNyWRSEyH83/5clnkJPOuey3CjwFPEKn+d7xLml/e5t8HLHLzfEQcfsgyFu/4uDgTOC5/4nIZWzQhBDTz0iO/hQCDw2OF+lDx8maQvOv33d0v6cd3kyxNC0u12ayu1/MHvq51SnSRBEEuS4SvD1NMTkgd5TCllFwMrvO12+7oV45KI3yj8DeKCS0HSdaUNXs/v5ytdAU5GvSQDqziEyZ0SvuuCZyk4WZbOCDB9CgHjx7MXQFnm4MICAYK4PXBFeN4B13LCSvsheuX5JeX7Zhy5JkTc3RjNZlOj0SgTffoVBwlt8j7lHMwXBAVCFYfDoS5evKjd3V1duHAhj9tLL72Ugzch41zT+97FMogy7yFkMScRZGgLbeQ45lcpMNBmf54IIqR99LOLQMxpH2PP91itVrn8AUHMMzW2t7fz1qeIGczFdrut6XSa7xU3hu/ogGDgz7I/bz4ncAl4mRPH8Iy5WOeiAnPAy4hc5CtLVXhGud5DjNv+Lg4EzgMvvv1tqrZDTAg8kojv4UAg8MjjbgWFStK/TClVkv6nqqreIenJqqo+LklVVX08pfSqm50EAtjpdGqrjb7K6KuYLjY4SXaiU9qo2+22Op1OrWxBUl5lhfxK9XICjnOiw7UgqNPpVJPJpFZCcCO3BfCAPuls9wRfPS7b4KvIwJ0OZWgeZI3zuN3bHRBkOnB9D7TzfiJoEOLF66yUe2YF/VKKGy6euGWd9vs2k7TbRY4y6d/FFt8K1DMiPAvAxQvq+yG+jEWj0VC/39dwONRgMNBgMFCv18tiUbvdVq/X03Q6zTkI7rJgXkBwKeGg/Ma3fHRhiXFotVp5npJHwDWYD5B/hBIX2VyQYA7QL7THHRSr1SqHIdKPLr7gUPCdKnwsyWtYrc6CDb3UxcsmeM0dKDxTXmbh5TLuKPHnq3QBuUhVOgtcPPBsBu61LD3y75CHBPfkuzgQOA+8+oc+pIM3vkZV46F53gKBdYjv4UAg8FjibgWFL6iq6mOnX5A/klJ6961+MKX0dklvX/eeEyFWJ1lxhbjxx76H4rlVmtchc5BBDwz0Eohut3vdCvk6QcEJMW0dj8c1d8Dp/WXRwUsAJGVyRTucXJYCgq+Q8rtb/LkWbYQs+iq874rAeahVh/DRD17mUIbuOXF0ZwSBhe5OoD0lYYQkeo4C1/cQSYgu1/Gx9dVkdlRwl8Z0Or1utb9cqefYRqNR21aQazWbTQ0GA124cEEXLlzIYoB0Inz0+/1cEoAgxuc4l1/X2z6bzTQajWr5Fy4sIUax4wIlE96vEGTmArsb8NnZbJZzIpiDXMefIebR8fHJNqu4hJibLm6MRqO82l9makiq5VX4DhY4KnApeHmCdBbkybPB+/49gIDgpU/0hc81/91dIcDnIK4XQhspoXFxhnY9BLgn38Vtde9X+wKBG+L4Ix+VqtecdzMCgbtFfA8HAoHHEnclKFRV9bHT/z6fUvqnkj5H0idSSk+dKrFPSXr+Bp99h6R3SFJKqYI8emAdhJhVZFarKSmAJEN+KV2ATGBpR3xgBdiJPOfodDqSlNPypbPSAUifk04n7ZxjOp3mHwhdGUJ3eu/XuQwgSty/r9qXTgEvxXAChTDhq/7co9v5sa5TTsJWfy7aILx4W7hvnAfNZjOHZXr4XSl0uCvAV3zdKYBbgDbwOd/uj9wKAiTpF+zwPn8mk0mt5h/CfqM8CUQGnASQ6U6nkwULVrax9tNPknIfM5bNZjNvc8p1aB9lB/QBr3tph4+f77DBfyHr/F46bRh3L3UpwXPgZBoBjnb4zhT0MzkDzDvuY7VaZZGDnTS8VIlzurjkpJ/nw/MtyA7h+WSu0FeINqWLyQUDjud1/y7gfC4EcS53QG067tV38TBdjCXiwAPHh77x87Xaid1UAg834ns4EAg8rrhjQSGl1JPUqKrq8PTfv13SX5b0A5L+sKRvOf3vP7+V8yEcQET8d0glpAM7tAcpQh6cDEBsWKl2YtZut1VVlY6OjjSdTnXhwoX8eVZ2fZcBX9321VCIIgTRQwj5vK96cz9e5w/hcQcAjgHpLMBOUr43d1BAdMtyC4grbZFUc3AgwnBedwrQ56djndvRarVq2wD6SrekWqmD18fbvKmNkYdY0l++ys04z+fzXFbBSjhzpHSrQKZxpDD27irhd2875+cHUYFdEhBeRqNRPr9b9CmZYW7RrtVqlYMcfa7QHwgIpb3ex0lSdurQn9vb25rNZlkEwV3geQle+lE+B+12u5a94SU/HtDo53Rhx0m69ydiFO1mPF1AchGF/vV5xnzkuUcAY54gIm5tbdW2ZmV83c3gbiEXufieIbSTucP3i4shm4x7/V0cCDxQNLa02qmkhzquZLPxxq//WW3+N9nDjfgeDgQCjzPuxqHwpKR/evoH+rak762q6v9IKf2MpH+UUvqjkj4k6Stu5WTkEEC23PpdlhlgU+ffHqCGcwDiASmFcOAm8BV6VvQ9WNDzDpzcQBI93K50HkCWfMXaSWBpF/cSA1aEvc6cz+AYcBGC92azWT7WLd5Y7FmF5b7dGcA1XUApV2Y9Y4DPuVDgq7u4Nbx0hGNwYbDCDZlzsktbGR8XT8qdBVqtVo3YugPAXRu0G/iODpR/tFotDYdD7e3tZbLtbWMHBUQod1NwrfF4XCvT2N7ezqULvnuEhwq6fd9zDegf5gPgnqbTaXZq+NaQiCxcw8eA1zycktdoP/3q5SXSWdjjdDq9LqBxuVzmYEr6c2dnR0dHRzWHgDt9ONbnsc8zDyB1AYNzeC7DOkGmdC14H3ufIzSUQp1/B2w47ul3cSDwoJBaLX3oz3ymjvvhTrhf2JolVauQEx4A4ns4EAg8trhjQaGqqvdL+vQ1r78k6bfe7vn+w3/4D3rLW96iTqeTSUar1cqkwQmnEwQIIcKCuxRWq5OUeg8u9BIKrNQekucWbAiouw68zl9STTxAKPA6bxcKIMgA4lkSPrYL5P6cCLMazCpq6V5wsuYOBa7fbrdr9epc2232fFZSrU7f3Rt+TcaF8/l1uScfAz4H6S0J67otFjn/ZDJRv9/PmQ0u4LgTg/MxpoyZuzeckO7s7KjX62lvb097e3vZBeGOivl8rmvXrung4KBWeuAuEM9o4H3mkFvsS9cGY44Axjjy+WazmYUCdwkg0FBiw/jinoCoM1+Yj2VOAX3CGE2nU7Vardo9cA7ayTGMIa4N313FSwk8u6AUV+gvyio8ZNOdMJzDnRZeDuQlJjzHpVvCz4MTyJ8jF7YeBofCvf4uDgQeBLaGQ33kqz9Vs8shJtwv7Bw09Lq/9vNarR6O0q2HGfE9HAgEHmfcj20j7wgQ/Xa7nck4Cfa+Cuw155JqZKDcDo8MAyetfJ5sBWrOWXVNKeUVcM9iIMOBc1DCANzGTikB5JLVb8L1fIcFFzq4H8ijZzhwTJn8z71KZ+IGOQq+Uo8oA4nzUgK3xDsJa7fbOa9AOiPh1JbzeUirA6KNaEMNPBkTHorojgjmAb+XwYWz2axmzed1z74oMyi4d8bGBauqqnIWxGAw0N7eni5fvqyUUr4WfTaZTDQajbS/v5/nSekwoJ/4DGIT18EJ4rkU3B/zqJy79DfEmvnjn8OtwByjlMCdCAhLrVZL3W43P1vuJPFwTulse9LSLbJYLGpBpHwGQQiw5SX35vkVZaaGjxfzjLnqJUIu3nFv9FUpnLhjx/vLnxcEtdKhEAgE7h+e/4q3aPRMiAn3C+0XGnru239Zy1ORNhAIBAKB+4WNERQgUZB6VtEhgL5Kzeqory5CBMq6b1/J397eVqfTyURIOqv5n06n6nQ6maz5yrWXOdBWD31DpIB8ci3uwYmRr1B77bqTtLIEgHNIZ6TezwVhXke2ylV5XpPOBAon7byOoNDv9/P9lwGJZXtcVGB121egEXAg4LzO/TPeLnBAyv0+ed2FkdFoVNvW0B0CzAHag+CDENJutzUcDnXx4kVduHBBg8Eg78RAjsdqtdJ4PNZoNMrlJYx9mcUAsaX04+joqFZSQ78xB3yMWP13Zwl94WKCv8bcZ+cIdi1wVwhijPe7lwrQVoi8l0u4+6csM2D8GR+EC+8X+obSDc9b8HnjJTH8Drl3kQi3kLffRQjaUjqNgDsPECs8F8XLIFwcCQQCgYcB3Y819Jp/8D4dX7163k0JBAKBwGOAjREUIASsPuNOKLczhPhQl+7iQEm0yxR8VmedtDjp63a7taA9JxkQdIgKYXEIHsfHx7Xke0itt8fvlSwAv6fVapW3r6Tts9ksE3yCCj3s0J0Kkq6r6y9rzz1TQLo+8JHPbm1t5R0OgJMrciy8jawiE4ZIf5CHwDk8C8MdJi5qlLteQA69vZ45gHuAbQCdSDqpxlnSarWyi6TVamkwGGg4HKrX62lnZ0fj8VhHR0c6OjqqlVSMRqPcl046vW88y8DnGPDdJ9ypUPYBn2X1vBQTXFBgHrGVpZfcuHDkuQnuDvCyFQ+59JIDzxZwQk67/RyQ/dKBQSlJmc3g5+GzPm7+POIqov/9GfBMFc/noH2e9eEhnS7eeaZCCAqBQOBhQv9DDT3zv31Yx7/+ifNuSiAQCAQeE2yMoCDVA+p8pwUIKe4F3/kBkuzBjE7WnGxgkXeySbjdeDyubTEJaYKoOclxCzUEHRLN8dj2IVcQGCeOvsUeOQ0Qca/xph0uhEAYvR+4Z9pODbuvVJdOAm+Pr9RCwjwrAiGEnRZGo1EO0mQcvMwDF0CZAeGkz23nvkLs1/ZsCggy7aTsgv6GCCJmeI29l0F4+9glgT4lq2F/f18vvfRSrZyFPvD8AifOZfmIu1Pm83kt+LO01XNPtJH79zwRiHQp7vgOCDgRCHTk2XHCzL+dcHN9xtqfJ88x8B04XLxjPH3nDX+u/ZnjmfKMFI718XVnDG1HUOA58GeeZ9HdEeV9lQ4EvmfcvcOzU7obAoFAYFPR/2BDz/zzj+r4gx8+76YEAoFA4DHCRgkKEDvPRGBldzAYqNvt6uDgoLbK6KUCTsI8bE5SzcINysA2J1Gcw4PxIEJO4MgQgIBASlerVd7pwLfG89VmtsMjGBKhhFVXLwPwun/qxX0111f2CU90B4XbvEvCWNbLA28DIgllIJwTIcRFF/ICnOhB+D3szkUTRAHPdHBhpSTt8/k8uzgYE/qz3W7nHAx3dHh/kdHR7XbV6XSyM4Uxw6Fw7dq1mvuEa+B0cQHBnSCA/ve8hXIXjtIBw3zlmmRZeK5Gacen/IY5irhCeQfnpC9cdGLuInIgWPic9meAZ8XHyd0MPh9LYaoMkvTxc7cBc8TdQn5dvzb9VF7XxSfe98yFcqw4P20Od0IgEHgY0H6+oafeOVXrgy/p+Nc+eN7NCQQCgcBjho0RFCBEhPe5zRzyRpmArzqWK72+4khAnNe6ryPplELgMmAVejweX5eL4A4Bch+qqlK3262RGCcvEBjugZVjSAvX9tR6cgVwMuA08EwB+g3i5QKCr/YjnHiOACKAdFZTjwiAQ4CVZl/t53ytVisT8fF4nIUfd154tkVJHiH3iDKIKb7jBgS1JHeMbUmAXdihzcwl2uaiws7Ojvr9fp5zCAm4RiDf9D/wVX3P0oCgO4GmP+h3zzxwIu3zBrGAOedOjzJE058fn1P0j4tmpXvGr+elMZRoIJzwmpcpeNmCBzdyLT+3i1kcR1tcIHF3gnRWBuUuHRdl3I2CuOTuIg8/9fa6wFA+R6WzpAyNDAQCgU3B9ijpdf/kQFvXRjp+/wf00Gx0GwgEAoFHChsjKBwfH+sDH/iAut1uXoWXrrdcYxkfjUY1wgyZchJCyCME3kkDK9lczx0AkOhGo5GD/iRdRxRxIUA+u91uzV7P6rtvBQgZl862YZTOtgXkXOVODp4hwLUh05BDD6W7Ub29E2pfqeXenbT5irmXXHAvvirPPSL4uIDhoX9cy/uQ/nVi6Svi3AvEnbb5FpwEBnI96aRe3/M2XEBCJOA16UwkcpfFcDjMq+Dch+8kQhs5r9v/J5NJFkjoWyz8kGSEItrAeDIGLiS5JZ/rlmCMeRY8vNLLL7z9gPmFWwSBh3EqyxR8njOe68C8YVy9hMHzGrxsosxS8LIInl/mhmdrzGazmhDn7gV3pzCe3Iu7lDivz+FAIBDYFKSV9Ob/8del5VLHH/xwCAmBQCAQOFdsjKBQVZUmk0km8JBF7OuQOFwKWNR9BR4Swr9Z6YfslSvOhA6W9eo7OzvqdrsajUa1lXwvL1gXGOdBeFjjeQ8i6jXoZZZBuRuDdEYaWbV3MusBeB6m52QI0gRxbjabtRp6X3WuqkrtdludTkfL5TLnSqSUstCCOFHmQviKe6/Xq4UqliKEr5xLyrsZeCkL4+Akl9e5NwQKrlWupgPulz4YDoe6cOFCDmBEUHIhZXt7W/1+v5az4OGG7vaAoCJauQAlnYlF9BGOipRSLmeA7HsOQykO+Xgyz8tMCRfg+Cl38nAngo+h5yF42Q9zg35E2NnZ2cklL9wvbg+OdbGGdjKWnMfdGL4LiI9tGdzoLhFAX7jo4/3lc8K/I9xJ5KUc7mYIBAKBTcAnf9uHVc3mOn7hhfNuSiAQCAQCkjZIUJDOVrJ9BdPr9fkDv9lsqt/vZ2LrIXkQMg/Ym06ntSBFrNz9fj+vHHs4XFmWUNZeI0iklNTtdnV4eJjFC+rVOQcEzAk3RBsXAqQLsuzE1AUFX1ElfI/AQHdoQIIgwU7uIL+LxULj8TivmNM/3W43j4c7Elx4kM5Iu5NrCJlb1CXVjnNRxUmdB+aVq/bASbSTS7fLz+dzHR0d5fO4A0I6Eaj29vZ06dKlWplLt9vN7cFVwFx05wr9Np1OMznnGrSDueEEnmwG351ge3tb3W43ixaUYXgYKWM4Ho9rpNfzO3zl3ceOEgkPrKQchf5k/vg2n+QmuMDlpRjMJeb1fD7XdDrNz6rvmMC8dmLPfC4FDq7v4gmig4sxzB+ORSwqBQAv63A3iZdMeCiouxVKB0wgEAicB173A3Pt/Nt359+Px+NzbE0gEAgEAtdjowQFqb5i7mGG1LVjaydvwRP4HaxiEnKIdRtCBeFvtVp5Vd9D/CB3paAgna1cbm9vq9Pp1Fb7cQO4bdpXQt3a7quuXs7gTgS3Y3NfZbCcEyyIEXAxw1f+O52OZrNZbsdkMpF05hbgvORGjE//iHG7uY9HSdLW2eDpDxcFGANvM0TaRQh3eJTn9dV1iOByucwuFAI9t7e31ev11O/31e/3M9GF2HspBqv6HsLJdcpafNriK+ZOhgFCC+Sa8/LjoorPccpF1rku3LlC+yhXkFQb+7K8g/lelvIgKri44YIFc9PnKfMOAY3nTlJ2knh+A3Pdx7HsTy+BKV093Af3z/zhd66N4OCCCG0vj3NQmrGurCQQCATuJ/benXT5O3765JfVUlF4FQgEAoFNxsYJClJ96zdJmfSw2grJc9I5mUzUaJwl2ktnZIKV/F6vp2azmUmbrzBDRtkdwQnGYrHIhBviB8Hd2tpSt9vN4Y1ljbmTXdpEVgKr1i50eOkDq6tO8ssEfxdIIF2s5Lt4wTU7nY7a7XYm8rSBfpzNZjV3hnRCCEejkSSp3+/X8iMgeARBQsQ8fBHi7ISbEEkn1h44SfsRPbzUw8P/mC+cs7x+u91Wr9fLRNZzOLxExrMbynIOxqIUAyCoZA0gGBHU6VkFZBd4KYyPt7sBbvRMrHOteIigu22Yy6UowhxGrGMnFQ+M9BIOzlM6gbgvf058npdZIi50+dwstyp1V0spKOBCcTcBQoeLEDx3/O6CiJfsrFar2g4lfM7nQSAQuD9oHJ9kAVTro1ceW6SV1FhIWi1vemwgEAgEApuAjRUUcAdAhCEG5RaFrJQjQrBK7kSDz0KWnLTwOUjPaDRSSkmTySSv8kJQvWbdVy+dELuo4O95IB42ce6DVWDcErSN18sdCzxLwIURL6dYF77nDgwPJyxXfcutMF04mE6n+bqQdCfKfk3IGyTe69Vpp/ejiy7cA9kItJ33JdVKYZyIl3kYg8FAkvIODoxBWY5CmzwXw/MJXNRCiICUTqfTPL881wJsb2/nOUifcF4cFT5GTq69JMBX/XEdlCUiiGo+x5ib3i+MrZfSuFjCHGTOeOAmrgmcP54D4QGMpevHxaCSsCMUuEOG8Ua8oV9oq89v/7eXWHBeD2Z1QaLMYvDnPESFQOD+4MJ3v1Orr36bjp4975ZsFrofky5+5zvPuxmBQCAQCNwyNkZQcAIlndVYA2zcrKh6oj85CRwP4YFIOSksSwhYdXVr93K5zK4GX0Gn5p72UTfu5Q0uKLDS6wQNMcHJMaTM7xXxhHyDMnzOyREEO6WTkD/EFn5YaWa12d0OknImRL/fr40J5+XeaJfb6Z2QeSp+GYBH+7imW9MRfuhbHBVldoOvMCM2IAj4SjZjzCo8rhTaN5lMao4QiDUEnG0sfQ64O8FzDKSTnQWOjo6uEwUgwh4+uG7eu0A2nU7zvPLtLH2My4BEDy2lvylvcFeC73rAMTs7O3lnEc8v4Jr0gd9vGU7p89yJOu+7q8ZLR8oyIpwdLmrgSvCSi5Lol8LPukBGn1flc8O1SvEoQhkDgfuLS9/xTl0670YEAoFAIBC4K2yMoAAgIFK9VtvJpW9nB7nBqeBp/KyISmernNIZuSq3SYTce3iepEzC2HFiuVzmrQid2PoqMOfzYEe35GO/95VcrukEs8w/gLS6tdwJkK/AsiUl5JF+gCAizLDzwXA4vK4GH8LqoXj0N/fpxN6Jrf/uln8Xg7x0BMII0fRMgzK8z10onMvJpO8SUc6rw8PDfKyXb9Bmd8LwX368Xp+5dnBwoKOjo1qYqNft04eEL/qcZJcE7oetJlntp1zBtx51R0dp9/f2EbQoKc93hKFSoJjP5/l+mAOeR1GW7DAnEZtwB3lJgs955lmZs+F9xu4PLib4nPDsCi9N4dlAHOLfLoC4MFC6aNYJFaWYFQgEAoFAIBAIBK7HHQsKKaU3S/qH9tLrJX2jpD1JXy2JPY3+fFVVP3Qr5/QVYCcVxXXzH/vASWO5msr7nk2ARRuCx3XcpeDX8BVxd0GUddkcS1vK0Dpq2t36DbmcTqeZyJdBh94/ALLlFnlIHf3gtfGQS28fRKzdbqvb7arT6ajRaOQdBbiHnZ0dDYfDfA+UQHhQIufleuQU+DiVWQpeEkD/Qni9tIPP+io3/eLbevouDd7vXpqxXC51eHiYBQRyBDyA0O34OFFYxed12rparXR4eKiDg4NcmuN5BYwbn/NxoD2MK9di3FarVc6s8D6nH5y8OzH3+YfrwzMLxuOxxuNxzQWCWMIP5N7FLwQghAZKLtyd4BkW5XPo87l81vwe3GHgLoVSRCtdE6UTxMe9PFc5NqVoWWZBbDLux3dxIBAIBG4d8T0cCAQeZ9yxoFBV1XskvVWSUkpbkj4q6Z9K+ipJf6uqqm+928ZByJ3IuJ29DKlbR9Ik1VYtIa6EEkIkS+LbbDbz6rETnlKccLt1CdoGEYdwSsrZAC4AsBrMPfJ+maTvIouTQbf8OzmG/HJddw2klPJ1SkCOyUfgHiGTwEkyfdvtdtVqtfI98xkPI+QaXppBn65L80fA4Fpen8+13W3CmHFt+peQT+7v4OAgByVSw186LcbjcXalMP8IohyPxxqNRlmkYGx9db0MKWSuluUBpTNiNpvV+oq8BgQOSTlDxIUWrul9jWBxcHCQQ0adkK9Wq7yDh88h3Cr0I+IXzxBj4aVCXlrkK/3rnpV1pQn0iYscPsae8cCz5kGdntfB9cvSIS/P8D5gfnkJ1ibjQXwXBwKBQODGiO/hQCDwOONelTz8Vknvq6rqg3fzR3iZRQAgVr5qXhJyty9DDCA1W1tbefWdzAMnJ+X1pfrWgR7EJymTRa+RdwJSCg4ES7KDhK+Al8SF83rugNvYIc+QWRcUvJzAgyK9FIP3ytp0X/EuAyw5B+1y58HW1lZt9wyuj4gDqSP8z+voy4BExoK28pqH+3l2hIsFjCshk56H4RZ/J5guUrRardo9uSOFEgCIPNcjpLAsiWBOOpmHhM/n80zCfTzcEbFaney2MR6Pc3+TjTGdTnV0dJSFBg9IJNTTCT5toB8RPxaLRW2OeZ6AByv6WDCf3e3hpRg8K/P5XJJq+SG+4u/CjjsNSoeFl4zQNuYP7fXn1UUaF5u4xzKXwb8nXPQoMxYeMtyT7+JAIBAI3DHiezgQCDxWuFeCwu+X9H32+9emlP6QpJ+V9HVVVV292Qn4A95dBNJZQKHXZUvKxIIdACAxkDMnSE7KsGi71dkDBZ3guDDgK+l8DnhpRpnJwKoyJMpJKiuw7jxAKJBU203ByTVbFUIcWd3nWNrgdnT6hX7jvTKHoCwV8VV/2lgKCpRLSMqkm3Y6yXQRpwzOgwS6NZ2+o//JzfAshnJHCi834DO+GwQCjIsxHg7ooB2UDUDcnYz7NqK0y4Upd58gCBCY6Ft+lvOJuc/naP9kMslOCQ+WZOyBC2CM73w+19HRUXYnuDiz7r4Zn9IRA8mHtLsjyJ0FzC0fU+9Hz+LgHJy7LEvgv+sEOOBCh7tCyj729ribpZwDD6mgcNffxYFAIBC4K8T3cCAQeKxw14JCSqkp6XdL+obTl75d0l+RVJ3+99sk/ZE1n3u7pLf7a8fHx3r++ef1zDPPXJeV4H/8A/7tuzrY+WskZrVa5VVlVpC9Jh+yDOkrr+sk3VfNvZRAUk30cNs95ApyC3nx0gTOVYoETnidbEJWcSy4mOICh6/+eiBl2b/0GeIKpQ6lSONCRKvVUqfTyWUPtIttN333BHZcoA/cbULflbX1XNNLG0ohBrHIxSE+x+4fOzs7NeHCHQSes1CWlDBWpROB0oh+v5+FGM5bBmB6OYs7CzqdTnYeMAY+d93Wj8MDp46LLtyXzz0vO3A3gW/1WJbS4MTgeUHM8FIKJ/M+/2g/DiMvBaLcYN04+3Pirph1qzreJ9wT12WOe/mICwfutPDXXVQpv1/WiS2bjHvxXdxW94G0NRAIBB5FxPdwIBB4HHEvHAq/U9LPV1X1CUniv5KUUvoOST+47kNVVb1D0jtOj6sk5Xp0X2mELJ8el0k8q+Bu6fYVRohqWWvteQG+Ou9uBUl5ZRwbfaPRyOGFrBR7yQCuAc7j6fYQHScwnglB7oDDtx30zyF+cP/uOGBXABwB/hl+6KtOp5OFAW+n7yiBi4H+cdcHBJ6tNCHUTha9LIF2EITJsb6yDYlFPHDS7/X1vrLNvxEtvL8g0ePxOGcDuGCBcAKRdgLtq+k4ErzNLjo4mXXbPW0l1NDnIm0gz8HngW/tyL3jSnACD/lnbnvZCSIIbpLZbFYr3SmFJN9KlLFjTpCVIJ2JAX6P/sx5SYyXDvA5LzlyIaE8D+O3rjRonUvIr+digsOdFS4iuGDo53VnxEOCu/4uHqaLD83NBgKBwAYivocDgcBjh3shKHylzNqVUnqqqqqPn/765ZLedasn8hXBcoUdkgG5gWxCYDzIzld4PWMBGz6171jmAaTKRQ3pZLtI/ruzs5MJ8jo4USzDIUvXg2dCSMqk0y3hEHvuhxBJ7tVLEjyQzwm4Cw+cf7lcqtvt5l0O2F3AXQOIBZ4P4GPlW2+Sc+EhjKwgQ8Zd9IG0upvDyxAgvpBqHAZ83ssx/DPeHx5sSKaDiyYIP3wWgu4iBsKOr7ozDrzmZQAuRLiQhZCyWCxyBgL97WUcnn3gIobPFeYp44ZY5HZ/hAD6HMHERTfmZ7lLg+cL+LPkTgz6xUU9ni/fFtPHGWEFwu+E3Z8TCL7PDxcUXKRBjFlXsgL8/H4vjI+fhzH0+fgQCQr37Ls4EAgEAneE+B4OBAKPHe5KUEgpdSX9J5K+xl7+Gymlt+rE3vWB4r2bgpVaJyW+4rqzs6NOp1MrIWi1Wnkl2gmnCxQlGfUa8dN7yYS8DIWEsEGefYvDsg4bouUE1wmf19lX1UliPiTRXQpuQ6eGnxVnHBoIGxBSJ5wuUvgqrKQsSJSkE4ElpaR2u10TXkr7twfbHR8f510QxuNxFkNorws7EGCA+ODj4s4PPssuDJyb1WVWsieTSe5Xz8jgPslaYNxL8Wadfd7dJYgKvkqOA4N77Xa7eQxdTEIUonQAd4nPTZ87iAkuhNFHvjUogsd8Ps9iF8KIu2XWEWV/1ugvRDCuz/3i4CjdFV6WU17LxRp3NPC+OxxKsl8KV/7d4OfxEEw/tx/vn/P7Ae6EoV+YC8xJd09sKu7Hd3EgEAgEbh3xPRwIBB5X3JWgUFXVWNKl4rU/eBfny7Z4XAgeNIfFHvLDa5IycSeF3wUDyA2BelVV5S0jS1cEDgZPq5dUs/bzeenMgl+WD7jVGxcF5Jb2ImBAMJ3EScokk7Z5zgLOAV9dRmBxMQZBgnNLZ7Z2CGTZB51OR/1+P18DggpZp13uJHCXg68Wu+2e98lS8CwKSVm0cYLHfSO4cKxnB/A7ln76nbwA+oZ7gNh7zX65q4aD++Y+/J49H4MsB0m5H8q+d6EHgcN3oaiqs+0tIc2eY+DbpfrWlrzmRJ45yDXWlWyUIhjPoPcR5/f8iLJUhX+7KED/+POA6ONijbs7EI/82WMe8bmyFAEB4EauoXVw8cEFlnVj/zDgXn8XBwKBQOD2EN/DgUDgccW92uXhngGy48TV3/M6c6/T99VKJ8p8jv9C3FutVs5T8BVJqU723B7POSAgECzfchCBobTiS8qBhKwUl7X60+k0ZzQ4PIPBSz/IMfAVdQit2/LLFWLOye+QSfoMgo1F31fo+Sw5DrzGGLgbg35mVZ7zTKfTfG8eSkm7Ie7ep4xLq9XKpQJOBGmDOxLYUtKFFHeiAIgzORROWr3Wn3by+3g8vq7UwXMrGDPG5Pj4WJPJJJ8HUYttHH2cSheJO124Z88r8JIO2ufzxl0F9AElM8xTxt8zO8pnkz4tST1kn3lRlgzwO6IOz5w7ANztU5ZBuOjjO1h4G0qng5dLSMolGeXnXFArrxkIBAKBQCAQCARujI0TFCA76/IUpHoOAQGFTvKls5VGiJiTBMiwdGax53fIV9ke3oPIeIgh1/I2exYA5Bny6LZrRAFfiYb0YEOnTt+vB4GUVCOCHjYJAYU4EizYarVqQgYkkd0DnJCW91ha0Z0oI/Z4pgLHlf3tIkJJHL0kgXvzcgTO6RZ+J7OTySSLOb7a7o4Rv6Y7FrwUA7LNv90tw725A6DMWOBckHPGzbMQfEcDBAvP7pjNZrW5Jek68csdAcwfDwllbBzeb7TFnx/aUoolXM/7DrioU5JyF+M898NLcHyelcKAP2PurPDrrLsm5/fzlG6GspSH13AQlf0dCAQCgUAgEAgEzrAxgkL5B75bs33FtFytd/LoQX0eZujvUY9+oxC3Mr1fUo1MAi9dKGvkvQzDa7OdHHJ/ZTshT+5GgBD5yv06VwVlF+vIIW3Gmt/tdtXpdLIdnpVjavT9/vndxRcXR7zMxHes8HIJVtolZbdC6QTwPuLz697zLQydwCNkcDzuCCehTsz9/CXxRQDwsgiv93dhi88wt1qtVp6D7kApAw/JwWDV3+G1/evmoN+7BxN6f9D/9IlnM5TiEHPLBRqfn16aAMo285q3u3QVuNukJPP0n4szpQuFPney70JEKQYg0LljqHQmlKUO9BPzrHz2A4FAIBAIBAKBwAk2RlCQ6kTO7dlOdJzIubDAZ3EtQCogBe4G8FVUJ5G+So3lnH9DPp2gQBidfDj5ZbWednqaPM4ASer1eplc+jkgRN1uN7sBfJW7XBHn3iFavhrsgPT7yrl0shNBr9er7WAA2aS/ptNpbVUeguqZFk7QFouFZrNZHgNKWbxG3kmgiwPtdrvmfvBdPnzXCPrX76UM3nSXhWc3cC/MKd73+UU/QbIpqfGQT58n5ZzgWN/q1IUYd5iUzgV+fOcOrukr707W6cMyc4I2ej9wXd8BwwWr0kHiY1YKAqUwQ+kSr3lZh29/yXVoJ89n6Syaz+fXzWXvE9rA3Oa6/u/y3taJSZyDZyAQCAQCgUAgEAisx0YJCsCt5CXhg1i4w8BX+SFnEE+IQbvdVqfTqRGEciXcrf7z+VyTyeQ6u/+NbO2QTQi4Oys8mwDiDWmCJJdOAgd1+PP5vLbLgRM3MiG8dIHzeakA8PuRTsSEfr+v3d3dTNQ9EBIiTftwHJSlJt4/ZBqQtcAP5RqcC9cE5Rhey8/KuTs9cDq48OTzhLGh3GOdC4L/MubsyAEZLfvfsxNc8HEiXI6hCxGeYcBnSpHABQ1fgfdyCCe8viuI50O4O4DSGT7ruzj4uCHYeJ/6ffn4ugDkTpN1q/yEl7rTwudJOS9pX+kcoO2IjHzW54WPlWdNONwB42JMeYyPRSAQCAQCgUAgEFiPjRIUtra2tLe3VyPqvO7WcdL8Wblluz6IMKS+0+lk23ur1VK329VqtcpbIrbb7RrRms/nufYc8u6r/94m4Hb6MruAtnuIHP+G+LsoIJ05ENymLp1ZySH6XlbhIZKeK8HnfJUWOFHEvbG7u6tOpyPpzIkAUfc8g3JnA+7da+9ph28b6MIQY0GQo+/8QDt9pwFEJF/h910mnEhCyN3Z4g4Ggjm9NINr+Pg68fTcAxevXCQonRe+00JZ7lC6JsqsCs+b8F0YfI753KCdpWvA+8RFJn+mfJ6VTg/KMby0iD5gjJn/7iLyeemuEBddyvKeMg+lFCm8VKMUJcp7KkspSrHDr+kijz+LgUAgEAgEAoFA4JWxUYLC9va2XvWqV+UVbCzH7DYAmZ3NZnm1vEy/h4TiUOh0OnkrOs6LWwFLvdebLxYLTSYTTadTzWazmjBQruqzSsvnETW8nt+zDlwUcGEAosSKOueWzgge91xuwbezs6Nut1vblrDsCyeZXtZB+cZgMFC3282ryZPJpHYt7oP/8h7OCs7tYkOZ9+DiQbn1IeQe8cDvjf5BUCjr/7lnzsPOFy7KlOGUHE8ZyWw2WzunfMUeocC3VOS+yu0RJV23c4WvjHMcBNhLN/w42uwBln6/5biWeQ1+PheucLw4oea8zFMXpHzXEj8H5y0FAkk1ku7372NclqG40ALcHVKWdZTjz7EesurCWTke/nl3PPDZcp4FAoFAIBAIBAKBOjZKUEgpZUeBdGZn5g/72Wym0Wik6XSaCZxUt81zHicPnqXA6iorrJJqAgDXcFcBwYUeTgeRJ8SQnACEBSdqpaUacj2fz/NqOSQWsoNI4aUHOCjoI/qLlfZSNEDgYGUYwk22Q1WdbJV44cKFnJMwHo9z/9IHbF8I8fY8iWazed0qMve3zvbuv3vegTsRpJNARcaTVXI/HmcE5ByXBQ4LtnREOICU0r+MPyTWA/vKcE3mxWq1UqfTyWKJh/2Rj8B9MK/8x8synOw7OXei7W1mbjCOngNB37obogzK5JrMjVarlfuP8/j882fSHRbuIPEyBH9W/NktnQSeSbHOReD34c9vKSa4yOBtLsuBStHCxS9/ZgDXdpEkEAgEAoFAIBAIrMdGCQrSWUmA12cDJzaQK4hrWastnZUhOKH2Y5zwrFYrTadTTadTjcfj6+zvXisOMR8MBrlsojy/r6iyiu3WeE/gb7fbtRwI4CvOECWINqQSgublALgxINJlRoAn/ZO9QP6CZz3QH6yeT6fTWnBkKdR4SUFZyy6dlFZ0Op0szLjo4GOPOABxR3jx8hNfMV8sFrkf2u12zVFAP0hngoyXRCCcMBZcx//rZQecGwHAdwLwkgP614M4nTTTZ+6ucPfHOleJOzq4Jtf1uVo6AxzMXc9WKAWB0omDm2IdKfdrleKFl8C4W6fMTOC5oE0+h1zYKV0WgPssHSwuqHiJg3+HlA4I2s75QlAIBAKBQCAQCARujI0SFPyPeggjv/tKLySFlXPKIHzl2ZP1IWdO3iAXkDIyEyh3OD4+ziGB7nZotVoaDAZ61atepX6/L0k6PDzMjgMnNN6G6XQq6ax0otVq1co4PAzQA+UgW+sC/Dy8D6GDcMNut6tut5sFBUi5k1kEBt99gc/j0phOp5n0sQrvxL7Vamk+n6vZbOZVXc9/8P6mDAWLP+IHORNlpsPOzk52fqxWq3w9yCG7PdDv5X2ldLJTRLfbzQLRupKUckUbOJFtNBq1LR4pG6At9GFVVbWMC8+PKEUGzk17JNX6wbMe1uUdIIL4mDLHENh8td/LEFzwWiwWtet4OQfXTCllNwpChAsE7gJwpwX95c4L2lKe3+d1mZ/AZ9bdB8+yixvuZvHMC+8nv25ZusN7LmgGAoFAIBAIBAKBOjZKUHCyxQq2k0xINyvXkHSOdfu6W67dXg5pgiywXSOr0JPJJJNYVjaxwDebTfV6Pe3t7enChQvq9Xoaj8darVY3dDUgVszn83x/bF/puwlA0iTV2oftH3JWlk+4FR0xABJNnTz94ZkNXIdzQ765NgKLh1S6uOM7aDiRQwSg3xibra2tXCJSCgDlarOvwtO2TqeT+8/dK5SwcC7yG3jNMy68jeRylMJGmWPAZxBmxuNxbQtSL0nw472UwN0rCCNu+3dbv48z9+Z5FJB1D6l0B4NnM7j7hvOVQgdjt1gsaiVD6wQW2tNoNPIYu3jkY+k7XJRjXZZA8F9KeRjXMguhHI+yzMGdFO5OKAXFMoTRxa8yOyEcCoFAIBAIBAKBwI2xcYICNnrPGHBCwmozOzDwOkTZLdZuG4cMEcbIMR72VzoksNCz8s/Wint7e+r1etrZ2dF4PNb+/r5efvllVVVVq7HHWVBavWkvP066gZc0uI3eSwzKfATazE9JpLw9lB14vTilFNLJLg+9Xu+6mnMnj5BwJ2O0HdI8Ho+znZ3sBhwllHAg9PB5dnvw4zzzgnGDeDuZ9zZ6X9BmPw/3xvXYPQTCDrkFuA+qqsrzAoeGi1o+h5wcQ3wRPHxXA+8z7+/t7W11Op38WRwM7qzwz3H9Mjug3CaSTAjpzDWD6OB96GUETrb5vbyOzzmuVZbAeMkR//YtRbkO4+ECgId3uoNgXXkDcDHG2++CjgsYPtbhUAgEAoFAIBAIBG6MjRIUnJxA0LyOGQJCnbyXQbA6DQkpg+hK+7qkvPLudfKe4dBoNNTr9bJ4gMBAsCHlDJPJpFbz7W0vt8KTzurGse37PdM2J8tYtnd2drLw4IKCB8nN5/NaKCQ7VfgKtqQsBvjn6SMIPrkKvoMA9nwn6z42fNbLNzzgDnLHyjok38UU2sVYenClt5dxogzCV/5LFwZt9XwOn0/NZjO7TSCnni/ghNSFCV8ld/JbrnL7D/fmzg7vJz7DdfjxvnOhzO355F54GCXHuZuE8zCWnKMUUXzcPLzRRQrayr85RykGelaElztwLu9P5hHPS1lWwfW8Lxw8Ty7w8Kz590pZosE93Ci0MRAIBAKBQCAQCJxhowQFJ2qUCECUIJZuZx+NRrnMwImdhxOW9eW+2umWdMQBT82HVHe73VwfD5k5Pj7WeDzWtWvXdHR0lAkcZGrd6iYkh4wGD3GEsNKWcrXfSzkgoNyfCwqcZ2dnJ7eB1XS3pXsJCWQRcubbDnp/+mq/9x/9yj1C8p0ge9+7GITzo8wz8Bp9z87w4ERe5z48G8MFAxcrIK8+NvSJuzp8XPg3Dg6yNVw0cFJaZgOUgoJUzwtZl9vgog47Wnjpg7txEJxw7rAriDsL/BoIHy7mcP8ucpRzlzFnLrnjpjzWBQqeG+bWuj5AYOLfPlZ+vvLHd+rwc/q1SxGi7PN1JRX0CXMuEAgEAoFAIBAIXI/GzQ5IKX1nSun5lNK77LWLKaUfSSn96ul/L9h735BSem9K6T0ppd9xuw3y1dJ1K5fSGcHkeD7Dyu9sNqul5VPzTeCihwtSE46gABlrNpvqdDq5RMJT7lkJPjo60mQykaTaFo20AVHEV7NdxKD9kmqk3h0OiAT+Hv3Cbg4QX8QK397RCRXX4568XZQX0G4PqHSHACAfghyCktARROm7I+Cu6PV6GgwG6vf7OYuB/uZ+IHW+o4ELLWRauEvlRttnupvCAzu9RKG07iMg4OSg9KDf71+3DaW7BLDK+xhwL2Rc+D3yX29Pee8eusmc5L68DMS3OuVzLsIwBjhzvG2lSMCYrbtHd0m4I8WdReR1+PsuUJWuGObMeDzOc8ZFFe8LHzcvb/HnyJ0mnp3imSP+PHppEGJbWSpy3njQ38WBQCAQqCO+hwOBQOB63FRQkPRdkr64eO3PSfqxqqo+SdKPnf6ulNKnSPr9kt5y+pm/m1La0i3CVwbd8k2ZQUmwnABAFhASIBbT6VSj0ajmQHCxArs7x/J5QuKcpEKyFouFRqNRPi/kHmLuZROUR0AkPayOe5bOCKGkGomhjMNXnl1M8Jr0kiD7bgn0K5+DNOF+GI/HOjw81Gg00ng8rokJZZiel2Yg1CBE0NbRaKSjo6MasZZOhJp+v59DI2lPr9fLoY0uEPDjxJM+QIjw/peUXSvuyuBY73/uBRHGnRM+P3q9Xg667PV6ObzQXRC+Au7E2csKnKgiNGHDd4LMuNDnzElECd73vkE4YNWe1ygb8dwJzlcKTi7auaBQOoB8bvgc9rIID1N1wc+FvjKA1UWjUqThvNwDop2LE15S498PLub5eJT3TJtarVZNSNwgfJce0HdxIBAIBNbiuxTfw4FAIFDDTZffqqr6iZTSa4uXv0zSF53++7sl/bikrz99/furqppJ+rWU0nslfY6kd97CdTJxWGf3h7gT2Oirq5JqpAuyMJ/P85aO1Mp3Op1MXKUzguo2eUmZ7FGfD3lh1wPIEUTRV4J9RZlrlKn/kKiyHp3Vb1+xLsUEJ2nuPoAQ0U8IMV4X7/Z+T+yfTqe5zfyOzd7711fy3ZngLoey5APS6K6C0qWB8MFYrBMvcDhAwP2eeX86ndZcHPQP41mWcHAeL3VxlOPDsS60+Bj4qvmNVug9TJH57X3FnHYS7Dkg9KWXaNB+7tnJtT9jLgJwPifVTsi9DIQxXDePvHyAcfPPAtrF+dZlFXhpTVne4XkJpSPGyx78On6fLqL4PPN8B+YJz7T333njQX0XBx59LL/oN6lqpJsf+Jii+W/frdVodN7NCGwg4ns4EAgErsed+nmfrKrq45JUVdXHU0qvOn39aUk/Zcd95PS1myKlpH6/n4kqf+Q3m81MJCFaLjx4dsBqtartEHB0dJSt1/1+X81mU4PBQIPBoBZyJ6m2Wukrm5zfgwV9pZP2+aqvk0pWXd1+juUcklquipdp8058aCdOCYgpLguvh/f/Amz3vlLPdpmr1apGpDx1v6qqXMKBQOEr9PRJ6fRgxRdijSuB8EB3AtA3iBKsvjuR5ZyIIZBWVq+rqqptf8g4bm9v53Nzf+58oG/L0EMPzeScHE8bKB/wkhkfTxcbeB8bP+KKZ32U4+wCG33sc8VX/d3h424c5h/XKUs8XLxAWHIi7nkPZRvL4EIvZeDfTs6d6POscGwZ9On37wKii3XrHD9+Tj/GhaoyX4E5yrldrNpg3PPv4sCji8Vv+0wtBtv6+BckVbFOekM8ceXTdOF//QWtTremDgRugvgeDgQCjzXu9V/L65Y81sakp5TeLunt/N5oNHTlypVM4r2u21f4PafA6/f5jAcGsuMBNvJ+v6/hcJhr0CF4TsogUxBfSTVHhFvTS7IISYF0eZaAiwrsLMFn/TxcryRpEEgcCxBiX+WmpKG09fN5X2n27QdHo1F2KEAsJeXzl3kPLij4f0vSaGOtVqtVK12hDYxzq9XK1/SSERwTwFeSuTcfH8bW3QwQ0U6no+l0WiuJYIzdVu85BiVBxf3hAofb9SXlFW7vC5/DiB5lGYmvsLt45vOCH4i3ZxGUrgAn/vS1CybuZOBe/BlwV8Visait5NP20s3g4o+33YU7frwd3Lc7F/zZduLPPMcVg3ji/Ve6NPgpHRouqrhQVYodDyHu6Lu4re79bFPgAWH7qVfrhd/+uute3/9kadmOnUtuhhc+Uzpuf4YaC+nCd8dicuCOEd/DgUDgscCdCgqfSCk9darEPiXp+dPXPyLpWTvuGUkfW3eCqqreIekdkpRSqnARQCydlHvtd0op17y7c6AkbfP5PJNIauCduHug3Xg8zmFwXioAmR6Px7VdGSAzkKmSRPMeYgIr5zcKlINgs9INOfKgPIgU9859eT2+50xA2FerVS57YHXcQ+/cso4LoSRwuBXK1XuOZ+WbVXLKRFxcaTabtYwEiGqn09FgMFC73ZYkTSaT2oqxuzVob7fb1fb2dp4TjAm5F1tbW9lN4f3DOfi91+up1WrVhB6HC0gucgEvY/H3yctAOKIPvDTDHQRe7iPVd5fgd45n7Oh/Fx+8FMbvwcUGxAh33PBclaUDzCPuEXHOnQkl+fY5TbtcpPHyEK7v/6Zv6IN1hN7DNr3/mAu85s4Kru3ug7KP3IlSijwbjHv6XTxMFzf+hgM3R7U30EtvjaG8G1x9SyVV0uKPf75e9Xd/8rybE9hsxPdwIBB4rHGngsIPSPrDkr7l9L//3F7/3pTS35R0RdInSfrpWzkhRBSLPUTMd0yAIHuInv/R79b7qqrU7XY1GAy0u7urXq8n6YSwQm5ZuZ1MJpmAdrtddbvdXH7BTg6lACApOxuw/Zf2arfAr7OPQ8QgsxAvr+eHzLPqzvmk+g4XZEQ4kacevN1uZ+fB0dFRdm50Op1M9r0/y7A62kL/er8jgPAZJ7iMhZc6QEoRF9g5YWtrS9Pp9DqbOX3sghP3wzXd1dLtdmur3i4g4XrgM6xGe5+7C8NFIxdYAOPhIsdqtcplEl7G0Ol08j2Ox+N8TR8v5oSLC+UOJz42zEkPr3Thh7H08hdKY1xAYY55poSkHDDqc80FIS+bADwDtMcFFb8/dyz4/fszxP2586csUUJcYPxKpxDn9PKTco6Wc81LI/z9DcU9/y4OPNzYeuIJfeD3PiFpc/I/Hlok6eCNKy2+/vNv+SNP/413SpsvRAbuLeJ7OBAIPNa4qaCQUvo+nYTNXE4pfUTSN+nkS/MfpZT+qKQPSfoKSaqq6hdTSv9I0i9JOpb0X1ZVdct/kUMwITq+9eB8Ps8uAk94hzhRp+3n2t3d1ate9SpdvHgxr+azAu+ugNlspkajoeFwqMFgoEuXLqnVamXxYjKZZBLiggUr0E5u3V7tRBRAcnz1djKZ1EoqIDNubYc0OznyevNWq6V+vy9JOUvBiSZOi4ODg9wGSDDtmUwmuRQjpXRdcKUT1dO5ke/L7xGSy/uINByDaNRqtfLuDlzby1a8PGR7ezuLEO62wA1BP9NmP4b+45oIL41Go9b/9CsuGQ/RdJEDQcLJpjtDyp0BEG/KMhrmbFmCQP+5i8RLLnApuMjBLhae6VASasaE1fydnZ3a1qYcWzovEEQo5aDd3IP/NJvN6xwD9Bnigc8Z3CQuZJSigz9T5XPAf11o8TyP0unBGLtbAiGP/A+O2zRB4UF+FwcePqTtbX3wL3yOqkalxSDEhHuGJE1efev9+aFvepvSQnr2m8PV8CgivocDgUDgetzKLg9feYO3fusNjv9mSd98uw2BpEHUIDOs5DrJgSjgDihtydSo7+7uam9vL2/15zXUkrJIISmTPbYHbDQaeftEau5Z3fXSCkk1oaHcbYJ7A76Fo9eos5rsK7kOX+32c+MA6PV6GgwG162qIzwQgohIAQHlnjwLwu3wZdkJggxCRb/fz2NF1oGvBpNHQZvLLQ9xgvh9etgg7XUhAFGJMYGkr7Pi01bv/06nk0kp7hcXaugTiL6XOjC26+Yv4+nkmrlFf+CO8dyFUjhiftEeD+/0VXsn0mxPymdL14C7Mmgvc4c5iUDA+8w1+ozj3P1QOgyYR96GdYKM7+TgQYsuqLnA4m4ERBN3ybhYwtxxUQJ3RZkl4t8dZbAjfbcpeFDfxYGHE+//q5+tZSuEhPPGfHclVdKvfcvb1H4h6alvC2HhUUJ8DwcCgcD12KgIc8iC2+uxXftqqddOr8PW1pZ6vZ52d3fV7/dzuYNb3sk4gFRJqhEmD9njs9PpVAcHB1k0gNRK9QwH2iApkx8n2Rwvae19OQlyUlZVVbbTu30bkkrpwGQyySGLECe3irN9pq9o0yaIJWQbYgg5Y2x8lwIXE1xs4Jhut5sJHZZ5Vr2Hw6EajYYmk0keT4gl1+cePANiOp3WXBoQf7eqIz55+QNiEeUoLvp4JgH9BQlnVd5LDNwd42UWjAn36tkG9L+k7L7xnSiAC0gORIlScCL7g60zmU+csxQn6Kft7e1c+uJZGC5KuegAuWcsPGzUy0/KfIcyy4Bxc5eBP9M4HTwnxd0FjJHnLJTfHf6c+TPkbhIXjnjNHRebJCgEAmuRkt7/LZ+n1U7M1Y1BkpatSqOnK73vWz9PF34x6eJ3/dTNPxffN4FAIBB4CLExggJBiJAxT56HtDgphwSX9efSiTCwt7enCxcuqN/v55Xt5XKZV42n06kODw81m80yaXJC7w4ErrNYLHL9u4fGlaSPc7GSTqCjryiXJRoAwukr1ZA1yDH9RDsg5v1+P5c2AFZyF4tFPq9vHenX7fV6ucSAlXsPJOReKVPg/JPJZO2YuojQarVyRgaErtVqZbcApN1Xovk8bfDSF+aMjz39yfaQCBIIDAgpuDMQQSDhzDEnme4kcTgJLcePPiYzwjNBvKSC+3ahy0tn/L58FZ955EIRIoO7KpiHzBPf5tJ3m+A4F4i830qxw8Mh3bHg4kwpkJXOB97359fP4/PBxQEn/u5e8BIQ/y+f83Ik/o0wyDGMn3+mfLYDgU3Dr33z52nVDCK6kUhStSW9/GmVXv62z33FQ7cnSa/7yz8vrSpVi/krHhsIBAKBwCZhYwSFL/zCL1S73c7b0zlR9MwACEYZvAYBQEzw7SGpu8eNcHx8rMPDwywoOHHk2hBqSXn1tqqqXDYAySqzA5wwe6hd2U5WX0sLva8ke309pLRcZYa4co9OvqlPh2izOu8OAwgVAgOr99TWO1nD0dDv93NeA7tpMC6+C4EHCjabTfV6vfw5Ser1eur1eppOpzXXiTswGHfGhD71bAHPCkCAQXzw4EIEDOlEjJjNZrU+85Vv+hbiXrpVSjHIHQ1kQ7h45Q4TXqc9LiBwH16CAsmmfMR3i2B+IYQgpJTzCTBGkrLA4GKG50eU7onj4+O8IwplBswZF4O8Lz0fwst1yvIm+pR55q4T/u2CHM+pl3h4GYW7FbxEiH7jv2UI6bp5eCPBLBA4b2zt7a7fmC6wWbiFMTruVvrVb/kMdT/W0LPf+W5Vk6lWtjgQCAQeTWxdurj29dXRSJX9PRcIbDI2RlCgxMCJgosBbvH30EOpbqP2PAHIPfX3rEhCYiaTSV7FZqXWa8wJ/JNUI+al5RzS6cF2pd3esw1YBeZ3rg/JarVatfchULQRy7xb633V1bclZHW73W7nVV8nXhBnbOweZOir9ThIqKfvdDqZjOHcKFdznaR1u10Nh0P1er1M1IbDYW0F2q/JPWDHd8JZllt4qYnb7T1zwDMcvC9xAHhNPcINxB9CyXzz7AMXAviMZ0a4swZhg2txLBkVnMvnEb+XDg8n7/Q1AkPphvAgSEg67g7fGYJzurBSli14rgXPJm2lf8G6HAp+XIRyIGrwHoKbZyp4XgPHlC4jSiY8HJSx82vhEGH+MT43cqAEApuED/yJt2jZjtyERwnjKyu95y+8SRfelfTkj31Uqxde0mo0Ou9mBQKBe4zt556Vtrb07j/x6rXvX/mJSsN/9/H8+/EHPxxlUYGNxcYIChBgQOCidEacITS+KuuEDqLU7/cz2YEwUcvOrg6j0UhXr17VwcFBJrwQHY6FULAiW65alzs8eMiipBrp9dR9r//2cgis+OQY+Oq0pBpZhVj3er3sujg6OtLBwYHG43Emt+XKN+TKiSgkimwCavBpF/3KT6/Xy/fgAgb37CGPvEbZAw4FyPbh4aFGo9F1JSysSNOHkP2yhIAtJctV6MViUXM5sG0jbWMcj4+Ps3PDQydpL+TZV7W9L718wQUwhAnmKcSWucPqubtcypX1MsfByb7vAuE2fnbGgHwzfp5F4I4dUD5LXk7BPPEVfRwn/r6Xc/g2qF7GwzPGGHlpCY4i3l+XR1LCBQaOYU6XZRa4Z3w3ERfWPC+D64eoENhUbL3xdZGb8Ajj6qdWuvqpV/TUv3lKgx/+Ja0OD8+7SYFA4B5h61PepPd81SVV2zf+Dv/YFyZ97Auv5N8/6XuGSvPrS6Ud6UMf13L/2j1rZyBwq9goQcFXGylrwKkgnRCQo6Oj/No6uzpkqbRW+6o2NfNHR0eazWbqdruZEEEk3VHgK8e85zXk3n5f1eVcEGZWpcuSh1L0gNw6IZPOiDkCC4GTW1tbms1mmkwmOjz9owPCRNsgm74SDzEk78FzB3Br4BhB7PCxmE6nGo1GWXBx0Yexw7nR7Xbz1oPSCVmbTCa1nTS4V3dlEOoonZQpIAjxGbfqI6wQgplSym4KnADrSkwIWPSVbtpKuzyok3Z5DoWLA5B3SKrX5TMe9BGkFpS1+5BxzyfwY/3aLj4hHiAcuMjFHOa9Mj/A8yqY9y5c4JJBlOGe/f5dIPQ8CdwVvlVjWZrggh3XpA88XNQDFukDD5IsAxzplzL0lP/yGeYn/RAIbCI+8mVPxfaQjwE+/gVJVfoUDX/oXeFUCAQeAaTPfIve+xXDVxQT1uFX/0D/pse86mf21P/wTNs/88taTad32sRA4LaxMYKCdGapBm6X9pVISNN8Pr9ur3uv1YYgtFqtvArN+7PZLOch+Lm73a6azWYm9AgHEGxW4J30enmBdJZQT+YClnYIF0TFk/G9zt3JOAQIco+YQB4BRPno6Ejj8Vjz+bwW2kh/0RZEBLefr1YrHR4e6uDgIK/Ic29laB1jVFVVDkj0kETfOpNx6Pf7unTpUt6FwksL6Dd3pLijA0KNMwFRyR0jkH8nmaw0dzod9Xq9vELNtSC+s9msVgoAeSa8EfLrLgVfdYdUQ4Z9W1Ofky40+TxGPPPXIMLuvHAxwt0PjJ90tsuBu2Y4DiEFpwAikxNqd8UwLp6P4OUM9Dfn9LFzMQzhz8/DcWVJBSKclyV5+Ypfn3Hw+3Yxyp8Xd294H7l44eB6ZUlLILApSJ/9aVoMzrsVgQeFX//8pGrr0zT8p/8uaqoDgYcY1ed/uj7wJV0tW/fHXfb8Z0vPf3ZLr37qrRr805+PgNfAA8NGCAqE00HwvFbdyQV2dEjfeDy+ztrNKquXLrBC7sSCLfukM0LCKqp0fXid1317zgDkzrMYIEWefeB2drfWe8CeE3gnpn5vrMYPBoOcR+D5Du12O7sAIHTb29s1AYPdDiBNBFSy4u+18ZA+t+FzvaOjo+y+QERxkQfSPRwOdeHCBQ0Gg+tEkmazmccCocJLQbgft6/THu6D973PGHsItLtC6PvValXbGhOijUgBIffyBN+hgrZ5kJ9vs+nCiIcYegkH2496LoHPCemsvMJr+xEyms3mdeUY9L2Hd3pJjQsGkmplPGWZg2dPlGIAz4D37XQ6rfUpxN7bgxuG+e+lKTx77qjAGeRt8NwMd3j4s8/5PG/FxR+uy3dMmVmyrsQiENgEvPCb+prvhtj1OOETnysdt36TthaV0koafP8tbEMZCAQ2Bqvf/Bn68G/r6Lh3/7+7f/1t0nH7M9U4rjT83viuCNx/bISgQGnA0dFRTsR3+Io+K8m+2ukrmG6bhghBPCEO7BbAe91uV91uNxNxX3XnnCXRh/BA6DkfIYJe4tDv92skkW373I5Nzb+TXqm+DSHChpdeeM4C7ort7e28cwKEbnpqfaI93W5Xy+VS165d0/7+fhYTylA9zzJAQMElcHBwkB0YHurIeZrNpobDYd51YzAY5GOcwE6nU00mE02n05pY4AGUHOuEmn7BfTAej7PrBMLv2QWeswCZhxy7EOWizHQ6rV3PyzjcIg987iHYIKD4ajtCghPwTqeTnTReNsJncFXwOsKPi1yQ9JIw05fMzdlsls/BPXjpgz9TzDPPPijzH7gf7oXzcBx95e4V+svdBB4syTxfF+aIeOG5FOvgoZ0u8LlrguP4rzuWvMQkEAgEzhMvvfV0VbOSZrtvy6/3P7pU+wd/+rrj9//g23Tcvfl5n/w/n9fyV95Xe+3Fr3nbDY6WnvxXL2n5S79ya40OBAJZTFgMH5wQ/OJnVCffFcO3KVVS8zDEhcD9w0YICu4coHbbCQQEnGPdQs5rEAR3JXioHWUMpUW/1+tpOBxqd3dXW1tbOYdgNpup1+vVVq2rqtJ4PM5txEYOgYXQOynC8t9qtTSbzXIGxDqreavVqgkeEPNut5uJPoSotHGzUg9p8xA/z0zodDo59d/zC6SzlWpIsGdBMBaeJUB7JGUij4OC7IO9vT1dvnxZe3t72YWCuHFwcKDRaJSDGbnnbrebyyMk1bZB5Lou9JD9wK4dOBIgmj5PmBtlTgfX8uwIBChJeecN7xs+CwH1vA7EAw+s9GwE3By4JZg/HvJY5gG4uONuGhcwGC/f/YNr03/lin2Zq8EzI9UDEelXd80gstAvLiYwfwjzlFQTyrhP70Pf9rLX6+XP0SZ3HZT95OJGKfRwrH+HeG6Lv86xni8RCAQCG4Mk7X/ymWX68LVbar/58687bPzq6pbqtCeXn9T29Mnaa6OnVzfc7nLyxGVt/87LkqSn3/EfIzAyELgJxk+1HqiYkJGka28+/XtvkTR66vrviVvBxXcv1PoXP3MvWxZ4xLARggIgjV/S2j/yISkQGIBN38PfpLOdIiA94/FYo9EoZwns7u7q8uXLGgwGuYQCG/9qtcor3F6/DZl0Eu4hdZDIMpQPAkPb16XTc34s8KzyE7zox3oIJHbwMvPACa+XTEjKrgBWgj3Uzsmi27+dgHkpB2LC8fFxbScIfvb29tTr9dRqtXKbRqNRFhem02le3cZZ0O12c3mFE13PGkDgQUjwoExfoXfyTDbC8fHJtqFeXrNarfJuH8yX8vqeCwAB5r4RcGazWXaeMG8g4R426KUfXlbDvGIc3TXiDgieE98yk2eBUo9S+HI4Kfe54qUE/O67V7hoR6Bnmbng+QrssOFChJfgMDbMh+VymUUp+sGFKsaavvSAVh8vz4qgb/y5cWHFHQveB2VuQyBw3ph82efo4HXn3YrAJmHZrjR65s5rsmeXV7qdZIbZpbPjP/BffZrSSnr2r/zkHV8/EHiUsfrNn6EXPiNJOt9deVY7d/49MX1iW88sPks7//Jn73GrAo8KNkZQaDQa6na72ZbNbgW+IguJLwk55JadBEjt9xT55XKp0Wika9eu6fDwUFtbWxoOhxoOh3n3AMippHwOCBSkHpt1mQPgNnW3q7utntpx7gPC7nXkAGcCW2B64j0BixA9VoI5v5djlKuykvLKOMSX7f+8NGJduQHkHHIHKaa8gzDDvb099ft97e7uZmdCGYDnQYy+YuxZE6x4IxIAzsGYjUaj61bGETY8+R+hAXLt7YeYMgZsLUrJg3+WtuFCSSnV3CEeyujBgfzOmGDp9/tdLBbZqbIut8ADSXHv+I4Jnh/gogVlOmVegXSWWcBxLkq5GOXk38UaH6PSOeBzzzMhGFt3oVCG4eVLfNbLL3CmMA/pW9+G0jMW3AFByY2PtQttLvr5uAUCm4JFr6HVfQr0CgRuF/O9lVRJH/grb9Nr/5t3nndzAoGNw3F3S8v2w/2dvWxV+vBv29HrRm9V+je/cN7NCWwgNkJQ4I97iBQlCdJZOYN0tqsDpNYFBbeBO/mEDM1mM7300kva39/XYrHIq+cQEkg21/QdGIbDoXq9Xn6/DHiTVCNj1MX76rfvKCCptrJa7vKA0ODbHXqoHyTX68GpYfddKbiO2/pXq1V2JnAtPu+Bhvx4TTnEvCxRoSSEHId+v6+9vT3t7e3pwoULedXfQ/toE+2izxuNhiaTiba2tnI9vq/Gl8GN3DOkHncDrg237HvpgBN132aSdiAm0KYSuCwk1cpI2D2EshPmgO8agGiGIMX90A7PPqCN5VxCePFAxpIYlxkYuCh81d6dMeWuBhxHn5Vhil7q4PPCBRMPWvTyChfkvC08D/SnP4deJgT8nMyP8hoAEYO2upPC7zd2dwgEAoHbQJKOe5U+8Fffptf+hRAVAoEaHpHSydVOpfd/eVufNPoUrX7hl867OYENw0YICr6CTD6BA7KMtR0y4LZkyAtCgwewVVWl0WiUbfaspA+HQ7VardoOA9JJtsByudTFixczQd7e3s6hf9iqabukHLAHSfayB4QEr6eXzhLsIUug0+lkMYHyCg+j5Dy4KFhhp/ac/pBUI6ouMnCc7x4Awdva2sqhj6Xln+PImoDI+m4a/X4/uz8uX76sXq+XPzOZTLRYLHLJBeTN++/o6Oi6kg3mBX3pGQiEOLKNJiGblHIQ/Ad593tqtVq5Pz2UEweA2/4hrPxQ6kCQ4ng81uHhYXaxQG5xejB+Lmp4WCdzcLFYXEecPRSU9vruHj6HOCfjwi4qPAuTyaTmrvFARUk1Ak9+hu+0wjNW5jH48+x5DsBdDpRDuBOI7wDmnjuEvB/KUqGUUk3EK/NF6DcX0crnzktR3FUSJQ+BTcLsP/1sPf9Z592KQGANknTcrfShb/p8PffNP62qKLELBB5LfN5v1Id++9bNj3tIUG1J1SMikATuLW4qKKSUvlPSl0p6vqqqTz197b+T9LskzSW9T9JXVVW1n1J6raRflvSe04//VFVVf+xm1/AAOwgnr7PiD8mDQELwfGXztG3Z8r67u5vLGQgAJECx1+tl8sx5KYsYjUZ5hR7SQ6Ai7gDpTOhgpZiVd0oSIH8QP0SBXq9XqxP39nv4nZM2tjLEVs/KPv0DGRoMBup2u/m9yWRSW5Eta8Pdfl7a1SH+iA60aT6f576EsNIe2t/v93X58uUsxhwfH+dAzOl0mh0AXuLgZSGQy+Pj41zuQlu9/3FHuDOBPAuv5/f2ez/jFqDEgDGFyLqYwHvcN3ODzyGYQGR9pZ3xdUcL48CuHL6DiLfXt3gs793vxbMEPL+DTIudnZ2cGwFxx71TihPleZ2g+1z1shTPI/AgRsaY9iP0lbtkcD0vV/IynbK0iH7wMg0Pp+Rz7jjo9Xo19wfwkhvaWLqdzhsP4rs4sNmoUrphUF4gcO5IJyUQH/kzn6Nn/4df0Mrcpo8K4ns4cNuI7+zAY4BbKRD+LklfXLz2I5I+taqq3yjpVyR9g733vqqq3nr6c0tfnBBwRAPA9oSj0SiTfggipAKCww8hdpAodlc4ODjQwcFBbQu9fr+ft3l0SzfhfBcvXlS/39discg7EZQWfcgPK+isNLuQQLsRMnxLQ89PgESyEo4bgmuUtfeQMfqGe4ZYu32crAWIOtekdt3bjWOA8YAwspMCok863ZGh1+tlsseYdLtd7e7uZrGBc0+nU127dk3Xrl3TeDzO9+SCBECk8fIRd1+4OEJeAmSW9jhJ9H7Fgs88GAwGmcxKZ24Cz56AlCJeIN4QxDgej2u197SVvl+3SwHvlwGSzHPmpbsBmPPMC7ZdxYmBIwFSj+PFxQbmIG0vtzJ1VwfwsSlzL3gWGo2G+v1+dousy13w8hOef94rSw3c7YOrpcwJ4b+MWRlYyXcCfeJlGO7G8BKIci5uCL5L9/m7OBAIBO4WkydX+tjb36qtvd3zbsr9wHcpvocDgUCghps6FKqq+olTldVf+5f2609J+s/uphGr1SqHAWK7hkBApjxIzu3RkDt/r9VqaXd3V71eT1VV6ejoKOcyUO4wGAw0GAwknWxfCHklFG84HOadBiDBR0dHeUWca2GRdnu629o9LNCdA3zmRuTF+8RXujk3JBTCubOzo+FwqL29vVyeUYYpck3I22QyySSY4yDVi8UiB1SWlvfRaKTZbJbJMLs9VFWVCbpvgehlAtPpVPv7+7p69aqOjo7yvUKE6SsPtHTrPeejzRBfzsN2lZ1OR9PpVEdHRzWS723hnj3EUzqr93dHA9jZ2antWOEOArfK0y+UTHAuSCvgfcanfJ1MBvoAwuvzDgs/5Tz0B+9B7N3yz3zyEiMXnzxbA7gowHt8nn5qNpsaDAY5D8UzJBgv5gvPEM+751jQXq6PaMZnynFjjntf+niQqUGf0seUxbhTpsxY2BQ8iO/iwGai0espveaKphe2dN5J4YHAreDouZVe+l2for1/8GhlKsT3cOBW0eh2NXp1++YHBgKPAO5FhsIfkfQP7ffXpZT+naQDSX+hqqp/dbMT4FDw1HUs8vP5vEYoITCsyO/t7Wk4HGayQJghr/lKf6PRyCv4kEJW5rHf+0omYY0QaOmEMFHj7k4Bt3VDxriul0+UBBW3gJMfyhiw+/tqMf3AfyGVCCvNZrPmNgC+0s59UXfupSMeaOeA4LFKLCkHW/KZZrOpy5cv6/Lly9rb28uBe6yAQ/ApK5lOp7n/cJKwagwxdMLcbrdzVoTvaOC7NvhuH+4qwUlAO3xLUfqE+0TkcULsbaFUACHBbf+QbogqgoP3IePOa7g9aIfnB7BzgZcv8LzgtpHOygpwZyDIuAPGy26ks9wPnhks/rgHfB7Qz57t4HOM+/LzOEl39wefLXeTYEzdvcC4ujjmokl5HPkJzHfGi5wLsiJcoOTZ81Ij+mmTSh5uAXf9XRzYPDS6XR39jk/Vx37z+W87FgjcDmYXkraffUbHH/7IeTflQSK+hwOSpPTc0/rob9mcRYlA4H7irgSFlNL/S9KxpO85fenjkl5TVdVLKaXPlPTPUkpvqarqYM1n3y7p7ZLyaq+k2uqrh+VBSCBTW1tbOfwPorlarWplBZJqVmzKDNi1odlsajKZ1NL8ESOazWYmwtTFQ2Lcst3pdCSdba3Ia7THw+AAZBVyxkqsEz8nctjrPffBjy1Xotmxwp0HZZK95yDQjpI8I2ZQC4+gsFgs1Ol0sgsBcaff7+uJJ57Qq1/9ag2HQ0nKwYQIQTgffEcNzxtgFdsdE269h+w5ufYsBQQm8g4Qqiib8BIPnCGQf99tpLT0Ozn1FfBSUPAgR+avh2gyf7humQvhY+VzF2GAYEWu46SYuUcuCEITGRYuEiE6IaJ5OYZnFQCeP/oENw/jVYo/Tvh9FwgXKsrtKL1kwvuQvAfOzedwmng+hbsUGEtEltLZwnXpF/+8uzgeBtyr7+K2ug+qyYFbRONVl0/FhEDg4cLh61Y6/Mwr6jwmgkJ8DwcedQx+raGtF68pIlcDJe5YUEgp/WGdBNP81uqUDVVVNZM0O/33z6WU3ifpTZJ+tvx8VVXvkPQOSer3+5VvK+c/OAYIriN9n0yCfr+frdeQYLd4k5zvQXH9fl+9Xi9vTejuBFbCV6uVxuNxzkpwEuMkjFVPCDKuBRwNkrJ44OS9DDnkfq1/1Wq1NBgMdOHCBQ0Gg0wmnZBBvD2NH7IHIfTafOmsnIR2+Y4OCCtsMQjRZEW53KLRidlwONSrX/1qXb58WZ1Op5b/4NtS0qZWq5UJugsXknJ/shrtDgkXd3BZ4NCg1OXll1+ukUffupN7wX7PeCPKnM7P3BbmoQeC0o++QwikmcwIL4nwcfeSBF/hR7DgWpKyaMJzwK4kLpBJysQa0s916F93SUDyuTeEo1JUcteFlxL4Thseqsh48V+eF86BewYxhvm1WCzys8az6eOB64ScCJ6ZsswER5JnQfj89/IMz9agXyRl8YhcilIM3ETcy+/iYboYS+AbhEa3qxe+6GmFMyHwsGL/Ddvqv/F1Wr731867KfcV8T0ccGwNh3r+Cy7rUfruHvxaQ0//8w8/bo6jwC3ijgSFlNIXS/p6Sb+lqqqxvf6EpJerqlqmlF4v6ZMkvf8WzldbQZfOVlxxHEjKq67kIPT7fbVaLY3HYy0Wi0wCWI10Iu1Bc74Ci/VeUg6z860CIT3UqGP3Z6XUt23kOpRQ+Aou5MWt7R5C5yvkZCKwBeNgMMiChPeRW+ux4Xtw3WKxuG6nAhdaWMFutVo1ooWogsDhn5eUMyggvsvlUu12W5cuXdJrXvMaXb58uVab7yRSUiaIWMwRVDzYEcLnOxcQ3Mk5nPTSX7gcEB68T+kTyHC3282lMbgnIMLMNVarEWEQn/y+nJS6e8EzERBmfLtCSG7pRkEYYh5yv7gNcO3gjvGQzNlslucsggPiEcTeywI83JP5iiDBvTAuzAGcE2VGBH3gz7U7E/w6zDuOJ7thMBjk/AsEvt3d3exacGdNKZIgJnAPXg6C22hdyRFz3J0knsmyybjX38WBzULqtPXSp2/2HAwEXgmjZ1aaP3NBW4+woBDfw4ESadDX1bc8Wt/dww8d6/iDHz7vZgQ2FLeybeT3SfoiSZdTSh+R9E06SbBtSfqRU0LAVjhfKOkvp5SOJS0l/bGqql6+2TUgk74CSvYABAOBAKJEaYKkTB5JlqcUwIkdq+CIFNvb2zmsEeLNirl0ljxv/VArYYDMQlQhIpRkjEajTLq8fMOdCF5zz+qrdLZrwWAwyNsu+u4XvvqMwELpAW4JD3SE9LPC7qUQCBKQSch+r9fLK/DcKyQcosdKNaUGV65c0ZNPPllzJzjp9l0JWBF3kkff+Go/7ZvP5zkUk4yL+XyeyR9lLFtbWxqPx3m3Dgi4W/wpDdjb29Pu7kkKtTtUfNtB2kCpBKICQoXvIiApE3vf0QD3gbs5cCe464Z5TV/4ThOICYg3jPdoNNLh4WFN2EBw4xgcE35enjXgwoaXcpSlNNwrAlYpKCAceAaF5zggYniwI/dIGQ1zYHv7ZPvRCxcuZGcGghkiCc8RgaHeRvqCY+h3RCvcINw/YH66iLYJeBDfxYFAIHCv8bEvaOu1H329lr/68HPp+B4OPI4Yvreh/jvfr835iyiwabiVXR6+cs3Lf/8Gx/4TSf/kdhvRaJzsgEAQI0SVcD2IkYcTshoNEWJ1F5vyZDKprbJKZ2UEiAZsgeg5A9jgIUq+571b3AHkHUEBFwOkswxc9B9fDfbwN1wU3COkm1Xtra0t9Xo9tdvtWjr+aDTS/v5+rSygDLRDGGEFXDpL+t/e3tbu7m7OkIDAuyDT6/WUUsrEGnJ55coVvf71r8/bbLLiT4AmpQnz+TyLR769JiUvkrIwQv9R7kLfEATJjhxbW1t5Bw0EqclkkgUbX52GpO7t7Wlvb0/9fr/WBq+r9+0pEYmOjo5q48Z8dAINoedevOSFvAnmprs+ut2uut1uTVCRzgQCiDPzgoBL5hbknwwRL49hDBGhKJnw8S93NEgp5XlGPyCy+Q4cTtJxMzg83JA5iNBC6QLziLGfzWa5pKnbPaknHY/HGo/HmkwmuS08k7hPpLPdKnBoMDY8d14y5ZktDnd0bAoexHdxIBAI3GvMLq+06nfOuxn3BPE9HHjc0P9QQ099/7u1fCm0sMCNcS92ebhrlPZkLM388U+QH2TNST/EnZBGSIkn5/NZr1Gnbht3AuekbKLdbtf2u4cUY7vnMxAZT8aHvJZb5PkqLWg2mzVLOO+5FR3i5nZ3joVIEh4JGcO67+F6kDh+h9Cxat/tdvXEE0/kUEP6zZ0I0gmx29/f12g00oULF3ThwgU99dRTunTpkiTlMhIXFg4PD3V4eJgFBelMjHEiiFgBCec++B2S6DsWeHgeOQmec+BjhJhw4cIFDYfDTOwZJ6/v9/IQykgYM+YRZQwITbhqWFH3bVBZFS+FLuYbDgtIbBnA6KUdknT16tV8ze3t7RxI6S4bCD/ihWcneEAi1/J8gU6nk8Wb5XKZS4+ksxV92utZEYSkcoyXPnhfMf6ILMwJ+gyRZXv7ZBvUw8PDvA1oWcri85jPMVfcZbBuVw8X+OiPTRISAo8nUqul9/3pN+tRqsENBAKBRx2NwUDv/ePP6VH47u58oqEr7/j3Wp4uXgUCN8JGCQqQCRcTfK97iF6n01Gn08nknVVbCBlWZcgRBJ/yiaqqsouAVVVCDclg8O0JOQfuCa9FL8PtWDWXlN0Q7oBwgu/WegieW8dxE+DMgCA2m81cCgAhGo/HOjg40Hg8zvZ9zyPgfBAwD3XEUj8cDjUcDrW7u6vZbKbRaKTxeJzt4pAz7P/z+VzdblfPPPOMnnzyybwNJ9dkPH2LSoSA5XKp/f19HRwcaLVa5VV3z6LA2i/VhRfEHcpAPOsCAYHSFMosKAvp9XoaDAZ5G0kn3YwFRN/DJLk222EiYrhowxzAnVCWWjDGZckBbfMMCS8dcKcJjp2jo6Oa48O3OmVsPauBcWOsmYueN+BlPbhRer1eLrXgWfWSDxwAZZ9THuLt8Pnnz7pvgYpjiPthTlCe5KU/CEX+XODyQPBBDCE3g3HxfBPEAy8FYvzL0MlA4EGhms30xv/x1/TuP/va825KIBAIBG4RKSUddx9+MUGVlFbSKsSEwC1gI/5ahviXqfKsknuSvpNpSCokAALo7gRqwT0IcLlcZvu6dFb37Zbo8XicnRKs5CNMsPIJIWQrym63m2u8ESn8OEi2E2BIp6RcJw9R83IIyD/nhShKyrXl4/G4VhoAsed8nmNQhiRyD5QCvPjii3mF3gnqaDTStWvXNBqN1Ol0dOnSJV25ckVPPfVUDsZjHOh7LxWhvGA8HuvatWtaLBY5K4KtOhkTygkQfugrxhgCSJ8gMkGSpbOtCH13D3dIIEqVuRi+ug7pZA51Op1aICUkmJIDVtSPjo5y27HhuxOH+3Qxw3coQMSAjHsQIy4Q5i7nRuTyTI9SYGPeQPw9TwCSz64SnU4n9yXuAs7LnEBs4L8+1u7GQMgbj8c1kQa3EdfGZYBrgdKk2WyWRTR/bpjDlLPwnNMWxpkxp7yj3+/n7w3fupP+8jKkQOCBorGlRqetd//Xrz3vlgQC9wZbsfVp4DHBI/K3Q/NaQ1f+xk+edzMCDwk2QlAAHkLHaimWeOr13ao9mUzyyiOriuz2gFPBSTMrs/P5XIeHh9la7+UDkGjq8D3Zfnt7O2cIEFKHq8Hr0TnWiaGkmhWf+8NhAQHyFV3pLEQPcG9exkB2QllbLp1tYwnJdYeAXwMrPRb3EvTJ0dFRLoW4cOGCnnvuOT377LMaDodKKWkymdRKOhAUEDaWy6UODg509epVzefzTPK73W4m6OxaQVs8BwCxyMUSyhg8a8FLISDBrHjjKPDwSs7NnIAMIwBQakI5A+dgDkrKokUZtsg5Sps954V0s/rO+SH5HEMg5mg0ym4UhAPf8YHwTOYBfeUOBA/qpI0IJzgw+PH5x3PFv+k35rGkWikD10JUol9otz+Xs9ksizK+lSnCDEBQQHTC+cDWobhaeIZxZvB9cnx8nHMmcHRw3757hH9/BAIPCo1uV7/6l3+jqkfjb9JAQJL0q3+gr09++bU6fv8HzrspgcB9Q9re1nu+8c3n3Yy7RyU15jc/LBAAGyEoQLxZdSyt7R56CPGGwGB1hvhA8CEQkmorx5PJpLbKDolya/hisdDBwUGt5IFVem8nQgCrwzgmpLPact/hALKMC4F7k1RzEvgOA7xHGYO7GrBu7+/v59pyjufz1JO7W8BT+QFkuNPp1FwMbgc/PDzUtWvX8u4Kg8FATz/9tC5fvpzJK+SYLfw8gX88Huvll1/OZHMwGOTMBumMDJNR0Gq1snXegzBdpKFUA3eC95ek3Gc+TpBiQv58JwTa4FuMUpIhna2EQ2RZbWf8COVEdPHQQs+1wCngpTNcx7eW5H64blVV2YmCeITQRj+zuu9bjdIHx8fHGo1GtdwQBDEPD/VyHO6jdE0gFPj4UHLCvIbs4+Rg7BG6fNtS2un9TnmNlw0xv7kfSjba7XZNnOC6pYOC3TS8nIHvG3dTrHtOAoH7jfd946er2noE7LKBQCAQeCixNU965q+FOyFw69gYQUFSbUcFJ0hO3L1OHkIFOaDu3gk0xIXshNFopKtXr+rq1as6OjrKtmcIBEQEG7yvUkKwsN17DTarr259dzcBJRtOFH21FDLkQYz81wkd5RqIE9PpNIsfXjO/WCyyPZ+Ve9+ikbIAyFin01Gz2awRRCe/7CiAK+PChQt69tln9cQTT6jX62UHg5c4uMAxmUx0cHCgw8NDNRoNDYdDXbx4Ubu7u9rZ2cn5FI1GQ7u7u7mvsah7SCNEmSDOXq+XSxDoZ0lZWHJXiJfCEC5JyQKfRYSB2HudvjtG1u2YMZ1Oc76BOz382r5rBr8zxxGbPOzQibSPNztedDqd2k4GuDB85wPyPRC8IO0usHi5CPeGu8PdQ4yplwLxec8h8AwKz9DAlUBGA8Khi4ar1SoLJ3wv8LzRfp5nDy313BV3BCEUIKL4bhXlM4dDBaEoEAgEAoFA4LFAJXU+HospgdvDxggKkBcIeaPRyAQYkoSYgNUaAsKPp8KzEo8QQZjctWvX9MILL2R3gmcWuO3dV12dCHKMk1QIPCQcq7oLEKV12oMZqVV3QYBzQ2IJ7fO6fEk6PDys7TpBG50s+nacLtj49QmPJPyOY7384/j4OFvrn3rqKb3mNa/RxYsXc98ixGAzZzw9CLLT6Whvby8HZBLGeXR0pPl8nkkmDgIn85BqztXr9bS3t5fdCW69h5xLqm0Z6bsDQP4RdrzfmG+QU8bEXRhe888c8G1EnaRLZ6TWSwYg/r5jhQdq+paLlJyMRqPsZkA0Yk65sMFYMM6EJDabzdoOF4gIJYH2nAOcFP4seAAm53EhCTAmlI0gJuzu7qrZbGaXCGPMPKQN9BclCn6PnhfhW1F6FgciA88Wc5/z+i4Pfk3EtkDgQWL4Punqb5AUf88FAoFA4AEjraRX/+1wJwRuDxshKHgavnSW6O9EkNeksxVE7PGdTifb9Z0AQIQgfPv7+3r55Zfzar67HtjBAELoGQNOCoGvxkrKxMZDExFK3C7uhJTrU8/t5NHt1l5jPxqN8uo3K7+ssnqtPPcF2Sc/QTrbVaPVaqnb7WbRgV0dINuk8ZNbgJNiMBjo2Wef1ZUrV7S3t1erkcfuz30yVogtFy5c0BNPPKF2u50JOKQeUQibPASZLATf5rLZbOYwR0ioB2d6eQwr5jhAFotFFk48gwNniR9H27Hkl1tw0ufuamEMPNzPV+y9/h+xwlfOIb6+8wIhjJS3MG/YHWM+n+fPsUOH7y5R5jzgWGBcPOiS58VLNvxZdXcCooc/CxB23y3ByxIGg4H29vZy3sR4PK6FUrpYB1w4ZH4w7/xajAPCAc8ObefcLkgyT1wU471A4EHj0ne8U/vf+nmRoRAIBAKBQOChwEYICtIZEfBt8kAZEgh5gQD2+331+/0cjAiZhYhKZ6u7iAmQNwSJcis/LzHwZHiIv3RGfnw1mQBED5d0e7WTrFarVWt7uaWg13SzyouN21/jfBBwxAuIrq/k0h4yCjyT4ejoqLYTA7XwVVXlWvd+v68nnnhCb3jDG/T000+r3W7nz3sInq/o03eDwUAXL15Ut9vVYrHIJJnVZK+b93DGnZ0dHRwcaDKZ5IyAwWCg4XCYA/h8dwYEFUL26Fu2tdzf369lQUBSmQte+kFf++4HtNVJrdf544DgtXK7Qt/ZAFLOWDDuCF70E9kfR0dHWi6X2Z3Ayjx9zVgjgLCVJPOTEgkvS3HnBA4Ad3Mwv5hTfqyLZ+VzwxxFACK7YG9vT7u7u2q1Wtldw30g2NAGroVrxIUcBBwX71xUK7cBLR0YPCteXoWgxr0jQAQCDwrTL/2ccCcEHjlceFdSdfXaeTcjEAi8Eirpyr+KMOrA7WMjBIWqqnR4eFgjUm6TlpSJBauTktTpdDQcDjUYDDK5YrXed2xg1Za0d0/773a7arfbtbwG2iEpB8mRIu9lCBAVyFa5paPX3LOy6wGPrNayYsw5yxp7SixcQHBrOWQOcsRrECVfNYcEYh/3e+BeyUFAHIAQ9no9XbhwQa9+9av15JNP5p0VnHSzewbj5qv73teHh4eZHLNyDYGWlMWElFIm86zC9/t9Xb58Wf1+PztZEEBYWYagO9iy8OrVqzmHgj7BmdBut7VcLnV0dJTbx32QJ+AlD5yT91qtVq2MQFIWIRB8PNTQgz+ZG2xLimvk4OCg5h5B1GJuMVbj8Tj/d7Va1e5HUm03Ep4Hru2hhy5KMe94trzPfNcVhBncBrQdxwMuol6vl91EiC8uKHhoqZeG+POBgMPz4CKci2YuPngmCHPNHUjlDiZkNJTlG4HA/cTRV3yuPvG5SdX1G+0EAg81Lv/8gZZXr553MwKBwE3Q+YGfOe8mBB5CbISgsFgsdO3aNR0fH+c0fa/Nls5Wd1lZbbfb2t3d1YULFzQYDLIbwW3QEAzprI4b8kq+AOQC0QALOiugk8nkujp+RAXfQg8y5iu1vuLs7gfeZ9UWgcNXdH011UmRb2nnCfdeUuHBfn49SKC7Eny1vMxB8AwDtnG8dOmSnnvuuVy2AOmczWY5RA8RgnKG8XgsSdnNcHR0pP39fS0Wi0wwSxcAggdCAWLQ7u6u9vb2aqUaXjbhZSMeDjidTrOIQe4EZJQMCcSA8XichRHOgaiTUspzYrFY5HNxf4w5488YexkBfUMZi2+pOBwO87HsqrG/v5+P851AEK4mk4muXbumw8PDWg4JpN3dBNKJtd+3u+S/Pl94nRBF5jBkG2EEN1FZJuDiF9ttsqWj56FIyu4Rzl8GmbqIgwtjPB5nocqFAQQJfmdu8ox6gCfXwwXCnODzHmIZCNxvHHzl5+nFz0ixw0MgEAgEzgWf9H2jCKMO3BE2QlBgSzknBk7gIEXY2nd2drL1/tKlS9kV4PXX0tn2dxCH7e3tTGp8+zvfmYAwO0+JRzxwwuXlC16r7TXz3IvXl7trgTICCCdEfN0P7YMIORkjlI/PQ/6bzWYtC4J78BVbXBXS2daVq9VKh4eHOfyPvIJnnnlGb3jDG/TUU09ld4BbxanvR5BgR43ZbJaDE4+OjvTiiy9qOp1mh0a3283uCEpeGDfIakpJw+FQFy5cyKSb1XPaSlCjr0b76vPBwYEODg4yGYWs9no9SWflGfv7+zo8PMx9xrzjGPqJVfjpdJpLLxhnSCtzTjpzObh7hntwsUdSDhDd39/PW1NyXhevJpOJ9vf38w4ckvKuJu6WgOgjFHlIoa/w44CAiLu7hft2N4E/a7QLYQpyTnCku3v8c5QKMQc9GJV2uzOBucL/9Hw7S8Qfz2VZLpdZuOM6PD/MVQQW/76J/6kGHiQOX9PQaiespoFAIBB48HjTd13T6j+8+7ybEXhIsRGCAsSs3+/nlU1fffSV1OPjY/X7fe3t7Wlvby+vZGPtZzU/pZRXaCVlYoP44FvzQaR8mzoPZ6TGHsHAg948uM1r0PndSRmAQFHPzko/JNd3B+AHgubnggxD4iBgrLazwk82BW2CZJEX4KF6rNZSty9Jw+FQr3rVq/TGN75Rzz33XC04kdKAa9eu6eDgQNeuXcv999JLL+nq1avZBUBJBELF3t5etuC75R67uQs8VVXVdvFg9Xk0GunatWuaTCba3t7OpQwIO4gdXJcxhlCTMcDcwvbOOPm48hruEBwcPo+pv2cVH1HL+72cz9KZ+EW5z9WrV7OYMJvNrtsBAicF/Y6YxA4K9CvPkZdpIGpwPzhDJF2XJ8K8L8s4yu0YPbzSxSFKepjTlGswfmXYKRkXbAfpZQ6UduAcQQzxvAXO6+PB+4w1LiB+eEbd9VHmMAQCgUDgzvDsjy6ld/3qeTcjEAiswRv+8UTbv/oxLV98UYqFlMAdYiMEhdIKvi4pn2Pa7baeeeYZXblyJRME6ay8geN968blcplt2+vcA55PwCqokwxIBWSK96Uzgun13vwb8lgGuxHCyIo09enYuSFBnoPgwXeQYbIQKDegf7rdbhZi2BEC0QCXA8SdfsHuDUln1bbT6ejKlSv65E/+ZD377LPq9Xr5eFb+X3755VxKQInD4eFhtuq32+28ko8AcenSpew0QAzhPilvYD7gSmEXD4QPVvEJk0wp5dV1362AsgnuHRLpYhR9464MXCPs3kE/Qpyd1Hq5CQ4YVu0RlriOzyfGn4wB2vDSSy9lAcSJs+9mgLMHgl2GKbJS76Qct4ek2usIIf75ct66WwbRwbNHcItMp9PsZHB3Bs4MSD9iF9d3wYkx9/KfcjtIDz9FnHBXUxlw6e31591zJMpgynApBAKBwN1he7RUtZifdzMCgfuO6vhYn/zXf03v/vrX3Zfzv+kbf1G6zbDotL2t9/ylT7nu9ad/fKXej7xLq8lEy/hbJ3CXuKmgkFL6TklfKun5qqo+9fS1vyjpqyW9cHrYn6+q6odO3/sGSX9U0lLSn6yq6odvpSGQAifPrFLzR32z2dSTTz6pixcvqt/v59V4yJWLALgKvJ6eFVYIVZmXgCWddriDwT8znU5POu+UcHitvaQa8fQcCFwTlBmQeu9lCKPRqLZKDxFlBRsnAW3jvquqUrfbVa/Xq4VQ+go6bSPwkDBICD2OA8h9q9XSE088oWeeeUbPPfecLl26lJ0cL730Ui4N8M+RVQAh9pp4yOj29nYev+VyqfF4rKOjo9yXBCryHq4U7Oq+Es59QpSdJHrGg2dZMJcYCzIFyELodrtqNBr5vB4KyPW5Bq4AxBnEBCfBvssGtnsvN0BUkJRdB4eHh5n0UhaDOwEyTn9D1H1uez/4VqS0GbLuq//tdlvD4VCdTifPcRcAGEPOzzzz0o3FYpHnN33CnGWu03/MOcoYfA7RXt8hhdIQdyN4aKKXAZU7XSA+uPuofCZ8bgyHQzUajexW2QQ8qO/iwPng6b/xTn3om96m+W6UPQQeHVz5iUpbP/7z592Me4b4Hg7cDNV4orTSnYfrVlI65fdv/N5DVf/urAxhtbqznafe+HVrghZXS8X/bQL3CrfiUPguSX9H0v9cvP63qqr6Vn8hpfQpkn6/pLdIuiLpR1NKb6qq6qZPAMSYlVhfTZTOygT29vZyCCPbLGL3lpSJjFvOPYCN1WQICY4IwgTdhu6BixAbJ2keLFfWX3s4IT8E0rHSvs6+7jsJQLi4f0D2Adf3lXFC+iDHuCB8a0ZW8vm8b/d47dq1TOL39vb05je/WZ/6qZ+qZ555RiklHRwc6Pnnn9eLL76oq1ev5qwBrru/v59zCljpZ0zpT9L+Jeng4KC2M4QHAFLuIKm26u4hevxOmCOOA/+3hw5yzwg6ENX9/f0sDkA8cT1AjBE5yCvw8gZKTziG4EZf9fbQRuCugsVioatXr+rq1avZAeGlOu5kKcslOBbRo9z1QDoLKQQ+V8ji2NnZyY6X02c6ixBcE6EPF4sTf3/23C0C/DlDPPBARNwKnNPdRLSHZ8bzSdyZwHxAeAOezcAcYI4gGiK00XZErA3Bd+kBfBcHzgdpe0dVbBcZeISQllJj8citfH6X4ns48ApYHhzozd/6Af3Kn36dVju3OP8rqbE4+R/A5X9fafi9P8XL9wZ3KEQEAreKmwoKVVX9RErptbd4vi+T9P1VVc0k/VpK6b2SPkfSO1/pQ27l9yA9Vmg9MX8wGGSS4ILBcrnMddKUQngN/LqVWlY8ISAIGFjuWfmFlEMicRC4ZRyHAoRIOrOlAyzgkC7KMhAgcEV4hgDkGFLn9d2cH8GDcgFs7p1OJwc2OrF0Wz6OAkINySsghPHpp5/W3t5eFh729/f1kY98RC+++KKOjo58nmgymdS28oMMU4IB6cVFMZlMdHh4mF0OnkcB+VssFjlIk8+wku3OEraTJIiSEg/um3MzT+j7yWSig4OD7ALhnMwpX2l3oYE50ul0NBgMajkbXjoDUfVtGD2TwYUSiDxkF8GMLBBIfOm2YJ7yLHENd9kghNDPvrsBZSmtVivnFFAqw5xiXJvNZn5+EHToG98+0gUvLwHyjBJKJK5du3ZdeRBE3u+FeeblTS6seH/y/eBBl2VpEOIOzxRhr/1+v9anm4IH8V0cOB80BgN96Gs/TYthrBcFHg2k46Qnf3ql9g/+9Hk35Z4ivocDt4Ljj/+6Puk7unr/H3xSq6a0bK2RBipp5+h0e/GDpCvf+pMPuJWBwL3D3WQofG1K6Q9J+llJX1dV1VVJT0v6KTvmI6evvSKwTnsomq/wQ753d3dzqJuXFUB+Wq1W3k4QIgnhh1T6jhGQRgiTr8KSUcDqOgKDl1J4fbULG2WpA2SFsMR2u61+v58JF8ROOrNnu63ek+4hqL5TAySKc7Ea7qvanq7PCi+ZBlevXs1kTzoJ5rt8+bLe9KY36dlnn827MLz88sv62Mc+pv39fV27dq1Wj++19FjIfYtOSCRjgGDguxMwpowJwX4IRAgQ+/v7ks52UkA88a1DIYm++szc4t+UOtBnvqMD/eW5AsfHZ7s6sHq9u7urdrudrf/0RbkrA+UPuDYk1dwylI1MJpPsnmAFncDO8Xic50mZdcD9cn0XsxAJsO/zGZwkCAGEUrrAtm4eIk6Mx+PslsGVQHlIuZsC94hg53kauFMYq16vlx00XoLkpUOeW+IlH1yzzEvxbSgRHrmml554aQv9/BDgnn0XB84Hv/6HPk3TV4WYEHg00FgkXf6FSv1//G/PuykPEvE9HKhh+avv13Pf+H5VX/BWffQLu2uPeeavhYgQeDRwp38tf7ukv6ITN85fkfRtkv6IpHVLemsdOymlt0t6u6Ra8CBkjT/+WaEdDAYaDAaZRPGHP3X6hNqxggqh8C3y3PrtwYplDbh05n7wz3kmgwfbtdvt3G5fjfXzdLtd9fv9vE0iBNV3lmDVHPIpnREa2of7gNdcKIBYSmelDh42x6q6h1CW2+Vtb29rb29Pb3jDG/Tss89qb29PVVVpNBplIYE+95wLBBrvIwgzRJISAUoBIOd+T16bLyk7OlarlQ4ODrS/v59XmBF1WFne2dnJ16H/SzEB6zztxmVQrnTTFy7K+FhR5oA1HscEpLskou5i4X0XFDwPgWBN+nE2m9XKAspSAB8/ruM7e0DeEe0g916WgqCAMMa2nzhkuKaLQeQuuPjhIhKE3Uk9gZ++k4jnOnAuDxH1EgaEFNBsNvOzwrj67hEeOulBqu7ucBcL1+Wz5S4UG4h7+l3c1vo/egL3D9vPPqPj6PbAIwLEBCzbjwniezhwQ6R/8wt65t+cdysCgfuLOxIUqqr6BP9OKX2HpB88/fUjkp61Q5+R9LEbnOMdkt4hSdvb2xUkB+Jw+rparZaGw6H29vYyaYTIuTuh3+/nRHmINrXsrIxjAXc7PavSXBOCKF2fas9roAx5BKyoQkr7/b4uXryYdzbwOvWjo6NMYLwMwVfSvdzhtO/yPbqDAjjZ9O0wfStOCDUkjZXbXq+nZ599Vm9+85v13HPPaTgc1lwc3keQfy8t4LxcR1IWTpz00k9cFyJHfb3fG7tKsCUktnonub6jw3w+z1kMZYihX7t0HnhbaD/973PGSX9VVXmVnT6nPeR7cE/rwhsh/7hx/PoIQaPRKJNhhBQA4Ub8kJTFIu6TsaO/6WeCK3HFIH5RVuKZJgQtSsrziZV+31GFbVApEaIPmYeU1zD/3TVAVgQ5FIylh27iVkF04Fnl2eBzCBR8pyAyecgkc4P56yGP5e+binv9XTxMFx+5gudNxfZTr9b8jU/pI5/V0fjKxgtXgcBNkZbSEz9XafAPHysxIb6HA4HAY487EhRSSk9VVfXx01+/XNK7Tv/9A5K+N6X0N3USQPNJkm6pgA6iA0GArAwGA128eFF7e3vZqbC7u5vdCavVKtfpl6UCiAkQcMgs5RRuc6dkQlImJB4OCZysl6uhEGjPPiD3gTDJbrebV6SPjo40Go2UUsrt95px310Cgg0ZghBDriFAEGxWmQl8hEzTbtwXvkq+vb2tS5cu6fWvf72ee+45PfHEEzlnAMLa7XazZV06s7Szcg1xxaaP6EP5grsoaL9v8Qfx43qUZkA+IbdOvPnd75E55W6UcscMRAfva/oYkgs5Z8yqqsqlNTs7OxqPx9k5AHFmpd1FMkgwBNy3MWS++nhzPkoyyN/w0gnECC9x8Z1KfJUfMCa4PBDi3BUwHo8zgadveVZ8FwYCRilD8lIeL/9BzKHsogzbZNtMcjL8/nhemROIUggdjA1j5hkenjPijicv/UEk4tkjg8TnzybjfnwXB+4/tp96tT7+Za/TtTdXUuRsBx4BpJV05V+v1Plnj9/XTHwPBwKBxx23sm3k90n6IkmXU0ofkfRNkr4opfRWnVi3PiDpaySpqqpfTCn9I0m/JOlY0n95K2m2rGx7mQCp8wgJrVYriwvtdjsTLY5zKzeryYQGYpH2IDpWulmhJpXeQyAhGU6aIb+QHIgMbS7t4L1eT7u7u5m4sdqOmCApr/42Go1MiFg1LXcrgGQhgLBiDRHyHRVoo9fDe3+7A4CykcuXL+upp57S5cuXtbe3l4+fz+fqdrs6OjpSKrZnxDbuZN4JISvNTgAlqdfr5XKCMmDPHQdud/fMCAgvZQZe7sE4MR4EDXp/Iwh4yYDnVHDdspSELAzKNnyXEUQJVtYpUShdFYxB2W+eZUE/IkBIyqUViAlVdbJdKOGblLB43gDz1p83DyD0bBF23GBu0K/MeUIhKTFCjGCudzodrVar7ETAveFOA8aS63oJEH3pu1X4d4I7V9zR4uTfy314nz5zIYqSH8bDyyLop03Cg/guDjwYLK9cOhUTAoGHH8/+y6Uai5V2fvTnzrsp9x3xPRwIBALX41Z2efjKNS///Vc4/pslffPtNMJX+iEaLh6wgjkcDvP2fNj1IQ+sQrICOpvNcgK9W6gPDg5y8B0Bi2W9tXSWfeAknlp+AvJK8WF7e7u2uttut3ObWbGmDePxOK/qssLrK7LHx8d5m0nPKWD1v91uZyHFV9h91whC87gXiLcHSHpJR6fT0RNPPKGLFy/mrfMk5Xt30QaSCEGjFABiikiBSEA73C3ijgTpzL7PcYwxxJvzcw7uy8kkbeTHgx9ZlSefgO0yWb1mhdqDECG3ng0AWUVMKAmrOw7oH9wqvvOI5wMAhB/6m/kLOaZP6FfEBLYG9bwQrk0/8YN4hiDgZRGeOQKpd1FHUnYiDAaDPLf5L+N4dHSUnzXmPYKWux4QiBAHvMxCOhM/uCfGxvNHvDzIt0P1bVfLz7qTSVJNmPAyIg9ePW88iO/iQCAQuFW85oeXar48lX7mXdIGfVfeT8T3cCAQCFyPjYgwd8JILfXu7m5ti8VOp6Nut3vd1oz80c9KOPb6MsBwtVrp2rVrmWRTJsGKKGKEB7e5wAAZwUIPEYZgttvtmuW/1+vlrAev46eOHDLINpiQSw+FZDs+35VCOskw6PV6ta0spROih03+6OhIy+Uy9xn3ICmTUdq6Wq3U7/ezaMO/2+32dSn9o9FI165d0/7+fm3Xi/IajAltQ/yYTqfXlW94aQLChJd6sJLNa07yaL+LJB7SB6n0dH/yNDwU0Hfn8NVv2u5hgfQxohL9A0FGaGLscTWwwk47aVuZy8FnXMRhXkOeESsQE7x0w4UDL9/gGIIoO52O0um2kF4qgRjBvfiOFWQu4G5otVq1Z3MymWh/f19Xr17V0dFRHisXIzi3i04+9/19+sJFGxfdCNZEtCHfw8eS6yM68HmeM9wxnIusCG93IBAIBE5w5ScqDX7pJa0+8GFV5uoKBAKBwOOJjRAUpLMdAQhixMrvSftOvCFGkrKdHiEBYu/b6o3H45pdm/Oz2j4ej3VwcFD7HGKF71xQkjbqyCFmx8fHmZizEu6CxbVr1zSbzdRsNrW7u6tms1kjtOts2R4G6G2nlEA6Ib3UhLNyCxGXzggV58PJQdnIYDBQv9/PwZGEBkK2JpNJ3mWBLSNxPLit3sUPyCjt9XA8nAXlqjGCAMewvZ/nU5R2fq/9Pzg4yPeEjZ3xYmWc+3FBgHaXIYYIRrhIcC6wxaM7WrwffH54oCGr/YydW/rpP8SIcgcIyickZaLtO3zQFsQI5m2z2czXXK1WuUSBnA0CM/nheXNXDGJMv9/XcDjUYDDI4ZLMPfplf38/E3Z3+UD6aa+7BBCWuB8XqTxXY2trKwt/Lizx3cH4+djxvjt3eB6YW8xZd/wgdAYCgcDjjuH7GrryT94vSVpd3dfSSvMCgUAg8HhjYwQFCIRby92evbOzk7fVK2vuPXDRQ/AQBsrabd9NAaGBvAFfLYeUsarqbgXOzQoxJAQy5ivHXibgu1JgEUfo8LIE6awEgJVTVocRDgjkw8mBg2A8HmcihI3bCTlk1gWJZrOpixcvajgc6sKFC+p2u7nNBwcHunr1qj7+8Y/rwx/+sF544QVJus45wP0hCrDCz9j4Dg6eOcB1fDcGgg99Rd4/D9nElYFgs7+/L+kknwFQjkLf+paItM9Xomm7i1vlbhGUSpQZBe4OcEeEi0Z8HueAl9/QJ37PtNV38/DtE5n3nj3g5ymdBogb5HhwnwROcm1EFYJFEROGw2HuE/oUQefll1/ODhxKNaSzDATm4Gg0yv0n1Z0AvOZ9xj17SCP9gZjgohT96q4cxtVdMJ5lwX276yEEhcC9xvbrntOvfMVQN9g9LhDYKLRebui5//4/SouFjkNECAQCgcAabJSg4HXfEIyyfhwHgpcXsE2g19JDILGX+wo1JAgbOSRYOrPqQww9fR5AjkongdvQIYmQS1a2l8tldhlAhJ3sYcH212l7v99Xs9nMDgRJGgwGOSDQyRekDNHFMyG4Fsez8vzUU0/pypUr2XExHo919epVvfDCC/roRz+qj33sY3rppZc0m81y+72Ug/wIiDAE1cMZyb0gOwK3AO2CaDJG3Nfx8bGuXbum1WqVyayXEBweHmp/fz/vSOGZDp61QJ0+Ao1Udz0whxCyyAZgBZ6gQQgz16C8wct3cAJ4BoZnOlDe0+v11Gg0amIY5NgzGrge8FDHUthwx8RsNsvbQHIOwhJdNHG3hgdKsrvKYDDIzhvmNmU39P/+/n6eb+Q68EzisvBSD3e2IAL4Vq5+7/zuORfcD/3L/EKE5Nye0cB3De97WYYHcNLHgcC9RLXV0KoV8yqw2UjHSW/8hp9Rtaq0WkWOYCAQCARujLQJfzCnlF6QNJL04nm35Q5wWdHuB4lo94PHw9r2e9Xu56qqeuIenGfjkVI6lPSe827HHeBhnaPSw9v2aPeDxePe7sfpezj+Jn7wiHY/WDys7ZYe3rbf1+/ijRAUJCml9LNVVX3WebfjdhHtfrCIdj94PKxtf1jbfZ54WPvsYW239PC2Pdr9YBHtfrzwsPZbtPvBItr94PGwtv1+t7tx80MCgUAgEAgEAoFAIBAIBOoIQSEQCAQCgUAgEAgEAoHAbWOTBIV3nHcD7hDR7geLaPeDx8Pa9oe13eeJh7XPHtZ2Sw9v26PdDxbR7scLD2u/RbsfLKLdDx4Pa9vva7s3JkMhEAgEAoFAIBAIBAKBwMODTXIoBAKBQCAQCAQCgUAgEHhIcO6CQkrpi1NK70kpvTel9OfOuz2vhJTSB1JK/zGl9AsppZ89fe1iSulHUkq/evrfC+fdTklKKX1nSun5lNK77LUbtjWl9A2nY/Ce9P9v7+5B5KrCMI7/H5ZNFBMQP1mSgImkCSJxiyAoqUTNNqtduhSCjYIWFoGAxFIhthZiEURMo2JKRRQ7I+ruumH9SFQwZskWImqjoq/FnCVDmJnNwMw57w3PDy575+wQHt575ykOdyfSY21SD819UtIvZe5Lkhb6fpcl9x5JH0tak3Re0nNlPfXMR+ROPXNJN0k6J2m55H6prKeed2bu4qnkdA9X5B6unts9PGHu4elwF9flLq6eu30XR0SzA5gBLgL7gG3AMnCgZaYt8v4E3HHN2ivA8XJ+HHi5dc6S5TAwD6xulRU4UGa/HdhbrslMotwngRcGvDdT7jlgvpzvBL4r+VLPfETu1DMHBOwo57PAZ8CD2eed9XAXTy2ne7hubvdw3dzu4cnO0z08vazu4rq53cV1czfv4tZPKBwCLkTEDxHxN3AGWGycaVyLwOlyfhp4ol2UqyLiU+DXa5aHZV0EzkTEXxHxI3CB3rWpbkjuYTLlXo+IL8v5H8AasIvkMx+Re5gsuSMi/iwvZ8sRJJ93Yu7iKXAP1+Uerss9PHHu4SlxF9flLq4rQxe33lDYBfzc9/oSoy9cawF8IOkLSU+XtbsjYh16NyJwV7N0WxuWtQvX4VlJK+Xxr81HdlLmlnQP8AC9HcLOzPya3JB85pJmJC0BG8CHEdGpeSfTtfl0uYu7fI+m7oR+7uE63MMT1bX5dLmHodv3aepe6OcurqN1F7feUNCAtcz/7cRDETEPHAGekXS4daAJyX4dXgPuBQ4C68Cpsp4ut6QdwDvA8xHx+6i3Dlhrln1A7vQzj4h/I+IgsBs4JOm+EW9Pkzuprs3nRuzi7NcgfSdscg/X4x6eqK7N50bsYch/HdL3wiZ3cT2tu7j1hsIlYE/f693A5UZZthQRl8vPDeA9eo+HXJE0B1B+brRLuKVhWVNfh4i4Uj4o/wGvc/WxnFS5Jc3SK6C3IuLdspx+5oNyd2XmABHxG/AJ8DgdmHdSnZpPx7u4k/doVzrBPdyGe3giOjWfjvcwdPQ+7UovuIvbaNXFrTcUPgf2S9oraRtwFDjbONNAkm6RtHPzHHgUWKWX91h52zHg/TYJr8uwrGeBo5K2S9oL7AfONcg30OaHoXiS3twhUW5JAt4A1iLi1b5fpZ75sNzZZy7pTkm3lvObgUeAb0g+78TcxfV08h7N3gngHq6Vty+fe3iy3MN1dfI+zd4L4C6ulbcvX/sujgbf/tl/AAv0vkXzInCidZ4ROffR+0bMZeD8ZlbgduAj4Pvy87bWWUuut+k9lvMPvZ2op0ZlBU6Ua/AtcCRZ7jeBr4GV8iGYS5j7YXqPC60AS+VYyD7zEblTzxy4H/iq5FsFXizrqeed+XAXTyWre7hubvdw3dzu4cnP1D08nbzu4rq53cV1czfvYpV/1MzMzMzMzMzsurX+kwczMzMzMzMz6yBvKJiZmZmZmZnZ2LyhYGZmZmZmZmZj84aCmZmZmZmZmY3NGwpmZmZmZmZmNjZvKJiZmZmZmZnZ2LyhYGZmZmZmZmZj84aCmZmZmZmZmY3tf9mzYHYfn3wUAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 158200 0\n", + " Min thresh = 1000\n", + " Not Sliding\n", + "\n", + "\n", + " Winner = Not Sliding\n", + "\n", + "\n", + " FP ROI = 019s_iimage_10705997566592_CLEAN.nii.gz\n", + "019s_iimage_10705997566592_CLEAN.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADDCAYAAAAya0IYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADjE0lEQVR4nOz9d5hl2V3dja9zb910bqjqNHlGYRQRSCAkQAiwsBAIm2yS4Ad6QUZCIhiT4WeSAxgDJloIycIEm2heMGBZCDBZEkogCaGsUZg8Harq5njeP6o+u9bZXTPTPd09Vd291/PM01U3nLPPPvveqbW+67t2VhSFEhISEhISEhISEhISEhISEs4HlYMeQEJCQkJCQkJCQkJCQkJCwuWHJCgkJCQkJCQkJCQkJCQkJCScN5KgkJCQkJCQkJCQkJCQkJCQcN5IgkJCQkJCQkJCQkJCQkJCQsJ5IwkKCQkJCQkJCQkJCQkJCQkJ540kKCQkJCQkJCQkJCQkJCQkJJw3kqCQ8LAjy7J3ZFn2rIMeR0JCQkLCHrIs+2CWZZ9xjq8tsix7zEM8z0N+b0JCQkJCQsLhQhIUEh52FEXxpKIo/vygx/FAyLLsn2dZ9tdZlm1mWXZ3lmWvyLKse9DjSkhISLiSkWXZj2dZ9t4sy/pZlr0ry7KvPugxJSQkJBw2XGxh9sGOl/4uTnggJEEhIWF/rEv695JukPRESTdJ+rEDHVFCQkLClY+hpM/Vznfw8yX9dJZln3ywQ0pISEi46pH+Lk64XyRBIeFhh9tqsyz7wSzLfjvLsv++W5F6e5Zlj8uy7HuyLLs3y7KPZFn2mfber8my7J27r/1AlmUvio79nVmW3ZVl2Z1Zlv1LV1yzLGvsVr8+nGXZPVmWvSzLstZ+YyyK4teKonh1URSjoijOSHqFpGdeullJSEhIODzIsuwTsix73W416q4sy34uy7J69LJ/tvs9fDLLsh/Lsqxi7//a3e/qM1mW/VGWZY84l/MWRfEDRVG8qyiKVVEUfyvpryQ94yJeWkJCQsKhQJZlT8yy7M93v2ffkWXZ59lzf55l2b+03/+fLMv+evfnv9x9+K1Zlg2yLPuyLMuelWXZ7VmWfe/ud/IHsyz7yod6vHis6e/ihAdCEhQSDgM+V9KvSjoi6e8k/ZF21uaNkv6tpF+w194r6XMk9SR9jaSfzLLsqZKUZdlzJX2rpM+Q9BhJ/yQ6z49Kepykj919/kZJ33+OY/w0Se84v8tKSEhIuGyxlPSvJR3XDqF/tqSXRK/5QklPk/RUSZ8v6WslKcuyL5D0vZK+SNIJ7YgCv36+A9gVfJ+u9N2bkJBwhSHLspqkP5D0GknXSPomSf8jy7LHP9h7i6L4tN0fn1IURacoit/c/f067Xxn36gdh9fLL/B4D4T0d3FCQBIUEg4D/qooij8qimIh6be18wfofyyKYi7pNyQ9MsuyDUkqiuJ/F0Xx/mIHf6GdL+JP3T3Ol0r6b0VRvKMoipGkH+IEWZZlkr5O0r8uiuJ0URR9ST8s6csfbHBZlj1HO1/M5yo+JCQkJFzWKIrizUVRvL4oikVRFB/UjrB7lki7+336YUk/Jel5u4+/SNKPFEXxzt3v9R+W9LHn6lIwvEzSW7UjMickJCRcSfgkSR3t/L07K4ri/0r6Q+19jz5UfF9RFNPdv5H/t3b+Nr6oSH8XJ8RYO+gBJCRIusd+Hks6WRTF0n6Xdr50N7Ms+2xJP6Adp0FFUi7p7buvuUHSm+xYH7GfT+y+9s072oIkKZNUfaCBZVn2SZJ+TdIXF0XxnvO4poSEhITLFlmWPU7Sf9aOAyHXzt8Lb45e5t+xH9LOd7AkPUI72Qc/4YfUTtXsQ+d4/h+T9NGSPr0oiuK8LyAhISHhcOMGSR8pimJlj31IO9+TDxVniqIYRse74f5e/FCQ/i5O2A/JoZBw2SDLsoak35H045KuLYpiQ9KrtPOHqiTdpZ2QGHCz/XxSO+LEk4qi2Nj9b70ois4DnO/jJP2+pK8tiuJPL96VJCQkJBx6/Lykd0l6bFEUPe20MGTRa/w79hZJd+7+/BFJL7Lv2o2iKFpFUbz2XE6cZdkPSfpsSZ9ZFMX2BV1FQkJCwuHEnZJu9uwZ7XyP3rH781A7Yi647hyOeSTLsnZ0PL6XH8rxSkh/FyfcH5KgkHA5oS6pIek+SYtdt8Jn2vO/JelrdkNucpkVa1cBfoV2MheukaQsy27Msuyz9jtRlmUfLenVkr6pKIo/uCRXk5CQkHB40ZW0LWmQZdkTJL14n9d8R5ZlR7Isu1nSv5JE3+3LJH1PlmVPkqQsy9azLPuSczlplmXfI+krJD2nKIpTF3oRCQkJCYcUf6sdkv+dWZbVsix7lnYyxX5j9/m/l/RFWZblu+HiL4jef4+kR+9z3B/KsqyeZdmnaidz7Lcv8HiS0t/FCQ+MJCgkXDbYzT34Zu0IB2e080fn79vz/0fSz0j6M0nvk/S63aemu/9+1+7jr8+ybFvSn0i6v7Cab9NOm8QrdxNvB1mWpfCZhISEqwXfrp3v2L52xNj9Qrr+l3baIP5eO726r5Skoih+VzshuL+x+137D9pxHJwLflg7VbX32nfv917AdSQkJCQcOhRFMZP0edr5bjwp6aWSvrooinftvuQnJc20Q/R/WdL/iA7xg5J+eXeHCHIS7tbO38d37r7+6y/weI70d3HC/SJLrYkJVyqyLHuidv6QbewGgyUkJCQkJCQkJCRcUdh1OPz3oihuepCXJiRcdCSHQsIVhSzLvnDX6nVEOxWyP0hiQkJCQkJCQkJCQkJCwsVHEhQSrjS8SDsZC+/Xzj7q+/X9JiQkJCQkJCQkJCQkJFwgLpmgkGXZc7Mse3eWZe/Lsuy7L9V5EhIcRVE8d3f3hqNFUXxhURR3HfSYEhIOCul7OCEhIeHgkb6LEy41iqL489TukHBQuCQZClmWVSW9R9JzJN0u6Y2SnlcUxT9e9JMlJCQkJJyF9D2ckJCQcPBI38UJCQlXOi6VQ+ETJL2vKIoP7KaY/oakz79E50pISEhIOBvpezghISHh4JG+ixMSEq5orF2i494o6SP2++2SPvH+Xlyr1YparaaiKJRlmSqVirIsU1EUKopC1WpVkjSfz7VY7OTrra2tKcsySVK1WtXa2pqKotBisVBRFKrVaqpUKlosFloul6rVaqrX61qtVlosFlqtVlqtVloul5KkLMvC8SRptVpJkiqVSvid8WVZpuVyGcbGsRnzcrnUZDLRYrFQpVJRvV5XrVYrjWk2mynLMq2t7dwCxl0URencPi7OyWO8vlKpqFKphN8BP2dZFq6b13L9WZapWq2qUqmEOeVa/Rjxv9wn5oZ5rFarZ9077h9jjc/B+7lvHIMxVSoVLZfLcN/W1tbCfPvjfk3MR7xelstlaR59jrl3+91nrsWPs1gswvzxfr8WjsH9i9eQrze/7zzn1+Dj5fXxf/e3hv0c8fvB/Y2T+eGa9ltr8fsczIuvHX9PjP3mjLXF2Pd7PfPnY+IY8b++Tu5vLH59RVGcLIrixL4DPtw4r+9hSap22sWjH7XSPf/QuqQDS7g8kGWZdD+f1asZRVFIaYeshxUTDTUrppfrYjyv7+L0PZyQkHBY0deZff8mvlSCwn5f+qX/+2ZZ9kJJL5Sker2uJz3pSZrNZpKkPM/VarU0n881Go2U57nyPNepU6d0zz33aDQaqdvtqt1uq1arqdvt6sSJE6pUKrrvvvs0HA51zTXX6Oabb9bdd9+tD33oQ+p0OrrllltUr9d16tQpTSYTTSYTDQYDzWYz1et1NRqNQBCHw6Hm87kkqdlsajqdajweq1arqdPphPcul0utr6/rpptu0jXXXKNGo6H5fK73vve9+tCHPqTVaqXrr79e119/vU6cOKEbbrhB8/lcH/jAB7S1taWNjQ11Oh2NRqNwvOl0qtlsFogzQshsNlO/39dqtVKe56rX64EgQ9qlHcKEaAARns/n2tzcDM9JZXGg2Wzq2LFjWl9fV61WC6LHYrHQfD5XURSazWZhTjqdjjY2NlSv1zUcDnX69GmNx2O1Wq0wrsVioVqtpiNHjqhWqwVhZ21tTYvFIogug8FAp06d0mq10rXXXqsTJ06o3W4rz3P1er0wp5ubmzp58qSyLNONN96o6667TuPxWPfcc4/6/X4QnKrVqtrttoqi0OnTpzUajdRqtZTnuabTqba2tsKc5XmuWq0WSOVoNNJoNJK0Q2Bns5lms1kQDbhfs9lMW1tbGo1GYQ1WKhUNBgNtbm6GOWs2m2q1WlpbW9N0OtX29rZWq5WazaaazWaJZC8WC02nUy0WC+V5rmazGdbi1tZWmE/AmLhPy+UyCB6MfT6fh98ZE+uc36UdsapSqajVamm1Wmk8HodxMm/j8VhZlinPc1UqFU2nU0lSrVYL75lOp2eJJrE4gChUrVYDcWfciE2IN8vlMnxGEZtY87VaTY1GoyTKjcfjsEbr9XqYQ0SQSqWiyWSi0WhUEki43/sJWMPh8EPn+sV3yPCg38NS+bu4qVyPfMfn6JGX65/tCReESrutytEj4fdPe9W79V3H3nuAIzqc+Ji//Qrd/PzbtdzePuihXDX42+JPD3oIF4Lz+ps4fQ8nJCQcVvxJ8T/3/Zv4UgkKt0u62X6/SdKd/oKiKF4u6eWS1G63C/6YhxxJChX92WymdrutbrcbSNxwOAzkVNohE5C32Wym1Wqler2uG264QadPn1a/39dwOAyvnUwmqlQqajabkvbcAPy7vr6uwWCg6XQaiBouiN0xa7FYqN/vazAY6O6771ZRFDp69Kjq9bq63a46nY4Gg4EWi0UYL9dx7NgxnTlzRoPBIJwT4YCKMIQNF4S0U2nn+qUd0gTZ9wo0BBGhoVKpqNfraTQaBSJfr9eD8DAYDLS2thaECoQI7gtV4uVyWSKqvV4v3CNeH1eMZ7NZGBfVdojlfD4PFWNEmvX1dTWbzSCi4OqoVqtqNps6ffq07r777iACOTGt1+ultdNqtQLJnEwmgYj6WBFZmD9fh8vlMohMiCIQ4jzPA0mez+dhPhFMuIeVSkWNRiO4VAaDQSDRwO+xXzeP12q1sBZ93KzZZrMZCDDHqFarwZmCGwaiDKHnvszn89JYm81mWFPL5TLcj/l8Hu415+fYCFGMIRYWWA9FUQTSz1rhOrgP7kpoNBph3t1tw73hWvkM4erABYSo4GOpVqtnzRdjY31wDZcxHvR7WCp/F/eyo5f1BSc8NFTabRVPfJTe++Udve8rXnbQwzn0ePsn/ppu/cGv12O+9fUHPZSEywPn9Tdx+h5OSEi43HCpBIU3SnpslmWPknSHpC+X9BUP9AYIg6Twhz6CwWQy0Ww2U6PR0MbGhvr9fqiY1uv1UEWH1EDoECKuv/56TSYT9fv9UOEcDAaBrFGVlBTI0tramnq9XnAEQGwYW6PRUJ7ngXhu71YqqGLX63V1Op0gjkg71e877rhDt9xySyBtw+EwEELGDRlfrVaB5EFwqMouFguNRqPQxiApEK5arRYq6+12u2QVp7o8HA4DMXYyP5lMAoGbTqelSjokDKdEvV5Xu91WvV4PlW3G4S0liA+0P7i4ICmQ8/l8rvF4rOFwGOYDku0tB9VqVaPRKDg8aDnheNVqNawX/mNeORatKFTqEQJ8jE44uS7uTb1e19ramhqNRiD6cRsLQgdiBvd8Op0G9w2CFgIPaxEhxsl5tVoNDgBv+YEE12q1INAwr7zHxQcXAlzYYJx+ryDnfFa4fifsCD2IDoyRsfGauKWE9UeLUKPRKAliPM86mM1mQUTg+JyLz0G1Wg2igo+T+8tnmTXC/cIdwvERqvZrs7iMcN7fwwlXHyp5ro9841P0D//qpQc9lMsK9ZuHWnvUI7S47XI1MCU8jEjfxQkJCVc0LomgUBTFIsuyb5T0R5Kqkn6xKIp33N/r41712WymyWQSyIS0QxzyPFe321W32w0VVSzi0+k0vD7PcxVFofF4rF6vF1wB8/k8kEcs217Vj0lSo9FQt9stVeW9R77ZbIb2h9VqpdFopO3t7VAlbzabpTYKLPEnT55Up9NRvV4PjgtJwX4/mUxCRZVKrBNbjocQgNhRr9cDEWQ8y+VSnU6nRHKpcE8mE0k7LofZbKbBYKCtrS01m83QEgJZRVTgOLPZTNvb22o0Gjp27FggqpzDXQ2SSpVxCDOgjYQK+Gg0Cu0sODs4JiQZAYR2Air0tM3QClCpVIKzgHNBNhFp3CkRk1LGzrUh1DCOOKvDybyLKtPpNJD4ZrMZbPW0Xnj2By0e3H/ug9/3OH8hzjOAYNPOgYDk+Qw+buZwPB6H64O4ewtBo9EI18R/iHnMB5+zONPBHRJxjgXvYX2ynlgz3EPPLvEMDr5DOI+0I5BwvvF4HNojGBPH4PNTFEUQKr3t4nLF+X4PJ1x9yBoNffhbPlbv+MYkJpwv3vnMX9Vj/v3XaOPPb9A1v/9+Le+596CHlHBIkb6LExISrnRcsr+Wi6J4laRXnctr3SYOMaBiCYmkygqJHw6HmkwmIW8AEkS1fzKZhGp3vV5XnueBYPMa3kdldDabBXLPsVqtVqhWIhxAPj3fgGr2aDRSv98PNmsIJ0RyMpmEHn4q3JBoxgUJRFSASHlvN+Mbj8ehuu2km15xchk6nU4QBXBlQK74eXNzU1tbW6GqPx6PQ988ZJIquiRtbW2VbOa79z2M1S38kFfOL+2JDDgdJIX590q7E0l3ivB+3AasEw8xZN4h95JKAsNsNitV1H3+AcSa9yDixLb4oihCOwnvQyzw9hXG4JV0rpP59Co8Y3S7PvkatEcwH8w3whxiEI4WJ+vM2WQyKbk0OJZX55kjzyzwrBGcMVwbnwnmgWM3Go1wPMbOOnSnkecexGKQ31vuAwJS7BJx8Bl1IYNzkrHB2BiXi2KXI87nezjh6kOl10tiwgXgfZ/+36RPlx719K9T847HSJJu+bevS4GNCWchfRcnJCRcyTgU5bdKpaI8zzUYDCTtEbNGo6F2ux1Iz3g81vr6ujqdjjY3N4NDYTQaBXLEf6vVStvb28GS32w2QwhdtVpVq9UK1UjImhNCdmZwezlkK67EOxGDoECc4l0c2u12CIWTVLK8Q/hwRzgJdmID0aRySzaABzFC0nF7eLsAr2m1WiXLuqSQG0EewGAw0OnTp4OLgHNCxra3t7W2tqZWq1Uao1fDXYTxDANcJtJOJgUiD2ui0Wio0+mEtgTGDZmm8s89aDQaQURhzriOer1e6tv3HILxeBzmFaLv8wXh9v5/CCekGHcC8+33HjEEEs99dSLtbQCEL3ruAe0PkHy343Mv+NmdDB5eyDG88g7JH4/HQbDxar+TeO4NwZuIJXxmnKhzf5hXxsJ9cveNtwVxj7wFBXcQn939MhpwlfCdQMuMO0b4nHE+d6DwmUVUiMeVkHDFoVLVO//TLQc9iisCt33OK8LPj7rh6/S4F73xAEeTkJCQkJDw8OJQCApeveePeKr2kBeIFq0GtBUgCpCKD+GnqttoNHT06NHSVnfkM7jF26vM0+lUw+FQvV6vZCeHoPgOBpKCiABZoWLsveiMFTED4gn54vrG43EgQ95GEG9/CDH0aj2vpWJMuwaEfjKZBOLvVnJ6xo8ePRr60SUFV8dgMCj1lCPOeJ6Cuw/cbQIhhPxBCnEJMP8QUSefhFjSP0+gJHPGtboA5Bb/xWKhbrdbCpfEBu+hk7R/eLgkogn3HwGEuaaiTwV9OBwG0u1iEUGenBchIXZrkFPgohCVd/IJECq4n4zRx+FtE742mTN3Svh2q54vwPvcJYOg43kYtVpNeZ4HwYPPD8dtt9ulViZEJtYd84KrhHXpwgaf/+3t7ZDvwJhdqGEeuMeTySSISbzORRAXLhgHrhp2tfBdMBISrjRk1apu+6xXHvQwrjjc9rmv0FOufZ76Wy099vlvOejhJCQkJCQkXHIcCkFBUiCEkEsqn9PpNJAKScHGned5SOPHpeCZBeQLnDlzJlTfqQxjKcfVMBqNzqp6UoWmio9zAMKCcIH7wbMeqKj6zhGIBlwP1Xh66HEu0O7hoXnS3q4NbuGPK8GSQjYE18OOE/SFu+jgQYVU/TudTnBtMM/b29uhjYPdCsg8GI1GgZBT5WV8EGTmkvn2HSMQUbIsCwSUe898tFqtEKbpIXusB29BgHyPRiONx+MggEA4aQXxthGv3nu4IuPltW7j99A/CKy7V8gD2G/3A+7DZDIJ4pj39vv9RhzodDqSFNpucFWwtnkvc+utCQR7IgT4tov+3lgQgnQjTvjYvBUGIc8dHDgffEcGBDcXM9iZZTgcajweB9HFxcM8z9Vut8M6YpwIQJ5rwueG++Q7mTBe1hDiB64HPzZrhjlISEhIOFe89RN+XVursZ7+61+vRz3vrQc9nISEhISEhEuKQxFhTtWWSj6YzWaBCENk3Tbtj0Hkpb1WhCzLwh72EAp6wbFIU+30KimIe8CpjsY2fkifuykgIlT8qbpOp9OwbWClUglVd4gMYgY7W7j7AJGC60YMIMvBd6sYjUY6ffp0sP1DkNwhQPWW3RXcas+5IX1U3/39iAcQTnbPYPcJSLS3gvjuAV61Hw6H2t7eDqR7Op0GIcO3qcSFwH+r1Sps3ck6abfboVVmNBqFOfaWB5wtkkL/PPeY9eB5DJJCOw3VcdYHAkHsIoE8t9ttdTqdQNb9XjEmhAXI73Q6LWUb8DxCAXPmO0G4YICbAdGAa3EC7cIYrghfT6wFHCyMneBFxA0+i56V4OvVr83nDQGo0+mEViZe4wGdq9VK7XZbvV4vOAxYm/G2obHLwtsWXISLtwBlLSFi+lpLSEhIOF+sV1p67ae8VLf9xpMPeigJCQkJCQmXFIfCoQDJgIR5iN94PFar1QpEhddAJqjyQ3jn83kI1sPiPRwOA1mRFIgzBImecUQG31EBskWrAnZ/hAHGxvMekgfxp4q+vr4uaUdkcNLNuCH5TtZ8W0ufG58rSYHQIUy4SNBqtUqBeT7n3uIwGAxKx/Y+e+aC4EAXG6j8VqvVIOBA8DxgD7jl38kl52Ccq9VKW1tbgbR6+wGAeBNyiXiCg8KFGe5H3IICUWULT+4RAhUVd6/ce/ifh/shsrBzBlVztuJkzljLODE8bJJwQdYq7oQ8z0uZGjhJELI8vJKfuS++xnCJIJpAyBEV4jYcb7+Q9qr+OEmYc7+frEXfEQOxBLcK8AwPskRYa+PxWKPRSJ1OR61WS4vFQltbW+Gzw5whFCKK+C4R/pjnocRBob5eGFcsciYkXCn4jne9+aCHcMXjeLWtN37KL+itH2jpBb/9Yj36u1530ENKSEhISEi46DgUgoIHtvGztJdnMB6PS9vJ8TxWa8g3dvXlchmegzx53zek0YkFRN3D27xK2u12Q0sA5xwOhyUiyy4IkKY8z5XneSA8tFB4XzkWfJwCXhH1HSkQPqj6InT41pcQJMbErgeIL74DRLVaDfkFzDWijqQS8fZUf4gi5/c+fuYN54G0Y9FH3OFeU5V3ocKT+clOYC4JleT4nvwPcSe7gIo6PfyEKiKgxG0IrBccCrSLcI+YT8QIgh99nSFEMX/MNeeVVLo/rEPIrbtB3LLPmhwMBkGEgHgjULBLCXPn4aJkOeAcYE3xO2Tft1ekMu+fC3fbMCacAi6aOLhesgh8nTjR91aMarWqjY2N0NLBa4fDodbW1kLrA64Uz0bgu4Lr95Yh/sMJ5AGunsHhrhGux8XFhIQrCT/xSf9Uz37rHx/0MK54rFda+rSm9Nav/Gk9ffNbdNOPvPagh5SQkJCQkHBRcWgEBYiyJ9b7cxA7D1nzEEYqst6n7W4DiATkKCZ2kKONjY1ABqW9SjCkvNVqaTweh90QqCBDTjwRfzweq91ua319Xf1+X+PxuEQkvfLtxM3HxLVBGEejUSCCVFUHg4EWi0UQL7DBQz69TQQbN1Vr5kJSuAZPxvcKMPeD+UTMIP+AXn964f0/z7ZgR4HFYhGyJMgLgKxKCuILQYm0bfiuCr7NIq+DHFIJ5zmfy16vp3q9XsqL8Dl3Iko1n3Plea6iKLS9vR1EBdwy3jaA6wEHAveG3ACyKGhtcFGBuWbeEQQQZhBGuPecD1eItLe9JbkSzJ0LA6wBSD5uHBw9sVvFHQu+DlxQcKfD2tqaxuNxWOveLuROBcQM7o20l/2wWCw0GAzCevTP5WKxCGuG4EwXFHwXCO6jB0v6WBCMPHQ1FkoSEq4UrDa3DnoIVxXySl1v+8af0+obCz37JS9W/qq/VzGfHfSwEhISEhISLhiHRlDY3NwM1UcnOYTHefChtEeS2+12qYVgPp8H8uLVRQQFjk91vd1uh+BByBRkiV5rbNgIHpBPqtmQNYQIxA92ioCcDYdDDYfDQPDyPC9VUr36zw4OiCeSQnvBcDiUpFKVFXLleRA8j3uCXAEnX/znqfi4AtbW1kKbh2/z5zsjuI3eBQwXG6S9ijUEHcGG+0qrAKQesadWqwUnCIID9xDngleXyUdAyOD++G4YzB0EcjgchvYV1o0fx9tePCiRYyKMsP64X8wzbQWsw8FgUFpnkGTWK6GWsfuE/2h9YKyeo+Dzwb1gfDhM4tfT8sP4R6NRWDu1Wi24a3wrythRxDj53V/n22FyTsYGkZf2RD6uz7evnM/n2t7eDrt2OPEHiATeouHtDrgP4swJHEeMlZwMxpOQkJBwMVDNKqpK+suff7kk6bOf++XK7jql5X33HezAEhISEhISLgCHQlCQpDNnzpQqmJARetUh31SY3cLu9nzIAcci/G88HgcSCKmF1PmWk1ScPXDRrdEQcqzvkG9cCl5hJgNiY2NDGxsbknaqxgRNdjqdULmXFKqoHkJYFEWo6B85cqRk73bhIa7MOpFEFPDdLZrNZiD2g8GgtGsApH40GinPcx05ckS1Wi3YzCFrtE0goqyvr4f5x7Lu7g/C/nybQYQI3y0DkojIwfWsVquSXd1DDRFDJIXXMye+PSIENd5KkntCHgFCAdfJsSHyuDE8YJM5xdHhW09SSYcIj8fjUJ33QEFyGLrdbqjO+/W6oMXngLmCTHuLCePzoFJvsyBnIRaJBoNB+MxJ5V1GPMvCHUWsPxd3ECHc9YGjALcK18hrsmxnu0hvU0CkklTaeYXzMjfuKHCHgo8NEY258qBHXs+99uyPhIQrDb8/zPV57dFBD+Oqxf959W9Ikv7Zc75My3e8+4BHk5CQkJCQ8NBwKAQFCPJgMAjExRP0R6ORNjc31ev1Sv37HkoIEcV+DXGGcEG+IUluJXeLPK+D7HQ6HXW7XUl7W/JBphAepL22gUajEVokqOpPp1M1m01tbGyEXRAg1R4MSf+9ZzpICvkAkFgP7/PMgKIogmPDcw2cICG8cK5msxmcIbgG2u22ms2mxuOxTp06FSzwzLEn4EOWESSYc29h8ao4v8dJ/E64mX8EI698+zHdcSKp9FpfV9xnJ4fMmVfdEUFwcnCPIPGMO3YSUKF34YLxs74IEKQdBjHHnQv8i7CRZVkIKEQ4Q2hDNGg2m6X2HFoeCKaUVMqs8IBEBDGe4/6REYEbwsNPmUtfQ547gJjjYoILKbzOW33YghKhIcuy4Crxe0CbEMfAxeDuDebQhQteC9yhI6kUhsrYOS7XnJBwpaGYz/SyT36mPi/lKBw4fv2Pfklf/JUvUeUv/u6gh5KQkJCQkHDeOBSCAiQE0ul2bCzjw+EwkBe3rjspIqCP9odOpxNIJ6/f2NhQrVbTyZMnAwmkgt/v9zUajYI9nP53yLRbuaW9rf6kPeEDkg65c+t6nuela5L2kufdXQBRhbznea7RaKTxeFxq/eAYHqDnZNRt68wbwgc9/AgaGxsbpVYB3juZTLS1tRVs6Z59wHaLjLXf74fX4bag+uz9+ZyTcUsKO2d0u13VarXgevDdBajgU3GGZNP+APH3ZH9EBQ8ahDgy7+QP+PG9JcHnIw5MzPNcs9kszB3H5NzxNSMwQNoRhdwF4S0uzCvhmpKCSMW4eYyKu7s52u22JpNJmEPEIAi3CzrS3u4aOBi415JK2696Wwdj9lBT1jPrAacG68JDOCUFUcG3tWTtsiZxYDDXiAiIUFyfO1FcbIi/V7i3fIb8nrmrISHhisV8pq+47dP1a4/6s4MeyVWN9UpLL/uVn9X/86+/Tfn/+7cHPZyEhISEhITzwqEQFCSFKqJXEiFhkE1Ilf+R76F9pN2Px2MNh0OtVittbGyENgFpr/o+nU515swZzefz4Dagkg4BJfAQIQAiBGGDZAIPTHQSDeGt1WrhWKPRqNTrzTG9R5/+/zzPAwl0YuWEz/u+vRLd6XTCOWn/gERB6jhfnueBrGEDHw6H2traCjZ/Wi04B9V8b53wLTs9f8Bt5TgcIOi0Sszn85A5gfMgJoQuQvAYwhJz4S4FcgGYBwQQbyPgPS6ogPj1rDuC+3iNOwEg0ByXarmHYuJW4NhkcfBZIAQUV4uvK+bD2yWYW9wrnIdr5jMg6SyRKc5V4Pp5jJwH1o/v0OCk3Z0HzBNCgbeXxC4aHDK+swZrk3nlc+9z7qINc8z5aWvwcElveXE3iV8LazZuoUhIuNKw3NzS1pfeoGf9ty/Qn3/07x30cK5q3Frr6D/++M/rWzvfoI1fSdtLJiQkJCRcPjgUggJ/1MeAeOI8QFCIq5EQMwgbveCSwvt5baVS0bFjxzSdTtXv94PtnKDE0WgUQvQgytPpNLQZ+PmlnSoyRN/zGzwYD4EDMtlqtQLh8awHqsRuZV8ul2q32yEcT1IgOhzf0+9jIEjgisAxQVsGlV7C/Gq1Wql9oVKphHYUr1wjhNAiQBV7c3Mz7GRAhZ0xelYE9w+hgfkYjUZqt9thy0cP0IMQcu2j0SiQTeZ5Pp+XMgEgiARZMheQaMbDffVtSn2ucS74LgOeDeBimJNQJ85OVOv1ulqtViD0TuYRB2htIDQUsUpScDa47Z/34V5wF4gLb4zL74WkkBPCesD1wGtdZPE2FebJhRd3zdCy4G4ZHCi+s4e7BvZrjfCAT89ccJGK51kD7qrguhmjuzn2u39JTEi4GrC4407lL3mUbn3J1+vRT7lDf/zEPzjoIV21eGazoid/w9v04V856JEkJCQkJCScOw6NoAB5gYxLOqtvnMoor43JDDsOkGMwHo91+vTp0o4Kq9VK3W5XN9xwgzY3N3XXXXeF/vZerxcIs+80QS6DEw4q0JKCA4JqOJVWD+WjXYHecAQKrxpjsYZc0ec9nU5DSF3cv8+WgbR2QF6p9kt7OxqwDZ9vuYeQ4CQKYsd43bXBPHCNXH+n0wkOD7IwfJcKWjcgg05sEWSoXtP6UK1WA/FkHt3qH7sWmHtaT1qtVnB6bG9vB+LpFn5Iq4spuAEgoggvCDy+K4GHFjIOb19xQQWwbhGypD0yz72gTabRaIRdOlyM4POAGOFrEoENl4IHETKXXDOkHMcE7hSuz90sLnpwfhfFeA9bPOIWQXRjLtvtdph/RDKEIubHRQXWtO944u0fnqOB24fvAYIdXfhxV4KHRsYBjCmQMeFqwfJ9t+kx33qbsqd9tD7mWS8Jj/+7F/2KvqA9OMCRXX34qhN/oxd/z0t004+89qCHkpCQkJCQcE54yIJClmU3S/oVSddJWkl6eVEUP51l2Q9K+jpJ7IP0vUVRvOqBjgURgpy0Wq1SSnye55L2Qud4PZVPKsyQPgguDoTNzU21Wi0dOXIkEKZrr71Wp06d0smTJ0PwHcIDRB2yAin03nSqn6Tyu40fkoQ7gmsbDAYlMiwpuCHcGg7hoz9/MBgEYglxyvM8BEnSJhELCIxZ2ttOECs9LQqS1Ov1JCm4OjzUcn19PWxDiVPDr380GgXC2+12w64PTmbpj8fJ4MIE95n7SWsLrRwQYeYTgYffZ7NZIKsIN4gS7p4gDwOngm9pyJjyPA/k0xP/mTsXaaQ9QQFC7YGRkHKOhbvAtzn0HUpoi8FFAKHG7YEzgnvtoZWcG5HKq/FkRLCevc2i2+0GsYG5QARyscavjfl29wifKUQYtpkkx4TPB2IA5+G1cTCnCzb2fROuiXn1NhwcGO68YF16xgXXwbE9o8PXvt/Dw46L+V2ccHWjeNM/6IY37f3+U+98nv7jxuXxObiScP0dk4MeQsJ5In0PJyQkXM24EIfCQtK3FUXxlizLupLenGUZcdE/WRTFj5/rgZwMYYPGDi7t7RwwGu1sb8Vrqd4ThIhLAceBtGOD7/f7QVAYj8daLpc6fvy4rr32Wt122206ffp0EA9oNaBqCdnw0DaEAs7F1ns8Dinz6jQ7IWxvbwfxgZ59J1NUoBFStre3NZ/PNRwO1W63gyhAKOJkMim5BRhjHGQIceLcCC6DwSCQR8QZSGitVtPGxkaYQxcs6Pc/ffq0ZrOZOp2OOp2Oer2eNjc3g7MAMsw1IvYURaHhcBhCMT2/AFGAEE4IK+ug3+9L2muJ8Uo2QFxiG8hWqxXcB3E1nq1C2+12aKPALUPIIwIP2RyICJPJpJTb4NV0CC9EHDGIc+8XTjkajUq5Au7w4B6yFr0aj3DkTgYq8QhAOEBoA1gulzp27Fi4Rl/rLpzEgZSEPLowBlhjuDm4/8wz18995zpZH8yjZ37EIZcuKrAuyNPgOjwHwsMc461LvaWD8fu/l4lL4aJ9FyckOBr/+43av5kuISEhQvoeTkhIuGrxkAWFoijuknTX7s/9LMveKenGh3KsLMsCOfbqs+9+AKEZjUbq9Xqlbegmk0kIZKTCjV2/Vqtpa2tLJ0+eVKPR0PHjxwNZvfnmm/W+971P73//+0vEmrYKJ4iQJyqdECcEAUhlpVIJBBkChsWfCrn3hUNqqDbTmiHtZSlQ9W80Gmq320F0YE64ZhdAXFBgnnieqny32w0tArSZQOzYLhMBgOo5802IZaVS0fb2dhA4PMl/Npspz3PleR5cA9PpNOy0wXxyrRDd6XSq0WgUCCdjajQaQYhBjHDru7SX4I+jYjAYhF06eJwtLSWF60JA8a0gcZzEx2ceydxgJxDEHtaKt/B4NgVCFNfN612kYs0zH6xDxshng9/drcC64roQvFqtVli/CGEc64Gq9Ixt97N+lkgVi1kcA1GHzybrAlcCc+PtCi6mcM2sbYe3KXiLhudI4ADh3AgUCCw4QySVzhs7PA47LuZ3cUJCQkLC+SN9DyckJFzNuCjltyzLHinp4ySx39E3Zln2tizLfjHLsiPneIxA+Mbj8Vk9zZACgvfyPFev1wv92RA0SPxyuVSe52q328rzXMvlUidPntTtt9+ue++9V4vFQsePH9cjH/nIQKy9gux96fwHMYorqN5bTj4ChB+7O2R5Npup3++HKr4n9WMT9350RI5+v18KS6QyCzlyt4NnA3ggINZ2SBeii6TgKKCNgf+wp0Pcad3o9/vBjp9lWdiJwHMZuF6yAiqVira2tkILBNV7nAZObr2CvFrt7LaBO0BSEAtc6EAEYDvPoig0Go1CfgLWe9oPECggogg4PObhfZLC/QEQVkQZjoOo4hkKeZ6r1WqdlTewWq2CswXBgDYI7/FHCKEtqN1uq9VqhTXHTiAIOwgj3MflchkeRwRYrVY6ffp0EHXiSj3/eeYD4gjrnzHGApZUDmr0HRdoOUDYibd9dMeGz7+LFZ6z4EGh7sZAuMBRgoBAi5NnnHB9/O75FJcTLsZ3cUJCQkLCQ0f6Hk5ISLjacMGCQpZlHUm/I+lbiqLYlvTzkm6V9LHaUWt/4n7e98Isy96UZdmbsJ5DTrC9z2azQIC9p3kwGKgoitKWiIgIEFS3gLNjwGAw0L333qs77rhD9913n2q1mo4fP66jR49KUknI8PBHaS9Z3okyggIBelyDOyqoljoRRTTp9/tBNKACvLm5qcFgEAitb29Hu4Y7JmixiFPyEUdsvktBd1yTiwrSXu4D1nYCKbkeKuYnT57UqVOnJCk4Ms6cORPcDmwn6X3yzOH29nbIMvA+f8YShwhyf7e2tsIuEmQOIGRAmnF5QHLn87n6/X4QQBBWJAXBCYJLGwL30EUF7jvj8nBAz0CIgw+Zx1qtFnbr2M9G79V05pp7z+v9HtJ2Qh6Fv77Vaml9fT04F4bDYZhvxBbWDgILx2d9sl75HMxmMw2HwyAGuZDlbQhOyplTHCcesCmpdN84F59Z33qTa0MEQWTw8El3EyCYsGMH18cxPa/CnRnMKZ9FXyuXAy7Gd/Fc04druAkJCQlXHNL3cEJCwtWIC9rlIcuymna+OP9HURT/ryQVRXGPPf8KSX+433uLoni5pJdLUp7nBaQCSzskgOqkbzkHOdnY2AgEwAUFyAekiMyBLMs0HA5177336s4779S1116rbrero0ePKs/zEFLo9ntJwYVAVRuRQ1LJFeBbz1GJ5TUQI3rKqeTGFvnxeKx7771XvV4vVJQJUZxOp9ra2lKWZer1eqG6S1sE5JtxkFmwO98lkULa22XAK992f4Ibwd0fkMjpdBps7+12W8PhMGRc0CZBqCSCkPe+E9rI4wgyEOrlcqnhcBjmgXaJfr8fiCVk33eJ8NYFRAFIpdvaR6NRaMeg2s1YIffMA5V1acelwP3zjANviWAd8jre0+12w3pyUYT7zDUAd8l4pZxz4kzwHSz4jCAWcc8nk0kQOTqdThBNmCPfkpLf+SwxJm8pcFHE76sHOXI9Lrh4psJqtdJ4PA7rwF0BBI56WCnrFCeHOy28TcQ/v4wndjAhArqgwOfWgyovo2DGi/Jd3MuOHv4ej4SEhIRDiPQ9nJCQcLXiQnZ5yCS9UtI7i6L4z/b49bu9ZJL0hZL+4RyOFf7whyAOh8NAatyWTOVxMBio2+2Wkv8h/N4HLe0RISrRp06d0r333ht2f7j22mt1/fXX6yMf+UggM/T9Qz4gMogXVDd9+zypvH2gb2HJteEAgMDGYYlUcyG1BCi6rR/iDnH2qjPXS3UWqzs7ZUC+qfByfkgqVXWIvff74ziA8HMutmf0XndII0IIr+e4vBdnhdv9eR7S7dtsIsL4nNO64CF+kEsIPpVwyKlX1j0UkHvLWN11ArnEtcHv7iKA2HJvEQPIfPB59rYezytw4YM1A7nm/kDUIcC+64K7VzywkBaVTqcTxsq2oIh0rEUcGS6Y4PiAaCNYcG+dwMetGr4uaf3w9cH95zOK0IXIwHXyGcM9FM8XApA7Fvis8R6+bzx3gnWAqEXLzOUQyngxv4sTEhISEs4f6Xs4ISHhasaFOBSeKemrJL09y7K/333seyU9L8uyj5VUSPqgpBedy8GciPgf/ZAXb0FYLBYajUYaDAZqNpulbfZi8QGBgoo41dI777xT99xzj2655ZawOwHbCy6Xy9JOElRXseZTzcfG7pV9gCCQ7SbeT6fTIDCwlR1kBZKPXR9yNxqNQthfnuel6yPgsdFoqNfrBWt/TIwgyMzRYrEI46LnHIv9fD4vhWEiLLgFXtoj0J6t4HkTtCi4NZ5jeSZFvL0lYgv3ezabaTweh5wAxCSINQKCE2vWjVfYW61WCAiMnSXMPaKPZxWwqwbilIc6Sgo7ifg1IF7Fdnnuj6RS8ChkF5HCPwuMB/I9nU41mUxCSCdiGuKBE3jWOo9DmnGttNttTSaTUjsHTgfaT5hf/wz6dpuINryGtewuBd7DGsAtgsDF/ULc8mwSHzPrlV09EJb4TLowxxiYj3jcnENSSdBx4dGFp8sAF/W7OCEhISHhvJG+hxMSEq5aXMguD38tKdvnqYe0vy6Elz/k+d2rpJ78DkGkCku7gLS3TSPHpXoNmcbyfvLkSR07dkytVksbGxthN4PxeBxIlQfIUbF0p0GcdM/YIDueMA9pwrXA1nq8v1KpqNPphKA/CGqr1VK73Va/3w9igSQNh0PV63X1er3gqGAO3NlBNgSkigo8ogMtFd7aEYsI7iDh3zzPS9flO2vE+QM+Zy4e0ZrgVX/cDYTrTSaTktCEmMHOEZ7cT+Vf2msNcGeJE37O4btg8P549xBpb+cRBAfg+QW7nw1Jew4Mz7iAUCMuUbVnq1TWJ+9nfr3VZjQaqd/vByeEhw56Xgfz7Zki3ipCKCb3ASGL++uBp/7Zw4niAaS4eVwI5D8XN5hXzuHOAw9bHI/HJWGANe15HohLfg6ff1xELjJ6i4wLYJyL4/Ee3neYcbG/ixMSEhISzg/pezghIeFqxgVlKFxMQPoh8F6thQDHbREICtjoR6NRsE5DUjx4EBLIOba3t0Mv/fHjx3Xy5EkNBgOdOXNGkgJZp8LPNnyQFAiRV1X5nfFC5Kh2Unmlqs2YsPtDYCGLce6B9/jP53Ntb2+X2gWGw2EglJ6yj/DhvejMHcGObu+u1+uBnHrVWdpL4m+1WoFMQt4YB/OBfZ358hBNiGyr1dL29naopLsDAvLn7QgIMGwTivjCNXMMiDDj5/p920QXKrjPCDq4AJx4eoClt4Jwf93dwRom14F7xrpgDQyHw5Df4dscsj58vXCtuB1wbXiYI7tfMLcuECFgMFZpr02HY7iIgADkrgrab6bTaWm9uujAuuNa2+12KVPC2xI8p8AFCT4v3nrAexgnY/MdGzyXg3scB1d6Dorv7MD5EJYuB0EhISEhISEhISEh4aBwaASFuLrshINKs5NGaYdseRCgb5cI8YOAt1qtUsAdBHI6narX66ndboctJre3t0P/fp7n6na7gVy4iwLLupM/ac8C7/3lEK35fB7aKtye7+IEVWre7+RUUgh3lBRaH9jJwtsLIKJOmpmnwWCg6XQaHBEQT0mla/T8A5975pmgQb8myB5E0AP0KpWK2u126d5wLQhCVIiZX9ofcI+4i6Ver4ctGzmmt1Ywv7g0eI62GVpdCH50UcHXomdesBMFrg7PYWBu3F0T31syNJbLZRBuqNojuPhuEO5+caLrbRqsO9YiDhhJIeMidtsAF4wQXLheHECsRQ8+9R0n3BXEWo1bFmq1mvI8D4+7s4f3sG5ckOAxF4QQIny3B88E8fdxXYgKzCO5FL52/HPOYwkJCQkJCQkJCQkJ++NQCApxuBqPea+2EyHvk8YO73kAvuUcx8Ca7dVRjptlWRAUINZU173NgYop9n2vcLoV3HdtoGrr1d/RaFR6L8SJ64aUU0l1u7akcK20fRDiyGsQEDztH5LLsaWdXn53DzAeEvC9tQSLvFeGEXBwgAyHw9JYXdCQ9nbLYCtPdh4gO0LaE2GcgEP6cA1A0v3YCB+QYMZUqVTCdoWr1SoQ9vF4HHamINSS9cD4qVT7+iO4EBHG+/SZL0gr14LTgfBIyOxkMlGe5yGMczAYaLVaBYEF8cIzCiDVnIOxuRsAEs+1FEWhZrNZcmswLp73c3AfIPm0NrjwwTqDlLvogZDj4/M2Dz5H3lYQCxysFb9OX6fMOXNB60f8PeLik19/3ArlrgjOx/sTEhISEhISEhISEvbHoRAUpD1RQdqrgju5cxHBbdFOYAlodMu1V0MhmJzPcxqazabyPA//QlBIpffUeyf7tA9AliC27l6gh56x0EoA+YH8xRVdd2wwL95q4U4IiB4CApkEtBk4sXby5u6P+XweqtkuqPCvb3mJM6Lf76vT6ajT6ZR66BFx4tYOac9hwXy5q4SdKbD6QyS5TuaOYzO/iA1OpBEKmA9vs2CHAQIzJYXH4rmGVGLz9/YND22kgu9hfp714etN2nERQMw592AwCM4YXCfAST5jYF3FO2BwH3DwMP84b3CNuFDnmRPL5bJ0b3AgeGuDC0XuxOEYHn44nU5D64dvmxoDl4C36niQp3+O/P2sU17njhgX+OJWCxes4u+TJCYkJCQkJCQkJCQkPDAOjaAg7Vmk+VlSqXoJQaEP2smTh8xB0h2IBp1Op2RrdgKKiwFLu9vl2+12ECrctUBFn/G5QwLy5e4GryBLe64Dd19wPM8TwJHggXKxU4J/Idq4N8hJgHD63OC48EBHqvgIA9Ke8AAJg5gOBoOwG0Kj0QjX7PPBeWKCBiH3QEQnqVyjO0qcMPKvB+9xLJwQuDloaWDOvQUABwHj5Xg85oRWUthBglwESUHMiNtymG/aWtyZgnDCXPkuEggBuEuAuxOcLHvlPv48IZLwvOdHsMYZn88nY2E3C9adA5GP++OfN58Hb4/wa3VHgDt6eJ7PN8dwB4i3KHC9jInr8Mc5H+IIbSWx4AB4LCEhISEhISEhISFhfxwKQcEJBfAWAV4DcYL40/MuqbTjAmQtrmAWRRFs6kVRhBwBiIYTSe8bx45OSwWCAMRIUrDa+/kgNR6qx/UgZkDc2AKSHSs8aA9S7ELIYDAIZMhDGp00UYX2qjYEzwkbZI+K9Pr6etg1gZYKd4R4BXkymWh7e/ssW7nPCWIMx6HtpNVqSdrJTvA2EOYDcI/ZdYAWDO+zl/YC/SDIZCPQux+LG26/Z368XYRrigMHpR3CPB6Pw/GZC+4p99rFHir8CER+vd7ew/pyN4Tb+xmHrzEn8C6CcK8QlxAJcHawFrkntGT454hxe2sHx/b1zr134YSWA47lr3PHkX9mPVfDP5+8j88cbTwuKLjLyQUOfuf4vrMDc7afuJGQkJCQkJCQkJCQcP84NIKC2+zdDg2BickD1WS2DvS2AnqkIUMQLyqkkJfBYKDNzc1SSCDHbrfboaINeaTdgfNAUumJBxAwJ4Ac29P4fZtLnBCQebZDbLVagSQRLAnJZ2wE50EYIaOQL6/qcz4IG64FJ1mSgt1+a2srkG5Is2/BOJvN1O/3S+KPE7nZbBbCLj3sj3sJgfW8huFwGPIVCNyTFFo3GC+7PLhjg7WzWCw0GAzUaDTU7XbD85wDMcBdGIhJuBxYf+Qd8Li31UCg43Ydd7IgGvEYogO5BvFuES6EMe+AVg/mGnGA+8v7ETcYC3kXvs45Z71eD3PCZ5G1xOPkJfCe2BkAyef+ugvCP5fxji2ec4LIMJvNwnW6s4f1hhuG87sw4OvPvzd8XWRZVmph4rWM09+b2h4SEhISEhISEhIS7h+HRlBot9uhSu3WY8gKZBAiS5W5UqkEwkclnwowVXG2lUNccEI8Go3CzgFOGv28kCF63iF+HjwoKZBRttXzyjhEqlKphJ0VvOIKuSF/AbLsbgCI1Hw+13g8DkSLdg6qzowB8sVY6BeX9nZD4DrJjZD2KvjNZlPdblebm5saj8cajUYhsNKr8cwrxI7HEUbG47GazaZ6vZ76/f5ZhJ33QJ5ns5lGo1EYK5b9Wq0W8hB8JwoXjrzdBGEFgsx6wo2BwMR540DOyWRSCjCkiu9iEXNFpgLCAe+Nq9yeMcH7vC3BK+cuqnG/INIeXhm3geBYGY/Hpfl1BwTjwlUzGo2CUFWv10NIJnPr43Hyz5p2hwrXwb98Xri3kkqfYUQDWlbc1cDP7kRxYcNdQN4aE4c8sjb4zIzH4/CdELsp+HzELRAJCQkJCQkJCQkJCWUcKkHBiQ8kHOLk2x8SKucVdScy9XpdnU6n1F4AyZ5MJqWsBa8oQ+gXi0Wwx3tIHSQaSzbiAK0QVDMRFKiOMlYeh9xA9nEXMA6s+FSYPZQQd8FisQhbIfoWhI1GI1wvhBaCzLghp61WK8x3s9kM22hCLgnQo48f1wBjcecFjgPInFeiEV2w2HMMxjUYDEIYIWR/MBgEBwfHIGQR4YZWBe4Vx/Y8Abbp9PuzXC41Go20ubkZdjAgN4KQRcg4184OB34MwHUj2uBs4d77nPm/XJNb+jlf3Bbg1X3e4xkZ5FfEFXUP4XSHDXPDVpitVivM/3g8Vp7narVawcnjYgqtMR7M6G0e/O4ZBIwLkcx3YmEdsY5dQIvFC9ZDHLjIuf0/D5FE8OBz6HMb734SiycJCQkJCQkJCQkJCfvj0AgKjUYjEH5I4draWnANeDgdtmqv8ntvOaS7KIrgPpAUUvRpIyCAsdvtBks4BNxt7Z5dAEFjrAgK3oMOOZf2Uushe7PZTNvb28FR4O+T9kiw7yQBfLcAKvWQXP9P2qnmdzqdIIa4jRxC7lXyWq0WWgMmk4nOnDmjPM+DwAGJdXKHgOHXCWFFGOAxMh+YR8SZ2Wymzc1NbW9vS9rZ+aDf72tzczNY62nPYD4gnC5g4JTgdfzr1X8q0B4giNuBOZMUHBjsAEGIX1EUgbj7jgg+jzzHcbJsZ0tSHBMOz2tgDgl8dKLruQOIKL6FJWPiGKzjmCxDrLlOF+bYyrPf74e1vb6+rk6nEwQYd5W4cOBZCLQe4ApBFGT8Pi6u291HHo7Ia1xc8TXuLT0xeD+fKdoceI574cIDolA8dwkJCQkJCQkJCQkJ++NQCApSeUcDSYHwU8WfTCYlIoOtnIo/VX+IDIR8OByWQtew7kPMsftTnZYUiATtA06kIGSQVRwGtF7QG0/lFvLGNS6XSw2HwxKRjAUMyD/nh9TE1nyIdrPZLPWbe9sGxyTIkO0amU8n6+QmMM7BYBCe63Q66vf7pRwG3AJcu9v7PTMCcuZbFxJySahjv9+XtEPw2Y6SUEmOMxwOQ/6Ct7/4mol3ZfA5pQXE2wP4D3cGoZjetkC/fdxKg7jBcwgZHkLIPHAOaW+3AbfdM2eeBYCIwfFwJSDUIJYhStHKw3v9XuDKYS4RWnBv4CDxoE5cL7gXyOVATImdNXyeXARDSGE9uljg7RB89rlPfK55znen4LO4n4vAcxUQILgHLqIxZn5njTL/KZgxISEhISEhISEh4cFxKAQFr3B6ZgGkFSLllVqvdgJs/J4y79b+oihCT78HNSJc8F5pL2MAccHbD/x1/X5feZ6r0WiUqsDYtSFJTvDYoo/jQI7JVoB4Qs6oovquFnmeB6cBrggProOQsV0kNncXXjyHwnvva7VaaHvwfnVaMZgHhBW35EPAIYG4EWi1wN2xubkZ7PP33XdfcCTwPoQR3+IRsumkluPh8vDdNJbLZXgvrgbPjqBthXlxJ0Pcr881LxaLIMrEdn53KrgowPyzrhgLmRS+jj3bABLvQoZX/N3B4FtDIga4AMdnydtUuG5aaRBOmE/WKWtLUhAVnOxzDG/dIKvAnSoIDu5q8B0lPDuB9c9aYm155oHPfywk+HeLux78fT4mfufzhHskdpUkJCQkJCQkJCQkJOzhUAgK9NEDCIITDK9O8rxXgCFR2PMhBxBfb3sYjUaBQI9GI83nc3W7XbVarUBgpL1+fCrrTnaoQNNPDqkn5LHVaoWKP+TM3RQco16vq9/vl4iqV6+5Nifjg8GglBvA2NzlgI3bq65SOdAOMJdUqhEymBsXG7zVAELJdXFvuDa38iMqSDttDZPJJJDe7e1tbW9vB1JLa0FMnHEGOAH2NgBvf4EMcg99LB7Ch8OC8E5fk/6e/TIBeK+/FocH/yICMQbfyYQMBNZ1vMtAtVoNQgHnh6RznRB61qEHI3prAOTZq+7uGOA5XxeeZUCeAmvFP4uxIOItG5yXdcx1enuHZyDQmsDxXLSgLcnHzO/+2Yq3hmSc/Mf4XAjitXE2hosTCQkJCQkJCQkJCQllHApBYTabaWtrq2QthyhAcqnMQhCpYvMHP2Fy0+lUnU4n/O4Bi5A6dy/Qs7++vq5Wq1XKC+BckHCv8Hp2gZOWxWKhzc1NFUWhjY2NUN3d3t4OFX9aBSDEjH86nYZ+eyq8vh0mwghuBYga58b1AAmlB51xepCfEyd3QTgJc/IJWff3xPeKcXhQn1fqGddwOAxOCkIMyc7gPDgLIIvuFCFYk/vhbQ20nHBOxiSpNF9cH89DynnMWzgQfiDJcfuNZ20wfqz8iCce3MncuRsH4s6aiEUzD5p0Ys4xWD+4PBgf9xURgPvl43aBIL5vcUsHWSfedsIY4xwP1hVOAxfGOC/XgViCo8C3poydC7HzgnO4myAWHFwU8pwLXx8+3/5YQkJCQkJCQkJCQsL+uCBBIcuyD0rqS1pKWhRF8bQsy45K+k1Jj5T0QUlfWhTFmQc6DgTd+8UhvXHPM4QjJriz2SyE+bVarfAYVmwQBy1Op9MQRFer1UrtDN7/z3shI5Dvdrsdtob03nvs9O12O1wbY0FQILyREEMs7pyXc2Dlp+KNoOBhdE68yILg/T5uiLuTK84NcZ1MJmEHCSegnAd4voTfH+4RjyFSICgg9CAc7Bd+59V0tv303S98fQDaCKiAuyDhlXKvqFPNjkMTfUtO3uduDJ5jrvebH9Yu7hREBhdg4jXlbT7MEa6E2Lofg/n3wEF3azAG5tdDP3kt8+vimwt3fh8Yl38evIXB16A7X7gfjBOhw+fAx865PU/B76GLZi6I+Rp3R4fvfOHXvl8AYyxUHFZcrO/ihISEhISHhvQ9nJCQcLXiYjgUPr0oipP2+3dL+tOiKP5jlmXfvfv7dz3QAbyP2/upvb3A/9inkunvL4qdHR22traU57nq9XogrlK5TQICzWP9fl/j8bhEfLwC6kQntrZTtcXVAEHziijwrAKuj/d7ZZzje5sCr221WmEbP8bn88B5qFQjRqxWKw2Hw0Dq/fjkStA/TlaBuzRqtVqpis95EUu4Lt/2k7HE94zqNq0KjMet+N5uwg4D2O6lPUeKZyBANMl24HVkRfg170dKIexefYdQE5y5WCzUbrfDXBB4yPyzRuKqPeJI3JbA2uZcHIs1BMlHDPD+f3eQMO88F7emIHRxLxEuuNbpdBrO7bkPzCufMc8I4Rq9jcPn0d/roljsAPD/uL/eXuECGPeVFgjmMF77XDvz62KkC06+Hl0I83t5OQgKu7jg7+KEhISEhAtC+h5OSEi46nApWh4+X9Kzdn/+ZUl/rgf58oRcQsq9KiztkQS3aN/fcQaDgba2ttRut8P2dx68xnaFkgLRWS6XIbOAFgMnSJJKOwqw3aTnCDB2chC8ukt1OMt2thDEkg+BcXs/ooZX+L3lgvONx+NAtjzozq3e0l6vP5V6hIO4Cs31kS/B+GLXA7sMeBuFW+LZhjEO4Nuvqg6x9LYFxuW7aCwWCw2Hw3C9HM+r9k4OcYjwM60jOARYUzyPkOW7JHi1ezabhR0VOBbCk1e7GYffXyf+++WAMO+sLRciIMPe3+8CBe/h2l24QBCJSTWPERrqu594FgXOAm95ccQtGIx5v5wTxsqcscb9c44IxTF8/EVRhPYWzxVZLpdBbOO63RHjDgcfi4se+7VEcO8Q+4bD4b7fN5cBzvu7OCEhISHhoiJ9DyckJFzxuFBBoZD0mizLCkm/UBTFyyVdWxTFXZJUFMVdWZZd82AHcZEAUuD2ZMix7xwAnBRBvvv9folwOCGGoNIy0Ov1ApFsNptqNpuq1+ulZHpvQUBQQHjwai8EhErvaDRSlmUlEQM3g7dVEAaJQ8B3NeCayByIW0I4hs9Vs9kMPfWQ8DzPQ4uFCxzuBsCp0O12led56JWXVErbhxxyHncA0DJBa0ecW8F4JZXIPW0fzBPk0iv7bs9HyPC1wT2BjHpV3avuEEfmFGcA7/djcA7OORwO1el0SiGVHBsSzjphnlmfCGe0CbhTIxbR3OXhYgJiE60UtF0wHv9McUx3+3A8F8skndUSwXiZd8QG7pU7X1wU4jPmbhPWsH9OvGXJcxpcCPOdKlhP95fT4OsC4YLjeFsJW7K62BCvTf8sxbkbhxgX5bs4ISEhIeEhI30PJyQkXJW4UEHhmUVR3Ln7BfnHWZa961zfmGXZCyW9MAxkH+Ip7Vnhq9VqIMSQfUmhIgxZ8J0XaIPguJBJRIBqtapWqxV2e/AKKkQFUkE1HqLo/ftxeF+e51osFsFF4CGJs9lMeZ6X2jo8Bb9arYZqeqVSKfWoQ4aYCwgaAgcksFqtqtvtSpIGg0EgscyVtzQwD4wJcocLg8r1fD5Xo9FQu93WaDQKz1erVU2n01L7gl+ruy2YI3ecSHvbF/K+2DXB+yCC8bmcrLtzYL/qPOf1HA4e920n2ZITEYdtNovdLAiEIWlPpIKU8x7cIghYvJZ7yu+e1eBCE1Vy3xEjy7KSo4XrhghXKpXQluIk310BzDnzzfljdxDX6+uQ9YK7x/ML3D3BevPfEVd83bvg424fbzXx9RFvswmYG9aC7+zCOflu2P3+Cfc/bk/hO8JbMC4DXJTv4qbySzW+hISEhCsd6Xs4ISHhqsQFCQpFUdy5+++9WZb9rqRPkHRPlmXX7yqx10u6937e+3JJL5ekLMsKSDQkAMLjQgB/8Hv12IkTv/Ma7PkQCncgePsADgVs9ST6U2l3ogTY5aEoCrXb7TBWFwoGg0EYp/9LyKCk0tjjars/hgiQZZk6nU4gXVTWa7VaGL+kQHYho771ZbvdDnPIGHiPOyHc7g4ZXFtbU6/XC86KVqsVdmmIcyYgkt4/z/m8Ks05fD6owEMmERTYFcKdC15NJ48CK7wLQqwrfneXR5w54OvCBa3JZFJqHXCxycc6m83OstcjvMQ9+VTK3ZXAa7D6S3vk38/LtTOXrBuIM84c1jDz7p8TdwuwdhFaJAUhwrMZfN14uKO3eHDv+ZwgBCJK+HaQ7tJwB4Qfy0k/64V5cMdBPLexW4I1wGPu+omdJ7FwcVhxsb6Le9nRtK1FQkJCwkNA+h5OSEi4WlF58JfsjyzL2lmWdflZ0mdK+gdJvy/p+bsve76k/3WOxwt/1ENKIQlODNfX17WxsRHsz9Ie0QIe5AbhoNq6XzAf52YHBYQNyLXb58F8Pi+1MoxGIw2HwxAgyHgREHiMkEHs6l4hlhRyH7y1wrdB9CyGEydO6MiRI6pWq0E4cKJVr9fV6XRCuKHPAU4HiBrOCsQU2iWYG7Y/5NztdludTke9Xk95nodrhXB7EKCLEXG43mg0CnOGSwBbPA4Iz6Lw1gYq+IhDcXsG19ZoNMLOH7hLINQ4TpwIc29cxKjVaup0Oup0OqpUKmELUG+JQKRByEJUcPcNwpCLIax/xuVBm8yJj0/aE148ZJBrcweIf45w8LCOvF0jbvFw8o2YwPpycYHXx6IR8M8MrhUXoPh8c37uIcdzIdEzJ3wc3ibBuNzZ498hfHZdAEHI4XyMmc/qYcfF/i5OSEhISDg/pO/hhISEqxkX4lC4VtLv7v6Rvibp14qieHWWZW+U9FtZlr1A0oclfcm5HtD/mIfMA7evU5WHXJCH4BV1rw47yfG+aO//53daBnAQ+G4QfmzIIYS52WwGUonlmq0j+/1+eK+TuNiGzXVzPc1mU61Wq0SQsNTXarXQ1uC9+ZKCUMAc4BRgDrF0+1gkBTEB4ueVdI7hu0d420ij0dBoNArXD/GHQDabTeV5HkQGSOV4PA6he76torSXL4GgMJ1O1Wq1SlsXessIY8ftgrjBffdrQWjwUEEn1r6DAMeDpLOl5mw2C2JP7ALhXi4WiyDUICx5loP36HtVn2Myj7TNIHQhIkDmyeBwdwgtOrQJ+BrxlgMn/TgvXBRiDhFhXMhzRwdrhHXnbgB3PbhDgHN4DgKfuf1aKRBMGKsHUnJd/lmOP/dxZgLX78GtLvLF7TWHFBf9uzghISEh4byQvocTEhKuWjxkQaEoig9Ieso+j5+S9OzzPd573vMePeEJTwi2eyqoEIm48hlXJf01sR3aiZG/1q3ykkoVfqrE5DF4wr4/jzUf8gqZwiKPqADBGQ6HpWtjvC4wQLi73a46nU4gQU6QJYX2jfF4rNFoFJwH7ECxWq1CpZfqdL1eL7ULMDc4IqQdooaLwkMSXcRxIl2v19VqtcK4JZWI7O66CPeEVgIn3l4dpqWB4yAeOPH0xxg71X+/N5zTd2TABeB2fOYH0hu7AZiD2InB8xzHLf1u1edcuGB4H+IBAgVZHu6e8HPgcvFATsQdxsV8c0wXw3wd8PlgTrhujs29Yn1yXH7mfvm6j9sPYpcEnz3EB2+hQCxxgs91ufDhzo7Y5cPr/PXedsL92W8LThc14qyLw4yL/V2ckJCQkHB+SN/DCQkJVzMuxbaRDwlxFoKT+/2qzPzu1VUnBNJeFdZT5d3iXOwG7HnOgpMpSSX3gJMljou1HiLHe2u1mtbX10P1/vTp02ELyzhkzs8b28gZY7PZVLfbDQIHZAxLPg4JJ8qx28Kt/swpz0FgqYZ7pZdxUmmOq9YcB/LpjgN3neAK4PU+f+7uYA4QJWhrcFEFZ4Q7LNyq7nkcbuGn6s8a8PYC5sjDAL1H30UNyDkZB4gt7gDwSrqkkMFAC4gTeo7Ptp2tViuIVe4ucZs/a8Sr9Ag+tBEwHt8hwcfl4gfXz/zSKuJtEtxHv68x2XfxICbq/hn3nUZ8/L6byX6fbf98+7rhs+frDfgcuVOHzwRj8bYOFz8SEhISEhISEhISEs7GoREUpD3SKqlERpxAxcQFUuGPu40ZeLCdVz77/b76/b7a7XbpNd6bTgsDz1NZ9j52t3rX6/XgDMCej1OB4/E+iDd2eK/21mq1MF4InmctDAaDQGa73a4ajUYgSKPRKBBrz5Fg+z3mCELsdvI4IR9Si2BBuwKCB1b7PM9DpRtHA/PMmDkux/JqsWdWxK0qtVot5DisVivleR5yESaTifr9fiDqMYl1gu1ijq85F68gl+6qcMeAV9b9OnGGMJeeryDtbRlKhgLnc5FguVwGUYFwR1wOMYH2rTURD3xnDMbA68hicOcP/3mGgX+2YodL7BZyh4LfW+bNhRXuqTsZ/Bg+Lq4vFhB4vf/snxuEE58nF214vWd6cB8Q6/ic+rkTEhISEhISEhISEs7GoREUIGdOCOMKJ6/Dqu8VTCcnXqWlkuzkgfcvFgudOXMmbDXouzVIOqvSzzGazaZ6vV4g05A9r+x6pRSyDeGfTCalynur1Qp2fRcparWaRqNRuJZmsxnCEieTiTY3N7VcLnXkyBH1er1A/LC5Q8qYF1ozODfuBaz4vt0h7gC3/lPV57W0Jnh6PyKIuwsITPSQQrfRe4+9C0MuMPE6iCfbbyKO9Pv9MAbP06Dyj1DhuzYgCiCWxGF/LiT47gsQb8QZzgmZdau8V/KZH67JXSDeAsN9YscKFwa8lYIxM99u03chwz8ziC5OmJnTWLjzPBB280AUctIdixPecuTX6e4OHvfjxM4kFza89YDPG59NXzP+vv0cTt7WEu8Q4Y6GhISEhISEhISEhIQHx6ERFKQ9AsIf9+4Y8EqopEBWIalOJtzC7KF7bjOHqEynU/X7ffV6veAi4Hwemucku16vq9frabFYaGtrKxxb2muzIPRwMpmoKAo1Go1Q4cYqz84Bnr/guxhAPiHuVLfH43GpN56QSt8iMCZr0t7OFJw7DuYbDodniTVUt5k7SGfc+iCpJOS4MwKXwmAwKGU3QFrdMeLuCdoigGcLSCoRYAg9c0cug2ck+JzxuO/I4IjX2X72ew8a5JiMHyA4Qc5dmEJo8Xnj+L4G/Vp9u1GECF9/XpV3cYp58mo9Y3bHgb8HIcbzDPabQ67B58hdCQhT3lLAGkCA8lYDxAD/DLoosJ944WNhvP6d4W4RfvcQTRdYUptDQkJCQkJCQkJCwrnhUAkKECEs4RBCKqhOtCAkca4CzzmR9uBFyBLVYirs9LbzPsiaVCZdVJJpZSBkj2wArO8IE2w7h0WfHAC3+1M5nk6n6nQ6ajabwWru2y82m01tbGwEYQEHAsIFpA9S1Ww2S6RbUqh8Mw8QUXcp8D7g42EOXXRg/JD2er0eWimYq7W1NQ2HwzBH7kZg3BwbFwQ/u/uDoEvGzHrwrSaBV7e5Ng/n87wEKvdxOwtw54K3qiAScV0+ry6IsXsHohHXNh6Pw/PuynDyy7pmbXouiIttzLeTYd+9wMm0Cwy8xkNMPcgSUYw59Z9ZV/G2j94y4aIVDg5+Zm24gOKOAZ/PmOxzHVynjysWRvju8O8NxuSvc8dDEhUSEhISEhISEhISHhiHSlBw67W0F27oZMpT4OM+e6m8vWS8FZyTBw8yhHB6ACO/e7+1V5RXq5Xq9Xo4BoKCpCAozGYzDYdDra2tqdPphNYGSK+TTiqmlUpFnU5HeZ6HNoHxeKz77rtP9Xpd119/vTY2NjQYDILtn2DD2WymRqNRyjTwSqxXz92632w2w1h8lwBe4+KG71rgLRGTySS0FXD9Tiq9bYD3OeH2kEZaQ7xtgPvJXHrLAs4APwdzGq8FCC2tIxzfRQDWjLcYuBjBXDabzXCPfP0xfxBmr4jTnuBrJBZG2IHBRQyOeX8Wf/+8QIwRKOJwTIi0t3TgqJFUastgvlxgY77cqRG3DXhoKa/hnuMYYY48R4Mxcd2IZozP141fC+KGt0x4i5MLEe6acFHLz+v3MwkLCQkJCQkJCQkJCfvj0AgKy+VS73nPe3TTTTeVerNdMIDcuPsgFhUgNf4aJw783mg0tLGxocVioc3NTU0mk+AcgFggKHBuz17Y3t4OzzWbTbXb7TA+2g9cBJEUKuydTkej0ahERiFNJOu7m2EymWhra0vNZlM33nijbrjhBk0mkxDK6LsiOAFsNpulqjltHWtraxoMBmFrSEg8wgLEzTMHnDDG2QbAq8IOyDHiC8KEOxB4HYQzFoqkPRGEKj8tLd4K4f/hdMmyLLhJEF78PN4GgzCBAIHY5K4GhALPn4hbC7xlgnMhWHnmAuIBFXJ3P0gKrTuO2MbPtbtowlpGqPHqe9yCwGeC4zC+eMtEdxBwvS7q+Ock3kHDWzbi1oNqtVoKU4xdGaw5thuNW07i7AP//ogDN12YYk35uH0u/POekJCQkJCQkJCQkHA2Do2gICnsTAA5gjC6lToWFGICJ6nU+y0pkAKviEPuIcxOrqW9YDys6G5r5xj+WKvVCkSd36n4+/Z45B2Mx+Ngg18ul4Es8d56vR6yErhm2hyOHj0anAU4KXxHB14r7W0L2Wg01Ol0gohCpoGHQcbkkkwGFwmcMHrlXFIgxxBx3uv98txbJ9dOcCHWTrqdILIGeA/H8PN4hRoniYdJcv/dBeG7eHgrDdfDeCuVShBfaDdxUs/1eKUe4u73yCv3zWYziEDMLS4N3sN1eiU9FpK4Ds7n4gD3mbXmmQOsL+6v77rhYgWfQ7YI9c8FcKHGCTr/ImjgOHBhyYU8/yzH94SWCc4HOD6fTReKfO0C/+7wrJX4+YSEhISEhISEhISE/XGoBAXvaUYMgDj5VnieieDigrRnUcZi7oTVK56r1UqNRiNUmqlcQxQZDwSDSrj3mXe73UBgl8ulOp1OiWC2Wi31ej2Nx2NJKrkRJGk4HAYS4wGEEEREDUlhrLgrut2uarWaTp48GY6BfZ6MheFwGNoccFH0er1QvYaMQerIg4DQQhzZFtFJP2NhF4parab19fWSPb4oihJR5z3cN688OwlmjqrVnR0zJpNJEDi8cs86YHzcs9lsptFoVCL67KaBmwASzxaNntdBi0ictcH8cq9cZHF4ACcEnWtmTAhc1WpVrVbrLMcG70MQ8iBH4BV6b0FAsPD2H7fyO5Hm/d7GgzuGFhY+k7GwEbcCMA+xw4PPD2PzlgkeJygU0cPng/Hx+WNMfr3+u2eusCb8dX6P490j4u+SJCgkJCQkJCQkJCQk3D8OlaAgKTgLyDiYTCaBYDhiq/L9EQEIFQQD8s/rnLTwOP3x0p6AwfFxDFSrVW1sbKharYbgxWazGezmkLM8zwNh9VT5SqUSjuOP0QbBvzgner2eut1uIGtHjhyRpLDLBLtH+PyNRiOdPHlS9Xpd3W5XvV5P7XY7EH3EBpwUo9EotCRg/ada7NZ2QhpxXxD06OF/nubvlX/g2RFeoea+0n5BJRtBgwA/F5o8t2E0GoU8B0klEkygo5+Ptggfl68VzxmI2yEgwFwnP9PK4LZ53BLMwWQyKQkW7XY7POdjwk3BeT3Dg8fiFgHf5cDdPqx5qvfuJPB54l/Wh7tNODbrl2N6O4hnKnheg68Jb0viMW+RYL1w35kH4OLjfoIJr4nhbhd3vXgWg782CQoJlwUqZ7egJZwjVssHf01CQkJCQkLC/eJQCQpFUQRXAa0B3vPthGG/rARHTCogeDwGSYEg+3Ehu07Seb7ZbGo8HmswGKjZbAaXAtkJXpX1KnOWZaGqLu1UsSG/VPFXq1U49vr6ejj/dDoN4YtObpmjWq0WdqqQdnaUoJoPOe31esrzvHSNVHsRMJhPnAG+AwWvQYjgcUQFrgHxJRYXuA+4EJjj6XRa6rdHPIir4JBLr8ojJrDDhVQWfNzCzrgJquTe0FLhuQDeMuKBnL47wHQ6PWsdImxwzOVyGTIxEBxYcy5icA5cE8yTC1zutPGdTnz8XoH3Ngjuh3+OZrNZcF6wrviZedhPCIkFCneruIjj8+9tCd5WhCiBU8G3pIzzKPyexCKfv3a/IEa+I7ytIhYf+NmdUfvlMyQkHAZU8lxZvRZ+//V/eLXWK60DHNHliW+84xP1ged0wu+r4VjFfPYA77i8UO31pMr+omgxm2u1WwxJSEhISEi4EBwaQcFJvgeqEXAIgYWQefXT4a4DaW93B1obeHw6nWo0GqnZbIZ+dXZU4Jj0eMdW6izLNBgMNB6Ptb6+HmzpjNeDEr0yLKnkSmB8kEVcDP1+P1jxnbjHFV8EBaz8EF0q5I1GI1SkveLNNUEWEQxoA+F9cZsI98n777k2SKWTYIgerRSe6wDBJUeCwEaIX6PRKPXT4/7we8O4PBsjriojHMTtC9xPb3VgzeGC8PWI+CApbPWIuMH93m9Nr62tKc9zSdJgMAjEGJLuxN/vt7cg8BxOGq/Yxw4Pd8F43kJMwOM2ANYw8+hr1gUGv/88x7z5LhD39xmNQxzdqXJ/Tgie59pdNGGe4x077g+Mxd0jDncK+ecmIeEwoHrkiHRsQ3rFVK96/KvsmSQmPBT83I1/K/3j3u8f9dKX6JG/cdd5H2f1kTtVWPbLQaDa60nXHCs99i2v/kN9Zj7f9/XPeOu/0JFv2vt+K26/S6vdokRCQkJCQsL54NAICpJKRBWSQ+UW8utELn6vEytA1TMm2RBr3yFgPp9rMBiEiinHcWLDecfjsc6cORPaHiA0EH2276PvHjGC8UN0qTJzjtlsps3NzbDNJE6B0WgU2h9i4uVBf4gDkOdWqxXaRiDNXv12Icd3HZDKJI7x4fRwokULBMIB1wQxm0wmQajx6jbXz9j8niI2QFLzPA8OFie8jJkKeVEUQZzwkESux69LUlhjZD8gYEDWXUQCrB0EAo7DPfH8BMCcegCipLCTCC4EF25Yhx6iyDV5lghix36uBtamk3gPbOQcfo95HZ832jsQp2IxAGLONpou0sStSFybtzf4uDhuHLTJeHy8iArcp1gk8EDH/dxMcdaEix8pPyHhsGHtumv1jz9yk277rFce9FCuWPzjS14qveT83/fUf/diHXv7OPyerQplr33rRRzZ/qg0m1o87QmSpPd+SVMf+JKXnfN7X/eU35H+cu/3p/ynl+iaN41Uff0/qEg72yQkJCQknAcOjaAQkxSvOvK894r7e9zREAcqetU7z3N1Op1AumezmVqtVolk0H/vWQRUS52UUHnv9/uBPDsRQlDwbAKuj/dD+iFAvJeqPTZ92iy2t7dDCKJXmD08EcKNE4KWDIhXTJycFNLLTzYAJBtSiRsCso+zg7wLnA+MZ21tTZPJRMPhsGRXd7IG6WUs/Ow7e3hooq8Lrj3P8xAgKClU9X2OnXT6jgW0KCBWsHY4X5zH4BkBXIPveIAAAXC+QNh53gUy7ie5EXH7h88booKvI7YbZVcSBDRvcfDPjosQvutF3FbicEGC8TMPLkIw34wXocNFC47BPcT5wGOc64FcEfu5FXxMPn4eQ1hx8cTXnYsVXIuPNSHhoLB2/XX6xx+4Rbd91ssPeigJ++At3/fzpd9PLof6/G/7NklS676Zqn/2lgs+x/Szn655t+yoGl5X0d9/90sv+NiS9Nbv3DnO077/xWpsrdT57b+9KMdNSEhISLjy8ZAFhSzLHi/pN+2hR0v6fkkbkr5O0n27j39vURSv0jnASRo7HEDC9nMkQAqcBPCc261dcHDLu1vfPViP7RQhahAOtnisVqvqdDqqVCoaDoch44CKKK4Kt7U7SXISyNaPCBidTicQYMh6nucaDoeaz+dhK0nvOffef+/99vBASUEEiEP6IFO0GlDV9sR94IQXMYCEfoQEtr1kbr3n3YUXaa81wvMJaN3gHE4W4375WJDgHIzViSLtJZJK5JJ5cDLKffdrj3ehYL54DCEKhwiOA3bVYI7cqcHcQFq5V7Rj+H31rAeIuhN9H2f8nLsNvH2DteJuh/1aOPYT7/zzyjkRYsg/cfEmdq4QDumiA69z543nHXj2R+xW8dwHb1lhnD5eX3N+7xF8YtHyMONSfBcnHB6sXXftjpjweUlMuFxwvNrW3/zUjlvgZ888Qv/15f9cknT9a/sq3vj2B3zv2iNu1u1fcPNZj//oN71Sz80vfVvFm/7tjjjycde+RNf83Gsv+fmuFKTv4YSEhKsZD1lQKIri3ZI+VpKyLKtKukPS70r6Gkk/WRTFjz+U40LoIM/emx2LBk5usZJDKDmOV7W94i2ViVecIA9Z9C0EIRyVSkXdbjeEHA6Hw0A+V6tVqUobiwmQGCrIVMdXq5XyPA8BflTD9yM0kHzIq4/fXQLxVor3Z0GPAxDdQk/GAu0A7Frhve0QeyzvVNoRYABjxeLvWydKe20BkLo4nDFu04grzx72x/V5ZoSLO379fg2834M642o5Yg3kOB6bj13aq+h7sKLfX2+BgOgvl8vQQhKTaubEXRycGzLtrSqcwwUFd9z4vQRxAKo7YjyLwsUOjs984b7hs8G8khPBdqq+zhmPuyViQaBarZYcKfFz3koTw0Und+wwr56dwGPxDjOHDZfquzjhcGD2mOuTmHAZ45uOfEjf9F071f/nvPNz9aE3PkOS9Nif+oAWd98jSbrtR54h7f6vvrhlrPc+6+K4Di4Ef/PdP6WPP/otuuXfJlHhXJC+hxMSEq5mXKyWh2dLen9RFB+60IqeV0K9cguJ8VYEr4K72wAC5e0JVNzdbo4LAmJBRdgJpVdBIRc4CTY2NkJwoFdYvQ8eQstxPYSRyj7EhffM5/PgYsBuL+kssuTbB8aVdwchf+PxuNTf79eMXX4+nweiTEgk40bE4DrjMEe3wDO/kGfaH/zczCmOCObBySv5GYwNMu+7UsTn8dYA5oS5g/hyXq9Ye+uKCx48D+GMSShz4iTUd23wNcGxmC92yfDqOvcy/izFogT5C1yjtBd4GbeRuKjg94h1xjV5bgTH8yyCLMtCkCljYL0C5h5RywU9MkF8TbkQ6GGMcTuFi3/xzhQu+jC38Wdxv7aj+HHW/Gw2C79fZrho38UJB4/qiRO67zvHD/7ChMsCf/zEP5CeuPPzxzz+KzTcuknKCn3gOT//wG88AOSVuv7i635Mn9z9dt36Ha876OFcbkjfwwkJCVcVLpag8OWSft1+/8Ysy75a0pskfVtRFGfO9UCesi/tJfcjIECCqPC7RTq2eDtRkRRaC8gBmM1m2traKmUNQNggQvV6PVQovQrreQyj0ahkl6Z6DAn2bRW95zvOXuCc5CRgked5sgoklcg8JJt2BZ5DnEA42draCo4D4IQS0cVt99wT3jcej0u7RzC/tIBUq1UNBoNAkhFMpJ1K/XA4DOdmDpgvr05DFBEU+v1+aB3g/iEGeasJ53HRgvsKAXaRinuCI0Xas/V7BR8Ry3ez2O8PBXdr4D5hLfh8OtlGuOAx7iv3x8UG/3zwXtY5n4n4uiUFouziAvfOnQCx28Ar+h4iyi4crD0+g+5YYAyIEFwnr0UYcjHJHQ7+H58bb5Pwz6bPjbuWAHPl4oe7cnysPkeXIS7ad3HCIcB6R2952m8++OsSLju8/RN/7aCH8KC4ptrW//2yH9OzGt+mx35zylQ4D6Tv4YSEhKsK97+/2jkiy7K6pM+T9Nu7D/28pFu1Y/26S9JP3M/7Xphl2ZuyLHsTjy0WC505cyZUgd2KDfH1XnQnO/v1RsfWdggzpFSSRqNRIKZSOfDR++TZycAJG60FPM/xJ5OJtre3Q4giW1TSohBXpBl3o9FQp9MJtnC/PrbPpPpKZT7eWQGiNxqNtLW1peFwGI7B2CSVSCTHL4oibIeJ+MK8cE4q6pC3ZrOpPM+1vr6uEydOqNPphPnL81y9Xk95nqvdbqvT6Wh9fV3tdlvNZlPNZlPdbjfkRri44qQSEo/TotVqqd1uB4cK4+OeuKMEJwiv9Z0j4qo9c5xlWTgXr0OwaTabarVa4R5BdCWVCC1VfG898TYEX8fMBQJTTMjjzAu39lPxh7R3u131er3SLiH+nx8LsaTVaqnVagVXg1fsuY44kJKxMXaOgSjD+D0wlHuAyOafOVqFcO24W8N3HnH3in9GPJ+D3/3es744xn7tRD6vfp2XCy7Gd/FcB7v1XUJCwuHCLWsd/fHn/4RufWNTH/7+Tz7o4Rx6pO/hhISEqxEXw6Hw2ZLeUhTFPZLEv5KUZdkrJP3hfm8qiuLlkl6++7oCouAVZEidB8GxFWKj0Sj15HtonVuZnZg6WWCnAuzq0+m0VE3eHWMpFBAijYtgPB4HEijtCRYQ98ViEYQESCUtG4zHHQMQNHYW2M8KzvkRE4bDYcgk8Er8ZDLRdDpVtVpVq9VSnudaLpcajUbqdDqB4Hm4nVe9qYJTgXaCDflDZOl0Omq328rzXJubm2FOyFtwC3ur1Sq5EHAwLJfLUk89/7qoFPfxj0ajcFy31juciNKewlaMuAGcaHL/3fniAhXzPB6Pw73zdguuyd0k3p7A45BmJ/nkbnDt3tLjOz64yOPbnkKgaRGR9namQGjy43KNzWZTa2trGg6HGo1GJXdEnueSFNazg3n3zxeOGHccuPjnQZ/cE+bP3QncO9aOryP/XLuQ6PeRx/iMueAQOw9cRHTHgh/zMsEFfxf3sqPFfq9JSEi4enFrraOX3vh6vfNr/6++dPztuuHHUq7CAyB9DyckJFx1uBiCwvNk1q4sy64viuKu3V+/UNI/nMtBXATwLALIq/dLY3n3/msXFWJi6b3tkB5pr+98tVppMBiUtt5z4sF7W61WqGhvb2/r9OnT2tjYkLTXo71cLgOZL4oi7MpA2wNVYYgQbQQQVaraPj4ntLQmjMfjEJRIeOV0Og1uCyfHOALIY3DShAgS7+TAGN0e75VzJ7vtdjtUsalYr1arQKg9m4GKPY6O2AkQW87Z6cMr1WQgeN4B9nevUHPM+DHG7f95ewq2eCf5TnZZh57xgRjEuFzg8S0vEVo8p8KJ/nw+12QyKZFwzwLw0E3cMXwO4rYF1hjzzTXxnnjeWQ84hLz9R1IQG3DEuKPABTtvr8AZEWdeeJtSvA0q54sFhfgexoKCOy+8/clfT45GDI6NgwSnCoLUZYKL8l2ckJCQsB+eWM/1mm/6T7rnJeVsme958mdo1e8f0KgOHdL3cEJCwlWHCxIUsizLJT1H0ovs4f+UZdnHSiokfTB67gEBaaDK6X3qEDL+yN+vcuhhci4oUCWlEu6uALeZ4yaAmNp1loIgl8ulhsOhtre3A/Hg+Fm2s/Vkv98P5MkryvFYcBpAnjwbwnvZIXBS2TLO+SCiHMsdHH4dzI23ivhrmHvyKqbTaaiuV6vVIE7w3kajURIU8jzX0aNHgysDog4xX1tbC4GW8/lcm5ub2traKlWpIX0uLDkZ5Hhs1emBmE52vaXDWwi4F3HFejQalfr5ff1kWabpdBqe89wJdx5w/Hi98hqcITgUmPNYmHA3iJPbbDe7grlHbEM8mk6nwaHg7g0Pt/T8AkQpD3LkPjF3CEOsL59H1jwtG6xFbzngevyaECe8vcHHIJW3DHXHkbtVvFXG55y1x7qInT6+NlgP7kphzi+XtoeL/V2ccDiwfN9tevZXvUB/+quvPOihJCRIkq5f6+j66C/H33jna9RfLfWCR3yqVFy9xfX0PZyQkHC14oIEhaIoRpKORY991QUcT5JKW8JRiaW6SQXft8xzQuEhdZJC/36v1wt94pBTSYEIjUYj9fv94CxwAsfY6A+fTCaaTCbq9/vK8zyMyS3Z3kJAdR9CSSbAcDgMAYa+tSHEmRYA3BHtdjvY7T2QUiqn/LdarTA/ZERAnHB2QIQ96JK5h+zxs/fKs10mwYz1el3dblfr6+taLpdqt9tB3HAhxf/zUL3hcBhIrVfdGZ9vwdhoNML9gcDT+kArA0KRtyswn35PEW7cdbFfZRsXgbSXv4DLwoUHdyS4Q8CFKa6Dtg/AvfLdKGif8DBIxujEOSbPHmDI54HXejsLooi3MXh7EOP1Vgp3ACHyeP6E53u4mMFcQ+rdFcIcu4PDvwt8bB7WyvMepOkZHBzH3Q/+ued4LjT5OV10uBxwsb+LEw4PqpOlBquJOpXmQQ8lIWFfrFdaWq9IP3Xb3+hbn/BPtdrNarrakL6HExISrlZcrF0eLgq8pxpyA1GBhHi4HoTLq+2xnZlKNoSYEEGqtTxfFIU2Nzc1nU4DWZT2qvqeG4BoQWU5z/NSDzgE3N0Dbq/HUr9YLEJeAqSQc9I6ASHrdrvhmJBv2iXiXQLijAGcEHFPOL97BReShWjCsev1einsj3E1Gg31ej212+1SW0S1Wg3vnUwmJXJNdgX3w3vtqfJ7S0HsUOBYCBvcS4gk74nXAkJGXAmPMwp4jHvOMZkjzz1gDUo7ok7cruKVdUi8Zxi44MSc4PRA2KnX62HNck9wZiCSuYDDZ8JbeiD0zD9z4e09nvvgbiHmwjM13NnD+iDYk5wQxoDYhijEfLqg4NujMm+0XsTCFNeFGOhz6S0aLgay9lg73lLi3z3e6hG7dxISDgLZ3/y9nvst/0p//TO/cNBDSUh4QDyxnuvFb3+bXvYpn6LlPfce9HASEhISEh4mHBpBIe6NdpcA9mMIiAcJQhTiyqWTPar2GxsbpS0H3eLsvefA+7w9z4AqvFdyOQbtD0eOHFGlsrPd4WAwCISR62P8CAqSdPr0aXU6nSBC0GrQarVKFXVIZb/fV7/fV6VSCe6F2PrP3JBh4MTbK7SIHDgPnCi2Wq1QJYeY8lp2FWBOGo1GaEXANeBkjio5r/WKMkJKbE93+77fa0QN7jnXwE4VkFYIJiQRcs/v/d3eT8ZDm4oT4OFwGI4FQYacsvOFi2GxI8IBOcdNgUDA67y1wUUMXuvX4+IX99PJuGdh8PkglJL7y7VKKgVJcpw4GBV3CfeG98e7M3CfEJ2K3bBQzjkYDMK5aHHyUMnYocK1cJ9dACGXwZ0crCFEEM9I8PUfi5juEPFskYSEg8LacKW/nEiflkwKCYccn9ce6d1/+n792Rc+Rcv3fuCgh5OQkJCQ8DDg0AgKwFPhIfwuAtAe4L3gEB+vKEKgIOZra2s6cuSIjh07pul0qrvvvjvkF7RarVKwnbcucCyILlvkxSRHKu9EQPUc8uOWdggl/+FaIFQRW7+kEsFxEtTv93XmzBlNJpPQztFoNMJ2kcwVJMurx4yP1gvGDkH3HAl6/r3vPp7PbrcbXCTtdrvU807uAPdWUsig4Hq63W64pxBrt+Mvl8twfO41x6eajxBQr9fVbrd13333hR0wEE0g1pwXt4kHYrpoAeH2VgDWBs4Z5tPbT/hd2uvxd0JPSw/XwWsRGXznBo7PeefzeVgDCDX8zH/MI89xXs9pcMHI74tv7eiZBwhpiCy8Ls448M+wz3Wn0wmf4SzLNBwOwxamcV4G6z3eVcTbKBA2/HkEBoQ6xsH1xwKL3y9+x0nhQkRCwkGj8X/eqG/66Zford/10oMeSkLCg+I7jr5fH/q143rfC5+k4u/ecdDDSUhISEi4xDhUgoK3GfBzbNH3MDYn8NL+fdcQdSrinU4nEBgyCjzJ3yu+cZDfdDoN1m5PtvfzQwohU24bh9hDzAeDgYbDYWiRoHLr1VrfKcFdCuQvQIIguAgJw+EwHAeCRuBiURTB9UCeAJVht/dDyCBYVJi9xWJ9fT2M0TMi2NLShREXathek2wI2jfi/Aon3QgNjAXxodlsBsGhVqup3+8HsuprCpEKMk37AW0WzIffM4Qr1oGvRxe+vKXE3QasUXdZIMp4f7+PFWHHBQN343h7D2KEtyC4wOAihWcLcD0QZxfpWIfxbg/dbves47hDiHslKez0wWtbrVZo55jNZiFQ0j9j3trANfnnkHsWZy0w355pwZg8a4L7C1xsYk79X2+fSEg4SKw94mb1n3p19qUnXJ74uRv/Vl/6sx1tffuTpde/7aCHk5CQkJBwCXHo/lqGfHlFEcLjVXT68LGnO6mQVCLHBB5C5r1iPZ1Otb29Xapex0QOYombwUP6IOkQHQgcAY+j0Sicy4nVeDwOOQVkCVDF5fppNyBrYbVahW0qZ7OZxuNxKb8Bwst4fctFwhypeEO+2+22ptNpGLc7JySFPn0EnMFgoOl0Guay0+mEbAffNrHf75d2AvCwQa6P/8hnwJVAewUCCtVr3wXD21QQPjjHYrFQr9dTtVoNbg/WgucKeC6GOzAgrjhYEFxcJPLwxv367HnO1ykChIcSxmTY//XdHrDe+9rlca/O0+qCcME1x20lHMMFFGmvjcKFCeYV4YjX0ZbBnHAurqFSqYS13Wq1lOe5JIX5dKdFs9kstY1wXm/9cDcKLTXT6TSsadosfItKn0/aRjwTwu8X8+POpCQoJBwGbD39Bn3gOSlDIeHywm89+k/1eT/6XE2++ynKXvfWgx5OQkJCQsIlwqH8axlyQ/+6J/tDRGgNgAjH28M5eYUsUP33vAB2MvDKrbRXJaUPn3N437lvbwmWy6XG47HG47Gq1WogO171pDUBAu/XFpNUryAzdg/+g5TSQ16p7IQVktvglnQfJ0S80+kEN0G/3w8CDdftIX2Swu4WGxsbyvNcnU4n5De4Xd777CG8fk1xZgIuA3dQrFarsOMDJB/iD9n0tg7GB3nP8zycI7bme5hnq9UKc+75DH5/qKgzDwQPIhhwXzgHYoo7Trhmdzq4CObOD99qEbLONUNyEQJcFHFnBdfhcNHMHTS+y0ZcyUfkcaHAtz6NWzrcOYLzBvfKfD4P9w+RivuHo4KWGtwutIjgDlpbWwtiQuxQ8s+qpJKjgrlAYIwdCe5mSUhISEi4cPz+Y1+tj3nmS3TD6w56JAkJCQkJlwqHSlCAbLklXVIgZN7TjGPAtwv06i3kY7FYqN1uq9lsBqs9fdxs30c4XBxg51VeiCskGdLGeSGXCB2QWgi128+9VcOt8ez2ANxG7lVVKvQQLhwRkM52u608z4NLACeGt00gwDSbTZ04cUJbW1saDAahEkxl2AUVt8VTde71eup2u6Gi7BVzeu29ogxRRKhAPOp0OkHcYHeLeA7dJeBZFD63OEO8Jz7OuWCdsAMBz/sOH2RI8B/XxDmdvCLCcHzuq58X+M4G8dzwPq4VkYV755V27o+kUhsIx3CbvztuPHQU8YbPFyKBt+VAvvmX87FOPRTT2yxYJ6wBbyVyYYlxMccuCLTb7VJQprfmMJ7YHeLOD+bRM0g8DNNzMfiMgf3uXUJCQkLC+eMzn/d6ve2NH6fKX/zdQQ8lIeGqx/wzn6ZTLxk+4GvG47oe9bzD6Spau+5a3fPPH/2Arzn2i6+XzmGXrv6XfZJmnfLfeo1+oc5vvf6Cxng14lAJCsDt8BBZBAVppwq9vb2tfr9fItzAnQDsREBPt9v5ISe+FZ+n1fuWeovFIrQrVKtVjUaj0DcPIMMQNY6FGAFx9Co4VWEIraRg7ydXQNojSmQDkF/AcUejkYqiCAGJjBULNztGuNUcZ0Ce58FlAAkHODgQOyqVinq9nnq9Xpg/5oux+9xzHcPhUOPxWM1mM7gH5vP5WdcTiyOQQubJe94hiMzPaDTSmTNnwnV6iF9M9FkzjJW14dkNuC68ys3rmHfcCB5e6TsTSHs7J/Ac4NiIEt6SAbyVpVLZ27KS8yIasP6ovLswBSH3IMc4uNEzCbgfBHnyeo6LCOPbnPo9cYHB5445d2ePtzI1m83QBuTOAUQFzuv3gc+Rf0ZYg6wBb5GJszgQAz009f52fUlIOCis//UH9aj/9ULd9vkvP+ihJCScN37i+rfok27+BK0f9EASEq5ADL70k/SIf/Xuc37909b/r7716APvwDJazfQv/+az9LcfeKQe81UHLwTe882frGKX968a0uj6B/7bbP6vniGdw67foxsLrWrlF1ZmmQbXf7Ik6dg7pqr9yZsf0pivNhwqQQELOhXO8XhcIuD8gb9arYI9P36v2+uXy6U6nY7yPA+kznMRqBJjxZYUqu9xKGQsNkC8cVEQ/IgAQP4B74XAjcfjYPuGCEISvV8egj4ej0tVcggY7gKIz3g8LpFgyB+kjYqu29UhVh6Yh4jjlVu2VURIOHr0qDY2NkKwJCKGE3HfYhLHBnkEHrzoc4yA4AIJ8+Mk1jMTWBuLxUKj0Uij0ai0LSD/etsDYK5wsjBH3Cue89wDb2dA6ELsYF0wz4hPCEwufOGQaTQaoUWGc/B65gMSDLmmDcBFBc/M4J7G21Ky5j10Mg6ARDigrYd7BUnnWrk38b/cT9aPpLDeWKf9fl+j0Sh8tl0UYWw+jxyH9eStIJ6VIu2/pajnPPC8t5y4u4PH+N2/YxISDgqLu+9R7123Sp9/0CNJSHho+O4f+O/6+fd9UQpoTEi4AHzq2ybKK+W/Sz6q+d/03Hx6Uc+TV+r6tUf9me69ZahP+pVv0mO/+i0X9fjngvu+/hmaHtnhYpMTK+k8TKODRzz0YtCqXmjwyJ2/AcfX1lV7+ifr5ldvpR1rHgSHSlDw6jEECWLvZM17pAFEmTYGCCw9/pAgKsFenXWyB4HxBH4nNTxG4j2PU1mFIHlfvJ8Pci/tVK696kwbhzsysOFD0LMs03g8DoQUkQGHw2AwCOF3PDeZTDQej9VoNNTr9cLzbB3pRJUednrbfQu+tbU19Xo9bWxsqN1ua7lcamtrSydOnAgtJdwzyDzzslqtQj89lWECGakgI5JQqcY94AILPf4u1jCvHs7HesE5gNDjLRMID6wNQhxxU/i8u7DFvR2NRiVCzjoix4JAzVarVXLdsI4ZA3PAe8ljIEuBa+SxOO8Doky13Yk/aw2BwEUYdj5BoGD9Sgoii7cfkV/AunaBz90i3CO/z4xxMploOBwG1wufA66fdcTnZjqdhs8J5/Hz8vl0YcNdCXyOXXhibcahmL424s9qQkJCQsJDxxe0B/rZvHa4/uhMSLhM8PF/t9Jz19+mT2s++GsvJq6ptvXYG+99eE8q6eQLn6HtxxQqqudgM7iEWLYKLVuFPvBlPWVf9Aw95hc+rMXtd5zTe+/6vSfq557866XHPjI/pl95/M2XYqgHjkPz3Q5JI5gPizbECwJAJTm2hkMiqHTSxuCETdpzElDlh3BTkUaQgPRhxYaYQLYhx4wDh4C0Vy1n28TpdFrq5Z9MJsrzPKTO8xzjIeTPe9i9EksAIxVYyJWTeYhrbM3P81wnTpzQcrkMOyHQduAp+TgOBoOBxuNx2Omh3W6Hn6nuMm8ch3vh2QCIOp1OJxBi2gK8yh63rrRarVKFmschlzgIIOG0VOC+4HmvOnvPvmdKcN9YO4gRCA5Y8blXnsHg5JmWE9/Rwok+IYise3eNcH0IGbQIsA5cQMENwjXFTgLehxMHQPjZvpHdNXyduOvCQzPZIpPX+44KcRgjgglCGJ9rRCZCP1nXCEC1Wi087yKROxQ8B4F762sHEcF3K3GxgTXEPYiPEe92kpCQkJCQkJDwUHHm+c/QmY86+/HKTHrk9+2fWjp49aP1Pz/qV3RNNVc1q+z7mkuN33/C7+qJv/wiPfb5D49L4czzn6GtxxcqDuZy98WyUUgN6T3ffIse+8MDLTe3HvD17/vvH6d/fPrL1chq5Seap6R364oUFQ6NoCCpRJKdAEoKPfwQ5BgQWyf5vL/dbqter2s+n4dtDyEnvpWip/R7pgKVTlotjh49qiNHjqhSqYTcBMIIK5WKxuOxBoNBEArcmg75hFRDVnFd0OYh7ZHG+JpdNPBtM3kPtv+4/75er6vT6YTqfrvdDmQckigpVNilnSq828SdADebTXW7Xa2vrwfi6dVoevoRXzgu5B2BgzFCnr3y7DkKVM2Zb/IfuNcIFoQqshUnYosHDXL82B2CmIOQ5M6NeGw+l07weZ+LAQgcEPvhcBhECzIYWA9cFw4PqWz353yr1SrkSkDm3Z2A44D75Q4CyDXnhUzHW0rG4g+CAq/3NcO98pwF3xmDtUnIJMfls47rhjn2NhBvcXBB0dsdPMeDz5y3qvj3id9H/1xxLs9VSEg4aAy/+BP1lu/8OUmH6C+shITzxGt+9RX63M/4Mi3f+d6DHkpCwsOHLNPgSz5Rp55S7GvbX9WkD3//J+uWf/e6vSDBSlUf+o2P0rue/KuSOg/rcGM0spqqtfNoIahU7/+51T5/U+2+fvaZT9VHnlNVke0/T4cBq1qhd3//E/W4f/M2rUajs1+QZXrvT32iPvBPXyapdvbzkr6ye0ofettx/eVTuyoit/3ljEMlKDhh9R5ntzkDT2CHGOV5Hqzd/Csp2K8hM16pplpNVdUru5AS0ua3trZKwW8eXDeZTAKRGwwGgaRD8tzeHjsHGAskHHEB4stzvj2gE2PIGNcMCXKRRVJwF7jbYLFY6MyZMxoMBoEoesXcLeBui6/VaqF9ghYT30LTbeaeleDOBhcLEF7iXTvYmQJRCLGGajaCwXK5VLfbDfNO+wu7RSAajMfj4DxhncVp/mtrayHfwMUcyK8HDVJFp1LvVn9aTTxXQtrbtlBSuD7yMGjzYGysMUQUxsLaWi6X4f04Iph/PieQf9YIYgfE2T9XrC3f6tKv3VuF4s+BCxWcB8FlPB5rOBxqMpmE+WeeEQhwhPjxJYVdO8hBcRHDXUg8598fuDwQseKdJvx6eB2CCM6khISDRmVR6N7lSNevHewflgkJF4JqVpHS7jkJVxMqVU3+2cfr7mc8wGsyaXZkpTu+8xm66aferCzL9K6ffLJu+5TLJ4S3slvcy26+Qe/++uP3+7on/OhtWm33w+/ZDdfq3d9w7SUf30VFJr3n3z9Zj/u+t2s1LO+Wccd3PkMf+JKXPughvvf4u/Xev/5U3fOZmZbb25dqpA8rDpWgIO31QO9X0b+/iiHEyyvAVGh960AnDPV6XdPpNFTN2ZXA++Wn06larZa63a7yPA/vn06nGu0qUxBXiIrvckB7hOcxULWOU/gJovS2B4ho3MeOMwIhgWN4kr2LKV79Zo6x+m9tbWl7e1vb29uhGg4plhSuhXBB3BO+peeZM2fU7XbDmBETPGRzMpkE8YWqety3zrzGc+FuCx6HrOZ5Hu6jZ1p4O4Q7QpxoM18uhEB0EW7ifALfBnFtbS3MmbdAIGLQIoEwgRMFIcgJOtZ/joUIgBDBWsKx4vc+XktOxj1AEeLNdZNXwPlc6BqNRoGAc699PSCUcD8R42JxAlfDaDTSYDAobTvqwZ2MyT/PzC/r30UUX4MAoQJRwYM8mTu/py5MxIIl9yLOq0hIOAi0fu8Neu4jvlNv/a4H/0MlISEhIeHgka2tafasp+j2Z5/b3xHj61a65wUfr3lXuu3zD/93ffX4MWn3b7d3feejzslV8K7vetSlH9jDgUx67w99jB73o+/X8r77HtIh/tstf6WP/qWv1I1fdGWEPT6ooJBl2S9K+hxJ9xZF8dG7jx2V9JuSHinpg5K+tCiKM7vPfY+kF0haSvrmoij+6FwH45VU33aPKrKLCRAgt/Kvr6+HfnDeQ7URcrk7xkAyY+eA2/8hlt1uN5yT3QewYyM2SApbRkIE3QFBev9kMgmiB84FJ5IQHdwLHl4IsZcURAoXMuj3JwdAUmkLyVarFY4fh+QNh8Nw3V6B5x54TzlEEicB1V+It++YAKGj5YA588A85mA2m6nf7wfHCPPsLhVIYKvVUqfTKSX08zoq2YzNBSeuCddJfF9wS7gA4U4G2hlikYJ7jXiDaOB5Fi4IuFDEeSHQy+VS4/E4CCSIU8xvvPsBa1Xaq+xzPA8wdUcIbhR3wnDfGb9/3jivBxjy+Wq328rzPNwvXo/rBPFhPB4HQQH3iDsrEFwQQbx9JnZH+P3m2linfGcw//45jFup4uPFbpXDJCg8nN/FCYcL1ePHLii1OiEh4eIgfQ8nnCsqj32UPvTP97e93x+WTWm2frBBhA+GteuvU9Fu6f3Pv06LzuEe66VEUZXe922P0aO++6EJClcazuWv5V+S9Nzose+W9KdFUTxW0p/u/q4syz5K0pdLetLue16aZdkDNNOUsV+11Ek1r3FQ7Tx69KiuvfZara+vl+zsVGQhgli3XVCg6kzrAmScNghCBxEPsizTaDTS5uZmiYBPJhP1+/3Sbg8c3+3xVGtns1mpjx+yDsHxkDjIEMTdSW5MzGNbN6KJtEeyZ7OZtra2tLW1peFwGAirHxfBgfwKdoXApeHnnEwmpf54/mUskGkyFbrdbhA66vV6CETkXAggzN1sNguElPfT4hG3fnCdCCsIPBBghBdJ4biINp1OR51Op9Ty4c4H7gVz1Gq1QitJp9MJrQuQfklnhQAiYHHtiD5ca9xygAuGdeJiBmJO7LLwbTXjYE/PS/A8A1w6/jmMhSR3RcSfCcQJRDXWz9bWVulzgajDnPJZR3jiWvyc/l3gQgfH8uwG5jt2PfAaF+t8C0oXFOJ2nUOCX9LD9F2ccLiw/azH6P1f/rKDHkZCQkL6Hk44B2SNhoa3Hjnv9w1vXulRn/iRSzCii4O1R96iD3/Vo/Xub7j2qhYTQJFJlY9+wkEP41DgQQWFoij+UtLp6OHPl/TLuz//sqQvsMd/oyiKaVEUt0l6n6RPONfB+B/5bvv2P/qBk2ZyDtbX19XtdkuECmLBNn5Sudrq54VgsWXgkSNH1O12Q+85lVi3tGNF9+A5J9PNZjNUw73a6VV8SAtj8l5yt/4jRNB24NV/J0VeOXe7txO10WikU6dO6cyZMyEgkGPyevIKlsvlWSSeqvj6+npoH4Hw43jg+pzoeXaC99gPBgMNd3uR8jxXu90OtnjaLVyAYavDfr8fqu3u8PBMB64HUhmTbWz9iBi4VXytxesScYIARcQRhAq/TtYc7+XaERNwRbj44iJavV5XnuchI8QFDhwWhEkinhFOyvXzOVitVuFekctA2wLZGu74kBRaXVywaDQaQUhhLj0zQtrJPtjc3NTm5qa2t7dLbRKAe8B94/PjzgpEIHd5eAYF1+etHx6I6a0biA0uVPIfnx0+N/4dcRjwcH4XJxwerF1/ne747BQOmpBwGJC+hxPOBdXjx8651eGw4/eHudbek2vxTz9eH/kXN2l0fXLLgVW90Af/xdHw+7F/XOgH7nvSAY7o4PBQMxSuLYriLkkqiuKuLMuu2X38Rkmvt9fdvvvYOQFi5ZZ/72HfjzBLO1btPM+1vr4erOtUmCHsvj2e2/YhZNIeySd9f2NjI7RRQBQZG5VvCCIE0wMdIWmtViuMlQqpV46x/yMmZFl2Vm/+aDQKoX+QWMZB776n/UO4qRZL5ayG8Xisra2tIBgwduZsOp2GNohqtaput6tOp6M8z4NNHZLL+HAK9Pv9EEyZZVkIbvQ8B8g217C9va3pdBryLBg/4o1XpT3cMA44jCvbEGjfFYF15hkAkOlqtRqOybz4DhgucnHfIbO8R1KJnPKYh2u6uBEHdHIefvcWEK7HX8/1ss7j7R096JH1zpwwNkJNEW9Yz6xT1i4g24HHyL8gEHO1Wmk8HodMDNwCkHUXZvjMIfogILqg4OGKzI/few/2jDNLGC/3xQUb5tRbSPiMeNvVIcYl+S5OODyY3Xqdbvvs/3rQw0hISLh/pO/hhCsWf7L1JDXvlT74uTVJSUyIsWwWWn76U1X9s7eo+Qdv0J9Vnyn9kPRDJx44G+E3+kfU+oPewzTKS4+L/dfyfuW8fT0xWZa9UNIL7Xd1Op1SP7WLCPxL5deJAGS12WwGUuLWbCrjTl4go6PR6CyrM86C48ePh23sPEGfY/K6TqdTsnkzBirLHMPJOsn1Lo64nZ3Xc32+0wKPQbAYv4f9eUAjr+FnKslbW1uh591T/JkfQgVp/cA5QF5Fu93W2tpa2CWC+RsMBsGtwFaOCBE4L3B9MBaEC9oq3DrP/HAfmCOvTnv7B6GXkHyOJe1tIcp1IiL49oUIWHFugB8TN0tRFKX2BN7jrhMcE77lY1wN95YI5oexeyilH9dfL6m0dlhj0t52qKwfd7T4e3EwIFAxRhcseK27e3AneBsM6wwhzMl5HIDo7hied4cAwgsCAu0bnv/g23R6OKjPyz7fQeFnxsj94XsgDn68jPCQvoubyi/lmBLOE9Vrr9H4+x54v+uEhIRDi/Q9nHBZ452zkf7sI4/V6LFJSLg/LJuFPvIZDd1Ye5pqr3mTWr/3Bv354pn60R+Z6buO7b9F7qtHDf30D32Zjv7a6x7m0V46PFRB4Z4sy67fVWKvl3Tv7uO3S7rZXneTpDv3O0BRFC+X9HJJyrKskPZI7e7z2n0u/Ouhit5XDcGAgEEy8jxXr9dTs9kMBBmSirWa3RqopDOOer2uXq+nRqNRIigQWKq56+vryvO85AaAcOFs4HdID/+5bT0Ok+Nn384SUgUh9CBArtvbBCDatVotkGQEBAgnpNoJtG/ZSOWacbTbbXW7XbXb7eAiOHXqlIbDYRjHYDAIDgsfC9s6OlFmO0EEJcL9yLKIBQMXc1gn+wkK8Y4XVOmp3ntQIRkN3Hse95BGXxfcM9oMfEcFxuiZH7FNnzXLWF1UcicL99QFNK+qs0a4V97S4Nsz+msYi+dbOJgv3A6ch7F4/oQHcY7H4xCoyHyORqPQxsKxfBcOb/Hg882ceAYJiFuV5vN5WM/stIJ4wz33OY0Rux48v4LfLwOHwkX9Lu5lR1NT5GFCt62//JjfPehRJCRcFDzxZS/RIz/y9oMexqVA+h5OuOJw+2KgL3zDizW/o33QQzn0WOSF7vi0mm7UjqjQ/MM36DXjT9P1/+WMvrp3Mrzu5HKoz/nub1Nja6XeH77+AY54+eGh/rX8+5KeL+k/7v77v+zxX8uy7D9LukHSYyW94VwOCMGKyZOkUs8zVXRex/sI9aNXW5KOHj2qo0ePqtlsajqd6vTp05pOp2ftTY/t3ndfwM4PeaL6CsGiYs9OA+QbeKUa0cOvxbfSg8BA4ONMBxcUnNhQEaYFwoP0IKgIBFTjIVu0FlBh9x0bIHWQZSda5AUcOXJER44cUbu98wUzGAyC1X0+n2s4HIZ5cOKJW4M2CsSd06dPazKZhIC/RqMRqtsIQ+7IcKu9t0G4w4T7ClFnHmknGQ6HodWB8Y3H43AOzzaAqCLKOOn01hzPiCCHwIUihA93itDS4TtpsP54nbRXMXdRgnXoogBhmLFjwgMGube0XtDi4e0+7gqgvYI1SjuKCyl+TMJNaavgNcwB44gdQYiDLiIBF0FYA1wrIgfH9bUSO4/8c8G62G+3FG+tOky7PNwPLvp3ccLhweojd+qp/+7Fesv3/fxBDyUh4YJxw19Pter3H/yFlx/S93DCRUH7IxV9cHSz9MSDHceHFwN91Td8q+b/9ND/DXRosGgXuuOf1HTzfKf9Ye1P36xf+6rP1i936+E1leVK639xZQkJ4Fy2jfx1Sc+SdDzLstsl/YB2vjR/K8uyF0j6sKQvkaSiKN6RZdlvSfpHSQtJ31AUxTmnSUH2vbd7vyqquxeciPT7/ZAm32g0dM011+iaa65Ro9HQ6dOnQ9hibGN2EiqpFL7oNnOqsfRX0+4g7VnJIZge4geZp1rsbgsn73EYH64EKvq0CVCBlhR2FfC54bxSuQpLGwLXyXm5Po6FVZ1zIJp0Oh0dP35c3W43ZEtAYLln/X4/3Eeq0p4bUKlUNJ1OA7mjx54wRPIYnFi6I8XnDpLNPPr8+fXjLIir/t7/7+0ihEWyveFqtQoiCcf2nRW4X61WK7SneIuNpBAmmWVZmC/PfoC0u50fUkzFnPvrFXcnvrSbuLjhc+StHL72vVXH14M7CNjVAccGa8ozD1hDa2trpeBQ/0y4S8Hvk+d7SCqFkiJMuIDk8DXCuGmBYg4c7vLguLFLx7fkPCx4OL+LEw4HiulUx94+PuhhJCQk7CJ9DydcSsw+qa/f/oRXSGoe2BhGq5le9Hkv1D1fVNX9dOgk3A8WeaHZ+ppau78Xb3z7Rc8WOKx40OssiuJ59/PUs+/n9f9B0n94KIPxiqcdr1QxdKeCE2nS/tmxoNvtamNjI4QXEjRH+B7n890YIBWNRkPNZvOsdgG3ZnvCvxNE3zkAguT2doIhnYwxFt7D+SBvo9FIRVEExwRE28UHiKjbz+PdA7yiG9vgqe7WarUQnEiuQZZlarfb6vV6od0BoQLnhmczSOWtKhETaNfgGhEjsLbT/w6BdOGANYCbJO6Vd1LLPHq7CcIOrgzfopH15r37zAXVeO57bNNnTL4uuD9O5nGacK88RJC1hdjhYY/SXruBV8t9bnEP3N+uIV6ZZ848V4Fxe7tQPB+eRcKcuSjGesURA9x1w38IOj4/fAZ8zB7OyC4P3trCGNga1r8z3PXhbSMcj3XDDiHA14OvqcOAh/O7OOHwoPLat+sTvufFesOPJJdCwuWLj//BF+v4n1/+xfn0PZxwLljceZce98sbes/zzy90L2/O9OT6wYkJAe/5oObdJx/0KC5L3PnMqh518mNV+eu/P+ihPKw4VMKJV0khad72wO8ekgdhoW+fIMFWqxUC+Hh8bW1N7XY7VI4hDggIuAE8td/DCiEwbFN55MgRNRqN0haJnlY/m800Ho9LW/EB+u0hRx6A5z35Unk7SZwTXC/nZI4g2kVRBGHAx499n7n0FglpLzsAwkn2wYkTJ3TixAl1u91SmCDOBHc7UCHn+Ix/OBwGl4Sk0OsOuWe+EBmkPbs7RI/3MFe8jnvM3CNisK54nYdYIogg9OCkYC79Gqi4cz98XG679xBN2gWYk0ajEQQY392B+UBg8ewND6fEZeGV+HhN8RrELeaedcVceCYF6zx21CDcUPH33TU81BERwvMmWGfxZxvxyN0BLtS4g4gxsz49OJO13Gg0gtjhQgfz54Ie88Bn3LMWEELc8cL3UELCgaFS1epTn6y/+uGfkXTZBoQmXOVYFivVhoW0SsX5hKsERaFsOt8p8J/L7tOFlN9V0drfH5WedqkH98D4F4//dL33333MwQ7iMkaxVui2L2zqMeMnqXjzA+/0cCXh0AgKkAoIQVydlvaS73k9Fd9KpRKEhNVqpXa7rY2NDXW7Xa1WK/X7/RC+GPer07bQbrdLpJoeesYRV08hIZVKRcPhUNvb21pbW1On0wmZAuwg0e12S6Te+/mdcAPs+OxaQXXVe895zWKx0GAwCC0VLoq4tRsBhZ0WmFee5xzY6wkwrNVq2tjY0PHjx4Og4NsOku7vlWzun1e+yUxw8YT7QfXZWzk8wNJbDKga+zaEzGNsbXcnB4SW60MImEwmQUSJWxqo2BOCCQmNt1GEwPo1I4wURRG2DvXWGl/LrC/PNvC8kP3gFX9pr0UAZ41X191JAKHnsXjnCFpVmAdeH7tM/POG2AGBf7DcAZ8H/0x5G4oLFjhxmF8PbcQ14U4Pxurrm3ngPC5wIMLEopGLewkJDzeqG+t61T/+haQ3K4kJCZcrBquJnvlj36rr/sdrD3ooCQkPK5bvfK8e++tNve9LOyrWHqB1oJCaJyu64cdeq82vesbDN8D7G85sriJFJ1wQior03q/s6vGjx2r1gQ+rsL8vr1QcGkGB6mPcIy/tVc0hDpAcBAVpr2qc57mOHDmi9fV1NRoNjUajsD2iV6CpvEKcvW+90Wio2+2G9gKIJcQG8l6tVtXv93XfffeF3AAnK1TMa7VaEDfoy8dKT4UW+DUScEdF2C3yEHWIGfkQ3W437FYhKRBjAgCZs3iXB8YOWYdYdrtdXXfddTp27FjIWKB6nWWZxuNxEFAga1J5dw7aFEajUbD0Q8CpkI/H49I9cnLvuQhcj7cZeNUauEDDGBADms1muI9e+fcqvhNUd8x4iCbzxM9+zS78IMzELgGel/ZIsx8nbgFiLF45X61WJQcMLTWsDd8y1Z0oUllo4HfP+eCxRqMRHBeIPi6EefsEx9ov58FzCTwzhONzPm+n8DF7CwhCG/fOsyFcnOR+4QqJ20lwdbh7wY+RkHBQWD3qpoMeQkLCBeGuxUCf/kvfoUf8dBITEq5OFG98ux7Zeao+9FkNrRr7iAqF1DhV0U0/nD4jVxwy6d0vPCbpmJ7w4x/W4o59N3i5YnBoBAXAH/1Uo+k39/BDD12TFMhtnuchMJDWhnvvvVe33367xuNxaBeA2EGGII+0CbBNImKChw4iHGDLHgwGGg6HqlQq2tjYCELCdDrVYDDQ2tqajhw5EkQEKtYcK3YneNWdlgUPy0NkqdVqgYTTRtBq7cSAeKDdcDgMBJDAPK+Scy1kTTAmHCBHjx7ViRMndPTo0TB/CBu+W8N8Pg/n92MzfwgPy+VS7Xb7rFyMuGId97dDChGEII/+Wl4PMQZUtWnvcGGG5z2LwkMEXQTwrAMq+3Eri4PjIyB46J+LIV7ld+Lt4gzVdlwMMbyNBPFF2nOAeLCjCx8+fs8h4P55a4JvucrxEPpcFHPRh+O6o8TPyRzg8uAxju3HkBSEKReCmGt3MnH9+23riUjhQqULVwiWD3RvExIuKbJMn/mrV87+1AlXH26bD/Sc3/523fr9aR0nXN2o/tlbdFPj6brjn6xp2bS/KwqpdU9FN/7o4RET/vPpR6vyiBsPehhXHN717bfoCT9T0+K2Dx30UC4ZDo2phQowwW6QDyr65CFICsTff69Wq2EbR2zf/X5fp0+f1tbWVuhnhzQT9MZrqbxWKpUQfghJJavAe7fr9brm87n6/X7IVCDln6oo1vh2u61utxtS53kf9n4PvIMMQWadbHogo6TgFPBcCfrv/Xl6/LvdbiBgtVottD+4TZ75RMhZX1/XsWPHtLGxUeozZx6n02mpl325XGo8HgehhXlAdPBgRhclnPRxPyDPkMM4N8MD+iCOVK5xDziRRUyAFMf98hzT58CvE5KMYBGHHwJ/L+dwl4O3RnA9uEe8Ws/PHmzIXOJYYc7dveHOnlg0cOLvoaGMw3dT8FYOdltgDry9AEHBxaaY4PtOKZ6TggMizoZAzPD7FreFePsSbTh+D/z1+4HvkNjh4hkiyaWQcCAoCv3Jp9z84K9LSDiEeP98oGf/3rfr1m+/MrdHS0g4X9Rf/UZd/zdLdW+r7P33wcMlJkjSn3zyTXrPi6896GFckXj3N15/0EO4pDg0DgUPfotD16iMO3n2/u3lcqlms6l2ux3IMTsOxNkJECMIM8LAcDjUbDYL7RIQ/7jdYW1tLYxHUgiAhMhvbm4GhwL5Cevr68rzPFj+J5OJhsOhsmxn1wls/xBdtlUcDoehekrIHMRsPB6XAui8sg2J8p0lEDTinRB4P9eHkDKdTtVoNHTkyBEdPXo0uA+4L4gBVOtjN4U7AlwY2a+dwCvq3lZAm4bb4R2QTubMdy+A5CK0kFnBuXw3g8lkEqrdfr5Y1JH2HDRUsF088LYMb53wXnwEAIi0pDBPTl69hWC/NgJe42Tbq/n++UCAYH5pQQEIF+7GaLVapfPR0uLOD+bB58TFGcbknz0ED16Da4a5Yu4R+GazWXALcS9cNEM4YK6AnyPOWnDBhXny9hdEhnPJg0hISEhI2MFgNdEnveEFGn+oq8f+6yQmJCQ4mn/4hgfdDLL34Ym+5a6n6aeuf9PDMibHJ/39F+vI7PaH/bwJVwYOjaDghApyUavV1Ol0QsjdcDjUcrkMVfU8zwMh8P5oCD3tEZ4p4MSw0+koz3P1+32Nx2NVq1V1u131er1QDfbqeqVSUafTUbfbLYkIeZ4HEkmlHDs17ReQmel0quFwqNFopDzPS7Z2J+oe/uhVYH8tpLTVagUyN5/PNRgMwjx6C4dXiqW93AoPupvNZmEHCXd8eLVdKtvaGZvvejCdToNLwKvSwMm9282ZP+z1EEbPHZBUIn1kL/h8eQ4H9wmhydsl/NiICl5lh2giHHj/fSw4+G4NiFbeIsGcI0yRowEg8MzJYDAoEW3mzEMp9xsPpJh16/PurgR3fHhWiItA3E+ffxcu6vV6aZtV3wHCCT7zw7y4yyBuBSFodDwenxXO6oIGj/Md4G0rHkqJA8JFFr5zWMs4W3AtsP6SQyHhQJBles/3PVHSXxz0SBISzgnzYqmn/Na36DHfmoSEhISHispf/J3e9j1P00v+w5peeuPD+1k69g1zLazYlHBxce3rr+w22kMhKMT92hABHAuQXKry7Mywvr4eCCskqigK9ft9LZfLQKQlBRKGhZq8Bchyv98vCQBOgBAnWq2W1tfXtbGxEcQMD4/zwEQIvAcrQqSoprtIwLhwIjiByvM8EOg4oR5nRq1WK1V1GUO9Xj+rFQO4lR3yORwOdebMmRCW1+v1wrU4sXZSLu3tmuCtBz4nEFkndbzOBQdEF9wX+4Uz0vcuqbRzxH5igKTSPPuYGXdsrWe9cH7G5f3/LnZA6j2M010tVPe5zxBxd3m4oOTEG3cFjhnadTz3wbMoaAciK8PbE3y+IPPeNsBcsC58bhg7xyGbAXEPQcFFAdqKCHRkTlwk8VwIfkc8dMeC32MXDDw4lXvI/eHex64TrjFul/GdW1zgSEh4uPGeX3yqbvuslx30MBISzgmPf+WLVZ1kesx/OFz27YSEyxG117xJ79LT9M0/vNTP3PDGh+Wcj/7dF+kJp975sJzrakXndx5+18nDiUMjKEAaqTI7GfcdAJxEr6+vK8syzWazUmWRrQCdiFFJh+S02231er0QHEhGQ6fTUa1WCwIGRIiKarfb1ZEjR5TneSC+ELwsy9TpdMLrERf269HHlu/hb1StyT4gF4JMBwgTJBQXh1vWIf6EKnroIdfiQXR+jbPZTNvb2+r3+8rzXBsbG9rY2AhtGZJK2ybG1WNInrcxQPZwjbjNH2HFU/9pt2AduJ2dHnns7oybufMWCG9R4X7EvfSeH8D1ebvNfmKCk1HuK2F/7mpx4cEr++42QADyx1yYcfHEsz/iyn+8njyHg9f4/LqTI24/2a8NwNtRIPWe+eBiXpZlpUBGn8c42wE3EfcPgo87wNs5eA3jIhTSd36gZSHOwfD77Z8bb8/h+Hy+vF0iIeHhxjue8/OS6gc9jISEB8WTf+IletRPv0HFIm2xm5BwsVB7zZv0j/On6mmPfpok6aX/5mf0CY2Lv33wo179L3Xsb2p6wv96j5bb25KkW397pPd9Wf4g70w4H9z6PyfSav88rysFh0JQkPbIFvZ0SBpEF9KKoMD2iMPhUGtra4H0TiaTQPx91wMnrd1uN7gMIHzsaHDkyBEVRaHRaBR2T/BKcbvdDhkKbJfIDgcIFYQuUnWF7Pi1EOTYbDZLBIawRPrY19fXQ85DHGxHCCNVWOaM7R6xoEPaqIQz3x42OJvNNBqNtLm5qdFoFASXXq8X2jvYrYHjIFaMRqNg3+d4TmpdAAEezOe7BlAthrDHVnVIJsKR973HGQ1O+r2C744J76/3ir6kkigilXcP4DmviiPaxCIE4wf8jpuE4/Iv54iFDh7jXwQM4MGdTuA9Z4C2Dsg7z3s7DevDQzTJSmg2m2HNseWi77QQf158e1PWt58DZwCCme/uwpwyZy5UkQ3iGRWIFBybNeBClzsu9nOtEMSKuOktQgkJCQkJO3jiy16ia9881w1/8uYkJiQkXAJU/+wtOvZnOz9/zwe/Xsvmxc90+qi33aXFR25Xieq+4R3Slz39op/rakb1796j1YO/7LLGoRAUIHlU5F0A8F59SYH8dzqdsMsD5IbXUDmF9Nbr9RDSWK1Ww/ubzaZGo1GoMq+vr6vVapWs5ZAPyBTHnc1mYacGKskeQNdoNIIwwq4GWOFrtZp6vZ663a4ajUYgb5yP7RXJR/A+f289YD4g2RBISN9sNtPW1lYQaiB/RVFoMpkEocH71slfOHbsmB7xiEfo+PHjIeshrvJDNiG1iAmeh+EZCDweiwk4PaRymB6kML7PTryp7rtNPc4U4L3eQgHI3mAs3vbgVfq4TcIdNd6iwr8erhnb8Gl74T7jbvB7iguD1yOm0Pric0CrDOcfDoclYcTfz/yxbhEH/LMY318EOlprEHm4n97m4g4WX6+Mnc8HbTY85yLOfu4Ors1FHb82RDrG7ffZsynceeDbSMbrLhZyEhISEhJ28PhXvliP/sm3a9XvK31DJiRceqz96ZsvCWHbVwpcLfWEn71b7/qm6y7BGa8+PP4Vp7Ucjw96GJcch0JQkHb+iO/1eqWgRcgoxALyCLGHIBG4B7kiOwFrt1c+cREQZIho4TsVbG1thce8V5vjrlYrjcfjEOboCfKQK6zgi8VC29vbJTGDdo1Op1PKMVgulxqNRhoOh2F3iCzLNBqNAlH2VH0nX96z3u12gzAxGAxUq9XCNbutHmI2n8+1vb2t7e1tTadTdTodHT9+XDfeeKNOnDgRdodw0jwajdTv9wN5ZQzuJJHK1XHuqwcZQkCd/MatCeRmkOXAcTgHa0Pa23bSRRrIr+cSxLkKnNOT/XFa+NaNjIfr8f58P5b39Hs7COP0thh3UXiOBvPHv+4KcbGE13v13kmxj3U/Cz9jiFsEaDHxvBGff8Q+3/HCwwz9cW/1cScH58eh4udHkIjHzO9xy42HbHorB+f09gap3CbjmQm+LtxZkpCQkHC149bf/Ho97kfeqtXuDloJCQlXHlZ33yvpyhUUHv17U6295X0P6b0f+K6P1qJ9blLq4165qeU73ytdBcWpQyEoQDja7bba7XbIEPBKNiBToNvtBrs4VVLPV+C4i8WiFPKGPZ7edM6V53nIa5hMJsEKD0GBkFcqFY1GI506dSoIBb1er1R1LopC7XZbWZap3++r3+9rOp2GKi/tGp57UK/XgwDA+chpGI1GYbxUhyFIXulFUKAdAweCt5BIKrkhOA72+3q9riNHjujmm2/WsWPHwg4V2MC5ThwO4/E4uDNimz0Ci2dJOOljq87Yrg6ZJhOgXq+r1+uFcbgrgvd5HgXigQsTTpjdFh+LV07kOZb35DtJxaoPPKDScyVc8HDSzzXEVXP+c/HFibYTd+5vLCbEQo7vfBFfp7/O8yFYb+12Owh4uBAYm7dn0EaDmOJuGgQTF1ZYF6wTBA8PreQafZcLz4BwJwZz6A4Zv/8uorkI5CKCn3M/cSshISHhasWjX/MCPe473qRVanFISLiisRqN9IQf/7De9W237DxwucZJ7f7p3PlQRdf/lzfsPbxcavUQSf6jfnAnKPN9P/o0FQ8wL4/99aFW//Cuh3SOyxGHQlDIskzdblfHjh1Tp9PRYDDQ5uZm6Nd3wkB1HzJOhRtyRivDZDIJYsKZM2eCaEA1F+u4W6MRKCaTSSBpHBdCxdhOnz6t4XAYnp9MJtra2tJkMgnknx0TtneDTgiBjB0GkB/IGKKDE3kPw/MgQwg+ZLJSqWg4HIYt98hpiEnufD7XeDzWYDBQv98PToZWq6VrrrlGN998szY2NgKxIwiPgMzxeBzaRWjbcNs6AgPtDIxf2iN3sViEA4XrRCzI8zy4R3zbR6lMgj3cE0EKoQFiCHGcTCbBhl+tVsMOIj7GuFoNPMuBtUNWhrfouNuB6/Oef78Gxo8LxR0envkQZzrwOs8I2G/s7mzgGp3cM08uPNDmg9sH8crDNuMKfnxtfEYJg0TEw020324VBCsyPgQE5j52vPj7ERlY7/Gc+DwzPq7HW09igSwhISHhasWyWOnpb36eHvv/vDm1OCQkXCVY3HGnHvOtdyr7uCfpfV/RkyqFiosf43BpUEjZMlNtkOmWH3otD12cQ+/+DXrrtz3wtp5X23flgwoKWZb9oqTPkXRvURQfvfvYj0n6XEkzSe+X9DVFUWxmWfZISe+U9O7dt7++KIqvf7BzVCoVra+v6+jRo+r1eoGoU1H0ymSn01Gv1yuF+UFM6vV6IP7kHGxvb4fXOFGhAksFmVBBzsnvy+UyJNoT+jgYDMIYIUnD4VCDwSC4H/r9vu666y5tbm6GHRdoqyDUEZLOMfiXXRt8xwqyJbxn3FsNnKC7COG5Ad5mgOUckaAo9rao3NjYCO4E31UCQjkcDjUcDiXt5VVwfsgeRJLfIaucezablar2XkVHUID0xe0pbnGPMwxcMInbFfidY3joIWN0Is97+J05dNu/tFed9/UTE1Xgj7NOufceAsia9/saCzC4I3xsnkfi2Q2eMxCP19ssvLqP+LVa7QRI4ihx4Yhr4hzeioFDwbeq5H3MNfPojoFYpIiFEd8ZxUU5nzt/zt0d7iyJMzL2E3EOk6DwcHwXJxw81m668aCHkJAQMC3m+px3fZFOfN67H/zFVwHS93DC1Ybi796hW/9Omv6zp+uuZ+79zbxsHk6BYW2USYX0yH/zuoMeylWFc3Eo/JKkn5P0K/bYH0v6nqIoFlmW/aik75H0XbvPvb8oio89n0FUKhXdeuutuvnmmzUcDoOd3hPjSY0nZ2E6nWpzczO4CVqtVqhkU/WE/GdZpl6vp0ajEaz9XtnEueB91ATSQTwhrQQXQhyr1aomk4nuvfdeFUWho0ePqlKp6Pbbb9fp06c1m81CgGSr1Qq7QWBbn06ngTBLCu4JtgpE3CCYcDqdqt/vl4SIarUa2hAQR0j853ohrO4kgOxRtSas8qabbtKxY8dCXgStGGwxyTwxL+44gIB5Rd0rzB4a6Nstct2QvXjXAW+D4XHe560bvmYgrb7DgVeeWVeQSgQndwA48eexmHj7+LgPkGycC9xft/BzjYzT12QcVgkpZzy4BphnFzt83pzkE/SJMObCRtwWwTF8C8vhcBjm0oMZEaZ8XXkgoxN6juvjXFtbC44hchscuDp4PT9zXZ4v4m4Urt3FOkmlzBWyG7wliHPuN/YDxi/pEn8XJxwsKk9+gn7+D/+r8krnoIeScJVjWaz0yu2b9If3PlmVZ3/koIdzmPBLSt/DCVchGq96ox75qr3f7/6WT9ac/1Vl0vTowWZO1bcqyhbSI378LVrttnwnPHx4UEGhKIq/3FVZ/bHX2K+vl/TFFzSItTXdcMMN2tjY0OnTp0PYobcDFEURtlHM81zb29sajUaqVqvqdDrK8zxkHECUscdT8XfyQYsA1X8s9RBG7NxY7uv1esgzgIBD5u699171+/2Qgr+5uam77rpLZ86cUbPZlLRTZd/Y2AjiQVEUISQQIFA44aGiDEmi1YDsAgSUuCrvDgFvlfCefK+wkz/R7XZ13XXXhSyLzc1NbW1tBRFF2kvBh9S7AORhfRBRt6kzr4gevgUl1+65BJBJ/oPI4nBgXnx3AUiyizKx8AD5ZEycy10ATtJjq3zsTuCafYvMODvB+/vdDRHvTsD747wHF0biXTc86wExievxuWNu748s+3njsSCaIAB4qwsCjc+NwzMK/Lzkh1QqlbCGXKjApRG3tMT3wdsn4gDGeK7dneCfDz73nkVxmBwKD8d3ccLB4kW/84e6ZS2JCQkHj6/84GfozDNPS7r7oIdyqJC+hxMSdnDdT702/JzV6rrzm5521mtmG4Xm3UtXmKlvVVTb6SrXzb/5QS3uuPOK357xsOJiZCh8raTftN8flWXZ30nalvRviqL4qwc7QLVa1ZEjRyRJm5ub6vf7JVs7/7ZarbAd4vb2dtiCkS0aIXdUiiGuTn4hsvwO+UIc8Ko5z7daLUkqZQbQd7+1tRUCHxuNhqbTqU6dOhXCGSFPHAcyiO2f8/G7W7q5BnISMgt5nM1m6vV6ajabIUiS6/X+c3aW4DGpXLllbhqNhjqdjq655pqwuwSuBG8bgZDhsMC1AHF1IccJOb+zleJ+Vf4HgpPQmMQiILk4QXU9Fmx4jOtGQOB6gI+L47mA4dkNXDOOE6/6O1yUcPeDj81JMK8jIwMhxwWkuALvc+75IC5MIbrFFv/YYeBZCD4fHAuRjfljHD5PkkqtDn4uFwVcAPD2Ceaa93urD6/113hmg7dLcTzPYkCUcgcS7/VdOi4jXPB3cUJCwtWNZ//j52k4q2v9nz20BPSE9D2ccPWhmM90/X9+7VmPL5/1VJ15XCP8vvVYqVh7aAJDtpTW31PmDMffNpBe/zZJ97MFZsLDhgsSFLIs+/9r5x7+j92H7pJ0S1EUp7Is+3hJv5dl2ZOKotje570vlPRCaa9H/syZMzp16lQp9Z5/sfJnWRYq9JCj+XwejkGrAuKBkyK2TyS/wHdFcOuzpEDUut2uWq1WIJz0m0OkT548qdFopGazqVarFQQR0vGlvYwAt/FDZHAiYPWmWk1AoxMfSaElhCwGqvCSwlaVLkZwPRBnD83zrAKcGuvr66Ue++l0qvF4HObKQfjheDw+qzWB655OpyWRBldI3NLgxBABCRLolX7OGYs/voUhcwj5dMeHt2B4LgOkFhGJ0EzGFlvkWY8IAe6QYI3E1+VE2gku94XjSDpL6MJh4K0vCCg8jtDAHLqYsB8x9rwFxurtILzH3R64HJh7xIR4ffuOG3FQIufl9bRMuMvBx8b7ve0jbiGRFOaPXUB8zbhYQnuOXxtrM37uXAWvg8bF+i5uKn+4hpyQkHDI8KTXfaUe8YLbtba5ddBDuSyRvocTEsqo/vlbdPzP935v/YtP1LKeSZl079P3Hm+crmj9fQ/sLajOC7X/5wMHISYcHB6yoJBl2fO1E0zz7GL3L/eiKKaSprs/vznLsvdLepykN8XvL4ri5ZJeLknHjx8vxuOxTp48qe3t7bNIF3Z8QgIHg0Ep8M9zDiATkDrILWQ7z/OQWA8hgzQTvAip6nQ66na7QXDwCj0hjIwly7IQ1LhardTr9QLJJZDRQxilve3+3J0AkYVYQnQQSUajUeihh1xCmj1PwYPyIMoQ7+l0GuYDgthoNMKOED73vN9/Zo6Hw2FwSxAYCZHj2r1Pn+thzP6vE2B+5nhu7Wf8zB+PxUn99PTv16bAPHnQJMQdocAdEJBbCKu3BEDeXTiAwDvZdes+x9r9HIXfucesZdYG65n77RV0CHfsDnBhwPMros9gKc+A4/ruGHyOuDfx9pOsLX5nzl2A4Fr8v9idwGfZ5zJG7KJAnGB84/E43EvmlvnlZ2/D8dyI2F3C+y8HXMzv4l529FCFRiQkJDw8uPVPv0aP//Y7tExiwkNC+h5OSHhwtH/nb3d+yDI1NvdaJJr3DlS86R8OaFQJFwMPSVDIsuy52gmc+SdFUYzs8ROSThdFscyy7NGSHivpA+dyzH6/H0IWpR3i4hXfbrerTment5RtET1zwLcVJMgQooGQwA4MVLk9vK1SqZRaGXAn4HKg1xuyur29ra2trZJNnupwo9EI/eW0ZVA99hA9SCeVUSc3EH12VaBVQFLYyo9zSioRS88B8N57zsW5ERQIRET4iKv83keP+DKZTMLWmfEODnG13d0Gbsvn/oLValXKlYCE45DwOWSMXlXnXBB3hKY4HJDfaVOARLPuGAv3wYUYz/bwDAt3A3heh1+HOx3iXAfaadx1QWYH68/FAq4D0ks13QWK1WpVyltgLLGrgHW/37aULh54kKW7XeI8gkajURKO3DETO1FolwHuWHHRwR0Mfj8ZI+vE15hfrwsLLmj4GPz47oo5zLgU38UJCQlXFx71Ry/QR33/PVrcc+9BD+WyRPoeTkg4TxSFGq96496vBziUhIuDc9k28tclPUvS8SzLbpf0A9pJsG1I+uNdAsBWOJ8m6d9mWbaQtJT09UVRnH6wcxRFoVOnTunuu+8O2QPe7kCrAls5DgaDsJ0izzWbzVDN5XEXF8hfgIR65Z38gFarFYgwOzJgc0ewGA6H2traKokfbv/21gxP8W80GqUKqW8ViONA2hMAXHAYj8caj8dqtVqB/MUVb87jBFraEzmYS4QCjoOogLDgToXFYqF+vx/CLyVpMBiEXR8IasSxgXPBK+RuTed3nBq0UbiTwAMNJYWWCsg2ZNldHi6g8D4n7ZBPJ66+K4TnZ+B6gJAzdt82kXvmOwNAZCGiEFlvs+B+4rAg04DKOiKSP+4Cm4sUXj1nTpjb6XSq6XRaWmNcq7eUIJ4gvnhuibdIuDiEOIFwxH1knIhS7qxgvv3YfAa9NcG3jnQ3Q3x/eT2fZ8bhgoGLJiB2LvAZ4nw87mvm/twSB4GH47s4ISHh6sKj//hrd8SEj9x+0EO5LJC+hxMSEhLOxrns8vC8fR5+5f289nck/c75DmK5XOrUqVM6c+ZMIGxOCMgLWCwWYStGSD4hi04OIMueS4DIsDvOUEVnu8RerydJIRvhmmuuUa1W0/b2Tqtbq9XS9va2Tp48GUj2fq0HHB9hASdAu90OuxpQOYbQOYmdzWYlizgV9EqlEkIdIbdOstfW1kJ4JEBY4JiQVazekDu2Emw0GtrY2Ag5CrhGRqNRmOPxeKwzZ84EAUFSaPkAtDt4lZrqL+SdQEpvZ4AQ+j1CUHDngItJiBBe0WYMTgq9gu6/cx6vRscVfA+bRARhzlx48HYVrpk1SCsJ1XAEAkQY5p/rjNsrfH3F7QLcR1wihJLmeR7mIt7WEcTtLawbb91w8cfFCf6Ln2dcrDv/TMS7bcRtF4zPx+K/c5+43v3WW/wZ4B76XEraV0Dhmt0JcljwcHwXJyQkXD14/F99tZ743XdqcVfayeFckb6HExISEs7Gxdjl4YJRFEXYBjK2xddqtZB7wPOQPWznkkokqtlsqt/vazAYhJ50FxPonZf2iAlV9u3tbVUqFXU6nVDFbbVaajabOnnypDY3NzUYDAIpZBeFyWQSiIlXOhEU8jwvVc0hbJKCO8FbABaLRSDtOBqooA+Hw1I/PHkP7DLBvDmJ53XL5bIkgHDtuBVuuOEGdbtdzedznTp1Stvb2+E4w+FQp06dClkR9P0zB95G4KTV++oh3OQuuOgBmMPFYhHcCVSicRQgJi0WCw0GA0kqCSpOBjk+18sa8uq3E01fX7hKPKwvzitgzTLHEFvG6y0FtK5A1BHQYkdMnL/g1+JtGIzHx+i7JfA48+3Vfm9zkPbyEZgbxj+ZTEruDd8i1FtqYqGDsTPfvtWqtzPFLQZ+f5hPnwN3cpDh4Z8rd2C4wMEYWP8e0AlcwDhMW0YmJCQkXEx80t9/sW59ye1anEoF84SEhISEC8OhERRGo1EgUhAIyDjtC4vFQnmeq9vtarFYBHcApImdCqQ9Mod9mSo/5MFbDWhHgHS0Wq1AEv38p0+fLm1pKSlUlSHqtA04ucJFMZlMAqFpNBpn9Wx7xZ0KLm0NHBsyCLmjCgw557pxHlBBR0zwAD8XGhqNhk6cOBGcGnfffbfuu+++YJ2fTCY6deqUTp48GeYP8ttqtcL8ecXedwnwiq/PLed3MQUSSCaDb1NJiwrzh1MDQu87NyBCcHy31DMOJ9eMxcMInVy6C8KdFd6uwdxDYrkPkko5GYgvq9UqiGBSmaxDthEPPBCRzwjzzlrya3IXQXztOA24X75mPbOBtiFahtyV4E4ib2WIsxgYL58vf4+LCXF+w36OA3cosD7I3fAwTA845RprtVrJKeLCEedEQGKs8bwlJFxK/MJTP04f8w//R7fWOgc9lIQrGP+/Dz5LR77odi13XYYJCQkJCQkXgkMhKCyXS41Go0BKPEjNyRfOgV6vF+zgkMxOp6M8z5XneSBBXnmEmHNMQgjpg/ddEXg9YkKWZdrc3NTW1lbIZICgdrvdUGmWFAQKSBctFQgKvk3lfD4PZBIHgveke2UWYtRoNM7qU/dEfq6bUEh68dltguuBZEHkm82mTpw4oUqlovvuuy+ICZKCC+DMmTOaTCYhrwIHSFwFRqxxgoegAClmRw3mISbM3qLgoYJUp534eaUe8QMy7ztFNJvN8DMiFMflXkEgfatDxhi7Llx88OedPJMRwZiq1Wpp+8Nms6k8z5VlWWi3YY16+CLn5F9IP58ffx2v4fp8TnE4uMgTuzG4LkQTb+9gzl1QkfacBp5N4kJWLCCwRvisxW0NLgi4sODuFXfweLsF4kEcUOpBkAgisavIr+9yCGVMuLKw6vf1kkd+qn71w3+tTlZTXqk/+JsSEs4Bo9VMfzLe0H95/BOlYktK328JCQkJCRcJh0JQgHh4mJ2010c/Go00n8914sSJsFODV8ghSfT+Q8ogn75TA/Z8/ovJCiIEpFzayVXAmUAlmQyAWq2mU6dOBfcEwYj0ync6ndA+wbV6P/7x48fVbDbDzhK+1WIcHgfBRqDA6s2c8R52vSBrYTwel9wezAUW/GazqWPHjunYsWMaDof60Ic+pH6/H+ZiOp1qa2tLg8GgZIOn+o7A4sTeA/Om02l4fZwV4M4FRAjuPw4Gr8Y7mXbXgG+p6LtLMNfMDyKGj9XvjVetEStihwev9bULuaatgOPjAoA0++Nra2uldp7BYFAKS3Sxxs/FtfluEp4fwfM8h3thNpuVtjAdDodh3rkXnmfhbSMQcVqL3JXgDgN3THheBuPlPw9P9PliPH5cHwOfH9phiqIohWO6AIGo4p8lP1ec3cDnwfMY/PmEhIcFRaGvuvmZqm6s62ff+r+TWyHhgvGO2Vjf+shn7P6WWrkSEhISEi4uDoWg4GFpMTGgmthoNFSv10OewXK51ObmpmazWQgS7PV6IX3eLc4QEchMo9FQt9sNxMpt5LVaTevr69rY2NDa2pomk0kg5lR7PXvA0+zb7XZpG8F6va6NjY2QscA1jUYjnTlzRidOnAiOi62trVL1HJLsOQhkBfR6vXBNXkn1nQcWi0XIkeA93W5X0h5ZdFfFsWPHtFwu9eEPf1j33HNPaftDrOUQeSrptHLEuwS4Y4JrcqcFhNJDCRk758RRImlf8u+kD6HCwxOlvS1EcWF4O4KkMHaew53A/WOuINKSwo4YEG8XHNxR4/9BgOnhZ25wCrC+cJF4zgPjgRyzrmj5cCHBRRPmmnlkjj3sM84QQAiIsxX4HHqQon92uae0SDgxZ4056eec7lxxgYLAUHc1IFi4SOKOkVjU8PYfxkv7DqJNHNDImJlH7lNCwkFgubmlb/4nX6Hnv+YvdN3alj6tedAjSrjc8OpRQ8NVQ6/4qKdJOlwhswkJCQkJVw4OhaCwX3UxDmhrt9vqdDra2NhQq9XS5uZmEA8gy9iyIR3uZuA87OjQ6XRUFEXYso9zHzt2TBsbGyUXBA4Jt4MjHIzHY2VZpvX19TAGiGOz2QzuBAicpECyjh8/rqNHj4agxfl8ru3tbU0mE3U6neAm8GR8esY9lBKXAO6L8Xise++9V5ubmyFrIs/zIFBwHVmWqdPp6NixY2q1Wjp16pRuv/12jcdj9Xq94Dpg20on0bF4wfEABHi/3QUQCCaTifr9vhaLhdrttqQ9xwJVag909HP5GnExgefd5u+CBsdyQhlb290O7/3+3lbi1+WCx2g0KpFY7huv4bwcj2BLwi09P4I59Z0p+B3hxTNHaKFoNBohzNLdPsyT79Dx/7V3NjGypWUd/79dXXXq1Kmv7nt7PuRzILBAYwZUYqIhLIjAbEZdjSsWJriARBcuICSKCxZ+oBsTEggENAZiokbiSjAaNkYcdBgGcWSQQQaGO33v1Oepr+6u10XX/+1/vbe6+96hb9Up7vNLOrf71Pl4zntOvbnP8/6f52FxwzjVIX4GqiBYNWb67LTVJ8cl7vag7wjvUwNRcZFMDRRqsUbdl9u0U4bWo+BYqMpEVQtaO0Gft2FsiuPn/w+ffvMjOHrXz+EX/vhrmzbH2DKe+fXX4fi734MFEwzDMIx7SSECCsDtAQSFVfAbjUaoA8AV0yzL0G63Ua/Xg4NGKbQWXmT9gizLcP36daRpiuFwiOFwiG63C+cc9vf38dBDD4VgAs8VO9Sa/31ychLSGtI0DTny1WoVrVYLlUolqCx4X6VSCfv7+2i322g2m+Geh8MhBoNBWB1lAcc0TYOTxg4VvH6j0UCapkt1E3q9Hnq9HpxzIQDDYnR0rugspWka6k50u13keb5UiO7o6Aij0WipngJX0ulca6E92qUOt8rvAYRACZUOPIYdKtSRBhAcaC0yyKABV7RpV1xPgPto/QBd9dYUG9rJdBYN5Og5deWdzi1X/7XQoTquJycnIeVE0z24Ms5xYW0MVURoTYZVnQt4Pwxi6XOK1QSsB+G9D6knOp68Ft8TVVwQrWkR15XQdB59j+MAAQN0qrrg/cdBEr0XvZ4+Sx6jwRZVj2iARGs5cKw0WMH3xgoyGkWh/OWv4am3btoKY/v43qYNMAzDMO4DChFQUKmybiPlchlZlqFWq4XV1NFohN3dXezv76Nery/l+9MxJUxPSNM0qBmoChiPxxgOh7h27RoODg6wv78fHMI8zzEcDtHr9ZbaTNIZPz4+DqkYtVotdItgwccsy4IMXGs9JEmCZrOJVquFarWK0WgUcuh5TjpyvHcezxVtysOpTqCjxLEplUpoNpuo1WrB0aYzq6vWrD0wHA7DNehYHh0dhSAHnTLtxkAHVZ13BnXolPNc2qWDMA1E5elUB7CzgxYQZDCFzmasQqDjz1V6Oux0SlXer3n9cYqArqKvcsh1xZ6r3KpW0BV3Tbehw8zj1FmmI6yFD3nvDKJokIVqDO6jDvBkMgktVmm31uJgLRB2sdA0AS30qXbyZ5V6gPvxGWkRRNqltTH4TFSFoefjfKCBhLiWgdqhgQAqWWiP1haJnydt0VQKAEsBp1iZYRiGYRiGYRjGGYUJKKySUBMqC7IsQ6VSQafTCXL9ZrO5pCgYDodL0mVt5cgUhDRNw7lZxf7g4ACvfe1rsbOzg263i/F4HFb66fiqkwWcBSq0+CMdXXZziB0npiW02+3g9E6nU4xGI3jvl1IdWNOBjrOutgNAlmXh+lzJ5nWazSauX7++VEBRix5yP3Yh4GqurmJTHs8gDVUhlM5zVZvOmqYe0PkEEBQaWt2f+6hDr04y3wsdQwYTOBY8H1NBgLNggjqbdMaTJAkKAKaS6Gq1rlTz+poyoekWsZOthQaBM5m/dlHQNAqtY8HAEWtKcAz4Xsd1CGg/UxQUKgT4fBnQ4PvBop187jy3dnFQp15X7mOlgioGNLVDVRO0WY9VJ57Ovjr0DCTwe8MAHq+n6hL9HmshR+6n9TB4jN6LqmviOcmCCYZhGIZhGIZxMYUJKNChWBVYSJIE+/v7aDabId1hd3cXzWYzSO+ZMsB6B3SitPMCAxDswgAgqAkeeughtFqtUMug2+2i0+mg1+thPp+jUqmEFAjWYqAzFxeO05QIYLljRKlUQpqmSx0MmE5BFQZVEwwM0GFN0zTUY+BqO3+0yB+DL0mSoNfrBRvjHPXYYdWVdgY6tMieyvAJz0WZOdMyarUayuUyRqNRcHDTNEWapkvOp6ZqcDxoS7lcBoCQcsKgDseb1+ZqNp8llRp0vPkO0akmPAeAJWdYaz5oG0EqJeJ3lmOiAR0GgjSdgtfhuePaEwyo8FkysET7Nd+fQRL+GwcpNKCi7yhTC+bzeVC6cJwZSNKaBDyHpiFoKkQcuOC7oCkT+lmseNDnrikjDGxogUaON8+jxR35LurzU7WCBhM4ZhpoiPdRmw3DMAzDMAzDWE0hAgrqXAHLTuXOzg729vbw4IMPotFohBVYdZCdO+080O/3Q5FFyuvpPO3s7AR1Ah0P1leo1+s4ODhAuVzGbDbDeDxGt9sNXSQoVc/zHHmeLxVBVCk10wF01ZhpCYQrz5qvTwVBmqYYj8fI8xyDwWBJSUGJuq44UxWhKoFSqRQ6VEyn09COkqkZDCBQ2cBidyzcyOCFrpbzGdF+Ooy6+k65+2QyCbn8VI0cHx+jXC4HNQnbOFLJwSBRLG33/qxVIWsQ8NlpsULalqYpkiQJwQQNgGgwgNuAswKZwFlQIZb7833UAIIGXuIuCSwGymNjB13rEuh9sM4G237SidZ0CK1NoQEMPiddWdfP+X3h+zIajUKtD60xQTsZXNFaIapq0VV+3p8qUHSsOQ5xYUaeg9eIgwwMdKh6RucG/SwOHqhaQYt7xu8t7YmVClaM0TAMwzAMwzAupzABhbiAHICQAnD9+nW0Wi0kSYJOpxNSEOgA0IFkMIE54LVaLTjtXB2nU8ofBhOazSYAoN/v49atWxgOh5hOp2HVWyX3uvKqaQi6HThzHCnbplLC+9PWka1WKzj0SZJgOp0iz3N0u90QNGA9ATppbH1Hp5NOVxwkYU0G4MzRZkBC5fm8fr1eDykY8/kcw+FwqVYDz8s2nHRaNaAwm83CuLPlJtUUtVotKCzoBLLgJJ03bekHnBV21GvR+WZAh10VGDRhvQYNWugzAbDUNUEl/HHOPp+Brqyr86nvqcrzqT6JFQj8XYtJ0hnmuKsjrJ0hNHWG3xlCRY6mb2jKAq/Pd4UFPmmLpnnE19H0E6pA+F5rNwwNlsRpBbyOBlji8eQ1+Lump6jKIk55oaKC96HpFrwvvlf6bPk9iNM6NACkih3DMAzDMAzDMG6nEAGF81IdSqUSsixDo9FAqVQKnQgGg0HI+eZK9Gw2CwoFOrD1ej2kQGRZhjRNQ646r8cuBwDQ6/XQ6XQwGAyCdJ9V88fjcdifCgOuJuvKKP+tVqtLReq0IOB0Og3OPaX8VFkcHh5iNpuhXq8jy7KwOs1rHB0dhSADVQsMotDR5n7j8TjsQ6ddHS4GYBgoYEcK1k3QFWreOztmqKKAtQKm02lQQlDhAGBJGaI1Aijjjwv5AWetKeNCkXpNlb5TXZHnOfr9fthP71tX2IHlwojAWZvBWAHB9ysu7KepCiRWcOi143oHWnwyVgRo4IHX4DhpXQhVE2j6C4NPLMapK/pM6+E7Svs0xYM2aLBBgz08t777GgjRIJAqclQpQGe+VqstBRn4XeH3h+Oic4R+37gvx4TFMBk0iNMlqMLh8Tof8D419cEwDMMwDMMwjNUUIqAQ5ynT4U2SJCgLKNNmTn61Wg2FA1mMkaoCFj10zmE0GgEA2u12qKegbeTYReHk5AT9fh+dTie0T6RzyPaGmrrAYEK5XA4533RA6XRRoq5ScwYmms1mCCiMRiMMBgO8/PLLmEwmKJfLqNfrqFarIbWBq+5ss8hrx/dDe5nqQOc5Hl/tJLC3t4dqtRoKOE4mk1Brgc40lRq8L3ViaYP+Tlu1jgUVALQdOJOs66ow0eKDOq48F51BqggY1Igl7cCZZF9X+7kf7dAVbTq12o4yDmro33Re1Raty6DEQRFdJVdVBO3i+6UOO515Pgstbsn3jg62nosBOE2T4OdakFFVFfybqgEdD3W+eQ2tyaHqGj2vBt4Y8NDnrOfRMdXAkyo6OIYMqOk4Uj2xKsCkgQ9VecRBI8MwDMMwDMMwbufSRGHn3Geccy85556RbR91zv3AOffU4ucx+ezDzrnnnHPPOufefSdGrFoJpAPDTgbHx8fo9/vI8/y2vO48z9Hr9TAajVAul9FqtUK7xN3dXTQajXAe5vnTQeNq8mQyQa/XC60b6VhMJhPkeb7kAHLVle0nuXLMlo0MNuzu7iJN09Cdgs5fpVJBkiRhNX02m2E0GoXUB6omtE4DFRi0WxULdFy1jsF8Pg9pIrr6zNQQBiaazWYolMiADR0rBhi0fgFrTDDfn44snVk+j8FggPl8HhQLdIQZDNHCjjxO3wXek6bCsN4E0090Rfrk5ASDwQCDweD0xZZAgaoFmHKiNSE4drHjqakMcYcGqgfi+gEMdsxms+DUq6Oq7zwdWl6fwRfaxPeUgZs4VSDuSMHnr7UWNN2Az54BAVUxxAENVVNo0ITPgOfmOeJiinFKBttRAmfpGtVqdanQKNMbNO2C3wGts6J1Fng+VSNooEFrU2h6kgZcVBVC+CyLVEthHXOxYRiGcT42DxuGYdzOnSgUPgvgzwH8RbT9z7z3f6IbnHNvAfAEgJ8G8FMAvuyce7P3/gR3CGXVcUcCOi7quHH1fTAYoNvtYjKZoNVqLa1+7+7uot1uB8cldnrofM1ms3CO+XweujhQPq8BD67WM9BBqT33oSKBxfnSNA2pBFQfqCNGR4qtJtmRgPc/m81C+0ruw7FSyTrvDzhVZGgBRDrp2jKR1+G4jsfj8BlrERwfH4f6C5TL85yqWuB4s3sGV59ZmJGOqq6iA2c597wfrg7zGas8Xlfoaf/Ozk5YdaezrB00NNBBdYLWB6CCQGX1mkbAeh3xCrqmuvCeOW60h/eoHR+0dgO30cHX2hYM+vA+43oPmobAY2i3Bj20fgCdaA1GaPFIjpeOEc8dpylofZBVzj3titNZ+Lm2rmSwgd91BgD43DQoQKefAYRVagJeWxUIWtdBVRWqsojnoQLyWaxxLjYMwzBu47OwedgwDGOJSwMK3vuvOOdef4fnexzAF7z3UwDfdc49B+DtAP71Tg6mRFoLDdJ508JpbKFYKpUwm81w69YtdLvdUPiPq/J0yJmrT8eZxzO4wFV5LfAGnMm3tcUkUzAoraa6gEGKUqkU6hE0m000Go3gZFYqFdRqNRwfH2M4HIZChiq9BxDumfnw/X4/OKjMe9c8eo4VnSR2TqATqU49nUGmU6g0n44fVQZUeNApz/M8FGtkjQfWVGCOP58jlQuafsDtOlaLdywcFx+vzjCAEEjiM+UP74EKBP6uLUL5TONCiLwmnWZek6oRrpBzLBlI4XMluoLPoAtt4NhrQEvbNWqKAVN3GFyjXZrzz4CBXpvOM98HXaHXQACP09oamnbC88V1CxiI4HipakAVPKvUGBoM4H0BZ+kZqgrR56HqCZ0n9Pzx3xxHVZ3oufUamo6hFLF2wjrnYsMwDON2bB42DMO4nR9Hz/tB59zTC/nX3mLbqwB8X/Z5YbHtUpxzwWGnU+icCwUDgbM8d67alstljEYjdDqdsJJOJQJ/qtVqyP2mEkFX/umo0yFWGTrrNTDvv9lsol6vBwed51O1AbsvZFkWnG7KtllIstPp4NatWyHdAUAoosiUAK52U52gUn6eS1fUOV5xAIbBDQYuqJBgIUrWW+DKtd63jgVrPdD5azQaqNfr4blokT51jtXpBM4KIdKxVeeYAQa2nWQxP6LOPB1SrnQTdW5ZHFJX7TV9gffGQJYWQMzzPAQUVEZP1Qn3V/WKpqDwGDr0VBww+MJr873h2I/H47APFQOrOhFoHYY4GMVxZABjOp3elqLC47z3SyoCHqPFJYkWyNT0C1VC6PNflcrE7zrHRYNQuj//VnXKeeeNt+vzIKvs0IAWx5bw3vQcBeZK52LDMAzjrrF52DCM+5ZXGlD4BIA3AngUwIsAPr7YvkonvHKpzzn3fufck865J4Gz1X+u/FIy32g0AJy2uqNDCyBUx2chwyRJ0Gw2gxOpq/Ms6jibzbC7uxvqGdCBV+k5HULKsLkCzQABW9nRGeLvdJhVWaBOJx3CGzdu4MaNGxiNRqFAo/c+rPxzRZuOHtUJHCMAIaBChztevdWCdhwnytuzLEOWZUsFF7U1n+bIAwgqCi3E12w2Q1cFjiOdX1WXaHFD5q5zZZ5KBU0L0HQWBiIYyGAhQU1h0E4XHEc6/Tyf1hJQ6b2miWg9hFV1AuhsapvLuMYBbdIuEQyYMPDEMeT7zXdN6wJoIUfelx4XO7lquwYJ4mAOP1dliwajOH46Jupka6oG91V1R1wEk2jNB92mSg0dY55jVTpFjNqttSr490UqA02J0Ouu2q/gXOlcfITpql0MwzCM87F52DCM+5pX1OXBe3+DvzvnPgXgHxZ/vgDgNbLrqwH88JxzfBLAJwGgVCp5ruqXSiXkeY4kSbC3txc6MHCFl6vuSZJgMplgOBwCABqNRlAn0Bnc2dlBlmVhNZ61DSgrd84hy7Jwrnjlk85WlmVoNptIkgS9Xi8UNNSaATw3V3bppBwfH2MwGIR0geFweFt9iPF4jG63i6Ojo9BJgkXumI4Rr8qrw0zVhbbIo2POoAe7WVBVoHn+XKllEEbTEbR2AdM5Go1GyH/Xtph0ZqkOUNUBbYpbMfJ+gDPnk+ccjUbo9/vh/lXWz/dld3c31HrgfgyiqG08Vu+VaRGaBsBgFNMi+D5om0uqN1Q5QAdVUwXoDDOVRtMX6OjTJqbQ8Llz/Pj84tV7HkMbGYSi/WoXVQn8XNUEqjLg9fmMNNix+M4utWTUAM053/EwJloPg5/FqS56XLwP3w/ur2oNtU3fI0VVDLrtstSGIqY+KFc9FzfdfrFv2DAMo2DYPGwYxv3OK1IoOOcelj9/DQCr3X4RwBPOucQ59wiANwH46h2cD81mM7RS9N6HTgcnJydBnQCcKgXo0MYtDenA0wlqtVq4du1acKaoGGDNg3a7jXa7vdQyjgoGHsNuDmmahpV/2sj6AMzpT5IkFCKk6uDw8DCkZHjvUavV0G63g73sLjEej5ecIF0BVxm7rh6z0GOcqgEsy7mB5ZVspmjQkWQghEEQphHEjjFrQFCGr6vWuhJNR5dwX27Xmg28FyoJgFOVxHA4xGAwwHA4DJ9x/Hd2dtBoNNBoNFAqlULNAn0PqAxQu+hU6uo4gCX5fRwg4dgxmDMajUI6BI9RRQCfkdYUUMde2yjyWE21GI/HwemnQoMBBZ43VlRwNV+7F2jtAAa/9N3Q4AbHhNfh3zwHxygOEPG+zks50N9VwaApBlpXgeN4mTKBcH9VXJzXVYP7x/by2rqP1qsoesrDVc/FhmEYxt1h87BhGPc7lyoUnHOfB/BOANedcy8A+H0A73TOPYpT6dbzAH4LALz333TO/TWA/wJwDOAD/g6q2ZZKJbRarVBjgCvcdHi0uj4DDd57DAYDnJycBPUAcOYINRoNPPjgg2FfrvoyOEEFRJIkGI1GITjA1n2U2NdqtVB4cDAYYDabBceYwQzN8abjSceODiLP22w2Q0cJrt5SHaGr/3SM+LvKzdX542o5cOr0sbaE9z7UNeC90cGjqkEVGjy/BgPomDKwwvOq86rqAN4/n0X87NgpgrZrGoQ6e3xeDHowUDSZTFCr1VCr1cL70u12g9qEqg2tTaCOsBbgi1MPGEjQmgp03nnf7HChTrUGXKgSWXxvlhQVGmBYfFcAYCmYwLGg0mY6nYZOD2q/fDeXFBV6X1Re0E4GKVQ9wuAYVSF8Jtz/PAVBnMYQj4OqH3iPcTBBUyv0WJ5TA2Lxu6FoUOKiNId4+yrFwnn7FoV1zMWGYRjG+dg8bBiGcTt30uXhN1Zs/vQF+38MwMfuxgg68nQi6QDSWaBTmCQJ6vU6kiTB4eFhaOlIZQBX7dM0xcHBAVqtFpxzoaAhV2W992i1WsiyLAQYtM0fr89ikPP5HJ1OJ5w7y7LgbPMcVBjQ+WcbPACh3sFifDAYDDAajZacpSzL8MADD6DVamE+n2M4HIbjNYUDQAhU0DHjuNVqteC0qlNNu+NuDdVqFc1mE8453Lx5MwQU2BlB6ybwGWlXCC1AyPuoVCoh1UIdSt6/dglgigXrRtA+zfun4oNSfAYTKpUKxuMx+v1+CBZpXrw6xFqXgrbTDu7H++EYMA2DNlEFoY6trrLHhQoBhMANFSZMa1DHG8DSWLGV53w+D89Y206qMkBt5me0hwGIVWOhY68r8RwHVQ2oekc7QqiyQo/Xbfrd5ru/6njdn9dVlYCO1Xk1DeI6DZehKorzznnRZ5tgHXOxYRiGcT42DxuGYdzOj9Pl4crgf9rzPF9a9VQnDUBYnZ5Op7h16xZmsxmq1SparVYIKAAIqQ7lchl5nqPX6wUVAp1Ulct3u92QBkHHhKu58/kceZ4jz3MACHn08/k8dHCgGoAOeKlUQpZloSMAW1mWSiWMx+Olc7GFY7vdxv7+fiiYCCCclwoGLR6pK/B0XHn/qgJgYIM1B+bzOfr9flBpMJWj3+8vdRvQYo10UHUVmUEUXTHnZ5pOwGNpFz9jfQhVhmhQgQEdBnUAhHFK0xSTyQS3bt0KNTRi55xBEKZBaMcIdbLVQed1+awYnNEijdpdQ3+0NgKddS34xyCBKgG0tgPHgQEFPlNNr9EUCwbPVGnB95YKBA1eaJqEqj+AZWdc01c4rnGKRRw40DHgNl4z7qRA9QP31daO+g7FNlwWLDjvcw32xIUjLzvnqrQJwzAMwzAMwzDOeEVFGe8FmitPRzBN0+BcMH/fe49Op4PhcIj5fB5SIOhA8TjgtCVip9NBr9fDwcEBarVaaOvIgnf9fj8UTez1esEBPjo6wmQyCRJwOpqse3B8fIxGo4Hd3d2QV8+iku12O6QRcIV9Op1iMBig2+2GGgBJkqDf72NnZwd7e3toNBohQDAej5e6THDVXGXttI2yeK1HoIUAgdOileVyGZ1OBy+//HJw3sfjMX70ox8FKb+uXlOuD2BJos76BEzlUAWD2kZiZ1XVE1wx5zm0vWW5XA4dLlhUMkkSHB0dIc9zDAaDcB7arQEM2sH7YpqKOsUaiKDCgmoGtRm4PddegyYMKGhBR56fqg1VddAeVWNwLDg+PA/VCmoTg0m6+s90FVVqqO2qANEgSFwngCkT+k7xunrPqiDQAIk68HxfeV5ND1KVBz/ndnXmz0t1iP++yPm/k6DEqmMMwzAMwzAMwzifQgQU/CKvn05QkiRoNBqoVqvBQWWqQbfbDZX/0zRFq9VCo9EIDhWl/XmeYzab4fDwELVaDfV6PXQAoNPFLhG9Xg/dbhfz+WmXgOPjY/R6vdscYx5zdHQU2gf2+/2QDlGv15e6TdBpp4POe+S9TSaT4DgzKDIej0MLSe7PzzW3PUkSeO+XukDweKaNUCEBIDjn3W4Xs9kMtVoNs9kMvV4Ph4eH8N6j0Wjg5OQkOOp8NlpUkXBVX7s30PnV4IKuqFNxocUDNaDA9BPeD1NQSqUSarVaCNjoGDG4ozUP1BmN5fp8T3hdAEvKEr4bcbCAQQpNW9C6EZpeoC0XtY6B1nQAzhx7Kgs4nnxXCMdBFQI67jFxwce4gCPHlGOu90qYoqFBh1XBAx63atz43qgjr8EEDcro9TWowGemrNoeb9NzqV2rggp3G2gwDMMwDMMwDOOUwgQUtO5Ao9HAtWvXUKlUQpeDvb09eH9aGI/ObbVaDekEDER47zEej0OdgVKphGazif39fdTr9bBaWiqVQvvImzdvhvQJrn7neY52ux0cb+2kACDUGVC1BG2i08xWj3TEWHOBSonpdBocHhYGHI1GGA6HoatFpVJBvV4PK9fOOaRpimq1GjoN7O7uhu4GrM2QZVmo70BHcjabYTQahaBKt9vF4eEhJpNJCLgMh8OlVAc6zBpY0JVyOrVpmi61YtROEsBZS0oAQaqvaHCgUqkspZHw/FqbgSkXLOKp7RM51pqiQbk9gKXggnZ80M4O6ugTBmj4fvF6egxt0bGKlQBa74DQ6WWqCR1+7h87xVTM8D3kdZg+obbwOFVNaACE1ycsrMn74HeT59AaB3FKgaYwnOeox4EEvf5FQYJ4//jzi67HcVx17KqAimEYhmEYhmEYl+OKsDrnnDsEkAO4uWlbXgHXYXavE7N7/Wyr7Vdl9+u89wdXcJ7C45wbAHh203a8Arb1HQW213aze73c73bfT/Ow/Z94/Zjd62Vb7Qa21/Z7OhcXIqAAAM65J733P79pO+4Ws3u9mN3rZ1tt31a7N8m2jtm22g1sr+1m93oxu+8vtnXczO71Ynavn221/V7bXYguD4ZhGIZhGIZhGIZhbBcWUDAMwzAMwzAMwzAM464pUkDhk5s24BVidq8Xs3v9bKvt22r3JtnWMdtWu4Httd3sXi9m9/3Fto6b2b1ezO71s62231O7C1NDwTAMwzAMwzAMwzCM7aFICgXDMAzDMAzDMAzDMLaEjQcUnHPvcc4965x7zjn3oU3bcxHOueedc99wzj3lnHtysW3fOfcl59y3F//ubdpOAHDOfcY595Jz7hnZdq6tzrkPL57Bs865d2/G6nPt/qhz7geLcX/KOfeYfFYUu1/jnPtn59y3nHPfdM799mJ7ocf8ArsLPebOuapz7qvOua8v7P6DxfZCj3eRsbn4nthp8/AasXl47XbbPHzF2Dx8b7C5eL3YXLx2uzc/F3vvN/YDoATgOwDeAKAC4OsA3rJJmy6x93kA16NtfwTgQ4vfPwTgDzdt58KWdwB4G4BnLrMVwFsWY58AeGTxTEoFsvujAH53xb5FsvthAG9b/N4A8D8L+wo95hfYXegxB+AA1Be/lwH8G4BfLPp4F/XH5uJ7ZqfNw+u12+bh9dpt8/DVjqfNw/fOVpuL12u3zcXrtXvjc/GmFQpvB/Cc9/5/vfczAF8A8PiGbbpbHgfwucXvnwPwq5sz5Qzv/VcAvBxtPs/WxwF8wXs/9d5/F8BzOH02a+ccu8+jSHa/6L3/j8XvAwDfAvAqFHzML7D7PIpit/feDxd/lhc/HgUf7wJjc/E9wObh9WLz8HqxefjKsXn4HmFz8XqxuXi9FGEu3nRA4VUAvi9/v4CLH9ym8QD+0Tn3Nefc+xfbHvTevwicvogAHtiYdZdznq3b8Bw+6Jx7eiH/omSnkHY7514P4K04jRBuzZhHdgMFH3PnXMk59xSAlwB8yXu/VeNdMLZtfLZ5Lt7md7TQc4Ji8/B6sHn4Stm28dnmeRjY7ve00POCYnPxetj0XLzpgIJbsa3IbSd+yXv/NgDvBfAB59w7Nm3QFVH05/AJAG8E8CiAFwF8fLG9cHY75+oA/gbA73jv+xftumLbxmxfYXfhx9x7f+K9fxTAqwG83Tn3MxfsXhi7C8q2jc9P4lxc9GdQ+DmB2Dy8PmwevlK2bXx+EudhoPjPofDzArG5eH1sei7edEDhBQCvkb9fDeCHG7LlUrz3P1z8+xKAv8OpPOSGc+5hAFj8+9LmLLyU82wt9HPw3t9YfFHmAD6FM1lOoex2zpVxOgH9lff+bxebCz/mq+zeljEHAO99F8C/AHgPtmC8C8pWjc+Wz8Vb+Y5uy5xg8/BmsHn4Stiq8dnyeRjY0vd0W+YFm4s3w6bm4k0HFP4dwJucc4845yoAngDwxQ3btBLnXOaca/B3AL8C4Bmc2vu+xW7vA/D3m7HwjjjP1i8CeMI5lzjnHgHwJgBf3YB9K+GXYcGv4XTcgQLZ7ZxzAD4N4Fve+z+Vjwo95ufZXfQxd84dOOfai99TAO8C8N8o+HgXGJuL18dWvqNFnxMAm4fXZa/YZ/Pw1WLz8HrZyve06PMCYHPxuuwV+zY/F/sNVP/UHwCP4bSK5ncAfGTT9lxg5xtwWhHz6wC+SVsBXAPwTwC+vfh3f9O2Luz6PE5lOUc4jUT95kW2AvjI4hk8C+C9BbP7LwF8A8DTiy/BwwW0+5dxKhd6GsBTi5/Hij7mF9hd6DEH8LMA/nNh3zMAfm+xvdDjXeQfm4vvia02D6/XbpuH12u3zcNXP6Y2D98be20uXq/dNhev1+6Nz8VucVLDMAzDMAzDMAzDMIw7ZtMpD4ZhGIZhGIZhGIZhbCEWUDAMwzAMwzAMwzAM466xgIJhGIZhGIZhGIZhGHeNBRQMwzAMwzAMwzAMw7hrLKBgGIZhGIZhGIZhGMZdYwEFwzAMwzAMwzAMwzDuGgsoGIZhGIZhGIZhGIZx11hAwTAMwzAMwzAMwzCMu+b/AcISQrrEW8FaAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 254526 44722\n", + " Min thresh = 1000\n", + " Not Sliding\n", + "\n", + "\n", + " Winner = Not Sliding\n", + " FP Patient = 019s_iimage_10705997566592_CLEAN.nii.gz\n", + "\n", + "\n", + "019s_iimage_10891015221417_clean.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADDCAYAAAAya0IYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADjVklEQVR4nOz9d5hl21ndC4+5c967qrpPkHQkIUyw4QNdIbLB8kcw+JLBGLAxxmDJJlwnsu/FmOc6ATb4M48EkuGCbaLti8EgG2RMNFFkhESQECCd1N1VtXPe6/uj6jdrrNV1cp9T1d1zPE89XbVr7bXmmnOu3TXGO973DVmWKSEhISEhISEhISEhISEhIeGpoHTRA0hISEhISEhISEhISEhISLj9kASFhISEhISEhISEhISEhISEp4wkKCQkJCQkJCQkJCQkJCQkJDxlJEEhISEhISEhISEhISEhISHhKSMJCgkJCQkJCQkJCQkJCQkJCU8ZSVBISEhISEhISEhISEhISEh4ykiCQsJzjhDCm0IIr7jocSQkJCQknCGE8PYQwkc+yWOzEMKfeprXedrvTUhISEhISLhcSIJCwnOOLMveK8uyn7zocTweQgh/PoTwWyGE4xDCjRDCD4QQnn/R40pISEi4kxFC+LoQwp+EEEYhhD8KIfzDix5TQkJCwmXDrRZmn+h86e/ihMdDEhQSEs7H70j6C1mWDSQ9T9LvS3rNhY4oISEh4c7Ht0l6zyzLepI+RNJnhRA+5YLHlJCQkHC3I/1dnPCYSIJCwnMOt9WGEL4mhPAfQwj/IYQwPlU/3z2E8JUhhEdPI1Ufbe/93BDCm0+PfVsI4VWFc39ZCOGhEMKDIYTPd8U1hFAPIXxDCOGPQwiPhBC+JYTQPG+MWZY9kmXZg/bSVlKy6CYkJNwVCCF8QAjh50+jUQ+FEL45hFArHPYXTz+Hr4cQvj6EULL3/43Tz+qjEMKPhhBe9GSum2XZ72ZZNrWXdkqfvQkJCXcgQgh/OoTwk6efs28KIXyC/e4nQwifbz//9RDCz55+/9OnL/9GCGESQvjLIYRXhBDeEUL4qtPP5LeHEP7K0z1fcazp7+KEx0MSFBIuAz5e0r+XtCfp1yT9qE725vMlfa2kb7VjH5X0cZJ6kj5X0jeGEF4mSSGEj5H09yV9pE4+5P5c4Tr/QtK7S3rp6e+fL+mrH2tQIYQXhhCOJc0lfYmkr3v6t5iQkJBwW2Er6e9JuiLpgyV9hKQvKBzzyZJeLullkj5R0t+QpBDCJ0n6KkmfIumqpJ+R9D1P9sIhhK8IIUwkvUNSW9J3P4P7SEhISLh0CCFUJf1XST8m6R5JXyzpu0II7/FE782y7MNPv33fLMs6WZZ93+nP9+nkM/v5kj5H0muf4fmKY05/FyeciyQoJFwG/EyWZT+aZdlG0n/UyR+g/zzLsrWk75X04hDCQJKyLPuRLMvemp3gp3TyQfxhp+f5dEn/T5Zlb8qybCbpH3OBEEKQ9Dcl/b0syw6zLBtL+qeSPuOxBpVl2R+fWruuSPo/Jb3llt51QkJCwiVFlmW/kmXZL2RZtsmy7O06EXZvEmlPP0//WNI3SfrM09dfJemfZVn25tPP9X8q6aVPwaXwzyV1dSJU/HtJw2d8QwkJCQmXCx8kqaOTv3dXWZb9T0k/rLPP0aeL/yvLsuXp38g/opO/jW8J0t/FCY+FJCgkXAY8Yt/PJV3PsmxrP0snH7oKIXxsCOEXQgiHpyrpX9TJB5t0ktP1J3Yu//6qpJakXzm1lh1L+u+nrz8usiw7lPSdkn4whFB5KjeWkJCQcDviNPXsh0MID4cQRjoRBa4UDvPP2D/SyWewJL1I0r+2z9pDSUEnUbMnhVPR+Nd08n/AP36i4xMSEhJuMzxP0p9kWbaz1/5IT+Fz8hwcFVLG/HP5liH9XZxQRBIUEm4bhBDqkv6zpG+QdO+pSvp6nfyhKkkPSXqBveUB+/66Tv4wfa8sywanX/0syzpP8vIVnVjSes/gFhISEhJuF7xGJ9GndzstkPhVOvusBf4Z+0JJ5Nf+iaRX2WftIMuyZpZlP/c0xlGR9K5P430JCQkJlxkPSnrAa8/o5HP0naffT3USCAP3PYlz7oUQ2oXz8bn8dM73eEh/FydEJEEh4XZCTVJd0jVJmxDCx0r6aPv990v63NMiNy1ZfYRTBfh1Oqm5cI8khRCeH0L4C+ddKITwKSGE9wghlEIIVyX9K0m/dqrKJiQkJNzp6EoaSZqEEN5T0t8+55gvDSHshRAekPR3JJF3+y2SvjKE8F6SFELohxD+0hNd8PTz9lWn5wwhhA+Q9IWSfvxW3FBCQkLCJcIv6oTkf1kIoRpCeIVOaop97+nvf13Sp4QQWqfFxT+v8P5HJL3knPP+4xBCLYTwYTqpOfYfn+H5JKW/ixMeH0lQSLhtcFr34P/QiXBwJOmzJP2Q/f6/Sfr/SfoJSX8g6edPf7U8/ffLT1//hVML7/+Q9FjFap6vk5SIsaTf0kml8U++hbeTkJCQcJnxJTr5jB3rRIw9r0jXD0r6FZ38ofojOmn5qCzLfkAnRXC/9/Sz9rclfeyTvO4nS3rr6XX/g6R/c/qVkJCQcMcgy7KVpE/QyWfjdUmvlvTXsiyjLsE3SlrphOh/p6TvKpziayR952lqGXUSHtbJ38cPnh7/t57h+Rzp7+KEx0TIsuyix5CQ8KwghPCndfKHbP20MFhCQkJCQkJCQkLCHYVTh8N/yLLsBU9waELCLUdyKCTcUQghfPKp1WtPJxGy/5rEhISEhISEhISEhISEhFuPJCgk3Gl4lU5qLLxVJ33Uz8v7TUhISEhISEhISEhISHiGeNYEhRDCx4QQfjeE8AchhK94tq6TkODIsuxjTrs37GdZ9slZlj100WNKSLgopM/hhISEhItH+ixOeLaRZdlPpnSHhIvCs1JDIYRQlvR7kj5K0jsk/bKkz8yy7Hdu+cUSEhISEm5C+hxOSEhIuHikz+KEhIQ7Hc+WQ+EDJP1BlmVvO61i+r2SPvFZulZCQkJCws1In8MJCQkJF4/0WZyQkHBHo/Isnff5kv7Efn6HpA98rIPr9XrWaDS0Xq+1Xq+12+1UqVRUqZwMz10UWZapVCqpXC4rhKDdbqf1eq0sy1Qul+PvdruddrudQgiq1WpqNpsql8taLpdaLpdar9cKIahUKsVjy+WyyuWyJGm73Wq328XzMZ5qtaoQgrbbrTabTRwbP0uK5wkhKISgLMu03W7jsbvdTtvtNp6X93OMj4OxZVkWxxtCiHORZVmcA67P/ZZKpdzcVCqV3Hv93P5vCEGVSiV3D4zZx8f5N5tN7j3MHffr4/bXGX/x51KpFNcF8JqfgzFtt9v4++K8cGzx9/zM2nAtXudYXxcfV/H+mNfifTFm5sDXn2uyR3yfc7y/Xlz3x7ou7+X9jNXn2d/Dni3On1+jODYfn5/fr8/v/B6L3xfvzXHe/HI+9qavdfEcxTE/3uvFufXfZ1l2PcuyqzcN8PLjKX0OS1K5085e8i47PfLbzWd1YAkJCQlPBQtNtcqWN/9HcXvgKX0Wp8/hhISEy4qxjs79m/jZEhTO+9DP5VaEEF4p6ZWS1Gq19CEf8iG6du2a3vGOd2g2m6nX62lvb+/kjVmmZrOpSqWizWaj3W6nZrOpVqulcrmsBx98UMfHx6rVaup0Oup0OpKk4+NjVSoVvfCFL9Sf+TN/Rs973vN048YNveUtb9Hb3/52LRaLeN7FYqFyuaxms6nNZqPNZqPFYqFSqaT9/X098MADuu+++3TlyhW1222Nx2Ndv35dk8lEu91Oi8VCx8fHWq1WqlarOjg4UK1W03a7Va1W02Kx0HQ6VZZl2mw2mk6nKpVKarVaajQaCiFoPB5rNBqpXC6r3W6rXq9ruVxqtVpps9moWq1GAcLFkPV6rcPDQz366KOaTCYaDAZ67/d+b+3v72s4HOro6Ejtdlv33XefGo1GJF8hBE2nU41GIw2HwyhIVCoVdbtd9Xo9VatVZVmm9Xqt2Wym1WqlUqmkfr+vq1evarvd6saNG5pOp2o0Gtrb21OWZTo6OtJisYhjrVarkQQi5kjScrnUbDaLJG6z2cTzb7dbzedzbbdbNRoNNRoNtVqtON+LxULXrl3T8fGxJKnT6ajZbGq9XmuxWGi9Xsf5K5VK6nQ6cQwuWE0mEy0WC202GzUaDQ0GA9Xr9bh+h4eHGo1Gkk7EmlKppNVqpfl8ruVyqUqlokajEff2breLwhW/43qdTker1Uqj0Ujj8TiKVpVKJd5XCEGNRkPNZlO73U7T6VSbzSYKNpvNRqvVSjw7CEXL5VLz+VwhBLXbbbVaLZVKJW02G63X6zifiHalUimKJe12W51OJz5jCEVZlqlarWqz2Wg+nyvLsihYIVqtVqsoBk6n09y4mP9yuRzFG/bEecILvztP5GF/7HY71Wo19Xo9VSoVrddrzefzuN/Ya6vVKs4TImP8MMqynECIoOJ7jtc3m80fPcHn3WXFE34OS/nP4oZaevGbPk4vvl3/bE9ISLgj8YvZj1/0EJ4JntLfxOlzOCEh4bLif2T/6dy/iZ8tQeEdkh6wn18g6UE/IMuy10p6rSTdc889WbPZVKPRUL1e12KxiOSoUqkoyzLV63W12+1I9BeLRSQOkLn5fC5JkXxB9lutlo6OjvS85z1P+/v7unLlSiTf8/k8uheI5kNEIJyLxSISE6KxtVpNlUolEipek04IDVFoiBZR/fV6rUqlolarFSPrm80mdx/cH793AkyEnvdA+Gu1Wnx/pVLRfD6P42JOJpNJjCBLJ+S4Xq+r2WzG+eaakqKLAnLMz7vdTvP5XNPpVIPBQL1eL+daCCGoXq/H6L6k3PwxRkj7YrGIa43ggRCDKDAej3Mkulqtar1eq16vx/MjAHnE3En4er2WpLjPWGuA84Av1q3b7cZ9B8mGjLLGzGepVFKtVotzvFqttFwuo2BVKpVUrVZVr9cjEXcHB3sI8l0ul1Wv1+P4nfwypmazGa+NMMH+5fVqtRrHNRqNcu4bBKPlcqlqtRr3FGID91ycR9aZc0hSvV7XfD7XbDZTs9mMz4I7RfzczBd71J077HP2YtGRs1wuo7gBeIYZi4+feWVtOCefMYhN7H/mhzHchnjCz2Ep/1ncC/u3vqhOQkJCwt2Np/Q3cfocTkhIuN3wbAkKvyzp3UII7yLpnZI+Q9JnPdbB5XJZBwcHmkwmajQaMXIL2SOi2ul0NBgMFELQ8fGxJpOJqtVqzmUAOYIUTSYTvf3tb1ev19Pznvc83XvvvXrBC16gGzduxMi8pEjKILeLxSJGiXEsQPoYV71ej2SP39dqtSg2SCeEkhQOJyuQKE+xKJVKarfbKpfLMZIMIS4SIogsUXDOjbBARBkCT1QbQudpGdVqVZ1OR1mWaTqd5kiyCxK4L0qlkmazWSS3EPTlcilJ8fViSslisYipJdJZ5NnTO7g/7r1Wq0UXAy4NhCTWvt1uRxEIAr1er+M6IV54mgLHeCSeMS6Xy5xQwVqzzp7eUkydgKziOoHQIiaNRqPolIDIMmdFq70TeQSI7XabE0kg1awjY2P9fa9tt1tVq1W1Wq2cuMTXdrvVYrFQvV6/yRFQTBng2ohdzAVjW61WCiGo1+up1WpFx4inEnGNcrkcnz3G73vD3RTnjRXhwlOmPDUKeNoO9+GpUb5+gDHepnhKn8MJCQkJCc8K0mdxQkLCHY1nRVDIsmwTQvgiST8qqSzp27Mse9Pjvaff72t/f19HR0fROQAB3u12ms1mms1mOjg4UK/X02w2i+Sf9IfhcBgj3QgERNMffvhhve1tb1O321W/39eLXvSiKEqs12u1221Jebv6breLBN+jyZAeiCoEDot8vV6P1nxs8ZAiSZFMuitCOiN8XHM2m50sUuFYj/oT0ZUU79fz4aUzUuQ1B/ie+a3Vamq323GsfPk5nHRtt1sNh0NlWaaDgwN1u101Go1IUhEeiABD5CB8EGjGTu0Fd20QZUccQjDKskzdbjeeu9lsajKZxPe02+1IJlmrRqMRz+PzgaDg0fjpdCocM9vtNroziJpLioIChNqJLikajN3z/ZfLZRQInPAyby54MF8IKzgqINz1ej23f7zOBPPl67der+P7ttttbv9wD9TDcDHE58zrLCC2cK++txGlFotFTOuxz4dcrQX+bbVacQ13u11MR2BPMt+4dHB/1Ov1XM0PF3dcjPO0C6/H4UKFizrFZ+B2w9P5HE5ISEhIuLVIn8UJCQl3Op4th4KyLHu9pNc/mWMh7oPBQFeuXNFkMomFEyFls9lMx8fH2t/fV7vdVrPZ1Gw203w+V6lUioRxOp3GSOdgMFC329VisdBsNtPh4aEefvhhveAFL9A999yjF7/4xVosFjo8PIxk3kkeUe5OpxPzw1erVYx2S4rfu4WbWgflcjmmL5zOSSSc9Xo9Z+8nAouNHzKLU4BILWICUVhEF1JCIJ+kY+B6cOLr90ZUG3LfaDRiHj/XkhTvC/LHmoxGI9VqNZXL5ehycJILqSvazz0dA3LpboztdqvZbBadArgWINOMCTLIfnCrP0BAqdfrOZcIpNqdDBDx8XisRqOhWq2m+XyeI7q2xyPpJH2ENZvP56pWq7l9jnPE90uRKLO2EH0EDdaOOXRXAGtZr9djpJ5zetoJ98ZYJeXIOvOyXC5zY/OofrEoKNdqtVo5kYi1IdWDlAvGX5xDxCGfI3fSIHR4oUocJTiFio4Q9hViHnusWOSUNSw6Ru4EPJXP4YSEhISEZwfpszghIeFOxrMmKDwVQCZ6vZ4Gg4EGg4Gm02ksYkjkfbFY6NFHH9UDDzwQUwuw2ZfLZbVarVjADgJI9BSCOhqNdHx8rIODAz3wwAMxLQBiTrcJHAn8frvdajQa6ejoSIPB4KbiiJClYg53p9OJ6QsQHiK3uAKm02kklPyu2G0AsuO2bNwI/NxsNmNhPaLxFOgjUk6UnGJ5iB8QNgrwuWPASZikaLGHcFKgkHQDF1dYG8hcs9mM5/XigBznYo7/3snueDyWpJzogojgc+vrw/jdzs/e8/QF1nU+n2symajf76tWq8WUC45jvfx+KaZIOgBChe8Rz8lnDr22gOf3Mx/sn+KYndhzLeozSGcuCo+6815EK0mxNgTpJOz9YnpA8V8XLBCjcPMwT+w3FyQQsdwpwv3gcMA1wmuIQi4q8NxS4NTdC36/CAY8A74GxW4qvia+HxMSEhISEhISEhISbsalERSyLFOr1VKz2VSv18sReXKxx+OxJpOJDg8PY90ECAWEst1u52zzkEQs+vP5PKZT7O3t6YEHHtBsNtOjjz6qLMuia4CCfIgLkDZs/p1OJxakA0SkvWAc3Qmo6yCdEPDZbBa7UlB/AKIEwYMYkY9frVZzhRM9xYLft9vtSBQ9ou9Rabe3e/cI8u69AwK1JNz+X6vV1Gq11Ol0IimEiEIonXyDYgE+HAUQPb8XJ5VFgYLCgEWhA9GFYoUeeWf9IPXSWd0CrxHAdRCgKNjp6Q4uPEBOvStBrVaLRSIhpohiTnxrtVocq9czoJAhwg6FPxkfpBqhhDlhDDhtnMgDF1YYE3NMIczzSLaTeOYKss/z4g4Y3uv1JXjdUx0kRVEIMu9pCl480gUuhC9cJvP5PM6VzwtzxnWLrVNdzHGxhGeMdU5ISEhISEhISEhIuBmX4q9lyAd567Rv7Ha7mkwm2m636vf7sRjgeDzORSKLFfAh+kT8IfKz2UzD4VD33HOP1uu1Go2G9vf3de+992o0GuVaR0J0vcMB7f6w7TshgjB5sTxJuXaXkqKzglQIbPVOYqSzrgXYwDnGhZJqtRoLR3qkXDoRIdx2TuE6yBn3BmHjXNwr44CYUyMB8lav13VwcJCrjwDBw13AfLit3Am2pxGwnsyJt6uEKFOzgnn3DgA4Q9zpgcCBYMG42A84Jry1IKD45ng8jkKMdEZOPeWA49nLTmqLggf7GwLOlx8HENM8LYXru6DkZJw6CTwH7EvO5W0hEYqoG+LFRV0IcIcI88zz5d0y6LyCYMBzwr7lNT+Hnxdxy+eT9/s+8tQiBJHZbJYTeXhvcW2YD78/zl10YfDMJyQkJCQkJCQkJCScj0shKBD57nQ66na7OcIHYZEUi7YRvYWQFokYZKNarUaRAII9HA7jeyBikHKP/vd6PS2Xy1xknlaP0+k0lxfuggJkDqs3tnA6FQwGg5jnTlFJ3sc9ce/nvdZqtTSbzZRlWRQISqVS7EZB+0cI526302Qy0Xg8js4CahUgfrjdvNVqaT6fR3LOOSuVitrttur1eqxTIZ0U0yyXy5pMJrFDBHAyKZ11isAtQecCal7wHiLDRJMRNSDyOAaYN3cz+GteH0E6IZTD4TAWTZSUS3HxcTNeWo9C4pkLj7D7v4hciCZeSNPH6HUk+CqmUHCMt3Jk37oQxL3xLHFNhBRPKfB0FV5j/niN63Edxnve+BAVmBuKTnpxSI7zjibFug0uLPnccm/F9/MzwpQ7IKQzt5CnfXitEF9nxudOBsSLJCgkJCQkJCQkJCQkPDYuRU+0LMt0dHSk1Wqlfr+vbrcbX/e8aIoxeiQSQioptpBrNpux00KWZbENZb1e13w+12g0yhFm6SwNABIFue71ejElYTabxYg5bfDcJQFBhMxXKpUYed1sNhoOhzo6OopdByRFpwLngcR4h4PtdhtTEUgLcUeA589nWabhcBiJc6/XU6/Xi1Fcxox1nFacHi2GNHq0nWvhHlgsFrH2Q7PZVL/fj6KNE0ovOunkFnLHWuIeWCwWmkwmsY6Ek2K6EuDygBhSD4AChXTcwM3gnQoQWEjLQFBCLGEfIACQvsLa4AKAeHouv7sO3H7v+4OxcD72hpNmf687EtgPjJN9i3uF9/s1eU6YYwpIhhBibQaP+nuqBXuYMbgrx/erpFg/g/t0AcDrVJBe48UxGaOvFfCUDP+8cBcM5/TUDcQT9glr4nvfO5G4SOIiiF83ISEhISEhISEhISGPS+FQyLJMk8lEw+FQ+/v76na70RbO7xeLhbrdrprNZrTFQ94mk4myLItCAtZySWq32zo8PNS1a9fUarVUrVZ17do13XPPPbFVpKToOCDCW61W1Ww2c4USZ7NZzkJP3jZkCaLsqQjUbFiv15pMJtFdsLe3F/PAaQ8JqfLaERRU5DjqMhDVh/xQiBCxg04NEEMIMjUQiAj3er3ovPDosufsIzDwewor4oYYDAbxWl7IEkDMmSdIOd87AUYUkM6KHzpJh0xCvF2wYJzr9TrW05AUW3dSv2G9XkeLvNc3OK+oH2IO40A0WiwWsT0lpBuSi6glKYoRpF94NwfuHxKNYINYgCPDo+/sP087QFAghYW18NabrCWCAvPs53bByMWAYjoGr/lc8+XPQPFYF3rOE6/cBeGFGL2+gY/BBSHEHr8mQoLXEvH78RQKdyt4qgSiUUJCQkJCQkJCQkLCzbgUgoJ0QiZp1dfr9dRut3Xt2rVIHokCQ1qceBB1zrJM/X4/RvGxcg+HQ81mM12/fl333Xef5vN5FC88Guw59IgKtOKbzWa5FngIGERAsbdTCI86Dl4s8vj4WMvlUtPpNKYfeCFGxJBifQGEDUh+r9fTZrPRaDSKxAkySctDSep0OprNZjGvXcoXxVsulxqNRqpWq2q1WrFWwGw2i86H5XJ5EzmUFM85HA5jy0rphDhPJpNchFg66yQAiCRzj97FomiD9+KAXjCT+/EUCHeEUDiSaLyTSgQFovDk43NOhACi1J56wD6ATOOkmM1mWi6XcR0hs8wXZNsFHoQBr3XAnvSovdcewI3BfDDXiBN+X9TEAJ6SwfWKc8t6e2SfdXHBy10cuERYM15jTVwkYm6YC0+XkE7cDt4JAuHD66JwPopaehqPp4Y0Gg21Wi3tdrsoCDJPrK8/F167ISEhISEhISEhISHh8XEpBAXPYR6Px7FbAZF0/sj3CLpHa4sEkNSAUqmkTqejVqsVI+fHx8eqVCpRZOh2u7kUBYoVOlGiIr7n+1Oo0LskeE0CugO0Wq3oHoBUEl0leux1FyjCx7GkVlBgbzqdRtcC56G4HnNJysRsNlOv18vlhkOCIcCHh4dROKFGBQ4I73gB8SOizFwvl0sNh8OYqgAx5F4QXLieF96TzopYcixiAWNmPqk1AaGFuEr5FovY2L12Rr1ezzkkig4Bal24BR83gtcp8Nx972KBa4S0mCw76QLCmiCI0M1ht9vlanOQ+uGE9rw6EawtqRUuOnh9BOaDPeIpNQgUvI/zeOTeu0vQvcOLOiJu8Yx4sUvSg3DPuFODeebZ9NoULj55qhMuCES7oqghnTlbeI8XRmUevM6GC2MuILD+LiYkh0JCQkJCQkJCQkLCY+NSCApu0/ZocL1ej9FHiBCR5fMq/c9ms0hYvPhat9uNJHSxWMR/J5NJznoNEBAgHtQaoEAfY4TsYxOHnJHegKggnRXpI4IMUeJ6kGjIHIQzy7LYVQFBYDKZ5CzmpVIpRmERBiCBRHe9rV+pVFK/31en09FyudT169cVQtB9990nSZEIQyLX67VGo1EUSCCp3Nd4PI5iAS4Nosukfng6g9v/mcvtdhvdIL4vKA7Iz97OkutDyF0Umk6nMSXFa1EgEvhccD8uZHhxQNYVIYnIPOPxwpjsQ0lRFEM8IjrOuBE6EMMQRSDz3rKQdAGOdzEBwss9IlTgoCEdgut4e03vCMF1/JwuvrB3KeyJ8IZ4xXPQbDY1nU5zhSMRhpg7F0hwXfj1uD7PD9dqNptqtVpxD7irhPXjHhHkeJ7YS959gjlkvxcLQiYkJCQkJCQkJCQkPDYuhaBApJHigePxWKVSSe12OxeNhZS4oOAkDJvzcrmMRJ9OERR09OJ+uBaIwDebzfheyBwko1qtxs4PREwhbx4dlRTHgBsCuz/tIqWzqvOP1yaPNIL1eh0LIDLmTqeTI5XUNpAUhQ5qKXjFfogyFvVms6nRaKTj42NJikIGY0EU4LrMBeIAX0UiSEQep4NHzBE5/D3eVpO15D31ej0SV9bcbe+QStwI3iaUHHtSArzAHxFvd4zgyCgW40MYgNgiLjAmbPy1Wk3T6TSmffR6vZxTgfvH1cCehsgzt07q3YFTbCHpa+UdGyDuvMfvy2tZcC4EDCfYCAIu/mw2m7h3vGYBwoAXQXSXj4/ZW3x6Cot3z/COHYhY/lwzD8yLu2aYR39e3IHiwtF57gOf++ROSEhISEhISEhISHhsXBpBYTqdxigvbQvp2kDEFncB0WHI7XldD4iYQkwhQLwXMrRcLmMBw263q/l8rslkou12G4vuOTGjs4RHt72IH+IGtQRKpVKM3nvhR4QRL4Dnxeg4PwSLugYQJqzyjIG5qNfrGgwGkqTxeHxTgUSElGINgcViodFopNlsliOKkmIRPez2nU4n1gFg3RA1KIjJe3FyeOpIkVDyRcTcSSVk01uJuq3dWxB6iz+i/8wb90mrSgQJhAD2FsQXVCqVeH7mi/dLJ2IPa+AFEheLhZbLpVarVYzou1BApwFEBUQnHBTSGbGllgVjcBcH6+TiAHPibgccCDxbCBjezaNYl4Q9S+tWF6q8y4YXaGRtEIEQJ3DlIHpIyhWjpFaIOwRcACMFxfcEX94ZwtfC99F8Po8iA18c6ylXPMM4ohISEhISEhISEhISHhuXQlDY7Xa6fv16rJxPjrWkHCEq1h6AJFUqFbXb7VzE2NsCVqvVSPSm02ku4l+r1WIEs9frxeJtFCvs9/sxMo0F30UEIqDYsJ1IY/0nd560B8YMQa3X67n2exAp6YRUNpvNSI4lRYIKGXOXAvfb7XZjVNdz0rnnYncJSD0CgBP+crmsbrcb00Rms9lN7SQlxUKYxcg7roxarRbHBVnlGMieOwYQXYr1BZg35oljIZzUoKhWq5FA8z4KGhIZZ8ze8tD3HeIPkXmcBe604F8XuJyUc07mmPciJuEMYC9tNht1Op1cegWk2deZ+3KXgQs0nJf7QQTyOgIQ6iKx9nnFveMpLcUIvu9XdzkUa0K4oFDscMHPPr9F0a0ogPg1uAeeS28J6YU9XTQpCkgc589EQkJCQkJCQkJCQsL5uBSCQpZlevjhh/Xoo4+q0+nEtovS2R/4iAK0KvRK/0QwIZlEeelQkGVZPGcIQUdHRzF6PxgMoquBtpOTySTWBWi1WpGAuwUcoocYUYyYkmJAdBRCWqlUIoll/Jwf4o0jwDsEdDqd2P5QOsuDJwpOdJ9aDvV6Xfv7+xqPxzEyjIiAGADZ5r4k5aLOkEvmsd1ux+g8hQXJzUdY6HQ6cV1d4PH0BQSSYpFH5k9SFGJ43Yku9+81BrgehNnt+xBjCKY7DUjJIP2B87BnEDd4zWsyuLMCMktXAQpcFsku5/LCjuxh1pyxIph5uoDfK+9zhwKE2WsF+DmKqRRev0Q6E+K8taS7aZz4Q9Y94s+5vMChi1l+LZ9fnievv8FrPHOILuxXP3cxNcGFFd83xS4TXpyR8xQ7PiQkJCQkJCQkJCQknI9LIyiMRiP98R//sa5cuaLBYBDrH0jKuRIgAqQpeNSWVoyeJw4horNBp9PRaDTSZDLRcDjUS17yEnU6HY3H43iue+65R6PRSIeHh5pMJrpy5UosECkp1iTgi1aQg8FA7XZbs9ksVvv3fPL5fB4dCbgS6MjgnQuwjLs4Ua1WNRgMdHx8fFNFe4omEhlnjjqdTiTvuDImk4lGo1GsjcA1vYsDRA+iT3X+brcbbemsG6QLy75H/92+jyNBUhRkiAK708JFhVKppNFoJEkxZUFSdBQgqgB3KTgBd6HBxRPpLCXD23WSkgGxJFcfYuspCbg42HOk6iAKcb/8jnV2x4qLOlj76WrBujBXxXQQruPFTDkGou41A1wYYW68wCR1B7i2H1fcd6wza0V6BnvX61XwvmKB0POEmclkcpNYiNjH+jwW4ff94AIKewxByTt3uHPBxRnGneooJCQkJCQkJCQkJJyP0hMfcj5CCA+EEH4ihPDmEMKbQgh/5/T1rwkhvDOE8OunX3/xyZxvvV7r+PhYR0dHKpVKse0eNnOP4FNPwS37EOlKpaJer6fBYHAT8a9WqznHwfHxsbbbrfb393Xvvfeq2WzGIn77+/uxkj3XcUKLG8LrNmy3W7VaLfV6vUgE/ZruEoBMkmKBbR6C63UMsJgzLoovYh/fbrc6OjqK5BtSX6lUdM8990SRBveH10tg/OTGU8jQc/4hmcXaEbgVIGzz+VzT6TRX54JCen4c9zmfz+OxXJu2nIgbnMMLJrrwUnQsQFTd9QDh9kKKRLpdyGGvIT65cDKbzaLThLEVUzEgosx90UHBubgP7ovXi2kxfi6eBfa6Cx2sOaIVjh72G3vJiTvnJZ2AMXEPrAv36Gk+3sGD7iOsK4U4/Vj2AOILLiPWCFeNA+FgtVppOp3Gbg3ebQPHD8+Cz6OLAMW6DBzPvXvqhDsVbhch4VZ/FickJCQkPDWkz+GEhIS7Gc/EobCR9A+yLPvVEEJX0q+EEN5w+rtvzLLsG57KyVarlYbDYST5BwcHOjo6ioXgJpNJJKXeYcCryrvlGrs4xfYmk4kGg4GazaYajYauX7+uo6Mjzedz7e3tRfK1Wq1Uq9V09epVzedzXb9+PUaLsdF7/QZEA6LQVKVvtVqaTqfxd5A1xjObzXJdHDya7nn3kB2itxBVbzmJ6HHt2rUoUnCefr+vUqmk4XCozWYTUz24Bq4DyCjRc490O7kv5t5D1CGLFL/jdc7rnQGoB4EowHG4HLhP4Pn05XI5ig6sOYB4l8vlnKOASDVz5vNJhJy1K9aw8FoS1JYgWu7ngehzf0TDEWE8JYBCj7SS5B5wE3g9Ca89wLx4oVB3VEC0iykfXrfBO2ywjym4yTnddeHzxXwwX9Q6QZBirnheeKaKaTWeLuFdTvh9sfYBooK7Pqi74UVOiykLoCgq4VhiDrw+BUINnzPc8yXHLf0sTkhISEh4ykifwwkJCXctnragkGXZQ5IeOv1+HEJ4s6TnP93zQUaPj4+1Xq/1ohe9KBapG41GOcJSq9U0m81ihBdy4KSBzg+NRkPHx8darVY6OjqK1vksyzQcDjWZTKKLYG9vL0aiy+Wy+v2+xuNxLo/c7eech3oCED1aPnq+t/9+t9tpMpmcLIBFiT1Syn0gWECESCNgLqgNQYT/+Pg4uhDoNrG/vx+dEOT2I3y02+3cWOmK4J0aWB+IKoTL20VyPOeWTiLP5MVPp9NI7HBh+LFY/SeTSSSrzB1ihkfMIcYQQkmxYKJ3U2CNIMnF3HrSBDiP13xw+zsEdzqdxrWnDSjjorPEfD7XeDyOdRrYE9w/ggJz6O0r/dwuQjhpbjQasfAl53ehR1JOTHHxgS/EC/afCwMcA+H29AUXuEhD8s4drBVuIncEuCCFWMH6utvGC3O6gIGI5WkyiC/U8XCxy/cuIiPFVb2mCc8l+8TFM+/ycVlxqz+LExISEhKeGtLncEJCwt2Mp53y4AghvFjS/ybpF09f+qIQwm+GEL49hLD3JM+hxWKha9eu6fDwUKVSSfv7+7p69Wq06tP+sdlsqtvtxjxrSTlXAq0gIYqQAjoUSCdkd7lc6vr16xqPx7HoIFFQot3tdjumTkA2iwKApBjdhiAjXGCvr1Qq6nQ66na7cSzT6VTT6VTL5TLeG/cHEYYMOpHG1u6CAvfoqQzz+VyHh4eRoFP/ADGB9o8IHt1uV51OJ1fLAKfAeSQN276kWGyRcXt0nXFR6NLTHCDkXk9gPp9HFwJFDhEnnHBLZ0UEGQv3wnu8LgTvKQoM7J9iRNrrQeB8If2hWByQ/YIwMZlMYvFQxB4vROkpFdw7ThbOTcTcSa+nv3Q6HbXb7ShwuROC+Xdxyl0lnp7Bfqf2A8+Np1V4Ggtr7G4Hd7MU59bTKRiXdCZwuDPBHScuDHkaBvfBXODq4MtTHIp7F6GGLizsBcbposxt4Ey4CbfiszghISEh4ekjfQ4nJCTcbXjGgkIIoSPpP0v6u1mWjSS9RtK7SnqpTtTaf/kY73tlCOGNp1+R/EwmEz366KMaDodqt9sx97/b7UbSBtGHJEPkICukFGy320iSIRHT6TSSdASFGzduqF6va29vLwoIIQTV63W1Wq1I2JyEeOs7yBXEuFKpqNvt6uDgIDoCpJN2j9j+F4tFTD/w9AVy0j1iS4FHcvwRNyBT7XY71m1gTJI0m8300EMPxXQH7kc6s9d7sUPGjvBAdLpYhJGijavVSuPxOI6FHH8XO7rdrhqNhmazmcbjcRR7qFvAF84T5r5YuNDnYrlcxr3AurhjxcknQOQotmp0i7zXYJDOCgIyXxwHQWbdILxu2/eOBawJKQ5OdiH6FOv0uhXUJMAtQAoBNQpI72CsRZs/53fHgYsM7CP2Lu4ALyrpYoTvO08N8Ptmnn0s7lJAeGMPIZB5zQvulfPx3mIhSZ5nT39xZ4bDa0CwpzkHe9ALMfr63C64FZ/Fay2fq+EmJCQk3HFIn8MJCQl3I56RoBBCqOrkg/O7siz7fyUpy7JHsizbZlm2k/Q6SR9w3nuzLHttlmUvz7Ls5RA9XArD4VDT6VS1Wk3tdjvnFFgul5H841xwMgFRcDcC3Q6IfmMzl6Tr16/Hug1E+xmL28shKVirvXUgHRSm02kkwfV6XYPBQAcHBzG6XiqVYicI3BSkGXjUG1JWrDqPUEGKA/UlSNmAJENOSet461vfqkceeSQW6yMSThtKiDeuBJwRiCpEdSFyXAOS52Tb7fmScvUmcClAkoFHsD014HSP5SLXdMVA1GEd3QnA3LDWkMti8U63+0tnaQL+M0UafSxZlkVRBGHGXS1OfDkPaR6IAUTrmdfiewEilheqRDCRpGazGZ8B75BRFCE4nv2MywDCzJo76fZngTn02gy+zp6agrjCcTyfvk9cVGCc/h77jJGknODAfCNqLRaLmMpQ3C+Aa7vQUEwTcRGDcd0uLoVb9VlcVf25G3RCQkLCHYT0OZyQkHC34mnXUAgnf31/m6Q3Z1n2r+z1+09zySTpkyX99pM5H86CLMs0Ho81Go1i2gKtD1utViykuL+/H+siQIQgpJVKRbPZTNPpVJVKJRZJxIZO1LlUKmkymejBBx/UI488ovvuu0+dTicWVGRcrVYrWt0Xi4Umk4l6vV6uCB9pERAoiOp6vVa73dZkMonj6/V6kUByDFF2J9IQTRwNRI/b7XausB3kkYKC3F+j0dB0OtX169clSffdd1+cT0SMUqmk5XIZxwuxhOxx/94dAHs+bonz2noSdYdM1mq1mObhDgDPofcUCsbjBBuihzMCEYUaE5BmL7TnpNEt9AgSLiLwPSIJr+GE8CKHOBS4F/+XQoOeNuBpAMXou7czrFQqms/nuYj8YrG4qaMBqQgeea/VatF54N0ffMwc5+Ph+p4GgYDFOFwAAggILhrxfp6d4ns9ncTFAp6DYk0Fn6P1en1TEUvprKWlv8Ze9n3DGkpnhSFdeCgKDLeRmHBLP4sTEhISEp4a0udwQkLC3Yxn0uXhQyV9tqTfCiH8+ulrXyXpM0MIL5WUSXq7pFc9mZN5BfYbN27o+Pg42pkh0Z1OR0dHR5FMHhwcxOMhxbRoJIK8Wq1Ur9fV6/ViZJz8fEjs9evXdf36dd17772x6wGdFCDXpE1AiiFbkC/Pg4cYUqug0WhoNBrFAoAIHI1GQyGEeJ+4GBAK3CngqQ84KSRF8kqEXzqzdEPANpuNhsOhyuWyms1mzLvn/ufzuVqtlur1ei5PnWNqtZp6vV5MWahWq6rX67kihYzf6y44ySYiXWznWCSPuDyop+DRfye9rKM7A3C2IAD4+8+LTkNkPZJOtBuySScDKd8WkvtyocLTA4pjpmiliwpeY8BdL0TbvY5Gcb58bkkdKNZNoMMEY2b8vhZeX8DFBb8ua+opDlyb8yLckULhnSRwDbljw798Ttzx4O4I9rELMu56cIeMp2G4OODPKp857oo5z63Aey85bulncUJCQkLCU0b6HE5ISLhr8Uy6PPyspHDOr17/NM6VIyGz2UzvfOc7deXKlWg3r9VqGgwGeuc736nxeByJI1F5iD91FegsMJ/PI9FvtVqxiwPkxOsozGazWJOAWgaQ/H6/H0k8aQLkcCNAFMmnky3aHRLBpoghxIcxeR67uw/cJk/hRkQM7p+ihMwj7yXlYjgcxhoJ7XY7Foek7STr4GOH3NNBgXvvdDpR3FgulzEPHvs9pNoFAW+vicgAoZSUi9DPZrMouFCAcD6fR+cIZHG5XMZzMT6cLsyjk32P2DO/HgmHSLM/mG86NjjhdreDvxdy79f2vH4n7AgsXuiTuec1xgrJdlcC9+BkmHlnrMC7OND60usp+DPoz+Z5hQ69DoG33HQxi7EgRvAFiXfHCHPGNf3ZKZJ8FxV8LREgPPXB58WFB7+2n9vhKTyXGbfyszghISEh4akjfQ4nJCTczXgmDoVbDggcaQ+PPPKIut1utOnXajU1m81YH6Hdbsf30qaOVojY3jkOwu9F/CBC165d0zvf+U498MADGgwGcRwQJtIWut1uJJWQE7oWPP/5z1e73VYIIUfsiQiTfgBBo5gkCCFEUcGFgGIkme4N1GkglYB6AbQTJEUDYrrdbiNR9+KHzBsRf08VYFwe/cW5gSW+VqtpPB7nIsuQRca32WziHEiK70dYoTAeNRv4GXGDzgPtdjvWmpAUxQmv98C5ffy4OIqtCjnWo+ccxznpwOH1MtxB4sTUo+KkHXBtbzvqNQa8WCPnYmw4BCC7Pg7ECBcbnHD7mrkYxe+9W4R0JnKcVz+A+0SYYvyesoAg4HvWayZ4TRB3jrjjo+gi4dqA+XKHCK/554efqyhS8K+nnRR/Pq+GQ0JCQkJCQkJCQkLCzbgUgoITMQjDfD7XcDhUlmVqNpux8wDRUtwBXqGeKD32cumsqB0F5rBlU6Nht9tpOBzq2rVrunHjRkxrgGhLipFxOkscHR1puVzGGgEQNPLIvRggJJbrekQadwHtESGinr5Atf3xeByJmHQioEDSPSruY4IU4qYIIURLunRGpiCuvEZtAMgU+fhOIOfzec62jluAfHpPl8iysyKGvuakYJTL5Xg+imciFLDOg8EgpmWw7l40UFKs7+BOgtVqlSP9kE4i/ewBruf1BJgLnCWebgAR9naezD2pE4vFIpLa8+o54NCgsKCfD1Gh6H5wx4enF7CnuBbnkM4KNErKuQXY4+6e8FQMr1/AuiICMB7pzC3CHvS9468Vuy94/QsXdDin79HMal54ag97vdjJgv1Q/Jw573UEGY7xOUxISEhISEhISEhIeGxcCkEBggSZmc1mOj4+VrfbjX/gU3+A4nREdovtAXElOHnle65TFAIoXHh8fKxqtarJZBIFB0gvggURZ9Ijut1u/B3WdgrmEdEmas95isUBGVuj0ciRSMQVhIPtdhsLRNLRgG4ObvuHxHc6nejEYBw+VqLoODWYE7d4Qxy5B8gdEW5JMe1htVrFTgXUUSh2kPAcdsQInAWSbup+wX3SnYC0Febfu3xIiufhHIgSXn8Ad4eT6/V6nSvW6QLEfD5XlmVqtVq5jgqS4rWZE9wfLty4Y8ZbEyIqSYoChHfNYP69RgOuB657nsDBXPg8uzsD8o0rxUWMomtAOmsxilDEfvI6CZ664K4IjmH/cE+IFF4U0VuO8mx4dwbO42kQ7DXEsmJRRn+WijUbHC6C+Jhug/oJCQkJCQkJCQkJCReGSyEoQEogK4vFQsfHx2q325GgYdUnSu3RX8gaBHE2m8W0A0hyMce8Xq9H8kqE/OjoSPV6XbPZTMPhUPP5XNIJISyVSjGFgIg0XSiISkP2IKIUPJROiLLXBEDMkJSz3NM5AQLlosJ6vVaz2ZQkTadTLRaL6FxgnkgPgCCVy2WNRqNIqCBrkFPSLLzOAfPppNAj907ecT6QCiEpt5YQPP8e9wLjQGyhuwH1IxA/mGvEINwe1E8gMs/4JeXIKEQfUQMi32w2tdvtNJ1O47l8fIghLhZwr0TWmWNECX4mxYVjWq1Wrj6FX4f5crHHLfjAXQHcB9d14YcxuHsDMs11ENloSeltJ9nfPgY6mTBnXneDNfC94kKA139gb1Hnwh0Y3FfxmXB3h9eV4D0uRjLHng7hIgWfN8WfzysQWawbkZCQkJCQkJCQkJCQx6UQFKSzSCMR89FoFC3tREf7/X4k79JZ5JSuDhCi5XIZUxA82ijl8/cpokhxuvF4rMFgEFMnJpNJPK7RaERrerVaVa/Xu6nqPBZyJ5lYy5fLZSzsWK/XIynDaeER2Hq9Hokj0WcIn5PqyWSi69evRzt6u92OqRMQc0kxnUBSTlzhGl4c0VtZQugggIzXUx0QGjy6D3H19I35fB7bHzoRxmXhwpBH8d22zxpToJF0F49Yey0GBA93WLj1v9Vq5UQLRCi+IN1eLJG55tq4VhC5FotFXGN3crjIwpy4rZ69y5y5e8NbZwLOidDEOnh9CeoZeJ0Bfsc6sw7unCG6z3py3tVqFdOPuBf2BMf6+ViPYn0GT2nxuhIubHntDhcdSPvxzwBqUFDjwdNK/Pn3fVWcS08ncjGk+PmRkJCQkJCQkJCQkHCGSyEoeIQQIrFYLHR0dBTTExqNRnQbkIvt0U+ixvV6PZfzj8UbIQIy4WkEEK7xeKzxeBwJKsUBy+Wyer2eRqORjo+Ptd1u1W63c6kN3saQ9AVJORJJhJf8d+8WQQ59u92OEXcnaogU/DsYDGKqBi4IxBVaOSIU4F7w8zJGdwtwLebF3QXUlVitVmq1WpHQeZSaQpO+jhD61Wql+Xwe14mCkJA3iLOLGAgejNuj1jhBiukKkmItBxcCIKucB1JPKoUX2oRcEsn2VBufP84LaUeEID2HFBbSQZzgF4sRMgeIOZvNJrpovCBkURgqFiIEWZbFfQEYL2uAU8OLfkLiPTWE9+FKYFyIKIgm3JukmwQKnlkX4CgA6s6ZoiB1XuFFnAqsgQsYj+U+KKY+cL+e6sC+4n59rAkJCQkJCQkJCQkJN+NSCAqSIjHDbYCoMB6P1Wq1NB6Pc5Xwidw7WZAUUwIQAjz6ic2dKDDXIso5nU7j9YiWS2fkiNQHiKh0li7hOfCQVMbAeCCbRLghY1wDYgwZ9hx0SdGKjujQbrd1eHio4+Nj7XY7DQYD9Xo9SYr55KRadDqdOB5v8weZdvcFAoSkmE7RaDQ0mUyi0MAakMbBXJBawD1D9pzcU++BdQfeEQGy6aIKYgCRe0lx/dyiz3shzZ5bzzpIZ0UBKeRYTPFwNwZuACfwrBupLp4ugIBEl4vJZBLTHphXxuRrjzsFUYh9RyqPX9/rWPieZ++SFuQ1DhB3Wq1WXC8Xb5zg+5quVitNJhNNp1PVarVYF8JrMniagNdx4Dlkbj1dwdMa+NmFBRcbed27SnBP7vYo1p/w8xc7YvA7r0Pi6TLFWgsJCQkJCQkJCQkJCWe4NIIChfOI6haJB60SEQy8vgCkxesNtFotSYrkyi3bTgwh/pvNRoeHh6rX67r//vtjtB3y4mQb7O3tRRFhuVzmrOOtVisKI9JZHjq1ABATVqtVro2jR8bdGl4k2xC4drut8XgcBREECq7N3DSbzUiYINgUOUQgQHjB2s+6uMjhxA6y6UUVSVNhLjxyTFtNJ8Gke3jkn6KTiAXMOXvCo/suGDHPnmMPwfb9hFjFXpHyLQndtk/aAvsJQcLHwd7yDg+z2SzuVU8fKeb0e2cJTx/xSLmnv7jrhroPnj7BXLLOs9ksCjAemafQJXOIIOIuAlw69Xo91rjAacJ+RDwqFhP1NAL2Cek/xXQP3+8uGHJvuJQ8vYX58toefj6vz8C+AMX6EIy5KCKlgowJCQkJCQkJCQkJj49LIyhAuIjQettGCIMTR29BR0oE54FQeVHGyWQSj3GCTBtCoq10fej1eur3+7E4IwSxVqvFKCbRYwgjZJx8bsiupFivAQu8Fx2EzDEuIsocRyoFhQJdvKhUKup2u9GOfuPGjZy7YT6f58QRIrbT6VSlUkmdTifeDykYXA/iTaQfkcFJMffKejB+hALprAhms9nMtXSkhgK1Hzi3R7jdku4k0MUBT32AZOOUcHHELe64Blh39st5ZLSIoksDV0KxSCPiEWR4MpmcS5j58pQZhCVPofBrQ34h7K1WKz5DnhpUFGGYA3dFIF74NRgTAlW1WlWn09FiscgV4yymJPjceUFI9kcxhcDngPd7cUREDXecSPmCoMyVd3hwgczFgcdLYSimQSRBISEhISEhISEhIeHxcSkEBSKkTl49b9sjvBzvRNN70VNw0Uko1fkRIyCrRNOpz0BEeT6fR5ILgRoOh5GgQLp3u536/X6M3DImJ94UjGu1WjEaTsQVIaNer8fietwn6RgQVSzqkm6K/nc6ndgZAZIMIYOMOkHi+lj/KTiJswAxh/NMp9M4fgpY8ntv3YhrgnvHku81AoodAFw4kJRzX3AeXveaAUWru7eA9PliP0GMfW2w/0P+qf9AYUuPVvt42GecywsuMhZvV+ktM936D9mVzsjsYrHIiVbSmdvEhQHP8UfQwXlDXY8iUQeIHJ5SU0wrQAAgncffR4oMY/d78vlif7JW/gyfR9r9mS52AnEXBYKbt0N1sckFG7/3xxI03N3hokSxmGVCQkJCQkJCQkJCQh6XQlAIIWgwGOj69evabDaRCLo93avXe9oBBMOj1U4gJEVS6ZH22Wym7XarTqcTo/fUCoD4Ej2l/SMkkMgzFuxerxej+xA8jzTX63UdHBxEwgIRhaR3Oh1Vq1UNh8N4H/V6Xd1uV5PJJJIxiBviBfeIU8IL5yE+ELH3No4ICkR/mSPOD7GV8lX0vVUhxAvix71Kyn0PGaTOAIUL3UlSFIZwlvAz1ynm1zMG3su4PP2AazAW7hvhCXLO/vLWkO5ocUGDe+RfRCGcCoyRvdJoNOJ5GbeTVxchvEMJdSI8LQT4XsJdwfxyr27nd/GCuYHou/DiQg0pC8xp0aVSrHPAM4OLgH3qwoIXb2Q/eooFa8i1uHc/jmeePcGe9BSS88SKIopz6ukjCQkJCQkJCQkJCQlPjEsjKLTb7Vj0D5Im5SOVbqGHPEiKtQ088usEpFKpROGAlArICGQc0cKr+WMLn06nWiwW6nQ6kXQgIGRZFmsR4DjgnqjlUC6XY0HH6XQaixmuViut1+tIOBEDiJg2m021Wi2NRiMtl8tIjIm+evcD7pPotJM8rPbe2hGi6OklzDEiCmSQ9ARaaBLt91QDt75DICF9EFKu7ekQjIm1ZOwhhLhWCDe73Un7ySzLYuFMWj1yLpwevM68eGtJvx7CAWvpEW9Pg5AUO1a4mMO5cbmMRqN4DAIDNSy4H9IRvAaIp/UgGkHYIbnepcRdOl5DhHVnn/p6M7/uXuEYRACO92fH3QROuP1a/lXs9uA1D7hfBBCcBi4qMGfFFBQfe7FegztkirUUWKviZ05RfCyKko+XHpGQkJCQkJCQkJCQcEkEBXL5Ic7nRSIhHhRBhKwReXXbPWTRCwySK04eOMXzvHUd53MiRXV9SGq3281Fn3e7nZrNZnzdx7nbnbWBxEbvRAaLPaTaWztmWaZ6va5OpxPJOBFjJz/cp5O7YsoHwoE7LkhfwAHC+SXliChEkDmluF+xiB01C1z08bWTzorhOYGEIOIQIJruLgHWhWt660ovUOiFI32M3laQ+4To+vz7WHz/FYs68h7W09M22Fc+l95VpNiphLl2IgzcXcI6FqPzCAOdTifOg4sy3mqUMRHB9++LUX3ez1wyb6w34/O9UbwHFyH4ciHH95xfd7vd5oQiX89iYUbW0tNK/DkrwlM63C3Cc+T7lWv73klISEhISEhISEhIOMOlEBRCCOr3+5pMJhoOh7G6v9v8JcUig5JyogHECyJABJ1IOK0cpRPSDnHA8k+BN4riuUsCYsI5cTCQd7/dbmN6ghPe+Xyu+Xyei3Tzu2JOt9v66cbA9UnD8LaLUr4lI4S1Xq/nosPuUuCePIWBe5tOp7lxAc8f97l3a7kT7WazmUsL4Bre/cDP6fPgkX/ILakErKV3VViv1zHqj9jDmDxlwveBR965Ds4LH6/b/llvIueSolPE0xY43sUuXBZOhj2SXy6Xo0uA+/U0CK8f4OTcnSmr1SqmSLC+nnrjogdknWP8uWKOmBsIenGdfO38PC6suGDBmBm/z/1jpSQwTsaHcIQY5a032Q/FdBB3VRTPzzHuovB7KjoukqCQkJCQkJCQkJCQcD6ekaAQQni7pLGkraRNlmUvDyHsS/o+SS+W9HZJn55l2dETnEftdju6FLxavwsKXkOgSEARCRAGPDIP0R8MBtFy7V0YuN58Po+vQYyJ5CMeQLw2m41ms1kUDaiyP51OI+ElWkwLP08H4Lpu/feOABDJRqMR3Q2VSiVHnnFY8BqRe28RKJ05HyTF9zhx9aKT9Xo9ki13S0C2ZrNZnFtvv+dOD4oxOmnEQYKd3TsQMB9OfH1vSGfOBY6lgCfRa+acdfPoPMTbUz4goE70PVXA9w+iAnuS9XLrvbtIPKJPzQ+38vM771ggnZF49oyLGD4eBDIKmeK4aTabOfHovPtlDYp1OdxRwc84aM6rmeHzxNy56MXeLpLzYvpCMb2gmIbA2L1uCrUZiik6jmLKAmMs7ktPN+H+i6kctwNu1WdxQkJCQsLTQ/ocTkhIuFtReuJDnhB/Psuyl2ZZ9vLTn79C0o9nWfZukn789OcnhBdMhLBDOCBAEC4nAACyv1gsNJlMoqNgs9loPp9rPB5HoksVfXcO4FKYzWaxlgGRTyL/nGs+n8d8/tlsFi3uzWZTvV4vOgoga4vFQtPpNIoPXsMAgi+dFZhk3JvNJtZh8Mr2s9lM4/E4jlE6IVnD4VCz2UyS4vGeI8/9SsqRuSw7KcJ4eHgYawB4dLxYIJCxsSYIGNwDBN/t9AgirJWTbUi2iyScz6/FOSjCh6OEgofulnDSyDxwDo5xSz9E3om2X98LCSIy0EYUQsu4GQ/XR5BgjzlBr9VqsTgk88U+x7Xgwg5dONxRQooA+9vTXTwdiD1AVxHmnjXz/Ue7Su7Hiy8ifHl6iQsLzH8xncNdDEVhwes8ACf07vRBIHJHiNdq4PwulLCPi88Av3O4+4Jn8zbBLfksTkhISEh42kifwwkJCXcdboWgUMQnSvrO0++/U9InPdEblstlLFaIvdmJC+SdCDpEHULgkczNZqPJZBK7I5TL5UjCxuNxtPu7JR5yR7HFyWSi+Xwec8S9kwTCgOevM7YQgvb393Xfffdpf38/ugVIy8DlQBtJ3AiQUb4gy5PJJEaKvbsCYyRVAUBYPcrqpAlS6QTe8/S5pos3WOy9WKV0VnDROxzwOnNVKpXUbDZj5ByitlgsotOh0+nEuSAFxedJUiTQ5M/X6/W4rk56nSxCOj3CDCHH4cG8kFbCXvOUAfaHOwoQPTwP32sDNJvNWDuDuXXRA7LLe84j7DhEXEQDrBtj8PuVzgQUvjw1hTEiLHANhAc6gHBOHD0+Rv9iDou1FlwEOs/FwDj5148DLlC40OPzWDyf/1xMqfB9wl50IaKY8nPea7cZnvJncUJCQkLCLUX6HE5ISLjj8UxrKGSSfiyEkEn61izLXivp3izLHpKkLMseCiHc80QnWS6XGo/HkYRSqR/SQ2SYvHlIkOfVe8oA5BRiJJ1Fv+fzuZrNZiQeOBkgWdJZOgKigkeCuSYECvcDpLtWq6nf76vVauVSJ9w6TlTfI9eQaYgb1yEdpFarxVaXfk/cJ/NW7ATg4oy3B+R+IGGtViveT6fTUbvdjkSZ+2XOIJ7UpfA58xaJHFuv1zWdTjWZTHKiR7vdzgkrnp6y3W5zIgrCASJN0aaO8MEXhBvXgLeVdLs7Ikuj0VAIIdYkkJRro4hbxdNqcG2c7vWc8NBqtXJ2fkQXxCjWDzLPnuX+uZanSHhO/3K5jEKDp4m4OObiBddhX3Beni2fE+4LwcwFgWJBTe7RUyeYZxcE3A3iRL3YXtQLYBYdO+z14niZE3c4eEqU70+eERw0RaeTixEukNwGuCWfxQkJCQkJTxvpczghIeGuxDMVFD40y7IHTz8g3xBCeMuTfWMI4ZWSXsnPxWJoWJSpXu/FBLGJUzfAC9dVKpVYz4DvPQ1iOp3mOi5ATgaDgTqdTjyXW7Kls6r0kLl6vR7HNJ1OVa1WNZ/P1Wg0dO+998Y2mPP5PJJhJ28QXYgZlnVIOYRwPp9Hss/1IKwQaU+H8LoC50WGIUyev7/bnXSqGAwGunHjRiTz1Wo1plW4fd6j51mWaTab5WoXeLvITqcTBRK3kOMIIE9/NpvF9fLIO0KPCzsuVnjaiEfZqeXAvXINdyY4yZZOUhNIGeEYF1X8viDuLtiQ3oKLgvdLyrkgWGfpTCjADeLCB3udfYeo4WtLlB43RDFdqLiP/VouOLGvJeUEA+7f3RaMm7H7+T3VwNMPGOdjOQzcGeKdTPiZ56N4b16bo+hy8J+ZFx9HMSWj8PkU58ZdQJcYt+SzuKHWszW+hISEhDsd6XM4ISHhrsQzEhSyLHvw9N9HQwg/IOkDJD0SQrj/VIm9X9Kjj/He10p6rSSFEDJIrJMBiE273c5FN50IQdKJ7kPGN5tNjJa32+1ICofDYTyvdx0olUrq9/vxvbgkiGQ6kVqv15pMJqpUKmq327Ew3m63U6PR0Gq10tWrV3XlyhU9/PDDkZDVarUYofaik5KiFZtrUXAPiz6kCcHBWz5is4dkkw7gVnsEBy/yV6vV4tjpmNBoNKKbg7lEUHAyhuCTZZmGw2FMz/D6A7guim0si+kXfLFWRfLXbDZzYoQTTe6V3+H6wHGAyACRhRySRuLtCxE0mCNPZSDdougmwH1QKpViagZOGu7XU2x8v3kaCGMi9YR9iGMAMc2dB+xJ71wBzuu84BF+HA7sS8bgbSddHEBQ8ZQkrsN9Mo8uJvjYvCgp98JaMi6Oc7GHOSzWNHDRAZHC90dxzyFcAE+1cPGH353nYLisuFWfxb2wf1vYMRISEhIuG9LncEJCwt2Kp11DIYTQDiF0+V7SR0v6bUk/JOlzTg/7HEk/+GTOl2VZLorrBLhSqajT6cRcfIohugiBYOBtFiEfzWZTrVYrvjadTmNRQ4oqlstldbtdDQaDSC68oJ2TIv71SDO1FB555BFdu3Yt1nvACSAppkTgaiCqyph7vZ729/fV7XajaCDlSR5frVZL/X4/3j8OA3L3cTNAeD3vni8ECIg281ypVDQajXR8fJyLDPtaeXTYC+W5COMFJGlrWa/XY6oD7gTcEHyPEMSYKYDYbDYjmUd0wKHiqRxEsW2v5moseBoDgokTbooVYvn3uhTeOUJSdCP4ek2nU02n0xzZdjLOeLh/iLU7P3jdnQouwHihxVKplOtyABE+b/9KZ50NvHAmqUV+z16sFNGGveBuFe7JU5a8lgFzwFz7XmYtPT3IayUgrCAe+lxx34yVNS2eq+hQ4H5daGKM530uXXbc6s/ihISEhISnhvQ5nJCQcDfjmTgU7pX0A6d/hFckfXeWZf89hPDLkr4/hPB5kv5Y0l96MieDrEEmsRqT099oNNTtdnMkByJZr9djAUVIjRNOzzN3i7yTTgoI1mo1HR8fa7FYxIg5tReks5Z1EDXGCnFZrVY6Pj7WfD5Xr9fTYDDQ8fFxbP9YrVY1HA4jySQKC0EiQu9RakgNBI7rYoH3/HMEi+Pj4yg0dDqdHBH04oXF6Cz3RbcL5qndbqvZbEYRhYgy72fMtHOE1HnBSebNSZrXTuBeqc3gbgqcEw4vjOlpEh49Zx/4z5B0IvAU/YTcsi7uVGDMkHPqKLiQACFljznx5V49BcJdE4zLXRW8B4dKkQB7moDXeWAsODW4f54xHAmkd1DHwteA8zJHdKLgup5i5M+SC02sC/PDs8tcekoJAoN3nXAnCqKVk34XHTwdpvi5UhQwisUhfX7OS5u4DXBLP4sTEhISEp4y0udwQkLCXYunLShkWfY2Se97zus3JH3EUz3fr/3ar+llL3vZTd0XEA663a4ODg70yCOPxNoJkmKEHUIECeb3EDVSA4oRYOmssBvRcUmRNPf7fZXLZY3H41w0GyGDAoYQVFwQk8kkF7mm8CHOCmo58Hu3wHtRPM/x92iwR4g95cMLBeIWKOaOMydOVKU8IfY5pHaAF8CjZSNk1msIuOWduXChoFjbwFMlIJ2QQIQCd0JwLC0bXSDidci7k3Ss9LzmKQe8Vpxr9lOxDgFjIT2G8fm5iuQ4y7LoNvFCoqRtsFYIHpB1RBoi69RZKL6H6zBGzg282GOx8wZzR30RalYUCxNCuBmjpyKxpqwz88m9sK5eeNJFC0+HkXTT/nPxopjO4WvDGIHvRx970SXhnwXFlI/LjFv9WZyQkJCQ8NSQPocTEhLuZjzTooy3DLR2hFxDJp3oQNqISmN/98JstHCEvEAGKZjIF4RPUs7yLSmSTqLVOAs4H4Sx2Wyq1+tF6zpjCSFoNptFZ4XXdcDq7h0biHr7NREtioKCOy8QKZzkQYBDCHFOva0ltnEXRnBmUBeCOXb3BOkam81G4/E4R4I5D84RFwggiAhDrDVr4lX8veCeE2LIp+fj+5o5yZTOcvAZo3dEcGEEF4IXHyQdAWGGFoN+bncceGcOt+8zNy56cA3WkHv38zEW0js8taZ4PHPr6+TOCy+4yPwgfpDigwDiBR+dvPu+cxcCYoMLDu4EYl97jQpEu+JaA+bQizKeV4zS18FrSpyXslAE50SocjHBBQ4+C4pOpoSEhISEhISEhISEM1waQUE6I5pe0R8i5E4E0iKcePJ+Wj1CODxSDtkm355zeJpEsXo/5Mot0JB+WlhS+FBSJLnUZ4AMc/1SqaRut6vFYiHpLI0Bggvpp+6B54ZjsycFgTQQ6czaPZ/P4zwyZ0WbOeIIRAlBhki/t9uEWEFEcTRwPeaZAo1+Ldat1Wrl1hJRA4cE5BmiiZuhOP5iVJ95arVascgl46WgpY+TMbGu7rhg7Vkr1pT1Zw+xLxAjEBUQtzy6zZpxTu6D+2cPuOMBgYZ7ZFzsO7f4s+cYj7cNJU2B+/N9D6mnsCcuCEQqUmc89cHJtwtFfr+e5sJa06KVDhvsv2KnDHdSFB0BXhzTjym6G3wsxWNcbPDijT6XfBVrQiQkJCQkJCQkJCQknI9LIyhAwIgoe10ASKV0Qn4h5OSAQ8JoC0lEGpLrKRFEJinSWCxmB4mH6LsrwYkyhecgRk48IC+Qe8grRKbdbks6q8dwHgmiFsJ4PNZoNIpjIKVAOiH5kGnIs1v9yZdHpGE+vSsB5A9SR2FL5p05cNKKQADxbTabcdzT6TRXZwJ3CUSTqD01MpbLZS5qjqiwXC5jKoYXpfS6Fcy53xNuCAoJOsGGIBaFEa4BIS5G41kjCDFr7Dn4vm5+Dgo6Ilhxr06ovXCgPw/SWeqFk+BidN/Xhj3P8V58shjl9xQD6iqQjkLagt+b11FgLOxtnBJcG3Gi0WjELh0UP0U88nQUJ/Fc05+J4mv+rPl9FFNT/F//3ufT4fPk85iQkJCQkJCQkJCQcDMujaAgKRctJTIK+XOSsre3F//wp3BjsSo9kVhIDyTUc6Q9l52fZ7NZdCBAsohEFyOYXnRQUjym3W7HugrkgUP0sPnv7e3lHAdu2Uf0cNeBk09PlfBINkAIwD0BsYXgOXln3pwQ4m7gXF7kEKs876ULA2tEW0wndu642O12sbbEfD6Pa03VfUQT5gFy5+4GxABvxelCgZNPiLB3cvBaFF5nAPLvRQA9DYF5wZHhe8D3DAII91BMn4E446pwFwLXZv2512K6hp9b0k33zz0V0xRcIPOaCuxPBAi6YiDMcIx0JuCxPswz6+R1O3yMvn7FThbn1UQoCgrnpR5w38wN7/d/XfzxOSk6P4qCxZNJoUhISEhISEhISEi4m3GpBAWs5R5NhlSt12tNJpOYX76/v68sy/Too4/mbP6Qcy+kl2VZTE+A0EFcicjjeIBQQhwRLJzQubV7Pp/HSDfiwMHBgdrtdq5IJN0baCforS0ZK4QKogmRazabkfhDmiB17kLgPNQ7gKS5HV06ETcgk34et9h7JB6iBeGGbDIO1o4IOWN/LGs+dRuctEOG6UqAYIHDAWEGIurtJafTaW4sLmB4igO5+KwtJNVbOLqI4XZ5dxB47QJvU+j1F3DJcF2va+Fijgsm7DH2vKfd8K+Pk04cTqg9Ui+dT6p5Rrg+Ag9OCNwarKk/E16DgPk8j/DzGq4EdwTgpuCZLToIioUXPXWpeLy7VM4rtOjpEH6NIlzQOO/8CQkJCQkJCQkJCQk349IICiGESISxyDtxoSXher1Wo9GIgsLDDz8ciS7EnvQJt2vjRIDI42QgmlypVGJnBsYgSZPJJJf7TWFCyOFkMomR18ViEclIpVKJ3Sg8b97z+Ytwe7u7FwaDgcrlsq5fvx5dD5BJaghIZ+TRx8n1IHIQz/OK4iHc+GtuAWc+pZO0jWq1GoUOJ25F6747R7hOp9OJnQaOj4/jujKXuD4QLrg+ZBsSDNGVlKsB0Wg0bsrTd2HD3SOlUkmtVkvVajWXUoLw4XsI4okrw9NxiL6z5u6SYSykFHjkHyLsUXaeCcbnXwg6PB++r85L1eBc7qwhOs/xfk7W090afk5fWwQVFwfcrcAcA68T4mkr5wkI/nMxjYGxeytVfx/H+Pn8y+fF596FGBcZEhISEhISEhISEhJuxqURFLbbrd72trfpJS95iXq9Xq5oHbn3WZbF4nH1el0HBwfq9Xq6ceNGjOSTtgDJ8ToAnh6w2Wxivj+keTgcam9vT81mM9q7nRB5/r50VvhvOp3GYowIEbgbEAUgLkWLPefg3L1eL7olZrNZPGen04mtL4+Pj1Wv12NXDKL61JRA/MBV4C4CCBhk1HPZed0j2bglvBPFbrdTq9VSo9FQu92O1/D0EObbI9Xr9TqKHUTEmb/pdBqvw1jdCeCpB9wj60BRSX6HyNDr9aLrhPtzwss9+ngbjUZOIKCLhhN25sJTKpzU4tJgXA7uGZHKC376/To5p4gi9+DtNxGtXIDz7grFaLyLG8yLz4/PJSQeQs+53S3Adb3TAqIB9+EpIe6i8OKgXmfCa5WwZkUxg7UrFk0tCmgubhQFNF8TF5zc3eACT0JCQkJCQkJCQkJCHpdGUEBAwMIPaTovLxrBoNPpqNfrRQs/Nngi7RBwbNQezfUK/W6Lxy7v7SspFEmeP6TEnRPNZlPdbjcSnPl8rqOjIw2Hwxh5DyGo0WhEsgIZJMrf7XbV6/XUbDY1nU5zIkGr1VKz2YwRc+pGQAJxR7j7gQgxXTPcQo94AHlyMotbxCPe7mrw6DWWeOmswJ0TUXeDcP/tdjuS3m63q/F4rOl0qsViEQUb1hEyWSSFxag1ogtEnZSPEEKuOGaxjgA/01bUBRfu26P63KcTeE8zcRcF4/I6IOxNxg6pxtHQbDZzrgfpTMjiXlmrZrMZHQ+SonjFvLMexY4W5xF16i54KgeCHMd51xEEAif/3HexFoHvSU/J8DoKHOdpCi4WFMm9Oxq4F9xM/qy7qOAOmyLOEx4eS4BISEhISEhISEhISDjBpREUpDxZks5aFXrkcrfbaTQa6fDwUC984Qs1GAzU6XRiscNaraZqtarZbBZJmVv2nRQ73HWAC6LT6ajRaMRI92g0ylXxp/YAUXcvujedTjWZTKKo4fn8CAU4LejmsL+/r06no1KppOPjYz366KNRDKArRbvdjvUHqHVAxwmP0jKfTpAgiTgYPDrPHJBG0Gw249x4tJefIaJOgFutVrweRBeSyRxQvwCy12631e/3dXR0pNlsFu+HdZ/P57l94RF20iJ4T6fTyUW7i20JvUAg33saAGOmI4gTb87j55CUGwuuC3cWeF2QWq2mZrMZ9wSkGqLL7zme4og4bLwAqO9rfz7Y40603RXgaTHuTiDNxtMdfN0RUBAXEEec1EO+EYWYU87pDhF3ipy3b4upBp6+4akYiDNej4Q5Yqwuivn3LiD46+VyOT53yaGQkJCQkJCQkJCQ8Ni4VIKCR7ghQER4vWgh5H61Wmlvb09XrlzRQw89FMnxeRH4YmS6eE3I33q91tHRUXRJkPownU5j9NqJukfcIeq4KHBS8AXRohtCCCEWpxuNRrH4o9cHWC6XGg6HyrJMnU5H5XJZBwcHuZQCt51DID1KzL+bzSY6G7CcO7n3lo7exQDSSgcMRALWg+g5ro7VapUrNFmtVmPNgUqlkpsXahdQGJPrSWcpIQhF3sHB24ayBu12O4pBiCd0yPB5Oa92hKRY46B4DKTysaLcRYEDa7+nbfB+CkmSiuHuDnePkO6z3W6j+wFijpOj6BTwApEQdbfus8a4IYrCEtfj3r0QI/fgxTZJ1XFyzrF0iKBdKfeIiEN9CXdisLe8wKQLC8U6C+6cYFzFZx64yMPP7kTwPcI+nk6nyaGQkJCQkJCQkJCQ8Di4dIIChfWI6Lbb7fgHvnSWGjGZTGIaQrfb1fXr1zWfz3PtHSEViAC0F5TOahxABHEbQCop1oitnzQIz9eWFAsEMkaIFeROOkuNKJVKWi6Xmk6nGo/H6vV66vV6qlQqMUI/nU7VarXiNXn/aDRSlmXR2k9BOumMeCNQZFmWq9TvxRYh2jg5/J6L7f0QR/z7xWIRyaC3KESAkM4EhuVyGQUhahMgapDSwZoytxBs6i5QJwKBh7WiJgMktN/vRzJL9wIXCIj0S4rReJwN3tGDNBHIL64Kotu+V3AG8B5EBP4t1jTg+tVqNa7hbDbLtXl0Uc3rWbAuRWGMYyDLCBjF1BTWzOtmFF8rim/sb+7dO21wbr8/9r0Td0/J2Gw2sSuFuxtcGOP83IvX7SjWNUAUcFcC7+V1T+lxl4PXqOAaxZQgT29KSEhISEhISEhISLgZl0ZQcDuzR9Yhdm6RzrKT9ovz+TwWZvQos6SccEDBREgRkdUiIfIoMPUVPIJJ5Be7uI/XSRWRdo/sQsam06mOj4/juNrttqQTkjmfzzUcDuP9MG7eS6S/2+3GOYNcU3+iWEcBcgvhgqhD4HFTjMfjSLqL6Q2IKk6K/d6d2EqKJN3t80SXvUifd2ggFQC7vhN1nCAIFUUxoVjTAAeFpwpAnulMwXEeqSedBeLr6+71IjyaDelkXkh9wHEBUfW58wKG7BvmcTqdxi4nrBnrX7Tw+/PB3mCdPN3A0y889YPfee2BYoTfBQ72sq8Rv/cCnIy1WKfB0yU4p4sKCDXse55ffueCF+NwFOuBMJ7iZ0fx88Xn87zxJiQkJCQkJCQkJCScj0sjKEhn0VknXhA4IpuQEOzUkmJxRmoWQOgB0XPs8EStPUWCyGQxTx5nw3g8zrUkpJjiYrGI9Q08pcFrJkD6Ie+8x0k6kXWKE0KsIHG8v91uxy4YOCyw9TuRpfME97NcLqNgAImCTC8WC41Go5i6ISlHxKSzzhEUa/SifbguJEWBwAURBAUvaujR5Wazqb29PZVKJU0mk7j27vjwWg+cA+IIKfbIO2kDlUolEmvG72PyYoW4KbgWJBtC7s4T5snXqdg9w6P6XlzQCSy/49zL5TLXMtOdOUUwPxDxVqsVC1OORqO4Z7y4JYIBa+ypAp4O4IKZzwN7VVLOseDigac4FF0BLpT4vEjKFYH0dBucN55G44Tf30P7Sz4n/Nq8jzSLosOj6JAqOkQSEhISEhISEhISEvK4VIJCqVSK5JwosluaPQIpnZFsag54UTqPLHrEHXLkhBBiTcFCf6+nCbh93MfHeRAJeI90QrDp5oDdP8syNZvNSFIhcxA+L5xIHj5EsN1ua39/PxadpFaDR/yLqQtSvuCdiwS1Wi0SbsiZdFKngiKDEC3vjEHaQLlcjm4RiLpH5b0gJSkcrAOpJZ1OJ9aHyLIspqb0er2Yiy8pCkGQeupMeJpKCCGuw3q9jkUvPe+elAPSUHAKOBkFnBORgnkvl8u5jiI+rz5HCAyc0wUnhABPHXGHjhcTRVwr7gfcMtVqNbby9Lap7GFIvEfn3dWBm4Z96A4RSVGYcAcEhJsx4bphDthP/kz5s8G9c81i0UWEnvP2b1FoYR3dpeNigwuGnJd79GPcocG+TUhISEhISEhISEg4H09bUAghvIek77OXXiLpqyUNJP1NSddOX/+qLMte/yTPGUkaEUmPavsf+KQ9LJfL2LKRSLUTMo908j4IpnQWXaXugBMgj4h61XxIlJMkCDPtCjk3heecmPmxCCa4C2izCHGjPgPzw8+Q6vl8HomxCy60QIS0FlMZNptNTJ8gJaDVasWWl7PZLJJzr/2A+ABprtVqmk6nms1mMfoPKfN5o4MB76XoYJadFKEkzWO5XEbCSWtEHBc4UviX+V+tVrF+RrVaVbvdjtf0jhHFFBdqMgCPnvN7gOjkgoAXr+RnhCnfY/zsYgDFCj0Cz7FOhr1LhDs7EJ9Ya/aPH+/7HtGDPcI+9/oDXoyxXq/nnBqe8sD7Eav8ufB9yDHFrgusG7/nGHeOuJuCe3Yngu9l//zwehguUvDs4SRB8HEgMLgQcZ4z5LLh2fgsTkhISEh48kifwwkJCXcznragkGXZ70p6qSSFEMqS3inpByR9rqRvzLLsG57WgKz7AOSrGGnnj35aM7bb7UioiqTDC/1BUnAJQMCIWEK6IDikNUAcif6SksB4T+cgElVIFYTe6wZAzhgTpK/f78freDeBWq2mVquVc1hIitfANeC58U50Pf/f8/whU9VqNRLSZrOZs6V72gHpHbyPNIrFYqHxeBzHxTk8EowDo9/vx/QKBBZJ8R4rlYqOj4/j2uEKoNsF9RSApznwO9wURL0p5uhCitv2i24Ar1fRarVy7/H96QIN4pITUs4JeUVUwDnhAgRfXkyxSIY5H3vM58KFp+L+d7iQwDHF9omIdtTBQAxg/3JNfy49ncNrmPhzyziL8+1uGU834bhimozfC9d2IcjrVXBfLkJKZy0jQdFF4cfeDni2PosTEhISEp4c0udwQkLC3YxblfLwEZLemmXZHz0Ti7BHXT3C7WTLc9RHo5GOjo50cHCgarWqZrMZCS2EADKJYFBMU/BK7k6AOZZ6DPV6Xa1WS6PRKB4LEScqTVcDz+2XFN0E2PkXi4W63a729/ejALG3txcFCBwBOAco3OjRbydKEDCOd4IHqXbCR4Sfe8WpgBvAI8TFe/B2iLPZLDoWnARCcD1dxfPssdJD/CiIiCOiXq9HC77b1dkjvI/1QpSBJCJ+MBZfY+7ZiyFyHAQUMYiaC1yXfVOv129qtwj5dkcG9SwQFOr1erx+0crvhNpJeJE4exoJv2c/FguTMkeISR6RR1DwVBt387BeXI86HcyPCzvsC3c7sEb+LLqIwzNePJ+/zjh9b/n5SNlxkaP4XhcMi4KPz0NRrPB/bzPcks/ihISEhISnjfQ5nJCQcFfhVgkKnyHpe+znLwoh/DVJb5T0D7IsO3oyJyHtwImaRz2Lhf28fSQ57eTM4zYg0uo2es8Pp7ODpFhsETHBWz9CsiCenrYAmfJChV5/wC3Uq9VK4/FYo9EoV6eg2WyqXq9HFwDEvtFoqN1uRxLK+51Y8Tsir9wTc1iv19VsNmNBStwXzFuv11On01EIIVeL4LzUDyeK/B4XAIQRMr3ZbDSZTCLRpuAkxLMY2Wa9ms1mXC+EGs/VL5J/7tmjzsyH5/zjegD+c5FQejFDvx41MqSzOgGIOIyFc5O642Tc8/wRdxAK3DnhAgDn8r2PgIKzwF0vDn8GaC3q98pedbGO6xfHNJ/P41iL3TJ4ptxhwfd+Pd87pFP4HnNBh3nChVIk/0WHhZ+Ha3A9BAWvfeK1Rli3Yi2R2xC35LM4ISEhIeFpI30OJyQk3FUoPfEhj48QQk3SJ0j6j6cvvUbSu+rE+vWQpH/5GO97ZQjhjSGEN/LaarXSW9/6Vh0fH+eigxBpor0QQUSFYqtAKd/uENJOvjmFHyHinM9rIBRzqYtRWSLrHj2m9oBHxyFzbt+XTooejkYjjcfjnAMCUk9hRlItPNJOzQLIGsR0Pp/HNA1PAfBcdVwVPl7mazab6fj4ODoYvO6ApFyKiJPFbrervb296KTg2GKXihs3bmg6nebSTXa7nWazmabTaa7AJvn0CDWck/f5+al3QOoLY/S0F/7lPawn54G4Flsn+v20Wq1YTNPJqe3puM8gt+el4LAfuCb7GjLM3qImhQs5zAmpLC4qeOTen4Fms5mbU97H3qhUKvHe3P3hAhU1HlxICyHkOlN4alHRveGpQcWuEF5zw+frvIKLCHi+B/267Bd/dvnyIple18EFCs5zO+JWfBavtXwuhpqQkJBwRyJ9DickJNyNuBUOhY+V9KtZlj0iSfwrSSGE10n64fPelGXZayW99vS47PQ1jcdj9fv9m4obQrZoMwgZc7s2ZNNt8JAZhIV2u50jZU70ipFKSdHyfnx8nKspQIrF6fhjMcXZbJazi0NEF4tFJO+ck2r81A+A2OKS8GhupVJRt9uNtRYWi0WM5FKkket7VwO6EECgvDPCarWKNRSoLUEKA2SSeYD84yJBvECkYV4phneeM4PikcxLqVTSfD7XZDLRYDBQp9OJTo3ZbJYjfhBbroko4GkGiDXFFAnbc7kaGZ4mQf2EYpTfz+0ig98jx7EX+L5YD8BrHuCMYP9ybXcFeAoQ53a3jqfuSIrr6fCUES+e2Gw2c+Qb0YC9wfr4tfmXVAn2B8IFc8T4cHkUU5hcYPF6BjyzxToZ/gx4i01EN09p8LVhXdwRwR7gM4Lre4eNojCEwHYb4Bl/FvfC/u2ppiQkJCRcDqTP4YSEhLsOt0JQ+EyZtSuEcH+WZQ+d/vjJkn77qZzMiYALCpAAj5xCMoCTAEiLR3gh97RZ5Fr1el3tdlutVuumNAdytJ3oEBH3/G1EAtogEsWt1WpRBBgOh1qv1zEaTCvGvb29GClGAKALANHeer2uwWCge+65R1mWaTQa5UQUOiTsdjtNJpNITN2ZAPGkQCK/84r+TtyIAjP/knJk7ry8e173WhQIOKvVSq1WK4oYCAakeUC0/ZxeTNJt79QROM+a7o6S7LTmggtP3AeEGjLpaTFFp4h3tmCeId+cg2t7pNsJt3RGkJlj6hMU03BwtPjz4Hudc/vanGfl5159bJ4KwBx62oinG3l9Ak+DKKYVFOt2cE6eQU8V4vdefJX7KbaKZQw+X4ggvidceHKhw+eBzxJ/lt2l4S00Oddthlv6WZyQkJCQ8JSRPocTEhLuOjwjQSGE0JL0UZJeZS9/XQjhpZIySW8v/O4xwR/xFOiDgAAnrR7RLEaOHZArWsRBHLCrS2d59N5yryhquAXbCwBCXDw33gv+8RpCBSSLlo4UJqTQIsQTUsd97Xa76IigPSbj3u120YZPCgW57swXnSM8Gk+xSs7jEVted9JIXQaIGi4F6lOQPiApdn9wsYCfu91ubOvIa8X8d8/bP91n0eXgx4HNZhPdFZ72Ip25ATjGbfLuvnBLP+uDqCMpl0qC7V9STjxh7dylwX7w/eXXdVECkuvpAy7yuPPC14uxz2azXMFGUic4nnlw9wjHeToJbhon7j4eF0mYK+6bZ41rM2aePb8/Txvi+fR9V2xnWRQa/BgXEPniGt4yk/1fbEvrAog7Im6X9Idb+VmccJcjBL31u95Xv/Lhr7nokdwyfMbHfZ52v/47Fz2MhDsc6XM4ISHhbsUzEhSyLJtJOii89tlP93yQdic3kqK9n6gmJMGueVM+NSRtPB5H8ky7PYisE55i7j0kDeGBNARSAiD9FLqDmPMF8SK6SsrFYDCILgmcBNPpVMPhUJ1OJxfpn06nks5aGNIBAcLUarUiUUYU2e12Gg6HsVuAOx+KXQ241yJp8hx/70jg0ehqtar5fB6j/JDo1WoViTvCAq4JiKOLHczLZrOJ9RW4X1JEiJxDlj26DBB13JVAJJq5gQg7UWWP8X7cJ070vfMIY/POBz5vXlPBBQAXwrDtA8bKXPo+LjoniukDkGB3XHhNAhflGA+kn3OSFsS+RUxYLpc558RyuYzHetoK9+h7nnN7+0nW3d1GiHIuUhTHXhQXH4/kuwDox/pz4EVL3b1QdLu4W+Oy41Z/FifcZQhBpWZTf/x3X6o3fdGrJf2apOZFj+qW4b+9/rv1Fz/8k5U9eOI+353+35KQcCuRPocTEhLuVtyqLg+3FJBHCI50Vn3daysArOjFP/6pC4BIQVScyLM7E5xEc87NZhPrHKzXay0WiyhGkFdNFBSBAkIEOfbxQ2YgvUR0aX9JsUhIL5FeSbnoLuN267a30gSePlDMxfccfkgebgLmxIki68L4uQcIm3fnKP6e+0Q4mM/n0QnQbrfV7XZjPQXG3Wq1tNvtomDDdRFTnOxBPr3YIGtcKpWim8BFAtYEFOsIICghjHBss9lUq9WK70OkKda78JQEih0yHuo3sBbujvD2nKwdc+L72qP2iEJeF4JoPXuS83Pd2WyWSzvgHIhA7pjgWj5mr1fBGvt6cF/cm881NT3cxeEpFcVaC95Fg31WFA0QHF1AYGzuBHGRwusmeAcNdy0Ua2okJNxxKJU1/kvvr5/7xm+R9HMXPZpnDa//6R+QJB1tZ/qrH/Lpj3nc9tFrym6fuikJCQkJCQkXjksjKEAOSqWS1ut1/IO/mNsPCXAiMJ1Oo4OAc0AcaI1Iuz8cB7RSdBLpRInIMEUOaXkIGZrP57mo6Ww2i6kEq9VKR0dH8Tq73U7T6VTz+TzeG2Pldw899JA2m40Gg0EUK0hXIEd8PB5HkcWFFQj4drtVu91Wu93WYrGIggJEFXIFPJLsLQNdWClawiHokFmvMcA53RnhKREIDjgqaPPpbhDm0AsXepcOxA4Xa7gH1sOr+bMH6OZQKpWiKMQ5nIBzT4gEFN6cTqe5mhW73U6tVivXohQyi7jAnLkbxNMiGJ87SJgvJ7PMWzG1h/O74MO98Lpf0wU3T/ng++Vymeu4wT25eODX9sKY7vBgDIB5htC7I8FdFRQmReRgXyI0eAqGpyF5vQy/trcO5RlifzLvPo9FxwtiVkLCHYtSWdNPefmpmHB3YK/c0o/84rl18SRJ7/t1X6D7f/ZEmM9+5U3SbZL2lJCQkJCQcFG4NIICWK/XmkwmyrIsEvjtdhvbHRKJhxxBUGnXWLSce6E1SI0TFkgM0Vwi/8vlMhL72Wym8XicaynoOexETuv1uur1erSHu80dd4MXi4P0LZdLjcfjOA7SB7Dec49ZlsVjPALv7Q5JhcDO7/np3jaR2hJei8E7JkhndQMk5Qi556mPx+N4TDFi7Ln/LhogbNChAtEFUsm8eVtOwHVZewQBxAcKJJKSsNls4vuduEM8EUecoLJfvFgh48b+j9jj6+3pLdIZUS+mlXi6gr/GWruYQktGF2WYX693ARhDo9HI1T9wIQaHDXvG587bd5J6g3vD56SYlsEaeNFH9qY/g/5eSLzfE9+zn1w4Yi97SoTPL+PzOhI+zz5XiEOco+hM8DEkJNyRCEGjz3h//fw33D1iwpPBb3zZq6UvO/n+Q//u31JltlPjh3/pYgeVkJCQkJBwiXHpBAVcBPxRD7mhfsB4PM7VMVitVprNZrlCgE6myRf3vHonNx7RhDxCIBEzxuNxLHYonRWOREyA1HjUFWIIsSk6KIrRVOmMgHIcRH8+n2s+n6vVaqnb7UaCBXlGcIBAQ9QhRYyXDguMZ7FYRPLJcRBrzgl5rlar8V5xF0jS0dFRdGdA6iCrgCixW8xZH+bN18Tt+tJZPQzeB/Hn96yjR6sRHrxjRtG+7gU0EQx4jd97l4nFYhHnPcuyWAyTYz2VwetNMB/ugHEUxQVIMe9nX7st34m7g3ogkG9vhemFJL3lKo4IamG42ObPjqfdMAeMAZGueD84eooujmKNAxeqmCfGzrFFck86hBdG9WNdIPJuGMXr8twVi30WxZqEhDsJ1171QfrVr75zCi8+G/hf3/QtWmZrfejX/B+qTjP1vvsXLnpICQkJCQkJlw6XRlDgD/ntdhuLwkEMaekIIZ1MJpKUK6oIcYF4QTa8c0C73Y51Fbyoo3RCfBATGo1Grl4CxBpiQlqBRzWJKrvl3B0IFLgj0o/7wW3xVMxfLBYx4osFfTqdxnNxPeksx//4+Fij0SgKAKQ9IAB0u131+31JihFq5tgt/k4EvSChuzx6vV6u1STz4tFoj17j1vCaGNSsQIDAXeFRdxcgINGMjTmAOEN8PY3B199TLrxwIGuAxZ2UDgSZzWYTxRhJOdcMxRlBMZ2E+UQ04d58jJ7K484Df28xYs8xvueYJy8+KJ0RZgQuXCrMC2tfTC0qChw+36wB4/L0JI/2M34fm6dRuBjizwxr6p8N53V84HlC+Ci6QVyg8/kswq9dTKlIgkLCnYpf/L++WdLNAmdCHvVQ1Rv/8Wv0m6uF/nr/7+nqa37+ooeUkJCQkJBwqXBpBAUAsSPayx/25K3PZjMdHR2pWq1Gggw5dkHBbeVevZ/iihBMz+uHGDmxhzxiY69Wq2q327FWApFyxAhPKeB+PB2BmgFZlsUcfN7rtQtwS7jwQZ67JLXb7dgZYTab6fDwMBY7LJJ1J59uIYeE0a3AbfdY+CHBRNnL5XLsRsF8udMgy7JctHo2m+XEAEga/yJAbLdbNZvNnDOBufcuEzgOJOUK/kEE/V/WnPv1ThTebpB1oo0nDg9EpRCC2u22pHx0nvoRiC9uty8Sfwi+10Fw8g4JL6YAeLTfiXaR6Po5GSfv5/fu3PFUkuKYimkJnubgaSNO+hEHvGCk7w0XFIoOFMZQPJ7zsk+8ToLXgDiP9HNPxbSY8+o7MJ7HckIkJCQkvE+toW/60tfoixtfoPu+8c4tXpmQkJCQkPBUcakEBS+MB3nBij2bzaLYAEmGwEmKLRy9Oj0RTIoWYvl2kgXBnEwmURigqvx4PJYktVotlUqlWEyQnyHhRLOJkFJrgMi7CxKQIRwXtIaUzgQDiDzkD4GAc2K3p1AjogLR9Hq9HsUTSDljdxLplnivc+BpIxBe0kog1u5scGcA84XggsiBmFJMKUAcKJVKUchpt9sxhcMFBb6HvHMf7gbwjgEQYcSmovDk8+7Rdo/6U0QzhJOuFHRHAMvlUvP5XIvFIhaPlBSFD/aTOym432JhQSfo3rGB/cV7zmtl6KIA98dzBNn3zhE8O5zPxQueCUlx7F5jw2tWuNsDQcBrEbDuxdQFxBTu2x0mdG1hPdxh4p8RzKPPpQsyLsa46OBpDe6MYWwugCQkJCSAD29IX/+Fr9OX/rlPU+2HBtr/9uRWSEhISEhIuHSCAqS3SKJv3LihLMuikwDiDEmFaEKgIQbNZjMSbCeZbkVfLpcxCl+s/F6r1dTr9XJOCfK2IUvValXj8ViLxSJG6In0Q36bzWYkb4gOEHkI0Gw2ixFu3ArY7Sn8NxqN4nWks1oIjIcOCZ5fz/x4lJfvGU+n01GtVovCDFH5SqUSU1A4PwLDdDqN6RyepuBRcOz1kmJRTebf3+tiwt7enur1ehQVvM0jpLIYffZ0DSkf2XZCyj1zDM4X6kJQG8LrFXjajNd+kM7SR1ws8Dn34oEc72PEoYH7w+tySMqtI/uH19xdwdy4Q8HTBBgLTgwX7Ipihotjnj7gqRruxFiv13HP82xwPu7Ja3AwHp9jfxZ4lospE8wH980a+2suBngqCfPC+ZgjF1zYw7zf5zMh4U7DK/7eF+p/fVMqyPhU8dGttT76A75H3/9n+vovn/cyPfS176raj77xooeVkJCQkJBwYbg0ggKE3V0Cnq9NDQFqArh92Y/zwmpEvVutVoy+k3JAV4jRaKQsy9TtdtXtdqMdnrE0Go3YOtBt8hA7H6d0Fil2l4QTRUg56Qi4LSC6nNe7HiASDIdDbbfb2MKSSG6pVFKz2VSj0VCv14s1JdyJUUwxQPhgTrgG16/Vaup0Ojmhptlsxu4J8/lck8lE8/k8CjF+z4D0DtYNIUU6qUeAiMI8DwYD9Xo9VatVTSaTWFTThQVEJI9ae30BLxYIaXcXA/MLCaU1p6cBFFssIvIUrfrSWQ2BUqmUKyToBSRZf6/dAKH2fetkmWM9n99fL9Y68BoHfl6EKY7nuoh3fq++doyXa3uxUU+PYY4QhiRpPp/nhAyvn+G1N7xugc93cRw+Dz4f7k7wY3HX4LbwNWDui61UXTR0AWk2mykh4U5D9wd+Vfqmix7F7YtP7wz16Z2f0H/55l/W25b3SJL+x599QNvj4QWPLCEhISEh4bnFpREUgEcl+cNeOqtMX4ysQkyoUE9kFQLltn3IF+/3GgjtdjsSVnLpO51OjKz62M6ziDuhIdrMz06qcFVglZ/P5znBAuImnRAryK53q8CVQHoHaRitVkuDwUC73U7Hx8dRFCmXT1pJNpvNWD8CEQECVa/XY1oJ84Frg+4R2+1Wk8kkCgHF1Agiup52QCTdO0Ownt5pQlKsJYGrhJQH6l64u0M6K87oRQdZD69pQAoKJJiOIDgoIOJeswHhANdGcc1dAPICmawh98qxzIOfy/cMc+VCkrtXGKOnF3j6irtnyuVydK3wPHiRTAQRupnwXBSdAOcJRC5y+Bg4brfbRfEOQcNdJF4rwuGigL/mApgLCb6XivUfmAv2pM8Dc1F0u3C9Wq0W58Gf/YSEOw1f+pZfuegh3BH4pPZEap8Uiv7AX/0DbXXyefrTk/fUz7xP4/HempCQkJCQcEfgUgkKHgmFkDuB8ujker2O3R5IW4C8QEobjUbsNe/RXb6H1HpNBHL6id5CPr2wnheEo9BfkXSRf++ku91uRzI8mUxy9R7Oq+zPWCHUkmK3geFwGI8hPaLb7cYOFR6pZx6Y00qlomazGR0HjAEXCO9lPrxmwWQy0eHhYYzYuyjhzgD+JRc+hBDrRuDMIL3CXQucq9VqxflbLBY6Pj7O2fJZC59jSK47EXwtmQNEBwixpwlA3CHFq9UqulbYLxBiLy5YKpW0WCyiGIXLxtfOr01dDS8IiBDC+b1DBXPL/pHyLQ+5Xr1ej+N3t0KxBoI/F8WaIsX2qpBx5ohuGKwDIhdpMV6DAgGL8bFmj0XUuQ6iH6+5Q4N58xQe3z9+T7hr3KXjz6s7W7wuBPObUh4S7lR8eGOl1OXh1uJDG2efFx9a/x193h+fuJv+3M99gd7lM37zooaVkJCQkJDwrOJSCQpSPjLqhdcoTAdxIXJNkULPIff8fe8cAFFwEuk54ZIieeJ8EF/IsHSWn+5dJbbbbUxl4DzL5VKr1SoSI6LHiBAQT473iL7XCYDY1et19Xq9XJs85og0EMQWiDYpHu6YKJVK6vV66na70dmBaACBlhTrH3gdgtlspuFwqHq9rn6/r16vF+s/QCg9Uu7iAmvpkWfmeDweazQaablcql6vq9vtarlcajgc5ojdY3UBwAXAfEpnRNRFj2LaAw4ERAP2BoQWUUA66zrBufmXY1mXarWqTqcTx8H7/Jy4JhA7siyLQpALVk583ZGAaMV+5hj2AGKPuwGon+DFI/0a7Dd39Th8bL5HvS4CAhcuCa9ZAbx2hJ/bayH4GkL0mS8XQtivPE98uUCDoOfX9XV0IcafO/5NSLgTMctW6ofmRQ/jjkU5lHR/5eT/gd/78H+n9Tu3ep/XfrFe+LU/LyXnU0JCwp2MEBQqVf3ev31v/e5Hvi73q098r/+vdtO5JClbry5idAnPAi6doIDt2PPf3V2AJRliARn0aL/XNvCoJCKE11mAYDoB9o4Rq9VK7XY7klXIFMdBRD3HHOI1mUy02Wxim0kfL9Z9It7j8Vi9Xi8Wb4RgIRw0m011Oh0973nP097e3k2FFSXF9pfUWGAuSP/gWp1OR/1+X91uV8PhMNYqYG6coHmtAY9gd7tdXb16NRJ/0iNYKwizV9CngCHjks7cHrPZTMfHx5pOp6pUKur1ejHaz3xTALNSqdxUHwASz3qSww9hZH09t57f73a7WKMBAcbrTXAMHTiKxJ595GS+WOwPcksKBuPhe5wwrJfXWkCgcReIF1ckVQQnCtdGUPACjUU3DfsZMYS1dhHH38u/rAmimadpcM+sPc8me4f3Q+yLQkLxexfLijVKvO4BogD7imOYHwQCRBbmmvV21wriWkLCnYq//C5/Tv/9j37poodx16Aaynrzq16t9z3+Aj3/u39f2xuH0m77xG9MSEhIuF1QKqt8sK8/+vx305u++NWSfklFJ9zrf+enJEm/vlzqqz7g46TNRtujo+d+rAm3FJdKUIBwNJvNSOggnFTSd8u2pJyYUCRKxQgoxf3I3ZcUibpHNYmcO0mCqLoYgRMABwXnbbVasa6DCxCMF2LqLgjOQZFGbN2SovhAbYFms5nLDXd3wXw+13A4jIXk6G6BAOJRbezzpDU4gfRCkbgnIG6DwUBXrlzRfffdp3K5rNlslhMg6EzhIstisdB0OtV6vY6/g9wzb5B63o+Qg6W/2+3m8uIRiyDT7gpg/YnUk7/PPTSbzZy7hXEiBvj6F4sTsp+8lgLE1h0mjI1oOG4YRASIf7VavalNIqTX01SYC9bIa20Ui0W6y8LBfbHGCDJeowB4DRO/X08hcucIhT2py+D1E7yOCbUb3Ong3TM89cBFF08J4blwd5GnORQdHDhReJ8LCp5G4mkifu6EhDsRPzRt6RPaqejoc4nf+PJXS18ufdgXvUqt//LGJCokJCTcEQiVioaf/nL9/Dd8i6Q3POHxL63X9frfeIO+/JGX6rf+6nsoHA61eejhZ3+gCc8KnjBBOITw7SGER0MIv22v7YcQ3hBC+P3Tf/fsd18ZQviDEMLvhhD+wlMZjEcaicgiLMzncy0Wi1icL8uyWDAQS7oXdKRwILZriDe/ozMBZNPJMznXkFGI2XnRV0nxGGzrkOfpdBpTFbIsix0R3DoOaaSeAYTJnQVeE4JCgU4Wiapyb0TnOfa8Yn7eeYLUEbfaE0HGTUG3jMFgoPvuu08PPPCA9vb21Gw2Va1W1Ww21W631W63I0njOk6G/Z5xAxB9dgIKPF2g3+9rMBjE9BO39nc6HTUajVj0EvHF95F0FqHnPr3oH8DpwZ4j7YU9Jp0RfCe5LiSwfpBjt+Rz3WL6BOdFTGm323Hd2V/F2gO+rkTZPW2B+/FaGj6/7g7g/H4NzuMpRL7/eGZdACsKUb4PPD3DxSDG5XVSXGjwtSo6jHAwSIpChbsQ2F+Ijjzf7kwqjou5uUyCwnP5WZxw5yPbrPV1X/HZFz2MuxY/883fqsmnvlwqiL4Jlxvpczgh4XyUXvzAqZjw1PAv7v11vf4N36eHX9vT+iPfT5XnP+9ZGF3Cs40nU3HsOyR9TOG1r5D041mWvZukHz/9WSGEPyPpMyS91+l7Xh1CeNJVnzx6K52RLgiKV9ZfLpeaTqeaz+e5gmtO8rwzAGRLOrNuQ2Q2m42m02lsg0jEl1QFdy0Uiw5COrBOr9drzWazWODQLfWcm/ORWtButzUYDNRutyUpJ5BwDi9CiEgCMYeUQY4YE6SbaK2TXG93iQMEBwEgrcBJbq/X07333qv7778/1nMgOt1qtWIqip83yzI1m031ej212+1I8Gu1mvr9vvr9fiTN0lkUHTcHDg3WA9GAa9IWlPstwnP9EZVcfHJhAlEHYai4Z5jrUqkUhRgvpMh+deHA7fnMK2IX3RgA64mIRA0Qr9fhx5FawrmLnTe8OCcCmpNnd0QglPEexsC6Mh4IupN2dyswDumkDken08mlFXA9nnccAu46YWwIZZ5a4cKD117wlAb2vAsEXIPx+l7lefPvvcbJJcF36Dn6LE648xEqVf3sv/nWix7GXY3/9a+/VYef+0EXPYyEp4bvUPocTkjIIVQqeufH3f+MzvEr7/f9+p//7tv0O//o+Tr+7A9W+WD/Fo0u4bnAE4bfsiz76RDCiwsvf6KkV5x+/52SflLSl5++/r1Zli0l/WEI4Q8kfYCkn38S15F0Fhkn0g7JgAhvt9tIxLDaeyFAJ46cy90EkmKbRcjhdrvV8fFxrlI+hJVuDYvFIhfd9Vz3YhR1NpvFlAPaPpIKUCqVYsQbscNt+VjfuabnpyOUzGazeKzbwkul0k1tGMlhl86KUUI+vZo99ykpRvd9fESlq9Wq9vf31ev14nq5kCGd2cYhtzgwIGmkV+AqYD25p9FopG63q9lsFkUlyLCkeI8IDcUINvOCcOBk3/cbBLrdbqvT6cQ0FYQo9goOD/Yac0g9CBd8fD/6mCC8RMe9xoKPFaIOmV2v17FtpxcdhGi7Q4E19MKILrKwTz0ViHMUWzNy7+12O5Jwfk99EeYT0u1pOC5qsBf82SSNhfe68Of7iv0yn8/jmFh770jC2hUdLu7eQWxw4YTPCf98YD29jsRlwHP1WZxwd+BPvuTlOslvTbhI/PL//Rq999UvkCTVjzNd+db0iF5mpM/hhISbUeq09Rtf9upbcq4//LjXSR8nvevL/pbe/avfpN14fEvOm/Ds4un6ee/NsuwhScqy7KEQwj2nrz9f0i/Yce84fe1JgYKEi8UitlV0ck9+NoQcguO50kS2PUrskW+vv4BNezqdarlcqtVqqd/vx+ilk0dPByjmZkNqIHW4EYrpElx3NpvlSKY7CCqVSnRgeHcFzrNerzWdTiWd2bsRDjie6yAUQAilM0JGCoZ04tSYz+fRacC4Ie5eJNOLFjIuxAds/R7lhpghBkD6yuVyrHkwm80iYZ3NZjo8PFSr1dJkMomCCaKL58E7ucyyLBbIdGLLOBGsil0xAPc8Go3iGLmG7ylEjOK5GBupMjgYvLCfpzm4e4Touztxil0JmDNabFIQ0dMrENtYe/YvxN27fXj6gBdddHEOIYnuHS5AeV2JarWaOxfPpT+zXNOLabJ+RYGDZ8tTFVjz4lfxXty9wHsQDrgue9JTJ7x7BJ8NPp5LjGflszjhzsevf9G/UWobeTnw23/n5A/xX18u9anv+Xc0eEtIwsLthfQ5nHD3IgS95Z+8p6SfuqWnfetf/ha9S/tv6j2++DeVnQbwEi4vbnWC8HnJgOf2RwohvFLSK/m5XC7r6tWrajQaGo1GWq1WN6UdOLGAfHvOt9cKIOrYarUiAfTibbgZqK5PMUDOgysCEo9bADLlufTuNpAUz0ntBFoJ8l7II8QbIoig4sUMJUVRxbs54IQolUrRFk8qRLPZzBUbhBByX97BAEGi2WxGMtput7XZbDSZTOJ8Mv+MbTweRwECcuvzAmHsdruReFL0EKEBBwjRd+lEXLh+/XosPElaBMQYcu3X8iKGzK9H0ItdBBi3pyjgTFkul1Ek8hx6J9BOgiuVitrtdlxr7ot942SZMUKWEcAQkBBESC+ACLNfIPneqYB0EgQgL4joKTHu5EAccAHDnQ6e5sC9U2MD0u3EHfGCOXc3jqSck4D14D383tfRib0XT2RfFetI+DWKYgKODxeYijVTuBdPFyq6dm5DPK3P4oZaz+aYEhISHgcvrdf11r/8LfrPk57+Semv6OprkqhwmyN9Difc+Qglve2Tn530uT/8uNfpvQ7+il7wab+T2u1ecjxdP+8jIYT7Jen030dPX3+HpAfsuBdIevC8E2RZ9tosy16eZdnLT88Tc9MhKfV6Xb1eT51ORyGEnPOgWCOAcwBIGYQX4u0F5LDXE6kv1kYg8gxBJKceQkkk27tMeFFHiB2ChaTc8YyFopNO2ki/ILoPaSUi7yIGNnauwXFEeM/LDeeaEFXmtNFoRDLPmIrpA+PxWEdHR5pOp2o2m+p2uzG/nloOzD9pDZJyXReKa825F4uFjo+PdXR0pCzLNBgMdPXqVQ0GAzWbzTiHp3soF5n29ATv1MC8QjiL+weyi2BAKgxpJBBzrg1ZZ524JnvYUzNYExe9ODd7CsfNarXKdT9w1wX7EoLsxzG3nqrhdRGK9RycVHNP7ijhvhHSEMhms1ms+8H5ziP3RTeIpzPhsmDPcn4flzsPuIdicU3f116nguu5uOApJu6u8XQPamF4Kgq/u+S4pZ/FVdXPOyThDsSf/covuughJDwGPrUz0j/8e9+lG5//wRc9lIQnh/Q5nHD34g3PrHbCE+FNH/xdUrg86acJ5+PprtAPSfqc0+8/R9IP2uufEUKohxDeRdK76SkkaUKc2u22+v1+rCjvheSkswgnxMMJDOcg6u6vQbKlE+v9ZDLReDyOhf+weEOGPZ2B93j+NcQOAYExOLndbDaazWY5J4RHsr02AuSRdIBerxcJPkURpTMi504LiKtXzHf7unRWEb9UKmk2m2kymURRAvJdFCy4b6Lfs9lMDz74oN7xjndEFwaF+hBIvCtAt9uNbRHpGAFh9ci8F2KkuwLHdrvd2DIScoj44PUFOK9HnF1k8ui1Cw60rcSaj+jBvDnx9pQb5p81od2l5/3j3IDYI7pA2D1VxGtQsPeKwpE7MLgn6mrgTvCaHjwf7khx94anqRQ7JnAP1ASh5aqnNxTTHADXd+HDx8bauOOkKE7wuqcfuejga+gOA0+5QFB0IcldDi7wSWddLbxw5SXHs/JZnHDn46P+/s9e9BASHgef2hnpn37Fv9Xos1LRxtsA6XM44a7FD7zH//usX+N93njp00/vejxhykMI4Xt0UmzmSgjhHZL+kaR/Lun7QwifJ+mPJf0lScqy7E0hhO+X9DuSNpK+MMuyJ9VkuWgx9/QDRAW3qDsJ9milE+ndbqfZbBYdBhCU1Wql6XQaiT5k1L8gfURkGR/nIbp6OkeRyEhn7gjyx3FDUJPAK/AjDkAMETY6nU4kmUR0cUbwHsQDt3NjvYdA1et1TSaTKJpAeN0eXyqVIlnsdrtxDuv1ei5tYrlcxpSESqWiK1euaL1ex4KLXlSQgoWIOnQzQHTwwomQUu9kgTOCaD+AACI6VCqVKFq4gOBiEJZ9SZFQUlBzuVzGPeB1EiDv3lmB63sKAukDXn+C/cx9kUZAWgXpAcyr1yxg/3j9BN8DEHoXCQACR6vVyo3ZRRTWh73qhRo9Ok8aC/vcRSx3LriThvd5gdSi2OA1LXid75krF34YP8+dp5wwh15Ak+ce8QbnixcNLXbe4Pn1mhxFUeYy4Ln6LE64O/Arn/Pe0n/7rYseRsLj4KNba93zT/61/u7xF6n++l++6OEkKH0OJyQ4PvZNx2qVnv1uWF9/36/p63/7XfU/3rv7rF8r4enhyXR5+MzH+NVHPMbx/0TSP3k6g/HceIiB5+LX6/XYKtIjrpAAItq8lxQFyL3byHEMeG46woVXn/cIppMf7yTB2Bh7u92OJAvHAkSUiHB2WhSRThWQcb6nJaMXjvOoKqTHayl0u101Go1Y+8BrI+x2u+j8kBQJGYIEzgmIK0QRsgnphoB7ITwEAO4PJ4YX1XPLOdcv1kMgck39Bjo/eBtAxBPG5CkwvFYkgrgQvKAjEf31eh3Xt5hnjxvCyTfE18mppOhOqNVquVaQXsySfYG9HqcAQoM7ODi3r6MLVJwHUYhrtFqtXBqQE3dJUVhxgQqBhfnxvchaIrIgFhXbtfozCxlnfVzQcOGCazIPOBbYe6z5eWkVzA/PeLHIpgsIUl6kcXdH0ZnEvHAPfo6LxnP5WZxw5yP7nbde9BASngReWq/re77lG/XXP+1vS7+UBKCLRvocTkg4w8d3fltS5zm51pfuv1VKosKlxa0uyvi0AVGjg4EktVqtSNIgXS4meF58MT8ewYAIJSTCK+8TlfQIK+SKOguQIQg3UdHZbKbpdKper5cTIIqF3byon58PYQNBBDIjKVfYr9i5AicEY8b5QE6+CyeVSkWdTkez2Sy6E1qt1k11KObzeRQkms1mruCfp29Akov1B+hqAblDBIGQMt+DwUDtdjsKOqvVKqYWQJRdGJjNZrFuAnPOPAAIO3Mk5TtZuFPA91qxEGHxfJ4/79FqyDN7gRoXFP/0/Hz2BK4Mfu+dH6in4HsAkQfXBnuTvefXYE1IjfH95evge7FYoNPdA4hA56Uy4KKhVoN3/HDyzb/uPEEo8loS3BtpIYD1cxcLIknxWfXnhXU7z13AvbpoJCmKNaTq+B5JSLiT8X1/+FOSmhc9jIQngfsrHf3QD3y7PvnPfbq2f/CHFz2chISEBH3u7/6R3rX63IgJ4Ev336ovfMfJ39Dv89Ov1Lv+1VORdZeMPxeNSyMoQDiuXbumer2u/f197e/va29vLxeJJ12hWHVeyufIEy2noGGz2Yy2freGS8oVavNie5C66XQaCe9sNssV+pMU7dV0WigSJyc+vJe8d+8OgbUde7xb0J1Yca+eZsHYOYZ5gYBSg6Hb7UarOr/LsrNuAO12O9Yl8Gg4hNc7APT7/Vi8cTqdRgGH+cReXyqVYk2IWq2m6XSqyWQSI8NO7IsCDHOKY2G326ler8cIP9Z6BA1IvhNrrxPgBSizLNNoNMo5Phiz7wWvVVG03EsnwtdgMFC1Wo0CijsUXBRgvRAiXJihwGO1Ws11d/CaAf5+dwSQogPc1VGsq8D9eG0R6j6wnhBvBAbGXuyMwPncXcOz7G4E9ldR9HFxxR1GCEjb7TZXHNNdFOw1nmVcQOwb9pW/l44n3LPfnwtV7oRJSLgT0QrPvk014dahHqp6/U//gP73D/w4bf7kHRc9nISEhLsYpW5X3fL8Qq5NisUfvOI7TsqeSnr5V/9t3fOffkeStD0eXsi47nZcGkHh+c9/fhQNpBPy3ev1ovUfQjmbzaIF28m1kx4niJ1OJwoH1Dyg88BkMon51dJZQUVECGoseASVCC2WbzoXQKIhSE4EcQ/gBoAMI1aQTjAYDLS3t6dutxsj4JBcLPu003QHhdd2IIqLWAHBLpVKUaggDYT7YWzk6OPGwEIO8SUdolqtqt1ua39/X6vVSsPhUJPJRJLU6/Vi8UiIJd0erly5ot1up8PDQ0n54pouDLGmROyzLIsFNBGKqFkAKYXE87oTQl6nPgYkktQNv3/mmLmEdOJ6YWykvbhdHjGCL8/T9+KgXsOB87gQAzH2DhHnnZPrAvav/+wCBPfJODebTUzxkRSdJtROKEb6i8KGz5cXW/S5YqxFx46LgNwDglax2KnXfEC0YDysKfPGdYo1GPw8jJV//XeM0dcyIeFOQ+UlL1ZJv3rRw0h4GviRX/xh/YUXvF+KyCUkJFwIKvffp1e84ff1v7cWFz2UiDd+7Wukrz35/mM+4a8qe+NvX+yA7kJcmgRht6Zvt1t1u11dvXpV+/v7ajQascDidDrNdVWQ8hFSfiZnfX9/X7VaLeZ9VyoVtdvtWJwQUk6UFxu3W+05L0QHcu+uAci6p104sFvjbJhOpxoOhzo+Po41EPr9vu6//371+/2YFsDcSIrv9VoPnl4hndn3KaaHYwIHAaSJwpNYvb3mA+dx8tvpdKLLYDAYaH9/X5VKRbPZTKPRKJLTK1eu6N5771Wv14tEvNFoqNPpxDoTu90u146zaC/n+F6vFyPPdBqYzWaxAwSuEHdTtFqt3Ny40IC7gvdRH0PKd30orptHsV3gkfIdIUgVINLva+N1HIpkl6g+a7BcLjWdTmORwqLYgliFwOOOCoe7Y1y0kBTrFrhDwWsk+DjdYcC6eScI71ziDhN/trk2X16fwZ05zCFijzsLeBa9I4W37fSUEE898nXx15hXBBzShyaTSRTkXLBJSLhT8G9/8j+onNpw3bbYfej7XPQQEhIS7kKU3/1d9bz/Mj6pZ3BJ8d9/6D9o+4qXXfQw7jpcmr8oIHNE2LvdbqyfsN1udXx8rOvXr2s0GuXIBsSAc0CsarWa9vb2tLe3J0m5woW0ICRqTB2DZrMZBQUvDMh5sXB7RJv8eLoZQI6IhPs1PMUA2z8ix97enu655x7t7e1Fmz/ugVKplMtdJzINOfdaEBApCiVSi4DoMxF5L0bXbreja4Ncf0ifk71ms6l2u629vT1duXIljtNbN3Y6HR0cHKjf70fiyXx43j7uAgipdEZOG42GBoOB+v1+JIPcq9c1wDkBeeV+JMX1Iy3CBR8n2syZF+w7ry0n5B4Xh7sh6vV6JLTFlpIu1LiTwsUL1gySzXwyPoo0uuWf9xTrSTxREUHOwTj9da9N4q4dxBjSEfjydBCfR3cMOXhWEFh4fhGsWq1W3Ls4ZLwQJuNlrP49Yg3jAZ4WJJ0JOAhZ3nGCeSE1ijEnJCQkXCb84Pd860UPISEh4S5C+d1eosmnf5Aqr5vqdQ/8r4sezhPiR7/r32r6qR940cO4q3Bp/lr2FnrtdlvtdjuSw/F4rIceekiPPvqoptPpTe6EYgE2oqW9Xk+NRkPHx8eSTuz4V65cicdsNhvN5/MYde33+zE9gUi4pJhXvl6vY4QbousFCl1sgBi5XRvSOZ1OdePGDQ2HQ3U6HfX7ffX7/RjFR2hwmzeOBcQS0hqw3SO+EOHGrt1oNKIzAfEBgu6kHou3pFyUHmcC74NAdzqdmH7g5BjnA7UuSPno9/s5cocQAHl0kthqtbS3txc7JhTnEReIE8dioUpfPyf2/Ms6eTtS9pPPhdcNcNEhhBDnguOdpDsRdcHL010QdbzoImICJJ70DWoqUAyR4xEAnEj7XBWBKIMwxZr46wgwuD+Yb9aM17nPosDgIgfE3YuSumvCU0pYO/ampPjckc5QTIHgueN9vnY8g+5cKLqZmBPfk8wnnz8JCQkJlwnlEHTtb3+wrr7m5y96KAkJCXcwKs9/nt7xaS/W6s+O9eYP/ZaLHs6TRjmU9F+/6Rv1Ufv/QAevS5+TzwUujaBA9JZif9jj5/N5TAtw8gkQFCAq/I4ihBDbcrmsTqejWq0WCSpEBCs3aQ4QcCfm2Ow5jrZ4RL4h/F6Fn5QFBIjtdqv5fK4bN27o+PhYWZZFQYFzQkxJb+B8RK5JUaDAI+cnust4PdecQpQeKef3XisB0krRyEajob29vVwrylarlXNneO0GxATpjIjznlarlasLwFghboyJ9oudTifWOUA4cYGF773FIvMHCZXObP9E393FgXOCaDRzgjDEF1FsSLQXAyWdhCKHROE5xvelk12cOFj2KULoe6bdbqtSqcQ2lFyfiDzn8loT3obRhSz+Ze5IYWCPIFrgHmm1WtEx4c4AF49wiRTTb7wYov+LiMPaILowP6ToMIcILO5mYP/6eb0bBXPgRTC9NSYFL/14T6Ng7Igc5zktEhISEi4S9VDVj33VN+hDXvQlN/3uRT88V+lnf/25H1RCQsIdg1Krpbd+9ftq87yl3vaRr77o4Twt7JVb+r7/8+v1yb0v0/3/8ucuejh3PC6FoOA27X6/r8FgoBBCJFI4DpygQS4kRULgVn4INvZloq5UkPc2fU6u1uu1xuNxLscbYlapVHK27+12G4UAUgokRZs87gHEkcVioeFwqMPDQy0Wi1w+OoSOdpcQOa/Av1qtYocFyCzXg0x7xJrrQtoRQYjcS4riAWQKQaNUKml/f1/9fj+SVM6Fs4HCkJ7TL52kl0wmEy2XyyjCVKtVjcfjHEH1yDckHCKNO+H4+DimLnjqA6kbOARwb3A/jBMgXnCvLop4+ohH0yG8EHTpjJwzboQQ1gDSzL7mi+vzHn7Pe7z2AkUvSaUoEnTmDwGHMSNCFWuM8Iz4ufx5cKeIp4e4aOH1SfiX+hEuJhQJuNf2cIcBa+lzTDFM6izgSnD3A/ub+eeemHfupdiik/P45wd7F2HN6ypwH6nLQ8KdiI98zZfpN7/om1MdhdsYV8pt/d5fe81Nr3/Wh/15/cLvv1/8+T2+8C3aWTvuhISEhMfD7/0/76dKfavff8XNny+3G9612tFf+etv0P/8l+2LHsodj0slKNTrdR0cHKjT6cRIO0QVQgwpgBxDDCATRCIRDnAZ0DqSSHKz2VS329VkMok1Ana7XayZQNQckgbpJQK+XC7j+yTFlpaQVunMhg85XiwWua4RFJZzuzk53BSFQ8SACHIPEH8IGuIHhNLz/6nxUC6Xo9OD+5vNZrlouRdihNjjLEBEoKCldx2AwGHZp1Bju91WqVTSeDzWaDTKOU0goVjcEWCYQ9wpOEYg+V7Dgvnzdp1epJI0Aa+v4WkpkGocIJIimSyKVvzs4oHXpOA9Tr6xzTuBhTjzM2vJ/kFUCSHkRCpv6dhut9Xr9eLem06nuXv0MTA2J988I8X6BETmJeVEHE/N4PeICefVJfBCkl7009dDOqv7gKDgqQxeHJU1YI8zfn+WWI9iIUx+7/Pjrgk/P3uc/Z26PCTciah/8I0kJtyh+O53+QnpXX4i/vxRP/TxKv+FpbIkjiYk3DX4/X/3Mj3vnuOn9d4/fJ9vu7WDuWB8Wu/X9Np/9SX6U3//Fy56KHc0LoWgAAHq9Xrq9/uR4NG+0fOyPZpNkT1IgRMCIrakKkBOICjtdltHR0e5ooHz+Vyj0ShXfA/yQx4+dRckxZaWXFtSLsrqee0QIbe/Q1wQSiTFMeNW8BSHWq2mbrerRqOh8XicaxOIWEFUGbK+3W6j1RtRA5fFYrGILf9cNGk0GjHH3p0PXlmfivikOiCaPProo/F+XTCYzWbRoVB0fLB+i8UiRovpdEC6A04HBBTGKp3VDPBaAtSdgOxCmj2aLZ2lo8xmsxzR5Lzsu6LABWF1h4HXQnAxqdgphLlmXAg2LibwO+o1IJBR94Gipaw3ggDPiqcleBFKdztA0BHNfM94202eB86NUMK+4XqeduHXQWxgDVz08ToYLspIiuvrtRBcQHSxxF0G/iwhyp13/+wBXxM+C7inx6pFkZBwO+NHXvptkjoXPYyE5wBv+NP/Va/6uQ/W2z8gCQoJCXc6fv/ffKA+5oN+Q99137/RlXKKyksnLoX3/8Df09FFD+QOx6UQFCApvV5PvV4vRpz5496r70MkvbWd27IRGSChkAzs2a1WS9JJoUfIGNZ4SHm9Xo+dERAVqJ0AsaFGA+IFxHC5XEayA1mC6EOGPKcbkk7O+uHhoUajUawpgTghSYPBQJ1OJ0arESJKpZKm02l8H90W6MIgnVi3b9y4oXK5rIODg9geDyIMWfPaBK1WK46XWhMILfP5POa7NxoNrddrPfroo2q32zHFgai0FyxkXtx+7m4DyK/XpChGyDkPZN0Ju3TmLPDoshcenM1mKpfLsX2oF0Hkml7kjzWUFNM9EB+of+B1BphLouKk7khn4oe3mfRzIxRwH5BeRLdSqRQ7ckjKCTs4ASDIkGfO47UGWBcHpJx74b6KqRY8S8wTzyXvdyHG9zznKbZX9WfU62SwR3BKcD46kfjPzC0CCoU0fU94sUa/BwQgF15cHEpISEi4nfGtL/h5/dPffA/91Ps0n/jghISE2w7v/PIP0Zd97vfrFa2f1QsrHUlJTEh4bnEpBAXppJvA1atXVa1WNZ/PNZlMYpT/wQcf1I0bNyIRd7JEVNQJI60CIZWQUSLzpVIpRsAlxRoFpDJst9vYJcCFjHq9niOzWL4Xi4XG47Fu3LgR6wDQNhJSRgSa6yGgUFARUj4ej2P6hBMgrunpDtJZqsFms9F4PNZyuVS/34/HIQTQdpLaEggWknIEktcQBRBWeG+RBENix+NxHKukmMbg6wVJdELO2kDOmTcXkTyH3l/DLeJ58lwLJ4KnP/B+dwhAfumGsV6vo9DCvRUFFe6P74nIE+n3HP3NZhPPi8AEmYUsc+/MOednjnBQkOpAygk1OUiDwBGBg8b3DkSfvewOH54b/73vMS8w6mvmzyFuBi9wKZ0JCp7i4s4Vdyy4QETdExeK/LljXXgdUQLhoJhS4UUYXcRyVwr/uvPHO1YkJCQk3K74a4Nf0U/pz170MBISEm4xrr/qg/WGL/w63V/pKDnPzse/fdHr9b7//m/rT332r130UO5YXApBgQJ67XY7Fi+E1B8fH+vhhx+OdnjprKq7twD0onNe9A0RgpoJnH86nWq5XMZI+mg00nA4jFZ5J1mVSiW2ZcQBABlZrVaaTCY6PDzUeDy+qWWkF0CEhCFENJvNXFR4sVjo8PAwElOuzb9U/af2gXeUII8e4QQ7POMh1xyyTkcBqt5Te4FIN8R0OBxqOp3G2gnuZsBZQVtO1oa0kVKpFN9DsUQnyU4AqR8AWUaEoWaEpFykGtJIeodf3wmko0gOES2Y28ViEQUUiLO7KFh3v7avbTHtQjoreikpujBIs2HNmUs6IDAXXJu0hBCCWq1WtOTTzYKaIPyO/V+0+TvJ98KUHO/ReHcK4LLgOeC+EA8QKGjpihDgz8l2u1Wn08k9vzw/0omAVRQp2LM+btJkOA+vswbA3R3uTvB1IN0GpwLXR0zyayQkJCTcznhBpaNX/t7b9Np3f8lFDyUhIeEWYfqpH6if+b/+tVqlJCQ8Hjqlhprt1UUP447GpRAU+KOeyDkka7VaaTgcajabSVIkJlK+5Ry/8y/prB7BwcGB7rvvPlUqFU0mE81ms1gckDSG6XQaiTEkAmLd7/fV6/ViZLVer+e6IiAoFK35RH8ZD4S92N3Bc+lJJ5AUr+dF76bTaTyG6yMwLBYLdTqd2NpROstDJ9rebrfjWDgvc0XkHjHi8PBQx8fHuSKAjIcIOyJKo9GIxHM6naper8f0FS86KSlG8ZkDxCLmGYEEkl3s7uDdLKQzCz334HZ79oaLEawd4pAXzYTMNxqN6JaQFL/3FAcIv9ds8Ot7xwUILHZ9xlZ0Y0B+ESVIqWEMzLu3jkSMw5Xj949DwesB4BJA9JHO2rZ64VN/1njeEExwMiB4sS9JZ/FuDtvtVoPBIKYq8TrPJ/eEACGdtcbkmqwbY2MNWEsXQPjen1F3+/CvC07umGCuzuuWkZCQkHC7YlBO3R4SEu4YhKBtPahVql30SC491tlW63X5oodxR+MJBYUQwrdL+jhJj2ZZ9t6nr329pI+XtJL0Vkmfm2XZcQjhxZLeLOl3T9/+C1mW/a0nOxjvggCx2O12kSBDWiBDRJchUl58sVwuazwex6hqq9WKHRqGw6Emk0kkEIeHhznHwuk9RmK5t7enbrebKwpH5Hg+n+v69es5MuUV7t01gQjgVeQ9XQPystls4rkglRBvJzwIMLgT/H2Mz6PRkE7Eh0ajEWsiTKfT2DIQ0gyhOzg40MHBgfr9fuxs4YUcEVmIKAN3aND9wYs4soaz2UyNRkP33HOPWq1WFAZwcKzX69g1AvLNHnAxwQUD7xZB0UPSFCDHrI+ndVATAheJu2BciCACj+PAhROEAW91ioOA17wbA2NjH1AnxGtBsA+ccEuKAgXOBMQoFy0YF3sP1wfn8jlCYGHcRVINkae1Iy4LWo02m80oLnlHEVwVrJMXkuS8nsaD8MBzyP3x3OCm8OfMXSle9NJdLC6kIDKdl97ggtVlwXP5WZyQkHDnoRq2qtx3rzYPP3LRQ7ltkT6HEy4Ldh/6vvr5b/iWix7GbYHPfvtH6cV/+Tcvehh3NJ5M36jvkPQxhdfeIOm9syx7H0m/J+kr7XdvzbLspadfT+mDk9Z9k8kk1jfY29vTwcGBut1uJGVem8CLr+Em6Ha70eFAxJ1UB2ziuAVWq1XsPiCdRUEhVkT8cVAQka5UKprP5zo6OooEmCg0Y+R4iBR59LgGPJLtbgOEAKLiIZy0D7x27ZpGo5EkRdGAWhDYtL1lprePRDzwgpWkcTAOCk1Sy2Gz2ajX6+nq1au655571Ov14nto24mbBNGiXq/HFp2sKWINDoAsy6JtfTKZaLvdqtfraTAYaLfbaTKZxPWkCCJRaa/SDylGuMiyTJ1OJ35Vq9UoUDFGnAfe5pJ2lqRccJ+ICqR70H3BI/0c4yIFew7xAGeBF1Is2vW9RSPv82g78BQKxAHambIPGRf70NNZvG6EpFiHgj1H8VH2uD8PjOm8fSYpJ8R4+kKxnojPE+dgD3uhUdbbOzK4O4R96GlPfLHeiHv+VUwF8bobks51NFwSfIeeo8/ihISEOw8f3pA+/A1vu+hh3O74DqXP4YQLRqjWNHzXVGQ14fLgCR0KWZb99KnK6q/9mP34C5I+7ZkMAtIN4Sdavr+/r06nE4kfBIeihZATCEyj0YgV8MmDx04NYSSKS/TUWyGWy2V1u91coT7IoOfOU8Tx+Pg4kmTprKWl2+Pdog9hgwBDxCgEyH15cUJy5Q8PD3P3CoHCXUBXDFIaZrNZLp+f8RTFA+6JyLKkXFtMWnlCXpkL0kaYR4gjTg46Y3h9h/l8niOco9EoFnscDAaxloV3+CgSRS/g6KkUiAUIEKVSKdaZcMEDgQCS7YSYvXa6x+PaMO84KryLhxdphOQyDhwpuF68QGeR7LIuvJcxe3oHbgBPg3DByvcha4mbxYsjFt0R7MVerxc7l+A4YA29w0O321WlUoluA1wrHulnzDxf7tzgvgBiBq4M3DE8a6QjcG6cIe7g8PQdT3Xhdb7HseQpGRxbdCScJ+hcJJ6Lz+KEhISEhMdG+hxOuAwovej5+qV/9pqLHsZtgXdsJvrFN79E767Dix7KHY1bEX77G5L+m/38LiGEXwsh/FQI4cOe7EmIlEKOsXkTEZfOiquRbw4JILILWcyyTMvlMkaZpbPILh0ZcCRAhrrdbuy60G631e12oysBYgtxWa1Wun79erThO8nB0UBKgI8RIQDCRN4+LRyPj4+12+0iqZMUCygOh8NI3rDiU6ARYQMxg5x26SyKzrloX0n6g+ebSyeOgfl8rmq1GgUFnBe0hNxutxqNRhqNRtF1QWQbQoxLwXPTPX9+PB5H4ejq1avq9/sx/YG1lvLFAT2lBbHFi/rRAYGIPZ0RiKgTVfdCi5JiKoDvNc5NGglzKJ2lGXj6AXuD+y92fUAAwdaPWwTCyxjb7XaudkMxLUBSLtLOmnoahqdVFFMBIMnMA2IC4oHfP+MCvr/Zx5VKJecccmJOKoy7Olw84TreaQHRhNe4vtdj8BoXxVQGX5OiQODFMv33nm7C64zjNsMt+SxOuPPxMb/6Ny96CAkXhPdoPKT5J37ARQ/jTkb6HE54VhEqFf3xp95/0cO4bfBdw/9N7/75b7zoYdzxeEZFGUMI/1DSRtJ3nb70kKQXZll2I4TwfpL+SwjhvbIsG53z3ldKeqV0Qq6I9HsOOASRaGmWZbG1o9uUPe+cjgLUXiAayXGz2UyTySQ6ECDvRC8hQV6xH/s1qRKTySSmBJDTzbUgZUR/PcLsnSGo18B1iPZju/d2mLPZTCEEdbtdDQaDSG6Zj+l0qkqlEttFegqG2/E9nQLXAtdkDWazmbIsU7/fj8IIRJJ0iOVyGW3yCA9E3yGzuEUQcBB9uHcINPfEuknKFbb0CLEXB6RLBfcJOZfORBjcHm5/Zx+4Y4MUDI+6e3tKJ6mQUoQSCiO6NR8XzHw+j4KBdx5xt4DfI3PnNRXcjYK4xVpRGJHjSZMhjYB9VyTwnmYBaWZ9mSPuxaP09XpdnU4n1lZgvemSgGDk9+Tj5/rMOUIMxyAO2WdEPJcLI6yJtz5FCEGscweHF6Vkrc6bF38N8cKFpMuMW/VZ3FDruRpywgXivk96s9bv3KoaUpGquw2f1J7oe7/sD3T0gxc9kjsP6XM44VlHCHrb176/fu+vv/qiR5KQkMPTFhRCCJ+jk8I0H5Gd/vWeZdlS0vL0+18JIbxV0rtLukkayrLstZJeK0m1Wi0jF59oKeQcUkPEkFxrJ2ZuP3c3QKfTibn8kD/aMhJJxn1QrDXghA03AbUAyMmnhgHuCNo6UizRI52MCeeCdFY8MISgyWSi1WoVibxHalerlVqtVkwBgVzO53MdHx9ruVxGN0Gj0dB4PM4RKr4gfaQFQHwhjYgEuDSYm06nEzs8UICP9SIlgqKGkF7SJEqlUkwxIP0gOy2OSNcJivtB4Ej5QFTw4ofUwvA8eu9kQBvP8Xici3B7N4PstOuCpw4Uaw0gACAQICZxTvZascMAQgROGyekkGFJOYILCedaEGicKAgGpIH4/Pv5vBMDxLlo2WfecfEghlFzgvtgX5431whKLgbYc50rSuljcpGD8fk9eLtGT2Hwe2HuGcNqtYoingsvrDn73oURd30gFhY+m+Kzj5h0mXErP4t7Yf/y5HgkJCQk3CZIn8MJzwV+7zXvrz/8hJTqkHD58LRSHkIIHyPpyyV9QpZlM3v9aggnIY8QwkskvZukJ1UBiKiwdw7Adj6ZTGJqgBdhdHt3sTCb11MgJ/zw8FCj0SjmUWONd3s3pA6hIMsyHR4e6tFHH41pBAgRfpy3gvRK8l70jnoMRJE7nU4k05BVT6/g/KvVKpenjnWeVAdcAqQx4CLweYJYQZIlxTQLJ9mke0DKSDvxrhSch3QFUhvq9boGg4EODg7i/HqBPubO14toOm6CbrcbC3Cytqf7KYorjJe0ChwJpExMJpOYHgJJls7s9e5YQbzg3J6aAhAq3IbPXnG3AvPuhRPd6YJA4HPIni/WBWA+XfiikCVuHtwXfm88Mx6JdzhJRgjrdDrx3C524Rpgb/LzdDqNThfmB3gKTTFdofjl6881cBoUCyj6844Y4k4Xaly4o8QFFQQKL7Lo5/cCr75efv3LiGfjszjhzscfff//J7kT7mJ8wf3/U+/4yg+56GHcMUifwwnPBf7we99Hf/DxqatDwuXEk2kb+T2SXiHpSgjhHZL+kU4q2NYlveH0D25a4Xy4pK8NIWwkbSX9rSzLnrAKBiSPP/q9FsBwONRwOIz29tMxxWOcvEM2IPhEycvlsiaTia5duxY7F3hRPqryQ+Y9rxxHxGq1iuSFCCvt9iC2xUgpJIWUDYhPs9mMKQxY1nFYQL49l9s7BVAMEmcC9R/uu+8+DQaDGBlfLBbqdrsx5QHiyvV3u13sbuDHQcaw/nu6hws8y+UyWuBp89loNNTr9aJDw2snUKQRsQJCDDlEuGi1Wmo2m6rX67HbBAQZp8h2u40pMZvNJro7SBeQFB0NRPfdTeD7qJiGQtTcj0Hc8Q4EpOBwTe9ggCDgRRe9qCN73S34iD5c0wUuzukE38UE737BfTp5dpKPAOICDy0duUcXbzg3c8KeZ4zsEa+T4C4CT91gH7mY4E4Fb6fKefyZZm4QEziGa/uacd/F13jdBQbGwH1561kXSy4az8VnccLdgZ/4oNdI6lz0MBIuCB/ekML7Dy96GLcl0udwwkXg2g+9h37r/b5N5VB94oMTEi4AT6bLw2ee8/K3Pcax/1nSf37agzmNaELc3TruFmgnaNQDcBu6JHW7XXU6ndiR4Pj4WOPxOJIWcvC5HueGjEMmvE0jHRQguRB0nAmeaw6hgmhi7ScSzb/Y/Cl2CLGTzqLy3hkBV8FisYguh3a7rb29PdVqNd24cSMSo06no729PdXr9SicQKxIC4BUU72/WM8hy05aMTIu2nqWSiUdHBzE9pm8v16vazqdajKZKMsyTadTHR8fq1wuRweF14qAuCIMdTodDQYDZVmmRx99NLo7nNji1qBeBBZ7t+VDgPkdcJIPeSWC7q6CcFpgkTVCMPEIt5S38kOcvTWopFwxSM7twDXgAoCvlV+LPYLQ4K04JZ3behHyjihVrVbjHmeNOY7njHom1CggJYafOTdiCOPzmiMci/MCF8dut4vPCCIMglwxTcOFIHeC4KjhHIgziBjMBfubMTNe9ok7JqitgYOItb0seC4/ixMSEu5s/MeXvU6f8jVfohd+zc9d9FBuK6TP4YTnGkc/8m766ff9TtXD7VHTKeHuxDMqyngrgR0csiGdFY3D5u5/9EO2iETjDHC7MtFjxARJuYJ1Xmk/hKDpdBqv02g04nWJWFJDoGhTp+r9YrGIpJlWeRA77y7QaDRi9BRBxKOsj2XTJhKPkAF5vXLlSmwBieWfrhV7e3vxvV4nAOeFF0CsVquxfSXz5eR7uVxqMplIkg4ODnTfffflCO1ms4ndHxAJEBZarZa63a6Wy6XG47G63W5MpZAU0x0ODg7U7/djrQuvacD6Yf+nzgRrxL6RzvLuEXq8/gHzTuTbxQAIpHfHgMwyf4gfgPcgzCA8IOzwMykjwNMLGo2GWq1WjsQW9wH7w1NYihH0crkcyTmuDlw1uBG4Z1/X5XIZizLiKmENEUSYJxwu/J45QBjZ7XbRxUK9DtYEcYN12W63ubVjf3O/Pmf8y550BwGfDT4OnxtEJu/2wfuYC08tYe4QHRMSEhLuJPzpWkuLey6PYJqQkJDH773u/fWdH/E6vbz2S2qVkpiQcLlxKQQFSDWWfv7YpxAixN4jyJJixNXztUlNwBpNtB3yLCnXug8SQt49hMeJJq95dJrrUURxt9tFcgsZ5Xts/BBYhIz5fB6jpggk/jP3RcoE1n+i+7PZLEb16/V6FE52u10k8ESh+Xe73ebSBlzYwM4OUd9utzo4OIiFLXGL9Pt9Xb16Ve12W+PxWPP5PNr51+t1LPTo60GLy+vXr8e1owUm6Sl7e3vq9/uSTro4UOQRgkgRRdZnOp3mOmAwJ0SwWWO33XunBoizpEi6SXFgbzEGhBfEomq1qvl8HgUgfkcLRRcOEB/cySCd1R6g3ker1dJqtYrtLj0FoVQqxYKYXiySPSEpPkOkArlowD1ScJQ9zHFE7XnuZrNZzoHDvuR5m8/n8fzMDcfg8vEiiuxnT0/yOhcUP+UZcLeGCy9ex0I6E2VcJERMcYdHUUxgP3rdFta8VCrFeS7WoEhISEi4U/CmT/hmvf+f/F294J8ll0JCwmXC277ug/Wmj/3XapVqkmpPeHxCwkXj0ggK3tueiDI5894eDhcCBJOIs9dEgHyRMkHxNkgM5AJ7PyRbOmmfJynXktDz2CXl7Ozk+3uOOGNDEMB9wf257R5nBFZ0Fxaw4vMa52o2m5FI1uv1GOlHDKjX67EuAgSZ1ACPchOJZbwIO9w/UVtqUEynU9VqNR0cHGhvby8W6JvP5/F+i3Z8dwkMh0MtFgvt7+/HrhEuKpDGcHx8rOl0Gufe6yBArpfLpYbDoSaTiVqtVpw7iCCpEaRF+HySxkDaC8UuARFzyCvOA1+DYuqDE13qP3iRQDozYMnHIUEdin6/H0WjYioB679YLGJb1SJIm/Gx+XxBpiH8kqKoIinuYaLyi8Uijq1er+fSUng+2WvumEDEw2nUbDbjfmV/sT8QF9ij7kBwJxEiEL9zBxB7CwEQd4a7G1y48WcZBwxr524L6czlkpCQkHAnolWqaVeXFIKUpcYCCQmXAQ9+2YfoLX/lm1UOSUi4Ffjyg9/XL//MR2r8Ydcveih3NJ5Wl4dbDU87kBRJD1FqyL3npxMVJcLoVnHePx6PNZvFgru5Y7y7AJFKd0YQmUawgJwQyaTVHqkFEJJqtarBYKB2ux0jsxBlIvgeMYewcH7EDsgPAgRjRngARKVDCJEgU++BTgs4NBAjvNMELSKJ+nv9AaK9i8VCk8kk1mUgAk8KBmTOW34yb0Slp9OpRqORSqVSnA+IO8UYSSmZzWZxDiB+3jlht9tpPp9H4gqRpsuCXxcCjFOF30FWa7VaFLPIy0eg8L0pKTc3EF1PrWAuIa1OtF18obUk76NFKmvodQu4X54F9kuxFgQFRd0NUXy+OA/dHUgr4FnabDY5Rw8iD8UgcbG4sAG59/auzHG73Y5pI7h8isUnEYI8HcKFEa9x4WlGHIcYROoE10SooiYC41gul9HZ4kU4/fMB1wnPQ0JCQsKdije/8tW68XkfdNHDSEhIkBSqNW2aUjmkvz1uJSqlFBx6tnEpHApexZ3v3Z0AkSTaSjSV4n44Bjyv3cklRAsS6S0p3QJPlH88HsfOD5JyUUo/lgg+xHe73UYST8E/jneS7pXsvYCed6golUqaz+c5ccDzwjkXRRmpfbBer7W/v6+9vb0oYkDQaVHpufFe30FSdGuUSiV1u11JioUpPTJM0T4cHpBjcuY9PWWxWGg4HGq1Wml/fz+KIhA+5gBiye8gtlyLiPhms9F4PNZisYhzzXVwEEA2EXGm02l0GtBZAnEDIQNRgHv0ufbvyfOnngb7AsLMcQgQ1CPwdomMm+t5eg97xb9wmECqPRWC/eUpDJ4+wH5F9HEiz7r7PFEo1EUeL9zI/XgXBi9q6UQeYcbrK/AsS7qpVSPz6PVEEPK8doI7jnA1eecX9ri7Nbw+A11GuHfmCpHPn8+EhDsJ5ff4UyqH/3XRw0i4RJhfDSq1WtpZACYhIeG5RanR0Du+6GV686tefdFDSUh4yrgUgoJ0RtqxKBOVdLEBAg9RpuAcBMZTBsjlJ3I5nU5jTjgkiYKBzWZTtVotElci7ZKiAMEXggbkhNeI8rqzgHaK3B8Rf0mROLv9u1qtqtPpRFcABJoaBk4SJeWi6fP5PKYeHBwcaDAYSJKOj4+13W6jdX0ymcQ0h16vp0ajEdMElsulrl+/ruFwGEnrjRs31Gw21e/3c50rvAYBBR+p3O8dDTabTUw7aTab6vV6MWLsRfAg0YgBROOLrgOEFn7vtTPIoSflA6Lu3TxI7YB8UusCJ0m73c4RSk+1YN1oGYrbhJQRUim8yKPvby8sydp77QnSDLwOgaTocpCU2+9E01erVa7gondX8AKSkGiP/jPHOHWY03a7HcUbF0Qkxb0Joef+PEWIucZ1w/1zfFFQYK58nvnZnz/fWwgg6/U6riXz4U4kPlPctcGccB1P5+B+KSaakHAn4Sv+23/SPeX2RQ8j4RLhTV/8ar3iN/+m6j/yyxc9lISEuxbLP/te+q2/n8SEZwMvah1q+N7vqd1vv+Wih3LH4lIICl7AD4ID2fFIJaQBa7h0lodNdJwcdSL2/B7SBEGBkEJol8tlFBMgILPZLFryIWwIAhRx9G4LWLW5PhFdSCdFEkljwKYvnRWYhBQul8tIfKWzApWeroAAQVV9HABXr16NEf7lcqlWq6W9vT3tdjtNp1OVSiW1220NBoNcNBhLPsQNIQASzs+0h0S0gfiS7lAul2Onh9FoFIWOTqcTxRvSHBBEiExTUA+STUqLOyqKrQaJgvN70jI4ziv4Q3hxJkB2Wb9qtRr3iXTmikFIYG947j0OAN+7RP8h/QhmjAPSTTtGxJBms5mbUz8nAgTCGekhzA17i/XjfqkpwlxIZ44EnjOvK8J+RBDyQpJepwRXDdfsdDqxoKd3UUBMYC2L8KKNzAlzy/MmKd4XIozXGEHcGI1GufQJxu3dGjg/nyscW2w1yp5ISEhISEhISHi2UOp29eCHp5oJzxb+xb2/rvf+2vfS8z/lokdy5+LSCAp0BvDK6uRsE83HHu7FByGhTuaJSkOmsYxj0/ZK9xDYyWQSrd3e277RaMS8bOomSGd1GooWbCzhdFuAwCFcSIoEsFKpaDKZxPQCj5But9ubWttJivdINL9er0e3RaPR0NWrV9XpdDSfzzUajaIrgI4Mi8UidkXY39+PxLJI0mezmabTaa6F5/HxsUII6vf78f4hatVqNYoUkDxcE9VqVf1+P6ZyNJtNdbtdDQaDGAVHZMBN4vUtvDMGP+Nq8A4EXqkfe321WlWv19N6vY57COGB87uzBIKJE8VrX0i6yYFQdCH43i2KYogB7hzwQpbMPYKGixfcC+IFtQA2m416vV48D/OLOILQ4cUcvdih1yZxJwTPAOSadBvvKME94kaA6JPq4YIQc+fzy5xJZ2KBC0bFTg7sRbpbuLCBwFKsfcI5vfiju0/cAYFAwv17OlVCQkLCnYw/+vigP/2LB9pev3HRQ0lIuOsQXvg8veXzX3PRw7ij8ZEv+l395ke/XNUfe+NFD+WOxKUSFKQzCzLkDqEBQonNWVIuEuv51BALiBBCBcAJAQmaTCYx/QHBoVarRdJNnQKKMC6Xy1xUHAs6hJJikE6MiPK7tX6xWMSIdafTiXUjsPgzN5BSJz10EaCewHa7Vb/f18HBgSqVisbjsbIsU7vdjq0YqUkBEaegXa/X03a7VbfbjcTs8PAwZ8F3t8Jut9Px8bFGo1EkbaRFdDqd2F5yOp3mCjlCnHu9nvb399XtdiNBRxhCKEBQ4D5Ze0hks9mMJJw1ZZ8QgUZMQDxgnJyL9XL7O/PuNScmk0m8TwQI1hXiT2Sb8bsQUGzriEuiWMMC18R8Pr/J+s+9seYUaURE4RlwFwNiC+vh6QnFGh4IBAh4HMfcS8qljuDaYC+5a8A7auC88Gfai0T684GYgGPCXSJ8IbjhgmAumQ8pXzwT8Nz4awgbLgzxmeHpUQkJCQl3Ov7wE16rj/2Wz5KSoJCQkHAH4pvuf6Pe5ZNepnf/sYseyZ2JS/HXMtFuSBvkgqJ3EDSq9JMz7X3lKbDobesgHJBSSAOkB3LsZJRK8f1+X3t7e7GmAV9Ew4lqd7vdm+otUKwQ8uuEmPQJ3tNoNNTpdFQulzWfz+NYIES8nwi5pOi2WK/XGo///+2db4ykWXXen9vdVdX1t6u6+s/07AzrXcNGYq1kjdEmGAchB2OMnQDJh6w/RKBEwo5slIREMpajQKIQyVbAHyIFCQQBWcjIyToxjizZBBytEslgILvLAl6zYFh2p2d6arr+V3dXT/ebD1O/26dqe2Z2dmeq3po9j9Ta7prqqvPe+9bdfp5zznO66nQ6SpIk+hNAZOv1utbW1rS4uKhut6tut6vhcKh8Pq9CoRCz9YghvDcu/mSBEThwwafSgbaMXC6nYrEYR1U2Gg01m81odEibCuIFYoJ0YoiHBwNVAZNkFDGEfcP8EYNLm1lHfLEGkTYLTfsLlRR2ygBk3FaQSCeGfdwjvIekuBdUXiBCQHBtCT6wQgLvl8/nx4QvsuWSxswnrV8E64sZIa+NsED1Tb/fj/cV62TXiky89TCxZHuyUoR707YBsc48n0oO9h5BwIowxGJNSSdh147WJOlEULReFryWFUqsh8Jky4U1g7RVIdYc0uFwOBwOh+NOYKFcVuO3fArBNPDLf/tP9Yf/4KdVfPTLsw7lrkMqBAVJsVQaE0IIzKRZmu2nty7zZJEhohACSWMECUJDOThZVaoVKNundQBCa6dQQJxKpZJKpVIk+KVSSdlsNhJuSWOEFzGC65VOjPMQQKgWsB4RlswhDpDN7fV6sRoBMn58fKxKpaKNjQ0VCgV1Oh01m021223t7+9rZWVlrH2DNhJIVa/XiyTN7g8/U60QQlChUFClUtH6+rpqtZok6cqVK2q1WrEtxZLxlZUVFYvFOBXg6OhoTOAgO2wncGDMiBhCqwfCA/eOJey0B5DthzAzfpL7aHKSgPVaoCKC51L1YKcVUMaPkWGlUon+GZPtDpBdO3qSdoN8Ph/NPllf7h87CcRWruChUSxeM1iz5f6ICbSuWF8H6cQjwQpvVAZYI0qulVjtiEUEtWw2G9uFWB9rtGjFHD6LVmRh32x8k4Do7+/vxykUfLZsS5StMLFtGrbKZ9Kk0QqNVpyYbBVxOBwOh8PhuJ0Iy8v6yo//11mH8YrAr9W/o8K/G+rR/be6Ce1tRmoEBdtHDtGH3NmeaUmxPxryQPZaOmkRgFjZ0nlIonTSj22NGSWpVCppfX1dlUpFkmIZO2XilI5T4m9N6YrF4lipO5UTjCjkWjA+5PX39vai1wHl21wPMdLawetDpgeDwViJPOT5zJkzWllZUbvdVqPR0Pb2dpzGgJiwvLwcBZLBYKBerxdbGQaDwRiJtdUSZMepJCmXy6rVarE6YWdnZ2yEo/W5QLxot9sKIcSRmJgzUj1A2T37a1tYII+0Z9ixoggUkuIEAHwy+v1+fF876QCRiWuCdFrvBEQRJjkgNkBAqWqxIodtTbFl/1Qm8J4IDVQT7O3txZJ79pX72k5TmJy+QUuKnfTAWE/rTYAp5OQ+2uy9FfMQF6wAk81m45QQvBZYO55vfQzs59h6i1iRwk5EscIJX6y5nZZyfHw8NqWFtcFngt/B1JLPHAKanTBi24uohPIKBYfD4XA4HI67A++r/UDrH/1veurD5/T1f/jXdPT0M7MO6a5AagQF6aSsmykEEHJIEX/cW5IljWcW+ZnXsSPgbI+87edm3FySJNEnAcJiTfRs9pL2gsuXL+vq1auq1+uq1+tqNBrxtXDhx9xROsn0QyDJMudyOdVqtbH2Blu5sLi4qEKhEAkypecQSQjU3t6e1tbWVK/XdXx8rEuXLunZZ59Vs9nU0dGRNjc3I4nP5/ORrLdaLe3u7sYqBgSBwWCgZrOp5eXleM14HCwuLqpWq+mee+7R+vq6jo+P9fzzz+vSpUu6evVqNLO00wYGg4EuXLigTCajs2fPamNjQ/V6PZoRDgYDdbvdsdGdrBntGbaCANIIWczn88rn81Gogbwy3nIwGIyRUStS4SOASAQpR/wh+05LC/cPVTUhBHW7XbVarShm2OkUEHQILzEzLUNSbJWwJoLW6BFyXSgUVCwWlclk1O/31e/3o4CDgICYZWFFDO4/+5kic2+nSdj1t14RVDVQNWAnJXD/Uk2CIIBYwOfT+hhMiiZWyJIURQBi5nNEXDyX+5NpGVwzsSE6cA2IV5PtJnbtHY67AcXH1vWG3JGkxVmH4nA4HA7HTPBIuSmVm/riH31LH33jW3T14qVZhzT3SI2gYF38yaAjEJCJl8aN1CZbGiZd3KWT/nY79g8jO6oTMplMJOVkmnlt22sOwcB8EJK6srKi9fX1OLGA94eYQ8ykE8K4tLQUs/K0DJRKpei9QJYXkcVOkrBj73gv61BPLI1GQ7u7u7p06ZL29/ejIEClALE2Gg1dvnw5ji/EVBJhh/7+UqkUfw/yViqVtLm5qWw2q+3t7SiwVKvVKHzYrP/u7q4Gg4HOnz+vWq2mjY2NmL1GgME3wxJ+O4VBUqyqQHxhTwuFgiSNjWLktXu9XjTUtCMCIcgQfIQZKj+s5wUClRWmKL/f29uLa2fbKNg/vBKYSEJ7Ca08+FXwXAQL264jKe5FNpuN/gjWXBKSjyDC41evXo2iCI8jfgH7GaHdBiNPfg/hgkoMvBKsZwLPY/1Za+K0XiSITbyX9euw/iSSYoUN64KYgCCD2IBxI89BZJj0frBtFlawJFY3ZXTcTfip1e8qE1xMcLwQP/kvflnlJ70E2OFwvHLwd/JHuv/Lj+pQQe+7942zDmeusXCzJ4QQPhVC2AkhPGUe+1AI4fkQwuOjr7ebf/v1EMIzIYSnQwg/+2IDsWXmkFCbUZROzNssMaOUG6HBusvb8nnKnBEeIDYQVWLAX4AvRlXyO/l8XtVqVSEEXb58WQcHBzErLp20J0CgmCywvLysw8ND7e7uqtlsqtVqaXFxUdVqVeVyOYoRtBwghGD+SH8+1wwZtKZyeBTU63UtLCzEigMysqVSKY6QxH+h0+mo3W7HbG6r1VKz2Yyl9xhc2nGMENxqtRpL7geDQZwMUSqVYvm/JWztdlvb29s6ODhQrVbT1taWqtVqNODs9/vxfdnD4XAYCbbNZEPsqdxgCgf9/LaH3xJfSC/iRa/Xi+X5PN7v9+NUCEwzIdBUT5Dhpvrg4OBA7XY7VtNYrw/uW2soiaBly/LJ4CM0cT/blgMrSBwfH2swGMQqBJ7Dtdnsvr1PqLaxpqeIEHhjWANI68/BvT25prSH2Kw+e2WJ/GQVA8aq0rgJpRUebAsJa04stIkgLNm95fNnRRTaRKgo4XM/ObHDmnqmBdM6ix0OxysP2d6RdHx08ye+wuHnsMNxd+G+TEkPZIr65LP/R1pYvPbluGXcVFCQ9GlJbzvl8d9OkuSh0dcfSVII4bWSHpH04Oh3/nMIN0+HQIQgKNY9ny+ICgSEMXn88U/vOOSFNgheU9IYoYKcQcwWFhZUr9djRn7yuWRt8R7odrtqt9uRcGKoR287mVJr3igpTk/I5XJaWVmJYgLkEv8Em11mfCWl+mRYIUK8XyaTiW0T/X5fg8EgtiVQdYEQQQabKgay441GIwoMdiSnnZhgDQxDCGq32+r3+7p69aoKhYKq1Wrs62cNJKnVaqnb7SqbzcaqDlo1IPq27J3qC0g54oQ12UT0sf38EHBJY2TXZrxpM7DGgMPhUJ1OJ467RKjAi4MsOOQaoYO9Y1IJe2GnELAWCD+0q0CEuV/Z80KhoGw2+4K4rTcBRojWq4K2EUxBaVkgNmm8ysJO0eB3AOtos/l8xpgEwr5Z0cN+rrlmXm/SBJP3t0A0tNdJFQn7zd5S8cPr4rXCWWGngWBgyXXwXtYrJIwMW1l/ez0pwKd1h89ix92LhWJRmeCE0eF4mfi0/Bx2OO46nFsq6Y+f+5p+8Vs/1MLI7Nzx4nHTv5aTJHlM0u6LfL13SPpckiQHSZL8laRnJD180yBGfc+YF9oMP0SBfm+mMKysrMTft4SQjCrEx2Y2i8VirBaw4+4kxWkFEBAIBiXgZPhrtZqOj4/V6XR0dHSkarUapxtYEgohgsTQtkEGulqtRiEAMk+22U4hwNMhm81qb28vVjbw+pAvqhiKxaKSJInxVSoVlcvlMYIE6ex0Omq1WhoOh9rf31e3242CBw7+CApM0qDigfGUTNeAKGNuCTGHuFGav7S0pPX1dZ05c0bZbFYHBwdxSoUd8Wez3NZw0k7qoBWDazs6OlK32x3rhUc4wGjSToxYWFiI1SWUzQ+Hwzg6tFwuK5/Pxyw55J31sIaVkwSVKprTpglAyG0rARU00jVjUFo37LXY37dCG2tAnNZ3Yzgcam9vL4ozdnwi+4VhpR11yvtNVgmwN7a1B8NDhCP7mbUtSlbssZUrwFaV0KJATIgsy8vL8Z7pdrtRqCFO6cRbgT1gjW3rivVkOT4+mSqCMSxiBPuQBkzjLHbcvaj9SVbvq/1g1mE4UohvDve0cOB+MS8Gfg47HHc33lPZ0Wsf29PSmc1ZhzJXeDnpt18NITw5Kv+qjR67R9IPzXOeGz12QyAmQHIw1IP4QSpyuZzq9bo2NzfH+ukpfbYmenZcI+MgqT6wGV2eT+UBZJGJAGSr8QpYXFxUq9VSr9eLAgXGbhAZyqch+pDspaUllctlFYtFnTlzRsVicSyjDGEje2vL44fDYTRWpOSd94P4IR5AujFSrFQqMbPP++Bn0Gg04jrbVgFEDzLTzWZTzz77bBQUECOswR3EHr8CSXEtr1y5Ek0va7XamDCDeeLkSEHba2/JLIIC64swRJuIrUo4PDxUt9sd8xmgugAzxUwmE9cll8upVCrFLPjBwUE0WCQTPykQ8Dh7BpHlXqKqgBiZzHEaoc1kMiqXy9H8kbaXSdNEyPny8nIkwFRKcM/bNWHtrFEj0y8QsqyQw2cEIYDPp10D2x7AeFDEDrwLGAVKNcVpFQnsPeIDEyiIiYqWYrGo4+PjsbaY04xauYepEuJ6uH4EO0QRYsZjghGeVqRIOW7bWexwOF55ePe/f78y/+trsw5j3uHnsMNxl+AjW1/X7n8pzTqMucJL/Wv5Y5J+VNJDkrYlfWT0+GlD5E+duxZCeG8I4ashhK9OTmmgjx2iQyZ5Y2NDW1tbkUQz7pGeenqmyWTaNoVKpRLJIxlkMvy2hSKEECcb9Pv9KEasrq4qk8lE3wFJ8TWsIR2vgTAA8bfEaGNjI1ZYQL6oqrCtGJDTw8NDdTod7e7uvqDMXlIUAGq1Wvw3SKx14idTHUJQp9PRxYsX41QH1p/ScqoTyHLv7u5Gbwd8Fg4ODmJLAMR7stz+4OAgTj1IkmSsoqPVaqnRaEg6GWXIujIhIoxGQ1rzQkj65BhAhAk7KpB7CWKOYMX7hJERKNlpRCXbCkAbyiThRrSyBn7W68GKPXbqAkIH+229CgqFQqy0sP4O+ClMjkHkPiGjz1oicvG5sNUU1iiTdYNQ87rcd9w3iE1WOLOVMbwfrRQIEpKiyGGrEmylgJ3ogI8KpN+2OfDZZHQr95gFe0vFhH0f2lKIZ9Jbheux+3qaAJIy3Naz+FAHpz3F4XDcpfh4+6yKF70V5mXCz2GH4y7Dj61eVPiJB2cdxtzgJQkKSZJcSpLkKEmSY0mf0EkJ13OSzpunnpN04Tqv8fEkSV6fJMnrpZOyaYzm+v1+JKaFQkH1el1nzpyJZcsQOn4XUk25OGQil8upWq3GknBbUg3I+EIud3Z21Gq1lCRJFAAKhYIGg0FsEYD4M43CEkSyoJAa6/9QLpd15syZ6KnA72BUR+bdZoevXLminZ2d6KeQzWbV6XTi+tCeALGDbENwaT/AxPD4+Fg7Ozva2dmJhBESh69AoVCIlRWDwWBsnCSTGii1Pz4+jtUcZMPt+D4mdJTLZa2trSmXy6nZbOrChQuxcsGKKLZCoNfrqdvtRsJtWyFYH0ikJaP8bDP2CDTs/6RhoTUeZIoEIgmEWzoh7AgwV69ejaKUzWhTBYFHBsTVAgFEOvGKaLfbajQa8XWpxmFtLbiP7WhHxBkqT+z1QvRpN+n3+3GNJMVqE8QYW7ViKwjsfiGKIDYwLWVpaSm+ht03ayhq19C2VVizTSoprPCBOME5YM0TbXUC70HFg61QsH4deEVYLxZJ8T5MK273WZxR7s4G7JgJ9n/hYb2h+r1Zh+FIGT66e78+88G/p+X/+ZVZhzLX8HPY8bJwcKA3feNds47CMYFPnP+/Kvz2jpI3/I1ZhzIXeEmCQghhy/z4Lkm43X5e0iMhhFwI4T5Jr5F00/9T2Ywz/dG9Xk9HR0cx8854QcgEmWBIRT6fj20N1ryQtgQ7bpH3JDMM6YIYX7x4Uf1+X7VaTZubmyqXy9HhH2LL9AXMJKkWGA6H6vf7sTUBUzxaEDY3N3Xu3LlI1iGEEB0bH20OzWZTw+EwVg30ej3t7u5G3wGu32b5IXeYR3a73fh+tCuQ8YaoTfajk72FEB4fH0eCHUKIEx76/f5YPzsZfgSFw8NDZbNZ1et15fN57e3taXt7WxcvXhwrM4fsQtYho5OZfN4DQFAn/QFsxr1QKEQxhvWF5LIufE0aD1JVACGH4FPZYU0rrd8D5Jx7ADLNvWfHIwLEm6tXr8bxnogRksamP7DPtFDQfkKLAVUh1tASoe3w8DCKdvgm0KJAHFS0TJb+WxJv7xXEBFpy2D8EHaqAJI1VCPA8KxbYdh9JY94Xdt94P3uWWONN9s6KFnbPbcWJrfzBHDZNUx5Ow+0+ix13HwZ//2/qZ/7DY+6f4HgB/tNjb1Hp9/5s1mHMPfwcdrwcHHU6Kr0/O+swHKfg91/9Bf3gF9LjpZVm3PSv5RDC70p6s6S1EMJzkj4o6c0hhId0rXTr+5J+SZKSJPlmCOH3JH1L0lVJv5IkyYuqpbOO+PyRXy6XVavVxkqe7fg5SdEpPpfL6eDgYKwqAJIkKZZKY4QHCbEE9PDwUM1mU4PBQBsbG7r33nu1tbWl4XCoXq83VvpONtpmnSnPhyRnMplYZs1Ix/Pnz6tcLscRi5KieR/GjKwBWVkIOVMM2u12NIkkjmw2q0KhEEUZRj4yApJWh+FwGAkr10yMEEtK4fv9/tjoQrLkuVxOa2tr0Qeh1WrFcYOYXULK8aBYWVnRysqKlpeXI1mtVCpaXV1VqVSK5pRk7JkIQZyQb9ZZUmwjyWQyY1ML7GhCSDbkdHIKBGAPEam4Vnu/WV8CCDEVCNZIlNeZbDPgNXgOWXMEBqoB7KQTyPBk+b41DLWfIfaUihIrBiAqYECJUGTbbCSNtThYU0bew4Jr5BpshYdtpbHiCG0bCImIKrZVxxqjIgRYk1U+w3aUqRUarB8J72HFBgvek3uWa2Ut04JpncWOuwvPvTXRv177i1mH4UgZfu3SQ7r3D0+tvnfcAH4OOxwOxwtxU0EhSZJfPOXhT97g+R+W9OFbCYLMJmSYygJaFfA+gBwwTg8CAtGGeEEKrIs9Rm77+/uxHJoMPKR5MBio1+upUqnowQcf1Kte9SoVi8Vo6ocRnC3n7/V6MbPLzzzHGt0VCgVtbW1pY2MjTlTY39+PGWyqEXq9XiRKdowmYgFVEnhCQKqLxWJsP2i1WrEKodPpRLJPlUW1WlWpVFKv14uEyRJ2hA367K1ZIu0VW1tbWlpaiiMmqQKwUyposygWi1pbW4vjJAeDQSSMdooFUyQajYZarZYODw/HRvzxX4g45JVKC+nEi8GKT1SpcH9BZhFZ+IL0Ug0hnYzoZI9oo6Cs3mbQIaSIVpYkn7aWtsLBlvtbA0d6+xEz8JGwrQ/W9wETyl6vNya8cR1JkkRBh2uAUFNJYYUGW0VhpzjQ/mBbFiZfh6oX1j+EEO+J0zwQ2AeqOBCJrGmiNWKlHYS1tJVO1psBcWfSwJF7atKPg6oORJ60YBpnsePuQusfvUEffPOjsw7DkTL85pXX6Kv/8ieU+9KfzzqUuYOfw447gh9u64FP/1P95Xs+NutIHBP4pXf8sf7HV96i/B94cdGNkBoLc0h9CEH5fF6VSiWSMLLLfF+pVCJZwGHegvJvSwRppdjf3x+rUACIC/l8Xq9+9av1wAMPqFaraW9vT+12eyyrTzk9PfYQ9l6vF1sXbL92JpPR+vq6zp49q1wup263q1arJUkqFotaWFhQr9eLngaFQkGFQiESG0YYEiPXDJkrlUra2tpSsViMfgsYISKYSIqVE9VqVcViMfbCUwJPaT1kj38ju5vL5bS+vq5z586pXC6r3++r1WrF8n4bazIaXXl4eBgnRpRKpbHWDmtiuL+/r2azGWOHTE5m4clwsw7ETnYckYHn0s9P+wkEkpYDXttOJLDZbN4DUjsYDF7gEYGIwvfsPaQWwsprQNqpTrBtEtxfxG/bexAdrFEkz4X8IiZA8Pls4Q2AmGBNOyeFASsi8J7Wi4C4MPvEMNPGT9WLpLHWn9PaR4jfChJWnOHza9udEH8QAhEb7OshkJ1W3SKdVDEgQFlDxzAyFE1ThYLDcavo3B/0nsrOrMNwpAif7db1xff+pJa+5FMdHI604KjT0bkvDWcdhuMUvH/1e+qeT3f7axqQmhXiD3eyvpQ9Y/zHH/zValWSIoGwrRCQNjuiDpIHuc5kMqpUKtEwjgw/bvKrq6u67777tLq6GtsLms1mLB/P5XKRPJJRzWQy6na7sc2A3nPI6PLyslZWVlQoFNTr9aLhXrVa1dramprNpra3t7W/v6+zZ8+qWq2OZfcrlYokxWvEpC5JEhWLRZ09e1aVSkWdTicaHbbb7bEsLe0I5XJZy8vLcS2Wl5e1u7sb3f739/djewV98MPhMJolrq6uqlAoqNPpxFL2crkcJxKwPnYMX6VSUbFYjOSP17O+Gf1+X9vb22q329FYkf2RTloREBTIrFOZwj5IisQZEYR2CuuHQLsC95v1OoD024kKtMyQ1YdYc88y6cL6TUDC7QhJqlZO84KwLQkIGpMTIqyHAK/LtdkpEKwDoooVYuzvWmHFVlVA6CHcfJaIk5gg/VwLI06Jp1wuxxYIKzzYsa12QgrCiW09sGKAncpCZQLCim0JQSiy4gfvR/WDNeK0bRe2dcKKWQ6HwzHP+LP9I332nT+t8O0nZh2Kw+FwOO4ipEZQsK0EZBkZF4nHAOMEbc8+vwsJwguAjKuk6EOwtLSklZWVMZNF21Kwvr6uM2fOaHNzM46IbDab2t3djYQEsjnZZ08mlS+y5UdHR6pUKlpfX9fCwoLa7bYuX76sbDarWq2mJEl05coV9fv9OAUBc8ilpSXV63Vls1l1u91Yvg3ZJvNfr9cVQtDOzo6ef/55NZvNmN23rQCIAbZvHqJnhZhCoRANFzHMy+fz0c+CtVtaWlK1Wo0EDSEI/4XJ1gzK9dlfCDwtDu12OxJc2gIsLNlDPOD6LDmlSgAyb9tZLHm2vgbsJWvLPk6SW2KmAiaXyymfz0czP3tvUEUhKZpb2qkU1teB66AiRBoXDCyxRaTKZDJjkw8Qafgd9pm1s48hViCCIJTY9gv7mbTjIhklKo2LFtlsNrb97O/vx7WltQOxxZo5cm1WPLEikq2IoKqBz9Xk+EgqLSarE+z9IZ34ZSBMWGNMvreVIw7HvOJH/uMTuv/+f6zv/cynZh2KY4Y4TI70zof/rnR0pKOL35l1OA6Hw+G4y5AqQYEMpc0o2kwmmXl6/8m84m0AKYY02hLuhYUFVatVVSoVZTKZWCaNYeDq6mok5/l8XoeHh+p0Orp8+XKcXmBLuMnE0vpAfzweDfl8PpLAUqmklZUV9Xo9XbhwIVYnFAoFtVotDQYDLS8vq1qtamFhQZ1OR8PhULVaTZlMJo5jhNgxZaFYLMbpF41GQ88884wajUYkRZgz2tGZEHX67cnuUs5PO0iSJGq1Wtrd3ZUk1et1ra6uKpvNqtFo6ODgIAoa3W43lokPh0O1Wi3t7e0pm82qUqnE3nkIPKICZHNvby9OJLBZakmREPN8iCdrQVYfMsk1I0BhbEk7CpUvmBDa0aOU8DPJAuJJdQB7DDKZTByv2W63Y9YbcQHs7e1FomvbEGwbhKRosIkgYlszuI+JO5PJxEkNtBDQWsB9aackWEGCfaAKwQosiDa2ksGuD2tqPQeIHY8P9pIYbTsBQtZklcekzwH7johAuxEmjHYUJSNh7TpZg1frJWGNUG0rBp8LzhHOIdbB4ZhHHPf7SvZS8795xwzw8w//vI4bV3S8f+q0QofD4XA4XjZCGkp6QwiXJfUlNWYdy0vAmjzuacLjnj7mNfbbFfe9SZKs34bXST1CCF1JT886jpeAeb1HpfmN3eOeLl7pcb+SzmH/m3j68Lini3mNW5rf2O/oWZwKQUGSQghfTZLk9bOO41bhcU8XHvf0Ma+xz2vcs8S8rtm8xi3Nb+we93Thcb+yMK/r5nFPFx739DGvsd/puFMz5cHhcDgcDofD4XA4HA7H/MAFBYfD4XA4HA6Hw+FwOBy3jDQJCh+fdQAvER73dOFxTx/zGvu8xj1LzOuazWvc0vzG7nFPFx73Kwvzum4e93ThcU8f8xr7HY07NR4KDofD4XA4HA6Hw+FwOOYHaapQcDgcDofD4XA4HA6HwzEnmLmgEEJ4Wwjh6RDCMyGED8w6nhshhPD9EMI3QgiPhxC+OnpsNYTwhRDCd0b/rc06TkkKIXwqhLATQnjKPHbdWEMIvz7ag6dDCD87m6ivG/eHQgjPj9b98RDC282/pSXu8yGEPw0hfDuE8M0Qwj8bPZ7qNb9B3Kle8xDCcgjhKyGEJ0Zx/9vR46le7zTDz+I7Eqefw1OEn8NTj9vP4dsMP4fvDPwsni78LJ563LM/i5MkmdmXpEVJ35V0v6SspCckvXaWMd0k3u9LWpt47LckfWD0/Qck/eas4xzF8iZJr5P01M1ilfTa0drnJN032pPFFMX9IUn/6pTnpinuLUmvG31flvSXo/hSveY3iDvVay4pSCqNvs9I+rKkv5X29U7rl5/FdyxOP4enG7efw9ON28/h27uefg7fuVj9LJ5u3H4WTzfumZ/Fs65QeFjSM0mSfC9JkqGkz0l6x4xjulW8Q9JnRt9/RtI7ZxfKCZIkeUzS7sTD14v1HZI+lyTJQZIkfyXpGV3bm6njOnFfD2mKeztJkq+Pvu9K+rake5TyNb9B3NdDWuJOkiTpjX7MjL4SpXy9Uww/i+8A/ByeLvwcni78HL7t8HP4DsHP4unCz+LpIg1n8awFhXsk/dD8/JxuvHGzRiLpT0IIXwshvHf02GaSJNvStRtR0sbMors5rhfrPOzDr4YQnhyVf1Gyk8q4Qwg/IunHdU0hnJs1n4hbSvmahxAWQwiPS9qR9IUkSeZqvVOGeVufeT6L5/keTfWZYOHn8HTg5/Btxbytzzyfw9J836epPhcs/CyeDmZ9Fs9aUAinPJbmsRNvTJLkdZJ+TtKvhBDeNOuAbhPSvg8fk/Sjkh6StC3pI6PHUxd3CKEk6VFJ/zxJks6NnnrKYzOL/ZS4U7/mSZIcJUnykKRzkh4OIfzYDZ6emrhTinlbn7vxLE77HqT+TAB+Dk8Pfg7fVszb+tyN57CU/n1I/bkA/CyeHmZ9Fs9aUHhO0nnz8zlJF2YUy02RJMmF0X93JP13XSsPuRRC2JKk0X93ZhfhTXG9WFO9D0mSXBp9UI4lfUInZTmpijuEkNG1A+izSZL8/ujh1K/5aXHPy5pLUpIkLUn/W9LbNAfrnVLM1frM+Vk8l/fovJwJfg7PBn4O3xbM1frM+Tkszel9Oi/ngp/Fs8GszuJZCwp/Luk1IYT7QghZSY9I+vyMYzoVIYRiCKHM95LeKukpXYv33aOnvVvSH8wmwheF68X6eUmPhBByIYT7JL1G0ldmEN+p4MMwwrt0bd2lFMUdQgiSPinp20mSfNT8U6rX/Hpxp33NQwjrIYTq6Pu8pLdI+gulfL1TDD+Lp4e5vEfTfiZIfg5PK14Tn5/Dtxd+Dk8Xc3mfpv1ckPwsnla8Jr7Zn8XJDNw/7Zekt+uai+Z3Jf3GrOO5QZz365oj5hOSvkmskuqSvijpO6P/rs461lFcv6trZTmHuqZE/ZMbxSrpN0Z78LSkn0tZ3L8j6RuSnhx9CLZSGPdP6Vq50JOSHh99vT3ta36DuFO95pL+uqT/N4rvKUn/ZvR4qtc7zV9+Ft+RWP0cnm7cfg5PN24/h2//mvo5fGfi9bN4unH7WTzduGd+FofRizocDofD4XA4HA6Hw+FwvGjMuuXB4XA4HA6Hw+FwOBwOxxzCBQWHw+FwOBwOh8PhcDgctwwXFBwOh8PhcDgcDofD4XDcMlxQcDgcDofD4XA4HA6Hw3HLcEHB4XA4HA6Hw+FwOBwOxy3DBQWHw+FwOBwOh8PhcDgctwwXFBwOh8PhcDgcDofD4XDcMlxQcDgcDofD4XA4HA6Hw3HL+P+Kx+ooYLLIawAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 0 313751\n", + " Min thresh = 1000\n", + " Sliding\n", + "\n", + "\n", + " Winner = Sliding\n", + "\n", + "\n", + " VFOLD = 3 of 15\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsIAAAGDCAYAAAAh/naNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAACTz0lEQVR4nO2dd7wcVf3+n7Plttyb3kgISQghobfQQXpHiqIgCoKFLyrWn/oNIoIdsaKIiHwRURGRjvTeW4BACiGEJCQhvd5edvf8/pg5s2dmzszO7t29u3v3eb9eeWV35syZM7N7Z5/5zHM+HyGlBCGEEEIIIbVGrNwDIIQQQgghpBxQCBNCCCGEkJqEQpgQQgghhNQkFMKEEEIIIaQmoRAmhBBCCCE1CYUwIYQQQgipSSiESUkRQkghxE7lHgchhJD8GYzXcCHEAiHEkeUeB6kMKIRrCCHEciFElxCiXft3bbnH5UUIcYF98f1kucfSX4QQU+xjSZR7LISQ2kMI8YgQ4keG5acLIdb259okhHjavr7t5Vl+j738yEL7LnA86nqrft/WCSH+K4Q4Tm8npdxNSvn0QI6NVC4UwrXHR6WUzdq/S8o9IAOfBbDZ/r/oUJQSQmqImwGcJ4QQnuXnAfinlDLVz/4XAzhfvRFCjAJwEIAN/ey3PwyXUjYD2AvAYwDuFkJcUMbxkAqGQpgAcKKwLwgh/iCE2CaEWCSEOEZbP0EIcZ8QYrMQYokQ4ovaurgQ4ntCiPeFEG1CiNeFEJO07o8VQrwnhNgihPij4YKsj2MygCMAXATgBCHEOHv59UKIX3na3iuE+JY2vjuFEBuEEMuEEF/T2l0phLhDCPEPIUQrgAuEEAcIIV4SQmwVQqwRQlwrhKjTtjleCPGufS6uE0I8I4T4grb+c0KId+xjesQed77nPOycHiCEmCOEaLWjGr+xlzfYx7HJHvtr6hwRQoiBewCMBHC4WiCEGAHgVAC35LoWRuCfAM4WQsTt958CcDeAXm1/MSHEbPs3YpMQ4nYhxEht/X/s6PQ2IcSzQojdtHU3278bD9i/L68IIaZFGZiUcq2U8hoAVwL4hRAiZve5XAhxrP068PdLCDFTCPGYfY1+VwyCp5TED4Uw0TkQwFIAowFcAeAu7WL1LwCrAEwAcBaAn2lC+VuwLn4nAxgK4HMAOrV+TwWwP6y7808COCFkDOcDmCOlvBPAOwA+bS+/FdbFVgDOhfx4ALfZF7f7AbwFYCKAYwB8Qwih7+d0AHcAGA7rwp0G8E37WA+2t/my3fdou+2lAEYBeBfAIaojIcQZAL4H4GMAxgB4zj4/+RJ2Tq8BcI2UciiAaQBut5d/FsAwAJPssV0MoKuAfRNCagApZRes68f52uJPAlgkpXwLIdfCiKwGsBDW9Rj2fm7xtPkagDNgBTkmANgC4I/a+ocATAcwFsAbsK7ROp8C8EMAIwAsAfDTPMYHAHfZfc8wrDP+fgkhhsCKJt9qb/spANfpIp0MEqSU/Fcj/wAsB9AOYKv274v2ugtgXdCE1v5VWI/PJsG6WLZo634O4Gb79bsATg/YpwRwmPb+dgCzQ8b4HoBv2K8vBfCW/VoAWAHgI/b7LwJ40n59IIAVnn4uBfBX+/WVAJ7NcW6+AeBu+/X5AF7S1gkAKwF8wX7/EIDPa+tjsIT/ZEO/U+xzkPAsz3VOn4V14R/t2e5zAF4EsGe5v0/8x3/8Vx3/ABwGYBuARvv9CwC+GdDWuRba7yWAnQLaPg3gCwA+A+vGfgaAxfa6VQCOtF+/A+AYbbvtAPR5r4v2uuH2PofZ728GcKO2/mRYIt40nqDrbYO9/FD7/XIAx9qvjb9fAM4G8Jxn2Z8BXFHuz5P/ivuPEeHa4wwp5XDt31+0dR9K+6/d5gNYd+8TAGyWUrZ51k20X08C8H7IPtdqrzsBNJsaCSEOBTAVwG32olsB7CGE2Nse122w7soB4FxkowaTAUywH+1tFUJshRWx1S0DKz372llYkyjW2naJn8GKiMA+Xqe9ve9V2uaTAVyj7WszLLE8EdHJdU4/D2BnAIts+8Op9vK/A3gEViR8tRDiaiFEMo/9EkJqDCnl87A8u6cLIXaE9YTuViDntTAqdwE4GsBXYV2jvEyG5dNV18x3YAUCxtnWhKtsa0IrLJEKzxgi/YaEoK6rmw3rgn6/JgM40PO78mkA4/PcN6lwKISJzkRlPbDZAVaUeDWAkUKIFs+6D+3XK2E9vu8vn4UlKOcKIdYCeMVerh7p/QvAWbYf90AAd2r7X+YR+C1SypO1vnWBDwB/ArAIwHRp2Q++Z+8bANYA2F41tM/J9tq2KwH8j2d/jVLKF/M41tBzKqV8T0r5KViP5H4B4A4hxBApZZ+U8odSyl1h2TVOhfuRJyGEmLgF1rXiPACPSinX2cvDroWRkFJ2wnpS9iWYhfBKACd5rpkNUsoPYQU1TgdwLCzb1xR7m7zGkIMzAayHFf01jc30+7USwDOeMTdLKb9UxHGRCoBCmOiMBfA1IURSCPEJALsAeFBKuRLW4/if25O19oQVsVQR2RsB/FgIMV1Y7CmsmcOREUI0wPKtXQRgb+3fVwF8WgiRkFK+CSuqcSOAR6SUW+3NXwXQKoT4XyFEox1h2F0IsX/ILlsAtAJoF0LMhHUBVzwAKxJ9hrAyTHwF7ijA9QAuVV4xIcQw+3yFUW+fuwb7WD9EyDkVQnxGCDFGSpmBZWEBgLQQ4ighxB72xJRWWI8X0zn2TQght8ASm18E8Ddtedi1MB++B+AIKeVyw7rrAfzUDmJACDFGCHG6tv8eAJsANMGKSBcFIcQ4IcQlsOa8XGpfT70E/X79F8DOQojz7N/EpBBifyHELsUaH6kMKIRrj/uFO4/w3dq6V2BNWNgIazLCWVLKTfa6T8G6U18Na0bwFVLKx+x1v4Hl/X0U1gX1/wA05jmuM2BN+rpFWjN910op19p9xQGcaLf7F6yL+a1qQyllGsBHYQnnZfb4b4QVXQji27AiEW0A/gLg31p/GwF8AsDVsC7OuwKYA+tiDSnl3bCitLfZj/LmAzgpx/G128en/h2N8HN6IoAFQoh2WBPnzpFSdsMS5HfAOs/vAHgGwD9y7JsQUuPYAvVFAEMA3KetCrwW5tn/atuCYeIae5+PCiHaALwM66keYAn0D2AFBxba6/rLViFEB4B5sDzFn5BS3hTQ1vj7ZdvWjgdwDqxr9FpY1/36IoyPVBDCbQkltYqwcix+QUp5WLnHUmnYWSlWAfi0lPKpco+HEEIIIcWBEWFCDAghThBCDBdC1CPrmStGpIIQQgghFUIkISyEONFOJr1ECDHbsH6YEOJ+IcRbwqrhfWHxh0rIgHIwrJnEG2HZLs6QVj5OQioeXrMJISQaOa0R9qScxQCOg/V4+DUAn5JSLtTafA9Wzr//FUKMgTUzc7yUstfUJyGEkNLAazYhhEQnSkT4AABLpJRL7YvkbbBSnehIAC12mqlmWLn6+lu/nBBCSP7wmk0IIRGJIoQnwl2MYBX8hQOuhZVqazWsWZpfD0hTQgghpLTwmk0IIRFJRGhjSmrt9VOcAGAurJRQ0wA8JoR4TkrZ6upIiItg5YnFkCFD9ps5c2beAyaEkErg9ddf3yilHFPucRgYlNfseR9uAwDsMXGY8X0qI/HOmlbXsmpmS2cvVm3pwvCmJCaNaCr3cBzUed99wjCIYpa8sGnrTmH5pg40JOOYPjbfAnJ+3lnTilRGYvLIJgxtLF8Rzs0dvfhwaxdGDqnDxOH5ZhclxSDomh1FCK+CVYJQsT2sKILOhQCuskvRLhFCLAMwE1ahAwcp5Q0AbgCAWbNmyTlz5kQ/AkIIqSCEEB+UewwBDMpr9pTZDwAA5lx1ivH9+xvaccyvn3Etq2bufH0V/t9/3sLH9pmI35y9d7mH46DO+ws/PhENyXjR+3984Tp84ZY52G3CUDzwtcP73d/Rv34aSzd04Cdn7YlPzpqUe4MScftrK/HdO9/GWfttj199Yq+yjaOWCbpmR7FGvAZguhBiqhCiDlZy6fs8bVYAOMbe0TgAMwAsLXy4hBBCCqQmr9nbuvqMy19eugkvL91kXFcNVGqm/1KVIEgXuWMVtC53zYRYzBpJOlOpn2jtklMISylTAC4B8AisSla3SykXCCEuFkJcbDf7MYBDhBDzADwB4H/t6lyEEEIGkFq9ZgcJ4XNueBnn3PAyNrX3DPCI+kcpbAfFJFMiYZkpkVDsT7dzlm/Gt/49t19jU0K8L00rfqURxRoBKeWDAB70LLtee70aVilCQgghZaYWr9k9fWkAQDJuVpBvrdqKo2eOG5CxXP/M+9hv8gjsP2XkgOyvHPRXri7b2IGMlJg2xu0DLnZEWNGfbr97x9tYurEDlxy9E3YcU5hvWe0+lWZEuNJgZTlCCCFVjwq0CU8oNWE/ks6UOBDX3pPCtk4rKn3VQ4vwietfKkq/KpK4ZH0bDr/6yZJHts+/6VV89463crbrb0T4qF897Xi6dZR1oFgRcfV96M94d7In7amJgoWgPsdUqb+IJG8ohAkhhFQ9KpIYpJ+ChNDC1a1o6zbbKvJh3x8/hr1+9Gi/+1F4heB1T7+PlZu78OSi9UXbh4lnF2/A7XNW5WxXMo+wEsKBn2Rh9McjPH2cJYQXrmnN0TJs/9b/KXqEKw4KYUIIIVWP8m/GPApSvTUJYSklTv79c/j8zf3PhtGbyi/St3prV15+0T77kXpdwvrZ3tzRi//MWRm2SWkpsRAuNv3pNm5/iVTEvz/791ojelMZ/PzBd9BahJsxUhgUwoQQQqqGoMheyhHC5u1MQkiJrleXby7K2KKyrasPh1z1JK64b0HOtmrYfbbQTsatn+3P3fwavnPH21jf2l2qYYZSsslyFdiv2rKjN92PPsyT5e5/azX+/OxSXP3wooL7Jv2DQpgQQkjFsmD1Nid3LRAc2TNFhO+d+6ETSTUJIX1i1tbO3mIMNxKdvVY16yffiW5zUAJKCeG3V20FkE3LNdCU6gF/qZIq9Edfq+9OV2/hVcgzAdaIbN/0DpcLCmFCCCEVy+2vuR//Bz06d0Stpgu/ftvc0O10cXTsb571rc9kJB54e01eabOitFWP2sMyJHgFYZ/dr8qKoXbj7WLeqm1YvbUr4mjzQz+2UkVu0/ZksqJNlrP/71dE2N60o6fwiDCcyXLW/z2pNBas3oZEXOUXHpxC+OqHF+Gqhyo72k0hTAghpGLxRjyDBE06wCOsMG2mi+ONnmwM729oxw3PLcVXbn0Df385W5Dqxfc3OtFYE1EmQ0UprqBEpxq31xqh8FpFPnrt8zjkqidzjsFErgllPZoPulg6eMn6Ntf77GS54tK/iLD1f2cxIsL2Hc73756PU37/PDa0Wd+7wTqJ7rqn38f1z7xf7mGEQiFMCCGkYomLaEJYLQ+KJOayRng55tfPOJGsdZoP99y/vILTrn0BmYzEF2+Zgxffd9chySfyGCaEvWNT1gjv4RVTP/Xm8CX0aVFLWSRzhDcSX4w0u129acz3pDrrn0fY2razPx5hT0GNOR9sAQB092X6Pb5lGzvw8Py1kds/u3gDpsx+oGz+8kqDQpgQQkjFEvdEhO9840Oj/UDNxg+KCJtEZ38qhbX3pvDYwnX4n1ted48jQp9K84Tt3zteJVK9mxRLkAJZURaEnvGgPxHWsAwJxags963b5+LUPzzv8n33q1cnItyfyXIWKqqu8gnX21lA+lNo46hfPY2L//F67oY2/7azjbxUxaXHiwmFMCGEkIrFa424/J75RrGpImpBc8dMwi2q5jI1CxKC6lF3aH/2xmERaXU8qoVKz+bdppgR4Z5UuNBLpYtjjdjzyuB8y0Hn5MUlG9EVUYi+7om2AuER15eXbsK8VcHFMtS2xbBGKDGdtoWvEsJhTweWbezAx//0Yr/zXa9v68b8D7dhXEsDAPeTjlqGQpgQQkjFkjAoW1N1rmxFMrMSNloj+qMi1aae3R31q6eNza97egles9O0qU07e9O47O55xnF4lynx7z2OfApFbGzvwZTZD+D2gPzDPbkiwgMyWU5Nesye2BWbOnHuja9g9l1vR+pDjez5JRudbsKGe84NL+Oj1z4f3J+aLFcEa0S33Yc6lwnb8x12U7Rg9Ta8/sEWrNrinwSZz+d/3G+exal/eB7jhtYDANa1lrZKYb509KSwy+UP49EFWZtHV28ajy1cF/kmqBAohAkhhFQsJquDqXhFrspyJqFxz5sfRhpDmNaIOqnr6offdcou6yLyn6+swNyVW33t085kObe31GsdyEePLt/YAQD492t+IbyhrQd3vhFeUc5ljYi+27wwTZZTVorF69oj9aHOybf/85azTX8sF2rT3lTGFRXPBzWmzj63EFbfhVC/uGfipM4WrchHLlG8rctqO7QxCaA0EeF1rd14d21b7oYG1mzrQldfGj+8f6Gz7Fu3z8UXb5mDh+avKdYQfVAIE0IIqVi8HmHALISDKss56zWNkM5IfP+eefjpg+9EGoPJh9sfb65Xr5jElTfiqrJGZKRb8OQjhMOaXnjzq/jd4++Fbr9By6xRDC+vCUf0Gdb1J5NEf0arf9ZKyAJWqrqP/+lFdPfljlaqPtTxqc9c5bkOE8KpkFzYHT1Zu0bUJxyqm/UliAgf+LMncMLv/KkIo9Cbsga2vi0r0Ndss173JxqfCwphQgghFYtJCPeYIsL2osDKcppIuPP1VfjHyyv6Na58bBVeoesVNCbPs1cb92qCSW9eiEXBdIo+NDx211m6oR0f/9OLee8rXxxvtEHsR88tbPaQP7loHabMfgBrt+UXCdVPcaeWS/gH983H6x9swYLVwf7i7P6zr3tTGZ8gjhIRzkXUFGxqvF0RBPxA0tVnifo+w8TBQiPxUaAQJoQQUrFEF8LuZd7HxLpgVI+I+0PWyppbnXnTknm1q7fsrtW/OzKq2kgpXceWjxDWm3b0pPD3lz9w+vIeh/f8rdjcGXoMxUKJPl38qWhqVCEcNDHyn/bNz7wPcwtXxesfbHZ9PvrrfCLULjHdm3JEa8pwvF6C/OHeZVGF8D9fWRHYX6H89rHFuHduNKtREKaCJd7vfylIlKxnQgghpJ948wgD4R5h9cPpFRb5RFF9XktD83wmKXknofmFcPBkuffXt2Pl5k5HvKelOyJciJQRAvjJA+/gX6+uwA4jm3DEzmN8bVIZ6VSxA/w3JKWeLOc6RnXTEVF6mkYmpdQmzkUb+xsrtuDjf3rJOL580c9Xe0/K6UcJvDARq27yTE30Q8k3alrMj/CaJ8JtNWGcfM1zOHz6aOyzwwj/SscjXypXOiPChBBCKhhTFNCU5ktpACU4vMLCXR44fJ9esWNqHjbL34seEb7wr6/irOvdFgMlYG57dQU+cvVTrjEsWtuGw+1lgDV2XVTlI8j1tirHbnu39TjaG3j35rX1CuFST5bLuCLCFv0pu2ydM+HqLxcrNnX6lpk+93wFZWdv2hcJDruxUG1Nn3UhEWHTtuVk4ZpW/PnZpcb0dGqE/cmznAsKYUIIIRWLKX2acbKc4y11v/euB3JPdDOJnTXbulxpxwxZvgLRI8JPvbsB6z25hpVQXrmlEys2d0JKGVxBr4CsERvaevD9e+Y5UTUB4Qjb7LG6D+RnD77jyokctcJf0Jj/+sIy18SuINR40gaxH1UHmwSjlFmxH/XmocMkzLRto9hiFPrnpp8H9ZmECT1TlNwZj/Y6X7FYKUJYYSpY4o2clwIKYUIIIRXJmm1d+P2TS3zLTaWAvWLBFxE2PGoPwpCmGOf+5RV89463tTa5RYQSTb3p8ElJSgxlRXzwI/iMRyRHCQJeef8C/OPlFXj8nXXOMkcImw4WwN9f/gCXanl7E3Gvhzj3fldu7sSV9y3AowvX4Yf3L8QvHl6Uc5tMSES4PyHhjESknMI6nQbPaqF6TN+lLvjU04CFa1qxzE5v5yX7XTYJfD0iXHxrxPsb2rHPjx7F6q3BkymLlUHEFBFWArgvz2PLBwphQgghFclXb30Tmzt6fctNhR/SHrHg/XHOJ/rljQhLKX1ZFaL0pwRM7tLFbg9oKpPxjWF0cx0AK43UR/+QLf4QZRwq9ZquI5UQVlFEswUlO25/Wrrc+/3abW/i5heX42W7lG9rwCRFXcyZI8LW/5EjwgH7EHlaI0wRYdMNSpT+9M+prTvbr37D9v175hm3DY0IuzzC+QnSKPaef7z8AbZ09uHBecF5fIuVfUKfLJfNn507Yt5fKIQJIYRUJKZHpUCBEWHdI5wjguXzCEv/PjMRxJmKZpnG62rn5M5VIt4/xrF2Wdw5yzfj/Q3ZyGEUfZ8tPy2cQSeciHCw7SDs0X+UIKD3cXZw1b/sa5NnVr0WwrLFPDRvTai9wZw1QuYfETZ8//RxFZo1Qr+506O4wxvrjNumPE8M3OPR2oVETVsN5ZmjnAe172Q8WC4G/Z3miy6o1diUDYrWCEIIITXDk4vW4dong2ehh2aNkEERYfNrE1Ee9UaLxFptcpUuVhFbFVpMZTK+R/CqLO5KTxqzKONQhxNzRYRj9r6CI8J6e39p55y79R1DkK7Wbzyyk+Wy652oNYBrn1qCL/3zDTz17npfP23dfdj5soeM6fEKscOaHtUX6qvVt9qoFSbRI53jhzUYt81mjTBFo3VrRPDYDvzpE/5ttf4Wrm7FWX960VfKWPX5n9dX4lv/nmvsuz/lj4O802knIuwuPFIKKIQJIYRUFJ+7eQ5+9ejiwEfOpqwRmRwRYdej9gImywXtLyxq2hs1Ipx2C51Mxi96RgyxooUrcxS+MKHEpYoIC/gjwib0I/MeQhRB6I3aBlf904Wwe8z6eiEENthVx9YYimIsXtcWeK5dHuGI5ghTXtuo6dP60hn8/KF3nOwcKn3b0IYENmlCWBd4Y1rqjX1lb/L86/QbhvvfWo0psx/w3SwBZvuC/j1/e9VWzPlgi6uqG5AV4fM/bMVdb36It1Zuxceue8FVTa+zL/ckyCB0768uqDMeIcyCGoQQQmqOzR3mErBLDZOKnNK8ymPqszfowip8v77MDKY2EawRvekMWrv7sDxgEpQimx7Lep+W0jf++oT1c73Bk3EiSio1xxqhhXjjPmuE/0h04VpIRNjx9grVn7mdSfTqIi3lCHmgPhEHkDvK7sWyRuQW/zqmLBe5fLqKpxatx5+fWYor7lvgtIkJgdEt9djYnrVGBE1W1PGmT7t37odYtcUSu7qo//drqwAA76xpzdkn4BbRyp7jPTfeG8rL752PN1ZsxaK1bc6yfK0R+t+XHhHXI/lqbGp9vqnh8oFCmBBCSEWhopXrWs1C+M/PLPUtS3vFpDcinMktGKVBhOl96kSJiHb3pXHyNc85YigIp2qc/d40WS7Io6k3C9IKWY9wdplPCBtEqr7Mf3OQ+/jVMahtb5+zylh9TD9WJzpub7Nycyc+e9Or1nggUJ+0zkO34alA2G2JNVlO7SOaqDJFUV0eYcPulm3sQFt3HxqSlmBXNoiMvf/RQ+qxQY8IG24CvKTT2acdmYzE12+b65S7dk2Wy6hJkQLvrGnNq/iHsuf4yn+nzX9Hejo9U3aNIJ5ctA47fu9BLFpriXXd+6tbRtQ4oj5V6Q8UwoQQQiqKcUPNXskwfJXlfHmEs6+DNGw+M9RdUcwAwdHZk8aqCFYGozXC02eQEDZNKvO1sTWEY43QJss5HmHjlnpE2L0mn0l6utj7xUP+FGrS4AdW2z6yYK1rOCoinCsTh28fyNpYwh6z3/T8MqeQhsn7mktcHvWrp/HJP7+MIfXWOFu7Us7+rYhwncsaoY8l6HvkRIQhHSuBukk0ZY34YFMHTrrmuZzp6tzFODL28bnbBFVo1G8CjIUwAr4gT7+7AQDw8vtWJhFd4OpPO2iNIIQQUrOoVGH54M02EG6NCBIcwZOSvOiP/YM8xe0RCkgA2cl/qhtrslxUIay/Dogoah5bhTePsMnrrEeQo0TJvTjHo4s9w3YmG4Q6fv2xu0A2EtmTZ8ouFZEF3MJcZ1tXH37034U498aXXWPR2dLRi4N+9gTmrdrmLPOKPisaa71W2RoyUgICaEjGXWnp9JuuIK2nZ0TxRrP1yLwSjep796h+E2FA/770eW5AnPF5rBsZwxMEc+TcvM/m+oRrjPrxb2zvRZ1tAcpkrON2PP8lnCyXKFnPhBBCSAEU8pPnrSwX9Eg3rH8lBvwllv1buCd4BUSEDZEyE94sGJmMX3gqgeBHYvnGDmzt6sPM8S3GFhlP1FdA+CLCJlzWCF+EPXrUXP8svNYCKd3nL3szYr33+k/VRMm2iDcZ2f1mjycouqiWK2+w6RifX7IRa1u78cenlhh91d6+nNzJ0rqxiAnhuonoy0jEBHyls1192Sfj7ZVbHd+8Ohb941MCW0XLN7T1oL0nhfvmrjb2q2+rRHSYpcgar79dUJq5uOH8tDQkAWRzKevWiN50BtuPaMSqLV3ISOlbVyqqSgj/7vHF6OxN43sn71LuoRBCCCkRhaSo8kaE/cIt+zrYGmGOCJvapyMI4cgRYc9+U5mM7zF5XdwsujISOPJXTwMA3vnRicY2poi1Sp8W9qjfNVnO027B6lac/scX8Ng3P4Lp49wCvLsvjZmXP+y818W23k0yFkNvOuN+RO+5GdFvJmJCOGLPlCItDLdHODizBOAvNmJqk8sjrY65tTsrqgWELXr1704GiVjM+syDIvq2+Pz1Y4udZepYTBYEJeQ7etO44t4FuPONVcZ+9c/U+91/+t31uPWVFb4ItJqkqC83RefTGQnbJu2ipcGSna0GIQxYtqhVW7qQltIlfhkRtpn/YWtomT9CCCHVTyHBH7WN+rn0l1jWIsJBkTdHhOXeX7YPEWiNiDqbXokL1U1HTxr3eKJ40SbLmcehToVemELZHsLzCAd7hNWkt8feWecTwt4Kcvrjdf3cJ+ICvWm3GHcik3Y7PYWZENmIcGtXHzp6Umiqi0fKBpHJZO0fQZPlshMHhX3MBiGsT8p00rH5SXkip1KLCHstCbEYEJPCN/6eVBrt3Slj1D47Rv++9Yp43nRo7jH6rRHfv2c+Zo5vwe1zLPF80I4jXdsocaoL2G5DXm/vqTvk50/gxUuPQaOtjttsy4j3sxhppwnMSJnNr438y0fnQ1V5hFsaEpHvsAkhhFQnUQpaAB4Pa0aJSbO9QYmPS+96G/96dYWxv6DHw8Yx6gI0oL0p/ZaJJ99dj7buPifKeN3TS3xt+jNZznROHHEcIoThOr/m82nKDdzjEUa62NF7UZFXk81EjblLy1ErRPax/webOrHbFY/gz89mM4iEiaVNHb14/J11VrsAIaxy46rvlel7YKosZzrvLy/d7LyeMvsB25ohIIRw3Wil0lZEOBYTPlH7hb/NwX4/edw4juxZ968z5eM1YYoIv71qmyOCAf+kRBX9TbkiwsEFbhSr7bzPajwmawQANNXF7bG5vzevLd+CvX74qLGYTn+pKiHcXE8hTAghg50oBS0AOCmqrG2s/4PSp6kf4H+9utJ5LOtFRcjy8b/q23kxFWQwsbWzD++ubXOEkFdIAkAywCPsFsLhY3VVcHNm5dtC2ODn1Jd4o+h6bl8v3Z5H5e7JclpE2N64rTvlVIrz5rN1RYSRtUassItGPPD2Gt9xmnj8nXWO+AoSzGrSVzwkwpy1RmQxfV1u0AS6tZ10IvH6uUzZHuG4J1IMAM+9t9Fp4yUWGhHOnrOwc5IyCGEvXp+7iv6u3taFtba4NRa4Cbwps/7PRoTd+1URY69HGLDsMKpASTGpKmtEc0MC7QEXMEIIIYODqBHhhKbCMh4RG5T2KYx8IsLfveNtAFaUMjAiHHGyHGBNmFMiQUXFdII8wroiM1k+pJSOeNRtEKrth1s7cfHfX3eEpY4e7fWlo3OEsH9c3iwCuuDSz23CjnJ/899zsWhtG2753AFYbBdqyEhrjLoQW7qhHTui2X18EUsM6wRZI5SAdywUBsFsOseRym2nM1bWi5jbSpNKS2tZxl9EJdvGIFKVLcOwSacWMAw7Ja6buYBz0ubRXCoiq77/y686xXjjFvQ3kfZFhN3t1M1tOiONE+SifcL5UV1CuD6B3nQGPam0k0uQEELI4OCNFVvwsetejNxe/1F0Hql73iuiiOv2nhRau/sMOYj92+rCsb/p0wAVBbb6MQnhRCx3+jTpem1VUvv9E0uwZH27NU6DIH1kwbrAMYkQa4QpJZvCm39Xf5ytjzFp38ioKmXn24UzFBnp3u/qbd3OI3YT6YgTqoKyRigbgGmynMpwYSqoEUV/96YyEEIgJoQrYp7KZBCPxRCLyUBBbRKaYbYMJTLjMRH6vde/t0FZGaJMSjRHhAP2aa9Qx+SLCNvffSmz6xIxwcpyCjXbkFFhQggZfNwVMLs9EO230SmoId3vFVGidh+77kXseeWjPvEQ9psjYI4gNybjuPUVsxfZRE8q4xS+iBtEbyIuHIGmo0dETV7bf7+2wrdMwO9HNeG2RrjXKZFotEZ4hJsuYvSbg3hQlFsbb65hugpKRBRLNz6/DG+s2GJvn91GVatTx6SLNPX0waS1o3y3etMZxITb5wyoiHC4aDUV9hAhEWGVuzidkaE2o3RGOscfFCWPMuHTVNwkKLqt9tcbIISb7Ijwls5ep/hKo+HGsJhUlRD2JmImhBAyeOhLBf9o/+SM3X3LTBFhADjzuhfw2rLNrrb5BJS8P+JbQnyJljXCv7y5Ib8Hrj2ptCNqTROC4jFhFJ2uSXva6wtvfg3rW7tdEVt3GrPcJ8RljfDmVrbfmqSsV7gFRWCDotz6GKPaZExjDONV+/uhn4YeZ7KcdVT65+Cd2OeNvuv/m9AjwjqpjETcXh4kWk1ZGZSn27RPPWtHrnOSzfVc+CQ0U8Q66Fyo/fU52Sfc7ZTo/eUj7+Ipuwqd0n5WvwUPM5Cqs0YAfs8KIYSQ6qYnlcaLSzcGrvemcQKCi1q8uWIr3lyx1d02H0Hl+bXd3BE+Qcc0+cpkbwhD9wibHlPHHREVHOnWxcdz723EtU+5s09kq8hFOx+6iPYKZ3WOYgZ17pssF7CvhEnZa2RkeEQT8EaEo4u5EU1JZx8KFdlUx6SP2xLtGe30S0eMqt2GndLeVMZOn+ZenkpnEI8LxNLubBI63WERYUN7fbJcriwLaSmRQPBkuSgY8wjnSOUXFBFWQli/Xxg7tAFrbEtM1Im0+VBdEeEGCmFCCBmM/PD+hVi5OThPvMkuECWHbtT1rrYeTbAphxA29d1oqiYQQk8qk80aYRAWVkTYIBwDIsKAPUFL28Q1aS3C+TBVllMWRW/OXR1/1ogAIRyQEs4ZY0bmlVM6n6ILwxpVvtrsMm/6NF2kZUtS+/eRCYkINyStY7RubvyfYZ8dEY7H3Nsv3dDuvDaVMA7zCOvkqsiWjdAWJjD1yZgAkIwHZ7OwltseYUM+YiD7dzPUrkAHAOOH1me3L4FXuKqEcEu9dWJojSCEkMHFvFXbQtebooe6gzTnI+B8rBF5RIQFzJG8giLCyhphd/j8/x7lrA/yCIflEe5NyUB7Q5T7gphLCFv//+zMPQBko6/xCFkjTNkXgAgR4Uxu4RNkj8mFKYdxl2aNkFK6xKESeF4vutWHfyyKH5y6GwDrRsfyCHusEekMYvZNjj7+E695znntvbEAsv3k+hxzRXpTHqtCvvSkMq7JcirfddDnps53byqD6Zc9GJg1Ymhj1rAwtqXBt30xqSohrCLC7T35lVYkhBBS2eQjYhT6b2Ku7fP5AU17hFuuCUPGyXIRhbDSgr3prDVCFSgY1pjU2glj0QuXV9WzzhsRdhfUiBARhl9EO5PGVP5hw5h8QjjIIxwwWU71mQ6wRtRrOZW9OXmjcs0Ti7GpvcdsjRD+LAUxR3j696GWGZ8M1NkR4ZT1WXiD4Km0RCLm9wjrlgajELb/V/vUfbQ6Yb57ICtYCxXCnb1p12S5hOEGQ0ffTV/anSu4Lh5zblD0HOEqqm5tX+tCuJ5ZIwghZDBSSKQnn2hg2EQmL/lqAtO+m+qiTcGps0VdT1/GGaOKsOmTyRKxmNEaoZ+3H963wLWuL50JjAhHERT67tTYYjH3o29zQQ33CQzyqQZFhOtUVDFgslyL9thcx3sDE8b8D1ux308ed7yngGaNiPmFYcJjjZDwp08zfcXUo37LI2yeLBcTVrRf337KqKbsuEznz+MR/vox012r1TmMHhEuTGB29qZc1gj1fU5nJH7/xHu+9t6/c93OUp+IGYuZ6Laomo8IK29SG60RhBAyqMgVzTP+AOoR4Rw/kPlEkvJpK4R/3787e29XRCuMmBBIxAR602nncJSw0K0Q8VhQ+rQsjy505wTuS0tXVgd31ojcYzNF3LNpxLIe4Q82deCfr3zgtPVGMIOFsFmCKDH1waYO4+c6NCAjRyG5Zj95/UvOa5U+LS6EL5KacIRlsEfYRL0SwnZBDZ81IpNxMoLo37vxw7J2ANP5c3qxN0l6outjWuqd/YbhzeKQL129abM1QgK/eWyxr733xmZrZ/YJf30yBvWV0M+zHkXvx5y+QKpKCNcnYkjGBSPChBAyyMjpBfWs/tKR09w5dHMK6TzGkmfUySuchchG5HIhpSX8evqyk+WU8NEjpom4OX1aWKS7L51x5TdzWSMinBBdhKrm3kljMSHwietfwmV3z8eyjR0A/OnTTOm1gGBrhDp3H//TS04ZXx09NV0+9hgT+kRIZUkRQvh8zeqzUIJRus5NsDVCHUs2fZp7fZ+yRsSCrREmlKBW+/SW4B7dXOcabxDZ9GnB5254kzkCD1jWiB7tCUBSi+Yb9+dZvq4t+/nWJ+LOcal0bld8dFeXD73mrRFCCDTXJzhZjhBCBhm5Irp6hAyw9J1LBOVMs1WaiDAQIIASEYUwJOoTMdsjrKwRdqotTTWZHqtb+w7uW5X1VeiZHqKI/UzGL/ZUFDdbnCMb1TvqV09jxaZO9KTSrsmC+Voj9KipSUTXB5zbQh/vK1QkOx4TPgHpVJvTzom3qIXplKpjVB5h02cYiwnE7Ql6it50JvA4TftOxr1CuN7ZbxhRIsLDG3MIYVdEODi7BuD/vq5vzQrhOoM14pQ9t3P9HdS8NQIAhjYmI5X8I4QQUj3kSn3VkIxj3pXHO+9jQrhsAVF/8KNg+rENmowU1HeYiPGiIsKql95UxmcbUBOqvITpAmuynFlEREmfZspI4YsIx9xe4nVt3UhlpEs8BeYRDoiamybgubYLsFTk4xE2oadP81oj4p6IsI6TPs1+f9nJu2THqiLCaSWE/fuN2x5h/XvUm8pgSMh3zjtZzvt9G97kTw9nQn02YRaKoSFCuKsvZYwImyaYSoPne11rj/O6PpH1wfdpTxwYEfYwoqkuZ3JzQggh1UWUSI8ugISwtpFSIpXO5IwG9qeyHABs54lIO+MwtBdC+DybQShrhDsinPb5gYM8wmHnrS8tXcJLv9mIEljTT6nSSQlPxM8bqRawIsm5cgQDudOnBaHbAHR7TCEeYR0VfTZaI+L+anMKtVv1WehCXrdGWJk/zBFhIdxp+CwhHOwzF0Jg/ofb8O7aNgD+iHDU9H23z1mJvnQmNCIcdhPY1ZtxcgID2SchqsyzTjojfd/Xda26NSLrEVY3NTEhXBHhshXUEEKcKIR4VwixRAgx27D+O0KIufa/+UKItBDCXwaoCIwcQiFMCCFhVNI1OyqmFFFe9ECgskZced8C7HTZQ86j5yCUaI6CSQh7rRmK1du6HTGij81Y/MKAhOWN7Emls+nTUhmfSIzHAtKnhfRtWSP80TSTeDdhskaYPML6uISwBGkiJnD/JYeF9m8S9lFIatv11yOs41gjhMkaYX35lNiWyKaXM5VdVjgC2rapmL4Xybi/oEZvKoMhIZlHMlLi1D88j1/bE9IKFcJ/evp9TL/sIVdk1otXCLtsL+m0qzyzGoep8FlG+oXshnY9IhzPRoTT6vvl/p6UpaCGECIO4I8ATgKwK4BPCSF21dtIKX8ppdxbSrk3gEsBPCOl3OzrrAiMHFKHLRTChBBipNKu2VHJlasX8BRvsF/f+uoKAFahpTA7giWEo43FFGVVj5pN/Oi/C13vI2pgC2lFDfUSyz0pq+yuTiIoa0SOyXL6segliCN5hHVrREDWCF9E2PYfx2ICk0c3IQyveHP6yDEufbv1bT3492vWd6BYEeFYzG+NUMedcibLZdc5n4H9n34+kp6IsOmQEzHLG+uaLJcOt0Z4rUTeJxBR0/dFwZsBRc9v3a1N8tTH0WaICJvS4UkJHDVjDAAra0Tcc56Vf1pRLmvEAQCWSCmXSil7AdwG4PSQ9p8C8K9iDM7EyCF12NTRm9fEB0IIqSEq6podBW+Z1iB0Iahe6VWn6hPBUbBMJvpEG9NT4uaQx9ReRE4pl0VCoj4Zs0ssS3v/0hgRzpVH2EtfWrq8n9nJctHOhSvvcEBEWAi3cFXR5oRHwJgIniwXPi4928S2rj78753zsHZbdySR9J0TZgSuc4SwEJh919uudVmPsH8fYdYIl0ANmCyXcKwR2b57UhljVPfSk2YC8FfY9WYpybeyYRj65/Tfrx7mOv8dnnEo+1JrlykiLH0WpYZkDLtNGAZAeYSt5SntiYP+d//zhxbh2if9+Yn7QxQhPBHASu39KnuZDyFEE4ATAdwZsP4iIcQcIcScDRs25DtWAJYQ7klljLW3CSGEVNY1OwpRRLA9Hu219b/KlwqET1BLG36Ew9p6CfNJeskrIgxLxOiT5QD/hDCVa9ZLrsly+kQmVzq0CKfcPVkuOw4dq2xw9r0SdF4BYyKwslyOGwlTJDmVCfe5AsCPz9gdnz5wh8D1KvtBTAgsWN3qHqs3fRq0CniaXcIav3msQR5hVT5b/yx7Uxnjd+64XcfhK0dN8y33pk+LWtkwCupzOnvWJOw+cZjrmLxPcpSf1xQRTmck0hmJloYEvnDYVKvvWMzZpk6fLKciwh5rxNyVW/HGiq1FOjJ7zBHamL6RQX96HwXwQtAjNinlDVLKWVLKWWPGjIk6Rhcj7cdTm9ppjyCEEAMVdc2OgvJmnrmPUa8bUWLJJYSTwT9pUvon6gRh8iGGPabuD1JaoqVb8wgDfsEZHBEO7rsvnXFFhPXH6dGsEdrrjDXxzj8Gt+CV0hI7QePVieoRPmyn0a73pomIh/3iKWxoC/a5AnDy9QbhrYgHZMWuKX2aQj2h9lbfA9xi3/IIG8YVt60RmWw/vemM0d4QEwIdPf5AYKEe4Sgof7Q6rqR2k6YiwupGQf1vmiyXkdaxxbXPISaylifdI5xKZyPC3s8sn4wsUYjS2yoAk7T32wNYHdD2HJT4EduIIZYQ3tJJIUwIIQYq6podBSVApo0ZEqn9l4+c5ggUlS8VCLdGtHWnsHJzZ6T+TY/Y84oIR25p3aE01cXR2Zt2Wf680dKgEsvhHmGJ3lTG8WDqk+UyUmLX7YbixN3GB26v2q/c3Ik127qtCXueNkK4I/XpjETKFsI5I8IBadC87LH9MJf4DfIWP/fexhz7C7drqIjwM4utpx+n7TUBM8a1ALCOMR4T6Ev5C2qs2daNKbMfwOsfbLHaan3WeSLCwdaIbMQ+lbH87CY7TjwmsHprl295KT3CStyqQ9E/V2XRUN9Xtco4WS4jkZbSdR6s74m1vj4R891weNOnAdFzdEclypl6DcB0IcRUAB/CunCe620khBgG4AgAnynqCD2MtIXwJk6YI4QQExV1zY6Cigg3RvjxXn7VKQDg+AR1ARAWKVq0tg3H/fbZSOPJN4+wl3ysEVJKNNUl0NmTcoXtjRFh42S54L77Uhn0pjIYZd8suCrLSavPiSMafdtNHN6ID7d2Oefh8KufAmAJEO+xSemOcqoUWUFWDp2gFHPefcSF8EzIMn/OuTIKJOOxUHHe44kI63ltVTRXj7CrG4Cn37WE899f/sB3AHoauaA8wolYzFXEQ1mFmgzfOSGAta3+anve735DyNMRRUtDwihYfeNzRK5wvQey1gjrpibjnN+H56/19aM8wjGtwp4e8a3Xvl+pjG6NcPcTtWpjVHL2JqVMAbgEwCMA3gFwu5RygRDiYiHExVrTMwE8KqXsKOoIPSghzMwRhBDip9Ku2VHotiNx+TzOVSJEF3fe2e2FYowIN+QTYctnspwdEe7zRISN1gjT9sHir8e2RihRpKJsWR+veaRPfftI7D5xqO+GIG70uFqJxBTKBxq3J4CFieF4QER4ZzsKq4jFROi5cfadw+4RlIJO4fWqJ+LZvLaqKpzJGtHRa4nJRvv75/YI6752s0c4GXcX1FC5ik03XzEhcPj00b7l3nMZJdp+9MyxxuVDPd91db6VENaj2h2eiLASwibff0ZmLTaqnZ4Voj4ZYI2ogIgwpJQPAnjQs+x6z/ubAdxcrIEFMcqun70+hxeIEEJqlUq6ZkdBWSN0IZyImUWHF71JsbyDpqIJ+Yl0/7KYCPbzWhHhtGu9V9gEF9QIHoc6DmUZcUeErRRnpihzXSKGpmTCd0NgEs6+iLDtEVZCLB4TyAQUOzEJ2gsOmYJjdxnn2BMAQ0Q44HPO5XtOxqNZI0zt1eQ/k8Brt6OqaoJaTAiMaalHV2/a5acVMPui1U2DOk3qcxti+M7FhMC3jpuB597biLdXbdOW+/v0csoe2+GBeWtcfZl48ttHYu22bpz6h+ftvrKfJeD+3NwR4fD82RnpvkkCslX1gABrhOF7X2whXHWV5YY2JDFuaL0vgTkhhJDqRFkj9AICQY+/Fer3Vo8UFiKExw2t9y0zlZvVf+CvPmvP8LEBOHjaqMDtdaS0RHZvOuPK8+u1DSRi5mhilElvKiLs9Qh7i2G4xhvzZ5aIGSbASbiPTY8IA+HCyCTCD9pxpMEW4m6TNGwH5M6EEY/lsEZ4I8KxmHPOBRAoopVPVt0sCQG8NPtovPmD41xCLhYzWyOS8RjiIvtd7g2xRqho6phm9/fW6942HafXdx700YxursduE4Zq43P7f/XPTR17Mp778zZbI7Lb1MW19GnpjPOaQtjA5FFD8KHBLE4IIaT6UEK4SZsclOvHzlvVCwifLJfveLz710VorvLJQggcOWOsK2dtWLYCJaDatWwAxhLLJmtEhEQYDfZ50SPsmYxtdQiwccRjwieyTcLZ5BHWhXCY8DQJS2tSoHuZ99wF3STlskYk4uabCYV382Q8K9iE59ilzEbHlYBuTFrCVcCyVahxqgiqgHn/KtrvWCPS1vdAj5Aq1PbeGy2fr9pwivyp74LPhT5OtZ1apkeE567c6moTVjZb+cdjMfdnrzapT2Y92cs3dbom1OkU6+/c2X9RexsghjUm0drlT81BCCGk+shaI7IRsJxC2P5t1IO3YenT8h1PvUdJuH2f0fbTonktwwSCOm69OEHUghpRikupR/ZpLWSaljJw8hZgiSSvsLSyRrg3eGzhWqzelp28lbYzAzhCOCwibFilcuq69uvpIxEkhDMSM8a1GD20QPhnYGyvjUUItyAzebPVML2fk/q+KJ+xaT96QY0ezdLivelSQ/j8YVNxwm7jfPvOtjNYXjznLerpUOdNfdeM0WbN8xuElNaNa9yTEi1rjYi7xq1u3LyffznSp1UcQxuSkWY6EkIIqXyUN1P3ROaaGa5+GvtrjTDhjQhPGNZgLJuba2y6YAiLvg2xI+GdmhA2iUGTyGjryf1bWJ90R4SF0PK5BowrJoQvC0NM+AXXPXPdmfmsiLB7MlQQpnXJeMy33HsuwiLydYkY/nrB/sZ1UdO16e1VFFSf4AWYI/FOQQ9fdDYbUTVaI+wSy9LjEa5PxFweY2sc2b5maJMKvZ+j6Vi91ohceZ4BK6Wh8girr4NZzNs+4pA+1dMC/cmC8GSNMIls7/dhwLNGVCJDGxPYxogwIYQMCrLp0/KwRti/jYVaI7585DTc+aWDsbtd3tU1nlTGtf8XLz3GJQBzinTlbdQ2CtMcKttAuysi7BFAMfNEr6sffjd0LED2BkEXtl5B4sWyRriXhbV3+pUS6UzGGWuYNcIkaE25foMirCYS8WBxH1TJLmx8jjXCY2vI2BF1HSWEvXtRxylgFpGONcL+LqsnJPXJmG9ioL69NzXbTRfMyrYznCLvdyrXZ/nk/zsCd335UGf86k/NFFmPEhHOSCs/sve7nM0a4U/Pp69X0CMMKyLc3pNCKkc5RUIIIZVP1mMZPSKsBIGekCCfiPCM8S3Yb/JIXPOpfXDnlw522Ri6+9I+sZWPNcJ5RG54/GtCVa3r6PV7hPXH/PkKOUVD0uARtgVJkGc2Jvxp5KJUi8tnspw5aumPCvojwiFCOCAThlqXD/rkOiHcgsw0MU/lzvUec/ZcmMVnMm6NOeNYI5RHOO4bs4jp27mLdRw9M2uVCLMvOH3l+Cx3HNOMYY1Jp5266TSdX/XdDDvHf35mKeZ9uM1XoTAbEY4HZtXQKUv6tEpjaGMSgHX3PNwuuUwIIaQ6URFhPQ9w1B87V0Q4D4/wPpNGALByte43eaTrB9w0WU5XwrkEqfLRRhVeWQ+vP1fuX86f5VRSjVqS2EtDwp01Qnk1LUFi3iYmBFZs7swWiUDEiLBvslxwW1NEOBn378MrvMLOf9g5ytcakdSiyyp9msI0MW9Lp/Wk2jt+tV8hzCnwEna2hIwnItyQjPlEv9uioz1x8PYZsB93X74mRlQ7ZUMyR4RjrrYm/j1nJQBg5vgW902iK2tEbmtEsT3CVSmEh9lCuLWLQpgQQqqdjh6/EI6SmQFwP+6Pao24+qw9scOoJtcyXaD09GUME4t0AZLjh1hFhCN4MAF32jiFEnsNyTi2G2ZVfwvzX4bhjQhLaOnTQrJGtPekcPk9851lsZg/TZeXVD6T5QKif7kmy4V9N8LEbr4R9YQeAfdEc9N2GWQTPiGspR8LKrEc1yYn6hHhoMlygPtmUf09PPC1w1wV8XT8fUU7HzEnImy9N4l5J31aBHWtF4fRJyHqWSNc7UtsjahKIayqntAnTAgh1c+ryzZj53HNrh/Y3OnTLPSIcNSIaZBPU9GdMqRP015HncgXVbeainWYBF3BEWFPxb2MlMhk3PlcvRgjcyHtnb4zVt+OEA7wAQcVSzGlT/PlEQ45//l6ksNQkVrAHxG2cuKaj8E/cc22V8B8/pSdQ9kteiJGhPXviFq8m+15/2CTv2Ckz3ce8QuqmqlMGWH2hShPQbzV4nRrhGlznzWCk+WyEeEnFq0r80gIIYT0h+6+NF5dvtnlbwSi+3B1PRUllRgQkLZLEwmmiLDup8xpjTAIjLAtTEI4SkGEqDR4LCMZ3RoRIFy6+tK+ZXEhclaPTmUkUvpkOcO5CKvSF4/5xxQlI0J2XZhtonBrhID7WFLp4Iiwv59s+jRjHmGvNSKVfUIS1RrhPUdBadp0ot6oiUgRYdsaEUUIe3zc6mVQJJsFNQzsNWk4AGDF5s7yDoQQQki/6EllkM5IjGlxV8rK5QNUP41K/B45Ywwmjxpibuv5bTX7ELOvjRFhbZN8I4u5aDJZI4xRt8J+sr0RYWlHM8Oip1ttX7JOUB5cHauMblYQmYSRWmYSknE7lZh7mcC0MdnPNtQaEWqbyNcakU3l5p3olpHSmEsY8ItdfcKd0bIQcxfUUBHh+kQsujXCO/YA/7W7r6hPUKz/nTzCAfaOoHVe9KpxQgDjhjZY1fJa6gPsMu73FMKw/qj3mzwCa7Z2525MCCGkYlEeX+/vdu70adYG6YzExOGNuPnCAwKjyN6fVtNvtR5l7Or1C2H99zmXIM1XJjcY0kYZHz/n2bESJ3Vxd/9SZtOnBYmhrQbroVVQI5xU2kqfpvZtEp9hAixuGFM8JnDHxYc474MKalj7K6JH2FNZzjVZzraAmPAeshpvkLUkYU8Sy06WixYR1o/Vd86MYrWwyXLqU3fSp9nn8Yen7ZbdXyx7jLlo605pkXaB/aeMxOvfPxYThjcax+TtkwU1bMYPa8DaVgphQgipZoJSMkXN1ZuR2df+yK9anjsS5vII96UN+8+unzC8IdLYcqWnyrYXaPJEbU2iLd+IsLIR1nkeOUtk87kGiSFT9dYw4aywIsJS84z6xxwmwOJx4cuBGxMCI4bUYcfRVlQ4LCJc3KwR2fNmTerKbp8O8Qh7bxcSOSLCalKesh70pKyIaSImQu0MrvPg/e5HsNbkGxF2/ladTBrZNkfOGAPASkuYi55U2ifUVeKDKOnTWGLZZsKwBqze2hXZE0YIIaTySHt+XBVRI8J6YQNvH9PGNAMAxnlsF7lmpvekMr5CBvomuX6IlRDKJ/7YVO+2Rxhz7Ob5aF8XwvqWmYx13oOyGADmyehR0qelMhIZmRUvJtEadoOQMGWNUFYK+33YTVLYOcrfGpH1sgoI1/art3ZlK8l58KdPU8LRfP5UKed0RqK9J4XW7j40JOMQQvjzWese4YQeETbv070suK8wvFkj1Jh0f/5H95qAt35wPA6eNipnfz2pTOD3KGiSpg6tETbbDWtETyqDrZ3MHEEIIdWKimX4JkRFzMyQkTJQeF5y9E74x+cPxGFaUQprX/7+XOnTUuHp0wDgzi8dgiAKyXLmnUAWpdRsLlpCIsIZKREPEbZ9aX+QKUr6tLSaLKciwobP0fGcGraPidyV5cK+G6ERYYMoDzul3oiwvn13XwZvrNhq3M5vjcgu0P3CzvqYbY3ISOx+xSO45aUPHF932KTRpCtrhOecRYoIB3btwskaYX9g3zh2Os6eNQmfmLV9dixxgWFNSYxursd9lxwa2l9PXybwc4oyWa4xyYgwAGC7YdajqdXbuso8EkIIIYWiJgh5f+9zTbpRqy2vq/XaG0RNxGI4bPpo349rUFROpy4Rw58+vS9u+dwB1jae9vtNHoHJnlzETv8h+wnC++MeVsY2KioiXJ9we4TXt/Zg5eYuCBFcWc5EIhZzVTYzobyz6pwbJ/3liAh7RZxXCIVGffPMMZy7XLP1WlkVouEdb7aghl6gI7ve2o9epEP5YMNsIO6sEe51YRPasttEOx71HVFP4Ic31eEXZ+3pmuSpn9uZ44eG9teTSrtuMNxj8rf3fv7N9cXN/Fu9Qni4lWCcE+YIIaR6Ub7DoJn2QajIpOURFq5lCn1mumvbCI9f6xMxnLTHdvjIzmOMfQD+EsTa4IzjCWOI58fdlH833zzCqmy0t2LX0o1Wjtkl69sCo4IXHDLFtywZz31EKiLsTJbL0xoRi5kmy1n/KyEW9mg834hwmM0iHstGpwXMVeFMeA/PKTYhsut0oaqsEZ1aiW0VEQ6dGKit834yUby23ibfO3km/vTpfX3bhUXw1WHootwr3lWmL4XL159jjKZl3r+V/lK1QnjKqCYkYgKvLNtU7qEQQggpEDXzPtfjcC/Zx7UyMAKbFVy5+86Vq9QkAXNNUdF3kyvy6rVGmKKP+VouWuoTdsYI86S4hWtaA4Xtlafthue+e5RnTOY8rzpp2yOsorqmKGxYF4lYbmtElAlxMw2Ttkzn1OsF96I+t1gsGz0e6/Gcewkar9DWuSe9xTC62Zw+MKofOijryC7bDdXaeJ+MuN9/9pApOGmP7Xz7yXqE/V/4/371MHznhBmuvnw3tRGivEHbWtuH/232l6oVwsOb6rDrhKF4d117uYdCCCGkQNTjYO8PoyozG4RqnZHZN/7sEGo5jMt1cpXxNYm3qFkDgNzFPvweYYOAzDMx2/RxLY59wyQwbvzs/j4bgoqAA1bJW51EPPdkOTWBTIk006P9WPYuxrcuHvNnjVCo1mFDUPt94GuH+9aZzkEuu0NWh2Yjws0NCeww0myLMY3PnT5N2P1mW8VjAjuNbXZtU68iwiHji4cI4WQ8hvsuORQ3XTDLWebNTKK2GVIXx/2XHBY4CVS1Mz0A2W3CMHzlqJ18y9+8/DgcMGWkfQwmn7i6IfAf39Uf39P1vtCKilGpWiEMAKOG1GFzR0+5h0EIIaRAstYI9/KVW8Lnf7g9wtlHzzp6VTDTcteyHGV88xLCAY99w/AW1TDn382jQwCfO3QKHvvWEa4xKc49cAccsfMYlxBpqU/grxfs77z3CqNkPBYoxkcNsdJf9aQsIRyWPi1M2MQNWSO85zksuh6Pm78LQYRWMJTuVGF60Yiw6nhBWSOEyI7LWyHOJ4SVRziiDcT0uey5/XC0NCSd9411cbz6vWOc92oMLQ1J7LH9sMD9KIK+7yZGDKlzIremG5uwz0ePYlvbUwgHMqq5Hpva/dVvCCGEVAdOQQ3Pj92qHJVDs0n+NWuE1wJh/8JFmSznS9nl3cYgNHJYhPOyRniFrzHDQZ6CQN+n9xyMH2pNONeX1iVirvPgLc2ciAVHhEc316O5PuFEhJ3JckaPcPCYTQU1Up4MFlEiwlEnAeaqEhjTRGxCKxoR5lMNKgmtT07Um8RjMUy05z0pHCEcMR1cULOY6zsIDG1M+tblOlXqePJNV+v4oY03dcE79QrnKNXq+kN1C+EhddjU0ctcwoQQUqUoMRl1BrvCiQi78gh72/hFR9C+coll0/D03x634MhKc527v3wIrvzorv6OEC0zQn/0gLe7pPa4XuH9JfX6U5NxfwW87LZWEY3elNcaYbJ4hIzTMFlOTUqM8lNvspSEVSILm4wmkT0HAiIbbY6FR4S9B+iIc2Q/Z1/WiJjAWz843omsh50/hdsaYT6r+g2c9/PLTjIN57CdRmNMSz2+fKTfAhGFsL830759FfBKrFSrWwg316E3lUF7T6rcQyGEEFIASuR4fyxvumB/n1dQxymokdF+7PthjfAK0SjV6PSsEQlXTlfr/6NnjsX2I7KRvn12GIGdxporb/lThvXfI+zqP8ADHRZk9p4DK52YeQNpF9HoVRFhxxoRLIKCdK33s1A+8jP2mQjAeuwehGl/f/rMvlj8k5Mit1cMa0y6zpOKzsZjwJC64Iiwt8eE04c7HZtCid1hTUnsPK7F3ia3NcJdYjlgLK7Is/vzC/Pp6owYUofXLjsWu0/MbZ9w7zv4OxBuj/G8Z0Q4mFFDrFmWmztojyCEkGokW7bVvXzK6CH45P6TArdTzcMqy2Uf/ZqX60TNW6yjWyPcfk2LukTMJ+aDfv+9+y+GR1jHO37l38xHY8RFsBSXgDEibIq45pr85F2tbji+ccx0LPzRCU5+ZOMYjaIrFphp4PjdxgPwR42vOWdv7D5xmCNShRDOzUlMCDTVB0eE/Tcd2XMdNFlOoUSzEuBh1gg9xV6QmNXH4rWdlNh663xXTJ9JwEMTu73XklNaqVrVQnic7XFalWNSBSGEkMokE5A1IhfZmewy8BFvUPTSmEfYFxH2bGPoR588FFjIIcCu4SWorLBrjP2IjPmiu5pvNZ8+gtqrSnVKCKvzmW+JZdN65RG2LAnhOWSN+wtp/7lDp2DuD45zynErjp451u4vK5N0u0JoRNizQ90O4Uyk9EyW87ZVn0+oNSLCZ+ePCGffBxW1KBZBN6gzx7eEfpd96fO0U7Dj6CFFG5/Tf9F7HED2nDQM8ZjAk4vWl3sohBBCCiDIGpELPaWT2jJIzAZFinVyTY4ziTfds6oLFmESGyH7No2x2BFhv0c4K84UuebbxETIGDzWCHU+Lzl6Jxy/67jQseRiv8kjIrc1WUrCJ2YJDG+qM3i07Ty+dqQ4lck4Nzt18VhoRNj73XFukrSIsL67hEFsq20KLSetcHmR4+4bmawoz9lNQZgiwvOuPB73fOXQcGuE52ZGb3v/Vw8r6hiBKhfCQxuSOHrmWDw8f225h0IIIaQAnMly+UaEncpyWWtEUETYN1kugmcxymS5s/bb3nntFq7642frtZKYQcfp1TtGAdQPxRL4uD7PPoKiucoa8dx7GwFkz8fYlgbccP4sV9tDpo0CAOw2IbgU711fPgRvXH4cll91CqbkEQU0lqYOyQyhBLv6XD6270T8/fMHoNGeDKcmy6XS0um7LhFDU9IdEZ4xLuv99g5BnyznWCM8k+Wyr1W2COt/b+YOU79huAS3p332Jq00Slh9V/S/rZaGJBqS8dAUg0HjjMfCs3UUSlULYcC6U/xwaxdau/vKPRRCCCF54lgjCowIS71ca8AEN2/Ppj35oskRtvnBqbti3x2GAwiu8uXPWGHoyLD/4keEzUJYD6CGldD1tvUipXSNOezG5pQ9J+CNy4/DfpNHBrbZd4cRGBkyKU7n4B1HOa9NkcawFGlZYWq9H91cj8OnZ4uKqG370tKJNtclYi6BesEhU3DPVw7NduoTwlkbism3rp+3uBMJtv4/Y++JuPbcfYxjN5Xh9hKWQi9q+rRC8UaEzbYM0/fcHBEuVYawqhfCI5usP5TWLgphQgipNjIZ82S5qPSmMsGR34AfenMZV2+b3NvonlXXxCXTGEL6sfYf/Dg421fxFEvCYI0woU8iC/P26mWVAaAjJJtTTCCyyI2Cbp0wZyhwS51/ffGg7FhiaruY3da9fZ1dVCSVyTii2BLC1vLDp4/Glaft5kSQAYM1wu5zeGMyoLqd2YcMWBkbTt1zgm+boGMNw5+WzHyjWCzUoapz2qBVtgsvk+35W7A7OnOf7U3N+03xY8wDzNBG6xBau1LAiByNCSGEVBQqNVahxSI+3NqF0c2WqArKBRwla4RvW29xjoDhqc2SsSDBaI5Se4mSR7hfEWFP2KtOy4agMAXc6hNxdPepIhnB/WekdOUdXrK+PXgsRQ5B6v5sk8DynsuDp2kRZMca4X6f7dt6n0pLp+/6eDYi3GOfGx3vELr6rHLhY1vqnT703SSMk+Wi2B7yO4/eCLIIicoWBxVtt8+bdlMVdnjea0EsJvDWFcdjSFju5n5Q9RFhVT6Q1ghCCKk+lPhSP+pvXn4cXv/+sTm3c1tyAywQgZFi/6+wVwz4s0aYf7mdXKk5IsJB74PGZE45Vbhg8U3Gi0eLBrrFS3BrKYFmzb95/sGTXevvuyRrHdC7OXz66BwjyI1e3MLkB85V0tn0v0JNlutLZ1zRWhXd7En7hbD3c1rf1gMAGNNSb6w6qI85LO2cl/wjwgHWiLx6iY5jX7Lf6yW7w75LpuMa1piMdE4KoeqFsMonuIW5hAkhpOpIOyWWrfcjhtRhVHN9zu10Yape+T2QwtfW1A7I7ZMMWq9+s4NynQaNyYsvImwqsRyw7ejmOtfj/ijjMFWWM1GfjCaEAaC5wRLCnzloB0wf5y4csuf2w439/OX8WXhh9tGh/eZCtyWYPocwwegVrT4hbJ+ndEY6QiweF46oU+ni3H2632/QhLDTBrr41awRqpBGBP9vvikHA7+LJVLCqlt1jkzfJdOu8z2u/lL1Qninsc2oT8Qw54Mt5R4KIYSQPFHWiHyjne4UZfb/nl+0YI+woT9f/+ERYu92roiw1jbqYfnzCJvSgJm3nfP94zBjvLliXdA4skI4u8w0GakhEe1xtJTSmdEflmPXO5aGZBwThzcGN46AKyIcISNIGN626jz1ZbLWiLgQjjWiN5X29eHd3VQ768XU0UOc6Kh+DkzFWKIUkcj3b6ZcEeEJwxsxurkOPzg1W148LIfxQAvhqvcINyTj2H5EI9ZsY1ENQgipNmShWSP014Y0TUBw1MkU2cyVazhIdJj2rUf7vD/4QVFVX8Q2z8lyubRDUInlXKc9akQ4I+F4OBtzeDmL7RHWhbDZI5xbVMYDJsupEsepdMZVbtmxRhgiwt5v3OyTZuKMfSZixzHNWLqh3dAiixLKYSnfCsXnEYY6ntIKz4ZkDHO+f5xrWdhHUuqSyl6qXggDwMotXXh/Qwfae1IujxIhhJDKRlksCy2oAehRNHMU1+cRjpCi1xchDhiH2qV7spy/X8cL7dm3elzutT+GlqU1jSOHEvauTZomyxm2c/s6g/uXyEZMm3IK4dDVedOoRaCNHuEIorLZLpDhFWF6HmGnGEZMOEI4ijWiIRnH3pOGA4AWETaPSX1Polgj8iXq30exMfnr1TLTunwnzvaXQaEa1Rdx0ZpWzJoSnJeQEEJIZZFxskbku6XfihDkgYzi082VLi1YLJij0dm17uV6IYb/XHwwJo9sMo7JJOjCHoXnupEIigjn2m780IZsHyECRc/nrKfJMlHsLAW68DbtO8qkspZ6a76R3xphve/LZByR6rJGGCbLRbmpy9UiShQ7X6J66ItFWL8DHPQNpeo9wgBw3kHW7NS+dGmSLRNCCCkNGWeyXD8iwnlbI0z9hQvfIHGjFgd5hJWeUctGNWfz5+4/ZSTG2kKzPx5hIPfj5CCPsGux4Sf0Zx/bA+OG1hv78G6qzpH6TIMo9qP4Rk38ThrR5Fsf5bulJvqlMm5hm9QiwnqqP+WdNqVPC9tb7poQ0t5v6SLCO49rxreP39n33SwVlSR6TQwKIXz2/pMAAL99bHGZR0IIISQfMp70aVERhtd+IawaeEWu6VFtfu+9+9DHb/IIK4JsA1HyCIedoVynzx9x9leWMzGsMYnzD55i7ENHSk0I5xB7xdZF+jndbliDb32UiLCyVbZ3uwuBJJzKchknw4nQPMKmiHDYZzHGzohy1ixzcQgn6lyCiLD6jj36zSNwydHTS+4NVvTnezsQDAprRIt9J/fq8s1lHgkhhJB8cKJsef4iuoSn/dIrJkVgRDiC/zaXadhZbK0IElv+bs3touQR9loT/nPxwY6wyhX19Oqq7GS53OddOp+Ref30sc345Sf2wn1zVwPI2l0Cx1J0a4TuEfYLSNO5+fdFB+HNlVud90pHtHkq4iW19GlS+64qa0TaoPrDjm9YUxLv/fQkJGICVz/8rm+9OnWlEIj+px7RvwP9269/WYmqJRfEoIgIq6IahBBCqotCSyy7J8vZ1oiAzA9+m4OhP49k9UeEAwSsqkimZ40w2DZyEeRNdY3B09f+U0Ziip2aK5e49I6/zmSNCMAbtd9nh+H4f8ft7Kz/zSf3xt6ThmPCcCsam6t8crF1V64sFSa/7YE7jsLFR0xz3jtC2BsRtj+XVEY658HyCBde5SwZj+X8XgxEoHSg5qSZjlUap2aWh0ERER45pA6jm+vRWDcodD0hhNQMKnrYP4+w9b+vNGvAZDnjTHVvADiCeNb76nceYV9EOD+PcO70ae73CUNBjSBpoj4j1fLuLx+Kzt4Ufm3bEVUXFx46FWOHNuDUPbYLH0uRFVhTXRyvXnZM5GIlJlRAzWuNcPIIpzPaxE7hqrjnpT9CfyAFYlhRi2IQ5TyUOhodhUGjHI/YeQwypnR+hBBCKpZ0Jtwa8cg3PoIXDZXHTD5cf8EA8w+9aVe+x8beCHHQD7Zjy9DSpxk9wtllJh+rVxyarBYjm4IjrWp8FxwyJXS9ImrWCCAbEdb7MN1MxGMCp+01IafQLXYkMhmPYWxLA0YHVCSM4hHeb/IIAMAn93d7d5WITqWl6+lFfzJ4hFFKa4SXoCcmtcagiAgD1h1hZ28qd0NCCCEVQza/rvnXOLBiWoSIcHAe4dy//BEtwkYR7soa4bzORvoe/eZH0NHjrkgWJY/wibuPx2/P3gvf/PdbxrEs+/nJAICbX1zuW1fniWCqvMf6WE2V5QCgzhbNeh+FRL2d9kWMQX73xBk520T5vMcNbcDyq07xLU9qH0zaU/zlgkOm4IgZY3zb9C8ibPcxAOaIrEe41PvxL8vlEd5v8ggcttPo0gzIw+ARwvVxdPSkIaWsiFA7IYSQ3KRzTMQKwtTc5xGOmScDmfblt0+Er/e2M5XJtV77t2tpSPrmtuj9J2LCWKZYCIEz99k+UAiH/fZ5Pa3OuQncIsvnD9sRrd0pfP6wqeb95inaihkR/vKROxWvMwOjm+vwpSOn4cx9JuLuNz8EkD13V562m3Gb/ohYmVXCJafUeYQVpv7H2oVkjt1lrHGbO790SEnHpDNorBGjh9SjN51BazejwoQQUi1kCi2x7MoaYb0OTJ/mIVpBDW+DoL6s/+Ou8Zj6CT8+NfZDpo3Cg18/HMOagieB65O8otIQ5GmNcNob6+L43sm7uMR0vyLCVRSsEkLgf0+ciZ3HteDAqVbBLmWjCKIYQn8gztBAWSNM/Y8d2oDXLjsW3zx2Z//KASaSEBZCnCiEeFcIsUQIMTugzZFCiLlCiAVCiGeKO8zcbGfPVl2zrWugd00IIRVFNVyzFY7vMt/JctprR4x6rREw+2CNHmHf+9zbWMttEe7K8qB5hCMeV1wT8zuPC7CD2Mw+aabxMX4Y9UFZDqTxZU7085OvkBrgCrpF48gZYzHvyuNx0I6jQttxspxFrvMwpqV+wMspm8hpjRBCxAH8EcBxAFYBeE0IcZ+UcqHWZjiA6wCcKKVcIYQwx7pLyOSRVgqZxevaMXP80IHePSGEVATVcs0GgPc3tGPhmlYA/cwjbP8fPX2af1++H+SIHmG1PGoe4SDU/kuVXzVp9//pA3fAKXuGZ3XIl/ytEeUXP4USLV1r/03C3qj5rV840JgjuT9k53GW2hpR2UTxCB8AYImUcikACCFuA3A6gIVam3MB3CWlXAEAUsr1xR5oLnadMBT1iRjeXrkVp+01YaB3TwghlUJVXLMB4JhfZwPR+Vsj9Nd25Lc/BTVyvA8useyPOrsny+UXEc5VjKJQVLR80sgmHDJNm4SkDS+fXffPGuFfdvOF+2NMiznrQ7XRnyBnkEX4kBJMHAv6+yj+fkq8g34S5fZiIoCV2vtV9jKdnQGMEEI8LYR4XQhxvqkjIcRFQog5Qog5GzZsKGzEAcRjAiOa6tDa3VfUfgkhpMqoimu2b195BrvMRgQ3+RTU8EWAI9gp9OWmCHXgvgwooVoMIXzibuPxsX3cH7nKcxwllVgUopz/wG0NJ/PIGWOx24Rh/RpTpdAfD/QZ9ueWy4dcDLLlwUu7n4HIgNEfokSETUfg/UtNANgPwDEAGgG8JIR4WUq52LWRlDcAuAEAZs2aVfTb3qGNCV9VGEIIqTGq5pqtk29E2JQ+zUvQrHiTUMmVNSLox1wtjbnGk/8PfzGtEdeft59vmaquFlZcIh9/qgiIgEehAmyhJaU/h3fEzmPy9n8XivP3UWprRIV/3lGE8CoAk7T32wNYbWizUUrZAaBDCPEsgL0ALMYA0tKQZESYEFLrVM01Wydf36guTIPEY/aH3rvc1J/nvS9CHL6PoPRpUVE3AqXyCMeL7EEOv20Ip5o9wlGoluNz8myXqv8KjwQrojyMeg3AdCHEVCFEHYBzANznaXMvgMOFEAkhRBOAAwG8U9yh5mZoQwIvLNmE7909b6B3TQghlULVXLN1DBWFIxOk7ZTdwp9H2OARziF8c1kj+hMhBbLHXyqPsLJEpIpUgrU/HuFqEYqFUi2HF3SjWGvkjAhLKVNCiEsAPAIgDuAmKeUCIcTF9vrrpZTvCCEeBvA2gAyAG6WU80s5cBNN9dbh3PrKCvzszD0GeveEEFJ2qumarZOvONIFY1BFtHxKLPutEeHvs32pyXLhbXMdnhMRDm9WMCq9WypTnD24yy3nu21RhlD1/PTM3bHDyKZyD6P0BTUq/AOPVFlOSvkggAc9y673vP8lgF8Wb2j5s6m9p5y7J4SQiqAartnvb2h3vc/XI5yOIOjySZ9WqDVCLQ/z3gK5LQnFnCxnQpVUTqeD+y901/kKnQrXRf0mam7cTx84ud/72nlcMxava8/d0MBAVbGr9I970JRYBoCTdt8OLy/dXO5hEEIIyYGeOg3Iv6BGOoJqiznR2ggZIHKos1wllvtvjVBCOP9toxCP5Y4If/+UXQrqO9/DHfTWiAHc14NfO7zgpwhqcmSpx1vpH/egKbEMAOcfPBkXHDIFiZhwqhURQgipbArJIqBf4wM9wnlEhP1jym86WK5jyLVLZ3WZPMIH7TgS5x08paC+6RF2M5CHl4jHkCy00IZTvKN443FRJR/zoBLCQgjsMLIJqYzEti5mjyCEkGogl63AhG6NyJk1ImC5e5n7fVRrhNp1PCAiPLTRqkR28RHTzB0425Q2IqyqkhXLI6yTf2W5og+hoqgWoZ91RpTYI1zS3vvPoLJGAMCo5joAwMb2HowYUlfm0RBCCMlFIZNpXJPlAtrEAkLC5vRpOSbLBYxRDUO3duhtG5LxSHlh1eal8gjvOmEoAJSkaEX+leUqXRr1j2o5OlnqiDBU/5V9RgZVRBgARg2xSjT+/sklZR4JIYSQKORdTANAOkIWMGeynGe56Yc5agTYj7T3VXgWBX37UuURPmLnMXj620fitL0mFL3vqOdq3x2GF33fFUmF6b4bz5+FW794oG+54xEuuRAubf/9ZdBFhIc3WY+h7n9rNf7wqX3KPBpCCCG5KORRue51DUqflk1tlt1B0L581oiI43Aiwv3Iq+vqr/BNczJl9JCS9Bs14ve3zx2AVVu6SjKGSqLSrBHH7jrOuNyJCNMaMbigHYIQQqqLQsRfPhYCXZcEZn+IklnCQFYI9+/nPhsRrr6J3lGPvKUhiV22S5Z0LDq/PXsvNCYHXuZUuvBTOB7hEg24Ws7D4BPCTQP3R0YIIaT/FOKLjWKNUOg/yNEFa7R26vGyyyNcgARQleWqUAdX7KPvM/fZviz7rXRPrGLAbroq/HwMOo9wU10C08aU5vEPIYSQ/uP9AS4kkUE+P+JRygFHyjVsHIfaPv9tXftDaQtqBKHm1eyy3dCC+yj1o/Vqo1qyYqhvWqmtHJV+OgadEAaAU/e0JgMwlzAhhFQe3hRehUSmPqpN+sq1uS7Ugn70Jwxv8GwTDZOYKGyynLu/gWLG+Bbc+aVDcOlJhRXTACo+4DfgVMuNgfq7q/XJcoNSCLc0WI6Pjt5UmUdCCCHES5/H1xClXLKXhmQcv/j4HgCy9gQdPTtClIjwaXtNwPWf2VdrF9EaYUifVogOyuYRHvgAzn6TR6AuUbgcqHCdM/BUyQkZP7QRALDX9sNLup9KvzEYdB5hABhSbx1We08KLQ30DBNCSCXRl3aLvUIKagBZ8WjSjr/XsgYJkTsiLITAsbtkZ9fnOyK3Ds7/eNSwqtEjXOE6Z8CpFmvErhOG4qGvH46dx7WUpP9q8UoPyohwsxLC3YwIE0JIpeGNCBdaIraQaW9hv836D3dkj7Apj3ABv//VnTWiOgTPQFEtAhCwvOGF3ohGpdJPx+AUwg3ZiDAhhJDKIuWJCBcqhKNO8omSPg2ILph1lG4tpCiIzkg79edHS1DwotRUutAZaHg63FT6+RiU1ogWOyK8tbOvzCMhhBDixR8RLuynMmrKMbcQjtYuapTTNOGokKMZ1pjEgh+egMZkvICty0s5hM5RM8ZgzvItZdhzbiqtoEa5qfTTMSiF8A4jmwAALyzZiKNmji3zaAghhOgUyxrh2Aly5FqIRfAIA55H2pGtEf5+C300rua3VBvlsAL89cIDBnyfUal04TfQVLp1ZlBaI8YObcDU0UOwrq2n3EMhhBDiwZs+rWCPcMhkuVzb5GwXsT/HGuEqqFFb1NrxkmhUy/diUAphABjamMS2LlojCCGk0uhNFckaEXEzd9aI/LcJw1SmttYigrV2vLmgNcJDhZ+OQSuEhzUmsa2zt9zDIIQQ4qFoEeGIv7CFlFiOHhH2h6Mr/VFwsam1480FdbCbSj8dg1oIb+nsQ3dfutxDIYQQopEqmkfY+j+XMyLqZLmgbaK17+dsuWqm1o43Bzwdbio9ndwgFsIJrNjciZmXP1zuoRBCCNHoLVLWCOcHVlPC+00e4WtXyES2oCinmoytcKwRkXodnFS4zhlwaI1wU+lnozqnqEZgWGO2olw6I0ueMJoQQkg0VB7h0/eegHvnru53RFjnP/9zsC9C7LJGRNyVScs8992jMKzJXa3UmD6txn5uauxwc1Jrn38Q1XIeakIId/WlnWpzhBBCyotKnzZ9bDOA4qZPixnUcdSCGq5tDMsmeaLB7vY1nDWiWhTPAMHz4abST8egtUYMb6pzXnf10idMCCGVQp8dEVbzzEpdUAMFiNTIWSOkap//toOF2jraYH525h4Y21Jf7mFUHJX+5zBow6RH7jzGeU0hTAghlcNvH1sMABhu2wwmjxpSUD9OHuGc7bKvCynLHIYjhPVto206aKh0oTNQnHvgDjj3wB3KPQySJ4M2Ijx2aIPz+tGFa8s4EkIIITrvrmsDABw2fQx+/6l9MPukmQX1E1V/uSfLFbdvU1W7WhOGTJ9GTFTLt2LQCmGdnzzwTrmHQAghBO68u011cZy21wQ0JOMF9VWI3zd6RDhfa4Ruv6gWCVAcak34k8HFoBbC//3qYeUeAiGEEI0eu6rcsbuMxTjtyV0hOJPlcpiES2qNyLP9YKSWj51UP4NaCO8+cRjOnjUJo5vrcjcmhBBSUlLpDE743bMAgIOnje53f4UU1Ci6NcKw81oThrUWASeDi0EthAFg7NB6bGzvxRX3zi/3UAghpKbZ0tmHDzZ1AgAaC7RD6BRSHKP4k+VkXv0ORmr40EkEcmd1KS+DXgjvu4NVZehvL31Q5pEQQkhto1eUa0j2/+fHiQjn+KF1WSMi7zY/defKGlFjwrDGDpdEpFrSCA56IXzUzLE4cbfxmDKqCf94+QO096TKPSRCCKlJOrXr74BGhEUJI8KG9rVmFagWwUOIiUEvhAFg6pghWL6pE9+/Zz6+f/e8cg+HEEJqkk4tp3uhmSJ0InuE9df9qCxngiWWGREm1U1NCOHjdh3nvGZEmBBCykOxhbAjavPKGpFn3zkw7bnWhGGtCX8yuKgJIbzvDiPwwuyjAQB1iZo4ZEIIqTi6+rKBiGJ6hHNR0GS5iGMw5hGuMWVYa8dL8oOT5SqEicMbsfek4WjrZkSYEELKgR4RbqwrXkQ41+9szOXfjdp3tHaORzhiv4TUCtXyN5Eo9wAGktbuPsxduRXpjEQ8aiiBEEJIUXAJ4WJYI+z/c0acCimoEfFn3FTMg78uhFQPNRMRBoClGzoAAO9vaC/zSAghpPboKrpHOGI76LaF4vadbZ//Pggh5aemhPD/HLEjAE6YI4SQclDsyXJRKaTEclQcj7Brf1TChFQLNSWEj991PADgrZVbyzsQQgipQbp6iztZTiFzuIR1WRq1oEZ0j7A/fRohJEuFz5WrLSE8rDEJAPjh/Qvx7OINZR4NIYTUFioifNnJu6A+UQyPsD1ZLscvbSxWSNaIaO2a6qypNsl4Tf2cEpKbKrk5rKnJckoIA8AHmzoAjCnfYAghpMbo7EtjdHMdvviRHYvSX8Q0woUV1Ij4I37Vx/bAnhOH4cCpI6NtQAipKGpKCI8aUue8bmlIhrQkhBBSbDp7UkVJm5YvhRXUiNZuVHM9vnrM9PwHRQipCGrqWY7+eCydqXTXCiGEDC46e9NoShY//pL7al46awQhpLqpKSEMAN88dmcAQGcvM0cQQshA0tWXLmpEuJBUaMWOCBNCwjHl2q4kIglhIcSJQoh3hRBLhBCzDeuPFEJsE0LMtf/9oPhDLQ5fOHwqAODyexegL50p82gIIaT4VOo1u7M3jaYSWCNy/dAW4hFmzSVCaoOcz6iEEHEAfwRwHIBVAF4TQtwnpVzoafqclPLUEoyxqOjVjN5Z04o9tx9evsEQQkiRqeRrdmdvGiOaijc/I6p9QRe/0QUulTAhtUCUiPABAJZIKZdKKXsB3Abg9NIOq3TEYgJfOWoaAOC0a18o82gIIaToVOw1u6s35aQbKxeRPcLUwYQUhUovMBNFCE8EsFJ7v8pe5uVgIcRbQoiHhBC7FWV0JeKrR2dn+K7e2lXGkRBCSNGp2Gt2sa0RUdOn6daJ6GWZCSG1QBQhbLoeeC87bwCYLKXcC8AfANxj7EiIi4QQc4QQczZsKF9Bi4ZkHHd/+RAAwH/fXl22cRBCSAmo2Gt2V29pJsvlqizn3iZ/OwUhpHAGw2S5VQAmae+3B+BSj1LKVillu/36QQBJIcRob0dSyhuklLOklLPGjClvMYu9Jw1HMi6wqaO3rOMghJAiU5HXbCklOvuKHBEuyCMcNX0aIaQ/VEsKwihC+DUA04UQU4UQdQDOAXCf3kAIMV7YVxohxAF2v5uKPdhiIoTAiKY6bO3oK/dQCCGkmFTkNbs3nUE6IyvAIxytHQPChNQGOa9IUsqUEOISAI8AiAO4SUq5QAhxsb3+egBnAfiSECIFoAvAObLSY+EARjTVYXMnI8KEkMFDpV6zu3rTANyZe/pLc4P1E7bzuJbI27CgBiFEJ9Ktuf3o7EHPsuu119cCuLa4Qys9O41txuPvrMN5//cKZp80E7tNGFbuIRFCSL+pxGt2hy2Ei2mNmDi8Ef/64kHYa1L0a3chRTgIIYOXmqssp3PA1JHoSWXw3Hsb8b275pV7OIQQMmhxIsJFLqhx8LRRedktokaECSHFodLtATUthMcNrXdev7VqGzKZSv+4CCGkOulNWZU86xPl/dmhR5iQgaFa/oZqWghPHN7kev/ownVlGgkhhAxueu2S9nVlF8JMn0YIyVLTQnjXCUNd7xeu3lamkRBCyOBGRYTr4sW1RuRL5DzCJR4HIaQyqGkhHI8JLPv5yZh35fEY1pjE/W+vwbOLN+DO11eVe2iEEDKocIRw2SPC0doxIExIbVDehI4VgBACLQ1JtHX3YVtXH86/6VUAwJn7TEQs6hWTEEJIKL1pa7Jc+YUw06cRMqBU+PSrmo4I63jnyXX1pcszEEIIGYRkrRED/7OjS1qmTyNkYKiWPyEKYZuTdh/vet/ZSyFMCCHFoqdirBH0CBNCslAI21x91p6u910UwoQQUjTKGRHWH/hFjvRSCRNSE1AI27Q0JF3vO/tSoe0fmrcGL72/qZRDIoSQQUPVpU+jEiakJqj5yXJB5LJGfOmfbwAAll91ykAMhxBCqpq+irFGRGtHjzAhxUFW+Gw5CuEAPnbdiwCAG87bD7tsNxSTRjbl2IIQQkgQ5YwI65qWHmFCBoZquZmkNULj8W8dgZFD6lzLLvr76zj86qfKNCJCCBkclNMjrBO5oEYBv+Izx7fkvQ0hpLxQCGvsNLYZD37t8HIPgxBCBh1KCCfj5Q0TRbVGFJJG/u4vH4o53z82/w0JIWWDQtjD8Kakcfmld83Dbx9bDCndXhfve0IIIX560hnUJWIFRVr7y5TRQ5zXpZws11gXx+jm+ry3I4SUDwphDw3JuHH5v15dgWueeA/LNnagz/a6ASy8QQghUehNZVBfJlvEsMYkll91CoTII9JbJf5GQiqdSo8XcrKcgfk/PAFrt3WhrTuFM+1Jc4p0RuJXj77rvN/W1YemOp5GQggJozeVKXvGiJ+csTsO3nFUpLbVMtGHkEqlWlIQMiJsoLk+gZ3GtmCGYeLD1q4+zFu1zXn/28cWD+TQCCGkKqkEIfzpAydjxzHNkdpWx084IaS/UAiH0GiwSXzi+pewZH278/72Oauwdlv3QA6LEEKqjt50+YVwPpTDy0wIGXiq56pUBoQQOHz6aPzg1F1dy9e39bjepyvdAEMIIWWmN5VBssyp0/KBMpiQ4lDpCql6rkpl4u+fPxCfO2wqRmjZJLyR4m5OmCOEkFD60pmy5xDOBwaECekf1fI3VD1XpTLzxuXHOa+7+tKuNGsUwoQQEk5vWiJZTdYIxoQJ6Rdn7jMRACJPUC0X1XNVKjNCCJe/bWtnH67++J4AgNVbu/H8exvLNTRCCKl4UukMkoVUqSgT1RLNIqRSOXDHUVh+1SmuPN6VCIVwHrx2WbZi0KSRjZg8qgkA8MVb5uAz//cKelKMDBNCiIlUWiJR5qpyhBDihQlw82BYYxIPf+NwpNISM8a3YOHqVtf6xxauw/SAtGuEEFLL9GUyaE5Wz08OI8KE1AbVc1WqEGaOH+q8bqxzT5q75NY3AQBn7D0BB+04CuccsMOAjo0QQiqVVFoiUU3WCHqECakJaI3oB9MCErPfM3c1Zt81D9s6+zBl9gN4fOG6AR4ZIYRUFn3pDBLMGkEIqTCq56pUgcRjApd7cgzrLN1oFd74wi1zsKWjF8s3dvjsFIQQUgukMhLJKvIIV89ICSH9gdaIftJSb53C+kQMPamMa11GK7Rxyb/ewNINHVizrRvLrzrF2NfG9h7EhMDIIXWlGzAhhJSBVDqDRKx6Yi+sLEdIbUAh3E9O32cCRgypw6b2Hsy+a55rXVt3ynm9cnMX1tilmNMZiXhM4IG312D6uGbsPM6aXDfrJ48DQKBQJoSQaqWvyrJGVM9ICSH9oXpuzyuU+kQcx+06DqOb633rZt+ZFcZ7bD/Meb16axeklPjKrW/g+N8+OyDjJISQcpLKZJCsqohwuUdACBkIGBEuEntNGu5btrbVigBvP6IRWzp6neWHX/0Uvn7M9IEaGiGElJ1qyyNMawQhtQGFcJEY01KPi4+Yhuufed+3bub4Fizd2OFa9veXP3Bed/elcc4NL5d8jIQQUi760hkkqyhrBMnNW1ccj0xG5m5ISAXDq1IR+eLhU42R4dHN9fhgU6dr2WYtQjzz8ocxd+XWSPvoS2fw4hKWcyaEVBepTHXlESa5GdaYxAhO7iZVDoVwERnVXI97v3Koa9m5B+6AEUPqkC7SXfMvH3kX5974ilE43/H6KizzRJ4JIaQSsKwR/MkhhFQWvCqVmI/vuz0mjWgqaNuOnhQ2tPWgJ5XGF2+Zg/fWtWHxujYAwOaOHldbKSW+/Z+38NE/PN/vMRNCSLHpy2SqKo8wIaQ2oBAuMftNHoHjdh2X1zZX3DsfAHDGH1/A/j99HG+u2IrHFq7DZffMh0pN7C3/mbIjzu09KRBCSCWRzkhIiarKI0wIqQ14VSohB0wZCcCaSBfERR/Z0bfsby9ZE+neW29VplMT6V5dthkvKH+wJ7DS6ynmQQghlUJf2ro+VVPWCEJIbUAhXAK+ePhUAMBfL9zft+5zh07Fx/aZ6LyPB0we6e5LG5enArzG6ocmbFtCCCkH6rpFawQhpNJg+rQScNkpu+KyU3Z1LXv4G4djXWsPjth5DADgrjc/BAAkA4Twj/+7MHQf3q30iPCjC9fhtL0m5DlqQggpDSkVEaY1ghBSYfCqNEDMHD/UEcEA8KPTd8PIIXX4omaN+M/FBzuv//nKitD+vHHhHk0Idxp8wgtXt+IPT7yX56iBLR29mDL7AVfeY0IIyYe+NCPChJDKhBHhMnH+wVNw/sFTAAC3XXQQunrT2N/2FEdhQ1sPNrX3YN6H27DDSHdWii6DNeKMP76A3nQGXzpyWl4pjFZv6wIA/PPlD3DeQZMjb0cIIYpURnmEGXshhFQWFMIVwEE7jnJeX/HRXdHZm8YvH3k3dJvv3vG26/1Pz9zdef3D+xfiwkOnutb32o8me9OZvH6MVCWoIG8yIYTkImVHhFlQgxBSafD2vMK48NCp+JwmYnebMBRTRw/BX86fFbrdZXfPd70PKntZaHaJVDqD7r407nh9FaSkKCaEREdN5mWJZUJIpcGIcAXSWBfH14+ZjmN3GYc9th/mLF/285Mx9dIHI/XxzHsb8PMH38HfPncAPn7di87yfISwlNJp35eWuOaJ9/Cnp9/HsMZk3rmRCSG1i3qixPRphJBKg7fnFco3j9vZJYIBQIjoPyIX/vU1LF7XjoN//iRWb+t2ln/yzy+hJ+X2EKczEgf97An8Z85KZ1lPKo2plz6I3z62GIDl8fvT0+8DANbYvmFCCIlCH7NGEEIqlEhXJSHEiUKId4UQS4QQs0Pa7S+ESAshzireEInOT87YPXejEJZv6sQNzyzFba9ms1J09aWxtrUb37F9x5mMxLKNHQCAJxatBwCsa82WdG7t6uvXGAghpaXSrtkpZo0ghFQoOYWwECIO4I8ATgKwK4BPCSF2DWj3CwCPFHuQJMvH990+cN0+OwzHq987Jmcfv35sMWbfNQ/bbEGr2yUWrW3Fbx5bjBN/91zg9ss3daKDpZwJqUgq8ZpdTVkjDttpdLmHQAgZQKJclQ4AsERKuVRK2QvgNgCnG9p9FcCdANYXcXzEQ2NdHEt/djKu+/S+OGf/Sa51Wzv7MHZoAw6fnr2QTxzeGNjXfW+txq8eeddllfjYdS/i2qeWhI7hjtdX4aK/zynwCNz8Z85KPLN4g2vZq8s2Y4ldXpoQkjcVd8128ghXQdaImy7YH29feXy5h0EIGSCiCOGJAFZq71fZyxyEEBMBnAng+rCOhBAXCSHmCCHmbNiwIawpCSEWEzh5j+3QVOee69jWbUVp//75A51lj3zzIxjWmDT2c/k983HtU0tw8M+fBAA0JuPo7I1WnvmFJZsKGboLKSW+c8fb+OxNr2LVlk7MXbkVgOVjPvY3z/S7fwD441NL8LvHFxelL0KqhIq7Zjvp06ogIlyXiGFog/maSQgZfES5Kplu4b35s34H4H+llKEqSkp5g5RylpRy1pgxY8Kakgh887jp+NrRO+E7J8zAiKYkbrvoIGfd9Z/ZD5efuiua6xN464rjc6ZfA4DhTfld/B9dsNaxVyjmrdqGV5dtxql/eA6vLA0Xy8f8Oit2D/vFUzjjjy8Y27V192FLR29eY1P88pF38bvH86+oR0gVU3HX7Kw1ovIjwoSQ2iJK+rRVAPRn8NsDWO1pMwvAbXZWg9EAThZCpKSU9xRjkMRMS0MS3zp+BgDgK0ft5Fp34u7jXe+P3WUsfv6xPXDpXfOw+8ShaOtO4YNNna42wxqTWKNlmMjFRX9/HftPGYHp41pw3kGTsct2Q/HRa5931p99w8tYftUpzvv3N7SjMRnHhOGNkFJiqT0hT0e3aazd1o3xwxpwyFVPoq075eoriMvunocH5q3Bo9/8CMa2NEQ+FkIGERV3zU5nWFCDEFKZRIkIvwZguhBiqhCiDsA5AO7TG0gpp0opp0gppwC4A8CXKYIrCyEEztl/En50+m74++cOxH+/ehjOnuX2GH/+sKm48fxZ+MjO0SM/ry3fgltfWYEr71tgXL+hrQfXPvketnb24phfP4NDrrJsGB0BFoxfPJStqHf+Ta9gfWu3Y/nQWbB6G779n7ecH1jFP19Zga2dfTjgp0/0q/DH+rZuXHb3vIILkBBSRirumq3yCMcphAkhFUZOISylTAG4BNbM4ncA3C6lXCCEuFgIcXGpB0iKhxAC5x88BSOG1KGlIYlLT57pWh+PCRy76zjcfMH+AIADpo7Ec989CvOuPB43XTALO41tDuz7lWWb8caKLb7l+//0cfzq0cXY+0ePOcvmf7gt0Opw0wvLnNeL17XjgJ89YWx3zg0v447XV2Fje49xPWClhYtKXzqD3z/xHjp7LdF92d3z8c9XVvgm8hFS6VTiNTsbEa58jzAhpLaIVFlOSvkggAc9y4yTLKSUF/R/WGQg8E6iU0nvYzGB1y47Fk11cQypt74iR88ch6NnjsMvH1mE+kQce0wchgtvfs21/ce0CnZhnPqH513vL/rIjrjh2aU5t8tkJGJ2RElFicMitve/lX0a/OP/LsTlp/oySDnc9cYq/OaxxejqS+PcA3bAYwvXAaCnkVQnlXbNZkSYEFKpsMRyDSOEwBP/7wi0d6dw0wvL8NG9JjjrxrTUG7f5zgnZKPLQhgRabUE6urk+NDobxH2XHIrNHb2RhHBbT8on3l9augnr23os68Uu7rLP/3vnPOf1/z2/LFQIK2Hd2ZPCh1uzlfOSBUaw/u/5ZRjbUu86p4TUKml7shyFMCGk0qAQrnGmjbHsDtecs0/e26pUSD8+Y3dsaOvB75/IZmc476DJ+PvLH7ja/+oTe+Hb/3nLtWzyyCFYb1etO2DKSLy6fHPg/s744wvo6Enhk5q3+bt2NTwAePcnJ4aO9xu3vYmRQ+rxxY9MxXbD3PmVf/LAOwCsmwPdWtyTSuOpResxqrkOe24/PLR/nR//dyEAUAgTAsB+2MTJcoSQioOGLVIwf7vwAHzqgB3w6QN2wFeP3gnXnrsPZoxrAQB8+4QZvvZn7eevijesKelYMka31GHZz0/Gc989Cpd4smAAwLKNHVjf1hNY8OMQOx9yEPfMXY2bXliGg3/+JFZu7sQrSzfh6ocXoVvzEksp0dWXnZzX3ZfBhTe/htOuNad287JmWxfOueEl530qzcl2hDAiTAipVBgRJgWzx/bD8PPt9wAAxCBw6p4TcOqe2QjouKH1WNfag1P33A47jGxybXvHxQc7EeWjZo7FWfttj++cMANCCEwa2YRvnzAD+04ejs/dHL2C3aY8cg0ffvVTzuumurjz+m8vfeBK63bfWx86r0+79nnc+5VDYaecMvK7x97Dy0uzUe17567Gx7UbgFteWo4f3LsAi358IhqScVMXAIA/Pf0+4jHgoo9Mi3xMhFQqKaZPI4RUKBTCpGQ89e0jkc5ItBiqNM2aMtJ53ZCM41ef2MvX5uiZ4/DXC/bHdU8vwWvL/RkpioU3d/Jz7210Xj+yYJ3z+u1V27ChvSc0P3HGk7Itlcnginvnoy8j8bMz98Dvn7Ci2Zs7epHOSEzy3CAofvHwIgDhQjiTkfjdE+/h4/tOxORRQwAAq7Z0YlhjEi0NSTz17nocMm0U6hPBgru/9KYy+P498/A/R0xzbDaEeElzshwhpEKhNYKUjKa6hE8EP/XtI/HINz4SuY+jZo4NrYr3988fgG8dtzNa6hMYa5jgN2lko2ErNys2d+Zso1iztRvvrWtzykF78f7Q/+vVlfjbSx/g1ldWoCeVhqowe99bq3H41U/hinvno7W7z9CTma/f9ib+YXuv/ztvDX7/xHv40f0L8cenlmDvHz2Kw37xFM687kW8s6YVF/71Nfzw/oW+Ph6evwab7ej5kvVtTsq4Qnhl2SbcPmcVjvn1Mzj7zy/l3qAAHlu4Dv985YPcDUnF4pRYZvo0QkiFwYgwGVCmjh6S9zbDm+qw6McnYublD+OUPbdDe3cKzyzegB+fsTsOnz4Gh08fg88eMgX1iRg+2NSJUc11iAuBf7z8AT65/yT0pjI44pdPIRNQX0OPAOfirOtfRJ/9o/7n8/bD3pOG4+YXl+OSo3bCis2daO9xi0pdMM/4/sPaPq38xH976QO8tHQT/vH5A9Ha3Yedxra4tn9o3hocvvMYNNcn0Nrdh3vnrsa9c1djY3uPUzpaCIFfPpItRLJkfTsWr2tz7Uexvq0bF//jDUwc3ohnv3sUjv3Ns/jIzmNwy+cOiHwOdDa0ZTOFvLIseKJjoWxq78EXb7HsMafssR2GN9UVfR+k9DgRYaYjJIRUGBTCpCpoSMbx8qXHYHRzneMt1lFp1WaMzwrJrx4z3Xk9/4cnYENbD9q6Uzj1D88jEROObzEflAgGgP/5++uYOb4Fi9a24dZXVmBblxXZrUvEcPMF++PcG18J7Oftlduc13rhkCU/Pcl1fF/65xuoT8RwzTl7Y8LwbHRbiWAAePydrH1DoTJ4tHen8Odn3sfPH1qEP3xqH0wcYfXx4dYuZ7xesezlxfc34o45q/CTM3dHU537kuEV/ls7e4sqVvf7yePO63WtPRTCVQo9woSQSoXPqUjVMH5Yg1EER6GpLoHJo4Zg94nDsPyqU7DgRyf42oxuzoqsLx05Ddeea6WUmzGuBbNPyuZPHj806xFetNaKvCpRCQDbDWvAITuNxs7jgj2zbT1mO8KvH1vsW9aTyuDif7yR12TA9zdYE/62dPbh5w9ZfuPL752P659+32nz1qqtzmspJbr70tjY3oPv3vEW2my7xodbu3DuX17BXW9+iP/MWeXbT6enVLZKQ+cllc7kLHm9paPX1ebRBWtd60/43bO47mlzxhBS2TBrBCGkUqEQJjVJfSLupHMTArjtooNw+/8cjI/tMxGLf3ISvnvCDJy65wS8/7OT8fA3DsfFR0zDT8/cHXdcfDBe/t4xTgS6pcH/UOWgqaMAWAIWAP5z8cG45py9nfVna3mQLzhkimvbPz39PqbMfsA45gv/+ppv2V1fPiTyMW/t7MOjC7PRY9WflFaEeeblD+MzN76C2+eswj9eXgEAWKn5p6+4bwH++coHWLGpE1NmP4Cn313vWg8Ai9e14T3blqHY0NaDnS57CD994B2s2daF3X7wMOZ/aEXEf/nIIhx+9ZNYu60b+/z4MfxZK6xyu0F4X/3wu75lUVixqRNPLvJHzsnA4FSWC8m4Qggh5YDWCFKzXP3xPfGzM/dAXSJ7P/ibs/d2tdEjWJ8+cLLzeu4PjoOUVjnqxevacOV9C3D63hOw5/bDHR/0QVNH4YNNnZg2phn7TxmJYY1JzJoyEgtXt+Lfc1aipSGBK0/bDVs7e3HP3NWIyivfOwafvvEV7DCyCfvuMAI7jW3GkvXtvnbfPXFGoHCcNLIRKzdnK+hdY1spVIT7Fw8vwl+eW+pMqlP88L6F+N7JVnT8wXlrfGL17VXbcNxvn8XkUU148v8dibdWbXVKb9/4/DLc+PwyAFaZ7TP3mYi737TS0y3daI3/4flrcfER0/Dqss0YP8ya/LjoxyfivP97xckccs3j7+HTB+2A0c3ZyZFt3X3Y1tWH7UeYs3Ac99tn0JPKYPlVpxjXk9KSzkjEBJwS6YQQUikwIkxqllhMuERwPgghnB/1nce14NYvHoSz998Bu2w31MkP/KMzdsPj3/oIRg6xLBdHzhiL5voEdp0wFADw/VN2AQD84KO7YY+Jw7D7xKFO//tNHoFvHbczknGB//nIjq59j2iqw+PfOgI3XbA/AOBS27YxcXgjmusT+PN5++Efnz8QXzjMvZ3OLZ87MOcxekUwAPSmM7jSzkQR06J7E4e7s3N8sKkT0773oCOCTSgRDADn/sXyU89duRVTZj+AT/75Jfzj5RWYMKwBDcm4q//fPr4Ys+9829XXade+gMN+8RQenLcGU2Y/gE2ect8qOv/UovVYtrEDZ/3pRby5onQp+YibVEYyYwQhpCJhRJiQElGfiPuyQABAc33CFZkcOaQO93/1MABAR08KHT0pjGmphxAClxy1E2IxgbP3n4TuvgxWbun0iffJo6wo6Nn7T8LXtAmCALD8qlN8VouYsLJ3fP2Y6U4kOIzrP7MvnnhnPQ7feQx+99hip+DIba+tdNqctPt4J9pbTMYPs/zYV318T2zp7MMzi62JfY+/sx6zfvI4Nrb3YPZJM7HMHtOld80DABz5y6fR1pPCPV85FGu2ZiPfF96ctZeced2L+P2n9sFpLINdctIZSX8wIaQioRAmpIIYUp/AkPrsn6WKOu9oF6tQ0WSdnca24PFvHRGYmu4/Fx+MV5dtxk5jmzGiqQ7jhlqWgq8evROa6uI4frfxuPuNVTh42mh8/bY3seOYIZgxrgUbO3qx63ZDceLu2+HE3bcDAJy21wS0dffh/JtexZsrtgKwRPWlJ++CUc31TiEQneb6hJNd4oJDpuDmF5dHPh/7T7UKrzQk4/jzefth5uXZFHQb7ajvVQ9l96kmLarJiGf8Mbw09tf+9Sb22n6YU5CElIZUWjJjBCGkIhG5ZnKXilmzZsk5c6KXzyWEVBb/mbMSo1vqcdSMsc6yrt403t/QjlP/8DwA4Jpz9sbpe09ETyqNTAZoSMaQkVYFvJhdThsAFq5uxZTRTfjav+Y66eBuOG8/HDljrCsC/rcXl+O15Zvx37fXFO04vnj4VFx2yq55byeEeF1KGVztZZDRn2v2FffOx71vrcbcHxxf5FERQkg0gq7ZjAgTQgriE1r2C0VjXRy7TxyG9392Mp5fshEfmT4aAFxlnuMCvgisinTf+NlZmLtyK/aYOMz4KP2zh0zBZw+ZgouP2IbuvjSmjWnGO2taseuEofje3fOQzkj8/GN74pEFa7HdsAZcYGfG2GW7objzSwc7eZDf39COK+5dgOeXbMR3Tpjp2w8pLpZHmBFhQkjlQSFMCCk68ZjAETuPKWjbvScNz9lm94nDnNeH7GSJ7es+vZ+z7FMH7AAAgVkipo1pxj++kHvCICkO9AgTQioVTuMlhBBSUpg1ghBSqfDKRAghpKQwIkwIqVQohAkhhJQUeoQJIZUKhTAhhJCSks5kGBEmhFQkFMKEEEJKSipNawQhpDKhECaEEFJS0hmJRJxCmBBSeVAIE0IIKSmpjEScWSMIIRUIr0yEEEJKSpqT5QghFQqFMCGEkJKS4mQ5QkiFQiFMCCGkpDAiTAipVCiECSGElJQUC2oQQioUCmFCCCElJcOIMCGkQqEQJoQQUlKYNYIQUqnwykQIIaRkpDMSKzd3YnRzXbmHQgghPiiECSGElIy3V21Fa3cKh+w0utxDIYQQHxTChBBCSsbidW0AgH0mDS/vQAghxACFMCGEkJLR0ZMGALQ0JMo8EkII8UMhTAghpGR09qYAAI118TKPhBBC/FAIE0IIKRmdvWkkYgJ1cf7cEEIqD16ZCCGElIzO3jQa6+IQgnmECSGVB4UwIYSQktHZm0ITbRGEkAqFQpgQQkjJ6OxNY0gdJ8oRQioTCmFCCCElo8u2RhBCSCVCIUwIIaRkdPSmGBEmhFQsFMKEEEJKBiPChJBKhkKYEEJIyejoTXOyHCGkYqEQJoQQUjK6etNoojWCEFKhUAgTQggpGUyfRgipZCIJYSHEiUKId4UQS4QQsw3rTxdCvC2EmCuEmCOEOKz4QyWEEBKFSrpm0xpBCKlkcj6vEkLEAfwRwHEAVgF4TQhxn5RyodbsCQD3SSmlEGJPALcDmFmKARNCCAmmkq7ZqXQGvakMrRGEkIolSkT4AABLpJRLpZS9AG4DcLreQErZLqWU9tshACQIIYSUg4q5Znf2pQGAEWFCSMUSRQhPBLBSe7/KXuZCCHGmEGIRgAcAfM7UkRDiIvsx3JwNGzYUMl5CCCHhVMw1u6vXFsL1FMKEkMokihAWhmW+6IGU8m4p5UwAZwD4sakjKeUNUspZUspZY8aMyWughBBCIlEx1+zOXkaECSGVTRQhvArAJO399gBWBzWWUj4LYJoQYnQ/x0YIISR/Kuaa3dGTAgA0JukRJoRUJlGE8GsApgshpgoh6gCcA+A+vYEQYichhLBf7wugDsCmYg+WEEJITirmmt1le4SH0BpBCKlQct6mSylTQohLADwCIA7gJinlAiHExfb66wF8HMD5Qog+AF0AztYmYhBCCBkgKumarSLCtEYQQiqVSM+rpJQPAnjQs+x67fUvAPyiuEMjhBBSCJVyzXYmyzF9GiGkQmFlOUIIISWBk+UIIZUOhTAhhJCS0NlrT5ajECaEVCgUwoQQQkqCiggPoTWCEFKhUAgTQggpCS0NSUwbMwSNSUaECSGVCW/TCSGElIRzD9wB5x64Q7mHQQghgTAiTAghhBBCahIKYUIIIYQQUpNQCBNCCCGEkJqEQpgQQgghhNQkFMKEEEIIIaQmoRAmhBBCCCE1CYUwIYQQQgipSSiECSGEEEJITUIhTAghhBBCahIKYUIIIYQQUpNQCBNCCCGEkJqEQpgQQgghhNQkFMKEEEIIIaQmoRAmhBBCCCE1CYUwIYQQQgipSSiECSGEEEJITUIhTAghhBBCahIKYUIIIYQQUpNQCBNCCCGEkJqEQpgQQgghhNQkFMKEEEIIIaQmoRAmhBBCCCE1CYUwIYQQQgipSSiECSGEEEJITUIhTAghhBBCahIKYUIIIYQQUpNQCBNCCCGEkJqEQpgQQgghhNQkFMKEEEIIIaQmoRAmhBBCCCE1CYUwIYQQQgipSSiECSGEEEJITUIhTAghhBBCahIKYUIIIYQQUpNQCBNCCCGEkJqEQpgQQgghhNQkFMKEEEIIIaQmoRAmhBBCCCE1CYUwIYQQQgipSSiECSGEEEJITRJJCAshThRCvCuEWCKEmG1Y/2khxNv2vxeFEHsVf6iEEEKiwGs2IYREI6cQFkLEAfwRwEkAdgXwKSHErp5mywAcIaXcE8CPAdxQ7IESQgjJDa/ZhBASnSgR4QMALJFSLpVS9gK4DcDpegMp5YtSyi3225cBbF/cYRJCCIkIr9mEEBKRKEJ4IoCV2vtV9rIgPg/gof4MihBCSMHwmk0IIRFJRGgjDMuksaEQR8G6qB4WsP4iABfZb9uFEO9GGaSH0QA2FrBdNTCYjw0Y3MfHY6teCj2+ycUeSJHgNXvgGMzHBgzu4xvMxwYM7uMr6jU7ihBeBWCS9n57AKu9jYQQewK4EcBJUspNpo6klDegn140IcQcKeWs/vRRqQzmYwMG9/Hx2KqXQXh8vGYPEIP52IDBfXyD+diAwX18xT62KNaI1wBMF0JMFULUATgHwH2eQe0A4C4A50kpFxdrcIQQQvKG12xCCIlIzoiwlDIlhLgEwCMA4gBuklIuEEJcbK+/HsAPAIwCcJ0QAgBSg/VOhBBCKhleswkhJDpRrBGQUj4I4EHPsuu1118A8IXiDi2QwZzmZzAfGzC4j4/HVr0MuuPjNXvAGMzHBgzu4xvMxwYM7uMr6rEJKY1zKAghhBBCCBnUsMQyIYQQQgipSapGCOcqGVrpCCEmCSGeEkK8I4RYIIT4ur18pBDiMSHEe/b/I7RtLrWP910hxAnlG300hBBxIcSbQoj/2u8H07ENF0LcIYRYZH+GBw+W4xNCfNP+Ts4XQvxLCNFQzccmhLhJCLFeCDFfW5b38Qgh9hNCzLPX/V7YZloSDV6zK+9vwwuv2VV9fIPmul32a7aUsuL/wZrw8T6AHQHUAXgLwK7lHleex7AdgH3t1y0AFsMqf3o1gNn28tkAfmG/3tU+znoAU+3jj5f7OHIc47cA3Argv/b7wXRsfwPwBft1HYDhg+H4YBVaWAag0X5/O4ALqvnYAHwEwL4A5mvL8j4eAK8COBhWXt6HYKUZK/vxVcM/XrMr82/DcIy8Zlfh8Q2263a5r9nVEhHOWTK00pFSrpFSvmG/bgPwDqwv8+mw/mBh/3+G/fp0ALdJKXuklMsALIF1HioSIcT2AE6BlZdUMViObSisP9T/AwApZa+UcisGyfHBmjTbKIRIAGiClXO2ao9NSvksgM2exXkdjxBiOwBDpZQvSesKe4u2DckNr9kV+Lehw2t29R6fzaC5bpf7ml0tQjjfkqEVjRBiCoB9ALwCYJyUcg1gXXgBjLWbVdsx/w7AdwFktGWD5dh2BLABwF/tx4g3CiGGYBAcn5TyQwC/ArACwBoA26SUj2IQHJuHfI9nov3au5xEo1q/J0Z4za66Yxu012ygZq7bA3bNrhYhHLlkaKUjhGgGcCeAb0gpW8OaGpZV5DELIU4FsF5K+XrUTQzLKvLYbBKwHtv8SUq5D4AOWI9qgqia47N9V6fDesQ0AcAQIcRnwjYxLKvIY4tI0PEMtuMcaAbN+eM129rEsKwij81m0F6zgZq/bhf9ml0tQjhSydBKRwiRhHVB/aeU8i578To7pA/7//X28mo65kMBnCaEWA7rEejRQoh/YHAcG2CNd5WU8hX7/R2wLrKD4fiOBbBMSrlBStkHq9rYIRgcx6aT7/Gssl97l5NoVOv3xAWv2VV5bMDgvmYDtXHdHrBrdrUI4ZwlQysde/bi/wF4R0r5G23VfQA+a7/+LIB7teXnCCHqhRBTAUyHZQSvOKSUl0opt5dSToH12TwppfwMBsGxAYCUci2AlUKIGfaiYwAsxOA4vhUADhJCNNnf0WNgeSEHw7Hp5HU89qO4NiHEQfZ5OV/bhuSG1+wK/tvgNRtAFR8fauO6PXDX7GLN+iv1PwAnw5q1+z6Ay8o9ngLGfxisMP3bAOba/06GVeb0CQDv2f+P1La5zD7ed1ElM9YBHInsDORBc2wA9gYwx/787gEwYrAcH4AfAlgEYD6Av8OajVu1xwbgX7B8c32wogSfL+R4AMyyz8n7AK6FXYCI/yJ/DrxmV8BxRDhOXrOr8/gGzXW73NdsVpYjhBBCCCE1SbVYIwghhBBCCCkqFMKEEEIIIaQmoRAmhBBCCCE1CYUwIYQQQgipSSiECSGEEEJITUIhTGoWIcSRQoj/lnschBBCcsNrNikFFMKEEEIIIaQmoRAmFY8Q4jNCiFeFEHOFEH8WQsSFEO1CiF8LId4QQjwhhBhjt91bCPGyEOJtIcTddk12CCF2EkI8LoR4y95mmt19sxDiDiHEIiHEP+2KNIQQQgqE12xSTVAIk4pGCLELgLMBHCql3BtAGsCnAQwB8IaUcl8AzwC4wt7kFgD/K6XcE8A8bfk/AfxRSrkXrJrsa+zl+wD4BoBdAewI4NASHxIhhAxaeM0m1Uai3AMgJAfHANgPwGv2jX8jgPUAMgD+bbf5B4C7hBDDAAyXUj5jL/8bgP8IIVoATJRS3g0AUspuALD7e1VKucp+PxfAFADPl/yoCCFkcMJrNqkqKIRJpSMA/E1KealroRCXe9qF1QoPe3TWo71Og38ThBDSH3jNJlUFrRGk0nkCwFlCiLEAIIQYKYSYDOu7e5bd5lwAz0sptwHYIoQ43F5+HoBnpJStAFYJIc6w+6gXQjQN5EEQQkiNwGs2qSp4J0UqGinlQiHE9wE8KoSIAegD8BUAHQB2E0K8DmAbLE8aAHwWwPX2RXMpgAvt5ecB+LMQ4kd2H58YwMMghJCagNdsUm0IKcOeThBSmQgh2qWUzeUeByGEkNzwmk0qFVojCCGEEEJITcKIMCGEEEIIqUkYESaEEEIIITUJhTAhhBBCCKlJKIQJIYQQQkhNQiFMCCGEEEJqEgphQgghhBBSk1AIE0IIIYSQmuT/AyY4AxdisRPKAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "027ns_image_4641643404894_CLEAN.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADDCAYAAAAya0IYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADdpklEQVR4nOz9eZSl2VndCe9z5zmGyppLolRSSSCBJUAIJC/b9MKNMZ4a3B5wtwdsM3y2P9w23TZgBpuv7cbgNm1WfzYWxsZuYwwemPkAYwwYowFJSGieSiVVqYacIuLO8/v9EfE7se+bNzIjMyMzIjPPXitWZdz7Duc959xbsfezn+cJWZYpISEhISEhISEhISEhISEh4XpQOO0BJCQkJCQkJCQkJCQkJCQk3HlIgkJCQkJCQkJCQkJCQkJCQsJ1IwkKCQkJCQkJCQkJCQkJCQkJ140kKCQkJCQkJCQkJCQkJCQkJFw3kqCQkJCQkJCQkJCQkJCQkJBw3UiCQkJCQkJCQkJCQkJCQkJCwnUjCQoJtx0hhPeHEL74tMeRkJCQkHCIEMLTIYTfe8xjsxDCK27wPjd8bkJCQkJCQsLZQhIUEm47six7TZZlv3La47gWQgh/KoTwyRDCIITwEyGE7dMeU0JCQsLdjBBCNYTwz0MI3RDCCyGEv37aY0pISEg4azhpYfY410t/FycchSQoJCSsQQjhNZL+qaQ/LelBSUNJ//hUB5WQkJBw9+NvS3pS0mdI+u8k/Y0Qwped6ogSEhIS7nGkv4sTroYkKCTcdritNoTwt0MI/y6E8K9DCL0QwntDCK8MIXxzCOF8COGZEMKX2rlfHUL44MGxT4UQvi537b8RQng+hPBcCOEvuuJ6EPn6ByGET4UQXgwhfH8IoX7EMP8nST+dZdmvZVnWl/Rtkr4yhNC+NbOSkJCQcHYQQnhDCOEtIYTdg+/U/zuEUMkd9uUH38MXQwjfE0Io2Pl//uC7eieE8AshhM845q3/jKT/T5ZlO1mWfVDSD0j6cyfzVAkJCQlnByGEzwoh/MrB9+z7Qwh/2N77lRDCX7Tf/1wI4dcP/v1rBy+/J4TQDyH8iRDCF4cQng0hfMvBd/LTIYT/6Uavt2a46e/ihCORBIWEs4A/JOn/kbQl6bck/YL29+ajkr5T+4ooOC/pD0rqSPpqSd8bQvg8STqIYv11Sb9X0isk/Z7cff6+pFdKet3B+49K+vYjxvQaSe/hlyzLPi5penB+QkJCwt2OhaS/JumcpDdK+hJJfyl3zFdIer2kz5P0RyT9eUkKIfwPkr5F0ldKul/Sf5X0I9e6YQhhS9Ijsu/eg3+/5sYfIyEhIeHsIYRQlvTTkn5R0gOS/t+SfjiE8KprnZtl2e8++OdrsyxrZVn2owe/P6T97+xHJf1ZSW++yes50t/FCUciCQoJZwH/NcuyX8iybC7p32n/D9DvyrJsJunfSno8hLApSVmW/WyWZR/P9vGr2v8i/l0H1/njkv5FlmXvz7JsKOnvcIMQQpD0NZL+WpZll7Ms60n6e5L+5BFjaknay722JykpsQkJCXc9six7Z5Zlb82ybJ5l2dPaF3avEGkPvk8/Jen/kvRVB69/naT/I8uyDx58r/89Sa87hkuhdfBf/+5N37sJCQl3I75I+99535Vl2TTLsl+W9DM6/B69UXxblmWTg7+Rf1b7fxufBNLfxQlHIgkKCWcBL9q/R5IuZlm2sN+lgz80Qwi/P4Tw1hDC5RDCrqQv174aK+1Htp6xa/m/75fUkPTOA2vZrqSfP3h9Hfrad0E4OpJ6x32ohISEhDsVB6lnP3NQGLGrfVHgXO4w/479pPa/g6X9+gf/yL5rL0sK2o+aXQ39g//6d2/63k1ISLgb8YikZ7IsW9prn9S1vyevhp0sywa56z1y1MHXifR3ccKRSIJCwh2DEEJV0n+Q9A8kPZhl2aakn9P+H6qS9Lykx+yUl9i/L2pfnHhNlmWbBz8bWZa1tB7vl/Rau/cTkqqSPnISz5KQkJBwxvFPJH1I0pNZlnW0n8IQcsf4d+xLJT138O9nJH2dfdduZllWz7LsN652wyzLdrT/Pf5ae/m12v8+TkhISLib8Jykl3jtGe1/j3764N8D7QfCwEPHuOZWCKGZux7fyzdyPUf6uzjhSCRBIeFOQkX7X14XJM1DCL9f0pfa+z8m6asPitw0ZPURDhTgH9B+zYUHJCmE8GgI4fcdca8flvSHQgi/6+DL+Tsl/ceDVImEhISEux1tSV1J/RDCZ0r6f6055n8LIWyFEF4i6a9KIu/2+yV980FVcIUQNkIIf+yY9/1Xkr714Lqfqf1UtR+6iedISEhIOIt4m/ZJ/t8IIZRDCF+s/Zpi//bg/Xdrv+hh46C4+F/Inf+ipCfWXPfvhBAqIYTfpf2aY//uJq8H0t/FCUciCQoJdwwOvrS+QfvCwY6kPyXpp+z9/5+k75P0XyR9TNJbDt6aHPz3bx68/tYDC+8vSVpbrCbLsvdL+nrtf4Ge1/4f1/mCZAkJCQl3K/5X7X/H9rQvxq4r0vWTkt6p/T9Uf1bSD0pSlmU/rv0iuP/24Lv2fZJ+/zHv+x2SPq59q+6vSvqeLMt+/oafIiEhIeEMIsuyqaQ/rP3vxovab8H4Z7Is+9DBId+r/aKHL0r6l9r/e9TxtyX9y4PUMuokvKD9v4+fOzj+62/yej7e9HdxwpEIWZad9hgSEm4JQgifpf0/ZKsHhcESEhISEhISEhIS7iocOBz+dZZlj13j0ISEE0dyKCTcVQghfMWB1WtL+xGyn05iQkJCQkJCQkJCQkJCwskjCQoJdxu+Tvs1Fj6u/T7q6/J+ExISEhISEhISEhISEm4St0xQCCF8WQjhwyGEj4UQvulW3SchwZFl2ZcddG/YzrLsK7Ise/60x5SQcFpI38MJCQkJp4/0XZxwq5Fl2a+kdIeE08ItqaEQQihqv43Ify/pWUm/Kemrsiz7wInfLCEhISHhCqTv4YSEhITTR/ouTkhIuNtxqxwKb5D0sSzLnjqoYvpvJf2RW3SvhISEhIQrkb6HExISEk4f6bs4ISHhrkbpFl33UUnP2O/PSvrCow4uFotZuVxWCEFZlmm5XO4PrlRSCEEhBBUKBYUQtFgsNJ1OlWWZisWiKpWKyuWyisWiisWiQgiaz+daLBYKIUiSlsulFouFsiyLr/HvEIKWy6Xm87lCCKpUKqpUKioUCnEcnOPXKBQKKhaLKhQONZnlchnHtFgsNJvNtFwulWVZfK4sy1QoFOJ5jI1zeU7GyHkcwxwxDuaNsebvwXmMl3PdmeLPxP2KxaLK5XK8dwhBpVIpXnM+n69cy59psVhI0sr18s/E3Psa+bh8zbkux87n83jNYrGo5XJ5xVrxzIyZNc4/q48/P3/FYnFlfoDvG98TpVIpzvFsNovzwP7MsiyOnfnhGXkG7s86+zz4cwLWhv2/br/xXv5Z/Hq+TsxZlmXxGfz5fd/4fKx7L7/XuUf+s+77Jf9Z9e8A3vf197nhNebG95rved9/Plf+O3tgOBxezLLs/ism4Ozjur6HJanYamZPvGypF99Xv6UDuxpmDzS1rEi6csslJCScVSyl6qcHt+zyYw00zSZ36rfC9f1NfAa+h08cjZom9xVPexQJdwhqFxfKRuPTHkbCGvS0s/Zv4lslKKz70l/JrQghfK2kr5WkSqWil73sZZFwjcdjzWYzbW9va3NzU6VSSfV6XaVSSYvFQufPn9czzzyjUqmkRx99VA8//LA2Nze1ubmpBx98ULPZTOfPn9dgMFC5XNZ0OlW329VwOFQIQfV6XcvlUtPpNJKwbrer0WikdrutJ598Uvfff79ms5lms1kkisPhUKPRSJJUr9f14IMPanNzU4vFQovFQqPRSMvlUltbWwohqNvtajweR7LT7/e1t7encrmsVqulUqmk2Wym0Wikvb29ODZEkkKhEO+5XC41Go00nU5VLpfV7Xa1XC51//33a3t7W4vFQpPJRIPBIN5jc3NThUJBo9FI8/lcjUZDpdL+kk+n0zjP5XJZpVJJlUpFy+VSg8H+HwWPPPKIQgja3d1VlmXa2tpSu93WYrHQ3t5eHE8IQbVaTSEETafTOEfNZlPFYlG9Xk9ZlqlWq2k+n8d5r1ar7AVJiiLMeDxWlmWq1+vqdDqq1+srYkK/39fu7q4kqdFoqFAoaDKZaDabqVarqVgsajKZaDKZqNPp6Ny5cwoh6NKlS+p2u6pWq+p0Oloul+r1eprNZlFImk6nmkwmKpVKqtVq8Z7ValWtVkvSPjGu1WrKskz9fl+DwUCVSkX1el2tVkvValXdblfPPfecJpOJNjY2dN9996lcLms8Hqvf72s6naparcZ9PZ/PNRqN4hwMh0MNh0PN5/M471mWaTQaxfMlaTweaz6fq9Vq6bHHHlMIQf1+P64txLher6tWq0XSXa1WtVwuV/bXdDrVbDZTtVpVo9FQuVyOn8ksy+Lvk8lE0+lUy+VSpVJpRbSB4LtQU61Wo0g3HA41GAwiWR+NRhoOhyqVSmo2m6rX65pOp9rb29NkMonfF6VSSRsbG2o0GhqNRrp48WJ8bvYAe6dYLMZnHQ6HcZy8NplM4pry2mg0iuterVbj/q7VavrkJz/5yZv4LjxNXPN7WFr9Lq6pocff/wf1+Gn+2X5Beubb3qTJ9vLaxyYkJJw6SsOgx//WW26pCPi27D/fuovfelzX38Rn4nv4JFEoKvu8z9HH/8faaY8k4Q7BK39wV8v3fei0h5GwBr+U/fu1fxPfKkHhWUkvsd8fk/ScH5Bl2ZslvVmStra2smq1qslkEqOG8/lcvV5PjUYjEkpIzcbGhkajkXZ3d9XtdlWpVGLkt9ls6ty5c5GojMfjGOHFuQDBgUhIUq1W02g0Urfb1YULF9RsNiPZIOIpKToCJMVrQYwge0SFERMqlYqkfYINoRyPx+p0OioUCqpUKpEoDYfDSDYhSpKi2DCfz6PA0u/31ev11Gw2Va1WVa1WtVgstLu7q36/r3q9ru3tbVUqFQ0GA83n+90TIU2LxSKSd0ghRG88HqvX66nT6ahYLGo6nUZyhlNkNputRIARb2azWYwa12o1NRqNSA4hpaVSSeVyWZI0m83ie81mM5JOxlur1VQul6PYVKvVtLm5GceDK2Q2m2k6nUbyLO2LAYPBQI1GQ5VKRaVSSdPpNBLKcrkcI9nMDf9eLBbRWTCdTjWdTtVoNOJ7kiJ59ePK5XJ8boiq722eBzcAgkKWZapWq5FYFwoF7e7uxvEjPoQQtLe3F59/sVhEkWVzc1O1Wi2KXMy3/z4ej6Mbp9lsxnG7Y4LPE0IJ64lQwGeJ/cg+ZW0RuFgDxJ5qtarZbBZFJpwjCCOIEKVSSePxOM6z7/t6va7NzU31ej1J++IY+wkH03Q6jevNtafTadwXi8VCg8Egvsb3C9dqtVoaDAba2dk5/rfe2cM1v4el1e/iTtg++aI6CQkJdzVe9p3vulKpTHBc19/Ed9v3cPGJl+rDSUxIuA7Mt+oqlkrK5qnr+52CW1VD4TclPRlCeFkIoSLpT0r6qSMHUShoY2MjRs+lfaJGpJbfl8tlFAharVYk2MPhULu7u7p48WKMXG9sbERBYDabRbI0m81WIpFZlkUSD3G+ePGiLl26pPl8rlqtFqOrkiIhbDQakSBubm6q0+moUqkohKBer6fhcKh+vx9dCpDFra0t1et1zWYzXbx4UYPBQMvlUu12W/V6PUaAB4NBJH5uJ4cQQZZ4HoSJSqUSnQB7e3uR4DabzZjCgCgA8YUskkrCPYiQ5y37k8kkRsDdEg+xh1AiFNRqtUiSeb9UKqnRaEQxxEWJ7e1tbW1tRcHH57hWq6lWq6nVasWINddkj4QQ1Gw2tb29HfcIhB7nB2IPa4noA7DY+z4hLcZTEHhuiDZRckhpoVBQv9+P7oPpdKrFYhEj95BxIvuIVNvb27r//vvVarU0mUw0HA6joNZsNtVut+O5pVJJy+VSly9fVq/XuyLFxIUTRAEEMMbBGBA7PM3Gx8rz+r5xoYpnKJfLqlarUSwYDAbq9/vx+SRpMBhE9wyfUz4vXM/TJYbDYST4fP75/kAwcIGG9UWM4nkqlUoU1Pr9vvr9fnx/Mpmo3+9HcRLR6w7FdX0PnxWUHn+plrdK6k5ISDhRNJ4rSMu7iv/eCtyR38UJCaeFp76yqsUbP0cqpDSZOwW3RFDIsmwu6a9I+gVJH5T0Y1mWvf9q5zQajUhkC4VCJDUQV8jKeDyOJLNWq8UIZL/f187Oji5fvqy9vb1ooYZoSPuiBFF5rPpcExJRKpXU7XZ1/vx57e7uqlKpqN1uR8cCpBmCzHX9dyK3uCy63W60n9dqNZ07dy6S/suXL6vb7UpSvAd1CiD0XieAecDCTTQZokeEm2e/dOlSJFoQudlsFoUCyCQpEJBD5p90AI5bs9YrNvJCoRBJP+OuVCpqtVrxx4UNnBjFYnElkr21taVGoxGdEbVaTQ888IDuv/9+1Wo11et1bWxsRNJHugHXIWUC0UHaj3ITcc+yTL1eb+U1hIl8fQvWnLVlfyJiIDAgOgwGg/gcGxsbMe0EAWY8HmsymUTXAC4LRDSi8a1WS+fOnVOz2dRoNIoiiLQv0tx3331qt9vR9s8zkbLCPkLYoQYB84/Q4fUi/N8IIOwv3BuLxSKOD3cQnzGv54G4JSmKItyPzwp7jjlf51YgBQiByVNoEFMQFhEPJcW0DAQxHCySoouFFBpEP67FZ4Zx3om4ke/hs4Bn/uhjmnVSukNCwllH+6mCHvvH71E2m572UM407tTv4pNAqFY1+Mw7sQRRwmnjqa+sqrjROe1hJBwTtywOlGXZz0n6ueMcS043lmhINOSQ3yFIuBQgeZC4xWKhXq+ny5cvR1IbQog529i8pUObNJb9fr8fx1EoFLS3t6d6va6trS1tbGzEiKakGF33/H7IE5Z6TwFYLBYrjoZarab7779fWZbp0qVL6vf7Me0BuzrpBJDNfNRfUnwmaj0wR7VaTdvb29rd3Y2EvNVqRdEB8YDoba1Wi5H1xWIRyTWEFzIJuQb8GxKJ8wOniQsQEHDmvtfraTqdRvFjuVxqb29vpSbAgw8+qPPnz6vb7arb7erBBx9Up9PRbDbT7u7uSvFAaZ8kQoLJy8d9gOCBiEFax2AwiLUMcDPg1KAuACICew3HCs4EhJeDfR+P73Q60Wnh+5Y9gd0eUYS0DcYOaSf9ZDgcrhQmpE6GE2qi7ETWSefAoUM6DkJcr9eLe9jdF4hi7C2IOk4WUgyoX8Hz8BmdTCZR3CqVSlEQ6ff7khRFHMZMEVA+k15Ylc8s+xPxj2dEOGAP4iriGdijOFUQGHgGFxgR/ph/d03dibie7+GzgPC5r9GsddqjSEhIuBY2PxT04I99UIvBrSvEeDfhTvsuPikUNjf07JfcKjN0wt2O/u9+UvWffqe0XJz2UBKugTPz1zIR93q9HnOvKXznf+QDoqCQaCKbRBtJlUCgoPggxJDibd4NguglBRMHg4EuX76s+++/X1tbWyvV5XEubGxsRLLCM2Bv517dbjcWKORetVpNnU4nplsMBoMoQkAsvYq+1xsgygyh5tmJ1haLxVj7gNQJ74QBiRqPxzE33yPARJARDLimdwIgN5/xQTQRLVwI4RjWqtFoaDgcajKZxEKYkHmi941GIxa83N3d1eXLlzUcDvXQQw/p4YcfjvnvOC9wUnQ6nZWCkzgxSA2AGJMO0+v1VlIQcGPgBiCyjfuD5yS9xW3+FKlEkCDVgHVmnsjfR8yYTqdqt9uR0EN8mTfqixBhJ3VH0kpdhWazGV0HXtvAHQReu4HrjkajSNo9vYbPGOlAlUplJa0DtwnPAKlHUFgul1Go8foGw+EwprsMh8PoFCkWi2o0GvHzSroOjhDEGElRdPGxct8sy6JI4101JMVjONe7RPh85WunJNweXHhDR9PN5E5ISDir6HysoI1PzNT4zae1uLNrzCTcYoRyRZe+9OVaUws4IeFY+PQXF/Tkz5eUTZKgcNZxZgQFJ9rkQHtxNyLqRIYh95wDGYaoQaIhPPkWeURdJUVCSvE8SHa1Wo1kdmNjQ+12O5JUSBndAnZ3dyMJ4XocR254s9lUCEGj0SiSV4rLUTuBCHK5XI6RX4gNEVUIKwRoNptpMBjE86R94tRsNlciyJ7zT4SeKDgiCYTYCWSebOEOoauDiw0QacbAnPNvBJN6va5utxudIdRF4Fknk0mcHyLPFy5c0NbWVnSNPP/883F+EAW8uj9zxt4iCs/zVKvVmNfPmrijwUUsSKinJZDWgRBAZJ31oDMBwph0KM6QzoP4JCmuudd4YL8CLyJIjY1msxkdMowHQYJ1ouAg92euEMMQKrxdo7doRNTDtcL8IqhJhykV/vmaz+fa2NiIYs/u7m6cy3K5vPKZYg3p9IAohIDjBVGZZ19Xr7sSQojCIC4F5p8fXnenDa6ofHHPhISEhHsd7acKeuQnP6n5s59W+vM+4aoIQRe++vO1+1lJTEhIuBdwpgQFiBURYkjueDxWt9u9olAe7fMKhYK2t7e1t7cX88iHw2EslIj9GQLiFfpJNSiXy5rNZrGQIt0R5vO5zp8/rwceeEAPPPCAWq1WtG1DbiA6XkdAUux2AKnHEYAjgbQMIreMDacDpIzru8PBo65EzSlmhzhBOgMkCcGCjhBO+ii0Jym6PKTDgncO1sCj35BpiB/uCIg5xf0QHyDn0+lUu7u76nQ66nQ6MZINOSVtgaKbtIGk4OFoNFKr1YpCghenpAUiLTFxd0DWIbRE9HGJsDeYY54ToorgQB6/pwu44OViCa954UpIrdfDYM+wv5w4I6wwPkkxjYL7NhqNuL99zvO1Q3ADIUB5IUcv3MnvjJcx83zUD4G4e8S/3+/H8bbb7bgfvdgnrUEpjMjnqVarRbcFTgNSEBDz+EzRscM7twyHw+gQybIsvodgRvoGe8y7fEiHaVSbm5vH+fpKSEhIuKvR+lRBj/77pzR//oXTHkrCnYBQSGJCQsI9hDMhKBBBhfR4AcFqtRo7JnirQUkxOj+fz2P6AUXkxuNxzJWHTHoLOUgSpB7hgvMhqovFQi+88II2NzdjoUAIKekS1ByAVEtaadVIzv14PI7/htziFoCge7cEL8xIbjrnU1uC8UqK0WHpsKAeqRaMF3KKtd9FC8ZB2gZpIfnItaebFIvF2L5QUoxku6jgbRk9T9+Fjt3d3djtA3LtThVpP3XkhRdeiOkZWOBns1lcK0guBBOSDTmnYOJ8Plej0Vipp0CBPu7v3RckrbheqPkwm81i7QZ3GkCqd3d31W634zwyT0ThcSh4igz1O9rtdqwDgGjAOHHQkN7DuTgSvPOEp6js7e2t1CdgnbxWBD/sKU8B4L8udLgzBqGIY/f29tTv96MjwrtSIJ4xf6QseScQ3CaID4Ciq3TRWCwWMY1IUvzOaDab8bsCscrHzvh5Vp87Oj4kJCQk3Kuo7Bb0xA89o2ww1PzipdMeTsIdgmf/5hdKSulrCQn3Cs6MoMAf9UQPISQQB/64J4pNZNHJP3nWEE3Oh+AAyIx06FKQ9jtNQGJwG8xmM/V6PX3qU5/Sfffdp4cffnileB4iAZF0APF0K74XEKT4o0dlOV46rJAP+ZUOCY9XyMcS7hFWhBMi7o1GY6WgnrsdsIkzF0T4ERqIgBPFJarrZNvn1osPIhwwTqLVrB/vS9JoNNLe3l7sWECaAJb7Uqmkfr+vixcvRgKLaDIYDLSxsaFyuazRaKRut6tisajNzc34bK1WS5ubmzHNgGKAkFLqOrCf2Jc4EnDEILKQsuDiiqQrHAeMh9fY49JhjRDWziPzTqwRZGhfORqNYkpIrVaLkXrGhWCAEACZ5nj2LfPCvuBYiqNyLUQfyDrjpB5CsViMbSwRPzqdTkyJIT3CXTXsZ/YbDhOIvH/ucd/4XkO0KpfLse4C3wmtViuuoxekRFjCOeGtQun4QF0OOmsw9oSEhIR7CWEe9Mq/9yFpsdD8oBNVQsJxMTmXxISEhHsJZ0JQkA7bFEImiMjzBz5RUSfwAEJFNB4S1u/3o8jg+e1EhL01HfdEUJAOc8in06kuXryoF154IQoXEO6dnZ3oQmg2mzp37pz29vYkSZ1OJ9YJcKEDZwLpDk60IfgUtJO0EsWeTqcxRQMCR/V7SdHe32g0IhkjUi+tiiluu6cAHqknWMs9nx7XAHOOoOBWdCez3pkDUWQwGMTnlA5TCzxyjBMFq3q3241zMBgMdOHChRUCOB6PtbGxEUksRJ9iit1uV5PJRNvb29rc3IztCxFMEJLo0EHagRcErNfrK/n37BVqHkBWJUUSjpCzu7sbxQiuQ/oDggD7khQNiHin04liEPOGwIDV3wUFOma4GMD6IYwQ9fc0GZwu3APRAOGEMTJm1grhClEBEaNSqWhjYyOuEcU+WVf2Gccyb6Qdtdvt2AGDfegCkzuZvPgngkir1dLe3p4mk8nKPiY9hqKefO/wPeCpO1wjISEh4Z7BgUv9Fd/6Li0O/jZJSEhIOBWkrJk7BmdGUIAk4QyglR1F/9wCTYTX87yJgENOqKUA0Vgul5FEAM//lxTJMYSeaD4pCru7uxoOh9rc3Iz1FQYHLZOazaZarVbsMkBRt06nE8mwE+dyuaxmsxkJJiSY8TqBhySOx+NYAwCHgEeLvUhllmWxk4JXuvdUDS+8KGlFVOD+1CPgWC/w524HiCaOCpwmXlzSUy4QDRAQcEBA9InwIx7x3IgniCmQ552dnSiyuIjAnqFOAsU1mRvmFbeEd1CQDotD4j7pdrsx9QHHBqTc9zJknnoF/M61SVOA5HtKS7PZjCTcUyVCCDF9YjgcxvtDir1oIqkRpF74M7GmiCeIUuwBxCBauUKye72ems1mdEsgdgyHwygUeStHBIF2ux1TLfI1OdgH1BZBvMiyTFtbW2q1WiufB+YXEWU2m0VHC/sbtxDuFW9/yrHcx0Uvd+AgJpF6lXCLEYK6X/WF2n1V+ushIeE0EJaSMumV3/kBLQ4KRSckJCScJl71dz+ShM07BGdCUIDE8Yc/FfchHxBIbOMQCaKbOA0gdxAmSbEwHiSXiL23AMROTeReWq1BAJmEfBE13d3djcUVIffnzp3TfD6PBSKJiCNc8IzkaTcajUj4iDhLis8EwYd8eioGkXJPHWC+mAMIktcx8JaDWO4RJPJtAxE1vHtEvnifCw6Q3el0utLlwe3uEFSuu1gsIilGGHIRxYkka+ZdOijahyOFH9JBxuOxLl26FKPVEF0XcNgf1Ajwfen1OBAHuK+3UeTZWFtfc08h8IKW3IdzsyxTvV7XYDCITgL2MuOgLgB7gLlxglwsFq8gzL6uuA/Yj95NZDKZqNvtxjQSUi3yhSvpyCIpdlihKwcFLHF38DyIQDw7jhocDuPxeKXuQqPRiCkMXjMDgcZroeQFR9wfiCSIEHR/oGYKz+dC4mKxUL1ej2uTcGsx/gNfoPNfcNqjSEi491CYBYWl9IoffFGLjz6VujckJCScCRQmQVqkb6Q7BWdCUJAOuxt4oTks4/modqlUim0aIduQFEgHxI1casgT1uZWqxVJBHZszoegUmEecgo5aTQaajabMR+f9ATs+41GI7ohaH1IZJ2xQfRp+0dBOuZBOiT0kFnmaTKZqNfrRZIPiZW04o4gukyUmmvnbfuSIlH0tAfPx2ee3UaP+8CLRrJGdODgPBckPNrMc3rxRWoE4DIZjUYrtnUECMA9yJmnECPXYR/s7OzEtBTP2Yd8e0TG9xQ1FXgdkQAizHq6A8NbOHI8zyopdrjAHUHdCrpX4ARgz3FutVq9oggo40QwabVaqlarca95G0/WjpQM0oz8M8hnqNfrxXSQer0e3SOcj3uk2WzGz1GlUlG73Y6CCp9XHANO+nFGsLbUP6B2Qa/Xk6S4//2zyLzmP9fMBe+x93E7UdyVWhI4oLz+BPNKGklCQkLCWUdhElQaBc3rmZbVo90FYR5U7h/+//exXx6p8F9/KwkJCQkJZwKlYVBhGvTEP3ta892Udnqn4EwICm41pqUh5Js/9iEy1EqAIDiZhiRLinZvj6a7PZ+ovudlu+0d4o6wQQrBYDBQpVLR9va2xuOxnn322RjxJfWAqK6TS1IpXLhgnBxPnjpuDK+uD+F0McLTKHAzUESSqvdeM8GL+CEekFNORwZeZ2yID54WwmsOXnOiB/FzMuiRYOaZ8ZHmwpjpdEGkHTeDdy+AiOJCIZUACzzzxDOt6+LAewgQkq4YL/fzeafQIXvRa3JAbr2GBPuZqHqpVFop+ocN39cJAYdr9Hq9FeGHdUEUwZGDoEQBQk+lydcmycPrakyn09h5g/n3NBpaRiIu8fkg6j8cDuP7iBl8JkmLccdDsVhUq9WKc8F+YKyVSkX1ej06GPy5+J3UGElxLbw9qrtEEGwYH3s4hBD3QkJCQsJZRWEaVLsUtP2BuWo/83aN/9AbdPmzjv7Trnop030/+Bu3cYQJCQkJ10ZpEFTpBj32i7tavvsDml/7lIQzhDMjKBCFpYWcR0Ldqk9bQOAF2yDq/E7U2aP7+eijFxDEbk6EHULjRSKJmFcqlZVK9rPZTJ1OJxIfUjO8uB/k0yPF+dZ73soPKz0EdjKZaDQarRAxJ3OSYk77dDqN43PS7m0FuacXWqQrBaQNkgWppuBlnrARdXb7PmKId4+A+OVTTdgDuFI4DhJL5J15cQs/a8OYaKnYarVWBBCEB/YatRqkQwGB152oQuohrNyfOhhc14stsncBc4A4Uq1W4zq7y4Nihjw7+wMhALcEzgEEKsQLF4vq9Xp0WLDHIdSekkDaEGvHXHkRVDo/uFuI5ybiz5p2u11tb2+vCFNe64T9hzjhBSS5bqvVimkSCBvz+Tw6OChcCRAF+KFjh7tOuM94PI5dVzxFAuGGa1DHIiEhIeGsISyk9lMF1S8t1f7Rt8TXaz/9dj3y06c4sISEhITrRKkf9JJfnqj4X96Vmo3eoTgTgoJ3KoCoE2UkUulReyqvQwikQ+InaYWgQrTcIj+fz9XtdldaH3rNAlIFdnZ2NBqNIsEhYk2FefK73VpONNTz8yFh5L/zPj+TySQSq1qtttLFApLG80D6cT14hXvGTwR6OByukGTInF8fQYA5hqgjNIxGo1iEkOMh0f1+f8UpwBikQ6HHyTP3Yt1YG/4NeWMOvePAbDaLUW93CbB2nEOaBaSQQpF0KPDIPmTS21/iSMh3DmANWTuu6c4WwP4jWo6oBUllr+B8cQcDYhXCD/CuJxDfjY2NlfQYPgtcZ2NjQ61WK6br+Di4p6+TE32AS6fVaq0U5cQtwNqyfnxme73eSioHz5DvuoCYwmeLLhesXT6dhLQPxBT2GuIbz+dFJ3Gj+OfJ96qLKewLxp4vuJmQkJBwWth+b1DhoL5uYZ6p8yPJaZCQkHDnojgJ2nq/1Pr0VMX/8q7THk7CTeBMCAreNQCyC5kgKktLPCKZ6/LwPZoMIMpOfCCeEFIs8NjYqSw/GAw0GAy0u7urUqmkra2t2OpxPp+rVqtpY2ND58+fj8SLgnTD4TASMxwCtO4rl8uxCj/Rd2/x6EUjl8v97hSM2dMbGDPR1sFgEIkQ42g0GjE6jsuAnHpIGF0UIGZco9Vqqd/vR9u657IjZkAQpcP6AhBTXqvX6zGdAVLpjoZqtRrXFMLH8zJH0qGLwy33OA48Gj4ajWIhTemwqwH3cMcJx3uuvaSYEuBCiqdb+D5ygg6BhawjPHhHB86XFJ0U7B0KL7pA4yKPR/VxM9Tr9bifuO5oNIppD3xu+JwgdvF5cYIvHboPmHNSKfhceJFQBLAQQmzHSbcO0he8IChzwv5BJMs7CSRdkbLDM7rLwQUm2lfWajU1Go3oUvAxu8uDzybujXy3DESNfr9/ta+vhISEhFuC9icK6nzq8O+Z5s//tpZJ5ExISLiTkUmP/tr+33ml/kLlX3rnKQ8o4SRwJgQFj5B6VwDs8B51hojgZjiqWj6/Q5qIkHskVlIUICCOOCUgYv1+X6PRSL1eTw8//LA6nY6k/bZ/nU5HzWZzpZAkBJjrSPuEFmLuRJe8bq/zQEoD+eQQHmoDEA13kUBSLLCHKAJxcqs+Ofserd3d3Y1jRPjwwpOtVks7OzsxN9+j7v4DGeZeHrUnNcCLOjJWnADUFuAYxAa6BywWCzWbzXi8R71Zc496IyogwuB2cPGDvHlSGJyUe5FP0i8QftijrB9zidCRL6rJPpMU0wScyCIecT6tSN11gMjAfkYMIkWHVAZ3dnj9At73FBjWyVMWSMmgVaaPF3eMrxmfKRwXfF545uFwGPcx8yitFmGlgClj8ZQc71KBg6bf78eCmN4xZDabrYhqtVotXtuLtyLwuCBBkUmEJ9+7CQkJCbcb7U8U9OhPPqP5J5+JryUrcMKdgsd/ZqpP/OHKaQ8j4Yzg4f+WqXbxsH158VeSG+Fuww0LCiGEl0j6V5Ie0v7/596cZdk/CiH8bUlfI+nCwaHfkmXZz13tWrSHG4/HMTroef/SYUs9SfF1z8vPRy0hPhBVJ4VuxcfyTuoC1eXb7fZKCgNkk+J0/X4/5urTpaHb7UZBAMcB961WqxqNRtrb24sECwEBkkU+P6TVI+S0t6P6PxZxnh2LPxZt78rA8zYajZXCjpJWWufli9rVarUYPSctwwtXes55oVCI64d4QDTa6wMUi8U4RncZYFPnujg8OB8XAd00vCAj9nYcDTwXqSsQSBdScBdIh+kgzLuLE/5f6jcgUtBZAQHEBSIEC78nDgn2ZH4fs+fdZs/zEHlnP7K/RqNRfB3xgx9qVNTr9biunobDfkZQYFykDjQajegSYK29CCQCH2vt9ThcPEDokFZFFkQud124iML6+vMvl0v1er34+WPeWBPScxg/Qp7DU128C4qnKXnBy7OOk/wuTkhIOBuoX1iuiAkJZxvpe3gVxV99j/SHUy/gew2V3YI+46eu7MwQPvK0lgfBsoS7EzfjUJhL+sYsy94VQmhLemcI4T8dvPe9WZb9g+NeqFAoaGNjIxY89CJtkiIxg4AgGHhHCIoS0paOiCPdE8hbJ7I6m81iFJMaCZBFLM4QPUgcYyPt4fLly5H0jEYjdbvd2AliNBrFNnsQs1KppL29vSgGQEppy9dut1ei30R9aaPHmBkbc0Sk22sDQIa8JgAEmyguaRM8NxZ5nhXRpdlsRrLLvbz9pddhIFUAgumiAOKPEzWI73K5326TtSY9A7IPKYVAOrF1IcZdHd4dgeclrYJxOQGXDlNnPC3B62vko9zD4TCm57iggOuFdR+NRisdFyCw7K91c8I4EGIgyS60ubOCZ2T+cRTwLF6A0NNbcBxQEJWUHWqE+J7DzUGqDvdiLXgeXyPfOzyfOwu8FaSnnvA5RnwpFA67d5w/fz62dfXClswdz8T8I674HLvQ5O4V3s+LmmcYJ/ZdnJCQcPpoPV3Q1n/6cGrleGchfQ87lgu96gcu68Nfs33aI0m4RXjyX/VU3MuJBNOZ5s9++opj74zwTMLN4IYFhSzLnpf0/MG/eyGED0p69EauFULQxsaGdnZ2Yr0AyGy+qB01CPb29iLJI4fco6BEY7FCQy4hMFwXy7hXxX/xxRe1u7urZrOpTqezQiwh2sViUb1eL5LGEEIkjdReoKAkZLrVauny5csxhxwyCPFpNpsx9xvydO7cOYUQdOHChVgEEfu6E2dy2Xl+j8iT3lEqldRut2ObSnLiIcYIKNJhRJ1nddJIcUHI6WKxiKkciC44B7g+6RCMTzq08Xv9DEQfyK87NTxdxaPKzJWnnbAHWDes87Z/4/pA7Nkv7kCAULK3INHMj3fc4L8eaaeGBAVF+/3+SmFGCDmuA08V8cKJCEyVSkXtdjuOHxINeXenB2kvs9lM9XpdkiLZ9loRCFGNRiPa/nHqINAg6HmtEubGi2Dy4yLfuuOZJxe+ECnYr/nCpaxzq9XSaDTS7u6uhsOh2u12FA281SOfiWq1GmtUeDoKY/G0GXf93CkuhZP8Lk5ISDhdNJ4r6NF/8T4tut3THkrCdSB9D1+JxQc+ole9+Ul9+GvvO+2hJNwEWk8X9Oi/+egVry8uXtT8DvgbKeH24ERqKIQQHpf0uZLeJul3SvorIYQ/I+kd2ldsd652frFYVLvdjnb+0WgUiS+CgEeMcQgQycy37SP6TJTVI9MIANQ48IJ09Lgnr5sCeZ1OJ7oZSAfY2trS7u5ubM/YbDajMwErPCIHEet6va6NjY0ohiCcQCKr1WokR4gdtFEsl8t68cUXYxcAt7fjKJC08jpEideoDUF+PPUgJMV7evpH3pbPv+v1+kqxwclkEgvhEY33iDlFF/v9/goprVarsegdP7Qn9Ag1RNI7L0iH3UEouOl1MvLPDyn2uYCwe50N1oMxsuew1VPwMv+6R7pxj0CCG41GFHBwwHj3Eb8nUXu3+ktaWQtqD3h6hrd/RMwpFova29uLe9CvQ4FN5hD3APM/GAzU6/XiviT1plKpRJFsMpmsdCzBLcIxPA+fMe/KwFjYq14/hf3i4gDXmk6narVa2tjY0GAw0HA4jCJjoVCI6UY8P9ejmKe7Hzxdw/ea11a4EwQFx81+FyckJJweqpcLevT73qmFffcl3HlI38OHWHzwo3rVPyvow39x67SHknBMhIX05Lf/dvw9WyzSd1LCNVG49iFXRwihJek/SPpfsizrSvonkl4u6XXaV2v/zyPO+9oQwjtCCO8gyri5uRldAoPBYKXbQ7/fV7fbjbnq2K+JkueLxBFF7vf7MbrsudzeOtEt7F7kjvoCkGUKH3qOOddEuPCaAZBXxAVJsQYDkWbSNiBEEGOepdVq6f7779dDDz0UI9PUE4BIzWYz7e7urtRjgOA5aaOdX5ZlqtVqqtVqUUCBXOEM2dzcVLvdXsmVP1i36HRwIQcRId/JgDX0OgfeLQGhhufa29uLa0pUm3FJh7n5XniSVJNw0LGjVCrF9AvWg3/nnQMuTkFoAWIBJNTTJdhzWZZd0dWDsUPW6XzAGvMe+8ILIfIeggtzzA/igKf74LZBlGDOcDRwTL6FInsUNwj1Bqi7QHoMYg/P7F1CEBVcbGo0GnG++IwyPj6n+flE5IH089nx1Bp3oNBhpVgsRucOny0ENtpY+r5w5w5zwB6mmCffEXegmHDT38UzpT8aEhJuKzIpLKXSIOgl//tblKU/3O9opO/hK7F4/4f15A/3k+/9rOHguycspc/8R8/pFd/4m3rFN/6mXv43flPL4TD+pO+khOPgphwKIYSy9r84fzjLsv8oSVmWvWjv/4Ckn1l3bpZlb5b0Zkl67LHHsk6no4ceekgXLlzQhQsXYnSSooA4AwaDQSQ0EEWvqyAdOg0Gg8EKuSdinCcWOAVIReh0OpEgZlkWI8aQWuzgfj7WccYFQSQKDjFFnKDdIrnrROV5DfcEAsNyudQDDzygvb097ezsxHG22+1IaAeDQUzd8CKARNB9DBB90kAgVBRZdIFG0krRQ8QUb5VJQUuEBuaF6zGXXnGfuaFWBOkuEPCDPSRJKwIC60ehSwQIjueH6LUXiJQOo/4QTe+a4KIAz0vePnMlHYoJiACkruRrWRDN964GlUol7k0/l/fz0XnujTjkqSbSfntTnpN5pzghPwgrjM/FBO9qwVgQcbwgY7/fj6Ifa88edQGDtB1Pp+D5+Z3X8ukQXqcDoY/1ROTDycLrFPFEZBmNRnH+qBPiRTIRXJhP0npccMzXVDjrOKnv4k7YTn/yJSTcJhSmQcqkJ77pLac9lIQTQPoePhrZO96nJ5qfq6e/vKasmCkrnvaI7k2EpRTm+3/bPPZf5qr8/G9K2i8AkpBwM7iZLg9B0g9K+mCWZf/QXn/4IJdMkr5C0vuudS2itw8//LAuXLigj33sY7FAY7vdVqPRULfbjRFRb2EoaYXwL5fLGGEvl8s6f/78SmSU6L7nqnuhvWazGfPIITkQDyK9FElsNBorr3NdihZShBBBhDQGoqAUQoToeGFAj5hDXDc2NtRqtXTx4kVduHBBxWJR9XpdnU4nEi2enboSRIe57ng81u7uru67774VIgkpQ0zA4l4sFmMXC0QQRJZarbbSztLHDlEkXQXxApLpz0btBlwiXmQQFwYk1Ltn4IAIIcTWkhTARIDyaD4RaMbrtQ+IjmN397ai+foOIYQ4RoQj5pq6Ee6ugDizp3Br8PzecaHZbGo6na7UA6D+Avfj2i4CzOdzNZvNWEuAuhDuumCuccS4aMM6+ecJ1wgdEYbDoZrNpjY3N6MrZm9vL4oZzWZTGxsb0aWAIOM1CsJBC0oviMkYfJ+yvoyfdUEskRQ7uXgtC9Iu+Hxxf3e20CITt4MLFn4tvjfOOk7yuzghIeHWojgOKhx0T3vZ3//tVPn8LkH6Hr42Cr/6W3riV6Xen/giXX7NQQCumSm7aa90wlWRSeX+/nw3npPu//4kYCacPG7mr+XfKelPS3pvCOHdB699i6SvCiG8Tvvmpqclfd21LgRRKJfLuu+++/TAAw/o8uXLGo1GsTDifD7XpUuXVsg7pJYoM0SKyHOxWNTly5c1Ho/V6XRWUhCots/5kAeIhbcmhNgQcSd3Gys/0Vuu6eeSFoGl/Ny5c9rY2Igk0CO3RH0hTaRYeJ7+9va2Lly4oGeeeUblclmPPPKItra2NJlMdOHCBY1GI21vb690dIAgk3ePo4D5IhVAUnQJLJdL1ev1lRQHSDdkkBaOpFd4nQXpUMDY29vTxsZGfE5y+BEHIIvMHSINAkM+193TEEgPIU1GkjY2NlStVuNzcBznUksDMQHSyVxIii0JeQ4vzEmdAY7n2d2lImlFkELsIN0FwcdJ8Xg8jl0V3OrPfFMbgf2LyOAFMnFTuODhIg+dMtxF4mkQvn9xNnhhSoQTXAi9Xi/uTe7vKTzeKcGFhdFoFPc+nzcEBlJnOJbxMS+MmTQOrk/7U871/eW1MxALcJf42Nhj7IM7BCf2XXxaKPfnKo6qWtTvusBcQoKK46Byd///DS/92cta/vaHJO33Fky4a3DHfw/fLrR/9K1qH/z7/F95k6YHv4wfSJ+Ik0TtQkHKpMJCeuS7f+O0h5Nwl+Nmujz8uqR1nuDr7q8LyQ8hqNls6sEHH9T58+dXahg0m82VHGf/wx+CSvcGCE6r1YpRdAi610GAsEEqPBXCc8BJQfCCj5AZouEuaBDdh3wSre12uysRXIo6SodEBnJEdJ97D4fDaPeH6O/s7KjT6eiBBx6IbTchXESrcUsQIYeA4/ZwkgVhI4qPEEFhRVwGCB/VajWmV7gYAIkncu0dJHydEE94XvaCpJUWhxBp7PvulqDoITUiyMFn3NJh5wNSENwO724H9gI1OBqNxopTgLQLoto4B9yBkX9POmybmK9T4WuOOFCpVFaEEwi17y/2Pa4M7snc+fr6PTwVBDEMQcwj8nmrvxcwhKRTRJV9GUJY6ShBGg+fF09HQkBg/3lnCvYvnwkn+sydO4y8RgjPyfziSHJRAbcI1+I7AEeKdFjEk3k96zjJ7+LTQvFX3qX7HvkinU9tyxPuEoR5UOuZ/Y/l5sdnqv7svrU4Uaa7E3fD9/Bp4IH/+5DovvgNb5IkLSrS8NH0SbkR1M4XVD4wPT38z96t5XB4ugNKuGdwZvy8ni/d6XS0sbGx0r2AQnEerYfw424g/5xCbwgRu7u7kYiVy+Ur7NhOUpxYeM4/1na3yHs7vn6/v2Jth1BCJBEBFouF6vV6TOVAjOB4yDjHOjklAg+ZoiDh9vb2inhCRNvnhDmESGKNn06nGgwGsZMCQgkiACSa2gy8ByCOkEYIHudChgeDQYzy02IStwmglgPk2kUcFykQPhBD2A/ME1F4b5eZT3PwPeSCCq4B9orXGSAVgHXiGXkWd2iQWsDzewFRXofM4zaQFIUaL84IkUc08HQMSLx3tsi31fS0Ac7b29tbKazJPOFsYTw8m7sI2Ov5GhQIba1WK4pNLpDxWfKOHDwndT1Y5/ze59lYP09xYnwuLrAfEI0mk0lcK+4BfK/ifuHz4vOQcGvR+tRYu69saLqR/pBMOB00nymoupNzyQTp8ucc3zmz/d79ugilcabOjyRrcULCcfHg9+2LC8Vz9+nCH3qlJGn0YNDowfT/hGuhdr6gxguZ7v+vz2vxsU9ISuJlwu3FmRAUiKxC5KgL0Ov1Ys0EItQQHumQgEJKva4CrQwhgW7LRhwol8vRYu41AzxKTocJugLwXwQCL3q3t7e3UkyRCCx1CDwCTNtGSBX2/MFgEG3rzAltByWtFA4kag2Ja7fbkdh5VLhcLkfi5gSSQo64N+i4gKNDUpxvL2xHKsV8Ple73Y7HuM3e14NouXdH4Nm8UCaEGZcENn8EI6LM7jhgzjzXnWu6xd5rPABvp8g8QWCZZ15DgCLyPRwOo2hTLBavaEGKQME4Od9dLF6rAsGBeYcoMwai6cwfgoR3l0Do8Dlm3hEEEIjojNBut+NaQPLz9TyYQwg79UAQaiiQSDoQLV8Rjti3CCou0OAEQBRBtONZPFWDZ0I0oN5E96BfO+MB7BV3bHCM12/gHjhhXJjwFJ6EW4vCr79bjde8UdON0x5Jwp2EsJAeeusq4e+9pKj+S4/353T1UkHbH9r/nG+889Oaf+KTuRsEVf/oG449nuZ/eJt0h3WISUg4S1hcvKTtf7EvxhVf/Up1X73fcvLi7yho1r72Z6v1yYLazx79/+55LejC55/MWE8CYR700Ntujv63P7qj5Xs+qPQXS8Jp4UwICrPZTBcvXlSr1Yo242azuRJxxw3AH/yQJGzSkA3s6t4ekIgv0fd2ux0t1rQOXC6X6vf7KwSK65FyQOHAZrOpc+fOxVxtovc8S56ouoCBWIDoUK/X43iJ/nv6ADb4zc1NDQaDlfQC6VBUoGYEhJHuC54LjquC2gSIMS4eeP65R3u9QB3uCAgaP4zH7ejYyYlQexcBt+l74UwiysytdEhs82uKoMDzsAZ0TIDMM59Y6t314EQV8WA4HMauBj4mijziGmC/uXDFc3Nt9my3242iCxF8bwvJ/OFE8foDnk7ixSBps8pas5YIWcyxi0JO/qVDYY69RU0RT19hPMyBpwMgrFAHZHd3VxsbGyt1ThCpvEgj40EwIFWBuez3+9Ft5HuFdWy1WrHbiDsacIowPs7F6eCtTSmISbFMxsPnKAkKCQlnCw+9RaruHjqHwiJT6T+/c+WYjSce1+gV5451ver5oZbv/oCkIyqdZ5ma//5tNzrchISEm8DiAx9Rc//jqeanPkezzeo1z6l/7KLmTz195PuFRkON86++rnFMO0U9/ztPLgXysV9eqjg5cEPOM5V++Z3XOOPqSG6EhNPGmREUnn76aZ07d07VajUSG4gYbfEgUV5MTdIKcZtMJpEYQPYoAIiNn9eI2kIEe71eFBXIxefay+Uy5otTPLJWq8XjnFD2+/1IVCA4RGxxNjB+qtJDJPPFHimCSN2Ffr+vdrutra2taHdHFHCiPRqNVuoQQCpJI/G8cVIkjrL1M/cIEtKhmwQxw9NF3A1AoTxI+Wg0isIHpNfdBC6ykFrhRRAZp3TY/UBSFGJ4HoDDwdMRvEMC+8ct85Ki+EENBa/d4WJOvqAhz8Ue5nnYs+wh7uU1BRBFMotuOdnO5/1D1hkre445QlDwOiM+Ly7cEMHn/pBwdwngTmAO3A3gaT60L+XZSPmh5gNiGkKK10BwQY/rM8+eDsE9XUTLf149bcTTiJgbBELmwItC8tm8E2oo3E148Jdf1OjcQ5qcS38eJazi/ndIGx8dqPD+p67ZGWH+1NMqX4VQONJOS0i4Q/D296p8jMOulai4HA5V/sV3XNetq42Gmp96+XWdM3q4rk9/8f7fMdu/HbT9/n58L7zrg8pSSmXCXYQzISgsl0tduHBB5XI51k4gPxsiCJHnByLiRe7yVfnJa/fWfkRyIX4QDGzgkAkizU56ETcopri5ualKpaJerxcdExS9o1AdbSH5webNPT19g6j3aDSKzzIej9Xr9SIxg6h1Oh3t7u5qMpnESDP2bl5jTO7ecELK/BYKhShM0GLRo8gQMcbLOCBw7jLAUQCcDFN8E5JPmoeTU0QMWlVS44Hndos8xJbn41yOoY6Gd3zwPQfYH54+A3mGqHuxT3eQINiwB3FizOfzmHpB6o2TbogurSYZjzst+Le3tCSCD2H22iKQYQQr3/+ICrSDdPHC0wog67h23BXgezYvrEwmkygc4ZpxwYHPJ84Z5oK9xR5g7MwPe8WFAe/0QqqO13Hw2he+7u7QyLIs7nU+73wuced4DZGE24PFR5/Sy/71TFltf10+8jXnUr/yexwbHwl66JcvSC9e0GJ3LwkACQkJtx3L4VB6+3uv65xmo6FXfeiR/V8uXtbi0uX4XkqKSrjbcCYEhRBCbLsIgYc8tVot7e3txVx/igBKhy3lPH+eSDqt9CCLEDJEBIgu5IfCeJ7nzT0YY5Zl6vV6unDhgnZ2drS9vR3zuL1eQZZlsVNCo9FYicRC5iFLEHWIn1vasWVTr8CJILUm8qQWQk2qCHMIOarVajEq6zUBvKNGo9FQu92O7zMOosvUWhiPx1EocTeDdNilgrVwIQPbPBZ4hBBJsdgi48Yq3+/31Ww24zEQSvYDJBSBod/vR1cBDg/W1yPhCB0IBewl/zckGkLtNnnWjutBxL3zh9dbcJGMOfX0EvYahN07Pri7xu+NaMH8sga+L3kOSdGxgyOBdWPNvOgmY4X0s4fZT7zvtSF4fsaGwMJ88jv7iL3N5571oSArewdBRNJKmgM/zBP7ifnNuyKkQ1cOIh/ikXfFWNfxIuHWY/7JZ+K/X/UPelIIyloNffgvPXCKo0q43aidL+jxH3pK2Wikxe7eaQ8nISEh4bqwHA6lD3/stIeRkHBbcGYEhVqtFv+4J/JdrVbVbDZVrVaj4EDutKRoK3e7PGQSkkM0vVqtxqKFECvIEWSFa0iKxRIhoB7JvHjxol544QU9+OCDcSwQs0ajoWazqZ2dnfi61yxwMs8YhsNhFCK8SCNCANFyLOoQ2mKxuCIqkO4h7RMuSB75+nS9oP4BggxEa29vL853p9PRcDi8gtxCEvPEmgi3pz5AyCCwkEYvpokVHzLt0WHqUpBugs0fQspxtLQk1YE17PV6sbgjxNDdK4hRkMhKpaJGoxELHSKmUITQLfFEytkj7D2vNYHI4OuAgOIpMf480mEtC9YGYcBFE3eMuM3f7y8d1rTwDiWQ+NFotJI+USqV4mcMcu/1Evivi2Ne24HUAQg6e8XrWNBJgb3qNQ+kw7oRfH6Zr3wXFMQCrgtcaMqnQbgLhvSTRqNxRR0Hdy7lHTcJtxfzF16M/37lt1/Yf+3zXqGn/odr59Em3Lmo7BX00n/0bs1Ty7OEhISEhIQzjzMjKEBkqaFA9BNBwAmF51vTocDt715Ar9FoxDxrivV5RJnoJxF9ujF4ygRETToUCMbjsXZ2dlbqEEB+ms2mms1mJLzY2iXFonXY4ck5x7FAS0FcBx4594r+nicPUev3+9rZ2bmiYj3iBD9eGM+r+g8GAw0GA3U6nRWS78cQ1W02mzHCDYkDkHSEikqlslKjAfJfKBSiO4Q5Zh0QCtrtdkx7yBfam81mMd0DwYdnq1arUTghjYHoOfuIaDhE2LtIsM/YA0788wX8aIfINZh7j7hzrlv33akiHUbueT7EIgSJvEMi37UjX+gSwo2LxFOCKExIJxX2EM9Oaop3LPGoPfPoYg3rSOFR6lp4cUN3MHiXC8blz8gzsIe8zgXiiM+F13lwgcLXhc8qe4d954VDESHYTwlnA8teT5JU+LV368n/VlT3j75eL36h1nd+T7gzkUnFSdBLv/NtWi5TqlFCQkJCQsKdgDMhKEiKpIfoLLnQkOxms6lisajNzc2VvGYIHdFaihw6MeG6EF8IMtFzHwOEkhx9rOCQGCK9kCoKRjIWSdENgGjAewgMXo2fYpCS1Gw2I2EbjUYxpYBxkiZAiz/GwBzRHnI0GsWUAcidE2OIPA4E7slcLpdLtdvtKGwwbqLSk8kkuj6oMUDUnCg2KRs8v+fIQ+BYE4/yI7BA/hqNxkqhSC8IyHicNHuBRCLxPCudMBByAM9MfQFAlJ1INVZ6iC/z6R0P8q0xWRdSdrygpItaXrPCC0/W6/VY6NNFLtbB6yKwL6TDehZ8LnztuSf3Yp967QmEMoi41/3gM+BOD4/ss7e55nK5jMKe1+wYDodRwAOkgLDP80UUeW4+g9KhEOEFMklpcHElL4bwufaCn/45TjijyDJl87naP/pWTVtv1M5np/W6GxDmQS//G29NLRcTEhISEhLuMJwZQYHuDRAO7xhQq9XUarUiSYZA5f/wJ5oKmRuNRpFkIUpggSe6S9qA51pDVp0ceiqGR6mJ5jLm6XSqTqejjY0NdbvdlcJ1nmIgrea4Qzax2kOueUavG8HvtOOD0NZqNdVqNY1Go0iSaS3oRBgyORqN4tzWarVIBl0IQVBoNBqRGE+nUzUajSgI0D3D605QjNLTG6QrybO7QSg4CAlG2HEBgb3idRAgxdSDkBSfk2vMZrMV0cKFElpJeg0It+rzO2kpuCDYP1yPveukFiEDSz1CldvsWTuIOQ4KOmjg2vGx8Jx5x4qnPCAG8B5j5D1310C0cQZ4PQf2v6cjuCPFC6Xmu2H4/mYPsxdxF1Bs09NIvK4CYA28KCfj5LPpz+VCD59n3vM5QVxyJ06+hkrC2URpkqk0DFrUMmWFax+fcDZRHAU98R3vTJ+3hISEhISEOxBnRlCgCjxkCOJOJBvBgbx6j95D7Nz+TxoEkUrp0Iqfb+kIoYOoeO47lnRqPOAc6Pf7sSWg27cpaNdoNDQYDFYipf58TqpxERBNh1xR0wDHBUQU4k0LyMFgsOJWcNLl45e04ubAHYH9fTqdajgcRmKeZVnsfOG28G63q/F4rO3t7di2kOf2YoYQf4Qd5hXC6BZ3unh41B8CzVqwH5g3J5iQQsQTt8V7uopH7NljkFO3z+eLRLJH2R8e0eZ5mVMXNdxGj6jBfsVp4HUMEAHcueHtIUmf8dQM7uM1A1jDUqm0UivBax9AsBmXCzdck/WgsKmTba9DgXuDPexEX1J0Ffj12bNci9e8RoM7e/iOQBxABOJ8T/lATHLhybtJ+D7yFCrfW+tEy4SzhY1//VZtSHr2m9+k8QOp/v+dhnK3oMJMevz73qfFbHrtExISEhISEhLOHM6EoEAqgbsLvFsAxzSbzUjg3drurgZEBiKfeeLnVfi9OBzEyaP4kmJnCSz8kOcXX3xRy+VS9913ny5duhS7OjAuIvpOGLHyE6mG3EL++v1+jJaHEGI9AY+yErn3aHa3210p/Og2b7eDM5+Q4vl8rl6vp3K5rE6nE1tr7u7uxhx+jkHYIaJPqgdpGru7u7GbAuQPUu/1BVgbUiWIEiOsUPm/3+9H9wOA8HktANaV5+E+6+zy+Xn01pxOhD3SzVpJh0U/vVsF1+PaPIunkPAae8Gj+96FgXG72wWHDi4A77jgxQy9owFOC54Bcs6cISjw4zUjcCIgUJAy5E4BLyiKEMJ/2YMu5iDU4M5BDHGHAc/Omnp6DEIQYgqOD7qfcLzPp6dhuDvBXT8c4/PnLgWOSaJCQsLJo3qpoJf9m+c0f+pppWoJCQkJCQkJdy7OhKCQZVnMb5cUawJASj2y7cQM4oT9HxeDF24kiuqResgj+foQN9wPkJRKpXJFJXwKB16+fFmXL1/W448/rmazqX6/H0kQ51ar1dgyEIJGugPdHrgv9/IWkbRMxGmQz28nwjuZTGKLPcigW+rJSUc0Qfyg2J4T+n6/r36/v5KPPh6P1ev11Gw24xiGw6H6/X50JBQKhWh3J40EkSNPJkejUSyY6FH82WymWq0WRSMKBuar7ZNiwb0QhBBLXIxy6zyWet9TkHfIOHPn6Rqsv6RIhBEZJK0INnlSzBq44ME5eYs996fGBo4A5nddnQr2erFYXGml6PUSGJePx5+Pa7sQ4tf1seXTCKhpQL0MF5DcCcLcI2J4MUnmh/3CeS5i+P3r9boajcaK28bv4cKAu1J439eLvcVzIx7kxbmEhISTQ+18QZ/xExc0f+rp0x5KQkJCQkJCwk3izAgKEAzIHIScNIF8y0QIPikBzWYzFvAjL5qUAy9UR2tArkcE2avze949AgSEl6hnr9fTc889p8/6rM9asUdzrqSYmpC/D4X2SNugHgMtAuloMBgMNBwOYycDCDvwdo1EyyFUOCF4ToghIgKuEIga87NYLNTr9VZSNbDg40qAwHe73SgG+b05DmLLWvFvnt3z1BknjgcEAtpFUlcChwhOASL1XJtn9oKNnA8JdyJL9B1S6ekRtPf06L6LVfnCf16s04kpIpikmNbAsTyHF1dkn9OVxKP4Hj1nTRFBvLCit9n08XmhRhdK8uvjzgn2mNcB8doM3M+j/C7acG+v8+BiCuNh//DvfOoBa4ujh24h+boP0qH46AID90Zk4BldAOL++eslJCScDOovFvSSn7msxQc/etpDSUhISEhISDgB3JSgEEJ4WlJP0kLSPMuy14cQtiX9qKTHJT0t6Y9nWbZzzOtFclitVlWv1yMRJE0Bkicp2p9ph4jDIJ9XnieL9Xpdy+VS/X4/EjCi+LgdisVirI0AmUEAoDL9zs6O9vb2YiFE0ig8zcEL3/V6vRWHBRFlnhHS1e/3NRqN1G631e12Y/qEty10suw56R5dhhwiYCBcMNcQsizLNBqNYlG9Xq+n0WikYrGoZrMZUyE4hrmE+OIK4dlwQCBa5G3tLq5Ih8LIeDyOxRtZP3ejuGgAXBCRtCKeMMcu9vDsFFj0bh5Obn3+XEhyNwHCRZ70e8cD5gsRgVQExuGuAx83KTEuYnh0nb3FM/jnh3lhf+Xrb7hrIk/w/d7rak94zQTAenIt34cuTCDkeDqE1y/wdA6O87oGpGB4mlLeWQB8zP6az6O02n3FBSFwp4gKJ/1dnJBwK1A7vy8mLN/3odMeSkLCiSN9DyckJNyrOAmHwn+XZdlF+/2bJP3nLMu+K4TwTQe//81rXYQ/9t2lgP2dKC52eY4nv7zdbqvVasXoOyQBcgRhJzoJqcO6TlQdAgjpJm/d2wUWi0W12+1Y8+D8+fOqVqu6cOFCdBBAtElXgMD470SKQwgx5YCo/Ww202Aw0KVLl7S9va1Wq6VmsxnJECkbtBIklYDreaV73ACASLjb5ReLhbrdrpbLpfb29uL4h8PhSotA5oh55b/SYTcA8tRJS/BWjdQk8NoGCAXMV7fbjTny/uMEEDcGpDbvIBgMBlEkwd3BGnqKBnMNQfZ7+Hx5ZBsi7mPzSLq7MjzVgmf1dp9eWBEBwJ/D3SfsE9aYsbpgxf1dGEFM8EKQjAnBwfeE157w+gHuuOA67nhgXri2r5sLCMwpc+Ov+dy6A8JFHuYp73ZwEYA5dDGD17gXezYvIvmzeq2LOwQn8l2ckHDSKPWDPuPnRypdHiRnQsLdjvQ9nJCQcM/hVqQ8/BFJX3zw738p6Vd0jS/PyWSinZ0dNRqNlcJ6noYA8YA00QGAFIZmsxlfd3cCrgIi1J5vjbDAPcjh9iKPHlHmdwo7DgYDPffcc6rX63rhhRdiZB73AwUFifaWSqVYswE3hRetQ5CAXO3u7mpnZ0dbW1sreenD4TC6CBAnEF0kRWcH5J+6DBTc43gvAClJg8FAo9EoEtrRaBTJN3ZzRA9/NgQRWnsiSHgBQM/ZZ1yQey9USWFE787h+e7SYQvOfKcECnr6WBkHpBwBylNT3NXB7y4GeFoB77M/GQtCga+Tp4y4+8aj4r4HfC0Ac8K98p0c2LfeEcHJvKebMD/8l88KTgwcJu5GAAgZwJ8hLxSxZ1w4QPxBsECMYCx+3XzqiZN9PhvcKy8arNsvfp11IsE6gcivdae4FNbgur+LExJOEmEhPflDuwrTmRYf+XgqvphwLyJ9DyckJNz1uFlBIZP0iyGETNI/zbLszZIezLLseUnKsuz5EMID17oI6QBEYCEC/Be3ApZ/JxxEl7HdH9x3pUsDEW8v3AbxIbqPQ4DrlstlVavVlTFyX2oPzGYz7e3taTab6fLlyzG6LkmXL19Wr9eTJNVqtVipnzEtl8uVcSEoEKWGyO7s7Ojy5cuR2JCaMRgMovOAMecLVeK8IIWiVCpFsQGCSuoBAgaiiKcnMGbIGw4Jov5eywGCyLmkaiCEOEFDBHBHhbsKWMd8XruPAzIeQoiiEvf2bhpeiI/nZ+4Yu7eQhKy6oOAOENbIbfy8znUYK4Qa8YPj/RqeuuGpEp7iwZg8vaRer8d95A4Yjvd9n6/n4AIJz+1zzR7nORhXlmUrKQ4+j3mS76kg/I744cKQf+79+Px8uUjBffIiQF6McPix7ui4g0UDcCLfxXcqHv+hp6RK+doHJtxeLDPNn3n2tEeRkHC7cE9/DyckJNy7uFlB4XdmWfbcwRfkfwohHDsxMoTwtZK+lt8hChBB/sCHtFSr1ZgKgBBAhNMLGjqBcVIymUxUq9XUaDRWyJu3xINUUviNiDoEhBoJkCZSMKhRcOHChdi1odfrRUGBooC1Wm2lWCLpFy4UeKRdkvr9vnq9XmzHOBqN1O/3VwQFnpdos6SV63Jtnw9PHch3vvCOG4gfOAcKhcJKB4JGo6FKpRLHgwjjBNALG3JN5s/TFZzYu9Xdu0043I0CyWw2m1osFhqNRnE/+BpimXcLvtel8NoEPp8+RlwHuA0g4p76wDVd+ELE8S4cXJfncMHF8/qdCHudBbqhMH4vNigdEnhvl2ifwRVynX9eF2/8mpB/BCQn8LzP589TLHAteJqFO1ZcEMQt5HCh41oigKdSXA0uuNzhosKJfBfX1LhV47ulmD//wmkPISEhIeGe/h5OSEi4d3FTgkKWZc8d/Pd8COHHJb1B0oshhIcPlNiHJZ0/4tw3S3qzJIUQsnzxQ2nVoYArgEKJ2Oups0AuulfRlxTb2SEqkPYA0SCij3BBdXws7AfjU7VaXekMIa22fgwhaDgcajqdqtPprFjkIbE4B2jxR6HDdW0Cue9kMlG3242tJYfDYWy76PULeB5vtcf4Ia8uAuCIIL8+X/H/YI1Wov15As5YIdOIMZznbRclxYKaiAac45F3iKqLBETfcQFQ14GWkjyXtxqFIPMc/lyc59Z8ovHz+TyKMRQbdOLNvK6z1ftrzBvCA6TZu3uQOoPo484EJ+J+D++MQFcM0gcajUY8nznPixbsGfYs/+UY3zP5471ugxdR9KKUPhdeNJLn4RpeUNGFQD5XEH0vyujP4+6CdXBx5zhCwR0uJpzYd3EnbN/ZE5GQkJBwSkjfwwkJCfcqblhQCCE0JRWyLOsd/PtLJX2npJ+S9GclfdfBf3/ymNfTfD5Xv9+PJJ/odJ4UeN0Eov5ecwEyWSgU1Gw2JWmFMBK15b7epWCxWGg4HK4UBpQUrz2dTmMHhFKppOFwqOFwGO31kHTGR/0Hzl0sFtFtQKoHxSQ9Wi8dWv5JhZhMJiv3IxIMec2nikDWuQ7kHgKOKICAw3x75Ngj3NSTgAxC7j1tAieDpJXIOW4MnsPhEXTGxTOQ5uLP4GQWkl4oFKIA4C0aXVhg3JyL88XJqhe95NkRXRCmIMrsn/x8+zowtwhJiFDegpGaE35Nr+/BWnvkn2eFjFMjwotAMiaezV0qXoCRdedZ8iKGF6XkWMbhglE+7YA6FcxXfn78eC+UyLjzqQx5UYHX/Hff1+5wyF8rf3+/bv71s46T/i5OSEhISLg+pO/hhISEexk341B4UNKPH/zxXZL0b7Is+/kQwm9K+rEQwl+Q9ClJf+w4F/NihOGgeB7RT0hDqVTSxsaGqtVqdCR4dNuJhRNGyBnEu1arRSIMgaYNolv8PSoLyUAEIC1gb29P9Xpdg8Egkm0I1+bmpjY3NyXtpy7s7OxEgulpBl4LwSP43o2AcVEPAZcEz+riASTP21gCIsZEn/nd58yvy7XzUX/EBNwCpDEgmnAMLToZ+2Qy0WAwWInQ56v4e1qCF4XMsmyluB/P5lZ76ghIh44EL2aY7x7g5B0BxPehuxtwM+SL+OXny+3+PmfMP+cjAvj8OryQotdOYI9Np1MNBoPoOPGx5ds3st4ITwhmLl452Ud4QExwsu11B9ZF9t0l4/Un+J3r+HoDT41gXHlRwceyzhnBefnr3gjukFSIE/0uTkhISEi4bqTv4YSEhHsWNywoZFn2lKTXrnn9kqQvud7rvfWtb9Xv+T2/J6YLQI4gldJh1JM0Bicrg8EgihJu+S6VSqrValEwwIbeaDSis8ELM+bhxJP7HzxnJL7PP/+8hsOhsizT5ubmSo2HZrMZhQInUc1mM5I8hBMi2HRacPLoeesIDvncdbfDQ7TzOft5YgopdBs/5yISQDRdVPB7UofCbfI4CrxrhqcRSIdkjYi41wBwa7uLRX79fLoB7hLWq1arKYTDdoteMJCIOf9FICL6D9l3Z0S+rgRODu7P+L2biD+Ht1R0EcEj/C6sODleR2o511Mm3EHAfLmjw/c0Yp2nPDDXuDJ8/aXD9J08qffnXbd2+fQTrrUuZcSvm39eP87PPQlcy8FwVnHS38UJCQkJCdeH9D2ckJBwL+NWtI28IUAyPYXBK8l75JyIMjbu4XAYo9heJ4Dz3K7u6RAQKkkrggIE3gk3BJKif5ByHAWDwSCSSQoTOjnzlAzG6M8BoXVy6QXvEBKIMnsNCJ4HsUM6JL1OoIm8e9oCz0pKhrcA9Nx2nwcXBnB5OPldLg/bEFL/wp/ByTRrQOqCFw/0a/pauCvB7+nuBs/h92MQBtgbvic8+s6cInY4qZYOCwPmz2N8jD1Pfv2+ebKej777uuUdAqyd16LgWSgo6u4T5sPFGPa4E2eewfeHiz55R8m6NAFfIxcy1t0nj7xgdSOkft2YbgR3gDMhISEhISEhISEh4VRxZgQFiBPugWKxGDsHeDV5ItEQ8PF4HFMQyOGH2BMpJu/dO0F4PjcpAN4usd/vR4KOIwLSTjqBtE8Uh8OhBoPBiouBKPd4PFalUokEnzoCkGeu68UaqR/RaDRWcu9Jj2DcEEr+7a0znZivi4zj2oCAE+n2FBNs/3nbPfekwCBFHT3Xf7lcxus5+ebf3o7QUwOcaHpU290PTnKJxCOWQKQpOumFALmWA6KMmJLvCuACiVv0fdyIPk70vSAlY0Mg47h8hJ5r+H19f/qY1q2Lv85z510OeaHChZN19QhYBxdm1qVo5OcVl8xR8LGctBPAn9FdMAkJCQkJCQkJCQkJJ4szIyhIitFUChl65BrSTW6911HwCC6EkC4NEL58tX7IHkSdyH2+MwFjoUVlvV6PBNGJHDUXXBCYz+exgGK/31+p+u/pCNJh0b5KpRLfd9cBqRCQ/7xIUKlUYk0CRBVJK6TbSSzFCH0ckFeP0iPMMM8cj0thNBqpUqmsEGbIL6KCE2cvPuiEluMdbv3PR7f5b96BwPN67Ye8SOBRft97npayzl7P8zk553lxY0DmEVK8XkVeUMgTfIcTctbGU2ZcQPAaBdJh7QV3mPg8uyDjc5dPW/DX1819fk79mGtF9/PHr/v9Zh0CNytYJCEiISEhISEhISEh4eo4U4ICaQWNxn4PXogRLSNxB+A2qFarK3b0fBE2CuQ5uXLnAuQYNwGEEuJFmgIFBPnxyLvn3ROpJ10ghP1WkiGEWJCwUqmoXq+vpAx4qoITYo9+k1YxGo0kKZJXXA6VSiVW1fe0Auo58DxOSj26n89lz0f28xF3zkMwWNepgHG7Rd7hpPWo/HVI3VHkMC8WuLi07rr+fByTT13w8bnYkbf5u7NiXTqFFyekYGS+a4mvQX5ucE348Z7Ckn8mf25fKz+X+fS0Hr+er18+zYP31xFtnjn/Obwa8mu77r2Two2kQSQxISEhISEhISEhIeHqODOCAiQPQYEuB0TsifZCoCFFTrhJmYD8UpeB63JNOixwznA41Gg0Won8u1iAc6Ber0fS7tZyyCPiBKkAnos+Ho81n8+jOEF6A6D7BHB7fb5dIqQOy7ukOE+TyWTFxu51GLDie4HCvIOB+eKezDndHPKR8fF4HIUexu3R93UOgePsBYevt0fM81FsLzqYv2/eCeBEPt8Fw4/PixJ5Z4ETYk/ryB+H2EJKhv+sE0/c+eDPmH/+dVgnJnD9PIlfJ/Rwf5+P4zgOvGbF1cZ33Pe571HHJQdBQkJCQkJCQkJCwunizAgK0iHxL5VKMf1BUiTstVptxVbvpJWIPIR9NBpFEgcRxUVAK0nqEVA/gEg/AgDkCOFBOmy7yHi9Q4QXFsSmTsFIL1KHu4BxSFqJcJdKpVgvgSKVzAORZSdunCOt2uP9uV1gcELpYosXwfTzvfNCnvzmu0Acx2Z+Nbt7/jXGkRcp/DiPzOddBOvEDCfkR0XI/Tj+nSfV+doCntbhNSx4P5+6cJRQ4eTcr+Pv58fj64LTJp8a4eM+av7XuUj8+kfNkd/ndqUrXEtMOO5+vNp5CQkJCQkJCQkJCQlH48wICrPZTO95z3v0yCOPRGKLi4DIbrPZjB0OIGc4A0IIqlQqsRaBpBiZ5/jpdKp6vR5JNakQXlHeaxjgRJhOpxoOh6rX6yuCAh0MEEEg9U6ynNTxu9dnwJWAaMIzIHDgqqhWq2q1WloulxqNRiv57fzbiwN6NwEXFEgf4TzcCE5Q/ZouSORFHG8Vmc+1X0eW8ziKtOVFCx/Pta6zjgCvI9Te3eGoMeTFifz9/Nw8cWdujnIX+GvuCHBCftTY8s+XhwsK+WPzc+s4Sqi5Gvx6LgJe6x5XG8dJ4Uavm8SEhISEhISEhISEhOPhzAgKktTv92N1/sFgsNLloVwuq9PpqFaraTgcajKZqFgsxuKCFDCkICL1GIi+I07QspF0BcgDhJ6UCLoJUB9hOp1qMBis1HHgGpJW0jMQK7iWW/Ap0gfhrNVqcTzeSaLZbK4UbSyXy2o0GituCRcsIP1cz1tbQlg9RcTJKs8EufNOCZzLGiBIMAfegtJrKDiOIqbHsdEz1uNY/a91Hf7NfK0TC447tqPO8THmaxCsc1mscyusG/f1wEWsG8W1zr2aWCBdWyy61nHXe++EhISEhISEhISEhNuPMyUoQHZxBCAmDIdDZVmmZrMZo/S0XsSRQPpBuVyOxeZojYiQgBWdLgjeqQHy7XUJJEWi7zZ2Uiuq1Wqs29BqtWKLSI8yI1pA5r3GAekOTpy9boJ06K4gdYNn5H1EB4QUOlFwjhcCzNcDYJ7ywgVFIfOFC7Msi8/sggN1JfIWf7ebX0touFraw9Ui9cdF/l7UOfD3jktS16V+5HFU3YhrWfCPKiR5vcg/77pUhuOQ++OIHUfN39WI/42KQzd6TkJCQkJCQkJCQkLCyeNMCQqSYo0AOi9QHX8ymei+++7TxsZG7JIAyaeTAekCi8UiphJkWRZbNiIi4FJw0pcXFCCcjUZDlUpFw+EwXgMSTWtKxAGEAtwQXuUfwYNWktzHyTtjIp0DjMfj6IDA8UCthnWF97wOBfNBFwvm2Kvxe34/z46LgrnBzk7KCHNPTYhrkdM8wc1H6fO4Vp2Fo3DcaP+6NIDj4mbOPQ4Qb45D2o8CDgn2Zz5947gpB1d771rXupn6B36PG9kL13KAXO91EhISEhISEhISEhKuxJkSFIgcD4dD9fv9WMMghP32i7u7u9rc3FSj0VC/35ekGLX3f0P4uWaxWIwRdHK985XwPfXBW0xWq9WYRkDU363+klStVqPt34UO6TC6TocFijh6Hj8uBkg946ETBN0gNjY2VK1WoygxGo1UKBTUarVUq9VWSLq3lOQ5SVsgpUFSFEk4h397pwfWgPXhWXB4MD6/P44K/p0Hz+hk9CjSfD2k/W6JXt9saoCvw43WYrgWrneMN5KqsO4ex7nOUcJGft8d5/5JVEhISEhISEhISEhYjzMjKBCdp04BaQ6kClDDYDweq91ua3NzU4vFQpVKJRJ0r4/g5DhPCLD4T6fTSC68FgDH87unLOBCQKCAcDcajSgSjMdjSVrp4EA9hWazqRCC+v1+rMHgTgCEiHxtAkmq1WrRIcC9K5WKms1mdEhMJpOVtA2eE7eH132gy4WkWHDSUzLy3RWYS0QPrpN3e+D0QIC4mmvAUzeuZ69w/t2AW0Va8ykdx8Fx5/YkxIHjjOVGaksc1/mSkJCQkJCQkJCQkHBzODOCAqRqMBhouVzG3H8i6kTLpX2y3Wg0NJ/PoyPBu0JUq9XYKYHiiggM+RaOEF8XD/L2cAduAiL7kG8EA8i7pwyQJkEByel0Kkmx9gHHjUajeCxCyXg8jqLCeDy+wsVAqketVlO/3481GCD4FLn0NA+vOUHKCCIF7g2unU+p8AKTzAVjdiLnNvtrrbuv/3H3ylnAjZBqL8rIPLE3j6q7cDPjk26Nw+N2rMGNihpXq9twVvZOQkJCQkJCQkJCwt2AMyMoSIeRbmz+9Xo9dlqo1+uxLgJE3DsjeGvISqWicrkcc/8rlYrq9bqKxWKsQTAajaJzwF0K0mGaAmIB41oulyt1E6RD8kLHCZwKuAoQLqi5QAtIxA9qI5CSQHQfdwPH83z9fl+j0SjWaKjX62o2m3E8uC8QDfjdBQ6u6x0rEGwQAVy8cZHFBQvvGuFgfvJixLr1Zo7zdRWOK0jcChyXeN4IOc0LKMzpST/nzZLnO4F832qHREJCQkJCQkJCQkLC1XHDgkII4VWSftReekLSt0valPQ1ki4cvP4tWZb93DGvGQm7FwmkTkCz2Yx1BRAUOI8UgdlsFkWEarUaOy9wbq1Wi1Z/jxKTKsE9IXgIAu5qKBaL0UHA/YjS41SQFNtNuouhWq2qXC6rVqvFugdOzBEVqtVqFDzq9Xocy3g81nA4jPUQaF8JWaJeAuNk3LgQOMbrTTjJLZfL0QnhY4MArysCmW9RmK+HsK7IIDiqxeHV6i5cD/LFII8DTxU4TkHAGy0cKGntsx/3OvlUFB/7zZLn20m+b2b+bvQedxNuxXdxQkJCQsLxkb6HExIS7mXcsKCQZdmHJb1OkkIIRUmflvTjkr5a0vdmWfYPrveaEGlJsZMBkXoEBLeGk+pQKBQiAR+NRtEtQOeEYrGoZrMpSStpCJA5SLNH8D3iz1i8M0KtVotj804HEGwcBzgVIPC4JRi/358UDkmR/CNOSPsCRbfbjYUfmSfvLOHiBkQeMYFCjYwPAcFrN+D64FwEC35HjGBu8x0pjsrbv1oaRJ70e0HBda/dLmJ43KKD11ucMI+zRHavNpZrpVCcpefI46yO6yRwK76LExISEhKOj/Q9nJCQcC/jpFIevkTSx7Ms++TN2qxpwViv1yMJrdVqK3UG6DBA68RmsxnTCAaDwUrEHtGAlAMItkfcJcU0CcAxk8kk1j3wVIh6vR4FBWm/00OWZbFDBEQcEi8dOikYKwQNp8FyudRwONRkMomOBoolOoHneswXY5pMJrG2A8UbuS9j8faUXINUEZ4bwYN0h0ajEcUKCk5yz6OKLvIa8+x1MPzZ83AhxF/jmseBR+ndiZIf37pr3y7ima+lsA55p8Rxjr3avY6DG3FkXGsM17r/zQoyx7nnWRY7Thgn8l2ckJCQkHDDSN/DCQkJ9xSuTIC/MfxJST9iv/+VEMJvhxD+eQhh63ovVq1Wtbm5GbsXbG1tqdPpaLFYaG9vT5PJRKPRKLZOJLWAIoyQXFwC1AmgACKpB8VicSVST6Qfu7+07wrwFADpkJwgfuBWQBiAQPO7pEiiubfXDYC4UyhRUuxgwbW5Dk6HWq2mRqOhSqWykiLCj6TYVQJBhpQPhBVcDdSsoIBlu91Wu92Oc0KRy7zocpRdf116BOPmWde1lOR15pn5pfaEp4Zcrb4C68M5+fvcDPKpHTeK60lNOOrYdb9fD9E/7n2vNY7rxe2oi3EP/xF3ot/FCQkJCQnXjfQ9nJCQcE/hpgWFEEJF0h+W9O8OXvonkl6ufevX85L+zyPO+9oQwjtCCO+Q9knGeDzWe9/7Xk2nU21ubqrT6aher6vdbqvVammxWMQIfr/fj66B0WikXq8XOyIQCUdcoK4A79F+0TtIUD+BKL+3MUQMQJTgx0l+PtLNMdyf1yG5IYSYvjGZTDQej2MaA04HXAR+vKQ4jmazqUajEcfopB33As+I6AJJ5xxEBeYHRwgiBK9xHUSGfOpJHrzv6RA8B3OeJ8AIBn4c9z0uec4fs65opI/ZnQnXQ+5vNOJ9M2T6JIn4UTUqrgVPPzku1q3dcWpmHHdM1zr+XnEnnMR38UyT2zHUhISEhLsS6Xs4ISHhXsRJpDz8fknvyrLsRUniv5IUQvgBST+z7qQsy94s6c0Hx2XSfsR7d3dXpVJJW1tb0X1Qq9UiYc6yTN1uV5LU6XRWyHK5XNbm5mZs34jAwHlE73EJTCaTGLkvFovR5eCvO0GBjNOFoVgsxpaMgJaL+a4LpBXwvrsnOHY6ncbrectIfrg/v+cLQ0qKQgDiCOkhtLKsVqsrnS0O1iK6CRBXXARxUYF55H555Mlinsi52EEqCb9TWBP3Aa/lnRDXkwLh63+1dIrrxUnY+6+nJsFxnvV6yPe6dIAbTYtY9/r1XONq556EEHCt+b3d6S63EDf9XdwJ27e/rUpCQkLC3YP0PZyQkHDP4SQEha+SWbtCCA9nWfb8wa9fIel9x70Qf+BXq1W12+34OkSTHwQEagXM5/MY9YawzmazSEq91SHXw0HgEXScAePxOIoGkH93GHgLS0kaDAYaDAaRcEOUp9NpHE+329WFCxfiNaXDdAoI82w202AwiPdH+EA4QFAoFApRHKGmAXOAmNLr9WI9CVwS3JfjcIVQY4KaC+uKLPJv5tjt7+sizlzDCbHXgoDk5+HCgtddOKoWwrX2kxfeZNxHdZa42nWudd/rIaXHJfD5ub8RHGdcN+q0yK/9STkBriakcL/rFSDWnXNSKRxnCCf2XZyQkJCQcENI38MJCQn3HG5KUAghNCT995K+zl7+7hDC6yRlkp7OvXdVeF0BTzFAFABeJwDSvVgsVroPEMFHDCDtwW38+Xx8t/CHEDSbzVbu5ZFzbzGJA4CWkIgenoYwHo916dIltVqtFSFjPp9rPB5HkouLAXEDku9zVC6Xo0PA0zp4JroyuBBCSoPXciiXy9ENwXmIIaRC4OiQFMWE+XweaxvgvnCxIC8mgDy5RaDweUdoYD48HeN6osnMobtM3OnBnKwD80NNjePgOIR93dhvJIXgqHvkhaCTirxfjYxf7/WPEgOOSj25USdIHneRaLAWJ/1dnJCQkJBwfUjfwwkJCfcqbkpQyLJsKOm+3Gt/+kauBQFaLBYaj8fq9XqqVCra3NyMqQHUGXBxoFgsanNzM6Yf4AygoOFkMlkpQOhFAhEwECxGo5Ekqdlsxq4Q3I/Cjl7gkC4H3NMj/xSORGRg/Ds7O9rc3Fwh05PJJDoMvDMD45QURQPe4/XRaBQLMiJy+HG4JrgXc+BuBm8ziauC+YKoeqoAnSo8ZcHFi6sRRuBr4cdAFP253dGQj4ZfjYwzDy4I4Xrwa/v+W0ecj3OvqyFfA+N2WexP6vonOc6TSG2428WBG8FJfhcnJCQkJFw/0vdwQkLCvYqTaht5YlgulzGFAFEAQoYw4G0TSZEol8uRHNOtAOs81x2Px7ENo3RI1qmfQNS/Xq+r1WpFYQCRYzgcql6vX9FNwaOqkHui/IyNugSMz8m/PxMdIKTD1pVO2J3UIzI4cR6Px1FE8e4Iw+Ewnr9cLmPahKTomPDUEMbG6yEcFlN0Us611rWPzNcsWC6X0THgY0EwyKeXMA7u6ekrjN1TIo7K7XcgJB3V7tLHnd+XvHe9WJca4Hvax+xuhqtF5/3aPNM6weVuwK0UYO6meUpISEhISEhISEi43ThzgoJ0mEIgKaYQeDtFFxYgtETSnawvFotIqvndiSxRfVIB6IJQrVbVbDbj+fP5XN1uV+PxWLVaLf7Xo+nlcnmlpgEEnKi/pJXuEHR28E4LOB94Zki0t8L0OgbUYJAUBQKu5XUlJK0QeXcHVCqVOEbmEqt/nrzzTOvs9XnxgOsw76wd5+YFEmm15gHHLZfL6Bbxcfo8cK4jL2wwdubEU2Q8FWRdbQCucaMOBe8G4vdwl8u6MV/P9cvl8spz3GrcTiJ+M/e51jiTmJCQkJCQkJCQkJBw4zgzgoJHVmezWUxvKJfLqtfrqtfrkhRfH41GGg6HkfCORiN1u10NBgMVi8V4bqPRWEl74AdCC4Elyu+dBmjBSJtF3AVe1I/oOePn2pKikIHzAcdFlmUajUbq9/srqQpcl/t5tJqiip4WASD3CAr+bKRkSIpuCRwPpD34vfLdFhg7Qos7PvKig6cHeNSca+cLK64j8PzkW3FCmH2t1qVMrBMDeD4XnhgvRTLdcZJPt1h33eM4Cfy+7uhgTt3ZcjNReFI5uHa+HsGNCgxXe7Y7hYjfKeNMSEhISEhISEhIuBNxZgQFR5btdx+gAwKResjkeDxWtVqNOf6LxULD4VCDwSAWEoQMEd2G0I1Go5XWit75AXLtNn9/n0KGCBpE/Ylyew0IxjyZTDQYDCQpdoegRsRwOFSpVFKz2YztHREMEAEg0oDncHHEOzgwHn4QFCCdkGXpsMCjk04n2+5EILLPMzIvPtfrXAH8e90au4jkqRyMzQUKXBsIGT5er4Ph91wnKjAn7qQgws/5rGe+Q4SLDuue05+D+7MOXjDU5/8oUWQd1s0zc+BCVv4cv5cLJNfC7STjt9PxcJx7pVSIhISEhISEhISEhGvjTAkKbmPHDeAFAefzuSaTiSaTyUoawWKx0GAwiE4EbzHp18bKPxqN4nkUNdzY2FClUtFwOIz3lRTJM4Q2hKDxeBzdBh7plg4LAQLIK4Tcuycw/larpVKpFIs4VqvVWIPBr+OElzoNFHT0ucOJICmKMqRQuLsBclqpVGIqA20kpdXClaRqMH7ez7eR9HQE6UqS7a9B2ryuAz+4TFxYOOo6Luiw/vlaAvlx8p6nPnAex3F/Oo24gOV7yq+XL2CZ39usFcf6+05i84KOP3ceXlDUr5VfR9ZnnUvkRgj0cc856rijXBn58R13XL6f1l1z3b3W3SOJCQkJCQkJCQkJCQnHw5kSFEqlkh5++GG12+1oyacuwWAwiF0cvEYAtQu8vWC+3SQEGEJHxwbcDsViUfV6PboP+IHUSoqtKcnjn06n0dHgggEdJiiYSA0ArPX9fj8S01KpFNM5EAy89gDPlCfs0mHXB49Mc81yuRy7MCyXS00mk5VIuV/D0yiq1WoUICDmuDtIlSDlxAsl8rxeGJH75OsQrEOe3ELw1wkqzAlAQME9wBx6ekTedeBR/nyxRW+7yTNSZ8J/3BnBs3qxS56bMa9za3h6SH4+uC7uEoenhHi6C+euS6PgJ38eosrtQN4t4TgJAn+UI+ZaKR/XcoQkJCQkJCQkJCQkJKzHmRIUqtWqXvOa12hzc1PdbjcS+vF4rH6/H10JeWs95I6oPGQSYQBSBkGUVgl5CPudImq1Wiy+SHSaayMo4JDwaKiTaSeCOBG4NuIIBLNWq6lara7MASKIOwEYN0TVOzD4PLiYAoGuVCqq1+srxNWj1cxps9mM8wqRd0EBV4QXw+QaPnbGKa3WxcinOPi480TdX0cgYC68fgViSKVSiSIRXSEQmnws1NXw7h88g3eNoCOHiy35uXZRyIUnxuXH5wUYT8dwku9EG1HjqNSNdc6No+BCDU4Uxo9rZ10bz3XXyX/2roWjSHleWPHXjutOuBWEP4kICQkJCQkJCQkJCcfHmRIUCoWCGo3GFcSn3+9rOBzGOgcQwH6/r36/r06no0KhEFtMFgqF6DwolUrRWQAx9qgsXSCciEuH9nWP+juRJ00gT4RxK0BgJcXzPV2jUChEoo/IADzC7QSH+7vLAPLKczMujzrXarWVQo1c10UVovCSojvEc/5dZED0YEyMwYm8p3Vwv6OIMdfx1/2/EF6vJ3FUhJtrsgasl4sWvi+8jobXOeA4dyB46gRz4Gkh7JX883tKgXcr8XMROhDAcI8cRcbz4pDPyTp7v3fLQIhA4PC6HPkaEevmmH9fS4DIn3O9x6xzWuTTQsDVhID868cVDJKwkJCQkJCQkJCQkHB1nBlBAbJAfQJ+SEsIIcSihpDA0WikXq8XX0NwKJVK0UVQrVY1mUw0Go1i+gDkuNlsqtlsqtFoSDokefkoO0QSUQAC7t0ZRqNRJKkQQU9FgMRScBGyQkFJIuwQRI+Su1WcaDdCCMKAR7ZDCLHtJmkZpGk40cZFsVgs1Gg04vhcJHGSimhTqVSiMOIpBHSNQADwVpcg/1q+sCVR+nzawHw+V7VavSL9AHEpny7BdSm2mE+/8LoJvlbcz/cCc+yOhGKxqH6/f4VQ4m03HdzfhTJfs2q1Gq+NIMFeWEfe3XHA9f2e647nWuzZSqUSHTLcL/88eTcJ51+tJsFROK7z4Kjzrna/q6UtXO39414nISEhISEhISEhIeFKnBlBAXJIdNYdAETzEQskxfSD0Wik0WgUhYh2u61CoaDBYBDz13d2dmIdAWoBVKtVtdvtFZIEQfZ7cH9qMkCYIaxE+CXFcz31QTokmdjzKXwIsfPCjZBbyHmWZfH5ON5rKjB+SBpiAgJHq9WSdNhuEyJLy02cFNVqVZubmzFqzTN5SgkuDq+xkG+h6edAwp3k06EhXzCTteH5KUrp6+MOEndXcM18/QTWjZobHtlnXTydhAg9AhZr7J0vvOuIO0VwjnCOE1NPaUAIYt54bp8fPg88D6TY21rmXRT5GhZ5kcVTMdgH1PVwAYZjPK3kas6HG8W6a+bFC3/faz/cyDiOOie/VinlISEhISEhISEhIeH4ODOCAsC+X6vVon0+yzLVarUY2aUgI6kNg8FA8/k8nsMxRJ0nk4kWi0VsF0lnha2tLWVZpm63q8FgEIsn4opwW7gTY4+k51MjnOx7x4JCoRALJc5mM00mkxWhwUUKrwlBUUXEDmmVbK0rQgjB9naZ0qGl3eszSIfkXFKs90D0net6mgddL7j2ZDKJxNSvhTCT76LAdREn3P7vJB2ij12fuWWuGTsCgIsrTr490s85LoJQ1NHdHr7mHL9cLuM+9BQFRB5fh7yg4M/GffNkmvMYr6dJMLZ19Sm4hztkPCWDeWH93UXj+8rvC9aR/GvhKFKeJ+7HuWb+syTpuopIulBxrTEdZzwJCQkJCQkJCQkJCYc4M4ICBKdWq6ndbseuC0TSAUJBvV6PBGoymcT8cEie5/7jLsBWjsUf6z4RcYgqUXtpldTmc7dp2+juA0mR+Pp/vW1hp9NRr9eLVneInTsUqBkgaYXQIlpI+6SMKLO7ExBkEFC8JoJb97k2z8T4arVanPe8TZ0fFwm8ACJpFJByT4nwa7lbxLsg+PxyDl0rPFrvRNpt+k6eqV3hbSU9Au/OCC846d0dvBim145wccLFJHc0AK/ZQGoB88d9EQx8DtizXHc8Hq8VAPJdLxizCykc48IEY6feA3uCtJ785zP/+1E1FNaRcq8XkU/Tudp5/p6nn4D8uvtrV7t2ciIkJCQkJCQkJCQk3DzOjKAAYUMYqFarkVATBfbieeTyS4epBk44nNDxHgQCsg3R8q4KTvwgZRA+CDkEz+sUQF4hs+VyecVmDyGCtPX7/UiWIarc2+3+klZILrUQeG7O9w4QLmR49wLcG+VyOdZWGA6HK6SfY722gXSYxpCPWPM8CAOQXk/h8GuzHjghuB5CBOfkz8Upkl9bvzb7Ju+MYE1YC19bjg0hRHEHUYbj8/Pr9RWYYxdkmEMXoVxoYN2YUxc/uJ+nM7hDAUHNUx141jyh5vq+jxgHrhhec9eNfya5DvPLvjsqHeIoeH0Q5v5G2lXmhYD8GNylcrVzk5hwd6JwUA8n4fYgWyyUHfx/MCEhISEhIeHexJkRFPJRaY++zudzjUajaK2nm0O/31exWFSz2VyJfrpl3aP5XKvRaETyCEH0KDQkzMkkDoblcqlGoxGJP0TdCR0kEJcD1/CoMefxzOtqF3Ac5J+UBgQFIui85uS6UqmsOAz8etRnIJ0CosW98ykNvIf4UiqVYlqJ2+R5n+fknt7a0X/3Ghlcg/ddiHGBIe9GYOyksuBGgZDzDDyvpBUHBWvK3CBSQbR9T64j3uvGyZojOrFuvrdcxMkT4XzNBBcuEGvcIeGpOZznz+XX9r3N75zv4oO/D/w5ue66gpfr4Hufz9xxHAr+rOs6UHiKzDox4UZSNtbdO+Fso3jftlQq6aPf+HIty9fuPpJwMtj4cNBDP/5xSdJydy+JCwkJCQkJCfcgrikohBD+uaQ/KOl8lmWfffDatqQflfS4pKcl/fEsy3YO3vtmSX9B0kLSN2RZ9gvHHQzEC2JDxJsfJ8jj8XglykkEFLs2hJi8d6KxHrWGFEOWIToQX4rkYTOnLkG9Xl+pc5BHtVqNggOkDFs/EXDGyPtOwCG/EDAEBdI7iLbj0uj3+yuFIyGentfvdR6c2PGciAY4ICgeKCkKOqR4uLUfkSdPzIng81+uhYsAQScv5iACeKtOj4avc0gg/DAfjM2FHi/miLjDfOWFCU+j8HoP3iqT9WW9If2MBwGFH9bT13ld6gXuA/Yee55rO+HPixD5ecqTf8BceNqDiw15B4Cf4wKKC3DXAk4MSSvj9PusI/DrHB5+XF74uJ40CsfV7n1WcDu/i+8UlB56UFmroU/8qYc13VpKSmLC7cTeqzLtfdMTkqSX/NJCjQ9f1PLpZ5TlUqYSEu4WpO/hhISEhCtRuPYh+iFJX5Z77Zsk/ecsy56U9J8PflcI4dWS/qSk1xyc849DCEVdByBqkFeiyZAyz/MmWu7igee4Q+K8IwORa6+/AHHLW7IhUaRDYMv3CKtHwddFlj0NgmcaDodRpHBBhPMrlUokx/x4MUjG32g01Gg0VKvV1Gq11Ol0VpwHPlbIHASM94rFour1uqrVaixGOZlMIiGv1+ux3oSTUwoqjkYjDYfDuB6MkdSVSqWyYuX3egjMWZ5YMqfuEMmTSb+WzxPiBefnr5UXWXBWOFH2+zjZ5zkoqintiz3NZnPlGb2mhq8rbhMXUzzVxwmsO3R8n3k9CCfR/uNz6W4fn1vg6QKk+ni9Bf9hXtYJFvl7+rUZrwsredHiOA6HdekueVzrOuvgc3QS17uF+CHdxu/is4zigw8ofP5r9OxXvVwf/ssPHogJCaeJZ35vUR/+yw9q9rtfq/D5r1H4/Nec9pASEm4FfkjpezghISFhBdd0KGRZ9mshhMdzL/8RSV988O9/KelXJP3Ng9f/bZZlE0mfCCF8TNIbJL3lOINx2zxtDiEukGIIJvn2kOPpdKpqtXqFTRsiOBgMYutFSSvEk/8SEZcUifBsNotiBVFWJ+lOBD0lodfrSZKazaYkrXRqGA6HMXLtxRERNprN5kr9g0KhEM8tl8vxmogOCCXVajWSewpVOlwgIRKOaEDNBwQFSWo0GqrX6/F1ou+ch4jAtZlTCHX+/jgKIPUu3LhAgDvC55y19FoDXr/BuwD4ffjdx+Bkfblcql6vx2NxHeTdBE7CId2VSkXNZlPNZjPuQSfULoQgBORTN1ws8JQPPgsc4//2OfO6CKQu+BjyYoI7R9wx4NfgXnkHBCJU/j3/N3PmooQLUXkB7rgpCflj/Zz8eTeSqpAXQc4ibud38VlFcWtLk899QpdeXtHOqzNJSUg4a3j6D5UllaVMenzj82/4OuXeVNlvvvfkBpaQcAJI38MJCQkJV+JGayg8mGXZ85KUZdnzIYQHDl5/VNJb7bhnD167JgqFgu677z4Vi0WNRqOVaGS+er7nt0N05vN5JMIQZjpGIBQMh8MVEkcEnZQCBASvru9dIvLV5RE4iNZPp1MtFgv1ej31er3YrSLLMg0Gg+i8gLQCF1C4l3d4YLx0tyCKXqlUVK/XV2oXQHY9Wu4kGtInKaZseC0Gru31DpzEslYuwuBYcKGAdoxe/I9xefFCBALmudlsxjoGpLkg6uQLFOat+vn9tI5oukPFn8VrPKwTHfL1BQqFghqNhlqt1op7A5EE0Ykfrsf98mOGBONe4BgvFsrYuYaTf8YNac+LKOwn5hCnBWPms+a1PhAn3JHDHvF78dlwQcPTWHx8XnOE8fs43f3A5/4oMcHrkRx1zHGQTwtZl4pxhnHi38VnFYV2Wxf/yGfq0mszpdSGOwABceHGUO5VdP9jXxh/77znRc2fevoEBpaQcOK4Z76HExISEtbhpIsyrgsLrv3LL4TwtZK+lt+LxaI+8zM/U7VaTb1eL3ZO8Ci0OwSkw4JsEB1s/hB27wSB8ABhdWs6KROlUilG4r0wID+j0SgSKcaBqIArYLlcajAYxG4KrVYrOhGcVDthxZ3gxN2r4kOoG42G2u22xuOx+v2+pH1C3mq1NB6PNRgMYuQcUSRv5c7XWqBAo99XWi2A5/PAXEIe6/X6CkmFAFPgsFqtxjXh2T01gQKQOCpI4XDhyLsqQDQZl9ccYNy+tpJWIvHsNTpM4HrIpzfkay7kI/wUA+UeTvCZB9+nTlZdnHFhDHErhBCLkJICxNyznyHt69wXXB9hB0dCvmYG73OuE3m/ljsO/F4IHwhCLqb4cU7I3SHhzgjG7AJJfg0YXz7dIj8Hx4XP/fU6Gu4A3NB3cU1nt0tCodM+EBMS7gXM2pme+92H23jvZY+odulhnfu5j2lx4cIpjiwh4di4676HExISEtbhRgWFF0MIDx8osQ9LOn/w+rOSXmLHPSbpuXUXyLLszZLeLEkhhCyEoE6nE6PsRL6zLItFGbH9S4ek0EWDyWSi0Wik8XgcX8OdQPS31WqpXq+vkFOPMEuHkU/P9/ZikUTcGQ9iA0UYSb/odDrqdDoaj8cxdx7ywj28awNuARcBIFikJpDWQDoIKR04MEqlkjqdzopwwJikw84Q3NsdFsyruxYArR7dgk/rR+5DaoS7PLzVIOQdIo74QKFHHAq1Wi0SaZ7J6wxAsHkdYpuHP38+ss6Pp7nwnJ6v75F3d2Hwbye6LkJ55wGezWt5uAOHc1jLfFoDLg0XutwBkBcLAPdFMGK+XYjzMXGOuylcEHAC74ICnx8+D7Q5XScu5J0NeTGAH95zAc9FDX//OEUhHfnz3BVxB+JEv4s7YftMMvZCo6Fn//jjSikO9y4GL1lq8BJpfO5JFcdPXvXYc+8bqfCrv3WbRpaQcG98DyckJCQchRsVFH5K0p+V9F0H//1Je/3fhBD+oaRHJD0p6e3HvShigudyj8fjKBJ4hB+CW61WV6z+kH6izB41brVa2tjYiITb7e+eRiFpJS0hT7o8NcDTMCBz9XpdlUpF7XZbjUZDhUIhih9cTzp0JxAphlBCoBgjKQXtdjtG9RkT5yHC1Gq1GGHGNTCZTCK5o3ihA2cGBJU6DXRMwN6fZdlKwUYILvdhrSCakE2elboUrVZLpVJJ/X4/Xo85QjSZzWYrNSIQG+hAASn1ug0IPcyx13PwlBU/l/VkbnAaALfV85wIKfP5XIPBINavyNdwcPcDQgHpOYyF49ivkFp3Q7BPPCoPGXZ3APdmb7If2Hc8q7cA5RldRMinarhI4kIfr/t8efHUYrEY05C8ewbvc+18sUmvxcAzuaNBWq2pwPfF9eCoa96BuCXfxWcNoVRS/6VJTEiQBo9dex8MH6qp/EVvkiR9xo8+q/nTn7rVw0q4t3FPfA8nJCQkHIXjtI38Ee0XmzkXQnhW0ndo/0vzx0IIf0HSpyT9MUnKsuz9IYQfk/QBSXNJfznLssXaC+fg+dQQPazy7kyA+Ocjr5BsRAY6E3Ae0XVSKbgOBIyIOHn7bsWWtNJ1otlsxug7RBB7v0eKm82mOp2OGo2Ger2e+v1+HCdwUuddIRA03P4NISVajdDg4/Cih5BtxA6InNcPgCiSMgKxpv4B5K5SqaykLdTr9Tj/zBFOAzofONn319vt9kqnBHdg1Ot1NZvNWMSSlAw6WnhqAXvFXRCeUoEwQzoKRJ80C/bHeDyWpCu6MrhTxefUnRfMH+QXQs5c+/7o9/srhTyZH64XQojOE9JJXCRjrvzHO1Qw1z5mBAXcCYh0Tuy9gOXBZ36lMKMjn76Rd3N4zQ+/nqc5sN/YS/nUA3683gfznHc8+Gv59Ar//Ph7XhgzLyRyr7MoLtyu7+KzhlAq6alv/Gwld0LCcTFvZZq39j/DH/uLj6owf0yPf897tBwMTnlkCXc67tXv4YSEhISr4ThdHr7qiLe+5Ijj/66kv3sjg/Gcc+mwWCER9nyE063W8/lcjUZDGxsbqtVqsWMA1+NY3APe9YGUgH6/H8kl94GsDYfDGGWHhHkUGHIP2c6yTK1WS9vb21oul7p8+bIqlUp0EpTLZfV6vRXy6l0YvBYAYC6oyeACAuRxXb67dBiRrVQq0W2A0EBxPgid1xAgVUSSRqNRdBJsbW1FwovI4SkY3vZSOrTft1qtWCfDn5XnqNfr2tzc1GAw0O7ubhQUaM2IMIK44eTWxQQXmnCUuKOBsVEzAwcEc0Akn8Kcbu/HqcBcOfnOpzsgxJAOkyf/7kzwdSPtAwHEC2U64XXRB3cH7U1xSDA/pNfki0+yX92ZkBcuuBf34xm9aKXPQ35fuxBEN4x1bSBZJ3/NRQF3cHBPcDUxwa/F54p5yMOfmboOZwG387v4rGHWSWJCwo1h3twv4vmxb/sdevm3/qayIz73CQnHwb38PZyQkJBwFE66KOMNg+isE5XZbKbhcBij9fkoo6TYotEJFJFmiGGj0YitFpvNZsz1hyhAcvb29jSZTCKBhtBJip0nPC2hUqloa2srkibIprRPRO6//349+uijGo1GeuaZZyIpdQs6dnlaN/L8iANOIsfjsYbDoUIIK7ULnGTV6/VIuCHFo9FI8/k8WvW9rgSEmHu4bd+dCjx7qVRSo9FQp9NRqVSKro28c4EUAE+/8BoR7qDw6D5rhVvCo/WQZUQfiCrEEoeKpJWuH+wX9gZCEGOZTqdXCAWMr1KpxJoVjJHIONHtvItEUhRJWGPcFu7GQGzxehwhhOjEYO583yMeOelHnGi1WnHfesFFFws8PYLPiafGeAFKP5c54fn5rHp6ktdlYK5I9UCE4PouDvC+Py/XyosEfk7+97yzJH8sr/l4/bg88p+PhNPBx77r9ac9hIS7AMtqpo991+v18v/tbdIZdCAlJCQkJCTcqTgzggIRdiK5nhue/4OeKDS1E6iv4NFOCCBki6i8tC8O4DgoFArq9/u6ePGiut2uJK1EmSXFMVSrVVUqlTgeXBCIGZBhIuXb29s6d+5cjLTzjI1GYyVKjO2de+EimM/nsSgh4gL3Iq0DcumRYJ8zUjUkqdVqxSg8c4MowO/MbavVUqPRWGlfiRhBXQi3si+XS1WrVTWbzRXCyzGQs1KptDImUlQkxZQH5ngymahWq2l7ezt2ZfCuAlwbdwTr4wU8XbigFShr68UdETyYB0gm4gUk1/eXtwD14pgQcy/Y6AIFz1wul2MRy7xTw1MI+LfXRkCcoMgiQg5OBE+TQEhgniD6eQcMxyKkkb7hKSbMBZ8T9qXXdMgXW8y7H7iGH+Mugrygwev5Qo08izsNEJUQPfge8M4VXqvhKMGCMeTnJ+H2I0tLkHBCyIrSx7/7i/SKb32XMhOcExISEhISEm4cZ0ZQeOMb36hyuazRaBRJgBdb85oHFAuENLqzYTabqdvtaj6fq16vq91uR6IFObp8+bK63W4kHr1eT3t7exqPx5H4UQjQCSgkh4g2kXiPCHN+p9PRQw89pO3tbY1GoziW0Wi0Qr6oGVCr1eJzcG3s+F4oERJYr9dXivhB6HEoFIvFOJe4E4h8D4dDLZfLKAx4ZwZEina7Ha3wuDMomuiRZKLy1KdoNBqRwEpayc93UQQBwMkn8+lpGJBvt8F73QRJ0Z1AQUpSWTxthDl0QcNbPzIGr9/htToQH6i5QMoFz0cKBXZ+5oZ/IzIhBtEak7XLdzBwN4FH0xEUcGsgsiAEeeeOfC0S9px/prxuhDsIWK9isRjvkx+ru4B8XfzzgAgCic+TeRecfL/4Z99dEnkhAmcD6SkINfm2nf5Z4bxrYV1NhoSEhDsbWSnTU9/xeXrFd39Ai9290x5OQkJCQkLCHY8zIyh4xwQvageZgyBg0Q4hxBSAxWIRW0FiifdUAYoHjsdjdbtd9Xo9TafTeO29vT3t7u7GGgtOmIgEQ6QpFujRSydUkJh2u61Op7PSKaFarcaOFRBquh54uoNHrz3fnu4IkDDvUsD9IYy81+/3o5jgKQPcYzqdajQaxZoP9Xr9ijmjZgN1DCB33IN14vzxeLwSRfaCmqSyQHq9cCapIAgcCCSMyUkoawvp9R/gc5SHk1nWaF1U3QUsSL5b6tmPzC8Rc68p4LUbXAzxrhROlnnN3Q18Rvy5cKYglHihQ57Fo/SkWCAQkM7ia8Vnz+c7n4qAQEBdEheIEMZ4jc+ROza4Ns/mqSL59BEcFy4mSloRWdz1gFMk39HD19afIV8UEuSFi4SEhLsHi3qmT/wvr9ET3/9xzV948bSHk5CQcJeg9PhLj31s6j6TcDfhzAgKEGeIet7GD6kiHUCShsOhxuNxJFSLxULD4VCj0SgSErc5L5dLjUaj2K4whKDBYBAFBqK65NZ7DQHEitFoJGk/fQBRYzqdrtQuIA8eB4CklevOZrOVCvyNRiOSLcif5+xTQ6DRaEQCx3UpwAexhPxOJpM4LxB95owot6Q4D4wXsYb3iMwjQDCv3AuxwQswOkEjNcG7H3gHBEQEagyEEGL0n1oNRPOJQnubQUlxLLhFeM2JN2vgXRk4jxQLz93H2SEddkzwIpDUvMD9wPz4s3Gei08+JsQaBByP4HOep8Lk2zjy2WDcLvQgfuQLfHq9DNwfdIFwAs39OdfTPXBuMN/cE1EF91BeEPH/8h77zR0Jfo7vIReIXKgCnuLB9fNiwrrj8/UY+Hc+1SPhdND6ZEH9x1NRxoSTxXRjqae/+uV6/Eeq6Q/7hISEm0Lx1a9UViroQ39uUzpmLOLJf91WmF35N0bhck/zZz99sgNMSLjFODOCAgUFpUOyACEj6g0hCuGwzSPEZT6fq9/vazabRdGB6DekGHcAUXocDqQEkILQarVW8u+9lSNEn0J6kE/GOJlM1Gw21Wg0ouiQdzzwTIgEtVot1hSABOJi4BzSDRAscEPwLBBZJ8OQPMgjpBwyynFEmj06TotL5sTFBgQICKeTQuaA37kfBM+dKJ4mwg9iiKSVOg4+7+us6E60EWoQTbyAIOvAcR59Z+95NwTvosE1SD+pVqsxeu7FJxFASInAPeAFDFlnF2fyYojXOGAecUBwPdaO17z+gLsNIPqsvQsW7BtP1UBc88+iCzMuoIQQojDBGjOX3MfX38m+t8tkPhgjz+0pEn6uF6b0PcC9vf7BuloJ+RoKfnxebEg4PTz8/327Pvo9qTBjwslj/MBSn/rjj+mht9ynytMXNH/m2dMeUkJCwh2EwuterXm7qqf+QE3L6vX9vfDR/7m99vXWJ7f1wDsfOInhSVmmwq+/e+1bpSce1/TRraueXuxPlf3W+09mLAl3Nc6MoJC3hpPzze+DwSDWS6B9IZX8vYPB5uam7r///ph3P51ONRwO47+xYo9Go3hN7yLQ6XTitSFckFws5U7cpcOc9/F4rH6/H+3/CBOIILQ/9NQNiBtkdD6fa3d3V+PxOB6DoOC2+EqlEjssMFcQP8gw1+fak8kkpkM48aOdJe4LrzlAuoQXgMTiD5FFTEFMgMRKq3noRLo9rcXFFmm/YOZoNFpZE0io58Qj1Kyr2I+YVCqVYjcPHxPOAm/ZyNjcZu/XdCJcq9VilwtajbJWXH9dlJ1rSYftMhEnEKykw7oRPN90Oo3k3ecQsYPjfH58XvIpEpB85oHxeQoFbhpeY89yfReX2KPsh3wxSpwrkmJHEBdfGHu+NkMe+YKRXpfB59av4df249ytwXdPvmBj3gGRcDrIlpkeeLt0/g2nPZKEuxHDh5d66iur6nz8peo8/Yiab/uEFhcunPawEhISzjjCF3yOnv4DbU03lpJOLvjQ/4yl+p9RPZmLZdJjm+v/57n7ZEn9l17975xyt64HH90/v/nRy1p8+GMnM66Euw5nQlCAuEqHFn+K97lDYDKZRDGBNAH/o7/ZbOr+++/XQw89JEmxXeJkMon1ACBZg8FA/X5/pfMB0XiIt4sSbh336DGksdfraXd3V/1+Xw8//HC06u/s7Gg4HCrLMjUaDU0mkxihJooKkaGon6SVaPA6As59IXmIMZJW2v953j6pEbzG7+5qgIgjpiDU1Ov1SBgho4wfMjmZTDQYDGKEO1/3gGdwy77nsy+Xy+gYoYAhhBoXhue9sya+D1yAWS6XK60jAfORL2opHebcswc92o/Vn0KauGRwz5C+cVQtAo+IQ1g9Xcf3lxd4xBHgZB3XAWPGweDrzrjdJZNPQ2C/eDFU9qO7HfjdU5O8LoI7ePJFGF1s8BQCruP7yNObvBaDX9NdE4w3/5O/Xz6dwV0p/ry+H/IOhoRTwnKhrZ/9gM6/4dWnPZKEuxjdly/VfXlBG4+9QtXuy7X5E7+t5XB42sNKSEg4i/ii36FPfmnrQEw4wwjSs19yVKuka4991lnG8xuf9YBe8pOZFh/5+AkOMOFuwZkQFCASTnYQAiiw5uSNegWAKOjm5qY2Nzdjy0Ui5rRehMw7eW632yutFOkS4fnxWOA9wutV9MfjcRQUaC/JGPb29tTr9SQp5ut714K8zdrt6B41HwwG0QUB0UaEIJ+fIpPMlxc+nM1mUShx0sV8YJ9vNptRPIBYQ+7zIka++wD3gBR6kUIEFM6HSCNqkB5B9wWcFaPRSJPJJF7X8+S5LuOhI0O+44ETRR8/13EHAdF36gp44UuIPcIBLUs9pWI2m2k4HEYRirX2tpDcl3X2FpQ4UfgdoQK3BQVBSVXgOoyRyD/39I4pnobhqQ50vfD0lDyZdjEBJ4bXRMAtk28v6QUXWXevu4AwwX5HiEKcYI9xDa/D4Ske7rxY5zTw55LWF2B0sYp94U6GhISEux97r9r/bhhvvU6FeaZz//QtpzyihISEs4TwBZ+zLyZsnXEx4YQxfGSpT33Fg/qMf7fQ/KmnT3s4CWcMZ0JQcMLAH/OQU4oMeuTTCRrEBNILmcUiDukrFovq9/vq9/saDAaaz+exzgHdDwaDgQaDgUajkTqdjiStkD2vNg/BHo/H2tvbi24Ir4swm82iJd5rBtASUlK0rDtpwQYvHdq8ad1IfQIILgQUd4Vbu1348Ag0c+6tCan70Ol0VK/XY3SYa0EiParPvOTbCnoRPa8b4OkFbtXPR4UhhbPZTL1eL47b78vYea/ZbMZuGRBVxu0Ekz3m9RTm87kGg4EKhf1OGu72cPcIc4szwJ0gvtcoFurE3YtKIl4wNoQR9i1rwmusB/PFNSXFOci32XQRxUk5AhP7gv3NHmUd3A3i7g13PzA/rImLDl4vgzQZCL93JeE4ry/C55/0HJBPYWD92JvuHGL8/CAOuKvF60a4C8Lf86KeCQkJ9w66r1hKmTT/a2/SQ9/7G6c9nISEux6hXNFz33Bj9XIaLyy18cNvPeERXYnC615taQ73HkYPLfWJr3pEpfEjeuwH359a7yZEnAlBQTokrE6uichDSCHO62zTEFDILZFGiN5gMNClS5ci+apWq5FEc/3hcKhutxtJBfZ9J1ue+809Sc2o1+vqdDoxyi9pheBABj1f3mse0P3Bo9pE7KV9Aos44ukJkmKF/V6vd0UqCI4MJ4g4N5iLTqejjY0NbWxsqFKpRHElXzCRa0wmE/X7fQ2HwytIGHMLYYUsQui92J9Hir3WAuvhBSed8HF8CEGtViummHiEmmPyLhBfS+aYLh/+jBBUSC7pE6wBIolb7HERSIodPKgJQi0OyD/PhHOGeaH7A8Q/hBDP8bkkig/5xhXiLUh9HhCdnHizNyDp7iZwF40LYvnPbb5mRq1Wi/PlRRZ9D3jdh3whRm8r6vst7ypgjnE5uDDgaSeIkPnaDn4dT0HimT39IiEh4R5EkPovWeqZb3uTyj3pof8rCQsJCSeNT3/Tm7QsS1nQDUf9Rw8GdZ94k+5/91y1n377CY/wEPN29Z4VE8Dk3FITSZ/4q6/R43//XVoeBEgT7m2cGUGh2WxGIukRS+zuRHyJKEIOiAJDjqiTIB1G/3Ef4CKg6BzWdUQHSJ203+VguVyq0WispBA4afHoK0UPIdJE2hEZKALpgAhCRBEqIIWj0Si2U+R5KFI4GAyuyM2HGBMBhtRBiprNZnyP9pnFYjGKCa1WK4oUdIeA3JGPjjOA8721IhF4HBo4S5xMemV+J3dej8JbZ7LGkLt84b5KpRJFHIr/QfK9FSKCFWvG+aSzIISwZ7wQIf8ejUZxnRGGPFXHLfa+lpBTd7rki0ZClnnf61DgYJAOo/ru0KHGCHPvAobPFd0veEb2iJNwT7vh3KNqCbhbBXcFDhGEE8aHqwKnkTta+KzwWYDcs+Z5IYnPoRevZO+468XTXKTV9pAuOrmbgedi/lNhxoSEexxBmmwvNd2UXvyGN+nB70uiQkLCSeHT3/QmjR5YHrvV4lFYljNNtjM997uKesnk9Sr/4jtOZoCG4qtfqaf+QE0nWYDxTsZ0c6mPf/vn6mXf+nZpmZyc9zrOhKBAJNZdBtJhdXz+C1nxNnxOfhAUIF+AGgcQfiKoEFTy9IvFoprNZhQxyNsniutjmk6narVaK4X4AKSO1IXNzc1YmJExkrMOIOmLxSKmW0BMERGazaZGo1HM0YdQE33lHCzj4/E41okgksyxiCvValX1ej0STa6BCIBwAhmG7GP3bzQamk6n6vf7cS0h25Dler2uSqUS0zzcxg7Rh7SS6uJCAJFqd6kwvmazqWazGfeGdEh0EYqWy2VcJ/YHEXGPhnsaAcew16bTaSSe0mENBEgnx3mNAm9dCclHlKDuBakrvs95DaLvaSX1en1F9EBEoTAk18H1wFgh9BBv39fMK8/D/DL/LqD5ey4m8Ln0tSUdAcdOPpXCCbyLSb4+vO7uFdYeccULRLrogEiBMJV3JnjBU7+WiyPs64SEhHsbWUHqPb5U4evfqPu//8q6Cs9825s07VydaLz0F6Yq/9I7b9UQExLuKDz3v56MmOBYljN96veV9ET/tQq/8Z6Tu7CkrFC47taQdzsW9TQfCfs4E4ICdQUgbpA3rNReqd3zrCWtEAgi8pwHeaB+AK6EarUaLf0QTHcnkAYA4YPMkToxn8/1wAMPrNiih8NhJG7tdjsKJE4uR6NRJMY8JwUTERkQCbC0Q47Jt3fLvHRIDBkjYoykGAnPkygvEIiQ4KINRHC5XK50xmCMklSv13Xu3DmVSiXt7u6uRKLr9fpKmgpkjTWh4wTjJ41lOBxGocVFDncVSIe1B/J1M7w+A/sH0YFINvsAIo7QgJPAa024vZ/iiC4gkWLgrgt/JsYJSfb0De7nhS49Cs89WEf2it+f+3Cery9Rf3c/SIddH9iPjA2SzucDss/1pMOily56SFpxeIQQ4h6p1Wpqt9tqNBrxOfy52JMuGuCC8QKJzImvtddW4XPGZ9BrM+TdCqwbQg9j8nQZL1ia6ickJCREBGnvlZn2/uEX6ZFfz9T8qXfqxa9/g7pPLCVdmxh98svL0pd/kV71gztafvjjynLBj4SEewKFos7/pS/U8JGTFRNAVpA+/j/W9crhq7V89wdO/gYJK/j493yBXv6Nt75+RcLZxjUThEMI/zyEcD6E8D577XtCCB8KIfx2COHHQwibB68/HkIYhRDeffDz/ccZBGRmPB6r3+/HqDIEB1LjxMfzuyEQEIDlcrlCbiA4EDkIJ0QNEktxR4gahGkymWhvb0+7u7saj8crBF9STKkoFova2NjQ1tZWLIS4t7enfr+vxWKhVqulra2tWJfBUxPyxQ0hqAglHonld+omUFQQwupRaDo2eKSeTgj1ej26H/r9vrrd7kquujsdcHF4lX3IJ+PBLZBlWXRbeHtGyD15/JJiagDrh02+VqtFN4nb2T2n3bsC8IxeoDDfoYK5wSrf6XS0ubkZSS9jYm94bj8CB/vHyTfPxzMyJtaKQo2QfAqB8gyIV57n72kgLozweSC6zv5jXhg35N9Junf6YM9wrtciQYTgXuxH9gpjxhHhnR+oBcLxOGgA43CRkDUinYbvBI6n/gOfc85zR4U7LfgM80z8lzViXtnLuGpI1eE+nj50FnA7vovPKkKnfdpDSEjYR9j/ee53BX30e16v7suX8bXjnvvhv7ilj37P61V69JFbO9aEE8e9/D18EgjVqi599RsOPze37EbSR/5sR6XPeMktvEkCKB44qxPuXRyn4tgPSfqy3Gv/SdJnZ1n2OyR9RNI323sfz7LsdQc/X3+cQfBHvndDKBQK2tzc1Pb29krk3QvKEZ2VDos5VqvVWAuALgtY+yFy+cijR5YhKRyfZfstG3u9XrSrQ+ywltPJodPp6KUvfak2Nja0WCx06dIlPfvss7p48aLK5bI2NzfV6XRidBWy6PnwbiOHeEMAIWKFQiHWDSBfvdfrxZQCCDPEiir+ELNKpaJGoxGdFE6gvaYDzgcn+j6+YrEYCSouDO/AQVFCyCGCDuQ/n/tOlNvP8doNACLtzgcvwgeJZYzVajWucb1eV7vdVqfTUavVimICZN5TbtzdUSqVVpwnEFq/b6FQiJ1DmFd3wjBP/EB2ESvyUXQX0tzVwPwzP15jwcUHRBrWl/lG0MJ94qlEYF36AlF/b6noxRQR53BP5Os1eA0N/9zznrsJXKBxYSJfz4Ex4ZJwkYf5RVxxIRLng3dC8ddHo1F0FJ0h/JBu8XfxWUQolfShb0x/FCbcffjQ//rSRHjuPPyQ7sHv4ZPC4Mtfp53Pvn02+cW5jnS2/j9+1yErSB/9W6857WEknDKuKShkWfZrki7nXvvFLMsI3b1V0mM3MwiigZAu6bBCvqSYZuCugPgAZnEnxxwXAIUQ3R5OVX3IB0QCgigdFj/Ero41nKh2o9GI7gc6EVQqFZ07d06bm5uazWZ67rnn9JGPfETPP/+8lsulWq2Wtre3Y0QcguR2cZwDkCBs+aRxQKzL5bK2trZUrVZj1BkyR36+R4U9dYGoqxc5JHKOGADZ9NoROAmcZJOmQGqFiwXSPnmv1+vxeObbXSO+puVyWY1GIwoudExA1JhOp1HYcUIrHUbGD/ZnJM9u36/X67GTBaIQkXEIpLtVcBFgq+d49htCznA4jK4Y0itYN9JEEDqoJ8F+zZNZT6VAUFjn1GFdEG84l/VnDj3CzjMUCoXohkFg8oKn7oBwgYUxsva8Hg4KUuZbuXIc42Xded+LnCJ8MH53Yvgc8Rx8Xv2zz7MwJvYHQoK7jrymggsu0+k0pt7wuTwruB3fxWcR4TNfcdpDSEi4ZfjQX31UxVe/UsVXvvy0h5JwDNyr38N3Kj76P7dV3Nw87WEkJNz1OIkaCn9e0o/a7y8LIfyWpK6kb82y7L9e6wJY5CEoTl4Hg4Emk0kkY5JWoq0Ut4OMtFotbWxs6OLFi5G0EhGWFEkqJINIOQQfouKR/dlspnK5rE6no3a7rWKxGFMcptOparVadFOEENTtdjWfz3Xp0iVlWRYj4URYXQTBHk7OvRfPyxeZQxiB7FI/AdKKCOERXAghpIk5gVAx307iEU9ciPGaAIydtpGeWuAtGFlDouasEwIB5Ja8dxcqcEx42z9SB/JF9rzjw7p5kxTTFprN5koBS4SYfr8fnQReB4PUFHdNcN5sNlOv11tZl1KpFMkx42QPuoiVJ7SsD6kjpACxV712AevnKQI8Y61WU71ej/vCa02wHghGXvcAd4unA3h6C2Ne5ypx10D+374WiBh8vjjX9yjpRE7+EcHcxcBcM2e+PxmbdwTx9CTpsJ4I1+R7AGHK990dhJv+Lj6L+Mif3zztISQk3DoE6cNfs63iJOhlP9GUJBUvD7T4yMdPeWAJN4i78nv4JFB88AEN7y8odUlISLj7cFOCQgjhb0maS/rhg5eel/TSLMsuhRA+X9JPhBBek2VZd825Xyvpa6X9rgjdbjcWIfR86dlsplKppFartVKZXlIUGSAGRKBDCBoOhyspCl780AswujDhbSSLxWKs50CKQKfTiSRmPB5Hu/TGxoY6nU6M2O/s7ETrd7vdVrvdVghB/X4/XrNcLsexeJcLIqxekBJC5Pn5edJHTYV6vR7JImQVEYPndes3boxKpRJJMvNbKBRWOihQr4EIrtvMmTuix5BYT0+gqCS1GJxMe7FNOlB47jy1ETx1w0UIJ410CaBDAe9jwYegIlCwV+bzuWq1mra2trS5ublStwOnhTsEcB6wLozfi2QyHy5UIYixNlzPa0cwD3TSkA4JOUIQIgQWf4ShQqEQ63bg+GBNJMXUItaMZ2SdEEw8BcgFLU998NoEvv6eDsI9SElCSDj4Hlipu8Bc8kxeoJV9jljl6RIIDHxneKFVxuh7gb3hKTXu2HGx6k7ASX0X19S4XUNOSEgwLKqZPvYn9j9/tfMtPfCuLTU+elHzp54+3YElHBvpe/jqmLzmJdr9rDtXTCjsdNV+alu9J1I76YSEPG5YUAgh/FlJf1DSl2QHf6lnWTaRNDn49ztDCB+X9EpJVzSEzbLszZLeLElbW1vZeDxeiRhCNCAhkiKJ8ygnpIhid41GQ4PBIBYYbDQaajQaK9Fo7gHh63Q62t7eXomgY1eH0FG0zwk8Veybzf2oAikQ0j7Zo0Bjq9WKedndbjeKFO6skBQJK9HTvIMAcgcRgjw5ESMq7C4HzmOecA1AmPxHOrSzIxQwz7VabaWdJsQRiz1EHkcIJM4FIi+yh4iBFR9HirtGSDPwNoicS/pBPi+e5yRy7YINEWrIOMIFc059hXK5HAk9Y0CIcAdFqVSK+wPBhNQLd0y4zR/BwSPtzAG1DxBtmH9cBawzqSAIJxBsUmBms1m8Hp8dSfE6Lm6wHuw3jkVE8nQEPqPeCcNbQZLa4bUHEBY4P98lgvHymWJtfZ3cvYAAhqDA2Fzw8ZQahB4v2pivpYIogiDCa4zjLOMkv4s7YfvO/WsvIeEuwfiBpT71ZSW1Xv2IHvuJTPNPfPK0h5RwDaTv4bsf808/p/vf/aB6T5ydVMiEhLOCGxIUQghfJulvSvo9WZYN7fX7JV3OsmwRQnhC0pOSnrrW9YgcUq1dOiy8B1mAKB3cZ6Xw4HK5VL1e1/b2tmq1mobDoQaDgSRdYR8n8uoF/M6dO6eNjQ1Np9NYL8Gv4fUOpEMbPdX5JcWxOfGjzgHnQhLL5bLa7XZ0ZNRqtfh8jAlxwPPI3bUAyXJBgag284ONvV6vxwisE18XFDxn3iv344ygowRE0kmcE01Px0BgcGJNPQJSVSCaCDZ0h2CeIazsj2azuVKYEJGCufRnYuyQUPLivZggQgitLimOyHp4gUMXESCmzE2lUonr59Z7xu4tLgeDgRaLRXTFeOvGer2+4m5gXdyVg1uAVAzSHBDBZrNZ7DhSrVajW8GFECfszBFFNqmJgTsFIYVz8u1A+Qy7aIKgw+eV35kX3EXMmYtiHJNPhWCf8sPnCmGCPYbo5S01cbjweXOxjTHm/5svTHkWcdLfxQkJCWcH/Zcu9cxXPqrK7iN64Cc/osXFS6c9pIQ1SN/D9w7KH/m0tj7wcu28Omk+x8X0971evceuHZzZ+vBIhV9/960fUMItwTX/Wg4h/IikL5Z0LoTwrKTv0H4F26qk/3TwB/hbs/3qtb9b0neGEOaSFpK+Psuyy2svnAPReogxEVxJkQDzvnTYEhBicf/996vT6cTK+qPRaKXuAlFQ3A2gXq9rc3MzEjnqEbgtnFoLkHBJMdVhsVhoMBjE18nxbzQaMf+eiOloNFKhUFCr1VKxWFS3242kEes9XSDoegFhh9hB6oiounWc6D8kVDosbknEutFoxBoGWMIhuogungPvRRslrRTP9E4MkHsXIjzVAkGFuYLsEZVmnXiNH4QTHCiM3a/tKRqewsFrnsrCuHkdYs51KGDJ/DWbzehw8Wg1YhL/9VoY7BcXBiCyzBFrg6jCvyG6XksDkcCLJbIHcXEwx6PRKKYIMW6vZYA7AWGKKDzHkkJBQU2vY+Fin6cRkP6Qd1y4qOI1E3C8IFC584DPc96NxHX8ub17BOtI2g7fKd7FxAUP5oN966k37D3vqnEWcLu+ixMSEs4OBo8tNXhMmmy/So99/3u17PVOe0j3NNL38L2NxYvn9cBPZFoWX6G9VyVRAWSlTJe+5o267wfesvL67Etfr+d+d1nzxrXnqv/Shl66eK3CW95zq4aZcAtxTUEhy7KvWvPyDx5x7H+Q9B9uZCDkNS8WC43HY/X7/ZjqkLeNezQ0hBA7KEDi+/1+LFIo7RMtiu4RKYY0Q4AhJNQGIJ/e8/4hYljNR6ORpH0S3Ol0YlcJhBCi7bPZLBaXhPASBfaCdS6Y4KZATCDqDumkJoSTO67N/b24oKSVnHknp4gLPBcgag4hQxQYj8cxao9rw4s4QvQgaXTKYG5arVaMzJdK+20Tq9Vq7BjBfuD6TsLzhQjz+4eWjTyb5/t7RwR3ObCGWZbFCD1EFkGBVAdJUYBhbRiX2+WB5+PX6/UoUlHzg7E0Go24/3G1jEajKPLk3QohBNXr9ejsQOgJB0UdWR/vMgGB5pl5DsQM1psxkf7jRSPdQcO8sgeZE1+TvJsBYYbPFsIOwgx7FNcGYgOfT3e8uGCHsIHghFOGNUW0wW1EWo0LcjwDAhDrcVZwu76LExISzh6Gjyz1yW/4HL30u9+hbDa99gkJtwTpe/jGUXnbh3T/I5+jC59/++755L8ZaLF3RcmKm8LiwgU99KNzLf/0Z6n3slRPQdpvHbn7qkyjb37TyuuzdqZF/XjCy6yz1Ce/vKGXjV+j7LfefyuGmXALcSb8vESpQwgxkk+nAKzqbq2HdOEewDpOUcThcBhJ0Xg81mAw0M7Ojubzudrttur1eizK5xFqyLKPySP0jUYjEpTxeKxLly7FOgqbm5vRnQDhQpwgtxtSSaTda0NIioQHUcW7T0iHpJko7mAwWLHYIzpg1ce2zvjJG+d4RASPQpP/7jnp4/FYvV4vujSop0Ak36/HvZyUExnPskyNRkOtViuS106nE+fZUx0goG7192MAaQuMieg61vd1VfsZCyICTgxs8d7Vgsg55wEnxIyDOfA6Dp6uwVhx43jxQ9YZwp5lWRSVmBMIOfeXtELq+Uzw/OPxOBabdLLMupDuwbzwmXExASHFU2EQrRgLz+e1D7zDBe/7vDBXCBr5uhre1pJ9yL3ZX4glgPtRd8IdLpwrHaYlucDiaUXuXFgnXiUkJCScBibnlvrEd3y+Hv/Wt1z74ISEM4blYKDyIJMUrnnsSaF4flfz5ckHBhY7O3r4B9+jxV9+rYYPJ1FBkrLifv2Xm8G8lempP9HRK8ZPavHBj57QyBJuB86EoECU0iPhTmohWdjkaf/H71TBx5nA+QgMu7u7Gg6HsXZBq9WKhALiVS6XoxCBmEA0G6LTaDQ0HA5jjj2Eq91uS1KsX+BEyms1bG1tReGEcS+X++0XJa10S+AakGivD0CnheFwuBIxdgs/BQYh4u5iQBgZjUYraRzeeq/dbseaBk6+IGuA++Am8DQEBArEoUajoXPnzsUClXSlgPRj7XchiefxNAe6PkiHKQmkt/BvamGQS4993Qtycl/WCJcBP9VqVc1mc6UwIfvD8/M5l2KFHvmGmLKHuBauF4+4S4ri0WAwWCmOyLyzjrgSpMNovrfF7Pf7UUzABVIoFGL9BsbCs3p6EWPxPQgpp/2pCx2QcXcEeYtIT31w1wufMz7juI88PcGLOLrQlBcTvA4DexWhyOd4Pp/Hwp9cH4eGuzD4fFBHJSEhIeEsYN7M9InveqNe9k1JVEhIOBKZ9OT/09P8k8/cslssBwM9+r3vkApBT33H52lRy26nVnLXYlHN9JE/f06v+r6R5s88e9rDSTgmzoyg0Gw2Y7tFyJwTR3K6IcWtViueT1TeLdBEVYfDofb29jQej7W5ualms6l2ux0JmqccQEiA29Hdbg6hXywWarVaKpfL6vf7Go/HMXfdHQDULpCkdrut3d1dSYpW7kJhv9MEhBCHAhZ2dx5wf9IpiNgCiBkEG5cGxApiyz0gbjgTsOdDTCHmi8VCnU5HGxsbsd6CR98hyKwH12w0GjESzVzt7OxEsumCAfn0XoGf9fe1cSdBo9GIgg6ODNJUWFPIM2IV6+01Dviv5/JDNPNpDFj5AWIIAk++8COCjotiPCvOBBc3WGPpUExAaCKtIC9+kDYiSb1eT/1+fyXSDqn3sXCuFz31iD6CAqIABSBJ9eGzy32kw/aQjN/FOX+NveOCBqkIfhzz4s9OCtM6l4nPvbsNJEX3E44VilqyZ0i5YWzsoYSEhISzhEUl0yf+jzfqZX/r7dItiL4mJNzJCEvpif84vi22edKPXvYtb5FC0Me/5wuV3Rndps80slImFZI6cyfhTAgKkAAiu/5HvueyY7WuVCpqt9uRWOIUGA6HkQBARiH60mHKAJ0fsixTv9+PpAVyDbEiIk+UlzaCgKgs9m7IK9F6rkMnAMg8hNpJD9Hwer0exQqeTzok0V6sECIZQogCA2QRUYNxINIw3z5e7Pgcs444NptNnTt3LhJzouXealPar6VAGgRdBigESJ2E0WgUc/Yh14yHiDSkzztEMIdE732fcG/uj7iEzR9A+JkHB6IH5B2xBrLqdTwYk6QVASC/r/067F3eQyBBIGJNPSJfqVSiEOMgir6u5kS+xSSCBfUQPC1CUryOu0oQ0DyVgiKKrA2fDcbjtRaYT1KUvKiqv8/xOA/4LPMZ5n3fv7RmRZzJOxXYz9RT8DWingKfHb4LvMML6TK+VxISEhLODIK0qGX61Ld/oR7/rndpael4CQlnGYVZpjAv7BPGW4AwD3rJL80U/tu7b8n1r4os0yu+6R166n//Ai2qqWBjwr2FMyMoOLHIR8y9kr10mI9OLjyRREgZgNBDChATtra2IvmGZPA+JISijJJi5JSoPBZyCBGEud1uR6LprSchykSWu91utPcTlYawMQ9E6LFed7v7RWVwOyBSkIZBWz8s/4gx1IXwQpAQdsQaCDL3dyt8lmWxuGOz2ZR06Bag6B3knZQJLPVEpiHRxWJRvV4vppEwPhdJ3OkA6eV6nU4nug9wrEiK7QAhpf1+X71eL9YnQEBhXbG78yyQyLzY5GICkXOP9LNv2Ruc44KFd0HAscJ13BkAgfV6GzgTmAfGifji6TUIQvl6HE7U6RqSF0TcXeE1KBiPu128SCb7g/lgfnGkSIdEnmsxF9KhCMF+Ym48JcJdNaTHsI/zYh6fYd9vfFfQUpUaIhTwbDQaK98/LtTwmUhpDwkJCWcR042lnv2Gz9Mj3/0bpz2UhIRjofYzb9f2fW/Upded/LUL06CHf2Ohyi+84+Qvfkxk87le/nffp6f/+udoWco0byVhIeHewJkQFDzH2gkEogHRcIgIlniIBBHZvIPAyVe5XI4RyUqlEsUByCLXgZxCCiG3bn/GEi8diiEUiHTSiMDhlf6p50DnA8ZBXrhXqYdkU3yRSvhEq6nk7wScKP50OlW329VoNFqJsDMeiBvOgUKhEAkr68G8NJtNbW9vx0KQbknneXEQUL8gb+1H+KEGBs9LhwDuD9nHbcC1O52Otra2NJvNtLu7G50srB/dHYbDoXZ2drS3txeJKi1DEVe8tSGuFgg8JJn94u00ERH4ISWH9XOizXojOCE6eC0LabU1J/uLNUHMgWw74c4XHOR3npnPjHTYGQOhDjGHPc4zlEqllc8H+xB3EK8h3iAA+ZgkrYgJPB8uDdwKfn/mnedHlPK2lohTXvTU96gXfPTuEl4UNO/gwUHjxSfzThRPJ0o4HTReKKSiVwkJCQkJR6IwCXrwHUvVf/Ltpz0ULXs9vfTv/IZKL/sMfeqPPap5Y1/8S0i4m3HmBAWIGQTEUxim02msJeCCAuScaD9EzgkNEW1s0xwrKZ7rNnNECu7BPZ3geG43UW0IMkTXi/aNRiPt7e1FIgjRJZXDo8SQNs8Nr9VqMYJObj2iQaVS0ebmZmydmRdH3PLuJJ75J9oP6eLfpC40m80YyYbo4hZABPA0BgQCIu/ch64TzI2klSKXXk+CNXTbP2sCCYWkVyoVDQYDdbtdXbp0KYoetA/NsiwWJGw2m3FvUUcCIYY5azQaK1042C/ectSj6OxbIuI8L4IKe5R1c6LKWnhxQsg2Y0dswQXhnx1P6fACpx5195QL7z7hNRs6nY7a7Xb8nToVLvZIh4TfRTYXUXBKMF4i/X4dXkcA8HFKiukVOCokrRRr5Rx3JCEg8F/SqBDVqKXhLh9fXy8iyXfDWWobea/i0X/4dn30e15/2sNISEhISDiDKEz3xYTmv3/baQ9lBfNPfFKPfPcnFV7/2XrxDR2NHso0ayfHQsLdiTMhKEhaId7uAHBbNsQV50Gz2Yyk1SOeEGjvutBqtbS5ublSIR7yMBwONZlMVK1WY+QTG790SLogkpAyt1nn88+JcBJ57na7sdUdY4QI8xxci84ICAeQHSzwpBEsFovoXqDgJJ0tptNpbDHpnRwgzIyfaLi3DSwWi9FdUavV1Ol0JEndblfdbje6JIj8ei0G5gSBIO/qgFxDIL0NIHZ7bOiDwSCSfReYPN2CAp3lcll7e3va2dmJRJQ1QRBCeGEMzB1CEwQVwQjBwvPucaTwO2vp//ZoOfcnQk7RR8bAmnsND3cQsJfzaSWIQ77fnFAzx+xhL8LoICpPsVJEGx8bwgRz74KVF1V0UQRHR6FQUKvViukKjBPkBRiel98ZL8+brzvhrUr92dyd4O4LhCP2I3PL90HedcI8JJwesmWm7fcGXf6c9IdYQkJCwp2OjY+P1HtZ40Si9oVZ0ENvW6rxH8+WmODI3vE+PfAOafHFn6feS6rx9UuvzVIBxyPQ+VhBWT+lm95JOBOCgueiu+Ueq7mklWiyt8Hr9XoajUaRfJAOwfGSomUfUuMt+0gpyLJMnU5HIYSVa3r0GGDn533qHLRarUiKJMXr9/v96D7ARl6r1SLhajab8X3P0Sc6zLUgnpDOvb09jUYj1Wq1eO9+vx9dBpBFFwDyhQ6ZS68PMJvN1Ov1tFgstLW1pUajoX6/r93dXQ0GA21tbcXzsdjX6/VIDCGUCCGQeHeiEP1GBMGdgCtgMBistJt04QehhXlsNpuaTqcaDofRbUEaiIsYzDdOi8FgEAsx4krBBSMdklbGRoFBahHgovC94QUHOceLRHY6nSvaVEJ++YHoso84HiLsdQg4323/0moqhacjsGZ+bdavVqtpMpnElpPUKOB+LtQxdhczXFDgs8H6cC2vr+B1Ffge4L8+Xi/06CkkPn9eT8LnBddDq9WK68z7CHL9fj86gHhG/pscCmcAy4Xu++F3qfRHP1fnv+C0B5OQkJCQcDMo/Pq7VXvtmzTduLnrhKX06K/MVf253zyZgd1iFH/lXdq032u7b4iCwrxW0ItfeAqDOoPY/FDQgz/xMS0uXT7toSRcB86EoCBJ/X4/WpohgN1uN5JE6g0UCoWVXH3ax0FSIAouQNx3332R8EKGICnk1fM+hMrrIjjxIX/bCd1oNNJwOIxRbY6nxkCv14vHIhJQR8Ar8UuKkXNEAVIwnHQ3Gg0tl8vYoaLdbiuEoG63Gy3+CCXeYYL0AMQFSbE1ors8sKXjTqDQodclgDBz7UajEdNDILNenBG7O/Z9ouJez4K0D56VuSFqTP0GhAe6UdBGEDcDRBHhhfQS75zR7XY1m83U6XTUbDajSORF+RAeIMZ0qJAUz3HCDVg3t+rTUpRaARB0SfE5Se/wFBH+60VJccu40OWFCde1n4TgQ9Ad1KvA3cL+415+jncTyadeuHuA1ARIPHsiXw/FCzsiiuSv5Y4Bb1fKvHFtf83TTZrNpjqdTuxKwf3G43F8Vhw2eUeCuykSTg/ZZKLNn/htFWafoxfelNYkISEh4U7GQ7++o/H9WzfuUsikl/3URIVf/a2THdhtRO2nD+s9FGo1NV54tQaPVO5p4Xzzg0EP/dRTmr94/rSHknCdOBOCwmKx0O7ubiTs2N37/X78A5/cfXcN7O7uxiJtkE5J0Z49nU5jtXsv4AfZRaQgii9ppRgdKQlcs1gsql6vRws7ZA4BAhInKRJAivG5U8A7WHgBvclkstL6kmi1E+KNjQ1VKpVYOwHSTETfhZP5fB5bUUKWPfKLwAGBhyjigmi1Wmq329GBMZvNYu45pA6XATZ86ZDcungBuQNO/JzgeS69pz9A7knDqNfrarfbMWItKUb/9/b2NJ1Oo/DixBrnBE4HumtQ3HIymahcLq9E4RF0er1enBsItdfucOeE1x5gXhANnBBzLYpack1JK3uEOfAin07qvZsE+9+LSCKSeIeN/Dgmk0kUbTiH1Blp3zVCzY//f3vnGhv5WZ3x5x2PL+Px2GN7N2nILtlNsqCGqAopolchPlRtQa0Cn0g/VHxApVJBLWr7gUsLRAKV0kK/ICERQNCqgCpRCkhILa2gSKUiDSEJmyxJNrdmYZNdry9z8Yy99rz94Pm9PjPxei+15/+f9Xkka73j8cyZ9//+X/l5zjnPsSMfrcjEYxB5WnTsfdVfSUAlBZ/Zjsi0gg0VA7SkIPj1m0Wyp3guo0ARJ1gz9gK/x1nEZ7KjTh3Zo7O6qpmTi3rxV+ezDsXhyAWKzaCjXz8nr6NyDBs6j5zS8fbtevr3D2ujfPXtbCe+1FB88OQ+RJYNOu22Rr77kGarM5o5dUQLd09r6c7rv81vtB507Gu19P+RswvaePGlDCNyXCtyIyhA0PEjWF5e1tLSkqTt1gGbkazValpaWkqGfZASa0QHqalWqz0jGXGmxzCQ7CQtABMTE0m8gPRap3oqAahGoP+azyEpvZ+dcsBnsSXtvB9kyXo34IGwsrKiZrOp6enpRH5tZpWsO5MJECZ4DZ5DxYQlW2RlycQjktBGwVhKiDQVCWTyrcDDteQ9LBGWlEzxbO89v9vpdNJ4PggjYggCAO0I09PTqQ0CEQlyubq6mqoVEEeo7LDXCGHCeiVYI0uqZRAc6vV62lelUin5XFBZQzvCxMTEy0ZSEh+iS38rDfve+mVAvnmuFQl4bX4uKZFuqiG4X2ym31ZfSNtjVe3EBntt7OuyjnbCgiXkCFZ4HfB5bXuHBSIK+4X9wVr0t0EgELLOiFjcN1StIFjQ8oKoQasGr8mesp+VvcG91F+F4XA4HHlBYS3o9vvPaOP5F7IOxeG4Jmw+cVq337+mJ//oiDpjV06eX/W5ZXVO/mQfI8sOm8sr0o9WdMNzs7rxOzN64S2vUPPo9TEh4sSXmhq5UO998OKGNl44k/67IcewIheCAtlyvtbW1lSv17W6uvqybD7EiMzw/Py8JicnVa/X0+9DMiYnJ3Xo0KHUEkD2EZ8Bm1mmRcGONLSTFiDrmN1BlOxkCsryqU6ANEK8LLmzJnNjY2PpMzcaDUnqERrI+NOzv7S0pGazmUgU5IvpBVRF0BYA8aatAfC7kGky5Ag0kGPIHATV9pfbTDfvi/+EfR4iAdfbrg9rIik58ENcIeVkoSuVSvLPsGDfYMqIKERlCdUBdloBQhJ7AoNJW5kAKcZfgYoCa+ZnPTVsq0u/kWc/sSYTz1STjY2N1OZDtp89YP1E2B+2Mof3pMIFIm2rZix55zpYDxD2B9eYfYe/B9ewWCwmbwnbisB7MGay37uCdbPiGi0s1gOFPYdgZWOlOsUaKrKW/dNMWIOLFy+m9iD8QrjWdpIKa8B9bw02HQ6HI08IkosJjqHHxvMv6MTfrOrJ951QLFz++a++f1Gbp57a/8AyxubSkrS0pCOfXdTz77pT7RuG82+Rm/+zo6n/elaStHlhURsdr6e6XpEbQYFM6fr6upaXl1MLBAICBKJQKKjZbGptbU1zc3OpLx2BIITQM37w0KFDmpmZSWMDW62Wms1mIt6QB1suvbKykggUpIfqhEajkVoxyKyT+W232ynrL20b89GOgOkdYggl/VQ91Ov1nlL8iYmJVIIOiWo0GlpYWFCn00nTDXgvDA0RJXj9drudYub5VAvEGFPLBqX6AJM621duCTN+DVQ50IZhryWl6GSWEWrI8mMASYUEmWdLJBECbJm/nXYgbWXbL1y4oHa7nUgi1w2PCGm7jYBydipMaHGAREJg+0vtIbWdTicZV9opBZJ6SvjZi6wjJN1WMtgKDa43e1LaajWAAJOxxz8CQi1tm5hOTk5qampKknoIvJ3+wDXAO4HHIdK2kgNBBkEJQs5nt8INnhRUS/CatnKFzwyhZ60tiWfNbbUL5pH2eXbyA2KRbcuwQgECFWtmxRpbgWGFDutd4XA4HA6HY2+xuXBBJ/6ypTA+ric++Oodn3PrV9sqPvSkNlstKV7/rQBgs1bT0U/+UM+9/xd1cXp4RIXZx4IOf+kRxfV1bW543cFBwGUFhRDC5yX9jqRzMcY7u499WNIfSDrffdr7Y4zf6v7sfZLeIWlT0h/HGP/1cu8BgeAPeUwMyQ5bbwSyiRMTE5qbm0vVCXgMkKHk59VqNWWhrYkjJdcQNzKoEKVSqZT8Enge5JOybCteWEHCtlFQFg9hhOziqo93giW8jAeUtk3wJiYm1Gg0erwSqN5grYifbOzs7GwSIazRHoIF1RMQKUgY1RSU9ZP1JmtPiTvEvlgsamFhQbVaLZWlU1GCEENWG4JZKpWSdwbrY7Pq7XY7rWGr1VKr1dL09LSmpqZULpc1NTWVyCPVHYyBZF36S9YRJmKMSWiA+NrJH/Tx2157plXwxcQJa6bJvpKUSDZtNXbP0Q5AjFxnpnZwTSndt33/EHfrTVEul1P8IyMjqSqFvWMNJ+3+RTDi83EtuYd4rjXhZD36/RlGR0dVqVSSiSciiN3TVA70j4XtrwKgYqa/nQFRA1GA12d9bRtDqVRKr8W9RWUT5pcIJ/y+XdN+08s8YBBnscPhGAJEScPDLa4r+Dm8P+isrkqrq7r9zy4xsaGzeWC3fFxbU+ho677PqydxlEKUJs4XdPPHfyDFjjoHSPhxXFmFwhckfUrS3/c9/ncxxr+1D4QQ7pB0r6TXSHqFpH8PIbwqxrhrjQstD2NjY1pYWOjpdbYmdpISGSyVSiqXy+kxnmt7/SHUZCGpPMBkz/b2W2JI2T+99RBiCLkd30fsiBtra2up/x+zxNXV1ZQlr9VqCiEkP4T19fU0ttKOO6QEnqoCYrHtA7YkG/JMpv+GG27Q7Oys2u22lpeXVa/XUxsAvgCIHJTcU2mAfwAZ73q9rvX19eSpQDwIExB6yt0RaCqVSoqJ0nky/FRlQPBYU8rvIYjLy8vJs6JUKmlmZkbT09MvmxrBe1B5wufhfW15vh0pyDVnegBVGnY8I5l49gmtBXhY8B5UTSCMEROAGCNWQFatIIJgYOPlNVdXV9MkC8SgUqmURJexsbEkVNnKAtsGw302MzOT3kdST3UKlQXcG7aKwHpS4KUgKXmV2PGb3JeIVuxThBQqJmwrCAaa9t7sv//7BThrWorww/6wXiW2YobrjuCD2NPveZKzKQ9f0D6fxblHJypsBMWi/6HiOLgIHenW+x6S3wWZ4As66OfwfsJL4nfEK+/7vp792K9oczx/d31hPahwUTr2F/+ddSiODHFZQSHG+L0QwrErfL17JH0lxrgm6dkQwmlJr5d02V1WLBbTGDfbO06m0DrrW1JlqxsgPNPT05qbm+vxCKjVaslYsVgsJsd+Mujdz6pisajDhw/3jASkH5zf57lkNicnJ1WtVnv63iHMy8vLkpSIda1W0+HDhxMxQkyYmJhQpVLp6XOHtJJh5nUg3rZ/HBK7vr6u8fFxVatVSdKFCxeSQEPGtZ+0I5iQ8bf+CFSIlEolTU1Npc9vKzsWFhaSlwCZ5Gq1qlKplKZ1MKGBSgjMExFMrIkiWWnEjHa73WMSCamHEFK1wXVE6LGZdiYWWOLZ6XRSCwtVIBBoBCrWjWqJ0dHRVAHCZ6Eyg8qD/nGNCAOsTb+YwehSri8kHB8QO1ISEYLrVi6Xk+iGvwDrQ8yWXNuqHDu2kv+vrq4mAYb1AAgAVpigLWBmZia1T1hBgQoAgBhGqwStM7aCg/1qDVHZk1xT7nnr08B6c39SRcG+4n2szwrvw35BVKHlyQpCWWNQZ3GesfnEad321Umdfttk1qE4HJkhjkjP3He3bv/Y41smbo6Bwc9hR1YoNoI2x2KuqhSKjaBjH3rAhSCH/j/1vO8OITwaQvh8CGG2+9jNkqxL0JnuY7sCssVYOvrDERLK5XIiNkwtgJCQtYdIUPJNST0md5AUyBaE2vbrF4tFVavV1H9uXeDJiI6NjSVyS5XE7Oys5ufnUyk6ZfuU8kNSbPl7s9nU2bNnkwHf7Oys5ubmVC6XUzaV7Cqf3brbW/d9SBKTEKjgqNVqWllZSW0GlLTbNgbINYIJbSH1el3Ly8tJ4LFijqREUhcXF1N2fHp6OpHLubm5ZHBJGwtEfGNjQ0tLS0lksBMKyCDzOwgOCDYQ0FarpdXV1dTuQtbfEljaXKyBIAQRoYn3HB8fT+0Uo6Ojqa8eoYrPbkUgKlAWFxcVY0zVGUyHoOyePcB1tJMa+g0X+80suT8g0zZjbismaC/BY4CWFcgyn4fnWTGBNgLWdGNjI4k3VGPYCSnch7yHHQ+JRwkkn8kPknpGPSLw8J6sE1U5XENrnkos3POsHeICa2xbgazfhxUh2HdWQKLihsdsFVPOsWdnscPhGA5sjkc986d3qHjTz2UdimMLfg479hVHP/L9rdaHHGB8saCJcwUd/8hDLiY4JF27oPBpSbdJukvSWUmf6D6+k262Y4ovhPDOEMKDIYQHydLW6/VUskyW2XoFkJ3HKA1iaT0NGCMpKfXnQ1hoE8CkjakOZJ4RCqiWwLsBoi5tCxpkoyGhkDbKzG38ZJEhQuvr61pcXFSj0VChUEiEzJr+2bggtNbdHmKMGEC2HfJKu4AlkVQXUIkAkYfYkn3GJJHXtkSLzC9eDbVaLbV9UJ7PNUOgwAwTkWRpaSkJAdYUj/eSlAg162eFkFarpeXlZZ0/fz75UtjYgDUgpN/f+hNAWicmJlStVntaCXh/m9mH0BIrbTS0erB3mK5hfTr4P69lSbU1AOSzSkpEv9FoqNVq9bRsUA1ihSdeX1IPKabqwBJqK8IhFNBywT1GKwHX374+1SmIGniFYJjKvrItFVQD2T1k25sQCBESrYcEAoLd+wgW3DPsUfse7GvaeLifqfBAUGRNEUr6qxhyjL09i7W2L0HuJUZWWhq/kB9vC4cjK1ysRD37jltVPH5L1qEcdBy4c9iRDaaeL1xiBw0OpZcKOv7ZZ3Tkr76vuOZ71bGFa/qrLMb4UoxxM8bYkXS/tkq4pC319ah56hFJP7vEa3wmxvi6GOPrRkdHVavV1Gw2+VkiYrZkvL/kHZJlJxNQIt5qtRIxtj4E1vQRMQBPAUg9JfSQHAikFS0gH0wqqNVqSVCwhM22JyBkQLzIgFvTOsrYqdCA9JFVhuT0x72xsZGqCaReEYTYbYacOFlrRB2Ivx1LyPcQ5GazqXq9nrwNbCZdUk+mmrW04zFXVlZSbGSeIZx2TCh+ANK2UR8k/sKFC+k6IgLgxwDZZQ/R5sKEBZu9Zw2tuz+v058RJ9MNQcVbgiqVnSYh0M7SLyYgAiEEMJmBOGz5P1NB7BQJKwZwzfnMEG18HKhGsYKNFTOsqINwRbyFQkEzMzPJf4NqGHu97bpQMcAetBMaEK4QMGh5YT3s5Agqbqw4gX8KwhjXl2ohWjf47Hzx2Tk3WD/bEmLbqqzZZN4FhT0/izW+vwHvATZPPaVbvrmkifMuKjgca/MdPf+2mzXyqtuyDuXA4iCew45scOOnsu2WmfxpQbd85Yw2zr6YaRyO/OGa/iILIdxk/vtWSSe7339D0r0hhPEQwnFJJyQ9cLnX63Q6KZvOH/P8kQ/psdlHCJ01U4OIQHzI6kJWIShUBVSrVc3Pz6eqBfrv6/W6lpaWekbo0S5gWyNsL3uj0Uhl7/goUN2AYZ9tvcAA0Aojti/fTpewpdyQI0z1mHowPj7eIyCQoYXIWcND4uJn0rYTPqX3VBlAqiBbXA+eBzGEeHItIZZkxfGHoJWAz8B7UFXC5+73dWDNWMuFhQWtrGz1jdLnDvHsn+xgzQYhh4gwVIHY2C1Zt+Z/vDexWNGpXC5rcnKypwICUk3mHLGC/YSQROsEYyRtFh6RhFYZ2gcQDPjM3C/Wf4OKGQQiPAoQK6x/AP+n9QjyPzIyotnZWVWr1eRHYsUa9qM1x+S9EGSsiIGHBdVI7DVeG9HEGi/a9aKlA4GG+wBzVoQNu0bEYAVFfFHs6E72G+9lRYw8Y6/P4mFB55FTeuW3ll1UcDgktW7s6MIv3ZB1GAcWB/UcdhwslF8o6Oi/nNXGc/+bdSiOHOJKxkZ+WdIbJR0KIZyR9CFJbwwh3KWtwpvnJP2hJMUYHwsh/JOkxyVtSHrXlbjZkkmFZNlMLIaAEDOEBGmbBEAiqBqAtFine94Ho7v5+XlVKpWeefeStLCwoHq9rkqlkgieLR+HtEKaEQcw9aPPHhJORr5Wq6U+e8SSTqeTsuwQOQQSMr1k2On/J2M8PT3dkxlGKKBFgtdCFJGUJk7QkiD1Ot1DgplwQWWBNTuE2FMtsba2punp6fR6NqvebrdTpQHXkhaPSqXSM2KT94Qks96NRkOS0ms0Go0eM0qIqJ0UwhoyPtCuD9UIZKd5LWvqR4ULe4p9QMUFJfiINhByyKo1lkTcsa0CXBOuJ+0FCBZU3SDW2MoP6w/Rved6suhUeEDI+1sUiMdOpKDNgLXp3veamprS7OysRkdHtbS0lNbUvq+dDmKrE3hPO3rTjnekFQdRCVGC79kr3HusG2Ih6zY5OZn2ofXgYH2JQ1LaW1T30EbD+7Ku1lukf6RllhjEWTxM6Dz8uF4Zf17P/+6s1ubzc50cjizQOBo0d9cd6jz8eNahXNfwc9hxEFE+U9CRb76ozdPPZh2KI6e4kikPv7fDw5/b5fkflfTRqwkCot5P3Mku2iwvPe2WlFMSTuk/7QeQV7L70rZpIxllsqojIyNqNpupJx6vA2m7lBxygV8BYyjJsuO9ACFksgPVB/SQ2+oGS6h5bTvCkH58Ri5WKhUdPnxY5XI5kTBbrUFJuCWqlO4zzWB6ejoR1n7yBEFcW1vrGZeJ4MA1gUCXSqUe8aW/191WNkBgIYKtVkvj4+OqVCoaHx9PAg3XFmIOCYZI8lklpR55SWnqApllMtmNRiN5ARADVQu2JN6SY1vJQcsKhBmBgOvM57VCE2vG/pC2/TcQYyDNhUJBjUYjVcZAdhF6EJvYi9I2Qad1QlIa6YmYgABgS/rJ1tM6ZD0ObCVKsVhUpVJJo0ytiML7IbZI6qmGsCIU8dlJDVw/7hkrfPBzqmSIxb4P722nuNjPa81DiYNKD0QMrqsVE7mXWJO8YRBn8bCh88gpHVs/oWffdljrMy4qOA4u2oc7ah6bUunhrCO5vuHnsOMgonQuavOpZ7IOw5FjXFZQGATIXEK4LemwPfD88W+JFGRCUhq3R2Z8amoqkUqy3hjMjY6O9ri422y1pERyIOV25B6k0Rq7YZAHqYHUkpm3Ykmj0Ugj9iBMGDmSweX5ZO5XV1d7Wh0o9YfcY2ZJ6wCVGPhTEBvZWUk92WTWgJYRYoNA2tJ6awR44403qlwuJ8Jo144MNSIC2XB8J4gRwQdSaL0zeO9Wq5Xitq0uEHzrv7C5uZnIOyaTdnoEHgH8jMdYEzvJgL0DqUY4Yb/xGe1etBUDrBv7BBHLimLr6+taWVlRu91WuVxWqVRKpBaRw/ou8PvSdhUAFQdWYLH+I9ZEkVaPfuEEEs71stdlp9GM7FvaUqwXhl0D9rUVmRB37ONUFCAgsl4IFAhwtorJigm2dcm2n3D9MPnk3qI6h3vDVpc4hgebp55SYe1w1mE4HJnj3GuLOvbCaxR/+FjWoTgcDofjACEXgkJ/afJOZdrSdskypBsTQpv9J+vLdACywdYMD6JBdQIZWwgHTvUQNTKXEF2MHq2YADEiVjLaECeIV7PZVKlUSp+RUnNLCqWt9oRCoaCpqanUFjE5Oam5ubmeEnsM9/j9SqXSMzYPUz5GOiJgQLIkpfhZN0mJoNm+eAwDaXuoVquamZlJ5AxDQ5vhpVKgWCyqVqslEQfhABEIcmvJImQWnwJEoH5TQn4HIQRjQWIlfggv12J5eVn1ej0RV6ZIQPYt2ZWUxoHyevThFwqFVCUjbZNz9irCGATf+oJYfw2uDXvdZuateaf9GVUZeHew5lx/e38hFGCAaIUN4qUiiH3I3mft8G7Ar4S9znWyvgR8fmKx4yptlQtiAtU61i/FmpxaQRHRwrZG2HYM+2X3pN03tLBwL1pzS9Ys7x4Kji3c8tmn9PR7btfGpF8vx8HFxemONirjGrn8Ux0Oh+OKMPV8QfPffEyeanHshlwICpJ6XO3X1tZSZYDUW3kAwbBZWogSWWdpO3tqSaidRtCfFbYGjJAmWgcs0YBQUpZN2TdkzMYqKVUMFAqFZEQHwZS2RxbSmlEoFNRsNlNJuJ2KMDc3p9HR0UTAmWIBqebzktElGzw5OamJiYlUik97ARl3ys5t9YY1OrQl4VwrxA6+55pYo0D62K3PgK1eGB0dVavV6hEEIJZMUdjY2EhVGcViUY1Go8eE0ApFtM2Q1We0JT4YCA2S0jhRrjlTLiD60nZLirQtsFjhxfbhI3KwfrRBWG8KBAEqaBCdGH3KZ6rX6z1TPaypISNQqQSwU0SsD4AlwmTuWQMy+nwW4pe2DSupimCv8XPaFvpNJG2rhAVx8HP2lRUNrd+BNUa0FQasG3vdtiAh4tmqIHu9+HxWdETco8WGShgr/LiYMDzYPH9e6tyedRgOh8PhcFxXKKxLm8srWYfhyDlyYZENQYTUSUpTB/hD32YSJaVeZzKs1q0fYocoYefYA16fMY2SUhYeUcE6zBOnNYyDsFhyRHm+7f+HoJOVh+xD6BEVZmZmUlm+tFVdcP78eS0uLibCWa/XVa/Xe7KrVHEggFgy3+l0kmeEjRFyZjPK1WpVhw4dSlls+szxarCl6tZpX9LLKhnImtOK0Gw2tbS01FMxwPXjmrGWlKGHEDQzM6PZ2dkeAz37GexUA/rjue4YHEKQ7bSPer2eRCH2E7FTsWCJrl1bPhuklHGn/K6dxkBstuyfPc2a2XYaST3CDo/ZahSegzjCvWDXFKHlUlU5/T4UVODQDgKscMdzJfVMTWB9aCewRpS8d79BpfU7YC367zfWzo6ARKyy0xp4PutsW2UQzrh/qKLBVwNwhliPExcVHA6Hw+FwOByO3RHy8AdzCOG8pKakhaxjuQYcksc9SHjcg8ewxr5Xcd8SYzwQTfohhLqkJ7KO4xowrHtUGt7YPe7B4qDHfZDOYf+bePDwuAeLYY1bGt7Y9/UszoWgIEkhhAdjjK/LOo6rhcc9WHjcg8ewxj6scWeJYV2zYY1bGt7YPe7BwuM+WBjWdfO4BwuPe/AY1tj3O+5ctDw4HA6Hw+FwOBwOh8PhGC64oOBwOBwOh8PhcDgcDofjqpEnQeEzWQdwjfC4BwuPe/AY1tiHNe4sMaxrNqxxS8Mbu8c9WHjcBwvDum4e92DhcQ8ewxr7vsadGw8Fh8PhcDgcDofD4XA4HMODPFUoOBwOh8PhcDgcDofD4RgSZC4ohBB+O4TwRAjhdAjhvVnHsxtCCM+FEH4cQng4hPBg97G5EMK3QwhPdf+dzTpOSQohfD6EcC6EcNI8dslYQwjv616DJ0IIv5VN1JeM+8MhhJ921/3hEMKbzc/yEvfREMJ3QginQgiPhRD+pPt4rtd8l7hzveYhhIkQwgMhhEe6cd/XfTzX651n+Fm8L3H6OTxA+Dk88Lj9HN5j+Dm8P/CzeLDws3jgcWd/FscYM/uSNCLpaUm3ShqT9IikO7KM6TLxPifpUN9jH5f03u7375X011nH2Y3lDZLulnTycrFKuqO79uOSjnevyUiO4v6wpD/f4bl5ivsmSXd3v69IerIbX67XfJe4c73mkoKkqe73o5J+IOmX877eef3ys3jf4vRzeLBx+zk82Lj9HN7b9fRzeP9i9bN4sHH7WTzYuDM/i7OuUHi9pNMxxmdijOuSviLpnoxjulrcI+mL3e+/KOkt2YWyjRjj9yQt9j18qVjvkfSVGONajPFZSae1dW0GjkvEfSnkKe6zMcaHut/XJZ2SdLNyvua7xH0p5CXuGGNsdP872v2Kyvl65xh+Fu8D/BweLPwcHiz8HN5z+Dm8T/CzeLDws3iwyMNZnLWgcLOkF8z/z2j3C5c1oqR/CyH8MITwzu5jN8YYz0pbG1HSDZlFd3lcKtZhuA7vDiE82i3/omQnl3GHEI5Jeq22FMKhWfO+uKWcr3kIYSSE8LCkc5K+HWMcqvXOGYZtfYb5LB7mPZrrM8HCz+HBwM/hPcWwrc8wn8PScO/TXJ8LFn4WDwZZn8VZCwphh8fyPHbi12KMd0t6k6R3hRDekHVAe4S8X4dPS7pN0l2Szkr6RPfx3MUdQpiS9FVJ74kx1nZ76g6PZRb7DnHnfs1jjJsxxrskHZH0+hDCnbs8PTdx5xTDtj7X41mc92uQ+zMB+Dk8OPg5vKcYtvW5Hs9hKf/XIffnAvCzeHDI+izOWlA4I+mo+f8RST/LKJbLIsb4s+6/5yR9TVvlIS+FEG6SpO6/57KL8LK4VKy5vg4xxpe6N0pH0v3aLsvJVdwhhFFtHUD/GGP85+7DuV/zneIeljWXpBjjsqTvSvptDcF65xRDtT5DfhYP5R4dljPBz+Fs4OfwnmCo1mfIz2FpSPfpsJwLfhZng6zO4qwFhf+RdCKEcDyEMCbpXknfyDimHRFCKIcQKnwv6TclndRWvG/vPu3tkr6eTYRXhEvF+g1J94YQxkMIxyWdkPRABvHtCG6GLt6qrXWXchR3CCFI+pykUzHGT5of5XrNLxV33tc8hHA4hFDtfl+S9BuSfqKcr3eO4Wfx4DCUezTvZ4Lk5/Cg4jXx+Tm8t/BzeLAYyn2a93NB8rN4UPGa+LI/i2MG7p/2S9KbteWi+bSkD2Qdzy5x3qotR8xHJD1GrJLmJf2HpKe6/85lHWs3ri9rqyznoraUqHfsFqukD3SvwROS3pSzuP9B0o8lPdq9CW7KYdy/rq1yoUclPdz9enPe13yXuHO95pJ+QdKPuvGdlPTB7uO5Xu88f/lZvC+x+jk82Lj9HB5s3H4O7/2a+jm8P/H6WTzYuP0sHmzcmZ/FofuiDofD4XA4HA6Hw+FwOBxXjKxbHhwOh8PhcDgcDofD4XAMIVxQcDgcDofD4XA4HA6Hw3HVcEHB4XA4HA6Hw+FwOBwOx1XDBQWHw+FwOBwOh8PhcDgcVw0XFBwOh8PhcDgcDofD4XBcNVxQcDgcDofD4XA4HA6Hw3HVcEHB4XA4HA6Hw+FwOBwOx1XDBQWHw+FwOBwOh8PhcDgcV43/A6tv6GvGCKolAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 539231 0\n", + " Min thresh = 1000\n", + " Not Sliding\n", + "\n", + "\n", + " Winner = Not Sliding\n", + "\n", + "\n", + "027ns_image_4743880599022_clean.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADDCAYAAAAya0IYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADcO0lEQVR4nOz9eZjl61nVja9nz2NV9XDmk3ByMkGCGAxk8kJQVAgqgygQJyYNOL2K8ALihKiIMuj7+v5AoyIOCCLIpIyiQZCEQCBIAjnJyTycsbur9jx/f39UfZ5a++ldPZzT3VXV/azr6qu79vD9PtPeXWvd677vUBSFMjIyMjIyMjIyMjIyMjIyMq4HpeMeQEZGRkZGRkZGRkZGRkZGxulDFhQyMjIyMjIyMjIyMjIyMjKuG1lQyMjIyMjIyMjIyMjIyMjIuG5kQSEjIyMjIyMjIyMjIyMjI+O6kQWFjIyMjIyMjIyMjIyMjIyM60YWFDIyMjIyMjIyMjIyMjIyMq4bWVDIuOUIIbwjhPBpxz2OjIyMjIxDhBDeH0L4/df42iKE8IJneJ9n/N6MjIyMjIyMk4UsKGTcchRF8dKiKN543OO4EkII94UQfiyE8NGDX34fOu4xZWRkZNzuCCF8QQjhl0IIoxDCG497PBkZGRknETdamL3a9fLvxRlXQhYUMjI2YyXppyR9/nEPJCMjI+MOwkVJ/1TStxzzODIyMjIyDpF/L844EllQyLjlcFttCOEbQwj/OYTwH0II/RDCb4YQXhRC+OshhCdDCB8KIfxBe++XhhB+++C17w0hfEVy7a8NITx2oKD+WVdcQwj1EMK3hRA+GEJ4IoTwz0MIzU1jLIriiaIovlPSr9zEpcjIyMg4kQghvCKE8KYQwu7Bd+r/F0KoJS/7rIPv4adDCN8aQijZ+7/s4Lv6Ugjhp0MIH3Mt9y2K4r8XRfEDkj56I+eTkZGRcdIQQvi4EMIbD75n3xFC+Gx77o0hhD9rP39JCOEXD/79vw4e/o0QwiCE8IUhhE8LIXw4hPANB9/J7w8h/Mlner10rPn34owrIQsKGScBf0TSv5d0RtKvS/pp7Z/NByR9k6R/Ya99UtIflrQl6Usl/ZMQwu+SpBDCZ0r6a5J+v6QXSPrU5D7/SNKLJL3s4PkHJP3tmzGhjIyMjFOOpaSvknRe0qslfbqkv5C85vMkfZKk3yXpcyR9mSSFED5X0jdI+qOS7pL0C5K+71YMOiMjI+M0IIRQlfTjkn5G0t2S/rKk7w0hvPhq7y2K4vcc/PN3FkXRKYriPx38fK/2v7MfkPTFkt7wLK+XkXFNyIJCxknALxRF8dNFUSwk/Wft/wL6LUVRzCV9v6SHQgg7klQUxX8riuI9xT5+XvtfxJ9ycJ0vkPRviqJ4R1EUI0l/lxuEEIKkPyfpq4qiuFgURV/SN0v6ols0x4yMjIxTg6Io3loUxZuLolgURfF+7Qu7l4m0B9+nH9R+msLrDh7/Ckn/sCiK3z74Xv9mSS+7VpdCRkZGxh2AV0nqaP/33VlRFP9D0n/V4ffoM8XfKopievA78n/T/u/GGRk3FVlQyDgJeML+PZb0dFEUS/tZ2v/SVQjhtSGEN4cQLoYQdiV9lvbVWEm6X9KH7Fr+77sktSS99cBatqv9XLC7buREMjIyMm4HHKSe/dcQwuMhhJ72RYHzycv8O/YD2v8OlqSPkfT/2HftRUlB+1GzjIyMjIyD31mLoljZYx/Qs/uevFQUxTC53v1HvTgj40YhCwoZpwYhhLqkH5L0bZLuKYpiR9JPaP8XVUl6TNKD9pbn2L+f1r448dKiKHYO/mwXRdG5+SPPyMjIOHX4LknvlPTCoii2tJ/CEJLX+Hfsc3VY9+BDkr7Cvmt3iqJoFkXxSzd91BkZGRmnAx+V9ByvPaP979GPHPx7qP1AGLj3Gq55JoTQTq7H9/IzuV5GxjUhCwoZpwk1SXVJT0lahBBeK+kP2vM/IOlLD4rctGT1EQ4U4H+p/ZoLd0tSCOGBEMJnHHWzEELj4H6SVD/4OSMjI+NOQFdST9IghPCxkv78htf83yGEMyGE50j6K5LIu/3nkv56COGlkhRC2A4h/PFruWkIoXzwXVuRVAohNA5yjTMyMjJuJ/yy9kn+14YQqiGET9N+TbHvP3j+bZL+aAihdVBc/MuT9z8h6eEN1/27IYRaCOFTtF9z7D8/y+tF5N+LM45CFhQyTg0O6h78X9oXDi5J+hOSfsye/0lJ/6+k/ynpUUlvOnhqevD31x08/uYDC+9/l3SlYjVjSYODf79Th+kXGRkZGbc7vkb737F97Yuxm4p0/aikt2r/F9X/JulfS1JRFD+s/SK433/wXft2Sa+9xvv+ae1/136X9uvjjA/un5GRkXHboCiKmaTP1v5349OSvlPSnymK4p0HL/knkmbaJ/r/VtL3Jpf4Rkn/9iC1jDoJj2v/9+OPHrz+K5/l9VLk34szNiIURXHcY8jIuCkIIXyc9n+RrR8UBsvIyMjIyMjIyMi4rXDgcPgPRVE8eJWXZmTccGSHQsZthRDC5x1Yvc5oP0L241lMyMjIyMjIyMjIyMjIuPHIgkLG7Yav0H6Nhfdov4/6przfjIyMjIyMjIyMjIyMjGeJmyYohBA+M4TwSAjh0RDC19+s+2RkOIqi+MyD7g1ni6L4vKIoHjvuMWVkHBfy93BGRkbG8SN/F2fcbBRF8cac7pBxXLgpNRRCCGVJ75L0ByR9WNKvSHpdURS/dcNvlpGRkZFxGfL3cEZGRsbxI38XZ2Rk3O64WQ6FV0h6tCiK9x5UMf1+SZ9zk+6VkZGRkXE58vdwRkZGxvEjfxdnZGTc1qjcpOs+IOlD9vOHJb3yqBfXarWi0+kohKAQghaLhabTqZbLpcrlssrlskqlkhaLhZbLpUIIqlara4/xuhCCVquViqJQqVRSCEHL5VJFUaharapSqSiEoKIo4ntXq1W8N6+XFN9fKu3rLqvVKl6Lx0IIkiScHqVSSaVSKf4cQlC5XNZqtdJqtYpzLooijpPXcS1JG+fCPdN7+TV9PuVyOb6W+/m8+LlSqahSqcR1Xq1Wl60N92J/0jXyNV2tVpetfTpWxpSug+8jrymVSvGxTevG85K0WCw0m83WXsO6+PXTNUnXJh3jYrFYO1OMhXVO57ZcLrVYLDbu5VHwM+J77e9Jz6Ovtc/X/3b4OfM15D4+N8bCPf11/mfTNa803nR+6dlPx+bPs4Y+X1+ndCz+WDrGdA5H3W+1Wj1dFMVdm3ftROO6voclqdxpFw8/b6Un3t68qQPLyMjIuB5MNNSsmIarv/JE4rq+i/P3cEZGxklFX5c2/k58swSFTV/6a0wjhPB6Sa+XpEajoT/wB/6AGo2G6vW6er2e3v3ud+uxxx5TtVrVXXfdpW63q9FopOFwqPl8rrNnz2pra0vD4VC7u7uqVqs6c+aMOp2OFouFer2elsulOp2ORqORJpOJzpw5o/vuu0/1el3T6VQXLlxQv9+PRAeyCaGuVCqqVqtqNBqqVquaTqe6dOmSJpOJarWaKpVKJMrValXz+VyVSkWdTkflclmTyUQhBCGWTCaTSGAgnJPJRPP5PJLScrkcr12v16OIwc+IBNPpVJVKRe12W7VaLY691+vFuTsxr9Vqms1mcV78LEnb29s6f/68tre3Va/XNZlM9PTTT+upp57SZDKJe7a9va2trS3N53NdvHhRk8lElUpFrVZLtVpNq9VKw+FQvV5P5XJZzWZTk8lEg8FAjUZD3W5Xq9VK8/k8ig2IFpPJRNPpVI1GQ9vb22o29/8jnU6n8Qw0Gg3N53PN53PNZjPNZjOFEFSv17W1taVut6u9vT099thjevrppzWZTLRYLKLIMJvNVKvVdO7cObXbbc1mMw0Gg3g+iqJQo9GI+4WIsFwuNRgM1O/3NZlM1G631e12Je0LB/V6Xdvb26rVapGsLpdL7e7uand3V41GQ5VKJe6bi04IXD5Of42keB4RNDiPjF9SFNgQ3CqVSrymCyrValXVanVNzDn4PMbHEJem06kmk4lWq5WazaaazaaKooh7MJ/P1wS+SqWi5XIZzzPEnPO2XC41HA41m83iZ4sxuHCYClHMtygKzWazeGZYZ0QG/vbPMc8jmrnYx34g/CAOVavV+FmbzWa6cOHCB57xN+Hx4qrfw1LyXayWHnrHH9ZDp/XX9oyMjNsSv1z83HEP4dng+n4nzt/DGRkZJxT/vfjBjb8T3yxB4cOSnmM/Pyjpo/6CoijeIOkNktRut4v5fB4JWa1WU7PZVLVa1Wq1ikSzVCqpUtkf8nw+j66DarUq6ZBc1Ot11Wo19Xo9jcfjGCWFsEF8UkBwy+VyvA9kl0gwwgIkRDqMevMeSHupVNJsNtNkMonj96g2xImo/qZoOz97RLdWq6lWq2k+n2s6nUpSvH6z2YyklNdzz06nE+fC2rEOTsyIpjO2EILm83mcV71eV7PZjOuwWCzifNz9wHgQC+r1uur1erwu6+2CjBNq1mC5XOrixYva3t6OY2EN5/N5FG5KpZJqtZo6nY52d3fj+5mDJE0mEw2HQ9Xr9UhCmRvkW5Lq9XrcHwgvpHs8HkeiK+2LHggHEF/ORaVS0Wg0WiOzs9nsMsLN2WG/ptNpFEx4L2OZz+fxXNTrdY3H43iuQQhBtVpNIYQoJDnB9mi9R+dxY0iHzhX2BBGA99lnOQoLkuJYObeIEIhPuGA4ezy/XC6jMMLjCAh8H7C+3A8x0MfjjqPUkcJ58/PCe1hbF1V47ynFVb+HpfXv4q1w9sYX1cnIyMi4s3FdvxPn7+GMjIzThpslKPyKpBeGEJ4n6SOSvkjSn7jSGyDdRBibzaYajYbG47EWi8UaiYIsIB60Wq0YZa5Wq6rVamq1WhqPx5pOpzGCLymSOQi1dCgkAEiWCwDz+TxGYSuVSiTTXIt/S4e2bMgYBJTXur37KMs9JAuy7WMPIajVakUXxGg00nw+V7vdjgQUEgxZ5nHcGawh5G61Wmk2m61FuVMxZDQa6cKFCzp79mwkrESSp9NpJNCNRiOuBySy3+9rNputOTRYe8ZarVY1mUw0Ho+jU4NrQ/RYm3q9Hsc+nU7XBAyIoqdwkAZBVJ+ouYsJiEecB8QPyK+nfEwmk8tcBLPZLAoRPsfVahXPAD+zH8CJK2vhThbOpTsKarVadCr4GrgrQFLcf67HXI6y+3MeEBBcXOL8z+fzOCbm5MINYoxf04UgT+XwsbG3/lnEScNnyu+LKDafzy9Lc3HXj3+mEC95rlqtxrEzVwSQNBXjlOG6v4czMjIyMm448ndxRkbGbY2bIigURbEIIfwlST8tqSzpu4uieMeV3rNYLDQej2NksNFoqNFoRDIBWXOyDIFqtVqR8GDTJoI8Ho/X7NEQGQgIJNbTDpwIQkRKpVIUFSB/TtbBJvKF3b7RaFyWxw2xSQmZixIIGsvlMhJlxr5cLqMDgOulkXaPtKYRXkgqpBQCyTg8rSCEoN3dXZXL5ZjWwetwCkAWIZC4TRg/e+bkF6Lp7gXuC7lbLpcajUbRhj6dTtVut+PZmU6nmk6nMRUBMcNrF3D/0WikUqmkTqcT7+eOE8gyY3SXAwTerf28hrFwRj1Vgb/dicJrSHHxqD17y729RoPXZmDPEUw4W+xFWnvDhY40tYA/PMYZq1arUUhhzqREOIH3GiG4gFi3tG7HUXUcWNeUyPM9gLjF2D29wcfCHPg+Ye+kffES8dHTlnx9EZh4z2nEM/kezsjIyMi4scjfxRkZGbc7bpZDQUVR/ISkn7iW10LIiHI3m03V63U1Go2Yww9hgnx5pBIiSo47KQ9E5FMHgheKg5BAWJysELGHTPE474NES1K73Y7EBss+pBZyw/UhPzgOiCQTwWeMRFlrtZrG4/GaHRvSS4R1PB5rNBppuVxG90S9Xo8Wckgt7g1EDtZwuVxqPB5H2znz9KKXpVJpLWXAo+qsBQSO+UDasOYjXkiKKQIQuEajEVMpcGdIiuIEjhTqMqxWK7VaLUnSaDSK44eckyKDyOLRftwXXpiPdZcU15FaBIga7jRhD1jD9B4uCHi9CPbNixS66MXzXgfByTrX8rQGzoSfrVKpFPfJhRXOv7sUXGxjXKlrxtMu3C3C+DeJHpwNF3h8zTxVwcWptMilPw7JZxw4NVzA4XnWyd0KfHY5hy50eHoJa3iacT3fwxkZGRkZNwf5uzgjI+N2xk0TFK4HWNTn87lGo1GMJrbbbfV6vUgS+AW/0Wis5UVLim4E3AYUwYO4SVqrReDdBCA7/IGocE+i85A7Irbk/XNPIuYQYo9+QsAgTZBUj3zX6/VIxCA1nueddr5wyzrzIvd+NptFRwVFAbGxt9vttfXiWqRP4AyBCPMc64MrgkKMrAv3Zt6IB5Bej2JDYomAcy/G6Z0kuDbEmtoRrK0/j6BULpfXouPsAYTYRZ8UabSddeYcOmH1+TA+zpPXZ5C0tveQXRd83D2AMONOBc4FBBgBinm4g4BUESfRvu5pio+LCX6uIPEucLnDhXVwJw//dscA/3Y3ga+xr49/rnkv5xth0QUSF+9YV8bvYpTXKGENmJ/PmTm6wJeRkZGRkZGRkZGRcTlOhKDAL/sQJ+zo3W5Xly5d0u7ubiToPO9FEyXFx8iDh+x6FNmLtGGr9gr0pDOQfgHpwcaOqIBLgHtgt3eRwaPKHnH1lAOIDmNHcPD6Bl7wsV6vX1Y0zkmlpBhZJVecsbVarWjXL4pCW1tbajab2tvbi+vPvPv9vkIIlxVdZA2dlBLp9U4J5N7XarUogjCeNNLuxSw9597dINzDyft0OlW/318r/EfBSa8fsMl5ABknzcLt8k6S+eOFBZ2Y8pjXzmCsqQjlAhavY8/c1cH4cON4DQLOo9cEcGcN8/WUBe+SQEFRj9wz51RA8bV20u7Ch6cGSYrPc02vx8A1vW2rOxxSZ056f663KV3HP+O+jv79wh9PA0mdGF73IXUxZGRkZGRkZGRkZGRcjhMhKEAQ+TeCQLvd1pkzZzQYDNYi71jd3Q7uBfhGo1G0QXNNXkeUlZ+9LoO7ATxC7tFVJ5aQNc/R52fy7N05ALF06zhRZaLJkC7pkOh5JwS31pPWAflxAQThZTabqd/vqygKtdttrVb7BQLPnTsX2yMiKrAPkCgKYnJNxsA9IXMUUkRQIKoO8WZsiAqSossDRwP39nOQtv5jDPyb7gmNRiO6Qtgbd4d48UPey/qyPx6N5x6APavX67FNo5NrJ/msCeuA4BRCiKk8CA2cL69fIK0LKC7kONl1FwBn0aPvjN9TVkiLQAxIBQCPxqfpCIzTBQAXYlhbruVr6+kcLq6k3wFp3QQXFfx1qTvCRYdUXPN5cJZ9HpvWkbVhnzIyMjIyMjIyMjIyNuNECAoU3PPK/YPBQOVyWefPn48dAqbTaWyRB0EajUaRTHjRtcFgoE6nE8ntpsglhKNWq6nb7cbCiZBQajpgxfdcco/cUpWe+3BPt/QjGni3ABcw3Kotaa34oxNEyDcFD925MJlM1or/ISxMJhPt7e1FUjsYDOL6tNvtKNhssr4jePi8EVIkrb3GrfykVEiHNTIYy2KxULPZXLP1MycEhU3FBD1HHmIM6aO2A4QQUu9V/l34wUmxKR0hLRjo4k2tVotnzsl7avdnfJ46UC6XY30P0jRYPxebGCs1HJgD0XQn1C6wkJKSEmfOHOfa19IdIcAJvItqaTpDKgA4KXf3gzsg3OHg9UPSe/vnizViLRzM390t7K0LcsDrP6T38/VF+EnnmJGRkZGRkZGRkZFxiBMhKKxWKw2HQ0lSq9VaS13odru66667NBgMYoSz1+vp3LlzarfbkazW6/W12gCeckBxQi+2CIEgGu/V4l2c8Kr9ACIJCSRqzFyI5EOyU0Lo0VEEB+4FiaKbA8UB3Z5NHQMIJwTJCzJCFiGpdL8gDWFvb0/dbjcSKC9QSGQcEo0IwP1DCLGdJCQvJamS4hzSFAlaM7bb7bVIPe4I1tDdGh7N91QLHAHMwW313NNdChBSHA60FUXAcbu9pDVBgDQOnDJcmzlQDwEHDO/let6dAieLd4dg771Vo6c++FqmNTQg3R795xqe3uNiC2ebs8h83WngdSY2dTUBLjj5OeXxdE0Zn6fTsMdH1VJIRRf204Uw7nUtYkDqwHA3A5+tLChkZGRkZGRkZGRkHI0TIShIilFmL044mUwi+dra2opCwWQy0cWLF9Vut1Wr1TSZTDSbzdTtdtXpdNTr9SLhhUCSR+7pDkSSi6JYcxl43jTFCXEySIrkzIUGJx4QcidMnvrg1vNWq6VGo7FGQJvNZhRLhsOhhsNhJIe8BwINcYLUQvrSIn7T6XTNBdLr9fT4449re3tby+V+hwwIsqcmICr4unBtbP3cx6PQ3ukAQu42ddwLCDJE1n3tXbBxEuqpFJB73o/Q464QSZHseyqG58+nxQvdSs+cILwUEPUCitzXU1A8FcEFLFIfSO/hnHjBTc4UqSCMjwKWrEMaYXcxzN0A1IxwYu+kO60x4Q4RBA0cFZvOvKc4uHjEZ87X+ihsmktK6DlXtFv1caRpC9ciBriokNZpcEErIyMjIyMjIyMjI+NynJjfliH/TgJns5nG47Gazaa63W5sDTgejzUcDrW3txet98PhMLac7HQ6Gg6HseI/nQZqtVoswgdx9faJFC10Ug6xHI1GMVpMxJt7Q34kRdLFvTwNwaPZkCFPHxgMBpGUtlqtWAPB6wVQr4BCi060IZDuzvDaC/P5XP1+X9Ih2aTdJBF3Iv5uMW80Gmu1CXCPSFpLG2Ac3Fc6jGq7KwT7P9fAol4Uh5X1SRsh7cTJoaca4Mjw9o6IKJ6OAOH1tBLpMO0lrUuQIs3Z904B1JVwBwfE31MFeD3zZp38feyTw8WMTdH7TQUL01QGr2OQphW4qOAuCHdYIICw3j4W/nbhjHVyAcj3wp0MPk53ovj10zHzmUb48CKRrLlfw+/j++tj9Ln4ZykjIyMjIyMjIyMjYzNOhKDAL/itVkvSYZQUi36j0YiCgBPe8XgcyfhsNtNkMlGr1VKr1YrE1KPoED0nUhB27xLBtaT1yvVeGJDaBV4vgbE7wSKa7bZ8bzuJ8ODRaK+v4JFYj8Czbp6z7mTN15bcf8QIIuB0dCiVShqNRmsuAoSVEEIcQxpxd2KcpkV4tNq7TiAmUEMgzclP/05bIXpefeoySWsYsOcp2YRce/tNbzHJ65zEci2cIryX8bGnaSFFfz+EG4FlUw0CTztJkdYJ8LVwIp/WgUjJ+CbBJI3U85jXf/COGr7erDGpR96+0ceMCOP3ZKzektTPA3PdlMrgDgjftzQ9Ka27sGnuvi64TLx2SUZGRkZGRkZGRkbG5TgRgoJ0SA6kw1zz+XyuwWAQ0wKazaZWq5W63a6kfULc6XTWrOMhBLVarUieiSDjRCDvn/f1ej31+/1ok18ulxoMBtGRsKnQnRMUj057RHOxWKyJAdJhlXsECf5Qa8Bt96kdH3ItKRJmXBmeT74pgu5EmZQL3scapZFYFwbSAomeZsHrJpPJmkDA/J1sev0KL5TIOL1eArUlvNODiwMQVG+dSVpDOk5+TtMYpMut+u4GcKS1A9KougstnpLAmNP3eU0MH9cmm74TXp+fdNgm0a/tokx6zVSwSUUPrsMZ4GdSiNIuJX5t9obUjPSxKzkE/N6+V372UvcE1/d9dEGCOfia+3hTZ4ivNefL75GRkZGRkZGRkZGRsY4TIyhQFLBer8cCgvyyPx6PdebMGW1tbcVIuKQY8ecX/4sXL2o2m2lrays+hmWeYoT8jKjQbDYj6dnb24sV+CEVuASIrjupS+3ykmIBRCzZOCi8Gj2CAuOANEHCJEVbNxFvUgKcKPG8OwicoEL6eA1pBsPhUCEE1ev1SPJ5j3RI3DaJCk4G3T3AengdhbSCvxNsL7xIVH0+n8d1gZQT+WfOvu5up+eaXishrc/ga8v10uunwkpq0XcC7gUL/bqpAyCtL+H3SqPjm67h4pKLGLzPz587HHxPOWdXIsfuxPDXsu9e3yIVBng/gtlRKRebwJpXKhVVq9W1jiN+/vwz5uLPJqcG9/Q6C5w9H186n1SIudqaZWRkZGRkZGRkZNzJODGCAjULzpw5E4kLpAu3Ai4Fot1Exre3t1Wv1zUYDNTr9SQpWq+pS9DpdKIwADEkbaFSqWg4HGo6narT6cSUCQgJkVknFhBJ76bg6RQewa3X65EkQ3Qho27flw7bQiI+EPWv1WrxurzG89k3dShgfMzF3RaeroCg4tFsn2tKTnENIO5Q0NKj+7hGvKgdboz0ntzXI8YuHiASeCqJd9DY5BTw9APPsfd6BlzrakUDXQjy1IuU9PtYUqSuBE8dAKnN/ygXQVr8MK0P4PUAXFxwkp86EtJ6E+n7nVi78ODX4Lmj2lFeCb4fm1wMnjrh8PkxDh8367UpBSSt6+CCWZpekZGRkZGRkZGRkZFxOU6MoMAv9NRR6Pf7GgwGsTDhZDJRp9OJEWXPGS+VSrEQ42Aw0GAwiNeU9t0PpVJJzWZT0jqJLJVKqtfrGg6HkfA3m801NwPuAUQBiHlaLBA3AveErHjLSoSHZrMZCctsNrssRx2XBqSdOSNseA6/p0KktQBCCGsdGyBUvM9rCEi6LL0BIu2uB0D9iU3vo5Akjg9SStI0CNZ8E7H2mhXeEtE7aLCHXpTR8/E95SNNAfCIehrtTsm3iwF+ZjeRV55LbfQuFB3lTAApQfY94D4+ZhcB/D1cK0274J5pDY5UyEjXDFfFleCCg6ca+Jqk10/Plo8zPRdXur+PVdJle8pjaf0HFxWOqseQkZGRkZGRkZGRkbGOEyEouH2cNoXb29tr9QhwFtD2kF/0IZatViu+ByJer9dVq9WiIDEej7Wzs3OZOOBt/ObzudrtdkyF8JSEcrms6XS6Fi2leKL/m/71bsnHZUAxPgo6uoNguVyukX4cCqnVPC0U6SkEviZepwBhAseAW+5dLEiJl1v12QfpkNBCyFOLPGOnYwfXxKXAWnt9BHdrME+EByeSpIAwRre7r1arNVGBezCHlFz6/Z3U+r6lAgRj8PPrf9x2n5JS1tqdG6mYwv1TRwLP+5zdleAtL3mfz9PPowtLaZvKTYQ9dUvwmIsRPsf0eum6bIKv1SZnwJXEhNTV4nuWuhv8sfT+4CgxJiMjIyMjIyMjIyPjECdCUIDwEnlvtVra2tqKln6ILDb91E49m81Ur9fV6XRiegSuBBwICA3z+TzWNvB6Bu12e42Yp50i3BLuNRb4Q3FGhALGxRhwNHiUGscEY4bEpDni5JQzXtbMr8X7KFJIbQnEE7pM+PW9PabvBd0dfD0QALx7AgSPsbtjQFoXJKTDVAnSTNxpwDXBJjLtr/WaAKQ2FEWx5rjgNd5Gk2sfRYxZV3ew4BxJ1zrdhzTNgmunLgBPe9iETUKBj81FIP8c8Ldb911ocMLsxS43EeZNAsImp4S/Lq0tskkASEWGFEc5AjalavhY/drpXLluKnqkKR48frUxZmRkZGRkZGRkZGTs48ohwysghPCcEML/DCH8dgjhHSGEv3Lw+DeGED4SQnjbwZ/Putq1EBRGo1GM0m9tbanVaqnZbKrVaq3VUpAO2yFKWiuCSKFFSTGyD7FerVYxYt5qtdbaNXrUm6itR7xdWEBQwI0gHVr+IXC0r6RgIu0h0/oDEBvvbMH13V7OfelW4akCm8grZBtRhGv4n/R+vh+IOPzx9AR+RuDgPpB7z+t3wkr6hQsovoZuOYcEpwX5nAiyZx6ddht7GqkGLhCxLv5eT2/weXqaga+Z/+1pCC4eHBXh3/C5WrtWui6bXpOKW+mc08fc6XGUE+Bq65Y+no41Jf8+h033vBr4XLHfKa5E/F3I8XEeBd+z0yAo3Mjv4oyMjIyM60f+Hs7IyLiT8WwcCgtJX10Uxa+FELqS3hpC+NmD5/5JURTfdj0Xm81mGo1GMS0BQj4ej2M+Pu4CiI0LANPpVK1WS51OR4PBINYwSGseLBYLDYdD3XPPPbFNJIIEhB8iQV6+E1OuidU/7cwAGYbYQzy9gv1oNIppGYwJocPfD1F0Mpl2K3Dy5/UO+HsT+WMevIc1arVaaykC3iWCn500MzbWKHVK8McJOaIOa4JbhHXyqL1H2v1vRIu0VoK0ThRxC7CePO/kknuyn+w/c0NAYTy0IE3v5+NGlHBSnbodXLw4yg3AOqf1NVLXwVHCREr008euhDQ9wPcmJePukHCnx7Vc+1rg1/f9S7HJeeJ/p06OTXPx96aFWE8wbuh3cUZGRkbGdSN/D2dkZNyxeMaCQlEUj0l67ODf/RDCb0t64Jlebz6fazAYaG9vT+fPn1ej0VC325UkjUajaONvNBoKIURiXa/XI0nFTt/tdmM0/2B8khTJP6kP9Xo91k6AoBxV8R+CSJcCnqd+gkdv064EPO7CBi6FSqUSCTJuglarFR0KnvdO6kI6XklxTdyh4GPYRMLStAkv7ujv8fvzOAJAKqgwFn89RSchwrgUKpWKGo3GWloG75cOO16kKQsp2fauF0cJMi4qbLK1uysFeJ0Iikq6+8OFEh+3r4eT7HSN0n2hS4i7Znz+kHqItbfD3FQnYJN4kIpBKbh3Knik4sSmWgfultiUGuFpHqmD4UpIx8q6eDFPn7c7dq523U3wdT4NosKN/i7OyMjIyLg+5O/hjIyMOxnPOOXBEUJ4SNInSvrlg4f+Ugjh/4QQvjuEcOZarlEU+20G9/b2YncFiKK0T+4o8geR5W8n+eVyWY1GQ+12W91uN5I/SBkkbDweq1KprHWO8Mg1YoTnypdK+y0k6eaAeNBsNlWr1dYK7kHI0vuD6XSq8XgcxRIi4RSPpOaBE3cneayZR49Zr7R9YtqRwl0P7jhIC9U5GYZckbpRFIc1FVLi5iS+Wq2q0WjEMfg4vcClR+697gRru4mApoUGEVW8vWFqc08dH1wnXUt3HoSDFArGy1jTVJPUDcI9U6HC7+nnn/PpgpQ7Y9ztkLoaXHhwZ8mV7Pt+jfQ+LgykZ83Xxefp672JrPs1UvdA+u8rIRXLNjkmNo2Pv9mTowSF04wb8V2ckZGRkfHMkb+HMzIy7jQ8a0EhhNCR9EOS/mpRFD1J3yXp+ZJepn219tuPeN/rQwi/GkL4VUmxaGKv11Ov11tzF0AQEQIgXpIiAfPOBwfXV7Va1c7Ojmq1mgaDgYbDYXQ6DAYDrVar6ITwjgIUg6SoItZ8iEytVosdHxaLhdrttlqtlkIIsTZAu92O0XtEBQgpJJj0h+l0GonOYDBQv9+PogJjJd0Dl4N0mK7A+rAWadTYi0I6WU9dFO4QSMlmGglGmJlMJrGmQ0pc2QMfE2kDrI2TeI9eey0FxspzTqJ9PSGJnucPyU0FFRc9vFhmWhvhWlIENhFz4IUc/bFN12Ad2Cf2ZBP5Pgopsfc1SMl7KpxwRnyMKTFPxZn0fi5ipOPyeabnKf13ul7pPmwSE1xw4UykzhD2+2r3TQWb04Ab8V081/RWDTcjIyPjtkP+Hs7IyLgT8ay6PIQQqtr/4vzeoij+iyQVRfGEPf8vJf3XTe8tiuINkt5w8LqCiPVgMNBgMNDZs2fXyA1kGZLd6XQiganX6/F18/lcs9lM4/E4uhcgr+PxWMPhUK1WKxaBLJVK6nQ62tvb02g0WrOcY3P3QnCz2UzVajXeE6t8s9mMJBtXQLVajcUXydEnIp8WMJQOiyYOh8MYCUcwoA2mW/cP1lHz+TyO02tA2D7EsfnjiCg+XyfjHpHmXjhAQghxDRFYeI3DybHXf/C9TesPbLK4U+9iE2H3dAXW1kWKo/L5nRRvinKn8/HXuBvkSq9zeHqLz9tJP3Px621ao00FOfmb/fR/HwWvy+D/9nuxfyCdqztmNv3t47pWuGMiXaOjRB7fs6OEMObhbT/T9/r9rtU1cdy4Ud/FW+Hs6ZhwRkZGxglD/h7OyMi4U/GMBYWw/xv4v5b020VRfIc9fl+xn0smSZ8n6e1XuxbEb7FYxDoKFCwkQk3xPjoEQDRGo5FardZlBIE8/Xa7vT/RAwIIKS4OUiw8bQHHgZNdiButDp2AEqFfLpdqtVoqlUra3d2NEfF6va7RaBSFjtSiP5vNIpHxOSFC1Gq1NcfEJnIMuZzP52v1FKT1XHNHaoeXDqP9uDI2RXfTjgfsR0p4PSrvjgicDJD/oyLF3BvyiIiB6JGSvtSl4PUEUoLN+9II91FR6qMIZRqhh+yyt37dtP5DKgq5KOAtNBEgNo0jdXTwPPuzSUjweaefhSs5AK4UwU/Fg6sJGFd7ftP9pfWUjysJE9ciXLhYmAoP/hrap5503Mjv4oyMjIyM60f+Hs7IyLiT8WwcCr9b0p+W9JshhLcdPPYNkl4XQniZpELS+yV9xdUu5NXzx+OxnnrqKd11113a2tqK3QekffFgOBxGwkp3Bs/Xd1cC3R48Qu9Wd9IfSFOgCwOv5z3T6XSt7SOpAZKiI6LdbqtUKqnX68XUBlwKuC8QBUqlkur1+lobTMg9bgZaMxI1Zly0uvS1YxwIHpBsyCmdEBwpOXfrur8mJVwICNyrXq9fllvv1w8hqNForBU4dPHB37eJvPmasZabiksyB3/dJju846iINpH/VAxgXRFCEHh8/i6CeHQfIcWFLV93v76vY+o2SPcwFX0Yc+q+4LH0mpKiEya9T9rJ4loI/aa13fTzteAosi9tThu51uuxX76XR43tlDgUbth3cUZGRkbGM0L+Hs7IyLhj8Wy6PPyipE3M4ieu91qkDLjl/6mnnlor4lev16O1nj/SfjS/KIpYXJEUiGazqeFwuFad38kr0d9+vx/rKeAqgEhR7FHaJ7Z0hfAK9ogSCAjlclnD4TCOwQk/pJ9aCIgoEM9NQoJ0SMZwbTAf5lIqldZaG0IMPf3C9m0t390FlrTrw6ZoOw4Adze4oyN1AjjB5lq4KdLnGKffl3mkDhR/nXRIfn3NIIsp8U4J8dXcCUe5GHzf+NkFHZ7nvGyqLZA6A1x0YV2uxebv70/nvGlu0qGTxFuqborUX+l+qRCzaX1czLhWgu6uiesRMvweLqYAP884a/wMpaLKaXAo3Mjv4oyMjIyM60f+Hs7IyLiT8axqKNwohBDUarViB4fFYqHRaKRer6dGo7HWuaHdbkdHAYR1OBxGAklHgGq1qlarpdlsFov6efFASdER0e/3I8lFUPAWhBDd1WoV3Q+4C4qD1InBYKBOpxOLNe7t7a1Z2J1kSorFHZkzxBQy5MUmIZQIDhA1Hxe1JdLUAyLkm1wBPhZe6xZ37utV9b2ugwsKELe0/oKTW1wNaccCruspHR5dp+MFY3fC56LBUSLAJlHBXQnpmvhc0rFsIrrAxZz0fEuH6QicWye36XtSQWeTWLNJZLkWpC6EK50NSWuCQHodn2MqjEiKn71NDhlff3/P1USHKz2/6Sxsui9zclFN0lqdD85+RkZGRkZGRkZGRsZmnAhBQVIk71j+h8OhGo3GmuNga2tLs9lMTz/9dIzWp6kCtJyUFAsl4hSAbMxmM02n01hU0GsWIBhgU3cizWPUU8ABUBRFHC/kqd/vR/LiBRg9fx63gqcmsA7UjEBI4DWMCacEhJDxuWgBcWVu2O1dKOBvHBtO1D2ye5T7gH+n0fQ0VQBhJrXiMx9cF8yB2hYuUKSRcH5m/On8naymxHUTmfXHXdxAUEnFhKNs94yJc4i4kjoUruQiYM3d4XAlIu1jv5KLIP3ZnSx+LebN32nhxfS1R43pKHfClfbG55M+fy1gbpvcIC6g+D76va7VRZGRkZGRkZGRkZFxp+NECAppVBSHAiQTQt9oNHTu3Dn1+/2YziBdXn8AItFsNtVut9eKO47HY5XL5Sgm0J6Smgoe/edapBnQtpLrkRLB4zgEKpWKJpOJ+v1+jLBzD+bL2CH6uA/4N6+HWPFef53XRnDiuYnAuZtgk63b58v9PJWB5yC2HtVNUyI2FdDzfUwJogssODwoUokgs4l8uxMCsSRtfcnrNhHY1FnhBSc3kdij0gt4zt0NvkYugnh9g02Oik0/pw6JTa9zuIXfi196TYQ0DeMo0u6igotRKY6aB9dOHQNXW99rucfVcJQwkApl0nrtj4yMjIyMjIyMjIyMa8OJERSILLsw4ILBfD5XvV5Xt9uNbR7n83kk9bgHvDhhq9VSo9GI96C1Yq1Wi50RJKnRaMT3IlSkdnIqwkN0qecAAZnNZjEdgce5PvPwegeM050T/OxEHSHE2wkiSHiBP0QBTzNwZ4QLE2nOOPfyyG4IIQo6kE7m7q6ATcQ4dT74fJgLj7lQwv3cfg4RdjHCRQP2NiXwPL6JpLoLgSKbvmZHWd03Ra83EVDOsc+Zc5y6K/x16XVTAp+KCp42wbyPirBzdlKnQbp/qXtjU+rAUffYRPSvpXhimlpyLdjkOOHf6WuOOgN+z6PEiut1R2RkZGRkZGRkZGTcSTgxggKEGjKWRt6pL1Cr1dTtdhVC0GQykaQoEAAni41GQyEEzWaz6DSAXEFQm82mpH0Cu7u7q8ViEdMXnFgiXoQQYq0Gj/LOZrNYuHE8HseofkreIPredcJJLiQe0YB1oLtCGv0FKXEviv30jjQVgLVhLBTmq9VqWq1WsX6Er1VasJFr4EjwubCfXljQxREfA6kakmJKCPUj0ugx13eBJC24R9qMn61NZN2FnLR2RGp/v5bo+iaQtsG1qT1xJRx17U3iSGrh53l3Qfh1XRxKn/M5pq4Gd1z4ezaJIemeHIXrdRsc9d7UsXG1920SFDals4Cr7VdGRkZGRkZGRkbGnYwTIyhQEBGngHcSQExAEGi1WmsWd9IGIMGQfe+I4CTUUwMgT9VqNYoICAHUVHDnABF1xAoIOA6FZrMZC0zS4hIBAvKeFjWEuHtqBC4Er01QqVRiQUpPLXAiyN/eOWE0GsU1nM/ncY1qtZqGw+GaewMHBaIEa8eY3XmAILBJ1NhUWd9TDVhPLzrIfVyESYk8++oV+f25lCBusuCn5yDdW16f1jvg/SlZ96i+j5cxeOFISWvijs9t0/XS8bsDI01BSce8yWmwKVrvj/vfjJu0oE1OBccmon8tSIWBTWO9lvemOMpNkp5XF808RWPTNTIyMjIyMjIyMjIyDnEiBAVpn2S1Wq01or9cLjUajVSr1SKRonZBq9VSr9dbq5sAOUQYcPs+KQ4ekYZIEqEnMr5cLlWtVtVsNtdaR3rxQHdU0OqRaCbRfrfSMwaKSTqBmU6nCiFoOp3G90OuiegvFgvNZrM1xwRj97oHKQHygoUpWeLfiAyIBB69Jz3D4TUpIJ2b7OXu3nBRgbVnfNJ6xN3TNHgN6+X1DXx/U1LsRSU3kU4XqqrVanxdukbuUvHOAJwF/p22iXQ3h4tdft6Bu1SYl9c7cKRuAHC1VAwXaVyQ8euk4oOvZdqW08eQiih+HlKBIx2fn4VUINt0/XSOac2OqyEVE9LPg4uNWUzIyMjIyMjIyMjIuDJOhKDg1m3aQkqK7Rsnk0ksdAjhbbVaarVasUPDdDqNnQpwFeAa4PoQdvL1pXUS2Ww2Va/XNZvNoqDgueluwXcSxnM4K0LYrz/gtn2vb5ASFgQRL9TI/BFMSF9wgusRdggitR02EUDIobsXcE54zQpEFU918C4SvKbZbCqE/dQTj/S7cOAkNXUBpI+7OyF1Ergtf5NzwGtK8LgXwfQ1SAkz6RrpH/aSP971Q1rvwsD64TYB7CupD+xVugYudFEI1MflOEpI2OQY8PSP1CWSkvf0fek5P8o1cCXyfZTLIBVGmPem62zaM/4+Kr1ik1Mm/cy62+OoeWVkZGRkZGRkZGRkHI0TIShIh+SYFpGQKie7Fy9e1D333LNWH0GSxuOxer2eptOput1uzF1HaBiPx9FFQK0Db6XoZBRyOJlMolMBIp3a+z1iLSkKCqQTEN2HmOIUIFWCe5OS4NdLI6l+T4iQF62UpOl0quVyqXa7rVqtFufpzgwvguipEd7hwgk1LgxJa/UAvC6C59ynDgTeyxoyDsYA8XeHgnQY6UYASVMWUvBeBAd3kuCSABDUTaQ5nR+PuyPB0y1Yz5T0ektTBDLcJtzjKPLMernzxJ0cfj8XbK6GTdH/9N8uyFB35GrX35Q64ddNxYB07pxpPoMugmwam9/3KNKfCg2eFgI2uUCyKyEjIyMjIyMjIyPj2nEiBAUnum47dhv5arXSeDzW3t5etNu75R6hoN/vazQaqdPpKISg0WgUiYNXuCfNADh589x0nAzeQtJJVgj79RGc8M7n87V2lKRD1Ov1NVcAIsNsNrtsPNyPtAmPimOh57r+HPdmbcbj8Vr0mzX2tYawz2azOHcXTyDCKYFm7xAa+NlTDXytPEWBP143woUM7pumRKT/djHCzwxzYDxpyoSPN71easFPI9qeTuFzdYeGP8Z++uN+DV9P/5m1SPfjqCKJV3IJpGkJ/nd6//S1qZixabxXS7lIx5B+9iRF8crPkK9/OsYrzTnFprPvn1l/nQsYWWDIyMjIyMjIyMjIOBonQlCAlEtacyZAnCCti8VC/X5fOzs70V3A+3EsIABMp1OtVqvYCSIlyGlrSEhFs9mMXQ5CCJEseyoDDgS/XkrSqHkAQaXloqcr1Go1jcfjtQg479/UEpLHieZ6CgYR+sViEVtf1uv1SKQRYZyUkWaCIOIkzgmzuw2c5LuYsWk8DncQMCdcC8zHhQlPJ0hdCZDBo/LdESm8DaXPyefA9binE+i0RoWTeCfZLir4GfCxFsV+PQrvjLGJxHuaR1qcMo32O46K4qcEmZ83pY1sEgk21TXwax2FTWR/0zj8LBRFEYWwVHzalMJwpfSITfd1bEqVcFdM+nnIyMjIyMjIyMjIyLgcJ0pQINUghBDJMCSW9IZ+vx8t/RBh0gy2trbU7XbVaDTi46Q6kPPvDgFIOnnu3IvikJKigOCvodMEQMTwAouQNojJfD7XdDqNosF8Po8knDE6GdoUxeYekG3G5YSf9A7qGjAnr50gKaaReOqCE1ie85oNED6vu0BaiIscrL2T9hROVqX1ThBphPpK8BoXrAHrxBi4pteA8E4TKbHFFeLjSs9rmrbhDgXmv4mgOzlPU1lcbPG5bVq7TaTcRQhEExcijlrTVKjYNN/0/n5fH0f6nqP2b5Nj4iikgsbVxIxnCp/LlcSbjIyMjIyMjIyMjIx9nAhBQdoneJPJJBLtRqMRSUOtVlO9Xo+v7fV6kVB75fxyuaxut6vt7e1o4aezgqccNBqNtdaMpBxAICD9uBq8VoMLC7S5xF0wm83WiBuFIBEMnNh7fQXaTuJ6gBBCbDynPCWkTqSZ32QyiWuZEvW0HoGvHdf2FBEn/VyHdXHyTScOHk+LD3rhxU3kNSXSTuhSIuwCSkr4IPUIHptIeeoOIH3GW2MehU3j5r6eiuLr6M6QTZH3dJ6p0JE6FVI3TLqXLgS5+JBG3q82t7Ro4aZzl66BjzFNHbhSmgTX3yTEbHKopGNybHreH7tSIUdft01CSUZGRkZGRkZGRkbGIU6EoOBEdjweq1qtqtFoRAcBbSLL5XLs+gAZa7fbmkwmax0dcBUsl0tdvHhxrahio9FQvV6PIsFoNJJ0ObmWDgkSnRNIoaDQYbPZXLPpQ6a9WKKLFbPZbE0YSQmhd2zACcHapNX6N5E6hA1vNelklWt4qocTLi+Kl7YV9HuljpLJZBIJNYTNC0wikOBg8BabKaH29IGU/DrhZg6py8HrDXCmfB6pOMFjqTvCCeWVkK5RWqNh0+t9Hj63VBTw6/oZ21RXIn3tpjFsWgcXNfyamwQDh19/0176HNIii1fCphQWxrBpTTc5IXwvGN+mOaVnOq2BcdTcMzIyMjIyMjIyMjL28awEhRDC+yX1JS0lLYqi+KQQwllJ/0nSQ5LeL+kLiqK4dJXrRBKBOFCtVtXpdCI5bjabarfb2t3d1d7eXkxjqNVqarfbkQiPx2MtFgttbW1psVio2+1qPB5rMBhIkra2tiJZhzymOfVEtqVD4oHIAfFDpKA9JK9h/JAoFxh4T0pYIeLUdXBbPvfy/H8fL8TaxRSIOyILBH4TIU+jzpVKJaabeMpASrhSEYVreGcDd0OQYkKnBMQTFwackHphzvScpBFoJ4Be/4BrbYpu+zo4yU9JJrgSwb2SNT4ds+/9ppoV6Wuc6HvhUNb9Sqkh6fhT8SNNI7jSWm0i7ul6sG+pKOEpLH6NK4kum56/VpHhKFxp7D4H7o3b5DTgRn0XZ2RkZGQ8M+Tv4YyMjDsVRye5Xzt+b1EULyuK4pMOfv56ST9XFMULJf3cwc9XhBMQyOhoNNJoNIqdBxAPJK21WqzVaup0OjFFAqt/CEHNZlNnz57V2bNnY70BbxWHSIAbAjItHZI6UhMkRbKOAFAU+2kR1WpV9Xp9rQOEt4tMC/g5SfFiiU5olstlFAS8a4S7N1JRAEIHcff7evtNJ8+Qeyf43kGD6/m/ua6LG05uWT9SQyCUtKbkeozTu0i4s8AFGBc0/M+mloppfYTUru9RaO8EsSmS7edzE/HkWqm7AqTih8/FHRwp3OWRzsX32Dsj+GvT+6dz8HXh3KQpNKnLYVME37Fp3dJ9u1ZcyeVxJadC+nMqklxJrPDPAmN3N88pwLP+Ls7IyMjIeFbI38MZGRl3HG5GysPnSPq0g3//W0lvlPR1V3rDcrnUaDSKBJ0ChkRhKZLobQ2lwzaG7XZ7rVYCNvxKpaJ2u60zZ85oOp1qOp3GVIfZbBYJKWkQXliQ7guz2UyTySSKBYgadJlA6MBNAGkm1SHNyWf80+k0kkFIrReGTNMceC9jrNVqa04IJ4BHkVVIPmN00or44USfn9PWj9xPWq93ACCOXhQScYSUBOaYFjf0OgwpUqLM+BAgeA0R/LRgInPgdZ5WwHj5+ahotqdEbCqYucl6v+ka7ubweafChadv+PvTffF7XmkOvn+pEMV4XQhL3RtpW9UrzTMVUI5KO0jdD+l+pfNIx57O+UqOkU11JI5yQhx1jVOE6/4uzsjIyMi4ocjfwxkZGbc9nq2gUEj6mRBCIelfFEXxBkn3FEXxmCQVRfFYCOHuq12EaLyTaUmx5aO3YPQOB5COer2uZrMZiwT2ej21Wq0YwW21Wmq32yqVStFJ4IUSi+KwKj5pDZBf3BK1Wi0KD9K+UwBi3Gq11oozQlrouCAdElFcAmnBwkajEa9B2gPCBCSctfIocVoXwYUBJ7/8QbSAcPN6j6AjnDjZo6AijoGUjKdiA6kNqd2fjhybSCjXxsHgxRNT4pmSz5RAe+tRfuY1vJ7H3BWRthL1+7qAAdJxbaqP4A4cd09smkdagJEzxd6lRNrbi/r9NoF5pmvvYpQLMOwh7hh3GqR1MFxE4pqpG8Pvt2k8Lg74frl7ZBM2uUoclUplzZmUCjep2OTzOEW4Id/FGRkZGRnPGPl7OCMj447EsxUUfndRFB89+IL82RDCO6/1jSGE10t6ffo4RNLb3k0mE41Go0g0vW7BwbVUr9fj60ajkYbDYXQRkBYBAcOiD0EjIs+1Pa1B2hc2er1evK8XLcSdQJtGJ6wIEk4gSdfAoQCBRSAplUpqNpuSpOFwGNMunNCT6uFz8bQGFz3q9XpMv/CUj5RYb4o6e52GNIrsxJGx+LV53yYXAMTdI+CbyDFujLSOgnRYCJDrICB4KkQIQdPpNIokEGQnl5D4NA0iFR9Amp4hKYpT7IE7RXitk2s/26kAkToIGIPfj/twTtNaCi6u+L/TuWxyfPBvd5G488ZFmKPe64UV/SykSIUWPh/e4hTHRLq21+IeYO1YPy/Ousn14fVRUsHnFOCGfBc31LrKqzMyMjIyjkD+Hs7IyLgj8awEhaIoPnrw95MhhB+W9ApJT4QQ7jtQYu+T9OQR732DpDdIUgihgCTziz5CwGKx0HQ6Vb/fj20RSTtweEQeQYGiiRBMXAYQFidJTpRoRwkxoqvDfD6PxL9ararZbKrRaETShRtBOiRr1HOA8C0WCw0Gg9jGEscC7/FoL2PyHH9Jmk6na+OAjOPQmE6n+5tr7RC5nhdBxElQr9djS0wnwk4KnTAm+7i2J5A2j3o70p/TWgsQSH895I418joVEPRNUWp/LYIC++57xThZ72q1GufBdXx8rGnqCvHuHOmepeB6rHU6R9aWcXHNNO2H+3nxTt+zq5HilFy7EMHf3N+v68TeHSKp+8LrczixT++Vnq/iIN3D38d5SdeRv1Mxxe/B+vkaOdI0FnfHnAbcqO/irXD21CgoGRkZGScJ+Xs4IyPjTsUzLsoYQmiHELr8W9IflPR2ST8m6YsPXvbFkn70Gq8XyTyEivoE8/lc/X5f4/FYy+VSOzs76na7kcS6RZ4/jUYjPo9wIK1HzxuNRiQaRJ6JZkNmSKdwssHY2u32WucH3u+1CSSt5fL734gJ/ocuEZBhyDqOCUQDrlOv11Wv19eu6c/jqqCYI9fiD+JJrVaL6SBp4UmP4G8SGxBrEDd8PTzy7OLNpvmnggb38ci615CAYCPauDCUkkonxghTjAFHjBeZPEpA8X1JiXWawsDrnTCzni4esCfp58EdHpw5r5vgLhvfH38Pr3UhYJPQ4W4IzpnX5wD+eHovF8R8/fxMuMhzFFgjv3+6Fpve43+ncNdIuk8+7nS/TgNu9HdxRkZGRsb1IX8PZ2Rk3Ml4Ng6FeyT98MEv3hVJ/7Eoip8KIfyKpB8IIXy5pA9K+uPXcrHFYhEJPoQTgjebzTQajTSZTKIjAAFBOiTxnuNfrVbVarU0nU4jwV4ul7EwI6SQAoxO6LwOgRMLHAH1ej22q+x0OvEekFuED+kwAux/c18IE7Z8yBbkG4cGtR6c6HnKRKlUWutGgR3ei/dxjUqlEl/LPYuiiGICdm/m610hvDAlpDjt1ODdJNgbjwp7bYRUpPF19tdzPtIIPrUw5vP5GsGX1oUjf8zJKWvAulCwk/d5ccI00u7ElP1kzDgnNtVbAGl6iQshbs339zr55d5ed4N93pT24NdhPozjqBoCnAV3hKT75OC+6eObaiikY/C9Y92d+Pvep6IBgsUm+LU3uVhcFErrjfj7Tjhu6HdxRkZGRsZ1I38PZ2Rk3LF4xoJCURTvlfQ7Nzx+QdKnX+/1dnd31Ww2IzEkhcCj28PhUN1uNxIwtyl7BLpWq6lWq6nZbMbrkOeOKAGBDCFEopTWESBlwuEtG+kMsVqtNBwOtVqtYh0HUggO1iQKBESjB4OBhsNhJN6z2UxFUUTBAjIHeU8L4jEf5pCmNXgNiBAOa0d4moTPl/UDaSpBSmjpMkHhTAQFRJDUWn4lUncl+H29iCR74MTTiewmss6epiKHp1x4lNrdJj4XBCn2LHU7OBFOaxxwnjYRVvYtXa/U0eCCy6a0AX72+/Dv1FXg7/fr+blAcOGz5CSda7nodNQ++r9dxEgJO2vpNTWOSnVI4ekXaS0HFzH8Xj4XFypPC270d3FGRkZGxvUhfw9nZGTcybgZbSOfMSAJHvEl4koUHNJGvQV/L2kMpCF4bjvugeVyGR0JnvIAgaSivUdRnRB2Oh01m82YloAzYTabRQeE38tTBCDzkOPpdBojzDgHPAUAUYA5485weBvMlPxD7jyCy+NOHD2lgXH6+z1NAdcAa+0RbshqpVKJbTpxPzBGvx/jScm8j9XdCO4A8AKdjCkluC6UQCxJf0ndDpLW0gDYK/bEa2D4+cNJgFCwSVRwkurE34mvi0a+3syFtA5fZxcbfH/82v53KgLw+UiROhXcJXCUSOSk3e/H61ifdG024UrOgPTxtCvHpjlsmps7HXxt/czgFsnIyMjIyMjIyMjI2IwTIyjwy7s7DbBwS4f1FJxAeGtACD1kzIvqQcg8ohxCULPZXOsWgfBAvQGcCxS9k/bFDlpQQm7H47F6vV6cQxrBdbLuxNcr6QPmMh6PI2FnzIgHk8kkEh/Gj2hARNkjtN6ZgIr5acFHnvfHPULtBQi96CLXRgBhTl7TgnXz3H0nuqlDwAllGpHHnQEBbzab8bVpdX7W21MW0pQOJ+0Ozp87ZZzEs/as56axAyfXLt5s6oLBPXA2MF9/jrG6EObpGelrneC7W2NTJN7TFniPuzlcJHAxgnul7RmBz5nXpYKHr9cm94V/btI6IYhwLm6k80rdTL4+6X4x5tPmVsjIyMjIyMjIyMi4lThRgoITRdIJILDeoQF3gJNQiB+Pz2aztbx7JzyTySRG0Vut/fY8EKfJZBKJqtcwkBTTFTqdjhqNRkyh8LoJHtUnzUA6JCf+GsZG0cRKpaLhcKjxeByfh1zVajW1Wi3VajX1er21VAO3sXsdBtpNMm5SBhiDd4CAaHlKhKQ1BwVr6MXy3O7ve8lYGI8LBGC1WkVSjQvFiR6ApHohRh6jKKUTb482uwCVugb8Pv5vF0Y4l+yTCxPUj0jJ6Cb3hZNe5uwpDqyHn2vmjrDg9/LUIN8/5kaqDPU5UkKOkOMCAp839s7h4pLvsc/dybyLVdzL03Gc3Pt10p85M+xXKryk13MHhe8Ba8R7/fPi4qO/PhU6MjIyMjIyMjIyMjLWcWIEBUlrnQD4GxKJO4F0gclkohBCJMu4CyDJpBN49wZJ8Xm6KXgdBjoozOfzKGgMh0NJ+0SDwoWQ+8FgoNFoFAkJBN6LG3phyel0ula/gMhvpVJRs9mMhHM6nUZhw2sWdLvd6Fpw5wbE1glcuVyOKQe8JoTDehEeqXZRoVKpqF6vx3swVhcDuAZrxDp63jv3SB0ZKWH0KD1r5eTSRRA6SbBfXJNUEOpWeNqDE/NUMGCt04g/6wdZpaaFt2d0oYXrb3KlbOp84Q4Gnz9Rd17DOrnwwnMuPHg6RirmsH5O9n3tOC90RCHFw10B7uBhD1nPTW4cT1NxQp7WAnHxIXUquEvBrw04z96VA/Fo07g2pWn4c6m45O/NyMjIyMjIyMjIyNiMEyUopPnaKaFAVNgUAZcO89cnk0m0oyNIQGaI3DrB496kRUAicCEQHXaho16vxxQKCB8/O4GhxaELBW4NdyLeaDQ0Go3U6/W0WCziWCDSjUZD7XY72vtJDWk2m2utIyHCHt0mT9zdEC5MbCJOEDXG6SQV8QGyTO0Jjw5ThNLXn2txfcQQ6VCA4FppPQTWk/s4iUzt/p6ykUasEXCoc8F4XPxwYQGxhvG5GOTnMXVA8D7GhNthk1vA3RQuAPg6+Pof5b7wP4w3Tavw6x5F2N2xkqZoIEyldTt4rXck2UTSU9HA5+Dr748hAvG54XPmtSt83VJBZpNIkP69SXTIyMjIyMjIyMjIyDgaJ0pQ8F/2IfykLkDqndylkV/eB9nxiLvbuT0dwYkH5HsymWg8HscaC61WK75+PB5rMBisRTbTwnzSIcFxeFqHk0K3fyMcEAFP89BrtZq2t7clHUaMm82mzpw5o729PY1GI0mKAgVugul0Ggkmro7pdBrXg7V0IcMj4BDFZrO5lm5BZNvt5hBtd5h4sUsECUSalDCnTgvG53Z3J8Cbos1uiec1Tk5xQuDG4Po+B3+Pj4H0hVTwcrcCzgmItYsb2P9TO727DRgzj7vYUSodtrx0kcPrVng6QSoU+M8unnitDK7vY8Bt4dF8j/anzg7Ol8/FRQXfZ7+Gd8ZwgYbruwDEeH3vU+dDel/OLvuV1qjIgkJGRkZGRkZGRkbGteHECApFUWg0Gq2RGgguNmxIMpX6Iaqe3gDBTwvJub3bhQmPLkM2aP3Y6XTWouzlclnj8VgXLlxYI5S1Wm2NmHo+NvAcddIzIIEh7LfEpDuECx5pV4JyuaxutxtTLhjf1taWzpw5E633TthTl0IqpEiKtn5cFMwZ0gcRhVQS3Ye000bS7fSQNie6rE9aiNGfd1KNHZ/X4KjwVoa+xmlqAY8TNWcOjMnrXED2eb8XoHTinTpkuC9zJR0HJ4gXDE2LLPp1XIRKRQyvleFdUJwop8U3uY7XaeAxHk/dG5wXF1V8P9k/1hHhwcHnyz/DKVwQ4nPowhVn3/fTP0OeguMumk3Chf/xs+FCWlEUcZ1Sx0JGRkZGRkZGRkZGxmacGEFB0pqdOc23TiPCHtmeTqdrtQEkRVcDDgeP8rpgQY0BcvPn87mm06n29vbUbDa1s7OjTqejdrsd79Xv9yOhmc1msaaCpEgeIaA4Jry7gBefhIxOJpO1ApDSIRFmPtI+ke52u5IUSXypVFKj0VCr1VKr1YpzXq1WajabWq1WGg6Haw4MKuVLh6Qdwkv9BhwOaZTaAenjeebVaDRUKpViy0hPraAWhUeL2SuPsHuaAc4GLwjpe8laegoC54F9YPxei4F5h3BYyJMzmEbeU+HAXRwIBpxVv3/q8nC3gY89Te1wosu8OHe0GSWth/Ps80+FFT9Xm2o3eBpBKkp4B5Y03SQ9s+w/z1NnxF/DnrhYk3aqcEcHApILYf49kYp3aVqNC33usHBnjX9H+LnPyEjxwW98zXEPIeMW4GP+wa+qmM+OexgZGRkZGRknGidKUHDLtP/ML/3UFoAQVqtVDYfDNRLm0VicAF5EsNForEVPvQc95CMVI0IIa60iZ7OZhsPhWvHFZrO5VlHf2yRS6NGJlFf4h/zzejoIOHgvbSsbjYZqtZouXboUBQrcCpAht9r79SheyZogiECmxuNxdIMgdHi6iEepvWuEk/BarbYWFfYIt6eX+NzYD/aSCD9uE/Znk8Ueos++u/DgNvk05cEJaSo6+eMuuKTX9oKMzCetgQBR94KOaZSef7uYkopK3MuLjXoKgRPt1OnB6319eQ4XkAs4vI79ms1msU2nOwlcDPE1aDabcQ3H4/FaOg3vZz5+Lx5HnHFnjYsK/vm6UlFML+TJ+UOokA7dSYhNXiMjI0OSnvjLr9HogUOBaVlbSbkByG2P9/y9lyuspOd9w5uOeygZGRkZGRknFidGUIAMOHGHZEJmqY0g7UfnadlIHQEnC04YIdhOnHE8QES8awJEnBQArgfBnk6nmk6na1FRHALL5TK2fWReKTFx+3xa/wGLuEfnESO8LkGr1VKpVNJ0OlWv11trYwiBRgyBDJMa4tF6L+wIkWPc1AqoVqtReKA2AOvvawXB5rpeKI/xs/7z+VzD4XCtWwICBYSZMdGRI7X+p4RfUhyTdLnLQDp0DCCALJdLNRqNOGdJlxF+WpbiCEFoQvjydWPN0+i2k2a6UnhkHcHFaz6kDg0edxeICxc+ZxdQ/Ky5WOEiCgSac5SKMHz+GA/rSMqLR/p9zhQLpSUqn2FcKtJhhwzWY1OhS3cc+L56zQT/fLlzhettKnrpe+B/uzDhtSAy7iz0XvcqPfVyqShlAeFOxKpeSIX0nm97lWp7JT3n779Jys6ljIyMjIyMNZwYQUHa/0UeYcAJPmkJ0mFOttvjsdHzHORjOp3GyCoEqNVqqV6vq9/vx2gzRBZAWtPUCMjgeDyOaRZeqwDnhHcpIJrvEU8neX5PSTGC6xFkCL8X+QshqNFoaGtrS7PZTLu7u/HxarWqdrsdo/YUYeTe/jhz5DmECtYFUr+pqKG3+WSdUvu5F2B0YYKo83g8XovE40BpNpvqdDrxLMxms7gOafRdUlwbH7vXQGD8TpzL5f1uHe12W7VaTePxWL1eb60oJaQYQaFWq2k0Gq0VpvS/S6VSdHXM5/NYZNPHQhqIE2EECl+bTekWuBi84CWuBxdS3CngqRisW1rw0fcwLYjItbxmBq/1a/Fe//xyDz6jLg5A9D39oNFoxLV0Rwj35nqMi3X1s0mdD8Q0uqz4mjAfd0p43QjOUprik3EHIASFWk2j1/5OPfnJykLCnY4gFWVpenalR7/9ldp6b0n3/Mu3qpgvpNXy6u/PyMjIyMi4zXHiBAVIgRcLxObvbQr7/X7M9cde72S2VCpFIQGiA1FstVoxQk7k210MdIYgPcKdBBAQ7z7hufiQJAQPyLGTIyfcXBerta+DFzbc3t5Wt9tVrVaLBBIyvLu7GwksDgFIkueeu/CSdmgg8uvpAKRtuDCSkl1fE3dX8B63mrOWkGy3r+PqQLTpdDpxn4ime3Tf3RaQQOZDPYvJZBKj0GneP+NijenkIR1W/QfulpjP55GgpsTYI+zcg/X1xx2kGjA/b/+56fPB316PIRXE/DWeXuBOg9FoFJ0u7B1jdNGK/eVxLw7qa8gaQ8z5PPm1U2eEuxHckcBapOKK35vPJO4KT+lhru6YSR0MPh5PuWEdfd0y7iCUyipe+fF69Auaxz2SjJOIIPWev1LvWz5R97xZ2vnv79Jqr6diQ+HZjIyMjIyMOwUn9rdljzoS+YewLxaL6BCgtSPkhQJuTiLr9Xqsb4CgQDcDj3JKWksBaLVa0TExGo3iNSHlk8lkLbUAODHxHH9+xjmxqaMAr3ERoNFoqNlsRpcC0WqIdFrIEEHAST1rkroiIHQUzkPAYWxu65cOizCmefbVanXNOcB1ERHS2hhEfr0mgRcFxM3g4oXfx9fP24pK+46OTqcT5+HXxWpPdBpCSVoDwpOnGHBvTxtwASitU1GtVmOqDH+4J0jTFJy8+3lFUAGeIuEOBX/OxQR+Th0pnF1fE97He9I9c6eH77/Pw50hvj5eu4F5ugvEnSN+pvhsp/fiPqmjgM+vuyRcwHDRxN02pdJhK06/RxYU7iCUytIrXqr3ZDEh4xrwxKukJ171In3MTy7UfNeTWnzwI9mxkJGRkZFxR+LE/LbsudJuT5cOSUia0uBRa48qeyV9SJHbm4mAU8zNiR6W/G63q2azGckWjgacC+VyOdZwwJEAXMxgThBbr4vgZMgLCSKgSOs5/81mU9vb2zECLGmtMwHuBUmxEKTbxD1i684I1odoMLUCiJ570T3WHULrhMtJNfvAnFnHNHpMColfwyPXnpqAA4Fx+dlwUgrR9voLrCO2e7pxSIp7g0PAI+ppwUXG4ukFbsffdB4RIrDus54Ascyj/JwdP0MOH5N/flLxg1QKd9ogGvB8vV5fc6jwvO89j5E64ddHSGB9UjcOr3Unj68Lr3FhibPBOnM+WStex3VdHPKx+tr4+eV1nm7jZ2iTQyTj9kb5zLYe+cLWcQ8j45ThA6+tSK+9X8//wbMq9yda/Z93HveQMjIyMjIybimesaAQQnixpP9kDz0s6W9L2pH05yQ9dfD4NxRF8RPXcd0oBnge9nQ6Vb1ej5XYpcM2hu12W8Ph8IqRWYhcSqzdDg0ZbbfbMb3AHQa0W+x2u7FA43g8joUAISXkbSNWOHkFjFE6bJsICcWR4AQJsksaAJFyj6ryWsgXJMot9YgVLnBAgCFTrAvz8ir5TsS8PgDEE3HChQTmyP65IIL4Q0SauZKy4XUHIPsQPvbG20BCir0rA6kudMdgrqwdhRad2DMOJ6ee+sK4EYIQCyDoTqgbjcba/rpYwblJnQH+s6S4jxBw6bAGACKEX4tUAx+rf2YQRfwc+vqR1sNe+eeKz4qfL9aHPeT8uRiB4MFrjqrX4M4iroHjw1/vrgZ3srBGLlL6589FKx+Xi48uQJx03Kzv4jsKpbLGn/TwcY8i4xTjPX+sIamhh3/kE1X6+V8/7uFk3GLk7+GMm4XwiS/VslO77PHyaKbire84hhFlZFyOZywoFEXxiKSXSVIIoSzpI5J+WNKXSvonRVF82/VeE9Lr0U7pMJIKOavVaiqKYi3vHpEBAgzp5fWQooOxR0Lsln7SJahNkBJYiAmEjQg9pAsxgZQKuhg4mUkdEczZHRkeMeX5ZrOpra2t2IoPEkRxQCe7kmKePyQU0uURXdvLSMxZCyetHgn3NaT2gEfjnXymnRucDLtYxD7xODUguL+Pjz3ylpPUumAtPCKPGMR+tdvtKPB43jzFIf3ccYY4e56Owfoz91KpFM8j55QaH+6iYGzpGritnz13cYdzBEFnbxmfk2CIMXvlKUDMCdEjFQloKYpY5G4QHx/XZR5er4P98eKkTs5ZS3ds+Nn09WIs7rZxAY2xsFZpLQdcBylS4cbB/rrz5CTjZnwX32kYf/bL9ZFPvfwsZGRcL977OXU92H2FJKk6WKj8xl873gFl3BLk7+GMG43Sy16i0YMdPfGKsubdy38XqQwauve+Vxz5/uZPv03FfHbk8xkZNxI3KuXh0yW9pyiKD6S5zteKNBILifHccwgd7Rk9MkpUdDqdRvKY5uN7jjfXJoLuLfiooUBFfyLcTuQ9opnmfpOTPxqNYhTcaxggTkCcPB8fAQAiUxSFGo2Gut2udnZ24v28owSCBASOeZVKpbU2ihBlSDkuEIgqj0EKKXbpNnrWgDQCT8ngPggC1EAYjUax9Z5Hp33veT0EEocCqRvMB1HBI+eMCxKeFrdM7fgUynSRYz6fazKZxPFx3pw0uxDFeyDSjMcj8qRt+L2pU4FIwPlyBw1jZ5yeugG4nxcGTT9PqUCXRuZ9XHx+WIc0fcXX0ufHv93twBpT78O/EzxVw10J/rnwzzuvdXeRzxXxwl/nNUVSIcsFMfbKC0x6PQZEj1OGZ/1dfMchBH3k92QxIeMGIUgf/vSD78JxXefuf5U6H5yo9ItvO95xZdxK5O/hjGeM8otfoEsvP6/eQyVN7lpJ2hzYWHSK+F2zCefPvlylRaGt//jmmzTSjIxD3ChB4YskfZ/9/JdCCH9G0q9K+uqiKC5dy0WKotBgMJC0XzQO0uzEyG3cnt9NpHY8HseIPsQUQQFLPsIBpAHiBgGWDgUO3BFuyYfwOHFxG74TYkQPt51LusylgO0/JVVE1c+dO6dz585pNBppsVjEOhDD4VCVSiU6IkII0cnQbDY1Ho81Ho9VFEWcn4s1jJ0xOymEUKYF+BB9PCKOCMHrGo1G7LYA+eX1aRFB/r2plkC6zik59ufdueDOEJ+XpBh9Zx/YJ9IecMCw55JioUaIMudCOiS7XNPX0J0DfrY8JcMLTKbjpI2ntO/+YBzuinEinP7y4uTdn+czw7nkszGdTjWdTtfSAZzAc05cDGC9XWxgDZk/f18Lgee5TZ8rbx/rc3HhBlcCnyOEJx+3u57SM+epPZscDCccN+S7OCMj49lj2Sz05CdLuy9q6UG9LIsKdw7y93DGM0L5Bc/TBz/vbo3vWUlaXfX1V8LTn1hIhTTderUqE+nM97zpxgwyI2MDnrWgEEKoSfpsSX/94KHvkvT3tC+p/T1J3y7pyza87/WSXs/PEKTHH39czWYzkgjpMBK6WCyi0ACZ80ik55mnVnOPZHtutef642LgPWkVeRcKptNpdCB4lDglddRTwDFBJDiEEIk+Y4CQYj3vdDo6c+aMzp49q7Nnz2pnZ0fSPnlLRRBqNUiKxet4nLVxN4WnMjBn1gwCRiFF3gu5mk6ncR0hoqkQQR0I3Ay0eWQdQwixY4QLDF6hfxMZpxYB900j096NAgLr6SOM2fdyNBppOBzG66WdBfzM4NxIawR4vQ32we/JdQBnFiGG1zvpJV0H50Wj0bjsnAM/3+maQJQRD7y+Q1ozgjVhb5xkc2/G6MIU58i7Z7CeXMvXJK1TwLh5D59rzgH7Qm0Srscecy3SQHDXbBIy3AWUFnVMx3SaujzciO/ihnJRwoyMG43Z9kof+oNN1V75Gj34Uxe0fMcjxz2kjJuE/D18cvHYX3uNdAXDyIP/9UktH3n01g0oQeXBB/S+L7xP0/PPTkhYQ5D2XlwoLKXJV79GrcdX2v7e7FjIuPG4Eb8tv1bSrxVF8YQk8bckhRD+paT/uulNRVG8QdIbDl5XQIIgHxDa1WoVK/wvl0tNJhO12+1IAA6utUbOIBhEnd3qXxRFrBVAUUOIFnnlXNMj8URHS6WSZrNZjPx7MUPIi0fMIddOfjcVofNx+Th3dnZ09uxZtVotdTodSYoR7V6vF+sGOJkDXneCaDl5/RBJFwTcvg6JYy29ngVOAid2vN7z6Hm9dNhNgr2EaLqN310Rm2zyuEMghOwbZJToNfvguf+IFNRocAHEI/KeEsC8PaXA02kQaJyM+zjdVeFuEN9/nA0uRvGaer2uZrO5Ni4KPPr+eF2G1JHAejBX1tj3zVNU+EysVodtUV2o4Gy4W4ix8XlbLpdRHEvPRupO8LEiYJH64vCUB3d2pEIF55m9cGeMX8P3IT0njIn7niI86+/irXD25BeNyMg4hZh3C827hd7zRWdVnr1GkvQx3/EbWg2HxzyyjBuM/D18zJj+oU/Wk7+revnjZ1ZXFBTe+yfvUml+tx76zndqeeHiTRzh5SifP6f3/LmP0XzrBooJhqIsDR9caXxPUO/h18THn/uTPRW/+vabcs+MOws3QlB4nczaFUK4ryiKxw5+/DxJ13VSPRJK9N9JqqcFSOsV7J30UxneI88QG/9ZOoyOurDgLgReQx7/cDhUr9fTcDiMbRshYqPRSK1Wa61ug6dnkDc/GAzWRBGIEBHper0eHQrb29tqNBrRRbFYLPTEE09od3dX/X5fy+VStVotji8VLrz+AwTWCZvn+vM+XBLM3YkYa+VdBryeAeSdvYLs8163mOO2cEIMIfdCfJ624HvPnnltg+FwuFaUDzIP0ki9iyouAngKx5Xg4pCnNaSRf2/D6OJP6hRwEQZSDHneVETUxRsXClJSzr7x+aKuhTs5Wq1WTB1y4caJNqKUk3fp0D3iAgaijK/vJiHAC2Gmrg3ugUPBP3N+th1+XhkTr/WaEZ764HudpticEtzQ7+KMjIwbj0Wn0OIgJ/o9f+MTrvjaB984V/VnfvVWDCvjxiF/Dx8Twid9vN77R7sqKtKqev3EfL/wYaFHv+bFUiE972++RVpdXtT5RuL9/+DVKoKkIC0bN0dMcKyqhaamV73nj3UV/uirJUkv+Me/peXu3k0fQ8btiWclKIQQWpL+gKSvsIf/cQjhZdq3d70/ee6q8FxqCAoOAXcgQGY88uvP8ye1a/vP0mE0W1Is0Mj1KVLnxNAFgclkskZKScmAsEKinZRMJpP4Pq+p4DngWOgREJyQtVot9Xo9zefzKCgQYSeazRpA+hnDarWK1y2XyzECjduA/HwK8zkhdzLPeCiOCTmFuKWEz0E0GDv/eDxWqVSKa+XXJxru7Rbd1s4aIxC5y4K0D9IXEEf8jFDEE6GJVAZJkbx6ugTjZwykcWzKwa9Wq9FNwb42Go1I4iHULgB5Cok7bRDWXDTxc+JpHu74YL5p6hDngvF5SgH35iyz7uwPc/TOHuk5drcO+8K4U/LvolAq3rjzyAUJdyewN+70ceHQHSbeqtRTJtyl4Pf1eZ103Izv4jsGRaEX/Z136F3f9NLjHknGHYZl88qB6A9+RkX6A6/Wi77nYk6TOAXI38PHg8oD9+uRv/oxUihUlJ+9uWPZ2L/Ge7/lFXr4a2983YGPfP1rNDl34NAsF1d0TdxsrOqH6/Wuv/ESSdLzv/bNUpFNMhnXh2clKBRFMZJ0LnnsTz+ba/KL/Gw202QyiZXicR448YQ89Ho9SYekDVt6SmKm06n6/b7OnDkTH4egkJrgUWCuj4jQbDY1m83U7/djjj7EDMICWXFSjNgxm800GAxi7QSIER0HJEWSuLOzo263u+YecCFkOp1qd3c3pj3UajWdPXs2jse7OEiHRL5er2trayteDwEEEuWCAEIOY0hz3HFU8B6PPFNAEPHC60MQLaa2xKaij7g0WCOi9f6aND3BLfTpmXJhg7Vh74nQA/bWizx6kc3pdBq7Lszn89ilAyEmbcfoYyiXyzEynrpkUnCmPA3I58Z6sH8uLLhQwTptcs2k5J69ns/nscgnKQju8nD3yFHrDPgs+Ovc1UEKidekSN0p7jJJhQREA18TzkM6Rv85fc5rprgD5zTgZnwX30koZjOFRVBRyb9EZZwcFCVJpUKPfPkZSa/Si//he7S6dEnF6es+c0cgfw/fepS3tvTOr36uFG78d/eqWujR73iVJKnxVEnP+da3SJKKVXFV50KoVBQ+9gV615ftbLrysYoIR4H//x799lfGx1qPl/TAd7zlmuaccWfjxFQcS23jnufsz3tdA+mwDgLvhSjVajV1u93L3j8ajTQej6NQAelwssx1eY70ifF4HKPALmq4zdw7C1Sr1RjlhfQQoeZnCKkXhKSzA0TVC/BBsBFcnPw64YaEp6QKcujWdNbHW0yyjp53T4cDovqeZ+51Kdg/XkNuPpFtr7yPUOCpHxStZE28HoATUFwrqUvECxC6e4E5eCFL7O7cg1QPj3L7fpZK+604x+NxdCgwLo+CQ+A3Rb4hqSmhRQjws7zpc+LtKtkn5s/6QMxTUYG9qdfr0aGCqOR1IHDHIIaRagA8ncH3mvu5K8LdBewx5wHRz+HX8paqPOcFO31uvg9ep4HPeboGaS0TT8lw0SPj9kcxnepF3/KIHvmbLzruoWRkXI6Dr8hHvuH5UiG9+Jt+W8VypVW/f7zjysg4ZoSt7s0l5wfXnty90ru/9ZMkSXe/RTrz337rimN651c/5yYO6ibD1nN03/68z/5m0F0/+A6txhMV89nR7824Y3FiBAVA1N9/mfcIp9uwnaSkUW4s+d4+0Iv6QS5SMcK7R0DUqY3A9d06La2nSkBWvbMDc+I9HqkeDoexjSFCSbPZVLfbVa1Wi6IB15lMJppOp3F9IJLcy8cBWfeaADgCKCjJ2CDR0mEtitT2DUF1gQM7vKeipNFhor1O6NLUk/TfnqJATQtEku3t7UgUXczBWSEdFoFMSTWoVCrqdDprhRLTc+W2fsQPzhDCUOp28HoMKeH3eha+V1eCizOenuJiDmvmY3UHwqZ6CmnNDO6FEyEVU1ywStOHODeQdhf2eI2LW+yvuzZ8LJ6CglCF88Pv5/fEpZE6EDifaWqEp3oARBJ3rGRRISMj40QhSI/8nY9TaRr0on/2ARWzuZZPPXXco8rIuOWofMxz9M6/+sAtv++Tr5CefMVLbvl9jxMXf0ehi7/jJXrwf6zU/JnfUHHwO3BGBjhxgoK3rOOX/0qlomazqfF4rH6/r1KppHa7HYUGdxtIh3nuHon2yDbkFNLoBAxrtUd8uSb5/owJIg2JJgXASSPX8zoNHiGFfLp131tNMheKReJqoLgidQjoZuHFEYmoc03ugWXfrflO1Liuz481hLwhRjB2L5gpKbaKTMnzfD5XuVxei+4zb8aHmLBcLiOB9si3p0L4+3ke8u9WeBdJOBs4CMbjcRRdSH9hvMDX09uE8lrSGHiPrwdniechyQ4/M/zxOgAIOe7YcDGDM7apDoELJv6YF7pk/RFTnIgzf4QhfuZ8ujPHX5vWIOCz4NfwooruGnBXiTsbNqV8+N/uUPB1Td07fh/+cJb9/ul6ZmRkZJwErOqF3vk1z1X96ZIe+i87+w8+vZvFhYw7AuWPe6He+efOXf2FGTcUH/59JT1n9Qlq/txvanUQ4M3IkE6goOAEDKJBgTyi9fxM1BMST4TaiznW6/W1f3MPCIdHoT1CnqYEEFWFVGK5p7gh+elcx50TEBN3Q3CvZrMZu0IwZ+ZHzQaEim63G/Pay+Wy2u22JpNJLNoHqfXClD6OarUaxYTJZLLmLkgjtcwnjRDzB7IvrXfJkBSFCtaHOXtbRwpe+vhwUGDF3xR192tusr2zPxDL9PpO1Km34bn43IvXQbgRJLhXWnQybWXJtSDlLt6wL+4c4bqst9dNcFHGxYTUfeGpG9zHzy975rUjKFrpZ9LX21MnfK5O+H1c6Zn3ObuzgbVJHRx+b9YxdWOwRk760/n7e/y8uBDFWXFRz0WN01I/ISMj487F9PxKj7x+n1id+a3zOveb913+olUhveU3b/HIMjJuHt71ZedvSt2EjKvjQ7+/rI/97Xu1eu/7j3xN+SUv0pO/e13wufsH36nlpUs3eXQZx4UTJyg4IAyeOuCEu9FoaLlcxqg/r3FyTStF6TB1wvvcIy54ATauQaoBkWys46QokFcO4XNbuZMSxuadHRAJ6AgA+fUId7vdXsvdb7fba+kbnU5Hk8lE/X5/zabO63mdR5+9fgGiBP9mnX0eEG4KDiJesC6+9ogi3tkgFTZ8fVPBgGs1Go3LItYpoec5J5M4WSDNnjaB48JJoqeJeI497gUXAjylw8ftBQOdCPs++lmWDl040mE3CfaIwqA4PHy/OUv+ecBRAfH29IVNUXZP8XCRLX0/c3EXiUf/XaDxIp68z0UNF0S86wj7kjoN3PXiQodfi7Gm4ol/jlIhJq2ZwD081SH9k0WFjIyM04JLLyl06SWty58opOee+aT4Y+3SNAsMGacWi9/38iwmHDMuffK92v7o49GlEOp1feDrXx6fr33iJf3GK75r7T0Pf8JXqP70oXO1PJEe+Ee/dGsGnHHTceIEBS/Oxy/9ECdJarVakTTzXBphlw4LJELI3cbt9RbcMu6RTI/281onUm4Xx8YPgfGicWl9AcQJj75CXCGPqTUe0pmSPo/WMy7m5BFarudEkjVsNptaLBaqVqtqtVobiVlaMFFSFHQajUYkx6wTa++WdvaSfUwjyN7OEnHH8/QhvjhHvFYDcGHHiyOyllj22Vvey1wXi0V0hnhBRSemdF2QFOfva+znwsHciqKI9Rd8fJBXumZIh20gPX2C855G9RFAeK8XH3T3RZrOg0jDvrmg4OkWaY0SBBxEoLS2iRN9SDtCHyKNp/kwnlT8S4HIkY7FP6OeFuLz4p5ev8MLe/q58jOakZGRcaoRpA9+5uGve7W9ms4+tF+9fvs3ntbykUePa2QZGdeND/3+2g1pD5nxzPHEq6Sd/9GVJhO967teIdVWet9rv/OK73nv5/+LtZ+fXA71yud9lSRp+x0V3fPPsrhwmnGiBAWir05Ii6LQeDxei+I6EQFus/YoMa93YiQdknZvQ+mWbEitR3o3/Vkul5pMJpEIcQ2itggajAuBYlMhujRiT7S80+mo2WxqPp9rOp1G8cOFEEh52s7S8/C9dgRrzeOkN3gnBsbhZE1SJN2NRiMSRZ4juo5zg+ecvELeSqVSTDuA2CGiQDIh/7Vaba2VoAtBqTPFibWnQHhhQ4it7xnPIdR4wUeuT1FMHBWNRuOyKDpwIYz9KYoiOj24vhNa3yPIP6S8KIo4P9IRPKWDa7ntH1GM8aSpFGkNCD+DnB1PB3CBiH2jWCapKrzOSTxCitcE4bPg8+UM+ThcgHCngz/un19ffxfRXPBxsYg1SItdeupSRkZGxu2C2fZKj796/9+9h+5W/cJduuenPqDFRz56vAPLyMg4VXjf93+CHv2Uf65yuH43593ltt732W+QJP3Yp7f0tz79c9T8wW1t/4c33+hhZtwCnBhBwYm7k4LVaqV+v79meffq8vwhtQGigpNBWrdKp44EjxBLhyQEHJVfDmGaTqeaTqeR1ED0IE9pBDp1VRDxdmu5R5Gbzaa2trZULpfV7/ejeNFsNtei0U62vOCc35f5eJFDt74TaZ7P52tFDNM1hEgixngRO/bHu08sl8soHJRKpRjNJq3Do8aIFS6eIMy4gOCCDufH3Qc8n6Z6uKCAU4DUmdRZ4OkBnDNEDW9B6YKUi1Jea8LP9qa5IMR4jQ7EmtR9ws+bIvX+N/vm7gLG5s4Z3sO5BZ7W4OTfUwEQinweqaCAA8e7YDQajbh27vpIxau0rgL7wn4wltSRwzx5HDGP7xB3YqSulnQ9MzIyMm5XjO5baXSfNDn/kMqTh3T/v3ybVqPRcQ8rIyPjFOAnX/2dKofOs77OZ7dH+uxXfJ/+3cee10/9+d+hJ//G81R+4689+wFm3DKcmAThTZXVIVnD4XDN6s5rJpNJrNBPxJRcebeAp4UbIS+QbMhlKlR42oUTGklr5BlS5BFvfz9kzSP/LgB4EUn/GSLearW0Wq20u7ur0WgUo+PY+H18Xiei0WisWdrd3QHpgpS6JR/3QrPZXCOyELK0HsGVUg94DSKIdzhoNBpqt9uxKGWahjIej+P+eu4+ZLRUKl3mWgDuRvB18XUviiKmLTB/CKlb4ElFYM7sCevr6QXuivH1cLdCSvIZ72w202AwWGtJydhJT+GeTvKZu6fjcP00PSfdK3dJeFoM1/T9S90/PMY1U4eNd3pw8u8dRHAL+D29OKK3W03Pbio++Jlzxwr39vm4SJgKiHxWsqCQkZFxp2B870qDh1b6wFe9TKFyYmJNGRkZJxQv/emn9dxK84Ze889sPa3/+Lz/qT//hh9U6WV3VmvO044T878Gv7wTrfZf9rFJe1SR6D5EPk0jcIJH9B03gddLkA7t3h6hhLRAgL2DgUezuQcRWEca3fbc9U354V4gkvoL2OTH4/FaXQOIrEfVvQtCt9tVt9vVeDyOpNsJGNFo6jp4LQT2wVMl3OkA2XObPvPx3HrIf+oAkfZrClAck/e4TZ+oNWvtKQzVajVa91kvrkWhS98LT6fwWgekIXCOWA8/fx7ZJsWDopZpa0o/d5yxZrO55lrgntRz4HGIL//mWp6q484ET8OgsGHqUOGz4j+nZ80/d+7eSVNlfN382ozB23MidqUpGV4fw7tUpA4gPmesgzsivGUnZ8E/A+5c8b1kDTy9COeEu3lSpK6VjIyMjNsZ0/Mrve8bP1mlRdBzvzHnNGecLDz21a/RspFTEU8C/ty5X1Q1tG/KtT+/09NDP/w9+tuf9vlafOBDN+UeGTcWJ0ZQkNZbz6WYTqdrkc3VahXt+bw3Ja1cy4syepQU0kJEeLFYqNlsRucDUXXI8Xg8jvd0sreJ0LjtHdJJkUj+QLZ4LXAStlgs1O/347VdiIAgeZFAiHm9Xler1brMbeEpGpBYiL9H9N2dwFoyXx+v109wNwjCBmMi/9/v59026HTh4osTPG+76CQWQakoCp0/f17b29txzbiXE09qTEB8y+WyWq3WmiuAsUDGEUjYN8QMSLafXRdt/DmILe6PVqsV13IymayJC14PwcUAr4WQ1rlgbF6Lw4shpqKCR+Id7rJwFwLCRSraufOmUqlEx4fXZkDw25SKgTjjcwP+mXBRKr0On+W0jkVaD8If47PjLTDZs6MEu4yMjIw7AYt2IRWFPviNr8miQsaJwqIlKZsH7wi8vF7Tv/nF79eXvPS1WvZ6xz2cjKvgRAkK5GMjEkCWIfHkn1MIjlzwEILG47FGo1HsuACZIqo8m81ilB+COR6PYxQc8gCRSKPF9Xpd0+k05v/P5/PYOrJarWo6na6RyDQiil3fWzNCmDzvHzFga2srCgJpfYVNxfsgfUTiEUIg1rwPQg3cws/7PTrNPRFGarWaptPpZUKOF7/jGjgsSAFx+7pb83kP4/OChS4U8Rh7zZpKimkezGN0kAPKmKmpMZlMNJvN1mpKlMvlWMuBuXNPL4KI6OJn07tJbCpGKCmeMSfVntqDQMJ5Zs4uanitgPR5FxQ8BSEVGNxNkZJtX2d3LXh9B5wgnnLh4pLvKyLefD6PYoG7LPy9rK+vhQsAab0P1hnXCA6ho8TITUKlO2y8DsSm/cm4Q1C63DWWkXHHIkizrZXe8+2vUvvDJd37T98kbXBxZWRkZNws3F1u60d/+3/qDz/nFdJqefU3gGv4//yxr3qlRvcf/i78/P/7V678huu5/x2IEyUoeLE9wC/+ENp2u71GnhuNhoqi0Gg0WivsRkQbwp9Wl8cWTUFEFxQ8Kst7eNwjvV5fgfdsEhQgNF7ZPrW8S1or9EeOvlvhnRhh0/c6DWlxOuaA22K1WkXRBULHOnmxOieniCpOusbjcdwfxB2i5mlKAWtP1wcXe+r1+lr0HfLrLgInux4R9/11VwROgk6no+l0GmtJ+L08ZYNxpHZ+T79AlPAzKu1H0Km9AVlOayn4GXMHghfrdEeBpLXUGMYEafbXI5QxXv6ka+UiCHPwAoUuWPlZ9z8uFnntDj8v7K0LHsBdOYhqnirB/nu7VoQdd1N41wzWi/V1YUJab0fpn0evH0IKxqbvniwo3DkonzurR77h+cc9jIyMk4UgFUEaPHelp77yVbr7X71VxXx29fdlZGRk3CBUQ1mVu89r8fgTV31tqdGQSiW9+5s+QcVVNYX11JlHv/2Tr/jqF37vQOG33nv47ly8dg0nSlBweDQWAknHg6Io1O/31el0YqV4T3/wNnAQeQgkEXmIMZFsbwHopGI6na5F9d3G7iTFo9ypvdyL1zm5WywWsRsE4sj29rbuuusubW9vr6UEQMJwLEDS3RGAMNFut1Wv16MrYzKZROLt46J+Ann5aSu95XKp4XCoyWQS19FJvzsRJpNJbBuIK8QLY/papLUYeBxnAS4Q30vgOfQhBDUajfh+z/VHjHExh3QDJ/dut/fUEdIjSHegDgcixGw2WxOuOBNcj+4WuGDSugisT0qgJcX1pg4B93Fi7AU0NxVc9L+9fgFzdPEiFbUcLl64y8Ij+DiBAPfw9/rep3vpxSURntzFkDp0pMPPQzpvf52LFX4PXx/2hOfSOiPu5Mi4TRGCHvkbLzruUWRknGjsvahQ5U++XOd+4DfyL9IZGRm3FP/5V39cn/fgK674mvK5s3rvX3mx5t2b46R695/sSPqE/R8K6WP/8fsOf5dcLLS8cPGm3Pe04KoJwiGE7w4hPBlCeLs9djaE8LMhhHcf/H3GnvvrIYRHQwiPhBA+41oHklq5iTZLh8Sj3W6r2+1G2zVV75fL5RoRJc8dElcqlTSdTjUYDOLzEF1IKeKEpJjaQF495M0dDymBgbRAPP31XjGeKOxoNNJgMNB4PI756c1mU9vb2zp37lxMeeh0Otra2lpzEECWIJtElHEzYDenS4LXGWAsnv7g0Wzg7SyJ/HIPSN+mQnp00fAaCx4lJ6UDQgjZ9QKW3Jf1QyxgfDg2vAilW/NZe+bFYy4CIV7gGPA2j6kA0e12tbW1tWbnZxzcizF40UXuj9CRpiq4q4A18Wg8RJ374Upx14y373Txyx0j7obws+oiRnqe08+kr7O7cNxJsanGBZ8/J+zu/mEczM9FoVR04qwybk9NYTxcwz8f/tljXF5/wgU/F2m8neVJwK36Ls7IyMjYhAu/s9Du536CSt3ucQ/l2JC/hzMyTh4q992r93/lx940MeEyBOmdX/c8PfL1D+uRr39YH/iKj1X5Bc/b/3Pu7K0ZwwnDtVQc+x5Jn5k89vWSfq4oihdK+rmDnxVCeImkL5L00oP3fGcI4ZoTUz1SCkn2x8j19zz/EEL8xT8lUxBp6jC4PdxrMGxtben8+fNqt9taLBaxKKPXciCK7C0LnbQhCJCSASlxAgY5Go/HGgwGUVCoVCpqt9va3t7W1taWOp1OFEtarVa02zMnSDdjIpI9mUyi/T8VFCBTnjIBaa9UKlFEgXR7y0ZI9Hw+13g8jvUiWBtPyUjTVZwEIg6QYuFpEdRaYK29QCRwS7+kuB8ebfcOCMvlMu4l44aQe/0J4AUhOV/NZlM7OztRcKKQIwKH1+lgvN4C0+tnIHr4vnndBtaGlBfOgdctAKwhLhYEBTpVONwx49F/xspebEq5cOLPuef8IdqlYk1aCNRFi1SE4jnv6uBugk1CB+fAzx3z9BasnkLEXrjIyPxdCPExpU6jE4Dv0S36Ls7IyMjYhCc/Wdr7rJeqvLV13EM5LnyP8vdwRsYtRTkE9V73qo3PVR56rj74px/W9PzxOUond630yF+8R4/8xXv05Oe+WOHlLz38U60d27huJa6a8lAUxf8KITyUPPw5kj7t4N//VtIbJX3dwePfXxTFVNL7QgiPSnqFpDddy2Ag6BAwj+wSiYcAQMAgLB5t5X2kFMzn82jd53ncB81mU2fPnlWn04nkczgcajAYxPoMjK1SqajVakV3hBe8azQaajabkTRDrt2KT70BFziWy6U6nU50InS73XgPiBVE0SP1iAEemfdq+rPZTLu7u7EQJYTP0w+q1WosVjgajSIZLYpirY6BpCgmjEajOJe0AGGankHxQ573vSOijdjgrTuxwTvxT0meR++Looj7zDqxL+wzzhIXKnyPPELtLgIK/9VqNTUajbgXOCRwJDBXdyb4ueW+i8Ui7i3pOk60IfbtdjumbeDgID1GWu/44c4OruGfKU8J8A4c7m5JXQep5Z+18JQddwJ40U3gzoK0cKO03mLT62/4exDm3OHie8XY/R7SocMDwQXXhKelcB/+5lwjyCHanRTcyu/iOwnLT/vE4x5CRsapwhOvkhReou0f/02thsPjHs4tRf4ePj6ET/p4LesnSuTPuEWoh6r+7bd8u/7y9/3utccrDz+kD33e/Rrdd3J+V7v08YUuffyhi+vBn3uZKqMDV+xypdLP//pxDe2m4pnWULinKIrHJKkoisdCCHcfPP6ApDfb6z588NhVAbF0i7jnyntXBCcqRKkhlG7BRkjAvsx7R5b/B5GnI8JwOIyReYif35OOAc1mU4PBILocIIAQHidOXItINuOCjJVKJbVaLbXb7RipR3Tw7gfk5TNXT13wFonY+ff29jSfz2NBQtbHWzq2Wi1Jiq0LXcBgX4j8k1YCkWdsnqvue8WYXUhwu77b8aVDyzskj/aW0mHrT0heq9WK6SUe4afgJCQTkWU6ncY9wEEwnU7jHnmhRd9Db58J6Z9MJjFNhT1nLlzbyStCEiTe6154GoOk6IrwehzudvG1BJ4Gw+NOvL2LCZ8bH4MLKqwvTg/EHcQSJ9ley8MFg001E7xQp6cycE+vRcE+uJjBuL3OhDuAuB7zcbGHs+XiiqebcD/Gn9bZOOG44d/FdxImf/gV+sjvLeU2ZBkZ14knXimtKr9DZ37wbVpZ3aM7FPl7+Bbgo5+6pUX75BDHjONF5eGH9OHPuV/DB0/2mfjwp5dEQkBYSvedfaUkqfH0TKVfuH3EhRtdlHHTr2Ub5cQQwuslvZ6fIdVOYPmlXtJalJboPuTNLdxFUURrelEUGg6HkdRCyAeDQSQdEExSHbD9E711SzZkhbQHruOpGET23eJOGkK3243tKhENvPAf85nNZrHeQ7vdZr2iO8HJERF9xksxxkuXLqnX66koCrXb7ZiyEA5qRjSbTbVaLe3s7EjSWrcCJ6GQVUQMSLkXvvSaAPztrSo3RYOZg6eOMBdPPfC19bQV794hHRJZLO+eMgNhbTQa2tnZUbPZ1GKxUL/fv0z4YYzhoH4CQgaPI/SEEGI6CikgbsX3/HuILevD3qXkOj1faX0ASfGc+Dqle8Dnic+Si2zu+kjFMofXG0DcYNze1QPXBIIA92ENGU84qBORpsTwfs4v14HIe60E1of7I8bxbxeWEHcooOlnzc+p77sLFO7qOaV4Rt/FDbVu5phOFAZ//JV64pVBxbUk/mVkZFyGp14uLRqfqPPf8ysqrHhuRkT+Hs7IuEG4p1zSu77rFXrRn3+LJGny0DkNnnu6fkcrytJHf8/+10K139DWw6+WJJ176yWt3v7O4xzas8YzFRSeCCHcd6DE3ifpyYPHPyzpOfa6ByV9dNMFiqJ4g6Q3SFIIoZD20w88D9p/mS+KQuPxWP1+P3Z08LQIoreSoqDgqQe4GCCY2KGJYHJtiLSTYKLt3IM/AOJJzj41FSTFSPb29rY6nc5a9J1IN3nznp9Pq8d2u71GfrxYohfF8+g1qR7Y/92Wj8Nie3tb3W5X7XY7igl0PfCUAubggg8RXEmXRdB9rE5e/d+QQncmUOsBUuiFJD0CTRoGogY/u1iBy8BbbSLo3HPPPWq1WmsuFSel/hj35Lywruxvu92O9Sdwqkj7osNwOIyOC3cHpMUA/WcXsdzmzxpJWuucwRk4+Ayt1UdgTdLWpy4+0N0DAcT3EecB13YBjHv6HqVz4p4utDD2VBhcrQ47g/g+cm/+dleG349ruFDA32ktBh+Pp3n4vVhbhMATjhv6XbwVzt4xftKLLy2rKJ+uX0YyMk4aLr200PlyWbqzBYX8PZxxR+Fzf89b9GC5evUX3kBsl5r6tk//fr1BD6v8wof14VfWlbZ+PE2YdwtdeNn+v4cPnFXtU1+j+3/sg1p86MPHOq5nimcam/kxSV988O8vlvSj9vgXhRDqIYTnSXqhpLdcywU9n5vINr/8E8WdTqcajUaRXBVFodFopNFoFK3Z2N0RDIjaU+jOI8UQCBwBHskkMk0UFiJPBNbb1vH62WymXq+nxWIRBQ3IEmkVXigQizpj9YKPrIkTJOBigq+fuzuk9XZ5EEg6Sezs7GhnZydGwt3GzphZL8SFZrO5JpwgNECkPaIOSqX9Tg3kpae599j+h8NhvC+pDJLWUitwBqQOCZ8/ZNsj34xhZ2cndtBot9vqdDqReCPSeOQf0kvHD84BzhZqK3gNg+l0Glt1kjbiLgius6l4oHcfYS0ptumpB9zLuzh4YUVelxZg9MfdGcHcEXk89Yh9wMGT1hXwmhiexuG1HjydgLMCYfe6Ceyjfx+k3Si4Lp/ttP6CCwjeXcUf87oR/vniHnzWee0Jxw3/Ls7IyMi4Hnz4q15+3EM4buTv4Yw7Cn9k521qlY4v4LLaampy9+kVE1JM7lqp94KV3vfFz9VHvu41KrVOn0vpqg6FEML3ab/YzPkQwocl/R1J3yLpB0IIXy7pg5L+uCQVRfGOEMIPSPotSQtJf7EoimtOQobIeJ4zJJgCdrTGwwkAgXGXAgTErf2j0Sg6ErDyExHt9/va3d2NEVlIHv+W1iPLRFO5p5PFwWAQXQlY78+cOaOtrS0Nh0MNh0P1er1ITD3XmzoMTgZZD/7tQoKPjRx4SH6z2dSZM2fiWFiPEILa7bba7bbq9XokyRAq6jZA7N2xAXmbTCZRBGk2m9ExkkaXqS2BM4PX4RiAbELAGZuLDwguOEQg3542wfrgTuBxiLt3zMBVgANE2heUKDjphBgy3+l04uOSopBAJB8BAEGBc8R4EcVIp0FQ4f7eqYPrIV55HQEX21JnA46dlIBzNr1zgj/uNUs8xcdFinK5HDtlMCdEGq7hDhoXmhiz/8xYWRcXXPzzh3CUpkB5GkR69tJ197nynP/bxTsEOXeL+JodN27ld/Htjif/4ms0794+v4xkZBwnxnevpBCkDUGF2w35e/h4sPenXqXRvbf/+ToN+NJPf6Ne3ZhKuvUBl9e2ntY//7lPVflrb/mtbwmm5/Z/L3nf171MD/29t5yqVLJr6fLwuiOe+vQjXv8PJP2D6x2IW9olRSLiOf9eAI+IbalUipZzCvXhQuC9pDvQnaFWq0VXA/Z0HAOMBSHDWx1SoZ82dJA+ajP0+32NRqM1a7d3I5hMJtrd3Y31EVw88JaDVKbHZk+NBcaH2EIU3esWjMfj2HKwWq3G8UCy3KkhKUbSSW9YrVbxNU7KcG8gXrCuabs/SWuiAS0X+/3+ZXnuiBQUhKTGAXtBQUlP6WBvPMffaxFwfubzeRQIvBgjQgTk3/dkMpnEPH6i9p7iQhFG3AGj0Simq+A6QYChQwhrwji9SwJnjZajXgiQgpQe6Wd+7srgc8IfBBNfD84Xr03boSLKcB8EC7pNMH5PK8BRgcPBiTdr4t0kXHhzxwSiBR0tEGPq9Xq8t6+XpLXUEk9P4LPhf3M2cHZwraPSdHg+dcCcBNyq7+I7AfOOcu2EjIwbiPf9g1fped9w+zcvyN/Dx4N5O6ioZEHhJODB2kXVw/G4N1ulmn7X2Q/pN/TSY7n/rcJ8a6X3/v1P1vO+/vR8p56YX6ncfQBhSa3UWKS9sNpoNNLFixfV7/dVLpfV6XRiBFvSWr49PenL5bKm06mGw2FMmYBkeScEXt9qtSLxQLBwoletVjWdTtXv9zUejyUd5nwjbvR6vUhcIZpO2CExRL8ZCwQVEQO4BV3SWo4/c+52u5HQM25cBUTpGTNjQtCgjgHkkvx56TCi7vdsNBpqt9tarVaxfgD3RwBI2ypOJhMNBoOYboL7g9cwD9wS1KpAVEhbAjI26VAooSjl1tZWFE0mk0l0iuzt7UWHBM6OZrMZ9wXi7HvKHBEQnFx714+dnZ0oGoWDooSdTifOx10E3hKVtSENBOGMs+81PkAIQZ1OJ5JnL0zonS28NgHOBE8rcpcLoghOD/88OqknJYPz7kVGcQD4/ZkD59FTPvicpakv/re7NVwMAWm9BN7nKVHeRcKv76kmaVpRxu2BJ//CazS+J+9rRsYNQ5BWtWLfpZCRkXHb4nW/93/rS7aevPoLbyLKWkmlE0NfbxqWtULv/UevPjXfqydmR6iRgP0e8ui501iut7e3df78eW1tbcUcd0kxvYEChET3ASIBpAl3gtvP3Y6Oo2FnZ2ctwg+JlQ4J52g0Ur/fj6kMXhWf+0CcPSrdbDajDZzreUFHry0hHZKk1WoVhRCPXjNPXkMBRhdoIMW4AHAdlMtltdvt2ErSUwdI5ajX69rZ2VG329VyuYxRekgrpLrRaOjMmTPqdDpxLh41Zq0pxshaQ+zK5bJarVaMYLMuXm8iPR+Qb1wIOCm63a46nY5KpZImk0kUEnZ3d3XhwgXt7e1FQn7vvfeq0+lEcScVANhPr2vghB1BhnoTOAoQprgO641Q4mkKvMf3hT3zbgQ8XqlU1kQjt/FDoDnzOFDSAodcezwer6WXQKgZayoU8DzrTDqNz6nVakV3ESkdnPVOp6Pt7e219AIXnVwAQRDg7F7pu8QFAhccXCTw9AfESv9MpPUdMk4xSmWFel0Xv/TV6r1gldtEZmTcYBRl6X3/8FXHPYyM2xC9P/Eq7b44uxOOG0VJapVmxz0MffM9/0d//N/97HEP4+bjQKh9/98/Hd+rN7pt5DNGq9Vaa2fnhQiJkEOGut2uVqtVJLlU3e90Omq329EFIClGa52sDAYD7e3txZaNkK60in273da5c+ciGYLAQToQGJbLpYbDoabT6RqRhPRRdwAxwSOvjClN9YAQe345pHCTO4HaAaQq4LKgVaXPles4cWK9IfGIH/yhFkG9Xtf29rYkRSeCp1AgLuzs7Ojs2bOqVCoxtYB9guSxRu12O/48Go2iIOEuDogpVnzEBC+kyP2JfFer1dhdg5SVxWIRxR3qAnDNs2fP6p577olrj6PA22eyl74/XkfBSb6PCVeId9SQDgUkTzXw6DlnyIsv+vMQcU9j8CKICE3sNevGOUCc8DQSnDguYnkNDj+T/IxwhXuDz52Lg2lhS8budRXcfYH7hXXCWcRn3ruAeFtYxiUdOo6Ap25sqo+Q1mLIgsLtgcWnvUzv/yNVHdGxLSMj4wahvLOt5e7ecQ8j4zZBqdHQshakkL+7jxuf+sp36BvOP3Lcw7jjUITT8b16on5b5pd8/kB+nOCfOXNG29vbajabsZheURRrtRO8Q4TXYoC0Uonfo9iNRiOmXUDYKJToRIdCcBB07gcRhmw5cUkL3xGthrw7qQ8haDQaxXz+ZrMZiRRkjDaLEER3J7j9v9lsxmixk0MnWV5/wVNNnNy6fb7T6cT2nrPZLEafIZIhBG1tbWl7e1uVSiWmNUB4vbuA15ggjYR6Cu7yQGTymhaeUgIBRcwgSn7mzBnddddd6na7sSgiIgL77AUGu91uvH6r1dLW1lY8UzhaeB/n1cUcP3MugnG+2Ev2i9dyfU+j8Q4NrD3EHBGCuiIuvCF6eEtJiDmOF/bBr8nrXIzgvLDOjD0tkoiggEPBi1Yi7lDrhPoY7CfuDz5LfDZwr6TnFHhhUtbI1wyBxFusMj93/rD/ngLi9zoFXR4yroJSo6HZzonRzjMyblss64Xe91du79zmjFuL0e//BF34nadbTKiMghpPltR4sqTS9HTa41bNle6rn2xCe7ti2Sz0/r908r9XT8xvWd7iDeIPaSBP/ezZszp79mwsnIcgQP4573Wy4VZxoqkQQ7fPQzbJpZcULe8Qd65DMThvoUgFfwgmOeVE2t2+7hX2saN7sUF3MuBmoH0lxBZbOuOCjHq+Ps8xXu6ZtlpkTryH8UuK7gYvrAf5csEHkg4xZ00pdigdRttZZ1IZ2G9EB4cTWrfucz0/L74e7XZ7rR4C4gipM6S6IFo0m82YnlEURRRKUtcAYghriajlQgjCj6dEeF0Pxu6PQ9CZA6TX3Tr8XRTFmkiEoME8ORtpEUcXZzZ91piXP895Sms2UJjSBTncOJwJvy9pM4hQkHnGx7j885O6A9Kfveglwo87g9LPBMKC7wPdNbxlrKeDbHIxZJwuFC99vj76KXkfMzIyMjJuHcqToNZjQefeMVXl594qSRp8was0vNfSLYM0eOjk1/R50Qs/qm++5/8c9zDuWKyqUvkFz9Py0fcd91COxIkRFJyoIhY44e50OpGoSloj0V4XAFLq1du9GwAuBN4HiR4MBrFII/eADI7H47XCdUQ9qdXgtQzc6u5EC6RF5rD347CAHHqRPietnoJAlJnig4yZCHYIIebEQ6YgfKyhdEjaiSQjAPA6L4gJIR+NRlEcGY1G2tvbU7lcVrfbjS0+R6ORer3eWhvFxWKh0Wik2WymZrO5lurhxfKcuLMWnqqR5vB7MUkvxOn1CNir4XAY54jDwc8faTWVSiWmxrhtHlK6XC41GAxi7QzpsNaHp9p4JwaEJcQiSVEockGK97lDx8+QpzJQzNRrWHinAhcP/HPAWBGcNt3Hx+BuAdI++IyQZuOuCO67WCzU7/dja1BcAT4mxBgec9HNz46fF8bnRTFdmOCssy5p4UXv8uAigxcfzcjIyMjIyLj1qNx7jwb3l3XaUtXCIujMb0mtp5dq/Phb1p7r/MCb1Vl7cdDFL3mVlnVpL9eJyDgC862VPvzZ9+m+78iCwlXhJMA7ChBlpg0ipAHruqRIziDMnvNNCz5IaEqESGmYTqdrqQZYvIlgu5sBoYMoKONwqzT59/V6PUarmRvEij8Ufmy325GI8ccr/hMF90J5aZ67F44k358UEOARaS9m6J0KmJvXO/DX09KR8c1mM3W73Rh9JirtOfPY3iHzLlSklfq9yj6EXNKa4MDrOCdu/0ecmE6n6nQ6cTyIRpBWr43BGdna2lKn04mdIjy/3/emKAoNh8O19BfIMaIO8+MMeDeNEEJ0tzAvL+bJ/HCIeJFE5obYlK5Tmv/PejAezmFaY8BdIN4xgjNOOg81MXBySIddSXwuLhAiuKXCHp9ZxuviDveR1lMycHj4mLgndU1wLyFGpHUTOM8Ibi7S4BRJz2VGRkZGxtFYNgqtPuUTVfqFXz/uoWSccsxeeL92P+50/R8cVtL9v7hU80ffcvUXS1JR6Oy/eZNK7bZar/14SdLw3rJ6zz85roXizFyfd1/+PGdcGSdCUIAEQKakw2JvTvpJS1gsFtrd3dXe3p4Wi0Wsyu9kgKg/pGE6na7l7hPJhzj3+/1Y5JHnsJ7PZrO1DgiQK56D5JACgEjQbDZjLjikezQaxQh2rVZTq9XSzs6OdnZ21Gq11O/310g8EWhImpMmt8NDgHgchwBkNyWbbg/3DgNYv/mZmg3cx4sgMh7Wh6KYkFevVYD7wW39aaTaCTD3cRHDU1cAc0pbbbpQwnURMxaLxVqLRq43mUyiEERqDMKWR7dZLy+GWKvV4jr5GjMmBB6IP4UIERSYB69hnpB+74LgdUAg62mage95SvK9XoA7Bvh8+PnjMT4XfF6YB58T0mY4L6yZ39fdRZPJZO2MgVQQ4iwwZ+qQeIpTmqJD2o6LPKn7g3HweeT88Vo/7xkZGRkZ14Zlo9Djr27q/l847pFknGZUHrhfH/nEpqSTQ6yvikJ67k/OVf3vb73ut66GQ7V/8JclSdvPeVBnPu7e+NxHf3dN863jW4edswN95c5Hju3+GfuY7RRaftrvUvmNv3bcQ9mIEyEoeLSRqCWkk84Co9FIFy9ejCRlb28v5uF7VByi45ZyIp2QEAQDCOF4PFav14ttKUlTKIpCvV4vRrQppAgpIXpN4UKvlUB0Gos9efuQQCLjuBO8taOTOcgSUVS3cXvhOLpL4OLAcUF9AElrpBCi6YICY0eQ4P7cA6KG6ACJXCwWsRAixJn7j0ajeG/GS6E+6gB4hNydABB0L7QJMXTyCxmGjBN9J1UGYugtEYliMy6II6IRpJc14v3U3uAs4bZgfdIif0T4qdshHbZIdYHM99tdCABxi7V0hw5nydfQUwYQ6TwNI+2OQNqMCzfSoZuFa7KHfIb43JIWQjoH92Z8nNc0ZYV5ulOEM+G1MdxlQ0oL5xyRyFu6sp58djwFhHmRaoIbg7Xx9JksKGRkZGRkZNxarM5sqf+80yMmPPxfpipPFip+5Tef9bUWH/qwqh/68OG1P/JiLdv7QbP3fGFbxYkqp3/r8e965/X//os/Kn3M6TkfNwLzbqFLL6rr/BuPeySbcSIEBeBkhugnrerI22+32+r3++r3+5K05mDw1pIQFI86eqQUIjmbzdTv96PbYWtrK3YTWC6XsQYAbQsRN6RD+31RFNGdAJFhPOTYk7IAqUcE2N7e1tmzZyPxBd56EOGCCLB02F6SFAeIXalU0mg0iq4MSD7RXYQEyDcCgkeaAeQ4rfGAaCMdRuzdYVIUxVpBRsQbX3+u7WklHkHnMYpkOklM6yfwM+QQkYN7uEtktVpFIcNrS+BAwZ3gtR+Koojnb7VaxfEjBvB+dyW4k8TJK2JOmnLgqRA8hiDhhRsRQXDT0O2B4plE8P18escH5uMdEbz4ZPp59LPgBU4RVVhfXBR89rheumf8DHF38cJbYJIigvjBn5Ts+596vR4FC+bOZ8aLQLJPfCa86CSfO6/nkHF6UXnwAb3vM7d1qqJcGRkZGRmnBs//gbHCL79dxWp59Rc/Ayzfcdiq8UV7L1BRr+hdX7pzU+51GtAuzTRvH/coMlKcCEHBbdWe500E3wsbTiYT7e3txbSBTqejRqMRo+XSoePBo9seHfdo5WAw0NNPPx2JK+SZCDZkvt1ur1ntPcpMpNejv57e4Hny9XpdW1tbarfbqlarsRuBixGQRGo7IEZAjjx668UUIWGkGYQQYttIyCvXhJimbSF5jMcRKkgpgLgxV8gY6wxRJV2DtUYk8LoCqaAgHRI6L8CXChK83jshePFFF0kQDpwwM1fWC8fC9va26vV6FENoLbparaI4UiqVokjj7gJfM99LaT2NAdKPmMF5lRRJL+k9zJ318HoEqejmzgaveeGpKZxb/vB+ad3JwM/e8cALLHraB58RSWvtIllzrukpFp7ilO4J9SYQf/wzR10K3se6S4d1F/zc4Aqh3SnzcecJc8GVk6Y7pZ0lMk4XikZN0/NZTMjIyMg4Lag8cL/e8wVndBqKMSIm6CaJCSmWjzwqSfrYf3yvlvef07v/VPem3q/xZEnFu89Jn3RTb3PN+KlRXf/fX/4CTT8z/79+0nAiBAXpMNUB0lQURSTW9LaHBEKsvZYABepSQudCA4TNW0Viyyd1guizR1khyU74ID5EvCkIyN+Mx4kcz29tbcX7ePs/XocNnXuQZuAFK1kfIuOQLHcfdDqdmO5A1Ndz4PlD1Ndt9dKhiCBpLSUCIaMoimg9Z5w4NRiL29j9Wu6GcKLJWjJexoZA4QUn2W+cCKRk8D7W1p0kXvAQYKFnLqSpeKFO0gv8fIzH47WUiKIo1sQWxBsEAEQz1t/JPSKI17OA0HqBTM4TZxFhiqKSrBNz9BQD5on4xHVIn2C/pENRwtMp/Hk+pzhCuK6nRXCe/fWpowbhIO36kKYSMV+u7/UipPWWkmkhSM5MWjOD8aUpI/58RkZGRkZGxi1EtaJ59+SLCQ//yPSWigmOxWOPS48/oRe9q6PpK1+kD/yh6k25T2kp1fonZy+eU9nVR35vVadBbLoZ2Huh1Pz8V6r9Q7983EO5DCdGUABEHiFLW1tbarVakRwSqZcOUyS8zSQEbnt7O0YdXVCAyFSr1UgWITpO6CAwiBjethAyg2Dg3QUgLljk3S1QqVRiOgUOiTRySxSWOUmH7RshutJhwTts7x5NpiCdF8HzAoNE/LkOpN/bKzoBIw0BII4gKPA6ujwwRuZD+ocXjoQAeyQ8rUOABd6j5Glk26+J2IGowL8hpayBd2tot9vqdrva2dmJRRBJqen1etGZkK4bZN/rN0iKqSGQ/+FwGNeQs8q40+i3px/43vt9vIWmtwiltamnFDB/0oBw+ngqA+fUUwF8XL5/qbiAywJxy8UEdwZtKprIOLyGh9fTQBjhLPhnhvQRXusiiKecSIqCZKvVitcErGt6pjJuHywffZ9e8H0dPfq67I/MyMjIyLhBKKTSeHEsYsLhGAqt+n1Vf+7X9MI3lrX7hZ+kp15+8NwNjIvsfO9b9NLn/AW94y9954276DNESYWW9TtTTJCkolJoWTuZQa8TIyh4JBOi12q11goPujVeOoxmQtokxYg7joZerxdz17lG2sIQcsY4ECogHB4xHg6HGgwGMZ8+rTjvxNuL3DlR8+J6zWZzrd6DR/M9ak0nir29veim8AKARO3JMwdE2Xu9nqRDgphGYcknRyRhDIgSrDvpJTwGkWcMg8FAvV5PIQS1Wq21mgHMqdVqRUFiPp+vWeVxFvC41x2AuKYuA9bNi0m69d3PFi4HRJRyuRw7bKxW++1I2V/WG9GIayBcsY9p/QdIK8Up2Q8XTzwdB3ECAQsRJC1a6YU4PbXEiyZ6Rw4IMnVGms1mrEvhBQ29xSJzdMeA10PAxeFFQl1k4Wf2TVJMDfF9ZtyM1c+9ty8NIURXCOJe6vjgzLNHrCf3824unAk+76xjCuacRYbTjfKLX6BHviiLCRkZtxJFkIIXwV0upVyPJuMaUVTKV3/RMeNjfmohveXZF2C8ISgKFYuFtr/3zdr+Xunxv/oaDR8oVJSLZy0sjO5d6ck//8oTYQj48GKgP/zDX3Pcw8g4AlcVFEII3y3pD0t6siiKjz947Fsl/RFJM0nvkfSlRVHshhAekvTbkqgg8uaiKL7yWgYCAYKYOnlqNBrqdDoxXxsCQp2C1WoVydJ0OlW9Xo9kFvLkVe+9zoA/Bnn33Gqi7J1OR+Vyec114OIF40K0gEA7WXOrPOSsWq1qe3s7tlv0fG4ElOVyGYUMIuxEVqkxkY7Zo/Se+++WfIQKbOsQYSeqniYAAYcYI2ow3sViEbtlUP9C0lrbQ2pD+BjIWYdEI7CwJuTCsz6kk2DBp+4EhBqiz/jdVcIccMBQL6NSqcTWoePxOP4bguwkmuh8mgLizgRe73viRSvdJeD/9joQXqSQ/WY9XZjw90PQ+RvBi/PHmUBMSN0BkG5IuTt/KEpaFPvdSzy1Q9JaCoqnXCAuuNDjgoqPm71xEU9SFDtYdx6n/SSf99RtxLU8hUlSfIw5pIUrEUdOUpeHW/VdfLug8vBDeudXnj/uYWRk3HEY37vSu7/1MOn6uT+9VPOX9r+Klv3+qRYX8vfwzUX53Fk98hfvOe5hXBGlWVBpfnJz+O/9p78kSfrQ33yNls1Ci+azEBaC1HvBSne9+Gk9thjovkrnxg30OvC/Jyv9mR/NYsJJxrVUHPseSZ+ZPPazkj6+KIpPkPQuSX/dnntPURQvO/hzzV+cXpiOtAB+4Yc0Qzrd6u3RU4q5OXmhKKK7ApwoOHlxAtJoNNbSE7DDQzghpzxXrVbXUjMkrUVZfUyQudVqpe3tbZ0/fz5W6md+FIVM20ZK+7b6bre7Vl/CCbqPi3aV2OkpOsn8II1E0xEVvJgfYgO2eK91QE0IihkOh8PoQuh0OrEuRaPRUKvViuNNrfySYk2MVqsV24X6a1lbyJ93B+B9RPg5U7gOOBc4X7g+IsDu7q4uXLgQW3tSUNMdEqRB0ErU0ykoAorgwP05p7VaTa1WK+5bWuxQ2hcK6NDhNvzlcqlms6lutxvPiJNvT23gMa9VwLn0dp5eQ4FrAsg+nxfqm7RaLW1tbcXPhKciIGgxfxcZ2FuvNcHnwT9v1PHgOV6HmJDWJeHfqSDij7kryMfGGjH+1DVCDYcTVk/he3QLvotvB5Rf8Dy98y/fe/UXZmRk3HR88DPKeuTvvkSP/N2XqPySF6nywP3HPaRng+9R/h6+Y1GeBj3wxoXK//PXjnsoV8Vz/v4v6aG/8aYbcq3FD9+l1/zEX7sh13om+Obf97nHdu+Ma8NVHQpFUfyvA5XVH/sZ+/HNkv7Ysx0IUVsn1RBMLM8eFSa6TkFAivRJiiQU+zpEHGeBR45xLuCK8M4L9Xp9Lf+91+tdll7hpMojyDyf1h7wYnIQNCLlEDcnX4PBQMPhMEZ/2+12JOVY2SuVikaj0Vr1e7fZU2eBDhPSvmBAsUHWZblcRvKLE4B1RTRhTyC87BXXms1mkfgSzUYcQhBA6CD67fUI3MnhEXXp0MXiIhJzOnPmjJbLpUajUSwmiYMFtwRrhphCvYLJZKKLFy/GwosQ17RAJvuW1k+AUHtLT/aA9BSIMddxcQbHAOkRbtGXpG63q+3t7ZimQ4QfZ4g7SyDF3jrVzx37jauHApicO+Auj+Vyqe3tbZ07d06tVkvj8Tg6VPgscF49NcnbN7poxOeMM43A484V4GvraSb++fMCo3wnuBOC7wrcPXwW+fwzVkQMxCpec1Jwq76LTz1K5RMf4crIuFPxyJ89I+mMXvyvumvt8E4L8vfwnYvyJOi+X1qq/pO/ctxDuWaUP+6FN+Q6l15S6KHnP6EPLgZ67i12KfyFj7xK7/wrp1qEvCNwI3qifZmkn7SfnxdC+PUQws+HED7lWi9C9NCLBGLpL5VKMXKMu8CLyHkhuE6nozNnzsTq9V7hfzKZRDLltRQQLYhYk3stHYoCHj2WDqvgS4qEtdlsrtm9JcUxes46RfK2trZ07ty5mPtNxNXt6aRYSIo2fQQWH7NHs9PaC56T3+l0YpcJ1tJJbqVSUafTWbO2s45cF+u713pwguwWe5wb29vb8b4QOF9LSZe9L60ZIGltzKVSSd1uV+fOndPW1lZMP0HswGkwn89Vq9XU7XajILOzs6NOp6MQggaDgXZ3d9e6ZEj7TpBOpxNdDb72rAXr73Uk3D2AeNHpdNY6d0iKrgWKLC6Xyxild7fN9va2Op39L3DfYyfTvucuCkGIvXMCnUmoZYFQggjk75P2Bbq77rpL3W43Em3ELNJeXFhADPG2oQglOI3SjhWIdpxF5oQIw2eXuaSiIOfCnQhcyzufAM6ruxNYX0QsusycItyQ7+KMjIyMm41HvvyMwif/juMexs1A/h6+TdF8PKjx42857mFcF971ZedvWIHGD779Pr3+0S/UBxeDG3PBa8QjX/fSE1HD4SSg2iup89HpcQ9jI55V+C2E8DckLSR978FDj0l6blEUF0IIL5f0IyGElxZF0dvw3tdLer2kKBhIWqtgD4GDiHvLSLc2Qzyr1arOnDmjbre7Fs2FbE+n07UaDZAfHA2kW9CtgPtBuMbjcSSMgEi1R4elw7x4yNVsNluL4CMm7OzsqF6vxwgsBAwxYTQaRecFZJF7QIawmhNZx2HB2InkU3wQwgXB9JZ+3W5XZ86c0Xg81qVLl+JzvsZpkUEnZ1j/3SlBgTzEFebpqSFeZwKBgX2GPONEgZC3222dOXMmigm1Wk3tdlvL5TLWcqDjB6ScOg64KAaDwZrIBAlFaGItIfGcIS/46JZ/t/ETfUd8ocsE7Ts7nY5Kpf3OJYzLW2RWKhVtbW3F+h1pOkUqBiBcISh4xwQn0wgh1Wo1drBwJ4YXJa1Wq9EBwhwQlTwdhrVAfCNdxD/H7jDhM8G9pXXXDPeRFFOWEPG4rjsweNw/F4D7IdqwfpyrNIXGBc0TlvJwJG7Ud3FDrVs15IyMjDsZQXr0Czp6qPO7ToV9/FqQv4czbne8+zeeoy8vXqd/88Lv04O3wKnwop//Yi3/yM1piXka0f5IodLP//pxD2MjnrFDIYTwxdovTPMni4PfxIuimBZFceHg32/VfnGaF216f1EUbyiK4pMO/kTyzy/1REAhXLSLTKPIXl+BSHiz2YxRzeVyGQkL5BSyAZGlKCARfCK3k8kkVvv3tAPIm7sPICX8cZs+ZBh3AtHyc+fOqdPpqFqtxrExlul0quFwuJaOAOH2rhUIJxBjosfUEqCYYbPZXKsx4GkiENV6va4zZ86stZs82Os1K7gLOy5MIHhIitdPOyFA6FzUQXzwHPzU4u7klZSDTqcThQF3SMznc+3u7sYODbQfRRzY2trS9vZ2dDJQIJOfpUN3wvb2ts6ePRtdG5BNd7J4tw2i/Jwnb3fI2TjK0eKiAIJDt9uNqTRE3Zkn+8GZZEzsM6Q7hVv9uS/OBP9cVKtVdbtdnT9/XvV6Pe6Fd05I91Q6bOtYqVTWnCn+WebzzJ7PZrMoJlBolRQZbwHqhR+pO8KYPc3EnU7uwnGRysVBFwBxl/CdcdJxI7+Lq6rfqmFnZGTc4SgqhT7wGXXNPvOTj3sozxr5e/j2RmUQdM9bhsc9jBOB9/6fB/TofOuW3OuF37Cr0ux0BHbudDwjh0II4TMlfZ2kTy2KYmSP3yXpYlEUyxDCw5JeKOm9V7teSr69q4Lnm0M6IbSQfwoYku7QbDY1HA5jlLdSqayRMUiMt5Ejin727Nl4PUixR3d5raRIcJzEQKa4NtHS3d1dDYfDtdoH3q7Q2w7OZjMNh8PoypDWWwYSPaWuRK/XU7/fj+QZAuqpIR7lJlKOmLBa7bdFJNqPw4D1glxB8hEYWDvm6wTQizv6OnlKBLZ4PwcICqQquJjhFnavt8D7VquVBoOBnnrqKT3++OMajUaxOOTOzk50d5w5c0bb29vq9XoxWu/kkzEiRNRqtbWaDxQ59Kg4+4cg5OQ2PTukZpTL5SgYue2e4pE4Fvx1nKlN7TNd7Dj4PK6lRfDZwrUjHYoA/M15ITVka2tLrVYruoS4D2PhuggqnBvGiLixWCyi48aFOK4xnU7V7/fV7/c1m82iOMK6cpYYnxfoxIFAbQ/vDMGe8llCOONzSQoKIgpryr1OetvIG/1dnJGRkXErsaoX+sinVnRf5RVq/NfTZScH+Xv4xiBUKnr8j79YJ9HfXhkFhTf9xnEP48Tgr/zmF+pnX/6vdHf55rVlftG//fN6/pP/R1KunyBJ9Qsl3fMLT+mk/lZ6LW0jv0/Sp0k6H0L4sKS/o/0KtnVJP3tAgmiF83skfVMIYSFpKekri6K4eA33iBFroreQNsixpLUoIwKAkwNyuiGkVMcvl8trRIbIvUfYqb/g7gTICoQFsuhV590pQMQVckIEm9oLs9lMZ8+e1fb2dkzNaLfbMSKK02E0GqnX660V4GNtvLZECEH9fl+7u7uaTCaRUDFHbPoUvaOOhK+jpNipYWtra81aTyScPaKon1vL/TpOphERWGts8szXWyh6B4xgnSmCFReUdJllXVqv3j8ajXThwgU99thjGgwG8Z7UQeA87ezsxLmRlsC+DQaDtQKRkHMEnmq1Gt0KiEeexoAAgIsCUu/OEtZuNpvFoqGIDy6qISIVRRHv4WQaIsw6kqbhtS1YN/+ccT7988A1OC/8aTabkZDjOuCz6FH9NGWA9CF35+A88HlxLa8Xwmebe+NOYf0Qhngc1wKPsb6sOY4IPuftdjvWZiBViDVgPNJhi8qTglvxXZyRkZFxq7FsFNp9fkWnoS9L/h6+iSiXtffikycmZFyOwfu29dn/+av1w//w225aK8mHfnyk1TC7QkBlJC1/+93HPYwjcS1dHl634eF/fcRrf0jSDz2TgUBwsJpDArHfFwcFAiGznqsO4W6395WyXq+n3d3d+JhbpiE1pENwbSLVECzG49Fvoq7+OCQQUoLlHPJeqVTU7/cjqd7Z2dHOzo62trainR0yxHt6vd4a8SfdgfoEFAakjSVEkwJ5aWE63BPMgzkT/WXMODP8vawt60dxPEifr8PW1tZaPQdPmUhb+Lk44F0tVqtVJJbsB8TYizFKWiOx0+lUTz/9tJ544gn1er04Ps4Re9fpdNbqS0iKkXB3USBwFUWhwWAQ3QzsH2k6EGGIODUQvL6HOwakw44IWPwRTiDavA/y7p0Z0hQa6i8gBvAHgcD3wNfS64DwmeIscL54jY+T13vqQNqdwVsx8jlDbKOIJSkyTvoRsRCecJ/gsmDcpMkg5pAegVjDZwUBbDAYxPvTxpT70lLUXUjufPBaDMeNW/VdnJGRkXGrMbq/0PDzX6n2D/3ycQ/lisjfwxkZ++g9r6TqTawz9ae++7/pP/3+V960658m1HZLevB7Hz2x7gTpxnR5uGFISR9/Q+w8yujk3lMAJpOJ+v1+JPeQZCKZ3rXAiyk62YXsuA0dYo17gfx8HvM6AjgTsJdDWmq1mu666y7dfffdsbsDkWrGNRgMot3fnQLkuWMFZz1IQfCWlVyLKDmV6iFVCCK4OrD1eyoH6Q1Y93neq/BDyGgjiEXfawewfpBHdz0wL6LFzH84HK6lAXgBP+lQSIBc8l5SPxCIIMde04CoOaIHZ8nvg9CwXC7V7/d16dIlFUURRSDqAXjknOKDOBQgtawJa8uZ41zM5/PLUiOYNwIOhJhzzt6Px+O1dWBtXThI4WKFp/aQyrG1tRXJNqkICDxe48BTe/ysep0NBECEqXa7HVNvPB0IYURSLKyJeJa2cGRsODa4DvvlP7N2nGNcF9TZGI1G8azx+fZzXi6X1Wrl4lgZGRkZNxurWqEnXlnS5I+84riHkpGRcQ2Ynlvpz/zBL9FoNbv6i58B/szW0/pb/+vHtGytrv7i2xjlcdDz/snbtXziyeMeyhVxYpqsV6tVbW9vx6g9VnXICJF67x7gpCltL1etVnX27NlIvobD4RpRgIBBNiDI2M8hXTgkcAkURRFzvcvlckwTGA6Hazn0kKbRaKTBYKDlcqmzZ89qZ2dHZ8+eVbfbVbfbjRF5yM2FCxfU7/fXWuBhs/c0geFwqOFwuCZq+PoQud/e3laj0Yh2cTpIUF+CwoBpxBp3BQSUqvsegcfxIR1Gjt32DklnfyCJ3q2AyLI7MhaLRST+XojR0zBwEISDrgKDwUCDwSCSbAiot3nkvPj13IECSUZg8gKR3kKStXLxiPQAr4OAYILgxHsQCtgDLPyIC57O4MUGy+WyZrNZJPfsKePxjgdeEJP5QKTZD09vabfbsTsKQgfnyFtvehFOXsPfLmoBXCYILTgrWAs6QrgDCFLPfkP2WTtSQHxufj+vz8HYvICmuxtwy3jqEulRiEcZGRkZGTcfq2qhZT0XYMs4WagMgp7zbb96Ais7HD/e/SXnVQ03z8n5qkZZH/tN79W7vv75Kk5UCPzWICyCHv47b9VyfnNEmxuJEyMoEJUkeu1RWkhf2tc+JW+QreVyqfPnz6vRaKjf78cIKIRY0ppQ4d0ZIO9EyL1DBESl19vv+LO9vR3TLCAj5Od7obnZbKZms6nz58/rgQce0Llz56KlGzs7JHM0GkWyCGnyVpGSYkV8LPrcz/PBqVNANB2SLmktPcNbBXqBP0ggxC4ctDUknYM6B8Aj/7zfC16maROTySQ+PhwOY+0C5osQ5CKKdEjIEX1wjNAy01/nNRTc0cJ8OS/cK02p4b6cNy+EWK/XIwH3egmeouIEm/Pj++eFEN0Z48KKp0Mg9CDiUGOA+bqgA9KfWd9msxmdOo1GQ9vb23Ev9vb2Ys0QBAOv5eAiD39cpPOz550zcM5QdHE+n0fxDOeG10fgs806+vlxUdFfizBDOko46JyCc8bH658tr2OCkEYHmYyMjIyMW4PHXhP0Mb1PUvVnfvW4h5KRIUkKhVScAkJ3HFjVbr7M8qNv+yl93Pf/xZt+nxOHQgrL03P2ToTe46kHkEMn/LPZTLu7u7GTAWTNc8clRbJVqVR09uzZGPkmAup5/ESs3ZnAtSlgKB2SFIj1xYsXNRgMItGBpBRFEe3tIYRYWBHyQ/u9nZ2dWDyRbg6MfzgcqtfrrUVO07aDntLgtR+8rgPCC/fxPHTqS2xyeXAPhAxIFwUHt7e3Y1tOSbEYHu4Jos0QTv72NaUdJmkCPIZLwwmdR8MZD0UJqUsAwUWY8e4SzWYz1qvAieHF/HyM0+k0Ci1eENEj55wZxuDpDMyDWgB+tjy9BhGEf+OsQRBhTl7oMm1vSK0R1sHH4LUTINpex8GdJIgppBYhlvX7/TWHhLQueiB2uAtAOhQ1EEE6nc6aGIYYwPVYL2+F6UKOp2d4hxKv3eAdLBCfvHCnC0msL+lRnsIjaU1sQAzJyMjIyLiFyAaFjIwMQzWU9eLv+KDK0zvry6E8DXr469903MO4ZpwIQUE6JLIUmZMUo+C9Xk/D4XAtYu/RQ8/Z9toJkBYIiOf0E1n2mgzNZjO2CMSFAKEhWkv+eNqOki4R2MIhqERfaRXppNht/z5WLwIJkZxOp5Gse7FEFxwQV7ymhJPAwWCg3d3dKEZIWivciAU9LZgHyfYuDU7yycX3qDDjQUyAOPs+8jNuBRwLEEUfB3uAq8JrXiAk+XUlxVaYuEHc9eJOEC+ECRl22z37AVn1GhPMGXJMvQPvbOBFPlkXzgTODU8x8LX12g4IIIgR0qEwhvDmYok7VSSttUBFwOH8jEYjPfXUU2tiE+cqnT/X8DoUiCMICbg3cDKMRqPoFvLPOuff74WYwGeFzwbn37tVeDFFFxc4M5wnxpG6lNgPXzPcOJ6yk3F6ULnnruMeQkZGRkbGdaJ8d/7uztiM//zLP6Lnf9Od07aztlfSw3/rV457GNeFE5HyAAHgb4QCrPD9fj+6DOr1us6dO6dWq7XWP57igM1mU91uN7odKGbnHSMkxagw9vR2u60zZ87ENIn5fB6L7EmHtnXcE2l0mbERCXX7fLVajdXlJa1Fyj2twJ0Z/PFoNSIApBcrPESK+znZhpROp9PofiDy6xFsiC2CCSTXuxCQHgG5W61WMaXCyTxjR2ygjgEF/XAteOHHtDgmtS6InEMuvU2lF4bEGcBj7XZb58+f13333RcFG6L0jIO6C5cuXYqpKZ1OJ5JY1t5dE5wF/wNww0DGIb7sOYIBpNn3HRLvqR5u50e0Yf/d5s+eAC+EyJ5RF8G7GyDgQPj39vZivQii/e4ySTtEcN5c4PPPDOPg/ghZzJ898daknHHm52INgomLTozHRSxPhaLo6Wq1io4S/6xIiiIC++SCQxYUTh8e+ZqHjnsIGRkZGRnXgxD0zq968LhHkXGdaD5+a+LS5RA0+T0vVePJkiZ3395FGhtPlvTc/+dtWp2y3z9PhKBQLpd1/vz5WLiv09nvaQox39vb03Q6XSt+V6/XY1TXbfrY273wHaQX4kExRklRTLjrrrvU6XQiucJWTl45pI2otqQYFZ5MJpFEEu0lsk3E3tsREl3lHkTJPRdfUhw/Nnny8CH3ED+363N91gWrOEUf3aUB4cXNQLTdiS/R2na7HUWa4XAYW0dCNP1+fn0EBSfPpIF4kUy36yMwkKbAa6RDkodIIil2tOCe0n5NjnvuuSeOm2jzcDjU008/rb29PY3HY/X7fe3u7moymawVDnTHhXf94D4IKqRHLBYLDQYDTSaTKKAwXq+tQJtP5uyiU7VaXavpgcOAs45owh55pwnWjPfjgGDM3vWDGhaQa9wKqfvBu6p4IUrA+UUsa7fba+kw7ubY5MDguuyZ77MLNjh3uKeLCYwpbV3pZ0FS3CfpsJML4OwigiHkIYhknB6UXvYSFXeWKzIjIyMjI+NY8Jx/9jbN//LyphZmlKR6qOpf/It/qr/6Oz9Lj/2Jl2rRkUb33V6/nzUfL6nal+77vt/W8qBW2mnCiRAUKpWKzpw5E90JrVZrrYgfufoU2HOiRGcHIqtYlREjvPVbSti539bWVqy5APFqtVoxKpxGS/kZMjebzbS1taVWq7VGmiGGtA8kGgtZpMjh008/rfF4LOkw4oy93QvIMRcs4pBtIu2kUkBwuQ/pIJ4SATFDoFgulzGKjBuDyv7dbjd2etjd3VWv11urwYCbwTtCeAoDIgbOhul0GsUVJ/vSYYSZNYPoSYpr64KCE21e2+12ddddd+muu+6K1+ZMXLx4URcvXlSv11Ov14siAPemloGnxHiRTS9E6B0kSHdwR4PX66hWq9FJQfoA4gjOHOmwYKZ0SNjTzhjegYLn/POwWq3WUlO88Kd36HDCT50HzihuHOmwIwSfGS986e4EIvsUe2TufFY4K/455LPEvxF0OIOMl/PPWLxFpBfoZG6IF5xB7sH+sOYIHS5ueBcQ5p1xOvDo67b3K2hlZGRkZGTcwVh9yife1P8Pz7wjqJjfuij6Tkl67E+8VHd/5y+p8tBz9aE/+qCGzzndokL9Yknd9+/v0fn//VEt3vt+La/ynpOKEyEoOFFuNpuxKJoTHyLW7XZbtVrtsqglxLfRaKwRYm+PB8mF0FUqFbXbbW1tbcXODnROQFDo9XoxF9wr1DtZg1x2Oh0Nh8P4GONut9ux3SBiQ6fT0dbWVoxaE7X37gNOwhBU6CrhlfN7vZ6m0+laEbw0OgxZ8yKTrHOz2YyFHqkBICk6QnBRkB4wHo9ji0wEEAQGJ9Gey05UnH2DrLlYwPsQTFwQQTRCRPBWgTwn7acGnD9/Xg8++KA6nU5cR+omXLhwQb1eL0blEXKkwwKPacvLRqMRHS/Y50klYHy+5/xhL71mgNcjQNzxApNuv/fUFO/e4WNlH0k7IY2As4YzhefS6Ly0XugRAQORhc/PJsLuhSk99YX3ci1PR3Cy784HPsfe7tK7hiDQIDQidvhni/3hvVzfayX4OfNxsIaIeZ5mk3F6cP8vLvXh31vKhd0yMjIyMu5ofOC1DRXlmyco3P2jj97SdoZ3l9v6j1/7bfqCztfo/n/8S3rOj5T04c+5X4PnnhJRoZAe+F/rY219ZKjiV35TknS6Ehwux4kQFCD6uBOwypNvLyla/ImKD4fDKBhAirvdbiT6Xlkfez4RVFISECG2trYiGaJwW9qqkbx7t5IXRaF+vx/JPukRdDGg8wMRfkj53XffrW63q3a7raeeekrD4TCOmTk74Q4haGtrK0adufZkMtGlS5c0HA7jOkDEifhCXl1M4HHSPSByvV5Ply5dkiR1u93oqsAZQESf2g9Efn2PPLLsHQW89gEkDdLt8/X3IKxw7zTKDVwIaDabuuuuu3T+/Pm4nt6SczAYRFKf1kDgZxeeIMo4RtwC7y0wES6I3jt59fQJCDmiBO4QnAteRJHzxzpwhnGReCoGKTZE7BE5EBNcREBcY644KCie6V0bEBQ85YS9okimp9lQg4PPD+4V7w7B2fDUBS+oKCnWG+F5PpOeglSr1dRut6P7A2eE13DgXqynp/J4rQk/k+n5zTg9aPz4WxQ+7VU57SEjIyPjFGH3T79K0sl0ly3r0vhzX6Hmj7zluIdyYnD/LxQq+v1bft+Pq7X0Wa/7Jb3tH0uL975fD/6o9KHPvf9EOhXufovUfmxdcCm/8dfWfj6ZJ/6Z4UQICkTUIQwefXfRwKOzkHZcC7QuhCwQMffCbV4ngPtBmiGCbtOHPE0mk1jHgfoFkqKVHGfEYDDQhQsXNDrIfWm1Wtre3o6uguFwqHPnzsX2i+T0u0BAa0xIUQhB7XY73gOXxHK5VL/f18WLF1UURcxjd2u6dwtw6zjEl/XGrt/r9TQejyNJgyTioHAhBsJHioC3UyQKLR12YcDuz5w8P31TxByRhfdTqNCLA0IOveje+fPndf78+bUaG9j3cYEgXHjaAOPgntK61d/JPlF4XAppTQNEIK+fAElnHggy7BPr4R0s+Jv5NxqNNZeBd3ig2wJtTEn5wZngIokDUQIxj88X5N4FHkQezidjZY0YJ/fzNo+As44YxWPe2SQt6kgKDE4ZhBDEHoq3esFGT1Xy7houXnEWPC0DeF2GjNODp77y1SpyykNGRkbGqcKFTyhOrLNsVSt04eMqevBHjnskJwMP/PxK7Z95u1YHv9P/vq/7v/Tmb/3nt+z+X372f+u13/HVesFfe7MW732/nvNDS33wC59zbDUVKsOg5/1Q77LHS+/5kJa9yx+/XXEiBAW3T0PWnVxjq4bk0/XB0wCcoEBmyceGHOFsoDghhNojy7RirNVqkWg/9dRT6h8ocY1GIxIZbzPYaDS0t7enwWAgSbGeAx0ner2eut1uzO9vtVrq9Xox8u3pBF60sVqtamtra601I8UEESM6nU7sTgCplA6r13uxP9aHYnqSYqoD0V1y4pfLZSzAiIjBurG2e3t78XHEBogrBK9SqURHidvmJa21q4Swe8QeMYC1SAkejohSqaR2u62zZ8+q0+nE2hpOhonwu62d9eGcIA4Qgfe9gCRD6CGvbutnTt6tgnQF5s11idDjcHAhgpSc2Wy2dvYg1IzJazqQDoDQBXnns8BZp04Aa05BRc68d3Zwks36UP/C3Q2SYitOhCjSQFhPxu6FQTmnOExcoPA2jjgeWCu+D8bjsfb29mLaEWP2VCnWms+Lp0Ns6ixBsdJcP+H0of88ndhfSjMyMjIyMm4FnvrKV2tVv/Hi+v2/UOyLCVY0cPv7fkX61ht+qyPxompbP/n5364/tPgaPfy1b9LiAx/Sc//9XO/7soc1PX9zRIUH3rhS9zef3PzkcqnFBz50+cM3ZSQnFydGUPCOARDVwWAQyQukBfI9nU5j5B4C6WSBaCoRWggFFvBms6lOpxPJNsQIN4QkXbx4UU8++aSGw6EkxdQKSCb597VaTaPRSJcuXVprU7mzsxOdC5PJRPfff7/uu+8+tVqtOD6EE9oWur1cOkw9KJVKsSMB16ODBZ0MFotFzIP3KC3PObn06C7pBOS8syZOLqn2z16Q7nHhwoX4HsQWSWuWfkmxZWVaP4AuFRBCTy9gzC6SIOBALj29hf2T1msyeAFKUhEgppLie9gThCru4xF10g+ImOMucOGDM5gWPoRMQ3wRbCiY6SkjiCw4Urx9KYKCpOgCYG8g4e4AYb9x4iASIVow19lspr29Pe3t7cU1Q3TxzhOQ+8ViEcWRyWSiXq8XnRSIgZyJS5cuRYeK1zFhnVh/9oz98aKKdBhhTvP5PH4XIDCwRozba3iwJuyPp0e5m8EFsexQyMjIyLh1uOutUv1/vV0nz8CccbPw4W94jYrSyd7x6bmVLnz5q3XuX7/puIdyTZjcFVSUbqygcM8vS52f+I3oTIhYLfUZn/un9dM/8u9v6P2uhBdV29KDhzXQFo89roe+c6r3ftXHat599vNufbSk53zPu+PPq15PC2vPnnE5ToSgQFX6SqUS0wA8Kou1nPaHFy9e1Hw+19mzZ6OrATIOEfBIMlHgwWCg4XB4GcGCiHsBugsXLujpp5+O6QsUhYTcExWFNPd6vUh2qKfAuIbDYcztP3fuXIz+T6dTDYdDXbhwIbomiN56VH21WsX8f4rsYcHnXt7yr9lsajqdxsg7ogpRYRwIjA23h1vq0+J2kqLbAJfExYsXNRgMFEKIQovXGkAcwH2BY4DUCNYfQlyv11UqldbSOrivpCgceBpBKhwwfsZBXQXWlNQHRAyIKEUal8tlTB8hDcXrFNBNhFofnEkKY+JIYa6cSeZTr9fXukkgDOF44X3tdjt254D84nZI26W6O4HHvXYFYk+1WlW/34/3QdzA+dDr9aIQIGmtfai7eNgvb3WJyMWY3D00Ho/V6/WiUOKFFj2tAKcCn1/vhME60yGElA5ENc4fr+X67BHX83u6GERKlAscfL4zMjIyMm4+zrwjaOf7f+XU9V/PeHaYb53cdAdQlKV554QP8iZh6z0l3fvdb1Mxmx392XzLb+ozP/tP6ad+7D/c2sEZlpcu6Xnf/OtSqaR3f9MnqLhOk2lYBL3w7/yGJKlYLrXMAsJ14arhtxDCd4cQngwhvN0e+8YQwkdCCG87+PNZ9txfDyE8GkJ4JITwGdcyCHKksXD3+/21XH1v5ba3t6fxeKzVahU7JWC/dgs5RA1yNJ1O1/KsIa+8pl6vx4rx8/k81kIgBcBb1mH9hjRBuiD47XY7ElJSCbrdru699141m81InBAT9vb2YmqHE1nPhUewwMZdr9e1tbUVo9oQR48ee6SfiC0WfVwgly5dimuCcEMhRElr0VrGNZlMtLu7q93dXY3H47XIMvdlTSjkyP0Zg7s86KzhggSiBQ4J3Ag+B3eiQPYhv56mQYQdgYkxeaFO1pt95sz4PjAGxCfSEXZ3d2PBTq/x4CkaCFvk8XNtag7M5/NYC4DnKTLIXHHceHtIIuwe7UesgpwzDhwPiBYQcUkaDAba29tba/nJPUmhYH095SOEoH6/H9/rqS4IFX5dSWuCgaS4x94Zwx0qFDMdj8drhSpJy+DssE+sWVq/wwtm+jlHqEJkYA5pasZx41Z8F596FLq9qhxlZNwJKKTu+0o696/frOKEiwn5e/jOxeBjVrr0Ja8+7mHcOhT7kfq7/39v0mr0/2/vTGPsOss7/n9m8dxtZuwQB+KlJTEGNZQ2hdZFLQI+QAuINvANqCgqoVQCqlJRoVBQS1VFYkmISltQQ9lFoIhSlQKikFJExZLEITvBxCEBHDvexuNZ7sx4lrcf5v7OPPdmVjNzzzn285NGnjlz55znvu97X/nZ/m9zzc9mOni/XvSa12s2zWs+bX3FyY9e8DE9fMNz264tTE9rodnUvrffoae97Q494/qHZAta82v/dXdp39u/r4Vmc/G9RjBhw6ynQuETkv5J0qc6rt+UUrrBXzCzqyS9StIzJe2SdKuZPT2ltGorCf3q586d09jYWJviP//xxyHA0RgaGtL27dvVaDQkLR25hx6ApDYn1R+DR58/jgTPx0nEeadVwtvDM3z/OY6SrzDAmT537py2b9+uPXv2aGhoKMuukrWdmJjIKgtwBHGOyeD7LDbOITaTaa/VatlJFWTbGSsy3p2nFVC1gS4CGXEy91zDkSOQwukB3lmlzQJnE7s7Ky1wqn3FCb8n0OKz052ihpyWQTk7jnSnsCItGowh83by5EmdPXu2TeQQ5x1tCUlZKb3XeKAtA60B2nJwbNEhwE6CTzjkXtvCVxOQKZ+YmGi7RlCAuSXgsNznhwoEf3QiGXbWMBoHnZ+vZrOp0dHRrMpFWtJL8MKIktoEEansIADI2qfywcyyMfJCjZ1zxvtl/XoYK+bczzHPourDn07hK1X8s3xlh2+1Qcyy82QIfwpIAfiEtngvLjtXXvc9/eQ9W9M7GgTBFtByWp78we/mbcl6+YRiH940bGCgPDFgkxb6JOvrK3zg63zoOdeeQNl21rTr/Rv7XPZ+6wd6+e7n6MSbfkf/dd37JEk7ewc0YP2r/+F50Gs9SiulxRdap6ydOq19bzu95r1KswYLzJoBhZTSt83sqeu83zWSPpdSmpH0iJkdlnRA0qpNR2SccYJxBH2GkWACZc/VajXr/Saz7DOlBAhwOniOF5kj2+3bH2ZmZjItBJ8B960IOOUEAigv9/oHc3NzWYa5Xq9raGgoE4wjSELFQaVSybKlXrPAH2nnReKoyJiZmcky42ST+VvveFJhwfjh0BE8IJNMyTol/fT4M57Yx3hzogNOK/jAAc6n17hAwNEfxcmY+DYVnDoyz14EkPths88kI3DI3+M8joyMZO0l2C8tign63nqexzP9caJkwk+fPp0FE2irqNVqmaaApLaKANabDxjwPtFfYE2hD8D74NQL7iOpTZDRr1/eK3bRgkGrDO0AjBfrjrYXAjs+449DTnCBCg7em2+P8ac0jI2NZZ9H2m54NkE9rjHPvvKEzyx/Q6AAJ99/tlk3BLUIzElLlSK+bYMgJYKvBBmoTOD9zxQoSt2NvfhC4Mq/vl2Hb/ytvM0IgmA1ktQ/YeqbNO26oTTBhNiHN5mfvuM5Whgotn6C58wzkyqveI7qX7gtb1NWpHdoaGVHewX6mqZ97/+h5kfPbooNl33ou7r2Q8+TJD3y2V/Xhw+0t0L0KumF1fLMe7A2v4iGwlvM7I8lHZT0tpTSGUm7JX3fveZI69qqmFlbiTcBBtoU6BHH+UL0kFMKuE6JPD36tDZ4p4Cqhc5efpyuM2fOtIm04Qzh5ODETk9Pq1artYngeU0GnC1aEwYHB9tK4M+ePZvpJkjKbPf99l6/gPeJg0UwgeoEjpFEWR97+/r6NDg4mInxTU5OZo4cgRqcaYIDtHH4Yyl9htoHUjrHG7tx3DgBA2eWsaaFgDmRlFU0+GMkecbs7KxqtVrbCQC8nveK00hLzMDAgJrNZja2IyMj2akUtJ74Y0R9JYQvffdZcxx7hCxpkaCig/kkEDYzM5O9zms84KwTXGAcybaz7hF+pFpAWsrA4/z60zpYm/Pz8xoeHs6CN77yw59YwfvwYoSMr69w8YE41jvrjyAA68LMnnASCZ9z7PdVQsDreAbj2RkcYo58UIL78F59cIB7Exjzp0rQeuPbQwiesCZKwKbtxUEQBFtN5WSPbEHa/Z7yBBLWQezDQe707typn127X+e2b8xZf9rNRzS3ScGETq549T16n57Vdq2nUtFtdyxWDuzZNqI/Gly7iiAoNucrYf5hSfskXS3pmKQbW9eXazhetpLEzN5oZgfN7CBOMI4g2fSJiYm26gCc1VqtpkajkQkkElDwToQPFOCQ4bBVKpUnHFE3NTXV1rPvAwVk2Sm3pwUBx4Q2DX72wnmc9kDfPZl+X4q9XK8/75Med67hYE5MTGSaEOhOIJKIM9dsNp/Q507mFofeO36o8lM6T8uGV7rHecZRI5Agqa0qwffo+2MgaR/wrRVe8JDTB4BxpvqDto3x8fEsUMTvGMuJiQmNj49nIpyIQiIM6IMSOOE4/qwnrz3B/DDuo6Oj2XqiDYVxIFDD+PtSfebRV6P4MnsERplbnFrWpBcO9KdBUJngNQ78ySisY6pofKuDv6+kzDn3bUadbSqdFRy0d/g2AU4u6ZxPsv+MHffFdt4H1UPYxNgxJthMQIAv/9klYOBbYJhbgm1eR8W3qdBqUQI2dS+eVXEqMoIguLCoHe3R4CM92nvjnRdaMCH24YuI6R096r30SXmb8QT6du/Skdfu19STNxZMqD7eozTd3TW3MD2tbz6rrm8+q65Pvv4P9N7T+zd8j683+zX4SJzEVRTOq0IhpXSc783sI5K+3PrxiKS97qV7JB1d4R43S7pZkp7ylKck38qAs+NF2Lzo4fDwsHbs2JFlG3EiON6P/m7Kn322F8FE76zgpJD1JmuLw+LF63B4cLwmJiYyHQWy2jhyAwMDajQaWTDB6xwQQMC5xKlGBBCByL6+vrZTGmZnZzPtBfDHO/qMPUc4cmoGWVnaDfwxftJiawTZcYIPBGeArDGifDyTe/sydLLgXrPAzNraKNAx8Kc6kKmm9J7KDz9GZKkZd/++GFNaLTg5gjllDgioUKlB6wbOvm9RYK5wsn1AyutNcE9OB/GtIKxh2jtwgqemprL7oWvhKwMYD1+hwnv3Y+fbURAd9ScZMDdzc3NZAKlWq2Vj4j8H2Md78AEFxpHPGfPG6yYnJ7P1Q5UNn2NfCeH1I3g29/GfKX9v7uFP3vBVJtzTi6hyD4KLjK2vevJBS8aZAEWR2ey9eMguKUUUJQiC8lB7rEeV00k7v3pY88dPXHD9yrEPX1ycuSpp6KdXqP/rxcqqj7zglzS5d+NtBHu/MqL54ye2wKL1Yd+5W//9l8/Xp990QG94xnf01h2Prvk3X2sO6O0fulaX/+MFFZgsNecVUDCzy1NKx1o/vlISardfknSLmX1AiwI0+yXdvp57jo2NZc4wDgYOE73klUola3Xg2D6cKRwIMo9k8sfHxzU2NiZp8QhKyubJKHvnBkeU0nycZxynzmfxN9KSU06wgl7/RqPRVlGBGCJ6BpwCwakP9Pcj8EdGFecKkTuvKeBL9SkP51+0GnD4/TGGvoQeR8o75PS6+1YNX63gKyokZYEHHDLK4mnt6O3tzTQwON5SUlu232spkGHmXryW1+NkMgYEVag0Yc580IH1hB04o167wGewpaWsPTCGBLBYC5OTk5kOiG8T8Rl2HFraKPjZV24wl6xLPza+ZYJ7cn8CH7T1EHzB5s6jJ3G4cbr9SRgEE5hvP9cE2mhxoSoFIU4ELXmuDyZgp6QsqMN4EVThs+1bYryuhm+BoLLBa1L4ViZfvcEYsq4ZD+YeoUzfJuHbMIrIVuzFQRAE50vvjOmyg+1OzdDdxzR/+BGVooHsPIh9+OLjzNO2adcDuzT32LLxodIw9FCPek6dUd5qBv233qndt0r/9pqX6B+et6CbXnyLXlF/ogg53PTTF+vyD0QwoUisGVAws89KeqGkS83siKS/lfRCM7tai6Vbj0r6M0lKKT1gZp+X9ENJc5LevB41WzL9jUajrZ+8r6+vrRSfjD0idGSecd46xQtnZmY0Pj6u6elp1ev1rKSc1gGCC5y64EUCcUgIHnhHk5+9uB56CVQFILZYr9ez4y1pJSCDOzo6mpXbU57PiQyNRiNrjyA7zOto7fDVCK3xz2zHyW42m1lm2us1eAcOhw9bOsvKcWilJWdQUtt1nDWfUSaggBNHWwsZdEmZY83Pk5OT2Xv2xwH6IBPP6+xxx7n1QoJcBwIsVIIQ/MA+f4wo1/34UiWC48r4sHb88YQ42Z1BAJxgH6jwrQStz13b+FLR4is5mAvug+6Arzbg88Dc48R3iogyd759AIfbB67m5+dVq9VUqVSyYAjvlRNWmHPmj/vzxRig90B7A5UJnB6BsKTHB2oYF+zg3tu2bVO1Ws20HBgzfj8wMJCtN79GfGsN+5Bf73nTjb04CIJgNYZ/bNr+8MqVW71T8+r5v7varl1IG0/sw4Ekje1f0GW7nySVPKCw856m5h4/vvYLu8TQLd/X0C3S9X/yWm1/17+EcGOJWM8pD69e5vJHV3n99ZKu34gRZGRx7nGe0Cvo6+tTo9FQvV5XSin7vjOD68vTfXXC/Px81nZAbz8tBZIyRxInplKpZGXs0qKzQWADB887mdyfqoKzZ89mQZDBwUENDw+rVqvp3LlzWW/5yZMns2AHfflmllU0IM5H4ABtBu/g8WyfwSYIgoNKNQaBDq7jMNKDjgPF++XYSh+gwUklYEFgwFdDzM3NqVqtZtUBPuONjgJ/j1PNWBPUoZ2C9UCm2vfMMx5eBJIsOu8Lx5pxQtvAi156gUJOOuDZHi/QSPUDQSdaCJYLxmCTb5PBCfenHnQe0ei1BjjZABv8SQg+CIC2hddR8HZQFeOrWwjM+EAF/3auL39Uql9LfX19WasHc+z1SXwVC9A+wjpiLNGQIODjK2L4LEhLAaXldBVYkwQKfdDDa0v4IAp7jj9Jwn/ei0A39uIgCALonTFd8cX2LGHfz09q7tjjOVmUP7EPB3D0BYP6paO7NXfksbxNkSRd8t2jmti1R83d63PCL7nX1Hfo54UM+F3y8e/pXeN/qo/ccJN+ZVstb3OCdfCLnPKwaZAt9f3PkrLye04eIKPOiQn+NAMvbudLr6enpzPRPJ5Tr9c1PDysRqORKeLzr1eWJzDBfbgHjg0OV39/fya+iKMrSbVaTfV6XYODg5KUiQWeOnVKo6OjWUaXqoNqtZoFM3AMvbNPKwb4Yx6lJfV/7/RSzeGrLAhMECzwWXjmA8eM55FRlpZ0FABnk7YKHE7s4O9xTHH2fHk+rQq+dYNAjhcOJFji7y2pTWzQt314wU5EEr2zS5sD66dWq2VrCwgYsL4omSe4QRYcR5SWDpxe1oPP0PtWgE4RQB9M8NUZPtiAXcwlYpp8FiRl656ABRUUrFnWi8/w+9YB3xLDfKFtQOCnp6cnuy9/Q6UM7w2Hn/lgTHwVCgE/Pxe8X2np9AZJmRirr8xgzRAs8METxtWLLnYGz/x785UiRQooBEEQdINn/OsZaW5eWljQ/EM/aftdsZvAgqB7NHctKNWreZuRMffoz7RtfLea63x9/fic5k8VSwfCU//CbXrz6J/r8x//oC7trWfX/3l0r/SOHVqUKAmKQiECCtKSY4cj6MXpcCQRkavX65lInqS26gKcPEqvJWWtDjxnYGAgc0oogedvcchw2nyrQ2dGmGw4AYpKpaKxsTFNTU1lzvjQ0FBWHj49Pa0zZ85oZGQk6x2nvxvBSQIKPnNM6XWn00OAxGerJWUOL184arQ0IGDnM/G+EoH7MkZkehFSxGHE2fPBBoIhBAd8lhfn0me60TSgnYNAR0op0zmYnZ3NqknIbPs2BhxJbKXKhLlEnwJdCN4j75lAD5UV/A2l7+hAsH68o+6rKnyLB9UVvnQfJxjdBWlJgJJAlT/NgjllviS1XadloFKptLUK0OrgW1w4/YN2B4I+BEAIaHitCZ6Hfawr377hK0/8EY/cq3NdEkzofD1BJipSCMowTn7N+s+mr1rwIpp+7XXqWfB8Ai0IcvIzzyI4FwRBcDHw9I+Pqufk6EVdgRAEQXHov/VOvfblb9CXv/oZ9VqPvtYc0Fde+dvSofvyNi3ooDABBd+rzMkM09PTmQM3NzeXiRxWq9XMMZWW+sLJYuMALywsqFqttmXwcQZ7e3szPQMCEzgdXg2fKgkvTOj1C6ieqFarbYJ0Xn+BgABigDidvh2AEvrOYxS9QKDPWvtMPE6UpMzh8ll436+O8ygpC5IQPMAmst04j1Q1eK0K31PvRRn7+/s1NTWVHTkpLWWBqRxhHnFGceJwqLEZZ1dSNl/c0wtAEhjhdAZfeTEzM5PNodcFIKBBGwrj6YU2CRD4YIkXPOR5zAHaDKwd/hbHGbupGlnOWaUyxlcIEMAhiMX8+yy/pKxNgBYCrlEFw+v971gDnZ9Br1PA8/r7+9uCMswTeiGsdcbLrzHu4ysKcNqZW19JQvAMOzuPevSVFd5+L9LYKSzZ2TaCDT7Y0NkG4QNXQTl49O8PaIWT2YIgWIH9nxrXwn2HtJDisxMEQXFYuOdB/eGBly/+MD+v+ccP52tQsCyFCCiQWcRZSSllLQG0C0hqE0qkBH1hYfGISZ9x9hlOHEscA15D1to7jNLSCQX0+HMfMt4+g4kAIgEL7kUJNaX8HL+IJgRZd7L+vuffO45eFI7XeAcKRxUHeHBwUENDQ5lDSoaW0m/ug2o+gQRK5XHuaCXxper+RAWvbzE1NdUm/Dc7O9smeojTyLgxj9yDrLRvRfCVIGgaMK6IAjJX4E++8EEnnEKccq7V63XNzbUfacm64L7YgAPu203QZCBA4Y/h9NoPXvyQFhT0MaQlMUvWi3//jAn2eF0Ef+IIY+HbNPg9QSyqOrz+ghcy9FokvuKlM+DgHWyeyWfAB5m8ToGktuf5e0rKqoNYO9JSpYufd19R49siOu/PODLfvpLBBxK8Dopv1/Cv5X0E5WG+Eg5REGyEfZ+fUrrrgbzNCIIgWJayn6ZxMWCpANFoMzspaVLSqbxtOQ8uVdjdTcLu7lNW2zfL7l9OKe3chPsUHjMbl3QobzvOg7KuUam8tofd3eVit/ti2ofj/8TdJ+zuLmW1Wyqv7Vu6FxcioCBJZnYwpfSbeduxUcLu7hJ2d5+y2l5Wu/OkrGNWVrul8toedneXsPvioqzjFnZ3l7C7+5TV9q22OyTMgyAIgiAIgiAIgiDYMBFQCIIgCIIgCIIgCIJgwxQpoHBz3gacJ2F3dwm7u09ZbS+r3XlS1jErq91SeW0Pu7tL2H1xUdZxC7u7S9jdfcpq+5baXRgNhSAIgiAIgiAIgiAIykORKhSCIAiCIAiCIAiCICgJuQcUzOwlZnbIzA6b2XV527MaZvaomd1nZneb2cHWtUvM7Btm9lDr3x152ylJZvYxMzthZve7ayvaambvaM3BITP7/XysXtHud5vZY61xv9vMXuZ+VxS795rZ/5rZg2b2gJn9Ret6ocd8FbsLPeZmVjGz283snpbdf9e6XujxLjKxF2+JnbEPd5HYh7tud+zDm0zsw1tD7MXdJfbirtud/16cUsrtS1KvpIclXSlpm6R7JF2Vp01r2PuopEs7rr1P0nWt76+T9N687WzZ8nxJz5Z0/1q2SrqqNfYDkq5ozUlvgex+t6S/Wua1RbL7cknPbn0/KOnHLfsKPear2F3oMZdkkhqt7/sl3SbpuUUf76J+xV68ZXbGPtxdu2Mf7q7dsQ9v7njGPrx1tsZe3F27Yy/urt2578V5VygckHQ4pfSTlNI5SZ+TdE3ONm2UayR9svX9JyW9Ij9TlkgpfVvSSMfllWy9RtLnUkozKaVHJB3W4tx0nRXsXoki2X0spfSD1vfjkh6UtFsFH/NV7F6JotidUkoTrR/7W19JBR/vAhN78RYQ+3B3iX24u8Q+vOnEPrxFxF7cXWIv7i5F2IvzDijslvRz9/MRrT5xeZMkfd3M7jSzN7auPTmldExaXIiSLsvNurVZydYyzMNbzOzeVvkXJTuFtNvMnirpN7QYISzNmHfYLRV8zM2s18zulnRC0jdSSqUa74JRtvEp815c5jVa6D3BE/twd4h9eFMp2/iUeR+Wyr1OC70veGIv7g5578V5BxRsmWtFPnbid1NKz5b0UklvNrPn523QJlH0efiwpH2SrpZ0TNKNreuFs9vMGpL+XdJbU0pjq710mWu52b6M3YUf85TSfErpakl7JB0ws19d5eWFsbuglG18LsS9uOhzUPg9AWIf7h6xD28qZRufC3Efloo/D4XfFyD24u6R916cd0DhiKS97uc9ko7mZMuapJSOtv49Iek/tFgectzMLpek1r8n8rNwTVaytdDzkFI63vqgLEj6iJbKcgplt5n1a3ED+kxK6Yuty4Uf8+XsLsuYS1JKaVTStyS9RCUY74JSqvEp+V5cyjValj0h9uF8iH14UyjV+JR8H5ZKuk7Lsi/EXpwPee3FeQcU7pC038yuMLNtkl4l6Us527QsZlY3s0G+l/R7ku7Xor2va73sdZL+Mx8L18VKtn5J0qvMbMDMrpC0X9LtOdi3LHwYWrxSi+MuFchuMzNJH5X0YErpA+5XhR7zlewu+pib2U4z2976virpRZJ+pIKPd4GJvbh7lHKNFn1PkGIf7pa9zr7YhzeX2Ie7SynXadH3BSn24m7Z6+zLfy9OOah/+i9JL9OiiubDkt6Ztz2r2HmlFhUx75H0ALZKepKk/5H0UOvfS/K2tWXXZ7VYljOrxUjUtavZKumdrTk4JOmlBbP705Luk3Rv60NweQHtfp4Wy4XulXR36+tlRR/zVewu9JhL+jVJd7Xsu1/S37SuF3q8i/wVe/GW2Br7cHftjn24u3bHPrz5Yxr78NbYG3txd+2Ovbi7due+F1vrpkEQBEEQBEEQBEEQBOsm75aHIAiCIAiCIAiCIAhKSAQUgiAIgiAIgiAIgiDYMBFQCIIgCIIgCIIgCIJgw0RAIQiCIAiCIAiCIAiCDRMBhSAIgiAIgiAIgiAINkwEFIIgCIIgCIIgCIIg2DARUAiCIAiCIAiCIAiCYMNEQCEIgiAIgiAIgiAIgg3z/zOeYNh8+vXiAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 611445 182941\n", + " Min thresh = 1000\n", + " Not Sliding\n", + "\n", + "\n", + " Winner = Not Sliding\n", + "\n", + "\n", + "030s_iimage_1180496934444_clean.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADDCAYAAAAya0IYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADj9ElEQVR4nOy9d7ilWV3lv96T4w1V1dUBkG5CC4MBDAyKwzAqimJWHMwZRDFnnRnDmOP8FIFpB8U4hsE04qCIYgLJqCDQpCY1VFfVrXtPzu/vj3s/+66z61Tqrup7q2qv56mn6p7wvvvd7z6n7lrf9V07y/NcCQkJCQkJCQkJCQkJCQkJCZeCwkEPICEhISEhISEhISEhISEh4epDEhQSEhISEhISEhISEhISEhIuGUlQSEhISEhISEhISEhISEhIuGQkQSEhISEhISEhISEhISEhIeGSkQSFhISEhISEhISEhISEhISES0YSFBISEhISEhISEhISEhISEi4ZSVBIuN+RZdmbsix74kGPIyEhISFhH1mW3ZVl2Sdf5GvzLMsedi/Pc6/fm5CQkJCQkHC4kASFhPsdeZ4/Ks/zlx30OM6HLMuekmXZP2RZtp1l2QezLPuVLMvaBz2uhISEhGsZWZb9bJZlb8uyrJtl2VuyLPvygx5TQkJCwmHD5RZmL3S89HtxwvmQBIWEhNVYl/Sjkm6R9EhJD5T0Mwc6ooSEhIRrH31Jn6nd7+CvkPT/ZVn28Qc7pISEhITrHun34oRzIgkKCfc73FabZdkPZVn2B1mW/dZeRepfsyy7Pcuy78uy7J4sy96bZdmn2Hu/KsuyN++99p1Zlj0jOvZ3Z1n2gSzL7s6y7Gtdcc2yrLpX/XpPlmUnsix7XpZl9VVjzPP8d/I8f3Ge54M8z89I+hVJj79ys5KQkJBweJBl2WOzLHvFXjXqA1mWPTvLskr0sk/f+x4+lWXZz2RZVrD3f/Xed/WZLMv+IsuyB1/MefM8/8E8z9+S5/kiz/NXSvp7SR93GS8tISEh4VAgy7JHZln2sr3v2TdlWfZZ9tzLsiz7Wvv5K7Ms+4e9f//d3sP/nGVZL8uy/5xl2ROzLHtflmXfv/edfFeWZV9yb48XjzX9XpxwPiRBIeEw4DMl/aakTUmvl/QX2l2bD5D0I5L+p732HkmfIWlN0ldJ+oUsyz5KkrIse7Kkb5f0yZIeJuk/Ruf5KUm3S3r03vMPkPTfLnKMT5D0pku7rISEhISrFnNJ3ybpmHYJ/SdJ+oboNZ8r6WMkfZSkz5b01ZKUZdnnSPp+SZ8n6QbtigL/+1IHsCf4fqzSd29CQsI1hizLypL+r6S/lHRc0jdJ+u0syz70Qu/N8/wJe//8yDzPW3me/97ezzdp9zv7Adp1eN1xH493PqTfixMCkqCQcBjw93me/0We5zNJf6DdX0B/Ms/zqaTflXRrlmUbkpTn+YvyPH9Hvou/1e4X8X/YO84XSvq1PM/flOf5QNIPc4IsyzJJXyfp2/I838rzvCvpxyU97UKDy7LsSdr9Yr5Y8SEhISHhqkae56/N8/yf8jyf5Xl+l3aF3bNE2r3v0/dI+h+Svmjv8WdI+ok8z9+8973+45IefbEuBcPzJP2zdkXmhISEhGsJj5PU0u7vu5M8z/9a0p9p/3v03uK/5nk+3vsd+UXa/d34siL9XpwQo3TQA0hIkHTC/j2UdCrP87n9LO1+6W5nWfZpkn5Qu06DgqSGpH/de80tkl5jx3qv/fuGvde+dldbkCRlkornG1iWZY+T9DuSviDP8zsv4ZoSEhISrlpkWXa7pJ/XrgOhod3fF14bvcy/Y9+t3e9gSXqwdrMPfs4Pqd2q2bsv8vw/I+nDJP2nPM/zS76AhISEhMONWyS9N8/zhT32bu1+T95bnMnzvB8d75ZzvfjeIP1enLAKyaGQcNUgy7KqpBdK+llJN+Z5viHpz7X7i6okfUC7ITHgQfbvU9oVJx6V5/nG3p/1PM9b5znfYyT9qaSvzvP8pZfvShISEhIOPZ4r6S2SHp7n+Zp2Wxiy6DX+Hfshku7e+/d7JT3Dvms38jyv53n+8os5cZZlPyzp0yR9Sp7nnft0FQkJCQmHE3dLepBnz2j3e/T9e//ua1fMBTddxDE3syxrRsfje/neHG8J6ffihHMhCQoJVxMqkqqSTkqa7bkVPsWe/31JX7UXctOQWbH2FOBf0W7mwnFJyrLsAVmWfeqqE2VZ9mGSXizpm/I8/79X5GoSEhISDi/akjqSelmWPULSM1e85ruyLNvMsuxBkr5FEn23z5P0fVmWPUqSsixbz7LsqRdz0izLvk/SF0t6Up7np+/rRSQkJCQcUrxSuyT/u7MsK2dZ9kTtZor97t7zb5D0eVmWNfbCxb8mev8JSQ9ZcdwfzrKskmXZf9Bu5tgf3MfjSUq/FyecH0lQSLhqsJd78M3aFQ7OaPeXzj+15/+fpF+U9DeS3i7pFXtPjff+/p69x/8py7KOpL+SdK6wmu/QbpvE8/cSb3tZlqXwmYSEhOsF36nd79iudsXYVSFdf6LdNog3aLdX9/mSlOf5H2k3BPd3975r36hdx8HF4Me1W1V7m333fv99uI6EhISEQ4c8zyeSPku7342nJD1H0pfnef6WvZf8gqSJdon+r0v67egQPyTp1/d2iCAn4YPa/f347r3Xf/19PJ4j/V6ccE5kqTUx4VpFlmWP1O4vstW9YLCEhISEhISEhISEawp7DoffyvP8gRd4aULCZUdyKCRcU8iy7HP3rF6b2q2Q/d8kJiQkJCQkJCQkJCQkJFx+JEEh4VrDM7SbsfAO7e6jvqrvNyEhISEhISEhISEhIeE+4ooJClmWPTnLsrdmWfb2LMu+90qdJyHBkef5k/d2bziS5/nn5nn+gYMeU0LCQSF9DyckJCQcPNJ3ccKVRp7nL0vtDgkHhSuSoZBlWVHSnZKeJOl9kl4t6YvyPP+3y36yhISEhISzkL6HExISEg4e6bs4ISHhWseVcig8VtLb8zx/516K6e9K+uwrdK6EhISEhLORvocTEhISDh7puzghIeGaRukKHfcBkt5rP79P0r8/5yBKpbxSqWixWGg2m2mxWCjLMhWLRWVZJlwUlUpFjUZD9Xpd8/lco9FIk8lEhUJBhUJBs9lM0+lUi8VCklQul1WtVlUqlTSfz1UsFlWtVlUoFDQajTSdTiVJhUIhnGc+nyvLMpVKJeV5rtlspjzPVSgUVCqVVKlUlOe58jxXsVhUsViUJC0Wi/BHUjhW7ADhmFxPtVqVJM1ms/B4lmWSpPl8Ho7H4xwzy7JwzbPZTIVCQeVyORyzUqkoy7IwpjzPtVgsNJ/Pwxxz7T7eGIwly7Kl4/EY8+Pz6NfKef01Pie8ntfyh9f6vYlfF88r94mxrjoH4y8UCioWi2E8fnyfdx+DH8PPFV8r54+vZdXcxO/ndb6O/LWMJ742SUvz7Nfq9y++t77uY6x6T3wf4jE4/Ny+zuL3xdceX7O/zv8+F+J59Wvh+P65WnXd0XlO5Xl+w3lPejhxSd/DklRsNfOH3LbQiTfWr+jArhk0arr9YVsHPYqE6wB3vuuYsv5I+Xm+u65ljNTXJB+v/s/m8OOSvovT9/CVwcM/oq9MV+sSuvrwr9vHVH3P4KCHkXCZ0dWZlb8TXylBYdUndokFZFn2dElPl6RSqaTbbrtNi8VCnU5HnU5H8/lctVpN7XY7EJ4jR47owz/8w/VRH/VRKhaLuvPOO/X2t79deZ5rY2ND4/FY73vf+3T69GllWaaNjQ3deuutuvnmmwOZuO2223TzzTfr7rvv1p133qnxeKxaraZSqaTFYqFut6vpdKqNjQ01Gg11Oh2NRiNVq1Wtr6/rhhtuULFY1HQ6VbPZ1JEjR5RlmQaDQRBEptOphsOh+v2++v1+ECnyPNdwONT29rZGo5FuvPFGPfShD9Utt9yifr+vu+++W91uV81mU7VaTf1+P7wW8jufzzUejzWbzVSpVNTv9/XBD35Q/X5fx44d0yMf+Ug9/OEP1+23366bb75Zw+FQOzs7mkwm6vV6GgwGOn36tE6cOKHBYKBaraZms6k8zzUYDDSdTjWfzwPhlqTpdKpisahSqaTpdKrBYPcLolwuazKZaGdnR9PpNAgZzCUkstPpaDgcSpJqtdqSQMA5JpOJRqORxuOxpF0yinjUaDTC83meL4k9kP/JZBLGXqlUVKvVAmms1WqqVCoqFApaLBba2dnRbDYL6wsCj9AyHo/V6XTCNTEOxunXgiCBsMO9qdVqqtVqYdzz+Vz1el21Wi2sH+axVCppNptpMpmoXC6r3W5rOp1qOp0uXVee52E8CFHFYlHlcjnci8FgoOFwGAS34XCo2WwWRDIX6YrFoiqViorFogaDgfr9vhaLhUqlEp/RsO4khfnzuXfCzr9LpZJKpZLG47GGw6GyLFO1WlW5XNZisdB0Og0iGPd/NpstCX7j8VjT6XTpNfP5/CyRzs/vwlksXCDEsD7H43G4Lzzv18Dr98b77vN/3R1aXPB7WFr+Lq6poVvf9Bm6Nf3OdVHIHvVhevGf/tZBDyPhukFdn/7JX6is09fsfe8/6MHcr3hl/tKDHsJ9wSX9Tpy+h68M/uzFr1U5Kx70MK4b3PbHT9ft3/Cqgx5GwmXGX+X/Z+XvxFdKUHifpAfZzw+UdLe/IM/zOyTdIUn1ej2fTCaqVquq1+uaTCbq9/uBTFWrVc1mM41GI/X7fXW7Xd10003a3NxUvV5Xr9fTfD5Xo9FQq9XS9vZ2IAyDwUCj0UiNRkOj0UhnzpzR0aNHtb6+rrW1NZ06dWqpslypVDSZTHT69GmVy+XwWL1eD8QLgjMej9Xv97W2tqZyuazxeKxKpSJJGo1GwdUAsYXozOfzcI29Xi+IE+vr60vksdlsSpJ6vV5wF0i7RB7CVC6XA8EeDAba3t5Wr9fTaDRSqVTSLbfcomazqVOnToW5n0wm6nQ6QWAolUqB8ElStVoN5AohZjKZBPIKUYYo1mq1cGxcG8xRuVwO5AxhQtKSE2RvPZzloMCxUSgUgkDg4+C1k8lkaX69+gz5hTiXSiWtra1pOBwGcaDdbqtSqWg8Hms8HqtUKqnVaoV7CBAlOC+uEOYJsj4ajcJ7Go2GyuVyEHUQNyqVisrlsvr9/pJjBbD2ECy8su4Cj8PfPxgMgptmMpksOR6Yf1wBfO4QMCDxPo8Qbh5nXO5C4J4hVjQaDWVZFgQE1lLs+mDeGF+WZWFe3a2E8OKuIcYyn89VKpWCa8adOawNd35Uq1Xlea7RaBRey/vdnXIlMmbuR1zwe1ha/i5ey45c1Rd8fyMbzfSiQU1PaYwu/OKEhMuAP/+r39dgMdHnfc5XK5vMtPiXtxz0kBIujEv6nTh9DyckSMVHfagW9XL4OZsttHhDih05rLhSgsKrJT08y7LbJL1f0tMkffG5Xox1HwKOqABhr1arKhaLms1m6nQ6GgwGKhQKWl9f15EjRwKBrlararfbarVagYwMBgMNBoNQ0d3e3tb29raOHj2qjY0N9ft9SfuV8nq9rvF4rG63q3vuuUfNZvMsQgNhpGI8m81UrVaX2i3i9gAHJIUqda/X0/r6uhqNRhA+FotFqDxToadCi4NgsVioWCyqVqtpNpup1+sFkQDHRL1eD+0PtEwsFovglDhz5owWi4XW1tbC+LzlQ9onn8wxxBUS1mq1wuskBaILUa5Wq2o2m4H4U4Hm35BICDDXj9uD+YUEMi+QYMhoTAqLxWK4Xkg472P+xuOxCoWCms2mSqVSqFozrxBW7iWtOVTznQw7+WXOEHxms5n6/b5Go5FqtVqoxOMkmE6nKpVKKpfLS8dk/iDJCFLj8Tici3uGSIEwNBgMAjlHqOI+cT2siUqlorW1tSDOMVdxuwXCBm4H1iP3knXN841GI4g3jJO/+TfuBHd78Jn01yNUrWpNAhzH3SsOjo2LolqtLgkuzCefU//5KsQlfQ8nXDoWb3yL/sdXPk133fFSfePGey/8hoSEy4BGoaIX/+lv6WXDgn7sq79Chb99/UEPKeH8SN/FCdcd1m7pqviw2zR/+7su+b354x+tr/y1P9IXtnbCY++Z9fSVX/0tKv/Vay/nMBMuE65IKGOe5zNJz5L0F5LeLOn38zx/07leD1Ho9/vK81yVSiUQPJwGCALdblenT5/WcDhUs9nU5uZmIH5U9Y8dO6ZWqxWyEnAp5HmuTqejkydPajQaaWNjQ+12O5AwxuHkEmIO+aLiOxqNlgh8o9FQs9lc6tGnks3fcW83pBlBhEq8E3ZyEchGcMKELZwKMy0b3W43jE2S2u221tbWtLGxoWazqXq9rna7rWazGUQaKuirsgG8rx8xI64wl0qlJXGA+eQ9EEKuo9lsBuLr5JkWDOYAFwGCAE4KjtNqtVSv10O+BY/X6/XQYuDZE4wdYUFSOD6VeUgyBN+FGL9HXBvklOPSksCcQdY9J6RUKqlWqwXBB+KKKOBEFqGNP8wrY2ZdMO/MIcIFa7PZbKrVaoX5dUGDzx2Pcy0ucLgLwx09uFC4v7g0cDs0m001Go1wXObKRQpvoXC3CtfPH87hay3OXuB1/pz/4f7yvF8TIpEf/2rFpX4PJ9w7FP7hDfq1X/iMgx5GwnWIJ9YX+so7/lTjp3zsQQ8l4TxI38UJ1yP++bH/W+/88ZaKD3/IJb1v+ikfoyf/z79bEhMk6UNKLf34HXeo/wXnjYJKOCBcqV0elOf5n+d5fnue5w/N8/zHzjuIQkH1ej2QdWk/UBGXAWSm3+/r1KlT2t7eVrVaDU4DCEGtVtPm5qY2NjZUqVQ0n88D6cfSvrW1FQSJtbW1QBzp8S6VSsGqDsmB4NCuMBwONRgMdObMmVDVRcSgGgzp47xOJLMsC497/zoOAA9VhIRB4HAATKfTQAYbjUZwcQyHQ/V6Pe3s7ARRASK5trYWyOXGxoZarZYmk4m63W6oznPNVMLH43Ega/T2x5XfOAwRQippSVCBEDIGb6+AVOJSgYTiCmFtcHyq6I1GI2QTuNiAsEBLBiGczCWiAsIVGQa0qXirgbTfi885S6WSJpNJaP9wS7+3ouR5rlqtpo2NDZXL5eA2gPw7QYbQQuRdTGCO/d+ILM1mM7ye4+J4abVaQUBqNBra2NjQ+vp6yA7hHuE2qdfr4Vr4HLrghqCBCFGv14Pwwnu89YD5Yj349XFtvN5bFPjMxa0X3N/ziQq81sUvz4/guIyBa/JQ2L3vsYv9yjuUuJTv4YR7j823jPQ17/mEgx5GwnWIL2mf1uf89Ev0nh/8eE0+9WMOejgJ50D6Lk64HvGWT/hNvevHmyo95NaLev3oMx6rj//pV+rbj7xz5fOPqxX13T/xm3rPD358EhYOGa6YoHApyLJMjUZjqepLOwH9+pPJJIQCnj59WqdPn9Z4PNaRI0d09OjRUNGGsFOhzbJMvV5P29vbIZeBiryk0D/vKfcQdAhvTJC8ak7YYa/XCwQO0u3v8yA62jIkLbkc5vN5IKJxYJ3vSuDV+/F4HKrgLsr0+31tbW3pxIkTwf3gzoR6va4jR47o2LFjwfZNgJ/vVMA5ptPpUquG96lzD5m7uPedx72X3iv0Xs3Hko77pNVqhYo398+JJuIPlX7mj3OzFghCHI/HgUT6OOj1hwBTvY+r1RBqjoswxD2KcwRcFGo2m2q320F0IoOCde7OFMbG9bAmAK4GxohYxHziTuAYzA/Xe/ToUR05ciS4cbhvPO+En3O544L2FNolXFRANPJ2BHZo4TF3BpzLCcJcxA4fxuiZEat2XHEhyB0L0n7bRyzQeIuHi0kJCedD4e9fr7u+/0P1Ve/5Dwc9lITrEN+6eZfe/Izn6JE/+kZNP/mjD3o4CQkJCQFvfvxv6u5fqOnO5z1WRWuvduSPf7TufN5j9bj//ir96PF/Pe/xPqs50Juf8Rx95g/+tXpPTaLCYcGVylC4ZJCKPxgMAgHn8cVioV6vFxwDW1tbev/736/jx4/rpptu0pEjR3T69OklWzxVTPrkz5w5EwL9CoWCut2u8jxXu91Wt9vVmTNnAqGEJBWLxZCX4H3ykG+q4VT4Z7OZ1tbWdOLEiSU7OqSf91MJzvd2fdjZ2QnEcmNjQ9VqNYQ/ViqVkNpPNZnro6oPSWJ7TFwPZ86c0alTp4Jjg9c4iV1fX9fGxoa2trYCmfIKMpV7J9ecJyZl3DPviUcAoUVjNBqFufVgwclkEu77ZDIJBNR3IeA1HuwHsWw0GkvVbA/uo5eftcWcMX+xK8FzKQCkFvJLdVtSuD+sEyfE3toCUUc88pYWF0n8viJ2cUzO5XPHuWnh8IwNd1rgqMDJ02q1tFgswhpnjeGO8fdxjzwUk+vjc+qCirSfZyDtO1bm87mGw+FSKw2uBu6bOwf42bNDfF1JWmpXiUUuX9O8z90wrMNYzOT9q7bTTEhYhdJfv1Yve8NjpQ/5+4MeSsJ1iuc84J/0HT810b98+2NSrkJCQoSP/alv0hu+9zkHPYzrEq//2N+VJH3cgz9fg/EDznr+sTe/TX/5oH+8pGN+z9G3qfCDC/3WlzxWx3+hlr7zDhiHQlCgUlupVAKh5Bd+7NxswwjBfte73hWyAcgHIGCQyne32w3kl0A8guZoMdjY2NBwOAy5A1SbESaobEsKY4IkER5YKBSCC4LtJnd2doLLAgJKFRySVq/XQ75Dp9NRo9EIVWZIF9XpXq+nVqsVhIRGo7HUZ+6p/LgnCJc8depUyHeAyHnPP/Pr9nEEBYgcbQ+SQsXbAyqpGkPknZRBUOfzebi/3ptPCwTvxRXRarXUarUC2YfU4/6AKK6trQXhybeR9CBF33HA3SOMleNxf9za7/d+Op2q0Wic1Q4B0XdnibQvKDD3tNbQOoOg4JVxzsW8st4g3b1eb0kIYc5o8eC1tMAgpEj7AaiEQ3ItTtY90JL3xK4YXAm+y0Yc7Bg7bRCzaNXhMUQFnCqxG8HFOAQLX8O+rmMhhWtjLSIeICrwWXehyL+XruYMhYT7H494Xk9P+/BP1O/e9tcHPZSE6xQ/d/Pr9FPP7upvvvyxyl+f2vQTEsBNz32N9L0HPYrrG6/4yBde1uN915F36Lse+w791LMfrn/uPFA7X9zS7N0pIPkgcCgEBcgB1X5s5KPRSMViMbQHEPKWZZm2t7f13ve+VzfeeKMe+MAHqt1uq9PpBBJPz/Z4PFa5XA6iAYRqZ2cnbCd5/PhxbW1thbDHfG+nAWzcEBSIapZlqtVqyvM87CAxmUyC0wCSNhwOw8/en+3Vc14LyRuNRqENA1cGY+j3+1pfXw/2+WazGardkE7cE91uV/1+P7QrQKK9gusCARV+CCAOBoh1t9vVYDAI4242m4E0cg4q2R5M6W0arVYrhFz6FpIetgcR5DpoLUDYIE+DSjMiEyKSu0zcrk5VHZIIwcZRwHXR/uA7IEBguUdu74do48BwUssc+/Ui1pCz4eSYijnENw7IxPHiLTTehjIYDJZCHhFIWDvejsIc+a4QnkXAfeRvd5RwfncduGBCm9K5Ag/r9XoQZ1gbccuMtx14NgVzzeccBwdr04Uqghf9Hkv726IOBoMgFtKi4WIE94UdSRISLoTFG/5Nbz75SOm2gx5JwvWM7zn6Nv3l5hMOxy94CQkJCVcY33P0bdLRt+mOF9+i3rymaV7UX39486CHdV3hUGQo0HqAbRryAumgyswv/FRwu92utra21Ol0Aomgku4hcBAfBIDBYKDt7W11Oh0tFgutr6/r6NGjwRLuwYRuLWesbqEm7JFK8Gg0Cr3yEGP6/H3XA1oJfKtAqtY4M2jXkHYJMdVhaZcUra+vBzHDK7TYyre3t9Xr9UKbBUQzJvxU2iF3zHW9Xtfa2lpwghA6CfHlMci63zufJ7eVU1X3uXTyRsW+VCqF+XQBhfso7W9PiajiAXsQft8ZAeGB9/nuFJB4xkFbCHPjJByBhu0ey+WyWq1WEGC8XQPxgtdyraxNHovHzh/GwpwQkujtDh4A2u/3Q8uOBzNC/AHXwTxA6Dm/OyNWZRewtnmPu2UYu88dx/EtOd19wHt8pwlfG6whhAU+Q2wp6mNw94K3x0j7IgmCGcfywE7GzFgTEi4FD/i6U3rG+z7uoIeRcJ3j557/HBVvf+hBDyMh4dAgn0705M/60oMeRsIVxNPX79a3H3mnvufo2/QD73yDfuCdb9DRf9w86GFdFzgUAnZuafEQG0gU4gGWdXcKUBWGQJXL5WB1h+AByMp0OtVwOAzBjL1eTw960IN07Ngxra+v6+TJk8EKDVmEkECUPbdgOBxqa2srEODt7e2lc3c6nbDTgNvnqXhzrQgKg8EgkDZ2tYBMTafT0FZRLBZ19OhRDQYDbW1tLbkeII+9Xk+nT5/WYDBQqVRSs9nUZDLR9va2JC0RLtwBkpaqwZA/rns4HAZyDFHleUi2bwHIebhuhBIH95xqMlV/hBGyBxqNxtI9xy7vFW2ItotJ7pzwajdz5hX4mPB7NR5ANL3qzvyR/8C2o4DzebsHY2Jcs9kskGnew1whjEgKOQbMG+uI1p5CoRB2L0Hc4DWIVH6vcR3Ec+j5BYgtrAfGS66Ezw/rmV1DeA1jdHHCdwxhTlzQiwUFnzfaeghgRYzjnsQtDJzbx5nneVhPwAUxhIaEhIvF/ORJdafpF5iEg8Wjq1W94KW/oa98zGdpfur0QQ8nIeFQoPDuEwc9hIT7CU/Yo4CPv/Wluuc9g/D4Jz/3u/XAn3j5AY3q2sWhEBQgD/V6fSn7gJDGyWSier0e+uwnk0nYRhBhoVqtqtVqhfwAtkW85557liqxELHpdKpOp6Ner6fRaKS1tTXddNNNeve73x2IMIQKq7n3v3uQXbfbDVVbhA0qw2fOnAn97ggetDnQosG5CCwkwK/ZbC5tDVmpVDQej3Xq1KkwP2tra+FanAxSwd3e3g7tHUeOHAnihtvAIWBcp+dGsM0hYyLfwXcpQGyg6tzv9yUtV3slLWVCUK32AD53MjjJ9d0v/HGcF07GneC784Lrw13glWuINy033nOPuEEl20MEaY2ZzWZhJwnehyCBFd/bBzieCynA3SRO2pk7dt4YjUbhPGQlEIw5HA6XnCZxgKPvjoAAx7nd/cG99VBIdwmQIRLnJXAu3+VhlUvBd3agJcTFH59vHx/z45kKtIy4+8ZbR/zfBHvi9vDWEBfkeG1CwqViND8U/7UmXOc4Xmzq//7zS/SUWx+nfDq58BsSEq4DDBYTNQqVC78w4ZpAMSvo5lIr/Pwvz3q2Fs/ab4n+nE/4PM3f94Hwc/quvHc4FL/1LBaL0BsP2fH+dyeV9OFLu2Tt5MmTuvnmmwOBYkcAts2rVCqhfxzCTXV5OBzqzJkzWl9fD4R/Y2ND29vbS0TZK+dUfre2tkI1GIJXq9W0s7OjUqmk9fX1EKLY7XbV7Xa1sbGxtAWfV0KpHA8GAw2HwyCgeG4DFnxILCGTbFWJUMKxsixTv99Xp9NZIqBsLcj8UAmHTCE2MA5Id71e12g0Ci6Ffr+varUanof4eaaD98a7KwOC7yTWd09gdwwIPoIKYoy7HzhOnMtAACDrh5YBrPKMiddTfceBweO4VHxrSHI0JIU1ghjENbLWYnguAOuf6/ZqvV8b65c5oDoPOCfBmIg6kH8IvO+EAYF3AQV4m5DfI9YJghbCGmP1a0NU8YBJFyh4jMdxgnB8v0fugPBgUxcQGCPnZ03ikmCc9Xp9ac65TuaY8/FzcikkXCr6Tzipb37Nx+oXbn6litmh6CxMuE5RzAoqHj+m2fvvPuihJCQcOOYnT+oLPvXL9Ocv+b2DHkrCAaGYFeS/mb/oH/8k/PsN47G+/7GfsfT6vN/XYjBQwvlxaASFTqez1CeODdl7s3kt7QNs17i1tRWS/t3VgABx+vTpQAY9dR4hYDgcLgULei+9k06yHI4ePapCoRBIOxVixtTv90MVtVqtqtPpqN/vBwJKzzyOC3IfIPHdbjc4HGq1mjY2NsIOFI1GI+QmkJ1QqVTUbreDENDv9wM5m0wmOnPmjHZ2dpbaJyByhEYy34yL63WbOIS2Xq8v5UM4YaSlgYo+x3EBIN6hICbhnIf7xBx5pgD9+4wPUu8tFTgVfMeHZrMZdtfAaeEhjtxPv3bPBPA16S4Ad0IQ7Fmv19VoNILDBMLNeZgPF88AhB5xCPGANeWkmDn29Uv7DPfHQyCp6LPOffeDuO0F543nDOCi8IBGHuN5roH76e0MLiBICoTeHQZ8fpzMuzjF8V0wiXemcAGRzytrlvF4uKS3R3hI5yD9R5JwL/D2L3qQXvuXL9djq0lQSDhY/PGr/q8++0lfpPm/3XnQQ0lIOHhMZ3rpsKhPqqdtoROW8ehqVX/+zy9Zeuy2P366HvnLO+HnxVvfoTy5V8/CoRAUsI7zCz1VVuzivl0j5ATi2Ov1tLW1pWPHjoVee2mfuDSbzVDVl/ZJCeSdaj/kyFPpOY63EkgKuzb0er1QAXdrNAn8bMm4tbWl0WikM2fOBIs6FXTO4WSq2+2GAEKq5hDe+XweUvKdINHysbW1pRMnToTzSVK329Xp06fV6/W0ubkZdgKgWru5ubnkEoGgQSIZB/OOAME8IqZA+H23Bg8M9MR9BADPAmCeqRZTBfcwymKxGAIPPQvAQxM9VwEhgNdOp9PQusEYeY41460LHtbowhLEPHbUsEZxhCD2jEajQK69Og4xd9GAsbj7w59HUKD1ZjweB7GKthnWFkKZE23WXNzC4CTbxRXmXdrfYYHncfJw7FVtDr69I3/jzvEgR46PsOWBoQhuPqb4HOyA4YKS3zvflpRxu2Dp6zDO/0hIuFR88h+9QY+tlg96GAkJKmdF3fHiX9XXfMgnHPRQEhIOHPM736Efe8ZX6pN+4/kHPZSEqwDv+pw7pM/Z//njvuPrVT85VZZLpZe+9sDGddhwKAQFSUv2bcjQYDBQv98P5M17xiWFfvjTp09re3tbN9xwQ6gaT6fTUE1vtVra3t5e6vWmgruzs6PhcKjNzc2wOwMkDdKE0EAoYaPRUL1eV7vdDm0PToKlfcIGeR2NRur1eoEkk1MAQfJrcvGBXRSw71OxJTuh2+2G1H+s+dvb2zpx4oQGg4EKhYI6nY5OnTqlnZ0dra+va21tTceOHVOv19NwOFS5XNba2tqS5b1SqYRQPbelI5RAlr3qznOSwn2ivYB77GKFk1Z3QnjPPrkMuE5ovcDB4KIC8+n5A4wPu79nVeB0wVniLg3Isd8b5oW1SSuKt4lICmuFFgxCK11kgVB7NR4Bx3dPoHWHbATfjrFarS5t2Yizgq0taZHhurwNwV0h3q7ANXPfvI0BAQRxwx1FcdBm/LOkINohDPBZdDHDswvitg8fr8OdELhZPOyS4+R5rl6vt3Tf4rXonwFvrUlISEi4mlHLMvWe+u/V+oNXHvRQEhIOHJXTI33PiUfrp258w0EPJeEqwyt+7nmSpHE+1RO+95tVHizUfGH6Xj0U5Tf/Jd77xBuNRiD/nsQOGYBUskWib8vH66rVagjM837r2WwW2iXY9WBjY0M33XSTjhw5Egge76G6TXsE7od2u61Wq7WUNYDN3G34VJAhY9jEqZr6NoH0wHc6nbAlIs9NJpNgwW40GmFHiVarpSNHjuiWW27R8ePHAwnFwXHPPfdoe3s7tE0cP35cx48f19raWhBhuAavZnPdkpYINv92QcQt+Lwf0hkT7nq9Hog35JJrdNIr7e/Q4ZkWCDps/ScpCAMIO16V5ryEGg6Hw6XnYjKKDd5JL+dBAMjzXP1+/yz3C+vAq/KEXbpo4mQVgQCCOx6Pg4PGW0B8K1V3G3iuANeBA8WDJbnPPObBhjgZnOAjViCEkB3hGQdkcTh8vuIchjhfw7doJfyUuWO+Ec14b5xNwbUTOspx+cP9ZOxkc8SCEeNDJFsljCQkXAx++S8/RffM+wc9jIQESdKxYlM/8pP/66CHkZBwKJC//k162c+n7X0T7j2qWVmv/Knn6tk/+4va+qq0lg6FoOAVR4g1zgJs3+Qd0E4AyaL/muqtt0hIOotAuc253+/rxIkT+sAHPqBer6dKpaIbb7wxbCPJtoW+24D33kPY1tbWtL6+HirChMV560O73db6+vrSFotUa72SCvFmO8itra3gNHABBUcH5AtCdsMNN+gBD3iAbrjhhmC939ra0smTJ7W1tRXe12q1dMMNN+jYsWNqNBpLDgecEBArD7XDHo9w4gF47tTwlgN3NwyHwyCQIDZA+HBvQPriHAMPKIR8ssWmE0Bvd/HKP+NhS0PuLfPv7TCE9TmxZh48QyDPcw0GAw0Gg6V2AK7H20C4Ltahj5drQkwhO6HX66nf74eWEoQPJ8nSfptNnHtQKpVCFgfri3ljjgGigqSlPAQXHSQFAcszF3w+uH4+n9ybON+AtcTaYA58bfnnw4ULF2RcyOG7w7fxjLdU9Xn0sbuw6aGhCQn3Bg/79n/SW6bNgx5GQkJCQsIKbP5bR09682ce9DASrnI8ulrVT/6XO3TPN378QQ/lQHEoBAV+kfcdAKgm4lKYTqcaDAbBig15onLpjgAnEmwN12g0ApmAwAwGA506dUrve9/79P73v1/dblflcllHjx7VsWPHAvGECFFRp3o8GAxCEJ5XRiEiEH8C/DY2NoLw4NVrnwd+ZivIra0tdTodDYfDUL3lufF4HAgY81MqlXTjjTfqxhtvVKvVUqFQ0HA41IkTJ3TixAltb2+Hqnej0dDGxoaOHDkSxoQVn/wKfp5MJsHCzzyuyj+AiHE/IXIQ59FotNRK4dVhrsV3CqDC7FV6SD0tAZBjCDok0CvSvr4QIMjPYO1ALD3jAJcDbgHfqtR3ThgMBiEHxIkpJBYS760IPO+iTWy7576ORqNwLHcLuJuDTA1pP7eAkE12HfGQRBc3fN3hdvBWBndcEDjZbreDeOHX4vB77C6F+LPvwgXn8jYGxCDflQQHkbdCcF24Pdx54efkewJhIs7I4HVJUEi4L/iWn/0G7SyGBz2MhARJ0r8r7+jtP/+4gx5GQsKhQP7aN+kDf/mggx5GwjWAT6rP9aPf9qs68c3Xr6hwrwWFLMselGXZ32RZ9uYsy96UZdm37D3+Q1mWvT/Lsjfs/fn0izmeB/hBCkjJdxs4hAcyThV0NpstJbizW8JisQiZB57Uj+19Z2dHJ0+e1Pvf/36dPn067NCwsbERgu+63W6wtWNzh2CS4E8QHqQEIgpplRTcDDgC/HqdmNM+0O/3tb29HZwFOB2q1aq63W7Y+YFxkTnRbDZ100036fjx44GADQYDnThxQqdOnQqVeVoP1tbWQlsIAgLX5lVwJ/ZOWKlAU0V2d4G7L7zq61Z6v/dOliF0nh3hJBgRw3dbiMMDGT+tHH7dXBdCAuvOXRqMYzqdqt/vB3KPeICrgjYVRBcnvQgfjUZDzWZTzWYzrBVEJK/GO5hLLPqIOU6+CSgdDoehBcO3QERYoUXHA0bjXRi8DYc54R5S9edecC1+T1nD3CNJS8f2++zw8/KemPgzXhc2fO1wbp9XQjf9c+jPuVOEc8fr8bDjcn8XJ1w+HH/Oy/Vp3/ltmudJmEo4eNxcaunpT3rpQQ/jmkT6Hr468SF/fI8e8+qnHfQwEq4BPKUx0o99869et06F+xLKOJP0HXmevy7Lsrak12ZZxl4bv5Dn+c9eysGoJnqrQp7ngXxjAWcnAogkvdxs14gQcObMGfX7/dBqQHUbMoTLYT6fByfA1tZWcDLgKDhx4oQ6nc4SWUVcgMRAgCEp0v5WeIgPZEJgw0fwYNcBaZmAQdbH47F2dnbCdpFra2saDAY6ffq0dnZ2wu4BOAYgtY1GQ0ePHl0SQhBPOp1O2PoRl0ez2QxzCSaTSdg5A1LtRBNxxskg84Cg4iQR8gtJdMs/ogTvoX0FMs28uJsFUQkCyfMIDLzOySGBfIgKXBNjlxQEKw9A9GBAWigQtNiFg5Yc7gfVcc/IwBlBeKJXxt2NEVf9GYvvDEIbBOsJoUzazddot9vh+PV6PcwhawW3ha9tHEB8XghhZJ3SjkMYqQdGIjwwdhwX0nJOCuvRn/P7xOfI3QuMM25d4jXMT9wWg8toNBoFsczH4Ofz48UZF4ccl/W7OOHy4tHf8QYVs0NhBkxISLhySN/DVyHmb327Ou98nPSxBz2ShGsBT2mM1Pz25+m7+8/Q5gtecdDDuV9xr3/LyfP8A3mev27v311Jb5b0gHtzLK96Q9oWi0XIP8C+DJmhMg+BoAoJQa/X62o2d3tXsbJvbGyESrJvpQehHY/HS0GIs9ksiACVSmVp60J65mlliPuvIXq0J7CbAi6DZrMZhAt65L2i7oGAEMher6dut6tCoaD19XVtbGxoOp1qZ2dHZ86cCW4Mdn6Yz+dqtVra3NwMJIzwSubJK/i0U+BO8NBIvz+QcXYfYAtD7pO0T/xxaNAqwPuodHv2Au4BBCXO7X3vHpYHGZb2AwCxyXMtcQuDiwGek4C7hD8EPfo5PAOB9/txEL4QRLwvn/YOroPxcZ0QYK+ue2WecXouAuKEpLOumXyQfr8f1qznOdACxJaqCGMubsTikaSw3tkBpN/vL+0C4gKTiwHn+szzdxxWyRzG+Q20yrgrhnG7QMjfLvRNJhN1u92l3VtcROD7BSHBnTKHHZfzuzjh8uO/3vhXBz2EhISAb9z8V93zJ4846GFcc0jfw1cvPvTH36GPfd0XHvQwEq4RPLG+0PDY4f/d8XLjspRNsiy7VdJjJLFvxrOyLPuXLMt+NcuyzYs5BsSdIEQIeKPR0E033aSNjY3wSz/iAYQTEtztdtXv94P1nvBD9p2n351AvnjbPyrk3W43VOd9BweyB0qlUrCWY3mHQE8mk1D1JAwPwQMhw7c+XCwW6nQ66vV6S+GAtFFw/slkoq2tLZ0+fToQ2Eajofl8rp2dnSBKSArnYbcMWkDYDpO59aR7Wh/K5XIg0RBg4CTdK92eUeF99HHwIMdAQEBkINMAEkhl3HMCOBeEl90uIIi++4S/BwLsoZ6IAb5rCKTS2ydYP4wbt0Z8jYVCIbQUeBuF79oQiyM4AFhzq/IPfFyQer83vFdSaP2BbHOfPcQ0FoSazWYQ2TwY01sUmBNJYS4g8L1ebymMEnC/ucdcO8flujgWf3xNxS0gLjQgEiA6cB9oU+F1Hrroc4II4s4Izh+3PlxtuBzfxQkJCdcuWoWaPvTYPQc9jGsa6Xv46sL85El1+rWDHkZCwlWN+ywoZFnWkvRCSd+a53lH0nMlPVTSoyV9QNLPneN9T8+y7DVZlr3Gt7jzgEGs4fV6XZubm2o0GoFsT6dTbW1thWrwZDLRyZMnddddd+nMmTOBQEHyIZtexXX7u5Md8hV6vV4gi61WKwgX3mohaaliipNhOp0Goo24weNY4Nn1YTqdBrILQYU8l0qlkJswGo106tSp4FRwUYJcBMg5xIkWi8ViEVwOvgWnV8E9j4Aqru90ADxMklR9Evh5PWQZgubZEvFuAO6O4DHEGK8Qx7tLQCBdtKDNYDAYBEJcr9e1vr6uRqMRxs97qUj7OvAdGrin7mhgXB4C6eQbMcDbHLzPn2tBbCDwErHjHJ+Xs+ZC0pIQgcMCUYPnOD5rlTlADFs1ZunsXR981wPIOEJV7DgBiB7MqbS/IwXHWSWe8Dj3m1wLWng8O8WzN3wNeFuIu5wQ0ljrHjwpaUlouppEhcvxXTzV+P4a7nWDr3roJ2qazy/8woSE+wm/fetf6b3/58MOehjXJNL38NWJW7/oTfr0t6Z4i4TLg9d92y9p50uurwDc+5KhoCzLytr94vztPM//UJLyPD9hz/+KpD9b9d48z++QdIckNZvNfDabhXA5Koi+XSEWe8jA3jG0WCwCmR0MBjp58qQkLVU6sXazFSX26VXBboT1eZJ/o9EIRGQ0GqlararVagWyRTXVw/oYL20bVFYRK+r1eqgUu7sB8uTXSmWbbQQXi4XW19eXnoMorq+vq16v64Mf/KAmk4nK5bIajUYI7MNZwbXRMw+59J0kEBjcPSDtixDemuG7QTg59GwFHAducfc5QATI81zValXtdntplw3Ivyf4c5/ivAJEKnYiaLfbkhQq6ogAkOd4twlpn7RDOCHeXDvuGObSMwcmk4na7bZqtZp6vZ5Go1FopUA48NYGr5Q7IWed+3hoRUBIY45YUzh9WJOeycH5JQWnjOdRQKI9VJLX+vabfr/5GfENsY3nfRcN7mPsHmAe+DfHcMGBOSIvwQM63VXgzhifL9Z13DrC2vG543N9tQgKl+u7eC07cnVc8FWEfDrR+2ZD3VZuHfRQEhIkScWsoEIhfdQvN9L38FWMxVw745qm+VzlrHjh1ycknAflrChdZ10P92WXh0zS8yW9Oc/zn7fHb7aXfa6kN17oWF5dhJR4GKC7CyQFAkXVv1qt6tixY6pUKppOp8EJ4FsUetL9xsZGCG8kl4GtGREVWq1WGAMuAxLtsywLY6TS6xXzwWAQdmGYz+dntU5AhHEGsDOCV48hTIgfnBMHx87OTiCqTqLyvSBLSHqpVAqtDLPZLGQuOHlHZKBC7VVmJ2M8Don23nsPhnQLO8fwvnruKa9BzPCWAUlB3EDUQARwMYO1g4uA9gHm2HfhIOsBCz/ZGatcAd7WwDU4afWdGdxdAAlFVGBuRqORdnZ21O12Q1Vf0tIOGqvG4Y/7+ZlDScEpQKaBuxRwzDA/vI85c7s/5N1dAn7tLrqwtnwHFtaqz5+vIxcBuFe+BSjX4s4E30LSHQ7cU1+THNcdNC7U4GpAFEI48HYSHnMB5rDjcn4XJ1wZPPNhn3jQQ0hIWEK7PlLx2NGDHsY1g/Q9fPWj9eR36odPPvqgh5GQcFXivjgUHi/pyyT9a5Zlb9h77PslfVGWZY+WlEu6S9IzLnQgSCEkBmLqlVQP5vNgPcQDMgB2dnY0mUzUbDYDYSGLoVarBfIQW7t7vZ4+8IEPaHNzU5ubm1pfXw/kC4HA+/fb7Xao7rpTAeI0n881GAxCuwWCBpV136FgbW0tzIXbr/n3eDwOx6BdgPMSUIk4gnsB4irtbu+3vr4uabdCf+rUKW1tbS1VkrkG3BdOJmkbkPZ3uPBEfm9x8J54SCX2c46Jw8Crv4hHuDggrJVKZakfnjlCxPFwRAi8pBDE5/cE8cbXnGcpeM++OxC8j59z+th5P2uA+z8ajUKbBSQY4Yb5cxEBkg1x9vYeJ93sMME4IfyDwSBcH3khuAF8Tv0xzg955rqc4CNE8JnhNRB1bwvhPYwv3kLUXRC+3n0+YjGD47AzhYd3xsKPw7fXdKeFux04Bp8rrsnv5VWAy/ZdnJCQcH3gFR/5Qt32I0/X7d9w+qCHcq0gfQ9fA/h/732kvvfYq9UqpEyFhIRLwb0WFPI8/wetNnT8+aUeCzJItdHJqKQlcum94/Rij0YjtdttbW5uBkLm/dGj0UjNZlPtdlv9fl+9Xk+SlgLz2OWBjAF2hYC8uSUf8t1sNsOOD1S9PY+B4+IagMA7IeQ9iBsQT5BlWaiuQ5AgyORMTCYTVSqVUCWezWZqtVra3t4O87q5uRmEiHvuuUcf/OAHl3rnIXbkPmABh5DFSf6MDbHDxws59Yo35NYJrDtTVuUM+D1yksncuuWd9zmBhCQOh8MlRwQZEWRJrLLJcy2eGeDHdoHEhQEcF1wb98dzA/yYfk5fN/7ZYM14loC7JDzfALeEi2+sCXcheAXfcw78j7RLtn2nCAQJxuuOgnM5PXynjbgVxt0EXC9rytcD1+rBif4axuzrwIUuX0OII36f3UnhDpirAZfzuzghISEh4dKRvoevDRz7zDv1V287ps9p9g56KAlXMX7pzINVPzm78AuvIdynDIXLCbIHqF5LuxVGwgYh1tVqNbQNkGcAwVpbW1vaz55+aHYEKBaLS20LvmtElmVqNBpL2+1BQKhsk4iPlZ6wxJ2dnUDmXfDwSi6EcDqdLu1EAQHybQS9gkueQqvVUqPRCOemNcTJ7GQyUa/X09raWmghgABXq1Wtra1pOp1qOBxqa2srbCnpVVk/n6SlOWC7QA8pRFRwYsi9cleAV6AhdZB5quBcG0Td++vZNQERgKq9k1QnmBBpWj9wL/h2i76bgGdp+HaDiEAIEnG13cM549YTRA3WGCKAO294HWvAn48r+S5+kI3AdeBM4HPhBJu1dy7BjrnyXTJYCxxjNpst5WXELS/ulIiFGeCkHqLPH59LzufkPm7LALE4wXh8bQB3lvgcuNOGczIuRKuEhISEhISEax/f9rdP0yc/+dnJpZBwr3HHrz1Ft/zFyw96GPcrDoWfl1/qyRyAvHvF1kkHQgA7I9Anzo4IVKAJ8IPIewp/XAUmb4HQRI5LvzotC7PZLDgZCJLECeGkGZJI/z9ZDpPJJLgkptNpODatAVTeW61WEE+KxWJwYCBieIiiEyMcE5DpWm3/C9FzH3q9nvr9fugbRwTA1s51uQ3e2zacnOHEwDUi7VfquWccG+LHHwQaRJ9er6derxes7awPdz54/7/nM/g5ER0QoxgnQgT3Nc4JcLGCsbsA5aQzJs2MxUNDpf22BNYraw43QbzDA0KCr3uvrvu9Ho/HqlQqS/c6buPwLUJ9ZwwXEHBT+A4gTt79Ob+HXB9j9vYPzh/nJcTtKr5bio/HhQJvUXBHjOdLeHuGB0Byr/37xq+fde45C77mEhISEhISEq4P3P61r9FH/sG3pt15EhIuAYdGUMiy3a0O6fWGIEE8PDwOcgWxdKJIlddbDdbW1s6qzkKy3EUwGo3U7/cDQWY8EB4CAsfjsba3t0MlmHYHSUuiB4GO7DIBefLsg0Jhd4tERBCIW6VS0draWnBgIBJwPWwRyE4CVGVHo5EGg4GGw+GStdt3NoDIeQI/ogKELg7Fg1xWq9WwmwBkjfnz8D/vS5f2tzSUtLSVoQtCjGM8Hod5YO5jW3wckogg4mGehBVSGSePwOfCRQAXCfh33Grj1ngXDEDsKMApwz1ysu5EO67WeyggY2D7UR8j94C2GNYic+IZBwgNzC0VeJ8vnx93aczn86UtIrnGGKvmhethrflnxNcm54tFHsBcxZkXLhgwlx4S6t8xcd5C3JrjW0zyWELCfUU+n+v2FzzzoIeRkJCQkHAReNi3/ZM+8rnfdNDDSLgK8Rl3fppu+Yfrr2XmUPh5+UWfHRqoHlItlBSIGQTXq+dOlKX91PtarRa2DMRKj3UeggSJwDrd7XZDNgHVXRcyWq2WTp06FXZx2NzcDORaUnAOeH+79/r7Fovj8VjtdnsphM+dF41GI4gcnU5H1WpVm5ubwSkxn8+1trYWCDxV662trSViRkAfFW1aI5hriC/OA2mZJDsxhHD5DgrAXR/+vvl8rkqlomKxGK7NHQIePAjxRCzykEAn2G5Z9zwDPzduE+4J99jdALFNP3YtcE/dgu+k36+T93o+wXQ6Va1WU7vdDmSeexVXzf28fizWESKFu0qA7xASOzu8RaPRaARizjXUarXgMOE5no8FPM+u8Hvg7T4+B8wd4Zp+D721Ic548JYIF3HczcDa8TXirQ58R7jwscpF4VkO7hjiWhIS7jMWcz3kh1+nR3W/QW/6pucc9GgSEhISEi6AB/3oy/WYM9+g1/9A+s5OuDh8wTs+WbPvOia9+l8Oeij3Ow6FoAAhcDs35NuFA++Bd9LhVmzPVyCQsF6vB8GCY0J0qF7jEuj3+9re3tZNN92kUqkUHBNU13FOkLVAAB4CRb1eD0KGt2l4VkOlUgmVfCe0kgJZQ2xAUBkOh+p2u2ELSyqw5CpwDEQRHAHFYjFY4YfDYWgrKRaL2tzcDG0MzE8cQgi5RXCAgPI4xDa2+3sLgrdBVCqVkIuB2OJEPs458FDMOEiP+++ZC76eyuXyUjuMry/Gw9oi74DHgVfOXbji2uKgRMbG+nQHQbPZPKeAQatJuVxeElxYP5B22hZcyPGsAZ9Pad8x49V9BBzGxdhwjPjuEO42iTMI/G/WpI+bP5yf53G6ABdrXHBAAOKeIIz4/SWoFHDv/PsiFhB8fH6fPUvBxZGEhMuBfDzWg//0tJSKXgkJCQlXBY4/95V64l1fJ0k68TFlvfkZSVxIWI1veP/j1H/WDcr/+V8PeigHgkMhKMQhcJKWyI+TRiztvjMA+QfkL/BaCEK5XF4Kq6tUKmo0Gup2u8EK7q0LnU5H8/k8kBX68LHAsyUl20mur6+rWCyGiv/GxkYQMdi6ESdEuVzW+vq6SqVSqNZD5D3Ebzgcant7OxBIgHOBLSshy7g6EBf6/b4kBRt8sVgMrRbkN+zs7ITxkNlANRwi55kCfg2Q+eFwGO4PhNwDBGu1WrhXVJCZV98RwYm6V4kJa5zNZmGnCwhvDF87TsRdIPD1RJih9/G7i8TXELb/2FXgLSGsWRdVfN3QMuOWfdanixPx7gKeoRCT77hKH1fY+UzR9sA10/aDWIZzYWdnJ9zzuEUA4s68cl+4j9xf/xx7uCEtPQh9rDPG564J2ju4vlXbPXJ9vl7d2RCLIbE4wGsRTlws4dpTKGPC5cTiznfpY/7rM/Wa//7cgx5KQkJCQsKFsJir+qJXS5Ju/bu2Pu1PvvicL82zTC9+0W/fXyNLOET4ma2H6t3/+SYt3vnmgx7KgeFQ/LbML+4QVcic94h7FbparQZihRjAlo6eeO/heLyfSi6BhlSwPfyt3+9rMBiEYEKs6xB+7OvT6TS4Adghwrfow+HgYXw4JpwE8pw7BHiPuyScKHMNvV4vuAAg+8xNp9NZyqOYz+fq9/vK8zwIHr1eLxwLR0SxWAwuAq+o07oA4W21WiqVSuEYXsWm3QD3B4TPiTkCRSz8+FaUEHKEBRwg3C/mzgk19xk3iJNdvz9U1WmziB0GTqidmLuzxZ+TlreE5A/tNohWLhD52Dnnufr2PZjRPzv+71U5AS5s+I4SCALc13q9HtpivL0BQcPJfLxlp2dvcC3efuDtL+7O8DYFHuezw3wyfwh+/lny+8fn048ZOymYR+bFM0Ti5zwDJCHhciCfTrT27slBDyMhISEh4RKx6HalN/zbeV/zlI/99PM+f8sf7uhXHvSPl3NYCQeMP+039Df/6SGan7zroIdyoDgUggLWa0iJEzffng6SQFWZwD1IW6/XWwpyJPwvrmpi8yejYDQaqdvtBhIxHo/V7/eD06BcLgcHBC0EOBy2t7clSUePHtX6+nrYcnIymQTCCpF1mzy7GzjJ88o2jgpyB7h+QiclLVWbmQds9YPBQDs7O2FXB7IkBoOBptNpaIeYz+fqdDpqNBphBwls9+4YcEDYisWi6vW6JIUQSEgYTgJIKdVwBCGvdvs68Io1rgrEDCzvCDKQU986MM4/cJLtbSFsg4iDA0HqXO/ztVOv10MF36393EOIsffrk8XhY3TxIN4ZArhAwtz7cy74MBfeSsNrnLxzTxDUptNpcLEgYLnTAKGKa+C+uesAUYFr9NYHB2vfHRCckzXuLU4uMLpgwbXGjgTGgXDlrTUexint777Befnbx51aHhIuN8ovfZ0+9r88U6/+0eRSSEhISLiWMHv/3ed9/r1PqOrTssfdT6O5eDzpNffoWzbfftmOV8yuTOb/PD87DPygMMwneurDnrj7O+j45EEP58BxKAQFQPtCr9cLLoQ4CM4rmN7TPhgMdObMGTWbzaVq8mg0CgRSWu7tJ3+AnQZoP+h2uzp9+rTW19e1sbGxZBGHsBBkNxqNtLW1tbSbhB+L3SLYucG3cyTU0HvtIeMQcsQWsiE4NkSRayWjgQo+rgtP5Xey6m0euAk4d2yjd9u65w5A/siL8GA9KsrxLgYxWfQqMGTOq/yeRUDYpqRwT7DG83i8nSP3m+MSPijttoO4swLhxq/Z587JpbsTHHGOg2cRrHIeeM8+4pKvVR7zFg7GC3iN50zgoPH2CcaAOMG981YKzsH52eoTEc4FGVxF3rbD8eL54vwu2MR5C7F4yNxIWpm54dcW706BsMh746BH/wNclKL9JwkKCZcdea4jv/oKffiRb9Brvu3/UzUrX/g9CQmXGdN8rmyWvt8SEu5P5OOxDqPv8S8+bE1/oY+6bMe751kfr7/+np+9bMeTpH+b1vQjD7l8Y7w8GF34JdcJDo2gAIEYDofq9/sqFHZT+tlxgZBBSC1955CZ4XConZ0dra2thVBESaGlQdrfgYEqfLlcVqvVkrRLSBAfer2ednZ2QsbA8ePH1Wg0NB6P1e12w7Go+A8GA/X7/ZBtMBwOtbW1Fa4LkoIg4JVqJyzeG885PCCO7SMhwt5GgH07Jp/D4TAQTv5Mp9NQ1YcAIuZICrtgYH2H2LorgPFQJXaXAPen2WyGLQrpm4fg08/vdnx+9mMhEHhgITsd+LioSDOP5F7EAYtOav3YLorEr+eYPi5+9uNIWronpVJpaf6l5d0JzgV3FvhWi54v4cGMLn5wfsYJGCNzwj3yc3rwpl8TYZoIMrEDwt0Acdihz5ELD9LZ1f9YUOJe+/j8njBWjsO4EA7iY8drATBm5tx3rEgZCglXCrf87Mv1EZvfrH/88p/VsWLzoIeTcJ3hMa/8cj38m1950MNISEi4BnH82S/X05798Qc9jIT7EYfmt2Xfqg5SxC/59PPX6/VQOfQgNdoDOp2Oer1e6PPn8W63G7ZnLBQKqtfrYStJJ/G0R2xvb+v06dM6duyY2u22JGl9fT2IB15db7Va4T31el033nijdnZ2lnYX8HBH7ORZtr/rBIiJHHZz70cfDAZhdwe3jEMyB4NBCP6jXYJzOhGE5CO8eE4CZBjBxiv1OBs4JtsiQgRxlfiY3X3hZC0mvJKWCDzv8+wIbPvMk/+BTHpl33MUpH3bvO/O4PZ2d8J4H35MfrlGxBi/Vs+HYO58DnAJuFOAY8YhhX5sRJXYFeHz58fzijvkHMcLc+z3kseYY8C84Gjgvq+q3iOYeS6G77zANcWtKX7P+bzE68fHSI4CO5hwz9wBgUjEcz5vqxwn7r7gs7VqrhMSLhdu/YFX6PEPe6be+h9+46CHknAd4QOznvr3JBErISEhIeHy4FAICk4QID+Ql7gCSU5Bv99f6i/HpdDr9dRut8NztBw0m001m01NJhOVy2VVq9Vg4faKtSR1u111u13t7Ozo2LFjwVpfq9WWqqKFQkGNRkOSgpMiz3M1m011u92QVYCjwB0Xbj33IDtJS4JKvFsBx6hUKsFpwdZ/5AAACB3j4vUeFgnho+2DlgwEE8btyf8u5Di5p8UjbtngGhAy4kA/SeH8TtK95x2i7UQUgcYzCxg7x8S9gBBFVgB/5vN5CI9k/XGtfh+AOwe4J3meh7nj9S4KMZdxJZ1qPa/xfAMPeWQecYT4/EgKTgPmq1arhXuMqOBClhNz5pe5Z8ycj88LAhVjiXeC8LUbC0ZxcKTvUAHcecAc4IjwHV/8eN7iwBi4b2Qy+DhiQYFjxYKR53X45ykhISHhWsC3vfezdPvXv+qgh5GQkJCQcI3gUAgKEAdP/SergC0eIcds20gYorcOuL0aezqCgqRQmYVAUNn3fvBKpaJ+v6+dnZ3wPuChkU6+Njc3Je2KCp1OJzgIIPpeofXKPe/nMSdK9K1L+yQWwsnWkWtra5J2d4Tg2rrd7hKpp4I7n89Vr9fVarVCAKW3DhQKhaXgSW9B4HUIPU76IaiQT9okvMKMTZ+xx5kJOE48uNHJrlv/3Z0SCw6sBar4LjogBCEAMO5YIHBSSq5Eq9UKr4d8k8XA/DIWb0+B8MfbSLoA4q6cuE3BRRvPV+BnWlQYd+zIyPP9DBGyNLg+dykQXspxvEXG1yPX5A4DX8+xC4b38tlh3bhw4p8tBBBv23DBiowO1k4sNLnLgLXK90B8r7l2vy++PvwcCQlXEqU3tPSyjynoifW01hKuPO6c9vWaV9yuh+qfDnooCQkJCQnXCA6FoOC9694ewBaLGxsbyrJMjUYj9HND7r0f3e3q2OOn06l6vV4gI/V6PWQ0QJoREkj+LxaL6vf76na7S73XCASQLx4nZLHX6+nUqVN6wAMeoM3NzZD7MBqNQtuGhxVKy+IG5JTtJ51wMX7OTbsCFnWcEE7oGTNzUKvVgqgA6RsMBqH6i6DgdnDEBJ7D8u6hf054/TmvrjtZJ9OClgCvznNMDx7kXlER53XediBpaecF7s+qXnkXOhgb8woRZ5wQVoQhgjgHg0FYa96mgwjkeQEQVe5XLIAwxpiY+x9J4R64uEA2BWNj/KwdXuMtRfV6fek+IeYwVubIhYRYwOHz5q4Fbxfgc43Dxd0B3EsPWnSRjkBRF5X8s+6ijH8OHMwP4+J4CE2OcwUvMj8JCVcSD/yJl+snn/RpeuIjXnTQQ0m4DvBHnUfrod+ZxISEhISEhMuH+yQoZFl2l6SupLmkWZ7nH5Nl2RFJvyfpVkl3SfrCPM/PXHAge7Z0rzJCWBqNRrCyQ8hxAFBFdnKGDZ5qJNXkLMsC+aeiy3kQCiB+vA+CxGsgbB4miBOgUCgEh8CRI0fUbDaXtvFji8pKpaJWqxXIkm8niVMg7lGH9EHqIXcuOjSbuz2RiAD8vVgs1O/31Ww2Q7sHhI7QxMVioSNHjpwV9sdrEGGobDN25ojjefaBV9TdfYHzA8GHYEyq7uxW4S4Q3utEerFYhLwMXsM9jEURxAcPB5QU1hXXDen06x8Oh6rX6yoWiyGAk4o/IhTXA9ElzwKSztpmPNxfJ+QQdf/Zybm3OcTuAYQG3wbSgxwZK2sLQYbPD2Py1gYXD/wcrFkn/Lw3HrM7NmIhgNe5eOSuDD47LnRwzS5iuWDiAhL/Zm2SWRJvRRlfozssrhZB4XJ+FyckJFybeMe0p9/51SfpJr38oIdyTSJ9DyckJFyvuBwOhf+U5/kp+/l7Jb00z/OfzLLse/d+/p7zHQCyB2lzW7O0W/Wt1+shX6FSqQRhoN/vLwX6QZrcli3ttiMgHrBbBKIBZF7azx3gXGQeMA5Pxncyj3the3s7EOZ6vS5pP9nfe7vJeYBo+bFqtdpSpgS2dAIhGTviBFVXtlIsFAoaDAbqdruBbBUKBfX7fa2trQUHAEJBr9fTYDDQsWPHQnWY+wJh63a7SyF7TnoHg0EQOyCREHQnefzslX8IcrValaQlss+5IHiQRoi1OwDi1gnEGYiyV+wJpAQEWnrl3e/bZDJRv98PohNryUUrFwvc1UHrimdhcI0eBgk59pYDJ7ZO3ld9fhgzW4D6VpTuiuA1zCFjzLJM4/H4rPUYk21vy4jnnOP7ThYe/OlOgjiHwkUPPw6vjUUu1hfnWdUy4m4Oxu4uJL4fuA5ex8/nCp48xLjP38UJB4P+Lz1QL/ypNX1+q3PQQ0m4RnFmPtDTfvi7dNOvJjHhCiN9DyckJFx3uBItD58t6Yl7//51SS/TBb48qbRvbGxI2u8Jl/bzELyFwSv67ESwWCw0HA6XtoykQjufz9XpdNTpdELbBG0ObOtH9d0J8Hw+12AwCI4HjukkA9KK62B7ezuIEB4+x/Ehy54XAfGBdCISeL86VV1JajQamk6n6na7ob+fMTWbzSVRYTAYhLFTaWeOZ7NZyIsol8vq9/saDocajUZL53cyhpjhFeterxfe49kFPpfu6MDZ4K0uTqA9RNLFHt+twgUFbz9xi763BnAOrsmdLH5M4FX22WwW3AYupDhZZaxOil0UYt68ou5ZFXwO4vwJ1grjR3Rg7fm6cJfGcDg8KwSSax+NRmo0Gkv3iftNOwrBjt564DkXjIn3e24BY2a8uDni6+JeIUL5OmN9sZ74HJDFwTW7oMD99CwI5pTzcf8QBmOBgxYcD029inHJ38UJB4PGH71Sv9x9qh5wxx16XK144TckJFwC5vlCn/1N36ojf/yKgx7K9Yj0PZyQkHDN474KCrmkv8yyLJf0P/M8v0PSjXmef0CS8jz/QJZlxy/mQBB8byNwO7LvOiApWN15DEIDWaLiTfV2MBjozJkzWltbU7FYVLPZ1Nra2lKV1skQwgE985AcSDMECKLVbDZVr9dVq9VCEKT3npMH4YSJ66MyzPV4JZv+c57jmLgnIKp78x1I12KxUL1eD/3+k8kk7PJAUB3H5zinT58OW15mWRauAVI5Ho+1s7MTRB3IGK0cCDgcF7Lvux5w/aPR6Cy7ue+eMRgMwpwwZqrg7gyAJHvbAyTWyeZoNAoZFbQFeIuFV6x9hwUn6T6/Lj640ID7wNeLg/vtYgT326+JPwhP3grEGP16XZCilcHzEDxkcTweB7eLtx/EQYxOyl3M4ZzMhzsU+DyyNlxEQGDxtghvk3ARylsr/HPijgvm250I7lqIx8kcesYIa8/HipDCe68SXLbv4oSDQfmvXqsf+sKv0P/6w+fpgaXWQQ8n4RrCk5/2Nar/fdrV4X5A+h5OSEi4LnFfBYXH53l+994X5EuyLHvLxb4xy7KnS3p6GMgeqYIoQAAgctPpVPV6PZBynAgxYYuD/RALhsOhTp8+rePHj2t9fV3NZlONRmOpFx4yT5Uyz3dDC6nA89ze+CXt98MXCgW1221tbGyEKj/v4RrK5bLW19eDK8Ir/hByXh8/xpw4MaIVwSvLZEBUq9UgmIzHY/V6PXW7XTWbTVUqlRAUCcnL81y9Xk87Ozvq9Xoql8vB4QCxYjcA7pe0vy0nxBhRB2LoIgNtEZBWb1ngb++xHwwGYccMr4hDQD0zgGo264j5cDfEcDgMc+lOBQ9djMUPJ8OQ7Jhk8vq4Zz8OOOS+rsom8G01veJP7ocLNcy/zwn3nTXp1XXOB9EeDAbBNcE8MI9+b92dwr9dRKCVJHaCeIsPIoALNi4o+OcV0RDxAsSZFt4ignPB7xuv9VYJ+94J3zG8Ln6Pi1ZXES7Ld3FNjSs1voSLQP6aN+oZT/hi5aWi/vzv/uigh5NwDeDJT/kSFV7/+oMexvWC9D2ckJBwXeI+CQp5nt+99/c9WZb9kaTHSjqRZdnNe0rszZLuOcd775B0hyRlWZbTq+6VVuz/hOC1Wi3VajXNZrMQ2ufEwauT7HwAYZN2K+ndblfHjh1TvV4PNnXPIdgbT3AgdLtd9Xq90Je/N/ZA7tlCcH19XbVaTevr64HADQYDFYvFQN4hVvV6PRCX4XC4FBpZrVaXKrUexgjxjMki1zWfz9VqtULwYq1WCzspkBfR7/c1mUxCbgLtGrgC7rnnHh09ejRsL9npdAKR9ewCHCRcP2OnZYHXQ1yn06n6/X64N94OQbXcWzcAogekGsHBA/44H9eNMOCBkbgQeE7aJ/60HjQajaVefq7BWzwYH5b58Xi8tAsFj7kYIZ1Nij37wcMHYxGD+UM8QQAjIJRjxtsp+p84X4BWF+YibtHg/nheBefhHIzbBT0/RtwSEucRcC943Wg0Cp/pOKPDP2/uxmEc7nSx75el93PcVa/xzxKPrRKODjMu13fxWnbk6rnoaxSzu94jSfr0RzxBkjT8uNv1N7/2vw5ySAlXKZ782V+m/PX/etDDuG6QvocTEhKuV9xrQSHLsqakQp7n3b1/f4qkH5H0p5K+QtJP7v39JxdzvDvvvFOPfOQjQysD1nIIMRVUdiqQ9kPe/Bd/t44TwEjbACSBSiivrVarYTtEJyGLxe7uCJ1OJxBPFyg4HgGIx44dU7vdDiSTyrlXXKmYE+xH4COEiyozlV3I1nA41GQyUaPROKu3fjKZaGdnJ5DUZrMZrOfMJQIJgYT9fn9pFwvEjV6vpzNnzmg6narT6YQ8CBwOzAMkl+0Tq9VqaNPAoUBWgLsC4tR82luYJyry3j6AoMHacHAedndAbHKCCaHFMeIVdM/kiKvVCA6Q+UKhEHbz8LYEHwvnYl5Zk+5a8HHxN8SYte6uAubchQFvKcGR4dccCwKIWataFlx8gLTHbSWeKxALb3FrBfeYzyxzEQsK3Euum7YUnwvGxGt9jP458GO7mODCRCw+uFPBx8e9v1pcCpf7uzjhcGDe2Q1orPzFa/SpD/zo8772+Xf9rY4UKvfHsBKuAnzi936z1n/n1dIiiQn3F9L3cEJCwvWM++JQuFHSH+39El6S9Dt5nr84y7JXS/r9LMu+RtJ7JD31Yg5GJZz+/2KxqHa7HYIOIUfSLnmNQwClfWLibgV2j/CsBWl/BwEnJd5/jtDg7/Ft6yBYkLt+v69jx46p0Wio0WiE1/G3V9VHo5E6nU5wJnAdVHxLpVLY6QGhA6KGU8KryVSznVQeOXIkkDMn0MPhMIQM0oZBFZk2i16vJ0khsBEHRK/XCwGEjUZjKWCQOSfbASEgz/Mg3ngbiG+T6QQPEcbt+HHfu+8i4O0IkG7e7xV/t7NzjNi9QhAhx0SoiFsUWCeIGd6+EosMMdn1Y3lOgLcwuKjlr3OBAzAPCFHSfi6BtyJ4pd/nw4Fjwl0NnIPj+jkYqwd4uujBeL0tgeMh0rjoIu1v0xgLEP659vUWO1p8nmPQFsOc+Rry+bwKcVm/ixMOIRbnDwj9mg/5hPtpIAlXA9b1Twc9hOsR6Xs4ISHhusW9FhTyPH+npI9c8fhpSZ90rwZjrgGISrVaDdVvyLFvw8cfyIITKUiDBzpSlWbbSaqdbh/HLcCOCJBIjuHhjbgkaCWg9YF2ArdZk6xPKwHkHqs+ZIYdIwhS9C0NnUxL+1Vi3r9YLNTpdJbmkjGQdYAIggOEOeM6Op2OFotFaIsYDAZhBwifV2mXiDtxlJZ7773XHsxmsyDWQF6l/Yqxhxp6zkEs7ngV3sUFJ9guCnAv3ULPeBADEGzc+eDjwGXguzb4rhJ+PRzbrf2Mg/fjrGCNMn+sYdwNvn2m/+GYHiTpDhu/L1615xoWi0VY1175dyHAP1+sOXeQuAuG97q7IXYBxI4BJ/cuYvhrGQvj8zW4qjXCPyPA5x/Er/Hj+vEPM67Ed3FCQkJCwsUjfQ8nJCRcz7gS20beK1BBx9oMGcG2D6FAYHCCzXaPbl2n/90JNZb/8XgcdnkgoyEeh6TQHuBVbXrX2VmgXq+fFZjn5yKrwSvR9Xpd5XJZw+EwvN77+2nVoB2AP2tra4FsS/sCDP8uFAohT2Bra2up5x/3gZP3Wq0W8hyYA9wITqjZ6cK3ImRe3QXAdbiQAJmF9EI0x+OxqtVqGJekkOXg73MXQUzWvY3An/Owvrg1wXeSwBXATg+0NfB6LPtexeYeu8hFtR1AQPnb7wNE2oUv1ppfp2c3cCzG4EQbIs36BxyD8/n8+Zx5q0e8FSTvdbGB8yN08LyLBt4y4YhFgvi8Ph+x+8iP5+eKn2OO4rBWf9+qn91BscrdkJCQkJCQkJCQkJBwNg6NoCCdvf3eYrEIffNUDkulUthikkDFWq22tK2f27bp+y6XyyG7oNPp6Pjx49rc3FS73Q7uAkg/LgBC8KjCF4vFYIunYov9f3t7W9vb22q32yGvgLGwhSW7CaytrWl9fT1UeBEZ2HqSYEaq1/V6PTgtxuOxut3u0o4ITgxpa2BHA8SOuOoPeXLnBTsr0H7ijg4n7x6q6MKPE0Yq3N4mwpjdtQAZZ+7L5fKSI8Mr2V7Fj0nvuXrj43wAby2R9oUcP6YHMnqF38G8SVpab8x53FYQ75LgYgDknDmPgxA9d2JV9dzFCdau//H58HYIjuNtMcxDPHZexzlcBPCxsg54LkZ87Tzm7R5x2xKP+/30sa9yEMTtEBfjMjjsToSEhISEhISEhISEw4ZDIyjgKqAyScU4tjFDWKjaIzJgd4+t7JKWLPdegW82m9rY2NDJkyfV6/WWghEhgFTo2cmAnRPYihBRYzwea3t7W5ubm2FcEGp3JMxmM1UqFW1ubgbyn2WZ1tfXtba2pmazGUQQWgxov2DnBsSDuD8eQkfGArsnIIi4KOMVbw/Wm81mIUMBIQQRwK31kGN3J8TVdEQCr6AzVubTcywkBcGI+fV7jqDgrQ7SchAnr/dQRMa0qu8+vnZcGU6SOY+TXnc8+O4TXDPjAjEx9vEjIkDWV7UxuMvBr9mfYz3GQgvHcDLuLRPxPMbuAn/ehQCfc87hjoX4OKvmP3Yg+BhWtUVcrHvgYsQBH0f8+KqxJiQkJCQkJCQkJCQs49AICovFImxZWKvVgjPAiQWiARV1chBcSIirmpBESP54PA6BiJubm9rY2FC1Wg07OdBuwA4Iw+FQnU5H29vbWiwWoeWi1+sFAler1SRJ3W5X3W5XR48eDVb66XQa3oNIUiwW1Ww2NR6Pw/U3Gg1tbGwEt4UH5OFAqFQqwXEwHo+DQEEYIyTIwyKpfEP8PK2f+cQJIikENgLvW5f2CTgCjVekeS627nsbAfcFsYY8jNjtwDU43JYeE1An4U46410VvK+f+ahUKsElgZgQtxAwlthB4Ncdn9fbDbySHo/Xq/9O2N0NEhN0Xsc1+Xx7BZ955D7Hx+C9vhPDKjIe5zD4nPj5/d7Ex4lbJnxuY9eCH/98P59LtLkY10L8XNwCkcSEhISEhISEhISEhPPjUAkKp06dCttC4iSgDx4yiWuBYMVqtaqdnZ2lvm3+YBWnUs/uC4QN0vbQbDZ18uTJUCEulUrhPLQYdDodzedzVSqVQL4JpGMc7JBw5MiR4LJgN4VaraZisRhyE2iV8F0JGo1GcEd4JoG0T3gQSPr9/pKLAjJEL75vKcnzXBs5FXmeazgcBjJHhoG7FGhB8OBDH5dnEkCAeZz7yuu5H96OEm87yO4dtLmcK0eAn2OnhOdlkEHBz4gVvisEThffetLFCsQXd4L4Nfg4nFDHZNTdFvFj/m8XGlxYiZ0gnoXB43FApM9b/Le3GyCSxAKIj9P/MCecf9W1xuKFn9/nwNdJPK7z/Xyu9RCPe5UoEAsHfvyEhISEhISEhISEhIvHoREUJAU7fqFQ0GAwULFYDOGEZCVkWabBYBC2H0RwwNIPSSUDAdJM/gEBj2wN6bs9MAZIHP8eDAY6c+aMhsNhEBRoKxiNRiHTgd0QPLuBfIZ2u61arRbCD8lTaDabQZhwcr0KEMXpdBrO44/PZjONRqNApL033a3pzBEVeUgoc4M7g/nxnxm7H8t3v6CdInYTeFvAqvvN+BFXEBRwWvgODy4yYPEH7hRwMQanRvy474bhjgHPlkC48cq/pLDmpP0WBubDWzU8JNLXGP8+V6uBPwbhdjdHLHBwn/y9vMbn3fMW/B75/LjQ4WJd3H7ggoI/vip3YpUo4NcfOx/iebgYnO91F3IcxA6nhISEhISEhISEhITz49AICpCsVqulUqmk8XgcyBnBjLgBaAHwXR2cCGDr96R+qtKNRkOlUinshoBTAAu/h9rVarVAZLe2ttTtdnXkyBE1Gg01m01tbW1pMBioWq0uCQij0SiQE9oTyGZwYl0oFNRsNiVpKdFeWraTQyQlBRFjOByGLQ45t2/fuFjs7uJQqVRCoCTvJQQynn/OCzH1HTPYgYPzMTavVMeE268JAcV7/rm3iAmQU9oQOAd/05bg7RMu7tD64dswZlm25MKIxQ6INcQZEYu14NfjbR/uGohJdLzFJa91kcoFh9jh4Ft5SvthkT6fzINb8/04Liasyl7geQQcJ/SegxCvx5iwxw6BuNXjXPDrdgEjPl/886oWh1XHXuU4WHWM+D0enJmQkJCQkJCQkJCQcH4cGkFB2v2lvlwuB/KL5dsDGMlOIKPAA/u8hx9iPRgMQtV9MpkE4uC7KFARh1jxM1Vyabdtotvtam1tLbgapP1tBAEZDdVqNZA0sg6q1arq9br6/X4IHaTFAxLvO0RI+86CuNruuwY48URUcIEEwubbNSIo0F4g6SxSzvxBjJkjQjCl1TsqMC5vF/DMBe4rLRZOnhEZ/HVxdR2XBvNCuwliSLVaDcKUt8twT3EexFkJ7iBwwcHt+F6Vj1sBYsQtBuRJQFh93brw4qGG3E8/pzsm4gyGVYIBr2NefWx8FrhfPOZjj0WL+HpXtVcwh7HQ5MfxVg1/L/DX+mMXcivEwoGvn1XH8+tKQkJCQkJCQkJCQkLCxeNQCQqSgm2+UqmoWq2Gv7MsC5bsjY0NLRYLDQaD0CoAYaWiDpGGkFLhhtz2ej3t7Oyo0WioXC6rWq2GSjciBoSUYw6HwxAkuLa2ptOnT6vb7YYqb6VSCS0WDq8wM17G2Gg0tLm5qX6/H4QCt/BzTcwNRAzxQFJwcEAImYtV8+OtEQg45XJ5ibTipGCbyjzPl8QExoDo49V4zoEoQR4Gz3uIJWOCNEsKLhRpvyUCAcPvpxO/SqWiVqulbrer0WgU2lLq9XpwcyAOIZ6448NdCx4GyZrhvvj7PCjRHRkuEEDm3fWyqtIfk3Z//FwtC6tIdSyExPDxrspKiPMEnJjHO1mwnmMng1/Pquf8WOcTY+I5Ot9j58K55mjVvy/luAkJCQkJCQkJCQkJuzh0ggJEBYJO24ETbSzh3goRE22vRHu/N39Go5H6/X54XaPRUL/fD8fg2BBnqvdUmWu1mur1+hKZJoPAAxMh5b1eL7yewEbOvba2FnaaIMQRhwVCBmNl9wvGBGGtVquBjLszYjQaBUcHf9PyIUn1ej20kfA+5h1HA1Z2RBev7kP4peWgQh5jbjudTmhZYNcLSUtbNLo4wb8RFZwge8YEAohvp4nww/VyX+L3I1TgYuD6EJCcQHOuVaJA7DhA/EJ0YD07kcbF4WGI8XHdGeF/3JXg8MfPVZ33eYvzE3ApuHhwrmo+rgd+dmEldtfEwsLFuAx8HmJnw31xEfj7vXVnFVY5JBISEhISEhISEhIS9nGoBAUn805uqBJXKpWltH0InBPOmAhBGiDfEH12kUCMgORCtJ2cOUFnHJ7tQC5Bo9EIgZGQbXZt4Li+fR/X3Gg01G63A8FlC0sIDaKCixrxtTIm8if8/TgRIICxnR+BgvDDZrMZtu4cDodhd4t6vR7IOUIL7SFZtrslpwcDIipUq1U1m82ljACOA6nmcSz4OBFWVfI9/BG3RZ7nqtfrS9s+Iv6wjnyd4RYhzFBSaAlgxwc/v4dNusDgWyH6dpw8xhjz/OwASP6ORQBvafB8iZi0ezgm1+VtC7Hj4lzOBl7Pa5gfD4Dks0Q2iV/3ueBi3sWKCKvGtOqxuK3BhZZ4bLETwe/juY53vjEkJCQkJCQkJCQkJOzi0AgKVEnf9a536cEPfrAajUYgm+PxWKPRSNVqVbPZLLQUYGH3nQjcYg4JlM7eUm80GunMmTOBIEFInHRDXHFHQLy9+s4fyPBoNAo7VLRaLUkKuzIwhsFgIElLAkej0VCr1VKv11sSIrh22guclPN8nD/gFnkfowfmebbCcDhUr9fTeDwO75f2Ww6cIEOa450PfNcLCLpvqclOGLzWiakTTX4mm4J76i0HuC24Z7y2VqtpNpup2+2GNgVIPOuF62B8EN3JZBJeT6sL6wIxxgm570yxWCyCSMJ9dQHAbf1U61lX7lBwAcuFCHcuUPVf5VAAMZF24cHvv4dLxuNz14XvdOEihc/nKrHAP4vnckqci8j7c/G1xU6ReAx+r9zNssrxsEp0SEhISEhISEhISEi4OBwaQUFa3vrOiT/VeR6nejyfz0PbgLQfKkj2AjsIUImW9rf3m8/n6na7ajabSyQOwgRxw8FA2CK7T0gKdvrFYhEINeNyh8NsNtNgMNB4PA5OAMZF+0Gj0VC9Xle9Xg+ktl6vBwEChwMgZwCSRMgkhH4ymQTiznaZPnc8Jim8B6eF500gKkjL2x1C8MmUgLhxz9xNQLsEW1q6Dd6dBNwHxAAXRpxUQ8j52fMbcGpwf6rVanB4ePig71ZBhgRiEc8j1rAufDxcL2SZ42ZZFsQJXuduAifqcZsE1+NCU0y4nZgjeNEmEhNsJ8sxqfdcB38MAYnXepuQ308PyzxXXoKP5UJY1cqwSqhw5xGfrVXvOd85/ZjeVrJqvKndISEhISEhISEhIeHcOFSCgrRcVUVEcBKPLV9a3lIRIsr2hp7D4HkLkoJgMBwOw7aPTizYatHt9bPZTL1eT6PRKIgMVK9p0+j1eoHU+3j5UywWA7GlrQDXBWGCECJS+RuNRrCg43CQFPr9JYU5cocApNtzAZycQvILhYL6/f5SJZe5ceeGOxOkZfs8jgSvejNmv5/c0+l0GuYcEcYFBsbo1vp4y0Qn9DyGAOJuAe6fCz7e+4/ogPOFdgtfY+wOEq9Tb7dxF0h8Hif0MdmN58fFtNgpwJhdXPH7Gbs9YseDP849lfYzSSDp3L+YbHubUTyG2MHh94r33JvWh3ORe29xWNX+4K+LX+PzeiGHRBIUEhISEhISEhISEs6Ney0oZFn2oZJ+zx56iKT/JmlD0tdJOrn3+Pfnef7nlzSovRYCCPRoNFKz2QxbRbITA5XsuNLqBEZS2CXCcw8g8cPhcKlay+sg0AgLWOkHg0EQKbxnnde6A8J3CGAXBghjvV7X2tqajhw5EkIacS9AZCBNtVpNjUZDhUJBnU5HvV5PeZ6H6+r3+4H8ewI/1WbGQkgk5BUXB6GJCBSSzrK1017BXPjx+Dfj4d7Rz854JpOJxuOx6vV6GGfsSIHg8zzCCPeXc8aVaUlLgY6AOWRNeTYAry0WiyHjwbMnWGOIOLyfeWZufNtRdw14iwJj8ao+j/lc+zqOW1Q8DDN2SzhRPle7gjsiXOzgZ2/Z4J4wRt7r1xNnmXB/nKRzT2MBiH+fz4VwLrhgxRytEmv89f7cudpFzidMHGZcye/ihISEhIQLI30PJyQkXM+414JCnudvlfRoScqyrCjp/ZL+SNJXSfqFPM9/9lKO57/sex871ntIkfeVxxVacgHisLpisRi2QkRQgOzH6fYAUksbBn/jQHBCR6sFr4NI9Xq9pZA7dzzkea5araaNjQ1NJpMld4O06zro9/vhde12W3meh+cnk0kIO8zz/a0qvcLvLQSMzV0LtAe45d7vBzsxIIoQNsk4EG04vrQfuOjnd1cD7Qf1ej2cy1tZ2CbU74WLCe5C4JhclwsPEG/fbQHiz5wMBoMwH2Q80F7DsdxWz2sQfyDXzKPnbpRKpaUdLFiXccuEt4bEbgwn9LzOgyvjzwCvhdSvcjb4ZwSxyVsZvMUhJuhxe0n8XCwQrBJIfMznElIuBlyni0d+znM5Qfx1sWvBnztfC8dhw+X+Lk5ISEhIuDSk7+GEhITrGZer5eGTJL0jz/N3XyoxWAVPa4dEQkS9X5/KPW4CSUt2d7dj+9Z9CAsuPDgZdXHCtxGk0j8YDJYImecWkFkgKQQdckzGV6/XQ2tFo9FQqVTS9vZ2ECA4J04Ewg3ZbYHrxb0Aceb4vl2m2+ghuJ4/gNjh4Y2lUilcA84ExBevRgOI5ng8DucGHjpI68doNFraRcG3jYQwOzyUESJJmwHXxZgRSjg3IojnHDhp5jl3priA5QSV9/u99zljrADRIQ5FdPeJzyFwt4xfM/PDNcS7P7gA4u4ZP0fcKuDjPVdwogsFiGWrnAb8+1yIr531GV+/HzdGTPzPJXyset/5xha3P5zLPXEV4LJ+FyckJCQkXDLS93BCQsJ1hcslKDxN0v+2n5+VZdmXS3qNpO/I8/zMxR4IgunVXUnqdDqBgCMG1Ov1EKpIpbVarYYdACCh7JCAFZ9dAQhvdLIH4fYtK31sbsWXFFowRqPR0q4CVO17vd7S+52wUjGH1ENyuU62pPTKtdvryUBwssRrvHI+GAwCkadyTgijb9GJkMLxY7s67QbMJ88xX1T+3ZLP/WTeEF1wX+AkkLSUIeGuDif28fxDmsmNaLVaQQyRFHIRXERg7L6Fp1vyneS6td6r/3HLgYdS8tyqlgBfl3EGAOf3c3u134UDX0eeTeCuBt8+0VsgfPwc36v9MYn2FpB4jLFbKHZG+JxyL/28/p5V99txrsdiXEg4ONexVh33KhQVLtt3cUJCQkLCvUL6Hk5ISLiuULjwS86PLMsqkj5L0h/sPfRcSQ/VrvXrA5J+7hzve3qWZa/Jsuw1/jgkk50NIEWEImLt9wwASJLvaOBEB/cAGQW0LPgOEbwWsgqpoaef10HGB4OBut1uqLZT4aaCDFmZTqfBRj8ej9XtdrWzsxO2jsSBAZHHEVAqldRut0N2BESxUqmo2WyqXq+HLAcn8bGwwPz4Y8zJYDAIrRZOoCDbXBeuAa6PefPMAF6DC8F3ivC2EeaE/AqEIAQcrjUmxzEh9vYXXBisF8IuOS+iD68Zj8eB2CJQ8DzX6e4BFxliccK3fuTnePcDnC6xU8FFB+BV/Jj0+mudtMcBirEg4q9HFFh1Xl9H8Xt894u4gh8fKx6fr6tYePHj+GeacSLWxMeLzwUu5E5w8WPVcc7XJnHYcTm+i6ca3x9DTUhISLgmkb6HExISrkdcDofCp0l6XZ7nJySJvyUpy7JfkfRnq96U5/kdku7Ye12+97ckBTu8959TAYfQez+6W84hu7EF2wMAy+Wy1tfXz7KqO3F0q3qtVguEyAMXGQvP+bm8XQKi6qGMCBG0RdDqMJ1OtbOzE8bZbDbDcSSFNgeIKjtVjEajEIoo6SwCL+22iNTr9UDWut1uEE6YG8ZLqwDkHALv8xVb37lffl7uHdfNfRsOh0EY8L5+yL3PpdvjIZ4e9ujrhucZHySZe0rbCG4I7jPiEeM/l3sgFjqczDMmRDCOh1MEF4WvFc/c4Bg85u0FXr3H1cExvB2Ecfrng3XjcxpfU7xLQxxUuopc+z3xz5ufizl3YcVFF/+MMA53+fi54+uMx7IK8Tz6PWXcPm9XOe7zd/FaduSqsmMkJCQkHDKk7+GEhITrDpdDUPgimbUry7Kb8zz/wN6PnyvpjRdzkLhCjuUe4lEul9VqtVQul0MuAUSZKqYTGYibW9a9+k+OAcAhsL6+HggwLQLtdjtkNbDlIed3sg454bFSqaRGoxHGSJWXPISTJ0+GaizVbbIixuNxaH2AbPt2hLQqIJTgJkB4gTS6WIGgwI4LtANk2f4WjYgAuAcILKxWq2dVtCGT7kSAUDrp94yLuHruVWonzDg9fB141gHkm5YUSCrCirTbjuLniNsleA/33nePiMdFdkfsBomFJm+J8DaS+DHPYVhVQec6/VwQbeYhzkhwUn8+xwDHONfnMD72uWz/Lly4M2YVcXdngLfK4GxB/OFexOPlff6dcL5rXyUSxOOKj38N4LJ8FyckJCQk3Guk7+GEhITrDvdJUMiyrCHpSZKeYQ//dJZlj5aUS7oreu684Bd9QgghvpKWdiVwy75vkehbN/J+SCCkOSaMXmGmXWI+n6vX6wWyzbGkfRHD7dtUvL0X3FsDnESzU8BisdCZM2dUKBRUrVbDrgdci7sa3BUAifbdLDy/YFVvOGJC3I6BEEC1njyHXq+nwWCwRLDjgEondbg1fC6cjPtzwLcydCBEQDal/RwEyDlrxOcE0E4haWlHCG+jiF0HPidexfeKuAsYkHwPAGXdee5EnudhVxEfJ20orFdvS+B8EGvmN3Yb+Dwi2vi1uEPBhTbHuYQJP34sUDlWEXN3BEj7DgTmj/e5k8Hvq5/Ld1pwwcLHGedRAA8QXTV3cftIfE2rPkeHGZf7uzghISEh4dKQvocTEhKuV9wnQSHP84Gko9FjX3ZvjuVVyLW1NVWrVXW73aXt+CDbhUJBvV5PZ86cCXb5Wq0WWhB8pwVJgZD7MaR9osZjtAMgPHQ6naUq9HA4VKfT0fr6uqrVashFwHmA5b5SqYTKs/feS1K9Xg9j29nZCT3/tVotEM319XWVy+WQYwAxJv9hNBopyzI1m001Gg01m81AaPnjjgTfBWJVtZjKd6lUCsdnXiDJCC3eQsDzOCrYZQGined5yC+AwDFXiB+MibG4vZ3jQO69ys/r2EnBq+SxUME98NYZr/p7qwME3beFdKeLrykEI0iwv8ZJM+sboQUHBcf3a/O2DlpYvJXEhSR3Wvj8xcIJhN3nJ84S8PYFR9w64dfka8mDKz340QWGuK2If9P2sspB4CJL/H6ueVU7gwsVPq7YsXA+uGvmsONyfhcnJCQkJFw60vdwQkLC9YrLtcvDZQMEzkkDRNsrrrQv0DIQEzl2FHDyBalDUPCAPbZzhOxDGCEjBEX2+33NZjPV6/UlIu496PFYXNDwXRR4jedCrK2tLTklptOpBoNBOJYLB4XC7k4X7XY7tCj4HCEW+PVClhE/6G9HICGwMm4h4dogtxwXUcbdI4gkOC28BYQ5Zc64HgQQrhG4hZ65c/Eg7r33/Axvl3DyGwdKuujDH5+XLMtCuGPsoonHwD31/nwn3e5aQSDw7ArWLGsaNwsuD9oB/JyslbjFwJ0y7pCoVqvhXIwB4uwtCE7CWVs+Z4x5VTsL1+7Hjqv/LhAhGCCy+OeW5/h+cAcEn69YUPK5djHDBY+4PcLXnLd+XA2CQkJCQkJCQkJCQsJB4NAJCpAHCAMEg9wByFXcfy/tV4Gr1WpwDFCBpgoK8cW+DgEmKyAmzBCv4XCofr+v9fX1s8gjBAaS6PkE7p7w6rek8Fye5+r3+0tOANo5ZrOZ+v2+JpOJWq1W6DWHjNdqNTUaDdXr9aUt+ZyMIpzQKkL1nev0HSa8jQIhwgk+oKrvx/FqfblcVqPRWNqNwcWOOO+C+xcTbOC7DPg1+XhoL3BHQjxmtuPkvsXWds81oEUktsfzXrIp/Bh+LLInmEOumfXtuRq8xoMbEQLcXcI5uEYXpri3zDVrALEodnhwbI4Xk3hIeb7XTuN5JN6i4G4MdyfgCOEzGq8jrscFilhQYI25+8JbK3gvGSI+/5yfNee5H7HzIV4H8bESEhISEhISEhISEs7GoRIU+OWear1Xd8kYgPDFW/H51naNRiO0Ckj7xDKubnJOzkt12Akp54ur7E6k6PkHhDVCjiCdEDRpt92i3++r1Wot9bHjEhgMBoEAQdq9UjqfzzUajQLRomLulneu1QMbea+3fvAYRBdxIG5PiMmauwLYWpN2iVKppM3NzVB9ZrzS/paf7gioVqvBiYKDAqEHMJdUxT3PADeBOxhYE96iQV4FrRpxf72TfSfeEGRfp14V53F+hsizQ4aLUH4fcQT4fYmzN1a1GCB4NBoNZVmmwWCw5CbgfWR2SPtOCt95w8WwOHPA2whYK96axDH9/vhY/XWxM4DHfJcPPhuc11sw/G/ux7lcIi56uNDBnPgcrRIS/H66UyohISEhISEhISEhYRmHSlCQFAgwRNZt/Fi1IZZONqlQcwwHIoDbvj1AT9KSY4HXOgGE+NCOwHmwn0NGIbAuZvAar5iyZWSz2VS73Q4kdzweq9vtqt/vh10icB9wDgIgvfpPaKULE16B97YBF2K4Nki8pCXydS6r+3g8Vr1ePyvo0VsCNjc3A+HzoEQIHmNm/G5Jj4mok31p3yngjpLY4s41eHsBLgaOy/W7s4H76OIM48XJERNhdy2wPsnGiLeuZFxeZWd9NxqNpe0SvTXD3RHeTuPXzOfDXQ6IGk7Q41wKxAcEIP5mrv3xOJcgDoTkfjhZ53Vx3gHiAIKUiwyxkOIiGZ9TdyMxx8xLvLuGjwPXUhz26W4Ld9UkJCQkJCQkJCQkJJyNQycoSAouBezfTmwgChAgtpCsVCpL2xf6H4gg1X8cBYvFQrVaTcViMYQRSsv2aCdhEI+4pxti6gTJr2VVojzZCN1ud8ldMJ1OQ4sDhKnZbIZrI29gMpkEJwTXiFgAaXXreGy1l/Z3T8D6Ph6Pl6r5EGd+jvvmIcK+08FisVC1WlWtVtOxY8fC+7e3t4No4xVxRCDvsy8UCmE+gPfxk8/gbhUe87wI1o5nPayqVvMaiDvkW9onmOVyOYRgInpBal14ciEJkixpySkhKbgpEHMg5I1GI7g8GCOv8/XkVXgCRQEE2zM0+Mxwr3GduNPESb27P2KBwls33GERtz24iwNBxHdl8W1XOY5vBet5GN6K4p9rrtFdQ/5+3xqUuXGxw8fHebiGVbuQJCQcZhTabd317R9+0MNISDgLt75wS4s3vuWgh5GQkJCQcAVwKAUFiPNoNFoiDRAiT9eHEOBe8HDC+HnI8Hg8Du4GtoTM8zwQOa/8Qvbcas+4PK+AY8db/EkKAZJOQCEsOBEgOMPhMByjVqup3W6rUqkstRI42Yf0SftBgV59hmziKvA+8uFwKGk/cJE2AwSCOEsg3uoRkus7MfBzvV7XsWPHwrxDwv36Ia1OSvkZZwOkkwyNYrGoVqsV5pb5oFLNXALu82g0CmSW9QXR9JBMxusVd3I3Wq2W2u32UsaF5yC4y4MwR56v1Woh1NGPKWlJFPPcC+YYccKdEb62uD+8N85GABBuv3ZvFWKcHo7oIhmtKi7mSPtuEf6N0IFo4S0uLiZxDuaauWLdOsl3Vwav9ZwFHsOhAXyuECjcieJj9twEvgdSy0PCYca7fvzjND2y30KVNWZ65yc/5wBHlJCwGp/wcZ+n99/1WD3yB+/S/MQ9Bz2chISEhITLiEMnKCwWC41Go0AO6EPPsuws4gV5gwhRAff2AAgUJHw8Hms4HIYwRD8WZL7VaoWqthMdFwGoVHOOPM8D+YUM+u4U7i6gbcEr1GwFOZlMljIPPFdgPp+r2WyqXq9rsVhoMBgE8QEBgvYIHAySAhnl/F6FlhTEG28LgJziRKB6PJvNAqnkHsV2dqz7R44c0dramnq9nra2tkIFnPf2+/0l4st7cQQwNq6Nqn6r1QpED6HHyb/3yCNgQGhdWOF53A3MlRNSxsvcsm58PXKvJ5NJcFz4dUL4pX2nB/fVXQuSzhJFPPsCcu5iFkKOuxEQeFy04HgeJhlX+D0gkq1Ppf1QTg819faKOJfEAz39PiFgeBtJ7ABwl8MqN1DshuA7wwUBb4+JxUjmInYMxa01nn+SkHAY8Y6fe5xe8gU/o9vKrQu/OCHhgPEPH/GH0kdIT3zI56j++W0tut2DHlJCQkJCwmXCofttGWIOQYQMQNYLhUIIopPO3orRbdVuW4cMQ6wh4vTxQ+IGg4HW1taWSJtbpmlJcOs3rRKeWyApHBdhAlHhXD3ojNWr0xBqjuGV5PF4vCRANJvNUO2Pe8YhUzgWvOqLU0HaJdjtdluNRiOcG+HDhRAs5rzGCV6W7e7KsbGxofX19ZARQfUb1wC7cDAu5pRr9XYLnucP2QvsmsFcNpvNIPxwPVyDV+7dSUAgZBzg5+GUCA+Myx0y0i6JRsxxkLnBWmPbUW9X4Jje5sBacBLNe8hl8J1DOBZOHe4Vc+HZBT7XnqvhFfxYMPL7wM985rzViDEimvAZ4tisJd7juSLxOVwc8LXlYYsgdjp4aKQ7GhBC4t0k+A7xzy/HTUg4bHj7zz9O/+/zfy6JCQlXHV72YX+sr3nJJ6g7O6qdTzh90MNJSEhISLgMODSCQpzi7pVyD6OT9nv1pf0e83hrPWk/EJE2BSqqEC2vFtN3TvXaQw8h6ZDd4XC4RN49PBISSLuCJA0Gg0CiIVNU1jk/LgLHdDoNZN/7/L3NgqwJr6RyzRzPyTmkk+MzN8wbQsCRI0dCFR4HAwSe9oJerxdEkrjiXirtBko2Go1A2qvVarheF0ik/TaJWGghc8FJsKQl54bviOFBiPT9+w4WLubQutJqtYLDBWKKWwJRyEP+VlXZeZ1nQWRZFsQZRAjf7cLvCfB1xL2T9u35XJ8LG06wPZzU15xnQcS5DIhqCAB8rlzY8M9LTO4LhUL4fAF/bZx54LuWMJ/uPPDjMgc+1/E1uxDkggaimbdHeAaDn5vXxO0uSVBIOEy4+zs/Xl/1lS/Wc9o/q4cmMSHhKsXzP+QfJEk//8aH6DU7D9bpx5854BElJCQkJNwXHBpBQVq2O69KV/fqu5NMr+LzPu8td0s/VVVIWVyVlvYJXrzVobQfZFiv17WxsbFU2aRaLkn1el3NZjO4LeLtDKXd6ulgMND6+voSceH6R6ORhsNhIMqQaMgm1VYnWzw2Ho81Go1Ur9eXnA3Mc6lUCuODoNFSwLVVq1X1+331er2l3AQPcfRgP3d+EChZqVTUarV07NgxSQqCjffwQ+QZA2OkRQXi7Lt6kO3QbDbDuBAHXJzxkE7vzXfHBsJHv98P6wziHgcaxn3/3m6AqODBjO12WxsbG+F8tEl4YGSxWAzCDY95LgbgGt3V4a0V3s7A+ePMBG+38IDSZrMZnBtO/n2tuqDFPeIz6U4VHCS4WDwQE+GG+4HI5I4artt3z4hdDC42cH6EFK47dhq44ODinbdK8Dly0TIh4bBgfCzXtx95p6QkJiRc/fj2I+/UdPNtesU7i/rONz9Vm09520EPKSEhISHhXuBQCQrS8i/3EMGYiHvFeLFYBDLmgoKTHsQGDyj0RHtvM2i1WlpfXw/HRCSgKg8JG41GS+n8EGqvGkNsIFfScuUWoQMRgnNBXD1A0ivTuCQ4v7QfXEd2An9DsiB5XBMOCuYFEk1rwvr6utbW1rS1taXRaBTGPxqN1O/3NRgMAjn2e4GY0Gg0AsFut9u64YYbVC6Xg0jS7XaD6OFuAkSgYrEYnB2eD0G1nHmv1+uBUHJ/eR3ZFLHdn3YAadfp0Gw2VavV1O/3l9oK2u12cB14voUTTc8BcMLKuWq1mprNZminabfbKhaLIa+DqrkHcyL04OLw0EMXvhBgyHWgjQPHBGIaa8pbG9z9wdwiRhUKhSAucUzPqPB1jqDA46wHFwQQE3iccSEaMSbcQIvFQo1GIwSMDgaDpXvnc+/OGG9NwpngLRr8jEjBvfRgRz7LcetDQsJB455v/Hi97kt/XlLtoIeSkHDZUM6KekJN+sdH/65OvWfXkfnJz/1uPfAnXn7AI0tISEhIuFgcGkHBMwQgIJVKJVTYfbcFJ+heiXbi5ASKPuo4zd+t29VqNRBIev0lBbLLbhC8fjQaqdvtqt1ua319XZLU6/WCI4Fz+7U4YZQUxAkECn52wkMl3kMSERr82JVKRdPpVJ1OJ5A1yJRXZb0y75Vk/o1w0Ww2tb6+rul0qtOnTy/11E+nU+3s7ATijUvERQGIoSQ1Gg0dO3ZM9XpdvV5POzs7oeVgZ2cnkMparRYCFxGKqE5DMN1p4OKDt3dwvawDnvNWEch6o9EI94M102g0VK/Xg8uCijWvidsdXFRwx4a7YbIsU6vVUr/fX2pn8JwMgBAVtxnEuQGx84S17m4Sd1C4MOGtPwgK5IxAvH39xO0M/O2vpT2J9hZaPDz/hHESssk9Yv0gTLAWEcA4H6/lOLQLIShxj/jsxBkRnqnA/PEa1i7iUdyClJBwkFiUpFYhiQkJ1ybKWVE3l3adN//yrGdr8azd/6s+83O+UnrDW6Vpaj9LSEhIOKw4NIICoMotKZAKeu69Koqt3Ymc28Q9sd6Jl1vXeU+WZWo0Gjp+/Hio1HufO+SuWq2GqjwugbW1NdVqNe3s7ARBwMk8FnDICjsgeEI/2136LhHkG1CFXiwW4TVOwDi+pFDJ9WoypBHBgdeTAdHpdFStVoObASLogYGMFcLIGDmPJ/5T2aYK7YIA4sVkMgn5BXG7Ca/BRdFoNIITwfv+PQeDMbiY4eQ1DrxknXAvuN8+Z8wFQg7rL3bNeJihBzTytwsBXI8fB0DkY/s98899pRWGdY4LhM8Gx1r1eeC8iADScggi+QvcQyr1tEfwem/18HsXk3eOOx6Pz2rpQajh+nwbTlwXzWYzCG3cy0KhEJwFfD/wuWLOeD1j8vPGWSOxaMO95DOX2h4SEhIS7l8Us4Jocnvxn/ymJOmxn9o/uAElJCQkJJwXh0ZQiO3FXvWEDFH1hfA5ieKXfyeoTsggHVQ8Z7OZer2e1tfXl/rInQhDxL3fH1KNKMEYJYXKqe8a4AF70v7We25nH4/HS8GOHlIHaSOg0Ykn1061fzweh3aD+Hkn1XFLSbFYVLPZXJpvAh8RDzysDxGEajJuAu4bjpLRaBTaCcrlctiVIk7/Z76oDlNJ93YRD+Jzsch3TPCgRt+ZQtonlj53OGCcXLuI5fZ35iJep05G4+BHf5xz0lrA9eHC8GMhbDBm1pWTY79XEO1yuazhcBgCEn2bSZ9/dxV4HkehUNDa2trSuuVe4A7h8+SkPf7c4lDguKvg7S3u6nGHB9fF33zO+MxwHGk5a8LDJX2u+Rn3AveY43irhr8/ISEhISEhISEhIWE1Chd6QZZlv5pl2T1Zlr3RHjuSZdlLsix7297fm/bc92VZ9vYsy96aZdmnXuxAILne8+w2+GazqXq9vhTM5xZwt3K73Vza3wmCnu3RaKRerxfIFzsYUJXt9/uaTqfBCu7igJ8z3jUAMhQn/rtdHDgxnc/nGgwGwWHAWH2Xgl6vp06nE9oqeM6r0uQmSPu2eY7DOCCaCBRY0RFqIO2TySQEMo5Go6X8AK4fl8ZgMAikkLkYj8fa2dkJW2y2Wi212221Wq3gNvAcBHZaQNBBKCDTwR0AiCa++0YcIohrwne74Brr9brW1tbUarXCOoGwenU+DqJkXp3Ex1VuPzdODM9diIUmFxF8TbH2aDegxcXBfVtbW9PGxkZYd+6ucNeDC1Wxs4J1wLlxqvBYvGUnzzNmD2REUGAe/Tr9c834+NzyfkSkeI64v/4ZWyU8uWDiLhtvGcL542IWx4yzJg4L7q/v4oTDifqphV48qF74hQkJCVcM6Xs4ISEh4WxcUFCQ9AJJT44e+15JL83z/OGSXrr3s7Is+3eSnibpUXvveU6WZRf9G3mhUAjEKK6KQ2IgnU40fAu42HIN4grlcDgMJH17eztUPCHa8/k8kDos+N5HL+3b89m6kZ0lnFhKOouUuMhAOF6n0wnbH7LTQpZlGg6H6nQ66vf7ocKM/d5bNiBMXCvj5W/+TU/7cDhUv9/XfD4P8wqBms1m6vf74byxoABpJUuh0+mEHR8AYXreAuIZDdwrBKNWqxVcJ9x7Hxdwwuyk1yvUThw9XA87fbvd1tra2lLbhKSlTAaI/HA4DOuBdhiEl9h9Et9f/sQ/c68g0XHbDuTZHQpO2iHpkoL7w+fJiXlMijm+3yeED99iEbHBybzfOx+H7zTiGSdxy4cTfcbk7oG4VSLemcOFm9hl444c5iBuyeDecC4XPfz7AgGJYxwivED303dxwuHDkVef1Hf+yxcc9DASEq53vEDpezghISFhCRcUFPI8/ztJW9HDny3p1/f+/euSPsce/908z8d5nr9L0tslPfZiB5NlmWq13dAp71+GcFQqlWDndyICaeMY7nSAHHjAGlsejsfjpQo7Nn16vqnU4jTAGeD9+rFdHkcBJFzaJ6rAAySzvR0K2FWC8zYaDZVKJXW7XZ04cUI7OztBFGDsXDfjoY/cRQQcGIghBBIOBoPQdgGx8vnp9Xo6c+aMdnZ2gljCHJI94G0FCDXxNSH0eH89lW6cCbgWaFfAkh5X1yF9EGgEBe65k3zu06qWk2azqUajEQgp98/zF3AZMB4yA1wwArzW1+u51ttkMlkKGfS1z/sYr685d2H4+o/t/O7uwC3gbgocCX59rBFfJxB0d364A8Xhgg1zSOUf4u6igDtrcNV4+0upVFoKX0RAOhdWCTuxGMBcezaIt8F4UCM4bA6F+/O7OOHw4f2fdqPe+LjfPuhhJCRc10jfwwkJCQln495mKNyY5/kHJCnP8w9kWXZ87/EHSPone9379h67ILxlQVr+ZR7iTBUWgi8pZA844YXUUj2F6DhRgwhDBCGxWMtj8kilHbIJcSqVSkEcoOJNtZcdKtiaEDIGwfQqrKRAiHEBkE3Q6/U0n88DsfJdILwq62QYogkphex6uCX5AVSpeZ77MZlMgpCBUIHg0Ww2w7aXuCRcvGFLSOaacXGPPKCQuQDMf+ww8TyAOIgwbn051xrjuBB3d55AMhlzLFxRpWedIpwwNlowOB6vw90RC0kxPO/BgzpxVrD+fL37+HEa4O7g88M5GaMLJi7KsT2oCyvutmENeOYD85jtBRnimEBs8vnm2rzFgzXqohFwd4sLIX6vcCudC+6acLcFx3CXj4eMSlraCvMQ47J/FyckJCQkXBLS93DCZUH20Y/S2760fc7nH/Ydr5YWaQeqK4G3/8LjLup1H/ojb9X8zJkrPJqrD5c7lHHVvj4rf9vPsuzpkp4eP+770mO/jyvWHgLI306K3bps5wskHBEhziGgiuzWcwiJdHZFmaq+29QhgggYZDA0Go1wDogcRLtYLKrVagVBA9cAgXWMiaqv28U9sI8qK8TdCb6T/FKpFFoMvOIMqUSkGY1GoW3Bk/1xKEBkvaXCbfA8zpy7CNJut9Xr9TQYDJZ2FIhD9JhT/o2YANn3zAkXZ2K7fuwqYH3E7SdcD9sQuh2ee8KaobLu7gXWGdfg69LviRNqX1suOvluBn5fuSbOTWBkv98PYpTviODuCc89iNuGRqNREMBWCQjMk7de+BaOvhWkf1699YFr5rpjdwO5CN7GwBqI5yqerzjcUlIIcvQ2irhVyoVG/1yyzq5S3Kvv4poaV3JMCfcBt/zttj7h0z5P//ARf3jQQ0lISLg4pO/hhItC6YEP0Nt/7qg+/Ja79Y6HntuJ9sgHfpkWi9W/l9zw+3U1X/jKKzXEqxbF2x+qd/z35tJjD3peScW/eZ3e9ux/r/INQ0nSO/7D8y7qeB/10P+s/vBB53x+40VNbfzGK+79gK9S3FtB4USWZTfvKbE3S7pn7/H3SfJZfqCku1cdIM/zOyTdIUlZluX+i7u3LNCLD9kolUoaj8fqdDrh9ZBLbzHodrvhWLwXwuzhghAo+vf7/f6S9Ryi6LZyab8HW9qtDHv12EkyrRC1Wi0Qag/XgzCR08D1QpS9+uqWcg9XhPy6wOGV1+l0qm63G0Io2cIRl8FwOFwKEhyPxxoMBktZEhBlr/i2223VajUNBoMw39J+Swf5A4gY3B+cCeRGMGYIuosC/GEecVXgvHDniAtBHJN5W0Vm3THBPfAeew+O9F0kuJ/Y9ePcAYQg5nNVv39MVCHPkGlEAFwpZG3wuFv6XSjz1hvAeV204BoRGLydhh0cXBzxz1kM1iXk3d1DfIZ4jvvk7SGxw4Pn/XvA2yJY0+58cacIc+nCi89FHGTK/fGxuxPmkOOyfhevZUfObfdIOFB0H9rWlz/4ZQc9jISEhLORvocT7jWKG+s6+gddvejBL7rga9/8+N8853O/9GEP1v971qMu59AuL76uqvnb33VFT/He//NhuvXockfSg5p3688fuEzwf/ARj9Krtx6sf3zoz+nmUuuSzvG6j/m98z7/go88rt//qo+54HHe8qYH6eHPurwCUPbXD1AhW/76uOuvb9WD/vvLL+t5VuHe/rb8p5K+QtJP7v39J/b472RZ9vOSbpH0cEmvupQDQ4KxTlPlhSBhB2ffenrhIVXhwvYIP0FykgJJhpj49nQQfoibk1UPC4T40H5BJd9t51ThSc93MgdBg6zEOwqwNaQkNZvNcC2rKqYcfzweB9LPOXB64CxgziDA9LezxWChUFCtVgu7XyAKeD87bRdY/xEJFotFmFcXdwi+JCNB0pIbodVqBUcG2RUQOs+GwBHQaDTUaDRULBaDUDEej8N1+laHiAWekeCVbV7HmvLQP17v99AdEe5a8ONzXM9QYPcLXhvnHrjVnnvlAgDiDSTbxTD+cL5arRYIvDs7EOYg034tTq45r4sksfgRk3NJS84Nz2aA8JOLwDqLM018zN5GIu23JXDNzAXHYoy+k4e3LFSr1fAZ8XNy3FjY8YyHVcLPIcQV+y5OOFzoPrCop6+v5CIJCQkHi/Q9nHCvkJVK+oS/+6C+/9hb7/Oxvmnz3fqmzXdfhlFdGfyPP7lVp6bnbue4WPzJuz5ct3zuv4Wf3/Gzj9PTPvkfJUm/f+xXtF6oX/AYP3zDm6Qb3iTp0sSEi8FXrt2jr1z78wu+7l0P6en5n/BxK5973ZNu0vzkyZXP3fMNH6+nPP3vVz73o8fPFqVee+tEf/T5Hx1+fs3XPVr5q//1guO7VFxQUMiy7H9LeqKkY1mWvU/SD2r3S/P3syz7GknvkfRUScrz/E1Zlv2+pH+TNJP0jXmeX1Kzj/czx0QRUsGWhLPZLFQ+IVuSAvF1CzbbMi4Wi6U+b8DP3qvtVVGOC8EjE6Hb7arf7weiF/d5Q1ziAMVarbbUny7ttxxMJpMgXNBi4PkQThT52avgvksCYohnJ8S7OYxGozBfgPNz3VTL3XnBThTdbndJTIDgspOEV865Zuag2WwuuRP8fvh4CHFE+PGdNbz1w0UUvx8u6kBYEYvi3n2umzXlIoe0nPMB6XR3ged5eMaBt5e4MIGQ5S0bjJVz+X313Rh4zndecKEBIu9wkuxCnbcCkGvhbgefS67V20m4F54FgQDAHHn7hbeD4BLyPBN3/UD0y+Xy0nz6fUFc4HE+58wZ70Oo9HwGF5I8b8HdRAeN+/u7OCEhISFhGel7OOFy4uv+7U59fqtz4RdeA/jWzbsuy3G+69ir9Ddvu0Hf9pIvVvVkSX/9hT+tDwkugwuLCYcFt5Vb+tHjq4n9i19xp0Z5eeVzDy+/Qo+qXPx1fnS1oo+28/zd7/2rtua78/W8Rz5C+WXKCrugoJDn+Red46lPOsfrf0zSj93bAXllEgILIYIkQiZ5naQlogNRwNoPUYeAtttttVqtpYqqW9I5j+9agJ0aNwNEMN4pglA8xuZp9pCndrutZrMZQg8RBLCdx0GN3uuPiELVGXJcLBZVr9dDqCSOg3q9Hs5LtZyAv9FoFNoanOiT+0Bf/Xg8VrlcVqvVCiSfMWORd3LpxJ1qt5M7xoODZDgcBmJO6CT3nvl3MYP5QLzwUEVEGCe/vD5O7EcE8J0M3MVAqCRZEF7VzvM8iBusW9oOvBrugZgIVpLO+ltabs1gXXL/vU3DRQevxjM3no3g1xW7ArydhHXqGQuLxWIpxDH+nPF6b0HxsTG/uBT8s+UuBea/UqmE9YuLhzXg1xILO96GxDnddeJr0cUgjsfa8bYLcJgEhfv7uzghISEhYRnpezjhcuEH3vkGPaF24dclLGO9UNfnNHv65M/6RU3zhTaLl99lcNB4cmMsaXyOZ++baLK75nqSpA9/x8skSS8d3K4XPvL4Od9zMTg0DcJZlun48eNh68NGo6G1tbXgAoCwQYLH43Gw7UO2IS8Qad91AVLI7gbNZnOJ2GCbdsLkRNRbMWgv8DBCtgSME/4RQLyFoNlsqlarLbkWFotFcFA4eeb6hsPd0JDpdBpIM+dHUIBM1Wo1LRaLMAcAAYSsCMbGMSHX9XpdjUYjjG84HKpSqWhtbS04Eqjcs90gQoeHFyLI4CzgXsTBhE5scQd4hgbkMg6RBAgLODJ4zO+BE2Kuy8mku2G8NYEsCEQOxCdpXwDAIeEhlLhsXAxzRwPXTmvA+XIKmEfuM2P26/dqfezs8cDCVZkA3l7h8+5ZDb6jhItH3C/aCjhHrVZbCmOsVCqB0HsrigtYzKO7E1atDXf6AG9T4GfO4UJd3MYR53S4W+EwiQkJCTf94iv08Jufqbd82S+rmF1wx+eEhISEhMOKQlEPL/V0JSz31wtahaTG3Fc8tLy7/h66fre+9H136Uvf+RT1n7gl5QtpRWba+XBoBAVpn0whKEBqJQXy2+12NRqNQmghpNbJT71e19ramqrVaiD6EGBIJ73V7ijw6q6n2wMP5nNSnOd5INYQUd9S0a3ezWYziAVcG5VtxAAEEd/NQdISOSuXyxoMBoG80hLAv6X9fnLIV71eP2tsCBIQKcbXbrdDOCS7QjQajdCSgfjB/eD+0caAk4E5QgiAlCIOce2SgiuCe8Br3HbP/UYEcgLudn1cF07UAcTf55TncX0QBIiAhZUfYSTP8+BK8VwCCDcuFuDuA17rrhOv+js8NJK2BsD5IMAIB17Jd4GE+fGxcBxvCfEWEcQraX+HEoQHnnNhzI/J2vEdJxBHEBt8RxN/P8fmuDgufKcM/3yUy+XgvImdK94ihNjCdca7fHBd0+lUg8EgrO2EhANHnush3/sKPfymr9M7P+X5Bz2ahISEhIR7iR94+2svOQwwIeFKolGo6A8f9hLpfdJtL/o6feiz/kX5+FwuibNxaAQFJzgQakL/PPAQogBJhXSSGVCtVsN7IbBOqDwIEbIfb1voxMWPg3uC80r7/djebsFOD5yDv7FTUzXnWPSS465oNptnWc9Bq9XSkSNHgitgNpupXq8vBeNB5l0woXIfb8GJrZ6xI7hUKpWwOwMOA0gf94R2CEhmrVZTq9UKggLHhZRzfn+/E0yIHNcmKTgfXPxwgijtCy5kRXAtfp8hrh7E58F+MbnneJ6H4PC5haC688HPzf32jAVaZRABvILutv5ztSa4mMAWlt5yELcXMF9xqwWCFIhJPdfBzh+IYu6IYd4QeeLPNfPrrSCIDbhaGC+fEw+L5LjMn4tQiCwIClwD84oAxfUzB4h8zLvnsfC5iB1HCQmHAp2STs37OlZsXvi1CQkJCQkJCQmXgHc95Vf0sO1n6uE/9C9a9PsX9Z5D5ZuEiFUqFWVZpslkol6vF36ph5RI+0R+e3tbg8EgkI64AunWbUiHW89xK2Dtjwm8tzNATKku81r6vr2Syy4ETrohgVTYcRJ4VbxerwdBBBKFUEBQoQsGZEWQZ0Dfe7Va1Wg00tbWlnq9XhgLRMsdHU7WY+s4hNUFCQ/5gzAi5DSbTbXbbTUajZB/sbOzo06no36/H7aSZD79GBBwJ9xONF0Y8mo9/8b5wL2IK/pcD9Vv1pjfI+69i1H+WFzZ9zni/jQaDdVqtaVwP9Yj6wXRxI/ndvtVIDCQ++PuAxw4LhSwbn2M3HOfHyr6jMHJPuSauUWE4zkXgOLcAo4HwfdjeIsBnwF3Y3BOXrsq3JS1ghCHqBa3MMR5CQ4+3/G9991aEhIOEx7xi/foG979WQc9jISEhISEhIRrFG//kufqXd/zESqurV3U6w/Vb8v88l8ul0Nvf6/X03w+D6TZA/kgFh7K54h7pyF5cVWT/m7IDn8KhUIgv9KuJX8ymYT8Aic+VDwJjOS1fm7fBjPuJYd4QngRGZgXWhbYfhFBgGtCEKESD5lEyIBwkjWAmAFR9+BAWiU88FFSOAZj4fp5D+PzAEZ2kqCq3e12g/OjVqsttUus6muPt8qEGHuIJO8B8Zzyb47pWxyyzhApPN0/djbEIX44J2InhO80wbF81wdfU9wDSWddK2ucdePX5JV+X1MuKCAgIZx5hd4/K75LCM/RqsB4u91uaOXgWOQmuEvF559jk53hnweuhbXpjyMaupgVtzu4A4MdSnA6MI9xUKSDde9rx1sl+OzhekhIOCx4y385onc+5I8OehgJCQkJCQkJ1zDe8rXP1SMX36Bbf+5fteh2z/vaQyMo+JaC2JQJxIOgSjqrf94t6RBND2ODrOB8cFu029E90X9Vcr+kQJ4gLhA+iD0WduzTCAyQNYiQV5MZl6SliroTS9/xAhLvffqLxSK4EBBeqLpzHYgJlUplSQyg4hxXrGNC5W0GjUYjCC69Xi+QblwKWNY9xA/3xM7OjgqFgtbW1oIIwZxzbq8qexgj8xJX8b31Ia60e7XaRQiO7yQ+rpoj7kA+PU9AUnCK8B5e6+NhnYzH43AfBoNBmPdV6zcmwB5gyDhd/PDwUN9Jg3PGLon4OhBCXNTiXlCp95YLxATuL+vI/3iLAsTfxT3WLcKZZ2Qg8KxyHK0SB3BuuACBy4U5Z3783nB85t7FGD5fvnVpQkJCQkJCQkJCwvWCNz/9Ofq0P/5i6Q3/dt7XHRpBYX19fYlkDIfDUDmFpHroHJV6t+pL+0Sc4EECHGOrOEQmyzL1+33VarVAVjyZnwrvbDbTYDDQYDBQo9EI5IYKfaFQCLkJpNb77gxsMcgfKuJcixNm/vasAwQVd2RAYAkH5DgQSs9tgKgiTPjYXQRwwhUTVKrQzWZzKY3f8xPYYQIBg3kejUbq9/vqdrshPBLyh0NkOp2Gqj8iCveN++IugzhbwB0Z3ocfZw/wMwGLvhsBP0v7QYjMQ7yFInPrbgHuX5zJ4OGibuP3fAbG5c4U3uNiiIsmtAB45gR/n6vtA/GG64xdHE7CAcSePAXaHXysvM/n04UEb2lg3tyd4O4AAhb93rmTInZcuEjBffIsjti95C0/XJ+3N7A2k0Mh4bDhhr+u6I5/f4uevn73QQ8lISEhISEh4RrHW57Z1CO+s31el8KhyVCg9QBSwC4EEDmvstfrdbXb7SWSHlepcQd4mr+TvPF4HAgudm5aAfy9VN/Jc2DLSg+L80BHQgwJW/QxcF24B3icSmhcNXfrONcGMUMkkfadGFjQsdQ7Kee4vIfqLaQJMSHeig/iBilk+8hGo7FEtrl/7urwPIR+v68zZ86EHRPcVl+pVNRoNNRsNsNYGRdj81A/nAO81ncM4JySghDjAZF+Xe5aYfxU770yznsg8H5fWFPe1889orpP+wkk1oUCJ9mMmfXqrgLPHUDI8HG4SAbxXrUrBKTdnQLuAPDj+RaR3sYyGo2CiOViHWPwnAoXPLyFheN76weikjshmLM4U8RdFt62E4tHLhK5U8VdLvzsLo1zuUUSEg4aG7/xCv36ux930MNISEhISEhIuA7wrs/8FRXW2ud9zaFxKNB7L+2H13laPoSZLQxpKXBLd+w88G0ieY52gNlspl6vF4jETTfdpEajoX6/v7TbA04DbOrD4XCJiOZ5HtozvMK8qo8fgunjJbzQSaO0X0WO52M8Hp9VWebfXJsTYq7DcwGYI6/KepXY8wM4BjsaUNnn+VqtFoQXrzBD+KbTqba2tlStVtXr9ZZ2uoD0QlazLAvtINI+ifcxIWpA/plnb0GRtNTKAYF1guk5GV7djh+PQzohuAgzZAPEc464E+8Q4cKHCxyxiyDOhIhdDS5GAG9V8bXhWQHu4IBA+5zxBwGEeUZU8pBHJ+/x7hp8bnz+XNTB/SMpuG/4GaEIcSK+HncWMA8IZL5meG3s/vH58mvhHjpiUS8hISEhISEhISEhYR+HRlCgSg8Rc5u5Bxh61RzyyS/9HtZYKpWCXRkiBUHEZTAcDgO5bLfbqlQquueee5aI52KxCPvRFwqF0B7B2GjPGAwGQUiAjEHUYjLmVWqcCU4wIZDez48gMhqNwi4QXvWFYI1Go2AXh2jhJpD2A+8Yn1vW42o2RI/xSfuVdCrPLphwLN8GcDabaXt7O4g63seOiFGtVsP18W/mjvmcTqdL7RuEd3LPQUy+va3Aq/aIKpBQ7/X3thG/l97qwHvc0g+4T2QPcI+84g25dqLsa4DxxvAwwVXPxc97fgDCigsMce4E18NapS0EoYjHEaN83eT5buBno9FQpVJRr9db6ZZg3skpoJ2J+XCnSewS8HvrAhltGN7mgSDIuoh3J/G8B97jWQ68LyEhISEhISEhISFhNQ6NoADhYks90uQbjYZKpVJwAUAkIDdu44Y4UUWnCtrf20OzVquF3m+2JKxWq2o2m6HaTQ+2tFt1dTGBCvpwOFSj0dB0OtVgMAitEJyPLAW3YfN+SDZE2kkNIoW0L45QQcZ+jphQqVRCW4ikJYcGLSLMWZy+79tyMi/x7gVxQB9Eb7FYqN/vq9/vL+2OIC3nLkBA3Q2Bs8CD+OI+dvIUmINYmAGe78C9YgxY7rlmD9+LAwIlhbXjFXJaFuJsAs8SYO4htRBmRDEEFLDKhRBX1DneKqGE8fkcsL5cQMJVwFpzcYpr9uBEXz8+duabz8tgMAjX5GKMH4c1TKsHrhYX6Hz8LjC5mwCBwVt03CXj99LvBaKT3yd/3s/hLRX87O4ZF9wSEhISEhISEhISEs7GoRAUarWaGo3G0tZyHooG2SNVvt/vnxUeBwHzkMDxeKxut6vBYKBWqxWOBfnDms2Whpy/VquFynq321WWZaEdAyGDKnS32w07LPhzEKGYKLrIwPVAYCCCHMfD6Hw3CUIheb+TQ6q1kkKF13v/vQIbbxeY57mazeZZpMqt9bR+8Hfcj+5hey4I8Le7CrwtxN0KvJ8ee299Yf68NcGP4XkK0r4Lguf92B666aIJrhPaX9yhwWtWBSoyr75VoVfv+dlFhphkn8+B4OTW3SuSwnjiyr4LU1TsIdE4KLg/Pi+SQnYFz7kw48GlvM7bYcgZYV3h9oh3YgG+1SZr0101nlHic+qCCmvE4e0ycT4C8xbnJHh+RBIUEg4j1r9kW9/1ksfoZ256/UEPJSEhISEhIeE6x6EQFCA3VCBxJlA555d7/s6yLOwU4En60m6FknA/r6LX63XV6/XgNoB81Go1tdvtQJIJYaQtQtoVPGifgGxRsSVoECEEh4NvT+l95nHPP5V1d0msCpPM8zzspFCpVAKhhyR7RgLzKO0SNZwdbv13QurhexwDEj0cDtXtdsN75/N5CJWM7focD2LKOUejUQju8+wL7pdXirk38Q4AtHi4SMJ8c153NzAvvM4FCtYM99hFApwN3NPYDu+tA5BN3sM8+HX5mmWO4taDeP54Ln4egQBi786TVaKEj5H7uUoUQERw0u87NXAOF/H8vawX3sf2qogChC36sVjbHrToAgg/I9TxWtZUvMOEw+fKWxcQVJrNZpgjvy+s71h8S0g4bJif3lJ/nrY0TUhISEhIuK+Y5wsVs0OzT8FViUMhKDgIXWy32yEngdYGCL5vIwlWbf8GiWw0Gmq326pWq6EFgNYIxAcPtIPUu3WabQh5DRV4rNhO3Or1enARQLggRZDpWq0WAhpxYiCs0ELRbDbDHCCieN6ChyhCsNhRwNsLvBXB7eJuQ3cCxrgWi4W63a5Go1GYl/l8Hh6rVCqq1+tLLQ9sr8lcjMdjDQaD0IuP+4Nz0X4BGBNBmDgUYsv/qsozBJ77g1AASeQ5CD1EV1JwlOBU6Xa7ms1mYdwe8IgggWgCaY7dAIzD2zuAk/24dSKuivs980wCd004XJBwcu33iXPhyEAAWNUawGO1Wi2s9bgFBBGN9e4OEOaFbA3P0IhbGzwwk/U2nU7DDiw+B9VqdeW1xy4Rnyc+Z97+4yIfYhmfmSQqJBw2ZOWKBn/2AD3nAX900ENJSEhISEi4XzHPF+osRvqYl32jshNVvemLfknVrHzhNxp6i5Gm+X4h7osf8ST95lv+UkWdnV22CpvFxiWd72rHk5/yJcrf/6bzvuaCgkKWZb8q6TMk3ZPn+YftPfYzkj5T0kTSOyR9VZ7n21mW3SrpzZLeuvf2f8rz/OsvZrDYkL366sQEIuNhcP5e//d8Pg/V52q1qlartZSsD6mFKGZZFhwH9IuTReAkHPJF1ZnKN1VzgiBbrdZSwCTEkyo9BI/wSQgZ48a1AGnzYEXO7ZVXt7g7OcTtwbkJgAScG4KPS6TZbGqx2A2j3NnZCTtbcP7RaBQyKLy6z9zQNuJhlBA0nAGdTkfr6+vBabK3rgLZo+UAMgj59zBEFxK4XhdHYpGFthLmLW4bkPZ34vB76lsUSlqqfLPe+OPCA8fx13ItnqXhlXont9wjro/PANfgx0RMQTjwHAPgLgacO9wz5s/nwwUF8j742dsE3DnA2pP2syjiefOWEUJE+fx7FgifQwJbXShAVGRNcX2sYUQBxslngAwVDxT1Vhc+C9VqVcVicWlby4PG/fVdnHC4ceevfLje+eHPP+hhJCRcl0jfwwkJB4NXjXcLgD/53k9X/wkn9TDttvw9YvOZ+r1PfK4k6TGVgsrZ/u/r03yu10/ObiP+pv/2bdr4zVfYI319yYMef9Fjeebb3q5bSmfCz+1sqkdWrk2R4c2TgbLpXBfaRP1iHAovkPRsSb9hj71E0vfleT7LsuynJH2fpO/Ze+4deZ4/+lIG66ntTvIhiG6xhny4o4D3cCyvoEKinVg5qcadQIAchJntDCGynM9JnbcVVKvVsEUlhM+D/dgeUlpOuUe4YNy+1SAEiYrsbDZTv99fsoM7cfKdCJyYNZvNEEjp1m+OGdvdaR3Y2dlRv99f6pfn+iHnXlUfjUbhHHHgnzsqBoOBtre3VSgUgguD10lacn1w7zyYEdeCuxIQLryyznVx772i7eIVx2YOCbtEAIpzGtyWL+07YTi35xd4XoeTfoQhD710QYSf3Z0Qk3g/H+PHeeNV+DjHwcm0Z1z4+bzyH+cduBPDxQHuAU4UFyfi8Xt+BbkZLqh4cGq9Xg/tQbPZLHzOPHOB97jTwttePKiS9cln3MUoF0BwLBwivEBX+Ls44XCjdPNNam0MDnoYCQnXM16g9D2ckHC/4QWd49qeN/T/HrWx98jJpedv/5rX6L/qYyVJN7x8Q0/YvDM89+rObXrPv++fdcwNveKsxy4Fz334w5Z+zh//aH3B//rL8PMTG2/T7eXmfTrHYcBLh0X9xNc+S8U3vu6Cr72goJDn+d/tqaz+2F/aj/8k6QsudZBLg7BecEiOV+VdUIAEU12V9skhr4OMkofA47gbIG2SQtgihBpyWi6XQ1uCE3oPsmPsbDnpJJdxjMfjcF6u01sgqIBLCqGQkDVe6z3vkJ/JZBLIPmPzvAjaMwjKo8LrZNIrsswlxxkOh+r1eoGYkWfgmQ9UoGkP4V5AqGlfQQBCCCGXodlsajqdBrJHe0S329VisQgBf36fPUzPq9y+CwiVa3e4uKvFSXxcdXehwHfc4Jy+TrMs02g0CrsfsJYgy95OQWWcCjr3zdsXeI8LFggzrEsXTJzQu2hAZR1i7Q4QrndVfoPnIHjLhrs+XGxBOIs/j+42Ym35WDyvwD/fiCDz+Vz9fl/j8XjJGUPGCZkmzItnh/i99O8W3/WDtcn4YjEnHvdhwf3xXZxwuPG2b7lNdz72uQc9jISE6xbpezgh4fLiHdOefvKDn3rO59/3idKif7YosAonP35bL9Rxe+Ti3ndfkf3jG/TCR+6f92d//LP1Hz/pX5Ze87wH/v1VldPw292j+p/f8/mq/82rLur1lyND4asl/Z79fFuWZa+X1JH0X/I8//uLOQhkykmwh+9J+xVm3AQQAx7z6qK03xdP8J7nCniPvYsQbnWXFAi8Vz094BAyDIGHAON0wD7tYgbkrVqtql6vB9EDUux95ryWuciyTOPxOBAuSLafizkrlUpaW1sLggfZBlTKPcPB2wkgyVR3Ic6QLc+dYFtNQCXeK/xeBXahxHvsafdgZ4VGY9c6NBwOQ5AmVW8ILFVrCH25XFa73Q73iwp4TLpZO3HOACSUVheyHCQFAuoZA5wDAQgiytyyVphXRCtcJWzvCTF2Vwbn4DnaJ3Dc+G4WiAysL1pGOBbXw5wDFxU4HsdmHfAez11AbPNMEG8f4B5DyD0rgnn3dUB7g+/qgHDl2SLMGYGn4/F4qfWG+XZ3Ba0LfG5cqGEOXFRjzbt4dxXhsnwXJxxerL9V+o3OMX352qmDHkpCQsJqpO/hhAvia1/5FfrXJ/yvS+79v9rxSf/2WRpMl6/5nrfeoId96z8d0IiuDG77/lfoPdFjj/uzp6lUnK98/TNv+9tD9f/6HTu36Nf++2dp7Y8v/r7cJ0Ehy7IfkDST9Nt7D31A0ofkeX46y7KPlvTHWZY9Ks/zzor3Pl3S0yWFLR6xprMzgRM1iAXkArLkoXLSvlUbsmXnWyJB5Au4lToOeYTcS1oSE3wbQYQCCA1EiOtxQUBa3saQAEdaLsh9cHIHEC2oxLLLQ6lUCs4GSYFsjUYjlUolNRqNIKLg2mDrTW85cGJFlgRzD6nH6cC4yFJwFwZkDcEE5wFW9Ha7HXaqkPZt6rgWcCwgsjBOhBtvFUEImkwmajQa2tzcVLlc1mAwCPkLMcnlHrgTwKvz3GN3BTj55fW4aHwnCG9xAZ6b4JkatEFAXt1hwXqVlttmWHvMsbcU8O/ZbDcU0z8PVPldHIHI0wLA+oodQS5CIFKxBty54C4IXh+LCRwDsO7iXBAPXfRtVF1U6vV6ITiTz7GLPawZFzf4XDOv/O0CkwsuceDjYcZl+y7WtdkDeK1g7T0T/f3Ohx6qXzwSEhJ2kb6HEy4Wt33RP2vrPWPdXLp2BYXvP/ER+t+vf+zSY4/89reptL2z9Nia3nF/DuvAcOQz7jznc7/4NU/VDz5+uvK5Um2mtz3xBVdoVMt40aCmZ/3dl+r435S18TuX1hZyrwWFLMu+QrvBNJ+U7/0mn+f5WNJ479+vzbLsHZJul/Sa+P15nt8h6Q5JarfbuW/3RxUXUQHC40QOAkRlm/A2BAOvKEPO3eYPsOx7mJxbnoH3nDsh875079ePtzyUtLTVHVkF1WpV4/FYnU5H3W43BEmyewLnhVyNRiP1er1QKYaMYrn3TACIp9vvySDAQbC2thbm1F8HueSavEXDd7egQgzZxeHB+elbJ6m/3W5rfX19SZSQpE6no06no/l8Hq6dMUL4XUyioj8ej1WpVLS5uamjR48uZUF40CCOBu+X9+tc1SbBWnFhB0DGXWBAMGAN4U7gmN7fz71F0EJIcqLOcRmziwncy73PUlgHw+FQw+EwXBvZHr7uEKV8a0d3wTjp988Ba8xbHTh/nM/gc8w9iIMwuS8uSEDqPQyVzxKOl+FwqO3t7bDTSEz83bHB586dCZ5h4WKCf579c3/YcTm/i9eyIxfK3Uk4QLz3SRW99EH/eNDDSEhIiJC+hxMuFZ/4q9+tN37ds68qG/yF8LJhQc/43WdIkm581Vy3/8myXX51fT7h6PNfoaPnyFoutNv60O995nnf/+Iv/RndVm5d8nnn+UL/7gXfGH5uvUe6/X/eu3yJeyUoZFn2ZO0GzvzHPM8H9vgNkrbyPJ9nWfYQSQ+X9M4LHc+r/RBCbzWATBHQh0hA5RLrv6RAFCBskJlyubwUcgjZcUHB4WF1qwgLf5x4ksHgO0o4qaRVAxLF2EajUdhNgeNTSaUqS894r9cLoZHSsnCBWMBYCI6k+u3VWvIN6vV6EBEgVLSGuBuCOYGceRYAifuQWlooXPSYzWZqtVpqNBphe0FcFZBgeuppbcHiX6/Xl9pSIOdUrTc3N3XkyJGQeYFA4OSe9YLYwhyXy+VAVFk/Trid6DoB9QBMb9dhDr0tAbGGNe5rLA509PFxHhcDWE+sbY7vORJ8XrwNw0Um1vuq9hrmyNscEDeo+vM55Rrc4eJiB4IU9zUOkIzbLzwY0p0S3uqwWCzU6XTU6/XCzg2sN58jdwS5UBC32gDu+7lyJg4rLvd3cUJCQkLCpSF9DyfcG3zID71cH731LL3he59z0EO5T/jIn/oGFfZ+naqeWejW375vgYcJy1h0u7r1B84/p09953dpXr+4LS+XkEu3/vLL7+XIlnEx20b+b0lPlHQsy7L3SfpB7SbYViW9ZI9AsBXOEyT9SJZlM+0KUV+f5/nWhc4BAatUKkEwkPYJrFdGqV5KWgpJdEIbW/m9au5VU2nZiu4ZB95TDXl3YueCA6IEJMvJJuTGg/ogexBlcgiowtLeASnznSiw8ns7B1VanAbeOuKZDvyMaNBoNIJI49syQsr6/b46nU5wF3hGBHPTaDRC8CIZCGxR2ev1wpgWi4XW1tbUaDSCGCFJg8FgqQ0FlwnXXqvVwjH8nnDf2+22NjY2QoCjizFOUN2Kz31h7qi4I071er3gvPDWDMQE7nHsOvDnPIvAXROcl6o4/+YcfBZ8zAhAvu64TtY8c+0tNnGWAa+PRTXe4wQ+JvyIL4zBwXk5lp/bHQB+/d5exBxke7sxxKIDayHPc/X7ffV6vdDm4u0cCImcF2HEr8MdIVwX4km8u0zsVjho3B/fxQkJCQkJ50b6Hk64nLjxl16hx+48U6/6iasjbPe2P/s6PeAvlousN/3hK6RD9vvS9Yajzz94Eedidnn4ohUPrzRm5Hn+QkkvvNRBeB+7tE9eXFBwwuakFhJK6NpoNApBhx4ax/uk/arlZDIJbQZOAKn0E0rnu1C47dqDID2DgdBDiH+e5yGHgONwTMa8WCxCq0OtVgtEiQr6aDQKY/V+d9+JYjgcBjdBs9kMBImcAa8Uc1xIJgTZq+regkE2g7dtNBqNIPTgMhgMBkEcarfboRJ85MgRra2tqVAohIwDSUtjYA6k/XBHXAlxawHv9S0xIe1U0D2PwlsNEJ+k5YyDfr+vwWCwlAvhbRIOb7vwPA/aU2q1morFonq9XnA6xP37rBXWBPfH8xD44zte8B7yLsgSgJBTZUfMYOxxKwLkH4HOq/Z8Vty94J8ddzF4ngOtBu5i4HEcE6vm00NHuXY/PiISaxnnjgtrjI+5cWGP52g/4f57toLPPfO2qt3loHB/fBcnHG48/Nnv0WMe+TS9/mN/96CHknCAGCwm+vSv+0a97Pm/ctBDue6QvocTLivyXJu/+Sp9/Pjr9fKff95BjybgXdOenvFF33jW4//une/R7IMnDmBECYcdh+K3Za+GQpJxI1ChhDCyuwHZAJJUr9eXtneEjFMZ9h58t5lTHV8sFmo0GktOBsYl7RMxJzEuaGCRd0KOkwLyiguBsUlaqgpTKfcedcgeVdVerxd2cvBqMe4IBI5yuaxWqxXyGRAZJC2RX+YUuzzkiyp9r9cL4Xg4JEC1Wg2CAs4EwgCxoDO/rVZLR48eXRoPwoO3g0DmIHfSfg9/uVxeCslsNBpqNBoh1NLzLpgPWgk81M8DNalOEwpJOwk7ZjC/HlDJ8RATqIp7UKLvJgJJx2UCIef+Q/BZS+RHcK/c0cL65n2ITIwP8ruqlYC15i4E3kNrjAc5ugjh8PYNz6GQdFb+Aq4IRJxVGSY+PnJS3L3hwZM4MaR9Z4m/HrHAXRHcaw+5ZH1wXnaC8M+9t1olJBwWzN73fu2c+eiDHkbC/YyP+cFn6sa/unvpsepdr9EnfuXX6q9f8L8OaFQJCQmXBYu51v7Pa/SUV3623vdZD9A/f8+5WyA+/Ymfr2x67u2s58+f6cWPeNElnX7V94vyXNld/3zWaw/PRtoJhw2H4rdl3Ac4ALxVAfT7/bBFIFgsFoGgQ/ipvEPAh8OhNjY2AjGC+HuVEpu9W51dAJD2q7lOriHwECn+9kwIaZ/gQloYo5MriB3XQ0WbloRutxsyFrCA48rwHnraPZrNpqbTaRAhPMugVqtJUsgxgOBT4ZcULPTsEkEQpIcY1uv1cG86nc5Sy8doNFK/39fa2pqOHDmio0ePLoUqct2Q03iuIe7Mg1fy3V3h810oFDQcDrW1taXt7e2wtjwrwDMQGMNkMlGn01lykThpl/YDLj2Hg/czFm/VQERCEJD2tyCFqDI2jgex9YwGiL+Tdxw0g8FgaY48d8PHh2PGszJwg9DKgtOCe7AqoNG3VmVtOuFGhOEcfF689cKv3Yk788ZxYnirRqVSCTuFcG2IIXEbCceijchdHwgq/rn11/i8JyQkJFwpnJkP9CWPevI5nz/ae5Vmi7O/F8svea3+4zOerr/9n3dcyeElJCRcYeSzmWbverdu/uX369N/7QnnfN28c/4dEQqf0dCnl879/lU41/dLQsKl4FAICpJCdgK/2Hs7AcQOMuOJ8VTqqUBDiLCa89h0OtVwOAxCAmROUmiv8GoxFW5aHKgCY2NHcID8enAdY/ZxQ/oQDagKO1H05H8P9uv3+0vHYZ5caKDFArJFawFOgGazGa7Ndx7AxcEf3BHSvojCc4Ty+ZyPx2Pt7Oyo2+2GufSq9C233KJbb701hCQinEBwmWdpf8tLJ9JuQecaeY3nXkBMd3Z2gvgRb4HoohEtIIgftDo44Y0t9x56yfF8JwZ3n8S7Y3h2glfLfQtU3C/Y+hFCPFfA20NwR8QuAifBPofeKsR6xP3CNcWtC+78Yc3QOsJaiLMXfC272yJ2NLCmEScg85yfa+E+IFjF+RCIab5uvUXD2yhcUPT15nPW7/fDPXE3RUJCQsJ9xTifar73/9hTP+7zNHv/B3afWJy1k+CFkeeq/d9X6VNf9NG6+zv/vV75zf9DklTNStdEcjxz9dSP+zzd+Z5fP+jhJCRcceSzmeade/FdsIeFFV0TEu5PHBpBwVPWISgk0mMtx+4NMaI9wC3sXgWHYJMv4LsduN1cUqjuSwoWftLlJQXCiCvAe9MhZpKWKp6SgjuAcUKGqGAXCgU1Go3QJuEhk7RSQHapAEOCuR4n/OQv0B4yGo3UarWW2gm4BneGUG2GBCKiSMvWdt8Rgd0pIGBkBzSbTW1sbOj222/XYx7zGBWLxeAYYI45jztF4gA9b0eYzWZBZGKeXDxhTSCwcE3eiw8gp5y73++H9YHbgHXkY3YHi5NU5tWdNS4AcS3AQyi5B6xJCD+PMxZfs3Gln+P7+RDcfAcGb7dgLXs1Pm5P8BwKPou09dDygvg3Go2WHAusU56P5yl253hopt83vgd87LQ6cAw+j97e4IIdmSAICh5a6juySAqvw4UR7/6SkHDQyEdF9RYjtQq1gx5KwiXgzHygk4tcX/rfvlObv06A1vsuz8EXc93y0y/X5/707p7vZ170cP3Wh73got9+S7F4qNbTPfO+thfSM57+Lar8xWt02eYpISEhIeGK4FAIClSDITO1Wi2QChLd2TZOUrBrIyhQnYRYUrn13nNcB9J+JRxiipOByvnOzo5Go5Ha7XYIBux2u1pbWwtEngq326KpjHpLAhVbxgY56na7mkwmqtfrarVaS0Q0zg/o9/tBcIEUSfs7D2CPxzng2Qh5nofQQuaaMEq2ZISsNhoNbW5uBhLF+SGviDODwSAQ+1OnTi1t1dhoNHT06FHddtttesQjHqG1tTXt7OwsZWF4aj/iD9V9r/oT9OjVfsQTr4RzHxFefCvNmIADn29ECM/a8Ip6/LeLQnG1n3uCWOFrUlK4/xwP0QpniIsq7hZxdwUuHdacO0+Yj/g644wRnxsPXnQxifvM+uH8Hjrpnwc+W57HEJ9XWm5f4LwezMr8OZnn/tNCwXv8WAgxjIGfpX03BGuD9eauKM7rLqhV7RcJCQeJ27/+VfrUF3+x/vEj/vCgh3LdYJrP9af9Tc2V6QGlM3p87eKq/zuLof5qcKMk6fv+zzN12/e/Qpu68mncm095m75Jj7/o17/9tx6jn37sfnbg57fufYX0vuLOaV9P/YXv0k3/4+Wq6DUHNo6EhISEhIvHoRAUQJZlIWxvsdjdb57KJ0SJKn29Xlez2VyyYUP0vKIsKVQxF4tF2BUAsgERg+QOBoNARsligIwgcGCp9z5wab9yyns9bBISXK1WAwnL81ztdjuM1fvYqfD6zhGxNZv3OVmFsPb7ffX7/UCu2MWA8XoIJnNAXgJb88VkiuquZ1DQdtBut3XkyBFtbGzo+PHjeuhDH6qHP/zhkvbbWSBw8RaI3FMPFmTeaS3hXN7G0W63l0IXaXPhuC6MuEsBNwjOFXZ1IEvD1w7wXn9fFwgCLiI4yXU3A3388b1jzbKWfT4g8OfaHWE2m4XwSeaX83LN3irE2uJ+umDAtXNttAXgeCFckl1U/v/2zjVGsuu6zuvMdHc9+zWcB2dG1HBIkQjk2KAVmxFiRzFgw7IJB4wQwGEegBUYsCXYsITIP+QocBQkMpAgkgwnsAIKNqQ8IEFILFgW8sOWYsEBImpExhRFRqREURTF4bx7+lHVr+numx9d3+lVd7rn5ZmqW+ReQGO6qqvu3ffccw9mrb32Pr57ibsDKClx8cMdL8Qt7fSE4L64Kwe4i8XjRBBCbKBMwcfS3S/8i/jlIgnzhc/7sxsIVA2vfe+gXnlrR28eaw87lNc1/sX5H9aVYr9+sDyrSz9xWZK0+gv/QG//16du6Pt/+spf0+FHn5cknRyAkHCreMs/+Us9rvvy6y9/va4D4139m8PfHFgM373S0eNzP6k/+e9/S/f87u3ZFz0QCAQCg0FlBAVIJpZ9b0JYrq+u1WqamppSvV7X0tJSJt6eSZd2SKCTFzKTvkUe9eDYrimVkJTJP9/xjGt5S0JJmbRBOt3aDnmHhLG1o/cpQBjxXRIk9YkXnFPaKRXx7D7bMiJOIJJ4xhzxgfgmJibUbDazA8KFGs5P1ti35GN7yIMHD+ro0aNqtVo6duyYjh07pgMHDmhubi6XrDAOwF0evl0mrgycIrgOuK61tTW12+1M5NfX1/OWlZRHQGSdYAPmEsdG8PAtJMm479WHAaGDOSXtOA6c4CIo+LUxnmWBgGv0XTjKfRrcns+839jYUKPRuOozTpZ9jjC/EJK8TIJr4Pp9a0bmjpclIeB4v4Syu8B7UnD9xOnXhwiBmOHXinDjfUYoh+FcLqrQrBQRg3NxTxG0GMdyGZPPlUCganjwvaf0d/7TP9P/fuRjelOICrcV7z/zY/rW/N2SpH1/d65Xk3w5/73+xVN6+os3dqzDev4ORHjn8d0fX9VLtabe+T9/QYcaHf3Xe79yx851eXNZj337F/Wd547rgd/4mu5RiAmBQCAwaqiEoAARIBvqpMJru8ncttttTU1NZVEASzwE12vLyVqWa8094+xZTbe1szUgGWC+C1l1ouVlD54pRuggNrLXEFjPpHqmFnLodfOQb7fXu7jhOzR0Op1MyhgndzBQKsJ36/V6JmhkfT1LzDad7sao1+tqt9s6fvy4jhw5kkn+wYMHdejQoXxM+jtIOxZ8jr+2tqZms9nnykA44DoQZnhva2tL09PTfXX0OBcgs1yXE2q3yvv5fewZZ+aGtCPmQC7LDRy5Lr7vvRHI6lPTz7nKlnyy7b4rBOD+edbcyyt8S0aPwx0BzA/GxAU4v0Z/NmgG6T1KOD+CF2ONIOf9PLxhKaSfa2B8XcRDIPHtLemd4s0+6W3A+b3xJHOCeccY+w4rZYEDx42LF5RNhaAQqCoefM8pveP3PqCn3vVxze5vDjuckcXnOtP60JPvyq/v//im9PXtzPwbeY+XYm1N+ulXdfneN+uB33m3fvTNP9Dn7vvybT3HA195tzYWJ/Tge07pgeiTEAgEAiOLSggK0k5mv7wFYq1Wyw4FtrmjER9ZTYiF26e9SaLXRzuRcHLmpQv0a3CiTzbf7fuQFEgP76WUsm3bdwrwrRCpBXdrfrlRpLSzWwBiCr0lKAOAKHPupaWlvF2mE1uuk2us1+t950FcYOwZU67NG03WajUdPHhQU1NTmpqa0smTJ3XXXXfl65iamlK73dbKyoouX76cywkouyBGnAvSDqFmPBcXF9XpdHKvCbfXMyckZacA/zoxdDGnvDsG5+d+cu1O+Llfbn33HRgg52y3CTku32vs9TTW9Bp/xCGuzRuPIgJBwP1+QoRx1/B3frrdbj4Wopkfy3t7eB8OdwIRtxNv5vzy8nIWd2q1Wp8riOe5POf8PQQFxtaFNs7pfRkQApj/NBx1Z4mXCPE7MePMKJc5+C4j3lPB14VAoKp44De+prcvfUDPvPv3VEvjww5npPD02pr+/uffp5nnk+57fKccIZ74fmy8/Iru+0evaOHtP6L7f/E9euffflq/f/yJv9Ix7/v8r2rfatL9H/irHScQCAQC1UBlBIV6fbvDMGRYkprNZl+2lqZ/EKiyZZ2Matl9wGtvhudb3XlGFMKHm8CzuL6NX9nN4E0CIc4QzfIuARAcCM3Y2JhqtVqOA+IFIVpbW8skemNjZycD70UAUSZTDzGGSEvqI4rE5TZ0bwLp5Jzj7N+/X5OTk5qdndWRI0c0MzOjY8eO6e6779bY2JguXryosbExTU9Pa2xsTAsLC5qbm8vjuL6+rvn5eS0sLOSyAi8/4HcaY87Pz+c6f0jyxsaGWq2W9u/fny3qlDsgUECS3XbvPTgYozKBBX6/3H2C6ME9Ytx8DnA85haZdeYDc7Qs5nAt7XY7n9tdCN4Twe+lNzHEXUB2HkHAew5wL9zRQumJiy61Wq2v4SUCFWUb9KugMSpzyZ0dCCKMP9fh7gzmLjH4vOSZrtfrffPfe5AgzLmzgnFzJxDj4GPKs8Uz7sJbOBMCo4J7P/RV/fil9+mZ3/z9YYcyEljeWtff/N33q7ZQ6C2frG5fg8rhiWf0liek53/mb+iHH3qbJOmj7/mkfrZ55TpflH7oq/9Y+746nV8/+B+e2nZABAKBQOB1gUoICjQEhBS6OADRoy8B2Uos19TMe6f8soUdG7ZnaSGUEB4vDYBMQSxc1PAsKeSFz9Tr9Zxtxvbt1m/PWOMqoMkfTesgVRBrJ44ppZy1hxQ62eXcfM+31fT+DOPj47nuv7xTBI4Pr//ne81mU4cOHdKJEyd06NAhTU9P6+677869EqRtEajVaml5eVmvvvqqFhcXc48IxIRut5sJnW/NB/lbW1vT3NxczrJLyhl8F1FwgOBqgfQi6iC6sAUn931paSmX0wDP0Pv7TrKBu118a0bODXFH0ELoYQcTjoGQ4feLe8/cL+/Y4Nl1xAriweKP08Njd/Lu2ztC5H1rRi8LYGwRKLwHiPce8XILfy7KxNyv14U9vx7mHg0gfXcIFw58C1nEN85N/wSeeZ5D1gNi4Nr9HhN3WWgKBKqKox/7P3p47r069TufGHYolcbD//y92r9W6Nhnok7/VjH+pad07Evbv3/khX+q3566/o4XJ75+QZvffi6/DhdIIBAIvL5QGUHBewV4HwTsyJAgr0Unw4ggwe4N0o69mkw7x/ASCUhJSik3caMcAeAecOEAogaphAhim19ZWclk07dxhOBAcsm+QiK9YR2CBEQYUk4JgJdyEA/EDys9DfXKDSidTHIexpPMs4sJjMmRI0d04sQJHTt2TIcOHdLs7KxmZ2ezwDMxMaGZmRmNj4/r/Pnzeumll3TlyhW1Wi11Oh2dP39ely5dyllsBB0netK2eOBNJell4XX3fB5S6s351tfX81abkFHfhtQJN8eB0JZdBxBLHzPmHWQVwQYhgp4bnLvcb4HzMYeIk/uFsFOOBUEAYcrnrjtKvJmjtOPIoVQHFwBOBhdBcODgAOJ6vV8F8wN3ADExpt7Tw50bfM7FKkQT3+kCYYZ1YDdHgzdyZAx8TH2MEBQY693cN17a4P031iKLFhgRzH76Cf30K7887DAqjdk/f0KKMqbbhvqfnFL9Bj4XsmwgEAi8vlEZQYH/wO+27Ztb7sncUv/uGVevefbmi9JOLwXq5Mud6yFKWKsRIXzfe8+OI3x4E0ZILDHgQoDQScruACdcxEt21Zv1Qa7W19e1sLCQy0HKtvLytndkmYkVMg6BJ4OLIwLCSNYfcN1TU1M6ceKETp48qZmZGU1OTmpmZkaNRkOLi4u5+eD4+LguXryoM2fO6OzZs2q327n84fLly1pYWMiOAW98R3M9rsOz5ghAxLOxsaHFxcU8RmxzyFxiK0hIK+OzurraJ1Rg58e9QXZc2rG903CQsaSnBWOMMMJ8gPB62cXa2lq+77s1DMTd4rtukG13xwTPhLtc6B+BGONlOMyP8li7K8CFMFwIXhbAsbyPAqUPLia4OLfXzhE+n1xkQHjz56TRaGhiYiLPB+6PCyqch2fGBQViRFAgFso3KEdxwcOdKS5+BAIjgaLQ2P96athRBAKBQCAQeIOhEoIC2UlpR1yAYDv4j39560ZIWbkBIf9iM/edICCe5aZzjUYjn48MM4RH2hEqJGVBwLvRE7Pbxn17RMgNZBVC6jsquB0c4gPJ5LwQMIiW725Qq9XUbDb7tpdkjH3LQOLgurzRo3for9fruVfC9PS0ZmdnNT09rVarpaIoconE2NiYVldXdeHCBZ0+fVqrq6uq1+u6fPmyzp49q3PnzvUJPfv371ej0cjj4/eZ+n/GhnIHyjoYh5RSX1POjY2N3LeBcUI4oY8B5/DGfYwLcXA/yw0gvV+H7yjAvfdmnd5oEjHBS3BwRWDrLzcLpDxF6t/pgWcFIYV5jPDlZN+fIW9CCuEeHx/PZTLMJc/YI3IQr/cY8bnPs+C7Qjgpd7cHYk65pwnfQ8CR1CcAlh0KXLP3j2CccAD5WoKg5P1OfF1xt4/3VQkEAoFAIBAIBAK747rFbymlP0wpnU8pPWvvfTildDql9HTv5xH722+llF5MKb2QUnrnjQbi2XXAf/C95pueCWwz2Ww2+5rH+a4KvkuEtE0cWq2W2u12Jk5uQ/dmbJDJWq2WCZ9vmwdxgvi54wGy4pZu71/gmd319XV1Op2cYcV54ddTtqxD3Fy0cEcFrorydnh817PKECkECc/Qkz2emprKgsLMzIzq9XoWLCD7EP9z587p7NmzWlhYyJnv+fl5nTlzRgsLC7mhHs0NufccB/KJ0LK4uJhFAJwa3W43zwPGi5jpj+A7I/AdxlVS7rGAU8OvmX4ELnQ4cYeopt7ODYgGvtvG1tZWFjC4f74jBaUGXt7DOZ1Ee1a+LLx4+QFEmGeF+VMuD2CeN5tNNRqNfAwEGO/dwPeYm97ngDHke97zxJuJcmziQBhw94j3YKDEiGey3KS0LN7xXtnx4KIEY0HZDGuHi3t8jmv13R+qgkGtxYFAIBDYHbEOBwKBwNW4EYfCpyT9R0n/ufT+x4ui+Pf+RkrprZIek/RDko5J+lJK6cGiKK5ZQkf20IUDiJMLCpAs3qvX67lxH70UnPBApJ14ISZAtthdAXJHY0dIIKUJdOqHQEH0yITSYJD43b7u1nGy7pAp6t/J3EKOvGGcZ/QhP1yfZ1IhSk4KIUdl4obwAXnHhl/ucN9qtXTPPffo+PHjmp2dVavVUqPRyA6Py5cva3FxMYsKvktHURSan5/XhQsXsjAAQYWE0uRvc3Mz95Pw+nWEB3cs0MAQ4s9cWVlZyYJCeUtEJ4i8704NxhKiyjnJpiMOMF7lY3LvU0pZrPCSEsi8jz2k168BQs55vbcBLhfEA3cteH8Ob8LpDgMEB4Qorsu3n+R973Hg/UD8+FwDbg3EGYQV5q2XFnjzS54zLxHazflAHNKOK4Xnmuvi2HzGnR3lBoysDzga/Py+A4c/BxXBp3SH1+JAIBAIXBOfUqzDgUAg0IfrCgpFUfxFSuneGzzeo5I+WxTFmqTvpZRelPSwpGvuzQRpoTQBArNv3768ZRykifedXHvDQRcVil6394WFBW1ubqrdbqter6vT6eSafz7nGUvfqhAyxGvICrXsEHgvF/Cac+947x3sIZJktycnJ/tqyN2S7kQIEgm5haAzVhBCLy3wmv6yUAJBXF5e7svUS9sEq9Vq6ciRIzp48GC+FxMTE9k9sLi4qHPnzmlhYaEvUzw+Pq7V1VXNzc3p/Pnz6na7fS6OZrOpWq2WM/yQZMgjfRDKzQ4RjiT1ZfPptcBY8BlvwMkY+rhxX6SdMhRi9DmEMOBbF3JedtNAsMHN4IIQLgucM2UHy25zhbH03gVspeqZeY7FXPRx8HIedkmp1+va3Nzsc3+Uy3eYB2WSznjwzDSbzVyGwjOBqML4+rHcgVJ2HDCG7sjhNc+M9zxBoHEwr12UQ6Th2XRHk3/fSx68r0NVMIi1OBAIBAJ7I9bhQCAQuBrX3+9nb/x6SumZnv1rtvfecUk/sM+82nvvuoCoSsqZWN8mkuZskHonCWNjY2q1WjnDCvlJKeUMLG4E7zKPm0BSPpe0U/sNEYcorq+v91mpy5Z0Mtzl8gs/Dlnt1dXVvh0bpP7eCXwH8BlvcgdZ4u9kZSFTfg2QQd8mkKZ3lAM4IKhHjx7V3XffrcnJyVw+srW1pcuXL+vSpUu5N8KlS5cyyd7Y2FC329X8/Lzm5ub6xAbOXa/XtbW1lXeVYDy3tra0srKSywOYB05amSOca2VlJYtEXgpCCYmTSS854f6V75ETfkQM72VBY0bIca1Wy/fWz+clFH4fyqTW5wTuDj+P91ug8aO7Gjyj7rtD8DkcIQhq7q5w4s61QrTdXcO9Z87V6/W8q0qn08kODq7ZnQ3udPCtIXGYeMNIFyO4Bt+9gmN5U1EvzfA+DmXBgljc+cJ98v4MzEV3RlQct3UtDgQCgcBNI9bhQCDwhsWtCgqfkHS/pIcknZH00d77u3mEd92jKaX0KymlJ1NKT0LUIQZuCYckU3cPEYGIppQ0MzOjdrudM7Ke0eZ4rVZLk5OTOYPpmd59+/ap0Wj0NaPzTLGknG2F2LvQ4D9OxLyBXNm1AHHBJQHB8236+A6Eh7+58CCpT0DxZoOUVrj9G/LGeNNfwJvi9e6PJicndfToUR04cKCvlGJpaSmLBS+//LIuXLiQM92Q+OXl5byrA+UYgA7+3W5Xy8vLOcvv2X9cAb6rh4sJa2tr2d2Am8Ht9rgcILmQcS/7wK3gZTW89vMgYiFqdLvd/H2cFh6ji0IQXoi0Z+e9n4Rfb1EUfS4Zzt9oNHJ5ijfb5P5Dqp0kMz8ajcZVO1V4fwIEs3IPDR8bd8YgbCD+eL8BFyqkfsEDhwOCgPc78eeJa6FXBsdBgNmt3woiAJ/jWdntusrOA5/77oKokkNhD9zWtfiKYpvMQCAQuEnEOhwIBN7QuKVdHoqiOMfvKaVPSvpi7+Wrku6xj75J0mt7HONxSY9L0vT0dIFFfmtrK5MVz0B3u90sFFCnT6Z0cnKyr4GbOwokqdlsampqKpNCsq2dTkdbW1uZ4HrPBSebZGWp7/dsu6RM3r3ZHOTJbdQQGS/LwDngxIfMLvFDQMtNJxE8dmv0SLaW8/Ce94RAmPFsNwRzfHxchw8f1uHDh69qfLmwsKCzZ8/q+9//vs6fPy9JarfbfQQT4keJgpeWNJvNnNleX1/PjR5xLNCrwktQcAlIuqo/hPcx8LIDF1S8dKVMRnE0uBDl2zP6riAuMCB4ecmIzxdi8t4azAMcLbzms+Pj4zlrz3PgO0G4YwJwfAQM7xdAjByrXALg/QwQO5iv3nOBcceRgbjiZSmIXl7msLGxkfsilMUM5ps/s4goXrJAKQZ/K28n68IE18b1cA6O5+PmKIuJzBF/v4q43WvxVDpQ3YsNBAKBCiLW4UAg8EbHLTkUUkpH7eW7JNHt9guSHksp1VJKJyU9IOnUDRyvb/tHJ8fLy8taWlpSt9vNpMk7609OTmYbt7TTtA1C0Gg01G63s4gAaZPU54YgDmmHmHrzPsglBAbCynHKmUzPdENsuL5araZWq5VLLCBBbgHHieFuAy/x8Gw34gZWbuL1BnpuB6e0gP4CZVs37gR2dXAxgSaLp0+f1unTp3NvivHxcS0sLGhubi4LPmTycR7Q5yGlpIsXL6rT6ahWq6ndbktS/s7KykpfM0Wy1BBSyiHIcnsGnPnBMbz5pJcKlBsBekkJ94LYcQUQB0INYgJCg/crICY+60AU8N0omLs+L3kumLvewNLLNNxFww8lK4hlzA8vsfDyH87nYgDPADEzHtK2yNPpdPqcCWWHDs8SzyT3jjnOPeC+uWjG737fee6910dZHPHx5DMe07XEAb/2ssujqrjda3EgEAgEbg6xDgcCgTc6rutQSCl9RtJPSTqYUnpV0r+U9FMppYe0bd16WdKvSlJRFM+llD4n6f9J2pD0a8UNdLOF1EHYIX/uAqCZnDfEazQampqa6muiRjaUXSAk9dnZAcfnPT8PGeByJlna2TGC3gdOiiAkfg28x3XW6/VsXfcO9C4YOAlywYAGfJ4xpj5+a2urzzZf7suAAAH59DpyJ1LSdsb+4MGDuuuuu7KYgE19bm5Or7zyis6dO6fV1VXNzMxofHw8N2hcWVnpyxYjXmxt7TQUXFpa0tLSkvbt26d2u62JiYlcItHpdPIYUgdPKYO7C7hmL2uh7MDvF/eCYyEC8TfGhbFCqCjX3CNiQNQZX98W0e+bOyOYb4yxf555wfx0MQh3A24Sd134tZV7BjBPvKyFnT6kHQeGN+f0XhLE5D1C3AHkJQXeKJF55vO9PN888894uChQFga87Icx814KPLcuipWFkRstW+DYVcUg1uJAIBAI7I1YhwOBQOBq3MguD/9wl7f/4Bqf/4ikj9xMEJDkcsM8CAYiAX+DSDSbTTUajWxDd3s6NmkITbmBIllcdzP49pAIBhBqaaeGm+y3d5OX1NevAGLp1nfEBCzybuGGGLs9G6LG8SCK3isBEuT1+k6QXTTxz5brygHuhLvuuitntulHMDc3pzNnzui1117T4uKiWq2W6vW6VldXs8Dg53NRAMFoY2NDc3Nz2tjYyO6StbU1LS4uamFhQWtra7kngYs5kE5IJr+76ILo4U0VvQwCVwAkGKEJcuq7M3h5CwISRN/nIf86GeZ+O9l2IcE/X24AeeXKlSy88H1ic6EDMcDvNSKBN3/EDUFc5ZIB77/g80nacdZ4mQXPEE0i/fnw0hafh/Tp8OaY7kpiLrpQUJ73LiYwdl424eKMl22U3Tf+TDm83KHs0qgKBrEWBwKBQGBvxDocCAQCV+OWeijcbkAuKF2ABJAVhVxh+4asTU9PZyJG9h+SQ2mBEzyO6YQHgQFyhs2e2m9px4KOnX5zc2fLSe+f4A4JyCHXNzExoXq9rn379uVSA2mngR1iAoTfyy9cLICEecM4t3m7uFC+Ts9kO8l04Bqo1+uZZNEX4cKFCzpz5oy63a4mJibUaDTU6XRymQPxOlkmNnpU4GJgV43Nzc18DHpouP2da0IEkq4WQPzvfp2QSxwgiA3uPoB40hzRRRkvPUEs8vtRJr38+PGZz17D7/fGt7GEcHuWn+9RJgD5d0EL94J/nzINhAAXQRhH7+3gDTv93ByDOcmc5vlyZ4KXDjF/vc/FlStXrnLKuLjBc18uhbiWAOCvXZzxXgwe042UMPh3AoFAIBAIBAKBwN6ohKAgbf8nnuZ4EB4nzc1mU81mM2+rV6/XNTU1JUm5KVytVuvrfwCZLGfxpR2y4KUVKaVcJ09nfIgchGdzczPXppM1R2CgFh/yxnU5gaK+n2O5EMDnPX4H18O18HcXHPy87hBwd0O5ztzPX6/X1W63+767ubmpixcv6ty5c1pcXMziyfLysubn53Xp0qV8/4jHxxeRgbIBiHFKSZ1OJ4sMEE4XPBAiPLvtPQac+LuTBIcBlv9ut9snyBCDpOxM4PzucHECzRzwcgEnvYz5+Ph47hXBdfj2hYy3u034O64QxALEDi9tQeDw7D7lLu7EIU5i9+thPiHG+Ni5wLHb1oy+4wSOD78Wn1vlJqGMLddcFll8PnL95Tm62+vyeJbFBJ6J3RACQiAQCAQCgUAgcGuohKAAUaQcAHJElrper6vVaqnZbGYye/jwYdVqtVw6wLaDTsY9S+rkxOvGvecAmd59+7a3mYR80uNheXm5z05Ozb2kXLLh5A0SX24KWO7SXx4LSX2x71YK4XXrLiI4ymKFj8Ne58dFAdnrdrvqdDq6ePGiFhYWMuFcXV3V/Py8FhcXc3mIW+UhqtwvyOzy8nIeP3aM6HQ6uzoucIEwH9zWznV5fX/ZmUCcXhLj4waJphTC/w7JRZzwbRP9fuxmqXfij3vF76+LO1yvO1Cc2Pp88R930/B95hoCjAs3OBMQPXDT+GeJj2MRm9+TsbExtVotTUxM9JXplHtc8OyURQ3mpfdN8Ot1x4YLEzdC9l00dMfPbm6GshgRCAQCgUAgEAgEbh6VEhQkZWJ15cqV7EZot9uamZnRxsaGarWaDhw4oKmpqUyUvMcCKNeB+xZ0Xj/vJRVkgtl5YK8dELB2Qy7pxI+osH//fi0vL+fvQLDLpQZOdsoEZzeRwDOv/OzVcG6v7Oxun4f8jY+Pq1arZeK5tbWVXQiLi4vZXbC+vp533qAsoez8QPzwUhN6LFBK0ul0tLy83Nek0B0BbKHo2XcIrxN/v+aynR67vbszEIgkqdvtZsKOaOGlGl664MTbx9KFDlwPvgWo3wvEBr7nzgtiKgsd3twShwrn4Fjl+V92rJTLLBDQvCSD6y4LQ36ORqOhRqNxVd8C5otvyenbb3Ld5dIQAPlHTLhZ14A3b7zed8vvh0MhEAgEAoFAIBC4NaQbqSm+40GkdEFSV9LFYcdyCzioiHuQiLgHj1GN/XbFfaIoikO34TiVR0ppSdILw47jFjCqc1Qa3dgj7sHijR73G2kdjv8TDx4R92AxqnFLoxv7HV2LKyEoSFJK6cmiKH5s2HHcLCLuwSLiHjxGNfZRjXuYGNUxG9W4pdGNPeIeLCLuNxZGddwi7sEi4h48RjX2Ox33vut/JBAIBAKBQCAQCAQCgUCgHyEoBAKBQCAQCAQCgUAgELhpVElQeHzYAdwiIu7BIuIePEY19lGNe5gY1TEb1bil0Y094h4sIu43FkZ13CLuwSLiHjxGNfY7GndleigEAoFAIBAIBAKBQCAQGB1UyaEQCAQCgUAgEAgEAoFAYEQwdEEhpfRzKaUXUkovppQ+OOx4roWU0ssppW+mlJ5OKT3Ze+9ASunPUkrf6f07O+w4JSml9IcppfMppWftvT1jTSn9Vu8evJBSeudwot4z7g+nlE73xv3plNIj9reqxH1PSunPU0rfSik9l1J6X+/9So/5NeKu9JinlOoppVMppW/04v5XvfcrPd5VRqzFdyTOWIcHiFiHBx53rMO3GbEO3xnEWjxYxFo88LiHvxYXRTG0H0n7JX1X0n2SJiR9Q9JbhxnTdeJ9WdLB0nv/TtIHe79/UNK/HXacvVjeIeltkp69XqyS3tob+5qkk717sr9CcX9Y0m/u8tkqxX1U0tt6v09K+nYvvkqP+TXirvSYS0qS2r3fxyV9TdLbqz7eVf2JtfiOxRnr8GDjjnV4sHHHOnx7xzPW4TsXa6zFg4071uLBxj30tXjYDoWHJb1YFMVLRVGsS/qspEeHHNPN4lFJn+79/mlJf294oeygKIq/kDRXenuvWB+V9NmiKNaKoviepBe1fW8Gjj3i3gtVivtMURT/t/f7kqRvSTquio/5NeLeC1WJuyiKotN7Od77KVTx8a4wYi2+A4h1eLCIdXiwiHX4tiPW4TuEWIsHi1iLB4sqrMXDFhSOS/qBvX5V175xw0Yh6U9TSk+llH6l996RoijOSNsTUdLhoUV3fewV6yjch19PKT3Ts39h2alk3CmleyX9qLYVwpEZ81LcUsXHPKW0P6X0tKTzkv6sKIqRGu+KYdTGZ5TX4lGeo5VeExyxDg8GsQ7fVoza+IzyOiyN9jyt9LrgiLV4MBj2WjxsQSHt8l6Vt534iaIo3ibp5yX9WkrpHcMO6Dah6vfhE5Lul/SQpDOSPtp7v3Jxp5Takv6HpPcXRbF4rY/u8t7QYt8l7sqPeVEUm0VRPCTpTZIeTin99Wt8vDJxVxSjNj6vx7W46veg8msCiHV4cIh1+LZi1Mbn9bgOS9W/D5VfF0CsxYPDsNfiYQsKr0q6x16/SdJrQ4rluiiK4rXev+clfV7b9pBzKaWjktT79/zwIrwu9oq10vehKIpzvQdlS9IntWPLqVTcKaVxbS9A/60oij/qvV35Md8t7lEZc0kqimJe0lck/ZxGYLwripEanxFfi0dyjo7KmhDr8HAQ6/BtwUiNz4ivw9KIztNRWRdiLR4OhrUWD1tQ+LqkB1JKJ1NKE5Iek/SFIce0K1JKrZTSJL9L+llJz2o73l/qfeyXJP3xcCK8IewV6xckPZZSqqWUTkp6QNKpIcS3K3gYeniXtsddqlDcKaUk6Q8kfasoio/Znyo95nvFXfUxTykdSinN9H5vSPoZSc+r4uNdYcRaPDiM5Byt+pogxTo8qHgtvliHby9iHR4sRnKeVn1dkGItHlS8Ft/w1+JiCN0//UfSI9ruovldSR8adjzXiPM+bXfE/Iak54hV0l2SvizpO71/Dww71l5cn9G2LeeKtpWoX75WrJI+1LsHL0j6+YrF/V8kfVPSM72H4GgF4/5JbduFnpH0dO/nkaqP+TXirvSYS/oRSX/Zi+9ZSb/de7/S413ln1iL70issQ4PNu5Yhwcbd6zDt39MYx2+M/HGWjzYuGMtHmzcQ1+LU++ggUAgEAgEAoFAIBAIBAI3jGGXPAQCgUAgEAgEAoFAIBAYQYSgEAgEAoFAIBAIBAKBQOCmEYJCIBAIBAKBQCAQCAQCgZtGCAqBQCAQCAQCgUAgEAgEbhohKAQCgUAgEAgEAoFAIBC4aYSgEAgEAoFAIBAIBAKBQOCmEYJCIBAIBAKBQCAQCAQCgZtGCAqBQCAQCAQCgUAgEAgEbhr/HwPooOz0w8URAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 0 575122\n", + " Min thresh = 1000\n", + " Sliding\n", + "\n", + "\n", + " Winner = Sliding\n", + "\n", + "\n", + "030s_iimage_677741729740_clean.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADDCAYAAAAya0IYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADr3klEQVR4nOy9d5hl2Vndvfatm1OF7p7pSbKEhEAIgz4bixwlYxGMLEwS2GCSEsEm2ITPYGN/tgk2yTwSDJYQwSCykYk2GBkECgiQkISy0Egzmunp7go35/P9UfXbtc7p6pnpNF09vdfz1DNd9557zj5773On1nrX+74hyzIlJCQkJCQkJCQkJCQkJCQkXApK13sACQkJCQkJCQkJCQkJCQkJNx6SoJCQkJCQkJCQkJCQkJCQkHDJSIJCQkJCQkJCQkJCQkJCQkLCJSMJCgkJCQkJCQkJCQkJCQkJCZeMJCgkJCQkJCQkJCQkJCQkJCRcMpKgkJCQkJCQkJCQkJCQkJCQcMlIgkLCo44QwltDCJ92vceRkJCQkHCIEML7QgjPfITHZiGEJ13mdS77swkJCQkJCQnHC0lQSHjUkWXZU7Mse9X1HsdDIYTw6SGEN4cQdkMI50MIvx5CuON6jyshISHhsYwQwveHED4QQuiFEO4JIfy/13tMCQkJCccNV1uYfbjzpb+LEx4KSVBISDgafy3pH2RZtiHpdknvkvSS6zqihISEhMc+Xirpw7Ms60r6BElfGkL4/Os8poSEhISbHenv4oSLIgkKCY863FYbQvi3IYRfDiH8XAihf6B+PjmE8B0hhAcPIlWfaZ/9yhDC2w6OfW8I4fmFc/+rEML9IYQPhhC+xhXXEEIthPCfQwjvDyGcCSH8eAihcdQYsyw7k2XZB+2lpaRk0U1ISLgpEEJ4egjhNQfRqPtDCD8WQqgWDvvsg+/hcyGEHwghlOzzX3XwXb0TQvi9EMLfeiTXzbLsHVmWDe2lldJ3b0JCwmMQIYSnhBBedfA9+9YQwufZe68KIXyN/f7PQgivPvj3Hx28/KYQwiCE8MUhhE8LIdwbQvjOg+/k94UQvuxyz1cca/q7OOGhkASFhOOAfyjpZyVtSvpLSb+n/b15h6R/J+kn7NgHJX2upK6kr5T0QyGEvyNJIYRnSfpmSc/U/pfcpxau832SnizpaQfv3yHpuy82qBDC40IIu5LGkr5V0vdf/i0mJCQk3FBYSvomSSclfbykZ0h6UeGY50j6GEl/R9KzJX2VJIUQ/pGk75T0+ZJOSfpjSb/wSC8cQvj2EMJA0r2SWpJ+/gruIyEhIeHYIYRQkfQ/Jf0vSbdI+gZJ/z2E8GEP99ksyz7l4J8fnWVZO8uyXzz4/bT2v7PvkPQVku6+wvMVx5z+Lk44EklQSDgO+OMsy34vy7KFpF/W/h+g35tl2VzSKyQ9PoSwIUlZlv1WlmXvyfbxf7X/RfzJB+f5Ikk/lWXZW7MsG0n6Hi4QQgiSvlbSN2VZtp1lWV/Sf5T0JRcbVJZl7z+wdp2U9K8lvf2q3nVCQkLCMUWWZX+eZdlrsyxbZFn2Pu0LuxeItAffp++X9MOSnnvw+vMl/acsy9528L3+HyU97RJcCt8rqaN9oeJnJe1d8Q0lJCQkHC98nKS29v/enWVZ9n8k/aYOv0cvF9+VZdn04G/k39L+38ZXBenv4oSLIQkKCccBZ+zfY0nnsixb2u/S/peuQgifFUJ4bQhh+0Al/Wztf7FJ+zldH7Bz+b9PSWpK+vMDa9mupN89eP0hkWXZtqSflvQbIYTypdxYQkJCwo2Ig9Sz3wwhPBBC6GlfFDhZOMy/Y+/R/newJP0tST9i37XbkoL2o2aPCAei8V9q//8B3/NwxyckJCTcYLhd0geyLFvZa/foEr4nj8BOIWXMv5evGtLfxQlFJEEh4YZBCKEm6Vcl/WdJtx6opL+t/T9UJel+SXfaR+6yf5/T/h+mT82ybOPgZz3LsvYjvHxZ+5a07hXcQkJCQsKNgpdoP/r0oQcFEr9Th9+1wL9jHyeJ/NoPSHq+fdduZFnWyLLsTy9jHGVJT7yMzyUkJCQcZ3xQ0l1ee0b736P3Hfx7qP1AGDj9CM65GUJoFc7H9/LlnO+hkP4uTohIgkLCjYSqpJqks5IWIYTPkvSZ9v4vSfrKgyI3TVl9hAMF+Ce1X3PhFkkKIdwRQvgHR10ohPD5IYQPCyGUQginJP2gpL88UGUTEhISHuvoSOpJGoQQPlzSC4845l+GEDZDCHdJ+ueSyLv9cUnfEUJ4qiSFENZDCF/4cBc8+L59/sE5Qwjh6ZK+TtIfXI0bSkhISDhGeJ32Sf6/CiFUQgifpv2aYq84eP+Nkj4/hNA8KC7+1YXPn5H0IUec93tCCNUQwidrv+bYL1/h+SSlv4sTHhpJUEi4YXBQ9+AbtS8c7Ej6UkmvtPd/R9KPSvpDSe+W9JqDt6YH//22g9dfe2Dh/X1JFytWc4f2UyL6kt6s/Urjz7mKt5OQkJBwnPGt2v+O7WtfjD2qSNdvSPpz7f+h+lvab/moLMt+XftFcF9x8F37Fkmf9Qiv+xxJ7zm47s9J+q8HPwkJCQmPGWRZNpP0edr/bjwn6cWSvjzLMuoS/JCkmfaJ/k9L+u+FU/xbST99kFpGnYQHtP/38QcPjn/BFZ7Pkf4uTrgoQpZl13sMCQnXBCGEp2j/D9naQWGwhISEhISEhISEhMcUDhwOP5dl2Z0Pc2hCwlVHcigkPKYQQnjOgdVrU/sRsv+ZxISEhISEhISEhISEhISrjyQoJDzW8Hzt11h4j/b7qB+V95uQkJCQkJCQkJCQkJBwhbhmgkII4VkhhHeEEN4dQvj2a3WdhARHlmXPOujesJVl2XOyLLv/eo8pIeF6IX0PJyQkJFx/pO/ihGuNLMteldIdEq4XrkkNhRDCmqR3Svr7ku6V9GeSnptl2V9f9YslJCQkJFyA9D2ckJCQcP2RvosTEhIe67hWDoWnS3p3lmXvPahi+gpJz75G10pISEhIuBDpezghISHh+iN9FyckJDymUb5G571D0gfs93slfezFDq7X61mpVNJsNpMkra2tSZJCCAoh5I4tlUrxv9VqVeVyOXdMlmVaLpcKIWi5XGqxWGi5XKpUKinLMuHIyLIsnr9UKmltbS1+1o/h3xzLa6vVKvceY+a8RXBMqVTSarXK3Sfv81/Oz32Uy+U4fsaXZZnW1tbiuBeLRRxPpVJRpVLJ3TPjr1arqlQqCiFotVrl7msymWixWGhtbU31el3lcjmOgx/GsFgscuP2OfQ5Yr18rhjvYrGI98cxft+S4lyxTry2XC7jvZbL5dx9ct9co3ifxb1VnCP/d3ENi+u5trYW14dzcV2ufdT+Kr7G/ZRKpXg/jJv14rijxsV5SqVS7hkplUrxmozV98d8PtdyudRqtdJqtdJ0OtVyuYz3xrX43dfA75HxMgfFtWLefb58nzg4n68D6+rPh3+eeeYYv67vieL6cx5//or7Yjqdnsuy7JRuPFzS97AkrbVb2Yc8YaUzb2lc04ElJCQkXAomGmqWTS/84+rGwCV9F6fv4YRHitVmSx9+19lrdv7eSrpn7yr/+ZNJtXuH+/9u1vXkJ20/7EdWyvTuv2pd0mXC2po+9Kn9yxnhYxZvu/eU1raHV3SOvnaO/Jv4WgkKR33p53IrQgjPk/Q8SWq32/rkT/5kvfnNb9be3p4ajYaq1apqtZoajf0vVAhzu91WpVLRarXSxsaGTp8+HUlyvV7X2tqahsNhJLwPPPCARqOR6vW6JOnMmTPxvXK5HH+azabW1tbU7/c1mUy0trYWSR7EqV6vq1araTqdajweazweazqdqlKp6PTp06rX6xoMBiqXy6rVavEakMFKpZITASBoEJhyuaxWq6Usy9Tr9TQajSRJjUZDt956q+r1umazmQaDgUajkRqNhlqtlqbTqc6ePavZbKZaraZTp07p1ltv1fr6urIs02w202KxUKlU0qlTp/SkJz1JW1tbGo/H2tvbU7lcVqPR0JkzZ3TfffdpsVjojjvu0B133CFJOn/+vM6dO6fRaKTVaqXJZKLd3V3N53M1m81IzFib+Xyu4XCo4XAY75P7r1arKpVKmkwmOnv2rHq9XhQw1tbWogA0Ho9zIsba2poajYbq9Xq8/mg0UqfT0YkTJ9RsNiMxZC1Ho5F2dna0vb2t0WiUE2cgphBf9gSCD9crl8uRYNdqtfi5arWqVqulTqejzc1Nra+vR/K+s7Oj+++/X2fPntXu7q7K5bLa7baazab29vY0HA5VLpe1sbGhRqOh8Xisc+fOqd/vq1wu68SJE+p2u5pMJhqPx2o0GtrY2JCkOKflclmTyUTz+Tzuo8lkotVqpWazGZ+J9fV1rVYr7e7uSpJOnTqlkydP6o477tCpU6c0n8/jOKfTqc6dO6d7771Xk8lEW1tbarVaWltb0/r6ulqtltrtdjz3cDjUgw8+qAceeEC7u7saDAZaLBZxn/Oc9vt9DYdDzedz1et1bW1tqdPpxPWez+c5YUqSRqOR+v1+FBkrlYo6nY4ajYZKpZJGo1G8//F4rMlkouVyGZ9RSZpMJppMJnG91tbWNBgMNJ1Oc8/abDaL4s3a2loUKg/EBL397W+/5xK//44LHvZ7WMp/F9fV1OPf+rl6/I36Z3tCQsJjEq/L/uB6D+FKcEl/E6fv4YRHiuEzP1av/tGfuGbn/4Pxmp73yq+9uifNpCd982slSeGpH6nffeXPPexHRquZnnPn0y/pMmvddf327/3fyxriYxUf969eoPWfe+0VneP3s1858m/iayUo3CvpLvv9Tkkf9AOyLLtb0t2SdOrUqez06dP64Ac/qNFopOl0uj+4cjlGSSGakBJJGgwG2t7eVr1eV6VS0cbGhlqtViSBlUpFW1tbMUIJId/Z2YnnJzo+mUxUrVZz0f9KpRJ/n0wmGgwGkXBkWab5fB6j+ovFQp1OR7VaLZ6rVqvFqGnRKcEYuVci1oyT6xzMlWazmba2ttRoNGKUl5/VaqVqtRpFA6LVq9VKjUZDlUpFk8lEs9lMvV5P586dU7fbVafTifMNwR0MBur3+xoMBtrZ2VG1Wo33OZlMJCleD8cD64O7wSPL0+k051RgXmu1mur1uobDYSSDROKJyrPe0j7hR/hpt9txPhEXsiyL84Yg0G63VavVVKlUdObMGY3H49xYIJGs53Q6jevFPPJatVqN50VMqNVqyrJMo9FItVpNzWZTpVJJzWZTGxsbcc744b6J6vvaV6vVuK8RgOr1etx7u7u7arVacV4gxMxfuVyOYstkMlGpVFKj0Yj3h9DW7/fVbDZ1/vx5lctlbW1taWtrS/P5XPP5XFtbW1osFlGg4rMIZ+yBarWqbreb29vz+Tw3R4gz3DdimjsyWINarRb3UpZlqlQqkqRer6f5fB6dE9K+wNZsNqOogdjIs8ichhDUaDQ0m800mUxUr9dzIsJ4PI5zjjMEwYz55PvhBsXDfg9L+e/ibti6+kV1EhISEm5uXNLfxOl7OOGxjvIdt2tx3wcVJgv91qiuz2lOHvL4l+596KVfZJXpv/dP6Ms65y9zlI89DO4sabPZ1OogYH01ca3+Wv4zSR8aQniCpPskfYmkL73YwavVSp1OR7fffrv29va0t7cXCTEWbf7QHw6HajQaajQaWiwW6vV6kRCXSqUYnSSyDXElytxutzWdTjWdTmPKAbZniC0/EAwECRwDROKbzWYkK5PJRCGESLJWq1WMls7n81xKAmMhmg+BqVarGo/H8T4g6vP5XKPRSIvFQt1uVyGEGNWFeNXr9UiWsaPPZjPV6/XcOGazmc6dO6dGo6E77rhD7XZbo9FIw+FQrVZLGxsbkdD2ej2Vy2WNRqPoimBO5vN5zmLuUX9PGeHeQwhxjur1uqrVqtbX17VcLrW7uxujzYhIkqLAwr1OJhM1m001m824/tjlWZtWqxXXVNoXjTY3NxVC0Pb2doxYS4fRcElRzGCd3FI/m81iagWkNsuy6IRYLpcaDAbxuCzL1Ol0coIThL1Wq0XRablcajabqVQqqVKpxHuSpOl0GkUSxsA64wiB9HJuxAOuN51O1Wq1VK1W1Wg0NBwOYzR/MBhEVwDi0mKx0GQy0S233CJJ2tnZiUIIaQUcw+e63a5Onz4dCTrjxpnDffpe5ZlBMEMsQqjh2cQxMBgM4jUZN3uIz0uKTiDGyThwNSBGbm5uRiGiVCqp3W7nhCae58VioWazedEvuRsAl/Q9nJCQkJBwTZC+ixMSQJDe8U2P05Pvbmj5lrfrh//Zl+h9d/+Bvm7jA0ce/qL7Pk7vefpURxgsHxLLXk8//4yP0zt/6336nlNvvQoDv/Hxlm98sZ7x+q9W+f/8+VU/9zURFLIsW4QQvl7S70lak/SyLMsuuppZlmk8HuvWW2/V2bNn4x/zEDq3Oc/ncw0GA9XrdXU6nUh+QwgaDAYxKr1arTSbzdRutyOZWq1WarVaGo/H8dpeI8Bfw7oNQYTQjcfjGClvNpu5SHm/31e329VqtdJoNIpug1KpFKPjkEEit/V6XePxOF4PC7fXMJAUz9/pdKL7wUlkvV6PxIx6FKRulEqlaM+HLO3s7KjRaETrOXOCQ4B7Yl6xheOkmM1mkQxDWolS41YArCUuBNao2WxqOp3G9xEI+JEU52A2m2m5XKrf78eItwsXi8UiElGIK+4GXAPUC8Apwr7BIQBZRnDide7LBY7RaKRut6tGoxHH6+4ABBPSEEhVIFLvtSgQB3ADeE0OSWo2m1FwYf695gKuhclkEqP3Pif1el2NRiOm6+zu7kYnB8ID6yEd1qWoVqva2dmJQgjXy7IspvZ0Oh1tbGxEUWo0GsW1InWJsXNuBDHcDKS4VKtVdTqduMd5/iqVSu687FUEHUQXXCSsg6fL8HzM53M1Gg3ddtttGg6Hms1m0YWA46der6vX68X7uVFxqd/DCQkJCQlXH+m7OCEhj2xNes9X3KLH/7/vUenVb9SvfPOztPf9f6TvPPmO3HH/4G2fq9I/3JYusyPh4t779Kdf9/ekX0qPG/jAM6t60hu6WvZ6V/W818zPm2XZb0v67Ud4bCTRp06d0u7ubrQ6D4fDKAoQjR2PxxoMBmo2mzEiTYScKDqEcTgcRtI4mUxihBjCCAH2wnFecM5t+Fi/B4NBrBnQbrcl7UdO9/b2tLGxkSMvs9kspiggfhC5J4oLacUqvlgsNB6Po0uBMY1GoyhoSIe1HbwQH+eA9GInb7fb0abPXGxvb0fyC2GDsBJpLpVKkfQzzxA4ahOQsy8pElRSHVhf5pb5w2XgxfMg/LgIuD7zg0tDktbX16Otnvno9/vRFQA5RgjyNBbpsMijF+lzNwDjgdjiJiC3njQEHCAQ+PF4HAl4t9vViRMnInFGkGm1WlqtVjmhhvcg84gORPJxR7hzhr0uKTcuF5x4rhqNhtrtdhSmcLQMh0P1ej3dcsstajab8RnzOgJE84siAPUvGo2G1tfXY+Sf+houCOD68NQG7r1cLkdHTLPZ1C233BLFFeoxkK6E4IMrg3v1Wgs8G6wt61ar1aKIw7qNRqP47HlBTO6RtJQbFZfyPZyQkJCQcG2QvosTEvJYlaXVJ/8/Kv3xX6r6u3+m3619qn7y2Z+cO+Yp//K9Wl5hYKfywJ4+6a8+X6/+qF+7ovM8VvDOf/YSffbPfZH01zeIoHApgDRDQtbX1yM56/f7arVa6na7ajab0bJN8caTJ0+q3W7nKv0TuXdngHd88Hx9XAPSYYcIrweAGEDk2Iv4TafTGG2fTCaxCOCJEyeiS2AwGKjVakWiNhwOc9eCxEAmnfB7Lvl0Oo1F+qrVaiT5uBIg0tjcEVTcdl+tVqMAQqoIRf+I+CMYUP/AXRIIF7VaTeVyWYPBIKZCeK49Y5XyAgf3jKCwubkZXQqsGdfiNUmRkLq7Aqs6BBVHB0X3XGjABu8pJ0TgcVp4zQvmlvViPnxv4dLoHSh81E9gXwwGgyheURgRB8Xa2po6nU50XvA6AhKiDvuVdfBODzgYED+oW8HxrMdsNtNwOIwFTkkpQGyiaOJoNNLJkye1vr4eO0Cw9mfPno3rwVwhiHjNi06no263G+eNcbBG4/E4puFQt4LjWOOdnR21Wi1tbm7G/eRCG6ICwg17EsHO00CKDhavmTKbzbS5uRlTethnvM+/z59PuXcJCQkJCQkJNxfeOhvrhb/0zVL92pT0WFUz3fepDd31x/u/N37j9Xryb+SPWV74sUvG8t1/I/23j5V+9CqcLOGiOBaCgrduIzpIhHk8Hmt7eztGMiH3RDSxXFORH5KNaABhwwJdbNXopKPYWpBxUeCOKKikXKtDxpVlmXZ3d2MUl6gy0VEq+kOSIPmQTD6DJRzyyphGo1HstIDbweslEKGv1Wo6efJkFBo8PaHT6UTSzDUgmt5ecTwexzQR6VBMkBRz4pvNZizqCIkvujy8QB+F9ebzeazPQEFNCCFklrn1/HvWk3slqowQQEeCfr8fa1FwDIKNtyT1Yow4H0gvcGGJ7hlE1T2dAweMpEiUEZgguAg5OC1Id+FaWO99/Ynoe0tGfig2WC6XoxPEaxSw5jwPiBucn+NJm6DTQ7/f1+nTp2NHkUqlEh0W29vb0UmEgIFLgecDJwHrwFzxPLuAgsjg9QoQm86fPx8FCk9/cdGtXC7H/ekOIBcVEBKoK0KXD4QKxDlSjXjWvSWo19lISEhISEhISLgZ0F9V1bovqPfEa1cjdN7ONH7209X4jddfs2tI0vqfP6An/eFX6t2f/lPX9Do3M46FoOD2ckkxct9utyMRJQrurf8grR4J9Ur3WZap1WpFe7qkmAtO9J8IPr97lX8in4gH7XY7l7/uhBeitlqtIsnCao7ogFgCuafCPPZ2J9OMzSvtD4dD7e3tRcKJrRuivFgs1O/39cEPflDNZlNbW1uRMHk9imq1ql6vF8UPCl96PQFJ2t7eVr+/38PVnRTUVigWpoTY46BAgKlWqzHC7FFm2gK6mCMpEkK3rWOth+gTeSeyTwoJn6P9J/OMIMF6I7yQdkGqAPeE6MM8sz/X1tZihByiOxwOtVwuYz0KRAvOgaDE9UkvoWAg3RNIYUBocjeMp4BIynVTQKRg/Uh1IB0IR0+3243PnNehIJ3k3LlzsebDqVOn1Gq1YvHOSqWivb29XJ0I0kBIcWAdWW9cDAgIjIX187oOPDvUSNnd3Y17qdgdgtoNpMfwGvPoQhzr7m4eWtH6vPnzzByHENTpdK7gmy0hISEhISEh4dpg/dXv0xN+43n6m2fffVXPe+9ioH/xXd+q3sesrup5i1jVMu0+sazGNb2KtPibe9R6/R3Sp1/jC93EODaCAgUEiZwSOd/c3FS/38+Re0g0LgaICMSd1pFu+z9z5kzMeaeYoqRIUCXFKGuxACGEA3IDkSLayphc7BgMBjHq2mw2c4XmpMP6B25X97x+rzgPUV4ulzHVw4krleu3t7e1u7ur4XCoM2fOqF6vq9vtxhoU3Een09Hm5qZ6vV50PECcOKbdbufuEeGENJJiIT/InpM4bOlEhX09KpVKdEm4eOP1BiDgrAXRfoi8C0oQdwg60XsKebZaLbXbbXW73UiCF4uF1tfXVSqV1Ov1NBgMcsLJcrmM16N2BW0Hx+NxJO3U7lgsFjE6LynXfcSj3jg0uI9arRZFhul0Gp8Br5XBvvBoPXsTgQlni7dwJHI/GAzi88acFdtQzmYzPfjgg5IUx722tqZWq6Vbb71V5XI5dn5AUHHXBCIf4ku321W9Xo/nRLQiNadSqcR0FUQ2d030er04RsaJK4e0EdwxXB+xgr3MZ8vlchQfvBsMLgr2rteIWC6X8biEhISEhISEhOOExQNn1H37E6VnX93zjrKgrd9/r85+zIdc3RMfgfGtmfpf/HHq/OJrr/m1Eq4djoWfN4QQiTAkCJJULpcjMWk2m9rY2NCJEyeiZRqRARs058MdcOutt+rEiROxIwQEU1KsGi8pEttOpxOdA5A3rxZPeoDn9S8WixiBrtfrWl9f19bWliTFApKQaMaF7RryA9mE0HN9IraQpul0Gm32pDTM5/M4N+12O6ZePPjgg7Hyf6fTie4ErOk4CXZ3d6Obg2g+RLLZbEYRBPED0YW0AsQKbP6SIpGDjHtNBC/IB0lGLACQQEQGOjJ48TxINk4OnCheTFNSbJNI3YBOpxML+VGgD0t+v9+PRTch55DK8Xis5XIZ5wny6vb/nZ2dKIawVp76wfqTVoLogDuFIqGkYVCY0LuDMIf82+sUUGyRveW1Itj7nJ8UIGo94CJh7+zs7MTxd7vdXI0FnBuIF6S+UK+Eop6dTke33HJLTP/xfUu3Bn+GvWimpCggeP0SXCZ07/AuIF4jwZ8vUkQmk0mu7kW9Xo8CFudwcaZ3lavgJiQkJCQkJCRcLdz+sjfrQ37t+VftfKPVTN/0qc+9aud7OKyqmabr4eEPTDjWODaCAtF3bOxYuWkHR3S/0+loa2tLm5ubkXxAkCEHvMZnbr/9dt155505soXNnQg6roNSqaRbbrlF0j4pgYB5Kz8in/xOv3pIerPZjM6AEIL6/b76/X50K9DhQFIsVAfc5g6RphAlgoRXuCfiXa/Xdccdd+jUqVOR7PZ6vVh/gi4ZEHWiw4xhb29Ps9ksdoVw8YEaAAg9EHqIfK1Wi64QCKZ0SHS9wKA7FbxzBKkJ7XY7VxSQf3sXBE8HkBTng0g8c+37i1oce3t7khQdH8PhMGet93QZSVHsoBVjv9+PqSN8HqGB65MSQjFKUiIgqsxvCCG6VJhD9hWFHXFJePTfWyIyr14volar5SL1zWZTtVpNw+EwCltZlqnX68UUBweFL3u9nvb29tTr9eLe7Xa70YXhhS5JQeF5GQwGOnfuXEzRaTabOQcKc0PdDMaO+IFwxbl5BtkTzAU1GxAxSGvwuh04ZVhPF41Io/L6Du6IKc5NQkJCQkJCQsJxwarf15O/6S/1pD/8yis+1+c8/XP0BR/xTC3e9/79F65d+YSE64RP+9qv1fJt77rq5z0WgoITDIq++R/5EE5IQafT0fr6eiQp0r5tfGNjQxsbG9EejQjQarW0tbWlxz3ucblaB5C9xWKRI8zr6+s6efJk7NQASWYc3lKSdIfFYpEj4e5kmM1mOnfunHZ3dzWbzdRqtXTy5MkYxcZC7gX2nKwhLhAdh/gSkYXYlstlnT59WltbWzEau7Ozo36/HwkuzgHGSVFC2l5SW4BOEZVKJea6k4LAXOBK8Eg60XrAGngqS5GscQzEV1KumwK2fhdG+J21gNTjCoAoe+vB+Xyufr8f0zUajUYcPy1IOY5xQuC95sBwOIzuGQpljsfjC4pjsj+4d3c98B6CQLVaVavVik4SalMgKpA2IimKYhByijp6mg71BMbjcXTskK6C0OApIaSiABwXe3t72t3djWlHjJFnD+LPvSAqzGYz7e3t6YEHHtD58+fjfPjeXiwWsW0jwhPrPRqN4veCdFiQkbV0QYPUHgRGSTnHB6k97sqh5anX2CDlwguipqKMCQkJCQkJCccZ2XymJ/6TN+rpf/mFWmaPPBAyzeYarWb6zC/8Z/oHd/5dLe69T8sDZ+byzIP6sJc8eK2GnHAdMM3mKo+WUnb1laJj8dcyNnSKp0FInTBKimQty7IY6YfUQMSxfTuhmM1marfbuv3223XXXXfFaDN2f4rhIQBQRR/CTAvEoqAA0fMq/xA5j1JL+4X7tre3o4U6hKCNjQ3V6/VI7CCPWPm5Lh0GarVanKfRaKS9vb1oWSfn2+s1DAYDPfDAA5E8QcKw+dN5QDrspnHu3LkYNcbxUalUos1fUiTEOD4YJ4RPUhRDJMUxFkUE1o3oPtF6r1HBfXsdC8gxAhTHIiJBVP2cRKy9qwJriKjknSwYpzteWq1WLADJdbl/RDCi84gOvEb0PMuy3L0h6jDP7nBpNBoXtOD0Yoicj/EgonitEcQO5hHRxes8jEaj6LSYTqe5Z3M2m8V9MR6PY3pErVZTu92Ozwzry/OGeDIajaIg4UKK1zjhePYE497e3tZ8Ps+JB+5SQPzBlYFggKjCdwSFUgeDQRQ/qDNCG1eESfYj30GphkJCQkJCQkLCsUeWafNz3qV//O7P0jvnw4cUFvZWY71zPtQnfM836jl3Pl3hT94orS5s0hiWK5VmKR3hsYAHl0N9+jd/g9b+8C+uyfmPTVHGVqsVC6xJ+4QT4kd0nEj0YDCIReIobgdJ80gy5Avy12g0tLW1FW3P2MBHo1GMcELEEAqoXeA1GtwtQRSVKD0khxxvP56ccTo3dDqdmBYxnU7V7/dVqVS0sbGhVqsVyQ6OB0hTp9PR+fPnYyrFqVOncq3xut2uxuNxtLTfc889uu2223T69OnYHpJ5pUAl9wNJJe8dkoeoQGQcki7tixH9fj/mqVPIkCg090DU3Vv5QYjdUUCEGHEFR4O3dmQM3AtEGvLprREZ69raWiS4iEp0hPCUAa6DQMT8kFpDJN5bYjqJn06n2tnZiQIP5Fk67CzAPOK+QHziPOVyWevr65Fw+1pwHuoUMIdE1NmvOGwGg0FunNw37hmv24EbhjHQSWFnZye2HGWNifAj3nENdzogoHhKAySdVBjSFEhNwaVw7ty5WEPFn032CuTfXR5elBKhgflmHkgbmkwmOnfunDqdTqzh4O4U9mlCQkJCQkJCwo2A8aee0TfoE/Vxb5rroxofOPKYb3vlC/TEb32tTuo1D3muxXvfpyf+Ukvv+ic3fseraj/TW2djPbV6rXtKHD+8bTbSP/lP36qTv/jQ630lODaCghNOyKKkKDJQhZ72hLfeeqtarVYkEOPxWOfPn4/2aSLlkAnIfLvdjgXp6CwBqfHq75JyAgHEFNLqFfUhjBRH9Ag5wgbXgRhDUsnlJ6K7t7cXO1hsbGxoOBzm2upJiikJuBRI6VgsFtEZ0W63derUKZ0/f15nz57V+973Pp06dSqSMwoq0vUAIjkajWKNAMB6VCoVtdvtXPFFal0gvDDnkmLEHecABSsHg0EkyXRNIFXB59+LCiLacF7WnpQY73RAyguCRVHYoEODp1eMx+NcDQ72H4IGpLjdbkdCyhrivPCuDHTnIEef+fWig16fw7sXMO5Go6H19fXoanGS760OOR6Bx2tY0JGC58aLHVKLgPMwfvY6AgDPircsRexBTGDeu91u3P+MAeLPWKl3QitKF39wmiBAnD17VrPZTJ1OJ7bB9HoJ7v7gOn6Pfg/Mi9dhoBAsNUA4h4s9CQkJCQkJCQk3El770RW9Vkd3aXiiHnlHhdJopupuSbONa1NTqjQNamxf+3pVWy97jZ7z5G/WO7/8Jdf8WscJr5/O9dUv/lbd/hN/ek2vcywEBcgGLQhpTScpRhaxM+/u7sac6I2NDZ08eVLb29tRHIAQEoH2SCYkk0g/efNcS8pb9T16DImCJGK7h6h6mz1aMGIjh2wBhJPxeBw7MEiKufe0L4SwQTK9Qj9OjL29PfX7fW1tbUWxZDQaqVKp6OTJk/H+7733XrXbbXU6HZ0+fTpW5SdNgTaDRHuJ4kN8ab0IuXeBAwLPvZLLz7FEwT26ffbs2SgWcT7WwQsiUnyS87iogHtAUnSjEGmmNgJkF9IKKS+mOLi1HgGBa0u6wAVBOgL7xMUe1r7f70fRhPtrNpu5tByPzjMGRANp3yVBRB6iXdybPD+IaU6svQUiog6fQWTjOaGeAJ9B6PMWpnQYcQcJ8+fPnaR4/kajkRPtuI6n9iBm0FIS8YXPITQ0m00tl8vY7tTdKwh4zA97yPeou2MkRcFwOBzGMSUhISEhISEhISFBWr7tXXr8/yjrgU/c1PhWad69uuS/8WBQ61ded1XPeTF03yP96qCrf9y+OTp4/clkpa996T/XXT9wbcUE6ZgIChAgCtPR5s9zzmnNiOV8d3dXW1tbajabuer8RMVJUYDIQsQ82u4t/Mj/JlXBI7Z8jhoHkECIDETfSRgRT9IZOCcFICVFokgeOufDVcHxCAt0jCC9AvR6PfV6vSi6IJy0Wi3ddddd2tnZ0Ww20wMPPKD3v//9ajQasQI+aQ/cP8KHzwE57ZBpdyVwLa+878SXc0mHbScbjYa63W7s6sGaUdiQ9cORMpvNYhcNr6nB/HJdr0XAXOJaQBTifcbO/sAl4dF0nDGkIjC+RqMRBR0IMuJScX7Yxy5KUfyx0WhEsQW7Pg4TSC/jhZy7CALYJ9xvsRYJDgjvlMBrfJ5rQar9Gswx6QgUpmT/4M5BcKGg57lz52JqCEUXfc7b7Xa8DkIKzxnPQZZlGgwG8ZhiDQncSAg5CEncO88wDg72qzszfI7YO37vCQkJCQkJCQk3K1ZveptueZO0+qSn6d5nNjVbvzqiwto0aOvt84c/8CrhxE++Rv+h/GVaftPP64vae4/adR9t/M18oM/8k69X5a1N3fUfrr2YIB0TQQFSDlHrdDoxuut52RQSxFK9vb0do/+4AbxYIMSFTgUQut3d3UjUm81mzta+u7srSTHCXq/Xc5XxIWHSfuSVFABa00HasIIjPkCEIEpuw55MJtEGDoklCkye+vr6ulqtVu51IuTz+Vznzp3LtVzEpbC5uakQQmxn+OCDD2pra0sbGxu5yDWpAI1GI64DY6bQJLUucDIU6wI4sUYQKbbd43yNRiN2Y6ACP2QV94ELFN7iDxKII4X7QLBg/Rg/vwMv5An8XrxLBfn0zIHXB4DMuqjBvvG2kNTC8JoaCF6eylGr1XLOERchIMHMgRNdnBXsLz7LnAB3jniNC58LL5jIXPBs4ABw8Q0xhGeYFpjtdjuOHSGHWg+ksnjnBklx3kjVYG1xH+EK8ZaZfD8g+nghVgQOxAy/T0Qkdx753vGOGgkJCQkJCQkJNztKr36j7lp9tO75rKYW7cvvFBBW0u1/vFJ5sFTl9//8Ko7w4XHqJa/R9y2/VN/x4Zl+/fN/WB9VrT+q17/aeOIffKV0Nl9AvLpb0of8u0dHSADHQlCgRR097onEezQeMgI5kBSrtkOgyMPHFk10mqgxbQchSJB9bNoQKMg4RRM9uuvRzeVyGV0BEDjveODRYFoqUluBFoneMaJer0dS49Z1IsHr6+uq1Wq51oiSYvvC7e3tmKZARJv5osL/cDjU+fPnc/UCKGLZ7/c1m83U7XZ14sSJmG5x9uxZnTt3Lrb4m81mGo1G0TGCiwRxgnlCDJGUI8ekElBtnyg2kWG35pMqQATdawxwLHPPf53AM//uZoBYeztHrz/gQoQfX6/Xcx0MILOclz3COLHZIzSxJ7gu0XxaN9LWE1HBW3t6RwxPn/EaHYhNXrODeeBevDOJp0r4ubgn0gg4F6IaDg/qR7gAJh0WKqUOCK4f5o8aE75GOBxwKTFORBKea9wPfs/8zr4gnYhny8Ub4AVB3QXEngLJoZCQkJCQkJCQsI/wp2/SE2YfqUW7qns+u6ZV5ZEJC3f+n5Uq/f2/S0OWqfR///JaDvMhcfLu1+ikpK98+zfp1//1D+hx5fZ1G8vl4sl/9OWqvaGtD/+592jxwJnrPZzLFxRCCHdJ+hlJpyWtJN2dZdmPhBD+raSvlXT24NDvzLLstx/qXIvFQmfOnNHJkyd16tSp6DjY29uLLe7ckiwdFmbb3d2N0WBJGo1GMb8aMuaF7LDXc13p0G7thduGw6Ha7XYsskhnBsQIL4aHhX17e1vD4TBGoP283v0AEktxOM8PDyFEGzwFE8+dO6der6dOpxMFDKLZkFhJOn/+fCS83kWAe0XA2NvbU6PR0ObmZmwBKCmmHVBgcX19XeVyWWfPntX9998fU1FGo5Emk0kuKkwKhdeq8Gi+pz34HEqHrQtJX+F4ampsb2/HuYakM0aEB4pJSoeFOCmi6ASc87OXiGizRl4zADEB4clFAif4RNK9GCJ7lNe90CjXbzab0eVCCgHiB64YRAXWEUHBCTR7yV0FHn33a04mE7Xb7VigETHLawe4kIObgGcFIYJ2lr7XcZWQOsL6IKbhXvBOCp5ewLVw6pAGheAwHA61vr4eHTQIHIzL54I6GhQfrdfruTQYr6Pgwgvr7Oc87ria38UJCQkJCZeO9D2ccDMhe8NbtCbpSTtPUVYq6V3/tCNdJP5y26sztd87kP763coKrcmvN07e/Ro9d+db9Hs/9CNql24Mp8Knv/XZGr/8Nj3pdWe0fPdfafHwH3lUcCUOhYWkb8my7C9CCB1Jfx5C+N8H7/1QlmX/+ZGeKMsy3X///brjjjt06623qtFoaGNjQ7u7uzE67QUKJUVbMxX6G41GjJaPx2ONRiO12+1I2qfTaa7QHgTMi/UV88YhY9QYgIRBnCCSdKig6wKfIUpLmkOpVFKr1coVmXMSTEFHnBnMA+kKiCcQOAQKJ7r9fj8Spul0qr29vUjwu91uJGbnz5+PFvPlchmt5oPBIJJFSep0Ojp16pS2trbU7/cjyfTrkGLCfUBqvQge8wtJ89dJkWCOmX/mudls5jpDYFeHlOI6Ie0E+zrRZ/aF29e9uOPa2loUYtgLrBmknXWG2LsrwetjeOFG3BzFVBjON5vNYnFQ9rS7TtizCAgudPDc+BiYXwQSRBtcEzwrtMmEuHvrRs7PmFljrudiEaIHa+RpBS7qedtXHA++7z1dg+ebNUCUwHkwGAxiN4Yi2Ue8YUysK3OIwMf7XMeFBbqGeA2QGwBX7bs4ISEhIeGykL6HE246rN70NknSh+89/uLHnDmr1YFz+Dii/cuv0z86+yItGmt61Ut/8noP5yHxJX/zGWp8XVnVd75Wy4c//FHFZQsKWZbdL+n+g3/3Qwhvk3TH5Z6v3+/rAx/4gE6fPh2jtuvr6xqNRhqPx7HwX6fTie3mJEUSPR6PdeLEiVjzYGdnR+vr67GDAuQH2773p0dYgAgiQrjIgGABWfWCdqRiNJtN7ezsxO4FuAmIpkJuIWu0rIPwQThJa1itVmq329ra2tKZM2c0Go00HA7j552s8RnvPEAk2KPWm5ubseBgv99Xu93WaDSKLg8XZKbTqTqdjjY2NqI4Q8481vydnZ1ci0m320MuvQsCEXePUHtEXFIUFphTxj4cDnM1KbC712o1VavVeP+soUffJeUcE5Bo73IxHA6jkwRhA5GAtZYOazdIirUiIPSQbncLIEJ4gUivD+FzOh6Po1uC81MrgL3nDgQXcCg86Ok7CCGkvFAoklojxVQQL3DJ2vnacj6eGcbLXoWwI8YVXSoufvEa9US8ZWS1Wo2FVikWSaoPhSMlxQ4RLky4gMOckULiY3HwecaAq+VGcChc7e/ihISEhIRLQ/oeTriZsXjv+673EK4Ia6/6C61J+uxnflF87Z5nn9Rbv+HF121Mjlf0N/Uzz/n7Cr2hlve+53oP50hclRoKIYTHS/p/JL1O0idK+voQwpdLeoP2FdudhzvHfD7Xzs6OPvjBD6rdbscihd5CT9pvo9ftdlWpVLS7uxsjlUTOiWZCPhAgINi0ZiRSDIlwF4TnZ0P2eY2ccd6njd5yuVS329VgMIi1CLBs050AoklqA10jPBrK9SBrIQQ1Gg2tr6/He+JcEB/IJtZ/UiYgbogZCAzeoYL2hlmWqdfrqd/va21tLaYh4IjAncE9+D15lBwRBfLpXR8g6twjxSj5POtDLj1dOLrdbkxNgGQWUygQIbC4k4fP+iJ6sCa0oWQvkELC/OAa8JoZkqJY4u4ST03wWgMQcoQP4HMzGo1yDhk/FqEBpwHiFeIa+8aLK3pXA+aVVJF6va7BYBC7NbB/XOQiQo9jgPFy7zyruGQWi0V0PCAOSMrtUZ4FiH/xPr3gImvrzyziHC6UXq+nZrMZxRZJUZTgul6bRNIFLg93DbljAoeDp1rdSLga38UJCQkJCZeP9D2ckHBjYvnX74z/vutd79Nn/+Qz4u+3/eZUL33cqx/1Mf35dKaf+binabnzzoc/+DriigWFEEJb0q9K+hdZlvVCCC+R9O8lZQf//S+SvuqIzz1P0vOkw4rrWPG3t7e1sbGRq+Lveex0bHBbNeTYK+d7Trvn5gNSBiARRELdNg5J9nxqCCfEzlv6tdvtGP0npYAou193bW1NGxsb0WkBWYf8U+CR65J2gfUboovYwRhptYhw4VZyhBZJkdiPx2Pt7u7GHH7msNvtxlaUODqYZ+ZpNBrF+0agKboOIO1U7cfCzj37vXuxyX6/r1qtFuePY3Z2dqKoIikSYK7JfqnX67H1JNfwNBci9p76wD0hQCC8OEHlHootRd3hIik6DzzCzZxw37gy+H08HueOJ02Azhk4avx5cCeEj6noXmDMPBtcF9GOz7oI4CkTkmL6znw+j+IaYgRrx/PFunOfjNdrTbB3KLY4Ho9jJ41msxk7qOBSoObDaDTKOTpIBUJ0Yq95agPjYI/wO+uG+OTiDGtwo+BqfBfX1Xz0BpyQkJDwGEP6Hk5IeGwgm8+0PHc+/n7fJ5X1rPD0+Puv/c2rVQn7f0/y38vFMltppbwj9tlP/QythmMpWylbHH8N8ooEhRBCRftfnP89y7Jfk6Qsy87Y+z8p6TeP+myWZXdLuluSqtVqtra2FjsVbG9vR4LMH/QeYZekVqsVaywQfYQYTCaTWIAQ8kgnBnchIGTgKPAIKiQIAgQhJ9LukdjVahWj/BBvounD4TBG+REosH232+2YigH5hJQTMee8FBgslUoaDAYxku51IA7mPN5Lu71ftZTILikBROmpn0CXBcQI/j2dTnXmzJkcmZb2C19yDxByzoXdHrLKOtHSk3lgbblvz/On+CMkn9QH1gTbPvPFuZknF1tIAZCUW1/vbFDsyAG5RPggWu3dPjz9geKXpI1A+KkBwfqyl2gL6eSc+2Bfel0G9hnCAgIG91QEc+CpFowbUcNFPIQGr2/BXkA04D78ON7jmovFQuPxOLoFcELgWJlMJrkiol5jg/24s7MT65wgKlDXg24kg8FA0qEohpjo3R4QPBAMcPEgQAHmyQuFuvDmgsRxxtX6Lu6GreOf45GQkJBwDJG+hxMSHrvIFvnyh8+5c19cWPuIJ+vu331ZfH2jVD6ywOO9i8FFz/0PXvKvdOd/KrZ53Lv8wV4HXEmXhyDppZLelmXZD9rrtx3kkknScyS95eHOhUWdFoL9fj+SLncXeIR2fX1dzWYzEu6Da0ey4uIDhe8g4Niliep6YUAAkSPKi92cOgRed6HVakWiuLa2pm63q729vVizAUBccTasr69rPp9rd3c3kkCIO9Fu2t9ButwpwL3hWoAoURWfsdE2D6JIcUXqBFCjAsxmsyiEEM0makybQ8/RxwWAMMCcQkRZ0/F4rFqtdkH+Or8jIOBW2N3d1cbGhkII8XO4R8bjsQaDQS5PfmEPu1vfmS8vHAnRLdav8DoFHNdoNCKh5l69ZoGn3XhBR0QLT7sgag4Z9hoCpJqwxj5e7p31Ye957QMEC+6JuZxMJnGtEBJcfKFOCb8XRQ3SQhCzGIu7fjgnQgqpGnSucAcL9zSZTOIzx36vVqvq9XqxqCpClacvMJ/+7HIM1yoWsfTXXFDx+fX2ldyPO4uOK67md3FCQkJCwqUjfQ8nJNycWP71O/XVj/uk+Pv7/v3H68VfevcFx/3Ah3+Gsvnsgtcl6U4VxYQbD1fiUPhESf9U0ptDCG88eO07JT03hPA07du73ifp+Q93ohCCOp1O/GMfQYFicrVaLXY+IMqeZZm63a7Onz+fSzmgwB4RVoh2u92OJIffF4tFJKXSfqvI8Xgc6wCQyw+JpSBiq9WK7fAgaVtbW7Ego9cIIKpMBwdJkZTW63V1Op1I2vksjgpIImkZw4MqqR7Zd6eApxh44UYn9tPpVL1eT3t7e5H4uXOiXC5rMpnE95fLpR588MFYz6HT6WgwGKjX60XBBoKLoOB1EiqVihqNRrSzUwQTy72LRpBkiOBoNNL58+fV6XTinNRqtTgG1oN58OKEWOM9zcCj8/wOqS86JjxdAHhLSemQFPu12S+85/fmrgv2K+4EyL+fG0EBMQUHhTsU3KGCoOJdOzx9gf2AYOMiDa95XQF3vZACQm0Nad8lxLgQq1xUwr2BI8XniXv0FBOErxBC3CfSoQvDa3Z4x4+j6kwwdtIXaNPJdwNz5+d1pwxrdiMUZdRV/C5OSEhISLgspO/hhIQEPf67XqPv/66/fcQ7R4sJjxVcSZeHV+vorqOX1V8XBwE507u7u5FcEImlIBvF84q95b1uAu4Aju10OlpfX48W/larFYmIpy+Mx+NIYBAzIIf8NJtNra+vR+s84sZqtdK5c+eijX46ncaUBnK+se579XrEjeFwGKO6GxsbMQIL0SIdADGDInZewM5b5kE0uR/O0e/3tbu7G1v9SftkudVqRfGCdAtpn9gPBgPV6/XowEAg4PO4GCCnHsFm/Kyfp0p4OgVkECAu9ft9bW5uxrmo1+taX1/XcDjU9vZ2rnsCbg0vBOkkHNEC0n+wl3PdGbxlJAQW4s1eYZ7cFePtFz267UIN68B1IesIDU66cRYQYad2BwKUn4fovBfIRJArl8sajUa5Qo0ITF4jAAdQsUYE60j6yO7ubq4IJ+eV9sUMahwA3EbsDS9oiXiws7MT9zxODVwTnrpCG1mu6elJPrcc42IEotFRtRV8rRCo2BfHHVf7uzghISEh4dKQvocTEhJuZlyVLg9XCv7wbzabMRIOEYcYe9vFfr8f0xUgLtjgIVLL5VK9Xk/nz5/Xbbfdpttvv11bW1vqdDqRKBNB92gqxJloOJFjWvf1ej2dPXtWm5ubarfbMae73W6r2+1qMploNBrFWgHFjg/ethGnBKQOMQHxpN1ux7xxyCLpCjgQmDuOc6Ll1naIMqQdQQFXR7HwJIIMzgCvP0C+u1fZh2CXSqXoLpEOq+vTBtDTKyCwnsM/nU6jqEBeO0JOq9WKa1ar1XI1KDw3X1KuRoIXQXQ3hrs/GLd0SEq9JgTX8AKG7DtcL8wtQg5OEaLvrLunYQyHw5jiwLmL68B9QKoZr3eD4H6pE8D+RnziHHzOuzkQ6ceRwryw3oA6HrPZTL1eT7u7u7Hjis8bwhzuD0lRqEAoQSTBzcI8VqtVtVqtWHRVUuz44s8Jn/c9j2uBvcxa477wYqbssWI6E84ORBhPg0pISEhISEhISEhIyOPYCApEjtfX13MRdt7Hwl6pVLS3txfJrpNFCAmkicjn+fPnderUKW1tbenUqVO5gmtucUYAaDQaMVosHeb2d7tdSYpEcLVaxToDXLvT6cToPVHtXq8XaxfQipF8dMijdxyAaHc6HbVarSiw4MbwFn+4BLa2tnK57wgQkE8vuMdcIZ7UarUYQR6Px/EzkE5aLiJIEDGmK4ITVe4BQofgg2hDqgORZSLtXpkfkcFbYZIuwLlxVEwmE21vb+cs8N4GkPWD7PI+Vn3EHq4rHaY2IBKwNsyf16Sg0CD347UX3DHjRNexWCzU6/UkHTo5eJ11RsjAVYMrwNNe+Ix3KCDdgvlm7X1sXkvA60hwz16bgc/W63X1er1YT4HUB8YpKQpmEH/2tbskEMLcZUAhT4QHUnhwI+HQ8JoVknLPAudlP/FDXRHpsDOHC28uSPDdciM4FBISEhISEhISEhKuF46NoECRQKK5uAScOEEgyJ+XlCM6kBVI1Hw+14MPPqhut6vbbrtNGxsbOnnypHZ3d3N2Zmzr1GhoNpsxRYKIZrVa1cmTJ2PVeSKv1CcgmgnxIy+ee0BUwM3QbDa1s7Ojvb29SF4h0U4Qi3UX6NggHebw93o91Wq1SDjJWyfyisuAIo9uT4cMDwaDXNFBRARaRtbr9RhZdrLN+mGvh4BS9JLre2qAEzmIbbHwIhFzCkdyT57bD7mlowcE2Iv/MWecx4UHt73jjAgH3SkQppyA4wLwtABECQQkhDFAtL5SqcRWqHR9IMJOigndDbybg6+ztxFl3r1eASIT889ncYDwnrssmJuj7pX58WKQ5XI5ig50MVmtVlGAcxEQUQFXCWvqYkmr1YrpO4hR3qHBXUo4Y3hOeR8xwotwcixzTO0VHBAUUSU9BwFuNBqpVCppfX1d9Xo9V+gzISEhISEhISEhISGPYyEoSIqtAEMIsZsAZB0CCAElKl0kMLRAJLcbMvfAAw/ozJkz2tzcVKvV0vr6eiRckDTvc9/v99XtdrW1tSVJkRS3Wq1YIJBr0v4RUkmLQ6KopDVAXiTFWgrUipAUx+ykbjKZaGNjQ81mMwoWkGxaK0ISaeXoHSKkfDeCer2uvb29XCcJ7sML90n7QokXakSwYQz1ej2KDqRgUBAT8k9LRCL+iBpE+d0Oj1uEuhV0V4DcQ/jcPSApHgcp9zQQXBKeX09qBJ8vpogA7hkCjyWedoikwDggp55SgeWeaDupNC56ED13RwkiAiIHTgZEBsQTBBgKJh5VTNKdDdRlYO4kRYu/pwF4LQZPE3DxZzAYxOeH80DsIey4CnDBsA8QtpbLpSqVSky3cBHFiyWyPxAlGBNz58dROBJRgXVjDXmW2XusN3NANxJcEQkJCQkJCQkJCQkJR+NY/LVMRLbX68WI+ObmZqzKDrmD1M5mM+3u7kZrtJOR4XAYI/vY9vv9vs6ePas777wzF00nov7ggw/GdncUbaMoYb1ej6RjuVzG4pFeaR8yQloCnQuwauOugEStra2p2WxqY2ND4/E4nh9rOESWaDsiAqKBR+0hU0Sli3nlkCmKP+7t7cXPQc4hhESNpUPCSnTZBQWILJ0zvMYFdnkntUT9vaYEpN9bPnorQHepQLy9+4B3aGDOuY+iU4DifhDaYooJYD1ZWy/WyX1A9Nk7Lkg4qWUdichzf8VOEuwffvc1gwAz5mJ6BWN22z7n83oFXvxTkgaDQRREEIEYl4st3q7RnSc8J2tra9Ep5K4HxBN3SfBMMI9efJJ/z+dz9Xq9nODga+WtPzkP50S84R54hnl26vW6BoNBTPORlEuLQHTzji/uqklISEhISEhISEhIuBDHRlDIskzj8TimCpw8eTI6E1qtVoxWE4Hc3d1Vu93OtbRDUKBoY7PZjISu1+vp3LlzsZVelmWREN93332RkLTb7RyB43gn84gKVMqHwHEvTkSwXzebzXjd4XCodrsdfyBY2L4hX9RqwBYOEfXzE50miu0V9MnZJ6rb6XTUbrfV7/dzpJm2jhA7SZHMcg8UmZT2Cfp4PFa1Wo3dLYoOAcB4cCRsb2/HsXobRiLaEFUILETZi3RCst2hQrSd4xEaIP6DwSA6JKTDCDifpY4C9wjZ5FjvjuBuBT7vDhc+w7oyRjp0sLYuoECe3X7va+m1FDydA8cA+5Q54BgEEEQd3C3sNW9Hynqxr7zeAfU0nGB7vQTGxb2QlgAorOhiEOPneMSx4XCYm19PjcEtQscMd3zQThbBhU4ROItYA9J6cG2QvuFODwSJZrOphISEhISEhISEhISjcSwEBQgGbgSIG5HndrutVqsVLf7SPsFCVCBHHMIIOYQwUNhve3tbGxsbUTyo1WrqdDra2tqK7oB6vR4t2m77hjDv7OxEAof7oV6vx+i+R809uusOC/K5SXPwORgMBprP51FEICrMOKhjIB0WufPoNnPDGCGnLtZge4eUIVZsb2/Htpg4OBBXIKSNRkPnzp2LEeR2u62TJ0/G8/k8gOFwGFNF1tfXY+69W9n5N1Frz/Ffrfa7W7gYhFCDYASB9k4MpGaQpuCWfsgr68V4iYZPp9OcEwSwprzPHB215sX1cUcE+frValXtdjuKOhQmxInDfEDqESkQVNhLvlZFeKFH0m2868JoNMoVOGQe+Iy3UkXU4T3ubTweRyeMpyhx3xQjxSXBvCAcMGfsddaY5wIhgWebf/PM8qywF4qtVhuNhjqdThRYEAy63W787vAOGewXfk9ISEhISEhISEhIuBDHRlDAMs4f8FR7r9Vq6na7OnXqVCSiRCohQfwgBkC6vSUeudHdbjfm8XvVeo/Ad7vdXCV9r00A6SGSube3F4m2iwleTLJYRO78+fOxM4ODaCtRWwjOaDTSbDaLhNNdBJAvBAQ+663zvNhipVJRo9HItU2kFgLFKqVDu763KoTEk36xu7urEIJuueUWbW5uxpx6CvWRrjCZTNTv99XpdCIZpcUnghG1LzwlgXNAFOmGQLSbsUmKaQij0eiC1AP2hxN9byXIMThgiIbj2nB3AtfDqYDQgijje0tSPJ4Iv9eBQFRg/3gqDekZpDlIh7Z+0mB8ntgTjMs7WSCWQLapY8CY/FngHkDRPcBc8bwCHBSLxSK6fKh1QEvW4XAYRT+eHwpR+vV4ftvtdq6OgRdedJGFZ8dFKL5XXDhrNBpqNpvxGovFQoPBIDqOmHMv9OhzkZCQkJCQkJCQkJCQx7ERFKjIDkE7efKkbrnlFoUQ1O/31W63tbGxEVsbQqTcMo34gIXZbeKSotVb2id6kE8IFgRI2i9kB6GHdGOthqDgWnBiRDRUOszJp2Aj5Acyjr2fcUKEl8uldnd3IymD3A6Hw1xrQ0k5UudRX6LRkEZEFcgq5xwMBsqyTCdPnoztOJnfSqUSK+IPh8N4TRwMu7u72tnZ0fr6utrttk6cOKHhcBhdFoxhMpno3LlzuVoUrB/ks1arRdcGc+s1HEiJ6Pf7khQL63nhxdFoFM/PfOJUQZjwuhMQUroNUIjSCyH6PirWbnAXBoIOa14skAgpp4sI4/S6G9JhvQY6c0D4Ece4pgsmrDcOGN5zxwFuFWpX4OzwCDz3jUAFfB5ZtxBCdEeQKoD7hnGzl/k3c885cbQggHmxTQQX1s6LVOLc4BjuwVNlfO8gHnFP5XJZjUYjFkp11wUpEwg2nl6SkJCQkJCQkJCQkJDHsRAUqGfQarVie8VSqaRTp06pWq1qZ2cnFleDCHjLNyLQ1APwCv6ScqSAjg2QDy+KCGHzyDaRWNwP8/lcg8EgRq/r9XoUFaR9ez/uBsbolnwwHA7VbDbVaDRixwYvMDkajS4oLOg1CohSux2cYzkPHSvm83mMzEqHbQCn02kUOkqlku64445YpJL763a7mk6nGg6H6vV6uaKSknTmzBk1Gg3deuut0Va+u7sbCbUTbI8Csxblcjnaznu9Xq4VI4S30+mo2+1qOBzmiv2xjhxHVH42m8WUFe/I4KSWtI9iYUrWHEEBhwjk1K8JqWWPeV2L4jEIA8PhMApOXjeEbgjU2LiYUMR1IM3F3/lhbyBkrFar2F6T+0RA864UuDAYu8+Rd6wARTcDDh4veIioRycXWj8isHjNDwqw+nX93IzJnSJ+D7h06PTAvh8MBrm2rAg4HLdYLNRsNuP1+C5IDoWEhISEhISEhISEi+NYCQqbm5sxh5ro9vr6uk6cOBH73EMcJMWoNESCInyQyXK5rBMnTkQCR3SUQoLSfsV70iicwGOhJ48eAcLz4in2tra2Ft0Py+UyphQQnSd6XKvVcmkIZ8+ejeSK6Dr28+FwqNFoFIkmLgii2lmWqdlsxmKPoFiPAIcFAoRHuSHcdF7odDo6ffp0LGBYrVa1sbERx7q3txcj1dxPr9fTgw8+GNNGqJPAGEgXYfzUcUB0WS6X8XyM08k460A9jGLxREQk1s1FE8QhhAh3HeCGoGMBQoJ3FpAUCTFEvNFoxDXDmk+qgBdp9M96p4bRaKTBYBBrZLAHffzUNPCuCJ7e4J0xINjSYdtKovbFVp/FwpV8RlLcZ8y516oIIeQKhbrzwFMmvG6Hp1EwHj7rjhz2PAUqvWMFThBPUWA++BzHeXcT5gSxgtoWo9EoumGoOeFFJBHRGHtyJyQkJCQkJCQkJCQ8NI6NoECEcGNjQ5KivZ/uBJ1OJ0bziXJjfyaiSboEJLPRaOjkyZPqdDqRJM3nc5VKpRi53N7e1vb2ds4RAAHZ3t7WiRMnYntKCrURWW+1WrGfPWS/VCppOBxqc3NT9Xo9knXs2+STl0oljUYjjUajeP8hhJhWAfGE8HiuOO9DlryNIAQQAu1Reoh8MceczhjNZlPtdlu33357TqTh3/1+P9Z/wFGyt7enwWAQC2R6C0yEFMQG72JAigOkEFIPkXOb+3K5jB05vK5Eu92Ogk+xUKX/FxeGE3HGhlBBpN/FGCz27C13MbBHJpNJzgmD6IRzRlJsX8hnBoNBri7HbDaLqSfUNuBe3MLv9RcQCoouCO/2wTWWy6UGg0Ecu3TYfcPdLS4QcG7uC3KPqIDzhs/hwvGWkIwZIc/PzVxwbU9bom0k61wqleKz544QSfHZ8u8BBAFEBJwZjBsHgzuQGKsXhU3uhISEhISEhISEhISHxrEQFIjKEj1cLpfa2dnR+fPnderUqRg9hWRie6f4HK8tl0u1Wi01m81IZDc2NiIZJeo/HA6j3Ztih7gUvAXjdDpVo9GI0WRSHTw1wjs1SMrZzMnzHw6HkZwhKEBQPV0CMcSjzJBFyG4xqn5U0USq4AOKMjJn3W43EjfcHMxNrVbTiRMncvdVLpfVbrdVqVSiQALJbjQaGg6H2t7ejudHwICk1Wq12AkDFwfR4fl8rn6/H+s9YNfn/l0Q6Xa7UUja3d1VvV5Xu92O0W93J3iBT6+l4VZ2yKXXH2A/upMBcu6RfS+sCDn1yDz354U8ESQoQOlFOOnq4NF3Hwv35S4Zr0kA4fdx4SaR9lNmJMUuC+4QQCxjTMyLX5M5ZI4lxTFwPUQFxAovZMn+9BoQXo/ByXu9Xs/Vd/A6EozZP1MsTum1JfxZK9bPYH2KXTjcveG1JBISEhISEhISEhIS8jg2goJb6Sm+t7e3FwkdJNqJHhFNJ5CDwSAST2z53W431iaA0NM5od/vRyLsOehum57NZlGkWC6XqtVq0WJNJJN/Q64QFBqNRiT5WLMRL4C3p6MGhAsWHjktRswhRE5+KErplnLy3heLRXR74EggSj4cDmPaCJ0HINEUsqPzwO7ubhRvII8IJ562AskkMk7dBu6NNSAKnWVZrl0jx3JO6lhsb29rNpvF9JXd3V3t7e3FgpLSYVcET42huCZrjKDhxJFx8cO+Qeyi5gR7l/FBZLlnCn2GEDSZTHLW/F6vF+ee8ThB9meD+3B3ghclZcyk2SCyuAuBYyH27CXO544WhCtcM55ygGPF96MXCMUJggDmIg2v+XhdoGDNvVMKDhB3t3gHFRcwXEjgGsX18loQLmhwTndrJCQkJCQkJCQkJCQ8NK5IUAghvE9SX9JS0iLLso8JIWxJ+kVJj5f0PklflGXZzsOcJ5IL/tjf29uLOftE4omYE213sgrJwqaOm4EIOWkAkqLtnKg8VnOI4XA43J+cA2JE5fp6vR7dBBA9B1Fe7OitViumXnghO44l59yr4E8mkyhcQJioZ8D7nq8vKR4DWYLgUYOB+cO5MJ/PY5FJ725AgbpOpxMFgNlsFgUDxBkvuMjcjsfj+IPoQaoBufiMiRQAhAM+g0vFST+CTq/X02AwiGMbj8cxzSKEoPPnz2tnZycWNKQ2A2IJ8+Z5+dwf0XuPnuM24N8UymT/EG13Uu9rgsjk9SEYE0TZu5u4wMT6e9QdUYd5dKcCIhf7heOoIeCFJ4siE8UTPYXChQUXZbiup1V4ygpCDPuaOUXMcwcB6Risgxck9ZoVzC/XKIp3CIRFcYN5dIcFohtj8zQNTx3hczxXNwKu1ndxQkJCQsLlIX0PJyQk3Ky4Gg6FT8+y7Jz9/u2S/iDLsu8NIXz7we/f9lAnQFCAAM1mM+3s7Oj+++/XcDiMaQvuRIC0YovnHE4apf2IJ1Fi7OVErHd2dtTv9yMxLhZnq9frarVakVCVy2XV6/UYBfdIOHnqECQs/KRMDAaDSJScUEJgIFccg1Ubgg3ZJYLqRfy4b4/SEvGfTCbRieCpD16zger2ODKImpN6wOu1Wk1bW1ux7gICBgUzF4uFer1etPcjKrj4whh87SXlild6lw7Wi3FPJpPYyhKnhLRf2JC0C0k58u3zzrw5accF4xH1YpTaHRc4D4qvFzsicD2OhaR7bQvGiUDAnDB/njZAoVKeEe/K4FF65tSFAJ8P7huHBmIUKSmSohDiKQZem4I96uKAOwK4b3cWsJbsO9/D/LA/ODfPgLd7RSThGSvWgWB+uW9EQa7t7SQ5lvljXhBmbhRB4QBX/F2ckJCQkHBFSN/DCQkJNx2uRcrDsyV92sG/f1rSq/QwX578AQ+5Iyp93333aXt7W3fddZfuuusu3XPPPTlSA+lyEQFC6OIDFm0ICDnjg8EgR3649ng8jjUD2u12rlAf4/W2hhAlzgfhcZdCpVLRaDTKERciqpwXUg4gak7MIF4eZfUuAJ7+QFS9VCrFOhBE/QeDQazq70UQpf20hN3d3SjGQPQqlYq63W7OOg8qlYqazaYGg0Gu2CLng6hByH0OGbMLAG6Fh6DjeEBMotDg2tpadD5I+ySSa3mhQCfB3vUAMk0knDF49J7XvDaECx6SckS3Xq/HPdlsNqMThrVjL+J+8fnx4oKeNlIUAlyAYIzMJXD7PwSeOeecnL/4We69WOOgeL7iOvFvL5jpzgcn/Mwhn/G6FYyB57vokvACiu4UcScGqTq4mHyNvd4Ez7d3RSne3w2IS/4uTkhISEi4qkjfwwkJCY95XOlfzJmk/xVCyCT9RJZld0u6Ncuy+yUpy7L7Qwi3PNxJsIIT/cd+ffbsWZ07d061Wk2nT5/W5uZmztpfjJ56JNQt1G7Jxuq9t7cXUxtarVYk2QgCpVJJt99+exQU+v3+BYX/JEXxw7srQHwhJ41GQ+12W71eLxIr6bAwHuSwGCF30gv5gfwVW94dzHeOnHtXgyzL1Gg0ItnHvTAej6Nzw1MrBoNBrEcBmaPjxnA4jEUWuSbjZn24d9aJOhFEtCGPHonmflk/CDqODGpD7O3tRfLndTEkxXXmvtkbuFS8DgGiCGkRLlTxHscWo9del8D3sXc9oDUhYgvtIHnNCa4LZbkHzK5drK3APvUIv693MSWH83k6DeIa42Fve70H5i3Lslgg010JHO9jokCoO4/8h1oJ7AvWSDqsKYKrgusgNOBwKKY78R5zwFog4KxWhy1E/bzMA/fBWrq4dwPgqnwXJyQkJCRcNtL3cEJCwk2JKxUUPjHLsg8efEH+7xDC2x/pB0MIz5P0PH4ntWB3dzdG/s+fP6/77rtP8/lcm5ubOnHihDY2NtRqtTSZTHKF7iB6RCchoxByLNbFKDfdEpwcEU3Gut9qtbRardTr9WJUnfx8CBcdB4iae2FHqvk3Go2YYuGATCIwUIDSLdmQJo+eNpvNKGB4BX2ED67Ja3xmMploNBppb28vihK1Wi0WawwhxFaSXmSP8yGOIBhQiNFTGYqWc8itOyg8MlxMB5AU6050u93YCpR0FQQAj9qzhi4EeIcE7s2vzTUhll4c0dNapMMUAk9P8NSUYrE/F0So/TAcDmORzXK5HNM4/BwOH5fPqYtFng5D+gSveV0ITx9h7VgrJ+DShe4YxsLcVSqVWA+C562YdkTKAA4ST8nAKcMP+55rILrwnPlae42FYh0Fr7HAOvD8M1+4IBibz7XPGSk7NwiuyndxXc1rNb6EhISExzrS93BCQsJNiSsSFLIs++DBfx8MIfy6pKdLOhNCuO1Aib1N0oMX+ezdku6WpBBC1mq1clF1t+bv7e3p1KlTuuuuu3Ty5El1u90YaXTCJSmSGEQCr58A2RqNRjEyTFS+Xq/HQoWLxUL9fl/9fl+TyUQbGxuq1+vR0QCJgWhRdBGC5S3uvBUgudzUFUDMgBR6moALFrgSOAeEC2KGXd/Jo6QoALg7gHkmh7/f70fLPdeknSOODQQRuiSQxjGdTuP8z+fz2OWBeXcyzxoUI/zSYTSYOeV+yelfrVba2NiI88W8OolHCCAazfwTMYegOgFlD3jNDdZXOiwI6MUdiYBjh0cs8YKYTkgh7hQU9T3hKR6+R11UYS6LhTA5X7E4aDGdgPtDCEFQYO8zT5B33CU4KXi2OA97i/l2Z42LexB85onnzOtFsO7uLnD3jYsaXksBZw3nZDw+Lk+vYO15Vv15Yb8X6yrwWtExclxxtb6Lu2HrxrjhhISEhGOG9D2ckJBws+Kye6OFEFohhA7/lvSZkt4i6ZWSvuLgsK+Q9BuP9Jx0HICkeJHE5XKpVqulu+66S7fffru63W60PbuV2qO8HqGk2wLEQlIssthsNtXtdtXpdLS+vq56vR7dDFjaSUFwEouDodlsxrE4QYIQe6FASdHlwPWdnEqHXQakQ/u356ZDXAFRYi8OCMmEhM/n89jNgGtCbvv9vgaDQazxAPGj88JgMNDOzk50j0D0POcc8k2bP8/Xh3AzFq7N/RQL42UHRQe5/s7Ojs6fP69+vx/FIBwmFwNr5UUDIfeek18UHfgM9RZYK4p0OsF2Eu5RfOkw6u/3T6tO9qATWq8z4FF23wvFqDvEm3ll/3mE3rsxeGFLyLbb/L2YJJF8RJdieod/1msS4ASipgjuC/Z6UTThsz5mHxP/dZcPa8k+cFcKBUW9nay7RjzVoSjGMMfcS7Vajdc/zrgW38UJCQkJCY8c6Xs4ISHhZsaVOBRulfTrB39wlyX9fJZlvxtC+DNJvxRC+GpJ75f0hY/kZMPhUM1mMxcxpCYB+f5ra2vqdDpqt9uq1+vRGeC57U64yPkmmkm3iPPnzx8ZeYQwer66t94jFUFSdFBQW4BOB07iRqORQgjqdDqSLrSve0tHiDhEGHC+EILa7fYFhMnJJeSHfPFi8cbJZBLHyjg8Gst1SemQFIs6QnRJG4B40hEDYuk1Epgf6dCm7/Z14M4MyDFuEIj2YDCIx5Bawbg5F8e6+CId1tigXgOpBh6lLtZLYP8gDHH/iCG8zv0gSviYcHAwz+4AYX24vq+lCyyQawQkiDR7zB09Lkbwg6jBOb0QJukMfp+Myx0NTsL5vItrXMPdBLgIpEOXBSk6iCQ4epg/b+vK/XhaEmvCNann4OvK3kREGw6HuU4ang7l4omnbbizoZiCckxxVb+LExISEhIuGel7OCEh4abFZQsKWZa9V9JHH/H6eUnPuNTzvf71r9dTnvKUXGV+SZGYSYokhDaIw+EwR/goujYajbS+vq7VahVTJuhS4BHStbW1mCMNUcGxMBqNIvEbj8e5nHDpkKBDTP28uAGIymNxL5VKMYLrOexOWiBk1CQgQkyqgkejAQQK4PIoks7ZbBZz2bmfYlE9xu0kF9GmVCrFdAc+iyuBcRRJmOf+u6ASDupOMJcQYS+sh5jje8HdCz4PzG+x+0SRsM7nc9Xr9Zgfz5zyX7fw80NkHjcCxBwSi4DAPOLcwJJfbPGJoHGUEFCsNeEiA+fmv/4e8+vE3+sO+J73mhzuhuAzLkAgCvi+La51sTsJRN07nlBDgs4i/pyz1jwn3JvvUe6FMUrKPffSYeFSvid4DnEJufjk40aQKIolknLP1XHF1f4uTkhISEi4NKTv4YSEhJsZx+avZfK23VYtHeacQ0xqtZqq1ara7bbG43G0vkMUsEETyZ9MJtre3tbu7m5MqfCIOsUdvVAdUfxarRZrAUAcm81mrqjccDiMxBQCCXHHIYAIAYFrNps5N4N0mOYA4fRxcV+NRiNnqXfy7oUEsWqPx+NctXwiyZPJ5AKihiUewYF79tSL4XCo4XCYy2lHcGBO+CHKT2qBpJgWIh2KID5uTwVxqznEkrVwIsrcsaaLxULD4TBG4JlnT1FhfOwdhB6vE+D3xzU41h0GpHd4uorfj4/T78cj454+4AUHiykF3DckmPv22h08H6VSKe5BCDNz4RF62ir68+YpKsVUBMYBIWdN2Ks4fNhTuFjcGcN9lEr7HRiYB0m51A2vlcHeQGwoimH+LLgDgjWeTqe5uhPuTmB+XMhwMSUhISEhISEhISEh4WgcG0EBggdB8zZ1WJulw+hnlmWq1Wqxa4EXxIMkIDrs7u5qZ2dHzWYzl9ZAjrzn7kO6cCqQduFW6uL4BoNBJHHVajXmqXt000WGRqORywGXFIkZ4yFiC8H2onWeE+41HZif1WqVK0CIQwFwzXq9HokyxJEUBs7BMczVcDhUp9OJ5yWy69d3qz12eUgn5JVxUwiP+aQIosPrV0jKkW8npwgypFosl8tcdX8EBd9zvA7c+s6x3lUBgu+CiRNZXkNwQHzx9ph+bdbVhRVJORIPOUYEIOXB60/4OiJweO2No1J8uG7RHeHz6eSesTiZL9adcEHF9wPCFvPpNRw85YRnmP3tKR7e2hNhDlHQU27cZcKzQ/qJn9eFDxc1vDio742EhISEhISEhISEhDyOjaAgKdrzqSkgKdeSENJDEUHsybVaTdJhJXmPii+XS+3t7Wl7e1tbW1s5uzQ/kDMKEUJEINNeHI/jwGQy0e7ubhQJIHOcwyvbQ4icjCNeSIptGj2qDOlzIsx9FVvkubUdcucEEHLlhSY9ncBbMnKP1Wo1jp30BhdL3IZOnrzXFOC62Nqlw/QS1k06dFhATBkfP8wpIoQTUi+y5xF7dxV4XQws/V7PwgmndCh4MAe1Wi1Haj2FoEja+a+viwtHkHGvj+FiRXE9mR8cHn48YgXFCdnf7F9cKpyD4xEIWBsX1IrFC73ehe9/SDdr4WvMODjOa04U58r3iqdt8CziXPJ0C8bHfSEU+PPKfeKi8b3nQkWx04SLPt4KNSEhISEhISEhISEhj2MlKJCmQDV6aZ+wj0ajWNNgOp1qb29Pe3t7kbS32+0Y1XYS5CS63+/HVpMQNq92D9HxlAlqLEDiIP5O7qfTqXZ3d2PRQI9m04rSo7yIF7QhXC73u1dQGZ+cb0gRLS0h327BZyx0k2AOIXae1kCFfCeXCBucFzLlBSIRCSSp1+vFVpOkXyDiMFYv2nhUPQDcA9yXt+bzFAgnzBBX5t0j414I0G3z0mHxxqIoxH/5nEe0fX19DJ46AfFm/jhnsSAopLVU2i9QSYFB30dOvInmu/jhhQTdJeM1C3xOIO7UbqDmBmKXOwk8Vah4HZ8P9i/XdEcD0X+IursUWAPmGoHEi1u644C19/vkfvzaPt88754KxBj4HHPszh3mygURTwHyMRXTsBISEhISEhISEhIS9nFsBAXPk6/X6/EP/dVqpe3tbT3wwAPa3NyMKRDF7guIDU4uQtjvjIDdnpaDnhYhKbb/o8AixA+y5NF+Jx1E7nu9nrIsU7vdju0F5/N5PK+THEh+MXLtRe88GsvrdJfwCv1OIkejUa5tnxcuhGDTttAJJgTNI8OSoiOEjhLUdWD+IYWtViveS61WU71ezwk0rANCBXMsKQoXkG1fO58v6TCS7aIC7pRarXYBIfaUgaPSPrzlo+fmS4fE3s/jkWwXGVwA8ToDbtdn/XnNHS5cCxSFFIQJrs+/ESq4ljtRvH6B37unzrgLwoUI0mg4r4/N9zF1DUIIcf08FYU1cpcMe9jdLS5GuDDkJJ9rF+tuMB88D5yTMTJP3CNAfPR5cBcQ5/D1TUhISEhISEhISEi4EMdGUPDILkSoWq2qUqmo1+vpzJkzmk6n2tnZiSTFCVExNcC7I0CWBoNBzEfHNg/R8TZykCMvfgexg5jw+mq130kCUnXrrbeq0+nEzhBOyjy/3VvVETmlU4RHhyXFwnlOTom0FqOvrVZL6+vr6vV6sVik56wTHR+Px/FcTtKOsqozZ41GI5ItcuI9LQRxRzosxuhtAiHYnLvY4tEjz14nAqeEk2/WmyKEkEjIqbdnZFzF6L93eKBGhNczAKTdeN0KRCfG4i4I6bC4IffpRB7Xi6eDAK7vaQjMpe8pJ8le68HTa7yOgBdAdIeNR+s93cNrWvCa3wtjR5Dx7hrMBQIDQopfk7Hg0vHnzwukMlYv5uiuGnc4FJ9Zn9NizQQv6Mj6Fdec6yYkJCQkJCQkJCQkHI1jJSi8//3v1+nTpyOhoD3hZDLRuXPnIhmjNgFRWy8iJykSFYgD0dR+v692ux2j2ogSRCI98ux1AxAeJOUIDXZ/SDW2f0k5B4MTP89jd7LsUVyO8eJ3HlX1c0qH+fL1el3dblenTp1SqVTSYDCILfsgX97GkHnCyUFhSJwNiA8IExSphHh6LYZiFBjCiWPBu0wgFrl7opiPzw9rzf1DHot2dvaQW/a9WKAf5/ULnKQWySnryFr6v9kj3Hcxku+CgjseIL38Xuy8UEw1cDHGxQB3lCBWuDjg9QFYIwQQxu4OFRcvXOg4ao5Z++l0qmq1GutoeD0TL6DIvbE/WPf5fB4LleJU4dlgn7gjyPe736fPBw4k7qNY7JT5QKDiPo8Sg5KYkJCQkJCQkJCQkPDQODaCgqRoiS+2iVytVur3+zF9gBQHSTmbuVecH41Gmkwm2tjYyBXNg5y7AMFn3R5P3QUi8a1WK2c5hzzNZjO1Wq0LispB/KfTaWw/SboB90ekttj3HoGC6Luk2K6RdAp3CVB7ol6vq9FoaHNzU9VqVb1eT7VaTevr6xoMBppMJrF+AePwQomVSiVaxGnNuVgsNBgM4jU6nY6m02mM2Ht02btSQNYQbiDOzA2veyQeAgtxhvB6u0wII9Fzd7Z4rr2f0+EiDUSYyLpHrX1fSPloOONkr0LU2XvFqDf7gjXnfO6Q8D0BuD93uEiHzgp31jAPzC3Pk7sulstlXBN3hLgQ4/UjIPHuNOA+EMs81YTxITK4G8Q/h0jEsew778Lh982cFh0JnvrgDiLul2sUazvglPF0n+I8swdZ24SEhISEhISEhISEC3GsBAVIDMQdG7pHF6vVqprNZiSkkAwilh5NpbI7xAKCPplMYgSyGOX1lAQIWb1ez6UWSMq5CtbX19VsNnN1AKjp4NXjIcgQKo/QU8m+VCrFQo6IFqRVIEjU6/U4L16sjvoNFEaEeLXb7UiaGH+1Wo0iQ6lUinMC8aIl52g0inPB+SHj1JeAdGXZfhtN5tpTVxBPIGm4HzytolKpxPaa7gRBBACs0Wq1ilHyYh0CT0lxsgmZ9mi8E996vR4JLk6QYuqKOw2KKRu+J52os/aIYt6OEHcEIoOTd99z7nRhDoupQk7Ycfe4MOBFMD0NBUHJhRovOOmpIEVizri9/SPzynWkQ/GPMfOZYi0I5svTgty1wjPlqQ9+buaHtCbEg6Kg43vD54Q9iQiTkJCQkJCQkJCQkHA0jpWg4CKCE2DPi3e7PJFdyBeWZwiL25s9hUA6bLvoTgeIEEQG0g4JhKh4dXrOV6lUIvl2qz0iiHRYob5SqcQ2k/y4hR/ijpgAoacmBILBbDaLoom3gPToKuQyhP3ieePxOKY0OBFHVOBcHsXmvHSfgNAh9CAWFNtDFnPzu91uXGsIKs4Grgu59vlyeH0Eb/vpn4Fcs8b8G9cFe419QztM9hDpGYzTHS5O+t0pgVuAzzh599/9/AguEF8cJ7zv0X+P6vM6Y3RRoegQYQwuYvjc+xxyX35ur0PBOjrxB0Wxxe/f6zG486FYo8HHy97yegw+b6REMZ/j8TgnqLBm3hLSnSnFMbu7hPdS2kNCQkJCQkJCQkLCQ+NYCQqQfuz44/FYw+EwEmii3t7hwLsJOPGTDgsnUouh0WioUqlEYsy1LlZ/AdHACVq5XNZ4PM7ZvXnd6xxUq9WcuOGRXt4nB3w0Gkk6rLvA8czHeDzOEUW/X8ZJ1H0ymcQUBc7jNRFIe4DIEpHHFTGfz1Wv1yNhpxAgjoJ+v5/rOACJk5QjpFjt3XXh88Vcu2sCYYK54/69bZ9HwyGrXiwR8QeXg4tEvk5cm7F42gFj8c9zjIsJnsbAeTzlxQs5em0HyLFb9AGRdsaB2MDn2N8+J8yDpwMU3TcIXbzmJNq7Ybj7gMKTzJnXZSi6MdibCCMuPrhTYT6fazgc5pwAzKGn+PCM8xz7vXIN3DJHiQ24Z3ie/Rn01Abff+w3F/iSQyEhISEhISEhISHh4jhWgoKUJ20Qp+FwGFsV0gmhVCqp2WzGVAGIglutnagW8/UhuTgFiM5LijUCIGAQUa+x4KIDNRc8ul6sqeDEDfcABMyt7E5w+BwkHRGgWI3fhQjcDIgvuBgg4JyLWhTtdluNRiOmRWRZFkUGiCiCwnK5jLUpqLXAmKvVai4CTxoElnucJR6pz7Is1qkoEk8XeIis87lyuaxms5nrLOBCgxdb9OJ7rAeFNDk/Ioo7Szifu1DcIcB4ioKAj520iKJI5LUnPEWA8bjrRVKcaxcV2M+QZYQHT2lBDCOFw10ZXiSx6ETxOgbu3KF96MUKYjLGYscIBw4WT4vw1JharRbFH4qAuquBa3laiD9jvOdiiRc5RSzwNJZirQt/9oo1OBISribWTmxJm+vXexjXFat77lM2n13vYSQkJCQkJCRcJo6NoABZoiAhRAayT2tGJ/VEoyE2WKYhzBACxAiPZrZarWhVJ5oOgcYG7o6JYpV67OVexFE6JL0UbCy2D5SUKwoJeeK8zAWFICVFO7cTMUgTVez984gAXnui2+1GMk30NsuySK698CGpI55Ljxgwm83U6/Uiyff6EN79wl0d1FmoVqsajUaRpC2XS00mk+iacEGIdYRMA8iu10NwazzrhhiAM4NoNUQYwo2wAtmkBgTz4PuT6zrRdhLu//bUBm/36fcBWS5GyREzXIgi0g6pZ52dRHO+YmFK7oXf2TvFeg3sR3/Px8oz4HUvfJwe2WctnbR7GhPPstcycSHRU4y8OCXigwtkfNYFLvZnUWApFor0NfF19zVJSLjaWDuxpflTHqf3vDDo3Z/+U9d7ONcVH/NdL9TmO/a/d0uvfuP1HUxCQkJCQkLCJePYCArSoeWY2gEQWKz83jGh0WjkcvX5vJQv7ojNut/vazKZ6LbbblOn09GJEyc0HA5z5AiyxDURDLxCPCSGSvpc38mpt+eTDtMovFYAYoB0mJrh0Xb/PPbvyWSi1WoV6ytQn4ExQYwh4LgoEB1wDlCnwqO3EH6IJ0TYawhQ26HZbMb7YqxFl4Hb7iF9EFbmgXUdDoeRyHKvzI23SnRC7HsGFCPSwNfBu2NAcJ2QIm54ZL1IxPkpjsUj/Qgs7C2vd3BU1NvdCu7EgNgikhWLYLqbAtHH1wVRpSgCuOjje9Cj9NybP0suRvg8FFM7fM0RCRC0vPgn6T+e5sF9MnZSntiP7HPEA09T8roI7sjwlBPu6WLOEtbDxYeEhKuBUqul3uf8bZ15uvTuL/3x6z2cY4E3/PuXxH9/wje9QGuzTM1ff911HFFCQkJCQkLCpeCyBYUQwodJ+kV76UMkfbekDUlfK+nswevfmWXZbz+C8+0P6IDkTKfTXBG3fr+vwWCgUqmkRqOhjY2NSEaLkV4nJggEvV5Pk8lEt9xyS2x9uFgsNBqNchHuom0bYlLMCyd/GyIt5e3dnspA5Nat+5AxBBRP28CVMZlMItGnlkKv14uvEQ2GYDlJ5j1P9YDoUi+g2CEBsWaxWGg4HOYKLkqKaR3tdltra2sxTcQLCDIXRdu7OzxIg3DiyDyxBzxiTeHGYqoBv3tRw2J0H5LvRSiZH8ZJzQjuz9fCSag7VLhn9gfjLEb1qfnhxRH9nB5l97QMUhW8ZoAfT3Qdol5Mv0DAcJGGa3tqCvOIW6A4dtalKN55OoiLB/7ccZyvI+Se+gT+LLig4w4hnEheawHhxFNIimkRgOsVRSBfN+b/qDk+7rja38UJ1wAh6IFv/HhNT2R6+9e85OGPv0nxpz/047p/MdDnbf5Lbb3sNdd7OAkJjxjpezghIeFmxmULClmWvUPS0yQphLAm6T5Jvy7pKyX9UJZl//lSz+lF9RACIHzUBqDLAS0UPb/aSRcEG5I2Go2iiNBut6PIgNCAgwB3QpGEUosAmz3nxZJ/FJGGnBeFClIsPJ3C7esUQxwMBrGYIakKFKlkHD53kDLEAupEONGExBdz4CF4RH49rYJrsS7r6+vqdDoaDofq9Xra29uL885/mZflchnrXjCvTpCZB0gprTIh7T5uHCCtViuuidcEKDoJPEqNKMJcESWH0OKKgax6qorPL6SUPcaxRaeLz8dR6QQuMLBXuE/mxds4cl0XAyia6KKBdEj2fdwu6LjTgGt6JL4YrffUE8Qr31MuarirQjrsGOLFU/mMuwdcaMFt4AJOsQ0p+5XP+Xk5T3EtGCf36C1XvaaJp4rcCLgW38UJVxehXNGbvu3F13sYNwRuK7f18u/+QX1p91t0+of/9HoPJyHhESF9DyckJNzMuFopD8+Q9J4sy+7xP+4vFZBL/qiHUEIGJ5OJ1tbW1Gg01Gq1chZvt2t7xNdt5JCiarWqVqsV7f8UGoTEk0pA/r20X6iRqLHb8iEhiAsQnXq9nuuqQN0Er89QjLh7TjutDCGudD84KpeeuVsul9HZ0e/3IyFlzERciTZD3pnbZrOZI/7FaLkXwZMUo/rcY5HAeUTcbfGcE3JINwSInZNWzgX5azab6nQ6MV0Css1YqEnhQhOuhVqtpnq9HueW133vebFGz/n3++a87ihAqHFnCnNQJKdHiQWIE4yL8UjKEWjSfZgnxu+Cil/P3R6+v4rpGu4oKAoKwNMePOXAHT4uvHBN9r4/n/y4gHKUy8gdHAhbLhYVU1yOciAUXSP+u4st7ti4gbs7XJXv4oSri3f+t4+U9PrrPYwbBk+tNvQT3/hf9TW1b9Ad35dEhYQbDul7OCEh4abC1RIUvkTSL9jvXx9C+HJJb5D0LVmW7TySk3gE0aP3RCex9zcajWhThyTP53NVq9XoXPAoMBHc6XQa2x4SNZ9OpxoMBlFIgLgR3a/Varmcb08rcAKNYIELAgEAAgShx+4vHRJdSKEXEETQ8Kg3pIvXIN6IBB6ZhpxyP5D2EEIUOyjIyLHUFoDAeYqAR8c5P44SFxuczEn5CDnkD9KOUOQF9Vg7EEKIa4DTwNsFettH1ghnCOSc95vNplarlYbD4QVdKhAs6G7h8+jRfVwzzImnn3iBRObAc/Uhu4gBXtTTxSGPkiPmUHsAUcSdHAhUXMNTSdgj3AtrUix0yTic2Pv5uJdiGovvST8X+9fvi+PZs8UaBS4kuBvECzSy7qzJUWk1iGsXS0Xx+y7uWU/fYF5vJLeCrtJ3ccLVw9lXfpje+zEvu97DuOHwcfU1vfj5L9YLSy/Snf8piQoJNxTS93BCQsJNhdLDH/LQCCFUJX2epF8+eOklkp6ofevX/ZL+y0U+97wQwhtCCG+QDm3y99xzjxaLRY40EUV3Au4RdEmRnHgEl9elwzz7vb09DYfD+NnFYhGdCUSLIXCIDpJy5NkJixMgr8rvUWCEDog0FnLcBAgWXpgQ4uztDEExP11SrAdBhJ6xTyYT9ft97e7uand3V4PBQJJiccVms6lWqxUJlKc+1Gq1WBDPxQjuBXLLGhVt7UTeIZfcU61Wi4IL98hrzG+RWDabzXge6dAG7ySz2WxqfX093lOz2cylhdRqtfg+4g3z684Nvw7z7ONywg8Rxy3gEXi/fwQlzlfsHuLpOT5mJ9DukGHums1mnHu/lv8U3QTFugAeqfdr+HPghROLqSBO0jlHrVaLLiJPM/BrFq/P3vZn250t/gwgNPo1/Do+h/7MFF1M7tooOjdY9xsFV+O7eK7pozHUmwq/9bSXXu8h3LD4lLp099f+mO7/5k+43kNJSHhESN/DCQkJNyOuhkPhsyT9RZZlZySJ/0pSCOEnJf3mUR/KsuxuSXcfHJfxR/1oNIqV3fv9fs5+zB/6kDO34xOBx30AGSJayznI+3dnA58jl548/Xq9HslTtVpVo9HIVX/3QnFOYiiqKCk3Rid0Tpak/daQ0+k0R3wYPwUaV6tVzpXheeFZlsWWh5DB8XicK0A4nU7VbrdjtLdWq0Vy7aQNEcTnCGKLeEDKQa1WU7fbjXnvOD2kw/aYEGcIr0eqnTC6i4PCiNJhEUR3LxTt7ETFqYHAfuCHPcC9FV0SxTQDalHgVEEssv0bj0G8aTabue4FPibOz1q4EOSunKNSS9j7LhC4m4A0mKJrgHtFEOLaRcLtDoyj3mdPebFKJ94XE1B4VtjPjqIY5/NaXF/uhx/EHfYPYyimfBxlNfW5YbzuyCi6FWgre4Pgir+Lu2HrhrJjJDz28Yn1koZ3phauCTcM0vdwQkLCTYerISg8V2btCiHclmXZ/Qe/PkfSWy7lZPxhT8Q4yzI1Go39wRY6GRAhrtVqMdVgOp3GCLV3IyBdAvFhZ2cndoggNxsCUa/X1W63Va1Wtbe3F+snOKHFbo0NH8JF2gEEz10OiBuIA05maeXIfWChh8hitWdc3gIR8sPvRNoZA0TTo8WAmhR83t0PkFFPX8CVgDiC+FOtVuO1vY6Ap59A3rzmBfPhKRxO4CCA3pXAiaKPl7Fx7el0Gokjcz+bzbS2tqZWq5XrIODpEX4890hqAYIDc+p1EFhn1g7Cyny5pZ65QQBhbbxYJffnaRRHuRdwu5AKQh0S/l0qleK+QrjxugNO2l0cKNZ/KO6dYtoJ4okXbfRr+LwWazgU96SnWHB+dxAUaz0gwBVbR/r4/f64TrGuBM+1p+DcQLiq38UJCQkJCZeM9D2ckJBw0+GK/loOITQl/X1Jz7eXvz+E8DRJmaT3Fd57WECg6KoAYYP4NpvNnH2cP/rJSYc01et1ra+va21tTYPBIJLL9fX1mAYwHo8j4T3KZn+xivZFl4AXPTzKFk7UlPF5ATuPHiMa+H14cUK3gpfL5Tg/HpWFoEuHrStxFUCSZrOZRqORSqX9FpxE4aV8UT7P4cel4c6NEII2NjZi3YHxeBxJMWNgbryQYbvdjqR3Op1GWzmk+iii6WkB3JuTX+6l0+nkru81FhhfvV6PbhMEJlIwEGMgmZPJJJef7wSf33FPkKbjxRn5HOKR1+nwApAc32w2JSnXhcJdI4gBHM86uJuDtfK97HPmjhrfoy4SFetYSIpiDfut2BXEaycgHHh6BcIZ+8rJut8Xz0MxBYHxu+ji+4K5cMHgKBeEO53Y2/58F0WIGwHX4rs4IeG44K+/+L/q6R/45zr9Q6mWQsLxRfoeTkhIuFlxRYJClmUjSScKr/3TKxqRDusB0F5xPp+rUqloa2tLm5ubOTtyrVaLpM8jpggKlUpF58+f13Q6VafTiW6Hfr+vyWQSCTvEyIm85/YzLtpOQlAhxG7nd7HACVs4qEEg5TsEDIfDnGUdsuYRZj5DFF7K2+Zpdwmh93uAQPt4hsNh7BrQbrfVbrcjqfMUkWINBMgbZLDdbsdrVioVNZvNKC7M53M1Gg2Vy2X1+/3YupM6FzgPIM+MEdeAF0v0PHnEGo96e/FCH7enKUBoabvpkXXGAFltNBoXFA3kvOwz1ppUAnclMFa/vnTofnDnCK+7aIEgUiyeeJQ7g8+7uMK+cJeBixPFeg6kb3h6UVHYwW1Deotfn/nw+75YpwQXgvjd0z249+J9upOAcxxVtNTFJnchsJf8mSyimM5RrDdxXHGtvosTEo4DaqGi1drDH5eQcD2RvocTEhJuVhwbP6//ke/53li02+22ut2u6vV6rBUgKZJ4JxbAybi3JITQFdvu8XnIOcR3PB5Hp4Rfh5aJRJbdPs24itFgorhu73cxwFGMzLp7wIkOEXlPB8Ge7wS4WLNgMploMBjElBBIXblcjlF7CjA6MXPCRYcD5pPoM3UfvNsGHS5YC8gbbgEs6/zXibeP3W30pGV4yoYXSWSuJcV0DOmQgFPDAFI9Go3ifqjValGcgRz7PvFOCE5gSY/wNI2jyCvHFzskMEdeX8H3A+cq1r2g84mnSHi9D+aLcbmY4fVEXJwr1gkhrYJn1O+RvepOHMZdHA9CnTsdqJWBS6To8PH6CqwFYhAFRbme15jwMbhgwLoydtwmxflLSEhISEhISEhISDgax0ZQAFmWaTqdRvIHeaOifbVajSSeiDQExyOQR0WGIVuQTggN54dIexvGZrMZiwRCUojmDofDWF9BOrTXe5E86TCyW61W1el0JCk6LwaDQXRiOMGDXFFYEQLmxNrJtXRIdheLRSSPOBSwsWNbn06nms1mGo/H6vV6kdST0++1JHAOeP47CCGo0WjE9AWEmKOK+kHsmXtvI+mRba+3wH1JinUOIITFzguMQTokrpyX+UB04X3SChCM2HNu63fCy2tSvrAg68daj0ajeA7acXKvXpSTc/h/2QNF635xTov728FaufjidRP8M35dF+U8NYfnzT9brFXgBUd53eHHu4PE3Q3+OR8z4omfx58B/zeiiYtnfm2/N9/LLoRwrzeKQyEhISEhISEhISHheuDYCQohhFyVf2oAdLtddbvdSPohly4UeG97J0OSYuTd87qxgLujYDabxXoGknIFFzk3zgQi8y40QFIlxQioFwukQwKCAgSMooY+Zi/uB6mXlBu/W+chyi7EcN+4AmgFmWWZhsOhJpNJTN2AkJEOQFs+2na6DX+1Wmk8HsdaABC/0WgU55NjmH9SNSCUUr7Ggbf4RFDyuZUO24siMkBmWYsiQWcdONYFIVwwiAzj8TgWiFytVlEwYj2YZ++KgShSrLXBWItk1h01npLgQpC3QC3uWb8fT2HwNqkIWp62ctRz5m4WXDLuqsG1gOODOXDHgQsQns7B78Ux++tFEcVTNnxfsx7MaRE8w0VxoujOcBfLUedwd0KxlkJCQkJCQkJCQkJCwoU4doICkUYAwfVCfhAm7xYg5QvLUZyQFAfIAiR9Pp/nWhNybcgd/4bQQlgQE/r9fuy60O12c6RX2m8DGcJ+ATmcApBOHAlOoLMs02g0yhHU4XAYo9qQWLdscz6i4m7DL1rlcXOQxsA13PrOHPrxuA0Qa5z0IihQqwFSLil23vCWk41GI865t3EstmpkzXGLPFwuvtdbYJ2drHqaBmu4XC6jaEHdBQQEaV+0QXDxeWAPAk/JcAeDC1qsKQIP0X1EKxeQfI69YwL36+vvQgXnZM4RS/yzHp33Z8aj/34cY/dr+f5yscTFhOL+dOGkWN9htVrFzhvMjbuIvLCip4b42P11v5+iuHSUY8LdLZyLMbtYkpCQkJCQkJCQkJBwIY6doOCRQYhts9mMEXrSIfjjnyi/kyon/fV6PebzTyYTtdvtXEtKbwnIeYmmQ7qLlmui2/V6XZubm2o2mznSQhQXkgJhgSx5hJnreB0CChAyJidbzI+7EhAKHLxHO8FOp5NzHjhJ5vwe9QcQ9clkEskqxHU4HMZ2nNRSGA6H0TGAGODFIyGQzBciwHw+j7UcnPwRaXfRg/lDLOAcTl65hpTPg/d6AXTJgMS7YwS3gtdH4PNF1wFz6nuD++C/nm7gpFpSdG4gkvGaiyWezuI1DTgf7yHC+HVcNCtG3YuCgF/PSXYxjcVrErjAwlp4lwkEI8QlJ/GIgzxjXhTU01OOSlvgehdz6FzsXov37LUTXGTwOUxISEhISEhISEhIuBDHSlCguCGRScgykV9IN6TNRQC3OmdZlnMRQHKcsCJCeBHC8XgcC0DSDcIt0pzfOwE0m83ca+SGk9JA7QBSAJzk0AoTcsa5vPCfOwMgnhAmFycQCNwmT6cMSWo2m2q327m8dMQaUiFcXICcQsxGo1HOXTAYDKKgAPEbDocaDAYx+s79elHGwWCg+XyemyNSWJwI+71B8jwtAtEA4YXX2RuIAd5m0iPdXBNXhLs73L0AIfb3ESFwJ9ANxF0SwAmr2+69E4dH4blP33tFFwfHurjgqTbA3RK+n4DXHSmmIXBvPHcIW1zXSb6PwUWJYnoEY+L3ouDGvbPPLiZa+DmO+q+Le+5i8eM4D9f2gqvuakiCQkLC9ccXvOeZuu01o+s9jISEhISEhIQjcCwFBSnfWg5SQ3E7SFuRcHkNg9lspr29PUmH7fy8BgK54W75D2G/in2r1VK9Xs8RDfLIIdu4GCgS6dF7CDotEok2O1n09Azs7Vzfo9pEnJ38QPylQ1JZLpfVbDZjOgMRdlwWpF34HEjKfQ4Hw2qVL7A4m82iOONpJ4gWkmItBlIePNrOZ0ajkYbDYZxXSZGsFkmkpFy0uQhfeworcl2v+F90AxBxx/mAMOEFHilYSWTeI+WIDQgp3kKzmIfv5JZaGqvVKtbfcEu9O1vYHzhy3J3BvLtrheNd+HIbv9f5cCeDR/E5j9fl8Lmj64c7b7imp0P4a15LgXG7+FdMS6DAKXuc+cC5w/oxNwhjxWeK+fe5OWoPubDhgoW/X3Q5JCRcCt71M39HW2t/dr2HccPjL//sSXrSn7z2eg8jISEhISEh4QgcK0FBykdIIR0QdogNpNFz8CuVSq4gHRZ2iJMXzYPcQEYg/eVyWZubm2q1WrnzrVarGM2v1+txfIgLxfHgqkCscDLk5BAgCBD5x1XgbS5ns1kk+dVqNRZ3dAJF6gORfMiuCxBF+3u1WlW73Y41ECDj4/E4FmQk4u9RZIj2arWKY3bbOGvl9vnRaBRfo1ZBkZweZTt34gcpRhSC9Lmt3ue5mCfv13QSyWfcAVCMsHsxRyfvvFcUULiGR/8RHfgsAoYXe3RHA+eGyLu45J0RGKt3MnGHgosEuHv8s3ze3Qw+bu/gUFwXXzeAYOd7jfMwR/45f9aKRS551hBY/PrFlKSjBAAfpwtN3KsLe1zP1+1iNTwSEh4OL/+kl6kWKg9/YMJF8ay3f46e/LJdXSj5JSQkJCQkJBwHHBtBwQuqYd9HSIBEuFWdCLLbvnkfAk8Eky4LWNOx1yNEtNvtSBY7nY5arVauEj8RXs5DpJrrEW2HZJNOwL2Q7sAxuBGcqNBJghQOyAzncULsRA0C6eSS4zmOFARqMzgp9IKRpCVI+46Dcrms2WwWf5hr0lKK7hFfy2KF/dlslovMe64+RNrTBZhf7ssJtrtTPBLuZLLoTHDrukfF3drvOfpHRddd0HAyy3VYz+L5uOZR6TOcF/GH58B/EMH8XJIuKOrI5xE8vJaAp8n4OVerVRTAnETT9cHFuKII4/fqKIo+PEPuEvC972KDp5hwXFHkcEGB34uCQjFNwu/d0zH8ueF+PH2Czi8JCZeK8e89QR9Tfb2k6sMem3Bx/JcP+RX93iueelmf/dXv+ftq//LrrvKIHh6lTkd//zX3Pexxv/+MJ2l55sFHYUQJCQkJCQnXDsdGUJCUI9luBfdIu6RIVMiBd8LtBRqpm9DtdrW5uRmLEUqHpLJWq0UxYbVaRdGAyDEEu9lsRucC9QS8IjykzGsgcD5JsW4AHR14z8kkxL1IOhEs3C4OUYSAIR4Uiwty7cFgIEnqdru5dA4+6wX9uHcKLRaLJhaj2U62GSdrJynel5NZ6dCKzrm8FoKnNCA0ufuBz3tdA4cX3HOBwEklvxfz7F2IYZ68RSN7yOe8WL8AUYl/u8hAVw72K+vKWnLv/ro7d7wOA+4M5vQoMcPXqzj/RZGAMbGXEdKcyPs5nXy7q8EdEnRx8MKURYeHizm+j9wtUhQl/J4eKm2BQo9F+HdMMW0CIXJtbS2m9SQkXAr+0R1vUrOUxIQrxVOrDT11672X9dnP+oEf0tnva17lET081rTSJ9Yfvv7KJ7zmXZrpQtcieOF/e5Hu/I9/ejWHlpCQkJCQcNVxbAQFJwaQE09HwMpPPYDZbBat9i4SOOGAZFAnoNFo5ASLZrOp9fV1lctl9Xq9SKZwC0CgG42G2u127OZA60knhmtra7HwoaRc2sJkMonF+yqVisbjcSQ/1GuAPFWr1VyaBgIEhIxjKbjIffA6IovXhlitVhoOhzHnnnlgLiGnnA9BYTgcRpGHlIvVahUdDcCj80SLvWuEkz3vVgHJc7cJAs5R0X9PueB1rsd9e55/0XXAWIr5/X4dgMCDWEBrTF53QQIxZm1tLbpRPP2B4yTFdfHCk8X0Hdwxnsbgbhkn3J5WUawJwPPjx3hrRq5ZFBWKKRWITqTcePFT4NF+nsOjOi4U6xK4o8DFCU+HOKr+wVFwAcrFNnerFN0noCgoFD+bkJBw4+Ep1aaecl2u/Mi+Nz6ufnExQZJe96IfVP8Fh/9f+ppP+VIt3vf+KxpZQkLCI0RpTS9/3/898q1nvuRf6c7/lMS+hARwbAQFSTG3HpJeqVR04sQJnThxQtJhTQGvrwBx8+KJIYSY899oNLS5ualTp05JUozUUxOh1WrlbPZS3i6PwIAgQZeCEEIk5pAQ0hkgSS5wIIyUSiXt7e1FIWRtbU3tdju2W5QuLIzn0V1PxfCxLpdLjcdjjUYj1Wo1dTqd2DITh0GpVMrVd/CcendZjEYjhRA0Ho8jiURQmM1msXgjwohHy52sMy4IOOOnTSfzi52e6xEVd7INWfQCmr5OuDgkRcGJNeD87qRwJwnHUezwKGLLGvj73B9z7K97RwrcF1zTBZWiGOBwgcEJubtKELeOSkU4qsMFc8h9uDBUvK67MXjdC0IWXSfMK4IOaTT+XHmdCp97rznijgOv2+DClc+/14lgvo9Kb/D78HEWnTLuKElISEi4XmiX6mqbNvHKP/kfWinTKJvpi5/wqfsvZitlRziwEhISLh2hXJZCST/0rlfpSZWaKqF95HF/9fU/ptXXZ3rGi16o5m+/Udk8pUYm3Nw4VoICxGsymUTCvrGxEdspUqOgWHBvNBppPB7HyPx4PNZ8PtfGxoYkRYeDdBipJuLcaDTU7/c1mUw0Go3U6XTiGCCp1WpVzWZT1Wo1V+iuSCydgDkZgkTT+aFo43YbOwSajhYQKydmkDrG5/UjcEMQSYYwMo5araZmsxnTRogiU+uB/HsILwQQd4ITWeadGgrcL/PkaQxeAM/TFEgn8HoU9Xo9CkbFyLxH3osRfopVgqITwB0rnJ+18jl2kn1UwUIcA+wjiLMfX6wp4evmtn/G6OKDk2NPxfDP4CyRdEGOv4sGHrVnTrgmqQBc210ytE0lXcFFGGqAeLqG/2RZFtM9vOUmz4Y/Q+6UwNXCvvb0h2JNiWL6k4tYRwklnKtarcbrIegUazIUr52QcClY63alWk210vnrPZSExxjWQklrktZDQ797z+slSf/m7FP1Z8+8XZKUDYdapRSthITLwtrGuj7pjx7Qd558h6SHTpXiWfyjl9wtSfqsZ32Jwv3ntTx79toPNCHhGOJYCQpu5V5bW1Or1YqRdgQAyAjEZjwe53L0vXgcZAgi5BZ40iCItE6n0wtywCXFugcesSyeC3Lk0VLG410d/DPeAQICyJipZUCaBOP1iCnpEG7753Ocnyg1JBmHByTPu1144T26AHhk29eH9weDQUw18BoUkDUIZzGn3/PrvR4CcwWx5L5AMY+/6Aio1WoxXcU/IylHfr0zg5+36D5gzjim+B6ktZh24LUQ3DpPLr4XefTzurDkpPio+hDcA9dhPtyBcRQh9tQLnBy4RVhvxKWiSIJQgGhTFBtcrHMXhrthGCfCA3uJfeO1KrxmhhdfLRZS9Pljvtz9QCoPAh1w8cbrnvhnU8pDwqWgfPpWjX62rj986m9c76Ek3CT4nlNvld70VknSE37na/SUH+xLkrL33KPVQQphQkLCQ6N85x3a/KXhgZhw6fid332FJOmzPvNLFLJMms21fNfl1X5JSLgR8bCCQgjhZZI+V9KDWZZ95MFrW5J+UdLjJb1P0hdlWbZz8N53SPpqSUtJ35hl2e89koFAMiCRtVpNrVZLrVYrkpFqtRoJrKRIxomQQ0g4F6Qdqz6k3IvouV3fCR0pDNQwmM1m8d+QdFofQlaJ1k+nU41Go1zbS+mQiEuK9ReI0kqHBHY2m2k8Hks67FSB88AL/XlRQAixuzG4LmSq0WjENAsnTU6wcQk4AYRYFdMHnOg6yXO7OsdxDe6/mN4BWfW6C259LxJkouvuGmg0GnFtPFXEWxi6CORkkf3ljgZe9/FAkItOGU8FYN2pUQFxRyjgePZSMacfAQu4COB1RnApONn2e2SfcF/8m+emVCpFcYA97KKTixNe08JTkrgHF1d8b7mTg/ni8/6+XwOhjLnylAbGXqyP4fvD0y+8Zkax9gbH+tzyOS+eelzwaH0XJ1w6yqdv1fgj79QHv26sNz/156/3cBJuUvzNZ/036bP2//20732Rtv56quqr3pRSIq4i0vfwYxPv/i8n9I7H/9YVn+d3/te+sPDKYVM//MLnSpLq9/W0fNu7rvjcjwSlp32Epicbl/35yv95o7RKrbITLh2PxKHwckk/Juln7LVvl/QHWZZ9bwjh2w9+/7YQwkdI+hJJT5V0u6TfDyE8OcuyR7Q7Pc8eYkP0Wzq09mOTxypPUT9IBWRAUiS/kKkQQoymU9hxMplEMh7CYctDyCGiAzZ7xgg5xlUwGAzU7XZjq0scFaPRKGfN5/4QKrwQoef/exR/PB5HMSC3gAcRagSVdrsdaxS4pb5er6vZbKrT6URnB4BEFdsaMn/SoXjjKQ9uTfdceyL27gpwJwZkkCKVHpXm3v0crL0TbbfC856LES4oHJULX5zHYk2BYtFFJ5Ye0Sa9AVLN57k2ggLklv3rRRI5Dz9FEuvX939Tl8NTOXzfgOLxxXoCpOP4XvA59/VxuKCAw4B7Y6wuTCHoeQoJe7TonCmubXHMiI+IUZzTBQIXB11kcPHF15R5ZN38u+eY4OV6lL6LEy4NZ/7hh+gN3/OS6z2MhISIN377iyVJf+ffvVCVobTxs6+5ziN6zODlSt/DjymEv/tU/e3bP3hVz/l5rZE+72deKkl6xl9/ngY//fHxvRO//Q4tz29f8TXWTmzp/Gd/WO61v/eNf6Efu+PyW+V+zL95odYmUmmRqfsLr73SISbcRHhYQSHLsj8KITy+8PKzJX3awb9/WtKrJH3bweuvyLJsKulvQgjvlvR0SY/4/2QuJmRZpn6/n7Odk1bgJNjzsT1Xn3SIcFCPod1u54jkYrHQcDjUarVSs9mMwgPn8xx8rzkg7ZMaovnD4TB2KJhMJjEazbGIBuPxWKVSSa1WKwoaTri5R89v9yiuE0U+42SNGgKcez6fq91uq16vq91uq9PpxFoQXn+B+ZIULe1OpIgeE7V21wHky8kd8+DpBd6xAoLHPROR9toNHrn2ehBObt3q3mg0ogDl42au3E3goo50YQcGRBN3r3A+iLOTf9ItPG+fY6rVqur1etwTRfGIlozutPAxevoI5/BnhfX2lA32jHfe8LF47YQQQm7sReGkUqnEziPMX9G9UnQx+Bj9uWReOJ69w30clV7AerC27sbhfovPqo+JdWfMHO9jAe5K4bvlODkUHu3v4oSEhBsff/HdL9EyW+mjb/96VYbSLT+WKtNfCdL38GML4e/9bWXfu6NfeeLvX7Nr/MFHvFL6vsPfn/h3XqDGA0enU3bvWanzijyR3/6qj9f41IUprKPbV3rvF15dIRth/MHlUJ/xuH950TElJBRxuTUUbs2y7H5JyrLs/hDCLQev3yHJd929B689LIh0NhoNdTqdWFBxZ2dH0mG6gIsHkKxirj+52bzv6RNEQd3CX61W1W634/knlnfoUU3pkGRRt2E4HGo8HkchgmKOkDUn2FmWxbGQXkDtBpwJpGd4rji1ATw1gp8iaS+VSlEsgDQ3Gg21Wq3YqYLWh41GI14btwef57x0reC+Ibc4OnyOpHxnC29HWKvVYtTXc+S5BmkijB1SDAnkXhmL5787MfdUBo+Ccz9edNFt/C7k8LofS6cPXC4uXBQj6OwVr1vBZ5hbhBufe9bMxQUXONjzPlZ3lniNAHdW0PYSQcH3PvOGkOG1RHif/YLQwbh5vkBREMC1wpr7M8Qc81/mz9OSONadJ/y32B6U9WUPFJ9d7gehpViHwd0SjIG1Oua46t/FCZeGtY94ssrPSYW4Eo4v1kJJb/nnL9bfzAd65hO/Ve33lXT6R5KwcBWRvodvUNz7GR295Sk/+6he8z1f/OMXfe+le6f1Hz/2H+Vf+7yf0Kc1Ht3gxi1rLb3ln7/4gjE94ZUzrf3hXzyqY0m4MXC1izIe9df3kb3XQgjPk/Q8+z22Ozx58qTW19c1HA41HA5jhNcJNx0NPI++GImWpFarpW63q1arlUuFgIhiA8eq7cUUIRzFc0IOPdWg2LMeV8JqtdJoNIoRXi++CBnj/fF4rF6vF0m1k9Esy6LDodls5gg0xIr6DVmWxWMQUlqtVs7WXqlU4tw4gRqNRhoMBpH0eXcMosKkf7jt/KiItRceZK4RhHzdIcw4HUip8BQEjzRzHUnRbs98kNvPOLzDhI+T+S2SeVwfXhMBEN2X8nUrGI9HsyGmiArlclnT6TSSWWpd+JowTp8fzsG9sQ6IDd4qlfmFRLMXmEPWwMdMwVPOxb53Z4A/C4yFZ6ZYS6MoKlBMFSHKi4byLHCeogOF83nqEWtFbRWeMX/2Sffx19irxXoc7uhAUOBZYM339vZ0A+KyvovrD1PZOuFCDJ+4odc+7e7rPYyEhIfFEyptveeLf1x/MF7Tiz7hy9T5Xy2deGkKll9DpO/hY4zVJz1Nn/IFx4scf/X6A/rqhxAcrgd8TM//xI/Xq/7moyRJT/oXD2px/wPXc2gJxwiXKyicCSHcdqDE3ibpwYPX75V0lx13p6QjE5OyLLtb0t2SFELI3JLd7XbV6XQ0HA5zZAU3AO0KIf/Abc2S1Gw21e12o+3fBQPIdrVajdeZzWYajUaxFoFb/Q/GHK/lqReQI0gYtRmIejJWJ4feYWE4HEpSJPSkRThpp4NDvV6PqQtZlmkwGERiS+vMVqulkydPxvz9TqejbrebEwfa7ba63W4UJRBGiFC7C4J5pYMCRN87GXBeJ7y4NYjG+9r4mkH6aA/q9R+ceDrR9A4DPka33Rct7C4MhRByIgckvFqtxvuCjHv0HGLPnii6M/gvUXFEGa4pKa6hux1w3UBoiy4EjuPaOAeo9eGFFF00Y/4RWnAX1Go1zefzuEcg7cWipz7HiC2IIYwFkaBYzNKfDa/rgXDBc+R1GChWSsoO3wvuGvFUicViEcdVdIm4OFMsAMnaMAavu8Fz22g0YvvMY4yr+l3cDVtH/rGbkJDw2MEzGku945N/Rq942qZ+aP4l2viZJCpcIdL38A2I3hMaevEdycp/KfiJO18j3bn/ffFPfvXTtD3db1nbm9bVelbqanEz43IFhVdK+gpJ33vw39+w138+hPCD2i9A86GSXv9ITggRKpfLWl9fV7vd1vb2tur1uhqNRiTMiAqeT+7OAU8DaDab8adUKml3d1eDwUCLxUK1Wk2NRiOSDjorDAYDlcvlaG8vklbgtmyIDMQMAQCCzVi9paKnbUD6IMHlclmdTicSJrpHSPupA81mU61WK37W56FWq+nEiRM6ffp0nBd3NEDU19fX1el0NJ/Ptbu7Gx0UUl6YIfLt7TNJdSiVSlGAYB54n/oQdA5A0OH64aCAH5FpIuWDwUD9fj93v3Ru8DoLkEoKdLr7wNMEEAAcRbcCx1OLAUIr5UUEnx/uwWsCQKghrxByFy0ojknLUk9NOEqY8RQM1hlhwNNA3KHh0XkvSlmtVmOtCVJxcEuQVoMgxrp4JJ/nyGtPOAlnfMyZE3xeQ1DgPcbOHqjVarG9prskeAZxieBmoIYE6+IoXqu4Tz2ViX3Oa6S4uEPlmOKqfxcnPHKsfcST9eXf/8rrPYyEhMvCl3R21Pnun9JrvvlD9bpv+BiV/vgvr/eQblSk7+EbDR/3UfrGf/1L13sUNzR+7vGviv+eZ0t9zxuflnv/137lk3XX/5dSq24WPJK2kb+g/WIzJ0MI90r6N9r/0vylEMJXS3q/pC+UpCzL3hpC+CVJfy1pIenrHmk1WyLx/FtSjNR3Op0Y4RwMBhoOh5H0FFsHQtIQFBAFcA2Mx+MYrYWAQXyx+7fb7VwahVu/iySK2gjFav4QFFI5+IynSXjxREhOo9GIhBPSDbn1jgCQQuzZCBGNRiMKMqQmdLvdnHhSLpfV7Xa1ubmpyWSifr8fI7/FgnVeP4G57XQ6UTTgum5J91x+xk1EvBg5Zo2bzWZ8fzKZxPlmHrw4ou8RxuB7xkk+YoTXc7hYgUaED86Du4B0AK/H4PfsVnrOS3Td2yUiVLHGXpvAU1s4BwSfNYBwE7V3Sz+pE75+XjeAfYhDwees0WjkalOsra3F8UvKtZNECEMM8vMUHR2Scs+Cp1ow9+4WQFjgOfO0EXfE+BpC+L11JvvYa3W4SINTgToQ7G/qhfD94GM+Dni0vosTHhnKt53WN//PX9UzGmlaE25cfE5zos9pvll/8tNv0n/4h8/V8q3vuN5DOtZI38OPDczbFX1Z5/z1HsZjBpWwpv/vljfnXvvKr32N3vwVp488/iUf+qRHY1gJjyIeSZeH517krWdc5Pj/IOk/XOpAINdE3SmMiDUfiz/HUEfBSWaRXBPNpBjeeDyOTgHs+6RPeAeHYg46rRY9hxuiSirCxsaGTp48mXMgQII8Wu+2deA565ArCCoEvVar5YrNQZpwbSwWi1jMEvcC9RbW19djAUbIKF0vcCbgIPCothNKrkuqALnlHkUGngbA2HFg+FpR4K/T6cQUl729PZXL5ZjyQSHH5XIZUzY8Ik46AXvIr+1FCyHuLkS4i4BIfb1ej2kvWPt9T0COcR0g+jj5dAHInR3UscBl4lF8xoyF/2KdD7hHxCsnxzwfCCROpnF0VKtVtVqtmObDsTgueK68roJ3kOAaCGGsixP2otjj3UdIW/Cii56y4iIWY/YCpOwdF6TcKeKCAc8Y68Fe9b0B+L5gv3BuL755vfFofRcnPEKUy0lMSHjM4BPrJf3477xUL/zYL0h50Q+B9D1842PtI56sl77sRyS1r/dQHtN4YqWtJ1YGR773t+959QWvPfO3vllPflEy8NyouNpFGS8bkB+in4gK2I4h2bRfHI/HUXRw2zMWeEhMCEG9Xk+LxUL9fj8Sx7W1NU2nUw2Hw2ivhygvFgsNBoNYYwCiWTx2Pp9rb28vpiC02+1YKJIorJNYFyykw5xz0i+I4rt13QkN5+NzuAv6/X6MPFer1dh1YmtrS7fccou63W6uHgERWchbvV5XCEHj8Thexx0cXBcCXa/Xc4UOnWzyeYgkUf5inQHmEUdFo9HI1a/w83vXDc7lnSxIvXAxwaPiTnJxuuBM8Ei3CxbskWLtDcQYhAT2LSTYO2U4Ic6yLHb3cGLLODnG3R1eG8DdNH5vLqgxB/68MB/sDcQdF40QFebzea5mCHvVUwM8ZcUdEu7oweHgBTi97gHijjtz3M3h/y06HoAX0iw6YphX3wsuQnDffIY1xanBMUedNyEhYu3otl8JCTcqHldu69fe8D/1jz78M7Tq96/3cBISrgmyypruLCcx4XriiZUL5//dz/5xTT9vccHrX/DRz9Jyp1Ace5XE/OOGYyMoeGR+MBjk7NGeDtHv97W7u6t+v59LXSDiTO43BRlrtZqGw2HsCkEOe6VSidF9PispplF40Tkil7gRnAxCsE+cOBGLJCI8uG28WByOApCMH+IIqfXPcF23cw8GA+3u7sZij4ge0mGhu06no1tuuSW6E5z44qSYz+fRau5tAD16SzpIqVS6oP0jc07dCEipR9ERb4h0k8ZBOgYCApFhd5YQDWeteR1izVrwX4QWSbFlJiTfCwFCRJkz5tvTC3AX+P7w1BbG4C6JIlzEYc6ZW0/X8JQXnDAuAjFudxt4LQRcMe4Y8WtxXxQ99NoIjJM0lqJbh2vzO0IFc85r7nbwOiHeKQJnj891UTjgmfKxcS5fq6LQ4AUpXbTxdAjmj+eOz/H8cJ/c4w1QQyHhOqDUbOq3/jTVTkh47KEWKvqdd/yxPvupn67lQdvuhITHCtZOndJv/84vXO9hJByBtVBSM1QveP233/x/cr//m7NP1Z996snca6vBUNniQjEi4dHDsREUKBa3WCw0Go1UrVYv6IwwmUy0u7urXq8XUwEAogKtFSuVira2tmLUv9huji4EkHVJOSs2LgAvtEi6BSSuXC5rc3NTJ06cUKlUim0uvWq/pz64RR6SioDg7eyKdm5qC2BXDyFEEgk54jyz2UzValVbW1s6ffp0rD/hZI5o9HA4jCSTdBBIaVEAcScDc4XQMx6PY4qI280hyYgPCBiIFtj/pf3WmbPZLBZFlJRrDUp9A0QG5tXJvLcmJBIPWWeO3GHSaDRUr9fjuFkzBB6It0fpPd3ESbF0GNW+GCDEiCfeiQKRgPF4+glzyjyyD9iXkmJ3BncNsIe4F3eS+B5jTKybp6uwDj5WF4xI+/E9WuwO4oUt2T/MM8KNiybMhztpvAaGp+D4c+U1WNzZQb0KT0UihQjhgXEDd0okJFyA1Up/NJE+pf7whyYk3Ij4hTf/tr70k79Ei7+553oPJSEhISHie069db8qieGjv+9FuuO37s+9FlaZFu9936M3sJscx0ZQ4A96Ci9CAogIr62taTQaxY4EkDuPKDpRKpfLarfb2tjYiETKCzBKigIEBM7JsDsGsizTaDTScDjUZDKJlvZyuayNjQ2tr68ryzKdP39ee3t7Uewo2u+9sCFRcz/Oc9WdGELAKco3nU5jccl6vZ6L3HPc5uambr31Vm1sbEhSJGeQc+kwUo+7YDAYxOtCvvisW8gRBhBgcDZg8/dUDXcycI9e8LBcLsdr83ns/+42aDQacX/QbtO7HOBucdLvHT/48WKJjUZD1Wo11yrRXRV83kk498c4vAiiR8VZM8/v9+KNzJmTfaLkiGlcF2cDewYhxl0I7ghhnovXd1HF18c7ZQCO933CeIo1QPwzLiR5vQIXU3xfsQ7e7aLobmHP8RleQxSaTCbxHhlHsegjBRiZc0+HwalCXQyeU3cLJSQ4VpOJvu9TP1ef8rrfvN5DSUi4JlgvNfT9f/gKfcsXfK2yN7zleg8nIeGqYPT0x1/vISRcA7zp214sfVv+tQeXQ33Zc7/uks5TWqyk1/7VVRzZzYNjIyjwBz5F4egkQJeHEEJMXfDia94y0YvQtVotnTx5MhLq1Wql0Wik0WgUo9H9fl+DwSCeB5EAMsP5iJRDInFRSFK321Wr1YrHOEn0nHzPW6cQoqdrQDQh2V7gjrFAmj3Kj6UfsgTZpJhlu92On+VaxRoOo9FI/X4/FuOjOB+k0kkcc+DRcObT7fkumuBS8AgxQtFisVCv17vA2bFYLKKAQ00ASTlhwt0oToYpeujCkLsunDASTUdU4n0n85BT7sHTX9zq7/NKOoIXEnQBQsq7B1x0Yd84ifbnxPcoDg5JMaLuY2c9EGnYoz6PFHJkHF4PQVIk+OzTYiHUowoXeiqDrxvXZEwIIwgb7mah2CN7zlNNeL5c7PH7d3HQ3TvF1xD/mB/unefgOBVlTDhGKK3pzLPuevjjEhJuYDy12tC/eMUv6wee/09U/oM/v97DSUi4IoRKVa/6yZ+83sNIeJRwy1pL//uXXn5Jn3nnfKiv/JffcsXXXv+LM1q++2+u+Dw3Eo6NoFCMrFYqFa2vr2tjY0OVSkWDwUDnz5/PFcLDZg2hkxTTCLrdrjqdjprNZhQpZrOZ9vb2Imnt9/uxECHXLY5jNpup3+9HS/50OtVoNIq2eogJY3EbOpHlSqWiVqsVOwi4KOKdCY4ilV7MjvMhbhDNns/nkeBim2+329HRACF0kggxHI/HUVjBvg9JJGrND/PrtnSs48y/H+dE10kf6QvlclmDwSCujc/ZYrGILgy35SM6OLlH+HB3ikfr3SHA3NJBwVMLqHvBZzi337OLSk74i8IPAgbzgojktQIQLoATeYSGYmFDSDjvudvAa0p4DQbu00UQXD7sJ8ZG+gdrBtxp4oULi+KSOzYYJ8cyV+4YYT4Q9DwVhLlhnl3gYE/6OuAywEEiKRZbZNxFJ4k7cvhBuEPYSEgoolSv6Q3f85LrPYyEhGuOZzWn+tX/+Ha9/2Ov90gSEq4M93/9x0hKXQQSLo4nV1r6kx/+8Ss+z4e/+p+q9iefkHvt9I++RrpIvbXHAo6NoAA59E4CRP8pCjgcDqPdGgIPufCCdK1WSxsbG7GYItb54XAYo9peRBDywA9R/Nlspl6vp36/H8kTpEfKR5Ldqg/hd5t8u93W2tpaLmUC+70LIoyH1yj4SLSfMXhtBm+z2el0dPr06VyqByTeUwMQZBAU3PYPgfYikE7iGZ90SNa984Hnu0P8vDYBDgFcIggHLpog3jhJLrad9L2DYFAspOdFPV28cecAP17Hgvd8j4QQojDA+ZzAM7983kUNd2v4vPncOBAb2NuQeY/AsxeZO297CKGnxsBoNIr3wb25MMc42PsuAvmecFHBI/he/8PX2lONmBevT8Ece+tWUhiAu3V8T7n4tLa2FjulcP+85oU8XSjjvhBFWCPp0M2QujwkJCTc7HjW5pv1vV/5Zdr6qddc76EkJFw23vCt/1VSqouUcO3x9k/6WemT8q996O0v1NpU+lvf/dj8Hj0WggKkgzx86h9AUqfTqXq9ngaDQa4WgJPWoqDQ6XSiW2A+n2s0GsX2kZ1OJxJ6yKsTE8YzGAxy9QsQPLz4HlF9r7WAm4GCjkTEXQQgKu8F9njNxQncCU74vUAgNSf6/b7W19d16tQp3Xnnndra2oqETVKOBEqKDgAKSWJnZz6OKoDnhSb9fNynlC/i6HOD6OHFEqlhgcjiQgfEHSeD34OkON+ME7HBrfu4WdgbTtyLpNhTTphfIvreYcNJvBft82Mgpl7bwttcOlHnNXeP+HPB+RGYvJtF0SlC+1T2Ma+504P0At9HLlh4eozvH+bT57lI+sFR6S/FY5h33D7MKfvP0xn8O8LrM/j6e0tMHwOCCq1mfW0Yg7scKDRZdEUkJCQk3Kz4x+2eht/2y/rR0hfqxEsfm38MJyQkJFxLvOufvkSD1UQf9bivU/mBqp7w7Y+t79Jj0UgbYuydD9rttlqt1gVF+/wzkPFms6lWqxXTCiAWENPJZKJ+v6/hcKhKpaJ2ux2JA+RhNBrlSPtisdB0Oo3pDpBdrg1J9JSLEEJ0QnA/RO+xf3tuOQID+f6IA9SKKNYuoGI9JDvLMg2HQ+3u7moymajZbOrWW2/ViRMnov27mB7C79wfggIRYtYAslaM0HrUmVQD5t0JJNciSs56UXgQB4gXBKRjAPUMarVa7CxRdBE0Gg21Wq1c/QF3VVCDgRSTYlFAiCtjID0Bks37k8lEWZbl7PteC6FISD133zsEeFTciTD7odhNwFME2HMc5y6KUmm/UwJdUtwVw7NAmgTtUnmO/DysJ88Oe9TFmclkEufDnRiedoIY4XUl+N3TiXDaIL75vXrNEQQE5rZYi4Fxe4FOF1okxXV0t0nRmcKa4Wbybi8JCUWsJlN99A+86HoPIyHhUcOXd8/p/CfOH/7AhIRjiLOv/DBVQnInJFxftEt1vfczX6rfee4PaPi7H6IPfNcnPPyHbhAcC0GBnGf+0C+VStFlUK/XI/GACHmEuNFoqNlsRlGBVoAe6faiiidPntTm5ma8ZjGCD5H0Ym2efy8pF0mVFAkshAuXRb1e1/r6utbX13MRfFwLjJVWlggnFCgkGo3Q4Z/B8UCRvWq1qo2NDZ04cSKSS4/sFx0KvI47g2NwSfBaMbpcTD9otVra3NxUo9GIa+npAF7hv9VqaX19PdZdwAnhggK2d0g8jgHGA1mmNgROkyLxY26ISvv7LiZAMnEIYLlnXj0Vw1MhuEcnpKwve5jf2SNFsL88vYG5dueMpxAQdffaBP6aOy3YK+wxRDTu14UtHyfn8o4V3jLV0wKYe15DXPB6By74UIMEx4AXJOWHugeeFuJCkD9/7GmeP3fbcK/FAppeKNTvHTEBd0wqyphwUayWuvNX3n+9R5GQ8Kjipz71ZXrw6x47fwAn3Dz4rae99HoPISEh4omVtl79Ub+ml3/Vj+je73hsfKcei5QHiIK0X6Ef1wFdH4icQ+IQCIjsE/GGXBKpxUpP6kKn09Gtt94aiShExu3ns9ksplysr6/H6zuhgxgRtUacwFngaRcbGxvqdruxAOJqtVK321WtVtNoNMoV8CPSzfmIuHubTClvISdC3Ww2tbGxEQm4k85ijr4XG/QihJAyxsV5qtVqjigT9UbEgeBxPo8481Mul9XtdlWv1yNZp2AlkWEnej6vLog4II2kG/h+Yq9wPrpF8Pt4PM7VZ+Dz3sWCKD/pFRzHvDKPR6UsFOslsE4+j4gJki5wHjCXXjSyUqmoVqtF8cYLGuKGQchptVpqt9txH1QqlehkoYgmohRz5vfkQgBrStFPnhN39LioQvqKFzr0NqM4Ri62T+m+ISl+3kUh1ttFG/Yc8JQkr4HhDhsvaOn1MjzdIwkKCRfD8v4H9Anf9AL96Q9deQGnhIQbAZ/WWGl0+2O3qFjCYxMf+mc13bLWvN7DSEi4AE+vVfRLz/8v+rLht+jWH/3T6z2cK8KxEBQkxahpp9NRp9NRuVzORUX9v1iSvSo+LgEI6mQy0fb2tsrlssbjscrlsra2trS1taWdnZ1o3fZid9KhoEBqAdFKzwsvVqhfLpfq9Xrq9Xq5ugjr6+vqdruxm4HnsmNDx/rvueluYy8W48PGz7VJOeh0OqrVatFdAQGjBoOkXEV+Kd++j5oROzs7ms/nMT0BJwDF+rCiNxqN6LygFadHrGkLyXoQJWcNnVRKivcC+WRPuNjEvHv7QHdCQGQhil6Mz+sCMA+1Wk2Sch0iJOXO62kKLiqtra2p2WzG4/m8X+eomgjk9BfhBUZXq1WuUCVFLCnu2Ww24xipQeBuGRw7CG4uzFG8k9SGvb09TSYTNRqNXLoHAh1FM1044FzFWhKe1uApIKy3w4WmarUanUTutHA3gv9XUhS53GHCfvK0HsbCXLoI43PuaSvci9dSSEgoIlss1H3P4HoPIyEhISHhIfBFJ16ntXAsDNkJCRfgqdWGZuvXexRXjmMjKHi3ACq1S4cRY8C/aYt4VDs4CMru7m4kY81mU6dOnYqkHNeCk3lJMT+cgo60lXRiR/QTNwVEjVQHLNu0rZQUiQ+EKYSg0WikEEKsX1CtVqMzwyv2c7znnNMBol6vK8uyOG9OpNwiD4nmNRdpyuWyRqNRJJekGkCOWQMcGdwjvy8WCw0Gg9gCklx8RASKAzIPvV4vuhSY03q9HlMQ3C2AswCxAaEDIYfxc08QbUihp0hQP4AuAC4SeKFCdyAwDsC5G41GroCfpx5wHPsJQYNrIg7wPgQYgYt9yZ5GnME1U61WNR6Po7A0Go1y+xPnCPPk94vYw+cYe7EmBGuB8OMpG6TF+Ot+fXcmFPc+DhfmhEKX1B3hefLUjKOEGXenFGuDsJ6sBWtOigdz7WvqdT9IQXEBIyEhISEhISEhIeFq4y9f8CP6pPu+UVsvu3ELNR4bQQFi6BZzJ1eQhSzL1Ol0IsmSFF0BjUYj10oR0uyF5sbjsfb29rS7uxu7PrigEEKIHSaIvBO59foHOAMqlYomk4lWq1UUASDcEEds10T4iaLTtWJ9fT0nhLiw4MSSzyFkkP9OoUk+IykX/WXsEHIKFnJuBAGPckPYiZQX0w28QN5kMokiQQj7LT8RU3w95/O5er1erIfhQhBE1O3mPh6PMCO0sC843rtkIK5goWeveK0A70TAGjMe5gwxgbmWFM9HOgr7jx8XdUhXYdyemgGRhRxzz9QYwGHAem9sbKjT6cQ9T3SdH3eVeFqLi26IRawhpNkLo1Kg1Ak1e4lUB6/t4A4F9hPz5ukIjBNRg/Exh4zJnUne6YJx8LuLQA534LBPmJ/iscXP8Vm+F1KXh4SEhISEhBsTz3xLX59Sv96jSEh4aNRCRcuapBCk7MZMK3tYD1AI4WUhhAdDCG+x134ghPD2EMJfhRB+PYSwcfD640MI4xDCGw9+Lim5tFarRes+EcdiBwCIO/n4XnFfUsyTx2aNzRxyPxgMdN999+nMmTMaj8cxskzUlu4IRJYhhl7Znsg2+e/T6TQKDETkOQ6SBWlerVbq9/t68MEHc0UBpaMr9hNZ5b4gdhCjWq0W3Rq8zzmcPLltvNgqktoT3BMpDm5rlw7JnjsMdnd3tbOzo/F4HMfa7XbV7XbVbrejdXw4HGpnZ0fb29sxNcTXrEjcINpOmiGgs9ksJ4B4RwZSPvisFz30VAgEA6/0XywOyBpy79JhIUX2h7ecLHbxKLpnijUX/Lq8T0oP68xabm5uamNjI9ZP8LQJ9gb/9TX3rh0UPGSPs77cLykOiG2ISfV6PbeWrA97DdHIn1WO8fonvFZ0QyDa0foReCcG5hVBwgt0erqLdJhawvUkxee7WDDS14DPsQ5FZ8b1xqP5XZyQkJCQcCHS9/CNhTXdmOQs4ebDX3zXSzT97I+53sO4bDySpKKXS3pW4bX/Lekjsyz7KEnvlPQd9t57six72sHPCx7xQAoRVq/G7hXvqf5P9FY6JBDeMpLILrZ0IqK7u7s6e/asBoNBjqx7rr+kSILc+i8d1iGQFCPKTtScyCBC8Dk+4+0quabXROh2u2o0GlGEgNBRaI8ouKSYWuDHEqEmmuvCCJXsx+NxLG6ZZVkcAxb06XQaiR7jdicDIsHe3p76/X6M5uKWcMcELpPxeHxk+76j9gLEr1jHgPF7DQzug/oQzAW1LJw8Oxn1Qpf816PeRfIqHXb0IApPp4GLwVMvnFT7Of1akFhvw1mpVHKdD3ARsPfW1tZiIdNizQwv7onzBdLuzgZJGo1GGg6HcS0Rc3yOWAsKP3JNf1ZdvGKdJEXhyl0T7AEKiyLGMD6EFfa5OxRwXCDsMd8894zBu7U4SKvwZxo3jAsRxwgv16PwXZyQkJCQcFG8XOl7OCEhISGHh015yLLsj0IIjy+89r/s19dK+oKrMRivZl+pVHJR8mKeOgQMOzhkA2EA6z3vNxoNTadTnT17VufOndNsNovkyqPT1BtwmzYEkJZ3jJXX3dHg6Q8edfbOAfwbAQDSAoGmFaak2FKyUqlEkk+BO4gmbo5arRY7SHC+g/WKZJAIv1fN9+j6crnUaDSK+feQcUggTgYcDoyFqD0Ej2i5Oz0gbTgNEGy8fgDjYY6Zf65DXQUIKeTVr4mIwLVxqnjnAU9DcIEHYsz+4zWORYhg/C4usaZeeNHJOBFx9rSnCXBuLzDoogrr4SkJpD2Q7oMLh/lDuOGeSdXxuiR07ID84zxABKCrBONB8PCij77PXDQhNcLTFlyk8mfZhQTG6gIR13Angr8O2Ae8zz37tfm8FzD1OhfAHSrHAY/md3FCQkJCwoVI38MJCQkJF+Jq1FD4Kkm/aL8/IYTwl5J6kv51lmV//EhO4oTPUwWKpNVbyHnrQrd6u02+Xq/r5MmTqlareuCBB3TPPfeo1+tFNwQEA+K4WCxyTgOuR86/EyJIIeMaj8fq9/sxYst/+SwF4SDARJ1LpVJ0RECISJuQDgk/hBMLOEKEd2Uoto30OgDFnHrPj/eWipArUgUg0Z5GQu2GLMtUrVaj44CxF8mZF71zYu71HIrt/dx6DkGHBEqHrglIp7dWpL6BOwt8f/Aa60+BQnepTKfTuB+Ym2KxRc7vaTC4MjjeRQbqBXiXD8bA/SNuMUbvtDEajTQYDHIOBdwruAm4lrdc5VjOu1wuc+k9zCOuEuYYYcz3EQKezyk1LPx6jB+Xj9+fp0h4ignPFevkgouvuX+26Cpx0YD1cNGDc7Ae3Dvr4akvx0lQeAS4Kt/FCY8MpWZT7/vs7vUeRkJCwvFC+h5OSEi46XBFgkII4f+VtJD03w9eul/S47IsOx9C+LuS/kcI4alZlvWO+OzzJD2P3yHHkMBwUNzNLeX88Q/pQzCgajwEjmMajYZuvfVW3XLLLRqPxzp79qz29vZiNJRIrBfHg0jXarVcdX9Jubx/xgYRIQVgNpvFDgDUTFhbW1O3242EEJLDPdMhopiH71ZuB10T3BqOq8Ht4BBb5g8hoGjvB8xFtVpVp9PJuR8gp0TQ3S4P8SqVStGhANE7ynngKRgIFN6ZwuscQFC5L4g69859uZBB2gYEVlKcS59jjidizxrggJjP57kClR4x92tzXhdxvA0iewH7P+6Zo+aX/c8eYa0RIvr9fq4oImkdjUYjntvFhGJ9DBe0cAGwpggfiAwc5yka3Atr7kKDlK+R4DU9XBwCjInn0EUaF4m8fobvWT/e6yfwHeDuEI7zzhD+2aIA5uLfjYCr9V1cV+rV/UhROrGlt73gxdd7GAkJCccE6Xs4ISHhZsVlCwohhK+Q9LmSnpEdMIgsy6aSpgf//vMQwnskPVnSG4qfz7Lsbkl3S1KpVMqFAYmMIyBIimSc6ORoNIqRT48Ie9T21KlTuvPOO9VoNHTu3Dltb29rNpvFlAAildJhBBvHASkGuCWkQwIO0fAK+eT1Q8JwOXgdBrpGuOXeLdcHc5HL+SZa6pHZdrsdiR7z5TUlPG8fR0WlUolEnftxIYW5plMBufEe5fYcfy9oCHEnd53aEvP5XOPx+IKifC4oeJcNryPAfBP1xqpPJwnutVgDw1tiQnQ9ykyKQLF4ImvJtUnzYA1ZHyLrfk7EFcZEgUgIuEe+F4tFFD/88+5e8EKea2trUZyYTqexxSj7p9FoqNVq5Wo74OrxfcU8eZtIRDMEBxwLLjywZlzT94/XIOA++C/HcF0n5jxj7gJiPnmejhLTcBW4K8SfQ0k5B03xc77XvG2nOzd8nDeQmHDVvou7YeuGsmQkJCQkHAek7+GEhISbGZclKIQQniXp2yR9apZlI3v9lKTtLMuWIYQPkfShkt77SM4Jcaagn9uWSSfwwoK9Xk9bW1uRsEBaIVCtVkvr6+tqt9va29vT/fffr15vXxR2+3UxX98jnJAyzyl3wuYOgfF4HEUOCsgR8XRrO/fidm5PByAiDUGkJaHXXWi321EEgCB7YTwIHO4EJ8Be5FDKk3bm36PGTuK8U4WLN8wRNniIMYIC5JzPeeqAt+dDnIC8eiFFcvwh5JJyEfWi68K7B1CLgIi/i0ReRPBgD8dz+Tw4uXTCWrTEe3ScvVAul2MaAO6EolsEdwJ7kXNNp1Pt7e3lRA8nwYgAzCt7E+GH67DunuLgwG3i6RW+5719pos2xXnxfeXjm0wm8Tqe2oDo5UKFOxZc2PD0lXDQtcOvzxzhLHGxwetT+LwwHhcUinUajjOuxXdxQkJCQsIjR/oeTkhIuNnxsIJCCOEXJH2apJMhhHsl/RvtV7CtSfrfB+Tgtdl+9dpPkfTvQggLSUtJL8iybPvhrgF5oD0eVnCPdEKAiICPRiPdcsstsbsCOdyQMtopZlmm8+fP68EHH4y1BrzIn+esQ3RWq1WMrEN2wGQyiV0NsK171f1ms5mzeEvKRaT7/X7O1s3rkCPPN4eAQhQXi4VarVZ83/P2ERW8GKGTJs9Bd1IPAS3mpTMmroMF36P/nqrgKRqkDHh3DgpWFjs8MA4XEfgM4+W6OBM8rcNbeULkvfCk308xL76YjuGiie9LJ63F370IIvfCOuJa8AKFnJ/zUGMD4cXHiajFvLCXED1cuPLaGMWuJIyTOXQRy4kzzwDr5lF/ro2I5kUnOa+nQTAHzCUCh7sSuAavu/DlqRPF35kb3BykuPi6MnfsCS+syfnc7cBrjI15ulja0fXAo/FdnJCQkHAxfNJffb6e+HPntHz4Qx+zSN/DNxb+57d8hp75E3+tj6rWr/dQEhIeEk/8xRfow17/nhv2+/WRdHl47hEvv/Qix/6qpF+9nIFg5UdQoGgcUUxIKsSD6Ce1AzzCTV55rVbTYDDQmTNntLu7m6uBQCFEzg9hBlTSZ2wQmNFoFJ0BEKHlcqnBYBDJ3GKx0Gg0yuWgQ1AYJ/dCe0gi2FxrPB7nCCft/CDQEHRvN+nOBgg/kXInnUTDvRAi8+ukkej9UakEg8EgRvshZaRIeG66d7jgHnldyqddcG4XSzwPHjHJazhwX8y1pFw7R5/3gz16gZUdUuoChBNlj5gXQR0MTy9hvZlH0mFYJ6/HEELQcDjUaDSKLhFcGO4eWSwWUUBgbakfwrqQYuEiHJF8hLGjXCI8D3zGn4tih4gsyzQYDC6oYwFwkkiKexMxhDlmPzBfnJv3XWwq7oOiwOh7wcUmhLJiXRIXI4pigu9Dal8cJzxa38UJCQkJR+G+D26p9bYL3Po3FdL38I2F6u+9QburJCYkHH9svjVoefbs9R7GZeNqdHm4KsCdcOLECW1tbWk4HKrT6cR8dMQAiEelUtHW1pY6nU6syg/BptVdpVLRzs6Ozp8/r8FgIClPQNypQMTXSYfnqkP8qNDvxfYQGvgsvw+HQ4UQtLGxEYsVukOgVqup0+moWq2q3+9LUo6kca8QMro4ZAc1CoheU5QRZwfRWa+wL+0TbcaFoIBAQhqGF9zzDgrUL/j/2zv3GNmy6rx/u6u73q/uvtPzHubtGMLDEI9QINhSIvMIMnacyNhxAIUAARsDSixBkAJRZFlxAFtKbBKQLezEQEhsKyMkS7EdRzgBPAwwDDMezzCML/O6c6fv7a5H16uruk/+6PrtXnVu30cPfbuq5q5Pat3u6upz1tl71575vr3Wt2wGQT6fj9+T1m9PyS1xHQwG6nQ6kUhD/my9vhUAmBMr8kA4raggKYoJlFvgVcF8cn+EARujraXnnjZ1n7m2df72/jbWNBA7EIfoxAFJz2Qy6vV6arVaca0gGjDXjDfE25pH4tORNp9k7G05BUBMShtypts6WrNKhIpsNhuFNuaGOYZ8IxbYzCFMD61/A/e0a85meFhfBvsZsNkV1reC+/PZHY1GMXvHimSsFz7/dk5tB5G0cOFwOBxXMl770Bv1g7/02NyenjkcDses4o7/+m7d/rn7NR/OXQdjpgSFtbU1nThxQrVaTQsLC2q32+p0Omq1WpGUQKjL5bIKhcKEQWGz2ZwgEf1+X+vr69re3o6mfpz4S4on5snYoM628oOU25R1iBNEBiNEsiLsibTNQigWi/EapP3TSaFcLiuEoF6vp3w+PyGQQLggtYgXw+FQp0+f1mAw0NramrLZrAqFQjytxm8CAmvJfbfb1cbGhhqNxoSYYLMfqKGH9EqKWQkQXACBhMyn6/Rt/Top6JBW6y9gswGkfdJuSzHIGiBN3no8MDaILJzUU07Bv1xbmnT/R5RAEOr3+/FnYEtwJMXymYMyF7h3p9NRv9+PnRgYS+Zja2sreiQwh4hPktTr9dTv92N7UcaxWq1GgcRmIBCf9QaBbFsjTUvsbaaJzQighIj1tbOzo3a7HU0yrbeG9SzIZDIx84a5zmQyce0TF/9aMcNmsLCWEBFYb7zHtncl9nQZjm1viZBgxS/WAWvBrvl5MWV0OByOy43Wdk7Vs09OOwyH49D4lZf+Hd3x4B/p2sXytENxOM7BLV98h37gw1/X7nD74m+eYcyMoIAZY7VaValUUrfbVavV0sbGhvr9fiQCpFDn8/koKuRyuUigIYI7OztqNptqNpsaDAbRZ8C6+ZP+nc/no/dBPp+PGRGcwiMGSIrCAeSfuFZWVuI102UNkFna/i0sLKhWq6lSqahUKqnT6UQjuWq1qlwuN3EdCDwZAhj10U3C+jbwHq6NQEKpw9bWViSptmOA9Rqw2RmIA2Q1QLwh29Z/In0qbg0SEW96vZ4kxY4QiDfWq8KWDwDrZ4DAgAeETXM/yPxPOrdFJlkYiCfSfpZB2nfAntpzX5vdwM/MNX9DVgbjuLi4GMUmhB/KB+isUS6XI0ne2tqKQhaE3nol2E4ZjBHiifW8QPhAULFlD+nuFJTHsI7sGuYzYUt3bIYBa7hSqahWq8WfM5mM2u22ut1uHAuAAMD1ra8B40ssvN8SfWK3ggN/a806eS+Ckc2ISXd4QMiz68/hcDiuVLzjiVep+gb3EnTMJ3bbbb3t5h/RFx7/v6otFC7LPbq7hyeDxYXZKqt0HC92kl29+Ctv0Z3vuvfAg8l5w0wICpxWl0qlWAIwHA7VbDbVarUiqeEkP0kSlUolra2tqVqtKoSgbrcb08ARGBqNxoSYAImDrHMCWq1Wtby8HN8DwS6Xy5GMQRjJNoDIQBQROpaWlrS6uhoJPM75vV5P7XZbvV4vnhoXi0UVi0W1220lSaJ8Ph9PnjFkxD+CDABq2Le3t6OIAMmybRUh0Dalm5IHe1JvuxtA1MmCAJBjiCpjbGvybWq49Wawvgak0CPi2A4MlqTa66RJHkTZxokHRbrNp33+NIHEeJN/Iei2hIMxJTMGfwrWLGSVMWGspD0jw42NDbVaLVWr1YkYrMBE9gwCkDUY7fV6MetjYWFhooWm9SbgmowH5Qm0hYSQ23Ib6xtCJgHjRjkMXg78vt/vR0GNZ7GmlLYUiRiYd7Jh7PX4+1wuF8UE1gFxUb7AZ5I1ZDNQmA/WsZ1zfm/bVFoTUMaJOec+vG/Wuzw4HA7HseB58D+8jisYuzv66Vt+RL/x6P/WbUuHy1R4ZNi56Hs+8Mqf0ujUM4e67oe+e7+uW2xf0ntvWywoE/yQ4/mAnWRX3x319K5HflY3/sMHph3OkWEmBAUM98rlsmq1mpIkUaPR0Obmpra3t+PpLCUD9XpdV199tWq1WixtoC6cU9mtrS212+2JNHxb/w+hKZVKOnHiRBQKIMdkIUCmbYkDRBnzR067h8OharWaarVaTO2uVCpR8IC45vN51Wo1lUqleBoMeYP4WDHBEmeez/ojICBA2mj9J2nimcgmSBN5XiebgfG0hnYIA7QBtCSbrheQdesRANGF8EPQ0/4IrAP+nr+T9k+hicMa61kxg9N/YuZ7sjzwTYBYsxYwOURUSJ9MU24Ccbe/Zx1Q50887XZbZ8+e1fb2tur1ejwd596sQV5nPHluMkmSJFGxWIzEXNrvdAJZZu5Zt/iH2AwF29WDZ6QcwGYsYKpoy1AkRQJu5y19sr+0tKRSqRTXJSIImRZcy37GbNcIW95DHKwFMifScdn5sP4YrG3Gls8tHiLWgNSKGGkPB7qwOBwOx5WIrd2+vnXmOi3rO9MOxeH4vpAMt/Xel/+43v6Ve7WjoOsXN/Wq/OT/7/1pL6PGTin+/MRwRX/0ovolXP1wYoIk/cptL7nk9958T0E/Vn9w4rUdBWW0J/T9jexpvSh7ebIvHM8d6fUkSX/evlMPvWKkrL43paguD2ZGUKjValpdXVU2m9XW1pY2NjbU6/Um3NY5nazX66rVahMtFyGrktRqtdRqtSYIEKf+kCnIKWUTS0tL0UsAkpjP56NvAGn+iB+cStfrdSXJXhvLpaUl1ev1WD+OKIGZI2S6XC6rXq+rUqmo0+nEOFZXV1UqleJzSvuZBcRAdoQVNwaDgVqtVoy5XC5PdL6wooI1mzvotNpmMVD3T3YAPg+cPtv2ljYbwfoWMD8QRiua2FIM609g09qtV4I9YbblE5BOxpcMBK5lSyo42beeDogMkFVbUsH641m5P2MJubedD3Z2dtRoNNRoNFQul2N5h21VmCa8zLNtd0gpBKUSkmIJDmOK6ISpZ61WiwadZOIwRghF1uTRGlmmswmkPTGF7BQ7N5QVcQ9O+m23FNph9vv9CTGL6/I5IqvDlsAgQvFePr9kDSCi2bITm2Fi42Fs2+32xHWtfwOfNSvUIDY4HA7HlYrPtm/V8t93McHx/MDO2Q196s5bJUn9N/60Xvlv75n4/bfe+WIlX/v2NEK7IE7e1dOndOt5f//M+39Or3vrly94jRNLbf3SynePOrRjx5OjLf2Hs6+edhiXhIPX0/PT7HtmBIXV1VVVq9VorrixsREJFQRod3dXuVxOKysrOnHihBYWFiJhsWndEDdJUSwg9VvaP1mlxIATXGKB9JNZYE3bbIcHUv/7/X78fnl5OT5XpVJRJpOJdfSQKsQThIurrrpKmUwm/i0CBPeH7JGajZBCNkGz2VQmk4ndJCgbkfZJkk3lJlsAAobwYcm2pNhxAJJNm057iszpM2MH2WUuJE2ICRBCyFo6c8KeukNWrcke4oLNRrBjSwYDvhsIFtKkJ4I1nbQn2/Y5bIYGsB4ctsaf0gVpz/tga2srGgfSfcN2vbDtERkzTsh5Ngixbd9p49zd3Y0+I+12W9VqNZZO2BIAMh5arVYsl2Et0b2k1WpJUhQXuJ/t9MA9074FiCK2owKZPVacYI4h8laAwpOCubF+CzZjh3Vss1CYD0wkEXowsuz3+9EDxLaiTAsGzBHiHcKZw+FwXIlo7vb0q994rW7TN6cdisNx5Mh/8R7d98X0q7MnJlwKrvn1L+u+X7/wezJ3vFR/8p9+8JKvuZrv6LO3/Nn3F9gR4I2PvF7Dnf3Dn0ceu1Z3vuNrU4zoMJjP9fRcMBOCAmQaY8NTp06p1WpFsiftpzZXq1WdOHFC9Xpdo9FInU4nei10Op148ppOd8dJ3xoJFovF6LyfdnS35Bc3eQiYTXOHfBaLRVWrVRUKBXW7XeXzeZVKpUhi7ClsrVaLBB4jyGKxqEwmo42NDZ09ezamiFO6YQmXpJju3+121W63lc1mY4eMer0eT2ztv5zsY/Rnyby073PAyTlfCAKUeGB+acknmQtcfzAYqFgsTtTtQ8BtFoEVeSB7kDor8kAeyURBZIAQpucbQYZr4HGAmGLNHe0pvjVhTP9uMBjE03ZS8GkLCcmFvA+HQxUKhWiyaZ+J7AjbLYPYmBvWHPNns0gg4p1OR+12W41GI3qB1Ov16D0AySbjZ3NzM5ZRQPqHw2EUGlgDCADWuBQBxHogkAlAPDYLBgGPrB8IPOU4zCfCD/4I/X4/rikIve0CgRiV7sRgPTRseYkttUlnLPGvFbHSWSppM0+HAyRbHd31zX+ke37ov087FIfjsuDh4aJu+8cuJjgczwfsfOcx6e9e+vub11+nO/792855/eM//AX9eKl7dIGl8HMnf1R/cfLm+PPt//SvpDFXkKQ75d1mZhEzIyhcddVVWllZUaPR0MbGRiS2tla+VCrppptu0o033ihpj1DhtbC1tTWR0s8p+s7OjjqdTiR93I+SAU49rdGctG90Z9Pa+Vt7D3tiWiqVIimGaHU6nUjKIH21Wm3CZLBQKJzT2QLDQLwMisViTAeHIEEuKdMol8vRXJL78j6eKd3lwhr6MQ4QYN7PXNCFgwyBVqsVMxxsjTvETtKEiAFRg5SSJWG7RJAmj3gj7afC27aC1kRSUiSkdu4gwhhAIjQwr9bU73wOq6TL06GD8WQubDYHBo+dTkchhNgCFDLLOLTb7Sik2LakjLc1LZQUM3QQt8hc6XQ62traikLbysrKRM3/9va2Njc39cwzz2h9fT0SdcoMED/ohIIQYP0vbCmG9dKw5pXWwJNxZRwQJxDOrEhix0DaE23IaLDeEviM2CwUaV/AIAsh3fKRdWg9U6R9I1Wb3UJMiEn2Hg7HQdjZ3NTKR66X7p52JA7H0WOQDPVPfu8XdbO+Mu1QHA7HFDB66mnd+rNPn/P6R97zNn3g9slD2CSb6LF/8J8PfY/7BgP91B++b+K1236/r1v/333xZ2/gPR+YGUHhxhtvVAhBZ86c0cbGxoQxX7/f1+LiolZXV3XrrbdqZWVF3W43pnpDTK1hHKSh2+1qc3Mzpp/jNG9bO9q/g/Ta1GiIMgIAJRAIFiGESOQ46cXgEC8ByiXq9Xo8LZc0cfJONgIntYgCy8vLsZ0l6fSZTCamdHN/RBJOmXkW20GBeOzJN2QX4k7WBQRvd3dXhUJB9XpdxWJR6+vrUUxAIICk2nR5af/Em3valPh0i0dIZq/Xi10scrlcFDgoa+GZACUB9lqMPXOLWGGFGJDudmFBVgIEmlNu1qftQGJ9HWidyOvE3u124/UskeZa1n/AmhjSDYEskEajEUW0tbU1LS8vR/NS/n5jY0NPPfWUTp8+rVarNTEejEWj0YhzbA0uGUMyE/j82OwH7oOwgmGnLUGSFDNwrBjR7XbPGQPm3X6+mEdERYQru8aZW8YL0ch6rLA22G9s1gPx29Icaw7qcDgcVxp++OPv082fuHBNtsPhuPKw9ptf1lrqtbCU1YtPvufQ18o1E93+aRctnw+YCUEhm83q6quvVqfT0dNPP61GozGRoj8YDFQqlXT99ddrbW1NS0tLOn36tJrNZjx1tmnKnJhDiHu9XvQz4Pf25B2CYWvBpXPLIKyBm+24gCiwubmpwWCger0eMwcguJlMJno/cJo9GAwUQognsu12O5IaCJZ1wic9fXt7W8ViUZImjOvwlOCkHG8Ea7bICTDCApkBVkhgPImB7IdKpRLLRzjppmsF97atHpkbW77As9iOD5BUKyZACCGFkNS04MG4SIpiD/dhLEmt5+8tmUQgINtE2ieekFgyDJgL5pY1x99yoo9hJ+uMa9hTc1tKkS7tSJtIck2MHcliGY1GKhQKqlQqEyacg8FAm5ubevzxx7W+vq5OpxPngFIevC9oy2o7R9iuCAgKtl0k82TLZRCVyIqhdIM1yJpHXEFMsmUJlGPYLhFkrCB4sVYQEW1JD2U0ViDinoxvun0ksBlJZGewvhwOh+NKwl3/6t269jMuJjgcjktDMtzWdR/zPeNKxkwIChCRZ599VidPnozED/KSyWRULpe1trYWsxPa7XY87bX/44+HAmZzm5ubkfjZU8ter6fBYDDRepFWehAZ/g7yCDnJ5XIqlUrxVJ7Tc7IfcPbH04H4V1dXVS6XY1cA+/zWSBBvCE59IWOQP2nfbI/4M5mM+v2+Go1GTA9H2AghRKNLiCRp9Iy9Te3H+JHsBZ43SZJ4fVpqMk62O4A97aZ8wdatU8bCfEn7HQF4bkShJEnU6/WiyaHtyGC9FKwJpW0ZaTMfqMuHdJMxYU0WLdG38w5ZZ21JkyfdiDCW/FvfBAQCS1ZttsjCwkL087Dp+Tbzhk4bm5ubarfbsVyGNc2cbmxs6OTJkzp16tTEfDAurVYrknqySez8ECNjTHwIdGQf2HIAWlv2er2J7IFcLjch4CHw8VlEUCMWPi9WeLJrhTVqjT9t1wzGi++t2JDu6sAewxfZCTy/Zyc4Lobwl4/pxb/2Hn37A7857VAcjiPBq9/7Li3/wVenHYbD4XA45ggzISgsLi7q7Nmzeuihh3TmzJlIAGyNdK1W04kTJ6JQQPo/KdIQLtsKb319Xb1eT+VyeSLd2RIYTiwhgpImzN2k/dNLS4zpHiFNti20XSMgJPgSrK6uKp/Px/p3STGTIkmS6LbPiSwxIB5wwkzGgRUXhsOh1tfX41iUy+UoRnQ6HW1sbKjRaEQhZnt7e6IDxvb2tjqdTjytlhTvVygUlM1m1Wq11Gg0ohABeYQ4244PiAxkCRAX2QKUSzB+CDIQu3K5rN3d3eh/gfHjwsKCtra21Ol0opiQy+UmxIVKpTLRNcH+DqJsvRdsxwXbsjLdAcCWjtgWiBBX5tH6BBAna4Xrk61gTSOtESSih6SYCUIZTLvd1mg0UrFYjJkJdJkYjUY6efKknnjiiei/kW6xyTxZcg0Rt4KNzZSQ9k0jrRcFQgyvMQ5cn5j4O9uqE+EkLbrYDBErFtp72rIdPmO2Swfjan1RmD9gr4FYZbNCbAaGw3EQdrtd3fAb9+lFi+/Rg+91UcEx33jNe96p0t33SufxFHI4HA6H4yDMhKCQJIkeeOABPf7447F2XtLE/+jTEnEwGOjMmTOxtSJZAZgn0uaQ0/gQgpaXlyfS0iE/ZDPgO2DT4y2xs+n6Np2dE89cLqdmsxlbBOZyuUiGIM54J+zu7mp9fT1mR0D0OKlFOJAUxQs6PljDOwglAgpdLpaWlqJwwf02NjYmBIV+v6+lpaVY106JRK/Xi4ILcXNq3mw2Y709ggOn3Nbgj+eCLFt/CsgbpJK557SZMaM1JaIRGREQV+aeObEEklNse3170mwzGhBTEK2sCSXzCqxnAL/P5/MTRBoBxpqBQqz5+9FoFAUBYElr+lQcMWI0GkVBp9frxbaI0j7RX1hYULPZ1OOPP652ux3jJ4Nmd3c3ZpHYzhFWGLNx2JIO7mPj4/NhxQzrPZAkSfRnsGMMqeezyNjZMbJZIdZU0a4nKzhaQ0bWQ3rubUcHmwmUFlNs5oVnKTguht1uVzd+7F7dWXu3HnnLJ6cdjsPxnPC3P/DPVbn7a9KuG9E6HA6H43C46PFbCOG3QwjPhhAeMK99NITwVAjhvvHXG8zvPhRCeDSE8HAI4bWXEsRgMND3vvc9ra+vR5LAiWYIQfV6Xdddd52y2axOnToVSSa189ZAkXKC06dPa2dnR2trayqXy7GsgOwAm20wjnuC+HEtUr4LhYLK5fJEt4UkSVQoFKLzPiSPVH9qzUMI0TDv7NmzajabGg6H0aWfFHRLXuwptjWfs6SSFG2IYrPZjMQyl8tFEtrpdGL2A78vFAoTz0K2hxVCODXu9XpaX1+P5SMQ183NzdjiEqJqSTnzZ0UcSk1IW8dLgfvZFoIIJ9LeKT2dFhgrBB6bfUKZDNflXumTbUgu68yWaVhCCWHGf6LdbsexYo4RT2y5DaQdQ8jBYKBWqxXn3hpiWrGCa9ksGj4jCEKIYWQfQMA3NjZilg+vcV/EH9YTBJ51zmfIdj2w2SUQfIw7GRfbypFnIMOGEgk+r2TG2PaexGDFAz6PtnQBM1KbzcBc2Th5P+vNfrH2EDu2trYmsmyscSfXnCUcx17seG5Ihtu65UNf1etecJdees/PaJg4KXPMPnaSXQ2THb3io+9W5b991cWES4Dvww6Hw3EuLiVD4TOS/qOk3029/mtJknzMvhBCeKGkN0t6kaTrJP1JCOHOJLnw/11BGCRNONCTlv+CF7xA11xzzYR3AifUgBPjnZ0dtdttJUmier0e2yhCbDg1RiSwHRfIVLCp59TyVyqVSHhIR+ckvdvtxtZ93KvVasX0b0ogMNNrt9sqFArxOhA06vttOQMEfjQaqdFoRI8Bm4bebrfjiTqlAtY3gI4A3AvX/Uwmo3a7rUajMWFQaQkmY0VMmUxGzWYzlmbYlHpr+gchs2UMnNxDaBEJyDTB00BSnH9JKpVKkhRJpTXghERyutztdhXGXS8sSbWn72Q6ME7WpM+a+bEO6bbR7/cjoSajQ1JcL8wjPgHMoa3lT2dWkI7PXDJ2ZH0sLi5OtGDE3yKMWyna7hpnzpzRs88+G400rQki69ZmjSAEQMKlfXFuZ2cnmmIyXpVKJba3ZIwxFsVEkdN+xsj6IiAe2M4nlGvgq2DLYijlgfQz39K+qSdri3HmmfncpIFvAsIUa4m/t+vJZr7MCD6jy7wXO74PJImS4bau+YmH9Ea9Qi/5RtD7Tvy5blgsTzsyh+McdHe39eL/8Yu6/f1f1QlvDXkYfEa+DzscDscELiooJEnypRDCzZd4vTdJ+nySJANJfx1CeFTSXdKF/2sFgYI82dPq1dVV3XzzzSqVSlpfX48kT9pPoZc0QdC73W40EiQzgNrzbrer4XAYMw5sv3vIHR0UICR4CEDI7Sk2pKher0fDRe7BM0iKxL3RaMRSBE5wMfHDHX8wGETCXCgUFELQ1tZW7CLBSTLiA2UfpJ1zKs0Y2b8lewHCZ9sGktVgTeokqdvtxmyMnZ0dNRqN2G0CEQYxIH2qy1xC2jH1s4Z4nBzbdo7Wf4J5TdftkxGAqMHYMH+2ZWV6vdmyi1KpNLGWuD+n+twXcYlrQ1qtIaTNimDurcDDdSTFDAbrQcB1bA2/PZmn0wOGn3Te6HQ6On36dMy+QRCxZQrME+Nsibh97t3d3VgSQnZCOmZaefK7dDkDz4O4wHvxKCBLwGZoMF68F6EjvR5tZoL1vbAimvWHoDyJNUfGBM9pu0NYYQhRZ1ZwHHux4+hw/8sTvV2v1lsefkLXLDamHY7DMYF/9qV36873u/niYeH7sMPhcJyL78dD4RdCCG+RdK+kf5Ekyaak6yXZ/0I9OX7tggghRLNCCOfS0pIqlYpuuukm3X777edkF0AA7Gn9YDBQu92O2QeVSkWS4mmyrTWnDaIlE2QTcEoJubBtJanlt4aNS0tLqtVqCiFMnPZz7bSJJISXsg1ECgQFSdEPgnF55pln4mmwTUvnBHd3dzdmaPR6vXhS3263I9FETKBrxJkzZ2KZSaVSiRkFZCJYUohbP60GO53OOYTPeiXYGCFnpKKPRqMovtiTfvwgpP1WkLbkAJNCSh0od0BEGQ6H0U/Dll1Y80proCgplqvwHNL+KTaCD4INxomsOzvH0r54QgYABNj6CnD6zeucgttx5IvuCAg+ltQzznROQKxCeCADQNLEvCCeEZuNh1IMhBP7bIwRmTSSYmaOLTvhc2TjJWsAvxKEOyvOWSJPhgXX5TOIwGFFCNuVwWYscA8MUe0ewZouFApR7OD9rFXmYJYEhQvgyPZix9Hjd3/gRkk3TjsMh2MCd+rr0w7h+Qbfhx0OxxWL52ph/klJt0l6maRTkj4+fv2gouMD7YJDCO8MIdwbQrgXUk1qN+nw9XpdN9xwQ6zZ5wRa2j/FhdRRNoFhXaVSUalUioZ0tlViuVxWrVbT4uJirOXnxDObzaparWp5eTkSEUjS4uJiJPmQG65H+j6iBIRsOByq3W5rc3MzlkGQQcCz2np0e+pdLBY1Go2iwaQlntJ+hwLINIRwMBio2WxqfX1d6+vr0VsBsrW9vR1NGqlp50SeOCD/jCnj2Gg01Gw2JwQaCJq0f3qMKGOzKRhr6+KPqAIJt2R+MBhEnwLbOpDOHAgHtkMEJTOdTicS3lwuFzslWP8C1pHtPiApeg9QWmP9NogLwm6JJ3HYDBbItxUUeD57qm59H6T9zAwMHCHGzBPp+WSMsL64VroTho0Jkm4FHK7LZ0+aNN3kC2GJz54tmbDeBsy/pDjnCAy2nIe1wufFihFWUEBgs+IFYgLxM74INYgSdsxZq3xG07HjMcE6mbGSh4NwtHuxBpclSIfD4Xgew/dhh8NxReM5ZSgkSXKa70MIn5b0xfGPT2ryKOYGSU+f5xqfkvQpSVpdXU04ieX0ulwua21tTSsrK5EgcRIPYSF1HwIJyaHTAqf1tm49l8upXq9HAcCm1iNilEqlaKgIwYPQQIpsxgKlGmQFUNfOSThks9PpqFwuT5gfWt8GyPD29nYkj9ZEEuGDLANJsYsAz009OsQXYm29GBAGyDIIIUTizrUg2ZxA83fEg8gCobPeF7adoi1TsCSbeWQMIKlkaSA0QP6J03onWH8AYrCmksyVtH+ab7MVpP1yG9LfMVG06fSQaK5rPTas94AVPSDQEHXEDn62sdmMCds20Xom2M4niCF4AQwGA21tbZ2TuWDJPn/HtRFuEGYYRz5TjD/XsNkGVjSS9rNJ+J0tx7ElSTYzw2awcB073jwv5J8MBWsmye9txkM6s4i47HuYT+vngTjD97w/XcIzazjqvbgaVrxfnMPhcBwCvg87HI4rHc9JUAghXJskyanxjz8pCbfbuyV9NoTwCe0Z0Nwh6Z6LXY80Z0od6EBAScLm5qY2NjYm0pWr1WpMhbet+ShJWFhYiKUGIJvNqlQqKZ/PR5LFKefCwoKKxWL8e3vqnW6tx2kqRGc4HEbPAgQCTnYh0pZ4kkZvTeggMZwyS3tEjXaNZDPk83nlcrnouUB8CCOj0UjNZnNC0IAcQ6LoVGBN8azjvrSfGo43BcKMFVnGayGScJ4ZLwbb3tF6ECBsWENEMgUgs9yHOaVO3/oSIB4AS5xp30gWh/VBgPhCqinx4L1ck2dD7KCzBtfghJ155e9saYLN4CAOyC7Em79njaZbd5JdgcDAezAfpFuI/TzZUgRLqK1XBGJCOnbEKAQGiDwiUnpdM062XMCKCdlsNgpg6XIl67tA6ROlJfw9c2nHmWdMlzdYwclmgkiK485ckIlgyzXS15x1QeGo92KHw+FwHA6+DzscjisdFxUUQgifk/Sjkk6EEJ6U9BFJPxpCeJn2UrdOSnqXJCVJ8mAI4QuS/lLSSNLPX4qbLT4DGP/RhaBcLms0GmlzczOS4NFopEqlomw2G9Pvpf0UcciI9SOAHOTzeZVKJS0tLUXxAoKLQMBpPNkSSZJMZANQ9kDcZBT0+30VCoUJYkUbOq7DSbykmEXACTDXokMFogatAjGahHBBqCG4kGEyEiRNGOCRxp8uY6BsgO9tLDargS9LAm3WAVkFjAtijy1LseZ9zJn1Dhivt5jpgOCyuLioYrE48T57qs/9Lbm1XTC4hxUQuA73tATWpusjVHENa6hpBRhL1K2ng63Bp+SDbh62owLjhMhDNoU9SbelF7yHshDWMGvKdlawXzwf5T12LK24gF9FJpOJHhesE+aNtWAFLbvmJUXvCcbIChOsL0ve7bzZeG1ZCZ8t6wfB9zbDhjHk+un5tKU21seBMSCbYVZwHHuxw+FwOM4P34cdDofjXFxKl4efOeDl37rA+39Z0i8fJgiIRj6fV61WUz6fV6FQ0NLSkjqdTmxTuLW1FQn9aDSKHQqy2WwkRJBGDAxzuVwUHch84J6YxNmaberWbdaAJSgIFtJ+Sj/ZA5bocWLPyT6CRalUiiQX0mJr6CGE/X4/Cgmkn5dKpZiSDuErlUrxvr1eL3ozUCNujeww8LMtJKV9939rcDgYDGLZBXGRycA42/R/CD0E2AoFNo2fZ0bIwLOB99jSDuavWCxqaWkpZnVALokZomnLFriWzUyQNJHVgMBjvRBsrb+030bRlgtwws6z2JN5xCxbrw9hZZzTBoCW8EKWyT5g3riWPb0nA4Jxh4zbDAnmwoooaRNE7mUNInk2hBHWEITckm7GgrGRFIW6g0QNK6DY0hP+RZji7yldYl0gRtjntX4JVtDhfZRY2Pmxa15SzMRg7XHdWcFx7MUOh8PhOD98H3Y4HI5z8f10eTgyQPhqtVo0QqRjAenctHqr1+uqVqs6c+ZMPGWHeEG2R6NRzHKAoHLaCAlBTJD2OzVQ2w8x5V8yGjKZzIT7vTWRk/baTSIMYIpHeUAul4vmjZYwhXFnBQQRSi6sUeTu7m78e9vBwBpEQljb7ba2t7eVz+ejFwMnyNZokPp4CBzEF+8ESCfXRWRgvGzMxGt9AHgWOz4QULJJKElhTLm2NeorFosTXQlsZgLzYLMTgC11gdRSssF8QBatGHA+Ank+oYExsiUQ9mSc69lWqJy488x8BqwngRVBGEPGqd/vxzXPmEL4yU5AOIFUEyMk3hpj9nq9GKvNrrFzISmuTUvqIerSfnlALpeb8EVALEBMsGNjhR/eQ2wIhdZzJO27YD0eEBMQ4NL+DNzXZmsQm+0UYcfRij0Oh8PhcDgcDodjEjMhKCRJouXl5UhAIWGdTieWOlDzv7y8LGmfoNH2z7b1W1xcVLVaVTab1dmzZyNJQRCwJEjaIy6FQiESPYhVuVyOwoIlHpAXiHomk1GlUlGhUFCr1dLZs2fVarUiCYTwlMtltdvtKE5gHMnpOp0puB+EBnJOLDYzwKZo22yJ7e3t+ByccnNvSJM0WfsvKZaVlMvliZNovACy2Ww8MbZ+CZbkW78JyK60TxZtVoE0eaIOUUUsIb3enpzbex1UT39Q7T2CCPPFabbt4pD2s7ClGSB9T0QN1jHzY2vz7ak3ghbXsuUTEGIEpLRYwfsRb6wwQDmGpHMMRW22hPWiOKj0APGI52YcGLOFhYU494gTVshJl4CwBhgfW5ZCdhDPYzMJEKkQrhgDxsm25SQuMjnoBkNs6TEkFubGthq182/FMIfD4XA4HA6Hw3EuZkJQWFhYUKlUioRG2hMMNjc3IzGi1KFcLkfihVu7pGjmmM/nValUVKlUJlq/QSTIIrDGa5bk2U4ClF7YemsM5vhbUq3L5bKazaaefvppdTqdWOKAwEGpBaf/uN5bd36uz/v4mVggaZCepaWl6DfAmHW73YlyDsiVPbnlfjYLAvI0GAwmzPwQDygdsJ0V6JoBacN00WZ6WIJPiQFtK7vdrorF4oRvA2ILp+G2jSXrg7mgvMRmJxAjawEybdcBxpbSfnaC7QhgRQNIrp1P29oR2HHkftaIkHVmWyEyNnZOKfPg2pBk4sDQE+GGchHWFx1RyADg2sRhyzrwZrBjZ7uaIOZwYp/2u7Amh3zx+7Tfhh1L1vpwOIxry4oj1kgzXUrBPKW9Muz7Wbf2dwggNp50BoMVkVxIcDgcDofD4XA4Lo6ZEBQgJRiuLS4uamNjY8JIr1AoqFqtRmINKbdEEHCabw3xMpmM6vV6PHWFRPJlSRFkrVgsql6vq9FoSNojkPgYkHZuHftPnz6t9fV17ezsqFgsxjRqToYxl4R4E3O6hSDPx/0QUPhaXFyMGRUIBpBDCKL1MpA00bXCigfWVLHb7UZhxpYSUI8u7XsQEAewZJB7pN8LiWw2m9ra2pool4DMWhEFws08Iogw59a40Ho08Az8bE+abfcHsi4ssbQEk/VgMxosQef61h/BnoSnT8P5GeJtPR7svdK+DvZe9oSfdYxQA0FnTNIlBvb5WBeINPZzYbuIQMyt6MTnyT6fFRIOKoVAdCI2sjhshgRx8bfW58B+8czMC+sy7Ulh21naOQVWxEi3FE2/1+FwOBwOh8PhcJyLMAs1wiGEdUkdSWemHctzwAl53McJj/v4Ma+xH1XcL0iS5KojuM7MI4TQlvTwtON4DpjXNSrNb+we9/HiSo/7StqH/f+Jjx8e9/FiXuOW5jf2y7oXz4SgIEkhhHuTJPlb047jsPC4jxce9/FjXmOf17iniXkds3mNW5rf2D3u44XHfWVhXsfN4z5eeNzHj3mN/XLHvXDxtzgcDofD4XA4HA6Hw+FwTMIFBYfD4XA4HA6Hw+FwOByHxiwJCp+adgDPER738cLjPn7Ma+zzGvc0Ma9jNq9xS/Mbu8d9vPC4ryzM67h53McLj/v4Ma+xX9a4Z8ZDweFwOBwOh8PhcDgcDsf8YJYyFBwOh8PhcDgcDofD4XDMCaYuKIQQXhdCeDiE8GgI4YPTjudCCCGcDCF8O4RwXwjh3vFrKyGEPw4hfGf87/K045SkEMJvhxCeDSE8YF47b6whhA+N5+DhEMJrpxP1eeP+aAjhqfG43xdCeIP53azEfWMI4c9CCA+FEB4MIbxv/PpMj/kF4p7pMQ8h5EMI94QQvjWO+9+MX5/p8Z5l+F58WeL0ffgY4fvwscft+/ARw/fhywPfi48Xvhcfe9zT34uTJJnal6SMpO9KulVSVtK3JL1wmjFdJN6Tkk6kXvtVSR8cf/9BSf9u2nGOY3mNpJdLeuBisUp64Xjsc5JuGc9JZobi/qikf3nAe2cp7mslvXz8fUXSI+P4ZnrMLxD3TI+5pCCpPP5+SdJfSHrlrI/3rH75XnzZ4vR9+Hjj9n34eOP2ffhox9P34csXq+/Fxxu378XHG/fU9+JpZyjcJenRJEkeS5JkW9LnJb1pyjEdFm+S9Dvj739H0k9ML5R9JEnyJUkbqZfPF+ubJH0+SZJBkiR/LelR7c3NseM8cZ8PsxT3qSRJvjH+vi3pIUnXa8bH/AJxnw+zEneSJMnW+Mel8VeiGR/vGYbvxZcBvg8fL3wfPl74Pnzk8H34MsH34uOF78XHi1nYi6ctKFwv6Qnz85O68MRNG4mk/xVC+HoI4Z3j165OkuSUtLcQJa1NLbqL43yxzsM8/EII4f5x+hcpOzMZdwjhZkk/pD2FcG7GPBW3NONjHkLIhBDuk/SspD9OkmSuxnvGMG/jM8978Tyv0ZneEyx8Hz4e+D58pJi38ZnnfVia73U60/uChe/Fx4Np78XTFhTCAa/NctuJVyVJ8nJJr5f08yGE10w7oCPCrM/DJyXdJullkk5J+vj49ZmLO4RQlvT7kt6fJEnrQm894LWpxX5A3DM/5kmS7CRJ8jJJN0i6K4TwNy/w9pmJe0Yxb+PzfNyLZ30OZn5PAL4PHx98Hz5SzNv4PB/3YWn252Hm9wXge/HxYdp78bQFhScl3Wh+vkHS01OK5aJIkuTp8b/PSvpD7aWHnA4hXCtJ43+fnV6EF8X5Yp3peUiS5PT4g7Ir6dPaT8uZqbhDCEva24B+L0mSPxi/PPNjflDc8zLmkpQkSUPS/5H0Os3BeM8o5mp85nwvnss1Oi97gu/D04Hvw0eCuRqfOd+HpTldp/OyL/hePB1May+etqDwNUl3hBBuCSFkJb1Z0t1TjulAhBBKIYQK30v6MUkPaC/et47f9lZJ/3M6EV4Szhfr3ZLeHELIhRBukXSHpHumEN+B4MMwxk9qb9ylGYo7hBAk/Zakh5Ik+YT51UyP+fninvUxDyFcFUKoj78vSPp7kv5KMz7eMwzfi48Pc7lGZ31PkHwfPq54TXy+Dx8tfB8+XszlOp31fUHyvfi44jXxTX8vTqbg/mm/JL1Bey6a35X04WnHc4E4b9WeI+a3JD1IrJJWJf2ppO+M/12ZdqzjuD6nvbScofaUqLdfKFZJHx7PwcOSXj9jcf8XSd+WdP/4Q3DtDMb9au2lC90v6b7x1xtmfcwvEPdMj7mkl0j65ji+ByT96/HrMz3es/zle/FlidX34eON2/fh443b9+GjH1Pfhy9PvL4XH2/cvhcfb9xT34vD+KIOh8PhcDgcDofD4XA4HJeMaZc8OBwOh8PhcDgcDofD4ZhDuKDgcDgcDofD4XA4HA6H49BwQcHhcDgcDofD4XA4HA7HoeGCgsPhcDgcDofD4XA4HI5DwwUFh8PhcDgcDofD4XA4HIeGCwoOh8PhcDgcDofD4XA4Dg0XFBwOh8PhcDgcDofD4XAcGi4oOBwOh8PhcDgcDofD4Tg0/j87DEL+z2H0CQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 38772 527027\n", + " Min thresh = 1000\n", + " Sliding\n", + "\n", + "\n", + " Winner = Sliding\n", + "\n", + "\n", + " VFOLD = 4 of 15\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsIAAAGDCAYAAAAh/naNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAB5QklEQVR4nO3debwbVd0/8M83ublrb/fbfYeWLuwtZd8pZZPiT3hYZBVEVERAH0VQQfFR3MUHFNEHFBURWQRlB9nXFmihQEsXCt33fbn3Jjm/P2YmmeXMZHKT3EySz/v1gpvMeiZJJ9985zvniFIKRERERES1JlbuBhARERERlQMDYSIiIiKqSQyEiYiIiKgmMRAmIiIioprEQJiIiIiIahIDYSIiIiKqSQyEqaRERInI7uVuBxER5a8az+Ei8p6IHFXudlA0MBCuISKyRER2isg223+3lLtdbiJyoXny/a9yt6VQIjLKPJa6creFiGqPiDwhIt/XTJ8hIqsKOTeJyHPm+W0f1/R/mtOP6uq2u9ge63xrfb+tFpF/i8g0+3JKqUlKqee6s20UXQyEa8+nlFI9bP9dXu4GaVwAYIP5t+gYlBJRDfkjgPNERFzTzwPwV6VUssDtfwjgfOuJiPQDcBCAtQVutxC9lVI9AOwD4CkAD4rIhWVsD0UYA2ECkMnCviwi/ysim0Vknogca5s/REQeFpENIrJQRD5vmxcXkWtFZJGIbBWRN0VkuG3zx4nIAhHZKCK3ak7I9naMBHAkgEsBTBeRgeb020TkZ65lHxKRq23tu19E1orIRyJyhW25G0TkPhH5i4hsAXChiEwVkVdFZJOIrBSRW0Sk3rbO8SIy33wtfiMiz4vIJbb5nxORD8xjesJsd76vedBrOlVEZonIFjOr8QtzeqN5HOvNts+0XiMiIo1/AugL4HBrgoj0AXAKgLtynQtD+CuAM0Ukbj4/G8CDADps+4uJyDXmd8R6EblXRPra5v/DzE5vFpEXRGSSbd4fze+NR8zvl9dFZLcwDVNKrVJK3QzgBgA/FpGYuc0lInKc+dj3+0tExovIU+Y5er5UwVVK8mIgTHYHAlgMoD+A6wE8YDtZ/Q3AMgBDAJwO4Ie2QPlqGCe/kwD0BPA5ADts2z0FwAEwfp3/F4DpAW04H8AspdT9AD4A8Flz+t0wTrYCZE7kxwO4xzy5/QvAHABDARwL4EoRse9nBoD7APSGceJOAbjKPNaDzXW+ZG67v7nstwD0AzAfwCHWhkTkNADXAvh/ANoAvGi+PvkKek1vBnCzUqongN0A3GtOvwBALwDDzbZdBmBnF/ZNRDVAKbUTxvnjfNvk/wIwTyk1BwHnwpBWAHgfxvkY5n7uci1zBYDTYCQ5hgDYCOBW2/zHAIwFMADAWzDO0XZnA/gegD4AFgL4nzzaBwAPmNveQzNP+/0lIi0wssl3m+ueDeA39iCdqoRSiv/VyH8AlgDYBmCT7b/Pm/MuhHFCE9vyb8C4fDYcxsmy1TbvRwD+aD6eD2CGzz4VgMNsz+8FcE1AGxcAuNJ8/C0Ac8zHAuATAEeYzz8P4D/m4wMBfOLazrcA3Gk+vgHACzlemysBPGg+Ph/Aq7Z5AmApgEvM548BuNg2PwYj8B+p2e4o8zWoc03P9Zq+AOPE39+13ucAvAJg73J/nvgf/+N/lfEfgMMAbAbQZD5/GcBVPstmzoXmcwVgd59lnwNwCYBzYfyw3wPAh+a8ZQCOMh9/AOBY23qDAXS6z4vmvN7mPnuZz/8I4A+2+SfBCOJ17fE73zaa0w81ny8BcJz5WPv9BeBMAC+6pv0OwPXlfj/5X3H/Y0a49pymlOpt++/3tnnLlfmv3fQxjF/vQwBsUEptdc0baj4eDmBRwD5X2R7vANBDt5CIHApgNIB7zEl3A9hLRPY123UPjF/lAHAOslmDkQCGmJf2NonIJhgZW3vJwFLXvsaJcRPFKrNc4ocwMiIwjzezvLnvZbbVRwK42bavDTCC5aEIL9drejGAcQDmmeUPp5jT/wzgCRiZ8BUi8hMRSeSxXyKqMUqpl2DU7M4QkTEwrtDdDeQ8F4b1AIBjAHwFxjnKbSSMOl3rnPkBjETAQLM04SazNGELjCAVrjaE+g4JYJ1XN2jm+X1/jQRwoOt75bMABuW5b4o4BsJkN9QqPTCNgJElXgGgr4i0uuYtNx8vhXH5vlAXwAgoZ4vIKgCvm9OtS3p/A3C6WY97IID7bfv/yBXgtyqlTrJt2x7gA8BvAcwDMFYZ5QfXmvsGgJUAhlkLmq/JMNu6SwF8wbW/JqXUK3kca+BrqpRaoJQ6G8YluR8DuE9EWpRSnUqp7ymlJsIo1zgFzkueREQ6d8E4V5wH4Eml1GpzetC5MBSl1A4YV8q+CH0gvBTAia5zZqNSajmMpMYMAMfBKPsaZa6TVxty+DSANTCyv7q26b6/lgJ43tXmHkqpLxaxXRQBDITJbgCAK0QkISJnAJgA4FGl1FIYl+N/ZN6stTeMjKWVkf0DgBtFZKwY9hbjzuHQRKQRRt3apQD2tf33FQCfFZE6pdTbMLIafwDwhFJqk7n6GwC2iMg3RaTJzDDsKSIHBOyyFcAWANtEZDyME7jlERiZ6NPE6GHiy3BmAW4D8C2rVkxEepmvV5AG87VrNI91OQJeUxE5V0TalFJpGCUsAJASkaNFZC/zxpQtMC4vpnLsm4joLhjB5ucB/Mk2PehcmI9rARyplFqimXcbgP8xkxgQkTYRmWHbfzuA9QCaYWSki0JEBorI5TDuefmWeT518/v++jeAcSJynvmdmBCRA0RkQrHaR9HAQLj2/Euc/Qg/aJv3OowbFtbBuBnhdKXUenPe2TB+qa+AcUfw9Uqpp8x5v4BR+/skjBPq/wFoyrNdp8G46esuZdzpu0optcrcVhzACeZyf4NxMr/bWlEplQLwKRiB80dm+/8AI7vg5+swMhFbAfwewN9t21sH4AwAP4Fxcp4IYBaMkzWUUg/CyNLeY17KmwvgxBzHt808Puu/YxD8mp4A4D0R2QbjxrmzlFK7YATk98F4nT8A8DyAv+TYNxHVODNAfQVAC4CHbbN8z4V5bn+FWYKhc7O5zydFZCuA12Bc1QOMAP1jGMmB9815hdokItsBvAujpvgMpdQdPstqv7/MsrXjAZwF4xy9CsZ5v6EI7aMIEWdJKNUqMfpYvEQpdVi52xI1Zq8UywB8Vin1bLnbQ0RERMXBjDCRhohMF5HeItKAbM1cMTIVREREFBGhAmEROcHsTHqhiFyjmd9LRP4lInPEGMP7ouI3lahbHQzjTuJ1MMouTlNGf5xEkcdzNhFRODlLI8ybcj4EMA3G5eGZAM5WSr1vW+ZaGH3+fVNE2mDcmTlIKdWh2yYREZUGz9lEROGFyQhPBbBQKbXYPEneA6OrEzsFoNXsZqoHjL76Ch2/nIiI8sdzNhFRSGEC4aFwDkawDN6BA26B0dXWChh3aX7Vp5sSIiIqLZ6ziYhCqguxjK5Ta3c9xXQAs2F0CbUbgKdE5EWl1BbHhkQuhdFPLFpaWiaPHz8+7wYTEUXBm2++uU4p1VbudmhU9Dl7045OLN24wzN9QGsDmuvrsGT99sy0PYf0wqotu7BuW7tj2QmDe+KDldlDGdq7Cau27EKvpgS27UqiI5WN+eMxQSqtLxHcY2Ar5q82Bn9sro9jR4fRZXdLfR36tiSwdKNx28Cw3k1YtmlnZluNdXF0pNLo05zAll1JdKbSqIsJJgzuicVrt2NHRxIKwKh+LWhMxDFvVbatew3thXeXb87zVctqqIuhPen8TdOYiGO3tha8t8LYT7+Weqzf7l8F01gXx65kCnsO6QURIJVWeN98PYf3ac68P3sNNXqo/GDlFiTTCkN6N2Hj9g7UxQSxmGBXZwrjBrZi8drt2N7hveDQr6Ueg3s3Ya7meO1tbErEsbPT2116YyKOXZrpbi31cWw337u9hhqfmbVb23Os5d5GnfYYAOMzBAWkfEpNR/RtRq+mhON9tb+OuYzs14yP13uXHdizEUoprMnjWPo012PjDud7379HAzbu6HD8O2hMxJFMpZH0+bcxpn8LFq/bjtH9W7CtPRn69RzSuwn9WuoBAMs37cSWnZ2YMLinY5mdnSksXLMNvZsS2LSz09PWwb0aQ+3Lze+cHSYQXgZjCELLMBhZBLuLANxkDkW7UEQ+AjAexkAHGUqp2wHcDgBTpkxRs2bNCn8EREQRIiIfl7sNPir6nP3g28tw1d/neKZ/6ajdsN+IPvj8Xdk2/Of64/G/zyzAH176yLHsk9cdi6n/80zm+Q8+vRdueuwD/L/9h+H5D9fio3XbEcaDXzsSx/78eQDA3sN64Z1lRiBz0Ji+OHvqCHz1ntkAgBn7D8UDby3PrDemfwvWbG3HmQcMx1Pvr8YnG3agrbUBM687Duf93+t4ccE6AMCfLj0Io/u34MAfZts666aTMeqaRwLbFRPAJz7x/Aiw2n735w/Cntc/AQC48JBR+OMrS3y3P6atBYvXbsfr/3Mi6uIx7OhIYuJ3jXVvOXd/XPaXtzJtBYDJNz6F9ds78INP74n731yGloY6tDbW4cPV2/D01UfinN+/hlcWrffs56JDR+G7p0zE6G896pl38WGj8X/m+zplZB/M+nijZ5n9RvTG259s8j0Oy4Gj++L1jzZk2vyzJ+bjlmcX5lzP7viJA/Hk+6u18wb3asTqLbt835ObP7s/TtprsON9/cXZ++GKv70dat+3XTgFn/uj99/eN08Yj12dKdz8zIJQ2wGAcw8agb+89olj2heOHIP7Zi1z/DiaOLgnNmzvwKotuzzbiAnwl8sOxmd++yqm7TMEDXUx3PfmslD7v/akCfj8EWMAAN+4bw5e+HAdXrv2WMcy76/YgpN+/SJO3nswHnlnpWPe5Ufvjq9P3yPUvtz8ztlhSiNmAhgrIqNFpB5G59IPu5b5BMCx5o4GAtgDwOIutZSIiApR0efstE+BRiqtkHLN7EimtcGHextppZBKK9TFBJLHwL32DFlnKvs4HhPYR6Ovizk32pFKI5VWiEl2ntjWtTTUxbo0jvANp07CP798qHZeIu7dYkwE9ibGY8F77TAzytZydbFsqNBQF/ddTyCIxwTJlEI6DcTN18hvfzExXsfjJgzUHEd2n3WaYzLaEq4HWPf6MVt7xg9qdS+u1dqY8J3XmIj7BsGA/hKNAPj12fuF2rf4fGjjMeM1zIfu/YuLePYhAvh9TGIimc/Ev+asCB0EA3Bk8FNp/WfDmpZKeV/U+pDveT5yblEplQRwOYAnYIxkda9S6j0RuUxELjMXuxHAISLyLoBnAHzTHJ2LiIi6UaWfs/3iiWRaeS7TtidTUJo1kq5IWClj3Xhc8go8O20lFPYsa0wkE+QBQDwW86yXVgqxmGS+1K3F6xyBcFwfJeWQiMcc+7dzB+VG+wT2I88RB6MzlYZINgCzB9dBwWdMzFITpZBSKnPMfoGc1Y6bz9rXM6/ets+6mH6f9QFBuXM/zv3bX7uwgVXfFv9AWPea2+kOXwQ4dZ8hofbtF+y6f+CE0ZjwHm885t2O/f13E8n9Y8qPVaICwPw34l3G2rT73zEQ/sdPPsKURkAp9SiAR13TbrM9XgFjKEIiIiqzSj5np33qLI2MsHNeRzIN3eLejLARSNfFvJmvIH61w+7AwR0IdaaU8SUvtkDYDETtQU1jIob8QnNDIh7zzWw3JrzBYUycwVgsRxCTTClHO+2vWYMmkMouZwStOztTUErZjl3P2ocu0PPLCF970ngM6d2EMf174JdPf+hY54zJw7D/yD741gPvOqa7gzbbpkNnVPv18B9ZOfc2uhY0Zrfvv1/3e9mnOYGNO7J1td+fMQnffei9zPNdnd7g0v45tQR9LkUEo/u34Og92vDs/LU522+vr19tK7VIpZX2B511TJ1RyQgTERF1G5+U8IsL1uLu1521je3JtDZwdt+0ZAXRdbFYXhm03z2vrxaJuwIQdxDRaZZsxEUyQVwmI2zPribi2oD2a9PGBbYrEfcv8dBlzIwSBOfzIB3JtG/GWXdp3Xq1RazSCKs0xAp09fuxAmzdrursgbBtAweP6Y9T9h6CiUN6eoKink2JzI1YdkeNc94fZX/vwn4edNu15IqDtRnhPIJjv2XdP3D692jAHq5SD/dn8+P13vp4BW+oLgJtthbmsi0NdbjzoqnYZ1ivHK03AmHL8o3ZcalS5lUTN+uzp/shykCYiIiqml9GeNHa7Zkbnix+GWH3F+hvn18EwAio8glAHnl3pXa6UT+Z3Y67LtdZI+z8mrWv51cj/On93b3dOdXH/TPJ2hrQmDj26xfkWjpSad8gSHdp3SIwApX2ZBoplQ04/S/tw3d+wqc0wl1j7d6ee1s/PX1vHOEKhO3HHzYj3D8gI+xXwxwkn9Jev2Dd/b4CypFJB7xXKz6lKcdIptLeGmEEBeDZ6UGZcov9KsXyTdlAOO2XERYrI6wrjQhXDpMPBsJERBQZ7iTQlJF90L+HPhuXUkobOLunWV07xX0yqfnWOxqZz+xzdzBldc8Wi0num+Vs6/7gtD1DtacuHvMNVHWlCzFxhjS5SiM6U2nfADEoEImJoL4uho5U2iiNyFkj7J8xtmf+4rZAM6he2cpIO9qbiHvqtOOOjHC4976vJiPclIjjmhPHY59hvQPX1e0hn0+cf62ut7a33hUI2+vXP/rRSTh6/ADPdnQBJ8T/qoN9elCm3GLPCK/asgtJc3+ptNJ+1q0m67puY0aYiIiqmjuIbUjEsG6bvs/bVFp3q5x/bW8qpbRBRd6BMJzBibuW0ToER42wpgeFxkTcERCN6NucWS9IPOafrdOWRrgyh7kO1yrrCLt9ZR5wLAY0xGPoSAaXRljBTFDG2J7ZTPiUobiDchFvpjWuCY4d+wv51usCsL4t9bjsyN1yvl/51KXrhM0IK+XNTtt/OIjrJk+LrhZXEHyTnqWvz49Uu6b67O1oqbTK1DBbdfRu1vulDYTjDISJiKiKub/6gr74kimVCcLs/ALhddvatXFPrrv+3UScgaLu7nbA+EJ3ByZxW3Do7s7NCgpyxU1BvQXou8dybjNXaQTgnzV2X3q3E5gZ4WS21wzAezzWe2rtQtcc581y9nphW4Ds7hZNG/TCc9NePJZ9D8K+9UHBbq5taDPC+ZRGxAT/e/Z+2NtVj2vUCLsDX3dGOOBHgEn3+RXx/41gnx6mVKHB1aa5yzdj1DWP4Nn5a/UZYbONSV1pREBpTlcxECYioshwB7ZBl0JTaaXtd9ivznjttnZtSUHegTCcmTjtpWVY3UzFMo+BbGDSUBeHiLNmObNMzoxwfjfLufs9zlUaAQT0VBCwrogRiHWk0kin/WuAs4GoM1tu56wRtmWE7dNdAZYui2nvws69f2+Nrb94DPjxZ/ZyTLM+q7kyvvrZ4T9zMTFqe6dPGuSaHqI0wvN6eLefSitPGyWoiY4fb/7ttiTqnAu99tH6zH51n6dsIOz9d+wOqouBgTAREUWGO4YN6is2mU5r+xH2LY1IK21JQVCWU8d9R73u0jJg9hrhE4RZmS2xbUd8Akfddv2CL133ae5ldds//+CR2nZ69h0YCGczwilb92nu/VlBblAQ5dd9mr1MIqHJdmpLI1wBt71cJWwgLCI4ca/BjmnZ3jKMv/ZaWOe6oXYRtHcAmiDf1X4Fb2mE+733K43wBMIBr42ja70QAb1fP9BGezTTMqUR3h+YrBEmIqKq5s7mBpVGpNJKO6KXLhA+bsJA3DhjT23w5Q7udKOz2bkDEL+McMwWCHszwmYg7FoeyJ2xjcX8ww97Rnhwr0Zjn56MrHe9T+/n7KnCLwjSZc+tVzsmRqCSGVDEp9TDXTetk/Aph7C/V+6McEx0xyqeQMxenhI2SHXfcAhkf7RZc1obg4dmmD4pO4JeV3qNcL9v7v6slfL2GuH32tvpShAEAQnhPDPC/cw6YqsGPld7sgNqaDLC7DWCiIiqmTsjHFQTmEwbvUa4gzMrED5572wG7/JjdseAno3aCMQdPOS8IUecX+C+gbCtRtg9oIa1T3Fk18z1cgQX7kDczv56WfsIUyca1M1bmOmAWSMcj6EzpRw3y7kDXmtfQdvyK42wt1OX/XT/iLBn7zOvr1UaEZBZd9N1zXbY2P6ZeUab9Z8b672//lOTbNPC8xt4xLg50JkR9gTC7rb4ZYSh23Zwe4BwZTaDezXiqauOwA8/vZfZJtv6mp1Y29SVRjAjTEREVS3fjDCU98vRGlBj6qi+mWnubszs3IGiO9PoJnAGq36lEcaNWs4aYasduvZkArQcwUU85h+k2DNm7sE8su3yruxXR5trOed2s+/FO8s2O25Ks6sLURphf9+ddcHZx4mYN/upq0eu89Rpm+2NhR+i2F128ZPP7J0J7HL1l2y9yY7OKvJICfv9oNDVOLuvZoTZjzWktmM9+P/Ysk8NcxgxEYwd2Ioemoy57vNkZexZGkFERDXHnREOKlOwMsKeQDht3cSUneYXlAHey/25aobd9ZN+GeF4QD/CdXFncGZfJlfdqjsjfOeFB2ReJ3tpRL1PRlgbfLizxj4vge71y5QIiDj273ezXF2IgD9h207CpzRCl+l2b9IYBdB9DNn9h68RdmYyR/Zrznzu7Jn8p646wlNmIpm/4YPfZ752pGPfgLee1n28SuXOCIcWsKLjxssQr5+1vDUYi70UI6jXiNVb2j3zdDeDFoqBMBERRYY7Ixx06TWVTkPBmzVOZ2o3s7K1upqyAFeEkevL1sgI5w6E7QM8WPu1jicbIItjeSB3cOENWiVTT2kvjbCOy9tzQIhA2C8bGFQaIc6MnV+NsK4sxM3vZjn7jxZv92n618bKCJ8zdQQAZ68VYQNFzzDVMc37FjMyn72aEo51dUNJ59rvbm09HPt279Oa7s0IB9cI6/zgtD29JRTwf3/yOQ6jncZf62rFzs6UbZ4mEA7455dvDy9hMBAmIqLIcBcZxMToQ/WgMX09y1719zl4aPYKTx1xWnOTTXBG2Ll+7pvl3DXC4XuNyJRGaMoWshnUwN0bAZA9MyqSycraSyP8Ak5dzwGe3i260NVBTMTxo8SvtjXovdC1x9F9WsDNcrqeDqy+hefdeEKmRjdua1dQMG7fr6c+17EP5zLuLgBFs04+L6+1rLf3D+d2lFIY0rsx/IYBXHLYaKN2XrNP67hG9G121NvHHJ9Z74HsNdTZ37H1c8PKCP/19U8y84JKI3RylS11BQNhIiKKDE9GWIw+VM+YPNx3HXcWLHO3udiDKesydu6MsDfAguu5Mzvo32uELYjJTLMuy3u/fvPJCDsCMdumGjQlBe7YIUzPGWFugnITuIZG9qnLtl7foOO0b8f+fojjPXUFp6ILuo2/jYl4tpY3U5oRHIzHHIGwf42v9bAEyUpzu/ofDrrSjjMmD8ct5+znaZsfvyBbkP2MN9fHces5+6O1oS4zz71+j4Y6PP/fR+G5rx+F81xd8VntbtT0+KDNCPs0+vyDR2qHui4UA2EiIooMd41wppeFgHIF9xdnpkbYNi1zw5XmOzbX5WV3qYTAGTjq7m4HrEDKuV93cKjNCOeIqNyXxO0ZNHs/wlYwGSbIdcce7qzcHRdOwc1n7attj32IZftr53cTWSIzXbs5YxlH92mCHg3eG63c71MsoB7Yzjq2uCaDrFsO8GabdVlR/3IS64FmWgjWvjwlLrrjjQlO2XtIdj85ihcyZRue6dl1M0GyZOfZ22AZ2a8Fo/q3+Jbi6HqA0SV4/T7/J7v6cS6W4E7viIiIupH7snImEM7RW4FdWnlvlqsLCL7c09w33xnZZFvW15V5DOpH2J0RdpcF+HUlFRNo+0g2tqG/ERBwBu264NG9H79p7kWOGT8QuVhDLHu2ren/1tiH/3vq7j7tsa8ejvdWbNFuJ7Mf0fcj7BaPZ/cfFJC6b8yzL6rv9s4nELYCSnsmNY/b2PyuFMRi3gE1NDsP3rbvPr2lOrrjtObZ/926329rce3w33mk0fNZNh8MhImIKDLcwZ+7310dd1CRzQg7AxndsvZ5lvp4cDDl7lqqI6A0IhNEZEoinEGgXyAWjwnS5ohfuiy5341b9kC0Z5PxFb+9PXtzkrFt7/7c7QjKlN44YxL2GtZbuw37/tOZ3juc28p2n+a/D2f3aTEM79uM4a4BGTxdhcFb8xuUEY7Fgttgf9+N0gh9RjjXe5ktP3A0NrSYbn1Nm7T71kxbctPJ+O1zi/Djx+f5LiiQzA6Dfrhop0H/HgT1EBFGV8p1wmAgTEREkaGrEQa8dbx27u9S9zYAe68RuvWDA199LWr2uV9phJFF1G9Ln12zZQxFACjERZB0HY97u3GfbVi9F+zoSDrWD5MRDrpz/7yDR2mni4gjc2/9IPHWtuprl+3sP3z8rga4b3J0vy/Gvv1/+MSN6/++7J8DEVddtuY19w2E/XcRiu9Nh+LqLk7zMfQLlDNDk7uyvXVmDyT2l8Yd6Ntfdt1bowvY/eSVEc6nniQPrBEmIqLI8GSEYyEywn41wrbJuQaCcD4PDoy9vUb4d5/mLo1wB02OJKG9vQF1p+7+Y2MiuMC8Qcm+eM9GIxDe1p47EHZPyefSvX2IZfvw1tbAJr4/BgICG0eXaT7vvfvHkdVDhF1QFjJMLXb2cYiMb656XJ/HuVjb91yZkNylEX77cQ8PbXHfIGj/mwmMNV3+2fft7WEjIOueR3BbqtKIigqEF6/dhvmrtpa7GUREVCLurs+s78mgQNj9/ZjU3Cznzh4619dfys2u6/1iDzWghi2L6A5mdJfTdbWXumbHY84SgFgM+N6MPbHkppMdQUfPTEbYXRqR+xJ3V2KOmIjjtUj7ZITd3Y3pOIZS9mmM92Y5/14jnNNsGWGfOmz3ft1dreneK9/Dycz3BpBh+GWcjV4jss/d9fWBbfIsZ3tNYP2Ic/4Yyz73ts2+61z15nb5lDswEAZww7/exzfvf6fczSAiohJJ+dwsF1QaERPBK9ccgzsunALAXpuaXSY4Ixz8xR33DFvr/ALvSAZ1n2YGEWY05O01whtQAdnt6zJm7gAo4eheLDs9WyPszgjr2+rQhcvQ4mpLJiPseX29AZVnW7Z5fu+9NkPqKWvx76kg91DW+sDX3T53zwu6rsjs8/OVKUnQ/FjJXSOcY74r22vP/lrT3J9BXddx7nY5n2cnXD1tnGMeM8J5qo/H0O5zwiEiosqXSutrhN2jx9mJAEN6N6F3s9HHqO6SfFCNsG7ELrtctah+A2o4Rx8z/sYD2qHLDmvLGER/I6B7G1aNsPtmOf02C8gI24ZYPnxsf+w/ojcAe42wOzD0b4eujf4ZYW+b3Yvqgmh3htO3Dba33Vv3qnnNzQdXHTcOM/Yd4p1vk8/L6/dZCNNrhIjRe8j4Qa2O6Up5r5pY27TW8yvjcX5Odfv0/yztPcw52EZQLbpbPjfW5aOiAuGGRAztyVTuBYmIqCJ5A+HcGWH3Zd20ZozloEuwfpfuLd5MlDgyWcl07u7TMtsKDHC92WHtcMgiENu3tz1QdJRGNFqBsDMjrK+b9bY9X2JmKC86dDQAfTd29m0HXjK3Z4R9oiXvDxTxZBh1JTXZXgz89w/434Tobp97Xq/mBH70//bKtivTPntbg/cdpr3uWnEdATD3e9Px+JVHOKZnaoTF+dc+/LTV8OC6duOZsoXhnvfbddOh+xjCYkYYRv+IfpegiIio8rkDYeuLM7jG1/hrfVEm/Trghf5Sse7L+PfnT8lkNt0ZSfclad8hljXdcwVmhDXL6b773X3a+mWErRrhxnpn/61hMsJdCTncXd359Rrhd6m/yTYYiGPAEJ8fQbqb5dzHoQuErQA9LuII4Nzc3afZOYJazbq6G8q62o9wtgbZ9VmS4AFBfBuHbPbY3cdxpkbYtmr2dfBm0sPVCNuP24m9RuSpoY6lEURE1cwdCFuxTmBphPnXCnqshEnYr03dd/G0iQMxbqBxOdlbixruC9ze5ZanH+EcAbl7ecdyrkvi9h8J9qXr4zHceNqe+PulB3nW97YVuPPCA9DaWOdpS1jWKvV1xgPf0ghXFhIAXvrm0XjlmmM8ywDZoaLd3EGu7n3RXUlIZ0bCCz5G94Aazn15g0FnplSzwa7GcT4/HIwMfPa55l4534DbnRG2BJZGZNphW16zec+PBlebu8rvB1GhKiwQjqO9k6URRETVyp3NjQVkUDPLmDOtwRyshEnYO/NzLafvNcJvW9nHcVtphDU56Hh0wyb7DQjh2I9PRlgEOO+gkRjT1sO1H/2+jx4/ALtZy3Yh5rC2awXmaVvtsF3mcrrtrR7Wpxl9Wuo9ywD+ZTG6TL372HRBtNWxRa5gX/fDJPPc/lgT2CPH/GKURsRjuTPCYRPGmdKIzApiC3ydgb4z2238Deo+zfE6uj5YfldvJg3p6ZnGjDDM0gifbmqIiKjyLVm33fHcCkB0g2RklzH+WjdP5ZsRdn/BZi4bW8GBJiPsFzy760rd3aQF9aFrnxTUxZg7AHIGhP5Bh66N7rXcfceGkX29jJVylkaYf4PeUzu/m+V0NcLuLK/7hjr7fnMdY66eSuz7Bfwzn0HJ4Skj+wQ3AvbMrDfAdN4sp+k+zWebfiUh9q7g3BlgXUDvdzOnbpu6eSmfsqLfnz/F27YSRawVFQjXm6URur7yiIiosv37nRV4dfF6xzTrS7Rfjwbf9awAwSqfsBImYRNI7i9Y91eMe0AHCdi2o6405s246S6jw7WMsa6VBfQu6ak7tgVsYbKOupIAd88E+dSwZvZn/nWXRngDo/y2HXZADdFsW/f6ZQNh0ZYTZNYNaKeuH2FnW7zviW5r933xEM+06z810bUv7z4Bqwbdt4nmvvULKPevPWub8ezn0z00cqaeOCBTrpvmzAg7dfrcaKp735gRhpERVsr/xgQiIqpcH2oGTLK+RHs01GHJTSdj4mDvJVPrO9NdI6yj+y71CxbcvVHkWh7Q9D0r+vm5SiOyo5/plnMu6+w1Ijf9gBrOv/lk35Ry1gJbmVq/GmFr97qM8H++diTu/cLBjmm+GWHNzXLem9q86+5h1n5ffNjowEA4qIZYl/H1719Xk9ENeKOsXjey27J+pLjb4Lw5MJ8cYfZmOafsgBre/QfWCCvNtMz69ifOee57AjLt0AXCJeo1oq4kWy2RhjrjjtKOVDpTC0ZERNXB6uXALsx3n5Wp8tYIh9uvX4bSmurJPIr/zXv2JY3eHZzZNPuABZ51NQGGX2mEsgUQzhphv2DMvu2gQLiAjLC5ivV6pXMMqKFLBo5p64Exbc5pjQmfm+Vc0XpM00uHTr8eDVhy08kAgAfeWq7fdtzbFZudLnvvF+/pMsL5vL7e+t3sc/u/D79+hMNsOxNs27K/MVcALq51jHli7lt5pumeh60R1r32+YxCl4+KiiYzJzneMEdEVHWsfm/t3EFU0Je9t9eIcF+cOWtFNTfLNSbiuHHGpMD2Gt2sOdtoZe10AZsuI6yt55VwvUb4Za79bpazz+vKVWj/jLBzucxrEXK7VhLMTZ8RLk6wlIjHAjOQ+ZYHeOdnH1930gTs4xpows6vRljEFRxqe43w4UofW8vZe4rIBOCuunZdqYN9c0GH7p6X9BueXFOf7XdloFAVFQg3uH7tExFR9Whu8AY87sBGd4+INSlzs1yeNcJ+mb9sIODtpgsAxmvKNOxbsl+qt6b7DTLhXjfTZZbPl79zP962ebZnE1R3rKsDzZeVLNeN8Gd/HvZ+n6Z6n0BYO3xyfu32u2ksVyAc07zOfq+9br7d548Yg1+fvV/OfXlvOgwxoIbP/MG9mwAAQ3o1OabbR2DMttv9/tm3H/yDztMe13Pf0og8t1uIyiqNSOSu/yIiouoRJq6xghkRQX08Fuqq4UWHjsLrizfg/ZVbfLPOVsDmzQg7//qJSbY0wopIbONveZbXDTwQpps253qiXcbdLs/2rHmx4P0Gcd9wly5SRrgxkU9GOORGc8gdCHuz935XIPQDavhvz29f+v6fcx2wfv6ZU4ajrUcDjp0wwNyOc1/O0ghxLAPHsfu3V9sa1zzf0ohurBGusIyw8Y+BGWEiouqjyw7l++WXiAs6U7n7ER7Rtzl00Oe+TBvYt7FtWjzmHWLZbyADv3b41i/nyGIHrRtUIxzUq4Uf612zXk/rPUv5DFxhPQ2bEW70uSfI24+wcfPYrG8fF2q7QRJxCS6NsD/WZfdzZYw1ZQ6++/LLCIuzHdru0/x+DMUEx00c6L0RznqpxbtfXTuyNcL5HYsl6dP5ga4Mgr1GIHtzQnuSNcJERNVG14uAO2D41kkT0L9HvWOafbVEyP7mYyKBg1YY+zb++mWEc4WLjsvLmbYqx3Pn8uJ5XEgWzG9Nfa8R3qAy//25M8LWtvXLBYyE7eDXfZqI4O7PH4ipo/s6pvcP6GovLPvnw2/f2WWtifr5YV7KoB9thZQE5LumfYhl6//Zad4fSVbgbP9RE/SRdc9K5tF9Gm+WQ7Y0ghlhIqLqo/tOdH/3HTmuDbO+Pc13G0ZpRO4BNYybgaxLzsHt8nwpuzJkmlnZ9VwZt0z2VFsD6d1OvkGQY3GfVYM26XdjVpDsDYDG37ZWIxC9eto4xzYz+4g51yvEIbv1R7+W+twL+nC34avHjgUADO3d5Bjpzk2X3c3nnXK/vPkEj37b0A6xHPJ9zPyIsd0Yl80Eu7LGPqU4fvsMyhb71QgXUqOer8qqEba6T2MgTERUdVKab/J8A8FEPBZ4s5w9aAnqosxaBtD3GmGfDxgBuDsTbdQIO7cVVBqhyyLmmwXzqxd2LBOwfiG9RljrNCbime7J9PuzMsLFGROgmDHTRYeOwlXTxmHj9g7UxQX3vblMu1zQIBGe9mVuQLRP899e0L7c7K/gSXsN1uw7P/aMsKc0wtqm40eAdxtBN7i6A9wojAtRUYFwto9IlkYQEVWbtCY75BcHvvDfR+OOlz/CH19Z4ggG6uti4bpPE+/NQBbl6v9WN8SyfX5mv55A2JsJzt7Yp21S9rGr3+GwHAnhLmSE/QZvCLXvkDXJMddrUqhiDjZrHYOVDX7iyiPwkWvYb0BfJ5vr9Q66kTFcXa37c5gdGW9Ynyb87Ix9AtYN5v7hZZT1OD//2cxwdqO6GuF8stt+GeHuVFmlEZl+hJkRJiKqNrrvRL/gakS/Zozs1+yZnohLNhDO8YVs7zv39+dPwaf3G6pf1ieQs09NaPo9tfdrawUsQ8xuq/Yc6u03Vjt4RgGlEf5rBmUfrSXyj4TDXMKPx6Rk/cEWg/vl3mNQK07Yc5B3OU1Qm+s1C/48BrxbrhVbG+pw8WGjMaRXY2ZaW2uDdqCxsO+jtZQ9I2yVsLhLP+xb1PdAEv5Yvnz0bqHaV0oVlRG2AuEwN0IQEVFlybc0Qjevvi6G7e2dmec/OG1P58hr1l9btlZEMG3iQGzd1YkH386ONJYNcJx0l7qtwTzc2TL3uvuP6IN/f+Uw7VDRumxu3qURjgDNpzQiTEa4C2myML1UxAS4ato4dKYVzpg8LP+daBRSGuH+xIUtxRHb6xM2I+ya6tpvqN0CAHYb0APfOWWi+Sw4o5rva+P8t+K6OpAplXC+n0AeA2rYHj911REYaw53HeTxKw/Hu8s251yuqyoqEK5nRpiIqGrlUxrhmGfvNcJeIwzg3INGatfV9ZPqDoLcvSBkpmsygNlAOLucrvs0QJ8N1u3HmKZd1Jfuhju3oE1mY54uZIRDBIIxEfRurscPP71X3tsvBfdvr7Cvt6NGOMc6uppy781yuXccNsDskswPIFupgyvwFeeivjsO7kdY/zjI+EE9MX6Q94djsVRYaYTVjzBrhImIqo2uXjAoI2plL+39pybiscDSiGwW2N7vLXyXB3QjenmX112WtrcxDHfAaLQtzxAnRKARpquufDKJ1usfJiNcqkERiiV0Rtj+OORrFvS6dzWrnas+OnSNsPk3HvAZ1B2n9seb65+Co9cI5ysXrnElVlmBMLtPIyKqWrpeBIICE+sL2r5aQ13Mlizxrmvv6itnRthWOqGdYaMdACDvHh+yjxNmYJ1392mOXo79AlP/9d11oWEE9YTh3l+pBkUA/IdLzkfY5unKA/xHlrPm26Z5luna65IZBdGvDCbPYFPXG4a7/bpR9fy24Wgk0KWMcKlVVCCcHVCDgTARUbXRB8L+y+vmJeKxTJdMuW5OcveZ6xd0enqNsP6K/zLW9qxlwoRo9v3Xx4Pb5CfXZWtjckBmsou9VRj79gsEw5cRlFvojLCjBCV4Hf2VCedE3es91Lyx0k33WfJrQeiMcMDVk6CrBPrREEPuM9xiJVdRNcKZXiMYCBMRVR3dfdDB9YbeeYm4BHbJlFlF7P0IO/8iu4jjr7tN9rbVmYGrOJbLLyNn355Vc5x3Vtn+2Lc0ImB9TfYyLL+mdrU04okrj0CvpkQXWpIP52clbOuc5QHeac5tegNJv8+U3UOXH4pPNuwIbFuxSyN0bcqURmhq5vU/foL+zdofRyMUrqhAWEQcfUQSEVH10A+x7L+8rg/ThG043qCvWYE3oHV/MWcyYr79CGen1Wm6WRDR3ywX1CaLdRz5Z4S9l7bz4VcmEmrfOUoDgPwC4T0G5e5RoNjCHnfuYBC2+bmX083q36Mh53DRY9paAABnTx0RuFxYmSsYSv85dz8PmyXOLI/CPp+lEKo0QkROEJH5IrJQRK7RzP9vEZlt/jdXRFIi0le3rUI1xGO8WY6IKECUztn50Pca4f91qfvCtdfq6gIPsc1zDx6h6wpK14ZsptiWEXbdUGRtL9uzRe7iCN3Nd4UMqOE7Yl6YjHAXAmG/toZpUyH8AvC9h+l75wjcVhcyqDlvkguxnzCvS59mY5CPPYdke1Do36MBS246GZ/x6YoudD/C9kslcD50l0bkXSPs2I/+cTnlzAiLSBzArQCmAVgGYKaIPKyUet9aRin1UwA/NZf/FICrlFIbStHghkSMpRFERD6ids7ORzH6EQ479K09l2xlfLMZZmcvCH4ZsVA1wnnkvRwj1XW1NCJEoFHsXiOyG869SCkCYZ13bjg+U06Zj7A/AHTBYF49hLherDCrjurfgn9++VBtH9S++ylCaYRfyZBunn09i/0mxnxqq7tLmE/JVAALlVKLlVIdAO4BMCNg+bMB/K0YjdNpqIuzH2EiIn+ROmfnQ1faG3iZNZPBtX/Rime+37pWUqUpYXTN6aluEMcfzz50pQzu7Gc+N8vZWSPVFTSghl+pQtD6rux4GNaxhclAN9fHw2+4AD0bE5kuV4N0dXhmbY1wiGV9txcyKNx3eG/frvr0282Pro457gr0dUMs+20DcA22gXD/PrtTmFdzKICltufLzGkeItIM4AQA9/vMv1REZonIrLVr1+bbVgDurnGIiMglUufsfKTTypt9yjsjbF/Xu469L1TrfpNGMxD225d/t2rZaXWaIZalgH6Z7LXOeQmVEQ5aXRx/Q8l0SZd7nTsvOiD8dvPU1aC2K/LrCSN3sFiq7pULCTbdZTLimu63/TClN1ES5l+artl+H7dPAXjZ7xKbUup2pdQUpdSUtra2sG10aEjEsYsZYSIiP5E6Z+cjpZSnFCCoNEB3s1w+Nzt1pqxAWH9jmn9G1VtPqetHOGarQ86X1Y9wKpVfdFdo9jFTL92FODzXrs+YPAwj+7Xkv+EK0ZUfHpbSlYyE224m6LVNU64fOLpldJ+lwBphzT7LLUyvEcsADLc9HwZghc+yZ6HEl9iYESYiChSpc3Y+jIywwB7ahulH2J4JtAdwubKaHSlnRtj/Zjnn86AaYfcl865+11s1wp26PuUChAk0ggKQbBCTf8t9SyO6qRa0K4FVMZLImQFFfObrpgf1xFBM4WuEvZ9f67Vxj7zoqI/W/GAKf7NccOMe+NIhSHTlF1mewuxhJoCxIjJaROphnDgfdi8kIr0AHAngoeI20akxEWONMBGRv0ids/ORVsrzJRp4s5wmSnZ8uQZeopXMd4lVS+pXAtGQiOPms/bF/iN6OzZrX1rXfZq9RjhfVo1wp6tw+shxwZl5Z/dp3VMjHGrDKE7QWWyqiPUUhfSLW6o+dUNvVbNgdsRAZ7mM88decHkS4N9Tc6627T+iD/bqQs8f+cqZEVZKJUXkcgBPAIgDuEMp9Z6IXGbOv81c9NMAnlRKbS9Za2H8ct+4vaOUuyAiqlhRO2fnI5XWjOIWInvpLI2wrRuwL0E2I9xk3sDlXt7+fMa+Q/HEe6scbbIHL9kaYX0gn2+8ZdUIJ20Z4TsvOgBH7zEgcL1Ql55z/EAIXDeAb/DcTZfAu7NGOB/6bvy6K0ue336CSh20GWFtjbBzor0/6KiUQ9iFGlBDKfUogEdd025zPf8jgD8Wq2F+GupirBEmIgoQpXN2PoyMsHNavv0I5xroIBOuiu1mOesufJ9dWVlDT82kbZncQyznF6VZPQMkbTXCYWKIMAnxUDXCXYhYyjZSWJmDq2KURlh6NBR3nLOwL417OQV7N4KuZXKUN9j/Kcy87ji0tWYHBanUGuFIaUzEWSNMRFSF0pqb5QrpRziIQDy9RniW8akZds8H/G6W63qMZmWEO9PZxI876LjxtD0x2nXzmbN7Kp/SiMCMsLWd8NwBU62xPh6F3CwHAL86c1/sZ5bfFEvYffduNoaybkhkS3ysz33m36S5sVx9dds/d/Yg2D0vKv0IV14gXBfHzk4GwkRE1SaV1tUI+y+fWVTZb67L9SWd/esXCGczfN7SC2NdZ80kANRpujuLiXQ57VUfz50RPu+gkZ71wmWE/XVlcIjsdoPXiWLpQnFulgveiu510b28p+2n7eWwIGGDzR9/Zm8cMGoZGupieGi2895aT/dptnlhaoSd7bFvN1TTSq70t+MVWe/mBDbt6CxqgTsREZVfWinPDXDF7kc4Mw/ZATWs7tP8Rvtyf92Iaz4AJDS9RkhBGWFjTXuvEfkGDv4ZytyvaddKI3ymm3/zLQ8Ja4+BRg3qoF6NJdl+LrmKV7R97UasJ43ezfW45PAxjhWsOMuVEHb8G9MPqOG/05D3snarissI922pR3syjR0dKbQUuZaGiIjKJ53OjmJlCe4+zZuxtQfSQcGGiGRvlvMrjfBd1zstruk1QgrpNcKqEU7bw6zcGwvTPVWYEoZ82u2unfZuq7Qhz5eP3h2H7t4Pk0f2Lel+csnnMKOSDXWzNyvtKo3I/gC0l994txGcEY5eJFxxGeE+LfUAgA3sOYKIqKqkNDfLBQ+o4Z3mzsj6sc9r8AmELVYm02+AASDba4R7l5nyijyTobu39QAATBjcU9tmP6GC5cCb5ayMcO59ebZbpsAmHpOyBsFRvkCd73uS7eXEO2y5bmhxfSAcNiMcjUi44gLh3k1GQffmnZ1lbgkRERVTOu0tjQj+UtWVRgTXCOvmNSacX4WZS/g+XZ/puk/TDaihex7WgWP64fErD3fUAYfZVKj9BWbZre2Eb3i/HvWhl42a4gSxxkbyuYLQXSFg3t2n2Ra3Xhp3rxH2bepLI/LfVzlVXG1Bj0ajyVt3JcvcEiIiKiZdrxHB/Qgbfx0jy+X8cvUuUK+50U2/pHO6fb7Vy4M7y+U3Wl0Y4wf1xKwlttGvQ2WEQywTIlOeT5By32WH4NVF6zOvga8IZk6vO3kCdnak8MYS7SjjecmnJjsqQaCbvVnZGmHnjzx72/PtuYU1wkXQ2mBkhLe1MxAmIqomKeX9Eg36UrWCZuUYkjn8N21rQx22tidzDiLhid80yx8zfgDWbWvHseMH4OI/zbI1obCv+3wvJQdlAK86bhw+WrfNsZULDh6Jj9bvyDzP9pEcvt3D+zZjeN9m/zaF3lL3GzewFfdedjBGXfNIl7eR60dOOY8/333rMsJx12fCebNc8Da880T7uJwqLxDOZIRZGkFEVE3S6fwG1NBn2uylEf7rKgCPfvVwLFq7LWD71sL6QWLt22+oi+GHn94L763YDO3CXRZ8Y5L/0l5fPW4sAGci6Xsz9nSuX0CNcK3zHdJaO7l7XuD8exqxflwCrgqhTJNz9VUd+G/W53E5VVwgbJVGMCNMRFRdUmndgBr+y+cqjdDWZtqm5c5kBgc2jpvlMnfWu0o7zL9drQrI91JyocFyV0ojwopgZURR5BpQQ6e7kqH5XpFwlEbAVRphTrd3kFLQzXIRiYQr7mY5a/hB1ggTEVUXY4hld42w/7dlrvrEoO/ZoMvZ7nkq81cfGADZbtu8N8sVWBqR57bCLeM/r5Ahlruyv2qg3JlTF+2AGiVsj2M/XcwIA96R5bKzssvkP6BGuCs23aniAuGGuhgScWFGmIioyugC4VD9COd1s5w/96pWU/wG1LCvYGWEPYF815tjtiG/0ohQ2wzRfVopQpRaHQirnD8E8q4Rtj12B/jha4TDZYQjEgdXXiAsImhtTLBGmIioyuhLI0J+qWamhbsZJ58SAveIaO7AwN7OYnWf5m6D+3FB2wzM2FnLMCMclsp0n+ZTSqOb1n21EfktHlDqoCubybt7thz7KoeKC4QBozxiG0sjiIiqSlrB249wnineWMgMamBphPl36mhjkIaDxvRzzLcCHkeNsM+AGroBCvJRrprKqAQplcAambB3c0K/gO4HWwnb49xPF//9KE0pkPYHYN4N0j0sq4q7WQ4wA2GWRhARVZW0ZmS5MF+0jiGWc3zRBt8o5gxmDxzTD+9/fzqa611flZo62njJMsLFzwkzyC2uY8YPwPdOnYQzpgwrd1M88q8Rzj7ODrHsXMZ5Q2q+GeFwV2y6U2UGwo112MKMMBFRVUmlVSagtORbGmEvrcj3e3byyD44/+CRuPSIMZlp9iDYM8SyZr/F/nIvRUa4XDcpVWuFsIjggkNG+c/X3SwXzcqIwK1kr4R0PSOc64dqOVRkaUTPRpZGEBFVm7Qyhli+/4uHZKaF6b3AXnbgDESD1vWGZfGY4Psz9sSwPv5dqtm3at9VJhB2L1vMWttibaebIxArgKrRe+V8hljunjch/yGWs8tnf/hZ85x/jXn67X/75An491cOC9x+RBLCFZoRbqjDxh0d5W4GEREVUTpt9FE6eWSfzLTgG7u8M3NlqIrx5aurlfTLCBe6u0JuTPLdZlG2QmHpb5Yr376DZPrmhsr8wPR+pnMHs5ccPkY73fkzNRqfxIrMCK/YvAsrN+/CQ7OXl7spRERUJClVeK8RxbhZLhf3SFtAUEa46/sxtmc7nsI2ld1OVFJxNaKcr3feNcIBfR7rRh3Mt79pDqhRJKu37AIA/PudlWVuCRERFUu+/QhbfEeWK1K73HS9RsR9+xEurBWlCBwCX9MSRCdRCXiCHL1HG3Yf0KMk2y7n4Rfy+XP/VrS25KjD78b2lEpFBsK/+ez+AIBeTT5dlRARUUV565ONWLOlXRMI55cRLmY/wm7uoXQdN8vl6DWiqxloRyBctF4jwtRdF2VXzm0Wf5NFc+dFU/H01Ud22/667cdBAfuxSiOsIZWzNcL2m+XyTjlnH0YkJq7IQHjSkF4Y09aCnR2pcjeFiIiK4P/95hUs37TTUxqR75dlMYZYziXTzZq9+zSfNKu95rJL+wpRjxl11nsSr9D2F6qsI8vluW/75zTzwy/Ta4TB3p1aId2zRSU7XJGBMAA018exo4M9RxARVTp7rw9W0HTK3oMBhMxewr5+8LLF+PLVlAhn6yc9DSheaUSlmj5pEC48ZBS+c8rEcjelLPTdp0X/jfUMLZ6pEQ531UXH+W+mqy0rrorsNQIAmhN12MGMMBFRxetIpTOPrTjyl2fuix+ctmfgevpeI0LeLJdfE537FedfZ5v0y3Z5X0XcVrnU18Vww6mTyt2M8gnxOenGXedYPruGXylQIUG8hLxi050qNiPcVB/Hzk4GwkRElW5XZzYQtkoMEvEYejfX572tXJdei9J9mmuAgaDtF7q7KF5Kpvzoa9m7a98F3Czn6j7NCozdg97k1R7744j8sqvYQLhPcwIfrduOtVvby90UIiIqwC5bUsNbWuCvd7Nxw/QBo/pm1y9hh/1+AwzYuYPVTBDR5RR099YIRyM0qS7l7TWieDI3zxWwUecPu2io2ED4rKkjsHVXEs98sLrcTSEiogLYA+GGePivpYE9G/H01Ufi+k9lL7vHQq5elH6ENdxBQlEzwt0QOUS5Z4dq0n0jy3V9XevfiLWJtPVDsIBIOIo3f1ZsjfAeA1sBOE+gRERUeexlbok8AmEAnr5fS5kRztJ3lWabVbQ2OC4lRyaHRvnQlQB038hyXduRUtmbUDNdAJrz8u4yzd4exw+7aHyeKzYQbkgYJ8v2ZDrHkkREFGX2GuFEXaG9LJT+y1U3xHJmnmtazFVfqXPs+AG+N39LtwT2tv2VfhcV7aVvHo1kKr+8eVlLIwro3iybEbbKe4wJ7t+qPz9jH+wzvFdXm1h2FRsI15vvxNMfrMYXjtytzK0hIqKusvcJn29G2M1+I0/pbpbz35ZnWoj9/d+FB+TcV8hNUYkN69Oc9zpheheJokwgLM7n7ozwZyYPC73NiCSBHSq2RrjOPFnOXLIRqTSrmoiIKtWuZDYQri8wEHYMsVz0L13nd41u894hls01u1iU3N01wlR82vKEbus1ouvrZkojzOfpzM1yxakRjoqKDYTtVmzaWe4mEBFRF+2yZYTr6wr7WgpbStDVkd7s+9DWfga0p0v7KlNOmOml0uq2m+UKqRHODi2XmQYUr9eIqKiKQHjJ+u3lbgIREXWRPSNcaGmEIyMcooa3ENp75Sq81wgqvkoaYtm+uHuI5XSmRrg4/QhHRVUEwt//1/vlbgIREXXRzg7bzXIFB8LhvmoL6T7Noq8RdvcjXPh+Mtsq3qaozLqv14gibMPVa0SxRpaLiqoIhBes2YYN2zvK3QwiIuoCZ/dphX1R2vsRDtO9WSHCdItVaAa6u7ubimCcUvHKebNcQZ8ZVz/Cihnh6Pnv6XtkHnem2I0aEVElsvcHX9QaYd0CJS5+9dYIF7i9XMdDkVfOG8QK2XPaPcQya4Sj58tH7555vNOnD0YiIoq2jmRpSiN0X7rWsMzN9fG8tx2mnMKvNKKr8bfjVrkIBhGUW5gSmu7cdxj2m0mtbRSl14gIfogrth9ht50cYY6IqCLZuxYr5s1yunzYdSdPwNgBPXDM+AFd3kfQV7l3iOXCImFHaQRzwlUjqqUR9sWnju6LWR9vxIDWBgDFGVkuihgIExFRWdm7gi+4RjjHl3RzfR0uPHR0QfsI4g5WCx9iuXtHlqPiC9O7SBR97fg9cPrkYRjZrwVA9t9pITXCUVTRpREA8PdLDwLA0ggiokplvwxb6IAa5e5urJTdp1FlimI5QBjxmGBMW4/Mc5WpGS5Xi0qj4gPhJrPOi4EwEVFlcmaEi1gjXNCWusYTCBc8oEZWrDszccXoX44A+GSEI17monv7i9GPcBRVfCDc2mjc+LB5Z2eZW0JERF2RttcIF9hrhPNmueJ+YYcJDf1KI7ocVor2IVWQUnfjV1z+Dcv2GhHZxndJxQfCbWYR99pt7WVuCRERdYUqao1w9nEkMsKFbo81whUvTH/TlSDNQDiaejTUobk+jrVbGQgTEVWanR0ppNPF6zXC0e9ukb+vw2zO24+w1Qdr13LC3d1rRNQv2VP5qEz3aWVuSJFVRa8Rba0NuHfmUkybOBAHjelX7uYQEVEIyzbuwGE/fhY9GrJfRYV+x5a7ftGdLSu814jibcvtkN34fVkulRhL1nRphIicICLzRWShiFzjs8xRIjJbRN4TkeeL28xgbT0asLU9ibNuf607d0tEFElRP2dbNu0w7u3Y1p60tauwbca6OYPqVvxeI0pz89+8G0/AXZ+bWsQtUj6i3pOE7vqF1btLuX9sFlvOjLCIxAHcCmAagGUAZorIw0qp923L9AbwGwAnKKU+EZGu91TeBQN6NnTn7oiIIqsSztkW/Rdq8foRLnasEepmOU9GWEKvq92e75PCNCaCR9ZjnxG1KejfjJURjngMn7cwGeGpABYqpRYrpToA3ANghmuZcwA8oJT6BACUUmuK28xgo8zOnomIKPrnbEtaUzdbcClBN3xJ57OPYvYjzPrd6lGJ72Qtd582FMBS2/Nl5jS7cQD6iMhzIvKmiJyv25CIXCois0Rk1tq1a7vWYo3jJg4s2raIiCpc5M/ZFt39Y32b6wvaZikzwl1RqSPLReClq2pR+GzqBN3TWa1DLIcJhHVH7H6p6gBMBnAygOkAviMi4zwrKXW7UmqKUmpKW1tb3o31s/+IPjh6jzYM69NUtG0SEVWoyJ+zLfaMcO/mBB654jCM6l/YFb6ofUkXnMW1rZ6IdV9HTyyNKK1KzO7X8s1yywAMtz0fBmCFZpnHlVLblVLrALwAYJ/iNDGcQb2a0J5Md+cuiYiiqCLO2YBzRLn6eAyThvQqeJuOm+Ui8IVdzFKPRF35j4dqV7V2nxYmEJ4JYKyIjBaRegBnAXjYtcxDAA4XkToRaQZwIIAPitvUYI2JGHZxmGUiooo4ZwPOjHCxYtZS9bIAdK0v4MzIcl1MsdqPodA+lik6IvAbTSuoXdYP12qrEc7Za4RSKikilwN4AkAcwB1KqfdE5DJz/m1KqQ9E5HEA7wBIA/iDUmpuKRvu1pSIY2dnCkqpSGQBiIjKoVLO2WZbMo+LdbnVmREuyiY93Nvdb0Rv/2Vh9RrR1QE1sjur64YApKneCLYbChzqmqqP9Rmuthgr1IAaSqlHATzqmnab6/lPAfy0eE3LT+/mBJJphW3tSbQ2JsrVDCKisquEczYApGzVbMULhO0Z4dJ/Yb/9nWloqvfviqy4A2qU/nguOGQUtrWncMnhY0q+L6osafPfa81lhCtF/x5GX8Lrt3UwECYiqgClKI3o7l4j+rQE93JRCd3B2TXUxXH1NM99k1RkUU+qBpXyVFkcHG5kuUrQzwyEP1i5pcwtISKiMNIlKI2IWoBRaFa6EnsXoNyi+r72NBOJg3p5BypLZ26Wi2bbu6pqAmGr67Qv/vUt/Gfe6jK3hoiIcrFnnYqWEY7ZSyPKr9IywtQ9ovq+HjSmL3515r749skTPfNqufu0ijCib3Pm8YLV28rYEiIiCqMUGWHHZdsyDLHsZjWhq71GEHXFd06ZiH2G5d8doYjgtP2GaofgruWR5SpCIh7D3ZccCAC4+41P8OR7q8rcIiIiCpIuRUa4G26Wy2e71g1uXe4+rbpiDjKV+m29+LDReOjyw4q6zezIckXdbNlVTSAMAIfs3h+j+7fg4/U7cOmf3yx3c4iIKEBpMsLVO8QyVY9K7IIsM6BGlUXCVdNrhKWttQEfrdte7mYQEVEOaVtKuFhfrVG4bHv7eZMxdmArgMKPqwLjJapS1VojXHWBcJ9mdp1GRFQJ0iWom41H4Ga54ycNyrahwKChukIOslTi+5qpEa6yQLiqSiMAaAu8iYgoetIluIPMPvpasS8/d6W5hWeEqyvoIEMlvq3Wx78S2x6k6gJhe8p+V2eqjC0hIqIgqgSBcLdkhPPYcDFHlqPqUYk/cKxSpiiUHxVTVQfCb3y0oYwtISKiICUvjSjy97XVHdXA1sbQ6xQ8oEZ1xRxUwaq1RrgKA+Hs45cWritfQ4iIKJC9NKJYMXG8hN2nffW4cXj0isMxcUjP0OtYzelq9rsSM4dUnbIjy5W5IUVWdYHwqP4tmccbt3eUsSVERBSkFBnhUnbtFI9JXkEwwIwuVY9MP8JVFglXXa8RXzhiDHYf0AM3PTYPu5LpcjeHiIh8pEsRCdtF4Pu6HBndk/cazBvHqehYGlEh6uIxTJ80CB+t245/zVmBtVvby90kIiLSKEWvEXZR+r7uzhGWb/3s/vj5f+3TjXukWsDu0yrUgjVby90EIiLSsCeES9GDRBS+rqPQBqJiyHSfVmWRY5UdjlcTLw8REUVS6TPCDEOJikUxI0xERFQcb368Ad+4753M8+4sHSCi/FVrjXDV3Szn1sEb5oiIIueRd1aVfB/V8nV93UkTcPBu/crdDKpxme7TqiyFWmWHk3XqPkMAAB0pBsJERFHT2Q3n5igkrrL9CHd9G58/Ygz2HNqrOA0i6qJM92lR+IdVRFUbCF982GgAzAgTEUVRMu06N5egNqLYA2oU0gbF4g+qcNaPOdYIV4j6OuPQGAgTEUVPR7L0gWGVfV8TldUJkwYBqL5/V1VbI2wFwne+vATTJg5EXbxqY34ioooyd/lmrNm6q9zNIKI83Hz2vti0o7PqemOp2uiw3gx831iyAXe9+nGZW0NERJZT/vclvLhgXbmbQUR5aKiLY2DPxnI3o+iqNhBuqMse2rptHF2OiCjKSlEoEaXEVYm7TCaiLqraQLhvS33mcXfcnUxERNESiZvlyt8EIgpQtYGwvSa4nTfMERFFQimGUvYTpSCUCWGiaKram+XsZi/dVO4mEBERgM5UNwbC3bYnf1FoA5XHY189HCs27Sx3MyiHmgiEl2/kB5GIKAo8/QdXOevq5LA+TWVuCXW3CYN7YsLgnuVuBuVQtaURAHD+wSMBAOu3d6A9mSpza4iIyC8jXIqSiSh089S3pR6//ez++MP5U8rdFCLSqOpA+HunTsJPT98bALByE/usJCIqt6TPzcsl6TWiBNvsihP3Gox+PRrK3Qwi0qjqQFhEMNS8HHXUz57DE++twuK128rcKiKi2tWtNcJRiYSJKLKqvkZ4aO9sXdYX/vwmAGDJTSeXqzlERDWtO7uzjEJpBBFFW1VnhAFgUC/vKCjvLNvU/Q0hIiIk0341wt3cECIi1EAg3FAX90y77sG5ZWgJERFZNcLnHjSizC0hIqqBQBgAjhjX5njOq2VERN1v6YYdeHnhOgDAQWP6lbk1REQ1UCMMAIfv3h8vfLg285x1Y0RE3e+Inz6bKYFo1FytIyLqbjWREa6vcx5mjHEwEVG3s9cBJ1znZcVBiImoDGoiEG7wBMKMhImIyikR53mYiMqvNgLhBDPCRERRkojXxNcPEUVcTZyJdnU6+61kjTARUXnVMSNBRBFQE4HwseMHOJ7z/EtEVF7ujDD7ESaicqiJXiMG9HQOqtGY4N3KRETlxECYqDY9edURkUpI1kRGGADuvOiAzOMeDTUR/xMRRVYdb5YjqknjBrZi9wGt5W5GRs0EwkfvMQCThvQEAHQku2+seyIi8krESvf184fzp+D/7Te0ZNsnouoR6kwkIieIyHwRWSgi12jmHyUim0Vktvnfd4vf1MLd/8VDMG5gD2xrT2Lrrs5yN4eIqCQq4ZxdyozwcRMH4hdn7luy7RNR9chZIyAicQC3ApgGYBmAmSLysFLqfdeiLyqlTilBG4umMRHHwJ6NeHHBOux1w5M4Y/Iw/PSMfcrdLCKioqmUcza7TyOiKAhzJpoKYKFSarFSqgPAPQBmlLZZpdPamI39//HmsjK2hIioJCJ5zk6lnXfDcUANIoqCMIHwUABLbc+XmdPcDhaROSLymIhMKkrrSmBHR6rcTSAiKqVInrN3dTrPvXXMCBNRBITpPkH3s93d0c1bAEYqpbaJyEkA/glgrGdDIpcCuBQARowYkV9LiySZcjY9nVaIRakfDyKiwkTynO0JhHneJaIICPOTfBmA4bbnwwCssC+glNqilNpmPn4UQEJE+rs3pJS6XSk1RSk1pa2trYBmd92PT9/b8XxnJzPERFRVInnOdp9r65kRJqIICHMmmglgrIiMFpF6AGcBeNi+gIgMEnPcYhGZam53fbEbWwxDezc5nn/mt6/g3llLfZYmIqo4kTxnW0Pd/+rMfTH3e9M9V+IUR9QgojLIGQgrpZIALgfwBIAPANyrlHpPRC4TkcvMxU4HMFdE5gD4NYCzVITPak9ffQQ+d+hoAMC8VVvxjfveKXOLiIiKI6rnbKv/9sZEnIMaEVFkhDobmZfOHnVNu832+BYAtxS3aaWz+4BWHLVHG+54+aPMtI5kGvV1vFRHRJUviufs9qRRGtHgc56NbOaEiKpazUZ+h491lsO9t2JzmVpCRFT9rIwwEw5EFCU1e0Yyy+MyOlP++YhdnalMNoOIiPLXbgbCvhlhpoSJqAxqNhB2m7lkAzpTaezU9DM8/juP4+ifPtf9jSIiqhLMCBNRFPGMZPrpE/Mx9rrHMOG7j2vnr9i8q5tbRERUPbIZ4Xhm2u/Om4xvnjC+XE0iIqrtQPi/p+9R7iYQEdWEjpRxtc2eEZ4+aRBO229IuZpE1O3+dflh+N15k8vdDLKp6UD4y0fvjiU3new7f9OODiRT6W5sERFRderIUSNMVAv2GtYL0ycNKnczyIadOQLYd3hvzF66KfN81DWPoE9zAht3dOKcA8szFDQRUTVpz1EjrNiBGhGVAX+aA/jLJQfiimN2d0zbuKMTAPDQ28vL0SQioqrid7Nco1kzPGFwz25vExERM8IAejTUYcqovtp5MVc3a0RElD+/7tP6tNTj75cehElDe5WjWURU4xgIm5rq4/oZjIOJiAqWKY2Iey9EHjimX3c3h4gIAEsjMpoS+kB4665kN7eEiKj6tCdTqK+LeQYzIiIqJwbCptH9W8rdBCKiqtWRTKNBkw0mIionnpVMLQ11ePbrR+G2cyejX0u9NkOcSvOuZiKiruhIptGQ4FcOEUULz0o2o/u34IQ9B+HN70zDC984Gl8/fpxj/m7XPoodHSyVICLKV3syra0PJiIqJ56VfLS1NuDyY8Z6pi/fuNPxfOaSDfh4/fbuahYRUUXqSKZ9+xAmIioXnpVyOGJcm+P56i3tuPXZhZnM8Bm3vYojf/pcGVpGRFQ52pMpNNT59M5DRFQmDIRzuO3c/R3P//DSYvz0ifm4/qH38ObHG8rUKiKiysKMMBFFEc9KOTTX1+Fflx+GLxwxBgDwyfodAIB/vLkMn/ntq+VsGhFRxUimFeri7DqNiKKFgXAIew3rhWtOHI/6uhjWbm3XLjN76abubRQRUQXpTKWRiPErh4iihWelkEQEfZvrsbVd32vEabe+jJlLWCpBRKSTTDEjTETRw0A4D/FY8En8jNtexYLVW/HByi3d1CIiosrQmVaoY/dpRBQxdeVuQCXJFQgDwLRfvgAAWHLTyaVuDhFRxUim0kiEOIcSEXUn/jzPg260OSIiyo2lEUQURQyE8/CLM/fBfiN645ErDit3U4iIKkpnOs3SCCKKHJ6V8jBpSC88+KVDMWlIL7z0zaPL3RwiooqRTCmWRhBR5DAQ7qJhfZpx7Unjcf8XD9bOH3XNI7jq77Nx35vLStqO5z9ci+c/XFvSfRARFSqZYkaYiKKHZ6UCXHrEbpg8sq/v/AffXo6v/2MOdnaksKszhc07Oh3zn5u/BqOueQQbtnd0uQ0X3PEGLrjjjS6vT0TUHTrTCgnWCBNRxDAQLoKfnbFP4I10j767Eqfe8hL2+f6Tjum/f3ExAODeWUtL2j4ionJLptKo44AaRBQxPCsVwemTh+Ht707znf+1f8zBh6u3eaYLjOzITY/NK1nbiIiigL1GEFEUMRAuksaQXas98s5KfO9f7yGVVhDNd4JSCn96ZUlB5RJERFHTmU4jwRphIooYnpW62Zfvfgt3vrwE81dthWgi4fdXbsH1D7+Hq++d3f2NIyIqkWRKoY69RhBRxDAQLqK7Lzkw9LJbd3VC953QkUwDADYyI0xEVUIphWSagTARRQ8D4SI6ZPf+oYdWXrO1HfavhL++/jE+Wb9DmyW2KKUKbCERUfdLpo1zF7tPI6Ko4VmpBI4ZPwAA8MZ1x+Klbx6N8YNaPcus3rILMVvQe92Dc/GVe9723eZri9dj9Lcexdzlm4vfYCKiEkplAmFmhIkoWhgIl8Dt503GvBtPwIDWRgzr04yzp47IzBvetwmAkRFOuTK8W3Z2IpU2SiPmLNuM43/5PJ56fzUA4PK7jSD58bmrtPscdc0juL/Eg3cQEXVFZ8o4ryXYfRoRRQzPSiVQF485epEY09aSedyrKYFR/ZqxdMOOTD2wpX+PerTbpn24ehs+f9csAMC6be0AgMXrst2wudf/3QuLincQRERFkkwxI0xE0cRAuBtMHtkH0ycNBABc/6lJmDS0F17/aANeWbTes6w7uAWAv8/8JPP4XVtpxE8ez93/8HUPvovL736rK80mIiqKTvNKF2uEiShq6srdgFrQXF+H3503JfN87dZ2PPLOSs9y29tTmL9qq2f6N+9/N/N46YadmLVkA6aM6os3lmxwLCfwZlv++roRRN9yTpebT0RUECsjnGCvEUQUMfx5XgZ7uG6eW3LTyfjUPkOweWcnfhRilLkv3/0WUmmFzTs7HdMV2KsEEUVPtjSCXzlEFC08K5XBkF5Nnmkt9XEs37Qz1Pqrt7Tj50/OR3unt4yCiChqrNKIBGuEiShiGAiXQVN9HF86ajcAwBHj2gAAw/s257WNFxasRUfKGQjrSiO6SimFD1d7yzSIiPKVyQiz1wgiihielcrkimPH4sJDRuHXZ+0LABjTv8Ux/9yDRmjWymptSHhurHOXRjw7b43v+q8uWp/p21Pnrlc/xvG/fAFvfrzBdxkiojCs7tPYawQRRQ0D4TJpTMRxw6mT0Lu5HgDQ1trgmP/f08cHrt9UH8e29mTgMhf9caZ2+quL1uPs37+G3z63EM9/uBYPzV7uWWb20k0AgI/X7wjcBxFRLtbIciyNIKKoYSAcEf16ZAPhH39mL/RsdHboMX3SQPS3LfMfTbb3w9XbcO2D7+Lu1z/x3Ehnzx6/t8Logm3Bmm244I438NV7ZhfjEIiItJJWRpilEUQUMew+LSL696jPPD5j8nCIOfzyIbv1w81n7Ye21gZMvvGpnNu52+wu7d5ZSx3Tx337Mbz3vem44I43MOvjjQCyg3ToKHPUOykggaOUwqPvrsIx4wegqT6eewUiqkqdHFCDiCKKP88jorUxgZevOQYL/udExMy+Nt///nT86XNTM2UTXzRvsAvDKm2wm3T9E5kgGABeXpgd0GPphh2ZOj4AmWpj6wa8Bau3YldnKvT+AeCFBevw5bvfwi3PLshrPSKqLslMrxH8yiGiaAl1VhKRE0RkvogsFJFrApY7QERSInJ68ZpYO4b2bnJ8UTTX1zmeX3L4GCy56WTHOkft0Yabz9q3oMwtABz+k2fxtXvnoD2Zwp9f+xjbzfrjVFohnVaY9ssXcMr/vpTXNt9dtglANhtERN0jaudsqzSrnoEwEUVMztIIEYkDuBXANADLAMwUkYeVUu9rlvsxgCdK0VDKmrHvEDw0ewUA4M4LD4CIYMa+Q6GUwsYdnXhxwdou1f0+PGcFzjxgOL7zz7mZaTc8/B7uf2sZAGDhmm3oTKVDZ3UWr9sOAGjr0ZBjSSIqliies62rTcwIE1HUhDkrTQWwUCm1WCnVAeAeADM0y30FwP0A/PvsoqL42Rn7IB4TtLU2ZGqJAUBE0LelHjP2HYqj92jLe7tDezdhZ4ez/GFrexKvLMqWUPz3P+bg4j/OxANmcBxk7VajBrk9mV9JBREVJHLn7HYrI1zHQJiIoiXMWWkoAPudV8vMaRkiMhTApwHcFrQhEblURGaJyKy1a9fm21YyJeIxvHvD8Xjma0f6LnPDqZMAAANaG/CrM/d1zGvw+TJavmkn5ucYROOfs1fgmXlrcPW9cwKX27KrM9O925L1O3Dfm8t8A+L/uu1VnPCrFwK3R0ShRe6cbZVG+J17iIjKJUyvEbrqU3fR568AfFMplZKAYlWl1O0AbgeAKVOmsHC0AM31wW/dyH4tWPTDkxA3b7zr16Me5/3fG8bjlnqs2LwLA3s24Og9BuCemdnvzJ8+MT90G1JphQ3bO9DW2oBdnSkk4jHEY4LNOzqxz/efzCx335vLMoHwZw8c6dnOG0s4aAdREUXunG2NgsmMMBFFTZhAeBmA4bbnwwCscC0zBcA95gm1P4CTRCSplPpnMRpJXWMFwQAwdXTfzOO/XHIgHp6zAl89dix2daaxoyOFjmQaj7+3KrPM/V88GJ/57auB2//BI+/jzpeXYM+hPTF3+Rb815Rh+Mnp+2DLrk7t8tc9OFcbCBNRUUXunN2ZZI0wEUVTmLPSTABjRWS0iNQDOAvAw/YFlFKjlVKjlFKjANwH4EsMgqPFfrf2mLYeuPK4cRARNNXH8euz98NRrpri3Qe05tym1Wfx3OVbAAD3zlqGhWu24vCfPOu7TjqtsHlnJ9JphYdmL8/0TgFAO8JdpTroh8/gojvfKHczqDZF7pzNjDARRVXOjLBSKikil8O4szgO4A6l1Hsicpk5P7DGjKLBuvw5pn+Ldv5Jew/Gzc8swMrNuwAAjYkY/nzxVMxdvgXD+zZhVL8WT/dp7bbR6iyX/GmWZ9rnDh2NO17+CADw86fm49ZnF+EHp+2Jb/9zrmPI1SffX40Z+w7Fjx+fh1H9mtGeTOP9FVtw02f21rZ5V2cKOztS6NNSr51fTqu27MKqLbvK3QyqQVE8Z7P7NCKKqlAjyymlHgXwqGua9mSqlLqw8GZRKTx6xeEY0rtRO69nYwKPXHE49jdHr6uPx3D42DYcPja/3ieWrN/hmfbdT03MBML3vGHUIy9auw2As4/hR95ZiUsP34TfPrfIsb4VCK/f1p4ZinrD9o5MW919K+cyf9VWLFm/HQeN6YdeTYm81s3Xmx9vwOSRfXMvSFREUTtnd2RKIziyHBFFC3+e15CJQ3qid7N/9rRvSz2+dNRumDC4J3Q30Pz7K4f5rvvoFYd7pk0e2Qd/v/QgAMD4QUapxfrtHQCAO19eot3OjFtf9kxrT6bw0OzlmPyDp/HOsk144cO1mSAYyH7JPjR7OZZt3IGL7nwDl9/9lm9bp//qBXzhz2/is394zXeZYslVZ01UCzpSCvXxmPa8QkRUTgyEyeEbJ4zHY1/1BrUAsOfQXrjupAkAgHEDe+DeLxycmTdxSE9PdvUHp+2JA8f0AwBc/6lJXW7Ta4s34BVzOOhTb3kZ59/hrL1dvWUXdnWm8NV7ZuOs21/Ds/PX4t/vrMQT5s1/KzbtxNzlmwEYQ0lbrNrmQrUnU7j9hUWZgFwpdohCZLn2wXfxrzkrWB9MRJHEMxPl5fNHGMM8P3nVkZmeKPr3MLLMb31nGubdeAJO2XswAKCPLfs8dmCPLu/z0rtmIRUQXC5YsxUbdxiZ5mUbd2amf+HPb+Kh2ctxyE3/ydQ3H/2z57TbWLu1Hc98sBoA8Oz8NXh87irtcpbXF6/HqGsewUfrtuP25xfjh4/Ow31vGoOMWDcGddWLC9Zi1DWPYIk5Mh9RJbv79U+wfNNOBsJEFEk8M1FBnrzqCDx+5REAjO7aGhNx3HzWfnjiyiMwqFe2HrlfwA1tR4xrwxeOHOOZ/ueLpwIwbsqzgkydz/1xFg7+0X+08+xDTf/X715FMu0MqC/500xs2N6BM29/FRf/aZZZWjETl/3lTaTT/sH3g28bPVy8umh9pi76F099iF8/s8AzOt+BP3wav3luoe+2/LY90+xf+cPVWzODk9it29aOhWu2hd5uNVJKYcy3HvHUlVM02P8N8UY5IoqiUDfLEfkZN9DbzVo8JthjkHO6vTbw9WuPxZylm/Db5xfho3XbcdfnjID3jMnDMaJvM+at2oLxg3oWPYP0xkfegTue/mANpv/qhcxw0If9ONv12+qtuzC4V1Pm+bpt7di8sxO7tfWAdTgKCrvMEfPWbWvHL576EIfu3s+xj9Vb2vGTx+fj2PEDPa+LjpjjIaTSCjs6kjj+ly/guAkD8IcLDnAsN/2XL2D99g7fmwVTaYVzfv8aLjtqNxy9x4Cc+61E2ztSSCvgx4/PwxeP2q3czSGXXbbRJBN1rA8moujhT3TqNndeeAAe+NIhGNizEcdPGoQHv3QoZn/3+Mz83Qf0QH1dDHsP650Jgo8Yl+21Yt/hvR3be+1bx+K2c/fH8L5NcOvdHNwbxLHjs4GhFQS7Pf3BGux1wxOYuWQDdnWmcMZtr+LYnz9vZrmML/Xt7UkkYs4v+Osffk+7vem/egF/emVJ5vmG7R24541P8NYnG7FVMwjJNQ+8mynpeG3xBnQk09hkloB0ptKZGw+TtlKMFZt24tv/fBcdyTQ27+zE6x9twJf+4n/jYLms3dqeOZZCrN+mf+8oGra3ZwNhZoSJKIqYEaZuc/T4/LOSvzt3MtZubUfvlgTq4zE88NZyXPvgu7j1nP0xqFcjTug1GIl4DBe7+i/+xvTxuPbBdwEA5x1kjGb359c+BgC8/Z1puGfmUjwzb03gvr/zz7kAgDNuc/b88PQHq/G3N4zBRH746DxMmzjQMT/oJrzrH34PFxwyCgDw9X/MwX/MNhw+tj/+fPGBeHbeGtz/VrYMZPFao054W3sS4779GFob6zDnu8fjBluwfeotL+ORKw6DiOA7/5yLZ+atwfETB2FUP6PP6J2dzlKNUtu6qxPf/udcHLp7f/zXlOGe+Ru3d+CA/3ka9XUxfPiDEwval/VjoIH1p5FkLxOqr4uXsSVERHoMhCnSmurjGNGvOfP8nANH4JwDRziWOXbCQLz57eNw4s0vYo2Z3e3bks0I33jangCA8YNbsWZLO/q01OPEPQfhx4/P61KbLv3zm47nb3+yUbvc1FF98cYSbzmGxV7f++qi9Xh/xRZc9MeZgfveuiuJR95diUfeXZmZ9v7KLViwZhvGDWzNBL2ptPIMdb29PYnGRNwx9HaQzTs70dpQh45UGm99vBF/fGUJTtprME7bb2jgevfOWoaHZq/AMx+sQbvZnvMOHoUN2zvw8yfn46/miIQdrgFZ5q/aijnLNjmC56v/PhuDejXiiHFtOGiMs+QEANZvMwLh9mQab32yEfuP6BPq2Kh7bO/I1rbzZjkiiiIGwlQV+vVowBeP2g3f+9f7AICeTQlMmzgQw/pkyyY+e+DIzONR/Vvwj8sORo+GOjw+dxV++/wixEWwszOFK44di0E9G/HDRz/AwJ4NWLQ2uPeGdduyl/iX3HQy9rz+CXxm/6E4fGybNhAedc0j+Mln9nZc1k+mFU769Yva7fdpTmDjjmxQ+5W/ve1Z5vhfvoAlN50Mq3ONi/44E/uP6J2Zf+otL+GdZZvxxaN2wzem74HH5q7C8RMHos68XL1myy7c+coSHLZ7/0wN9IE/fAYz9h2ChWu24b0VRpb7yfdX5wyE31thdFW3rT2J7zxkZK7PO3iUIwjWOfHmF5BWwBmTh2Vqyh8wbxz8zXOL8NI3j0YypTDKNjri5+/KXgl4ecE6BsIRs8MeCHMwDSKKIAbCVDUuOnQ0zp46Ak++vxoHj+mHQ3brH7j8AaOM7t8mDO6Jq6aNAwCs3LwTA1sbEYsJzjlwBLbs6sRLC9bhS3911tl+4Ygx6NWcwE8en+/Z7tzvTYdSCht3dKJXUwKbd3rrf79x/zuhj2tYn2Zs3LFZO29Ir0asMIfF3tmRwquL12fmvfXJpszjd5YZ6//2uUX49zsrsHTDTvRrqceb35kGADjnD69j4Zpt+O1zi9DW2oAbzH6fH5q9QrvfnR0pNNXrL3Wv2LTTM21XZwrJlLcXjmfnr8Gofi0Y3b8FVgcDOzpSaGnwnpqsGxk/+tFJ2oEZfvfCYnzl2LHaNgHAO8s2YXT/FrQ2lnY0Qcpy1AgzI0xEEcQzE1WVxkQcp+4zpMsjWA3u1YSYrXSgZ2MCJ+01GH+/9CCctNcgTBlpZBx3H9ADXzpqd3z75Ana7YgI+rbUY871x2fWCevqaeNw6zn74wdWScegVrT4BJ1nTR2Bcw8ySkW+ft8cAEavHdMnDdQuDwBLNxiB6vrtHfjU/76EyTc+5SjTWLu1HSs3e4NZy8rNOzHhu4/jrleX4F9zVmDhmq2O+Ws0Nx9+7R9zsGmn9+a4i+6ciaN/9hwetZV6XPPAu/jBv9/3vRFuV6e+n+Zt7Uks27gDu1w10Ru2d+DmpxdoB2Oh0trRwZvliCjapFyjYE2ZMkXNmjUr94JEEZJKKzw8Zzk+tfcQ1MVj6Eyl8friDdhneC8A0GYbN+/sxJJ129HSEEdbj0b0ak7gC3+ehbnLt+Cui6didL8WfLxhR2awD3t3aBu2d6BHQx02bO/Ays3GCHkn7TUYk3/wNABg0Q9PwrPz1uASe4nANcdg665OnHrLy/j1Wfvhsr84a5pL4fCx/fHignWZ52dPHYEf/b+9sGTddhzlM4hJVz1yxWHo36MBP35sHh54ezm+eNRujn6EJwzuiaP2aMOSddvRr0c9/vKasxzjzgsPwP4j+3hGQsyXiLyplJpS0EYqSFfO2Q+8tQxX32v8QJs+aSB+d17NvFxEFDF+52yWRhDlIR4TfHq/YZnniXgMh40NLsHo1ZTAPq6u39wBwej+LfjZGft4grO+5kAkg3o1YlCvRuw3og+UUrh62jgcN2Eg4jHBEePacOEho/DGRxvwtePHYWjvJgBNmPf9ExCLCf5x2cF45oM1uOTw0XjknZW+3bsF2W9Eb0wY3BN3+9T42oNgADhxz0EAjFrsZ752JI79+fOZefV1MRwxtg1Hj2/DdQ/OzbstJ//6Jcfz1kbnaeyDlVvwwUr/njusGxJbG+qwtT2Jf3/lMOw5tFfe7aDcttsywi31/LohoujhmYkoIk6fPCz3QjDKLq6w1cLW18Vww6mTPMtZJR4HjOqbqYe+4JBReP2j9RjauwntyTTuevVjnD55GJ7/cC1G9m3GJYePxgsL1mUC3q8eOxZTR/fFlFF9MG/l1sz0Aa0N2hIIi73/593aeuDZrx+FlZt2YvzgnpngfkdH0jcQfvzKw/HE3NX45dMfAgB+ffZ+uO6Bd7FVM8Jev5Z6HDt+gG93eK2Nddi6y7ueta1H313JQLhEdtpulmtuYPdpRBQ9DISJasxvPjs58/jr0/dAS30dBICIEWSfsOdgfPXYsdi0o9MxEt4+w3s7yjbmr9qKeEzQpzmBL/31Lbxujtz3wJcO8exzdH/jhji75vo6LP7hSXhn+WZ84c+zsHpLO3o1JfClo3bD+EE9sVtbD2zvSOKCQ0ZhaO8m9G+pxzl/eB1j2loy/SsDwF5De+PMA0bgtucX4abHnF3ivfiNozG8bzO2tyfxrzkrcM0D72Jkv2Z8bA6LDQDnHjQSVBpNiWzw28yMMBFFEGuEiagoNu/oxDvLN+HwsW25F9ZQSuW8yXHl5p0Y3KsJryxch860QntnCtMmDnSsN3vpJry6aD1OnzwMba0Nju0/8u5KHD9xEBQUGgoc4IE1wuFc++C7uPv1T3DlcWNx5XHjStAyIqLcWCNMRCXVqznR5SAYQKiePgb3MvqFPmR3/7rsfYf39gzHbW3/lL2HdLl91DUps9u8Zp+eT4iIyon92RARUcl0po3u7lgaQURRxECYiIhKJsmMMBFFGANhIiIqmaSZEebIckQURTwzERFRyXSaGeG6GL9uiCh6eGYiIqKSSaaMjHAi3rVhz4mISomBMBERlUwybWSE4zEGwkQUPQyEiYioZPYYaAzKMrBnY5lbQkTkxf5siIioZL5xwnicuNcgTBjcs9xNISLyYEaYiIhKpr4uhskj+5a7GUREWgyEiYiIiKgmMRAmIiIioprEQJiIiIiIahIDYSIiIiKqSQyEiYiIiKgmMRAmIiIioprEQJiIiIiIahIDYSIiIiKqSQyEiYiIiKgmMRAmIiIioprEQJiIiIiIahIDYSIiIiKqSQyEiYiIiKgmMRAmIiIioprEQJiIiIiIahIDYSIiIiKqSQyEiYiIiKgmMRAmIiIioprEQJiIiIiIalKoQFhEThCR+SKyUESu0cyfISLviMhsEZklIocVv6lERBQGz9lEROHU5VpAROIAbgUwDcAyADNF5GGl1Pu2xZ4B8LBSSonI3gDuBTC+FA0mIiJ/PGcTEYUXJiM8FcBCpdRipVQHgHsAzLAvoJTappRS5tMWAApERFQOPGcTEYUUJhAeCmCp7fkyc5qDiHxaROYBeATA53QbEpFLzctws9auXduV9hIRUTCes4mIQgoTCItmmid7oJR6UCk1HsBpAG7UbUgpdbtSaopSakpbW1teDSUiolB4ziYiCilMILwMwHDb82EAVvgtrJR6AcBuItK/wLYREVH+eM4mIgopTCA8E8BYERktIvUAzgLwsH0BEdldRMR8vD+AegDri91YIiLKiedsIqKQcvYaoZRKisjlAJ4AEAdwh1LqPRG5zJx/G4DPADhfRDoB7ARwpu1GDCIi6iY8ZxMRhSflOvdNmTJFzZo1qyz7JiIqlIi8qZSaUu52dBees4mokvmdszmyHBERERHVJAbCRERERFSTGAgTERERUU1iIExERERENYmBMBERERHVJAbCRERERFSTGAgTERERUU1iIExERERENYmBMBERERHVJAbCRERERFSTGAgTERERUU1iIExERERENYmBMBERERHVJAbCRERERFSTGAgTERERUU1iIExERERENYmBMBERERHVJAbCRERERFSTGAgTERERUU1iIExERERENYmBMBERERHVJAbCRERERFSTGAgTERERUU1iIExERERENYmBMBERERHVJAbCRERERFSTGAgTERERUU1iIExERERENYmBMBERERHVJAbCRERERFSTGAgTERERUU1iIExERERENYmBMBERERHVJAbCRERERFSTGAgTERERUU1iIExERERENYmBMBERERHVJAbCRERERFSTGAgTERERUU1iIExERERENYmBMBERERHVJAbCRERERFSTGAgTERERUU1iIExERERENYmBMBERERHVpFCBsIicICLzRWShiFyjmf9ZEXnH/O8VEdmn+E0lIqIweM4mIgonZyAsInEAtwI4EcBEAGeLyETXYh8BOFIptTeAGwHcXuyGEhFRbjxnExGFFyYjPBXAQqXUYqVUB4B7AMywL6CUekUptdF8+hqAYcVtJhERhcRzNhFRSGEC4aEAltqeLzOn+bkYwGOFNIqIiLqM52wiopDqQiwjmmlKu6DI0TBOqof5zL8UwKXm020iMj9MI136A1jXhfUqQTUfG1Ddx8djq1xdPb6RxW5IkfCc3X2q+diA6j6+aj42oLqPr6jn7DCB8DIAw23PhwFY4V5IRPYG8AcAJyql1us2pJS6HQXWoonILKXUlEK2EVXVfGxAdR8fj61yVeHx8ZzdTar52IDqPr5qPjaguo+v2McWpjRiJoCxIjJaROoBnAXgYVejRgB4AMB5SqkPi9U4IiLKG8/ZREQh5cwIK6WSInI5gCcAxAHcoZR6T0QuM+ffBuC7APoB+I2IAECyWn+JEBFFGc/ZREThhSmNgFLqUQCPuqbdZnt8CYBLits0X9XczU81HxtQ3cfHY6tcVXd8PGd3m2o+NqC6j6+ajw2o7uMr6rGJUtp7KIiIiIiIqhqHWCYiIiKimlQxgXCuIUOjTkSGi8izIvKBiLwnIl81p/cVkadEZIH5t49tnW+ZxztfRKaXr/XhiEhcRN4WkX+bz6vp2HqLyH0iMs98Dw+uluMTkavMz+RcEfmbiDRW8rGJyB0iskZE5tqm5X08IjJZRN415/1azGJaCofn7Oj923DjObuij69qzttlP2crpSL/H4wbPhYBGAOgHsAcABPL3a48j2EwgP3Nx60APoQx/OlPAFxjTr8GwI/NxxPN42wAMNo8/ni5jyPHMV4N4G4A/zafV9Ox/QnAJebjegC9q+H4YAy08BGAJvP5vQAurORjA3AEgP0BzLVNy/t4ALwB4GAY/fI+BqObsbIfXyX8x3N2NP9taI6R5+wKPL5qO2+X+5xdKRnhnEOGRp1SaqVS6i3z8VYAH8D4MM+A8Q8W5t/TzMczANyjlGpXSn0EYCGM1yGSRGQYgJNh9EtqqZZj6wnjH+r/AYBSqkMptQlVcnwwbpptEpE6AM0w+pyt2GNTSr0AYINrcl7HIyKDAfRUSr2qjDPsXbZ1KDeesyP4b8OO5+zKPT5T1Zy3y33OrpRAON8hQyNNREYB2A/A6wAGKqVWAsaJF8AAc7FKO+ZfAfgGgLRtWrUc2xgAawHcaV5G/IOItKAKjk8ptRzAzwB8AmAlgM1KqSdRBcfmku/xDDUfu6dTOJX6OdHiObvijq1qz9lAzZy3u+2cXSmBcOghQ6NORHoAuB/AlUqpLUGLaqZF8phF5BQAa5RSb4ZdRTMtksdmqoNx2ea3Sqn9AGyHcanGT8Ucn1l3NQPGJaYhAFpE5NygVTTTInlsIfkdT7UdZ3ermteP52xjFc20SB6bqWrP2UDNn7eLfs6ulEA41JChUSciCRgn1L8qpR4wJ682U/ow/64xp1fSMR8K4FQRWQLjEugxIvIXVMexAUZ7lymlXjef3wfjJFsNx3ccgI+UUmuVUp0wRhs7BNVxbHb5Hs8y87F7OoVTqZ8TB56zK/LYgOo+ZwO1cd7utnN2pQTCOYcMjTrz7sX/A/CBUuoXtlkPA7jAfHwBgIds088SkQYRGQ1gLIxC8MhRSn1LKTVMKTUKxnvzH6XUuaiCYwMApdQqAEtFZA9z0rEA3kd1HN8nAA4SkWbzM3osjFrIajg2u7yOx7wUt1VEDjJfl/Nt61BuPGdH+N8Gz9kAKvj4UBvn7e47Zxfrrr9S/wfgJBh37S4CcF2529OF9h8GI03/DoDZ5n8nwRjm9BkAC8y/fW3rXGce73xUyB3rAI5C9g7kqjk2APsCmGW+f/8E0Kdajg/A9wDMAzAXwJ9h3I1bsccG4G8w6uY6YWQJLu7K8QCYYr4miwDcAnMAIv4X+n3gOTsCxxHiOHnOrszjq5rzdrnP2RxZjoiIiIhqUqWURhARERERFRUDYSIiIiKqSQyEiYiIiKgmMRAmIiIioprEQJiIiIiIahIDYapZInKUiPy73O0gIqLceM6mUmAgTEREREQ1iYEwRZ6InCsib4jIbBH5nYjERWSbiPxcRN4SkWdEpM1cdl8ReU1E3hGRB80x2SEiu4vI0yIyx1xnN3PzPUTkPhGZJyJ/NUekISKiLuI5myoJA2GKNBGZAOBMAIcqpfYFkALwWQAtAN5SSu0P4HkA15ur3AXgm0qpvQG8a5v+VwC3KqX2gTEm+0pz+n4ArgQwEcAYAIeW+JCIiKoWz9lUaerK3QCiHI4FMBnATPOHfxOANQDSAP5uLvMXAA+ISC8AvZVSz5vT/wTgHyLSCmCoUupBAFBK7QIAc3tvKKWWmc9nAxgF4KWSHxURUXXiOZsqCgNhijoB8Cel1LccE0W+41ouaKzwoEtn7bbHKfDfBBFRIXjOporC0giKumcAnC4iAwBARPqKyEgYn93TzWXOAfCSUmozgI0icrg5/TwAzyultgBYJiKnmdtoEJHm7jwIIqIawXM2VRT+kqJIU0q9LyLfBvCkiMQAdAL4MoDtACaJyJsANsOoSQOACwDcZp40FwO4yJx+HoDficj3zW2c0Y2HQURUE3jOpkojSgVdnSCKJhHZppTqUe52EBFRbjxnU1SxNIKIiIiIahIzwkRERERUk5gRJiIiIqKaxECYiIiIiGoSA2EiIiIiqkkMhImIiIioJjEQJiIiIqKaxECYiIiIiGrS/weYBGUtOrxL/QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "035ns_image_1394469579519_clean.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADDCAYAAAAya0IYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADs2ElEQVR4nOz9eZRle37VB+5z485zTJn5pqpSqUql0ZJlIUAsusHYbmCBsdw2DfYyWGBJtpv21G4ztAfAQ9MNNraXbUyxoIXbzLYxNlYbDEZgNxIGMUmFqkRV6VXVq/cyM6Y7z3FP/xHx+ca+J/PVm/K9jHz522vFepER957zO7/zO/fF3r/93d8sz3MlJCQkJCQkJCQkJCQkJCQkvBOUnvYAEhISEhISEhISEhISEhISnj0kQSEhISEhISEhISEhISEhIeEdIwkKCQkJCQkJCQkJCQkJCQkJ7xhJUEhISEhISEhISEhISEhISHjHSIJCQkJCQkJCQkJCQkJCQkLCO0YSFBISEhISEhISEhISEhISEt4xkqCQ8IEjy7LPZFn2C572OBISEhISbpBl2atZlv0Db/O1eZZln3iX53nX701ISEhISEi4XUiCQsIHjjzPvyXP8x952uN4K2RZ9k9kWfalLMumWZb9t1mWHTztMSUkJCR8mJFlWS3Lsj+QZdkoy7L7WZb9K097TAkJCQm3DU9amH07x0t/Fye8GZKgkJDwGGRZ9i2Sfq+kf0rSXUkzSf/ZUx1UQkJCwocfv1XSJyV9VNIvlPSvZVn2i5/qiBISEhKec6S/ixO+FpKgkPCBw221WZb91izL/kSWZf9llmXjLMt+Isuyb8iy7DdnWfYwy7KvZFn2D9l7vy/Lsp+6fu0Xsyz7wcKx/7Usy97Isuz1LMv+GVdcr3e+fleWZV/OsuxBlmX/eZZljTcZ5j8p6b/P8/wv5Xk+kfRvSPpHsyzrvD+zkpCQkHB7kGXZd2dZ9qNZlg2uP1P/kyzLqoWX/dLrz+HTLMt+Z5ZlJXv/r7v+rL7IsuzPZFn20bd56l8j6d/O8/wiz/OfkvT7JP3TT+aqEhISEm4Psiz7pizLfuT6c/YzWZb9w/a7H8my7J+xf//TWZb9r9ff/6XrH/+tLMsmWZb9n7Is+wVZlr2WZdlvuf5MfjXLsn/y3R7vMcNNfxcnvCmSoJBwG/DLJf1/JO1L+huS/oyu1uZLkn67rhRR8FDSL5PUlfR9kn53lmXfKUnXu1j/iqR/QNInJP3vC+f5f0r6Bknfcf37lyT9m28ypm+R9Lf4R57nX5C0un5/QkJCwocdl5L+ZUlHkn6upF8k6Z8vvOZ7JX2XpO+U9Csk/TpJyrLsH5H0WyT9o5KOJf0vkv7IW50wy7J9SS/KPnuvv/+Wd38ZCQkJCbcPWZZVJP33kv6spDuS/i+S/lCWZZ96q/fmef6/u/722/M8b+d5/seu/31PV5/ZL0n6tZI+/R6P50h/Fye8KZKgkHAb8L/kef5n8jzfSPoTuvoD9Hfkeb6W9EclfSzLsr4k5Xn+P+R5/oX8Cn9RVx/EP//6OL9S0v87z/PP5Hk+k/TbOEGWZZmk75f0L+d5fp7n+VjSvyfpV73JmNqShoWfDSUlJTYhIeFDjzzPfzzP8x/L83yT5/mruhJ2HxFprz9PvyzpP5T0q69//oOS/h95nv/U9ef6vyfpO96GS6F9/V//7E2fuwkJCR9G/Bxdfeb9jjzPV3me/8+S/rRuPkffLf6NPM+X138j/w+6+tv4SSD9XZzwpkiCQsJtwAP7fi7pNM/zS/u3dP2HZpZlvyTLsh/Lsuw8y7KBpF+qKzVWutrZ+oody78/ltSU9OPX1rKBpP/x+uePw0RXLghHV9L47V5UQkJCwrOK69KzP30djDjSlShwVHiZf8Z+SVefwdJV/sF/ZJ+155IyXe2afS1Mrv/rn73pczchIeHDiBclfSXP86397Et668/Jr4WLPM+nheO9+GYvfodIfxcnvCmSoJDwzCDLspqk/1rS75J0N8/zvqQf1tUfqpL0hqSX7S2v2PenuhInviXP8/71Vy/P87Yej89I+nY798cl1ST99JO4loSEhIRbjt8j6bOSPpnneVdXJQxZ4TX+GfsRSa9ff/8VST9on7X9PM8beZ7/5a91wjzPL3T1Of7t9uNv19XncUJCQsKHCa9LesWzZ3T1OfrV6++nutoIA/fexjH3syxrFY7H5/K7OZ4j/V2c8KZIgkLCs4Sqrj68TiRtsiz7JZL+Ifv9H5f0fdchN01ZPsK1Avz7dJW5cEeSsix7Kcuy/8ObnOsPSfrlWZb9/OsP598u6b+5LpVISEhI+LCjI2kkaZJl2TdK+uce85r/W5Zl+1mWvSLpX5RE3e1/Luk3X6eCK8uyXpZl//jbPO9/Ielfvz7uN+qqVO2H3sN1JCQkJNxG/BVdkfx/LcuySpZlv0BXmWJ/9Pr3f1NXoYfN63DxX194/wNJH3/McX9blmXVLMt+vq4yx/7EezweSH8XJ7wpkqCQ8Mzg+kPrX9CVcHAh6Z+Q9N/Z7/+/kv5jSX9B0ucl/ej1r5bX//2N1z//sWsL75+T9NiwmjzPPyPpn9XVB+hDXf1xXQwkS0hISPiw4l/V1WfsWFdi7ONCuv6UpB/X1R+q/4Ok3y9JeZ7/SV2F4P7R68/an5T0S97mef8tSV/QlVX3L0r6nXme/4/v+ioSEhISbiHyPF9J+od19dl4qqsWjL8mz/PPXr/kd+sq9PCBpD+oq79HHb9V0h+8Li0jJ+G+rv4+fv369f/sezyejzf9XZzwpsjyPH/aY0hIeF+QZdk36eoP2dp1MFhCQkJCQkJCQkLChwrXDof/Ms/zl9/ipQkJTxzJoZDwoUKWZd97bfXa19UO2X+fxISEhISEhISEhISEhIQnjyQoJHzY8IO6ylj4gq76qD+u7jchISEhISEhISEhISHhPeJ9ExSyLPvFWZZ9Lsuyz2dZ9pver/MkJDjyPP/F190bDvI8/948z9942mNKSHhaSJ/DCQkJCU8f6bM44f1Gnuc/ksodEp4W3pcMhSzL9nTVRuQflPSapL8q6Vfnef53nvjJEhISEhIeQfocTkhISHj6SJ/FCQkJH3a8Xw6F75b0+TzPv3idYvpHJf2K9+lcCQkJCQmPIn0OJyQkJDx9pM/ihISEDzXK79NxX5L0Ffv3a5J+9pu9eG9vL5ek7XYbP8uyTKXSld6Bi2Jvb0/lcjm+9vb2tN1udXl5Gf/ldRwjyzJxbP+e13GM1Wql7XYb58jzXMvlUpvNRpVKRfV6XeVyWZvNRtvtVuVyOcbIODebTYzFz1GtVtVoNNRut+N12+1WeZ5rvV5rNptpNpvtjBGUSqW4jjzP4/h5nivPc2VZpmq1qmazqXq9Lklar9cxdq6XufF5Xa/X2mw2KpVKqlarKpdvlgNzw3m32228vlwuq1KpKMsyrVaruMZSqaT1eq3VahVj46tUKsWYuadZlmlvb0+1Wi2Od3l5GWMvl8tqNBqq1+sqlUoxr+6q4bjMvZ+X6+ZnnLd4DEk788M4fY79vvj94P7wWubM1wDX6T9nTnx++S/fF49TfB587T1u3H5+XufH5lgcz6/LwfiZ68vLS202m53X+fH8Zz7/PJfF8/nPmFPmxsfs4y7ez+12q1KpFOvW173fb58HnxufW97D6+fz+Wme58d69vCOPoclaa/dyj/+dVs9+MnG+zqwhNuPzXFLl/WnPYqE5wWlpVR5OH3T3y801SpfZm/6gtuNd/Y3cfocTkhIuKUY6+KxfxO/X4LC4z70d1hKlmU/IOkHpCvy2u/3NRqNtNlslGWZyuWyms2mKpWKeE2pVFK73Van09G9e/d0cHCg7XaryWSi5XKpyWSixWKhVqsV5Pbg4ECdTidIx2q10mq10mw2U6VSUb/f1+Xlpb7yla/o/PxczWZTH//4x7XZbPTqq6/qtddeU61W06c+9Sl95CMf0XQ61cnJiVqtlu7evatOp6NOp6N6va7hcKjRaKTlcqnRaKTBYKDtdqvj42N9x3d8h77ru75LH//4x7VYLGKsb7zxhj7zmc/oJ3/yJ/XgwYMgPhDcWq22Mw+j0UiTySSuo1wu686dO/rmb/5mfcu3fIv6/b7Ozs706quv6vT0VMPhUKvVStPpVKvVSvV6XZVKRaVSSbPZTPfv39dwONTR0VHMFXN8fHyser2u+Xyu5XKpk5MT3b9/X+VyWV//9V+vbrer+/fvazAY6Ou//uv1sY99TGdnZ/rpn/5pnZ2dqd/v6+joSMvlUovFQqvVSpLUaDSUZZnm87kqlYo++tGP6hu+4Rt0cHCg1WqlN954Qz/xEz+h+Xyub/qmb9J3fud36u7duyHyLJdLzedzzWazEHb4N6Ryu93unBcRaLPZaD6fxxq7vLwMoWS9Xu+Qb+Y4z/OY/8ViEQIKqNVqcU5EkDzPNZvNtFgsVK/X1Wq1VK/XlWVZCCYIEByX800mE43H4yDwk8lEe3t7qtfrqtVqO/ee+1mtVrW3txevXywWQeZdKFutVloul/HvxWIRolJRTONaG42GWq2WOp2OyuWyRqORHjx4oOl0Gs+mPdfabDYhoGw2mxhvvV5XvV4P0s5cVSqVHdFqu92qVqvF7y4vL3fWD8fm+jabTVxHvV7X0dGRms2mJGk8Huvs7EzD4VCXl5dqt9tqtVq6vLzUbDbT5eWlKpWKms2mms1mrKXRaBTr67Of/eyX3tWn4NPHW34OS7ufxXU19bHP/DJ97Fn9sz3hieHsV/xcDb4pV7731q9NSHgS2P87mY7+i7+ufLl85Hd/Jf/zT2FETwzv6G/i9DmckJBwW/Hn8v/qsX8Tv1+CwmuSXrF/vyzpdX9BnueflvRpSarX63mj0dBkMokdSgjadrtVtVoNArdYLCRdkQqIFISiVCqpVqtxfC0WCw2HQ3U6HfX7/dh1HI1GsXu5Xq9VKpVULpdDcFgul+r1emq329rb29NsNtPDhw+1v78froKzs7Mg+oyPc0B2VquVBoOBBoOBvvjFL+qll17SCy+8oG63q3q9rtFopOFwqP39/SDekBwILzvzCA04CTabTbgCNpuNJpOJJpOJer1eiBC1Wi3mR7ralcVxUSqV1O12tV6vtVgsdHp6qsVioaOjI5VKJe3v7weJrFarGgwGITQsFgstFgsdHx/r7t27IZ5cXFwEyZWk5XKpZrOpF198UWdnZ7p//742m41qtZra7bZGo5HG47EePnyoO3fu6OjoSJ1OR/P5XEdHR3rjjTd0fn6u8Xis/f39uEflclm1Wi2InztbSqWSKpWKltd/kLhAUKlUdoh/pVLRer1Wu92O90AiWW+skcvLS+3t7YUYwH1Zr9exHrluxoBg0Gg01Gw2Y9e90WiEsIFw1Gg0dhwh/B4RjXXabDZjjpwQX15eqtVqxdrnOUJEYJysGdYTBL/otEAMQGhZrVZaLBZxLf1+P5473Afs7OMgYi4QA1nHfh8YB44j5s1FB8bMmtput3GM5XKpPM/jfJvNRtPpNMSLTqcTAuJ6vdZkMlGtVovPifl8rs1mE+uo1+up1WqFIMWz84ziLT+Hpd3P4m528ORDdRKeSRz+/h/V4jd+j+b3tm/94oSEJ4CLb85V/+XfodZ/9Vee9lCeNN7R38TpczghIeFZw/slKPxVSZ/MsuzrJH1V0q+S9E+82YshNNVqdccun+d57Ep6icN0Og0S2ev1JCl2nSE82+1W8/lc4/FY0+lUd+7cUb1eD5ICCccqzU43u6lZloWocHp6qsFgoAcPHgS5m81mGgwGUQqR53mQ+dVqFeRus9loNpvp9PRUn//853V4eKhv+7ZvU7vdVrlc1nA4VL/f1507dzQajWKH1okUxAvS5zvC7ABPJhONRiP1+31JV8SxXq+rWq1qsViEECLd2L7r9bqOj49VLpf12muvablc6uzsTKVSSUdHR6rVaur3+6pUKiG0tFqtIPbr9Vq1Wk2Hh4daLBYaDAZBnCXFeV944QV1Oh1dXl7qwYMHury8jF1v6Yoknp6e6u7duzo4OFC73dadO3c0GAy0WCx0cnKig4MDNZvNndIGyDIiU6lUimtmh5r1hUuhUqmEoNJqteJ+NxoN7e/vazwea7vdxs4/IhNCDEQfgo87BjLstnsn7sVyHa4BUSHLMtVqtVj3kFrWJ1/ValWdTkeNRkOlUinGtt1utVgs1O/3Q2Rar9eq1+tqt9uaz+dxLtYPpQuSQhi7vLzUfD4PIYT3uLhQLpfjmJeXlzEurofjIdis1+v4HvcCQheOJOAi2uXlZYyX4yO2IB5mWab1eh3PB8/9cDgMYYexMpbpdBqChAshOFwQ47j+Zxjv6HM4ISEh4Wlj0Supe3igy7Pzpz2UJ4n0WZyQkPChxvsiKOR5vsmy7DdI+jOS9iT9gTzPP/O13uO7jhAJJwiS1Gq1ghhDTpbLper1uqbTqfb29mJXfb1e6+LiQrPZTOPxWJvNRgcHB7q8vFS1WtVyuQwy5nbvxWKh6XSqzWajZrOpw8PDKGM4PT0N8iZJs9ksCC72cAit7w7P53NdXFzoS1/6kl544QV97GMfU7fbVaVS0eHhoc7Pz9XpdNTr9TSdTmMXdrvdqtls7mQKeNYBu+/z+VyDwUDn5+c6ODhQo9HgPuzkGDBORAt2vyk1uLi40Hq91mg00unpqabTaeQbQNyxhZfL5di5r9frQdSw+UPEh8Oh9vb29MlPfjIs/8xVq9XS/v6+Hjx4oJOTE52enqrRaMQ9Yid+OByG7R9S6zvs2PMhptVqVZVKRbVaLV7HWoEMIzrs7e1pMBgoz3P1+33t7+9rMpnsrLfZbBaiQ6VS0XA4jDVJCQDfV6vVGAciFfOEgMLvms2mLi8vNZ1Od5w5HAcSToYHa4K5y/M8rPzsviMMUFbCuShXmM/nMVf1ej1cBuv1eqf8YLlcxi4+zwnCTb1ejzHwLDJuRDnpJoeD7yHoPEMINi6i+RfPP/eNdUd5RKlUUqPRiDIY3EG4FBAFa7WaWq2WZrNZrIXVaqVKpRLiGI4IREYcDohwzyLezedwQkJCwtPExbfm6n7l46r82Q+PoJA+ixMSEj7seL8cCsrz/Icl/fDbfT3kGPs2f8izY0tJg5dCkLnQbDbD2VCv13Xv3j21Wq2w4V9cXGgwGOjrvu7r1Ov1VKlUNJlMdHZ2FnXzkDbI6Xw+V6fT0f7+vs7Pz3dqqtkt9dBG6Yp4QVR9vKvVKiz/X/ziF/WRj3xE9+7dU7vdDhLb7/fV7/eDPM/n86glr9frUSOOA2O5XIaoAhE6OzvTwcGBDg8Pdyz57EJ7eQTWc3acj46OJCnmYz6f6+zsTMvlUvv7+1EOMB6PQ0hhtxiSC9mnfn+xWOj8/FxnZ2f6uq/7On3yk5/UZDLRw4cPQ+zY39+P3fPT01N1Op0QlXCULBaLcE6QjQF5ZL4RKnBreOghBHs4HGqxWKjX60X2Bfb3s7MzSQpHBvkOEFm+er3ezrFwISyXy50yFeYX181sNlOz2QwXgIc4UlaDkMJruD+4MRCppKvcBpwg8/k8hI/tdqtut7sTAsn73QEB6Ufk4J7yXgQhSj8I+oR4Q7ibzaYmk8lOeKkHKiIa4DQgk4PX46BxkciFMMRFnA2sY0kxXxzTszEQFaQbAYSSFFwRzI+kKIHBgYJggajyrOKdfg4nJIDsu75Vm+Zbvy4h4Ulj+HUV3XvhnjZv3H/aQ3liSJ/FCQkJH2a8b4LCO4GnwLsNGRJC7T8EDrLIrjiW5c1mo8FgoNlspm63G7vf5+fnevjwoQaDQZD3yWSiBw8eRJkBogKugtFoFGF6R0dHYY2HpOCUgHhSF89OLy4FAiGXy6Wm06m+/OUv6/Of/7w+/vGPh6BwcHCgXq8XJRYnJyex84uAUa1WNZ/Pd8L4pCvChgAyGAx0enoa5NMdH95BgnmDjDm59/wGshGOj491cHCg2Wym0WgUQo6XAUDSKI0gG2AwGOj111/XdDrVvXv39KlPfUp5nms8Hmu5XEbpwXK5jLwJHCfsYq9WK52cnEi6IcCsjUqlolarFQR6sVhECQKCBOUEtVptx22AuIRzgqyBer0e3zP/HprYbreVZZkuLi603W4jhJF1AfFlPeF6cdcA65USnFqtpul0qul0qm63G7v5kG/EMgQ3SVHaAzFm7sfjcTgNWNc8M5yLXIRqtapWq7Xj/Gi32yHqOdH3zAhKGry7ByUwCCLeUQJxQFKIbC4qMB6eb8qOyCLBNcDnAc6PohsEpwRrBJHlcYIC84Hgxu+5zxw3IeF5RF7KpCyVcid88Bh8Y66jv3EsfYgEhYSEhIQPM27FX8vYvRuNRhALb9tWbFcHWQaQMyz2Z2dnQc57vV7s3p+dnemVV16J3VWIZLHsgR1/UvXb7bba7bYuLi6CeO3t7Wm9Xu/U/lNT73XvjUZDL7/8cogJo9FIX/ziF/WFL3xBBwcHOj4+1uHhoXq9nrrdrvr9ftj+sXHTOnFvby8C59g5hfDS/eHi4iLs8qTou62bXW+6YrTb7Z3WhM1mM6zsm81G5+fnWi6XIX5Mp9Mor0BsoHOBg3FtNhs9fPhQX/7yl3V8fKwXX3wxSgzoVoGLgLyEdrut2WwWO+Lb7Vbn5+eRU0FJB/ce4QdSCVFnLSE8QNLduo+oIkkXFxdBsnHFSAoSi1MCEowlntIBXCNuzfeOEePxOH7HnEO8q9WqttutLi4udkIFsfND6ln3bvnnGdpsNhqPx1qtVkHeAevH2ycSrsncUV5SrVZ3chdYh5B9n1e+KIlxQYU17PCWjAiERacD99Cvi+vB8cA1eAkS5N/dGTgOKEUpljFQXoEoRtnH49Z0QsLzhOVhXdtb8RdCQkJCQkJCwm3Grfhzwa3ijUYj7P3srmKnl27cDB5c6LXb8/lc9+/fD2cBYgAW/sFgoHv37gXphgx54jwEEpcCWQa0YIScQKLa7bZefPFFvfLKK6rVatEuEhGk1WrppZdeitDD+/fv6yd+4idi57/b7erw8DBCH/v9vk5OTiL74eTkRHfv3g3C5HZ8dt65BsIi2X1dr9eqVquxK82usLco7Ha78W86PEDqR6ORptOpjo6OdHR0FN9Pp9OYH2zxlIQwhwg2w+FQf/fv/l197GMf04svvqgXXnghulKwAy9dkU26TXiIpKSdUpS7d++q2WzuhEz67v90Og0RiuOwxiqVSpRu4F6AaDYajcjPYJ4h3JLifu/t7Wl/fz/Wrjtmiq0nWQcICogbvJfXSDfkFhcMZJtrYe0hCmHJhzgXxTjvUEHJgLsNyuVylGp4CU+9Xo+ykOl0GsIP4Ys4ELyUhmeSfAbGxTgJqfTr5ZoIXGW9cjxEBA9oBKxjnBgIC7zX8xmYB8pEcER4QKUfw8tDvINIQsLzhOHHK7pspPWf8HTw2i/q6GNvvKyH/8ArWnUzrf/wjz3tISUkJCQkvAluhaAAMcrzXLVaTd1ud4dAQJrZ1fX6c0ii77yPx2OdnJwEWcDCPhwOdX5+ruPj4+g774QM8uClAU5GIeVYqEulksbjsb74xS/qk5/8pD760Y/qzp072m634VSAgHY6HR0cHEQWwauvvqrPfe5zunfvnu7duxeOCjISPMF+NptpMpmo0+mo1WpFEB8EiYA/7N3YxH23F1GBcgBEAOr7IaR0neh2u9FRA2dHp9PR0dGRZrNZBF4OBgMdHR09Uvog3YTyLRYL3b9/Xz/90z+t/f19dbtdtVqt6FIwm812WhWStg9hxQ3C8WlfiTOAnXCIZK1W23Ep4EBBtCKvgc4f3pKTsE4cJqPRSKvVKo6JqAQ55r3MJWF/tVotrp91hYCD6MI9cfHE55H3ewkBjg7Whgd0Ur7B+BgPwogHJHoOAZkOkqIDAmIb64qSD3fnuGjj3xeJehGsD+9G4aUFlIFIN+4j1oJnKSwWiwgNpbTEO2OwpoqfNRybeecceZ5HCYcLNwkJzyNe+ON/V6vv/6QWx0lUSPjgsbiz1Re/7yNad3Ll5a22z3acTUJCQsKHGqWnPQBJsUMMiWs2m2q32zuWZncjYPmnTR9k37sIjMfjIIOQMmrx5/O56vW69vf3d9ogUjbhbfiGw2H0sKdFpLe/2263GgwG+omf+AmdnZ1F1wRS9dk1pjYdIn16eqrPfOYzeu2118LiTmgfYocn7g+Hw3AbQIIhY5AtD2GEfE6n0wjtYwdcUswZeRFkD4xGI52fn0fY5Xq91sOHDzUcDqO1YrfbjWtk3qj7h5ix6w35HQ6H+sIXvqCzszNdXl6q2WzGvM/n83AseNaD52lQ+jAej2N8nU5H/X4/yL5fO+NwCz475ZvNRqPRSGdnZ9FVYzqdxu4+58NJMBwOo53karWKTI7xeBwkFjFkNBppOBzG+11U4P4gouCGYCecfAd3PVDew9ogj4NyhclkEoKM5214JghrmQwO3/kHnrkxm810fn4eJRrNZlOdTkelUinWCG4G/stzzLjd/VH8nZN8d01wr/1ekosg3bgI/H28BqcMWSuMy6/Vu6dwXOae0hJ3K1GKk5DwPOLy5ETZ5Vu/LiHh/cJqf6u8nHI8EhISEm47boVDwckb5BvxgF1mbNEQEmrUcSngVMDGfXZ2FgFx0g2ZnE6neuONN/Txj39cR0dHkbHgGQpOgiB6iAl0XFgsFiFosAP/2muv6cUXX1S/34+dX88J2NvbU7fb1WQyidaMf+fv/J0g6ZxDumkrCAGGZEmKrAmH2/0hn5J2BA3mzckdZJP5XiwWkZFw7949VSoVnZ2d6Utf+pKOjo6i1ePFxYWGw2HY2zudjiTFOL3Wnzk8Pz/X5z//eX3TN31T3EsIPAGN7Ayz075cLmOHnl362WwW5RW4Pu7fvx/tF92ZQLtN1hkkcjQa6f79+6pUKur3+zvtQn1usN4PBoNYR9PpVK+99tqOAOROgrOzM1WrVR0cHOy0P/T5QBTY29sL8YyOFtvtVq1Wa4d4Q/bporHZbMK5AwlnZ99zCtyNsFwuY81yvyHQrH/yJLgnCAMEXE4mkyDevNZdAS4QuKDwOBTbSiIGIh45sffwRF/vuCO8YwTZDC4GuOgDXETx+aHEBVEqIeF5xOkP/lwt7iR3QkJCQkJCQsLXxq0RFCA+lARA6iCVBKVJN4F0EH7+TftIdpwfPHig4+PjCL2jtIKdSu8EISlCDPM83wn+m8/nIWrgGqAGmy9yAr7xG79RvV5PR0dHOwn1fFWrVfX7/Wjz9/DhQ52cnOzsyvNfSB+ElFILiCChcZ5BQbBet9uNHW6cHl7W8TjCSc3+er3W2dlZOEHm87lef/113bt3Ty+//LLa7XZY+plTwh8vLy91cnISzhBJseN/dnamL3/5y+EqoJyDtoGMs1KpqNPp6PLyUuPxOK4R8ry3txdCTbPZ3BEfJpNJiCjY85kfF50oe0BsoJ0m95nroQSBchLvqDCfz1Uul9Xr9SL0kIyGi4uLWFPML/kEiF50smD9EiCIuwDy72UBfizIMfNIOYg7D7x7Cq4RnjnWOgIE4g5CBUCo6Pf7qlar0eKSY3iAoZ8HQQGniJNz7gfr/vLycqdTCqICrhwXhRAg/TyUmbhLAcEAsYX/IjQwT97dBWGJeSyGWyYkPC84+r0/quVv/B7N7yVRISEhISEhIeHNcSsEBcQBJxQQCazL3iLOd4/ZRYRsYX1mF3UymahWq4Xlmx3X9Xqtw8NDvfjii/rKV76iwWAQu8WXl5dRPgFp9pZ2fE2n0xAWttut7t+/r89+9rOqVCq6c+eOer2e1uu1BoPBzg4yZGUymej+/fu6f/9+ECHpJniyVquFM8MFAH4nKV6z3W4jfBJiDdnz3W+3gXtJATkL3jpvMBio3W5rs9no/v37+tznPidJO/kHl5eXKpVKkblAucH5+XmUVbjl/uLiQg8ePFCz2Yx7y/3j2iTp4OAgRJXZbBaZEvP5PHauKRFAoBmPxxG2iAOA9QBB5doRgbzdIbv/OA+YO3fP+HqltGY6narVaqnVaoW4wdpgXnzXHcECaz6lBS5SQZoRadwRIClEDUg6Y5/NZjstHSkHwanhJQQIdZzT2yUiJuHQ4HmjRScCAudYLBZxHEQQnjXWNs+xuxkQEZmXVqsVrWA5L44Xb4HKfWBeWSvkapD5wPgoZZIU/3XnDu9D1GE9JkEh4XlFVqspvxVFkQkJCQkJCQm3GbdCUJCuyC073U582QkmdI/XUvIAOVgulztlCezG+84uifWQH+zu+/v7GgwGQYaazeZONkO5XI4dcciQl2BARgeDgX7mZ35G/X5flUpF3W5XnU4nzgdpOjw8VL/f1xe/+EUtFgu9+uqrarfbj1yft36UtNP5gqR66WaHlRwJdqsf1w6TsUAuETgg6pKCGF9eXsbOPKJCs9nU0dFREDSIOyIHLRzpUFGtVnV8fBwCwGQy0cOHD6P0g/sHGWy1Wmo0GhFk6fZ67gV5FLSe7Ha7kbuB+ML1k3XhXRggxxx7tVrFOZkn8ghcVPKxOhkmxwABw10w5D0gnKxWqwjfRExYLBZRbuKhlvP5XM1mM4QziC7PBvkakGpJcV84H24DHCCdTieCMnECeOkJXTf8XpIF4q0bCZPcbrdRooJ7wF05CB4EiFJG4e4AF6c6nU7cd0k7bgUvcwDMjYtXfu8RG3xdSI+2nESMZBw8OzhCEhKeN5z/qu/U8iCV/CQkJCQkJCR8bdwKQQHbNfXo1LJTWuA5AF76wHshCpArWj1CgNhRns/nGgwGUTOPBR0LPw4Jz2nwlogAcsPOt+9svvbaa3rhhReia0On09FsNovuCpCfVqulj33sYzo7O9NwONRoNAqy58GT0m6tOcJKMbCQ9xwcHOj09FTj8Th2dhEnqtVqBDR6ACbX5J0hmENvzTgej/XGG2/E/WAnnkwIyiwQB6bTqbIsC5cD98pLE7i+er2uw8ND3b17V/1+Pzpd9Pv92DX3nAcEnfV6rdFoFCUYEG5vtcjrEUjIKZAUwYbeKpG1gxjD3Ht5gv+OUEnWpRNsLyfguDgi6vX6TmAm9nyOkee5FotFnJvrwHGCa4fdexfZmGfWCsdeLpcheF1cXERXCu4xmSC4LghLxUHB62g96sGIxUwCAjfX67V6vZ5arVaEmJLbId2UhbCe+v1+nJfMDMqFHicqIDwSSNloNGI9u7MIN4aXi7h7xMfBvHv3iYSE5wn7f/BHNfuN36P5vSQqJCQkJCQkJLw5bs1fy76byB/21Fnv7e0FeVmv1zttFb1GW9KOywDyjgixXq91cXGhbrer8XgcO9/7+/tBJH2nHhcDhMvt+RAQXoNFezwe67XXXotOCEdHR+r3+2HPh+R2Oh31ej1Np1NNp1Odnp7q4OBA+/v78Xps7JAgRA1Ek0qlEtZuyGC9Xo8wxdFoJOmGsENIIVTMVaPRUKVSCVcB189OO7vTXkLi6fmTySRKRhgPIs9sNlO73Va/39/ZseY6GB9ukXv37unOnTvxe4inu0O4n5C9+Xwu6YboemkBhBQBAJeGd6LYbDbRLpESCRcPAC4HdzCQOUFmA6U6XmZRr9fDOSLd7LpD0BEdKA1A8CFkEHcBJJlngjWJWFSpVLRcLjWfz2M9kGUBqXbXRrPZjDKg4tpm7TUajZ0sDuZF0s78Ud5AoCpjZYyEmDabzRDzHB4Qulwuo6sE5yPYlPWLmOItNH19UB7izg5ED0qi3J3hOSJ+/1MoY8LzjO6XtloeZtpW0nOQkJCQkJCQ8HjcCkEB8uk5AViUPdDNg9o8N6EY+LbdbsMeD5GCrK3Xa02nUw0GA83nczUaDTUajbD9r9frINEIAJBnyCQBj1jBOT47/LRefPDggVqtVtRxFzsvtFot9Xo9nZ6eajQa6fLyUoeHhxoMBlEOQI0+49psNpEbAMGCcLI7TE074XnMBaIABJJyBRwBEFjPiigG6rHLThcKQhvPz88l3VjQed1sNtNgMFCr1QqRh3p3HAfcl8vLS7VaLR0fH6tarWowGEQoo4sT7MT7tdB9AGJYzBcYjUYh/HgWh4tFHEu6cc24fZ5xUubi5TUcC0cIY5QUu+205ywGDK7Xa83nc7Xb7RAeEAIQVbjX3EMEEsZFOKVb+1lvnm2QZVl0LcG94M+WpHDGkHuBOMKYcejwvXfWoKQDwYVOFi7aMEc867gxWJM8l4wDwYV156KHu5a4N6wv1qHnhnDfWAuMwVtaelZDEhQSnmd0/uiP6eIbv0erXnoOEhISEhISEh6PWyEo+G4tHR8gHU5m+a+nuENg3frvxN93UyExkB92Z6lpdwFCUnQOgKRCotgldlEBAgVxOj8/19nZmQ4PD3VwcLBT/z8ajTQYDFSpVNRutzUcDiMrAmcDdnQvp2DcBBCyK00+wXa7VafTCTs9ZJl8AboLsEO/Wq2iBODw8FDtdjvEFL9myJaXEFDrvlqtdH5+Hm0cuU+IG4vFIro+QBIRZNrtdljLCYGcTCaqVqu6e/euSqWSHj58uFM/j1jkIYLU4UvaKZvx7iCUAEiKeeGesVtddKJARhFzaEno5TlkTUBE6/V6tJGkdaV0IypwfeyMe+YARJgyCt85Xy6XO2uM7AJcEZQdcGwXM7h2ngXIu5cEIOIhZFBe4M+Zk3PKLrxkwEs0yEzwbAUvQfLyDp4lBAnWu3TjrnFBzTtJMBaeQ9w7fIb4NZM5wTEIrHS3igsL7sZISHgesfn7/z5d1pOYkJCQkJCQkPDmuFWCAruqXofPDqrnJkAmPYWeGmqv/Ye4QH4gIhwTItlsNtXtdnV+fq7RaBSCBMQGwgUpRGjwrgSbzUa9Xi8Izmw203A41GQyUa/XC4EEEjUYDFSv19XpdLS/vx/HJUm/3W5rOp1GCUGtVtNkMgmS4yF5bsUfj8chJmD7Jp+g0WhoNpuF+AARZIxHR0c7wXk4NrgmyO94PA5B4OjoaCcjgPmlXh6XBSLE8fGxJEXwJXM7GAw0HA715S9/WS+//LLu3bunbrerfr+vBw8exPUgVHj7RM5LnXy/39dyuYzQRYItWSuAtcYYWCveWQARh/UJ6WWteXtFz7JwpwZjwPKPw4GgUEI0PXg0z/Ow6rsLgPdBhBEVKLnw0h/WGu9xQQqhygUASiYoF8Ht4GGQXt4APAhR0k55CvfKM00k7bgS6KpCUKV3sEDoQESiXALxysfh+QfuIpJuXAiIQjwXuD5cOHABDaEzIeF5xIOfVdNlLYlqCQkJCQkJCW+Ody0oZFn2iqT/QtI9SVtJn87z/D/Ksuy3Svp+SSfXL/0teZ7/8Nc6FnXum81mJ4SPAD7ayHndNbur2Lrd1szuJ7ur1Jt7Yn+xPR8uBQ9hhEAjdGDRZ6e5GA64XC7VbrclKQgoY/Y69nK5rPPzc92/f1+Xl5dqNBo7u//Ut1N7z067lwqwi434Ankly4B5xWLe6XTU7/c1nU41HA53dnfpNnB4eKjj4+MQTAiyJMQQEj+ZTOKaGo2GDg8Pg3i51R8COJ/PNR6PNZvNVK1W1e12I5gSQo4V/+zsTK+99pru3bsXGRRf/vKXNZ/PIyQQosd4XHDi+JeXlzvXCvlnbXnAIO4USC5uESfEEFvEm/F4rFqtpm63G0IE10euBveg2E0AQYGuAovFIlpY8hqux/MN+D0CAa4GdtPJaOCcZCB4u0lA5gDCmocaQrpZy16S4iIW5/fXIIBwzZT7uLDAGCktWC6X4bZx0Q2hkPUBXEzhdeRIIFwgIHpOB88vc8X98nEBF11uO57kZ3FCAph978/Waj+5ExI+eBz/uDS7W9L05WdHzEqfwwkJCc8z3otDYSPp/5rn+V/Psqwj6cezLPufrn/3u/M8/11v90CUAUBqOp1OEIKjoyPN5/PYsfTARA/jg0B5VgGEBBFAUpAvdp1xKNDpAVIFQZJuxIFKpRIhdZ61AIleLBZxLAiOkylICuSG0MS7d+8GUSbEr9lsqtlsBvFBGMD6XqlUNJ/PNRqN1Gq1rm7IdZaApLgGb4O4v7+vl156SYPBIOaLXdrlcqnBYKD9/f0dck75AEQSJwDnxgXSaDTUarViXOQ+QORHo5Gm06lGo5GGw6F6vZ76/b4ajcZOucpms9FXv/pVHR0dhePg6OhIp6enMZ9ObIt2etpXdrtd3b17d8eVgHCAyIFIwvUiOLnlnvIFhJssyzQYDKJcxJ0T0lVA5Hw+fyT/wMtzmNtWq6WDg4OYGxwqiAfeZQSrPuIS95X5J3vAn5Hibj3kn2tFvOL4lJOQmUDAImu9KCb4fSuXy+FoQfBAnJEUbiKeQ79/6/Vak8kkwkH9HAh6xayUYmYKbgYPDOV++rr1DhDeyYHfuyDxDJU8PLHP4oQE0P2xL+nsmz+uy1oSFRI+WDQfbnT4576iV7/v67W480x8BkvpczghIeE5xrsWFPI8f0PSG9ffj7Ms+ylJL72bY2VZFp0OXnzxRdVqNbVarbChj8fjCOdjp9TLGoo16V5T7TZwgNCAKwKiSjjjarXScDiMhH2IJwQZEol7gjFlWRY1/e12O3ZdvVMAY69UKppOpxqPxyFAQK4YC6IEX9SEszvLMabTaVi7IX7MXa1WC5LZarX00ksv6ezsTOPxOMhgs9kMkeDs7CxIF7+r1+uR84CgArkllFJSBC8yTvInPDxzPB5H+05aNVImwHsuLi706quvqtVqqdPpRGAmu/t+P524+v1vNpvhdqGMxe3rCE3eJhRHCyUE3pKR+Xb3C6JEs9kMUk2GBmUP3ooTcP8RcwjEnM1mQWxxJjAG7PzT6XRHNOM1rB13a+DSwIXhggL5BqwV1rmLLHzhWqBbBsfybgsuKlxeXoYQwzh8bKxrz0zgv8y3E3muket04EpAbPASJ/98cUGvVquF+6J4Xq4dkcrv223Fk/wsTkgAmzfuq7T5+NMeRsJzis39B/ro71lIlav/152fL5/yiL420udwQkLC84wnkqGQZdnHJP29kv6KpJ8n6TdkWfZrJP01XSm2F291jMvLSw2HQ52cnOjFF19Up9OJQL3ZbKaLi4udWn3pJnG+SKIgwyS/QzI9f4C2eOxSUkbA7vZkMomyBizckCus951OJ1wBl5eXmkwmarfbyrIsOiBAYorBhr6LPJlMdHBwEAQUi74LCN7WDiGFUEOIuzs1sixTu93W5eWlTk9PdXh4qBdffFHtdlt3797VxcXVLaHNIfNzcXGx006y2Wyq0+lEm02EDeZ6Op3u2MLJCJhOp3HN9Xpd7XZ7p9Z+NptF4CLn55oJtfzqV7+ql156Ka61aHPHgQEBX6/X0XaUUhSyAch+wKHg4kKWZRHYCDHH1eGCAPcPwQUng5cLQM69xSfdNnwHnN1zF4t4LeIQZQO9Xk+1Wi2OWy6X1W63g7BzrZB5zwlB+PGSDa6ZnyF+zOfz6ADhYYp+z7l/EHDEAG9liVCAI4Rx8F/cF14uwbNMWYI/3y4kPI7gF1+Pc8LXhQszvIcOHe5G4jnykMdnCU/iszghISHhNuByMIzv8/z2l5+B9DmckJDwvOE9CwpZlrUl/deS/qU8z0dZlv0eSf+2pPz6v/++pF/3mPf9gKQfuP4+avlHo5GOj4+DRGVZpk6nE3Xxbkn2kgbfpYWUQyp8txPyx3snk4nW63XsxGOZPzg42GnTSOAhu/oQslqtFq+DvJRKJR0dHanRaGixWGgymezszLKzLd1YvyHVHMtdClyLZxjU6/UgergSqA/nGJvNJsSR8/NzTSYT3b17V4eHh9rf398pZWBXmK4NkL2joyP1+31NJpMIc/SOANPpNIjsbDaLbhaUBxBEiP2fmn2+h1AjFjSbTW23W43HY73xxhuq1+vq9/shznhyPzkPHu5HPT3EHnGALIhyuazZbKbRaBTlKZBxxoRYAcGVbmz1HkrobTir1Wq4UmhT6fkGlAMwd8x5o9GIAEhKIiDsCBaEXCKM8DMPJmR9uGOAsdAqlTVTLDtgzSPeMU++249YQlkR4hoCFsGKiCLMk+cieMAl9x1Sj8hGGYa3lpS0E7AoaedeFF0FnqdCWCVz4kAcJOjRSyp4PULTs4An8VlcV/ODG3DCrcbJP/dzNb/7zNjNEz4seLY03EeQPocTEhKeR7wnQSHLsoquPjj/UJ7n/40k5Xn+wH7/+yT96ce9N8/zT0v6tCSVy+UcSzeZAZ1OJ5L5sb2z00uQm6foe26CE+rrc8UOPAQIEg6ZgEDwmmq1GiUQvGc8HocLgd1XSD1CAi6IWq2mZrMZ5RMQuUajEWUSECmS/rvdbjgems2mWq1WkCB3NEynU1WrVR0eHkbpBTu5BP0xZuZlMBhoNBrpzp07arVaOjw81MXFhebz+c5OP+IAtvBqtar9/f14HYDw4o7IsixEC+4bY+p2u2q1WiqVSpEzgXhyenoaRBfnR6PRiIyG8/PzaDdJuQWiBuQaoQNii1CB42M8Hms4HAbp5R55K0VKIySFGIFzgbwCvrh3CFwIJJvNJrI4KJlwsczLZyg1YM0jNngrRkjzdDqNcgvEMO6tixs8DzgRcFS4m4K1yRy484ayD1wQCAo4fcByuYy1ydpnDVGCwBok28AzEBBhip01JD1SruBiAQIh/+Y815814UxBWOFe8lkwn8+jPAUHBx1AXFTwsTwreFKfxd3s4Bn/cz7hSSHbSlku5be/6ifhQ4QX/nKuyp/9a097GO8K6XM4ISHhecV76fKQSfr9kn4qz/P/wH7+wnUtmSR9r6SffDvHg6yNx2NdXFyo3W5rf39fjUYjHAq0TYQgePq9p+Gz0wvZdUB+2IklRI+6dOzPhCOSqUCtPcICFnDphnjgnqA8oNPpRM4C54BcLZdLzWYzLZdL1Wq1HVs8hI6MgQcPHgThgWzOZrPYXcea7wKHpBAsqtVqhNC5ywCSCoFygWa9Xse193o9dTqdaGOJgwJbOE6B2Wym8Xgcu9nY0yuVinq9nnq9XrScZGy4ApgTjttsNoOo07bQO1pACOfzebyOYEPOye7/ZDKJ0E8PUJSuyDHtSTmWixGUjnirTs8CwDXhIaHuoLh+JnbW597eXuReFFs+envHouum+LzQ9tTbHnp5QLFlIy4ARA6O4TkQEPz5fB6uCZ4bRArvgsEXY/ZuGVwznTy8fID77y4OSZHPgCiISMC4OQ5lTYhcjAGhxJ0G7lZhjIhEXjbiGRLgWchQeNKfxQkJknT0e39U29/wPRp/3Vb5s6OtJTzj2NQyZbWa8mfIHSalz+GEhITnG+/FofDzJP1Tkn4iy7K/ef2z3yLpV2dZ9h26sne9KukH387BICCLxULn5+fqdDo6PDyMYL47d+5EXfp6vY7dVsiSZytAUCAPHv7GjuxsNtNkMtkRFNhZHgwGQZRarVbsRpO5MBqNYtdcutlFhfQgFtD54P79+5E1QE059fAQcifWiBr1el3dblfdbjd2Wp3UUfrAGCCrrVYrUv+dxHL9zBOuCXZ/KVvgd+wk12o17e/vh5Wde8B1e97DeDyONpiUUXAMLO6IFoQlegtPOk94dwF26Gm16LX3EE9aUzpJJchzuVzGHCNa4ISQdtsOUgZC+ct0OpV00w6TXW0EDcaCs8NbiTopdhGDtTocDuPniAqsX54J3AHFHAQvjyiGByIqsJvvuSGIZa1Wa6cEIc/zCEL1dq2Qa+67d/FwIc3hnTMYOyINP/fgRQ+gvLy8jFIfBBnPSGCd+LlcQOBavJSHa3IXh98L7iPCEHPnXTZuOZ7oZ3FCArjzn/xl6Td8j1YdaXG8lW6/vpbwjOPku6Tmybc9iy6F9DmckJDw3OK9dHn4X/X4Py/ecX9diIZ3X7i4uND5+XlYq9vtto6Pj2Mnmd1q6rrZfcXq7ynt8/k8COp8Po90e6+bhqhL0tnZWZyTenbaKUIaJ5NJkBi3ekP0zs7ONBqNdO/ePfX7/XAHQFoYC+N1y7yTJvIcms1mkG9AvTlt+qj5r1Qqms1mOyKK28496BHy54RLuknPH4/HOjg4UKPRiDIP7pGk2OVFXJnP59G6ElcB94ayBd6/WCxiFxwRgPwLOka4xZ0uDB7C6cIJZNlbITLXRTIJYUUAkK52x0ejkWazWYQVIvxQJsDcsCNOp4brZyLWsLd79MA/J86z2Ux5nocrw0sLyJXwbABEHA9XJICT9wPPA+Be+/wiZLhwg0iC4EF5jXQjGpBl4C0X/Xw4B1yIcEdJMeTQj8uzQNkI5RHFHAZEKkQAdyt5NweyH4oCB+UlPj4+hxgnLo5nQVB4kp/FCQlF3PlP/rIk6eFv+J7kVEj4QFA9XzxzUQrpczghIeF5xhPp8vBe4RZsrNCz2UyDwSAcCnt7e0Hwqcd3e7WHNUo3dm+Ou1qtYqcawlEul2PnnNfv7e1FWQBheZJiN3u9XuvBgwcR0AhhwTIN6GJw584dHRwcRE4CYgGEi5BCSDFEnrGwq9/v91WtVnd2bbmOIuEi/4DrgEwVgwRxYBDoyH+ZI+7DcrkMksd5uE+MmVR/xgSxJONhNpuFrb5Y7899JEOAY/V6PUnaEYpwIECMpRv7PP/2sL+Li4vIVnDrP+LEdDqNHepyuaxWq7VDciHh3DfGSqcHdwFwL3mtXxPrkvlhzTI2WoeSi8B69JIUSDwtJ7l2hA3CEpkzjlPMBUDMQMzhnlLiARirpCi5IMeCe+AlAqwfL4UAzIFnN7CO/fkhwJJ5dqcA46SEwTMcWOt+PtawP5uUC3k4pTsaAK8vBjkmJDyvQFhISHi/8ayJCQkJCQnPO27FX8vFQER2uUejUYgHq9VKpVJJ3W5X+/v7evDgQew04jiAzEmK3UUEh+VyqdVqFSQIsaDX66nVasV72IkejUbhGOBYnU5H0tUu/NnZWZBRsgiwW0OMJpOJhsOhjo+P1e12dXp6GqUaWPh5Pe0HH7dTXa1W1e121el0dnaHJUVpBMRzMpkE4WT3GQu+lze41ZsvdrslhZiB44Jrc4LqwgC5BxBsdr0BmQH1ej0EFI4JIfeuA4Q54lwoZgnwfheSONbe3p46nY7yPI/Wn9xvSj8Ym5NZwgkRWfg9a9IJMu1BPRyUXAXEmnK5HNkTkHMyC7wEgnms1+sR5MlYuG84Whg3u/MIFohbxXaHLhAgUHigIc8e64L3IRrwO8ZZJPIuKPD8cs9cLHCXAGTdnxeIO9fj52EsXsrhpQ6Mk5IgPw7n85IoFxL4r//eUXRUJCQkJCQkJCQkJCTc4NYICuz4sqs4n881HA7VbDZVq9WCNNZqNR0dHanX6+ni4mInqM8t0RANWtlJN8RNUpC6TqcTggQ7z/V6XScnJzsuBoLrSqVStFH0XXEs/+yA8/1wOFSr1Yq6/clkEmGRdFEgJHIwGGg6nUZZAAIDSfTdblftdjvq9dltLrbn4/ytVmsn0NDrxH2sCA7MCw4K5oJ7Usw7kBQEFTcDgg2774gfy+VSw+HwEaeIu1MgxRBpnBnsqHsOAOTad5a9NAKhxds+OnFGgMKV4PPmYZVFUrrZbGId9Hq96LDh683nCQFmvV7HfPB6v1bPWeC85FM0Go0g6k56s+t2j6xpRCDpJvPAXQ5OuItj9F18nCg8W7yumL9RDEWUFNfKmuLYrK9iNwvOj2MAAYLrZ/5cbPLMEsRB7ptnmRTHxTFdRHInE9f2OGEhISEhISEhISEhIeFR3ApBAfLKDi5EdzqdRshfpVIJMra3t6c7d+7spOFTDlDciXTLOe+FeEJ4IKgeQHhychIEkIwCCE673Y5MA89gcELIdUBc6/W6Wq2Wzs7OHiG81O2fnp5Gi0lJ4crgOpwgewtHzwHwnVrGA6GjvAMRgeO4Hdy/h/BSKgEpxSlALgJ17J4FUcw94Pfz+TyOhyPEyR+2f+absgfGxrGckDohZOcdSz/tNxEUuN/cMwgpLpj1eq1msxlZFrT45LWIXXmeq9PphJuBLATpJteBMhY6FzBWFyq81Ia16ddXrVbV6/VUKpXCieIOFYJEi/kY/myxy+9BmqVSaae9KnODO4QvshxwsEDWi2KDk3F+z7lcOPLxQ+wJwPQ1zbGKc8Va8LwEXoMQhHhQdE/gnPHcDhdEii1ak7CQkJCQkJCQkJDwNLF3eKAH/9inJEkHn12o9Bf/xlMe0aO4FYICxIUOAP4HPcF50pVtHmJIS0ZyCajlh6x6+zy37UvaIaWQj+l0qsFgEE4E8hogx+zISoqMArf0S9p5DaGDECtIvjsBJIUDgR18OlxAdhgjY5e0s8PLjv1isYjze2AlZJL3cW4IGd0ICJv07gCSwn3gWQIQ5r29vQhrxHkwGo3Ubrcl6ZExcm4vwQDUyRP8WCqV4t7ilPCAPkpG3F7PuShxwQlCjgP3DtLJHKxWqxADKNUgDPTy8jK6gCAGIAAheHCPWCvNZjPOwXnJxmBNI5wUsz8guogqfI94UavVNBqNQpRClPFsBuaaeUZY8kBHL39xhwPr0R0t/I41iTDHPWCdMg8cx0We4vr1MhHWalFAYP1xXfV6fUcgcJGvWH7hJQ++xnimcVEA1qW7Zfw5TUhISEhISEhISPggUWq19OV/5hs1v3f19+jk5bo+uvkOZf+/v/l0B1bArREU9vb21Gw2g3BBaPnjH6v+YDCIZH1C/jzF363QEGicDBATat9Ho1Hs1kMcJQWxZQc3z/NoAQmRpt7dSygguIT+nZ+fR8kBO7T1ej2yGHynebVa6eTkRCcnJ7pz506QcoiYW/LZTfXr893dVqulXq+347zwAEDmHAGCHX1EkGKrQXcZOMFiTr3V4Gg0ivIORBQPoWSc3Ad2lj2AslKpaLVaaTgcRgtPciEQNxAzyL/wOUBAYue+0WjEvaWMACHJiSNiBQ6MZrMZYgThl9w32oDShSPP83AuQFonk8nODn2lUlG3243uHORJUCrCWkRsKO7s06q0Wq3q/Pxco9EoiLYLNv5VzERgfiHwOBc4F8IOa4wwUu4ZLiDPcMCpwHGYR9a1t7bk+lws83IUz3TgnFwXTgp30TCvHMdFQ0ql/NlAzKDDCL/39p6s9YSEhISEhISEhISngaxc1qv/6rdr1b/hXpt2ri/90oa+bvmtyv/aTz7F0e3iVggK0g0RwmUAQfA//qUbgs0f/vV6PXbZ2bH1VnBe/43gwM4pOQgQNUgODoj1eh2BeljaIVOQDyelkD1I+mg00vn5uT7xiU9of38/AhM9Kd/bCPrOf7fb3QlD9C4HXCfEzAP1OB4lFrVaTdPpdGdeEBq2261ardZOfT/hicwnJSWcy1sXstvtZQdct3ejgHT6WDk25BOi61b5y8tLnZ+fx71H0PBa/263u5MlQSmG29sRfnBgSApnQ3EH3btnXF5etR1sNpshckGUCYX0vAVaUS6Xy8ghcFLPsRkfTgbO5SGTlLewznADsAbn87mm0+lOToN0Uw7gAYj+tbe3p1arFcfmGF4iwDNSXOeUq7j7hXn0rAmCLblPLiLx7LJOea+3ROWYknb+y+eBP4P8DpeGzyPj83nxLAx34iBAeZcKdzwkJCQkJCQkJCQkfJBwMQFsmrm2tfJj+9Q+LdwKQSHP8x2rPuSW0LzJZBJ/3EOgpN2AtlqtFiSP4zgBeRzhWiwWceyDgwO99tprsSPuO8VOQCA7buvGWu+7/qVSSfP5XBcXF7q8vFSn09HBwYEuLi52atknk8lOzgO2fgQNwgg93M7JsIcMeu17pVKJ8EjIFaIFO+4Q20ajodlsJumG/CFcrFarIJDsal9eXqrZbMa4vSSAtpvz+Ty6bFSrVdVqtbDp4+CAiJfLZXW73RAOIJabzUZnZ2dBviGf1PLX6/Uok1ksFmo2m5rP5zstBFk33W5X5XI5cg1wUTiRhfD7+VmbHI+1xzUwt+zku5DhmRqSgqg6WaWrAwIMhLhSqajVaoXNH8JPiGSr1dJ4PA4BxZ8jd8RQsuJOGkk7Lg0vu3AHigtUnj0iaUfs4HnyPAIXJDzwEDhx57iec+L5CF6igShGaYXnVniuAuU5uIa4Hq4FIdBdGVwD8+ECUkJCQkJCQkJCQkLCo7g1fy3zRz877+z0AifF7Mh6nb/vohdT4N2Z4IF1i8VCp6enmk6nsWvroXKMyd0NTqBoyziZTIIQea35YrHQycmJzs7O9IlPfEK9Xk+1Wk3j8ViSgoRvNhudnJwEsby8vIx2ldLVbjhlHuy4e70533twH68lXNDDFBFSsPFjD/e8BwiZZw1wXbQ4xNXBF/fOO10wH9wnxAwnzi4suDAD8bu4uJCkCN5EFJAUu9DsmBM6yfk8L4LxUmoCafdWnu5g8OtnbJDZ7Xar2Wym6XSqXq8X5QGUOvAeL/coknvmn+viNU6kWcd0FGF+eZ8/Cz4nCDDFAEvKeCDthHx62Q/kvFgmw33y59SfEYeXHLH2IPN+b1h/TvRdNORY3EeO5ZkprBfvYuHjQWRhTinP8dd4NxDPg0gOhYSEhISEhISEhKeBbJMpL++2MM8uJeW3q635rREU2FV1ocDJFzkGkI7JZBJZB7xe2m0dB4mAaEBAOB7WceqnsZNLNzu5kGOIFcKBt//zMDzs+5Iil+Dhw4eaz+e6e/du1L5Pp9PIjViv19FZYjweazqdKssytVqtyBKAQJIz4BZ+t3I7sS6GKy6XS02n03B/IJJIN9kC1WpVs9lsZ2eaefCAw81mE6SVUgzKT6ip32w24d4gW2Iymex0C/B7x/VxLiz58/k8XBtkDpCJwPwxBkQRr+nHCUBHBLIOyBTwe8dcQJ5xALB+POiQdeHuCu+e4eGKlMEwL2QueCmK74hj2/eyErp5MIZmsxnrk2tALOFYRecBr+H1HqLImiHHhOcGQcFLVHBieKkD33uQJ6Uk/LfodPBOEnme73T4KIYo+mcB140Lxh0O3D/egxjkpScICKw7sjMoAUmhjAkJCQkJCQkJCU8L+WajT/72n9QXfvO36rJxnYm2zvTKn10p+8t/6ymPbhe3QlBwUs6OoBMh35F2UUG6ERAckGAniL7L6W3tlsulJpOJ2u12kG7PFIBYIQJ0Op0gMBAdjs3ObvH49+/f1+uvv6579+7p8PBQnU5Hk8lkJ69hf39fw+FQe3t70S4TksoufqVS0f7+viRFiYKknbwCdo0RGdy+PxwOd2rRIYg+by4YuJuAa/MkfEgj5LR4LAQDjoEzAmKM68It8rVaLXazcal4bTv3B7ECoWI8Hkd4JGQfog1p9dIN1oW7Onz33QUu7jFjqNVqkU+Bm4Mcj/l8vuPuwJIPgfXSBr+HTlx9Z598B7pecCxEkizLNB6PI7eB8XBveI6coI9Gox1xje8R1RBnvCyAufKSCp4TzsM5WQeUnyDWeFAma4JjUprgrVg9w8BDSd1xgHCDgAQ4TlFQ8TKOIghx9JKZ5FBISEhISEhISEh4GtiOx/rEf/QFvfr9n5AkHf+tjSp/7sef8qgexa0QFKSbenWvY/ZdbIiVkyYIOWSkWCvNrjK16MX6es47Go3U7XZjV5LAQJL8JcXOOMdi99xLNMgd4PiQqLOzM33pS1/SRz/6UTUaDXU6HX3lK18JQsXu+9HRUdT1TyaTIDgQKOrp6XjgcILuwXTSDbmnm4Nb2b2VJDvqrVYrdtBpR0l+glv/nUx6zbx0Q8Q4jhNCztNsNtVqtSJ/gIBMCCJdI2azWdxTD09EVJjP5xoMBiEM1ev1cE6wQw0J97Fxv1grjI3xQXBZa5BuOnzgboAkj0YjnZ6eajAYxDi5T05gPUQRF4D/jPtG3gVz7k4QWmkiVCCG+c67l6qwhnBokGHBzj05Fy4YePmBiywekokwgEDlmQNe4kEAJUGojIv7LGkndNKDVd0JxL13YcsDRDmmzytiB8KVg+Oyvn19IEIlJCQkJCQkJCQkPA1cPnioV/6dh097GF8Tt0ZQqNVqkR8g3RA7D2VzazjfY//Gui0pSLikCLEjI4A6cQiI7+R7d4BiN4DLy0uNRiO1223VajU1Go2dcEBaLk6nU9Xr9Z2sh9FopC9/+ct67bXX9Morr6jf76ter+vs7EzSVZtHduchbbSdlG52W/26EQCazWbMD++XboiqB0wuFgsNBgNtNpvIDWDOmBNP3kfEIcSQcgsnpk6+ODcElpIBSCMheeVyWe12W/v7+2q1WjvdDhAdKI84Pz+PTAJKMLgm6UboGQwGGo/HUT4i3ZBFBBSuy4k7u+qSwmrPNeDWkG4cIXSMgFjjkOEap9OpZrPZTs4B98NDHiHy7KIXOxIgClEy4jv8lKc0Go0QShBXgK9jBCgXSWazWYgjrDcPQvTngve5SOQCCWNl/Tgx95IaSk5cGPAuGzwDHnyJYMF4uG9FpwQCmt9bF5N4jhx+fu4z94fxJyQkJCQkJCQkJCS8OW6FoJBlWVj+qe92J4Lv5tK+D7K4WCx2wtwQJAC7zZ5r4OSP3clarbbTg95FCelmB3i1WqlWq6nT6QQJIVwOEtxqtYJkQQDn87lOT091fHysVqulbrers7MzjcfjuBZIvO/McgwIPCQLoizdBBMirvBedlh9V/ni4kLT6VTL5XIngNIDISVFMj+7vYgXkNmiG4NzIgAxl5KCzLMT3m631e/31el0drpWMH+8h6yE6XQaZJHXcz9d/GF9QGwRQyiV4D56rb/X5pMB4TkJkFHWVjHwE1JKaQzrGXeAd/xwgu1BhIyJrhW4Osho8BIN5gr3TafTifXFPLPumQvcDFwfpTysNUQJFzFYj+zsM2bmDuLvDggPNGRdElxKxxZvNcka8dIG5o3r8LIdD1ZkLvwZ8Xnl2uhIQvcYv0ecw0MY+bzwnyckJCQkJCQkJCQkPB7vSVDIsuxVSWNJl5I2eZ5/V5ZlB5L+mKSPSXpV0q/M8/ziax1nb29P/X4/iCGkwNPp3fLuO7mQFUlBICTt7GBKVy4ASLYHtEESsVuXSqWdMDc6GxQzCer1ulqtFvMQmQsk/yNMUKYhXbkAKGXo9Xra29sLQcHdB+PxOAQNxuK18RAoHyPEzL8oB2F3W5Km06kGg0GQz+l0GmIIIkWRQDK+Wq22Iyh41wOs5+4ioCMB5B9hh7IEnBkcw4nsZDIJYUBSjHlvb0/tdltHR0cRvMc52u12CCfMEcegVABS7USx2JHCu3zQXtKJLx0F6IiAkMH1k7GBQ8SDArne7XYba47SALozME/D4TAIs+c34AYpl8vhUMEhw1x6jgQuCtwlOGvIZsBpgfDiwYSIb4gjjwspdMcIz6V3VMjzPIQiJ/K4B7xEiff788m9Yt4dPBfe4YHnm8+Gdrsd4a2U/HgXCX9v0dHAOG47ntRncUJCQkLCu0P6HE5ISHhe8SQcCr8wz/NT+/dvkvTn8zz/HVmW/abrf//Gr3WAUqmkbre7Y4dGPMAVAEGWFPXsEAcS/yFAnlqPQMCuNiKDJ/B7zbULAZBAr8f30goCFSE6Z2dn2mw2ms1mOy0oIX/8rlwuq9frqdVqRQmCt2Gk08PR0dGOw4AdZHcoMC9cM24DCGan09kRBiBWCBiQSkgcY+UeIBRAuiGf3iGB85F14Dv7pVJJnU5H7XZ7xxHhzgfmlzmlJSNCEeUwFxcXcT523afTadzfdru9k7nhZQasD7ICPPvBSwzc5eFkm/UIGeU+ITjMZjNNJpOddeo76N6+0oWxbrercrm8I8Z4C8r5fL4zVx5iyFgZg+/4Q9S97SNzTStRuolwncUde9autFsuQImBi1iIHUUHB2P3nATpJnCS+eW8vAdBiONwP1jj/Jv77MTfO7Qg+iDUEOTJOF245DljfTDOZwjv+bM4ISEhIeE9IX0OJyQkPHd4P0oefoWkX3D9/R+U9CN6iw9Pdnk7nU7sOENuaSMI2YMEeF4Cu5QQiVqtpmazuUNO6RTADjWWdog+xE26ESbyPI/jQJq9Tt3LClarlUajUYzF2wVCsNkB5vd0jICE4qKgVSRknE4ELoC4DZ4xSzcdAtbrtUajkY6Pj9VoNEIYYA64PoQCJ23smntdfrVajfaIRcLNdbGTzQ444z44OFCj0dhxDUD2GDv3DzcD3T28hGI8Hodo0Wg01Gg0IvCRcXm4IYRaUpBviCNZAt760O+rOzM4LiUAlLGMRiNlWRbtLLkejsGcescM34V3Ig6xdfGBc/Nz7nur1doRD7LrLhaQdcSAZrMZa9bbX3o3B9YFWQku2iFW8G/Oxe4/37uI5K0ni7kGiBKMm3ImRAJ+xrNWFBR4nbfO9OfV3Q8IMzzb7XY7XCc4exi/rwueV+7HMyYoFPGOP4sTEhISEp4o0udwQkLChx7vVVDIJf3ZLMtySb83z/NPS7qb5/kbkpTn+RtZlt15q4N460Z2LLH8e4q926J9FxoyWyQVlUpF0+lUi8VC4/FY3W43iDm7kTgM3OrNOSDAvMfbSTrpazQayvNcg8FAo9EodrGxe0sKguS7sJBA76TANVLj3ul0JCnKBKSb0Em6QEDcsONz3tlsFgn7ntHA7jVkDWJGzb13i2AneTQaaTgcBjHjWNj2uQ4vfyBssNlsqtPpxK74YDAIUu474BBI7jmkVNq11c9mMw2Hw7j31MnjuuDavLaf40FYvdQCZwrCAeSW+UAY8aBN3B2sRd+Zx2nDz+kuQsAi99l36XFpeOmHtCsQIao1m80dB0AxA4Q8jEajESUOXDdzy3PCcbvdbggCdFrwZ8mzPfi3pJ1x8l4XcopCF6/3koRGo7ETgOhZDt6pwgUNFwXdwcG9Rzjjc4HsE79HrAEcGf5M+3p4RvBEPosTEhISEt410udwQkLCc4n3Kij8vDzPX7/+gPyfsiz77Nt9Y5ZlPyDpB/j3fD4PgizdpOx7TboTiSIBgchC0CB0eZ5rOp3q9PTKgcYuMYSs3W7r+PhYnU5HZ2dnQeqkm04DkDjEBHbFIVXU2Pf7/Z1uCV5XTgvE4+PjIDRuj2fcRWdDrVbTfD6Pa+Ya2akmuA/S5Kn8uAEgu+yUU1dPBoS3CYTY+8405BnS5iUAs9lMnU5np+sFrgvuY7fb1eHhYZybsW632yjBYAfer4N7yrg8l8HJN0IKQoxfM204mbflchnOFOaRzIJOpxMZBRBoxBoEHMoqIK6sB8o6mD+31iN8kDvB2qMEhiwJrs133BEJOO50Oo173263d7qecM3MibtXvCuK52wgXA0GgxAQ2P33MhfKThAxmANptxsC1+t5HDh8iuBee5ikB5QWu2IgxPiz7iJj0WnCGuZZ9rIO1oQ7Zvh84Ht3Qj0DeCKfxXU136/xJSQkJHzYkT6HExISnku8J0Ehz/PXr//7MMuyPynpuyU9yLLshWsl9gVJj22cea3cflqSsizLSZ6HoDm5kRRBgF7jD2llF9OFBAf17pQmQBRns5myLNPBwYEODg701a9+NVwICBoQJO9JD2n1Gn1a8zmZxrnAuXyXGuII4SomykN2vd4bIsx7ms3mjnXfQyPJZWAH24mezxf1607KIIO8/voeBammFGQymWg6nUbtPC4OdvS32616vV6Qbc5NiQMCB+9njLhK2DGezWZB+iCQiBuIM+4q4b4SxkdAIXPu5QPNZlNHR0exm0/IIaIAItJyuQznBiTfMw+8LGU+n2swGISTBDHByygYL84Bxun3gfnmOieTiebzuc7Pz9XtdtXr9WKN8lx4sOhisQgXBfeTcfDcIOyMRqNwBCEgIABJiswGXBKsMXfVuIjBtUH6HZ6hQSgpYiHhlogf/jy4W4LyEs7hZS7uYkLM4Jn23AXe7zkTksLd4B1Abjue1GdxNzt4NlIoExISEm4Z0udwQkLC84p3LShkWdaSVMrzfHz9/T8k6bdL+u8k/VpJv+P6v3/q7RyPDILz83MtFgu1Wq0dQQHi4sGDENQiofF6bEgcHRa87SJk4fDwUB/5yEf0Mz/zM1EOwE6/W6TZuWWHHNv+bDZTo9GI7AYnuB4SOJvNNBqNNBgMdq6J1/qOrJMwJ/WgXq9rf39/x04PINzSTRAhoX8+N/56doCZW94LaWS8iCb9fv8RIoY4QahgrVbT/v6+ms1m7L7P53ONx2ONx+NwZCBgcD4CDiH+kHrutYf4Qcg5f9EeTwkIDgxIMzvRtVpN/X4/xAdKBJxIeghhqVRSu90Oez1CCm4FXsN98wwIXAFOjOkM4hkQzLVnVDSbTTUajZ22p6xBroXSB9wilLxA3hFmvEuIZzQMh8OYK0g/70E08+vwOfCdfNYYLg5eU3TkcI7pdBq5GMw7r/M8E55Jfs66Z524IOPIsmynk4eXlDCPLkiyrj1j5DbjSX8WJyQkJCS8M6TP4YSEhOcZ78WhcFfSn7wmR2VJfzjP8/8xy7K/KumPZ1n26yV9WdI//nYO5onw/BHPji895H0nUrqptYbUemgjpNmD4cbjcfxMuiKKJPM3m03du3dPR0dHQfiKx4KcenI9TgBIGLX8XI8TzOVyGcGC7XY7MiPIAZBuSjKc1CEy+O4r18vOtjsK3LaNTZ8dXTINsOHT1jLLsrC104EASzxjpzxAumrD2ev1IljvcYn93iISwolTA4FgPB5HhoQTzLOzs7huL8VwscXzD2azWZSdQEyd7PNvWkdCFpvNpnq9ng4PDx8hu5KCpBMQiShBWCd1+NPpNFojQr5ZZ+zAMy/8jDU4m81CCGDt4H6g3If7Np/Pd3IqZrOZ9vb2wkXBGuR3HnzoIgT5FIg0m80mngU6ZnA/vUsDzyM/w42De8avdzKZ7JQGee6HdCNkcW7mHuHB17/nYHB/CFzEfVB0Kvgcu+ji4/ZuKYgKHgxbdFfcUjzRz+KEhISEhHeM9DmckJDw3OJdCwp5nn9R0rc/5udnkn7ROz3eT//0T+vbvu3bVK/XHwl/gxBCorCBl0qlIBvFYDwIj4c18lp262ezmc7Pz4PMdLtdHR0dqd1ux8/Y3WdMjUYjxoatnHGSS1Akj/wOAj0YDNTr9dRutyN3wQHZ8ZR570rhxI36f7eHe36Eh/k1Go0IVZxOp3FsCJwHSRbr/iGn0k27TFL0J5NJtHR0AoZ1vFwuR5CiE1ruE+QPcWU2mz3S7g8C7EIJ/0ZEgUxTtuDWdg/c414gOHQ6Hd27dy/EDHbtmZdGo7EjqHAO70BCZw52yn1XHpLu/3ZhjABCHDHeQpLXMe5GoxHOG94nKUQahBqEF8+C8O4azDvPhgtwvhYQiBDX3Hnjaw0hEJHCn0HuLfkUEHxELNYHXUi4LzgLGCNr3uGBi/57vy5egwjhHS/cRYLo5e6NZyFD4Ul/FickJCQkvDOkz+GEhITnGe9H28h3hcViocPDwxAUvN7fHQMkv7darSB6wK3kkF8ICTX9Tujo/nD//n2Nx2P1+33duXNH9+7d02g0imNzXOrqfTd9tVpFaCJuAXbIncx7Aj92/larpWazGVkHHnSHcODiAbvYEE2S6gGk29soSldkU7pyFXS73bD/z2azEBAgfWQyFIE44aQW4n5+fh5WfB8Lc8c8T6fTcIw4IfXMBrfx40jwzhUE+OEM8PaF3Gte6x0dPPARccDnGqLroX8uXvT7fdXrdd25c0edTmfH5eA5C5BbHzPrWLrJD+DYrCUn9176wX3x8pNGoxHPCeccDoeaTqc794v77FkVkH/apELePV8BIu8lPhBu1gprm2vyZ83LFMizYG3hAgCe++BrpihMAQQizolLCIeCl1qwDhm/rzuus9hKlGcUodCDHRMSEhISEhISEhISdnFrBIW9vT11Oh1VKhUtFosI/HMHAGQIUuCt4XznEmINoXOhAaIDGZzNZjo9PdVgMFC321W/39fdu3c1GAx0enoaZKWYXu8ig+c0HBwcqNlsar1ex04w5BFRAZs2gkKtVtsJsMONAAlzGzjtAaWrzhilUukRCzc7vbgDqBGnk0F23VWBoEtEGogbBJDr8s4OvtOMUMKxIORuU2dHfDQaaTKZPJK74ASRXXfPf/DuBHQo8NaiOBMgjO5i4J5D2NnRJ4tjb29P0+lUo9FI4/E4fubiD+ut0+mo3+/r3r17ke9B1wXcG96JgGMwPie57Jxz3R5yyGt9nXlbQ97HPWUdI9i4s8HJNXPL+DiftzZlPr30A6GB97De+Go0Go8IbF52wHV4PgLzxDWxNl2k4JqZfxcc/LjMZ3HO+BnXz8993eAicfGCe/O4Ti0JCQkJCQkJCQkJCbu4NX8t88c+QXrUbk8mk7BGU37AF3ZpdnDZtXbyxs8hF75bTFr86empHjx4oFarpaOjI7300ku6uLgI+z3Ew3dmXaRwMrNYLNRsNtXpdKKO3HdsfTcXggdpobSCa0U44Fqw3DcajQjm22w2Go1GkUPg9v96vR4167T8824ZEHPm08k8ggHEtVarhZjBOHBMrFarcD4gaFBaQkYCQYyUPRTr7ZkLt/gjpkByscFz34vtBCH5iFCQUifREFYvCXj99dcjaJLcDpwVZBT0+/0QFdrtdoRsjsfjILyU4hA2idjCPUJcQuSCTPM+Xx/FYFHEC+ap6OKhswRlN3R6wGXDM4GjphjKiZhSFGRwM3hWyHq9jpIZ5srvHeudY+O22G63kcHA88SXiwKseUQ21qILKn4Ovz5+jhPCxQLveOLBmRzHXU0eRpqQkJCQkJCQkJCQ8HjcGkHBdxCL7eI8pBBCw06zpKh1JsCPHVnf2WV3H4LvGQPj8Vjn5+d66aWXdHBwoBdeeEFvvPGGhsPhTrAbZAvLPKTWzzWZTCKRv9FoxFikG3EDosluPcIBu9yQXciRE31P2md+IL5eo+95Ah7IB0H33V2C6nwHmW4O3iHCWyQyjlarFddMloCXG5yfn4crAzI7m83UbDbVarV2rPYuViCOuNiAkMDvi21EmY/ifDlxpVPA3t6eVquVBoOBvvCFL2i5XOqVV17Ryy+/HOtps9mEYECLTgQd1mKr1VK73Y777+0b/TwuAvi8cxwPAHVhwTuKEJrI9fI7v7+UxnDd7MbT7hORDKcH5+Fe02oS4YPASbI6vLMGpRSEbrKmGBviD/fFy2L8GhAqOG4xMBEBgGfZz8G9ctEOwQ8BDVeCf554JwpfNxzXxYqEhISEhISEhISEhMfj1ggKTvYgvRA4SCSEAlHBd3Wx4nvXAcgUx4UE++4s7SpPTk40GAzUarXU7/djR9pD5/iaz+exo1uv12N333djqbOXbogPYgT2bwg+AgFEh51Vd0R4mKHvsHKtTqKlG4EGZ8FoNAprPu6IYmkABL1er0e2A4IJgo7vDEOeG42GWq1W7KC7hZ8WmRBRBAR2f8vlspbLZYgrCDGIDC4QNZtNSYoyAN4PWQe+c0/nA67XyxoguQ8fPox70Wg01Ov1gmwzrxBtQgdxeNDtgtIOd0TgPmi325rNZjsOAy8vkRTCAsKHO1k8owG3hgeVUi7gJR/cGwQNzw+Zz+dar9fRzpP1xHs8Z8LLfOja4K06KU9ivbn7grlgfLglEA392AhEHqKK4ML69HyGYtilr0sXFXjuy+Vy3Et3K3EuxuzPF+s1ISEhISEhISEhIeHxuDWCgnRTPgD5hBhBbH0Hk91Zadey7TXRbqdnZ9et7pDx5XKp0Wik0WikWq0WhJqdZ3Z71+t1lBdASgkmnM1mQZAYJ2KIB9HN53M1m824RsbkteKMHSIL4eY6fL4gVRB0J+6Qz36/r+FwGCUkPkYP4uOLbhAED1YqlSgFcIcDY2232+p0OhoMBjtiCxkYHN/LRxg/4gl1+uwo12q1HTLnOQ6e1O+lExwTkA3h4gkWfdYBHSWGw6EePHigo6OjEAS8bGG5XGo6nWo6ne60jMSxgKPCd95xBnS73biX3OdqtbpTIuDr1W39tJV0B4m3QfQ8CM8xcMHChQZ3+VAmQ/mKC26cF2GP6yEHA1Flu91qOp3ulOX461348fvpJR1ejuEknpIdv6/ekcLXRfH3LpDx+VAqlUKU8bl2McdLNfhsSEhISEhISEhISEh4PG6NoLBarfQX/sJf0M/6WT8ryBf1+27/9hprhAXIHEQQ8uBOBQ9SBPyebgGQB3afSdJnp5pdZsoQIMDtdluSotYcUuSWas69XC51fn4eJA4iyJi9tty7SEAq2QF2CzilIlwrpJvd8E6no8PDQz18+FDD4TBKE3zX24MEsbezs9xut9XtdtXr9cLa7mUe5XJZ3W43XAp+3RBG3zXm2NxT7hmvgySS/g959BBBJ7BObnkd95X3MMdOIMvlsprNZgga8/lc5+fncQ7KLCDYZEC02+2dTh6+Ey9pR/xhLhFocNu02+2dNovMFe9FPCHA09emn9eDKlutVrhlikGlkGjmld8vFoudAFAn3h4m6nkWjNmzBwgC9RIUF6sQBh+XE8H1ecaJi4K+TvzZRQDztcNruWYvT2KtIEQiwnlXCRekijkNCQkJCQkJCQkJCQm7uDWCQp7nGg6HsYuKeIDtmjro4o5isVaeHXsPSmQXtVqtSrohMhwDEsZxOD5ES7oiR+yee+cF3Ade709InrfH82A5r1P3MDx3JZCLgBXcd26ZC8IUuSbpqkVko9EIAodI0e12dXBwoPF4rNlsFrvcHuIIGfTUft57dHSkXq+nWq0W50TwwNFwcHAQFnhKCNw6Dml0QYF5xv2ArZ2d6WLYnhNf70bA/XQLvKSd6+MafR3VarUdIWIwGATxl67aBnKv6KTgZRieG+HOC0grAYmIVO5o8NIAXCij0SgEAgIzuVdegoDIAslnDTiZd+HFHROEehaFF3f3MOeUC3jZBPfFXRKIJ+7SwFVRKpWiMwbHZryIF+7O8c8EJ/jFvAlew/OIyMDaYO48A4T1xXrhM8Df74JHQkJCQkJCQkJCQsKb49YICsBT+50MeTtC30mF5ED63LngBIkSCQ+9g2BQ244VXVIQC0ichwFix/eOAli9Ifnz+Txe7zurkC6ID0TaydZ8Ptd8Po/6fyd+vJZrpqwAws111+t1HR0dqV6vR2lAo9EIkYNdYQ/B4zWQMe4HJSCIH5BwRBR2+pkPdrEpkxiNRrq4uNipjWd+CY+Urhwe7Bp7Gn/RLu9uBH7njgUnyRBaBITZbBaEF1HDQyalXVcFXTJ8F/1x3SWKRJzd+clkEjkG3h2EwEZEGUQexCMPIkRgQpTyLgRFcQFxykUGAhlZ/3t7e2q325rP5zvdVaSbXXkvx/E8B+4PJQXFtet5I6yhorMA0czHx7ON28DFIQQX3DM8v4gBfizvzODXtFgs4t/kKeA+4OeeE4IAlBwKCQkJCQkJCQkJCW+OWyUoYIeHzEAqvGe9dLMjDcHgtez8e+I7x4WUFMsQIEZ0IXBhwXcqi+0Ancxxft8hxjIOKeM9XtIAPPcAl8P5+bmGw6FarZYODw91cXGhwWCgyWQS72FXG/LIe3F0HB4ean9/P8hdtVqNzAeEB3cGSDdk3TtOcNz5fB5dDRqNhubzeYyFrAZ2rSGb3LvBYLATIuihjKT8+3xz733+gbcQ9HaFXt5CW0Pezy40+Rf8DMFGugkL5Jog2xBeSdG9AXh7z2JAJl0uWFP83F0N7nKAkCPoeKcFF5TYeXfSW3w+XGSBMCMoIGbgxmH9IghBqL0sh/F7FgXn8vXMubhOz6sodrrw0EUn/0XHjIs07ljgPIzJ1wIikd9rBKFi3oaLE/yb4xXPl5CQkJCQkJCQkJBwg1sjKLj1uFarqdVqBamlnZ3nJ0Ca6UbALi+vcVLrAoBbmyHls9ls572IGE7+IZfSDVny4DdaGvpuOgIJQY/FHAfGsFgsIn+BHebxeKzRaKSPfOQjOjg40PHxsYbDYYQIFsdBrf9isYjsgbt37+rOnTs6OTmJHXCuB/LkHRkgcrVabSe4UroSSMbjsfb39yMXoNlshi2eXe5Go6Fut6vhcKjVahW1/bg6IL4uqDC3xdwJ5pVyFAQED6H01H+IoWdicA89W4P54xxkFkg35NJDDclI4AsBYLPZqFqtqtPpRM4F9wOCzhqkowJlDOPxeKdMBwGDnAHcIwDhw8M3t9ttOErejPjiwmBNEn7pLh8XUZgruoMUS1GAl508Lp+EMRd3+BFEWLPe9tFLKNyh8rgSJ+BZHsU2nLzXXUG8zp8Bf85Zf15Ok5CQkJCQkJCQkJDweNwaQUG62Z2sVCpqNBqaTqc7f/g70YRcUtc/Go12yiK87AGy7wGEEJvJZKLpdBolBqPRSOv1OlLvH1dHjZOA37FbXNwZ3tvbU6PRUKfT2SGyXOdyuQyijUOCnVV202u1mvb39zWbzXR6eqrBYBABjb6DSjaAdLNr3Ol01G63NRqNQjxBVOA82OHpzsB8NRoNSTeETboJr/OWhBDSRqMRczqbzdRsNiNzgBp2z5TwEEjGQ16EEzovffGdY7ovuNDk5RJOghkjO+204JRusjdwYbCucGZICpJP6ULR/cAYEYVYY5TATKfTcD8gLOFA8Ot38uyCDgGh7mLwPACOjQjh2SGbzWbHEeKCxONcBYhAzWZTjUYjAkm5Jr9mXAwuVPl98mMDromx4W6RFGNnbSKiuHvGgxeLHRmK8OwKb1Pp4yrmMTyuXCohISEhISEhISEh4fG4dYICO/6NRkP1el2TyeSRcDavsSYQcDabPdJTvkicCQjkvzgMIJfsDDuBhoB5WCKvhzhBVDy0jvdXq1W1Wi1JN20SIZmTySQEBXIX2LFl/M1mU/v7+5pMJur3+9HOktBHdqqdVDOPEHNCBr39pI8RUYGadzoW0OWBPIhWq6V+v7/jGqjX63GvvBsD8zYcDiOjwkMxmTvG6iUPns/Aaz000EtM3Fov3WQqMA+eKYHoQWkL88888P5iWQqkVFK4Exxe3sF/IdqcH6FGUgQ8er4DO/BOlCHQ3D/PTyiuOSfpnM9/Drl2QaLo2PF/e1goQsvjMgf4LyIZ98fLGXxNcA3Mi7sFKBdBxPCOFu6kYY34NbKWPGyRL8ZSrVZ3nm8vqeHYHJf74K6MhISEhISEhISEhIRd3DpBgVp/Wu1NJpOdFHgvd0B48MBA3zH20EaIswsEEHmIUJZlscss7abKFwWFPM93AhchqViqJUWAIbkF1PZDlHAMeFI+xAwCBZGE4PN9r9dTp9NRuVzWbDbbaStIGOJ4PNZ4PA5iRLI/Igu77rgFEAmw3rdarQgmrNfr2t/fj2thR79UuuoC4Y4BdvAJwxuPx5JuShYApRXz+XyHkBMiyffFLAB+X6vVNJvNggC7m4Hdc76HNLpLgJ115po16PfBz8u5uccemMhcsLNOmYOXXLAmWKesIz836471LCk6QzSbzRB4fB65py684daRbrIhXGRxAQORDRSfNQQFD6LkdR7S6HOPc6KYR8L7PdDTyyKK5Q0eROpzWC6Xw53iTgvey9ouCioIKR786lkV3NtU8pCQkJCQkJCQkJDw1njXgkKWZZ+S9MfsRx+X9G9K6kv6fkkn1z//LXme//DbPS477r6zPp/Pd8gM7QMRHghmLJIdaTeo0EPs2CX13XAPplssFkFKIYyj0SgEDkkxhqKoQG4ANfNkODBWbxnIuXmdd3fwEopixwjOwfg8SI/5GAwGOj093dnR5r3Mg+/iQ+7m83kQZMg4Fnjm1HeVJYWQQPkI8+sOAiez3EOI/Xq93tmthnQyP16GAOlj/hGcpBtLPdfpwtJms1Gz2VSz2YwSBa7TuyrMZrN4D8SSXXI6WnQ6neiw4bkJHjbJvxkDc8f6RFRwoYf3uaCA4wEyLGmnlAEhyIm55wgUXS+Mg/NuNpsoC0KEcUEIRwZj432+FhBTisfw7AoXZiDwRfeECxTFdcv73KGCk4CfuaDAcaSbYE8vpeGLYEx3TbDWngWHwvv1WZyQkJCQ8PaQPocTEhKeZ7xrQSHP889J+g5JyrJsT9JXJf1JSd8n6Xfnef673uVxd8LhEAn837Svgxj7DvTjdhTZOUeAgGA5yfUdTSf1TiidPHIuSCfCBeTeyaHb4Ov1+k77Siz4HipIjT0knbA/dny9zrvdbu+UO7AjvN1uNZlMIluCdpbMo+/WOony+n5IHWOXtFMygQNDkmazmc7OzjQcDneyHIokz8khTg2uidcxv+4g4DUID9z7ZrMZc84xeY+TXSe1RXFCUtjscVc4Cae1aLfbjTBK5hoC7UGPzHHR0u/tHBFvOC+kHdGIHBHm2csbcGe4KFBck8BzBKSbrgh8uQMBF4yTeUosEBwg8UWRhDEhnnlQY1FUcBLPtfIankXveuLPKcfw553juKDowhPzgQDFPBTLI4otJxGkbjver8/ihISEhIS3h/Q5nJCQ8DzjSZU8/CJJX8jz/EvvJcjMiSe71i4iQDYoN2i1WlEX72F6XvsMWcFeDoGD0LugAHGFzLtYgHOBHW120DlnkdA4aYIEQ/YJH4SwsbPvZJnj87uiwOGBdvV6fYcgQd68daWk6HwAUUPMuLy8VLPZDCFCusk5cFfBZrPRxcWF8jxXo9HQwcGBut1uhA+Ox2Mtl8udLgy+++x2cl5DhoQTVcaKcFSr1bTdbndyMtz5QV2+pLgG3uNjkG7CCCHMiCXb7VUIpnTV0YJcCMbiLg5IKnOOc4H7gnAAafeMDhdMGBsoigGcH9cILhsPpeRcLggVczw8k4GuFjxb/H65XMaccq+KWQNv9my7wEUpDdfm993LSTz3wwUufud5KB7G6GUwXOfjykY4jl8L4g/3jXO4+Pc4N8wzhifyWZyQkJCQ8K6RPocTEhKeKzzawuDd4VdJ+iP279+QZdnfzrLsD2RZtv92D/K4nVHIMQTNnQrejlG6CQiEmHiHB0jZbDYLR4CTlNVqtWOdn8/nmkwmISL47jKuCCdFCBKUNSCKYKtn3F4L7i0jx+NxBC3u7++r3+8/EuDou+DMBzvmzJF00wWDbIVyuRytG7GxI5jgSIDUe7tAdrWZJwSFBw8eaDAYaLvdhvjh8409X9KOIECpSLVajbKBO3fu6JVXXtHBwUGQeLf20+HAyxbYWSeDAnjXCYhicTfb7zmlJuxaE9C5WCxiTiCjENDVaqXJZKLBYBDrw90VCAqsX9YNP/NjI9pAYD1rwEsINpuNxuOxBoOBxuNxrCfG5J0Q2LH34EhEK7ISEBGcfHtpgYcUMq+sZ9Z5MXeiSOA9N4Lnq1ga4iTeBZpiZoIfm3U9m80ecQ8USxR8PO528DEhqCEsudvpWSl5KOCJfBYnJCQkJLxrpM/hhISE5wrvWVDIsqwq6R+W9Ceuf/R7JH29rqxfb0j699/kfT+QZdlfy7Lsr0k3WQevvvqqBoNBEDLpZoe0uPvKjqqkSPKv1+s7AYdOLNllL9axU08/nU7jONjcIeUEwLE7DvnIsiwEh3K5rHa7HTvLkCjPHOAYbrGfz+eaz+fRCrLf7+vw8DCcB7SJnM/nO8IEoZS09ysSLN7DMfv9/o593gmbd3ZAFOD6IKyr1Uqj0ShKG5yA53mubrer/f39nc4JnINQS0lqtVrqdrvq9/t68cUX9corr+ju3bvqdDohKOA4cYHCHSAuOnnXCCfxfv+Blzh4S0F3SEC4/bXSlVNhPB5rOByGoLBcLmOs3maUc7NG/RjF9o6s8WJnBMZDKQ2il//XyzPcwYNAQCbEYDDQdDrdER48w8CzETinCwz8DPKNEOIiDWvExT/WgQsNnvWBIMWcAS9T4bn3siIvvfHx+c8QKxibj4nr5xn193CPEH6eFTyJz+K1lh/EUBMSEhI+lEifwwkJCc8jnkTJwy+R9NfzPH8gSfxXkrIs+32S/vTj3pTn+aclffr6dbl09Uf++fm5er1eWJMpA2CXmvaHEG2IFQTbSaIHAnodthMLSMRqtdJ8Ple5XFan04m2f+zu+k40ZMot3ZJ2dm4hK5wDIo813F8DifMyANpcXs+VNptNuB1cOPDXEybIGGazmUajkV566aVwPXjrRq6FjhqtVmunpABnAdcIyeJ6yU3gWLx/NBrFDnSRTJfLZR0cHOill17SnTt3dOfOnZj/yWSy0/nArfCQz8e18qMloM8pAhDBni6kcK+czALKKHCX+HyOx2NdXFyE68WDPj0gkvviRBkHCWvSO0W4C8KdIaw5/z3PCYTYBS4vZdlsNjEnzH1RjGEeih0dihkGvMezEhgfJN5dII8TK3yemVPmxcsKGH+9XlelUomxejmUC2IcA9HC17WHMOZ5HuKPuzo4HqIazgV3Az1DeM+fxd3s4JmzZCQkJCTcIqTP4YSEhOcOT0JQ+NUya1eWZS/kef7G9T+/V9JPvt0DuXXad7QlBTFg9x/rPkGDEPxiCJ2HuhVrrrHsU6JA/f/h4aEODg702muvaTKZ7HQuuL5GSYqMAUk7pMTJE+F6lBswBgQLxBEPxYM4s6PsGQ1cF6QUQuWlAcwNzgZJ6nQ66na7OyUNvhPfaDTUarWCUEk3YoUT4TzPw0WACEA4IuNwoaLRaETHDO5Lv9/XnTt31O/31W63lWVZuBN8t5k5pq6/3W5HOYffA64FUonw4jviCAqr1SpIdLVajfvCzwH3hKBBylMGg4H29/d32gq6hd+7GXjpDTvdjEtSZGzg9GB9Q6TJTWBNM//unqCcBSeJlw15hgS/9+4mCBi+pnme+K8/m9xXxAMXTIrZEsVyARfagBN/jsM1Igp6K1MX8JgXzs26414w76y7NyvLcHhJkjucniE8sc/ihISEhIR3hfQ5nJCQ8NzhPQkKWZY1Jf2Dkn7Qfvz/yrLsOyTlkl4t/O4t4buK0o3I4DvnEBAXHYpEp5g0X9zd9fO57R1ST0tG6cYuDbF1olYks5vNZmdXnl1TRAvG46LHZDLRZrOJYMRyuRy5Cuw0kxfBcTzQLsuyEAkgg4PBQN1u95Fd7Gq1GiUSHhZYKpXi56PRKOau1WqFK2Q6ne60v5zNZpKkbrcbJBXHCHPZarV2dnyPjo507949HR0dxdzV6/VwhXDfyH5ArPAuGZPJZEfI4Xfsdvu9KJabQFBxgECc3Ya/t7e3kzHha4i1wG7342ruEQp8h591hFhSrOdHBKClpe/ye5gg18x9RbTJ86vuJLzXxwRp9/vtORMe5ujOBNaxd2OQFM+cz70/Y5wD4s/zxXProaguSiB4eGcMD1NkXfGMII5w771zC+KBCxsu6JGrkl0HpXrJyzOYm/C+fBYnJCQkJLx9pM/hhISE5xXvSVDI83wm6bDws3/q3RzL653ZUSR934nQdrtVs9mMkEFIFCQLklOpVHbCF701JMeSbsoRIJOQF5wFEC+s3k6GKF9otVqSrogWu/0IE8XOD4gle3t7EbRIwBzft9vtHWJcrVbV7Xa1Xq91cnISx6rVakEUOTakbDwex/Hdfg5Bp7beW2HWajW1Wq0gvJvNJlwNg8FgJ6RwNBpJko6Pj6O94Wq10mw2i3vCnHLcarUapRfdbjfKPDyQkHMUu2JAcHELzGazR3bCuX+z2Uzj8XhnZ55yDebJd/kh7e12W/1+P0QZXo+Y4+uQXA3KRbh+yi0eF/w5Ho+jFMPFiGKZDGIEJRX8nnKQYkmI79S7sCZp5xp9rSAWFEse/L28D7Am/PW831uQMjbOz9rjd16+wTm89KM4bq6Z9ctYvPwBccLzGhAJeC44PtfPZ04xu0LSTreLZwFP8rM4ISEhIeGdI30OJyQkPK94Um0jnxiceDhplxRkgODAvb29aCUIuSzuFhd3Kb2FIecqvs4t1eQasDsu3dSOe0aAt9aDIBcJnpMe4MTKQxq5Fi9nYPfWd7m9TZ+LKqvVSsfHx/E75o7SBuaN4/BfQh6x5rtzQ1J0VuCaESj4mXcwQJjB/dBsNtVut3fyJxaLRZBA5oXrrdVqQfq8jR/HLO5w7+3txfh5L2SSXXXyD7iPnoPQbre1v7+/83p3dng7T9YI97Bo8cepwdq6vLwMgYfzI1ZQ4sBa4NjeYhNS7mGC3mbRbf6UjnhWR3ENMp9cvz9/Hqrpbhy/Vi+3KT6vXh7Be5bLZQhsvNafARcFWEcIAsy7t1SF6DNP/kyzljgWQoJnmrA+cHow58yrl04kJCQkJCQkJCQkJDwet0pQ8J18/3LCL90QTgipv98JDu8pBvE5SfJMAg+Y8+wFbNu1Wm2HFFLv7vXziAmdTidyARgnO/eQGSeK0hUJHQ6HO50isixTu91WtVrVdDqN6yqGzkmK3fHLy8twTUDmII7NZlO1Wm0nn4G5kPQISfc5hWBxPO5Pq9WK0ghKCnB2+PxAzouCCiIFJJGyDM7nHT+km7IYnBWeW+D3lfuMAIAoVCqVdpwCHLtWq6nZbCrP83CNQGD5r88n8zeZTOI8gHmC3HqXDs/EQFyhpMGvy3MNmFcXETgPhJnzszYZE8fydqePcyTwfkSqYthoMTzUnRZ8zzPnJRXuSOAZ4VxFt4XnHXjZiGdwMC5vPVks03DxjvXL2Pi3i3s8536+hISEhISEhISEhISvjVv7V7PXRDspwPbuNe6QDb6wm7tlmfeyQ+rn2G5vettPJpOdnAPvVS/dBOn5Lro7GtxK3mq1QgzAfbBer3fEAt9VhUQtl8vosOAEh3F43TqA6Hq5AdfoHRS8DGC73cZYeB3EHsLMeNbrdeQLTKfTsM7v7e1pNBqp1+uFeLK3t6dms7mTBeFuB4SPLMuidGE0GsW1QXyZH59/34EuZm14yQBj8/BGL2Nh3XjonztOcCT4GvSyDO6VB04W8zlcIGMtUiJRdGWQ6YAjgWvgXnBfXGDzrAnKTfI8j3Ibz1rweSAXgXIiz0DAWcN7pZvOF5wTBwNBlb4GfR0jrvkc+7PHPeC9LpTwe+bNHRqIIMyXl0sV594FMs9XcCGDZ8JFNQ99TEhISEhISEhISEh4PG6loFBMVvcdxWI9OWSO9yAYFGuvITeUC/hupXTlUJhMJprNZrGLTdI+OQR+PMLwCCxkd5kdZ3IDEBQQK7ymm2MhHLCTDfFnt3a1WkUmhKSdMgNv2QfBZb68YwCtLz3dHmGCMdMiE2K6Wq00Go2C0HJc351HdJhMJlosFkGwsbc3Go24fkjpdDrVycnJTvnAeDyOHWaIfZ7ncUyIJPfQxSDmj/vkO9vspBczOiDOnBNCD/llniH+nJtQSoIZF4uF8jyP93vpggsSlFS0Wi11u11lWRYdHryEhPVer9ejdaWXTQAPIJzNZrEWmD+O4+00vdwB54CTeOClMzxbzIPPvT9r7jzwLATmgHWOMOLHQSjx7xF2fIwu2LB2i21U+fzgtV6KVKlUYm24cOHPrLuhisdNSEhISEhISEhISNjFrRQUpBsR4XG7vt7hAPIKqYSsFIkzBIXdduzsEL1yuazxeBzdEbCg0y6ySMJ9t9rJnBMlAgk9LFG6SfVnHIQGknFAICXuh8lkEi4KSUE22cF2Uo34gIMiyzLN53MNh0NNJpOd3WJIIaRvs9kEOd3b29NyudTFxUXsgnvdPSSaEoGLi4twGLTb7R0BiGthfsbjcZRvQIy9Lad0k4GxWq20XC6D9LuV3QUFxgXRdzs/BNtLDSDVbrW/vLzUcDiUdBOwiRMD0t/tdtXpdGKNMV+sr6IrhjHg2KAMhvfivoDoIgIQRAkodUDI8XwOF3hwSnjbTc8NQfTieiHxRTcAz5gLBw53PRQdI9wLBA/PQOH3HKNYhsA5/V4xLtwQnmfh3RqKDiTGxu8ZjztYGI9/lpAnwhgTEhISEhISEhISEh6PWyUolEqlIPe+s8oX5Ik//CEh7FSu1+sgeMXjugXayUK1WlW73Y7OB5Ajcg8on4CAsPNerVZ3atcRHbxlJA4KchogNggIECR24T0pHxKeZZkGg4Hm83mUHdRqNS0WixAhmCffrYWAsgtORwcXYxgnx/CSh2q1Gu0jV6tV3JfpdBqCB20ul8ulHj58qO12q/39fbVarZ25rNVq0ZJyu91GDoWkaAnp3RG431yL7za7C4BjI/54Dbzf82JAprsb+D25CggIfg7uZbPZjGwMD/30AE/EHObRcyEQIyj14L0epEnYKGPwsgPPQeB6EMi8GwTvY25YY5vNZqeUg9eyPopZFKxdL5fg2XGxoyh0+BrjfZ6B4s9kMSPBcz0YA4QfkbBer0eZB6/xbhPuqHBREqGFIEfPj/DSKlwwfg0JCQkJCQkJCQkJCY/iVgkK5XJZBwcHO7uoknbcBpCPImllZ5qcAg/Ik24IdLPZDHs/x2Sn3W3wHqIIqMGHkHl9+2w2i04GjPny8jJKH3yXeDqdRgtBSA67puwo06qwXC5rsVhE1gAkD0JUJNlkBfA+ShgQK7wUgPmUFEQfQoeQgOWe618sFqpUKmq1WhGQNxwO9fDhQ0lXxBlXAWMjIJJWjMytZ1Usl8toOblcLmPOfeccEuoElvBGOm943gBrgDnxjhfMucPbSjr5zbKrziLdblftdjsyBNiJZ068AwFjZjzcU7IxmN/idbkThNexLrhnCDSSdgQ2wjan02mUTThp5plqNps7JSDuZvBOJtwbRAIn6g4PMAVFsu65DC7s8FrEEubHj+0dHTwDgjEhkriY5oIR5+WZ5DnxzxRe6z/zOU9ISEhISEhISEhIeBS3SlCQdoPTpJuEfogNJQTewo/XQWQhar7LCDnw1nVOgur1etjSF4uFxuNxhAmCcrmsdrsdu72cExKMowDCioBBfT3EH8s/QgG74jgzaK/YbrcjOwGyC1li3L77C1FiHBwfwug17O5sgCQul8voEIGLgtC+er0e52w2m0FoZ7NZlFOwa0yLQK6JsgjvVIB4IyncFswlJRfuFPD6fa6X+8k9ZfwAYcIJO/kUxQwLxtZsNsNRUiqVokSBPAiEJOlKPOn1erGz7iTexQQXt5j3xWKh0Wi0U8KBUODuBJwZvq4QL1irBCXWarUQnjzfwPMQIN8e8EjpA4GR7oyAeHtZAMctBhY6UX+coODrDSeGOxpcaPDSIX9fsasDwpukHTcRz7yHixaP4WKal1ZxDf6cJCQkJCQkJCQkJCQ8ilsjKLiI4GQHsHvpoXOAMEJ2nSEb0o2V2TMN2K33sDuIOrXt2PIhKRAkyOZ8Po+d9iIBnk6ncR5vf+huhPl8vrOL7rvHnU4n3A64KSiJ8GuC7LDz6vkA7kjwHVtvj+n1/nShwLaf57lGo5HW67U6nc7OjjWBlHRwwBVSLBvw8g/IPW0jIYEEKbooUszNgEB7Nw2uiTkhcwAy6105eJ+H9G232yCWLgi4IFOr1bS/v69OpxOiBE4Y1hPrkvuJG6JWq0W5CeKWhzAS5sg8+Rrj/rhjQdIjIgM2f2mXjDtciOH58XlhbMXyHJ4FfxY5NveG58ZDILlfxZwTRDXKFIrhlv6ceTglogDv4T57TgXzUHQluZjiZUuSHhFD/POHf7NGEhISEhISEhISEhIej1v11zK7ir7b7m0Enez4Dj07wZCSYks4jsGuuBMF7OWQQQggXQuo6ZeuSCsCAbv6EGnIKaUUy+Vyx2XhGQAQXC9T4Lo4R6vVioA4xBK3aUu7rRJ9l9dDKJmHy8tLzedzzWYzjcdjLZfLIIaENbLjy++YC1pn4kyAbNKmEtFiu92GwMJYwN7eXhB1FzTm83mQXUg7pQ+4CQgpZM4RTDgex4eYI1hwDThKII2UjFBSUi6Xo5sHu/Qe2Nnr9SQpygnW63U4CVh/ZCJ4mQHODq4F1wdzxvlZe5T2cL+4dndUuBWf/7KmfQfeRTN3T+AIYP55roplDEX3gv/eRQzPInBCz3kYH3PuLhIPSmQ983Mn/uRAcK+8VIV7wFzhSJB2szce17XBPysQglgzRXEiISEhISEhISEhIeFR3BpBwa3FXrPvNn9/LQTBk9sRFBzFWuhiGQQkFnGA0oLhcBj2cYg/oXluSWeslABMJpOd+nZ2/T3h3rsyQOrYCfZae8gTWQ6IFrx3uVxqMplEFwjPJIAEuthC+ONoNNrpMODzJCkEDH7G+yHtXH+xZR/n8B1s7s/e3p46nU5kLFxcXDxS689c0qmCe1Ov1+N9hA2SVQFBZ26wy3uXBMbpa8lt8WRmEHLoRJPODFl204mCvAvEkclkEgGWm80m3BTSbn4Dc4PohEjir4X8c+95PySaEg/WF/eOzhaXl5fxe4QGn0O/L95GFQGM62b9FMsHnOzzc7qRuLOEecY9ANlnLnDHMJ+UZBThDg0Pk+RnjJP2pNPpNO4hYp2XvPjngosPxawI1n5yKCQkJCQkJCQkJCS8OW7tX8tur3bRAFLhwgDExMMbQXG3Hht3cefUhQcyEYpJ/hBXb1foO8LT6TTIMOeazWY75Jbj8VoPniwKH25jd3u8pCCBOAKcIHJNHItrmUwmGo/H4QBgDjkmBJGWjpBBCDbX6qUeXvOOQIIIgo0eF0W1WtXx8XGEM06nU11eXkZ5B/kOJPmzkw+xgwC6A2E0GmmxWARhpl6e10AcmXvIJXMs3XTIcJv/crkMMt/r9aLzxd7eXsw9ThbKY2htSBaHW/cJvUSQcpcL88t8EfrohJxSE2+ficjgOSPuamDOcL3QyYTOELh2EMY8m4Bxe7mMO154Pa4fzzPh3AhJ7iCo1+shxiFqFVug8jywNpkr/sv6RwTg/JQIcR+KpRCemeACJt8Xcx+K5SMJCQkJCQkJCQkJCbu4NYKC745CsiCekEx2s50AeMih948HvqP6ONs4JJIAvoODA331q18NEk65BbuoCAZOAiGZ7EC7DZ3wxWLngqLzgS/O4wFxjAWyiyiBI6PYFcNJXJZlGo/H2tvb03A41Gg0CjHB58C7JVCG0Gq1Yqx+fIQM5tdzKCCx8/k8js11UTJRq9U0HA41GAyixKDVamk6ncZr8jzX2dlZhD16WUmz2YxykKLd3oUoSGyj0QihA/GIgEYEB3bIXbhCUMAN0e12NR6PQ/jgnnuoJsdzMlpsJelCDXPp3Qog+VyziymIBf7cuDNDUgSB4qCQbrIrijv1vlY4nudx+O/dacN8ebtH1iVj9JyPxz2L3CfppkUloo2HcRZbQnJ/EF64DoQWd2gggPGsIDKRg1H8vEC48c+hhISEhISEhISEhITH49YICpJ2djyx9Bd3U+leAMmHAPvOqgMyhO2dXWAIFDb6arWqVqu1Qz6lqxZ9i8Vix9ngbQchoOy2ekhgrVaL66CFJMTGCRX1+9VqNcoSfKeW8/jPEDsI/2s2m3F9lEx0Op0gWfP5PMQN7xQA6atWq+p0OhqPxyEgcO3FOnkPuXNXCMfi+rwUxcMRab/JjjLzvlqtQnBwS7pb7CGsZC5Uq9Ww+zOfHmjou9oeYumdDCaTSVjxWVMICZRplEol7e/v6/T0VNJN9oY7C6SbsEHWFgICnTO8SwL3GVcJ3T1KpVK0+nQy/7gOCwgZiBXkb1CGwPu4V37diA4uUBTvZ9GZANlnDnDFuLvGcw9wfywWix3nBSiGTCLE+XOJsOLuERd9XAxhjB5A6bkplM5wPf5+F3C8NCUhISEhISEhISEh4fF4S0Ehy7I/IOmXSXqY5/m3Xv/sQNIfk/QxSa9K+pV5nl9c/+43S/r1ki4l/Qt5nv+ZtzsYiG2pVNJkMtFwONR0Ot0hMux284f+bDaL1ohOKNxKjjvA66Ih6DgMWq1WkDlECregl0ql2JWv1+tBajy3gR1djsluqAf5QWyctDAOShsg0qvVKlwFjUYj7NycC8FiNpupVCrFTjq7vJDz9XqtwWCw405ATIB0VioVdbvdnS4Y3vmAXXPmgwBKLx9AqMFJwrkZ82q10mg0itaMjNfzD2ibuV6vVa/XI78AYpplWRBmOjEQushOv++ye6kG8HwIdxdst1vNZjPV63X1+/1oGUlOAATW18RyudzJtmCnnTHxekIcuecQYu4r1+IBhMXuFl4G4yIPa5t7SInG3t6e2u22yuWyJpPJjvDiJRn824/1tboheAYDc+gZHy5+FLNGeM7deYHrh7XH8YoOgc1mo8ViESU5ft/K5XK8jzIJ5sfLL1irknbm0sUn5rno5nja+CA/ixMSEhISHkX6HE5ISEh4FG+nSPiHJP3iws9+k6Q/n+f5JyX9+et/K8uyb5b0qyR9y/V7/rMsy/b0NgGxbzQaQRBxCritmzDC6XQaeQDepq4Y8Ehttie3+44/BLLb7Wq1WkWGgr/HgyBxJ7CLik2acgwv3eB1/KxWq4XFn91k/ttsNsNpMJ1ONRwONRwOIyjSa8kh3pRfOEmCmHqJAmKC7+R7AF+n01G3241wO+mmLWCtVgsiLEn7+/s6PDxUs9kM8cLnHgLtmQa8fzgcxnEgbeQp4PCA5NXrdbVarUfq6/3+UpLipSwIM95twl/HsajpbzabIaJ4Rw1KWTyEESLdbrfV6XSirSSdKLgnnMOt/PyOL66Pn3tmh5fjeNglJJnjdTqdOEav1wtRqFarhUgG6fb3exYIzwBlL1w746a0iHIc1jGCAMdzIo/ogsDm+RisOUQFz2HwVpb8jjVGNoKLcO6G4b3+Pi/L8Oceh43nU3g3CNbSLcMP6QP6LE5ISEhIeCx+SOlzOCEhIWEHb+lQyPP8L2VZ9rHCj3+FpF9w/f0flPQjkn7j9c//aJ7nS0k/k2XZ5yV9t6QffTuD8eBCCIykIF8QHtr3seMKKXIiD6jvd7u4EzbIR6vVUrlcDjFhtVrt5B64nR+STCK85zqwI86usofOsSM/m800GAzCWo8A0O/31ev1VCqVNBqNor7eXQ1O4LgmRBDOAVGuVCrabDYRxujXIymIMwSUa+Ac3tZwtVppNptpf39fvV4vCNxisYjaf8ZEFwYPp+R85XJZs9ks/u0OBggvxNDdJi7KeBmFEz+373uZg8+bdCNkdDodSdJ8Pg8h4XE7+G7nR0xot9sx5izLYte8VqtpNpuFu8U7E7g4hUPE8zBYy/wMZwZuGW+firuB9YWbo9vthmsAMYCSG+4lpJ+1TNkJ84ezgmdkOp3Gc8MxuU++Nl30QPRCXKFMxcsbvJOJrz0CMSkBKZYOMYeeKUKZjmc/AMbGdfEe7lGxzOrNyqeeNj7Iz+KEhKeNvW5Xy+/65NMeRsL7gPKP/E1pe/m0h/GukD6HExISEh7Fu81QuJvn+RuSlOf5G1mW3bn++UuSfsxe99r1z94SWZap2+1GWB5//JMF0O12d0gqbR297aGknd3FxyW58192wBuNRhBEuga4+0G6IZROdiG0vrtaqVR28gLYcaeVH2R/MBjsBMJBFCFPdASAQBVru52AU56B9Z5yg3a7HcGFw+EwWktClD00j7GQswAZ7XQ62tvb08nJiSaTSZBROiwQjshuOCULXI8LML7DjzgAGWa+iveK60Pg4V54a0e330MqPeuCew1x5bj1el2Hh4exlhCHIL6QU8QeyDZuhmq1GgIJ2QCQfRwlntXBub0cwMMMi+SY3yOOISCQPeFkHRdJq9WKLgoe7ughhpTquPuCYwNKQlwIoSOJi0QQb8bi4Z2+ZvkZr6F0hDlGhJMU97ler4djhjkFCCqMDRHEBRfEmGIXDZ9n1msx76H4uXTL8cQ/ixMSnhqyTLN/5LslSatOSad/7+0T9hLeO144+C61/uv/TbqFwu27RPocTkhIeK7xpEMZH/fX92P/j5Fl2Q9I+gH+vbe3p5dffll7e3uazWZBEFqtVnxBuC8uLnbCAaXdLhHSzS40xIrXQGohUVjX2QU9PT3V+fm5ZrOZFotFjI33ck4IqKSo2/YkfASF7DqVntIGiJBbrz2rwWvPuZ5msxm5AQRVLpfLsH/zWhcTer2e6vV6uDkIsvQ8AdwVhEUiopRKJR0eHmp/f1+TySTaQLqFnHHhYmi329FRASEB8YBAPoi67/azc8z9m8/nUVPPNXrJBPDrcfjuu88xa4L/1ut19Xo97e3thRhD6QBuFUg410EnkHq9HvOFaAT5zfNcs9lM4/F4R/RgPXsLU8YO+absAueI1/4zZkQDxAgXHFg/7gKAiPMe1jAuBummfCG/7pCAMMZ1I3C4cOCOhWazuRPQyXV6+QTrhjkquor8uUUc4VqlXUEGoYfrd/EQ94R/PnAf/DXuTvL14qUR7kx5BvGuPovrar6fY0pI+Jq4+DU/R2ffwTL90JDNhALe+HmZPvHflKT82XQpvAOkz+GEhITnAu9WUHiQZdkL10rsC5IeXv/8NUmv2OtelvT64w6Q5/mnJX1akrIsyyESxdA6CB5f0k0ZQ1FEcBcCNeAQGCdpiAxuE8+yTBcXFzo9PY06f4iu97H3c/L9ZrNRo9EIW7m7Cdhhh2gVLddeV861cQ38HOHDiT+tMp3UdjqdIPbs0jKX3m7Q6+AhkOPxOLpZHBwc6O7du2q325pMJlF2wWvJJPBAQdwe1WpVeZ5Hd4jZbBY79uyMU9bh95J8hfl8HjvvhG26HZ77yM+cWCPKEMSJfR13AaTX57RcLmswGKjX68WcIJw0Go0dUk5Zynw+D8fGcrlUrVZTr9dTp9PRcrnUeDzeCaRENCHY0d0axa4VXqKDwwBy3mg0wjXCNUOUyRnwUo3ivEDGWYPcD/IbLi8v41y4F7xjBg4JRB5+Ro4H6471gXDgYg3Hc7GIZwPxhBInBAl/zhATcCMgKHDPKJHx8hV3LPFc+XtYWxzb18kzgCf6WdzNDhKLS/jAcfbrf64u65lGX5/atD4vePjP/Wzd+U//8tMexpNC+hxOSEh4rvFuBYX/TtKvlfQ7rv/7p+znfzjLsv9A0ouSPinpf3s7B2R3Os9zTSaTaCEIsWo2m6rVavE7SIGTe+ChfljAaUHHTi7OBIjgdruNTgjUghfFhGJtte+0Qma8LttLJNix93wADwj040GqeG2329Xx8bE2m40Gg4Emk0l0wZhMJnFt3W73kXA5rOqlUikIIufgtbPZTGdnZ8rzXO12W/1+XwcHB5IULgiOD1mFGHunDG9FiZByfn6uwWAQQke5XFa32w3XCPMwHo9DzCGcEsIr3XQL8B34YjYBIpG386Q0A3LO+sDxQRCot1f0L6/nZz3RhYT5bDabQbalK1ECok2HD5whTuoh0YgEnifh3TU4J6UXEGyEMy8v8HMwdjJCEJBwjbj7ALcCAhzPFmuVNU15B+PEceMuBIDDh7ICD/BkDIvFIp4THBiIGh6KiquCe4CzhJ/hkpAUYoKHNTJGf14Za7EEwkMsPXvjluKJfxYnJHzQGH9M2rSTmPA8Yfzxre689cueFaTP4YSEhOcab6dt5B/RVdjMUZZlr0n6t3T1ofnHsyz79ZK+LOkfl6Q8zz+TZdkfl/R3JG0k/Z/z/O152hASyC9wYoUFulKpaDQaSbohtG8GJ7iQI0i9p/t3Oh01Gg1Np1M9fPgw6umLLgjIvf/ME+adtEOe+LcHybkIwfVBbrxUwHeqDw4OdHh4qPv372s6nYZrgO83m00QLU/lJ18Bu/tgMNjJhWB8o9FI5+fnqtfrunPnjvr9vqrVapR9bLdbNRqNsJ8jqhAG6XXxHPPi4kKj0UgPHjyI+3l4eKh+v69+v688z3faaBZDE/0e45Dgvjp59h10CCvk2G3uzDtE3i35Pner1SrKGxaLhSaTSbyecbrrAHEAAsr6YBd9uVzGe8mZkG6cENxrF5UYF2vfr7s4T5Bgjof4ICkyDfb29kIQ4fp93j13opg14l1DEIJcDPMOHwgWCEoIP+Q+MI8u0nnpBOU37rBwccMzJfgd+RGsJTJMPMzTxSjmUroJ1ER4Yg1VKhWt1+sQLG4LPqjP4oSEhISExyN9DickJCQ8irfT5eFXv8mvftGbvP7flfTvvtOBsKMKSfVgt+PjY927d0+LxUIPHz7cqXm2877psREX2OX0LgiQlMFgoOFw+MiObLFFnZcoQOg4ZjEQESLkuQ2Swg4PcfX2iIgZEKJmsxktGrHwswNbDM4bj8dBAOkQsVwu1Ww2d0oMsH9TkjGbzSIHot1uq1KpaLFYaDAYaDwex7X6da/Xa52fn2s+n8fPIJrsPp+fn0cZA44QSDUlLZ1OZ6dkYn9/f2e32UM2PWzPiSAZAJ6VAdwGjzDCWMgs8BaD1Wo1RJrpdKqDg4Oo5WdXfDabxWvIHmA3nlIL7gOvKZfL0RKUdcj6JuAR4ustJQn+pASE6/UgQcg8zhSOzfqG1BeDMSWFEOS/82cKIQMXBiIEr/XyGV9jHtiI0ONZJO6y8PvvYYs8a54TwbhwWBRFgKJjiPIH7r+XvjB+D+T0eV0ul7cqQ+GD+ixOSEhIeL+RZ9Kr//bP1cf+jWer4UH6HE5IeL4w+0d/th589+M3l0rLTB/9t966dOtLv+17tK09nqfe/StbNf/kX3lPY7wNeNKhjO8a1NGzs8kf/71eT/v7+9rf39eDBw+ChBTT24tEyEshIBsQOXIUsMWzE392drbTOQJygpDAjibECdJSJKaUK1Ce4bXgECWECsgfxIcOBvy80WhEdsRoNIoMAUo33B5OG8put6vFYhGtDCGkXLuHR3rGATv1kjQejzUYDKJlIPcIMjsej3V+fh7n4JpoL0nGA2ULhGqye828IhKUSqWdgExyC3BUIPy4rZ1rw13AHEg3zg9IMOPA/p9lWVwb88ExCFb0sUPuqf8nwJB7SvAlRJf7g6DAzj733cmxC1OIA4gvZB0MBoMQb3CLkGPga9KfHY7NzjxuFNayhya6YOYdHJhDRDJ+x/y7W4G1yTH4vhhCyTE8PJJn0ssS/FlG5OM8OA+8BILSEoQUXuMOIR8TP1+tVrGuK5VKtBHFvZGQkJCQ8ISRSdvq0x5EQkLChw5vozvX6ff/HA2/4e1FleQlSdnjX3tZzfWF3/Vz3sYxto+PaJX0+s/PlP28q2N8w+8/0+VP/d23Na7bhlsjKLhNm93TLMuiF73vMgPIBqQJQuTH9AA/J6SQqvl8rrOzM41GI43H4/i5f3nuAAQYwaJcLu8QLYjKfD4PcuOEZzKZaDQaxc4uu7mQJMhgo9FQrVaL3ALei50bAgxR3Ww24QRAQJjP5zslGpAy4PPVarXU6/XUbDYj+PH8/DxKCrysYLVaaTAY6OTkROPxeIcIrtfrIGOSIgCz0+kEsaeTBPeIEoE7d+7EzyaTyY7wwH3hethR5rjsNEMgsyyLzgsQUQ8gpHYfdwmkmLBABAGv6fcuE4T3cb0IH07EvRSGDAeuw4Wz1WoV56U8wUsdWBvL5TIINOGTXirhnRAe92yMx+NYy7gPXIDYbrchlnh5SDHkczKZaDab7fyca4Ks47xxFw2lOLPZbEco8hKUx30u8AwzdnfneHYJx3OXDPPBPOBOoMSBOXO3EqKQZ6gkJCQkJCQkJCTcLmTlsmR/P37ht32nttW3EgvyNyX47+zkUv5e953sGJ/7/kN943+81ObVL7/noX3QuDWCwvHx8SO7rG6FpnUh9mRPsy/WfUs3BKGYEg/x4LWr1SqCA3EnOPHj9RAn8gio1YbcknfAe1arVeQzQBDpAACZlLTT+tIDI+l40Wq1tNlsdP/+fZ2dnQXBcZHE6/IRN5zkQhI9+4Axs0NNHXqpVApBAUGC8D8I2WQy0f3792POut2u5vN5WPIlhc3dOwcwFo6JvfxxNeyUoSD6TKfTnbwAWjV65w+3/jNmjsU8Q34RrnAlcJ7hcChJ6vf7Ojw83Olk0Wg0NBqNIqSx2WxGWQghlJeXl2o2r1o+eVtD1gT3b7FYxNrxFqAIFQgNEPjJZCJJO6UBXAe79pJC0PI1SQ4FjhmuB7LOWH2OPKeC319eXmo8HoeLhnWDmMH14RphfTMe7r8LTogWrBV/Xv3Z87Ij1r+vfS+NQeTBeePtN3lv8Xtfn14i4QJcQkJCQkJCQkLC00dWq6nUbunh935KF9/iAsIz3CQlkz77L76ob/wPc22+9JWnPZp3hFvz1zL10JJit5ggO2r6fQe2VqtFJwCvtYakFTMDpJvuD56jICl22yXFTjIExIlIo9HQ4eGhyuXyjtMAArJer8Me3mq1wrbuYXXYstm9xZUgXZHFfr+vTqcTO+ntdlt5ngdxJWcCAiopCCxtG9lph9DOZrOolZe0U9cP+ea97PL7fNMi0i3nbvEnEA8CR7cJXACIMexqE4gJ+Z3NZtGqE8GAED9KVdbrddTpI7p0u13VajXN5/NYBx7EyX8pn4CsemcND+5DJOr3+7p79656vV64F+jowDW2Wq0ojeAaEAlqtdoOQWdds+vtQZKSIpeB++LdLRaLRXQeIZ+D+w2B9lwGSY9kdnBv/Blw7O3thSDEWiiGOyKCIUbhlCCbhHN4OCaOBOYboYpr9QwJFwO5HuCCoZeH8H4XvdzJAFyIIADSS6YQXbi/LnqlkoeEhISEhISEhNuDUr2uyS/9dr3+8zM90wLCm+Cz/9JL+tR/Wtbl53/maQ/lbePWCAqQoKJVm93J1WoVRMEJHTXhThIhM8B3zbFwd7td7e/vazgcBhms1+s7ZRX1ej12Y8liQCDAGg3ZJc2/1Wqp0WhES0rIFSUMhNt5DbwktdttHR0dqd/vx44qJR+bzUanp6eRS+AOB+8ogUgxnU5j3AAi6eTTBQXGvdlsotzAhQeueTweR8tKLOXshnuOhNfnI45MJhPVajX1+/24f5PJJMIbJeng4CDKLiCCEGzCAfv9fpSREJ4HYWY+vXuB2/xZZ07EnVzW63UdHx/r7t276na7khTtOXF+cE1Y/D1DAJeKj99bM3pNP+KNj70YRomw4yGLzLc/O6wFXDle6uBr2gM5ubdedkOWgLtHvAUj+Q98+Vj9mngmEb2YN9amB59C2jkG4/HsEb9Wf759jfsxWOs+Bq4XIasYTOkuCx9fQkLC+4e9b/j6924ZTUhISEh4LlBqNjX9B7/1Wkz48OJz//xdfeJfSYLCOwY70k5SIYy+Iw85c3Lgu5vFpHqAKwFiCvlit9373bMLS7giO8/1el2dTkfVajUEBIgpgYXNZlO9Xk/9fj/q4D1EkfR+MhtwWyBAEMS3Wq3U7/dVqVQ0nU51cXERteez2WzHacH1emCgh+55gn8x26DYQWE2m2k6nQYh5prIKaDF5GAwkKTYyYZMI26w89vtdtVsNuOa9vb21O/3VSqVdHp6qpOTk2gxyRpg3twWj3Oh3W6r0WjE7z33gJBKd5d4WCDHlW5aB3pmRrPZ1L179/Tiiy+q3++H84LSC+/WQBaEdxpgXtk19zBLL7Pgmnyt4Tpwh0VxlxwSTbcPzysgjJP5lxRj9qBFrp33kQ3B/fbMBN7na4c1gePGS3YQcHheS6VS5GUgwnhAope48DMcHN5Jwks63NXhgZMuDDEWF3QQxyiJwRnEGBCumAdei4spISHhyaP093yjvvh/PNBlY/vWL05ISEhIeO6RvXhXX/0Ft6eld8IVbo2g4LuigGBBHAS+uwu8Htzrrv33kGtITK1WiwT+8XgcFmy+aGkoKcLwaKm4v7+vUqmk6XSqWq22UztfqVSiZIEsAkk7wgPkDyIsXZUq8D7Oia18vV7r9PQ0BAWuif9CqOio4AF37o4olUqRQUGQJKSV/AQcA2QnMFYf73K51MXFhZbLZYQWelYC7Qn5d6vVCsJWq9V0cHCgbrerwWCg8/NzXVxcaDqdRntESiG8np9ciF6vp263q0qlEuUJnjXgQYkQRpwtjEXaLYNhd71Wq+nw8FAvv/yyjo+PQzjyteEOgel0qsFgEG4R7gNCla9h6aaMx+8fpLnZbMYcuoDgHSCkm1133CcQfkplEGpwzLD2yAWg+wTHQhBgLhG3fB4ZE6UNvJd7hMjgohbX6t0gEDYQQ7g23BL+XndDIDDiqmH8/uwzjuKcM28uLBRdI4hQtFhFjGItJ0EhIeH9w+u/8EDrbhITnkvk0r0fS/c+ISHh7aPUbOr8Z9992sP4wLD8pT9LtR/+q097GG8Lt0JQgMgUBQNqt2ezWdTJF3civZ7aQxLdzu0lFNSgQwpJrMcN4eF2Tkgh/cfHxyEwQNw5frPZ1OHhYQgKkCHyBCCQ/G4+n8dxyFwg8LHRaKjb7Wq9XuvBgwc6PT2N/AU/J4SRPAOEAkihCwKQ42azGeINbRERL7heJ4m+w75cLjWdTkOU4H24CHBMQJQRCEqlko6Pj9Xv9zWbzXRycqKTkxPN5/Ow0bfb7SB3BAgS3si9Ywfe10GxYwJz62SX8g4IKWRcUmRV3Lt3T/fu3YtxsLOOMMO10TJzMpmEkINI4d0EWMPssHsIJmIJx5UUr/HSFD+2uy64F9vtNhwx7XZ7J6jRCbiHGbrjgHVDe8hOp7Mjykg3pRjuRii2Y2ROAcSd13M8ngN/bhG5OK8f2/MPCDelBIYMkvl8Hs4jnltERIQTB2ICAZfkkuDQYK2QEZGQkJCQ8GSR5fpQ9F5PSEj44JB12jr5rqc9ig8ImfTaLyzr63/4aQ/k7eFWCAqQeyddvgvvdeVOHIs7pLwW2zbvgVASagcJJuiQHWaOxfupX99ut6rX6zo8PNT+/n6Qe6/5Jpfh6OhI+/v7IVaw4zqbzR7ZpXVbd6PR0P7+flwf4Y4ERlLD7wn4WMTZoeeYbs/3ln7Usfuua6/X0507d1SpVDQcDuN43BfuA0ID84EIIUnz+Tx2dnl9tVpVq9VSu92OcM3Dw0NVKhXdv39fr776qs7OzoLw0R4Uwj4ajYI4NhqNGDdBiOwmLxYLTSaTnVBIvl+v1yFGMFecjxIaCP3R0ZFefPFF9Xq9WEe8npINzj0YDDQajTSdTqP7hAcGeocJ5sdDFxErvCTD7yMZGghFiEdepoFzptlsqtvthnMDkcFDLDmndNNWETEB4YVsinK5HLv1fr/dLcDPJe2URvBvRB/vsODBl4wDEQ+XDONCBERc4LgIBHxxDbg0Hpd3wGeHO1K8/EFSrAVySBj/48SIhISEhISEhISEhIQb3ApBYbvdajqdBvnnj3ns1x4eCLGBfHlQI++jI4ELBNTfQ2pHo5HOzs5id9YdEhAKDz7c39/XvXv31Gq19MYbbwSJgkhByMhQQCwgg8FT9wlWdDEEOz8iBq0yHzx4oOFwGMTKd4F9p9qzAKQbYkeyPmQQx0KWXbVYJLeB80JU8zyPrg/L5VLz+TwEiVarpVarFaUf0+k0unFAZj38kmur1+saDAZ6/fXXdXZ2FuSZ15bLZS0WC43H40dECnak5/N5EN7VaqXxeBxZFN6Vw4ljsfXh5eVlOCCazaZarZaOjo50cHAQwZTSTcAfa2G5XEZAowtGnkfhJRSUani7RjIDEAy8TSHkmPtIG04X1zwTglKHw8PDcCd4xwsPJiVs8fLyMu4Z66bdbuvg4CAyD1gvzKOHj3KP3f3C+Hn2OA9lIoyHa3GXiR+H+4fIhmiAg8W7WPC5weu9G4NnV3iZBsdDZCmXyyHaSFKr1QpHDedBOElISHiymP8j3635Cx++dO6Et4dv+P3nunzrlyUkJCQkPAO4FYKCdFMjjb2c2mYEhWLXBnrNO1FmV5j3uCCAA6DVamm1Wuni4kLD4VDb7TZKDSaTyY6V3sMUu91utHCEfENOq9Wqer2eer2e6vX6TpAhu7mQs9VqFW0AEUGq1ara7XZkMkD+RqOR7t+/H7v17GR7Pb6TOd8lZsf3zbpCsLPdaDRC9PCdaebcxQTpZmeZAE2cE4Qm8jNe2+/3de/ePZVKJZ2fn+urX/2q7t+/H3kQuClarZayLNNoNIqMBr8uyLe3taQUxtsW8nrPBPC1k+e5xuOxLi4uYj5ffPFFHR4eqt/vhwjk7gGOfXFxocFgEK0icT5QQkL2BK4HBJLBYKD5fB5rem9vb6dMhXlA4CA0kPwC6UbUYMyIOnTFICPDO154twkENkoEptOppCsh7OjoSPV6PbJKuA4Iu4dAeoAi2RjuMqjX67Hu6dTg99nvA4KNB3lyzWR6FLs4uAuHYyBIkCvB8REUilkKrO3NZrOTK+KlKDzn3J+EhIQni9nhni5rSVB4XnH52S887SEkJCQkJDwh3BpBAXLmqfXYpZ2ISAriUCQbvK8YjOdtDEulksbjsU5OTjQcDiMHwBPt3Z2A1R7bPSTDe91j7+90OrFTj6ghKXaCy+XyTsBknudqNps6Pj7W0dGRJIVNf7vd6v79+3r48GGEFnLdEDHIo5d8UJ6RZZmWy6VGo1HMLzXhrVZLvV4vAhTpHIHjg2vKsizEBO6DW8d5PQQaUrper1Wv13VwcKC7d++q1+tpOBzqq1/9ql577bVwhbBrDOkfDocajUYajUaaz+dxrul0Go4FCC5EEFu9p/l71wbKFZgDOlVMJpNI+EcsgghLN2UFhDsidHgJAmJQr9eLjAF3oiwWiyiNoATBXSscm/vouQ1kAviaZB1BwMnZqNfr2mw24ZpAAGC9MFfFModSqfTI+7l/kiKvAPEO4YTn6XFroLjm3Tmy2WxibUPseV739vZ28jRarVacF3cHZRPz+TyeTS9X8q4gknZCGBHBcCnwO8bo7TYRIrzMIyEhISHhyeBTv+OLutwmf0JCQkLCmyKXPvnbf1LPSnTtrRAU3I7szgBaLHorPEk7u6W+k8tucavVUq1WC7LgNmvs3pPJROv1OjIVaB0JqfCwP0gvdd0IApyb3WLcCdVqNYiYj5XSjuVyGWQK0us5ErSKPDk50YMHD2LH2YUDnwev1wfz+VzD4TDKJ4DPqbfk8/IQrOuUFXAMLx3g2v1eQez29vbU6XSihGA2m+nhw4c6PT0N0og1HiEC8j0cDiPbgKwDOnH47j5zSI4D8z2ZTHYcGAgrXm6CO4Jx09GBud1sNppMJlGq4IICc4gIAon2kEXI+Xq91mg0ivKRWq0WzgTGgECyWq1iDJBmOld4rb+HRLJWKWsh2wFRgN/hOvFcBnIHuK/kieA4wU3hZQPMF6VHCCOUNnA9RXLvAYnSTUmCt9tEEKKrB/fVy0hYc4ST+vz7Z0kRPLeU+nAchDnWFePACYJwlZCQkJDwBJBL3/g7X9XmwcOnPZKEhIRnFbmk5yTeajseP+0hvG3cCkFBuvlDHkIBSadvPPCgNog1pKfRaOy8D0DuJEWXgtlsFrvuECSEA0k7LgR2QSlXmE6nYSVnt7rb7erOnTu6c+fOTg6BByhCVCSFzX9/f18HBwdR+841Pnz4UK+++mqURjBHHlzHzjs2f4g/dm26V7jYUK/Xw1bvuQzs0tIlgnp8yDiihKf84w6AFEJ49/f3o3xgOp1qPB5HbsJ8Po/Xdzod1et1bbdbDQYDXVxcaDKZxO47JQPusvAdZ/IIAGUSBDxShuAuDnac2+22Op2OOp1OEE1cKrPZLO4zgZoXFxcajUbhnEEQQRgiA6QYjgl5d0Gq2JbUu5BQ3uGtHBEGPGiR363Xa43HY52enmo8Hoe4QP4C4Npoc8pzRptJnCiseUpaEIC8Ywfr2Lui8Dx6eQrPU7HDRNHpwnqiqwcCAdfM3CDUbDabnfIR3s85vHVssZvHarWKuSGAkddzDO4fazwhIeEJo7T33PxBmHCF7FL61H92X5s37j/toSQkJDyjuHzwUJ/6PW197p+/87SH8r6jtHm2/if5loJClmV/QNIvk/Qwz/Nvvf7Z75T0yyWtJH1B0vfleT7Isuxjkn5K0ueu3/5jeZ7/s291Dv6gL5fLYavGng9pgmCxKw/xcLKNVbpWq6nVamlvb0+TyWSn1SK7xsvlMsgZtmr6zkNkcBYcHR3p8PBwJxOBHX0I+v7+vo6OjtRsNndCBa/nK8gWO94EQfb7fVWr1SCRhNidnp5Ge0YEAxcOvIwCwslxfRcX4isp7PkepFcul9XpdHas9W41x/XB7jr15vwOoQFiSevBdrutzWYTZQzT6XSH/Hu3A9owDofDOAbOAtwK3gqQa240GmHLh8jv7e2p2+3q8PBQl5eXGo1GQVq5HzgMOp1O5EgQSIgQg0OBEENyLFiT7mjwloier4How/wxT2RU+O4/xyPjwEk89xvBx8UpRARKVviewEiuzZ0trNt2ux2uHRwRvu4Zj7dQRDBw0o6ryMk97hUPtkRQQBRzUYEvBCNvmYlbhefO1w7j5XkiSwIhguv1bAwvVyG4lPvgwaY+/tuAD+KzOCHh/UZWqWrwK79TF99ye56thPcXpWWmT/zhC22++OrTHsp7RvocTkh4usg2l9pbZh/qDJ69eaaP/5t/Vc/SFZbe+iX6IUm/uPCz/0nSt+Z5/vdI+mlJv9l+94U8z7/j+uttfXDyR/7BwUHY8b3tIYTN8wckxS6wpLDZ7+/vxw48oE57u93GLjjHAAQjutW6VCqp1WpF9wZ27SHvJO13Oh3dvXtX9+7dk6SoY2d3lLA6iDq7o/fu3dO9e/eCNFLTfXJyopOTkyB2EBvGBCFjjjxsDiKYZVm4NXq9no6OjnR0dKR+vy/pZjcfIkZ9P8LLZDIJhwNzyU4xRBlrOmUCiBMELGLDHwwGO/NASYKknbr/UqkUJSMe0udtE30eGDv3DOs9Lg0XaRAppKsgQsbJeplMJrp//350/vAOGogEnm8AGaUcwtt6ev4C4YXs1LNecTNQ/kEwqHdoqNfrIaiRP8BOPa4JhBjKGnAaIK6wJrhvOF4QmjiW5x14e0rG4QGdiGm8xp9Brp0dfg/S5HdkdrgTw8sk+DctJhGiPAsDUYvQUUQDPyev92BLL4FCgEDAWC6Xmkwmcf/dLXFL8EN6nz+LExLebyz//r/n+ekjnnD1h/F/O9X2b3/2aQ/lSeGHlD6HExKeGjY/8yV9/E+MnvYw3jdUByV9/b/7t5UXeOptx1v+tZzn+V+6Vln9Z3/W/vljkv6x9zqQZrMZ9ncvaYDMUWbAH/sEJPoOL50SOAaEStJOycJsNosdbnYxvZYfsQDnQafTie4As9ks7OJkDhweHkaGAgSP8XJuSTF2iHen04kddloNzudznZ2daTab7YwJez9ChXRTL87PII78jowGhAXGSI095Qocl11h5hzixg6xt/uj8wWWfcpU3JIPyd1sNtH1AvK62Wx0cXGh+Xwe5SeUtyCY4LLwkELfDYcUsuvNDj5En3BI8h0mk0nkQxwcHOjg4ED9fl/lcnknp4HxS9ppl8hxmBPGiTPBw0L5LwKJZwsghLng4O4XnAXuXEEEcEcNBB0HAcdk7MXuFggBzCVEHOEI8cG7pLCbz1wQlkmbVcoCXExAWMER5OsVgQaHBs+HC0jFDi6cW1LcXxcpPHPBPxO4Zj5fEGN43hEgioGnXLuXFd0GfFCfxQkJCQlPAuVJpo/8uYX0Y3/7aQ/liSF9DickPH2UJkvVzntaHjwrkYVvD/WHJX30931Ol9ed2J4lPIntt18n6Y/Zv78uy7K/IWkk6V/P8/x/easDQNClm5pySMZ4PNZ4PNbZ2VmEDEI6vP6cunkn3STuQ0DZDV+tVkEOvXUdJJF/9/t9HR8f75BwgvIoG5AUror5fK6TkxNdXFzs7PpC2qjdbjab6vf72t/fD7KJG2MymWg4HGqz2ajVakm6ImKUgpydnQWhIxOAHWEIEsQfgt3v99XtdtVqtYLIIYzwHizzHoyJOIFTA1GlUqmo3++r3+8HCWfHXlJ0LvC8ByfCe3t7YcuHiFNKAAklB4J7wfUiElDWgg0focCDOkulUrhOPBug3++HoMAccwxcKBBTxk4mA0IG7yGTADLqO+21Wi2yIBCSILXe2pJjIeoU3RiUnbj7xFtINhqN+Le7BaSbQELKGdyFQtYHwZouNkjaEde88wGv5Vl0Ms+YivkmkkJ8QdhAKPEASObKhREXCChdYJ59vC7YcA6EKlwOxbaRiHzMX7HLi4syzwDe82dxQkJCwpNAeZLp5b+wUukv/o2nPZQPGulzOCHhfcbl5z6vj/6psr78yw60OP5wiArNr5b0kT/yqjanZ097KO8K70lQyLLs/y5pI+kPXf/oDUkfyfP8LMuyv0/Sf5tl2bfkef6INyXLsh+Q9APSFfnBCu27s5QosOMPwcHO7gGH7XZb7XY7dqvdks333nMeq7zvSHNsSY9tyQdxpCuDB/xJ0htvvKH79+/r5OQk8g8gSnSXKJfLEVrI+dmh9tBHryeHPEuKmnJIHKGDkCEnWQgKWPv7/b7m8/kjZBMHCAQR0uldG2ityb2BjEPkr+9p3F/uJ/Od53nMPx0vcJxIeuQesENMRoWkeK2XTnhoJkR5uVyGyOPCy3a7VbvdVq/Xix1rL+NgjNTgI0rgJIHQch/cMcNa4/tqtRqZHDg8cDm4C8fzCOjmgS3fSwtwnyAmIarxe3b0GUOxWwnlFb7WEKFwB+AEobzBcw44H/PEPeL3vJ514F1E3HHEukR8wEnj4Y7MPY4FnnHm3btE8F8XVFxQKHarYA4oSfEyC1/D3vHlWcCT+iyuq/lBDTkhIeFDivI00yv/81J7f+GvP+2hfKBIn8MJCR8ctn/7s/pI6Zs1+KauBt9Q0qr/bAoLzTdKan9lq4MffU2br77+tIfzrvGuBYUsy36troJpflF+zWryPF9KWl5//+NZln1B0jdI+mvF9+d5/mlJn5akarWaT6fTHds+9uj5fB416pBbSTvk30Pj+Dk7/p6WP5/PdXl5GTX8HupH6B311a1WK3Z+SayH0HY6nR2bNwRlOBzq9ddf1/379yPTwdPp2d3FBs84er1edDoYDAYhPBAUSTeEyWSi7XYbY+N6IMvudiAzgKR9HAqQVs9i8N1eJ3BY33EPYLvHXeHZDpBb6u0pZUAQ8aBIiKJ3IfBAQIgcoZXtdjscHwRvQkIhkezcs9uOUOMdEqrVqrrdrprNZjgCijv+XLsTUgQTxBiIOiKR52Uw/lqtFq4SavEhwOQxUE7BexCLvMRjsViEY4Hr8hwL3kdnBYQDDzQlL8N38xlDpVJ5pGuKvwc3Av++fvZ3vhAtPEgStwddGSRFm0qyHtxVw7z//9s719hI8+ysP3/bdb+Xq9vjnp6d3hnNTrJctESw4qawHxDZrBBLviWfIoQUkBIJPkQiUSQSkPIBRIJAIpESJUqEICvEErEghBIhUIQC2Wxg9ppssld2pqfdtutedrnK9ssH+3d8qto9PTPbbZcz55Gs6S7X5f/+37fe6ec5z3kO14bPQOB+MJlM7PpmH7zAw9p8xgj3BIQb9osMB86Nn4bC53rxYpXxNO/F9dS+SRlAgUBgxbA+TXrffz3U2v987bqXcqWI+3AgcPU4fe1Lqr8m1T/8p/TNv17VvLb6X531o6Q7v3WRj1D+RlcnX/pD3azEhEfxrgSFlNJHJf0DSX8ly7ID9/gtSd0sy05SSi9JekXS197OezJy0PeoM+KRgEDpgvT4yiqP+4ou5JjAP0kmSlDhJgcBMoatXZK1RFD9lmTE1RNV0vsnk4l6vZ4ePHig8Xhs/e5MD4Bc8168T6vVUqvVsmP0bR24GRqNho3wo/Kdy+WMlJGgz/uyVjISCJXESi5pYRoEWRBU8n1LBS0KvHepVLLpAH504Gw2s8wHxAIq2H5tPoeBdcznc2sp4dxtbGyo0WhYGwvVfUQST0ohwARR4qJg/bPZzI6J9dEaQrsH4ypxLiBC0WowGo3MoUELzMHBwQIx5hgLhcJCwCfEnTVLFxMnqMR7d4cPmuR3voWFc8R5Zh2cX3IxIPu+dQUnCA4D9gIxjXYYnCSMF+XzORYcFwgCPqQUNw0iw3Q6te8ThJ7jgvwjQPj2CK5LrhFaJHz7Au/jR1F6IYLWCjJBcEMhWPiQRi9ucH7476riWdyLA4FA4N1gbZb00idHyj7zheteypUi7sOBwDXj05/X+2cf1Eklr69/vKTT3Gr92+39n5ppbXbeSjs7Ufa7n7ffrU5S17eHtzM28tckfURSJ6X0uqSf1FmCbUHSb54TIUbhfLekf5xSOtbZHv3dLMu6b2chVLL95ILJZGJheRAjSD32dmzx1Wr1ERs2BJ3KMhZrn5Y/m800Go0Wgv6oEPswPuzkkKjzvbHndbtd7e3tqdvt6ujoyKrTx8fHj7grIEq1Wk2dTkeVSkWDwcDW6gkcIke/39dsNlOz2VSlUrHKOMTbk1IIHjkHzWZT6+vrGgwGJsx42zef5acDQEohiOw9ThAfRMg58bZ8hBnIX5Zl5sogDJDzdXR0pNFoZM/3TgOq0LgvyHogY4GQv+PjY9XrdRNCfGgf4gyklso+1wjPaTQaKpVKRjSpqCNs0d7B+WC8I9eOd78QWojAkM/nNZlMFoQTP5VDku17qVQy4su58tV4vi/L+Qj8cO1xvnge4Prg2vXkmdYFL+5JF4Id4o4n81yviDl+coJ3KPjgSUQAd59ZaEHguPkO4WDiHsFauda47jifXJe0Ay0LGFwDiG78jvPA630w5HXjqu7FgcCzwvoHP6CdD+clrb7zJ/DOkE6lV351Xydf+sPrXsozRdyHA4HVxOlrX1KS9ErvA8pcu+r8Vllf/xv5K1tH+3NJnd/tLa7ti1+W+Lf2la3kavF2pjz8wCUP/9JjnvtJSZ98NwuBQEoXVVeq9hAQiAyEE1JCJdtXOQkQhPhSnaT3nmr8cDjUaDSyPABaICCZhOpBSBAyII84FRAmGMsHEaLlAoItnRElxIRWq2VEGZEA8YSgScgxUyfW1ta0u7urw8NDI8r09B8fH2s0Ghnxb7fb1h7R6/VMQPCVW4IMx+OxiR20LrAOSQvHwRQLCDR2d1otqI7jpIB4s06EE9/zzjnic6m4V6tVbWxsWPsLrQhkHuAIwb7vAyE5Ht8yQPvGycmJRqOR1tfXLXOBtdNawbHO53NVq1VrG6G1AOLtnQRchwcHB3YeyMegys4avDjF5JFSqbQQGOit+OwX17X/LnhxAyFjWTSATPMY+8P7e1cA7Q4+q4D3li6IN0JLpVJZmPAxGo3U7/cXhC4/QYTP9K6E5WkOkizTgqklXvzi+ud76wM5OcfcMxCKuMZ8kCbnwgdS+mDIVcBV3YsDgWeFk3rxj10qd0B69V/tKB3Ndfyt1697Kc8ccR8OBFYby6LmRi6v7/ja1qXP/drfekGzxrv4f1Imfce/vG8iwcKvBkOd9Afv/D1vOFZiyLoPhINIjsdjCxw8Pj62cDuew+P1et1Is3QRlkd1EbIAaYL8YWGH2GLXh4ARTgixpiILyeW59N7TNuHH70HeCH7ENbC9va3t7W3VajWrdg8GA6tIEwTYbrdVq9U0Ho9tfZVKRcPhcCGgkL50TzYrlYqazaY2NzeNjI9GIyOWPjQRIjadTlUul21dCDAEU5KRwN6ura2p3W6rXC7r8PDQCN+yOISIAemF9PuAP18JRyyYTqc6ODiwzIqDg4MFcYgpBZLMWTAcDs1dwbXl2x18BsJ0On1kTCLHSeX98PBQg8HAyObR0ZGFhHqxgrXgMuDv1WpV8/lcvV5Pk8nECL8n9MtjML0YAqnGzTGdTu27wffCizye/POdgEgvCxEckw9Q9OfNtwlIFwIC16kX1vyUFknq9Xp6+PChZrOZGo2GjUTl/Hmy71srEAmkC4GB9RYKBcvjQIzivHqHAyKHF3j8NeadHhwDghOBlN6pEQgEng7S7/2Bnt/6kN74yM0IOw08Gd/xL+7r+Bv/77qXEQgEApcim890/M1vXfq79//sQHqX/8477vWe/KT3EFZCUJAubN2EDHqXgCcHkoz45XI51et1dTodlctlqyhSAWf8IhVX6UJQwAoNKYMIYw2nHzyfz1tFF+u8r4xOp1OrYBOMSNijT+sfj8daX19Xo9HQ7du31W63Va/XNZlM9PDhw4W1MuqxVquZiALJ9yGMkD+fno/9vFqt6u7du7p165ZVjH0QI8eOi2I2my1MhSDIEaIOESwUChoMBnbO7t27p42NDfX7fQuMpLJ9cnKiwWCwEMh4dHRkgXg+FwByCWnFZUBgJe0v7LGkS/MfIIGVSsUq0JBrSC/HL8nCG3k//osohUumUCjYPnlBgQwNqug4SmizSSlZQCXnFqHMV9P9OEpcOT7/wDsW+v2+Dg4OlM/nbX9wbvgASK51SeZI8ZMd+M7h/MHhgNDBtefbAXzF3gcaZllmrT3Hx8fq9Xoaj8fmHkAgYs+9O4a2DN/uwPfcj8ZEIPHiFo4YP7XBuxB4H58DwvlHpOG69UIQ++TbMgKBwLeHbD5T6T/9nrZKf047H5aUnviSwCrivCj36s/thJgQCARuLE6GjwxcCbxLrMS/ltfW1tRqtYzIQfZ9oJ+vYEI8IL3NZtOqrIVCQb1eT91uVycnJ9bKAGGmz3o4HF5aFYZwUA3d2Ngwq7p0Ue1tNpsL7RGIIFRrESTW19c1HA51dHSker2uO3fuaHt720ZcjkYj7ezsLDgUSqWS2u22Go3GwvhG2irG4/FC9RUCD9EqlUp64YUXdPfuXZVKJfV6PSNguCnW19dVr9dtL05PT1Wv120aBGRzY2PDKuv05R8cHKher+ull17SnTt3FnIMcrmcSqWSZWAsZy2Qe8Be01ICWSYo0BPc6XSqvb09TSYTSYtEk+sDxwXr9ueT6wcyjJjiK95Uu2mh4DU4LxBWyOWYTCYLbS3kfOTzedvjYrFobSbz+dxEjtFopNFopKOjIxNDEM/8GM3lAEsq/BB3rm2fE+CJtHQxkcG/N5V472IglwLhQpJV/oF3/CAikM/AeaXCzwhYCPl4PLb2FUk2GaNWq5nAAOnneof4e0GQz/LODgRCHue69cIJe8r14yeDIEBwfeK+8e6PQCDwlHB6oton/rfm5b+g3gczZWsKYeGGIJ1KyqSXfn2q9Nuf1cmKh9YGAoFA4GqwEoKCH5Hnk/AhOz5IDeKZUlKj0VCr1bIqKqTx8PDQ+vvpR/fBcMvOBwAhkWSOheFwqMPDQ3MvEHRHbgD2a9+ugKjQaDQ0n881Ho91cnJiLQiE1xGUOBqNjNDRRw9ZhMTRBgLZJSxwOZU+l8up0+nolVde0fve9z4jk7w3Ik25XF6wuZfLZVUqFRtRyfFTeWevEBe2trb06quvqtls6v79+0YIWft8Ptf+/r5Go5HZ0KkgMw6Uz/BtEJ4Q04bA2FA+w1vbfWgfORM4IbxlnetCunC4LE+ywG3iW1ogqLyec8BaERnYI9wYnDfaEHCTjEYjdbtdC3n04aK+5YBzCfn1bTw+1HA6narf72s0Gpkzhu8L18Z8PjdHBSIFgoIPduQHdwXiiBcZ/Hq5LnFkcJ15tw7fG/ZLkp0/Qhc5dk/sWQvfa17HGEefs8GUENpo/CQY72ziPRApcF5wbXNufZBmOBQCgWeD9i//L7Ul3f/Rv6ijThDTm4DbnzlV5d//znUvIxAIBAIrhpX417IPbYMYemIkyULU6Keu1WoWkiddiA7YydfW1tRoNIx0ITB48u/FBOlRojObzSyZHxdAuVzW5uamqtWqTYeQZAn0vt88yzKb3rCxsaFaraZKpWLZDH4kps9baLValosAoet2uxoOh/Y+kD5vRd/Y2DDnwHPPPadCofDIKEo/TlKS+v2+tQgQbumnDPg2g8PDQ/X7fdXrdd2+fVudTscI7Ww2sxaN09NTjUYjDQYDI/bkIfj+dPafY+Q8UnmWZO9Byj8iCITSZ0D4sYS4Efgzxw/RZnIFj0uy4EoELknW349IMJlM1O12jdjynqyHSjltDhsbGyYO9Xo9DYdDE2VwAPjcACrnvLef5oBIQZvO8fGxiQlkaUDGaUU4OTlZ2DvEBN7fuwt8K5An9j4fxIsUHDsOlOUWA45juUUH8YBrEIEPNwatIFyrEH8EC0kLjgXOvwfHyX55JwPflWVHBOGhBGn6e0UgEHg2uPPPfvu6lxAIBAKBQODbwMoICn7qgCSbfIAVnQoxferVatXGBEJkDg8PjRQQ1uZT/32iPtXf+XxuvfUQH6qmk8lE+/v7C2GQTGbgtYAJAp4QHx8fm/W7Vqup2WwuWPBpX0AEkWRtB1SPIUWQyXK5bO4ICCPV3PX1dbVaLd29e1d3797V2tqa+v2+iRbsK1MmII5+mgM2b/af12Hrn8/n2tzc1J07d5Rlmfr9vlXhWc9gMNDOzo663a5ZyBEdcFpIMrcElWfyFPh8n/XgLeqQSi8ycc6liz5/ch+ki+kGXjDCgcF7kGNRq9UWWi6ogPd6Pe3v75u7gKo9hJhrAvFkbW1N5XLZXAUII5KsAu6JOMfpcwl4z8lkYnvA7/v9vobDobWOIBoQgulDOn0+hQ+eRCTxYyT5TBwdnDc/KQI3gB89yp7iLEEM4Xonn4Fzx4SU5eP3a/TiB2BfJC1M3OB6YVoL3w3EDIJHl7MhyBg5Pj62Ma2ICXxOIBAIBAKBQCAQeBQrIShIi4QBa7cfgweJyeVyJiY0Gg1VKhWz2Pv+akjpaDSyyj7wmQS4CiAf9F9j/Z5MJjY2sV6v69atW8rn8wvjHan4Q8g4HsZSErLImnAO7OzsaG9vzyYA4ICgQipdBA9SVa1WqyoUCkZmfeW6XC5ra2tL9+7dU61Ws9GbuCQITCQnYW9vzwgdgglZFAcHBxqNRjo8PFzIZ+h0Orpz547a7bZ6vZ52dnZsT8fjseVF+Gp8r9ezc+fFA0lW0cfhgSOAx3xw3vJ4RF7v21ewyFNBx9oOsaYtg2kVnPfxeGyOEwI+qU4TxMgx4RDwkxpYK+9HhoKfPuBdKLRbQFhZHwGFy8cIUUYUoP2CQEFIvHf7+B/fBuHXenBwYNc9r/Mkmr1DHPDEHZEE58NyuwF756elICjwPUcU4j39e7G3fCbP5Txzj0DQ8W0uPLacm8F17oMneV6pVFK1WrWcC9+mEQgEAoFAIBAIBB7FSgkKPmQNEuOrppA92h34c6PRsJGI3uqOAwB7vbc6Q1ggaZBDyP/6+rpVkxk72Gw2jWx6wYP39O0ZR0dHGg6HOjk5Ub1eV7VaXeiZf/jwoe7fv6/d3V2r/BcKBctXoEoKmYIIlctlVatVq/L7tpBqtarnn39e29vb5oDo9/vq9/tGVknLZ/oAe5LP5+29IflMVoBYdzodvfzyy3rxxRctyX82mymXy1krAAQV1wUZEevr6+YE8aSXSvjy+UcQgID6NgDcIH5SA2KDt/FT4WZqBEKAz0eAAB8cHGgymViriZ/cMZvNNBwOLU/DT++AMCMOcDyQcu+w4Hxd1mqDGwDS7FsY/PQKjoU2GUQYP/6QiQp+agKknf9SnffuBd/+wXHzZx+Q6gMTea1vReBzOBeIOt6JwHUnXYhKkuy69/vkRRe/D1wXKSXbZy9k+GvHf1c5Tz4Qc319XeVyWScnJyaE+esuEAgEAoFAIBAIPIqVEBQ8OeAf/P5xKq+lUknlcnlhtOKdO3dUKpUWqsAQpfl8bhMMILPSYs82tnOq5ogUkiz7oFgsanNzU/V63WzrnvD40DfffjEej02MWFtbs8r0eDzW/fv31ev1jPjhqoDUQ/j99INisWg5DAT9ITTkcjk9//zzeuWVV9RsNq1do9frGaGnLYCgSkm2LwQy1mo1q9hPJhOb1EBuwvve9z41Gg3t7e0tZEgMh0Pt7+8bsUN0GQ6HOjg4UKVSMcEAEoi7AJfE8vhHny/gq9O0RfjquAek2As4nG/IN/uJGwNyzPU2nU41Go1MtMAlwPXg14lLhdf6Sr0P+vTk1U91QBygb//09HQhx4LqPHvAOfGjITlmyDNCgW8n8o6FZWGN1y87hRDdOAd+3Cjv78m6F1p8+w/Pw4nhxQmfseC/i+wh52DZOcH3DXcCn8f3xbdLcO45lz5sk9Gjp6en5urh99HyEAgEAoFAIBAIPB4rISh4QMwgJPyDHgLECLlWq2UjGCEQZCxAeggB5D19Cr2vaE+nUyPz7XZblUrFyGqxWFSn01Gn07GpDKyHPm3pInVe0sJn09tOZZ3WgH6/b+GR/DAGs1AoaDQaGdFkL6rVqlqtlqSzHvxyuWxkc3NzU6+++qq2t7d1fHysN9980/r9WRsBgZVKxcSSarVqrRb1et362gmjpL++Vqvpzp07qtVqRvQRBgiX9MGPTLfAfeBbOCTZ33mfYrFoAZoQTtwXuVzOKus4ODxpXiZ9EEs/blCStZyQgcCxcP6YdFEoFIy0IxxRUcc9MhqNFvbWE36yHFgXQgnXHfsAmT45OVlwTRSLRROhEH7YL84JJJh98i4CxBzWDpHnWqL1wDsY/N5xvLwnQthlYgL7x17T7oFoQV4F5wGhj5YTPx3Ff5cQfhCd/MQGP60EMcG7M2gP4Rz4UZKsjf3k9+yNby3x959AIBAIBAKBQCDwKFZCUPDBbZASb3cH/L7RaJiYUC6XNRwONRgMTFCgmuwr1QgOEBd6qMlCKBQKqtVqarVaqlarmk6nNk7x9u3bRsLpq/YTBlJKRlYhNz6wkXaKQqFgpNkTLumMkDUaDbXbbQtEhOAcHBwon8+r3W7r9u3bNpmB4MlqtaqXXnpJL7/8ssrlsnZ2dvTgwQMNBgM7Nghzu91WqVRSv99fqAKTAUFfvU/br9VqarfbFljH8Sy3E0DySMynbQBSS2hmPp9XoVCw88SYTfYNskzQJHvpbelkQxBm6UM2C4WC7Q2ZEKxtOp1qbW3NWlAgzYg5BDLi6vCtLIgZtBzMZjMTILwDxotWy6MRAcKJdDaitFAoGFHP5/N2/FjzmUiB08CHHNJ2gIOAsal+lCqv8yMq+Xsul1M+n7fHvEjD+qWLVgVEBz/RxE9FwG3Auv20By+qHBwcmNjEmny4KcfhRzv63AmuF9/qwLXihRSubYQ+rgfv3OA1vgUKUSUQCAQCgUAgEAhcjpUQFKTF8EGfrg55YTJDtVrV7du3tb29rWazKUna3d3V/v6+kTxvhYfQ4FzAIg5RgVTT41+v1xdCATc3N9VutxcCBSGiVDch7EylAIgMkixE0mdC+Op5o9HQ3bt3ValU1O/3dXh4uDChgvYO7PY+WPDWrVv6zu/8Tt25c0enp6f61re+pV6vZ7Z+SOnm5qaazeYjY/YgmX6kI4JBpVKxDAjfegA5hlxzPD4c04/ow0YunbkrIP9U/Zniwb75iRyIFdVqVWtra9ZeMRqNlFJamO6Ag4BpGNKFU+Do6EiHh4cql8tW3eY4/OQQxJZarWajPznPkkxwYe21Ws0Iuf88RkMut/HQyjKbzVQul1UqlcyNQFgjEzZ4zGcf+P3xUxM4hzg3fF4A5xRwfSPmIBQhsEkXLSPePcB30btKfCsF3w8cAQgFXGOIDF5gQajg+5rL5czh48MY/bEixiAMcn4RW3jcZ28gsiBYcL9A+PGZCv7aCAQCgUAgEAgEApdjJQQFyAV2bcju8ojAYrGoVqulra0ttVotaw3Y2dmx8MXliiJEi/f3tmgqn3xGo9FQuVy26QZra2sWxOgdB5CVtbU1yyOAMOXzebPss/56va6trS11Op2FiQAQI8ZRbm1tSZJNVkBwwFmwvb29ILBA+J977jltb2+rUqnojTfeUL/f13w+V71eN+s+Dgjs+n4N0kWYHiRLOstXKJfLajQaKpVKyuVyJnBgEycjAYHl4OBAw+FwwcqOtZ/8AY5ROqv6S7LxmpBbb0XnfVJKGo/H2t/fV7fbNcGEXnhCJzc3Ny1fwmcDIDYR/IejBacBYz0h4/l8fmFdnC+ODVcDrSIHBwcLYzi9A8Rb/nFqLE97yOfzlp0A4UfsAj4zgrYD/3efR7G+vm4iES0BrIHrizUg8vg8CsQ4n5GA8OBDNv13lnPlQxz5s29X8EGruBZ8GOnyRAauO389+H3BjcA17YUoaTE3gTXjnvHTRXBZ+JaeQCAQCAQCgUAgcDnWnvyUqwHVZIi+J2OSrOq8tbWll156Sc1mU7PZTHt7e9rd3bU8Aiqk0kX1FlK0XNWVLnqoIXNZlmlnZ0dHR0dWnYfgSVqoXFKdpo3Bj8fjublcTnfu3NG9e/dULpet95/PPj09VbPZ1N27d1UqlR6xq+dyOXU6Hd29e9cquxznbDZTPp/X1taWbt26pSzLzKmBDR+Ci12fwErCAOfzuWUHsP84GtrttrVIQHSp8h8dHanf72s4HJo9nFGTWNl98CBVc+miwu/FBarlvvq+LA4xvrHb7VpgIoLF6empqtWqms2mCSe0heTzecuF4PqazWYmHPm9hpDWajXLapBkln5Pzlmvv06xyS9X6H3mBm0zXCu+bQZ3wmQyMUGB9fGd8CMP/VQDhAKEFV/Z5328kIZAgHDgLf4IbVw/fsKEP1dch17o8vDfNfbACyB8b7nGfBsCgod/b4QDjos1ezcD++JFAgQCrhcEQr4XBGD66SC+rSMQCAQCgUAgEAg8iicKCimlX04pPUwpfcE99lMppTdSSq+d/3zM/e7HU0pfSSl9OaX0PW9rEefuA8jBcpgePe7tdtts/1TT33jjDQ2HQ3MIQDgg3p4QQFZ8tRLLNz313W5Xe3t7VuGvVCpWzfTj7EqlkprN5gLR5PP8Z2xtbenevXsmgDDeEoJWKpWsd380Gmlvb0/Hx8fW0lCpVNRqtVSv1832zpjB09NTNRoNa6UYjUYWGknlG4EAEYI+dkg+lX0qw+Q7MEUD4uiDBWezmfb39/Xw4UNrL5lMJtrb29N4PF4gchA/zgN75VsB+LxqtWoigx8liKNkMpksVKgZFwn5rNVq5k6g8k6rymAwWBgFyFhMxBHs/eRmVCoVE0NwM+CCAUwFodWDvYWsQ7YhsLg3pDMBzU8Y8a0bXG8cJ4Gk/A5yzPeEPSVskM/2AZfsFfsGUUf4oEUFZwDuFN8ywJ4hEtCWIV1kWPg2AZ9twPfTCwz8maktCAR+vCuuhOU8FS9ucI0hWPh7h3/cT6nI5/NqtVqqVComlI3HYxNxisWi7dGq4CruxYFAIBB4POI+HAgEAo/i7TgUfkXSRy95/J9nWfah85//IkkppQ9K+n5Jf+L8NT+XUnpiiQ+yi3V+OWGd7ASmDEDGGW8Igceu76vEkErposd6eTIDoyJTSup2uxbsV6lUjMweHR2ZrTufz2tzc1PValWSLB+AcZNU67MsU6vVUrPZNOKL2EG1GZfD0dGRdnd3LYARZ0SpVFKr1bIq+3g81s7OjnZ3d60lo91ua2Njw4IpOS7s+RBE7OrD4VC9Xk/j8dis9pJMLPBhkZ6QSRcTLHq9nu0HQoR3XvgwPQi2JLPk8ziCBo4ASbZuQiAhjb7aDBGGrBOeSa4E62B05eHhoU3GYJKFt7dj+09udOlkMrH1cs348EoflOgdBewde8JzcHPQKsHxcn68OMC+k5nhp1p40YB2AzIeaE3x7ULLrRVU373Dgn31uSM8RtAjhJu1MNkDoY498VkbnAdajvzvfFsD1xWtMLgYODbvUvDTMXie30PvGPHiFiINbifuC7h1JJkrgnvSioUy/oqe8b04EAgEAm+JX1HchwOBQGABTxQUsiz7LUndt/l+H5f0iSzLjrIs+7qkr0j68JNehM0bouhD1aQzUtBsNlWr1YwIFItFjcdjDYfDhb503+9dKpUsnM+PkfOz5+mdLxaLOjo6sskIkA3IrBc3COGbz+fqdrs2zpCKMySSFg2q3VSxARMrKpWKRqORxuOx1tfXbXQkggLvO5lM1O/3tbu7a6MPK5WKUkomEkDSDg8P1ev1bFrB5uamKpWK5vO59vf3tb+/b58nyaYycKx+mgAkmmozuQzY5RkbCWH0lWzaQNhP6WJEoB8hCYnDmeBbBnzvu6+4E6zHPnY6HSPIiAa9Xs9cG+Vy2QQHCCwCDq/jumNyCKSYa4WgzVKpZLkDw+HQ9opr7fDw0ASe6XSqbrerfr9vwZE4WTg2T3p9+CKhiuy5t/X784QI5F0bjExlnctjNnGDMCLUtxn4vZjP59YegsiAswP4iSocm5/C4AMSIfCIazhucBz4kFCyFqQLhxEuEMQC1uzbMGhb8A4HL6IsX/feecJn+wkQq4CruBcHAoFA4PGI+3AgEAg8im8nQ+FHUkqfO7d/tc4fe17St9xzXj9/7C2RnY+Ik7SQ7o8wUKvV1Ol0bOLC7du3JUn9fl/j8djEBMgWtm5s21QbvesBZwJtDevr61bJ9jZ/X73FtcDoQqr0uAxSSkZEyCAgN4HjlGR96ST8n56eqtvtajqdqlKp2HtxLJKsQry3t7fQFsG4QdYunRGi8XisyWSilJI2NzfVarU0m8305ptvan9/34IaeT3hfZPJRKPRyJwixWLRCClkbjKZWBsKpF46I904AtiDSqViWQGQWY7Jj1aUZNkBEFvIIGSRsEqIpB9refv2baWUbA9wYuzv79tacDtAckejkSaTidnk+TtClb+eqP5DXn0Y5MnJibkfcJIwnpIgx36/b0IJ++SvedwSuBP8qNN+v2/uGz9dhGsJ8WX5emVvESsg2V6sgdz790ZsgdCPx2NzD3HufKYIThXcEbRH+CwJrn8/vQLBwueScN3zvjgbcFx4AQaxQ5K1NHAvuGwqBSId74WQQoYFjy+3btwAPLV7cSAQCATeFeI+HAgE3rN4t4LCz0t6WdKHJL0p6WfOH78sEv3SJuSU0g+llD6TUvoMRIpeck+msf/funVLzz//vF588UVtbGxod3dXOzs7GgwGFgrorfQQSIisdJE2DwkrFotqNBqWheB76aWLOfeQjnw+b+MTJ5OJJpOJORY8GdnY2FC1WrWgQ6qcVKAhxRDpvb09TSYTEzno8aciTdghBJl1Ypk/PDxcmKzACEYmGtA+0ev1tL+/r8PDQ3MeID4Qpuit+wgW0kXvPlMdsKx3u12bbnBycrIQdOgnNvg2FM6tz1iA3NJigCODveN3kH8EkGKxqE6nY1kXkFn2CmIsXVSeEWeOjo4sKJGAycFgoIcPH9oxQYhLpZJlPDBiktBLhCFyAPz0BY7LT+44PDzUaDSyY/NVfF/Jp3pODoYXBfyoQ5wXXGN+DKN3OUhndn/OKbkBtL74thQ+C7cJpJvri++aX4ufyIDLhzGpfMfJavDjJRE5cKrQYoQTBcEFAQrnAd9PriGEHN9q4VslfKijb0fxYZKIFN7lsOJ4qvfiuY4ue0ogEAgEHo+4DwcCgfc03tXYyCzLdvhzSukXJf3n87++LukF99S7ku4/5j1+QdIvSFKhUMj8ZAOqr5DaTqej7e1tvfjii2q1WvrmN7+pr371q7p//74RLSqZfkwfBAnC4ckFVWaIPwQZwg8g2dil/ehARAkmDkgygklPvhcTmOBABZpJCf1+X5JUr9clnRE6RIy1tTUNh0NrC4Ec0/oB8Yaw+jDE2Wxm7oDBYKDd3V3LWGD6gZ++APFlb3itT9KnNWM0Ghlx5/jG47G1JECwIbMQN6z5fpRkqVTS0dGRuQIKhYKRWk8eCeOElPpgPYQfSWbRPzg4MCcG66c6LsnIqg/k6/f71iKBAOVzLCCZkF+e5x0wCAdY+XF8FAoFI9e8zjsZ3Hdj4bzgJvBtN4gZXNP8HoLN69gPRAA+k/Php5/4vALEAXINuF58aCIkns9CyJpOp+YGYA/4LB+g6K8xv07yMvxrWCePL4+PRIRAqPACAsfHMXv3A9eXFzN9u9WqCwpP+15cT+3VSaEMBAKBG4C4DwcCgfc63pWgkFLazrLszfO/fp8k0m4/JenfppR+VtIdSa9I+vST3s9b4X1Fc319XY1GQ88995wFMk6nU73++ut68OCBVSP9VAdvCafKCpGAAEJsyVeQzqrBEFCfW4CgwBQISL4na4xvJD2+UqkYWcXxABFmLZPJRN1uVw8ePNDBwYEqlcpCTzkkCls2DgrEAHr1yWVAkOF5PkiSCrQXPaQLxwQBkoRWcvyQLYQawgfH47EGg4FGo5EJHKzz9PTUplMgmkD0qGLjiiB40ffkY133vevkE6ytrWk0GtmkDDIypAsHw2U9+bRsYO1nDzyRpUWESQ64R4rForWMIF5Bgi8jwlS3CTKkuu+JsBfOcAZwLmk/kWSV/+WAUlobuEZ4D6rvXPeMOyVbBPEE0cyvg72TLgQMXuvbUvju8Josy2zcJQ4B1o4rgfGpEHY/TYNgS9bFtYbjxbsylgm//86z/z5UknuLh3/tZedk+X606oLC074XBwKBQOCdIe7DgUDgvY4nCgoppV+T9BFJnZTS65J+UtJHUkof0pl16xuS/o4kZVn2xZTSv5P0JUnHkn44y7K31Yzs+6IhN5VKRZ1Ox7IIJOnBgwe6f/++WfwhMb4S6e3LiA6QHh4n96BQKGg6nWpvb8+cAo1Gw9oJCF0sl8sLlVVJVqlfX1+3PAGqxxyTT7SndQFCTWAgVf3lgD0yDWazmbVVYCWH4NEGIF1U1P1oyXw+b60ZnjRJspYKHA3sE/AkDnHB7zkCBMRRkgkq3oLve/fpc/fTJ46Pj22kIzZ5no+w4CcgQFARfQgf9D31vA5hxPfWs78+X2AymVj7DIJQLpdTo9HQrVu3VCwWNZlMVKlUjPDiyvAtIHwOxyhd5BzgHPCTR1gD+4qbgz1AZPITETjv7C0ODO9QYH1+mgVVd99W4TMDOC5JJgRl59Mj/PoRGxBrfNXfr8dnI0DM+RwcDLyXb3Hwr/eiAZ/t2xH8+/oWCj9OEnGF78ZlIg6/926I5YkR142ruhcHAoFA4HLEfTgQCAQexRMFhSzLfuCSh3/pLZ7/05J++p0sYm3tbO471XYIVa1WU7vdtnGMo9FI3W5Xe3t7VtFctm/7vmfIAsSD6mZKSfV63cY+MiFhMplYSOPJyYm63a663e7CKEJyFGgzkLQwRcL3ltMXDmnqdrva2dkxkgOJhMRAdhAlcABQQZUurOWQRO86wHJOZZzX+swCSJ/fO4iXr9Bi6/cWf9YBwfMkmJYQ9ki6EBOoGCOazOdzy5nI5XKWJ1CtVtVsNheOlTX6yns+n18Yp4j7g3OEwMLx+AwC386BG4KgST/lIJfLmehEcCYtOMViUScnJxoMBuZgYT+WpzGQqyBdkN58Pr8wMhL3BPkOOAiWnQdcGz4rAGHCC3HLQhbHL120eSxX9RFyvCCF+ELQonfQkCmCMOBbLSDkXFOerBOOiBCBmMB14t0PvuWFY/T/5XvOeffOG77nXNteLOB65Dj4Pi5/F/xnrwKu4l4cCAQCgccj7sOBQCDwKN5Vy8PTBpVzWg4YrUdqPhX0wWCg/f199Xo9q0zTBgChli5szdPp1CqmnlCUSiXV63ULyBsOhza5ABv2wcGBBoOBxuOxkU5aMPg9FX3fZsDnQyYh4t1uVw8fPtRgMLCJAT44D+JFNZi1I0xAliA+BwcHKhaLarVatj4yArDun56eWtbCycmJrdFbySFOkGtIH0RyPp/behnRCGFFUPD2csiqFxpyudzC1AbaTYrFogkgGxsbarVa2traWnAeFItFC9BjWoMk21sffLi2tqZ6vb7Qa+8zNvzn+vGSXCPSYnAnrRuSrG0D98LOzo52d3c1GAwWwiD9MfOeCAZcX2Rl0BbhAwYRBSDTVOQJq+QzptPpQjsNj3HeJJnQgvCFaCBdjEP1Ag1r8i1HfK9YI5+Vz+dVq9Xs2mLfvKDG370zwIel+vBIrnXOu29f4HuLyOLdSPyOtXqBjddw3SHA+D1DMPDv71srllsmAoFAIBAIBAKBwAVWQlCQFm3U6+vrC+MZIVdHR0fa2dmxSjn96tjAfaWS1xEm50llvV638X4QKJ9UD6EhqI/3LZfLqlQq5hxgdCBCiHRhJ8fJ4Fsqer2e2cQh2BBf+sqZOkALAc+D0PHZtIdAzBjHN51Obd1kIWRZZtV0bxn3oxAhdf1+39bP+kql0oIgQwXZE1LC+LyzwWdbcF5470KhYGGIx8fHunXrlu7du6dOp2PnmjYInxPAnns7OmJPtVpVqVQyt4FP+a9Wq6rVagvtKJVKRZVKxYivF3FomciyzPIVKpWKTk9P1e/3tbOzo16vZ8+DiEJYvUCB0FMqlRYECnI7WCPOAKrnXrhhrxGTaMPhOkcsarVatv/+nOAK4P0g0lyn5F141wuVfMQOhCsvlvl2GPYC0YLfIV7g+vCuC8QrHBN8PnsIsZcuwlX9PcPnlCAo+kBHH2a53ObgHQ9+TKR3toSgEAgEAoFAIBAIPB4rIyhA7KkW+8A2yNZgMFC/37cKIzZpphVQXac66SulkA9IJ5VgiJDv2SfngB+s8lRksezzfD8SUDojUggikHQvJpTLZXM4eELEMfu+efq7mQgxmUwW2hAI3iP8j9cwPeHk5ET7+/smQFB1ZboFn1+v17W3t2ekHUGBSjDHCbnGnQD5IkeBLAnvWvC9/7gCEBOOjo5Uq9X0wgsv6N69eyqXy1ZRh2BCmCGyPuGf/WGUI3vA5/OadrutVqtl5LhcLqvdbtu14kWr+XxulXTGYEJEyVro9/smfnlbPdcb1wfXNeeDkaM4SfgsHw4oaWFf+Q74oFHef3193dosIPmIIIRX4srgHLBnnuCzx+Q+4CqRZOKWdzPQsrGcx+DXTzYEx1itVhemKiy3GXC9sI+8J2Ig363lbA8fHrrsqvBOHC9CejHBixR8rg8FDQQCgUAgEAgEApdjJQQF/qGPmFCpVFSr1awVoFQqLZBm0uqli55w3z8uaaH9gQovhIusAUgGBI1KP04FH+xXr9dVKpWMsEJex+Ox5vO5kXemAFSrVQtE7Ha79nmlUslEC6z+VMubzaZVgT2JosLLa7CMeycGxAmyBJkbDocqFouq1+vWv9/pdBbcAt7JQFsH1W+cIxwrFnpP1BAXjo+PbbqD77mHjPN5vMdkMtHGxobu3r2rD3zgA2q1WvZZfg/88UH4IKocW6PRsGo4AZ5MrGg0Gtrc3NT6+rrG47Hy+bw2Nzctm2M4HFruAkLP8hjEXC6n8XhsYYteMPHBlpKMrNO6wtSIQqGgyWSifr9ve4YLwAshXoDxuRWe/CK6sT+SbO+55k5OTiwg04cL+jYbWnKWBY7lEEOIO8ex7AZanubA48uOBv/d9OeY9fngUO8Q8OIgPwSteheTb4vgMfbPiwScP84h8G0PgUAgEAgEAoFA4K2RViF0LKW0K2kiae+61/Iu0FGs+yoR67563NS1P611v5hl2a2n8D4rj5TSSNKXr3sd7wI39RqVbu7aY91Xi/f6ut9L9+H4N/HVI9Z9tbip65Zu7tqf6b14JQQFSUopfSbLsj973et4p4h1Xy1i3VePm7r2m7ru68RN3bObum7p5q491n21iHW/t3BT9y3WfbWIdV89buran/W6V2fIeiAQCAQCgUAgEAgEAoEbgxAUAoFAIBAIBAKBQCAQCLxjrJKg8AvXvYB3iVj31SLWffW4qWu/qeu+TtzUPbup65Zu7tpj3VeLWPd7Czd132LdV4tY99Xjpq79ma57ZTIUAoFAIBAIBAKBQCAQCNwcrJJDIRAIBAKBQCAQCAQCgcANwbULCimlj6aUvpxS+kpK6ceuez1vhZTSN1JKn08pvZZS+sz5Y+2U0m+mlP7o/L+t616nJKWUfjml9DCl9AX32GPXmlL68fNz8OWU0vdcz6ofu+6fSim9cb7vr6WUPuZ+tyrrfiGl9N9TSr+fUvpiSunvnT++0nv+Fute6T1PKRVTSp9OKX32fN3/6Pzxld7vVUbci5/JOuM+fIWI+/CVrzvuw08ZcR9+Noh78dUi7sVXvu7rvxdnWXZtP5LWJX1V0kuS8pI+K+mD17mmJ6z3G5I6S4/9U0k/dv7nH5P0T657nedr+W5J3yXpC09aq6QPnu99QdL7z8/J+gqt+6ck/eglz12ldW9L+q7zP9ck/eH5+lZ6z99i3Su955KSpOr5n3OSfkfSn1/1/V7Vn7gXP7N1xn34atcd9+GrXXfch5/ufsZ9+NmtNe7FV7vuuBdf7bqv/V583Q6FD0v6SpZlX8uybCbpE5I+fs1reqf4uKRfPf/zr0r6m9e3lAtkWfZbkrpLDz9urR+X9Iksy46yLPu6pK/o7NxcOR6z7sdhldb9ZpZl/+f8zyNJvy/pea34nr/Fuh+HVVl3lmXZ+PyvufOfTCu+3yuMuBc/A8R9+GoR9+GrRdyHnzriPvyMEPfiq0Xci68Wq3Avvm5B4XlJ33J/f11vfeKuG5mk30gp/V5K6YfOH9vKsuxN6exClHT72lb3ZDxurTfhPPxISulz5/YvLDsrue6U0j1Jf0ZnCuGN2fOldUsrvucppfWU0muSHkr6zSzLbtR+rxhu2v7c5HvxTb5GV/qe4BH34atB3IefKm7a/tzk+7B0s6/Tlb4veMS9+Gpw3ffi6xYU0iWPrfLYib+UZdl3SfpeST+cUvru617QU8Kqn4efl/SypA9JelPSz5w/vnLrTilVJX1S0t/Psmz4Vk+95LFrW/sl6175Pc+y7CTLsg9JuivpwymlP/kWT1+Zda8obtr+/HG8F6/6OVj5ewKI+/DVIe7DTxU3bX/+ON6HpdU/Dyt/XwBxL746XPe9+LoFhdclveD+flfS/WtayxORZdn98/8+lPTrOrOH7KSUtiXp/L8Pr2+FT8Tj1rrS5yHLsp3zL8qppF/UhS1npdadUsrp7Ab0b7Is+w/nD6/8nl+27puy55KUZVlf0v+Q9FHdgP1eUdyo/bnh9+IbeY3elHtC3IevB3Effiq4Uftzw+/D0g29Tm/KfSHuxdeD67oXX7eg8LuSXkkpvT+llJf0/ZI+dc1ruhQppUpKqcafJf01SV/Q2Xp/8PxpPyjpP17PCt8WHrfWT0n6/pRSIaX0fkmvSPr0NazvUvBlOMf36WzfpRVad0opSfolSb+fZdnPul+t9J4/bt2rvucppVsppeb5n0uS/qqkP9CK7/cKI+7FV4cbeY2u+j1BivvwVa3XrS/uw08XcR++WtzI63TV7wtS3Iuvar1ufdd/L86uIf3T/0j6mM5SNL8q6Seuez1vsc6XdJaI+VlJX2StkjYl/TdJf3T+3/Z1r/V8Xb+mM1vOXGdK1N9+q7VK+onzc/BlSd+7Yuv+15I+L+lz51+C7RVc91/WmV3oc5JeO//52Krv+Vuse6X3XNKflvR/z9f3BUn/8Pzxld7vVf6Je/EzWWvch6923XEfvtp1x3346e9p3IefzXrjXny164578dWu+9rvxen8TQOBQCAQCAQCgUAgEAgE3jauu+UhEAgEAoFAIBAIBAKBwA1ECAqBQCAQCAQCgUAgEAgE3jFCUAgEAoFAIBAIBAKBQCDwjhGCQiAQCAQCgUAgEAgEAoF3jBAUAoFAIBAIBAKBQCAQCLxjhKAQCAQCgUAgEAgEAoFA4B0jBIVAIBAIBAKBQCAQCAQC7xghKAQCgUAgEAgEAoFAIBB4x/j/fc2TSIrFXQQAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 63640 0\n", + " Min thresh = 1000\n", + " Not Sliding\n", + "\n", + "\n", + " Winner = Not Sliding\n", + "\n", + "\n", + "035ns_image_1404802450036_clean.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADDCAYAAAAya0IYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAD1L0lEQVR4nOz9ebRseX7VB+4Tc5yIExE37r1vysxSSqUqlUq4qhAaTRurjc1kGRr3Qgh3Aw2YEt0NdLtNg6BX04AHZBtB4+VloFjGQBsDot0yWAiLoRHGDQIhJDQgJFWVsirzDXeK8ZyYI07/ce/ne78n3kvl9DLffZm/vVaueu/eiBPn/M7vRL29v/u7v1Ge5woICAgICAgICAgICAgICAh4Kyg96xMICAgICAgICAgICAgICAh4/hAEhYCAgICAgICAgICAgICAgLeMICgEBAQEBAQEBAQEBAQEBAS8ZQRBISAgICAgICAgICAgICAg4C0jCAoBAQEBAQEBAQEBAQEBAQFvGUFQCAgICAgICAgICAgICAgIeMsIgkLAe44oin4iiqJvetbnERAQEBBwjSiKXomi6F9/k6/Noyj68rf5OW/7vQEBAQEBAQE3C0FQCHjPkef5V+V5/v3P+jx+LkRRdDeKor8WRdGDq3/8vvyszykgICDg/Y4oir4liqJ/EEXRLIqi73/W5xMQEBBwE/G0hdk3Ol74d3HAz4UgKAQEPBk7Sf+jpP/1sz6RgICAgA8QBpL+n5K+4xmfR0BAQEDANcK/iwNeF0FQCHjP4W21URT9gSiK/koURf9NFEXTKIp+LIqij0ZR9HujKDqNoujVKIp+iXvvb4qi6CevXvv5KIq+be/YvzuKoodXCuq/6xXXKIrqURT9kSiKvhhF0UkURX8yiqLmk84xz/OTPM//S0k/+C4uRUBAQMCNRBRFXxdF0T+Momh09Z36X0RRVNt72a+4+h4+j6LoP4uiqOTe/5uvvquHURR9XxRFX/JmPjfP87+d5/l3SXrwNK8nICAg4KYhiqKvjKLo+6++Z38iiqJf6X73/VEU/bvu7/+7KIr+56s//09XP/5nURSlURT92iiKvimKoteiKPp9V9/Jr0RR9L95u8fbP9fw7+KAnwtBUAi4Cfi3JP2/JB1I+mFJ36fLvfmCpD8k6U+5155K+mZJHUm/SdIfi6LoqyUpiqJfJun/Iulfl/Tlkv7Vvc/5TyR9VNKnrn7/gqTf/25cUEBAQMBzjq2kf0/SkaRvlPSLJf0f9l7zqyV9jaSvlvSrJP1mSYqi6H8l6fdJ+rclHUv6+5L+4ntx0gEBAQHPA6Ioqkr6HyT9TUm3JP0OSX8hiqKveKP35nn+i67++Mk8z9t5nv/lq7/f0eV39guSfqOkz7zD4wUEvCkEQSHgJuDv53n+fXmebyT9FV3+A/Q78jxfS/pLkl6OoqgnSXme//U8zz+XX+Lv6fKL+F+5Os63SPqv8zz/iTzPZ5L+IB8QRVEk6bdK+vfyPB/keT6V9B9L+tb36BoDAgICnhvkef5DeZ7/QJ7nmzzPX9GlsPuYSHv1ffpFXbYp/Lqrn3+bpD+c5/lPXn2v/8eSPvVmXQoBAQEBHwB8g6S2Lv+9u8rz/P8r6Xt0/T36dvF/z/N8efVv5L+uy38bBwS8qwiCQsBNwIn781zSeZ7nW/d36fJLV1EU/fIoin4giqJBFEUjSb9Cl2qsJN2T9Ko7lv/zsaRY0g9dWctGuuwFO36aFxIQEBDwfsBV69n3RFH0KIqiiS5FgaO9l/nv2C/o8jtYkr5E0h9337UDSZEuq2YBAQEBAVf/Zs3zfOd+9gW9s+/JYZ7n2d7x7r3eiwMCnhaCoBDw3CCKorqk/07SH5F0O8/znqTv1eU/VCXpoaQX3Vtecn8+16U48VV5nveu/uvmed5+9888ICAg4LnDn5D0LyR9JM/zji5bGKK91/jv2A/pOvfgVUnf5r5re3meN/M8/wfv+lkHBAQEPB94IOklnz2jy+/R+1d/znRZCAN33sQxD6Ioau0dj+/lt3O8gIA3hSAoBDxPqEmqSzqTtImi6JdL+iXu998l6TddhdzEcvkIVwrwn9Zl5sItSYqi6IUoin7p631YFEWNq8+TpPrV3wMCAgI+CEgkTSSlURR9TNL//gmv+b9GUXQQRdFLkv5Pkui7/ZOSfm8URV8lSVEUdaMo+jVv5kOjKCpffddWJJWiKGpc9RoHBAQEvJ/wj3RJ8n93FEXVKIq+SZeZYn/p6vc/IunfjqIovgoX/y177z+R9GVPOO4fjKKoFkXRv6LLzLG/8g6PZwj/Lg54PQRBIeC5wVXuwe/UpXAwlPTvSPpr7vd/Q9J/LunvSvqspH949avl1f/+nquf/8CVhfdvS/q5wmrmktKrP/8LXbdfBAQEBLzf8bt0+R071aUY+6SQrr8q6Yd0+Q/Vvy7pv5KkPM+/W5chuH/p6rv2xyX98jf5ub9el9+1f0KX+Tjzq88PCAgIeN8gz/OVpF+py+/Gc0n/paTfkOf5v7h6yR+TtNIl0f9zkv7C3iH+gKQ/d9VaRk7CI13++/jB1et/2zs83j7Cv4sDnogoz/NnfQ4BAe8Koij6Sl3+Q7Z+FQwWEBAQEBAQEBAQ8L7ClcPhv8nz/MU3eGlAwFNHcCgEvK8QRdGvvrJ6HeiyQvY/BDEhICAgICAgICAgICDg6SMICgHvN3ybLjMWPqfLOepP6vsNCAgICAgICAgICAgIeId41wSFKIp+WRRFPxVF0WejKPr2d+tzAgI88jz/ZVfTG/p5nv/qPM8fPutzCgh4VgjfwwEBAQHPHuG7OODdRp7n3x/aHQKeFd6VDIUoisqSflrSvyHpNUk/KOnX5Xn+z5/6hwUEBAQEPIbwPRwQEBDw7BG+iwMCAt7veLccCl8n6bN5nn/+KsX0L0n6Ve/SZwUEBAQEPI7wPRwQEBDw7BG+iwMCAt7XqLxLx31B0qvu769J+vrXPYlKJa/Vatput9put8rz3P6LokilUknlcln1el2NRkONRkObzUbz+VzL5VK73U6lUklRFGm322m320mS/W+5XFaj0VCpVNJ2u1UURYrjWI1GQ3mea7lcarlcFj6b93LcPM8L5xdFkSQpiiKVy2WVSiV733a7VblcVhzH9jm1Wk273U7L5VKr1Urb7Va73c6Ou16v7bi73U6bzcbOxX9mrVZTuVy2dfGvL5VKqtVqKpVK2mw22m63kqTNZqP1em3XI0l5nqtUKqlardq5R1GkarWqarWq7XarxWJhxy2Xy8rzXJvNxtYmz3NVq1XV63VVq1U7L163Xq8L18Wa9Ho9lUolrVYrzWYzu4ecH59VqVTUaDRUqVQK95N77F+7Wq3s3PbvEa9nPTlPjhdFkf3HdXEvd7ud/Y713m63dn9YT37vwVpwTvv3jM/nM/1+8+dWKpUK11AqleyecZ28x/+dz/fXxTHZM37Nef3+/ub8/Zrvr6v/TP95/r5ybZIeu0cc70nrsP86/3n+mDwr3DO/RoDz8Ofnj7e/plEUaTabned5fqznD2/pe1iSyu1W/mVfutPJjzff1RMLCAgIeCtYKNMqX0Zv/Mobibf0XRy+hwMCAm4qpho+8d/E75ag8KQv/UJvRRRFn5b0aUmq1Wr6yq/8Sl1cXGg4HKpSqWi1Wmk+nyuKIjWbTXU6Hd29e1f37t3Txz/+cfX7fX3+85/Xj/3Yj+ns7EzValXtdlvL5VLT6dQI33w+V7Va1Uc+8hG9+OKLStNUk8lEL774oj71qU+p3W7r9PRUr776qkajkRHg8XhsJLzdbivPc02nU00mEy0WC+12O1UqFVUqFbXbbVWr1QLBXK1Wunv3rj75yU/qE5/4hD7ykY+o1WppOBzqs5/9rB49eqTRaGTXeXZ2pslkYu8djUaaTqfabreFazo4ONC9e/fUarVUr9dVr9e1Wq00Ho8lSXfv3tXR0ZHG47EuLi6MON6/f1/j8dgI/XK51GazUafTUZIkWi6XyvNcd+/e1Sc+8Qk1m029+uqr+qmf+imdn5+rWq2q1WqZ0LBYLJSmqdrttr78y79cX/EVX6HDw0OVy2WtVitdXFzowYMHOj091Ww2M0L95V/+5fr6r/96/fyf//NVLpf1oz/6o/qpn/opDQYDLZdL1et1NZtN7XY7xXGsj370o/r4xz+uTqej2Wxmnz2dTjWbzZQkiVqtlsbjsT7/+c/bmiFm1Go1u+eQW4SpPM/tXiLESDICz+f537daLa3Xa52enmo8Hqter6vT6aherxvRRthAJJvP5yacVKtV9Xo9SVKaplqtVva5y+VSPA+bzUaLxUKlUkn9fr9wPqVSSc1mU/V6XbPZTJLUbDZVLpcL4kWlUikQ5NVqpTzP1Wg0JEmj0Uiz2cyuK47jghiFULbb7ZSmqabTqXa7ndrttrrdrpbLpdI01Xw+V7lctjVCPNrtdlosFgVxCAFrtVppvV4XBAuueblcqtVqKUkSlctlLRYLrdfrgqDXbDbVarVUqVQKwslisdBwONRisVCr1bK15Hmt1WpqNBoql8u2l9M01WazKQh/nFuj0dCP/MiPfOEdfh8+K7zh97BU/C5uKNbLP/HNevl5/Wd7QEDA+xL/KP87z/oU3gne0r+Jw/dwQEDATcXfzv/fT/w38bvV8vCapJfc31+U9MC/IM/zz+R5/jV5nn8NxMVXovlHvycbo9FIjx490he+8AUtl0sdHx/r1q1barfbRiog2RDTer0uSRqPxyqXy+r1eqrX6xqPx3rw4IERslarpVarpWq1qiiK1G631WxeqsPb7daq+fV63UgM1c7lcqksy0xsaDQa6na7Wq1WOjs708nJic7OzrTZbBTHsW7duqVut6tms2nHxUGBoAFBazab5sqo1WpGTvM813q9tj/X63UjnVmWscZarVYql8smeiwWC223W7XbbRMjEBfSNNV4PFaapqrVajo+PtaLL76ofr+vzWaj6XSqPM+VJIniOFa5XLb3IHhwHzn3drutRqNh5O2VV17Rj//4j+snf/InNZ/PdXx8rMPDQ9Xr9UJFebfbaT6f68GDB5pOp6rVajo6OlK/3zdCW61WNZ1OlWWZSqWSEWVJtqY4WyDtOB4qlYrtE1/93mw2Wq1W5gaBiFPN32w2qtVq6nQ66nQ6qlQq5gzx+xgy7Svg7Of5fK5KpWJiDufEea5WK0myP08mk8LPNpuNCUC4dabTqQlgzWbTBAb3vNkarNdr7XY7E1YqlYo9YzgQeO74TPafJBN1WGOuF8GGYyHqIQLgWkFsQYThucfxUqlU7DNwF/Fc7jt6OCecP/V63YSILMu0Xq8LjgruD8fi73meK8syE1iq1ao2m419PzyneMPvYan4XVxV/T07uYCAgIAPCN7Sv4nD93BAQMDzhndLUPhBSR+JouhLoyiqSfpWSX/t9V5MBROCAYHft1Yvl0s9evRIP/uzP6vRaKROp6Mv+ZIvUb/fV7lcNgIjXZKger1uYsNisdB8Plccxzo4ONButzPyDBGCFHqyUq1WJV1WteM4VqVSsXPkvLfbrdI01Ww203w+13w+V61WU6VS0Wg00mAw0Hg81mAw0GKxUK1WUxzHRsypmkJsvL2ca2g0GkYS5/O5kT+uCyKFqAA5ky4JXpIkqtVqWq1Wmk6nqlQqJphAVrfbrQkjCAovvPCC7ty5oziOrVWj0Wjo8PBQR0dHqlQqmk6nOjs702AwsGpvpVJRtVpVs9lUkiSq1+tGfE9PT/Xw4UM9fPhQURSZSFCv102I6PV6qlarJipMJhNVKhUlSaJer6dut6ter6darWZVcC8oNBoNdTodxXFcuHfcS8gwogOOBggv1el6vW73l+o5wlCv17PjIiyw96rVqtbrtRF/KvdepNjtdqpWq4rjWM1m06r3u93OnAuQay8osE8Q3prNZoEQb7dbW3/Oic+pVquPiQWsC9eOMML17ge3Ig6wlohh+20cvoXBv49r5xz9c4bjB2fCZrOxNhxeL10LP1wH4tlyubS9jdjHuaxWK1tHWmV4P9ePYMf3gb+e5xBv6Xs4ICAgIOBdQfguDggIeF/jXWl5yPN8E0XRb5f0fZLKkv5Mnuc/8XqvhwRD8qjI7veKr1YrI1e3b99Wv9/XwcGBbt++rfl8buIAhA2bNeQnTVPduXNH3W5X2+3WKs/edSDJSBTnI8lIIwReklVpuYbFYiHpkqxgyd7tdppOpxqPx6rVamq32yYWVKtVq3JzLK6Zn0FskyTRfD7Xer22/AjOLcsyVSoV9ft9SZfEyFfHIa7tdltpmhrx7Ha7RrqoGs9mM43HYy2XS3U6HbVaLd26dcvIGNV7rg1rPQLNcrm0ijK5CpVKRXEca71ea7VaKU1TnZ6e6uDgwKr9t27dsnVPkkTdbldZlmm5XJoY0+12zVUgXffhL5dLW3PaALhe3w/PmkIiIbO73c7aXcB2u7U2jyzLTCihhQQBB0FJus4bYA/gMPB5BIhQPnODKrwXEjgGbRMAMcFfU6fT0Xa71Ww202azUblctrwK2n52u52azaYqlUqhBQUgdPBzxJw0Te19tA944DSAuPvcE8QLXDKIZrgXaJFAGPGtCV5IQfiRZNe3XC61WCwKzhv2JwIFny9dCky0yTQaDWs74ZklN4TvBX8Pn1e81e/hgICAgICnj/BdHBAQ8H7Hu5WhoDzPv1fS977Z1/MP/VarZZVGHyK3b9f+mZ/5Gb300ks6OjpSr9fT4eGhkQxJRrrb7bZV13EQtNttq9anaWpEx9uvR6ORWq2W/Y7qchzHmkwmlhWwXq8LogKfM5lMrKoKIcX6TwAepIfzm0wm1o/ue959NRdSmmWZCRBUayHig8HAWhB88B4hkbgQqN5TMWbdcFXUajWr/B8dHSlNU52dnWmxWKjb7ero6MhIJhVtbOpUiHGZ7Fv6h8OhRqOR3Z9+v68sy5Rlmer1ug4ODnR8fKzRaKTNZqPJZKLJZKKDgwOVy2UTezgmjpCLiwvrucfxwNpVq1UTVGhN6XQ6iqLIAj4lmaWe97fbbUnXBBPCC2HlfewBSDnnyZ+p0EOmqehvNhs1m00TXTabjYkFXBsCAu4V9iqiWRRFtg9oqeD8aUHAXSJdi1CNRkPr9boQ6Mm1NhoNy0kgjwCyzTXhBuDZQ/wj54E14lmG7LNG3u0AeC/iA9kTPKOIGDxrnU5HjUbjiU4OrhsXyGKx0GQysb3TbDYLggeCE24nL7o8j3ir38MBAQEBAU8f4bs4ICDg/Yx3TVB4K6DKDKkhXBFLs+9/xyEwHA71uc99zohdkiRKksQIG3kE5AXgFBgOh2q1Wmq329b7T6gen91utzUcDjUej7XdbtXtdiVdkiHCEKlMR1Fkdn4q/XmeazabWQvFdDrVxcWFBQFC8mq1mhEs+rXn87mRPVoQvEUcQk6YHAQRuz4tHlwvxAhC1m63C0GP/X7f2gaohLO+1WrVggBrtZp6vZ4F+UmyNgo+A0EFkk3OAsSs1WqZlT1NU52cnFiFmeP7yQC0SozHYxMhaKOAWEvXboJGo6EXXnjBSHCapur3+0qSRNJ1xX+32ynLMhOXkiTRwcGBLi4urF0DOzzuCkI3pWu3im8bwa0BWaZtBtK+P60AUQBCzTXEcWzv5357ccK3w3jHA2s3mUzsPLkH1WrVWl3Yx/454Th8hm9t2W63mkwmyrLM8jx4H8IB5wwR57N5XqTrAEo/XYVrZ08gsHBfW62WPVO4F3xGB+GtiEPtdtv2vCQTc3i/dzmkaWqCAkIYx+VZeD8ICgEBAQEBAQEBAQHvJm6MoEB1lR76er2u+XxuxINkd167WCx0enqqXq+nVqtlxB6HQRzHliWAUDGbzXRycmJWfqzaWZYZ2aU3fjAY6OHDh9bDTZ846fMcmyptt9u184KMYPGfz+e6uLgwqz7iAIQmjmNtNhuNx2NNJhOzXUN+fSgfjgmEBk8IqTQnSaIsyx4TG7ChexJFNRuhgtDA4XCoOI41n881nU7VaDQs92EymdjEiFarZdMSsNLT/gGBh6iyjggnZ2dn6nQ6JqrwetaCyQMITqPRSKVSSd1u10g/17dcLpUkiQ4PD21teP3h4aERf0goLpjVaqVms6lut2sWf1+l5z/cFuxThAJGkSJ8UeXnHPhMnBQESEoyJwLXwBr7cESeD+Bt/OwlplngtvCiAwIWQpUkCy2EzOOGka5HSJJFgBgznU5trdjzXDvPBXsVAp+mqYl9XmzyjiMIv28X4ZrZM7hHEHsk2bOD8EbbBGIRgh3ODVwgiBQ8q2RQcAzEPZ7hgICAgICAgICAgIDXx40RFEhj90FzkGtIkyQjXFS5scSTII/4gD0bokJldbFY6OLiwiY2MIIQgkULA64GJh5AmJjgkGVZIcEeUWM0GhmZhvRCkLFsr9drEzVo8yiXyxqPx1aNHwwGkq6nFczncyOyVH0haBBPKvOdTqcQyEd1HAcCBDeKIqVpasGCrNlms7GcBZwMs9lMcRyr0+nYdInz83PduXNH7Xa7MOrTt4HUajUj+ZIsYPLRo0eW18DEC9pBWPeTkxMdHh4aiSS1f7VaqdPpmFAhSZPJxASTXq9nghOigg8khFhyrdxX7jngeJB0zgPxBMKLMOXbIRAPcG/w+dyPSqWi5XJpzgSyBBDUaIvgs33egu/395MIcKDQNgFRp11nu91qNBrZfaBdBpeDd2BIl21IrVarMFED5wFClnQ9+aLX69l0BdaWrA5ELp5V7gXiAm4NnheyRAhARWTDLeNbPhArcPwQwsr+o/WB54lnhbyPZrNpohQiyZPCKAMCAgICAgICAgICirgRggIVUqrkvkcdkQAbOE4AiMd0OrXX0eLgRQHpmsB1Oh2rdkOQsbLjLJjNZjaDvtVqWdDgdDpVkiRGsMg6oO8fIijJSJsnS5Dks7Mzm8rggwSr1aoODg7U6/UKQgnnAuH0RFOStV2whl4gALwPcuxH50G2sO97Ag0J860nzWZTt27dUpqmWi6XOjs7U7lcNsfHaDSy0Eo/KYHPISiRHAdGbdZqNSN5vv99MBgY0cctwetouajVapZT0el01G63devWLa3Xa11cXJiYQe89DgofTOhDHH07BaKBt8RzL+fz+WPOBAQGL1hBiDlXKv2NRkNpmhpx3W63hWkdiGj+XuLkYL8T3FkqlWw6wn4rA9b9SqViLgzOj3Pz2R6+9WG5XKper6vf76ter2s4HFooJa/zIt7h4aGq1arG47G1HdG+wef5fenzFRgt6ltEcA1wDHISvKABvGBGNoIkE9y4Nt7rs1GazaYd70kTIAICAgICAgICAgICHseNEBSka5cC1VVPeunJXywW1lcP2fJtBj4wzhM4BAPS3SGnfgwdn0v1mSkKEK35fK7T01PLWYBgEUY4GAzU6/VMxNifGOCt8NvtVq1WS/fu3bNj0DZBcCKhcwT+sRaIDLgUptOp2cMJVKStAbJHUCA5Cp6o+rYIrg0RpFwuW7bExcWFpEu7fLPZVKfT0WQyUZqmNsGC/yDaBDpC8nER1Go1HRwcWG/+YrFQv98vjPmL41jdbtdC9CCYtClAkpMksWBBxCcyMXz/PUJTuVy2rA3uOTkbfh/6DAXWDQLcarWMbHq7vQ81ZNIFgYXsM0kmVuCy8JkZ3gUzGAxs/0nXLRiIHDgM0jSVpEKFfr8tQpJNrUCc4meIF35aBc8Yz14URep0OoUWHDIyfPBitVpVt9u113lRjXvCuvKcst6sHaIBwowfcVmr1QoODD8FhmtFQMSVxF70gZH1et3uNetACxMCHfs4ICAgICAgICAgIODJuBGCApVdrMZUEb0VHDJJOwH/0PdEEpLhq69UG7FAY7/2n0UFGHIzm82M+DOyjraFUqmkO3fumLvg9u3bKpVKeuWVVzSbzazCPJlMrIJcq9UkySqvtAtQ9YbMtFotdTodExQQK4AnpZBXrNr8jPPk/MhBYA29ZV66DL6rVqvWqlGv1wuugiRJdHx8bC0X8/lctVpNSZKo3W7rwYMHRhy5Xz7UsFqt6ujoyCzsjDbELcBaYJcn0LJer+v27dtKkkRnZ2eFlhH2AmSQaQTkG/R6PdXrdd25c0fb7VbT6dSu17cfVCoVc0hAjiHSVK5xyyBAsH68jr3qAwPJRoDgcy9xM9A2cHBwYKM72X+IYwQdDgYDaw1gP5M14UMavWiG0ECLBE4F6do1A6mG7HNvuf+4algLMjh8aCTH53z8XkS8gJTjANgPb/RjJv0kl9FoZPcDUahUKtn18bM4jm1f+Ukl7Av2Bt8PURQpjuPCiEzAeXi3AiJlQEBAQEBAQEBAQMDjuDFD1qlYMorRV6F9bzUEB9u8H9mHnZvKeJIkBYs/1XqqyVLRJu1fs16vNZ/PjWAw6eH09FSnp6dm8a7X6+r1ejo6OrLjMCkCIoZAIckq1g8fPtTDhw/teqgKM54PMrQPiCNtHVRaWS9JlhMhyXrEoygy0u0D/6IoUrfbVafTkSTrf+dYSZLowx/+sO7cuaPVaqWLiwsNh0OtViu1Wi3LUCCLYjabWbYD9402kePjY8VxbI6JVqulSqViLR4IHxDr+XyuOI5169YtC6LMsqzQAsKfIZ7kPviATcaEUs2WLoWle/fu6fj4WFEUWV4HRF26ngpBWCJrz+QHSCf3itcjTjCKEPECgSfPc2sZwYnBnoGY47TodDq2f/1ozlKppF6vp36/b6IEJJ+2FRw37Bfgx1U2Gg1rtSGMUZIFbrJ/6vW6Tcbg+sllWCwW1qrCc4gTwDs+Op2Oer2etV74AFPWCiELAQaRyI9AZa0QbxAveD58HoqfjkKmA2IhzwDn4CdqtNttyyIJCAgICAgICAgICHgyboRDAau0JCPyhAb6MXu0NUCYVquVHj16pHq9bpZ1yEKz2dTx8bFVOxEnqCTjOkA84Pc+kM0LG5C64XCos7MzxXFsbQ95nqvf72s6nRq5jePYjoNtnIT/arWqNE312c9+Vi+99JI+8pGP2PE7nY4JHvTLI15UKhVNp1OrBPuJDZAvJknw+3a7rc1mYwSOKi0VaP5+fHysPM81nU6t3YPWj36/r5deekkXFxd69dVX7Txu375tBJkxmwgKkEbCK+/cuWM5CWmaGsmF6NM+AWnMsqzQYtLpdMyhggjDvsBmj+Awn89NrKA/3tvmpeuRgkztGAwGBacCJJapGuRBnJ+fK89zdbtd24+IBdjr/TQPCC77l+vJssxyOXgv76GloNPp6PDwsBCwyBQD6VLw6Ha75thgnyEAQKoh1jxrCHKeoLMurDFhoZLMWcF4R/IQcAv4XAYcGBB28g84P0I9mbSxPwoSt44Xf7hu/iOzg+8L3A3sc+4z54FTxE+h8KIF9yaKIstBQaTwgmVAQEBAQEBAQEBAQBE3QlCQrsMFIV/eTk0II7ZsP8pvsVhoOBxa6wDV5mq1qlu3bilJEms98PZvkt2x5pMS74UEKst+3CLtAVSu6YPvdruFzAFJStPUyMtqtbLqOiLDZDLRw4cPdfv2bRuF6Mfh8fmMgEQE2Ww2mkwmJjRQ9fc94lR2/QQKSdZC4UnYbDaz4/MeEvWpSN+9e1cnJyc6PT3VdDrVaDTSer3W4eGhuQWWy6XG47Gm06ndv+l0qvF4bKLLaDRSlmUaDoeF0YSNRsOq6fS/z2YzXVxcaLfbmRPk5OSkUHX3ExdarZZN/0DoYY2SJLEJFAgpXiiKokhZlpmDxY+K5DUEZrIukGXpuu2CiQu+XYfPg8BDhiXZPuO1TDHh/HAQsHdwdOAIwT3DZBDaVvat/IgCiB189mKxsPGcvuWC45AXwVhL8g2azWZhqgVZGKwdoiBCIc8uQgUtNAgK7ElcQuwBQiz3wxwRK8js4D24FjgWwhCCBYGq3unCayRZloUPnQwICAgICAgICAgIeDJuTMuDH7NINdWP4JNkpHWz2ViVslwuK01Tq9pCJGezmRGuJEkKff2lUklJkujw8NAq0uv1WuPxuDCijqo0rQscX7oUCy4uLkyoaDQaOjw8VL/ftwR/b3fHTr5YLOz6VquVHj58qNFoZDb9brerXq+nZrOpdrttgXd8zsHBQWEEJjkFvrfcjyVkXVqtllXteQ3rOp1ObXoCxJyciuVyabkJ9+7d0+HhoaIoMvfCwcGB7t69q8PDQ7tuxvYNBgOdnZ3p0aNHStPUBBjOBfEIhwn3DieFJA2HQ92/f1+j0ajgBKA1Y7lcajQamTsEcsu9IcQRUQHC64UkxCzaUzabje0b71BgNCJtCNVqVXEcq9lsWvsL+2i1WhUmCkiy3Acq4ey7/RGF3qIvXbdU4LYgN2C1WpmY0uv1jPxDltl7CG1+D/MfDh3GkfLfbrfTdDo1kcCPFuU+AYj9er22kFBJhc8jCNVPy0A08M8Ja407hzYS1gRXwf4IVH7GfeG6cSbw2exBztdna+Da8LkUPtwyICAgICAgICAgIKCIG+NQoJ+ZaQW4CHwavySrnELSmVpAlR1gfyb8Dkv+fD63bATyCmifgMhCKhAuIOqQd85rPB4rSRITLPazCRqNRqFy6l0HVFIvLi706NEjHR4eqtPpqFKp6ODgwPrX2+220jQ18txut63aLsmq/J507RMi1hIrP/9hJadqj30coke1ltaE27dv68UXX7S2iNFoZCGIt27d0mAwsLYDqviDwUCPHj3S/fv31Ww27bogrr5FxdvnfU87oYpU9iHHEHQvkHg3iiTNZjNzZUBct9ut5vO57RH2AyRztVpZKwICUpZl2mw2FmLp8yhYb0j6xcWFtRbgPuBeLBYLa4Pw4YKSTOTw0xb4M9fDPZ7NZib4NJtNNZtNHRwcmNDEZ3sgmOF0QNDBhcLzxzMxGAysDaXb7Zr7xu8dzp12BfYlJB8xA+CA8WNhfTAp9477zzUgJrAOvG7fjeEnt/h1Zg/gPmAEJc867iUcO5xDQEBAQEBAQEBAQMDr40YICmQl+OkNkDUyAnzfN2P2IFe73c6s4wBLOOGBvV5P4/HYLPKMXmTkIJVVkvslGWllpr13F/AZjEJstVpGPul5p2KNdb3dbpvIwIjH0Wiks7MzI3UIChC4drutbrdr2Qm+z5/+eCzfVK4RYKjOS5che1SDuVaIMP3mrDk2eNYTJ0SSJLp9+7bOzs50cXGhLMs0mUx0584dHR0d2RonSWKixXa71fn5uX76p39a9Xpdh4eHBbs69wIxA4KI4wLyC/lH2JFkWQm0ryCKENZJdgKtJ+whXjufzwshkogN/Ac5RbDw7Qy4NHgv4YA4NJhU4UUBBBruCQIHYF+wbpB8KulU7HFIICogspEVkKapttutjc9kWokXT/YFI5wTiABxHCtNU00mEw2HQ0nXogHnSf6GH3fppymwFxlzyfV4sYA/74dm+qwPn3PgBQMvEiAAIq4h9CAqcBy/9ziGb93gs5lcEqY8BAQEBAQEBAQEBLw+boSgALmFkNOnjQXfW5olmQ3fOxJ8VVe6JGFpmmowGKjT6ZgtHccD4gDTIAhuXC6XVt2FKFIJhzx6gjObzQqjLXEvEOZGJVS6TqeHIJZKJY1GI7366qv66Ec/qpdffllxHOvg4EDHx8dKksRyAaiqY3HvdDpmeYdMrddrWysq6j4QkCA92j8ghdjrqaJzXEQFSOXdu3d1fHysO3fuWCX87OxMd+/etWBEH44oyYSP8/Nzvfrqq4VpHRA+WhM4P8Zn+rGFVM0J2ttsNkrT1EZAQhj53dnZmbUIkF9BQJ8fOcq95PohlQgirBUtBvP53NoOcHywZ2u1mln0WQPfWsK+8mILe8RXxGntYfIHbRi8jvwOLxjtZwD49YSYI/TMZjN7Hrj3PGusCRMXqtWqZrOZzs7OrAWHz8Dt4NtGyB7guhFwyCdBaOA6vJOG9gX2PEDgoy3If0+whvujKH0uhZ/gwvEQNHwgI+/huWafBgQEBAQEBAQEBAQ8GTdCUIDE0ider9dtGoAnRD5wkMqnVLSKQ7okWR8/hNcHvM1mM00mExtliDiBaOADECFuPml+s9kYOcUJIcls8vwdGz2hdp1OR2ma2u+m06nOz8/14MEDfeVXfqWOjo4s36Hb7Wo0GlkeBCTeOyI4FyrNnCfEEDIFefdtEaw9REy6zq3IssxI/G630+npqX1mv9/XZDLRbDbTaDTScDi0lo0kSSxXwI9NlKSLiwsb50ibCiGbfB45DEyduLi4UJqmVnmGrNLKgEMER4N0SdxpyWB0KE4R2iaodOOA8eIFjo3ZbGZ/hwzP5/PHpoB4MQsHCwIQwhHuCAQM7PVZllnrDmIYVf80Tc0ls1gsbB29bX8ymWixWNh674eA+okJkHEEJ0QD3sezRFuGJPsdPyNLwWdD+LVjTQnAlGStLDgoOHff9oBg4qc++MwTXCpeDMGd4/e3F9Y4P9bA30f/3bFarQpuGLA/bjMgICAgICAgICAgoIi3LShEUfSSpD8v6Y6knaTP5Hn+x6Mo+gOSfquks6uX/r48z7/3DY5lRIDWAKzrvkrMP/ghGtjM/cx6SCfBgJPJRIPBwCY0QCo2m40Gg4EF/UFSEDcgWgQ8+tGS0vXsesiWt5kTzIjFHFI4m810fHxsFdZyuaxms6nlcqnT01ONRiPduXPH+uEPDw+tj51rhKTSCuED8bzrAPhAS3rGfdsAogOEksoxa5fnuZIkUa1W0/n5ubkWWq2WBRCenp6aGNRqtWwsIlZ27sdut7Nrgcjh8CB08eDgwMZEMnkAAs+5tdttu08Qck+I2QdZltnEBwg6a0MwJ/uNlpZSqWSTFnAYsD6sLZVx3Ce4aSTZuEYv7HDtTCyBpOLemE6nRrQlWYYFQZnsQdYR8Y1rRtwhcBIBjnP1e4H2A9/CgWjnHRRc+76I5jMHEO7YX+wpHAj7DhDaKXi2EAlYTxwTuBZYN+/kWCwWtre4RgQB38LBvWRPcBzO2bc/+L3v8xg455uOp/ldHBAQEBDw1hG+hwMCAj7IeCcOhY2kfz/P838aRVEi6YeiKPpbV7/7Y3me/5E3eyAfDscIOwgAgYSICVSMJRUqoPSS0+cN8WIaw0svvaQ4ju1YVE0vLi5sckIcx0amff82LgVPomiPgMRA9Dudjo6Pj3V4eGitGQT1+QDCRqOh0WhkjovxeKxHjx7pQx/6kLrdrg4ODnTr1i2dnp5qPB6bZVzS67o3IG4+54H3MBqPaq0nT1SBASLLcrnUZDKxfIHRaGTkMo5jy6M4Pz9Xt9u1kEtIK8fCIYA4sFwuC3Z72lMQC7DqdzodG9XoE/mZ2DCZTAqEkvWmjYMefUmWa+CJPX+O49iEDUizD+3jHkN8Iaw+4JG17HQ6dk5cJ04SKt60FzSbTUkqkGTuHetI6wrCBDkFhBJSeSe4ElHB7xf2Bc4CRA8CFLn3EGxGU/r1hOCTVYJg558HPwaS/eXFB/+M0qrCM8wYTpwFfvQjogSuBj+Sks8nE4Frnc1mhaBULypwzTw7tEL5/e+Fh+cAT+27OCAgICDgbSF8DwcEBHxg8bYFhTzPH0p6ePXnaRRFPynphbdzLP5R7/u7e70en2Mhgj75H5IB2fVkLEkSI+ne+u5D5SAYBDzGcax6va44js1G74kTRMlXMLHr00u/WCz04MEDvfDCC+r3+zo4OLBeewgZuQYQIK5xNpvp5OREjx49sh55hIWLiwub4uCruggakCZIK8F/rIe3w0syUinJcgmoirO2rCckPI5jy0Ug06DRaChNU52cnKjZbJqIwj2VZNV9WhwkWehft9vVeDy2NaUN5datW0Zuu92uzs7OrL0AEl2v19VsNs2FQCvCdDo1QQRnAvuG+w0p594zRhARBYLtK/KIAf7vVPX9xIPFYmH3ZjqdGvHl+ji+DyD1LQiSbPIBrg+f/8BachwfJsj6EtDI770zhZ/54/h2C/YHQglCFPsUd1Cz2SwQdH6PI4fnbZ+os6d8TgPn76d78Gz71hxGxeJe8qMkCUEFOHZo22Ef+JGWXkTz99K3PjwPoYxP87s4ICAgIOCtI3wPBwQEfJDxVDIUoih6WdLPl/SPJP1CSb89iqLfIOmf6FKxHb7B+y2Rn3/At1ots7VTcaTFYb93G2JA1kGv11O32zWSl6ap9fm3Wi2r+MZxbGTep8i3Wi0jrhA7CI4H5J3+fYSI09NT3bt3z+z7uC8gxYwX9KSb4MLT01P1+/2C7Z+gOoQTyI7vL8dxAQFDMIEUQk4RSjqdjiTZtAmfUUA1G7BeVKs5n3q9bjkHVJxxdPhro6I+Ho8lyezu3W5X/X5f6/Va7XbbMil87gABiOPx2PYDlXqyKrIsM7LvxykyDcHb9rkPrVZLy+VSWZYVRBRfJfdhnJBy71wh/A/iTFWear13M9Be4Z0Wfg9T/We9aPHAccC4RfIiCG5EUGOiCHvUCxn7rQOSTKDybTI4K7h3/N2fq3fAIIAgliHSIJgcHBxIUsHlwBpB+OM4VrvdNscErR1+3/nJEohRnK9vu0C4Yw9zjzxYA9wRrLUXEySZ4OVbRp4HvNPv4oCAgICAd4bwPRwQEPBBQ+mNX/JzI4qitqT/TtL/Oc/ziaQ/IenDkj6lS7X2O1/nfZ+OouifRFH0TzabjeUYQAog8j44DnIA2fREkZ+laWp2dN5H6wNkhUpms9m08YwQcA8mDsRxbO0QfL4PecyyzP4+n8/16quv6tGjR5a03+/31Wq1CmPoGInpif54PNYXvvAFXVxcGFnC/s9rqT57x8HVelrfP8QL2zutCYyXhJQxcpGgQmzlkszaTlWcqruf4ECbA5b7yWSi8XisyWRibQgQSNpG+F+mdHQ6Hctd4M84DLj/TM5I09QcCdPp1O5huVwuhCXSjoIYxZ9pdYHsI4L4/AUmDfiJDd7WT6AiGQGSTCzwOQT+XlHV9y4QPx4SeHHMh3xynxAAaNPwbhscI4g1/Mf50x6AAEVrg3/NdrvVZDJRlmU2shTxi+kg5F/M53Nz7uAWQqQgUwQhq9ls2vu8a2A2mylNU5XLZXtGcH9w72h9wMmAqMLf/fQXBATOh+diP2yR7wyOt1qtTPiZTqcWstpsNtXv93+Ob7+bhafxXbzW8r063YCAgID3HcL3cEBAwAcR78ihEEVRVZdfnH8hz/P/jyTleX7ifv+nJX3Pk96b5/lnJH1GklqtVg6phUAkSaLj42PtdjtNp1OrNEMK99PXvU19OByaa4Aq7Wg0kiTdvn3bKquVSkWHh4dGRv1cewQLAghLpZJZ6yHm3lKfX42MnM/nGg6HevTokW7fvq1ut2tTJCaTiVW9Ib9U+6leD4dDXVxcqNvtWv89rRjHx8eFAEgqq5AqiBKkDdI4GAwsI4C18tMLqtVqITuAKQ+0gkB0ESog1u12W71eT6PRSPP53IL8IMocH7KbZZlms5lqtZpms5m63a56vZ7W63UhGHN/kgCCjg/pZHKGDxmkpx+yyT2kXYE94QmwDwKUZCIQ95x18/+Vy2UTRfI8t5YJiCliEU4KWi1YB09i/f71OQRXz48ajYZ6vZ45Jqi8I0zMZrPXteXvC06IO/sjFBEb2DuMDMU1RA6Cn2qBKELeAKJeHMcm3iEakdngXT44KnA0dDodHR0dqVKpaDwe2+eS88CzwPrgIuFZYG9y3XwO54jDwQsVfuws7hMcCpvNRu12W3EcP3Ftbxqe1ndxJ+rnT3pNQEBAQMDPjfA9HBAQ8EHFO5nyEEn6ryT9ZJ7nf9T9/O5VL5kk/WpJP/5Gx4KQQ6ppOzg8PFSe5xoOh5ajsJ9jIMmEhmq1qvl8rvF4XAhohDAS/Hfr1i17bxzH6nQ6j43fox8ewgVBpDpLxRvC4UfgzedzPXz4UPfu3dPh4aF6vZ56vZ6FCPJZnA+279lspouLC92/f99GXfpKd6PRUJIk1qfPZ/o8Bum6FYIRjrvdztoxINAICj40D6GAVhAIrR/RR4Wc9pRer6e7d+/aeEuf5SDJ1p9r4fxYX0gbJNWLAXwua0RlG8HBjx4k+ND35EPsqTxLMkcK186eki5JK5MtEBuw+RO8yL3IsswCJpkoQBsCFX3+K5fLOjk5MQGBfcT+4nz5X0g0ORDdbtfI82q1slGJiBO0VvAs4RrYbwnwn02FnucGMk7byna7VZIkJp54gu6JN/vQiwqtVkvz+VxpmprLwe9Rpj0QOjkcDu0ZS5LEvg/Yb/vZGf6cfT4E141ogAjmJ24g5OxnUJD14LMmWOebjqf5XRwQEBAQ8NYRvocDAgI+yHgn/1r+hZJ+vaQfi6LoR65+9vsk/booij4lKZf0iqRve6MDQRros4a0Hh4eqlar6f79+zo/Pzfyuz/FgMoqPedUIH26PaRhMBhY5X61WqlWq+ng4MCI02AwsBDAxWJRqPZT/faVW6qyvV7PiPRisdD5+bk+//nPW5J/vV5XkiS6uLiwlgZPHO/du6fBYKDz83MNBgONx2MdHBwUCDltCtPp1Gzhq9XKpitA+nFc7HY7I2k4CshOgIgRdMfas8ac95Ns7vuk9OjoyEgt94GKMOTMBxGSGcD/QkA5B9bRtyJ4UYd7wLlB+nCy4LhAaOj1epbBwR7xFXv+zH+0iNAOQG4HAYa0zDCdgQwISZZj4UUC3DcXFxe2pyTZWnBtPggUAQOnAGvOfwgtjUbDnAuSTNRgbyKIIaD4QFNJhUkJPoQSgs61MpmC3+EK4T3cS66Xa1wul2o0GiZYeFGLFok0TW2CCPeg3W7bHqGVhxYm1sKPnuQ7gH23WCzMkeL3kw+WnM/nts+9A8WLEfvi5Q3FU/suDggICAh4WwjfwwEBAR9YvJMpD/+zpCf9a/stz9elWkslsdlsar1eWx/3nTt39Nprr5mdfD9oTbq2OUNUsMRjbcZJQEtCs9m0Pv9ut6tqtWoTArD5M7HAE21GFtJvDvGkSssIwizLdHZ2pldffVXNZlMvvviier2exuOxzs/Pra8fgtNuty2LYDqdajgcKo5jI9Ac1/e+E0LY6XTUaDR0fHys5XKp8/NzjUYjEyBwKSRJoqOjI0nS2dmZuQhwM1A5lmTVedaacZrz+dz+TAW7Xq/rzp07ms1mtu6QXo7vx/QRmoj7od1uq1KpWOsEIYhpmhqJZP0hp1S9acFoNps2XhJhQrrOIMC5Iskq+4gXvrqNtZ/KO1V8LP5pmqrVaqnVapnwsFgsLDwTos79gewmSSLpsvVmMpkU9ixugs1mYyIBEy9KpZIODw8Le8xX5FkTrtuLOdHVhBLyKCSZIMD/emEH9wPPGW0GvmWAdWNiA88Gbg+eEYIT2Qt+Hf2YykajYfd6s9kUWgwQuhDHfIYF4ghrwvlJ18LI/mQLRCVJts/9OE3u2744cdPxNL+LAwICAgLeOsL3cEDAe4dyp6P85XvFH/70K9o9Z0Ha7yfcCD+vbyWg1x1LOT3krVarQAioHHqC4mfMQ0J9cj192+Px2AQFSVa5v7i4KIyYk64zHQAkCEJJdgACCCSZNoPXXnvN2iq63a5VXvlsbNgQ6+FwqNlsptFopNu3b1tLA0TTh+NJ1xVphBEyGtI01Xg8VpIkRujr9bpu3bqlSqWi5XKp8XhsFXLOiwq8J4kIAfV6XbPZzEQRiLUkO0dIH+0D3kEgXVasfYsFpJXPybJM5+fnJhYcHh6aIIR4A8llkgFtEDgRCJDEsl6tVtXv942E47Lw9xQhhDaPUqlUyEnwORWz2czaVAgBXSwWNonD71EIMUKIn/RQrVbNXcAx2D+NRkPj8Vij0cjuD+cqycguf4cgIyxwLyH0CFGQbO4p94R1Qczx4pKf2MFzhrPBO4RYQ59NgQhD68d+CwbP02q1sjBE7hnrxe+ZYsH3hZ8GgrPCZyDgekJ0YIoI+8U/6350JuvkAzMDAgICAgICAgKeEUpl7X7hJyRJ0xfqOvn64q9f+HufUP3iqpD593/4vT67DzxuhKBAr7uvcFOhxd6eJImFvfnKubc+ezs9hIlRgdibySDAvg+ZqNVqRgj9iD0+B+IO2Wk2m+p0OkYOsyxTu922n+92OzUaDXMyjEYj9Xo9xXGsJEm02Ww0nU7tvavVSsfHxzo+PtajR4+M3JGbAPF+kn1cug6S7PV6Fpy3XC41nU7V7XbN+k2GxHw+18XFhQaDgfXqsw61Ws0qxmQMICggKoxGI5tcgS2eqQ28XpKJHd4hgn2eYErWt1wuazab6fT01FoWCGo8ODgoCE4QVN96gd0eIgvJrVar6vV65n6gJQBHAH37ZCIg2hAaCJnlmvbbYXCbeJJNPgLiET38EFxcI5wHwhJjRSHU8/lcg8HAXufbffyoR54DPoP2CVwvkswJ4p0DvIcsCAQ6nhvuC8IWFXzWHDfQfmAnIhaBlNvt1lwliGF+byEMTCYTczj4NgT2uQ+t5HfeDcJzT94G+4t9ypqTw7DfQuVBK1ZAQEBAQEBAQMCzwfLf/FptayU9+EWv34Z6/18tSbrkIy/2vk7RJlf9b/zge3SGATdCUJAuyQ59zhAB33YAWd+vLksyUgHpRySAlFF1pYpPuB0jFiGWTC2g6r1PVKTr0XSlUsmcCsvl0gLoKpWK2dsZ7Uf/OuS22+0agU3T1EInt9utWq2W6vW6/e7g4MBCCKmeQ5olGUnz0x06nY69P01TI/NU2A8ODrRcLnX//n2Nx2OrYBN4x3QE1t4HHfLZ2+1Ww+FQURRZ8J53HbTbbVtfflYqlZRlmabTqebzucrlsgkxkHxJ5jLg2m7dumX3BpGJqjWfsV8VR1Shii3JBB5EBVo+GFu630rDcbwzhio3QglkGBEMIWK73RbcF7Rj0GaDwwI3gBcGCFxkOsV6vS60SUiytWbMItfAJAT/2t1up+FwaCIXJJrrkGTVfNp2yEfAOYLQhmjAOfuQVPYOf/ftJD47gnVDoOH1XBPizH4goncM+HNDUPTigRfaEBn5bH7OvfOCAte93zoTEBAQEBAQEBDw3mL6a7/h0o3wFiKtXvvXSoq20vHBN6g22anxPf/4XTu/gEvcCEEhiiI1m00bIej77X1vM6QVQuZdBPycHnMIXa1Ws6C9yWRi9vnJZGLtBRBtAvy63a4ROEYHIgYwHpCKeLvdVq1W03Q61Wg0sikCURQpSRJzFEDAqD5T7R8MBhoMBjo5OdGtW7cKtvgsy9TpdOy1EP8kSWwqBGRPklWNG42GiS8EB+6POuz1eur3+zo5uZxoBCmDiEvXAkSpVFK73bawQcY+si6TycRyKFgnBBdcARBe7jGiwenpqWq1muVB+DX/4he/WJiY4HMvyNJAnKhUKkaouf8+o4J94sMNpetwym63Wwig9GGD3hEDMc2yrDAZwU98oM2ByRTetUA2Q7PZLOwnhAOOxz3AMcC1cF9oYfECSX41KQWBA2GB9o2Liwu1Wi0bc4mIsS/Qcf8k2Xn5NeDnnB/in5+YwX707+FcOScEAz6f5xgxi2eZYyFg0FqzP6mB+8rPnvQ94bMjfL4Cv/e5FvvXExAQEBAQEBAQ8N5g+Bu/UYNP5G9JTAB5WTr9Wqm8LOtO5evU/O+DqPBu4kYICtJ1Gj5Vb9+3T5vAZDLReDw22zgkCpIAifAVUCqd4/HY2hyosmZZZsQQIobNHlGAHvDZbPaYZRvSXCqVlKap5vN5YUQi/eHY9iGQnjBSIb64uNBoNFKSJPbZ3kpOaCMuhUajoTRNC4TNB1NyXqTZt1otq2ZT/e90Omq1WkrT1I4NcZNUqCAj5iCGlMtlS+cfDAY2baLf70tSwXrP9AnaQabTqdn3B4OBZQbQVoCNfjab6eHDh+r1ejo6OjLng8+1WK1WGg6HkmRCC+SS9UAkgZT7aQUEERJMyT0n0wPByedWSLKATNoAEBT8SExElHa7bdkKnAujK33eh3fS8DNCMLk/VNSpvPtWChwXfkoDYMQiwZRHR0cWTonQtR/oCNHmOLQb+EkRkH6/V3kNe2d/jyJA4CzxeSD+2SD7hHvC9fmsitVqZaGTCEa83o+z9Ovh2xgQ4IBvK/H5LAEBAQEBAQEBAe8NBr/5GzX8eK78Hf4zbFvP9egbyrqTf52afzWICu8WboSgABGgTYExcdPpVEdHRxaA12q1rFLuSQHkirYAb4FmXCLBc7gLJFlKPxkOtEhQWea8IBU+0I5qKJ9HNX42m5kLAteEdyUQuseYRM5/PB5rMBiYEIIYAPmkfcKP5hsMBhbq5y3qiAoc2/fU00bixRos/b5lAHu874dn3CL/UQUfjUZar9fqdDq6d+9egQBSdSYskqkLwGdTSDK7O5M2FouFTk5OVK/XdXR0pHq9rizLLA+C3AWIehRFNvWC7AxP8rHDQ1x9AB/uB4g6gZtMkYB4ssaM/eR4rCPVbd5PoKLfmz4A0I9gpE2FyjlZGq1Wy9afz/BEnP9wCkDasfbTNjOZTKw9hykdvAbHA60WtKpwbrRI7DsafA4G98A/0z6IkbVhDREPeM12u7X8BLJOEHPYR4iCTG7AgUPQIm0nPKs+94E15/r4TvAhrKxHEBQCAgICAgICAt5bDH7TN2r4lZcug6eBbT3XvF9W8+kcLuAJuBH/WvbtDdizJ5OJzs/PNR6PrUKPsAARhkB4lwLH4+cQoF6vZ3Z4n4lA1RWbNw6Fbrdr5A/iCrHxVVBIG9kGkoy4xnFc6Fn350f4oB+xOJ1ONZlMLLSQ6i/BlIgUWNsh/Ew1gFRzjR6+ar3ZbKz1AYEDMcKHBEIyfTuJH9fosxWyLNNkMjEC7m3pfq2kywozleEkSQpr7wk9YY/D4dBcCOwDL+SwngQ+8nO/XpBhpod4dwFCD/cJoYQ1Yz1xN7BHaGNAmPDXwedmWWbTNNhntMF4Yg5BXq1WmkwmhbYGchxoT/ChhuxLRApv6ZdkgpN3tjDhg4o/xJ7wTBwVCHXce+4164PwwDn5jAR/bTw3uBP8s4djBvHJi1e4bPyoR/aqD8VEfOP+cAyAKOafY9bKO0O4Hh9GGgSFgICAgICAgID3BuP/7Tdo+FW58srTzbAaflya/6qve6rHDLjGjXAoSNeEl3/cR1Gkk5MT9ft9I9S0IkCyCLXzgIBQKaXi2mq1CtVWP9IuTVOrintXwWg0stdSnYbIQrb4HIQHCP54PNadO3esOo21HtGB8YjeMQFR83Zzjt9qtZQkiWUeSJfEfDqdarFYGLGiDYQxlpByyN5yuTQXhQ8BJMPAhxnilvD2fAQQX8nluufzuYbDoY6Pj9XtdjUajUxg8IGPiBgQc8g4RJPKP+QTdwPHQRzAOdBsNjUajSz3otPpqNPpWJsM9wp3xnq9Vq/XM5LJGkNM/XQBRnByn/i8OI4tK4G8Dmz30nXA4HK51Gg0UhzHhQwKiDEiE3kMXD8Om2azaSSX1gzvTPDBkP4+s4fIECDw04twTHFA6OH54Vq8CObzBjien5TBeUiyQET/bO6fH5/D1BbWnuPx3OFUwDHD73xIJn/2x94PX+QavDDCPvYZJ9w7ngPfDhEQEBAQEBAQEPDuYVOPlJeffiB2Xsn14BeV9KHsF6j6t3/oqR//g44bIShgn6fKiNW5VquZoFCtVtVqtdTtdq1fnbGKBA/6sDV/3CzLrCoOyaEiPJ/PNZ1Ojejxfu9CAP64UnHWPf39lUrFAhqXy6U6nY4FJHoy7iuztHF4QuVD/NbrtY3So1/fB0NKMoLtSRFtIFSPqRBTgcXWjcgCuaSaTrWd4EfWj/OnnYCqPU6BxWKhXq+nTqej09NTs+xD8iCsVMQh34gN7AWfB+FHN/opBaxLuVzWZDLRZrNRu922FhlaJBBAvFMCMYHJAjgZaIvwpNQHBmKv92GKCBJUvxFyRqORTfDw14kQw/Wwxn7yQqPRsD3FWrMPEUkk2X3iXJnWQCsF+SKcO+fGOrM2rDfOGul6+gOf69cG8S9NU9uHkHnfPsPPOYZvo/HBi/weQYVn0rf0+GwQXu/XEScEex2RgesnSNTfay/IeHiRISAgICAgICAg4N1D+i2X7oR3C3lJUultJDwGvCFuhKBABRGhAMI0Go10//59a0EgT4B+dqzrvoK7H/Lmq8g+H6Ber6vVamm9Xuvs7EzT6bRQAYVI+eBDiDShjtIl4YJYeoI0HA51dnamKIrU7/eNyOAQ8NZ03AFkMCAorFYrTadTE1J8KCTJ/kx/4DhkMzC60ifc+zR9X0n3Ewb2J1rsj+dDoGEteG2SJGq1WpZ/sVwu1Wq11Gw2bf39OEFfWSYwUJK5Ibhfvnq+XC5tqkOapiYOcK6SbHLE7du3raUiTVMTG4AfTck5TadTOzfcHT70EDs9dvg4ju08/HSAfQcCYg/tHT6Dw7cTIEZwb32uCD9nvRqNhl2Dd7RwLVwHkzF8SwvCB0KCF5D2j0f7wr7zwU9JwDGA4IVw0Ww2jZT7gEieJa7biy2cI61IiCGcN3/nfvuATh/+yLVxzqwLz6t3XuAc2Xdl0LISEBAQEBAQEBDwHuBd5PulVaTSevfGLwx4y7gRggJk1U93wF0wHA718OFDsx8TSDidTjUej42QUW2VVMgf4Dhpmlqlm5F+7XbbRg8y+pBpCpBl30M/n8+t6k9FmOwD2iBoaeAzEQiazaYmk4lV+H1PO3b4LMusp7/X60mSCQ1Y9D3Bgwhx/dLjYoHPRfDhk95lgaCx2+2UpqmRRT9yc7FYKI5jc06Mx+OCLZzWBUmPZRnQggE599V4qv/SdQWcUZylUqmQzTCZTNRut7VarWxChxeIcCPMZjOdnZ0Veut9YCFkejQaqVKp6ODgwPYL7SBkdUjXOQRxHNuerVar6vV6ms1mmk6n9hncAwh1s9ksBDVy73zAJwTfV/VxliAE+IkLuBs4L/6O6EDbDa077E2fr8GkBPYAx0YY82MhpetqvRc+yCRBMPHOAK6Jv7MuiBCco3/ecQrQ4oCIgMDmBSjcIn5dfDApnwF8RgtrwOfyflw4+zkrAQEBAQEBAQEBzzdu/+BO5b/7T5/1abwvcSMEBd8HDhGTZBV6yL4f7ejbEwjmo4ILwYI8LBYLq1BDTEj0l6Q0TZVlme7evat+v2995hBMP42BTAYf6uZt9FRwIWWz2UzS5UjDUqlkY/v8+EVGRRLIVy6XdXR0pE6no91uZ0Tah9o1Gg0TUKRrN4YnWayVD6XzBJMpCkxD8JMLfMUYAt9oNArtDrRiULmHLNOCQpo+pJNjIoKQ2u+T/xGV4jhWr9fTwcGBHjx4YK4EznOxWOj8/LwgIiEYsWb+WsH+dARyLXDAsIdYaz+FgdYOiGeSJObuICuC9yI89ft9RVFkewZxRZKJLBBf2jvYt+xBn1PAvZFkoZjcVy8mefJOhR+i7kdDlstlc+p4su9DTiXZs7OfU1Cv1wsjQjmmfy1OD565/eMiUnBdvJ9z5buB80aU8kC8YP/SFsQzsB/EyfF9q8R+4CXtHQEBAQEBAQEBAQEBT8aNEBSky35xPy4PckhlejabqdlsFmzPPtGdYEA/rg7iAHnOsuyxKiXHoJ0iSRKrREMufJUYUgOxIeQPQYOqPNVpSBUCAFXxTqej6XQqSdYuAPFktN+tW7fMNXBycqLZbGZEic/hXHx1GMKL6FEul9Xv99Xv99Vuty10DufBfD7XaDQysutt/ax3lmUWgklrCu0GEHeINNdQKpU0n8/tsyCSjUbD3oPzAyLqWwTa7bb6/b7W67VOTk5sLyBU4AAhrJMsCumS1I/HY7svfpwh1XsfBIhTgQo1a8CxfLAh+QRxHOv4+NjW0Ve9+XOr1TIxgr0kqSBySJfiAi035XLZpnAAb/nnzxBkJlQQ6Fmr1SxvAoEGUYS96nMaGEnpxRQ/ztFnMEC6IeJefPPTVth3XizBLbT/bNH6gGvFr7sXRRC3cNMgnCFGkD/BufDZ3pnBxJj9yRIIDf7cJD0mXAQEBAQEBAQEBDxfqI1Lih/OnvVpvG9xIwQF+s4hK9ipqSymaarxeKwkSYw4+YA539ft7eUEMW63W+s3p6VAKo7d2263StNUu93OesE5LiICFVQ/ghHyBGFbrVZG8nq9nlWcfRsCwkWSJNpsNjY1AOK+WCy0Wq0sKyJNU92/f9/s4H6EICSO65FUIGCERb700ks6PDxUt9u1dfKiAuIGVWeuifDB2WxmpM1/JgStWq2aewGymee50jQtCC8+B4OgRk9uub+bzUadTkcHBweWQTEejzUcDq29olaraTKZaL1eK0mSQmtFtVq1fnlvy/ehfRBjrgViPZvNCo4Jb9Fvt9vWGpMkiXq9nlXGz8/PH2sVYH2koi2f/evzDAgZ9RMn9ieI4Iig/ccLJf66GKuKqIDQxHPGHkZAQljzdn9I/r7rAQLP88Nr2L8c1+9JXuMni/isBs4N8Ue6dh0gDLAuTEzhPHAESTK3BEIKe5p9hijUaDQ0nU4tA4PP860ofiJEQEBAQEBAQEDA84n2F3JF/78fedan8b7FO/rXchRFr0iaStpK2uR5/jVRFPUl/WVJL0t6RdK35Hk+fIPjmG3bE3iIzmw20/n5uaX3Q8qoLErX4gBEBlJC5RGXAiTbV29pT7i4uNB0OrWKtXc6+ER8SUbovB3b28a73W4hwR8hg+p8vV5XHMfWNgCZ8YF9ZC+cn5/r5OTExIvVaqXxeGz9+b7qTYWfSjojJ4+Pj3X79m1VKhUj2eRJQKJ8r74ni0/qk6fVwf9vnl+OScT+74mldB2EyHFv3bpluQy+ogx5T9PURn62222laWr3h+q4b4Mpl8uazWYmCEjXQZpU39kzVNAhnfw+SRJFUWT5DH6SBoGVjUZD3W7XnCX+2obDYSE4EIGMfUoVHWJNCCWOF9+KgziGQMW1eIcCQhjHxpnAsyLJ3uPPg8DB5XJpQhs/R1SivYNnlP/1LSM+WBIi7rNCJBVEPH6OG2PfWYTw4HMdfP4F8GGhXuBijbhvPp8CAa1SqZggxN7241sRDrl3zwOe1ndxQEBAQMDbQ/geDgh4Z+j++EDjLzvS/PbTDU6sD0o6/JGx3r35EQGPz0p76/hf5nn+qTzPv+bq798u6e/kef4RSX/n6u9vCIgpJIB/5EO00jTVaDQycgThoBILqcX+Tr6CJxYQD6q1kHvI/HQ61dnZmUajkSQVqqe+fYKqPm0HkFoq/7gIyBnAat3pdIyIEo7obfeSCuR6vV6rXq/r6OjIKucQTlwFrJMPkMQNgOU+jmM1m0212+2CRZ1qsM9a8BkTflwlzgE+kykZ+4QQQWM+nxuR92GF3MvhcGjuAh+M56vxk8lEo9HIyB5BhNPpVKvVSnEcm3CCyEEIJAKIz+agUr0/rcFXwtkv2+3WJmZwXOl6qgDrWq/X1e/3LX+DY7MXG42GtYVwvggaHIs9xPpJMheBbxGgFQgnB/dlNptpOBxa3gfOEkgz0wsQFTxRxlXjHSScPyIfDhqeA9pL4jg2MYznCdfJarWylhQvtEkyYs+1E+7IZ++7DrwIw3FYK64LgYF9RosKIgXXwLPj8xU4X9+2guDxnDkUnsp3cUBAQEDA20b4Hg4IeJvY/vOfVuPs6dL+6qSkL/nugfIf/omnetyAIt6Nfy3/KknfdPXnPyfp+yX9np/rDfTxQ6borfeVXIg8RACC5W3PEAhIvXQd1keFEtRqNbVaLQuz4/X379/XgwcPCq0LvlJNGwZE2Gc9+KkF2PNpYSiXy+p2uzbmcjgc6vz83K6da4DgZVmmNE11fHxsIsTZ2VlhAsBsNitkQrBW6/Va8/lccRwrSRJ1Op1C3oQnkZBu1oc14hru3r2rOI612WysJWS1WhVGNSJMQOggwhBCHBq+H5+/k6UAecdRsdvtNJvNNBgMClkUrDEuD8Yi0i6AUMNoToQq36aCaIIwgiDkx3/y+XmeG+llrThv2gcqlYoJW7hf2u22hYvi/ECUQuzhWiDv0nXbB6IaZBxRBUEIBw3OEAg61+8DOFerlUajke1Z70bxQZgQde+u4PecL/ea54rPZuKIdN2qwOexP/0+4x4wbYJrlYoZBjhq9lsocJfgZqFNh89DlPOiAhNCaJ/hvvvnDvcEOSp8LzyneMvfxQEBAQEBTxXhezgg4C3g9t98VYvjD71jl0JpHenL//xQ0XKl7c98/imdXcDr4Z0KCrmkvxlFUS7pT+V5/hlJt/M8fyhJeZ4/jKLo1hsdhIo2RNSHHnoSJ8ms6h6eOEEQ+F9IDMRyvz8cwkKGAJX1xWJhv6c6LV3b0GezmZHRZrOp5XJpBIZe8el0qkePHunk5EQf+tCHdHR0ZKMG+/2+er2esizTYDDQbDZTt9u1945GI7P38xmQJ0mFEEhfYYccQtA6nY7u3Llj7RX0n3ONvMcHLrL2OEKSJFG32y1MrsA9geWc++ct8Tg/pOuJE/TeNxoNEzsgz1mWWUYBoYqEMBJq6cP3WAcyDMhWwG3BqEfIOqILa0WLDEIL0yn2JwqwdyDRXAdVfsgr116r1WxyB9MFEAkkGennHrBf2U8cG1KL40KShWqSpYBTwbc1+KkF/pz5LC+KRFFk6+anNEjFySH8DhGq2WzauuJsQKCQrkVBwL3jPnrxgPNjDX0gKM8qogL3ixBTP7kF0Wg/jJU8EpwbHMevlc9q2J8u8ZzgqXwXBwQEBAS8bYTv4YCAd4jNq6/pQ//1Sq98+su17L89UeFj//lDabPV5tXXnvLZBbwe3qmg8AvzPH9w9QX5t6Io+hdv9o1RFH1a0qf9z7DLU5X1SfX+H/y+l99X7CE+PpwO6zmVbD8FgGMtl0udnp4WSA6Ek6yEVqtVINu0M2BV9+n3CCIESo5GIxtbeXBwoIODAx0fH2s8Huvi4sIEFdoLpEthYzqdajabWeihdx/4QDuILZVjKsxMkzg+PlYcx5rP55pMJiZUeGKOJd+7HKjkHh8fK0kSSdJ4PC5U+H1Cv3TdEuBt9RBLghIhdo1GwwQFWkR8jz0keTqdWqsFTgucH+wBRnzu2+UlPSZA0VaSJIkJST5zAZcBIoMfjYlA5a+Zvbrb7UwUoK1lOp0aUWbNEXCm02nB+o8TAtcBa0k+g5/qkGWZuXqazaZ6vZ6Wy2Vh/CJ7nGeA+8514NzwpN4HkWZZpizLJMnum3QtAPr2EsQtPte3IPB31o5ni2vEvQGRZw969wxCHeu83W4LzhI/BYPr5hxw4yAs8szyzLBmXgxjLTnWc4Cn8l3cUPxunV9AQEDA+x3hezgg4Clge3Kql//4Qp/73V+lTeuttUB87D99RZuHj96lMwt4PbwjQSHP8wdX/3saRdF3S/o6SSdRFN29UmLvSjp9nfd+RtJnJCmKotyPj/MVZD/ujrGJwGcGMCXBh+9BaLAwY6vP89z683u9XiHoEOt8vV63KiY98LVazcYUMr3AE3tPknATLJdLzWYzXVxcaDab6datW3Y+3W5Xd+/e1aNHj4y4QW54n584IKngMIAcQqBprWi32+ZqoLWDDIbhcKjRaGTvBRwHmz7kCjKbJIkRTl+5ppqM/d+3rXC+fiSib1ehek6AJe6U5XJpLQPkUWDZ73a7arVams/n1vLB3mHUIs4EhB4vFngXCc4TP/VgOp0WpkggArDG++fvx0O2222bLEILBOIX7TqQb9pl+Fxf2fckGoGKEYec13w+t3uHAAJ5JpdjNpvZMdm/y+XSWiVov4GIk4/AsRDYFouF1ut1YU0RFFhLL+Zxfd5VtO9K2A9T9BkVvI/r9uIez6rfv4gK3CM+h+PgzPBtGD4s1R+HZ5lMhX0x6qbiaX0Xd6J+yCwKCAgIeBsI38MBAU8P28lEX/oHf0if+w9/gXbVXHq9jGz3tHzsj74axIRnhLctKERR1JJUyvN8evXnXyLpD0n6a5J+o6TvuPrfv/pmjufHJw6HQyMWfgShJKVpasIA1cosywpBe1Q2ITuQbKz6URRpNpvp9PRUnU5H/X7ferAJPvSWaUkFkYFz8hZtRBCIEbZqb60nYBByR6WYzACIFhVu6dIRwPX6fIX5fG5CCpVaP8rR27WpmvvQRJ95wLVCFiH65EcgCnhS7a3wvJ9r4Vg4IBjVx3F9CwuhhtVqVdPpVKenp+YK8OTx4uLCRBSs94PBwLIu+FyIJc4SLO/S9fQIL8YkSWIkErEKQt9ut63thio498W3PFDhxyVA1b1ararVahXaJ7woRp4A94rz9y0VPlDS318vItB6IF0Hie4HLHIs3w7EhAnv1vHEnRwGcj5wBbB3F4vFY/kL/nO4Bu/MQIziGaPVw0+CeFK7BNfGnuR++v/1mR0IJDyftAqRt+Fbobh2PgPxATHtpuNpfxcHBAQEBLw1hO/hgICnj3y90pd9+w8oKpf12e/4mie+5uXvWan8935YkrTJgxb3rPBOHAq3JX33FamqSPpv8zz/H6Mo+kFJ3xVF0W+R9EVJv+bNHAxBAcLJP/qxWUNWJRnBli6JwGw2K/TZS9eVfkkFYgSZoRJO9ZnqLYBEYklfr9fWR++r0773HXLL9cznc6skQ1CyLCtURcvlsmUw+PBASCC2f5LsERMQK6TrEZZcm3TdBgGBo8rse9JZK17L+eR5blMMKpWKvdcTUu8gYb0gt6T28z4q651Ox+4Twol0nYHR6/VMQCEjgrBLwvTyqwkd8/lcg8FA4/FYrVZL/X7fyCYWf+6RH4u4XC5tugSuAoi9nxrA+TWbTa3Xa3MIsHcgoBB+nBbr9drcJrvdztwt3kEAcYd8sxfW67WWy6WtD60HkF8fkog4Q5sF4kmtVrPjSNejRP34RYQEjsv986KAn47hRzkyxpO19O4KL2D4HA3WDpENtwYuiSzLbN/wDPhzQrDyUyZ4xvxz5B0kPmwSQYPX+bwRnl+eAQSFWq2mLMsKY09vMJ7qd3FAQEBAwFtG+B4OCHg3kOfKNxt9+Hf9wLM+k4CfA29bUMjz/POSPvmEn19I+sVv9Xg/8AM/oK/92q81EuNT2iHyrVbLSCaVaAgDxB0CBsH2ifStVkuj0ahQffXVfIhhHMc2gi9NUwsU9JMlfLWVnnifiO8zBajer9drjcdjm5qAqMF1kh9B60Gr1bLXUVmlarqfEQEx9K4BSGCaplZZPjo6sp9BAFk3394Rx7FNh/Akm+vnuiBjVKshYxBZzgXhpNVqWdWez4V40+aQZZld53A4NCKa57nSNNWDBw+02Ww0Ho+tggyR3ifiXnCihQFhh3Pjerh3vA+y6aeO0GqRZZndc09WIfneUYDw40MF/chQ3ASeONO2ggBBuwn3nBwHciz4DIQ0LzjhzEA8QyDgnDmP/XYW3u+zIvhdrVazdhTpWrjgefLtE5I0m83MYePdCZLsXhCg6V00XkzbF/M4J74LgM9jwKEQRZGtCQ4Xf52sp2+TQui76Xja38UBAQEBAW8N4Xs4ICDgg4wbM2R9f9SjD2LcJ/JUyPdHE0rXFUYEAt7PiEF/DMgz1dN9u78XBbDhQ5YqlYplHMRxXEiL5ziSbNwlhCvLMnMaZFmm6XT6WCW01WoVRAl+DxmG5PjcA0gkrQa+Wuz7xjk2r4FAk3MAIYVQeYLK+kL6AOtHLzsiQ7VaVZIkVgnnHHg/63pxcWGVbKnoqiBzwFfdx+Oxfa7vkyfMEZcAGRBkLcRxbPeBe7NcLtVsNgsTAiCkjDXE3o8rw0/5wL0CAWYv+rBIHzTq2yGYvADZRgTyAYnsn91uZ/sMEQnha7vdFjIVWGdPqBGF/JQH3/YC4fZ/9w4KPyLSO2Eg5rgb/P/SmuHdDYBcB+57mqaaTCbq9/smEvDcIOjkV9MlJNme5jnwQHBh/XndfsYH99FPx/AtU+yFgICAgICAgICAgIAn48b8a9mTLSzTvsrKayCqVBmp6HqLtU/ghzhHV+PxqPpCFPZFC18xr9frlpsAafbjJj2Z5H0Qk2azaUTG9+0zzWA4HGo4HNr0As6T1H4EBUIYSfSH6ADIoa8iQwrr9bpZ+vkd1WgmSIDtdqtms6l2u11YQwi7r6yzJhyT1xCK6N0O7XbbBIb1eq3JZGK/I1MAyzvVf8gi5NSHEnKukoyUk0/gMzP8SFD6/4F3CHinhLf6+2o8r5dk4woRLHBw+LGG3Ms8vxyniSDEHoXokn/BnpBkx8ZBQ7sHYgCiB2M8/Xu9jX+/dcA7GDhnRAbO37fa+NBCn+XgQ0dZS58zwjX6CRP7Qgb7iywRPj9NU2uzwYmEE8FPNEHo4lz4DP9M8BnezYMTheMhKBEiyTmyNt5FERAQEBAQEBAQEBDwOG6MoCDJAg+Br5ZKMsHBh73R087v+TnVTMidJHU6HcVxbD31BCWmaaqjoyO1221dXFxYGj9WcwDJgFTT604VmoR9SdZiUKlUTBCASEI0qcBDgH0lG7IH4SOkMkkSs8lj12et6E+XLsl2s9lUv9/X0dGRjYDEPr5YLKzXfz/kDlIJUYzj2IgjFXRfzaZqzudzPQQVdjod7XY7jcdjG59J3sF8PjcnBX9HVPHZF0y+ADhOyKZgfRB4yD7gHDk3RArEIh80iQjh3Ru+pYA19USVqQ6S7L6Q+yBdhohmWVYQnBA5OAcIPvdxtVrZOEt/b9ljOAK8WENIp88QQRhhL3lBg+tjbdI0NXeJzzLxkw+8yOVbEHBBSCp8BgKcz1TwmSjeYYALYT6fm9iECMczj1iF0IXQgrDEMXzrjn92AH9nLzCKFWcIIpV3swQEBAQEBAQEBAQEPI4bIyhQbfSVRk9UvF0ZUkwV2Nuvsd1Xq1X1er3C+DtG+VGZh9hje4YgLZdLCz+EdHiCTzXbOykgUMCn4c9mMwsC5HN9ECJExldSqdhyzZDgfr//WLaDD7yDkNOeQWBhqVTSdDotuAg4Hx9ux1QEbzP3lW7CCnFbSNeEkGuCvJZKJfV6PX3oQx9SqVTSF7/4RavYI65wjYgzfgIDggzkjz3iJxVgXccZwDVwT6hWe9cBgkaz2TQ3CEF/CBusO9eIo4DPm06ndl6dTsfOlXtANsZ8Ptd4PC4EWfq9TstKs9k0ks4eZh9Lsv3nczSYnMH7cWJw7byHZ4h744M7/XHn83khdBL3AM8ApJxnhPvEhA3vqkAs8zkO7AtEEPYgx/V7EvfKarUy1wziHWvkhQgvNO4LXX6ULD9HdGA/cN98MCTrGBAQEBAQEBAQEBDwZNwYQUG6JjsQlf3+ZR8U5wl8nudWvfa9+1S5OWaSJOp2u0ZifVsEmQzStY3bV4T33RI+HA+HAoSHyjikZzabaTAYFKYNkNOwP7oPwrRYLIy0QpTr9bq63a4JJ9K1pRzyQyWc82B6Bu4JnBf+uNi9vX2d62JtqcyzXoTyYYdvNBrmjvC957VaTbdv3zZxZzAYWFuDJ3OIIKwlogNWfL/2XkChak7lH5FltVqZBR/xx1veEUZwGHB/IavexcH9RACAeCNQMb3Ct34gUuF2YS/4NUTwIBMBIcdfJ3uN/blcLpWmqUajkTkcpGubv6+4U3XnP6Zu8HofCsrz5Z8BL954pw6ODYg64Yue4EvXrhAvnvnWIp9bgdDC+fgpIYhz3qnk21W8mMC+5ruCqSJMlvDnwHHYP3wm1+cdPwEBAQEBAQEBAQEBj+PGCApUbenxp+9fkrkHIMuQB09UfBXWBzZiYS+VSkqSRL1eTycnJ1osFhYaB4mkOr5/bF/tlVQgy7VaTXEca7lcWtWWKr90TdyYqkC2AqF6jE7kHLGiU+WFyGHFjuNY7XbbrtMHWNIC4VsxIL9+bCGiBVkIiCOsgQ+p8yIPDg7vpKjX69aGAXnm8yHRzWZTR0dHGo1G6vV6Oj8/L/Sy+0owIoInl15U4Bo4B5+dwblzDBwmfl2o2PN3QiqBd1ssFgtNJhNzKXCPuWeS7FwRR7j/7AGcE6yHd0sggrGnuf/b7bbQcsDnIBwtl0tzPXS7XVsXPoNzpb0kjmMlSWJCBwGVOFXYR+RYMMLUt4L4NeLZ8OITzyu5BDwztJl4gY1jsUf37y1igxcd/OciKPnpGn6vcn/Z17h/aFPBvcM5sa+ZIsL4Td9OFRAQEBAQEBAQEBDwOG6MoLDb7fTw4UMdHx8bwfLTCHy1FBcCpEC6DuqTioTH915XKhWrSHO8TqejTqdjBE6S2dDTNLWKPoCw8RlUhiFsiBJehIAoSrJJCrgT4ji2Cr0PrfOjAOlrp3+8VqvZeEKfoeBDBeM4tkr9dDo1ks1IRir0+33ykDXfl85aUukulUqWv9BqtdTtdo34Y2lnbUCe55Y7gVjAWjClYD9Icz+IkYo6TgHIKfeY9eZY3lXCsRlNyLrSNuDbbRBn+DzaRDh2t9vV8fGxiTu0qECkvejhgw1ZY5wi2PP3Jy34EYe+JYHcAFwK0nUrhhdduAY/+YH9xu9wkZDbQZDovhsHBwjPnQ8qZM25Tu4Zgkq1WtVsNlO5XLZWHC9e+ckXHMc7BLi/XD9CDu0gPKuIXMvl0t7PPefc+d998Yq9RC4I7hkyQQICAgICAgICAgICXh83RlCAhEEQqEB6kuQT5/18ef6DnEGIqPBDwgidg5gtFgvV63UdHByYJR9rP20TkEs/ecBb5/25+ckBZAxAJAm+WywW6vV6heqzT5VHWKAfvVarmeCBfRySB7mjGu4FBUSH+Xyuk5MTW499MoYjYt+RQBuDH7nnA/Z8K0Gr1TISJhVFE8Imx+OxtQFQxedzt9utEWQEFZ/dgBiAEMH99YTQk0qubT6fmziE4wBHCfeR++wdJqwRogtCAve02+3q8PBQL7/8sl566SVVq1UNBgNJ1w4HLzx5csye9W0UuGJYU0j9dDq1z/fuB6rw8/lcaZoWxl5Czr2otj8thbUkl8MLd7h7uA9+ogn3xxN1L/TQIoCogDuHn+HMoOWGfc/1+NYl1o5z84GmfJ5vM+GaaCtCuOK7ge8O9hTH8/uV/eTzN/zxAwICAgICAgICAgKKuDGCgqRCYJskIxC+X1qSWZF9+8N+dRZiiN0ZosB7/SjGVqulOI612+2MxFOxRIzwKfmSCiQMktNuty3hn2rnZnM51m46nWo0GlnvOwKKH1vH50EsIcqk7kO0fdL9dru1kD4IsB+tuVqtdHFxYeTOj9jkNdI18eW8IIv+fz1ZhrTxc+8WgKS3221Vq1WdnZ1pOp2aO8KPaoQkQ0Kr1aparZb93u8Nb5X3YZkQaJ+rARH3lndaasjWkK5dLK1Wy4QPX7UniLFWqynLMguQvHfvnj72sY/p9u3b5mRJ07TQ0iDJXAE4ErzF3osYlUpF7Xbb3uv3BGvjxykiTkwmkwIh9s8NIst8Pre9ghjgpx/ws8ViYcdij/v7uy94MVWDZw3xwLuJ+DtiIc8tx+RZRJySrt1G3jmDICFdBmVyDN+ew35CWPDjMXkmfC6LXy/uF+vEXguCQkBAQEBAQEBAQMDr48YICp7Y0t/NyD5IgO9ThyR4wgABpVK9Wq2UJIkRD8gbVfg0Tc1FgG3/5OREjUbDBAZIlqTHUt8h+JCpcrmsdrttoXh+fOBsNlOWZRY2uO+qgCztT5Ggz5/XUkXGQYDVHbJIMj9ElBwCqsIIJggxOBz8WEaIOX+HVJGA73v3eR+CBv81m00lSaJyuazRaCTpMqxwMpmYy8CHAFIpZx/4vAPpOgSTCRMIBdwTH3YIQfb7gzaDLMt0dHRkYZZZlqnb7VrAISTZk0pPwKMosiyO4+Njc5uMx2Pbq5BpHBlcK1MEyMCYTCbKssyq6hBeroupHL51AqeL3w/eDcJzQ2YI2QtecPOZD9xTfs7r9qcm+PYLWiYQPHg9xN4Hq+Kk4HW8xt8bBCuuE2GBZ9XvgX0HiXcE8ZmbzUZZlhXEA59pwudx/lmWFb5/vNMoICAgICAgICAgIOD1cWMEBeDDD70jACLD/3q7/P4EBloU0jRVr9czwjSdTs1qvtvtlGWZxuOxtUJ4qzhkhQourgOs+Y1GQ51OpxDKJ10SFkgvJJRz9IQNwkuuAwTLTypgtGGtVjMSDlkGkEpEAb9OOCSoFHM9kHE/6QGBZTqdmvjCNAwq41TnyRzATeJHTeJa8Nby8/NzI9fcA+4f65Ykia3jvgOBdfUVZz57MplYf72/B81m0wQLjoN1HoEB0j4ajYzE+3GJ7Duq4HEcWwglYpJ30yDgIH4gWO1nPDQaDRMi2PPcA86fKRoECSIIERyIeODDK+M4tuPhuuDcvDjEe7guH+bI3vdjGr34g9PATwjxz6p3JvgQSvYqa8p1+ZwE7g1hnzhF/DOOgMd5cO7+O4M9giuENeD6+Rn7GFGhVqsVJkf4EZsBAQEBAQEBAQEBAY/jRgkKkGP+k66r45BNT0Kk6wA9n84PqV6tVprNZoU+eEggxGw4HNoIwH03BFVViIck60eHKO1PKaCyzc+xnkPgm82m2u22NpuNjcPjNVx/vV63vAIfpMe50L7gxQMILWGNvm2CtcJaLqmQdI/w4d0bfIavftOSUq/Xtd1uzaI/nU7NoUA7B6QuTVOblLBerzUajR5rvWAdfcWb6yC7gHR+iD/rUCqVLJsCMYL15n74XnruIZ+z2+00nU5tfchdIBeCYMhqtapOp6Nut2vOC9paFouFOVI4D86NdgPOB/EjjmNba+/UoLWBdfSCFGsKWaalgf3q8zD8uvrASYQmL+b4AFT2DoKXH8/pW3R8+4MPEOWzed4QxHzuBp/Dvm82m7aG7E0EI9obEFRYW9ZKkq2Db0EiOwXw+YhFiEz75+PzObiOgICAgICAgICAgIAn48YJCr4aComQrh0KECQffLd/DG8bx87sCSmg4goRazabhWqpFwRwMHgBw09GkK5Jnbd1+3R9P0LQuw9oX+A1TA8gPNBbvPenMVBp9i0KSZLYlIftdmuTDSDe0nULgR9d6IPrIIhMcWDMJVMyGBVYq9U0Go20XC41nU5tXbguH/RHFoAnfxA3CD/rhivCTwDw67tvdd9P/fctMJ5oQmr99ALpsiUFtwrrhTWeav/x8bGOjo6sZQHxYTqdajKZaDAYaDQamcAE8WetWVsfSok7hbYR1ojcjDzPlWWZEXnA2uMgYA/4EMX9sE9GaaZpamvDM+EdF35yhnci+PvJ/3Jcf248N2SYIJxB6tm/PHdPEo9YM38fvGuI43mhkXPybRq+Rcm7XMjXYI092PveLRUQEBAQEBAQEBAQ8DhulKAgXRNL3xIgXTsDIOUQV18t9YSI92F7plc8jmMtFosCISJboN1u25QHPwLPixA+nR6y4omST4hvNBpKksQIEzkKvi+eY0BuIFEIDhzPV16r1aqRL6riftxds9lUp9MxIYOgw9FoZBV3iBLii0/Xh7Rjoz8+Plan07FrgdwlSaJut6s4jjWdTs3ZQE4DmQ6QuPl8rtFoVLhf3oqPwMP7WFvuq8+q4Dwhg1jguX6q/7R8AKY8eEdKFEW2jhxHUoHYxnGsw8ND9ft9E2wI/5tMJjo7O9P5+bnSNDURiNBFyDquCj+OECHLT/zg55ybdwZwjT4TgVGJrD2fh8jE+nnxYTabqVaraTab2TrX63W7t9wHMgn8HuW58Jkm3Jf99h9EHEQLyL5/tnEA4TTgNZVKxUQ19gPnyj707g5ERu9E8euEeOBFFlpHyG4gNwWRAgEuICAgICAgICAgIOBxvG1BIYqir5D0l92PvkzS75fUk/RbJZ1d/fz35Xn+vW/ymCYIUIH0Pdiz2cz6xSGOVIEhDj5PwafO73Y7NZtNGxcJoYYkYeVvtVrmRuC9vqqNQ4JjQ4qwh2Pbbjab9h/2dTIbxuOxVXtxZUAGEVIgYFTfIVreNu4r2pwDUwxwKEDO6vW6ms2mJBnJhGBCHCHUkFHEByzoPqiPc2QkY7fbtSkIuAQghBBmWgq808Df9+VyaVMLuP+IOT5PgfPwYYUQZVo5/BQPPx0CAt9qtQqTC7w7Yzqd2rnR8tFqtdRut3V4eKher2eCBFkT/r9arWb7jAr+YrEwdwetEj4Y0LtkILz1el2NRsNs/7gAfHAg+Qh+b+Kymc/ntkfZsz5TAALPedJuIV0KNLgnpKLQQTsBohrCDa/z7gLO2wsI+9fA5zYajcdaNvz3AI4BH37pHQisp88j8d8LPo+C59+HUuL48G0dnMtNxrvxXRwQEBAQ8OYRvocDAgI+yHjbgkKe5z8l6VOSFEVRWdJ9Sd8t6TdJ+mN5nv+Rt3rMfXeBVBxtCClCNKjX64XWhKvzMnLk3QKSzKruSTjtDFRna7VaIZDOj5SDyEKg/HQBzg+Le7PZLNi9IZ4XFxc6OztTpVKxoEIcD1SwOX8fDOgDI6XrSRY4E7iOJEmMMLN2iCJcG8fk2hqNhqbTqa2lJ3+0VPhWEog3ThGcGO1226YseEIex7GNs/Sfy4QCH8DIGMEsy+w9XnjweRSsv29zoOJMVd9P0ODe+cka2PW5nizLChXvTqdj18d0B6ZEQMYJD5zNZppMJmbT99MLyFKgtYU1QLxB2KnVagU3DpMnWBsEAgg2/3FP1+u1kXQEoX3rv39OeB//i9CESEewow845J4gVvmsBuna7YCAhwuF++dFQn/+7BsmcnAPeLZ9lgLfE2SO7B9/X0zAseIzNTgPL1qQBeI/66bj3fguDggICAh48wjfwwEBAR9kPK2Wh18s6XN5nn/hnVb0PFnxRNMHB3onA1VO31cP0UF8gGjiOIAsQUr85AT+TvUXku0zEwgVfNK5+wqr782G2DM6kjBASBhCBMf37gOEEU8CJVnlm1YDSC/CR7vdtmq1T/X3AX8c1xM8CLu3oHNMHzhJddqTs1KppE6nY5V3P/3B9/ezxtw7n1XB+Xr3gQ8L9NMpOC+OhWsAki+pENC42WyUpqnlZeBkIAOC1gd/7CRJ1Gq1dHBwoH6/r16vp0qlojRNC/kMCBJMdpCuwyV92KXf56whuQlMakC08mvjMwNYHx+kyDlwPbzG79Un5Y5g9/eOGH/9+60p+3vf53/gEqHtZT9jAcLPe/x5+QBJfw/AvjDgBRDe7/couRX+2fOZEF4o23dPcE6IFc8Rntp3cUBAQEDA20L4Hg4ICPhA4WkJCt8q6S+6v//2KIp+g6R/Iunfz/N8+GYP5AkzRBJyBHnyRAGC463OftoDBILqcb1eLzgaINaQVx+WCHGG7EOY9qcMQNIgZl58QIzg91SOEQ0AIxoJkRyPx+p0OlbB9iGUEGcfSCfJqsKcOyMz0zRVlmVG/hFfpOvsAY7vyT/ODaz3rDvnALnzfev1el2Hh4eKokhnZ2eFzAscFLR3QIQhw7SGYGvHheDbGdgX3DvutW8F8WMS99s0NpuNJpOJXf9isTCR5/z83NoHyDpg3zHqsd/vq9PpSCpW7fkM36OP44B7yH7wuQLsKz9hAkEF4MTAYeOFJ5/HQE4H1XncJ7zHC13sHRwl7Bn2EvuTc0cMwXXjp0rwXp9xwf73lX9+z++Y5OBfhyAE0Wef++BJRlJybYgVtEz475EoikzU8cGeCB1cE9fOfuMa9oWP5wBP7bs4ICAgIOBtIXwPBwQEfKDwjgWFKIpqkn6lpN979aM/Iek/kJRf/e93SvrNT3jfpyV92v9ss9no/PzciCOCwHK5LFTSsbfT+47Vnv8gx1Q8sabPZrNC24TvD4ek+jYFH864nxYPIfNhc/t/9hVkSDmk04sdvt99Pp+rXq8Xxuh54uxt/+QF4Lgg7wCxo9PpqNPpqFqtWiAjRAwrOqKAdB1YSO88f6baLF0ScIggrQX8DvLW7XYVRZEGg4G1ZTAusd/vW7WdMZaQtn1Xiq/844jwgYSsA0GBVNIRFDgvX91fLpcaDofKsszI/2w203A41Gg0MiGGYEcILE6FdrtdGEnIMbiOSqVin+3JsD8HhB0cJBDsxWJh1X8vPEDCuR7IMUSfvUsLB5kLniT7zALvpFmv12o0GnbuPsSSZ4Xj4R7hHLwzACHNT+3wDoL91iCf9SCpEPbpczgQgfxa82fugd//rB3r4sedSpfiQ5qmhZYY1pxrzfO8IKo9L3ga38UNxe/JuQYEBAS8HxG+hwMCAj6IeBoOhV8u6Z/meX4iSfyvJEVR9Kclfc+T3pTn+WckfebqdblPn4dQ7FerJRXIBWQsjmPNZjOr8lPZ9IQbyzMVyqvPLZA+n+EAAYIQ+d51H9oIuabSzmsgbJw7v/duBQQNRBMmJXjy5Y8rXVvAqfI3Go2Ce8MLG/V63Qj8w4cPlWWZheVhs2dNERCoylLdZkID2Qb093Pd+/kKPhMBhwGTLWgtYb2pyDcajUK2AqKIn+ABfG4ARLbVapnNHzs868q+gQwjLHF9fvwgbgtcKl7QgeBDcAn48wQXkQeyjACAk8FPAmFfko/AvWZ9Icm0qVQqFQts5Fx8wKBvQ+DnrD33i8/nXvnxoPsTGtjDtNzgJvH3gL1KToTfn4QgEoCKYOCFOe45wokXD/xkB+4j4pE/T9aIP/t8E9+eUS6XFcexiSjz+dz2QxRFtm94Fnju9rMnbjje8XdxJ+rnT3pNQEBAQMCbQvgeDggI+MDhaQgKv07O2hVF0d08zx9e/fVXS/rxt3IwX/H1xD6KIqt2+2wCT0hJ9ff2aW/vhjD6UDYfeEcVnPOAqHAMSCPjHCEiVFohuJDUKIoKYyjTNLVqvSeYnqhBHCGn9PojAlxcXNj1Q+ao5ErXIx8h97QYxHGs8XhsxyJEkHPnfGmbYB0hXQgCXixBsIG40RLBOXBOtD3Q0uAnV0gykQFngRdt/JQNiLLPv6BFo16vm2DkSa4PgGR9eN1udzkWE+KaZVkh9NH37FP5n06nFhoICSWvAULqq/RefIAMQ9IRdBBOOGc/NcGLIsALA6wL18PzwHkgZhDSyQjRcrls6+CDG/lsH3zp2wj86302hG9xwAni8z18zsl+S9B+1oV0PX0BYYX7QgsOriH2Ls+0HxfqW2j89wLnwfUhMPF+HwT5nPW/PtXv4oCAgICAt4zwPRwQEPCBwzsSFKIoiiX9G5K+zf34P42i6FO6tHe9sve7NwWs7T64T5KRf7IHsCND5CHfUnGEnCdKVFsh3VRusczzOp8G790F+6FykG4fbLg/+o4e8vl8bqMFCd/jPQgSHJtqbJIkRuSXy6Xa7bbOz88L54Zbg+N4sQQRhLGPkDMmUdRqNRNi8jw3wabValnC/2KxUJqm1vrA53k7uM9FyLLMBAZP6mgLwLGwXq8LuQgIRtVqVe12W61Wy4Qi36LiWyQ8qSTzAvII2WadeQ33ilGQrMNgMPB7266LQM/BYKB2u23k1jtccD7glEBcQURCNMEtwx5BCCiVSorj2Pb3ZrOxNgTWx0/+YPoDwZw8B+wDn6PAGu2HFvI8sDe90wDhidYWSPe+04bzhaCzV31bD8+hb83gXnmXhL9PPu/B76/9VggmYSBGeDHGB3h6gYz12+0up28gNLK3eZ59PsVNx7v1XRwQEBAQ8OYQvocDAgI+qHhHgkKe5zNJh3s/+/Vv51g+WwCCRD8+pB+iCgGAYEB+Wq2WarVaoSLMcX2rg0+BbzabKpVK1jJxcnKi8/NzzWazQlVcUoE0YfnH1o1dneNjKfdBfTgMut2ubt26ZaIJRBGiTqWUfAjOF2v/6emphsNhwamBuECVHPEF8oxrwlv0vfCAFZyK7eHhobrdrhF+iCIV6nq9rlarVSC8EOblcmnVcM4D0s+94lz3czL8OtRqNWtj4d5xXEglhNhX5/eDPReLhd1rT7pxY2DHp3WGa+H9kNLhcKhms6kkSdTv9wthhtJ1td1PEvHV7/V6rel0ans7iiLLkWi32yZskQ3gr4G2Fgi3F4P8Z/NccM77x4KQl0olTadTezZwdiAS+WkQEHKEPnIsvKsBwk4eg39m9lslvBuFfAq/jxEk2Eu+tcO7MzgO58RneIcBDhf/Xv/8+/GxPlPFu2OeBzzN7+KAgICAgLeO8D0cEBDwQcXTmvLwjgEBgDwiKmBJ9xVm7zCQrnMVqIb76iiv99VVb9mHQI1GIyN8VOwlFY5D6wKf5cfi+RYJzs9PfMCRsFgsNB6PbRRhs9k0dwTEejab2c8QTSSZY4E2hn3LOedMnz25BxBf+vux6++TTZ9VUavVLICw3W7r8PBQ5XJZ4/FYs9lMktTr9WwNqM4Dn4nA7/3648BAmPH3CKFFug7J9JV7LPSsPQJTu922sD3vVPD7AXLsq/XsAT91gfPn9azzcrlUp9Mx0gw5pf0FAuzfS2sI7gWum33iW2q4h55Ye8eMbwOCPJMPgSjgwzv380C8s4E2IqrxSZIUMkG4j0y7kIpOD8IP90U3nA0+9wOyzrnthzrymayr/z2tCQhH3vWDIIC7wIsPPAO8j7Yh72AgoJT18WGjz1l+QkBAQEBAQEBAQMB7jhsjKAA/LnA+n2s2mxlZgIxQod0XFDwpgwRCyPgdNnIq0vRjP3r0yHIOqBJ7kcBXoT2B2ofv8aea3ul0FEWXoyDpxZ/NZmq32+p0OmY3z/NcaZpqs9lYxdoT7nq9rk6noyRJ7DogkgTI8efVaqXRaKQkScxpgO1+sVhoNBppNBpZDgDEk7YRbOQ4BRBEWCNJdl7z+dzGUnryl2WZrSWVaFoZkiQxAgnh3m9toeqOEALJw3XhRQJ+VqlUCm0rOEX89Aeq2l6U4XMh2VS8uWbfCsA5+2wFWjik63BAKv4+SNA7LXwbAPuZkEAs/X4qiXdL+JwD7gOkn70HqUdE8M8I9499QzsKQs1sNjNhxmcxEE7q8w589oh3oHhC7ier+HwLfsZ9wH3i7yliDnvCt+/g3OD6EG32zwnBR5LteS+8+PPxAsjrPecBAQEBAQEBAQEBATdIUPAVTJwGEF9fYYX4IAZARCCcXgyggomtvF6vK0kS+yxI0Xw+12QyMWLjbfHYpyE2vnqNcOEFBi9mQMS73a6RmtFoZFVwP3LRV7n5nRdXIEDNZlPtdltxHJvzAAGBSiwV9/l8rvl8rl6vZ9V3X62HXEvX1nCcF1SZCaGs1WpG7LIssyDM0Wik8/NzDQYDI/9pmqpcLtsoRvrUN5uNWq2Wut2u7ty5o/V6XRiv2Ww2bS04J8giwg9r7KcC+PwKAHHm5/Tb4z6B9CNa8Dnebu/dMhBcT06zLNNwONRgMNBoNLLgST6fHATGWvp8C9bWk1gvQvmpCZBdrh2xzbtj/JQCWoR8OKmkQhgobhKfMVAul9VsNm20Ju0akh4LjPROCD4H8WO1WhVCHf0zQe4Ex+Sc+TtCGcKcd4pI1wGfXtDh3vq2nf0JErRAeYGG58uHOXIPmHARXAoBAQEBAQEBAQEBr48bIyj4qikkkx5qiDd2aoifD4iDGHorv69skkfQ6/WMgEiy6rp02V7hgwLJLYCsQ1SoSkMIfaihJCOqtDQcHByYeMHrIGcQTIjnZDKx1/jwOYgNr202m3Z8CCI99JA7Jkr4gEmfcA+Z8lMWEF84t2azaQR1P7OBtRsMBlYdR9CpVqs6Pz/Xo0ePNBqNLFcBwvviiy/asZbLpbIsU6vVKoTn8fkICohEwPfnc92+os1+oS0DQQFCi5MC4ssa8XPWC/GFUE1CKkejkU5PT/Xo0SNNp1NrD5EuJ0b4SjzkFELN+fhMCy+K+EkI+6SWfQi5RhDwbov9MFHp2knggykbjYbm87mdI+0lZFPgxoCMI0ghQPgWIkQc1h6xgn2/7wTh2rkeWjeAFym8oIJYgGDoW1v8/ua1fuSnF18QyfiuoAXFC4UBAQEBAQEBAQEBAa+PGyMoePhRhD4F3+cYYFtnEgAEY7/nHPJOwGOn09FkMrEwxclkouVyqTiOdevWLSPYVGsJg0zTtEA+fAAfJA1rOOIFxIZWgiRJzJLtSRJOA6rTiAkQUk88sdx3u11lWaaLiwv7bG/93if4nCtiBdeZJImt6Xg8LhA1Pwmh1WrZmjcaDZXLZaVpahMbED/8lIPpdKrpdGqknXWN41gvvPCChWGORiPFcaxOp2MkEAGCijUOCrIYIIx+dOb+VAnEC0gmVWwcKuRVQPr5DNY9v5qQIV0KT4PBQM1mU81mU1mW6eHDh3rttdc0mUyU57k5OfbvGVV7zpWfeUcMjgtaFMg7IEyQdeG6OYbPnuCcEdHYT15kgbh7Z0G5XLZsD9wufC5CHq4N9o4kE0cg7PtCn4cXNRCLeEZpueGe8VzQ6uQdCF4M4jnZn8bwJDGFn/O/XDf33gt9/DnP80JwY0BAQEBAQEBAQEBAETdKUCiXyzYmkQoo8BZmKqD9fl+9Xs+CAiF//rX+2D7gcL9q3Ol01O/3bTxio9FQq9VSFEWW/O9Jm0+390FzTHwolUqF86EaXK/XjXTzfk+2fV6Et+N7cQSiT4iezx4gMwCnAefpreHz+dxIvrfkQ9YhdARLJkmio6MjrVYrEzLyPLcMBgg+BB3yPp/PjSzSGw/pPzg4UK1Ws4kVXsiBuLbbbav4Q8gRF4APMYRAN5vNwmQEUK1WLQtis9koy7LCWnG8fcJMbgRhmsPhUJvNRl/84hd1cnKizWajOI7NVcP+4b5zDogNkGkI+D5JZj+x5/ykkn2wx/26eHGEtiBcNhyfVh7OgcwNnznCdbD+fB57hPdCynEs+HYUP12Bc/MBqexr7x6Qrt0n3uHgW114vp6UccAzuu9QYV0RWVgzLypIKggkPisiICAgICAgICAgIKCIGyUoVCoVHR0dGemWZAn00rVlm7aEw8NDtdttG8W3X230eJJzgQonYkKn07EMgTiOCyF+VDUhG/uiBWQK0kJrBm0EjFiEBPnecN+CALn0Ewy83Zu1qNfrVslGlMA5QJgl1WZC6rwlHUGB8EVaCSDtBPlBTNvttrbbrYkYVPYhbYQzLpdLex+tKogWuB64Hz4kEkLK/WYNm82mEUgv4DBykPdi44ec+qkXvprdbrcLffQ+EwCxybd4cD4Q3d1up/F4rIuLC7366quFHAj2J9eGWAAp9lXzfYeADxj095/9AEHnHnl40WE/mJTngev07SyQ5kajYS4c3z7g2y68i8KLNH6dvDvBB2b6qRGc037Lkm9b4nkAjFZlD/OM8kz7iRg+5HH/OeQe+rYIvz/2p7TgjgkICAgICAgICAgIeDJu3L+W/VQDCDWBitj3S6WSDg8PdevWrcI0AE86gO+DXywWhfF3kCaq/ZAUH07ox9chKPgKL4QN8oILwVv1IfielCEmQCKpnNbrdRMNGB+JYLD/eq7d5y1wnZBvb+f3NnwAYYZM1et1y2bI89xyGCBgXlDw1WcIvq/Kl8tltVotc4aQDzGfzzUcDs2NgCjgK9m4DQiH9P3ykG96//317ff4++ujWo3o4SvcuE8qlYqSJDHhYTKZGOFFGFkulzo/P9dsNisIL7RvLJfLgkPFk23p2lXB332oKO4IWhTYRz4kkOPh5PHVd4Qt9iXuGj+thN+xBrVaTbPZTOv1WrPZzK6H3ATeB/zUC7/3uV4vWHiBCDFPkr3et+Dg7vHfAQg91WpVWZaZgOOvg2BK9ih/9q09/ny5J37Sg3eF7HY7e5ZDjkJAQEBAQEBAQEDA6+NGCQpUGqk2Qqp8WJ4kNRoN9ft9tdttpWn62OSFJ9mgpcs+eEL+/PSEdrutbrdrnwFBkor2cV/59DZ0P7qRCQwEJ1IFT9PU7OO+igth9VVtroMWgiiKFMex/cxX5kulyxGanOdkMjGiCBH1hJsKMKMYEVjW67WNdez1emq321qtVhqPx0bkfM6DdG2391VxP8UAcowYQhjfer3WxcWFnS8Va4Im8zy3KRa+9348HlsbhZ9QsV9pphLt9xT3FOcCRNq7HiCYcRzr+PjY2lJ8mCL3h2vhMzabjabTqYbDoXa7nWVTeMEEcYR18w4C3woAKWZt9ycd+D24D/Yp4H2+hYhMEUQOzo3P5PXsF3882lb8aEaeJ47lJ2JwLbgVOAYuGO+eWa/XBeECscS7OHwIJfvXT0TZf758LoMXNLwQ48UIBAj2TMhPCAgICAgICAgICHh93ChBQVKBvPiKrk9z73a76vV6FiYHPGl5veNsNhtrP/BBhxBsX7GWZIQSwuOD+whn9KFxTGGg0i9JaZpqOp0asfLEbjabSZLZ5r31ngkKjIqELM9mM6VpquVyqUajoU6nY+c4m81Uq9XU7XbN7k3leTQa2e/r9bqNPvT2e45XqVQ0nU5VLpc1m82MOHIPfNWX9fA99K1Wy/IccBP4nvvhcFggrLSZkJnQaDRUKpWMcELWWS8Iqe/h92P+/MQL7q3vw0fc2Xc4cG2cf5IkRljJdiCnwQtfhFkSUImbAVI6n88tuBGhiSwLT5QRPfx+3D8/3wbEXqGyT5Apa+DdCez1OI5NsPHPlR/16Mk4z5Lfm/zehyzyc98Kg2iDcMX7vaMC0dALGvujLn0AJMKgd2yw97jH/J2MDIImfbCrX3eO74MlfatLQEBAQEBAQEBAQMDjuDGCwn7Vn5/5vn/EgDt37qjf7xcCGiEPb8ai7B0IvhrpCRIBi5Ac2gi2262RXSrQkBZILpX2fr9vosF4PDYBwNvtmcDAMX0Vl/YFpizQajAajWw6RaPRUJIkhRGbkEAIoifckFIfggcZbTQaFoRIe0eWZcqyzGz8EDjvSJBkf/dVfkifvyZI4Xg81mKxKEzU2O125sTwIzmzLLPJHKwzbSoQ0slkYuM/IY1eQJCKoYcQRQQL7iOZDRyn1WrZpANeg/tEuhR9EGd8kCEuFQQIXB0IL74dxTtqcE743AyfzeHbbaje837GViIA7Qd8ci7tdltJkiiKIk0mExMncC3QXoLzol6v23kixvB8sK+8CODDHrkWroHX+PYf9r0X1LzbCLENAcS3sfhWFC/s8XyzZ3A/8HzSorI/ynJ/L3sxJiAgICAgICAgICCgiBsjKEiX/5CHtPkQQYhrqVSy8Y5JkhihohK+n58gqUAScCJgq98PZqOP3Y/Yg1Asl0ur2DMeEMI1n8+12+1Ur9fV6XQsC8H3oFPBJgiR0MfpdGo5BYgMHJfro6IMiSP80Pd6Q/ogxxAtetNxGABvjfeW9UajYcSNDAfOD6v7YrGwVhNI7mq1svNC/Gi1WuZMgCz6vIHZbGaZDNwjbzmfz+eWSbBerxXHsRHRJEl0cHBgIZTe2s/1cf95vyevrC+5D170kC6JqD8XKu6IQTgYIN+4D7w7wU+VkGRBlmQgeHt/tVpVr9czIYW96HMl/Dn4/AqOhyDgnTLlctn2GAQfF4Qkc6lwbMQlWkF4nX8GWQOf48G5+IkliEf+3HFn+DYMxmP6tgV//b5dhcBM7h/X7+8jYgaiHLkQ5KLgZPBhkf5/fStIFEXmigkICAgICAgICAgIKOJGCQo+jd5XwiFI1Wq10O6A+OD7tH3Lgk+lpwJKdRkLdrVatZA9Mgogx76C6ScseCJCtZTfQYr8hAGmKvgMhk6nY7bq2Wxm5M9X03FkHB0dqdVqKU1T+wyOi/AhqWDB5xjD4dDWI45jTadTLZdLI1w4IyTZ2pRKJc3nc6Vpai6JxWKhWq1mlvPhcKj5fG6TJlarlabTqRF/35/unQuSjKz6thKImw/ew43BZzNpQpKJFv5eE6IpyVphuBesP/B5C15sajQadi3cZxwHCBoQTtwRtCoweQPSjyDRbDZtb/p9zYQFcjC4HsQnv0Z+4oIPU/QuDAIiERjiODaHwGq1suo8zprlcqnRaGT7jKo+4oiv9D/pXHzQJOcFYac1g3uPkIf4hwthu92aGEbbhW8lYk1w8nh3D+IMLiDv4OB8/PcA15JlmTlUEEZ8zgPXxXoGBAQEBAQEBAQEBDwZN0pQgHD76rKvbidJouPjYyVJUrB8Qxp9H7YnFj4kLkkSJUmixWJhhHqxWFg4Iu6ELMus8g1J9S0ZOA9ohdhsNhbEJ10LAn5MJS4BX02dz+eaTqfa7XbWXw/Zo7rfbrcts2DfUYEjQbpO8JdkuQOsHefPNeLQgGTXajX1ej31ej1zILBGnpBPJhObCEArBGuACwDRAUcD5M1nVUiyiQ+Qf9wXkDuq/0wc2G8d8AIB97vRaBQIKcQct4Yn3L4Hv16vq91u2/sZW8oeQRjwPfoIO5yPD8JkTZmgsFwuLRDUE2LeR3uCH2PJcfM8N0cMzgTyI3gNZDlNU6Vpai6ZOI5tHRECEO64j9wbnrv9LAbpUmzCJcA5SbLPYa34Pf9L+wprKxUnLACIP7/nnHAb7I89RVjiufIihg+05BxxR/jWDe4XOR/83IsQtLYEBAS894iqNZX6vWd9Gs8ddoOR8nXIfwkICAgIeG/whoJCFEV/RtI3SzrN8/znXf2sL+kvS3pZ0iuSviXP8+HV736vpN8iaSvpd+Z5/n1v9mSiKCqM4YNA+p55wgY9Wcch4AmQpEJaviQ1m03rbYc0xXFslWbpsrWBfnwf2OePBxnzlnkIGaSdnnte5wmbD+nzrgcIoCQj7gghCCasDULCfD434QO7O9eBINFqtQqVZM4B8gpp63a7Ojg40KNHj5SmqYXfzedznZ6eql6vazAYmNiQpqmRfU/CsizTaDQy0YS1jeNYnU7HnBWsLSTdT6/gOnA7kDfgAy29MCGp0IbgbfDcb/YLwhBiA/cMh4GkwnQR7g+fBdHFRu9DKL2AA8H27Qh+Wgd7itYY7qOkgjMAQUTSY3kUiCRU9hFlqNbj7PDCx3q9tlYWKvJ+Aob/XD+60e8b1pg2BF6HQ8FPa/HPNdM5vJjgxUAvFPhWBz821LdL8L+sl3fn8L/VarXgxGF9EQuYHMLzxXnwHXFT8F5+FwcEPDNEkcofflmSNPvIkV79JcEl9Fbxoe/bqvnZc0nS9nOvSPmTJ18FvHWE7+GAgICAx/FmHAp/VtJ/IenPu599u6S/k+f5d0RR9O1Xf/89URR9XNK3SvoqSfck/e0oij6a5/kbJptRHWy1WoU0dkga7oJer2cVS3rhfaUZ7FevEQ9arZZZ2MvlsmUeUGHHdr+fsO+PCfmDXPlqvw8qROjwqffkRJycnKjRaFjlmMwBHBOe0Pk18teMYOGJ6JNs6PSDcy5UqH3oZLlcVq/XUxzHhWDM3W6nNE314MEDVSoVExRoR1itVorjWL1eT9IloZtOp9Y6QB99vV5XkiTqdDpar9cmOPgefQiod49QVaYNgdGVrCXrTasG95IWFQgv4hSCBK0VVLchprgRIK6QVt9ewufi6sC9wFr7QEjuSbvdtvYJLPdkLfgWBAgsvf8IReRaIP4gtHmrPnt1f6QlYZv8juvmmhECfHaGd1DQ3uGzJ3zwJ/fAuxMQFnxA474Dw7eAsK7eveGfYcQ3Ptc7Cfz0EIQJP9bStzTwGT7jhOPxPeOFpxuGP6v34Ls4IOBZIfoFX6VdvaKf+jXBGfRO8MVfWpZ+6W1J0oe/q6PSaqP8h37iGZ/V+wZ/VuF7OCAgIKCANxQU8jz/n6Ioennvx79K0jdd/fnPSfp+Sb/n6ud/Kc/zpaSfjaLos5K+TtI/fKPPoaLKbHpf8aYS3O121W63zfoNsaEq6Ym0r2R6a3mr1bIJBH4aQblcVpZlFhYIAYdIcgzfvuCrrb7FguuBtFPtpNWCMXaSjFRDniF2EOF6vV4gNogU2+3Wph94ez7vaTablsvgE/lLpZI5LJiyAEFFvPEJ+tJlmCAOhel0ag4F/iuVSta2AOH0QX/cP18l3m63JgwgePCZi8VCzWbTiB8tFb61hLVGTEB4QDRhP0BQmXqA0IEg5IUgWhR8mCbrx7hNf/9rtZpu375t4hQk2BNzcgCo0EN62TOsBTkKuGXIy+A6/B7zbRWQfCr5tHYgkrC/yJ9gT3JcxBbWO8syTadTSbJzpk2GSv6TpmjgEvDBj95pxN71Yxj3p6p4RwPPMPkZvl2FvepbK7zY59tvOL/lcmnn47MgOAaTKzgXL5DcFLxX38UBAc8C22/6av3sr6xJN07He77xuW9pSrn0cvcXSJIq6Urlz93X8pNf+rrvqfzdfxpcDa+D8D0cEBAQ8DjebobC7TzPH0pSnucPoyi6dfXzFyT9gHvda1c/e0OUSiUdHx+r1WpZ3z1EHuIJ+QW+nxoCgGPAZxdAsHwCPyP9IPL0jFPZxJa+WCysv9pPI4AIQfS8AILw4AUFzp3cAEmFUD2q46xFq9VSr9dTu90uCBU4CpbLpYbDoVX6PelKkkStVsteB3Hj2MvlUmmaGnGCZOV5rjRNLaiPn00mExN7yDzwyf5MbYC8JUlSsIoTWOgr1BBjKvQ4CjgfSSYGIAx4oQDyiigURZHG47HlAvhjI1j4cYv71XDaalqtlpFT30LCvfSTQLDS4+rg/Lxtntd5Up6macG9wdrSmjEej+3z/RhFf92sO24OT4ppRZFk7RI+m4O9gFhFfgQCnZ9Gwn5erVbWpkGeAu0THGOfqHuhD5cHLgs+y7sIvEjkXUhecMDJ4wMq+Vw+g+cToYOf82fvjuDcJZnQ510P+c3/R/VT/y4OCHivsfwVX6vX/rVyEBPeLUTSK//W5f8nV7KaOp//Cg3+pdf/brt78HWKnjCBu/2zU+1+5J+/W2f5PCN8DwcEBHyg8bRDGZ/0z4En/r9WFEWflvRp/l4ul/VVX/VVSpJEp6enRlohNBApSCB94H4kIlZvH8qGoEAVlnA4yDvkG6sz4W8IGjgKsKszzhCxA5LCfxAjL0hA+He7nY3wq9VqFv7IufvAwlarpX6/r16vVxALIF1UsbGP+0A9XBiQQ9wSkHnGO2K1Z41Wq5WGw6EePHhgo/Z8e4QPUYTg4jqAiEFO6U/3EwioWkuyVhPuE9fGvSMsj3Vm7VlLxBtyCXzPPK6FWq1WEJa8uwMBgXPs9/uK49gmDtAewXshyMvlUlmWFQQmn2+BIAJx90F/iAlefEF4QAgqlUrKssxECMg41+XHIfKM4KpIksQELu6vDzZkLSXZGrJn2Hs+rNALeLQm+FYknjvujSfx7jlXtVp9LOtjv23Cv16S/cyLO741yAuLXthiTRGDaH/wwaCSTKQge4ExrF7A4pjPKd7Wd3FD8ZNeEhDwruLhN1aUl2+8ePe+wKaVa/Av/dyvefi/eLKy0/jKnlqf/EZJ0vHf+aI2r91/2qf3fkP4Hg4ICPhA4O0KCidRFN29UmLvSjq9+vlrkl5yr3tR0oMnHSDP889I+owkRVGUR1GkXq9nNmVfRYawQBL2JzH4AD3+82nvu93OWibo9af6SmtAFEXmRuD4EFBImydXnN/VtRSmBRDQ51sRKpWKZrOZJpOJWdSzLFOapmq32wVyStUUYYBKqSeIELNut2tr4hP4qaTTloHrwpPq/Ur8fD7Xo0ePdHZ2ZmGLPozPV+F9xZg1IYfh9u3bqtVqNkaSn9+9e1fr9bow/hJRyLdZMMEAy/tut1Or1TLyDfndbDZqt9sFsgzpRkwga4J9RUXc9/mXSiV1u10bDcnr9qvY5XJZs9nMrrtSqdg9rNVqiuPYqvastxfERqORuRO868K3vfBazh9Rg3YBiLhvE2EkY7vdtnvh2wG4X/sZAhzDZx00Gg1zaXj3CvdHkglTjPsk8JI1Iwclz3MbXTkej+1eItj5sFL/PCFKQO79hAueJYQAXu8DO5vNZmEiBNeAsOLBdwVrydqw/7jmG4yn+l3cifqB1QUEBDwRi+OdFseXf57f+hJVZl+iO3/2n2mXZc/2xJ49wvdwQEDABxpvV1D4a5J+o6TvuPrfv+p+/t9GUfRHdRlA8xFJ//jNHBByO5/PC+PsqJJ6oQCL/Ww2s4qvDyb0x0NoqNVq6vf7SpJE8/ncSINPckdE8PkIPlCR/nZv0/bhe7VaTZ1OR0dHR+Z4gAwRaEhPeLPZ1HQ6NXLL6zkOEym87d5XcxEvGGVIoJ9vaYAkUY2FkJdKJWsTwKEwm81MTJjNZhbm50P7/HnujxCkqn58fKx79+7ZGs7nczUaDd29e1d3795VmqYFJwkWfSYOYL2HCHPN3pHANSJqkOngp214S77PkGACAqQd4k27A4ICORMQ5FarVRAacLgw9pM2AIQpCC3tBl50kq7zLmjpYfoIa8t95tq5l7Q4sE9wiSAQsId8XoVvAYKI+3Gs7H1Pun0woQ+jpO2BPck+8M4PSXYvfIaHd/R40YP3+/BT75RgH/qJID5rgT3OuvJanmE+x4dV8lrv9EDM8tkjNylD4XXw1L+LAwICAt4Is3uX/+5Z/c5PKtpJL/wn/+AZn9EzRfgeDggI+EDjzYyN/Iu6DJs5iqLoNUn/D11+aX5XFEW/RdIXJf0aScrz/CeiKPouSf9c0kbS//HNptnSDjCdTi00jn/cY7Gu1WrW6oANn/F3WMz359tDSA8PD9XpdAqkiDA/gvroMSfoDvIHyfLuCAQPX0X1bQqSClVTP4oSMsrvETcgurvdTnEc2yhAKqUECUKeWq2WCROQNc6RsZR+XCDXwnVDErfbrQaDgcbjsc7OzrTdbq1lADLGvZAuiViz2bTqLy0AjUZDBwcHOjo6svsiSf1+X0dHR+p0OkbiuC5f0W80Gjo6OrL7zPp6oQABg/fwGbyWvYSrgakP4/HYnBGNRkPdbteq4IzrRBTgsyGuzWZT/X7frqnZbFoVH3EDhwdk1pNjHw5Iqwu/QzzgXs7ncxv1OJ/PjVTzOgQR9iev5bxpE/JjFH2VvdVqFc5BkoVUIkh4d49fV+49YpDPL+B6WA9/L/woUF7P3nrSVAUvdPDsIyhxbB+Oyd7n9Txbfu/7diE+X5K1NCGGsN6cl/8uedZ4r76LAwICAt4sFrd2Ui598ff/y/rQH3r/iwrhezggICDgcbyZKQ+/7nV+9Ytf5/X/kaT/6K2eCFVubPIIAbQ8dLtdVatVq75DgtI01Xw+N7K+TwAgPn4kI6T58PBQBwcHajQamk6nZsP2tmyIm3c8QPD5Wb1e1+HhoY6OjtTr9WyCBPkFiB0IGf44kEVILYSLyQGQYKYfUE1F5OC4nkh6Czq99JwH7RYECUoyhwfk8+DgQJ1Ox66RgEhs+FTix+OxptOpHb/dbuvo6Ej9fl9Zlmk0GimKIh0eHlrLwP75YS0vlUomODSbTVu7OI4LrRMED3oHBKKAXyNcHlw3rgPvvGBv8FpGT0J8WeNut2sCSxzHlrfABAcf/IjIgRPE9+Jz7YgC3C9fgZdkwg0kmOkbtVrNxDQmSJD1wOcyxpO2g+l0alNG9t0D/u9MVsFtwx7lPDkfP73BC2BeIOCY7E8EBe904bNx17DXcAn4z2efIvQBckR8uwjv8a8lfwR4Jwl5FggJ3Ec/5eOm4L36Lg4ICAh4S4ikVW+nn/2Ob1R1HOnFP/z+FRbC93BAQEDA43jaoYxvGwgKPvDP28bpD4dI+dR933+9D0gp9vLxeKzxeGxEzFvjsc17YcJPSJD02GcR9thoNIz48blUPKmgkoWAvVy6dj80Gg31ej0jvhAuqt+SjCyvVisjqgQs+v74TqdjIXiIGFi7d7tdYaQkZJvrrNfrJh7M53MLPUTcYTzjarUygs1a3rlzR7du3TLhxhM92lQQDHBneLJKewAiAD9HeGD8IveKyr/P0OAeenLrSTKkFWEEZwKCAkKPb5tgkoN0bfHn/nJO/AwHCWLFdrs1gYHPya76Tf17JZlrwH+uz0KI41iz2Uyj0agw3cGLGOzpJEkK7g3IP24FhDrvxuBe7Nv8fV4B1XsfNunDDb17h/2J+wSBxTsQuI79vBRJJtD4541z84GsvJbjeEHIuzNwdOyHZ+L+wNnjxZab5FAICHjfIYr02rd/ozatJ4wUCHi+EEnbeq7tca4Hv+tf1r3v/Idh9GRAQEDABwQ3RlCAKPjRgfS/0+5AhsFsNrORibgK9kPUIHS8lxDGNE2VZZna7bZarZY6nY79HPJDP7dP78/z3AIgvR0acg4R8kF+kEE/JjHPcyP2vp0AG/18Plccx0qSRPnVyMb5fK6joyNbH09WadOgsu6rxj793tvDIdh8NiS8Xq+r0+no+PjY+uZZS86ZKRmQyV6vp9FopHK5rIODA7XbbZsWMRwOreUA1wDkDbEIdwBtFpBniCqiAYTTZ1LQ585ae3cC1ntJRng7nY6dA1MRut2uZSTQxoFo4IWIZrNpbR/Y5Nmr7Xbb1t9PLiBzQbok5QRrsh+ZhIGARigg58h18z5EJCaD8DofaBnHsQ4PD82hQMhgp9NRqVSyij5Ve99ew5rX63UTPVhnwPnxWlpXfFuCF4vYc4hL/nng+Kw3a+IdAtw/Xut/tz+5QZI9l6wfQauSTLypVCrmTuAZrlarJlb6FpXneMpDQMCNRlSp6OHv+LpLy3zA+weRNHthp89+59fr8EcjHfz5fyztgss/ICAg4P2MGyMofPzjH7d+eYgxxLHX66nValllfDAY6Pz83Eiur0h6wgzpwqGwXq91cXFhtnDaExaLhcbjsWazmZFFyKkXFCBH3kLtpy7w2fSjIz5AXrHNQzL9SD8fPAnBgtT3ej0bZ+gt2ggF5DDsjzmk2r5fcaea7CvFkszdcHh4qMlkYqGEkgquCtwikLXlcqlWq6Xj42MLSXz48KEePHigg4MDq57jZPA2etaBNYWU4uQgeNOPFtwP4POuiXK5bOdHUCekGTcC96TT6ajT6dheYE3r9bp9PuvbbDZ1dHRkAlaWZSbueLEL8sz9ozpP2ORyuTQHCO6LJ7U/EIbIHocMc4383U/3SJLEWm+q1aoWi4U5L5rNpoWd0iJC6wlCCdc/mUwsq8C3Y/hWCS9WSUXnxnK5NDGP8+cZ8K4D9iHHwwXjAxz99AnuO0KGF50kFYJceV7YX34yByKIJAs/3d9b7DcvKgUEBDwdlOJYJ7/hk0o/FJ6v9y0i6eKTuSq/5mvV+e9/WLlr+QwICAgIeH/hxggKVB7pc4dc0c+PPT9NUw0GA3Mn+N5r328tXRLmJEl0fHxs1X/fU95ut1UulzUYDHRycqLRaGR96JBDrNBULn1LA4QGJwWCRpqmRvQIBoSsL5dLTSYTIzmQbEkF8upD/trttqIosnPDGp5lmbUw8B7Ilm/n4Nyw9Pv19tMHEF+SJDGrvreVl0oltdtta82ggkvOAITx0aNHevDggYbDoX0mJBiB40nhmX48IOLJaDSyCRaINT5UE7I5nU5VLpcVx7GazabW67VlOHDerBtkGiLd6/V0fHxsrg8q/jgJmA7iRRzaLqTLzAP2Lq4TXlOpVJQkiTqdjlnsWcv99gMvtvjwSYI8+R0uAe4Be6jX61ko6Gq1svYVxIzRaGTCDmuHY4TPT9PU7hN7gio+kxD89AY+m2wL3BT8h9DF5/F887wiKvA6nz2Bq8O3qfiWIBwtkixXgzVhD/kxpOx776o4ODhQkiRaLBYmgrBXS6WSjX4NCAh4eph88yc0/opgh/8g4OQbpPLqU2r/jX+m3dX/ZwYEBAQEvL9wYwQFyBOEmfT6Xq9nYX2LxULD4VAXFxcWIuiJ/H41sVQqqdlsWvCib3fodDpqt9vabrcaj8caDodWlYdsU/2EdPvkfB/OCNGCfG02G6sOews2BJXQPaq29Lb70Y+sB6+B4EPuyD6gGrtPrCBGtA/Qu06FWJKtGxXoWq2mbrerbrer7XZr64Fo0e/3de/ePWtz8OIMVf3RaKT79+/r4cOHFgjpR/Ex4hE3ynK5NPKLaEQ4ZJqmmkwmdgxJFkopXWcQIELQNlEul5VlmZbLpdrttjlUINC0bUDOO52Obt26ZSF/tJBA0G/dumWEms9HdPJtLb6Czz5KksT2MONKJdn+Yl94Ersv5nDvPEn2TgsCR5vNprkfEHpwZRBs6UMm2be8zocYck6Qei88se8IseRnfvyid+4wWYV7BHH37Q/+2eH9fkQq68X/SipkdOBqoFXF/90LjRxDkrrdrk3I2G63NqaVNfCvDQgICAh4e3jwiyK9sPuEWt/3o0FUCAgICHgf4sYICn4aAiSr2WwqSRJrd5hMJjo/Py8k0vOPfsjK/og7AvXW67XG47EFDzJFgX5/sgqoCPvxeT5t3o9tJIQPwowbgfdDQOkd53WQPUb4+T51/heHBOfPuUMusywrkDpJjxFdiBrnAUGligwRhEC2222bYMDUDEIh4zjW7du3dXh4aASOz8EJgQBwenqq8Xhsa8LISCZzYOGnpWG5XJr4gtiwXq+Vpql2u12h6g4xhZBikcctUK1WC1V9sjIQqXBgkIUQRZHtB2+pR2To9Xq2f7Iss/NFMMBJQysC70dIqtfr1u6C+ML+YA/7PbtarZRlmeUDkDHgW0DIbaAdiFGb7B8cM378IS0atHrsh11WKhV7/nzWAxkYfmoC7oNWq2V7AaGI13B97DGEI9wKtDAgLCES+UkctGQggnl3gSRbe8i/z67w4yRxdngxgtwM33aRJImdJ46TICgEBAQEvHPc/6aSPvZjd7T7/CvP+lQCAgLeRyh/9MNa3+4869N426i9NtDmZ7/wrE/jHePGCAqSCi0FpVLJ/tGP9RjSD+HgH/8QqP1jVatVEw58oCJklCr8xcWF0jS14/jRgZA9qvkQci9o8Dn8R1UfUu57xKlCE6CHJZugQiq4VGpbrZbq9bpV+xuNho1KxKru+/0hZ1SI4zjWaDTScDi0RH16xnmfdJmLcHBwoG63a1VyCHwcxzo4ONDt27dVr9dtyoBP0J9OpxqNRvZZ5FQgDJVKpQKprdfrmk6nNsrSBxhyv2n5IEMDkYU1klR4H2vrQ/h8PkCj0dDh4aG63a7K5bImk4mJIpBbKubdbleHh4cmAE0mE43HY8uMgPh6dwjiE+flMy34GffI7zPEMJwxiCNkbvBeXCmITI1GQ/fu3dPh4aGdI84Mcjyky8koTHzA2QAQnrwDAaGGdh+Ox9rgjOAZzLJMk8nE3Alg/7okmZuCEZi+BYd7y/7Yb4nhf3kO9idzAC/SeLHOB1wi8vlMFO+a4D6/3vSYgICAgIC3hsE33FHv0al2bgJRQEBAwBsiirT4N7/2ib8afLyi2d3nN4+n/cUX1PuZ22r/8Gva3H/wrE/nbeNGCAok8Ps+9EajoW63a6Tl0aNHOj09NWIEsZGuCYQPc5SuJ0f4NHqf4I6gMBqNCiMrqdhDYCEcCA77oYwIBZ7Qpmmq1Wqldrtt1wG5xfaOKwOCDwHzif9UiGkL8PZ1yCCknPORrnvFqcxOp1ObIEHLBW4LhAeq3og3CBPNZlOdTketVkvr9VqTycTWCrKKsJNlmWVIsP4QUl8hx5ZO6wqCCwR0PB5b2wi/k/TYWEC/h7j3kED2ASGEnU5HBwcH6vV6ZsOHvON8kGQ5DARrZlmm4XCo8Xj8WKhgs9k0MusFGgQKMjMQVMiA8GMNvTMDIcyPUMTV4UUp2naOjo7UaDRMbEPskWRiE0IE6+H/zOc/adwpYzh5Njgmrg/pcuIEzw8uED+Kkj2JsMY0EzJCvNuH60dMYE/tB0HW63UTJghb9QGk3gHCOnq3DW0QPN84Hfwew5Xh91hAQEBAwNvH6ddKB3+rJQVBISDgg4Fv+IQmXxa/8eveAHkknX3N6/32+RUTJCn90E7ph0rqvPyyGoMP6eB7/rm2k8mzPq23jBshKGDdh8jU63UdHByo3++rUqnowYMHeuWVV3R2dqb5fF5oK6CqCiD7flKAf4+3g0dRpOl0qul0ahV+Kv/lcrkw5YH2CNwJ+5MZcCxMp1MNBgNNJhOz9iOQNJtNC1LM81zT6VRpmlr1fbFYFFoI+AwIHeIAaf0QKAgzBAsiTNUZK7uv4vp+dggaVXvaDWgbODw81MHBgY2xxFkwn891dnam0WgkSdZGIV0n6+92O2sT4HNKpZIGg4EGg4GyLLOKMaP7fGsB+Rm4RVhr/uN+cy+kayHJj6osl8tqtVpqt9s2FQJnCKQxiiJ1Oh0bX+hzPaiy+yBFP3mBNeXPEPnxeGzi1Hw+13g8LuwLCLB3pLB/sfyDer1ubRvki1QqFa3Xa83nc1s72mykazGN47BunKMfg8rECe7jarWyPYqTBheOJBvfOrn64iOPQLoehekzCRCTyHjgfBDlvIMARwbCAK/DGdFuty08cr1emzjk3Qm1Ws0cPozB5DiIaTxj7CG+U3jmuZ6AgICAgHeOh7/2I7r9p8bK16tnfSoBAQHvAiovf0iPfukLkqTZ7Uirg+eb8L9XmHx4p8mHpfnhz9PdP/1Pn7u8mRshKEgqVNir1apV9nEnnJycWOUbogWxlq6r0RBIHAnr9Vqz2cyqtRAmQvqosO/3nUtFCzs93F6wgNxC2ofDoRqNhhEzXgdhpuJM5XU6nRp5wVrebDYlXSf/S5dVYF/JhmghQuR5br301WpVk8lEk8mkMMmBfnjIIOS4Wq2q1Wqp1+upVCpZEONwONRms7EsgYODAy0WCxNL0jS19obJZFJwmXD99LNTBebauPbRaKTNZqPDw0Mb9Qg59m0MfsylJ5fsFR8yCSCGrNW+e4VjcU8grt5N4l+PsIQIgPglPV7x9+4Z3B4+wBMRg6r6fkW9VCrZfsMJ4oUAXCPkMSwWC81mM3M/sOaQbPIevJOG16zXa1s/jk02CNkUPovEjz4lN8ELZl6M8+M9ESP8tAf2uReMWBdGt0oqrHmv1zPxiTX1bU+0lFQqFQvkBL6dwbdgeAHKZ2PgFAkICHh6yL/xk7r4eZGk0E70QcTkwzvdqVaCoBAQ8D5E5c5tvfLvvKjFMSJC+J5/q5h+2U7b3/HVuved/0jabd/4DTcEN0JQIDQOwk7gW6VSsYo4RIwQQx9cB3n34+k4lk+YpzKMtT/LMo3HY0v233c2eDEB8grZ8gGJkozYUfGP47iQ2UCVXLq01zP2EhKGoOBJMwSINoIsy0yEgBgtFgu1220dHR3p9u3bFj7JxALaGWizgHh5IaLf76vf7yuKIk0mEw0GA7P337lzxyYHnJ2d6ezszKZspGlqFeVWq6U4jjUYDLRcLq06jCCB0EIWxGg00nw+V7PZ1OHhoY31JOuCjAkqyD6kUJKtMy0snuxz772DwQsDiCz8zpNmyOq+C4IKPaIOgYaIOn7Cg8/e2A8N9dV432bh+/hZA0QBX7XnNZyjbyfhs3zWBHsE9wUOCB9ySGUfwQGhgfeRVUDFHtdJmqaSZJkI3inCubN+rO1+qwGOHzIU/PX7yQ4IS1y/fw/HwsFDaCViAXkXPE9+0gnrgPDInsZJsZ/NEhAQ8PZR+tTH9flvjrWJwz8yAwICAt5PKPe6+vxv+7BW3fDvpneK2b2dXv2/fb1e+g/+wbM+lTeNGyEo5HmuwWBgfdbeuu97xyEnkH7fo+1/73vR6V2nOp8kie7evatGo2FhcogZVJo9WZEuBY9araYkSbRer616z/E9wVkul9bf7Qmpt7YvFgtNp1PleW4TByDMnhDTAsCIxjRNLRyPxH/ODaJIqwCvi6JIrVZLh4eHdu7j8dj68l988UXdu3dPR0dHStPUpmgwvrPb7arVailNU52cnOji4kLD4dCqwJB+3BSz2Ux5nuvw8FAf/vCH9bGPfUxHR0eKoqgwCeDs7Eyr1UpJkiiOY+vXp8LuhQNCNX1qv29x4P7T7+/PDWs8wgT3k9A9L2DgVvDTLyQVnAF+EgLWfdYacuxzC3xvvs+VwHKPwMHvZ7OZiTmS7B5CwjudjoVdstd9GCeuAi8a5HleEEvYOwhjs9nMBCyO4zNHcBjgMMmyTIPBwNxC7FX2IcflGZZkn+9blHDm+D3vBRGEC86NViCfWSFd52fwrDEdxk+ukK5zGrg+xElJStPU2nza7baJjiGUMSDg6aD80Q/rZ761q109PFMBAQEB7ydE9bo++3s+rm0jiAlPC8vnrFXkRggKkmwyQqfTsYonpBGyB7B2IxzwWj+vHis1FvokSdTr9fTyyy/r+PhYtVrNKv/T6VSz2cwICy6E3W5nRJ++7TRNC9VkX5XGqu777DknevGpHFN1hqQtFgurwkJK8zw3QWE8HhemIkAcfXgl5wsZhVzdvn1bnU7HhAAyCo6OjqxVotFoaDQamSMEISJJEkVRpIcPH+rzn/+8zs/PVSqVzE6+2WxsvCOkrFqt6sUXX9THPvYxvfzyy2o2m2YnX61WJkrkea52u23rhGXdt0f4wEq/zp4I4uyAmOLa8PkJuEm81Z92BMZK+vvlxQHcKn7MZb1eV57n5hyhCs70AhwsTBmB3Pv7L11nTUjX4ZUXFxeFsZ8EGBKOiYhDzgLvIyzT2//ZB5B3ghBpE/DkH2cP+xcxh3XHzTEcDs1pwrr6e8J7eT4Q3fgs7iHnyJ4mYNFPb2GPIyQhKkkqPJ/cL+8wWSwWGo/Hdm5+PfZDVHFy7AuaQVAICHjnqLxwTz/16WPl5fA8BQQEBLyvEEX67H/41cor4fv9aeNnv+Mb9aXf/g+f9Wm8KdwYQYF/uNfrdavaM+2AinWlUilUsSGfPtAPMg3BgFxBvA8ODtRut7VarXR6eqrXXntNFxcXBccBAXqe6CRJYr3jkJr9BPj9Hn3+g8T7qrcnLtIlAaMyKl2HJqZpqvF4bK0ZuCAQDiBsuBXG47GRNp9F0Wg0dHJyUpjK0Ol09MILL+j27dsmJiDsHBwc6IUXXlCSJMqyTPfv39ejR4+02Wx0dHSk4+NjNZtNnZ6eGtlGWDg+PtaLL75YGLsI6YaQzudzux9xHFvOAW0ruFXu3Llj6wyBhfAuFouC7b7RaBQCCf3egiizz+bzuQVCdrtdu7+4SAjxRCRhhKafOgBhRYCB+PI5Xizg+rwjgVBInAmj0Uiz2cyugWkU2PARgDzZJe/i/PzcMgfIF/AtAbgIELbSNNVkMjFhII5jVatVG7npR2Hy7E2nU9sjXsjDxbB/rbgTeIbZ0wiGPN/kXSDk0QriAykR2HjuuD6fh8DzREYDouO+U8h/Z3jBT7rOYJH0WOBrQEDA20ceBqYEBAQEvO8QVapBLH43EEm75+j/N0tv9IIoiv5MFEWnURT9uPvZfxZF0b+IouhHoyj67iiKelc/fzmKonkURT9y9d+ffLMnQn95kiTqdDpm3/fhbtJ1zzNEmioutm+EBnrsmZrQbrfV7/d1cHBgbRCQdD8uEps1lnCmAyAmMAWCiiekyU8h8OfrE/R9loIXEyCw/X5fSZKYRX+z2Wg0GmkwGFh+AYSLc+O8GH9Jy0EURYrj2M4dcozY0G63dffuXR0dHalcLms8Huvs7Mws5rRtLBYLfeELX9BnP/tZjcdjlctl9Xo9HR8fm5WfdSHM7vj4WLdu3TICS97CdDrVycmJHjx4oPV6bQ4IXAgIR4ghSZLo6OioYHNnr3BMSLSvWgPOidGP+06DUqmk4+Njy4nwLSzkI+BegbhCpKMo0ng81sXFhYk4kNz9aQn+vBGDOGcq7wReXlxcWAsGLQCEdR4fH6vT6ZjohQhx//59zedzc9HQfsNrCGzEfcL7siyzbIVut2uBiH7cIlkmfoIEe4v1YvIEIgzimc+TQKSTroMYEVi4V+PxWKPR6LFWEEQCni3/nONkcN9N1sZBSwatLJIKkyYQ94B3TtA+wznfBLxX38UBAU8beav5rE8hIOCpIHwPBwQU8dk//NVS9MavC3h/4w0FBUl/VtIv2/vZ35L08/I8/4Skn5b0e93vPpfn+aeu/vttb+YkqD7W63V1u111Oh1FUaTRaGSVVyzxnqxL19MdsMRTNfVW7UqlYkIFOQhUlufzuZEoLN8IGVT4Ie1Y6yE4VG/b7bYODg5M2NgP4oNcURnlz4wTXK1WlqKPQCHJSBzuASr8PrU/iiLNZjMNBgMLOsRVQQjfcrnUxcWFEf9Go6G7d+/qK77iK/TSSy9ps9nYtAY/DUCShsOh7t+/r/9/e28aI3mWXfedl5mx7xG5VXVtXdU9PUuTpklhbMkGTcC2RBGGqcUGqC8iIANjGZJhAzJEEhQsWoZgSBBFeIEJjEBhKEskTYCaMW3pgyjDAg1IoyHp6RnO1jO9zXRV5Rr7lpGZEX9/yPzdvJFd3dXVU50Z2fUOkOjKyMiIF++/dJ5zzz13f39/riWFvYU4SyfCSD6f1/r6uqrVqo6Pj9VsNrW7u2viTavV0tHRkUqlktbW1lQoFIw4e5KIcyCVSlnGBe9B9RkxgeONkMJeQtR7vZ4FVUqyEEPED8QExB6mhHCO4EiB/B4eHqrT6Wh7e1t7e3uW2wCRxznDl58WANlF2OH1aJ1gVGexWLT1S7Ixqqx/NBrZiNLhcGiimXf2sGe8B+4e3p+2FiZ8HBwcvIP0I14QCOpHriLeMOGBUajD4dDaGwhnxOXB9egnpfAcfu4zExDeONf9+E5cOlyH5GiQcXJ+TCXPQ7DDucGXn6RBO5QXKxYAn9OHfC+OiHjaWP7YPb36X6xd9jIiIp4WPqd4H46IiIiYw2NbHpIk+d0Qwp1zj/0z9+0XJf0n388iEAogANlsVpPJxIiJT+WH9CECeGs2AXG4HSAIVE8RDLrdru7fv2+VXQgSlX4mPkACl5aWjGjhhGDkIsQdcQCrPnkJECHefzQaGfny/eek0nsieHh4qG63q3a7rdFoZP3yEC8yF+gl9wSb8X5UjKmiQ7g3Nzd148YNlUolPXjwwEIxfep+s9m0oMbpdGoBjaT181zep1QqaX19XTdu3FAqlbIWiOl0auJQv99XKpUygpzL5SwY0U9MoP2DtfupB5A8AjslWWij/9y8JvkGiBCHh4dKp9Oq1+uqVCqWqZBOp5XJZGzf+/2+VesPDw/ngg97vZ6azab6/b6JFxwHWgh8sCjHFTcMVXi/Ji988RkQcer1upaXly0zYjabaTweq9Vq2VQCyD8C3fmQyMlkYoIDa2O/ECloCeC8QiBDHGDdTExBtJpOpybccM0gbNA+xKhL9sQHlbJuPxaU9/GCFZMjOAd5LoGSiIGFQsGECNo4/Htzjfl7CV+ch5zbi4KLuBdHRDxNhJWVKCZEzCH/cEnJ9OqMQjuPeB+OiIiIeCeeRobCX5D0v7vvnw8hfFlST9JfS5Lk/33cC9CiQG81JASLNX/wQyAgI94WLmku+Z/qqk9yp+rsK8vSySz64+Nj9Xo961enYu1dEVRFWRPEnUR5Qt0I4YPsMEbyPHHhtbFlExDHuEncCYgZ539OpZXkegQF38vfbDZtXVjUs9msbt68qXq9rsPDQ9sLRBvI92QyUb/ft9/P5/MmzvjqLqMpr1+/rnv37unevXvWLkC+Q7PZVLPZ1Gw2U6PRULVaNScKrguCJiWZ+NNutzUcDs1Gz977FgcEICz6vrceAQJBACGIyRcEDSImsF6q3IQqjsdjy2zAvo/jwx9zsgQ4BpLmggZ9WCJEm/OQ0MVcLmfiBKQ/SRL1ej1733A6+YE2E4QDCDpOC84jHBS4JXxrCVNH2AfOKb5wIvjcAs59MiDImpBkgZUcz+FwaO/FPnEsOT6Ig+cDWDlmHE+cSNw32G9eF7GFewXXhm9PYt+45hCcOF4cJz9u9Yrg+74XR0Q8Tcw+/anLXkLEguHm576j6anI+xFFvA9HREQ8c/i+BIUQws9LOpb0j04f2pJ0K0mSZgjhRyR9IYTwqSRJeo/43c9I+owkIxGErWGv7vf7Oj4+tsR/SXPVXU8QfBgiZJsqJW6FyWSi/f19PXjwwIIYqS4TeAhJ8aSfij3EF+LIKMm1tTVrJcDpcHR0pFwuZxkMTDqA7FAZpVedhHsq2JPJRHt7e9Zq4K3sPvCPrAXGF0onhG42m6nT6djUBUSPfr+vQqFgoYo7OzvmTvD5A1jjIWiMDcS1gagDeU6lUrp3755eeuklVSoVvf322yZEIA5BBqlsQ+YI+yMTAWGo1Wppa2vLjg3HwLs7IL21Wk2lUknj8dhEGH4OufQCEO4SPqN0IkINh0Pt7e2p2+3OnZNkI5wXszi3OI8h5DzmMwUkzTkPECc4L/xUCn8uMv4QJweiBAQ6l8tZGwzZEJVKRZlMxqr/rBUxgfMQtwdrgIT7EEk+M3vtQYYBogGhogR/Ivaddz3wuX3ehKS57BOOuc8t4XrGyeKf74McfdsHe5skiQlDXHM8n/1hvaVSSYVCYa4FaZHxtO7FWeUvaskRH3Ec/fE/ou/++MLkPkcsAGpfD0pGo8texoeGeB+OiIh4akikjd+7OmGXH/j/9iGEn5b0H0n695NTlpEkyUTS5PTffxBCeF3SxyT9/vnfT5Lks5I+K0mpVCqBxFBJZkRiLpczwoSt3VcfeT6VUshJoVBQrVazajr93b1eT1tbW2aLRlCgSkp7AiKGr3r6nm2mEUA8IGbT6dTIju9Rz2az1iOPKECvPMSv3++b9bvX62lvb88EAcjYuWPAXhrRY18I4WNiQ6FQMMdAtVpVo9EwdwLkD8s71Wz2DYs81Vo+K0GTKysrKpfLNtnBh1rSPx9OR1hC5OnZHw6HFkY4GAzsWBK62Ov1rJ2F3+E5kqzSjEiwu7urZrNpjgWS/FOplMrlsjY2NpTL5SykkYkCrLndbpuTwk998MKEP0/Ot674FgFJ5q7ApcLxQhjg9WnnoTpPbgPf9/t9e02ON2QZYo7g4XMRut3uO0IMuWb8ZAYv0HnxgNeFvJ8n7KPRyMIlEROYBCGdjY8sFApzhJ1zw18PtD1ls1kTHBinSvsCToTzwhLXnnQ2ocLnQWSzWRMpEegymYwODg7MmcDrcP0jQi46nua9uBzqV+f/XhELje/9hykpxNMp4gSNrwStfuEbmp468j5qiPfhiIiIp43ib37xspfwvvGBBIUQwo9L+hlJ/16SJCP3+JqkVpIk0xDCXUkvSnrjca9Hjzf2dfrRCdcbj8cmMEC0yErwBJiKLqMSCfzDbu6JKwQPO7lvjSCMUdKcc4H3w4ZerVZVrVaN7Ptee74vlUo2BhGSDfGjhYBqLBb4o6MjCzKE2Pp+cfaH6i6v59saGJmXz+e1urpqSf2SVK/Xlc/njbAziYG+cbICILpUgSGEw+HQSBr7V6lUlM/nrXWE12PvfeU+hGCOhW63q52dHbXbbSPpiCsIHPl83lphpLORm8fHx1paWlK5XLbPQ1YEdnUEqGw2q3q9bm0eHCcfCkg2AgIIBBzxwo8JZa2ILfwMcgzhZ2pBLpczZ4C37nvRgDwCHA2pVEr5fF6z2czEIZ7L+YgDAVKfyWRUrVZVqVR0dHSkVqtlYYvnp4/gGuA8On9N+swIzj3pzBHE+3vnA60yHCdyPmhN4vzleTg/CCZlL8fjsa0ZIYvjMRwONZlM7LpD8PCtTwh73ENwhAwGAxWLRRMnECBxoniRhb1dZDzte3FERETE08bql4Ma/+RVTTvdy17Kh4J4H454lnH38wd6/c9m46SHp4y7n1/8gpbHYwWFEMKvS/oxSashhPuS/rpOEmwzkn7nlIh8MTlJr/1RSX8jhHAsaSrpLyZJ0nrce/hqPcCZsLS0ZFZ4KrQ+Hd6t0wIYIfE+gI1ARAQCP55R0lymge+BxzrPOiVZngDBgtls1oiXD2MsFAqW1g/B7nQ66na7yufz1vNPqwStDr1eT9vb2xZw5z8jpM5b2SFC5BvweUqlkkqlkn2O0WikcrmsW7duKZ/Pq9lsGuGHxJIhAInks3jL+Gw2swkMtCEgiuAkIf+ByjYtInzOdrutVCqlZrNpLRe4QnyFG0LIZ/LTE3z1m1YZziWfBcBIztXV1bksAj+6E/cJYhBiyGw2U6lUsmPgJxBAaL3QkCSJCUdY8LPZrBF8HAm0X0gywaFcLttaQggqFovK5/NzrSs4NTgfEAnYY8Q0BCTOed/2gLuGQEY+F6DFgVYGzgHEJp9nwvO9AMF1SDsITgpEGK4VBB2f+4DYxDHinEEg8FkhXK9eXCSYlSktCB1MGfGtSBxv3hd3ic/nON/icZm4iHtxRMTTwN5f/KNxLnmEJKn+1aDG//ktTdvty17KU0G8D0dEzCP8y69If/bfuuxlfKTw4q8NlfzeH172Mp4I72fKw597xMO/8i7P/S1Jv/WkiwghqFKpmG3dk2EmBVDJ5A98SIB0NjaQ0XnkBfjKKwGD4/HYyBcEi+dQ4YQAUvlljTwPwrS2tqa1tTWl02l1Oh0jcKwfmzftB91uV81m0/rzy+WyuQd4/9lsplarpb29PY3HYyNI7Au97lROIdWe1LInVIiZSDAej/XCCy/o2rVrOj4+nuvhp3WAkEAqwARGYu9H1PG97BDPbrc7t8+sEfKJgHN0dKR+v68QgrrdroUBkmXR7/eNiGN1J7eiVqvNVaCx4eNmQJyBKEMyEX4g2AgN+Xx+LjPDZ1icntNzLQBUsjkPIbMIUThNIPB+9KgXxTKZjAlos9nMWl/a7bZNYygWixZQCkH25yJBh9KZAFculy0bgBYfnDs4gZig4aeisGc4fXADjMdjE1H8Z0aIQXjBacMUBh+G6M9fBBfaWBDheA+mRXCMuDZ8fgXr8CMkOecREyaTydxklU6nY+M1l5eX53JXEEb43Lwews+i4CLuxRERTwODW4rVqghVvxm09vlvfKScCfE+HBER8WHixX/QV/LKNy57GU+Mhfhrmf5rb4unl5o2AEgVxBmrOJVF704gN8H3ZFPlpf8eguJD6HgNyF6v13sHoaBKXqvVtLa2ZsID/fdHR0cql8tG2EjPHwwGarfbarfbVtFfWVkxIQVSzjoh+wgDjKL04Xn8N5vNWnUYpwKVYTIM+v2+NjY29IM/+INqNBpqtVpmK6dPPZVK2XqlM0fE+XR+SHi/31en0zEiiUWd6RyMYqQ1olgs2nHhuPZ6J9lE5BWMRqO5KrgXcrzrgB56PiNOBjIoOAdWVla0urqqa9euSTprYfFCCQGZuC98FgdCB+QYZwjiExMmcrncXJU7hKBSqaRisWjHh2q4n9BBKwHjDdvttgkMhUJBrVZL/X5fkswpQpglggJrzeVyymazSpLEzjVaBrhuyJLwzgyuCa4FRBOEEY431xliBjkI7LWfpoFDwwdVhhBM+MnlcnYe+GOLWwYxj8cRazj/pTMHAccTx4xvuWCNnU7HPgtZLQgWPv8CxwTvcVVCGSMiIiIWCaU3l7T+D1/R9CMcwhgRESEpSfTxv/2mvvUzz1/2Sq40nv/tQ6VfeVPTTkdaIHfs+8VCCAr8Qe/t4H4yA6QXW7QkszJTofYkjcyDYrFoUwawoZ8PFlxZWTHyDvnBCu7H1/nxkTgYGo2GarWadnd3bQIElXhGIvK+zWZT29vbRtZTqZQajYbW19dtwgPwY+7IKqDyurS0ZOnzEFc/ThGb/HQ6VafTsYkHhUJBd+7c0Y0bN6zlgD3lGPhsgXK5bOT3PImv1WqWc9Dv9+dIGnuFGAEpz+fzKhaLliFBq4V05nbgOHDsqZ6Tq0F1udvtqt/vW0YEmRaDwcBEmnK5rHa7rVKppNu3b2t9fd3cKP7cwe0xHA41Go3sdXO5nGU3IBRQ4edcOT9VgfUuLy+bqOTdJ2Q5+KkDWPURV9rttolavrLOpBAvhuECgEz78ZKtVkvD4dDEBkQZXgeHB4IUAhGiAA4WSSZ6HBwcWNAoOQiQcnI4aBOBkJ/PP0CAIURVkp2zjLj0whjXoXcp4QbxrhHvWuG6Pj4+tlaHw8ND2z+COM+3e/jsEIQhnzsRERHxeNz/uT+maXb2+CdGfPRw+jdwbmdJm//rlzQ7/fsiIiLio43j7R19/G9J3/qrz0d32nvhETrBxr+Wyl/4spLDQ02voJAAFkJQgBh563g6nbaRghAAnitprrLoA+X8mDhJVgWlEgrZwe4NqcOCnUqlbCqDt2JD8JmScO3aNV2/fn2uUj8ej61KvLy8bO6Aw8NDdTqdudYCkvhpjWBMox9jJ8lC7SC+PP/w8NDaQQhWLBQK1maxv79vj+dyOd26dUsvv/yyCoWCdnZ2NBgMLIiQ98QRQXVcklXvSdyHfPI9hBSi5ttIaDnxjgN/vDkWtAkwNYLjdJ7MEQiJy8CPgeQ4ptNpyyKgGn/37l1lMhmrXPMZcCV4Zwg/5xhB/H2gIudnt9u1PA7EDpwJnEN+nwqFggkvvBYV9sFgoE6nYxkEZEIwjhGRwVv6/fWDOIITptls2ghOMj44nogbOBOo7HP9IfhIJ84Bfs41QmuMJDuuXL/8lz3kmkEs5NrD4cD5g6jGOpncwWdGTPDuA44hxwh3gt8PznGe54Eoc34CBmII7xsREfF47H/mj6r7UqIkzOIflM8gwlRangTd+WtflJLkUX83R0REfIRxvL2jj/9PGb36X15X8qyZOxMpPE5HT4Lu/dVHTG34iNwvF0ZQoLJLO0GhULCJDOPx2GzsOBJ8KwIk1o95Y7ICvf1UzbE1AzIDsIZTSaffHvJDFZxpAUx36HQ62tra0mQysd8vl8tzzghaDhAUMpmM2eFpBZA0RzYRMiCr4/HYvqcSTcX8+PhY+Xxe6+vr1t6xu7troXaVSkW3b9/WzZs3dXR0pP39/blkfAiYdEI4K5WKtZtAzJgUkEqlrJ2BdgIs75LMjs++QrghpaPRyPZbOhMO+K+3rbP3kF/2kOeVSiU1Gg0VCgXruc9ms6pWqxqPx6rVatrc3FStVpubBsI5gyug2+2aoEEFn73IZDJzQYuz2UzlcnnORUIbAmJRtVpVoVCwzwv5RSigCk71nvME4YHnIULhuOCcxPbPeSJpbszi7u6uOp3O3HQOH0LI++DoYX+5Nvwx4ee0NtDawTHAwcG6CNdsNBoKIajT6Zjjg3MasY3MC/I5yFMgd4LjgBjBMeI69OfG4eHhXBuTD3L0wgluBt+K4dtYOI8RV6KgEBHxeIRUWsmynr0/IiO0PAlSIj3/c//qspcSERFxyTh+63v62K9k9dqfb0iSZstSsrLYdHl58v0r4LmtoM3/8V8+hdVcXSyEoAAymYwajYY2NzfnLPu+px+iQ/WbYL3zFVHIDASdijAVUaqPvV7PZtOTnVCpVFQsFtXtdo2wLS8vq1AoWE5DuVzWeDxWq9XSaDRSCMFC8XxQoB+hSOW2Xq9bmCPBh4xwJImeqjSjLSF62LYRYUajkY2wLJfLOjw81M7OjlWn8/m8bty4oZdeeknZbFZbW1sajUYWuAcJpsosaW5MJWTYE63d3V0tLy9b0OH5ILtWq6VOp2OJ+bgXer2eTQ2AyHnSxmdEJCmXy1ZV9oGXOECYooGggSDF8a9Wq9rY2JirhjOpgFYaMgrYb2/lpzrvRzRSOe90Onbu0Q6AmFCtVi2PgqwPH9zp9xz3g29LkDQ3kaBWq9mUCB5HQPNjPmlBIXMBx4QXMrxwRvWfNhdJJtT5qQzeWUDLBZMpaJ9AYEIQpOUERwfnj2+fIauCNgt/zpbL5TmhADGJPWcUJCKGF0E4Z/x0CZ/J4UevIiZwLdAichVGRkZELAq6/+kPq/uxxf6jMeLpYmUQtHQc9PwvfU3T0yykiIiIiOk3vq3nf/bk3+M/9Wnt/RvzVPOwckEutkRKdx+vct/5O1/RbDi8gAV9tLEQgoIfZ1cul1UqlfTgwQM1m031er05soqTAcIHqaHqyGg9qsMQAwIZmQBBBRiSgZW7VCrNpdQT1IdYUSgUVC6XlUqlNBgM1O12ra+cSqjvY4c48btY8rF5k8g/HA7VbrdtRKYkczKUSiUTE6Sz6ikkulAoqFarKYRghJIK/tramm7evKnV1VV1u109fPjQLOAk3UNWyQ/wuRTeXQABOzg4UKlUstaB0WhkpL7T6ah9Oh6KtS8tLVlGAW0JvBZkVDoLZmSyAP3z/X7fhAiOQzqdNks8e4y9349dxKnCeYbFnf56RnPS5oHt3ocX9no9I5veHeKnJBwcHKharaper6tUKlm7DCMKaWFATPEiQiaTsRBESTaFQDqb3iCdiCpM38jlctYCwPlydHSkbrdr1wuuA58/gDDA89l/3xLgq/qIMQgj3omBkId7AVEvn8+bWOMnJSCCIBL4sZG+/aFcLls7Cucq7TTenYAQQBsUe4vbxoskfNGaIsle1x8Xrn3O9/PTUyIiIiKedaTbS3r+17Y0fe1NxZSZiIiId0PuC1/SrS/MP7b1V/6Ykgv402rpSNr8pce7BmLiz9PBQgkKnly1Wi21Wi3LT6Ci6C3rjIk8X0WF5BKgR74BPyPkbTAYGAHylmgs2VQ/IYaSrEI6nU7Vbretx511k/3AOERs8VTVCWyEfJHB8Oabb+rtt99Wp9OxKvLa2prq9bpVhf2UAb480SMPIJPJWLbA7du3defOHS0vL1soJPvjK76ICZBuSeYA4LWx6iNu4GSgco2IQgsGoZYk+yMIQJh5H5+vwPGm7YK2FYgpAYG8Pz9nAghV/EKhMOcC8OSYbA7cI41GQ/V63arljGxkbKO30nNuQLghx+w3YhMVe0km1hwfH1tGBK+FK4LP4XNEELkIHERkIKyQFgf+zXQEP5mAMY64ECD1rMtndrA/nPcIP5LmxC+uPYQ8Xpf2haOjI21vb2s0Gtl5jnPEuw3OB1YWCgV7j8lkYnuIoMGeSGctHuylH8fp7wfngeDH+YgbhtfnMR8sGhERERFxgsz+ku58fl/T19687KVERERcQVz7xWe7NeCjioURFCRZZXxra0tbW1tmEeePe+zIECICCyUZwfPVSd+zf3h4aIQFizpVZqztXtSAaEiy0DfppOpeqVTmRhz6aRD0+hOYyLohVkmSqFqtqlarWVje7u6u3njjDb399tva39/X8vKyjaXc2NiwSixhfP1+39osEEkmk4mtmdT8jY0NXbt2Tel0Wvfv39fW1pYJHAgK+XxekowYe/cHVfskSWyyBAQWkkh/PBX46XRqzgCCJCF2EGFEEQSg833r7BWij8/X4DhRaR6Px5aBkMvl1Gw2NZ1OrRXBjwb1EyYIPEyn02o0Gsrn8/bZcHd48QBXBGTXizg4OXBj0POPm4P3RYDxuRXsI+0r/rW5JlgH78NayXVAUCA/BFIPqeaa8UGmtAggHPjWCZ9vwXWGCMaYT8QARCjvOmm1WhZwiVgnzYdqsi5J1rrhhQ4cCZwfuEHYP+4ZnPuIcAgGiC/cUzinfdsUWR98Rkl2vPjdR4kSEREREc8isrtLuvVP25p+49uXvZSIiIiIiAXCQggK0lmF9ODgQHt7e0ZKJpPJnI2ZqvNsNrP2BvqfIV8QCEg/pAFCAvGGzFGd9BVQyJG34afTaQtkhJRAeEiKp2oMoUG0yOfz9vobGxtaW1vTysqKOp2OXn/9dX3729/Wzs6OfcbV1VVtbGyYpR8w2tAT7xCCCQ6SrMeccMDBYKDt7W0bnQdphJzzu1TNIdQ+r4HxjP7zUOmlD9+PW4ToEbCI8OPDGn1fO20EHBNJ9nn8MYJ0QhoPDg6sTQT3AaGYCEQ+cA/hg9cmLwNSj5vBj9Ek54Bzq1Ao2NhDLyYQfHh4eGiZDwhXuCp8C4X/bBDzXC5n7TM4YyDPuDvIF6HVxLsXpLORqPyed4Dg0PEjLnl/nstec00Vi0WVSiUTfDhm/NsHQyLUzGYzExP8WEY/6cSPg+Q5fE8LhSRrO+Iz+WkNnIO4OWiVYP8QlFgHr0OmBOcs56bPUeB5ERERERFS+a2ZZl/55mUvIyIiIiJiwbAwggJ/8I9GIxvhB0ny4XXZbNYs4YVCQSsrK+8gfZAzyCzVUAg/xBS3AtVbbN2EvfE6g8FAo9FI165d07Vr11QsFtVut414+D51X+WFnFSrVSOGuBMgjdvb23rjjTfUarWslaBer+v69etqNBomilDlJk8AUo/g4au0tHEUi0UdHR1Z8KQncJBCxBiq+uwBZA7hgbF+7BlWdKrP7D8hk5BrWkcgqN1u19witBj4kZx+RCatG4gHiDi+7x6rPwGI7AkkEVGAY0JlfmVlRY1Gw9wJHGuIpG8hYH8gpljqIb4IL7wP40IZb5nNZi1LgTYLP2WAcyWVSpmLBoEKQcePUm2322q32+Yc8aGYPpwSMuwneBSLRbP2+yBIP7ECsi3JMkO4Ntk/7xjieDGtAjeAbznBIYJoxGhPP52DHI6VlRU75/r9vh0DSXOTGVhLOp22kEYCR73o4NsZEE44fhxv3oP7wHQ6NfdJRERExLOO3PaSan+wEzMTIiIiIiLegYUQFCAUkBZfYYWsIADQa03vvyd2kAgIESTbExps7X78HVZpxAGIEf3UvV5PIQStrq6q0WgYmYbkQDSp4FKJJaiPfn5I7Pr6utLp9JyYAAlj/OP6+rqWlpbmxk0eHh5adRsHgSR1u12NRiOl02kTWaj0U8WnOksVFmEBskyIYbFYnJv4wHHgC9KLo4M8Ce8YIRQTWz7OgG63a8IGrQG8N60btBRMp1OVy2Xl83kjiRBISB6fh7YWbPn09pOnwOdkFCWBkuyXJGs54HPzfD8BADcBa0Tw8lZ9PrMfA0nQqJ/S4Mcicq6QscE+IDRA9CWp3W5rd3dXg8HAXCMcI9oiEITIIUAMob2HrAnEA37OMSUvI5VKqVKpKJfL2XnjhQGOM+eYz7nw5w776cdESlKv19NoNFKxWLTP7SexcA55su9zF6SzTBMvJnhHBi4V32YiyYI7z0+5QAxj0gfHKCIiIuJZRXZvSbd/84GO3/zuZS8lIiIiImIBsRCCAhkDtDz4lHrGQ/pART9OcDwe2+OEzw0GAw2HQyN9vl8cwvEosuZn3UPoIKR+1CMuASqhVJ8J7yPnQDojm0tLS6pUKlpbW1OlUtFwONSDBw+0u7s7NwmiXC5rc3NTpVLJ8gF6vZ65E6QTEkUGgx81SXU7n8+r0Wgok8mYe4O9kWQEigo17RO1Ws1aLM6PJkQsyGazKhQKqlarRs6Y6kCYIQGNfjIDQYiHh4cqFotzVXB+b2lpSXt7e+p2uybEcIxxjEgy0joajdRsNtXpdGzsI1MRkiSx0EyOyfLysk1igGQiWA2HQ3W7XQ0GA2vtwKlyeHg4537xIoPP7BiNRup2u3POhkqlokwmM5dbkUqlVCwWjbhyjpFJgRvFT1cIIWg4HNr++H1AOCAU1Gc9IMB4C//5qjtE24d1hhBUr9ftWLFXZDUg5p0/n3hv307B+QMQl4bDoYlSuEQk2T7TPsE+n89A4P1WVlbsGqFlh9fgOidsk+PK/nlnCs4IBEXOp4iIiIhnFenuku786ls6fvDwspcSEREREbGgWBhBYXl52cY8kn8ASYIkZDIZFYtFVatVG7MHYV1ZWTFiPhgMLMXf25x9zzckxwsRVP4RGGh1yOfz2tzc1LVr17S0tGRkmSp6uVy2ajtBguPx2IIBIVc3b97UCy+8oBCCdnZ29L3vfc9aO6gIX7t2TY1GQ0mS2KQLesIRT4rFosrlsuUHsAdU5xE/IPYQPirLflwkRJApBeyTJNtzLP58v7a2Zs8dDoeWD8DXwcGBiQe+lYUcCsLufOU8k8lY64J0km0gybI0fOUaazzP94F7WO2Pjo7MuTAejzWZTLS6ump5BzxGS8b29raNXISoU/WWzoI5fVYFrhSyGxB9eG2f49Dr9dTtdu34UVVHsKCqTtCnHxuJ+NHpdGwUKecWrgccKplMxsg4LhocQLlcbm6Sg8/+oP0FB0y1WlW1WlU2m7XrCiFFOnFjMOGE69RnHkD2cQ5xDXDOEtpI8KcfH3rejeNDG717hvMBEfD8tS3JghcRETlXEG5w3XjnApkfCFoRERERzyKWx0HP/8/f0nGzddlLiYiIiIhYYCyEoAB5gzjTrgBJpwpJZXd9fV2dTsdS+lOp1Fylt9/vq9PpmBhBPz/ZAbgSCI2DfFIFTafT2tvb03A4lCSVy2U999xzymazViVutVqq1Wqq1+vKZDLa39+3qjtkzQc8lkol1et1pdNp7e7u6q233rIRkYTrra+va3V1VSEEExOwhVMhLhaLun79uobDodrttsbjse0LzoG7d++qWq2q2WwaqfYkDFcFZBF7OJVbcgIIBSwUCmYBLxQK9jmo+pO9gFWf6jPvR1sCThSyLI6OjowkMt7z4ODAxIr9/X31ej3LcfABhoPBQO122wi/dJbjQG4E79Hr9bS8vKxyuaxarTY3XYARpbyWz4TA4eLFBC+2eBI8mUys9cSHVR4dHVnewWw2U6FQsKq3n8QAkSXzA8cC7zMYDLS3t2etERyffr+vbrer2WymSqVirgdcNn6aSQjBWjLG47FlNJDTQMtAsVhUo9GwSR18Pq459ggRjPMEUZDXxXlA68JwONRoNLLcBEQsrsGjoyNbF9kXXkzgemLPEREnk4mJAr59AWcKwhV76s8Vn7XA/QbXBMJVRERExLOGcBx07298WVMXCh0REREREfEoLD3uCSGEvx9C2A0hfM099gshhAchhFdOv37C/eznQgivhRBeDSH8ifezCKqjuAqoSpNvwFi7QqGgzc1N692GKEiyam+r1bLgPyqYVK+xdefzeRu/B+mDbGDxhsTTPlCtVnV0dKTt7W21Wi2zs2ezWatKeys8rRnFYlHZbNb69kejkfXBdzodG8OXTqe1tramXC5ngkiv11On07ExlOl0Wqurq1peXjZBAbKdzWa1sbGhj3/847pz545SqZSRZKrqtDZUKhWtrq5a2wSk3o8dJO0fUpjJZFSpVFSv1y0Ik/emEo+Ywx4cHBxoPB5b2wHHkuowrzEajdRqtTQcDs1+3ul0tLe3p/F4bFkaHG9+H7IoyVoDCD7sdDrW20+4HscDgYqgPoQo7PlU48kFkM7yEXzgH+4GyDjVe58bcHx8bC0puVzOWjt8hgW/SysNrhIq7ePx2Jwq5IEgFlDFR1Dy4ZDkb3DuSzKXA86Y8Xg850woFAqq1WoW9klIKtcVLQSILbgTfLYB0yoQTmhd4PqWZNNAGL3Z7Xa1v79v15GfzIFLAUcG5x3HxR9L/z1r9JkbiBOICdw/OLac8+Q54KRYBFzEvTgiIiIizKR7P/MlzaKY8A7E+3BERETEO/F+HAqfk/S/SPoH5x7/pSRJ/o5/IITwSUk/JelTkq5L+uchhI8lSfKewcBUTqko9/t9I7f84U+PP1VTyAL96TgcqLIyzo92BtwKiAzYziF1y8vLeu6556xNgKkHIQQ1Gg3LToColstlVatVs/czmYIq99ramlXyIfBY8ck9oPoJyd/c3NR0OtXe3p7a7bZarZZVfFdWVkwEGQ6H6nQ6mkwmNtFhc3NTt2/f1t27d7W0tKTd3V3bRyzfTE0gfJEWCN9T70P3IH0E5EHUCC/0IzNpyWDN5AlA4nB++H58H7qHsDObzaxVxU+TQATgeVThOX8QRRg1SkgkJDyfz2t1dVWFQsHWdHR0ZOMX+cy0xeAYoM8e8QKi3ev11G63jbjyGlTbaTXgGEGIEQJYL0ICogZOBlpvyIKAiHsxAtErhKBSqWT5F95d4avwrJnrgXYW9r1UKlkGhg/VJFuC40ELEUJFNpu1iQyQfdorut3uXNsKrgtcCHwWPwoVx4Z/D+lEwGFCBoIC+Sq+FQUHDM4FP0WEvfHhkbgjzge7IkYtED6nD/leHBER8Wxj6TDo3s//npJZvFW8Cz6neB+OiIiImMNjBYUkSX43hHDnfb7eT0r6jSRJJpLeDCG8JunTkv7VY97D+qYhMJPJxHric7mcNjc3VavVlM/nrZqKQOB70enVhrgQZgcJoj3AV+YhZJBDshRALpfTaDSytgrC/WhfwKoP4cnlcqpUKsrn8yoUClpbW1OtVlOxWFS327Uee0m2Vi9atFot9ft9+4yETuIowIHBz8vlsu7du6eXX35Z1WpV9+/f1/37963lIYRgTgOIOcINbgos4QgKvpILfOsI/8bGTs87FW/f9sC0Bj/uzxO2g4MDZTIZC7NkdB/uj5WVFVWrVSOBkG6IIo6AXq835/jw+QTVatVs/FTtcYtAvs8n/yNq+NGj0kmfPeco5JtzSzqrdufzeds3SZYLgsAzm83U6XTsnCDLAKKPmLC/v29uAFwT7N/x8bGdW1TwmaZBSON0OjW3gs8a4DgyrpTwRxwmjBvlWsRx4AUhrjcfAokQ1+12zSXD3rJHtKr4iQq0zXgS78d9sj+lUsnOP0lzUzdoEfFhpNJZqw8uF1qhcJlIMnGSc4Fg10XBRdyLIyIinl2sDIPu/g9f1ez03hrxTsT7cERERMQ78f1kKPzlEMKfl/T7kv5KkiRtSc9J+qJ7zv3Tx94TCApMWSBskUrn5uamGo2GjTSEXGGPxz7vCaZP5MemDVmUZIQCN0M2m7UqaiqVUqPRsMwEgu+oitP7DdkjMwGCSXBkqVRSrVbTc889p+vXr1urQrfbtV74cDqucWNjQ9Pp1HIDjo+PjWDRokF4HdVjSdbqcOvWLdXrdQ2HQ7355pva29vT4eGhBVYSZghpQgDB/eEnXEgy8kd2ABVcHA3kViBs4DCh4o7IghMEwQASizjDe/l2EY4PrQIIIRBX3hNiSEWb0D1fRSc4s9FoWL8+hH8wGBjJ5hzi/XExSLK9JnyTlorzLTnswWg0sqBJWih4HVoWcNTQIoJDgteazWYmAiDM8Pr8nLBFWm8QdRCKEDsQAHBfsGc4PjzRh0TTosB5iDMD0cmHV0pnkzg4N5i0wnEhtDGEYI4MWmt82KbPQOD3+KK1B5cKx9u7EySZACTJBCicCeR4eOGB44hAxrXgJ4ssOJ7avTgiIuLZRLq9pOd/+Tuanv7/JuKJEe/DERERzyw+qKDwy5L+e0nJ6X9/UdJfkBQe8dxH/kUeQviMpM9IMpsxxFI6qygWi0Uj01RhPXGUZAIEgBT6fARC8hAaIFKIEiTjM/Egn8+bkwArNmSbCqkfSwi5yufzqlaryuVySqfTWl9f182bNy0bYW9vz6rHy8vLJiYsLy9rd3dX29vb1m6AoACRKpVKc26L5eVlFQoFra6uan19XSEEPXz4UDs7OxoOhyZ8QBwhhpBVnBi5XG5OeKGyDSHlPX1qP2GLVN2pVhPed3BwoJWVFZXLZWUyGRNl/AhLSLsXMzg20ll1GjJLGwItFZwHCBrsE48hODQaDW1sbNj5A8GUZAIDQol3ENDfT9UdhwCTFsiPoH0CMu7DOSXZGEUPcjqo1HuxK5yORhyNRnacOM9xlPA8RoUeHx9bkCdVdV4HAUKSCXDe3k8GBs4LRD0vSLHHvI4XXhBROHY+mBIBAmfMaDSylhYCITkvEXXOByH6MZGSzPHAfeL8GEh/fbNGBEUENO41uFXIhUA0IXPEj7tcUDzVe3FW+Q9nlREREQuL7O6S7vzD7+l4b++yl3JVEe/DERERzzQ+kKCQJMkO/w4h/D1J/9fpt/cl3XRPvSHpkcOLkyT5rKTPSlKhUEj4I94HA+bzeRWLRbO/Q6QgKPRee/cAJJTXgCAASLOv2koygoK7gGo7rgOCAREMDg8Pjbxls1l7HUZb4gqgJ5zAPd8iQOBjsVhUq9XSgwcPdHBwYOGBvkedLAPEE/IMSqWSjVjc3t7W66+/rmazqXQ6rVqtpkqlYp+tUqmoUCjM2eGp/iO4UMWmB77f72s0GqlYLNrEB9wGVI4h4bQ6tNttSTIhCGs/oYuQQN+uwv6dD+CDGNKiQYAhNnnECMQcJk1ApBnrWavVbNIB+5rL5Sw0kkR/yKskmzrAFAPyMrrdro6OjlQoFGwkJqNE/ehDzjdcCggQuBMIEASITGQAcJ4gwCBsFQoFE4nIWeh0Omq323NBkqfX55yTAIcILgX2GscIrhA/9hJHB0TdT6Hgs3D9kbXBfrIWHByME0VE8CKXPw9oE/EtOIgsvv3BP5fHEYdwJ7B3XEPcOxAL/QQPzh/2xh+fRcTTvheXQ/1KWDIiIiKeDvJbS7r5j7d0/Pb9y17KlUW8D0dERDzr+EB/LYcQriVJsnX67Z+WRNrtb0v6tRDC39VJAM2Lkr70uNfzBAoy58Pe+LekOcLhrfWIBBAfP9bP29d9BR4CiYWbqm06nbZKLanvkPj19XXlcjkb4QcJh5D46RG+px47N8F4S0tLqtfrJk48ePBA7XbbiC7uBFwBhO5BEBEurl+/rmq1qvF4rO3tbbOSF4tF1Wo1I3YIDBA3STbCEGcBORGIFRBMwhxxPFCFpqLssy+azaYODw/nhA7ILhMSsLjTr88xQKSg153gQJ6XJIm1CEiyyvl0OrU941j4EaDlctkEEklzAZX82zsuvEMCgkyvfb/ft1YDxiQSBso5iCgiyUQXBACEs6Ojo7mQQ4QHPhN7y2uQMcDnRAiQpH6/bxMUfDaBJ9a8jv+985+N68iHdXqRj3OSz8d0C/bKjwHldxFYEJ44pl7IOh+yybHjZz4ok3XhVOKewHV93qHgxUXEBIQaXptzmH3BJUGLzyLjad+LIyI+CCqv9tW9W9GkEcesXhVkd5dU+85U5a/uaPram5e9nCuNeB+OiIh41vFYQSGE8OuSfkzSagjhvqS/LunHQgg/pBPr1luS/nNJSpLk6yGE35T0DUnHkv7S+0mzZXQfhIZ2BkinT3rnj32IIxV7SIUks6vT4y+dVTElGUk9Xw2l3QH7+tHRkcrlspGbarVqAgCkFjJOJRvCTPWVai0TB/b29nR0dKR6va719XWlUik9ePBADx8+1HA4tODFQqFgrRWEKkLWECNu3LihF154QbVaTQcHB+p0OprNZqrX6yqVSiqXyzYhgbGV+/v7Gg6HRrTT6bTa7bY5PSBW9MAvLy9bdR+hwbs3eF/CBUejkbkF6KUnmwKyyvQNhASyJQi0hADn83n7HsJOroAPksTBgeDAa3IOFYtFSZqrdPugv3w+b5V5zj3fpsAUEs493/JBBZ3n8zkRchCdeE3OHdpaAJ8ZEcwLYZzDCF6IE1wPBwcHNonBux6YhuDJN9cGQgeigBfH/KhMiDrOFIQEnCG0hyA6+OPV6/Xs/MMthNjnQ0Ah9N7Fwc85Jn5sKGvDVSPJ8hEQG0IIJgYQckmbCceN/ablhTXijOHYLgou4l4cEfFBkPzB13V7+km99R9XdViLosKiI9Nc0q1/0tLsq99SvCk8GeJ9OCIiIuKdeD9THv7cIx7+lfd4/t+U9DefZBE4FBAUqBr70XC+0gqJh/hAcAhckzTnVoAA+hwBiBvEE1s7VeejoyNrWSCroFKpWKgc740NfzabqVwuW+Ab7QE+THF/f1+dTkfpdFrPPfecyuWy+v2+tra2tLu7q6WlJa2tranRaOj69etmsyePgODH2Wym69ev6+WXX9bdu3clydovCHDM5/NWpZZOWjkmk4na7bYJGoVCQQcHB1bZZhShD7jc2Niw8ZDs6fnwxWazaVMP/H56y763v0NwIYtU7XnP4+Njaz2RznrmeV9Pej0xZ/qFD3Gkog8B9gTaBxwOh0MLiSRPgAkGOAsk2XEYjUbmIIG4Q479iEiAgEElHmED4grBh9AittBi4AMoEQJ8eCACGIIBIoYXH85PS4DIc80hXtAWQRU/l8tZhR8hj8+BeMFxSKfTOjw8tOuCa47Pxfv41iQcGqyTfaQFwl/7PsCVc9uLjhx39pXf5XxDTMDBxPnE8cPxcl5UWgRcxL04IuKDYvbKN/T84cc0LWb0xp8papZZbHfPs4jlg6DnPz/Qcv9A029+57KXcyUR78MRERER78RCNAh7okUfubenF4tFFQoFI2lMQTgfvAaB4rXIAoBY8/PZbKZut2s99r6lwffRU90tFApGpgaDgZFvbOmQS8SKbDZrbgbS9/v9vprNppaWltRoNNRoNCxEcWtrS/1+X+vr67p9+7bu3Lmj9fV1ew/pbLzecDhUPp/XJz7xCX3qU59SoVDQ3t6ehsOhORcI0uMzYfWmjSObzapcLks6S/WH5OEmkKSNjQ3lcjkj/JlMRkmSaDAYqNvtqtPp6OHDh2q1WnNBmJKsYp1Op+es/ogrnjD7nnWmATAKcTAYmIDgCZ7PvGBE4Wg0UqVSsWkOmUzG3o92BUYo8rorKyvWknF8fGwtID640JNwchU4P3wmBF8Qeo4f7S48xudlz3yrhM9A4Pzm9SHXvD/CiG+z8LkbiGG+JcAHMOKs4TGuG98SgSCwsrJiAgPXAM9BQOPa43XJfEAgoMXCiyZ8TqZD+NYG7zhCWGE/fBgjwgGTNSTZ+SWdtWPgwkilUnYcWZPfp/N7HhER8f4w/ca3JUkvtu9Kp/8Pj1ggTKeavvZmdCVERERERDxVLISggLXY90BD4Eqlkur1usrlsobDoXZ2doxQ0XMOUYD8QlaorCJSUE3tdDpKpVKqVqtqNBrWV81zIHuQW4IVB4OBESVIF6QU0YM1UQHt9/uSZBXwlZUVVSoVLS8va29vT9vb22q328rlcrp3754+8YlP6MUXX7SfQ64mk4mNBLx+/bpu3bqlWq1mr5skidnSJdkIP9aPbX9lZUX1el2ZTMYq/rRj9Pt9tdttzWYzC2GESBKqxzjB/f19bW9vq9Vq6ejoSJlMxloCIJnFYlHpdFq9Xs8EHUi5JCOJrIvQvPX1dTUajXfkXfiAQulsOgi5Cky8oG0FIQhXAucGpJepBvv7+7YPEGsIbjqdtvC+yWSibrerJEneMXGEar8kq4izv+SAcP5BWvl8kG1IPiTWOyDYJy88cN77L96HUEs/gcMTccQwL+j46RC8Ty6XmxNHaIXx1yrnCb/jPwMCAe4E3Ei+ZQEhIIRgDhzfkuTbHfx7+fsH1xxrPf+eOJq4R/A+XjR6VCDkUiRFERFPjOl33rjsJURERERERERcEBZGUPDhZxCjYrGotbU1ra6uKpPJ6Lvf/a6azeZc1RBy5Pv7IUqQeiqYIQTrM280GlpdXdXq6qoFEvIajPMrFAoqFApzIYQQTcgKJJmMA0lG5jqdjqSTKronwcViUePx2EY8zmYz3bp1S5/85Cf10ksvqVarWdAemQSDwUAPHz5UCMHW7pPx+ay4NyD0CArkTeRyOWWzWUv1hyju7Oxod3dXk8nEnBa0LuB4oC+etfnxkH7kIg4IWjaYPuBD/dinw8NDI84EOdJaMh6PbZKB/16SrY1qOaGT9XrdLPvFYtFaP8iHADgWms2mnVO4HVgbLQaQW86dXC5nkztYCwTWE1qmj/gQR9oFcHsgwiA+0P7gJzP4av75MY3sDee7b41hH7imPOH2mQq0HPBZ+TmvhwuH/AffukA+CNehbyfwognXuc+H8Nc6Dhn2EILvhQXaiTg+3rVBq8N4PJ7LkkD0QRyUZAIObiKf54A7wd83IiIiIiIiIiIiIiIejYUQFCTN9UMvLy+rXC5rY2ND1WpVlUpFzWbTKsk+qR73AT3QkBpvtSZbASKUSqVUKBRUr9eVy+UsE6FQKGg0GmkwGGg2m6lSqRj5hqRDfABBjljlIXPdbtdaHyTZa+B2aLVaeuONNzQajbS5uakf+ZEf0Q/8wA+oUqloMpmo2WzaZISlpSUbx1iv17W2tmaVVgieJCOx5AgQRkhwIuP6qCQPh0P1ej3t7u7OOQ0IlSQ3IpPJaDAYqNfrWfhiu93WcDg0Uuv70yFpo9FIzWbTsgnO97VzzPP5vI209Hu+tLSkUqlkYydzuZwRd191hiziiDhfsYao4yZhzOL+/r6FZDLxwmczQFaTJLHWEAgtApN0Fqjo3RDD4VAHBwdG0nG44ITxRNm3OlAV9w4Y3wbBiEPORxwJnjyT/8BrQfr9eYhLgufgOIDQs0bcBl5w4FqjzYDnse+sk3MX0e18GKZ3pfj2HlwuXmgkC8PfL85nHJABwrlDqwR5En78Jq1AvtWBvfD5KhERERERERERERER746wCGPRQgh7koaS9i97LR8Aq4rrvkjEdV88ruran9a6bydJsvYUXmfhEULoS3r1stfxAXBVz1Hp6q49rvti8ayv+1m6D8e/iS8ecd0Xi6u6bunqrv1DvRcvhKAgSSGE30+S5I9c9jqeFHHdF4u47ovHVV37VV33ZeKq7tlVXbd0ddce132xiOt+tnBV9y2u+2IR133xuKpr/7DXHRPHIiIiIiIiIiIiIiIiIiIinhhRUIiIiIiIiIiIiIiIiIiIiHhiLJKg8NnLXsAHRFz3xSKu++JxVdd+Vdd9mbiqe3ZV1y1d3bXHdV8s4rqfLVzVfYvrvljEdV88ruraP9R1L0yGQkRERERERERERERERERExNXBIjkUIiIiIiIiIiIiIiIiIiIirgguXVAIIfx4COHVEMJrIYSfvez1vBdCCG+FEP4whPBKCOH3Tx+rhxB+J4TwndP/1i57nZIUQvj7IYTdEMLX3GPvutYQws+dHoNXQwh/4nJW/a7r/oUQwoPTfX8lhPAT7meLsu6bIYT/J4TwzRDC10MI/9Xp4wu95++x7oXe8xBCNoTwpRDCV07X/d+dPr7Q+73IiPfiD2Wd8T58gYj34Qtfd7wPP2XE+/CHg3gvvljEe/GFr/vy78VJklzal6RlSa9LuispLekrkj55mWt6zHrfkrR67rG/LelnT//9s5L+1mWv83QtPyrphyV97XFrlfTJ073PSHr+9JgsL9C6f0HSf/OI5y7Suq9J+uHTf5ckfft0fQu95++x7oXec0lBUvH03ylJ/1rSv73o+72oX/Fe/KGtM96HL3bd8T58seuO9+Gnu5/xPvzhrTXeiy923fFefLHrvvR78WU7FD4t6bUkSd5IkuRQ0m9I+slLXtOT4icl/erpv39V0p+6vKWcIUmS35XUOvfwu631JyX9RpIkkyRJ3pT0mk6OzYXjXdb9blikdW8lSfL/nf67L+mbkp7Tgu/5e6z73bAo606SJBmcfps6/Uq04Pu9wIj34g8B8T58sYj34YtFvA8/dcT78IeEeC++WMR78cViEe7Fly0oPCfpbff9fb33gbtsJJL+WQjhD0IInzl9bCNJki3p5ESUtH5pq3s83m2tV+E4/OUQwldP7V9YdhZy3SGEO5L+TZ0ohFdmz8+tW1rwPQ8hLIcQXpG0K+l3kiS5Uvu9YLhq+3OV78VX+Rxd6HuCR7wPXwziffip4qrtz1W+D0tX+zxd6PuCR7wXXwwu+1582YJCeMRjizx24t9JkuSHJf1JSX8phPCjl72gp4RFPw6/LOmepB+StCXpF08fX7h1hxCKkn5L0n+dJEnvvZ76iMcube2PWPfC73mSJNMkSX5I0g1Jnw4hvPweT1+YdS8ortr+fBTvxYt+DBb+ngDiffjiEO/DTxVXbX8+ivdhafGPw8LfF0C8F18cLvtefNmCwn1JN933NyQ9vKS1PBZJkjw8/e+upM/rxB6yE0K4Jkmn/929vBU+Fu+21oU+DkmS7JxeKDNJf09ntpyFWncIIaWTG9A/SpLkH58+vPB7/qh1X5U9l6QkSTqS/oWkH9cV2O8FxZXanyt+L76S5+hVuSfE+/DlIN6Hnwqu1P5c8fuwdEXP06tyX4j34svBZd2LL1tQ+D1JL4YQng8hpCX9lKTfvuQ1PRIhhEIIocS/Jf1xSV/TyXp/+vRpPy3p/7icFb4vvNtaf1vST4UQMiGE5yW9KOlLl7C+R4KL4RR/Wif7Li3QukMIQdKvSPpmkiR/1/1ooff83da96HseQlgLIVRP/52T9B9I+pYWfL8XGPFefHG4kufoot8TpHgfvqj1uvXF+/DTRbwPXyyu5Hm66PcFKd6LL2q9bn2Xfy9OLiH9039J+gmdpGi+LunnL3s977HOuzpJxPyKpK+zVkkNSf+3pO+c/rd+2Ws9Xdev68SWc6QTJeo/e6+1Svr502PwqqQ/uWDr/t8k/aGkr55eBNcWcN3/rk7sQl+V9Mrp108s+p6/x7oXes8l/aCkL5+u72uS/tvTxxd6vxf5K96LP5S1xvvwxa473ocvdt3xPvz09zTehz+c9cZ78cWuO96LL3bdl34vDqcvGhEREREREREREREREREREfG+cdktDxEREREREREREREREREREVcQUVCIiIiIiIiIiIiIiIiIiIh4YkRBISIiIiIiIiIiIiIiIiIi4okRBYWIiIiIiIiIiIiIiIiIiIgnRhQUIiIiIiIiIiIiIiIiIiIinhhRUIiIiIiIiIiIiIiIiIiIiHhiREEhIiIiIiIiIiIiIiIiIiLiiREFhYiIiIiIiIiIiIiIiIiIiCfG/w91gqSCiVhWQQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 127810 0\n", + " Min thresh = 1000\n", + " Not Sliding\n", + "\n", + "\n", + " Winner = Not Sliding\n", + "\n", + "\n", + "034s_iimage_3368391807672_clean.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADDCAYAAAAya0IYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADZHUlEQVR4nOz9eZhk2VndC68TkTEPmVXV1d1qISGhCSHAYh5kY4HAZp5sYwRGgACBGWwMxjbywGg+fxdswHBBFhcswIw2xmCQwUjAxSAJhIRADBqQENBI6q7uqsyYIyMzzv0j87dznV1Z3V1d1ZVZVe96nnqqMvLEOfvssyO613rXu3ZRlqUCgUAgEAgEAoFAIBAIBK4GtZMeQCAQCAQCgUAgEAgEAoGbDyEoBAKBQCAQCAQCgUAgELhqhKAQCAQCgUAgEAgEAoFA4KoRgkIgEAgEAoFAIBAIBAKBq0YICoFAIBAIBAKBQCAQCASuGiEoBAKBQCAQCAQCgUAgELhqhKAQuOEoiuKPiqJ47kmPIxAIBAJHKIriHUVRfOwjPLYsiuKpj/I6j/q9gUAgEAgEThdCUAjccJRl+ayyLH/9pMfxUCiK4pOKovjNoii2i6J4d1EUP1AUxeCkxxUIBAK3Moqi+I6iKN5aFMW4KIo3FUXxgpMeUyAQCJw2XG9h9uHOF/9fHHgohKAQCByPTUnfKukeSc+U9B6Svv1ERxQIBAK3PqaSPkUH38GfL+m7i6L4yJMdUiAQCNz2iP8vDlwRISgEbjjcVlsUxTcWRfFfi6L4L4cVqTcWRfH0oii+viiK+4ui+MuiKP6WvfcLi6L4k8Nj314UxZdm5/5nRVG8qyiKdxZF8cWuuBZF0Tqsfv1FURT3FUXxkqIoOseNsSzLHy/L8pfKspyVZXlJ0g9Ies5jNyuBQCBwelAUxYcWRfHqw2rUu4qi+N6iKJrZYZ94+D38QFEU314URc3e/8LD7+pLRVH8clEU7/lIrluW5TeUZfmmsizXZVn+tqT/I+kjruOtBQKBwKlAURTPLIri1w+/Z/+oKIpPtd/9elEUX2w/f0FRFL95+O/fOHz594uimBRF8feLonhuURT3FkXx4sPv5HcURfG5j/Z8+Vjj/4sDD4UQFAKnAZ8i6UclnZH0e5J+WQdr8/GSvlnSf7Jj75f0yZKGkr5Q0ncWRfGBklQUxcdL+hpJHyvpqZL+Znad/7+kp0t69uHvHy/p3zzCMX6UpD+6utsKBAKBmxb7kv6JpDt0QOifJ+nLs2M+Q9IHS/pASZ8m6YWSVBTFp0t6saTPlHReB6LAT1ztAA4F3w9RfPcGAoFbDEVRNCT9T0n/W9Kdkr5K0o8VRfGMh3tvWZYfdfjPv1aWZb8sy586/PluHXxnP14HDq+XXuP5Hgrx/8WBhBAUAqcB/6csy18uy3JP0n/Vwf+A/ruyLFeSflLSk4qi2JKksix/sSzLt5UH+H918EX8Nw7P81mS/nNZln9UluVM0jdxgaIoCklfIumflGV5sSzLsaRvk/TZDze4oig+TgdfzI9UfAgEAoGbGmVZvq4sy9eUZblXluU7dCDsXibSHn6f/oWk75L0/MPXv1TS/68syz85/F7/NknPfqQuBcNLJP2+DkTmQCAQuJXw4ZL6Ovj/3d2yLH9V0i/o6Hv00eJfl2W5PPx/5F/Uwf8bX1fE/xcHcmyc9AACAUn32b/nkh4oy3LffpYOvnS3i6L4BEnfoAOnQU1SV9IbD4+5R9Lv2rn+0v59/vDY1x1oC5KkQlL9oQZWFMWHS/pxSX+3LMu3XMU9BQKBwE2LoiieLuk/6MCB0NXB/y+8LjvMv2P/XAffwZL0njrIPvj3fkodVM3+/BFe/9slva+kjy7LsrzqGwgEAoHTjXsk/WVZlmt77c918D35aHGpLMtpdr57rnTwo0H8f3HgOIRDIXDToCiKlqSfkfQdku4qy3JL0st18D+qkvQuHYTEgCfYvx/QgTjxrLIstw7/bJZl2X+I632ApJ+X9MKyLF95/e4kEAgETj2+X9KbJD2tLMuhDloYiuwY/459oqR3Hv77LyV9qX3XbpVl2SnL8lWP5MJFUXyTpE+Q9LfKshxd010EAoHA6cQ7JT3Bs2d08D36V4f/nupAzAV3P4JznimKopedj+/lR3O+CuL/iwNXQggKgZsJTUktSRck7R26Ff6W/f6nJX3hYchNV2bFOlSAf0AHmQt3SlJRFI8viuJvH3ehoijeV9IvSfqqsiz/52NyN4FAIHB6MZA0kjQpiuK9Jf3DY475uqIozhRF8QRJ/1gSfbcvkfT1RVE8S5KKotgsiuLvPZKLFkXx9ZI+R9LHlWX54LXeRCAQCJxS/LYOSP4/K4qiURTFc3WQKfaTh79/g6TPLIqiexgu/kXZ+++T9F7HnPebiqJoFkXxN3SQOfZfr/F8kuL/iwMPjRAUAjcNDnMP/pEOhINLOvifzp+33/8vSf9R0q9J+lNJrz781fLw739++PpriqIYSXqFpCuF1XytDtokfvAw8XZSFEWEzwQCgdsF/1QH37FjHYixx4V0/ZwO2iDeoINe3R+UpLIsf1YHIbg/efhd+4c6cBw8EnybDqpqb7Xv3hdfw30EAoHAqUNZlruSPlUH340PSPo+SS8oy/JNh4d8p6RdHRD9H5b0Y9kpvlHSDx/uEEFOwrt18P/H7zw8/suu8XyO+P/iwBVRRGti4FZFURTP1MH/yLYOg8ECgUAgEAgEAoFbCocOh/9SluV7PMyhgcB1RzgUArcUiqL4jEOr1xkdVMj+Z4gJgUAgEAgEAoFAIHD9EYJC4FbDl+ogY+FtOthH/bi+30AgEAgEAoFAIBAIXCMeM0GhKIqPL4rizUVR/GlRFP/isbpOIOAoy/LjD3dvOFuW5WeUZfmukx5TIHBSiO/hQCAQOHnEd3HgsUZZlr8e7Q6Bk8JjkqFQFEVd0lskfZykeyW9VtLzy7L84+t+sUAgEAhchvgeDgQCgZNHfBcHAoFbHY+VQ+FDJf1pWZZvP0wx/UlJn/YYXSsQCAQClyO+hwOBQODkEd/FgUDglsbGY3Tex0v6S/v5XkkfdqWDW61W2W63JUn1el2NRkOSVJal1uu19vf3tV6v0++azaaKokivc6z/KYpCZVlqf39f+/v76XWOrdVqqtVq6Zj1ep1e5xjOURRFZby8znv8+Hq9ftnxkrReryuvr9fr9H7OxblrtVq6ht+Pv8bP+XjW67VqtZo2NjbSefxYxlsURbp+fm4fa349/vg85ePhXnyOua7fm99zvV5XvV6vzGWj0UjX8WedX9ufBfPPXHB+X0/+rDjXarVKc1er1dJ7NzY2KuPKn19+T/48+Ller1fOw5pmXeZj8TnM59Tv14/xe87Xuq87H6PDn61/bhg/xzNmfw78zX35muDc+To4br3kr/v95mPN5zz//HN9nifXOW5u8s+a35Mk7e7uPlCW5XndfLiq72FJqvd75Xs9ea37/rDzmA4sEAgErgYLTbVbLi//n6ubA1f1XRzfw4HAjcV7vf9EG9dYY3/LYlN6y+o6jej0YqxLx/4/8WMlKBz3pV9hBUVRvEjSiySp2+3qoz7qo1SWpYbDoc6fP69Wq6Xd3V2NRiMtFov0P/vD4VB33HGHzp07p729PS2XS9VqNS2XS02nU61WqwpxnE6neuCBBzSfz7W3t6darab9/X1tbGyo2Wxqb29P4/FYs9ksiRZFUSQCyLkgg9IBydzf39disdDu7q6azabW63U6f7vdVrPZTMR+b28v3UNRFGq329rb29N8PtdyuUx/dnd3tbe3p1arpW63m+5rd3dXtVpNrVZL9Xpde3sHmxY0m810/tVqlc4jSZubmzp79qw6nY4ajUYSaZgfzsM1NzYOlsLu7q6Wy2Wag7IstVwutbGxoXa7nYQKzslYfLzj8Vjz+VztdlvD4VDtdluLxULr9TrdW1mWGo1GWq1WajQaGg6H2traUqPR0HQ6VVmW2tra0rlz59Tv97VYLLSzs6PlcqlWq5UEpdVqleZyOp2q1WppY2NDu7u7ms1mkqRWq6VmsylJWiwWms1mKstSnU5HZ86c0cbGhi5duqT77rtPGxsbuvvuu9OYy7JUt9tVr9dTp9NJZHs6nWo+n2s+n2tjY0PD4TCR5o2NDRVFocViodFopHa7rfPnz6fnsVwutb29rZ2dHc1mM+3u7qZ10ev1tLGxodVqpf39fdXr9TT2vb097e3taX9/X7u7u2lOEWP29/c1m83SvAIXSZy8c86NjQ01Gg1tbGykdb9arbSzs6PJZKKyLDUYDNI6XywWWq1WFcLearVUlmV6D6IUf3q9XlpzjLndbqvRaGi1Wmk+n1c+fxB67pP7AO12W51OJ4kPrANfE1yj2+1WPoer1Sr94bNQr9fT56csyzS29Xqtv/iLv/jzR/CddxrxsN/DUvW7uK2unvRHn6wn3az/2x4IBG5J/Hb5ypMewrXgqv6fOL6HA4Ebi598+at0pt69pnP87T/5ZOl5916nEZ1evKL8b8f+P/FjJSjcK+kJ9vN7SHqnH1CW5UslvVSStra2Ssg7/9Pf6/UOBnhIciCy6/Va0+lU7XY7EcVarZZIUO5a4L1UHqm6QsqWy2UimYzBHRKQOYgkf/MahMbFg93dXUlKJEtSIiy1Wi2RHSrT3W43EStI4v7+frovFzMg85wfUr9erxPJZ1yQfUijiwa7u7sVh4UfCxmt1WrJDcKcMt/S5ZX/er2uVqtVIa38jvtzUQVijhizt7eXRJL5fK7xeKxGo6F6va71eq2NjY1E+vy5MFZJms1majab6flCbJmbdrutsiy1Wq3Ss2g2m+k68/lck8lEnU5Hw+EwCTrcr5NT1iPrqN1upznZ2NjQYDBIz2E6narZbCZSnTtaptOptre31ev1EnlH7Gm322ncufPBq/msz1arlcQdjmPM7mJhza7X6zQfjKvVaqnX66XP42KxSMe3Wq20Vnh2rMder6fVapVEIZwXCEGIcbgCECNcCOC5ulOEcSHWIAzmLhw+H8w74hhCja8bdz+5iMFadIfMTYqH/R6Wqt/Fw+Ls9Q/VCQQCgdsbV/X/xPE9HAjcfDjfmejSk56ovXf8xUkP5UTwWAkKr5X0tKIonizpryR9tqTPeciBWAVxNBppMBio0Wio0+kkkgFZXq1WqWqP0LCxsZGqv05GarWaOp2Odnd3NZ1OLyNg0pFYsFqtUmWS61GxhQQ58cYWXhSFms1mIj2QTNwGTjIhK/m9Q7CbzWZySyCISEpVbAggJMiFAgQVv7+9vT0VRZGINuIKZNBt95Dw1WqVyCqtKFSJpaOKN0IHz8PFGr8O5/LrQvJweiyXyzRGHBz8bjweV0QhqsyNRiM9N54FAgDPzCvVrVYrkVoq7MwdZHOxWGg6narX6+ns2bPqdruazWaazWZaLBbJSdFqtZIYsbu7m6ryXjVnLS2XyzROXBO0WEhK1x2Px2ldsy4RYSRVRCifV47l3wgwzAHE29eSCzEuCvBM6/W6er2eiqJIjpPZbJZcKjg4mEfWUrPZVLfbTffrbREIG96qgFDU6/WSCMFnx9cZnzNEG58Lv3fm1EUU1hFCA4JIURRaLpeXuSa8ReImFxSu+ns4EAgEAtcd8V0cCJxSLD/hQ9QoXnPN5/kvT/p1Pe3bvkDv9TkhKFw3lGW5VxTFV0r6ZUl1ST9UluUfPcTxiQCMRiONx2M98MADOnv2rCQlsg5Rkg5IJT/TdtBsNtVqtTSfzyUd9blTOXfS6/3vVK8hSL1eL7UXuDsCtwCiAG4Et2pzP3nPf07Ac/s5RAfCRWWVyqmfn/chOjQajUTOGZeLBG41d8LEa1R5IcmQOQgblXUq3j52ci0QFXA35OOlIlyr1TSfz5P7o9lsJvv5ZDJRrVZTv99PY+FaTqzLstR8Pk9VcwjjfD7X7u5umkPEF55hLqggfPCcW62WOp2O6vV6stq7C2S5XOqBBx5I7RI8V+4J8QYiztp1twBk3jMaaAVpt9vJmVGv19Xv91PrhAtCrGcEoPycfl0cL6xRrsfngPGzlml/4HXaU3j+7l5BoEAg4vkgNrjAwfNot9tJwOA5cC1akPwzxPm5njsk+NwgHLCm/XPNdfK8ED7f/jueh4tyNzOu9ns4EAgEAtcf8V0cCJxefNf3fa/6tfZJD+Omx2PlUFBZli+X9PKrOD4RnuVyqdFolAgnVmzIIUQEkknbAlZvhAa36kPCIJLeqgCZc/KBBd5JvZ+Lsbnt24PrICt5JZx7pQorKVnymQNIFyTQ+7y9NQQBQVJFVIBkuvDhxJFKPWIMxLrRaKjf76d75XpU2l3QoZceZwjtAl615lk5IUTkmE6n6TnwByEIUo5DhLHTeoAIAWllnhEUaG3gD7kNnU4nkVEXALh3WlQgrRBvfybj8VgXLlzQ5uZmElI4jpYWX4fMgTss8uBA1iZr0ANCcYi4GOYtHJIq2Rm8j3MilPE+xuftJy4yICy4WMLz9XPxOcg/FzxnRAUPRcTJgyMDNxHim2eV5OGZ/jd/XAigNYdcE74rEF4QLDg3aw/RwfMUOBf3dDPjar+HA4FAIHD9Ed/FgcDpw7u/+iN1R/03JbUe9thHgk94+h/pjX/7g9X85d+9Lue7mfCYCQpXC6qj2Ju9b5tWA8gH/8MPKXOru7cAeIUz3yGAf0NOIDUeAIczgt5urPWQom63W6mee86CpEoF190AvAcSCJH091B5h/RCrnObN2OXlEgp1/S/+fdqtUpEE/GB69BuwHghmpIqcyEdheB5W0mnc5BIDLHPBQsPGKRNwO390lGGA64Tt6ND8iDsCBNelXZXQ7fbTfkInU5Hg8EgCQq4YXgv4X3r9VrNZjP13DM2Kt4EPu7s7KjbPQpw4T5wSgyHw+Qo8GeECMDc06tPa08esIlbJn+OiEQuwnnwJ2uGuXLBy3MYOB9zjViVt+UgqtAukmdqeNaBi1F5W87e3p46nY56vZ5qtVolRNWvxfP1c3n2hc8rc8hcuJvFxTzaJfi+wAXEZ4Fr8Yz8uQYCgUAgEAgEbg3c++KP1H970XfoPTb61+2c//Ge1+opf/uD9NRfvm6nvGlwagQFJzF5WBokh4omgXmANHaq9hA/2hw4Z27Xhnw1Go20SwG/p6rJtdmRQVIl+C53HiAq5KF3Htbo9weRgsyRX8C1aQ3w67hd3l0XHmroYoYLGZApqvWQWgg8pN/7yOnX990GOJbdFKimD4dDNRqN5ABw8klV2EUiiK5Xo5lLwg7X63WljaA8TOEfDAYpe4F7ZIzSAdnd2tpKQkmn00n3hrtgMpkksWNzczPNOSKJZ2KQkeABoTxjgjXJAXGxCBs9xJ17cJcHBJnMAp97r/I72c7bFnDrQL453lt2eH7e6uItLnluACIabRCsL9ay7wzBvXu7Au4MchVY4whQ7nrJXSP+eeI4D9vkvtwJxH3k+R08L1wruBnIt/D2HNwfLnIEAoFAIBAIBG4N/M3PeL2e2by2nR0CRzg1ggJE18mnEwlJlYq3dOQwYKcERAdIFRZrr45C0Dmv5w00m81EKj3Mjgovjonjqp9SNTvBLeO8x8fO+N3NQKuC2/wRVahSexI+1VQq1O44kJTcCu7u4BxePaY6jTvDBQnPc6BS7IST0EFP+sfBMZ1O07MEXhH2nAkPdPQgvvl8nqrSbFvInLTbbfX7fU0mk9T+0O/3k3Wdv4fDYaqIu+0+bxlhi022lSzLUv1+P413NBql3UR43vmzwikznU41mUzS+sOF4iGd7rbhGM5H2wHE2NeMt3kgQtAG4sKctz945d0zB6jsE/rpaxexASHA2248hNRbO1hvnpvBWmWM3Fuj0UjP1HM9ED48z8DFN+YER44HcHrYI/PnoZGsL9pifO0yr/v7+ynPJHdqBAKBQCAQCAQCOT7+TZ+kp//Qtm7HctSpEBSorHqugXS0W4B0ZIVHeIBQUnGmz388Hms0GiVrP9Vp+tvn83kl1I5AQOmIoDsxQnxgbF499cR9SBgiCESf+4HU0ErglVN3RjhZckLjve7AdzE4LvCR6rkLE7u7u8ltQUAjc+g7PDBGSYkoe64EZJW2Ag//owKM9dxbEph7FzacTEJeEXG4R7aXZA6cFPb7/Yp93Vs6eDa9Xi/tyCAdEOnBYJBEHMg862U0Gmk+n6vVamlzczNlRcxmszSHHpgJYd7b29N4PE67NtTrdZ09e7YSFImTgfcyh5LS9pAIJBzrQos/U0QgzoMAxHNzgQGinLcneO7IcWvdnSY8K99thLHxDL3txJ8r5B/RL3dDcO8Ih5LU6XQSyXehhO8M1gDrzQUMjmd983n3FpR8FxcXJPwzEAgErh4f+4dj1RU74J1GfO+vf5ye9pW/fdLDCAQCgVsGb3v3eb3XH77hpIdxIjgVggIEAlHAwwQhqNJRqBxOBKrxkHJs5/TW1+t1DQaDRJbznnjvy8bV4Nva+fZ1EE0qyZ6FwHm9Uktl2reVlI4CG73azljoKXeHAXMAIcPuL6liC893mXBC5yTcWwlcuHCRg/HSFoBTYD6fp3ngWpIqNn4EAc+Y4NnxrCWlzABIbrfbTW4Ez2fgPQggCBTewz8cDivH9Ho9SQdEdmdnR51OR3fddZeGw6GWy6Xm83laL4Q7essEW3heuHBB0+lU586d03A41NmzZ1O2x2g0qpBprlur1TQej7Wzs5OyJGaz2WVBjd1uNz2Dev1gi0aEqL29PV28eDHNPXPHGkWUkQ4yG9xtwGeENcB8MqfMt69F1i4iGc/R1y3ZBMw9ooa3TDCH7hZAHMFB5DkHzDviW55NwjnyFh53DXnGCOvHMyIQC3FUrNfr1FrhYh3jZh0j/Pk6DwQCD4+nvbalzzp3QFQ/KoKzTy1+6J7JSQ8hEAgEArcIToWgsL+/n+zhkip96/TnE7wGcdnZ2Ulb6fV6vVR57Ha72tzcrNjBt7a2tFqtdPHixQoRoZKNFRsS5Vs3eqWfHQMILkSYQHiAgCF0ICpA7vv9avAH9wsxk46IHf+mFYIqsbdZsPVd7kSAEFLlRagB8/m8UqGlpSLPlciDGH3nCKrNkPBWq5XaLiD2vv2gtwX4ThOMxXvbcSR4VgDknUo6ffQ8j8FgkJ4PuzWQ+D8ajTSdTnX33Xer1+vp0qVLWi6XarVaGgwGKstSs9ksZXQgcDQaDU0mE43HY919993a2tqSJI1GI/V6veToqNVqactJ8jg6nU7ayYJ5lo7aJMivGI/HlXaRoijS+t3e3q4EWrojAPGh2+2mDAnWjO9SgFuB6rxnEjBH7kSh4o8I4a0Snk2Ae8d/Po6AI26MRiPt7++neUVUQNzi84ULBodBLiqwPllPCDzdbveyoE0X1Tie9g531AB3g+DmCQQCjxxnfuusvvueV6heRJhpIBAIBE4v/uy5df3Y68/pcwcPXpfzffJbPkFPfeGbbst2B+kUCQrT6TQRZCzJi8VCs9kskXLIEhZ3zzVoNBqVLQP7/X7q1YbwurOASjrVYrY99OBFSYm4QhoRKSCtEGDv+4YkYUN3UQGxgWsDhA7vr8d54DkFvAfy5lVpP5dv2cjxCCCIHv47D0xsNpvqdDqXVYJ9vPTcQ/Z9dwmeA8R8MpkkgQUBhnF6+wSiAFtPOtlDUPE8i/l8rl6vp8FgoMFgkMYIISZMczabaTwea7VaVYIcaZtZLpeaTCaaTqdaLpdpjW1tbenChQspo4GwPp7HZDKpbGUJWfbgR6/2Mz8eHooLBEcNc0GIJKKEh3vmjgpEHN+5QVIKPpzNZqrX65pMJklU4Pki2LgQwFpHjOFz6WGi3AufFc/pYP3581uv1ylTg7BLX+usbwQFSRVRgc+/56BwjclkksYtHbkSECYRrfweWRsc5/fOPAcCgavD2eYsxIRAIBAInHqsp1P9yHs/Uc96+zv17Na1bRu5X6412W2pZVur3244FYKCpEobg9u5t7e3U8XSq5heISYp33MBnMSTH+CVWMgphJ2qqfdZSwdkmz51CLpbzLHHLxaLCplyd8VgMKiEQ04mk+QkkHQZ2fS8AxwJ9J07uWRMOTHz1H2fA88dgJhBFiGFtAI4oYXAeu4DQgoVbgQQHzM2dsQPnqGkRGwhfTxDFwPy+WGOj8sOoO0BUgmxR5zY3t7WaDTS2bNn0w4XCDjebgJp3traSve1u7ur7e1tbW1taTgcpi0UeZaeIcBcMheNRkP9fj+tI4QL6cjxsV6vE+mncs/8eH+/h3ju7u5WbP3uFPAtKtkO00M5WeO+5SPvw/VB+8FkMkluDtadhxsiCOU7LQB3zuA8wZHiuy+QicD65TvBRTtvB2Lt+7kRB/f29tI6dFeFO3O4JmKg55j491FkKAQCjwz14VCdWtjobwbM1rtazJsPf2AgEAjcyihLvWn3bj27delRn2JV7uvz3/Gxav2td1y/cd2EOBWCAhVR3+kB8rBYLDSdTlObwWw2SwIAhMHdDN5GQE7BbDZLIgAhc4gDkLJ+v19pc/BWB5L9IVxO3KjEU5n3AELEjm63m3roORarNmPy6r9XjX0XAM8NcGEjbydAGJCU5sfveWNjI9n3EVUkVVorsMV7CwGCRLd7sM3KdDpNJA2i5r3piDS4DiDviCXuyGCuqM6zBhBXnEjmoYJua1+v12nOIIur1Urj8ViXLl3S+fPn044OtAogeLAeINUQ8YsXL6ZcA78HJ8Lev8/9zGaz9DyHw2G6D0i6Oz9YT71eL7VquEBSlmVqPXBSzLNydwKknwBSiDviV77GeW6sb8QNxLbpdJqEPp6Xf55YZ7zuwYYebohgh6sD1wOfZ+7N3Q6MH2HFcyEQTHCtcA3fOcIFLAI4cWa404I/vpOJizOBQOCh8ebve4p+7M7/W1Jsw3Xa8cI//3g95XN/76SHEQgEAieO//yM99ToTzq6c2OkT+9dnSj+M5OhfunS++nB5zx6QeJWwakQFLDu8z/xbtWnmgrhoGWA//mHpFD9dLGBbAWqyN5/DZzUEcg3n88T0eEYz1eApEIiCWuUVKmcS9XASQgalmwcGVSDqUDnveq+NSEVf8ZEKKSTYSfczI0HzuUOAq5L20hZlppOp+r1ekkw2d3dTWSL6rLb1mmp8G0XaTPxIMt8Jw8XP3w3Az/OHRw4SxAB2OnDWzxc6PEtMbe3t3XhwgUNh8P0PHlO7oZg/jY3N1P7zHg8Ti0DzJnnFEBWuR/aLFw4YieC2WyW1o63THgrymw2S4IEWR84AVj/uSjGHCHwUO339gB2TcAFAlHn80GLANelJYSxePgn7gr/POWfK47pdDrJ1eHODG+LwH3EZyv/jmA9IETQ5oFwxfeIh4YiDrC7hLs/cnHInUweeBoIBB4eT/0Hv6d/+dqP0fc9/jUnPZTAQ+D+/al+521P0tN08aSHEggEAqcCP/PMO1VrP1GvfvVRy8L7d//yivkK/+r+99Nor603f/BK0vQGjfJ041QICl5J9J0C6KeG6DQajctIiLcEQERoC9jY2Kgk70tKpMGvBcEnNBEyAdnw7eO8Nx5iRNUTwo3owfUIget0OmnMzWYzbXVIxdhdCC4q+JaBCCLsZsF1nBR59gFuCBdIgFeOmQ8PrZtMJilfguvxLCCHThy5LrZ9t/EzZ/78fEeN3P6O24J14KKC78YwHA61tbWVWhjc/g4hhtQ/8MADqtfr2traUq/XU6/XS+IMZH9/f1/j8Vjj8VjD4VC9Xi/N7fb2tra3ty/b4QI3BDth1Ov15Jjh2UpKwZXz+VzT6bTidJnP52kd42TwEEzGmotJLjgxt/6cOJ8/G1py8q0gIc/cC88Uwu4CAtf0nRKYB1/77h7BGcKODIhX7m5xxwGCAQKCz7mLj+6u4D7zdeUZH+7o4FieMUITzpwIZgwEArcS/vP2s/W0F7z+pIcRCAQCpwrrxUJv+ICjn3/7kz5TP/I17zr22NqnXNT6sNAWOMCpERSwKeeCghN1J068zyuR2OYJdxsOh4lU9vv9RFaccEEiptPpZUIF14B4e5+1E3FvUXDCRvAi1/CgNwivpGMT8t02DjGCJCGKQOA8MBHyxFgh04geHu7HVpoQdsibJM1ms5TMT6glxM8r2h7Wh5DT6/WSpX+5XFZIG2PmmblI5MKSE3zEEG/jYHcPHAqdTifNC9Vtz9xgR4WiKDSZTHTu3DnVajWdOXMmtaOwDoriYLcQdoBgbLQrMHa39CO4IFwhqOTbOiJE8TqEGPCcmOfFYpHmkiwGP79b/d3Kn7dF+A4JrDWENL8fKvS0crho4M4hX3Me8HmcY8JDOJkrnol/LrwFyJ1E7rjhPL6zCG06i8UiuTG8tckDGf0zBvyeEZd4rrRQBQKBh8crfuUD9LbPfYWe0ug//MGBG4537U30A7/8PD1F4SIJBAKBh0LrF18r/eLxv7tdd3J4KJw6QQGiCtEgdR+STMWZ9wEs3vv7+4n8zmYzbW5upmojYYNUjiHU0gFBGo1Gko72paetAkIMgUQogIRgXac66r3qnMuT5z0Akcopx3kOg7d9OLniWk7cGBNhhCTpdzqdVA32LAYEDwg94gb3TNtDWZaJyGJHdxLIvLiTwvvh/V49WBDCi4OE8SEeYUtnPmihYN57vZ6Gw2ESGqii8wyYDxcUaCXwHTPYmQFRBdHgwoULKWsCxwHuAunIxYIDgfWJeOM7FyC8UOHHGcC9eegic8WzLcsyBUvu7e2p2+1WXC/z+Ty1fnj7D58PFxd4Jm7z92wEb7nx7A0XklyUQIDgPC50MUeeT4DzgVYCSD9CCPPiJN7PyZx4G4MLb4R2sg48UNGzQTxIkvfzHo4lkDEEhUDgkePJL361PmX2z7Q8e/Dfrrd99ktOeEQBMFkv9NEv+zo95d+8+qSHEggEAoFbDKdCUMgJildZd3d3NZ/PUxggFenFYlGpmErVUEGEAwgLJKTZbFZCFqUjMuG7GXh7AAQEgpWf0wkT45OUzsExbEmZBye6CwJ3A8e5hZ8ee+koW8IJIPOIqOC2f3r23eXgQoDPAeQVwcXDE92mz5aF/Ozz6eSe9+XtCwgqiB6r1SqROHIzqOQzt2Q4sLMDLQceYMlaIAST5H8IM6S22+1qc3OzIkyw7i5duqSyLDUej9XpdCo7RUhHWx+yRSjVcX5mXnA3QPJpNZCOxAKyDlg7uAeYD+nAkTAajZKAwDNi7t0x4I4HzwHhGeTPcm9vL4kKCGS+faNnNeCIYO1IR64Enj+Cheei8BptDKwLz97gPrhHdyt5OCPiB/kP3hZF+CfikwsRuXvChQX/HPId4jtOBAKBR4YnfOur0r/f751ffoIjCThqK+k9v/tVD39gIBAIBAJXiUf9f8tFUTxB0o9IulsH7o+XlmX53UVRfKOkL5F04fDQF5dl+fJHcL5KdVk6sjhjZ8aC3e12E/l1OzOkHcdAo9HQXXfdpU6nU7FJU7F2WzUVdEigW9q9p5+dCBAmIPHeikEgoAsQLg44sfNqK5Vyd2tge4f0e3YB16OqDwj4g2i12+0kKnBt79f3+8izGXgOLqhAZvv9fiKZEGcfh1e9eR87R2D/R5hgW0XpqFWB1gnEI4ioh0OyXSQkvdfrqV6vpwBF6ShckHPjFhiNRtrZ2ancvzsCcCDQS0/IIvOPMIXwku9EkT9zCK+7VchP4GeyEnjutO+wNlkLebgmIhxzAQl35wnn47rA3SrehuG7OuC6cEeKiwoe1sjnx4k9nzFcIqxTdxNwbe4RIJZ4lom7dhyej8D944DBlcRaddeRZ0kw16zz047r/V0cCFwv3PMdQWADtwfiezgQCNzOuJby256kry3L8vVFUQwkva4oil85/N13lmX5HVdzMqq7XiXMLdQQe98Wjkoi8FaJer2uixcv6q677lK321W/39dgMEiEJQ9TzAPlINwQJBcHICS4ESCjfj9UsCHEWLsZJ7sQIB54ZZ/782C+er2exBEn7pIqlVtaABAUvEfcbeUu3vh73U4O2fJnAPEjgJDX3ZGQ5wtwD6vVSr1eT91uNxHL9Xqd2iqY8263Wwkv5Dl4O0qes0FVvNFopJ0JqIj7rhBOWkejUQqiBL4Dgu8oMJ/P05hZO6xTAgddLGGuWWsIEKxXBAFJqSo/GAzUbrfVarVSyOje3l5lpwbfHYRWB54VY8fBQpXd3RnMp1fufV3y+WFNAta9551ISud2UY014c4RRA/WAWsBp4sLiR7IyBpz5xD36M4If7/nNtCO4vPgLhnO4euX11zYOMW4rt/FgUAgELhqxPdwIBC4bfGoBYWyLN8l6V2H/x4XRfEnkh7/aM7lxNwJCb/zre/4H3+IFMTDq+0Ql8VioQcffDDtAjAYDDSbzRJRGI/HiVw1Gg1tbm6q2Wwm0uhb79GO4HZvFxEQQaSjHmxcAodzVAmRhOBApmjBgDQhpPD+8XhcsbY72cqJEgSbLAdaHXLRwwUOr9R6ZdfzEPJKLiQZMuvVY7f156GBVK69/x7S7O0bhGl6Tz4CBWR+tVqp2+2m7SERaqjMIypwTdomaBuYTCaVZ+pBkt6ywj3znFgjkGh/JlzfnR3M1XK5TIIC66HVaqVdIXBMeBAmogXOjdy6z/x6eKG3KTDn5Ezg+PE2IM8v4T2LxaKym4O3VXA9D9z01gQ+B9LRtpfu2MFJxPOUdNnc5GGPLsDQkuNhoNyPi1ruOCJ/xfNOuHeuQ5uQiw6nHdfzuzgQCAQCV4/4Hg4EArczrkuDcFEUT5L0AZJ+W9JzJH1lURQvkPS7OlBsLz3M+1PlmJA77/HH9t1qtSp90/7HiRNkh77zixcv6ty5c2q1Wtra2tJ6vU49+2xtCNmCQM1ms2QFZ4yIAIzDLd/ArfAeWgf5YntDKqjcF2QK4unOB7aznEwmiQDn/eRUxbkXbx9hfpg74H3y3s7g5BXCDHnjHnL3AudChIGwQuyZWyrTtVpNw+EwCTyLxSJtUen3zXiZF8bF2CDHXp3nudVqteQscFs98wXRd6cE1nhELu/hZ414HoULDZDWXBBylwKtGE7EGc9kMtGDDx7secsOE55rICldw8Ug1qeLP6w7WjR4DqwZfg+p9pYWd4Hwfncz8HyYL//MQd45nmfrYoc7QNxF4YGSrBXG5SII98kWsThumHf/PmA7ToQknFCcm/e6gOAihws3NwOu9bs4EAgEAteG+B4OBAK3G65ZUCiKoi/pZyR9dVmWo6Iovl/St0gqD//+95JeeMz7XiTpRZLU7/dTEB/J+E7UISpYyp1kuKDgxB0iNh6P9a53vUutVkudTqcS6MeWilj43fXg1/WcBHcBYK2GBEMc/T0QLYiUV1J9vOy24AIGqNVq6vf7qtVqmkwmlT5wSUng8J5yqsoQYr8Ooo07ILx3nnskzwHS7YQOogwZp3KMyMIzWi6XiWTT+jCfzzWfzxPJm81miWQi2NRqNQ0GgyS4XLp0qZIb0el0Ul4C1W7cA8whhNPbTZwgexsG4gEkmTmhAu5ikm/76M4V7hfhgTVKRdzn0UMYvao+mUzSWHGY0LLBWmc8rB8cHt764M/CxQ//Hf/28E2/J+bbA0z9M+BbM0qquBC4J0QJruHEnbEjhrFrRVmW6fOKwOGuB19rHM9nx0U0F2M8BJJ2GkQyWmcc7jy5WXA9vovb6t64AQcCgcAthvgeDgQCtyOu6f+Wi6Jo6OCL88fKsvzvklSW5X32+x+Q9AvHvbcsy5dKeqkk3XnnnSUk1e3KbtWGAJMhAPk7vE6l9xkSAukdj8e6cOGC7r777lR57na76na7Go1GKfARQcEDGTmnkz5JlcpzHrIHaYKEMRas3hD6PJyx3W4nISWvtNbrdXW7XRVFoel0WtnBglR+5tDzFaiMM48QLtLwaSXhNSr8WPEZF8TYK8LMu2/DyHx5xRshBdFod3dX0+lUnU4nHTubzRKB29/fV6PRUL/f17lz57Szs6N2u63t7e10PkigtwtMJpNEFCUlt4UTyr29PU2nU0mqBH3mAYMuULnQ0mg0knXen5XvKIAQMZ/P0zW4Hs4XHAO830Wq0Wik/f39SpiotyRA/P1n5s4zMFyYYw3zGqKUf4Z8TfJZQKzw9hpvPXLhAbhowblZ955XgCDHPbJeWRN+TT5P0+m0Ivj5rhHutHDRwr8rWAecG7EF8UxSum8+pzcDrtd38bA4e3NZMgKBQOCUIL6HA4HA7Ypr2eWhkPSDkv6kLMv/YK8/7rCXTJI+Q9IfPtJzejgcRM4rvxBothnkODIVptNppVWCHQT29vYS2dza2koVabahHI/Hms1m6nQ6aYcESDY9+U743P7t1WHpqLLplnYn+FSbcUdMJhMNBoODh3FYAfecBQ9O9FYI6aiy7NdwAgUx9l0YPMeBY7kGc+52ed96EiFAUqqscw0Eil6vl5L9fUcBSCmiCdVo77nn+c1ms9QSMRgMdPbsWZ07d07vfOc7dd9996WtRNmJAJHg0qVLqR3BRR1vZUHQ8HYa8hQQMjqdTrLpO3llXllvuQOEZ+ZEH1Fhb2/vsjYad8OwvhHOPPdib28v7VLhxNszBtwV4DkHBDsS4sjce3sIazh30eCgQAhjbPkOIHzmvO2Be+GcnnHi65p54h68xYnn5oICrgSeh7fx5AKQf479Gt624c/Ktx31vIbTjsfiuzgQCAQCjxzxPRwIBG5nXMv/MT9H0udJemNRFG84fO3Fkp5fFMWzdWDveoekL30kJ/PqLv/T79bu6XSq8XicRAYPM4TMeLXUSV5xuNvCdDrV5uZmIjRUwcfjsUajkUajUSWIj78hpx7855VU4HZ06Sg3oNVqpbFAhLF6QzqlAxv/YDCokFK3d0Nk3Z7NfXioJVsdesAhcwhp8m0OcVh4qwbPgW0y2WECIsu5cEbgMKjX6+r3++p2u5VgRq9yI9SMRqPkUpCUMgZwM5w5c0YbGxs6f/68zp8/n9o1RqNRWg+1Wk3T6VQXLlxIDgZ3p/CsuQfWBjkPHM88Q+Sp0HO/HijI+NrtdqVCLqkiokDU+dsDAamm55V93s9xnNNJPHkCeY4DIgjtFE6mXYBgTXiLw5XIuaTkEHKRj59dZOCz558RD0/E9eJE3TNGvB2CNeytB3z+yEDwdgvm0rNNeO6+GwRj85aq3OXB55r1exPgun4XBwKBQOCqEd/DgUDgtsW17PLwm5KOi0G/6v11vaIJUeB//H2rvEuXLmkymajf7yeSA6jA0iOPQOGVanrf/bqQr/F4nCzpVLOdlEpHVfncNi4diQfuKIDYQuJdMPHjIDcQGO/nZ/xe2YaQQv7YfpLKNueEuCE2EProlWxv3XB4P77vdNHpdNJ1VqtVuna/36+0URCoSGXbBRgntL79IXMzmUxUFAdbKJ4/f16Pe9zjNBgMUrX9r/7qr7RYLLSzs6O9vb0UvHnp0qVEWnFieCtMnk9BKKdnWOBucGs/a5F7pnruO3g4wYbws/Ui1/L1QPsJ6xBRwnM1PFODPAiEIsZCNZ/Kv7eZsIbZFtPXhrfxQJ59zfnWrLQdeJuEtysA5oi55rnz2WOeXcBhHKwJdzkw14gOeZaJ52O4uOFiiOdG4E7h/pkbPpt8F/gavRlEhev5XRwIBAKBq0d8DwcCgdsZp8LTS+tAHtjmJBcr/Hg8TtVqSCCtDfS241pwd4GkJCh0Oh1JRwQeZwDvhWw7qYNYebgdQoiHDhIwJyn13JMaD3GBLHF/LixQKUa4gHjzt3TU/w2hhZz6+GjdkI5S/7GuQ2x9XF69dpcHc+e7HeA+YPzsusA5CL0sikKXLl3SdDq9LC8CwYJgTYQJ6SCYUJIuXryo++67T4973ONSmOaZM2e0s7Oj6XSqBx54QKPRSLPZTA8++KAuXbqUWhZ8e0hv//DqtGdgOOn0gEO32nuIo+9IwfNxNwTkFQeD70DAfDEmF4q8wo7YQosMrQu+dSLZBLhUuF+es+cquFDHWHAl8LxZn34cQBig/cLFj9wJwO+dnDvR9yBLz0xwdwAuHq7tIpzPmaTK94Z/dzA3Pl+IHvkuKXw+/Z7934FAIBAIBAKBQKCKUyEoQEIgfl71lFSp8E8mE81mM/V6vQrhqdVq6na7iTB65oLnAkCIvEqNU6HValVCFglt850bvN2A4Duuz7ipGPM77Nok/UP2sdzzPnrNOQdAwHDrfd4S4n35nJ9z0IPuhModHJA75gSiDCGF5CIYcA1IGffL+drtdtq5A3JKiKR0tEWliy08ZyrUk8lEo9FI29vbeuc736lms5kyLhCSxuOxpAPSOJvNKs+c8zBHiABub/dKuD9PF1Qg2DwjFxdcpMh306DFwa31ZFGw1hgL14HY8plAACMck90xmHPWtFfecTB4m0nu0vB2Hp6zB4hKOlZQ4Jxka/hnlrlgTLwfkYR1ylx5m5LDxQjuy6/vbpd8bIhx7gTiWM9HYM69/cOzFHxcnn8SCAQCgUAgEAgEqjgVgoJ0RCRyeMV9Y2ND8/lco9GoEgjoOw8MBgPt7+9rNpulkL9cpEAYgPhBKL2aC6nI+9ydrDo5k6pVU7IB3HpOC4cHznHv3CdWdkQASRXSPplM0ly5mOFWcv/b75c5dELNtTnWXQS+JSLjY9tD6YAg4whwIsyxrVZLZ86cSVV/rkcFHXcH90OmRafT0XQ61XQ61Wg00n333adms5kCNZkzBA6yCZg7ru9ZEAQgElSIUOQ5Armd3ltxmDvAPbmQMJvNKi0zuAycwPPs+dndCDxrni3hkz7XCAcIMqwxJ9guCNFO4G4Bnidr31/3dcxcuyOHeXZBIXf0uKDA64h1kHd3AjmOa5VAIHE3g7sduBdvqWGNMD6eH+NwsdEdGjhmEK5CUAgEAoFAIBAIBK6MUyEoeNXYSZaTBkj13t6ednZ2knW80WhUHARUx3u9XqWiy/Fur3ZCAcFwm7xUTY5327VXWp20cj++3Z10ROp9LJISsfVQwOl0mt7r948osVgsKgSLloH1el1xC7hoAEmkrYB7lY6ECa+8+/xg2ZeO3ACeM0C7gtvqyVOgRWIymVRyICCBkEu2b0SgwE2xvb2dzs8xfh6H5x1AIrl/djNAZHAC7zZ/xkaFnByEvb29dI9OYD2AkGshGlFhdzs+c+JVdG8H8V0NPEeAtU77Q74uPDdBUhK9uE8+T9yfw0U3d5W4ayHfUcLXDCIBc+OfG4QP1iVz6QKW/y4/P2udZ+RuCM+B4LzeysA4/HPiWScIFVyTdVWr1dI2snxOA4FAIBAIBAKBwOU4NYICxNqJIkRNUuqh39/f13g8rvQ8ezjbxsaGer2ezp49W6kie1AehMa3EqQymW/NmFcoXYBwe7wH7TFuqsresw7Z9Pt0F8Tu7q5ms1lqW4Bocry7MqQjuzrE1y3ibKkIqXXRxe+Lc0GyyKTICaC3iXB/jIl7h8TS8z8YDCrVf3djENjIH8IU2emiKIoUvrixsaHJZJJ2VuC5uugkHeVxTKfTSt4ALQQcg3jFOnJiz/ySgeDikjtLvK3BLf05qc2r53meA+PyMFDEHJ8jn0e/B1pSWA9+Tc/t8DBEBAg/r4sZfj+SUngl68XbBXIxxgULF6l81wnuu9frVTJOcJjwXp7DlbIm8s9EHrjon1U+T4zDgzvzVhi+M7xlJRAIBAKBQCAQCFRxKgQF6SjAzcmhdBQGSN8+BGOxWKjdbieS44ntpLV3u91KtRVRgWvRBuDkTzrqLXfbNq87yYKwUP2GEHvQH2RHUqXdgXulquzujOVyqfl8nt5/XMid5zJQdacVwQMTuYYHznneg7sPPI+Cvn1C/xhL3rrAOdyqPpvNNJlMkmPBd1DgPYguCCHev95oNNTr9dLxs9lMkjSdTlPFOHcIePsHRNzP5y0IXunmPXlopN8PY/f+ekQZiDkigIcP+k4RzD8iByIG69GfCfOB2MFz9C1IXXxzZw2v5aQY0cdbU5izfP2zvhA6OCcBk07u3dHD8/Jx8DsX1Xg+ZB74a4gHuXOEte+fdW9VcNcHbgnfcnV3d7fS+rS/v58+i7lA4+4ZF+gCgUAgEAgEAoFAFadCUPCeaUiOuwQgx5BD+uYRFSATEAb6wunPJ8xwuVxqNBqlCrh0UMUfDAYVguWkNyfAvmtAp9NRrVZLVWon1limIYUuQngrhPfyex4DJJX7klQh9jgpIHRsgegEjDYLSC2E2Xej8O0MIaxY390Wjv3fg/78d/x7Pp9rOp2mthRJqfefP0725vN5co602231er0Uvsi8IwLM53O12+3UEuFijsN76KmY83ypgpNzwfHMoaQU2unrkXN5a0ur1VKr1UoOl06nUwnjlI4yNxByfC15Rd2fvX8eWPe+Pr0tIc8MwE0CiWbdc4xv0emk3EUdz8xgHny9uPjhx3lrhLdHMB7WImvQ3SAuBjBvPj6EAwQcz15A9HPxAtcQ50ega7fbSTjw8bvAxOeDXTUCgUAgEAgEAoHA8TgVgoJbsql0Ske7O6xWK00mE/X7/UTSIQ57e3vqdruVc0E8IGrYoyHdDz74YCIWzWYzbYM4n88r7QRe9fVxrVYrNZtN9Xo99Xo9jUajJCp4+j5VUUkVkkWWgzsq6BX3qqrbt/13fv5ms5laG9brddqiESLb7/crlelarZacHe7caDab6vf7qtfrabs+J5aLxULT6bTiFul2u+n58CzY2pOdAAhM9O08+QMRd7IIYYfsQ+hc0GAnDM4xn8+Tpd3JNvPnTgrOJR0JVE5kpSpB5Wcn0Z4P4M+D93m13Mkq10IQ83XvOyHkJNbFBNalt+u4kyVv3fB7I4PC3UBO6CHarVYrnZ/ruZvDRQwXh1arVVqL7lbwsEd32PB+/523dzA2FzwQdfK8BsQTF2dcjHPXiodX4l7JHRqMjbUSCAQCgUAgEAgELsepEBSkowT83AUAEaYvvtFopK3xfGtF3AheLYdgUO2FsMxms0SysJa3Wq1E8iQlWzvkFXhrQbfbTbs55PcC2XXC4sfRbkFrgRMp5oLxuX2cY338iATNZrMSwrdYLDQYDNTr9ZJLANLY6XQSKZ5MJpKkTqdTcVVwTa6D0EDeAULOYrFIlXB2Z8Bqz72zXaUTZ3cGcE+0WeD+8HYJ2i+83cOFJa4FGUUEKMvysiBDiLc7AYCLBZyL9QahBZB7zuXZFP5v2h+4PxeL/LreqsL8+zpmjUD6vXrP+/gMsMYkpYBI5iTP5XDxZDabpdYSdsVgXMwXYgzrFBcD81Ov1yvPm88F1/T3Ap4dIhbfBfzOPwuMLReMWFc+Vl/HCATuynHR0I9x10ggEAgEAoFAIBC4HKdGUIBgQJQgUG7ZH4/HqTLe7XYre8tDDiCA9PC7Bdorqy40OJGjQl4URSLNhBryx4MXqfZ7FZVzLRaLtKMDBAayxZhxOmAXB5Avqtm8Jw/MI4ke4k211lsjsOZTxWYOEXDG43EinFzDt+uTjgQWyBZiD2R9NpslJwJkvSgKTadTSUqiASKEH+NuAISQ1Wqldrud7sVbBDzPwAkk4+L5uBCDSOVBjBBGHCPuoPB1hTjB3PHMnYRCpDnWRRnPh/CKOe9154O3ciBCeBuLCwaIA5B3d32w7hCJEHT29/c1nU7VarUSQWe8jI15dqGEZ0DLCO6U3EmAWOGfW2+J4N5d1MgFMxeduG8XI9zt4//O4Y4Hd6/M5/MkZCGM+DP0NieeeyAQCAQCgUAgELgcp0JQgFh44B2k0nu65/O5tre3U0WeCqxbqSHpZAFIR1Z3sgG63a7q9brG43HaAhHSAlH2nmwIZq1WU6/XqxC4sizVarXU6/USMfeq53w+T44ASBLwMD2s4/77vIqcW9MhglTse72e9vb2NBqN0msINZ1OJ21lyPt6vV5FrPE2DXINnPw5+fJdICDju7u7lfwGb29wAgg59HvzHQZor/A+eYim9+jjFPDsC68qH9ePz334c261WpUKvD8XnoN05DJg/E6iWRPukOGZehZDHh7IWCCznMOr5B72yBwz734+npeLIezE4a0pLq54Vd+3/nQyztzyWWIc7q5hDfh9+1wzBndZcH1vV/A5Yb16u4M/dz4vHnrpIgnjdYcEf9yh4s4WD4DkOykEhUAgEAgEAoFA4HicCkFBOrL2N5tNDYdDrVYr7ezsVKrmktKWkb1er0LCPb/ALeFSlUjk5Ho0GlV68jknogQEkso7ggUEZnd3N4kF0pHNGpJJH7YH3EEw1+t1ZVvD4yqtkCvvw/e+bie97XZb8/k8jRmyTHWY+yZbAZfH+fPn0/07YdzZ2ankRUA6fbxOJnlWzWYzkWMHz4AdBDxjAAEIordYLJJgxPgRHnInh68fF1vcDeC9/NwDY3EngOclUNFmrG6R960Pr9SqwP3Rv79cLiu5ILkA4sIA5NnnzVuAaO/Jcz7cccA64F7IcPC2AyfyTtT5G9eD36PPqTs9mA/WiW+l6m0ZnkfBvfiOEi4qeL6Biwa584jfe56Ft1vka4Pr0gqTt33k6ysQCAQCgUAgEAhcjlMhKHiPPDbtXq+n5XKpyWRSsX9T9ScHAZLk5NQzBZxAeKW53+9rvV4nVwHVVbfDe0AiYoCkSjWafn/aNXxnCEmJbENIPXzwuCqvV1ip8CIKMPbc6eBE14ksxBJiTt4DlVcIdrvd1tbWVmqtqNfr6vV6KaRSOuqR94A+t+e7NT0n6dwvY+Z3VKY9R8Ct7pBMD6/kefvrOCq8ck67RE6SIdeAefCx533/tIywhlz48J03XDRiTfuzosUjv1/Wrec++GeD15vNZmVe3WnAHz+e9zMuf83JvbfpuLOA3/Es8uq9Cx5O5L29yNsXfL16+0Oec4IYgoDiDgWegbuGXNzAUZCLCscJNBzDGsmzUPKfA4FAIBAIBAKBQBWnRlCYz+eSlIQA3AH0cXtLBLsJzOdzDYfD5AKQlCrdbqNnb3tAtb5Wq6VdEQgS9EqvdJQdgDAAYfS0fs8CyMkpFeXlclmx4EtK+QNeYYbkOHl08u8iB397wJ+HWELYuYfBYJDG4mTRHRWtVquSEzCZTCqk1TMgCGL07AG3uztxXq1WaecHnxeu7fPiLSe5hb3RaKRQQwBp9F0XPMOAuXJhwkltXkF38u0/c8xxIY5+TSe+LrTwzH1e/BqNRiOFIbKe8x1HmD8AWSZDg2syLv7grOGzwHrzZ4kg4+uNMbPmve0GFwo5A/4Z4/PiDgNvJfEWCncWuIDhO5Mwbxzr4ps/jzwkkznhHllLCDh83vxz761G0e4QCAQCgUAgEAhcGdckKBRF8Q5JY0n7kvbKsvzgoijOSvopSU+S9A5Jn1WW5aWHOg/V3JyMe8hiURTq9XpqNptaLBYpT2FraysRCCd1ef+8EzR6riHZHiSIlRwCCEFxl4CkJFTgUkAAQRDxVgWuyW4IHEviv6TKNo2M24m1E37uFzLkDggnVLgocGScPXtWrVZL8/lck8lEy+UyZSW4qICYQFXcq9Pr9To5MXg/TgIXciBlPBOeC2SYsTrZww3QbrcreQW23tL9+HOQDnaocBHDWyRckPKKNQ4WhB2EET8/8+pBfcwF5+d+eIa+xrw678/RSavb8XFPuNMBUuytLJyHdYUrB7eGj9Xvt9vtVsQNH5c7DFiTPnbIu7fFLJfLNA4fp2c++OfSsxNyx4q33OD84PuBMbgThzH5Vpku5LmI5ztG5C0x/gz4vd/vzYDr9V0cCAQCgUeH+B4OBAK3K66HQ+Gjy7J8wH7+F5JeWZblvyuK4l8c/vzPH+oEEDoP+YOsQUToxyadfjKZaHt7Wzs7O+r1epKqVmqvNvIzJM2JoxNY6ajqDimE4EGkCQaUjki/kz7vz/cWjEajoel0mkibV9AZu7dMOOF2FwGtC5AobPe+DZ+3h+CqGAwGuvvuuzUYDDSZTHTffffpgQceqITe+S4bRVGk8SDIQFylI3LvZJjWD28pQLiBvCJ+cM+EO/rzxiHhbgwIIw6UvB3CCWtewWf8bnX3AFCCKH3XDwcuD8bi4YPeIoNA4WIKc5CHHLrwhXPDXTXSkcuEz4i3RCAquIPB23QQgXg/z/U4QYr594o/98gcNpvNSuAkawtBwR0jjAey72uS+/RwSO6b11iTnm3i4B5dZPFWC29dQVjLW4rydgnuk7nm33kOyCnHNX8XBwKBQOCaEN/DgUDgtsNj0fLwaZKee/jvH5b063qYL8+9vT2Nx2MVRZHI8XFEye3kq9VK0+lUo9EoEbnccs/7AYQoT3d3izche4yBrREhRr6zhLsQvIrqlU7ISbvdVr/fT+TViSFVcLe7uxWbnxE0er1ehXCtVitNJpNE5AkTJNiSrRu73a7Onz+vra2tRLam06kmk0klI4G58T51CBYVb8bqzgXcF4gB3g7CPPMaBJtn506Qdrud7pVn4pkQCA5cE+GH61IZz/v5HT6/rVYrCTO4SHztuT3fwwmdwDN+nyfmz4m6C1keXolYQ4ghjgdvW8h7+j2HwMMkPVeENc+6YP64X1wsrNV8rIh7zIULD6xNJ+k8s7yNxD8T/O2igt+Pf8avdL/uRGFt+fV8vHzmfUtNXw/edsE8+Os3Ma76uzgQCAQC1xXxPRwIBG55XKugUEr630VRlJL+U1mWL5V0V1mW75KksizfVRTFnQ97kvJgt4TFYpGEBbdQe0+7B6ktl0vNZrMUxAehoFrv1XTOsbu7q9lspslkosFgUOnx9qDFWq2mbrebtqfk2t4vn5Net4TnQXRU/N1qDSmnXzy3ikNoEDPciUAGRF5RJn8CO/poNNL29nbaYWA4HKooCu3u7mp7e1sXL15UvV7XbDZLWRSNRiPN05XInqTkDPEWi1rtYGtN7mcymVRIJzs4SEcOD28FwDVACCIChqQkuuASQZxwMo4bAleDt8z4eaSjnnrPL3AyzfN11wrj9j+cc2NjI1XyPYgyzwnY29ur7EKC+JO3xLiY5fOXV//5vOQE2Ik/a9d3fuDecoHN3+vZGN4CwXN3wcTFtVzIwS3h69/bXTwYNSfxfJY8iwIhKW+L8bwHzuOfq/x7hXl0Mcef3U0kKFyX7+JAIBAIPGrE93AgELgtca2CwnPKsnzn4RfkrxRF8aZH+saiKF4k6UX8jKiwvb2tvb29RFKlo0pwbhvf3d1NWQBeoYTcQLSwbCNC7O7uaj6fp0q+dEQyCfzDpeB94Vzbd4+AqJRlmd7La7RnOLlCRPCsAkmXET2EBA8c9H5wrOwQ9+l0mgQFiB25AKPRSNPpNBGwRqOhra0tnT9/Xtvb27p06VLaPpN5ZttIXoPg44Kggt7v99NWlp5VgMODZ8RzBHt7e2kLRe/fr9fr6na76vV66Tl5PoRvRQg5dOs/c+lV+jx/IN/BgPXS7XYlHTlZEI3Y8pF1yjW92u7rlDG4E8Ot/d6SgavChSRJycGQ5wgwT3mPP2udMeZZDbRAdDqd1F7AmL2Nxx09Tvi5vm+Z6qIKBJ15z1tSyEVwZ4+LAwgKXDdvSfBQUuYLMcnvk2fq68rnj/nxViifQ1//LmDcBLgu38VtdR+r8QUCgcCtjvgeDgQCtyWuSVAoy/Kdh3/fXxTFz0r6UEn3FUXxuEMl9nGS7r/Ce18q6aWSVBRFiX16PB5rvV6r2+0mEulkH3KSkx0qv+yaIFUryV7JdAu0V95zi7u3JkhHvfySkmuB67hV3K9B5dgJGIBgUuk/nJf0fs7NHHhVHpLtoYR524SLG8vlMpHzTqeTWgv6/b6azWZq4yjLg2055/N5aodoNBoaDAZJrGA+qeDjCsEVwX1wD7PZTHt7e+r1epUKte+2kNvZe71eqqCz84DPnb/H59Pn0F/33noECRcUaAXAreGEG9EGoctbXFxM8OeBUwFXgD/P4/IScJXwjLvdbnou5Ap41d3XPteTdFmWga9J3sNxLsD5sR6s6YKZz4eHTvpz83XBtqO4UBCIPDvDx+KfOxw9nNs/Q97m4K0Z/O1CUj5f7lZxQcP/9u+XfC2dVlyv7+JhcfbmuOFAIBA4ZYjv4UAgcLviUQsKRVH0JNXKshwf/vtvSfpmST8v6fMl/bvDv3/uEZ4vESfcAzgBpCMHA8SBSiKVSa84euJ7nscA4XFSyftwMni1FXgV/ThxIN+Sj2qrW9Mhok6kPQzSAaGDeHFPXB/ShM2eSjfZAoQ3ttttdbtd7e3tVUIsyUuA1GKvh3zn98213KmBVdzHxb3nbSG4JXjdySjP34l3WZZqt9tJUOD5+L37XLld390AjJPzu1PB7fgQ2I2NjUogoVv5XVjKW3H8Z8SB46z7CAV+77TCeCvP7u5u5bicvPu69RBOr7j7PfA7MjyOq9gzb07aGbcfl8OJOudgzP43Ths/lufjn9lcgPOx+i4ROHI8M8PvNc9KyHfN4HuA9es7WPgzPe2iwvX+Lg4EAoHA1SG+hwOBwO2Ma3Eo3CXpZw//h31D0o+XZflLRVG8VtJPF0XxRZL+QtLfeyQnc7ICse92u5XqLEQZIkDPvlc8ncy76wCSRa98t9tNdna3zkM4sda7BVxScggMBgMNh8NEztxi7iKBkxjO5aSGcTpx8d56HwuknnMzV14lp63C0/UhTWzx6HNNm4a/l8wAxArgogbki8o9zwdix9y32211Op10nW63W6nMQxjr9Xp6ru7uWK1WaQxOohkD9wgxpcUldxgADwL0bAzmNncaMFdsQ+hjzkk34+CcrEUXODqdjjqdzmXWfOmg/YHtEtn9wQUub4vI3Qo+XoQbHw8knB0UvErvLRj+uXHXQN5CkIsCktLn0QU5xCB3j3Dv/l7el69lH48LG9yDzwvPJHeq+Dwd515ptVpaLBaV7AfGcJPgun4XBwKBQOCqEd/DgUDgtsWjFhTKsny7pL92zOsPSnre1Z7vwQcf1ObmZiKVCAcQnvl8LumAAHQ6HRVFkYIEqeQXxVFmwuFYKtVIiDM9+pBEBAvIuxNAJ660SXiQnVeHG41GEkFov/BKen4uiPJx9mrvTffQOM5Tr9crBBdS5an9TjIZ+2w202KxSK/N5/NEQN3NsFqt1O12VavV0u8Rd5gvr4pzT1TmvYLc6/USYZOOWh3ytgEnzPTg83sq1j5P3gbg9+tW/uPaJCCj3su/Xq8r22J6FgXX8xBDfgbeDuNj5Jk4OWackGrfTpH3ktuA48HP63+OWze+Ttw9kIt2/l4n8IzTxTnGyPpH7HJXCPeEmOACGu/3sEPewxjdCeJuFJ5nLhryuXDnEGN39xFwkcSdK/758XHw2TvtuN7fxYFAIBC4OsT3cCAQuJ3xWGwb+ajgBInKuFu+qbpD2jc2NlKlFmIBMcDO7iTNg/S86s/vvI0Cwu2EZLVapeq7Bz66OyG37EtHwgDExEk/uQdOwP0+OE+e6eCiCdfwcUpH9m7IKLsI7O7uJoKbV/kJAvSWAM888OoyooP3qiMGeG87TpP5fJ5C+byK7C0qHkhIYKVb2Hlu3D8En2N4Nr7Lgm8f6Ofjfnhu5CbgdmF9sDZc3OFZ+DPy1haecZ5d4BV5qSokQcJpE4FII37wHCG9vmY8S8FFtHzte5uQ/8mJtlf8fe7zlgJ/lownb11wdw4tOawZd3AwFoRBxp2LHAgKPHuf11xgyefXP8/MbT4n+ef+JnIpBAKBQCAQCAQCNxynRlCQVCFcTlggeGyv6NVjqu5st+dECrfDbDarkHXO4aKCdGQbhwxCMN1mDvFm28ackGPxdrLGeCG6tBP4towedghB8756SDEtAdIRefRxS0fk1XvqEUQIW6zVapWdIrgH5tyFEA+ty9sNvLrsJJp79HHn1X2eE0IHczebzdTpdJLbA5JHtgFj4xy5rR9RiOeF08KdARBxt9rnIZreeuBE2SvZHMMzYoyIT/m9IqDwms8lQDTx4E3WNs+dayM8EFia2/URB7zqz+uA1hXWm68fxpznMrC+vX3FhQZfNxzPsbmTJBdZGKcLCHn7A2PKWzIYh4+d5+b3zHFXypvwnTQCgdsVi0/5UC226g9/YOAR447fepf23v6Okx5GIBAIBALXDadGUMgrotKRVZ8cAA8q9Ar1YrHQcrlMgXfe297pdDSdTlPQnZNL34JQOspugBhDcCFAVJF7vZ663W4SGmgPcALk4Hpu94ZgQvTp5Yb8kXvgvfBeBSefgPG5hZstMr1SD8kejUYajUZJoJGOtgL0qrsHEEKupCNLO/fJ80I4IaMB4YRn5H31ubXdt51EUOh2u2q325XtHyG7CCAeqOeWe+afudrf36+4XbDueyaFb/OIAMOaZD1AvH195cSb6+atGKxfScnF4XPqYhD3lodm+vGIP7RH+DoFfgzr1z9f/oz92XPP7gRwUYJn4pV9bw/x0ExfT3lmg5N21g1r290SeUuCf6a4not7uXBwnDCQ/8x95K0ggcDthOJD3k/3fswg/fxtX/wyfWpvdoIjuvXw1F//ArV//yP1xB98s/YfePCkhxMIBAKBwDXj1AgK0uUVS++5d7IEGed//iHKBC1CbLBYN5tNzWazROSoWOJSwBXAewiTWywWla3knPB4P/lqtUpVeAgp5Jj3ekW12Wyq3++r0+kkUSK3xPs5nez57g6IIt7bD/FjXrxCW5YHW0KORiM1Go20xSYEHeLlc+NBfNyLizk+N8wLIgvnhDhCql10cYeGE1J2hXDrvFe8fV6c/HvF30UbnrO3qrhw5eTZt5KEXLvQc6UcAu/j97XKLhy818UfnBfkYQDm2K+FUORzhtsm/2xwH6wT2jW41zxnwF0APh/HiRCeRcEz5FjfJQIgiiEocB5aPPjM8DdrmjEjFjBvx7l18rnza+etEPnzyV05/t6bJUchELgW1J/6ZL35K+7SU9//Xv3hM3/0pIdzS+NPn/sy6bnSe73PC1VcfJok6an/5DUnOqZAIBAIBK4Fp0pQkI7It/fnQ1wITHTCIx1UfHd2djQcDjUYDCqW6Nxi7TsSuAXbiZPb052cOuGiYk4rBKGRnAeC4mTRCU2j0VC/30+kxbeZBFwPwr+3t5eEEQg/Agouh+PIsu94sLe3p9FoJEmaTCaJwHEsY2+1Wur3+5U8iby/nDkiiBFBwR0FXs3Hul+v15ODIXdteL8+IYkIPTwHSLS3c0AyEQJ8FwH/460AzCng/S4M+Ht5n5Pi3BVAm4wLMe12O23riaOA58V78hYMxuOVfa7pIgNz6qTeXRsuKkhKzgNvIWAMvma4T0Qgd2nk7RouOLB2nOjnnzOuhbjEs3RRhfv09gN/Hr6FaS4w+jP01iGfU793zwwBx7WGBAK3Ijbe4/FavGRfb3ufl5z0UG4rvP3jfij9+xn3vEC7k6ae/kW/e4IjCgQCgUDg0eFUCQoQlN3d3ZRy733yXlX1wLb9/f10vFdN+Xer1aoQXUhkTs6oROdhek5CuJaLG7QOuA2blgTIs4cXegAd7Qbz+bxC/N2CjWuCrAjIkpNNyKRX6nl/npw/mUy0WCw0m81SxZetDJ2IDYfD1MfvmRJUut2BsVwu05ac5CVA9PMASe6ZHSdyd0LeR08bCgS31+ulaj1OEklJGHHySKUeskpV28knQgNENRcMuBa/O856L1VzBRw8Z+bK/8ZFQ6aFP3vG6fZ/xgz82ULQya9gzHmGA6KCCyx5NkKeWeBik+cheG6Gj8vbdHw3Dc9ZcGEjH6O3V+TjywUT1iiOGm+7cGeFP7d8jrlH/0x5i1EgcKui3Ozrle/zUyc9jNsab/4bP6Kd9VzP/7W/oz9583vo6V/2Oyc9pEAgEAgEHjFOjaCAtdiD+tzST8Xbq6iQKMQEwv0IR2RXAa8Yu6DgpJBQQYIfHU4CqSyTveAVTG8NkI62HqTHXara8CFO/X4/kWbGndvRERXY7tJt4cyPky3uK9/NYn9/Xzs7O7p48aImk4kajYa2trbU7XbVaDTSbgyS0u8Y22q1UrvdTuICbgnfhtIzHjxjAZLmPfE+D3kmAS0StCog1LRaLfV6vUpYprducB3WALtbsMbc4XDczguQUAgq88hz53kiqvgWmKxH1q2TfG85Oc5lwHt4LV9LiFaeTYBg4sdD9lk7rBtvG2CeXbBy4uxChn9WvLLP2qrVapXdO/x557ueuCBxXN6BiykOP5eHRzK+49xGCFr51qKMBbiI5O1BzWaz8lkKBAKBxxKbtY5e/oyX6y+eMtFL3/ARVzzudc8Zaj2d3sCRBQKBQCDw0Dg1goJ0QC4Gg0EKTiT5v1arqdvtVnZf8MqmCwVU2L0q7cTW97XPt5xbr9eaz+caj8eSqv39EFUC9FarVbKaX6nKWhSF2u125Vy0NyB+dDqdCpnM8xY4DwQSt4W7G5yoOVx0QKhYLBYaj8e6ePGiZrOZer2ehsOhGo2GOp2OVquVptOpVquVNjY20vjINOh2u+keR6NRcjyQA+HOCKlKgKVqzoDnHXg+AVsn0iaAKFKWpdrttjqdTrLVk7cg6TJ3xHw+12w2Sy0QXln3thjPMoDUImTkOzWwDmjH8J0juAfGx+8gqDgDEFEkpeNphQBO6P1v1k23262sf6maNeIuGcgx7TnHOUe8pYfn5cTb21189xPEC9apCwpsEUk7D/eVBz3mosJxrzH3kH+EAh9vLjy4Y4NWmLxlh8+Nf+683eK43IVAIBB4rPDEjb6+9c43XvH3v/j7ba3KDb11eZde8b6DKx4XCAQCgcCNwqkSFKjW9/t9SUqVb34nKVX7fdcHqbrnPMjDBPk7D/lzAgNBhYw4MTnOZg0phvi2Wq3UI++Wbd9GkOshgHiQHYQKgsbWlxxDhZ1tKzmv97tDtOivp6I7n89T6wSuDsgm1vvRaJS24mw2m+k6EEhvaxgMBqrVappMJrr//vtTSwbCgLdFOLxSzrNDNGDMg8FAnU4nEWKeLUJDu91WURQ6e/Zseg64LGibmU6n6nQ6lXYSroF4xLx7Gwn3iBCDMOQilDsQuGf+ILpApBF2eB+CGaINrg933fi6wonBmoJUu8sBV4av17IskzDi5DvPh/CWGdaNdLQNqbt8/LPm218+VNaAf0bdVeT5Dr4jBa4KWmkQLrgXF/Fy1wSvuSvGj0EM87nwdeo/h5gQuNVRP39eL/lfPyipf9JDCTxCfFL3QEBXb6LP/POJvumdn6j7PmJ0soMKBAKBwG2NUyUoSEoVaO/Lhii5Td4JDASX3/nWhvTZ87dnKeRhfd4/L6nSf87rHM81OBeVfH8/QATwfnMId27HBlRZIdAActVqtdL9Mn4q+2x3KR0FWU6n01RZhyz5lpmQKHrs2eGC8zIH7XY7benIPGxvb2symSRBwXvQuRf+9nA/z5GAjEtK//bfcTzEcjAYpN0TIOSQc0mazWbqdDqaTCYpW4N7QHDI3QLMA/MI0c53ZPCgPxdDEB5wDywWi8quBC4sQNL9/pgjDxmkgt5qtZIAwtqEXPs8+VwwZ+5i4L2+nvm35xCs12t1u90kbiyXS83n8ySq+G4jTvTz3AJeZ92Tu+Ak3sVBP6e7h3gmHOO5EVzLPyM8S59Pb2NwFwLfGbzueR7R8hC4VVE0mvrZN7xcrSLEhJsVT2n09SPv+Rt63is+VRsf95dSiKCBQCAQOAGcKkGB/4mHuGB/d4cAhHRvby9V7z3p3VPgG42GptOpLl68qJ2dHS2XywqRdzJ5HPFyi7uTPMQJJ3c58rA37o9zOLF14pg7Fby/m2sdVxGGoEJwmRPvvcelwE4LOAAggggvtEbs7++r1WpVCKO7JCTpjjvu0Gg00gMPPHCZ88DH6aGRTsR5TgQTImAgSFC1b7fbieQjMHn7B4KBiw/83e/3K+OCIDcaDU0mk0RwXbRwd4k7NBCYmFvmHcKLaABJXa1W6nQ6af1y376+aWWB7HpOgItR+fPHuYAzg+fqhJi14c/OwxCBV/f5zHE9HBguxuH6yF0SrDU+i7lQxucoFzwkpRYJbwORVMmv8HMwf97yw3P0NgxEJpwoHqLJOD34NW9bCgRuVbSKxsMfFDj1eOX7/Lye+dOfp/f8B29RmW1BHAgEAoHAY41TJyjQmy4dEXUPh2M7Qcg+ZBLkwXO7u7saj8eaTqeVnRbcRs7xrVZL3W63YpeGXEBuyC3IWywgg5AWiKlb/6n+u+vB0/AhmxB/xsn5vc+bJH+3s7sQQbuGt1ZwDFZ4yOx6vU47P8zn84pzw0MK3QXB+Wu1mjY3N3Xu3LlKQKOTRa9Gc30q+lTfaWugxcAD8rhmp9NJYgNzyD0w5/ybfAvG6s+LHAnuaTqdVoi2hyq6fd632JzP56k9BALsFX2OxTXRbrdTDgXPCUGE8eE6cUKLa4A58h1FXIxqtVqpgu8OANY399DpdNIz5f2IN8y7r293FiA+cU6yCRyed+Cv+X1JSkKACyf88fyK3B3E54W15CKgixrknPAZ43x5mxHj8jYSxI48yyEQCAROK/7kOT+qJ3/Pl+iZ//TN2h9FC0QgEAgEbhxOnaAwnU4T+en3+4nsEFjnCfsQCg8tdEJHEKG3GkhKTod8G0mq4LPZrFLF5PqQEwgiZBRLPVZsqZpM7xbxfNzS0VZ+TpYdLqhAxLGGQ5jdcUHLgPfCO7FE/EB8KctSs9kshf55dgXv920bpaN8hmazqXPnzmlzc1Pb29vpvRBmiKdvu8hz4u9ut6vhcKj1ep22svSdD5hHiDWv8wyY47wCzxwgDqxWK00mE63X6+QaAPTq+/h8pwTWAc+32+0mcYvcBJwQOGy4B4g+QpBv54iTwK/lFXh3THjLhjta3FXgrgHWjQc0IgjQPuF/XExB2HKBzgU+sip87J5VwLl4n7sicKX4z+7ycXcK7TG4JPwzgfiB6JOLG8wt1/PXELVwOCEUcQyfpXa7rclkokAgEDjt+LNP/gE9Zfplesa3vkX7D1486eEEAoFA4DbBqRIUqJBie4YEUXX2sMHjLPQQQekoXBFXAgSJoL3ZbJb6zSGSEFa3Vrt9nZ/b7bY2NzcTWSafAFu6Zw1IRy4GqsguNuTp+QBS5SIAxJCxbWxspJ0ZcDQwLxsbG+r1eqrVDrb1g7y6GMKx3moym81SzoK3mCAo7O/vq9fraTAYpGczHo+T7d4JbqfTSfPj2Qo8W3/Gg8FAjUYjVfEh6U4ivZeeHAfWAMSe47G6EyxZFEVyqkCIPfASguzwFgcEAq9g8xpr0nMjEB+82p6Te9omIO7uBjiuNQHy7E4K1jqfm1wo4nyIZfv7+2kXj+NaH7hv3ufr0Z08nJvWBw+7zFsZaBNiXvg8AncIIEq4+IKjwOfW22FygY7nk2elMIcuuPBZ9DYJ1n7utAgEAoHTjrf9/ZfoqXv/UE//d28OUSEQCAQCNwSPWlAoiuIZkn7KXnovSf9G0pakL5F04fD1F5dl+fJHPKDDCqlb5SGykFtIAHZn35YOEkAVdrVaJeKJywD3Qk7AvNLrYXoQSwhNo9HQcDiUdGDR39nZqYQ+Mg4nhVi5nUhJSi0QLhZAviBxuAu86i0pCSDcL8TRAx29vYKAy263m1o3vLpLfgK2eidibM04n8/V7/d15syZJGh4K4KHA0Kk/VxUmxGJ+B332+l0kljhSf8c52GG9NkzNnZQgKjTXgDR9Yo9YZceiOjk07e3dAIPIfU5hth6xTx3qvg6wL3hrR3uooEcc07PIvB1wPwgVni4oBNxnnmr1dJqtUpZIg7/TElKIgF5HHl4oVQl5/ycixDeAuSfZw9xZF5YQ2yNibjkYqJfy0NDfd78c+Rz424M1vtisUjfN+Bmy054rL6LA4HAzYk//dzv1/P+1xdp41dDULhRiO/hQCBwO+NRCwplWb5Z0rMlqSiKuqS/kvSzkr5Q0neWZfkdV3m+ZFOnlxxLORV1SZVKI+/LU+0RGSBOvV5P7XZbs9ks9ehzLoQKzouVniq5CxteSYZMdjqdtFUkBDQnpF4hploOWUIIwILvAXPew+25Ek6CuRZVdye9HOs5EL57AudmzvgD2WcOIWU4Afr9vs6ePatz585VWhdwJRD2KCltwUklHoGG8zWbzeSOgPRtbm6meXUyzfwwR7nVnXn0NhPaNfb39zWbzdJ1cDN4/z6tJD7vPG8Isa9BrumCCD/zbH0d8Ey8p98dKpzHX+f5As/LkA7ELVp7cOQ4EF98JxTf5YFjWM++WwpOGwQrRBoEJ38m/hkGPLv8dXcTMG+eG8H6yHdi8Tl0ASJvE8nFPM+F8HYWnhPP3Z0PucviNON6fxcHAoGbH3/2+aXe+w/Oaf+BB096KLcF4ns4EAjczrheLQ/Pk/S2siz//Fore3kvuYfHeeXQhQMINSSYc+TBjbgS3CngJM5bH9ya71Z2zrNardTv99Xv91Nrg6TkguD6kCcEBRwFPh4nfVi9paOQOUgeBNzbITgHwopXyL1NArs7LR/udnBy6WKICygu0ly8eFHj8bji8PCKvdvrveLNzzhAyH5YLpcajUap312SOp2Oer2ems2mer1eJZQTkYCKOdb4RqOR5mI+n2s+nyfHxWKx0HQ61WQyScKKu1hYc4Qa5vPhP7uA4FV65rkoCs3nc0lHVXKCE1lPkHR33LhjI98aVVJa695aAumm4u6uDEQeX8d59gKfJZ4LgoiLSMyLE33PdGA8PjfekuStNfl8uWDEmstbLlywcCeRZ3VwT/654X59m0muy1r2z42vZRfJbjJct+/iQCBw8+LtH/dD+sQ7P0sKQeEkEN/DgUDgtsL1EhQ+W9JP2M9fWRTFCyT9rqSvLcvy0sOdAMIByer1eqlCjYPAe60lVSq4HOcWZnrwm82mRqNRxS7uW05CUp1oS0cBiNLR9nn8gRAjKkBkXeCQlAQAz0zgfiE5VFtbrVYSPABVf0nJHs59u2AxmUw0nU7TNdlqkHvNd8zwFgSIoVeJpSNixr3TfjCfzzWdTrVYLNTpdCrWc0QPyKJX83PwPgQBiF+r1dK5c+fUarV09uzZRNBxdfDMCFLkeZDXsF6vNZ1ONZ1ONZvNNJlMUjYELSbMA6LD/v5+ahfJ3QEu1DA/XvH2Z8Fc8bz9Pl1U4D2528RbFXwHAxcCPJzR22OovDsZdlLsbgnPB3ChwavynN/vhffmuQV8Ht1d4b/zVog8A4HPNOsSZwRrgu8EF0oYN+f2tevfE9yvCwqMDQHHX/fPJ98dNxmu+bs4cHtg9guPP+khBB5jbHz/SOUnD7Qej096KLcb4ns4EAjcVrhmQaEoiqakT5X09Ycvfb+kb5FUHv797yW98Jj3vUjSi/y1vb09jUYj9Xq91IfvFWLIBETFLe24EKhUUzUlhBCbthM/b32gnxrS5gnwkCSOw/7tvfhOjP06HEM1HsIDcaYdIm8FcMu1B9YhWtDiAKGXDvIN9vb2UhihdLQ9Hy6KvFVEUoXU0WdflmWldQHXBHPONpNUxAlRZJwQflwEuAL4w31irWccXkkn/NIJvmcZeL4Abg0S+ZfLpWazmUajkUajUWp3gZi2220tl8v0zLiuP2Pf3YJn6GGGeRChCzBOaHE8cA/8DsHK74Fn604bDx504YdnyDXJsnCi7+diPfIMuJaTbdbuleDPgLWLOyJvt3C4S8HzIo5zySDC5cGqLgQi2jAfeRuTtzrkAgSvMwc8O2+b4PibSVC4Ht/FbXXzXwduUbzyff+bpNPf0hN49Pj5p/2SPrH1PCn0hBuG+B4OBAK3I66HQ+ETJL2+LMv7JIm/Jakoih+Q9AvHvaksy5dKeunhceXha9rd3U32f8gsJBYiBDGjIk3CP2QNol6WZbLN9/t9dTodzWazRIA4RlKF3HoGgafzuxPCyZiTUemIuPhWj07gqXxCSBkHBBfC5b3eCB0QY8Ir+/1+pQ+cgEJIlffcO1Hy6q23LjDOZrOpwWCgM2fOqCxLjQ73tfaWEMQC6WDLzV6vV7kPz0XwfIyNjY3kCvBdEmhF6fV6KYvBMwqcVDIGzsv4EQKm06l2dnY0mUw0mUw0n88rxN1bSzw3gTU4m82SUIWwwjPIHSKsXcaAkMXuGx5i6GQdQsy5GIeLaKwTF1AYc+6oceLsZBzXC2u1Xq8n1wufK+7BnQW5C8FbIHgGfHbyrAJez90c3BdrjTl31wxrAeEuH4t/Znlu7sBhDXBP3trhLgT/XPizdTfKTWZXvebv4mFxtjzumMCthY9541SNIsSE2wEv+K3Xa7Tu6GeeeedJD+V2QXwPB04UF3/h6fqqp/6qJGmtmn7ive854REFbgdcD0Hh+TJrV1EUjyvL8l2HP36GpD+82hPmfd6+pR+kBMKEoNDtdhMRcUcAP3c6HXW73XQeCAcVSm9VqNVqKRTQxQvGJh0FRiJk0GLhhIfxIkwsl8skIuBI4FivTPv2k1I1BNDbLTiXuy8geVSiIUmMX1Ii9pD7PLyQOe92u0kk8HwKtkKUlMglf6bTacos8C0RfT7y3vaiKNIODf1+X1tbW+r3+ymck9aF5XKZBBhCLBkz5JN1MZlMNB6PNZ/PK4GQ3C/PmmeBkECGgrdgeI4FQg1z7K0RkF7fpcEFBI510urZA8yFr7O85YQx8DwkJYeMrxMn33lOgKTLMi7y1gX/t3828nF6UKY7Ajivr2UXVPxevOXFQ0W9JcjnmTWU797BeTlXvutDPkbu2+/Xsxf8Pm8SXPfv4sCtiRds/p6k/kkPI3AD8NmDS5Iu6e63buv/ftrTT3o4twPiezhww/EX3/CR+okv+E5J0tMbv6Nu7chd+ew/+8vKsc//3S/WE//eG2/o+AK3Pq5JUCiKoivp4yR9qb38fxVF8Wwd2Lvekf3ukZwzkXXImTsEvKo+m800Ho8TWYZsumOA4313A84JOYfAQEhpJeA8s9ksiQaQQU+7z8kqFVLPTWAs3qPNPRE6KR1VXd0JcFxAotvUPQiPimxul2ecHuyHKAFRm81mSVDo9Xrq9Xrqdrtar9eaz+fJbt7r9XTu3LlK1dvJMYSea3H/fm22I6RlpNvtanNzU8PhUFtbWxoOhyrLMmVDsEMDmQBsLenbU65WK81mM+3s7OjChQu6ePFimh+cDJ1OJ42P1zwc0DM5sPTnrhgPiHRXAwGQVP/r9Xpy2XgIZ27TB7RW5KGcEGAq+YyP9eRhljx31sFxAhdiju+i4W0LbFPqbUG4Trzin7cCueOk2Wymz4oLHdwLDhcPf2QsHrzJe7inPGCR9cbPhC16FoPPi8Ovmc9d3oZx2vFYfBcHAoFbB5/am2n1lrfrpU9/r5Meyi2L+B4O3GhM/86H6Re/+7vULl6rVtE69phnt6qv/8FHvkyze3cvO+5zPur52vuzPz/44Zj/Z7rp8VAFolvxfm8wrklQKMtyJulc9trnXcs5nTxBbKgyQ/yazWYKBpxMJsmePxwOjyXhkJ5Go6HhcJis9AT9QSAIdYSsYTVHpGCrRcL8Ll68mHIe3JrP2BmDiwwIGt4zDyH0AD0nN34u7h9C7vcAOXYHBMTIq7kecom13C30x/Xie7XYQx69H55qM2PyVgpJlcoyz4AWh8FgkISEbrerer2eWiYmk0laCzxLScmBAcnc3d3VdDrVfD6vbBHqpNy3G8SZ4RkShDbynCDGzBGE1dcqgpSLQx566MIB88+c4gDg/nBr5OGCTr59DiRVhAq38PsYPDfkOKdALvoAKv3eouCOgDxvgawGf9a+Bpj3er1eGbefz7eM9DYQn0PWM+NljC4I+fz7M3A3g7+OIOchqTcLHovv4kAgcGvh7/RHevsfjvXKD7pDpbkWA9cH8T0cuJHYe94H6Te/5z9J6lzV+xpFXZvF5e/5xd/8H5KkyXqhv/f0j5HWa60P26hvNtS61RyS7U9/f736O15yxeM/8f2fp3I2Tz+X+/vxHXmVuF67PFxXQEZcFICoeSI87oJ2u50IKvBWAre8QxQgrBBpqdrOkJNg75enwp3vZEAF1a9HxZXXIDF5b3d+7/zbnRme0QCB9WR8z37w4MPjHBncn1e5vVILmSOTAaJG+8RisdB4PE4/s1uCb1uI28EdDB7+SMsGbQ6bm5vq9/spYwHHBM/J55KWCrINqFSPx2Pt7OwkYYj5dfs/c8oWn6wHQIuD5wRwf34MBNvt+YhNhIrSrsO8Iw7s7u4m0YZ5y10l3Jc7IfwYXxe+3lz44TjWtT8HRDQXKbxdwFtdcmcAYo2vPT5fCG++tlmHLvCwTvLsEcQVfs6dAggMjNUFhLylhPXsbQ4uYOS/4/cISi6uBAK3AjYef4/qN1crT+A64uvOvk1v+n8fp3d9Uk/7D1486eEEAoFHgfI5z9Yrf/QHH5Nz92tt/a8/fZV+ftrVS/76X9f+ffc/Jte5VtR6PdXOnjn2d//11f+90vYhveohz/XyP3hl5eevftcH662f/h7p5/WDF7WezR71WG8HnEpBwXvRnRxAfL3PHXIEWfGeeK8AQzggem7vpsIvqVLp9GonxAgitjDVDks8tnes3/S2E87nhBjSNxwO0/145d0JU97j7cKGV3NdhIGsuz0euz4uCM6Xh+/xmlfjPWPB54n7nU6nqfJONdyDLnEjcH8EHdLuMBgM1O12K/kMXr33ce3u7mo0GiVLO26V2Wym6XSa1gXPxdtM3J4vqeJ6gDxTAScE1MM483nzYEUnzVyTeeD+EXeYNxcUON4r6t6KcJx4hGMGBw5k3nMAvFXI22P89/nuIqwzf94eYooo5aIA88V1GBufRXcpeKBj3rLhz9vXO/PD7xysMc9JOC7/gHPlzgeej7cVeU5FIHAroP6sZ+ibf+FHdWe9d9JDCZwgfvCJv6mP/slPU/cLO9q7969OejiBQOAqsP/cD9QrfvyHHvPrfGpvpje/8m36tc/4a9p/69sf8+s9EhStlvR+T5MkvfWz+/rTz7mS6+Daduj6rsf9rvTbRz8/44f+oZ78P462yylf90fRJpHh1AkKkFvv3/b+fK980gPuLRKeaO9uBt86jwR+CKuTdifvECbOBVy08B0WqNRLR1vfeYUXmzdtGr1eT/3+QTDWYrHQfD5PhE5SGpdb1Ll37+fPK+85mYWwevgdFX4naPSbey7BbDarOBpo3eAcCCvkB0iq7LpQlkdbVpLJsLm5qXPnzqXtMhEVOp1OIsQ+99JRtgQ5Fdvb29rd3U3bXF66dCkFN3pPvq8f5s3FEar6ZHLs7+8nUcO3p/RtEX1t5ustF5683YTtS10Ac1eMBzp6CKOLQazhvO+f+6V9h/XiOQq+tn38Xumn5cKFHUQ88jRY98DdAflYvL3AXR0uFPjn251HzJ8LEe6SyD+TvsWjf47yf0uqCGjAz82ch6AQuJXwsT/1Wn1Q6+bZCjXw2OHXnvVzevKLX6Snf3kICoHAzYL5p32ofuP7X3rDrvd1Z9+mV7zkmdLzbtglj0dRaPHJH6LJPXW97hu+/4Zf/s0v/P7KZq/P+eov08ZsrfYv/M4NH8tpxakRFJzQu2XeiaGnvTthg7h4ld/JmbcLePVcqlaonQjxOwiRtyFgkYesQfYQNJz4QeghRfT2Iyb0+/0K2aG/n10LnCAiqHi7AmPjPj30z7MaPM/A2xSw9Xc6neQmoB0hJ93MP3PSbDYrLRR+TcBr5FcgJpw/fz7lE3hrAsLCer3WaDRSWZbpOKrftFxcunQpEU7f8QPRw7MKfO0wF4wtdyfQqpDvLnDcWkDI4pm49d8t+/wpyzK1afAMfS27M8efF+PLSbCLBHm2gq/l/JlwPPfswhXtHggt+X0gTni7R55v4Z8lXnfCno+Na3Gfvg2kj89zK/g8eOtQ7qKQdFmmgj8nb2nw7yDcPz6fgcDNjPmnfaie0f6Rkx5G4BThPZ96v2rPfh+t3/DHJz2UQCDwMLj0BR+h//Nv/6OkxsMeez3xIef+XK/56A9R/ddef0Ov67jwpR+u1/+bGy8kXAm/9V0v0bJc6W/8y3+kMy979UkP51Tg1AgKwMPkvIrqOyGwVSFkhzBF7xGHnDkB897xnHhDQJ1AOdGETHL9vEKMxd6rvfSCuwAA+ez1emo2myn4EXeAuxqchDlhw12RV1QhoNwXogzkS1Ky3a/Xa02nU7VaLZ05cyaFVHJ/brV3OLGFwHlAo7c3cP+IMGQlnD9/XufPn1ej0UjCxnp9EDaJyAKBJ4+Aa7nDgufiuwL49pEe9JeLRE50PR/CSTWOEs+7YH2wC4i/39cTz8QJKWP0OWOHAm9B8Gfn22K6oACxh1Tnggn3imDhnwHPNcizOZgvd+b4caw5xCR3xXjuA5/XPMTRRQnO6+vYj2GM3kqzXC6PFQP8s3hc4CSfvXw3DH+vt8H4ewOBmx3jz/5wvegb/7s+qXtzBmwFHhv8+vv+D73Pp3y5nvCGkx5JIBB4KLzraz9Sv/rV365WcePb1b71zjfqaV/yQXqvX7vhl5Yk/eW//Ei98cu/V9Lp2nmrVTT08m/5Dn3M2a/T4/7DQ2c03A44VYICmQIQdtoaxuNxIiSQiWazmcgFOQh5tdEdDG57d3t3u91O1n3ej+UbUkvVWzqyu7sd3FsiGJ9XVb3PnvvsdDopSJKxku0wmUxSrgPnwgmAE4Fzcn/cM8KGV/290tzr9SqVdXY14D2QdMi52+U94JLWhE6no263m0ILIcNY5gkfJDhzMBio1+ulnSQ4P+6EVqulVqt1mTOCf3uOg7cwICS4MwF4mwPPDDLsQpVnd+SigDtbXADIdzBwt4jvMsEYXHhwscFzQiRVQjWd3OZhgy4G+I4iuZMnh+cDsD7cXcA4uQ73iZjH77gWrRI4djgvnxfWFOP3zwPX9Hlwpwvz6XPtQoc7EfxZ5GKH/5t1wM+5+MPn/7gchkDgZsLO5364Pu9f/qK+YHg6g7UCgUAg8ND45i/7Ed1xG2bfvO07Plx/8NnfpXpxOlv17qj39N/+8bfr03tfpyd8y+0tKpwauQfifeedd6bt2iDHVNX9WCc7XkV0lwHCg4c7Qm7IKyAYEFKB/R/LP2KCB7XlVUuuBXF2YgyR5t/9fl/nzp3T2bNn044GTgpdwHCCh2hCNZ+5cTLFOYqi0GKx0HK5rFStEQAGg0HKn8gJOlkC8/m8ItBA2N2Gjwji21U2m800p25b96q/t6PwjJgfd38wJoeHZDrxdyeJW9yd9EOaeS+ChN8PfyCjeQ6Dk92c5PLzcrlMbRnupCDHgrwJBBB/zozf16vnLXgbjz9zkDs2EKVc1PJMEe4/b1FAQELIY/5c1PC2DX+mCAl8BtwV4K1BV2on4P0Ei7bb7dSGk7uWfKy0HnEOvwfmwzM2WF+efeEZLlw/ELhZMf7sAzHhK7b+8qSHEjil+PTP/E2tPvaDTnoYgUDgCnjrf/wwfXDr3Sc6hn/9gb+giy/8iBt+3R/6zJdkuzWcPjy90dOPv/A79Y5vufHzc5pwqv5vuVarJXJPiCHEhMT+PDtBOmqBIK/AdxBgR4acnHvKfqvVShkCkBeIIUF9kBl3GUCevGoP0Xei7PbuVqulzc1NDQYDtdvtSgsDJInzeWUXB8XGxoZ6vV66hnRUmYWIcg5JKX+AcZGZ4ALJdDqt7HzBeCBVRVFUyCUkjFR/AilJ64dsknkAgfNzOHmFdPq1eD6ebUEbgL/u9n0n53nF39sD2GXCdzbwHntaN/x5c07WoocOes+/t6u4w0Q6EGXm83la1/m2h4zTnw2vcX0XxTwHgq023dHgc8y9+O8hzxzr69oFGc9QcOHAP7c8v/x5cXyz2UyfPa7H+Z3Qt1qty1w9/nlnbv0ePNfDHUJ524ILgb5DhSN3K4RDIXAz49IzaiEmBB4S33bXH+iDn/QcnTvpgQQCgWPxOR/1Kr3HRv9Ex/CC4QP6pvctdfYGXvMdP/X++mvNV0vq3MCrPjo8u9XSkz7y9v5v7akRFLzyiTAgKZFW/scfQkylld57SATVT0gM56bCCumaTCbJkt5qtdTtdhMhpo2CXQPoGWdsiBBSlci6IMLYcUdA6vv9vjY3N9XrHViXcveD29whp7gNnEBDsObzeUVAoN9eOtqtATs6Y3PxwQUNr5Bzjby6DAmjZUM6CEkcj8fpmfk2gpKSI2Q8Hqvb7VZyCXi+HgTJ/brlvCzLtC2k52X4Osh78rl37sfdJS448OxoAXChysk+ohXtBbkTIH/dBQ2u7/kNPtfe+sGc8by9RYLjAL/jHKxJzyFgfPyO3/OcXKhgzhift3kgkHCfvNdFJG8H8d/7lozeZsC4fZ35zz4uSWkeFotFEgu5L0QwF0GYd87Dsfzsx3F9FyDcGRUIBAKBQCAQeOzxpc/6TW3WTr+YAF7y1J/Ux/6Hf6qnfs1rTnooJ4JTIyhIR8Qfou/b30lH2Qa1Wi2RTt/DHkGByq23E3j13dsKnAh5bgLW/+VymcITIVONRkObm5vpvF4td/HD+8QRG7rdrtrtdgotnM/nms/nFfs9gIC5lTsnnYyxLMs0RrfwS0oCQLvdruQQ5IGUANeFk1o/HxV+6UBM2N7e1oULF5LDo16vV6zyiA1lWarf72s+n2tvby8JDoQxFkWR7ofr81xXq5Wm06mm02llPpykexuMt8uQsYDgASChPt+ec+A2eM6F2wXBw10RPHsXmdwZgNDDOT1rg+fqZNyr/IgbxwHC70GFjNl3sXCnjIsJ7hTg8+auGT+fOwWOC0Vk3l3k8u0zcRq5MObPwtc2v+c1d1PgxGHuXGzz9/vY8kBWz1Xw8fNv7jsQCAQCgUDgRuNd/+OZevEdPyzpdNv+A9KTG33V7r59g49PjaDgfeGQMZwIHsTGloKQztya7QQeEgYx8n5xXoN4QG63t7eThd1JCwTazw3Jarfb2t3dTa4Id0ZAfiGkZAVIR0QZRwVjpbrM+Bg7lV7aAiDTeXuBV3W9/YC8A0gxQgnvc8KFWMFxbo/nZ5wHEH1EAHeQMFfMNxkCiA/NZjNtFUloX97KsVqtNB6PkyjAM/FjnMByn91uNxF03zbTwxPzbALWGmvAxRQEJ+bP1xpryx0V+Rh9rXJNyDmfAUi9rwVJlS1AWevH3Y//TQsJc+guhbwK79tWcl1EINbFQ2UKIJjk98W8uMOAe/V5Yt49MJQ1jwjhn13/zsg/l3xX5DjuNW9x4HOat3MEAoFAIBAI3GjcMxydigyB9/7Nz9PTvv73dKP2var/2j36x2der1MU9Rd4GJwaQQF4/7p0lOSf90N7zoATAHcSsO2fb4foZA3HgldxIaYQDYgNTgXfwQBXAAIC5Jx/8z4XCfxaXk3GFZD3hruYkt+bpOQIwHlAC4e7INy67dXs4xwgbMeJGMJYvVefCvT29rbW67W2t7eToIBQIB1siVgUB7s3kHPBs1ssFup2uxVBgefsoXleDYfg5z87ieYPYglEGfHDcx7yddbpdBJp5/4hqV5Jhygj0uSBhZzPWxp87p0EO6Hmbw+uzHdDAHwuvH2E8xKAybN0IY2xunDAe/KxMWZ3bHi7A+OQVLlP33WD6+SBjp454QIBjhxaGvh8uxjC557Psrd4+Fah7u5wcYe2JcbguQyIGFJVoAgEbjoUhcp6bHsaCAQCgWvD/l5dZebyfSyx1ZyrXoSYcDPh1PzfstuxpcvzB5yEezgcpN53g6A665VjyAHV85wIIS5QkfdKPSRXUiLrbtfHveAEl/GRCyAdVTshjl5F9iA/d2W4bZ37hYT5PTJve3t7KY+g0WhUiCTXc0LluRBOtKUjgge5I7wSUslWkexk4NtrMj9e3SaEEoeCJHW73RQyCUlmrtbrdWoJ8XXBsXmgoDspcrGAMTAmXz+A5+XtHu7G8LyEjY0NdbvdRGKn02kSpBiPt34AF8GYX28rgezXarUUUAgx92fk53XhiXulpcHnk/H5NfN16QKDz61vo+luB+bZ3UV8Tp3cu4PI799dIe4G8GcEqUeU8HUlKeUouKBzpQwVb3fw+cv/MI/ephII3Ex48Is/XG/64u8/6WEEAoFA4FHi4ryrZblSq2g8/MGPEWbrXe0tbixdvG8+0KrcV6OIHKubBadGUHB4pdqJCf/udrsaDoeJ7CIAuJ3abfNFcRRKWK/Xk5UfOMGlst9oNDQejyu951Sxh8OhNjc3EwGEcHsl2PMJqDoznvl8nrIgfLcBxg6pd9LG38wLrQWQXXr6JSXyDvHkPW4z51yIEYyXcVB5p0Vhf3+/snvFdDrVbDarkEuvQHOtjY0NDQaDdL8Q27I82KJzOByma1HZ5u/5fJ4CGL3tAFGEtVIURaWNxKvZeTuAuyxywg/BZV5cLPLtBr1FAuFJOsrp8PwOAgRdMJBUWbPufpAOKuZsXcp85SIVDgAX4nzdAxeorhRGmLsNEFryLAd3UeDQ8JYSzuOuGtaZr8X8dz5m5oNnzbpx4Y81znn4bPhr7izhvv0zwNxwPy5WuhMmd2wEAoFAIBAI3Aic+aS36lve8IH61jvfeGJj+Iw3f6ae/sLfvaHX3PjYv9D3/OHT9DVn335Drxt49HhYP0lRFD9UFMX9RVH8ob12tiiKXymK4q2Hf5+x3319URR/WhTFm4ui+NuPdmBeAfdAQOkoFJDtBiEe7jrADj6dTrVer5MIUavV0o4DVNRns1naHrLVaiUC7KGIs9ksVYq73a4Gg0GqUCN0+JaPHlDnBGU+n1ccBpDGw7mTpApZxXmB22B/f1+z2UyLxSIJLlwXEtzv9yvbb0LSPXDQK9Ae+geJZ86dNDLvkHfpaMtO/uAS8Wq7O0jYzrPdbqvX61UCNanK4+qYTqeV+eJvt+f7+1gP/I51AKEkg4NgTMYEweZ8EHSvvjsR5r38Lu/jd7u9k1ZaPcjNYFwIQJw3d+bk22HyN38g0t564Y6BvJXGq/s5Yc7DCD3I1EU+v19IuBN5F0sQVziHC06IHX7dvM3EMyj8WBfafEtUXwOc6zjRAncEf46bi9xhcpI4qe/iwM2H+pkzGj3lpEcRCNx6iO/hwO2Ee/cmesvbH3fSw7gp8Ce7M+kvbp5dKa43HkmDysskfXz22r+Q9MqyLJ8m6ZWHP6soiveR9NmSnnX4nu8rikfmV3Gi5H3aeb855JZKeavVqpBjr2TSM0+uANv+jcdjTSaTFCi4s7Oj6XSqsiwT2fQtJnEh0H8/GAzU6/VS+wRkHeLuPeY+doiZtx94Wwb365V+yKnPC+fhmr5jRa/X02AwSKTc7eSQK2/ZkJSIvqS0NaPvtICIgsOD87VaLfX7fQ0Gg7QVJjZ9iDljbbVauuOOO3T33Xfr3Llz6vf72tjY0Gq1SqIRLRVFUVTCG2mnQFxgPplL1oGTWo7xXAFIuwse/pxwGOSihe840G63E3H1Z8d7yIRotVoVsYm/c1LOOuAZ8F7cE6xBd4EcR4B9nSAi8Qx5BseRa6/Y+3m99SXPeeA9PDtvRZCqbS7MA/ft7+f+ciHOXRtcA1HFnzGCiueaeG6GO3KYA8bnopMLFHm2xnH5FSeIl+kGfBcHbn5M//rT9JYXRLtDIPAY4GWK7+HADcSPve7DdP/+9IZf9/79qf7GL/8TPf1LXnvDry1J3/v65+rS/uxErv1o8NVv+yy917949UkP48TwsIJCWZa/Ieli9vKnSfrhw3//sKRPt9d/sizLZVmWfybpTyV96NUMyCuoTqj994fjqhCCPHhuPp9rNpul/nvOxeuQZirG0lHfNX3r/I4xUVXvdrvJdg8RYmxOnjyBX1Ili8FbDHLyxx8nM97X7VV9HAadTke9Xk/D4TAFHM7nc61Wq1T1Zi59G0wXLrzFYWdnRxcuXNB0Oq04Qrzv30l6r9dLc4NLAcGkVqup2+3qrrvu0uMf/3idP39evV4vkWZaQnjffD7XZDJJuyk4iWZO8jYPh5NN5g4BhIA+d51Il28/yTPLd9mAtPPcWCM4OrgGx7Au8tYEXmO8CAr8jaPFCTvXRCjzcfJ8pSrRdxGL47i2vz//DDJ3V2oZgaTzGfJdGRB4crHPiToiHY4Y37YUQYFnzBaxPl98zlmD+RrPMxZoz+H8HtjoTiB/fnlryEnjRn8XB25edO6d6rPe/ryTHkYgcMshvocDNxpP/6Lf1asWd92w6+2Xaz3t179AH/5zX3NiYoIkPe0Fr9cbV90Tu37g6vBoMxTuKsvyXZJUluW7iqK48/D1x0t6jR137+FrD4uiKJIFnt0AIDO0GnCcpFSpXywWqeoMWaJv3f/GXg4JdPcB5IFzQGIgSv1+X/1+P4UHUt30rSupjFL5d6s6dncEAf/bWy7m83lFjOA4SRXSA2mDhLv7gFYNP18u0kCUuGe3v/Nv5onn4FsQ5pkPiAfdbrfS444DoVarqd/v69y5czpz5kylmu7PdLVaaTQa6eLFi9re3k7X5xoeMsjzz0kx58qr1E5CXUygHcMDMZkLz2nwwEKIvYsNkG1vg8jf4zkHEFqehbehSEprANHEgw55Thyf5yYg9njbB/Pn7TXuNvEx+q4H/rmgvcIr/i6ieYuP3weijX92y7JMz4A17XkIfA6YZ2+lYB5zUcTbhHimiB4ueDDX3jKRf95c8DnluO7fxYGbH+Xv/ZHe/sMfIX3TK096KIHA7YD4Hg48pvj6//IC/c0v/g6dqT92BPvJ//NLVJvWVewXesrXnY5K+5f82D/U677wO9WvtR/+4BPEK+d13f8zT9Sduvekh3JiuN6hjMUxrx37f+VFUbxI0ov4uVar6c4776z0p3uVFwIAUVosFppOp0kwgAxQRadq7MF1kCsngn59qvSce7Vapb77fr+fhA6IGkRlf38/iQ2cC0LGdTkX95VnG1Ct9Qq2pNRmAWknrM+3RURUYA7IjkA4wV0BGdvf368E1jFXuZ3dd77w9gXGDbH01gIndV49pz1ia2srzTPj5+fJZKILFy7o0qVLqYWDMXtOhI/Dr+F9+z6Hki57H3OzWq3U6/UqAkvuesjFAbfo007j7QHuBnCnA2vDxSffPcEdLb6zQS4ocN7cns86yz5n6Vn7GvGMCMbFs8bdwLW8Wo+YhrDgIgXn8XYBd5Ww/vn8cj3P2WDuXOBxkcfP7/dyXCCpn58cBxcmuScXGZhzFyluUjyq7+K2ohpwK6D4gGfp6V/wppMeRiBwuyO+hwPXBU/8plfpoy/9U732n3/Pddv54CN+/+9o8soj58N7/6c3aj0eX5dzXy886V+/Ws958Gv0+q/73lO7jeTrlrv6+m/+x7rzh1910kM5UTxaQeG+oiged6jEPk7S/Yev3yvpCXbce0h653EnKMvypZJeKklFUZSSEhGgjxoURVFJxffwQEhiebhrAJZ7t2RLSi4B76WGNHg124/jupB3zoM44E4H3AIetMc4lsvlZRZ88g0QPDykDzLpO0RAuMgZgMQ6YYTU55kOrVZL3W73suwAJ0setIiwwL1zz5zfbfhU0NfrdbKVQ+qc+NGWsbm5WRGKarVacoRcuHBBo9FIq9UqiRA8b4guWRa5e4BzIZI4XBjJCTrgGfvz4mc/f95bj8iDiJWHH7rQwDkRFJwwI/y4E8MzNUAuJvA72mZYt8ydOwbcwn9ctka9Xk+BnC5q+HE8S/7OQxqZV28L4fOWOxRcBPRnzfUICnVBwcfDOV04cPcL6whnA+PKhQq/p+PW0ynHdf0uHhZnbwpbRuChMX+Pnn78yb920sMIBG4XxPdw4DHHXf/xVfqoC1+hVbfQ737L1WXkvGU11Qte/LWV1868cVvDPzgiwacqMcpw93e9Sn/9/i/Xbr/Q677xdGUD3bs30Vd/zdfqzM+eDkfHSeLRCgo/L+nzJf27w79/zl7/8aIo/oOkeyQ9TdLvPJITehChdETe3Hbt2+jRkuD/8w9xhjx40CHtDwgMVCwB5AwyXhRFquojdFAhns/nklSpsnoFlyp0u92+rB0iJ0lOurFkQ6ywlDMOwgA7nU4isVTtPRwQku87P9AWQuXZwwc3NjYqgYGIM5JSXoS7Kth208kp5NEzJSRd1hvPLg4+17PZTBcvXtTFixc1mx0EsHAcIo+3E+TuEtaAV6K5LmIIz4ljmV9If7vdTtkTktKz4D6Ps8mTDdFqtSoBg27fBy6KSbrMgcEzZx0xZsaS5y2wXj1LxNshOE+3203n4Ln7M3GnRP48mWvPEfFtHDmnPwsXDzgmd1zkeSD5Of15sg69vSFvqfC8klwA4nvDRTEcLy4QeR5L/rk85bju38WBQOD2wZN//kV65v98my5PIwpcBeJ7OHBDMPyJ10i1up73Z18kSXr3h7X0R1/1fen3z/jP/1Dv8crdy95X293X5m++pvLaaRUQjsPwx1+jYmNDz/vTg/t+50e19Ccv+r6Heddji2W50hd+7lep+39++0THcVrwsIJCURQ/Iem5ku4oiuJeSd+ggy/Nny6K4osk/YWkvydJZVn+UVEUPy3pjyXtSfqKsiwf0X+nIJudTidVGp0cuKBAewCE0N0LpPBDcCEvXkGXVCHukEdJyXHAeTjW7e47OzuazWapz98t14gJBLzt7e2l6j/CA0TNhQN3APhODlS0+SMpbQ15XCuC3zc5C51Op7Ktpm8D6GQQgrixsaF+vy9JiWh3Op3UCjIej1WWB7sylGWpTqdTyaLwFgXs4+wSQfCgZxBMJpP0bJxsUq1Pi/VQ+HD3CkKKbwHJ2nGxheMO12nlnOyM0Ww2K7t0ULF3oSf7bFQyE3LXA60s+/v7lW01fX4Yu7fl5GTdHR2+Fr1y78SXcfmYWWPu0JGUPm/MG2GIPgau6yGbkO88U8NdNt5+wty64ICQwPNyQYtjXEBgPXNORCkyGshN4HkhSHnuhj97xAvECJ9Tb0U5LbhR38WBmxu1939vfdt3v0SPbBOnwO2Ozl9taP+++x/+wICk+B4OnAKs97Xxq6+TJD3xt3v6xJ/7rPSrp9z7R9ofjU5qZI8pyr29dN9Peu1An/jTB/d94f+SXvuBP33DxvG8z/sitd41lspStT/5vRt23dOOhxUUyrJ8/hV+dWyEdFmW/1bSv73agUCKyFDACs//8PM7CAMEttfrqdPpJKLT6XTU7XZTpdhtzE5wIXaSKhV4CKtnDkAGpQPBYTQaqdFoJFGD93uPN44CSA4VWwQRLO68DglEIIAktdttnTlzRr1eL1WyEV+kI3GA1HyCCrG9e286IgfzTSheXulGhGCe+LfvHpBnWlCJpiKOONBut7W5uanhcKhWq5WcEwgg8/k87UaBaIR1390UnJ8WDA8dJDeDeXe3hTsp8p5+d5MwV5LS2vBWCUnpmbh7AAEhF7n8Pn1t++88awFi7n+DXCzg+bkwxZrwbApvC/DdUGhL4Tg/J+PheTNW7hXXxpX++DhdBGP+/d68vcefswsZPHOeLyKDt1PgNmD83CdjdncGAgWf1zyzIZ/v04Qb9V0cuLlRNjf0nHaICYGHx5Nf/sV6729//U1VqTxpxPdw4DRhPZ1Kf/yWkx7GDcd6PJb++CDv4Y6/39Mndg4+fl/xmt/SJ3UX13TuHxndoZ/863/tir/fePD12j9FxabTgusdyvioAblAUIC4X7p0KQUj+tZ4klLQn4eqtdtt9ft9zefzyrFY6yFFXpmk3xrCQSXZK/aQlOl0qr29vURyaIdwizSkJRcMcB5AciDRuXMB4tTpdDQcDpOtnl0JqPSzc0RerfWdIBAOINYQPG9dgGAyTtwEVJHr9XragWE6nabz0GLgAYyQ+8VikVotNjc3tbm5WRGE2GlhNBpVwiiZg1wU8B00mGMnmN6K0Gg0UtYCxBRCDWn0Vgfe66GAiBp5CwdbjiLEICb5FpQuIEFUfftEJ984K7xlxdt9nOhKqtyDdOTs4TicBpIqzoHVapXG7Y4cBI88NyAf/97enmazWbpnzudbWroghaCGOMHOIy7yMAZ3OzjJ51m7KMEcOPzzT2sTa9JdD+5+QYDwcfsxkiqunkAgELjVUCzrWi+u7X++A4FA4CSxnk6l6VSS9D3v/b76nmsNbyzXKvcevA4ju71wagSFer2uzc3NVEFnp4LZbJaIqFcej2sF8HA5Ktic26vdXu0ETiYged4egRXcSZ47HSCy3gueOyEgnNJBRXs8HlfG4L3/3W5Xw+FQd9xxhwaDQcWGj9MAErRarTSfzxNZZC48UJH3SkpEmblAdJB0WQgl7/H8iUajoeFwqH6/r2azmeZ1Y2MjhS7OZjMtFgt1Oh1tbW2p2+0m4k6g5nQ6Te0OiAyMizEul8vLdkLwZ814ILHMh+cFUM3254zgk5Neru8tEk7QfZ55Xv4+js/Jqq8JFzVYvy5+IJIcVzHPxSd+Bsft3sHYfUcU7o3XEdd49pzD3T1cNw9P5L4YT94awnWYA3cPEC7q78MtxP3gOvFWDc9TQCSgrcmzL2g78aBNchm4JkKit5C46yYQCARuJSzLld7vN75YT/uK6P0NBAK3Dkr7/8TAjcWpERQ+4AM+IJHTsiyTDR4yCGGDdEAm6cn3LRmPIwQQVgLmpKMgRBcq8rR3t1FzHq8ab2xspAo/Y4OckV3APUB8vPeciq+TYRwS3W43tRtQEfcdGwgCnM/nms1mqY2CcUEcIWPuWKAlhD72/BiIXN5bzn0Nh0OdO3dOjUYjXbvT6WgwGKR5rNfr6vV66vf76nQ6FYcCggIOBSeakGGeF64SnoM7QLhXJ8EcIymJFF6d9m00WQuQYebSQyshrxB0r/B7cCICDfPEGuNa3v7A7xHAyLzwHAa/LsKQk2/WDOuJsSAGudvDd0QB8/k8rS3/TPmc+GeDn51kc+xxWRWIF7SI+GfJQzH9PNy3P1tfg+6g8PDT5XKpyWSi8jDTg/PgxOEz6tkpXNfdI4yPuQtBIRAI3EqYrXf1N9/wD/Tk5//+SQ8lEAgEArcITo2gQDUZUpxb6X07Ok/9h6x5O4STGw9bxKLt4Xz8TAUz7z2noulVT+BVUsbjlehc4OCc3ksOaWUstDXQLuCkEIJOCOJ8PtdkMtFoNEoOA+bNxRkn2RCs5XKpXq+nra2tNK7lcpmyBLyNgF0jOp1OCjE8c+aMzp07p2azqQcffFD1el39fl/9fr9iSff2CcgmYgJOBSrk0hFB39/fT6JSs9nUcrm8LLxQUnJrQLQ5F3O8XC6Ty4H2BHcGeK4A10eA8MBPnu18Pq9Y8Hm+/jNrkPXjjpBcyOBYXwuIVO6CQBjxXR7q9XplK1Su6RV3Dzn09e67iHCdfGycj7Xvz9Dv1c/PZ4G5Zw25QwFRD7GBdev5CPyeNgZ3LODeoD0pDzZ1Ech3YmGMLngwj/6d4M8GV04gcLOgNtvVj43P6XMHYdkMVDFb7+p5b3y+zn7y7ddzHQgEAoHHDqdGUMht4YgDnkDv5DjPL/Aqbb1eT2QGMuRBf34s18VV4BViCKH32EOW+L3nJzA2r4IuFotk/+fe8l55XAxOhJzEQiS73a62tra0sbGRiJKTpY2NjZS5wGvcA3M0mUy0WCxSoGWv10tzTbXXE/o9zK7X66WMhc3NTfV6vUqfPSSQOWOrSs+TQAghQ2EymSSHAs93b29P0+lUly5d0v7+ftqBwUUCMhIYr6QU8ujj9rYFJ+KICZJS5X+1WmkymWgymUhSOjfPfXHYa+rZDU5QXYzi2uRPIIb5LgWsGQ959PyEoijSPbF+OYY2CQQT36nAiXie2eCfpdxRwWv8zHsg7e4W8twCyLx/XjmWMeXCB8f6GNyF4i0Z/Mw6Ksuysv0rDgx/Pswt4+WeCRX174w8p8K/j7xNKRC4GbD/x2/RD7/wU3TvS35L//zcW096OIFTgmW50t/4vX+gOz4lxIRAIBAIXF+cKkGB6iLWZADZgXA68fa8BJwGtVotEQdI0mKxSAF7XpWm4uotDlzDMxGko3wByAzH0lOP3brf71cq09j6OSfky8MTfXcJ3/6O+2K3BYgwlXh63hEDaC+ARHmFl6wCznXu3Dn1+/1EnjyLgHmBvCPgcC0P2iNXAKs5DgnfMQJCPplMtLOzk/7MZrPUYiApBToiwjAuz2pgR4WiKBLZnc/nyYGCoATB9LaY/DnzHMlrYDysr3a7nUgwxB3RhLn1FgWIqrdvsNZy94u7CLztAMHCibLvruHr2te0w4MtPbAy/1zl7QuMh9+RN4C4gVvC8w/4vQdk+rz4eLhHjnP3DufxdiBeOy4jw7MimCe+E5gf34rUBSYEG29TcngrSSBws6H4rTfol//JR2nn2zv6trv+4KSHEzhhvP/vPF+LeTPaHAKBQCDwmODUCAqQMW8dgADwM/+WjqqQkHRveYBoQTQ4F3Cy4RX+vMJLZZ/+a7ILGAvvhyx55R4XwXg81vb2tlarVSWYEDJMFX+1WqW8hHw3A+4TQsy9NRoN9fv91K5BewGig78Hco3wMBwOdebMmbQjQq/XS7sFMG8+f4gCEEUEkul0mo7xoEd3OZDbgOtge3u7IihABnF3IPBw//v7+5pOp6ktY7lcpnYW2hm4RwikOztarVYi0ggDnonB7g60g7CTBc8FIosrwrMwWAM5OWV9sLOCt7/keRFeXWesiCLT6bSSJeFrON8NgT+EE3rLj3QUcOhZEz5u/yzmYoPfF9f3YFNvF/IWEn+G3F8+TwgliBmeGYGTx3d/8VwNXEDe6kJ7iDuPuJ4LBTxjb1ni2TBm7iMQuNnQeMXr9Kp/9WH62m/e0L9/3OtPejiBE8BTfvULtR419PSvfJ20DnE0EAgEAo8NToWgADGmskg2AAROUoVE5LkFEA5aIPLKbp6W7yTOSZlXh50osePCYDC4LOmfcXW7XQ0GA91xxx1qNpvJpu7hktJRqCAW/E6nk6rwOBAguQQZumiBW2C9XieSjyuDirETXieFbAHZ6/U0HA7VarUqbgnmbjqdpmq/985D5qWD3vLBYJBEB0nJXu5kfW9vT5PJJLkZEBPG43Eifdj6aWGQqrZ+F24glDxz3ofDwAMYJaVdQ6QjoQlHAsINQhWOEoQIrouIxDPnGe3u7moymSTXB8IEQpi7Jrgv5tTbLXwXAnc5INB4oOSVKuqsKV/buShAACjvR3TyzAAPO3SHzHEhoi5EIOgh/nl7hotivJdnwbp2MckzEfhcugsJAYc5mkwmldYEhAj/3HvrhLd/8Dnx41xkCodC4GZG6xdfq9fpQ/Tib90Lp8JthKf++heo+SddPeP73qT9By+e9HACgUAgcIvj1AgK9OOTyD4ej5P1nR0PpKMqK/3tkA0EBarYvs2hB81RVYbEel97nigPUdzc3EwBhBcvXkw7AXBuKv7D4VBbW1vJtu+Wc//jwYCtVqvSUgDBYscEWgcgy9PDvVZ5L8Qa4uvEjvtFiOn1eul4MgkQO5ygcX+0LGxsbCSiTevIzs6O+v1+2rlBUiKIkDYXXpiT8Xis0WiUSDtWehL6Ic+MC8HG++EhfNwjQsd4PE5iQx7CKCkJBNxXLjT5tdyOn++iwL2xrSktIO4i8CDFvK3BWw+Yb7flexim53Lw3hweAkpOAGsXh0oe0HilHQyYN0lpLlh/OAn4nLhzyHNDuBcn4y4C+ufL59TnxN0ukHvPUfGtYGnBAN5yAvzz4AJK7mLgeXlrRCBwM6P1i6/Vby8+RB/8pOdIkn70X/97PbPZPeFRBa43/u7bPlbveNnTJEnP+NV3au/P3qCQQwOBQCBwI3AqBAWIkG9vRzieB8D51owbGxsVezgkaLVaaT6faz6fa39/v1Lxlo7aHaiOIya0Wq1kx4YMlWWZ2hg2NzcTQaQCzPGbm5u68847ddddd6X8AoiQbwXoVXcP34M0uqjhW0ZKRwFzkM7hcJgIFlXlVqtVCVmk+g0BJ6+hKIq0wwJzAxkmQ4BreUUcC/98Pq+E8vFe8iEgeg8++KBGo1FyifB8+RmhB+HIwwppP/A+eG8VgOhDPGlV4F5p+8jDE3mu/m+3zucWd9YCbhZ+xkHj1fBcQPKgSUQTWmdqtVpyVXAdCDn37FkG3k7A/XOst/N4QCMEnfWOGMCcsPY5n7cn5A4CdwvwHoQ5qepwYZ7ciZF//sjB8PthnSPG+H16ZoV05IhAPOE7hHO4WORj8IBSD3ll3AhZrJ9wKARuBWy88nU6d/jvr/jzr9K6Fduh3mro3DvRud9/tSQpdmIPBAKBwI3EqRAUJCWSwd/0jkP4qMZjWYdAU4Xld16x3NjYSDseeII8ZE1SItmQf98SsNVq6ezZszp37pxarVYi25BqSep0Oup0Otrc3NTW1layipOPkNvW6/W6Wq1WJZQPuLPA2zn4G6GkXq9rOBwmosw4hsOh+v1+qvB7MJ8LJvP5XDs7O1osFolgcZyLCV6l92q229g9b6HRaGg2myUXxwMPPJBcA4gOvksA7QhUv5vNZhJ6OG9OmJkPz9nA+YDNnyBBKty57Z/KO3MPiSTHATIOqXQRSTogrMwfLhlI93FE3QUCnDW8nmd7kDfh1nwn8dyXk2fcB1TWCQ8lyNJbF3DC5JkBrDnGk2doMA53dvAscRAg4uXzy3NzoQJxzh0kvj78ve7wYI7Z3hRRwDMy+OPCAZ8Rd19wr4wXUYFnzu8CgVsJjVe87qSHEHgMEF6qQCAQCJwUToWggGhAkCEV69VqpVarpU6no263myrJkBDEAA8rpNouKb1vuVwmMuT2+na7nVwOTiDJLxgMBur3+2q1WimUD6IF+djY2NDm5qYe97jH6fz588l+D6Fz8ui2da9c08suHfW2YzP3Si9km50cECTYSeHOO+9Uu91OToPpdFrJb0BoGI1GGo1GyboPEaUSD6nGPr+/v5/IP1Xebreb2iaYl3a7nUIWL168qEuXLiXSKB1VtPf29pKQAdH09gvIpqTLiHpO1mlv4Xh/nl6pzm3/XrX2cE7IKiGAuDJ2dnbSvHjmA8+M8fsOJXnIIO/3dhiuyVrIibjnFOQujVyQ4p48fDEPXfTXGXveDkROCGvBRRlvBWDt0Gbk4/HWB989gnnC2ZFvT8r5PMASF4x/5rxdAhHPhQzPS3E3DPfpggLXy/MtAoFAIBAIBAKBwEPjVAgKECD+h98rhRsbG2krxlarpclkIumABFCJlo7Im+8SgEUakghp4JoQR5wJEC9cBL1eL9nTcSUQCujW7s3NTZ05c0adTqeSZeC2d65JCwTVVm8dYNwQHgibE14n85JSW8bZs2e1ubkpSSm0DgEC7O/vazwe6+LFi6nazrl9HplfD+Lz9grcHH5/CBDT6VT7+/va2dlJLQi++wbPg5+5phNWCK2TZXdu4AjwwMb8mTJfLtS4u4VngnDDs+DeILGLxSK5EbiG5zCQ2+EBjk7Aec4IQtwHLojjiC6kmfE5yfY5Ya5wjLgwx/t5Xqx//4yBXJjIW4K8TYDx+Xai+TNibKwXFxP4t4/b3QEugLjrgmN4BnmrhLftuOvB3UGIWZzThQMfu2dn+OuBQCAQCAQCgUCgilMhKEhHlU+qpFRxIZCQPAICqehCrFutlvr9fqpwQ1Y8UA5AODqdzmViAqSUHRggRLPZTKPRKDkncDL0ej2dPXtWd955ZyJgTtyko6q+BwnyOkSNKi2ArCGCMD/sJtHpdFIFt9Pp6I477lC/39dkMkmCB6QLezg7OCACrFar5Cigsu+tDi6GuMDDcZ5vQJWYzATfYtGr754J4D3wnJNnD/mTjvrzGYv34UNMCYeECDsx5V5xOrAGvH3CQzNxPuzu7mo8Hms2myWRiGs6ced4WhoYB/dBpgFr0x02zG3ukpCOcjMgtr4FJPeFIOXCkVf9WdPe8pPb+PmZ54mY4587qRoSyfz41qA+n6xvzp9nMhTFwbapHvzI2Bknf7ujhGfnhJ979TG7m4nfudMBkYZ15+4Pv3YgEAgEAoFAIBC4Mh42makoih8qiuL+oij+0F779qIo3lQUxR8URfGzRVFsHb7+pKIo5kVRvOHwz0uuajBGsL0a3uv1UoUV4uGVUklJFKCaTq+0V6kheZIq+Qte+eXffo75fJ569CHGCBJnz57VPffco36/n6qky+UyEXXO6VVXJ7yQL372QEXGSwWde4e88zriB4R3e3tbDzzwgBaLRRJhOKfnR0CgXEiQqtZ6nomTwG63q9Vqpe3t7ZTDQL/+eDxOvfQu1CCqtNttdbvdRCa9cg2xJJAR54G7EyCvEFNcAjlp5n2Qbd/OknvyvAwq2ThCptOptre3NRqN0r3zjFg3tEX4DhCcy0Usv25u73fwM9V41lAeFOkBkMcFCj7Ue13Q8pYMWlt8jTDftDSwJmezWWr58HwMxuOtDIgPtFAwJr9Xd3u4G8I/j/65zjMxmM+yLNVsNlMrk7cdcQ95W4mLN3wuPSPkNOFGfhcHAoFA4HLE93AgEAhcjkfyf80vk/Tx2Wu/Iul9y7J8f0lvkfT19ru3lWX57MM/X/ZIBuG9204kyDLwqi9EgNYBSYlkeBaAdNQ/7ZkCkHzvxc/HgaAAIfJqs7dhDIdDnTt3ToPBQMXhzgnb29sV8SHvUffxOVnyIEBcFwTiue2b9gjO1+l0dObMmbTlJP39Hs5H64fbvD2oDtIFfEx5/z3bdy4WC00mk5Sv0Gq1KjkIOBAg4r7FJ6QakumkFtIJSfYMgvz5Ml/kFuRz6fkMkFEP8czt+G7lZ73krgwIJ+0w7Eji2x9CcHFPIPh0u90kfvg8+/NgzUG8najj3kCs4A9Emfvwe/Bj8xwJPlNs70n+B601tAkQEpnnQfi4/XMLyWebUxc3cLQgDuIUQAx0B4MTf+beHTu8n3tH7HGhzoUqruvOAxfPXDQ6pe0OL9Nj/F0cCAQCgYfEyxTfw4FAIFDBw7Y8lGX5G0VRPCl77X/bj6+R9HevZRCQdvrNIaRUs52AORmHIDox9HR83sMWdYTMUWUnt0DSZeIC16ItAGJEnzznOH/+fMpOGI/HySIPOYPIOLFBGODv41wVwPMG3J4tSe12O7kkWq1WuraLJo68FQOnA4Q1J14uXECiO51OqtqTTdHpdCoVee7NK8uet+DE3bdd5FqQ9ryXnmft68adBpybwEq/F0QH5tsJqzs2qKh7a4MHf7I2caN4tgLrlLlAgGEtb2xspHPn6xS4kOLj99d9fv01F468rcFdCswRc4rTgBYBF/W8mu+tB55D4WKZ5xogLvnnmvNe6Vnku0Mcl2OQt0L4ThnNZrPS0pG3WvjnyQUHF0O8/YHXTkvrw434Lg4EAoHAlRHfw4FAIHA5rkeGwgsl/ZT9/OSiKH5P0kjSvyrL8v883AkgBr6vPWTZt3mD4GCPRnCAaEKkIAAIBlTT2eIOyz1kAtIoHZEoKuhlWaYKLi4Kqs7dblebm5uJzGP3h0Tl44Fkuc16vV6njAPpaHs9Wga8Kt5qtTQYDDQYDNTtdtVoNHT27FltbW2lTAHPJGCXAogVIkcuOFD9djKV76bA9piQZtoXBoPBZUGETgiLw/BMdkfwnRF45pwPJ0O73a4IAjm8z5+2Cv7kognHsFWiV+tzQsq8u0vFd4xwt4lvy8lzk6phh5Bm5g5ymwtMXNvFjfzz4cKLryv+dlGGeXbXiQsMjNuFC1+Pfh+56MEzYu6chPu8cm4X+RB2eGbu0HHHgbc+cf8+F+5u4P08FxdiPFzSnxH3wfncJYF75rSICFeJa/4uDgQCgcA1Ib6HA4HAbYdrEhSKoviXkvYk/djhS++S9MSyLB8siuKDJP2PoiieVZbl6Jj3vkjSi6SDyiLVfOmoHQESCBH3AEAEB0SH4jDQDzIBKaEXfjwea39/X+12W71eL7VMuBXeK+pe6YX4QtipsA4GAw2HQ9Xr9dRXDhFxsgZJSpN+GCyJeMIOFpBURAFEjlqtltornvjEJ+qee+5J52I7Rw+N9LYJxuVWeE/Yd9LHfTvZQhBgtwueE+0ovV5P0gGJpaUhb0nwuXV4m4dvccjfbtd3YcndA5B+KvRUvSGpbKlJBd6FKc/L8Ofl65A58fPlQoSP2UHAZ7/fT9fnHnJ3RB4cCmnPLf9O3IFX67k/f12qCgP+zDl33l7gLRLMLevByX7eOpI7ciDnnINsA+YhFwYYt7ergHxd5u6B3KHk4hCCl//bhSe/x1Pa7vCQuF7fxW11b9SQA4FA4JZCfA8HAoHbFY9aUCiK4vMlfbKk55WH/1dfluVS0vLw368riuJtkp4u6Xfz95dl+VJJL5WkbrdbUiGXjrYGbLValQT3nMAhDrTbbUmqVCshObPZrNLrT++7EzyvxiNQ+NaMVP/H47Gm06mGw6Ha7XbKLiDEb3d3N4UPMh7+QJrdNcHuCuw0QWsGu1RA3HEiPOlJT9JTn/pUtdttjcfjJKDMZjNdvHhROzs7Wq1W6R4Y72w2S06LPDwQ8uWkGLIF4SfwkVYFnhWVZq/SM4+M20MdXVxBFNrf30+CgKQkEtg6SY4UUvppW2HefKxevUZMIIOD+Z3NZpVKO/eWV7IRm/i9Zy8wd26hz0kobTGIRbkD4bhqvmdPcKwLLe5GyK/npNxJet5u4kKDu1L8/jnW2x0g41zbBSTcAC5IMacIM3meh7deuAjI2nRng9+r5ykwXgQzv6/cVeLjdkHC1707OW4WXM/v4mFx9qa0ZgQCgcBJIr6HA4HA7YxHJSgURfHxkv65pL9ZluXMXj8v6WJZlvtFUbyXpKdJevsjOF9lW0Bs751OR61Wq2L5ziv97XY77TAAkacqSqvDcrlM1nVaBWivoOUBQtHv99XtdlNYIWF1CBO7u7sqikK9Xk9nzpxRvV5PIoB0QCInk0kSDCRVwgAh5eQs9Hq9ZKknq4GdGySl7ILz58/rCU94gu68807t7u7q0qVLSXiQpNFopOl0mggUooWHC7oQ4NVgruVVdtomPD8gb4fI20wg52xBScVXOnJsQO4gl14t51i3xCNMeOhjURSX7dLB+Jkzrs+9Ei44Ho/Tesj76HOS7js65LkEwAMtfdcDAjG9fYN1yTw7GWc9s5uJ52zgiDludwh/jsf98Ws7cXehwYWDfIcDF4P88+fuDc8pcDHPWwl4pp77wJj8+bnYkIsJ+bNxuBuCY9294Duo8Hs/xgWb49w0pxXX+7s4EAgEAleH+B4OBAK3Ox5WUCiK4ickPVfSHUVR3CvpG3SQYNuS9CuH/5P/mvIgvfajJH1zURR7kvYlfVlZlhcfyUDYpQByxS4KkBDpqHJMu4A7EujT937s6XSaCDpkjao0BNPPMRgM1O/3NRwOE4lmyzvC6+r1uvr9vjY3N1P4H0GNhBMul0tNJhPN5/MUWggx9iwGKu/SUcsCQYWQzfV6nXZyuOOOO9TpdFI45HK5TCSM+4QQIYD4zhbMk5NI8ie8VYDXIbfMl3T5zgTcD84Hdw1wjzyP5XKZyKXv+iCpEtrHuaWjKr+kJKDgbvBtH3mPE0UXKSaTiXZ2dpJbpd1up/aZ/BxOShkr7gi/V6rdnAsRy/MXpCPrPe9jTvx+85YPev+5X9aZt/3wLHJHjIsjLprQ6uKvu6DB/eDE8MwH1ghjRSxiLedho4gvzF9hLUm588Hnwd0E+Wv+uos/x5F/f4YIYC5a5iIF4zquzeK0iAs36rs4EAgEAscjvocDgUDgcjySXR6ef8zLP3iFY39G0s9c7SAg49PpVJJSz36v16uE+fE/+8vlUt1ut0JcvHefHRe2t7c1n88lKfX812q1tL0j15OU3BC9Xk9nz57Ver3WpUuX0u4QBDr2ej1tbm4mu/58Pk9EfWNjQ5cuXdKlS5cScSXnodPpVHriaSWgZYJARyziEHCcEltbW9ra2koEvN/vq9PpSDpwJzA3+/v7Go1GaatLSCyZFLgu5vN5Ir05Aacyj/hA0CSEDOJIRRo3BuTa2yC4F8gwhFM6IrCenyEd7bDhrSc4Q9y94rsdAF8jTj5ns1naAcMr4ZB1dxkgCHgrDITcd3BA1MgDJD1wEGHA2wG8Es65cYR4awLj4Bie5XFBkZ4BgZMAMs8zdWeEZx7kbSg4VpgP34aRtZTnbzCOvOqP0OchkFdyACASuIDhAY3+PPPnfSVhwkUaf93Pw7NwB8lpxI34Lg4EAoHAlRHfw4FAIHA5rscuD9cMdk3w3nbs9p6eT1WeIEK2fnRyxnFkB6zXa7XbbfX7fdXr9dQGAeF38ougAIFdLBa6dOlSIugIH1SHIUnNZlOdTkc7OzuaTqcpALLVaqXdKFqtVtq2UlKlnQMRAhcABHR/fz+FIdKq4dX1sjwI4pvNDhx2OAaoLHM+xI52u12p6kIuqTRD7CHrTlRpNXDnBPCKvYsOTobdYs/c+TwCnwPaGiCWrJPhcJhIrwsEZF0gpHjPv+8QQgUeUs44PZTP7f2QedwY5Cn476jUOyH1EEgPSvRARNYs83ZcFoE7R5hn/nay7aIGLgK/J/7tryEmdDqdJN4c53Tw9hXum+v5710wIwPFXQx+33kugrckeGsF9+gBj6zN41oUckGAMfqa9R1MXJgMBAKBQCAQCAQCjxynRlBwO7Kn/5N3wDaOhA5ubW1VgvrIMODf0+lUk8mkYluXlHIFEBMQMCBgHLe7u6udnZ3K7g0QXBcTqMx6GwWV71arlbaEhEy7Zb0oCk0mk7Q7A8QGgupkm0qzdECyBoOB9vf3NR6PK33nvBdHAXMkHVXC8+o9bR1Uo4+zovPeXEyALHtmglfcndwhFPnuAnnl2be99LaJsiyTMINAgpABsURImkwmSSjIbfG+KwGhmDm8JYDngFDh+Q0e4ufE1tsM3EGBw4EWFAQNfs9z8fXV7XYTeT6OKHMs52g2m4l0e0glr5Fd4c4EnAStVkv1ej2JWd5q5ISfZ46IwTH8zDnz/AXm9rj59vWTOxQQJXgueSvHccjFGF8DvM/zPwKBQCAQCAQCgcDV41QICvRXQyS9V1tSai2YTCapmrq1tZUcCvStA89HgKhApKnCQ0o9wM+t3Njjqfjze87tLgcID7sqkEHAjhIQJcIbqbZS7YaQU5mG7OQ2eSeNHgaJ0OI99pBGCCbkzrdi5Jx5fgGVfghyLiT4loIQSu/Fh6g6yUSQcet+XtF3AcW3iXSCSisGAhPzs7e3p+l0mtwknIPn5gKFXwuSzDORqjtekEcxm820t7d3GSHn2bqdnxBOtib1e2U+GUvuBMAF4ZkFjrwNwIUk3yXB551re6sEnzsP0fSwRHeN+OeUc3MP7tTwdhnPznDRwXeccBcG53f3hbuTriSSXAkuIOW7VvgxDyV0BAKBQCAQCAQCgYfGqRAU8kon/dyQNd9Sr9/v6/z587rzzjvV6/WSe8D70n1LP8gNLQxlWaYgQu/39gyC/f395Bxw0koV3AMhpQMyQuV5b28v2ce73W6qqnv12W3wnnbvpInzenAjc4C7YbVapcBIhAK3v3N+CBUCht/zcUn7EHJJaZeEPOMAUSBvN+G9tFdwX7R3uKBChd9JnucPcOxqtUp5BRBVdq9gjMvlMs3pcrmshC0eFwDp9+NE2kkr98Qz51ycGzLOORGwGCvuGIi2Z1r4uvd2EJ9rdohw+PrgObjjw10Ffm9Ozn1e3GHjrQ4IHghPvoZywYj3MM+4abgvhBl3CriQxNjz+8x3x0AAfKSOAt+xwt0ID3XdQCAQCAQCgUAg8Mhx6gSF/H/wIYqICefOndMdd9yhXq+XyEG+tSSvewUeMkHonIsH0lFVvSgKzWYzbW9vJ4HAnQtO+mln2N3d1Wg00sWLF1UURcpNoErdaDRSsOFyuUykLLeWQ0jdVdDr9TQYDDQYDNIxiCY7Ozt68MEHdenSpTRWD+djtwjPE5COrPdOVo9rZeB5uAU9t5u7o4B59tYHzy7wAD13pXi2AWuB33FunAqLxSK1ehCU6RkKkiquA8btLRK+RhgTc8bxiAYIF7g9mAOfCxdmfBtJF7rc9cF5CJrkOeSCQL6FI5kIeY6F79CBeOEtNjmRRrRx0k64qO/gkDsJXEDza3hLhD9D1oi/77h/Mw7PaeDcPJfj3Bqcx50T/NtdLXnGQv7+aHkIBAKBQCAQCAQeHU6FoODECHIJeZzNZtrd3VWr1VK/39c999yjO++8M5ENqt8QNl7zhH6qzGxZ6MQy3wWhXq+n7QVpecj3sGd3BrZV3NnZ0bvf/e5UMXfCtrGxkez4OAmwtXvVGyGBvAWue/bsWZ07dy6JDFT5J5OJ7r//fj3wwAO6cOGCptPpZX3u3lbhgYp5PgNzQSWZcfmODFTanbThCMit9ogsx1nK88A/F38g595mgvBDtoJnRHgw4GKxqOQv8MfH6rtJ+NrIcwicSDvB9bYYr5b7s2QOcJNIB+4Fz03wCr4T8jyzgLEglLmLJG8lcIeLh0n6mBB78ufBZwBxxt0sPie8z8M9mX8PT2RsPo+810Ue5gBXB+ue5+EiT56J4PPmDgvmI/8dCHdCIBAIBAKBQCBw/XAqBAWvePqOBmxvSF96v99Xv99Xu91OVXZIpxNn6ciaTg88rQMQGZwC2ONxFNDuQAXcbe2QVbaBZIzb29tppwUPooPQzGYzjUYjTafTFO5HtZpxsoME+QDr9VqDwUB33XVX2i5yf39fi8VC8/lc9913n9761rfq3e9+t8bjccoXcCKNeOBtHryWV5CdXEHMuH/aBRBsEB0QXLxn/riKNoBY+/aHedsJYgvncMHACTHv9zaXWq2WRB4PZESgcDKb50L4OXJhgfv3VhTGzhrivavVSrPZrLJd4mw2S44Qt+D7GFxQ4B6ZD3+f3zOVe1oXEBRyscY/Wy42lGWZXDI+r97+wP26A8HDJPNzuiPCBSXO62uN3+Hk8bad3HGSb13p3x0+xvyaLmBxTW/XCHdCIBAIBAKBQCDw6HEqBAVHp9NRv9+v2NshiiTRS0o7P5Bf4BZ9t3ZT8aSvHZFiMpmkHv1Wq6Vut6uNjQ2Nx2NdunQpiRWQdM8GIGxRUmWbSLag9FyC2WymixcvamdnJ1XIIc2S0g4UkCpI9MbGhs6dO6e77rpLg8EgOTW2t7d16dIl3Xvvvbr//vtTawaCCO0BklJl34MunSi6U4Dj/XV2NWg0GhWXBaQPMooQw8+eCcAzKcsyhUeyZaRb7iHmnEM66vfHabFYLCpbd0LwEXByV4L337NWcuLsggbXc3LrLQoQas9y8G0qPYjQWw58u1BvWWHcnvfg7Rr87SSYFhbPNuC+cvKM8OHVencmuDvkuGvyM3Odiyr+bL09IV9fOVw84fPlzpRcDPHn6s6kfAw+9nxsPg4/F+PIx5mvjUAgEAgEAoFAIHA5ToWgAAmA2EP8sbBDKtiGEWKOvdoJhhMOt+9TVZ3P52k7SHcckFHgzoRer6d6vZ52h8DOj5NgvV5rMplUWgSkI8cFboeLFy+mbS2lI5s999NsNpONHILa7/e1tbWlTqeTghdHo5EuXLig7e3t1ObgO1x49V1ShdwDD8nj2JxUIeZAWhkTbSAcRwuJpEqlnrEsl8vKmObzuRaLReVZ+jP091KBdzFhb29PrVYrkXBEDc+2kC6vSjtcNPGWAHeVMA7cCblDwF0uHtDpbR6sN4Qgb2vg+XswpK8fd7cwx4gYBF/moZjeCpBnE+RZDNy7Z0a4sMAz4Nki/vj8cQyv5YGf/nuHv4Zgh5ODZ8BxuYCDAyTHcffu53GBwVuh/N/eQhIIBAKBQCAQCAQeGU6FoACosEPOICmNRkPdblf9fl8bGxtJaJCOyATkwKuk/NvJ+ng8TgGJ2MURDiDOZVmq0+mkajBE2HducNu8pFTBhQDiThiPx1qtVpVtCwn9c1eBdGDNn06nFXFFkt797ndrNBppNBql9gpvW+B8iBguqLhowNi8AsyxHoKIs4G2Eirx0+k0bU9IIKWPnbnb2NhI/86JPv3yvJ/r5kSScZCNwXXdleBihHSUXZGHM1Kpv1L1HAcD8LlzZ4ATaO7Xz+fz51t6Qs4988FFmeNaIXAFuIMF4u7bfOahg1dyIPAnF1pcTGAMPDMn9Vybtc7vcUsc1+bi5/M1x9/5mvX1zLP2PBK/t/w1FzNyh4KLGLzHHRDguHkMl0IgEAgEAoFAIHBlnApBIbfd4yyggtputzUcDtXtdlPF2kke5HQymSSC6iSRivx8Ptd0Oq3s3NBut9XpdCrkul6vq9/va29vL7VHsB1kp9OpJNBDbqi2SkcBhlTVIfIuhLRarbQbBCQZ4aLRaKRzIYDs7Oyk3Qa8pxzLOAIIIgDX9cq0kzjG7fdAldbzEdye7+0KrVarQoJ9i0p/j3QkeEAScSeQ6p/nIiAAuNuEZ8W84ApxYcmr1wgdxwUU8nruBPCgvyuJCTgE+Ps4VwDuBYQQWkbyAEMnzp4X4fOL3Z95zreJ9GcLSfZqO685keZ4v1f/LPrvacMhc8QdA4zluPE48rYKRCfukTWI6OV//BwuEjK+PKPhuHv237sY4btABAKBQCAQCAQCgavHqREUgPeYe0W73++nfACv4LZarUTycQO4hR7SAhlzol2v11OLhZMNJ3Cck7YI3A5cw6uovNeJG793qzqEGlKd3zNj293dTUICLRoQrb29veSUIFsC0u/5ELyH43xLQM8o4J5pNWEHBxcGpKN+eg8M5Bk6QcuJPMJPs9lUv99PFXcnj2VZVgIeuTYiQq/XS+0wPGcIt2dXQMQRnpww+5ggx4zf75Mx+xrFqeHil7ce+Hl4FlyP9/sOBG7V93WAA4DnhmMHgSJvY8nJuoc7uiDBOJhrxuDCSt6SQJsBwo7PWd5awufHM0yAt3zgOkJMQKzgGG8rceHARZnjhAAXVXye8+d+XBsIr0fbQyAQCAQCgUAg8MhxagQFJwoOiCguBIICcQTgXBiNRqnH39senKgRnAe5JmCRarhnIOzt7Wk8HqcdIvr9fsXJgIvCK9YQRggf4YFkMEAwaXPwqrT3dyNKsDsATgEq11S9cTJA+haLRZqH1Wp1GTl04eM46/tqtUq5DL6NohNSyLJnCpC14NVu5pxQQ8bKLh3cp+cmePgfJJdr43JAKID4cW7O420NPGfWGK8xRoIwGT/k20USnq90tE2m50b4XPDs3d7vwoETXebIr5OHYvrngnl3R4e3HSDyLBaLJEbgXmGdcV5fo3nmAddyIs/6azab6na7ajablbYLn1/Gxd/u7vBWEp6Vi0DcT6vVqgheuE88NJPX3VGRtzYcJxj4WvI1mmdqBAKBQCAQCAQCgYfHqREUvPoJsaFXv9frJRLD8VSnCUiEULOt4nw+TzsQSEqkBTcCrQ5cTzoK5oNU405oNpspZ2G9Xmu5XKb2A8is27a991ySZrNZ2rFCUuV6klK7AuNlV4nZbKZarZa2toQEQSARWXAV4GTwe4cIMgcuKLjN3HdaYFw+NxA6RBMXY7yFBAs8pBd3Ce4E3BRuYceFkpNcxBLP0fDdHsgWAHmuhFfIeY1n4u9lXUF+8203vbWBc+RBnS5CeBgm95m3d+QZB752JFXmMc+XcLLM3DNnPLO8VcIJs/87d0Kwjl3wwjXR6/US2Wf8+X14kCLAleA7YLio5UIX7RQ8I97LsawJ2jDy3AV3aOTr3duj/PPun4Xj2jMCgZsZb/3uD9evfPp3nPQwThVeu3iC/vMz3vOkhxEIBAKBwC2BhxUUiqL4IUmfLOn+sizf9/C1b5T0JZIuHB724rIsX374u6+X9EWS9iX9o7Isf/mRDISchEajofF4XMkycOIKKaFa3e12U4ggtvCdnZ20mwCAFFGBJr8Ai710QLyo8Ht2AhZ9chGKoqg4JTw3gHGzvaW3WnglFuLp1XuIEH3rk8kk/cyOCPP5XOv1Oo0dgYPQRN8JAdCegDgCkfZQOog65Jl5Yt5ns5mm06mkAwGE63vlmGo+mRGINv53r9dLzwOyuLGxoX6/X8liwIkByUNUYo6YM3bhWCwWFYLP/bnrhJ9xQdRqtSTGcIyvFf7tbhcXQzxzAcGAufMMCBcA3MHgogekPBcCXJxhzMc5T3DMeOuCtzXkbQLeqsN1CHz0/AJvK8kDDL2dRTqq/ONAYU14UCjwFiFv83FxI2+p8Gfuz4V58GNZ/55X4WvfBbJcrMAR4fN3GnCjvosDNxFqh8GztUL//R2vOvaQVvF61Yv+jRzVqcdTGpf0qffel35+1i99uZ7+ot87OmAdrU+B4xHfw4FAIHA5HolD4WWSvlfSj2Svf2dZlpWyR1EU7yPpsyU9S9I9kl5RFMXTy7J8yP86F0WhwWCgzc3NRHyLotBwONSZM2dSvz0VSc9HaLVaGo1Gmk6n2tnZ0Wg0Slv1DYfDRHa8Ylqv15M7QTogH5PJRJPJROPxWIvFQtvb2xqPx6lSS683ZI9dGPr9fhIHvG8eAoVrArJeq9VShR2yQ1UWwoxgATltt9sVwue7KyyXS43HY43HY63X63RfXJO5mk6n6T4gicw9xJfx4YRgrtyBgZBA/7vvtsDxVKk3NzcruROIOOVhaKFnYeQZCJIqYo/vkuBtKx6OKF3Zbu+Vc4QEdvtwB4G3WeRtBrhHcCB41gFzeVxugQsArBMfp1f5cUcwZubB51uq7m7CtT13wB0Ing+S50Lkjgi/Ls/IxQREHs9VkI4cH+12O31mPNzTXQxcM8868HnL258QKpif/Jm7q8AzIRBu+Izl7R/+LP25M77TJCjoBnwXB24O1LpdFc2GPve3/1CfO3jw8NXmQ74nUEW3djRff/aJ/49079HvPuYLvljt33mrJGl/e+dGDy1wuvEyxfdwIBAIVPCwgkJZlr9RFMWTHuH5Pk3ST5ZluZT0Z0VR/KmkD5X06od6U71e13A4VKvVSjkIVK0JY0RooApLtbIoCs3n84qzAOLrOxFAOCA+EDkIHi0G/IGM0yLhuzUMBgOdO3dOg8FAzWZTo9GoEnrIOFerlcbjcWqhWC6XKooiHcfYqKxLRwQQossxq9VKs9lMklKbBa8htHhApdv4ERC4Z9/6cb1ep8BHXBgehoig0Gg0UnuJtyLkuw7Q4jAYDNIfiDikDkcAr7ndvNVqVfIAnCh7IKfDxY98Z4u8BYKtKl0sOE584HVIpu/GwVw5EfbWBD/WK+YICbgcvMWA87hQ4tX14wIIPZDS7fnMkeeHeEsCx3F+5oJr8rq3NHBNhAcftzt1eB/Pj3XM+/OWAgDp92eHsJiLCfnn2XctcVcKYoXnYvC54T5ccGDd5S6P04Ib8V0cON2onzkjnduSfmCplz/j5Sc9nFsWv/qy/yf9+xOf+3dUrPa092d/foIjCpwWxPdwIBAIXI5ryVD4yqIoXqD/r72zi63suur4f/nzfvjea3s82FYSSlqFhwqhNKJVJaDtA9A2D4RKPBQhtQ+VwkMqUYkPBRWRVKh8Ve0DH4qUqkCFIFWlFhE+RdRSISQgmZJJOpk0bUIidcgwIfHX9b13rp3x5sHnv73uie0ZT+1z9on/P+nK9vHxueusfe6eWf+91trAOQC/EkJYBXALgP9w51zKjh3K2NgY2u12bAo4HA7RbrfRbDbjirYP/oA9YWBrawsbGxtxe0UGRX610QcWDH58zXYIAb1eLzYz9I0QGRwx+KjVapibm8Pi4iJmZmZiMB5CQL1ej0IChQlmPtA22sAGiwzw/Koo09cZGFIw4A4R/D37JrBRIAUArgz7IJVBaT5AJEznZ9DObS35d7OzszE7gIEfAzOulLOnRafTQbvdjuUqLP9g3TuDamaesOeDD+woOjBQpujD8fMlHQwqmbbuA2Jel2UjAKJY5IPNfE8BYK/vBu3i2PAcbwN94EUNX3bgswZ8IO+FJPbF8KIXgFgGwpV032zRl1D48gl+9YG2P5/j5UU1+tJnTfBeKJRRjPHlKHkhh2U4PosgLybwPJ/p4W30vsr/3md0+B1CaDeFMT+/+OfBiy98nlkKQUEhX0KROMc2F4t0mVhaxMXfvRUvvv8LZZtyqviHb3wFL25v4t5f/DgmNrewc/5i2SaJNNE8LIQ4tYxd/5R9eQjA2wDcCeAygM9mx/fbiH7f/5Gb2b1mds7MzjEwHQwGWF9fj70FfE2zTwlnLf7k5CQ2NzexurqKtbU19Hq9mL4OIDbO8x30fUDD/gXb29sYDAbxXB+s1Gq1N6w+t1qtKAawFILvS7uvXbsWBYXBYLDr7CwwZWO4/K4LDNCYRcDgrdfrodfrxawD3hsbPfqAiGKCb1rpd1agD3yqOYBoD4PaRqMRX51OB/Pz8+h0OqjX6/HefW+BWq2GTqeDubk5zM3Nxb+Zn5+PWQr0AXd7YPYJ750p83nxw++04JsSMtDlmHAHAr8673cGYGaDD8r51YtODNbZjJNNJRns+9KJfC8B3yCRP9PH7N3Bv/WBM59tCio+BZ/3PTk5iWazGe+V1/F/43diAPCGwJvXygtGFHn8MZ8JBOxlWeS3b/S9FThe+c+SFzPyWQb55zGfPeD7T+R96T9L9B9f/vPlhUF+lv2457MR8uJbwhzvXIzhiRgpvj8mlpdw8cG3SEwoidsnZ/DYl/8cP//I17Hz3neUbY5ID83DQohTzU1lKIQQYjcjM/s8gL/LfrwE4DZ36q0AXj7gGg8DeBgAFhYWwtbWViwPYLPFWq0GACNBIbME2MRvbW0NV65cwdra2kjKNlfxGYzwWGbzSCNEH7D7RngMyBl4cKcBruxubGxgZWUlCgYMrn2ZAkUABqk+sGdg50scgL3tCQHE7SYppExMTMSgzTfMY9BNQYHX8jtBcJWdQbTvfcDjvA8G0KzdZ2aB30KRKemNRiMGuuyF0W63o5Dg+wjQB1NTU7h69Sr6/X5cFfbZCSzLyKexM+Akvg8GU9a57SGwJ+L4Hgw+UKcPfBBPUce/N0UeTz7l3wsIFE58s06fzk//5Vfi8w0dmdXCMeN48jNBOygsURzgdX1jQfqZQol/jljSwvH2JSJjY2MjwhyFJB/sc2w4FvkeCB4KKfQRr+OzLXzGhxcU8k05eW8sG6LvvZjBv99PVMw3pqQvvSiUsqhw3HNx2+bTvdlTysTSIi4+8IN48WcfLtuUU8/HOv+Ly3/07/jar/8kpv7pibLNEYmgeVgIcdq5KUHBzJZDCJezHz8E4EL2/aMA/srMPofdBjR3AHj8etcLWfNC9iLg6jXT6re3t0fq0pm+PhgM8Nprr2FtbS0GoD7t2gcg/J5N5pga78UEv9o6NjaGRqMRAx2uiDLo5vaUbOLoV7h96juvR1GC4gEzFRqNBobDYcyQCFmHed8DgaKGr8unTT67gUEoGzqyGaLf6pGBO7C3K4NPd2fwxAaKLFNgkL+1tRXr47e3t9FqtVCv1+NKPrMUzp49i06nE89lMMpglsG/33WA4037GWxSMOGYUijyu2lsbm6ONNjjOHPl3Y8jg+S8KEP/7lciki8VYcDrV9dJvmSBf+PLNfwOA/79fQNEH3DzOEUXjh/9cpDdPsgHELMQ2MvC93Wg3/iMUIDyQhtt9uULFNL4XPlsG19e4M/3fQ7yooF/Rn1vC+Izffh8+d/59/U/58eD59BX+YwL35MiVY57LhZpMT43l5U5SExIhd9c+DbWf6eOJ8bfiem/l6ggNA8LIcSNbBv5CID3AVgws0sAHgDwPjO7E7upWy8B+CUACCE8Y2ZfBnARwOsA7gs32M221+thMBjEFW8GPL7em//BZ7AxGAywuroaGzH61Wria8V9zffY2G5TQQoKXJXfL0WeNnHHAmYndLtdrK+vj6yE1ut1hBDiSrJPKWcDxOnp6ZhGPzExgX6/H3s3cCXcN9ZjtgADq3yAxu0W+fK9DnypiA/e8ttZ8noUQXx/h52dnbiNJuvi/ap2s9kcKY9YXl7G4uIims1m7HHB4Jcp/36bSr63t4cNIBkk+yCcdjG4prjhV/P9KnU+ePXZCxzrRqMRfUkfsXeFX3HnM5HvQ+BXzjlufqw4/r5fAf3NVH2/qwWAKBx4m/OBfD7Y9c8i/eSP0T5mnVBQoXjA96IP8qKKP8ffg2+myfv1GQG+9CN/zP/Olzn4e/XioO81QfHNv2++BCX/nrTN+46fEQpwvFc+RylQ1FwsEuLMrMocEuQzS0/i134beGLnnZj+R4kKpwnNw0II8UZuZJeHX9jn8IH/wwkhfBrAp49ixM7OzsjuDlzF5Uo+V6gZxHJlkiUSPjvBpywzUAIQV/wZiAC7q9obGxu4du3aSEYEsJdaz2CJafxsBOmbLVKMYLDGjAAfKHF1fzgcxntgAMYMBWYLMGWf18yLKQzofImD362CZQUUNOhTLxgQvyKbjd+I3Ts7O7h69Wq8X78azYaLDPA6nQ7Onj2L5eVlLC0tjYgl09PTmJ2djSUNbILJUg+/lR97KbTb7ZF+Ej4dnwGgD3gpvLRaLQCI24f6vgcARp4PZsTU6/URUYKZIvQBfc9x8AKNF7R8SYtPtadIxCwSL5KxnIVBPa/P8fA1/76nBH1HH/G5YSkAxxfY2wqSZSt8FoG9jB9+fnxWAf/GN2vM91DI977IB+Z873xfBF/SkC9n8GUpwF5zVfbMoChCgYv3TGHKCxL+RXxZgy8lYQaMtzUVipiLhRA3xmeWnsQDv7eFfxu+GxNf/2bZ5oiC0DwshBBv5PvZ5eHY2NnZQbfbRb/fR7vdjiupvsEe0+C5Ik5Bgbsn5NO9/VaJ+6Uzd7tdbGxsYGtrK66u+xp5Bh+Tk5OxH0C9XgewW+7Q6/XQ7XZHAnim3zPo8in6XEUdHx+PGRi8B17H19X7LS+vXr0a+zdw9Z22DodD9Pv9kbp0ZlLkV5oZhAN7QSKzBRiUcuWdPhsOh9jY2MD6+noMznmvvpSAflpcXMTS0hLm5uYAIIoJc3NzcfcLXo+ZIT4LYGpqKu4QwYwR3p/f0s+XLTCjgfdN0ceXevgAnf5jr45msxnHDUDctjG/uu2v4YNX+t3X9RO/JaPPKMiLPAzCfckOnxlfIsBrsoyEY+S3AuXOKL6cxa/c8zmjsOEzYPx4EH4GKWb4EotarYZGoxFFPgbp9C+fv/zOED6Lgu/HcfXlIvQZfUXxwsziGLHXij/fC4N88RnK94GgD/x2rLQr5f4JQohy+dTZZ/Anf7yBv/3IexHOXbj+HwghhBBvQpIRFNbX12MQwuCQjRR9ML68vIxarRZ7J7B2noGTX+nktRl4cQVyMBjEEgsG6pOTk3Gln0EQ0+dZc85V636/H1elAYysMDPAo+jAc5ldwUaFr7/+Ol599dWRYNP3TmDwxlXnZrMZd1jgOb5MAtjbCcD3emDgxf4FvC8KLmx0md8GkOdsbm6i2+3GlftGoxEzNXxgOT09jWazidnZWSwsLKDRaKDf78fdH6ampmKJyPr6esxI4b3wGjMzM5ifn0etVovj6kUiigS++SYbFrZardiY0JcjMKD0DTe5Cs4mmwyumcXAMaBfGQBTkKDgwkDe767gA1fig1OKD7Qv/1kARoUI/r0XfQj7IPjnkEIM75XX89kOvB8KAr4vQ74UgDbz3ulb9sNggO+zISiQcDxYvuT7OtA2Cm/M8PHZEHxvL4D5viStVmvE37wWszm8OOZ97EtA6vX6yM4gB/VdEEKIPPfNfg9fbU+n8Z8pIYQQogSS+DeQKeHj4+NoNpuYn59Hs9mMZQLb29uYmprCwsICzpw5AwBYWVlBt9uNtfgMeH2w5wMyHmegtbm5ibGxsbibBINzAFFk4MolG7/V63WMj4/HBo75lHUAUaygmEBxgZkDvMbm5ma8f28rA30G0Cz7aLVamJmZAbBXhsD79gES78fMokDCIItCCcUABmIMqOk/3rvfhYHbYbbbbTQajbgC7v3FbSLZRJKrzbSBWQm9Xm8kA4AlCe12G51OJzZtpFjktysEEG2hSDAzMxOP0W+0iwITU/F5nMEjS1QYSE5MTIykvHN8fNPAw67pt6vks8k0fR4D9oJun12TzybwAkheCOD4MOWfgg6zE7w4xM+Yt49+pJiQL9PwzSN9eQmzhBiI87n3YgnviaIDn1Pals/woH85hhwDPpO0z487r5HvSUFhyAtqnF98iYMXHHyJhe+/kC8HEkKI/Xjoz/4Qn/jpj+Dad14o2xQhhBCicJIQFBhkTE1NjQSUrBHnSmKn08HY2BhWV1exsrKCXq+H4XA4suUigBiYAxgJCLiizPIJljowQGeA6XeBABD7FLDHw/b29kg9PldWfW+AXq8XxRCuBDONn8cZ2PhSh/063vtVYJZGMDj1K8oMxmiLF2r8qr1fbaZ4QOr1Our1euzrQDGHGRhMjffXZGA6OzuLxcVFtFqtGFQyYO/3+1GgYNYG75n9EhqNRmzGCOz1nfB9Ejg2TE9nQMhgmUG67wHB84C9YJJj578ykOd47IdPoefqO6/rG17Sf0zTZ68F4nsa+Pvj8+b7FuSbjFIs4nPs+2rwXL8iz5Icfjb4TLBkxTff9GUI+QaPFM54//nGnbwf30yT7+/7Q/A8Cjf5z5zPuPHjyvfzvRr4WfBZBRxf/uyzfngvvl+H353CN//kNYQQ4jB+eLIJTEh8FEIIcTqxFGqEzez/APQAvFq2LTfBAmR3kcju4qmq7cdl91tCCGeP4TrJY2ZdAM+VbcdNUNVnFKiu7bK7WE673adpHtb/iYtHdhdLVe0Gqmv7ic7FSQgKAGBm50IIP1a2HUdFdheL7C6eqtpeVbvLpKo+q6rdQHVtl93FIrtPF1X1m+wuFtldPFW1/aTtVscxIYQQQgghhBBCHBkJCkIIIYQQQgghhDgyKQkKD5dtwE0iu4tFdhdPVW2vqt1lUlWfVdVuoLq2y+5ikd2ni6r6TXYXi+wunqrafqJ2J9NDQQghhBBCCCGEENUhpQwFIYQQQgghhBBCVITSBQUz+4CZPWdmz5vZ/WXbcxhm9pKZfcvMzpvZuezYvJk9Zmbfzb7OlW0nAJjZn5rZK2Z2wR070FYz+41sDJ4zs/eXY/WBdj9oZv+T+f28md3tfpeK3beZ2b+Y2bNm9oyZ/XJ2PGmfH2J30j43s5qZPW5mT2V2fyo7nrS/U0Zz8YnYqXm4QDQPF2635uFjRvPwyaC5uFg0Fxdud/lzcQihtBeAcQAvAHgrgCkATwF4e5k2XcfelwAs5I79AYD7s+/vB/D7ZduZ2fIeAHcBuHA9WwG8PfP9NIDbszEZT8juBwH86j7npmT3MoC7su9bAL6T2Ze0zw+xO2mfAzAAM9n3kwD+E8C7U/d3qi/NxSdmp+bhYu3WPFys3ZqHj9efmodPzlbNxcXarbm4WLtLn4vLzlB4F4DnQwj/HULYAvAlAPeUbNNRuQfAF7Pvvwjg58ozZY8Qwr8CWMkdPsjWewB8KYQwDCG8COB57I5N4Rxg90GkZPflEMJ/Zd93ATwL4BYk7vND7D6IVOwOIYTN7MfJ7BWQuL8TRnPxCaB5uFg0DxeL5uFjR/PwCaG5uFg0FxdLCnNx2YLCLQC+536+hMMHrmwCgH82s2+a2b3ZscUQwmVg90EE8AOlWXd9DrK1CuPwcTN7Okv/YspOknab2Q8BeAd2FcLK+DxnN5C4z81s3MzOA3gFwGMhhEr5OzGq5p8qz8VVfkaTnhM8moeLQfPwsVI1/1R5Hgaq/ZwmPS94NBcXQ9lzcdmCgu1zLOVtJ348hHAXgA8CuM/M3lO2QcdE6uPwEIC3AbgTwGUAn82OJ2e3mc0A+AqAT4QQNg47dZ9jpdm+j93J+zyEcC2EcCeAWwG8y8x+5JDTk7E7UarmnzfjXJz6GCQ/JxDNw8WhefhYqZp/3ozzMJD+OCQ/LxDNxcVR9lxctqBwCcBt7udbAbxcki3XJYTwcvb1FQB/jd30kCtmtgwA2ddXyrPwuhxka9LjEEK4kn1QdgB8HntpOUnZbWaT2J2A/jKE8NXscPI+38/uqvgcAEIIawC+AeADqIC/E6VS/qn4XFzJZ7Qqc4Lm4XLQPHwsVMo/FZ+HgYo+p1WZFzQXl0NZc3HZgsITAO4ws9vNbArAhwE8WrJN+2JmTTNr8XsAPwPgAnbt/Wh22kcB/E05Ft4QB9n6KIAPm9m0md0O4A4Aj5dg377ww5DxIez6HUjIbjMzAF8A8GwI4XPuV0n7/CC7U/e5mZ01s9ns+zqAnwLwbSTu74TRXFwclXxGU58TAM3DRdnr7NM8fLxoHi6WSj6nqc8LgObioux19pU/F4cSun/6F4C7sdtF8wUAnyzbnkPsfCt2O2I+BeAZ2grgDICvAfhu9nW+bFszux7BblrONnaVqI8dZiuAT2Zj8ByADyZm918A+BaAp7MPwXKCdv8EdtOFngZwPnvdnbrPD7E7aZ8D+FEAT2b2XQDwW9nxpP2d8ktz8YnYqnm4WLs1Dxdrt+bh4/ep5uGTsVdzcbF2ay4u1u7S52LLLiqEEEIIIYQQQghxw5Rd8iCEEEIIIYQQQogKIkFBCCGEEEIIIYQQR0aCghBCCCGEEEIIIY6MBAUhhBBCCCGEEEIcGQkKQgghhBBCCCGEODISFIQQQgghhBBCCHFkJCgIIYQQQgghhBDiyEhQEEIIIYQQQgghxJH5fx/Afq8WFu+kAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 0 149013\n", + " Min thresh = 1000\n", + " Sliding\n", + "\n", + "\n", + " Winner = Sliding\n", + "\n", + "\n", + "034s_iimage_3401832241774_clean.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADDCAYAAAAya0IYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADZ80lEQVR4nOz9eZhk2VXdDa8bkTHdiMjMqq7ulrolUEuoQQJjzCAzIxAGMVhYyIwyAiwjITPaBoSxXwv8fmAZYwbbnyUai8nMgwQCYSZhRkkgCYlBDJpbQzc9VFVmzPN9/8j8nVz3VFRXdXV1Z2TVWc9TT1VG3OHcc05E5Vp77b2zoiiUkJCQkJCQkJCQkJCQkJCQ8GBQOe4BJCQkJCQkJCQkJCQkJCQknDwkQSEhISEhISEhISEhISEhIeFBIwkKCQkJCQkJCQkJCQkJCQkJDxpJUEhISEhISEhISEhISEhISHjQSIJCQkJCQkJCQkJCQkJCQkLCg0YSFBISEhISEhISEhISEhISEh40kqCQ8Igjy7K3ZFn21OMeR0JCQkLCEbIse3eWZZ9+mccWWZZ90BXe54rPTUhISEhISNgsJEEh4RFHURQfWhTF7x73OB4IWZZ9apZlf5Fl2V6WZWezLHtFlmW3Hve4EhISEq5lZFn23VmWvTfLsl6WZXdmWfbvjntMCQkJCZuGqy3MXup66ffihAdCEhQSEtbjryR9ZlEUu5JukfQ2SS851hElJCQkXPt4maQPKYpiW9LHS/rSLMs+/5jHlJCQkHC9I/1enHBRJEEh4RGH22qzLPv2LMt+Psuyn8iyrH+oft6eZdm/zbLs3sNI1WfYuV+ZZdlfHx77zizLnh9d+1uyLLs7y7K7siz7F664ZlnWyLLse7Ise0+WZfdkWfbSLMta68ZYFMU9RVHcZS8tJSWLbkJCwnWBLMuekmXZaw+jUXdnWfY/siyrR4d99uH38P1Zlv2XLMsqdv4/P/yuPp9l2W9kWfaBl3Pfoij+tiiKob20UvruTUhIuAaRZdmTsiz73cPv2bdkWfYMe+93syz7F/bzV2RZ9oeH//79w5f/LMuyQZZlX5Rl2VOzLHtflmXfdvid/O4sy559pdeLx5p+L054ICRBIWET8I8l/W9JpyS9SdJv6GBv3irpP0r6QTv2XkmfK2lb0ldK+r4syz5SkrIse7qkfy3p03XwJfcp0X3+s6TbJX3E4fu3SvoPFxtUlmUfkGXZnqSxpG+S9N1X/ogJCQkJJwpLSf9K0hlJHyfpaZL+ZXTMMyV9tKSPlPR5kv65JGVZ9k8kfZukz5d0o6Q/kPTTl3vjLMu+NcuygaT3SWpL+qmH8BwJCQkJG4csy2qSfkXSb0q6SdLXSfrJLMs++FLnFkXxyYf//PtFUXSKovjZw58fpYPv7FslfbmkOx7i9eIxp9+LE9YiCQoJm4A/KIriN4qiWEj6eR38Avrioijmkn5G0uOyLNuVpKIoXlUUxTuKA/yeDr6IP+nwOl8o6UeKonhLURQjSd/BDbIsyyR9laR/VRTFuaIo+pK+S9IXX2xQRVG859DadUbSv5f0N1f1qRMSEhI2FEVRvLEoitcVRbEoiuLdOhB2LxBpD79P3yPp+yV9yeHrz5f0n4qi+OvD7/XvkvQRD8Kl8GJJXR0IFf9b0v5DfqCEhISEzcLHSuro4PfdWVEUvyPpV3X0PXql+H+Kopge/o78Kh38bnxVkH4vTrgYkqCQsAm4x/49lnR/URRL+1k6+NJVlmWflWXZ67IsO3eokn62Dr7YpIOcrvfatfzfN0rKJb3x0Fq2J+nXD19/QBRFcU7Sj0n65SzLth7MgyUkJCScRBymnv1qlmV/l2VZTweiwJnoMP+OvVMH38GS9IGSfsC+a89JynQQNbssHIrGb9LB/wHfcanjExISEk4YbpH03qIoVvbanXoQ35NrcD5KGfPv5auG9HtxQowkKCScGGRZ1pD0i5K+R9LNhyrpr+ngF1VJulvSY+yUx9q/79fBL6YfWhTF7uGfnaIoOpd5+y0dWNK2H8IjJCQkJJwUvEQH0acnHhZI/DYdfdcC/479AEnk175X0vPtu3a3KIpWURSvuYJxbEl6whWcl5CQkLDJuEvSY732jA6+R99/+O+hDgJh4FGXcc1TWZa1o+vxvXwl13sgpN+LEwKSoJBwklCX1JB0n6RFlmWfJekz7P2fk/SVh0Vucll9hEMF+Id0UHPhJknKsuzWLMs+c92Nsiz7/CzLPjjLskqWZTdK+l5JbzpUZRMSEhKudXQl9SQNsiz7EEkvWHPMN2dZdirLssdK+gZJ5N2+VNK/zbLsQyUpy7KdLMu+4FI3PPy+ff7hNbMsy54i6WskvfpqPFBCQkLCBuGPdUDyvyXLslqWZU/VQU2xnzl8/82SPj/LsvywuPhzo/PvkfT4Ndf9jizL6lmWfZIOao79/EO8nqT0e3HCAyMJCgknBod1D75eB8LBeUlfKumV9v7/kfTfJP1fSW+X9NrDt6aHf7/w8PXXHVp4f1vSxYrV3KqDlIi+pL/QQaXxZ17Fx0lISEjYZHyTDr5j+zoQY9cV6fplSW/UwS+qr9JBy0cVRfEKHRTB/ZnD79q/lPRZl3nfZ0p6x+F9f0LSfz/8k5CQkHDNoCiKmaRn6OC78X5J/1PSc4qioC7B90ma6YDo/5ikn4wu8e2SfuwwtYw6CX+ng9+P7zo8/qsf4vUc6ffihIsiK4riuMeQkPCwIMuyJ+ngF9nGYWGwhISEhISEhISEhGsKhw6HnyiK4jGXODQh4aojORQSrilkWfbMQ6vXKR1EyH4liQkJCQkJCQkJCQkJCQlXH0lQSLjW8Hwd1Fh4hw76qK/L+01ISEhISEhISEhISEh4iHjYBIUsy56eZdnfZln29izLvvXhuk9CgqMoiqcfdm84XRTFM4uiuPu4x5SQcFxI38MJCQkJx4/0XZzwcKMoit9N6Q4Jx4WHpYZClmVVSW+V9I8kvU/S6yV9SVEUf3XVb5aQkJCQcAHS93BCQkLC8SN9FyckJFzreLgcCk+R9PaiKN55WMX0ZyR93sN0r4SEhISEC5G+hxMSEhKOH+m7OCEh4ZrG1sN03Vslvdd+fp+kf3ixg+v1etFoNFStVtVsNlWr1SRJ7p7IskxFUagoClWrVVUqFc3nc00mEy0WC1UqFS2XSy2XSxVFoSzLlGWZKpVKON7PLYpCq9VKklSplHUV7lWpVFSpVMK1JGm5XIb7bW1tKcsyLRYLLRaL0nFcnzH7v/0ejKFarV7wjNVqtXQMY/V7cC2/J4jfz7Ks9Pzxucwbr2dZptVqpdVqpeVyGe6/tbVVmleO5fq8H6+bpNKcMw7WjftwT19/Hx/35LV14+ZeXMfHuA6M18fq14/3R/y+n8Pfvn/82eO5iNfL7+N7J15LH3M8Z/G1HsiJdLH5iZ/9gebhcvBAx11sXS52r/h45sDnJ0a8p/xzH38uHfP5/P6iKG58wAFuJh7U97AkVTvt4vG3rXTPX7Ye1oElPHjMb27rQ2++77iHkXCMeNtbT0mzuSSpiP7/uNYx0VCzYvrA/1FsLh7Ud3H6Hr52sfUhVT2+3j/uYZwovO0tHRXL6+v7bpPR1/m1vxM/XILCui/90m/pWZY9T9LzJKler+vJT36yut2uPuADPkC33367tre3AwFYLBbhl/zJZKJqtapTp05pOBzqbW97m97//vdLOiD79913n0ajkZrNpprNpra2trS7u6szZ86o1Tr4ct7a2tJ4PFa/39dqtVKn09HW1sFUNJtNdTodzefz8DPkvlqtajgc6p577tFsNtMNN9yg06dPq9fr6fz585rNZmo0GoHsjUYjjUYjzWYzLRYLzedzTafT8Fyr1Urj8VjT6VSdTkfdblfz+VyDwUDNZlM33nijqtVqiczX63XVarUwLwBRYzKZhNcg/0VRaDabKcsydToddTqdcF2Omc1m4ZnzPFe1WpUkzWYzDQYD9Xo9LRYLNZtNnTp1St1uV7u7u9rd3VW73VatVlOlUtH29rZOnz6tZrMZ5mG5XGo+n4dxLJdLtVotdTod1Wo17e3t6ezZs+r1eur3+xoOh5pOp4EUMm+8hui0WCwCiYxFl1qtFu6L2FOr1VSr1cKxzF+1WlWr1VK9Xtd8Ptd4PA4ix2KxCP+uVCoXiACMbT6faz6fl85pNpva3d1Vs9lUpVIJ4hfX4490QHYZK3t0a2tLy+VSo9FI0+lUklSr1VStVlWr1cJeYwwch4jBvRBt+JtnZn5dIKvX6+G9xWIR9u46QY1zVqtVWAtIOq9xra2tLVWr1bBPGYeLQey58IVx+JlnLrIsK40fLJfLME4X42JxZLlchnlkj3As4+dY9qsk3X333XfqZOKS38NS+bu4qVyPe8vn6nEn9df2axTDf/oP9Yf/7QclPfa4h5KwARitZvqCj/v88HMxHmt5/9ljHNHDjz8uXn3cQ3goeFC/E6fv4WsXN/zwKf3Ubf/3uIdxovDZH/LJWvZ6xz2MhEP8dvELa38nfrgEhfep/JvPYyTd5QcURXGHpDskKc/zYjqdql6vazgcajAYaGdnR81mMxBGyBoEptfrqVarqd1uq9lsajgcBsI9GAxUFIVqtVoQBFqtlm644QZVKhUNBgONRqNAAiuVilqtlqrVaiAm9Xo9kLDD8apWq6nb7Wo4HGpvb0+TyUTD4TCQVY6vVquq1+uqVCoXuBeazWYgPpB83BYcV61WtVqtNJlMwvghZMvlMpwDSUIMgcxxz9VqpUajoXq9rslkEsQMiBNuAM7jZ+5bFIUmk0kgwrPZTEVRqNFoqNFolMbs0Xh3EkhHkXjmide41s7OjiaTiUajUSCKjKtararRaFxA7hER+Ld0QO7ZL4yB43FNcE3Wfj6fq16vB8IKECMYJ8+CqMC9WXN+nk6nYf4RaDqdjhqNxgVuD8BrnMOzsfeYk9hJwzMiGrnw5s/iwhPXcRLvz8Q1eeZarVYi8tzL5x0xKb4PpN4JPusf779YIPC948IXe30dGHcsOrhzh+dxp4sLI+7K4DvnBOOS38NS+bt4Ozt99YvqJCQkXFXklbpe9ce/Gn7+Z+9+qu7/+g+TJFXuvEfL+5KTZcPwoH4nTt/DCQlHmP+DJ6jye2867mEkXAIPl6DweklPzLLsNknvl/TFkr70YgdDhiBUHpElGguxiNMdtra21Gg0gtsA4gh5lhSEhe3tbTWbTTUaDY3H4xCJnM1mgdQgJnDd2D5fr9d1+vTpEFEejUbheCdmiADNZlODwSCQ00qlokajEZ6NY91qDXGCiNVqtfAagkee54EY8R6RY4QAyBDPPBgMwnx7NJbnkhSEFshYTKo86u/R+VarFSK+sd0cEggJJZWD+7TbbXW7XY1GI00mE9VqNY3H4yD2IMQURRHcAy6CLJdL1ev1klOBa7sQwnwyRzw7z+xOFeYmTk+AdLKe7jLg2ovFQtPpVFtbW5pMJiqKQtPpNDhkuE6cnsHc8swu9kDEPVLv8yAp7CuP/seE2MWnOBXG1yg+l72NyBDPEWvKPPhedWEBYQ73Bc6YLMvCGvpngbVy54an0/jaxPvUUyA43sfLe3z2Pd2G+UEUOqF4UN/DCZuLxrmF7ti/Rc/buUAPSkjQTzzud6VXHvz7tlc+Tx/wqtvU/sO3aXn+/LGOKyEgfRcnKPvoD9MTO4kYP1j81k//iD7zMR8lrU50gOeax8MiKBRFsciy7Gsl/YakqqQfLoriLRc73i3Wi8WilI7gOfuQIbdzZ1mmPM/VbDaDSEAEmlQCrNzb29tqtVrBjg7Bcbs2IgFR1zzPA4Ecj8fhfqdOnQpCAaQIkrlarQKJ5z6TySQ4BniNe8xmsxLBRyTA1u6CA1Zyri8dpUJ4agTuCeYLd4WTTU8XWC6XQXjxaDXjgSSuiwKzDjyPk3Ui3awdosdqtdJsNtNoNLpAUCCthbnluo1GIwgZLsRwrdhhICm859F7d6IwnzgNSJMBLiTwh3tyvtftQNxBdGHdub8T+egzU6qFwDO4O4W1ZY6x5ft4vfaGz02cSuEOAHfhIGoAr7sRpyb4Z5D9yvxUKpXgxnGRxAUDT6OAzLswx/0Zp6eocE9SamL3hu9xh9edcMcT8+og/eOk4sF+DydsLprvuFcv/pOn63n/6IePeygJG453PeMO6RnS7T/6Am2/Szrzo29UMZ8d97Cua6Tv4gRJuvvfL/UdN6ZlvxKcfe5TdMMPvfa4h5HwAHi4HAoqiuLXJP3a5RyLrX2xWIS6A4PBIPyiX6/X1W631Wg0NJsd/McIaSPimee5JpNJIDJx5Bfy0Ol0NJvNAnGEMCA6eD4614IojUYjFUWhPM+D0EDEnCg45MadDggIs9kskD/EAEmhJgL3lo5EAMbpeeeQKyK9XlsA0u82eJ7PiRrOA4/cSwpOAM7FqcFzsCZuV4cs1ut1NRqN8CweSXbC5uR8OByqVqupXq+r2+0GIQSXAkIB5I70B+bZUyh4Vo8yu/MEcs98IggwJ7ha8jxnD5ccCl6zgdc9LYZ5J71hOp2WxBdEGyLx/h7jZF+7Q8GJdCzOQP5jUcNrZCDM4Bbw9ea5vC6CCzDci2vyueJnTwvhc8IfhCDmEsTXYK5cbPJnYQ7iOhlex8FrNLjjwoUknpcx+DHrhJ5YjDiJeDDfwwmbia3H3Kq/+c4zeuenJTEh4fLx1q94iSTp9ie8QLf929dJl1k8N+HhQfouTki4cvz+i35Az/yhpxz3MBIeAA+boPBgsLW1pXa7rV6vF9wJOAnq9Xqw5BOtxykAIJzNZlPL5VJ5nl9gy4akbG1tBUGg3W4H4YJxQKiwrFMEEYKOqNBqtdRqtYKdvV6vB1HBI/V0rsAp4bnbkkKqgaRQ54Axe5pEvV7XeDyWpJK9HFs2EXsKD0oqpUpAVrm2pJJI4a4BJ2eMlVoM2O0hvLguIKmxcMF9fE4ozMj4SXtoNBpqtVrhetJRBB2CiciCq4O54d88A0QZwuk1EZhziHqcM+9FAONouj9XbM33vzlnnS0/jqj7NZhj4J0+3CHg8x+TZp6ZFBQXDbg/60Hthhju2mAfxVF8np9jXUDw2ge+H/x8non18zXjWZnHer1eekYHYkwsCPjau0ixDuucDMxPQsJxYva4G/WOT/uR4x5GwgnFW5/zEt126qt0+/Nff9xDSUi4brH/7I/V825/1XEP48SillX19u//WH3QN77uuIeScBFshKBQrVa1s7Oj4XCo0Wikvb29QIToSECkGhJP4UUXAxAUiGRLR0XYPGraaDTUbrfV6XS0t7cXugpA+uOOCVyv2WwGW750VJvAi8rhbPCCb41GI9RvgLBC1oqiCAUcJQUHRpZlms1mmkwmQdSo1WqB9PI3BMmLQ0LguL/XNoCgci6k0LtBUFPCUx+Yh7ioIvOd53kQAxxOFBmHk1jqF0yn09JceupETJYRLtyq710RJIXaDqwD+4lndKLraR+r1UFRSop08oyeGuO1BzyC72NE4GH8OAn8XN5zlwPP7teEsF+MOLvgwrO4EAC8JoCLAz5Oj9y708PTJADpAswbrhzgrge/Xgw+u6QsOZgbPgNO8r3WAXvdU0d4Tv+b85g3fw4fm187ISEh4STjrZ/7Un2uPuq4h5GQcN3ink9a6Wt233vpAxPWopZV9Wf/9Pv197pfq9uf+4bjHk7CGmyEoJBlWejWsL+/r+FwGCzubrWHpLVaLc1mMw2Hw5CrDul38uYEAfs8xfoQCPI8L3V8IMUBIjOfz9Xv90N+fafTKbX/c5LX7XZVr9dLrftc6PCWhZ7XDonzFAeI4WQyCUQb5wAReIgx4xyNRiVCz/URUeJIN2BeeQ5aN7qYgAgQF4yESGL1bzQaQcRx8WO1OihiubW1pVarpdFoFLoiUDeh1Wpd0BXDiZ6TSSepROj93u5UYI3cqSKpRJxdQGGcCEZut/e58+J+OAJwcFCUkGuTbuHE1jssxB0avGaFOx08XcGLlQL2AySfdCDOHwwGJaGLZ6YuiaSwlr6P1rkDEKu8ToMXCPWOHL5ezB3zFrs+eE7GxBi5tu8JnDQO1jkWZvx9ryXCs8Rix7WQ8pBwsrF16y168n/7s+MeRsIJRy2rKvudW1V82vuPeygJCQkJV4ROpanXf8YP6Ov/6HP1uj+9XU/8uj8+7iElGDZCUICYkbZAFBwBANIESYGU9vv9EhHALu4WdyLLo9FI58+f1y233KJ2u608z0tWfQoEQuQgh0TUqdLf6XSCU8GLyUH4G41G6FIBUfcWlJBMnslt8+TXO9GEbBPd97QC6cg2zjO7mEE6hhfyi0ms15NoNpshdQPXhnQUwUWMgezFkWeEGtaBufPn9noZ1H5AVOj3+5IU5m9du0OvYeDuBUQknoHXveAlY/JoNg4LruvrwTlei8FJpteokI4cHL4XSO/I81yz2azkBnBHgDsYPF2H63qkPU494HPhIpeLJ+4qYb/6tVqtVtgnnhLh8x4LAz42d4v43HiNDndOSForgrgQwHzX6/WSY4i9ikgQixG+N/w5PU0IcYL3XWRjTS6WXpGQ8Eih0u3q8377zamzQ8JVwf/6oJ/Vc/WJxz2MhISEhCvGmWpbP3Xb/9W7HvMresWnfrgk6ae+7zN1w8tSwcbjxsYICh4dxd7sRdPostDpdALpjnO2OReyulqtNB6PA2Hb29vT/v5+qH/Q7XbV6XTU6/U0HA5DlNwLNlIEEILiHRog+xSDhNh7dNojqTwnNRq8sCIEzskwBJ4aDc1mMxzjaRVOHiH8njNPpwScDBB+FxYkqdVqBaLW6/VKhfm84j334d/eGYDjWA/WNI7QMx8Qbv5mPF47wdMg4n0DAfYik6wd8+X1ANxRwnP4GsXW+bhWB8chlrgwAzzFxN0JrVYrFEn0toYUwpxOpyG1JSbKzLe7Wbz1IsJInFrhbgzmBKGNazGvsUjEe3we4si/pxuxl/g3Lh/qfsQiSVx80QUAd024U4F5Zi5cWEFopLNE7KpAqHH3BtdZVychdsckJDzSyKqVJCYkJCQknHDc9S0frz/47O+W1DnuoVwzuK3W0b8+/U5J0uf+h+/R3/27tiTpxU9/lpZvfcdxDu26xcYICh7tlxQK9EEoyImHhFNQsdlsajAYBKJBxBViMRwOQ2rAcDjUYDAIxA0C0mw2QxoDpAjhAHeBdxVot9uBYEHgptNpIHVORrCtS0ctDImkcl0I4roCf27xdrs/8+PEiz+QNwSH1eqo4wDzi6jizgFEiyzLglDS6/VCKgZkl+4VCBPUQJhMJkG88GeG0NO9wKPVkD/gewC4CMA8MR++b5hLj0YjcCAwOcHmOhBs9o8XRuQcT0vg+REuSKfBceHr56KFF+VkPXw9XfSoVCqleXHyz32dULMPGWss+LgQwfz7/DKvEHzfv9zTj3dhgX2GSyI+nmKlLnJwf6+RgCPHgUjHOQg3eZ6v7ZgyGAxKgpGLUMyXCzakhcQtRL27RELCI45KVS/781cp/QKacLXwmK2OnvO379WPf/Bjj3soCQnXFRatg89fwsOD22tt3X4Ys/qQV/+4loe/W7932dD/c9vHHOPIri9shKAgHdnFJ5NJEA4gLTgRKNp46tSpUM9gb29P0gExmUwmIeIrHZCOfr8fivPRipBaCZASTwMYjUbqdrva3t4OLfwgHV53Icuy4H5YLBYaDAaBkHuOtjsBIL/UCKhUKqVaArRnjMkg5BNiLR05OXguHA9Y/j23HOIKWSJSTScNiD2iSaPR0OnTp9Xv9zUYDHT+/HmtViudPn06uBicaDoZ9DoOkFLINl0sIKCICR6Z5zwQdzxAVIjbAzognZ6egRjg6Q+NRiMUv4zFAieiEG3vitFqtUIBQhed2GteaNOvE4sVTtwbjYbG43HJ2u91NuIxeRFK9pfPjbtmsiwL7h1PBYiLSnrRxljA4Hk91YR7cV/GyFoyr6wVc+ipJKwVn1t3e/DszAXiGGCvMX+kRrig4LUXvD6FPwcuGtaGApOxsyIh4ZHCo9MvoAlXGY/a2pOUBIWEhIRrEzdV2+Hfj96SfvX9b5QkPftdn6Hepx6kVRfLpbRKHbyuNjZCUMAOfvr06RAxptsA5KJer4eI+Y033hhcCLu7uxoMBsFhQFcE/nQ6nVBkj6J9kBxaR+JGwAUB6V8XqYYsrlarIDA4YaFSPUIExFU6ICm0vPSK9Ry7WCyC80A6KoQIIOMQ2CzLArHFgg/BhhjjCvCovaSS04LOFG6rb7fbuvHGG3X27Fn1+331+/1AwiCaEDJECcQPj0Q7gS2KItSpcBcF1/NijhRoxNHhzgKEJtwOCAOsk9+P54nnh+MQijiOP359L4qIm8ELU5KmAtF1V4MDYs2zss+d+FKAlHX3ayCOAJ7dCyB6+0ZPi0FQwJHCcS7IcG/fd1500t03PgauTS0G5gEBglarvg85z50MFB+lgKg7dLge6U/sC9KF4uKOuAz4HnBxxmueOCioOplMSikpCQkJCQkJCQkJJwu17OB33J97/KulOw9eu/1HX6AP+r63a3X+vIrkQr1q2AhBAUJ66tQpbW1thRSG6XQaCjPu7u6GfPH77rtPN998c7DiU40fIjQYDEKthWazqXa7HSKgeZ4HIsV5cWcALOxUwfeIaK/X0/b2trrdbkih6Ha7qlaroYI+QogTW6/D4J0marVauA6ESVKpUj7EJ87TH41GwZHRarWCMBETakjVfD6/oN5DnudBYOF90Gq1dMMNN2hvb0/9fr8U9aWwJQKNiyKQ5JhAs344FbgepA2Sh33e62TEKQ2IKswl4g/1BLwVI2NwQs5aQOJ5zQWF2OEAIXdnhXfg8LQU39ve7SDLMuV5HkQHuos4uXaBxlNDIMaA8TO3vsfYQ15nRFJ4VhdXmHsEKp7BI/3sKz43nmpBlxXWi3EgnOHa8XmP4cczl+4e8JoXfBbYq+valTI/PAuin9evkMoiDfd3R0sqzpiQkJCQkJBwJahub2t6OtVi2iS89SteIn2F9NEveoFues05Lf/67cmxcBWwEYICRL7b7eqmm25SvV7XvffeG6KFOAx2dnbU7/c1mUw0HA5LheA8uoj1GuJD1HuxWIRijJICoaY+QFEUGo/HGg6HarfbF1jWp9Opzp8/r263G5wC1Wo1EJpGoxEIoqRSdB5yw7NC9rrdbiheR54/QoMTOa4xGo2U5/kF0WJSHZzYE2GFrOKIgAwvl8tAUnk25ozCkrhA6PwAQfOOE3H++Xg8DlFg79oBIYUIevSb9yuVShA5ptNpuAfvcx4Rfrf3Uz+DtfIOF8w/x7IWq9UqRNK9RSFjgejSsYHotVvjvX6FE2GpXBzRa1psbW2p3W6HefXWp5JKoox3XfB1ZM69zSOiijsUIMleABHhijGx170gpndvIB2GOeE8SSVHBNdgXVg7RDmvb+Br6n/H6R2Mk+fnmnwPuDgS19BAdPJir7wOPMWIecElkWooJCQkJCQkJFwJ7v2iD9U7v+Alxz2MhDV4w3ccrMsnfMPz1Ti/UO2333jMIzrZ2AhBoSiKIAS0Wq0Q+e73+4Fo4xjgWCL6RLrJwfdq8FTUh8Tv7+9LktrtdiAwuA3yPNfe3l5wF4zH41I0GCI3Go101113hcg4JLnVainLslAUDhs8tR0kBRECstvtdtVsNrWzsxNyuKWjrhYQwOVyGezoo9EokFAID9F02mAiisR2ecbAmCaTSSBgCCGj0ahEqrm+599zrLf0hHB6+0qPUHNf70LhBN8LFJKGwLo7wfSoPHNO5Noj7hBTL0jI+0TBcRtwPX9uFw0QNXCB8KzAOwzwM9f1gpuc4yJFu90OwgjCgddwINrvHRYg5e5kwKni4/JOE27djwuA+jUh46whz+pRfL9+LGyxD911EheO9Pu5M8iLIPpaunMEoYPrj0ajUhcN5pvPpqefuOuFz5mvFfdirVL9hISEhISEhISEaxd/9AM/KEn6h9/6AlWnhbo/+7pjHtHJxEYICvyyD8nBwr+/vx9IH+0Osc1D4CBjblH36CeEYTab6ezZszp37pye8IQnaHd3N5DvnZ2dYOH3vHOi5EVRqNlshkKNk8lE586dC8IH5JAaCpAwrwOArd3b2lFE0cmXdNR2UFKJyEHWcGJw7/F4HFwSHsH1wpCxnRxRxgki4/QceuYD27oTZAgbAglFBxEo6PrghRwRfrx1nxNtSGez2SwVHPTINs/CuTgZ3L4OOXUXA8ezR3BXeGeFWITxeg31el3b29uldBavIYDwAsGVFNwmiCaINJyT57mWy6WGw2HpvpJCrQ4fkxNqt+8zfk/98JQPF268ngDvu1OBdfA6AogcXsCUziqsKXvcXQAuqpBKJJXTGFgv/s0+9U4cceoBcxrXVCAFyh0P3taT/RGnl+AQ8YKq3s41ISEh4SRjtJrpX/zW1+p2/clxDyUhISFh4/DHL36J3rMY6LMf9y1q311o98dfe9xDOlHYCEHBiSRF2U6dOhWs4B4Z964Abu+HtNA1wXvOQzr29vZ0zz33aDKZ6Oabbw4CwO7urnZ2djQcDjUcDoPDoFarBTfAbDZTnufa3t6WdGSlJtXB6x9AUpzAk9sPKYVsNRqN0G0CokaEnnF7u0yIs7dhRBjxYpQID04qscV7m0es4BB4CjRC1iBzpAXgxoB80SbSO0i02+0L8v+9Q8MDRZ8hkJBD75zA/b02AMUAPZLPPoL8Qr4Br7nTAHeFW/q9UCWv4QLw60G4vWMChNaLT2L7h7Byz3a7HdYlfk5EBa9B4GNFuIlrJ3idAK9lETsrnMgzJvYfYh7gGV2EYs2Z03WiANfkXi4K+Th9XkjFwf0SiyoUVaVmCmP1NB4+T+x3F1/43Ph9vc4F3ytJUEhISLgWcG410+1fncSEhISEhIvhA7Y6+stv+J965TDXd7S+XGd+MIkKl4uNEBQkBUIA8d3d3dV0OtXe3l6ooJ9lWcj1Xy6XwVrt1d6dMEFoIBXL5VJnz57V+fPn9YEf+IHqdDqaTqfa3d3V6dOnQ7cIdwNAWMjX3t3dDVFl6h3keR4K9sUFBrH609bRrfGIB5ICqaf4Hv+eTqcajUbh+SGaODUg0pzD3/P5XMPhsBRprlaryvNckoJY4/nlTt5xaBDBd4LY6XSCYOOChxcGxNFB6oYTYcDaudXeLersBRc3IJsIE8w3BDCuW8F93LXCfnEi7V0MvPZCnKZwMSs8z+YODunIbcDzOUF3UYk9zvhwg/j7Lnj4Nb1tZdyZAFEtPo/32Bc8n887a8ceiOeBtWLcvM89fG3dPURhUMaBMOjjZU1ITfF9xH0rlYq63a6yLCul+Pg+i1NH2EPsC0/Z4NkR7OLUloSEhISEhISEhGsbz2iPNP83P6nvrDxbN74kiQqXgysWFLIse6ykH5f0KEkrSXcURfEDWZZ9u6SvknTf4aHfVhTFr13iWppOpxoOh9re3g42cQgy7SCJsK9WK+3v7wei1Wq11G63Q2Qeou2t/SBBg8FA586d02g00u7urtrttjqdjra3t9Vut1Wr1YKFf2dnR7VaLYyBnP5Op1PKs+52u6GCPMdzf47hNYiiW+AhVwgFRG+d5OO0cBKMjRtHBm0wKSiJ+OI1IYg+V6vVME9e88FzzXlmgGDDPNGtYV1HC69dwGveJcBbgnp3AI9EO/GPi+h5FNodB04+Eajczu4FIb1YpDsSvMggokkc5ff0iLgjQeyUYB58/bi25/W7oAO5RcjhHK9n4Nf2Io3r4PMaOxXWATeGpDBu9q3fl/nxQpBxig37giKo3Dt+Lne0zGazsMY4PhCL3GlA2gjrfLlwkSqu6wG8jsYm42p+FyckJFx7WBYrfeE3f5O6SrnBDxfS93BCwrWFZ3V6+qaPmevGVFPzsvBQHAoLSf+mKIo/zbKsK+mNWZb91uF731cUxfdc7oX45Z4ca2z0LihAtDqdjiaTiUajUUhFIIe+2+2q1WqFwoLYn50sz+dznT17Vv1+X2fOnCmRcBwPCBiQJGznWOchPhB9osh0kBgOh5pOp6E+Ak4GqVzXgPE4CXNnAHNAEclKpRJEAOmoIj/2e5wGRPDb7bYmk0kobOmdArwFodvDcVR4jQRJQaxxAQQSzHiZK64R563z71arVRIi3K7PMV5sECLvc8ecx9F84KQTQQl3BmuIW4SxM35vIxmnNvieRTiAcMe1MOLcf0Qnj/B7DQdIrUfRuZ4XJGS9qMPAXnCXgY85LpwoqSTg+Dh9zRF/XOiJ19Kj+55OwFi8+4W7Q9gbXnvB55XPPK9RNNMLKXIOaThx21QXfZhbR/xM8fquq92wobhq38UJG4LVUp/yvOfp9+6447hHknANYKVUaOwRQPoeTki4xvDTT/1BPf8bvk6P+oHXHPdQNh5XLCgURXG3pLsP/93PsuyvJd16JdfyCK6TUMjdYDDQeDzWeDxWp9PRLbfcElIXRqORer3eBTnXkFwIjTsCBoOBzp49q0c/+tEhwkn7SMQDRAsKHULc6I5AYTva1uEooLgjUXQK5HlOvz+3iwpO5HEGVCoHxR0ZP5F477CAIOMdKogaO9GFoCE4EIX2FnlOpDyFAaHCCbp3RvB0FYg743QQ1W40GhqPxyXiCNEGHrH25+A6ngPPMZBuhBfmCXFGksbjsaQDgt/pdNa2n6Q+RJxCEIMItxf3i4swuiuB9yDdXrDTC5M6KY5TGFx8khTWYV27UheruK4Te+6JC8Ovw3y4KBC7CRBzPB3BBRVPe2C/uxuHdBoXLnAkkObDz+5OcDEGxw01JWInyDox4VLwe2w6ruZ3ccLmoP2Hf3vcQ0i4RvCMz3q2pL857mFc00jfwwkJ1x4+tlnV5KYTEVg6dlyVBOEsyx4n6R9I+uPDl742y7I/z7Lsh7MsO3XJQRyS5sNrlYh3TOalg1aPN9xwQyiQB/nll3/IGjUL3OJNRf29vT0Nh0PV63V1u92QMuFkbzqdhhoDdFSgCB7XosYBAgiRfOzebvuWyikBTlxxZ0BiptNpEAYg77TUxMWwLi8cp8doNFK/39dgMAg1ICDvtJXkfozZK99TG8GLK7qDguu5WINwcvr0aT3qUY9Sp9MpiSY8MznuzKkTbyf1LrZ44T+IJXsH0Ybn5G9abFKUTzrqIAJJ3traUrfb1c7OTniPjhmx+LMuVSBOk3AXgFSO+DcaDTWbzeAyoCMG6x8XQPRuCX49n0f+QKrZK77f424fnpLh10SImM1moR0jKRn+maS+iKd3uJOEe0kqFUOMxQYXW+JuH9JBS8j9/f3QPjYuEikpOJSYE4RFv6539/A9w718jXzscQrOScBD/S5OSEi49lD89TuPewjXFdL3cELCtYPXPee/6v7nf9xxD2Pj8ZAFhSzLOpJ+UdI3FkXRk/QSSU+Q9BE6UGv/60XOe16WZW/IsuwN3hrSi69Bcug+sLe3F6KWOzs7oUBis9kMUVqi8ljuJ5NJIPqQ9cFgoHvvvTe0paTQIO0jcR+Mx+NAuCFpiAiTySQUPtzf3y/ZpyE2kJlWq1XKR3ey7nn6CBgQ+tFopMFgEIreeT0GiDURXmoj0HFhb29PvV4vFF/0mgIINBBHyDaElGd0MgVppMo/JHgymZTOIyrdbrd15swZ7ezsBKHCyZ1HrcNmtGh43HGBdBLSSJzsQeQp4tnr9TQYDC5IT6E2hqQS6fZOF54yAml2sozI4QUxY8GKvcF7kkpr5WJCTLD546kwXj/ACxj6vLE3KFbJnCMg0coyJtB8vngmFxXYj3FtARcRPF2FNeMY7ybCfDhcBASIG8wtQtFoNAoih4tMrLuvtT9bnDbhxSL5PPvxHOsFXU8KrsZ38VzTdYckJCScUHzORz1dxXx23MO4bpC+hxMSri2cquZa1Ta/ntZx4yF1eciyrKaDL86fLIri5ZJUFMU99v4PSfrVdecWRXGHpDsk6dSpU0WWZSGqjggAgSPKXKlUtL+/H4opIiZAzDzVgSg6hACCuFwuNR6PdfbsWb3vfe8LQgItIXEAeGSeSDrXo5sD5AWyE9v1qZ3QbDbVbDY1Go2C2AG5Ik0AQsdrvO7EDJKT53no4ODXIcLueebSEdHz52IumCcn+2715lyIWLVaDYIIqR9OihEiKFaJSwRxxp+P63nE3CPLtO30lAsIJw4Sj34TgYZIxlHzuPaER61xDcTPzXjjCDrCj1SumYBowxwzbzyjiwxexBASHYsMPm4n2ax3TNIhw5zv7RTBusi7C3g8G+PhuswZqTG4Vdx5EI+9KAqNx+PgavBUEPa1tySN00sYjz9n3D7VU6W8A4e7Itz94vUa/LniGhaxG2WTcbW+i7ez08nbt0G4ezHQo7c6xz2MhBOKuxcDFbMkJjxSSN/DCQkJ1yseSpeHTNLLJP11URTfa68/+jCXTJKeKekvL3UtfpmfTqchGtntdkuCApFl7waBPT2OskKqvFggJAG3w3A4VL/fD3USZrOZtra2glAhqUT+PUfbyTrjnkwmwSkR53JXq1W1220VRaH9/f1S7r/XFMCiD/kiig0BHI/HgTDt7OyoWq1qOByGsXpxP+aAwoOQcY6lSCTzKamUsgFBc7eFW/WdbCN0INYMh8OQNuAFJWmdGe2j8G/GFwsPwNsIMufemtOt97RujNMkqIFB+grzQCoC93X3A8/O3wgHLh4wbtbdU23WpUIAyHG839gffi9/FkQg71TBNZxcU9QUYYbPBSKHzzOuHhfTSG3BYYOoRsTfUzDYF14HgudB0IjTihivd2Rx8YN5QFSIC4j63HstCMc68YR95fNAqoQ7LnjuTcbV/C5O2Bws9/b13E/7Mv3a77/iuIeScELx3Kf/cy3PvvW4h3FdIH0PJyQkXM94KA6FT5D0ZZL+IsuyNx++9m2SviTLso+QVEh6t6TnX+pCnveNqLC7uytJwcLf7/clKXQHoLYBkX+inURDPfUAwuDCA6LCaDQKFeIh2rQ19Ii9W8UhpDgXlsul7r//fp0+fToQ7tVqpeFwGIQGrku6AO9D7nBQkDIgHdWW8Mg/zgSILo4KbwMJyYf01+t1dTqdC6LPRLj7/X54dmpKQL65HiIJz9dut8OzM89eywCxB3EExGQxjuA7MXZiCCl1J4WTd/YR4kecsuHk3iPr/Ol0OqGYptd8cLAXaC0aE1iu5YUWnWiDuMgkooKLLU7G/Y+Tfz8e0YBxI36QYsHrnO9pD77fYqEBQYO6IexdF9fYs4vFIrgyfA39fXeleK2CS7kBXDDyY/3zyXV8D607z88nFYjUJs73+g4nAFftuzhhs5BN53rZ/qP03J2/O+6hJCQkPDDS93BCQsJ1i4fS5eEPJa1LKrmi/rp5nod8Z6LmRPyJwmK1p74B5IQWeOT+Q7SpHr+1taXBYBAit5C+4XCoc+fOhYrzFBnc3d0NRMRbV7pdW1IYW1EU2tvb02q1CmkYlUolRHMRMhANcABQh0A6an0nldtBrlYrtVot1Wq1kEM+Ho9LwgEkm5oRzBvjPlyvYC0fj8fa398vpTLs7++Hjhf8zVi4D9Ftr9vA2Gnj6HntsbsAcjszC6a7EOI2hswZUWtvRQmc9HsKA387MSSq7sUs2U+g0WgER4CTUY+yr6ungHCFsOWEnbakCB2ewgPiyPy6lI6YTHuRwri2wzqbv4s0zMvFSLOfy+eF1/ms8PnzGh3L5bJU0NL3PnPuIp+kMG6EIi+uyt7mPuwDT3FhH3i6A6/FjhgvoOkioTtNGPdJERSu9ndxwuZg8d736We+6ul67s/96HEPJeGE4d/c/ZHKhuPjHsZ1g/Q9nJCQcD3jIdVQuFqAsGBpJgIrHUXXcShAXGazWSAGRM0hJUT86YoAkcVdAJmgIwAOhV6vF4gKpAeyzDUhix7t9UKLjBn79Hg8LpG4PM/D9ZrNpsbjcaiPUKvVStX+J5NJqQgjkV0Iu3Rk1YfIuxUeAQFRg3sMh0P1ej1VKpWQioFQURSF8jxXp9NRtVoN7gVPa5hOp6VcfZ7Ti9qxTk5kmVdqScQ1JyCrELv5fB6exQllvHfc1QE8Eu/Ra/YMbhi39sfj8LQPnpO/40KUnIcY4c4Fju90OmFfUAeB9z1Nx2snxEUYWQfGyv0ZLyID9/EIvrscfP5iuLgW38sdD3xW+Bkng9eCYP0ROrzQoadDxPUnXCyI4Z+XeA/F8Gf21Ab2CHuVsZHG4QJSQkJCwknDm7/5H2jrzjce9zASEhISEq4DbIygMBgMNB6P1el0AkmAlLXbbe3s7AQCCHHxCCPkCZJBLYBqtVpyDHjuP1X/SU3o9XohfUJSqWAgZDgmkd5ujzQByDzRVqL1iBC8x3EQFwSBXq8Xoq3NZrMUzcYpwPGe7y4pODe2t7dL+d+M0dMF9vb2SqR3Op1qf39f8/lcp06dUrvd1mKxCC0mIfZOWknTmEwmIR3DCT4RZe+I4J0IIIGx+AA5h/x7TQwfs6ejxK9BJF0cYE9wf0SQxWIRhA4XHdhvjN1z7z3K7a4H3xesPevmBSI9pYGx+98uFiCQeAqB11dAZPOfvX6I7wMXh6g/4eKGE+q42wZr4ekuzAfX93Vz0u91R7iXz5uDa/ue8HvgRPIaCtzXU54YJ9dwF4t/hvhs8bd3i0lIOC5UT53SW597cXEtIWEdPu7PnqVT7z2v9O2VkHC8OP2Wkb74XZ+mn7ntd457KAlXiH/27qfqzF8kt9elsBGCAnn8RInJ4YeA1Ot17e7uqt/vB/LabrdLdmz+uE0Z4gShg2DzOsQEpwJkmjxx6cg94cSKlAPIkpN1SSWC5mSf6D4Rf7eCE43H8eDnkrOOsMGcQdggQtwDUkftAkgTQomnQ0DMIFrz+Vz9fl/1el2nTp3Szs5OSM2gjSJzQG0IiN1wOAypJW67h5BDhHGUeDeGmEyzTsBFBaLgMbkllUA6Ivy+xyCHXtPBI/ik0jBHkG2/phfuo4aAE14i574HSK8h5cW7krBmTuJxYsRpDnGtA6/ZwB9P04jt/jyXdFS7Ii586cKCdCDqeVcF9hyCHPCCinQAkRRShpzYx/fy+7lo4B0mWCfv5OHpL3wveD0ST8lgrOxJnsnraCwWiyD2kfpyUtIeEq5R3LCrd33my457FAknDMVP3qjl21533MNISLjukb3mz/Rnv/nx0vOToHBS8fr/+yQ97vdee9zD2HhshKAA+RkMBlosFup0Otrd3Q0kHgJcq9Uu6J4AEXT7OqSTWgIenXRSJ5ULNULwms1mIP8cA3EtiiIUdITocK241SV/nNhCoIlQQ4ohj9iu/dmbzeYFNnAv+JfneSBEHEdlftpDxgX78jwv1YXgXuT47+3taWdnR51OR6PRSOfOndPe3l5pbiBvkFSEmcFgoDzPA/FlfbkPZM3JHNdyIQlBgXXhehDWSqUSnpG5HQwGms/nIRUkjrx7GkFMGL2egs83RJ/1YQyc7/UsXFBgzBDX0Wh0wWvcx10VkGPpqGCj13Fg3zFO37+eahKnavje8WKb7FncMy5o8Bw4Orw2gzs8fH1wu/h7pN+wnuw9xhMjrhvhRStZF9JGuKc7hbinizBef8HTQtz1hPAYC1IJCQkJJwFPePVX6kP+6G5dKCcnJCQkJDwYfOZff65u+4WeUmjp0tgYQQFSOBgMdP78ed14443qdDqBsOZ5rvF4HGzdbp0nwg95mEwmGo1GIbLvxNZbKuIugGR3u91QNK7ZbIY0DK9LkGVZuD6FFLvdrqQjmzY1DnA/FMVRBwWInBeQQ1CAbO/u7oYaC5DUra0tTSYTTadTNZvNQK6azWbo9MB46Xbh0WFJIYIt6YK5Yx2kgxx1OmGcPn1aZ86cCXUX6PTgBI7n2draCl06qBVBLQoIIoSb7hVeZwJBhnX2CDX34Y8LMoBnoRgmjgrec6eHp614xB9yiujAvVk3nCS8hujEfuK9eG4QCXhOniPuSuAE2l0K/GGtXFCIO1L4c8a4WIcJv39cgNPnirUH3hXB1zcufskzOvn3cXg6iQtJ7vpwsYTUG453xwbOlzj1weFuCXd6ICp4XZaEhISEk4L8z1pavOvO4x5GQkJCwonHW+98lG5/0xuOexgnAhshKLh1nzz+c+fOhToApCiQCuH50vV6PfxBLBiNRur3+4Hwt1qtEhFy4kaKg3SUCtButwO55XqQcc/tHg6HGg6HoZYAVfk9UksdCIgn98U54IXtEDpot4ibgrE4Ged5XSDBwYHLAAs3rTdJCUEYAV6HAiFhuVzq3LlzuuWWW3TmzJkwp/v7++FeMRlkviD1FM/zYndOliGeEGLW0+tS8Hwx2fZimIzBifloNCrZ+bm+t4VcV7fBwbU97SF2BviewoHB/HiHDSLsRNX9Oj5GngGngEfcOSdOl4jrMLhzh9dZB7+vP6Pf390XnjqBuOB1EVwsQDygVejFahAgErgjJK4v4c4SUoRcXInhTgsfq3TkQorhr/nz4F5IDoWEhISThNt+47l60o/+baqdkJCwQbjtpW/X7U96jt76yT9+3ENJeBB4xtuerif/h+T2ulxshKCQZZnyPFe73dZoNNJ4PNbZs2e1vb0dosxu7R+NRhqNRup2u6W2iTgZZrOZ9vf3NRgMQnoCwgQkkogmxBcCxHu0sXRRYTKZBCs6pBYC5rUWtre3S/Z4nArSUQ53q9W6gOxC/r2CPf92N4GTQ0gqUXmAy4BxuOXfiTl1E0gbGY/HQVDY29vTdDrVqVOndObMGZ09ezaIKzybVK6k7yIH8AiyR9uZWyf6zJGnBHgk2d/n38wh98e2zhw7UWesrNlyuSy5OJwU874XUJxOp8Fd4ikVTvwh9R6hZ90RljwFgOfA8eD7wOtCuIjgjhyv9+GOAifMHumXFOqExHMDoeZn3EOxqEGdjnWRf6+V4QIALgOujWjhc8Rz+GeUegqxGEIqEK+70ycWCNjjnkISCzuAz33sgElISEjYVHzY656tD/n6t2p52BErISFhM7C8517N9x533MNIeBD4+rs+RovPn2l59txxD+XEYCMEBY9Ckmpw7tw57ezsaHd3V+12W41GQ61WK5AbSHqz2QyEmeh+u91Ws9nUbDbTaDQK0XzIhEczqS/gkWuIGXb1brcbiLe7FFzs8Fz20WgUyAsRXtwBkCUs+V5skWtKR9ZwiJAXl5TKJJ2IPhFyakdQvwFhIo7Ek+qBK8Ct68PhUOfOndPf/d3fqdvtKs9zbW9v69y5c6GThBdzhKDVajV1Oh11u93gDPHCkawd88izeDTZSShz5oUQIblOfL0+g8+VR/UhwYwDF4O3BvXINqkrcRTea0+4k8BbPnJPJ8TsU3c88DOCCPNDUUH2I0KS5/3HrRXjtb1YQcE4bYTXeOb4XPaPizA+T9621MUBL3zoryPseQ0FdxdwT8D9cMJ4igbCDO+7mMA9/Tpc2zus+OeLz5ynLyUkHBeWb3+XnvZlz9Wr/3cqzJhwcTz9bz5Hj/mit2k1TylaCQmbiA/+2j/VR936hXrjR/3ccQ8lYQ2WxcHvem+cLfWiJ33Swe/T0yQmPBhsjKAAqW82m4HMNpvN4FJoNpvBkUAnAlo08j4Et9lshjoD/X4/EK3d3d0LChs6WSQqSc0EL/6IeOA2f+5HSgKkEIs1qRDUNfCOBDgWuLcLCVwT18NwOCxFgiFz3j7SBQWi0BBX5sdzwj2y2263JSm0TeR91qHX6+mGG25Qt9tVu90u2f/5N8URG42G8jxXnuehdad3VaALBDUm3FrvEXIn/y5eAI6Li+dBWJ0IuivCo/n87WQ07tgRCwV+P3fEeBHCmIRCwhEVXCDwIpS+tvP5PDgnILi+T/3a/m93dcSughi+913siNM//NnjehKkQLDG61IL3EXCddwtFAsfsavD0xDi5/G2n7yHwOHzybPyDC7ucVwsqqwbW0LCI43KNBnYE9ZjWaz0dXd9vIpPe/9xDyUhIeEBUCwWGk/rmhdL1bLUCvi4MVhNNC+Ofn/+0g/+dK0OC6dLk+MZ1AnHRggKnjuf53kgm3t7e7r33nu1u7ur3d3dEJEkHYF6AfV6Xa1WK5ChZrOpdrsdiBu2cQq1EY3kb1IV3IYPqUC08DQEj8ZD1N1uDRnmuYiU8wfHBOOCMPG6k9ZqtRqKFrZarRAhXy6XpeKM0pHV3usVUEuB97DTuwiBs6PT6YSaENjT+/2+7rvvvkBy8zwvEVUn4Hmeh/oO1K5YZ8sfj8fa398PLTS9fgOdIugiwX3H47E6nU7JBo8I5eknXl/DSWncWQBAjImme9Te00QQHRgP10Q4QfxxGz9zxL1ZN0918bXzVAn2KvtlMBiUUgmko9oAuC1Wq1UohgiJZh64nj8Hf3Nd9mdc4NHXzlMi3FlBHRMX1HwfuwOFcVwMiC+sD+cxP/zM8/Izn5d47Vy08RQajvPUFJ/X2OGQkJCQsClYFiu96L6/r3d8TPrlNyHhJOCx//Qv9am//gV69d/7WTWy2qVPSHjImBdLvWl24e9xX/cf/pV2/7e3ghxdcEzCg8NGCAqStL29HX7ph4wWRRGi5Nvb28GhQBSc+ggUKvRuBbu7u2o2m5pMJsH6D6H2In8QyvF4HMhwvV4vWc2lgwg8Vv5+vx9y770Tg3QUtXdBod1uBzs+5IsILbUOGJt0RNw4BlEEcki6h5MzBA5InFfvXy6XwSVRFEUQRpxsk27COfw9Ho917tyB7QdhpdlsBmLK9SWFZ+10OiWi7cX9SEPBYeKOAtwYuBiYD68XgHPESboLOpB64HMKufQq/k6SeWbEJ1oJ4iZwMWm1WgWSn+d5EGlIofFiiIgl0hHR9Vx/FzkQDFzEYN2dDHuUHXB/74jAPvJ0EcbhNUCYR66xzg3hHVYY67rijOyJ2EnAuniR0biTAs+8jswjUrhzgJoUCDLuBPHX/Y/XIXH3As+BYMT5CQkJCZuG/+fej9Ab/0Gq8ZKQcJLQfvo79YxXP1PPuuVP9dzt96maXf3P8CuHuf5usXvVrytJT83fpttr7Yfl2g8G71sM9GvD2y953Ot7t+k9/3B4weu7eu2aoxMeCjZGUKBWwXg8DkQOAjIej9Xr9UKE2gkzOe55nqtSqWgymQTSCNHDteCpEF7JfrFYBGGg0+kEEueEC/FgZ2cnFGekpoMTLAgIBLPZbAYyiaBA+gSkcTweB4LjDgQcC0Tsl8tlqdDgZDIJxSS5P2PIsqO2k4gQ4/FYlUpFeZ6HcXuxOkQRBAyuvVqtArF2okl6iUeT6dwgHZFMSNtkMgnr61F06YAsDodD7e/vazgcBsIdiyKQzdlspvF4HN5rtVqBtFLjQVKp3gHgnuyF2WwWXCqME5cAxS6ZW9aQsTPWZrMZru3PNp1Og2uEsUJYEQ88dcXhbgbvhuHz5mC+fU24F2NB0HIngnd6ICUDku/k3J03sZOG13kP8cE7crh7g3lkL8XP4YJCLJrw2fRaDjyLp24gxPjng/d4Pk+JcFHCU2ESEhISNgnPufOTdc/H9Y57GAkJCVeCp71Pv6ib9Jt/8GTd0BjqBx/zwOT2O+57st43OXXZl7/zXz9R2R+9+SEOcj2+57s+T5/ytD9/WK79YPDbb/xQ3f4v/+QyjrxQTEh4eLARggIEA3InKZDhRqNRilxDlvilH3LqRIbWfN4NATGBGgyQRsjpcDhUo9HQmTNngkOBa7hjoNlsKs/zErmUFMbtqROkZ7gLwAUR/rRarUDGvEUl15MUai7goMC94DURvPMD6SFEnb3QoaTgZvCihFzXOyV42053bHjBQ28Nua77hXQkUnj7TbfOI6QQVYf8eUSev3GU4LggbSPOl3diGXcjcLEDAYv18bF6twzWIhYHGL8LDexNTzUgHYFUF/YsogLPyDMhjPAMiGOMh7VeZ+v3YpvxPLo7h7lBmGO/MI518+VCANejxoHXwvCCok7W4zSjdYidA9yPveVdQPx4nsnTcryGhosLPBd7zl0McWpEQkJCwibgk//imWo9/d3HPYyEhISHiP4n3a/B1pY+7lee9YDH7b6wptWf/81lXzfTmx/iyC6O277ttXrPw3b1y8ftuhwxIeGRxEYICqvVSp1OR4vFQr1eT5PJJIgMnU5HkkJ0m7x5CBAkhVoHnivvJBnyDgGj1SJkSFKIgLdarXC9VqsVLOwUkcNGz7Wlo5xuhASIqdcjgPxTxA4Ch2OBuRgOh4GoQnwYKzUb/FmIAJNW4dFo73xA6oXXapAUSC0kj2NIPaGoI3PL2PI8D0ICRRm9mwME1MUI/jjphPTGRRrjAnoAsk/rQ8QdSaUoPs/n5B2yiRjAfI9Go0DavT4H5N/rD3i6AAIJgoGLIqS0SEeODs4Zj8clMcFTKiSV9uXFLPlxa0vuSboI4+V87u2FO51ox/U4gAsI/NvFCOZ8NpuF67IH/Lo877qoP3Pq8xy7MFwA88KOfg13pPB5Zd1daIo7hPgcrROyEhKOC7W/29cn/vnn6w8//OXHPZSEY8btv/flevxX/E0SOxMSrhEUi4W2P+sdD3hM+i0k4STgIQkKWZa9W1Jf0lLSoiiKj86y7LSkn5X0OEnvlvSFRVGcv8R1lOe5FouF7rvvvhJRhrQTmYUkQKSkI5u51wQgZQCyBmki+gwx9qgmkc92u63pdKrRaBRIEfcej8elCDHiAdf0nHX+04cA4T6QpJ2dHbXb7UBmsJbP53Pt7e2F2g8QLE9bkMotAr0eAmMjwo1dnZQS/s343cXBe5BCdysQuY4JM8fR1hPxxFMdILKDwUCDwSA8G4SbdA5EAqLaLhg5vOsC10Y08NoBXuOBfcMfXlutVqEWh6RAxCHmceFE9oyvMc/BnkKAYO2Xy2Xo8sH4vUijO2A4x1M9uKfXFvBaCX4NUjbWpQswVgQJ3wcesY+FA871vew1CADr6Od4egZ7K6674Gk0XsA0dhS4SyR+LU5ZYO742eeNc73OQ5zu4Pc4Cbha38UJm4fl29+l7X99uz7mu79Qr//I1HLsesVtr/oqPemb36rloUidsHlI38MJCQnXK66GQ+FTi6K4337+VkmvLorixVmWfevhzy98oAsQRSTy7mkGdA8gIuvKfFxszYkQhJHIp4sJ2Pa5BxF2j84TcYd8EVWGrHndBFwIHnlHAPAoOqSawoJ5noeIM/UHEEFwXTSbzUDCIDw8hxcY9CJ0kkq1Bki9IK2E+fK0AsboXSJczKB1JvePK/179Nlz7EejURBiBoOBer1eEFYQFobDYZhXCCnzF49hXWRmPp+HlBWECW8PivjBuU4uPQWB9eT+wEUpntlTBxgDrgacKV4A1J9tXScCj8jHIoqLNw7u70UqWXsfK6+5SME9EJNIBfK97fvJiX1c8NDnN07V8c+DpAvWBTB2J/DunlgnFPnnPi5EyT7EPQG8Uwc/xykxLoqcMDzk7+KEzcTyr96q2W99vPSRxz2ShOPA41/xfD3p29+p5d7+cQ8l4dJI38MJCQnXHR6OlIfPk/TUw3//mKTf1SW+PEejkc6fP688z5XnuZrNZikPHcKDpd6j357v7FFTiDy53ZJKRFhSKQouHRExrxTvBMq7N0jlqvpxi0S6GYxGo5IYMplMQivILMvUarUkHRE/ajTQ6cBbVhK9R5zg3hzjFnngefpEpJ0weUE7L2xH/QTcCkVx1LITsSMWMZh/7jeZTDQajUK9g/F4rH6/r36/H4gfwgJtDwGuFO7PWsQElXFTE4PxxMUYvcuAE2rIONf36DquBy+c6Ln6nOfiDO8jErHHpIMIvtedYA7ilAbf8/wdCwacw/WYd0998DV10ck/Fy60ONkHLhLErgX2fyzs8VlBJONn1tNTRnw8CGXr6kn4OrGP3dnh9+JZfCwIJ56m4aKK7y/GdA3gQX8XJ2wuHvPK9+sT3/d8bT3/Hv3uh/3ScQ8n4RHC41/xfD3p/323Fvfdd9xDSbgypO/hhISEax4PVVAoJP1mlmWFpB8siuIOSTcXRXG3JBVFcXeWZTdd6iLT6VT7+/tBUKCeAtHExWIRxAQvmudkCNKD2wDSAxHh38DJEGQEAsfx1E5wouliwmQy0WAwCDn8OA4o8re3t6e9vT1JCh0qeF6i9HRbYCw4JGq1WiDJPBPFCD0yW6/X1el01Gg0NBwOS/n0zEer1QpCDfZ7T1uYTCYlQkzHAlwNkGJ3UbgQ40TaI+Hz+Ty4EpbLpQaDgfr9vs6fPx8EIFILiOxD+hAsmAsKZcbdBdy1wT6YmiWUlBTWDHLqqRuSSmkfUrklogORwp/ZBQXmCXcI16lUKoEsO/mO3RD+DDx7/KyM18UuhIc40r7OicLnwMW2+Fn9c7XOteDXcFHKwdzHdQ08pYV74O6QjtwNrAMCGvtjsViEgpOMPRY5LuYw8M+xp0L4envtjhPU5eGqfBcnbC4W77pT7Xfdqa03PU5f+ONP0889/tXHPaSEhxm3veqr9KRvf2cSE04O0vdwQkLCdYmHKih8QlEUdx1+Qf5WlmWXXYY0y7LnSXoeP0NQiLh76zts+xBPJ5/eNlFSqa4B1/S2eF6Ajiilt5H0HvRe1I0OBlxDOkqrcDLlxQ6Xy2WoucDYvC2f27w9H7zdbqvb7ZYKCbpdfTqdhsKOeZ5rZ2cnFIqkFgDiCI6H7e1t1Wo1jcfjQOTG47FGo5F6vV6w6CMaIJK0Wq1QsHE4HIb5I4rMutAOEvDse3t7uv/++0tjHwwGIdXE21pCBD2/fTqdBldE7FDwyDaElHO5H2N1R0LcwpA1drEoTq3wPH/2VlyfwNeS+/u+9IKOfh6OBhwGiCykebAm7rDxmgruHHDHRDwGxs0f5sULJbozIHZBxGkXLhA4uQesB3Pl6+tpTS6ssBd4lrigIuvM55H1cDcKe2+dWMM8xHBh4WLHbDiuyndxU/nDNb6Eq4TFO9+twbNu0ufkn3f0YpbpVX/4S8c2poSrj9t/78sPaiakNIeThPQ9nJCQcF3iIQkKRVHcdfj3vVmWvULSUyTdk2XZow+V2EdLuvci594h6Q5JyrKs8MhrTBawijebzVJ1f45127XXTiCqjfhA5J1oJ3n7i8VCzWazJCw40aTmgdveneDGUc5Go6GdnR0NBoNg+T98ztAJgK4VN954YyDBkGhSDpxQ4tDgD1F7ukTs7OwEQhp3EECgIad/sVhoNBqFnPk4FQQRgXtIR6IMcwAp5N+kHSCWIBzs7+8HlwZzz/GkFWCF93x3iCBzjJMjzon3OgQejXeHCtdzAciv73CRghoVrPlisSi124zrHoBYMGBd48KXjJnjuKenQtB5xAs6SuWuEV5c06PuwNt3enoDY+M542i8F0HFTeKFOH2+GBP7abVahc4bLhrgRnARISb+PDvj8rQbroV7AKeBF2/l+yFeV+DpEJ7iwph4DheHNh1X67t4OzudysefACzvuXApP/tDPvkYRpLwcOHx079JBRhPGNL3cEJCwvWKKxYUsixrS6oURdE//PdnSPqPkl4p6cslvfjw71++3GtC0p3ISipZj/m328adSMVRYUmBCLrdHEFhNpup1WoFEgfRh8RzLi4JiA5iRqPRKJFdxt/tdrW7uxtqB3hrQOoFEJX3vG4nWYgq7rCgCwUky3Py2+12qNnAvTw/3B0Pnn/earWC8CIpzBUWelIQvEgkkWe/3nQ6Vb/fD+sxHA41HA6DoOBpGxDldekIsTtgPp+X6j9MJhNJCgKJ1yM43JvhWqR3IBKQ3uF76GIpEZ7u4sSTdYjFD96PXQpxnYI8z8P8upjj+fueDuA/IwhBrt0xsU7U8M9EfB//N6JXXC+CvR53pvBrrRMpONZTiFzkYX/G4oeLNVwfocUdBHH9hXUOlIulrbhTwkVBjo8dD5uOh+O7OOHkYdnrHfcQEhKuW6Tv4YSEhOsZD8WhcLOkVxz+gr8l6aeKovj1LMteL+nnsix7rqT3SPqCy7nYZDIJOdTNZlPT6VSTyaRkr282m+p2u4EoetqAE4A4GgsJarfbIZLrRMbPG4/HOn/+fClqSi4/r0H8G42Gut1ucBMQyUVguOmmg1Q5OjtAaCFYkMlOp6N6va7hcBiIr6RQjA9ShTiA48CjuwgtdKeAbCMExNZ3xprnuarVaqmAJPMpHZGvarUanAekK8TpHZPJROfPnw8R6rNnzwaXBq4I3CEIAFwbQcNfh+wx5lartdaRwDlx2gHrCSH3bg7UhvDaC55SEd/biSyk04k+1/C5c8R1B/x1/uYZnCz7XoXo+vW9fgECD0KQF1n0gpWsvYsd7u6IXRyICsx7LHAwRy6wxOf4uFmLuMMCf9NlxEUuFy5iEcgdL/F3gO8lT4Fx4cKv5aKFr8+G46p+FyckJCQkPGik7+GEhITrFlcsKBRF8U5Jf3/N62clPe3BXu81r3mNarWabrrppkCGsEcTRXdHAISOFoFO8CATpEdQ/JCIfKPRCFF4HAVcu1qtajKZBHJLu0QEC2o4kGrQbrfVbDaD+IG7gvNoeSkpPAeuh8P5knRUJI6ii8yB278hRB495/mm02mog8C9cXlA5iHfPF+lUlG73VaeH+TrjcfjYDOHbENqvQOGj90LDu7t7YU5yrIs1E/Y29sLpJLxMG7mRVIpwoxgwR7wjgrxfCByxI4MhBgs8G6Xj1MhJIXnckJ5sXoKzA3zw3wgTLhw5SkMCC+ksODu4PniCH1chJE15Tn82ZhbUgBYM9bShQzWn8+Qk37m0OHvu5gTE/BYHHD43DNvTu5jF0j8b7+GCxlcM3YxxQIN10Kk8BoNceoD/15Xg2HTcLW/ixMSEhISHhzS93BCQsL1jIejbeQVYTQaaTgclizp2LtJRcAqjWPB8+ndPh1bx/11yN7W1lboBtFsNtVqtcIfigdOp9OQ9hCTKS+eKJWJHAUlSaeAtDnp8Qhvp9NRpVLR/v6+er1esPhDcJ20TSaTIBxALkejkZrNZnBg1Ot1dbtd1et1FUURnA+DwUCLxSIUinQy54IK57moAujWUK1W1el0SnUbnMQvFgudO3dOvV4vOBM8d90L9eH48KKYXjCTNR6NRiVRATINIY7rb3DtuICig2uxP0it8P20rjsIf7urwVMm4o4LLmKwr/3+iClelyGuK8DecXGH9pxOguNzvS6ApwPQwpE5jt0PPnauwWfPUyx8DngNAW+dc2DdHHrx0ZjIx2kkXIN58Hv75zQWKHwcPveSSmKOz/lJEBQSEhISEhISEhISjgsbIyhIR/ZtCrF5bjikESIBAfZUB+/UADmBHHsaAJFe2iLSrhIST2473SQQFur1ulqtVriuV+CHZMX1HyC5jMuj6RBYWkq2Wq1AhojeUreh2WxqNBqFCvfUdEDAQCTx6Kx0QOyoFUH6w3A41Hw+DzUNfOwQcifTRVGUIuMQWH9+hIrRaKROp6OiKNTr9QLph8xdLDWBcThBxMHgufexs4A1Wq1WpTaLLla4IOBR7NjRAvlFyOE+XsMCsYNxxeQ3zr/3velk1otwxsTbo/wuQDnZ9yKKLlCAdWkVvO61OjyVh/3K/b3WBuvt6+Hz6PPHvLgAB8H3VAqfi3VFT11I8CKUCCDuVHBwvLtFmNtYUHBRKHZKxO6LhISEhISEhISEhIQyNkZQcAILqfX2eXF00q3gEBHIrkcwIfikORCRhcBvb2+XIu0UHvQq9pD3ZrOp7e1tTSaTUKXfxwvJg9xDwiFsXs+ASC+EJs9zdbtdtVqtUCAPAlWv19Vut0Pbxul0GlwJ3W5XnU4njBliRJoDBLLf74c0A9IqeD6vV4Howtx6agLHTqdTFUURHAN+nEeucSV420ZPTeAZvQ6ApNCm0kUOSD7HuljA+Lz4JK/HkXQQ2+C9ECPi0Tpi6fcjrSGuJyAd2erXRbhdJIDkxt0r4rQDd8nE9QycpDOf1M/gnNglwM9+LV9/L04YFzyNRaFYUOCzAzjWRZNYcIlTllxccXcEn93YPeDpHRcTruJ5iOE1FXwtEhISEhISEhISEhLWY2MEBX7ph6RRdJF8fAAB8lZ4btGH6PN+pVJRq9UKOevj8TjUEKCeAsX+IOEIAhBliCZpEl5UkeMRLxijd5VANPDcf7fHM+5Wq1Xq1OAkEUcGrS9j9wDuBrfQj8fj0Hmh3+8HAYQOCzgLRqNREElc6OBZmEvOh2DzM+e7GwBSj9uCNSGq7JFgFxgQBSDYlUolrJ2LCd5twFsZcl3mnWg814/TCTz1gLXgvk6MY9s88+yCCPvAxxfXIoj3sRdLjB0M/ixxu0Z/die/Tu49HSguXBg/j+9HF3vi67rzgetJKl3fXSBxykPs4PB1WefUiB0CngoFLuYiYO44z0Wp2KngcxH/SUhISEhISEhISEhYj40SFEg/qNfrIaJOsUHIaJyb7nnXXh8hJrfNZlOVSiXk808mk+AggETTzpHiidJR5JoicvV6PdjsB4NBIFDUXiCtIR6ndBThJ3LPsePxWNVqNQgK+/v7gaCDOO9dUqiCTx0IRBVPB9jf3w/X8+gtx5Ai4MUWETzIa+f+HplHcKHjBi0wncA5eXcBSDoimy6axCKDR4oh0BB+F2X8XqSUrCPPXrzTXQ4uZLHedNXwtZMUOkVAjHHQMM5Go6GiKIKLIz7fiwm68LEOTvb9OsyBuyrWkWqfIy9U6eQ+HiPjrtfrpaKRceeHdakeXNuPc7cBa4WgwLwjENDik+v5tX2O3TnCusYuiXhvcT9vbflAc+0Oh4SEhISEhISEhISE9dgoQaFararZbIaihgCis1qtQt0EUge8G0BMHJ20uIXcCSPEWVJo6+jXdKLkhARRAqeD54iPRqMLOgZ4SocLD4PBQIPBIHSuwGHR6/VK6QFxHrvXCuB1iCzX5t90OvCK9hDier2u+Xwe2kcCT3ug8J87Qjw1YjabBVeFkz/mnhSMOMrN2OJndKLMXHMNz69nnF4okIKTzDn7x8UJjkUM4FiEEsitp9NwjEfdfX3Zi77euBb8GIiuPx97wwm+3yeu9cC6Iyx4zQWvSxELL4wl7pDgn7PYneLvzWazC5wD60i3Ox78/rE7JU5ncIHMx+mfHcQBF7v8GObRBYF1KSnrxu+pLUlMSEhISEhISEhISLg0NkZQmM/netOb3qQbbrhBnU4n2O9JG3CrPRZ/Iqn1ej20PHTLtefUOwGJ8/gh+BAwagrgSIA8Iz4UxUH9gMFgoCzLNB6PdebMmVDPQCoTEk8VAJVKRdPpVHt7e+p2u6rVaiGdoSiKUEgR5wZz1Gw2Q3qEk0ev0I+zA+cDrgpvsQmJ4zzPz/duDBB5b+foRfKYT4/sIjBICuKMpxLgsvDOFxB3xBDe57o8p0fkPTKNYBAXYfScfI9ssyZOdH0+EBx8n8TiEIIB10CoooBoTEoh2C4C+F6Ji0d6WoWLEuvSAzwK79f0Y1lbxC4n7D4WP8fnzIU1jnVxwQWK2Jngz+jHk2LhdVDcdcJzsVYucvi93XEQCzM8D3s/dmv4+OI1i0WXhISEhISEhISEhIQjbIygUBSF+v1+IGTShfnibsWnnSNuhph0UOsgtotDsJ2QxgQQMtlsNtXpdNRut5VlWRhXpVLRfD7X/v5+Kapar9e1u7tbsov79XBVMD5PGYCwIwZMJpNQ68DbEFKIsdlshogxhMlz+InU00VitVqp3++XUhkguN5hATcH8w7plxREHgpdetFIv8ZisQjuDY5FHGDuKYAZR/bdgcBzIawwl4zT4SkIrJEjtrh7KoWLKE7Ufe+wR/3fFxMM/D2vo7DuHBdiXDRDROA5EQE4Jibz664Xk2RPD3IHCaIOr3ldCMbuNSxcEECgcFdEXKdi3Zz5PHh6iRdOZA7c8RCnxsTP7cf4ffh+4B7ukIjX24tSZtlBEdSEhISEhISEhISEhAuxUYKCJI1GoxDdhlx4XQAIDVFNCAHEF5LUbDZD5wLIBCSTYoyIBPv7+4EU4QaAmLRaLXU6ndAdgUg2KREIBYybqDXkW1Ig2MPhUIvFQu12Wzs7O0FYYDzSkejBvyHUzWYzpCXQtYL3vBUlhJ0Wju12O9SlQEjw9A/O5XzGz7N5SoJ0lALBH9JR3EaPSAG5xzXgqQlci+fkGrGLA6LK+1zTi1Ou20exa8OJozsseA5af7rl3xEXApTKaQ5xGsC6tAEnyxzvhJ7zPDrv+w0xwVNx4jE6mV9XB8DdJ+5MQbDw+3phUyfpvjbsqbjQIntpnfDhJJ/3fV2YA08x8vnnGIQIFx58fC6MxekP/gzxPPm5CQkJCQkJCQkJCQkXx8YIChCC8XisXq9XisQiJJCOgLUcRwJRfi9QiIOBXHOPnjoBodgj6RNuvaamAaTOSUtci8Dfg7BDTBaLhQaDQWgb6cIAqQ6tViuQ7mq1qjzPQ1oEwgjR4KIowjx47YA8z4OQkWVZ6EIBAcPq3Ww2SxFld2h4HQFqEUC4cWHwM3PcaDRKbRI9RcKdGqwF6414wetehJI18GKOtJNE+PGofWz5536+v/y6rG1RFGHOXHRyQkuU2t0arHOM2NnAfvPjcdzE5/teiuFpOS46rRMuQFwAkf3pqR08Hw4S3D+Swmeq0WiUUmV4LuYnHh9CibuAXOyIXQqephSDPefuCv6sW1+u5fPoYoffh3/X6/WwB33s8X5MSEhISEhISEhISChjYwQF6YCUDAaDC4oqQj6BdxbwiLiTWqL46yzwnkIBoW80GsG1EJNeryfg5BZCijAAyfWce0gYwgjknzFCtDyPn/aQECdSG7wAoTs2PE2A58b5wD1rtVoQKdrtdkiLQGjAjeDF7yCvPJNH9CFejUZDk8mkNMc4JRBHECo88ut5/zgtuC/X8WdDmKE4ZJZlyvP8Apu6p0rE7gWf65i083we4Y/TYKjtwLN7VJ+/nbhezPofp0Fwnrs+XIjweg/rxAbugdMAp47XSHACfrHo+7pUAvYJzxrfM24j6eOmvkTsEvH7+XxRkNTnxVN5vJ6Dz607IuJ0Bf54y9J4zvz+fozX6EhISEhISEhISEhIuBAbJShkWabJZBKIFcSrXq+r2WxqtTpo7UgRxr29PUkK70G85vO52u12aP0YFxrEQr9arZTnufI8V7fbDZHK2C7tln7pKLIK+fOofZ7noXXgfD4PqQaQQUjKZDJRu90OgsF4PA4CA/cndQNSzRzxDCBuH8g4Op1OcDfwOs+HS8HFFVwPkFvIVUzYcEp4C8vY4u52fdbRxQLm0dtyeiqEizjevhBiy9z7dbh+nJrAfDF3cTtM5jaOknNPr9GBwwPRS1KpA4bXAmBsLjR4SgnzFRfsxCXDa3HLzZj0+3x7x5L4WAQxdyYA79rhRJ+xu2DhYou7EpzoezrDxSL9LmD4uaQTMV/uhliXxuHCo4sJ/vzrxBLO9fd9LtnTiJIJCQkJCQkJCQkJCWVslKAAiIhDaJvNptrtdrDdE6mmCn9RFCFtYDQaaTableoOuB0aAkfE0m3eEGQnf6PRKNjTvSsARDcmqoyd1xFH4sgpIK2h1+uFgo7NZlP1ej0QeE/xmM1mqtfr4Vxy3UejUejqUK1WtbOzo0qlovvvv78UsYbg4agYj8fq9/vq9/shHaPZbIZjcRl4rjnz5e4DwH3c8h53YwDryDTzHkfjvTAkggDnOgHkHusKcvoxMSllrn2fuFMANwZE19th+vWdkDrc+u8FAjnXAeFH5IkLIcb1ChxOvL3eiLcrdYHH58IJuxN3TzPwNCAcG34c59FO1a93sZQOrkFNBD73nOt7gZ/ZI3E6gwtazO26jhuIJp4Owrqxx1xsSkhISEhISEhISEi4EBsjKPALf6fTUbfbLeWL0yYRIk2BQxwA7g6AqJH7TUSbKDIEAXJI8UAnxhBF3AMIF1K5bV+j0biAWEJ0PepN60mIGOQIsUFS6T5cN658v1wutb+/r0ajoZ2dHbVarUA4qbUA8a/Vatrd3Q31G2IyjUBBbQCEFVwRpExgOYcEe1RaKkf73X7u5D4mql6MMbbiQwaZC2zwOC2YH+oaICo0Go3SGnlUfJ2rw8kkc7a1tRU6UngdCNasXq+XfmbM69pvMg6OYY39fk6K/TifC9bJhQr2YEyS4+f155SO3BhelBO4/d+Bm4J1onWpu348uu/7C5HG3TlO5OPxujOC6zgYg8+bf064hqcm4XyJhYl16Qw+/oSEhISEhISEhISES+OKBYUsyz5Y0s/aS4+X9B8k7Ur6Kkn3Hb7+bUVR/NplXjNEByG5kGNSGLLsoIOBCwqtVqtU9d8juhRAnEwm6vf7paJ+kFbIGuSwVqtpPB6XSCVkxHP9KaRI1J7CfqPRKERkEQf4E5MfJ47T6bR0PFFqbzuJsNBoNNRqtUJhRI6FUNHtodPpBHu95+dLB6LLZDIJhRW3trbUarXUarVKBfBciInTJDy/nefx2gmIAqzNbDYLwooTPL8G44yjxYgErBWklbZ+rCPHxq4EF0bisfN8zWYziDDMu5Nl1ngymYRnRYTgGbmmE1MvTOgCkafPAE8X8f3HPvN1cXcBf7hu7PLw2hIuIPj1YrGEf3sBVObO004YN8fyTO5K4HouiPCaH+dzwx6KXQfsE29ZyR5w0cJTGtbVVmBvu5hysfnbVDwc38UJCQkJCZeP9D2ckJBwPeOKBYWiKP5W0kdIUpZlVUnvl/QKSV8p6fuKovieK7hmiIJCdCWViB9kzMkUrzcaDeV5rtlsFkgtYkOlUlG/3y9Z2CUF50BcJA8CJJVrLkCoIDS832q1tLW1pfl8rsFgUCryCNnxQo44I9wy750h3PkAsaWIpKTQLhJih6uAeWGe6vW68jwP7R953+syII6QIpLneSk1xEUUnhkXAB0ScBKwDpBuxA7GHee0xwSZmhOSwrncFxeJv8b8zmazkpjBs8bj9nSVdcX+WCfu77UZmDdPteB4yL+f51Fy/5vnRxRxh0ZccDAWJ9alzLiwgYPB7wFpd4HKn9XnwNMHuC9z7CKNk3En+z7HDsYZp094FxC/BnPpopTfB/GRzxMCpKfcsF7rnBe+Di46+fyfBDFBeni+ixMSEhISLh/pezghIeF6xtVKeXiapHcURXHnlf4S7pFQCKxH+B1OQGIiBElpNBql7guIDNIRsSMdgai212TwyDHkeTKZhIi4kxeuhTtBOkjdqNVqpfMgfbw2Go0C8cHa7sSJ+0IA3cFBYUeu6cXrXBRxuznkC4EEQIip30AhSOpU4NaAwEsqdXZgXLzGvUjHgKS5gMB9Y3LsbhFQrVaDAwWhBsHACzbS9s9dDhezxnN/5s7XP65v4HvHxR0n4y6C8LzriPW64oo+H37+xYi+1wngGXhmr2fgZNkFFt9P3rUjHjPnr3MzuMvAxxaLBqyfv+7Pj5uGa/rrPr7YyeCCBM+CeOBzg+jh3SNip0P8vLGz4YThIX8XJyQkJCQ8JKTv4YSEhOsKV0tQ+GJJP20/f22WZc+R9AZJ/6YoivOXeyEint6O0AE5gaw7+ZBUIqRO+Jx4ub3b892n02mw40NE3J6Pxd6JD6SKdpBOzEndoD2jVBYoEBRId6hUKjp9+nSp7sNwOAx2etIcqLQ/Ho/DXHGOOyN4LncYMAcUwGOcICbhvMZzM38e5Xa7PcUuAcKQE3qcB34O8JoK/MzfOCF4hul0GtpksjYIH6wtYgeCBM8DXORgrhiPF9f0wpw+Xu4ZR+g9Cu9pCOtqFfCM3Is58o4Wnnri6QO+zxEkYpdB/NlhTdzpgZCyrq3jOoLPdePUFS/gyfveJSQukOifXXcHcC13onC9dfMXz2HsgIiFNk+/YM+6WyKur3CCcNW+ixMSEhISrgjpezghIeG6wsW9wJeJLMvqkp4h6ecPX3qJpCfowPp1t6T/epHznpdl2RuyLHuDpGBbfs973qPxeHwBofVf8J2wH15LkkrRfF6PiZ2TLCcy7ozwLgKediEpRO2dGM3ncw2HQ507d05nz57V/v5+GDPFEmMLd5YdtMjs9Xo6e/as9vb2Sq3+3LVAGgHiBgKEF2Q8d+6c7rvvPo1GoxJ5ZV4nk0kQYNxV0Wg01Ol01Gq1Sk4NSCdAxMEZMZlMNJ1OQ3cJUjCGw2EQQYhiM975fB5s8+TPxznwHO8EESLqKQ2+hk5YPR3BBQg/j+dnPP6aCyAeHef6cRTf60k4YmFkHbl3uIvD3QTsFyfF/rPPge9v5tavRT0SXo8/D15fwdNiWLNqtRpcP6S6xCkVPl/xPWLngjsnWGdSZXCfeCvV+Br+OV/n5mAOvKaH/2F/MG5SpugYQ7eVk4Kr8V0813TdIQkJCQkJl4H0PZyQkHA94mo4FD5L0p8WRXGPJPG3JGVZ9kOSfnXdSUVR3CHpjsPjisPXNB6PNZ1OlWVZIKley4BcebexQxqWy6UGg4EkBfITixFOtjw6PRqNStFaHBIUQiyKIhApJzwQUTpFFEWh7e3tUooAEX3ECB/bcDjUYDAIrgHO8/FSV4Dnl47s+o1GI5B86SDVQlIgah6VdrLMfPtY6DQxGo2CAwRyDumaz+caj8elWhcUvUS0gBz68xBtX0cIWS/W1e3vrLuvnaclxO0hEWBIdXGSyfkQbM73iHZc/d8JOT/zh33H9R0uHrhVPz6e63v0nJ+ZS3eCOAHnOl6Uk7GR8rNarULrU56RFAN3PsTpCAhRPDfn+TOzNj4+n29+djEtnqPYDuqOFE998THyLJ7i4XUuPD3Ci4P63otTR/w99sAJbBn5kL+Lt7PTqcVFQkJCwpUjfQ8nJCRcd7gagsKXyKxdWZY9uiiKuw9/fKakv7zcC0GiiNQT1fbIMO4Frynglu3BYBCOr1QqOnXqVMiTh3x4QUG3oTuBIuJJa0LpoANATLQ8QuskOnYWkBIxHo/V7XYDkRoMBtrb21O9XtdgMAgtHhE9ms1mIMeQ9kqlona7rTzPg2tgOByGdIdGoxFI+dbWlrrdbhgrAkgcIadNpKczuBMCRwgR/aIogtjCnDLHzIG3l8R1QJ0Ct/4jNsRReEkXEDtqO7AfpKMiiJBM9gVk0kWY2GLvhJnX4vnxIn8O73TgnUVcQGBfMybGGac+eM4+bghcHr7PmDvOQQhC8HKRa11RUcQdn18KGvKsPqcuSiHguaDgNTF8HrmOuwr42Qti+mfHsS6VycUGv56nz9CVI665wLwhUDLHfj93Z/i+PkG4at/FCQkJCQlXhPQ9nJCQcN3hIQkKWZblkv6RpOfby9+dZdlHSCokvTt675KAnEFoIacQXYoJEpW1sYRoKFHz7e3tUoFACJhbrONoL9eSjsgSxJxOBtzXazk4EBYkBbs9RNs7K/AaKRH9fl/9fj8IAm7Zb7fbKooidHZoNBrBks24nURjw69UKqEVos8xJNnbcyK8DAYDjcdjDQaD4NygbgGkzIvcOTGv1+uh8CREvtlsqtFolFIOGKc7JiCrWN8RFnhet8WzTsxLv9+XdETygYsN7mpxAgni81gnT3+BuDLe2FHhRBliSntTiG7cVtFFBtYHMc1TN+ji4c/vtS1Yjzi9wl0IMVxIi4UYJ/U8J2vAv+PPoKeocI6/HxfHdGeIz5GT+1gUiDuUeFpFLBz659yfj7G6k4HXmY+Lzdkm4uH4Lk5ISEhIuHyk7+GEhITrFQ9JUCiKYiTphui1L3so14QY1Ov1EM2mRsF0Og3E1Ek6x0FKFotFaIHYbrfVarVKkUmPWkMGPYI+HA5LVm2IULvd1tbWVqgZQLcBop1E2ufzufr9fohIS0fEFmJYr9c1Ho+D66BarWpvb0/33HNPKQ8ex4HXi3Bixv0h1k4snRTznLPZLJD+PM/VaDQklZ0A2OedJHukmOvzM/Z/J5HMX5yW4u0fvS7B1tZWcGOwHkTV3bkC0XT3h9vwvUClR9l9XzF/7mRhfpk35pXx1+v1kijlEf6iKEKufZzGwTzOZrOQZsOauGOC50Jc4pqcwzHAXTkuCnm9CSfXsWvC4cTday9wvrc6Be4Y8DWPhRH/fPh+4TVvO8kzse4O5s1dNP5e7GbgbxwYvrfjZ+D7xNOOmJO4w8ym4uH4Lk5ISEhIuHyk7+GEhITrFRv327LblT36SLSXtoaSArEfj8eBfJE3nue5ut2uWq1WIIR5nivPc+3t7UnSBRFIopP7+/uliKUXmKPTAgSIKCfXkxTSGxBBPHcdxwJEB5JGhf5er1d6Ro9Ce4QYp4JHZyFQtKmE0ENoIVZOriGKpDBgGfc2jTw3BLHZbAa3hZNm5slJmbsyuIakkhiCyJHneRCSIOA+bklhHhAgKNpH5J85QUzwaDOCBWkiOAA8NcE7iyBaeBcJhCPGw/p7bQfEKifFTtrj/e773i327Gffo3G9AncB+D1YD4/OuxjkBN/haSc4IyDa/O3395SGWNDyzxDOCa914MUsvTOHt4pl7HHtCn9mFy44jzVlzTylwzu3eH2OWCxzoSkh4VrA1qNulg4F14RLY/He9x33EBISEhISEjYeGycoSBcWsSN6iHjQ7XZL0V4IrOdn1+v10GIxjso6+XOytlgsNBwOJR3Y9Le3t4PLgGOr1ara7XZprK1Wq1SQkFoPEGIi8BBmRA/GTPFACO358+cDWUYQ8W4R1Exg7JAxhA7v6gDBHo/HgQwul8twfQgX4gzXajab2tnZCQSZ4/I8L9nkIa3cz8mqCyw8KwSZiD5EMM9zbW9vq9lshmKc+/v7JXLH36vVUbcCrsf+cNIJIYxrDOBgwFrP8VyfsZLqgYDg5Ju0AC+G6HvCj7tY5N6P8zQbFxWc4EsXOkN8LPH7XtshJssOyLXXSeA8CLqLOl4/JP5s8ZlFeIGQ82/O8dooXrfACb4LFfE+4Jk5Py7U6HPm8+t/+x+OZYyeapGQcNKx9fjHaXm6oy/4id/UV2zfe9zDOTH4R1/ylaoOZire+JbjHkpCQkJCQsLGYmMEhTjnm9dqtZo6nY7yPC+lKlC7ICZlnhJASgKAYEEa4voJHu100jsajTQajUI7OciRiwUc6wTF0wi8EB3R2VgIIU2g3+9rPp9rZ2cnnOPRfnLseTZs/pBlBAdSLEhr4L4uYhCR55jJZKIsy9TtdkNkfm9vT/v7+1oul6GdHqRfUkjdmM/nJccETgHGjcPE2xlCArvdrra3t9VoNLRYLDQajUpz6C0EmXNIc7VaVbPZDO8hENTr9fA8rLunMSAeVKtVtVqtMMeePkGHDfaPpDCeeM/GbgPWY2trK7g/6PLBcV4bACLr4gavxwTb3TUutvg4ec0/T+tEACf76yLy3MvFCSf5/OwioMM/l7HAEgsG8Xn+2ZRUmjvAGvIZi1M9uKcLLy5ccA+e0d0MyaGQcJJRfeLjNfyQM7rxW96pX3jCLx33cE4cfuunf0TTYq7P+OqvUXW8VO2333jcQ0pISEhISNg4bIygEBMSJ790IPBf/mMiEJMsJ0+kCJAKAFHwIn9ezJF6Cbu7u5rP5xoMBoEQEtWfzWYaDAYl6z335W8fG8QaCzfXgLx45Jxj/VkQUqQjG7dUJpE8A//2GgqkfUAeIf1u/c/zPIgFjUZDnU5H0+m01DnDrwMQFtz+z7zgYuA9RBnGiHOj2+2q0+kEV0dRFOp2u4HEekcJSSVRgmNwK/C8LgQgKDQajeCyiIk4ew/LPXPlhf0kleaPvz21w4tM+nwzF/E+QVCKybIT6VjAcCHMx4/T4IE+Z4zNhQD++OeD91xoc4Lu4+D+HO/3YzyemuN728fFmgLeZ1yeYsR1vMglc4CogNvGx+yfReYinu/Y8ZGQcNJQvf0Jevd3tfRXH3/HcQ/lRKOR1fR7P3iHXjdZ6mv/09eqc9dCjVe9/riHlZCQkJCQsDHYGEFBOhIKyLWPI71x7jWkIW6x57UXqCnQ6/U0Go1KFf9xBNC1ANJUr9dDxHw8HqvRaGg8HpcimESb3cngiKvZS0d2aizlPBtEk6g6Y4CoIi64EMJYPdrujghSNRBRcBxQw4HrUPCS173OgAs1FEpkbTxq7W00WUfORxRirSD0nEvthE6no3a7HYgs89HpdLS1tRVaasYdNaSjav71ej04LXwNmO9arRbabUoK8844eS4vIukkFqEA1wJzE6c0uLXfaw2Q6oLDIibI3Bcnjjtg1lnvXQzwIpc+Ft8zUrnDh6fe+GeKscRwh8fF4CkaXtsgrrnAZ5tzgIsbvOf35Dz/HLD33HG0zjWxrvaCCwcc6/O1br8lJGw6qk98/KGY8BPHPZRrBh/brOoN3/ESff/5x+kXWp+p9i/88XEPKSEhISEhYSOwUYLC1taWzpw5o52dHY3HY0kqEWRIiZMtHAaek+6RYQSFuNUh8FaUEHmKN1LZ36/nBNodCLwuSa1WK0TNuRfFDT2yn+d5IP2ICXmeB6I1nU5LUXCv5+DF7Zw8EqX37gJcA3JOUUhvq0cHDQSF1WoVUhm81oR3rVgulxoOhyHdQTrK3Y+JmgtD29vboQ4DDoV2u61ms6ksy8JzV6tVdTodNZtNFUUR1omUgzgi7cSV+aeoIoIDnS28LkbcXtDdBzyHrxtuAe7BsxH1xuWA6MAceCcI73jBa576EheNZG/Hz+zzynXcneJ1Hlzw8DQd9iD71esUIFDEtRviGgXA0zS4j7tBXAzz+ibMUexOcqdJLET4Zy9Oo2As/E13FY5nLLFD42LCTELCScLwQ84kZ8LDhG889W5NX/Q7emX2aer8fBIVEhISEhISNkZQyLKD4oaPfexjgyMAGzmElZoIWJYp0jidTjWdTgMhJVIdFwyE2JD/70SyVquFSPnu7q7yPC+RSI90Q2whRIxlNBpptVqp0WiUosutVkvdbjeQO/LoIY3eTpLoPXUbZrOZOp1OIH+xLZ5UANIQmBufP8gqRHU6nZaiupLCMzB/vV5Pw+EwzC+vQxjjHHTmw0koBR1JIWi1Wtrd3dWZM2dCDQzWhTWDbCK+eMS+1+uVxkyBS9aA8XhEv16vh5QZ0jUqlUpIb+EePL905GxwsosrISaYLlzheMGFgcOEPcYa4uBwQcFre8QdGFxQcFcB+8GdLawv8+QOCPYfe42UFOpYcAyiAXDxyqP4HO9pGS4exGP3dAj2EwKQi2I8lwsxLu7EaQ5FcdSphOd1IYb9xbH+WfK5RsxxocILZCYknARsPf5xuvFb3nncw7im8cIb3qbKi1b6iWc/RTd9X1OV33vTcQ8pISEhISHh2LAxggJkgaJqRMDJ4R8MBqHAINHqwWCg8+fPazgcqtvt6syZM4E0ets5HAWQarogxO4HouV5noeOCR65nk6ngfC22+1A3qnP4OQcMl+v17WzsxNIkLsa8jzXZDJRv98P+f21Wk3j8ViDwUD9fl+LxUJ5noeINkUUmRvGhrOA+9OuMs4dZ8zME8/v6wBBHw6HGgwGpVoMzCm56Vw3rmvBHFDksF6vq91uh3XqdruaTCba39/XarVSp9MJNRum02nobkHkH1IJmWU+ECs85cL3k7suONeFJBcZ3BnhNQY86u7tK702Bdf0riQewXfHhFROi0CIcMGLzwLz7mkGCAWevuC1R4i8sx8pWshau8jC+76+UrnrBPOJEIYIwzN6qpFf42IOBubC0xliQcH3WVzM1EUn/5wzZ7Ho5vPDuFjP2EHjjhIXThISTgqWpzupAOMjgG8+/Q5981Peof/8P56o//ucp6h4U+oEkZCQkJBwfWJjBAVIldcT2NraCsJBr9cr1QCYz+fq9Xoaj8eB3Dn5cHJLpByyOhqNNBwOAwGUFAgG5JfUAyLXEHl3P8xms+AwIDUCcjQYDELrxe3tbUkHKQyQfeko999rIdDlgS4N3vKwVqtpMpmEVASID6SXuXA3BqQO1wJzDFGCEEOqcE3w3PzBReH599QkwCngnStwFKxWq0A+Of706dM6deqUhsNhSMtATGFsCAEubiD2LBaL8J501EGDdfRCgjHBJLrPvLobAWFpnXvASTz3iIm011XAMQFBZW5dvPHuCkTYXVwAcT0Of24n7ZB1/u2uBi9S6E4CTxFgjlwk8NQSJ/2enuAuFd93Lmq4M8FdCMxR/LyMi+v5/blPXKjVBR2vwcLnmdcRUDzVIa5R4akWCQkJCRfDC294mx7zM+f0U5/1SVq8893HPZyEhISEhIRHHBsjKADIKRFrJ+zT6TSkFkhHNQbyPNfu7q62t7dL5EY66ojgNQUQAiAsvAeR9nMnk4kGg4GGw2GI6mJnh1ySQuDEazgcqtVqhdoAOB4gOcvlUuPxWLPZLJCj+Xwe6j1UqwetDBEvvJjidDrVcDjUbDZTs9ks5cZ74cOtra0gnCBQONECTqB5fifmjLPVaoW2kRA3hAScIOPxWPv7+xqNRsG1QRFEIuOdTkc7OzuqVCrq9Xrh+ViHSqWiVqtVIqvUQuh0OhfUS8Cl4OuGA8Gfi5QOL17pRNIdG143IC7AiBjhfyDYEGFcNJBhnAFSWWTwOgJeEBGxw+tiOPHnXp7S4EUP4+M8Gs9zQ66ZJz4Lnk6B2ESNDcbtIg5iSUz+mXfvEOKOAK6zrmOJuxiYG+/MwOeBvxGe/BxPpYnTMbxAqrsX3OmCEJaQcKLw5r/Rx/y7F+j13/mS4x7JdYNnd8/qia/+eX37R3+mlmfPHfdwEhISEhISHlFsjKAAUWk2m2q326pUDooITiaTkJ6AuOD28p2dHTWbzVD3gGi650ZDULwVo6RSdHgwGKjRaOjRj350aDM3Ho81Ho81Go00nU4D8Yb8egqDXw/Rg7oPpGpQq4HcetISIJre0YExICI4Cd3a2grCCGkViBHUomi1Wtra2gpigBeq89xyd0fgYiC1w2tEQOIh9hAxxg8BZk58nbxY4c7OjnZ2dkLKCC0cfZ2y7KC9JAIDz9xqtYIwgGuDNAru7R0/POLvbR0h0l540efBiT/wuhE8n3cu8LoNvv/Yg7guEBoulpvv+9bXx3P7433taRg8ZyweIEzxc5yO4GkeLij4vCDE8YwuIHik30UFFxN8LnzOuKc7EDztAMeEC2cuKLkzyGuFICi0Wq1S1xGuj0OE/YtziNeSQyHhJKJYLJTfn2p/PNJ4SqOml73plfrKJ3yaivns0ickJCQkJCRcI9gYQQEQzZUUSDFkCCKIpZ/ceFwAnktfFIUmk0mpe4ATkdhuPhgM1G63JSlch8KIXn+Ba8dkGSA0jMfj4B5wYuKkFoHBXyc6L5ULHnrUHWHBO0sQRWae4jQKyBKpHB5xpwaDJA2Hw1LdA7oibG1thZaLCCqMy6PogHWD4CJStNttdTodtVotLRYLdbvd0ni4FmN2Eu9Ebz6fq9lsqtvt6tSpU2o2m5pOp6EYJYIL5yJCsI7cU1Kp3kWz2VzbBtQdLhBhugYw/07Uvcif1/VAcHGyzZ7xbhoeQfc6GH79WLjw7g4OJ/NxOoVfEyEAUQcBjfeo/+AuFk87cLiIMRqNSkKJCwGxaMB4uKZ/ftjPcUFHxsjfrHssmPncsPfdneNpHi6aJSScNDR/5U/0Ube8QG98UXIpPJJ49FZHL3/XH+rzb/vEJCokJCQkJFw32BhBIY4Guk3c7dSQL08B8OJrkoLo4PnhtNbDAk3ke7VahZoFp06dCuR5NpuFloiQGrdke7SY6DXCgxf7I6IPmYHoUs+AsUH0nNzw93A4DMRtOBxKOrB8j8fjUk445Ju0CeaC1o88m9+DyLMX8IOQQar8D6kNgKg1qR9+bqVS0WAwkKTgOiBaDGnDjcJccv/BYBDGOB6PL9gfOFkQKLzY4Hw+L9XJkI6i9x7ZdxJPjQqP5DNuSCvP6bn3cQ0D9irn8myktlwMLnL4+cAj9g5PUfCfOc6FGvai13Hw2gb+HH4ffsaVwZy5M4F7sWYuRKx7VnfJsNcfaG4onOnige9j1o/PJmIBKRvMgzsh+E5oNpth33o6R0p3SDjJqE6l+5dDnam2j3so1xXySl3/6x2/o+d95Odpef/Z4x5OQkJCQkLCw46NERSI1pKy4BZ1CAGRZ8gRYgPFDj2a7dFO7PgICZ1OJ5BjXAikGkCcvcCgV5OPuzk4MZ1Op+E4ovtE9L0wJM/oBfw8HQJRggg9AocXDazVauE6nnoBiYdwc093dhBhxwZOl4pK5ajDAMTZi+tB7iGovIZ4wXWyLAv1L5grSKw7SCDqkD7IN8UlqSXBfLhNHvIfR5Ih5rPZLMw7xzPPrCtCkLsT4laKiFbMh7e5dKHAOzbUarW1LQe93gLP6uTagYDiTob4OEh4LG5JRyKA11hgfvwe7ixxUcuFAkfsCPDPpteA8M9RXFDRBUKv43Axp4PvEU/j8PX2gqIXS7/ApeLuklio8uux7xISThKyRkOVD3qczrz+nJ7y8n+jd37BS497SNcdHrPV0b/7k9/Sd37Gs7R8+7uOezgJCQkJCQkPKy4pKGRZ9sOSPlfSvUVRfNjha6cl/aykx0l6t6QvLIri/OF7/1bScyUtJX19URS/cbmDoXjg/v5+6O7gZBnSTocByDMFEVutVimCDOFzsgIZJCrv+eZeVJGaBESvJZV63bvAQMFDj8a2Wq1QL6Ber2swGGg0GgURgGOddDvpclGF7gfu2vB6C0RlvYiknzcej9VqtZTnudrtdiBRnpJAmsPhGob59cKT/X4/2N0RcxxuuSd6jE0ekj0cDoPLwutA8FyQZooAxh0pyJV3e/t4PA7k1utcIEh4vQfpqKtAnEJCwUnqWzDfpFi4Rd9Jq0e1fb8wHy5uMb/+x2sbuCMCd4kXdwSedkP6S9ztxD9XIHZfeNFFP9bTEiDrsRvDnQsIa7EosM55EBdBvBRpZ168+KPfx9eI1xk/8+QinlTukIGoEdfF2DSHwiP5XZxwApFlmj/tI9W7ra43fEdKdThufEKzok95xV/qd/5ecohcS0jfwwkJCQkX4nIcCj8q6X9I+nF77VslvbooihdnWfathz+/MMuyJ0v6YkkfKukWSb+dZdntRVFcMszHL//9fj8QYUgONnWq9FMIkIg6HRUQAHAjuECwjmxBpukesLu7G6KSWPmd3Hm7wW63q1qtFoi2pFJet+f7u+1cOqoH4NFRHye57owP8aPRaJTmAhs+50OqvVOEk+V2ux0i7rVaLczZZDIpFax08uo2du7JPSSF9o6M26O7nr+OtZ1Cl1yDiL+7QIggD4fDkvuAcbtABOkmBcbTKSCRki6acsD8kI6BAML9fA8hMLAGCBPY5hFZYiKKaIFIQnHGWGDwzwJz4oSc4xC8XJjieAQGCDNk2e/nBQ0vlobBdXxsrP26dAY/jnHHJP5KEQt/F5svSaWUBhcVcSF5PYvYfSOVRR+fsw3Bj+oR+C5OOHnYf/bHatHM9Ib/NwkJm4QPatyjX3/6F6n+668/7qEkXD38qNL3cMIxo5LnOvesv3/R92/4lb/Scm//ERxRwvWOSwoKRVH8fpZlj4te/jxJTz38949J+l1JLzx8/WeKophKeleWZW+X9BRJr72cwRRFoeFwWCqYiN0/DPgwEoxg4EUQae0IMaS4HsTdC955y7vt7e3QGWG5XGo0GgVrPzn1FG6cTCY6c+aMbrjhhiBeSEck3EWCODrqleN9LH4eBMw7FfAnjhRDoInYY/Xv9/uhPkKe57rpppt0ww03KM/z4DjA5SEpOAEgbMxP7N7wqvyIBc1mU3meB5cAoofXYuAc1vfs2bMaj8fh+RE3OI+UllarVYrOO3mWFObWx8T4SYngOKlc04B7uuPC5wTELgRPRUDYYu/gFMAxwzp5nQMn5A7cBhB5J8WeysOe4noIGvE9XHxAzPF96i4KJ81ek4R7uqi2ToDw/esuEhd0/JkRaFzgQPiInRjsG+884QKCzyd7Lm7hisgQp1XENUHiz/CmuRQeye/ihJODv/uGj9drv/n7lVcuLCabcLx4Vqen+7731/STrc9V/oo/Pu7hJFwFpO/hhOPG+1/48ZrtFHrrV1xcQP6gD3+BmvcfthRfSrd8z2seqeElXKe40hoKNxdFcbckFUVxd5ZlNx2+fquk19lx7zt87ZKAGEwmk9AhAaLghQelMkEFkIlOp1PqTOAFFT3qCkHmT6fT0dbWVki18Eilp0A44V0ul9re3tb29naw7XvKxHg8DvUMILHenQHBwt0LWMA9Hx3XBLUQcGJ4u0mOgyDRsrJer2tnZ0fb29vB2h5b7GOLvBM6d1p4YTzqDUDcSEXpdruh0OVkMlG1Wg1R+dlspvPnz+vuu+/W7u5uaPnoHTqcgLbbbQ2Hw0Bq3brvqQyH+7BUo8A7MDihxJYPofYUCtwWTkSZDwQChBCuXavVQq0MXBc+p75P4zQHT82RjkQFFz44D8QRdRwZpB6sczf4fSH8zKeLGPF8Iij5/uTzGK8DY4GUezqLd03wvY0g5+KDC1cXcwgwJtaPNWadSWuKxQ8EhFjk8JaTsai0TvzZMFz17+KEk4Uf+8bvU15pXPrAhGPBV+++X/v/8Xf0yq1PU+fnk6hwjSJ9Dyc8Inj7936s3vHF//PSxz37SGyYFnM9+davu+CYx/72Uo1XJfdUwtXB1f5teV04b61nOMuy50l6nv2sTqcTyCkkmnz22A0A4XHyRRQfwuRRTOA58959ATKEcOBiBikE1ASAAGdZpu3tbd1www2azWaliCekutfrhTFAvsbjsUajURAm3L4PEXMyS20Erk/KAPnv/mze1aBWq6nb7QZnwnQ6DQUIGRPXw9EQW+i9SwXz3Gq1dOrUKbXb7ZDGAEn3Qo/Sgfuh2+2qXq9rNBrprrvu0mKx0K233hqs53GaiT+P59jHhfi8iCWvOZn3zhusJYTWUxNIscAVwT6AnMZpFz4OnA200vRuEk72Ie6sM+8xTs51yz6ICwfGc8Ezc5/49bjzBGNgTnid2hPSUfFR0jo8pcIJuc8hr3EMkX/2BbVLvMgk80k6k7tR1tVW8PH7ZxSRAUEAAcPnnHGRIuP3Yi/hQtmwVIcrwRV9FzeVP5xjSki4LvHCG96ml37qp+r2nz/ukSQ8wkjfwwlXDW/7sY/U2z79f0p6cO2sG1lN7/iiC4vzvvCpH6Ffes6HX/F4Pugb79Xi7r+74vMTri1cqaBwT5Zljz5UYh8t6d7D198n6bF23GMk3bXuAkVR3CHpDknKsqwoiiJ0RMDiHBelk1QioJ4SABnA5u4F19xOTm0CJ3wUY/M6BpA4OhcsFgu1Wi11Oh11Op0QWW42mzp9+rRms1koiDidTjWdTtXr9TQajUKxv3a7rcFgENwLRLUBUWsnbR619eduNpth/NJRPQhJQQjwbhB7e3uByPJsuB5Go5Gko9QHUiVwbMTuAQi7F4jMsizMPYIKBI817ff7wQ2ws7MjSUFUYBye7z8ajUL0nBacHp33CL/vAY+2uxWf/eRpC1yDZ+F5PK2E2giQa6/VgBDFWuEikaQ8z0sCDXPCOpJO4/udGh2sK6IZ+8T3rYtHLibhkOHf3B/ERRoRPTw6D/HnnusQp/j4fZgv1q7ZbIaUHG87iWsBUs/+ZD0vVuPB7+Frwz5BIEDgcUHFxR3griWv1eDOqA3FVf0u3s5On3glJSEhIeERRvoeTnhY8d5f+DD95ce+VNXs6qW2/eeb36z/fPObr/j8f/aLT9W56S1r33vnH3ygPvA/pMye6wlXKii8UtKXS3rx4d+/bK//VJZl36uDAjRPlPQnl3NBbOqQUn6Zd8u1W/Pdjk3KAmkL3pmAaDkR8NFopMlkUiKCDogkJG88HgcS2m63g1UfklWv17W7uxvqLuAwkBTEEGzfRNUhojyHV673aD1kkiJ+3NPrL0gK9Q5wPEBIaYFIV4X5fK5utxvSEobDoXq9XiiwyHUhuh5dh+gybkQPnovItrf/dGs7xGw4HKrb7YY1djJOi0vec1FiZ2cnuE+ob+E58XFXAl5z8UAqFyRkjB4p9/odPC/FL72mRLPZ1Gq1KhFXr3vhdTp4njjlgmegUCX7BpHEn8cj5hBvCjPSitTh0X3v1ECk3tMhEBKI2vu8Iq7FKUdxSofXXohdEu48iMEz4rZx10NcbyTe/8wfAlAsJnAs6+rPDfyzhKC0ziWywbjq38UJJwfT33ycnlRPltWTgB97+h36xq9+gW58afol+xpE+h5OeNhw9y89Sa/96B9SXmkd91BK+InH/e5F3/vz2yb6uWd8zAOe/9bBTdr/xLNXeVQJx4XLaRv50zooNnMmy7L3SXqRDr40fy7LsudKeo+kL5CkoijekmXZz0n6K0kLSV9zudVssZ1jz69UKhqNRiUy4gTR2y0SAYUQISZ4e0IECtwG7mRwezt1ByDFEFzqA9DdATIDoSZKjG0f4u2RbsYP8eE5IG1+DpFuCBIkP05xAF6RHyEA6z7zwPuICZVKJbgoYnv+urx91mA+n6vf74f0ByK7zO9wOAwCRGyRb7fb6nQ6QYAgdcWLVzr5bzab4ZmIvE+n01KLQJ7fI8+sIWQYcQqSz55wZwLRaRcWIKeeYuPdNlgHRBNEBbfck0aDAOBknXQWUgx8j3s6AffwSL4LBA8ESLs7cHjdLf9u9/f6Be7kiMcV1yaJWzP6XHmKQeyScDHDxTPuz3H+M2Ol4ClryTq6a8MFHhcTXZR0VwsC0CbhkfouTjg5+Ocf8IdqZLVLH5hw7PjkpjS5cXOKvCZcGdL3cMIjjWc87i+1s2FiwqXw4fWmPvymv3jAY+Y3LvWqt+2UXvv3L3uObn1xKiB5EnE5XR6+5CJvPe0ix3+npO+80gF5JBOC67/ou0Uc8t7pdNRutwP5dOu3F7lbLBYajUZaLpdBuBgOh5pMJkEo2N7eVrPZLEXKESwgmZ5GAcmHNFL/wYvLgbgAHuN0AueEhtSD3d3d4DaILfCMBRLmtSAYI6SJ+VksFtrf3w8tN6m3IB05DObzeamLBtF4IrjeApFjXDjwrhXe1jHPc21vb4fzsKPHBJPzt7e3Qz2K+XwexA+fC6L8tP9knLgP4sh0LHJ4IU8vMMicxuvjxTXduUC6COTWRS8vssi1ptNpqNGB2wNiHUfhPU3gShDPgYsCLiZ5cU9fk1hE8Ouy13k2ioQiyMS1F/jM8HdcfNXvwbh9z8eOC4Qivh/c2eQOFNbbwZzEAoOLEZuCR/q7OCEhISGhjPQ9nPBIYv/XPkgvuvFnJV1YS+uko5ZV9U/ag9Jrn/I136NzLzj63evrP+VLtXj3ex7poSVcATamhLkTDrdzS+VIKtFHxAQnvJ5LToQS27oLEBA6zuU1Cgjmea79/f0QIcd2D+GEDE6n00A8iUBLRyQN8j0YDMJrg8EgkDW3ckNkpCP7NSIAnQcYtxfZi4miuxs4zoUPxsof6kAgKEAGma/xeBxea7fboZWjF94bjUahGwMk0kmq5/vT1pN7UJwSAYXnJ3WD40hRYM0hjuwT5rRWqwUHBPvHhQAv+sh96NLAnLMmnAvBXmeXZ4+x77xoI3MEwXVBzEk046bOBgIVggRihadbXO5nSlJpHpwkE7UnzcAdCHF9hMViEeogxPC9xfk4anz8/Iybxc+PEYtmnlLh6xF/FvzzzbW9joWLPJzjIg776XJqOCQkHDcmRWoVeZLwZ1/93/Vxd32tbnhZSntISEi4NHabY9Wya09MuBhOVXOdssd9+R/9opZFoc+/7RNVLJfSKhl8NhUbIyg4AZXKedOQHiLi1WpVk8lEe3t7gXQ7SXeC51FhSDQEyqPqbgv3PHqPdEM63KJeq9W0XC6D8wGLd7vdDsUIXUTY29vTfD4PhNcJsueT53muWq2mnZ2dUg6/dNRpgDQB0gsgXLHAgsuCmhD8IaWCOR+PxxoOhxoOh8FGThFJxBYIPikliBfj8ThE+6WDgoSkFTiq1WoowNhut4PTgHSI2WwWUk88xSLLMu3s7ARivr+/r9FoFOaG80ip8Px931dOTCHxrVYrrLOnJjyQI8CdIR7N9poQnl7gzpbYucJYvNXpOriTxD8jMfnHPeGOgHVuA57DhRLapnoXBUe8nrzGPd3J4OkbjBcnQTweL8zoKTRcy10vXAtxiNcRyLyeSCxEVCqV4D5iL/GdEdfJOAEtIxOuc/zik27So962p2e0R8c9lITLQC2rrq/7n5CQkJBwARpZTcqkX7/zT/TW+VDf+Pc+S8vD7nkJm4WN+Y359ttv187OTiDtnr8MOcCWvrW1pcFgoF6vp/l8rlarpeFwqJ2dnVJhN65B5BIC4tFuyIg7ACDptBGcTqchz96t1lwHUh2Tumr1qEUkTgA6VrjtW9IFz0x7Sie61FogfWAymZTa8HlhOsYHOUaA6Pf74R5efX+5XGo4HGpvb09bW1uhyB8FEOn6ICmMZzwel3LTIX6QZq/lQCSYzhKQt8lkEsink2pviYl7JM/zkgui1+up1+sFoorg1Gg0guADSYVgM9/Mb57n6na7gWgOBgPt7+9rPB6XamogfLjTJbbFc20vFAg5RYjhuYiu46CJ0wYczIN3IWDtEbWoqcBcE9WPOzV4gUe393sNDK7raQnsvVic8DEi/ninBIenwfh+iWszuNuBtY7v6+vJc6xWBy1QJanVapWe09eF15gz9jpOCq+NkpCw6fj/P/F2zd/6Tj2rk37JSkhISEi4NnF7ra3nvuHNuuP2xx/3UBLWYGMEBS9UCHlxsgMBbLVaQSAYDocaDAbK8zy0HPSCapCD6XQanAEQYCd93HMwGOj8+fOhC4KTZcgx5BVxwdtXNpvNQOCxURPNn8/nGgyOcoWcrPg1cBNg68b5QNS11WqFFI7RaBRqNnj0l/mitoDn6kMKGR8kdTweq9/vh3oHXlCw1WqFGhMQaf5GaGF9IKwe+XbS2O/3tbW1FVpw4jBgzJ5+wNw4GW61WoG4U6Cx3W6rUqmEThDUxYjXEHhxvlqtFkg0HTHofME8SEctIemo4N0SnBgzz0TBEZYg5+5sYM183Xid63MupBrS7nUVvOCnVE4JYL19fF440e/n92XsnIczIhYJXBDzlp++ZpzH58XnTCq3mGQve7tU79zC8YgJiGs+71zXhRuvS8H3DSIPn9NYKPECmgkJm4w7bn+8/vbPx+pWJ/q6U3ce93ASEhISEhKuOnarQ1U+4slavfmvjnsoCRE2RlBwckEU3m3qWNmbzWYgvhSzgxA6SYLcQAIhDhCzyWSifr+v4XCora2tcNxgMAhWeS/ux3Wx9TebzRIBwyrvdmpPw6A1YyycEJ32IoHYr71DA7UUGD/pGovFohTZh5R5lB/S7qkcMeni+Rkj9QTI2ffouRfTI8oP8cKxgXMi7lAxGAyC+ELqCvfDKbC9vR3IrxM67kkePtHrdrtdWqvxeFwSaS4mcHi0n/QR2n9SLBLRCVcC0XuP/LuTgns63GEQOwY81cU7UhBJxx3hZJtxeC2G+H5xkUVej+sqgLimCMe7IBBH/Lk/8+R1T1ww83Qint87ivDZZJz+7C6u+Z/4Wb1tJvvbBQwXZ1yYYb69dkZyJiScRPzeh7dUvfED9Hsvf6Ik6WN279QLb3jbMY8qISEhISHh6uBpraV+80f+Sm/+B8c9koQYGyMoQGQolCcdRT9rtZryPA8RbY/yOuH0SCNEwQsUunV6OBwG8kiUejqdhloAkNSYsOGS4LqMG2s8wsJwOAyveZTViRPwfH/P6Wb8WZaFqD3kiVoHzA9iic8FdRwQXLxbBsdA8iBUzDM1ECBn3vKQtALmCdfIbDbTZDLR+fPnQ90ICD8iDtH98Xis/f19TadTVavVUAcjz/OQBsGcsA/cgs/PkoJ4AmGH/DpB9poIEEscLBzLmnJNnC5erM/Xy2sYSEdOEy8U6OICAgnr4AUDIdjurHF3Qewo8KKBPhaOQRBzwcP3Bi4XxuWfQdJy4j3rxQ65vhfzRJghlSAeC/PvKShesNLXzUUaRMNYTHCxBNTrdbVarVC4kvH7XLpbgev55zwVZEw4qVjed5/6n3Tw75//qk/XC78jCQoJCQkJCdcOPqr9Lr3m879Y+cv/+LiHkmDYOEGBqCRkh5+bzWaprR/EzXOpIQoQFaLk3moRNwCkdjAYBELMn/jeWP0nk4kajUYg0YyZ6D/CAakYOAoo/odgEkdaSS2AEDsZ9nxuSGCv1wtknEg/5FE6Irhexd9JGvMHmMdqtart7W11u92wJkTCeXYIGcUnvYUirg+K+jFXeZ6H6vrY1CUFAsr4aNtJ9wx3XEhl4WUdqaZ4o6dFIHLEHQBI24AQO7F1cskauaDiY4jFBBcdpLJTBTGBc33sLu7wsxdv9Gf2aLrXCgEuZnAfX3tPreB99r13QeB5fRxxzQjWPi4O6k4F767hKUdeFJW59DGxToh0Pt88v3dwQFRi/b3g6dbWVklw47PFnozn2tNTEhJOIk6/ZaQvften6Wdu+53jHkpCQkJCwhXg7ld+oH7/cdInX15zr+sCX9jZ18u+5v3Sy497JAmOjQjB4UDwln/SEenFzk41fukoj9rb9UEYPProbgUQExXuIR0Rx7hQoKQgFHhxRM7zaDO2e+oXeK68E6XpdFpK14DkEiFGiCDfO8syTSYT7e/va39/P5Ahr6gf58xTk4HUBFInqMWAWICggUABEec9CHNckJDX5/O5RqORBoNBGH+329X29na4D+vMfAJIMd0fvAaCHxNHyiG7kNrxeBzSYBB6cJ2Mx+MwdoQk5t3rHLCWvldI4UAUiNMcEJtY6zjVgDmC1PKeX8fXkXXwz4GnzzAf3J914Jn9D58Rd0/4NdgvfF78Xl6n4WKOi3XwGg2c49dZdy2fMxcqWE+fV58vT41hjzNvUllUY51933IMf/i8I9DF6SsJCScF2Wv+TGe/9QP1xe/6tOMeSkJCQkLCFeBR3/8a/Wbv7x33MBISLomNcChQl4Dif0TGKWYIwSeyGleyz/Nc7Xb7gqi5R4c9Gunki2uQvw7JRMSQDlrpQVhbrZakgy4BjI2cey9m5yTP4QSW3HzPL4e4UuQQV0a1etBusd/vq9fraTabhToT/EHciPPGeS/Ow+dvihB2Op1wHiRaOipeGJNVHBMUgCRKTfHE7e1t5XleEoa8QKN3DWAuJpOJBoNBEEEccUV/6ShK7ykJWOr7/X5YGy8kyV7wuSVdxh0tkNeYxMdOD6+dgRDAXoIMe3rAOteAr2Oz2QzP4nn+7myAeCNExekAfK4u1obSnRGx2BDX//D3eWbWz+9FDQt3Yvh9IP+xO4GCnC6SeI0FF8x43wUFruGfe09HcREDuLASzwn3SA6FhJOOyh+8SX/8F0+RkkshISEhISEh4WHCRggK5OXjToCgEaV2G/hyudRoNArEtV6vh/OoG0CE/dy5cyViASFzMgMBGY1GwXFApBIC6BFMiBO1CYiKey420VXEBq7Bs0Jw6vV6IOEQGU+3aLVaIUWjKAr1ej2dO3cu1BhAcIijukR2SSNwR0Kj0Qh1GUgDIFXBhQEEElwF1Wo1zDtk0y3q1Htg7hib5+FLR64RJ+xuTadzhbdp9Ih3LPq4A8UJIqkhtOz0OgiITqy315Hw2hzsl1goiol2nC4R13nwlpAOxhWTXfaQzwPH8767YXyM664fiw2+Ju70YX2Ak+44RSYWJBCtiOwj/nkRSkQG7unCkosOXruE8zxVwp050lH7Sdbdn9f3qO8/ru3zGqfTcH5CQkLC1cBt/+df6Mn/504tLn1oQkJCQkLCicFGCArSUa51HB2HnEBUxuOxhsNhIK84G6QDsgB5Ho1G2tvbC9eHRLkt3iP83gZQKvesh+BAQrFEY9PnmEajofF4HEjceDwOxB+3A8QTEg5Jd1Lo5BNCtbe3p/vvv197e3taLpelzgZujfdWmbPZTK1WS6dPn9bOzo46nU64N+RtOByWIs90o5jNZqGmQbvdDnPDGhVFESL8OAtcGPCiijwr81kURSjUuFwuNRwOw3pvb2+XxAQnxLR1RBChkCPX9IKPFN4cj8elPH3Oi23tdE6Q1pPIi1X+d5LPPnE3DfPt9/cUAK/rwRrwvAg7TrZ9PKyDCzZeK8PTazxtgPu6i4cx8lpclNA/Fy46sObMq4sEfDZ8XKvVQUeUWEjx/e9CAc/G3K5WqzDHniZC3Qbv2MD7LiLE6U/ME3uRZ/f3EhISEq4GWu+ua/H+u457GAkJCQkJCVcVGyMoQIL5G+KwtbVVss4jKNAukfcgFq1WS+12OxAor1EAmRmNRsGqDyEnmg4x7fV6gSQRHW2329rZ2SkVccyyLNQF8GgxRFA6chvwnABnw3A4DOST53D7uado0EKw3W6X2jmSwoBLgQ4Wi8VCp06dWmshj4mZpJKwQjcHfw5IIQ4LRB4niQgJ1E7w6L/fW5LG47FGo1FJDPFCgZ7OAMGGYLoQ4kUBmT9EDO7PmPx5OQ4RwrEumg1cKECYcILs+fqsT2yfZz6c7HNPRK/YfcL+Wld/wceLy8HrdcTj9zn0/exFIdc5K+L0Ba9h4g4EF00khc9d7DBgLpivWNDxehMu7LiDiP3jc+B7nc+jf6ZcRGGN+Hy5oygh4STjSd/yN/q4D3yWXvv3f/G4h5KQkJCQkJBwDWIjBAWi3NjvR6NRIKgUWqtWq6Eg4Xg8VpZloegfbeJarVaoPTAYDAL58q4Ow+EwFCCUDgg0xIkoZdxOkOh7q9VSq9UqRV8pAocbwVsP1mq1MDai+UTpiYbzzET/KVjImL0ivtvniYjj6OBcUjE8755jicR7ColHc5mr2CLuQoCTvvgcikfWajV1u91QS8DTSxATVquVBoNBaC9JhNndCJPJJBRsXNdi0AmtR9ldTHDbvxfnwyXAXFO80mtfsAfiXH3pSBjyiD+AjHshTS8CKKl0f9YRIu3FFLmOp1l4UcN168iaM3dOon3N4ki9fx65hjsfXHDx+ff6BbzmLiNEE/54wcp43N6JIb4f8+8OhkvB65IggvE553q+H5gnT01KSDjJWPZ62nnGRM/5/U/Wj3/g7x/3cK5vpBqvCQkJDxJv+Ie5XvmXuZ7RHh33UBISLoqNEBQkhajscrnU3t6exuNxiVDhWpjNZqFoXafTUafT0c0336xbbrlF3W43EHInxZBTCvR5Ecb4OOnCHHUIb6PRCE4JJ1Ic52Qd8orAgUPBiZjXZpAUiA6Wfsbm+fmdTkd5nivPc0kKtSa2traU53mpxoMkdTqd4GRAvGB+vPOBE1pPVeBZPSrtzwEZp0WmdyioVCrh2lwnbhnpBTfj1BO6JjjxhYxOp9OSeOMFAV2UYKzMi7fm9L3H/EsKBHSdUMDcOSFl7zCHvhY8I2P3fe61Hdx14TUTWAuv7wDcqu+vURvCRQyP7vO3n+fFDH2+EKx8LFzPx4CwgpCDo8TnCIEH5wsCA2KVO2hYPxcf1qVF8Drr6CkwPGNcRyUWgWIxgfHifEhIOOko5jMtVu3jHsZ1jdt++Xm6/f/3muMeRkJCwglDMZ1qtRlN+RISLopLCgpZlv2wpM+VdG9RFB92+Np/kfSPJc0kvUPSVxZFsZdl2eMk/bWkvz08/XVFUXz1pe5RqVSU57lms1loGQiZiAvHEWmmC8Du7q5uvPFGdbvdQMhod+gRzjhi710BsNXTUrHZbAbSQctB0imIrkM6Yys6hSIllXLqvbicR8xxPXhqgOeC8zPkGfKGvZyUDiLEENputytJ4XkoqkiRSK9HgWsCEu2RWVpA4q7w6C3nEFlmDHRnIIUF9wLpIZJK9SniyvwuVHjnCEQLt/FjZccdEdfg4Fn9T/w693TSzv5D0LrYvqWOg9dS8GKZq9VK9Xq9RIa9JoLvaZ8DHyPjYf09HYZ9xbVdTPJaFl4bgWeMCbMfS2oIAgF7m/e9m4N0RMqpp+FpS8wLopq3fpUudK74e4zrcsi9i1yx4Ofr76kYvM9zxk6UOA3mOPFIfBcnJCRcfZxfjlQdrP9/JOFkIX0PJyQkJFyIy5G8flTS06PXfkvShxVF8eGS3irp39p77yiK4iMO/1zWFyeCwtbWVoiYS0et6NblVFNUr1arhQKFkMnY3eAEOSZoHuWFtDYajSAm9Pv90C0BC/9oNNJoNApEy3Pwu92uTp8+HdI0ZrNZaPUYt5eEZHW73eAiQISAAOIqcDHBRYjJZBJEAQgTTgrqSTSbzXAdIvs8W7/fD8R/tVqF53QyP5/PS8dT7JCceI9mQ/Zp+0kqB24Nr9QvqbQ+kFNqUNB9grml1gViD4UUndx6G0gIcCwixPO8Lk++0WiEFBpPM5GOCgziePAuBV600x0ND0RMETIoKgkQtjwFx9M7eDYn/AgT3BeByLtasL4+/+7E8Wfyoo1xDQNJpQKa3uKS+yL88TeFG2N3AnPmDiPWy0UL3zsuEHjxSsQm7/zhqSHuwlhXI4LjESc3CD+qh/m7OCEh4erjk17/VXrCN7/2uIeRcHXwo0rfwwmPMH7hvo/WvEiOyYTNxSUdCkVR/P6hyuqv/ab9+DpJ//ShDAJS4ySD1oNOzIDnYud5HiLiblt2guEEHpIwGo1CNBkSSu4/hJUIOPchSk/6BEAooNAjBRr7/b6ko/oE4/E4EOu4iCDOBieG0+k0dIFwAsT1vA0ipIt5o+YEBGw4HIYOCQg3e3t7On/+vKbTqdrtIzssUWwEAcQBikdCECkOSboBEW4KSDLnvp4QZre5c08ncbR7pN4F89poNIKIg0sEIEx4nQGHOwAg1G6Jh9i75d/hNRvYW941gzV0EQB3CfOxbkzemYD7sC/8vp6aw/3irgbxWNe1WUQEcsLNOXFaAHssFhkc3Ic/sfgQrwXXRHBgL/ln1etauIOFzwd/e7qCr7GnpQBPdUCY4hzgTglcFpuCR+K7OCEhISHh4kjfwwnHgfs+fk/vuXOsJ9Q6xz2UhIS1uBo1FP65pJ+1n2/LsuxNknqS/n1RFH9wqQvENnWIMxFgJ9BEcXEgYKF3cglZjPOsIRRE6qlHABGEiPv9sEW7VXo4HGo0GoVoL8dKRwX2GCv3hZxzn8ViEWpFEAX19Ag6NUCOESmkA0I2GAxCi0quSVFG5mM4HKperwchwGsSkBaCWNBsNi/I6/diibR2hIgishBZlg6s7L5GpCe4hd5Jvbsi2AeMm9cRE7gG1necCX5NX3cXK3gO/s3xLkp4VX+cL0SvIad+PM/DeLxdJC6C2WxWWl+v78A443oVvM+e8zoI7EsXTDxi70UX3fVA6oHX5QCeAuGvs1/4THq6A+d5LYa4UCRwISN+dnd+eH0Ov35cm8E/44wXYYX7+/n+TLSa9ZQU9pE7OVhTT4s6IXjI38UJCQlXF6+bLLX6053jHkbCI4f0PZyQkHDd4SEJClmW/TtJC0k/efjS3ZI+oCiKs1mWfZSkX8qy7EOLouitOfd5kp4nSa1Wq5R3DXnxVo64Avr9vubzufI815kzZ9Ttdkt2a+zTkoK9H1LUbDZDbQUIcbvdVlEUpWr6gGg3UXr+TfQcQgU5l47EEdIUEBz6/b4mk4na7bYajYbm87n6/X6JYLn9fDqdan9/X9VqVZ1Op9TS0qPd2MQh9qRq9Ho99Xq9QJ4QAg7nvpRHjwUeUktnC8ggRJrUD1IGnPQS1Ubs8CKD0lFBQhdbJJXaUkJ8a7WaptNpSAeB7HoNCkQW7ulRaieuPG9M5nEOQDI9ms6zOGmPnQSIScCJMXZ79gEOk0qlEpwpsW2ffUPqDXUX3JnAGAARe2pMeAoE6+hEOz4X8cFTCoCTaU8l8RQVL04ap43EAgXrgvjA3nEHAsIJY/L95ePhc+7XdREly7JSS9U4xcaFFfYj3wHcj/10sZSITcPV+i5uKn+khpzwCOPPXvUkvfmrfl0fcfj/Y8LDjzdOZ3ruD32jHvufUjHG6wHpezjh4cSnv+pf6+2f91JVs+u7QOMfTVa669c/QLfofcc9lATDFf+2nGXZl+ugMM3TikPmUBTFVNL08N9vzLLsHZJul/SG+PyiKO6QdIck7ezsFNQBIJpMtB1CPhqN1Ov1tLe3p3q9rhtvvFG33HKLdnZ2AgFerVahevxsNgukmsg6KRRce3t7O0TmIUoe+YQkjcfjEHGHgMTF3CCJEMOiKNTpdNRut0OhOkh0v98PNRi8aCLXm06nQTjx9AvSARaLRTiPvHivuTAYDEouClpceh0GbP2tViuQY78PHRlIvWA+/M98Pg+pI14Qk7QKnCS25mH+RqNRsJd7ZwfuzZy4WADRY70Y+2AwKLV5nM/npYKQDo+qu8DiogauDF7nWMYJ4fd6BZ5C4e4PFyEYm9dDiM9bLBahPgbP6mINDgDOj8WTOJLPM5LOsA6QbNbKHQvuSPC6EV4rAbjjgjHH5J1rIKC5GMEe8HXimePUDnfy8H7c1cOfxdOF3PHAOuEKccGKz8Sm42p+F29npzf/gROuCI/5rtfoOZN/pV/+hu/Wbck2+4jgtwcfqsckMeG6QPoeTni4cfu//BNNn7FQntUvffA1jFfuf6Ru+S/pe3XTcEWCQpZlT5f0QkmfUhTFyF6/UdK5oiiWWZY9XtITJb3zUtcjgk+9AgrbebvDXq+nc+fOaTKZqNPp6NZbb9WjHvUoNZtN9Xq9UvR7Pp9rf39f58+fD7UOiCZ7njuRe7dzQzicqFCY0SO5HqHFMeCEuF6vh/oCkBVIEYSfCKwTOjoxQOKpF8Dzkc/ebDa1vb3NvEs6IpODwSB0foCYx3Z2v45Hsb1rBNFjxuiRfM8xh8BNp1MNBgNNJhM1m80g5OB2wKXgRfQgzUSRIZCSglDj4oAXIMzzPIhHiD6shwsRkFuEJHdV+Py7mOQRfb8mzxqLT34caQ7r3AHsDwfPheDDWrqLwcWDOPffBYvY0eD7MnbfOPF3oYU5Y38y315skvHFzgTWeF0RVD6HPn9O8ON5iZ0HXN9dEghY7BtSKXxepSMHie9B3EueEsJ4uP4m1VBYh6v9XZxwbePR3/savfdrO7qtdtwjufbx17ORXvHip2lHrzvuoSQ8zEjfwwmPFD7hxd+oN33b/zzuYRwb/mQ61+9/98dqO32vbhwup23kT0t6qqQzWZa9T9KLdFDBtiHptw4JBa1wPlnSf8yybCFpKemri6I4dzkDISLcbDbVarUCaSCa3ev1NBgMJEm7u7u6+eabderUKVWr1WAxd2s+pB17NKQE0ubFGCFPeZ6XigrSDWE4HB5MlrX2w7YNcSLdAKLlRSWXy6XyPL/ASUE6ghd7pOuCd6jgmpVKRZ1OJxRDRKSA/HiVfY6hnSaEjDnCLYHgwdyMx2PNZjPt7OyUIsBxUT+vccD8DgaDUPeBwo8ABwPkFvCaF6jkmMlkEhwnkED+jdiBaAF5JCWEZ8Jij5sh7lLAekKiPVruLgYn/N4iEyLrY55MJqWuG06W/di4qwXzjFPEib7Pm6dJxA6QdRH12CXAXvY0D8QIFw+oMcDecxdNnA7h93KhAlHHUwriOiWIBvEY/blZH78nnzfEGy+kyfPw2XYBCJeId89gThgXn5lNqqHwSH0XJyQkPDTcvxzqBV/zjdp5Vfql91pD+h5OOE7c9D9eo4/d+2q97rtfetxDORa8d36Dtn86fa9uIi6ny8OXrHn5ZRc59hcl/eKVDIRODXRt8FZ0g8FAe3t7OnfunG688Ubt7Oxod3c3tEOUjmzbs9lMg8EguBakI3t7nL/utmvSB9xBQJcESaEuAwQJ0YEobq1WC9Hp0WikZrMZiArRfq4PgXNSt1gctKNENPE89SzL1Gq1QgFKdysAfvZ6ETs7OyGKzzVHo5GGw+EFkXbmaDgcloroIdZ49Bayy31wNvT7fc1ms/AedS+Kogi1IxAcvEgjIgGpE5yPyEIHCk8dwV1CfQLW36P37B/WyKPpXsyR+eR95sOJLSTUCTOOBM6fzWYajUZhflxEcbiI4ff26L/vuViI4TkRFOL3/D5+P392dwhwDz4PCCYAIYV7uMgASY+dCv5z7Dxg3mIB4YEcAe4q8ToI7Hs+Tzwv90T08hQcvy9jdwcDz0zK0abgkfouTri28V1f9GV68stfqjPV9qUPTnjQWBYrPfsLXqDG615/3ENJeBiQvocTjhs7P/V6feL4+frD//6Dxz2URxTvmg/0Q1/ybElvOe6hJKzBRlQcI/Jeq9XUbrdDdXoizufOndPe3p6Wy6U6nY62t7dLhReloygsEWJyoCF6WOKJhHOOd3iQpNFopHPnzoXaC5JCagHn4z7I8zyQQSeVk8kkCAwQIQgm9yXizTmIIBTY80h8s9lUt9vV1tZWaFEplW3cRPkhV7gjnGhOJhP1ej2Nx2M1m81SZNprQeR5rvl8ruFwGO6BG8KLQvJsXnzQuzIw7xB/1pVrOQEkRYRziTxTeLEoilArwbtGODH255WO8vDdSRETa/72qLpUzueP0yckhSKcCCa8NplMSmIR73nKBgTdo+XuVmBO4i4WvM5xnp7g4+Y4Txng+l63ID7HO1XE7hSu6bUTvGDhOmdEDK8J4ed5zQN/Hj5buJDidA/vuuEOGtaUZ/E5jOcPtxB7xB0qD1R3IiHhpKJ4/V9ofgJqg5xU/ONP/QLprX9+3MNISEi4VrFaqv2KN+gTdf2ICqPVTF/7KV+q4t1JTNhUbIyggIXfiS8R38FgoNVqpXa7rd3dXd1yyy2q1+vB6gyZJt/eLfoQU0g/ZNi7KkA6ptOpzp07p7Nnz+r8+fPKsky7u7uBkIxGI61WK+3u7urMmTNqNpsaj8caDAaBnDgJdTu+R2ElBXu8pNIYicYDOh3U6/VSIbmiKEpk22suxKSS13FVSEcRZCeqvIczgXXxGg8IGoyHegHz+TxYzrMs03g81v7+fnhexoeDwfPz3cGRZVkgj7VaTTs7O6HwIiR2d3c3iEUQQ0QGHAmNRiMQaU8dARBj9om7GOLIPi4N3BDY6llvBBnSWSDEnpbgOftFUYQUGe7lggKvk7riRSFxi7DH4paSXMPt+pBl7+oQuzWcOPPMcfSf1BZPEbkU4fbPhBeYJBXE58L3JePytfLPNfuV16jNwD1dpIiLb3LduNNJo9Eopd94S9SEhGsJz/2wz5YaDf3an/3WcQ/lmsPqXe897iEkJCRc61gt1X75n+hjW9d++sPnPOVzVPT6Wvbec9xDSXgAbISgIJVt5ogI4/E4kJA8z4OYQF49hBayNhwOQ8SSaDhF29wmDQlzgoG7ATfEdDoNefqIDdQ2OHXqlG6++WZJCrUdIONx1XkvOCgdkDXSIrwNJZHSra2tQJQbjYba7XYQJQaDQRAviKYyb9wDkcKFEkmhlaQXGoQ4QUzdRcH1XHjwvHPGiIADMZQU6k+4uEIKCqIDzgdJIWcfJ8NoNNJisQjCgbcTpSYELgbG7bnzjA2b+8Vy8xmvd/iAwG9tbZXcF4wBYSZu3xmn0VDTwvP1qcnhBJ65jEk9c889ECwgwOwxvyfz7bUmmGfEGkecisB9IeqIAevEDheuHLHQwN5clxbh42AvxHMAwfc5Qhxibmib6o4T/u3n0iLWC14i2OHY8XoOfLYSEq41LHsHXes+5yM/U6/609845tFcGxitZvqnH/W5Kub3HvdQEhISrgcUhXZ+4nX6iNP/Uq/5lu+XJDWyrRPfVnJazLUsCv2TL3qestf+hbR6/3EPKeEysBGCgkfYJ5NJKKYIcYQU3Xrrrep2u6HzghMfCjeSZkAxRaK8XpgOguXF4Uajkfb399Xv90NnCEjucrkM9QFOnTqlG264Qc1mU/v7+7r33ntDmgKEj7FLRy0nISlE9CHzHmHmOSEzFKik+wPV7ElBIKrO+7Ew4J0TIOlE5d1REdeJkBQcA04MvU2gE+ZqtRqKXJJ2wfhxHDCudrt9AXn2dJXhcKh+vy9JOn36dKnFZJ7npXaA0+lUo9GoVOuC/YRIxLGxvd+LK3p6AqQ3LmLp1/BuDH6OiwkICLgbiPZD8mNS7JFw9im1Jhi3v77OfeJ7KhYpuK+/z5hdNGL9QOxA8Hl2sYDj4k4gXvRw3Zj4m84g3mmFe1Cnghapvh997uM2nsw3zw7cwUDnj3UCCGudkHCtolhudheTk4L3LAb66n/0FVre8/bjHkpCQsJ1hpv/22v0zP/2FEnS+1/+oXr5R92h27aaqmXVS5y5ORisJrrr8PfLL/nOb9KZO16rTG8+3kElPChsjKCAXRwRgPoE0lHBxTzPAykfj8eBvFCDgGsQOV9HfiqVivI8DxFtSDGtJnEbQNYlaTgcan9/X3me69SpU9rd3VWWZbr33ns1HA61XC4DGYdcQZK8hkHsEvDChgDCled5sO3TecFb9cXElfx9ahNQwHG5XGo4HAZBwdMXuD8Ci1vJOZfCdO5O8DQLSDQpEJBvt58jhLB+EHLvsoGLAeGm1WoF4Yh0F9IfJGkwGGh/fz8IKRBlJ7huk/die8vlMrgkPHceNwxixWw2U7/fD10+sMQjDpBqQUQeUQJizh6EWCOyIPYwV+sKDbLvGTPCBWkU/OzpETGB9roEAPcI6+6FFdlH7CFfQ57VXQnevcI7LABPd+DnWKDgeeP18nv454W0G/Yya+cFFd0lhNjH61yTz12r1So9K6LcxRwYCQkJCY4/mqz0Hf/sa5T97Z8d91ASEhKuc9z6+W/R1+kTdONrdvXMM38qSXpWp3fMo7oQy2KlXxruhp+/5Y+/Uh/0ZW+SJJ3Ra49pVAkPBRshKEgKuflEuyWVoqmtVit0FNjb2wvEG2eAt46EFHkEnuJ5FFP0PPjl8qCd497eXhABIC+kTSyXSzWbTZ06dUpZluncuXO66667tLe3Fwonek42QgDER5L29vY0Go3C8U4kpaN2jJBdUi2c5BBZx7lADQecD6vVKswTzoXhcFgi3Z4KISkIApJCNBiXBYQPiz9igIsatVqtNE/eJYA0Ea+lwP2csE2nU/V6PQ2Hw5C/jlMky7LQLnOxWAQnCeIT80aUnnX3egY4Kohqk2bhNnquwf6BYDNnMWn1YorsRd8zXnQz7joQpyWsK1QYp5u4DT8m3k6AnSBzPgQbAcbbpTJGRCsXR9xF4GkQjMEFBQd7yMfg73nqBPPPnLL/Pf3AO2DEDheEIa7NPmYNYocS5/Cd4k4lr1fBOiUkJCSswy8OtvXf/9UXqfGa1NEhISFhc3Dfx+/pDj1ekvS6P81UyTarEG9/0dQ7PmYSfv4gvekYR5NwNbARggLR/JjcSUckGzJBW0NIrXdY4DrUEXASNRqNguW+2WyWCrYNh0OdP38+pCxALCE4FCE8ffq0Wq2Wer2e3v3ud+vOO+/UfD7XmTNnAomMe9xDOqnxIB2lE0gqOQacFEJucE/4PNTr9eDUoN6DR5Fj9wXRdkmlqLN0ZP13kkvxQcimd3HwWhAAsUI6ShPxWgQ8FyTN14zzadW5WCyC24FUhyw7aJtJZH80Guns2bNhnREaEEOyLAtj9boIrA31BLzIH2vm80XrUOo3eKoC53J9nB1cg3t58UCKT3pqQVzrAoKOe8NTJTwdg32KoOHri1gTd2NAbOM4rzPA3HlXBCf7LiT42nmNBX5GoIDMuwABQefvdfvB6yS4iMa4XMjxNBCemb1DUVSvNeIpT41GozSn/jnhM5JcCgkJCevwsv1H6Ydf9E/UeVXqiZ6QkLC5+POP3Cwx4QCTSx+ScKKwMYKCpBLx8aiz2+LjOgEQQ281B1lxIguZ5VoQDDpK9Pv9cJ4TFJwPRDMnk4nuuusu/c3f/I3OnTunPM9LhRHjQnykc0DYPCoKKfXUDLfnQ26d2ECGIeCDwSCch/W7Xq+HZyNqv1gsgpDitRQ86o7FH3eC12ZgHhgDVn0vbOmF7Xgm1geyjevBi2fiouCarF2/31ee50HwWK1W2tvb0/nz50ORR4h+nPvO3y7YeIcPny/WyutbUM8BhwWENt6znqbAvnExwY8j3YGCnIhDXNvnmHl1oYT7xikzLtY4uXfS7w4Sd8V4Kg3z5YUL3XkQPxPHuxjCvSDmiCLuaHCXAGNZJyhwvt8fAccFE99fPI8LJ56KslodtYn0Iq2IEIiKzJ8LDAkJCQmS9NK9W/Uj/+kZ2v25ZM1NSEhISEjYCEHBo70evYU4YU2niwPkyXO2vVUgpB4C4TnlTn4mk4n29/dDlF8qd37AvUDxtizLdP/99+vOO+/UXXfdpeVyqe3t7ZDeQHcKJ7Ve5K7VaoWcbX8+yI4TXeko/cCjwBQ5nEwmoS4Cz+UdFCBRRJ8pPuc2cqkcCXdXRq1WC+TKix569NrrUhDxJUXDaw1QTyDOyceWjmhBqgSihAsei8VCe3t7GgwGYb2I+DtJjckp73lKDfPpNnoKKCLCUKfDCSiiRuyi4ZkQbzztwu36zWYzzAfFQz1VwveEdOTO8SKQ3lnCxZe4GKLXK8C5Qz0MCpJKKu1P5plzmH/2KPeM2zP6Z4q5I3WHcz0FiWv4XufZeY/jfM/52HxtPd3JrxXXTuDa/vn2tBRPTWHfI0wkJFyLKIZD3fZ//oXe9Vn/67iHcmLwsv1HHYgJ/zuJCQkJCQkJCdKGCArSEckkuojVHKs7pJ0cey8kKB1F7iWFaKx0FO2EaDsJG41GOnfunPr9foh8umUcskX+PvUK7r333tBWcmtrK3QbcJeDpBBdlg4KwHEdIv5e4Z97MzYnpg6uSUV/F0k8R1xSmEeen1QACtU5YSTC62IEJBSi5/NJ3QSuTd0LzsFRguhRqVRKrf0gynSv4L7+LG6/p11mv98PrgyIOFF38uhdSGIckE53JkBcERQglOzB2WwWno3WhMy/j5N7uRsEcSwWstjD0+k0dK0gwk7OP9eVyikQsZOFeZSOhDDOddHDx8SejcUu7uVuH/ZlvK/8M+v3pqYH+4KxuHuHVBp3ISCyuAjie92fLU6HYl29SGWc6sH4vU6FiywujnE8+yGlPCRcy1iNRnrSN71Djx89X+981g8e93A2Hr842NYPv+ifJGdCQkJCQkKCYSMEBQiVdEQixuOxKpWKut1uqSo+TgInH5AlSAFkwAkq5BLyQOcGXA+SgmW/UqmEugsUBKQY5N7ensbjceikUKvVQkHB0WgkSWEs1FFoNBoh3YB7E/1vNBol2zcRUwhknMftue3xa56PPhwONR6PtVwu1el0QkSWZ8WC7wKH5+Tj8vAiiRBjL2i5tbWlbrerarUaij9CxHAfSApzxXrFDgePckN8mRtvAQoBpKuGE0FcJF6/QlKJOHqahAss7s7AqcCeoOOGz6/X8OCZGB8kHccF+3A6nYa2pP7MCC9eE8LJLc/p0X1Py5GOoviIAf554PNRq9WC8IOgFTsO2Bs4J7gO4No8p6cHeMTf3RJxAcpYDIzTVGJxxlM5+BwjUPCdwJqyr1w88MKc3Mc7p/Cai0PumEhIuJaxPH9ej/vlhfSs4x7JZuOPJiv992/8InV+LdVMSEhISEhIcGyMoOBRXUkhot1qtUJRQ7dhE2nFyeCRZSd1cRSbXHmPCEMsSAuYTqchIr69va1OpxNIOnZ7SM5kMtFgMAjHx1X/q9WqWq1WiG4Ph8PgiCBi78UgvXK+z490ZHGHlHmuOveUFArSrVYHHR+cREoHbg7GhPMDMusODog2hJhoPSkbkH7GQmoE53oLQi9cGKd0xM9JiglC0vnz58P6svbe6pBzXJRBgGIscRFBTzPwKDVrNJlMwvN6ioCnp7BmOEHcdeKpBZVKpVR40tMBvHCmR9HdEeCdFJj7WGxygcn/7Q4H/8wg9MStHh3uBPDaI14LwdMJXGSIu1ZA8uNUB7+W7z32DvPse9NTK9wl4+4EFxP9edyx4W1d1z27CyMJCQnXJ6bFXJ/9ZV+t6mSRujkkJCQkJCSswUYICpIuiMjmeR46MsSFFyF6EHBIIfb5uLiiCwxOdD19QDoqIIfdfWtrS+12O6Q17O/vl1ojFkWh4XCo0WgUxuJRWCK/OBMQHsirz7Ks1NrO2w5CipyYIQR4O8e4cj2EkRoDRPKZF45rtVrKsqzkZGAOmDuuCznzDhJFUYR1iO3h7rTwiPl0Og0kj58hjV4vA2eCpFDA0EliHCX3lAKi2xBLiGFcHDHOoWcucabwfIhMXvDTiwEiPrgzQ1KpK8F8Ptf+/r729/c1n89LewPbvs+/R+qZa8Qnf41/e30NIvU+RvYOr8ftTNeJWJ4K4SLfOgeIj9dTVRCrWGMKUDpJd2EBwdBbt+JGcCcFc0atjrimA/PL3nMHFJ8FxDLEIcaSHAkJCQmOZ37GP9PWW9543MNISEhISEjYWGyMoBBHIuMcawgl+eyVSkXj8ThEqCWFwnqID5AeSA31EIgKE6mdTqchLWA+n+v8+fOazWYhOi0ppDQ40YKUcG3s+95pwTsIQH4Z/2AwCJbtPM9Dxwi3r3v7RQh8rVYLpIpjvA0eY+Bnz82PizB6wUXmWjrKw/dIL5byxWIRakJQ34DzINZxVJ01hrS5OwE7Ps/Y6XRCegT1KWq1mlqtVhijr0Wr1QqtLv+/9s4txrLjKsP/6p7uObf2MMMYZGyLOGAeTIicAVlIiYIfEHEM0hDxYh4gEpGMIEFECg+OIgUDshQQCRIgWThK5BBBLCQgWDyRIEIeEBjj2BMbM2SMjXBs2eCZvp7jOX0pHvr8u/9Ts7tnetK9L+7/k476XPdeu6p2qf9Va63isXkNFMt0ENG5w4gXtgFFJm2fnZ0toiTyIpSsL8HUCI3MUIcHxSkLPOpKvzpdeL6yQokApsahOi3UkcDXFPx0luWOGEavsM3ZTkRTKTTFQned0AKdPL+mSeSOB+17OgfoWOA9w3PnUQlql0YY0OnW6/UK5xCdeXm7cE7gdakTSaMnNEKqLMLBmLcq8197Bmd++1fw1CcfrtuURvHT7z6LzRfP122GMcYY02iu+h9zRHw+Il6PiGflvQcj4tsR8fTkca989vGIuBAR5yPifddiBMUIxbcWC2QhREYNMMydWw1SLGiBNhXlzE1X4TIej7G2tobl5WWMRqNC4GxsbGBpaWmq4OHW1hYuXbpU1FugWNXQeg3bBlBcC1MnVldXi50WFhYWporl8fxcWeYKPQW2CiutK1B0oBQZ5Kp4HiFBAZUXEmS0BoUV+6JMHFO0URhTjOpOFCrG1CHCc2rIutauOHbsWOGgGAwGxbUxTYBRJmxzOoI4JlQg0lGg16LRA3QocFcOpnuwr5iPPxgMCgcGHRJ0HrEWwuLiYlHUk6kcGs3BnURWVlaKa9ViiboqT0GrfcG2YeoEx3lZagxFPz/nX6KpGYyQ0agOTf/I0xmI7kShERJ6DHWk6LXo8fI0Ah0/Zbbz95rSxJQhdXbk0Q8sPMmUEjoidLyoY0Ffa5HUplDFXGyOJmljAzf+yT/jHX/4q1hPm9hMR7cY6XraxHraxL13/xw2Xvzvus0xDcPzsDHGXMm1/Mf8KIA/BvCn2ft/kFL6fX0jIu4AcB+AHwbwfQC+GhE/lFLaxB5QBFOUTI41tW1bvuoLoEg10BoL/FwjFCg+WEuAQk+37qOQ0VoNEVGshC8vL2N9fX1q20eKbEZGaOi17mAQkyKDPK6uHrO4I2sTADspEhRvMzMzU59rMT5eG8UVv59X6M/bg/UJaAsdFewH7RfaxLZlGgULX2okQDYeilVfTT9RUUcnSq/XK+plaIFGYCdags4kiksAhQOCzgRNedFCnlpgj+3HsHnm4/M1t6PkuKDAZr2NS5cu4eLFixgOh1PCM69dwHGmTgC2Se4sKlvVZ7urg4qOERXcGs3A9tK6BHlEBB0e+fd53LzOQf4dXh93u+Dx+VvaVFafgLtx6PVr6gnbQp0t2p48Ri74NbqArzVCSMm/q7UXeD9pdFSDeBSHPBebI0xKuPlT/4Sf+dSP4sIX34V//Ik/AgDcNNvDbByNaJ1Lm0Oc/bWPovvlJwC8ULc5ppk8Cs/DxhgzxVUdCimlr0fE267xeGcBPJZSugzgxYi4AOAuAHvuscT8aopsDUVfW1ubKnCoK4kaiUCBQMFMccIUAS1OSJHHQm48NlcweVzmtlN0Mhd7a2uriCKg44BpCRT1dIYMh8NC7I9GIwA7Yocr2rwmihk6U3hdTPXQWgOTvimcFUzZWFlZmRKLKmyZi7+wsABguqr//Pw8+v1+4VChcC/bnpPRCVtbW8WWnrRLV6p5fv2rkQaaxkGHha58cyVdoxzoHOC5maKgaQIU5sPhsCiEmAtztgmdCOq80dV72s7js2YGoxnoYKLzgX3L4/H4eb2BMvJID9rBa1RnyW6/zx0BjMxhm2ttDi1Mmd9TPAYjKvSatB/z68mjG3a7Xl4nbSpLL+C5aL+OVzqe1OGjUUI6ljQ6hn811UHva/Ynf6dFT+umirnYGAD4wV/4Bj6E9wAA3vlU4J4T52q2qBoeeOhjOPVl3yJmdzwPG2PMlXwnMb0fiYhfBPAkgI+llC4BuBmA7qn08uS9PYmIIjSZwl1TGPJCgRpOT0GqedRcBQVQ5MJ3u93CSQCgEPnMkad4oKjPQ8wptNRGYCfHf2Zme4tLFkVksUOKpVykac48IyUY2k6RQ1HGFV2FNvV6vWJrTToBeAx10PD7FKkqkrnaSweJXiPFMm1g/YWNjY1CfGlev4pOCj51FgCYKjpJxwz7TyNR2EYcH1pMk/Zq0UmFW02yTgWLYFLcM32D407TLzRkn/1PB9fS0hIuXryIN998s4jg4LH5Gx6PUTBqm25tyTFNdBU+jypQR4NStiMIr4/3iYby89j8rhYsZbtr+6sNOjb0+zwWn2sNC1IWEcGIj3zHCh6b9ilaowTY2Wa2LOVCHQq85/J7i8fgOM23Ni2LsmggBzYXG5Nz7kzCOfxI3WZUwinrPHP9eB42xhxZrteh8DCA3wGQJn8/DeCXAJSVSC9dooyI+wHcD2yveqtwU9FH5wBFG0UCxSR3YaBDIM/d1/B1AFPCem5urgh15/lZDV9FH4UthWJEFLtP0FZGJ9AOCtR+v18IfhUoulMB7c4jLSic8xVwXh+FFcWVpnzkx9Fr09VurbewtbVVbGt5+fLlot3UGULRpvUoNAyf4jkvuKfFINk3/X4fvV5vShzS0cCoEgBFHQKmv6gziL9TZwRrYbDGhobl01ZNVcm3LaR9KszH4zGWl5exuLiI0Wg0lYbCa6UDikJZU3bYX7mgVdGtqRq0h+MoD8vX32rNCqI7GOjWqfpbplfouOJneYSGpnxo5Ex+DXRU0S4eVws4akQBH1cT7xo5oRELmrqkbZAXdNWoEy0IyuvSNBSNKGlYykMZBzoXd9A7HCuNMeati+dhY8yR5rocCiml1/g8Ij4L4G8nL18GcKt89RYAr+xyjEcAPAIA/X4/UZxQIGi4fbfbLVbvARRFAQeDQRFNsLm5WdQF4Korow24up9Xz2dKAveyZ2rB3NzcFVvK6UoxV+spUFNKhfimoJydnS22vqTTI18J5+orhbeuqKq4omBT4c+IBqZt6Oo2RRHFs+4SMTs7O1UrAtjJWV9dXcUbb7xR7KpABwC/S/GsBRkp4pjmQWcPoyDoyNBoBmBne0jWlqBYpbOG1zkajbC0tISVlZUiTYXijwKQaQV8zeiEfPtBikut46D9zGvRaAMKZE2fAFDsNqK1KNgPOq7ULope3fKQ7U+HlRY91L7JUxII3y8bP3ScaZQB7wWNvtE0gZL7dMrJV9ZG/C0dVaytQLsYVaD3kkY7qLhX54+ekw5EjdzgLht0JqkDQyMziDoq1XbOHbwG2pjXWmgiBz0X3xCnmn3BxhjTMDwPG2OOOtflUIiIm1JKr05efgAAq90+DuDPI+Iz2C5AczuAJ67heOh2u1hbW5tapZ+dnUW3250qWkjhqvn3PEYuahgOT+FEEUnxyugErvgzNYIOilxgMfSfTgoKFKZeaJ56p9MptoJkNAOFPYUPsC1m6IzQ2g8Uzbrln261d/z48eK6KJy1+j6vVVeTddtH2s52u3z5MpaXl7G6ulp8n8fOq/KzHzQigjtx0ElAwccdHBYWFqZ26mBkAvtrOBwCwFSfjkYjLC4uFrsoUDRqCghFO4UgizByDFBUp5SKOhKMSsjFtNYVYD+wYCN362Df0rFBx4CG8HMHinznB3UmaFoInQk8Rh5JwOOr4yCvD0AHjkYiqPOAkSH8vaYa8Pp5zwHTYpuiXx0aGvmiY5lpN2X3OJ06dFLxXuQ9pEVH2UZamJECX50JdDzQgcHxodEoHPfqoNBr5HN1NGgkRJM56LnYGGPM/vA8bIw56lzVoRARXwJwN4DTEfEygN8EcHdE3Int0K2XAPwyAKSUnouIvwDw7wA2AHw4XUM1W4ofimZgZ9WQq/wU+iywx/B9YKeYnYaap5QKhwJXMVX8sSAfV9DpTDh+/HipiNC6B3RujMfjIvRedzugKNa6AwCmKttzNZbh/nQyaIqBOjTotNDVdgBTK925CNU0gHx1OA+dp6hnX1CQASjaWiv4a/QGIwKA7ZV7Hm9rawuDwQCnTp0qIiM2NjYKJwsLJ3L3Arbl5uZmkXrBVAc6BlgUUqMTtIAlnQVaa4HtxAc/Y7vkgltrFozHY6yurhZOAo2U0bQBdSbQaaD9SocGz6/1MSjWNfSf/a+pDuxjfifvx3ynBopoXhvtZnur8NcaHfwd+1qdDozCoUMij+JhtI3ar2keGiGiThKt+6HOBJ5XHYa8x/Ua9Fza//o6v1fU8cJr1rGgEQtNoIq52BhjzO54HjbGmCu5ll0efr7k7c/t8f2HADy0X0MoYCjoZ2ZmihX+breLbrc7VdOAwo6ihA4COg8ovLjto4Y/6+ousBN5kDsKND2CNnHFncK/0+kUx6JAYTi/Rhnoymh+XhVDWmuA8Fzz8/NF5AFFodYd0J0MKCR1S8OyY/JYFILHjx8vRJ86JCiwKMykvzEcDouIEBa+HI/HWFhYwMmTJ9Hv97G4uFi0a6/Xw8bGRuE00Lbl8cbjMZaWlqbqPNCRQCcAUwtYt4H26Qo3C2nSVo1OUMcA+4BtT4Gp56Bwp1hVRwCLL45Go2L8qSjlubWApYpkHZN5TQf9rkYOaAFHjlEN1efnWm9CoyAUHZvqwMjtYM0MdZjwO7ulT/Aa2e48P3/He0TTILS2g/aTbvGZOzr0O1r4U/tJbeK443k04qOJ6Q5VzcXGGGPK8TxsjDFX8p3s8nBg6Io2Uw80EkBTDHQPeoofCgyKOqYWsCCeCkgKK4qFubk59Pt9DAaDItSen2loP8WJRkao0yEPzeZf3XZPRSCvQ7eu4280LYGr5p1Op9jaktEE6vCgCFIbKLBZDFBXr3VXDNrACAiGrWtUhtqU5/czmoQ7aWxsbKDT6eD06dM4ceIE1tfXi601B4NBsYXm8vJysS0oIzXYj0yhUAeCrrLrThraDrRNQ+/pHGB7UDSqsGYfqfCmM4HjSFNGOM54TjofxuNxYWdeGJAh+oT9odEtdCzwexqVouOD39Wxw/fZXvkY1BQDFf95xIXW1tDjqzOB/UE0fSLfulJTLPTcdCRwfPHYuQ1sS97feX/ruNB0Hh0PbB+2iba1oo4bdeAYY4wxxhhjrqQRDgVGEjCXmsJUV9X1n3+uZlJMUiTxQQEDTIc2a+0CHqff7+PEiRPo9/sApqvjdzodjEajYrWfIfesEUABBuxUldfnx44dK1I1KIRSSlM1ALQNtAo9BRgdHqw3oNsnUhTxnBrZwPYq27WCbZELSgo3zcPnNW9tbRdI1Px+in2mlrDdZ2ZmcMMNN2AwGCClVNRAYHFGOpDYf7o7xvr6euEo0C0cKYxZ74EOBToO8igPXWXXFAJtb61XQOHO9mMExWg0mor0YL/obhYcv3RaaD0MFfB5f+eRLUT7RQX1bmjKD3/P9ii7j+gAyet3qKOAzhMKc617kEfa6HFzW7VgpY5VthPbj84CdaZopADbkA4HdaioYyt3ApQ5DPLnGpnAe0H7zxhjjDHGGFNOIxwKFEMzMzMYDAaYn58vhKLmfXP3BGBnNwgt6EYBRUGsOwEAO7UaKBA7nQ5OnDiBhYUFzM/PF0IdwFTVd9rBQos8BoDC0UCBrp9RzGs4Nr/D1yoGuXLPVXqek7tcDIfD4je6i4JGIACYEsrqENB8dd1Wk2HyrF9A2zXEn04VDVHXAozqhOh2uzh58iQ6nQ6Gw2ERhdDtdgFs11ygcyLPaee5eB62sdaOYAoCHQva14wmoIjm+NB0Ev6W18OijZqiwHoI/D2AqRV0DZ+n0OV3VaCyv7S2AF+zvXSHCcJoGtZYoH15akRZnj+vU4+pjg2mK2gqhDrggOmUCtq7W10DPa+OdT1Xju7IoDUZFHUoaOSBOhNoq/7NU3typ0Le1nyP8wfbK0+TMMYYY4wxxkzTGIdCStvFDHu9XiFegB1hoznrzLGnoKLIX1tbm0oV4O4KFKRaI4GfDwYDdLvd4jwqtriqTicAazpQcOoOESp8KHBZF0BDvLmlIkUUsOMsmZmZKXafoDDv9XqF6AN2VrbZJroinkcr6IqrOhnYHhoGD+w4UTRaYjgcFls2stAkRTjrRLCfWBNiYWEBc3NzWF1dLeogMDKBkQVs5zIb+VrTQ9gf/L3uCMKVZIpsrU2hlf7pNGJqAp0cKlg5PnQ7QgBXrKDzunWLUhWjel0qdHWlnikvtIUP9qG2q77OHS+Egp625DUZOOZ4f2j6j67287p0zOn2jmX3Lm3W+6AsKoN9zt9qEc0yONZ5HWW1SNS5p++X1UEocybk76vtTaujYIwxxhhjTJOIJvzDHBH/C2ANwP/Vbct1cBq2u0psd/W01faDsvv7U0o3HsBxGk9ErAA4X7cd10FbxyjQXtttd7UcdbuP0jzs/4mrx3ZXS1vtBtpr+6HOxY1wKABARDyZUvqxuu3YL7a7Wmx39bTV9rbaXSdtbbO22g2013bbXS22+2jR1naz3dViu6unrbYftt27V3ozxhhjjDHGGGOM2QU7FIwxxhhjjDHGGLNvmuRQeKRuA64T210ttrt62mp7W+2uk7a2WVvtBtpru+2uFtt9tGhru9nuarHd1dNW2w/V7sbUUDDGGGOMMcYYY0x7aFKEgjHGGGOMMcYYY1pC7Q6FiLgnIs5HxIWIeKBue/YiIl6KiG9GxNMR8eTkvVMR8ZWI+Nbk78m67QSAiPh8RLweEc/Ke7vaGhEfn/TB+Yh4Xz1W72r3gxHx7Um7Px0R98pnTbH71oj4h4h4PiKei4hfn7zf6Dbfw+5Gt3lEdCLiiYh4ZmL3b03eb3R7NxnPxYdip+fhCvE8XLndnocPGM/Dh4Pn4mrxXFy53fXPxSml2h4AZgG8AODtAOYBPAPgjjptuoq9LwE4nb33ewAemDx/AMDv1m3nxJb3AjgD4Nmr2QrgjknbHwdw26RPZhtk94MAfqPku02y+yYAZybPFwD858S+Rrf5HnY3us0BBIDB5PkcgH8B8ONNb++mPjwXH5qdnoertdvzcLV2ex4+2Pb0PHx4tnourtZuz8XV2l37XFx3hMJdAC6klP4rpTQG8BiAszXbtF/OAvjC5PkXAPxsfabskFL6OoCL2du72XoWwGMppcsppRcBXMB231TOLnbvRpPsfjWl9NTk+QqA5wHcjIa3+R5270ZT7E4ppdXJy7nJI6Hh7d1gPBcfAp6Hq8XzcLV4Hj5wPA8fEp6Lq8VzcbU0YS6u26FwM4D/kdcvY++Oq5sE4O8i4t8i4v7Je9+bUnoV2B6IAL6nNuuuzm62tqEfPhIR5ybhXwzZaaTdEfE2AO/CtoewNW2e2Q00vM0jYjYingbwOoCvpJRa1d4No23t0+a5uM1jtNFzguJ5uBo8Dx8obWufNs/DQLvHaaPnBcVzcTXUPRfX7VCIkveavO3Eu1NKZwC8H8CHI+K9dRt0QDS9Hx4G8AMA7gTwKoBPT95vnN0RMQDwlwA+mlJa3uurJe/VZnuJ3Y1v85TSZkrpTgC3ALgrIt6xx9cbY3dDaVv7vBXn4qb3QePnBOJ5uDo8Dx8obWuft+I8DDS/Hxo/LxDPxdVR91xct0PhZQC3yutbALxSky1XJaX0yuTv6wD+GtvhIa9FxE0AMPn7en0WXpXdbG10P6SUXpvcKFsAPoudsJxG2R0Rc9iegP4spfRXk7cb3+ZldrelzQEgpbQI4GsA7kEL2ruhtKp9Wj4Xt3KMtmVO8DxcD56HD4RWtU/L52GgpeO0LfOC5+J6qGsurtuh8K8Abo+I2yJiHsB9AB6v2aZSIqIfEQt8DuCnADyLbXs/OPnaBwH8TT0WXhO72fo4gPsi4nhE3AbgdgBP1GBfKbwZJnwA2+0ONMjuiAgAnwPwfErpM/JRo9t8N7ub3uYRcWNEfNfkeRfATwL4DzS8vRuM5+LqaOUYbfqcAHgerspesc/z8MHiebhaWjlOmz4vAJ6Lq7JX7Kt/Lk41VP/UB4B7sV1F8wUAn6jbnj3sfDu2K2I+A+A52grguwH8PYBvTf6eqtvWiV1fwnZYzjq2PVEf2stWAJ+Y9MF5AO9vmN1fBPBNAOcmN8FNDbT7PdgOFzoH4OnJ496mt/kedje6zQG8E8A3JvY9C+CTk/cb3d5NfnguPhRbPQ9Xa7fn4Wrt9jx88G3qefhw7PVcXK3dnourtbv2uTgmBzXGGGOMMcYYY4y5ZupOeTDGGGOMMcYYY0wLsUPBGGOMMcYYY4wx+8YOBWOMMcYYY4wxxuwbOxSMMcYYY4wxxhizb+xQMMYYY4wxxhhjzL6xQ8EYY4wxxhhjjDH7xg4FY4wxxhhjjDHG7Bs7FIwxxhhjjDHGGLNv/h+QUbWEpjLobgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 0 423842\n", + " Min thresh = 1000\n", + " Sliding\n", + "\n", + "\n", + " Winner = Sliding\n", + "\n", + "\n", + " VFOLD = 5 of 15\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsIAAAGDCAYAAAAh/naNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAACBU0lEQVR4nO3dd5gb5fU24OeobF/3buOKcaNjTAfTewwkXwJJaIEASUj/JYE00iCkhwQIIQVCQgkhtNBLwJgYMKbY2NjGFfdub99Ve78/pmhmNBqNtNKqPfd1+fJqNJp5R6sdHR2dOa8opUBEREREVG0CxR4AEREREVExMBAmIiIioqrEQJiIiIiIqhIDYSIiIiKqSgyEiYiIiKgqMRAmIiIioqrEQJgKSkSUiOxb7HEQEVH2KvEcLiJLRWR2scdBpYGBcBURkXUi0iUi7ZZ/txZ7XE4icpl+8v14scfSWyIyXj+WULHHQkTVR0SeFZEfuSyfIyJbe3NuEpGX9fPbQY7lj+rLZ+e67RzHY5xvjfe3bSLyhIical1PKTVDKfVyX46NShcD4epzrlKqyfLv2mIPyMWlAHbr/+cdg1IiqiJ3A7hYRMSx/GIA9yqlYr3c/gcALjFuiMhgAEcC2NHL7fbGAKVUE4CDADwP4BERuayI46ESxkCYAJhZ2P+JyO9FpEVElovIyZb7R4nI4yKyW0RWichnLfcFReTbIrJaRNpE5C0R2cey+VNEZKWI7BGR21xOyNZxjANwAoCrAJwuIsP15XeIyC8d6z4mIl+zjO/fIrJDRNaKyJcs6/1ARB4SkX+ISCuAy0Rkloi8JiJ7RWSLiNwqIjWWx5wmIiv05+J2EZkrIlda7v+MiCzTj+lZfdzZPudez+ksEVkoIq16VuPX+vI6/Th26WN/03iOiIhcPApgEIDjjAUiMhDAOQDuyXQu9OFeAJ8QkaB++yIAjwCIWPYXEJHr9PeIXSLyoIgMstz/Lz073SIir4jIDMt9d+vvG0/q7y9viMgkPwNTSm1VSt0C4AcAfiYiAX2b60TkFP3ntO9fIjJVRJ7Xz9ErpAK+paRUDITJ6ggAawAMAXADgIctJ6v7AWwEMArAxwDcZAmUvwbt5HcWgH4APgOg07LdcwAcDu3T+ccBnO4xhksALFRK/RvAMgCf0pffB+1kK4B5Ij8NwAP6ye0/ABYBGA3gZABfERHrfuYAeAjAAGgn7jiAr+rHepT+mM/r2x6ir3s9gMEAVgA42tiQiJwH4NsALgAwFMA8/fnJltdzeguAW5RS/QBMAvCgvvxSAP0B7KOP7RoAXTnsm4iqgFKqC9r54xLL4o8DWK6UWgSPc6FPmwG8D+18DH0/9zjW+RKA86AlOUYB2APgNsv9TwOYDGAYgLehnaOtLgLwQwADAawCcGMW4wOAh/VtT3G5z/X9S0QaoWWT79MfexGA261BOlUIpRT/Vck/AOsAtAPYa/n3Wf2+y6Cd0MSy/gJoX5/tA+1k2Wy576cA7tZ/XgFgTpp9KgDHWm4/COA6jzGuBPAV/efrASzSfxYA6wEcr9/+LID/6j8fAWC9YzvXA7hL//kHAF7J8Nx8BcAj+s+XAHjNcp8A2ADgSv320wCusNwfgBb4j3PZ7nj9OQg5lmd6Tl+BduIf4njcZwDMB3BgsV9P/Md//Fce/wAcC6AFQL1++38AvppmXfNcqN9WAPZNs+7LAK4E8GloH+ynAPhAv28jgNn6z8sAnGx53EgAUed5Ub9vgL7P/vrtuwH82XL/WdCCeLfxpDvf1unLj9FvrwNwiv6z6/sXgE8AmOdY9kcANxT798l/+f3HjHD1OU8pNcDy70+W+zYp/a9d9yG0T++jAOxWSrU57hut/7wPgNUe+9xq+bkTQJPbSiJyDIAJAB7QF90H4AAROVgf1wPQPpUDwCeRzBqMAzBK/2pvr4jshZaxtZYMbHDsaz/RLqLYqpdL3AQtIwL9eM319X1vtDx8HIBbLPvaDS1YHg3/Mj2nVwDYD8ByvfzhHH353wE8Cy0TvllEfi4i4Sz2S0RVRin1KrSa3TkiMhHaN3T3ARnPhX49DOAkAF+Edo5yGgetTtc4Zy6DlggYrpcm3KyXJrRCC1LhGIOv9xAPxnl1t8t96d6/xgE4wvG+8ikAI7LcN5U4BsJkNdooPdCNhZYl3gxgkIg0O+7bpP+8AdrX9711KbSA8l0R2QrgDX258ZXe/QA+ptfjHgHg35b9r3UE+M1KqbMs27YG+ADwBwDLAUxWWvnBt/V9A8AWAGOMFfXnZIzlsRsAXO3YX71San4Wx+r5nCqlViqlLoL2ldzPADwkIo1KqahS6odKqenQyjXOgf0rTyIiN/dAO1dcDOA5pdQ2fbnXudAXpVQntG/KPgf3QHgDgDMd58w6pdQmaEmNOQBOgVb2NV5/TFZjyOB8ANuhZX/dxub2/rUBwFzHmJuUUp/L47ioBDAQJqthAL4kImER+X8ApgF4Sim1AdrX8T/VL9Y6EFrG0sjI/hnAj0VksmgOFO3KYd9EpA5a3dpVAA62/PsigE+JSEgp9Q60rMafATyrlNqrP3wBgFYR+ZaI1OsZhv1F5HCPXTYDaAXQLiJToZ3ADU9Cy0SfJ1qHiS/AngW4A8D1Rq2YiPTXny8vtfpzV6cf6yZ4PKci8mkRGaqUSkArYQGAuIicKCIH6BemtEL7ejGeYd9ERPdACzY/C+BvluVe58JsfBvACUqpdS733QHgRj2JAREZKiJzLPvvAbALQAO0jHReiMhwEbkW2jUv1+vnU6d0719PANhPRC7W3xPDInK4iEzL1/ioNDAQrj7/EXsf4Ucs970B7YKFndAuRviYUmqXft9F0D6pb4Z2RfANSqnn9ft+Da329zloJ9S/AKjPclznQbvo6x6lXem7VSm1Vd9WEMAZ+nr3QzuZ32c8UCkVB3AutMB5rT7+P0PLLqTzf9AyEW0A/gTgn5bt7QTw/wD8HNrJeTqAhdBO1lBKPQItS/uA/lXeEgBnZji+dv34jH8nwfs5PQPAUhFph3bh3IVKqW5oAflD0J7nZQDmAvhHhn0TUZXTA9T5ABoBPG65K+25MMvtb9ZLMNzcou/zORFpA/A6tG/1AC1A/xBacuB9/b7e2isiHQDeg1ZT/P+UUn9Ns67r+5detnYagAuhnaO3Qjvv1+ZhfFRCxF4SStVKtB6LVyqlji32WEqN3pViI4BPKaVeKvZ4iIiIKD+YESZyISKni8gAEalFsmYuH5kKIiIiKhG+AmEROUNvJr1KRK5zub+/iPxHRBaJNof35fkfKlGfOgralcQ7oZVdnKe0fpxEJY/nbCIifzKWRugX5XwA4FRoXw+/CeAipdT7lnW+Da3n37dEZCi0KzNHKKUibtskIqLC4DmbiMg/PxnhWQBWKaXW6CfJB6C1OrFSAJr1NlNN0Hr19Xb+ciIiyh7P2UREPvkJhEfDPhnBRqROHHArtFZbm6FdpfnlNG1KiIiosHjOJiLyKeRjHbem1s56itMBvAutJdQkAM+LyDylVKttQyJXQesTi8bGxsOmTp2a9YCJiErBW2+9tVMpNbTY43DBczYRkUO6c7afQHgjtCkIDWOgZRGsLgdwsz4V7SoRWQtgKrSJDkxKqTsB3AkAM2fOVAsXLvR/BEREJUREPiz2GNLgOZuIyCHdOdtPacSbACaLyAQRqYHWXPpxxzrrAZys72g4gCkA1uQ+XCIiyhHP2UREPmXMCCulYvoUhc9Cm+Hrr0qppSJyjX7/HQB+DOBuEXkP2tdy39Jn5yIioj7EczYRkX9+SiOglHoKwFOOZXdYft4MbSpCIiIqMp6ziYj84cxyRERERNSn1u3swH8WOS9f6Hu+MsJERERERPlyyq/nIpZQOPegUUUdBzPCREREVLaWbGrBlpauYg+DshRLeM9s3FcYCBMREVHZOuf3r+KYm/9b7GFUtW2t3bjybwvR1h3N+rFaF8fiYSBMREREZa1EkotV65YXV+KFZdvw2LvZ1/wW+3fHQJiIiIiIcmZkdQPiNrGlt1iiuLO7MxAmIiIiqjI723uwtaU7L9syYtlA9nEw4kVOCTMQJiIiorJU7PrScjbzJy/gyJ++mJdtJTwywttbu7FyW1vax1ovmtvR1oO3PtyTlzH5xUCYiIgog3++uR4Tr38S0Xhxv8Ylu1LpPFAuPtzVge5oHNvb8pMJNpi/BpeM8KybXsSpv3nFtiwSS/4dxeLJ3+E5v5+Hj/5hfl7Hlgn7CBMREWVw45PLkFBAR08MAxpqij0c0lXiB5Olm1sQEMG0kf1c7++OxrFuVwemjnC/P53uaBwn/OLllOWJhEIgl5oGi2xrhK3dJaw1wttae3o1jlwwI0xERJSB6G/w1fpN/FX3LMQZv30l84p9zJpZ7GuxeAKrtqf/yj9XZ//uVZx5y7yU5et3dUIphR8/8T7O+O08s773rQ93449zV2fcbkdPzHV5S5e/lmddkTjW7uxwvc8jIWya+8EOnPrruYjEEuiKxs3l8YRCR08M337kPV/jyDcGwkRERBkYia4qjYPx3PvbsHxrG+55bV2xh2JTzED4dy+uxCm/fgWrd7Rn9bh1OzvwyDsbs3rMKx/swPG/eAlPLN6CVdu1/X2g191+9A+v4adPL8+4jWjc/dW7s91fFvbu+etwzu/mIeFSjmLUCHt1gPjqP9/Fyu3t2N0RQY+jNOKvr67FfW+sN5f1Ze03A2EiIqIMjExXsa9wL7bvP7bU97p/nLsab68v7IVPkSKWRizd3AoAWLPDPUuazhm3vIKv/nNRxvXesTx3xvO4clsbJgxpBKDV+2YjXRnJzvaIr8dv3tuFjkjc9Tk3/iwiaYJtANjdoe0nGBD0RJPbiCdUyocJZ+13IqHQ3hPDfxZtxnNLt/oar18MhImIiDIwSiOyCYRXbW/Hsi2thRpSyfvp08txwe3JC5+UUnmv6XXLCD+3dCs27+3CG2t25XVfTgMbtVrx3R1aRnXJphZ0W77yd5q3cgeef38buvUgMFPW83zLc9ferZU1NNWFMKSpFgCwxlGmkGl76T407OrwlxHeq5dQdEfjmLdyB15avt28z8gIR31k6BUUemLJ5ymWUNiwxz5FtvPv7OZnlmP/G57FLS+uxH0L1iOfGAgTERFlYGSEs2n+f8qv57rWelarH/7nfUz+ztN5/drb+nV/IqEQiydw1d/fwtE3/xefuPN1LFy32/Px4697Et97dElO+x5kBsJRvL+51Zzqefx1T6LVZarhK+5eiM/es9C8nc2Hqna9vvemp5bjhWXbAMAskXBur6UrivHXPYkX9fUM6T6EGMvX7uyw9RWet3IHDvnRc+a+93ZqGd3uaAIX/2UBLr/7TXNd43fq64OOgq00Ip5Q6IrYP0A4M8IPvaWVkrR1RxEK5Dd0ZSBMRETkU7WXRgC5Pwd3z18HAGhLc9GW08ptbdjW2m27/f3HliBmCbasGeGTfz0XHY6AarNjwoiv/fNd3KFfWGYEb39//UPfx3DtfW/jwjtfAwAMaAgDAPZ0RvDgwg0AgF361/9rXcolakL2kGvl9nbsaPOXjbU+Z8u3arXBqx2BsPGhYOOeTgDAz59ZYb8/5v57Mz6XnPjLl219hW98chn2dEaxTs88GxfVWbO5APDE4s1meYifmu2EIxCOJewXzwFA3FFiYfzOY3GFcLB3HS6cGAgTERFlYFwsx0DYZ7Dj8Tzt7fDXpeDU37yCI25KBma/fG4F7nntQ7y8YkdyLJageO3OjtTMouX+BWt34+F3NuFm/cKy7mj2ZRpPLN6C19doWeaaoBZC7e6IoNXRecGti1i/OnvH2jNvmYfL717ga79t3akfHja3dJvZWiD5XDTUaPvZ3taNp9/bgvHXPYnNe7vSlkakS9Ab+wzpgefeTqM0wr6drz+4yAzOnRlht37FCgo9lsB3d0ck5YI95zcvxt9ddzSOcJAZYSIioj6WfY1wKVu+tdV3NtKpJxZHIqEwf/XOtAGv10QXezrTX5y1ZFMLXnh/m+t9+w1vBgD8b/VOc5kzKO+I2ANG62QNm/ZqmdIxA+sBAHu7/F0klo5RF7unI4Ko43jFpZGYcx0A2GSpjVXKpURADyzbXEotnI831jVeo3s6o2amevnW1rQfYBKOSNjIwhvlHcaYjNKIzS3JfUZiCVt213mx3KwbU2euU46M8MV/WZAS6Dv/zozXU3csYQbm+cJAmIiIKAMjw1fMmcz+PG8N/u7RvuzAHzzru73ZGb+dhxN/+XJO4+iJJTB/9S588k9v4EdPvJ9yv1IqJZC56all5s8b9nRi5bY2LN+aeiHhOb9/FVfesxBrXFqSNesZ1fW7Os1lziynsyduNGGtRTXGp/1vZDidJQt+GdvrjsVtmWfD2+v34NF3Npm3O11KQvYd1gQAWLalFb98bgWmff8Z2/1GyUC7S0YYsAf+RmmENbB9b5P2HCuV/mI55yvayMIbwen5t8/HO+v3oFW/ffldydpgZ+Dup0ZYAZ4XFQKpf2fG6ymeUAjnuUaYM8sRERFlUArt037ypBZMXnzU+JT7IrEEWrtj+P5jS3GJy/1u2n3W6rrtywg4756/DuGg4DtnT8cdc1djZP86PPf+NjyzxN7i6s5X1pg/X3vfO+bPnzxiLC47eryZ7TWc9Ku5Kfs1Yqz2nhju+t9aXDRrbEqXgg27O223rfcb2etNe7vw9vo9ZobUWbLgRillazOmlDIDzkgs4dqj1+iYcd4ho5FIKHS6BH9KAVtautJeVNkVjaO5LpxSQ2uwTpJhBKHWQNgoOVDKo6TFx0v6uTRZ+nZHBt5PIJxIKFtG2E26jDAAZoSJiIj6WilkhL0YmbnaHLOb2eiJxW1f1f9p3loAwM1PL8eXH3gXTy7ekhLIGBeWOd33xnp886HFvvZrBHhvrN2NH/7nfdz89PKULKezp6/19xW3BIgX3D7fzAg31Ybw+ppdeGnFdqTzh7mrcfiNL5i3u6JxM7COxBIpNa3O292xuGstrgKwx6NmujtitFpzv7+jJxkgRxylEc7xpAuElY9IeG+achbnbHWRWAJzP9iRtpTD4BYInzR1mPmz198Za4SJiIj6mJg1wv4usPK6WCwXnRHv7G1nVLu/LhzM637d9MQSKTWdX3vwXc/HTBvRL+19gxprEE8ozP1gR9p1gNQ+uXfPX4cH3txgW7ZhjyMjbMnUOgPEFr1GuDMSx4V3vm77yh8Atrd2mx0YXlxmD5Lbu2NmYN0TS9hqkYHUQM4IWKeNtD8PCZcyEquuaBwb93SmlHwY5RydkZj5Ie2ZJVuxanuba9DcGYkjEnfPKvt5qRofGpyMSTIMD7y5AZf+dQH+pncIcaPVCKeO5SMHjcLvLzoEQPLvbHtrt9m1wsCuEUREREXiDHjS6ba80b+3sQW/fv6DXu13S0vq1fdWnXpGuC6c+W09Ux9ft2yeNYDTAmH7Og+/vcn5EJtBjTVorg1h/9GpAfHwfnW49b+rcOlfvTsouAVsrziCZ+csaT97Zrl5UaDzojAjuNtuuWjwh//RZs6b/YuXMOumF3Hsz14CkBpEt/XEbBlhZ0mA87bxQWbaCHsJSDyhPD/kdEXjOPZnL6WUsfSv1zLsHZE4gnok/ItnV+CUX7/iGlh3RuLpM8Iq9YOb8zXiDMQNzkDYkC5wBoBtbd0prd0AoL4miFBAOxbjg8Txv3gJsx217CFmhImIiPqW2T7N52QQ1ouIzr31VfzuxZW9mlVtq0cg/Pb6PTjjt68AAGpDmTPCXtMSv/LBDhzwg+ewYK19Ior+9ck6WqMeORvxhMLIAXX4y6WHp9w3rLnW11TMbgHekKYa2223ThhGdtIZ7L2mzzxXYwms7vqftu66XfbMsnPf7d0xMzDvisZTa1rj7hnhWRMG2ZZHYgnzQ4ybdEHyAD0Q7uyJIRCwZ0jdXqOdkZhnaUTU8U2H8zWyJ01gu6vdvfOIsx2a1f9W7XRdnkgoBI1AOG60S0sdczjAjDAREVGfyvZiObfgxm822Y1bH1kAeHPdblxw+3yzBMBPRvi11emnHv7Pos0AkNLRQankV9JupRGZxJVCQMS1VrhHryvNxC2T7SxBcAuEG2qD+hjsy41+xM4g0M9+2nuSpRFbWrqxdHOrY333jPDogfX4w6cONZdH4wnPixbTZVz7WTLCIUdg6Db+zkg87QVqbhfSfewPr9lu73DpBwwkJxBx2u7Rmm9gQ43r8kg82Rrt3jc+TPkwZsh3jTC7RhAREWUgkvzKduG63WjrjuFEy8U9Tm7toSKxBOprcqvhNQJw50QNzokcvGqEf/r0MizasNecEMKN0SPWedGdgpZtjsZj6InG0d7jb1IMg5Htc8tYGzO9eYnG3bPQzq/g3TKRTbUhcwxunHGjW4cG52Pnr96JP7ycHHdXNI6AJMs3nFM/GzPeNdQE0WPJckbiCc/SCGuHDatwUNBQE8TvXlyZcp9bwv+FZdtw5v4jXbellErpevHephbbbWfJiSFdoG6dEdAp3YVwJ08bjrc+1L4ZuH/BBty/YIPreiyNICIiykI0nsDn730Ly7ak9q31yyyNiCt87I7XcPnd9gurOiMxW92sWzDlVZKQiTPDaKh3BL5eXSP+OHdNShB8/cOLbfWf21q1QPKJxVvswbxKZpsj8ewzwjHL1965uPa+t80pmrNlZvMzlLWMG9wAANjlEvQ5H3vbS6nBu/V3Yc3+RxPJmurmujCClou9ojFl6/zgVzgYQGOtey7zby69pJdsajWz/U4K/mYLbHZpM5cuI7x6RwdWbW9zvc/tQ+Lfr5iFptpQSnbbDS+WIyIiysLKbe146r2t+MoD7+a8jUzt0465+b844AfPmbfdSiN6UyNsZoQBPPTWRuzRAxBncJ0uI+yWOQS0zJs1s2l8rT5v5U78xnKBn4Iys7k90ewD4YRKBsIPXXMUDh8/MKvHP7vUvY+tH0adaaaylhOnaBl+twsT/ZTE1NckA0XrB5dYXKG1S3u++tWFbcFeNJ5IaUHmRzgYQGOabxeeXLzFdXm6EgxraUS6bQLa2AEt4P/87EkA3GuEjcN7cOFG1+24BcLGhwg/H5bYPo2IiCgLRibTOf1uNiTDFMvOi4ncMmzZBsJfuv8dTP3e07b9JhTwf/9ahC898I7rfmqCAbzjcuGZV9cKaysrax3p9rYeKKXMulsj26xlhLMrjYgnlNndYOb4QZji6J7gJVOXi0yM7LyzvGFQYw2OnJi8eM3IeG6xTCEMaGP3Ewg31LhnhGNxZWbd+9eHEbLMjBaJJcyyCadzDxqVdl+hgKChJrvq1vRdI5T5gerQcek/oNSGA7j78sPx/NeOx8nThgNwL404ZOxADG6sSRvgG4HwQ9ccZS4zPsD5yQhzQg0iIqIsGG2znNPBGnpicTyzxD2L5vTYu95twgxuX8NnGwg/vmhz2mym0UXCWdv54vLtOP/2+WkvNHJjHZf1Kv231+/Bz59dgcNvfAHrdnWavWuvf/i9lK4KmcQTytbdIJTFNLm9KSkBkoGw83cysCGMGkvNslFL/GXHNwfvrN/jaxY+a2nEv95K1rdGEwm0dkcRDgrqwgFbIBfxyAg31YbwkTTBcDgUwMBG90lK0knX0ixhyQgbWV83taEgZk8ZhjEDG8wPl25lJMGAoL4miMffdS/FMF5j1tIOo3beV0Y4z1MsMxAmIqKytq21G3+etyZt5jAS05ana1P1y2dX4Jp/vJ22rROQLI1wTjV7w2NL8Og7yeD4Dy+vRktnFD2uF8t5ZxW7o/GUKYIBLZPpLMkwp/dNM0nC5r1drsvdRC3jso77w12dZtnEjraelLILr6/RnRIqmREG/AU85ph81K+m01wXMj8AOTPCoUAA1uRiU5qplj92x2tpLwqzqrM8H9ZabCMj3L8+DBGxHbtXaYQIcMuFB6dMwgFoLcSG96vLOCYAuOCQ0QDSf6BQSH4YcqsDNljrzxv1bLRbjXAoIKgPB9GWISNszaAbHyLcyh6aHbXQVZ0RvumpZfjOI+8VexhERFRCrvr7W/jJk8vwYZospfEm73YBG5CsCU134U93NJ42m/a31z7EV/75rnn7Z88sx0E/eg7X/OPttOMwXP/we/jv8mRg/dl7FuK4n7+UEtC39cRSMsLGLSOINYKd5P0KSil8/I+v4an3vLPd1vZh3S4zfhmcF+YNbqr13K5V3HGxXDbBTI9LL1nA33TS9eGgGXg5M8KhoD0obfbIhvrRkKY+OxpPoLUramZbrV//J5Q2wYQbgdatZFhz6vMcCgY8s7cA8Pi1x2DdzWfj5x870HM9a2mE70A4zYV6gPYhxxrkzhhlD+S79Q821tIOrxrhgY32dmtVXSO8clsbFm9sybwiERFVDeOCnYCzt5guXccFg/HmG08ksGp7e0rQeclfFqSdWSsbzozc/QvW4zN3LzRvz1u5Ux+vsvX6bemMpl6kp9/s0bd53VlTMXFIY8r+Fqzdjc/fmxqUWxnlFbF4AtG4wnGTh7iu5wxeBzW694N1E1dwlEb4D4Q/94+3XJf7aUVXXxPEA29uwBE3vZDSViwYcATCHsGdH+nGE0sobG3pNnv/OstC1u/uxAGj++N2S39hIPkthNtzFQ4GzFKOdIy/h1AwkPFDQ8QlOAWAp750HM6YMQKA/UJMt4DZKJcIBcS2rlFSY3R7MD6YNNYm1zH6S7sd63rHtyRV3TWiNhR0nZ+aiIiql3FhUrrSwUwlCUYwtGp7O0759Vz89gX7hWUL1vmvt/UStXzF73UBWCSWwEV/et28/e+3N+LHT7xvWyeZEda2WRMM2ALNSCyRtiY63biMTN2x+7oHwk7OWd28JBLKVoYQzKLOc+GH7rPOpcvAWhmZxm2tPSn9ep1lCulKI7yIAF85ZTKA9BnqR9/ZhIUf7sGHuzoApH6g2LC7C4eOHYDT9YATACYPa8KVx04EgJSZ4wAtGDxk7ADPsVk/GDZ4fGhQKvkhzflZsi4cMB9rPb7aUCAle2sE5sFAwLYd43HG/c/r5UXWDwRGn263jPBZB4yw3c6mvtyPsgqEa0IBX73uiIioehgZ33SxZaaL1IwslFFa8c76vXkbm5U1I+x1AZjzfe4Wl9ZnRiBtHFtNKABrDNHeE/ecutfK2IaRqUuX2RTJLSOslEotjcjDNLnpxlljCdismUlnZhGwB4v967MvjVAqOa11urrnFVu1frpGKYnbesP719mWP/+1EzBez/C7bTUUCODkacPTZu+d+3Fmeq86fiI+e9wEAFr9tvGac36rUhsOms9zreW5FJGUGnFjH6GAwPoljPH8OEtP3F4DziC3NhTArz9+MP79uWSHiaquEWYgTERETsZX+4k0kbA1EHbLxBrZSSMQrPFRe5oLa4cH6wVgWx19a/10STAqJYz3xHAwYAtiOnpiaWuinYz9GbPU1bnM/gakBmTpamqdX9nHEgoJfYplQ28m1zCkax9m3b+1rnm9o4ZcYA/GakMB/GjOjKzHYbxe0h2TkVG949OHAXDvejCyv78L3wzhkLavqR5t6KyltLWOqbfrQgF89dT9AGjfLjy7dCsA4OB9BtjWqw0lM8J1jr8L5++/wdL5wVqPbTw/znIKt0x3MJiaZa4LB20XBtZUc41wbSjQq6tHiYiossz9YIdZv2vU9r7ywQ7blfjWANQtODTeV40Mqt8axGv+7l67mo41ILcmdY786Yu29dJdHGalkMwIi2gBnTUQ6+iJuZZGXHLUuJSL3mJxhVg8gZN+NRdAatBkEIEt62z8eMo0+1TTzsxqLJ6aEXY+x+ni4sEeWed0GWFr7al1nbV6aYJBxB6MBURcPwRkKgExgulgmhp1o457qJERdnl9Nddml402gmlj/CdNHZbSas2awU/5VkTE7I2dUAoPv611Phk7qAHrbj7bXK02FDAnCgk7AmHr82ysC+iBsKWm3VkaYfXDj8zAc1893rztzBIbF+VZM8VVPcUyM8JERARo7by2t3Xj0r8uMJcllMLujggu+esC2+xa1iDA6P6waW8XXlu9C0op8022y8wIa2/wuzsinhfJPaNn0fwyxpFIKHz9wUVp10vXEs1KWS6WCwcDKfWu7T0x19IILXNsX9YRiWHf7zxt3k43Ox1gD65GDqh3XccZoEbiCcSVvY+ws0Y43T4HewShbt0UAKAh7J4RdvvCwBq8irhndScObUo7BiAZjLplOIHkhx7RD9m1JMDjw5dbfG323dXvDAcl5RsR67Ft2G1vpyeW7W5vTc4ON3qg9js1srg1loyw8/lzdo4wHhMK2McyqLEGowfUu7aBu/To8dhveDKr7Xz+G1z6C1d9aURPLxtrExFReWnrjuKiO1+3fbV9+I0vYNaN9kxqLKHMYNbaBswaCBuB7Y/+sxQX/el1PL1kqxmYdDkywof++Hkc/KPktMm9tbcziu5oHOt3d2LuBzts91mTPH6++TTijGhMoVbPkFmD1PaeGH70xNKUx4WCkhKwWQMhIH1Qan3UXy+biX0GugfCdY6Mciye0C+WS18jnO5Cs8GN6Vu0HT5+kOtya6DkGdQ71g04PkwYzj9ktC1r6WQ8JG1GWP99Gve7BcL2Nm6ZL9rrX2/vshAQSQlUraUoxoV1xrZFkoHw3fPXAQDuuvxwszXZo58/Bl8+eTJqQ0EzGHX2YXaWKBiPdWaE62uC+N91J+GEKUMzHpfzuWmqDaUsr+oJNWpDQURiiV5Pt0hEROXj+fe34bU1u/Dr51ek3GcNoOIJ7St+wP6mbZ3u1giEzd7B7T3mV9XL9Yualm9pw/UPLwaQ/gI8N585ZoLnRWA3PL4Up/5mrmum1trRwO9FboCWPTa+srYmyt7dsBdLNrWmrC9IDfb2dtn7JztrQc3HipjB8LjBja7rAKkBUiyhEFf20gjnGKwB658umYlRes2sV0b40LEDXZdbt11f4x3mWINFt0D4pKnDcNGssbbWdE988Vh89NAxyf2lCYANEf1DmdnOzCWQM/b7yjdOxCvfONF2n7hcLme0GzM+1Iikzj5o3c09n5mFt793qrkfgaRsd5+BDebP00f1M2uIjd+nsw/z6h3tAIChemZ+hP47CwXtgbBx3H7yuCkZYaMTheXFbdRH50uZBcLJec6JiKg6GHGGW0xq/Ro+kbBeOJdcJ+KSETbe3CNxlRLIvL+lFfcv2IB0jpo42HV5OCSuX2Nbbdjdhb2dqRN3WPsEp5u8w8r46jkaU2YG2xpEpGudppB6vN2OmuR0Fwtav05vrAmZX3V/5ODRtuDXOeFBJJZAImEPOp01wtZA2PphYmBD+kC4oTaI164/CSfsN1TfRupFa856aCfrugFJzUj2qwvZ1gsHBfuP7o9zDhxpeZx2n9u02oClNMLIHLt8tW/8TsYObkiZQMLNgPoa2+OUSr1Y1DlZiLXLhzUjbBiTJsNvBNvO7R81SetY8dL/zca8b55oBtIBEXxu9qSUY3N2HXHj/JDQpNch2zLCVV0jbJy4WCdMRFQ1jMyVW5xhvbgprpTZSs36pu1WGmEEL9F4IutWXgeM6e+63O9XtrtdAmFrBm2Py/1OezojeOq9LYjGE2bgag00trclyx2cx/eT8/Y3s3hurEH0N06fYv4skvxd1NcEsc+gBqz96Vn4yEGjbBdOOQPpWMK4WC65zFkjbM3sBwJiHotXb18BMLJ/vflYa/sug1cg7KyrFkktGwlYgrhwMHkxnf1x2v8JpfCDc6en7McsjQikL43Itu7VKI0wgmqlgCMcH9DSTTADaM+d9f6LjxyXtozEGK+zNOIXHzsQ737/VDTVhrDPoAbbcc05eDRO1EshjMXW0XzrjKmu+0qtEQ6lLPdTOpKNsgqEjStZ2TmCiKh6WN/Pl25uwWfvSc7GZq1H1UojtDdra9BsC4T1bKuxzUgskdXkDgCwz6AG1+V+g5k9LhnfuC0jnDkQ7o4m8Pl738aKbW3J2sw0gY9tMgUFnHnASLz5nVPSbvtASwutL5y4ryUIEXz0sDG2bRoBq/XCKWegF9MvlvPqI1ybJiPsNXuaEcgZ/7tN01vnMZGEwP6cuWWE7bPhBcw4xLpe0BIoXnbMhJT9LN3cahunWyDsGbS63GWURljH/5ljxuPmCw7wvU3rveMGu7+mAcvMi44PonXhIAZYMvZGNwdjNfP3E7D/ngDg7AOSGXWr9DXCyb/RbDtsZJLfsLrAmBEmIqpeCsDXH1xk1vIC9q/U4wmV7MygR8ItnVFb+7S2HvvsYtF4wvOCKjfppuL1+5Xtng7vjLCf0gjDlpZus3tCuj62TbUhtHZrx52p5PnbZ01FU20IL3zteKzarrUbqwkG0JWIQwT48ZwZuO6MqSnHag1YU0oj9IvlbPW4HhfLWdfr55H9S2ZrtdvGhyLr47MpjXBOuaxtK/lzKCCuk2cY+3POgp063tR9Jred/rXjFs/2NwJhfVsKCiJi63Dh1atZxF7G41W2YNznzAg7OYNYsxTE8Xty/mxlvC7CQUE0rsxvGqybdl6M2VtllRE2vm5hIExEVH2UI6sI2GuE4wll1tomFPDw2xtx0I+ew+KNe811jDdzI/CMxBKemTM36TK/XiUW1prY3S6BsLWOefHGFt9j2d0RsZRGaMucfXyz6btqBGT7DmvGGftrU9saWVDRt2UEYVanWaYHdvabjcVTL5ZzPlXWDyP2i908SiPE2JYRPOkZSUu8lk0g7CyVsG4b0H7vtS51yMbYjSz5v645Cjeev7/LeNPXymY7wUhzrb1kwDjmcDD9c5xuPJnWPXKC1p3j0qPHe24vFLSPxcg5mxf02fadfjvrbj4bXztVK8kxSiOsY/VTa5yNsgqEjU9iLI0gIqoe9jds+5ugtUY4oewZYaNF2dLNrQgGBKGAJCeiMALhLGuEhzTVps3euQWc1585FQu+c7ItS7qzvSdlvfbuZKb61VU7fY8HSH5bagRF1lnKDhzTP2NAZOU2mYifmby+cvJkXHDoaNf1Y4kE4o6MsLPe29qpwu9UzObmxBi7tg1rfXi6STeMxzuDc2dAKrZAOOCaET51+nB8/dT98O2zpwHQ2rp96ohx+OPFh6Xd97jBDfjYYZbOE1n8ks6YMcIcVzIjrLG+ztz6GhtPjTOW9PowOKxfHdbdfDZmTXBvV2dI94HL3La4LEvDeB16lcbki69AWETOEJEVIrJKRK5zuf8bIvKu/m+JiMRFxPsZywEzwkREmZXKOTtfjLdMhdQ3d2sAYa8RVuZX1fGE1llBRMsUf/fR97Bow14ARo2wvyAkIMALXzs+7cxzbss/c+wEDGuus11A5pxSGQDaumMpy/xyTq5gvRDue+dMdwSgGb7edglmzIywx9MUCAjGDdJajAUDgqMnJS/cisaV1kfY8jw7R+HMCJuxk9c+HW25jIykNRDOVPbibJ/m/JBjfWmEA2J+LW9dLxgQfPHkyejnmHI4XZ9jAJj7jRNxmSXD6lnG4Gg8doclwE7NCLuXmGTaZj6SrMlDULZtGkMK2LK63tsyjqPB44NMvmQMhEUkCOA2AGcCmA7gIhGxXRaplPqFUupgpdTBAK4HMFcptTvfgzUDYR+z7hARVaNSOmfni1giYa8Mob1rRDLoi8aVOftaQin84/X15mOi8UTGi9yMXY4b3IgBDTVpM1+hQCAl05mcRMESCLemBsLtPf7rgp1OmTYcgL21WXJMmVu6WbnVORsZXrd+tlbJgAf486Uz8bOPahduRV0ulnMG5NYaYesFYF4BovNiOeO1YZS9DG6sSY7dZTMCsb2etD7CzmNyZoRTSyPSGdRYg/2Gp5+Vzvq6y7Y0wnyc9Y8D9g9jXv2NnXflo9zA2d3F2KJbH+HMGeH00zLnm589zAKwSim1BgBE5AEAcwC8n2b9iwDcn5/h2RkvQD/zsBMRVamSOWfnm4JK+Zq/O5pMjMT1WlRAywoqMyOsTUMcjSdSUpHRuP0re+esWMayRFyZy8Npgha3jHDyivnksm0ugfA3H1rsuk0/zjtEK0kwjrfB0srM+ABgsMafAxrCKRfmuZZGhIwOEd7jMI41GBA01ITMqXNjcZXSR9gpXY2wn24Kxv/7j+6Pzkgc3z1nOgbUhzGgoQZLNrWY23Hr82v9hkErlXBmhO01wnUunSm8XHDoGNz89HLX+6xBeLYt/MzxOR5nL41I/zjn3vJbdatvU9+otQWd3/0ZHxIaSqQ0YjQAa2fxjfqyFCLSAOAMAP9Oc/9VIrJQRBbu2LHDbRVPRkaY0ywTEaVVMufsfLFmmrqi9m8EOyw9b+MqWRqRUDDrgWNGaQQkZVIAZ6mdW4BjTpigB8LpMsJa0Ol+DNaAKursQwWYXR2y9fb3TjUvjjO2as0Ih4MBWxB+tmUiiHe/fxq+cGJy4gPAvXuBWYqbIXpxTpxgBGXJjHD6x1q/As86ELZs48kvHYdDxw7ExKFNGNRYY27LNTuaUiMsaTsfAFqG2Zjy2W8g7JWVtQbdbvW81nECwLkHjcINjj7FxnizLo3IokbYL2MTyYyw/UOg3y4VQPJbiKbawpdG+Am13UabrsjoXAD/S/cVm1LqTgB3AsDMmTOznieZ7dOIiDIqmXN2vhiZPKVSa2k7IzGEAoJYQqtDNUojlNKykID2mLbuGBprgimlC6t3tGPxpr2e+zf7xOoPThezeJVY5JjwQ00o4PmeZ50tzAjU7RlhMYOcTx85Foc4piV2ZkDdjiEZcGYqjbAHPslAWJ9Qw+NiuQZL8G6tEfZ63pylEW7jM7cTAOBSVWkvjUgNCK23b//UYWYc4jeD6xXg+s0IG/ecOn04PnLQKNt9qRfL+SyNgPM4067qW0qWWV/gfF1Y70vH+GBk7VN8yNgBOH7y0N4OM4WfjPBGAPtYbo8BsDnNuheigF+xGUXq3VHWCBMRpVEy5+x8sfYvbe2yf5Xf0RM3A664UpYplpWZETa4fT2+fGsbNuzuMm87yyKAZEARc7Rec/LuBWt/5//5Rw90XW+QY3rd2ixanxmBujMjLB6BojMAcy3vcLnq342xnlkXrW/L6ORhDQqdv5t0GWHvi8jsP7itOnWENg30VcdNdH18ysVywfQB4tDm2pT+vZl4BvI+j9PgdqGjMX7jPuu3FV7BZmqNcMbd+6YcF8slj9Nfph8ATpw6DHddfjgmWfoiP/L5Y/DVU/fL30CNsfhY500Ak0VkgojUQDtxPu5cSUT6AzgBwGP5HWKS8Ykx3RzqRERUOufsfDECUAWVkhHuisTM4E3rGmG9WC653udmTwIk8zeKbkGu8UZu9iBO03khXTcJbRv222MG1mPmuIEp633nrGm229lOvQvYZ3kLBwOWi5ZS13UGYK6lEf7iYJM5KULAnrzyyghbZ4ALOoLTez4zC+c6MqHGfdq4XL571w1qrMG6m8/G2QemPj6lfZrbhBppAlTfpRE+M8Je2dvRA+sB2LOjzm0YT2eNLRD2/9rJy8VyaUsjxHa/dp+3cDCAE6cM6/WY/MgYCCulYgCuBfAsgGUAHlRKLRWRa0TkGsuq5wN4TinVUZihJj/ldjAQJiJyVUrn7HyJ6zUO7T0xMyg2dETi5sVc8YQy+wMnLO3TAODM/UcgIIKOnuxrcY14xbwQL00s7TVxhTMDVhsOutarNDlmUstm+mezNMISVIaCYgbhfiZycOsa4TdESpaO6IFwSPvf6P1vDSpPnzECs6cMNeubG6wXy+n13NqYgeP3G4pPzhqbsj9ngOUVm6b7QOE8fmdAmi5z6bs0wrNG2BIIe3zg+fqpU3DrJw/B8ZOHpG7fUSPs94OT87WQx4RwCrN23LIsHzXJ+eLrcjyl1FMAnnIsu8Nx+24Ad+drYG6MXomdOZzIiIiqRamcs/PFuD56T4d7i7Eal4ywUvavkmtDQQQEaO/JPpESdGSERw2oc10vXTcJIDXAqgsHXL/qdk7f7BZb14eDKRcNAslA1BqkaRfLpWbkDH5KI2A+3jt4MfZvPF9GdrknFrctB7Ss9d2Xz8Jpv5mLlq6ovTTCpX2a61PryEB6BVfhNB8oUgJhZ0Y4zSb7MiNcEwrgHJeMttvj/AbozrXycrGccVGrYyfJzinJfUgJTedWQkPJrCYUQE0wwIwwEVEVMTLCeztTpyYGklP6JixdI154fxs2WyauqA1ptbK5ZISNANDIME8c2oTXrz85Zb1Ms5hZ1aXJCNc6JoBwK1VornPPYbl1DtAmEnGUEFiklEZ4ZIQzhUrG82McqxFUGy1P3YI94/dlbZ9mPWSz7ti1m4f7ON2kzQg7A8mUGuHelUZ4rea3FtqLkUk2Xkt+SxxSukbkIxpM8/tw7RqRh93lS+EbtOVZQ20QnRFmhImIqoXxlf+eznQZYf1iuQQQ1YPmNTvtFR91YS0j3JHD+4fxRj52UIO5bET/1KzwsH7umWJtG86MsHvQ7MzouQVITXUhbG9LnabZ7evxTDXCzv25ZRSd/XrTMTPCjvZp3XpG2K3eNqJn8I3Z67QxpLYAc3tsSocHj2DSveQjtSbYGRinCyz9B8I+SyNy7SPsuFjOL+feMnUEyUZyGmdHjXAWF8v1pbLKCANanXBHDl9tERFReTLqgo1yAGdnBSPI+cPcVWknXDIywu05ZITDwQD61YXwt8/Msi13vpcPbapFOimBcCh1Fjog81f1QGr5hMGtNCIUENeMXHL79jDAq0Y4Y0Y4Ya8RDqVkhFMfY3SUqA3ZSyOcdb9ugVM2sZS15OP5rx4PADh47ICUDHCmwNjg1SHEa3vp7vMqjSiElBrhPOze2IQRlJuvG7eMcOnEweUXCDfUBNEVZUaYiKhaOCfBGOwIhI3Jljbs7sKj725y3UZtWMuMduaQSEkkFE6bMQJDm9MHutZxuPEqjThpavLqeD+BsPOCOnOcZiBs7xzg7Ldr5adG2CytyBC9GLXczq4RxsVybseSLI2wTLHsMvWwW6Do1fPXyVryMXl4M5760nH4+qn7ZeyaUdgaYZ8TanhIBp9ZPs5ZxpCHyPTcg0bhgkNH47qzptqWK0fJDMCMcK801DIjTERUTZydIgY3OQJhS5Czq929jli7WE5yKo2IK+UaiGXzVu5WGmFkzr540r7m8mBAMPcbs/F1vV+qW6lCU9qMsL6NdHWuLgP2mqI3+fi0D7eJm10jktsOBsRsn+YW7KXLCBvMr9ddopVseuE6n8fpo/ohFAykLHfuJ902/QbCXgFmXiax0Lfh7Muc8XEFGEtdOIhff/xgDGuucx1bPssv8qnsAuHGGtYIExFVk7hlSuJQQFLqa402XUD6GuCgXiIQc5ne2HDFsRPc95/IPWNnsAZY4aAWIB44pj8AYKClP2wwIBg3uBFD9OyzNYDeZ5DWT7apNuy6DyOwdnZISJYZZM4Iu84sB3+RsHK0TzO2b2aE3S6WS6RmhK3DNzPCHjXCRqDl9StyC/C18QU8b6fj9+XgObtbHjs1ZP9A/9n0XDmz1cwI50kDa4SJiKqKdQKLQCD1rd8a5Hh9RSwitgkzjpgwyHb/V06Z7Pq4hFKugY8RyFxzwiTc99kj0u8Y9jf+Oj37+f1zZuCxLxyD8UMazfu8uhjcdP4BANJ3jUi4XCynjVP/3+UxfibU8BtrOdunAdrvpsfjYjm3jHAokHqBn2uNcMptf/W4tuUZaoTT8RvEZjExYE6ck1j4flyG24Vga59WOnFw+QXCjewaQURUVazBq3Yhlf1dtMZntCECxCyzYRwxYRAOs8zuJiL4+UcPxOHjB9oeF08ozwDprANG4OhJqZMdWFmDAKNFWk0ogIP2GWBbLzUwTb2gKn0gnHqxnHXffjLCbsdpXvSUIVwya4StGeGgoNujfVrUpUbYOgSvsTuX5RJcObPnfvvw+lXozKexdWcdfcbHFaBGOHUfesaeGeH8aqgJsY8wEVEVsQbCAUnNXnldpGYVELHNNqcAfPTQMeZtAfDxw/fBvVcemVwm2sVyXhlJW6YrTbA4bnCy9Zo16HMyAlFx3AaSGdVMNcLOXsBeE2r4yYD6bZ+mVGqJQjgYSE6x7LEva7mLWD7sePURTumFm0Nw5XdK5VyVUsBn5XydFmKYZmmE4zaQn5rkfCm7QLixJsiZ5YiIqogtEA5Iypt2uvpPJ+fjEkq5tnSydk4IBwJIKO+MsJ9g8qbzDzC3m66HsNu2bIGwPsDGNIGwSpMRTgayqeM0tl8TCuDq4ydiYENq/bE53XHaUWs+e/xEnDJtGC48PDkdcthSI+wWZE7Uy0LSZWKNhK1XaUrydoYBuvA7JbGbS48ah7suO9xznVz7A/vlzLr6f5z9dkECdrNsQ6XssxAZ6FyV4YQaIXRG49on9FL6SEFERAVhzwgLnCFZrpMbKGXfkhnwWdYb0lSD3Z0Rz4ykn/031oZw9gEj8ei7m31lhA3Wml0j3jcC6eMm28sxjGAoGBD844ojsK2123Y8XjXCU0c04/qzprmOyW9GeEhTLf58qT0wDFkzwi4b+OfVR2Hl9rb0E1d4lEaYfEyxbHCu0ptSiB/O2T/jOoWOU5KdGbJ8nON2IYbpnHK5lIJfq7ILhBtrglBKm6mmoabshk9ERD4t2rAXP316GSYNbTKXBV0ywn4nI3CupuDMUqU+pqE2hJ3tEc8gy282zVjPq6bZOBaz04NLRrg2FMCr3zoRgxvtfY3jlovVjp2cWrPsXiOsjcXrCNxmBvMrHBRzIhS3HsVDm2td+zObdckepREpj8mwyr+uOQojHTMC+u0Skas+myij132E8zeUtPvI/y7youwiyQZ9LveOHgbCRESV7JsPLcaKbW0pGeGUbJbfK/0dtxNKZQzulFJaH2HXZgoCwLtswra+j6DOeSzWjKVRAlIXDmLMwAY4JVxqdO37T11mjsWzzVfGVdIKBpKz+YV91nK77dtfIOy9zuHjB6Us601phB+F/uI6WYebbR9hZ1lJAQfqmHK51JRdjbAR/LJzBBFRZTPabtlm4JLsvt4e1b8Ot3/qUP2xbinh5E2392kFvWuEx5u49T6vgMSrn6/Bq4vD9JH98KM5M1JKImyDhUvtLIz9uuwv6K/+V9uuj5UcApKsEfbb3SPXfecSZuW7S4RToUsjpoxoBgBcedxEX+srs4WDfXkhRukM0kszDC7DQLh/vVbIv6czWuSREBFRPvzj9Q+xpaUrZbkRQFmDoGBAUrJZXtnC8w4ZjbMOGAkgNQDVMsJJbtnhhJ6Ndg1ozPKFtLu3MTaRzYV31iA7EBBcctT4tBfbJVwmtLAN17PzRdoh9SqTZ51Zzu9FjVZm3bOPMeRywZezwwYALP3h6bj6eH+BZSaFvlhuQEMN1t18Nk6fMcJcds9nZuGWCw/2fFxqjXD+x9knF+TlQdkFwiP0+p6tLd1FHgkREfXWjrYefPfRJbjsr2+m3GcEwtbZ4AKSWiPsN8OakhBW9iDPev8dnz4MU0c0mzOfeWaEs7xYz7M0wrEf54QPXhLmRWPu96fLeGv3eZRGuPzkV9DSNcKtRtjHTs3tZHxIDnGWW0a4sTaUt5KJYgR/x+83FHMOHu25Tj46bmRiXizn0ke4lJRdIGwUum/am5o9ICKi8mJ8Vbu7M5JyX4+eSYzEk5NgBALWEgPtf69EozXj53zzd1RG2Jyx/whMGdFs1id7fcVtDZKHNKVe+OXcfzalEeEsMorH7DsYANBc5z4Fs1vG20/brd7UCAdEzH3kkhE2t+PxPBiHkEvyNV3Am207snQKnRHOVV9khA/XZ26cPLwpw5rFVXaB8KDGGgxpqsX7m1uLPRQiIsoTt8DDyCRGYslAOCjJ0oh+eqmcZ5Bq67qQXF4bCuCiWWPtXSMcjxUgmRH2mHHNuv8Hrz4KN19wgOtY/JRGOI8lmxrTH35kf7z8f7MxqLHGPk7HBwcrs8erx3bF8X82rMfqd+ITN/5ao+WWsS6kEo2D+6RrxEcPHY3Xrj8Jh40bVLB95EPZBcIigglDGrBpb2exh0JERL2UDF5SI2EjCI1aM8IiZkRmTDXsVbaQrjRi0Q2nYd9hTZ5N/kXEzAj7vVhun0ENuHDWWNf1vKYLdjKC/WwydTWhAMbrE1RYeX01nSyNSL9dr5npMrE+N7ldmJb5+TfkdrGcexiUr6CtVOtiU1ubFaJGWDCyf715u1Sfi7ILhAGtc0QXp1kmIip7xntjQgE3P70c972xPmUdWyAcSL5lN+pdhGKJ9N9ju83MZt2veFTACoBYPP2saNYx+eGnlMMpn6GDWyCi0nSasI3B5bnyvU/LsWZTGvGN06YgGBCMGlCfsp20+8rpYrnCBmelWxrh+OahD4ZZonFw+fURBoDG2iA272UgTERU7oz3xt0dEdwxdzUA4JNH2DOqUcvFckERM2gz+sobXQnchNPUCDsnrnD+bKyfvFgu/TH4zXRmMznE6IFaALjvsCaMH9yAK46d4Gsf7vu179+qVp/lbkhTTcp9li3YtpONXEsjzjxgJFbr3T6A3GaN86PQ7dNKNhB2ea0XfJ8l2kCtLAPh+nAIncwIExFVhR5LjbClMsJsI9YZiWPJD0/HjU8uw/0L7BllayBifRtOft1vzRKnXknvWSNs1t6m3nf35YdjQIM9uMymNOKYfYfgoWuOwqFjB+LqEyZlXN8Pt70ess8A/HjODHzEo8tAMiOcPeux9uZiOa/SCNWLK9sKPbNcpjj4kc8fXdD9+8WMcJlprA2igxNqEBGVPT8hjLU0wjrFcq2eYeyKxtFUG0JTbWp/3VCai+WMcoZMF4l5dY04dOxAzF+9y/UNfvaUYanb83GxnNVMl5nQesO1FbIILj5qvOfjehO/WI81q/ZpDoWamKLgE2pkiP4OGTuwoPtPx60evvD7LPguclK2NcLMCBMRlb+Ej2xeSiCs/1xvlEbo7wdukyO41QhbYx+vN2cReF4s98eLD8Pj1x6TdoILJ2O/xbpoKNdgx6u0IpNgnjLChqtPyM9EF4ZCz/xWsqURztt9kRFmaUT+9KsPIRJLoCsSN0+ERERUhnykhK2JDxExA8m6kHb+7/KYucxeI6z9by+X8LhIzHKfW8DUXBfGgWMGZD4AYxtZlEbkk7G3XGOy3gQwgUD+AuF1N58NAPjj3DWu95dixrFUOyUUY9a3En0qyjMjPLxZn12ulbPLERGVs2yrO4MCM7KrDTsCYZdIzxb0utYFp9+X9b58BArJi+V6valcB5DTw4wy2t60TwsGpGSzo4VU6IxzrpwfbvpilKX5TJRpIMxplomIKkO21zmJZUKNej0QNrbhVhrhViNs/bres0ZYUh/bG14TahwydkDvd+Bz/9kynu9cMsPGsfqpDz5m38E4cmL2ddF5mgSuIPz0Py6GYmSESzU7XpalEcP7aYHwNmaEiYjKmsohjDHeT6eMaMLnZk/CRYdr7dbcgi23MohsaoT9rOeXV2nEg1cfZdYjF0rOJQ5mjXD2DzUyomEf3RnuvfLI7HdQ4grclCJnRakRLs04uDwDYSMjvIUZYSKispZtRlgpZXsT/9YZU82fM9UIG0GJ/etqrxrhpHxks7wywuFgAD6vucuaSOoHgKwe7/g/G8Znk3AvplcuZ+WSEa7mi+XK8pXZVBtCc22IGWEiojKXLg5OeGRHjTdtZxDt9mbu3jUi+xrhfBCPjHBfyHW3ydrq7B8byKI0ordKMdAq1XIA58eaPhlniT4VZRkIA8Dw/nWsESYiKnNuAa9SCnFHlGv0DFZIBjzOR7q9z7r1iU03yYaTbfrlvGSEcw8o8yHn9mm92KeREc1H67RyVLIXyxUhI1yiT0V5lkYAwIh+dewaQURUgWIJldJfuKk2hJ5YBEoBXz11P+xo78E5B45Ms4WkzH2EPUojbF0jfA7eg7GNYmUuc91rr/oI6wddU2aBsDHjXLCXRb6l2inDOaq+aZ9Wms9F2QbCw/vVYfXqncUeBhER9YJbjXBPLJFSW9lQG8SuDu3nEf3r8NfLDve1fWsniYBLQOf11mwrochD8JoMKHu9qez2q/+fa7BjZrJzeaxZGlG4QLgXMyyndfUJE9HWHcNlR4/v1XZKt0bYWRrRB/ss/C5yUraB8Mj+ddjW2o14QpXsJy4iIvLm1jWiJxo3ewQbGmtC+voeXIIOa2mE2cfXZ42wVT7eZnp70Vrv95/j41J+8M8sjQiV1/t0Q00I3z93eq+3U6JxsMuvsi8ywgXfRU7K67sKizED65FQwGurdxV7KERElKN0GWFnK7Gm2lD6B3iwl0bY/weK0z6tWF8R5/z1dy9KOoJ9kBHurWkj++G06cMLsu1STdSl9hEu/D5L9cLB0n1lZnDajBEAgKWbW4o8EiIiypU1rJ00tBGAFgg7L6JrqM38BabrxXK2bgV6RjaHKZbzmTErVjiQexzci64RRka4Dxrq5np8T3/5ONx5ycz8DkZXuqURztulOc6+ULaB8MCGMGpDAexs7yn2UIiIKEfWi+JGD2wAAPTE4ildI5pq9Vnksty+28xytsyUz4xwPjJmZhlIX9cI9+JiN9vjc3iskQgut9KIfCm1rhHG34/zA2Cf1AiX1lNhKttAWEQwpKkWO9oYCBMRlStrvNug1wV3RxMpXSPMGuGsL4xK7Rrht32a3+4SfikzDi6zrhHG/7lkhPviYrmCbbmCpZRG9EGNcIleLle2gTAAjB3UgHW7Oos9DCIiylkyjKkNa29JsXgCiYR9rUYfpRG1GWYvc+va4N0+zV/AnK1iZcZyDXZ6M95q7yNcqorxEiyx5LiprF+Z+w5rwuod7cUeBhER5cia4TV6zcYSqRNq1NcYpRHp83/nHTIaXzxpX9sye3mDS9cIj7FZ78tHiavSj6ncaoST7dOqp49wvk0f2a/YQ7BJaZ/WB1FqqdYhl/Urc+SAOrR1x9AZiRV7KERElANrWFujZ3TjCZVysVxdSA+EPb4HDwcD+PppU2zLbJe7udQIe74320qJ81ga0efxQO/atvWm/7F5sVwfTLFcql742vF44Oojiz0MG+dvoy9+O6X6CijrQHh4cx0AYHsr64SJiMrRqu3Jb/Vq9WA3Gk9tn1YXzu3tqqkuWVJh9vHNpWtEqb6LZ6V3VcK5XSzH0oh9hzWjX1242MOwSW2fxj7CZWl4Py0Q3saplomIys57G1vw+XvfNm/bMsLKGQhnzgg73f/ZIzFMT5gA7n2EvbKkbmUVvWEMvVj9VHNun9aLq+XMQDhD/Tb1reJ0jSjNSLisX5nD+9UCALaxcwQRUdlZv9t+sXON/vV5NO4WCGtvV9l0CHDWZbp1jfBKc/pczbdEkWuEcyWO/7NhPOeFrBFWhZhjucKlxKTl9qLMo7IOhIfpGeENu9k5goio3DiDXWNa5XhCIe7oGlFr1gj7D3qcF7glE5vZl0bkI5llDr1EM2OZ5DJsI/4NlWrLgCrl/G2U6qxvfcFXICwiZ4jIChFZJSLXpVlntoi8KyJLRWRufofprl9dCFNHNOO5pVv7YndERGWhVM/ZTs5AONk1Ij81ws7pbcXsGmFdlv7xhSqN6OuQI18xTi4XDJoXy7E0orSI582qkvGVKSJBALcBOBPAdAAXich0xzoDANwO4CNKqRkA/l/+h+o6Nhw3eQiWbW1DzJk+ICKqQqV8zs7EqBGOuZRGGNnibDiDV7eZ5fy2T8tLoGCURhQp6si1gqBXfYT7cEKNUq1BLUWpNcLV+9z5eWXOArBKKbVGKRUB8ACAOY51PgngYaXUegBQSm3P7zDT22dQAyKxBPZ0Rvtql0REpaykz9lWKRlhr4vlfLRPc3K+uZvt06xdI/ymhPNRGmFuqryCDmO8uZVGGDXC5XXMla4YXSNKlZ9AeDSADZbbG/VlVvsBGCgiL4vIWyJyiduGROQqEVkoIgt37NiR24gd+tdrLUlauhgIExGhxM/ZVs7Z42wTaiScGWHjYjn/kbCzNMJ4s7dPnZz+8bYJNfI5xXKZxhy9uViumtunlaKU32WZvibzIfOcle5Pj/NMFAJwGICTAdQDeE1EXldKfWB7kFJ3ArgTAGbOnJmXyzyTgXAkH5sjIip3JX3Otkotf0jWCDvvC+cwtZvz+iyzj7DP0gi/6/llBPF9XiOcr+30IiOcz0D4q6fsZ357QLlJmVmOgbCnjQD2sdweA2Czyzo7lVIdADpE5BUABwH4AAU2oKEGADPCRES6kj5nWzkjazMjHE/tGmHEwdmURjjf7I2bQVtphNfj028rF8XPCPfus0wuz0GwABfLffmUyXnbVrVy/iqrub7azyvzTQCTRWSCiNQAuBDA4451HgNwnIiERKQBwBEAluV3qO6MjPBe1ggTEQElfs62crZCM4Ilt64RoUD2fYSdjPjX/qbv1T4t9bG9UY0XdQX6sEa4ep7V3kttn1aUYZSEjBlhpVRMRK4F8CyAIIC/KqWWisg1+v13KKWWicgzABYDSAD4s1JqSSEHbhjAGmEiIlOpn7OtHLEuakPJGmFnaYTxRu2nj3BNMICISychc0KNHNqn5bOPcLnGwb3rI1y4UoYvnTQZyza34vjJQwu2j0qTkhGu4o8RfkojoJR6CsBTjmV3OG7/AsAv8jc0f/oxI0xEZFPK52yrlBpho2uES/u0bIKwZ796PBZv3Juy3NiE7/ZpPjPHfilzZrm+DToqvY/wlBHN+O//zS7Y9iuTe9lQNfIVCJeyYEDQXBfCnk5eLEdEVE6cyV3jgqpoQiHmTBcbj/Gx3QlDGjFhSGPKcvNiOZ/t0+wTavjYcQbFnliumH2E2T6ttLB9WlJFXHY5Y1Q/zF+9q9jDICKiLDjLHAIiCAUErV1RXH7Xm461jdqI3Pfn2j7NY337FMv5zAiXF2O8OZVGsH1aSXL+Kqs4Dq6MQHjK8GbsbO8p9jCIiCgLzqRvMCAIBgS7O1K/4cvHG3Wvukb0fvflXyOcw2MCfTCzHGUvtX1amb4o86AiXplNdSG0dcd8XURBRESlwVkHHAxoGWGv9+R8d43wqnvN+4QaPvZZCPnaHzPClSMlI1yUUZSGinhlNtWGEU8odEdTrxImIqLS5MxdBEQQCgZSMsVA8o26NwmPZNeIXPoI57xbU7Ezwr1NFeUSUCcn1KjmUKv0pPYRLs44SkFFBMLNddo1f2097BxBRFQu3FqkhQKCaCw1qTFmYAMO2mcAfnrBgbnvUJL78be6v4DZr1OnDwcAHDlxcO83VgS5PAczxw/EFcdOwP6j++d/QJQ948NYSteI6o2Ey75rBAAMatRml1u+pQ3DmuuKPBoiIvLDmdw1aoSjLj2Aa0IBPPaFY3q1P/NiuZxqhHsfKBw1aTDW3Xx2r7dTTprrwvjeOdOLPQxyqOK4N0VFZIRPmjoM4aDgf6t3FnsoRETkU2pGWBBOMxlGPgTMjLDPGmGfJRSlrrdjN56Has4aUuWqiEC4LhzExCFNWL29o9hDISIin5y1wAGPjHA+GEFvrWVyB8+MsHVsFRAE8npyMlTAyzlvKqI0AtDqhLuisWIPg4iIMmjtjuK5pdtSu0aIIBQUROOFidiMjHBjbfKtry8vlit3fAoqRzVPqexUMYFwbTiAHnaNICIqed9/dAkefXczTpk23LY8ENAvlitQRtgIr+vDweQ+vWaWS/MzUbnjB7ukygmEQ0G0djEjTERU6nbpE2a0dNknzgiKIBgIIGLpGvGbTxyEqSP65WW/3dE4AKC+JhkIe84sZ6sRLt/IoYyHTgXC10RSRdQIA0BNMICeWLzYwyAiogxqQ1og2hW1n7O1i+XsGeFj9x2KaSPzEwgb+2uwBsIeAUGgQkojTp8xAgAwdWRzkUdCpYKlEUmVkxEOB9Dj0nuSiIhKS21Yy8F0RRyBsHmxXLJGOOi36a8PXRHtPaLOUhrhmRO2dZcoX3MOHo0z9x+JmlDF5L6ol8r5g12+VcxfRW3I/nUaERGVpjojI+wIhIMBQTgQsGWEg3l8xzYuqLbWCFdL14h8BMFsOlE5yvvVnF8VkxGuCTEjTERUDoyMcLfjnK3VCNtLIySP6Roj8G7wXSPs/nO1MY69N9NbU2kp1uu5JhjA7ClDi7PzNComEK4NBbG7I4J73/gQnzpiXLGHQ0REaRh9fDsj9gucRbQgudOSKc5nRrg7mloa4XURnG2K5SrOoVXzsVeu4vxOP7jxzKLs10vFlEYYVwN/55ElRR4JERF5MS6W63a0vAwGBP3rw/ZAOI81wp36+4QtEPZYnxlhqlR8PSdVTCA8cWhTsYdAREQ+1KapVw2IFgg7l+VLt1tpRBV0jSBy4ss5qWIC4cuOHg8AOGB0/+IOhIiIPNm7NmjO3H8EggHBAEcgnM+MsBHM2muEfZZGMBKmCmK8nn/ziYPwscPGFHk0xVUxNcLBgODsA0Zi2dbWYg+FiIg8BF1SMF86eTIAoF9KRjh/+/3jxYfhkXc2YeygBnOZZ3xruS+f4yAqNuPlfP4hY3D+IQyEK0Z9TdD86ouIiEpTwqX5gBGQDmiocSzPXwQ6bnAjvnLKfr7Xt0+xzEiYKge/4EiqmNIIQOsN2RllIExEVMoSLm24jEDTWiN86ycPKfhYPPsI26ZYLvhQSlY1H3ul4ge7pIoKhBtqgrarjYmIqPS4taNNZoSTgbAx8UYheWWcebGcHdsIVw6+npMqKhCurwkiEksg7va9GxERlYSEyznaeF9uqk1W7AX64B3Kd/u0Ks6gVe+RUzWoqEDYmFlu3sodRR4JERGl45aqMILOkCUN2xfBp/cUyyyNoMrE13NSRQXCRm/Ky+56s8gjISKidFxrhPV35r6uy/Vsn2brGsHIgSoH2wEmVVQg/IUT9y32EIiIKAPXrhH6//a63OJmhG3rFXYYRH2Kr+ekigqEw5bmlJFYwmNNIiIqFuWREbZmXvuid693jbB1LAwdlGtRC5UT4zfIl3NSRQXCAHDNCZMAAB09sSKPhIiI3Li3T9ME+jr49DnFcjWn0Bg0VZ5qvvjTqeIC4UlDGwEA7QyEiYhKkteEGvZODYXnf4rlPhgMUR/h6zmp4gJho/VOWzcDYSKiUuTaR1gPOoPWrhFFrhHmxXJ27CNcOfhqTqq4QNiYnnNvZ6TIIyEiIjfuNcLa/4E+7hrhFeCyMkLDDgOVw/zb46/UVHGB8NBmLRDe0d5T5JEQEZEb9/Zp2v+BPs7C+p5Qg4EDVRDWCCdVXCA8pKkWALC9lYEwEVEpcq8RLlIfYc99sGsEVaa+6MhSLiouEO5fH8boAfVYsG53sYdCREQuvLtGJJf1Tfu09DthsGDHEuHKwXKXpIoLhEUE+4/uh3U7O4o9FCIicuF6sZxrjXBx26f1dXa6VFXxoVcs/k6TKi4QBoBhzXVYub0dT723pdhDISIiB9eL5ZA6oUaftE/zCoQtP7M0gioJX85JFRoIa3XCn7/3bbz14Z4ij4aIiKy8+ggHLO9KJXWxXMFHQtR3eLFcUkUGwk11IfPnj/5hfhFHQkRETt5dI/r6YjmP9mnib71qwT7CFYQvZ1NFBsKhYEUeFhFRRXDNCLuURhQ/I2wdS8GHUrqq+dgrFD/XJVVkxHjIPgNst1dsbSvOQIiIKIXXhBp93bvXb40wM8JUSfhqTqrIQHj/0f1ttze3dBVpJERE5OQ+xbLGfrFcX2SEvUojGC5QZeJrO6kiA2EAGDuowfy5KxIv4kiIiMjKvUbYKI1ILgv0wTuU34wwAYqdhKkCVWwg/PSXj8Mjnz8agNY9ojMSK/KIiIgISFcjrOnrjLAXJs00xf49EBWSr0BYRM4QkRUiskpErnO5f7aItIjIu/q/7+d/qNlprA1hzMBkVvgv89a61qUREVWaUj9n+60R7pOZ5TwzwgwAiSpdKNMKIhIEcBuAUwFsBPCmiDyulHrfseo8pdQ5BRhjzhpqgubPv3r+A0wb2Q+nTB9exBERERVWOZyzvUoj7LO5FbdGuKo7RRBVCT8Z4VkAViml1iilIgAeADCnsMPKj/pw0HZ7w57OIo2EiKjPlPw522tCjUzL8s1zHwyEbfilKlUiP4HwaAAbLLc36sucjhKRRSLytIjMyMvoeikQEHzkoFHm7Y4e1gkTUcUr+XO2AjCkqRafPnKsucwt5ix6H2FGwgBYK11JBjTUAOBnPCs/gbDb8+X8XPg2gHFKqYMA/B7Ao64bErlKRBaKyMIdO3ZkNdBc/e6iQ8yfV2xr75N9EhEVUcmfsxNKoX99CD857wDrvlL3n7c9pud3ZjmiSvDAVUfix+ftj8bajJWxVcNPILwRwD6W22MAbLauoJRqVUq16z8/BSAsIkOcG1JK3amUmqmUmjl06NBeDDs3/1m0Gf9+a2Of75eIqA+V/DlbKZWS7S3FjHBf7J+oL+0zqAEXHzmu2MMoKX4C4TcBTBaRCSJSA+BCAI9bVxCREaJ/rBaRWfp2d+V7sLm65cKDzZ+//q9FWL+LtcJEVLFK/pydSKQGmaVYIxwKMhAG+DU6VbaMgbBSKgbgWgDPAlgG4EGl1FIRuUZErtFX+xiAJSKyCMDvAFyoSqhX2ZyDR6MmlDzUra3dRRwNEVHhlMM5O6FUSgDqln3tm0A4/U5qghXbap+IdL6KRPSvzp5yLLvD8vOtAG7N79Dya+a4gZi/Wkt4uLXuISKqFKV+zlbw1xqt2KUJzAgTVb6q+bj7h08fZv789Htb8OzSrUUcDRFR9dJqhO3LilUa4SXMjDBRxauav/L+9WEcNm4gAOBvr32Iq//+VpFHRERUnRLKpUbYpRK12BnhcKBq3iJ9KaGKR6K8qaq/8j9fMrPYQyAiqnoJvxnhvhlOWuFQsUdQGoqdmScqpKoKhAc0hIs9BCKiqpdQqTXCbrFWX0yx7CXEjLANE8JUiarqr9x5Uo3EEkUaCRFR9VIuXSPcgl5n1rivhXmxHADOsEeVraoCYQC47ZOHmj8//DYn1yAi6mvKpUbYLegtdkaYF8sRVb6q+ys/fcZw8+c31u4u4kiIiKqTe41w6WWE2T6NqPJVXSAcCgbwl0u1i+YeeWcTtrd2Y9X29iKPioioemgTamQOMov9lTy7RhBVvqr8Kz95WjIrPOe2/+GUX8/FlpautOvH4gl09MT6YmhERBVPa5+WeT0p8jtUoNgpaSIquKoMhK22tGjTLXdG4mnX+fq/FmHGDc/21ZCIiCrW3s4IFqzd7SvbW+w+wmTHphFUiao2EH72K8fbbnt1kHjs3c0A2EyciKi3Lr3rTQBA3Mf5lGFwabj06PE4YsIgfPKIscUeClHeVW0gPGVEM647c6p5+4Lb52d8TDzBQJiIqDfe39wCAEj4OJ8yI1wahjbX4p9XH4UhTbXFHgpR3lVtIAwAYwbWmz93ReO4/uHF2N7WnXb9aJyBMBFRbxglETEfgTDjYCIqtKoOhAc21Nhu379gA256clna9SNxTsBBRNQrenDr5xs2BsJEVGhVHQiPGlCfsszr3BxjIExE1CtGIwZfGWFWCRNRgVV1ILzPwNRA+Ln3t+KXz67A9rZutHZHbfexNIKIqHeM4DaeyJxYYPcyIiq0qg6EQ8EAfv3xg2zLuqMJ3PrSKsy68UWc/ptXbPdFmREmIuoVySIjzIvliKjQqjoQBoALDh2D7549zfW+LS3d2LC707z93qaWvhoWEVFFMkJb1ggTUSmo+kAYsM805/T1BxeZP3/+3rf7YjhERBXLyPLGfJSa+ZmGmYioNxgIA2iuC6W9b2d7j+32j/7zPnpi6WehIyIiD1l0jSAiKjQGwgD61YUBAFNHNOPfnzvadt+ujojt9l//txaLNrRAKcWZ5oiIsmTkeP3UCBMRFRoDYQA1oQDuvvxw/P2KI9C/Pmy7r6UrmrJ+TyyObz/yHiZc/1RfDZGIqCIEAsaEGrz4mIiKj4GwbvaUYRjaXJsSCLtp647h/gUbzNtLN7egK8JyCSKiTMyL5cqkHWVDTbDYQyCiAkpfHFul+tVnfkraLP2F93ZGcPbvXsXZB47EbZ88tJBDIyIqe8YFcOVSGvHGt0/2dWEfEZUnBsIOtSHt03//+rBrWQQAfOvf75k/79ZriN9dv9dzuz2xOGJxhcZaPuVEVL0CJXix3C//30GYNLTR9b7muszfEhJR+WJU5mLRDaehoSaIF5dtQzAQwPH7DUEsrvCZu9/EG2t329Zt644BAEJBwe9fXIlPzNoHw5rrUrZ5we3zsXRzK9bdfHafHAMRUWkqvRrhjx02pthDIKIiYY2wi/71YYSDAZyx/0icOn04akNBNNaG8M+rj0pZ18gIf7irE796/gN86f53XLe5dHNrQcdMRFQOjNbAJZQQJqIqxkA4S3defJjt9uV3vwkACOnf9+12tFsjIqKkAOfIIKISwkA4S6fNGIHzDxmdsty48KM7mvp13xtrdhV8XERE5UDASJiISgcD4RxYu0Y49cTi2NLShf/71yJ0R7WWajvbmSUmIgKSpRFERKWAF8vlIOBxJt/W2oOjfvpfAMDsKUNxzoGjbH0olVJm+yAiomrjPH9ed+ZUzFu5o0ijIaJqx4xwDm74yAzz52tOmJR2vR69TEIheVVIJJ5aOrG9rRs9MU7IQUTV55oTJuHeK48s9jCIqEoxEM7B6AH1+Oop+wEAwsH02d35q3dhe1s3Xl+TbLkWiaUGwrNufBHX3ufebYKIqJJEXZIBRETFwtKIHBkn83Aw/WeJf7+9Ef9+e6NtmTMQNrbz/Pvb8jxCIqLSU0oTaRARMSOcozP2HwEAOH3GCCz+wWkY2lwLADhhv6Gej/vKP9/Ftx5ajIT+ZtAVdS+JiMUTzJwQUcUxzms/veCAIo+EiIiBcM72H90f624+G1NGNKNfXRiDG2sAALMmDPJ83LyVO/HPhRsw8dtP4bK7FpidJZxO/NXLOPiHz5m3316/B2t2tOfvAIiIiiCWULjy2Am4aNbYYg+FiIilEfkyuEkLhLsi/i96e3nFDmxr6TFvv7+5FcGAYMqIZmzY3WVb94Lb5wMAp2gmorIWiyuEPErKiIj6Es9GefKbTxyMr526H+YcPCqrx51766vmz2f9bh5O/+0r6OiJ5Xt4REQlIZZImDNxpnPbJw/17MhDRJQvDITzZFhzHb508mRMHt6Muy8/3HWdH5+3v69tzbjh2bT3pSulICIqdYmEQkIBIY9uOwBw9oEjcd2ZU/toVERUzRgIF8DsKcOw+AenpSy/+MhxuPWTh2S1rYTjCuup33sGTy7e0qvxAcCKrW3Y2d6TeUUiojyJJjJ32yEi6ks8GxVIv7owjtAvnHvhayfg+a8eDwDoXx/OajudLhng59/f2uvxnf7bV3Dyr+b2ejtERH7F4toH+2CG0ggior7Ci+UK6P7PHom4Urbsh1sLzbsuPxyX3/Wm6zbau2OYu8I+/agCsHJbG55ZshW/ev4DXHDIaPzq4wdlPXVzS1c0q/WJiHrDKO2qDwczrElE1DcYCBdQICAIwB6cHjxmQMp6Xm8K7T1RfOG+t23LHnt3Mx57d7N5++F3NuEHc2Zg4+4ujBlUj3512WWdiYj6QhcDYSIqMSyN6GP9G8Ip9cNeedxTfv2Kr+22dcdw1u/m4cAfPIcbHltiLu+MxPDO+j25DJWIKK+MjHBdDQNhIioNDISLoF9dGH+8+DBMGtoIwL1cIlsL1+02f/7bax+ipTOKf7z+Ib72z0U4//b52N0RMe9XilOcElHf64poF8sxI0xEpYKBcJGcPmME9h/dHwBQG079Nbz0f7Oz2t6XH3jXdvub/16E7z66BM8s1S6s6+iJYdGGvfjGvxbhlZU7Xbfx7oa9ePq93nekICJyY5RGNDAjTEQlwlcgLCJniMgKEVklItd5rHe4iMRF5GP5G2Ll+sl5++NnHz0Ah+wzIOW+CUMae7XtD3d12m4f9/OXMOe2/+Ffb23EpX9dYC5fv6sT0biWpTnvtv/hc/fa65HLTSKhsGxLa7GHQVRUpXrONgLhOmaEiahEZLxYTkSCAG4DcCqAjQDeFJHHlVLvu6z3MwDpZ4Mgm+a6MD5x+FgAwHfPnoa5H+zAFcdOwNaW7hy2FUJbd3JGukgs4etxx//iJZwybZg5DkALJgM5tDdq7Y6iJhgo6pvcHa+sxs+fWYHHrz0GB7pcmEhU6Ur5nN0V0c5RLI0golLhJyM8C8AqpdQapVQEwAMA5ris90UA/wawPY/jqxpXHjcRf7/iCMyeMgwXztKC0m+cPgUn7DfUXOfN75yCdTefbd4+dt8h5s/WIBgA1uzs8L3vF5Ztx2fvWWjebu3Ora3agT94DmfeMi+nx+bL4g0tAIBNe7qKOg6iIirZc7bZNYKlEURUIvy0TxsNYIPl9kYAR1hXEJHRAM4HcBIA9/mFtfWuAnAVAIwdOzbdaqT7won74gsnAmt3dmBIUw2aHW3R/njxYZ7TMedq895u1IQCaKhJvjwWrN2NSCyBYycP8XikNtZMdndEsKczgklDm3o9ViejlTIvB6QqVrLnbF4sR0Slxk9G2O07cmec8VsA31JKpU6DZn2QUncqpWYqpWYOHTrUa1WymDCkMSUIHj2gHo21IfzhU4fi9k8dmtN29x3WhItmpb65GW3YVm5rw20vrYJSCh//42v49F/e8LVd57TQTufd9j+c/Ku5+M3zH+C11btyGns6ZiDMSJiqV8mes5kRJqJS4ycjvBHAPpbbYwBsdqwzE8AD+sxmQwCcJSIxpdSj+Rgk2S3/8RlmwHfmASN9P27ayH62C8kOGjMArWlml4slFE79jdbD2DmzndO6nR0Ih5KfqX70xPv4/jnT09YZr9+tXch3y4srccuLK7HmprNc143EEggGJKvpWEWPARRzwlS9SvaczZnliKjU+MkIvwlgsohMEJEaABcCeNy6glJqglJqvFJqPICHAHyeQXDh1IWDqA3Z30ju/+yReOKLx2LFT87AohtOc33cT86bgeU/PsO8/dVTJ2Nba+YL8xZYehTPufVVdEfj+OWzK3DETS8AAGb/8mUcc/N/zXXunr8Ox/38JfzsmeW+jue2l1a5Lt/vu0/j6r8vtC1bsbXNuw8yM8JEJXvO7ozEEAwIwsHsL8YlIiqEjIGwUioG4FpoVxYvA/CgUmqpiFwjItcUeoDkz1GTBmP/0f1RGwqif30Yq286C6tuPNO8f/51J+GwcYNQFw7i1OnDcfx+QzFmYAM+N3tSVvtZtLEF598+H7e+tArbWnvwxGJnokmzaW8X/vDyasQdZRLWiT0Mcz9In3F+YVnyOp431+3G6b99Bf94/cO06xtvr+nGRVTpSvmc3RVJoD4chAgDYSIqDX5KI6CUegrAU45ld6RZ97LeD4t6SysnECz87ilIJBSG9asz7/vTJTPNn0+eNhyPX3sMPnLr/8xlJ+w31AxOJw5pxI72HltXCmt5xbX3veM5jvbuGEJBwdqdHdh/dH+8sSa1Jjjg8qboDKABYNGGvQCA7z22FBcfNd5crpTCv97aiNOnjzDfYJ9dui3nNnBE5a5Uz9ld0Th7CBNRSfEVCFP5GtJUm3GdaSP7YeLQRqzZoXV8uPvyw3H139/C4eMH4bPHT0RPLI627hg+f+/bWLB2d4at2bV2R/G9x5bg5RU78Mo3TsS8VS6z2jliVaUULrsrOenH1pZuDGgI4ydPLnPdx4K1u/HNhxbjm1iMcw8aZS7visbRWMuXOFGp6I7GUV/DCU2JqHTwjEQIBwP479dnm7dFBHdeMhOfPX4iAKA2FMSQplo8ePVRuOXCg7PadktXFK/qUzof/4uXcN8b61PWWbB2N97b2IKbnlqGaDyBl1ZsxzzLNNCzf/lSykx54697ErvaewAAq3a0m8s7e5KZ686I5wXxRNTHuiJxNIT54ZSISgfPSGRqrAni44fv47nOnINHY9SAeryzfg9uesr9YrjZU4biqImD8dOnl+PFZdsRy9BODQDOvfVVAMD9C9anTA7SHU3g9N++kvKYw37yAr5yymT89oWV5rIXlydrirsicby8Yjtu/e8q/PPqo/DdR5dg/9H98Pz723DDuTN6PY01EWWnKxpHHVunEVEJYSBMpqU/OiPzSgAOHz8IB4zuj5ueWo79hjdhzY4OxBIKnzxiLK47cyr61YURTyj89Onl+M0LH2Q1BmcQnIk1CHbqisbxxfveQVtPDFtaunD/gmQ2+oOtr+PVb52EQECglMLtL6/GWQeMZHBMVEBdkTjqw/wikohKB89IlJO6cBB/umQm/nHFEfjiSZMBADeetz/66RN/BAOCn3/0wIzb+fzsSZg1flDa+2tD2b9Er9JLOj52x3y06aUSV/7N3oZtc0s3Jn77KYy/7klMuP4p/OLZFfj0n9+AUgrReAIrt7WhxdFjedmWVpz7+1fR3uMvWN/R1oOzfzcPf3h5dcq2chFPKHy4qwM/eHwpYvFEr7dH1Ne6onH2ECaiksKMMOXs1OnDAQBfPmUyvnzK5JT7P374PphzyCjUhoL4zfMfYPnWVvzhU4dh4refwtGTBuPgfQbgCyfuiz++ssbWq9jqpf+bjaMtPYoB4IkvHosvP/AOVu9wn8558jBt6mZrdnn51raMx7NpbxcmXP8UDhzTH4s3tgAAbv/UoThLn7Tk5qeX471NLXhz7W6cOHWY57a6o3Gc/ttXsLsjgqWbW/HG2l24+/JZGceQztLNLTj7d6+aty84dDQOHDMg5+0RFUNXNM5Z5YiopDAjTAVlTPzx1VP3wx8vnolAQLDmprNw75VH4JtnTEVjbQhXHz8R//7cUVh389m4/JjxtscP71eHE/ZLTu06ekA99h/dH9edOc223oxR/XDfZ4/ArAmDcPaBIzF1RHPOYzaCYAD4/L1v4zN3v4nx1z1ptpQLeUwG8PiizTjoh8/hz/PW2Homv7xiB95ZvwePL8qtv/GTi7fYbn/k1v/h/c2tKevFEwrfemgxVngE/i8u24Y9Lv2ciQpNK41g/oWISgcDYepzgYDYGuo31oZw2DitPOL6M6fh6hO00oZ/f+4oBAOCi48cZ64775snAgCG97O3hfvHFUfg6ElD8ODVR6GhJoSnv3yc7/F8/dT9PO//r+UCPCA5jfPezgi+/ch72N6WnJ3vmw8tQktXFL98LrU2+vzb5+NL97+DrS2ps/nt7Yxggz71dEtnFGt3atnuc3//Kr7/2JKUrhkAcNbv5plT1gJAW3cUD7+9Ef9cuCFlRj7Dxj2duOJvC3H8L17yPGbruLKxbmcHIjGWbZA7tk8jolLDj+ZUUmpCAVx/5jRcfvQEjOivTQJy4tRh+Pqp++FTR44zJ8g4cMwA/POqI/Hi8u34f4eNwcDGGtt2RATTRvbDsi2t+Nqp++HVlTuRUAr/uPII/GvhBnzvsaUAtBn3Rg2ox6kzhuOM384zHz97ylC8vMJ9xruv/PMdXHvivvjBf94HALMl3O8vOgTdUXsQOH1kPwxuqrG1g1uxrc08NgB4deVOfPovbwCAOWYA+MbpU/Depha8t6kF6SzasBdHTBwMAPjOI0vMjHOH3joukVBo7Y4iGBA014XNTHFbdww9sXjKVN1Wxrj+fsUsHDd5aNr1DHs6Ipj9y5cxcWgjXvjqCZzMhFJ0RlgjTESlRZTK3NqqEGbOnKkWLnTPWhHlWzyhEBDYMtGdkRgaapKfBRdt2IvdnRFcftebeOKLx+Kc37/qtqmsrP3pWdjR3oNZN75oW/7JI8bivjfW467LD8fld73pe3vrbj4b972xHt9+5D1z2fIfn4G6cBDH3PxfbNrbBQAIiJYl/8ZDi81lXzhxEl5bvQtvr98LAHj9+pNtAbnTr55bgd//dxUALRO/z6AGAFqWOJZQKZO1XHXPQjz3/jYAwF2XH44Tp3jXUZc7EXlLKTUz85qVobfnbKUUJlz/FL500r742mlT8jgyIqLM0p2zmRGmqhB0yU5ag2AAOGifAQC0YBMAVvzkDHznkSXoXx9GMCC485U1KduoCwdSssA//9iB2LC7E7OnDIOIYFhzHS45ahw27eky+xwbWeRsguDffOIgAFoQPWVEMz76h/kAgEN//Dy+dPJkM+AFgIQCPvnnN2yPv+2l1bbbL63Yjn+/tRGThzfjzP1HYGBDDf65cD0uP2YCJg1tsnXH+Mzdb+L5r50AADj65v+iMxLH7y86BN9/bAlu/uiBOH3GCDMIBoD3N7di9n5DbR88DM8s2YJ9hzWhNhREPKEw3qNlXSSWQI2lc8jqHe342/x1+N450xEO8iv2ctKjl8ywjzARlRJmhIl82tMRwSE/fh7HTR6CunAQJ00dhotmjUVPLI4p330GgFYeYZ3m2elv89fhhseXZr3vfnUhLP7B6bZl81ftTAl28+XaE/fFrS+tsi2rCQaw+AenYer3nklZf+F3T8HMn7xgW/ajOTNwyrTh2NsZxfRR/QAks4JWs8YPws72Hlx+7ASzHty63qvfOhFjBjZgb2cEV/39LSxYuxt/umQmTp0+HFtaurB8a1tRss/MCGfH+Pu54dzpuPyYCXkcGRFRZunO2QyEibIwf9VOHDx2QEo2ec2OdozsX++rNdSvn/8Az7+/DeccOBLzV+/ERw4ahVc+2In2nhg+ecRYXP33t8x1Jw5txD+uOAJ14SAGOeqgAeC11bvw7Ufew9qdHRjWXItHvnAMzrplXsa+xZ+fPQm3v7zac53eqgkGENH7HdcEA5gyohmXHzMeX3twkefjTp0+HOGg4Kn3tprL5hw8Co+9a++4EQqIOWvhKdOG4XcXHYL6cBC/eu4D7OrowU8vyNzHujcYCGdn894uHH3zf/Gzjx6ATxw+No8jIyLKjIEwUZmY+8EOzBjVD509cYwd3JBx/Vg8gdtfXo2LZo3F0OZa7OmIYO2uDqzY2obrH34Pp0wbho17uvDoF47Bw29vwvB+tTh52nDc8NgSROIKgxrDeG9TKz5y0Cg01YZwzT+Sgfi1J+6L4f3r8L1Hl/ge/+IfnIazfzcPG3Z3ZV5Z11gTNC/wy9WgxhpbyzoAOGXacIzoX4srjp2Iv81fh6+fth/CwQB2tvdgzMDMz60XBsLZWb2jHSf/ai5uufBgzDl4dB5HRkSUGQNhoioUTyjX+mgviYTCfQvWozMSw1XHTwIAtHRF0d4Tw12vrkV7Twwf7urEa2t24ZVvnIj+DWHc9tIq3PnKGtx58WE4bcYIKKXw1/+tQzSewM1PLwcATBraiNU7OjBucIPZDu7Pl8zEmEH1mDK8OaVkws0REwbhjbXuk6/4NXPcQCz8cA++c9Y0PL5oM/5y2UwMa05/0WA6DISzs3xrK8747Tz84VOH4kx9khoior7Ci+WIqlC2QTCg9Xn+tKV3MwD0rw+jf30Y3z1nuutjvn3WNHz7rOQkJyKCK47V6kC7InEMbqrB+YeMxv0L1uOSo8bjnfV7sXlvF07RZycEtIsMhzbVYvaUoVizswMD6sOorwkiGlNoqgtB9LH98tkVWLRxL+at3IlzDxqFhnAQHz98H/PiwUwWfrgHAHDjU8sAAM8s2YpLjhrv9+mhHEVjWtKFFzkSUSlhIExEBfVVy4QlRob5qEmDU9b7+Mx9zJ8nDW1K3uEojf6/07XWW9vbum2Z3LU/PcvsUvHIOxvRFUngjbW7zNriCw4djZH961K6Z/SvD+dwVJStSFwrfQmHGAgTUelgIExEZclZzmBt1Xb+IWMAaK3mbrnwENt6lx8zAaGAoLUrhpED6pih7CMRMyPMiVaIqHQwECaiqmJMBDKgIbULBxVO1NJBhIioVPCMREREBWcEwszAE1Ep4RmJiIgKjoEwEZUinpGIiKjgInGtRrgmxBphIiodDISJiKjgojFmhImo9PCMREREBcfSCCIqRTwjERFRwTEQJqJSxDMSEREVnFkjzECYiEoIz0hERFRwZkaYF8sRUQlhIExERAXHi+WIqBTxjERERAVnZIRDAWaEiah0MBAmIqKCi8QVaoIBiDAQJqLSwUCYiIgKLhpPIBxkEExEpYWBMBERFVw0nkA4xLccIiotPCsREVHBaRlhvuUQUWnhWYmIiAouElPsIUxEJYdnJSIiKjjWCBNRKWIgTEREBcfSCCIqRTwrERFRwTEQJqJSxLMSEREVXGckjvqaYLGHQURkw0CYiIgKbk9nFAMbwsUeBhGRDQNhIiIquJbOCPrX1xR7GERENgyEiYio4JgRJqJSxECYiIgKqjsaR1c0jgEMhImoxDAQJiKigmrpigIABjSwNIKISgsDYSIiKqi9nUYgzIwwEZUWBsJERFRQezojAICBzAgTUYnxFQiLyBkiskJEVonIdS73zxGRxSLyrogsFJFj8z9UIiLyo9TO2cwIE1GpCmVaQUSCAG4DcCqAjQDeFJHHlVLvW1Z7EcDjSiklIgcCeBDA1EIMmIiI0ivFc/ZePSPMGmEiKjV+MsKzAKxSSq1RSkUAPABgjnUFpVS7UkrpNxsBKBARUTGU3Dl7r36xHNunEVGp8RMIjwawwXJ7o77MRkTOF5HlAJ4E8Bm3DYnIVfrXcAt37NiRy3iJiMhbyZ2z93RGUBMMoD7MKZaJqLT4CYTFZVlK9kAp9YhSaiqA8wD82G1DSqk7lVIzlVIzhw4dmtVAiYjIl5I7Z+/tiGJAQxgibkMjIioeP4HwRgD7WG6PAbA53cpKqVcATBKRIb0cGxERZa/kztl7uyK8UI6ISpKfQPhNAJNFZIKI1AC4EMDj1hVEZF/RP+qLyKEAagDsyvdgiYgoo5I7Z+/pjPJCOSIqSRm7RiilYiJyLYBnAQQB/FUptVRErtHvvwPARwFcIiJRAF0APmG5EIOIiPpIKZ6zd7b3YL9hzYXaPBFRzjIGwgCglHoKwFOOZXdYfv4ZgJ/ld2hERJSLUjpnR+MJrN/ViTNmjOiL3RERZYUzyxERUcF8uKsDsYTCvsOaij0UIqIUDISJiKhgLrzzdQBgIExEJYmBMBERFczOdm1WuRmj+hd5JEREqXzVCBMREeUiFBBcfcJEBAPsIUxEpYcZYSIiKohYPIFYQqE2xBnliKg0MRAmIqKCiMQTAICaEN9qiKg08exEREQFEYlpgXAtA2EiKlE8OxERUUH0mIEwSyOIqDQxECYiooLoiTIjTESljWcnIiIqiJ5YHABQG+ZbDRGVJp6diIioIIzSiJog32qIqDTx7ERERAVh1giHWSNMRKWJgTARERWEWRrBGmEiKlE8OxERUUH0sH0aEZU4np2IiKggkl0jWBpBRKWJgTARERUEZ5YjolLHsxMRERVET5Q1wkRU2nh2IiKigkh2jeBbDRGVJp6diIioIDjFMhGVOgbCRERUEBF2jSCiEsezExERFcSoAXU4Zt/BnFmOiEpWqNgDICKiyjTn4NGYc/DoYg+DiCgtfkwnIiIioqrEQJiIiIiIqhIDYSIiIiKqSgyEiYiIiKgqMRAmIiIioqrEQJiIiIiIqhIDYSIiIiKqSgyEiYiIiKgqMRAmIiIioqrEQJiIiIiIqhIDYSIiIiKqSgyEiYiIiKgqMRAmIiIioqrEQJiIiIiIqhIDYSIiIiKqSgyEiYiIiKgqMRAmIiIioqrEQJiIiIiIqhIDYSIiIiKqSgyEiYiIiKgqMRAmIiIioqrEQJiIiIiIqhIDYSIiIiKqSr4CYRE5Q0RWiMgqEbnO5f5Pichi/d98ETko/0MlIiI/eM4mIvInYyAsIkEAtwE4E8B0ABeJyHTHamsBnKCUOhDAjwHcme+BEhFRZjxnExH55ycjPAvAKqXUGqVUBMADAOZYV1BKzVdK7dFvvg5gTH6HSUREPvGcTUTkk59AeDSADZbbG/Vl6VwB4OneDIqIiHLGczYRkU8hH+uIyzLluqLIidBOqsemuf8qAFfpN9tFZIWfQToMAbAzh8eVg0o+NqCyj4/HVr5yPb5x+R5InvCc3Xcq+diAyj6+Sj42oLKPL6/nbD+B8EYA+1hujwGw2bmSiBwI4M8AzlRK7XLbkFLqTvSyFk1EFiqlZvZmG6Wqko8NqOzj47GVrwo8Pp6z+0glHxtQ2cdXyccGVPbx5fvY/JRGvAlgsohMEJEaABcCeNwxqLEAHgZwsVLqg3wNjoiIssZzNhGRTxkzwkqpmIhcC+BZAEEAf1VKLRWRa/T77wDwfQCDAdwuIgAQq9RPIkREpYznbCIi//yURkAp9RSApxzL7rD8fCWAK/M7tLQquc1PJR8bUNnHx2MrXxV3fDxn95lKPjagso+vko8NqOzjy+uxiVKu11AQEREREVU0TrFMRERERFWpbALhTFOGljoR2UdEXhKRZSKyVES+rC8fJCLPi8hK/f+Blsdcrx/vChE5vXij90dEgiLyjog8od+upGMbICIPichy/Xd4VKUcn4h8VX9NLhGR+0WkrpyPTUT+KiLbRWSJZVnWxyMih4nIe/p9vxO9mJb84Tm79P42nHjOLuvjq5jzdtHP2Uqpkv8H7YKP1QAmAqgBsAjA9GKPK8tjGAngUP3nZgAfQJv+9OcArtOXXwfgZ/rP0/XjrAUwQT/+YLGPI8Mxfg3AfQCe0G9X0rH9DcCV+s81AAZUwvFBm2hhLYB6/faDAC4r52MDcDyAQwEssSzL+ngALABwFLS+vE9DazNW9OMrh388Z5fm34bLMfKcXYbHV2nn7WKfs8slI5xxytBSp5TaopR6W/+5DcAyaC/mOdD+YKH/f57+8xwADyilepRSawGsgvY8lCQRGQPgbGh9SQ2Vcmz9oP2h/gUAlFIRpdReVMjxQbtotl5EQgAaoPWcLdtjU0q9AmC3Y3FWxyMiIwH0U0q9prQz7D2Wx1BmPGeX4N+GFc/Z5Xt8uoo5bxf7nF0ugXC2U4aWNBEZD+AQAG8AGK6U2gJoJ14Aw/TVyu2YfwvgmwASlmWVcmwTAewAcJf+NeKfRaQRFXB8SqlNAH4JYD2ALQBalFLPoQKOzSHb4xmt/+xcTv6U6+vEFc/ZZXdsFXvOBqrmvN1n5+xyCYR9Txla6kSkCcC/AXxFKdXqtarLspI8ZhE5B8B2pdRbfh/isqwkj00Xgva1zR+UUocA6ID2VU06ZXN8et3VHGhfMY0C0Cgin/Z6iMuykjw2n9IdT6UdZ1+rmOeP52ztIS7LSvLYdBV7zgaq/ryd93N2uQTCvqYMLXUiEoZ2Qr1XKfWwvnibntKH/v92fXk5HfMxAD4iIuugfQV6koj8A5VxbIA23o1KqTf02w9BO8lWwvGdAmCtUmqHUioKbbaxo1EZx2aV7fFs1H92Lid/yvV1YsNzdlkeG1DZ52ygOs7bfXbOLpdAOOOUoaVOv3rxLwCWKaV+bbnrcQCX6j9fCuAxy/ILRaRWRCYAmAytELzkKKWuV0qNUUqNh/a7+a9S6tOogGMDAKXUVgAbRGSKvuhkAO+jMo5vPYAjRaRBf42eDK0WshKOzSqr49G/imsTkSP15+USy2MoM56zS/hvg+dsAGV8fKiO83bfnbPzddVfof8BOAvaVburAXyn2OPJYfzHQkvTLwbwrv7vLGjTnL4IYKX+/yDLY76jH+8KlMkV6wBmI3kFcsUcG4CDASzUf3+PAhhYKccH4IcAlgNYAuDv0K7GLdtjA3A/tLq5KLQswRW5HA+AmfpzshrArdAnIOI/378HnrNL4Dh8HCfP2eV5fBVz3i72OZszyxERERFRVSqX0ggiIiIiorxiIExEREREVYmBMBERERFVJQbCRERERFSVGAgTERERUVViIExVS0Rmi8gTxR4HERFlxnM2FQIDYSIiIiKqSgyEqeSJyKdFZIGIvCsifxSRoIi0i8ivRORtEXlRRIbq6x4sIq+LyGIReUSfkx0isq+IvCAii/THTNI33yQiD4nIchG5V5+RhoiIcsRzNpUTBsJU0kRkGoBPADhGKXUwgDiATwFoBPC2UupQAHMB3KA/5B4A31JKHQjgPcvyewHcppQ6CNqc7Fv05YcA+AqA6QAmAjimwIdERFSxeM6mchMq9gCIMjgZwGEA3tQ/+NcD2A4gAeCf+jr/APCwiPQHMEApNVdf/jcA/xKRZgCjlVKPAIBSqhsA9O0tUEpt1G+/C2A8gFcLflRERJWJ52wqKwyEqdQJgL8ppa63LRT5nmM9r7nCvb4667H8HAf/JoiIeoPnbCorLI2gUvcigI+JyDAAEJFBIjIO2mv3Y/o6nwTwqlKqBcAeETlOX34xgLlKqVYAG0XkPH0btSLS0JcHQURUJXjOprLCT1JU0pRS74vIdwE8JyIBAFEAXwDQAWCGiLwFoAVaTRoAXArgDv2kuQbA5fryiwH8UUR+pG/j//XhYRARVQWes6nciFJe304QlSYRaVdKNRV7HERElBnP2VSqWBpBRERERFWJGWEiIiIiqkrMCBMRERFRVWIgTERERERViYEwEREREVUlBsJEREREVJUYCBMRERFRVWIgTERERERV6f8DiU2dzkps2TEAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " FN ROI = 048ns_image_1543571117118_clean.nii.gz\n", + "048ns_image_1543571117118_clean.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADDCAYAAAAya0IYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADmTUlEQVR4nOz9eZRkeX7VCd5n5m775u6xZFZWSVUlqdRSqZHQIDUSh0bdLI0AQdNnYCQaUAONxDAwbDNsQ7P1oYEGWjM0h6U4MFI3jFiafYdmWEcIJLGqKBWoisrKqszIiHB3W57ty5s/3D8/v/bCIzMyM7LSs+J7z4mT4eZmz977/Z5Zxr3f+73frCgKBQKBQCAQCAQCgUAgEAi8EVTe6RMIBAKBQCAQCAQCgUAg8O5DCAqBQCAQCAQCgUAgEAgE3jBCUAgEAoFAIBAIBAKBQCDwhhGCQiAQCAQCgUAgEAgEAoE3jBAUAoFAIBAIBAKBQCAQCLxhhKAQCAQCgUAgEAgEAoFA4A0jBIXA5xxZln00y7JveKfPIxAIBAJXyLLsU1mW/YQnfG6RZdkXv8n3edOvDQQCgUAgcLMQgkLgc46iKD5cFMXff6fP4/WQZdnPybLsxSzLplmW/cUsy47f6XMKBAKBz2dkWVbPsuyPZ1k2zrLsXpZlv/qdPqdAIBC4aXjawuyTHC/+XRx4HEJQCASuQZZlH5b0RyT9PEl3Jc0k/cF39KQCgUDg8x+/VdKXSPpCSf+ZpF+bZdlPfkfPKBAIBJ5xxL+LA6+FEBQCn3O4rTbLst+aZdmfzbLsT2RZNsmy7N9kWfahLMt+Q5Zl97MseynLsp9kr/0FWZZ97PK5n8yy7NtLx/61WZa9kmXZy1mW/beuuF5Wvn5vlmWfzrLs1SzL/nCWZc3HnOZ/LemvFEXxD4uiyCX9d5L+qyzLum/PqgQCgcDNQZZlX5tl2T/Jsmx4+Z36B7Isq5We9lMuv4cfZln2e7Isq9jrf+Hld/V5lmV/K8uyL3zCt/75kv77oijOi6L4mKQ/Kum/eTpXFQgEAjcHWZZ9WZZlf//ye/ajWZb9dPvd38+y7L+1n/+bLMv+8eXf/+Hlw/8qy7I8y7L/U5Zl35Bl2WeyLPuNl9/Jn8qy7L9+s8e75nTj38WBxyIEhcBNwDdJ+l8lHUn6F5L+li7uzRck/XZdKKLgvqSfJqkn6RdI+o4sy75aki6rWL9a0k+Q9MWSflzpfX63pA9J+qrL378g6Tc/5pw+LOlf8UNRFJ+QtLp8fSAQCHy+YyvpV0m6JenrJP14Sb+09JyfKelHSfpqST9D0i+UpCzL/ktJv1HSfyXptqR/JOm7X+8Nsyw7kvQe2Xfv5d8//OYvIxAIBG4esiw7lPRXJP1tSXck/XJJfzLLsi99vdcWRfGfXv71K4ui6BRF8acvf35OF9/ZL0j6VkkfeYvHc8S/iwOPRQgKgZuAf1QUxd8qimIj6c/q4h+gv6soirWkPyXp/VmWDSSpKIq/VhTFJ4oL/ANdfBH/2Mvj/GxJ/++iKD5aFMVM0m/jDbIsyyT9Ykm/qiiKs6IoJpL+B0nf/Jhz6kgalR4bSQolNhAIfN6jKIofKIrie4ui2BRF8SldCLuPiLSX36eflvT/lPQtl49/u6TfWRTFxy6/1/8HSV/1BC6FzuV//bs3vncDgcDnI360Lr7zfldRFKuiKP6/kv6qrr5H3yz+u6Iolpf/Rv5ruvi38dNA/Ls48FiEoBC4CXjV/j6X9LAoiq39LF3+QzPLsm/Msux7syw7y7JsKOmn6EKNlS4qWy/ZsfzvtyW1JP3ApbVsKOlvXj5+HXJduCAcPUmTJ72oQCAQeLfisvXsr14GI451IQrcKj3Nv2Nf1MV3sHSRf/D/su/aM0mZLqpmr4X88r/+3Rvfu4FA4PMR75H0UlEUO3vsRb3+9+Rr4bwoimnpeO953JPfIOLfxYHHIgSFwLsGWZbVJf05Sb9X0t2iKAaS/rou/qEqSa9Ieq+95H3294e6ECc+XBTF4PJPvyiKjq7HRyV9pb33ByXVJf27p3EtgUAgcMPxhyT9kKQvKYqip4sWhqz0HP+O/QJJL1/+/SVJ327ftYOiKJpFUXzPa71hURTnuvge/0p7+Ct18X0cCAQCn094WdL7PHtGF9+jn738+1QXhTDw3BMc8yjLsnbpeHwvv5njOeLfxYHHIgSFwLsJNV18eT2QtMmy7Bsl/ST7/Z+R9AsuQ25asnyESwX4j+oic+GOJGVZ9kKWZf/FY97rT0r6pizLfuzll/Nvl/TnL1slAoFA4PMdXUljSXmWZf+RpP/zNc/5v2dZdpRl2fsk/QpJ9N3+YUm/4TIVXFmW9bMs+1lP+L7/i6TfdHnc/0gXrWrf+RauIxAIBG4i/qkuSP6vzbLsMMuyb9BFptifuvz9v9RF6GHrMlz8F5Ve/6qkD15z3N+WZVkty7Ifq4vMsT/7Fo8H4t/FgcciBIXAuwaXX1r/V10IB+eSfo6kv2y//xuSfr+kvyfphyX9k8tfLS//++suH//eSwvv/y7p2rCaoig+KumX6OIL9L4u/nFdDiQLBAKBz1f833TxHTvRhRh7XUjXX5L0A7r4h+pfk/THJKkoir+gixDcP3X5XfuDkr7xCd/3t0j6hC6suv9A0u8piuJvvumrCAQCgRuIoihWkn66Lr4bH+piBOPPL4rihy6f8h26CD18VdJ36eLfo47fKum7LlvLyEm4p4t/H798+fxf8haP5+cb/y4OPBZZURTv9DkEAm8Lsiz7Ml38Q7Z+GQwWCAQCgUAgEAh8XuHS4fAniqJ47+s8NRB46giHQuDzClmW/cxLq9eRLipkfyXEhEAgEAgEAoFAIBB4+ghBIfD5hm/XRcbCJ3QxR/26vt9AIBAIBAKBQCAQCLxFvG2CQpZlPznLso9nWfbDWZb9+rfrfQIBR1EUP/lyesNxURQ/syiKV97pcwoE3inE93AgEAi884jv4sDbjaIo/n60OwTeKbwtGQpZllV1MUbkJ0r6jKTvk/QtRVH826f+ZoFAIBB4BPE9HAgEAu884rs4EAh8vuPtcih8raQfLorik5cppn9K0s94m94rEAgEAo8ivocDgUDgnUd8FwcCgc9rHLxNx31B0kv282ck/SePPYmDg6JWq2mz2Wiz2agoCmVZpoODA7VaLbXbbfH7xWKh1WqlLMu02+20Xq9VFIUODg5Uq9XUarV0eHiooijS74qi0Gq10mKxSO+JMyPLsvRnt9tpu91yTqpUKiqKQtvtVtvtNr2mWq0qyzIVRaHdbvfIY+76qFQqyrIs/b1arUpSOt517+HnxB8/LserVqs6ODhI55FlWToez61UKnvH9fNhvSuVSnrder1WpVLR4eGharWaJKV14TjValW1Wk2VSkXr9Vq73S6dy3a71Xq91na71W63S+/ra+7gvf1n1n6326X74eDgQIeHh+n82VPe/+DgIK0t53hwcJDWZ71ep/vBwdpzvx0eHqa18ef62rO+XB+/Z31Zs/J1+mv9eL4GHNePzXX5sXitH5M1514og9+xNqwxr/N9uO4auQb+y/v458f33I9XvvbyOvAcvy4/j8edi9/3vvZ8jh+3H/5+vr/+M+ex2WweFkVx+5ED3Hy8oe9hSap22sUHP7DTqz/YfFtPLBAIBN4IFppqVSwf/R/buwNv6Ls4vocDzzLWX9TQh9tnb8ux/83wluqfnr0tx35WMNH5tf8mfrsEheu+9Pf+xZ5l2bdJ+jZJqtVq+vCHP6zhcKjT01MNh0NVKhUNBgN9+Zd/ub7ma75GX/EVX6FKpaJ/9a/+lf7tv/23iQSen59rPB7r4OBA73//+/U1X/M1+vCHPyxJevHFFzUcDpVlme7fv6+Pf/zjevDggaQrctVoNNRqtVSr1bRarZTneXq82+1qu91qPB5rNptpsVhovV6r2WxqMBioVqslgaPVaqnVaqVjbDYb7Xa7JHJcXrN6vZ76/b6Wy6Xm87kODg7SdTx8+FCbzUa1Wk21Wk31el1ZliWxAlLEtXe7Xd2+fVvValV5nms2m6XXQqobjYbW67Umk4lYa8j3er3WeDzWfD5XrVbTbrfTcDjUZrPRCy+8oPe9731qNpsaj8caj8fK81zL5VL1el3PPfecnnvuOeV5rocPH2q1WqnT6Wi1Wmk6nWo2m2k2m2m5XOrw8FAHBweJ1DcaDTUajSRSNBoNHR4earvd6vDwULdv39adO3e0Xq91//59jUYj1et1HR8fq9PpqNFoSJLOz8/18ssvazqdqtlsqtvtpvWp1Wq6e/euBoOBGo2GJpOJ7t+/r8VikcQI7oPpdKo8z9VoNPSBD3xAx8fHmk6nOjs7S0Q7yzLVajU1Gg3tdjvlea75fJ6uabPZKMsytVotNRoNLZdL5Xm+J75Uq9VEVFerlZbLpYqiUL1e12AwULPZ1Ha7TfeUr3e1Wk37j/DBfeH3xGq10mQy0Wq1SmKRdCFKbLfbdG/2ej3dunVLh4eHGo1GyvNckvbeaz6fazqdarlcar1eK8sytdttdTqdtJ8IMQcHF18leZ6n6+52u2o0GnsC4Xw+V57nifDvdru0Jy4aNRoNVavV9DlB/OJcuIdc0KvX66rX69put2kNrhMm+CxWKpUkmq1WqyRYuLhTFIXOzs5efAPffTcJr/s9LO1/FzfU0vs/+tP0/nfrP9sDgcDnJf5p8Xff6VN4K3hD/yaO7+HAs4x7/9OX6Z997Xe/Lcf+wF/8Nn3ol/6zt+XYzwr+9+J/u/bfxG+XoPAZSe+zn98r6WV/QlEUH5H0EUnqdrtFo9HQYDBIxAFSen5+rvv37+v+/fv64i/+Yr3nPe/RZz7zGd27d0/dble9Xk9ZliWicnZ2pul0quPj4+RqgLRBRCEwXgHebrfabC6mC9br9US8K5WK6vV6EgggG4gI/X5f8/k8VUibzWYinOv1WqvVKrknIPYQfcgTFWMq0bzHcrlUtVrVZrNJvzs8PNRut9NqtdJsNksCR7PZTC6M3W6XCOd2u02OA0gmj7Mul/uhWq2mdrut+Xyu5XKp5XKpZrOpRqOhxWKhdrud1pA9gjDP5/MkiHANrAXviYgB0a3X63tEEnfDfD7XYrFQr9fT8fGxlsulttutZrNZElaoriNWcO2s8263S4JAp9NRtVpN50NFnrWCXC4WC+V5ruPj40Ro2VuINnsHUT08PNR6vU7uF3dYbDYbrddrVavVtNe4Og4PD5VlWdofyC3P5/5YLBaaTqd7wgZkHPLL61arVSLyXN9yuUzXeHBwoE6nozzPk/DT6/XUbDa1Xq/TOler1T2XCp8h9g/xBWw2Gx0cHCRCz7EPDw/VarXSOa/X67Rm7qao1WpJEOGxzWaT7s3FYrHnIvHPLo6SSydBeqzb7Wo6nWqxWCR3RNn5gBunXq+nfXQngz//XYrX/R6W9r+Le9nx0w/VCQQCgWcbb+jfxPE9HAi8PTg8Wqp69462r95/p0/l8w5vl6DwfZK+JMuyD0j6rKRvlvRzHvfkarWqwWCQiNNqtUqk9t69e/rkJz+ZyOxzzz2nO3fu6Ozswg5zdHSker2eCEye5xoOh+p2u2q326pUKonE93q9RD4hTpAbCA8kw4l+s9lMpBhCA1mEvDgRkpQcD6vVKh0Pkgkxdis7ggJkETjxkpQq7lRrJ5OJ2u12IoWbzSZVW6lgVyoVtVqtRMIhZFSY+/3+Ixb7arWqxWKhxWKR1oDzhfBK0nw+T++FCAH5pXLNuVKpp8rc7/cT2fMKPtfVbDaVZdkjewTR22636dwggwglq9VKw+EwrW29Xk9r7C0BnCt7M5lMlOe5ms1map2BMHuLAeSW80Yo4LgHBwepOs95OvyaOaeiKJLws1wuJV2QYwQdhBjOi+fwGPtF9Z7rWq1WqWWANqLtdqvpdJpcBxBqF4R4f28bgMAjoPAZQsBgvxBoFotFEnRwZOAm4P12u53q9frefb7ZbJJjBcGKzxXrx3lyTB7nPHEGLZfLxwoDfs9zX7hgcV2rxLsIb+h7OBAIBAJvC+K7OBC4Afh3P+679OXf9kv1vv8+BIWnjbdFUCiKYpNl2S+T9LckVSX98aIoPvq452dZpsFgkCqg3W43WafH47FefPHF1FLQ7/f1wQ9+UKPRSOfn52o0GsmGDRG7d++ems1mchpAJjqdjjqdjiaTSSI3WZalSvlisUjEBdJ+eHiY/mBpd/KMqADpcgEAgrzb7fas/7PZLFn9IUgQMUgfBJdjIRI0Gg31er3kJJjNZhqPx2q326pWq+p0OsnlgZiBsIIlnnPkv96W4ZVc3le6Io7Y/hEKeA6kGSGC1yAqIK6wRvP5PLk8IL6c02Kx0GQyUavVSu/B6zhnzs9dJJyH9b5rNpspz/N0HpwL4pF0Jf4gfIxGoyT4HB4eJiKPMCEpOQlcUEC84X5hX736znERPXBncL5cz3a7TfuHeDObzfb2AmfEbDZLAhrXDGl38Yj95fx4vWcd8BzWnFYPb7fwvBOENu5Xjo8bBNcI9zl7yP2eZVkSRny/WY9araZms5ncFtVqVa1WS8vlci83wdsUOG/WjawVFwzcfYCoxOfP/7ybHQpv9Hs4EAgEAk8f8V0cCAQ+3/F2ORRUFMVfl/TXn/C5e1XMPM8TMV6tVjo7O9OLL76oo6Mj3b17V71eTy+88EIiIlj+qa7SKnHr1i11u13NZjPtdju1Wi0dHR1pOBymSjqkAULNMXhvr+xKV0QFwghJhkw3Go1EnsvhdE5g6b/3NgLIjqQ9NwGklnYAQip5Li4Br85SMYe0UjGncuwVfYgbbRJ5nqdWBEmPBO2R7eCECzJZq9W0XC7Te+AMcNs8osNsNkvX7q0P2PxPT08T4fR19GwACDriDOuOQOAhkfV6PZFW7gle32630/qRJ+BuA0hxs9lMVXGOg6jAunB/IMAgXrEG3rvvGQCsA3+4v9vtdhKyXKxBgCNnAXFtOBxqOp0m8k6+gztgPNSQayjvM+eGswRiLinlhSB0eSsQQhzXk+e52u12+rx7kKp/rthHXytcCny+adPhfNzpw/m6+IEw6McEvM5FEUQwv9Z3M97I93AgEAgE3h7Ed3Eg8GTI/u6R/tpXNPRTW4vXf3LgxuBtExTeCCA+vV4viQGtVktFUWgymWixWGg8Huvs7Eynp6fqdDpqtVoaDAZaLBapYitdEXFECUgWwYPNZjO5GSBDkPBer5eqqtKjJI/KMZVkKrdU6Xms2WymPnVJya3AdXpFdzqdJoLqRJUMBxwQh4eHGo/HqYqOAEOV2MUBBBZs3LQtQLDII6A9gOovpJVpGlwP1817rNfrdG6ILQcHB6kH390aq9UqOUWceHIc1s0dDoeHh5rNZimM0SdPUPGHJLuIgngBaYZse5Bfs9lMRJ293e12ab1otZEe7fX3ID8XJlzwIEyTare7HBCxEFYg5d7m4oQXUaFarero6CiJEKw7rSyEONL+gdNmNpul+4O9ZO3d3cHrXczw6j/3FPcuaDQaKQSRzx77hfOF95tOp3tuHH8On113tODq8bYWz2EgdwERirVChNhsNklk4rX87rppEi7ecQ+9y9sdAoFAIBAIBN5VuPs/f4/+5Dd/nX7qB/7eO30qgTeAyus/5e3HZrPR2dlZCo2r1+tqt9s6OTnRyclJSs2fTCYajUaJnFAtLo8zxJK92+3U7/fV6XQSUaO/nLBBSHelUlG3203J9NK+PVy6skZTvYR4QSYhb9jEJaVqPaQLYikp9bd7yj0ZDQTsQXja7baOj48TOSW0jnPlffI8T5Mvyv3oHobo1m8I33q9Ti0NXBdElAyB9Xqt6XSaJgBwnlTlPceANcOe3mq19kQX8gJoVYFAsvZMOoDkQ0JdKHCi6EGCiDYcg2kFrDOk36vbiE8QSrfG4xDxXIxWq6VOp5NcFBBzSC/rxz3kVfDDw0P1+33duXNnr92EPYPY7na75GZh8ojnMbD2CANMuHCHClkGXolHuMJR4eNHuXb2kL0ntBNxiNcTWMk1c28hcniLB8fzFhc+C3yOaC/hdQh8ZIXwes4LocwDQ9kH1of7zc8TeG6CO4TcQREIBAKBQCAQePvx6e/4kP7mrP7Uj/sTP/ZN+oK/Pnrqxw3cEIdCURR68OBBmszQbrcTGaGFYDKZ6Pz8XKPRSJPJZK/a7OMIqYZD+hgleHp6mkLoIMhlMkMAHiMimWyAQMEYOu/pl7QnOPB7rNu4F1arVRIZPLhRUgrzo8LtoYo+crDb7aZKLKIKJJ4qPrZ4t297ej7vW6/XE9Hf7S5GJ47H4yQozGazRwgW4gMiAc/x8Ef2U9IeKUSM8dYUCJ5PfnCbPoINIgzkkPcviiKJQlw/rSA4FnBbDIfDRyzutGJw/t6uwPvhUthsNsnlwrr5vUomhGdOOEn1zArWCFdOURRpXCetDFwrIgHHbbfbqVLPe7DX5RYE9oTr3G63yYmxXC7TZ4Q95170exsHBXtF2CH3DCGQHmDJHvKZoAWHffewThdR3P3DPcu14zhAHKSNxbMuOCbrsFgskphD6wPwFhy/bxGmOKY7MgKBQCAQCAQCby/a/9s/1e+e/Dy954/8Af2IWuP1X/CE+OGPP68P/UCMjXw7cCMEhSzLNB6P9eDBAx0dHSU7+cHBgY6Pj1O//Wg00iuvvKI7d+6k10IUqGIT8EjoXKfTUbvd1ksvvaT79+8nEuVEgap9rVZTt9vV+fl5chHQCuBj8kikhwA5EUR8YJyjJI1Go9TGQEgkPzvxlLRXQZYu8iG82ot920lWeUIEZHE+n6dzh9RBwLrdbjoO10KVvUz4cHFISqSRdSMrwcUSKteQWemKLHK+rC/HY7+5H3g+IYg4VKjGL5fLtO4+DtJdF57+j7MC4uvZBYgSHM9bFnyaBc4IzhlLfavVSi4IqunuWsFp4KGSnpFAhd+DHr3y7nuEA8OnXfjECVpZPEeAIErGgHL/su7spYdtck/5OElEMrIoKpWKxuNxEjt8mgnYbDZpqoR01f6DWMJ+cS6epcH9gNvI94rz9LWWlLIw+D5AAGGfyu1LuBO4x1k7D2MNBAKBQCAQCHzuUPtb369f+7N+sf7En//DulVtv/4LXgc/8WPfpC//H+9p8/pPDbwJ3AhBAaIwGo0S+YKsNRoN3b59W6enp5rP57p3754Gg4E+9KEPJeJNZbEoCj18+DCNwlsul8nGfnJyoo997GNpioPPo4fAQFZIx4dgQ7Qgl94yAClygoIlfLVaJYfEZDJJz3NxghYGzgMyR6WXqjkujMPDw1Slhtxh96a66rZ7cgeoRENY6/W6ut1uCnrE+cH5Q2qXy2UidlR9cWJAtjg3n0oB6XMxgudAoN3yLimNHZSULPu+XlTFfcSgT6rA4u85DbRB4EiZz+d7PfKMUWy325rNZomoI1zQCoBjheuivcSniVQqlRSQKSm5GchLoOpOhT3P8+S08TGKiCCEEUK6y9fMPcNec62ITZ6dwDm7aIE7pbxnbvPn74vFIoUh0lbBvpDtwe8RN3yMKfen5z+4aMV9y8+0gbDv6/Va4/E4jTlFSER44rPiohvuFD6zLqh5ngffB56nwH0QgkIgEAgEAoHA5x7F9/0bfeuP/Rb95f/fX1Q1e2td+q+MenrhUzFc5e3CjRAUsixL1XxILQS+2WxqMBjo+PhYn/3sZzUej/Xw4UPduXMnORWYLkCP/+npaSJA5+fnunv3rt773veq0Wjo9PQ0kScqzV7NrVQq6vf7evjwYTo/J71ULSFyOBKoei+XyxTuiEUe4g6x4pz9uBA8qsI4FAjEgwR7dgIhhM1mU/1+P1Wy8zxPogHOhHISvnQVOultBbPZTPP5fC9wjwr0ZrNRnudJ8OG4k8nkEas8xM171fkZQQY7vafvz+fzvQkOq9XqETu7k+uyuIHgwX7we86XdYE04iph7OJkMtF0Ok2P00pAq8V8Pt9zObjjBfEBhwrrkee51uu1er1eClHEEZLneSKz3JMODz0shzciGEDeIevssa8j9v3y8f35vJ8Tbekq3NLPcbFYqNvtqtPppPGTXDMCHMGkOAkQAXDBuGAjKTkpZrPZI2SePZ3NZilrxVsSvJ3h4OBAvV4vtUP5OvneS9ob+YpA6Wv5bh4bGQgEAoFAIPBuxuZTn9Y3fdk3KLt1rL/2j//imzrGz/3UN+h9P+cTiqjttw83RlDATu0BaU6W+/1+ImYPHz7UcDjU8fFxIuCS1O/3JUkPHjzQgwcPJElnZ2fqdDo6OTnR8fGxXnzxxb3pBBBmSJN0Qapu376dqtlu4/YqJxkOk8kk2aTdUo21390N/E66agPwMDrpKluA5H2mKlC1LYfR9Xq99Pput5t6yH2UoZN7r+pSwUbwwMHB9ex2uzRiEUu/BydC5MriDOfpYoaPcERA4vrm8/neuEIniO524L0RS7zqzxq4TR+yjtOB1/h+VKvVNBEEAj+bzfYCD1mTPM+TWOXBm358zgXBZz6fK8/zdM+0221Np9O9jAAPy/TWiLJQwr77OE13irAW3Ku4Edyp4kGHfOakK1LuogKfQdoSWq1WypXgmmglcPGAaSp5nieBhVwLz8zw8+c9JGk6ne45eRDgcHZsNht1Op296RX+/uXpDogKnDuigd83PM+dGy7iBAKBQCAQCAQ+t9iOx9J4rG/8yd+sv/g3/lfVsydzj852K/3u0x+pBz9mJJUKaoGnixshKPCPdydhVKLb7bY2m01KeM+yTIvFQg8ePNALL7ygo6MjDYdDTadTSdLJyYm2261efvll3b9/X5/85Cc1mUzUbDZ1+/btPQGCnAXs60yYcAGg1+vtER7paswlrQbz+TwRGarWkBfS9bk+J6cQO3cKQP4lJRdEURTqdrspXwL7PeMBEQYgjgRJOtnyqQsQdg/BY4IA0xCc6FJVpiWAVgKvxkO8sJPvdhfjKn2MImsBycOe7/eB/708UhCRhSwBT/VnPV28QBCihYXj0J4AEaaiThvIw4cPU8giooxX1NljD8yULirwrVYrtTn42M3xeJyEjl6vJ0npvtlsNklE4tq4N8pCiqR0TLJDvALv0xwQEbh3cdcgeiEqcO85ifagQifiq9UqZVbgJPA15b7c7XbqdDrq9XrJveABiogKvI6WHMJCEbdcDHNRASAEuVPB80U4nrsg2Bd3svDZcxcF92ogEAgEAoFA4J3F7l//kH7qz/12/cHv/J81qEh3HpOt8O/WU31qPdDv++KvunwkxIS3GzdCUNhut3vkE4KAZbnX66nX66Usgc1mo1deeUXvf//7dXR0pGazqbOzM81mM926dUu3b9/WdDrVvXv3dO/ePX30ox/VV37lV6bn0vYAAV8ulxoOh2q324kc0fPNz9JVlZTAt1arlQLqCKejQs7r6F2H9Po4SIjdbDbb63n3PnacA9vtVvV6XYPBQLvdTqenp5pMJprNZil8znMVSOL3tH/vv3c3AQ4IJ6GcH04Ot6a72MDrWSsndhA2SDJkG6Loxyxby/18CCL096Y1ggyK+Xye3tuT+xkb6U4MF1Hq9XoSqnAZHB0d6fz8PL2u0+mk8+I5nAeE2CducC5ck187mRxcv98TPn7Rr50QStaT+9PJu7ddQN4RAjhv1sRbTvy+IwDTSbY7c1hPAkfZB7IeGAt6fn6exBBGa/r0CZ8o4W4K7gPOA8EDZwcio98P3LvcB9zf5fDVcnsR96pPpOB35SDSQCAQCAQCgcA7j+rf++f65V/4Y3T/l369ftOv/BPXPuePfvmPUrGJ+MXPJW6MoDCdThPprVSuxgtij3distlsNJlM9NJLL6nf7yciPZ1ONZvNNBgMdPfu3VSF/fSnP633ve996vV66na7yaXgxHmxWOjVV1+VdOFKgERT/fdwOiqxEEpEkDzP0zVRMYbE8lpaHCAs2LypDmM3d6JK20SWZep0Oun9GW9JuJ+0X1F2NwF/sMp7pdd7+J0Yk0nhIwNxX0hXbRGMuvTwR3IRILQE+WFDZ6SfT1vgXMrXgTBD9gVEkFYDnAtekUd8mk6nKciRyQQQTt8nJ5CQWwI3cUtwzThpOBZrV61W1W630/WwXuWAzOVyme4bCP16vU73Efe951/ghOHzQGsL+8vaeGClV+Kx8rMXh4eHKTCUNhfWGucK8FGpm81Gs9kstXfM5/MkHtTr9eQoyvM8HZdWHQQtxA6O5+NbgYdGerAk5+GCFGIkYgNritjB9ZedRi6WEDbJPR3ZCYFAIBAIBAI3E3f+4PfoI3/wg4/5bYgJn2vcGEHh/Pz8EWs64Wmkvrfb7USkJen8/FwvvfRSqvj6KL5bt26pUqloOBzq3r17+qEf+iFtt1sNBgO1Wq1EMiEpuBTW67Vu376dQvhms5kODw91dHSUXACS9qr83hu+XC6TANDv91Nlleqxt0dAirBl+4hB6SonwNsuCGns9/taLBYaDoeaTCapt531RAxxclhuf+BaIK6eQSAptYMQwthut1MF3h0IHBcxgWuF4NH+gIjAuXkfP3vuYzcRPRBCfAIFggXuDEgvxNCnY0B62QcEKNaZSQoQUa4N6/t8Ple73Va73U77g4hAmCVuAjIYIPCQbhwc3iriGQs4Fwgb9EBK1pB9QeCiNcCdLWQwcP8gNJF94YScUYq0GJWDKHmM+4p9ZH0Q/SaTScqV4BoQbVhDdwuQW8BnHBcLmRA+kYF9wuXB/rDHwAUl2jr4TPloSnfrcM/yX56Dw8gDMQOBQCAQCAQCgcCjuBGCQlEUGg6HOjo62kvvJxyvVquliq6Pq4NQQ3ioytMmQYV7tVrpE5/4hPr9fqpU41LA/UDVn4T/27dvp7yGLMvU6/V0dHQkSRqNRnu95lRK6ed28oagAFmqVCpJEKGq7UIKwBrOH9ZpPB5LUhIsWIfpdKpOp5MIs9u1Pf2fHnPe31sX3OIuKR2HNaFSLilZ8CHu9NVj9ec9IM3ValWj0SgJItKVKOOVc64NQgr5pFLtEwt4PT3ytDA4Gfbxg6w7x+deIXgQMYL3RWiiTYI9rtVq6fesIVVyn0jhYxsZJ1kWflhPAi8lJZIPEac9A1cN93q329Vms9F4PE57wb1UXi8q+RB4FxB4HsSbPQPsPdfG9dbr9TTlgXYO9pIxmYge3Bd+f/EzghdCAddcnnDhAZmIXXwuEOfYAx/dyr3Ne3DvAXdyIMJ5q1MgEAgEAoFAIBC4HjdCUMiyTNPpVHmep1BF3AA4BHAokP4O+SBpnnYBqr9kDvR6PU0mE202m/Tafr+fRkv6SEHpgnSOx2MNBoPU0z4ej3V6eqrBYKDBYKDhcKg8z1P/PaRSuiBSjUZDs9lM2+1W7XY7kS5s15BcyBJkFnILsUdMwKnARAkEDtoHJCXBQrrKNHCLN+QKwow4wJQFBBufjEB1HLJI5ZjKu7clePgf18aaQJrn83kaS0mfPETTz49sinJoHmGHVNERFsi0WK1Waf0hz7QhINj4+EPyKXyCBkKAtB9kuVwuNR6PValUdHx8LOlqqkB5QgABlBBe3ABUyMlggNSyDwgk7Dn3dXmNXDzodrvJFbNer9Vut5P44FkBOG7YEwQVXBcIMXx2EBrI9yBwstVq6fz8fG8MaqvV2nMYIFAgKjCVwfNBfKynuwhYVyf53m5RbuPwiSN8xhBtEHZw0fj6lbMhuBd5De/pwkogEAgEAoFAIBDYx4341zJW6DzPNZ1OU+VduiD4WOm73a7G47E6nU4ifvRvE5botnd3AEDqarWajo+PNRqNNBqNJF0RPizPtFV0u10dHx+niRFHR0f6wAc+oMFgoNPT00TaIe4QXsbZYWWH/EJUIeBO/H1ahLc8QMYJppvP53vtGpB8z2FgbZrN5l5LhecTIAZ4qwbr5PZ0J28+8pLnQNxYR58OQFsDIgSWdcg+goAH/kHC+/2+Op1OIv9Y2GmB8YwJ3oe2Bkgr0w7YW3e+cH2r1UqTyUQPHz7c6+2HFNPugWhAfoCLQjwXQcRbShCJPFSSveX5OCS83QIyToClZ1Wwhqw5WQxcG9fLPrNPnJuTee4/BA//TLG3PLfRaKT1JoSUtSZEldYN2mj4zLkwwflx/3NveVYC9yrXjGDA3uBy4f5C0OFnb4dAKOA+8+8JgHDj2Q0RyhgIBAKBQCAQCLw2Kq//lOuRZdn7siz7e1mWfSzLso9mWfYrLh//rVmWfTbLsn95+eenvO5JVCqpij+ZTFJPtqQ0d365XKbRkfSqe04Alm4PIXQSUqvVdOfOHb3wwgs6OTnR8fFxIv6X552EBezmu91Ox8fHunv3riTp/v37qZ8eAiYpkSRJyYXQ6/VUr9eTlZ22AOkqcLDZbCb3ASP2cDxg5fdwyEqlon6/n4Ieffxis9lMVnzvSed8Op2Oms2mms1mGpOItdx79D1Xged7nkW58u2kzMUFKvXr9Vrj8ThNPuh2u4kkEqrorQI4NdbrtTqdjm7durU3zpOwPcIOPeSScE8XMTgPt+0jJkhKLR1nZ2d68OCBJpPJnsiDSNLv99XtdrXb7TQcDtMIzXKVfLFYpBGRvCdkleklHjToDgxEEgh0vV5PrhuEB9wws9kshXKy9j6hAHEIMUhS2nsEBNadn701Yj6f741nRHyQlM4LwaQcsogLgD/sj4d5+s+sHYKVO17cocHPXCPXwGeJexWRwkU21px73zM0yo4EPst8fm46nuZ3cSAQCATeOOJ7OBAIPMt4Kw6FjaRfUxTFP8+yrCvpB7Is+zuXv/uOoih+75MeKMsyDQaD5FA4Pz9PWQlUfrEyd7tdjUajRNA8D4Bgxfe+973JUg9hrNVq6nQ6arfbun37tl5++eVkPYfI+EjF8XisBw8eaDAY6LnnnksTA1555RXduXNHjUZD4/E4EXaIFU4JRAfaLTqdjjqdTkq/J7/Be/GZQDGdTi8W+LJyi4VduqjcOxFym72P3vPxjUVRpNGIVPfJQChPBvDKLutDDgXEC1IGcUOMoXWCY3jlWlISNTykkbBHWho8UG+9Xqvb7aYWEvbaJ3R433uWZZrNZnsTAHieZ1QghHh7Bvu0XC6TK4TWAwg/roT5fK6zs7N0fHdt+PQMhCYn/byfh03i1mDvvI+f5yMoHR4eJtHEyTOtFAhEnjXAeeJyYT/83uFnhB4fw8nvEHog5/yMSIPgIymJYe4+cKcA4h33FevH89gzrtGDFF3oQJRAcEKY4B5A9OHeRFRAOML94iMpPSeEe+6G46l9FwcCgUDgTSG+hwOBwDOLNy0oFEXxiqRXLv8+ybLsY5JeeLPHa7VaKZE/z/OUKyBdpcvvdjvdunVL9+7dS2GCEA2I+dnZmU5PT3X37t1EIFarVSLyR0dH6na76na7yU4+n88TCVkul8rzXKvVKk2I+NCHPqTnnntOn/3sZ/XgwQNJV4GFVPV9jCDXIV0JHW5Nx+oOqUTQ8IR/0vQ5Ni4Ckvm32+1eDoQ7BSQlcgUpZNQhxBPS6IIIle9y2OJkMtmrDENC6bGnes5eQea4NvIUVqtVyqaYTqcpi4KqubsQ/DVcA8SeXnh/Dx53cgqB9iBB7pnrJl7gjGm322nNCdWE1Nbr9SSGQOTd5eKtFGQOkEMB2HfaYLyFw0UOxDTcGLSoIKT5VAoPLPVjubDibQwIOKy1E3npSkDw9fbwRA8j5Wc+A6yr5z0gKiAS4nbwPBT2zY/Ba9l7/4y5+IVAwflxLbR6cH/zneBCj4eCsu/sqe/bTcXT/i4OBAKBwBtDfA8HAoFnGW+65cGRZdn7Jf1ISf/08qFflmXZv86y7I9nWXb0RCdyGUK42+00mUw0Ho9TKj/ugPl8rk6nk0gplVLpqhKf57lefvllvfrqq3skh1BGSDm2bcYBUo2GmK1WK52dnemVV15Rnue6e/eunn/+eUlKzgSIEMF/Pn4QIsg5kojf7/fVarVSFZ6Kv4fe0QoBOSXRn7BC1qDT6ey1ekA2vTIP8fOwx2azqW63myzijUZDg8FAzWZT6/Vas9lMeZ4nAk7FFkeDdDXi0d0NTogh11TgIe5cJ6MwsddznbVaLa0RQhBEH3HCWzAgrE563bnhmRDcH+PxeE8Q4PdkaMxmM02n0xQQ6SNEnfzjDnBxy8c8sl5O8FkLphSQ+1C21kOiaePAlYBjpRw8yDlwvoR/4lrAHcBYR2+nwHni68h+Idiw3ghR3B8Ia56BUHYWefYG9xtr5K9zV423IbBHvk+sDdfOfnsGA+fCWnEd3j7hrUMOzrMs1N10PI3v4kAgEAi8ecT3cCAQeNbwlv+1nGVZR9Kfk/Qri6IYS/pDkr5I0lfpQq39fY953bdlWfb9WZZ9PxVFr86PRiNNp9NELIbDoc7OzlSv13X79m11Op1EliGC0+lUk8lEDx480CuvvJImRDBCkgA+HzdX7vPmPAiSOz091XA4VLPZ1PPPP6+Tk5P0fpC59XqtVquVSLmHuzmazWYKG4SkU4mG4Ll9HDJHPz2va7fbOjo60tHR0d4UBkgUrgtvaYBQeeaAiw5cN26F+XyeiDe/g+CR8eDH99A7xAUq2Fj2/fX0vCP2+D1wcHCQsham06lOT09TbgJVZ8gwDgYfI4nQ4+9Lv31RFOk+8RGCVPARqKhoE7JJtgEVawQoxCIAEeU10pVbgr97eOZut0vTL2ghQGigao+7Agv+wcHBXp4I5L0sNmDf9+kckGn+zl66tR+CzX5wnThYEIF4DXkdPp7Ur5nz8Gsns8EzO7gOjgO4t/yeZa0lpTBGXEz+3j5K0h0NwMUursVbTsg9eTfgaXwXr3XzHRmBQCBwUxHfw4FA4FnEW5rykGXZoS6+OP9kURR/XpKKonjVfv9HJf3V615bFMVHJH1EkprNZgFRo79/sVgoz/NEZOfzuUajkSaTifr9vo6Pj9NUhc1mk4IbIcyf/exn9fzzz2swGCSCXq1W9wgRIwzpM4dgttvtdGxyEz7wgQ/o6OhIt27d0uHhYZo+QYjkYDBQu93WarXSeDzecybMZjMtl0sVRaHj4+N0TQ8ePNirriIy0HJRTuRvtVqpAsvzW61WckxIV5MhfKqDW8oRCFqt1t4kA4SFer2uVquV2kw8yJB8CHr0vZfdber81yvTtDAsFgs1m021Wq29UEwEGkl7oYXShe3cQxARbKj08zMTCXh/1hV3An/n/rquX79cveba3HEAacWu706Qy/t+j6jy/KIo0qQL1me1Wu21x7RarZQtgdiECMJxcL5wXzNRxKd7MDXCnRwIL5wX68ZxPJtDUhoL6U4GHzvp4oHfZ4hCiFhZlqndbidXgd9DfH4RAMpiH04dpo2wzi6O+IQHhAvWjuskp8LzNDh/X2faPzind8vYyKf1XdzLjovrnhMIBAKB10Z8DwcCgWcVb2XKQybpj0n6WFEU/5M9/rw97WdK+sEnOFYi9RAY6Sp8jSr8aDTSeDxWt9vVe9/7XvX7/USAPf2epP0XX3xRr7zySjouvecEsjnJhZBBWNrtdhpfORqNdH5+rmq1qqOjI/V6PfX7ffV6vSQ6jEaj9D7uUoA8r1arFLbYbDZ1dHSUrP1UjxEDIFv0uY/HYy2Xy9RiABHdbrd71zWdTpVlWcoNoDrPH9baHRmS9twhTI3g9T6KkYwJ9mW326WKPSSP98JKjjDgTgTpQjgaDAaplQNXCHZ5b0ngveiF9/GbkEefiuAiBfcDJJyKO9fr5+YTQRB9PMMAlwDn46SW15NJ4YGOCB/8HXeBh2jS1kMbjFfbqeTjUOC9GBHpY0h9tKILL3meazgc7rUp+GhVbw+RlNYL0o/YgcjjEz7c2cE9w3NYG8QBRDNCNj3TwYUNztHXhHV3sJ/sIdMvvI2E90BI8BYKgJjgmQ+0Wd10PM3v4kAgEAi8ccT3cCAQeJbxVspvP0bSz5P0b7Is+5eXj/1GSd+SZdlXSSokfUrSt7/egfiH/WKxSGQMwgzpaTQaSSioVqvq9/t67rnnNBwOU3sCrgbIEwGKRVFoMBjo+Pg4kQ0q9l6l5L/SFemgMk+eQ7fbTSF4PhZxNBql0EOqqZJSv/poNEokudPppIkCbsXGYk3qvrcN4L7o9XqStOd6IBxxNBqlMMVOp7PX2w+po2LM+9GH7rkLLjbwe85lPp9rsVikHAiuybMCfPKApBQi6RVl3ABMTsCVABGGgHPevL/b4f0cEUVwTrgDgCkf7lJgfVlr3CqeRQE55jkQdnI2OA4E1AP83NXBOXJ/ec4CDgvWDDJOawfrISlV9j1QkJwEhCcmmXD/sp+Qbe5dJ+Zlks75stcQdkQFPpd+njgJMgtcZLIIrSKesYA44wJQuRUE4BbiPua6fELL4eFhchvRvuKuEQQy7hv2j2PgiPAwStbtXYCn9l0cCAQCgTeF+B4OBALPLN7KlId/LOnRpmTpr7+pE7GJAR4k55ZqCDFp7Z1OJ1Uxu91uquoul0udn58nskpV9M6dOxoOh3uj6Gq1WrJqe/+9V9J5T5L2vQXh1q1biRzNZjO12+1k995ut2o2mxoMBntZB71eT41GQ7dv31av19NsNkuVX6Y4kB8BWcVF4fZyCBTvN5lMtFqtdPfu3XQeXr2FeEO0WF+cDd7CAFxkgQh7bgTXPplMklPExzhiQef9IW2QPm9ZABA+RBMfDepWec+AgJw3Go09izyiANdOXoUHEXI8nAFY54Fb4hErPOTQRR+/N1xwoE0GAQZinuf5nvhCTgRrXqvV0rn7WnCv4kjpdDqpJQhBwe36CD3kgfh5Ix5Aznku9zPrC3FHwGBtWPd6vZ7WyvMT2HtGN+Ik4fPqbTw+epLPGq0WnsPgjhcPHmV9uBbP9mB93RmCIOcjPRE6eK+bjqf9XRwIBAKBN4b4Hg4EAs8ybkyDMP3W3rfvFUL+YU9YHvkBkC3ggYKQsFqtpi/90i/VwcGBer2ejo6O9Oqrr2oymeyRbnqxIcyQDQgehIhWCQIJu91uCnvEpQDxZWrBwcGBzs7OUlK+pDRdgXYLKqO1Wk29Xk+LxSJVUhEQcDXgcKDNglBKWjpox/DqOmuBMOPOEOnKts+1si+QRK/4SheED1EBazjtFtjkmToBUZOuCDp/l5TWzVss2u12mjrhlnj/U6vVkmvBR3FKV84XnAW0h7CfENpyewBVboirtzdAcLkGzoMKNy4HHAoIFYAWG5/GwPvxXB9Jyv4hnrBe3hqQZZk6nU5aTw/olK6EmFqtlrJDJKUMC5wItGy4k4THXEzx+8BdFu744JxdJHBXDm4WBADW19sSWF+f3OGfR+5Zzon8FW9L8XwG/3x7AKk7XjxLpXw9gUAgEAgEAoFAYB83QlCAEA2HQ00mE0lSv9/fGzUHOaByT1WR//Z6PW23W00mE52dnaUQOyr4eZ4ryzIdHR1pMBjo6OhI0+k0EVAIIKQaQuMJ8P53nwIA6cDaTQXYe/Yhc0VRJKcBeQWNRkOTySQFS+52OzWbzUQIvXpNBZr38syE+XyuyWSSCLSH0eG64DGIF2vEdfvIQEgbVevDw8M0WtJ/X14fyNrBwUGyvfMHMYTn8wdXAZkF0gXhhcQjNFFx9pYDWiRwgOBEKLdteCUd8j+fz5PtvtFoJILpbg2O55XtcjYF7+MZCKyDt1kgDK1WqzQGFGLNGrNWPN9zL9gPHwMKoW42m8lhwflwb3Kf0lbhboEsy9JnwR0GEHccC+5W8ZwK8h+4XxGsfMKHPxchCBcKwp27Djwwk/VZLBZJBHGxkdcg0JD/ABAd3O3AeuIc8vYLP7aLlYFAIBAIBAKBQGAfN0JQqFQq6na7arfbKYCQijekR5Km06lefvllfeEXfmGqXkP8IK6np6epestkgFqtpvPzcx0cHOjk5ER3795N5B07fKPRSKSfCQBU1yWl5/IYJAcbursWIN4E5kG+mPhABV66IF8nJycqikKTySQRG3rSvZ+c53i1n2tvNpsaj8fK8zz1hXs+AoQbF4h0lcPA8z1bwlPvIWOII5LSGiFSQM74O73ytCCsVqu9fnlaSMhuwO1QFEUaV9npdHTr1q0kNrEWrAfuAa9kT6fTRLgRHcgr4FoODg7U6XS0Xq91enqqzWajdrudyLV0FQhazlxwdwT7x3Vw/MVioel0mirxkGOf6kCbC2tE64hProCgs/5Uzz3ngfNCGKONhD1GcPNMCNYQIYdjuSvHx5d64Cbv720nnLMLGbiDEBZcMOAz2Wq10j3IfY+4VR5Dyme9UqnsBZn6XuE28nva8xFYq/LECA/k5DuH7IdAIBAIBAKBQCDweNwYQeHw8FCdTke9Xk/T6XSv751+781mo7OzM7388stqt9upb52E/5OTE00mE7300ks6Pz9P7Q+TyUSf+cxnEmkZDAY6OTlJJO7s7CyRC/ILICEQQSY5HBwcJFs+1V5aDZgKQFUZQgnpom+c59A+QdvEgwcPkmiBXd7XyBP7SaCHANfr9dRHD6i0+uQFyOdut0vE3YPu3N4PgfVxiBBkHCCQdX5PVZtU/1arlcIXXay4LggSsYKpGGQNHB0dqVarJREIF4WH8vk0CK6PPcWhwTogQLTb7ZRrwL2Gu4A153ydlEpXrgUn57zGK+E+yvDg4CBlbeR5niY9NJtN5XmeSDPnXqlUkhDgLT+01rC2kpKzw50T5Fl0Op20T7PZLJ23iyaIOT7VwNsBuFfdLVEOfmSNcCVA5nmPcqtJpVJJLhQEOXc3SI+6gtz54W0zvIZxmTh1/LkIGxyX8yUnpRzAWHYoBQKBQCAQCAQCgX3cCEHBpw7QCw5phnRA/iaTiR48eKDbt2+r2+3uVULb7XYax3jv3r1EPGezmT796U/rpZde0vvf//40ypGpDxAcKrlU1L0aTvCg96FTQabCiQgAOfEqM20UPgVhsVioUqloNpvtBcO5Xd9JLaRusVikFgks2+12O/XlYyt38cBt7NJVG4ALCD7Vgufx3lShqVhD0hE5yuMCfcKBCxFueS/3zHPcwWCwN2ax2Wzq1q1bqlQqSchYLBZJkKDSTnuBt1R4ewzVdQh5rVZTt9vdCxzEPo8ARAWf17nN3rMG3GnhwoqLE+wN9zHTOHAp8Dwn2GSLQIQRsGgnof0FdwbXyr7wOwSIPM/3nARca7VaVbvdTq4azxtYLBbq9/tpXz1vwgUVbwspP8468Z4IOM1mU5LSebpDA9eR35+cj7+ft/G02201Go3kTvLrc0GIY/F55bPn2RUhKAQCgUAgEAgEAq+NGyEoSEr/gCc4sSgKnZ+fp37zfr+vXq+n1Wql8Xis8/Pz1DPtQWyDwUC9Xi8F5dEf/vDhQ33iE5/Qj/gRPyJVNJvNpk5OTjQajTQej1UUhY6Pj1MGA0AEYJKBj7bzKQOQWmzv2+02VT9pU6DyjPX94OBAw+FQ/X4/OTGkR6v92PdpXUAIkZTEDyeYg8EgkTSyAyB5HJMWB5+kURY9pKsqMWJAt9tVrVZLa+ZuCreJe+K+BxyyLs1mcy8AEhLf7/e1XC5TTz8tMZw/LTEIHz7RgH1HsChb6CH0EFpaaiC/jUYjOTcQQmhbYYqGtN+Xz7n7iEfPD2BkoqQ0VWS9XivP8yS81Ov1PfLK/eWtLZDnxWKR9p9gQYSGRqORMjwg7rw/JN2FEdoDyFtAPKF1wJ0WrLOLBp6tgGhVFmC4Ls7BHQXekuJhl7wvnxeEOWl/lKmHMXIeiCq4NvxzxX7xnu6goBXCxbRAIBAIBAKBQCDweNwYQYH0fZwCR0dHiZQwBUFSSvX/7Gc/m54HIZQuBIU7d+6k1gVyCMbjsT760Y/qq7/6q3V0dJRyDG7fvq3NZqMXX3wxBcs5AYGIQ7K9ekmVmkkOkF+ILJVUqqNU3X1U5Ww203Q6TeP5yBmAmEL4IMgEOGKPpwWi2Wwmggw57PV6kpSIf71e37PGl0mbtz24q8FDMReLhY6Pj5ONfzKZJAIPsWPPCI0st0zQDuKiD04SCCnXIykFGLI3HqDJcTk2wgNiDKM1aanJsiy1wfR6PTWbzSRKOfmEVLqbwiv/bo+nkl+r1dRut5MQwLVTBWeiRLPZ1Hw+Tw4cjs86sO5lFwnryOdiOp2m3AHEI0aqttttLZfL5EjgnvU2HJwGrBHtIz7VY7VaJecDa0P7EfeJCwzcR1y3ZzYw2cEDHzlf9pPPFJ8vz8nwUZ7cp+xR2X3izhlEg3ImibsovG2G57ujIRAIBAKBQCAQCDyKGyEoeOgfVcZGo6Hj42MNh0Mtl0s9ePAgkdjVapVaIk5OTlI1lb79fr+vfr+f7PG0MHz605/WJz/5Sd25c0er1Uq9Xk/tdlsnJydar9d69dVX9eDBg1QNrVQqarfbewF/LhAwAg+iudvtUssEggKPEfK2WCxS/gPkzMmxE3tJScRYrVbJHi5dCSuQZhcVIInHx8caDAYp1d9T/hEIeJxrgshS2feJCmQw1Ot1fcEXfIE2m43u3bun4XCo3W6nVqulbrerPM/TBAUII1kAXJOkPQLnoYK1Wk2dTietr3RF7hA4qIK78IEbZLVaPTIdgD2CqJKdMRgM0ppSqffWFd6X4EICAV3EkpT2D6cBog1hnzwGWG/yN6iqc195oCBr5H+4LsItuSdclOBewpWBgMPa8TrCRSHWOH5wF9BOIV0JLJKSCOPX446XZrOZBCbWiM+oT7FwB4OfI0IB74Gg4UKAv5ZMFY6TZVm6Fj6D3EtkRfgeE+qIWIFIEwgEAoFAIBAIBK7HjRAUJO2NNMzzPFnrK5VKsk4z4YBqP2MY2+32HiFutVrq9Xo6OzuTpETS7t+/r0984hN7Vvl2u53yB3q9nmazWRotOJ1OU2W03W7vhQlS7ZeuUu1brZZarVYirBAoH3G52Ww0m80eEQ4g8JAl78WHcDvZ9ZT75XKZSL20b7fH/l6uQJMDgbjAGnIOiA28R6PR0K1bt9JzB4NBInAQSMhzs9lM57NcLlNOAPsDwfSpBWRMQAwh49jwIas8X7oSVaQryzrr6RZ9PybCD79HNMJdQm6Bk3vEHNojyFvwsZysG44P9owcD96ffeCep1JP5Z6WGVodytkWTqQ9h4M98+BHXs97sebcPwhuiBOQacJKccdA4hFJuCdAuWXGwb7jjOHcuZe5DjItvCXhutwDXBo4dGgbwr3AaFX2HvGAnAoeK2dguHCEKBStD4FAIBAIBAKBwGvjRggK5fF/EA+s29PpVNPpNI0OPDg40Ha71XA4TJV4XAjT6VSdTmcvc2G9XqcchY9//OPqdDpqNptpegACQ6PRUL/fV7fbVbfbTXZpzwiAFEIq3ZYOaXHyOJlMkrMAYjuZTNLPVOB9nCKkB2s4IXVu45aUhALcGtLV+EwEGHreIa5cg1ehfbTg4eFhGt3JcyWllgFaKdif4+PjRIJZI8QTRgJ66KSPVgRudYfEsr5Y9ckCcEGpnPfg/e9u2/eKuKS9NfQxjFjwaZ+grYD7kJBGD2DEAcDoR9bTBQAcN5LS2iKgca6SksDFRAwPdKSy7/cd+0jgIo/j4EF84N5incstIYgmCFnkdHh+AyTcW1T8d9KVewRXAWMnuXaEI0QKz+mQlEQFQhJ9LCT3EecIaGFBUPKcDkQ3PguIP+XWBs6N17HmCICBQCAQCAQCgUDgetwIQaGc5C5d2c9rtZpu376tk5MTzedzjcfjRFQgTkVRqNfrpX7xSqWi97znPVqtVnr11Vc1mUwS8bx//74+85nP6OjoKFXZqUavVit1u1298MILqlQq+g//4T9oNBrtZSMQrIiTgNdBQiFSklIl3EMA3QXA68bj8V41HvLkFffrerwRQzgelVkqsfP5PJ0Loxi9Ms8aQoB5HWtY7uXHuYHlHSIJkZMuyB9BhrgRCLPkdQRcQsS94u1Wc7IU+L1PU/AqvnQ1NhHCj6CAYMOaQRhBWYjwyQVORhGLEK54Luvjky1wgvieSUr3rbsXPBtgs9loPp+n9oqyAMD7IWR42w0ZFjhdEHOy7GJkJ+eHg8Er/J5RgthDJgQiAnkg7n5xBwEZCexxnueSlPaXPeSaJCWBhvdwUcqv0dfNXRI4eNh/zt+dHKwbIallp4JnYiDi4LYJBAKBQCAQCAQCr40bISgAD1DzwEDaEe7evavRaJSqqlj95/O5jo6OdHBwkIhMq9XSrVu3NJ1OtVgsUuUTp4NX4iGtjGHsdDp6/vnnJUkf//jH93IHqJZS6aSq6a0LbsMvV707nU7qfYcUTyYTHR8fq9frqVqtajqdJoJD9dwrqx6ox39d4CBPAJGBDAOquVTHcTPQXkF7QLvdTs9DbPDrgrTRFuGWcc6ZY9Gystvt1Ov10nV4xgTXwHlsNpuUw3B4eJgcHpBDd4BA/ngt5NBFKuCPeQggLQ3eHuCTBKSLtpKyYwTyS7XfcyfIWvDcA0gurQ2+ni7IuOjDmnI/+VQEJ8OsU71eTyKWk2/229slfASm7yMCBg4RngdRpyVCUnJN4GDALTGbzZTn+V7gJ24Jv4/LrRK8h6Q9wYL3QBTzfWe/3XnCMev1elpXb89BhOF6fUQm9yPnEAgEAoFAIBAIBK7HjRIUsLSD3W6n2Wymer2uXq+nk5MT9fv91Ptfr9c1Go10enqqfr+fHARUqplJT8UXMjQej9XtdtNrn3/++ZSJkOe5+v2+ms2mer2eOp2OJpNJOi4Bb5BjCEm73U6klMf4vafsQ+6okG63W52fn6vX6+no6Ei3b99Wq9XS+fl5ckNQ+aWy7cQMx4ATZ8gSxK9SqajT6ahSqWg0GklSIsfe0gH54vVkIlB1XiwWWiwW6vf7idDzGASUyrsTMQjparVKWQ1uuSfoz0cPbjYbjUYjNRqNNLmByjpjIz1QkrYGRmF6VRxhB9Gi2WwmFwRkGlcF++ftIN7CQBWb/eX43pbhbSzulmC9PeiSvaRNZLFYKM/zdD20VEDIeQ3kn/f1XALPH5jNZuk4uHEAxNpbElzk4f5CFHPnhbcDcf/x2UWUY32516Ur4cD3xsUnyD2iFPuB4MV++T2MQ4b19kkR7B3HoUWIgE1cOpyLBzbyukAgEAgEAoFAIHA9boSgAHmQlAgWJIE+dqYyHB0d6fT0NFV7p9OpXn75ZXW7XR0dHUlSqiAjJjD5gUouxOL09FQvvfSSOp1OstfPZjONRqMkGHQ6nb3qLYGLkDPIIq8/PDzUdDpNdmt3MZT7s92NMZlMtNls1O/31W63JUnn5+cqiiIRe9L2IX1Yxnu93l4feafTUafTSefGuErPYUAAcILn1n1vUWBvWDcPBvRwTA8U9EqwjzvkeN7XD2F0sihJs9lMDx48SASZNgkmB3gOAaQVgcPbJLylgR58RAWs8N7m4K0pkvZCMNkzhAuu28d5Ys0nCwEXjAcMclz2AZcMYYmM/uQaEGogyOwF9ztuBI7rkyrm83ki/LwPBF5Suo/ZI/Z3s9nstZyw3uwfawc4T8IrO53OnlPCz6/sTvA2HHIWPPOjnIHB+XB/IeZxf/qxETz4Ha4UXuv7yrXz+xAUAoFAIBAIBAKBx+MtCQpZln1K0kTSVtKmKIoflWXZsaQ/Len9kj4l6WcXRXH+OsdJGQIeEAjBoqoI2W42m5rP54nQTSYTvfrqq0mEgJh4Qj0VeieO6/Va9+/f1927d9M0hCzLNJvNEmlrt9vJyu4j7Nx+DimhWgvZdNIEEYYsQYZarVYioXmeJyJ6cnKSyCjW7tVqpdlslsQDevoPDw8T2Ww2mymUcrPZpJYQvyYIHAKA/6HlAbeB97dDXEnN99wBzw6QrtpXvF2DTAUEB+lq0gEODN7PyfXDhw9VqVSScOEZAOwzx5zP56nFRVLab+4nrok9ZG98/CH3JH/3xH/2FPs94hVjDnE3eFsAk0N8qgH3oAcMImCRocE9xf2Cw8HDB3EO+IhF9pc94DFvj5D2hR0PKGQ/uT5aH3xChI9mZH0QOUajUfq9txNxnjzf15+8FM/tcAHG3R3lNgQf3equAheRuN/dGeFTWKrVahIKy6GT7wY8re/iQCAQCLw5xPdwIBB4VvE0HAr/WVEUD+3nXy/p7xZF8buyLPv1lz//utc6AIJCp9PRaDRK/8iv1+upap3neaoaQ4whWbvdTsPhUK1WK1nqsZTTf7/ZbNLUBwhlo9HQcrnUq6++quPj4z1i5OPoaAXA/g+pgpjRZw75wmHhJA7SSwUdItrr9fYCH6fTqRqNhprNpvr9fgqUlK4cAgTmlacE4FDAKYFIQ4tIrVZL68q6OwHzvAZEhNVqpfF4nGz3PhKT55WJm3RV1cftQBUY8ui967gwJO05IBBRxuNxqlxL2tsn8gI8V8HvCyrdBF76pAHPTCDA0MMJ/bpcdPGKvYd0AsQnhB/aIxC1WAf2oFKppDYRJ8e8jnXP8zwFWdbr9b2xlLyWMEYPS0TkoCXEp2cg3Piecy8gHrk7o+yycbeBZ4bgoME54LkhLqL4e5HB4O0NtEywrrhoEE24bj5v7jbgNcDDP/14vB5Bgdd76OO7BG/5uzgQCAQCbwnxPRwIBJ45vB0tDz9D0jdc/v27JP19vc6XJ4S30+moVqulHmYI/WKx0Pn5+R5ZgqBDHheLhc7OzrTb7fZS7Qk6hLxK0nw+T1Vrghy3220KQ/RRi2WrOwSv3KNNoJukvTBJfkdFnSwGFw7a7XYSSsiMcIcGlWYn49KVS8KrzAgYuB4gXByr2Wzu9eEjbrCmOBS8Mr7b7TQajVIlHgIsXdnrIZs+8tFbBZzw+XH5O4TShQbOASeCtyFAsrH0u7vBq/McU1LaL58O4e0YPM6a+ghEHCAIFtxTtJ/wXtwb7IGHOELk/R6BoNM+wGfAW3Mk7TlFXAByJ4ikJEp5e4KvM1kVLup4Rd+JugeQshZ+37towX3A9c5ms3T9tB1xn7mQxbnghpCupj84uXdBw9sjOJY7D/gsgOtEIn52BwZiBq8tP/9diDf8XRwIBAKBp4r4Hg4EAp/3eKuCQiHpb2dZVkj6I0VRfETS3aIoXpGkoiheybLszusdZLlcKs/zFJK2WCz2+qIlaTKZaDgcJqJD9Xw6ne5VQbGXS0rHqNfrSYyAWI1GIz3//PM6OjpKFVzm3Nfr9WT7L4oijY70Pmsqrl7FhBhBFrHxQxY9PA9iVa/XdXx8nDIBvBLNe3FMRvxBbne7XXIkQGAZ0yhpL7yOELr1ep1cG1SMHbSHML5yPp+r2+2mqRqdTmcvfNKrzU7AcVB4pR4Bx9P7PZ+B6+Jnr/q7cIJbgvYSJjC4yOGiD6+huk2bhBNRF5yoorv1nrXyIEcn8ZBv3Da8lvvCWzGcoCNiUC1nXXnM22x8r8qOD0gx98lqtUptKYgyfp/yHjyO4FMONmQfPEPE7z3WjnP3Vgg+xwhMtNFwvogGXBufH1o6fP9c3ENEYI8cvp98xtx1wd66+0RSEhRYEz47XOO7AE/luzgQCAQCbxrxPRwIBJ5JvFVB4ccURfHy5Rfk38my7Iee9IVZln2bpG/jZyd8uAXq9bp2u53yPNdwOExz5D1bYTgc6uDgQIPBILUbtFqt1KPearV0dHSUWg0g90xRoOI+nU4TSaFdoNFopNYHDyCULgjQeDxOFX+3W0NMIVTkPXjYH4GATl4hgwgc9HV79oITLydsPlGAc5aukvybzaZarVYisN4KwXngEiDbAccCoy6phLMvZQu6hytSrcdRsl6vdevWrdQ24iGQnCfuBulKBOHeKOcY0A7DefB+rBHtHZ6ZAHgN95FX2r1qDuHl/X1qBySa6SFU5Fm7cigk4gFiCGTZxxVC7jkmDhzcCbSrkPfhTgAcL/58D0HkGiTtVfkR2HA0sM6Qa28v8GNzLJ/O4CTeXTvelsBe8z4IC75W7At7wnVwTmW3xuPyDjwwkuOXX+cBjayJT/QoB2neYDyV7+KGWm/X+QUCgcDnO+J7OBAIPJN4S4JCURQvX/73fpZlf0HS10p6Ncuy5y+V2Ocl3X/Maz8i6SOSlGVZsVgs1Gw2ExGkUg8J8X5qbOOQofF4zDETiaRCi80fizyEM8/z9Lp2u50IHMeEbFBxhexAzghILIoiuRnKifjr9Vrj8TjZxjkffj+ZTFIQo1fyyTLgWrxi2mg0UugjozMhoUwSyPNcl+uaSLqPhoTI0aNPVgHE30nmdWvOFAqs9ZBunBlO1lzIQZyQtNez76KME0qfcsB+Uh33Y/kUC69kl8cZ8l+30Xuvvk8H4O8QaYiyB3S6QwPiiWCCe4JKPyKZj0IsCxq4HKSrEZ0+JtRbV3ydeS6CAmIU14o7hL9D0stZBi4QkX3BfeTtK56jwLXjokCsYCoJ4pdPbnE3Btfljo3NZpMELXeykO+Bg4c9t++UvWssCw3uhuD8ubfKjhjEq8eJFTcNT+u7uJcdvzsuOBAIBG4Y4ns4EAg8q6i8/lOuR5Zl7SzLuvxd0k+S9IOS/rKkb7182rdK+ktPcjyIBIGKRVGkkXOQCa/6+jSB+Xyu6XSaxkvyB8LhVXEniaPRSOv1Ws8995yef/55tdvt1HIxnU6TGwHCCzGHsPhou1arpVarpUajoX6/r1u3bu1V8n1kHaR3sVhoOBwqz/PUroGbwVsDuL6iKFLwJLZ9WiUg0E7MFotFmvCAsOFEVFISGfy1s9lMw+FQ4/E4jTDsdDpqtVp7lVwned4TL2lvCsFkMtH9+/d1dnamxWKRxBeug2P5/kDuGJnJcThnCB+iweV9mJwlTtQ9vNJJI++HMyW7DC30nAa/XxByuAc9twEBhHuNc/JWDa6B1hoINe0o7Cn77eGRnunBHiGAse4+WcJ7/zm3Tqezl+HAtXoIIcBpgfDjAgBjIVlXz70oC2D+mSk7DzyQE5GK6+O7QNKegwMHEmIbjiNcBz5xxd/THRv83q/ZBTTP8ng34Gl/FwcCgUDgjSG+hwOBwLOMt+JQuCvpL1z+g/xA0v+nKIq/mWXZ90n6M1mW/SJJn5b0s57kYJ5YX6vVNJvNEpGo1Wrq9XrJ5i1djZHDWQApzfM8jU3EndDtdpONHCLRbDZTb3m73Vaj0dD5+bkmk4k2m43Oz8/VbrcT0YaIVavV5GjgMR53+3aj0VC329XBwYHu3buXWiogMxBzpkxAZglExH5ORgBElvcvOwE4T8i4TxpAFGi32+p0Osm2j0DBsRaLRfov7R3kAiA8UBGnP581dts/ZJk/EMyHDx/q8PBQ3W43BU8Sxsf+4QaB8DpxdccElXTv44e8e4+8dNU7L+3b7T0vYLFYPCIe4CLAseHwbAL2hWO6MwQQxsm94edRq9X22i1crEBcQlih1Yc99LwNFwZ4DefDzzyHYwOu1QUe3CCsO8fmfvC1dQLuz+c5iBreXoKggUDQbDbTvnPuiHLuOvBsBQ9oxe3Q7/f32oSuuwfIdPBwSkl7Tpx3UcvDU/0uDgQCgcAbRnwPBwKBZxZvWlAoiuKTkr7ymsdPJf34N3q8H/iBH9BXf/VXJzeA91sTkrhcLnV6evoIuaGK79XWXq+XWgcYHwlh5Lg4APg9xIZKPeS1XLFEEHDyCDnn/dvtdur5JkxxPB6nlH2uETLkAXU4BiD0BEUiIGRZloIVbd2TjZ1xmN7XjliDkAKZcyJHiwZVYA8DpDKNawSiBrlnbbyajYCC68NDMxEoms1myo3wFgDs/wg3EH3EDPbQSTv7UXaQlJ0E7q5gfxy8P/dZeboE70WrB4Sd53mYIyKAt1ZAsF1cQpzwrAzW3cMHPcfASTv3E+/tjg/Omz3hudwT5YDKclsF7iGIuAdb+mfKRRzuRz6f/J319dwLhKNWq5U+T7TPuGMJ8ZA1kZRyUBBL2NdOp6PpdJruV3fkuDjDOvr0jnJexE3H0/4uDgQCgcAbQ3wPBwKBZxlvx9jINwWIFP/4h0SSvg753O12evDgQSKgiAKQ5tFolJwMkAe3b1MlxWqNfRyrfKPRSEQT4gFxpBIsXaW/UxVtNpvqdDrpGprNpm7fvq1KpaLz83Odnp6mayOAEbK8WCz2+tUhkGWBARcDeQTefuBhht5uAHlHMCGwErIO0Z1Op6lNAkt7o9F4ZPLAdrvVZDLZC9XzMERJiaR5awR7PJ/Plef5nuvBCafnRuAa4JqcwPv6QMoJasQNwJrwfBeTPI/BbfjeupHneXJl+HV4rgfCDMIVa+vg/RCmXNjwvSuHCPKe3MNOxPk769ZoNFKmBEIKxJt19MBEb8Pg2tljb4nh/FxQcZHDib9fg7dpuNDAe3M8Xl8WeDxnwY/H/cVj7hJB5OOzgpuGPXZniueZeOgn9/q7QUgIBAKBQCAQCATeadwYQQHiACGnEknvvtvtqd573zuEiCr4drtVrVZLxBH3AZMbcAXMZjOdnp6q0+nsBeq1Wi0dHx8nAQPy5ucoKR3z6OhIvV4vjezzsXMIExB4rOq8/s6dO8lx4ETZq/y0GHAePprSyawLDbQ10D9P/gJrRhXciSwkWVKq+iJiQPLzPFdxOfGhHJzIpAoPSKT9g3XL8zxdD+SP7AiInXRlZ/dJEhBEqtnY/z2wEFGBtfDwQXcFeH+9E0iEBs+9gPSWiTbPp3KPmIETYD6f7wkZrC/HK7cKuBjh9yP3hWcB+HhMJ/qMM3XwnuwX730dyHHwij0iEY4ByDfvz3Eh5AgOnvuAyIQ44gIJnxd3ejAhwp0a3BMIE+yRiyH8rtlspj3zTA3WFjeH378uhrkIFQgEAoFAIBAIBB7FjREUJCUyCZkDPnO+2+2myQgQVCd/WOURHshHgNRDkiFmw+FQL7/8so6OjpILAvGh3+/vVXfLPfVUy5n00Ol0VBSFRqORJpNJChH03ADpogILkccWPxgM0vWyBhBfd2NA4glj9D55yDstAaPRKJE7J6Y4N9zKzjpL2nse50klnlGF0lXIIUST9WfN/A9OCV6/3W5TG4q7AjxUELu9CwxOCnk+4tHBwUHae0hh2cnB9dXr9XT+TirZD+kq10PSHkHmvf0xCC/3BqTX75NyUCLv7cKIC0WEPHLPUUn3daXtgIq7CzysGUKc3y8+HcHh0yH8M8kfb0fg957vIWlPOPBWD6aSIICVHS08H1EEUcjbNVg3nz7Cc7he7ke/r1004u8uCnE8F0PKuRmBQCAQCAQCgUBgHzdKUNhut3v98tvtVrPZLJEMnAadTkeLxSJVYsshcKvVStPpVFmWqd1uq9fraTQaJTcBVeL5fK7JZKKzszPNZjP1ej21Wi01m80UDkmyvPeXeyVakmazWQonROhYLpcajUaJ2LTb7ZSxMBqN9oippES0+DsErtlsJtJPngStH/wdgUFScldAeH0tnWxxTRB0Krrr9XpvIoZX/b0XnZ5z3BgeZoegwIQAiGSn09FoNNJ4PE5VfO+Pd2cHRJvKMfvKNSBwTKdTVSqVJETMZjPleb5HQr0q7gKGj350Gz57wHl4nkAZHszpbRFOXplE4MGe3qZDiwd/R/BpNpt75+Fiit8PvI+7F6SrUZZcL/cylXnW08E1ll0biBzcC4hKnJuHP7KW/nfWlmN4ECWfGZ+WgfuA43BuiBYQfn7nOSeIILho+GywBkzD8IkQLnBwvQgogUAgEAgEAoFA4HrcGEFht9spz/O9lH7IIxV9t11Tka1UKinUDyKxXq81Go0S0fcqPlX+yWSSRAEcDzgJptPpHgmHcPgUAumCxOR5rvPzc41Go5TLANmZTqep6umBc4zJ47oQDHA4ODHivL0STF4AbgpJyQ2BENJsNtVoNBKZpVJOACFkjewKyL0LDRBFSP9yudTh4aHa7bbG43EiwT6FwqvsOBG8ol2pVBKBhuSzLrRVQCy5HggpApI/xt9pYyEAk5YG6UoUcPcLeQzSVcsCx/PsCl93SHF5ugO/K7ePIFZwT3JMF5N8bzg+whcTPzynoFw194kW7pjxqj8tCkzTgLwjEJXDFLkHy+fF78viBuGntBi4m6d8TO5r7m3cNP4eiB4+epL1RLQh0NQdSghP7pggm4HsEq6L7wafcsJe4Axyl1QgEAgEAoFAIBB4FDdGUKCSu1qtHnEESEqhgfzsI/A8fE+6IB7T6VSj0Ujr9TplMECg6JtHLOAYJM3TDoDTAZJRr9dThdar6qPRSKPRKBFur6xDnpykuAuCCq1brskiYF0gvzzHk+oJNfR19OuBwNMKADnlZ9wE5FWwjvT+l6c3IFYwls9zJfg7ggRihu+vjzzkWmu1WrLE53muzWaTpmT48T2kz68VJwuih4f0QbIlpar4ZrNJIgliio/cxCXgZN0DENmLcuYD4HmsKy6TckglBHaxWCRRrFqtpnvQ2x0kpZYO6crGz/p4DgPHJniTNhjfIz5L5fGWvtZe9WftyzkQfr2IBIeHh4nou3hSFsa4DlpMWP/r8gu4V7i/vF2BthgcEh7w6fkOiBmIYB4ayR5wj+P8iLaHQCAQCAQCgUDg8bhRgsKDBw/U6XSS+8BJAYTCx9bx+3LfN4R1Mpkkcnhdkj7iQqPRSCQfogEBns/newGLHJ/JCVTCZ7OZZrPZXtI+hI73oUKKE8IDBAnBQwCYz+fpNdi0IcKQUirWHlp4nY2eSjOEnRyDyWSizWaTKstUiwm2LFvOqQx7QJ737bMPuB4g8+wZtn9s6JBoXBaQPSfXHJs9gNwi3LAGXqmWlK6Ze4L15N6YTqeq1+t77gSO75MivKrOOXJcrhfXCiScdWJ9uF53IPg67XYXkyGWy6X6/b5arZb6/f5eTz8tGjyGkME1QdZdWCCUU1JaY84dIaHsJHDRxh0snDf3lmdUuJuoHKrpzhB3J/ha0QLhAoLnL7gQwl57iwpuDM+78LXwUE7OY7fbJbcOLUyINewfWQ+BQCAQCAQCgUDgetwoQYHQOOz6s9lMu91OzWYz5RNgdaYv2qugALJwdnam0Wikfr+fxAKvtHq7gQcX4nCA6DuZRJxwAkRWwGw2S9X22Wym+XyeKs1u0cZhQAV4vV4rz3PNZjNVq1Xlea7xeJxIvgcdSlcJ/aTxe1VXUiLM9IrTugCJX61W6fwgld5aMZvNEhmll90JvafgI2RQMXfhBIIHYUdc6Ha7Wi6X6Zp53MkmrgrWmoqxT0FgL3i+V60JNXRxgxBKJoT42EraQ9iT5XK5F97H/nPP8PfyRApILO4Qv28gwP5fFwVYZ45xeHiYqu/ecuMTRzxU0M/J2xoQnBibul6v1Wg0ktiEA8fdGi7AIQy4QOAiAfs9n89TewFr4p9J3gshzQWrcvaEuw0QNHgd9xZ/Z21ZS0Q51oA9PDg4ULvdlqTUIoOw4qM2WY8QEwKBQCAQCAQCgdfGjREUIE3lCjjVyH6/n5L5T09P0yQFSI0fB+s7OQkEFdL3T0UeJ4BnLUAusEVD9Kjat9vtFJZH9RwSjYBAFZsKN2TGRyA2Go09C/ZkMtF0OlW1Wk1iAKIDbgfcCVTZIWOQWtwM3t5A2wWkmvXEweHiCGTZK+cuevB73AtcP9fpAgPCjKRE4iFsjJFcr9fpWg8PD9VsNtN1IVBwjbhBXDwqtz9Amn2sIGvMmvGeZAv4aEFvdeG+gjxDmiWlvfQwPyf4HgQpXbUQSPvEGrdKuYffwyfddVE+DwC5hnB7BgbvCan2Y3Fsb1dw9085kNDdDIDr5T7G+eEtC95iBMnnvthut8nVw+fWAyfLoY4eqOlii4dJemYG511uDfHrdzGL82Kfy9cbCAQCgUAgEAgErnBjBAXglXL+gV+tVhORh/xD+lerVerHl67G3FGlx9Lv0wSoBEMeqe56T7ikVPFcLpepau+j7SC4kEKEByqb0+k0BdbhNJhOp3s5B1SGIZKNRmOPKHtPuFdMEUMg6JAqXxPcEFwPrQ5Zlun8/FzD4TCR4l6vJ2l/FKNXqb2qjrjgve+4ISD1XnnndfyXFpPZbJbS9qlQt1qtPTLvf2edIZjXVet5PeeJ+4J9RyTiOZ7ZwT55XgL3FGTa2za81cbzObIsS+GLEFzIuu8HBJvKOfdinufJgYOwBRAMqMr7PYwwwtpDlL2ajxjiwgb3KOvLevjoS19Hrpm953WssTtY+D35D/P5PD1ebo3wthMPZ91ut2lNiqJILTTe8iNdOTo828JHkpbzELxVpNyag3vHp3gEAoFAIBAIBAKBfdwoQcGT4D39frfbJQs7ZKlWq6WKvBMDjkNbRJZl6nQ6ajab2m63idBPJhPleb5XCYYgekW3UqkksrxYLFSr1dRut1Wr1RL5p9pNICBEhGNLV0GFhNnxHHrbyS8glE+6su17toKTVumq3xvShK0f4kUgoKRE+JmMQYsF539wcKDRaKQ8z9M6IIK47R2yy+tYcw+S9PwD3ps1vE4kYU8B7+H74RkRniOB8OHVdci2T6lgmodfC7kcPgUEeJgf5wgYYbrbXUwngaSXx0jiinDHggtl3krQ7/eT2HV+fp7GfyIo8P58DnDZlEk+z0VwcTcKro/yRAsn9x64KF05LNiDcquCT2XgXBEzCDksHx9Xg7dH4KJB0ODzxTWUxRrCQz3o0z977KmLFb7uiAf+WS/fY2U3SCAQCAQCgUAgELjCjRMUICHuJoCoUpUvikKdTkfD4XCvyuvWckl7QgGEG9KD44CRkmXXAAIE4xilq3aKsvXb+7Sx65PUD/HBOQDRaTab6ZiHh4fq9XpqtVqJiNHvDtFBrPDKLqSy1Wql7APIno/Mo5Lr5JZK7maz0WQy2Zs8gajDGE8cILScUIHmHFqtltbrtYbDYXIu+NhGWjVoeyCfwN0VXC/7TI4BBNUnNECKqViTVwAZpHUFcUe6GkXoOQg+jpGMBn8eRNgJvQsg/t/r7mWfluCZE1T+/T5FNIIMu/jBeTnYe5wytKn46E/pKqB0NBolks66IzZ5mwGfJ4i8Xw8iUDmsk/0rikLT6VSr1Sq5gsqODAQD6Wryg2dPuCjCZ5c9c5HAA1LdxeJTRbylhOBFvz+4Xs9Y4DPMscr5LIFAIBAIBAKBQOAKN0pQkLRX6fUxjVRuCSEcDAYpvBBBgQq+EwlEBP+vB8J5VdvJOkQ1z/O9inI5TR/S2Gw2UzUUkkfgH8KGh0Bir9/tLqYc9Hq9JECUWyqw8p+fn6f3whEhXQkdq9VKeZ4nZ4KTyt1up8lkoqIo0rnShgHJ5/13u12aOgGp9sf4GQLLulQqlWT9B175bzabSSiAxJE5USZxHJ/7oWzRd2Lvjg2/Xj8Pzg9SDyGlWu72fumiwo5rxEcoIqpQxXb3BA6A5XKZchrKLQB+f/t0CM7bWy44/na7TcKLW/c9a0BScqfwOOuKqDCfz9VqtdRut9O6I+ywfpyvrx3ve12eRBmshztBPDeBz46/h18T7wHZRzhCPPJchnq9noSh1WqVPgdcA9foEyH8viRAle8Bf5zPVjgUAoFAIBAIBAKBx+NGCQoQCUmpr5wK5Xw+T9Xi9Xqt4+NjHR8fazQaJQeDk0oIIX3VhNF55ZiKMMQOAu/hcBBYT+xHnHDLuo+cwwVQr9eTyOHVdsg0hArxgUkQEEEqv4gLVP6ZGiEpOTh4j81mo3q9nsSYspDiVWxs6gg1nU4niQLn5+epXcTHKnK+Lo5wvR5I6KGKfp0QZcSKer2eWiHKjgJwnQvAiSXv7SMYIbPlPn1EAof34btgUa5O8xjjEyG5PN8JPK8tu2bYf5wprBU2fkQeRBcXFiDyCAbcA9w3vs+sh+clsK6IWew/58lekU/izgGq92URxNfQwyS5fzmPcmaCr095X30vERT42cUJPwbrgpjhORPlfBR/rgtY1yEcCoFAIBAIBAKBwOPxpgWFLMu+VNKftoc+KOk3SxpI+sWSHlw+/huLovjrT3jMvb547+0n0Z1KeVEUOjo60tnZmc7OzpKFH0C6EAWonLp12oPkvBpMEF6lUknBjtisPeANUYHzwiYPgYEk8h6S0oQHhAfOzds8CNprNpvq9/upot5qtdJ6MKHA+9shw+7Q8NGDTmLddQEZhSDPZrPUc08rCW0IJO9L2psYgOhSXlfEBmz25ApAenFFIIawNlynJ/yXUa56sy8e8ugkVtp3THC/uEOAP1yf30eQXXciuODEXntAIvcihNvvA1wkrA/CEuddFMVeOKOLF9KVEOXX6E4Ld0f4ernQ4tfllXxez73l++KCAi0TkhLxZ+08D4H1QBhxgn9d2wUioec98HPZtYIo4C0pvHc5I8VbXlxw4bPh7RNl58tNxdvxXRwIBAKBJ0d8DwcCgWcZb1pQKIri45K+SpKyLKtK+qykvyDpF0j6jqIofu+bOS5V+Mv3SP+ox0FQr9c1Ho+1Wq0SqaZK7uTASVQ5dA0bNH358/lco9FIo9EoVS/JFhiNRmlyg9vCET4kJeEBQs6xqSD7yDucFy4kQL7JKlitVqm9wCvRzWYzjTn0Cqxbtj2RH5LkVf9yzz1kz3vmffqB51c4mcVGT25D+Vir1Uqz2WxPOOB1LqB4zgDriruiVqvtVb290uz97eXjlCcEuJAEyrZ64KLCbDZL0w/IgeC4rLGHRXqIqFe/OWcnx349HhrINblrBlHI3wMHjLfrAAQpb1tgzbz1BtLv2R4uoLDvu90u3c98ZhCZPMuC9+UzVnb2eD6Hr7WLMogAvAdr4pkdCBDukvH9dncGa15+PdfGuXFMfs/5vhvwdn0XBwKBQODJEN/DgUDgWcbTann48ZI+URTFi2+lokelFieAOwuk/YkG0+k0vQ7y4oTR+/Kpjnt/OoSVnvg8z/XgwYOUx1AUhc7OzvTw4cO99HhIDuKEVzlxMzhxh/BwfddZ8HneeDxO4oj3w7darWSLx5XANUN+mDoxm82Sw8JDHTlnRBhpXxhxZ4GkJBw42ff1hahRlXaBBZeHj1Kkqg+p5Pzn8/ne1AgfNejiEii7Tty67j323AP01ENyvULtxJr7q5wlwHl1Op29a+e+Yq18XCFr6dkK5WyAskOA63Fxw4Ugz2rgmthj3o9MAIixi2jsF9fNWFVCFKnee0tAOciS/XeBhOvyz6CTcW9X4drLghLPLQtsLsS5E8jHxLrjwfcR+ChXF4tcaOQxF2Gua+t4l+CpfBcHAoFA4E0jvocDgcAzhaclKHyzpO+2n39ZlmU/X9L3S/o1RVGcP+mBIJPNZjORNCq9ENYsy9LIw+sqiZ5zACHvdrvq9/s6ODjQcDiUJNXrdXW73RSe+ODBg0SkDg4ONJ1O01g6MhkgHx7qRqWXnATcA5A5JzyQbcSCdrutVquVXAlOImkF4BrKLQP0zrNmnU5HeZ4ncaLT6aR2CcgY514ej0jluTyGE1cCJMwryhDboijUbrclaW90pKQkhHhrBcTYwwd5zMWIzWbziCiCLb/cnsC5uevAnRMQfBeovM2E93dRgd/X63X1ej1Vq9U0ghGyCdn33IZGo5HW00UCKvwQX+lqvKMkTafTRNARpDgmrg3P3vBWGifGtCAgVnm2A9c1n8+V53kaCeoinq9bs9lM+8PniXwF1o57nLXApcD1+r3mooXv2XU5GZ7p4Ovk7o+iKNL9iRjh4akILNzzZSHCBT6u290O70I8te/iQCAQCLwpxPdwIBB4pnD9zLs3gCzLapJ+uqQ/e/nQH5L0Rbqwfr0i6fc95nXflmXZ92dZ9v08tlwu9bGPfUzT6VTNZlPtdnuv2u/EhFA8CElZBYZMSFdj7SA90pVDoNlsqtPpqFaraTweJ1JHxoE7BbCfe0UYou8hiR4o54R2s9loPp9rNpslskJAHkLBaDTaqzzjAuCcINyS0ntDMDmWpFR9doeEV369gu3I8zyRfreMQzQJuHQ3gLtDyq4FdxksFoskEvFayCnHmM/nGg6Hqa1FumrV8B7563BdXz6Bj9jxyTFYLpeaz+d7kxrcfcI9x32DMON74m4EJ9W81jMg+D0tFKwb7pnDw0OtViuNx+N0H3oYI4IW4z0RGDwPwMUthCF3R3Dv0J6DUFAWi2iD8LaK9Xqt2Wy2lxvh94ekvVGnEH2EJN9jhCXEusvvgz2hwH/29/KME87F71UEMCahuAtlPp+nP+7CIFcENwP3uLtX3g14Gt/Fay0/F6caCAQCn5eI7+FAIPAs4mk4FL5R0j8viuJVSeK/kpRl2R+V9Feve1FRFB+R9JHL5xX8w//8/FyLxUL9fj+Nb6tWq4k8j8fjRGIgZq1WK1VavfrM+D56+aX9Hn7papoEExk8t4CqvpMyHnPCBFlEGPBWDc8zgNB7X325Xx2XAin8EHWI6mQySS0Y2PCn0+leECTOCkQQnByQahdXygQ5z/MkCPA6UvM9v8DHbbo9vtxi4WuOe8LzKyC/HlxIJgTOCYg37y1dtWRw37BvVOrduu5WfdaUPeP1XA8hh9x3kH2uw9sGuAckpRGG3vfv9wCCkGddeP4Fz/dwQsi1izOet8B6uJjgjhp3LbAWiHDe2uKVeISD7Xa7J565W8OdCJwLQgmv82P78b2lxIUp3BguKCAqgHL+Aq9z0aH8fMQc1ojPksOFC98bQlffRXjL38W97PjdERwRCAQCNxPxPRwIBJ45PA1B4Vtk1q4sy54viuKVyx9/pqQffCMH80omFcOTkxP1er1EBCBFVIwhM94DDRGYTqfK8zxVkz1I8fDwUIPBQLdu3VK3203TIshW8HYECP58PtdkMlG73Van00khib1eT8fHx0kEcYeAV7EhUM1mMxF7FyAguIQiUtX2cX2IKfyOqqvnDeBqIH/BK9GLxUKNRiORZ3IXfG15bw+z87YTH2nJ3yGxXG85A8MJYdndgHDD8wDhm+wfZJ739cwAr2pLV8SR94fUc4xyJgYOAD8/SPFisUjPp2pNHgXXyehLAgN5P94fwYr395wA1sDzLLzlxEUE9gUBg9f6VAbPPXDRgsq+BzCyRt424IIM64MA5S0aOCH8c4W4wjnitOD+8dYKdxfx/oh5rF3ZgeTtO36+iBE8zr7g7HGniIdi+p644OGhku8SPNXv4kAgEAi8YcT3cCAQeObwlgSFLMtakn6ipG+3h//HLMu+SlIh6VOl370u3KI8m81S5bzZbO6NhNtsNup2u9f+gx/yU6/XVRRFCjus1+upnYDnEdaIOAH58epsORQOQiYpTUygmg5Zmc1mms1me+Tc+9+9PaFMgMtBgeUEeyrPbln3vnTWCAIMQffKcRmz2SxNlvDr9SwDpkxwDq1WKx0fwaXZbCZiRnuBj8dkPSHUXKMLK+UWBNbEQyMRQ5ysckxvU2DPuH4fWShJ8/k8iUjlYEoXeCCYVO+9fQb3ANdOO45b6v0a3KHC8xB0WFuyD7x1x50i3Gsefkn7iHRFuv0xzwjwkMnyPYQ4A+HnMc650WikoEPuX99L2jPcNeB/nMTTbuAugs1mkwQvrsX3kfd0QYHfI1a4YOHZK+5O4ty47/waXYh5N+Dt+C4OBAKBwJMjvocDgcCzirckKBRFMZN0Unrs572lM5IeIZIQA3IKPNEfMuZTCLBCd7tdrVYrDYfDJBx4VRTLOuGM9Ns78YW0eW/15XXuEU2vLM/nc52eniZnA4TLq+G0cNDL7uF0nD/uB6zurEG9XtdsNtP5+XlyBXjYo6T0GtocdrudOp1OIntU9lljQvoQMKjMu3XfBRbOg+dBJCG2ZAOcn58nssz+SVcuBAibV6PL7QysL79zgo7F3iv63AN+DeUgRm/VwF3BmrEnktKxIanu4GAvIZ9OVv29EIRcRGEt5vN5ItJ+XoDXebijXy/uFG834ZxwbkCW2W/EOe5L2jukqzGR3IfuHnExhnVjbfhsIBCU99qFCu4n9ghHgnTlSPF99JYj1pjfe9sJ5+afA5xAiE/gunwGX793G96u7+JAIBAIPBniezgQCDyreFpTHp4KvHeaajehg5AeSKDbzKms+3EIrkMkoBfe0/dplYBkt9ttnZ+fazabSVIixfP5XNPpNFWOyUpYLpeazWaJ1OBIQICAHFF9xxLvxJwKs/eEQ7I6nY5arVY6D17j1n7O3yu2kFi36G+3W7VaLbXbbTUajZSz4In8rLWTdiZK0GLiYYA4O3xKA3+4DqYEsCesj3TlmIBMsrc4GlhrD7p0oouFnfMiTLCcm1D+u+c4QFi5fknpvuLYvMazOPx5PrUDok41XtLe2Eon4ggM5SwB7nOuhdwHWinYJ8+cKIoi3WsuBHCens2AoOT5E3y+3AXzuFwCdxs4yUeA43k8l2PxOHvuohngHPhMuLDg7++ZGt7SUXZDeO4F18J6cz+VX+PXcnBwkISYQCAQCAQCgUAgsI8bJShISmSh0+lovV5rNBolJwCVYUgtZBmCADxd3ivC2KrdVYCNv9PppIouafaE8hWXYYWVSiXlLSAaSEpVXkgpwYlkNHQ6HY3HY0lK18ZYzNFotFeB7/V6ajQa6vf7afoExBpBwsP+yAJAsIA49no9bbfbZOmv1+tpfKbnTSAY0BLCHrhtnHA6SBnjAFlP7z2XrsIPEXCo/HvegAtDEGPPv0Bg4foJipS0RxB5Dn3y5C147z+PSVf2fB73qQwuNiECeBuG9+Rz/bSK+Bq4kOPtGB5eybngruE8ygS+LI6Q5+AjSF2IKGcheJDmbDZTo9FI50PWB/c6ky+4BsQbD+hcr9cpk8SdC07YESXcrVFuHfBz5jNUzqLwe4n1L4c2+nuwXr7/rJG7Efz17FnZBcJ7BwKBQCAQCAQCgcfjRgkKkK5Go6Fms6nZbLYXaMiYxk6nozzP9wgQNmnvN8/zXLvdTq1WK7UJeE4AIXy9Xi+RTl43n8/Te0KYvD8c4rRarTSbzRK5hNjjMmi1Wmq1WikMz0WKxWKRJjTwPAQOiB/H4RwgqQThOZmDZBJoJ12l6eMmgAgjYBB8eXBwkAg/VXfcH1TJIfJY+Mm4yLIsna+3LDjhh0yTh4HbY7fbpeOUJ2xwPAi6k1V3aHglvF6vJ5LuhNDHgK7X6+ROoQLt/flcH9fr+QI4NXxKBUIU1noXRtxRweMeVuhimP+XqrjnG7Ce3q7C+zhh933iz3XtGHme72VCcD3ejuDtQbwvj3kopDtUyq9jr657DgLC4wi/i1uewcB1l10Ufi7lnBF/3Fs4PIMBcI4ulAUCgUAgEAgEAoF93ChBQbqqSELuIbNUk/mvpL2KOaSTGfOQtUajoU6nkwjwdDpVtVpN7QRMa6D9gJ705XKZyL3397tbwIP3qtVqIu+z2Sy9R6/XS5MiECC84upCRbvd1mAw2HMKOPHntT6BAQGASrN0NX3AR2kiOKxWq0Sm6S/HfeGBghBe6YoYsy/8juciVkhXDgDImU9gKO8vx4bwYts/ODjYG13YbDb33AnldH+q254jIF3Z631/IKyHh4fJ6bJcLvf66HnP2WyWRjH6+SNaca3cG06C3U1D/z42fvbWX+vny7Hd9VD+HdfrLgvW21/LhBBvbSHnAycO91m5TQCXAvB7AneA54L4H86b13iWhQsg3rLhgosT+bJoUHbEuGDgghf3NMf3lhlvG0KkckeKh3oGAoFAIBAIBAKB63HjBAWq6/R9M+UB0uT/8KeyCemHyHrF+OTkRMfHx8rzXKenp5pMJilMsNPppNaC7XabRkxOp1OtVquUXwCp8P8ibkBMm81mIlnkBbTbbbXbbTWbzVT1d6s2OQ7NZlPdble9Xi+JG1i+6evHieH979JFxgGOCkgsLRXlUZLz+TyJI1mWqd1uq16v7/XAl3vfIaAewggxL/+RlCz5LmSUx0gCiJt0NQqRvAhEIVoRyEjwKrVnDbhLArJIq0aj0dDBwUFyjnBvlKdguLjTbDbTOXruBSKQuxecRPMc3tuDC1kj3A1ch4sUtD3wxzMJ3AHibSo4OjgfzzfgvFljz+1AtGGtWbdyRoV0JYC4WOROBm/TkPRI1gWfC17HdXoo5HXknXvIf/bHEAp4L/bfXRnuTuC93f1QPjd/n/J1BQKBQCAQCAQCgSvcKEGhWq3q1q1barVayrJsj8B4ZTvLLhLrJ5OJqtWqjo6OUvifB/XVarUUQjiZTB5xHjBpgYr4eDxObQuebg/5hIxDkgl6xLWABRuhAcLOH6r4Tq6bzabu3r2bnAnuhmC0pIcaVqtVTafTvRBGJjkcHh6m1glIE2ScAElJ6fz9GrznntciMHjWhKQk8nDt2Ma9uo1DRFJ6HT+z1wgr7Fm5n93PxVsKHN4GAXH2fn7pyqHANfGHe8tDMan0M/2jLJhAQsv2eH9/yLe3Y7AutLp4LkL5GlwUcPLurQS4H3zSRpn84v5wEYYWg9lstpdbcV34ISKHOyj8cc7JHSYu6HirR9lR4K0rLq6UnQTXBTOW16W8F74f7m7gHnARhz3xlhF/n3JGQyAQCAQCgUAgELjCjREUqIK/8MILarVae/ZnrN3SPqnBRUDmAP3tu93ukUBAr4b2+/094k1g3XQ6TSIGVWZ3GrgF3LMCIJ/uUHBAkBAwarWa8jzXdrtVo9HQycmJBoNB6p2H8CMgQOr9PTw8DlKHgAIRlq7G5knaa4uAnENOIeG0AUB6PQeBVo9yddzFl3JVmmq6V48l7Y3pY6/5O5kGPBfy6cIAJBZS7G0NkERvjfE9Yw9Za67TRzcilqzXa02n00fGQpanikBU/WfcGghgLk5A8tlfbwmAIHsGQXmCgqTkPnCByp0J7qrg+GRI0OrgbonrAg/L++BZEH79fu28n49ZvQ7upCi7DjiX69ai/HoPnyyvX/kxn+rg7pTycf2aA4FAIBAIBAKBwPW4MYKCCwi0B1Dl9VYAr7ZiTT85OdFut1Oe55KUxAQPXcO9AFmn+g/hhWwTRAjBbLVaOj4+1nA4TO4DxA8qnJwLZIr2BDILIC60P3CuXN9gMNCtW7eSoIF4QO+7jwvEZcHkhlqtlloQPDXf169er6ccAEgubSHY+SHR7XZbkjSZTBKRLmcg8F/Wnwo/pN8nGXh1G4LLXvh0Bl4P2aaHH3ECAcPFBa9M+7hE9h0hhb5/F4FoZXAhxMcXssfsM20wrDNiCWIMYB25TxFmWCPv6XeS7KTePxOsv9/L7rxgT2lj8GBLn8ThnwHEB+5lRBj/HEpXOQ6s72u1ALh7wluP/BhcL+/j110+rosLLhb489wBUW6lQQgpv7cLCf6cssuB9/PHA4FAIBAIBAKBwD5ujKAAFouFxuNxIr1kDDAZAXJF1ZxRiFS1IXoeuDedTnV2dpYEAir/kO3tdqvxeKzRaKTxeJxGPJLP0O/31e12Uwij98t7ZgITJBAtJKU2A0kaDAZ6/vnntVqtNBwOdXZ2pt1ul8IhIdG0UCA8jMdj1et1FUWRiCMOhrIbgmBKhAK3wzsZdds+pJnRkjgxmAABofOKLpVeMgo8D8FbJsoTBxAUIMtUyKUrMuuVcIQPWlO43kajkVwnEHv2nvYUxk1CHssOg3KIIGvFY5ybZ3pISmJP2erPtWbZRRgiOR+eO+AZFbyfpEdEG4QAz1Fgjby1AKEAMYzzZe/9HJyke+igE/Xyf0E5OJFzZq1c3GCd/brLLQ+PExL8OcDdLVy7h0WW8w8Qi1y88Xur3IJx3fWWHQyBQCAQCAQCgUDgUdwYQYF/9G82G00mkzRFAReB9Gj6O6SPQEbpghyfnJwkV0Oe53rxxRd1enqq3W6nTqezR2KpME8mE00mE41GI00mk1Td7vV6Wq/XaSxlo9FIZAZCyWMexkdugFfjm82mbt++rcVikcZU0qpAcCNtGNKFS+Dll1/WZDLR3bt3tVqt9sZMttvtRJB438lkstfq4WPzsizbc2q4KIMIw0hHz3MAtIO4wFAO7vM+dUglkyW63a4ODw/3KunsI2QUoks1nue5e4CMCr8OdyhISqKCE14INYSTDAkXOHAYlCeJQJI9GJTXcA08h331PAKvyHtl3B0A3jrBGrmDguNxvb4H7I1fOyKHV9rd8UC7xZOg/DwcHWVxDRGh3JZTJv3XtRu4o8BxnchRdpuUWyf85+uO9zghxc81xIRAIBAIBAKBQOC1cWMEBcggrQD0X0PamWLgAXmNRuMRwaHRaOj4+Fj9fl+VSkXj8VjT6VSj0UiVSkVHR0dqNBoaj8eJhBdFoTzPde/ePb366qsaDofqdDqStOdkgCC5fd+JrqTkHGBUJYSw2WxqMBio3+/viSJU0r2qzkSD5XKp09NTLZdL9Xq91I7B8drtdhoNSTAj4gZCifew046BjRwRgWA/xklS8Yd4kvvgWQiS9hL6PaUfhwMtAjgUlsvlXmXZnQO8ZzkAEFGBFhbWlLYP1tf3ggyN5XK5t0/sG2vCY+Vz4A9uD0Ix3dbP+3DfeXaEpESw2Ssn/OXqOIQcccldDGUS7WKAvycE38ky+4Ozwp0NvoflKQe+B49zEPh5Q+K5xjKRdwHm9Y51XWZBeb04T/5bdm34Y9flPTzu/QOBQCAQCAQCgcAbw40RFKQLAkN+AkQRsj+ZTFQURepll65IAMQVQsg4yO12q/Pz8yQmfOhDH9IXfdEXaT6f6/z8PFXoq9WqFotFannI8zyNa4QsISxAqL1/3kUORkAiCuBgYNoEpA/S2+v19qzzHqQ3nU5TqJ+kJKowoYIK82w2S8+r1+tpTSaTSRIZcACs1+skInh2gJNqshmo4BP0SLsF65JlmfI8T2GTvDcoV/IXi4Wkq3YLryZ7m4NnKrhTAcGANeQ4nCfrutls9sQGwiwBwo10lXPBMXCWsN60j5CdAPGl1WA+n6frpk3HR2vyfO6d8kQKSSl0FGGH+98/FxBjjuOvRwTiPvZ8CKz/vhf8/DQq8OwXf/zcvEWpLE5c1z7xWu9RBveyv95bIl7vuC6MBQKBQCAQCAQCgTeHGyMoQDAWi0UiSB7yNhwOtdls0mhHiNpms9H5+XkiYT6VgTyG4XCYchD6/X4iWRC5zWaTMg0g4QDi4bPr3Z4uXdm3CTVsNBqJ0BFc2G631Wq1tNvt0thHSKy3S0A45/O5ZrNZIr/b7VZ5nqfRkIyCHA6HiUS6zR9S7eGGODJoh/BcAb8WfiYbgXN0i7+kRPIh8t6yQOsE1X2/RtaV95OuiL23PGDZRyTw9/MJAt7eISk5Vvg9x3MijxjECExIP/cewha5GN6eISmNXeSacQt4qwTVehc0yg6Bx1Xty3kVvJb99VyBZrO593wXEmhRgdS7o4bzZ2/dccD78T4+WvRxn132kvwN6UoAedrwe7YcVvkk8OsMBAKBQCAQCAQCbw43RlCQtBfC12w2UxbAbrfT2dmZzs7O9Morr6SwxuVyqdlslqrFi8VCnU5nj8AQZFipVBKphzy2220dHBzo/Pxcw+EwtVvgFJCUpip43zqBd94PzshFqtUQZCrPBCguFos0PaHT6aSpCljTp9OpsixLwgmig3RBUnECUMmG2ELicSNAiKmqX2e5d6s8a+jVbA/380BDCLRnRmBXR9hAVIHEs4Y+AcJdCwQHko9QrqAjKHiYpLTf9uJ2fT9XSXvuAJwiiAnuDEH4IMPDnQ5l0YX2k+vEJifr/Jfzxt2CoOPHhsSXLf0uLuA2cZu/75WHHnLtvJbxq4gNwPMbvOXitXBdDoSLH6ylfxYfB3ejlJ0M1zkP3GnxZnDduZRFnuvCGwOBQCAQCAQCgcAVXvdf41mW/fEsy+5nWfaD9thxlmV/J8uyf3/53yP73W/IsuyHsyz7eJZl/8WbOSkPxaPa+eqrr+r+/fuaz+epioyjYTQa6ezsTHmeJxK4WCwS8aM3vdfrJYLQarXU7/dVFIWGw6GGw2FqKUAYWK1WOj8/T+McyyPwnJxRicbuPpvNUvXaQwRHo1ESDbDdU23HUYCwsF6vk7uhXNlGQGE0H1kHVOoZGQnZRuDwtgAEAY6T57lms1kSVVh/T8t3ws/ffbKCV42lq/aGsqMDwaMsEkCOeQ8ndYw39Eq5T1vwCjnn4uKJtxtwbI7DtSAUuJjgrg2fZrDdblN2hU80AKwb5122+OMccNdAWUzgv37fuQDhAkN5ooGvqb8Xnx3aBlh//70LDOVz8OsrtxdcR/qve20ZLpKU8XrEvpxtcd2xrzvmdS0YT9qG8U7gnfguDgQCgcAV4ns4EAgEHsWTlPe+U9JPLj326yX93aIovkTS3738WVmWfbmkb5b04cvX/MEsy6p6QmCzxy4vXQUJDofDNH2h3W4nQkg7xPn5ebKnQ563222yweMUgLB1Oh2dnJxos9no5Zdf1quvvqrZbKZqtap2u63Dw8N0bB/9SCUfQQG7Pb36CBGQUZwNhAGenp5qOp3u5SlQDef5HmTYbDZ1eHiYiI4Tf86DKr23OkCeIdyQPdaEoD6cBrPZLJFuxA2q5x566eGB/X4/Tc3wEYSA40lX0wj8d5BZz1Twe8GFAfbUbf3XORgg/Q4n/jwPEYB95H2YpEHrC8KBk1rPDOC6EDk4vqR0Hk5UryPZ3jLgr3dCD/xnXocoxPX4c1wYcCdF+Y/fp7SdIOpwzWUC7kIJ+4cA80bFhMeRfq75urUor8OTHvdx5/AuwHfqc/RdHAgEAoFr8Z2K7+FAIBDYw+sKCkVR/ENJZ6WHf4ak77r8+3dJ+i/t8T9VFMWyKIr/IOmHJX3tk54M5A5bPw6AyWSis7MzLRYLHR8f6+joaC9UEHKKu4CqvBM8sgwIHRwMBup0OlqtVrp3757Ozs5UFIXa7bYGg4G63W4SFObzOWuh2WyWJiU0Go2UZ8D4RdoNPJCPivB4PNZ4PE5tAV4l93F7i8VCm81G9XpdnU4nuQAkpVwIpldIV9V1ScmdwTlQefYJBk4yWT/s49vtNhFqWhA4f0gnbgj2iTYPJ8Vcw3WWfeBBkOw7Io1PW+D9nWh7mwtuAhcs7P7dcxvwWtanUqmo1Wql1prZbKY8z5NYw97yOr/XuDYXYnA3sJ7eBsD6uKOBvWevIOk4QNyG78GVHj7Jnl8nKDjZdmJeJtsHBwfJYYNgVJ66USbu3K8uDnlAKcd/PbfD49wJ17UgXLe/fm7u5PDjvFnB4PXEkM8lPpffxYFAIBB4FPE9HAgEAo/izWYo3C2K4hVJKorilSzL7lw+/oKk77XnfebysScCYwsZnQiBn0wmyvNc7XZb3W5XrVZLeZ6nYD3+0d9oNHT79m0999xzqlQqOjs725sIgS2ffIZWq6X79+/rwYMHyvNc1Wo1TYgYDAaJLEL+aUXA6eCTBQaDgdrttkajUcpsQATAOcAIQgjbcrncI6QQQ5wWrAdZBNKFoJDn+V7AIWsFUaVloWzBL49e9Mch1JLSZAPWy50eEDOuwV0G/N3fn4o4FXL+22q1UvYD+01ooBNZWkVYQyeZkGrcGtJVWB/3hTsbEEM43+12m4SRg4ODJFDgTPCQS3d9SFc5CF6NRxBADHBnB/91UcPdArT2eHtFuU2Ec/ZWCkh9+Ro9j4D34fnuVCi3mHh7SlEUab0e5wBgLyQ9kgeBQFV+/nW4rgWh/PdyOwX/vc6RUX5d+bEnRdl1cwPxtnwXBwKBQOCJEd/DgUDgmcbTDmW8jjFc+6/xLMu+TdK38XOlUlG3200EDoJLWwBkrtPpqNVqqdPpKM/zvV76fr+v559/Xs8//7zm87kePHig+Xy+ly8Aocb9MBqNNBqNEoFEtOj1eoncMe2AMYI+NQDSyfhHr2xLV/Z4rPSS9irPVNolpcDG2WymoihSoCLEj1YFJ5Yca7lcJsECJ4GHJkIcnahyXCrTCDh5nqdjS0oiRVmgcDeCtwe8luWevWq1Wun6ffoCa4vDBIJcrVb3yLtX9KX9Pnuum7YOSCd/OG/uAyrknifAPYlo5cSe33GOXAfv49cMGeV82QOv1vN6b6945ENk4oiLR+UKPefG2pezInjc/1t2UXg7SVnYuO68/Hm8f/leuY6Ys2cuRLwWeS+7Gl7LueDHf63nvN7r3sV4U9/FDbXeznMKBAKBZwnxPRwIBJ4JvFlB4dUsy56/VGKfl3T/8vHPSHqfPe+9kl6+7gBFUXxE0kckKcuyokx+nJR4tZqWBirAELB6va67d+/qi7/4i/W+971PL730UgpZRITw3vn1eq08z3V2dqb5fJ4s341GI01fgKhVq1WNx+N0PEIAF4uFqtWqer1emmrAJIZGo5EIPu6ExWKRhBLI4Xw+V7PZ1Hq91ng8Tu4DBBBJewICJJhKMtkMBDsiRBDE6G0LTg7dpcBrIJJuxUfAgMSy1rvdLokfPmbTK+7e0sDelcWG62zu5YA9zpcqejkDgXXwUExaHLwa73CBwac6lCcf8F/cBgg2ODRwc3CfcH0uXnibAiIF9y7HdpGkvB6sK6IHe+GZG275532d7LvzwQUDztnbMRBQyi0LZULPefmauuui9Hl/5LUOruW65/h1vd5xrhMD/HyeRCzw677h7gTpKX8X97LjG3/BgUAgcMMQ38OBQOCZxpubuSb9ZUnfevn3b5X0l+zxb86yrJ5l2QckfYmkf/akB4X0StrrJ/cUevIHIEmLxUKHh4e6e/euvuALvkDPPfecWq1WIpW1Wi0FB85mszQ9YbFY6Pz8XOfn51oul6nVotlsqtvtqtPppAkLtB14RoM7CxqNhrbbbWqxaLVae+0QnAvV7fV6rel0mgQEAgNns9le/z3EEVJfq9XUbreTRZ9zcaLl0xZ8dKFPpIDcl0dK+iQE7Py4D3waxGq10ng81mQySedMqCStGzyfsZCcM8/B3u8Elz8Qa38uLQa0HyBuQPpYD+kqoLHcekCLBIKABw6SRXDdlAUcEi4K+PrxHNbe72Pel70h76L8uutyD9zxwHt7uKSfJ2vhGQ1cp18/z/cWFG8f4R7w/0r7YgEiiIsKtGF4QGW5fcKJfVncchdFWQAor6Pjca0YPsnD/zypY+G1XBk3DG/Ld3EgEAgEnhjxPRwIBJ5pvK5DIcuy75b0DZJuZVn2GUm/RdLvkvRnsiz7RZI+LelnSVJRFB/NsuzPSPq3kjaS/i9FUWyvPXAJVHghjpBWQhAREqjI53mu4XCoxWKhRqOhW7du6fj4WIeHh1qtVsrzXNvtVkdHR7p79646nU4iutPpNFW5p9NpqrpjxSekz23u9MY3m001m800jpIgxvF4rNFolEQHCP3BwYGWy+VetRNiOJ/PValUtFgsEmHj/SHfOBtwTkDcJaWK/HQ6TecDgZzP59put0mAWCwWj7QecG2VSkXz+TwRxU6ns+eKAFS+Can03ASmXfhUB4SQbrebyD5CA8eF1EJoyw4Lrpfrcnu/W/txrSB6SFeZEd7ygDMAscWJNETd2xg8zwAxgnsFN4NPR4BIQ149lJP7F/LNevOYOy4ApLwsLJQr+ogGrLG/hue6KMJ+sn7stZ9/2Q3Ae5C54HkZ/jl2eFaEX1v5Z96jjPLvr3O0lH/2636t570WXGzzHIh3Ep+r7+JAIBAIXI/4Hg4EAoFH8bqCQlEU3/KYX/34xzz/d0j6HW/2hCAtEG7aBpjMgNgwnU41nU5TS8Pdu3fV6/U0nU5TuB6Ev9PpKMuylLlAJXqz2ej+/fspeJGpDVTTpQtyNpvNtFwuU2Ua8giJXS6XafKCj2/EYTCbzdLrqLA7YYd04ZJoNBpJFOE6+v1+EgbKlXPpKiQxy7JEqsl4qNfr2m63SYCArFNtl66yATiH2Wy2RxbLIYzefsF7cE1cJ0S/0+moXq/vuQCo1nv7BaSasEomRVDF57zLpJFKNE6L7Xa795pyOwLiAa8nlNIzOZy8ehsD0ygg3H6tPh7U2xBYP9af63N3Ar9HpKjVaumavNLvDorS527vvMuTHLzFQ9pvMWCNOCdv0eCYLvZxnCdpCfD2gTL8XLgGP5fHXeMbwXXtC6/X9vBa5/xO4nP9XRwIBAKBfcT3cCAQCDyKpx3K+KZRJjtMM5jNZomk4j6YzWYaj8dJaOj1einQcbVapT+eubBarXR6erpXwaf6D5lvNpuJUEPelstlakvg3CSp3+/r5ORElUolOSk82A+yKWlvYgLX6mSc64asSkrXieOBEENJyVEBSZeuxAUfo9jpdDQYDNRqtTSfz1OGAYKLE0gmLlDB5w+knLUk+4FKflEUKT+CY0A6yZJotVppT92FwDr7uEfcCrQ0cG2+dtIV2eO5iB8ujPixcQogatBG4VVsjoUQw1qXx2/yWLklwa325VwDb4VgjcsOAh8PSstJOc+A8/QpIuUK+nVigpNodyBkWZbuIUQv/72TeJ96wXFcAHhSwu9r5YIa142Do+yQKLsOroOv03VtI691juyNt58EAoFAIBAIBAKBx+PGCAoQ7HJvNxVpyM50OtWrr76q8/NzrddrtdvtvbA/iC1OBUgj4x4hdoyAxFJPlRoSSpV5Pp9rMpmkyjrBfZAryHW1WlW9Xt8TMyClPl0CsiRdhUxy/Yx/XCwWmkwmKR+i0+mkHAcs+IwZRHSQlIQCwiLb7bba7XY6B9owyEXwKj7Pka5CIKULgodjw0MBIeUQQA9B5FqZmNFoNFJrCdfq5M1bAKSriQh+L/j5ObHnNexDnudpLXkvyDsEHYeCk3afNkHrCGvjbQfcYy5yueOA98GlUp7EwPm3Wq3kYOExUK1WVavV9kaDIrQgVHCOZaeBt51I+9MnPFPA3Sm8lvvPJ2cAPh887mv2uJaAsgOhXPH3deXecUHBUc5V8NeVn1duB3kSscPvR18X7pFAIBAIBAKBQCDwKG6MoPDcc88l4u3J/FRBIfo4BrCsu/W+3W7r4OAgOQawi2OFb7fb6X3Oz881nU737Ns+OlG6GOM4Ho/33AneHoGDARfEcDhMmQ8QzEajoW63q8PDw0RMIL+0EbiTwR0A6/U6iSBewcUOj3hAcCOkvtlsqtPp6Pbt2ynDAbLERANpn6DTL85712o11et1NZvNvf3AQQFBY5qF9+VnWZbaTWiFgHwyoQKC6qTwOks64y+ZkAHKQYZUtL1qzuMc050GzWYzEXQXLnA2cB2cH9dP/gJiEfvE6xkzye9wPJRJP/cBZJfr4f39+U6avT2C/A0ed0HE3RkIMFyLuxN8QsV1+Qm+FvyMsOQTMcqE3cUY3sMdEpJSawpiioetvlY7he9LuS2lfD6vl52A2IKI4/vM7wKBQCAQCAQCgcD1uDGCAuQLwkr1HOImXYXkOXnEHUCQYlEUKXdBuiC8HOvk5EQnJyeJFOZ5nsgn1V766H3cI0QY4gdpXK1WqW0B0kwGACSlXq+navN0Ok2uBhdOuKb5fJ6mQfg1+sg/CPlsNtNoNNJkMkmkFmJWrVY1GAzSc1kfnBuSHiGMiA08n2BJD5hETIF4chyEG1o2ECh4LcSWdYP0envFdcTc9wEBhnNGFKCaTcgiv8dNwvtynjgLnExDInlP9sb32cUgJ7E4aNxt4ZkH/OF9INDunCiLMdzriDA8tyiKJMSwty52ITZxHtdN+OAcHke03YnBufvIT9YDV4bfS/6aMhF3YcLzGhBSeH9cG+4YKTs8ygIH+1WefMFzy+6G8nl6Ww/P5xwCgUAgEAgEAoHA43FjBAWIuI/74w+VcezVTrwh2VTUnYxDcA8PD9VqtXRycqJbt26lqv5wONyrSFJ15VyyLEviBEQE0jGbzVQURQp8dHu628wPDw9TS4BPQEBwWCwWaSIDzgaOB9mG3FLRlZRaK7wNAjcBxBIgarhzgoosxM/bTHBVsC/kObCuLmDw/lwrVV7+7gF/kFGCLwGiDiIQxJ4/3BMesEjmBWIDx4b84mxAXGA9cU9wbZ5pUA4c9NeVyaxnH7g4xBrxGPeLE1cnuew3fwh1xG3C/bRer1Wr1ZJwJmnPGeIE2YWb8vWwV+68YA/K7R1O4rkX+ey4a6NM0j0fgcf57+OcDIgmfO5clPDj+Lr5vcy9UZ464eIKYJ1ZB98rhCbPEwkEAoFAIBAIBALX48YICk7QIKVuiz86OtLh4WGqylORbbVaajabe/Z9iCOtCZDPbrerXq+narWq4XC4V/n0vvHFYqHtdpucBRAon3Qwm832etid/DOuECIF4fX+fCfmXqWHcHp1uNlsJkEAUufhgrgD6vV6chCQEdDr9dTr9bRer3V+fp4q8e12W7Vaba8SC7liMkOWZRqNRprP56kNxMkZhN0FIJwHbl+nou3nCnmFzLEXTqKBH9PdDu4I8SkcHqjIfcX+kgdBBdxdFJwbzgP2xkMTeS33rI/g5Pp4jPU5ODhQs9lMbTIuVHAt3DeQapwH3upCECdtLD6poyxMsJ/sA+SbY1UqF6NCIeKeMcHPrB1iD2tyXSuAvy+vc6cDe+pr560GCAQ8Vs58KDtq+KyX3xt4boRfR1kAYn/cneCuFW/rCAQCgUAgEAgEAvu4MYKC9+wTqAe5aDabaVLAdDpN1X6yCyDvTkyKotg7HnZtSB5jKZnK4L336/V6L6AQhwJkE7s3Uw88g8GDCSGmkCif4rBcLlNFnmvlPKn8U22H9E6nU81msxQkyfkhfkCMPZSx1+vp7t27yvNc9+/fT8S81WqlHnzIX6PRSOvIuTBNw3MYfAoEIoJnGkDgqfYinHhLA9VyCC+E1UkvLSasPa4Dt6VDrLMsSxMlDg4O0nV5vz5rW7byQ1a5n6SrnAsnspB5fuckFhLqrRyQZUQthAT2zN047qpgvbinpKtxnqwdxJ51QpxwUuyVe2+BYE25Lt831r5arab7nr0uiwTuZii7D1wg8H3gHL3txVtCWMOyK8EFgevEA84PuEsGgdGFlbIgwjXwXUAIarQ9BAKBQCAQCAQCj8eNEBSq1aq63a7q9Xr6L5ZviP5ut0sTF9yG7sSz1+sl4ot1v9FopOMNh8Nk5R+Px+lY0tVkASznkD8q4FSdIZPSVeAfpKXRaCSXAkTQK+qIAzgRXICQtEd6pCuSw4hLwiZZG1wOEC4eXy6XybnR7/fV7/eTAEJwZafTScGVXiXm3DinMhGlsg3hZdQmAgFrWZ40wPrSBoG4wJQEfw1r5dkR7gzgPLkHINsQfn7vIYOsM6ICQoan+OMUwKHi++EBmt4KwPUBJ+wuchTFfrYHhBvBAbcIggK/p5LOPYX7BCELgYf7x6v55HsgDECUEUXcDeLuGD4DCAIuUHBflMUFBAb+uFDh51ieTuFCnLsjOK6LHS4K8bNnI5SzHBAUcJqwBjwfcI8jJiKqcQ8FAoFAIBAIBAKB63FjBIVOp5PIBgSECvRisdBoNNJisUi9/PxDH4v+YDDQycmJzs7OEvnqdrsaDAaqVquaTqcaj8c6PT3VbrfTw4cP04hBLPIQXcIhnbhAgpg2ADnxNoZ6vZ6CAIFbvJ3o4kgoh08yycKJ63g8Tu0OELD5fJ6IrwcYUknHYk/FHUI8GAySAMDrIeLefkEfPu+JGIIwsFwu1Wg01G63UzUbgst1ezuACyueKSApCSHe848IxGv8GJwD74HQQbYA5+/ZFeyThxaWbf6+/h7Y6KF/0v4UCml/woBX33FVQOD9mJBW9km6aJlYLBZ790i5DYCsD8QBzsPbO/z92VccFbgn2FsXgriHeU45LJG15lz5/HkGhk/S8GkbrI27LLytgfvOP1eIH7TOlNfaxQTOxfef6/cMDxc+eE3ZheHiWggKgUAgEAgEAoHA43EjBAUPSZP2Axp9VCREz4nZ4eGhOp2Ojo6O1G63dX5+rkqlona7rX6/r16vl0jBeDyWJM1mMz18+FDr9TqND5xOp8rzXLPZLNn/IRuehSBpz8UAsG4TMgcgYYgV3rMOoWy1WqpWq0k8oaUCknZ2dpYcFwcHBynTgB74er2exIdut6t2u50CGllHHAq3b9/WZrPR6empVqtVCmysVCqPJNv7hAMq6QRirtdr9Xq9JIaU7f+bzSYFaU4mk/T+CEdUn9lPjuHrB8FzFwZrzX3jWRW0tUhSq9XaE58ODg7UaDT28ijyPN/rkYdouwjhBNbXw/MJaO0o2+k9H0JScmdwrp4RQgsMbgJvmyk7IiRdG3rpwgPXyzpxbj5RoyymeIsA5N4FFd9n3of2pNlsttd24MGOnGO5BcHDRp28uyMCcs+6cI0uDvjx/Ly4T1ifcvuE32d+f7GfkZ8QCAQCgUAgEAi8Nm6MoAAmk0lyIkBsVqtVSpf3nn9Ibr/f161bt1KlXJLa7bba7ba63a6m06mq1apms5mGw6GGw6HyPE+960VRaDKZaDKZaD6f6/j4WI1GY0+88L51SI33pktKRA5CXQ5g9JYCSBphkWQk5HmuyWSSKv5Ulzudjvr9fqpis04EUkL8Wq2Wut1uypyYTCbJvo14MR6Ptdvt1G6395wR0+k0rS17QLhjs9lUs9lMrQpkWyC88N64Hshp8HaBVquldrudKs6Qdyra0pUwQ0WfEZvA20P8+exDlmXJNYEwQ3hnp9NRt9tN6woxRcDy1hFvXaGKDgmXlMQSt+878fd2Aif3XplHTGAdcKHguuH53h7g5JnrRtxwAYN7j/uw2WzuZV94cKk7PfwzhIBA64RX8z3w1KdNcD5O9r21g71FLAB8ltzdwDVwz7lwhDhSznHwYEg/Jo/56xw4Nvj9YrFI7Q9lMScQCAQCgUAgEAhc4MYICo1GQ4vFQovFQlmWpf5+/jFP9dbt2fTNt9ttNRqNvQpyq9VK4wlPT0/3iBQjH2kJcPdDrVbT0dFRcgJwvHKCvbRPbBAAILIQeLeue6Udd8JgMNBgMNB2u9V0OtVisdB0Ot2z1zN1odFoaDqdajQaJVGANoQsy9JoTDITIMpcN5Mb5vN5ItkutOR5nsLocECsVivVarU9ZwHXDqmkZQJyTSZAs9nUdDpNz+t2u2o0GikrYD6fp8q0tyVISk4Nb53w6r+LKB7ySLuH7xvv7xMevNXFRyGyPzzHQyT9vsNdIF05VzgXBIKiKNKYR2/nKLseyMegXYbrqtVq6Th+jV6V9wBIzpWwR1Buu5CuqvLSVRilt4DwOWMfEW68DaXZbKZ71CdclDM4EJRqtZoWi0VyK3h7k3Qlnvhnm3uOtUVc4vPmOQu8n1+Ht1f4BBR+xgHhbTeIeOXWlkDgraJ6+7Z++Fd98Tt9Gp8TfPA3f5+Ky+/GQCAQCAQCn7+4EYICJAEiKykJChARbM8QvcFgoE6nkyz/TFyA2NTr9VQxHw6HKajQcwe8hWA6naZWh06nk4iZixpUPCuVSgo9pGoMKSJkECLuBJhjUIFFDIE4+rl6rzeiA20JXtmXLsgVx8EFQFsEFWGIl5NhrmexWCjPcy0Wi70pAuyFT94oBxpiL4d0zufztK4QQYSEw8PDlAFQHsvIGm23W83n8z0bv4O13mw2eyGJnvXA3mGL9ykKEEpJexVyLPXsDevE67zVgdGUnK+LDbgCfAoD9wltIN7eslqt9sQbxDUXaDin1Wql+Xy+R6x57/LYQ4QDrgPBzMMmPeMBwYD3gqx7S4y7ENh7d7FIV+IK4gxOjFarld7X3Q3lzxbv7+LMdaSe68DJ4fA8DI7J9A/uaa6N7wTGjpYzFsKdEHgqqFT1id/9tVJWqKg+G/fUD//Or1FlK33g1/+Td/pUAoFAIBAIvI24EYKCJOV5noIGqdJnWaZOpyNJe/3MkGfpqqoJCaYCCtk8OzvTfD5P1XiIHpXX5XKZeu2dkEtKxNaT/pvNpnq9nrrdbuoHp11AUiLe5bR7BAccGJDwdruter2e3Am0RKxWq9SuwPFWq5Wm02mynC+XyyQsNJvN1BbRarWU53kSGtxVAZwML5fL5IrASQEBpVrsY/Q8hBJiWe6997aP4+Pj9B4Qc0i7j+10ckkwZa/XS0QZ54cHYXq7A+TSR2tC/tknr7IfHh6mdeI9cG5IV0GWiAEQeR8D6SIDRJjrbjQaOjo6StfJe67X6zS5A/HBRYLDw8M0jcMt+27d95BBXktmhk9JcMHLBRbO1UUZ9sD3wZ0PeZ4nx4mkvXvEc0Y8cPPw8DAJKn6vIprwfL9+Py/EHxdLXIDyffB2E9YFsZHPNHkduG7KOQzewuRCTiDwRpFdimyf+B1fo91hIWXPhpAAioNC26r0qd/xdfrAb/k+FbtC2m1f/4WBQCAQCATeVXhdQSHLsj8u6adJul8UxVdcPvZ7JH2TpJWkT0j6BUVRDLMse7+kj0n6+OXLv7coil/yeu9BlZzeaqrXEETvlZa0R6DIC2AiBNVSCP9oNEp5AfV6XZPJZC+BHvLp0wUQJyCBVOM9s6HVamm73aYJDJLU7XYT+YbUuXUasWOz2aherz8SJki7ACGRuCaKotB0Ok3nKl0Qtdlspul0qk6nkyziODUgkZyLV4chey40QNacrEpKBJuWEq/4IlaUU/QhrxDjarWach/W6/XeVAnW+vDwMI30ZPpGs9nUrVu3JF2N+UQkoGru7hCIMlV/RCLIJgGAHMNbOiDVPgnCMxJ8RChrCtFEROA5lUoliU7dblfValWTySStFYKZBznScuBVd44HuD/ZIx/d6dMraJPg3Pg7YgJ/POOD43sGggde4o7wDBEXSdxR4pkLfA64J/hsco04HxARPKwRUcBJPsdyUQmxzYUsrt1bolgvRA4ERRepyp/ZskPmncTn4rs48NaQ1euqXIrKn/rlX6HlrZ2kZ0tI2EMmbVqF/v3v+VFqfbai9/7Bf6ndpUvoaaHa6z32d7vZLNouAk8V8T0cCAQCj+JJHArfKekPSPpf7LG/I+k3FEWxybLsd0v6DZJ+3eXvPlEUxVe90ROB/HmS/3a71Wg0SpZsCAqE5tatW7pz547a7Xay6Od5vkeKptNpIm1U46lIUuH3gDwEBTIbPO+AzIN+vy9Jqdq+WCzStAlP7ofc8F5UzSGEOBIA748FG8K2XC51enqaphK0Wi0tl0uNRiNJFwGBrVYr2f05LlXYZrOpyWSyR+54P29fgFjyvr5ukCyIf6fTUb1eT24GiDvhgoQjdjodrddrTafTlN3Q7Xb3xByeS74C7oWjoyP1+32tVqs0ocOr5pwXawgxdBu+tw1IV3kduA4guX5siKS7Qwi29KwBqtrcT/7cRqOhXq+X1gWyTc6HpCRweNsI+1Lu6/cpDpJSaKC3sHCvubCDmMK+ISTwGSODw6cflLMkNpvNXtgm68L9QzuS5yV4eKaT/G63m9pjWKvdbpdEQdqOXDjhOvweRUBjIgPCh4sjXB85FghYnvFQzsZwFwg5DzcI36nPwXdx4I2j0miocnKsBz/hC3X6VQgIMXLUMXthp1d+0VfpPd/1g9pefp9Xb50ouxRg3hSyTD/0q98nPSbq5Av/xkbNj74sSdq8/IoULUyBt47vVHwPBwKBwB5e91/LRVH8w0uV1R/72/bj90r6P77VExkMBjo4OFCe53vp7tjBG43GXkCjdEFOnnvuOTWbTY1GIw2Hw1TFPjg40HQ61b1791LWgrsYsNozJhLRwkkKpBxHQqvVShZ8xAtIHdMWIJYeYgjRxh3RarUSSXMC48+HHK/Xaw2Hw/QcD/UriqtRjL1eT51OJxHR9XqtTqeTzgOy6Sn9lUolVcq5Xta7PFmAP5VKRf1+P7kJZrNZEmUg/svlUr1eT71eT61WS6+88opOT081m83U6/XScT3Jv9fr6eDgIIkzJycnes973pMq4Tg4fA0gu6vVKhF9xAsPc6xUKnvjOdm/ckAgx6MlgzV2EcOnAODCKDs6Go1GasuB6PrIRp7Hmh0cHCS3B1kWnpHBeeDAcKEBsiw9OtbSyTWuEH7mnkdQ8rYT/+NTTtx94GIURJ21RCRA2GB92QPOw//LtfE5QHDguPzewzLZMz4brBPXiLDjORu0v3DNPmWEx9zJcZPwufouDrwxVFotTX/SV+izP66iZ9qN8ASYfHCnV7/5w7r7jx5Kkj79029r/tzbJ7y8+I0H0jd+gSTpS/7EkSqzlbQrtP34D79t7xn4/EZ8DwcCgcCjeBrlt18o6U/bzx/IsuxfSBpL+k1FUfyj1ztAtVrVc889p4ODA7300kuP9DXjEPD+fEm6ffu2nnvuudQLT6AhowFfffXV1BJQqVRS9ZxgNogbRIM/ECnIIc6DXq+nwWCQMhOYFoHlnNYJLPmQRqq7s9ksEUcXM7hexmKSZwARmkwm2m63KRyR65AuhBjWgco/RBeSzvOxcUOY1+t1yq7wKn9xOZ0AxwNTLHxqAu6P4XCYfp7P51oul3sTHYqiUJ7naQxos9lMYhEZGeQxkJ/B68nPOD8/T24CHyEp7WdVkE3A3iG8+B4SCon7BGKKmEGV3I/rDg6q8WQ8eG8/IgmE21s6cClAjvk9YsJgMEj3Be4DquxcB0SbdYCIsw4+1pLzRgzBweDCgJ97ORwR4cknnOAcIEMCoYq19HYahAima/B8d4P4fxE5WHvPffA2FJ8yQTsH+8QeeH4Co1HLLhYPH2V//fsIQcFbLd4FeMvfxYEnR3ZwoOJHfbmmzzUuxYTAk2D4ZYWGX3Zy+dPnzsXx73/uhQiebaUv/u66ih/46OfsvQPPFOJ7OBAIPHN4S4JClmX/D0kbSX/y8qFXJH1BURSnWZb9HyT9xSzLPlwUxfia136bpG+TLqYInJycpDGHPgGg1WolhwGELMsy9Xo9feADH9Ddu3dTz/x4PE7WaEg/VvLNZqPxeJzs8BA8t8x7xdXHJVLpPDk5UafTSUIFQgTVX45DFRbCg3BBBVdS+hkSOZ1ONR6P0/hGrPm0ckCUJO1V1nu9nk5OTjQYDFJifbVaTeLDbrdL1XgIMORrPp+nXAMIFtctKb0egofAwhrhToDQrVYr1et1DQYDHR0dqdFoaDabaTKZpOMyShNXA1MPcHFQOUeI8Sq55wL4el8XzkhFG8GH94UAe2aHCwNcrztBXFCA8EPqPcOBc/PgR54DcfX8jvl8nvaw3W6nfAwPJ6SthPUHXrHnvLkWr+A78UfA8Mo7j/s1uguE+47fk9Pha87+8ztcA7VaLQlLHNtdGtKVoMB9wH3lrg9ECd9/3ttHPPoeIuwg7iBWsW9+X3N9HjqKu4TP3E3H0/oubqj1uTrldzeyTPNv/Gp95j8PIeHdhqIqfeJn9/T+1o9U5R/9i3f6dAKfR4jv4UAg8KziTQsKWZZ9qy6CaX58cfkv/aIolpKWl3//gSzLPiHpQ5K+v/z6oig+IukjknR8fFwcHBxoNBolyzdkzxP1ISqNRkN3797VCy+8oFu3bumVV15JeQiQjdVqpcPDQ73nPe9Ru93WeDzWaDRK5Am7s6f3uwgAQcKxAFFmNOJ6vU6VTGzeXtFtNps6PDxM7Rluo4eoViqVlPb/8OFDnZ2d6fz8XHme740FRAApV5JxTdy6dUv9fj8JEBBGCBeCAaSO9ouzs7M0TYNzdYHFyRSE0h0LPtIPcaXb7arX66Xe/LOzM00mEzUaDR0fH++NMGTduS4CIHktDhCOTVuJO0mourN3BFQipOAA8GwJBIXrRk9C0MmR8IBAwiV5T6/e+/oghkHKcZPgzkBg2Gw2qQ0AB44LAuVRh4gT/l6sPeKBhwi6+4I1wnXCObqzAqeMCwtOyv147uSBzCNy8BklzJNzZW0RACD/CHY4EDiui1itVuuRSSD8l/fn84JQxb4zyYVzdTGC4/A54TPNfXnDMhSuxdP8Lu5lx+HZfwJMfvZ/old/9Dt9FoE3i12t0Is/paHbz/9otV5eqPKP/+Xe75ff+DVad6vXv7iEwfe8pM1nPvs2nGXg3YT4Hg4EAs8y3tS/lrMs+8m6CJz5cUVRzOzx25LOiqLYZln2QUlfIumTT3C8RHLdfk/fdbvdTmMZDw4ONBgM9CVf8iV6/vnnE+Hy6QdUWI+OjtTpdDQej3V6epryFTwwEZECokWPOmQG8kfIHrkHOBOohtfr9WTr915yH8UIIaJ6WhSFTk9PtVgsdO/ePZ2dnSnP8/Te2N2x2ZczHjw/AeGl1WolV4QH9EGMaH8YDocaDoepDcHzH3iuj9jEco6QgHjCOR4cHKjT6WgwGKRrm81m6T1OTk50586d1BrhbQDsW7PZTFVi1hkCy9g/SXuhf1wj5wcJPz8/T9kKXAsk3scd8jpP+ud53s8v7Qf4lYktZJ01hrhyLdzL/B7Bi6wF3AAci+df18IgXYlSEGoEAe6N69wc3COS0ufMp4BwzrgFWGsXwjx7gfvARQHOCaHEBRfpyhGBmEBbBPcfghbXhJhAqKJ/Z/g1Ijwh/rVarXSOo9Fob6qGh4zSAsT1eXYCgspNxtP+Lg68Ps5+wdfp7D+Of++/27FtFLr3dVJt1FL7S79u73fjL5G29Sfb4/w9X6jDyRfo9p/5Qe0mk7fjVAM3HPE9HAgEnnU8ydjI75b0DZJuZVn2GUm/RRcJtnVJf+eSKDAK5z+V9NuzLNtI2kr6JUVRnL3eexRFofPzc52eniZCKSkFIna73WRVbjabes973qMPfvCD6na7mkwmSSiA+EBuO52Olstlcj1AIMrw8XJUlJnyAHGjUstEA/IJIB1Y2a8LtnMSW85WODs702g00v379zUajfacGVTqcQ9AbqmSM5oQkQFnhBPy8nSA9XqtxWKRKrblxH2IHNZznBaQXp+UARHFto8zAfJOSCaCALZ+qvu0uEDGCczjvMlT4LwQNNxR4k4AztMnaiAW8J6cM2IC1Xuq2pISUeZ9nAzTm+/ElLUrj5OUlO4jt/xzr9KO44Taq/28p7ehQIrZc4SPMmF3ccLDLz3To+xg2O12yVHAc8nsoB0F0cSdEKw79ybCFuKGX0uZ1PvnESEHoQORgn3ylgTP4UAUuE7cYLqIOyK8vYPz4h5kLXAocZybgM/Fd3Hg9XH+5XrsVIHAuw+r/k6r/pt/ff6FF/9eWQ3+Y2Ub6bnf/09imsTnMeJ7OBAIBB7Fk0x5+JZrHv5jj3nun5P0597oSVCpJ1QRW3e329Xx8bGazaaGw6GKotBgMEitDrvdTufn5yk3gGp+q9XSrVu3JEl5nieSMp/P9yYdQIogg27j9lGI0n5VmuqnpFRphuTU6/VEyCWl8EXIKA4KbPe1Wk2TyUTT6TS9Z7vdTu8BEUZQwX3gYxWp1jpRYw15HFLOtW23271RhW5D5/ykC+dGt9tVu91Ov8/zXLvdLpFLWh0ajcZer/pkMknkkPehXcIDBDlv9qTVuugfRJjw88T9QfUe8QnBhHV1csz5sDdU4D0rgCo++yRpT4gpByoiHCBUIQD5671NxwMLOQZkHzLsbSTuokFg8JYfckHczcLe4tiAWCMSAW8RcUHB3RA4cLjfXBgAfj/j7OGe8ZBI3CQeelkWShBe3J3AyFPOj5YmxAaO520ULoYw8YPPPJ8hQlP9vVwQ8hyFmzTp4XPxXRx4bbzyq79eRTXGQQYexfS9F/fFZ3791+m9v/N73uGzCbxdiO/hQCAQeBQ3pkF4sVikaQBZlqndbuvOnTs6OjraC8lrt9s6OjpSrVbT2dmZHjx4IEl7RBsihfWc3ACmMOAY8Ko21cnFYrEXQMfvsXmTBbBer9P0hcPDQ/X7/URaIDmHh4dpvCSW891upzzPJSlV2JmO4GSJIDoIIaSOij6iiWc3QJwZmwhZhTRVq9V0Lh5aRwsHjov5fK5arZZ6+wmn3O126djtdjsdnzC+9Xqt8/PzJFjM5/NkoUcggYTTBiBpj8hx/VSrt9ut2u12Ei+yLEvHmkwmqaKP6OIkvNFopL3GJeG9+hBojl3O6XAXgI9pRHiC9PsalC30EHkcMB4MyXsiAuAcQBzjfbkPIfWsR57ne04Bjun3EY97Cw8E2j97TsZxDSASMMUBkcBFDz47XAPvTfjpwcFB+jx4noi7kKQr94JncXDv+Tni6GDtfLwnnyleQ2sN94Tfi6y333PugvAxm4GAJL3ya75e0xd24U4IvCYWt3f69G/+en3Bbw9RIRAIBALPBm7Mv5i93x6CfnJyopOTE52eniYr89HRkV544QVlWZZaGbIsSzb+4+PjRPogrZBs2gQ8VBEiDalFZGBKAcIAv6M/m6A9zrPZbGo8Hmu322k8HifyOZ1OU74DVWbGRdLvT0W0PF4Pkk4vPufcarX0/ve/X3fu3Elkejwe71n7JSWCRto+pBti50F5bv/f7XYpUA8CRvWdc6VyjFixWq00mUw0Go0kXfXus2+SNB6P9corr6RRk7R0QKA9eHE2m6WRn/V6Xb1eLwkank3gFXAP8UNMwJVCVRpngHSVP4CIQuYCwgDnz3UzfhJiTmBmo9FQv3/hmYU8k8nhJJtjkhnCdUynU61Wq3SPIjxB0smlgMTjsGCvEJUgx9xbrK+7Qbi3aMFxSz+uBW8J8KwB1ph70Z0THni4WCweGUXq7QqsqZN2WmwqlUoaGeoBkp5p4cSfPUS88baF1WqV1ow2DFqERqPR3u/4HNHugOvCBZvAs4t7vyLEhMATIpNWgycTFV78bV+vbWO/PaL92Ux3f3+IEYFAIBB49+BGCAq73U737t1LJOvg4EC9Xk9HR0epr361WqnVaum5557TYDBIIY6QpfF4rPl8rkqlsmeHr1armk6nmkwmiRzgCKBaTV89ZAJ7vQcIQlrIUcD2TxAhVe7xeJx6/yWlc/QgOxcG3HLtSfMQX0ZOUlFncsXzzz+vdrudXuOjKakYU90/OjrS0dGRzs7OEsGWlCz+OB6wkXc6HR0dHaWWCSf/h4eHaUQl61OpVPZCHr2FhIrxcrnUaDTSYrFI5J71dpcIbRMcp9Vqqd1uq9PppDaS9XqdJnbQ1kA1HKGDtUdE8ZGCEF+eh5ggXQhEVOax8EMuyZPgdQg1zWYz5XxMp9O0t1T2EQEQIgjv5F7yIEJIPefYarXU6/X2QhJrtVrKwPD7BFEIyz/XjuhGHoHnCtDegkjB5wFRB+HMnTC4MmjhYHwo4F5EhOAzyvE91LRer6exr+6eYI0RWmiPQCjinmcNyA7x17H2iCOICYh8HsrJ9xCfc849BIWAJClug8AbwaWo8Jnf8PV67++6zFSoXHyHP/zFX6vRhy5DfbNHRarJ+wvlv+9H6/b3S70//X3Sbls++hO8fyZlT3DTFrvIewgEAoHAW8aNEBSwtktK5KDb7SbCjX16MBio0+lI0l6wINVsbNRUZXe7nR4+fJjGSvZ6vZQj4JMkCJRzgksFnJF9WOazLNPp6anm83ki9y+88ILu37+v6XSq2WyWXiNdERsq01SVy8GJOBKciG02mzT5AaFgMBjo7t276na7kpSOOZ/PNR6PkwCT53myx0MWl8tlEl7cqdDr9ZJ4QBW+0WiklgIILnkIbosnS4C8BMIXcYiwJ7SceG4A1ftqtap2u61ms6ksy1Lby2Aw0J07d3Tr1q10PrRVzOfzvR5/6WIsI4IArR3uFriuUk91XZJOTk7SJA/WhnA+KtzuyiCTgTWmlQVbPtePY8bHRbK/ntuAcCEp7cXx8XE6J5864iNSJSXBwsd+4gRwNwD3Hc9BAHHbP/cGa+BiAmAP+Yz4qFEX83D1eJgi1869QEsGIg97xX6xvwRKIpIgIpEP4vvK8TkezhV32bDO3lLFtXGPe/ZE4NnFc9/xPfrsr/t6rY4KbWtFOBUCr49MWtzZ6d6v/Drd+tdLfeqnMTHmdQh8JhWZdP9rpftf+zX6wF9eqfoP/tXrCgvZwYGySzfgK7/oqzT54Otnfdz9p1L/L/9r7RbLNydcBAKBQCCgGyIoQCYkJQKC/T/Pcw2Hw2Q5J4zu/9/eucZInl5n/Xm7urq67lVdfZtrZna8Bm0cs3as9ZUoICCJFbGEXHAkpHxAMh8SCT6AZCsEDCJCAWK+gCIlcpSAwBYIUCw+AAkXBckB48S3tZ3F6/iya/dM3+r2r67qS9WfD12/t0/1znUz01XlOY/Umu7q6qrzf/9vvZrznOc8hwrswcGBOp1OHCtJAtDv95Ukifb29iLZQAWexIhkVjrrx6ZiSRV3OBxqeXlZ6+vrWltb0+7uboyJxB4ioNPp6OjoKCZvSZKo0+nEajuVexIoYsGMEKM4SfH1Op1ObHtAOYB/gaRYmWUdz5vooRQ4ODiIsR8dHSlJEvX7/dhiYKXuvKb1dWCNuE8kcJg0co22751kFrf/0WikfD4/YYqZzWZVKpVUKBS0sLCgdrsdW0Y2NjZ06dIllcvl+DcklCR8JLNM9bAGgFTmM5lMVA/gg8H1QPgUi0WVy2UtLi6q3++r3+9PTJKwPg8QCsTAvkySJBJSjOeUzjwaIL9QIlgvAZJ9JPyLi4uqVquq1WrKZDLq9/sxecaokjWRFK/JEgHsJWtwiEqFe8droQKBYLEGkVZZwOeO1g6q/ba1hb1hSRhaOSAibOKPKoDPAHvFKjhsGwOEim3VAfZ7VCWWPEBNAYFoJ2Jw/kCuuYeCw+LKL53K0F/9O+/R4Yq3PzgeDsn1kZLrb3z87Nf/4pJuHX2fwu998a5Jf1hc1EJjRb0Xbui1P4sq4eGMQ++8U7rzzrfqxn86Vu6lVzXc2XNiweFwOByPjJn4HzOJiu1pRia/s7OjZrM5UVWkhYBedKrj9F4jkx4MBrEiT7JsWw5QJpCA2QqubSGo1+taXV1VoVBQkiTa2dnR4eGh8vl8nECxvb09oUzAYBIjSCr/kAlIxO0YQ0lRDUBCCulgE1euHSKAJItKu014+f3JyYk6nU6UsdtK7dLSUjQfJPHEt4LpDrQF8B5WaWE9IKjmoxpBhUDijrkgsefzeRUKBWUymWhgKSmqEy5fvixJURVip0/0+331er04iYKJF4yrJIllL9k9YAmRWq2mWq2mYrGovb09JUkSlQesE4SLlcWTdKJokRSJMKaPWHNE7iUkj/UGgLQhzmKxqEqlElsUGCdq1TSSJlpMeB7x2raJfD4fE3FJ8X5ns1mtrKxEo1P2hp3IAGhRoMXk6OgotgSdn66Qy+UiwWPVCRAmtvJv/Sr4fNsYAWQS689nFrIO0gMCgnsPEWE9VyBTeC3bCkM8VgHicIBr//BTeuWj75p2GI6nCF/7iWXdSt+i8L9fOkv4Q1Dm1g0dX6rpq38598d6/W/8aFb60Wf0po9vSJ/5spMKDofD4XgkzAShQKVROnPDxzhtd3c3Jo2YJCJD73Q66na7cdxio9FQqVSaMMyjWl8oFHR4eBiTfEwHpdMecKrntgpKso864ejoSLu7u+p2uxMGgvv7+1EhIZ2NRkTmb6cl2NGVkiak1rYCTJy2Ak2/PoBYgPxgLYmNNaUNg+skgaLXH5M7qvfI6m21/fDwMI7go8WC10f+j68CiSuSdVpaUIRQ8SbZpXJNgrqwsDBhdsn9oLKOwSTqBEZWSqcS/larFX0BisVi9JPgOtlDJOi0FXCNECsoRiAN8BvgflmSB6JjeXk5Jq/D4VDlcnliWgJVexJq4rGtANyHTCYTWwpQ7pDk0kJhyQlaA0jc+TwVCoVIlLHnuI/1ej1ev6S4Py2JYn0VUMDYNg1rhHmeXIIQgDBh7a05pm0/sRM1uAb2DPfQjvVcXFyMxAUkhx3JyWsmSTJB4rGX7PuyJ1hflC0Oh8MxbXztJ/P6E1+paNhsSpLSd79VL/9k/gF/9Wh45aeLupX9PoVPfd69FRwOh8Px0JgJQkGSisVilNtjNpgkibrdbqzYkmRQfbeJdKVS0crKSpSH029tk0mmEOAkv7S0NGHmSLWdKnEmk1GtVtPVq1e1sbGh27dvq9Vqqd/vR3Kj0+lEg0BJsbJrK7AY65Fs295ySbGKjzqDhNwmUNb1nr+BuNjf34+tFlTESZZDCOr1enGcIxVb1AIrKyuRNLAJuFWEQEbQpgBRQjKJoaLtn2cdrJKCJO18gkgSR/WaMZUQBZho0vaRzWbVarVigoz8n5aCfr8fW2S4NjwgJE0YbKJsWFxcVLPZjD4QVPTxMlhaWppIWO0kDPZiJpPR8fHx6xQF3HdJkZzguVTEqcZDCFkFg3RmxihpokXGtgKwFpYQYp1RqbB3INCq1aoqlUr0vLAKAKvGsOodroN/M5lMvFeWBLOTHez683p2WoN05r/A74id96Fdhj0FIUXLEdd4N1NK4mJ8JZ853pP3tftV0oTZpMPhcEwTB+9+k3L/+Q908meeN54Mjxdf+4llfU/+7cr+zu8/kdd3OBwOx3cfZoJQIGHGmHA0GkUzQisbJ4EdDodqt9tqt9sxka7X66pWqxP9+f1+XwcHB7H6jS8C/fK8znA41Pr6ekyqSFay2azW1ta0urqqEIKazWZ8Pok1rQ6oH/BrgHAoFApaX19XuVyOkybK5XL0I7CTFogdZQWVXloDLJmAAgDVAGaI1qEeeX+321Wn05GkWHmnDaNcLsdpCdVqVUtLS+p2u3HdqZAPh0OVSiWFELS/v6/Dw8OY+FKJJqklkbMqDGLium1Sj0ze+iNALNHWQgKIAZ81uyTRhTw5OTmJbQDWE4L4bBWdtgLeG7KKNUYxY9sASGorlUqMkWthj52cnEz4B1gTUPYw5AvjJW27wnlzRva/naCA8qDb7cYpCFTqURCgJuG6uS+QAJVKJU474b5BREBK2H0nnZEb/FwqlVStVuMa28o+12tbB1Bg4IFhVTOSYlsF94LPP4SibUs4P2LTGlHSBmTNL8+3sJz/mc89ahQnFBzn0X/xhWmH4HhK8eqfz+hS4R3aes+TbcX65vuzulJ8Qfnf+rQkKbO2pu77npl4TvlTX9fwzvYTjcPhcDgc84GZIRSo1pMgUpUejUZRtg3ZgBFjs9nUcDhUoVBQvV6P0nMStFarFVsR8FRApg6ZcHBwEH0D6P0n4VteXtba2po2Nzd1cHAQDR6RUvd6vdgO0O121ev1YquEdCp/X11d1ZUrV2KCQvX9+PhY3W43+jtIilVcCAqSfJJL+uIPDg7i3w6HQ9Xr9Vhlts8bDAZKkiTGRRJHBR9DSRL+crk8McKvUCjExGx5eVmFQiFeJ8SAlZXbsY7nPRp4nGTYJvxMiWCqRLVa1dra2sRIQcZ0kqCThEIwWGNPSRMjFM8TEPwdrTUkpDxnNBrFFg3aE6jMQ/jQ6pDNZmOSa6vfEC1ct/VbsNV/9j/vS+sA1XnUDKwxngV2TUnieS4/kzBb4sa2AzCNwk7dQCVCNZ89xXXResT14pWAooI1kjTRNkIcxAJZZadpQBhxHawXSpPzsJ8HCAVpknAjTmLguqw3BGvJnmbdrKrD4ej9+Dt1VFrQ/lt9yoNjeth67wVsviB9530ZPftflrX3V96m41JQ502TRo+VK29StntLjX/3eY2Mf5TD4XA4nj7MBKEgaaKvmuotiaedbHB8fKzd3V01m82J0YjVajX2lWcyGe3v78ceexIJqvKS4pSDTCYTTRdt28FwOFSlUtGlS5dUq9W0v7+v/f39aEAnKZowMpEBaT3y6bW1NV2/fl0rKytqNpvR6K9UKqndbk9MDEBOT3sBqg3aP0h2SHyZ/lCtVlWv12NizMjGVquldrutZrM50dNO4hpCULVajYQCCWiv11OSJDFhRomAQoIKvE3kbWUbvwN+5v7YcYe5XE75fD5eNwoKvC5WVlbUaDRiS0q73VaSJHH8IskpbRZ8SWeSf3wdrBeBrbBDBrA/8OOwihFaSKzMnr3KNdg1IKllnyGnJz47GpJqPEk2yXq5XJ5IzhnLyeujXGGtUZJQsYe4sIaCdk9bsoTn2VGqJOOoPGy7AiQEJpeoP7gPvLZ0aqq5srKiNE3VbrfjGi4tLcXPoDXZJH5rTsr6QzBImiBh+Dz0+/1IEjBiFmLPEhFWGWNVJdwnXlfSxH5xOJKfepe2vz9otOR95Y6nBAuptj74dnVvjnS3UZedW+OR0LXntXAirf+LT11wgA6Hw+GYFcwMoWAr3jb5LxQKUYqPLJtxjIPBIPaBk0ijbmCUJMaAgPGBJFKNRkPXr19XpVJRr9eLFfBcLheTon6/r9u3b6vZbE5MZKAvGwNF+x4hhEhUoLpAPm+r5/Tqk6gfHBwohBCnDiBpp60ApUW/31c2m1W1Wo2S/lwup2q1quFwGEcfQiYUCgVJiuvL1AmqsUwT6Ha7WlxcVKPRiEoOqvqsKyQDFWAk87RKWANGRkLyOD4NqA94PaYVbG5u6tatW6rX6zo8PIxEDtJ/km8S9VwuF9sBbNLK/uEaIKvwe+Ce4HfAfsJbAgNE2/5CkprP51Wr1bS8vBxbIbgvkuK9sqoE27JhiQZ+lhSTc1QQdvIDIzNtFR0FAYm8le9bwkBSfN55g0wIE4gEEmkIKD5vqCdYN9be+npwvfV6XRsbG3ECCqQLrRKYVLJ/7IQI9huJPteGcsISSHxuWAe8Eo6Ojia8KobDYfycsR68H+oQa9YJ6cY1ORzdawsaLT3cKD6H47sB6YLGZML9kdwYSal08rffo8v/xEkFh8PheBoxE4RCmqYTiYOkWBWnx5uKbSaTUbfb1cHBQZR+l0qlCXl1v99XkiRKkmTCQR9PBptkX758WWtra7ESbKX4169fV71eV7vd1tbWljqdzkTVk2SS8Y6MVyT53djYiESFnWhAdb1ararX6020MEinJo6QCbRZVCqV140rZNwha1ipVFQqlaKSgio8FWSSXGveiPphOBxGbwTGb5J8kQC32+3oA4G8H4IAMiRJkvj6VNypyGezWVUqlUhuJEkSRwwOh0PlcjndvHlTt27diioO2lpQSPA+tC+QNNqJANKZ+aF0JsGnOk4yyVQJlCGsDfeIxNWuE0k0vfv9fj+2zljigj2MjwIkDAn4+Uo7r0s81lMAsuD8xAm+pw0CQo6qvv2SFFtdeG/ilBTXAOUBa2B9LVg7frYTF6yxYrlcjqoU2oJYM9QJEH2oHvCHoM2D39tJItYbBEUP+4B9AWllx0gWCoUJVYJdd6viQKljTSg5dxxPL9p/9V062HRiyeG4J4J0cGmk1z78Hl39R04qOBwOx9OGmSAUpDPDNyqs+Xw+Sv5pXSgUChoOh+p0OkqSJMqv8VCgj7/ZbKrVasVkIJvNxuo5lWImOKyvryufz0+QD4VCQbVaLZox3rlzR1tbWzE5Iami8trtdmMllCSJ5J7qNFVUa7QonXo7bG9va29vTwsLC3HE5MLCgpIkiXJxDO+IEWNJkmmM8XjdSqUSR0Hip2DJEEgCkkwmYNjefxJVfCIwdiQZJ2EOIajb7cY1zOfzcZ1oU2GiBElps9lUr9eLFf80TVUul7W2thbbPJjAwd9Toae6bxNl22ZANVtSlL+TYJIEU5EHvBbx2f57Wg5oNYAUgAhqtVqxao8/A4m8JRdIplEScB+Ijb597vd50AZgJ2XQ549vQzabjQqQ89MUSMJ5T5L1JEledz9Ybz5DeJjwOeU5gAQdRQqtDhBQ/D0GnEzzgByhVcGuD/fKqk/Y39Zkk73ChA7MKlHeQG6c9+DgnuLHwZ6yoyS97eHpRvJT79Lu81KacULB4bgvgnRc9c+Jw+FwPI1YeNATQgi/HkLYDiG8ZB77SAjh2yGEz42/3m9+9+EQwishhJdDCD/0MEHYiim96/TwMz4Sg0aUCSQB+Xxe5XI5Vr3px8ftX9JEVZtKcC6XU6PRUK1Wi0kjyXqlUlGtVlMmk9Grr76qb33rW0qSJCYzJET9fl/7+/tRWUAlHDKEcXaoF3h9JhhkMhk1m83oHzAajaIkH+KEijEEgK3cZrPZmNgjwUcJsbKyEo0qqUoXCoUJH4Jutxul5ygBSPAgEJDyU8Gnci2dmu4tLy/r8PBQrVYrSs0hZLh/VKghCyBeaGdh2sLGxobq9bpCCOp0Oup0OrHqjLydKjYVZVoBxntvotKNeSe+BlS5bdsEBBDVcwgFEks7NQSFA+0DJOLcf0gDpmdADIUQIvllY7BtPdIZ+WF/bxUY1tQR0gGFDEQV8ZOA40mCNwceIDw3TdOokmGP8DjrSpuOXQdIEGt6KCm2oHQ6HW1tbenk5ESVSmViSglkCTGwRyAImJJhPStI9m2LB2vGPS6VSqrVatFIE8NI1s96MUBc8j1EESQY6iNr9DltXMRZ7JjEaFFKMw9+nsPhkIZLqV79hfdMO4wnCj+HHQ6H4/V4GIXCb0j655L+5bnH/1mapv/UPhBCeE7SByR9r6TLkn4nhPDmNE2Hug9sHzVEAuP8rAw/k8lEmbykWM3HkLHX66ndbkfZOP3xfJGE03KAFHowGKjdbuvk5CQmfsvLyxMyfjAYDGKCwhhJJP623aFcLscqNl4OtredRGhvby9WjUlmrAEfffckUagkqHZTFS6Xy7EaznSGMJ7oYCcrYOaHFJ3vmW4xGo3UarVijFZOjxSdVgfeh+dgJGll/oeHh8pkMqpWqyoUCpE8IYGj9aJQKKhSqSiEEAkkklxUFnbsI/eA62TtmEDBtZLA81wSbIgaEmMrdYdosAoXElm+t1M6+Hu+ML+EtLCTC1BXcF8Z9Xl+OoSd7MHe4XEIovOKg2KxGMknknYq+ZBHkB6oWZIkUavV0mAwiN4etCpIp0oX3pckH0NOEn7uM+sgKe6vSqUSp4nYsY2sKxM27BQN25rAHsfTASLv+PhYBwcHcdIJZwEGnLQ+oEiAiOPesy/wS7AtHIyblDQRxwzgN/SEz2KHwUJG6UzdfodjxhH0NHxmfkN+DjscDscEHkgopGn6uyGEGw/5ei9K+kSapoeSvh5CeEXSC5J+735/ZKXZGN6RfNIKUCqVJCkmBNZjoV6vazQaRYk8STTu/YPBICYXJF1U14fDYZR7Y1SIXwE+DBi/IX1fWlqKIxn7/X6s6FI1RSlAld3KviEx2u22dnd3I2lge++Rmp+vkpMQkwRLil4MVFcxq+Nfqqy4/DPikvaPwWAQEyzM8nD9Z+IDbQwksySkxIZBpPUtsAQIagWugaTW9uYzuhPlRKfTUZqmqtVqOj4+jkSR9Uog+aWl5DzZwfvbXng7YhLyiAq4nT5AUokKxlb+GS/KhAUq9iS9JKW2yg4ZQRILQUDln3WQFBN2O84RIoN7Jp2N58THYmFhIZJEKCkgy5IkiVX8UqkUnwtBx75CBTQajSKZQDKOosJ6U1jSCWXAwcGBWq1WXDtiPW8cCeEFmQXBAEFklUooY1BxsH9DCNGQFVUFI1e5HrwWaPFBlWKnV9DmY40pUdvMCi7iLHacImSXlLz4Nu18/7QjcTgcswQ/hx0Oh+P1+ONwyT8XQvjCWP5VHz92RdKr5jmvjR97IGgLwFTu+PhYOzs7GgwGMXm1po0Y6K2vr0cDv93d3WiQNxgM1O124yhAzBtJxklednd3tb29HYkBJkbQasFoSVvFlhQTTqrPNrmjBYMpAphI2kR9e3s7mjXiRUBMVhFAwo4HAskyBMzKyopWV1ejsR2xWY8HyAIc+5Hop2kafQQwbUS6ToWeZIwqP7Ha1geq7SRlJJqsR71ej5Vjnk8Cy/3m/pKgHh4exhGbJNjI/DOZTOzJJxEnyc3n83FCBdfN39EqgMkj9wmVC54Cdv1QT5DQY/x5dHQUJfZ4FqCSsGMhUSpYDwDbNmD9AfCesKMVUQLQugIxwr3Bb8SqJrhnkAm0o+CzAelBjNwPq5QoFAqRxDs/GUI6M3HkXklnPhSoRCBsLBGAyoTPPOof9gDEAoQAhALKIlQGtm3CKh0ODw/jvhoMBtFvhRGbKIhQO3DmsP9t65Nt05hxPNaz2CEN3/W92nrv7LS7OByOmYefww6H46nFG/3f8q9IuiXpeUlbkn55/Pjd/gd2V5eeEMIHQwifCSF8hgQOqbM1XiRRtZMgpNMq7urqqq5evaokSfTtb39bd+7ciZXY4+PjqFbIZDIql8uq1+sxaSEx3NvbU7PZjNXbjY2NWN2mqkoiSOLFlzVGpBpdqVS0vr4ezQrPJ1GtVktbW1uxqkvlGrk5CT2kAYaUS0tLKpfLcUrC8vKyarWaNjc3VSqVJgwQWaPzI/cgDEhorbzc9sHbUXrSWcKJN8PKykpsbYBg4B7x/vgprK+vx/YPK9u3a0oCCSFB8g+RQNWZGG2F3/oGSGftCdwjVBl3m77A3zMFw64TqoxarRYr+rw31evz5pOWGOGLv7FE2Hj/28+ClpaWovcGChcSXNb5vKkk7S+oCGjBYH35DNhxnXayA8oMXpfPDaQYUyxIsEmuMbS0ZpVcO20YliRj37EXWRuIMj6PkqJ6qFgsToxYRfXB+0Ku2XGy7G3WDsLDToRA2cT6Q+ywd8+PDbUjZ2cUj/cs1uHdnvLUYbHdV25/Lsgkh8Mxffg57HA4nmq8of8xpWl6J03TYZqmI0m/plMJl3TKvl4zT70q6Tv3eI1fTdP0HWmavgMpuZWHQwwgOSaRODo6Uj6f1/Xr13Xjxg3lcjnt7u7qm9/8ZlQ0oAKgEl8ul9VoNGLCSpW13W7rzp076nQ6ymaz2tzc1M2bN2M12CYTJCooBPBgsMleoVDQ5uamNjc3VS6XY5KCfBuFAEaIXA9VZuIqFotaXl7WYDCIvexUajF0LBQKWl1d1ebmZuyHJ2ZixbDPjr7DgJAEkISKdglzfyYMJKvVqlZWVuL0CpQcED5UiDFJpNVhc3MztnmQeFtzQarvVM1JhGlX2d3djeM6rY8Cf8u9sK0B1jyT59tqOUQQRAS+ElS+UYeQ2NIewHratg3WiviokpM8k/jb6Q88144qtIoJq8aBZGD9kPFbfwdGeiZJMvEckmlUFra9w5pDcg2QA0xpQM2CWSf3GXNMSRMmp5ASS0tLqtfrqlarUZ0AkQJpwWfAknS2bcQqQkjsMQeFUIL4ssRZGJuXDgaDqIqw6qFSqRQJB0mRrOCzzv4JY2NS658yi3jcZ3FWuScb8Jxg9IU/1NpnfcKHw+F4MPwcdjgcTzve0NjIEMKlNE23xj/+mCTcbj8p6d+EED6qUwOaZyV9+qECGScVJA8k2lTppbOxeY1GQzdu3FC9Xlen09Frr72mra0tdbvdmKxgzIZ0GwNB2gmQW7fbbS0uLmp1dVU3btxQsVjU7u5urIijPkBBgRqg3W5LUkx4MAJcX19Xo9GIlVmSxeXl5SgTp08dabjtjyexOjg40P7+vg4ODqIqoVgsqlKpRHJhdXVVjUYjriG935LiOMvBYBAJChJeKua0KiwuLsZe+vOJepqmsfUgm83GZNnKxomTCvHx8bEqlYouX76slZWVeP+kMyJgvI8mkmgq74xj3NvbU6/Xi1J6pmucl6FbYz2SUds6gRKB97cGlpKiEgBTSvryUZ/QPoOcHmKAtgLUM5AX/AxsS4glGyBwIFiKxWIkTUajUZwUYtUcvAcxLi4uxtYeCAjaH/C74Pq5Zl7Pjrq0xqDsT0gDawIKCUb7C+QFyX0YTxmxfhSsAeuMvwltFJAlkC2sMYm9NSm1po7cz/MKEKsQ4XMM+YeKRzojDyCjLMFCrLOuUHgSZ7HD4XA4Hh5+DjscjqcdDyQUQggfl/SDklZDCK9J+nuSfjCE8LxOpVvfkPTXJSlN0y+FEP6tpC9LOpH0sw/jZkuibivzJDjWW6FYLGp9fV3Xr1/X2tqaMpmMut2u7ty5o52dHfX7/VhtxowQWTRTAzAgTJJEnU5Ho9FI5XJZV65c0eXLl3VychJVBNKZl8BoNIpJJg72kmJlnWSuWq0qTVO12231er1Y8WXiA1VTKsrSWe+5nSbQbDa1t7enXC4Xq9Qk3yRtjUZD1Wo1JrskT5Altpe9UCjEhNxWY/P5fPRpIDFkjCPJJeoJCA/UCyS4zWZzgqhYWlpSo9HQ6uqqlpeXI1lhkz48LSBoaDk4PDyMff/dbjcm4sSHsoIqPSoEeuOLxaIkxYR4aWkpkjDWWBACwLYP2PhJQCUpSZLXeXyQ+NvpAdZEUzozYoTUIvmnMn/+PmBUaQ0RpdMknu8hjKjmM95zOBzGySisDUSGVUVIitdAwkwiTTsH13R8fBxVMYuLi1ExQ7WfpN9OTGDahDX4xMdiMBhEkoIWB7xQILZs64idwmDJBIgr25oDQQFsWwbKBBQUduKJNfVEuWAfQ+0yC7iIs9hxhtKXt1V69rKS66MHP9nhcGjhOOjqf+9PO4wnCj+HHQ6H4/V4mCkPP32Xhz92n+f/oqRffJQgQgjRXDCTyajVasXkgco3hMP6+rrW1tYmWiF2dnbU6XRi4mJl/iQOzWZTg8EgJmaQBtlsVrVaTVeuXFGhUNDe3p5arVbsHScJs0k2CaadNIBRIMQB5nhU+ukXR0HR6XTimEriJkFrtVra2dnR8fGxarVaTC5JAnkvzCqRggMSP1QfrB2vSWWcxA21xNHRkVZWVrS5uanV1dVIPpC42152xm0iiycxxGdhfX09qjJarVYc00jCRhsK4yVJZIklSZLYVmB9ELif1leBpBZZf6/Xi5M5qtWqGo1GJA64dpuA2h5/SRMjRRkbiiqDlgw8ACyxxP3j94uLiyqXy6pWq5Eog3ixIyTDeIQmExLsxAf7fPYjY08lRcULbTAQPyT3ti2DvcN1QLBZvwdIFxQfmG8eHx/HPcu+R12AIoNE/XzVn/tlxzna8ZeQB3aCifVEoKXBelJASNhJJZJeZ7AIoYM6w7Y6WNUD55D1UuBaZgUXcRY7zjBslHVUnnYUDsf8IIykhf/12WmH8UTh57DD4XC8Hm+o5eFxI5PJaGNjQ/l8Xtvb25EgoBJNLz+JmXXLb7Va2t3djUmu7ZsnwSSZYbwcExyWlpZUrVZ17do1bWxs6PDwUK1WS+12O1a3R6ORcrlcbJs4ODiIiRVkAuQFle9Wq6VerxeN9iRNTG5otVoTlVok8Mjr9/f31ev1tLq6qmvXrqlUKk20K1QqFVWrVRUKhQk1BkqM4+Nj5XK56BOAlJ4qP8kc8vUkSdRqteLUiKtXr2ptbS0m5ig5SLaQ5NuxkigOqtVqrJQPBoPYtmD9ETKZjCqViorFYqwis4b4GFBdh1QiESWRhABBto6RIIky7S74PtBXz3tAYHBdtvJPAnp0dBTvNR4BPN9Wsa3CgEr8eZLj5OTkrgaHkibUHnZKAetiFQTWcBPlBz4eJNJcJ+QJ12dbDHgve/2odyRFbwfUGCTsKB6sH4YdaSop7kFLCFgygc+ENcAk3rsZLNqWB2tEyeeax60ZJS0sPFc6I1/YA5YQsioLlDq8t+PpRH8jr6O6qxMcjodBGElv+tgd+YnpcDgcTx9mglBYWFhQo9FQu93Wzs6O9vf3o8ybpKxSqahSqcRqKJXMvb29mEBJZ3PkGcNHJVJSJAVarVZsobh69aquXr2qbDarvb29aNJoK6yMB8xkMvH9+B1O+iT4uO0jC0dBMBwOlcvlonoB1QUtDiQvVPxrtZouXbqkWq0Wk/7hcBgl5fl8PvokDIdD1eunU4p2dnaimoH1y+VyajabMdE+OTmJ0nUmXfT7fW1sbOiZZ57Rs88+G5O9TqczYW53eHgY20o6nU5sBcjn8/EeMW4Qjwrp1BTR+lrQutHv99Xr9SKBQBXejtBkzCPV7l6vFyv5yPlJ+FGCZLNZ1ev1SG6QLJ8nBOwYQvwVSqWShsOhDg4OojKDhJMqNsm5pDhpAvNG1Bq0w7D/rEeFbW+x0xGkM6NFni8pJrsk/rSQ8DqoAmxbCYQBKgIS9uPj43gv+DyROEMS4L9w3iCSWPA94Lmsj20DIRbbegDBYok/65vA4xAUkB+YYeIlwn6k/Yh7IGlixCr3hXXjOrm/rLclI6QzZZPD4XA4HgKpNPzqH007CofD4XBMATNBKJCUtNttbW9vq9VqRSUCVX6SjX6/H5OZdrutbrcbE0orrbbqAKTv+Xw+Vk5rtZquX7+ua9euqdFoRHXC7u5urLovLCyoVCppfX1dpVIpEh1Us4kHHwb8AqhQkzCmaapyuazBYKB2u63hcBgd8O24wl6vp3a7HQmWlZWVqCSADFhbW4uqhiRJoscChn/NZjO68ZMA9/t9tdvt2FowGAzUbDZjwkQCfvPmTV27dk3ZbFbtdjsm+yg2kMOTlDIBgKq+TZT7/X6soBeLReVyudiGQfy0E0AQQXCQxNK2gGEhf2MVC5AThUJhwhgRub81C+R6Dw8PY1sMahcUFuXyqcYZYoLfS4rXZ70kUEfYdg6biNqfkfaf/xtJ0UCzXC4rm83GdgQUAsTDmkJQoYrhGtlLtn2BzwDXwR5m/wHIBNoPaOPgZ2ANPfkZks0+Lp2NLrXKD9QBfHZYC14HAgZg7AghyASK/f39ifMAQglFE4+hrIFMsAQF+wTiEYKHfWOvxfH0IH33n9J3/nRG95jw5nA4LFLpzf/gy65OcDgcjqcUM0EoUJ3vdDpqNptRFk7/P2Pzer1eTJ6Xl5d1+/btOBpPUuzzxgugXC7HsXm1Wi0mHMvLy1pfX9fq6mpM0JkqcPv2bSVJEtsE6E1nogEJIJXT4XCoYrGolZWVKKvHoA9AiLRardjvTmJP5fjw8DD6LpRKJa2uriqbzca2ApIe5Nu0DtAOQRJPwk3SF0JQp9OJLQK9Xi+aKFYqlWhk2Wg09Nxzz6lWq0UvA0Y20lZB4kbLCAk5PhBUhZeWlpQkiQ4ODmIrgKSo1rAJHcoBa3KIHJ/1R7nAuELWlwSzVCpFQgIiBzIB6T7qCt6DXnz8EjAftKM92ZtcN8k7VX3uHYQYbRT2cb5I4HkdEmOmWkDq0OaBoSaJbq/XU7fbjck1ib+V5Ofz+dhaAeECEWD9ImhZoDUG8gylgHRm3AhJwbWjPOA1uIdJkkTPEOls2gJrWCwWo4IBg1TruQCRgEIAchDSAzUK5Eq3240tDJwJduQnsdkWBxQT1gzTjh3F98KSRecniji++7Hwlj+pr/54XmnGyQSH42Hw5l/4oobjEdcOh8PhePoQ+E/2VIMIYUdST9LutGN5A1iVx32R8LgvHvMa++OK+3vSNF17DK8z8wghdCW9PO043gDmdY9K8xu7x32xeNrjfprOYf8/8cXD475YzGvc0vzG/kTP4pkgFCQphPCZNE3fMe04HhUe98XC4754zGvs8xr3NDGvazavcUvzG7vHfbHwuJ8uzOu6edwXC4/74jGvsT/puF3P63A4HA6Hw+FwOBwOh+OR4YSCw+FwOBwOh8PhcDgcjkfGLBEKvzrtAN4gPO6Lhcd98ZjX2Oc17mliXtdsXuOW5jd2j/ti4XE/XZjXdfO4LxYe98VjXmN/onHPjIeCw+FwOBwOh8PhcDgcjvnBLCkUHA6Hw+FwOBwOh8PhcMwJpk4ohBB+OITwcgjhlRDCh6Ydz/0QQvhGCOGLIYTPhRA+M35sJYTw2yGEr47/rU87TkkKIfx6CGE7hPCSeeyesYYQPjy+By+HEH5oOlHfM+6PhBC+PV73z4UQ3m9+NytxXwsh/I8QwldCCF8KIfyN8eMzveb3iXum1zyEsBxC+HQI4fPjuP/++PGZXu9Zhp/FTyROP4cvEH4OX3jcfg4/Zvg5/GTgZ/HFws/iC497+mdxmqZT+5KUkfQ1Sc9IWpL0eUnPTTOmB8T7DUmr5x77x5I+NP7+Q5J+adpxjmP5AUlvl/TSg2KV9Nx47XOSbo7vSWaG4v6IpL91l+fOUtyXJL19/H1Z0v8bxzfTa36fuGd6zSUFSaXx91lJ/0fSu2Z9vWf1y8/iJxann8MXG7efwxcbt5/Dj3c9/Rx+crH6WXyxcftZfLFxT/0snrZC4QVJr6Rp+kdpmh5J+oSkF6cc06PiRUm/Of7+NyX9pemFcoY0TX9X0v65h+8V64uSPpGm6WGapl+X9IpO782F4x5x3wuzFPdWmqZ/MP6+K+krkq5oxtf8PnHfC7MSd5qmaTL+MTv+SjXj6z3D8LP4CcDP4YuFn8MXCz+HHzv8HH5C8LP4YuFn8cViFs7iaRMKVyS9an5+Tfe/cdNGKum/hhB+P4TwwfFjG2mabkmnG1HS+tSiezDuFes83IefCyF8YSz/QrIzk3GHEG5IeptOGcK5WfNzcUszvuYhhEwI4XOStiX9dpqmc7XeM4Z5W595PovneY/O9Jlg4efwxcDP4ceKeVufeT6HpfnepzN9Llj4WXwxmPZZPG1CIdzlsVkeO/HeNE3fLulHJP1sCOEHph3QY8Ks34dfkXRL0vOStiT98vjxmYs7hFCS9O8l/c00TTv3e+pdHpta7HeJe+bXPE3TYZqmz0u6KumFEMJb7vP0mYl7RjFv6/PdeBbP+j2Y+TMB+Dl8cfBz+LFi3tbnu/Eclmb/Psz8uQD8LL44TPssnjah8Jqka+bnq5K+M6VYHog0Tb8z/ndb0n/UqTzkTgjhkiSN/92eXoQPxL1inen7kKbpnfEHZSTp13Qmy5mpuEMIWZ0eQP86TdP/MH545tf8bnHPy5pLUpqmLUn/U9IPaw7We0YxV+sz52fxXO7ReTkT/ByeDvwcfiyYq/WZ83NYmtN9Oi/ngp/F08G0zuJpEwr/V9KzIYSbIYQlSR+Q9Mkpx3RXhBCKIYQy30v6C5Je0mm8PzN+2s9I+q3pRPhQuFesn5T0gRBCLoRwU9Kzkj49hfjuCj4MY/yYTtddmqG4QwhB0sckfSVN04+aX830mt8r7llf8xDCWgihNv4+L+nPSfpDzfh6zzD8LL44zOUenfUzQfJz+KLiNfH5Ofx44efwxWIu9+msnwuSn8UXFa+Jb/pncToF90/7Jen9OnXR/Jqkn592PPeJ8xmdOmJ+XtKXiFVSQ9J/k/TV8b8r0451HNfHdSrLOdYpE/XX7herpJ8f34OXJf3IjMX9ryR9UdIXxh+CSzMY9/t0Khf6gqTPjb/eP+trfp+4Z3rNJb1V0mfH8b0k6e+OH5/p9Z7lLz+Ln0isfg5fbNx+Dl9s3H4OP/419XP4ycTrZ/HFxu1n8cXGPfWzOIxf1OFwOBwOh8PhcDgcDofjoTHtlgeHw+FwOBwOh8PhcDgccwgnFBwOh8PhcDgcDofD4XA8MpxQcDgcDofD4XA4HA6Hw/HIcELB4XA4HA6Hw+FwOBwOxyPDCQWHw+FwOBwOh8PhcDgcjwwnFBwOh8PhcDgcDofD4XA8MpxQcDgcDofD4XA4HA6Hw/HIcELB4XA4HA6Hw+FwOBwOxyPj/wM2AQAw/MASuAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 0 10587\n", + " Min thresh = 1000\n", + " Sliding\n", + "\n", + "\n", + " Winner = Sliding\n", + " FN Patient = 048ns_image_1543571117118_clean.nii.gz\n", + "\n", + "\n", + "048ns_image_1749559540112_clean.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADDCAYAAAAya0IYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADVBklEQVR4nOz9e5Rl237Xh33n3rVfa629a3f3eXIluDzEw2IE4dgCD/OQBzYWDIICNkRyBhDAviIxwSEQg0hiY2fYUWIweQ2ELwMiEhMEhBAwKDxjBTyMCMIQWzISloSA+zynu6tqv9Z+Va38UfWZ9V2rq+959bmnzu3fd4wet0/V3mvNNefc+/b3+/v+vjM1TaNAIBAIBAKBQCAQCAQCgfeC3kc9gEAgEAgEAoFAIBAIBAIfP4SgEAgEAoFAIBAIBAKBQOA9IwSFQCAQCAQCgUAgEAgEAu8ZISgEAoFAIBAIBAKBQCAQeM8IQSEQCAQCgUAgEAgEAoHAe0YICoFAIBAIBAKBQCAQCATeM0JQCHzZkVL6gZTSN3zU4wgEAoHALVJKP5ZS+uff5WublNJPeZ/3ed/vDQQCgUAgcL8QgkLgy46mab62aZrv+ajH8aWQUnozpfRnU0qfu/nH7yc/6jEFAoHAVzpSSr86pfSfp5Q2KaXv+ajHEwgEAvcRL1qYfafrxb+LA18KISgEAnfjStJfkPQvfdQDCQQCgZcITyX97yR9+0c8jkAgEAjcIv5dHHguQlAIfNnhttqU0u9OKf3JlNJ/nFJappT+q5TST00pfVtK6a2U0j9OKf1ie++vTyn9vZvX/mhK6Vs71/43U0qfv1FQ/1VXXFNKo5TS70kp/aOU0hdTSn8gpTS5a4xN03yxaZrfL+lvfYhTEQgEAvcSKaWvTyn9jZTS+c136v8ppTTsvOyX3nwPP04p/QcppZ69/zfcfFefpZT+YkrpJ7yb+zZN81eapvkTkj73Ip8nEAgE7htSSj8jpfQ9N9+zP5BS+uX2u+9JKf2r9t//g5TSf3bz97928+P/X0pplVL676WUviGl9JmU0u+6+U7+sZTSf//9Xq871vh3ceBLIQSFwH3Af0fS/1XSA0l/R9Jf1PXe/ISkf1fSf2SvfUvSL5M0k/TrJf2+lNI/KUkppW+U9D+V9M9L+imSfmHnPv8bST9V0tfd/P4Tkv6tD+OBAoFA4GOOS0m/VdIrkv4ZSb9I0v+o85pfIemfkvRPSvomSb9BklJK/11Jv0vSr5T0qqS/LumPfTkGHQgEAh8HpJQGkv4TSX9J0muS/seS/mhK6ae903ubpvkFN3/9WU3TVE3T/PGb/35D19/Zn5D06yR9+gNeLxB4VwhBIXAf8NebpvmLTdMcJf1JXf8D9NubpjlI+i5Jn0wpzSWpaZo/3zTNjzTX+P/o+ov4599c51dL+j83TfMDTdNsJP073CCllCT9a5J+a9M0T5umWUr69yV985fpGQOBQOBjg6Zp/nbTNN/bNM2xaZof07Ww+4xIe/N9+o903abwLTc//1ZJ/+umaf7ezff6vy/p696tSyEQCAReAvxcSZWu/727b5rm/y3pz+n2e/T94n/ZNM3u5t/If17X/zYOBD5UhKAQuA/4ov29lvS4aZpL+2/p+ktXKaVfklL63pTS05TSuaRfqms1VpJ+nKR/bNfyv78qqZD0t2+sZee67gV79UU+SCAQCHwl4Kb17M+llL6QUlroWhR4pfMy/479h7r+DpaknyDpf2/ftU8lJV1XzQKBQCBw82/Wpmmu7Gf/UB/se/KsaZp153o/7nkvDgReFEJQCHxskFIaSfpTkn6PpNebpplL+m5d/0NVkj4v6avsLV9tf3+sa3Hia5ummd/8OW2apvrwRx4IBAIfO3yHpB+U9DVN08x03cKQOq/x79gfr9vcg38s6Vvtu3beNM2kaZr//EMfdSAQCHw88DlJX+3ZM7r+Hv3szd/Xui6EgTfexTUfpJTKzvX4Xn4/1wsE3hVCUAh8nDCUNJL0tqRjSumXSPrF9vs/IenX34TcFLJ8hBsF+A/qOnPhNUlKKX0ipfQvPu9mKaXxzf0kaXTz34FAIPAyYCppIWmVUvrpkv6Hd7zmf5ZSepBS+mpJ/4Yk+m7/gKRvSyl9rSSllE5TSr/q3dw0pdS/+a49kdRLKY1veo0DgUDgKwl/U9ck/99MKQ1SSt+g60yx77r5/d+V9CtTSsVNuPhv7Lz/i5J+0h3X/XdSSsOU0s/XdebYn/yA18uIfxcHnocQFAIfG9zkHvwWXQsHZ5L+FUl/1n7//5L0f5D0n0r6YUl/4+ZXu5v//R03P//eGwvvX5H0pcJqakmrm7//oG7bLwKBQOArHb9d19+xS12LsXeFdP0ZSX9b1/9Q/fOS/pAkNU3zp3UdgvtdN9+13y/pl7zL+/4aXX/Xfoeu83Hqm/sHAoHAVwyaptlL+uW6/m58LOn3S/q1TdP84M1Lfp+kva6J/h+R9Ec7l/jdkv7ITWsZOQlf0PW/jz938/rf9AGv10X8uzhwJ1LTNB/1GAKBDwUppZ+h63/Ijm6CwQKBQCAQCAQCga8o3Dgc/uOmab7qHV4aCLxwhEMh8BWFlNKvuLF6PdB1hew/CTEhEAgEAoFAIBAIBF48QlAIfKXhW3WdsfAjuj5H/a6+30AgEAgEAoFAIBAIfEB8aIJCSukbU0o/lFL64ZTS7/yw7hMIOJqm+cab0xseNk3zK5qm+fxHPaZA4KNCfA8HAoHAR4/4Lg582Gia5nui3SHwUeFDyVBIKfUl/X1J/4Kkz0j6W5K+pWma//qF3ywQCAQCzyC+hwOBQOCjR3wXBwKBr3R8WA6Fr5f0w03T/OhNiul3SfqmD+legUAgEHgW8T0cCAQCHz3iuzgQCHxF4+RDuu4nJP1j++/PSPo5z3txSqnp9Xr8XZLUNE3+I0m9Xk8nJyfq9Xo6Ho9qmkb+Hv40TZP/fnV1JUn5fVyLn/N+ft69p4+ni6ZpdHV1pV6vp36/n/+be3OfXq+n4XCYX8PPLy8vdXl5me9xcnKik5Pr5bi8vNThcHjmepLU7/fzf6eU1Ov1dHV19dzXn5yc5Lk4Ho93zvHV1VWek36/r8FgkOeLcfq88gyMmzH763q9nnq9Xn49z+r3GAwGeV58TKwj/315eanj8ZjvyXv8mr7+3fVjHD7n/X4/PyPPznv5uc8P+4U/3J819nnw63XH172nP2t3nCklDQYDnZycqN/vt67vf3wf+X2668o1fM19L/HH15JxseY+D897Xp9z/5nvn+c5o66urp55D2A9nrfWvMdf+zx039/9TPm+PR6Pj5umefW5F7u/eE/fw5LUr8rmJ/3EK33x+ycf6sACgUDgvWCrtfbN7u5/kN1/vKfv4vgeDgQC9xVLnd35b+IPS1C460u/9a/7lNKnJH3q5u8ajUaZ/PKzw+GQSbAkPXjwQI8ePdJms9Fms9FwONTJyYkOh4N6vV6+RlmWGgwGOh6PWq1WKstSs9lMg8FAm81Gq9VKV1dXKopCw+FQ2+1Wu91OKaV8zc1mo7qudXl5qbIsdXJykon+ycmJjsejFouFJOnRo0c6OTnRdrvVfr/XZDJRWZb5v1955RW9+eab+WeHw0H7/V7L5VLn5+fq9/t69dVX9ejRIw0GA9V1rbfeektPnjzR8XjUZDLJpPHk5ERVVWkwGGg0GmkymahpGn3xi1/U2dlZFjC2261OTk706NEjTadT1XWtL37xi9rv9y1xRpJ2u53Oz891dXWlyWSihw8fajabqdfrablcarVaPUPqj8ejUkqazWYqikL7/V7r9Vq73U6Hw0GDwUBVVWk8HkuS9vu9rq6udHJyovF4rDfeeEOf/OQndXp6Kkk6HA4tArjf77XZbPLPF4uFnjx5osvLSxVFoaZptF6vtd/vNRwOVRSFBoNBJom73U77/V5N06gsS02nUzVNo6dPn2q9XqsoCr3yyitKKWm5XGq73aqu6/xcTuC326222616vZ5ms5kmk0neIxcXF2qaRvP5XLPZTPv9XhcXFzoej3lv7na7vG6j0UiStFqttN1us3iz3+8lSePxWFdXV7q4uNB+v9dsNtMnPvEJzedz9ft9HY/HvCbH41F1Xevp06d5XsbjcYskd+9fFIUkabPZaLvd6ng8ajQaZaFqPB7r8vJS5+fnWq1WappGk8lE/X4/z+loNGp9npbLpXa7nZqmyfNXlqWGw6GOx2P+DPd6vSyQuNjnQtjxeNRms9Hl5aX6/b5OTk6y+LTb7fLnlDVASOMzxfWZg8vLyzy3vV4v72NEA8Y2GAzyd0+/31dZlhqNRtrv9/qxH/uxf/guvvPuI97xe1hqfxePVeiTP/DL9MmP6z/bA4HAVyT+ZvNXP+ohfBC8p38Tx/dwIBC4r/grzf/9zn8Tf1iCwmckfbX991dJ+py/oGmaT0v6tCT1+/3Gq4+Qkq7zoK5r7Xa7THqapsnVaggFxOjk5ESTyUS9Xi8TofF4rKIoMlk6Ho+az+caDAbabreZxAyHw0x0N5uNdrvdM1X7k5MTDYfDLG5Anvf7fX79cDjUfr/X2dmZ+v2+Xnvttdb7T09PW8QYwg1BXi6X2u/3+fXH4zET7cFgkH8+Go1UFIXqus4kEVLF+yFnm82G+c+Vb+bqcDjo8vJSq9VKkrKQAlF3NwGkHYEAUjgejzNBrus6E3OebTQa5bFDgiH1iB1e8d/tdpnIS9Ljx49V13V+vt1uJ+maiLPuXmFer9dar9eaTCaaTCaqqkr7/T6v02w20+npqVJKea6kW0cFAg1zU9d1vp+kvMbsMfYPRNfJ+PF4bI0Tso3IgNg0GAw0Ho+zyLFYLPJ1bz4v2YGACMZcu2BwOBwkKd9ru93q6uoqX+fk5ET7/V7b7TaPgb0C+UfUG41Grao996uqKs+Ti0Lscyr+h8Mh/+GzwT5yVwLPyefOxYbBYJCdFThJ2Js4K7pChaQsLiIU+TUYe9d9w+eE/fsxxTt+D0vt7+JZevjiQ3UCgUDg5cZ7+jdxfA8HAoGPGz4sQeFvSfqalNJPlPRZSd8s6V95pzdBWnECUEGXbm3X6/Va8/k8Ezleh33eCQBuBUmq61rD4VDj8VhVVeWq6m6302Qy0XA4zCJDv9/X6empqqrKlnIIDIJHr9fLwgakDKLm1eyiKHIlm/aI4/GowWCQnRMQrv1+r7IsVVVVdjxATHmew+GQ3RkQOF7Pz3it29L7/b7G43GujO/3+0zmEQJYA4gucwshhdxByKgmIypA0KhMb7dbNU2TSR+uENweVKKpNq/Xa0nSaDS6s7VgPB5nsglZ5VrdNgIcC4xjuVxmcQRHBdeYTCa6urrKQgr7kOdkrREVEH+8nQC3AGPnZ0VRZOeMV/hxmOAU4HkPh0Mm4ZPJRPv9XqvV6hnnAdVzSa3q/dXVlcqyVEopO0sQgvb7vY7HY67yj0aj7GZhDKyfk3XWgJ9zHfa873uIPe9DGHLRz4UwXEm73S67BwaDgSaTSRaTAOvN+rgwg0DBHCCKsH/5rmBuvaXDrw8QFQaDwTt9bd1nvK/v4UAgEAi8UMR3cSAQ+IrGhyIoNE1zTCn9Zkl/UVJf0h9umuYHvsTrn8lKcKu0pCw01HWdiSU/k5TJES0LkFGq52dnZ3r69KleeeWVbIF32zkEbb1ea7PZqCxLjcfj3DYBCfIqZr/fz5XbXq+X3QGQfqza0nXFGHIKmZekhw8f5t/v9/uWnfv09FTb7TYTbQgdr4XkN03Tsq0jNEwm1/13uDoYJ0AYcfIHSabaTuUa8HrmGNHA7eTME9Vt3B2QasbCfI/H4/warPNcr9tzPxwOtV6v8xjYK1S+pev2ieFwqMlkkn+3Xq91cnKSCT4CBPcbDoeqqkqXl5et9heEExcveF+3336/32cCjfCy3W714MEDDQYDnZ+fZ8KLC4U55D0QZs/UOBwOmazzWeD33bXbbDYajUYajUZZmPNMBNoDcKe4GMBzeg6GzwGiFQQdYYXPHgSeOWKc7BvPLWCNGEe/388OG0QoRJ1uvoZfj58jnIxGo1aLBcDdcHl52Rqn50n4Nbmufwd93PBev4cDgUAg8OIR38WBQOArHR+WQ0FN03y3pO9+l6/N/9CXlK3WEGNIB2S2rutMUCEEvV4vZyJ4QN5oNMoEdrlcZvfBbDbL/eX0+w+Hw2xN3+/3mk6nzwQ3dl0TToaxqENuqIhKamUuUHWmmozoAXF8+PChyrJUXdfZeg25RsBgnBBBWg247263y2KAW/l5DU4OqtweuIdY4BZyf3YPm4Sk4VRgPSC8kE7pWvShEk245tnZWRaHJGUC7JVw1p9MBIgmwgX3cKLM78uy1NXVlZbLpTabTX4+xo6jg/GVZanj8ZgFJEQKxBv+Lt22HuDIQGhA2MFxUNe1ptOpHj58qNVqlds0EDj6/X5LNJLUCmTcbDYt8cj3grsQmFNEGoQFXC4IF/6Zo72iaZrs/Oi2GTAHPsfD4TATbj6jfI48t4E1wvnD+/jZ4XDQeDxuZVbwx9ttGI+HUSIoepAkooAHpvIaFwuYY0QOD3plbv1z/3HFe/keDgQCgcCHg/guDgQCX8n40ASF9wqqo1SaqSJ6sj9kGtv2ZDLJhNLbECAIVFZxIKxWKy0Wi2x7r6pKq9Uqtyxg84ZQQq5wS1BxdXIHSaFC69ZziC7vZ1yHw0H9fl+r1UrL5VKvvvpqHst6vdbhcNBsNtNsNtN4PM7VcD/JAdGE62H79tBEt4x37eMQa/rqPdfA8yK6FVp3kPD3btWYqjUOCdYH0jqbzTLpph2kKIpsiXc3ACICBM+JoQs6vM6FKa5TlqV6vZ4uLi60XC5b96etg7llrxDQOBwOcxsDzhBvdXDrfl3XWQRj3SG+ZVnmFhP2BmIJwZrr9Tq3SXB93DiSWtflpAzaWGhJ8NyDqqo0mUxarTk8o4OWFQQtiDVOAu7l+81bIqj0X15e5vVw95C3PbA/+Wzz2WDemQdEEg9rBIzL23rYZ+wLBDH+208g6TqipHyaQx4b6xoIBAKBQCAQCASej3sjKEjKfeiQTw9tk5T/ke9iAYQAEgUR8uBAiOdkMtFyucz99FjivfosKZMdr+xCVBEOvIqNUwA3RF3XWXCgd9vD6px4r9drzWaz7FQgdPHBgwe51x6SQ1CfV8gZrxMrqvi4L5gfQE8974NIcX0XFfx9PkfcF9JHiwHuCUm5ZcSFGfIb+BkVfCzpzBVr0p1/J4vkDBBKyHh8bIwZF8jTp091cXGhqqpagZ60B0DSmTMXDyD6LiZRdWc9ER14HW6X9XrdOpmDfUfgIU4AhIbhcJj3F+GifjwjoYi0G3iQKZ+l1WqVBZHpdJpbPxADnJB7Boc7FLy9A2HDwzN977G+uERc+PE2Jnfa+MkpnhuBKMfY/L28j3v5/mRfuGjiga+eQ8HYuu4HnoPxBAKBQCAQCAQCgbtxLwQFD0pz6zH/+Hdy71Z6ADEkxBASBZmF4I9Go0xo1+t1Pn7R2ykQMDgVwvvjV6tVJs1O6hm3dEvMsPYzfu/RJu+AvvftdptbFqTrIwXrum4l23smglu0mT+INe0HHOFIKwIEnZwJCJoTQloP3JIPIfbngJxhX8dSDolzpwMk2SveuDKYb+aOSr8LCPw3JNvnHOJLhZ8shC4gmqPRSFVVabFY5JMfCE90J4ek/Cxe6faTDiDB/geHhQcc8lqyMKh6u8OEfAf2AwSeeyH28NzMGaICwYqe88H6+vGqvM6FIRcPEBQ8x4B948ISnwf2MMIKz4ODopuL4q4XxEHWZrfb5XEiROGE4D5d0ZDPN0IB8+cuDhckgWd0IL7555j/9UyMQCAQCAQCgUAg8Czuzb+WIdvdvn1JmWRtt9t8SoBXbAFhiJLyiQ4QNggGLREca+j94QgW2MO9557WCu/Llm5PU/BgwKIoWpkE0m1LhwfqObn3aut6vdb5+bkmk0kWPBAQvEpMUB/EDVGCueE5uoIHxB2S7sF5iBJUznk2z0+glYB7QWY9iA+nAWGXzC3CT13XeZ4QKLoZBunmtAbW309ckG4rz4zTj/ek8u0V7fF4rNPT0yzisCc87JD3ufhCNfzq6kpVVanX62mxWDxT4Sc/ANHKr7ndbltCiJNt5oR9wZwz35Bn3s8fSDh7FAKMM4P7so8l5dYWSVmA8FNMCHP0IErItYcg4urg2V0E5LNE1R+yLym3mfA+xA8EDcbAGrhwwVi5L/PLs9DOwdg80NE/i+7OYX94CKbPjwuXgUAgEAgEAoFAoI17ISjcZdnvWpPpvydsDpLVDWFcr9eZZLslm0orhMnD1iBEbiP34xkhaXflKlDV90ot9npC8LzK6an2EBoEA3/Ot99+W6+++mq22kMKsdf7iQxe7aa1g2q5pGcILM4BKsWS8li5B6GPjJXWEXrbea8TfCrrrJtb9pkfqt/L5VLT6TS7QPwIQ1ovpGvCOJ/PtdlsWu0rg8EguzCqqtKDBw+0XC4z8eXUACe1iAQu+LCm5A94qGU3SBDiS1gnJ0S4w6KqKtV1rf1+n9tVWBvaeaTbFhQXqFg/jkRF9EDIcgGju3/9NAY/zYGjHfkM+F71gEN3KnjrCz+nfYj9xx7oijLdNoerq6s8H56JQOiqZzP4aRfkPiAkIqQhlrF+3XUkyNGfy4MjGQPOBOaT8TK3nnkSCAQCgUAgEAgE7sa9ERSoPrpNGbLgIW4IBhCVqqo0Ho9bpHq73ebqvfe3X11dZcJNoj0Vbe5FNR5yC8mBHHpgIU4H792HDLld33u4u2GKVNERIHj21Wol6dZp4UcoYgtfrVatIDnPdSiKIlf1naghKDA+/lC5hnByf1wSXIvx+zo5oeS5aFngPZC46XSaiTJVeez1nErgrhFcAuPxWBcXF/kUhbIsJV2LGHVd6/T0VA8fPsyhlk3T5MBN1ou/sw7MBycSMCccTQnhnUwmmkwmWUAYDAZZ5OBZvKVis9lkwQAxwoM6IcddtwJ7yE+1YO14DdkHrBl7ldewZ9lvCEs4DSTlzwtiBWIb4hv7i2fjWrg3EMyc1LtrALLuz+liCg4KXof4wXy4U0FS/py48OgiEfA2CxfcmHfWndNGEEuYRz67HoD6cT/lIRAIBAKBQCAQ+DBxLwQFyAdigaQWYZHU6lOHXFNNJiwPYgQ5pAruZMfv59VViDYkAoeDuwC6YXb020MYed14PFZVVdlJASnkWt1efFLuPRzSK9r9fj8H+UHocU4Q+og44oQKpwF5EjgBGBdkFPIFwYOs+okbjEm6bU/x8XsbAqQfotltkeD9tAFwOgLBlJ4V4HZ0iPtut9N4PFZZljkzYrVa6eHDhyqKIhPhsizzqRuMz09pYG4labPZ5HYaBAyyLDgpASBMDYdDnZ+fZ3EKQvrgwYOcX+Dhn+4CcZeIBwn6yQJkfrA2WPD9KEd3LngIptv2cX14JgmiBWsKmXdhhTn3bBH2aFVVrdYO1pTX7/f73IrieSH8HWGG99FGwZ5nn7hwxeeU+yHauEDkIiT38WNZObFiMpnk0yS8TQgh43ntV4FAIBAIBAKBQOAWvXd+yYePfr+vqqokqUWqu/DWA+m2/5xqopNLyAB91RBnCLDbn70PXlKu6jqhgGRB5iCdXBciCJkdjUaazWY6PT3NxJHfITrgPPBKtx+BCaHzyi6nEECo3S7vbSIEU3orhlvOIVzYviGXnvLPejAWrwgzj5BciC/ziUvACSQiAUGNPDeBhZJUFIWKosjjhVDinmCcq9VK2+02OysuLi5U13Urn2I6nWYng6RcfaYCvdlsVNd1fp5u2wfuFh+3dCt2IRyRI4HbhLYcKvSsF8/Cfd1O72uGq4H3dsm1zzv7g/nmRAjW3AMaERr8yErcAHyOXEDg9y4OeTaFr1W3fedwOOQ18n3hAhHzPJlMsviAILXb7bJgQCuKdOvU8NYFd1h4WwhrzX24BuNhP/hnh7XlWrwnEAgEAoFAIBAIPIt74VCQpIcPH+rp06e5kt6Fuwac5EL4ICvuKnA7O2QMi7zbu6nke7X1rhMaqNB64CNVXT+ecbvdajqdajKZqCzLLBb4aRa0Eni/PlVkTqWgzQI7PRVeSGZd1zk3gGMraXlA7IBwe0q/95tD+KXbhH6vAkNkqZa79RxiiSjiGQCQPXcyQEp5FkIUCaGcz+dZoPG54l44Aaj+U5W/vLzUarXSxcVF67SMXq+nqqryM5G9APlmXlxQka5FDZ4LRwNkmT2CU2AymWg2m2WXBfcoy7LlMEEIIjSU/YDjhb3mogn3QpDpth4wN1TUGT+iggcpMge8jnEgjnlLhre24Cxgr3uuQlmW2enD+Lk/ogD7zFsQcAixjyD7tEb4SRb+2q5r6a697KGMzA/37IoD7H3Wmd+78BAtD4FAIBAIBAKBwPNxLwQFkvrn83munnYBmaDq660ICAWIA5BFKo/06ncDBt027mFyXqGHCHXJFlVn+uXps6dVAZv5aDTKIYDY5rshjcfjMbdMSLe2fNwQkEAqwlS7qewiBNAyAkkaj8eaTqeSbsUCzzjASeG5CLQrdNsTPGWf93mwI60IXiXHZt79ux/xV9e1RqORVquVlsulHj58mNfUiSqiiafud09SqOs6uxTAZDLJbSGcwEGmwH6/b1W8EWkguWVZtkil52ogMrEeOAA8yNLJtrdMsM+6+5t1QThwoQNBw7Myrq6utNlsshME0s/e9L3kZJ7qvv+MtfTx8NlkrRBiWDeey08G8bGyr6+urrKTgTXzPBFacVzgYc/yfeAilbc10KbEvRFoui0SiDXAW4O85UK6Dcy8S9gMBAKBQCAQCAQCt7g3goKknJC/WCyeyT3gdU50IJ2QIULx/Pg/iAbp/pzgAPHxkDxIIin7kp4hU5BJt21DWCHZHIsI8T85OWm1dHSrvZBWz0jwQD7GAymDBFGZ9lA+qvi73U5FUeSKP8SKayK24GJAjHGyCjGUbo/Sc8GFcdCb7j3+ZVlmVwEk1gMwIcak+K/Xay0WizxnrA2vh7Di5mC93K1yOBy0WCyyiOKiCHtsMpnk1gLmG6cEc09lG/cD+4U2CJwauEvYM37cIs4BF4aw7nvlnL1Fi81dYYvulmHsu93umZMvJGUCX1WViqJ4piUAsS2llPM1EMh8b3ZbPRDk+PzhSvHTQ/i5i1p8Nti/hIV2nUgIE+xB1p3xchIHe5exIab4PvX2Ghct/KQW5uKusFS/flf4CQQCgUAgEAgEAre4F4ICFejRaJSD9tbr9TNOBcgKRASBAVIDGYC8YzknJA7CQhsABLUb6AYBh5x7dgPW9tVqpaIoWsTY+7z3+73W63UOjsRRIEmr1Spb/iGLkBu3WENs+D0nL2CfJ8QQB4a7HZzoebUbUQTSttlsNBqNclsDvetuLfdj9NxyT7//er1uVckRechK4PkJx4MsX11dn0BBuwluD2z4CCOsl7eeUHFmbJBNrsP93ebPvPDa+Xyufr+f14M+fp6BMfv+QbxA5Nhutzm0kf16l01+NBrl4zMRD1zsODk5UV3Xef4RFpgnquZ+Eoe3Rngewn6/1263y201uBS4H2uJcOBHo3Y/c7yW/cN+RPTx3AhvLXKCzjr3ej1NJpPshOGz5Q4QnheRBPcRe4jPpj8DY/MgxW7+iTuSEKJ8rVyY4LoebhkIBAKBQCAQCASexb0RFGgRQFCAiDjJdkHBK7z8nEqodHsqhFcsPUcA0E/ebUOANFLRJw9BUnYrYJlnvPy3t1lAICE1VIQ99NHJezfJHls3xHCxWLSS6suy1GKxkHRd5XVXBkQS8s8zUSEmYwLy6e6Hbh+7pGfEDhcOaDVg7E3TtE5c8FBFntGr4lT7EQNoF/EgQE/p90wAdyrQOgLxl5RPv9hsNtpsNllwcsHA3SDkRfhRmewtxu999vv9XlVVtbIIWEvfn+Q7eIglAtdwONRischBhswP8+CimQsIftxir9dTWZZar9eq67rVxtOtzHt2h+95xu+CFHuU50ZgoB2HzwJ7xx0aiC7dNgk/itQzS/ic8HPCTnluFwb4HHbbINgP7jCgXYSMBRwS/Ol+BrsiYyAQCAQCgUAgEHgW90JQ8GPmqFLSmuDWZuk2oV1SJjNU2KlCcy3Ig9QOWoRcQXDpRYc88vOqqnKFFPLcPT6Qa3lV0zMXeD4/YrIbbsfYqLp78jykiOpzXdc6OzvLlWXaGrbbbc5N8KMRIU/u/kAocTKPGOC2fPrZy7LMv3cC6FVgPwbQxRtEDg/PcwIKoe9W/Pv9fnaASNeuDhwSXJN7IjYwDkn5CEjptvKNW6I7N7gh+DOZTLKowukTjMPFBN6HeHR6etrKYfDMA1pgaOmA0EvKR0syd8wPx2qyzz3kkvfx/DwTFX5O0GCsnkvgnyeCG3EY4JRgrdzZgjDCWnXDFv1/yU3gvxGVGBMuEQQthA2+AxAbcM6Qv4CDxQVAb396nnvJP2sIEj4vnl3BOuNYWS6XCgQCgUAgEAgEAs/ifTcIp5S+OqX0n6aU/l5K6QdSSv/Gzc9/d0rpsymlv3vz55e+m+u5Ddz7+r3qDdzejL2a3niIfNM0mSRJt0dOugMAUk6lfLVa5TaJy8vLLCBwDciVpFaftvem8zsnV1RBseNDXP2ZpVt7uJN6SDuOBCq7jx8/ziSbKi72cw9z5OcQ5el0mo/Lg/ghKngYpPerS8qkzttCus8pKa8dtnvWBuHAcxMQOvzIQCrRl5eXKopC8/lcVVWpLMv8OggphNHt9X70IfOAcIGzATEJ4QZS7UcskgNBjgL3Go1GOj09zeMmFHC5XOZMAg/fRCjgRA5EGkhtXddar9dZYEEg8j3B2vBc7EFIrx8diuvCQxm7rUKsuwsriAhc2/MqfA09l4L9TjWfz6YHf/oxpwSm0jbkn2XGgJDgwsDJyUl22PCcvNf3OkKWty+4C8EdGy608B3gWRu4FLphmvcRL/q7OBAIBALvDfE9HAgEXmZ8EIfCUdJva5rmv0gpTSX97ZTSX7753e9rmub3vJeL8Q94JyduoXbyCrGgWi6p5VLgepA7dyYgEFDZHQ6Hms1muaq72+2yMwEy44F7d7UpcD1EA8iUE0vaHAgt9HBIxgsJgtyQI3FXtRprvJ9UgSAB8Xexg+orbRKr1SqLG07kEROm02l2MhCIh5jBvEDk3Y7P8zKfEEF/fhcyvBUDp8F6vdbl5WUO2PS8BKr6hALSKtPr9TKZhOwiriAu4UDhNYyfIxQ5SQDCC5FFHIGIIux4PkVd1zo/P89tI7RJcA2EA5wviEbkRmy32yySsJ6MDweC/47PCCGG7BFyCvi5Z1/4XvQcAen2NAhvI2EPQbgRBLxd53g8ajKZtDIZ+v1+brngWVkL9gCfPa6JmFPXdc4aYa+7gCjdti+4uILrg73inwHmzNsiWDdExW5blQdZfgzwQr+LA4FAIPCeEd/DgUDgpcX7FhSapvm8pM/f/H2ZUvp7kj7xfq/n/3D3MLRu2BrEhN9Bhqms899UW4fDYW5n8H5qqptYqufzuZbLZT56kfsiKNAHDhmFoPmRdhA7Ahr99ACIj9vJJ5NJPjEAIsr4eEYqxYzL7+3HP3qbBaIJxyzyHp7LW0qobkP4r66uVJaliqLIhJNnxMkBMYdUe57A8XjM5J2q+ng8zicOQCj9aEh3b5CDcHp6qqIoNJvN8j2LomhV2bHnk22A6wMyjxDCOtJKwboj7HAUpHTbogEh5vn8hIrJZKKqqlonLLDu6/U6C1AucJB3UNd1yzVBVR4yDZmH+Lt45p8PPjPkDByPx/wMvt/Ys07IuTciDmTa2wnIP4CY41RAHPCcAvaPu1R2u53qum6JYKyB549wPfYD4xkOh/m93e8JxBafq8lkko8NldQ6PlJSK0+Bzxjz4+0b7lJgfu47XvR3cSAQCATeG+J7OBAIvMx4IeW3lNInJf1sSX/z5ke/OaX0X6aU/nBK6cG7vc52u9VqtWolsOM0gBhCEKhSQlb8RAQPJJxMJrklAHJFVd7t3aTw43LAKeCkmXtjdffj6rrBhZxQ4C0DTvQltcYG+ea9uBewu6/Xa202m3yigvfy+3OvVqs8hxAi/u7BfLRQMCa/hucz4LKAXBZFkQMIIZjuiuB+zFlXZIHsOnGDJNZ1radPn+rs7CyLQJB+XsMeYIySsrOB37HGzCmEvizL3IJASwNrgMPBT6BgLg+Hg8bjcd4fvp44LBAdIO6svTsEILjufPGWmt1ul50jtIRwL15fFEWL1EPKvdUAss6cAT4n0u1JIexvPh8eaoqDAHIPmKO7PpOSshNGunZ/4EhgTnidt3EwPzhtEBb4fHsrAqKih5d6W4u3RbjrydthHPw3+9lbnT4OgoLjRX0XBwKBQOD9Ib6HA4HAy4YPLCiklCpJf0rS/6RpmoWk75D0kyV9na7V2t/7nPd9KqX0fSml73ML/GazyZZzJxKQUE+cx3WAU8FbCCDQkvJxfd46gQCBdV6SqqrKvf5+0sBdJ0o4yZXUGittA1j0sYhDPLn/YDDIBNHD4bgXr8P9ANGkVcFzFQDz4HkIXQIHSaeNwUPuPD+C6/Ic9Lc74Uo3gX6e+wAZhiBCKBFB/HkhbJDm3W6ni4sLPX36NOdZSLd97xB/RKDZbJadKcx/t8LsBJ7nRFjpihWMm3WilUCSyrLMbR8ce+htJPwhqwExg3vzjAggVNYRNTwLw7MtXFTjGVyoaZomi0O0qbhbgc+Ni0bMK/vUw08RDBgT6+yCAQQeAYB9764JhCrmygNMGQefdfar7yEPhvQ1vcuVwz5i7boihLd6eNuOfx67YotnWXwc8CK+iw/afbmGGwgEAl9xiO/hQCDwMuIDnfKQUhro+ovzjzZN8/+QpKZpvmi//4OS/txd722a5tOSPi1Jw+Gwgcxtt9tWaBsVcCqTVBpJy5faCfZYoPl7ftAbcuMhiFjtqehCDv29EDgPgByNRrkSDWn0UEGIr6QWKYUQ0ubgFnPGAMny4Dkq6pBzSL2kTPqWy2V+Bp4LYggpo2rfdVx0SZMH22FFZ055Zs+m6PV6Koqi5cig9QByvdvtsqAD8eX+iCa8drVa6ezsTOfn53rllVdyCwGuBMg0eQGScuAh93JHBq0PEHbmn31he1L7/b7V2388HvOJEZ7TQR6CpBykSO4Dzw8pZr84cfa5Zy9TXWdOcAtItw4RxoFo4w4ZWi9Yaz8hwZ+ZthI+C95W1G25QIxAdPAWAe7rQgQOHIQm9o3PsR/9yWeN1gYXm3ATsAd5v+enIBoRrIlYxvOxxgRertfrVghmV6Tk9cxd181wX/Givotn6eHH44EDgUDgniG+hwOBwMuK9y0opOt/ff8hSX+vaZr/0H7+5k0vmST9Cknf/y6ule3rnh4v3Vb+3R7vf/f/pW8e4r3b7VQURe4xd2u29+JfXl5quVxmi39d11qtVq2EeohRt68b0oOo4K4JXge55Fp+KoQTKJ5ru91mJwXXLcsyCy1upXcnhdu5IXrelsFYmCvuiUBRFIUWi0WL+Po4cRDQSgJ5pNKebgINmVdIG2LRer1unUDgz+1tJzzfYrHIz7xarfI4yGNYLpeZ+NEO4nkQuDrYP6wjAX6AqjjryLwhVkBIcW30er0cgIjDASKOgMMzL5dLXV1d5WemCt8F4s98Ps9tFp5RIN26V1gL32fdzwKvx8VCGw3Pwxxz4od/FrufN/a1B2LudrssujBGF3zqum6JB57lgACVUsrryrO4WOEZBt3PWHf/et4HIpvPn+8vnsUFFu7H+rFGLjjdV7zI7+JAIBAIvHfE93AgEHiZ8UH+tfzPSvo1kv6rlNLfvfnZ75L0LSmlr5PUSPoxSd/6TheimindVmY3m00mPZAn6db6DsFwCzR2f+k2/d574u9KvXeyBGGEzOEqoCrs9vvuKQp+6kHX1g0IduT9hAk6oWHM2LQhNggH/X5fZ2dn2dJe17VGo5GqqmrNA1V/nrX7/J5470IL1WwC9RgXY4CMEpzHOvH83m/P83qwJc9XlmV+blpCNpuNhsNhDtij/QGRgaMkq6rK1WOOpuzuBVpDnMxCrqlIQ7g95d/dK5zwwHpCmJkD1sRbIfb7fevoyLfffjvnX7gzAfLMfmF+XbBABMA9QDuDn5wh3ZJeF9uk9vGlTtL9JAOCOXnvXe9HoPP9z7WYW3cuDIfDVvimf/4Yi+c3LJfLPCZ+zry4EMg8ecCkg89/t+WCNfQw1Kurq9ZRmX5KC2P2e95zvLDv4kAgEAi8L8T3cCAQeGnxQU55+M8kpTt+9d3v9VouKGw2m1aAHaSnW8WX1OpzRyCAbJD4jt2dKjH5A5JalWSq4EVR5Ap2XdetQD/vaWcs3WC40Wik9XrdIrn+fFRj/Xm8f997+N127tXUwWCQ++SXy2UmurPZLB9DCFHifR7G2A2tQ3jg9xByWgQktdwSXK8rMJDgz/pJ0nq9znMPKeVa7lTAks8pFRwxeHFxkUMwGcfJyYnKssxODuZ3Op3m5+fISirw/X4/tzNwTwgxwgC/Z46YVwQnTtqAEHPf09NTjcdj7XY7LRaLPMYHD26zl87Pz3PbB8+DKNLNIPC8Akk5lNPzHPyISRcXvJWC58MVgcjme5h9wueJe/spCogZ3T1Q13VLUPDQ0q5whRDjbUju2litVlnQcFcN12Vv+DgRmXA9MBaEOu7JHPsRo+wv8ipYV9wXLmLed7zI7+JAIBAIvHfE93AgEHiZcS/8vE64IQ8e0NY9f96ry9JtJRNCwjXW67VWq5Xm87mk2wqwE3dIREpJ2+02kxWqmsfjMZ8GAGl06zfX8etJypV4nAIQFncs4MaACHkwHFVWwvgkZecE422aRtvtthXO6A4LnBw+Tg9p9OMpvVWCucANwjPRo44rQbomhYvFIlfsCUikZYDxStehl5A3F4YgscyDdE1KvYpMu4LP6WQyyacHcAKFdNvWwevIEWDdqMZ7LgfHaLJOzKO3y9CKQBsNJ0YwDxwNuV6v8/qPx2PNZrM8BzgvptNpbkXwY027JydQLcclgZBUVVU+upLXkk3Bc3r2AGIXFXvWiM8T808Fn/dCsFk3J9nuaMAtwjj4PONScaGDfclrWQvCElk3Fy9YM28p8v2NSMD6c6Qnz4HwyFwgOHS/X/ic7Xa7/AyBQCAQCAQCgUDgbtwLQcEr591EeoiHV/b5HZVeAg6l22PlsD+ThcC1vF/e7eeQZg998+orvfu73S5btAl+g6xQ6faEfem2ygoJgrQeDodsbec6LjhQsUYEoKKKA4F5oSKLY8CrzMwDggJz5BVcf1bQzXjAfs9rqJb70ZuMGRKJ0NENwIMwcz1vEYHs4crg+cqyVFEUeZ6czHqryHw+z8IMggzEH4GCPefzwVxARFkT1ow1RiDxXIS6rltZFrvdTnVdZ2I7GAw0m80yKUYUmM1mKssyn2xyPB7zyQK0GSAEYNPn3tJtGCTziPi0Wq1aoYQIBQRpuqjg4Yq0BHRP/cDV4PsDkcXbfnx+ECX8c+WuCBfZCK0cDAbZidHNhWCu+Z0HO7JmvL7rbmB/sNdwoXBvd03weUBMQswLBAKBQCAQCAQCz+JeCAoeXngXmUcggLQ6oUQs8HBE3nM4HHR+ft4ifwCS4eGFkEy/D8SHILn9fq/lcpnzALgGIgJEnYA3TgXw53AiV9e1ttttJoAQGg87BBA3733nOu7qoH8csrTdblunO3Tt8fzdhRx3NVDdp4LMWvHsTuC8v56cBcgeLRhOUL1H3gmmBw6yL8g7YL7ISSBgbzAYqKqqLADgfOla63E04AZwMr5er1XXdf75ZDLJlWw/zhSSS9sCe5X59VBJiPVkMsljZU2qqtJ8Ps9C0WazyXuR9UZU4p4u3kwmk9wuwut8Ld1BwEkHvs7+O/a672GEAK7jAY7++cU54ieUuNOCVo67BDvfs4g+7FcXxyaTSctJwRgJ4fTPqgtXXWEBsYD95J8F3CreFhUIBAKBQCAQCATuxr361zL/4HcyBEHw4Dd3IXiIHgQUck1VebFY5P54iCr3cycEhNYJCpVQCB7We0ikV125Fq0R3pct3VbxIb/Y6dfrdRYUGON+v9dqtWrlB/DsBABCYLm296s7SVyv17kyDnFGaOAa2My9Io8Lg/nx9gVJ+ZhIhAUXFFyQgLgDeu+pmHuF2Y/sc2KMoHF6eqrRaKSnT59qu93mthacB/1+P4sKzL/vFZ4V8cYdIVVV5VwKSCftEjgmeG93LhCaEBjYh7SkeOWfa223WxVFoclkoul0qouLi0yk2YdO8r1VhTVH8MDpwh4lFNH3BaTcMzv884MYgVjl9+5+znxPMCY+E7gyyOBgrv10CQQ3rsNRne5CcQGuaZrcVtI9EpWMCQ9HdZeDj5k2I/YDe6LrRPCAyUAgEAgEAoFAIHA37oWgAPFzq7mn7vMHEuf90pBa6balwW3gbovn2vTKO1mgbaAsy0zQ1ut1i6B6tZiWBcboJw4QfifdtlO4o8BPXyBcEBLLUX4EFa7X69wO4sf+cU0/mtGJI6/His/xfIfDIQcKUhWnMkwYIsJFt63BLe/MPRVnxoxw4GvC+CS1yLgLQ5DEzWaTMwr8uan0F0Wh6XSqqqpy1sNyuczk2O3/hERSNcf2j3hDgCfEczQaqSgKrVarVpgkrgn2C0R+Npu1XCCQZdbC9y72fMj58XjMzzocDnNg6Hq9lqR8PwQNP4aU69MC460W7HFfC3IVmqZRVVUqy1InJyfabDY5V0BS63QGd+t43gDP4sedck93EnnQIXPRba9w0Q+BAeGF97jg4+0w7nwgO4K95m0h/l3BtREU+OPiAdfxrJFAIBAIBAKBQCBwN+6FoOBWca8auuvAA9gktY5562Yh8B4EAMgpBAkSRWXUjzkcj8c54JBec78/pIXfO3nzYD1cBowLi35ZlqqqKrcyQHIheIgd4/G4dXylPztj4Lm5r/ede3W63+9rOp3eeZQkz8zzIVbwGj+Vwd0dnm2BO4ATMgBiD9ZyhBcP8JvNZi3ii6Ok3+/nVgUPUORYybIsVZalJGUbO9X13W6nyWSSLfJkaSAqFEWRx89+YM25NmMnMHE2m6koipwRwekO8/lcFxcX+XXeTgKZHY/HqqoqzwniDsejAua325KBS4Y8CvYFWQ3sMRfdWGsPV8T1MpvNVFWVTk5OtFqtsrtBUnZYIF55lgafT9aS/6bdh/1Mi0r3pAQ+j/65Zq5cnCOo0TNPEFW4N6Gh7G/2Cp8L9gTfB76PEB3caeRuJ+bQHRiBQCAQCAQCgUDgWdwLQaGb1O5J/m6DpwrtZAPiTN89BF1Sq/rqAW9UsiHXkDE/LQIyDUFlfFQ3JbXIsxN1rzj7kZb7/T5Xzh89eqTLy8uWiIGgsN/vVRRF7pd3pwVjktTq//a8A+YUMo9ggPji8+QuBX9GJ8geYAnJpRoP4SITwF0fCAdcF7LHc0tqPSdV7f1+n4ky88z967rWZrPJgYaIMZDs9XqdCfDDhw9zS8FiscjuBarPtFLg5GCPDAYDlWWZ5wtLPSJCWZaazWaaz+d69dVX1TSNFotFrtJTee/1evl0ENagqqoc6smc03pC24EHDSLw0AbCGDlpwz8zwAU2d8ggnqxWq5aw4q0cHgDK3/m9iwoIdQhRHLGK8OEuAa6DI4TPIc/G/mUPu6uAz0PX6YEIwbMj5NBm4Z99xD/WxN00fmpLd/5CUAgEAoFAIBAIBL407o2ggC29a6WG7EOmIEBetaZKSR/2ycmJTk9PM3GjOuvHxXk1mwo6ZFRSDonDIbDZbPLRgndVgCHyVF/9iD7PhMBG/+DBg5yDUJal5vN5PlJwt9vlfvIHDx7k6zZNk0UKyB9kHNLlrQSMieemt97FG6r45BlAhhEtvP0C+7uTOtZGUs4FYG0QgWgngfh17eTcg7m9vLzMjgIEAxwp2+1Wb7/9dn4GnAUENW42m/z+uq51enqa74ftn7FAtiH8tLpIaokOrPd2u82tDlVVqSiK/P7hcNhyCwDP/yA0EgeEtwh4VZ8WEUIaWUPcAZJyQCSCB4Tdq+zeYkGbAi0Nm80mC1+j0Sg7H7gGz8B7Ee5oRyA09OTkJLsvttttK4sBEYZ9llLSZrNp5aHwXPw3z8Hnnc/3XSGsOD2Ox2N2j+Du6fV6+cQI8hdoO2JPsSbddfLWHhdqAoFAIBAIBAKBQBv3QlDAkUClHIIDKYJIYIWmOisp5xV424Sn6kPoPbGeP9JtNXI0GrWs//TTLxaLLChQqeXenhOAwECll7FA+LoOCK4PKcSl4EdDcowgogGixG63a1WQvY3DE+0hZmQmuLsC4ueuCqrlngfhveWMgbBC4EGHkDYnYn78If+LQIELAsLHs0m3vfkuFl1eXuaQTXIGcIMgxvR6PS2XSy2XS83n89wm4ZVoRBF3JQCyLXq9Xr4m1XVECYi4Cwrd1hCv5nMKw3A4VFVV+ahI9gbrzl6/K8zTT2AYDof5c8C1/fN0cnKSWxm8hYVxkt/gAY24EbD/d4NH2RtFUeTPQVmWWTxjbtzVgkhWFIWKopCkvA4IJ4zXnUc4CXAesHcJLq2qKj8Hn/HpdJrfw9wzx8wj1+VYS9/vfkypt1oFAoFAIBAIBAKBu3FvBAVOJoCASbetEE7Cy7LM/+jnZ7zmcDi0TjigUgkxJ0sB8uT2ayq/ELB+v5+JE8QIQu/91lyftgvINdVe4MGJEKqqqvJ1qbjikmBsEEgq7MwLQgj/3U3spxLLexE3GDsCAcICBMxdFFjQR6NRrr7zez8RYzwe56MLu8GN/sy4R/w1EEjEAa/O+/38GSS1fs/Yfb43m40+//nP5/wIJ8ZdUYnrMFas9ByxiHhDKw05BAQJepijj4drurvm5ORE0+k0H0/p1nwcIh486CGXiDXD4TCvGXPpYglzxLqQN4CbhLWl3QbRCPcPLpfRaJTvT/Dh8Xhs7QXmir3AOAirxEmx2Wz06NEjDQYD1XWdwyf5HCKadFtP+Ewtl8ssulRVpel0ml/L7xAuuC6vWa1WWbgaDocqyzKLKe7qQZTqhpsGAoFAIBAIBAKBu3EvBAVJ2UoPgYEocQIA9uSyLHMFHzKDS4GqPj3g3ucNuUYAgFz7+fOQb8jiZDLJFVav/HuGASTU8wogKZB3P36OEMP9fq+qqvK4+W9C8tzm7wILzw3xRCDBPu9BdP4+T+2HSHGNrqOA5/DjN7kO4gV/5vN5diswr94SwskB7l5gvpgP5spbEbw6Dhn3tgvm2EMt/VjQw+Ggt956Syklvf766/leLiJ40CeCh5NJxALaL3x9EX9ms1nOIyDkEMu/B3b6HGHLZ+08I4N5Zpw8DwKAh296AKK3MyBo+JxAqBkHlXl3rHBddz0g8HAtd8pIau2PbluLu2lWq5UOh4OKosifYZ6N63MNSbktA/EgpaTFYpHnCzcR76M1hBYNfo6bg9cg0sxms5YLAhcJ8884XLgLBAKBQCAQCAQCbdwLQQFSAnlxkiO1ifR4PNZsNmuRWu8bh/B7fza2eGzttFN4krtnIKSUVFVVJpvn5+fPHAnoJIp7Q0TcPu/EjgyGw+Gg8/Pz/DyeE8CRl04GgWcMeA/6ZDLJ4gTPw1z6OEajUcs94RVY7sP8Icpg//YMCK7BvVg7SBzkDNfGbDbL9ntECg8wrOs6OyUYJ0GC3NPzEQhaZL3IB3CSih3+6dOnWXTgWZlXP20AMsncMX9+zKUklWWZRa7z83NNJpM8XhegACc2IEQARAjmxEMDPRBUum3H8D0I+WeMODxcIKM1hRMr2Ld8Hvxz4HPh10UEYM6clHdPa+A53fXCs3B6R1mWmk6nOYgSss9njc8sAgrujwcPHuSsFeaLPYB4yLj8lBfaXfr9vs7Pz7PLgYwSPvvsF8QjvoMiQyEQCAQCgUAgEHg+7oWgQIUYQtq1zUNyD4eDJpOJHj58KEk6OzvLzgUIhbsIPHQNok/11+3duBW4x26302w20+npaT5VAPLlY/Q8BQgRpJDqL6+XlFsuNpuNFouFzs7ONJ1Os9XfA/QgiF7R97E60fVUfK+s8jpOX/DKMcTL5wzy5C4IThyAkHJtXxvp1uEB0USM8N52yCjj5H7r9Tof9TibzTL5d1GD0E7cIl7J7vV6Kssyv4Y1Qdio67o1j7wexwFzRDUdBwekHvKLQ4CMj7qudX5+nokpwgb9+L4XaS9gDOwNxoWLBMeIdB28eHV1lVsP+v2+6rrWdrvNIYR+PCiCkZ9MQDuJ/7dnDOD6cEeQBzKy5xBlWA/W24UDb51BKEM08flFTEFw8qBVHyuuFESIBw8etI4y5VnY294m5IIUYs6rr76qp0+f5mdkbHwH8blk/XCSBAKBQCAQCAQCgbtxLwQFqpFVVbUqng6vPlJdpD8cgtC1fEPqUkq5yirdnpjgVUh+ttvtMtGfTqeazWa6uLjIZJh7QDa5vveBQ+yo7rudm+MIV6uVHj9+nIkrY/FQSQg6IocTXg98JJwRNwa97Nj4U0parVatKj1zCuHlvV4Nd0eCuzKofvv7vfed8QHcGU3T5N75qqryc0K4Jen09DSTSp4XB4PUPknA15jqOISaOXECTcWdQERcGozNj7iU1FpT7n04HFSWZZ4jThLBbeEZEN5y4qGZ7o6h7YI95PuAMXj+BM/BuGmhYS34HLBO7vrhftzTgfjEPdkL3grkYY84GbylwNfbT/J47bXXcruCiyG8FgGKdfV2D9pCcPMURZHXibXxkyJ4H24Nd2Vwkop0e6wkIomkfBoFAhqf2UAgEAgEAoFAIHA3PpCgkFL6MUlLSZeSjk3T/FMppYeS/rikT0r6MUm/ummas3e6lgfEQRYhON4zTgW8KIrcPy4p95Pv93sVRaGqqnKlkVMavB8dIaCbyr/dbrVcLnV2dpYFDJwFkBjEAq+s4obAkk5eAX93sg2JOT8/z20QkCTptsWDe1E9pQKPZZ1WAHdDeLsABNXnANJGZbxLmiFzHkDpQoI7KDwMU9IzBA+nhqR8gsV6vc7VdLfE+z0gr1zXcwIg3ggC3oqB+4J5drs6pHe322m73eri4qIVfuj5EIzJn4ln8eo4BNlFCJwwPA+nCbgA5RkTtJN0q+r8t4s5HjzJPqLVxVt9utdm/S8vL/MRj579wfW4H/9NqKGLF4h43JPPjs817UXMKYIEOQfujvEAUcQy5o8WINwhuB68pYE5L4qideoF3yWsN21Bp6en+Tnqus7fM7hyRqNRDkv1+bnveJHfxYFAIBB474jv4UAg8LLiRTgU/rmmaR7bf/9OSX+1aZpvTyn9zpv//h3vdBH+QS+1k96B97xDUsbjsVarVatq7wR2Mplos9lou93mkDcPZeS63A/3w3a71Wq1yqQUsu82cUglRxl6pkM3w8DJIv3bkJXlcpmJqaT8DOv1WsvlspUPgYgBofdKKmP1UxkgsJKyVf7k5ERVVbVS/ff7fSaKEDbEEe7tpw8g+tC+0T3RwoMNWS8Xbehbhzi6swJyz/tZD9oNqG7z7LwW14gH/REISQWaEw5YX4SV7XabMxp4rfflMw7s7zwPTgQyJ5gDr87TusIJAp6B4SdA8PPNZpPFIUSxbnihC2cu7vh6sq9TStmtghjFMyFC8HkiJ8GJelVVmZyTP3A8HvNnyUUnd8mwv7xNSFLr1BFEDhwszJfnIHSPM2XfuejkIY3b7Vbr9ToLVny34O6YTqd5LpbLZW6J8fBVP2b1Y4YX8l0cCAQCgfeN+B4OBAIvHT6MlodvkvQNN3//I5K+R+/w5UmlfbVaZRLQbXtwh4JXsyW1qvaQ7l6vl8PYuKYLCU6a/GQByDZVUUge94Cw01rhlmyv+jqZprrONfv9viaTSXYZQIYRKKRrAWCxWLSOU4QgS7dBfQQAevo/zyPd2tc9WNFDAyGgXfGA+yJkMN/utvCWCOmWLDK3jBsRpkvQCFKE4DJHkH3POFiv15loMw+r1ar1HB7yh7Uf8r3f77PTRFJeU4g1ogXX8So760Wbhu/Nu5wMvV5PVVVlIuv7kv3gRHowGOT54feQfBwlEGsq7nVdqyiKPDaIPi4Xt/s7EAXcwdEVi1gn5uf09DTnNXgYKPfDJcOaepYC60BbCfuI17mTAwHE50q6FdlYH45+REhBeCjLUufn59llVJZlFlSYT059oQ2FuWQ/8DlEoEDk/JjiPX8XBwKBQOCFIr6HA4HAVzw+qKDQSPpLKaVG0n/UNM2nJb3eNM3nJalpms+nlF57p4tA6KhMdi3wTi54vbsB6OH3/nAq3x4Ah/Wb6ifOABcLEAwg2t6KAKH2KilVawgdhMuzFZzc7XY7jcfjXC2HbCMGQOQhwby+LEv1er3cMgAJhPS6aOJiggfquZUfosQ8M34/eUJSbrMgD8LbBDxLgnt2j7ocjUaaTCZ5TZzgepsBY4TQ4j7AlUAVn8o78+/ZBOwL9gyvo6KOUIS4slgs8przHDzrer3OJ25gqa+qSkVRtIQjr9B7pR7S7K0I5AT4KQ3e1sDzch2yCMgM4XOyXC5z2wYVfdbfTwdxkQahhefDldMNM/SAUheXZrOZ6rrWer1uBULyh3YGnx9cArgWmHfmiBwO2jc8zNNPX+CZ+PzipEEc8LkcDoe6uLjIe8VbXdg7CBSsIW4ez/5gP3ezJu4xXsh3cSAQCATeN+J7OBAIvJT4oILCP9s0zeduviD/ckrpB9/tG1NKn5L0Kf4bQkc/881r8j/oIWZuofYefvqfverK3z3Vnqo21fHdbpd7qd2O3Q38w8It3VbeqY46cev1epl8+1ggalirT05ONJ/PW0KGdJvKT3Wb6/BskCoIs1+feaT6zPxdXV2pLEuVZZkr4U6eIeG8n4ovxAtHA8/KzxAnPEgPIonQ4X3+nDbhogLEjfHwvF75xtZPlgKnAbhIgoDDGBBp2CdkSOAOYG7W63UOA0V8YA8idjBGdyZ4ICg/x11AFR1xgAo4uQDdZ2cPdx0K7F3fm4grkPj9fp+r+xBiF3cg3exb7sGa4uLxbAb2zHq9zi0tzPfFxUXev8PhUOv1OgtzzJmPw9sXEKRoGcKhw9y74MDnHMGG9hCcTOfn56259HXgiEpJevToUd4DfKbYr56J0RXzGHPX4XGP8UK+i8cqPqzxBQKBwFc64ns4EAi8lPhAgkLTNJ+7+d+3Ukp/WtLXS/piSunNGyX2TUlvPee9n5b0aUlKKTX8495DAG9eJ+k2TK8sy0xKvYcbMoNF3ck+qf+QXa8MY6X2lgr6uf2oSLf5A4ig5xd4pRpi5AIAxHI0GuWTFzyvAGKEsODtDlS9sZ77Pf2+kjJZI7xwMBioKAoVRaH1eq31ep0t3zwfJAshxYUJSa1efsbKOMmmkNq99xBRP+bSgwYRcOq61sXFhYbDoWazmUajUSavu92uVfn2TARJmSRK7SwO5gknCzkGrBl2+KurqzxeHDJO6nnd+fl5fj7mEJEAJ4G3nmDJR7S6SzDp9Xr5uELcMuQjSLctBAgGjHOz2eQcA8bPGvn+Yd9Op9NW2wBOHVwEnkdB5gMiTF3XLceHtylIyr9nbfkssz7sJZ6Bz4S7V3zfI55012EymeTf4ZTgu8BFnOPxqNVqpX6/r+l0qqIosmCDQwHBg7Ya9jpiDXv04xLK+KK+i2fp4cfGkhEIBAL3CfE9HAgEXla8b0EhpVRK6jVNs7z5+y+W9O9K+rOSfp2kb7/53z/zrgZyU42EDPKPe6+8c4wgVnAPA8TdgIhAq4IfFck1PXPBq9UePiipRYzG43GrAst7OIaONH/p1jnRzVTA0g95nkwmKssyCwFO3P31wFsEJOUcBxwF3RMAIOuQXogTVf3lcpnHh3iBU2C9Xj+TYwFcZGA+6DdnPnBE4CLwHvbpdNo6VpE2lfV6rbIsNZvNWi0NnlHBPmFePGeB0xIgp7SfML+73S4f8wg5bZomZ3d43gbXY35pkfBgQ0L9yDGYz+e5VcT3F+Tcrfm4Y7g/PfyIZLvdTtPpNO/9w+Ggoijy0YmMxVs1IOwIPe4SQFTq9/t5DmgV4h7u6mF93dmRUspHc/rRlS6KcR/WydtuEFn4O+vouQzMt7tr2GcuBC0Wi9xyxM8RISTltV6tVnmdEXC4J58DbxfxHAmCUu87XvR3cSAQCATeG+J7OBAIvMz4IA6F1yX96RvicSLp/9Y0zV9IKf0tSX8ipfQbJf0jSb/q3VwMQiTdVsKd7FPRhQBMp1Mdj0fN5/PsXoBQUsUmDyDdpPFLalX0nSxCzHa7XauyKt2e0tCtmFL1pEIOifRKvGcWeIXanxvyclf+gtQ+KYCWBW+nQFAguA+C69VbngHh4XA45BMmGP9kMlFd11qtVq3xQkxZg5OTE5VlmZ+L6jXhiZeXlzo9PdVwONRkMmkFO1J5Pz8/z+LNeDzOFnyq9d4T720pnlnhYY6ISB786AIV60SWAc+F42O1WmXRg/v6MZ6s5263a1XavVUBUQlyTLWdAEEn3N5a4Ud30tKAqMPnwdt2eA2/Q8hxMcBzR3gvex9nhe8fxkGLBJ/FpmnymuAAQJxB2PMAUnepeBYKf2d+JeVreG4GwMXBejJHfp/FYtE6OpY1peXmcDhovV5rOp3m7wTmn88p+9yzMLj/xyg/4YV+FwcCgUDgPSO+hwOBwEuL9y0oNE3zo5J+1h0/fyLpF73X6y2XS1VVlSveEALpliBBIj3UDVJDW8HNGPLrIEAQB64HkSZ9HtKLZR6CSNXYg+8k5b/v93udn59nEomrAPGDVgT6+KVbq750m3/ggghj7IYvuoggKZN8iDYZCZDE8XicrfaA11LthrhJ120SuBTW63UrdBKhhtfSt08mhbsZ/KhGshRwi7CWkEGEj7Iss3CA2IClnfVFMPCqsnQtLlRVlcfDvDFnTth9PVy0gGgfj8eWMNDNkEA0Yf/R1uB/JOX/JcegLMt8xKnf09ecANHBYKD1eq26rvNzcD/2AjkbhDIi9niOhKTsCvE8EvY6AoO3O7jzhM/Rfr/XcrlsnZriIgafVz8ukjH4vLMH+Ey6kwdBg/ewTlyLdcdxxPogjvR6vdYYEanYy71eLx8NStApIqG3GyFY0BbycTjl4UV/FwcCgUDgvSG+hwOBwMuMD+PYyPcFKq9uUe+SG6q6knKFEXJMi4MfAwkph4h67gDVaE5ZoMoOufcKMH8gG1i1u/cgfd6JCsSOarQH1nkIHeQF8kg12gkW1Vx+xnGUknL2A9dijNwLAgeRpno+Ho91fn6uxWKh09NTFUWh2WyW1wWhBGKJ4IPQAFHj58PhsHX8IsSZcUBu33rrrdYRgCcnJ9mijkjR3IQv8twEWlJlZk+QAzGZTHR1daXNZvPMHPJab4mALHreBG0MnKqAc4a9Jt06U/yYT89uIKsA4gqpX6/Xmaj6fFCp9+wDrumnhBDK2G0N4FhKrsMzsw+81YfPj+9DD/X0dhZEh/V6rSdPnuS97c4Pd2RwrCaCh+8DRCZEE1pkvEWB/cV4+OPBm1zDHQaAdUbg8GMhJ5OJLi8vtVqttN1uW8IDDgn2K+IMjqVAIBAIBAKBQCBwN+6NoADBh3jfla4OkaH6PxqNNJ/PM3Ghfx83gZ9c4OTeU++7JxlASqTb9oiucwDiJymTF9LrCZuD0DdNk4mSV6chYhA8v7cf+QfZgcBS6UaQIBiPKjXjw5rv1+YZ/edgtVrp7OxMw+EwB/x5ZZ6qvucY8Dt3OTh55bmZL4QMXuM5BbgREHgOh4M2m01+v59ewHsg5+QNINCwnu4qIeGfeb28vMzHBU4mkzweWkqYb9YN4oqQQeWbfekOmuFwmIUO2hPcJUMoJ3OBC8PDNQkf9P17cXGRf+/9/lVV5XF7DgJr7vubOXDnAtfk754jgfixXC61WCzy0Y7MM6IFAs54PG612/BZ5T28jn1DGwknVrigyFiZYxc+yOhYLpe5DYfndlED4Yi/+3Px2SarwjMafG8HAoFAIBAIBAKBu3FvBAWqzpJalU0H5O78/Fyz2Uynp6eqqioTKirK2MIh+vydCq1b3SFykCIPg/MsBwi1kz13QnTbGjz8TWofY4kI4eMjk8Ct/C4s4KCYTCa5es7JDRBfz3cgFwAiiZOAPnkXB2jR2Gw2uri40Hw+z64BJ3kQQcQQCL2fzuHHQHJcoreieDuECzdFUeSqMSSRnnf62REicAVAtDkpAULsQZ08u7eB0MrCCRK0b+Cu8GtLymvtLTg4ALwvfzgc5jYAXCoQ+rqu87U9x8Jt/5ww4EGZngWAdZ/TGzwzwd0T/pli77kDATHD97qHXkrKa44b43A45NYeF3poDyLHg5BGz22gRYWjLsuyzEc34iKgdYHndyHIW1Q82JK2Bs+sYCyIeoDX4GJB5MBt43sacYIjJAOBQCAQCAQCgcDduDeCgv/jHxLjVW9es16v9YUvfCET6+l0qs1mk63MEA/IPtVnyKwTKwgKooJXRF1kgIB4rzVEHzLtlXl6vZ1M+T2xyhMO57b17ukWEL9ueKK3e0hqtXVAFJkTPwkBAuZVYAgm7QJkA0BS67putZown9vtVhcXFy0bOuLIYDDQbrfLAYtODMkGQNTgPbgjlsulnj59mgMeJbXW1edZUhZEII0uOPB7ruMnYnjbBHPLfPo97srPICTTwxS3222u4tOawDq65d/bbsgG8Eo4xzB6Nb/ronEnDe9HkHP7Pk4B7s3e42cIEC4MdIUw/ne9XmcXDvNAq4e3YHiuAsIB4/LPByIXrSA8C8/V/Sz46REuLPiJHsyv39evVRRFFnpwkdR1nV05Hpzq4lUgEAgEAoFAIBB4FvdKUICcQHQgx251RzTg6LuqqrRarVpVW8ihH5VIBZb7QCQhJu468PYAD5bjffT1D4fDPA4q3zwLxIxeb0grLglIPa0LkCWp3WoB6WYsXmXFSUAbiAcWcjoC84jj4Hg8qq7r1lGOZVm2cgYWi4Wm02luQ8CO7g4EJ8rL5TKPfzqd5vYDwhe9Tx8S51Xlfr+fnSZN02Ry57kNXVDt9qMxybAgS4K59h58BBaq/pwkgMDjrSy4LBBxEJzcueLVbuaVdecZXOTxtgTGwVzyXq7H3nQngbcwQMLrus5z6SIQQhVjxJ0wmUxap1+4wOQBnt32Hg8q9LDN3W6XBQxcF6y5H2XpLR/AT1rw41q7Y2Gf8DyMxz+jjJXPv7d+8Bly9wj7AWcF9+ZafBYDgUAgEAgEAoHA3bhX/1qGbEHUpFtyTkYAhGWxWOTQO6rBVJ0nk0muskPKIFpUip2UQH6kW0eAHyUpqXXMH6TVz7eHyHt1V1I+LpCqLFVtzzOA5PC8BPPxOg+Po//+6uoqj8MJIdfAecDYIGzeFuBVbeaANgnmgLwBz2fAneDEizUbj8eaz+c5FA9xyMknJ08QWMj7vbJclqUWi0V2f3hbCevoeRXY9j2I0sk57+MUCIQQP0lhPB5nUclPGem2lniYIe4I5pj9Cdg3OFZoXfCWF0lZrIEU0w7gOSAetogoQ9sB7pbpdJrn3gUrb7fpHm/qrRzequMuCN/TvhaIgKxf0zQt0s/aeEsR899tJXJBxdeYlhjmhj2JKMD1GJs7JbonRvB6BBmEKcQzPs+e8REIBAKBQCAQCATuxr0RFJqm0dOnT1uV9G5l2k99IIyPtgaI6Hg8VlVVrT5twPGD3hcNeXRyM5lMckUV0gYhOxwOWq1WmeR4mj1kytP+ETOohEKS/Dg9HwvEfzKZ5GeEOFMd75JAKuIQK36GY4JKvmcO0AZApR1hwx0izP96vc7PRjq/P4O3CfR6PU0mkzx+t+pD6iDerA/9+RB3iK73/vv6U9Hmev4cngfAM/NeyDj3h9wfj8d8jCZigQsuHMnZNE0WhKjIs96r1aoleLBfvGViPB5ruVxmmz1z4m0tnhfhQaPu8HChi/dBghkrhN1bbjgJ4vT0NO8n9hifDxcbnIjTMuGfVw9yxB2DeDKbzfLae74J68daIUTwLJ4Hwnu4P3PLfCGqeH4JAoofUerioM8hbTLsJ4QUP1EiEAgEAoFAIBAIPB/3RlCQlEkaNnTIvFuWpVtbMlXGbqo7ZLosS/X7/VytvSuArmsjp8Lt6ffeu+3J9cPhUJPJRJvNJl+XsULsITjezgBpxAXgFdru+Oq6Vl3XOj09bQXF0eKAm4AMAvrvIf9UxiHckDcs61JbqAGMjWq4nzoBSWRO3WLOc3jAJiIO14fo+9GZhPIROHlxcZHvIyk7DSCtkG6INvPqxBNCSW6CpEwuff4k5fXyKjWiCm4CJ5+4CxBTJLXIP4IJa949/QBHAa/n+TzLw6v/fmSp70tEKAQrxkbLC2vO9Xkud0ZApnG8eOaHh2ji2vAsCPa4Z1i4S4PTOrgXnw0Xi5hbrsd73eXgQgrtSawT+8HbeZgD3o9w4qeAsL4ITVzT8yXuarcJBAKBQCAQCAQC17g3ggL/cIcUYVuW2kc5ekDdxcWFVqtVJmZdyzjv9T9+VKFXQ90+TSXVj6Gjxxr3BFXtoii02WxyIJ8fCQmxcuIHEUY02Ww2mRhzv7quW0S1a6OXrgnwxcWFpOsj9OjrJ+SR0DvyHbylA6LKfELsmQNvMejC54cqMkIHokvXYeCWfO/Lx75O2OZ6vc6tKYvFQqvVKs81zgLPofBcAh8zbQwQcwImIbM4W5gzr7D7HnPC6RZ/BCjEgfF4rAcPHuRWg91up+VymYUeyDdtONwLMciv7/uF9fOgQA9J5L0eyOnzhCCDmMBem81mLbcBBBwRyn/HentWBWvKHsMlwdp7ACV7lXlCQPI96MIKz+mfQZ6LzxfXkdohjqwX7gRCQn2vMM8eysl1EMkYs7dGBQKBQCAQCAQCgWdxbwQFSTmFHaLlJAB4wnu3/xmLv5N+r8RCfiGZEAqvZENyPUcBMgWpd0s214bYEuLnVWrINnZ5iBmWdiquLnBsNptMriHCOCC4L8/PeLvuABdXGAeuA+/P93BE8g14P7+TrknXZrPJRyPiSMCqj8CCK4TjAOu6zpZ8qsZcFweCr7Fb3T20rxve5+vKNfzkAvaUH5HpoZjeYoHQ46Tdx0Sl/XA4tIQRKt6cJrJYLHI7Be0HPC+naUCmCQNkL7F+ns+Bs8MDBxkvThbPHtlut1qtVjlEknVg3fr9vhaLRSbpEG8/McT3EsKFu0vcFcFniPH2er186kpVVa2Q1PF4nNtGEDs8x8PDJ33/epsQc+ruFNYTtwnjJGvET6VwkcPbZmhbYp+4cygQCAQCgUAgEAjcjXslKDiZgghK7WBGSdluDqnxIER3J0BisVx7+wHCgVc1JeVqNq91y72kTJxwGHTdFC4YeHVXUq4mI4BIavV9Q16cxHN6RUopiw/8/PLy8hmS6tVbt8xDhJlPF20gjUVR6PT0VOv1Or8OkoV4AGmV1DpRgUyJ6XSaWzXOzs705MmTTHi5r1e7sZ4jSEAuu6n/Lgb4WrobAgGI/cKe6raxIEzgGvB2GUQn2hwIkez1evn4THc8QIoh5IhK6/Vap6enzxBez5Fw142f9AHBPxwO2RnjbgDP7fCjNBkPYtR4PNZut8sOGtagrussTg0GA52enuZjWFlzd8V4y5HniXjYYvckD44LJQ8EZwHvW61WeQz7/T4/vx+f6eKCOzEA7S0+HtYLUYn7+skp3m4j3bbB+PU8yDIQCAQCgUAgEAjcjXsjKHgIHhbxrqggXRNpAvQ4ps4JBBVRXAEQSF5P9R9AWMhdcGLH6+u6boXcdauWkBCq84yDFgIIDdcZDAb5qEbu71Vvr+giekDYINfj8fgZQQFy1z3dwAPmqNxy1J+LDCcnJ5rNZpk8IyYwT5B3yGlKKRPR+XyuR48eaT6fZ0JJS4qkVjvFcDhUURQtIodQw9xSgabqDZxk+t7h+TxLYb/f50wAwh+p1COCeM4BwouvPySW7AonnKwfmRoctUmOBSIM9/M2E0l5fhEoED5wLrBHPDSU97NPOQ2ENULoYp95Hgnv8bwGhAfWkYo+bho/6YP73LUWtH/wfp4DQOzZA91WCf7O+3AysKfv+i7gebkWc7rb7fKaEBCKE4W5QKDhWggpiBvuZgoEAoFAIBAIBAJ34179axlSW1WVLi4uMqF0YumCwng8fuaMe2zTEGuOQSzLMp/ecHZ21jopoStkACrwZ2dn+bhBiJnb8r11YDgctsgVAgH33+/3Go/Hms1murq6yqRJUh4DxA97t5NJD0d0+70/A5Vq8iVoPej1evn0i8lkkl0KgOt0j8yD3CNCQMyaplFZlnr11Vf1iU98Qg8ePNBwONTZ2VkrUNFt5oRoch/aKCB5ODVoWXFi7oTf58ozNNwN4kRaUp4T+vu7eQFkNlRV1bp+N2PBrfaSch4CazydTrNrwU9qYP4QgHge3zcQd8Qi2lP8ZAQPi5xMJrmlg2BLxsPfGW9RFLk14+LiImduVFWV9zr7AdGEseH08XlDAGKOmAvCEZl37uPX9euz9/g9v3PHCHvSiT77xUM4aUNBvGMdEFIQE7kGn1E+c+7GYE8GAoFAIBAIBAKBu3FvBAXv/4coQHC9pxpr/WQyabUmYKfnf/2IRK5HVR9y5G6ALpn19ggIEtVLqsKQTsgK5BWhw1sXhsOhTk9P1TSNptOpqqrKAX4QM7fecx8q+dJtq8fV1VW233uQHPejEk87hRN5ruNVb6/uQsYgpIg8nhMBqWV+Xn/9db3xxhsaj8eZxDsBd0FBug3hw1lAbgPPxxrwGl9Tt9ljkScPwufPnSQ+L7gFvLWC9hFEElwNbrfv/t1dEvv9XsvlMu/Joijy+ruY49kOLgzQ1sDnwI/+dDGFZ2I/4FThPd3WGubRx9sNXMSZ4zkaOBbYIzhaukdiSspiBtfj9zgzEG9op+Az7aGc7HeEA8QKPnuICO4K8SBJTgQBuBQ4VhKhwYMw3QHjIaEEOiIi+ZoFAoFAIBAIBAKBNt63oJBS+mmS/rj96CdJ+rckzSX9a5Levvn572qa5rvf7XXdgtwNZLy5r4bDYctR4OnyVGIhy/RwQzS7lnpEB0ktgo3tnOtjfXcCB8kZDAa58u1OCid4VDtpvYDkeLAfFWdJubcf4oQdHlfDer3Olnk/wlJStqwzHu8nZx6cBOJqQIThWd0hQHsJawMJGw6Hmk6nuVUCEsZxkdJt+j7k0DMPEFUI3IPwQvakWweAh1JCKn0dCVn0Ng4IOM/nFWgcHqPRqBUuSfaG5whwTfYZeQ8822q1ymvLcyD4rNfrVr++Px9rwXzjKOF3zI8f09k9jYPxIcL59SRlYYPruBPBPyc+PhdGEBY8t4F9C/n3bAU+p7yn1+tptVrpwYMHLeEC8YD3eauSZ5H4NVnPfr+v2WyWTzvBUeP7A2HBP2OMn73kGRAeaMpnvHu6yn3Eh/VdHAgEAoF3h/geDgQCLzPet6DQNM0PSfo6SUop9SV9VtKflvTrJf2+pml+z/u4ZrZ4O0Hw32MZh9RAELEzu0W5S+LdCt49pQAyh42f0D0XOKTblgMqmJBxqV3JhvTQu899ed3NvLWCBam4QnKxeXv/OGGHq9WqNRbvSffEeq5NbgEkmFMTIKLMd7fijFiBc4A5cjGBUD8C8bg/98Dyj6vBrft+YoEHVLpDgdYAXsu8Iz5AMhmfV7R5vYdqIgqQX+AnF7jrA1eAnyjAnDA26VZk4HSF6XSaXQJkNtzVPuF7hefzLAf2znq9brXzdN0bDvaKiyWQ9t1ul1t3+OPuFdbGBSg+b76/WUc+jy4kdN0LPIe3ILiTgf/1z7XDAx95XoTD0Wikqqq0Wq2ywOZ7AOeIu0NcbOJ5+Ox0w1Tvyo24j/gwvosDgUAg8O4R38OBQOBlxotqefhFkn6kaZp/6D357wWQhfV6nQlp11pOVZuTAiBTVHEhmlTrcQ/gCPC0e4gKVm7vy6af3NPu/feDwUDb7bbVJw5xk25PhPDTDLBf73a73JOO24Hn5z1u3YeQQbIXi4UeP36suq41nU5z2weEGPKEZRwgPDBPtDV0+/bdEYGwwxGHPBuEsqoqvfLKK6qqKs/ler3Odvt+v5/nnGccjUY5NNBt5i4+8CzMhzsmgJ/U4E4PJ+pO4AHCB6GDrIU7QNh7Du7XnWNvxcAZgrMEVwBjh7Dz/J4Rwh6mjYP9wD1cMOoenemVfsZC1gR78OTkROv1WsvlMq8jz+EtFr4X3A3BPkUM4hn5XDIOny/GIan1+fQ1ugvuTHJHkQs4CAGELvopDrgMrq6u8okliFWTySTvIwQ0F6EYsx/F+THDB/4uDgQCgcAHQnwPBwKBlwovSlD4Zkl/zP77N6eUfq2k75P025qmOXunC0CsIEx3naaAI4EUeYCV++rqKmcVvPrqq5KUCQaEdb1eP1OF55rj8Vinp6eazWYaDodarVa5uo4TwSvfu90uux8Iu+OaECkntYgQiA+E4SEceP888+HVYAgrgoukHObnIYeeucDvvdKPiwCiSDuBpFb+A0TdW0q8os0xk5yGsFwutV6vc74Dc4w7oyzLvIYuGCB2+CkI3b979ZlrYGdHvGCO2E+sh/+MqrtnETAO5s+PgnSyybzT/sGa4h44HA5aLBb5mt4+QlsA+xAi68IE6+AiFMIBY+G+rCmOkS48rJM/7AHIsjsSeMauwMF4IN/eIsTrWWf/X9aM15PNQZYF+4m595yDblsM1/Tn5HfdlgX/XCPk+DUQxthv7gByweZLCR73HB/4uzgQCAQCHwjxPRwIBF4qfGBBIaU0lPTLJX3bzY++Q9L/SlJz87+/V9JvuON9n5L0Kf/Z8XjU22+/nSvvWOEhEpCruyznEFD66GezmaTrFgGq8IvFIpMZ6ZaUQJQ4vq+qqkxOqZiXZdkKKvQMhKqqWoS3W9Xk/hBp7NtkO9DjvlqttFgscrsEBHc0GuUWCAQN8hBGo1EmlwgSTsaZMwi0V+epYJP/gDvDQxNdPKEaTxhgWZZ5rjabjc7Pz7MIwxxTbaaqjfsBIOj4kYDcD8LIH9whEGVv0eCoQUg473GSyvV97/g9vc2BteyOlXsiLvhc837aDVwgQ9Rwm72kVsiln97A3ufIUw8KZK1YW0QGyDXXZh48B8JFK35Pu4nPDZ8TRBv/7PE+P8WBNea/vXWCdgpvx/HPLDkN0q3448KLt9qw//1aXMPHc3V1G1yKW8dPp2B/eSuMr70Lah8XvIjv4rGKL8tYA4FA4CsR8T0cCAReRrwIh8IvkfRfNE3zRUnifyUppfQHJf25u97UNM2nJX365nXNzc9y4J2n20NGIeAcGUmLxPn5eSvRnddC8rCRz2YznZycZEu+B7Bh+aan3k8qgLC6EEF/OmfcU63mehBedzZwD4gK6f78HHLpVWDujRMC8tfr9VRVVSau3TwBqr/+jBAwPyUAwr1arVpZCRBMyBniiocflmWZx312dqYnT55ovV5n0gv5hOwTuMfcQeC4Lk4L3wvuSvCTADzXwE+G8Iq5V6+d4CIeeE4Fc0Nl3nvqAeSU33dbcrq5C+wVru1ZDwgjEHp+jmhBxZ11Ojk5yTkEzGVKqTXfLkTxh3EjYrHeLnw1zfWJDLhx+OzxmepmNjDHrA3CFxkJ3JP3ISIhArhY4KSdz5CPi3l24QiXAc4kXy/2G5kRiCd8X/j1vK3C8x0IRO222XwM8IG/i2fp4bN2l0AgEAi8W8T3cCAQeOnwIgSFb5FZu1JKbzZN8/mb//wVkr7/vVwMC/xdpGoymaiqKlVVpaIolFLSarXKx8Z1E+EhzFQcZ7NZbk2AhEByPbQQgrnZbHKLASQLQtzr9VQUhebzeRZAaCWgr5vnYSxUmt2ODrFEYPDjDWmpIPSQPnj6wiHzknKWgqRcnaU1BKLtlXGvKEu3lXJEDj8hwIUOSLqfYuGtGJAwt9VTcWctPEuB1gVEI+B9+06+u0QQwUC6JbEICIyf37mYIrUr9tJtn7+f4OHCgLflIB6xvh642XWI+M+89cDdI14JR0DgNZxCQQsCrSysG0IAFXhEA58Tfs8c+v09QJL7u7PBA0vZy7xmOByqLMsciug5BjgRXJxBUHCRgrXdbrdaLBb5PWSZ4Mzg+RAI/TQThESe090cfAZ8TXxuWA93Hbkw8zHCC/0uDgQCgcB7RnwPBwKBlw4fSFBIKRWS/gVJ32o//t+mlL5O1/auH+v87p2ud2cgm1ux6d2HaED6yRpwgtlNn/cj/SCzkGwPHaQaDyn3Cq8fd0fbgZNWyBehip5nQIsC9/HWCQisj79rV+f+7kaA2ELwqLLzfJApCBXCg5NgP1kBcopjAIHFq7pOvLjnxcWFzs/PMzGFbLJu3hvvpM375fnjLQg4UhAECCiEVPqzuCOE+zEvHurHGBCWIPs8d3fMLkrxdxdcTk5OWjkE3ouPuOF7x+fCWyp8LXDLMFdO+HGScA+uw1x4mwmv4bNDGwUCjodEdo8F9WdH4GLuyb2gmu8ig7cn+Hx11x8BgDGu12ttNpt8KgmfM1ptWDOev3s8KWNCTHChpes0QlRhnvjDerBXPi5ZCi/6uzgQCAQC7w3xPRwIBF5WfCBBoWmajaRHnZ/9mvdzLf8HvJ8uQCWVfn/pNtXe+9ghSBAcyAx/h9zye+7l1VtyFjj+cLlc5io/5MuPnbx53kw6IIHkC0hqkZ2iKHKVVlK2r/vpBDgx/Dl5DyGOZVnmZ6Y1AaKHbXy322VyBPmiGu9WfkSDyWTSOnnAK/wQRuaNtSLscrPZaLlcqq7rTPKOx2MWL5zkcU9O6kCYYa3JH/Dnn0wmudrtTgDG4u4HntdFI65Fi4O3GEAsnTxDzLknRBUyzLyyp7rCEOPvhouyD2k3cAfOXa0C/NxbBTwHgD8IKzyft/+wxxmfP4eknCWAm8QzQjyngs8a+5s95GKCz4c7Tu4SN1yQctcJn0MXfXidE39+51kM3It9xHx5W4UHVHIN9hHP4u6bjwte5HdxIBAIBN474ns4EAi8rHhRpzx8YDgp9GPrpHbgWpekeYI74gGEBOIDQXDS6Nd2hwG2/dVqlcm6Vzb5GZX//X6fCaek7ILwcEOq+AQa4lJw9wP/68QMwoPdHWeGE3XmxE8NYE4IbOToSSdl0q3VneDHXq+XBQkcH2VZtoIguQbv22w2qus6u0Tqum4FMLrLhDVFdMDSPplMclsAzgbWpXs8ogdTetsI6+euC28jcKGAPQKx5FmcXN617yDvtK+4U8TH6sGf3RYN3o8wwZ7l9d28Agi4C06sU/eZu2KGOw3cAcP8Ipq4sObCDKIB7SxN0+S9jajB3xH9mDs+pzwr40UwwmXge591Ix8CsYDPLdcllNLDLJl77uNigTtffB2Lomi5d1gbX8uPWctDIBAIBAKBQCDwZcW9ERSkW1EBou1EzEPXvC8dgsDRjdi69/t9Dg2EhDl5gQRCrro97svlshVsOB6PW+0QkEmqmti//RhEiBOOB0kqyzL//uLiQtKtbZ52DgQRCLwH5KV0fToEbgTcB151ph1kPB5nkudCA/Pa/TvEC5LmCfu4EbwifHl5qc1mk4MBIXsuCmCnxy0Aeca+79Z4d4vQIuCVZNaMDAFEAdbCrez+fher+Dt5FggdkFbfG97u4a8jd8OzBnhe5ggBgN97KwP38hMvXOjxNeF4TxwE3UwGnhlbP2PoZma4G8SzIVhnJ92eX8HnjjVCMON+jJexuQjjgk53DhFSXMTxUxbYX+5q6ff72u/3+ehXXBuei8E8Mc/cj7lhjVk/Wi1YE75jfD0CgUAgEAgEAoHA3bhXgoKkXOUGbn8fj8cqiqJF3ghkq6pKZVnqeDzmtgW3p3eD8SDJfi2vinvlmzG4MMGReoPBQFVVtY7x83wCD+GjsupVaa5BIORwOMwhkGQHMP6uwAJp9hYOxI+UUs53cGLpVVu3kxNI6D3pCCiQRAg2RHG/3+vp06f5qEiOlmT+aMlAbICssg6el+DwOetmNiDS+PGRrAvVbN7j8+Jzx7N4YKXnQSBUEIbo4+c1iCbdtgrWlLE7MWceGUO3bQbnRlEU+ecexOgtG+5QYO2aplFRFPlEA8QI3xO8h9YIRCkXX3y/ICJ0/+5V/W47As/ioiBzdjgcWg4NyD3v6bZz4D5AxJGU3UOM3/dyv9/PwmKv18tHpPb7fW2325YYNB6P86keLiiwd10QCQQCgUAgEAgEAs/i3gkK0u1Z904uPAixLMtWfzgVZQhi93hAKpX0+EMWvUIMmYF8nZ6e6nA45BMVIHVerfVqOJkJ/IxQQ+CiAuIBRBQSTovA5eWlRqORZrNZJvm0XEDaIZsID9wbsoqY0A2m9LYQCBNWcK+q88zcG7KFcMJcLxYLrdfrXC2G3EF4IWZupb+6usoBfC4OMH4IsXRdWYf4uaDBGCCbkvLJAjzrXRkCbv3313mgn4sO/t5uVgPgfew9MkA8k8HH283MYH/6fu3mDnj4JyIDZN7bCwgKnUwmWQzx1gqugRDnbSTMh/8vnyvmAuLfFetYK/a4n/Dg+RCsE58lnnm32+XPibeSMBbad9wFUtf1M4GU5IF4TgXCCmKOXw9hiO8Q/7wwt4FAIBAIBAKBQOBu3DtBwQPdIJKQRP6Xaqun7ku3IYse6AZZc6s0lWcnVBDMfr+voijy6yFvhPP5kX7kIRRFkQMXGa+fzgCcsECkpVtbO1XmwWCg6XSqBw8eqK7rbMGu6zq/hntAIne7XT66D+LoFXrPNfBTJCB93jfv7Q3dIxR5BkIP3YHAvRgjRBzxgf+GUHvvvHR7hKD/tx+ROBqNWkcTjsfj/LtujgDPiIjkrRKQTbe1d0MdacHgOfw17jrweewKNd5C4a4ODwzkHr6WZFRI7QwG5s6dHf53WlVcBKD1BdGp6+yhYs8z+1qyH7zdB/LvrQGQcZ8bF1K8hQCBqCiKvC8824T14DPmIgRHxXpmB/Pi+RB8vt1t5HvLx+ROFs902O12LbdOIBAIBAKBQCAQeBb3TlCA5Hcr9JeXl1qv1zmDQLqtdELQNptNzlCAePmJEVjRISBe0XfS6tVL74GX1DqVgBMIyrJUURS5ou/WbyrTWLf9+EjPCnDyXhSFyrLM5HK/3+dgPA82pHdfUitMkUBID6ikgu1kGwLn1XvEBMipuw4QbKggc2Qn6Ao7EDfWCxLrWQpOGqm4uysFEYBrYHd3IYK5cxu+t6Vg8fdKPMTef+Z70AP8GIsHgHadCp6ZwbPzWsbUzaBgzr13fzAY5JBIDyd1AYF9iGDAODhmsisIuMDg7ggPIfQx8jx+fCVZHZvNJu9Z9iHP0m0x8XBDD0PEHeQk30/w4Hcu6DAWrg/x72Zt8Hdvl+F6HtTpLQ0IENJtoCaCAk6bQCAQCAQCgUAg8CzujaDAP+79iEIq0PRCQ64hH5Bbt/E7AcdWT8WXKrkH2yEKQCwnk0kmUF3CKN1WbCGBVH8nk0kmkhArqtYICBA4LOnSrQ28ruvsgqiqquWi8Gfq5hAQuLhcLrVer3N2AqTaLfjdIwl5Lqz34C7Lebd9gOcjq0K67ZP3irE7G9wa322h6Do6vKedPQDJ95YW9gMCCCSdijpr4K4Dsh1oS3EHRvfUDc9pAIwR0u8OBSr+zBU9/N6ewz7xcXV79xkfhNir527t755awDx5hgHiAc/nIZnPC2NkrTiJw/cPY3aHh7cC+Vx5mwH71U/uQJhhrHz+fa9ybcbgbSkICYyD8XtYJfdkbrgXe4818SM0yVbwwMdAIBAIBAKBQCDQxr0RFCS1AveGw2F2CUAYIT3n5+c53+Dk5ETT6TRbsbEr13Wde6whm1Rd3fZNbgGksSzLHOrGWBAj3DovKZO6oiha9m+OhYSMQvQg9oPBIGcuOLGp6zqLE5Bf/qzX65zn4GSJZ1kul9rtdqqqqmUx9xYBshf8mEXpljxybQioCypONJ1YQtD8OrgwEAog09LtaQPefgEh7JJRr+7j1thut63TFbwCzvq4mJJSykcbensB80IryGQyyYTVWzY8b4Hx4ArxtglEGQSjpmmyLd/Jrj8jDgzPWACM3bMwXJDx/A9eU1WVJGURg2dl7l0U8s9TN5gS0J6AO4HPgTsP+MzhinHRjnt2RRkEPp6J63I/b+/h/ny++dx2T3ZgXAg77nhgvPyeOWFMfNYQH92pcVdmRiAQCAQCgUAgELjGvRUU3Iot3abKc7IAP4P4Q5IgeRAmt3k7OcfOTF++E10cBd0gOA+A83t7WKOH/A2Hw9y+0DSNLi4u8vsgf95WAVn2ajQEarPZaLFYZAEE8YJWCNoA/FpOwpqmaVXlXUTohgBCZCFt3i7h7oVu+wjP7euHg8Kr393TDjy7AHu6rzutLO5U8LwJ6TZrwPMEPPfC54Lxu0CAY0S6bqvg9AMn7t5awM/YU8wdLhcq8sw510JYcrKLoOTOFkQBRAfAnHqVnzlnrzPHHhbpe8lFJg9N9JMnpFsBhZNX2FOIQLT4uJsDgYz7u3jizhFvNWF/sve5nx+3yWfbT7TwvcM1+Y5g/ZkzxsPnABGRbAk/OcNPEHEhJxAIBAKBQCAQCLRxrwQFyKBb6t2OLCmTWkgL/+DH+u5Vx36/rwcPHmi1Wun8/DyLCJASSBU99lRIIWdOKrxfnP+m5aEsy2eIWFEUqqoqt0R4qn6/31dVVXmsdV3r/Pw8k1g/tQEBZLFYaLvdtoLl3HbOHyq/kHyI4Ha7VV3Xee4AxNRFFw8HZB0QXIbDYSv3gOd1uz735/Wr1aq1vpBB72Oncu+hkb1eT7vdTovFIpNuKuWQSoQN9ocLSFyXZ/AwRK6PiFWWZRaQeC1jclLswoq3XkDcfQ48HNMdCN0KOhke/nNvw3AnB/D8D8gx8+LPhtDE6SA8lwtTzJOLApKyQ4g8Ac9VQLTDoYAQxXy5YND9X8boR1AyVzhEPIyS8fMZRwhxEYmTUjwEFEECwYOfc0ykn+zBtXk2/z4JBAKBQCAQCAQCd+PeCApONKVr0lHXdavC7eF6kjIpx1pOOwF93xz/6KQDUkklmSMoIWX+cyqmHvQm3VZycRrgNiANv9frqSxLTafTXK0mALAsS1VVldPoqVh7HgEnO9AG8fjxY61Wq1YQn5MkxsI8UJGnIo2Y4EdA8hyQLIg2GQCQWw9nxL7ePe1AUktg4NpU8iGJfl+v/EJU3RoPYacthbR92jZ8HIwft4i7TSDxHkboyf+IQrS54EzppvtTzfYjPy8uLlruDsaLmOEVcvaSiyE+V16tZ/xOZhE+mAO/Nu9DNCD0kPchyrjQQ1tO16Xgos/l5aVWq5XW67Xqus4iGp9PFxM8J+GusEvW2nMqXGBAzPDWHNYXF4QLCIyd+3oYJWICP2f/stf5fElqtRb5fmSM7gQJBAKBQCAQCAQCbdwbQUG67dlumkZ1Xevq6ioTYCqqTgqplkvK1cjRaKTpdJpPXoBUevgcpArSL90SKa8wA69yd0WL2WymV155RU3TaLFYtI7jo3ffn41MBYgKWRCQKEQUAikRAyDMEO1uuKK3GPD3zWajp0+far1eZ0EAUupVdLe8M0bmnvlmfGRbeKWY+XOyTmXdsxLIlzg5OcnEuzvv7qCg6o9NnvswdxBAyKO3rPCsENFu2wVz4G0r/I658WwNXofQRL898+NuC4QF5gPy7MdkIoj4nuJ1PINX6j1U0Ak8IgV7xNtPnChzOsNkMsluD67XzaFAFNtut63jSBHAuC6fPXcWeeuHt4p03RXuQOA1OHBcMKJ9xx0Q3s4B+Zdu2zxod/IjQhHaPO9CUsu54UIC14j8hEAgEAgEAoFA4Pm4N4ICRAJi5Qn9ThixI19eXubwO2+H4Lx6xAQnBV4Fp1WhqqpM6iGupOBD3tzi7jkJ0nU//Xw+19XVlabTaSa+hMn5uLink5nFYqGLi4v8jB6aR7sDoXez2UxFUeTchG6VGmHAK73L5VJ1Xednhjzz3xy72Q3N84oy1+UZukSQ9UD4oc0DcYJ8AIgyIg8VbieQZE+4YILDAZB74UGPVPAnk0l+zvF4rNVqlcUprt8VXnzPUb2m7QTy7fdmT7JHXHSQ1Do6lPuwHl17v+dmuAOEExzqus5zgEhAWwvjqOs6B3bSXoOg4eGTJycnOSvChTn2sj8T4hbkn5BNxATEA9bOBbhu24a3tbiw42vvAoO7YTxcku8IHDj+vcFcezYEv/N7dl02tAO5MMR1A4FAIBAIBAKBwJfGvREUpNuKMaFpEC4XFKgoStKjR49yMCEknwo6zga383erzhBPDy7Eyo01HTIC6QQQoFdeeUVvvPGGVqtVJtGSWkSq2x6Bpf78/Fyf/exndXFxkd0V9IJDhA6HQybB3lOPfdur+NwLUkXVGiLlrRoegOgEGzEDsknFllYAT9L3qjqVbtoCcFO4S+B4PGZBgfXyI/wYlztRcJ4wntFolKvjHk6J86OqqtZz+BzgakFowqmCnX+z2Wi/3+vk5PrkEOaE8XgbAqQdkcKFl7uCGKmSQ4ip9CNA0eLi89kltTyTr/N2u81iGO0znj3g88Q1EOVwHbDO/sezNfy5eQaOTnVxyUn7Xa0QPi5vFfGf+et8fbu/4+98T3gLhe91d8C4cOYncSAiuiBx1wkogUAgEAgEAoFAoI13FBRSSn9Y0i+T9FbTND/z5mcPJf1xSZ+U9GOSfnXTNGc3v/s2Sb9R0qWk39I0zV98LwPyvn8qidjvCdyD6E2n01aOAC0IVVXl15IdAOnwnnEIHNVurP3n5+daLpeZvFF57hK8wWCg+Xyuqqp0eXmp6XSarfweMgjBQcRIKWm1Wuns7Eyr1SoTap7XQ+8Gg4FOT0/z32mHgAR5qBxjom+eeYOoQx6ltuDh/+2kkvmi8k8WBIB0cR2IGoIOIgSEjrXiKM7BYKD1et0SNhADILxcHyLZdXF424afLtENGPT1QECBcG6329apCgghTvx5PcKNE2BaLDycsXtMKfPpVXh/Rkl5D3imglfZpVtCz95lH/As3b+7MMFnidMZWDNaIvic+L7wtUMA8c/DXa1Cfn9vi2BvItD46RDdthG/notGjN9dBt6q4O07OCr8tQgkl5eXWUDyveJOiK5g8lHjy/1dHAgEAoE24ns4EAgEnsW7iTD/Tknf2PnZ75T0V5um+RpJf/Xmv5VS+ickfbOkr715z+9PKb2rVDOIifdmU9V1guvkvGtfn8/nev3111UURSbZkEXILO/Djg+58hMl6rrOlW1II/f0EMSyLDWfzzWZTFQUhV555RU9fPgwV9/9CMqyLDWZTDQYDLTf77OY0Ov1snMB9wLg2ElOi3CSCOGV1Kp8Ix5IyqGU0+k0uwacdENKeU4Pu4PwQgQ93LBL3rz1AhI4GAxyvz5CA+GHtH7wv2VZ5nYOHAqMwZ0Uz8tr8GwMz1fwXn/PWOC+uB0Wi4VWq1XOieA5Pfkfsk9YKAIOxNOdDF5V77YDIF45Ud9ut1oul1osFqrrWrvdrkXwmQs+C4g//Mznywkxc+AuBdojtttt67OFuOF/fJx+NGn33k68PcvDRRN3GPBeBIeu2MJ8ddsU/Dm7gaHuVuAa3pp08/3UcsaQndC9h1/vnuE79WX4Lg4EAoHAc/Gdiu/hQCAQaOEdHQpN0/y1lNInOz/+JknfcPP3PyLpeyT9jpuff1fTNDtJ/yCl9MOSvl7S33g3g3FrObZ0J3bdyiknAEASp9OpptOp+v1+61z6uq5zVROHgPeEu10fi75nFHgvOASL8EeC3yDF5+fnmYRDop0MYZWH0NHXzjGNzAEWfu7Pc7iV3KuwXbGDQEiqyggAXItn4jkhzE7mutd1UuhhhxBWDx0ktBLnSDeRfzAYZPLtlWjaD3iNt3tIykcVIhA5ifTwRe+N9/VF4On3+9rv95m4u3sEwurVbsa32Wzy/AAXZZhbdwW4a8KdFVTKWSNvR+BZ78oFcNHE/0i3jgNvK+AZGD/XR1Bh7ly065J6b53BMYFQwxp4qwJiAaIQzyGpNVc+j3cJAAhMjMMdJ93/5t4uLrhDw8WibtsFc+vtDvdNVPhyfhcHAoFA4FnE93AgEAg8i/ebofB60zSfl6SmaT6fUnrt5uefkPS99rrP3Pzs3Q3mpgpORVpSrti6oACpXK/XevjwYQ4snM/nKoqilZxPHz1WcCepkFqIC2GOVIYBZMgt0ZPJRPP5PBPRoii0WCwycSeUEULiTgjC/y4vL/NxhV1reVEUOWCP66WUcvL+1dVVdllAkCD+jE9SFlYgTBBIsh5cBHCxwS3oTkolPVN1dlcBLRLMpf+c7AtABoNX3HleSDh/vFXAW0oguz7H3ItxdvMVpFsRgLwM9ou3NLizAOHGe+u7Pfxu2QeIKIzdT0twez/3Y14Zh59u4nPmjgX6/71Vwl0kuER43sPh8EzAoosF7EXPxui2Hfiec8KOiODV/y7Bd0cC+9JbJfxe3bl0UaArJvjf+ZyyR32MiEUuuLjY5bhvbQ934EP5Lg4EAoHAu0Z8DwcCgZcaLzqU8a5o9Dv/NZ5S+pSkT/HfvV5Pk8mk1dIg3VZpqYpCELbbrVarlR48eJB72MuyVEqpdfQiFWhJ2QUgKVe9ySaQpKIoVJZlq5oO8boZcyZYOBImk4kmk0nLRcEJE14Bres6V4ed1Elt8ur3bm76+3EQ0MNPcCPHMfIzQF6C99tLt0cuOnn2kEbWwVscIJPkMThphFAyN922AsbAetKv3nUqdKvVkGCvkkMOuycI0OrhJy8gOLl4Mp1OVVVVFi1wM3ibgF+fajW/Z559/1F974YYMtd+Dci/t264zd4dGC4gOMn2+UBYQlxy0Yg9xD7w01Cc1Hs2BGPyAEV3IHgV36v73k6B4EXOgZN1F5a6zglEia7bwt0n7jTwz2IX3dYHF+ruEiD8Pd3r8V3EWnzM8L6+i8cqPswxBQKBwMuE+B4OBAIvBd6voPDFlNKbN0rsm5Leuvn5ZyR9tb3uqyR97q4LNE3zaUmflqSUUusL1quetA7QIgBx8b+7fXy9Xmu9Xms0Gmmz2Wi1WuXkfggo5ARSDnl1yzvE2oPzyCAoikIPHz7Uo0ePsksA18FgMFBVVa3qPX3rCApe3XXy1RUAVquVLi4usguC5+S6uCAQXfh5N5COlgMIIgTSK84365CvCTmHuDvpk9R6H3OKkMBaeNglr2OsOEVoMfHjDXEfMDeXl5fZUcGY70r095MPIM+IP1VV5eMoEX/8nrQacC0XEFw4kJRf61V0/7u3l/DMnnOBYMNe8Pl1AuzXss9NdhZsNpu8Nz1Us9viQXsH8+WCBmvZbafwwE3G1M2ocDcBr+2KAoyZ/efCgItXTuh9b3UdBv4MX0pU6OZ8OO56nz+LOzY+Bnih38Wz9PBe2zECgUDgHiK+hwOBwEuNdxPKeBf+rKRfd/P3Xyfpz9jPvzmlNEop/URJXyPp//tuLwoJgAxhdx8Oh5KeJTGQMMjU4XDQer3OJKuua61Wq3xNv4Z0W7HHni/dVp6xyEvKZGw4HOagQ8IOB4OBNpuNnjx5ov1+r/F4nMkr7QxkJkBknZhi00eQ8AyA5XLZavnoBu95iwKBh9jpuYdX+qXbPACugR0eEs/RkFL79AZ/P84In1Nej6OhrutW2CHCQJcocy3pNrDQ58aPQWQs5D14v7ufELHb7bIA5ZZ/D/RDKHKB4urqKrdKsCYe7ElQJ8/CON01wb5iXRCoEHMg+ewrcioI7PT2CJ9Xdzt4SwHClAsKklrBk3dV5Plf9oI7clyg8bH4PLGW3fnoOhC62Qb83dsc/Gd+/7tcA36Nu+D3Y5wujrgj40uNsZu7cI/xoXwXBwKBQOBdI76HA4HAS413c2zkH9N12MwrKaXPSPq3JX27pD+RUvqNkv6RpF8lSU3T/EBK6U9I+q8lHSX9603TXN554Q6o+jpxkfQMuQGQe+k2UM6D4jw/AbIGAUOgkJQr5U3TtJLuyQFwcjgcDlVVlR49eqRHjx5lEWKz2eji4qJV0af6DqGGKHu1150KTdNk0uoiBGSIsXkeBBVqnteJI9kJXAvi6nb6fr/fCoPkZ062vHIO6XMBgvkmtG+/3+dn9tMmupZ8z5eQlAkyc+QOAog2a9fr9XLriBNqXBWc6uGZArS9OCHluSGxkH/Po5Bucxs8W8LJuLd+8DtvG6EdhT3LfcjRGI1GObuj+xlwRwLj9jVEkPHqOq4eWlSYC/aCgzlEYOpeC9HA2x0QILqE3wUj0K34O1HnevyvO2b8un4N4C6GLwUXZVhrF166woHv87sEjY8SX67v4kAgEAjcjfgeDgQCgWfxbk55+Jbn/OoXPef1/56kf+/9DMb7riHmOA/8dxDhXq/Xyg64vLw+Y/709FTj8VhnZ2ctm79b2CEMs9ks5wl4JZn+f6r4OCb8yMN+v6/dbqeLiwstFotMOjkmMqWkxWKRx0XPO4SSML2yLDMZh1BKyiSdVg6IpFeGD4dDFky4Rl3XmXzTOnCzNpnMd63tu93umRYPnp11QESAlGLfZ6w4A1jLbkigkzienXXpOjc8twKhwAMa3UaPOEFQp+dT8HN3Pvhc4HRBZHLxgFMQ/LhE9qaLN1xDUhZ7fM+xb3GssG/3+72Gw2F2lbiIwv73+XGHAHPjGRdXV1fZYeLr68S761boHpvIdfzePLMLPc9rNej+vdte4eIC1+uKE11B4S43AXPRfb5uq4Lft3vP542/u7b3BV/O7+JAIBAIPIv4Hg4EAoFn8aJDGT8QvPfZCaGHMUrKpOx4POrs7CxXwyG84/E4OxJ4LxVtJ6qj0Si3CdB64GRnu91qPB7nUETujZiwXq/11ltv6fLyUnVd5zFAoslAgPgul8t8LcZEhsBut9NqtcrVbe8Tpyrsp11g6eee0jV5xOVARdrJH5V0WgYQBnAybLfbLJJ4YN9dZM7nELLrlXNJ+VhM1uF4POZnc1LnIYq+zhBLhB3PA+jmDHB9jp30ajchne6+8FYInsVFE4g5OQdU8AFz6K4LhBAPmpTUauuQ1BKWEIP8ZAoXYlzQ8BYTxulCjJ/y0f3cuCOjm8lw1+fPxQX2Ac/nbSJ+Gsp7qei7oNM9seEuYg/883XXa+56z13XuOv5mbvuCS/3SVQIBAKBQCAQCATuE+6VoIAbwavBBOx5FXU8Hms4HGq5XObKPASaFgbCCi8vL7P9H3t30zQ546AoilZVVro9BhFngp+GgDPi8vIyCwCQEAQKTn04OztTXdeZbEOcII7SNYk5HA7abDba7XaaTCaZrN51woBbxWkHSOn6ZAvyFrbbba5S+3ukW9s9oYUeZMj1pNtTMLzdxMMKPXvBf+dHYDIvq9Wq1WbBuiI2eLuLnyCBUOAOgLts9e5Q8Pu4Q4D7Ml7+29smeI6uSODVbX+/n7yBmOItIHc5FZycshaIU378I/fx9fMsC37HXODecGHH93XX1QAxd+HO5/au578rG6HbGtAl9M9zGvjP/fPefT0/o43IX9MNf+ziefd7nkDgz9F1OgQCgUAgEAgEAoFncW8EBWzfgJMTNptNq2II+fPKc1EUmk6nrTBHWgq8JWK73ebe9sFgkC3onkvgxAXbOxV/PxECAk5FuqqqfJpASknn5+dar9eZeG+3W00mEzVNk8mjtwt4XoKHTTrhY0yIKLweB4CfbkC+gXSbi8Az43DYbrctNwaVZ+4LQYWwI6pA1r01Aeu+k967yCVCClV/SLg7FLo5GnfZ2z1jwAMX2R/kLvgpCLyXNfFsAoQLHCL8juwJXs/YhsOhyrJshWVyLdoC2NeILAhjvG4ymeRMBQis9/h3798l9eSGeEgm773LacA8+Pq4cOHiS7ftoPv+rqDgn1tvy+iSdxegPK/gLvg92IeMq+tmeR7eyWHQvf+XckcEAoFAIBAIBAKBNu6NoDAejzOZG41G2u/3uri40GazeaZqCbG4vLxUWZaaz+cajUataqwfDei5BIgIHppHACKtElSDIaVkIsznc02n01zRh+SS3F8UhSaTSXYJ9Hq9HLZ3cnKioihyWwItBRAk7+UnTM8r1R686C6Jpmny6QMICPyOUyfcPQDJRlDAuUFFHSAeULFnXa6urlpOAISYoigyOXZhxPMAIHe4Arh2t6fdRQmvXnu2g9Q+QtLDEb3lhSMf3WUAQWec3R7+bq897S44L2iJ4N4EQjp5Z339BAZEIAQf1tmFINYAkYixMhfdirsfcwlJ9+BIf6+3+7BOd7kPfE58vv3n3dYD/333Wuyn7nq7oMFrQFfs6GYf3HUPx12Ohy/1unfz2kAgEAgEAoFAINDGvREUqNaPRqPcg84Rjp787hXHsix1enqqqqoyWaNtAtcBpPLk5ESz2UzT6VTD4TAf+YjggKNBUiaCk8lEs9kst0fwd8SJwWCg6XSqqqo0nU4zscUVQXgjVnb+7mPdbretUye8wouIAJzcehWc33lVn2sxX1xPktbrdXZY0FaAGAPp7DpGEAfcScC8VVWloihy5gAiA2O/q0XBx831WTtIHpV9J/gusrBW3v7RzQhAGOpW1r0tw8mtE2xfD/7u/+snI/AeF3a4v+c0uFiCqIE4xmvcfdLNO+i2hNxV4cdtgYjk7T/Mfzf7oOtoeJ7rwB0kvgY+jq7o4G4bfudZGy6a+dx3f88Y3f3wvBaLcBgEAoFAIBAIBAIfPu6NoCAptyzQUoCzwPu0U0o5KG88Hms+n2s8Huc+fQ/y4+QB6dqZUFWV5vN5q9ffbeycpiAp5zTgaCiKIh8TCRkbj8eazWYqy1L9fj/nIBwOh0ywsa27ldxPavAKPq4A6dYhwPN4oCIOCEIUu04GSDQhhryOa3dJL8TYj0pkvrmvk3pCFAkQxFXBM3EiA6SR++MKIVjR192r0cyJn+qAq8HJJeOmEu+2fF6LQMXrPM/C2xdwbriTgblw8j4cDnOIYld8QBigCt8VAyDM/DdhouwD9oATf9bLMxrcpeCtH8yJn17B9RAUuu4OdzSwf7ptAu5G6Lo6+L3Dx8f+7B7L2XUGMI8eAur3cPhrvhQiDyEQCAQCgUAgEPhwcW8EBWz14/E45yPQc94lDxAjetAhg1TsIWtU07HBY8uXlIkcpGc4HGaiTA89roLRaJQr9pAhxlpVlcbjseq61nK5zCLE6empmqbR06dPW84Hr/IyVizwXqGlwo+DwHMROBqSlgUs/rRn0LcPgfMjHCH8kCzv/XfbPGIOp1A42abSTBAlZJ7MC9pHWDscEH6ihleoubd0S55p7eC6jKc7Pkg8Y4f8dt0E7nRgPMypBz52gwmlW3u9hxgiavmxjcAdBp5N4KSWOfDWFXdpeLiiixdcn/F4SwXP5GNh/3RP+7grX4Hr3dUC0m1PQIjg793P8l2tGS5S+fz6M3Xf14ULPr6uXUT7QiAQCAQCgUAg8OHjXggKkGfI6fF4fCaMEUDu+v1+JvmQbNwICAqQDe8zl24r4hA1yO9yucyEB7LXtcJDjKi6lmWpk5MTLRYL1XUtSZrP5yrLMh/t6E4LyDz3gTxyPbfvS8rPRrsB+QfeykHv/Xg81nQ6VVmWGg6Hquta5+fn2u/3KstSkp4JqkRwYHxdOzxtDYgHOA0YMy0Y2+1Wq9VK6/W6RfYg3gRCsoasu2dIdPvePY+AMXtLgFfX+ZlnPbgLwcUBquSEbDIPnjPguQeMtRsMyPrwpwue308JYU79KEgXQWhpcEcIwkc3b8DbOdxt43kO3hpzlxPECT5ri8jEfmB+uiJDV+zrtqL4WF04+VJugXcjBLgg4i0nPMtdAgfjeJ7roTuGcDQEAoFAIBAIBALvjHshKHh4HUfoQbjuCleDICI+LJfL3PLg1XJJ+dQHr4BCQnh9VVW5ek81n4p8116OCACp5n8hObQlSNdHEuK08JMY3Kq/3+/zqQPSraXcrwkBZbx+IgTvQRh58OBBzod48uRJnl/Pd4AY+3VpC/DWB/IQ+PloNGqtF2Qdx8R6vdbxeFRRFC1ng5++wfGWzKcHBboIwPzz35DF3W7XEnjcDdB1J/B+yLHfh1aH4XCY192zB9zR0RULvFrPmF14YH+xD3FbsKaIDJJa7QAuBuC64TPgghh7GJcMTpNuaxD7CzHGTwdhPr29w1teeBZvp/DP4PNIexfuoPC5e7cOgruEC/8Mcz3Wyp/fvzt8z3bdMXfdMxAIBAKBQCAQCLwz7o2gwP/udjutVqt8jGFXUCALgMp8Xdf51ATIGqGM3aP26MOHGEPCIJabzSYTaKq6Xu318TkBh3iREQDB22w2Wq/X2u12WSRZr9fZTeCkEnEE4tg0TX42XA673U6j0Sj38nsFn6DJN998U9PpVLvdTmdnZ62QQ9okEEH89As/ItJDMRE8INhu1YeguaBDZoFnAbBeCA/dtH4/mQNHA8QQIo4YwVxBvnFneN4B89ptL/G55lQO9gGOFsQdr/B7e4ivdbfaL6m1B3i/P99d2Rm4Athz7A3mz9077nbxLBBvg/ATFRAlcDL48/h7eBYXcLotH3xG/e/8b5f4d8Wd7lr4tf2/u591F9b82t7i0m0F8fvz3wgb/uyBQCAQCAQCgUDgg+FeCAqSMmldrVa6uLhonWAAcBMURaF+v6/lcpmJ63g8zsfv4W4gFwESgThAHz/HTpZlmUmKW7y94nlycpLFBMIIJ5NJJicQGEQHnBMcB0i+QEpJDx48yNfCpu/3Sen69Ie6rrVarVqCgnQdMEm13kMMHz58qDfffFOj0Si7EyCdzAmtC070aF1wcgbpJRPC8wxwSgwGA+12u5ybMBgMWic7QJiZGyeqEGZe46cX8FzD4bB1VKU7KLD4dx0OnqPhIZ3SrXtgOBzmVhUcE4fDQaPRKK+pZxfwPD6fo9EoiwB+feZFUg5ddFHL20q8pYDr8zkgn4HWHkQanq87twgT/jPEAW9N8c8SzgPmlHXn3owbeOuAw1uIWHfPBOE+Lgx0T3RwAaPrELhLwOieMnHXNZgDhA1vr3knhOAQCAQCgUAgEAi8M+6NoFBVlY7HYxYFusfaSddkazabaTwe5xMZer1ePrkB2/rhcGjZtyGmo9EoV6CXy2U+jcBDGAeDQSaYntfgjgOuTfUcAiwptxTgknBCxlGUVVWp3+/niruTX8isuxMgZJA/TnoAhDE+ePBAb775pq6urnRxcZHFAHdnQPqpxkOMverLNWlTIPQRB8HxeMynYLBWLhpAHiGt0m3lG8JH2wZriRiAw8SrzxBWyDwOCheA/B4Q8q7Q41XtprkOZ8TdQsZDtwWi+x72iFflu/cA7A9JrSwJJ9LeUuChpOwv9gxHnHZdATyvO2MYF2uA2IC7hHHyfLy3214C8ZduRQMn7y7meGAp7/e2DV8THB6Q+27opH/m+XtXVPB7MHZvT/KWDp9v3xfPEy4CgUAgEAgEAoHAu8O9EBQGg4Gqqmod/ejgH/5FUWg6nerk5ESHw0GLxSK3LxCw5xVb/j4ej1snMkBuIG3SbfggRIN7Qgr3+30m+IPBQGVZqiiKXKGH+EOwOU2BSjtOCMg5ggmhi5AcCBjEmmoxx1dCxCS1iNFsNtN0OtVkMtHhcNBkMtF8PtfhcNDjx48z+UPQQLTgmEzGgmWfFgwI5+Fw0Hq9zidWOHGGZFOZR4TB3p9Syi0ouDVcEPHwQifo2PyZKwQQxtPNsPCcAe6NIMLz8Lrj8aj1eq3NZqOmaXJ1X1KLBPv1GYMfkSmpdV8XPngO2in8+rSHOJH3kFHGhDuBZ+LniFpO+CXl+yIg4XCAVHc/J3wOIOD+efMMBQCB97XqfmacxLso0W1l6J5IARDwvNWoKzYw94zheU4Kxu9tNi5KPA93tXEEAoFAIBAIBAKBNu6FoOB95F13goMAOg+r86o0RAtcXV2pLEu98cYbuVILsUwpqaqq3BZBUCAkgtd6BZRK9mw2U1VVmSiTTbBer3U4HFRVlSTl9gKcEZvNpiV2UCV3ezu5BYgUbmWXlAkq1vfRaKTxeKzZbJbdGxDR09PTLLwgnkwmE5VlmcUPz43gDy0liAeQZwi5nzjAswyHwzz/EFgcDZJyzgNkHrFCuq020/JBZZ5TJRA6WBPpVsTA4cFaQR4RKHAeeNuHB056uwBzCxln7d0twTN6HgICjLc0dEUA2gA4oQORCGIN0efaLkxIyoGePCv7GbKOwIIA420Ynmfh+481cCeIu0h4La0KHq7YDb98XruCt3r4tXEmdN/vDplu9oUHLwIIv++lrmvkg+QmhJgQCAQCgUAgEAg8H713ekFK6Q+nlN5KKX2//ew/SCn9YErpv0wp/emU0vzm559MKdUppb978+cPvJtBIBJ4GGO3MghJ9bC6y8vLZ46XhGxBSHAFdI/nwzFwdXWVjzukrQCC4i0NHjpYFIVGo5EuLi702c9+Vm+99VZu11itVpmkUx2m8ox4IN2SaLf7r9drLZfLLCaklFSWpU5PT3V6eppPTqAlYzAYaDqdZmcC1ex+v6+iKPTgwYNWpZxjJWm58EBGr3BjvaeS3dowRrJdRMAJ4G4AXBY4LjabTT71wvvdvWWCeyMUcA3mUlJLQIJ0ezsE+0RSJun8IaPAnTCQTYIz3QXgrQncE/GBfeLj4HessY/fhROu404HXsN7PZTQW0t8rhALfA55PwID9+W0DdbIXQS+tvy923biY8ORw7y64OICmL+H/cUaOMnvum5cvOA9Pj7HXRkLLpT4+H3N77oWeL8CxIeJL8d3cSAQCASej/geDgQCgWfxjoKCpO+U9I2dn/1lST+zaZr/lqS/L+nb7Hc/0jTN1938+U3vdiCr1Uqr1eq57Q4QOAiapNxzD5z8IRpMp9NMKiFotCwMBgNtt1udnZ1lhwJV1KIoVJalLi8vtVgstN1u1ev1VBSF5vO5Tk5O9OTJE7311luq6zofweg5Ax7cWNd1Jn20OQCOc9xsNllM6PV62U2AWEDeAaIFBBGRgMBKwgXdmg+5xMEgKY8BEsgcYet30sfzeEAgrgpv54Dger++J/z7yQUu9DA2xBGq0bg/WF8/5cDJLNfxsfHMnuUg3QYPegUe1wQ/7xLjrmMAIu5zBflnj7rFH/FAUkt44DW0sngGCEKbH6HaDTV0BwHCggdIusDgToxuLoELM96yweeJZ2auvN3BHSe4Y5g3z7lgb3HtrojgrofuuNzZwO/8PS6AeO6Ff4e4SOH34D3exnNPWx2+U1+G7+JAIBAIPBffqfgeDgQCgRbeseWhaZq/llL6ZOdnf8n+83sl/csfZBBN02RSftc/4p048Rr66CeTSbbFQ5wltaqxTiiorO/3++yIwDlARRoyTvDjxcWFLi8vdXp6qqqqdHJyosVioc997nO6vLzU66+/nkPvIFxOSCGqkEaq9BBL2iU2m012QJD5UBSFiqLIVWpJuYrO841GI1VVlUk9rRaQeuZlOByqKIr8bBBPxgUhh+h3beZO4CDquCQg2pBf6db5wPqRn+CtDQgDXN/Jo+cqSLeE1kkva8k+8rYMzzbwijqCjQsufrrBcDjUeDzOY+hW3v14R2+xcaGIOXJxg+vwnH5Chx+F6adYuKMhpevTP1xMYdwuKnSdF/zMBRLGyOdiNBq1nA683wm4j4l9460Mni/hr0ekcdcLYlNXGPGx8Xv2kLc6eWuEt3rwPC6+uDDWdYB0W2UQa/hzV6bLR4Uvx3dxIBAIBJ6P+B4OBAKBZ/EiMhR+g6Q/bv/9E1NKf0fSQtL/ommav/5OF7i6usonIjiBgQRAKqiCQj4uLy9zAj5kCHJB73w3V0G6JkIcdQjRhDA66Vuv1zo/P9discjCBJXmx48f6+LiohUS6UfUQWI47pFx0T5xOBwyGYb4M7bT09NMViG3hPbRSjCZTLKgMJlMcq4DJy/QYgHBdXKGOAHB9nYHSB9E150IbkH3nn+OdIRos45+SgQtBZA2dxBIyqJHt4IMCfRjFnkfR0pC/DxYk+dib3mrCevU7e/HmYCg4+01kGCIJ5V4RATErt1u18p2gIy6yMG+hiB7+8Fd5Jo56hJixBB3DkCOuxkErKW7FxDBuB738jH6qQ/+eQTcn33IaSCeW8AzeruJtza4cOWtG+4O8WwEb2niWfy5u20ggDXxliYXb7iXiwzdtbjn+MDfxYFAIBD4QIjv4UAg8NLhAwkKKaX/uaSjpD9686PPS/rxTdM8SSn9tyX9P1NKX9s0zeKO935K0qckZZIOkfC+bgBB8EA5Mg2k6+MaCf7Dls8fXgPZJO9gu91mQjOZTPIRi5Cz7Xari4sLbTabXEFumkabzUbL5VJN06gsS41GI+12u5blW7o9GpG2ANoalstlqwIKURoOh7l1AVKHq4BK+Xa71cnJSb4vJBhRYTgcZrLq7gTCG6+urnJrBm0VEFYq1U72mHuIlnSbU1EUhXq9nrbbbauSC4HEDQHxZyxOMH0Ouv38BEO6mNDtxeeeTv6x9UMmEY0gmi4keLsEVXTGTZuLty8gGFBp557MNQIKYhLtCzxTl6gjjDAvzLm7DCC3/hlAjHAxyqv6PJu3RyD6IAghLLlLglNP3A3kn0VvoWA8rDXCkc+ph6b6OHw9vV3EnQu8HtLvrSDuPui2RbijoZubwO8ISmV9fY+4M8MdKfcZL+q7eKziyzXkQCAQ+IpCfA8HAoGXFe9bUEgp/TpJv0zSL2puGEfTNDtJu5u//+2U0o9I+qmSvq/7/qZpPi3p05JUFEXjRPKuKrUH20HeJpOJTk9PlVLKVXkIISSkW22EpEJUIeS0FxyPx+xeODs70/n5ueq6VlEUOQQSIkZeQdM0rftTtd/v9xqPxyrLUv1+P4f+IXzgsoBETSaTnCHg7R8QKK55cnKSX4eAwTGWjGW322UHBm0MtEMgdHiII/eB2LmtHILuVWDaLHgNxy+yhggY3ZBCWg1wdrCWuE8gqFS6IbuEchJW6S4A9oek3KrgAZjArfiQRggl12ROyS5AzHBiyjO5q4LXkXdxOBxyiwoCBIQZMYC9x5gZo6878+ltDX4NFyZ8r/M+xBvp1k3ggZCEkCKE8B5aU7ouB3csSLe5CD4nvFZSqw3B8zJYNx+7Cxu04birxkU9PjOsWa/Xax1pyh720y3448ePIsq4EOP3/DjgRX4Xz9LDexccEQgEAvcd8T0cCAReZrwvQSGl9I2SfoekX9g0zcZ+/qqkp03TXKaUfpKkr5H0o+/x2pnAAYiM/8Nfkl5//XXNZrPsOnC7unRLIOnrh/hAxrxnHiLJ/Verlb7whS/o4uIiE3rPMYDU07ZQ13UmVfv9Xuv1WpKya2CxWOTTGajYQqQhQoQpSrfkD6cErRI8x3w+13w+zy6D6XSqXq+XRQvCDLtHJ7pToKqqbO13y7evBQGOPDNOALIeqO7yXJKyyOGnGFDN9qMrETcg/x4M6ScfQMhxALiYwFGjPGdVVXm+2Dtcz4WSblWc1hLyJRBvmAO37iMiOWltmibPie8tsjxceGL+2a9lWbZaNjwTAFKNCCI92/rgpJ5xeaUdou/zxz49Ho9Z9OI40e12m4WzbrsB+8LFC9wBnt/A2iC0dHMpXMTB2cAe6wZCuhOC6+KmKMsyr5kLPO4CYezsL5wJkvIcu6DA3uDPZpO/4u4dPszv4kAgEAi8M+J7OBAIvOx4R0EhpfTHJH2DpFdSSp+R9G/rOsF2JOkv3/zD/3ub6/TaXyDp300pHSVdSvpNTdM8fRf3kPTs8W/8nX/8U7GG1HEsItVpquJOfCFG3SP9vLqL/Zn7Ho9HnZ2d6fHjx1qv1yqKIo8PYuN93BB37gvBns1mmk6nudqN6wAyzGkIXpWHhBO+dzwetV6vs1BQVZWm06lee+01zWYzHQ6HXG3luEoI4Xq9brkmEEYgeF2BxfvPmYfmJl+C19IqgjWesfn7uT5rxvWbplFRFKqqSqPRSKvVqnUiBnMKOYSs0uvOGtBSwOuoVrtA4gSVfcQ9uI+kVuYBY+5a4L1CjuhEqwH7iPlkT0CeqfwzLt8DuGk8EFFSS8SRlEUrD7j0Z+AeLsSwx31Oqc4jMOCqmU6nms/nGo/Hee/wWet+TiHmjJl9L7VbY/ykC0QkHDKICTgFaIkhg4J1Zr8y9q5LhdYURCFvs2BtWD8PEfUwSRdnumKTtz7cB3w5vosDgUAg8HzE93AgEAg8i3dzysO33PHjP/Sc1/4pSX/qvQ6iKyg4vH/crdy93vWxkCcnJ63ke+m2nx3LupPnLlmlkg4uLy+zO6Gu63xdCJvfH/Kz2+1aJzxAGDmh4a233srkWbq1ZHs+gAseXJf+bU7AoFXgtdde0yuvvJLzC8hmePLkiSRlx8R2u81VZ56N60KivRed+UGg8XT+6XSa55bX4oRgTiDlVN8hrRz76CSaa0Fau6IRIgHiAUQZ8YQ2B4g9bR+INayRt1HwhzEyLq6ZbnIP2G8QcOaFvUr12yvnuAog0Pw3/8sz8sxU7HGNIKzgJoFQI0acn5/nPYKLg2eFmPu6MC4PHpRuT/QgBLUoCs1mszwWxAfPQmAvcK/ZbJbbehAU+L0HJHorBaIdn1VECfIj9vt9i+hzjW5oqjtUaFHiyFf2CZ9F1g6hADcE4/UASMSDrrDXbZv5KPHl+C4OBAKBwPMR38OBQCDwLF7EKQ8fGJAPP+pQagfSUVnnDz380m3oHsQM4uY5CU5M3SYOuYAoH49HrVYrnZ+f6+rqKldvi6LIBNz7/iEddV2rrutMFCE/2+1W5+fnuSedCuput8tk3PMGIESQQwh5v9/X6empZrOZ3njjDRVFkV0ITdPo7bffzuGPuB7KssztG7R9uP3e++9pw6AFwfvJSfCv6zqvjbc4dKvEfnwgRNlPhiC3oJvSz5x2e+sRGSCfklpz706Gbo6Dn/JBVZw1Z0/58Z6ICdKz9nuu6//N2rkQ49V0/pt2GUQDH5fPESIUe5yWHkJAgY+NPTeZTPK84LwgINRFM9YYlw9ZGHxmmO9u2GGv11NRFDm3hLWjHclzNlyk8uM1EWlYBz/Gkjnxdh/WFocD+w3xA7GtK/TwOp7fwxsRYlzI9PYSH4c7PgKBQCAQCAQCgUAb90ZQ8D58r5q7mAD6/b4ePXrUOo5ws9nkijTHK/rJD15N9r546dphgFtht9tpvV6r3+9rOp1qPB7nHATv++ZaEC8s3l4Zv7q60mazyUdEuhix2Wy02+1yZRkL+fn5uaTbcEHaKQhdRFigak2Vfb1ea7fbqSxLSdfk7NGjRzl7YbfbtY6+RARxNwViBhkJVNfJdUDcgMwNBgM9ePAgCxvclzwHXkuegKRM/iD0zCFiD33wEE+qyOPxOAtItLMgPkG+ER+80sxeYAxcm33mLTDsEeaE1zuYE47K9H3DXuB4RD+BApJO6wOv8d5/TuooyzJ/BqbTaV5jb5XAMZNugiBns5kGg4FWq1UeK+4APgtu7+dUk6qq8hoxn+xHF3S4Fp87nr9pmpYAgaAAKYe4c2/mz48hdZfF4XDQarVqrQPj8Pcwp3xnsKfc0VAURf6c+5i6QgJCEA4h/5x+XIIZA/cbP/rt/4x0f7pnAh8zfM3/5akuf+CHPuphBAKBQCBwJ+6FoAC5dULHzwE/g+w8ePBAKSWdn5/r7bffbrkbSH1HjJCuK+rdNH3p9gQFiNR6vdZyucw92lRwr66uMgHvVrYhw9vtVpPJRLvdTsPhMAf77ff7TGyla/K/WCxydXsymeScBWzo/X5fu90ut2wQGIjDgOq/pFb6PeIAx0oyXvIUCJKUlMfGdQ+Hg8qyfMauTysAxLaqKj169Cg7Gqiwk2+AU4BjMLG000KC0EB1HVLHmrjzgDWvqiq3AtA+Qs+9twIsl8s8h5x60W15gDRKymvo5BR4cCbVdirtCAfsqW5GAevhWQvMDYQWUYX2ncFgoNPT03xMKKIDYpFX6yeTSd57s9ksPysEH5HFj5iUbh0WrA2nlyC+IQzwXu5xdXWV1wBxrbkJmWR+/RhI3uOfPwQY5pB15rOES8KFB29z8KwGxC8EJUQLnpF19hYKHCueaYKY4CGTzDVzEQi8K/T6Wv3L/7S++HOe/VWTmhAUAu8bP/QbH+in/x9/go7/4B9+1EMJBAKBQOAZ3BtBwf+A52UqEOp3fn6us7MzHY/HHNAG4YboSGqRKcgTZ9p7Pz792HVdq9fr6eHDh5rP59m1AIkpiiITK6q1EGCuMRqNcpAiRBOruR8n6CdS4GRwkj0cDnV6eppFEggwzgWILeLEeDxWXdf52ZbLZX4tlX4IPySLEyNwZkCiqC4fDocc1DcajTSdTjWbzfLaSdcEG1s61WJIplfoIdMQb4gbc4RdH6LH0aCz2Uyj0SjnNjBfl5eXqqoquxe4HuGPm82mJQYwHvaRixeMzSve7B2cCAQXejWb+YWE+55DaOL5EHkQj1gT8kA4TrM7H7R8+MkGjMvbaziRAPJMMCnrj4sAxwvz6M/JtVkfSTlroaqqLDzUdZ2DHb3VgesgNDEe/7xxDfazC2jMCcKZtyogpCEG4DxhDf0PgoYHWUrK7UYe2uiiIPuZ1wcCXxIp6ernfZ1+9FeOPuqRBL5SkaQf/C1v6qf/noOOn/3cRz2aQCAQCARauBf/YobQQ05dSLir+kio32q10maz0XA4VFEUmk6nuSLuZENSJg2QIOzwXhXd7XZaLBY5OwHrPqGHWPS5nldMGTuE5HA4aLlc6vLyMrdMQHz86EkPZ5RuK+ar1UpN0+QqsofKcSzl4XDIR0ZCZqnKejjfYrHIWQhePYc8QtbJsXByRo86pLYsy1wR9zBKP4nBWxI4KtNbC1jHyWSSCT3kzxP6B4OB5vO5Xn311ZxTQKsI9+geHYhLgnlyZwDrhnuC9drtdtrtdpnYcm1ex/W8r55nReBwIcYr88wdz8o+ZG3G47FOT0+zwOJtHggckHZOhCAw0HNAGAvZCDgYELUQPDwM0ls/fD92T1pAnEHsqOs6t9F4q0P3uEW/hrcteFYGe9DdAuxp9tJdOQbeGsU9uGdXGPIgz/V6rfPz8+wAQSjCxePOJeYkEHguen01P+dnhpgQ+LLgB3/7j9dP/w97Ov7jz3zUQwkEAoFAIONe/Gu526eMgOAVVcgDBJIKJD37/CmKQovFItvruRY2Z4hjVVXZuo1rYLlcarlcSlKutpOB4PZp/kAKvUrroYL0mfsxf4gS9K1TUfYTBSCA0+lUDx48yIF6EMnz8/PcKz+ZTLIwgpuAca3Xa33+85/Xer3W6empptPpM1kFZVnmPnocHIgbCCzL5TKHP/LHHSW9Xk+z2SxXrRETaE3o9q27fZ1qdbcnHuL74MGD3AKC8NBtf0EMgaDyjMw1wXzsLa90Q55xirDWfiIEzgTGyO98riHjCCKEMnZFBhfNTk5ONJvNNJvNWiGYhHL2ej0tl8ssYHiIIa/nuTnO00MQaTPx7A9aYTwngOvhcvDTD8hOQIy6vLzM7QIuanCaAnOMKMM68Tx8XhCDXFTj84LAwlr78ZyemeBiBQ4HB2uP2MYRp6yx5yzgQHJHhDs0AoEu+j/lJ+rylal+5FdPPuqhBF4i/OBv/Sr9tO8Y6vK/+dGPeiiBQCAQCEi6J4LCXYDQeNWdaiMVU0n5VAdcCiklrdfr1nGGEF/vm6cSTGAd73ESenl5mXMK/DqIEpAPJ7h+WsR+v89/hwCRy0A1mcwDCDaEqSiKXJlnHvr9vs7OznRxcaHLy8tchaZ9wbMBcEg8ffo0E3P6x+u61nK5zGQRUeJ4PGYCi+WfCjz5ETgFINSEBNLSwVi7bQtuS4ew0e+/3+9bws1wOMytDhA+RB9cJ8wXTgPGQrsLxJ/qNGOWlI/U9JYDxie1q9Ld40g9yNHbc9xlQRsC7+f3ZGuwn6uqyoKJt0hwjZRSdsb4EZNcF6GMzARJWRzyU07YO1VV5VYVPx3BBRI+Azh4EFW493a71Wq1aokmtH9A8Gm18KMrPSMB9xB7mz3AWhACyng4GYPcBtaDNZ5Op/l5EXFwY3gGCO4W7sPe8s/dXe6KQKCLdHKiH/rXX/+ohxF4GZGkv/+tr+kn//YQFAKBQCBwP3DvBAVvb3A7s3RbxR+Px5rP5+r1elosFq1gQaqy/MzdDZIyuZGU8w42m03OCHD7NCSDijxWe+m2hYIqrockSsrEazgcZrfEYDDQZDLJ1VhyB6qqysQQ8nh6eppFDarS2+02iwnes44wwHGEBFReXFzkoEgIP8SqrutMPqlAMwdcHwLpoYseDghR9eP5JGmz2eSkfg/X85M8vA8fYo4YgRAwnU5z5dsFIUQNqtecMIFTwY8N9JMGaDWAELOPIMA4TSCn3trg6841gT8Prg+O2fS95ydblGWp+Xyu09PTVpuFnyyAyEWIoucBUK3nd+z37gkTLrbNZrP8GcHhQwsFwtrl5WV2OZCHwfWYa+4JvJLvc9NtyfDjGXEAdIMRy7LMIZkIQ7wXwcmFu6Io8t7lup4rwT4mVJTP12Qyya9hD3qbCQ6eQOAu7L/hZ33UQwi8zEjS1c//2er99b/zUY8kEAgEAoH7Iyi4nd6rgh70BjHiCMGUklarVQ4XHI/HuWe8S1IhC358oQe7eY8/73Hyi6UcYYDXepr/drvN1vjLy0utVqtMdiDgVH37/b7KssyE8unTp/kkitPT0ywySMrV89Vq1WpNgPQgJgyHw0yQ+/1+7u3nBAfvp4ec+tGKq9Uqh1VC9nEr8MxUflkbqr2QtOVymUMAqcTzvD7X3mrihJkARSry3r5w1zGCVLz3+32rio3IAdmlvQUHBidVUM1nXN22CkktV4SLB77+VOKrqtLp6al6vZ5Wq1Vr7iDYCA7z+TyLRpLys7j7AGHA3Q+0JuAYoRWGe7HXPTejqqoc/Mjng/3Y6/XyvsAtgzjFvf2UD0QoxoTY4qGLtK14ewvzzNi8HQbxj/VYrVYtJwTjcCEDl4GkLIZ4cClrR/sPLhYXw7qBoexbxJloeQh0UX/T1+uzvzDEpsBHh6Yn/YNfPtZXl/+0hn/hb33UwwkEAoHAS457JSjc9TOq0BBfnAjT6TS3DQyHQ02n00yiIT5+5r10G/DYPVGCs+qp0HvqO9V2eqyxx5OnQFuA94VTPUaIWK/XOQfAU/bn87nKstTZ2VluF+C0CtwBVI8hbp69gIgAyRqNRlmgoDILQUQQcdGG8D6s9bgZBoOBFotFng8Em5OTk3zaBOOBGBdFobqutVgsMnmDLHqOgPfs+7GX/B4SDPnl57wHkcIJPqKFO1mw2ENUJen8/FybzUbj8VhvvvmmHj16lNs8cCj4saBdd4ILOd3jCAktpIWBYzrLssx7idaTsiyzCMPzQdjJmPC8DhfVfDy4Wzx8kL2MkITIwL5yB4c7UyDuvJ/nlW7FN9bK22v86EY/YrF7WoTUPhHE3Roe5IgwR6sHogRzzfhZWz7z7q5wBxIiDWIgn13Gg5vJv288yBFRLxAAn/t5fSmF0BT4aNGcNPrCzxnox/+Fj3okgUAgEHjZcW8Ehbt6lbvkDhfCo0ePNJ/P9ZnPfEYpJc1ms0wO1+t1rnpTHU0p5ZwAyBtVTAihh8gNh8MsBiAmQJD53Wq10mQyyULEbrfLWQIIB+QbQGpI0Kd/HHLubQaS8uuolrqgALnb7/e5Og05m0wmevToUb5WURSaz+fa7/c6Pz9vVZAlaTqd5mMmETROT09zqCIiBNdmruhJTynp1Vdf1euvv66rq6scaonVX7ptDSGPgvX0kE2IJ0QZ0YY9wHj4g8Dk/e4uWkAMCexsmkZPnz7NJP/09FSvvPKKZrNZroJTted9CAeQZcgsrR8uDHGf2WymsizzuKms047w+uuv65VXXnkmpNDzFxBDusGSXdcEogvOCw+QRNjCEeGCEM9JTgXPJKk1Xp9LD65kXL7vWD8+cwgGLsQ4/EhUvw9zgbDix2xyrW47y263ywIin3H2G9fGmcAfvmv89BKA+wLhznMyAoFA4D7hWDZafvPP1fS7vvejHkogEAgEXmLcG0GhCydPnrj/2muv6ZVXXtHJyYnW67Umk4lee+01FUWhx48fZ4IIUcXZUFVVbomAqGy322x7huhjAfej8TzwD+JM5Z9gQSzk3LObcO+CgFdmcTfwc8YEgYVMrlYrnZ+fZ6GB9HpI6Wg00sOHD3MP+mAw0Cc+8QmllHRxcZGJsKQsRszn85wrwDWxnJOzQLAe7g630yMmjMdjvf3223r8+LHOz8+zCCHdVt+dtGHp9+MGXYDhfRA6BBn+QFy9JQSi6/34s9lMVVXp4uJCm80mH+H5+uuvq6qqfD+vmEPoCaNEjGJeukTXT8rA3eGuDvIdHj16pDfffFNFUbTIrudMeLuAB0sidtEKwj4jzLEborjf77PzxEUFDz9k7tlPnmnAfzuRZ3xkF3jeAHuV8Um3xN+P8OSZ73I0eHsRazIcDlvCis8TY2FP8HpfS4Cbgb/7aRMuGHl+B0JEIBAI3FdcDRq9/bOTpBAVAoFAIPDR4V4JCtiN3XLt7QUnJyd69dVX9eDBg5x/MBqNNJvNdDgc9Pbbb+fjFCEGBCFCCiXln1MJ9eP/cATUdZ0zByRlNwAkm2otZJx2ALfpex8/9+D4RQ9/43cIAYyZ1xDG+JnPfEaXl5cqiiI/E8IGp0dAkiG4tC54cj5hdpBf783fbDY6OzvLLR5Y26lqj8fjLNC88cYbms/nevLkib74xS/q6dOnLWs55NiDLj1BH3jvP2QQYrnf73PAo6RsZ3eyyzxR5cbuP5lM8lrudrt8IsBsNstBhrgZIKCeUQFJ5thBPwGEKjbCxXg8bp1a0e/3896oqkpvvvmmTk9PW208iDUQa0QtKucuKJEz4O0SCAI+Lg/rZD9x6oaLSogWfAb8KE3mlXHSAuAnNzBuP1mE/cFRlScnJ/k0Fu7jjiPPpHCRwUM0WT+yOnwt+OzwmeP1OCiYV17v+8SPqfTcCQQJ9oZnNgQCgcB9w9WwUf2wp+lHPZBAIBAIvLS4V4IC/+D3f9xDWK6urvKxd0VR6K233lJKSWVZZrcBxBPbMoTew+VGo5HKsswVyu12q8ePH+vi4iLf9/z8XKvVKp9wQDXYj4Ls9v17zz9ElGo3rgZaCCB6kL/lcpkDCaVbOztkcblc6gtf+IIuLi4yecS2T1WcgD+CD+fzuVarVSZxhCJCzHy8hBrudjvtdjudn5+3yC5BesxnVVV67bXX9Prrr2uz2WR3AsciQth8LZumyQQbcH3G4X313IscB9Zzv9/nthZS/wGiw2Qy0XQ61XA4zGtJC8jp6akmk0l2g2Dpp01jOBzmeYfAs4Y4X3Bs+FhpJ9hsNpKUBQVaLMj44Pn9eFCEHW/voM0A0j0cDjWbzTSbzVpBmn5sKpV1Pw1lMBjk5+MUC5wIiGXe0iHdZg9Iyq0R3dNSfG0l5ewLMin2+72qqsrijAsyiDbd01sAexixT1LOqEAcQQibTCZ53yAy+hGyfkwl9/QjJhEB2Uvck7VGiAsEAoH7iuVPutL4W36uZn8sXAqBQCAQ+PLjHaOqU0p/OKX0Vkrp++1nvzul9NmU0t+9+fNL7XffllL64ZTSD6WU/sX3MygqlJAPqojz+VwPHz7UdrvVcrnUYDDIFVBCBbGhQ9ixgWOdf/jwoU5PT7Xf7/X222/rs5/9rJ48eZIJhh/dB6k4PT3NFnAqwSmlTJw8II5qL2LI4XDIbofFYqHtdpvJ3vF41NnZWQ7sK8sy2/QJx6vrOh9tSfXfK+2eLwE5RrBYrVZaLpdZVEBYoC0jpZTJ5tnZmZ48eaKzszPVdZ3nEZcIifqQdVwib7/9dg41xF3h1nHIOAINbg5aNrDw+6kcCEK73U5PnjyRpNyygjABAYSUOtnlmMzNZqOLi4uWk2U2m7VONUBAWa1WeY68bYJ9ROXewwFZd0Itnz59mls+EJ7cRcKzUfmH+CJ4pZSyW8UFGcY+n8/zunt7hZ8GAbn2Yx951q5jptvOIKl1ggX35+c4HJhrb18gf2G1Wmm/3+f19dMW/F5cl72FoNB1TCAETSaTLMjgnCEzodsW4nOKu6brCJLUcjwgTDEvOI7u0ykPH8V3cSAQuP9o+tLV4NkcqsCLR3wPBwKBwLN4N2dffaekb7zj57+vaZqvu/nz3ZKUUvonJH2zpK+9ec/vTyn173jvlx6U9Up7j/gbb7yhqqpytgFkerfb6enTp1osFtkd4KQeEkqAY0pJZ2dn+sIXvqDHjx/n4x4RJxAOILGQYiqtvV5P6/Vay+VSh8MhE0bpNhwQokfF9unTpzkMEnIE4R8Ohzlokmq2pFyldWfEYDDQo0eP9ODBg0zGIfmSsnhxfn7+zHx45Z/31nWdAws3m02u5kLcaI+AoM7n80zKXSAhAJN55/ocVwkh5zreh+9981VV5ZMScG5wzKKkVlgl95WUxQHWB5GE1w4Gg+w2wNK+3+91dnami4uLTIL9CEnvyfd+egg8xHi32+ni4iILK966wjU8K4L2Gq+O+x9v7yiKIq8XIgIihx9likiAMEaGCCGHiGs4Mzzjg/3qx4T6CSnuVvATPrydhXngtew3HArS7Wkd3u6BuNZ1QPgcVFWVWy4QkhADXEzg55yMwhrz2fUcBn+/1BY6mCvm5R7hO/Vl/i4OBAIfDzz+ukbrf+nnSL34mH/I+E7F93AgEAi08I6CQtM0f03S03d5vW+S9F1N0+yapvkHkn5Y0te/50FZ5ReCglU9pZRzCKhQQ4o9twCbPURrt9upKAo9fPhQTdPkyjpH5nl2AnkBVVWpqqosbEBGPGPB3QyQK4QEb6uQbo/5Gw6Hqus6H2OIkPDw4UM9evQok2fIltu+qVJzmoC3fZA3cH5+ridPnuRjJz1wzm3fFxcXuri4yPZ6yC/2cUktZwJ/mqbR48eP9fTp0zzP9KjjJoG440yg1QLRhvd5LzvHf06n0+wuYB3SzckStBT4cYPdXvzdbpdP5qB6DiGXlB0f5+fnWVBCOPAKOdfmfn7PbjYGLQW81gUtRBTaD3a7ncqyzAGNtHX4SSPT6VTz+byVqeEuGE7uYK+5U4F9ywkk7D3e664Tr9wjWrljwNsUeB0Oke5RlggKrJlnHXguA/Pr76VlybMs2P/eYsL3A2Pj88u4CaX0TBQ+u7hzPKyV+7jrBNfCfXInSB/Nd3Ggjf6DBx/1EAKBu5Gkz/+8pMtf8LM+6pF8RSO+hwOBQOBZfJAMhd+cUvq1kr5P0m9rmuZM0ickeRPfZ25+9q7hQgEEqd/v5yo1PfTb7VaTySRXaTkSkB5+iD4kdzgc6uHDh+r1ejo7O8vWdH53dXWlxWKRQx39eDmquhB7et29hxwnBYR0s9nkCrEkFUWhsizzcz158kSLxSJX/en5R2ygEnt1daX1ep2r3qPRKBN76TpgEndClyTT2+/H8VEF5uhLquqEOCJKuDOhm+C/WCxa4+NECNaKMV9cXGQxxav13RA+CB73IzfCk/7JJ2B/eBAfIo+3LOCGkJSzA5h73BiLxSKLUARSEvIH0QS0P5ycnOTjGrkX1W8nqVTFcUZMJhMdDgetVqssArEm6/U650IgZk2n0yyijEajfDwkxHy1WrXmA1FsPp9rPp/ndSJAFCdP99QOyDxCgAs97hRif2232zwX7HsPUaWdxbM0PDuDz2S3DYE2GxwCfP48Y4PXeiaICxA4iVzYQWxgf7Fm3IfX4SxhP7G3GeM9x4fyXRxo4+QTP07/zW/+CWpO7pfQFAg4dg8GqsZjXd38f2/gy4b4Hg4EAi8t3k3Lw134Dkk/WdLXSfq8pN978/O7/vV957++UkqfSil9X0rp+1oDsmPdIA/j8VjT6VRFUeSKMCTlcDhouVzmZHdI2G63ywSvLEvN53O98cYb2u/3uXqPFZ5qOo4DD9rr9/uZFEEeIToQEkgLlX2OCvRKMLkIl5eXuWf/eDzq9PS0VSmG0HMaA0TLWwq8au5ZCOQ0QDRpLeA97qSgIixJDx8+1Ouvv55D75jv6XSaxQts6ev1OucsbLdbvfXWW3ry5EmLUEtqHbfpAZYE6uFYKIqi1VrCexEiPEAQokh1m7Xz60NWqW5DOP04UKz9nhPB2k4mk+z4cOKLS2A6nWaRBYIPWcaJwF4idBHxoRtWSNsMRJ09fHp6mgUEgkSvrq6ys4L/5RQCshhms5kePHiQXTuIEawde4Y1pTVAUqt9BFcCc4sw4NkDEHrIOa+nlUBS/qwiOOBk4bPNf7O27iSA8CNwcJQpz+9HmuKo4DOIgMD60UqDQMT1+NwyN6yzu1H8+Ml7ihf6XXzQ7kMZ5FcC/sFv+KQuxyEmBO43PvcLkpqf8ZM/6mG8bIjv4UAg8FLjfTkUmqb5In9PKf1BSX/u5j8/I+mr7aVfJelzz7nGpyV9+uYarS9YSAeW5el0qocPH2o6neaKKmQEUkZ1EzEBUgY5eOONN/T/b+/cYiM9zzr+f7wez8Hjb8bj0+7GK0hKEIo4hFWpClRVpCJoI6HQu3JVISR6USR6wUWqCigXRQKJ3laAilQhaIUEiFxSoSKEhEgCbNKEkDalUZpstCcfZuwZe9fjl4v5/q+fmdjeeGt/h/X/J1m2x+PxM8/3fs/uc56ensatW7dw/fr1OCGeQQU/2Z0OoF/xx+CGd0p8ttyvAmTf/+zs7NhWCDpF7HVntQGHL/K9MQvM53OWAjBypjudDhqNBoCD7C5bFPxcA/ads0+fwZLhcBi3TszPz2NlZQW1Wi0GTfxzmfVldh8YOed0almmPjc3F1+XOvAZaOqKP2s0GnF4HrPZzJjTWebsB5bj8zmT7RteP2xxYOn73t5edKrv3buHfr8/5rhSN2wV4PVlSb8fssnMO4B4znwmnU4sgwN+MOHm5iY2NjZiFQ3bcHx5vq8+YQsFHX2/pYE6ZRsHAzNJkqBarcY2EwagfBCHwzt9FQKDJwxo8IxQRwBiYIXvyV8Tv/qSgQCeZc4w8Pc27yO2MfhKIt/OQIbDYQxg8SyxEoL3CQNDvlWDVTNctcn7mNeWMvuBjryelH8wGBxmvgrDadvixDrymIUoOd0fn0PrjTns93p5i3IukB0WQpx3HiigYGaXQgjvpt9+EgCn3T4H4G/M7MsALgN4HMDzJ3ltthPQeazX61hcXMTy8nLMMPf7/ehIrq+vo9vtxgw8nQ1mLOkEtVotdLtdvPPOOxgMBmPl3XQg6Dgyk8+vAYyt1ZtseWBAgPMKfN+8d3ZZTUGHin3mrIxgYIOT7TlHYDAYRF1cvHgxtm6w958ysT+fv89NB34tIoCY4W02m7hy5QqSJIl/l++52+1G/dEBpdMLIA59ZEbdD1H0g/qYjeaMAgY46Aj7ORGT6woJhygyyEG5+H6oXzrkrCAIIcQKFbY0pOc3DrNkFQUDHDxjdDp5PenoMnDDn9MJ9usYqUsGS/wsCQbFKAMd3EqlgiRJUKvVYpUKACRJEoMsHOrphz4yiMA2jO3t7fi7fH+sHpmamooBFb43Vi/4ABKrYhiM82eYQSoGn/wsBABjq0gZAPCVBgzm+HkHDCh4PXt7wCCbb2/g7/uKIVZK+KoH34bCx7zc/sz5IZS8Z/wwziJylrZYjLCf+ykMVurYq+v/+KIc3PgwMP/CggIKGSE7LIQ479w3oGBmXwfwFIBFM3sbwB8AeMrMnsSodOtNAJ8BgBDCq2b2twD+B8AegM+GEIYnFco7HVwVyTkBm5ubMZvIjLN3CFi2zMwwHfH9/X3cuHEjDhJkVpYOFx1dANHJYRbcZ8QBjE3C52v4Xuu5ubnY4pDqJTr8dK7p+DIIACBWB9D5W1tbi+0ZKysrWF1dxerqKmZmZmJlAIMSrFTwGVm+l16vF0vKOX+iUqlgdXUVCwsLUf7FxcU4hyG99rGigM7l9PQ0ut0uNjY2MBwO0el0sLi4ODakzzuOvC7UhZ+LcOHCBczNzY1N6p90dOnsegffO6c+iMTsuT8HDKz4tYesKqEz2mg00G63Y3uLP0v+/fC6s93BV0v4bDvbRmZnZ2PbCltseH54jTljo9lsjlV57O7uxu0GrGrxQy9nZmbiSkq+536/HweWMvBDmelo+7kkvrKG14V69veQn0nAc+rvATK5MWJyVgFfg0EkYNTe4och+kAf9XP37t1YMcH34oNV/J7XaTAYjN0fvjrFb23wcxx8JYZf2zk7Oxvbb/ImD1ssgFtXm9j4iYAjKpWFKCQ3PnYJSzduYT9twRSng+ywEEK8l/sGFEIIv37Iw1895vlfAvClH0Yo9tc3m020Wi20221Uq1Xs7u7GVYjMlNKJm/x99kazB73b7WJtbS1m9X1Jvg8mMCPJLCdw4AT7wYx06oCDrLXv3acTQweNPfp8LZae8/GpqanoXLFsfW1tDVtbW2i321heXsby8jKAUVuDd565TcLM4kpHBhI2Nzfjmk1mjQFgcXExDu8bDAZot9uYn5+PlQh+Zaefg7Czs4ONjQ0MBgO0Wq2YIefreofMZ5T9cD/CWQ10GP3f4nNZ1TCZxaac1B2rC5hl5nXgZhAf8Jg8G5wV4asL2IriB//R+effZXuMHwRKh9eX47OtgWeCAQcGearVatwm0uv1MBgMMD09jSRJopPMgAwDXD6YwHkGDEQwWMZrwPPO8+sHTvoKBjNDL81o1ev1sdYGtkcw8DPZhkOnnu+VLRa+HYKBH7Yase2DOqAM/AAOhjAy+MFgB8+mbzli8IEBGAZ1zCwG0nwLiw908O/5+5FDQu/cuXOcucqMPGzxeWf41FVsa4SaKCHrTwQMf+NnsPJnLyLcK9T621IjOyyEEO/lh9nycOrQQWFmeXZ2Ns5PmJ2djZsZmJ3d3t6Ozg2hA0UnstFoIISAbrcbnSWW39OhoAPJjCeAOBGfZfR+/R2DCXQYmYkNIUQnhJlmzlDg32XlAp1APs6MLEvZWbpeq9WwvLyMpaUlAKPp/lNTU3H9oi/LrtfrMVPNLC3nK7DnfzgcxkGIbBkBgPn5edTr9bGSeAZAvKx0MDmDgm0V1Cez5L51wTvYdGBrtRparRaq1Wqc5+D7+fn3/RYB6orVKfybnJHgByjyOrCFgA6wn4kBAAsLC2g0GrFfnrMH6PBOrirk/AsAsdWA8vA6Umc8mwwU8XWoi62tLYQQ4twEDvTkjAlm4VniT10wIMVAAVdP8t5gmwUrC/xgS54TBgsoN1s9AIxt9+CATDrvvs2HlT4c8EjdMGjhN6VQNwwyABjbLsHBk5PBPb99gWeC55ABJrYz+MoIboapVCrxZ7w2fv2ntz1+Lgrt0GQQTJwf9j/yJH7wsSr2mqpMEOWk+4F97H3ug7A05zLdD1j6yr/nK5QQQoiHjkL9b5kOAh1EOlKcir+5uRnnD3BdIcu1OcWfFQjMLnNdnl9ryOn2dEi5h96vfuRwQcrBDQ4+czmZhWd1gS9zJ1NTU3FVoHecfDaW74N94yEEtFotLCwsYDgcotvtxpkSDJLs7+/HgEuj0YjtCBz0R4eQjtjMzAxarRbq9Tp2d3fR6/Vw+fJlNBoN3L17F+vr62ND6vy6QmaGGSTxMwD29vbQ6/WwsbGBXq8XJ/4zKEN9MVPPbQn9fn9srgTbI3zPvD8ffhUmM/1JkgBAnDVBp5pl9azMmAxCJEmCRqOB3d3dWA7P6gg/kNFnyxlQqdfrSJIEc3NzYwNBgYPqFlYTUFaeNVY/bG9vw8zQbDbjZgbfXsLzygoItqr49hsGExhcY+UOZeFwQQaT/L3iqwzYjsNKAWB8GwKDQL6Shm0R1DMHi/rsPwMmPDeUnUEeBn04h2SyGsFXPwAjJ5+/W61W4/Xj/cbgHl+Xm0X8/XbYrAY/FNIP9vStTOJ8cbc9o2CCKD39ywf/jto+sPN7vzD280e+1cfUv13LWCohhBAPEw+6NvLMqFQqcW1frVbD/Pw8kiSJwxjpbGxubsYp+0mSYHZ2dswBZek6HXSf7fbBAzqlLJn3A/QqlUqsBODf4iBBOh/eeWKFAJ08OnB0AplxZiDCl4z7Fg86k0mS4OLFi6hWq1hbW8NgMIjDA3u9Hm7evBlL3Ll+khPx+V5YUs7MPf8Oy9vpmPX7fbz11lvY3t6O1QiUg446B0h6x5aZ8cFggDt37mBtbS2Wu0+2njDA0263o1673W7MUtMJ9BsDAMTfBRCrOPj6zWYzziqgHr2jy8AT20+or06ng1arBTPD+vp6HGTo5fXXjlsRGFTqdDpot9vRyZ4cCEhnnQ4yAwmUjwEM9vj7NgG+/8lNBwwuUD5WQLAKhYEIH/jgJg6+Ns+uDxQMh8OxOSCs3vCDLzkwEjhoXeB9w+vB57Kax2848fMOeO/xLLJaggMcWRXgW1ioQ14HBg329vbimaSuG41GrH7xwzz9YFV/7/L1fSURg5LUhRBClJ0wBex29sc+3vzVOr7/Rz+PC48/lrd4QgghSkrhKhTo9DLzvLCwENc90pFgWTUrAjiwEThwBlhJwAwxy6v9AEAA78lWegek1WqhUqlEx5uZb+BgXgLbAdgHPj09jcFgEMvv6agwkOCzq1wJyOAEnVeWl8/Pz6PZbGJ7exv9fj9WP6yvr2NzcxPdbhedTif23+/s7MSWhd3dXWxsbERHk85iu93G0tJSHNDISoXbt2/j+vXrcQUnt1BsbW1FJ40VBhxiyGwxBznevn0bOzs7Y339dDQZEGB1x/7+fpwXQF34NgFf/cHr5bPhbN1IkiS2q7CqgmX4AGJwiNeiVquh0+kgSRLs7OzEuRpstaBDz8oMvmcOz2QQg4NC+Rw6zAw4+MAIgNjmQieXgy/ZnuAz+8zOAweDEHm2qU+eXwYM7t27NzYHgpshWAXByg4/aNNvMPArOAFEOXl+arVanJUxOfiUrRdsE/EDK/1KVt7X/JpOfq/Xi+0fc3NzcaAk3z9159ubfMCM1RW8fziIk2eHtoIy8n73AQW/jtYPg1SFghDiYWZ/ZvRvzXc+swyEFQDAj33+BQQFU4UQQrxPzPen5yaE2S0A2wBu5y3LA7AIyZ0lkjt7yir7acn9IyGEpVN4ncJjZj0Ar+ctxwNQ1jMKlFd2yZ0t513u82SH9X/i7JHc2VJWuYHyyn6mtrgQAQUAMLMXQwgfzFuOkyK5s0VyZ09ZZS+r3HlSVp2VVW6gvLJL7myR3OeLsupNcmeL5M6essp+1nIXboaCEEIIIYQQQgghio8CCkIIIYQQQgghhDgxRQoo/HneAjwgkjtbJHf2lFX2ssqdJ2XVWVnlBsoru+TOFsl9viir3iR3tkju7Cmr7Gcqd2FmKAghhBBCCCGEEKI8FKlCQQghhBBCCCGEECUh94CCmX3czF43szfM7Nm85TkOM3vTzL5tZtfM7MX0sY6ZfdPMvpt+ns9bTgAws780s5tm9op77EhZzezz6TV43cx+JR+pj5T7i2b2Tqr3a2b2tPtZUeS+YmbfMrPXzOxVM/ud9PFC6/wYuQutczOrmdnzZvZSKvcfpo8XWt9FRrb4TOSUHc4Q2eHM5ZYdPmVkh88G2eJskS3OXO78bXEIIbcPABcAfA/AYwBmALwE4Ik8ZbqPvG8CWJx47E8APJt+/SyAP85bzlSWjwK4CuCV+8kK4IlU91UAj6bX5EKB5P4igN895LlFkvsSgKvp13MAvpPKV2idHyN3oXUOwAA0068rAP4DwIeLru+ifsgWn5mcssPZyi07nK3cssOnq0/Z4bOTVbY4W7lli7OVO3dbnHeFwocAvBFC+L8Qwl0A3wDwTM4ynZRnAHwt/fprAH4tP1EOCCH8K4C1iYePkvUZAN8IIeyGEL4P4A2Mrk3mHCH3URRJ7ndDCP+Vft0D8BqAR1BwnR8j91EURe4QQthKv62kHwEF13eBkS0+A2SHs0V2OFtkh08d2eEzQrY4W2SLs6UItjjvgMIjAH7gvn8bx1+4vAkA/snM/tPMfit9bCWE8C4wOogAlnOT7v4cJWsZrsNvm9nLafkXS3YKKbeZ/SiAn8UoQlganU/IDRRc52Z2wcyuAbgJ4JshhFLpu2CUTT9ltsVlPqOFtgke2eFskB0+VcqmnzLbYaDc57TQdsEjW5wNedvivAMKdshjRV478YshhKsAPgHgs2b20bwFOiWKfh2+AuADAJ4E8C6AP00fL5zcZtYE8HcAPhdC6B731EMey032Q+QuvM5DCMMQwpMAVgF8yMx+8pinF0buglI2/TyMtrjo16DwNoHIDmeH7PCpUjb9PIx2GCj+dSi8XSCyxdmRty3OO6DwNoAr7vtVANdzkuW+hBCup59vAvgHjMpDbpjZJQBIP9/MT8L7cpSshb4OIYQb6Y2yD+AvcFCWUyi5zayCkQH66xDC36cPF17nh8ldFp0DQAhhA8C/APg4SqDvglIq/ZTcFpfyjJbFJsgO54Ps8KlQKv2U3A4DJT2nZbELssX5kJctzjug8AKAx83sUTObAfApAM/lLNOhmNmsmc3xawC/DOAVjOT9dPq0TwP4x3wkfF8cJetzAD5lZlUzexTA4wCez0G+Q+HNkPJJjPQOFEhuMzMAXwXwWgjhy+5Hhdb5UXIXXedmtmRm7fTrOoBfAvC/KLi+C4xscXaU8owW3SYAssNZyevkkx0+XWSHs6WU57TodgGQLc5KXidf/rY45DD9038AeBqjKZrfA/CFvOU5Rs7HMJqI+RKAVykrgAUA/wzgu+nnTt6ypnJ9HaOynHsYRaJ+8zhZAXwhvQavA/hEweT+KwDfBvByehNcKqDcH8GoXOhlANfSj6eLrvNj5C60zgH8NID/TuV7BcDvp48XWt9F/pAtPhNZZYezlVt2OFu5ZYdPX6eyw2cjr2xxtnLLFmcrd+622NIXFUIIIYQQQgghhHjf5N3yIIQQQgghhBBCiBKigIIQQgghhBBCCCFOjAIKQgghhBBCCCGEODEKKAghhBBCCCGEEOLEKKAghBBCCCGEEEKIE6OAghBCCCGEEEIIIU6MAgpCCCGEEEIIIYQ4MQooCCGEEEIIIYQQ4sT8P+KdsqtqmF40AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 0 0\n", + " Min thresh = 1000\n", + " Not Sliding\n", + "\n", + "\n", + " Winner = Not Sliding\n", + "\n", + "\n", + " FP ROI = 037s_iimage_588413346180_CLEAN.nii.gz\n", + "037s_iimage_588413346180_CLEAN.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADDCAYAAAAya0IYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADcF0lEQVR4nOz9e5hleV7Wib5rR+zb2pfYEZlZVV3VXXSh3Q22PE3T2HI5aCsD4gAqPsrAzIgDQiOOl5nxKJfxDCrK6CAoMx7Q7kHBI3JRxqMiCg7KEUcu0oKDCA197+q6ZWZc9v2+zh8Rn1+8a2VUVVZVVmVk1vd9nnoyc8fea/3Wb/3Wrnjf3/t9v1lRFAoEAoFAIBAIBAKBQCAQeCGo3e0BBAKBQCAQCAQCgUAgELj3EIJCIBAIBAKBQCAQCAQCgReMEBQCgUAgEAgEAoFAIBAIvGCEoBAIBAKBQCAQCAQCgUDgBSMEhUAgEAgEAoFAIBAIBAIvGCEoBAKBQCAQCAQCgUAgEHjBCEEh8Iojy7JfyrLsHXd7HIFAIBA4R5ZlH8qy7D+7zfcWWZb9+hd5nhf92UAgEAgEApcLISgEXnEURfHmoih+4m6P47mQZdnnZ1n2b7IsO86y7Kksy96dZVnvbo8rEAgE7mdkWfZXsiz7tSzLRlmW/UqWZV92t8cUCAQClw13Wph9vuPF78WB50IICoHAxdiT9BckPSzpEyW9VtK33NURBQKBwP2PiaQv1Ol38B+U9O1Zln3G3R1SIBAIvOoRvxcHnhUhKARecbitNsuyP5tl2d/Psuzvnu1I/WKWZW/Msuzrsyx7Jsuyj2ZZ9rn22S/PsuyXz977gSzLvrpy7D+dZdmTWZY9kWXZV7rimmVZ82z36yNZlj2dZdnfyLKsfdEYi6L4e0VR/POiKKZFURxJerekz3z5ZiUQCAQuD7Ise3uWZT91thv1ZJZlfz3Lskblbf/52ffwjSzLviXLspp9/ivOvquPsiz70SzLPu52zlsUxTcWRfErRVFsi6L4GUk/KenT7+ClBQKBwKVAlmWfmGXZT5x9z/5SlmW/y372E1mWfaX9+7/JsuzfnP39X5+9/B+yLBtnWfZfZFn2jizLHs+y7BvOvpM/lGXZf/Vij1cda/xeHHguhKAQuAz4Qkn/H0n7kn5e0o/qdG0+IunPS/qb9t5nJH2BpL6kL5f0V7Ms+xRJyrLs8yT9D5L+M0m/XtJvrZznL0t6o6RPPvv5I5L+p9sc42+R9Esv7LICgUDgnsVG0n8v6apOCf1nS/ojlfd8kaRPlfQpkn63pK+QpCzLfo+kb5D0eyVd06ko8H0vdABngu9vUnz3BgKB+wxZltUl/RNJPybpAUl/TNL3Zln2puf7bFEUv+Xsr28piqJbFMUPnP37IZ1+Zz+iU4fXu17i8Z4L8XtxICEEhcBlwE8WRfGjRVGsJf19nf4C+peKolhJ+n5Jr8+ybCBJRVH806Io3l+c4v+n0y/izzo7zhdL+ttFUfxSURRTSX+OE2RZlkn6Kkn/fVEUh0VRjCR9s6Qveb7BZVn2OTr9Yr5d8SEQCATuaRRF8Z6iKH66KIp1URQf0qmwe4tIe/Z9+hFJf03Sl569/tWS/ueiKH757Hv9myV98u26FAx/Q9J/0KnIHAgEAvcTPk1SV6e/7y6LoviXkn5Y59+jLxb/r6IoFme/I/9Tnf5ufEcRvxcHqti92wMIBCQ9bX+fSbpRFMXG/i2dfukeZ1n2OyV9o06dBjVJuaRfPHvPw5J+zo71Ufv7tbP3vudUW5AkZZJ2nmtgWZZ9mqS/J+n3FUXxqy/gmgKBQOCeRZZlb5T0bTp1IOQ6/X3hPZW3+Xfsh3X6HSxJH6fT7INv9UPqdNfsw7d5/m+R9Bsl/baiKIoXfAGBQCBwufGwpI8WRbG11z6s0+/JF4ujoigmleM9/GxvfjGI34sDFyEcCoF7BlmWNSX9kKS/IunBoigGkn5Ep7+oStKTOg2JAa+zv9/QqTjx5qIoBmf/7RVF0X2O871V0j+W9BVFUfz4nbuSQCAQuPT4Tkm/IukNRVH0dVrCkFXe49+xj0p64uzvH5X01fZdOyiKol0Uxb+9nRNnWfbnJP1OSZ9bFMXwJV1FIBAIXE48Iel1nj2j0+/Rj539faJTMRc8dBvH3M+yrFM5Ht/LL+Z4JcTvxYFnQwgKgXsJDUlNSdclrc/cCp9rP/9BSV9+FnKTy6xYZwrwu3WaufCAJGVZ9kiWZb/johNlWfYbJf1zSX+sKIp/8rJcTSAQCFxe9CQNJY2zLPsESV9zwXv+VJZl+1mWvU7Sn5BE3e3fkPT1WZa9WZKyLNvLsuz3385Jsyz7ekn/paTPKYri5ku9iEAgELik+Bmdkvw/nWVZPcuyd+g0U+z7z37+C5J+b5Zl+Vm4+B+qfP5pSR9/wXH/XJZljSzLPkunmWN//yUeT1L8Xhx4boSgELhncJZ78Md1Khwc6fSXzn9sP/9nkv5XSf9K0vsk/dTZjxZnf37t2es/nWXZUNL/KenZwmr+pE7LJL7rLPF2nGVZhM8EAoFXC/6fOv2OHelUjL0opOsf6bQM4hd0Wqv7XZJUFMU/1GkI7veffdf+R506Dm4H36zTXbVfs+/eb3gJ1xEIBAKXDkVRLCX9Lp1+N96Q9B2Svqwoil85e8tflbTUKdH/HknfWznEn5X0PWcdIshJeEqnvx8/cfb+P/wSj+eI34sDz4osShMD9yuyLPtEnf4i2zwLBgsEAoFAIBAIBO4rnDkc/m5RFK99nrcGAncc4VAI3FfIsuyLzqxe+zrdIfsnISYEAoFAIBAIBAKBwJ1HCAqB+w1frdOMhffrtI/6RXW/gUAgEAgEAoFAIBB4iXjZBIUsyz4vy7L3Zln2vizLvu7lOk8g4CiK4vPOujccFEXxRUVRPHm3xxQI3C3E93AgEAjcfcR3ceDlRlEUPxHlDoG7hZclQyHLsh1JvyrpcyQ9LunfSfrSoij+0x0/WSAQCARuQXwPBwKBwN1HfBcHAoH7HS+XQ+Htkt5XFMUHzlJMv1/S736ZzhUIBAKBWxHfw4FAIHD3Ed/FgUDgvsbuy3TcRyR91P79uKTf/GxvrtVqRZZl1de0u7urWq2mLMuUZZnW67XW69N8vd3dXfGZoii03W7Tf4C/Z1kmnBi1Wk3NZlOdTkfdbledTkfNZlObzUaLxUKz2UzL5VLL5VLr9Vrb7VZFUagoCm02GxVFoVqtlo63u7ur3d3yNHI+xrXZbFSr1dRqtdRoNFQUhdbrtRaLRek6fbxcF+epvla95u12qyzLVKvVtLOzU/psrXaqG+3s7KR5KYqiNK98vtlsqtFopPFsNhut12ttNpvS+DjmZrPRZrMpXTs/Z574HH/u7OykOePnfCbLsnRMxlX9HOfmHA6fL58zP76vB5+nnZ0d7ezspGMyTz5O3pdlmbbbbZobjs14n835Uz2ev6/6DFTv90XXxTEYG+Pw+8T1sn59DP7+5zofr/Hv6mf8s74+fGx+L/zzFz3H1Z/7PeM1H2P1fNX597VSfY+PqXr9Z7hRFMW1W27O5ccL+h6WpJ1up/j4x7Z6+j+2X9aBBQKBwAvBXBMti8Wt/5O8N/CCvovjezgQCFxWjHR04e/EL5egcNGXfuk39CzL3inpnWd/V7PZLP0Sv7OzoytXrujg4EB5nqtWq2k8Huvw8FCz2SwJAuv1WsvlUovFQvP5PB1jtVpptVppu91qd3dXm81Gy+VS9XpdDz74oN761rfqHe94hz7t0z5Nn/AJn6Asy/TBD35Q73vf+/ShD31Iv/Zrv6Ynn3xSN2/eTOR6Op1qPp8nwr3ZbNTpdHT16lXV6/USEYZkLhYLjUYj7ezs6DWveY0ee+wxDQYDHR0d6emnn9ZsNtP+/r76/b4Wi4UWi0Ui/uv1OpGd3d1d1ev19PpsNtNkMtF4PNZ0OtVisVBRFGo2m+r3+6rX64mcQZJbrZZarZZWq5WGw6FWq5WyLEsCyu7url772tfq0UcfVb/f13q91mg00uHhoYbDoYbDYRJB+v2+Wq2W1uu1xuOx5vO5ttutVquV1uu1Go2G8jxP45jP55rNZlqv19rd3dVgMFCv19POzo4Wi0W6T5K0XC41Ho+12Ww0n891cnKi2WymXq+nK1euqNPpJOEkz3O126f/04U0+xpifTUajSRCIbhsNpt0/UVRqNVqaW9vL43L1896vdbh4aGWy6UajYZ6vZ62262Gw6GOjo60WCxUr9dVFEVajxDY1WqVroVxIWAtl8tbxsq1cN/W67Xm83m6X4gqfgx+3mg0VK/XE4HudDpqtVoqikLT6VTj8Vir1UrSqWDCuuA+zWazdN2bzSYJZj5n9Xpd9Xr9ljGv12tNp1Ot1+skTBVFkUQ6Fxd2d3fVbDbTXCAKcC0u3tTr9fQMz+fz9Gxx/nq9rna7ncYxm83SOLjGRqOhdrud1hjzxnrhPUVRpOeQMWw2mw8/y/fcZcfzfg9L5e/ilnK9/pe+QK+/V39tDwQC9yV+pvjxuz2El4IX9DtxfA8HAoHLiv+z+AcX/k78cgkKj0t6nf37tZKe8DcURfEuSe+SpCzLCkgOu7+bzUaz2Uzz+VzNZjOJDu12OxEF/nQS4uQHMuE7mavVSuPxWNevX9cTTzyho6Mjzedz9Xo95XmuTqejdrutwWCg4+PjJApIpySo0WikYznJ4TyQ881mUyLykOTxeJxIcKvVSkSba5SUSI6PG2cGJKpWqyXiCEmGlK3X60SiGS8Elf8gjz5vkjSdTjWbzZTneXpvvV5Pc++CSb1eT+S+Xq8nQWc+n2u5XGq73arT6aR54x5LpyR7uVyq2Wyq1WqleeQ9zWaz9Ge9Xlej0dDOzk4SdNhJ5mecvyiKRIq5Blt3Sfjhs4hBq9VKs9lM9XpdeZ4ngolQsN1udXJykgQdnC6bzUbj8ViSbnHQcA/d7eH32Qm2fx4RCwcLogbrnvfzp7sA+AznhIBzHMQOzuHHc5fB7u5uctNwj7km5pZrcafOZDJJhBzRgHvCfePvrF3WebPZTGNEaGAsTvirx1iv10nk4E/mkj9dWOJ6uEa+N9zxg6DnItU9huf9HpbK38X97ODOh+oEAoHAqxsv6Hfi+B4OBAL3Gl4uQeHfSXpDlmWPSfqYpC+R9F8+1wewOfsOMjuzkNIsy9RutxOhoAQCcgoxhkRDfCFjnGcymejo6EhPPfWUPvrRj+rRRx9Nu7TNZlPNZlN5nqvf7+vw8FDT6bRE7iCJEB52pyFp1d1tCE5RFBqPx+r3+4nYMLbVapUIje9O81nINoSb90Ckt9ttGgPXDkmCXEHaKR2g1IPP12o1TadTHR4eqtfrqdVqpfuTZVna6YYwLhaLtFuPuMJcrVYrTadTZVmmbrerer2u/f39RBTdNdJut5Ogwm4+87i7u5tcCUVRqNPpqNfrlYgl78fl4kSS64IkusV/tVolVwdCzGq10nw+T/ODSMPcrtdr3bx5M93fRqOhbrer3d3dtA4RVaRzws8Y3dLvO/br9brkTGHdXCQc8HeItiS1Wq3SNbqQtFqt0rEQt1i7LhqwHnFCeOkM43OhwssI+Hyj0UjPogtrPBMutCFUeMkP52AtUJYhnQol7XY7ORm8VIHnxteCl+owfkQQd/8gSDEGvy/3sJggvYjv4UAgEAjcccR3cSAQuK/xsggKRVGssyz7o5J+VNKOpL9VFMUvPdv7q7uUEAxIx2QySa/v7Oyo2Wwm+7znBEB+IFSr1SqRTn/PcrnUzZs39bGPfSz9t7e3l47dbrfVaDTU6XTU7/c1Ho/TGFqtlrIsK5VXUHYBKYEMsgvu5QrY4Z1ELZdLTafTRPDZbaVEwcUI39WWlFwIvrPNeZkzBBknSYyr0Wgk8sbx5vO5xuNxcgT4jn+z2Sy5QrDV+06xzw0lIuz4c+8A4oOkRHhd4GB8nLfdbqvdbqedaHbCOT/zfrYOS/kIvAexAjHId8ax6HPPIOYuaO3s7GgymWi73abyEnbimUvIM+dm/IhgPhbfCfe5ZpysKXboq6ju3nOfKUlxFwJi2XQ6Tc8bc+WlNawn1i0ODi9T4JiMHdLeaDTSGsGRwbVyXfwd0YC1xvV4TgX3ESHGRQ3/GSKJv89zUFw04T65KMI5+Vw1H+Rewwv9Hg4EAoHAnUd8FwcCgfsdL5dDQUVR/IikH7ntgZzttLplGaLArjE7xpAG6VyMaDabJUu1k0t2RSG86/Vaw+FQjz/+uN7//vfrkUce0bVr17S/v5+CGiHzlEBAPCFc7OZDVKrkxHd+IUxcIzkDLprMZrNEjjwPot1uJ0FgsViUdsEZT5U4IppA8PI8L+1w+7ggo9Smc1zGyPVCEH3nnh1o5hTyxVh8dx4xArCDT3kLJK/RaKR75gGAXu6A6NNutzWZTEo70xeF+TEvkFqOTSkDDhM/93w+T/cZ54ikVKIxm82Sw8LLbDzYketm/IgBzBvlMNxX1jvzzfFd1PBsAXfgsHu/s7OT1gf39yJRgTWLAMe6cNcMa9SvB7eDdB72yXPlYgHPpIsKjN/DD72Ux8MVES2YQ8+8qIoKF4V68hpjdfHPw0n9XnCduCS4pnsZL/R7OBAIBAJ3HvFdHAgE7me8bILCiwGkwDsESEqkVSpnCECG3NEAWUFogNhzLCf1N2/e1Ec+8hG9733v09WrV9Vut9Xv93Xt2jWdnJxoNBqp1+up1+tpsViULNqQSJwSXhsPOYLMQqo6nY4kJUcC1yQpETwCDCH0hCy2Wi3leZ4+Q3gede1uNec/SDE1895dwec8z/Mk2vg8QlYJ2Fsul+mcuCImk4mGw2EppwCBgp1/r71HMHLRgLmkDIL58wwIFwt8XG5/d/cGa8Nr+DnOs5FnzwQgT8Ffk85LDhCwPPgScQLHRfVcrVYrrR/mh84f8/k8rTHmkvlxcP9csEDM4jngT1+PTo45r+/ec3+4tzhpNptNEnM4Hs8WAhL3iDIYfw8lFMwB53F3AUIFx69mOvh7q888IoyLFn7d/Jz7jwOE9c1zxrERvaodRQKBQCAQCAQCgcCtuDSCgu8QQgJ4jR13T9yv1lz7a26B5xgeVEgmwXg81tNPP60PfehDunr1qh566CE99thjevDBB0sdFPb397VarTSZTCQpkV4IYtXCD9Hz8bCTDXGvWtchN24fn8/nGg6H6nQ6yWXATjfvd2cEc8Wu7Gw202w203A41GazSWUHLspISnb/0WiU3CHcB0gtGQaMfXd3V+12W9PpNIkjbhlHyOGeQfQgmoyRcVDiIZ3v4FeFIUgg4yLdf3d3N4Vhut2dz7o7AFLNnzgduF46VPDvascB1hn33h0x1fUrlQM1ERU4P2sEJ4SveyfG1TF7sCZrxt0E3EOfLz5PhgbzztgZK04H1hfOFe/s4HkQHvhIK9TlcpnG4R0afI6qZN7/7ffPnycvf6gGMHKNnMO7RzjcscIc8KwBzs34EUkCgUAgEAgEAoFAGZdGUPAdwYus604sII8QD3ahq7ujXmfttdV8brPZ6OjoSB/84Af1wAMP6Pr163r00Ud15cqV1KKSVpG0RnQngecXMDb+JLvBgxxp8+eWcXcpeBcESOZyudRoNCoRUz7vIXfVHVxKLLbbbQpKXC6XqcMERI9jeQcNiCbXSWtD78YAEaYen5p87Pq+A7xYLJTnuSSViGW1Dp6d8/l8njpFQECZL3a4aZFYtcAjbLgd3wUM3xXnv2azmYIlR6NRSRyB5DMW5sLdEz4GBBsnrThUGo2GWq1WyRnha7/akaJapsP4/bpYx+5M8YBQLxlAgFgul6UcA+AuHlwprDEXgxgr5/PsBO43a5l1xvur7gF3DriAhbDgr7F+cFYghLkLqSru8CfX7KUSVeGC7xS+T3gu6OARCAQCgUAgEAgEyrgUgoI7CSDDECB2bKXzxHUngxAZt1dzPGrkJZUICj+jK8GNGzf00Y9+VE888YTe9KY36erVq7p27ZqefvppnZycaDwe6/j4WMPhMNnSfRez2WxqOp2m8Xn4HuNiR5vdZK8Rd7eC16H7LrmTIchYu91ODgXAeSGviBiIIcwpuQzueqjVamlHnq4TtLWs5i1Q29/pdDSdTjWZTEq7y4gRCCjz+TyRac7l5NlD/Tzc0AUmrt3XAHOCO4H3Ik7hdoAgOyaTiZbLZdqJPjg4ULfb1Wg0SuvSSykgyu66QGTgPjLvLj5B4pk3bPUIIxB/z6GQzoUGxsKceNCopJI44MIW881xcQOwBqqlG8wdTp5qBoI7D1iP/Jzntt1uK8uytOOPm8CzExgzz6dfC+N1p45nU7hwwHqhpIZz+LxVz+tOmWrXFC8fqY4rEAgEAoFAIBAI3IpLISi4hRyCwC/3EDWv4fa6aVwJtDSUztsBYst38implLK/XC41mUx0/fp1ffjDH9YTTzyhhx9+WN1uV9euXdPR0ZFGo5EODg40HA4TcYZwQHTY3YeQ4JhgTN4CkJp/CBK7+b57D1ldLBYajUbabDapXSLnwIXgFvbtdpuIcnVnH8s7r3nnAyds7NQ6EUY84b1uGfduCIDjuIgym80SmYYEO2FlvBwb4iudu1Tc8i4piRfkO0CkvROECx04C4qiUKvVSs4KiH6v11Oe5+kescb4kzExD4yH9Uhpy97ennZ3d1OHEASGxWKR2mjyObIKEHy8ZMHvH/eZ9eJ/d1HJ58ndGqxDJ+surnkIJ/PkgZT8HZcG7yU7gdKIalcR7rV3TvDSDl5n3eO6cOdPVazh/nA/6L7ia4ZnD9GR1z0boVqa4gGQISoEAoFAIBAIBALPjUshKEhK9fDSeSkAwXDsmHq4H7uMJOH7zr0HEna7XUnScDgskXUIDQ6Ao6MjPfHEE3r88cf12te+Vg899JDa7ba63W4KzvNAQwjHZDJRp9MpkXsIsdvVuQZ2RVerVSJknicg6RYb92QyKYUqssNPWr+k1JVis9loNBql1pQebuc7/IQOeqo+O+3UziMSMFeIMoybPIBWq6V6vV4imnme31K2UhRFye1AS0xaMDrxxcFBVkW/39dsNkvE1Ulpp9NJeRHu+uB++Jy3Wi11u91UqjIejzUej7VcLjUej3Xt2jV1u920pqbTaSKvrE0IJ/MFwfVuFwgY3W43kdbpdKrVaqXRaHRLWCRzxNz6ffM8gG63m+bBCa+XzrjTAOGJn3NPPQjRW1r6Tj4OBwQmvz/cG9YkLhgEEUIfuZdesoAYgtDA9TJ/ntdQq9VKpUx8B7jY4veba2UtMod8Z1SfCeYOpwLuDq7NjxMIBAKBQCAQCATKuDSCgqREJHAYsEPs6f2Qb0gEu/LYtj2Ijt3iTqeTUvR3dk7b2TkhLIpC4/FYTzzxhJ5++mkdHh6m+nx2u9vtdqm2mp9LSruntdp5K0kCEMfjcdqJZ5cU8sluMcd2C7aXRLAzDrmWzsmVt7drtVoaDAZaLpc6OTlJ8+UheF53Px6PtV6vkyBQFEUK1fP5ppuCZwZI0t7eXnKG3Lx5M5Ewr23HNSApHYc8Cs9EGI1GifBzXThX8jxPgslwOExzxL2jEwZzBel3F4ak5AZgrthNR1y5fv26Op2O+v1+qRMFDgPv3uBujsVikcQCr/lnrvv9fhI3EC9wWXhZBfedOXbiyzrnfhAkSGiil7OwI+/kmR38ajkILoWqUAI5R6SijIbxuQPFQxCZX18v7gxwR46vJXcr0EmEY9RqtTT3CCAehsrxXPDjvC4+8XMPc6TMhzF4t4lqpkUgEAgEAoFAIBAo49IICpDLZrOpZrOZduUhA+xeus0aktFsNkv5CJAbwhshV3QogHCx+8nO+c2bN/W+971Pb3jDG0oEjNaHHhYJ2XWxoxoG2Ov1SrZ634X3nexWq5Vq/NmNhfRA0jzkkGNxHRxPOu1akOd5IsBc+0UWbrIh9vf3UykCu7O+G03yf6vVKqXtNxoNXblyJc3fU089lQiuk1mOy7XOZrN0bwiIrBLtPM/TWuCeQyQnk0kSn7hH3W433U/O70GfkFXG1Gg0UkDldrvVk08+qfF4rOvXr6vdbqvT6SShyq8DQcvdMOxi+z31/I6dnR3leZ6I+/HxsSSVhARf397BwcsAuPfuHBiNRmldMx7WuOd8sCY3m01JDHO4i4C1mud5Iu6U9vi4gYdicm0e+Igg4m4Lf5Y4r6RS8KWX9nhpDqGoPL/cB1/nzxdmyTldzGGeET6qpTyBQODVi2x3V7X9/bs9jFce67U2R0d3exSBQCAQuKS4NIICZIQAvTzPNR6PSyUEblumltp3qb1en8/Q6tGzBrwem/r46XSqk5MTPfXUU3rve9+rdrudMgs89R4SBMnNsixlA/BvRABIkAsPTqTcgeHlDN5mkHaNCChuxa5mAkDYnPxDKGmN6C3wttutxuOxVquVDg4OkvuB+eF6mDsPz3SB4LHHHkvXffPmzVJdeqPR0HK51Gw202QySW4Pb/GISwB3x87Ojrrdrnq9XhISPASRe+1lIZBf2kgyx8wJZTTs8vPzLMvU7/fTbv1wONT169dL89jr9VJOgxNSzyjgTwIdpfOyAsg06zbP87QTTlnMRbkgkpIrpdVqpTwLrrXZbKa1z5y7wMF69UwFDyzlPjIWz0sgD4H7BSFH8CGbAnGBewM59xIRxuUOCl9XXLOPkawQd2zwd+924nkJLnS4cObH9ddc6JnNZiVBiP8iQyEQCOy8+U2SpBu/6UA/+83feZdH88rja5/+ZP3if/0mZYcnWj/51N0eTiAQCAQuGS6FoMAv+pA2yCPZBR7aB3mElFLj7u+HrFIXz2c9Cb/VaqVSCHbHJ5OJTk5OdHR0lHaRnQh2Oh21Wi1NJpNESCSlnAOIm9vP2fn32mzfSZZUEhQgh5BtSgrcur6zs5N2+alX57O4NxAx+A97v1v5PeOh3W6nlH529d35ISldFyIOxPfKlSva2dlJTozJZFIKxsQtMh6PkzCT53kaF0KGZzN0u90kKjAHiDJ5nl8Y3Anp3NvbS7vXBBayjtxOj7BAh4fFYqHr16/r8PAwjZOxQDZdPNhutyn0czabpXsznU5LXUUQK3w3XCq3weTYF+UOQOK9GwRrMssyHR8fp5IEL4HhHrvAw7iZDzImXCjjvbhzuH7G4mPjGHyG9YvDxgUCL81wtwFilIcici4X4vyZA+4e4X3e6cPdHt4phdIY1oGklAHhIshFTo5AIHD/Y/tb36pNvaZtvaaf+K533+3h3FX85Qd/QfoXv6C3veeLtfftj6j9y09q/bEn7vawAoFAIHBJcGkEBcgSJNnD/1wIYFcU4kkYnwcVQqZXq1XqyuBEHVszO73kBqxWK52cnOjGjRu6fv16KeWe3cx+v5+IsxOf4XCo+XyeOjN4WBwExS3w5Di4KMEOL2IIu8/ufIAkNRqNUgI+195oNLS3t5fcGwQGSko7+NT9k+aPgwBXBh03IFqQYS+ZYAeZkpIHH3xQJycnaafXr4kxzmYzHR4eph137i+dFfr9fnIM9Pt99Xo9dTod5Xmedu+x/XNv5vN5EjCY21qtlo5JfTyBn4QHcr3MryQdHBxotVppOBzq8PBQeZ6r1+sllwDriHO7SJDneSLHN27c0Gg0KnUDIejSQ0S5DrI1ECuYcwQ0XDS4NZhPukUw56wB2olyPo5bLTFAOHLnACSb589LcrzbhZeSuEvECb5nFkgqlSEhuLAGEclwkFwkHniYo68vJ/0e0Mharc4tn6UNJmIewhUiVTWIMhAIvDow+z1v13f+tW/Xmxvtuz2US4X3vO0Hpb8jPfbDX6UHfvLjdOVH3qvNzcO7PaxAIBAI3GVcCkFBOm9JB2FhBxNxYbVapd1Qt/uTMD+dTtNONHZwyKPXVmPVhjBBwDjvdDpNhHIwGKRa+p2dHXU6HQ0GgyQeeOu6arI8hN8t0x4Oh+UcsHPOXLCjP5/Pky3b7eoQIg/Ry7IslTZ0Op00Hkgc10r4nFu+GcNisUiBkpC17fa0FaUHBULQINWDwUBXrlxRt9vVjRs3JKlU9w6Jn0wmKbiv1+uVghcp6+h2u9rb21Oe5+k+e5Cmu1i4Pu+swTwhjOAk4DMIE5TUIHDQSWI8Hms4HOrmzZvpMz7/iCG4MNjxl85Ldygn8TBA2it6S0oIbavVKuVjuMV/Npule8tr3Nter5cCIVkblFTQpcJbfHrAI/cTUcmdQNWOE5Q9ILxxf6tBiKwZF888y4HnHKHHhQN3cHgOhJcGuYDG/ea6/eeeHeGlEC5GeG4FZTQugDGmQCDw6sHJf/1p+ot/7t0hJjwHPvgF75a+QPp1n/KH1X6qptd+28+pWEVHnEAgEHi14lIICvzyzy/vkDIPaYRsuJ2bGm/I/Ww2SzZ1yLO38/MMBtwBzWZTnU4nkdnhcKhnnnlGx8fHmk6nKVHfuwkMBgMdHx8nkuwt+zy/YblcJhu8ZyMwNpwHnBtnA+B6yZVg3N5tADs35BZSRHcK5pM5k853xbHpS0oOAm/n6MGG/Ny7B+ComM1m6na76nQ6aUffAzN5/2az0XA4TDvcBCJKSiIG52B+GBvHQfThWiC9CE6AvAPPUvDcgPF4rNlslpwu3GdKP46OjnTjxo0kNDAO1qvnMjCWTqdTIsWUlCBGIeT4OqY9J7kEkF8PlOR93lKRUp3BYKC9vb10XHf1sL68/ME7GPB+hBcXSBBvQJ7ntzybCAGM09eu5yvwPp432nXStpTxMnZ3GbjLwQU84I4Z1qmvDQSkqjvjomwE3l/NcQgEAq8efPzXvFef3Q4h8Xbw/v/ib0iSPv51X61slWlnkemxr/upuzyqQCAQCLzSuDSCQtWSzc4u5BdChROAnVPIICRoNptpPp+r2+0mMaK6qwl54d/kI5ycnGg8Huvpp5/WU089pYceekjdbjcRQHaJ+/1+IjXYwKt1+m5zp94fwku2Ain2WZal8oFqHT0EFdEBkgrh8e4PHlDnxBaS5gQXEuudDyCpkHfOz/m864ETV8QQiDO1/RBg7i330m3vHphXzX3gGnkfGRlZlqX2kVUXCNfv4gLkmOvK81xZlqUxrFarVPrAGCVpOp1qNBqVsiSYA8i/O2pYj6wZavURzJgvSkPoxMHa9vIW/iNc0+fLRQZKTnq9XrLws3aqbVh9DXq+gWcvsM5YQ95pgtITHCK4K3imWM/SuSuG9/u43BWBiwg3ijtfvIwCR4U7BjzMktIOL3XwZ93BsbjPOCi8G0i1lCIQCAQCF+MDv/dvSpJOtjO9/bGvftHHaf5sV6/51n97p4YVCAQCgVcIL1pQyLLsdZL+jqSHJG0lvasoim/PsuzPSvoqSdfP3voNRVH8yPMdDzJeTYfn75AJt2pDyhEcIEGLxSIRWyzfkBOv28Yd4MR3sVikpP+nn35a3W43dVFgLM1mU71er0T0INSQbcaJRdx3P6tp9uzoEwpnc5xIGsfxnfaqMOIEjMBKPxfEGuu71+sj1ODSIBMAcu/dChB0EGpWq1VqLZjneQo4xKrvLgpJ6d8QakQLCCrZD4hG/DvPc+V5rqIoNJ1OUyCn70C7GIGowbwxlzg4EFQYG24FOht4eQIiiaQSQSbDwwk1ZNuFHHchNJtNHR0dJRLr5DvP85TXAMh6YP3jwqFrB24Pv37GwzrnOrkmDx/0cgT+Ld0a0Iio4N0/cL/gUOB8XBtr2kNJN5tNqTsJnSvcqeAuD47tz4znrvCfdyJx8O9qmKSXyXiHCgcumcuMO/1dHAgEAi8Ge7W23vtZf+dFf/7H3lbXX/uCz9HNv/1xGvyde8vpEN/DgUDg1YyX4lBYS/qTRVH8+yzLepLek2XZvzj72V8tiuKvvKCBnJGXat94yIS3tIMMuDWcz0B+6eRAbfpqtUq5AOwEs7uNXR4iPp/PdXh4qCeffFL7+/u6du1aqb0dxCPP8/SaCwe+c0snBAgs18M1ONnm2N720APy5vN5IuFY8wFz5F0a3D1RDcaTVCK9OCQYM1Z8SkmwlCN+jEajREQpd8jzXFevXtVoNErvkZTEA3bUPQchz3ONRqMUiIdIgVAAaRyNRmlenYzOZrNSfTzkmawD7if3xlt3QiIJqOx2u2q320mMYo4I7+x2uyno8+TkJM0VZS+UsjhxRQRg3fV6vZLjhPUL8a52NOE5QIjg+judTiqlwaXAvfRAR0QOxAzvjOFrzdebCyOSSpkCuBl4L+eTyq0deV9VMOE/xoYYwbPgnR8cXsKByOPig4sBPm6Of1FYJOdkrvz7x7+D7gHc0e/iQCAQuBv43Hylz33Tj+if/k8t/dT/8Ab9zB/7VNV+8ufv9rBuF/E9HAgEXrV40YJCURRPSnry7O+jLMt+WdIjL/JYidBDQCBWXvbAjjLvn8/nJULEzqWTJj5HCQW1+hAWRAjIDCRnPp8npwJWewgfrgfIFzkOkFuEg+r1setf3SlFkKiGR3o9OP+GmDsJZN6YJ0IZSc5HUIBwQ9yx1HvmAdc3m820t7enVqul+Xyuk5MTtVot9Xo9SUok2stOaPX4wAMPpNaVEPrFYqGTk5MkvPh1tdvtJCh4aQpOAFpvjsdjtdvtdJ7j4+MkVuzu7qrT6SRBYTKZpLBHOkEQBMh5vZwE1wLnY+wIPwgOCDLj8ViTySTZ9nlPv99PpRXMp+dJIAaMx+MUpoiw4yUgrBs+61kPjI9gSH7Ov30deckAAgRzu1gsSuGD3tmDz1GOgzAGvHMEz4+XHkjnmQkIDcwTYiAZKYgCCA1cqz9DHINn3Lu0VLtY8B3gAY0uOrqLpBqmyrUhXt4LXR7u5HdxIBAI3G18fj7X5+e/qP/re/6Drm/6evdnfebZN9zlRXwPBwKBVzPuSIZClmWvl/RWST8j6TMl/dEsy75M0s/pVLE9eq7PQ5SpbUdUcMKMGwAbP0SSjAQXFapdFzzgrtvtpt17nAneihIXA4SLOvper1ci8RB1qUy+PISOc/MnpPVsziQpiReQLYgf73GSTbcDHA3sEFMuwnkoDfDdac7rY0L8gPRJ0mg0SrX/i8VCBwcHySEAcXeCD/HKsky9Xk9XrlzRwcGBJpNJIpdZlml/fz+JCIeHhyViTokFxB5yzM67pNS14+joKLkBEE0QCsjCWCwWmkwm6nQ66nQ6arfbSVBwogjRpqSC8gHaa3LNCEW4Ivb29jQej5NwwVqRTgWEg4ODVBqzs7Oj8XicAjdZR4gCrGW38dMhpBr2SQ5ENY/AxQDEGp4frhEhipIZ7plnUFR38qtEnfvHWnbxw90+gKwQykV2d3dTG1eeHe+yws94Dr1tqQdBeoCrpCT2+fcAnyHDwrMocNuwjn2emS+u/17DS/0uDgQCgcuCz2zVJI31lp/5IX3Kx907mTbxPRwIBF5teMmCQpZlXUk/JOm/K4pimGXZd0r6JknF2Z/fKukrLvjcOyW9U1IihVj2vT5fOt897Xa7kpSIkZcfAIiZdJ5Ij1jgrSJphchOKeTak/Gn06lOTk40GAwSsfWuB24dl86t1JQ1VPMeOL6LDuyUck6u13eUq7kLkkrEyK+Ta+10OokwuaCAyEK5gudK+I48gk2tVtP+/r5Wq5WeeuopjcfjRF5xUIzHY41GIx0fH2swGJRcCxwPBwMEXTonijgICJ2kTp/3SEriwXa7TSUVTqLn87n6/b56vZ4ajUYSgjhWvV5ProqL0vv5OTv/CDKsgZOTE+3t7andbqvX66nf72s4HCaxBbcGJRAuCuEcoIyE9UAuAvfcno1EklkrXDt5EB6KKSnlKkjnJSuSkgDh95b3e16FiwfuxmHNI1r57j6lAjgiquGgPI/Mha8Hd2bgRqCcgfXP84GwxrOKa4lnDXeHP3uet+CiF98LHLvalYNjXNQS87LjTnwXt5S/cgMOBAKB28Bj9a5+3Sd95G4P47YQ38OBwD0EK699/7f85hd1iMZJTa/7C8+S+XLvlM6+ZLyk35izLKvr9Ivze4ui+D8kqSiKp+3n75b0wxd9tiiKd0l6lyQ1Go0CwuB1yx7it91uE0kdjUYajUaJfEAczo5bcilgAWeX363+CBT+OQ+Ho+vB8fFxcgdgrfcd1TSZZwnxwK3fnqvA2CBUtE+ESCF+eGgeNnFvOQh54jXq0iGXzAsEmQ4DiDeQZ9wA7J5DCnGEDAYDDQaDJBzMZrNSNwcvMxgOh7ck7bOzTH7AdrvV8fGxJpNJmhPuNdcCaazVappOpxoOh9rb21Oj0dBisdB4PE7XVq/XNZlMUhvFZrNZIrmUGszn83R+8hxYV/P5PBFbCHu3203zPp1OS90IcGPgHCBngk4jHiwIEBSazWZyMHD/arWahsNh6f1uvZdOxZXZbJayGHxdUXrTaDS0Wq1SWQ4CmDthEKvoqgHR9zXhoZncB54NxAhf8y5C0bWC+4rIxTpA5EDIYg32er30XHuehHchcbcOa6YaKskzjmDCsZh7hEg+53kNCDfecvJewJ36Lu5nB6+e//sFAoF7BjVdfodCfA8HApcf2e6udPb74oe/9m1aDs5+z36RXzGLg63e960XixFvevdNbT9wLoYWlfLh+wkvpctDJum7JP1yURTfZq+/5qyWTJK+SNJ/vJ3jUb/uLRG91tpzCKTzMDzpPL0dcuY15B5whyuBwD7S9Cl98G4JWZZpPp9rNBolMukkiBIMxlWr1UqdDNhxhfizo484wnUS1uiheez+QigZHzu4XpeP+OEEHqLNNZ7dl5JVvWrrprYf0u1EH9Ld7/eTlZ7xAe/QAbllDiB2lGNQTsG4PDOBnzUaDQ0GgxRyCLHj3ycnJ5pMJqmTBMLDeDxO54REcy3V9eAOl+l0WspxYG7zPNdms0liCWQYYWlvb0/L5VI3b95MDgis9bPZLN07SC6lD9K5o8VLHJh/7o3vlHtOAW4ODxp1h8JwOEyZFS44MMcch/MzBgg8a7G6fiWVMhy49zxzkHbcP5LSvccFwXrAqcFaolsFgoYLMu6SYC6qbgfELRwUnp/gQafVbhA4MrgW/9m9gDv9XRwIvJrxvuOrmm6XymuN539zIHCG+B4OBC43snpDtX5XN77wTbr5FjjT9jk/c/sHv/jl977ziqQrp2/ZSm/85l9NPyuWK23PwuvvB7wUh8JnSvoDkn4xy7JfOHvtGyR9aZZln6xTe9eHJN1WU2J2KqVztwBhcPyy3+12lWVZSuJnlxkiAQmAcGGLxj5fFIUmk0kpwBELOmSDXWYI1XA41M2bN9Xr9dIuP8SG7AEyIMgUcOHAXQbsukPmPBQPEudp+F4L75Zwb/tHrTllG4gbBNZRO06JAEQLsUZSIniIJf5edp1dUKD1JIKHiyQ4LMhxQDhgXpgDyK3vJnsnjel0qu12q8FgkIIgvaSDzgg4A5jnxWKhdrudXBOLxaJUbrLdbpPYsd1uUz4CThbmnWthTW42Gx0eHko67e7BmvR5cfcDOSDs2DNf1PT7WkdYgiDjqIFE8zPWO88Ex8TpwjrHwUAuBw4IOp7QVQFXAp9nnXLcZrOZXC8uXHnZA2CtcH93d3fTPfTARYQFhAcENUQHF/pwWbhI588T7/NyCP85rgV3hXAvvezBnQxVwc0dIpcYd/S7OBB4NePK1+/oH/zgw/qy/o27PZTAvYX4Hg4ELiGyekM7jzyk8Sc9pMd/e02nj+Irj6ImvffPvDH9O3+ipkf//uMXvnf94Y/ec+USL6XLw7/RxZrMi+6vi1Xe67Fns1mJdHa73URwsD1Dot1+P5vNSmRbUon8O4nyenAIk4fRTadTTSYTXb16tZRLQO02pMzT9J1oQ+glqd/vJzfDcrnUdDotkRg+yxxgH3cCD+H1mnZ2dZ0IQ0bn87mm02lyNzDHOAEor2Cn23fouUavyfcsB8ZFqQRhl+Q4jMfjUqAhWQrcIyzxfh2Mdz6fq91u6+GHH06ZFt6Ng7IUrgP3gu9sMyeQVdwWlGtwfQgAEHB3LzDvw+FQy+Uy5StwfBemEBCwy3Mft9ttcgHM5/O09lgfzD3z5J+D3HsJj5e9MG/VAE/mn/tRr9fV6/XSmuCeEoToYY+epeDC1dmzn54nzzeoOhCYR0klsYtzUcLEPBRFkVwWCASsAxwNjA/HhJc08QzxXUEJCy4ORBWeZ88lQcziGGRD3AuCwsvxXRwIvFqx/51Ph5gQeMGI7+FA4JIhy1T7pDdpebWjX/vC+t0ezS2YPrzVr/yJhy/82a//vj3V5qsLfwayjz6tzdHt5bvuPvSgtg/sP/ux1ltt/tOvPuvPb+scL+nTdwiQ0equre/0Qyi9Tr7ZbKYdZk94h8B72BzHlc5bNXLuRqORShik83IFCMlqtUqlD71eT51OJwkElARAXHBQMF4ID2i324mUs4Ps1mwfK8SGv/vuKy6D1WqV6vqp9acbQK/XS60VncBznZBPJ10eAIhrgjl1J4B0Tjzb7bba7bak0y4RdI6gxaPXoUPo8zxPHSs8RJDrdRGj0+kkQoyrw8P4ZrNZOh6EFFLLcQhnZJ1BSLm/vjMPQSZ0kWyCoig0nU51fHycRAkXUdyxwbFYf1WRijXBOuJnjJ/XXaRibXhmA3PvNf9etkB2xHq9TmMmN2FnZyc9B+5KcUHGBSZvtci69uetKnB4K0zKkaTzEgueYXchIKxQssT9dnGFY3AexCCeDcaJ8OCCn5dG4YDg/Y1GI4kInsMSCAQCgUAgELh3sHnHW/W+33Vvlq6970s7z/uea+8ZqPfh28tkePLNLZ286dkdDzvzTB/3I29N/248fqj1Bz98W8cGl0JQ8LR4zxBgVxQSTBgfRN9dAb6TiCDg7eakcro7ZIX3E7jou/z8bL1e6/j4WDdu3FCn01G/31ee52n3nfA6duDb7Xa6HogOVnhC9RqNRgoSlFQiQF7zjcgCcfeQOchyp9NJx8BmTwtFSkOcBCK0sMvuqf1eO+9dICSVMiLcZu87/pPJRNvtVr1er9TNAFLqCfyIGOv1OoU94sBA1OD+dbvdJDbQXhJiyvs86NB3qt39AVGFuHr5hrstttutTk5ObhkTtf20LGU8iAruhsERwVqC3G6325QBAmGFgOOyQDCQzrtheAnGbDZL87C3t5eeE66b47GuWNcIEB7ayec8t8DFJs7pnTEoHwLMK+uKsiB3MHD/ETp8bfM+Six4ZsjIcPcBc4oowtp1BwTXjiDGWuCclNx49oMLPtzLe8GhEAgEAoFAIBA4xeLzf5M++tk7z//GexjX3yZdf1vzNt/93OUTm1ahD/ze82N1P/KIBr/2YOk97R/9BRWrZfWjCZdGUPCdVN/B5DVIyWg0SoF4fA7y7qFyEAwIIcTSd9jZCc+yrER8qWPHVk/IHl0OyAfAGeDhkU7AaDsoqURUsF7PZrMkRkDmnBC6PRxCBGGmdSb2d+YRIUWSBoOBptNp2qknA8I/g1WdEgkIund6QFhgh5y/I1p4/oVnCXS73VKYnu86I7SwW0wryM1mo1arlcIOx+NxEkDa7XYi0tL5brakknjkmRDMibsaeB0L/2q1UqvVSiUizD3n5nyILdK5QMSf/B3xgc4abs2HAHuuACIac0w4KfeA9VgtcVgulzo+Pk4ZEXmel6z8LgZ4WQHnosVltQzGHUEQcs8KQYBhfN6JBaFos9mka/cuEORfIKj5ffPPkk/SarXUbreTU8XnHoHMx8eaQphxAYf5QzzI8zytVZ4FsjZcFKp26ggEAoFAIBAIXE6Mv/jT9NSn6UV3bQhI40e3Gj9aDie/evA21daF9L3/4MLPXApBAQJNvoGkROrY0ZaUyOjoLBUTMgEZqdquqeF2Mg0Rcgu5d0zAVr9YLBIZ8l1eBAAEBciapBLhRiDheFwju6WQHq+3B5Az5sZrwHkv5R4QMs7vZSOdTkdXr14tWbexkx8eHpbKPny310kY44Boc12Mi3IASaXsC4QRiB1klMBFSlUghrRbZJydTkez2UyHh4caDod66KGHEkGt1uxD9D3kERLPfUVAQGjwNYatHkIJQd3f39d0OtVoNCqVEvg88zquA+aLsVB6MhqNSi4NXCg4NLz1Z7PZTOTZd8oR27hX0+lUR0dHqeSD62GnH9GH+7ZcLksdQ1xE8laPVbu/B126aOJrBOGDe8MccS04jFgbrJnJZFIKocRlw3kQZpgL7xzBtSAGIhYyv9x3nicPd0SEYdw8P8xtrVZLnT8CgcCrAx/5xs/QNz387ZIuX71tIBAIBJ4bx3/g0087OISYcMdx461nLofvvfjnl0JQcJKCOwAi4hkCCAfr9VqTySSFulFD7rXU7E5ClNg19p1ht1az2wrZdFs7u7qA8WDdpi6d3V6vV6/X65pMJqlWm+A+fnZRGQMkiN11WkB6eGS9Xk9hde6QgBBDtj0AkV1frvf4+DiVTYxGo7R766UIHkznAY6ehM8cIg5A0rxshawCrP6ICl4u4sfDtfDUU0/p6OhI0+lUg8Eg3TPIMfea8D6uUzoN06QsoNPpJEGHtQThptbf6/0JlaRbAmOsdg2AjDKPiC38LM/zVK7BOsBxAlF2sahK1F2k8nwGhILJZKLDw8OU34Gg4rkYkHDm38tw3EHihN1JeLW9JWIO84bzhHWFi4E166KfB4q6U8LLJRirOwoY43g8TnNDGCdCEKKfCzCeY+HlTJ634fMhKeU6hDshEHh14MZXf7p+81f+vL7p6rfr7c0QEwKBQOBexPDXZSp27q3uCPcLLoWg4KjWLLPbzN+9dMAT2nd2dkrtAiWlnWaIBeQM8gRZh6hBUHyX3skYZI73NxoNDQaDUkCj29M5FteFhd/dAFybB8cBRAhIIgSIXVnKGdj1x6I/GAwSqYJMIwa0Wi0tFgudnJykbgqLxSLND2TQswcgcO7WwBHC9fqOMY4HJ5/Mj7c+dGLoRJmyi/F4rMPDQz399NN67LHHdPXq1XSPcQ4gqnB8ujPgRpjNZqrX69rf30+kk/aeLupA9l3EwhrvYX2+Tr2sgPIYggoRohB5CHBECOH4jBOhxp0avkYRrRALcIYgms1ms3TPfG15yQxCHGGh3CtIPGKD5x64SMAacmGF+44rgXuKC4jnljBS1pe7ISSle+htOqu5C5QjcL0IXjy3fJ458mBLxD+ukfvWarXSGkQY8e8ZL5EKBAL3J6YPZfqOR35a4UwIBAKBQOCF49IICtVsA+9icFEwmncCgOR4ej87np1O55bgPemcsEA+IE7svkOGvITAiTAECtI5m81KVm1JJfcEpGy73aZOCL1eT/V6XbPZLJEmD/rDXYE44J0k5vO5JpOJRqORhsNhuqY8z7W3t5cIKkKE74Lv7e3p6tWriXBBsCH2iCHeccBbbXqHgOPj45LI4gF4dCNw4omTgB1q5gry6LkHi8VCN2/e1BNPPKGjoyM98MADklTajXZyyY49wYZcE6IJY3SyTtkGf4fUM9/cQ0pxWB9VV4UHafp6rpajIIB43gbvRQRwV46LYxwPkYGAUA/V9G4VLnZwDNZ1tdSAa/fWkBD29Xqt6XSahBHm1teiBzZyj7ivHB/Rz0NWuVbPLfBQVtaNOy78uF6GgZjhrSe51x7OyrPMenZ3BnkdiAuBQCAQCAQCgcuNp/7EZ2jViyDtu4VLIShAgqq16ZB+/8Xe3Qq8BzLkggG5BZ1OJ+1COln1MguO6wSOcUDIcApQGuFBiIzdCSKv8Vl2rbG+7+7ultL2sZbTchJXBWKIdydwUg8R2t3d1fXr1/WBD3xAjUZDr3nNa1JgIuKKiybdbjfZ+aXzcEavKafzBYRrNpuVSjboGMH8M49cD6F5nqDvJJWd9FarVQqJ5P5DZI+OjnTz5s3U4aPZbKrb7abcAAj+bDZLwY2etYCo0O/3JanU7QLhxAP/uK/eycLXZHXtYOX3jAuIsAf/+X3gXF4Kwzmp7UdU4f3etQGXQrfbVbfbTWUlvV5PkpJY4NfDGFutVgqR9MBKupNwLxBdxuNxaU4pMWCdO6F3RwbndPHExUGECH/GWePV/BKOwbp0x4h3cfGSEu4L78W1QECmu5v4zqiW3VwkZgYCgUAgEAgELg82LakIU+ldw6UQFFwkYJfW7fQeDljdNfR6fRwKTlw7nU6pDt0FByzuEBh2RH2HnvptyNR4PNZ4PE672r67KikFyfFanucaDAZpR5/decoNOL50bs3GDo+YIJ07Kqj3ZleaMbALL50GKNJhQTonorTJ4/qo7acbBQSMuaccAGLOfDkQa9i19vtEFgalBRA6yh4kpZ/7fXRxAaGAbgtup+/1eqmcA8s618i8kCGAk8GD+iD83DfEFnbDuR+eG7FcLtOuNsKI74S7OCApjYX1BuGFXHv2AOufvADmmr+7UMXzArn3NUFIIUSdOSMLQlLKHuC4zAHH9b+zXmllyTi9W4bfey9RcIeRl5N4SCaiA+KPZ4awLhDNECpYo8y9t3x0IQABgcwT/u45Glwv4g/XzbUEAoFAIBAIBAKBi3FpBAVIbjUMjZ1GFx2k8yT3qsDgHSPo1oB13UP5INaQ9uouOsSwuou83Z62CTw5OUlEl7r46u4mhHxvb0/SObEfjUYpVJLWeBBYXAx0iGBX2d0DvNbtdjWZTBIJYy4JWWTM2OWZEzosYPeHsGLj53xVGzo72u4cQSDwsgp+vlgsUrgh/3Ec5h4gBHGNvIe6fEo8hsOhDg8P03xT4sFYEBW4195N4Pj4WP1+P10bggJhiMzLdrtNY/VuCIgI3hoTwsqOv5Nhn6flcqnpdJo6NXhXBt4HaWbeOYaXhvj98XvueQEICuQFzOfz0vPgc+8lG6xbd194lwUEkcViUQodpbQEkcCfVXcEuQvICb2XoXiQJ/fOP48ARikTY+Q87uBg/bgLiWv0Mfp1+HOMQyUQCAQCgUAgEAhcjEsjKEhSu92WpFKdObuuTtYJiHNy6jufzWYz2aknk0myYDebTTUajRIBZLfbLesuUngZhNfuIyJMJpOU7g+BcYdEq9VSp9NRrVZL9dmz2SzlCYzHY0nnO6G+e4vQANGUzgMlIZDMGcSI90+nU+3t7aUdaMj6bDZLeQ+SkkOCrgsILZRVIEZ4UJ8LLbhH3ArvIhBz7ETX8wWYM+DtIPn3aDTSM888o2eeeUY7Ozu6efNm6qRRr9fV7/dTOCGuAYQiyPlyudRoNFKr1Uq5A+Q5cG8ojcBV0O12L8ze4PjeuQDnCWUsCCGz2Sx9zstTIM4IChzPOyb4ObzEhXXC2vfuJFVi7eUWvu6rbpWLSoA4d71eV7fbLXVj4D1eriSdCxPVe+jOAF9PnruB6IEg4F04yGpg3e7s7Kjf75eOA7h2L/vgHnqOBNfIZ8g6cbdDIBAIBAKBQODyYufKgYqd539f4OXDpREUvM3gdrtNNduk43vZg6RS/beTIXaJIdbsDENkCUmcTCYlAsf5fSfYgwYlJRs3xEc6Dyz07AXfafeuB4TYuSsC8QFyAyH1oD7fceXaIXOeVO9z410pfJcY67s7QfgsoZOc1wPypPMdagIavfaca3ByiCiR57nyPNdoNErEzcMNZ7NZqdylWmd/dHSkp556SleuXNHe3l4SDbi+PM9TLsDx8XG6514CAxHN81z9fl+dTkdFUWg0GqVyCYL+cBQgLLCeOJY7LBBRWq1WEpfcJk+YI/AMBp9fD3qkpIK55fy4bBDbfNffiT7HZS0yXwga7tLxEhXfmfd1ybr2jiNO/quiFWPgGjimi35etsHPOd90Oi0FObqTAwGOz7jg6AGOzIXPF24Dxol4wPj9WGQsRMlDIBAIBAKBwOXFk1/yCZpfi8yru4lLISgAr8OWlALkEAYgKL5b7rvQXgftrgVINM6GRqOh0WiUjsN/bv2H3LCzTqK+131LSgSQcbPjjgCAeAAZ7XQ6qQTCyRLnZDe/mlXg5QGeL8F8+Jiod2c3mnFCuFwAIbPAiSWEmvmATErnO/S0rnTxxN0VWNO9+4GXRDBuvwd+foSYnZ0dzWYzPfPMM7p69Wq6f177LikJRpDkavYGhHMymWgymSSCu1gsNBqN0vXkeZ4IPaKWl8TgEIBorlYrtVqtFKQ4Go1SHkW1S4G3JfTODC7EVMM8/blgLdKhgJ+xZpmDKsH3khzOg0jB69XrYhw8S1XXQ9UVQT5Bdb55HlxAYE34fHDfeQ3RinvL3PAzSSkPg+P58wu4Xum8DSvihQsq/l3CMckPCQQCgUAgEAgEAhfjUggKkAm3YrN7CIGEyPt7pfM6bcgApMLrpMk9GI/Hqa0gxMZrpPms12YjBNA+sNFo3NImD/LlJJhuCNTocw2S1Ov1EjH3Y1CLDjlih9yJFAJAdXfZd58pp/AWjcyNW/YBBD/P81KNO2Px/Am/B966z8tC3NpOh4A8z0tuB+rnuW8epOefx7Eyn891eHioPM917dq11M1gNpslVwVjJb/BuzJwHxBaEAdwXLDeyHygrMQJNbv9iC3M7WazUbvdVrPZTJ9hzhEDfN64bxBiv5e+Y4+YwbkIsHQxAnLPGmD+vcsEIhJzTvcPgkKZa392GJs/oy6i8fdqKKNfrz+HjB0nEFkhlKpUcw1wCvAzxksAJ/cU5wGiggskF7maEA78el3I5BnFXRMOhUAgEAgEAoFA4NnxkgSFLMs+JGkkaSNpXRTFp2ZZdiDpByS9XtKHJH1xURRHz3cs31X2VnIejMfOtzsQ2EFnF9TJjjsXIFSNRkODwaC0c+pOBuzr7JxKSoSe1yCjXhbhtezkMFR3/xEnuBbvMsBuLDvjHA/Cxjh855ldayfiiAXkASBqZFmm2WyWshLISXD3BzXrVdeGt+FjHNVuBpISafe2ibu7uxoOh+r1eonwe1Ae8+GuE67F/1yv1xoOhylYkSBGdusReBAFPNgT4si4WAt+77zbQKPRUFEUSazwMENaWTIuFxW4r3ze3QjePtGvk/ly4su6p4yDIMTpdJrm3jspeMkEzw/3HmcO64x7SukPjgfyFNzZ42MHEHkEJG+L6vkezA/z2ul0UnkIrp5qxoLfPxewvByF59PLiZhHL8VgnTJmnpWq2MF3Dc+Vz607Ky477uR3cSDwasPDP7nQl//Oz9LffvQn7/ZQAvcw4ns4EAi8WnEnHAq/rSiKG/bvr5P040VR/KUsy77u7N9f+1wHgNx5AJ6TAXaIvUbck+J5zcmt7w5LSiTn5OSkRB5I76dNopMZ6ZzEQ16d3LPb6iUIHszowW5uIa9eN+ReUmksHk5HtgKEyUmspFTqAalzIk67P1wLEH+3oUNqcQS4eIG4g4gAsYPMMg4/LyS1Xq/r+PhYe3t7iazhxnC7OePgT4QeF1ooT0CgcAGJa+fvngfggtB2u9V4PE5CBPXy7hDhvvqcEWZJOQljbDabSWSAXFMe4cTbxZf1eq3JZJLKK1hzrBOIsYsHiE9eQkOHEI6J4MFcEbLJ/PIn3TcIKsVd484Q5h7BjutgDt1dQ7iklxy5A4ZnkXXDeue8HJdnmONxTMQGfo5jxkVB5pG5eLbnzEt0EBUohWA9U2qFi+Iewkv+Lg4EXo3Y/Zfv0Ue/7lP0R79lqb/+yM/c7eEE7m3E93AgEHjV4eUoefjdkt5x9vfvkfQTep4vz+12q8lkkjoKYPeWdAsph1RAdJ0g8Lp/xv9OVwZv08huMgS32ioOUkdbQcbnQW7s7rLbyXmrAodb3zm2Zx+0Wq1EfJys0rovz/OS64FafQhprVbTYrHQeDxOdebY9DmulxxU7dxehoB4gJDCz6hnb7fbJdLvu7v8HYJ5cnKiZ555Rt1uN+00Qxa9Ht8FDk/5R+TAKTAej3V0dFTKGPCOCgg8XC/k0DMmKCGg7SSlAZBxSPxkMtHJyUkSFRAY6DLQ6/XSZ6pZB16ewjgocZhOpzo5OVGj0Ujj8+BASDQlPy4WcWwP+sRZ4XketIz08gSun3nudDpqtVpp7txZwHF5hp6NXPO88kz5rr4/y1I5JNGDEKvPqj/nzCuOBMbB3CEmsB5p/8kaZ86l85IcP5aLl5zT1/o9jBf8XRwIvFqx8xP/Xj/5sU+UQlAI3FnE93AgELjv8VIFhULSj2VZVkj6m0VRvEvSg0VRPClJRVE8mWXZA893kO12m3Z9+eXeyxE8MK7qXvDWcNjzPWOhmj4PgaX8AAEBQkmrRw/LcyKGXRsCw66nZxNQ8029O+d1F4PvtHJ9vB8C6in2WOnZ3aWW3K3p5CdIp9kF2M8JZ6zVTrtcLBaLUgYEc+mBip47ADwM0a8LAi0pjcHPOZ/PU/AhZK8aKgg8E2N3d1edTkd5nidiiQhBqCZrhVIGdvEh0dTd00oUUWC9XqvX62lvby8JHdPpNK037sN4PNbh4aFOTk6Ss0GSOp2Odnd31e12E4n17h0QXQ/PBOzg12q1UrYEbgHEE+4RYshFYZY8J9VSgXa7nUo/yIfg2JJSdw0EG8QJ7tlF5SfcA8YKEPNcIODnLs7xDHp2hpduICxVBb16vV7KekBgYK69XSnChr8f0cXzJli3zKV/rzBWdz3cA7gj38WBQCAQeNGI7+FAIPCqxEsVFD6zKIonzr4g/0WWZb9yux/Msuydkt7Jv7GgV3c7JZUIme9eQ6Yh625rd5IqqUQYIHlY4/kZhNd3xX0MuBTY1YZAMQbq1mnlSPij78ZyXdSBuy1+Z2dH3W63VFvOzrELGy4GeM27h+Ytl8u0u063AreGUz7A3EOmq4INO7mQVS9/gNzP53M1Gg31ej21Wi1Np9OU/wDxnUwmms1mSejwjAyOizgDsKGzI+/Hw61QFEUqHdhsNhoOhxoOhykIELs+ThTIPOcihJH1Qm7CbDbTZDLRdDrVcDjU0dFRKnlATPLyA9YkTgEfs3Qu8HBfV6tVEiuk00BMgh0pSyH7wnf5va6f2n+uzUskPK8Aou7PFOsON0b1P3fU+G4+YhDPn6QkHi0Wi+R+8LIE3ke2AevZyx8QTZhDF/S4fuaP56UqGrL2mSd3ZnC/WGdevoNjwkuVmId7SFC4I9/FLeUv1/gCgUDgfkd8DwcCdwEPffd/0PKPv0XzB6J15N3CSxIUiqJ44uzPZ7Is+4eS3i7p6SzLXnOmxL5G0jPP8tl3SXqXJJ2puWnX0P+TzuvPvTWhk42z490SHOg7jk7+JZXqsiWViAw7rpBeiDXEvVarqd/vpxpriJKXXpCDQOs5SBPEBsLtLfQWi4V6vV6p2wI7qu6IwHnA2GiLiTjCDnlRnLYxxC1BMB616xBNgvsgVnt7e2kucVt4+CO7/sxFdTfYBQSIJ6QTgQTQdUBSyi9whwnEkzE0Gg1JpyT2+PhYWZYlQYMSBZwKi8VC7Xa7lCtQnXfWDyS8GmpJlwq6hND5otFopDIICC8iAvPdarVSYCTlBy52zWYzHR2dZzNRfpBlmY6PjxM591aZrDccFOv1Ot1r4Dv/XoaCQwWCXS058aBN7jdrgHPxvPA+1rx3vaBkp9VqSTpvecr53GnCOvMSGy89cJGJ54/vCi878ufKBQLOyxxyH5hX5jHLsiSCINR4Fsdlx536Lu5nB/dUaEQgEAhcFsT3cCBwd7CdTJTdG7+u3bd40YJClmUdSbWiKEZnf/9cSX9e0j+W9Acl/aWzP//R7RzPswWc7PnOq2cBeJ22W/CrBMB3KX3n0wmrp91nWXaLI0I6Jb7Y9dkN911MFzP4WbPZTOQce7ukRFoJMUSAYIeXa6M0AzEBgkWbQ+aG3WO315NRwM6xB+FRMgF8hxdrvYcsIiB4OYMk9fv9JJhQbsK98g4FHJtdd5wJkE9C+LgvVaeFh1Ryf2azWSLdCChOSBFITk5O1O12S6IL97ter6f5RkyonmM6nZbyEfz4Llq4eOUtFxEXcIUA1h85GHQfcccDc93v91MZDuvEiS+CgocvMl5fPy6qcfzq88Hz4OU2iAoXlRHg3EHowLXh2RsAsY3rh/gzDtacuwx4L2P2sEdfK+7ecccP94zrYlz+/Lt46GLLvSIm3Onv4kAgEAi8MMT3cCAQeDXjpTgUHpT0D8/I4q6kv1cUxT/PsuzfSfrBLMv+kKSPSPr9t3MwiB5kih3Q6usQGLd+ezmAE6OdnZ2SDVs6r9/2EEZ2nJvNZiL4btV24uI7sbgBIKjNZjPtWPOz/f39FKoHia6WVOBGmE6nJbGCcdHhATcCJBfy4/XxECbInAfLISrQIQFHALvonmPB8dzCTl2+f65er6vf76eSCRcgIK3uFvGOAZ6l4DX4brtHEIEYQ5Yh+9wLwiv9c4R93rhxI81fs9lMBH+73Wo4HGqxWKR14MIUawcCyrywDjgHc1G12LMOuHaEF97jYZ4uMHGN7mwgkBPhgLXJ9TI3uAlwVyCSsQbW63XKpMCdQEkIWSLeApPjIyYgiuDO8fIVBALuA2uHdezlLMyxC184JRibd2pwIYK1jRjhAiEigoe0ImpV23O6cMVa9XwHP+4lxx39Lg4EAoHAC0Z8DwcCgVctXrSgUBTFByS95YLXb0r67Bd6PN+tr9bwu6jgZQAeDOd1z+xKenkEhEU6dxDwdyf5VXs2ZAqSA/g5wkGn01G73dZkMknjlk53crvdbtrNdqeAk2zEAAIDd3d31ev10u57o9FIif0QaESM3d3dtGtNrf5sNktzyuchjZBdAhqZo+Pj45KN3PMjEAoINzy718na7sF8uDMajUaaD58TPusZDZ4zAYlzJ8dqtUphe4gvbo3PsizdO3dFrFYrHR8fp2vGVUEIIOSd+UAIIcARwYL7xFywBrgGvyfS+e46xNhFLm9t6WuVzAzOy3VD+impYN6rWQo8B9JpSchkMimVwri4wDmZY67HXSI4WXAHITggLHCvPByUz7gY520ZQfUZRyTwVqTuwGF98BziWpjP5+kauZ8+F4yDawcc30s4dnd3NZ/PS7kU94KgcKe/iwOBQCDwwhDfw4FA4NWMl6Nt5IuC28l9t5LXnFBgg+cXfwgEJAsC4jv2TjYgS06sJJWCB/2zkkqWfuncvk+dPIQdFwX/UbfOuDmfJ+632+1U6++EzsfhgNiz2854jo+PS+4C3AzY6D0LgWtn7OQ2INZwvRArSgayLFOe52nX+SIrve/O43Jw8aeaX+FiRHVNcK8RUmjZ6EGDzLvv7rPLLil1YEBMaTabiaSPx+N0/l6vlzImptOpJpNJyQlACQAiCmuInX66gCAgQJb9Pnp5CvPJe6bTaepgcXh4WLoX3nGjXq8rz3N1Op20I4/Y5SIJ4oeLCP4aZQyUlEjnORaIKLh2OC9ri59Xy2y4b3zGyxe8TMmDHVlr0nkQpzuLXPzzEgXElsVikdYHAoPfM8pXOD6iDuKIi2cch/KI6rMXCAQCgUAgEAgEznFpBAWEBHaEPSAOwuWAEGRZVqph9x1NdoQhS74b7Of1HU8PgoTMkvaP24BygfF4nLIIfFeez+GmgLxCIr0WnTA43Bc+Fizd1KW764HrghgWZ50XqLWnvGIymaTXIYSQNcgX5Btxwm3s3s1hsVik0hDKMICT7ao9HaJN+YUTYD7nu/6Ug1R3uefzebqnvnOMMAHR9NKE6s4/O+jMLXX/2+023c9arZY6PTg5lXSLgMK8cJ0eVukuAHdT+HrwvIHRaKTj42MdHR1pPB6n+8K1e/5Fu90ujYFSBYi2pJQLwnggy27tL4oidbTgummbydg9D8GzHTwM0ksMeA3HAvfYBSN/7+7urtrttqTzNpPuhmAtMhbPQqCDSbvdTh1HEF8YbzUjxL8jPOjVv4cu6joSCAQCgUAgEAgEyrg0goJ0Tv7cqYBV23MBvJYcYuq7n3xOOrcyOzHhs1Xruoe3ufXahYFut5t2w0ejUdrxZud+b28v7fxDcCaTSSp5oJ2jiwpY8SWlzgGMazKZSDrfnfXgOMgrJIrXnKRDRtmJZfd9Pp+n9o4QXieevjvMTrK7AiBqkFnpPIywKgB5+YnvGvMzJ204TLxNIiQWguf3mrXg1nUcDIg37h6YTqc6OTkphQGyHphD7rfvvrOOEGwQc3gPLhhvA+rXxeerO/sebkgXifF4rOl0Wvos66/VaqnX66nT6ZTWKOuLZ6JWq6nb7UpSSdTycgUn6p6/wJqnpIC16CGOiH9VpwFr1fNFvBTGww7dyYDYVc1D8LIQXy8eLDmZTNK4+J7w8in/DPfEvwP8+hkvP7sXSh4CgcBLx/J3fKo+99H33O1hBAKBQCBwz+FSCQoeyOYBfxAir0d3UYEd1aqtG9Lnu8VeTgFZwGXghKLZbCai4uUH0jnpXS6XGg6H6nQ62t3dVZ7nunr1agr8owUgLQjZJWfn20m8E20EAIiO2+09WM6vH9t4t9tNgojXxEN2vb0eu+qeei8p/YwdZogdZBm3AUS6Kh7gfsBtQG0880yAoOdScH66NUDmqlZ5J3l+P7wzAWQZguwEH7GEHW7fKWceIdRVFwViCufxcgX/k/vL+vOwSMbhO+J+j3AXeAmHE2oCQMl7cEcA18a4CaKczWZp3pgPRCEfC3PGPUYA476608KB6MR8+z3gfnuWiZf1IFxU3RZeRuFlJ4zFhSWcP4zxovBFL21w54GXhvDMUp7DPQkEAvc3lp/3m/Tmb/q/9S0P/fzdHkogEAgEAvccLo2g4DuHTm6dTPnrEDwnN+w6Qxh9Z5SfQzpcUHDS4JZoiLkTId9Z5+/kE1C6wA4nQY2cCwLvpQ2+u8vnvaUiO/W+K+vuAMIXGYN0TvCcKLo9nDp5CBM723wWkQDShusAQYIyDerrvYUlDghILMSVueS4lHhU7ylz4DvNVbigwL2s1+vJNl8N3UQocueGC1RcX7U8hfMQfIkogqggnQdHQnLZMUdowqLvopaXq/B5yL/nbgBfX+12W51OJwU0Vrs4eGtMxAdEKs+XYBySUhcSz9bwnASeBy8P8AwSyDhzRskSwkvVzcF65ng+l4gizIM7FFj/3BcXRBiLCw2evyGdu0T4GeNDmONe4K5gTQQCgfsX69/+Nr3lL/68/tprfu5uDyUQCAQCgXsSl0ZQkM53awlNBE66ISQE43k9u6REAoqiSLvj7Cy706AqIkBsnMTgOqjX65pMJmn3mZBByCyEBaLp3RXyPE+5BUdHR6Vadx/zcrlMpRNuDa8GTFbr97k+5oId5GqXBoSWZrNZCgl0l4NfA4QVQcXnyrsP8G9cDzs7O0nk8EA+J/M4MXyH2kMjvTQAAuxZFRBIJ7KefYGY0Gq1Eqmkzh5y6+vNj8P7fe45b71eTyGcfI7r5tzkVhwdHaVxe4cDF15wr5BHwD0l8BKhAyFhb29P+/v76na7yYGCKOUE3js7eCcIdzl4KYALBu4GAV6CwrOJcIYghTgAoac7Cf/hIuB+V50H3DNfW8yZlyt4/sZ2u01iD3PFvLobAweTu4BwvnjQpQsI3INqdksgELh/UHz6W/Rb/upP6Ruv/ae7PZRAIBAIBO5ZXBpBoSgKTSaTEoGFxEE4+IUfAkoIojsPIIPV4L5Wq5UILHX1Tmw4plROrqflIoR8NBqp3W6n0gLPemDnGbHBSZ4HLELEETzW63XqxuCEmHFRRsC10f7RQxrd9i6dh9s56a8KJ5yjaqnneO5a8Hp0iCRZD5zHS1QQDHzsUtmJwpjcPeBj8nND4jk/971ansB8AA9yxP3h74Xg+vVyXjITCEHsdrtJuHFbvnTumOF6x+NxqXMBBJb75s4aBC7mlRIRPl+v19XtdjUYDJIogjDiIYJOzHndy08YI2Px63VRx8Ul7jnrmPO4Q8HbRu7s7KS5ws3RarXSezhWNbwRccfdMsyrhyj6fWJMuDvc0cL9m81mJceKr2VKmxAVEDIoE6mW2wQCgfsLi6vNEBMCgUAgEHiJuDSCgnRKht2N4MF8UplcQqqrtv5q/fRFxNR/5kQaEj4ejzWfz7W7u1uyrXvZAjvVwMsDEBCq4YFOavgZYgRiA4Se3VF+Np1Ok5hAzgCf51rcWUGXivl8fktwIU4AL6PgGDs7O8rzXEVRJKeBuyO8BGKxWKT7VSWoiBgEI3JvqyF5TjK9pZ+/32v0fSwIPczdbDZTu91O72HtQNZxcLi4Ul0jLui02+1E4nE44PDweWMdeqZCtVUposR8Pi/NKWuKoEQPOuQ93C86dSAgVPMifEy4LcbjsSaTSdrxd5s/ggM79ggFtM5knXH/EB0IdmT9cf2s5WazqU6nk7JF+JmXvHA/PVwUoY915I4c1o2LODwLPCOeOcJ1NpvNW8oqPIeD8eIWkZTWrDsYAoFAIBAIBAKBwK24NL8tO8nk39Xdc+ncfs3OsQfJQSiqtdaS0o6273ZK50FvDm+tBxGB/C6XS02n09QyERIM6fPdZSeFkhJZk5R2jSWlOnja8GGt99R8r/f3Gnd2ZZ9NvECY8cA8SBQlEMwLu/nsPpNjUBVp2FEejUZpdxgrPNkO0nnGATvyBBW6c8ODEV1k4Tx+zxB1vI6/1Wql8EzPM4D0ulOg2u1AUun+siZYf7gC+v1+2lXnPjLP/J08CQIZvZyEa6XrAgTfuwxA7pkPnxsPs6Q0ApHES0RcrMD1cnJyktphEjjIuKr3iWui3IVyH8g2RPyijAXua7PZVL/fT88nP280Gup0OumZJezRhR53tfi98ABM5oqsDQQenlmEFn8WEC+m02mpzMPzPar3inlBZAgEAvcXap/8G/T9/+9vk9S920MJBAKBQOCexqURFKRz2zWkoRoe57vObn+mNpvdVicICAzuQLjovJxPOg+H85aFvqPt5Nx306uWcN953Ww2qRbegx09iM+Fh4ODg0QyaTvJGNhln81mqb1gdScVgu7XTQtAxBXG57ZviDYEEVLFmCFyiAxezoCQQqCdOy58fhkTogmkGGKJKOBOCq+PrxJPd7VAqilR8eBNxnBRKQfzgsCy3W6V53n6z8tq2O1nvDs7O8nJ4vMPWB9Y/4GXkTCHLoqQwcH81Ot19Xq9JPZwDK6fZ4H/3J3gDgQXohBYXMjz8E+eSdwD/lz5M0LuBvPFOmHuJSWHhQsffk8Qiqoin5dDuNsFocCzD7yjhB+TdYzw9WydNxi3fxcEAoH7C7uvfUT/xz/9HjWzEBMCgUAgEHipuFSCgqRk2ZekTqejXq+XSAgkwoMKIQ3VXXwnnE7aHQgNnrbvrQelcts6PuOW6Xq9noIXGQckmXEgBlTLNCBCi8UikW4IMnZzbPC+2w8Zq9bxQ464DhwPzBfdL6TzoEtvh9jpdG4J+PNyE0iZuzcobfBjuT3+omR+/sTl4UTOXSV+v7x2nqA/iB8lIpLSOnFnBJ93twXCB6KKOx68+4HfL8g3wOLPWIriNAgU4abqeKg6bnwtTafTJOC4y6Pdbqvf7yeS3ul01Gq1NBqNSvfTxan5fK7ZbJZEB+6VixcXrRvWCjv3fr0XuYU4Ju4HyjqYNxcCeZ74PG4B7ivPAQKNjxMHj6/di8IXmQNfP7yP3At/dr1cyF0LjKvqzAkEAvcJskzN7OINhkAgEAjce6itJBWSsud7Z+DlwKURFCAM1Fr7jifEFbu2pJK1m895lwiIOaIBdf/ueIAAYdsnN8Hr1d3qDuHzMDgS9yFgkH+3jjM+iBN5CE5WEB7m83lyN0hKNnUEBw+QcwcGx2K3eb1eJ0u4zxlEldc9ld93m7kPlEYgIjhJlpRcCpByrrVWO219yM4x98fFGuYQIsdOOO9lDJzHXRLY8Nnx393dLeVQVLMsmF/KLjxUELiAUbXiO7F1wYr3VfMd3EHDcRCbpPNAQe79er1ODgnPNej1enrggQe0t7enZrOpVqulTqeTjuGuAdbPYrEoiU1kIkgqtS5lXv0ZZC2wlrhu5o11lGVZctx47gdrnueONcX9ZLzV7hLcS9bBZrNJDhzEKe4nzyVlOgg43hUCuDjC+z23w++HixQ+3kAgEAgEAoHA5cVrvu3f6iN/9jO03Lu13Xzg5celERQAu+nsmNNNgRpodrGreQvS+a672+shyhBSyC6Ex3e32dH2unoPeIN00AqQXVkIihN2xgOhkc7J3GQy0Xa7TaIFFv7FYqHZbJYEDsgsY0VYIIkfUgUgtNPpNBFL74LBjvVmsymRMAgnx3L3gpc+IJK4eMO4PFCPOnbyIkA12wGBoRpuCaF08cHvqTsxuCYCGskdQJSBdDP3iAI+JsbBeSkD8RILPzY5Bl7rz045BBTxiOtDlIHMe0kKjpaLSjw6nY729/c1GAzS2ue8Xu6DiFAUp2GatDn1DhrMOc4Db41Y7bhBTgNiAuuC89J5wrtOeNmKt33keWO8lGFwL9354I6T+XyexoaQh8CWZVlyYbA2/TySSqU0HNvnjvFIuuUZQJDx5zkQCAQCgUAgEAiUcakEBUgWBMXJrncucCszv/RDFtxO7l0CIKTsevu53MHgBIQ/vaa8Xq8nV4PXYXvqvbstms2m9vb2Unig13uzM4/lnZ1qOjOws46NP8/zJGIwD+wiXxTUuNlsUqtDqdwO09su8u8q8drZOW0BuFgsSqUYfp3kFUBsPaCRYznpq2YfSOVuGwgsEGzfNYYI0xHBBSKf9/V6XRJ7cIUQlljdjUYoweUgKa0NRAnPr/C1BuH1a/Nj4xRhLhAWfOzVtpKbzUatVkuDwUBXrlzRYDBQnudph53jeEbCbDZLQgJi0nMFnFZdPKxHRAZCNP1zy+UylaZQHtLpdEqhmlVhrd1uJ+fKfD7X8fGxjo+PS5kYXo7hzg8cGQiMOCA8sJT74WUdLoBxDkQ4d0sgAkkqCVf+nRIZCoFAIBAIBAKBwLPjRQsKWZa9SdIP2EsfL+l/kjSQ9FWSrp+9/g1FUfzICzjuLSQLEuE76NjyfXfVuwNASN1+zu6uW/urwXxSucuAh8axk41zAru3dL7jzvggwNvt9pZafOrtuU5C/yBBq9VKw+GwVO/NMSB0HmA4m81KGRK+89rtdtN4OAfvhyhL5y36fBwesujlCtWyBxc/IPzsbrsTwbMUqs6E6r33nAYXe7gfEEEfA64IL32BbEPEW62W2u222u12Eqra7ba63a5qtZpGo1Eis06efZ4oY5DO7f9exgFZd1eFX6uXR/A5DwckN+Hhhx/WQw89pH6/r2azqdVqpclkop2dHS0WCw2HQw2HQ63X6yQo4E5hXL6uuZ+Q62oQZDX7wDtIeIkEwhKiFGUMXAviEvNLiORwOEwtWV0kI3iSlp/cS5w6iAl5nqcx+px7bopne7iA4tkK7jphXfn94bljHJcdL9d3cSBwX6K2ow9+2aN3exSB+wzxPRwI3H3s/8pWz3yqVOw8/3sDdxYv+rfloijeK+mTJSnLsh1JH5P0DyV9uaS/WhTFX3kRx0x/95IGFxik81aIvivvO9+ICV4nD7F1wiydkwfey2tOriGG3p3AHQrs3rr9fjablRwNoEpSsHK73R7C6d0TXADx4/jOKmRvd3e3lEXwbOGAzKW3bvT3eImE3w9/D8n5jMFFDeaEenuEFL/HPt/uCOEY1aBGsi44JiKDVO50wTEQm5iXbrerTqeTPttoNJIDADHEd7Zd5JBU6kDha49d/Wr4JPPHWnASzM65r8V6va5Op6MHHnhADz/8sA4ODhLRdmI/m810eHio8XicXCI+56wF38Gvlmh48CHPDQKAOxj4LPOAQ2dnZyeVkrCOWVPMESUV4/FYw+FQk8mkVB5D2Q/PKUII95drYP74mYsV7rS56NlGQHC3Ac+Ylzj5Z7wc5bLj5fguDgTuV7z/L79d7/uvvuNuDyNwnyG+hwOBu4/e9/+0bnzyp2uzE4HarzTu1PbbZ0t6f1EUH67uXr9Q8As+v+SzCw/pgehCcniPE2fPPHCLuqfcu/UbcgzxYBwuWuCUgIhWyTzjhFBOp9M0ZsoEOJfvSntAnZcvQKB4n/+JOFIlmb6jT0aCt7xk592JIuPHIu+lJex0M0bmx50TZAJA0Lzdnnda8ODHqtXer83XgJcfuMsEJwQChdf4e8YDogSve90/xyRYs9lsajablRwYXJO7IqbTadpZZ35xori4gUjkIkP1OquuBem0RODatWt6+OGH9fDDD2swGKTyA5wny+VSk8lEw+FQ0+k0dRHBLeDCjJfrSOfhlpBlzotQRpkIggP3g5+32+3kqPGOEpy3mofBGh2NRumZcBED4aHq1EBMIt+Ee+lz56LaRc+guyr4mYuOwIVBrhtB8l4QFCq4Y9/FgcD9hl/9rk/VB3/nd97tYQTuf8T3cCBwl/C6H1vqw59fV1F7/vcG7hzulKDwJZK+z/79R7Ms+zJJPyfpTxZFcXQ7B6kSXUklgupp9hfZkX0H1v90UgUZ9VICL5cg1wBbvLek8/pyr8OHmHnoHcRmPB5rPB4nmzphdTgCsJizO+uuBOrTnUy6cOIlBUVRpLBIdrq9JASCiyBSrSVnZ9h3lafTqWazWRoPY+TasLL7GABEknnjuByHe+IiCJ9nF5zddifnrVYruR4gmYgnWOLZOaebRq1WS/kTHvIJUfaSmsVikcIbvbQBIo/zxF0K/OcBmL7uPDvB3QMIPaDdbmswGOjBBx/Uww8/rCtXrqjVaiWxgOdgPB4nIcEdAhD4qruCkgHuibsJOHa3201zw7VzTO4PzhzEHsoXWLcQdc9DIDek6g7wshCOzVx7FwrPsGDu3GHjAhXzjJjoAgElDu508NBIBD3GxZq9B3FHvosDgfsNj//Qm/Wrn/Y3JYUXNvCyI76HA4G7hN1/+R79+tEnadvY0ft/X+tuD+dVg5csKGRZ1pD0uyR9/dlL3ynpm3TaDfSbJH2rpK+44HPvlPRO/u02e8gPr0HEIC7ewg8y4bvAfsyzc5VIFuTfrdJOUCC/kCvPAZDOrf1OGP0/CEm1VhtSSg065Gx3dzeRKIhqq9XS/v5+CjyENDMu6bx1ptu3PTyS3XngogKfd2cB88Qu/2g0Ssdlh5fQP8DPqo4Et6d7CQohe5B1CCPzIyntlEtKYZU4HLgOJ/JV1wLXDkEkpwLBwR0W9XpdvV5PnU5Hk8kk/ecZDgQKIgixptymD4n10hkHn2Xd8T6yHXZ3d9Xr9XRwcKCrV6+q3+8nJ4V0Xs5Bl5DZbFYK4/T8AMg8c4UIxjXwujtHEBQ8RJPngrXveRZ0rJjNZiWHkDsh3B2DkMX1Z2dBiwhFVecAa8rLfVizCAT+DLpThDXI2H2NbLfb5FbhPC44VB0TF32vXFbcie/ilvJXZKyBwCuN7/2Uv6V61nz+NwYCLwHxPRwI3H0U/+4XlWWZ3nTj193eB2qZ3vtVV6QwFJXw2n+5VedXD0uvfehZ3nsnHAq/U9K/L4riaUniT0nKsuzdkn74og8VRfEuSe86e1/BbuV8Pk8145B8T+mHFLBbD3zH3UsHpHMi7eUGiBXVjISz8ZRq4KvhbogMvJfXq8cFEB/KDhAU2u12qbtCs9lMTgNaRHIsdoI7nU4qxXDSDIni+IgikDbGxs8hgNVrRcBgF9vdE9PpNO1KV3e9/XMe7udlFIgnkD0ntR5U6O9z5wjHgIhXuzxwP6plBXQjaLVapbyLbrerfr+v/f39ZOM/PDxM97jRaKS1NB6PE9FmTpy4rlardN2eIeGlAZBrRBQXBgaDQQr77PV6yvO8lHvgTonZbJaEAa7XxRt34CAscA9otci9RVAgF4GAR59PX9dcN8GKhCt6boG7HxBbuM/u8kFU87Xszg/Oz/FwzrhDhnWDmODPrD8fvrZYS6xbRCJcOozPc0TuEbzk7+J+dhCFh4FAIPDiEd/DgcBlQFFo89733fbbP+FbRs/7ng9+5cdrcXDvbDS9EDRv1vTYd32g9Nr26Fgb20R+LtwJQeFLZdauLMteUxTFk2f//CJJ//F2D+QWaA8JBE4KnKw0m81UEgCB4k8ICWSoSmyrBAzyAkHy2m1ICuSZ90FcICZOAiG7nIuuC+QxNJvNkg0d1wKkil1tCBMp/8Dryj2sjjEgSiCIONFaLBbpWJCz2WxWKh1xB4Zb153oIbB4lgNj4L0cy+8pLgXmmpp1T+1nvG7Br4K5Za7ZGYe8ttvtJCgsl0stFovUlnFvb0/9fl+NRkPj8TiNyzM3IJ3VcFCEKNaCOzD4HATcxYhqG0kPoITYE0jobgPePx6P064/JJvrdfu+l8+wzlgPlDVQauCBjLgCOIaLbcwx4/bntpqZ4UIV4yJPpCiKUgmKr3HGw1j4jAsV1WwD5gkhjWwNnslng5fm4J5AZPRylHsEd+y7OBAIBAIvCvE9HAjcg1g/+dTzvufjvm0k1V56OEP2utfovV918JKP84a/N1H2Kx96yceRJG23Wk8mL/rjL0lQyLIsl/Q5kr7aXv5fsiz7ZJ3auz5U+dlzArHAd9adPKdBn+UEQAQgEJAddvWrRNbr+Xkd4sS/2Z2sEldIubsBJJVKGiAkTqQYJ3+HrGF5x67tu64cF/JbDQd0Au070J7rIJ0TMEghte/VHV3mzAMYu92uBoOB6vW6jo+PE6lmDnu9nlqtVrLRe9lFNfQOgYFz4ZDgmJ6vgJNkNBqlnXjs+nzWiSf2dP69WCwSOYRIIyYwNs51cHCgBx98UP1+v+RowWWAuwDy7dfhZJN7iHODe8V68owO3r9cLjUejzUajdK8ePYAQsh2u03zMBqNbnFK4HRZLpeloFDKdXjNRQN23T3rwR0ukHkvMyHXwu+jZxpwLylf4RlGnPFyFNZkNZiTdcg9kk5dOwRgMm/uhuBP1gfPl+dTePmRi5V+7ovEAxfNLjvu9HdxIBAIBF4Y4ns4ELi/sX0JhLuE/zTSG/7US9/TL9ZrXZatr5d0NUVRTCVdqbz2B17s8SCirVZLvV4vtVv0zAMIC0TGd1SfbTeyWg/u1nQnjE6C3aLtGQDVVnUQSci/pGR/5xij0ahkm280GiXyxWe9fSNCxHw+L4Uj+hz5WPiZk2AvAeGaIMYIEe5AgEz6TnlRFBoOh7fkFEDUi6LQbDZLBLDRaCQrO8f3bge4BzyA0j8nnbZE5D/mlLlhjOzgQy6ZNxd82N32un5Ifp7n6vf7qbSAc3lXCO6DdE5KvRYfAcfFh+l0mtYZ99edKtyP6XSaghUlpfXdarVS1kOr1UquFMQH2i5SGuBBl4yNz3qeBuu42WwmkYZnCzEAAYJjuVvE3RnVn/ta9daqFwUnXhQIys9Zi1565CKJu1kAbgvPk/DyjOp73X3g4/PvCY7lAtJlx53+Lg4EAoHAC0N8DwcCgdtFce91EXtOXMrfliGk1dZ2kkoEDpLvNeQXwRPopfOMhCq5qNars7Mq6RZik2VZIqAERnrY33w+T8fKstN2fpMzZYvQQ0/px54N6anX66mrAHXvRVGo3W6XiC0EzrMl3DUhKTkfmDuvn2c+uK5araZOp6O9vb0UFumlF5vNplRiQt25iy7dbjeVbPA6FnS/PsbtQoakRIohuFwPO9eUMkDyuSYcCux+e/ikB/yx257necqtGI/HOjk5SfeNMTvxvKgMhnUCXDTwMhuum+4TtFr0Ep9Op6P9/f00f7hqFouFTk5ONBwO01pBGGNcXgbkIgLjw22AMOUZGvzbSzT8mpgPrn06ner4+Di12WQtemkQQgnXxnPAdXlAKcIhc+fPs4s21eBFnjvmkvHxTLtYxnVRFuFBkJSheJtUFx4DgUAgEAgEAoHAxbg0goLbrz39HUAAJJV2vKVy8Bx5BIgOkLLqLj5/59iQU4gIx4LIu6CA+8A7QPhONiTLuztAvp0gQ/ghMt7pAZLorRcJa2SX1+dGOq/pB5ApD8bbbk9T7mmL6W4Fd4E4Weca3AHiO+ueleCiDUTNhQNvE8nxeS/XgRiA4MI99112r8XnWFwL5/LxAzIqXFChcwLBnwgS7Mgj1Himg7sO+Df3xjM1KOnwLg24Iapjz/NcV69e1cHBQSpNWCwWSYCgwwauDSfPOATY8ffgTsZwkc2fz5KnURRFclkgAPBzwhqPjo40Ho9vcRNQouSOIkqSPHzUy4XcmePPJGNlnn3umcPpdJqeUe6ZZ5n42vTQR39+/Fnz5wih514peQgEAoFAIBAIBO4GLo2gIJW7KUBoPRWen0EmIQ9e3w6h4+cesugkkewE36V0wuOChZMwzuG2b17Hhu67mt4FgetzsgtZhXz6brvvjCMCYMV3+zbj91DLVquVWi6yM+619LQJxD0hKYX9edmFEzHp3L7Obi+75ZQSQNh5L84DiCfiBp0O3AXAOC4KxKPMg2wBHBCQWsblAgLH9Pd49wkn3MPhMBFU7jljRqRgR7y6c85xW61WqUMBQtF6vU6lFe5ecAt/lmXqdDq6evWq9vf3tdlskgvAy0RcUKDUhnPyH8IUx10ul2ndcD38jLUxn89vWdN0ueB+Hx4eltwJjB+3iAczzufzUrlLlZj7uTgHooGvbcqREBe88wiCEw4Mnpmq08LXI+vLxTF3XzDX7XY7lYEEAoFAIBAIBAKBi3GpBAVIntf88x+Eobob7fZmSAf/llT6nIcZQvJp7ec74M8lIEDuyWxwZwU759WdWEiRdEpesNqv1+tks3di5MFy1bExT+4sYJwuUkDaESxczPCcBD7Le7wmHhLNPEJKIY8QM8ZY3YnGTUBoJsdhN545gIBCEHkN2zliimdYIKSQN8CYIbFSuVsDuQmdTqfkQJlOp4mk7+zsqNPppM+xnph3t8x3Op2SGMPYnLwibvB3d3JUXTLMXbvdVrfbLTkGmAtfszgOPNyScyB8eKmDu3m8zMTDPd2FwblZawgVw+EwCRrVIE3GyT1sNpvpZxzX80ykU3I/nU7T2HjWfbweaOniE+vFS5+4T+4aQmDDVcT8eCYEnVsWi4V2d3dTKUUICoHA/YEv/bmv1P/9Gd+tehauo0AgEAgE7iQulaAgqUQ6IBaQSN/RrQarIUYAt+6zI+1iAnZyt4PzfifK5B2w68t4pHOy40GEOCS8hpvPQrC73a6azaYmk0kiPhyLHXQv26g6GpwIuq28Xq8nUsj1ukjjqfp0GfCda99FhrC5A4N5deLGz6qkjtKVPM9LAY0QuV6vl2z97t7gnJ4v4O0FPXyQ16l/RxzinpEn0O121e/3tbe3p1arlYjrdnvaQYFSAYQLSKeLWdxvMiS8AwnjZP162CfX4WIXYgZz4mUgrBE/JufguIgaXgLA2uHeUZ7QbrfT+9xR4iUN7raYn/WbpdTBny0XNHgPn/VAQ4QdD0p0twCuCV5zsaXqPIHouyvGy4OAl6e4c4f5JHvEnRCeH4Ggx31GKGI+AoHAvY1Hf/8v6o3v+sP64Be8+24PJRAIBAKB+wqXSlCo1WqpHaETVH6pd3IN6XBiUA1WdKLmNfPs2nuqP8f3+ndQtapDViBPjUYjjRvxAYLlJQ203WPX3TsYYPvmMxy76gZgJ5z5oeYfsoS7AULH+amtL4rTrgzUyuMUkM5LSSQlos1Os4cyen0+JBGSzfgRTvr9fiKG3pLTk/0RDZh/HB38jI4T3m6Sz+R5njIavFwGV0K9XtdgMNBgMFCv1ysFWLbb7VTHj/BQq9U0m81K7g8fl+98u/DBvyHeXnYBUWfeWOu4XZgrnz/f0XdS7uUPy+VSk8kkdbxwQQExgzabrEnWC88J9w1RBuGB/xDMvOSDNY/Q4Hkanj3gJRbu1siyLDlDmCPWJ2uN9Yw4sl6fdkkZj8dpXfJ88DyQoeDXh6jgoofDnzXWsreZDIdCIHD/4I3v/Hd6w1/6Gv3al33n3R5KIBAIBAL3DS6NoMAv/g899FDaSW40GqkOnV1s3wn2jINqmFs1fM5rw9n1hJgiKEAuETKqTgSO5TuwvE65A7vk0nmttocdcjzq1iF6Lop4Zwsns75jTOkEc+QlFYwfAuxz7PZ5ShGcBCLA0I3AHRHVbAMXMShJ8FKFXq+nbrd7C4GvEuWdnR21Wq20izyZTEolEl6mAUGWTgUQghARWtzlsbOzo263q/39fR0cHCjP8zT/uDogtRB7z3LA6cF68feSOeCOELouVMtwvMtAtUUhHScIyKyWYcxmM43H41KWgod5sp7r9br29vbSPYEM03bURSn+zvquBhJyvQg7XNd4PE6CRK1WS84BL7dxwYi/M0Y6aEhKx3dHAY4ed82wpgilJDyzKIpSCQ5Cmgs5VQHSs0xcIOR589IIxB//HgkEAvc+Pv4bflZvPvkj+qU/9h13eyiBQCAQCNwXuDSCgnS6a7u/v6/BYJCs2hAsdibZifVyBycunqUgqUTCvQuA26Kl8xR4dnexpzsJl84JFwTW3QH+b47pOQje/k5SSSRx8iOptOOMW4BrgsB3u900NtoBehtJzzJYr9fpeFyfl1c4gYdUe4K+17RDFiGahEV6SQokGQs7TgMcHNV2kxwL0sk9gmRS4oCIgGjhRBaHhQsu+/v7unr1amqD6Zb8nZ2dUmAhrTpZd8yphyi6GETZhHfvYI24wEA5RjWckOvHfbFarTQajdRutzWbzXR8fKybN2/q5s2bKWsD8lsURSL4CCeIcAgB/vyw085cco9ZiwgniFy+Tnk2IPO+XhAAuFaeQcBzylqqlrZwPdxD3ucZDpJKoorndvg69lwGd5i4s8PP54IboplngPC+QCBwH2G70eu+7T16y+yP6D/86RAVAoFAIBB4qbg0ggKE7erVq7p27Zo2m42Gw2H6jwR+7xgA4eDfUjk7QToXACD2Xr4AICBYxL0jQtUxwPurqfXYwRmX26VxErDr6eGDjB8C7aF+EFhP3SeToNvtajAYlOz27Dp7fT+EtSiKVFbA65zD3QKAHWRa9EH+IGHMD+UpCAyQMc5VdWhAeNldHwwGaW48e8LzBCgZ8NISiOV0Ok1CjLdGbLVa6vV6SaCqEl7m1kM2/drZDed+4ny4KFARZ4HDAz6rJRHe2QGHAvfo+PhY0imBfuaZZ/Tkk0/q6aef1vHxsSaTSRKhNptNap3I8XBceLcK3kd5QrWshkwJSmEQr1iPCGrupmFtsRYuIvWeJeFj5Znwcfga57PVzh20zPQ16l1EyOfwcg3vSOJlDZyvWjbBmuaZcCEtEAjcPygWCz38N/693qIQFQKBQCAQeKm4NIIC5Krb7arT6WgymSTLN2nrHtbofzop5t+0JWS31lvJVXcw+Uw1xNGD6CiP8DF4zbvv9hLyhpOBzAR+Bglz58JFLgF3Pkjn2QDepnC73aYwyKo7gmNCuuhMAMFkPLy/2iXAbfPsXrPTThAlu7rVbAeEAHcaeJCkhx7iqPBShH6/n+YGMtvpdJJAIumWMoQ8zxMRpB6/3++r3W4nElm1sbvThfmAaLJmWJ9cA+UUOAu8i4bfW0nJQs/PXIiBzOZ5nlp4Hh0dJfL91FNP6fHHH9dTTz2l0Wik8XicrkFSuj8ILJQCeHmMdwNBMEO8gayT5YGY4LkQPi8u9LBmGEP1dYAbBGEKR4V3U/FQyKoA6M+fH7fakcVdR56twuvMiZfuVF1OrIfq8xwIBO4/bOdzveY736NPavwR/eJ/F6JCIBAIBAIvFpdGUJDOOwNQ0kD9eJXkQO6dkHt6vYfCQXS8JV41tNG7L/guvqSSCFHNZ3CCQ/I+Y/LPkDLP8fz4Tj6dvEKEKG8gSJFzenmBhxtyLd4tAQEAwo1Is16v0zVL5wQVgcM7YUBk3bLubQOZRyd6iEC+o03tvRNUAGnc3d3V/v6+8jwv1bcz9x46yXVkWZbEKNZKp9NJzgRKWbyLggc5ch7KCiD9vA9rf1EUSZzh2r30wfMIqoGAzBO76ev1Wu12WwcHB+r3+5Kkw8PDJKLcvHlTzzzzjG7evJlEFUixzxsgA4R1520nXWCAeHNfvPyBn7HWvAwBQYRyJJwMOBg4Puu56jpgvnlWqnkL7typXpd3iGBu/Rr9Pnk5Bp/n/rt7ieNIKl2zu5LCoRAI3L8oFgs98m0/qzftfY3e++UR1Phy4x1f9VXKf/K9t7w++/Q36l/97f/9LowoEAgEAncCl0pQcMFgMpmkXVnIjIf5OVmDgENGPaXd66A9N4FdfsIU2+22er1eSrSvhrpJ52IAtfsE59FtYDAYJFLqnQdc+GBHGoJYDSi8CFXXBESnau+WlJwZPicQcP88pNmdEcyPdG6VdzHHnQSNRkOdTieReO+mAWFzEosI4aUNfAZyOp1OEynHAQG5o4yB68Sh4US20+loMBiUiLeXn2C391IEJ584AzabjfI8V6/X02Kx0Hg8TmN2Sz+iAyUP3GdyI1hr9Xpd/X7/FlI/n8/T+qOFJu6Q6XSqmzdv6vDwUMPhsGTZl5TmDScGO+9ciwdzcq8h8awBFxQ8HFE6F6kQKVzUcSHACbiXhvga87XFmJkLMjFYH16O5PkdjUYjldTwjLurwcUKrsnLGhCruCfubnChzB0NF4kbgUDg/kKxXuv1/+NP6bGDd+qXvvCv3+3h3Lf47V/3x7X3T39aF6XSNH705/Q7Xvu29O9f/d/fql/63LJrZKui+rFAIBAIXBJcKkEBAuS7sZISiXAHA3X3nqLv9fcQgouIOsfJ8zzVr3e7XfV6vdTiEILEcZbLZSJkkpJVnFwHCOh2u9V4PE4Bf5ybc1V3T6uihXTuVAAQbAhso9HQdrtNBByru5MzL3nwcgMXWCD0XsohlTMlPJsBUrdcLtXtdlPYYbPZTOKN2989rd+PzT3lfi+Xy2SHl87LFygXwPHhY82yLHVtmM1mqdwCcQdSXW3F6J09IMnsXrvoQO4Fbhkvn+EeVbMDptNpabfdhREn65wTUQsBZjabaTQaJWHj5OQkzT2CA2UnEGo+z7W5E4IyFdao50h4q1Teh3DAOfm5O3IQLlxAYn69xEY6z1hA2PGMD8Ba8dBEd69URcTqcyydu0v8PlfHDhARqyU/XB/jRkyIUMZA4NWBN37Nz+qLvubtd3sY9y329NPP/Ybt+XftG7/i5/RFKt+L9xU//nIMKxAIBAJ3AJdKUMB6vVgsknUbMgVBbLfbiRh5iYAHDLrd33flPaPAOyXwp9fgO8lmlxaBwcl6o9HQ3t5eaks4n89LLgkvwYCc+o6pB0U6SeXz/Mn1Qbbr9XoinrPZLO3ikqXgxKpK/KruDhdjGAcEHweACzqtVkt7e3u6evWq8jwviTcQVOa00+kk1wbk0BP6+RxEHtECQYGsAg/JIyNhd3c35Srws52dHeV5nj5HlgO2fG/zyL3FhVEVT7xzRbvd1nQ61Wg0Sufhfcwx7pbVapU+yxiAn9fX8XA4VFEUOjk50Wg0SiGEXmrBWFxsc4cE69Z36jm+uzEYB/dgsVikVpXr9Tp1bXBXhGd6ePkRIhJzwLPKfziFgH8OcA9Yz4hmvl4B846wh/uENeFimWcw4KrxZ8sDMt3R4K6WQCAQCAQCgUAg8Ox4XkEhy7K/JekLJD1TFMVvPHvtQNIPSHq9pA9J+uKiKI7Ofvb1kv6QpI2kP14UxY++kAE5yfV8A8gKu9YQBYg2O7jVJHff6XS7ODulOBS8VEA636XEhUBAH+4JdvsplSB7AVLixNdt5JJusWH7jqqHDkrnoX4IKv1+XwcHB9putzo5OdFwOCy1gZxMJiUyx39Y7J0kuajhLonValXaLYfcsePe6XSSgML1cCwn+r1eL+U5QOY9Sb+yzko7+ogmfq8RmyDq5Bh4IJ+klFmBQ4F14qSRNeEZEb7zTskAAgeEFMGKNSopkdRms5m6Y+AKaLfbyS3AdbJDv7u7W8oJ2W63mkwmGg6Hya3hc8C8IQL4vWW9unMAAcoDCn0d+noejUalY7qIxeeZQxdkEIPIluD54l4gCCBqQPqrZQ20pHTRjGOwvjmOO5e8DMSFDs+yqJbRcB3+HgQX1oJnoFwWvNLfxYFAIBAoI76HA4FA4Fbcmux2K75b0udVXvs6ST9eFMUbJP342b+VZdlvkPQlkt589pnvyLJsR7eJal02BBvCBqnAMYBrAFKPlZndRbdQ+zkgddSeQx6dQECCq50Tlstl2s0tiiLVwHtmgZccSOciyWaz0XQ6TW0wIdmr1SqR8DzP1Ww21Ww21ev11Ov11G63045/r9dTt9tNwX3j8Ti5CabTaWot6PX8kkrtBH23HtLs5SPMLWPDxg6JpxwAMgmJhjDS0nJvby/lCUACq3MDIHv8d1F5BuPz+wL5hPT7+7Hacy1Y2BFMmDfG7gJCNeQS0Qmxg514d1Z0u131+/1033q9Xnpvdd1xnCw77bpxfHys0WiUyljcycHar9fr6f6Tu0B5gXdZ8FBJ3+13IYs1gBvCXR8ETLrw5mIbcIGGZw3Rx/MP3CFBkCadW/x58nXgeRyeheHH4RwuAFSzINxdwb300iWeexw9Xrrhc3pJ8N16hb6LA4FAIHAhvlvxPRwIBAIlPO9vy0VR/Ossy15fefl3S3rH2d+/R9JPSPras9e/vyiKhaQPZln2Pklvl/RTtzMYiCdE1bs1ePAaNd9FUaQkfwgXZMyJhHTeFcFJnSf0Q8I8a8BryiHCk8kkBSs62YGk+Q6vk1LyAsbjcdqNhbDTSg8CSDkC18b43K7tJQA+f9TQeztH5qTq1KAMg1KM5XKp4XCYwhjZdcbFwZ+UGEACuVZJarfbSUwgd8B3kSGe7hLw8gHfFXfHAzvXkNaztVkih4gnHrA3n8/TNbEOqsKPB1c6Qa/uYHMORJKqs8TLSNw9Uw1y5Hq4fx7+R07BReueOfLSHsbqr9O9xOcDQPZZt6DaCtKDF+mi4uU3vOaZEp494tfNGFmzLgzgbuD6PN+AeXXRgnVcFUn8fjLHHijJnAIvg6q6ZXzMl0lQeCW/iwOBQCBwK+J7OBAIBG7Fi/1t+cGiKJ6UpKIonsyy7IGz1x+RSsk7j5+99ryo1Wra398v1bSzS+ukCps2O6pOPiBwEPpqzbhb+yGqkC5cArz37NoS4YfwsbvNrr7vVDuZgdBRQ0+d+2KxSISdPyFOkCR3F0CM/FrJNvDwOsQIXBdOtr2cgV14QvoQE9itPj4+TteKoNHv99Xv99VutxMxJOOCenvpVKBghx6bP+9jLIgBOFFWq1Uau7c0ZD6q84Ldv9pVApJJeQz3j3NIKoUXImRI50KMHwvSzHW4K4V149flQpKkklOC/7y8pCokANwykGdvA8lzwtpw6z8ODRc+3DVTzVTwjhP+vHjWCPDjVkMVec13+BG/qs+gwwU3xuFZH1yXizqSkmjHdwGiXLU8gWvmvtKZxQVLnz/gJUrVFpOXFHf8uzgQCAQCLwjxPRwIBF7VuNO/LV9UcHwho8iy7J2S3sm/d3Z29PrXv15FUaRWkdXdRwgSBMh36yHz1NRLFwfAASfhWK/d2YBNmw4AXhrA56s7zT5W2vlRroDTgCDC0WiUQveqtvRq/bePy3fUEQSyLCuVCngOAD93dwJCBUS3OOtQMBwONZlMShkFCAS0hvSAShdOmBtEByfyOEKkUzGkXq+nMEnuZ1U0qNfr6na7pXA+xAVIpDsBfK45v++ms2YQf5iznZ2dlB/AWvFSG+k8T2M+nydyyjrz2n4IbLWkw4Uu1gzrynfr3engJTccA0J8wbNUupfAM0Ck83BGn08+52vNswpwHfAMcS+9FAbRixwNrtWfy6owwHn9OfJOHBzbSb+XI7hbiXH7Mbleju8ODI5zUT4CYh73wgWOewwv6ru4pfzlHFMgEAi8mhDfw4FA4FWBFysoPJ1l2WvOlNjXSHrm7PXHJb3O3vdaSU9cdICiKN4l6V2SlGVZIZ3WTxMS54KCh+VBCNyRcHY8nR2rtNPpDgS3qDcajVSPPhqN0vkQCKjRhhTTWhJyQhcCSaX3swMKgSacsNfrpdBESh8I0fNdeAifhxFWd74924CyAMQPJ6/SORGl/MDFBydMHuxXq9VSVsJgMCh1czg5OSmRXDoy+Lg9HJF7w7k80JKdbA/Lgyjmea5+v1+aBy9vcLcKeRN7e3tqtVqJlLIOPCMDcsw5cY/gFoGAIyhAWplnhAvvZsDcOxFnjNUcDfIIfN3wX9VR4vMMIXbXBc8B65qyB9ZI1QHBsTkGrzHvnj3Az1nP7mzZ3d0tiUocl/FQtoBrx8U/1gHH9PXqWRuMAYHN1xIlDF4246U81bIj5o7x8bo7N7w8invPfF5y3NHv4n52EM3eA4FA4IUhvocDgcCrGi9WUPjHkv6gpL909uc/stf/XpZl3ybpYUlvkPSzt3NACBThgQTFUacPIWN3t0rEPTMBogIpgJhA+Or1ugaDga5cuZJ2W+keAHmFXHMuCC6CAiGQ0inpwnEAOcItQJjiYDDQfD7X4eFhKVSy0+mo1WqVrPMQIIQVcgx8dxvyy44tCfmcF3jQnhNpMiDces+OLqUarVZL+/v7unbtmvI818nJiU5OTtJ1Yvlnt953293qL6nkQHDxxcMe6/V6idBD6BAOINKcxx0QeZ6XRBsnwsDzFzqdjrrdbirZ4BrG43FyMXgYYJZlarfbqQyEufIOHi4+MA+z2SzdAy+pkM4zQ7hm5sqzADzbwUslPLPDuysgDninD+z+fj2+NlxQYM6coJNfwRhw81RzJ7wzBl1F3B3koZFVuICHeMO5OQfij2d2TKfT0rW6yMba8bXA8+uiG8dy55OHaV5y3PHv4kAgEAi8IMT3cCAQeFXjdtpGfp9Ow2auZln2uKRv1OmX5g9mWfaHJH1E0u+XpKIofinLsh+U9J8krSX9t0VR3FpvcAH4hR8RgYwA3An+yz8iAGSwWr8uKYUatlqttFM8nU65prSz3mq1SnkGTkD4E3Lr/1FDTzCe7+LSdaDVaqnf72swGGgwGOjk5CSNxS3k1P57OYcTLN+5hqjhqoAMQYA9sd7LJzzk0jtbeKeCer2e5qzb7aYdf0o22Fkmb8IFHObLgyMZM2PAZs9nEC5wQ7B7j4giKe2Gr9fr1CITAunXh3OAtUIII/cVgSjLsnRPOp1OmgO6RXiIX61WK5UdQKoptWB8zDllCqw/SSXLv3fTkM4FBdwNLsC4Y4B5rNfr6fp97qVzQs595Vlxxw6iDsdot9up1aULFO6m8FIDdxJwL3EK8DkvA8IN4sLL7u5uEg1wpfj4WfMch3Ig5hk3Dmux0WgkAdBRzX14NlSDLr205rI5FF6p7+JAIBAIXIz4Hg4EAoFbcTtdHr70WX702c/y/r8o6S++0IGwG+pk0csU6Mqw3W5L9frtdjt9DmLru8aQKCdDvtvsTgZcAxwrz3Ot12vlea48z9NOKUQLYgfJXywW6na7yvM8dUTY399Xnucpf8B3YNmdhwR6nb/vtLqAQecCLxdYLpeazWZphxky58GDTlh9dxa3Q5Zl6nQ6GgwGarfb2tvb08HBQXJxcFwXQ5hXzoE13UMNuSYcBZ4xgVMCQYX755+ns4OLRd4tgPvnO8+4DbD9eylDu93W/v6+er2ednd3k9iAcwVHCwIK52OuuGYPcURgQAjDuVLd3XYBgPXurgBeZ5fcxQYP0HRS3W630/rh/nhpEOetEmOEI0mlueTcrEuEKMg9bgZIujsJCIrk/lQdIpyLz1N2g5OB+8VYu91uGqeLOIyX+WNtc73+7Hh2Aq6LanYDwgFj92yJyxTK+Ep9FwcCgUDgYsT3cCAQCNyKy/Pb8hk2m00KCISUYKuv7oB6RwOvD+dzHkBXzVjwenzIqNdQd7vdtLPf6XRKRBlyP51O1el0EvlDCMHVwA4wx6FdpKf9e9kBO+WM2Us36vW6ZrOZhsNhIq1eEkBNuxNDyDi15lyn2/i5XienCChcNyUHdKioWubZ0YW0cU6vl6dcoXrtuAVarVYq4fCd5TzPEzmsigrcUyeT3nkDx4nfZzIt2u12uh7KXSCXvgPOeCC9y+WytHPNXFx07yWlnfMqyYa4V2v8EczIgpBUch04GYaUZ1mWhDDPs/C17sIOn8cN4uUVXjrkcLcDzyRjgehLSqIc5/dnC3Fnu92WgkiZx2qYJWPkNVwMuEC4D+4ScfcH50UEYc37tbmggCjja+EyORQCgUAgEAgEAoHLhksjKJBsPxqNUnChW7shMd1uN4X7QQwgC26zBh7EB3Hytn983sfBa4gOWOPd3k/on9fgO/GRVNr5XCwWun79uo6Pj9MOrZ+LkD3IETupEPvd3V1NJpM01larpV6vVwqVc6s+O+zswHM9EGXGSD08pSONRqO0M4wAMZ/PUzYBgAAi7EC6EROwt3trP0g65Q55nifhA1FEOq+dh6w2Go0keNBWlGv38gBIMufycgEECmzy4/FYo9EohWj6vED+3TFT3RX3kE/GjPOi0+mkzyDGkEvh4hh/rwopkHHum5eoIFpUnRAcx8tqXAjwkEaEjvV6XepeQtinOyiYP/8cbgV3wfg9Zj6413x2sVio2Wwmoc27XVyUGeGlCDhxECz8GWKcPAs8p/zb8zo8V8Xvm69tv45AIBAIBAKBQCBwMS6NoPDYY49pNpuVAvUklSz2zWZTe3t7iXBMJpNkM59Op6V2ghdZ7aXzDIZq0r7vsvrON0KBvwZBgeT2er1S7oMH9jGmk5MT3bx5U9PpNAkHfj5q1j0vAXLf7XaVZZnG43Ei/ZSAeCAfRNpzDNilr5Y6eM6Cz3c1lBH3BT/n73SAIItAOi9XqbaJxMruwg3iEGUlEEIPJuS+MK+IN4hLXtePcDObzUptQLln3EvGxZrB0VEURWmMLiRAaJ3wM3+UpLizBGcKxNzFMeYYwQBBwYUhd3KQLYELYTwepzXOcRAYPBTThTMPK+Q8PBesJ3bnPZzRHRf83MUMBA9/P2NifGSKbDYbzWazkvvBHQvcH+6Xh1C6qIBLxN/r8FKkKhi3H7c6XkSbaslVIBAIBAKBQCAQuBWXRlA4OjpKAXEQYCcxEO69vb1E0oqi0NHRUdqxhriy44x9nR1N6dyGLSkRz9lslv4DTiIpKfA8glqtlnbXvTWjW/pXq1WpTeTR0VGy9fvOOeKA5w40m81E2FutVskRAeGHCDu5wrlRrfOHZHpYomcH+G67l0b4bj/BfdyHwWCgXq+X8idogzkYDFILUG9fiOWcdp15nqe55f5KSmuAz/LvVquV7ie70eQsQARHo1Ha9XZS6eQd1wDCDuGLiFLc/+o6gCDzOmPO89Oe0RBRz4BgDbCmIf6+A89x3OLPbrkHH3JNlJh4jkG1JAQBiTn1UhU+x3PCe/gZTgPmgLmm4wlrlvHjsOG9CBgEo+Iq8fXIZzwo1dt7VttY+nPp69SzQfg74/XSEL9m4AKeu1kkJXEqEAgEAoFAIBAIPDsujaAwnU5Lyfmk+7N7CIluNpuJVIzH47Rj660I2TWGNLtIASEiqwFXBKIEdnFIp1QuJ5CUShEg9RAwxATvNHB0dJSyEyaTScmaDeFjF9o7F+R5roODA+3t7aXxYNnm+N5CkeNVA/m8Rt+vX1L600tL/Nqk85IId4m0Wi0dHByo1+ul64cwUqLRarVKpStOnukiUavVNB6PU/Al7gPvCjGbzVLqvyf9EwDoRByByDtXgGp+hId7TiYTjcfjW4QPXA8ci7nl3tIBo9vtlnIDPNeCtcc4GRt/ukjAz1kHkHaOhduEjAUXjarlGAgWCEGcx907PndeTuGiCOIAQaC0U/SyCM7rDgl3YDQajXRMDxblvbyHrArmx4/n//ZyD9a1l4l4cKQHT3IP+bPqrOB1nqvFYnGpQhkDgUAgEAgEAoHLhkvz2zJEw50FkOhms6lut6tWq5UInrcDXK1WiQT4Dq503iKPXX9aIK7Xa00mE41GI41Go1LrvGqZhKQS8fBdfOm8U8JsNkvdICBh7NL7Di7iAdfGDjvX0263dXBwoAcffFA7Ozs6Pj5O+QSIApBRUvEh424L98BEiK4LCggIs9ks/azX62lvb0+dTicRYifViDqE/xEyOZ1Ok30e4u/WfW/NV3WI+K429w+SjKCACwCxiHagrBfpPEsBYowAwLW6dR5CTU0+BJc14GNkDtzZsVqtUtZErVYrldv4tbGmvUSAeXHyfJEzgd1zL8nxXXcvleD6fZySEjHGPeLuCe/6cdEx+Bnr2J0AXuqAYFEta3H3AOdgbTJXrE86WFSzCzzrwYUd1ouXtXjmAveXvATGz7ziFGJuXXhDwOE5DgQCgUAgEAgEAhfj0ggK2I99J5q0/F6vpzzPlWWZptOpxuNxIrJSOUANck0NO64DyAXBftRvj0ajlGvgmQK+0wo824DxelgcYoCktCPsNd5uS6d8AccFgZSE+lFOgA1/PB5rMpmk86/X6+SwcGt51aHgJRkQJhcXfDe51WrpgQce0P7+finEDwII8YX8eUnCarVKHQfcBcDct9vttNPsQgQCQVEUGo/H2mw2afed+4FTBGeDOxc8VwG4C0QqtyTl5xBQr+PHHcB8VMtevNQG8QVxh/vkmRM4KDyc08n0bDZL4gdkfLPZJFGGtePdHiQl9wFz6XX/HkSI0MUzgGgBga7OD+QadwSCBa8xdwh4gPPg0uAzlCx5UKbPMcGhkHnKWpgrxuN5Kly7d+HwUhSeLS/LQBDy0iJ3VLgA48+uC0uBQCAQCAQCgUDgVlyK35Yh19VdR0/ml07rwEejUUrnp1Uex+BP3+GWlNwJ7KxDFmezmabTqebzedr19B1PCBHH4Nh0J0BQYBe4GhxXFSSA7+Ku12uNRiPNZjONx2P1er0kKDQaDR0eHurmzZs6OjpKrgNInZNF7+JQ7XoAOYSEQchwPRB4uLe3pytXrmhvby/V/Xs4IuIAggLk2NPxvfuB3xvuoYdnIgbs7u6m6+f+I5q4oABxhLhybYhEnl/h4ZPMsztMuHeeacH1uQvEgyJdTGm328mlMRwOU3lHURSazWZpLZP7QJaCh4ZW/75cLhPRZuxOmhEPmGPvVOBOB+Yeks91sZ49jLG6Zpkjz9Cg3IG1Vc3VqK4Byoi4P4zFO7D4OsE1wN9rtZqm0+ktohPk3rNAnPB71gX3n/uOOMm6Yo78mXchqDquQCAQCAQCgUAgcCsujaBQDWB0qzRkCjI6mUw0mUzSDrmTSO/uAFmECLJryc8hUJ7e77ZnT953ezbkhl17dkAlJXI4n88TKZPK3SoAYgShjWQQHBwcpGT8k5OTJCqwE+/15B6y6HPAsdmtpZbcd6o9/K7b7eqBBx5IQsZoNCq5NphLWiJyPD7PHHuege+sc052r5vNpjqdTiq5wIEBYW21WmluyQ3odDpqNptpbE4SEVqk8+R/7psT32ogpdfP+3rzEgPGzjFd5BoOhzo+Pk75GNxvBClKBmiHCuF15wodEDabTRIpPAPCuxD4Z3z9ek6Fd4qoZh14zgjPDmsKocCfR5w3wIUDyhy8zIKgxdlslsIYXVDw0hbPe/CuKy5WIUog5CCIkeWBcMD9qoZockxKdRAUqg4k7q+XEOEsCQQCgUAgEAgEAhfjUggKkhKBkFRKb6d1oRMfat7Z6aY2WjrPOvAdY4QE6tgllSzbbnmGmLrQwFi8/h4yhXggqRRkiAjiO7yci11YD4dcLpfqdrva39/XYDDQdrvV0dGRPvzhD+vxxx/XarXS/v5+iWwiMDgp8t1m37H2mnlJiSg6WR8MBmq32yWbv1Suq8/zXHt7e6nzBOS02mpyOp2mY1MGwK56rVZLBA8yzT1FvJhOpylzoNVqJeeGB2TiOEHE8fvFXFOSQWI/Io/v7le7AXhHBa7f//PQTUpwfD1xbyD3vIfyFBcwuP+sIS8XqN43BAJEHBdtLnJl4NKBiJPZAGFHJILce5YAghximTt2mDfulzsFuH+cl+4S3B8XN6piAgKht/OkvIi5QcxptVrJZcJ8uZvGhQvv/sA65Dlm7pg3xASOX72vgUAgEAgEAoFA4ByXRlBwQsPOKSIAJNUD+yA4kAJIgpMGCFi73U6lCvxcOiV93W631FLPg/sgZpJKRA6SAfGVlEIjIdCIIG4HZwcfosmfWLIHg4GuXr2qXq+n+XyuJ598Uk899ZSOjo5SVwTGAdly67iP1+eToEhKH9hVhvhBznEMsKvsc8t80dWg3W6n0gMcBy400JmBMfoxm81majeJ8IAQQrkA52o0GsrzXHmep/KH1WqVumOQ9g9RZU24aIDwU7Xyu1PAyx28nSgE350w7LjP5/PUIcTr+iG0ZHVQpiPpFuGLdpXL5TIFCHqXCY6JMMUxfD1izffSFB9LtWMC4thkMknPRHUuEBw8NwORwNcbBBwhxj+DoOEk3rtteKCmBzuyJl0o9Ge23W6n+87xOTf3zDtRuNvAcyK85MJFTM6JwBEIBAKBQCAQCAQuxqUQFLIsu2VnHPGg0+mo3+8nUkopAQGEVQu1pLRryu5kNRlfOm81h13fw/EgKE5SOTbvYwcXIgghp/0hu+uMxVP+PZzOO1PQhnC73erk5ESPP/64jo6OVKvV1O/3Uz0+tfnuEvDxVnfUJaXdfKncgYBcBog/xK3ZbCbLO4IDc+4uCebVW03iGiHccTabJdHGwyghtp7rABHmXnHe7XabWju6GODEkHsFnIiTMcE9cAIN2faAQw+E9ByCKrn3efCwT44xHo81HA41m82SI4OxIUyQGUFLUC8NQYDivnpXArIveI+vAz6/Wq1S+9VquQ/z68IcAoyvXYQWSDuiBHNYJf2eZ+HPpQuBCBFVgYbn0Y/rTiM+w3Vx/+myghjj52R+cB4xL+7g8Z/7mghBIRAIBAKBQCAQeHZcCkEBYsIuKASH19jFnM/naWcTQuThg5IS0effJMm3Wi31+/2Sw8DPjyUcwQD4bmk128Ht63QywMrP8bgezxhYr9fJAo/ogZjAtZ2cnGg4HCrLMl27dk2PPPJIKoOA5HleA8SJ16TybjhkebVapbwCMinoTAEZhRgzn1wfhHg0GqWuEswNbgLmjuvBZs9ctNvt0q6277TjOmDnG6FjZ2cnXSdj5J454UMUQWDynXnpnFwiWDh83WDPx36PaMRcIiZ4GCb33B0N8/k8iQl0GXDC6h0VfC5xLyBuIKZRCuC7956b4CUR7uZgfbngw7hxUmRZlgg661U6L0vgvnI+H0O1FIK5cIEO0dCdA14ShJjAc4Uo4G4Xzsm65dnnWvl+4Hp4P6IFnUF4zhkzAgfHchdGdHkIBAKBQCAQCASeHZfit2UPPJTOg+8gFrzG6+xKslvKz6VzAoztud1uq9/vJzu+Bz9K5zvsvqOPbZyd2CpxpqYbYlyv19XpdJKgQNkGZNdbYkKGIUEQIBciCGKczWbK81zXrl1TnufJLeCWdQivuy1wXHhAI0LCdDrVcDjUycmJxuNxKbDSg//8c4wZRwPEDFGB8XN9zFOz2Uxk2h0UnIt76DX3XIeXW3gApt9vdtIRWHw9QTYRBVwA8g4ggDwO1hfj8dIXxkzmAR0m2OXnc979YjgcpjHO5/NUzsH1Iea4s8K7P/gxGTP3zDNBPBiUYxCyiJiQ53mppAAhw8m2XyfPJeegHERSumbp3NXA+kOQwEVAZgbrAxLPM+AhitX8jmrwaHXN7+7uJlGi2g7T1wJrB4HJ59IdKtxrxowIEwgEAoFAIBAIBG7F8woKWZb9LUlfIOmZoih+49lr3yLpCyUtJb1f0pcXRXGcZdnrJf2ypPeeffyni6L4w7czEMgLO8yQC+rAIbfsLHqCPVZ0zxDwrg6Q9VarlUi879qz47perzWdTtPrECN20ymxqNalYwlnZ9NLCdrtdiKRODDY5R+PxykQsd/vq9/vp7aI2NQ7nY46nY62220iXxA+2vNVhQD+hGhzXZCx4+Pj1FWi3W6r1+up0+mUHA2SSvZ9Lw9A0OC+MNd+fRB+3gNB9UBGgjPdReCBhS4ocS+8fp97ubOzk8o5+FlRFKkbiB/Xd/J572q10mw2S+U0CEwIT96y0Mmzr1c+T4cDymE80JB5q5aL+LrxdQzpZq1Vy3YYP2KCuxW4ZkppmHPmgOdNOhcfcC04+DxBpF4+xLVUsxN8LSKecG7eh+iGYMTzh6jh94hrprTBQ0k9g8HXPd8fHB8Bge8Wd0pU3RfMjc/ZZcAr9V0cCAQCgYsR38OBQCBwK27HofDdkv66pL9jr/0LSV9fFMU6y7K/LOnrJX3t2c/eXxTFJ7+QQXiJAb/U++5r1RrtRNXtyhwHKzZ16YgJvtvoogIEh9chi94ZgtptnAEQPcbITii70BBIJ6W1Wi2JBdj3u92u+v2+ut1u2vGfTqfabDalQEpC8hgjVvBqPbsTIsihhxJOp9MkmjQaDQ0Gg+TeoDZ9tVrp5ORER0dHiZBznRx/s9loMpmkY7BTXw1X9Fp6AiLzPC/tYHNPfdcckundN6o2df7DPcHPEBoQQ8h4IHCSe+T3A0cB4/dSD7I8mHcEBkIUEUao4+d6EFtYN6xN7zrA2saV4GUZklJ3Cu6z5324uIR4hKBARwwX2bg+xoBDhPHy3DGPXvbAPfBOIZ594A4U3AaITFwT94X38MwwTneGsGa4T56ZIJ2W1BBU6p0eWKNeDuGOJP7tYZfcZ4RJv+/uHLkE+G69zN/FgUAgEHhOfLfiezgQCARKeF5BoSiKf32msvprP2b//GlJv++lDsQt+ggBBBxCKEjVl5TINMSoSmLcVSCd71xiF2f3F6LNrmW73S7terMLSjkCxN7t5L4r67u0LlJIKpEfzktLxIODA+3v7ydSzs4v5JyacUklAkXGgCf0u5jheQKeQ+CtInu9XhItJGkymejmzZu6fv26xuNxaqHnpREe7Af5hwizC40IwLV7ZwYXALhWz6OoZlV4+YETZcpHOCdBkn5v8zxXvV5PXQC4v17iguvEnSfc306no1arpcVikXasub8IEpS4ML/VjgasO79HHpqIwOM5G/wH+WY+vUsBZTf85yIOY2SNOHF3FwnzT0mQj5/77M8SYpC36nTxwZ0FHohYXZv+7HO/eI8Lff66pPT9QGYHJTccizmufj9USx3cQeHj5OcXlcbcTbxS38WBQCAQuBjxPRwIBAK34k5kKHyFpB+wfz+WZdnPSxpK+jNFUfzk8x0AwuVBbwgKdDYgbd9bAfLLP8SBYETKDFxMgKRIKpFifuYBgBANQuQged4Bwkkbu/OQVLdc+24rxBdrPeUG3W5XeZ6nXXBv2QdBJi8CIoqAgmNAOreJQ9Yu2sVnfAgZvV4vdZbAATGbzXRycpLq6rkuz1mgJKPq3phOp7p586Y2m00qoyiKInXB6PV6qfMDO85eQ+8hnD6PEEypLKjg4ICsM8cELCImMI+0+fScBe8W4LX8kpJrAjLfaDRKoY1kNHC/vLMGYgeOAUQpyDhiAtkRLkC48MTaptsFLgwvW0AgY53hCKlmCLiAUHUFcE2eJ+DlFzwbLoJ4KKPPH0TdS2V4ZshtcAEH+PFcBOBY5FY0Go00bi/hqJa0VNc+7/XrcTGQ5wPhhnt5j+AlfxcHAoFA4CUhvocDgcCrDi9JUMiy7H+UtJb0vWcvPSnp0aIobmZZ9jZJ/98sy95cFMXwgs++U9I7JSVyTcI/BAsiT7tASAm11xB1yBOCAjuXvvMo6ZbgON+NhQRB/tjxhHBAVKs7nL1eT1euXCm1vWRX1M/nAYHVnW9aOjYajRT4h8hSTZ2XlAgW54NMezK9B0lmWZbEAkg6XS+wjWP7RxSAfK9Wq0RknXit1+tE/vk5+QzHx8dp3nAjNBoN9ft9NZtNLRYLTSaTFKTnu/lVZ4dnCGDn9x10SLOTZ3bw3ZqPyMA8QIwllerynXxXnSesFw/t9DIHHzvvy7IsuTJwHrhLAEGAZ4AOG4hKPAsu2jAedtHZ8ac8wp8P/yzHZV06oXfXANfBfLso5SGa3h51Mpmkz3M+f1ZwALm45iVL/kzxPLPueU91vVUdJe56cKEQgcB/7s82Y63eEw/CvOy4U9/FLeXVHwcCgUDgNhDfw4FA4NWKFy0oZFn2B3UaTPPZxdlv6kVRLCQtzv7+nizL3i/pjZJ+rvr5oijeJeldktRut4uDg4NkpV4ul2nX3XeAIYpOCvkTssF/kI1q4Bsk2y3lXjPfbrfTzjpkF0cERB/C0Ww21e/3U1I/pBTyAoniZ+z4Q+gRP9i9l1Rq9YczAAHBcx+k83pw6ZyM8XfKBnwM7CrTlaLb7ZZyD7wVISS8WnfPef08HPvo6EhHR0daLBZp/iBsBGS6U8At85JKRJs587aD5Dy4E8Pt7KvVKnUAgLTOZrO0rjyYz8UBdqV9vt1iz31fLBZJ8GG8CCOEJiJUUVqBNb/RaKQ1VO3Y4GIC4OesbbfuS+flBN5mkrmrCks4I3xuLxIMvKMD4gVz4ELTZrNJGQb1ej3lKLDW6vV6urcu7HFPfX55vwsxLg64KIILyEs+/H0u6FWvheeS63cBpeqAcTEDkeYy405+F/ezg6L680AgEAg8N+J7OBAIvJrxogSFLMs+T6eBM7+1KIqpvX5N0mFRFJssyz5e0hskfeD5jrezs6NOp6OdnZ1ExKRz8nFyclIioNWuANjS2e13ocGJjJNrJyWQsVqtpl6vpzzPk62cn1Ny4WGP/X5fCCGQKmzXbsNfrVaJeEIyGV+z2UwlD4xTUtqp5lqdVEJuXcDg2iGZOAqciFNKgIDBOCCv2NRxUyDcMFa36zPHvDYajXR8fKzRaFTa3XeSyS65d0Bwi/1yuVSj0Uj3FjFps9mkMhbIJsKK5yAgJDBPEH3WhJcMUEbD7jy77R7OyLUxVtwIrEMP15TOiSlrxTMR3CXhNv16vZ4COWu12i2ilRN/DxlkDXq5iwsmlO10Oh01Go10XH8mGDPn4VgQcH7OnJBNQdmBn59yBHch+PHcDcDaZF24o4G5YQ35cXmWuLcIXX5czufuElAtr+B7hlIQX7eerXGZcae/iwOBQCDwwhDfw4FA4NWO22kb+X2S3iHpapZlj0v6Rp0m2DYl/Ysz0kArnN8i6c9nWbaWtJH0h4uiOHy+c7g13h0E4/FYk8kklTxAptmphRyRP+C97p2UQVybzWZp99ED/hAlBoOBdnd3NRwOSyTOa8p3d3fV7Xa1v7+vXq+n9Xqddq49ewHnAu4Kt6EjYNTr9eRy4H28DplxBwHEC5EC8kQJhaTSrrsT2na7nXaVERkgVZ1OR81mU6PRKM01hIw/XcRwUrpYLDQajTQcDksEvdlslnIpECgga7R1xJGCOwJiz44x+QEIEtx7D6P0fAwn+v1+vxSGCOHnvN5elONwvWQFQGBxTDB+xAHGXF0jEHo6HPj7AWU6kHPWBdkhuDO4D/zMrf+UYNCloPpcZFmWAjRxSkhK68YFOnfAeIYC645nFBGgeo+4H36vWGdewkAHFe6rC1RemoCggKMA4Q63EXBhA1GjKj55uKOHgDLPvpYQRS4TXonv4kAgEAg8O+J7OBAIBG7F7XR5+NILXv6uZ3nvD0n6oRc6CH759/IDdnMh6he5E6TTXXV2eBET3E4uKaXUS+fkHKID2aU1YKfTKdWJSyqVP0CgCI2EKI/H4xKJJxPCd+IhwV7jTvlBvV5PJPciIsOxfUca1wXHaLfbyZLOuSDKOzs7ibh6R4DiLDBxf38/OS34rBN8F2HO7nUpcG88Hms0GiXrP8IKwgVzT2r/aDRKzhMcFpRQcD5Iq9vosaDjyPBuFrg4hsOhZrNZEgoogeE+jEYjjUYj1Wq1lG/AGqx2fnBHRbWLQ5ZlSTxijhGyarVaErlYI+6W4N4hvCAGIEJMJpPkBIGAe+gnbhPvtuBZB+SAeKmEd93w54N745kb3FcX0xgfYam8x10P3C9/9liv1baPrEWeay/BQKDg+4H15y4DBBbvCOLX46Uw/j3Dc+SiItfqDhnWy2XBK/FdHAgEAoFnR3wPBwKBwK24E10eXjLc1o3NvZpEL5WT7CE3biuHdFy08+hWfj8mu7bUhFM3jaWaNHmOx/vZ0cctsFgsEplqtVra29tTs9nUzZs3086opNS6EPJMucN2u9V4PE7dD+bzeapZ51ohTVzHZrNRnuc6ODhQr9dL5AmiSwgiZA3RgeOwW45zwe+FW9FxfviuLoSvKApNp1ONx+Nk8+/3+9rb20sZERDMWu20u8NkMtHHPvYxjcfjdE52y50402aS3XEEF+6Xt9iEJOKW2Gw22tvbu6UzgjteEIQglhBI7ieuAi93cBcJYgJCAkQYAaSarZHnudrt9i0hk5TSMOeIRdxL7puHF0rlrgQuBHAshAu37bvoRfcLd7L47n61lAMhw0UiRArG4G4QDzzE4eGhh6xl5p1nk/HzrHsGAqUc3hWDOUFM8XwUdymwRrwkiuN6qQw/8wyJQCAQCAQCgUAgcCsujaCQZZnm83lpp19SKfDOQ9fcVu/119I5ueB9kCuIIiQB6z/EcHd3txS658KEW7UJNHR7Pedqt9t66KGHNBgMSlkBWMBns5m2263yPE9tG3EtjMfjlBXhBJgchGoAX7PZTMRdUskFAeFG8EB8YYecuer1enrkkUfUaDSSw4Ad5729PTUaDfV6vdJ53bkgSaPRKHWvaLfb2t/fT59F8OH65/O5bt68mez/rVYrOQnYtfZSC0gnHSQ4B3OBi0A6b3dJeQu7zS7SuA2f9eWuEc+PwCXgGQ0ebMkxvGwGUcDFn/V6ndZao9FIAgLj9xBFxCfml/IazyvwsEh3dUCoWfvVkEHOgYOEsUtKJJ3XOTYiHZ+lDSfwQEd3PPAZ5tOv08MQ3XXg+QzV0gfOj6jHXPK6CwnAx47g4fkVFzkafH693CQQCNzf+LX/7Tfr//rd33q3h3HP4r95/W+VtvdUm91AIBAI3CFcGkEBwsour3QuJrCD6jum1TA3DxaEdBD22Gg0Sin/Trpp10h99nA4LLUAhHwjZOAqcMt3URTqdDra29vTww8/rIODA9Xr9RRSCKlhx9QdDs1mM+3wHx0dpV1xXkMMkM6DJGezmbIsSzXynljvoodnEXC9iABFUSjPcz344INJ/BgOhzo+PtZ0Ok1zNxgMUjmGW9OdeM5mMy2XS3U6HV25ckWDwSCFDFL2AJnn/bgoCMCUVHJOuHDE2BaLRXIvQLy9I8R0Ok3ZF3RNYL4Qd3j/ZrPRdDpN9w/XgaQ0/4gk7srwvyPySEpE2ENBIcsIDBBiHAOsd9YVJNfFK0i8CwasBebJy3Z4zUkz/zFOyl2YTz7rTh/WkosFLtJ4JgLPMKIdpSnVMgd3UHD9/IlzgTEgXHnuAnOIS8LLmDwc08fjmQ6e+YCTyDMxqiUrPm+BQOD+QlZvaPIFb9W//OvfIUmqZ78gqXtXx3Qv44c/+rMv6nP/atbSt33iW0//UWxV2Pd4IBAIBO4NXApBwZPkPbTQwwFpF+c7rV6nTRYA72Vnt9vtltr4See7p97XHqKLg4DdZcgGBKfX6yUxgWwHCPy1a9f04IMPqt/v6/j4OAkCvhO93W7VbDaTGFCv11PoHyICBNgJIbZ+Qum8pIE5rAbkQcYgl+xmY6XHJbHdbnV8fKzDw8NEsnEztFotrVardF522xFy6HrQaDR0cHCgq1evpiBEt65DLMlewL0gKc0t/5EJAAHE5QHp43hu1accQpK63W4SkXwH3IMRuSd08nBLv7er5DV3GwDGS3mDd6Lgs971wEUQxspaoNSBdeqdKTxLgjnBKcEcsCY9sFQq2/oR2SiFYN3wLFUDLt1xALH28EKulePjRPBSA+CZCByHdemiCKKFr3vG6nPga95FC54Hzu1OGi+h4LuC97qAyLUxjkAgcH+h9pZP1D/7Z98n6Wcl7Tzf2wO3gXr24ubxc/OVPvfDp2LE297zxXrgSz6m7WRyJ4cWCAQCgZcZl0ZQIJiPmuyjo6PSrqXXuiMYSOe7/l5fDgljl1w631323vLe2pHdcwD5gCjhLIB8edI8+QT7+/vK87y0w+2t/CA57KZLp8RlNpslZwTXA6GcTCbabDaaTCap3h7yR4mAp907Afa58Tp/5s/DIJ9++mkdHx8ngs2c4RBAUMBVISmVZCC0XLlyRXt7e+p2u6WOFOPxOOUWuKWfkhHptMtEnuclsry7u1sKQvQWoHTRwF0ymUySZb7VaiXHCZb7yWSS3CKe/M/5ELLm83kKbdxut9rb20sCiXfrYK202+3kgvF1A+lmDbEO+Dv3mOt20Yg5Zm2x/lmrlKZ48CMinO+wX1QCgHiHUAaR9najTvZduGPsHm7oYao8J/5c85z5M+DCDIIL5/Jjk3+Bs8M7OeBKuEhIY6w8By5Gkkfi2RrVFqec2wWVQCBwb2PnE98g1Wratuv6Z//4797t4QQuwHve9oP69e/6cr3xT3xEmxs37/ZwAoFAIHCbuDSCAqSOnXV2ONkFZofaQ9o8jd2JAPkB7DZvt9skLtBq0fMXnGB5WQUOAcbADqZb57G6Y0uHbFI6wDE9JM5bSPprvJfzQKwQHzz4j5A+BAIvE/CMBElJgMDq7uLNcDjUk08+qRs3bqQWiWQxIAYcHR3p5OSk1ElhNBolN8cDDzygBx54QFevXk15DgAyT9DlycmJRqNRmkdaNyJucN8hr7g1mH/v9MG1eikJ5JX5xBng2RhOICmfgWzS4UM6dToMBoNSYOXOzo5ms1lymFy5ciW1XuR+e1AjIoqHRkJiXYxgPGRIkFXgu+eSSiIV+Ra4QAhwxOUxn89vcfIgGHEvnw2sGcQnf0a4P57p8WzPJveDUgnGVc078fcyV96RgjXN635O7j25CggzHBu3E2KkZ0q4gwFRw10JF3VcCQQC9xDe/kla9Rv6377rf9Ub6527PZrA8+B9v+1v67G/+FX6Dd+4q/VTT9/t4QQCgUDgNnApBAWIV57nks7b1UGWnURAOKlDZ2fYyT92ekL0IBtu5YZQs9MJ6UWcYIfSP8OuMYTbWy9yHIIfj4+PNZlMEkGFxDF+t5hXwwIJiHOXA68jlgC6IlD24a4L5ot6cYgnJQXsxj/55JMaDodJTKCcYDwea71ep519yg28leeVK1e0v7+vq1evpvBGnAw4LBBXZrOZbt68qZOTk7QrD7FuNptpfpgjCDp5C5QtQCxZBxB2ujaMx+Pk6NhutxqNRhoOh0lYouzDXQqsOVwxeZ6r3+8nIYp5hEznea7BYKB+v5+Ittf6I04gHjSbzTROF4Y8wNGDMxEGvI2od56o1Wqlkh6EkW63WxKj2I2vjq/T6SSy7W4BzzvALSGdCwTSeTaE7+C7m8EDUjl/q9XSZrNJYpK/3//tHUF47hiXhyW68Mcz704dximpVELD+zxLwcWH6vcS4lIgELi3UHzGW3Ty63J92df/sP7bwUclhZhwr+CDX/huPbZ5p37Dn1eICoFAIHAP4FIIClK51ptd1GpqPEQMsuMheW7lJxwOazxEbTqdJsLIjinZCcPhsNRRAQLOTq6XDXj9vteW4yRAoPASBh+juwVoIwnBhShPJpMU0ggJohuCpNJuK/+GALoTQVIqA9hsNslp0Gq1dP36dR0eHur4+DhlBtAlgVwJxA7uAeGM1LsPBoMU7MjuPdchSZPJRMPhUCcnJ5rNZkmkgJT6jjACgZN75t9bFyI4INb4unBxyHfqIdxkDbjI42tsd3dXg8Gg1EUA8Yr5bbVa6vV66na7twQHermJzz/iFbvvlOS4LZ/Xu92uOp3TX34RuXDFkCnSbrfV6/XSNSOWNBqNFJLpgY5cJ2uIOaXdJ+uuGu5JSQmlAu4gQcDiOeUaXaBgriitceHAu4Xw7PJccT8uKrtgjNUOFKwNh18TAg7XIZ07JNxRwvFcGAkEAvcOtr/1rXrwf/6gfuz1P3G3hxJ4kfjg73mXHqu9U5/4Z9ZR/hAIBAKXHJdGUPAUdnZT3b4OmZLOd0Mhzt4Jgp1xiJiH/0HK6ADAbvp4PE477oT80U7Sdzmlc5KDM6Cakk9rSAi6t6ODPNFdYmdnp7TbzzUuFguNRqNEFNl9Z3cbUomgwTkIaqQ1ITv7BwcHajQaOjk50cnJSSKd8/lcN27cSIn8zIXbwDkfu7y4K3q9nvb393XlyhX1+33t7u6mUEkvTaBcgtaSdNDAbUCJBAKBlybwutf+I2ZA/Jxw0rmBsgMCL5k/RKLZbJbOA5Hm/bQExR1QDQbF7UKrUeDikmcmXBT812g00hrkuhAJOD+hkpBr79zA+kFMQHTy9qOLxaKU7cA8Up7TbDaTGEPGgGcg7O7uJuHBSw9Ya4wZJw/z6J1aaGva6XTSvfESIhdR3GHAvQS+FvmT597zVHzNIDq6MwExiOOTt8Ick91R/V4KBAL3Draf9VZd+eYP6++GmHDP44O/6136+PZX6E1/dCkN7/ZoAoFAIPBsuDSCArXjtPcDkH7vvuDt5XhPo9FIpNvt3byHQD0IIWGD1OgT4kbiPgSNnfYqmYHIUD5BK0k/t2ccuE2cID525Ckz8NwAQgYZb3WXnnaMWMwJWaTeHzGBWv/lcpnEA8IHb9y4oaOjo2Trxn2ATd27YuCgaDQa6vf7GgwGOjg40MHBQWr9OB6PNZ1OUzbFZDJJYgKlCu12OxFPF1gQCbgfnriPa4H5geAjDiG0VK3/nluw2WwSOfYyFOYQ0tnv91ObSxeDpPPAT1wwvi5wPhRFkUI/2d33bggcg3HTuaJeryeRhvIc7gWOG3fmIB7QTtPDKRF13PUD0aerBPcIwaQaxJjneSpBQnRABKPLRpW4I/jgBGm329rb20vCGWuXshNEDq4HlwHPBeUMktJYcaL4s+hhiu5Yks6dOwhu3CdEDYRB7jfn4l5VBYZAIHCJ8fZP0qPf8mv6rkf/zd0eSeAO4QOf87f0+f3/PASFQCAQuMS4NIKCJ7c7uSFQD0IEeYAQQXLZCUUokJTcCuy+I0R4FwBq0t2VgP0ZogWRkXRLvTdEvt/va2dnJ9WIQ1K91r8oikToIIQE5SFuTCaTVDqB7R4ruaQkMJDuD5Gu1+tpF95T79vtthaLhW7cuKHj4+NkHR+Pxzo+PtbTT5/WJ2LxZheeunucBLPZTPV6Xf1+X3t7e+r1etrb29Pe3l7JncAceatIxsKuOoTbhRjej/DjO8O4PRAc3IEAiWS9sPOf53kSazyck3tOlwWIfVVIoaMIa1M6z/qACDebzdIOOMIRa8VbZXoYJmvQySpOkoODA+3u7iZRBRfFcrlMWQw8F75WJCXXhTs/JJXWDgQaZ0Cr1UoOFe4TTg3GgbBF7gIOEi8JoEwFwQOBhHuLw8LbQlK+wD3k2UKUY10yr6wJFw1wryDsSUqtXLlfCBOeL+JlOYh9zJPfFxwegUDg8mPyaB5iwn2Izg8spP9H9vxvDAQCgcBdwaUQFPjFnnaKkG86BEDi3HYOMYAkuIXcCT87/pJS2B07kr4zi5jgO82IDpQ7QCyxdJO1AClmt9db6bEjTktDr6dH6JhOp4kcUi4hqZTlwLVii+/1eqWgP4gau93svK9WKx0dHemJJ55IO/rL5VKHh4e6fv26ptNpmk/EC0gc+QkIHpRUEAzZ7XZLrhB2sQlQ9DICjstc7O7uphwCSakEA0LuBJJ/k8FQFIW63W4p1BCy6rX2fu/IUuDfrBe/395ekHmFzFKS4bvWzLvnViB2NBoNDYfD5KxhJ746Zu7zYDDQYDDQ/v6+arWaZrNZEqUov6CkBscIZJn1wf3yDg2e7+AdQKrZES4EINaxlsl16PV6aa5wnFC+gpiAu8czKLwVqJdIuBvBAyt5NlyoQdzi/iLIISTguvBQSY7DM+fPkpcwsTYQLb2jRLSODATuDWRvfbO+8i/8w7s9jMDLgB/8+B/XfhaCQiAQCFxWXBpBAbs2bgQInHc/gCRBELyrAyUTEEJcDJJK5MRbxvnPIMjeUYJMAQQE6dziDlEmP2CxWGg8Ht/SgtLJpxNjdsLp5IAF33MK3AIundvlIfJ0bXB7O2NjV3s0Gumpp57S8fFx2i1eLpc6OjrScDgsETK35nt2BK4BJ+vY5wk+lKROp6PBYJAyGsbjcSLuBAOu1+tU4oCbAiLMfaiWGiDQ+DjY1fYcC2/PCUmFzBKSyeeYM/7uGRYuHPEe7yzg89zv99Vut9P8s07G47GGw2Fay9xL1irrG3fNtWvX9MADDyjP87TemY/ZbJacLz4vzKG3SJXOnQjVbAEXCfgPsYR14IQbZwghkd45xQUfdwFwr/2eeLAn94z1QGkD95T1jwCFk6Ma0opzo9lsJpHL7wvj8jwHxAwvX0LAc1cEYJ0GAoHLjd3XP6o/9Q++T+9oR4lSIBAIBAKvNC6FoFAURaq/93R/t5yzq7qzs5McAYAWkJAgdiW9Zt4zCNzC7on0tJPzvvWUVDjprIbnSUq735zDA+4gpB4UyfsJ0IOk47CAUG6327QzjusA54J3N5DOg/uwsC+XS52cnOjw8DARsu12m+rscU1AnPh8NdkeRwHXya4xIk6WZSmzgDHS7QFhB/FEOm8lyE486f90A2AnmusfjUaleYIg4qhwJ4nvhnPPEBO4F1wr6wCxgnXga473+n2pClsuJuAaQdSYTCalUhvKBqbTqZbLpXq9nq5cuaK9vb00d97toJop4l0hPECR13BA0IrT24biKMC1wBq5qDsFc4nj4P/f3tnERpZVd/x/yu2yXa7yR7c9o56ZVhhGkwVE0QQhFCkRYhEFmM2EHdnAIhKRAClIyQKEFMiCSPmASBEKEQgEiQIoSoKCsoiAKAmbBJgkMzADmTAEpAx0uju2y1UuV/ujfbNw/a5Pvbbd3YO73nv4/KRS2+X6OO/e+676nHvO//A+3x3DZxf4gIQPPFFm4tsv+jIVnHi+22ciETTz76Wkg0yQ5eXlrHvihTr5l/H0GTxkPB3XUQQbvJhlEATVZWppUR/958/q0el22aYEQRAEwbnkjhLmZvYpM7tuZs+55z5oZj80s2dGjyfd395nZi+a2Qtm9sa7MeLg4GAs5f2402kcI1r6ebE20tI5wZaOWthx+k+wgdPIoqq9DzLg1EjKjggq9Zwqt9vt3AWCNoV8Fie72IFz6ltJ+lNzTnsp1cCRHgwG6na7Y60WcUzJ6sDxxkHa3NxUt9tVr9fTtWvXdPXq1exo4azjcKMhwFhxWosThWYB7y2mweM8ckpMhwmyDihNaLfbOTODuaScpdvtant7O187ARKuCweSsSSYQuYD89Lr9XInCYI20rjQpO+MwNyjXUFgoxgIwg6+E52KVqt1W2ALZ5511+/385pjjZG+j5OMFgUBL58xwjz7jABENglo8TrWGTbyeYybny+fKePFHgkwsCZ5Lxkv6GTwHrIP/Mk+ATkejAO6FZQsIe5YbH/KuiYowv3A9/kyj6WlpVz6wzhzH3BvMZ4EWPwaZo6579kXvBhkMWuhTCaxFwdBrWhM6QvPfyWCCcHEiH04CILgdu4mQ+HTkj4q6c8Kz/9RSukP/RNm9ipJb5X0akkPSfqKmf10SunU/5XjzPoSAUljJ6mIvLVarewA44x4B8GrveOAUBaAY1rUZ+Bk2Iu/+bZ4dEjY3d3N6dWI3iEkOLr+bLsvtyBYgh10RPDK8mRkeO2HXq831j7Td0SgJp9rR+yQccQBazQa6nQ6+aQWBxqn27fP9KfVksacc/QJ6DCBeKU/pecEu9frZUfen9T7gA9jjFaAP9nmb/1+X4PBIIsZ0kWD1xIUorxCOiy7ICOC+ZWUyxLQcCAtnvXlRfp8QMOXn/i1xcm9L/fodDp5LPv9fu5Y4bUtfPBscXExl8ywBrABIUzvGNMxgYAF4+01B3zQQFL+uZgNQBCseO3SUckMgRRJ+fVFPRHGiyCYz5hBH4RsAjRKWN/FDBt/7yBcyvpmntkj0OogSEZmkt8zEJL030lA0e8drAOCID6QUaWAgiawFwdBnZhaXtSMTZdtRnC++LRiHw6CIBjjjgGFlNJXzewVd/l5T0n6fEppR9L3zexFSa+T9C+nvcmXCBSF48gWIDUf5wtBNpwRX9ONs4gz6x0p6UgAkFN06tBxRnD+cTg2NjZy/b3XG8CRxUHlewkm+PKDW7duaX5+XouLi9k230mCa2y1Wrp169ZYtwiyEjj95oSY015J2QHnmvx7OeFF58GnkOOc0qYSp31nZ2dMeK+YVs9pvNcjIEizvr6uwWAgSTll32eJeLE+AiOULzQajdyBgqBE0Qll/klRx9GlHeeFCxe0tbWVx57TacYNEU/GkwwGnwFBuQDv8ZkAlI+wttDSmJ2dVbfbzVklu7u7Yyf8vi0o2QY47F67Ai0RyoAoByFwQDYM64byDmlcONTPjW+f6Ntw+mAAa5B7BYfalxLxHf6e8vdg8e+MKdkTjDmBPtYp9y3ri6AhGRMEAbgHaT3pNR1Y9wS9FhYWspAk72cNYSNBBC+Q6Tu9VElDYRJ7cRDUib969u8lRSeWYHLEPhwEQXA7P46GwrvN7G2Snpb0mymlDUkPS/pX95qXRs+dihdn4+TQ161PTU3lk0ZJ+WS/KFoojZcYeMfaq/eT9k4wodPpqNls5mwDTkE5teeUlTIH34bQO6k8T9CDa6IDAd0OOJmXlB07rg87cLQbjcZYFwkcOxxVrrWoP+FLNnD2cVJ9rflwOMzvxZHjb6SdFx1Xf1rvHfxer6dut6t+vz8mSEgq/dbWVj75bzabY4EYMkQIcPR6Pe3u7ubuAgRlgAAS1+xbaQ6HQ21ubuaTfV8C4BX/Efzj+qi199oKPkOBlHnWhl8/CwsL6vf7unHjhjY2NrLuBbbimLMmCB75tqCc/vvSE+zHuR8MBjn4wzol0ONLZhhL74iTtcKj2WzmzBifOUJQzzv+PgOCNebhfvVimaxT1pQvm2GN+u9jnLkWLwzphRp5MA8ERnjv1NSUOp2OOp1OXuMEHsjCYd69hgIaGASOiuKgFebM9uIgqBN/sPaEPrD67bLNCAIp9uEgCM4xd9RQOIGPSXpM0hOSrkr68Oj5447zjlU1M7N3mNnTZvY0DidOFCfPXmCR02fpyAn3+P/8+3psRPt8sMDXbvvWhTjcBBJ8MIETVlLnaTWHo+UFCr3AI2UW1Lv7lnsEPHAq0WvA9tnZWS0sLGhmZiZnLWxvb+e6cAIhXkkfu0iFxyns9Xpj10agw2tJUGvPo9idoVhW4tP7OU33j36/n7MmisJ8kvJ1kOlQPJFGWJOMFWzOC8sJdXKyvL+/nzUkaLVIajyOrncaCUQwP14DgcCLL3Xw3z89Pa1Lly5pdXVVKSV1u12tra3ldpGsOezGibWRiOXy8rLa7XYOChFw8OUK2EfmAFkmBBVYazjDvi0pZQK+g0hRi4NxYe69w871+pN/74wTFPDZMqxfPpM1xN8IKHkBSewmGCAdBWG8Fkmr1cqlDo1GI9+jBwcHWTui1Wrl9ptzc3NjJRBeL4XSE6+5wrrwWR414Ez34j3tHPeSIKgkX/rQ68s2IQik2IeDIDjnvKwMhZTSNX42s09I+rvRry9JuuJe+oikH53wGR+X9HFJajabCUeLE0xS5M0s16fT9pATZZw7HAYcmGJHB5xhHAr+xWGfmprS1tZWFtHjNV5Qj3Z/vnMEqe/z8/Njp+WcBCPiyHVhq3QkGomGgXfG/Kk4Ioe0r0wpZWE+ygB8yjd2MxYEGBgDr95PGr50qDGAwB1OI+Pg5wHHrdFo5OvD4eQEmKwHMklwlv3nMd/e4fPBDX9KzOcwXj7QUSxDIXCyvb091qEAZ52TeX+q7zsLEASipIbPKGa+zMzMaHl5WZcvX1ar1dL169d17do13bhxIwdu6KLBWiXgMzs7q5WVFT344INaXFzMwZvj9A+YH68V0e/383iSHcOYoBVCIEFSdr596cPc3FwuoeC7fEYP482aAn9f8N2A7YylD0QRQGDN+XIZPtcHrLgPuMd5PdkMvi0oJS3co2T0+C4OPtjou1j46+fzWZN16PBw1nvxgl2s/kUHwYgvf+SPFSUP54Pd1bmyTTiR2IeDIDjvvKyAgpldTildHf36Fkmo3X5R0mfN7CM6FKB5XNLX7/R5OA6+VACHbG5uTu12WwsLC2Np1V5Uz4sZ+rT0404nfeo2Aoe+mwL4dO/j0qy9M8vpMYEO6UiQbnd3NzsxOC/F1no+/ZvX4BzxWTiiCPmR2k+5gneGsB8NCZx+XyfPSayZ5TaY1KV7kUyyRBgvgg4ED+ie0Gg0tLOzk4MMN2/e1GAwGBPxo9yDAAVijgQKsJk55LvRr2AOfKcC5tJGXQjITpCOMlXIevCdBvxn+Fp57ENEEEeVU/T9/f18Er66uqpWq6XhcKj19XWtr69njQqfXePLBxqNhpaXl/Xwww9rZWUlZ2hQSuMzFLy44dbWljY3NzUYDG7LDJienlar1crBGjRCvLYB5SW+3SbBLgJTvj0o947PCmEuvE6Hb5vpsw98SYEPeviMA4IEBOhY9z6Q4jN+mDPWJXsGWRlkMs3Pz98mQgmsU6+Twr3IvV3UZqkyZ70XB0EQVJFXP3ijbBNOJPbhIAjOO3cMKJjZ5yS9QdKKmb0k6QOS3mBmT+gwdesHkn5dklJKz5vZX0r6tqR9Se+6WzVbHGqE/fjPvk+HxsH3wQKvwE+KPFkJlAJ4h3p0TdlBQUmfmnufLo5TiAPGSTuOGI6v1wqQlFsZ4thJR45Su90ec1YQL8QeX0KB6ByO8MzMjC5evKh2u53LGHxrPK6XE/Ht7e0cDOC6STPn9ZKyQ0qGhA9G4BDiqFGX7k/wuRZfVuK7aFAuwvWQgYETSXCj2CUA+yTdJjCJk8vvvpOED6p47QwyC/xJOd08/OtxTFH7J2iC/Z1OR0tLS2q329rZ2dHGxobW19dzCYzPVJGUgyqScjBhdXU1BxNI4/cn8qwprotyFx+goVyGtYL2BGUxCFEyBwSFGGuCAoyD11rwtvj1iiPuSySKARDG0X+v14kgIwchVF9yQwDGlyJwb/gsHy8Uyv3su4+QWcTfCRwRcPGBQi8Ky3dSwlQlJrUXB0FdeO2fvkfffueflG1GcI6IfTgIguB27qbLw68e8/QnT3n9hyR96F6M8M44qdoI3iG0h+OBk0laP84UjqKksUACIoQ+q4Hv40QdBwNH3Leb9Cek/lRYUj559rXpOzs7WaXfn4S2Wq2cWeDFB6WjNnnYjjODfQQ6FhcXtbS0pEajoc3NTXW73bG2ktJR6jjp9TiR0lHWAy0vycjwJ/ToWZASjpPXbrdzej7jx9wQYPAdHbAbB92DM4vT5xX3ObHmNb4UBofQdxbwa6j4Hf502bd6RCfBp+OToo+jiz7FhQsXND8/n0tPyJiZmZnJWSiUyhAIoruEpBx8IrvjgQce0MrKSv4MSk0IsBAo8BoIvuUmn4toJ+t+b28vl3o0Gg3Nz89nx9zrRlD+4UsMfMmQLyugHIdgnHe4+TyCDz6bgjIc/1oCbwQKuQ8IwnhBTK+R4luJMq/FbiOsaTIVeD0BIB8c4/t4rRfL9JlCfi+pCpPYi4OgTlz53a9J7yzbiuA8EftwEATB7fw4XR7ODC8OyH/gfVnC9PT0WE973iMdnWBKyqfCe3t72t7e1sbGRnaaSa/GkaUsAscTZwrnAweEz8YJoj4bJ9Q785KydgJ1+F68jvKI2dnZnJlAMIEAAmncKaXcLWF3d1dLS0t65JFHtLS0pL29vSz8R4ADe31XhYODAy0uLmaxQk5xJeWABw6nd9hxXMnCQGsCAcFilwQc3+FwOCbEyFySyVAccwIlPoXffz8tFn19O6fTfKY/ZWbuCIgwpwRBWAekzZPhQiZCUcuC1/P5BLmmp6fV7/fHAk+sD9Yo1+5P9DudjlZWVnLZCO0m0eXwLUB920hfQoGz70sGeP1gMMjBBIIM3CPeQWb8yRhgDeCgs6bINvEZIb5sgvsFexh35s9nD7BOvH4Cc8Y4UxJBgM/byZ5A4MILPpLhUQxw8J2UBXFP8P3sGZLy+5rNphYWFjQ3N5czboIgCIIgCIIgOJ5KBBQk5dpxf9qJ0+Tbu/nUeN8hAAcChxLxuuFwmJ15hAMlZYdGUnacfeAChxfxQ06tFxYWsvPtRfSwixNPbzOn3KTK43DhwExNTWW9AdK1+/2+1tbWtL+/r3a7rStXruihhx7S/Py8ut1urmVnnHDmvOM3Pz+v5eXlrE+AM0oXBl9KwUmwPwXHWcfx5XWc4uPAo5ewubmZRRFxfr3GAfYxRgRPcCbTqBsH2SU4tD5wgYPZarXyyfuFCxdypgkaBs1mM5ctMN+UXXgtBQJErAPp9o4hPnhlozaEzLFPlUcQ0Xd2QPuC9o+U8LCWWq1WvibW0M7OTu6cQUDCzwulAl6rgLVAoEc6EvfkZ//gOs0sj2VxHgjcEBDwoqdehJSAli8v4t4guMFYSUflGgTAvPPvNU8ITvj3UObBvPoAhxcTJVuI4JbXXiHjgmAGQQ8ET31GTTG7JgiC6vCW5/63bBOCIAiC4NxTmYBCMYXdK8B7HQFOc72+gheVQ7+ANPGbN2/mE2jpKGXaO4o4Jf77+v1+dkDQD6CO3p+8+y4BPqXaB0NoEUgmAmUBOD+c8JPyv7e3lwX+5ufntbq6qscff1yXL1/Ogombm5va2dkZq033af6k5l+6dGmsywKZE8PhULu7u2Pp4kUBSzIyFhcX1el0ci07jjXBm+FwqI2NDV27dk39fn/McaUcgp+9ij4OJ8GKwWCgra2tnO3gM0RwPhEXpHwDnQACSMwbzi/Xg9OIY06GQLElpA84cZ10hkDnwOtzoJNBCQsONZkwBJsIwrRarSwySncQ1iRz2+/3NRgMxjQ5vAgir2W+uD98i0zf2cR3b/DrlxN+sm18UIn3en0Egl+8huwESfle80EkbKVLya1bt3JwiPnk+rhGH2Dw3SV43mctsR9QyuHXyM2bN7W2tqbNzc289n1WBLYzppJyEIrsDq/bEARB9XjbwvcVXR6CIAiCoFwqE1DwNfOchnodAV+zj6NDQMGLNNL5AEcLx1DSmANBrbZ30vb399XtdtXtdnO3ARxTTnGpj8epwenAWfVicJxKt9vtnHJO+jqOMU7scDjM19DtdjUYDHJrwscee0wXL15Us9nU+vp67h7hWwF6Ab3p6WmtrKxoZWUld2TwY+uzIzqdTm4hSDtCHGwvPsgY+e4UnKZ3u12tra1pe3s7n7T7U3Vf3oATTdlEp9NRq9XS/v5+7rYxHA51cHCQT9v92FFaQFtJnNX19fU8b3RMQLW/0Wio1WoppZRP8nHovVgnJ/rMOdoOBIeazeZYWv/m5mb+3WcTFOcD4UV0NJaWlnJwCUc5pZTXLuPI95CpATj8BNK88CeBMa8NgNNN8MWXs7BWuUf4Ln9P+cCC11SQdFsQgu/x5RO+/MXf78U14vVJvJ4B34PmBJ/L34oBlps3b6rX66nb7eZMC3RY0Gjx7UPpfOIFIYsCoUEQBEEQBEEQ3I4VxexKMcLshqSBpP8r25aXwYrC7kkSdk+eutp+Vnb/VEpp9Qw+p/KYWV/SC2Xb8TKo6xqV6mt72D1Zzrvd52kfjv8TT56we7LU1W6pvrbf1724EgEFSTKzp1NKry3bjnsl7J4sYffkqavtdbW7TOo6ZnW1W6qv7WH3ZAm7zxd1Hbewe7KE3ZOnrrbfb7ujQDgIgiAIgiAIgiAIgnsmAgpBEARBEARBEARBENwzVQoofLxsA14mYfdkCbsnT11tr6vdZVLXMaur3VJ9bQ+7J0vYfb6o67iF3ZMl7J48dbX9vtpdGQ2FIAiCIAiCIAiCIAjqQ5UyFIIgCIIgCIIgCIIgqAmlBxTM7E1m9oKZvWhm7y3bntMwsx+Y2bfM7Bkze3r03EUz+7KZfXf073LZdkqSmX3KzK6b2XPuuRNtNbP3jebgBTN7YzlWn2j3B83sh6Nxf8bMnnR/q4rdV8zsH83sO2b2vJn9xuj5So/5KXZXeszNbNbMvm5mz47s/p3R85Ue7yoTe/F9sTP24QkS+/DE7Y59+IyJffj+EHvxZIm9eOJ2l78Xp5RKe0iakvQ9Sa+U1JT0rKRXlWnTHez9gaSVwnO/L+m9o5/fK+n3yrZzZMvrJb1G0nN3slXSq0ZjPyPp0dGcTFXI7g9K+q1jXlsluy9Les3o546k/xrZV+kxP8XuSo+5JJPUHv08Lelrkn6+6uNd1UfsxffNztiHJ2t37MOTtTv24bMdz9iH75+tsRdP1u7Yiydrd+l7cdkZCq+T9GJK6b9TSruSPi/pqZJtuleekvSZ0c+fkfQr5ZlyRErpq5LWC0+fZOtTkj6fUtpJKX1f0os6nJuJc4LdJ1Elu6+mlP599HNf0nckPayKj/kpdp9EVexOKaWt0a/To0dSxce7wsRefB+IfXiyxD48WWIfPnNiH75PxF48WWIvnixV2IvLDig8LOl/3O8v6fSJK5sk6Utm9m9m9o7Rcw+mlK5KhwtR0gOlWXdnTrK1DvPwbjP75ij9i5SdStptZq+Q9HM6jBDWZswLdksVH3MzmzKzZyRdl/TllFKtxrti1G186rwX13mNVnpP8MQ+PBliHz5T6jY+dd6HpXqv00rvC57YiydD2Xtx2QEFO+a5Kred+IWU0mskvVnSu8zs9WUbdEZUfR4+JukxSU9Iuirpw6PnK2e3mbUl/bWk96SUeqe99JjnSrP9GLsrP+YppVsppSckPSLpdWb2M6e8vDJ2V5S6jc9P4l5c9Tmo/J4AsQ9PjtiHz5S6jc9P4j4sVX8eKr8vQOzFk6PsvbjsgMJLkq643x+R9KOSbLkjKaUfjf69LukLOkwPuWZmlyVp9O/18iy8IyfZWul5SCldG90oB5I+oaO0nErZbWbTOtyA/iKl9Dejpys/5sfZXZcxl6SUUlfSP0l6k2ow3hWlVuNT8724lmu0LntC7MPlEPvwmVCr8an5PizVdJ3WZV+IvbgcytqLyw4ofEPS42b2qJk1Jb1V0hdLtulYzGzezDr8LOmXJT2nQ3vfPnrZ2yX9bTkW3hUn2fpFSW81sxkze1TS45K+XoJ9x8LNMOItOhx3qUJ2m5lJ+qSk76SUPuL+VOkxP8nuqo+5ma2a2dLo5zlJvyTpP1Xx8a4wsRdPjlqu0arvCVLsw5Oy19kX+/DZEvvwZKnlOq36viDFXjwpe5195e/FqQT1T/+Q9KQOVTS/J+n9Zdtzip2v1KEi5rOSnsdWSZck/YOk747+vVi2rSO7PqfDtJw9HUaifu00WyW9fzQHL0h6c8Xs/nNJ35L0zdFNcLmCdv+iDtOFvinpmdHjyaqP+Sl2V3rMJf2spP8Y2fecpN8ePV/p8a7yI/bi+2Jr7MOTtTv24cnaHfvw2Y9p7MP3x97Yiydrd+zFk7W79L3YRh8aBEEQBEEQBEEQBEFw15Rd8hAEQRAEQRAEQRAEQQ2JgEIQBEEQBEEQBEEQBPdMBBSCIAiCIAiCIAiCILhnIqAQBEEQBEEQBEEQBME9EwGFIAiCIAiCIAiCIAjumQgoBEEQBEEQBEEQBEFwz0RAIQiCIAiCIAiCIAiCeyYCCkEQBEEQBEEQBEEQ3DP/DzB2HKY5T9JOAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 274781 0\n", + " Min thresh = 1000\n", + " Not Sliding\n", + "\n", + "\n", + " Winner = Not Sliding\n", + "\n", + "\n", + " VFOLD = 6 of 15\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsIAAAGDCAYAAAAh/naNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAB02UlEQVR4nO3dd7wcVdkH8N+ze1t6DwESSCBA6AihoxTpoIAvKFVQEVHwFSugvooCigpiAQREQFRApfdOAgRIgxTSe+/Jze1ld8/7x5SdmT1Tdu9utv2+n08+2Z2dcmbuvbPPPvucc0QpBSIiIiKiahMrdgOIiIiIiIqBgTARERERVSUGwkRERERUlRgIExEREVFVYiBMRERERFWJgTARERERVSUGwlRQIqJEZGyx20FERNmrxHu4iMwRkROK3Q4qDQyEq4iILBeRdhFpcfy7q9jt8hKRK8yb7xeL3ZaeEpHR5rnUFLstRFR9RORVEfmlZvk5IrK+J/cmEZlg3t8O9ix/xlx+Qq77zrE91v3Wen/bICIviMgpzvWUUvsrpSbsyLZR6WIgXH0+p5Tq6/h3bbEbpHE5gK3m/3nHoJSIqsjDAC4TEfEsvwzAv5RSiR7ufyGAL1tPRGQIgKMAbOrhfntioFKqL4CDAbwO4GkRuaKI7aESxkCYANhZ2Eki8mcR2S4i80Xks47XdxGR50Rkq4gsFpGvO16Li8iPRWSJiDSLyHQRGeXY/ckiskhEtonI3ZobsrMduwM4HsBVAE4TkZ3M5feKyO2edZ8Vke852vekiGwSkWUi8r+O9W4SkSdE5J8i0gTgChE5QkQ+EJFGEVknIneJSJ1jm1NFZIF5Le4RkYkicqXj9a+KyDzznF41253tNQ+6pkeIyDQRaTKzGr83lzeY57HFbPtU6xoREWk8A2AwgE9bC0RkEICzATwSdi+M4F8AviQicfP5RQCeBtDlOF5MRG4w3yO2iMh/RGSw4/X/mtnp7SLyjojs73jtYfN940Xz/WWyiOwZpWFKqfVKqT8CuAnAb0QkZu5zuYicbD72ff8SkXEi8rp5j14gFfAtJWViIExORwJYCmAogJ8DeMpxs3oMwGoAuwA4H8CvHIHy92Dc/M4E0B/AVwG0OfZ7NoDDYXw6/yKA0wLa8GUA05RSTwKYB+ASc/mjMG62Atg38lMBPG7e3J4HMBPArgA+C+A6EXEe5xwATwAYCOPGnQTwXfNcjza3+Za576HmujcCGAJgAYBjrB2JyLkAfgzgCwCGAXjXvD7ZCrqmfwTwR6VUfwB7AviPufxyAAMAjDLbdjWA9hyOTURVQCnVDuP+8WXH4i8CmK+UmomAe2FEawHMhXE/hnmcRzzr/C+Ac2EkOXYBsA3A3Y7XXwawF4DhAD6CcY92ugjALwAMArAYwK1ZtA8AnjL3vY/mNe37l4j0gZFNftTc9iIA9ziDdKoQSin+q5J/AJYDaAHQ6Pj3dfO1K2Dc0MSx/hQYX5+NgnGz7Od47dcAHjYfLwBwjs8xFYDjHM//A+CGgDYuAnCd+fhGADPNxwJgJYDPmM+/DuAt8/GRAFZ69nMjgIfMxzcBeCfk2lwH4Gnz8ZcBfOB4TQCsAnCl+fxlAF9zvB6DEfjvrtnvaPMa1HiWh13Td2Dc+Id6tvsqgPcBHFTs3yf+4z/+K49/AI4DsB1AL/P5JADf9VnXvheazxWAsT7rTgBwJYBLYXyw3wfAQvO11QBOMB/PA/BZx3Y7A+j23hfN1waaxxxgPn8YwAOO18+EEcTr2uN3v20wlx9rPl8O4GTzsfb9C8CXALzrWXYfgJ8X++fJf/n9x4xw9TlXKTXQ8e+vjtfWKPOv3bQCxqf3XQBsVUo1e17b1Xw8CsCSgGOudzxuA9BXt5KIHAtgDIDHzUWPAjhQRA4x2/U4jE/lAHAx0lmD3QHsYn611ygijTAyts6SgVWeY+0tRieK9Wa5xK9gZERgnq+9vnns1Y7NdwfwR8extsIIlndFdGHX9GsA9gYw3yx/ONtc/g8Ar8LIhK8Vkd+KSG0WxyWiKqOUeg9Gze45IrIHjG/oHgVC74VRPQXgJADfhnGP8todRp2udc+cByMRsJNZmnCbWZrQBCNIhacNkd5DAlj31a2a1/zev3YHcKTnfeUSACOyPDaVOAbC5LSrVXpg2g1GlngtgMEi0s/z2hrz8SoYX9/31OUwAsoZIrIewGRzufWV3mMAzjfrcY8E8KTj+Ms8AX4/pdSZjn07A3wA+AuA+QD2Ukb5wY/NYwPAOgAjrRXNazLSse0qAN/wHK+XUur9LM418JoqpRYppS6C8ZXcbwA8ISJ9lFLdSqlfKKX2g1GucTbcX3kSEek8AuNecRmA15RSG8zlQffCSJRSbTC+Kfsm9IHwKgBneO6ZDUqpNTCSGucAOBlG2ddoc5us2hDiPAAbYWR/dW3TvX+tAjDR0+a+Sqlv5rFdVAIYCJPTcAD/KyK1InIBgH0BvKSUWgXj6/hfm521DoKRsbQysg8AuFlE9hLDQWL0HI5MRBpg1K1dBeAQx79vA7hERGqUUh/DyGo8AOBVpVSjufkUAE0icr2I9DIzDAeIyOEBh+wHoAlAi4iMg3EDt7wIIxN9rhgjTFwDdxbgXgA3WrViIjLAvF5B6s1r12Ce6xoEXFMRuVREhimlUjBKWAAgKSInisiBZseUJhhfLyZDjk1E9AiMYPPrAP7uWB50L8zGjwEcr5RarnntXgC3mkkMiMgwETnHcfxOAFsA9IaRkc4LEdlJRK6F0eflRvN+6uX3/vUCgL1F5DLzPbFWRA4XkX3z1T4qDQyEq8/z4h5H+GnHa5NhdFjYDKMzwvlKqS3maxfB+KS+FkaP4J8rpV43X/s9jNrf12DcUP8GoFeW7ToXRqevR5TR03e9Umq9ua84gNPN9R6DcTN/1NpQKZUE8DkYgfMys/0PwMgu+PkBjExEM4C/Avi3Y3+bAVwA4Lcwbs77AZgG42YNpdTTMLK0j5tf5X0C4IyQ82sxz8/6dxKCr+npAOaISAuMjnMXKqU6YATkT8C4zvMATATwz5BjE1GVMwPU9wH0AfCc4yXfe2GW+19rlmDo/NE85msi0gzgQxjf6gFGgL4CRnJgrvlaTzWKSCuA2TBqii9QSj3os672/cssWzsVwIUw7tHrYdz36/PQPioh4i4JpWolxhiLVyqljit2W0qNOSrFagCXKKXeLnZ7iIiIKD+YESbSEJHTRGSgiNQjXTOXj0wFERERlYhIgbCInG4OJr1YRG7QvD5ARJ4XkZlizOH9lfw3lWiHOhpGT+LNMMouzlXGeJxEJY/3bCKiaEJLI8xOOQsBnALj6+GpAC5SSs11rPNjGGP+XS8iw2D0zByhlOrS7ZOIiAqD92wiouiiZISPALBYKbXUvEk+DmOoEycFoJ85zFRfGGP19XT+ciIiyh7v2UREEUUJhHeFezKC1cicOOAuGENtrYXRS/M7PsOUEBFRYfGeTUQUUU2EdXSDWnvrKU4DMAPGkFB7AnhdRN5VSjW5diRyFYxxYtGnT5/Dxo0bl3WDiYhKwfTp0zcrpYYVux0avGcTEXn43bOjBMKrYUxBaBkJI4vg9BUAt5lT0S4WkWUAxsGY6MCmlLofwP0AMH78eDVt2rToZ0BEVEJEZEWx2+CD92wiIg+/e3aU0oipAPYSkTEiUgdjcOnnPOusBPBZ80A7AdgHwNLcm0tERDniPZuIKKLQjLBSKmFOUfgqjBm+HlRKzRGRq83X7wVwM4CHRWQ2jK/lrjdn5yIioh2I92wiouiilEZAKfUSgJc8y+51PF4LYypCIiIqMt6ziYii4cxyRERERFSVGAgTERERUVViIExEREREVYmBMBERERFVJQbCRERERFSVGAgTERERUVViIExEREREVYmBMBERERFVJQbCRERERFSVGAgTERERUVViIExEREREVYmBMBERERFVJQbCRERERFSVGAgTERERUVViIExEREREVYmBMBERERFVJQbCRERERFSVGAgTERERUVViIExEREREVYmBMBERERFVJQbCRERERFSVGAgTERERUVViIExEREREVYmBMBERERFVJQbCRERERFSVyioQvuqRabjw/g+K3QwiIiIiqgBlFQgnUwrNHYliN4OIiIiIKkBZBcJ1NTF0JVLFbgYRERERVYCyCoTra2LoZCBMRERERHlQVoEwM8JERERElC/lFwgnGQgTERERUc+VVSBcXxNHZ3ey2M0gIiIiogpQVoEwM8JERERElC9lFQjX18TQnVRIpVSxm0JEREREZa6sAuG6GqO5zAoTERERUU+VVyAcN5rLIdSIiIiIqKfKKhCur40DADoT7DBHRERERD1TXoGwmRHmWMJERERE1FPlFQjXsjSCiIiIiPKjrALhOmaEiYiIiChPyioQtjLCDISJiIiIqKfKKhCui1ud5RgIExEREVHPlFcgXMOMMBERERHlR1kFwvU1Vmc5Dp9GRERERD1TVoFwXQ1HjSAiIiKi/CirQLiepRFERERElCeRAmEROV1EFojIYhG5QfP6D0VkhvnvExFJisjgfDe2wZxZrqObpRFERH5K5Z5NRFTqQgNhEYkDuBvAGQD2A3CRiOznXEcp9Tul1CFKqUMA3AhgolJqa74by0CYiChYKd2ziYhKXZSM8BEAFiulliqlugA8DuCcgPUvAvBYPhrn1WCOI9zB0ggiIj8lc88mIip1UQLhXQGscjxfbS7LICK9AZwO4Emf168SkWkiMm3Tpk3ZthUNNcwIExGFKJl7NhFRqYsSCItmmfJZ93MAJvl9xaaUul8pNV4pNX7YsGFR22iLxQR18Rg6upkRJiLyUTL3bCKiUhclEF4NYJTj+UgAa33WvRAF/oqtvjbGjDARkb+SumcTEZWyKIHwVAB7icgYEamDceN8zruSiAwAcDyAZ/PbRLeG2jgn1CAi8ldS92wiolJWE7aCUiohItcCeBVAHMCDSqk5InK1+fq95qrnAXhNKdVasNbC6DDH0ggiIr1Su2cTEZWy0EAYAJRSLwF4ybPsXs/zhwE8nK+G+WmoibM0gogoQCnds4mISllZzSwHWKURzAgTERERUc+UXSBcX8POckRERETUc2UXCDfUsjSCiIiIiHquDANhdpYjIiIiop4ru0C4vjaODg6fRkREREQ9VHaBcENNHJ3MCBMRERFRD5VdINy/Vw22t3cXuxlEREREVObKLhAe0qcOLZ0Jzi5HRERERD1SdoHw4D71AICtrV1FbgkRERERlbMyDIRrATAQJiIiIqKeKbtAuH+DEQg3dySK3BIiIiIiKmdlFwj3YyBMRERERHlQdoFw/141AIAmjhxBRERERD1QdoFwOiPMQJiIiIiIcleGgbCREWZpBBERERH1RNkFwrXxGHrVxtHEjDARERER9UDZBcKAkRVmRpiIiIiIeqIsA+H+vWqZESYiIiKiHinLQJgZYSIiIiLqqTINhGs5fBoRERER9UhZBsL9mREmIiIioh4qy0C4X0MtmhgIExEREVEPlGUg3L9XDTvLEREREVGPlGcg3FCLrkQKHd3JYjeFiIiIiMpUmQbCnF2OiIiIiHqmLAPhfg21AIBmlkcQERERUY7KNBBmRpiIiIiIeqYsA+EBvYyMcCPHEiYiIiKiHJVlILzroF4AgJVb24rcEiIiIiIqV2UZCO/UrwH1NTGsYiBMRERERDkqy0A4FhMM6VOHra1dxW4KEREREZWpsgyEAaB/r1psZ40wEREREeWobAPhgb1rsb2NgTARERER5aZ8A+FeddjaxtIIIiIiIspN2QbCg/rUYvHGFizc0FzsphARERFRGSrbQLgmZjT9r+8sLXJLiIiIiKgclW0gfMMZ4wAAQ/vVF7klRERERFSOyjYQ7lNfgxH9G7C5ubPYTSEiIiKiMlS2gTAADO1Xh80tDISJiIiIKHtlHQgP61uPTQyEiYiIiCgHZR0ID+1bj83NHEKNiIiIiLJX1oHwiAEN2NTSie5kqthNISIiIqIyU9aB8KjBvZFMKaxtbC92U4iIiIiozJR1ILzfzv0BAJMWbylyS4iIiIio3JR1IHzArgPQt76Gs8sRERERUdYiBcIicrqILBCRxSJyg886J4jIDBGZIyIT89tMfzsPaMD67R076nBERCWvlO/ZRESlpCZsBRGJA7gbwCkAVgOYKiLPKaXmOtYZCOAeAKcrpVaKyPACtTfDiAENWNfEQJiICCj9ezYRUSmJkhE+AsBipdRSpVQXgMcBnONZ52IATymlVgKAUmpjfpvpb0T/BmxgRpiIyFLS92wiolISJRDeFcAqx/PV5jKnvQEMEpEJIjJdRL6s25GIXCUi00Rk2qZNm3JrscfOAxqwsbkDCQ6hRkQElPg9m4iolEQJhEWzTHme1wA4DMBZAE4D8H8isnfGRkrdr5Qar5QaP2zYsKwbq7PbkD5IKWDl1ra87I+IqMyV9D2biKiURAmEVwMY5Xg+EsBazTqvKKValVKbAbwD4OD8NDHYXsP7AgAWbWzZEYcjIip1JX3PJiIqJVEC4akA9hKRMSJSB+BCAM951nkWwKdFpEZEegM4EsC8/DZVb+eBDQCAjewwR0QElPg9m4iolISOGqGUSojItQBeBRAH8KBSao6IXG2+fq9Sap6IvAJgFoAUgAeUUp8UsuGWIX3qERNgY3PnjjgcEVFJK/V7NhFRKRGlvKVjO8b48ePVtGnT8rKvI259A0ftMQRD+tbhe6fsjX4NtXnZLxGRHxGZrpQaX+x27Cj5vGcTEe1ofvfs0IxwORjevx7PzTRK4HrVxvGj08cVuUVEREREVOrKeoply9JNrfbjLS1dRWwJEREREZWLigiE9xnRz37c0pkoYkuIiIiIqFxURCB88zkH2I9TRap5JiIiIqLyUhGB8PD+9fbjmOjGkiciIiIicquIQHhY33rEY0YAzIwwEREREUVREYGwiOCj/zsFgNFZrjORLHKLiIiIiKjUVUQgDAADetXi6D2GYMryrfjivR8UuzlEREREVOIqJhAGgD71cQDAzNXbi9wSIiIiIip1FRUID+1bH74SEREREREqLBC+4tjRxW4CEREREZWJigqEx43ojxvPMKZX5sQaRERERBSkogJhANipfwMAYF1je5FbQkRERESlrOIC4YNGDgAAvDV/Y5FbQkRERESlrOIC4T2G9cUuAxrw76mrit0UIiIiIiphFRcIA8C4nftj6eZWLNvcWuymEBEREVGJqshA+PrTjQ5zlz4wGfdOXFLk1hARERFRKarIQHiE2WFuTWM7bnt5fpFbQ0RERESlqCID4f69alzPlVJFagkRERERlaqKDIRFxPW8qYNjChMRERGRW0UGwgAwtG+d/fj1uRuK2BIiIiIiKkUVGwj/42tH2o9/8N+ZRWwJEREREZWiig2E9925P2b+/FQAwGn771Tk1hARERFRqanYQBgABvSqxZ7D+qAmXtGnSUREREQ5qPgIsW99DVrYWY6IiIiIPCo/EG6oQWsnA2EiIiIicqv4QHhE/15YvqWVYwkTERERkUvFB8KHjBqAzS1deHDS8mI3hYiIiIhKSMUHwrsO6gUAuPmFuUVuCRERERGVkooPhIf0qS92E4iIiIioBFV8IHzwqIE4eNRAAEAimSpuY4iIiIioZFR8IAwA5xy8CwCgmcOoEREREZGpKgLh/r1qAQCbWzqL3BIiIiIiKhVVEQiPMjvMnXLnO+hKsDyCiIiIiKokED5izGD78WNTVhaxJURERERUKqoiEBYRfOHQXQEAyRQn1iAiIiKiKgmEAeCWcw8AAMxb11TklhARUTY6E0nc+NRs9vMgoryrmkC4d10NAOC/01cXuSVERJSNl2evx2NTVuLWF+cVuylEVGGqJhAGgAHm6BFERFQ+FIyStpRiaRsR5VdVBcIXHjEKdTVVdcpERGVPIAAAxsFElG9VFRX2b6hFVyKFzkSy2E0hIqKIxIiDwTiYiPKtqgLhti5jZrmXZ68vckuIiChbSik8NGkZ5qzdXuymEFGFqKpA+Jg9hwIAXp+3ocgtISKiqMRMCSsAv3h+Ls7603vFbRARVYyqCoSPHTsUIwf1wouz1qE7yRnmiIjKQcwsjWBtBBHlW1UFwgCwels7AOC/0ziMGhFRObA7yzESJqI8ixQIi8jpIrJARBaLyA2a108Qke0iMsP897P8NzW/2rvZYY6IKlOl3bPtznKMg4koz2rCVhCROIC7AZwCYDWAqSLynFJqrmfVd5VSZxegjXl18r7D8ca8jSyNIKKKVGn3bACwKyMYCBNRnkXJCB8BYLFSaqlSqgvA4wDOKWyzCufeSw8DANz28nwo3lWJqPJU1D0bcA6fxns2EeVXlEB4VwCrHM9Xm8u8jhaRmSLysojsn5fWFUBNPIZRg3sBAMbc+BKDYSKqNBV1zzYYkXDKcbtO8Fs9IsqDKIGwaJZ5o8ePAOyulDoYwJ8BPKPdkchVIjJNRKZt2rQpq4bm049OG2c/vuutxUVrBxFRAVTcPVtXI9zUkShOY4iookQJhFcDGOV4PhLAWucKSqkmpVSL+fglALUiMtS7I6XU/Uqp8Uqp8cOGDetBs3tmUO86+/Edry8sWjuIiAqg4u7Z6RrhdCScSDEjTEQ9FyUQngpgLxEZIyJ1AC4E8JxzBREZIeaI5yJyhLnfLflubL70qnOf9m9fmY9z755UpNYQEeVVxd2zrQk1Uo5AmFVtRJQPoaNGKKUSInItgFcBxAE8qJSaIyJXm6/fC+B8AN8UkQSAdgAXqhIuvj1k1CD88LR98LtXFwAA7pmwBICRbbBuuERE5agS79nWXdlZI5wq3eYSURkJDYQB+6uzlzzL7nU8vgvAXfltWuHEY4JrThyLlVva8O9p6T4l7d1J9K6LdEmIiEpWpd2zrfyEM/hNMQ4mojyoupnlnE7ebyfX82Z2viAiKjm6QLiEE9hEVEaqOhAe1LvW9by5o7tILSEiIj/WFMvJFGuEiSi/qjoQPmjkQBwxZrD9fHs7A2EiolLFGmEiyreqDoTramL49klj7ecbmzqL2Boiour2u1fn47EpKzOWW0GvYo0wEeVZ1fcMq42nPwtc/+QsnHHgzkVsDRFR9Xlx1jrc/+5SzFzVCAC46IjdXK9b8a8z+GWNMBHlQ9UHwjHHcGmcqYiIaMe75tGPAl+3MsLOGmFmhIkoH6q6NAJI90YGgJGDehWvIUREpGXFvIqjRhBRnjEQdjzm8GlERKXHCnrdneWK1BgiqihVHwiPGtzbfry9vRvPfLwGH6/cVsQWERGRk5X8dZdGMBImop6r+kB4p/4NmPvL03D+YSMBANf9ewbOu+d9pFIKW1o6kUimitxCIqLqZoW87gk1itMWIqosVR8IA0Dvuhr84vP7u5Y1dyRw2C1v4PonZ+OxKStx0h0TitM4IqIqlx4+LXMZEVFPVP2oEZY+9e5L8cgHywEAT360Gk9+tBoA0JlIor4mvqObRkRU1dLDpzEjTET5xYyww0v/+2n78R2vL8x4vbGNM88RERVa0tMTzh4+TbFGmIjyi4Gww7gR/VBfk3lJ4jFjbImtrV07uklERFWnvTupXZ5yBMgMg4koHxgIO8Rign9eeWTGcis7sa2NgTARUaG1dbmHstTNLMeMMBHlAwNhj8NHD8ZlR+2ufW1bazcWb2zewS0iIqouHV3u0XpS9jjCnFCDiPKLgbDGLgP1M8z96c1FOPn372D6iq07uEVERJWnK5HCjU/NyljuLY2wYl7FCTWIKM8YCGsM6VunXb5gg5ENXr2tfUc2h4ioIr29YCMem7IqY/n2dnfHZF1GOMVImIjygIGwxjmH7IJdBjT4vt5QG8cf31iEfX768g5sFRFRZYmJaJfPWbvd9Vw7oUahGlWhZq1uxLx1TcVuBlHJYSCsUV8Tx2f33cn39bgI7nxjIToTKWYliIhyVBPTB8IfrWx0PVd2Rji9jJ3lsvP5uybhjD++W+xmEJUcBsI+fnDqPjhlv52wU//6jNc6Eun6tTafYX6IiChY3CcQXr2tzfXcHjUixQk1iCi/GAj7GNC7Fn/98nhccmTmCBIPTVpuP27tTGS8TkRE/tq7knh7/kbfQNgb5FpPOaEGEeUbA+EQTWanDecNe/qKbfbj5g4GwkRE2bj1pbn4ysNTtTWrNTHJGBrN7izHjDAR5RkD4RBWGcS3TxqrfZ0ZYSKi7Kxr7AAArN/ekfFaXU0sY2g0/fBpjISJqOcYCIf43in74Aen7o2rj99T+3rUQHjGqkbtTZ+IqNr0bagBkDlMGgDU18SgPGNCKO2EGgVsIBFVDQbCIQb3qcO1J+2Fhto4pvz4s5h906mu11dubYNSCq/P3WBPxbxoQzPeXrDRtd65d0/CibdP2FHNJiIqWX3rjUC4URMI19XEkHJPLMcaYSIqmJpiN6CcDO+fObbwDU/Nxrx1Tfj7Byvwjc/sgRvP3Ben3PkOAGD5bWdBKYWr/zkdQOZsSURE1cjOCLf5BMLKmxE2/ncPn1aw5hFRFWFGOAfv/uhEPHTF4fbzv3+wAgBw3ztLM9btTKTw6pwNO6xtRESlrp+dEe7KeK02Hssoe7ACY+UqjWAkTEQ9x4xwDkYN7u07DXOnY4zhP7yxEAePHLiDWkVEVB7EnFHOWSMcj4ldXpZZI2z8z4wwEeUbM8I56lUbtx9ff/o4+/E+P33FfvyHNxbhKw9PdW337qJNOOmOCeiIUCYxbflWjLnxRWxq7sxDi4mISoMV8DoD4eH96u3XvEGulRFOppgRJqL8YkY4RyKC964/EUP71iMmgt+8Mj/Sdl97eBq6kilsaOrA7kP6BK7713eXQikjID7jwJ3z0WwioqJLmAFtR3e6V9x9lx2GVz5ZjxVb2jBvfeb4wl7MCBNRPjAj3AMjB/VGQ20cdTXRL2NX0rjxn3fP+9jWmlkfpyP6yZeIiMpSShPF7j64D350+jjEYuKqEf71y/Pw2JSVmftgRpiI8oCBcJ6MG9Evq/W3tnbhpU/WBa7D+zwRVaKEJhCurzXejmLiLnu4b+JSLNnUmrE+b49ElA8MhPPkles+k/U2P3n6EyRTCg++tyyktIIpYSKqHEnvQMEA6uJWICyRyh6quUb46Y9X40v3fVDsZhBVBAbCeXTGASOy3qa5oxu/fGEu/jJhScZr1XubJ6JKpssIx2LGB34RY8bOrSGlY9VcGjF/XTM+XtlY7GYQVQQGwnn0i8/vn/U2K7e22Y9nrW7E3LVGJ5FEMsXSCCKqOM/NXIuHJi33fV0g2NLahUNvfj1wP5qkctVIKVXVHwSI8omjRuRR/1619uPfnX8QetfV4JpHPwrc5vN3Tcp4vOzXZ2LsT162l7OzHBFVijlrtge+Hot4v6vEMHBzSycG9a5DPOQipFR1Z8SJ8okZ4TxqqI3j+tPH4YVvH4cLxo/CWQftjP85dKRrnauP3zN0P+u2d7iez1nbhPeXbM5rW4mIiqG5M5GxzKoPBowa4SgqLRBsbOvC+FvewK9fmhe6rpER3gGNIqoCDITz7Jsn7IkDdh1gPx85qJf9+JXrPo1T9tspdB/H3PaW6/mf3lyEi/86OS/t+2TNdjw6OXMoIiKiHaG5IzMQnvqTk+3HsYjvSpXWWc6aXOTVuetD17VOvdKuAVExMBAusGtPGou+9UYFym6De+cti/Heos046Xb/Geo2t3RilaP+2HL2n9/Dj5+enZc2EBFlq6WjO2OZO/iNmhHOT3tKhWQxOpAVAFfaNSAqBtYIF1htPIYZPzsF29u70buuBt3mhBr77dwfc9eFz57k9O6iTRg5qDfGDO2DnzwzGyu2tGFtYzv2GNbXXieVUpi/vhnn3jMJXYkUlt92Vl7Ph4ioJ3QZYWdNbNQa4UorjbBEOS0rAE4phTiH1yTqEQbCO0BNPIYhfesBAAPMDnVHjBmcdSB82d+mAABO3ncnbG7uBAA8+dFq/PC0cfY6f/9gOX7x/NzQfSmlIOyFR0Q7WIumRthZFxy1RrjS4uBsbscpOyNcYReBqAhYGrGD7b/LADz29aPwk7P2dS2fddOpkffxxrwNaO0ySiLufnsJOhNJnHfPJExZthUL1je71r3ioSnafXQneQMloh1PlxGuySEjXM31sSm7Rri47SCqBAyEi+DoPYegNh7D2z84wV7Wv6EWb3zv+Jz2t2prGz5e2Yjrn5yF+hr3j3TCgk3abRrbu7ClpTOn4xER5apZUyPsLI2I+k1VV1Ihkay8wYSjBLcqzxnhxRtb8Mon6/KyL6Jyw0C4iMYM7YN7Lz0Uj191FABg7PC+uOeSQ+3XLz9690j7+fHTnwAAlm1uxd8/WOG7XtLRs+LkOybisFveiLT/ZErh2RlrkGLPDCLqAaVURmmEiDv4dcbBQVnfm1+YGzrpRqVK5bmz3Mm/n4ir/xk85j1RpWKNcJGdfsDOrudnHph+ftPn98duQ/rg5heCa36nLNsa+HoimUJNPIY7X19oL2vSfD1p+cMbC3HCPsNxyKiBAICL//ohJi/bipRSOO9TI323IyIK0taVzAje4p4MsLNGWDcVs1PQfaySOTvLEVHPRMoIi8jpIrJARBaLyA0B6x0uIkkROT9/Taw+r173Gfzu/IMgIjj/0J4Hnv+dvhoAtJNyvDrHPWalUgp/eGMRzr07PePdZDPQbunUD9XmZ932doy+4UU8N3Nttk0moh4o1Xt22IgRgLtGuLsCSx/ywR5HuACXpyuRwl1vLUJnIrv7PVG5Cg2ERSQO4G4AZwDYD8BFIrKfz3q/AfBqvhtZbfYZ0Q8XjB8FABjQuxbPXHNsj/b3+twNmLhQXyv8E7OsIpFMQSkV2ImuT108q+NaHff++eEKLNzQHLI2EeVDKd+zWzqD64MBd0a4O1E9GU/rtKN0Asx3jbDTIx8sx+2vLcQD7y7L+76JSlGU0ogjACxWSi0FABF5HMA5ALzf138bwJMADs9rCwmHjBqIj//vFPz21flYva0dew7ri4NHDUAiqfDDJ2aFbv/W/I14a/5G7WubWzpx/ROz8O9pqwAAlx61m+9+GmqzC4Stur8py7bi1DvfwcJbzkBdDcvSiQqsZO/ZulIGb2mEc1jczmT1ZCWziWkLOXxauzkikfU/UaWLEpXsCmCV4/lqc5lNRHYFcB6Ae4N2JCJXicg0EZm2aZM+Q0l6g/rU4ddfOAj/+NqRuOnz++O8T43EBeNHoaHW+BH+/HMZCR9ce+LYSPu2gmAA+OeH6emX53nGOdZ9TbloQ7Nvttnb97uLX3MS7Qgle8/WlUbEgjLCWQzz2NjWVdbBW3aBsPt/IspdlEBYN5aN98/vDwCuV0oF3oWUUvcrpcYrpcYPGzYsYhMpyK3nHohBvWtx2VG7459fOxJfOHRXPHftsVj26zPxg9P26dG+z/jju3jlk3QNcWciM5A95c53cPmDU7TDGHkTPV2a7XeU7e3dmLhwE6YtD+5YSFQBSvae3ZJtjXAW94xDfvk6TvvDOzm3rdiU+SOKEttameB8j6XsHBlIRWoJUfmLEgivBjDK8XwkAG/vp/EAHheR5QDOB3CPiJybjwZSsP85bCQ+/tmpqInHcNxeQ/H7Lx6Cg0YOtMsSXvj2cbjgMHeHu2evORZH7zEk0v6v/ud0+/GPnpiFhybp68bmrM2cJU8878ediSTau5L4eOU23+N1J1O44clZWLW1LVL7ovrivR/g8gen4Px7P8jrfolKUMnes8PGEAbcGeFsv0Vamef7xo6UTUyrCpQRTqRUVjPcEVWCKIHwVAB7icgYEakDcCGA55wrKKXGKKVGK6VGA3gCwLeUUs/ku7GUvQN2HYBLj3KPR3zwqIF47KqjMP2nJ2e9P2v65gffW4bxt6TH8Pxo5TasbWx3revNKDw2ZRUu/dtknHfP+9jsM5nHlGVb8fjUVbjxqdlZt83rsr9Nxq0vGu1dwM56VD1K9p6tn17Z/dz5tJjfIu1o2dT7WutOXrYFyza3ZnWc374yP1IbODIbVYvQQFgplQBwLYyexfMA/EcpNUdErhaRqwvdQOq5g0cNxBNXH52xfFDvupz2d9Nzc/DLF+Zic0uXvewXz8/FMbe9hQ1NHfayhKe+709vLsL0FUY2uKk9MzMEwLW9n5Vb2vDybGMWpKWbWrTD/HR0J/Huos34K3s+U5Up5Xt2lHF/pQcZ4XJm3S2jBKBWwPqdx2fgxNsnZHWceyYs8X0tmVKRZ/YjqhSRJtRQSr0E4CXPMm0nC6XUFT1vFuXb+NGDM5bFYoKLjtgNj00xOsj98pz98bNn54Tu6+H3l/u+9pOnZ+ONeRtx+dG749ixQ33Xa/QJhL/3n5kAgJq4+2bc3pVEL3P4trP+/C6aOxKY+fNTcdIdE3H+YSNx+wUHu9b3ZqedOrqTWY+AQVROSvWe3dKRgIg72PMGfu7h06ooEM6hNCLfks6McGEOQVRyOJZVFfnrl8fjV+cd6Fr26y+kn1/mKKG46+JP4fDRg7I+xhvzjGHa/v7BisAe31+4533X2MK/eH4O/uMYvWLZ5lZ7HOKpy7di35+9ggkLjH1bPc+XbmoBALy/2D1RSFcihTscs+h1dLszxtt9gnAiKqy2rgT61QfnX5ylElWVEbY6wEUIQQs1WkSKw1BQFeIUy1XklP120i5/4dvHYVCfOogIbj5nf/z+9YU484CdcfZBu2Dd9nY0dyTw5b9NwXpP2cKAXrWBQeUvXwjOLp965ztY9uszccuL8/DQpOWu11ZsacNpfzBetwLgacu3uTIh593zPgBkjE08edkWvDhrnf3c28bGtm7s1L8hsG1ElH+diRT6NdS6SiS8oZdzOLVqmlkumxA036NFWJxTWldjjXAqpfCtf32EK44djaMidiin8sdAmHDArgPsx5cdPRqXHT3afr7zgF7YeQDw3VP2wvVPzsbz1x6Hvg01GDO0D5IphfvfWYp3F23C+0u2ZOx3Q5O+Q5zTmX96L2O8YqcVW9pQEzMC3c5EEl95eGrGOsu3tOHxKSsxYkADTthneMZYotvaulzPvYHxttYu3PfOUnz/1L1RG+eXJESF0plIlzhF0VVFM8vlMqFGvqXKcNSIjc0dmLhgkz0ba080dXTjlTnr8f6SzZh102l5aB2VA77rUyRfOnw3LL/tLBw4cgDGDO0DwBj26Jsn7Inf/M9BWe/v8auOApA5aYfXCbdPwB/fXAQAgR3fbnhqNq54yAiSvR1yFm9scT2fvNQI2hdtaEZ3MoWfPTcH905cgncX5XeSl65ECiu3lO9wTkT51tmdQr3nG5zAGuEqyginxwaOsm5h2uCuES6PDyFff2Q6fvjELKzfHt7ROip2GKwuDISpx0YN7o1LjtwN9112GP7v7P0w6YaT8IVPuSaywqJbz8At5x4AAHjoK4fjyDGDsYcZUHv95xtH4wen7h3p2FceNyZjmXes0msf/dj1fMLCTdjQ1IFT7nwHZ/3pXTw/0xhi1ZkNXrW1DU2aMU+z8btX5+Mzv3sbGyOMhEFUDToTmYGwl2tCjQiBcEd3smClAjuSdQrZTKiRb8mUSo//XiaXdHOz8c1jNX1oovxiIEx5cet5B+K0/Ufga8eNwa4De+H3XzoEM352Cu644GDMv/l01MZjuPSo3bH8trNw4j7DISJ46wcnYPGtZ9jTRFuOGDMY1560V6Tj3njmvvjpWfvaz7/+yDR7XM0bzxiHfg3p6p9DRg0EAExfsQ23v7oAALBwQzpbfNNzc/Crl+ZBKYVP//ZtHHTTazlP2fqfqavsDPZ/p6/OaR8U7OXZ61wdLqn0dSVSqK+J44Evj8c1J+5pLnVHXK4JNSKMGjHu/17BvROX5rOZRZFNBjbbODjsg4J1yZNlWBpB1FMMhKlgBvauw/8cNjJwqLKaeAzzbz4Dy359Ji44bCR+6JgW+vrTx4UeIx4TjBrc237++twNeOSDFQCAbxy/J/o6eqgnUuk3VV1wumRTK+5/Z6k91jEA7PuzV/DZOyZge1s3UimFF2atdWWKG9u6cP87SzJ6W//oyVn247nrmjBt+VaceudEtHX5j6P6/My1mLhQX57RmUhqZ+WqVkopfPNfH5X1lLrVqDORRF1NDCfvtxP2GNoXADLuD5JlRhgAnp2xJm9tLIZUSuGfH66Mvn6WkXDY6taHj6RrimWi6sBAmEqCiOB3FxyMa04cay/7xmf2wIQfnGAPtzTz56dqv1bddWAvAMDIQb0yXhvuGB3i9gsOxnPXHhvalp8+84nr+ZJNrTj4l6/hyY9W49pHP8alD0y2X7vlxXn41UvzMWlJegg370xPk5duwbf+9REWbmjBHa8txLG3veV6g+9KpLC2sR3ffuxjXP7gFNe2SincO3EJ9vnpKzjwptfw94AxnP10dCdx9p/fxZRlW7PetlQ1thkfCirgG/Gq4iyNsMYKH9Cr1rWOe0KNaD/gcu/k+vystfZ47lF+p7POCIe8bpWjFKrkopCYwaae4qgRVLJiMcHooX3wwY8/i2RSYUCvWiy45QwARke3TvNr0wN2HYC/XHIoPr33MKzf3oGTfz/R3sd/vnEU/vDGIlx4+CjsPsSoST7roJ3x4qx1uOKY0fbkIPvu3N/uuDd/vf7r9h8+YWR5Z63ejj+/uQjXnDjWniHvsr9NwbmH7IJLjtodF9z7gWs75wx8f3vPKJd45IMV+NpxY/DJmu34/F3vuTq/nHTHBNxzyaF4dsZa/MUzC9TPn5uDy48ZndG2VEq5hp1yWrKpBZ+sacJPn5mN1757vOu1+yYuwYnjhmPvnfppt81WIpnCPz5cgYuP3A31NYWZtEQphav+Ma0g+6bC6kykUG9mgOMxfSDsGkc44oQa3gl4yo37w3OUcYSzC1jD1jcywgoss6VqxECYSl5fzQD8e3kCtzMO3BkAMHZ4X9xwxjj0Mbepr4lnlFjcffGhuPti4/Fp+49Aa2cCn913OKav2IbupMJFf/0wtE13vL4Qj05ZiXWOnsrPzFiLZ2asjXRON78wF3e8tgBtmhrkpZtacfurC/HGvA3abW96bg4uPWo3rN/eiWWbW3Dxkbtj/C2v43MH74KvHTfGDvgt7yw0stULN7TggXeX4vQDRmBE/wY8NGk5fv3yfNz99mLMuuk0KKXw0cpGjBjQgF0H9sKEBRvxxPTVuOviQyOdEwD84L8z8cyMtWjtTESu887GYTe/ji8dPgpTlxvlK7s5ymKo9HU5MsJWbNa/wRsIZz9qRG2svDPCUaaWd8q+Rjj4deual3OpUT6S2WWYEKc8YCBMFefq4/cMX8l09J7pQdOtaaiH9q3H5pZOO3MMAEP61GFLq3s8YmcQvP8u/TFnbeZQcD87ez9cdvTu2OsnL2e8pguCLX5BMGBMce2c5vr5Weuwra0bj3ywAo98sAIPfHk8Xpq9Dj89ez8M7lOH37wy3173lhfn4ZYX5+FTuw3ExysbARjDzb0+dwP+8eEKvGPWKF921O74x4dGrfWXj96KI8YMxscrt+GGJ2fjv9882g5eEskUlmxqxdbWLqxpbLc/CDw2ZRWuOXFsXoch6kqksKW1C/c4suS6D0lUuqwaYQBo6TTq5fv3cv8MqzEjvC7Lob+CMryplMLCjc0YN6K/vSysI15c821SuYzEUYjSCJZbVBe+ixB5vPDt47C+qQOHjBpoZ443NHXgu/+egRvOGIc9h/XFL5+fi39PW4VxI/rh7ksORb+GGhxx65sZ+/rKsaMhInjqW8fg8r9NQVIpOwDee6e+rlErAOCN730GJ/8+u6yMt/b3ykeMsoGnPl6Dr386c3g5AHYQbPn6I+5Sg398uAJD+9Zhc0sXLn9wCub84jR8+7GPsXpbO3781Gzcet6B2NTciac+Wu0KTC1rGtsxYcEmjBjQgNfmbMAxY4dg98G97Zrtju4k6mti+PfUVZi0ZAuOGDMYtTHBSeOGu+q6Ld3JVEbWrH9DDeaua8Ihv3wNr173Gc4WWAac4whbE9t4SyOQS0a4zGuEnWPgRhtH2H+lv723DLe+NA9PfvMYHLb7oEj7rITAr1zGPabSw0CYyGPEgAaMGOAOqnbq34BHv36U/fzmcw/ACfsMwzF7DsWA3sYb+UNfORz/nrIKG5o78PHKRnz+4F3sjOihuw3C7F+chuWbW3HC7RPwwJfH49ixQzFzdSMOGTUQr8/dgNP2H4G6mhj+deWRuMTskHf83sPskSReve4zvl9dOrPXTt5JSI4dOwSTFmfOAqhj1Ta3dyexx49fspe/MGsdXtAcy8s5C+Cdbxj/GyUdHXhj3kac96ld8fTHRm9/ayxnAPjN/xyILxw60hXcnH/vB5i5qtG1/31G9MPU5dvQ2NaN8+6ehLsvORQHjxyIWEzw3My1OHS3gRg5KLN0Yt32dgzrW4+aMg+eylFnMpVRO+79AONMTnZGzAjXlnlGuLnDfzQZnaAJNWav2Q7AGAs9aiAc00TC3m2UUnho0nKcP35kRjlLMdnjHucBQ+nqxECYKAd1NTG7Ltly4j7DceI+wwEYbxq6soDRQ/tg+W1n2c+t+ew/d/Au9rJjxw611+noTqKpoxvD+xnBwnUn74U/vLEI//nG0ThizGC0dxlT1iaSKTS1d+PU/XbC2OH9MHtNI3rVxvF/z84BAFx0xG54bMpK/OvKozD6hhcBAN8/ZW9ce9JYHPebt7GmsR29auP41gl74vlZazMy1dn435PG4k9vLda+5hwiygqCva5/cjZ+9uwcvHrdZ/Dxqm24++0lGbMDAsCRY4bYtcJrt3fgvHveBwCcNG443pq/EUfvMQTfP3VvPDtjLU4cNwxH7zEUby/YiG/96yMAwHPXHouRg3pjcJ+6nM+VolNKuWqErzhmNJIpldH5M5ca4ZoyrxHOVlDZgnX5nBnSsM5y2tIIz/MPlm7BL1+Yi5mrG/HHCz8Vua3lpFzKQSi/GAgTFUC+amMbauOucVavO3lvXHdyeta9XnXGazXxGP7xtSPt5Vbts4jg+L2HYeSgXvbMfg9eMR41sRg+s/cwAEZA+M8PV+Lak8YiHhNcc+JYOwN876WH4tuPfYxucxirg0cOwMzV2+3jfP+UvVETj+HDpVvszPVXjxvjGwhH1ZlI4YTbJwSu8/XP7IGlm1vw0uz1ruVvzd8IAPh41TZc9NcP0Z1Udr2z0+fvmgQAmPCDEzDaZ5ZDyh8ru2vVCDfUxl3DJVqynVkOKP8aYadoM8v5v2ZdCWdMFz58Wvj1s+q1t7WV5njmeeks1/NdUBliIExUwS49anf7sRUrnDRuJ9c6Q/rW4zsnp0d4iMUEz117LNY2duD0A0Zg0a07Z2S427oSqInF7KDmmyfsie1t3ejfqwYigje/fzxOvfMdJFMKo4f0xgOXH47Hp6xEc0cC/562CgePHIC7Lj4Un/7t2wCApb86E7GY4G/vLcPNL8zNOI+vHjsG67a346bP74+XZ6/DbkN6Y0CvWtxzyWFYva0NL8xah9tenu/apqM7WhA1dflWBsI7gBUIh02x7PyqO2pnuXKvEc5WUD2sFdS6AuHQ4dM0x1Dedaz9lla4mM6A91yJnRrtIAyEiSjDQSMH4qCR6efeDHfvusxbh1UrDQB7DuuLv3/lCPzxzYV49OtHoTYew0/P3g8A8JvzD7LXe+27n8Gyza32GMhfPXY0vnrsaHyypgmfu+s9/Oq8A3Hxkbu5jnPFse4OgCMH9cbVx++Jq4/fEzNWNeKWF+biiDGD8ZeJSzLe2H7x+f3x8+fmoKE2hn1G9MfMVY1Y25hdj33KjRXU1gfMNAl4Z5aLFpnU+IyhXS6c5xwl0EwFfT7QTI4RlEEGomWERbPfUpKPAN36gFHev02ULQbCRFQQx+01FMftNTRwnb136ueazMMKuA8cOcBVSx3VIaMG4olvHgMA+NHp47B4YzO2tXVj98G9samlE/vvMsBVkzp56RaMHd436+NQ9qzh0sIyws6gLGpnuUoqjYgiKBi1MuquNUID4cxl3qyz9XMJDMKLKC/heWnG+FRgDISJqGKNHZ4OsnXDsh25x5CMZVQYv3je6LjZL2TsZ2e/N78aYRH319i6zl6VLCj5aV8KxzqhM8tFuH6lmhFO10TnIyNM1ai6CquIiKgorNKIk/YdHries0bYLxD2fpUfL/OBcF2lERHWD8wIa0aNyKWznHWI9q4knpu51r7GpRQHO2vIw8o/oiilc6Mdh4EwEREVXFcihWP2HJIxjrCXMybz6yznDdviFTR8Wi4TajizoXZpRBad5YIy6j995hP872Mf4xNz5sxSyQhvau7E3j99Gcu3tAHI16gRpXFutGNVzt2DiIhKVlcyZY8yEiTKOMLer/KrbNCIjKAv6UiHpksY0q+HZUuDEuqLN7WYx1TmvkojWFzb2O56no925SOrTOWnym4fRERUDF2JFOoiRKxROsuVeymEV7azo3mDvoQmEHaXRoRkhAOuZ5vZybGvWdudz2CxqSN/YxLnJSNs7iRf48BTeWAgTEREBdeViJoRTj/2ywh7h0urpExelE5f3jXcgbCmlrcHw6e1dSVd61jt+8+0VXhz3obQtvqZt64JB930Gp7xmWEyW/nICFu70F2N7mQqY5p3qgwMhImIqOA6IwbCUcYR9pZGJCspEo7AG/QlHddJM2hETqURVsDb1mVkhK1g29rXj56Yha/9fRoAYGNzB96Ym11QPG+dUXM8YcFG7ev3TFiM2Y5ZLMMUumLj1y/Nxzl3T8KiDc2FPRDtcAyEiYio4LqSqdAxhA3hNcLezl3lHghn+028dyzfhGOBvS8VvTQiSkY4aR5Dl3m96P4PceUj05CIOCW2s51+LfvtKwvwubvei7y/fHR0CwqmZ69pBABsbe3q8XGotDAQJiKigotaI+zkmxH2BG7JPKUDv/3Yxzjtznfysq9cRTkTb/mEqzTC/CCRTWc53agR1iZWnbY3I+y0dHOra5sodKNb9ITVrlVb2/D2go14buZafLImekYZCA6mrXZGGXPZq6M7ianLt2a9He0YnFCDiIgKrjORjFQa4ZTwmcYso0Y4Txnh52euzct+eiTS8Gnu59rOcs6McB4m1LCy7rprbe0+mzrdfPdHs4598u8nujpZZjNDZVDzrf3nMnfLj5+ejac+WoN3f3QiRg3unf0OqKCYESYiooLrSqRCxxA2pKORbjOgueKY0Rg1uJe93JvBLJUhvXaUbGuEwy6PdoplnyHagq51Lj+GfP3krGN7RxoZfcOLmLx0S4/bknmFo5trjsGcz1EyCunXL8/Dcb95q9jN2GEYCBMRUUElkimkFCJlhJ3BVLcZfF138l74/in72Mu982dkUZpakrINrTIzws4aYWNvW1q6MPqGF/Ho5JURAuHwFlhZ58BgMU9RbS7TJQdt89Z8fYe8bPZhjyiRQ0ZYO5JHCbtv4lKs3tYevmKBNHd0Z1Vv3lMMhImIqKC6zDe1rEsjzO1ExBWAeMe9TfqUUJS69xdvxrrt7oBDFytNXLgJR//6TXR0Gx3XAmuEzUuzYqsx49q/p66M0Fkuc5l3mygZ4Vwy87rgM5eAMaw6pqmjGx8sCc4MW7sIGkUjl4oOjkqcnQNveg0/emLWDjseA2EiIiooa6rkbDvLWcFNTNxZy4xRI8ok0+Z18QOTI3XOu+WFuVi3vQMrrOmEPa87R9fwTs6hkBlYeoNPXUbYu42dEY5QRxuFnSXVvBa2lyemr8azM9z13IHZXADf/Od0XPTXDwPLE4Kab73U2N6N/X72Cj5auS2klZQL6+f4VJ7Gl46CgTARERWUHQhHKY3QLIt5M8IF6ixXDE0diaxnMvMGnM6nMU9nOaUy1/deriilEalIGeHQ3diCjhgWUP/gvzPx4KRlkY+tlML8dcb4v10+sxWaa4a2adryrWjrSuK+iUsC2+i0oyeqa+tK4PQ/vFOWE4AUo3yEgTARERVUZxaBsI54MsLewK2SOstFqY/1Bv7OTbRf64ccw1tzrdsmEamzXA6jRmg2yanTXchG1vFy7exnD5/Wg3rfzkQSP356Nra0dGa/cRZmrGrE/PXN+NVL8wp6nEIoxt8yA2EiIiooKxCOMqGG7n0wJu4v/CttQo2oQZxVt5sxooNjgbfkQEFl7N97tCgZYXtCjYCE6vz1zVjTGK2TlT2OsCYSzqnWOOg1lb4uQStG6QgYEL/7sg793Iy1eHTyStz28vwstq4uxfhTZiBMREQF1ZVFIKwjAlf5gHcc4bIPhH0e+8ksddAM7mUuUiozcM4l0EzXCPtve+H9H+LY27IbdiusKVGzp4GZXqSvS3AJRfj+rTGXe9KhL9ff1mWbW3PLupcRZoSJiKji5DpqhCWsRjhfM8sVS7Zv/t5gzhUcmZfGGlJNKV1pRPBz+ziOA1kfNvJ1rdMTf2iO61h4bMTxbMPKGuyShqDZ49LjRkQ5YqR2GXvzdGDM4RK+t2gzTrx9Ap76KHonsp7+qIpRe88aYSIiqjjpUSPCJ9TQBSqC4BrhYmWE35q/AVtbu3La1j3zm/u15Ztbsak5nQm1p002yxKCOr9Z1yZhDqWhNOtntEVzzZVyB73p4dMCdxVZUKjpbG5Hd7Sh8cLOMV0jHO24YfvPJmDzlrbkYsEGo7PfbMe00V99eCq+8/jHmcfL04BtiSL8XTEjTEREFccKhGvjub1Bx0RcY916pwQuRhaprSuBrz48DZc/OCWn7Z0xhvI8PuH2CTjiV2/Yy7wdvTJKHZzjCJv/d6f8A+3t7d2YtHgzAKClM+Fz/ZTrA0YyQmlELvJWIxxY+6vSpREBwV2UznL2/9k1r8d0fzlvzd+YMYycU0/b6P05rN/egdfmrO/hXrM75o7AQJiIiAqq20xl1ubYWc6oEU4/L1aNcFNHNzoTSdcxl25qyWlfSVeg6njs0yHOuY03eHSevnWdrMlIlFIZ+/rGP6bjkgcm4+OV23DQTa9iwfpmbRudGcFEvjPCAZ+JcjlEYMmDo7NccC1xcJ2xU0opvDZnPZZvbg1tW7Yf/4yfWXAHxx3BmxG+4L73cdU/puf9w5ATO8sREVHFsb6mz3ZCDSDdUc7ZWa4Qo0ZEqYc86KbXcOkDk13Lcj1yyhX8+vtkzXZ71A2/YNQZmFhfiyccs4x4g7+F5tfsaxrbkVLAFk15h1JA0rGPKDPL5UK3O5XDRIFhkwtavz5BvytRSiOcq1z1j+k46Y4J0RroPA4Ulm1uRUtnQvv6+Fve8O10mE0HuJ4WSCQ9M9Ws2mqMCFLIpG0hg2w/NTv8iEREVFWsmc9qIpRGeN8GrZpX0Syz5KMDV1cyWvQ1dfk2AI7hyXI89MamdA2wX3C5amsbzv7ze/Zzv2BUlxHuDogMrc3DPkA4r2uUmeWyEzSzXPYHiV4jnOMJZHz4sPYXYVvN2MMn3j4Bh4waiGeuOdZe1tzRjV61cZ8PJjmUi2S9hZvf31UhQ9ViZIQZCBMRUUHZgbBu5oYQVsgbOMVyFu+e29u6UV8bQ0Otu+Ned8RA2GJlLXMJ2ra3d+Mzv3s7vS+femFrSmXLtBVbcfjoQcHjCJv/253llH/wFza5RMIRTNvjCGu+ts+FX2bzyr9PwxvzNmS9v6AWKaXSHQ4jZH11bcvoLJdtAzVmeGZ+O/Cm13D2QTsHbhOlI1y+hk1L+HyYSimFeJ465On2vaMxECYiooKygrJcOstZAXBQIJzNm+fBv3wNe+/UF69993jX8u5kdm/Afh3Xomhq7/bsS7/eZs8Yur99ZQH227m/b1ucrMDemFDD/ZqdHQ2I/f89bRX2HN7Hfu4OrP23i8qemMKzr1yCYGM/wY2KaUojVm1tw7B+9faHIu+kGa79Z3k8p2x+61+YtS6LtUP08Ofk9/tRyFiVneWIiKjiWJml2gg1wt4AwwraXOMIe1Jes1ZvRzYWbsjs4BaWEfbWEFtZ2Hy8bfsFVc4h1CyLN2a23d3ZztCVDB9HOKyk5LEpq+zHzrKMfAQr6Zrv/AQ+gcOiOY5nnUdXIoVP//ZtfPffM1zr+e6jp7Uw3gZl7D/afnfkJBlBGeFCKdlxhEXkdBFZICKLReQGzevniMgsEZkhItNE5Lj8N5WIiKIotXt2l5lNjFIjPHZ4X9dzu0bYsWngiAM5vpNaQ7z58dbc2sFADofztr+9O2k/du7OmxEGgNbOZMayrz48DdNXbHW1yzofBf/AJaykxLmdVSOcTKnw2uIsUsb5CnzChj5LzyznrrN+a/5Gx3r+O8nPOML+CjLySQ+D5rAOiIVQkhlhEYkDuBvAGQD2A3CRiOznWe1NAAcrpQ4B8FUAD+S5nUREFEEp3rOtobxqI9QI77/LAEz5yWdxzJ5DADgywo53dW9nOadc30fDOst5SyfScXAOnZg8mzgDYefudBnhtm79SAPWjGPWvp2BvV9pRCLknJ3BmbMUJOwaW0PMBcn36ABRO8t5A05XfXbA9t7dZ/Nz9ysDcQrLzud0uXp4iYuRES7V4dOOALBYKbVUKdUF4HEA5zhXUEq1qPRvdR8UZ8g7IiIqwXt2IouMMAAM79dg1wGna4TTrwdlhHN9kw4rjfAGjck8jqLg3Icz+Gjq6M5Yt71LH2R6s47djnGEvT9e63hhM4e52pVMZ1LDgrYos8FZh87XL17Y+MBWacR597yPSx+Y7BgOzVFWEphVts4/fN1c2ho1IxzlLyhf1RN+baq04dOiBMK7AljleL7aXOYiIueJyHwAL8LIMGQQkavMr+Gmbdq0KZf2EhFRsJK7Z3dnUSNssQLhdI2wf2c5p1wzSt2J4A29GWPduLL54Gx/mybo1ZVGAEBLRwLKUb9rZbCXbGrF//zlA9e6VvCXyKKDoLNGOCxoi5IRtq7cjgh8lHJ/kHpv8Wb7OrtPJSiYNti14VmVRng7d2auE3ZNc/rmoYe/nX4feKqxRjhKB0oopZ5WSo0DcC6Am3U7Ukrdr5Qar5QaP2zYsKwaSkREkZTcPdsKMrMKhMU/IxxUGpHrm3TOpRE5HC9qG1s1gXC7T2nEMzPW4p4JS+yfdFDNs1VmEjTWMOAOzhL28Gnh5xwlI5zvgCe0NMLzZ5HO8EbNCJvH6dHEIv4fnqLW4+p+9Qv1YcLvg1IhY9WSrBGGkU0Y5Xg+EoDv5NZKqXcA7CkiQ3vYNiIiyl7J3bMTqRREgjO5XkEZ4aC9ON9H31+8GaNveBErPePxatsYFggnepYRXr2tDa3mTGJRs9ZtmpnH/DLCAPDS7HXpznIB52NlCr0zh3k5gxJnUByWvezoDs8I5700IuDHp5AZQOpKHKyHQeMIp6e5js67O21pRA8CwKhlFUop3Pn6QizaoJ9S28svKM1l5r+oSrVGeCqAvURkjIjUAbgQwHPOFURkrJh3KRE5FEAdgC35biwREYUquXt2d1JF6ijn5K0Rdo8aES0j/KTZgWzysvBTCwomUimVUaaQbY3wcb95G1+874PQYzm1agJhvxphSzbxVHcOo0Z4H+tECYRz/dreL/sZtDfdJrr9BF0765StgDXKlNx++9cd2/qd8PvVDmpbxrcVPuu1diXxxzcX2b+HYfx+ztn87C59YDIu/uuHkdcvyQk1lFIJEbkWwKsA4gAeVErNEZGrzdfvBfA/AL4sIt0A2gF8SRWj4pmIqMqV4j07kUxF7ihnicXcJRHuCTX8t3O+kVoTeIQFbmHrXPvYR3hp9noAzql6Q3eZYc7apow2BmnWBMItmmWWqJNdWGUCYVlw576cwXtQG7zrAsC7izahO5nCSeN2yth3tr91fucXPmpEeJ1u8J+AOwB2ZnCbO7pxxUNT8bvzD8Iew/pmbGl3ZLTLKzL3brU/JhKYHdZ9COxKptAL6ZkS/Ta3toxSumK0069GONLmAIx67GwUI3SMNLOcUuolAC95lt3rePwbAL/Jb9OIiCgXpXbP7k6msqoPBoAauzTC/N/xmnesYSfnm7QVfIcFfID/UFHbWrvsINjZrp68YUeuEdYEnB0hHdGiZOvs0ogcM8ItHel26a6Dd7f3TVyKtq6EKxC2tsv2Kvq2OXBHCt6qHG1GOGgP3oywY+W3F2zC9BXbcMfrC7Hn0D44duxQHLnHEM3+/euLresbE8D5E160oRn/mrwSO/Vv8G2bd8STsN/NqL9/VpuWbW7FmKHpWQYLGayWamkEERFRzrpTKuvplePinxG+8rg98Om99CXNzjfpGrMcI8r0yc6OQc59fOrm193tMhvUkzfsqKURutU6Q7J5WZVGhNUIO8cR9skI687FGyglUinf65VtUOV37QKHT1P+NcLe9Xz3YR/f3F6zAwHwp7cW40v3f+hZ7v6d0R3G2p834/uVh6fi4feXY/U2/zp3byDsl22PMi34o5NX2o+TKYVnZ6zBibdPwIQF6YlHChmslmpnOSIiopwlkik7KI3K7iyHzBrhWExwlCbjBrjf5NOlEeEZYWeAFfRebJ1HT2YC68mMXWGjW0QJLO3SiJCGOHflLgVIaJdbvJcmlcoM/nINePyH9ArezjvSiD4jHFAn7qkNzurn7ymNCKwR9m4a4fOjd+g/v/Pw1jnr/Pjp2a42zTXLeeatS3ew6+mwbEGKMZsdA2EiIiqoRFJlXSMc99QIRwkIAHeAFc8mI6yZRU3HOo+eZK56MkJAZ0BHNIVopQb2OMLZlEYknYFweqIPXeCiywh7l+V6CXwneQgaA1jpRm7Q7sSXtzZY9/P3+51IzyyXWVZhsfbr21nOpz2Aboxr/T6snUQN4pOp9EQkUYeZ6yndNezoTmJjc0fBjslAmIiICqormUJdljXCcU+NsDej5xcwON/j7YxwhEDYPZ2w/3rpGuH0so9Wbgvdv9MHS3IfoKMzYHxgILsAPR+d5XQZau/1Syrd1/TG/1l3lsuhA5dCZm2ELnC2lnjHHHa+Zh1f126/D1zeWf+UK6h0Z5ozfs/hrkm3XnV+mIpaI5zth7dkStkdU1MRPyj2lG7XX/7bFBxx65sFOyYDYSIiKqgeZYTNdylv4Os3qcaHS9NBprUPXQnAkk0trufOYMIKkhZqxltN1win37G/cM/72rboTF66Bb95ZX7k9b3CAuEoMUp61IjoGeH1TemMnLM0QjdxhzdQSqVUxrJ0Z7ksgzO/4dNCaoS9neWyrRG2s6nKyqY7fl/MZWHTdOsywtYHiaQn0LV4R5ywOD+YZAbC+uNnG8AmUsqu1U+6gvesdpMVXRunLN9auAOCgTARERVYIpV9jbA9fjB8MsI+2337sY/tcWytYEEXrH32jomu57oa4VPvfCdjO11g4LS5pTMj0+oM0jY0d/q0vOeMKZYjrBexNMIv4Hl3UXq6bX1G2L1hMqUy9pVrLOWXEQ4LzjJKI3Sd/CLUCAeNHz1hgX4acjur69kXkP5gY30o8fs9f3zqKtcC5z4yO8tZHzK85+B+/tzMtfjHhyu0bbb2Yw1jmK+M8JaWTu1oKPnYd64YCBMRUUF1J7MfNaLGWyPseT2oZtjKCltfVbdHmOAhao1wPO4/fFprZwLjb3kDv3h+rmu5MwAp/Dip4fu3xpEN6yzndx2mLk+Xguhmp9ONVuCbEc7ycvh3lgvICEPXWU6zXmB5hfs4gb8jPjMo6spBfvTfWWjrStj7i1oL7/zgNmHBJvzu1fS3DH5N8/7u/e9jH+P/nvnE9xiFyAgfdssb2g+YlqDPZrlMYhIFA2EiIiqoXMYRzpxZTl87qWNl2axMmTUbW1AQmu2oEbr35G1tXQCAN+ZtcC3fUVmulFLYlEXGOawTYZROfd2aYFqXEfbKd2e5wBrhzBLhwBph/f7dGWHntfH+bnoDYfFkcZ3X55U56/Hge8scM8t5t9X/njuvw5/fWoy7316S0VavsEv+xPTVnmOk7IywM+mcy89u1upG3DNhMQBgTWO773pBf6O637V8YCBMREQF1ZMaYSsO8CbZgjJnVpBglSi0mRnhoGDJ+fVySil0+kxcEbcDg8ydWZnWXrVx13JnYFLIoHjhhha8MW9j+IqmsNEDdE392nFjQveR2VkuMyOce2c5/fI5a7dra7ot3g9OulO32ri+qQOjb3gR67anAzarndb5BsVkNT6BsPLJJs9d1+SYWc7bbv15BP3s/F4J+937wX9nup4nU+kPoq4OfjkUtnz+rkn47SsLQtcL/htlRpiIiMpQdyr3jLD4ZISD2LXB5htnR5cVCEfMCAPY3tatXa9G01nOYtUmN3gCYeeqRSiB9BXWuUtnp/71ofvQdZbLrBFWrv+j8stSP/XRGt+v3I1RI4LbaK7osnBDS8ZL1q+Jezgx94Z+pRF+9cXz1jXbGdeM33OfX/ugbL2zPcmUwoxVja62R5VMpezf96ijqgBAU0c35q9vyu5g9r4DMsIhHUVzxUCYiIgKKpFUGVmyMN5xhDMzwv77s95MrYxwe3d4IOysEVYpYJtPINyVSOHGp2ahqV0z/bF5nI3NnWhyjrW7g3rcZyvKsHJe3lpb3T4yxxHOX0Y4p4lMMuPgSBNqJDUjQ9ilEQHt8H7oS2dxrX2519/Q1OE7oYbXlpZOfLxyW2BGOn1tFb7z+Mc49+5JWNPYnnWNbTIFuzTC9fcR8kO79IHJOP0P72Z1LEtgIJzDB7coGAgTEVFB5VQj7Bk/2Aom0jPO+bOCCuuN029qWW/mzJJSyq73tVjlDks3t+KxKatw/ztL4GUF3JtbOnHe3ZMc+wtobBHlElR6P4DoRp7InFlOk/f1GdkgTK6lJbl0lnNPu238b5dGBNaR+3WW02fB27qS/jXCnn38d/pqnHfP+yEZ4fTjF2atAwC0d/mP1OAn6ZgIxfm3EvZrM2v19qyPZdGdlnU5uwv0h1RTkL0SERGZWrsS6FOf3dtNLKM0wlge9zzXSdiBsLue0/sm29GdQq+6uGsbwAjOGj0Z4ZGDemHEgAa8u2iza99OVqc8AFiyqdV+7MoI+zd7h8ul85E3xtNNypEx5q3K3/BpuQTvCpm/L94A/u63F+PlT9ZlrLO9rRvb2ro0w6f5t8OvRjgoiLYC26jffOiyu6mUMdyZ7sNCMpXbhBr2ebu2Ldxvsa6JNbEYupKpgpVGMBAmIqKCau1Mok99PHxFB+/waVZgbE+wEbBtypMRTiqFWasbMdEzzmtbVyIdCHs6y3V4hlwTcWcVdZlQv2HalKvHfemEwrmURnjrX/Wd5Yxlv31lPo4bOxTJVOZ5Wz+j1Vvb8OKsdTjroJ0jHT+nQFipjIyw92v2372a2ZGrO5nCGX98B2u3d6SDWW1g6Fbj8+1H0NBr/jPL6emuQ1IpxCDaMNUYwi79vC1ChjiRUvbvufNyFfIbDt21iccESLI0goiIylRrZwJ96rLLu3hHjbACAmv4sqAaYStIsQPhlMLn75qEO15f6FqvzZHB9ZZGeN+QYyKubF1Sk011ZoSdSjUjHDahho73uuu+rk4phUQyhXsmLMHFD0zOCMKA9HVYu70D1zz6UeQPCLmWRnh/XZxB1ZYW/ZBzyZTC2u3GjHrWYa2ANaje1q80IigjbH2IijyOsDbr65+tdmZ3AeBL931oP352xhpsdMwc6Nwmmcw830J+ltP9fK0RZzhqBBERlZ1EMoXORCrr0gjvOMLp/43XgwIG6007YQce+jdQZwbXFRSqzGBFREIzwm1RAuGQKOLpbx2D3Qb3DlwnX3RlDWGilkZsbjFqrOMxMWaW83wE8F4+3Qx1OrmXRngzwun9LNrYAh3dzzip/INZi99QgXbbNb8DVk161IljdIF40vP77lwjpZTrd2/2mnQd73cen4GnPl6TsT8FfQY86oeRKB9ubn91gT2qhbFN5jpW/wJmhImIqOy0dhrBYa6BsLdG2PraOShxZgUw1tTKfsGTf0Y4M9CIiTuY0u3TrzTCuWpYFvZTuw3KGKsXAM46aGfc9oUDA7fNVi4Z4XikznIKG8wM45A+dUilVMYoB94gqaMrWpCTS0ZYqczfF2dQNXnpVu122rKPCKNGxD3TiVu/N7rJOCxWTXrUiWN0Hxys/eoukW6aa6fObv0HGm/HU7/964St15VI4a63F+OCe9+3l3k/NE5ZttX+AMpAmIiIyk6rWYvYpy67GmFvBti7XJcq22t4XwCOCTVCghZnnaTrjR6ZpREi7kM662ut5X51l36jU/iJab5aH96vHgN714Vum42wKZZ1ogyfllJIB8J96yPNUBdlGmzAXauajaDSiDvfWAgdXbY7Uo2wt7OcZ1vdZd/a2pXRzjteW+CbEdaVCdhlDJqmpTTfcjjpfhdSSjk6nrpr6KMIW297uxH819ek7w3ONr42dwO+eN8H2GyWrrA0goiIyk5rpxkIZ5kRrvEMk2YFkN7lTnd88WAA6Tdg7/BpXs4OcRkZYc8mmTXC6RWsLOmKLW3a4zj3FeXN3Jl1tY4ZF0FdTXZjMYfJpbNc5ugL+gBqgznV85A+dT7jCLuf//XdpZGOn2tphPdXoCsRvh9taYQ9AklQRjh4pAfdllZphPODxp/fWux7DF12NF22oc/SB4/Rm/maUio9OU0OIzaEXeFG85z7N6TvDc42rtrq/nsqVEaYo0YQEVHBtJrlB31zHD4t5vla2Vs77GR1pJu0eAs2NnWGlkY43/ydQU9KE7gF1QjHYoINTR32mK1ezn1Fqct1ZhStoaPiMcl6LOYwuWTYvEGe34QaVge0Ab1r9TPLeZ7/7b1luPSo3UOPn1tpROY4xlGCqqilEd4m1XpqhL0jTuiCaKujZdTh03RDidnlPD6lEYETymhnCMycpdFYrnDvxCVoau/Gj04f57vPsB9Vo5kR7tdQ69jG+U1L8Egf+cJAmIiICsbKCPfOsjSixhPwWu+PDbXWqBGZ21gByMSFmzBx4SaMNUsl/N6QnW+szsBGFzQI3MG3c9SIuAiaO/yHo3IFwlmWRtTEBV1J4/98B8L5KI3QBYv3TlyKZZuNcZSVUkhqspG6yxAl351LXbPVDqcoQZW2/CBKZ7mY/udkHVIXkGb7oURXI+ztHOo8jO7DiG5bJ2eNcFci6Vp+28vzASA4EA7JCVt10f1cGWH/9VkaQUREZaclx9II7/Bpowb3wrUnjsWDVxxuLNds4x2/1TmOsI4zGHI+PuH2CT6d5dLPnYFDPCaBX5U7X4oSgDkzwtZ1iMdieQ+Ek3kojdBNymEFwYARvCiVmaTUBUlhtcSLNzbjZ89+Ermt6WNlfhiKlhEOyLoG+GDpFjw5fbX93Lpk9tBrml34tcfvw4GuVCHpKb3wzgYXdHl1xzdqhI3lnYnsa4RDM8JmaUQ/n9KIKG3MBwbCRERUMFanKeebXRQZ4wiL4Aen7YPdh/RxLXfydlKyvrb3K41wBhPedfQ1wvpRI+Ix0XdQSik8OnklmjrSs9RFqcvVdZarjQnq8l0aUaDOck7WNfZ+UNDFO7qRC5wuf3Cqbx12IJUZYEXJLgZlhMN8/78zfbfVfWjyDYSz6CznnbDD+Tupy8o7+ZW4WL/nVmc+wDMsW8AHg6BL1dGdtDvLOUsjnLsLGukjnxgIExFRwfz9/eXYd+f+GDUou7FxrQ5julpgQD+slDH7W/q59fWx35t1l0+NMJAZOHn37QwcrLFyvZ6ZsQY/fno2/vpOuiNYlK/2vUOUAUA8LvD5xj1nkYJyT1MyaoRDzqfT/Eo9s0Y4c7uwsYSjjiyh4/15/vSZ8MyytkOaroQgpATAqnW1O8tlkxH2CYS7kpnXIuHJOLs6gIbUCOs+FCnHPtZtT0+44fzZOT/kZW7vf7yDfvGaXRrhLJty7juXuu5cMBAmIqKC2dDUiWP2HKLNcgbxdpbL4LPYGajZneX8SiMCM8LG88uPNjpwZXaWS28bE/1Xuu8v2QIA6O0oC/F2StKNMKBbVhuLuY6f5eXUihKUezssRZlQw8n6GXivj+5HEjYygXfa66gUgutj/ejao/tQFTWxHjSqg/WhLGozuzWjXqQ7y2Uex6h7D9ifT4bZOya3Y/cAgC2OTLFX0DXvSqTsn6eznUGTz7BGmIiIyk5XMpVTbWuNpzTCS7dYKXcQmZ5iWb8PZ4YpMyNs/G9NjhAT90FdX+GKaN/0F25oBgBXSYP3OLrpeHWBcE1cXMv9OmTlW+ZMZ9lmhM3SCM9y3WZhgW7OgXBIfayfoEkrnMJqZq0rlggIdq0PFN7Sj1wm1NBmhD0zy/kd38k5aoR3uWVLi38gHHZd7DGZHYd2fqjILGdhRpiIiMqIUgrdyVTGcFJRhGWEdcNKKeUuK/DLRlpcgbDnTdbaxpouVyABZRo+WT7z+O2OGey8b+baoNe5TKWXOY/vN1ZtvnlPOWNmuZAsnRUIG6MWOL/2ztwurPQhxwEjzM562W8c1CHNu/8g1iXz1vA6ZV8jHNBZTjPpR0ozhJx7f/rz8ps50LI1KCMccDxde7379h6agTAREZUVa1rXHZURTinlKsEIm1kuqEbYej+2xy2O+ZcjNNTGtcGNtajDMfSUN3DUBbS6MpKaeMx1fF0m2cu571P32yl0fR1vRtKbiA4bgs0KJps6Ehhz40v2cl3wmGvGN4wxU2D22+myrvpZ26Lt3Po91F0yvw8UuYwa4amQMF8L7tim+zkqpZBMqozfe/d+/fcZdll0U04H7ZulEUREVFasN65cAuHQznKaxSmltIGlXwDgN46w83l6Jjt9RvjEfYb51l9ab/CujLAn4NCWRmgnC3GXRsQjZNmtTHzf+hp8eu9hoetrhUzwELWznOWJ6asx+oYX7aGznAoVCL86ZwOmr9iW9XZRM8LhQbbZWS5g1IiwjoJeQRlh6ziusbFV8IcBbT20OQZ0XY3779cvgwsA/5m2yrGi//H82umta3bihBpERFRWrKAvl9KI9Axy+td1gXBMRBtY+nWWc775N7W7e79bb8hWOxSUthyjJh7zrb+09t8R0Ckvrqn19asRdgbiUTLCtfEYOrpTgbWhYbxHySyNiJYRtjxgTqW8prE9Y13nB4ZSED0Qzi4jrFvbL8ibuXq7vm0Bw6d5jweYs+sFtLNTGwgb+6gzf4/sfTnWcT7+/n9m4smPVju2D74uVhbcrxzCe/178GsciBlhIiIqCGtUBm9GKYr0OMLRhk+78PBRGD20jzZrG1Yj3N6VxJJNLdh35/7pbawpnUNGaqiNi29G2MpwdnT5l0boPiTo64ZjrpKJKDXCuU7AsfOABuwxTD9ec8Y4whE7y1msa+5s//67GNe9I2TUiB1Nd276GuGQznLi3jYvM8uZ18o1yYsnsPRmV4OOoAv6rRrhuhr3rJB+Izs4g2AgQo1wSEbYmyXvyQe6IAyEiYioIHpSGhGzSxL0vAHa144bA0AfIPqVsVpB2dx125FSwCGjBtivJZVRGxkLKY2oNTPCuuDG6vzlrBGO0lnOuczaa01MXEG5rnzCy9XeLIIIpdLbZtQIZwyfFrxfb4Bl/U44R72wxpH1ywgXKgAKoy0/0I4aEW1/1nrZzCznx/qQ1as2HaSmJ+wwn/tMG36l+bfi5FsakUqhPqM0Qv/YK+znZtcIOw7t3MLbplw7S4ZhIExERAVhvblH+Rrfq8YujYi2rQTUFPuXRhjL1zQakwWMNmetA4wALybiCrj1GeEYEj6TFVgzpTkDvNyHT4u5OqpFqRG2dqMQfXxai7V37+XMrBEODuC855se0i69vHedUaXZkfALhMNaWxi6IF87jnDE4dPSneV0GeHsAmGr9rrBEQhbP4p0wO3OtFrLe2umO/fWclvbNLZ1Z3xr4ZfB9QrNCGsy5M7g2fttQtQSlGwxECYiooKwvtrMpTTCCmj9hsv1BmRW8FijCRD9erZbwYcVmNR6xvt1TqvsVyNslUZoJ4hIWjXC/hlh3QgRzmyv9SizRjj8mtr1zVnGDwrKkRHW79MSZXY6JyvLl3AFwkYw1+GTEU4phSnLtmZ1nKi+89m9fF/TBflhGWHdhyW7NEIzrJmlI2R6aS/rQ5YzI2y1V98JLb28VtNIXY3wPz5cgTlrm7ChqdN33aDfrbDAVdtOx+OMGuHAveWOgTARERWEFfTlNHyaNX6vT0bY+15uPY9SMuBtX9IOhNPbJlMKsZg7ENTtuiYWC52+tr0r/YbufXMPywj7lkZEyLJHzabrWJuGzSwXNHyWjvXhwBlk1tfEIOI/jnBKAX+ZsDir40Q1fvQg39f8xtbNXJZeGPRzSaUyA79cWR+u6mvTf1ve30HnYe54baH9QUP3bYIuELZ25/25OGt3A4PdkNMM7SznM7Z3vjEQJiKigkjkYfg03xrhjNpVK4PsXh5UluGdgrnGlRFOuTLCQTXCYUNTOYcF8wYcusyuKxC22ubpLBel3KQHcbA2Izz7plMzAuPuLIM6K5PpzCTXxGMZIxMAwPmHjQRgBEBjhvbN6jhRWWUZOmFlH5aUTyDc3GGMRGL9roaNa50N6zo2ODqyWXFjSlOCsbmlE9/810cA9L87YdNb+60bdCZhZxk2fFo3R40gIqJy1mVnhLOPyMJnltOv780I60olvO2zR4hwTsbhqRE2ygUy91EbF6RSwdkqZyDsHSvXat/Bowbi9P1HZLTDuZ5zcZSMsHPot2zZ8bnjMP0aajWlEdl9pW9dc2eJSG1cUFcTy8g81jhKO3I5hyj61Md9X4ta9uGMa52/fwfe9Jp2/bwEwmaQ2KvOGQhbpRHmc5/fSd2Hr5wD4aAa4bCMsOaDgXObHTVqBMcRJiKigrCHT+vBzHJR+9nZpRGeDWo1mUa7ffbX9JmlEYmUgoi7NEAXlNfEBcmQMVoTAXWPVnu//ukxOPugXbTnAGROqBElI9yj0gjoM/Lew+Y625cz+InHBPU1sYwPCdaHm5RSgbOi9UTQdYzagc0vI2zx/hjy8RV/urNc+m/Laq71ocEv4NZ9MM1mQo8fPz3bftyTGuH0FMv6bbwd+DhqBBERlRV7qKxchk8LmVnO+x5rracLhMPal3KUH1iSKWOWOmt3AskoCxAxMoDJlPIdos0rszQi8zx1dc618Zh7nQKWRhjDp1n70JegWJJRT9zD+eGgJmaVRrgDH+s6WDOcFYJfDbq3jUGcTfP+XGatbsw4r7zUCHenEBP3h0zrGulGjXDSTeIS5NoTx/q+FnQqkUsjIk6oUagaYWaEiYioILp7UBoR1lnOy1rNWyMcdGxvZzlndlA3aoQ39oyL2Mf7YOkW7TH61MXR2uVfGmFPHOJc5jPJRtajRlhtzyF+sK67CPDQVw5HP3PIrWwn1PDjrL9V5jS+3sx9urSjgNnAgN8vb42qn5Qnu+30+bsmZa6fh3Pp6E6iJh5zBbV2O8wfuN/PJqhcSOebJ+yJu97Wd1YMKlkJK2WwSk/8J9Rwb1+oGmEGwkREVBBdPRg1Iu4IxHS8b8DW+t73+KCA0e4sZwXCzs5ySSPj5oxrvEGTc0rnv723THuMAb1qXYGwNyNsXRvnrp0ZYStGqI27SyOiJPXcne7C17fXhSMjDODEfYb7Hjfb4dN023V0pxCPiW/ZiErpx97Nh6DEetSZ7lw1wjmMmZ2LzkQKdfFYxoc3Z3v8fubZjusd9PcbmBEO+ZHpZsBzBs+ZUyxz1AgiIiojVrDTkymWo9cIGyt6A9+gY9vjCNulEd4aYXFFqN6gvCuZ0o4D7NS/V63rubfu0R6dwafswVm24TxUlIywM3DPNojQtcu7TyD6yApezvrb9u4k4jHxnXXPmOGsQKURvuOSZGbv/Wxr67IfZzN8X08YGWH3hyN7tIiQn3W2wXpNTPzLbHrQWS49s5xfaQRrhImIqIz1ZBzhdCCcXY2wNz4MHD7NLo0w1/WMIxwX90gNujKNsMBnUO861/PupMJ3T94bPzxtH7Pd5r6d+9QEwvGY+AbLfqxrESV+8GaP/SbUKERnuY7uJOKxWEaHLWcgXKggSARYdOsZ+MGpe2e8FjUQfvj95fbjKDP+5UNnIoWaWMz1c7OnWA7ZNpu/R2uacb/f85QCFm9sQWtnIuO1sJE+9IGwszSC4wgTEVEZy8fwaVFrhK2gzxsg+nXUq6uJoTvh31nOqBF2B+K5fOs9vH99xrL62hiuOXEslt92lj4jrC2NcJ9HlK+3s8lOXnrkbrj53APSC+zOcu71MjvL5VojnN6uvTuJGl1phN1ZLjgIOuugnXHxkbtFPvZFR6TXjcUEtfGYNjjM5dR6khHOJlPb0Z3MKJdJRMwIZ1MaYX8g9dlGKYWTfz8Rp975jua14H0nNaURzmve6akZL9BnIQbCRERUGD2aWc4OhPWve98U/UaZ8AvC6+KxzM5yzuHTkimIJyOsy063+UwLbBnWNzMQbnCUa1gBsGt2srgzEE5nhJ2ijRoRPeBxn6uzY2BYaUTPa4Q7zRrhFk9WMT1FdHBpRP+GGnzrhD0jH/vMA0fYj63z7MlQc0492U82H7Q6E6mMkUTSneWCt82ms5z1MwjKCAPAmsb2jNfCfjN0neWcfwfeUpmi1giLyOkiskBEFovIDZrXLxGRWea/90Xk4Pw3lYiIoiiVe7bV6z6XQDgd2Ga3vjfb5XfsupqYozTCZ9SImLuG1HrZGkEBANq6Mr8SdtJnhNOTIFj7dI1F66rttc7Dm+k2nj97zbG+x7ZPJ2L84D5X/QeRjEA4ywk17O0ctcUdCaNG2PuhIl0aEZbllEg10xbnOdjjJeeroqEH+8k2iK6Ji+t3Nhm5Rjj6tbKuq98Hr6AjzV3bFLjvdGe5zGWAZvi03H7VQoVeDRGJA7gbwBkA9gNwkYjs51ltGYDjlVIHAbgZwP35bigREYUrpXt2tz3FcvbRgW58XSdvdsi3NMLnDdyZEU4pY/IM57GsGmHn4XUZ1tawjHA/TSDsyAjHHF//W/Qzy7nfrq1gpned/8xo2XzVbpy/8TiwRtjRjJjknhHu1mSEnW0BvDXC/scRyS7L6fwxllZGOLttaz3TbqcD4bDtoh8nfX30rwdlaa959KPAfYd2lvNmhAtUHBHlY8ERABYrpZYqpboAPA7gHOcKSqn3lVLbzKcfAhiZ32YSEVFEJXPP7k4VrrOcl19phN+oEbU1Ygdj6Y5xnoywZ5n9WIAnv3kMbj73ALRpOgnZx4gLBvaqy1je4MwIWx3awgJhnwA/6PJkE1gZE4Y4nkeoEdaN9BBVMqUwvF89Lj5yN/z54k+5zq9/Q629fyB81AiBERRG5coIZ/nNQ5ie7CbbNhijRqSf253lQuLFbD4gWR/AfDPCPYhNwzrLeTtiFnPUiF0BrHI8X20u8/M1AC/3pFFERJSzkrlnj+jfgCNGD84pEPbW54axSyO8JQQBGeFkygiwkkoh5hkiKplKGVlSR6Dq3NVhuw/CZUftHlgj3FATR7+GzOH66zU1ws7ZtXRN9p5HOjBJL7/sqN1d6zgnAwnjnE5awZkR9q8Rjpmz6uWiO2lkgX913oHYe6d+rkCrfy/jmjknBAk6TLYZYXcgbC7LUyTco4xwtsOaxWMZsyECETrLZTVqhFkj7PNBoycjOeg6y/VkyuZcSVjxsYhcAOA0pdSV5vPLAByhlPq2Zt0TAdwD4DilVMY0OyJyFYCrzKf7AFiQQ5uHAticw3bloJLPDajs8+O5la9cz293pdSwfDemp3jP3qEq+dyAyj6/Sj43oLLPL6/37Cgzy60GMMrxfCSAtd6VROQgAA8AOEN3QwUApdT96GEtmohMU0qN78k+SlUlnxtQ2efHcytfFXh+vGfvIJV8bkBln18lnxtQ2eeX73OLkh+fCmAvERkjInUALgTwnKdRuwF4CsBlSqmF+WocERFljfdsIqKIQjPCSqmEiFwL4FUAcQAPKqXmiMjV5uv3AvgZgCEA7jFrjBKV+kmEiKiU8Z5NRBRdlNIIKKVeAvCSZ9m9jsdXArgyv03zVclDs1XyuQGVfX48t/JVcefHe/YOU8nnBlT2+VXyuQGVfX55PbfQznJERERERJWIUywTERERUVUqm0A4bMrQUicio0TkbRGZJyJzROQ75vLBIvK6iCwy/x/k2OZG83wXiMhpxWt9NCISF5GPReQF83klndtAEXlCROabP8OjK+X8ROS75u/kJyLymIg0lPO5iciDIrJRRD5xLMv6fETkMBGZbb72J9FNK0a+eM8uvb8NL96zy/r8Kua+XfR7tlKq5P/B6PCxBMAeAOoAzASwX7HbleU57AzgUPNxPwALYUx/+lsAN5jLbwDwG/PxfuZ51gMYY55/vNjnEXKO3wPwKIAXzOeVdG5/B3Cl+bgOwMBKOD8YEy0sA9DLfP4fAFeU87kB+AyAQwF84liW9fkAmALgaBgzFrwMY5ixop9fOfzjPbs0/zY058h7dhmeX6Xdt4t9zy6XjHDolKGlTim1Tin1kfm4GcA8GL/M58D4g4X5/7nm43MAPK6U6lRKLQOwGMZ1KEkiMhLAWTDGJbVUyrn1h/GH+jcAUEp1KaUaUSHnB6PTbC8RqQHQG8aYs2V7bkqpdwBs9SzO6nxEZGcA/ZVSHyjjDvuIYxsKx3t2Cf5tOPGeXb7nZ6qY+3ax79nlEghnO2VoSROR0QA+BWAygJ2UUusA48YLYLi5Wrmd8x8A/AiAc+L5Sjm3PQBsAvCQ+TXiAyLSBxVwfkqpNQBuB7ASwDoA25VSr6ECzs0j2/PZ1XzsXU7RlOvviRbv2WV3bhV7zwaq5r69w+7Z5RII6+o8ynK4CxHpC+BJANcppZqCVtUsK8lzFpGzAWxUSk2PuolmWUmem6kGxtc2f1FKfQpAK4yvavyUzfmZdVfnwPiKaRcAfUTk0qBNNMtK8twi8jufSjvPHa1irh/v2cYmmmUleW6mir1nA1V/3877PbtcAuFIU4aWOhGphXFD/ZdS6ilz8QYzpQ/z/43m8nI652MBfF5ElsP4CvQkEfknKuPcAKO9q5VSk83nT8C4yVbC+Z0MYJlSapNSqhvGbGPHoDLOzSnb81ltPvYup2jK9ffEhffssjw3oLLv2UB13Ld32D27XALh0ClDS53Ze/FvAOYppX7veOk5AJebjy8H8Kxj+YUiUi8iYwDsBaMQvOQopW5USo1USo2G8bN5Syl1KSrg3ABAKbUewCoR2cdc9FkAc1EZ57cSwFEi0tv8Hf0sjFrISjg3p6zOx/wqrllEjjKvy5cd21A43rNL+G+D92wAZXx+qI779o67Z+er11+h/wE4E0av3SUAflLs9uTQ/uNgpOlnAZhh/jsTxjSnbwJYZP4/2LHNT8zzXYAy6bEO4ASkeyBXzLkBOATANPPn9wyAQZVyfgB+AWA+gE8A/ANGb9yyPTcAj8Gom+uGkSX4Wi7nA2C8eU2WALgL5gRE/Bf558B7dgmcR4Tz5D27PM+vYu7bxb5nc2Y5IiIiIqpK5VIaQURERESUVwyEiYiIiKgqMRAmIiIioqrEQJiIiIiIqhIDYSIiIiKqSgyEqWqJyAki8kKx20FEROF4z6ZCYCBMRERERFWJgTCVPBG5VESmiMgMEblPROIi0iIid4jIRyLypogMM9c9REQ+FJFZIvK0OSc7RGSsiLwhIjPNbfY0d99XRJ4Qkfki8i9zRhoiIsoR79lUThgIU0kTkX0BfAnAsUqpQwAkAVwCoA+Aj5RShwKYCODn5iaPALheKXUQgNmO5f8CcLdS6mAYc7KvM5d/CsB1APYDsAeAYwt8SkREFYv3bCo3NcVuAFGIzwI4DMBU84N/LwAbAaQA/Ntc558AnhKRAQAGKqUmmsv/DuC/ItIPwK5KqacBQCnVAQDm/qYopVabz2cAGA3gvYKfFRFRZeI9m8oKA2EqdQLg70qpG10LRf7Ps17QXOFBX511Oh4nwb8JIqKe4D2bygpLI6jUvQngfBEZDgAiMlhEdofxu3u+uc7FAN5TSm0HsE1EPm0uvwzARKVUE4DVInKuuY96Eem9I0+CiKhK8J5NZYWfpKikKaXmishPAbwmIjEA3QCuAdAKYH8RmQ5gO4yaNAC4HMC95k1zKYCvmMsvA3CfiPzS3McFO/A0iIiqAu/ZVG5EqaBvJ4hKk4i0KKX6FrsdREQUjvdsKlUsjSAiIiKiqsSMMBERERFVJWaEiYiIiKgqMRAmIiIioqrEQJiIiIiIqhIDYSIiIiKqSgyEiYiIiKgqMRAmIiIioqr0/5DlvpnsRCeQAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "055ns_image_27180764486244_CLEAN.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADDCAYAAAAya0IYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADX4UlEQVR4nOz9eZRle17Vi861d+y+iYhsTlN9XwUFVklTAg69OLABH6J41SfeBwpqodfmXjsEVEQaRUV53scQb/nUwndVULmKDdf2XmwGPQIXiqKgCqo9dU6ezIyI3e8dO/Z6f0R8fjHXLyPr5Dkn8+TOzO8cI0dE7Nh7rd/6rd/eGXN+53f+irIsFQgEAoFAIBAIBAKBQCDwfFC73wMIBAKBQCAQCAQCgUAg8OAhBIVAIBAIBAKBQCAQCAQCzxshKAQCgUAgEAgEAoFAIBB43ghBIRAIBAKBQCAQCAQCgcDzRggKgUAgEAgEAoFAIBAIBJ43QlAIBAKBQCAQCAQCgUAg8LwRgkLgJUdRFO8piuJz7/c4AoFAIHCOoig+WBTFr73D55ZFUbzhBZ7nBb82EAgEAoHAdiEEhcBLjrIs31qW5fff73E8F4qi+F1FUXyoKIppURT/vCiKS/d7TIFAIPAwoyiKVlEUf7coilFRFE8XRfHH7/eYAoFAYNtwt4XZOzle/F0cuB1CUAgELkBRFG+V9L9K+lJJj0uaSfqb93VQgUAg8PDj6yW9UdKrJf0aSV9VFMXn39cRBQKBwCOO+Ls48IkQgkLgJYfbaoui+PqiKP5JURT/W1EU46IofrooijcVRfE1RVFcK4riI0VR/Hp77ZcXRfHes+f+YlEUX5kd+6uKovh4URRPFUXx+1xxPat8fWtRFB8uiuKZoij+VlEUndsM83+Q9C/LsvzPZVlOJP05Sb+1KIrBvZmVQCAQ2B4URfGOoih+sCiKw7PP1G8viqKZPe03nn0OXy+K4q8WRVGz13/F2Wf1QVEU/7Yoilff4am/TNI3lmV5UJbleyX9bUm/5+5cVSAQCGwPiqL4pKIovv/sc/Y9RVF8kf3u+4ui+H328+8piuK/nn3/n88e/qmiKCZFUfw/i6L43KIoPloUxdeefSZ/sCiK/+GFHu+C4cbfxYHbIgSFwDbgN0n6/0nal/QTkv6tTtfmyyV9g04VUXBN0hdKGkr6cknfVhTFp0nSWRXrj0v6tZLeIOm/y87zlyW9SdLbz37/cklfd5sxvVXST/FDWZYfkLQ6e30gEAg87DiR9MckXZH02ZI+T9L/mD3niyV9hqRPk/SbJX2FJBVF8Vskfa2k3yrpqqT/IukfPdcJi6LYl/Qy2Wfv2fdvfeGXEQgEAtuHoigakv6lpH8n6TFJf0TSPyiK4s3P9dqyLH/12bdvK8uyX5bld5/9/IROP7NfLul3S3rXizyeI/4uDtwWISgEtgH/pSzLf1uW5VrSP9HpH6DfUpblsaTvkvSaoij2JKksy39dluUHylP8J51+EP+qs+P8Dkl/ryzL95RlOZP0FzhBURSFpN8v6Y+VZXmzLMuxpL8o6XfeZkx9SUfZY0eSQokNBAIPPcqy/PGyLH+oLMt1WZYf1Kmwe4tIe/Z5+mFJ/29JX3L2+FdK+ktlWb737HP9L0p6+x24FPpnX/2zNz53A4HAw4jP0uln3reUZbkqy/L/lPSvdP45+kLx58qyXJ79jfyvdfq38d1A/F0cuC1CUAhsA56x7+eSrpdleWI/S2d/aBZF8QVFUfxQURQ3i6I4lPQbdarGSqeVrY/Ysfz7q5K6kn78zFp2KOnfnD1+ESY6dUE4hpLGd3pRgUAg8KDirPXsX50FI450KgpcyZ7mn7Ef0ulnsHSaf/A37LP2pqRCp1WzT4TJ2Vf/7I3P3UAg8DDiZZI+Upblxh77kJ77c/IT4aAsy2l2vJfd7snPE/F3ceC2CEEh8MCgKIqWpO+R9K2SHi/Lck/S9+n0D1VJ+rikV9hLXmnfX9epOPHWsiz3zv7tlmXZ18V4j6S32blfJ6kl6efvxrUEAoHAluM7JP2cpDeWZTnUaQtDkT3HP2NfJemps+8/Iukr7bN2ryzLTlmWP/CJTliW5YFOP8ffZg+/Taefx4FAIPAw4SlJr/TsGZ1+jn7s7PupTgth4Ik7OOZ+URS97Hh8Lr+Q4zni7+LAbRGCQuBBQlOnH17PSloXRfEFkn69/f4fS/rys5Cbriwf4UwB/ts6zVx4TJKKonh5URS/4Tbn+geSflNRFL/q7MP5GyT972etEoFAIPCwYyBpJGlSFMVbJP3BC57zp4qi2C+K4pWS/idJ9N3+LUlfc5YKrqIodoui+O13eN6/L+nPnh33LTptVXv3i7iOQCAQ2Eb8sE5J/lcVRdEoiuJzdZop9l1nv/9JnYYeds/CxX9v9vpnJL3uguP+haIomkVR/CqdZo79kxd5PBB/FwduixAUAg8Mzj60/qhOhYMDSb9L0r+w3/8fkv4XSf+XpPdL+sGzXy3Pvv7ps8d/6MzC+x8kXRhWU5bleyT9AZ1+gF7T6R/XeSBZIBAIPKz4kzr9jB3rVIy9KKTreyX9uE7/UP3Xkv6OJJVl+c90GoL7XWeftT8j6Qvu8Lx/XtIHdGrV/U+S/mpZlv/mBV9FIBAIbCHKslxJ+iKdfjZe1+kWjF9WluXPnT3l23QaeviMpO/U6d+jjq+X9J1nrWXkJDyt07+Pnzp7/h94kcfz8cbfxYHboijL8n6PIRC4JyiK4pN0+ods6ywYLBAIBAKBQCAQeKhw5nD438qyfMVzPDUQuOsIh0LgoUJRFF98ZvXa12mF7F+GmBAIBAKBQCAQCAQCdx8hKAQeNnylTjMWPqDTfdQv6vsNBAKBQCAQCAQCgcCLxD0TFIqi+PyiKN5XFMX7i6L46nt1nkDAUZbl55/t3nCpLMsvLsvy4/d7TIHA/UJ8DgcCgcD9R3wWB+41yrL8/mh3CNwv3JMMhaIo6jrdRuTXSfqopB+V9CVlWf7sXT9ZIBAIBG5BfA4HAoHA/Ud8FgcCgYcd98qh8A5J7y/L8hfPUky/S9JvvkfnCgQCgcCtiM/hQCAQuP+Iz+JAIPBQY+ceHfflkj5iP39U0q+43ZMbjUbZaDS02WzSY5vNpvJzrVZTrXaqfxRFoVqtpqIoVK/X0+Pr9VonJyfabDYqy1JlWVZ+L0n1el31el1FUaRz8FhZljo5Oamco1arqSzLW8bj5ymKQpIq3xdFkf7xWsbLmHguz8ct4sfhZx+Df89x+HdycqKTk5N0rp2dncr1+/n8n5+Dcfi1cA94LudhTjiOH9/H5sfxa/Jr9t9x3Fqtps1mo+Pj4zQ27gvHY279uPmc5uf26/H1ctE18LuTk5PK825335nv/Pry49/uPmw2mzS3fq35c/I54/ecP1+ffp/9+vM1Bi5aNxfdu/z++TrJn5evk9sd37/mc33ROXneRT/nY7iT1/rjm83melmWVz/hoLcTz+tzWJLq/V75utdu9MzPdO7pwAKBQOD5YKGpVuXyE//nsb14Xp/F8TkcCAS2FWMdXPg38b0SFC760K/8BV8UxTslvVOSWq2W3va2t2kymWi9Xmuz2Wi5XGo+n2u1WqlWq6nb7ardbqter2u9XqvRaKjb7Wo4HGp/f1+NRkOj0UjPPvusjo6OtF6vdXx8rE6no263m4h1s9nU7u6u+v1+Oker1dJgMFCj0dB4PNZ4PFan01G/31ev11O9Xtd0OtV4PNZ6fbphwHK51GQy0Xw+l6QKea/X65KkZrOpZrOpxWKh6XSqZrOp/f19DYfDdC1lWWq9XieiDPlpNBoVgeDk5ETHx8daLBaazWYajUaaTCbabDbq9Xrq9Xqq1Wqaz+eaTCY6OTlRt9vVpUuXNBgM1G6309gYa6vVUq/X087Ojo6OjjQej7VarXR8fKzVaqXVaiVJarfb2tnZUafTUafTUVEUOjo60vXr1zWZTFSWpfr9vgaDQbo/ktL5dnZ2VK/X1Wg00nVzLZxDOifA6/Va4/FYk8lEnU5HOzs7Go1Gun79upbLpXZ2dtTtdtNYVquV1ut1mj+EJRdvms1mIsiz2Swdp9FoSFJaL2VZqtlspnvaarVUq9W0Xq/T/V4sFiqKQjs7O2o2mxXhgvvearV0cnKi+Xye7t96vVa9Xk9jQbyq1+vqdrtqNBoqy1KLxUIHBweazWZpnTcaDTUajbTGlsulFotFElMQkVhzXBP/uBcubPDcZrOp1WqVrm21WqX10+v10hxznfzehSUEkKIo0lhrtVpaR4yP+4mQw/X7GuB+Mj8cz98vx8fH6Tm1Wi2tMe43Y3OhjXXJ9fB7RBuERn9P1ut1LZfLD93pB9+W4Tk/h6XqZ3FbXb3mPV+o1zyof7YHAoGHEj9c/sf7PYQXg+f1N3F8DgcCgW3Ffyj/6YV/E98rQeGjkl5pP79C0lP+hLIs3yXpXZK0v79f9vt9rddrLRYLHR8fS1IibU6AJCUyWq/XE/lot9vqdDqJeKzXa+3s7Gi9Xms2m2lnZyeR6vV6raIo1Gq10ushkt1uV4vFIhHOXq+XiPB0Oq24BBgPpJjxtlqt9DOExcWGXq+ndrudRAIIkpMaiBnXAhlerVaJ3J+cnGg6nWq5XCaizuuYL87BuJzQ1mo1tdvtNF5IIaIO5BJiD8FzwrpYLBLB7XQ6ajabSTAoyzIRX+ZfUiJ/Oams1+upKg/Rn8/narfb6R54xf3k5CSR09VqlYQYHtvZ2Unz7vcAQJIhqpBJxs5xmNtWq5Xm5/j4OM0Xz5OUxDBe78dzgahWq6nVaqX7v1wuJZ07cZrNZnofII7klf6dnZ00d7wvzt5blevyx/z1nMfFChdkVquV2u12um9cM+IX4+U+uivGhRyIOWPgvnA8xCbG2Wg0tFwukysFMM/5deRuDeAOJMbm68vXH8dlLpkHRIgHFM/5OSxVP4uHxaW7H6oTCAQCjzae19/E8TkcCAQeNNwrQeFHJb2xKIrXSvqYpN8p6Xfd7sn1el1XrlypVFQhCBANSUkkoLo7nU6TMICY0Gw2E9GSlCqVXqmdz+fq9/uJSHm1E8INWWV8kHsIOuPjd7zex8B10M7h9nXOLZ26HSCa0im5QWBwuzukm3NC8rm2ZrOpTqeTrrvdbifxABEFwkc13Cv+CDXeruAOAki5V7dpSeD6/bUuTDC3PM7r+JqvB9wTOBUkJUeAk2Nvd+AauR4/tre6MH+cP28p4bjuIOAesDa4DtYJzzk+Pk5EuNVqVUQwd2DkLSGIG6w5BCAnvPkcMV4IOs+BzHvLg7cP4PrxNdxsNpNw4HMKms1mGgtrzteDu2zq9XpyIiBy8Huum/XH2kUk41jNZlPz+VzL5bIyHuaar7x3/f3OdfLeZo68bQowLv7lrVXulHgA8bw+hwOBQCBwTxCfxYFA4KHGPREUyrJcF0XxhyX9W0l1SX+3LMv33O759Xpde3t7ms1miTy6ZdmdBRAlKo/r9VrT6VTdbje1KMxms1QV32w2ms1miXhgH/dWBUhNXplutVqVVoFWq6VWq5Wqzk46IR+QaAjMarVKr/UKqOc2QEJ5PcJFTmS8ygpp4xwQISrNkLJut6tms5mq4EVRpDnAYSApOQsYH+dmDrGiz+fzRNba7bb6/X5qvViv11qtVklo4CtzhbuClgp3b+RZA/V6Pbk45vN5IqYXtRhwDBekEFMuyrlwoWBnZyf9zHN9DtxWzznz8bpzw1soEA6YL7+n5EJ4LgLX6NV/r7BzDfwehwTCSKfTuSUvwMkx5+G6uA8INe7wOTw8TOdG5OBYLpKw5lj3kH8EJ95LrDMXbvw9wmtw0fC1KArN5/Nbci5ceHGnw0W5Dy46MB7uc+5wQFTg/Lz+QcTz/RwOBAKBwN1HfBYHAoGHHffKoaCyLL9P0vfdyXNrtZr29vY0n881Ho9T3znVQ0i9VzT53fHxsWazmcbjcaqyDgaDCimr1WqaTCapn5vsBAgtNnVIkBO3RqORKsX83gPwpGo1e7VaabFYqNVqJXLp7gSv6FNZxjHAMahcu1gBEYT4MJ5ut5tcE94ygTgASdvZ2UkZCbQRnPWH6+joKF1rfm7IM+PkXPT9Mx7u12KxSM9H3Oj1eprP5xWSvdlsNJ1OK/kYZ+umYsfn+mk3cXt8TqgRYiC32Novsq3zPObKgxTzSrZX+RF8uP+IUBBlSDJz5Q4D5oPz+7U6IOVeOXc3ga8jnr9eryutK5xTUrp+5od7Sl4Dc4rTh7GS0eDk3e/tbDZL18i94ueTk5OKQMA8+ldJKb9hsVgkMYPcCl/3iG44E3xc3trh7TA+v4g5+fPylg0fO58FiI8PIp7P53AgEAgE7g3iszgQCDzMuGeCwvNFr9fTpUuXNJlMNB6PdfPmzVvIiaTUKw9JgDzOZrMUGkivPaSdSvl0Ok2vmc/nqUrpvfBUmRErqHbTypBXvRkXwYuIE7gBvG/fHQaQcp4D6fLdDaRzMkhPObkGECUCJ72/HZs4xA9BpiiKlGlAGCUZE75jhBMxb3Hw9hPp3C2ws7OT5tYt5icnJ2nu/F7hPOC+SbdmKLjjArGB+YF4ci0etueEnfDOvPWB5+A+QFwB3vvvooPv7JG31bjY4CF/LqJwDsbpog3HdzeFt47wsws1uD/cLcPjEGQXH5xQM05v4zk+Plaz2UyhofP5PIl7ZIZ4ngfryVt7GDNjarfbSaBifljPudMIcYP15lkhBLaSNZHnNjA/7i7xsE4XDhx5JoMHTSLIBQKBQCAQCAQCgYuxFYICJPLSpUtJTIC4Q9CpsgMIESRhsVhoMpkkwoVN2QkW9mrs95Iq1e7FYpFCGCEm3iffarXU7XbT84+Pj1MY5Gaz0fXr1zWfzyvnoeoLsYLYYQGniu75Ak6qfQ4Wi0USFBg3WQqQNvIKEEvYJYB2jdlsls7hOzrktm8PXiS8EQGBdgTIPnPODhSQTFoFer1eqkT7zhH9fj+5UiSl63DXAOSyPNtdAJEndxG4uMMcQ4Y92BMy7+NB3PHgQFpUmBvmgLYOt9AjDCAqcG9yp4VnJvD7XAxx54qLQDghsONLSqS70WikMbkbwB0v7ozhMT8PwhIkutfrqdvtarlcajweJ4GMufDgRZwKvo5pc2DdeYAnr/UAVm/j8PtLiCmZKbSJ+PpkrSMWuXvEW5D8NXlmSe4I8XkKBAKBQCAQCAQCF2MrBAXs4r1eT1evXtWNGzcqJNmJqHROzNwmv1qtNJ1O0zaIkDPpfFs+CAfVfJwPHsxIHoNbtT2V3wUMyEan01Gv11Or1Urb/UnnffR5JRoSy+sRDZzkI27kc+TtFU5qId3ewtHtdjUYDDQcDtVoNNTr9bS/v592sWDrPHeC+HwR1EgV33c78O0fyXOg1306naaxrVartAUnVW/G2e/3NZ1ONRqNNB6PKwGHLup4T74n7zsB9JYC8gGoZrvNHZJKKKa3PiBYQTC5Rqz/ZFZMp9N0rawpSDnEGqHBBQIHxDq/jx4e6G4H7gPrrt/vp/vu5+fYVOLJ0mDnBG8F4l67mIVwRfsQgtHR0VESigDig783ORbtFJLU7/eTCMJcIxj67hZ+7axHjtdut9Pzfb7ceUHQposd/l5F2NrZ2UkOCV8bLqj5+yEQCAQCgUAgEAhcjK0QFKTTloF+v6/9/X1dvXpVTz31lG7cuJEINgScKiuEk8o4FdB8C0XfLYHe7FqtlohMo9EQW1bOZrMkBmC35zjSeUWYaikV1uVyqcFgoMFgIEnJjk//9dHRUSLWCBqQX99akFaE+XyenuekUlIizN4i4X36jLsoCvV6PfV6vUToeN5wONRisdBoNJJ07s5wuz3OByryOzs7iWD2er1KICTOCc5blqWm02kaHySb62dXi3a7rb29vcq1e1YDhBtxp91uJ2JN5RlBhNchMnEvffcEhCfplDQSsIlgxBxK52KQ7+LBusOG78d2Epw7BbD/Mz8ARwSCGeID18u5d3Z2kjOF8y4Wi5SfkbeisE5cVEB8gER7GwBkHkGB9woiDtdydHRUEcgu2mEBsYD7cnx8rPl8rk6nk1pafIye1cBccj0eGsnOHZKSqOC7P3gbEe9fF3sQFjxXhLnPd7XI80oCgUAgEAgEAoHAxdgKQcGT1judjvb29nTp0iU9/fTTms1miZR5HsHJyUkSD3q9XiKwVN69ZYHqNYTFq5r0aUtK1XWICL8jsA4CCGGG2M1mMx0eHqrf76vf76dxYMU+OjrS0dFR6lHn3E6EIV78I4SSPAeEAogV9nIPqaQyyzXS7tDpdFIlGVJMqwbXd3BwkOaNc7H14ng8TsIMdngcB8fHx7px44Z2dnYSWUcwgUgjOAwGg3QNzN/Ozo76/X4in17h5/WSKiTb1410a7UdQurOFhcVcGTkZNLt7cwprTZkU/hOD97D7wIP5+R+QIDzjAfs+bgLfIcLb40gAwQxBtHGq/g+fm9L4H3lmRo8l7HwfBwgi8VC4/E4HbfZbGowGCTnR+4S4Xo4jrsyEKs8h8PbMXgeoqC3dDjhR2hBBCGzw1scWEN5KCnr3nMucreSCwrAxxkIBAKBQCAQCARuxVYIChCh5XKZ7PG7u7uVKjhk3AmjtxzQ7w7x89R57NwQQ+9zx8IPuVgul6mXnPBASC+v6XQ6lZyA1WqlmzdvqixL9Xo9DQaDRPZpcVitVppMJonIOTGlN99DBp2welUYYgd8lwMIIjtjYBPn+RBB8gC8ig2p4x5w/d5C4OSr1Wqp1+slAkzrwnq91t7enlqtVnJmsBMHbRitVivNGwSSey0pBWBicZ9MJum1zWbzFuHBWw2YV1o8EDQkpXwM5s3hLg+veiPmuI0fYctFKul8O0W30iMGkIPgzguOzXrw+8368SwF1quLIggYLib4+4r5YR14G4/vbMBODTxvNptVWioQ5drtdnKzeIYJYojnNuAWYV1LqmSJ0DLSarXS/Mzn87T9q2dIsB0pY8C94FkhnB+Xhb/HPBsBcYNrynfj8DURLoVAIBAIBAKBQOD22BpBAVs5YsDu7q729vZ048aNRDaWy+UtfeYQhXa7nTIOIL/SOZnwCjiVfyz4pNFjvycDAIs5QsHu7m6quEKyV6uVjo6OUthhrVZLxJdK6eXLl1Wv13V4eJjEBdohaE3wii3fQ/ggrt4m4YFybo1HoMir2lwL7QWSEkHDVQEB9HBA+tJxGZBT4Rb1TqeT3A2e5wDZnc/nWi6Xunbtmq5cuaJut5uIPW0jVJ8htoylKIq05Sckm4q1iy0QX0Dbi+dNYHn3xz37gDBKb4/w3n6p6nrIcw54PaQ2dwrk21e6M4BxcJ/dRcN1eiaIt//4Vqc8xly4o4P59OdyHcwv4tZ6vdZ4PE5jZxtUd1gwDsQhPxfjYH361pp50KGvU1pGvCWF8bhTged4XoILFRc5PvheUnIyeIsLbhGuifkKBAKBQCAQCAQCF2MrBAWv8kLuh8Oh9vf3tbu7q/l8ngghBBxyQxUbUiad93Z7oj9CA8eiDcB7vQm7w1aOuMB5B4OBut2ujo6OVJal5vN56v1HrBiPx4noQA59az4PzuP5nBvnBISSMD6OQU+7kyyOjYuC6j/iAoQeosW58pBA+tM5nveQ02aBmDKfzzWbzdRut1PYJX3pk8kkETes65LSaw4ODtL5O52OZrNZpYee4yDK4LIYjUaaTCZJEHCyisPEQw6Zg263q/V6ne77yclJEp5wHHAvnPDngYlukcdCjyDjuzYg6LB+POMgd0X4/EJuuSbG4+IADgLWj7cE+PrnvcJjvruEv54xeQ4HAgfjowXIn+Pj5166U8HnjTmC4Pt1cw8Q4XAZTSaTikDI/LLTBXPs+RdsjeqBnKwRvzcuFjBeF2gump9AIBAIBAKBQCBwMbZCUIBMegL9YDDQ5cuX9eyzz2o8Hic7PZVKSAlkB0u0dL59H+0GEC7In4f6SecEVKq2IOTJ9xAfCOJkMkmJ/95f71Vi38t+uVzekpR/cnKi2WyWiJlvTQnRxhruuxOUZanJZJJ+TxsClWSqsnl/OmR1Op1W3A/8w1KOYEKVHpv5fD7XaDRKO0hQSXdi6tv1efo+DgfOISkRfm8HQajAIcE8jkajNM9enW40GunanIy7S4V7hlgECQasv7y1gHvFWkGccgcBa47jOIn1jIMcnt3gRJfHcgdGHs4JXOCAVOeiB3MEcXbHBWSf+8iaZR5Z+y54cB7cRYgGPgcXtZVwbg/UBJyT9zPBkAg53uribgrmC1Epd0r4+naHD+uDdZPv+sBxA4FAIBAIBAKBwMXYCkGBP+7ZiQABYG9vT7u7u7p+/Xqy3HsonGcRuHCQExqvRDoJ8UA5fu+Vaqzcs9lM4/FYy+Uyka35fK79/X1NJpOK4OE915BJtlmk6oqNHVIGSYYU+Q4WhM9JSoS/1Wolck8wJOcmiwD3BmGWiBPeW47t28mmdN4m4m6FWq2mTqeTbOuEUXp7AHPHvWDuOS/W+vF4LKm6/SeEcWdnR71eT8PhsJIBwXnIUMhD/LgG7rtXnHmOW/19q0OumW0wmWsEAXITqHCzBrjWPODQ59lFDbICwEVklddyPbPZrCIacQ0uqPg68HFwT2gVuJ1w4fkKHJP3ImIa646x5ds9ujDF/EmqCGt+fbgTXJTxlgNvmciDF9kNxM8DEAYQDfLWB46dt2JwbtatjzcQCAQCgUAgEAhcjK0RFCAJ/IFPVXw4HGp3dzf1pHtae07mIInY5nNxAPKa91hDkDudTnII0Oaw2Ww0Ho91eHiYRAV2OGBbxuFwqKOjoxTMiAUfcB6OjcDhZHez2aRqPGRHUqruQ6ggYQgBkNbxeJx2meh2u+n4zBMBdlSTIVDef+6Em7lDUHASJp2KEZPJJBFfWivc/QHRxBWQW/khdPyOOSDYkt03PHRwNBql0Mz5fJ7WCv8Ys7sNmG+3vec7Ffg8cI18Zd599wJ+DyHOLfIuakG+2+32LfZ/zwFhnTJ3Pn9eiffXeM4FYhtjwaXiwhLrC7GL3y8Wi0o4IfPlW1LyfM5PS42TfxePJN0SKgkuyibgdXlOg4+J+c7nHBeHb43p9y53WPB4/jt/jmdtBAKBQCAQCAQCgVuxNYLCZDJRp9Op9DHTA0+OAsIDJAaS7Ns+shUhVm+q8E6m2u12CkYEOCTo45dUIRjsYjCbzVKlFueBV2ipnrPNYb4dIuIBfd7Sed+6J+p7IB+Pe1XWww+l0/aIyWSi4XBY6RVnPLPZrGLnxwWRW8SZC7ICXLxgrBBPd1dASCGcLu7QQgEp9xYVyKlXpzudjnZ3d5NzgfF5xR0Q5OftLsAdLL5jQk5wXVxBkPAdHLxFBcLubTqQTt+u0nMsnOAyTgQNiK2T5otEI1oTuC6voCOIuKPE8zuY91wY4quvF29D8MDIXCDge+bJx8frOIffC67Vx+zbd3IffEzsFOLbO/px8h0+mJe8pcKFJW+x8vdbLi7kWSOBQCAQCAQCgUDgHFvx1zL9+svlMlVwnXS0Wi31+/1ECiGxhCZC3rxKTSXeq5FObiAwTjQRI6Tzvmq3X08mEx0dHVXO5bs5QI4QCrDnO7mBgBHkyDV6qB5V3rySnfeIu42fLIbJZFKp+HMMJ6ySkoX9dv39y+UyOTJo1fCdFzgnRM8JcqPR0Hw+13w+T/Pt2RT880A/rpvnd7vdtD0n95qMCG9XgFDigmB8EEbWQB4q6GSR728Xhsi9yB0PLkCsVqu03aW7H5gzv7e8jvvi98tt94DX5oGHfi8Qnjg3DoJcMMIZwvEQuXhd7lJgTP5+YG6ZHxd9fH4uyqnw+8wxcNFIqohk7hhxN4HnS3j2g1+3iwvuAMH94W4fzpU7OwKBQCAQCAQCgcAnxlYICpvNJjkAIOkk80PcGo1GSv6fTqfJnbBYLLRcLituASzykCXvp3fSKintegCZ9Ao8LgdI32w20+HhYSLj0nn6v38PufEeebfcQ/IgSt6bz7mdWHrwn2ceePUVu/l0Ok1E2nc78J0jCEUkb8G30+S89OT7Vp1cM86PsiwT4fd0fe7hcrnUbDZTp9NJc1aWZdqWEwLoPfu+rSX3k7XAfXOxoN1up3YYyLoLPD7n0jlxvIhk03fvjgLIKUID95T15YGBCFl+L9nCk/O4WODzxlqTVHEZ5ONwYczXlN+/RqOR2gXya89JNCJBv99P887vfYcLr9r7+9bbLliTntOR55K4cJO/f7huF2T8vD4X3AfPvPDWi1yUYN79HvJ8/1xwd4SLEoFAIBAIBAKBQOBWvGBBoSiKV0r6+5KekLSR9K6yLP9GURRfL+n3S3r27KlfW5bl932iY9Hy0O12U7o/lnsIpxMjiKmk5AiAFFMR9qo/Fea8x1yqhuB5/7WTXYjefD7XeDxO4kUuCLBdoFeznUR6Ndl7vJ0g8pU8AebHcw1o1/BwO78mdw1Ip6SK3RR4XqPRSCGLzB/CicNJV71eT+0lzCl5BpBASKlnU0B6cTp4gCPnhHQTNjmdTrW/v18JXAReJXcRJ3coMA7PTnCyz7xB1nOLO2uIx2jr4HVOPn1XCRcN3CXhuy/42kcA8+1NPStAOhfAWHNe5fddFvLqulf4PSzS58qvg3vjYpWLXy4cEJJalmVq2XGxAvB+YtcJhCLfVaLdbqetPZlLtkxFsOB95a0Knuvg53NBw0UhPldclPC16GvLj7PNuJufxYFAIBB4/ojP4UAg8CjjxTgU1pL+RFmW/60oioGkHy+K4t+f/e7byrL81js9UFmWOjg4SHkJVAw9YI+KtwfjQZAh8W6Fd/t3bsfmdW7bvqgH2y38vuMDffsE7vEctpSEEEK+IOyQGlwBXkXlnP6csixTiKTvbuHzxlfvD4f8MQ5aBeh1XywWFYv5zs6OJpNJche4QOItB34N3tuOq2GxWGg+nyeyynXlVnoCM2kN4Rj8Q1AgG8F3cOC4Tqr9/noln958F40QiLh3/I555PpxTSBKQWwnk0mlJYJ5JdMCB4U7N1gLvV5PzWZTs9mssiUoLQPMO0ISa5J7DhnnccYP0a/X6xUBx0WrfJ1xzzzbg3We5w6wuwmim7eqeOiktyvkbQW5mIIg59kICBKsB47hAZW5S4P3iotO7n7x1g/et4hnXIuLT+5Yuqj9ZEtx1z6LA4FAIPCCEJ/DgUDgkcULFhTKsvy4pI+ffT8uiuK9kl7+Qo83n891dHSkK1euaDAYJEIE8YXQ8Qe+hwZ6oBx2/dlsliq3nlTvlf28ymzXlr73Fozj42PNZjNNp9NUaffK62q1UrfbTbZ9SBj5BtjQJVWqsxf1mXPdTqbyyin/IE9Ut72ySqWba2Rsk8lEvV4vnZP2EcbUbDZTSCavYR6Xy2USJrwqT4sEZBDizv1iPiHi3l4AqSSHYjqdarlcVrIleB1hkLPZLIkGCACQXObPhQeEH9wQvnsC8+yiDLsy8D2iFtfo4hZVelwfkjSZTJLwgrsDAQsxxp0cZVmq2+2mNeLikdvyPcsC1wStPQgYeVaCH4dxOwl3Yu73i/MyJ+ygws88F1HBRQDPJOBY7oDwrSadxLtg4kKG53R4LgbXyvE4F1+5p+12Ozkr/DjelsH7wNulth13+7M4EAgEAs8P8TkcCAQeZdyVDIWiKF4j6ZdL+mFJv1LSHy6K4ssk/ZhOFduD53i9pFOSNRqNtL+/n8gOZJHqpFdQXUTAUk+V1HdbgDh4FZaWAieNEJp8NwDEjPl8nsg4xMMr0N7fn4sE7hiApHMuSDPkX6r210vnlnfv04f84ZogSBECDEk6Pj5OZJZ2kvF4rFqtpsuXLyeCDjmlQg9xnc1maZtICD9uBHbRYMy5k8AzENbrdWVLzZwUMk9UrpfLpYbDYaX1gKyF1WqVQiOPj4+TjR4wn5BbhAfG2Gq1NBgMksPEsxEgt6wXt9X3er3k8IDA55V/XtNqtTSZTFJ4KHPq22F6ewzVc2/vYX54LmvE24DcRcA4vdLv1+Tbr0KYWcueO+GVeb4nbJN5cnGMNhzeBz6f0nlAKU4bBIhcAPC8BFwNfg08l/cNIhjHJOeDYyBKek7Jzs5ORVRwVwufLbzvXIx8EPBiP4sDgUAg8OIQn8OBQOBRw4sWFIqi6Ev6Hkn/c1mWo6IovkPSN0oqz77+NUlfccHr3inpnZIqgXRkIjgx2Ww2iYgdHBykyi6tDli+vY8bIg2ZgBzSu+2EId8mUqr2XkPgILqLxSJVTLHmey+/dF6N5VheBXXhwO3yPi6eh3XeCaZfq3TeArBcLjUajVKlFqKH3dtt6rg4AKIEZI3jQn7H43E6FpbxfDcOyKyHGjLmPJAwf07ee5+HNrrI02w2U97G0dFR2lLU3QLMI3PEGObzeWoBITOD+XBRSTp3LXDesizV7/dTqGQ+fkj57u6uer1eEn7G47EWi4Wm06kkpZyQdrut2WxW2UmB9wDzg/PBr8GFKdYcTgfaXZxQ23uuEuDInHm2gLc0eFsG6xjhhtd5GOdms0nX5nPI2D100dca5+OeuauE+8J7k+tjPOwEgksBkcADTTkn69OFGFofeK5/zfNWth1347O4re5LN+BAIBB4yBCfw4FA4FHEixIUiqJo6PSD8x+UZfm/S1JZls/Y7/+2pH910WvLsnyXpHdJUr/fL6kiLxYLLRYLDYdD7e7uajKZaD6fq9FoaDAYaDAY3NIbLykRbIi+Vzoh5ti8W61WqpCy04GH+lEFdxs5RJMgQsjRYrFIVelOp5Os65454G0LECuq2NL5NolY37Fcz+fz5BaA+FCNpp8eMsS2m4vFQoeHh8kGf3Jyoul0ml7P3NEeMZvNUm7BfD6vEFJ3GCBKeGUZ1whCBSKG2+15PA+9g/TlAoRvATidTlPoo99z+u1xLXjeBjkCLvLgtFitVmktQUaZW1oNILO0G3CfERU6nY56vV6lJYVrWK9PtxblXrO7RbPZ1MHBQRIVaBvo9/tpq0/WsIs5VNFd5OF94g4AJ8eSkqDk7RveTuAhhIgOCAqr1aoSbIqw460hCHjevoB4xT1nvO12O4Vx4sxxBwLrNG+1YH0gXvlOEO6M4FyIDi4AkmfiWSfeauRtQ1yXt0jkTo1txt36LB4Wl7Y/hTIQCAS2EPE5HAgEHlW8mF0eCkl/R9J7y7L86/b4k2e9ZJL0xZJ+5rmOBaGBkFE573a76vf7yZ5dr9c1m81SRVo6J3SQMU+9h8hDaJfLpbrdrjqdTgoohEC52+Gi6q6TYSebuCm8zxsC4+QIq7+3Yfj4sPVD/HxbTNoyIJNezYcwI2YgZFBtJnMAoQPRAVs88+ZZDi4OXGQT5zHGy1i8V95JPgSP83t2BGTXCS73ipYK8gZom7hIlHGxQVLF/k7A5Hw+12Qy0c2bN3V8fKyrV6+mIE1v2+D+exgmAgRCADkSrEGECYSQRqOhfr+fxCLuG/O6s7OjXq+nbrer2WyWSHuv17tlxwMEHXaB8HYaSamNZz6fV4Q2X2N+f32+GZM7Q3Dg8Li33hwdHSU3DWJfHhTq7x3GzxjdFeIZIB6QyvG8HcJDMH3LSc7Jz+4ocDEBZw/HRYTx9hwXDb0VYttxNz+LA4FAIPD8EZ/DgUDgUcaLcSj8SklfKumni6L4ybPHvlbSlxRF8Xad2rs+KOkr7+RgVDmn06lGo5GWy6UGg4F6vV6qarZaLV2+fDlZyLFdY2H3ajFEG2u7pNRP3e/3NRgMNJ1OE9FzwusBdZAu78+H8Hjft+8EwDi85WBnZ0eDwUD9fr9i0ffr96yITqejTqeTgv0kVfrbnZQRBsjYua6iKDQYDJIzARKMcALZcxu7W+qdqOVVb0iqb+0JmfNtKyG2/J5j4hjxdgLfuhInyGg0SkISrQa0KFCppxVltVql7QW5R2RHIDqVZZnaVFgzCEysEUi7V+2Zn1arpeFwmDIcuB4IOKLOeDxWURRJsOj3++l43Ld2u63d3V3NZrPU+sBaYncP4C4QdyW4pd/XJmN1QYH1g0jCugPeTsD65nkewEhbDW4aBAwXmPzYOH0QRVyA4H5yLbwnPNOA9yDjcLcC9wt4KxGiF9fBe4JrY+24M8GFsXw+thh39bM4EAgEAs8b8TkcCAQeWbyYXR7+q6Tigl+9oP11IYVUoufzeepFh6DW63U99thjaTcBWg+wVVNR9MA6erq9Oo8rodvtVizQCABUvxeLxekkWYggx8orvF4pl1QJlYTo0oNer9c1n88TmfYwPncd9Hq9VOWnanw295VUegjo7u6upPNwP+YQa/14PE7EiTmVqgF27hCgkk3V1kPrnOBCchE7IGG+3SaE1qvj/HOii9BCpXw8HlfcBTgtIIi+nSauDCfCuDHy6vxkMkk5DC4A8Zy8ws73rLW9vT1tNhtNp9PKjh4uyBBg2O12U4sKogHkudvtajgcVu4pa4jfc08Rumip8B0aXHxwgsxc+Bp1l4OLGLQleAiiCz4IeNPpVO12O809r/EAS4CLx50s3tZBdgLXz3uMe4AQxvW5y8GFCb8u1gfBmLVaLblALsrx8IwG/zzKw1W3FXf7szgQCAQCzw/xORwIBB5l3JVdHl4svBoJ8ffQNrYvhPxcvXo1ZQaMx+OUi5D32kMKvd8ccj4cDlM7AEQSAgZB8l587O6QZl7n1WF/vQcxglqtlggibgHIGsJEu91OAsFwOEwWeQ8R9PM6WWdnh9VqpcPDQx0dHanX66nX693SnnCROwAyzDx7WwHWccgh/xiPtzBcREpxNRDA6S0mhPp5tZvqN/kP/P7mzZuVHSE8WNAr2ZIqwZzMuaS0Ttg6E4LrO2ogcOShhO7koB0HIcxbHzg/2236P8YunYou3W43zS3rKs9I4HHWDMKGdL5bBLb+PAPAf5+38kiqiEQe9Ong/iGSsdNJ7hxAnEDoom2ErA53PPB8Sem95tfAe4o59vYbfpe3P/j7kKwH3je07Pj7ze8v58xbIQKBQCAQCAQCgcDF2BpBAUBAnLx6oBtbID722GMqy1LXr1+v9DwXRZGImYcIOjGAYA0Gg/R8SKeTVUjldDpNeQ5UO33bOQg+1+LBgZ6jwPVBSsmKYGy4FnBbtNvtRACHw2Eiv4gtODQ8zA8BhqyJo6MjdbvdJFQ48fLUfggXY4J0QYL93vBcgvkQB9wq7pVgn3sEBt8GVNItgoZX4dmBYrVaaTqdaj6fV/r+vdff1wIknAo4LSE8n5BGiDnuBzIrELiYN1wIjK3dbqvf76etIb0FhjlkVxB3ETCPVOG5D9xrWix4LgKVu2OYfw/79Pvr4Za+YwbrNc854L65CCQpiW6M3QMoca940Ca/53h5LoK307gwhWuHc9FCwnuLtifEQ18/7q7hfefrgdYH7rHPlbs8eO+62PCgbRsZCAQCgUAgEAi8lNgaQYE/8r2iOZ1O0y4MeSAiYkCj0UiZAXkff1mWyersVU+q1qT2Q9KwqXMc2hOokEOEJaXWCQLqIH1cD2OTbq3uknsgKYXNMS4Itm/9SC8+uxLQq+87M/T7/RRCyLmp8N+4cSPtIuEVfL7nGpg7iDbfMxZP6KfdgOvFEu/tAnk1nHmWqv35TrwRezyc0gUP7gXjgkxzPPIkPGOAOaHdgXFC0Ll/Lji4iwCXAJkEkhJJbbfbiaznmRrM6Ww2S2vBhQW32SNg0M6TCx/eCsB987BBxAVvH/FtH53ku5CTt0pwvYDj8njeBpHPUU7kGZMLfC5k+HFyocMzRlyQQ+RhzvI2ERfNXEjxthTmIt/5gnlwMSkQCAQCgUAgEAhcjK0RFCB6EIb5fJ7S8mk1kJRcCq1WS71eL1neCbVzsubWc886wDpOi4H/7KF9kCknSbgBnFi7m8LJCCSSaiiCCKSSXRuo1tIOgIMBQuPtApIqFv68P92DD+lPPzo6Stsl5iF27DqBIOKhhmQDQPy8sstc4yxg1wLPYSDQ0Fso3JHg2wwC5sbn14PzcvcB8LBGd2t4WwQElHmCfCKMILggHjmh9Wq7k3DOw73kuZ4vwfXy1R0D7lJgrbHGcU4glpD7wXOYW87nO3bgovH5dSGB+8mcXhT2ybWQQ+BtAMyPt/kwF6xRfw9xj7h3zHXu7Mjfq5yf8eVjQETzlg4Xj4Afz1s/EN+Yw1z0CgQCgUAgEAgEArfH1ggKq9VKnU4nWfNpe6DyDRHhudKpHXtvby+R6IuIWm7LPjk50Ww202Qy0Wq1SoF5eQq+dNqCAMl3m/pwONR8Ptfh4WEizggaTqA5pnQucHgl1NPq2eLRRQzGnBMrrPmIGfV6XePxOFXn+Z1nFHBuD6LjHLRa5LZ1XByeLeBZDL4Lglvki+J8S06cIohFjAXCibCCI4Tj+vkRRnzXAIQAJ8FerWZni8VikUQIHCe0Rfg2nTzHhRLpvCKOK4KdIngckcSJvTtVQJ67IZ0KQjw/35XAt/7kZ+a/3W4nAczHhWjCe8UdI+5e8LXIWFyQ8Qo+8+ItAb52XVTClcBrXCj04/h7AtHMHQfcN+aD++0Biu4mYDwerOnX5OMGnrnB2BDWWAdcXyAQCAQCgUAgELgYWyMokMbv4YOeII+o4MFuBK55n78TYs9DgLRgKx+NRppMJtrf30+9+rmTwCvOjUYjkcxer6d+v1+x/uf2cq7FyY90ntbvfeTYwXm+96FDFCG/9O5TmeV5q9VKo9EoOR4gc94G4iTMzw1xh1gjIlDBzUkb23R6C4lnDTAeyClVZfrkERMctJ94pd9zFJzkQ1CpNvs68fYE5gbijqDglWnvke90OmmeIJrcs9lslsg888Z95Dqd0DOui0iwE3vmy39HBkAeGMjx/L3gjhRvrWEOEEPy+XRhCzdKvhbcKULrBWNkXblrgLkid4HWDc7NVxdauDaOy/X4OFjvjNfdCk74PVeD9xdf3aWROzE4LvNG9gn3NhAIBAKBQCAQCFyMrRAUNpvT7fdqtZr6/b6kcwLlJILnQuQgIB5Mx1fcDU4IvLLuqfqcT6puaweJxSa/XC6TFZ0tJz1QEVGBzAYnWpAbnu/XAenGTUFrwnK5TCGL2LL5ulqtdPPmzcq45/N5cjtwDq/EAw+589wICJr3nTv5pHWA0ELaRXyOPEQv77GHiHrmgjswIOzuqvB2F8QSdxNwbK7Zsw4QCLg3/J55Yb6p3jM2BA/IqLsjer1eEitcKLoIeRCj52iwHr3VgPvh40Rcg1zjgGm322o2m2o2mxUxi/cK9451iIPCAyfdnUDWg7dS5O8FX8cOroPnsQ4J2aRdw8ND/VjexuJzt1wu0y4Y3vbi48kzIvL2BT5HfPcSfz7Xz3VwDMb2XPc4EAgEAoFAIBB4lLEVgoJb9CFvudXYq9yQQXrdIdoeZMfzXTSA3EAGPYMAwgxRhlDRz86xVquVer1eItNkPECgpWowHNfk489JGSRIOhcBIF6dTke7u7vq9XqVinCn01G3203b90GcaF/wSqwn6UO0GAdEmz55J8peMfbKMaIKZJeWD0gvgkQeaudtFQhCVOM9nNB3PWBOyrJUr9e7xWXBa3AcQNpZI6wNF0uYw+l0qvV6nYQH2koQLRAUuI+LxUKHh4fa3d2tzEVe4WbMfCUHIq/W59Vynyee54GYCDXHx8epVaff72s+n2s8Hldez/vCXSaexeFtD+5GmU6n6T3jgp27IHK4g8izM3Ao+DwiKrizgrnw+8rcMO+0w+Tryo+fZyj4+snbGzgW64Z7zPs+z2wIBAKBQCAQCAQCt2IrBAXpPGyRqiQtBm7DhoRi9z85OdFkMknkxMkFxKHb7SaCwz/pvM1iOp0mQQBiiPsAkYHsBKzvHpYHud/f308ECLcFcOu7iwfYuSFj5Ed4pbnb7Wp/fz/t0sDuC51OJzkXaCNgTJ5pgMWd40nVgEHf1tBJPM/3ED+q12y16G0SXAMOEXr8IcTcI1wJHNMDDf26GfPtwvPy4Ly8VcBdFp4l4G0QkNXlcql+v19pK8Ed49b42WyW2jKckLtbwsflAoNfB9fuuRY8xwksmRhcn7tKaC3odDpJBGEbUbftM5/e/uPn8TwDdxqMx+OKu8RFGp9Xvwce2JmLQYRlek4I7y93wzgYr7cR+T3kfPl9Yt2764Q16a/lmPm5WPN5a0YgEAgEAoFAIBCoYisEBYgB+QYQdnqY6QGHOGDbXq1WOjo6SiTKbeFY8L067QQCMgkJ4zVUZT0RHhKPyIELADJI/z+Ep9lsJueAZxL4DhWekN/v9zUYDNJYEUcIgHz88cfV6/U0mUzSVoG1Wk2DwUDtdjtZ3p2E47yg5cH74mkNITzRQwq9598JI0QT0Wc+n1cyBhBgfGcLPyZkj7n1QErGTI4GY/BWCifiHJf7yPl5PcKA981L58QaUky4JYJMt9tN25G6GAAxl5TOwfg4NsGBtMl4boc7UpiHi1pLLgoA9LG7S4T3BDkinMOt/2xp6cfxNUsbBq6RsizVbreTyEQrhO+ygCvDdzLhGhAlPECVx32dcD2+Vaa3dfB7XsO1sr2pv98RsPz68jYFP64LCj7HF/27SOQIBAKBQCAQCAQC59gKQaEoCvV6vURGnSDQMkDSPwSSquzJyYmm06na7XYKzOO5x8fHlcBFSGK3202VcQiOh8xRofZKLsRnPp9XQv8gXZ5T4EF9nH8ymWixWCRyCqGnmoyFHeKGiIGtfTgcqigKTSYTzWazJFwMh8NEMD1gTlJFZPF8A7eGcz5vbXBym5M8Evi5xp2dndQK4qQ3J5k4TSCxzBPkm/tKuCE5GAgXzI9b2uv1ejo3QhLEGILv20ty32jL4Pfr9Vqz2SzNG8+BLHvbgLcdMG8exOgtMpBx1hnnzbM1vBXEXQB+HBcbOAeEHsFosVike0I7ijsBPAgUYcjnknvsQgzrifdbngHhwg2PIWRwn72FwMft10Q+xkUBq56h4cBNkq83hA+OwRj4bCGbhNcy39xL5ioEhUAgEAgEAoFA4BNjawQFeqs9pd5T/J1sHR8fJ/LtQXUQjDylnddBPNlJAqdDs9lMBDMn25B+yORyuUxkDQLHayFl3sdPBRiSRGaB79TAcyGfPMaxBoOBdnd3JUlHR0e6ceNGElkuXbqkk5MTjUajdGxvLXCy6rbw9Xqd7Oc4Qjy4EUKLSMN92tnZSaF7kFNIGuScsXubg6Q0Z37NeYCjV+4nk4mm0+ktuxrwet99w7MRXIyhqo2zAyKJIATxZOx+f7x63+l0tF6vk3DklX7PmmDNQU59jefBibl9n+fweye6OXwXEgSF4XCo0Wh0i6Dg5yE7hLwN1lin00n3krXAfUEM8TE6uXfRyseej5/7vVqt0rpqtVrp/QuJx+3Dz54BgcDBveG+s0YYn4e5emuFg3vG2kDM4Dq5t4FAIBAIBAKBQOBibIWgIJ0H1fG9J+8Dvp9Op4moIgwgNPC8VquVSATk6/j4WJ1OR8PhMCXHQ0q73a4Wi0VlFwLIsfeDQ069Uo0TArhFHtLtVXkIlOcbuJUbtwUWdKqsebYAbQ9u9/bf0UfuW+hRCfYtBL36LKkyJsBj7sxwx4Pb7SF2OEUQiPy4kDUnhYydtgK3r/tYIMhO+MgXgEB72CSCkbddUJ3G9ZCTX38uYpe7P7ivfj1ecWdO/LxOdH295+0QHD8XIfx13rKD46bZbKrX66X3QO4e8ABICD9OAubCXRe+CwQBpPm65Vx5S4pvWenz5m0bZIB4noSLcC4C8Lhfg19LvtMEx/Lxu/jDevTPCHfpuIMoEAgEAoFAIBAIXIyt+GvZw9/46lV+KpQe+kc4IgGKnoVAxdZJPCQDsYFQQaqS9Xo9VUYhQPSRu1sBu3/eL9/r9RLhcbs1VXPO5Vs6QhpXq5XG43EiMFjz6/W6ut2ujo+P05Z+ftxarVYJciTfgTnwLRedQEJyqdQjyHgl2AUAJ9e4Krhv7tBwsQOHA2QOpwAtE7gjvOrMdZBngTWdFoTcAi+d2959ZwqOSQU+D3KEyAJCOblvvr1jnknAWqWq7WvA167vJsK8cu2cE9GM9cla8d04fBz8o4ViMpno4OAgvQ94raSUhcD9c/Be8OOTU+ACG+vZ3SGsXxc++OruCtZvURRJdHOizrwx36wPXs+4WEucw+fSWzpcqPHMCq7X32+se3eEMB6un/vo6z0QCAQCgUAgEAhU8aIEhaIoPihpLOlE0rosy88oiuKSpO+W9BpJH5T0O8qyPHiuY0FInCznFfxut6tut6tarabZbJYCDbvdbqqG5pVgCAKkxb/3fnyquxAYqpXz+bxyXJwJ3udfFEVlZweqnfT4c31UgCFz7oTYbDbJVSEpOS+63a7W67UODw9T3ztjkKRer6dOp6N+v6/xeJyIJddZr9crW3LmBNArwsyzt0hwPdI5Cc4t+B7uJ6kyD1TSIXAIHrVaLRF7T/pnfmirQPBxUcHHj6jCY2frMp0fcYXfI3D4WGmNgNS66wHnAmvJq+fkN3C/mG8EGp8/CCuPMQbP7mDsrB3fYcOPA1arlQ4PD9M2py5KcL8QTvxY3q7iTgDGhKDQ6XTS+XjvODHnuMyT50NwXRByFwRdeIO4N5vNtLbz1gTWBMfl/e3Oj6Io0us9M4Tr8nBKF22YbxezJD1wDoW7+Vn8KKLY2dH4t37G/R5GIPCC0H1mqdp/+on7PYxHHvE5HAgEHlXcjb+Wf01Zltft56+W9B/LsvyWoii++uznP/1cB8lt3+5McFLDtn0kw5OD4IGMCAEQUtwHVBxxAUAWERAgGeQxdLtdSUqVZTIF2MoPskIwoZMPngNJcSt1HsLn1XJvkYDATadTTadTrVYrzWazNBZIE20SvV5P0+k0ESxvkXCHBsSXr05gIdNOvD3f4KK581YDJ9+IGL67BYCA+laN7gZwdwFknevw6j3PwanihNRzM/LHvJLtwoU7LfgdjglJab1Bit1dAYH2HSpcVMjnlPt9kRgA6eV6vB0i3yJzOp1W2gx4PsKAry/OgZBDawRrFDAXF9137pW3KiyXy4rLgbXFdThB5zir1aryXM9wyMF7krXqYZusWQQjz1NARPPPFT+Hj88dJ5JuaXN5AHBXPosfNdz88s9WuSMdfHJsExp4MDH8hY4e+0/3exSBM8TncCAQeORwL8pvv1nS5559/52Svl/P8eEJMYNse2URGzJVUCr3XhnlMUg87Q/L5VLHx8fq9XopBJGwPa9iYtmXzkmk5ytI58n6EFsnuNIpYSRAEMLjVU8IEXAiznX3ej31ej11u91U0YeojcfjVBH3VgxyH6RTEkgPPUTICREk00kxxNht4hA73x3BK7nMkRNmSRURwx0YXG9ue/cWDsbhr10sFpUee89o4HqYR4imB/y5jZ57nleqPYjRt9fMwwdxorBG8iBGnA5U3PNwQJ+fPHOgVqslkcjXhb83fJ6ZQ9pd3DEBcErgNBiPx+k6ERRcbOJxron3BONwJ02eCcGa5PwurLl4wnF4HWvXhSZ3oLhg5WuYOXCRxUUjfnb3Re6q8F0oXBBDKGMN5TtLPGB43p/Fjxqu/Y+fo9EbNlLx3M8NBLYRrRs1vez7PqoHSvp8tBCfw4FA4KHHixUUSkn/riiKUtL/WpbluyQ9XpblxyWpLMuPF0Xx2HMdxAkgDgLS6N09AAHp9/upR9wtzlQZcSfMZrNEJOkJp+oLuUIw8MquW6SlKsnhPFjwITJuxc6zB9JklWWFxBRFkUgfYsBgMEhuC7YzHI/HmkwmlXYHrhuiC9mjlYM2BzIfnIzj1nD3ATtW0EIAmWL+ECC8cs48g5z4+3XmlWDOTaAlpI51AOn1NgOHE0juG8KKB0/6riGIIQQFOmH2QE/WG+d3AlyWZVoz3g7Bz75tI/PulXkfP6IV6wcnBPeTeeZeIj4xTkQFWj4YT942gGvCXRCet+DvMX6mPcPbRRCBWHsuujCnefYB94bQTBcsWLM+NtaoZzz467w9BmGG95uLXvzM/XShivc368JbgVwAyT8Hthx35bP4UcP0VWWICYEHGvWVtP7gh+/3MAKniM/hQCDwSOLFCgq/sizLp84+IP99URQ/d6cvLIrinZLeWRnMWUtCq9XSer3WeDyubH83n89TZkK3261U7SHh3m9OzgJVxsFgkM7lAXD8HkID4XFyAXnb29tLOQ7SeVXbrdROXiA5kEpIkG972W631e/30z/CIefzuQ4ODjSZTFIF2wkmJJTH3WGAKABxc1LN2JyA00rhIY/8Y4wQP+bLHQjuAPBx8Bqv3Ht1n+tgHv3YtEPklnW3zXsgH9cLkUcE8YA98i5ms1m6V151Z+2xNhgb68P79CHcvqOCXxPEnevJ+/E5D+0WPnc+tx7wyO+Y0263q16vp+PjY02n09RmgiDHuNvttpbLZWqPYO25E8XP52NzgSx3eEiqZCi4y4PXcR7Gljs7/J5zH9wZAdwZwfrKz8F9A+5+8ZYSP24e5Ojixu1aMLYQd+WzuK3uvRpfIBC4y2iManrFd/y0HphPqYcf8TkcCAQeSbwoQaEsy6fOvl4riuKfSXqHpGeKonjyTIl9UtK127z2XZLeJUlFUZRup5aqpMar1LQtDIfDSo4AZEVSSuyHeEtKoYtue4a0rVarVDmH1PnOBaT7t1qtJGb4WCFdVHVp0VitVppMJonQec6Dky7Gtru7q16vp0ajUXEYjEajdB1+Tb7ThIfuIRRAOv2xPFDRnQKecp+TLyegWMmBV9+drDJ/uEHyc+NM4DzMDQKICzFemeZ3ntvg7RTcXxwvHBuhxkMtERAWi0XK5WBLSRcKnLjylTG4o4S14wISX307UeYVYsvWli6Y4ALhvUD4oucxsH4Y82w2U1meBpTS+uNOAc7LvcENgRDCuvG2I66X++67YTDXLqb5DhbcZ/Id/Lm5UARYt7g8PEeCzwlfb76ueI6/N3yufM3hmuCfO5RYJ/ma3Vbcrc/iYXEpggQCgQcA9WWh13zTj2lz/EC3ZT1UiM/hQCDwqOIFCwpFUfQk1cqyHJ99/+slfYOkfyHpd0v6lrOv33snx8OKTiuD71LgafSQiW63mwIIqZpDSpbL5YUVfazNThwgDRA4r8BjMSec0avdXgVvtVqVir5v1wdRRzTAcYE1HiID2cF1AJFEGHHruOdNuH2cxzw/wQP5pCqJg7id3c/0Gsg4z/F+/+PjYy0WiyTudDqdNH7ml754z6FgTgjiYx5dXJHOAwdzkskY+T2hgvTvcy39fj/t1nGRO8CFgKIoUu5Gfu9xH9CC4OIPmR24Uph3qu0ISz5e1jePewXcXR55a4QTX7DZbLRYLJIIAYnnWlkDiCS8huN5CwvvJ19r3rbAWHkeAhwhmy4yMXbWcX7fANcH8Xdxg/cj4oOLCe4kydtdOC/rN3d6+DrG9eKCAgIY69SPse2425/FjwSKQh/+us/WSTNqu4EHD7XjQq/96h9UsM7tQXwOBwKBRxkvxqHwuKR/dvZH+o6kf1iW5b8piuJHJf3joih+r6QPS/rtd3Kw4+Njzefz5EAYDAYaDAap8upZCbQMQOSlc0HC8wS8B9t7pCEWEBQnUwQ5OgGBrOR2a981wa3g3oPt/enY7iGBkG3IrVvmvc+/LE93rSDnwLdupBKLFZ8qNvkTkhLR8m39vBVCOg/6Y154HUQb8r5cLjWfz5NNHxLp103LBU4LBCKEkePjY3U6nRSQ6b3/nBdy7pZ8by1hXtluEHdFp9NRt9tNW2xCin3XAh8z92UwGKRMCq6ZNcAcsQ7YbaTZbCYC7qSUdXZRlgTfe7W+PMtl4L7SNjCbzSoODe4bwkS73U7CGcGjLlj47iCAVhvEqTx4kTYJF14IAc1zJ7ylxttRcnCsVqtVGYu7WBBpfL5cNPAWBcbPeyEXYHgNa9lFCeYAkdHbgfw+5W0bW467+ln8sKNotfSRP/7pWu2FmBB48FBfnooJga1DfA4HAoFHFi9YUCjL8hclve2Cx29I+rznezyI2Xw+TzsVQLTdDeCEkp8JWYSsIA54BT6HW8dxBUBMsc9T+e50Oumc+W4PXjllnO5QAFT0h8NhIoXkMlCFxlFAqwSZBqT0Qw7zrTAhylT/mRe7J+mrBwV61Zl8AeYVlwHijG+/x7VBxBuNhmaz2S0EnnwBRIOdnR2tViu1Wq2UFVGcZVi4COS7a7io4PfTiSAtKcwz55VUCQPkdZzDd4AYDAaq1+uaTCbJHSIpXQfrxVstOJdX0gm99NwDr6LnJDmfW8QE7i/Xz9pmvbvIRJtNs9lMYpgk9Xq99BwfO8IF2RmM5yJxwHcCcecOLQHcu9xNkt8vJ+0eyMh5EBzylgZ3J+SuFebQn8Mazh0qLqQhbLmwyDUgbjCu/Lq2EXf7s/hhRn041Me+4lO0eCzEhMCDh8aoptd804+FM2ELEZ/DgUDgUca92DbyBQFSMJ/PUwXWH4dUQtbz4DsPBPRtH6XzKiX/fIs4WiEgmJ6Q79kMWLu98s1zIE8IBRAvWi6wyQPPUiCvAEEB0s8xGo1GEg64fgiXV/d3dnbSudkxgi0n3WUg6UKSCJH1/nG3n3N9zCdjoF+e64UYejif9/pThfbedW/LcCEIG7/3siM2eJsAAZQumLibwQMTfQ78Or3P3+cUMcGDDp1scl+ckHI93nIgnbtAuBbfAtR3SKjVTsMWcXogNORtEi6c5e8j1lmn09FoNKq0PHgLi8+JuwAYD/OAIITQVBRFuj4XbXLij3jDuX395Of0AEyexz3k+N6u5K/zdiPm0Lc/ZRzr9To5bLgf/vmSuxMeEIdC4A5x/YvfqsmrQ0wIPHhoX6vpVd/+05GZEAgEAoGtw9YICpJSu8J4PNZ4PE6kyvvvIcD88U/bA5VSqo9U/yH1TjYgkb5LgBMct0hDOn0bQSdtkjSfz1ObwWw2S4QU+zgEGFID0fMtHj0fAkK+WCwqQZA4NyC90+lUJycn6fnMITtl0OrgpNMDJxFRIE1cnwfUeWXf2z3yyrMLLl4F5xheIfeeeXcWcG4nnIgViAte6UYsYOu/3Jp/UZsBoojb9j0skfvDufhHDoSLCpLSPfTn8z3CkDsPcqLqOyS4C8LDHBkP1+e7TPCeYA0hgDE3OCzc4eDz3mq1tFgsUouNrwfG5aIRa8uzOvK1tVwukwjBfbgI3kqT3xd/f7EecmHIH+N5zCfuERciPNwTgcSzONy9kosggUAgcD/xmn/4Ea3H4/s9jEAgEAgEbsFWCQqQ7uVyqclkon6/r3a7nUgWxAlCCulCQJjP5xVXAMeEeNEWAWGihYFtJ6mKz+fzRNAkqdPpVEIipWr1FFcF9nOEEd91AvLTarVSOCNEkTR+KuK1Wi0FTpIV0W6303aV5E2Mx+N0jm63m4IQB4OBOp3OLbkLVGU9CNIJMNfmrguulcqzdE7+EVd4La4IbzFwoQaiB7njOX48bxlhXIQwInhA1nktuyFw72knYczuOrlotwsP4POqtbsncBpAMLkHtIt4Lz9tMb7DgHTuTHGSiqDhYpdnanDfpFtzLwhenM1mms/nkqTJZJKyF9yNgXjkzhzmA1LNeHMxhveFZx5wT53YI3K4UCcpiVtcr4tTkHnWUt4mk4tb7ki6HbyVBDGB13gwI+s/b3/gnD4HgUAgcL8wfH9N5WR6v4cRCAQCgcCF2CpBgT/uj4+PNR6P1e/3K+0JHvDnVWRIAFkKi8WiUjV2ezhVf8hankYPcaUaDKHIXQBOqhaLhY6OjlJ1nu0J+edV8m63q36/r1arlYg/2QjsmnB8fKxut3tLfzyCgbdYUFVtNpvqdruVwEAnaH5tXoH1IETaIJyMQQYRMqRqe8RisVC9Xle3200iAeTYremMG/KcCwS8tl6vJ4HGLejuvJCUyCriDTkXkiqChLdr+DVy7XlgH2Q+dxI0m03N5/NEiH3u2HWELAx3Jng7BKTY1yOCAwSWtY67BbEC0UU6F2l43mg0SmKTCwqMh3niNZwD8QKhy9uCuBfeyuD5Jd4q4cIHwkCeD+Fz68IJ53eXBuvcx+nrKM+x8LF4m4OLYu6WcYeMrxHPt3A3TiAQCNxPPPGfburkxs37PYxAIBAIBC7E1ggKECYnIvP5PFXeJaVsBUiyZwrgQoBQub0esYGMAdoEILGek+A93fTWY4MmRBAC41XezWaTzgt553vf/rLX66nf76vZbGo4HOrSpUuazWYaj8fJpi0pOSYIO+Q8vjsBJLrdbicXA2SfOfUWAq/2uxsAl4ETLIgo22Z6H7u7DxAUEDSk89YUJ5ZY7+m59+A8zuG98N72IJ27PHi+5x1QtXfBBzHCXQoIUVy3E06ux/MEvNXFd1Rwp4bfF0SWvNrtoZkuRHFPfJ3iUuH13sLhDgPmb7VaaTqd6ujoKIVKTiaTtN5Y755ngbMB2z/rx9uH/Pp4LYTf3RyM310VvNbbMhCQ8rnltcybixWIT1w3c+ZtDIgm7iy4yAUiqSLseJgp5/B14AJDIBAI3C9c+YlCxceeud/DCAQCgUDgttgaQcFJr9vpIdmQDyrVZCtAaiE6tDBI5333VKUJZKPHWzonGwQzIi54KB9VcOm0/UHSLTsBYJPn2E4YIaU4EHq9XrLWU9kmQBHRg+s4PDzUeDzWYrFIVV0yGHq9XiJm2OkhjHlgn9vP2dIRQkkV2APtyCWgnQQi7PZ5WjU8F4K5WiwWt+QGIOKwg4WTOMBrOS7iQK1WS60MiCLcU3dZ+BwglHhfPdctVQM/XcDwKryLHogKrA1EhNwWz3FxLnh/PuIAc8ka84wJFx1cFMlJLsdbLBaaTCbJWeMOFr+nLgSxvjy7wEMoIeZ5awFrinuJEyYXRjgfZB0xwseAgOLtIn7PadnxteCiWp4Nwnn9s4L1yDrJH6PFyt0WCBrujAgEAoGXGpd/stDlf/0+nRwc3O+hBAKBQCBwW2yNoFCWp9vguXMAgpALCpAgD+KDoEDAIFK+haBb0TmnW/wJ3mMLyWazmYgO5Msrqt4WgZ2eKran8kvn1Vx2YID4QDw3m41Go1F6PpkMh4eHunnzZqUFQZKGw2Ha3aBWqyVHA+F6kEkIndvqmeO8H55qtosDPm6u1ckdc8+cUQVH4PE2DeYOoj6bzdJ9Qihg605yHxBKIH6Mh3mTzgMjnYz79brN3m3tXIPfJ6+G5xX6vB2CdcU6dGEI8kz2AOvO3Q0IO1T/3YkC2ebamJOLwgoRFRBOfH37NpK+3n1efG0jEHC/OA9jdBGCOXFBxsUBfw8zzlysud1nQb5jimdfuBMFwcEzMnzbVG+ZQfjwXBXuOXPi68CFx0AgEHip0X12Ha0OgUAgENh6bNVfy95v7pZnWgWoFkIAxuNxpfrr4XCSUqYBwgDkm+qrW8qbzWYlxZ/XYuf3FgbIL2NB7OA8ns0AwWZrPRwCkGQn+34dXON8Ptfh4WEKmoT4tNvtREj553ZxJ2OtViu5DdjCknni+eQDQKRpQQBOzHjcBQUP9HO3CU4Cr/Z6td8D/BANGLu3aXA+hBzEIp8rSHje5+/Ogzz/wtcUj3mF3uFjgSRLquQ9IC4sl8tbKvw+JjIxWFs4FLwi7jkC5H9ISqKMu1EWi0W6dm8DYKyMCVENAcGzFtwt4Pc7z5rgfrvg4LkDgPuXP+4E3zMuWAPSeQClt0L4OkTgYE3wPr3I4YGw42ISok8ucPjYvEUlEAgEXkpc/slCne9/j2KT00AgEAhsO7ZGUKA6CIGA+ECE2+12+nk8Hqter2s6nSbBISeVbOXowXmSKiTJiY6TJchku91OO03QskCmA+PEAo8ogVjgx4X8QWjo41+tVil3odFoaDAYpDEwbq+scx6EFm/J4FpoVTg+Pk4tCQgQuA/ctVEURWXLQelUiPEwRu9N5xogdX4sbyXg+V5lh6B5xgOvZXcIz1dgLOQf8Dong27r9/vnVnjWBb/39hTGDfn3lhm37zNWiKtb9xFWOJa7NfI8Bc9JIEjRQzNxpkDqOaY7D7jPEH0yCnyefIvEi9qB/B5wz/z94e0XzBvXzvX5e5Txu6DE71jLnJvxI4LlohKiEaKSBy0iMrho4CGLzGcu1vEcPitww/iccn+4ZoSHQCAQeCmx+/OFLv3DH9fmePXcTw4EAoFA4D5jawQFSRWy6QFwEJmTk5MkIkCc8xA9SCbkxXcDgBh75RNySEVytVolYaDf76vb7d7iBKCqLJ0H5+E+cEEA8upkhtf7rhXSKXm9dOmSdnZ2UgUZkWFvby8JJ06Y3HrOeNxyTs4DLQ7dbjftQAFBxvlBvzqtFdJ5JgFk08MCPVXf0/u9xcIdBjs7O5rNZum4HvqIzd631ySrwtcC99nFAncseNCe74jAOFx4AX5Ob2HgniKY5K4Ft9g73JXAPHmrB497RdzdOLPZTJPJJLkvvKWAdcx5eA7iCPed9huumS01nfzn2Q+MyV0yvkWlvz99PN7GwfuI+WGten6EC1EcK2/nwCXkbSfHx8fJOYQI5vkQeftOLsxd1Krj4+TzId/ZIl8vgUAgcM9QSv2P1HT1b/1ghMIGAoFA4IHBVgkK0vnuBuQBEOAHacBS3m63K6QFAoso4MGK0nkQ3WazSVV66dYea7fldzqdlCdAgCLfO2mTTgmep+QzHsaISME/sg4gw4gH3W43uSFwCTBW6byy66n/3vfulnBvNYAwYxVnrrlOshkg01S7ESCA2/LznQcQcZzAUzHnK/eQ+fFdDTzkktey2wf/2u12yqDgNbmAgbDgzgTGi/iBQOVklnnzPvv8mr29xKvy3mbT6/WSC8bDBp14ewimt3p4FgKOEndZeDYA9521S4sMYgOPMQeQdACB9rF7y4WLZTyP9hkEIc+bcCLuDiAXopgLBDCCUl2gYC35+9sFI5wKuFoQJ3wrTH9PM1ZEKhc+fF3zOn7vO3oEAoHAPUUpda7V9MS3/cD9HkkgEAgEAs8LWycoOElHPJjP55VKIhXPTqeTKrhU1qny8rOTaIjadDpNpB0iIalCIN1G7ZVLJ1BOXHwnAMaO02C9XqvdbmswGCTyDvlx2zWPOfHqdDoaDAaJ9DphygULFw/ISvBr8ao0YgYChRMqqsGegyCdJ+BzDN/uDxLG9xBt5s6dHfV6PYlEXAfz6YGECAqbzflOHt7ewFpwMcDzBXAPuNDhVXdvc4A8kh3BOL01xNcmxwIIBt4G4uP1nQoA6xECzbrFgYPo4NfFODzrwNs9uF7Olbf1+NaJ3CscJJB4Dx71dgHaV+r1eiU8k/BNkAs4iGwXuTq8vcV3VGFdsH59DO4w8NYXrolr4PyejcJ7wjMmGAf3OW8DCQQCgXuKUmo/W9PLvyXEhEAgEAg8eNgqQQFS7hbwRqORLNsE2W02m0S0cTL4DhBUWr266RVhr4p7ToB03lvuFU/GJikd18MZsWE70aPC6dVciBGkxf/R1z+dTlOluixLtVotDYdDzefzimUdsudE2h/vdDra399PPeB5JR24ZZ1dFWjJ4NohYcwv7Rh5rz7HY17crl+rne9EISkJLy4O4Mjw+fc8hlqtpm63m0h/LgDleRLcq1arVVlbq9UqtYF4pXyxWFTaSnwXCQgsx+L4Po9e4XdBwAUSX1eeHQDpZb45JtkcXj13oYO1mbdreO8/IgDuEObH3S5+vjyQkvvsW0TiFPBsCc510bg8S4P7gtDgGRa8T5g/vx/+/mHNcB987efj91Ynd7a4OJa7OXhd4OFBfW9X685zPy8QeElRSt2na3rZXwkxIRAIBAIPJrZGUPBKJRbw9Xqt2Wym2WyW2hwgk8PhUP1+PxHyyWQi6XynCCcFVIAhkzlhuKjSCyljK8t2u51Ii1S19bsLIN8aEcs+xJLXuiAAiUdIWC6XlS0VfftE6Tz4z0l4r9dLjg6I2O7ubsXO75V84O6AVquV2gkODw/TcxByvB+fa8ZGD6ljTJ5n4O0nvgOGXzNjJqiQbRgJx+Q+DQaD1O7CrgeMDwGDMUEa3YXiwYC0HvhOFAQcuivA14znO+DkYK0QgomgglMDVwmPIQz5No8uSDmRdREhd0kgYHiIIvkC/jhz1+l00jV6u4a7eDg3AZoX5Szw3vF2IR8T5NxzI3hfM8/+fuPY7khotVqVAEl3hvi6cFGAY3DvuTbf/cJbKnhPIk4xLy7yITgFHnyMf81bdPTmcJ0Etgv9D9X0xN8IMSEQCAQCDy5esKBQFMWbJX23PfQ6SV8naU/S75f07NnjX1uW5ffd6XG90s0f/7PZTNPpVN1uN9nJB4NB2hUBO3UuJtBSAFnicd/aD1Jykb2ZsEL69iEeHMtfA/nwfnYIjPfqIzD41of9fl+1Wk1HR0d65plnUpgiz5POtwqExENSvQWDtgPIVL5dJtfPcTzjoNfrJfJNRgBuA4QcyCOCglfbPXwQEsdxIJCdTifNGXPllWWuk0o4P7u7gnO4ZZ+sB4Qo3B0Q1LP1msQG6bwKLinZ9ZnXvA3GST/3nXmlLWO1Wmk6naaMDo7vlXXPAPD+fG/3YH0yDq7Pd7lg3tku0t0f3jbj9n3pfHcR1ovv5MGcsD78vl3UYuBrLl97OAFylwPvDRd1/H3v2Rw+96wPz4/w8MQ88+KizxJ/zEMf3UXjQZm0vbAOthn36rP4QUet3db6Mz8p/Tx9vCYpBIXA9mD/Zwtd/js/fL+HEbgLiM/hQCDwKOMF/7VcluX7JL1dkoqiqEv6mKR/JunLJX1bWZbf+kKO64Fu/PE/n881Ho81HA5TUGKv11O73a60AFDpdqIK4TobZ6pKQzwJJuT5LmR4b/f+/n4lDJHwRwiU9927tdvmKxGZ0WhUIZ+dTker1Urz+VyHh4eaz+fJDUDVGzu/Ex2IqofYufXebfZud3fS5G0kkD2q8LSc4F6AsA4Gg3QuyKELAFTKef56vU4Vcul09wknvdjhPSPAgw8RQBA4gDsrdnZ20laDbrXnfuIGYD24oIHwQnWfa+E+OtmkPYH74OKMr1/WoXTeGgE5dSLOz7Q5uOCSZwgwFy5kQd59S0V3+jgZz90ajImtIJk3F+bythKux8UGrofn8zvO620PrBv/HePndS5K5dfj146YwFxyDEc+Fy4K5e0Xfr3M/4MgKNyrz+IHFkWhxf/jM7XuFHr6c7xtJcSEwHbg0k8Xao026v/Ln1C5OXnuFwS2HvE5HAgEHmXcrb+WP0/SB8qy/NAL7TuG3Hk7gKRkbR+PxylMEZeCVz0v6v92Z4ATUWz4nqhfr9eTSIBVn4o1qf2QcxL5sf9LVVu25zF4LoF0SqaxvfO7RqOh6XSq2WyW3AmSUlDfarVK7gxeI51X+TebTUrKz0MenTy5WMPr2X2C+eMaEG6w6SMU5Lb42WyWSCVOBr8nblF3F4dnNDBXHMd3teB+eZUZAsgxu92upOruAZB9zydAcMidExBdqtWeCcB6cjKbizI+bl+TkGbWiLfa5K0MnIPx8Hwn2O7mgHAj2iCseZVdUmrJ8FYKf4/mgYsAEcZdB8wPx3fHhI8tb42QzoUm8jl8jXrOia8X/uWfB36u/PMm/zxwIYTWFXdv+HjzMSOsPGB40Z/FDzyKmj76ebXnfl4g8BJj772Fdj94rPaPfkAnBwchcT28iM/hQCDwSOFuCQq/U9I/sp//cFEUXybpxyT9ibIsD+7kILcjI5B/iI0T0XxXBLfIQ35zUkDlFxLhfdy5vd378L3qTc88LRWQK8buYYlkMEB2qer7rgq0NzDWi/rXeZytJb2NwVsquD4nbk6QXRRgzshgYL7cLu8VZd+eEWKMAIDVH7Kek09/LkSXcXlbgAdM5mn8gLBFHBYeFOkEF8LsoZZ5TgHzQl++k3XcDNxzd1K48OEihF8La9VdDeQqME7GnYc6Mvfe3uEtG1wbThHP5WCtMYe+haVX3XNxgMfcYeNuIZC3A1xEyHM3BKII+REuwuAm4txsV8rc+/rn+S6i5C1IvHddmOCaEEf8s4P3twsyiCoPGO7KZ/GDjGff+Q6FGyFwP1E7LvS6fzq55fGdD1/T+ulnFJ6Ehx6P/OdwIBB4tPCiBYWiKJqSvkjS15w99B2SvlGnf9F9o6S/JukrLnjdOyW90x/DOQDRykkCpMZt5S4w0O+Pdd0r4U6cIGKQBiqZHtTWaDQS8ZBU6X9nHOQwQH5oGaASirjR6XTU7XbV6/XU7/fVbDaTfZ9WBNoAID6QVpwJHJ/rpAXBrdqekcCcuDgAYZJ0C5lCqOAaeY63dnhIIUQOhwDzAlG2+1y5txyD3TG4jxzTBRDyIrzK7v3+tFH4loeQ73znCRc5qOjnvfcc07MFGMdqtUrjcCcHc+z9/94C4eScCr/v2uAilW/bSBsHa/wiMcfhO1FwT3NRwoMdgR+TtejCgFfr8wwDF7XcDeNimrt2eN/5+nRnhLdL8D52wcBzKPy6XBDkvck8ttvtyjhw8PgOIu4U8fceIs6DgrvxWdxW9yUZ673E6I0hJgTuM0pJP/LTtzz8wPmdAs8b8TkcCAQeRdwNh8IXSPpvZVk+I0l8laSiKP62pH910YvKsnyXpHedPa88e6zSngCBaTabiexKp6RgMpkkkiqdV6zJA/DKLsd2O7tXlCFsWON973q3bHvVHDFhtVolgQBS6Cn7iAqQyE6no16vl0go4gcV7FarlY7tFXYnWxzvdoJJURRaLpeJFEFMc8u7W7ohlZBZWj4IjyQccj6fazKZJNLHc2m7oOrsAZWcz10JXG+73a60JcxmsxRUyRjdecH9ZZzsXCCp0srgGRhcM+NADOI1LlJ0u91E5i8SBdwRAiFlDiHqeUDh7e6R/8yakk7bTVjLOBJYW6xpzu2tFYhBJycnms1myW2Bg8NdCh6Y6A4Qb7PwwEN/b+TbTTJH3hrBPyfkuROC1/E77pO7X3zN+rhyISEfB+vZnQe+BvjZ74e/Nx5EQUF34bN4WFwKNh4IvEhsGqU+/ic+R0/+tdi94RFEfA4HAoFHDndDUPgSmbWrKIony7L8+NmPXyzpZ57vAd2e70KBtwzMZrNErBxUGX3LRd8WMO/P9qwEdz54RZvHSfIfj8caj8cVGz1kjz59J5wQ0lrtdDeF/f19LRYLzefzCsHzcMbpdKr5fC5JySLvtvxWq5V2ofBtHBuNRqqm4wTAIs4YgIsjXvGGRDqZ9IwGRAEnfZB0J2mQcv5B9CGEPBciTKgmrQQIDT6fkpKY4udgtwVIrffJe04A52JuJaUqNoQ1D0D0rT9ZU05qsfBzH70K77suEJ6Zt0+wbiDj3Eef37wVyIM4vUWD55LRgZDF+bzdh3tCC467HDimvz98Hl008ayS9XqdBEAPDmXcx8fHmk6nyQlEa44LX9KtW0D6vCNa4Uzx7R/9fcs583DUXIDIWzUeYNz1z+IHDR/6C5+jsri1RSoQeElRSKvd4ISPKB75z+FAIPDo4UUJCkVRdCX9OklfaQ//laIo3q5Te9cHs999Qvgf92fHT4IC2+JhqXfbdC4qQBo2m416vV6qYlNt59ieJ5ATGI5JNX2xWKTtK6fTaYWgQcq8Xx3i6iQFMQA7d57PQNikE31IFNeNmMC4IIG0QCAYeCXbq7lekYcMI1YsFotKsCHEDEJJpdvbCtw94FZ08hIgodKpEDSZTLRcLtM9zfveF4uFJpNJ5f5zT7267IIHO4H4doT+HNYJYZasA99eE+HFcylYD4g8kOVerydJlf56F07yMeTCA8fk/IgD/OyvyV0NjJO8gdwN4uuJ++1riuMiDLAeXPjg+l1kYey0bDA/LsKxLljnvlNHURTp3jL/jJnX0u7j1+JCGOPhGhHa3MWTryfmlHXA793Zwc8efJm/d7cdd/uz+EHEh7/+c3Q82EgPzm0LPMQ47pd66qs+Ry/7K+FSeFQQn8OBQOBRxYsSFMqynEm6nD32pS/ymOmPeUgp+QP1el3z+byyhWJOCqRqbzUE0NsKnKh6pdu3gOR3EBjI8NHRkQ4PD1MvNqSF7QipsuOq8D5uyCuOCd/20p0TTuKp2q5WK3U6nWRhh+T5dQNInhNLhBPv7+dxdruYz+eJBCIw+NaYjBU7u1eveTzPEyCE0G390+m00udO9ZlrIugSsu0VcQ979G0FaRPJLfPe+kJVW1ISa3x8ninBHHp7y3q9rghbuBc8n8AdF8yDt5hwXohwbsP3e80azTMJvMLu69gzFC6y69Ne4zkOfvxcUPFWAG8D8jyNPDuB6/GcAn8u68mJu98vnuuP5+0nfL/ZbFLWSX4cn0vuSS445OIP1+2OhgcF9+Kz+IFBra6PfvWv0GoYYkJgi1BIm7qkWl2KrSEfCTzSn8OBQOCRxtZssu5/6Pv3EPK8vcH70HmNV3W9yooAMZvNbrH9S1ViARnhtZ5mv16vtVwuU5WZQEAPK4Tk7+zsqN/vVyr1EKN8FwCOC7F3N0HunoC4eY+6W+LzUEjPDXAi7MRvtVqlFgyuD3s6hJG2CoIvO51OIrBuMecrZJJrzXvucRVA9JgjrP/L5TIJRtxDCD7nmc1m6TyIH8w3Agak0qvnvV4vEWpvr3GyenJykjIy2M2D80KWOT4Vfs/oAC4s+Lw4AfesAkj3arVSr9dLtn7pvA2Be+SZCE6i/fvFYpEcJx5GmiPPG0BQ8e03uc+sBZ8PwGvJwvD8DtaTOzeYc3JIcF6wXvjdRc4C7pULQLz3fHzcO17vAqKP2T8LWCseYBnYTjz9R36FFlejzSGwfVg8ttHTf+RX6Im/ES6FQCAQCDy82Mq/lp1w8ce/dB4iCPm4yGIunZMciCiVbq+4+vMgtZ7e79vL+WOQGX+cSr0fr91ua29vLwXsIT5Q4YWwbDYbjcdjPfvssxqPx6kSLp2TPAix99xDdqjQQtbYftJJF0QcYsictlqtVDGGpEpKgkJOFl2kYU6l89wKD0NEAPAKc97C4LsteBaC30dEDI7H+FzE4Lncr5zgcu+YN9poXNTxCrfnINDKIimRbcQLHvd5yAWJfNtBr+JzjxBcnDhL5+0KjCO34HsmgotVzIWk5Npg/Myj5ysg2nAcRB13XDQajZRbwljcQeCuA28p6XQ6abzMsQMHUbPZTOvWMxE8z8JbJJhvFwc8tNQFR95zCFwubnkbCL9nTkNQCAQCLxabhlTf39fJQewUGAgEAoGHE1v313JeIcxDBX0XCCeenqaP2OBWeSeAuSWeCqaT8Nwy7tVxJzC5jZoxt9ttdbtdDQaDVNV3Miqdkr35fK7RaKSbN29qPB5LqpIcrs8t+G7jd8JJRR2RgMwAFyMkpcwAtkN0gk6ve27Xh7jxOr9HtAQQBOmWf8iqzzstIFS7+Z3/y1snuBc+bhcJ+B3ihreDuNhBqwmCAvcWEcR78yG3OB8QO3ByODzk090yHqaZOyJ8DTKXCAGsGa6V+8jX3OGAY2U+n9/iWqHi7/kX7qLwYzjRhrwjBHQ6nfT6/P3q183a5r2St4MAz0fxVhTaQZzM+/vMxS6OeVELE+9Tdw4xtzzHHUF56xT3NRAIBF4oZi/f6Nnf8hZd+ns/eL+HEggEAoHAPcHWCQqeoeDVRIgN2zR6ddar8BCERqOhbrerWq2WyC4VbO/B9qqnt0d45RwS6TZ3eusZg2/72Ov1Kv8QF05OTrfzm81mqtVqyZlw7do1Pfvss5pOp5WKuaSUKeBtCJBcSCVCBdZ8T95nNwgnqt7GQauFV3ch0t4DD7mFNDs5hcBDXNvtdqq2u4jD+fnqogmtCu4Ckc5FAnestFotSUo7GThRza3sXp323n5vM2AusdcDd5M0Go3K9ovSuWPB75e3sfj6cdLLsb3VA+Sum3yHAn5GFGIchHJ6dd9FCc9j8Iq8hxbm4pFve+ktNC4S8D5i/fi9Yry87xz87MfIQ0o5hrshuIe+SwbHYX26s4G1ybrylia+uhvB15k/JxAIBAKBQCAQCNyKrRQUvPLY6XQSKYLQz+dzzWazFFIIKfavkB7PCPCec+A7RUDAqMZK1Z0BIPO+RZ50XjmWTolyp9NJrQ79fl+DwUD9fl+dTicR9qOjIz3zzDN66qmndP36dY3HY02n00rSvFvgeWy9Xms2myWiD8lbLpcpU4AxNpvNVMl314Un+/sOBl5Jpg3CCSRCBMfLW1PIJyDhH/Lmzg+eB2HMcxIg99wP2luWy2W6P5DHvFLuGQHuEHCBivlDMKnVToM0JVXCA108QlDgfIgnTnJ9PXGfPBtAOhdVWJPe+uLuAAS0+XyeRCQ/Ni01Dn5mXngOj7tTxLeu9PcJcEKdk3b/x3zmzodcAPD3COsJkJsgqSKc8RzWMnOE0OHj83vsWRTMXd4ag7hwkciGsJG3VwQCgUAgEAgEAoFbsXWCAsAa3+/31e12K3Zrqvz9fj/1fBMqyPaBXrn3KjXw7egg2a1Wq9IOIJ1bnnEjQAZzogEJ6nQ66vV6acyDwUCXL1/WcDjU3t6e+v2+NpuNjo6O9PTTT+vpp5/WwcGBZrNZ2raR82PBh3RRgZ7NZpKkbrd7C+lxIrxarSq7POQhgMwDz5dUqVxL584BxuTWc6/wQkzdwu4OBncd8BqIXh64x73xbQIhlYwxDzvkmJ7Z4I8hVNGuAOFmnJBjiGlOlDmGh15KqggBzKdfh7tfAK4Td+MgZHGfPKCQa+V4nNfnjO8vasHhetgdxFtvcJN4C4G7N/K2AObU1xXtDZ534hX+/Lgu4rkgwPuKdhTWpjtREHJYB7xnuFbmDlEAUYdjuyuDe9tsNisOD28V8Z0zAoFAIBAIBAKBQBVbJSg44aRlod/vpz/41+t16m+XzoMTp9OpptNpZZcEJyu+rZxU3RFCOu9/9wq+V6Sl86qyhyZ6RRPyz3VQXe/1enrsscd0+fJldbtdtdttTafTtAXlZDLRfD5P4/YxODmDJNNqAanz6reHVyImOKmlpcCrtxB9Ah4htbQacB0QQSrkXqVG/GCeGE9ekZ/NZprP5+n+5sF53i7gNnkn01T2mS+vaDtJ5NoZn+9QwPx52B/jRHjKhQNcApwfwcOzFdyxwvkQE7heF0J8PXK/XRSgOu8hiS6y+OuZDw/u5L4zBx7c6OSa62T+8rn0e8n3XsHntRflDbi4kWcyMD/Mtbs+fA49UJHHfVcSf39wHo6FEIaLx9/33l7B3PtaiHaHQCAQCAQCgUDgE2NrBIXcvk67AJVbqpzY6dvttpbLpcbjsZ555hkdHR1VCDJVWSfB0nmLA+TMq60QX6zVVC2dBEJ+ut1uZUs/CBfkjNaHbrervb097e/vVyznkFLaMTycUFKqIjsp9LFAqqjiOrmHhEGcqYJLSls1MnbEA6rCPs9eKfaMCtoOcnKJjZ72DOaWsR4cHOjw8DDteuG9/RDLvELsVfnlcpnGwfw5CYTQu8gBEeccHvbH6yGZTq49PDMXp3KC7SGBjIPjep4B85K3bLiw5ZZ9cjFchHGnA3PruQLMH/fMBR53lPAeyN0ouVAAOC+tKbVa7Zag07zdxEMamT9vn0CQQ6hzUYL7wXO5Po7F+5D74+KDz1W9Xk/rFvg64Vpydwfrz+cgsH1YfOE7NH8ihJ9AIBAIBAKB+4WtERQAJLTVaqnb7arVaqXKMrZtyMhkMtH169f1zDPPaDweV8L1pHPi7r3VkDm3jkM+8r5x76uG9EA6PLhOqu7EgG2bUMa8dYGsA8icB0ZSafXwP+YFguTVayzhXIuTZ6rjXP/JyUklFwGy1Gw21el0VJZlqvjSsoEYwPx7/zrzyXF9Bw5s/N4yMplMtFgskjvCe/yZBzIw3AkhqXJ+Fxw8O8EFhmazWQl+pPLebDYrgoS3NdDLj2gBeJ6HVLqjhfvhOz8wR3kLjbdi+FfuN20YeVsJz+Xe5WvBcwOk6s4Yvj45Tq/Xq7gefPcJF88Qtdzd4CJQ7mJAlPKgRm9XAZzXdxhx94WLCQgKuePI17W3lniYq7cxcH0uOnpLTd5Kk7fpBLYP08frOmmHoBDYbhy9Sep//meq+W9+9H4PJRAIBAKBu46tExQg9hB9CCtkz63hi8VCh4eHGo1GGo/HlfBBt3RDdJyQ5VZqT813Usa5PGxPUmWMtAk4iaLqzzEhyZPJRLPZLLU9jEaj1J6A+wIi484MD6WjMs3uFYzHiT7X5UIJ42csHpAIqfLQv1arlbIjnNg6qXdy79Z6P5+kFITIvHvV2O8n94Tr82BHSRVimLsjuOeQ/UajkcisE3m//16tbjQalTH483K4vd6BEAWBzt0M3D8EJHINnCSTaeBtJVwPmQfcM3cAAISc3M3g4/Hf5WvERQ4fh4N7mLcNeEYCX10o8BYJdzL4dXqeQ575wDzx/kJsBLzGM1QYp98jbx/BleJrmrUV2G5c/Uc/pdUfeLumrwwnSWB7cdIuddyvqfncTw0EAoFPiKLV0i/92U973q9rHRZ68q/9wD0YUSCwhYKC90O7vV86DSHEtTCdTjUej3Xz5k0dHh4m27+kCmmDuLlTwcUF6ZRskdeACOGWaSfQwAkJrQc8ThDjpUuXKjsXzGYzjUYj3bhxQwcHBxqNRknwaDablUR+7wFHSHDit1gsUpsHO0pISmQI0knbgosnHKNer6e2DG8P8bmBpDuBRgDBScG2krgS2u12ImhY0wnKbLVaKssy7WjhO3hIqjgu3AGAaOP3ELgAwev8Xrm7AcLIPZWU2j78Z+aAjATfacHPzTFxmfgOFu4QQLCQVOn7z9cY6xiBhHvJOHydeJsM4hvCGOfGleH3Ml/7XI87ZTx3wq+D98d8Pk/uBW/l8LwTjsNXbyNh7bh4kzsq/L3mYO64Z4grzDEiBAGmudtEUhon1+PnC1HhwcFmNtPL/pcf0Ue+6h1aXA1RIRAIBAIPJz74jZ+tzZkquWk+f2feulfqF//yZ6efX/F/rcM1Fbhr2EpBIQ+R8953qvgHBwdpu0N3JUjngX/eKy8pkd1Op1PZDUFSqhbnwXD+z6vAVN8hrpC1brerwWCQdnrwHIbVaqWjoyN95CMf0bVr13T9+nVNJhM1Gg31er1ExBgPxNirzd5igHvASTlEiMp3t9ut2MkhSFS7O51Oyho4Pj5OBFZS6t93CzhEl3M1Gg31+/3UioJlnzBBxB565CH3i8UikWNaExaLRQpmhCg68eScbKfptni3vrtDgvORL+DZBp5PQRCnZwFwbODj8DYLWgOYDwQpDziE9DJW5tMFLsQa1pQLWe5ukE7bESaTSbrfeUuPb4XIHPI6b1UAniXhLQv+3uA9wTEQEdxB4lkLZVmq3W6r2+2m1/Ce433r7RS8V2md8bYPnotTo9frpbnm2O5mcaHA2yb8eLnw5EJRCAkPCIpCH/9D79DiSogJge3Gxz+n0KvGn6Hmv/8JaRPb0QYCgdugdv63yLU/+Cs0ft3Z3y5FKb2YP02KqhDx4V9fV/HrPkuS9OZv/7jWH/ro6S/i8ynwArB1ggIEo9/vp20hIQCQk/V6nbZZhNw5+fBWhdxVkPd6Q1BarZYajUaqpEN+CQqE6HkSP5VmSUk4ePLJJ/XEE09of39fg8EgPb5erzUej3Xt2jWNRqOUJ4B9GyIunRM4t/37eCBmjMUJsBNMt8pfFM4HMavX61qtVsnl4C0cTsicuELs+/2+9vf31ev10nM982I2myVLuVevEQx8rOQbcJzBYKCiKCrz7HkFhBV2Oh212+1K/z9zd3R0VHGCQDx9Fw+32vt1IhhwXkgqrRAcz1s3PIvA54Jzsg5xnvi181wPO2Rtc90eugk5575xnxASaMlhPAgJ5FQgHnnbCE4Vb0nwtUMYI+d3sYQx4DxB0Gq32xV3CONxMYXzIfp4Ow3n5jzeYsH7PUeej+CZFp7vwT130c4/N9w1EdguFI2mnv3yT9fkNSEmBB4AFNKHP39H+vzP1JvefaTN//1zUhn5H4FAQKp1u5Kkk7e/UR/47R37zT38/62QyjOB4uf+6JOSnpRK6U1/7qelstTmbIv6QOBOsHWCQlGc7vCwu7urfr+vWq2WditAZLh+/fotwWw5AZRUIcD0tUOaIBweyigpPYcKrFflIR6eXzAcDtPWlt1uV48//riuXr2aqva+FSJEbrlcVirl3k7g10OFG4LvrQMeOphvW+h5BhzPbel+7e4s8Ko7lXivqDOnm80m7dRw6dIl7e/vJ5eD74TgJBYxwZ0EOTF0ZwlE2O8B10OmBu6OTqeTxoYTBHv9ZDJJQZTeKuEVaB6DoLs7xYktc4YY4BkHCFL+fA+DdHLMtUm3brPpWRA8nudbIGZNp1PVarW0E4oLUp7bwDG4P771KUKG7xDh76P8/jNfzEPu+PB55jk4JDgv8+i5IJIqrgXWjbfgMOfeAsRa8/t1EVg/zIm3lbhjweFhmoHtw/iLP02HnxSELPDg4ed/z67e/P99k05+9udDVAgEHlHUr16VaoWKTls/9z+97H4P5xSF9PPf9KmqLQu98ds+cPrYcqmTw6P7O67A1uM5BYWiKP6upC+UdK0sy085e+ySpO+W9BpJH5T0O8qyPDj73ddI+r2STiT90bIs/+3zGVCtVlOn09FwOFS3202hapBzJ4QQJyfJkiqkxa3sLhR4ddpbKxze1pD3ziMK4FrY29vT3t6erl69qscff1yDwSCRdEQEghjdCn9ReKRXuRERqITTR99oNG4RPbzvG2IHqfMdCJg/t8l77z3ODx5nLjyXgZYJ38lBUiKnTh5xgPB67gUugTxPAEEEEYYKM8SWdgqCOnOLO/PGbhq+Vrh2XAXeLsJjzDECRZ7jAYFHvEDUoHrvVX2q7nm1HTHIrfg8n90KPOTQjwdB55i5bZ814SJIvqZxuPgY84wKF7T8PZO3Ivi9wcHhzgjac5gHf99yfh5jXnjP+W4ljMuP7UJJLmwg9uQiVh60yvvGBbn8XNuAl/qzOBAI3Du87/ft601f19dmPL7fQwk8D8TncOBuYOe1r9bP/8GXadPYTkFx0yr1vq9+nSSp95GaXvEvPi4dHOnkxs37PLLAtuJO/LzvlvT52WNfLek/lmX5Rkn/8exnFUXxyZJ+p6S3nr3mbxZFccclPsgJOwxA/PIefp570VcIhhNiKuNOIiAdXllm5wEPd7tIaPBzYlfvdrva3d3V5cuXU4YCQYXY8wmyg7iQH+AEEQFEUiLUvPb4+Dht8UhAZVEUyYLOVpuQ5FarVTkHBMzt91wb8wQ5po2Ax3zbwF6vp729PfX7/SRszOdzTadTTafTSpuDOyRykQPHAUKCO0G4H8xXnmvgFW7uO9flpFQ6r/J7FoaHSSIQ+PPdpUAbAtkUiFvSeegh4ZfcNw+jRAxi21FfX75mfZ3xHIQer+RzLcwlY3VijWhAy07uuPDv/XVcE/fKxTjfyYT3lwtE/j71eXQXg7cXeeYB5yUolN0seJ7fdwQCtir1ucsdOByT4/h7jTFK50KOP36Ra+E+4916iT6Ltx31xx/TYn+r7k0g8Lxx8steL23XZ0zgufFuxefwi8LOa16l4tPfeuG/2i97y/0e3j1H/ZPfpF945/aKCTmmr9zofX/ocV37LW9W8elvVX1v934PKbCFeE6HQlmW/7koitdkD/9mSZ979v13Svp+SX/67PHvKstyKemXiqJ4v6R3SPrBOzjPLV8hQ5BJUts9FM9JjleGIRMQPULzIFL0efd6vUrCf6vVSq0W0+m00tMNIHKICRBvAhkHg0Ei2tjvEQUgQW5VhxxyDEmportarZIbAiJG9dxDAiFfZBlsNptEzNwFAaF1IugV6ZOTk0qgH2SUe+IkHKHi+PhY8/lcR0dHSUhwcuYZBRA/rr/T6aS5klQhxz5XTroZB6GX0nnlPnciIExAZp0cc34n8qwbfy3nZR1C7D3E0p0ETvi9cs9c8JhX4LmPPl/unmGNIgTRYsI4IMq8Pt+6kXvF9fkOEZ5PwVi5Tt8Jgdew7ai3Q/gac4EIxwrjQujyNoX8Pcu1MjYPP2WcjIX7w+u9PYP3J+PjvrM2vNUCgYQ5AbmYeD/xUn0Wbzvqjz+ma1/0eh2+5cH4YywQuB0+8NvaenXn09T4Dz9+v4cSuEPE5/ALx84rXq7Fm57Qx395S9NXXJwNUF8WeuWVT1fjYKHyJ97zEo/w3qP45W/VL37xUCftB+//r4NPKXXwKQM99qOfpO7Tx2r+wHu0OXMKBwIvNEPh8bIsPy5JZVl+vCiKx84ef7mkH7LnffTsseeEtyiUZan5fJ5IHRVaguRwGnhlNbcvQ07YYk863/IP0uLVfGzVvV5Pu7un6ptvO5cTi52dnUTY+be7u6vd3d2KKEDVfjqdaj6fazabablcqtPpqN/vJxcCgoITR6q5Z/NcyWRArIDAOxFj20Z/bR40x7k8WwLhwgUTjs/jVMy5J5LSdR0eHlbC/vhK5R5Cx30ZDAbq9/uSlESinZ2dJKIQWokI4g4TriF3KFBVdts/BJlrRUDx6jPrzt0cLmAwb1yHW+d5zIMU+eoVbyfavAZCzLFdDPAcDH+fQKjJEIBc59fuY/eMjTxfweeNMUHG88fz62cMPtcuAPAYIhCCmOc2cA/dYeJZFJzDxRd/3/N+dEHBx+TOBK6HceAgYr6YdwSdbRIUboO7/lm87Th57RM6+OQH74+xQOAifOg3NvTy3jvU+d4fud9DCbxwPHKfw88XOy9/mZ76oldr9MaNPlHQ4Emr1Ad/U0PNw5ZevfOpKn/0p1+6Qd5rvONT9aEvGOh48GAHCV/7TElq6LHH366dRanuP/+RyIIJ3PVQxou8exeusqIo3inpnfZzIrmE7vn2d9J5bsFyuUy7PHhuAMdxa73nGEiqiAnD4VCNRiMJBuwuMRwOVZZlqrizdSLngFAzXsitBzSyw8FoNEpiwmq1knS6KwEZC9PpNLkBECYgUVwHO0zk1W5aNCBvkCBEFKrm3v5BRgXbVFK1h8Q7iUO0gPSxywakGKfHZrPRbDZL7pFOp1Oxt3Msxtlut3Xp0iVduXJF3W43EUvmE+LqpPKC9ZMIuhNvnC25yOSEE+GCKnkuRuSv9XDL1WpVCRt0gYv5cNGAxyDLeWaCr1vCG/neLfeeg8D1uPsib4nw/A8Iud9jb5dgrXgLAvPia82FGc+/8OBE1qfvEuJrijXorROM26+XY/J+wOnDcfNQVl8DiCy+bvwzgbXJHHo7kOcvPABiwifCC/osbqt7L8cUCARyFNJTv7qmS3ufreZko973/PD9HlHg7iE+h3XqKvvYf/8ajV9750R6tbfRhz9/oFcWnyr9yMMhKtz41L5Wew+2mOC49g5JKnR597OkUtpZlBp89w8918sCDyleqKDwTFEUT54psU9Kunb2+EclvdKe9wpJT110gLIs3yXpXZJUFEUpqdKHDulxAoKgQBYBBN2rxdjQIcBYniG2nhPQ6/Uq9njaHbrdrlarVbLzQ6ql8z5vSIuTJVoo6vW6ZrOZxuOxDg8P0zaRm80m7f7Q6/UqhIW8Ayr6nkoP6Yeocd3053vWgwfJYU1HRICg4aLIyTPH51qBZwcgwJDn0G63U9ZB3i7hTgbGVqvV1O12dfny5SQo0FqCKOGEv1arpfuOwwCSztjyPn5IcN7iwfN8twC33ruVHlLtrgKuGxLsrSLcQ+7DYrGouDo4LyQf8YdrgJBzfu4jz8ldB1wr94H5Zl24yOQOA3e0uPvBK/I+Nifv7koA3m7gmQxkGzCXLrZwnXnbhB+T17KWXTh08cWvMXcv5W1K/s9bT3Lhgfny52wx7upn8bC4FGWGQOAlRlmTbry9VG1VU/+Jz0mPP/aj44eGTD3kiM/h26C+t6uP/r/ecNsWh0+E5aWNpq/qqhfmna3Gjbed/b25LjS/8jmV3z3+Q0cqf/zha10J3IoXKij8C0m/W9K3nH39Xnv8HxZF8dclvUzSGyXd0UeBV7S9eu7EBsLHDgJeXfQKJF8hcvzenQGdTketVqsiDLBzQaPRSIIFffz08kOCOD89+OQXQNwZKyR5tVolgt3pdNRsNjWZTCriB2PK3QkQIFoLEBRc5JCUSDeWckhdvV5PIY5sxwk5zm3/PM5xuSeMTToXMiCgVPKZP3rknUAyLgIl9/b2NBwOU3sGx6cizXmWy2VFiHDruospkNbcCk8GACQRsuw7TnhWAmIGBJbrv6ha7WvLgyvJv3Dng2dYMAZItlf2paqY4M4LD/T0LAoPhuQx3lPcD7Ys9QwBiH+eHeAtIYgt/r5ChEG48F0TuA5ahXz8zBfimJN2f2+xlvme5yD61ev1dL88+8DH6y0X7jrwx12gcGEjFy62HHf9szgQCNwfbJqlRm8455Lzx/va+TWfo1d9z8d18v5fuo8jCzwH4nP4AtTabX3oD75Vi8deeFX+2bfV1P3Y21T84E/dxZG99Fj9hs/Q6PX3exT3FuVO9fNLkuaP7Wrn137ObV5x9/Gqd71XJwcHL9n5Aue4k20j/5FOw2auFEXxUUl/Xqcfmv+4KIrfK+nDkn67JJVl+Z6iKP6xpJ+VtJb0h8qyvCPfMFVw3yHBQ/QgOdI50XRy4NZ139IQckjmQb/fT04AJ4SQTKrMbH3o+QleZYagDQaDFDSHCOIEkvYMLP38k85D4xqNhvr9fto1AXLF9XmVnDwGr7a7q6HRaKjb7Wq9Xms+n1eeMxgMUpsHpNtJNU4Crzq7EEDAIySUjAW2b/SdGzy7AKHAxRzuT6fTSW0SOEO4p4xlNpulewoZZRwIGi6MQAwZP89lHTj5T2+EnfOtDD37AWLv43IS6uui0+lU2hC8ug6BZn16e4ETbUQEF9Nwmrh44y06rFvIr4sVHhiZV+xxUnj2AHPEGvUdNjiWdC5m0UqDW4DdF5gDxgL5Z83xWt+lwt0i3pbB/UW4YOyMj+txEQTBhO9dZOE+ekuIi1DuUvD2lPuNl+qzOBAIbAeOB6WOB6U+8HueUG39pF77139GJ6PR/R7WI434HH4eqNVelJggSet+qQ9+UVevn3+yNj/5s3dpYC89Vrs7Ouk8NMaTO8bxcKPj4Ut3vl/8Y29RsSn0qr/wg5Hr8BLjTnZ5+JLb/OrzbvP8b5b0zc93IFT7nfBDpCEd2OudiHl/OMSj2WxqOBxqOBwmYtFut1NVnP53LOP0xUPiIKCeTg/ZgHhQna3X6xoOh7p06VJl+0F/Hhb5brebyBfV2+FwmIQAt63jRjg+Pq7sBjGdTjWZTCotHdjQy7JMLojcYs7zCT08OTm5hTQilLjrgzaQwWCgVquVHAy4NhBMaKeo1WqV/nUEBUQJ3BnsaNFsNittDv6v3W6nkEfugwc3ch4ny1wrhDvfacJzNSCVnleQ2/q5l5yb80CKuZ8uTnAfGIe7ErxlQTp3GvAYgpMTfL8G5t4FA+bdx8V9pT3HWwDc6u87LHA+noNIxT10gYS5RPzwzAhJaT0zZs9m8HlGsMrH4+0SPk95toRfE+8RFzJYxwhEvkNMLlxwPD4btklMkF66z+JAILBdWPdKSaV+4Wvfqtf/+f+m8uxvk8BLj/gcvkPU6nr/171Nt4mMeF44aZfaNB/53TYDd4Djweln5S/9pc9ScSy95s89khuq3BdsjZ8XwaDf71f2oecPf6qm3uoAAad/3zMEhsOhdnd3EynY29vTlStX0vPdOg7JgEj4FoiMTTonaJBCzrO/v6+9vb20uwPHxha+Wq1uCUqE+FCt9jYBBAcfJ46D2WyWBIVarZbaBiBEODuoEEPWqL5TLfdz0taBjdx76L2do9vtarFYpHYQxnR8fJxyKbx9gGP1er10/3x7TYgo5/P+9larVRFlECycpLMbgOcdMA8ILJBa5gBizDhxW3B/PGvBd2Hw+fC2AcB8Mx6cKohcnv/gVXnWLWP2vn0EL6/QQ4olJVcHopmkRNB3dnY0mUzSbhn5jhnuDnBSj5OD9cI8Sudk2wm4z6+7ZnBs1Go1LRYLNRqN5FDgXnj7BMfifeMOA87tc+uOA3cm4KQoznIa+B33wl0LnMvH4k4Qfh/YMvzwT+uV+5+hj/z6+AMz8Ghh0yr1/m/+5Xr9n/rhqL4Fth6b1l1co7WL8i0DgYtx0iqlpvSBb/0sta/X9PJv+YH7PaSHHlsjKOzs7Ghvb6+ynaETsvwPfirNvuUej7daLV25ckV7e3uJkGH3h7RC1jk+xOT4+FjT6VSj0ahi64Y4URFnN4V+v58CBum1d7u029RxLzixQhTxLSxplViv1+p2u+p0OppOp5X8BIgOzguIGT3mXgGmQkz7gJNxxoGQslqtEqkG9XpdnU5Hu7u7iZQhQjBOJ3WIAJ59MBwO1e12k6AA2cTOD9Gj8r6zs5MCLiH9VMjZZhPhQVIij7lgkwfweQsA88hzIP2QTYIV3QHCXK3X68pOAewGQl4Fr/e16lXzvM8/79n3AE53SLD7CfAWAIQB1vFms9FisdB8Pq9sgVmWZXqfMYd5hoHPn7sNXNChPYg1wtxIp4JBp9NJc09rBYKWpMpuEY58FwcXwRA6XPjJ21241/4+42fEPY7J/HkrDdf+gO/y8HCiKLT5lW/TR35diAmBRxNlTaq1WrH/e2CrUeu0n/tJzwPv/x1dvfngDTp53/vv6nFfCqx+w2fo6c+636N4BFFIZV2aP77R0//z5+jJb/8RlWd/fwbuPrZGUHjzm9+cSK5XPSHD2NxzC7j3vpNFkAf+UT3vdruJNK5tUUFiy7LUbDbTs88+q/F4rNFolPIBIHoQjmazqb29Pe3t7enJJ5/UYDCo9Jh7CBzk0XvpPRSOLSfJE1gul+l6yABA3PDjk5dAdR3S5ZVoXACQ3jwED+LpyfreEkLl3/MLcDOsVitNp9Nkwe90Omk+mTOCIC9duqR+v19p/YAUIkAg8uCsWK1WFdLJfXPHAuPwbAKq04gqHsaXk3Hf7cBJve/k4KAFA7cDBJu1gRjmPfneTsOa9jWM6MA4nCTzM+NgPnBOIOi4GwURq7yggoVQwz3wTAQItV+/izK8R7xdw4k9gg/vU88fYWweBOoZCb62vaXCHS8IG4DAzdyh4O0frIV8xw8XCzyXIhejQlTYLtTf8ga9/7+/u3+oBgIPFArpF77p7Xr9n4zt2QLbi1/4hk+9uwd8QA0KRaOpk07tgR3/w4LJqze68aWfqUt/L1og7hW2RlDwkDSIBtZ6RAEIrQe8eQ811VbvKYdkSEoVUyrPvJ6AwM1mo5s3b6acgslkUrGoO7l0Z0G3202tCk5wIEUeAOg99FT2CSykGg8ZbrfbiSjxGOeq1+uJqO/v71eItTsNvKIL2cpJJGKDixaMl10Out2uTk5OdHR0pNlslqr0tGbU6/VEtpkDghTJdSCHgWo9c7BcLpMDw3MrvIef3R/G43Ei7vV6PQVUMm7O74TcSTpkEiFHUkU88HvtLTce6sjzuDYPiKTdgCwKxgB4Lq4LbxFgrhuNRsWJ4i0IuHK8HYM1zPvI7f21Wi21nLBjBlkl7vjw9hrei9L5VpgQe8aTuwLIkvBWEXfKICi4KOHiDvfB31+1Wi3NA/PorhSyQjge95/HEbpcwGGeuRfeVuJCX+4iCQQCgUAgcP9w/NhA9Q/sPFBV5vLT36KP/Xdbv/30I4F1p1B9fz92gbhH2BpBwfulIU+e9A9B43sIkNunIWaQRsiu92lDUrHaU/H17AL++TZ+TjS9autVYXdPEMzX6/WSFf6iNoiiKLS7u6u9vb1UbabijIDCWHAyTKdTNZtN7e/va3d3V51OJ107JIpjQ5ydADM+CBNiBBZ9MhGoZhNkef36dY1GoyQoQAohYIgezCsBjJBKtp90Mup5EePxOIkTiEKQbAIaIYeQUV8juaMAwYK1xNgQPGq18wDJiyz1uA0QaDyngWthrSGA+K4SXn0HjBeRjFwJzkcriHTe2uEtP9L59oh5loNnOHDfyaJgveIQYc0g2uW7MrijoyiK1OLCPPt9Z64ZkzsTGLeLPX5NLrax9nF/cJ2My5/LPdjZ2UlbyXIOHBaMy1skEKI4n7sXgItiPheBQCCwFSik+lvfrJP3vO9+jyQQuAW1T3mLyntQkf/F39rSW95/ReuPP333Dx546DF640a9z3uTev/0h+/3UB5KbI2g4EFokip/yOfVcCc3EAcIKNvWLZfLtCuCh/+5BR7yAkmhcgy5opLuQoWkSrUT8nJ8fJyq1RAqWhJoZYC4uPDQarXU6/XUbDY1nU7T2CG+x8fHms/nyYre7/dTf/r+/n4i6AgQVNMRIBg/ZJWcB4QHnB7unGCu2u22Ll26pL29PZVlqel0mvrxmQcniswbrx0MBqklA3Lu93e1Wmk8Huvo6Eg3btzQzZs3tV6vU4WZ13AfII44DLwVBPIpVR0W/M4zOMgQcEt7nmfAvXM3iecJYMdHZCDv4eTkJOVUeC6Dj4X74g4O3/GA9X5yclLJwnDg7HChCBcPIgligIsA7lZxMQd3iwsknufg7wtaYnBHsK593Lw/aFfJxRoPUCWw0dub/P4xds+/wInAe5b77i0R/jzm/KK8BhcM3MHDHEYwYyAQ2CaUNen9X3pJr/3q+z2SQOBWvP9L96UihPj63q4OXte938MIGKaP1bX7ipdr/dGP3e+hPHTYGkEBODGEYEHaIKFOzCHaEAkIw3w+T8IDx/FtISEvEAjIVZ4ZACGhWikpkV6v3gMXDiDyCBpeCaVCTa4DgYmQO9L5qdr7uIridOeETqdTsePndnoIK185F20FeZK9J/6zXeRwOFSj0Ui7SzAO5p85Q0RBICHL4vHHH9fVq1fTFp4+79PpVAcHB7p27ZquX7+ug4MDbTab1NZBqwTzs1gsKvZ0J/o5GKP38LtTxR0dTrK9Mk/rgQsVkF2Enk6no729PfV6PUnSZDKptCI4aeb7sixT+wG/Y60gnHA/WH9cjwttVOkRbXiP+BaRrDm/dlwSBHG64OAtJtK5yAZp9502XIBy5wVz6yKcZy8gSuDQcNcIgg7X4aKfCyK0cPiuGy5asVY4F20SviZ87P75w1wxJu5HYAtw80i777uiozfHH6uBQCDwqOHwV71Gg392U+Xx6rmffL/x5GO69pn3exABx+iNG+1/8pNqhKBw17EVgoKHK7pt2S3HHoqY9017vgHHgbDRc33p0iV1u91k7YcgQVLcIUGF3UUKDz5ETNjf39fLX/5yXblyJW3f5+F2vnuBtzIwTtwLvAZyt1qtNJvNNJ1Ok2uBai9kbzAYqFarVarhHtKHI6Hb7VaEDeY6J9AQL86DAEGVnnHwXNokEHgkJbJMYOWTTz6pl73sZdrf31er1dJyuUzjLYpCo9FIh4eHOjo6quxE4IIMBB5BgfMjpCCC5HZ/bzfw4EDP3GDduJOD9eU5E7SCMMec2zMTWq1WpX3AnR7Mv7fj+DpgPJ554WIacPLMeqT1wkUeD030NS2dt5jQTsP7BDHC34esWUQgBJ6Tk5M0J5Jumfc86NLnnK9cJ69hvJ414gGZzI2HKuJWYmyIZxe1cfAaxETWlIsc/jnkbUeB7cHJM9f05PfWVHzRa3X4lhAVAoFA4FHC058tDf+P1tYLCvW9XT3zq69Iiv+nAo8GtkZQ8Cq/EwcPgKPq6ATFLc6SKsSZ6u/ly5e1u7urWq2m8Xis+XyeSIgHIfr5nUhAsBkDhPkVr3iFXvWqV+nq1aup6gy8wopVH1cCxIxdESaTSUWMIKRwMploNptpvV6nHQ1odyBEkv5+XBAQPZL8aaeA2PF7J1cQLKq4Pndc82QySddAdT7feQLS12w2deXKFb361a/WE088oXa7nbZV9FaVo6Ojyi4aHngISee6IOmIAlThc0HB2zBcdMjJLL9nPjmPPwcxYTabpbnncXr2EQu4F+6iIEfBMyRqtdMtFBGH+L27YHgu5+ceISiw5SOE3G35EG3goaTu6PCMEMZBkCLvKa6TFhFENrIseG/gTvD3MSID98hDQfk9cCeDpCQg+Ot8jbAmaQXCFYOrCIePZ22w5mj1oUXHHU6eU+GiR2C7UA56WlwqFH+oBQKBwKOHp7/sU/XYd/ywtNneXZiKXi9E78Ajha0QFCCFvm0exFtSIv0QAqqHhM75bg9U1alWdrtd7e3tqV6vaz6fp50bcBT43vM5vA++1+slwtVsNjUcDvX444/r0qVLGgwGifi5EEFVHXIDQYJMQkKPj4/TFniQuNlspvl8rvl8nkg0pG0wGKSQQto6ODdj9JYFHBuTySSFW65Wq+QQwPLuvf1eTccx4RkXEC5IsFf/+/2+Ll26lLaKhPC6SwAnBWNlpw2yJyCOubvDcwF8/eBk8K0bIc/eJoAjgZ8RLdiKkeumYu9BkJxfUgquJN8BAYh7hngCSXWBBuGGdcC43PLPXNPu4jZ82l7cscDv5vO5ZrNZhch7EKZ/dQHFxRmu3UUDF7FYz8wdlX4X3rhnflxJiewzBoQRz2vYbDapRQUnCOuzKArNZrN0jbw32ZKU3yGq4Dag1YHx5A4S3xnGs1siP2H7cHKpp8VjcV8CgUDgUcToDRs9XitUxn8DgcDWYCsEBel8e0KEBUihhxMiJlDRpWLqW0uyYwIJ8L1eT61WK1XYERSwbjup8BYK6Zx8IVB4P/7u7q4ee+wx9fv9VB330DevLjshphLuWQp+Hdi1qbZDpmi7GA6H6vV6FybaOyH0LASEGMQN6dQV8fTTT+vmzZuSpEuXLlX62pkHQi4ZvzsrvBffye7jjz+ul73sZUlMQCTyarOTbM8KwOqO24LXQzJ9O0AnexynXq+nNo/5fJ7mxwUEWhdclPLMBI7jAZCIHt1uN1XtcYGs1+skzrD1pbsEvLLOeVlTrAHpnMDizgE+vxBr5t0FLJwt8/k8jdkr7B4qCVn38/N75ofdNlqtlgaDgXZ2djQej9M1+U4R3AMcC74mEQ1wWvB8zkNmhrdccK8ZB79HROP90Ol0kgtntVql9zniG3OOkMA/xBKELJ7LWvOMiEAgEAgEAtuDD3/NO/TKb/yB+z2MC1EbDPSLv/81kuLvh23Dlf9WqPVffzbuzD3A1ggK7EBwUYhdvV6vWMklpbYB73tvt9vq9/spfBAiRL++W9c9ud63vvMtBSFDvtWcb4kIEYL0u8OASizngAR5db1er6dtH9kdgFA/r5wyHs9R8N0buH6IKxkPjI18BvILpFNB4fr167p27ZqGw6EuX76cxBeeA4nz6rxXlBFyEE24nieffFL7+/sVkUZSIoq4KGhJoAqd294RkfKMA0h/XmGHAPf7/RQ46DkCkFVvgUAgKYoibdPoLTfkVdTr9STktNvtJCY0m03NZjMdHR3p8PCwEnjJmD0jAMfA7u5uuh4q6O6k8DBBF1UQTpg37o3nSrgIxdr1dhvpfDeL/Hsn3Z4P0ev1KrkjF7WouDDGPHkYJGIAjhYX1viZNUYYIteBeIXgxjyyzSZiAo4f7rO3x3gwJ9eIUMQ88BUhKVoeAoHAtqE4kV7/zT8TfxQHHlks9zf60Dd8tl79dT94v4dyC4qi0Go33p3biMZ8o81sdr+H8VBiKwQFzxXgD3z60iFDkEvC+rrd7i3tDr5rAuSV51A5lpT62CGm3osO0UQ4oG2g3W5rMpmkMXtyvPeoc+zxeJwIju/8QIW6KAr1+/10bcvlUteuXdNoNErVU9oB3GrvtmwPWOT5EDJ2jYB4QrQgakdHRxqNRil/odvtJvEFYg0h85R/+vedpEPa2u22dnd31e12tdmcb9npogfV3+Pj40TEacNAPMJNASH19gvuoVfs+ZmKvVvlPWDxIpcEjzGnvgsATgIPBoSY9/v9lGuxXC4ru4ogDLAOPUug2Wym17p4gLDguQbtdjtlarhIgAOCefMgUiflPje4Dzz00AMJOacHkeICcmGA9hiELt8phXniPtDmwJgv2jEjz0/AQeFtH7lThnXI+49MDzJHuEf8DoHOtxv1XAjaNhCa+D2iViAQCGwVykKbM7dYILBteP2f+VG9/y9/hsp7mWlcSOvOPTz+i0UpKeoRW4X9nynU+54fvt/DeGixFYKCdB7M2Ov11Ov1EpmFkEEyERQgA9PpNNmfIWoQEtoLeC0kxqu70nmAnFevCb/r9/vq9/sV4sn5eS2vIygOpwGCAufDwcCxCPyTTnvlDw8P0zidbLode7FYVM7PtXuIHE4OSCqkCsI8nU51dHSkk5MTXb58WU8++aSuXLminZ0dTafTJDIgxIxGo0oAXk72IKS0BHAc7OxkO/iuEMvlUoeHh5pOp4kAYoGHvCNGeBCjt4pISgTw5OSkMg9SlTRzLN8twNs1EBKYs6IoUm4AYoHvdODryHcVoCUHwQPBCHKOq4FxQ8AhxcCFLtYA68fDH939wHVwLhefXCxwMYh16e4Tz05wAcmdNZ5JwXmYD887cIeMtyshJuAGYJy+q4dv7+ghkrRV8HmwXq81Ho9TzocLEqwZF024j+yyku9C4aISazIQCAS2AqX0+q/6ofs9ikDgtijXaxUnhcravQ0lLOulPvjNn63X/JntcimcjEZ6y1/7sH7uT77qfg8lcIZiI9XWksoIyrxXeE5BoSiKvyvpCyVdK8vyU84e+6uSfpOklaQPSPrysiwPi6J4jaT3Snrf2ct/qCzLP3AnA6Eievny5WRZh5Qtl0sdHR2lgDyyFhAaIH8Es0Eq8m34qDBT3fXt5JbLZXJGUG2nigk5opLv7oT5fJ6EC8L4JpOJnnnmGU2n00TWIEVOZBuNRqo+TyYTTafTSjsA1WYyCyRViC9E07MbEDSYF8gVz1ksFrp586Ymk0lqUbh8+XJqRchJ3Hw+T9tXQvS4Vs7JmFyMYXcKquKz2Uzj8VjT6VTj8VgHBwfJRSCdE1OOQ54D1W2vTiNO+OskJeEFYutOD4QAvwbEBna+GI/HKWyR15XZhw9EdTweV3bw8JwGBAnf6cNJu4ddIla4u4Fj+K4mjIXH/fq5r7PZrNJqwL0BtFx4K4yLaX4Ob2lgrFT6mQfmknlGQHERgvcawhr3gbH763jPuoDg995dEDyeb7nKdXg7jbe4cK18HgDG5EKji3nbgJfqszgQCGwvduZF/FF8HxGfw3eG1331j+iXvukdOuncw7UaDoDAc6DYSPVFof6Hpf3v3C7h6WHDnTgU3i3p2yX9fXvs30v6mrIs10VR/GVJXyPpT5/97gNlWb79+QwCS/bVq1e1u7urZrOZKsKEuJGij3OASqikSvgilc1Wq5WqjyTBd7tdHR4eajQapaql953zGMQFoQIyznaRw+FQw+EwVUkh0UdHR3r66af1sY99TIeHh0nYYJcASckOzjF9O0VILlVXSRVy60TJxQKqvOv1OpF/bNvkAECkmM96va5Lly7pscceS4F2kDJCGafTaUrNh7wxP05UPbmfXQAguogbhAWOx2PdvHlT4/E49do7OfXqOVsUcoycbEIMsd97zoLPKeKE9+17Gwr3D5IqKYVwIhjgLIFYe0sF5B5hiXvnpD0np7SdHB4eJiEKAaZWq6WdCnBq+PEkJZcDbhCOQx6ApMpzXUDh/AgTefuAu2NY4wR6IjbgZGCeuUZcQn4OxDIyQBAFvP3FXSU+NoQpxEHEv3xrTM/5cEGOa+Fx3ne+k4e7Xfx4eejlFuDdusefxQ8CavNj7cwKrbtBqgKPFpoHNb36L/1YbJh6f/Fuxefwc2Nzotd/w0/og1/1aVrt37s8gbKQ6o8/ppNnrt2zc7wQlOu1GqOajoeRpXBfUEqtmzXtzKQn//p2hnc+bHhOQaEsy/98prL6Y//OfvwhSb/txQwC0ufbHEqn5AIhYTweJ+Lltm7S5geDQSI/OAkIO+TYEFCqpBcREel8y7s8zwEHxN7engaDgY6PjxN5Pz4+1uHhoQ4PDzUej1NrQm7XRgigWo5DgSov5Jaf2a3Ck+g9S8Ct88yTtzwwBoicH5dsCAg/84oLw0UOXAfHx8cp+R/Bx7dnZKcB5gyxAXHCwzG5znwrP+4RJH86nSbhgRYDF43IMpCUiD55Asw5bR/u8Dhby4ko8xrOBXFlHiCfzLGHGXL9Ttp5jW9XyJxNp1Ndu3ZN165d02KxSHPYarV0fHycHBDsYMBxIOWQ5ul0qoODAx0eHiYXDdfpwpjnd5Rn20u6E4E16G0NzDeiDhkihFgSbOrZJn7tCDtkdbDrB/POXCBquAMDIcHfN4g35IHwuLsrctcDc4CryTMSXJR0cQ8ByzM6tgEvxWfxg4DNT71Xr+n8Mn3oC/rxx1rgkUHn6Zpe+Td/Wpvj1f0eyiON+By+c2wWC732//NeffgrP0nzx+/NZ/VJp9QHf/8b9Mpv2i5B4eSZa3rdd+3qfe+8fL+H8kii/5Ganvi2EBJeStyNv5a/QtJ328+vLYriJySNJP3Zsiz/y3MdgCqi935T9fUE/YODg5TMDtHo9XoaDAZpy7/lcqlut1shLzgYsHxDQKk2O0mDBJVlmXaMaLVaWi6XqZLLjggQIsgJln4qzZA7cgMQLqiqS0p94F49R+TgebgvnCh7MGLeQ+4OAogY84brgnmBSEJWW61W2r2COUYYIO+B33tFH8HCK+Ec2wWJyWSS5sN71b0izLXNZrPUNuJtH77TQrvdTi0Ym80mhez5cyHjvoUn1++7c3B+DwHk/nibQL52Ob6Ta28f8BYM1sPBwYGuXbumGzduJGLbbrdTwCMVeMbFPactgDWH3R8hzVsYcJp4lgPzjjvEW3B8XhDn3GWASIYo5tfHGvb7zv3GncDvckGM9eFhk+4e4X3M3PCew33kIoW7drwVxnM4XGzgml3McJFsyxwKz4UX/Vn8wOCH/m+9cuft+uiv7UaaduCRwKu/6yNaRxDjg4BH53P4DnBycKBXv/sDevqLXqflfqH5E4/O53Uxnqn7sauavfzRueb7jeH7a6odl7ryt6O94aXGixIUiqL4M5LWkv7B2UMfl/SqsixvFEXx6ZL+eVEUby3LcnTBa98p6Z2SKiGKEERJKbjv8PDwlj5t7PxUHiFWkiq7BVA5xVZP8KOHrpFn4O0VuBggHVju+/2+9vb2kjtCUiJDkGdyD6hyQ2I5PxZ8SDzn8IR8RJFLly6p3+8nBwJCi+ciONGCEHNtOBwIl8QlAJGD2HkoZrfbVVmWqSLtTgRILVX05XKZhAgECv8H8aPKjdPEcwwg5OQnlGWZyOhsNktihXRKSAl+xHUyGo00nU7T9Xoyv7cg5K4F5on7zvVBiCHszA+vyXMbuHf+fCrhHHs2m6Uq/Gq10rPPPqsbN26kcSNAMT56+llfCAqc14UKWmB8jL7GGB9kGUGA++gEmnnGBcK6Zn6Yr4tAPglrhjYJd6Cw3mhj4HVkdbA2fDcO3BDkTeQtCp4nclEYI4/7Y8wNa1RScr+4+JdnaGwr7tZncVvdl2rILxq1//qTeoXerskr28/95EDgAUc5mjz3kwL3FY/i5/CdYP30M7ryrmdUf9PrdfDpVzV6bU2Lq3eHZNeOC139qe0MTl5/9GN61T+t66Nf/ApNXhWiwt1G+1pNww9W53XvX/yUNtPpfRrRo40XLCgURfG7dRpM83nl2V/dZVkuJS3Pvv/xoig+IOlNkn4sf31Zlu+S9C5J6nQ6pW99CAFl60WC8jqdTrJp50FyVMs7nU4ithBiSKrnCRCCB4miajudTm8JbEQwIKV/MBiklgqIH1kKiCJeub0o6R/ih/MAqz5jJGQS8YLtJCGEkCpP/c8JL60VtHz0ej0tFotE8gFEHDeGByFyToQR7sFsNtN8Ple9Xlev16s4FKiq+9fJZJLaQbgv3mIC0fTQPXbJoD0EZwRtKDhZfNtJ1gb/nGC6fd53lXAhgPF4mCKOB9/i0HficBdBHoLo20qSCTGfz3Xjxg3NZjPV63V1u131er1E8HHQIOSQSYHIQbsDY0eE4vqZHw9TxMaPi4PfI1Lxes6JS4fzQLwRgBCu/Hc+Z07q/WffAYP1wvpFMPCMEebXyT7zznF4b3trh2dX+PkRW2hx8HDLPAST69t23M3P4mFx6cFQUM5Q+68/qeH9HkQg8BLg5H4PIPAJ8Sh/Dt8pTn7+Axr+/Ae097ZP0oe+cF/LKy+eZNeOpfa//JG7MLp7g/UHP6xXfG9N07dc1fVf1rhnrR8PO4qN9Ir/WP0U7HzsSJufem/lsZjd+4cXJCgURfH5Og2c+e/KspzZ41cl3SzL8qQoitdJeqOkX3yu40FmIGlul8Zm3e/3U+837gP++Ie4eNYA2QtO2iFSOBkg3hyXCrqTIIj0ZrNJQkKz2VSn09He3l4iiRAQ+v9zgolzATLjLguOD7nsdDpqtVrJ0i8pVblpvfAdDTy00C3pCAr9fj9lTLhbgvF4WB7ElVBAnAVUrAl+nM1m2mw26vV6KbjSWw147mKx0Hg81mg00uHhYcpPgOgj5LgDha9cM8/3/AtJlfYJrgESjSDiQYlcs7c1IIBI52IWW2QiIPh8+rVxXz0jAaED4gxZZ5eMer2eCDTODlpaGBNgbAhcLhSVZVm5D4yP9UnLiG9bynuAVoijoyNNJhOVZalut5vWmQttni3imQS5qwaBwIWGvN0nD6h04cZ3V2CePWfBcw0cLuAgeOTtPh7A6U4arjXfTtOdD9vuULjbn8WBQCAQeH6Iz+Hnh81PvVevWb9Zv/TbLmu19/BTwPUvflCtX/ygXvWBN2h9pS9J+uBv6uiktd1/X9xvvPI/nKh5eOaILUsVP/BTld8//CvnwcKdbBv5jyR9rqQrRVF8VNKf12mCbUvSvz+rIrIVzq+W9A1FUax1Kqj/gbIsb97BOVLlebPZVLYYLMsyJe47USzOtspDVKBtgWOMRiONx2Pt7OzoypUriaz5bgZObCBu3os/m80S2YDIQuxarZb6/X4K/KOaKumWCqukCmmn6p9XQXEv0Maxs7OTyDbkmuMzLsg+4oR03g8unbd/1Ov11J/u2wf69oCS0th8hweEBYgdhJ4cA0IDmU9viTg8PEzCkM+T2/AhmpBTb1mhjYRsDcgwghN5FYgBtKywRiD8HrYImfT7xOtxFUBGmU+cH07484o9Y8NlQaYFBBbhiap4u91O/3DDeLYH851XyX1uCQUlQBSXAa0tHijJ+6MoihTguVqt1Ol0btnuE+LN9XBNfO/CiAsanr9AGw4OCt5z3rbhW4Dy/vJcB8+KuIjc546cixwMCBEuJrkg6bs64PLJ3SbbgJfiszgQCAQCt0d8Dt8dnLznfXrt8rX6wO95Quveo0GsT973fhVnG4i+4eYbVd6jbak//EWX7lpLyb3Am75zJK2fe3zlL/ySyjP3cmD7cSe7PHzJBQ//nds893skfc/zHQR2draugwyNx+NEyDqdjg4PD1OrAtVLdydAbCGwq9VKw+FQrVYrpfNPp9NEciAj9HZ7tRvSCVGD0PJa33bO+9AhMXl1NLdal2WZxkuFHEEBYoXYQOCidC5MSKr0xfu2et6DDjHLt6eETHs1fWlvXK4Jgj6bzRIpYwyMkxYSdoggj2I0Gung4EDz+byy44CH7yGGIFhwbLfzQ1QbjUZ6/Wg0Sg4EXAi0q/iagKRzbI6J6wDxJm8D8TDHPICQOWSNMP+9Xi8RZ4i2CxOA8+KeoYWBNg8ItlfImQOuk/YRD7LEzTIej3V0dJTcC7S0kPvhwgH338UL5pR77CGprBlviXFBpSiKlIeAsHP22ZCEEc+p8LnzbVFdFPD3qt8nyD/uGM+QcKHR3UC8b7iHCFx+XG+X4edtwEvxWRwIBAKB2yM+h+8eTt7/S6qtn5Re4EaoxbrQG77jw9r+xsRbcfLeX7hnx37N9celVvO5n3ifsP7QR+73EAL3AFuxJxqEyMkplXGIjJPQvCUB2z5kD1LXbreToAA5hmhwXu9H90o4YymKorJ1JMF9g8FAOzs7iYT5sSHoCCO+jSLbMxLQB7EiI8IJLs4AsgS8t9t3DHBSyDG9BQOyiKACSXa3gLd3MJcE4XnFH9LIayHVEH7IJqTNsw0ajUZlvnCDnJycJNECxwMiiLeKQIZv3Lihw8NDSdJgMEjuDfI2OCcVZg9cpI2gVqullhLuF4SVCrm3kXjWAlVvnByQ3VxEKssyZVPgQqDqD2n1NcCckAkBOAatE4gJCALkhtB+c3R0lO4zrgTEOkQlRC6cPoyh2WxWWmrcAQCxZw45Dr9H7BmPx7p582baEpX5daeCpCQmsO4R1zxHwUk+43GRxsUE1qM7W3Ag+Ot4XzF23vt+novOFQgEAoFA4O7htX/9Z/QLX/tWbZ6v/b+U3vQXf07rg4N7M7AHGOunn7nfQwg8gtgKQaEoirRFo/c20+IgKZFLSDOkmv5yT6KnfWJvb0+PPfZY2lISccJT4iEYq9VKjUYjES9Ildu9p9NpIqEEEUKA+AqZmc/nmkwmlVBJSBzXDNGHNHslnuuhz913hHBSJ1Wt99424NtWLhaLikWearULMYgQEDsnZswb1+ktAIzJCTUODMiiV8HdCo91nsr8zs6OxuNxcnx4LgStKoeHh5rP5+p0OokIc204EyDzXo3Hyo/lHlu77wTC9eLMgKziIOD+IYBAsgna5L5tNht1Op0U3JmfkzUgnYtlvu2ob3mKI2U2m+nw8FCj0SitJVwEBIEixPmuDTgbWKfcMxeOcCb47iW0H3igJbs2uMuHe4SIdnBwkObA3+P51o1FUaQ52tnZSYKhPxeHQU7sb+cs8K0+XZThPUKbBWPI2xo8bDPEhEAgEAgE7h1ORiO9/s//N73/m3+5ypqk4jlecPZf8pv+3E/rJNL8A4GtwVYICvV6XU8++aSazWYii1imJVUqptJ5FRGijv0a+3yn09Hly5d16dIlDYenGeAnJydqNpu3EC0nF2wLCWHHKk5QH8RpOBwmMstYj46OkkvBe9xHo1GqliOGsKWkJ/RDOr09gW303GKPuIENHYLH8am+Q+A7nU56HjZ4euDpp5fOcyy8Yg75xVHAczjmYrFIffueccE4PVCS30PU2S7RySn3FjEDol+r1SpOCbaqlM53iHA3C4+TG8HzPezPwyC5Lif4rMPBYJBcA1TN/f5wHhwOXomnzYD76hkXEGXWJuNkDjkXhF46bWXAmYCQ0Gq1kgjmwZ04ZbgevvoOJsydhxFCovnnogsCljt6eI+wHgnedKLuc8u5fDcKzzFhfnhv3K4tgfEyHu6lb1MJ/Nxcb+58yD9bAoFAIBAI3HuUy6Ve/6d+WLVWS7/wTW8/fbDQqcCg04R/hIQ3f9uHtX7q49rE/9WBwFZhKwQF7P7Y5SeTSSLo5CfkNmcIOSSRrQlxO1y6dEn7+/vqdDopDA9CwmvYsg7C1Wq1kt0ekEmwWq20v7+vq1evam9vT9J51sPBwUGlnWA0Gun69es6PDxMBB+xA4cD+QguJiBs4JpAoGAckFV6zKmQ83uuA0HBe9Lpq1+tVup2u4lMeiikuybII/Dz0jYAcYPIIj64MMC5pXOCCOn3oEF+x9h5PWOj6rxarTSZTCrZFTgJcD1wTEQIP66TWq94Y/On4o8rZDwep2q6iw5U+n2bQ9wN3ENv4eH+SecihwsakHMs+E5+/d5MJhONRiMtFgs1m83knHAHDW0tvG8g6oyL3Su8PQDhgbYSRBFENdY+4+P+eH4Bz/WtKblOb1dhHfF6D2dEKPIQSZ6HoMFYnfRzPJ/PvD3CxY072bnBRZVAIBAIBAL3GGWpzWKh1//JH5Ik1T/5TXr/l12WJL3y362083/+uCQ9kHkJgcCjgK0QFAh6W61WOjg40PXr1xM5kVQhZRAlKvBUdqfTqVarlfb29jQcDnX16lU9+eSTklSpInslHvLM8b0Sulwuk42cYMNer6e9vT31ej2tVivdvHlTh4eHunnzpq5fv5624KOfvyzLFCRIVRlgy4YgYUeH/HmLBmNykodrwFsgfFs/zzmAJM9msyQ2MK9OILlOSDStCX6feJ1vJchr3c7uFe7lcpnaGhgH7gmIII4J8i4QMrxCL6lyvb4+PGyS53lYpY+bY7A2ptNpcqIcHh7q4OBAq9WqEprpuw8gjiBi5GPkuMwv4gC7Y+AkcbHKv7rLAaI+n8/TdqcICZyHeSe804NBmRPeJ7gJWNcXCQMufPj6Z93xXA/2nM/nOjo6qgg47rJgHhAZ/D3IOTg+84YI4UKErzkcLIzZt+90wYL3j3/l+9z5xD/O71uEBgKBQCAQuPc4+dmf12u/+n6PIhAI3Cm2QlDgj3eIOLZtcg2c2FDxhORIShVvwhKfeOIJXb16NbU0SFKn00mkCkDsICiIGk7oDw8PVavVNBwO1e/3NRwOUzge4sdHP/rR5EbwIEPgbQRe8YawUjl2MsPr8u3r3N7tpAsCTnWe42GnJ9Qx34XAt5X0XR2w+TM/eU6Cj8cDGXOxZjqdJnfE4eGhbty4oaOjozROzzBAfGGucGoQjOnbIkLIPXOD68Hp4hb6vCLO2Ofzudrtdro3tDp4LgDBn/4a3BtkVXAtOAJ8fiQlVwX3hO9Z1y4m5E4Uvuc4CBvcB9wJOGQQqTiOtwJ4WwtCglRtC+D9QOCnv0cg2YyFtebCHNfPnHuriZ/LhQ8PeeR5XGMusOTj5/cuJrjgxZg8EFI6D3T0+8LjiCDhUggEAoFAIBAIBG6PrREUsLSzKwIExbcv9JA+CAXCg3S67eLly5d15cqVZGOnzQASmlf6JaX0f8gpRJWqcFEUunTpUnInEHD48Y9/XB/96Ed18+bN1NvOOLkuFwfyc0OiRqNRhbA5kfEqMPPkrgJJldR+SZUtJplXiDnXCJkliBLiSPaD99YzDifDXuV3O7qLBDgj2DoS0jubzdI5IYwe/kfln/lqtVqJlGK9B75dJ9kNzJFvL4qd33f5cDcGVXwXCngOgPwjtLD9I+diXt0hwvWx/qRq+4W3VSBkMUYXHZyse2Xf80R8i0TGz/G4Js8/4Dm5y8RbDNz+7205vvMD95b3JPfK1y+CAMjDFml58LXFtbsjAXDdHhian9Of48KJC0zMp78/EW28fSIQCAQCgUAgEAjciq0QFJxQUB33KjJZBRA/r5IT3kaF2zMKNptNykXwnQmk8+onFUps5b51Is6HbrebEvAlaTQa6amnntJTTz2la9euJRu/ky2v+EJUfMvHxWKRtoPEiYGY4KjX62krRQindB6iyBabkDmqyc1mMzk9GBuEMrd/Q7SxrdPqwHxB1iC1VOQ5BtfH/cIdMBqNUjDldDpN7hPm163sXqWHsEP4GAOPe7Xacxu4NhwPvlOEj4+vvJZWAq4PQsm6hDhLSm4P3ykD18JsNlNZlup2u2q1WrfkXjDXzWYzEXgPlcTVgROHNXyR+8QDJfOKvQsm3grj+Q3ekuLEHlHHg0l9PTM/jAVRDCGF57vrh/XK11ys8Pnx1+Rr1UUYBBsXfHyMvhZcCOP+e76Cj83XSQgKgUAgEAgEAoHAJ8ZWCQqk/0OUPOwNItput28hI1RfCauTlGzyu7u76fiQBAgWAoSkC7fsQ6xoNpvq9/uq1+tpG8ePfexjeuqpp27ZIs977bGbS6qk/XM9o9Go4q6AaDJ+iFtZlmlnAU/pl87zA6RzqzmV5IODg+R+IIjRfy8piS0QfuYpD2r0ucgr3ZBk5hmB5tq1azo4OEgBjzglPOyPFg6O5TtX4J5AqGEcLjL4DhiMhbBOXscxXNyhnQJSn1vjuX/eZ++BkrRAIIAQeOk7ZyCu0GbjQgUVcNY8zhZ3J7jDwcUdxATeO2R0uAjhRBhXj9/3i3Z08DniZ8bKvHANebAjx3fRwkU0F69cTOHxfAcO3wXDhYL854sIfy6a+GP5c3KRgmu66DWBQCAQCAQCgUCgiq0QFCSl6jhVdarLkCxIWU4mvMLqxKXVaunq1avq9XoajUYVsgTx7Ha7Fwa+See7FLTb7UoQ49NPP62DgwN95CMf0fXr1zWdThP5hfR5BZljSUq5DFTq5/N5sp5TgUdEINuAtg53IvgOAi4meBAe2QXz+TwFDlLZhyz7dn3MvRMs5oL74CTNCbxf82g0knTadnF4eKjxeJwq8B5ECYGkVQC3gIdR0qrAGPJwQx5jfTCXPj7I9nQ6rZBiD530FgDmyttj3J1A6whjX6/XmkwmmkwmqtVqFXcMz1+tViqKQp1OJzkSEAd4LeTa3QJ5Nd+FGO4lln2v6vO477ThrSjSOYHPW1n4/e3aAC5qR+B96WKatz74NXibi7dO+PN8nLyvfV36P3CRyOCCSY58nfv58rkPBAKBQCAQCAQCF2MrBIXNZpN694+OjlLbA8QS4kK/uu/yIFVdAdjp2e0BIuX95ewoQDWblP9Go5HIs6S0ZeVwOFRZlrp27Zo2m40ODw/11FNP6caNG5KULO5us8ei7tVqsgkg1pAY7x9vt9vq9XqVcENcDYvFIo0REu7hjPwjpwALPqTaq8OIHARhjsfjRKqZ40ajkQg744X0e58594LcC0ICJ5NJEgy81aHZbKaWAAg2JNmFA+nctr9YLCQpbVXp42EXCe6Zu1fIVICAdzqdtKaYUyrs7m5xN4O3XLhDhNwFnB3MF0KDb4NITodvBcrPtAzk5NnFBa7Ht25EcHIxDWKfk3kX1Ly1BjHICbXfA28LYv24sMH6dELvbQt+r3IhBleRXyvX5sGKF7Uy5PhExD8XG3zOWEMuQgQCgUAgEAgEAoE7w9YIClRqDw8PNZ1OUyigV9ZbrVbKMfCkeek83A6L++7urlqtVmXHCHrDm82m2u12Il69Xk/9fj/1xiMqdDoddbtd1Wq1tCXfcrlM20UeHx+n7INWq1VpD4CIIXS4LT7fhs4JoqfOQ9w8HJL5coLoWxA2Go1UsfcgvLwCTf4C2znijmA3BSfRHNuJqqSKoJMTZcaAMISg4bZ/3BG+YwPklhBFSCtuEQgv9xwCf3JykkQhbzVxMo7g49fNdUHOfYtDfsc8kLFBC4Wk5KaB6NKaUhRFmjvmDGeKk3UPn8zFBCfXLnJI1fYW2k24F/zOgxrdeeDPwRHiWzn6e85dBHkmBPPO+9BbRHJhx3MuPGgxFwJcGMkdCHkrSP46/z53PeQtHnkYY36MQCAQCAQCgUAg8NzYGkHh+vXrevrppxO5hWh5IF273Va3261UtKUqEUAgYGtJxAnCFouiqOQt1Ot19ft9DQaDtAsBFVyEBkkp74C8AdwT3iNOz7xv9+dp+wgSbqV3S3mr1UptCO64gBxLqmQ88LO3AkD2nEgxx97XTv8+LQneaoETJN9doNfraXd3NwURMh88ByLvpM9bGCB6jN+dFnl1HULquzAgcjgB57p4DWIGhNhbNVyAQehwdwJE2zMd+Mr6cfEhbwXBLcG6ZL3VarVK20d+X4ALB54v4OA5bJ9K+0ueF+DiDGNEsPKdInB+MBYPZazX62ktcD3uSnDXj4/VhaP8OT4WjpnfT4Qfb51gzO5icOSigAsuPt+sUxdZ/BghKgQCgUAgEAgEAneOrREU2F3AiRTESlJyAlzUSw1JbbfbGgwG2tvbU1EUydLOcakWQwjd2k/LAsSSwEaqv4QW5oFxkDDfMQACzHXgMnDrv1dxe72eOp1OxeXgfebMAbkJx8fHSRSA5Hm6P3kCBDriPvDQPOZlPp9rZ2dH3W43jcEzCiSlx/r9ftrxwq36XLfb8Zkbz5LwwElIPaTRCSP3iDXg2QgeFMjPENhOp5MEBc/VyO9TXln39cA1OBHmdTgncEog3DgZRkBhbTabzeSK8NaLPBDxoqq6z5k7C9xlw7x5iGY+fl+rPBchCIEEZ0d+bu4VQpivdRcRuC7m0wUhX8t5ToK3ITnpR4i7nUvhovlxdwOCiDs6XKzJWyd81xI/nwdZBgKBQCAQCAQCgSpqz/WEoij+blEU14qi+Bl77OuLovhYURQ/efbvN9rvvqYoivcXRfG+oih+w50Mgmo5wYu5TR9bNxVPXuPktSgKtVot7e3tqdVqablcajwe6+DgIJF4KqNOMp1YUPVli8hut6t2u50cDhB9387QAxghq5BShASubbFYVCzyjUYjEXSuz6vA5BEAd25gw3eBwl0NkDmvjEMG6fufTqfJsTEYDNTv95OY4KGLzWZTu7u72t3dTePNtxOkgg88o4Br8fknWwGHAONnHiCDENV6vZ5e484Uxoc7w39PXoNnDDjBdvGIMSGykOPBPaOFpd1uJ3GDMeRVbf/dZrNJrRK5yJG3OTD+iyrnuAXIn+C63G2BwwaXBG4DF2pYE7zXnPznVXvf8tHvhY/bCX2eVeLCxkXvN8aI0OK/zx0rnltx0Vz79x70yPh9TeViwkX3g7XjLT73Gy/FZ3EgEAgEbo/4HA4EAoFbcSd/Lb9b0rdL+vvZ499WluW3+gNFUXyypN8p6a2SXibpPxRF8aayLG/1KBsgOU5E8i3lsKJDHL1KWa/Xtbu7q5e//OW6dOmSTk5ONBqNUs6BpEoAnHQuSEC6IPok9UOesfETZOjV1Xwcbsenwk6LhF8fQY+QZ8aGgOCWdK9acy2MGbs6eQOIG17J90ovhN8zBrhWjsH8u5jR6/XScZgHro82A69081oXADqdTmpZIDBSOg9ZZNxcD/PsZBeh5CJyi9MB0p4H/kEymVPEizy8kHvmJLhWO91itNPpqNPpVEgzv6PCz7x7+wFrlHPxeoirE28nt4BsCN4HXDPrNm+xcBLsbS5Opn2NIkQh+vh7Lnfz+PsA5C4AzusChZ/Xf8/x8nvgQaN+//O54fw+RkRB5pS5R/TKBRsfu2eM+C4ZW4J36x5/FgcCgUDgE+Ldis/hQCAQqOA5BYWyLP9zURSvucPj/WZJ31WW5VLSLxVF8X5J75D0g89xjvSHO33oEF7aECCR0rmTACKGHb/X66lWq+nGjRsVMQIyRoU+/0pVmGMOBgN1u92UAYA1HPsztna2A2TcWN691zuvmENKO51OhZRDDtkJAbIFQcwdGd6O4JkHnjPAuHJShkBCtZ3nObFzQYG5h1Q76Tw+Pk4tExBrXgv598oyrRaee3B8fJwIoW9v6NeQBwvyWs9tYN5pX6HlQ6puj9hsNtXtdpPgkIdCchwnl+12O60PHCiQXif4F2UK4IRw8UA6r/wzPuY+d3/wfb5lo2+X6XZ/r867MOBrh2tzMcrHxDwi7nhLCo4Y3pcci/Hi1PFwS67Dx8bauKj9wN0lLuL5ffbn8z7hdRc5EXitBzLyOtYd94vtQ7ep3eH/3975xEhynmX8eWe2t//3tGc2tizbAifyJULIWChCAkU5IEh8MbmFCzkghUMigQQHo0gQDjmAlFwjOQpShCAREiAsTkQIxAmMAduxMSYOWGLxyjZeZntnuns94/k4dD01T9X2zHo2M/XH+/yk0fTUdle/9dZXr/b9+1Vhi40xxpyM7bAxxtzOj1LP+6WI+BUAzwP4zZTS/wF4CMA/yHuuZsdOZWNjA6PRKHe+6dSxxFydb824MlDQ7/fz3QkODg7w7rvv5pUG0+k0d9iZ9aczwi0jWf49GAwwGAzyrKyWu9NppDNC51x3BSgPD2TfvLZKACg4ocBxxQGz4SmbccD38rq1ekADAjqArtfr5e0NAArVBAyG6CwALfenjJSn3CevW1NqK0pEoN/vY2trCxGB3d3dggPKlgTNqNNpJNqSoLsFaNa/3LKietOMPysPeExnHrDNpNfrFbaUZPCG59eKAS2X5/pRp1/nOej1UP86MJJ60+/kTznTzmNcT3y/Bp/KlRB8refS4ITqmr+5PrkWIgKDwQDD4bAQBOG1M4ClcuucCZWJ56Ue1NHn5zQopzNNdMcOXZvaOqL3R+db8JlW3ZdnfOgzqFUvrBzi89sCzs0WG2OMuStsh40x9yx3nKFwAt8A8DEAjwO4BuBr2fF1I9LXbhAfEV+IiOcj4vmDg4PcMaWDR0eB2WY6mNpPrdscMkO+WCywu7uL+XxeyFayjx9AYSvA+XyeVyDozg+sNuDODFq6rZl3bj/Jf+Nvvk+zyvxuzdLqcEVmxTnzgDIz48+ZDLdu3SroAiiWiNOh1iGTDCYAq6oGDmEEjrc+1F0byu0RDAxwgCSDObxH4/G4MIeB8vD+UE69j6pPoqXx5RJ9Xos6gfytziUzzqyo4NafvPbRaFSQU3Wn95+VEHQw9bt06KY6/DozgIEB3RmCjqtm3NUpLs8L0Gw6v1+/Q/VRbjnQrD1/eB1ca+rEc/2Xd4+QZxYbGxt5VQy3ceV7uXa14oS7lwyHw3zt8Idrg8839cA5ERrE0fkkvG7VFe8zK26oD20f0gqXki26rVpBAxkN53xtMW5diJDGGPMhxnbYGHNPc1cVCimlt/g6Ir4J4K+yP68CeETe+jCAN084xzMAngGAnZ2dxKyibjGoA+OA44n8mkmk0zoajbC5uYnFYpHPKeh0OvlQvP39/dwJTinlffz6fXTcWF0wm80wn8/z0ng6OJp1p2Os2X8tUdcp/HTedHcJ4DgQwWw8KxAYRNCWBmZemT2mI8dzaOCg3+/j0qVL+Y4Mh4eHBYcOOJ5dwNYDbWeg7judDkajEa5cuYLJZJLPb6AuB4MB7rvvPvT7fSwWCwAoDEtkhQj1vC7IwuvXlgDeD+pdHXQGELRkn9UI6hRrOwnXynA4zCtQgOOZDQDyYArXgcqrmXENClHn/Bydbp15wKBROZCg7QhahaFBKm0P0e/QAAKrOtiuwmeHa77T6eRDJzU4wXXI9aUBn3VtCFwP+t1sG9JAINcmqw04K0OrXvh+DZhoCw+DCDq0ESju+MIABNe6VoHoHBMNVJZbTXh/tOKGgy6bznnb4klsNz6CYowxTcJ22Bhzr3NXAYWIeDCldC3787MAOO32WQB/EhFfx2oAzWMAnrvT+VJK+W4E/E9/9j35v2uGlQEFOjmDwQDdbjcPBKhTwrYGOsCXL1/Oj+3v7+fn1ozkwcFBvk0k2xh0MCMzuXQSKXt5or72ZWufOf+9HFDgOejkMKBAR4mVEnSUeX4663T0Dw8P8+zv4eEh9vb2sFwu0ev1CttCapsGz3N4eJhnnCljr9fDlStXsL29jX6/j729vcJ2i8w+b25uYj6f52Xuo9GoMPxSr5+oM833lHvl6fBpZQODCXSyl8tlfoytK6PRKL9+ZtOZUdcWDwYH6PAzsKJOqc6z4Pt10CFl5xrTzLtuU0lHdl1gRVGHnQGSdUGNcvWCPhf8HLcjZfsOZadOOp1OYc4Br4vBBX1Oy9UO2qKksjJwpu0L5QGH+pzzenlPOUuFFQ88P1ugKB8DR7xGXb96L7WiQwNFOpiSMmuFjj7DTeS8bbExxpizYTtsjLnXuWNAISK+A+BTAK5ExFUAvwvgUxHxOFalW28A+DUASCm9EhF/CuDfABwC+GL6ANNs6XTRmc6+t+BAcT4AgEIvNZ0WtktsbGxgMBjkjufe3h6uX7+OjY0NjMdjbGxsYD6f48aNG1gsFuj1erkTQUdisVhgb2/vtuoAOmvM0DJ7ykyqDvRjybZmspnd1ewtgHx3BgB5ZludKJa5A8fZWXXSdacKBiDogHIrQTprbD/gd1JWoFitwAqPTqeD6XSKBx54AFtbW7mjR2es1+thMpmg2+3mMjPIw4oRLVVnX3y5B5/Xd1IwQe8zKxFY4s6qjYjAaDTCZDLBaDTKtw/ld+ssB81Qa4m7VpmoU1+uStCM/cHBQaESQLPlnBnBgAi/VytZdH2UWxjKbSs8Tr2xVYaf09YJBoMuX75c0AODCQwslWdmaNBD51yoDrm+NEjB54JOONe5zmkooy0YXFNsN2JljVZ9cP4Fz1V+lqgffqdWXVAW6qoc0ImI/Lmg3el2u3nVTd1UYYuNMcacjO2wMcbczgfZ5eGX1xz+1inv/yqAr55FCM3a0/mhY6MOujpAdODpSHA+AqsVWOr/zjvvYDabYTqd5plYViwwSKD97SyP3tzczIcMaqUAgMJndItFOsp8D99X7tNXJ4jZUw545BaN3AmhvM2dDpUDVg4ZnS912jc2NnDz5k3MZjMcHBxgNBrlOxtoVpntIpydwJ53Di8cj8e4//77sbOzg06ng/39/dwZZvsAAz08b6fTwXA4xNHRUV6xQJ3wflN/dB51AKI62gwW0ElkWTpnQPAeMLM9GAywvb2N8XicByf6/X5hDkJ54CT1zGw4cOyoqoOfre88OLO5uYn9/f08eKTrlDswUH4GBfS+qQ40eESnl8Es1S0dYXW01wWutOVG141WnzAgQBm03YLrlJl/BggYlGJFkG5VqdfA39qiUZ7HwGeOwSJ+hi0UWvXBdbpuIKQGPlQ3Opeh3BqyrsqDFQ1sGWFApikBhSpssTHGmJOxHTbGmNv5UXZ5OFc48O/mzZsFJ4sD11hJQKdEZx9we0Y6yMAqwLC3t4fZbIajo6M8u71YLLBYLAqOufbmA8dl691ut7BLgzq96oTptpAA8goALe/XDLc6zgxWsE2h3+/nFROa7QWOe+zp3OncBJ19QKeKJeN0yLhbBp3TbreL6XRa6G9noIB96dPpFNvb23n7gPay6/A8nX3ArSPVoaS8mvmNbI4Br0uDLrwuOnjc/lIHPXa73YLuWS0xHo8xnU7zQAV1ByBvG9GJ/+XqBK0i0SoJBhtYgcDv1Cw+76n2/jMIomuEr7l+tTqADrYGy8qzB3hebYdgpQUdZl437wHPyWoH6kDbDHTuAdcB1ywDRYPBIK9+4TWXh2xSVr3/vM/8jD7nfLY1wMSABm0DbQCvS6tXeL+0YqK8wwMDDfrMU2c6VFODmxqoMcYYY4wxxhRpRECBjpEOsaOD1O128/J7Oq6a0aUDx3kIw+GwsBvC0dER+v1+7nzqdns6UV4dNGZotYx/3YC+shOtjjUrDnSuAuUFkFc+MGDBjLRmejVYodtF8rs0a9/pdAqf45aXOk9BWywuXbqEyWSC6XSat5zo7gyczD8ej/Oedd0BgvrS+QV0uNUJ0/513TmBspd3RaAjx3YBVpFwffBH1wmAvP1iPB7n1RTssef5KR9bMKgHAIXqDt4H3if+u7bkaMsHz897uVwuC0P9tB2BcP3ptVOnGtzS97McvzzPg5UavI9s/dF2EuqCASrOK9F1REdadc3rvXTpEra2tvIqFzrndMB1bWlwQAeXUm5dF1q1wM9pIIftNzqTQq9JA0Ba1aTzERiY4jVqBYU+x3otuh2rMcYYY4wxZj2NCCjQQdBsM/vktVydzh0dFTqgdHLpoLFiYblc5tlhnTvA0m5uIUgHibD1gOjkfJVBS/+B4pBDOm5aaaEzFMrbNGr/uAYa6KDxbzq8Ol+Czo8Ok6NeNeMPHLeLTCYT7OzsoNfrFQZWMojDH7ZIvPfee7hx4wZ2d3cxm82wXC4LGV5eP500HRBJfbFthAERXrc6eXRiNaPM9gvNOOv9or77/T7G4zF6vV7hPulrbXVh9l0dU143nXOuTW2F0PNyJgODFNr7r4MAWQWiQRQ6zFpZoOuf7+dndF3oPA+eYz6f5xUf5d0wdGcGbjvKkn5eK9+nLQ/8GQwGmEwm6PV6+aDDcvsA9aHOPasZ+CxQL/pscO3xtZ6PAUUO36TuueY0cKCBSNoMDVjxHmrVkFarcO1rFcS6uQ/GGGOMMcaYFY0IKBwdrbZ2VAe63+9ja2srz0yqg8WAgA7l04wugwbvv//+bXvd04nf3NzM5wowM8ohjBw6xwwugNuylZrRphPDigjKx3J2bXFg0ICOre4owHMul0vM5/O8/57OpDpc1AMdPm0fUL0Cx9l7VhFQd3RyAeRBCg16sJ1huVzm7SOz2QzXr1/Pp+mzZJ4Oru56QccXQKHNgdl+Zth1aCF1y+AJWxs4zFEDEzpMj9e0tbWVz6DQ4YsMMnHHC6AYHGBgiMf4XRq00TJ+rglm5nm9uj0hHXjVAdelflYrZrTVgZ8BVs4wnxEe17YM6lyHPXKN6LmpZ23r0MCNVr1opc5wOMydbR2ayDkRvCecbQEgHwDKNcGgBQMkfH50BoVet+pIh3VyDfA7eC16X7SlgTNRWK3CQCTvhQYY9Z7ojjPGGGOMMcaY24kmZOAi4h0A+wD+t25Z7oIrsNxVYrmrp62yn5fcP5ZS+sg5nKfxRMRNAK/VLcdd0NY1CrRXdstdLfe63PeSHfb/iavHcldLW+UG2iv7hdriRgQUACAink8p/XTdcpwVy10tlrt62ip7W+Wuk7bqrK1yA+2V3XJXi+W+t2ir3ix3tVju6mmr7Bctt6eOGWOMMcYYY4wx5sw4oGCMMcYYY4wxxpgz06SAwjN1C3CXWO5qsdzV01bZ2yp3nbRVZ22VG2iv7Ja7Wiz3vUVb9Wa5q8VyV09bZb9QuRszQ8EYY4wxxhhjjDHtoUkVCsYYY4wxxhhjjGkJtQcUIuLTEfFaRLweEU/XLc9pRMQbEfH9iHghIp7Pjm1HxPci4gfZ7/vqlhMAIuIPI+LtiHhZjp0oa0T8dnYPXouIX6xH6hPl/kpE/E+m9xci4kn5t6bI/UhE/G1EvBoRr0TEr2fHG63zU+RutM4johcRz0XEi5ncv5cdb7S+m4xt8YXIaTtcIbbDlcttO3zO2A5fDLbF1WJbXLnc9dvilFJtPwA2AfwQwEcBXAbwIoCP1ynTHeR9A8CV0rE/APB09vppAL9ft5yZLJ8E8ASAl+8kK4CPZ7rvAng0uyebDZL7KwB+a817myT3gwCeyF6PAfxHJl+jdX6K3I3WOYAAMMpedwD8I4Cfabq+m/pjW3xhctoOVyu37XC1ctsOn68+bYcvTlbb4mrlti2uVu7abXHdFQqfAPB6Suk/U0rvAfgugKdqlumsPAXg29nrbwP4pfpEOSal9PcArpcOnyTrUwC+m1K6lVL6LwCvY3VvKucEuU+iSXJfSyn9S/b6JoBXATyEhuv8FLlPoilyp5TSXvZnJ/tJaLi+G4xt8QVgO1wttsPVYjt87tgOXxC2xdViW1wtTbDFdQcUHgLw3/L3VZx+4+omAfjriPjniPhCduyBlNI1YLUQAdxfm3R35iRZ23AfvhQRL2XlXyzZaaTcEfHjAH4Kqwhha3RekhtouM4jYjMiXgDwNoDvpZRape+G0Tb9tNkWt3mNNtomKLbD1WA7fK60TT9ttsNAu9dpo+2CYltcDXXb4roDCrHmWJO3nfjZlNITAD4D4IsR8cm6BTonmn4fvgHgYwAeB3ANwNey442TOyJGAP4MwG+klGanvXXNsdpkXyN343WeUno/pfQ4gIcBfCIifuKUtzdG7obSNv18GG1x0+9B420CsR2uDtvhc6Vt+vkw2mGg+feh8XaB2BZXR922uO6AwlUAj8jfDwN4syZZ7khK6c3s99sA/gKr8pC3IuJBAMh+v12fhHfkJFkbfR9SSm9lD8oRgG/iuCynUXJHRAcrA/THKaU/zw43Xufr5G6LzgEgpbQL4O8AfBot0HdDaZV+Wm6LW7lG22ITbIfrwXb4XGiVflpuh4GWrtO22AXb4nqoyxbXHVD4JwCPRcSjEXEZwOcAPFuzTGuJiGFEjPkawC8AeBkreT+fve3zAP6yHgk/ECfJ+iyAz0VENyIeBfAYgOdqkG8tfBgyPouV3oEGyR0RAeBbAF5NKX1d/qnROj9J7qbrPCI+EhHT7HUfwM8D+Hc0XN8Nxra4Olq5RptuEwDb4arkFflsh88X2+FqaeU6bbpdAGyLq5JX5KvfFqcapn/qD4AnsZqi+UMAX65bnlPk/ChWEzFfBPAKZQWwA+BvAPwg+71dt6yZXN/BqiznAKtI1K+eJiuAL2f34DUAn2mY3H8E4PsAXsoeggcbKPfPYVUu9BKAF7KfJ5uu81PkbrTOAfwkgH/N5HsZwO9kxxut7yb/2BZfiKy2w9XKbTtcrdy2w+evU9vhi5HXtrhauW2Lq5W7dlsc2UmNMcYYY4wxxhhjPjB1tzwYY4wxxhhjjDGmhTigYIwxxhhjjDHGmDPjgIIxxhhjjDHGGGPOjAMKxhhjjDHGGGOMOTMOKBhjjDHGGGOMMebMOKBgjDHGGGOMMcaYM+OAgjHGGGOMMcYYY86MAwrGGGOMMcYYY4w5M/8P+eONsuX4smoAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 259048 0\n", + " Min thresh = 1000\n", + " Not Sliding\n", + "\n", + "\n", + " Winner = Not Sliding\n", + "\n", + "\n", + "055ns_image_27185428518326_CLEAN.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADDCAYAAAAya0IYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADV4klEQVR4nOz9e5TlW17Vic61d8R+73hlnjxVdepdUFV08ZJHATrsxoEPfIHYaoN9wYu2wL1q31ZUEK+24vXRNuptG1/lULEFRRBRwAcqXlp7QEEVIg10UUVVUY9z6pzMkycjYr/3joj9u39EfFbM38o4dR6ZeTIy8zvHiJERO/b+/dZv/dbeGXN+53euVFWVAoFAIBAIBAKBQCAQCAReChr3ewCBQCAQCAQCgUAgEAgEHjyEoBAIBAKBQCAQCAQCgUDgJSMEhUAgEAgEAoFAIBAIBAIvGSEoBAKBQCAQCAQCgUAgEHjJCEEhEAgEAoFAIBAIBAKBwEtGCAqBQCAQCAQCgUAgEAgEXjJCUAi84kgp/XxK6Yvv9zgCgUAgcI6U0kdSSr/6RT63Sil9yss8z8t+bSAQCAQCgcuFEBQCrziqqnpHVVU/er/H8cmQUnp1SukHUkqfOPvj9433e0yBQCDwsCOl9DtSSj+WUpqllH70fo8nEAgELiPutjD7QseLv4sDnwwhKAQCF2Mt6V9L+q/v90ACgUDgEcItSf9fSX/hPo8jEAgEAueIv4sDz4sQFAKvONxWm1L6Uyml700pfWdKaZxS+tmU0ltTSn8spXQjpfTxlNKvtdd+bUrpfWfP/XBK6euLY//RlNLTZwrqf+eKa0qpnVL6tpTSx1JK11NKfzOl1L1ojFVVXa+q6q9Les89nIpAIBC4lEgpvTOl9OMppYOzz9RvTym1iqf9hrPP4Zsppf85pdSw1//us8/q/ZTSD6eU3vBizltV1b+rqup7JH3ibl5PIBAIXDaklD4tpfSjZ5+zP59S+jL73Y+mlP47+/n/nlL6P86+/w9nD/9MSmmSUvpvUkpfnFJ6MqX0LWefyR9JKf23L/d45Vjj7+LAJ0MICoHLgN8s6R9I2pX005J+WKdr8wlJ3yrpb9lzb0j6TZK2JH2tpL+SUvocSUopfamkPyTpV0v6FEn/VXGe/0nSWyV99tnvn5D0J+/FBQUCgcADjhNJf1DSVUlfJOlLJP0/i+d8haTPk/Q5kr5c0u+WpJTSb5H0LZJ+q6THJP1HSf/olRh0IBAIPAhIKW1K+kFJ/0bSNUl/QNJ3pZTe9kKvrarqvzz79rOqqhpUVfWPz35+lU4/s5+Q9LskvesOjxcIvCiEoBC4DPiPVVX9cFVVx5K+V6d/gP6FqqqOJH23pDemlHYkqaqqf1FV1YeqU/zvOv0g/pVnx/kdkv5eVVU/X1XVTNKf5gQppSTp90r6g1VV3aqqaizpz0n6ylfoGgOBQOCBQVVVP1VV1burqjququojOhV2bxNpzz5PP6bTNoWvOnv86yX9+aqq3nf2uf7nJH32i3UpBAKBwCOAL5Q00Onfu6uqqv69pB/S+efoy8WfqKpqefY38r/Q6d/GgcA9RQgKgcuA6/b9XNLNqqpO7Gfp9ENXKaVfn1J6d0rpVkrpQNJv0KkaK0mvkfRxO5Z//5iknqSfOrOWHei0F+yxu3khgUAg8DDgrPXsh1JKz6SURjoVBa4WT/PP2I/q9DNYkt4g6X+xz9pbkpJOq2aBQCAQOPubtaqqtT32Ud3Z5+R+VVXT4niveb4nBwJ3CyEoBB4YpJTakr5P0rdJeryqqh1J/1Knf6hK0tOSXmsveZ19f1On4sQ7qqraOfvarqpqcO9HHggEAg8c/oakX5D0qVVVbem0hSEVz/HP2NfrPPfg45K+3j5rd6qq6lZV9WP3fNSBQCDwYOATkl7n2TM6/Rx96uz7qU4LYeBVL+KYuymlfnE8PpdfzvECgReFEBQCDxJaktqSnpV0nFL69ZJ+rf3+eyR97VnITU+Wj3CmAP9tnWYuXJOklNITKaVf93wnSyl1zs4nSe2znwOBQOBRwFDSSNIkpfR2Sf+PC57zR1JKuyml10n6f0mi7/ZvSvpjKaV3SFJKaTul9NtfzElTSs2zz9oNSY2UUues1zgQCAQeJvyETkn+H00pbaaUvlinmWLfffb7/yzpt6aUemfh4r+neP11SW++4Lh/OqXUSin9Sp1mjn3vHR4vI/4uDjwfQlAIPDA4yz3473UqHOxL+p2SfsB+/68k/VVJ/z9JH5T042e/Wp79+01nj7/7zML77yR9srCauaTJ2fe/oPP2i0AgEHjY8Yd1+hk71qkYe1FI1z+X9FM6/UP1X0j6O5JUVdX36zQE97vPPmt/TtKvf5Hn/Wqdftb+DZ3m48zPzh8IBAIPDaqqWkn6Mp1+Nt6U9NclfU1VVb9w9pS/ImmlU6L/9yV9V3GIPyXp75+1lpGT8IxO/z7+xNnzv+EOj1ci/i4OXIhUVdX9HkMgcE+QUvo0nf4h2z4LBgsEAoFAIBAIBB4qnDkcvrOqqte+wFMDgbuOcCgEHiqklL7izOq1q9MK2Q+GmBAIBAKBQCAQCAQCdx8hKAQeNny9TjMWPqTTfdQv6vsNBAKBQCAQCAQCgcAd4p4JCimlL00pvT+l9MGU0jffq/MEAo6qqr70bPeGvaqqvqKqqqfv95gCgfuF+BwOBAKB+4/4LA7ca1RV9aPR7hC4X7gnGQoppaakD0j6NZKelPQeSV9VVdX/dddPFggEAoHbEJ/DgUAgcP8Rn8WBQOBhx71yKLxT0gerqvrwWYrpd0v68nt0rkAgEAjcjvgcDgQCgfuP+CwOBAIPNTbu0XGfkPRx+/lJSV/wfE9ut9tVv9/XycmJjo6OdHx8rPV6rZSSUkqSpKqqtF6vVVWVms2mNjY21Gw2VVWVqqpSSknNZlOS8usl5ddL0sbGRn7dycmJTk5OlFLSxsaGGo1GPhZf/no/f0pJ6/X6tjHyc6PRyD+XDpBGo6Fms5mPAXhds9nMrz85OaldB+f013HN/riP+SI0Go18vScnJ7XnVVWVx9FqtdRoNG47Zwmfq3KeuJby+Y1GI98LXsdry+eyLvy4XCPnKOfH5/75xlHOEXNS3jc/J8cpn+frx9eB3wuO4z87yvVe/r48Bsfn2o+Pj2vHuej4F53vojVf/u6TXZOf5/nOy5rzuSvXrM/lRXNx0fgu+oy46H1XXq/PRfleL+e/qqqbVVU9dtsBLz9e0uewJDUH/erNb1rr+s917+nAAoFA4KVgoalW1TK98DMvJV7SZ3F8DgcCgcuKsfYv/Jv4XgkKF33o1/7CTyl9naSvk6Rut6sv+ZIv0WQy0Y0bN3Tz5k2Nx2NVVaV2u63NzU0dHx9rNptpPp9rc3NT165d0/b2dv6jv9VqaXd3VxsbGzo8PNRzzz2n5XKpwWCQz9lut3XlyhVtbW3p+PhY4/FY6/VaW1tb2traUrPZ1Gw209HRUSYdGxsbWq/XOjk50fHxcSa28/lc+/v7Ojk5UafTqYkInHOxWGg+n6uqKrVaLQ0GA21vb2s4HKqqKo1GI83nc+ZDOzs7unLlinq9nhqNhhaLhabTqZbLpRqNRj7/arXSYrHQ0dGRNjc31el0tLGxodVqpel0qkajoc3NTZ2cnGg+n+frQHxgLM1mU9PpVNPpVKvVSkdHR5JORYput6u9vT3t7Oyo0WhkAYax8lyef3Jyos3NTa3Xa02nU81mM21ubqrf72tzczOTtaOjIy0WC63Xa+3u7uo1r3lNnq/VaqXVapVJ5vHxsUajkW7duqVbt25pPB5n0sz9abVa6vf7arfbajab+fiz2UyTyUTHx8dqtVpqtVo1kQMCjkCFIMU8LxaL2rkkaXNzU71eL8/tZDLJ4/U5XywWee22Wq0sfM1mszz/nGe5XOr4+DiT6F6vp06no9VqpePj43zPWVt8v7m5me99p9PRer3W4eFhjRw7aUfAYV4RkhifizYuzvnjzWZT/X4/H4e5Wa1WWZxzQs9YeA9vbm7W1vFyudRyuczjc3Gs1Wqp2+3msS0WizxmnuvHZH0ylqOjo/w+Zpy8hrkuhTuOW1VVFjYlaTabffSCz7MHAS/4OSzVP4s76umNP/+b9MYH9c/2QCDwUOInqh+530O4E7ykv4njczgQCFxW/Lvqn1z4N/G9EhSelPQ6+/m1kj7hT6iq6l2S3iVJ29vbFWR1c3NTrVZLGxsbOjo6qpH6lJI2NzclSdPpNDsOWq2WJGVSALmUTglsp9PhnFosFmq325k0IRRwbESF1WqlXq+Xz71er7W5uamNjY1M9DY3NzWdTnV8fJxFhZSSjo+Ps+uB40NeIEqQ7+PjY02nU6WUNJvN8rV3Oh21Wq38HAgT17exsaH5fK7FYiFJ6vf7tXlwcsxY+/1+nv+NjQ31+331ej31+30999xz2Q0AYZzNZmo0GpmQt1qtTNYgbzgZfP43NzdVVZWWy2UmkxC7ZrOpZrOp5XKp0WiUSXi73a6R8tVqlck2xBuSzbkk5d93u111Op08ntVqlUUEr95z7bYOtVqt8lyx3vw+u0PB7yVzjFhycnKiZrOpTqeTBQkXU1hvEGaEhfl8nseHu6bT6eQ5ZIyQYum8is/aRFhZrVZ5/Fz38fFxdvWklLIg5YIJogrCANfDvWBenJhf5HBhHt3BsVwu87Eg7LzfIO8u6HA8no8Ywrn8nvJ4KXhxHtYJr2PNuojEZ4u/lp993TyAeMHPYan+WbyV9u5+qE4gEAg82nhJfxPH53AgEHjQcK8EhfdI+tSU0pskPSXpKyX9zud7cmlnhlDzh7/b4yEVVC37/X4mVZAxSOVsNstk3An+0dFRrsy2Wq1MHiBlk8kkEz+IGOOUlEnicrnM4sNischOAYCQsVgssuWbr2azqcFgkF0Mx8fH+TjT6TSfh6r4bDarWbm5HrelO7l3K/hqtcqv6Xa7+Vq73a56vV4msAcHBzo4OMjEerVaaTKZqNvtZnLmc7hcLiVJy+Wy5pSAkC0WC00mk3y9kHFIHhX7o6MjDQaDfL2MeTqdaj6fZ0Lr4oy7DKRTgWG5XOaKfbfbzWSa17lLQ1LtGH5vILg4BXAh4H7wNQDJLtexiy+SbiOpiFCsEYQp1kqv18uvY064zqqqau07OGgQUBCeEKSWy6VSSlmIQliYz+c6OjrK7zPWOtdEtZ958taD0vXA+xKBj/libP7+9LXJe5r7wbnL5yA0cR7W0NHRURYhXPxxxwP3hHO7CFK2ruCAuKh14wHES/ocDgQCgcA9QXwWBwKBhxr3RFCoquo4pfT7Jf2wpKakv1tV1c9/kufXqupU4XEabGxsaLlc5mqkkw3pnBjyHK/iQ97Kfn0IEa+HkHe7XQ0Gg1xVlVSzXkN4qqpSr9dTr9e7rf/bq/HdbjeLF51OJ1e5W62WOp2Odnd3c/vFycmJptNpJmODwaB2PZBdd2JA8Jk7r9RubGzk9onSAeLksdPpaDAY6ObNm6qqKrcKNBqNTOb5gsBCFKkwMwbGS6Ua90XZ9w/xo1I+m81qdnrI9eHhoRaLRY1UuqjiRBVxged2Op0s1FyUAeFriPnxVhfWDO0kHIPnci7/GVLN3HEdOFIAwgTnabfbkk5JL6ICAo1b8nkOgkGZl8D6ZM0jMPG+2dzczK0YuGLKtoBWq5XnGlKOKMG9Wa/XeeycF/GBx1gr3n7gORjMrzs3WKMOjlk6SyTlth/WHPfCs0gQyLylwoVJnB6+LpmnMnfiQcJL/RwOBAKBwN1HfBYHAoGHHffKoaCqqv6lpH/5Ip+bSRLkgZ8hAp1OJ9u/6f32ED2IC5Vf2hPIHODYbtX2amlJdCCAZAM0m02tVqt8XOmUFEL6vV/bCX23280VU0gcuQmQlp2dnXy84+NjTSaTnJHgYgaiC9dKFkJpA+fLq+4ILqvVSt1uN4+LsULmm82mnnrqKY1GoywULJfLWv+55xfgVOD6vUUCIo5LQToXFJhTSZl4c8+9zWGxWGQbP2MkF8IJIi4M5p17SCsKpNIzFJx8uoDEHEvKpJKqu4sKLiKxfnwddzqd2vy4qMKYvdKP2MRxvP2AcUO2nbwzpwheHIc58dYb3ku8fxA+3F3B2mTtcQwXHtwp4KIGY0AQRIjwa0fwYK5dCPN2IQfvR8bpLR+sAc9F8BYKju8BkN7m4J8hntPg7/UHFS/lczgQCAQC9wbxWRwIBB5mXJq/lr3C7X3RbvHGru8CgVd9IaGQ2Xa7rdlslkMAJeXKq3Rul4askBlAXoJbsan0Qqwh5ZBtesUh1i4q4LTgeZDkzc1NDQaDnG0wHo9z+wP/DofDTEwZK6GIEB9s8+U1VlWVSTVBgfP5PM8PQog7MR5//HFJp5Z9RAUImFeZEQUgsgQhppTU7/drlnvuL/cTkuaZGMxLs9nMx3JXANdSEnsnfARLIk7QAsDz/HUAYkqLh/fMQ269Og4ZdgECAox7hGPgMOB++Xpi3rwdBQLL89whwM/Ma9m64S6Hzc3NLEjR0sD6WCwW+VzD4TDP93w+r1Xr3bHD94gDkHoXAHyMvB7xrmw1KNsR3FVxkZME4DiijcTdQi5Alu1TtNsg1nBez1xg3Iy9FDQCgUAgEAgEAoHA7bgUggJ/vHtvOFVTwvkgZ+12+7aeZ0gq9nsqsd4SgK2ePn13IOBikJR3CpBUq5RSnedxSbel+EMmuQ6viPN6yNV0Os2V/u3tbfV6vUy4ZrNZLZ+AirN0TnLJcHDSxPg9S6HRaGgwGKjT6eRzknkA4fYdG7rdrq5cuZKr8vTZuwsEwoWl3skxLRtue3fCB7ED2OtdCOCeIPB4Xz0Vdu6pV+p5DsfnMRcSfKcOPyZzOJ/Pa5Vwb6egjcbzHErBwoUG7Piea8HaYG78+J5vALwVg+tlft3STyYGc8wOHj4eRBtJGgwGOasBYcjvjbtSWq3WbUGLLhyU7gDuIQSfde+ui9K14F/+3uZ43pbEPUSQcgdCmYnA8V2EYSwcs3Q8IN7xHggEAoFAIBAIBAIX49IICtiT2+22er1eLYkeUsSuC07uvbJIa8B8Ps+p/9iuIRqQaQfk0O3T6/U6HwOyiQjhggJkzEUEKsveIgDpIrMAF8J0Os0tGv6FoOLVXpwNCCXSKWmdz+f5MZ4Lwe31epk8spWiV2el85YDd4Jsb2/nqvR8PtdkMsligpNo35JxNBrle+WBmtK5ZV0678F3ot5oNLKLQjqvLpctBlj1vcLNvfddO3yrQ7YdZa1Bup10+i4HiEtOwHkN68FDQnk97gnWrdvvEZ98lwGv3Ps4aK9xiz7k20ULt+RD1FutVp5P5sHbM/xnnCrNZlO9Xi9vT8p52XWE60fo8zyNcnzcGxeR+NlFIBcVvOWD+17md7hzgXlnLnk+x2Y+eC7igIN7yHxyXs9W4HMjEAgEAoFAIBAIXIxLJyhQSYTE0msOCel2u7cFLErnCfsICh5mCOH19PrSxg75gdQiBhBYiAjgZBiy44SQa3GrvleXqfi22+18vNFolLf887YJiJS3D+AYgFjTbuAVYp5PIORgMNBgMNDR0ZFu3bql2WxWI8QIB7QaDIfDWlsH1viDgwOdnJzkFg52KSizG3xnDUgv94P2DQQTLPgQWX4mM8EJaNlj76QUgss1sSODizpucfeWFj9e2VIh3b51IHPvwhSvdUcEJBf4mnO3igcbevAlO0ywjlxUIBPCj03mBvNMjgIhm5BvXDCsR9/y1EU17iXX67/jmt2BwHvRhSTPJWGtcR9dlGBsHojpORecz99nvJcRbHhP8XmBaOTX5i0S7ubxzwC/Tj9/IBAIBAKBQCAQqONSCArSedtDp9PRcDjUycmJxuOxZrNZJiH06EMAIC5OACCObjenQk1FlnNROYVMeBo9YgXEmeDEyWSSq/W+JSDHXCwWmcxQ+XTiSIWcsc3n81wJxbVAP7tXTKkic20QREQFeuU5frN5ui3lcDhUr9fLlebNzU0dHh5mW7d0WonG6eACAPel1Wppa2srk/R2u63BYJCFBebd+/a9UgxppVUBAQTid3R0pHa7nUkw1XOq5jgoyGEoq9/cB69we84ERJRx8TPkmnvInGPx5zkIA5BXt+aXlXocK4gK7igYDAa3CRbuYvB/+R3r010Anp/AekckctcMoZ84Wzxjg3nzrA3ggYUeHOkiwUXvX2/J8GwM5pH752GIPN+FC+4BbRve1lLeb3c+eMaIH9vP5+937revEZ9n5iIQCAQCgUAgEAhcjEshKDjpbjab6vf7unr1qm7evKnxeFyrOmPLpv2BMDyvfjrZlFSrAENWXFjwiq9nCkCmINTtdjsHQ47H4xwCCElqt9va2trSaDTSYrHIY3Vytlqt1O/3a6QMEg3ZhnD7ln3eDjKZTCSd2/Sx90MUmcN+v58FFYIbOc5qtdJ8PtdischEH+Luu2ngCBgOh1noQGTZ3t7OQgyEGfcH1WNIHmNjq83xeKxbt27lzAKEInaOYCeCXq+XnRNsCwoh5P5w37jvTqi5t54B4VVwgJviomDAbreb5wenhAf5Ifi4/d7bO1wI8TVXEnMnu94mA+F1Us/zOT4CE0GfPL/dbmenB64E5pocDm9j4ZgOWgu8lcZbU9wB4LtLeP6A7+rQ7XZr43YSX97HqqpyLgf3lDEhIjAWzzjBOVOKSqVTgS06QXnvo+UhEAgEAoFAIBB4flwKQQGCCrnc3NzU7u6u9vb2dPPmzWzxh7i6pdwJuxMhyA1ET6pvJ0jAHsR0Op3Wchn4Gg6HWq1WarVaunr1at6mcT6f6+DgIFdQpVOy0u/3s53aK6HS+e4UZaiebznJWMkWgAAhIlDJh9xyLV7FJjfBA+sg+u548DBEzlVmCNCa0Gq11O/3a9kEZFSwIwVijQsEniWwubmpXq+X59gzGU5OTrITZDab1SrbEGJvf4BIOiH1oD2EFN9ZAZQkk2vlNZJy64u3UnBfWBu8jnvvwYKlWME1shNDGVzIcVjDZbjgRZVyd2TgbkFM8co7ghFBl9wTXCYIdQhUpXsCkcWv8aJWBG+7gfCzzssWBEQaF3A8W4IWJXIncHngPnHB0EMf+dlFBdaIrwHWAb/3e8m1hJgQCAQCgUAgEAh8clwaQWEwGGTSSEV7Z2dHg8FA8/m8llfg1V63n0NYnOAgIkCAqMz6ayHVJaqq0rPPPqu9vT098cQT2tzc1N7eXq6aHh4earlcajQaSVJ2M1Ah9iBAxoPbwNsqGDtOAm+XcNcFuzR4zz85CRBQ6Zy4D4fD3IIASXNSzvharVbeWrJM8+f5jBeCR+Bfv99Xr9fTfD5Xp9PJgZoQakQgrx5vbGzk+122a9DTzjjKtgJfM2535365dZ5jeQXf7y3z5VV33/EBks09RCzxNQjp9PXluzi4I6HMZmBN8OVrsHQquIPHq/m4BhB/WIvuwuG+Icwsl8scTuouDhdBXCDiPiKEsUb9PeSZIlwvrymFOtoycCCwown3gse4Fy4MMGd+XubI2x7cUeGfCe4S4fx+Hx2lABEIBAKBQCAQCATquBSCQkoptwrQpz8cDnXt2jU9/fTTOjw8rCW+swPEYDDI1dmyBx0iSwXfSS1tDZAziNRF/eLT6VT7+/u6efOmnnjiCe3t7elVr3qVjo+Pc2YAz6OaLyn3gHuAHQRzuVxqvV6r0+lkUQHruVvvIT+e+k+l1sPmCJ6EeFJphzCRywDhZr4gxwgZGxsbeRzupMDGjhjAMbwKDYmHeHs+Qdkzj+DhbQFeiWdrQE/ad4u850R44CPjceLu8+n3p3Q7ICKUbQUIBcwnY/I8BQgtc+wZDe6gcTHBd3nw3SJcoPCKu7cUcO08TnYC9282m2Wnj29XCtmm3YVrRpDiXGVQInDRxVtovO3AxQ9vmXE3COun3+/nc5A94o4aSbVdNXi/+bhc8GK+fBcJro37UjqcOI6vmXLdBgKBQCAQCAQCgYtxaQQFiMNkMsnV7qtXr+YshdFolAkpVe3pdKp+v18jBl5tdBLsxAGCLilvseeEhcomlc75fK7nnntON27c0JUrV9Tv97W7u6tXv/rVOfPAyVDZh+62bhc1nBzzPAgd2Qiz2UyDwaBWmeY4kKJOp6Nut5ur3O644HmQachaWZVtNBo5dwFRh+BGJ2/SeRWZajdWdXcAQH59LNw3Fx+oViMWuJXeMw/KlgDEjtINgNgknbtRGJsTXI7BY8yvZzCUwgQtJogqZS4CYgPr2a38HuzoJJ31XwYeugODnxFaIMsurJA5wTpmy8eLskV4nLGwbamvUxcGIOXeKoIY4cGorL9SKOE9x7i9zQXRA5eCvz+5j76biGeWlLkInqXBl18395GdUhB8cKh460wp8AQCgUAgEAgEAoHbcSkEBf5473Q6mk6neevE4XCo17zmNXrmmWcyaYcAsiWgpBzQ6IBYuEDg4YdUSauqyrkEpOFDEtneMaWUWxwODg7ylorb29va2trS7u5ura2ACrak7EiAwLhtHWLl2QM+F5Dn5XKZAws9bNB3F+D3BDtK52n9kCkq2oRJOjGE0LEtZ6PR0Hg8zq9jTvlibhEUIHmeHcHvuS6q29jRvSWBij1j9h0xuBZIr7c4OOFmy0QPB+Q85bHKsXqFHscG2RDcDxcwUkp5nplDxuZj5LmITcxHOR6OU7bJsEZ9ffOzh4x6JZ72B9ws5DYgxrlrgoq/b0NavkcYm+d0MOe+q8J6vc55Ht5+5CIZzy0DLdn2kh0/aHvxMfi4vQ3GBTKew7V6AKPnW3Bc1pm3ujDvpcAVCAQCgUAgEAgE6rg0gsJqtVKn08mOgOl0qp2dHe3t7emxxx7TZDLJJJHqJWSE7Qu9Qg4hgnR5xZdqsZMVdh+AfECyIJJHR0caj8c6ODjIrohOp6PBYKBer5eT6z1okWoqlXpC5bxaDrmVzt0E0rlVXzoPR2w0GhoOh5mEQ+JOTk5yj7yTKNoxvFLuhBgxhfGQ5t/v93ObCMdizhgP7gTaKry/3a+HMXo4H2KGiwEcxwmf5yfQQkKF2avPHB+Rha0FEWIQhTx00ltdOI6H/nW73VqmhJNV7P7MrRNm7r2kWlgmhNzbbTiXB0ciLEF+ndT6+sbZ4W0fXAvXg6iA4OTOBv7leWxj6u0AtJCwVagLU7wWx4mPg/n31gHeL9x/b/9gfnA4rFarLCr4+nUBjOeXrgjfZcOFC8btjhXukws7rD9v4wgEAoFAIBAIBAIX41IICsfHx5pOpznUbzab6eDgQFevXs1OgH6/n7cO9P7s1WqVK9zYlaVz0oszAHJSVi59twGIogfCQWyazaYWi4UODg40HA5z/gFtAt1uNxNlyAjWauni7ejcjs0XBAmyD6mkdYBKfbvdrjkuCOjb3NzMlndS//187XZbw+EwCyBeNSYHwLd35NySMoHlnq1WK00mkyzueEYBxA0CiAuE++REHVDtllQTMCB5kGLG5GKM5zn4Y6wPd1mUrQg4LMhr4H57UCXrxvMROp1Ovi+IEQgGLoh4QCJZGFybzynz5i0ZCC3ASXFZUXcnBr9nrvxxd+AgeLElp+cpePvAYrHIIpe7K3xrVc92KAMNfY3zPvTrZY64jzhOyjDOci44nrcDlXkqrH3PrWBuXGzw9YjIFQgEAoFAIBAIBJ4fl0JQWK/Xms1m6na72tra0tHRkUajkW7duqXhcJh3EoB0QPguqpqWVmW3NrszoEykh8TQTkCbBESYPv/xeJzHRdXVswfcUg65h2S6kFGSHsbhIY1epeW5EFVs7mQd0MbAdaZ0uqNEmWPQ7XazcOKtCfyenQKOj49rIgAVfIgzro3lcqnFYpHnsNxSEYLfbrdr90s6r7h7FgGVd8i598tzTdwjQCsErhDAvCNClaIOYg6ikt8Dgi0RFRinOwjc3o87hR1FSku9BySWbRteFWcte/uCZw5464C3AHCtEHLPWPB59DYEbw9wx4nvtIG4wdyyBn1d0t7D2NwJU+aePJ8bB1HHr4FjQuw9mJI15m1CF4UoloKZ52Jw/d7+wn3mnkQwYyAQCAQCgUAg8Px42YJCSul1kv43Sa+StJb0rqqq/peU0p+S9HslPXv21G+pqupffrJjnZycZBv7zs6OqqrSeDzW/v5+bisYDAbqdDqazWbq9/vZ5l5WEamSAgiIh/h5vz8VVYgyxA/yA7mCIM3nc+3v76uqqtyzPxwONR6P83Z8tG9ASBARZrNZJpNUdN2h4GM9Pj7WbDbLwoTNe83CDllbLBa5Zx6BAGLpeRHz+Vz9fj8TQierPHc2m2m1WuX2CsQUF2GchOIW8KyE0gVQzgXk2nvqqRy3220NBoO8RSXXRauCV8Hdno4rg2p7GdRZfrFeLqpys156vV7+2dcYcKu+dJq1gNDgpJe5wHGAwOTHLDM23PmAOCQpt3C4AOVr3Z0ifm1+X7gHiAu4OVarVRZNvE3Dr8NJuYt0pWOmFArI6eC+IK7wXObO25FY5+7GwPnjrh1Em/I+uqOB+fKsDh5H2PFrLT9LLivu5mdxIBAIBF464nM4EAg8yrgTh8KxpG+squo/pZSGkn4qpfRvz373V6qq+rYXe6D1eq3xeKz5fK7hcJhdCvP5XKPRSI1GIwsKEHFJmTSWLgW3fEM6ynR9r9ReVH2HwHA8XBGScksBbQm9Xk/9fl+TyaRGSryKC9Gims+5IYlYzZ2Y+S4VEHCunyr+er3OpN5fhxXdk/EZ+2q1UrfbrfXuO9nHiXF8fKy9vb2aeOHVXe89d6LuP0v13n/G6IGSEGx/PtkUODAQasp7j9sCi/xoNMpj5/dlpdlFj7L/3r9KoYfxcv2Q8na7navqx8fH6vV6SillUYr5c+eLu008C6Lb7V4oINHzj5PGM0FYv06WEQQYL/ON+EOLB2OTlLNJXDh6PvHFxYzSJYFbxJ0lzDvn9tYLSXnOcEh4Wwtgu9Fms6npdJrfs2R/lK0MLjiUrQ2cq8wJ8XX+oAgKuoufxYFAIBB4WYjP4UAg8MjiZQsKVVU9Lenps+/HKaX3SXriZR4rOxJ2dnbUbrfV7/c1Ho81mUw0GAyyVR9iD/HwUDapTnq8kgzBhriUQXe4JLrdbq3nHbiTYblcajqdZgGAtgcIHI+X4gTb40FeOp1OJmFOpmazWY3YuXuC66eNAFJJNdut/RBht/PjZIAozufzGhmGvCJ+jMdjDQaDWguCtzUAt41DNksiSWgi54akM36IHRkWtLnQsoCoIp0KCltbWxoMBjXSyS4Vs9ms5jghA8NJPFZ9CC7PZ9y8lvuGwEMLCI4JshT83g4GgyzklOGCrKfSus/PCAasHUQjd5GwbhGlSgeFV/Wx8LN+EcNc/PGARubBHQ3cfw9E9GviPO6AWCwWNSeOrxvfIQL4/eIeEWDp1+aBoYgOvL8R6lzc8AwNB+1TrAmOL6nWnnHZcTc/iwOBQCDw0hGfw4FA4FHGXclQSCm9UdIvk/QTkn6FpN+fUvoaSe/VqWK7/8leX1VV3o5xMBjoda97nfr9vpbLpWazWSaEXr11YuNVVKm+DR8/OyFELIBsQGD4wgngx4LUQ96cPEunRKTX62XSC9n0KjJj5BjsIgGh9tYK5sUdD+QQeLsA1fGjoyNNJhN1u90Lw+UgeIvFQtPpVFtbW0opaTKZaDKZ1OaPfApEBcg9ZN/7/2kJ8bYFHz9zx3xwfBcbaGvAbk+I4Pb2tqqqyjt8uGuEyn+/369t2Qgh7Ha7WTA4W6M1EcPDAXEs0N7hBLjX62k4HObgUK+GQ1qpnCOaVNVpwKdv/cl9d/GCFgDPE2B7VNppSjeKV+VZu+5WKMF6514gYiHScH6+x83j4Y+8lnPxVTpRWK/MD0IV68NbDfz9wPWUgYncLwQx1hsiDvfdxRhCRXGI+DawiA2IXawnjkPrBesFge1Bwp1+FgcCgUDgzhCfw4FA4FHD7WW7l4iU0kDS90n6H6qqGkn6G5LeIumzdarW/qXned3XpZTem1J6r2/JOBqNciAhBB1Lv2ceQArou/aE+XxxZ49B1D0w72wM+bmQHW9BaDQatXYBCAqkbrlcajKZ6ODgIJMWBAD+9X7w8jjHx8c5dJIxQOap3kJ8ILoeqigpX19KSbPZTNPpVPP5PFfGsfwzN8z1dDrN1zwej3X9+nUdHh7mEElcFxyXlhQIJ9V+SKC7RiCIkDQqyVTZnYh6FgNihQtCtJN0u13t7OxkAcFzMNrtdiaCtDkwTx6CyHx6cKO7N+jLL1tFOp2O9vb29Pjjj2traysLD/yLEMZ2ohyz3+/X3DUQe+z0Xr1nPSKukAXBmvAWDCfiXBdiE8KDX7MLawgU7vbx94yvWe6T79KBuEHmAzsz8L7wUEuyGGhn8fNA7rkedzrw5TkSvN/Y6QWHz97ennZ2dtTr9fLc+/vLxQ7/XGDuWLcuTvr75UHCXfks1vKVGm4gEAg8dIjP4UAg8CjijhwKKaVNnX5wfldVVf9Ukqqqum6//9uSfuii11ZV9S5J75KkjY2N6vDwUI1GQ7du3dJoNNJgMNDW1lYmR5BPtzNLylXpi2zlZ8dWSkndbpfzZsIDWeJfbylAjHDrtLc8HB0dZeJKy4YTbKqwvBbLPoTN8wu63W4WNxhbu93O4/WxQRwhvd7igQOB1/A6xkjLAy4FF2Om06lGo1EmabhBXFC4qGLMfJa2dCrOkGG3nXsfPXkUtAsASGS/388hl+VOEX6vETHorfe2D6/cQ2QZp4Nr8/YWiOn29rZ6vV7OaSALw8Mq+/1+bYcHSdlx4dkFCADdbjffE+bWnRveCsJ4PbMA4ouI4g4SHCGQZq7H5wKXjM+jOxVwIXi7TTke5prn+9gk3bZW2KHDW0xwS7jIwNh5/7BNK9dPpgrvBQSL8XicHSe+nsr779t1epuEu5S4vgcBd+uzeCvt3T5pgUAgEHhBxOdwIBB4VHEnuzwkSX9H0vuqqvrL9virz3rJJOkrJP3cCx2LP+Ynk4n29/czKWy1WhoMBnnXAbepO/mCfJeVcdoQnKiU4XTSuQXfiQb91RBwCBVkRTolTfP5PBNvHi/JrAfpEQR3fHys+Xyeq76e68A42K3AyY9XerHbQyxxDlA99lBJKtUpJc3ncx0eHuYKPvM3nU6zRX17eztXvJvNpubzeXYpEB6IM8JbGTyTgiwE7OnMuZPb2Wym2WyWifzGxkYOjqTq7efodrvqdrtZFBkMBjXyT3Wf++PrhXvn9ne2nPTn+5okL2N7e1u7u7v5WiaTSb5ntGhw7bPZrNYywOP0+nN8dmuQlMfsbRku0rgogIDmuzT4+kY8omXFWzjKrIUyI8EFl7Kq7wIALgBvK6EtyEUKWmdcbCgFjF6vV3MTtNvtmgMGwYDr9TYSRD2OlVLSdDrNa41rKts7/LOEay3DG8tzXVbczc/iQCAQCLx0xOdwIBB4lHEnDoVfIemrJf1sSuk/nz32LZK+KqX02ZIqSR+R9PUvdCD+wD8+Ps4tBJPJRMPhMJMu+sVpX/A//t3anlLK9vnlclmzmkuqbQPoJBNiAfnw6rs7IrBvQ7SdPPFat4s7YeO5kHoIH+GD3t9Pu4I7ECDpVI15HAv7ZDLJxJr+fSrVEKRut6ujo6NMyHu9njqdjnq9Xg6DPDg4UL/fz3Z+zrVcLjUajSSdVrC3trZyWwrXxbZ/zL+3OHAfvQKMi4OsBrbsZHxegS6zMRaLhebzec6CuHXrVhYnEG64Z9w3CLkfy631vvUgAsB4PNZsNtPOzk5ueWAN0aMPYeVeQKA9g4B7CNktHRcIZ6xTd8ogxHibTpmfUGYtICZ48CNgDl3scKHMdx3hX5wF0ikBR1AgwLDcHcPHyFo6Pj7OjozyfjLnfl9cwHNHie/cwhdrhbXBDiG83kUFF914X/nuELiJHhDctc/iQCAQCLwsxOdwIBB4ZHEnuzz8H5IuSix7yfvrUq2dz+eazWa6deuWbty4oY2NDfX7/dyP3e12c1ijB7iR7E/PO1Vugv663W4mZVJ9O0f6rqm8lwKD9/pDRCFf2N4hUQgekjIxhFQ6ieE8EGcqvxArnkfQn1v85/N5roiTtYCwARmGxHNcxskYcFpQZa+qKs/taDTSdDrV/v6+ut2uBoNBrcLLmCHEOEBctHF3hNvIQRlk6TkTs9lMo9FIt27d0mAwyOIN5NB3oliv15rNZjo5Od3mcjwe1xwAPm9U1UtBgbGX9nZ3lyBcLJfLLKKsVivNZrPadZahlBwfQcfFC1poWOMcj/vkrTMcH+GG6/PATe47jghyNnyXA+61uyMuEtNKEesid4O/D8p7WoZAulCGGwai7607fmzWqQuHHIPHeG97GCTr0cdc/us7ZHirEe93nlsKOJcVd/OzOBAIBAIvHfE5HAgEHmXclV0e7hRUtqkq7u/v6+DgQHt7e5kgQJqppkOCeAwbPIGOVMdLQQGi4FsvkiEwm80knQf0eR4B4yz7771fvt1u30akgfd5l2F2s9ksh+QhKnBdvNa/XPSgOk5V2S32hOlVVZWFCEgvgoh0vhMAGQ2TyUTPPvusGo2Grl27lkUSd0W4k6PsN3fyDEFjPiDK7NpAewX97+v1WtPpVM8++2x2k2Cbn8/nNUGFlgnPYSiFH+aPXRq4Dp9bJ9AOn2+veCNudbtdTafT/LiLEAg6fj+oonMfjo+Ps8ODthq3+jNHkGsEIh7nvrMGq6rK65m59TXKmPwLp0G59ST3l+P7TiQuJPg64Hl+HNYkz2VdMgfllqDuHCJPxLdw9HvF7gzubJBOXRE+z+448nBXH6u3eZRZCoFAIBAIBAKBQOBiXApBQTonocfHxzo8PNTBwUHe3tC3h6P6ChlwWz4kfLlcZiLiOQnsNMAxECf6/X6unELMfHtEnu+Eziu5CBeSsvUckoNwQWYAvwP8Dus8lWgcCpBvxA3GA6F0gQHi6X3fODh8a0YnWfP5PBNPiPJyudR4PNbNmzfVbDbV7/drVXW3sCOgeAXYswOYf++Rl5QFEUg3ffC4TxaLhSaTSZ4LdyHgkIAgIgAxN96m4m4ExuFzU/bJIwbxPffUcx0g+QhZ8/k8W/+ZY58Ht+JD0qVzwcJ39nBC7dkOHozI8bke37XEd0lgjj2LwI/nTh2e41kQzCdj5f46yXZxjFYXn1tJ+brK1iBvJaqqKrdZlPkZOG8c/r4qnRa8L3kd5y3XnweK+nNKt0IgEAgEAoFAIBC4GJdCUHAy7AGNo9FIe3t72tzc1Gw2y7ZzrNMQXKneE46bwS3okDYq2hCOlFIWCyDSEHSIGoQfck5PPpZoSKB02rtd9n2XbQtOZKjMIjiwewSPdzqdWkWb6qun3lOZ59xcGyQQ+M4BzIvvTME8dTqdHMJIdkKj0ch5DO7E8GNAArlucgwYk9v2EVDIESAAEjcC5x2Px3le2RaT62TteEWbdYTDhDn3teJrhrlnjlk/EGLGzfFwsfhc0bbhooOkHKoJmabiznrguaxDd4BQuYfUQpLJ1eAcLiggOpQuCN9C0t05ADGPY3iwowcp+jaULlrwMzt18K+38JTn8/eOj9XzLHyrT4SL5wt39LwHPw/Boax/z0Xxz4eyRaZs/QgEAoFAIBAIBAK341IIClJ9u0SIFdsAeiYCRAvSByFEGOj1evm5VCE9LA7L/Gw2y5XVqqpqbRMICJBWJ5xu4XbQz8/xIUJeFaaqLymLCR5E6Fsy0lvv21q6EEE7wHw+zzZ5D8jD1QGpZvyQW+9rh0j7feh2uxqPx5pOp7eRRw9FLO3jjJUKOOcl6M5FGgggIgXzgXAxm80yUURMIHTRx+EZD07endy6vR2C7rtnuDMFMcfBGCaTSb5/zBsCz3Q6rVnoG41GbctTz1Lgdy5CIKz5PfL2BsQCdzJ4Fd2FuZRSFiuYY0QVXsNak5Tfd94K4e8hJ+yMH+eIz6W3T7grwR0E5W4njIc58PvI2D3kkfH5mgMutPh8++4jnt3gz2NMntFykTsiEAgEAoFAIBAInOJSCAqQAhLyW61WJszT6VSNRqNGvLznWlK2mtO+AGkdjUY1EgPphIBDeMsWBg/GgyB79RMBwI9Njz399NJ5JRwChQNDUm6p8AwEz1mAEEvnPf8QeCdItC241d77wbGgl60Rkm67Jq/K44zgdR5kx/EgXlj6OXdJnAng899R9ee+Y7+ngg6xk05J4HQ61eHhYW2bQocLKN4v79kAnl/Bebz9gHN5UKbv0kAbBmupdGR4foaLGgg9CFKEiEqnghD3CeeM7yLhLRmseUQcJ/jlTgXMNW4dnuP5DO58KAUanu+CAAJHuTUpz/dWAeCiiu9ugRuF9c91uojgY0YcQcDhfc89YDw+B+WacyEC8c6zGpgD/30gEAgEAoFAIBB4flwKQUE638OetgKCFPmj3nvSIQkQGBwH5CJA6JbLpSaTSY2EppRyy0K3282WfEimZxq4Vd8JMOd2IgMJZrxUib0ajqBAywbuAe+rL23pEO5ut1sjRtJ5HziEy4mkX6uHUZZzTrsE8+GhkOQpeA4F98LbKbztA9LLnLj44sdhrNwr372BFoCyWu1bBbpV3h0UrAWILOdx8uvPl85zJpgfb1u4KEcBoQPBoswW8DVSrt0yi8KzLVarVe3+Ovw+u0OG8xAy6euJXAqu4+joSJPJJI+BTA/EJG+f4L74ThaM30U9XxeIF2RgsI78Xnh4pLd5IO5wfO6Nr3FEw3JnDeZYUha3XKwDHo7pGRNle4WLWt4yFAgEAoFAIBAIBOq4FIJCVZ3uOJBSykGEEHYs/BBiCAqtB1TdqVYOBoPcf4/dez6fazKZ5KwESTWC69vJ4UzwnARICsSj7CH36j9Ei153dzJI54IBRI7qNaSOY3N9XrHu9Xq180FoESm83UGqV9294kvllvFDLiVlkkjlG0InnQftMT9Ugd12zrh43Xq9ruVbcC+ZC+aUcSEoQC79vkA6vSUGEk6gH2JQ6Trh/F5JL9s0PJcCQYFzMZez2SwLHpDfcncDD0zEccPjTnYh2i58sHa8gg48K8HXqmdxMC5aTrgOthXFZcH5XbzjtZ494W4e5s7zK5hb5q0UbBhzmXdQtoD4WN05w3GZJ9/6050NLsQQTOpiZDlOHCiloMA4ucfMRSAQCAQCgUAgELgdl0ZQIMAOIsHP3qMvnYf9UUGXlLcMxFUAOYL8YJn3XnQAMeN5Xun2SvR6vc5p/lRXgZMliDsV45SS5vN5Jq7eo87jkCMyJCC+HsDoJJuAQLachAyxXaZnJJRz533rnAd3g88fY3frvLc7QAj9i9fgDnHnBPfEt+1zYo6o4jsNeLvAdDrN98PJKiQU4eKiCj9ryh0E7iaBoPqWizgSWq1WFgRWq1VueeAc3s5QEltIcLfbzWuO59Hi4M4Md9gcHx9rPp/nEEjm13MVPMySn11AYR266IRzZjqdqtPp3CbSVNVpIKq7SVarlUajURZH3MlT7oLgRN+FA67JWxFYE6wn3jM4kzznw9fVeDzOjh3Ozzm5dy7iMOc+RsbgrUYuDErKgiTBoIFAIBAIBAKBQKCOSyMoeCI9f9jjMnACB7HF0g1hns/nOjw8VLfbrbkcpPOdF/r9fs5nwBbvVXevknurAwRwMploNptlssLvvFrPsdbrdSbI7qTgdSmlTIrc2dBut7M7AXGBqjVOCUQDRIDVapVf4wGJwAPtqEC7yIC7gdczRulcVEDgkHSbDdyFB64H0QOXByBQ0fMASos6hJBrw33iIom3pjAGSZmUIxi4YMO9kOrbJNKS4KKOv95JMS0Aw+GwtnZxtHjmAOc5OjrK5B+RBFcOIaO9Xq+2ewe/8zYJ7hdtD81mU4PBIDtXPIcCsYbXc/0eeupZB+544D1DCwttMez24UJfeb2sS0Qfb01AEPN140TeMxJcoPLnzOfz2rrmPern8DwLxuYBkf5e5RwIii4+eVtMIBAIBAKBQCAQuB2XRlCgL3uxWKjT6WQC0Gq1cqvCxsZGLSgNAgJJpJLtwYpeGZ9Op+p2u7nPG5LuO0N4iF9JmNh1gkowRNNJuJMZSN1yucxkE4JdthHwfbvdzlkG7FrBmNkqE7HC2zO8HcTD97wyLZ23JFDl5jzuDilD+WjBwEruWQPeBuJb9HFfuG4XdyTlXTVK54OLSZx/uVxqPp9rOp1KUj4fBLIUTyCVHLcM4ONciBs8hisGIWc+n+d2Bs6H2IHIUwYRuvjFubl+1gaV79lsVsufgBj7evA2Fci45xEgRiCieZ4DXxBoRJ7BYJCPhRDimReMl9YV7pE7MFwk8pYB3jMerMia5Bq8HYbX+3UBf2+5AEYWhI+BsXMvynwPF5cugo+H87HuA4FAIBAIBAKBwMW4FIKCdHuvtKfve1p7WTmGuEKcyuojvd9U5iEJtBBA/Kl0Q0zYZcJzFCBZbDkJIEtlDgLX5STWK6q4FJygce5ut5vFBa8qcxwnjZBFb0+AINFKwPidwFORJ3wRsaYcs/e7M9/NZrNm24eE81oPQOT+QVBpJ5CUsya8Ck37ChZ4d67wM9dMq4OvF7ILmLeUUt7y8fj4+LY2F88iYKy8fj6f51YXzj+fz/Ox3aHg2QjMo+9SgPNBUl5THgCJ8wDBi/WIkFbOAQLY5uamBoNBvn6EHlwvPve8HzgHVX+EEm/lgaC7GOROlTIzwsNCuS+eW8H33mLgz+f4rGvml/eVtw7xOn8/uDsIIcgFn9K5c1EGCmMsnRKBQCAQCAQCgUDgdlwKQQFi620Nbv13J4D3V1NZhYBAziANVOb7/b6m02nORXBiDgH0Crz3Y3ul1cfDOCGlBCL6uCG9EEpC8Jxc4TwgIM5DGREWEB2oss9mM81ms9ruFdj/IfL+fEiZOycYPyTSK8fMjzsUeL6kWsuCCzlepeZ5CEUX9dND+ty6zn1BAIK4l5Z8rlE6D9DjuJBWnBz8nrwJwDj9epmvMivAd2fgex8vLRnu8mCMzBUCmGdceMXfK+msMcQvxJvFYpHJM+uK4+JgcbeEiwLeMoLzIaWUx47Ywn33++dhmf1+P4tCvN9cSENs4r3DmsD94HPkrQjSuUuBe+a5JxsbG1lsKj8/eK/5e5L1WAodzLuLSS5K+Br3vJVAIBAIBAKBQCBQx6UQFCRl2z3ki8o51VUqsZBA2g+cKAGvKkJm6MlfLBaZCEPSTk5Ocv96SVa8p7rb7daC6by6CTmB+BA06eQfku95B1jnEUoYO1tFYmfHHcCxFotFrVLrFXt3LpRj5Nich8e8co4Y4pkIvl2gB2O6xZ7ne8sFz+c5HpbnSfw85k4I7h/3zoUKJ7A+PgQRyP9qtcrEkIBCnyOp3qZQWt9pgXi+tH8PS+SeuDvGtw/FJcBWkYwRMY21zrmqqqoJKlTxuYeQYrIqEJ6cVHN9vqPFRZkXOBX8vcM88f7iPUlGBdfNLhCsY4i8t0swV+4G8XNzPzxDxXc6cecA5y3XqIsBPMevmXXC/eB9wM/+XkBYer4WiUAgEAgEAoFAIHBJBAX6wMvAN0hHmWsgnZKFyWSSX++k0KvfknJlVDqvukPOIOiDwUDdbje3RUDu6KuH7EJMIfBOViAiHn5INoOHTHrlHLIE0fZ0ewgcGQrz+VwHBwc1kuQ5DfzsmQ5O6BivE2ZaFiBaZS6AE2bmAng+AwKDpCx4IAJBqiGU7EbhuQBlGwcBlDzmuRq0cEC22RHB22H4ItDRxR6OyT3zOWJOfAxlgKUTdua6dB0wD1TIyYLgX9Yd94z7yHip+ntF3UUQHCwbGxtaLBZ51wbPXcC14uGhfi2cg/cQQoe/l/z6vU3Isyf8njA3tBFx35kHfy+7wwR3hK8tju0ZDN5Gw+eBi2fMEfPJvUfM83vurUcuZpRiVCAQCAQCgUAgELgYdyQopJQ+Imks6UTScVVVn5dS2pP0jyW9UdJHJP2Oqqr2X+A4uepP5RR4td1bIiBmtA14qCC2aEQAji3Vq65O+nu9Xm2XBezxpSWb8XmfNkQGQst5qJpTTXXii93ce8qBEy4EDKr0Llyw08V0Os3bC3rlmZ8hf4yXMTJmdlLwoEMXXiCfXAsCCvfCiS7XSbXesx/K0EdILkQXIliuA5wcEG5EDLbT5LgQ+jIrwneaIDuA85ehkn7fuM++wwTHd0Gp3AmA+eK4F9nxXdhxW7/nCbAWGU/ZVsG6OD4+1ng81ubmpnZ2dmrzh0DhO1AgYCDqIBQwh742y3uN4Fe2KXEdvLdcjCrnDZHCz+tzx5x5Kw2/c7HARcfyPOV71kNMWYueseC5H2XuwoOAu/VZHAgEAoGXh/gcDgQCjyruhkPhV1VVddN+/mZJP1JV1V9IKX3z2c/f9MkOQIXQv3crMr+jOgzBoK0AYoFFmmo6JG5zc/O2LQCl86r7dDrNKfns+sC2kn4uzsPrIHluLfdqv6RMwLxCzDaCTsa9gg/p9PA6fz3fI4D0er2cEeFCB8f1zAJEEs9a4Hhcl4sjED/uhQdkOqEriZr/6/A+db8H6/U6Ox0gfryWa8Hp4MGWjIH1QXAf9x2S7iKT5wFA1ss2CCez7mhgzIgJOFncQUP4oudSeJtL2e5Rij+QbMQAHB/T6TTfH+aM8S4WC00mk5zHAVwMQjzo9/u1VhF3GCAGMTbG65kC7vJwEl4KgR7yiADh71ufM2998PnnOe4Q8twUF56c/OMw4X6x1l2scHGO1/jnjztoHhDc8WdxIBAIBO4I8TkcCAQeOdyLlocvl/TFZ9//fUk/qhf48IS8UhH1P+gBj2Fd9taH5XKpXq+XWxEgj/56z2dwmzQhh+PxOFvIu93ubTkDTuSpIEP4IN1UiyHHXE9JtiCZ2LE9LBFSKal2/NVqpcPDQ00mk5zL0Ol01O/3c0uEE1sn/i5OOEmiPQKhhUwJciR8nrkHDggyx3c7O/eKeaa67cKGW9i9jcNbTtzN4fcD0WS9XudtPBGFuPay6u62eV8XvqWnOxtYP2UrjQcYejuNtw90Op1Myjc2NrKbgHnENcGa8rktx46zhbwPAjwRQlqtlqqqyi08/X6/9j7iWrgnBIFWVaXDw8N8HHYYqapK0+k0u1UYi7sTWFeedyGdCwHMHWua8XCd7pQhe4Fxsqa8RcGFPc9OKIUsn0PGwRxyXs9dKIULFzd9PT+geMmfxYFAIBC4q4jP4UAg8NDjTgWFStK/SSlVkv5WVVXvkvR4VVVPS1JVVU+nlK690EFOTk6yS4BtEt3+DcmQbg/po4JLW0PZauBb1VGd9JA7zs32hZyn0+mo0+louVxKOhcuqBBTyUW4gJB5m8DZHGQSw/Hdws9xqOh6kB8BfdjTR6NRrlLjzKDq3Gq1Mgksbdr0xnvOAWN0RwDCCsSTeYAcesuCEzhvi3B7PISf50GsyVcgdNCJb+ki8XNSaWenAwQK5ox1w3XhDHHiW4oZkHd3ZND6UApakHBvHaHtxkk1a47r8lBIjushkJyX4E6IvDtFLmpPYK35ep7NZvk9UuYvcD53I7CuEDUYJ6IceQL+/kMkKtuBmFdvI2E+mAvmgGwRzzhwMYn3hos6vpZYDzzO54CLUj5POCJc2HBRoQTn8vt6yXFXPosDgUAg8LIRn8OBQOCRxJ0KCr+iqqpPnH1A/tuU0i+82BemlL5O0tfx83w+V6PR0NbWVq1NwJP7vV8eMrm5uVnLQYDYOqkpq5MQcSrF8/lck8lEKaW8swTEBhGCCvBiscjBhW6Lrqoqt0k4SXGyAkn0nR28XQJSTO/80dGRDg4O8jlms5nm83kWCKqqylV5r+qfzW8mq/P5XPP5PFvAfStBrPiz2SzPG3NcEkcn/R6myPx4BZsWCkgrAg27JrjF3SvevmuAuzu4Z54lgDgBIU8pqd/v13YHQKxhjiGi3DNaIFxsKAUhv5++04RXzp3Ee5WbeXSHDRZ8zllW0X2t+Jw0m828ywLOAYSobrebwz9p+2BOy3vqbQg+Jl7DsXEulPcess/88B4tt7z08+EQYp4QAP26ERVwUbiLyEUtnu+uJnbN8M+HcicKPg9wdbhThXO44FY6Ry457spncUe9ezW+S43UbuuX/t+fc7+HEQjcF7zpn45U/fTP3+9hPAyIz+FAIPBI4o4EhaqqPnH2742U0vdLeqek6ymlV58psa+WdON5XvsuSe+SpJRSRaUXYgNxIFAOEn72/EzGEBCwhCMquFuBKn9J4NnX3jMEIORUibGXX1TNZIxs9wgpgWRJylXU0hnA+d1O3ul0ctsFpH+5XOrg4CCLC5yL8zE3tFhAAiFW3q8P0fVsBN8GEzLnQXcQRX4HwSyJqpNTr+yWhNF3feBeIO4wdt+VwY+PGDGfz/M9gHTjzmD7T9+ucbFYZCLrO0EwTrfxu0vEXRfe2nJR8r+LBryuzItwVwR5EU6CXQRALCiDApvNpjqdTr5OF74QhlxQQNCBTCPM8Bhj57p4j5TtKtxLdkEp3wPeEoSrB3fLer3OQl3Z/lBmhUjnbRIINLw3yzBL5ox/y9wH5tUzSXxt+hr33BNeX7pULjPu1mfxVtp7MC74LuEjf+aLtD79aNa69UhdeiCQUW0+MMLppUZ8DgcCgUcVL1tQSCn1JTWqqhqfff9rJX2rpB+Q9Lsk/YWzf//5izxeFgbm87m63a6k+jaKkC9aBqjIui2crf5Wq1VtS0hJtcq1kyjIkBNZbPlUKJ1ol9VrFxAg9k6SqCyzlZ50nrTvroCNjQ31+/3sisARMR6PswOCajCkyBP5e71eFmAgg2VmhBOwkjThkkD8KF0ICDkAsQBi6OF2HoDHMSCqtAFwTu4/jgJ3fTj8njkpRYwot0VsNpuZ3Lr9np99PfE7QhURFGgv4fhewWfcXJ/39fu8QuqZP9pj+v2+pNNARcA6cKcN5Jp7gDBTZkTQ8sEcIh5xfIJAId9cU9nSglOG9wDX6AGOLjr5NXvrCAID70nWFmPjnLzv/Dx+L3y9eWbCRXPNZ4O7O8qWBhdo/L1Qukq8beQy425/Fj/0SElP/dEv0uLaWlWqpPTCLwkEHlaktZSqU69+4OUjPocDgcCjjDtxKDwu6fvP/jDfkPQPq6r61yml90j6npTS75H0MUm//cUcjD/cIUDL5TJbucfj8W29+G6n9x0KqLw6QaCdorTPA6+yegjiRT3iZDdAIEvSAdksd0nADUDVlu8J2qNqzq4NvoPEfD7XdDrVdDrNj0GIymo7PerSOTEsSTuVfog419TtdrVarWrhlZAynz9EFOaO8SAqeFuHZwX4OJ3U8RxP+S+3EyTbgMq8u1a8hYGWFBwAPJ/QSencTeC2eO/h7/f7mQSzliDWTmi9cu/jd2KKwwO468KzGly8KjMPEKU8rNHn1V09EHGEJxd9eA7rzbch5Xy+lstr4Tyr1Spnnfh7ifcL70VEhMFgkAUPbyPwLUV9Rwzeu+5icbGGcZRri/vHveR6PVOjFA48oLR0gvD8BwB39bP4YUbabOmZb/g8zV/1QNzXQOCe4/U/fKzqPT97v4fxMCA+hwOBwCOLly0oVFX1YUmfdcHjz0n6kpd6PEgChMGDDCFDUr0iDEHl+8VioY2NjexyIOTOLeje9gDZgDT7VnyeU0B1n0BG6TxojjDHsjrPNTl53dnZydV/7Orz+Vw3b96sVUm9ek8FF9GEQEJ+f3R0VMsrsPuQq91kFjB/bu33+eZ6OHar1cqtJPSrS3XXiB/Tq768HgLtW2aWdn63mOPW8PwK33lhc3NTw+FQ8/m8RkC9Ys6947FOp5PvL+KJb2Hoc+Pjp9qNSISo4K+RzgMDuX+ef8BaxZlSrmuO7S08wNc9FXNcNn5cWl34HS4F1jPjYg74nrXjJJ15wAHgWK9PQx+ZH9pzSpJe5p+4OOTvcxwIiAmMZblcaj6fZxGgbHPgPe/Bip4R4WIY18rvXBTz6y3bIB6g7IS7/ln8MOPW7/xcjd8cYkIgIEnNZVJzfvLCTwy8IOJzOBAIPMq4F9tGvixQQW6327UqvAsKkDQqlxAh6dx2vVwu89aKR0dH6na7tb3nIa84EHgtoYcQCY7v1nKcCymlWg+7pNus42WVFRs3AkSv18sBjJ7w7+0F3sfu7QueM+DtDE5yaQehWu9tDO44wBEC+UUA4Ni0ZXhAnmdNMM4yK4C5Y265fhcZpHPhwY/Lufy+0i7h6f1ux/dWFEl5Prvdbg6uRGhAVPDATem8tYMQSc9KaLVatTBEfsfrEUJo5/DfQ9xZc4gDknK+hucpcJ1luCFj4FoYb3UWJsj4OD9uHRc2qOzzekQG5pN74s4N1jg7bEjKwpM7DFz88PvmYpc7JVg7vLd8LJ7F4Ouf+aNtw8UPzyVBrHF3SLmu+NcFGhe1OHYgEAg8bGjOk17771dq/Mefvt9DCQQCgcADjksjKEjn4WneD08Vk2qlVCcvvAZBghaB2WyWSSxEXTqv6lJ1d5ICQeG4VVWp3+/nXncqviV55/mQKwhkKTBwfKq7/X4/V8+x6tO37y4ASKpXVv163JruQgRtI541wHyUFnCEGg+qcxLPNbvt3OeX4/l88jgktNFoZKu8txFwHaUQAyl3gucEFreDE38P+UNU8PYHQh25Xz6fzC/Vdbe/k40BofetIRFlEFEQoTx0kPuJ84H5RWTi93793AdcK2Q7cP1kapycnKjb7eb17LZ/zxHwVoGLnDmtVqv2XO6ZOwU8V8NdA1wPQgTH8vert4t4tgVj9bYj1nI5B6XLoHyPIKpwf/nexRnGyvfusHHXiz8v8OBj44nXaLWdFN3igUcdG7Ok1/zHY23+u5+630MJBAKBwEOASyMo8Ae9ByQS6EafPMTGrfCSaqQNcuekEUeAdL7rAdXqiwg5Y0DIICiR6rZXSWm1oKffBQvpvDd7tVppPp9rMBhk0tnr9XJeAt83Go0shvhOE5zLhQx+ZkcDrOZY/efzef7eQwQhnWWwnpMs6bzSzPMg8VxTmdVATz3uCcYOOUdQ6Pf7eTtLhAmvMvPlgOj58yCALmQ4mZbO204QczY3N7O13sl72ZPPdXreBC4AxoDzA/FouVxm4s/4sdz7TgjMhedNSOetE89nt3dXB+uXHS+Gw6GOj4/zWvF14nPsu4Kw/aaLO95+4XPiZNvDEH1nExcBy8DT2WyWd6fw3AfO4euStcZngo8RxxGfAcyriz4+j77OWa8e+Mk1l+8PFzcDDz42XvuEPvFlb9D4TdHuEHi00Zyfigmtf/2e+z2UQCAQCDwkuDSCQtkPDen3yrd03rudUtJkMqkdwyuLgCo9lVyIDySLCmdJJn03he3tbXU6HY3H4yxUSOdb1ZW7HTB2CBckljyC4XCo4XCoK1euSDp1NMxms1wFhvB62wGklZ97vV5NcNjc3FS3281tH6TjO7ljfiCNviUm44AU+v2A9CI68DPHQ1Aosx+4b17NxzGAg8KJHb/3NpJyfXj6v48NIs29pJqN4INAxfqBKLrlnnYDd00gJNDmwhw7ceY4OGS86k0uBXPJOmSdOBH3anuZX+Br2/MNINq0CFCR95Ye6dwl4K1EF+2AANylcJEjhznjywUGd3C4iOJi10VjYs140KM7BjxfAweECxO0jSAQugBTZidwH3w8iBKlaybw4GPx1ldp9KkhJgQebTSWSa/7kZU2fiScCYFAIBC4e7g0goKDaiJkHfIKecAmjn3eCbhU37YQcoWLwImbV2KpqkvnQgEEsd1ua3t7O/8OgnTRtnuIDb4DBVkL7KhAsODVq1cz4SXPwO3eVE/b7XYeS7PZ1GAwyEQUQk3Pv1eVsZVD9j0Mz6vCPMb4EQEk5espd8agbQES7q0HTv6cBHr2xUUW89LWzpwyH77TgV8rLhaOj2DB+dfr0zBBfufVbY7JeHxrURcNnOx6C4jncEiq9fV7Tz9igm8/6fPjFvvj4+MswOB2cBGAdeLOE45NeKQHeZZkn/XPc9yp4e4Q372COfH2Et+hxMWfMkvB54f7iYsAh4G3Q/B8X5scj7XEnHoLDuv0onP7a73Nx50vvN5zVAIPPjbe+Ho9/cvakkJQCDy6SMdJb/qBmdKP/cz9HkogEAgEHjJcGkHhon7lMngNcQAS2+/31e12a6GCkm4LK4S042hwUuNEz4UIr5JTneYLwuFkZLlcZgJDxZ6ASCrjkMXNzU0NBgPt7OxouVxqa2tLR0dHeXxO5iFb/lrS9WkZKC3mkKlut6uqqrJN3O3h3orhZArxA0I7n8+zEMPzcEH4fCEEeCYBFXjujbeTeBAez+Oe+fx6OKALEJBb2g58i0onqk7A1+t1vofutvDz4ShwOMEm0JHr9FwN1gvX3+128zEgtY1GIxP/MkgSUQkRy7e/hOxD4Alc5PWLxSJvr8o4/H6xlhg7IhvPL1tgeB8xlzhLcAbQWoRLgHagslXBsy8Qehi37zLiwoLPFWNzgcBdFbTUcE3MAU6SMm/EhSkeQ2BwQY2vcvvSwIOFjVe/Sh/9b14b20QGHml86neOlY7XWv/M++73UAKBQCDwEOLS/LXsQXq+CwFkhkokxAh3Qrfb1Xw+z7+fzWa1jAOOfXx8nPvNnTCX5IEeea9iQkbL8EHfdQCiJJ0n8kvnVV6uz0WSXq+nZrOpfr+ft7mEqONAmE6n+Zog0N1uN4sHTsDcxeFtCQgcnu2AqNBoNGrEkqo38wB59LBDSD6PQRTdgeAk290I/J7jemWZ6jeCkIsTiD/cf+aYOeHfsrVgsVjUAji9rYG15bsYAM7HdXqGBGOWzltk/D5zHxGALiLrZWaDV9xZN8fHx7UQSMbiAgnztVqtNJ1Oa5kQ5T3we8F9Lp0B3HOO6/CtRj1k0t013jpSrqkyHBV3CS4EX1+8pzwvg/G5S8hbS3ivuhDhx7zIRcH1cv3uZODfwIOLqt8NMSHwSOLN37dQ6xMHkqTjD38kokgDgUAgcM9waQQF6fyPe4iJdL5VI84AyAzkvtPpZNLFbgle0Ye8Qww8Vd4fhwQNBoNahXW1Wunw8FDb29uZfHrbAGPpdDq5YivVt6Mrw+wQTbhGD/zDbeFkFoEAp4ETLY7Pv2VFnwwHCDttEJD29XpdE1H8d/zeLeWQQoiaW+i91x1RCOeEk2mvauPeQJSAvLfb7Vrlmuq6nxcRwV0lfj/dZbJYLHLbCUTRK9+ISqwZ5sHXY7PZzLkPkGSfc7IuPEQQ0kxrDtfkff2IILRcSKqRaB+juzAA4z05OdFkMrlNROB4PObvBSfWOG2eLxCT13APy7XGGLiHXv3nNe5IcYcL6xm3kJ/TRQUXtviZteCiAnPpzhbO68KWv3c8GwPhJBAIBC4L3vbXrkuHE6VmQ7/wTW+67feP/4S08yMfkiSt9/dr4ncgEAgEAvcKl0pQkM4FBE+Ml85JBVV7FxP44997yr26Den1oDbfGYF+/Ha7nXd0qKpKBwcHms1mOjg40M7Ojra2tmo9/k5OfStEzxqAwBAGCLE8PDzU4eFhbdeBdrutra0tNZtNLRaLWoghx+IaPS+CeXMCWm6xJ527AJzwV1VV253Cx47QQcCjdB54SNWf6/MdBhBEPNvBrel+rz0Y7yLxwR0dpUOkdCY40YQ4s1MD9wZBxUMlPSeC9UeVHBLM8yVlFwnz4W0D3W43k2IPDfQgzzJ3gddyX3FquGjkfxgyr8w/x/O8BM9d8Pvmwom7cxBOSnfCRSGV3DtvaWCNIppwHS7OcVzGiCPEWxF4L3MvWcOeM1EKAS4iMdc4FRAdvH2I5/r7k2vyXAseCzyYaD72mH7x975KsU1k4EHHp37nWOl9v6ST2Sw/9tY/Pr7tedVqpZMQEQKBQCDwCuPSCQqQAkQFJ4XSueWbsEMIt/e/93q9TJA4Jv96pRvCDpntdru5qgk5ns1mGo/Hmkwm2trayj3k2Nqd9HglFks22wj2ej3t7Ozo6tWrOdtgOp2q1WrV7PFY6CFEHjjINoEelod13K3Z/Ox5ClK90iup1v/vpLF0HUDYnXx6KwE9/cAdDp7tgFDDOUu3SGntd1GIxwiYhIC32+3sbnB3AHPDlqOMmeMQvuitA769oNvjmQcXZvjXQwwh7JyTdVw6C1h7pRjEfXOnCMfw17goVOYT+Hz5/fAxeFuDXw/j4/feOuA7U7DGOFaZA1GuRZ530fvRXQa81ttjPBCyDPQs17MLIggFfPmcuEjgx+J1rD0XfAIPFhrDoT7wzW9R1QgxIfCAopJSJb3p+xeqfurnb5PF1iYuBAKBQCBwP3HpBAUI3Xw+r5F7qsVehXRRAAs2BL4MU4OkuN2Z19OvD8mUzom1vxYiWlWV5vO5xuPTCgHjK/MBIPuICXt7e9rb28vjvXnzpprNZg5jHA6HeQcHFw4g0Ov1WpPJpJYRAfnDRg/5o0rN+CXVKq9lrgFA0Dg6OqptNymdkkOCBvndbDbTdDrNNnOIPlV07oVvUQjhJFzSCTWk2tsMcAF47z/OB47l2QmcC2dIv9/Pa4MxuQjh7RGMj/XB/fQWCZ5PmwVrgvGxjtyx0m638xgQHRBnmBffDtQDNGlFcFHBq/KsP8aNW0A6dy2444AxeeuB33+ECt4HiCvsisJxXHhi3jxskp+dpLug5C0InmVROjdwbJTZFcy5h3mu1+vbtiPl9d6O4bt1MHZvPfE2icADhkZTH/jT75BCDwo8oEhr6fF3Vxp870/c76EEAoFAIPCCuHSCAhVHKsqQzl6vlyv5Up30QUQhPhAayDVkg2ooDgBP8/cqqBNoJ7pexaQqXxIWKvfY5Futlra2tvTYY4/p9a9/va5du5bJ4mw2U1VVGo/HOWyx1+vlrISTk5Pc0w6RdVeEV/AXi0WujJf951y7OwkgwZA6zsdzvHUBkYefGWtVVTk3wl0jkMAyPJL75mn/GxsbtVwCxuzjRsTgNaUAwtxzPe4ugPj3+/1aloSvDQ9N9GM7sfeWEq+6uwDl64Y1wWO0trBu2WliZlUmF0f8+iG3/jx3SyC8udDgVXdEFh83x3PBpBQWcEewzl0kcGeAZ134fJZuEyfsF7UwuFCDgOSilo/V4WJTeQ3MV5kh0e12a5kMLn74cctzBS4/mlf2QkwI3HM0lklK0rp191ww6UTamCVt/6I0+N5337XjBgKBQCBwL3FpBAUIAZZ27+m/iMxIqhF3yLb3dnulvgxmo52APm8XBSDVEG3IX9n7jriBO8CJEedmJ4rd3V3t7u5qb29P8/lc0+k0Cwaz2Syf110TECvaBRAhUkpZDHFruPfSHx0dZaLZarWy2HFwcCBJGgwGmdj7FpKr1Urz+fy2vIbSFULrB/PC3PO7fr+vXq+XhQyvlHNcJ+MXhfd52CFjZJ7ImEBY4Z6Uu2u4k8MJp9vhL8qkaDabeVcQF5JcGClbXfze+dacOBO86k8bCevMA0Xd2eAkl/Ozlr0diDEg4PB7hDaOfxFphqR7+4nPHfeC5zhB9/XOvHk4Zjlu/9mJfJm5wHvW3weclzXnLSPcD7JMPIzVnS18HvDeoH3Jz8/YSoEi8GDgA9/8lvs9hMAjgFe/+/Qz77lP29Bqt9J68w6EhUrqPNtQ+6DSY3/jx+/SCAOBQCAQeGVwaQQFgCUcQrVYLGrVdidXHgrn4XUQIG+DcNJHLzcECmEBsrVYLDSfzzWbzdTpdGpVaogGQgMiAP96JdXD6QaDgfr9vvr9vlJK+bpc6FgsFppOp7W5wGbeaDS0XC5ztdir0lyXV8w5plv5y7lDSKGiTo4Dx7soxI6fERQI0cOp4OF/EDjyMJwI42TwKjrnLLf3o9XEwx25vxBo6dyN4IKO501APJlHv5/SuUjA+vM2Abf+u4DhoobPFWsScYx7A0n1KjzrVjoPNeT8tEawDjiHE30n194u4AIY4y/vI/Ptol25xaWvAw+C5LrdCeBOB3bFQChx14KTfNacO1f8mABxoNyFwj8XfHcSF1UQZ7hO1j2CD9dRtj6EoBAIBJ4P3X/2k3rtP5MO/9sv1OJKQ5M3rFW9hI+MwccaSienzoRrf+3H7tk4A4FAIBC4l3jZgkJK6W2S/rE99GZJf1LSjqTfK+nZs8e/paqqf/lCx+MPeLeuOzH0qqp0vlWe97ZDIGmNcGHBq+NlW4WkXPHn9d6zDiEr3Q39fj+7C1xUcNIHOZSUWyAgizyPSulsNqtVXaniM06ItFvvXVDwcDuvhrt9nLYIr+xDwqiaM6/uCuF8fq+8El26C3iMCjDbNuIm4QvCjfBQzp1Xm3m9iwbP16bizg13W0jK80j7BzkPEE0n1N7qAtn3OXP3it8fr8KX65wxMeeee8FxPKvAnQPl8ThmKRTwOCjHggjjQgjCjbs6XDzhPnh7gbdTlOGgfr0u/rkLgfXlAhnvI+bJdxPxdc31MVflzhY4ddxJ4u8r1hG7x/C+8LkqxYvLiLv9WRwIBF4atr/r3dqW1P7qL9L6JfxVdfUf/Setz/4GCTzYiM/hQCDwKONlCwpVVb1f0mdLUkqpKekpSd8v6Wsl/ZWqqr7tZRwzE3wIMMTXq6SSMonxai+2/uVymckPBK3dbmeCTKVbOidg3n/vFmoILATEiS1b943H47zjgQcCugjB8aVzksh5GYeHG7pQ4tvr+ZaCjO+iYDxIkVfpNzc3c0Ah5y4rwG7l55oRGrgmd380Go0cJMh1M4eM0avF2MqXy2WNxHM8xA8fv7eDMCYnsT635XqClJYtFn6vIZWQWW8ncfEAcWS9XudsD6+IuyjgwgLH9XwH7iW7eDBH5TaFZWaAizW+84n/W+Yh+DqEzPu6LJ0GviMFIh/H57mMzTMtSndCmZPgrScuepVCAeKPrzOOydooj+1z54/59pHenuH3x9+f5f3j/XaZcS8+iwOBwEvHzj94ae0Kt8vDgQcV8TkcCAQeZdytlocvkfShqqo+6lbplwp3Jrg1GoIAKaOy6zs6OKH3/nmOW4oS5TjX63UOSYQ4sZNAu93OX75FJeRmsVhoPB5nssj5SwJ1dHSkyWRSq8geHR1lQjqbzfLuCoQIQv4Yd6fTqdnnIbze4gAhg4wR7MjjpZXbq8GtViuLL91uN7cmuC3cyXun09HW1lZuJXCBhHHSNtLpdDJZh+Ri6Sco06vxjPno6CiTd4QWnARcu7dzuCvB7eu4ISCUpbOEufa+fp9zsjUYA0ILxBeBwl023DdaLKiYI4jQcsM64tzMOcdwV4C7SLhm5s/dGAhLvDdcHGEMkmpzXhL+0hHh2QLuYvBjISwwFw5vWShbXMp2m1KU82vGDeIOC+n2LTB9BxRvZ1ksFmq327XPljLs07MiHiDclc/iQCAQCLxsxOdwIBB4pHC3BIWvlPSP7Offn1L6GknvlfSNVVXtv5SD+QewtzNAjEjtJ/AQEomgIKlGzCTlXQhKQugExYUA759nx4JOp5OJOqRkPp/ncWGhL1saeGw+n+vg4EDdbjcTbbYGlE5J53Q6zefu9/s1otxoNHLAIo9B0CDHHA8y6I+7W4Hr8jnjtVSoadGAHJbuASz/bHUJWfNdE1xQYA4lZSeKC0cQR9oAWAf8zLhcUPDe+JRS3pUAazvP73Q6arVaOeuBa+YcHAsSz/y4e4HMDB47OTnRdDrNhJpWGxd8OBfbgOLIODk5qbV4uBDjLhFaanAyIBKwxr1ViDXsJBhXhYtN7iRgPDwXEaoMaASMC9GCay9bXVhPZduJ71jigoGvTb83LgIg9Hl7jDsMODdf7tC5SAT04/E8z2Pgc+MBw139LA4EAoHAS0Z8DgcCgUcKd5w4llJqSfoySd979tDfkPQWnVq/npb0l57ndV+XUnpvSum9Zz/XyIuTCcgNpB3CgUuhJAG83oktffwQToLiPPBuOp1qNBrVshAgrGzl6DkNk8kkb/vnAYpOrnA2rNdrTSYT7e/vazqdZjLugZHupGD7Sc+CoP0CcM1uHWfM3nrB75gD8iGYIwiatyXwGpwa7ixgDiCekHVe2+12c7aAt28g4vB8D8VzwcdbEWhPKe+zk0N+rqoqv97XkDtZOAbjh/xznxAWOCbHZR1SgecezedzHR4eajKZ1ObVq9vunPGMCMIqvQLvcIIPgWc83Ad3mxwdHWWBiy/Wss+ZrzfeR94+4Q6Ui7ZM9flhTfrclNkeZduC737BF6LLbDbL9xARgnH7OvGcA9ZBeR5fI6VzZLFYaDab3baTjP97UQvKZcbd+Cw+0vKVGGogEAg8lIjP4UAg8CjibjgUfr2k/1RV1XVJ4l9JSin9bUk/dNGLqqp6l6R3nT2vOnvsNjJHZRZ4HzrkxCv2kC3IMv35kA2e65V5Jw+e5O/2cq84Q2aWy2UmJOw+wLkg2ltbW+r3+5KUq829Xk/Seaq993J7pdxFBa8ou+WdSrm3CCB40D7hmQq+2wIkkHN5W4F07ljAYcB5mYNms6lut1sjj1w37SI+dw53kDjRZu4vypLg3nnvvLexuMW90+nUrPvee1+Oo8wjcKeHV87dRYAwgygAueaeeq8+Y+L1HiJZBkoyv9xP7h3HrqoqC2PMu5N9jllW5cu8B88JYA5wv/hOIU7QSzhpZ37LfBAn6X4vfV5Zjy5+uMOlfI96W4evSRewOBfH9WNxvLLdBUeKixAPmEPhjj+Lt9LeHex9FwgEAo884nM4EAg8crgbgsJXyaxdKaVXV1X19NmPXyHp517OQSEM9PBTtfbKspNoJ5PeMw3hKIPYvPLr/dLughgMBrm67RkHVMKpUJM3AIFerVZqNpva2trSzs5Obl0og+AYlwsAiBMnJyc6PDzMVVQPCgTuUGi1WrVcBg+XhJjiyoCMu+CChdzJlffb8z1jRpApq9fcN9+NwZ0VvIYxlSTPsx/8vJzDnSMcD9LnrgbPCfD2As7f6/WyGOQZAJzXMxb85zJ/gftH7gRj9PnwnS0Ys1fYIfO+xaS3n/A9ORUICr7dp28JCTiuC1Dl+4H8Ct5D3krCtXkLhuc7eGtEKW7wvNVqlUUXFxhc+CsdAaXLxufS55drkpTXmI/D32vcKxc4XFRhLl1M8Hv0gOCefBY/SPjon/7lqtIDdc8CDyD2/s+k3r/4zwrWF7gAj/zncCAQePRwR4JCSqkn6ddI+np7+C+mlD5bUiXpI8XvnhelfR8bOqQUkgHJdMJQVjW9Gu7P995tHoOElpkCEBqvEkOwnHSwgwRBi56d0Gq1NBgM1O1287g86JAgvfl8nreqZA5OTk40n881mUwy0fOkfg/d4+dut6tWq5VFEcIYPbjQyRXuA55PNRoSSgglBHy9Xms+n9fmQlJu3SC8kHvhc+cuAsIbaePg+YyF6j/HxiHhbR/ev8/xvKrNPeK89Mx7qKcLVPP5vLYOWW/eCsLj7gDgfjip5p4Adwa44NVqtWrP8fcC4/e8A9p1vH2CfxFMvP3At8NE2Fivz3cTYX7YrpS5dZHJBRRvI+I6EWgQXRCy+v1+Ppav3dLtUYoEvl55HMGDLI1Go5FFOxcQ3P3gbQ6lKMD8ejuQ53JwDQ+SoHA3P4sfZJx0Kiky0AL3GI1jqTpa3e9hBC4Z4nM4EAg8qrgjQaGqqpmkK8VjX30nx4SYQYqwxEO6Ib1u1y9Jg1eWIUqeCu+igwsSECMIG2GDq9VKo9GoRnIg1oDdGrwi7MnyEO7t7W3t7OxoY2Mjk2ZI9mKxyGTYAx8laT6f59+RU0DFuqpOgwyHw6G63W6uBjuBgzBtbm7m89JSQoWbSnIZroe44NdL5Rki7m0mvAaBBXLrPf3r9ToTashq6dTguG67x4lRVZXm83leF2W7BuP3wErODXHmOE6YL+rZ5zXMJwIO1wFxZqzek+9OGg+D9NcgFEjngYQ8hzXKcWmrKVt0uF7IcbvdVr/fr7XEePsExBlRwN0LLoZ4ywbH4b65sOHOERw27hLy45RZDk7ufd48F4H77kIL68PXapkxUbo23KHD3NKyUoo+rLkHoe3hXnwWBwKBQODFIz6HA4HAo4q7tcvDXQOECHJP0Bwp+RBqD/XzSqN0bounXUE6t8Zje+b55AzwOun2gEiqoQByirOB19BGUIYtQrY7nU7enYKqNyQP0oKgcREZWi6XtdYGng9xY8tHSB/nYXydTker1WlVxVsaILeMFQJfBhH6vDFmHAWIE95qQC6DZ054hRpyDAksz0+lGqcF19Rut7M7ZD6fZ5dIp9NRr9fLrR1u0XeiLqm2djxMkao+Y+Q8vIZ5cuIL2XeSXxJ0dzYgZrBrhGdvQJY9i8BdM4yFYzqo4DNH5Eh45oULPJ6f4VkO/l7yVgNvTXCHCK/1NesBjVyvOxtY/xzDd5XwVhUn9u408tali36POODOBW/tcccO7gqcIy6QuEAVCAQCgUAgEAgE6rh0ggKCAUQU0kg4IWF/JUEp7cneg04l35/n9m2IJ4C0Q8gQM7wvfDqdSlKNWEFkIHOtVqtWAe52u7n9AbLi/fK4DrhWxuKZB2zTiOsCckR7gqQaqfMdG2hdwOEAoeTY3pbAv/yeefSqs2cq4MLwLQgRGhAdPMCQeXNLPccok/rdcUKfO24GD+Tkmpkzzk0YZknAWR++FaS3vvhrSgFIUr5WnBdOUhkXIhjX0Ww21ev18v1i7j14s7wOF2GYcw/J5FqYG9avt364u6LRaOQtS1304Z5zPm8XYp64V5yLcbkjgHuByEXLSimc4Y7x9647E1y0850+mCv+RQxAaGMMfO+fCeX65py4oDyHwddVIBAIBAKBQCAQuB2XUlDwCvxyucwkwq3cEHZ63D3MzYUDbPduhabyjWABKfEshM3NTQ0GA21sbOR2Ca/4OgHGOg6J6Xa7GgwGmbQdHR3VtleUlHMLODZkFXhF2fvLEVTctk21m+ugas+YvP8dstnr9WqheYyTa+FYs9ms5mTg3nAvvF2AufaqvgcSMl4P8+MeL5dLbW5uqtfrKaWUWwCcnJa9+8wJc+shkBzbd/fw1+M68a0GuT7O604NhC53Brizwh0QrEWs/sxzVVXZRYFzhjXP2PyYHujo68B3jfAWHubAxwFZZp0jDvAazyiRlNdCKTzwnMVikYUAd5UwJm9vYD14hgTHYQyIWt4a4Y6PMt+A1zDfHLMUBd3JwFxwX33eOIa/rhQ4AoFAIBAIBAKBwMW4lIKCVCcpTrAgw5B7r3J7EJuTWO+Fd1INQST0bWNjQ/1+P1dW+/1+rcIP4YEsS+fbDnqFHtGDtgfOSWgiBO/g4EAHBwfZgcG1Q+o8OBJxwcfspJ1+/OVyWcsWoKosKbckQLa8bYHj0ZaAWEPrCEGSZeBlKYRwzzzIEgHCBaCyt95zBzz4TzoXDbw6T24ERNNJMiSUY1PppmrPY04cfYcQSTVS7f3+HuzpRJs14mKCV9S9laEkrZB6yDXf+w4Gfl5vPSndAAgi3EvG5E4Ar+K7a8HnlrlGFEAUK9+X7lpgzjys1NcJY+a97K0ULqT4+mA9+HyUa5hjeBuECzwunrBWy7YGFyLdeRGCwoOD9LnvUBUdKoFAIBAIBAKvKC6NoAAZ8PYBqR6+SCWaKr10no2And63mvO2CX+MlgS309M2MBwOc8sFJNpJHOIEYYmQX3cJHB8fq9fraTgcajAYaDgcZnIFaZnNZhqPxxqNRtlRwPHZntLJZ2kx9159nBWr1UqTyUT7+/saj8eZVPm2ipBORA1cEhzXiSfEzc+HSMGcuj0csgkpc5cAYpBX/nmOfzGntD5AgF084FhONKmee+WZuZzP57VMi9ItATEmKJOfvRUEInpycpLbZ/yeAQgoIo9nYniLi7dT+FaMHMPnFQeDixzeMuKk2jMrXGBzEcBFOuab8ZVhh+7SaLfbNTHNhRVvS3FS7/cUkcIFIBeSSrHJBQRvp/D15cfw9ydr3lubEN0QPTzzgWv0OWDtBh4M/NJv2VK1EQJQIBAIBAKBwCuJSyMo+B/2vmMCbgRP18d27xkLVOS9wuoJ/+5aoNLvBJOKspNWD4mD1CAEjMfjPD7EBHIJ1uu1+v2+dnZ2tLOzo93d3dpuCjgJptNpFhUmk0lNUHECiJiAuFG2ATA2dqMYj8eaTCaSTskYWQNlVVxSnjMIHrsxMEck6yPWICh4cKTPY+kw4Hyl80Q6zyDw9ge/P25lR+QpK80erIgQwDxBLGmXYc4uCl10EcFbTNz54JV4rsGvxbMg+PIdK7i3s9kszwXr2YMbfd4Ym69TSTl/wduByswEJ+Fl0CfkvyT8zLtvGYngwe/cLVDee37nIk3ZkuDndMeLrw9/H3MOvz/+5S4M7gmv93vBe5m1JN2+I4zPCWsrcPmx/PWfr3XrhZ8XCAQCgUAgELi7uDSCAnAbdqfTUbfbzcQWQB6oFs/nc81ms1qYIQTSCTDHB25L9/54t+ETYghpnU6nGo1G2aGAiOBhjM1mU/1+X7u7u9rd3dXW1lZti0AnQMvlUpPJRKPRKBNMCDHV4LIXnO99ZwaCIvnyrQWdpEK4IZi+0wJbQ5Jf4MSRthDfMYB7Vfa4e2sC4/TqPOeDNHMdvgtHWaGG1HuuBASTdeDtHU4GnXi6rd2fK6nmOvEgQJwsODMgx4vFIosvnMdJv7dysPbIBPE1yDicFHM8dqxgXXD9Pjecw0UE1g3H9fO5UObPw73D8xCbIODMi78GMCZaJHytupjhop63H7izwNekrw2/l8wVThlfky6iuFjlIZMcizl0EcxbUrz1JnB58exnb2rdWr/wEwOBQCAQCAQCdxWXUlCgCurtDU6MIc9HR0c6ODjQeDzWbDbTbDbTcrmsWcJxBTiphoxAFr3q3Wg0stuh0+nk16zXa02n03w+r+wjdhBiR6vD9va2tra2alkMHhJIJXWxWGg8Huvo6Ej9fj8HE5bW6/l8rpOTk+yKIHkfIYVxS6oROeDZDIyBx3wbTq8Ku4AAsXaix/VAOhFmaEEhU2JjYyO7MNxt4YBUSqo5A8pMBcSE+XyeRRGu25/HONnGk3PwOq6p2+1quVzm3SAgx07gOSfrptlsZrLvc+xtKqxnn3+eA3nH/cFc+g4LEGtvafBzeb8/4hQVfq7Dx1C6M1gnHnboLSQeVuk7JuD2KVtXfAcQnsc99fdvKWi4+8XFH8bpYiBiBCKSt8XwGhw75Q4SCIecrwzd9HllnZYOikAgEAgEAoFAIHCOSyMouA2afnkP/fMec7YCXCwWmk6nOdSQKjVEDVIBoXHruhNbKquQYYSBi6rTTlLIH/AAuna7ra2trZo7AXLaaJxuX8m4qcjSsuE7WZQEmnP5ThRUkdmxgOti3GQseFsAhJgWAbeJc62emyDVXRHezw/ppCpdkjIIXLfbzcdBfOD+4DLw43K/uEa3z4PVapWFFK/sl8dlZwwcEjha1ut1zsy4qEffgfDi7gLPLuB1iBccz9sdXOSCoLsYwDF5D+AYkVRz3vB7n2sn+O5scXGA1/lj3lpD/gdrlZYKjkPuBl9+/d6e4o4MxsY69+tz14YHg7J23GngThtfJy4K8N7m+kpXTtkiw9rldX5OxsV8BgKBQCAQCAQCgYtxaQQF6XyrNwgVf+A78Ycoz2aznEEwmUy0WCxqQWuQAYi6V0RL4iCdkzhJ6vf7ajab2tra0sbGhqbTac2GvbGxkY87m83U7XbV7/dzWODW1pauXLmivb09DYfDTGIhpfP5XPv7+zo4ONDh4WEm+m7Ld1v2bDbTarXK205CpHAhYMNnrlqtVo3wQ5hwNMxmsxoBhOhyjcwLBI/54R45CeQxFxwYPxkTtAdA5P15kN9ut5tbRqbTab6fLnJArMmFmM/n2QWBa8DzAuiN7/f7kpSvz4MAywr0yclJJvJ+LKz1EFOq3L5+Op1Ofi3V8zI/wG33BDaWuxIgKrHucbGw9aO3xUj1DAoXV9w5w5z7c/iXdVSOA6HIW19Kp4HnNrizAOEOUYUxlsGQrCcXqcqxst44DiIBz8cdw/309ch7gLWAwMha8vtxkbjg7SKBQCAQCAQCgUCgjkslKEjn5BTSwR/02NYJaJxMJjo4ONBoNNJoNKqRO8iAW5shnJIySfXwQaq3vV5P/X5f29vbOaAQazuv5RyLxSLb5SHXvV5Pu7u7unbtmh5//HF1Oh0dHBzkrASs9YQx0rdPRdir5ZAyWiva7XZ2KECMvPXCg/Yg9Ox84Fiv15rP57XwQxclLiLavlOBdN53XtrgvW+dL3afKEUZvza3y3ugprda4MTAto7LgnaGcrcK3Cq0zCCCuEuA+UC88LA+rtnFAxdTeKzVatUcLRBzSDatILTQeEBmae/n+mhBkVSrrjMfEGp38kiqCQ8IMThwuI/+vvL7h6PF7/lFQPTyrAuv+vs9cBHmIpLu64T3gI+PNVa2evha3NzczG1AvpOEi1a+TlyMYFwuMHkrRCAQCAQCgcBlRPMdb9Mvfs3ei35+/6mkx//qj93DEQUeVVwqQcEdCVLdVg5pghDhThiPx1osFpkoOrnyvIJer5ezCcr+aH8NxIaKeZm94L33vkUfaLVa6vf72tra0mAwULvdzu0NjBVBgUwEbPIk6juB8gA7HAplwCOiAGNElAAuULhggbWdKjjng4y55RvbOFV4iB7j5fyed0BewcnJ+VaYCApe3Wb+If4+71799lYMnBke4uhiQSkkMT4P+0PskE5Jab/fz0IEAovPLYSUMSBKsF7YdnI8Hms6nUpSnivcGmQjcA6ukfniX9+5wTMMymo6oI3BvzxQEfGDxzmW3z/Oyf1w94W/H130u6ii784H3COsQxcLmVMn8i5SsNYROji+t3B0u93alqKsVdZC+T6QlLMaysddgCl/FwgEAoFAIPCKISUpnf498rE/8QU62rr975EqSUovvjVz/MZKk7/0hbXHPvXvH2j9c78orcORGXj5uDSCgldp6R/3UESpbqPGQk8QIyQNUuTHpOoLuSrdBj4Gr/B7er+HKHq1muo0RHt7e1tXrlzR1atXtb29nUk5DgVs+rPZTOv1Wq1WK7coMH4nf5Iykfft7rwK7tkDnpvA2P26mBPGDaEkH8CdBzwfuz9EvNPp5ONyThcTPAAR9wYODn7vOwvg9qDN4SIrP8S13FGBsTebzbwThVeZuc++jaUTWNYLYs1yucyuD6r8zLX351N5R1Dw1gRezzyWu2Aw78wRYg6P4Vrxte+V9zITgXH5uvRMEg8/ZE4RRDyPAAECsQpBBnHGibgLTv6eKUMhETrKfIUyJ4G2EAQx5sydN6UwxvUxz56/4a4DxA136ngbh7dfAF93gcuN1G6rCjNJIBAIBC4xUrut9BJ2jrr5lZ+lW5/B3y13qbiRzkQIwwe+dkfS5+vt3/YxrfcPtD7b2jwQeCm4NIKCo9VqaTAYqN/vZ0JR9jhjeSebADLu9vWLiBcihQc+SqpVaqmgEvxIvzUEGuLbbrfV6/W0t7enxx57TI8//rh2d3c1HA5zyJ27JBgbx3VS6iSI7RvJaXC3QpnI7xVUtrWkPcKrvbze5wNi79kJEFDmaTKZ3GZ95/VcA+QZcg0plZQJNsST++tEFSII/Nr43Xq9zqLN8xFmFxM8h8J77bHVX3Q+r/ojpHDPPbDQAwKpnLMeWSvcg263q263WxNpgFfcy+0MPRuDa/P5d0LtYZVOuEsnA9+X68Zfx3pzJ4cHkjJf3gLDPHh4p8+rZzP4fUc0Y11zb7nfjMvFLf/ZXRSlAISgxH31tgzuI2PxuQHuqghcXjS3tvTk7/10La/GfQoEAoEHBc2dbeksc6qGkxOd3HzulR/QPUJqt9XY2ZYkPfNb36LDt76UoOdXNhT6F/7w66Xq9Xr7X/wlHT9z/RU9d+DBxwsKCimlvyvpN0m6UVXVp589tifpH0t6o6SPSPodVVXtn/3uj0n6PZJOJP33VVX98EsZEDbmvb097e7u1nIPPBAPskLF1gmPh7adjSlXoT0cz6uU0rlDodFoaDab5awGKvSICRDpdrutwWCgnZ0d7e3t6dq1a3lnB4gYogDHdcJDe4XvYNFut9Xv9zPRIusAwoN93gP63EIOsT05OclEFhs/c+EOBghmp9OpZQvQc891OBku8ykgdd6+ALwCj1BBO4mP2e+/Zxt4VoGTu1JUcFJbklF3afiWgoBKOOTXA0HJbkAgcKLqW2ciQHAPEYa4vxBbF6y4LzgBer2ejo+Ps8OBY7m7QlLe/cLnizGwpl10cMeH5xkwt76daNkKgFvCxQQXpjxAkvvN8xBRmEcXfzwMkbXsToNSxCpbcWjrYK3zO8QIX+MuevCY5134+74Mbr1MDoVX+rP4QcCN3/4OTV8bYkLglcVRX2pe2dPJc7fu91ACrzDic/jO0LyyJ+1u68kvf/WFn90bs6S3/L1nlOZLHT/1ifswwruHRqej2a/+TD35JfxN/ADsGpWk9/+RN+ltf62r4w9/5H6PJvAA4cUYRb9D0pcWj32zpB+pqupTJf3I2c9KKf0Xkr5S0jvOXvPXU0ovyt/jf/zTQkB/NGSj1+tl5wLhhF4x5jhe1XYbv1fR+eI4ToJTOt1R4PDwUNPpNJOs1WqVdyCgetvv97W3t6fHH39cr371q3X16lV1Op1c7Z3P57lCX7YT0FeP3R6BgrwHBJAyrFCq71RRZjtAWBECXFDwlgPmp9PpaGdnRzs7O9kt4S0Ovo0nBJDcCs9ekM6r6yX55/q5h55z4M9354SH/CEasbtHuTUia8TdBowXYcK3cbyo0u29/y7iuHiFKwX3jKTbrtezKZg/yDouBr4gxH4dwCvphDQiUpABwbiYt263q8FgkNcgApOHP0rKroOLdr7weeNelyINbUm9Xq8myJAn4euFOXGxo8xW4F6XuQsIL8w9X+WWri7OeDsF8+gtT751ZikmlC6VS4bv0CvwWRwIBD45Dt9W6cZveZuaV6/c76EEXnl8h+Jz+GWh+dhjuvEVb9P7f9/jzysEH/cqvf/3Pa6PfM0btfGmN7zCI7x7SO12ISY8OKga0i9+3avv9zACDxhe0KFQVdV/SCm9sXj4yyV98dn3f1/Sj0r6prPHv7uqqqWkX0opfVDSOyX9+IsZjP8xX/a9b25uajAYqNFoZIcCRLC0eEMOncR7DoHvNOCihGcGTCYT3bp1Kz9XOic3jA1BYHt7W7u7u9re3s5ihx+HYEIIF/kQHIMsBklZ6OCauU6v+ELEIXy0fFRVlbctBBAtxAOO6ZVXxoJIgCjghJrqt3S+ZaLbxRkX33t7A4KPixke0MhxEVQIZ+Qecq3kZnBOD1x0Quy2dm9JoB3BgzSp9i8WiywCcc2Mj+e4yIKwwni8+u4hkh5wyLahZEaw6wfrxV9XCiul6OXBi4C1zvx6G5C/x9zR47spsMb8eawHb6twAcPzG5gbxscaY06dwLsY42O7KNeBe+C5E7TquOtDqmex+GeDizWe81C6EDyXhOdeFrySn8WBQOCTY//TK6XqrXrsBz+ok2efvd/DCbxCiM/hl4fmY4/p2d/8Kdp/x4sT6hfX1vrYf/2EXvfPmzr5xQ/f49HdXaTNlmZf+ll66osfPDEBVA2p+uWfpfRjP3O/hxJ4QPByMxQer6rqaUmqqurplNK1s8efkPRue96TZ4+9KHigX2lTx6lQ9tUjGkDMee3Z2G6rEkNKvAXCSfTR0ZGm06lGo5Gm06mq6nwXBUg1Vdher6fhcKgrV65oZ2cnV62pDLO15cHBQd7pgfNCsqhcYxtnZwTG76IH189YqXIjKEDovD0A8iWdt3kgOpQ2dIe7B5iv0rYP3Mbvlnqq2NKpuwMnBvMjKd8X5pncAca2WCw0nU7z9UJu3b1SOiV8bkvHiodeOkGlrcXbJDwnQKoHQ7pzQTrPFeB5ZW4FrQyMA3cCz+fYkFxECxc+OI4HcvJ7/i13oiAHgvnwKr67FvwaeT2iQLkdowsXvia9pcSv3UUwxDPed75Fo7tLEIG4h+7y4J7xOsbjIhhz58934csFH+bKszd4ftl6cQlxTz6LHwQ0PvPtml9LeiBspIGHErc+o1LV+BRd+75jnezv3+/hBO4fHtnP4ReD5pU93fjyFy8mgNkTaz35Za/Sa39AD46okJLGX/E5euaL7vdA7gzrzUof/zV9vT52mAy8SNztUMaLGo4v/ARJKX2dpK+zn3Org/e5U4XGWTCbzTSZTHKwIZV5J2D0ZFPZ7Pf7eZ96rM+evO+9/LPZTCmlvBsDZAxChIOg0+mo1+tpa2tLV65cyUGMkJHlcqmDgwM999xzeu655zSfz2sCB6IC1+4kisorLgXGCeGEXPsOF8yVhzxK57sDQChxR0CiUkp5hwcP1Sv7+BmHt0ogdHD+MjuB52HTZ9683YMe/tVqVSOpiAvNZjPviCHV2wC8n9/DBNfrdXZGcO/ICeA53Isyz6AUA5yUch7v2YfAS/XtOV144b5Buj3TQFIWRjinn9vXjNv7vUXA2z8YqwsYXoV3YYqxuLunvEbG5q/he9ZefqNbO8RFLSsuELLeXLBinfKvCxneyuPihK8DrsGdCFwfY/FzElzqu4vwfBdKHlC8rM/ijnr3ckx3DY3PfLs+9hv3tLj2wN6fwEOC/XdUWm++XRszae8f/pSqo9ULvyjwqOCh/hx+MWhubemZ3/G2lxhGeI7pa9f6+Je/Sq//p+sHoqc/NZsPvJgAjruVFr/5ner84E/e76EEHgC8XEHhekrp1WdK7Ksl3Th7/ElJr7PnvVbShakqVVW9S9K7JCmlVF1kx6e67pXoyWSi0WiURQXfQQASxzE2NjZyv3u/31e3261Zx50cY9vG+u7kHQJHdXUwGGShYnt7u+ZOODk50XQ61cHBgW7cuKGbN2/q4OCgFuxXWqo5D8TaSVnp2uB5XLu3H3ibiKQssuAI8N51zuHX7MIJ88pcel87c+fjcscIok5JStnxwC3s7EzBfXDnA7Z6HCbcN5wOnJvnlqKBtxp4TgBrwOeC3/ta8p0XWAPL5bJWSYfEQ665ZifS7orw++p9+z6vTn4RVbg3LihwbBdYWIPe0sD6Ltt7zt57NXeA503gxPFqv1f4fdtIv46S1LsTwMk6696FKJwr7jzwjAV3ebhLhGviq9zpoxR5mLOL3CTeHuHOk0uKu/pZvJX2Hohy/+LVgxATApcGkKXV1ucpnS3LjXmlvb/7yDnbH1U8kp/DLwrdzssWE8DsibWOrw6lB8Sk8LBg3a5069M29JofvN8jCTwIeLmCwg9I+l2S/sLZv//cHv+HKaW/LOk1kj5V0ouWtgg5ZJcESAIVSEgCW0Vi95dUI38QJwgRFXYcEBBsr2g7EXe3wGQyyb/f2NhQv9/XYDBQs9lUv9/XcDjMYoUkzWYzjcdj7e/va39/P+8WgbsBwuakjspzScK94uok050ZHMMr+MBbEZgjt6dDlgjtAzyH9ozBYJCDFAn5c9s792SxWOT7wDG4B7gTfKeNjY0NHRwc5HkhkwC3iq+LwWCQrw/CuFgssuhRCgMQUheFOFYZzufVcq/8l+0jXJOTXuk84LC043MPWFPlv16t93siKR/PMwpY71wj18UOEVTcCX70IE4EHIIMXUhwFwJzSrsKohHHckHBHRjl+68USXCDlMGkLkS4e8DvjYsPnq3h8+hClN9Db+UoX8O1edYGc+Kvu+SCwj35LA4EAi8d4zdbXs2JNP+mXy5J2v3AiXrf/xP3a1iBe4/4HL4AjU5HH/3dnyLpzsXfj33pUG++8Xodf+Rjdz6we4gnv/GduhvXe1mwuFJp/JVfqOF3v/uFnxx4pPFito38RzoNm7maUnpS0v+o0w/N70kp/R5JH5P02yWpqqqfTyl9j6T/S9KxpN9XVdXJhQcuUFVVJq/9fl+dTif/ke+VQ7e4lyQOwuxkyavUR0dH6na7WSyAmHmKPmFvkHvO4YQYC/9wOMzih59nPp/r4OBAo9EoV5A9g4BxunWcnIBOp1NzO/j8QKIRVCBoPLcka2Xbg/fVe/8/bQ9OxskyGA6HGg6HuVLtdnOEHm/VgKBynzY3N/PrXdRBEMJpUJ0FFeK8oKUE4uf9/FVVaTKZ1LIQeNxD/BAUIL84RHzcCDdO0CHIVLB9lwNILoTTt6nkOARwImxxz6VzsssY/dxSfdcKvhATfAtTxDDmmDlYLpe5Xcer9oyHOZPO8yv4PdfHe4fjeqWfufG5dcHAhSkn+e4QKM/Dz6UQwHNxJpQ7OLDGuScuYiASPJ+w4aKBC2PMB+e/TC0Pr9RncSAQuHNUTWn+qtPPj+VeQxuf9cv12h+Zq/Eff/o+jyxwJ4jP4ZeARuOuOclWu2tV7dZdOda9xPzxy/M3w93AulXp2c9Jahx/gfr/JETRwPPjxezy8FXP86sveZ7n/1lJf/alDiSllEMOIZ+SatXIslLsJIVANkm5auuEBIEAZwIWdarhCAWSalVgqvJSPQmfdgq2zeM8kL/5fF6z2Uu6jXh5FRYSj+vBswno7XchxPMVOAZb6rkLAtLW6XRqrQg4BZwcYufv9Xra2dnR7u5udmBsbm5qMpncRt6ohpNz0Ov1MkFNKWl7e1t7e3t5hw4XCLwdgjBKD2E8OTlRr9fL94HnsyaYX0/r9557J8Y+F9zTsoIN/HV+Dq6rFCu4D8vlMgszLiKxNvxfgie5Tz5uhwtOrAeINEGcvGa1WuV2IJ7r2QTu1IBEMx53jeAOQXhxMaXc7YF1zNp0ocUFgFKQkc4FhzIjxL8vRQbWD+8LzuUChItM3tbknxfe5uAinx/jovtxP/FKfRYHAoG7i3Wr0qpV6SO/uaP0G79In/J3rj84IXOBGuJzOPCoYb1Z6ZkvTHpi8U51fuiRMdgEXiLudijjHQESB9mF8DsJKcP5IN783iuuXv12slD2n+NS2N7ezls9uu2ePAHpvNIK8SLskeqvV2G9f59rg7hANquqyrkCkHnEEHdI+C4HEGsni+RDEPbIdoSSsqMCEQXxgt97Xz8ZEdvb27p69aoee+yxTOBojXBxY7FYaDwe14IwOQ7Bi7hO/PpXq5X6/X52ACwWi9p9Pjo6quVNuGDkVnvfyYD774TfBZsyS4BxEPYJEZWUAzwh3H7PvR2F55LxAWkv3QfeVkLlv9xtoOzl51/mx4mzZxiwPo6OjrIoA9kGXAdr3h0szKHb/hEgGF8pQPjc8rNX88tr4f3nLg4PefRsA9pNfE6d+ONGwanjrgV/n7rQ558fzJmvOT4rEAVdqAsEAoG7gfXm6efTB77hmt72lxc6furCdvpA4MFHo6lf/DOfeb9HEbhLqJrSU7+qoTdOPkfNH/1P93s4gUuISyMobG5u6urVq5nkQiQ8lJCqLC0KrVYrB8hBJiCMg8FAvV4vuw86nY6Gw6E6nU7ezQHyx24NtEO4E8HzACBwkCrIN6ICAoJ03p6BtR9Bgb50DxMkNNKD8WjRmEwm+fVllZxzMFZ2yPBdGyD1m5ubeQcLBAWyCwiY5HquXbum17zmNbp27ZqGw6GOjo40Ho9rhBESfuvWLY1Go3wPactoNBra3t7W9va2tra2NBgMahkE3CNaHcrQQL6kc3LoYg1zvF6vNZvN8vk7nU4mg5ubm3n3COl8y0Ne56LIcrlUo9HIc+VOFF7DvLfb7UxwaaGgzYH74i0lkOay0s61edXfcwS4Xl8rCBGsM9YnWR9sRenBm6Wl39cwYI15/oGf18GYLtrhwYUWXodwwHjcUcTOKO4iKIMbGSttOLx/uA53Qrh4wDg5rm//ioDirSncx7IdJhAIBO4mqob0C9/4er3tzx9pPRqpOvvcDgQeFjS6HVWXx+AXuAuoGtIvfVlLnzL7DOk9PyfZ3+OBwKURFD7zMz9T3W43Ex7IgIfCzefzGnmQ6m0E3vtPO4Lv8MBjs9lM0+k0kzt+h9jQ7XbV7/dz5Rv7vW8vKCm/bmdnp1a9dWKFDZ1wQul8ez9aD7xX3bf6ow1hOp3W7N6QHyfG7XY7txvQd8/8IMB4XsRgMMhkye3xg8FAe3t7unbtmh577DFtbGxoPB7n6+fajo+PdXBwoP39fa1Wq3wNzCvXhTuh1+tpuVxqMpnUnAAcixaEi5woEE4nkGQQIDKRneBtHx7mx7EQWFysgYy7mOCtGLwOMou7AWdKs9nMQle329XR0VEWdxAFvH3C12+5haKva6ronk1B1Z4vD9p094F0niuCwOIknfcY4/K5htBzPG+p8DYNFyVKZ44LJTh0/H3tzgTmo8xV8HlCLMKJw3uS94zv0uEuBN9GlM8K1lzZ/sDYeY+WAlYgEAjcNSTp/d/yFqmS3vZnP6CT527d7xEFAncNv/itn3G/hxC4F0jSB7+qr7euPk3p48/E51Yg49IICpAiSMtFuzJgb4bQSPXtC7Gp04qwvb2ta9eu5V0K6FunUouYsLe3p729vVxl5vUHBwe5TQBhgS0WXbzodrt5/FS7uQ4yAY6OjrSzs5OJISSSXS2qqtJ4PNZsNssE2Xvn3YLtuyUwNoi7V/V9K0eq74g0bEfodvPVapVJ29bWllqtVhZR3EYP0eYxSDbEDqKNKwTnB3Z8v2eSshuDOfMQQW9VkM4r4aUjxN0p3W43BxMi0Ein5J1dP5rNpubzea31hFYJMhFwSzD3Xr3nGLggmNfhcJhf4wGZnl/APfE2AoivC2S+dadnG7gw5EKDZ48gRLA+/fgIN94q4O0q7qDwij8ihosSzCtrjn/doeFkH4HG3/fu1nBXhgdAIpgR1uqtP8wHAhxA9CgdC+6UcAeIf6Z4O1UgEAjcMyTpA9/8Nr3tr35cxx9/8n6PJhC4tDi6NlTzQxuqLvfOS48EPvC7tiRt6W1/86bSciVVlY4/+vH7PazAfcSlERT8D3tJtdBAyLz3zLO9ndvSaYPY2NjQzs6Orl69mvMAhsNhJtTj8VjSKSm8cuVK3qnBhQqpTkggTb4LwNbWlra3t9XtdnO1ezabaTabaT6faz6f56A+79/Hvt9qtXTlyhX1ej3t7+9rPp/n3QvKVg7IG7tAIGJIp9XUra0t9Xq9TPK9kk9bhVv1nTQhXrizAuJJSwBCCZVhxrK1tZUJ3nq9VrvdztkLjz32WP79fD7PWQtkRjCfXCuCztbWVh4zgpIHRyIKYWOHvHe73fx8RBCq441GI+cfUOFmu0Wq/txj6dw5AAHlHMwna8bbD3AxlFXycqtD5tm3y5SUrxNS7eIFbhh3IrDe+WJ7TgQp7pGHE0rnTgMeK9elVA8+BaWDxMUOz0bgOtxJ4O6Wkth7IGXZYoBgwnWwZtyVgHBRtlx4noK7DUrXC+9p3m8upvhnUiAQCNwLVBuVfvH3vU6f8vc6Onn/B+/3cAKBO0Lj09+u6h50C374t7b19g9e1fHTz9z9gwdeFt7/DVclSY2jpE/5zn5+vLE/CYH0EcOlERQgHU5QICYe4kYlm0qp5xJc1G8OWWm32xoOhzV3Qq/X0+7urra3t2vtA05qIGOMxYnazs6Otre3864Bi8VCo9FIzz77rA4ODjSdTnPlm10kIKbNZlPb29t5F4PpdKrRaKTpdCpJuapORRZitbW1pZ2dnSyAlEGW0nmlGPs+7gXfIcFD60qbPISUnRdGo5FGo1FuOYHEIWLQjtJoNLS3t6fXve51euKJJ/I4yUkod71wVwLXivABqfOqOcGGTlA3NzdzuCNCBc9h1wHmjjkAtCVsbGzkyjZEH/HF54axs25SShqNRrVKPa9D2PG1i6MB4u/ba+JgoLoPoWecvV5P3W43tz+4CIATBPFmNBplNwP/Mp8c18k1IotfI0IJ5+C5TsSZV2+/cZeCdB4o6e4LzuNuiDKccb1e167PxQTEojKTwoUYz3HgHrsIxTxcNB8eSBktD4FA4JXASbvSh/5vj+nN/2RT65953/0eTiDwsvHBr96VUvzf+ShhvVnpA1+7k3/uP7mnx3/ysdue1/zxnw2HyUOKSyMoAP7gdyLjBNdbH6Tzbe4ajUZ+HPIEyUegaLVamSQRBkffPJVyr6hS9ZZUC7Lb2NjIuyAMBoNcOScjYDQa5W0UySsYDAZqt9u1LR+x2h8cHOjWrVu17RJ9e0Eq2TgTvMIPsYRw49yAaOMiwM5PNV46Fw+YU4IJud7j42PN53PdunVL+/v7WiwWtRR+sgNwfLRardw+wjkhce6MQJRBTGCeEV4IkHQXSkpJs9lMy+VS8/k8nw/hiPm6iCASmkmbAq+F/PM6chi87cBbCshfIGQSkcR38nAXAoICIkG73c7CEuPm+V7ZhwwzV4gQ7Xa75qDh3iMo9Hq9fBzmkZYM1l1J7FmHkGgXfHzry4vcChzHw0R9bCUpL8MoPdPAHQ3uwPD3CddBG1FVVVkUcgEG4cYFC78m7ofnsfhzXAQqAykDgUDgXuF4UOkjv2VXb2h9hqr3/Oz9Hk4gEAi8LExfu9aHX9u+7fHXPPa5ai7Xav+L99yHUQXuJS7FX8uQNiq8hCJCwD2ADdIPwXEbOq4Fzx+AFNBbD2mEjNJ7PZ/PNZ1Oc+89FWXv5YfQQNbdLk8bBhkIToiojjcajbwjwWAwyMebTCaZ5FOddfs1JJCdGXgeFnXGtlgsNJ/Ps3uAXS02NjbyFnvuxFgulxqPx5pMJjmLgeR9rguRhGBGiOpF/f/NZlPD4VDD4TCTd+4RlnzPS8DxwByRDXFycpLvnYdTjsdjjcfjvKUkhDellCvWnunAv97qwHz5ziGel1DmNZCLICmHVtKS4W0VuAsQgxB3IPUEVHa73ZqDxB0K7gRAbEGI4P3BekSs4f0Csea94pkLiGXeAuNiAM/xHAr+9VDGMm+BefVtMHlus9nMeSNcJ1kUHId1wXM834Hxc520EbEmER0QRlarVW4d8c8Td1S4aODnctHBW1M8WDJwebDxpjfo6Xe0JEU7SuDhw2pnrY996VCvS58h/WSICoFA4OHBJ35lkqqmrm1/oZqrSv1/8hP3e0iBu4RL8dcypI+edsLXCEVzsuM2ZbdKA+zm4/G4JhxAVmezWSaUVPqdNJMVgF3eCRPnx15OxZhcByz5CCMbGxuZ6Lbbba1Wq1zNR+jANUHrBudfLpf5nF4pp1LrWxtybnYroGJNywG7WnBOSPpisdDh4WEeo7spOO5kMtFkMsnzxg4KkEUCKCVlIajX69WEIek8H4AxkjUBkXYHge86gIDkYg3tDe4e4V/cEM1mU71eL5NWJ8Xcf+69Z0Z4tgOuFizyCEncd9wS5E9wfNYDaLfb6vf72t7ezm4Yz1BABHNxBrdNmR/gZJsgRgQghDEPkvQdIVjPLlK5YwQxiTVCxZ/nuKOAlg0XHlyw8HvuGSdcq6R8DFqBmAPEID4DptNpXi8II9xjFxARUhBwpPNWKhcHvJ3KnQve3sBa8lyNwP1F88qerv+2t2m1lTR7TYgJgYcXy71TUeEN609X9d6fu9/DCQQuDZ76bW/Wq//2gdaLxf0eSuDlIkk3Pl9Kxw1tX/ki9Z5dq/dPQ1h40HEpBAX+cIcEeeXRbcxU8SEHkBHIFqRgNpup0+lod3dX/X5fu7u7meRCOLyffjab5VBF0vE5l1eEIVB7e3va3t7OOwVA6CFytBp46wIkejKZ1Pq7e72eJGVSxTZ4i8Uib4HIGJzoeUUVCzjXzU4NuBMQSiDjnIMvvweDwSBnLSBEQLohafP5XLPZrEaePVMCUWhra6vmCuHc7iRBLPEWitVqlcUTnCaIHjhNmGPcAcwNY/JdEJh/J4nt9qkVi7YKSbUxcC7fbpCMB4QiD6nkGi7KfnAXAffM7fgQbc+sYAcKhDZvIcA14Q4NSbl6j6hFqCaP0fpRukt477hI5TkGvl6B55Owzn0XC/51pw/nRHjwvApEDu4Bj9FSwnuybMvg92XwKa+9qJXEnRhlzkW5LWk4FC4BGk09/Qe/QOsNaf6qtaTozQ08/FjtrvXR37ilNx59WmQqBAJnGL95rVdvbkqXUFB45n/45Qrn3ItHtVHp4O3S+E0NPa4vCFHhAcel+WsZgsIf/hAzLN8QOEm1CnW/38/VTe/P3tzc1Pb2dq64dzqdXPn1yjO97hB/yAXW+dKp0Ol08u4FJycnGo/HtaR4xgspo2KOxR9BgSo3xBNihKjhmQN84SKAvELKPdW/tIo7IUckKXfJwAXBuNbrtQ4PD3VwcJDHC5E+Pj7O4oVXsTudjvb29rS7u6udnR3t7OxkBwiiAdfMa/lijhBnXIDw7ApcHGRJeDsFcwGBhYhzb3x3AgQpKtu0qHDtfi+Ze+aV3ntfjx66KZ2LCTgMWDesP+bDSbWkfI/cTQLJZ+yEfNLugkiEuEErgKSaM4E5c2LtOSRO0j2403dg4Log+75OXdjxFhzuJc4h31oUsu+tHy5UcC/8y7McuHbev77jh2/T6VuUurjgwoeHQXrIZoQy3n+kRtL0tfFHWuDRw2pnrZNBW/cgMD8QCNxlTJ+oFG/Wl46TdqVn3tnQa47eqc4P/uT9Hk7gZeLSCArdbjf/4e9EBuI8n89r6fKScsidB+hhg9/Z2dFwOMxOBIiHkyjvOaeSXPZYS6q1PbBbBP3pkBpeTxUackIFnwqrV66dzOMyIBEf8sw5qOASDMj2gE7q+/2+BoNBzmrg2tiuEeEBouktFd4agHPh8PBQq9Uqtw6cnJzo4OAgV4kh++12O4cxbm9va2dnR1tbW2o2m5l0I9x43sTiTGHm3hDEyFioJEPGIfUIFR6S2el0MoHFnXBRLgLfI/JwPt+dwXfmcIs/mR6INJBYBCTGxNwwNq6FUEmEszKAEbiIwdrmniAq4c7AueHOD17P+8XH6MGKkmouAw+IPD4+zuuvfE9wbEg7og1ODW/bQQBASGAt+/i4F6xjWhJcLCt3Z0BcYLwu+Ph5yi0zWeuch/dnKXDx/vQQzMD9wYe/9fMVroRAIBAIBB5OrNuVVoOGOvd7IIGXjUshKFBVdHi/tu9CQLI7QYeIC+zewG4Ku7u7WaSArHnfPqQfQoTjgdA/6bRyye4D0vmWghwXUlgG3eFskFQj3pJyDz6BjhCxg4ODfG7IE9c+n8/zGKi8e386RAoidHJyotFoJOncEs6OF/wsnVem+Z68A2+RoNqfUsrJ+mQQrFYrNZtNbW1t6bHHHtPe3p4Gg0Eei+8UwXWMx2Ndv35dzz77rGazmXq9Xr5OxiedhyXSMgEx9Sq6k1iq+VyPu064/04OyT9wgguYW2+9SSllAcKr74hgHqTppBVHA6IOopC7Qlgn/n6QlAUvhAREFY7t7QouLvCe8HBBv35EKISbcocTz4Tw3R/8Z8QhjsUY+XJHDCQf0YIgVMg870nulTsSShHQMxiYd+4fwgRzhQDBXPH+ZF1yXWUQI+cizDRwf3HSCTEhEAgEHhS85Y+/Rx/8nz5PVeOFn/ty8It/8tNPz/NHfvzenOBl4CN/5otUNeP/qjvBs58ntQ8+X+1/FTtAPIi4FIIClUJInSfjYxOnXQBLN1kBEDiItu/CwHMk5WopxEdSDvpDUPBsAkiz971Lp66I7e1tDYfDmvXcK8qlxR7yAkGmbYFqK0ICBNMr7JB/qsyQaiedXo1n1whJmWRBFqnE8rhbwpk/iKKHLbodnJwFz3rodDq1HS/YfrLRaOQ2BsIdb9y4oYODg1zh5/5y/W5Vb7fbuQUAwQjijsjkOxIwfu4Vc+WuBK9I+zghmi4Qef99KQowL9xnz6Pgvnv4I3PpoY8uZnDvvNWAtgleW+5W4OILx+Nn/i0t+6wHwDpyMcEzKXCROJF3ks58cC9xJ/jc4S5iTryVACHE16tnMrhjxNcy18LxcCHRwlKKT7S5MHYPd/Tn+vvPM1ACgUAgEAi8MKrjY6WTpKpxbwh2tXF63A//xS/SW77lPaqsyHC/UDUV7Q53iKqhmMMHGC8oKKSU/q6k3yTpRlVVn3722P8s6TdLWkn6kKSvrarqIKX0Rknvk/T+s5e/u6qqb3gxA6H6SpuCk+fFYpG3VkQ8IKzQE+P9e28/gJh4mj4Vcbf+Q1Ql1c5BdR03ALs8YOv3SnhJYF3EwD0hnWc1ePaBV5bddo0Q4S0huACw/xOUeHR0VNvZgl5xyB9ihwsmfDFXvu1h2b4B2eI47OrAa8fjcXZ2UNU/OjrSeDzW/v6+bt68qVu3bmk2m+VKNSQPMDeMAYcCYoDfR+bO2xp4zkXOBTIgIPmIJd4u4CJQGTzI+qAVo5x7dyz41pZsmeliFgIE56DCDlFmbrxFgC9vq/BQQa7R7znjZU455nA41MnJSc7E4FgIGcwT95v3kLcD+H3w9hvEBBc/yjXN2lwsFnk9+vu1PB7XgdjhbSN+zaxTb6Xgfexig7c4cGwXgRCvLgteqc/iy4Tm1tb9HkIgEAhkPIqfwy8Hb/7mn9Qv/X/eqZPuvavarzcrffhbP19v+fM/p/XZDmqBQOD+4MUYkr5D0pcWj/1bSZ9eVdVnSvqApD9mv/tQVVWfffb1osWEk5MT9Xo9DQYD9Xq9TMyWy6Vms1kmY41GI4cxQsB9BwQnLk4a2LEAezXEA5JIOwQEhN0hyCpwMWNra0u7u7uZMErKyf3sJgEZ8sqxiwyQGA/p820zcUXgCMBp4Qn+ToYQXSaTSa68U7V1MQGCT6uChydC8NyhAImH2FMNxp3BfcK6PpvNNBqNdHh4mOfTz42IwxzwO+4HrS24Uthlwm327tDwXTSo8HMNbn/n92Q3QKwl5bYCSClElB0X2HXB21i477gvZrNZjdSXuz54Ww9jmc1mGo/HtdBM5gXrP+N1e/5iscjOD19LvrWpt/dwnOl0qvl8ngm8JE2nU41Go3yvINu8L2hZ4f2D28BbVErBw0MNfc0zRra6ZP4YIwISc+1ZHe604P73er0cNOlOF57jLRO+fji2Oz581w3G7GvkkuA7dI8/iy8bPvAn3hEVi0AgcJnwHXrEPodfFtYnesu3/rRa+/eo7+EMJ91KH/lDn6Hm1Sv39DyBQOCT4wXf6VVV/QdJt4rH/k1VVXiM3i3ptXcyCCqIvV4vtyp4mj6ExnMSCMzzLQchDZ5BgFjhvehe0aU6PR6PNRqNNJ1Oc54AWyhCSAheLEmM97hD1JzEQPpcTHDrvqTsfPDtLanGuliCiOAOB8YAWURQ8Mot4PrZApFWBw/sc+s74oK3igAPdISQMd9OAL3ijyDE/XMgAnCv6OV3qzv3oNwNxEMXvZefe4xTZD6fZzLOHEGWqcBDpt15QJsNYgrnZ+59DIyDe4VAxjgQWTgPYpVb/t1hULaqQJx9XUmqtVeQ9cD9h6wzVoJOR6ORxuNxrV2D+fd74cfj+L5LCcdkLDzuv8PVwfu7fK9wb1g/LlAwV+4G8iwJ5rNsX+AcrKNybbr4yPelW+my4JX4LA4EAoHA8yM+h1881ouF3vS/vk/d6/dWVFjtrPXk17ztnp4jEAh8ctyNd/nvlvSv7Oc3pZR+OqX0v6eUfuWLPQjtDk6+FouFDg4OMqmTlEkKJBhyAlGrqioTcgQHT3mHoPse88vlshaKSOCjbz8HGUJMgHBCUj2UDiLk2/YhkHA8iCiOCgSVwWCQzyEpCwleqfaq8WQyyZVj2ic8nBFC6dkQ7XZbW1tb6na7eQ6AV22Zm+l0mvMreI5b3b1aTOAkwohv3egElD56J4wQVw8IZB6pjHMO7qnvOsB5PI8CMQKBwts+pPMtND0Y0NtEcI9AhDk/eR0IXu6ycFJdil3eMuCuBXeSsDY8L4D7x3O9RcbXGM4HxBFJtfXD/eO9dXh4eJuYgHjgohVhj+7I8bYG1qq36zAPvu58Xfh700ULXDjuAmGO/Z6XAhZzVI7J4WGh5bH4PWsR0ekBwl35LA4EApcDnRsNbdya3u9hBF4a4nPYcLK/rzd8x4e0876k7jP37v/T467UfOtb7tnxA4HAJ8cdhTKmlP64pGNJ33X20NOSXl9V1XMppc+V9M9SSu+oqmp0wWu/TtLXSafhe4PBQP1+P4cjLhYLHR4eZqLPdnsQHO/thnCuVqucnUC11h0M9OxD/qn8Q/wXi0XOFej1epmI8ly2oKQPH5GA6jbklEqrh9NJyqKHZyFIqjkEPJQQYQIi7jbxo6MjTSaTTLScSLEjhFd13drNjhYQXRccnBC6rZ05YHcHHkcEQpzgXjJWrgeSC0nmGrmniBaQY+k8G2A+n+e8BrbFdLcEc+SBgBzDMxj4ciLPvfIQRW+dYFcP8hIILPQKv7cQcE0eHEpYoAsq6WxnC18bXAOtJb4bB+Sb3/EzohStOd7SwHM8uwGiz1xPJpN8nb7mykDDMo/Dwyw5rr8/OQ5z0W63n3frStY01+GCGOIK65vXIkhxXTiGmC/uI+vI259c+PDvXUzw4142p8JFuFufxR31XqkhBwKBT4Lu9YZe90O3dPK+X7zfQwm8SMTn8MU4fua6rr7ruppvfYv2P/cxjd7U0OKxu9tOuLy61vUvvqarH/jQXT1u4JVD93pD3Y8d6FI1mgZeNF62oJBS+l06Dab5kuqsDFhV1VLS8uz7n0opfUjSWyW9t3x9VVXvkvQuSRoOhxWEbGNjI+cmTCYTjcfj3FMN+fcwPsgRFWbaIahe+g4GknL4nFc3vbrtLQAIBZIyIVqv1xqNRrla7QQKQodrwC37vrvARa6A0tLt1XvIlDsq6L9n60YEh5LYuTUeUQXXgG9zyDk5T1VVmTAzhlarVWsb8PBHF0kgnfTy06MP2SVvgHYSXBAlMSfbAqLZ7/cvDHLkOr2yzuPcD+6huzLc9dFut3MuBHPGtXmLC+sGUcW3RyR7A2Gi1+up1Wrl5zjJ91YMSdmZMJ/P83yfnJzkufUdCiDVCF48HzELgQDHghN7zzqAcHN8rsFbLxCouL+IOx646E4EnyfPkWCMLlh4K4wTeI7JHPsYfb26i8S36aTdiWtw4cB3dmBcPn7ei4zlQcDd/CzeSnuXat+r1/77Y3381zQjRyHwSKFz41RMWP/cL9zvoQReJB7mz+G7hZMPfEhbH/iQdj7r0zR/YiBJ+sSv3HgotgZ+7Y8e6WO/buOebZX5KGD40XV85j3AeFmCQkrpSyV9k6T/qqqqmT3+mKRbVVWdpJTeLOlTJX34hY5XWQAalVuIp/e8OwmCKHhlmuo7oYiQ662tLbXb7UxkPZTtbNz5e7Z1XC6XOYyv2WxqOBxm94S3X0BGGMfh4WG2kXNMSJSk3IMPOfKqtIsbEDLIEIJGWbn1yjMEnbmCPHqLAM+lPcN72RENNjY2tL+/n4P9aPfwtoTVapXbUxAFcC9wjqqqNBqNsstkOp3mLSD93rkdn2tGDODxXq+XtwllnXAMD+Sj6s99wsWBOMD1MoeSatt0cjwXaZwUS+c9+7RRkFnhW08iJnAdiFueh+HE3kURJ/K+nSdtENxbXsO95LXscuK7oHieAD8TsOkOCN6PHJfzdzqd7GZwZwLw9epiDGNAvAIuoPF8BC/ELN6v7LjiIoHfb8D1+Pr296evHQ+LdEeGfyb4Di6XFXf7s/iyof2v3qM3z36ZPvxb2vd7KIHAK4L2cw294Z89G86EBwgP++fw3cb6Z96n9s+cft985y9/KASFzX/zXunXfJF0j7bKfNjR+0RDez/xCd3/DUADLxcvZtvIfyTpiyVdTSk9Kel/1GmCbVvSvz37Q5ytcP5LSd+aUjqWdCLpG6qqunXhgW8/T7Y7Q7Jms1km5h6uiCCQzkLxsP1DOv0Ym5ubGgwG2tjYyFVwSKp03m5ABZYdD0ajkfb393V0dKTBYJADGjc3N/NWib7N42w2061bt3RwcJCrzIgDkMxWq6Ver5dt6LgVqLJKyuSG1g3IJhV076Pn+8ViUes5h3RCxCTVbPxehfVtDrGmIxpMJhMtFou8w4STK/rhm81mdkxQjYcISsruEQgiDpFms6nFYqHRaJRJIZZ4iDP3yyvdjB9S6y0vviUipBiS7TtSEP7oLQWe6eDrgWq3pHzfPJiQ+1NW5n0MDs8k8KwNevZLFwukthRe3EWALZ/WBt9+0YUzKvO4HbydxgMSIfvpLNy01WrVrpf2CAfXzZyRU8J5SzGBsbmDAjHAszQ4jjuKEBNoP0FAwN3gwqOvGcbBe4LH/HvutbsZLgteqc/iy4bGf/jP+pT5p+uDX9W/30MJBO4Zmsukt3znvhqzhY4//JH7PZzA8+BR/RwOvDDe+h239P7fsxuOupeIzo2GXv89H9fxRz9+v4cSuAO8oKBQVdVXXfDw33me536fpO97qYNIKWl7e1uDwaBGoKhqur1aUk1QwOYtKZNuKtP09lNdZ0tFiJ8HFUIiIU8QYcISqbayOwLCAIRoMplof39fo9GoVq3GSdHtdjUcDmuE/eTkJI/ZyRhiAeICpMaD+CDZkMzNzc3sRPDndzqdXOnnnLPZTO12O9vzpXOru3TaUsEWlBwHsl9VVRZWEENof/AtADmmbx2JUOCuAnbuaLVatcq0V+Q9oJJr89YOtqxcLpd5W0Iq1D5+1g7z6kIO40aQYl26iIPggNjiQY7cG6/0E4zINbtbwM/Llo5uz+e5vnsH8+Xk3UUL2l/43ok753XXwEWEGbGEtdjr9fJ99G0zS/Be8h0rEHzK/AZ3VXAvEA1Wq1VNSPKtT5lLrg0RwVuIXPTy9xHweXPRDzB2b0e5LHglPosvJapKes/P6e3XIzg98BDjZK3jJ5+K/uFLjkf2czjwgjj5+ffr7d/+Rv3CH3jV/R7KA4HmIulT/+aTqhZLHV+/cb+HE7hD3FEo493CxsaGdnZ21O12JZ2HDkKwIFAQdCebk8kkW/chCxAriOTJyUnOYsDKLJ0TRB6DdELe2u22hsOhhsNhtnN3Op3cQkHlc7Va6fDwsDaWZrOZt8Cj/7/T6WTCNB6P8zi855tKraRaqCNOCqq07k5AIIDkM2cchyo+RIxef3d90CZRVZVu3rypg4MDrVarnB8AgYP8EUqIM4Tfc2+oOjsBp+XBBRUXayaTiUajUQ7hc3LqLQ5edSdnAXIPyeR3rAncLN7/7/Z3BKWyWu9Va+ZwsVjkoFAq9t1uN2c8MDcuWngOBefAhUMbiItnrGPug+dS4DBwl4rPCaTa8wlcQEMwgrR7ewRrjvcD95N77YGY5e4OOELIcEDsYd5p3eD5zIkHkiIMcXzWAfeDc3M8F4DK++XZDQ4+R8pMCuCtQQ9KKONDj6qK6kUgEAgELjWOP/wRvf0vH+sX/lAI4M+LSnrbn3m/VK11fHB4v0cTuEu4FIJCo9HIZIw8BLeAe58zBBPBYTqd1qrrVFd7vZ76/b76/X62z9MC0W63M/EhQA8iLp0GzzUaDW1tbWk4HGZiDsny6jzHJucBggYJo/Wg2+1mQgwxpdfek/JpdSBsj8dLC7tXa3kuxB9HBNeCmOJVcubz5OREh4eHWVTY2NjQrVu39Oyzz2q5XGprays7PKbTaRZVEHkQXeh9d4LIeZbLpfb393V4eJjJs7dkkDWAKwKSj+2enSMQAdwuj/jDvFDB97WCg4SdF6haM+/eLsJ8l5kTkrLLBScKuR2IIr57hAdychwPC/WWEgQ0rhtCj+iCG4exQIhdZGNNcF7INffbnQkuwDBexARv+aiqKt8vzlFmCniuASKfXyOvRdDxuWTuGSduIxeFXJDx94m3wLgbBbAWXSxgnOXuD/57B26TEBQCgUAgELj7eMOffa8+9Gc+V+v2HbYXXp7uRB1//Em9/a829Qt/4NWnDzxqLRDPcy/e/lc/oZOnr0uSTmy78sDDgUshKGxsbOixxx7Llmeq7p55cHR0lCv5EGeqptI5cXWS2++f9tzSwkClFqJBFR+yLik/p9PpaHt7W71eLx+/tLS7XX25XOYwPKqqZW+4kx+uY71eazweq91ua2trK2c4SOe7LkCEIMWQTg979F0kvAruogQiBK+nGkzYHs6Bp556SpPJJJNQMgoQSGgxGQwGmUxvb29nBwaElnaI5557ToeHhznkktYChBZJNUu95yTwHMiw5xewTngdAgnCCPd1MpnUzimp5khAeOCeelW/2+3mnSVOTk40Go3yVpE4Dhgj69PbKhBe+GI84/E4r2tIN24KrsHXCV+ehwCJZmzuNnFXgu/igMC0XC6zOOYBid4mQBYI7xnuLTkMjANhDfeBv5/cOeG7WyBmuMPCszd4DqINLTGlyOb3nPcLxy2DJnmtt7SU+Q7+O14XCAQCgUDg7qM6WimtdUpC74B4959s6Oq7fuxuDeuOcfxLH9WnfOPHpC/4DH3otz1c24C+EAYfbejxb//x2x4/jr+nHmpcCkEB4gMxgKRDuDyED6v4ycmJ9vf3MxFbLBaZTHe7XV25ckVbW1s6Pj7O1WTpnKg4cfEANg9PxDXBc4bDYSbOKSXN53PduHFDzz33XK3ijYAxn881GAxqVVxJ2SUBiffwOVo0ysR9wvggr1VV5cq8k1EIqO8kwRwjKHgLAy0DEODRaKTDw8O8YwZzSzUdbG5uand3V1evXtXu7m7NNg/ROzo60mg00ng8zrs8EDCJO6GqqjwHpX1/MBjoypUr2tnZUbPZzFkJvgsIVXXf0cDvKeder9f5fO528fvCXHIcciOkU8Hj4OBAN2/ezOuOnTdocXEHiqS8C4ZfF1tx4hDwwECv3lPN9/aL58vWcKHK8wucWBMyiWjEsTieOwBczOD6EJN8rN6C4juneHuGh1YyXncncH0uSHBNnmHgrgvfWtK3zvT5Yg6YewQ4H8cLwcMdA4FAIBAI3H286Vt+XL/0575IJ92XRzjTWmqu7vKg7gaqSnr3/6m3vPt+DyQQuPe4NIICAYvXr1/XzZs3M4H1nnGeW/aAS+d9z81mU4PBQFtbWxoMBtl2DQmjpYJKKk6Ho6OjvKUjuzo48adazfaCs9lMN27c0P7+fq6OSqfEczwe6+DgID/mtnQEEsgKrQ+7u7tZqKAy6zsd4NBALEB48VwAshp8O0dvPfCkeyzqkFCCMA8PD1VVVRZUEC4gdN6qsbW1pa2trbzjBfPEtptkDdByQd4A40SsKEUItqDkWiTlubh161a+X5BIyDLrhXUwn89169YtLRYLDYfDWv+/ryecBKwNWk+ocJNlcPPmzexG8RYZ7quTZ3d3cC7fChUi7oISIYa+k4OLUT5PXCNr2MMFEZO8RYD3DdeHc4JjQu5xbHCvEHJ8a1YPjrxo+1IX7Vy4c5GAYE9vX3K4EOY7NbhQ4G6Ci0JWERzcOeGBi6VjoTy/h2QGAoFAIBC4N3jTH3+3PvY/fpFW2y8tljStpf7HGrr27ZfHnRAIPIq4NILCer3W/v6+Dg4ONBqNcu82FVYnAKTeE4oHccJZcO3aNV27dk2bm5s6ODjIz4Xs06PtPfh+fK+celYAjgUyAZ5++mkdHh5msrxarbKYMJ1Os0DgpNAzFMgLuHbtmra2trJQQHjheDzWrVu3alvgeQghxNMdFdjYfUtF4BXkchcE738fDof5OZBFJ4K9Xk9XrlzR3t5eFlxKsjufz3VwcKDDw8NaxoOn/7Pdpe+KQOXe3QE4Eg4ODnTr1i0dHh7mHSxoYUDAkE6dBTgKaBPhnOxIwbgB9xAnA7kZiCLXr1/X9evXNRqNbhOKSjKMEIHTBmHHww3JpJjNZqqqKpNrD/L06j3H4NjcxzL7gbBC3Cl8kUeC+wXRwV0NTvoRahg3DqDSUVC2SgDPg4DMM29s4cljZUsEcwt4byIu+mM+fm9TcMHOw119TH6ei0SFQCAQCAQCrwCqSm/4s+/Vx//w52lx7UWKCpU0+EhDj/+vISYEAvcbl0ZQWCwWunXrlm7duqXnnntOBwcHOZdAOt/W0Mk1RJFWh62tLV27dk1XrlxRp9PJvf9UwefzeW59kJSDH3nMe9Sd5JBvsLe3p263q/l8ruvXr+upp57S4eFhJiyQ3vF4nEkilW6OiWDAdopsQ9lut7Mg4XOAYLK5uZkr4FVV5ddDrDzfAQKJcMHrvB+/FDqYVxci3MUBEW2327nVgTDF1WqVnQe0ceBM8G06uX7ONRwOs+WedgZcBi44EA6ImODn457h5GCNrFYrjUajHCIpnQd2ehsL1XSIPoRcOt9C8dlnn9WNGzdqAaDMtdv9ObZ07lRh61HfVpN1RxsB6wMHga89vz8eIllW3D2E0IMO3YGCkMa8uVDEv95iVFXVbY4eb+tgLeKG8Ko+YoW7EkrB4yJ3hQsJ3gLiAYp+TWX7iqTs8rmotYLfu1slEAgEAoHA/UV1tNLrv/1n9cxXf4aOe9LsiecXFrY+2FDjuNLVvxViQiBwGXApBIWqqnLv/sHBQa7we881QXtecYcoSlK/39fu7q52d3dzGON0Oq3teQ9ZI4GeCquPg3A4yDHn2dnZ0WAwUFVVevbZZ/XhD39YTz75ZK7q02dOewCuBirPkFbEDQhiv99Xt9vV0dGRxuOxnn32WT377LO5ss/WeF7VZ/xOCKVzB4KH5PHlVedOp5ND7pyssssGAYyQP8hjq9XScDjU1tZWdo0sFosc7IeQMRqNtL+/n8MQ3YFANgB5BpKyAEEbCwLT4eGhZrNZ/nkymeT75dVmhCMPdcTpgLUeuIMD4onQVFWV2u12vl8IP88991wWE7ifXpH3e8B98C1NfYcF5tK3Z8R5wrooyS9knXXmuQfcP8//8PvurgLuMfcOQcrzEJhDhBqcK2VuAo9tbm5m0c+dAJB8D0BlK1e/BhfJuF4fswsMpQhUrn9/vu+K4e4Fv2/P12bhbopwLgQCgUAg8MpgPR7r2l//MW289gnd/FWvf97n7XzXT0jrKAoEApcFl0ZQGI/Heu6553Tr1q3aFo+SapV2T8zHNr2xsaGtra0cELixsVHbchJSAUnxLR05DgSC6jdkgwr3cDhUu93WdDrVU089pY997GO6ceNGDi+kjx6Sg60c4kyl1y3aiA7Hx8d5q8Znn31WBwcHOjk5qdnCETogfBBJ3y6RYEO2MGTeGBdCR6/Xy9foDgLpvLKOO4TQREl5JwMnm5BT8g9o+WAnBFon6MM/Pj7O+Qm8Zjqd1jIzJGVCD7x9A2EEIs56QdBALIJAs91nt9vN10B/fenGgEASKEnbBnNb7raAu4B7wfdY7T2ssoRnIPjrfXcGb8PhX7f0cz6vuiOw0BLhgZ8cBwHGt2iUdKHA4GPw6r+/pxDtOKe3FXhmA3PHc12EQFxxtwGfDy4uPl9wY0n+/X3vAgf/+jarF72ea45gxkAgEAgEXjkcP/mUdv7BU/d7GIFA4EXiUggK5CewvSDVcQgt1dZms6mjoyN1u111Op1MZtrttnZ2drS3t5dt+BDAzc1N9Xq9XIXHau4p+t6T7pViqr7dbrdG/J966induHFDy+VSvV4vE1lyGo6OjrLzQDolb2RCeI4ARO7WrVsaj8d65plndHh4mK/JBRCv9NIfT4ZEq9WqOQqYJ4g8rQRVVdXmDos9ogS7DzjBdlLotnbyLXq9XiaBVPMPDg6yQ4D5hrhubGzkcMuqqjSZTLIgAOH0bQJdTGIcXuFGQKBiz89Uz/kibwFC67sSQIbdhn9RBoSvE9psWL+IJRyP37sThGM4eeb6fAcDxsz6QHjh+j1TgLXqIgn31IUJz0xAbOM94MTehToPlPQ1W4YjlttOInCU2QWls6AMUHRnhgsODo7hwgDw1gd3OJQZC4zFj+nH4F/GFwgEAoFAIBAIBC7GpRAUTk5OdHh4mKvUkDES9iFIJUmBiLAjQKfTyUSLCiQVdCra0vkWfDzmFVkIGrZ0SJb38R8cHNQCI3kdYYmIEPTNQ+jdKg9hGo/HOT/CtyOU6qF/kCff+g6S7RkQEChIJ8GA5DUQOAjZ94BHrP/e6+4kmnF4cB7zvFwuc7sK7gSEIMSCbrerRqOhTqeT2xJcbGi323lOm81mbpHwXIFWq1VzEZSBlVj0IeSIE8wd4oD34XO/fVeH2WyWWx4g537ffPtByLmTfheMeNwJLW0ifm20I3jGgM8za9V3UHDCDbFHfONYzAXnm81mt7UnlC0JvjuDjw1HhrsJcN5wLK4HkcbfY4gu3Ge/Tt+Bg3Xnohb3CyBoeKCkP59169t6Itr4+Z4P5fkCgUAgEAgEAoFAHZdCUFiv17WtALHsU02VVCMEVGY9IA8BglYD2iU2NzdzBRgCWlZuJdWIDsTLe/LZeeHGjRu6efNmdgZ4xR4yvru7q+3tbUnSeDzO1n0yH+bzed59YLlcZss/BMxJmHQelOfVYiz17lZwoYD2huPjY43HY0nS1tZWJvPT6TRnVrCtI/PBXOJ0oPrc7/fzvDEOvubzuW7evKlbt25pMplkF4jnKJSVahwSkFuIrwdQusXdq/beIkCLi7eAeHW5bCkoiaiLEtx7rsFFFO/796BHb69xkux5AGW2BffJMwsIS+Qa3YEA6Xb3jIcZMjYIMPcJR4ELPC5Qcb4yX4GxssZwOKSUsuBFpocHfvp7lDH4zhTuzvCtLf0aPWzVd6JwAYXzeX4D8+HhkC7KuOvmIvcDz3PXQ5nREAgEAoFAIBAIBM5xKQQFt0JL5yntBA9CQrz32smkV2/plWcrRCqjVGapLrfbbfV6PUnKVWjGgk1/Z2en5pJ45pln9NRTT2kymWSCCTjucDjUYDBQs9nMeQSLxaKW5E9rAW0NtEL0+/1Mtmix8Ao2BI/zcU4q0m7zJisB8sQ1S9JkMsmZFc8991wOVmTrSo7vFXxaUDiGB+JNJhNNJhMdHBxof38/V8A9bI/j+e4I3spQEjfIrztE3NJOpbncdUBSjSRzLM8Z8Go8awwizTohAPKi6re3HCDsMD4EBdoPGA9ryIUP1rxfB+vfwwdx4XCdCEbcc64HuKjhLUO4ahinv/9csKBtpMxJYGx+fYgoLjT5dbiroXREcBxfS5yrbDXAfeLChOdGcH/47OC6XMTimL59pt/TQCAQCAQCgUAg8NJwaQSFxWIhSZlYUfGlwknQHNV4D3qjR77b7arX62W7PI4HSDwW+na7nUMW6SNHsMDu7jZ5yPf169d1/fp1LZfLTOaolFKxbrVa6na7Ojk5yVsZQjhxIxweHmaC7gGOUt32TeXbK7W0hHioIeNhvOv1Wv1+PxO8ZrOpwWCQnQQHBwc5r4JtDQeDgfr9fhZUfMeIZrOpXq+n4XCoTqdzG9FESNjf36+FTyIAkXHANprexsJ5POTQH2f8HvTnuyNAur1tgbYOb9fwNhd3dTB37gqg9cPD+Lxdpmx/YK1yztIqjzhGPkW5swjH8XBMn5OUUj5H6S6gyk/LR7vdrrWkuNMA8u/E3/MXEDjcncO68kwSggpZh4yDa/cAScI/fdwuLJTXVLYiSbptzpgTFw/ckeKtJX4cdybQVsXceqtEmc/gGQuBQCAQCAQCgUDgHC+YOJZS+rsppRsppZ+zx/5USumplNJ/Pvv6Dfa7P5ZS+mBK6f0ppV/3YgZBJR5CA/mCiHrvtVdGG42Ger2eer1ediZsbm5myzqEke0a1+u1er2ednZ2Mjkug+j8vLgcnnnmGT399NN65pln8g4M3ivuPeiQEVoksP4vFotayJ/3tDuJkpR3aECQgHRy3ZDJMniOuWQePaBwvV7r4OBATz31lJ555pm8NaUkDQYDPfbYYzlE0u34JycneZeLbrdby5og++Hw8FCHh4dZTGAs3EuEEUm1Sr2TZAhqKQ64aOAuAEix737h2RWQRW+t8B0xPCgTwjubzTQajWo7IHhYobeieJsL7geECs4DsWY9+7ahnoEAKW61WnlLT+4v48VlAWHHLULIJi0JnNMJsc+v54qUbQFckwcsSnX3iIcbbm5u5p0zEPQIMOV7b2lAqELcWCwWec0wX94iAdwR4qSf310k8pRBi6V7hznz4/j7iPYfd37cb7wSn8WBQCAQeH7E53AgEAjcjhfjUPgOSd8u6X8rHv8rVVV9mz+QUvovJH2lpHdIeo2kf5dSemtVVZ802cxJkyfGO6mCiLjFvd1uq9/vazAYZCLjZB6CwBZ6BAIOBgP1er0c3sdzqKwT8sjuCTdv3tSTTz6p2WyWSVkZTghpbLfbtSR9D8qDTEI8IUMe0Mf1Qmyo2HtuhJNbyBJuB+ZTOnc7eK4C2zpiox8MBtrd3c2vL9P12R2BHRJcuCDwERJNfz2tA/P5PIsDTugQFDzsEaLL+F08QBRgzGdrLY/DQwvdhUBuBhXpRqORyatnUOCA4XHuU7nbAnPvuQge/Mf1eWaEpBpp9oBByLy7DRCWvGJe5md4HgCvxUXA3HiAI89FsHBXBNfh+QQcz7fE9BYT4A4Yd8jgtkEYc/GiJP6+psvWD38v+D3md+XvmVfmgLnxxz2/gcdL8cHH4i6VS4Dv0D3+LA4EAoHAJ8V3KD6HA4FAoIYXFBSqqvoPKaU3vsjjfbmk766qainpl1JKH5T0Tkk//kIvhHSX/e5lBRuyDmns9Xq1rRAXi4Wee+45LZfLTO4PDw/za2hJgNhAgiC4iA4Q48PDQz399NOaTqe5MkyF+uTkdHtBSdkmTluGj92zCDwA0ImidErcyCjgcSc0tBrwvbcEOAH010KaPSTx6OgoE2mqsGUfOY8zZwRlImTgvuBaqfwiGPg9w/2BcOO7DED6OJ+TWq7BBQ7vhS/BsTxvg2O5gOPPpVKONZ+xe0sL5+XY7mqQVGuj8NwIRDKOydhLoku+RafTyUKICya4OzwXgfsKIMbe2sHruQdlAKkLN8yT5w0wbzzu4grHZy59njgmohptMy48eNimb9fJ+F2A4jkc18Mm3bnB67xtiBwM5h2xgNYehDbG75kPfv7LgFfqszgQCAQCFyM+hwOBQOB23EmGwu9PKX2NpPdK+saqqvYlPSHp3facJ88e+6SAILmV+iK7tj/G89zyLUmj0ShnFKzX62xrp7ceMQERAdJNJZWwxmazqfF4rP39/bxLA7kEWOxBSik7FMpdKbwvXjpvSZhMJlnccHKHaEDvO+NjzBxDuj24DkKFU8PJXClmuI2fNhJ3geB68D50nu8OCK8Sc9+cpHkFvQxi5PdOXi8SDFwE8OeX2zRim3d7vLtBEAo8kNH78528lsKNC0lus0d04fo8D4DzeruO727A9ZbbGvLlWSJ+PMbqIglfiHGsPcZSHt/dEX6fXLRCPPDWE+b4IlGnFP8k5feDiyUlyrG58wawvrxVgfdsGZ75fGvHszKYXxcMvG2J99llEhQ+Ce7aZ3EgEAgEXhbiczgQCDyy+P+3dz4hkl1VGP/OVHqq+lVVJzOdiZPJBBMlGxGJQURQJAvRJJvoTleCQlwo6MJFRPAP4kJBt0JEQcQ/CCoGVwZR3BmjJjExRhMNOCZklOD0pGq609NzXdT7Xn91u7onPXa/P5nvB01Vv3r93nnn3jr0Ofecc680oPANAF8CkMrXrwH4CIBYcO7C/8gj4j4A9wGoggGVULISqz0D1PHWbAE6ACx1YKNFrhDTeWPaPp1rpsPTcaDjzO0guXsBAw1LS0tzq9x58ztek8fylVYGEphOnzdS1H4R2mmf5LrIO95zlZtbZWq5gQYkSv3PBVZ0VZevmtVBJ5y60SDBpUuX5koi6KCyVp3Pzp4DvL8GBzQDga/5KnruEOruAVr3z2acGgBhrwqWFagzSfl0Tqljr+ULiwIDWobDucfggwaEtIloXrpAGXgPlsjouOS7IehnFy9erEpM+Hy64s9r6hhTdyy7YeNPAHNBA16f+md2Ap1yor03dAx5bf6dBln4PcgdfP3uMEjC0ht+D3NZdb4QvZ5mCjFQw8/5veec4nmLAiAt40Bt8QDF4UhpjDGvXWyHjTFXNVcUUEgpvcj3EfFNAD8vfz0D4GY59TSA53e5xgMAHgCA4XCY+I+7phvTYaDjRgeZKeJcqeSK/sWLFzGZTKqO9NVDlo6lbt1I50WdIjrALJVgc0bei04MnRfuTKFbV8rzzaWCa6NIAFVDSD2XWQUspeDqLtHgATCfus7sC5VdyzjUmaOzzRKRlFLlTNHZ47NRH9wpgs4/HVGm3vf7/cqxZu8BbbSoDpo2BuQ4q1Opzp/W06uTy+AAAwA8pin/zBzY2tqqsjY4lzSAwbmhPRM4N3hvjg3vq5kUfC6umKsTq+UouiMDx5z6ZjBBGxYy04PX4nttXsj75jshaHPCRZkfef8NBn40Y4H6YVCK8rM8hMc5D1jewe8f5x2ziHR+8XuUB4k4fvkc4DNznjF4p5kiecCFUBYN1mkghHLmWShdyE44aFu8Esfb/9DGGNMibIeNMVc7VxRQiIgbU0ovlL9+AAC73T4I4PsR8XXMGtDcBuDhy11PU9TL68+trupWdVtbW1UjRl2p5GeTyaQKOixaddWUdGA+aMGeDGwESEeUf0MHnw4hU63piLLJI6GjxNVmOkB0XngfPZcOj6a6Ezp1WhJBZ4swmMDABfWpzrEGV7h6z+aUm5ubWFtbq1b0ef54PMZ4PK6CBHQMmYqu217S8VNHV7fx1IyJ/GcRPJ/OeL5Srs/DppcqkwZ78kwDZnb0+/25Zn3U+6L09zwTQwMZDCJomQCAuf4D6uRr5oBmcuS9JCiLzp0jR45UWRHMSMnLE3InXfXIseOzc34SyqPnsVeJXpvZLNqTQDNatF+H7kJy6dJ2g9FFMur3mrtacO7rtp4afGDASoNCWlLB6+nc4rPRnqju9LvTRg7aFhtjjNkftsPGmKudywYUIuIHAO4EcH1EnAHweQB3RsTtmKVuPQfgYwCQUnoyIn4E4M8ALgL4eNpnN1v+068ZC/xnn479ysoKBoNB5QyzPIA7CzAFX7fR40osnVq9hzrZi1ZfgflO92zel9d7c1VeSyF0y7+IqFZr8xVbDYzkneU13V9XXvPeApRTHS06U/w8T+2mjvm30+m0atzILRhXVlZw4sQJFEVRNbjUbAOmoWuPAupEHT0GG/QZuAJN5y13xAFUzqk29uN45eMIbG/5x2AQgLlghpa58DxmHVCvWuag6fiqS81W0MCBPiPvqYEBOqwsAaFeGJjgvGOQR8dJM3M0mKBOst5Hg0KaJUGZ2ZOAOqG+GcBjMEF7leRzVLMkqBfqlbrQIAe/rzqmGlCkfHkJCcdxY2Ojyh6iXqmDvF+EZvTwe6hNGo8cOVI9lwZ5+F3v9XpzwbkmqdsWG2OMmcd22BhjdvJqdnn40ILD39rj/C8D+PJ+hKDDk6db8x//PBV9MBgA2C5dYGbChQsXsL6+vmMPeTYq5N8D2zXpdEK0U7+uTgLbO1DQUaFzytKLvCaf12cWAdPqi6KoasGZOZGv0Of313R5YH4bSTpP6sDmK8zqPGm3fm6VyGtGzJopcgeGXq+Hoihw8uRJnDp1Cqurq3POPx1fBkc0k0IzAqhnfW59Bq25z51djlu+TaZmACh5xoQGWehwMzWfO12w9wNl5bMBmBtvpvFrlgTl0VV5Oqd8trxfgZbZcJWdgQLtq0A959s+MuVfMwL4bKp3DdCwTIHvOSZ6XJ9Bg1AMJuhOKur8a1YRx/Caa67B8vJypSPO3c3NTUynU6yvr1djy11NOB80cECZOL+przwzR4MZ2lRRf9eMCD2HOuXc0LHnd6UtAYU6bLExxpjdsR02xpid/D+7PBwY6jQzEMD0a12ZpxPNlUY6sinNtiN8+eWXAQDLy8tzPQPogALbDpDu7EBHEUB1jA4LV1/zhnlc3WZaPR1jXl9XcZlNoaUYvNbGxgY2NjZ21OMzk0AdPDqb6iDr6jNXlVlekKfe00nXtH7+HcsSKO9oNMINN9yAU6dO4eTJkxgMBjh//nwlL50zbcaofSm0NwB7PHC8qGN+zuwNbfbHsoXl5eW5uUInLw8m6FgzYMKVcK3p57jrddTp15V6/s7nZfBIx1Adfq3D174CeZCHDjBT+RmU4ZjwHM2SYfCKY6VNO7WchffQwAr7a3A+c74xs0QDZNrfgnocDAYYDodVECwv9eA9+feaRcHPWMpx4cIFbG1tYTAYVOVF1AWfg8+uJRz5jifM3mCWh5Y2aOmJBic5V6kHPiPLKDSjA5hvTGmMMcYYY4zZSSsCCgAqB1LTpvkPPzC/H/x0OkWv18NwOESv18P6+nrlsBRFUTlPXM0simKunp6ZDVrGAMwHAZS8xp8Oqq6capM/XQ3lCjtTtOnksfGeOt3q/Khzqo3i6IhTZ5qqTweWjhcbKqoTn1+Lq85c/aXTvLq6iltuuQWnT5/GtddeWzWVZLkDAx4cM222p6vnfG4GMnhfOqZc7dc6eG6nqePIa+eBIe3HkDffZGNDADsCAAwMUA7qUQMcAKrn4Ep+7pQuyhBgBoYGWbRBopZbMKNB9aDzgQEsfs6AwKIGkITOdFEUGA6Hcxkxmh1QFEU1bpzL2rBS+yYwuKBZGtqHhJ9x3mpQSYMrnGPj8RhFUVTjqhkP1JHOGQ16cCx1C1LNYNE5wusy+MfgBAMTRMeI1+P4GWOMMcYYYxbTioACHbG8+R6w3QCRq/t04oqiwJEjs60h19bWsLm5WTlndGjoLNKp5gqkZh1oCj4dNa5makNHdZDYfJH319VNdQAZTKDDpA31ptNpVQ/O3QPoDNGRowNEx5wy0Bmi40RdvfLKK9U2l3R89f7qzAKY632gW/MdO3YMJ06cwOrqKsbjMVJKmEwmOHfuXNX0kvKqTFw5n06nOHfuHM6fP1+NmwYTgG1ntd/vV44/gxTadFNX9DWLQ0tjmNnCZ2LGyvr6+lw5C51XzVbgM3OVWns/6Iq49p3Qe+sc1l0cKCvT7XkvddaLopgry9GAgvYxYHCBc48OsQZDGFDREiHOIc4B/p3uyqEBlrwfhO5+oWUt3JY071GgzxARVcBMd1VZXl7GysoKVlZWqrmtz6MZDxwHlo5oBhPPzTN5tMSBgT/qgU0XeT3tRaEBGgZHdJcRY4wxxhhjzE5aEVAA5p00Td3mK50GBgHoQE4mk8oZ1Y7xzFgYjUZVCcR0Ot2x2s00cl0p5SooG9AB27snsCwA2M5UoNOalyHkDpsGIegk0iECMHdfOlMbGxuYTCbV5/1+v6rp1iABsF120e/3MRqNKueaq+i64jocDjEejxERmE6n6Pf7GA6HKIoC1113HY4dO4bjx4+j1+thbW0NZ8+exUsvvbQjvZwZCHTgJpNJFSzR5pB5o02m+GtJwNLSEkajUeVssnyDOmdAgoEM6lobC/JevB8d5RxN0af+NaDAMdc+ABrYyrco5DNpj4M8iEKZ6ezrThtEsx10jDU7he+1t4SW0/DaXMlnmQpX/fMdECgDA0uqNzribBqpPUE4fpRbV/kZXKJeU0ooigLj8Rij0QhHjx6t5ivnAIM+nOsaTNB+JbymZqNo1oRmwDALRJs3cg5Tx3lzUy15yANHxhhjjDHGmG1CSwkaEyLi3wAmAP7TtCxXwPWw3HViueunq7IflNyvTymdOIDrtJ6IOA/g6abluAK6OkeB7spuuevlapf7arLD/p+4fix3vXRVbqC7sh+qLW5FQAEAIuKRlNLbmpZjv1juerHc9dNV2bsqd5N0VWddlRvoruyWu14s99VFV/VmuevFctdPV2U/bLndwtwYY4wxxhhjjDH7xgEFY4wxxhhjjDHG7Js2BRQeaFqAK8Ry14vlrp+uyt5VuZukqzrrqtxAd2W33PViua8uuqo3y10vlrt+uir7ocrdmh4KxhhjjDHGGGOM6Q5tylAwxhhjjDHGGGNMR2g8oBARd0XE0xHxTETc37Q8exERz0XEnyLi0Yh4pDx2PCIeioi/la/HmpYTACLi2xFxNiKekGO7yhoRnynH4OmIeF8zUu8q9xci4l+l3h+NiHvks7bIfXNE/CoinoqIJyPik+XxVut8D7lbrfOIGETEwxHxWCn3F8vjrdZ3m7EtPhQ5bYdrxHa4drlthw8Y2+HDwba4XmyLa5e7eVucUmrsB0APwLMA3gDgKIDHALypSZkuI+9zAK7Pjn0VwP3l+/sBfKVpOUtZ3g3gDgBPXE5WAG8qdd8HcGs5Jr0Wyf0FAJ9ecG6b5L4RwB3l+zGAv5bytVrne8jdap0DCACj8v0SgN8CeEfb9d3WH9viQ5PTdrheuW2H65Xbdvhg9Wk7fHiy2hbXK7dtcb1yN26Lm85QeDuAZ1JKf08pvQLghwDubVim/XIvgO+U778D4P3NibJNSuk3AF7KDu8m670AfphS2kgp/QPAM5iNTe3sIvdutEnuF1JKfyjfnwfwFICb0HKd7yH3brRF7pRSern8dan8SWi5vluMbfEhYDtcL7bD9WI7fODYDh8StsX1YltcL22wxU0HFG4C8E/5/Qz2HrimSQB+ERG/j4j7ymOvSym9AMwmIoAbGpPu8uwmaxfG4RMR8XiZ/sWUnVbKHRG3AHgrZhHCzug8kxtouc4johcRjwI4C+ChlFKn9N0yuqafLtviLs/RVtsExXa4HmyHD5Su6afLdhjo9jxttV1QbIvroWlb3HRAIRYca/O2E+9MKd0B4G4AH4+Idzct0AHR9nH4BoA3ArgdwAsAvlYeb53cETEC8GMAn0opre116oJjjcm+QO7W6zyltJVSuh3AaQBvj4g373F6a+RuKV3Tz2vRFrd9DFpvE4jtcH3YDh8oXdPPa9EOA+0fh9bbBWJbXB9N2+KmAwpnANwsv58G8HxDslyWlNLz5etZAD/FLD3kxYi4EQDK17PNSXhZdpO11eOQUnqx/KJcAvBNbKfltEruiFjCzAB9L6X0k/Jw63W+SO6u6BwAUkr/BfBrAHehA/puKZ3ST8dtcSfnaFdsgu1wM9gOHwid0k/H7TDQ0XnaFbtgW9wMTdnipgMKvwNwW0TcGhFHAXwQwIMNy7SQiBhGxJjvAbwXwBOYyfvh8rQPA/hZMxK+KnaT9UEAH4yIfkTcCuA2AA83IN9C+GUo+QBmegdaJHdEBIBvAXgqpfR1+ajVOt9N7rbrPCJORMR15ftlAO8B8Be0XN8txra4Pjo5R9tuEwDb4brkFflshw8W2+F66eQ8bbtdAGyL65JX5GveFqcGun/qD4B7MOui+SyAzzYtzx5yvgGzjpiPAXiSsgJYBfBLAH8rX483LWsp1w8wS8vZxCwS9dG9ZAXw2XIMngZwd8vk/i6APwF4vPwS3NhCud+FWbrQ4wAeLX/uabvO95C71ToH8BYAfyzlewLA58rjrdZ3m39siw9FVtvheuW2Ha5Xbtvhg9ep7fDhyGtbXK/ctsX1yt24LY7yosYYY4wxxhhjjDGvmqZLHowxxhhjjDHGGNNBHFAwxhhjjDHGGGPMvnFAwRhjjDHGGGOMMfvGAQVjjDHGGGOMMcbsGwcUjDHGGGOMMcYYs28cUDDGGGOMMcYYY8y+cUDBGGOMMcYYY4wx+8YBBWOMMcYYY4wxxuyb/wHCKyNVGVWgMAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 243446 0\n", + " Min thresh = 1000\n", + " Not Sliding\n", + "\n", + "\n", + " Winner = Not Sliding\n", + "\n", + "\n", + "043s_iimage_10391571128899_CLEAN.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADDCAYAAAAya0IYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADUlElEQVR4nOz9e5zkWVrVC68dGfdLZlZ1Vff0dA/TA8yggIg4DhcROSKIiii+gqAvoKAzwPHuQYTj8S5HBUSPCOP4guirgPh6Q0FR8aDywsAMOggDyGUYmGtPdVdlxj0iM+J3/sj87lyxK7Iu3dVdWV3P+nzy05kRv8ve+7cjutZ61vM8qaoqBQKBQCAQCAQCgUAgEAjcDWr3ewCBQCAQCAQCgUAgEAgEHjyEoBAIBAKBQCAQCAQCgUDgrhGCQiAQCAQCgUAgEAgEAoG7RggKgUAgEAgEAoFAIBAIBO4aISgEAoFAIBAIBAKBQCAQuGuEoBAIBAKBQCAQCAQCgUDgrhGCQuBFR0rp7SmlT77f4wgEAoHAGVJK70wp/cY7PLZKKX3oc7zPcz43EAgEAoHAxUIICoEXHVVVfURVVd9/v8dxK6SUfmtK6QdSSgcppfenlP5eSmlwv8cVCAQCL2WklL42pfSzKaVRSumnU0pfcL/HFAgEAhcN91qYvd314t/FgVshBIVAYDv2JP1lSS+X9MslPSnpa+7riAKBQOClj4mk36aT7+AvlPS3UkqfcH+HFAgEAg894t/FgXMRgkLgRYfbalNKfz6l9E9TSv/oNCL14yml16SUvjKl9IGU0rtSSp9m5/7+lNJPnR77jpTSG4pr/6mU0vtSSu9NKf0BV1xTSq3T6NcvpZSeTim9MaXU2TbGqqq+raqqf1dV1bSqqhuS/p6kX/vCrUogEAhcHKSUXpdS+qHTaNT7UkrfkFJqFof9ltPv4WdSSl+TUqrZ+V90+l19I6X0vSmlV97Jfauq+nNVVf10VVXrqqp+WNJ/lfTx93BqgUAgcCGQUvrlKaXvP/2efXtK6TPtve9PKf0B+/v3pZR+4PT3/3L68o+llMYppd+dUvrklNK7U0pfdfqd/M6U0u99rtcrxxr/Lg7cCiEoBC4Cfpuk/6+kS5L+u6Tv1cnefELSX5T0d+3YD0j6DEm7kn6/pK9PKX2MJKWUPl3Sn5D0GyV9qKRfX9znr0l6jaSPPn3/CUl/9g7H+EmS3n530woEAoEHFitJf1zSFZ0Q+k+R9GXFMZ8l6bWSPkbSb5f0RZKUUvodkr5K0u+UdFUnosC33+0ATgXfX6P47g0EAi8xpJQakv61pH8v6VFJf1jSP04pfdjtzq2q6pNOf/2VVVX1q6r6J6d/v0wn39lP6MTh9abneb1bIf5dHMgIQSFwEfBfq6r63qqqjiX9U538A/SvVlV1JOk7JD2VUtqXpKqqvruqqp+vTvCfdfJF/OtOr/M5kv5+VVVvr6pqKukvcIOUUpL0ByX98aqqrldVNZL01ZI+93aDSyl9qk6+mO9UfAgEAoEHGlVV/WhVVW+uquq4qqp36kTYvUmkPf0+/SVJf1PS552+/gZJ/2dVVT91+r3+1ZI++k5dCoY3SvoxnYjMgUAg8FLCx0nq6+Tfu8uqqv6TpH+js+/R54r/o6qqxem/kb9bJ/82vqeIfxcHStTv9wACAUlP2+8zSc9UVbWyv6WTL92DlNJvlvTndOI0qEnqSvrx02NeLumtdq132e9XT4/90RNtQZKUJO3camAppY+T9G2SfldVVT9zF3MKBAKBBxYppddI+hs6cSB0dfLvhR8tDvPv2F/UyXewJL1SJ7UPvs4vqZOo2S/e4f2/RtJHSvpfqqqq7noCgUAgcLHxcknvqqpqba/9ok6+J58rblRVNSmu9/LzDn4uiH8XB7YhHAqBBwYppZakfybpayU9VlXVvqTv0ck/VCXpfTopEgNeYb8/oxNx4iOqqto//dmrqqp/i/v9KknfJemLqqr6vns3k0AgELjw+CZJPy3p1VVV7eokhSEVx/h37AdJeu/p7++S9Ab7rt2vqqpTVdUP3smNU0p/QdJvlvRpVVUNn9csAoFA4GLivZJe4bVndPI9+p7T3yc6EXPBy+7gmpdSSr3ienwvP5frbSD+XRw4DyEoBB4kNCW1JF2TdHzqVvg0e/87Jf3+0yI3XZkV61QB/ns6qbnwqCSllJ5IKf2mbTdKKX2kpH8n6Q9XVfWvX5DZBAKBwMXFQNJQ0jil9MskfemWY748pXQppfQKSX9UEnm3b5T0lSmlj5CklNJeSumz7+SmKaWvlPR7JH1qVVXPPt9JBAKBwAXFD+uE5P+plFIjpfTJOqkp9h2n779N0u9MKXVPi4t/cXH+05I+eMt1/0JKqZlS+nU6qTn2T5/n9STFv4sDt0YICoEHBqd1D/6IToSDGzr5R+d32fv/VtL/Jen/lvRzkn7o9K3F6X+/4vT1N6eUhpL+o6TzitX8SZ2kSXzzacXbcUopis8EAoGHBf+bTr5jRzoRY7cV6fpXOkmDeJtOcnW/WZKqqvoXOimC+x2n37U/oRPHwZ3gq3USVftZ++79qucxj0AgELhwqKpqKekzdfLd+Iykb5T0BVVV/fTpIV8vaakTov8PJP3j4hJ/XtI/OO0QQZ2E9+vk38fvPT3+S57n9Rzx7+LAuUiRmhh4qSKl9Mt18g/Z1mlhsEAgEAgEAoFA4CWFU4fDP6qq6snbHBoI3HOEQyHwkkJK6bNOrV6XdBIh+9chJgQCgUAgEAgEAoHAvUcICoGXGt6gkxoLP6+TPurb8n4DgUAgEAgEAoFAIPA88YIJCimlT08p/c+U0s+llP70C3WfQMBRVdWnn3ZvuFxV1WdVVfW++z2mQOB+Ib6HA4FA4P4jvosDLzSqqvr+SHcI3C+8IDUUUko7kn5G0qdKerekt0j6vKqqfvKe3ywQCAQCNyG+hwOBQOD+I76LA4HASx0vlEPhdZJ+rqqqd5xWMf0OSb/9BbpXIBAIBG5GfA8HAoHA/Ud8FwcCgZc06i/QdZ+Q9C77+92SPva8g2u1WlWv17Wzs6OUUv6RpKqqVKvVVFWVVquVqqrSzs6OarVa/q8krVYrrddrpZS0s7OjnZ0dSdLx8bFWq5UkKaWkWq2Wr8drvN5sNrWzs6PVaqXF4qTTYLPZVKPRUEpJ6/U6n8d4uMZ6vdbx8fHGdXd2dvK5q9VKx8fHG9eQtPG334O1ACmlfM/1er0xdo7jfK7BvPw6tub5eP/b57der/PrzIFnwE+tVlOj0chrx+s+5uPjYx0dHeXr+Rh3dnZUr9c31o/zeVaO8vq8xu/l+txuLfwa267r1/bXeL18b9tz9bXwtfZ1Ls8vx+frUO5Djiv3Szmvcpx+zHn39ftsm++tzvXjzlun+4VbzX0Lnqmq6uoLOqAXBnf1PSxJO/1e9cGvWuvpn+i8oAMLBAKBu8FcEy2rxc3/mHkwcFffxfE9HAgELipGurH138QvlKCw7Ut/41/uKaXXS3q9JO3s7OiRRx7R7u6udnd3VVWV2u22dnZ2tFwus0AwHA41Go3U6XS0t7enXq+nZrOpfr+v4+Nj3bhxQykl9Xo9DQYDNRoNPfvsszo4OMhktt1u69KlS0opaTabab1eq16vq9ls6rHHHtOrX/1qHR8f6xd/8Rc1nU716KOP6uUvf7l2dnY0nU6zaCFJy+VSo9EoE8LJZKLRaKSjoyPVajUNBgM9+uij6nQ6mkwmmk6nWiwWeTyNRkPHx8daLBaZXE+nU41GI9Xrde3t7WVS3Gw2JUkHBweaTCaSpFarlYn86ZpqtVppMplouVyq0Wio0WioXq+rXq8rpaSjoyNJUrvdVrvdliQdHR1ptVplAr+zs5OFmJ2dnfws5vO5hsOh5vO5ZrOZptOpUkp69NFH9eSTT+plL3vZxvW412q10vXr13Xjxg01Gg3t7OxoMploMpnk51Gr1XRwcKDRaKTj42MdHx+rVqtpb29P/X4/Cw7Hx8daLpd5vMy5Xq+r0WhoNBrl9WXOi8VCq9VKrVZL7XY7Cxi1Wk0IWUdHR5rP5/k85nF8fKxGo6F2u62qqrRYLPIz4xlyvAtKy+Uy7y+eA8JKvV5Xu91WrVbL81kulzd9YFxUQtiqqkrz+Tw/H9aF54RAwZ4+OjrSbDbLa1Sr1fKzQQxyMacUcPKH167LGi6XS83ncy2Xy5vELcQ0RCj2Fevka1XeBzEO4cm+M8493rFNLNh2HMdue68QxX5x66JcfNz2e1ja/C5uq6un3v4ZeupB/Wd7IBB4SeKHq++730N4PrirfxPH93AgELio+I/V/2/rv4lfKEHh3ZJeYX8/Kem9fkBVVW+S9CZJ6nQ6VUpJx8cn3f3a7bZSSjm6T3S73W5ruVzq6OhIR0dHmeBBcrrdbiaAknI0nYiuR9zb7baOj481Ho/z+6PRSMPhULu7u9rf388EqqqqTGLBzs6OWq2WVqtVvkan08mEHtI5n8/VarVUr9fVarXUarUyeXaHhc+XOc5mM3W73Y2oPm4AxlASQNYCMg9ZlJTHgVPi+PhY7gyBQEtnEXF3YkAMW61WJqTHx8eazWYaj8e6ceNGXoOqqvL1VquVms2mWq1WFgo6nU6eN8+F+fAzn89Vr9fV7/fznI6Pj7PbwMkmBBCRZTqdarVaqdFoqNVqabFYaLlcZhHBXSq4Utw54C4HiDYCBcKDr6M/R+lEAFiv19npwpoy7qOjo7xPy3VgbBBw3C3u2CiJNiIBLhGeo4+J+bojhD2F0MCzPo9k89wRIxhb6dxwNwbXRIzzdShFBT+3Xq/nz/l5OE9kuJPjbgUfxwOM234PS5vfxbvp8gM/6UAgELhguKt/E8f3cCAQeNDwQgkKb5H06pTSqyS9R9LnSvo95x1cq9XU7XY3rPv8Y77dbmey1+l0MhknLQFilFLKZJaIPMQWUgNhhKSmlDSZTPJ1ptOprl+/rkcffVSDwSATWCKwVVXlaDTRe/5eLBZZFGg0Gvlc3AZEmCGLo9FIi8Uik3mEAtwIiCaLxUKdTmeD2ELoPeLs4yE6LCkLEYgHCCSsM+vP8bPZTFVVZdHCU0o8rWQwGGhnZyc7Mm7cuLFBHhEoZrOZFotFdgfgxuA5SJvpFbwG6V0ul5pMJhtOAN83EGsIdb1eV6fTyfdhLAgpy+UyPw+IN8+EtSI6zv5hToyPtZFOnAjnpRR4qsxqtdog9mWKDn/zWplewPxarVbeM+V+dBHChQ6I+Xw+V7PZVKfTyc+bNYHkI05sS/cACCKMA0eLz5/9wn4EvufKtA0HrguOu1tyv014OQ/niQ13K0JcQNzV93AgEAgEXhDEd3EgEHhJ4wURFKqqOk4p/SFJ3ytpR9K3VFX19vOOd1JF1JSfZrOZbetlhB0sFguNRiNdunRJzWYzR5KJhgJSJyBevV5P7XY7R8JxB8znc+3u7mq9XusDH/hAjrx7BB33gaTsnCASf3R0lEWIxWKh4XCoy5cvq9vt5rE0Gg0dHh5uOASazWZORUDkcFEEgkfaAALCcrncSFFgPRkDQFTw8yF7zP/4+Dhb6kmn8DWDJLvQgJX/xo0bmk6neR5u6fd7Q56ZEw6UkjQ2m808HpwozMOdDBBYSC33IXLOeBEpeG5Oqhkr43CBgfOkM5cB+1DajLwDf24+T3fMsPe9ToXXpjj9LOXrI5wxv+VyedO9efaMCzHEP18ICwgB3IPznMS7qLCthoKPv0wx8OfEPRBWXLxwEYr/cm/EnTtxKZRr6uvnx90JzhNTHiTc7fdwIBAIBO494rs4EAi81PFCORRUVdX3SPqeOznWI9PSWVSd6G+r1cqEh9/H47EkZWI1Ho+1s7Oj3d3dTBTdMeCkBGLTaDQ0GAw0Ho81n881mUy0t7en2Wymvb09XblyJadBHB0dqd/vZ1fAeVHlZrOZI/UQwMlkkl0R3W4328xJ2WB8knJqQKfT0XQ6zeIEgkZZeJL7+t+SNuzykDpPP2AeHg2v1+vq9XqSlEk+6whcgGi32/k5SdJ0OtV0OlWj0VC3282CAO4NF3u4znw+30jPcLs+jgrSHxAjONZrAHgdCM5l/C4sQGI9Ko9wVa/XczpDGdn2OgO85+4Anx/igdfG4L5OrllbjqGWAwKJCxQQbK7p6TFl8UwvjumiAPvH6yWcd6ynJJxH5v29bXUL3DXin2sXFHw9XEhxZ4ffb5ugsU1Q8NoId5O+4KIGY36QcTffw4FAIBB4YRDfxYFA4KWMF0xQuBvQYWG9Xm+QaQgwEfXVaqVOp6Pd3d1c2I2oORFySTn66sXpIH2QHCLeFNyDaA2Hw1zErtfr6erVqxqNRprP5zktw8UJIvDYz5vNZiblFGxcr9cajUY6PDzU7u5urvcwGAx0eHiYxzabzbIlv9PpaL1eazKZ5BoNFEekwKBbzd2yzt9lYTu3qjuhAxyPu4Br8RwgoqRucB+KO1ZVleewXq+zeAJJ9uflwgLPw9MCeL6MRTor9gg8mu8RfMh5Scils/QHnAq+99gnXveAc3GMMDbft979woUxhAvEMJ8zrzvR9Ui/p4E4uWUdqckh6ab6HsyzBHPnPdbb7+m1Dzz9oVwPhAHWH8dG6WpwcYg5cA2EllK88HQId06cJwowllu99qC7DQKBQCAQCAQCgYuICyEoVFWlbrer+XyeI71E5j1/fTqdqt1uq9PpqN1uazKZbLQdHI/HOjw8VKfTyQQH0ke3COmkTkCn08nF/hAKjo6Och2Fxx57THt7e9rf39dgMNiohQBJ9mKPXpgPMWA+n+c0BNIyhsNhjuAPBoN8X+z2zJc8fc5DCIBESmc2do92OwGF+HtHANbb0yNKsuWkmPl5UUOPbCMWkJt/dHSk8Xicr+lpCjgVKJxYulKIyhPlJ60EwaIsQOnkGnKL8OOpFeyPspChuyEQOii0eV5NAOYinaS6sB/ofOEpJbhQvLCgO0NcpGB+XogQMo2IxbgZnxcGLcUJnms553KfuNBSuhG2FU709A1PK/J9t43cMxfW3FNCzhM12N/8vi0Foxw7c3ZRwh0M5XzL/VCeczfuhkAgEAgEAoFA4GHDhREUPOe50Wio0+lsWMNJI5hMJmo2m7p8+XImVtjvsdwjKlDrwFMRiPrv7Ozo0qVL6na7ud0erRHf//7365WvfKWkE9K4t7enxWKRxQnpLNpPlNcj0aQ2MCYnUpPJRN1uN0ez9/b2tFqtNJvNcptBXweEForq4UzwNAvIE/NjLREfcFywjm77l3STk4F5I4QgjHiHBWpbkJOf0klRzF6vt5Gr75Fpf50ijYy1dFtQVBOyzrHMz9MVSJmo1Wq5BgYuCMg516Seg68FYoenccxms5s6DEAuqU3hKSasKWtBbQzWiWv5+nlaTzlv9j7zLR0IPDuEGUQtuke4Q8VrFHhdCOpMlCkh5eduW+qL7xV3GpQOHk9pwDlS1qnw4ot+bdI6wLYCjWV6QzlOf27b3vPXynSK844PBAKBQCAQCAQCJ9jedP5FBqRGkiaTiVarVc7B94j4er3WjRs3siDQ6/UyQSVKjugwmUw0nU41mUx0dHSkZrOpbrebLfaHh4eaTqc5xYLzKYj47LPP5nSLfr+vTqeTyR+FE3FB0EpvsVjo4OBAzz77rFJK+X6SctR6uVzmtpDMeW9vT4888oj6/b5arVYmhE4+SeugCwNRc2pEeISY+7ngIJ3lnBM9L0m+F/mr1+vqdrt5TE6eub+7DyD1vV5Ply5dym05Z7PZhu3d20yORqP8vMv0C6+zgKiwWCyyk4M9IWlDjGGfQOBZH9wliEe4X1gjump4LQTG48UaGQ8Envcg0vP5PBe1BN6VAaeDR/b92VAXwotmIk6UbgFP+/Hr+3MunSA+JxfafM3dccBrXuegrFng16buha+fH+9pFy4quFuBc8pjeb2s/eH32Oa42ZayUR5bHrPtOoFAIBAIBAKBQGATF0JQWK/XOZIPOWy1WrkWARFUfj88PMxRazosYB8n4kyk+gMf+ICuXbum1Wqlfr+vfr+fc/2x5rdarXyPXq+nlJIODg40mUwyoW82m1osFprNZpKk3d1d9ft9HR8fazqdZpI5mUx0/fp1DYfDHPGm0GJKKRPj1Wql6XSar9fv93NBSXdNSGeFGilOCLGGAHe7XfV6vUxEIV2kjUhnXRykTbKOy4J5TKfTjTadg8Egizs+DgQR7onlXzpxNwwGgxztZ7wuQuCQ4J5l1L4EDg/m5Mfg/HAnhe8JuoNwDwp7eltFUhCon4AI4U4BQCqD7193iLhYxHqz1gg33sbUj/Mfd294y1HeQxxzYcTHw7meuuDHIAK5cOcCjHd9YC3KriOIUrzGWF2A4vm508GdNWXKDs/Di11660nvElIKCi5abBMe/FhHiAeBQCAQCAQCgcDd48IICi4GDIdD7ezsaG9vLxMTJzlY1Lvdrvb29rJ1G8IGKSbX++DgIIsU7XZbrVZLi8VCh4eHOjo60u7urur1eq6gv7e3p+VymaPrHv2FtFKMsN/v54g0DgQv7NjtdnNOPxHs5XKZxZDZbJaLSXY6HTWbzUyKIPGNRiP/l/QKj+66cOHEyMfL615kD3HAiTrPgntwb486Q1ApIAnBJjXDUwyczCMoODmWlMUfov0Q3ZLoM2fuAxFFpPDimETVXSSAhHY6nbxnvLUm64XjBVdD2UmCyL/XLsDhgljh6RL8FxGFtIttEX7G4o4E7sfz9yKQXhyzfP7ARQQvVsh1EAEATg4XVBAbSL9gXH5dnsfOzk4+v9xz5ZhKEaRMnSidJCW8xoR/Jjx1iOuDqIkQCAQCgUAgEAjcG1wIQQEhgX/0j8fjXCsBlwKdDyAVRJ8p0OhkY7lcZrGAnPTJZKLFYpFdCiml3EGh0Wjo8uXLmThC5nFNEOX1/7ZarVxcUFIuyNdutzUajfTe975Xo9FItVpN/X5fe3t7uWgh0XxI9XQ6zR0hJGXRAWIGAXb7ukeLWZ9ut5vXg6KE7hyADDpBR4hAsCH9AbJMPQuOQyiQlNfVC1LiMEF08e4GuAIYi0fPvZaA33tbZJkxuggBEBqcNDu5Jy2Cwp2kOgDSCLzuAIS+jNgDLybInLwIpgsf3JP1L4sjehqEwwm9A+GBsXqKwLYIvdcg4HkwVwQ4nl3ZXhT3As+SdfYxe60OH68Tfk+tYFx+nNeLQITxMTJXTwvalubgwsG2NQ0EAoFAIBAIBALPDxeiKCNRcumEQAyHQ12/fl2XL19Wu93OEX9JGy0gU0q6cuXKRm66JE2nU43H40yC6RKARZ90hfl8rmvXrmkwGKjf7+cODDgDIJdE2Z1U0REAB8L169dzgchOp5NTCCBOrVZL+/v7Sillws3YcAjgUPDigxQjxP0AaWUM0mYVfepKuDixWCzydUkd4BzSGSB8EHIcHIy/2WzmyL1HqctigRB4yHcZiXbyibPBI/b8uIvDnQFcy4tElsUTfe0Yz2q1ysULuXej0cjuCO/y4PDikF6gkPXyoomkoHAOrhUvtihpw2EC+BtRy7Fer7Po446ZMtIOGWdfsNaefsEzKmshlCkTkH4cQS54MA72k4soXrgTp0jp5ChrH7hI4KkgXNPrTvhe8ufibgmei8/Hsc3pUNZVCBdDIBAIBAKBQCBwe1yIsJ2TD+nEfXDjxg1VVaVLly5llwLHVlWlyWSi2WymnZ0d7e/vq9frZYcAhRWn06mkk/oERJQhmhxPccBaraZer5ej0dyT/P7BYJCdAt5lAaGA+gakIEhnFvrhcKjFYpE7QHQ6nfw+LgT+9gJ8Tvw8Px3XAHMobd69Xk+XL1/OjgXprJOGkyyKQ0IKnUx5fQPED3djkDrA9R3eJcHJmwsCzK+s8u9EcDqdZoHGnx+kG6K8jQC62OH5934Pv2/ZopQfnkcZ4Ya4QoA9fcTTAQD3Yz64aiDtPl4XLhzu9uCH4/xcH6OkjT3lx3gqj98PMcw7VngrTR8z1/NUFhf3ymfiwgJj8MKU5Xq5y2Ibyr2/zYlxJ/URzrtHOBsCgUAgEAgEAoHzcWEcCkQyIT/D4VA3btzQ7u6uer1eJusQo+l0qoODg0ycu92uJpNJLtJ4fHys8Xisbre7EeGniGG3283R6WeffVZXr17VYDDITgFILLUadnd3JSlb371FICLGdDrNLgWPoiJsDAYD9Xo9rddrjUaj3NLSu0YQpS5t915ojnVAXCAqvFwus/jR7XZ19erVHA33CDvEEGHGhQREDgr+jUYjScpCC+kYi8UiOzSw8DNWIuTch0i9dGazxynhIgPuCK/VQCQc0QXRiLG6ewQC6QUgIcsIEkTBEVJI82A81IVgvUhTKMH9ILPUL2BtXCBjrV1UkLTRwhJRw8UL/zxwT28RyXnMkfd9rdmz1MhAAHEBw4tMIix59xLW31ujlpF8TwMpi6Q6yfc6C4yzFDX8GG/9eSvcSlAo0y7uBtuEnUAgEAgEAoFAIHCCCxF+g0R7BHa5XOrZZ5/VYrFQp9PJwoAXBTw8PNT73vc+HR0dZVLe7/fV7XYzuaEzA7nYHEsXgpSSRqORDg8PVVUnXR68uB059pBnxukWbzozlESaaLp0EtVHFOn3+znaj0X90qVL2t3d3RAXvGsAYgGkFPJIIUDGRH0BilpevXpVV65cUavVysTMc+eZX0mcnNCTwkB6BG03ad+J+OKRYk8fcLcFJBIy7ZFsiJ93NXDgqkBA4TVabXp6AcIB93by7kTf9xyiAqIJ/5U2Uzb8b9aSMfnecJLsghBCBgISYoPXCyhTAXy8XrTQf3iejMvrQ7iDwH84tqxvwLHMj9fLGgd8flkb1pN940UyOdbvU3aDKJ+3p0h4yoO7bbbVovD3WLdtrpFSgNjmoggEAoFAIBAIBALbcSEcCtJZpX4iqHRnePbZZ3XlypVsuT86OsoFB6fTqa5du6Zer5cLEbbbbe3u7m7UESDiOplMNJlMNlozQnQnk0l2JjQajUyiPV+diDc1BXAlQNqI5Dppxw6/WCxyIcFut7tBPKWTVovdbleScgqGE3Cfi5NZyDDXoxXlfD7XYDDQlStX8viGw+HGulAzwefKdT0CzTnMBVcEhTPJ78cBAlH22gK4ESCrHpX29AK36btrgXHx4zUAqB3Bfd1t4c9/Pp+r3+/n/UNhRNbP4bZ9xgic2PoaeXpEmffPs3RS7udDXp0Al8SWMbjDwOfL2rDWVVXlVBtqg3CcE/zS7r/N/l/WJvCxu+gA2WeM24i5O2ZKccDHcF7KAnvrTrHNvXArbHM5BAKBQCAQCAQCgZtxYQQFSAikaz6fazQa6fr165nkE+GVzv7RP5lMdO3aNT3yyCOZ6Ha73ZwD7i0Ep9Opbty4kaPZTqKPjo40mUw0GAxUr9dznQCvcSCd2blxTVBjAdLd6XTUarU0nU5zVLzf7+dCh7PZbMNi7sSz0+nklAMvsOeuDcgUJK7dbufjKbx4dHSk6XSa3Q6PPPKIpBOCNBqNNsiopJs6JZTPxMkb9RsoWkmxTKzpHgnGsu9tPUnx2NnZybb44+Pj3FGAsa1WK3U6nRxpd/eDP3/IsztSGG/pgGAM1NBA4NkWvWYMi8Uidwtxsuz3ZK1cHOEYHz/Ci1+fc91RgVAE8UYQgvzjbuAaJSH3VAW6iuBi4bPgNRhKBwDr68JJ+Zr/7bUkeL9ME3E3BHPx9AnWqhSz/F7bRJdSOCr3B6IA40Po8Os4yrV4LmkSgUAgEAgEAoHAw4ILJyhAQKWTNIHDw0Pt7++r3W5v5LVDmqqq0sHBQXYHQEj6/X6OGvP68fGxRqNRJpReCHC9Xms4HGp/fz+T+dFopP39fXW7XaWU8ni8IwPpCev1WvP5PDsNUko6ODjQbDbLKRjz+TwXGqTuABZ3Uhog25BhiKxHl8vorFvUuQ+iAkUAB4NBbgdJoUV3E7iDwCPPpTUewaPX62k2m20IBYzBzycy77UL6L5RCi8c50UJES4YO89TOhNCIPysBfcvSal0VrwQNwvFI71FZUm4+fH1KSPrLgowZ7pnzOdzSdrofuHr488TkaDVam04NHB/IFT4fpA2yb0X2uRvF0FKQu5OiFuRZ4i/H7ctml+ScE/T4ViO8zn5WLY9u9IVwd48r5jlre7nBTS3Hctrfv1AIBAIBAKBQCCwiedcQyGl9IqU0v+dUvqplNLbU0p/9PT1P59Sek9K6W2nP7/ldtdym3un01G/3885/4eHh7p+/boODg5yEUQK8Z3eT8fHxxoOhzo8PMxRb66DBZ3K+ovFQuPxWNPpNJNEhAXaVU4mE63Xaz377LO6du2aptNpFhCWy6WefvppHRwcbOSBY6OHXA8Gg0yGGU+j0dB8PtdkMtkgOeTgU6Sx1WplokyqBSkdOC7oKiDdXAfAi9mxZqwHqR5OwBkH5NYdEN5y0IsZUh8C8QdxwiPWnO8tH70VZ6/XU6/Xy46NxWKR00Q85cPdC1VVqdlsqt/v53MRHMqx3m6/eYtOJ8EeoWZ/uHjg3SmYF6SY63k6B44YSTcRWIAY5OKNp2JQMJK6DohMCA8cD1jnUihgb/jecWHNuzkwl7KOwbaUCObmjgBP+SjXaFu6hzuUzoPvDe7h9902rnKMrKsLYNsEDO530XEvv4sDgUAgcPeI7+FAIPAw4/k4FI4l/cmqqv5bSmkg6UdTSv/h9L2vr6rqa+/0QhA6bw84m810/fp1jcdjHR4eZtLUarXUbDbV6XQ0nU4zQSClAIcDbRURByAqpD1AVqmHUKvVNJlMNBwOc7eIo6Mj3bhxQ9evX9ejjz6q3d1dtVotPfPMM3rmmWe0u7ubSZdHpCVl98J4PN6w/o9Go40INN0iaHMJSex2u9nBgBjR7/clnbWbpH4BZJs6DZKyJX42m22IBawDgoN3WgAuCkjKlnvIJvZ9xu8uBiLqTvi8GGJ5DdpOklrgdQtcIPAilZJyOgfj8mKGLopA6j2y7k4XCkeWxJf3/e8yNYFjyloQCC/r9XpDTPDODGVeP+NmX3phRl9LFz94/rVabWP+pQjAc/F5OeEvXSnejtNTEW4FT2FwIcLrRrCWZfqCt9rkfXeG+DMoxQwXJFxQKFM5tqUusC/KLhIuMNxOoLgguGffxYFAIBB4Tojv4UAg8NDiOQsKVVW9T9L7Tn8fpZR+StITz+Va6/U6k2nSBebzebajj8fjXDm+2WzqZS97WSaIk8lE/X5f7XY7E1XIQLPZzBZ/agpIJ+T14OAgk3LqJuzv72s+n2s8Hmer+LVr1/Sud71Ljz/+uHq9ni5fvpxdDPP5PIsXdFzAgeCV7YkoDwaDfK6nHECIGefx8XEWQzwi650BECjIy/ecf1I9Wq3WRjpFSeYkbRTTcxEBgWC5XOrg4CB3pQA4KfxY0h+oS+AtDiHXEGyEhXSaKsFaOJmFLHrBzslksuEYIXVBUn5uPHvG5sSY/YYQ4t0p3D3Ac+H3soihOwi8m0LpEvB1Z508Is+8+Jt9zetlAUp3cjhh73a7G6khjM87XtCtxOtB8Gw85YBn5vvlVqkBwAWdnZ2dLHJ4gU1fCxdiXDjw+hRelNPFBp7jtjGCcswuNpT1Lvz5e8qFi1oXFffyuzgQCAQCd4/4Hg4EAg8z7omfN6X0lKRfJemHT1/6Qyml/5FS+paU0qXbnV9VVS6iSH5+v9/XYDCQJB0cHGg4HGayXqvVtLe3lzsL0BYSUoTdm9SAlFLO0yd1gHoG1BtoNBra29vLefVUxz86OtLTTz+td77znVoul9rf39fe3p6Ojo50/fr1jdx/SZnEk77gHQ3q9boGg0FO04A8ScokcTab5XQMSFVVVRupBYDcesjjarXSeDzOa+W2fydbTjj5250BEGTWezKZZHGHFpaQR2/vyDypD+H1AbyIJDUtKHAJGSctpUyd4D6IJOv1WpPJJAtMXLPVam2MwQmnFwP0Yo2IEi4aIDT5355iw389Ku/7ztca1wVrwfhcVHBCXIo+Lrx4qgJ7hVak9Xpd3W43d7tgrl4fgefG+EnHYExl6owf5/toWzTf96SkLBy5Y8U/J4gxfm3WjmP4fLhjoRQNvC7CNrHD3SDleZ4m4T8+j23CyUXG8/0uDgQCgcDzQ3wPBwKBhw3PW1BIKfUl/TNJf6yqqqGkb5L0IZI+Widq7dedc97rU0pvTSm91ckVJIdCgp1OR4vFQs8++2wuJujk3MWI0+vmfHMnMS48QK4gvRDPfr+v/f39TFqXy6UkaT6f6+mnn9b73/9+rdfr7GgYjUY6ODjIhJ+f4+PjXJCRyDiCBkSLKDmEjtQOUi68sv9sNsuvOTkkJWI6nebaEUdHR1mUoJ6D2//LPHnIJ8KEdNI5YzQaZZfIaDTKf7uF3gtE8tyczLoQ4CQeYox7ooxCcz7jdHLLDzUnvFCjF6bkueIcwd3h9SFwPxDldzeBk1+/F3PwaLYXO/QCjszFu1ncqraDpz34s0KU8DoLjI26Cr62fu9SVCjX0js/eBqGr4dfbxv55j4uiPBZwJng+87Hw3x9X7ng4vdEtPH19TSIbePyZ+XgsyKdiR8PSHrDubgX38VHWrxYww0EAoGXHOJ7OBAIPIx4Xl0eUkoNnXxx/uOqqv65JFVV9bS9//ck/Ztt51ZV9SZJb5KkVqtVeQ4+xImifcPhMNdHqNVqGg6H2tvb02AwyKkB4/FYp9fKtQPomECOOYTeiSJRWyLh+/v7+Xwnl4eHh3r66ZOpEdWGzFMPoNfrbXRtSOmk2wTFGRlLq9XaiMYyHgruLZfLTIC9yj/EHFIMmYRQQ1jpegCJ4zqTySSPq4STek+TQJiRlMWPTqej4+Pj3KGBaL5bxSF9jA2iiBtE2ixIKWlDjChz7L2eAeNkrajnAJn2uXhLSr8268m8eNbeXaPT6eTnybq7rf90j+exu6MCsuvz82h8adN3QaCEpyB4HQfEDEnZEcNngHm4oFQ6Kni/TI1xhwBjdVHqPPj1PSWkLDDJsecBIawUCFwM8bmXaTrnpWn4egLO3VYrwp0aFx336rt4N11+MCYcCAQCFwzxPRwIBB5WPGdBIZ38K/2bJf1UVVV/w15//DSXTJI+S9JP3O5aHuWluCIWbDo+UHdgvV7r4OBA+/v7kpRzxyGJTgho4wiw8TvBJO+cGgse4SW6TurFM888o1arlR0KOAQgPRwPMcHhAMmF8NDyT1KOoldVpfl8nn8Gg0Hu5EAKBRFVCvGNx2PN5/MN6zouBkgo0WuIOSkenkfebDY1Ho8zoST94vR55rWDWHvLx8ViodlslkUFz2/3FBNECEk52u42diLPxR7LNTCcTEubdRs8PcTf9wKDrJkLHvzOOe4cQVTgeTJuJ/asud/fyX/pRvFrumAC3NJPi0mIuJN1XwdfT+6LGLJYnEQ5SPthD+GogXRTh2I8Hmcxylt4MgcXPzi3dJbwTHx85XhLUFPD98Ryudxo0VnCn3OZxuHrcjtBwNNRcEuU7oiLLircy+/iQCAQCNw94ns4EAg8zHg+DoVfK+nzJf14Sultp699laTPSyl9tKRK0jslveF2F4LUOUmkwF+9Xtfu7m7+Rz3284ODA0knJKzdbm9Yv7FbE4VtNBrqdrsajUb5mmXUnAi+29d3dnbUbrezoDCbzXTt2rVMxEmz6Ha7G+0jISG4JrBXQyidhHn+OmvB8VyXbhZe+4AoP6IFRAyCz7rUarV8by/66J0HvKOAtxqUzojbcrnM6wPJwzEBSXWCvl6vNZ/P1Wq1cvFGukowZki3uwnc8u+FIaWzVAlINUKNC1BenNPXFJeDk1uIKPuN9AhqE3iKgR/nDgSeJ/tlZ2cnPwNqMVCzoyzOCIkm9WIbcXWiy/PYVlyTZ49AQC0ExA5SD3hedIhw8YO2qF6Y0VMLuE8pnjih9xQLf91/SjHC3QulyOPv+esOhCe/l793p6LCA5zycM++iwOBQCDwnBDfw4FA4KHF8+ny8AOStv0L/Huew7UyEarVajmHv6qqHA1vt9uZkFdVlYszcszOzo5Go1G26EMqifT2er2NaD3RYwowcnzZqaDX6+VCiovFQpPJRN1uN7sH5vO5+v3+ho282+2q3W5vpGlAyCB3ADLkRN3zyhuNxsb4vMVdWfCQHyLpCBGsMW0lSZMoc+BZGy/YWEb1iR67uLFen3Tp8PkhNtCC01MOeA5l5wjGwI8LTcyJdUJQ4R6tVkudTieTekkbrS1L0Yp1k5SFIcbP2NkDdEZAmOGanp5AlNs7exwdHeVuFB61Tynl13Cd4DBgjdkL7DOcMIzf2x36c2SPlGkKrI9/NlzEwKnCc/W9uV6vs1Dm6ROM0d0uLgiV8LX3dXOHiD+X8rjzUhhcMCiFl/L9stjiec6EBwn38rs4EAgEAneP+B4OBAIPM55XDYV7CQhaq9XSaDTKUV4Iquc4Q/Yk5Ug0eeMeqYfQEyX21AmPcFPgkGvjdqBzQK/Xy4RxMplstCwcDocbxRbJzU8pqdfrZZEEEubdA6RNRwLiA8dgVSe6DLFHYPDorRcDxJ0xm83y2CCSrB2klig71/ZIr6RMJOfzeT7X8/Fd5GENERBwD9Di0kUTjuc+XItxel48ooYTaE+f8HOZP8KAk16/F2Phml7DoNFobHU+UGsAccPXzesEeFtMnqOTZKL+CBcQWc7jd0+98efi7huIMMeWBRh9HC62cK2SqEOu+XxwDWpfuGuEdQUuRGzDtvv52pXPqhQgSudCKQBsu78/cz/Pz/dx+f4MBAKBQCAQCAQCt8aFEBT8H/ledR6nABFvIqa4EJwM12q13HYQy/9kMsnEttfrbdj83VIvaaPAIcX+GAPjgaRPJhNdvnxZ7XZbN27c0Hw+197envr9vp555pmc6gCphSh6hFvazPFGEHCy7q4NxuYuirIyvYsE2Nu92J63NSydGn4tiClE3os+evoGpB7S7NFvdzZAzN1RUq/Xs0jBPV0kAFyLWhhE9Cmy6ed7pJt1Zv3Ldo7bSC/jb7Vaajabud6Epwj4/vNxcv2yXkStdtI9hH1VjsMJtTs0vPsEgoETYISysguGO1IYF2kNnU5nIxrve8/JtDtlgBf75D48CxcC/Dl7zQdP2eGzWxZ6dIHMn9HdEPzSxeBj474cxzEhHgQCgUAgEAgEAs8NF0JQ8MJvkAtqGZAXDhGF1GOZp5ODdNYyj4KB/HjON0TIOyFIyh0bnOggHlB0kOKIHIeAsVwutbu7m7sCHBwcaLlcZpu5W+8h9wgDZT0HJ17L5VLdbjdb3jkeoQArPu9DmCCaTiadSHoKBqQQEi0pk2HgNQt434ksxReZpz9DxA9PV/ACjtRHkDZz4QEkH+eAp3VsG2tJSp1AescKwLUQJNgjrVZL3W43d/HgeeLYcGHI94ykvC8RQ3q9nvr9vqbT6U0pNuxLd9/4M/K6C6VY4ITfx+5kH4HCu3EgmJVzZu2c+LOWpJ24qOBjAaUTwEUFxsNr7F0X0PyaLgD4fnCxoEyPcKGwFEh83cr2nz7mB7iWQiAQCAQCgUAg8KLiwggKFK6DNELYnVASYcVNQNTYiR0kBRJIJwLPEZeUI/7cK6WUj+92uzmCTj2H/f39TI5JJeh2u9rd3dV4PFa73dYjjzySO0bM5/McmSciDyEDbu2mDaXXDxiPx+p2u5n0TKfTXDgPsud1CJxc8zvr54Sq1WplQu9kn6g36+MdCrxjAfPy3HmeEfP0SLEXW4SwMnbOPS+/3i37jMHn6USb+5WdNlxQQgjgONaba/l8cUVQqJB19D0G6SctgXXwFBzWlWuQGuLjZhwlQd5G3D3a7h0gzou6u/OBz8tisdjYPz4eBBOeC/dw946LF07YfU+7WOGdIpgj1yb1xF/f5hrwVIXzBA0XA/xe5TGl62GbuyPEhUAgEAgEAoFA4Na4EIKCpI2INYQREcFbSEL8Z7NZJsNlzvzOzk4WIxAJEAG4Nv8t7dYQKToTzOdzXb9+PQsdjPHw8DCnUaxWK83nc125ckWXL1/WwcFBJo0QVM+NZ2608fM2fZCg1Wql8XisZrOZ8/xJEXAi504DBAsi1BzLdSGI7Xb7JrIMIMxc09eI9AvW1aPBHl0vSZ7XBuAevub+zAFiT1n3wV0l3NcFJM5ttVobdTF8jB7xRzjy6DVzQGTx/eLOAU9P4L6s/7b0GienPGPAPSHk3vIReHFJF0W8U4e7GhgvY/FCmtQO4d6lU4E9xPkunLDXuKfXxkCM8GfkHTbcAeECDfvN0z/YI+4AKTuibBMUXMzwz7eLEYhJ25wR5T4NBAKBQCAQCAQC23EhBIUyUutECSKC5b3f7+duBbQydNLENRAV9vb2ciS+rJsgnRFS7uH2bKLKw+FQkjQej/O1RqNRrtUAKUUA6Xa7uasEEWls56Q47O7u5i4MTow8/QMxw8mriwkUkEQsIJUDEs7cvM6EE0RJufAj92Pe7XZb4/E4R7IhyYwFQQGXAc/RRQ3uzTp7SgPPCBJd2u65F3OiKCBpHuX+od5GWWSSebvF3Yk8BRdJQyivzTEuJPh6eiSfH0+jwGnCvvF9x3GlSMAzdkHIBQiveeHFHcvPk4sL7vZw94a0mRpQwotZcgwuER+rr0fpjuDe7mBhDBQbdccM13JHiX9Oytf8XohApUDEOaXAUK5ZIBAIBAKBQCAQuHNcGEHB6xdI2ogMO4mDkFfVWRtECFaj0diwXDebTfV6vdwxwovduYDgEVa6N3jVfOopQNpSShqPx5pMJpJOyPGNGzeyNb9Wq220+xsOh5nUtFqt3DmCHH3Px/fo9mq1yvUbECtouQiJxKnh9Rcgoy6WeCS5rIfAnKqqylb/lFIuSuhRXBc8nEiXYo1Hh0uC7/UPnNy7YCKdOCJwhiBQ+Drxu3cj8BQH4OcgAHmqBbU5nOg6nAyX1/M9Crx2Rb1ezy1QEW1I2fG5+9xKpwd/s7d9j7tI5O4LrulpHb4nfL5lrYGSbJfOCsZaHuPuA18fX3tP7/FUDcbpe8mFFBezXFgosS0Ng+8NF3TK8Z2XKhIuhUAgEAgEAoFA4HxcCEFBUibnktTv99VsNnNBPIq4EX2kewNR+slkskGEIYlY9InEEoEHFEyEiNHuEIIG8fEUCAjHfD7XtWvX1Ol08t+0pJQ2rfi0WkQgILJPJJXIuHeD4D6lM8HHwH0hik5+vFOGdFY3Abu71wEoxYCUkjqdjnq9nmazWZ4P96U4oZ/nkeVt5MwjyqWIAMqINM/Uu2O4EMK1uGej0ZCkm0QF9ooTSt73rg2gTBnw18tUBU/54D13jiAuUXuAmh6+nozb3Ru3I7I+BlJ+KLTo3UA8vcNFCRfs+LsUFFzEwdHgTqAy5cWfdflfFy74HLOvqXFCG1eux/GlS8LTMc6Dp03wWXCnhnSzeOBpFv7fQCAQCAQCgUAgsB0XRlCQlHPlEQQg3BTJ42+IMfb34XCoD3zgA5rP59rf31ev18vt+yDv1CLw3Op6va5ut5tJOfeBYJEvTsQZZwFABKFY5HA4VK/X26iGLylH+p1Qd7vdjcKJkjYKN/JfFws8cutpD5A5iJI7L6Qzos560K0CMcULMErKqQUUhOT1Mu8dMl86E4Bb8j1yXB4nnVnTsb17NwBaVkIwPcVi27Xczg+ZJH3FCzB6zYxt56aUNooQsrYc56kapJw4ST0+Ps7OGwQGnAml2MKediFKOhFvXPRwkuspGu12eyN9wq/hgoLf01/js8Hc3B3h8/QaB359dyVsI/p+zVK04DxEPO/s4uJOmb7CWrHXy2fCmLy95TYBxNckEAgEAoFAIBAI3DkuhKDgdmnpJMLspAO7OTn1wPP0KdQImZbOukdIJwSi0WhsWM95rVaraTqd5qgnRf2ks0J7nq4A0eU6kOrpdKrd3d0caS3dA9jsaR1Yq9Xyfxkr5BSBw8k844MgAiLHHn2FaJIyAGHFGs8aE+1dLBYb3QhYZ7fULxaL3M2AsXpEnJ9txMwj/n6811mQzgo4zudz9fv9jXE7mXdbP8ILAgdYr9dqtVpqt9t5fRkHghWCCrZ7RBPWzFNJvIAmAgL70J0kEOOqOileORqNcstGiiFyP8i412XwThisJ/sUsuxiCAIca8FnBidEmY5QClNlKoqnJ/C7CwYuaPEMGKu7XnivrH/gKUb+rBiniwYOr7OxzVHizhhPxfFjy7/Zc5wXtRQCgUAgEAgEAoE7x4URFBAFnMhBIN1q7pFFL1JHtB6SNZ/Ps81f0oaAALF0UujOAM65dOmS+v1+LgooacPJAAmEaCNKeDqGV66nAOJyuczFDiVlYYJxlRFeiBJkkVZ/EEsnYB79dqLuRI66C6wtY4AA03mh7ELA+nOOW+ch4ty3JJY+D4i7E1h3OiyXyyzIbCuSCBAEEGFYU69Bwf7w+gmMEyfGaDTSYrG4iZTyGmvvBUNxLgDm72kOHEeqC2IMxJUOJTgQvGbAtmi6Cx48ewSrkoDjIPF5cc/S5bLNweBiHPufvcZ57CeO83oc/Jc5+R4rRSdPqyjhdRZ8H/G370U+By7gbZtXuVYuUkTdhEAgEAgEAoFA4M5xYQSFZrOZBQXSDUoy6W0BJeXIMuQHJwMRdsQJ/obsl0QJ8ovLgYKK1Fjw1o1Ez9frtS5fvpwLK85ms1xHgTG5fR8ho1ar5VoOkBfuPZlMtF6vc8cB6SwaDzHd2dlRq9XaEDYgUYgirBOR9qOjo1zIkjXy6zuRpiZFaWv36vxe6FG6uY4ARBNsE4Gc1LrwgFiyXp8UwqS9JWMrCWJ5rzIPnrQDxAQcERDiRqOhZrOp+XyuxWKRhQAn6mW7TO+owb1YGyfp3m3AUykYp9eAcJKNIFISW9aMe/leZt1JF8A1gIjA3MvIvQs5PINthHpbyoQ7Dfxcrod4UXZgKUUpdxic5xDw1IhyTdyx42kbvOdC5HlzYy7bnBGBQCAQCAQCgUBgOy6MoNBut3MnBo/0ljZ06SwC7q0Ld3Z2MvmH/OJS8D73knJBQUg8tRImk0m22tdqtexOQKzwnOz5fK52u61ut6tWq5Wj/nSDIIKNoMAYvK2dE8j1eq3pdCrpLG9dOivKyDr5mpURc6/mLynXSKBtZa/Xu6m2gtcj4DzuB5n3PPptaQqIGg7m6RF/rk1NA7ppLBaLDTGJc1lHujAgEknKNn+u7T8+Pi+S6IIH84cYIxbgEsElw0+r1dpIlyndG6Wt3teB54VbhfG7xb981uzpsnCmp/hAhNmTuAU89YXremeT0jXi9Rt8fXwu5Z5x8s8z5VxPlWCu7mzw9XKRg7V0d4HvnW3wzwnzcTGPPeb7Y5twwevle7cSOQKBQCAQCAQCgYcdF0JQgBR4JwL+EQ9B8ZoE3W5XkjLJbLfbWUiA/CMocI1Wq5Xt394pgI4RgIh2r9fLgoBHgb3mwHA41N7eXibHRK099cJJkRcxLCOlXrcA4tNoNLJAARncRvac8DAXd2swLwQWj16XqSTMTzoj7dR+KAUIHwMiD6TMHSbe1tLJHs+aug2ICjyz0iLv4yxrJWzLjXdyyfjdGeCpA9SzIH2lTDnwlBGwTUQoawOU6SseSXdBwVNKHL6GZaqBX6t8Dre6p7sDWDvfWy4CbatBsK0Ggz8DLwrKGvMZ4v7lZ6DcV3eaglB+Bsr/8ty8HgbY5qLx88tnGQgEAoFAIBAIBDbxvASFlNI7JY0krSQdV1X12pTSZUn/RNJTkt4p6XOqqrpxq+tApur1unq9Xo6WE/EkckvtAS8USLoDTgHP53ZC2W63cztB0g+Gw6Gm02k+z0n4YrHYyB2HgOKIYMyLxUKdTie3BpxOpzkajrgAKfFCiD53aTO/3J0Y1GIonQVu7ca9ATmmVgOkDTEBJwBzdcHDbeqQd9oQch2O8bZ//OCU8Dx6nCBe3wGBwtsWcn+eVQnED+br68X8WC9fk22EH1LJ2CDHiDc4S7x9aFmXwskqz9Mj6g5PZ/BioTx7dyF4VN8t+OUe8TQD7s06sI7u8vF1LYmyuxk89YRUAe8c4cIBz9fXx8dVOhXYw2UBxW1jAueR+W1iXPmez8+FrNulVNzp6xcN9+q7OBAIBALPDfE9HAgEHlac38j9zvG/VFX10VVVvfb07z8t6fuqqnq1pO87/fuWcBINUSktzx5hpnYCxJb2j9Q8gOQgQEjK6RC0k+Qe3FNSblHoRSAhjYgMVVWp3W5rMBjkug84H9brtcbjcRY9sLkTeaa+gReCRAzwNAnaTELCnBzivPC2lIwVotzr9TQYDNRut3ONAC/S53UOEAI8x947CkBSW63WhhjgRSm35ePzzLZdv9vtajAYZAGiLObn+8ILFPp8y/WTlMfN617XADBe1ps0BAQbHBrbOja4rR9Ryvegz5P1YC0AIgXnumuiFEJcbHD3AqJRmSbgLgfm7ykdfi/AOd6i1O9XRvxd+PDrMd9tQogfv+05l7U4ymttgwtc7mQoj9/mctj2d3nOee9dcDzv7+JAIBAIPC/E93AgEHjo8EKkPPx2SZ98+vs/kPT9kr7iVidA1iVlwumt3PjHv0fiPfcaIt3tdrN1XjqLRlMLwPP/3c7vtv6yaB2E3MkcY+O/dBdIKW0Q9k6nk50OXhfASRnRYVwEWNsZo7f64zgcF1zT3282m/k9BIpGo5GLMjpJ98g/a8+9GavXpqAYISIB1/Qx8qy8Y0an01G3291a/4B5+3sIMR6xZ0y3AgKHF9v0vHjGDbzwIvP0rhG+xzwKD5H1+gb+ntckYFxewNEdH07e/TlyXmnB577uBmEvUsvCu1Nsi9j7eF1gKKP6JRkva3mUqSbMHTGDfcY1+fs84s+1/WdbWk8pCHgKxjbRpHytvDf7/gETD+4Ed/1dHAgEAoF7ivgeDgQCL3k8X0GhkvTvU0qVpL9bVdWbJD1WVdX7JKmqqvellB693UWIkDYajWyz95xuIuxVVW2kPEhn3QAWi4W63W4mNfV6PRfPg7xCcrg2Eep2u53FAIiP53iT5086BaJCq9WSpFz4kPc5v9lsqtVq5ejvtnx+J5Z0ivDIP2TJCY+nbgAv2OfpBqwTBLTMe8eR0G63N1pmeroCRJyIOeNn/rPZ7KZUBXdNQNYpJMiaujiDWORpJ9wbNwZzQaBxoYfnBaHlOTgJd0HBOyBwHE4E35eISq1WayPdwt0tROTLfcvcmZ8fX9aAQCRjn+No8Wh/SfJx4lADoV6va7FYaDabbaRYbANiEfvMaxu48OTP1VM3vNChCwDMAQHF4fvuPJyX+lCKH+V7/jkqjznvfi8xAeGefBcHAoFA4DkjvocDgcBDiecrKPzaqqree/oF+R9SSj99pyemlF4v6fX87cUPId8QmmazqV6vpxs3bmRiRtV9UiDG43Guo+DRbLenEwmHgEEgW62WOp2Olsulrl+/nsUBCJfXakCUcLs19Ql6vd5GZB9hY9ucPFLMMdjtcSDwWllkj+t58UTvakANB4SW+Xye5+GWf9YR+zykHuLYbrc30gEYB7UgcHZQMJO5MDdfO3dsOEn2ZzWfzzfcC9KZe8U7RniOPrUDSgeJp5WwRsBJs7tEnJTyNwKUR9pZw9LNwjncgzXwWgQuhPnxkjaeIc+YeyJoMd9t4y07a5TgeJ+7P9dS7GCe3jnExwzJL+ft8PVhLfxcF13Y+zxXd1H4+HxvIQBuQ+lk2LYet/r7AcM9+S5uq/tCjS8QCARe6ojv4UAg8FDieQkKVVW99/S/H0gp/QtJr5P0dErp8VMl9nFJHzjn3DdJepMknaq5krRRWNHJA68R5aZWAgRoOp1qOBzq0qVLG+0EOcZzzrmP2/J7vZ7a7bYWi8VNaRVOahiXR55JeYDE4jJwck06g+f5c01vFyhtVpwnbYF6CB75dQs58DaVOCMg5O12O4sETtLcpk+dB8B4EVQQYDjHCal01p0Bstput7PjgIg7Yy+jyV73oExNoBsHDoDbRZfdSeFkl3kiyJRk3yPeOBiciJeE2PeguyV4fhBxUjCYm6dDsB6spxNwrkPrSk8D2CZOONFmPr7XthWG9D3OGnk6Bvfw1IEyDcJFMZ6Rd+xwl4U7aXidFBefh6+zpzMw/rJWxbZ6GbdD+dl+UHGvvot30+UHfzECgUDgPiC+hwOBwMOK51yUMaXUSykN+F3Sp0n6CUnfJekLTw/7Qkn/6k6uB+Gt1+u5DoCkjXaR3v7Nc9IhG7PZTLPZLNvUIY4pJXW73UzKqYvgRQoRLfr9/gapY0xeXNHz6snXn06nGo1Gms/nudvDdDrNaRfcy0kz43cihb0eEk3bSIoqQuyYF8TY3QWsGWOD2PJTts9zos7aQNJcOHGxAsKI+ODkzckr4o7PHQKJg0I6I/vSza0o2QfsAZ6Jg/NJj2EcpXDiBT+9oCN/excQd0B4sUMnv74HtxFmXxPmXhJznrm7azzNx1Mtbkd+macLI/5MPF3Cx84a+jXYD55idDtsa32J68QLVpZCmNejcJGibGd5XjqEz3Eb7kQ0eFCFhXv9XRwIBAKBu0N8DwcCgYcZz8eh8Jikf3H6j/m6pG+rqurfpZTeIuk7U0pfLOmXJH32nVzMOxEcHx/n1ozT6TSTBs+vh0R4asFqtdJsNsukEFECgkJNAwgbxBmiR+eG+XyuGzdu5Cg76Q+Qu2azmaOrbq2fzWaq1Wob1n23kXN8GWVFEPEuAV5HAJEAEu9pG275J2LudRqks+J+XlRRUibOPk/G6LUb/G/WnFQHgLsBwYHXmBsCAi4HBJMyhQCyy/NZr9fZlbJcLjc6dLAe7qBwArqtWKKndnjbRx8z8H3ldRnczXF8fLzRPrEk02XbR5wGLkyVtQh87IypLIDIuN3Ncl6tABc8ynX2Y8C2lJVyTj4udzh4FxNPd/C6Eogr22oecF9/zV0lPh/GVbYnPW8NbvX6eWICn9sLjnv6XRwIBAKBu0Z8DwcCgYcWz1lQqKrqHZJ+5ZbXn5X0KXd7vaeffjpb8u1auVAh5BLS6xFtL2ZH/QN3IRCxdwEAAlpGxdvttrrdrg4PD3NdgG63m3+XtNHyDyGBtAdqGNRqJ90qEAmcgHIsqQOMpdVq5foEFI2cz+eSbu5wIW2SW+msy4Hb4hEK3ELOfxkbhInWkDgb5vN5Ltbo7TdZe9wJzIU1guQfHx9nh8V4PNZ8Ple/388CBcSyzOPn+Xg0vyyE6Gkt7IdyLXkWXI/n7M4Fxu8k1tMBOMdrCCBasJe8YCWignf1cHeA36MUAErhwfcoa8b8/XwXPFgr3xeewlCKCiXR9rSOEn5PT7vgWTEWrn0eEIncCbRtzcv5+jPydJJy/e4Gnr5R4k5SJi4C7vV3cSAQCATuDvE9HAgEHma8EG0jnxMgGC4o4AJw4tVut3PE2i3m0lnNgdlsplarpXa7nesrQOi5F0TT7fHHx8e5QCP1ChAx6ATh8OjmcrnMZBxBgS4IToaJ4EJ6EQ/4Lw4FCJQTQbpQQGA5DwHF00FwUtD5oozIe74812Y9uA5jh7DiesAhABBuarVanjvElfXAmTGdTjNR9q4KRKb9WSIIlLn4ngqBmMQ1yoKS7lCQlAm+CxdlNwTaR3pbSRc+nKi7gLAtDcTvU6Y8sFYuaHC9Mh2g0WjktBHfJ6yVOxW2EWH2lLteSlGhLFDpXThKV4Cv6zaxphSw3N3iLoVtKD/bfg3WphRjtqXcbPu83o3ocCuxIRAIBAKBQCAQCFwgQQES6jZz/iZaDtltt9s3dSxwskQryP39/dzlgHtAeqfT6UYUOKWU70G6AgR+uVxuRF6dmJCqAdGTzqK00hnJdTcA44WsULBPurn6PY4Mjwx74UrP+3eixrj39vYyQcZB4HZ2nw9OECd67v5AFOh2u3m+vIaw4QIApNVTNIhOe848z5z3nfwvl8vcKhSBiRoKiECsAedwfxcbHNty/Eu3RL1eP1e4cjeEW/YZE2vF85POxAd3Tbjrw50lq9UqO0FKYu5Cj78uaYPM+5hd/PHreSqRpPzs/HPoQhfj5TmU+6ck66yrp3W4w+BOyboLBKUDh9eZp+/d8h6+524lDgYCgUAgEAgEAoE7w4URFFJKWiwWWiwWmay0Wi3t7+9rMploPB5nIgqhhGh7cUVI4O7ubs7DJ0oOuUNgkM46JUhnHRtSSur3+5kIzWaz7KDwmge4ELyTgUevye2GQFbVSbFIyDjEDKLllnQIrrsYPFLPtRkHkV8nnoyftAXmh2BCkUrpzPkxm802ai/wM5/PsyDhogUuBEnZdUF6CaIG1yINgVQId41wTJmTj0CEsCJpQ5BwAYH6ENRyKIUFHzd7TjqLzLto4wUCnQxDrss6DS6qlCkSXhfC3QTeHpLnwN+Ml7QAdxKwJmWBw1Jk4Dz/rLgwwp50+Fx9L/pcXESAzLuzwd0I/jnzMdyJmOBpDeU1fVy4dtypcp5gsC3F41Z4QGooBAKBQCAQCAQC9wUXRlBAFKBwX71eV6/Xy10X5vO5JpOJGo2Gut3uhi3fI9lEhquqyukL0+lUh4eH2a4POZaU0wK4Du6GZrOZ7fnj8Tj/3u/3JSnXQYCcQ+gg+51OR+12O3eAgCSSBsEYvXgiNRac2HrqxHK5PNfqXZI//usiBO6DqqrU6XQ0GAzy2jsxnM/nG6SXIpaQXk+r4B4Q1W3dDaSzLh50riAtwQs5eqFCn5tH6pmn/7BW8/k8P4dtBBKi784In0+Z1lAKDy4o4GRBUPFUBMaMIMHaujvEx8R1EZgQQ9whwHU4hn3u9yrrTzAHT4co9w1jcJcBx7nI4uJBKSawb7Y9O7BNyHGUDodtY/L7l51S+HHhza/tY75TUQGhzkWvQCAQCAQCgUAgcIYLIyhIyhFybw+IZX84HGoymUg6y/OHwNFWEndCt9vNRRwhz6PRaINsj0YjScpFAqfTaT6/3+/nNn7UYBiPx9rd3VW/39/Iq2csjAMhg7QEd1F4G0VPz3BbuKcJeLcLSKwTeQjSer3OdnRSC9wNgDuDdpSMxYshkkqxWq3yOktn6RitVkvdbjffh3MYB1Z+rs1rTrA9wl6eu63oYVVVG8U4idp7GoMTbndscLxfF7LpwoW30/QuGNSJ8DaT7hxxl0IpFDAeTx/wAoQQY4pwel0C9ujR0dFGbQrmCjH2a3t9A9bD97qnoPAa1/N9xOueTlQeU96rTP/w6/sz2vY7+2LbGrLOZbrGec6Gcp3cBeGfK3cYbRuPI9IfAoFAIBAIBAKBW+PCCAoQH1IecBJQELHf72s4HGZyQI45504mkxx17vf72t/fz7nskjJ5hPRixae2AOQ+pZP2dLu7u5lA096Qa0vK57gtHgEAQcFz1Lm2V98nuo3LoUwRgOQS+SeK71F64O0Td3Z21Ol0creGyWSiXq+nXq+nnZ0dzWazTNgYB+QJJwJknuiz2/kZi0f7cTYAJ5vcA+fDNiLrtn4n5qS+eK0Kv4dH/1kvhBJSUbzdoLea9IKUCC2sJddAUHBHhKes+FjK310gKB0VXoDU30Ng8kKQ0lnKgJNcxuupBb7m7oApawSUaQf8XbbP9Dl4AUmfa1nE0//rz9OFDBdC2D8lXAhw90ZZRJP14lrMpezg4k6HOxUSIt0hEAgEAoFAIBA4HxdKUBiPx1qv12q321kMWK1W6nQ66vf76nQ6ucZBWXAP4tTpdLS3t6fd3d2NugatViuTR7cwE90nKu+1CegS0W6389iIlhNxljZbUHreOvPy6DzXwA2BeIKjwbsEQGT977Iyv7++XC7zfSFTs9lM4/FY7XY7uwwoODibzfLaedcALzJJdwGEGM9T92e3zXFAnQafL+4J1lHShuvCBQzIO+tJ6ofXTWAszIlrIED4mkmbOf4e8Xeyzx5rNpsbHRhcACHlxfeMR/b92fscS1LtrSVdWEDs8DoRpFaUQgWCis+J3xmH/+3rVjoA3N3AuZ5KQQFTd0n4PLel2jiJ51jECb93+bsLGe4S8boKPjevd8H7/NdTeMoUmhL+vCPdIRAIBAKBQCAQOB8XRlCQdFPkmLoJ7XZbvV5Pg8EgdzTwQnsQXkm59sLly5fV6/VyMcXlcpkj5GXU0XPdj46ONBwOMxkZDAa6evXq1tx1b2sI2ZLOCPZqtdJsNstRZ8gQ15E2C/Zxfwh4GdWmyKTfgzlLyt0wcFEgTjAWBBdI/2w224j6ejTfo7vM09thOnH2dAOPwFN7wUmrpCxSlHDRwNeW9AU6DUD2nMTX63Xt7e1tdNGQzsQFd5J4JBvgSGANPWK/LW2BdfMuDtuIvadK+DMD2yLl7uqg5aY7FLyd4zZC7OS7FDHcEeAuEhcFypQUzuWz558FhKayvoKf69cox+L39sKOZc2D0nVRrnc5fxeCfGysie/fUgwJBAKBQCAQCAQCd4YLIyi4TRnL/dHRUSbktVpNe3t7arfbOTJK5NaLMRLtJ+IPGZ1MJjcRSSfqTognk0kmt/1+X7u7u0op5aJ/kDwKQULamQMFJqXNQoq4KCBOdHEgEk7hwul0qvl8ngm8F9nj95L0kbrhJJbOF9yL+1LsjyKYThYh5DgDpE2C65Z2zluv17n2hUf/Pb8e1wnPgDQDrs/cB4OBVquVhsNhjsq7DR/Rw9ew3W6r3W6r0+nk1AsXpxCUeG6knwBEB+5RiiN+nKdXcH93G0hndSdwnCAm+A/pDVynfKYQYK8N4nvAW1R6YcTbwZ0yZeqAuzncQcM6lkUXt6UUQOSZ961QigvMzdNfXDgqU2j8921zdEcE1+MzeLuxlekggUAgEAgEAoFA4GZcGEEB8I93SC8dGRAGqLo+Go0yicadQKS/3+9vpDt4RFc6qzgPsajVajmdAjFgNBqp2Wzq6tWrarfbG7UHiGC7C2E+n2uxWOQIu1uzuSck3YvnlVFt3Bnj8TinIpA64PN38uluB0ggtQIgmfP5XMPhMN8fsk4bSQCBhXx5JwHuj3ugTB1ACPLUCVwVPl5vwck5krIoQNR/Op1m8n8rUkc9gk6nk8c6nU7z2BA0nJw7sZZOXBPUj3BSCxAzSC3xugGlzZ7zEIqYQxn1L8UFJ8bectQj8tyjFAN43dek0+lkMcXFDHde+GfARQJSSDyFwgl8GfV394fvgXJ9SqLuz9XPKdeftBYXdfy8MgXHf9wF0Wg08lq7kOHnOhqNRv5+CQQCgUAgEAgEApu4MIKCExT+ls6KJhIxxkJ/48aNHImGLOBKkLRBomgzSTeHbbnsi8VC8/l8o0YAhQ1TSrkNpEe6iYaPRiMdHh6qqqpM1KQzcgJJg6BJZ8QT0gm8ACCuizK9wMm8R9PLQo7e6WI+n+vGjRtarVbqdruazWY3uQQ8ZxxHAyQMgader2+4GLzopacC4Bro9XpZrPF2lKwTYg3XaDQa6vf7Wq1WOjg42FgDnjPigKea4LDwuhrUOUBcYr18z/mz8HOJtns9CcbhkXnSWVz8QTyB/K7X6400Cif2vvc5B/GAsZbj3EaEOZ7xeMR/myDj4kRJ9sv3ylQJT93gvrzO59PvVxbSZO0QtlgPr9+A84Nn4X97a8jzxCavv+HCwnnYlo7hqRaBwEsdqV5Xrd970e+7Go6ldRQ/DQQCgUDgQcWFERRAWRwQAkvqAOkMVXXWEQHi3O12s3gAiXNrN0QYMgPhXa/XGo1GOjg4UK/XywQUt8JisVCn08m1A7zlIscwFogLnR0QGbCRQzyJhEO8GZ9HurlOq9XKxNbt5F6zATLr5zabzXws9nrqNFBTAhHFCS5rzfUQCXAhdDqdnBoCuaRLheet4xygoOZ4PNZkMrmpTSTtOZlLSkn7+/saDoeZGJIm4ec4AfVIO24DXne3iIsXHiFnr3kxTdbXibynUXAcKMm+i1PsY09b4NrexpP3SJdwgcAFt/KewNeLfcfnw4s/8ny2CQB+L//hui6AlekDnraEQ8YdEA4XTMprlnOUNmusuGizDaVoyFqU1952H57LtjEHAi81pHpdtadeofd8xuP6sT/1jS/6/T/xD79BvX/x1hAVAoFAIBB4QHHhBAUvqtdqtdRut3Pqg6RMriGokDGIOcUNidYSzScCCklDmMCFMJlMNJ1Oc2tIiPczzzyjer2eUx+cgHlkFuu+EzxqLDAm6YyAUtAP4uJV/KUzW7u7LiDUTv6BR42xyuOsIMI7m81048aNnJbB/SBoiDlE3L22BMdR64D0gaOjo5zWUKvVchoFc6COBVbz6XS60aWB9StbKHa7XV26dEmScvoHQGiB5ErK5BWi6SkC1NmoqiqLQt4mlGuVrgB/nhBez+0nLaB0x7CO57kh+Lss6OhiB2vnhRVLAYXngSjhbhWvZ8GYWq1WdthAxhE9fH19nd0xwT3KFBsXwfzvMi3DayKc577gd+ZMmo2vgzs//Brl2F3o8HuWjobSFcUxtxIfAoGXBGo7Ovyc1+qHvvaN920IP/C3/64+UW9Q75//iPSw1itJSetf+ytve9jOD/+kqqNIwQoEAoHAxcKFExQABIMii7gAOp2OUkrq9XoaDoc5hYEIvROkqqpyC0COqdfrOb8ewo5zwHP5u91urmVwcHCQ21B6tBaC5YTTWw1C7N1ZAXnHqQABQ9TwGgZO8D3yDBF0cuqkDtKXUlK73c7RYuo8YE2HRHuxSMg+9/OigVyXeXDvZrOZax+4td/TN6gDwbOhcCH57MyJNItWq6X9/f28H0jR8Gg/RNcj2Dg5mCfPAEHK0zeYjwsAjMOj66XjQNqskYHA5c4WL4LJfbfVDMBtw1r6WHiG7hZgThB9nmPp1OD6JcHn+OPj49xKFHGF9BIvMOmCGcQet4qLLZB8Fx4Yg0f7/XMD+Lx4SkO59r6XypSPUmArj3eUnSRKMaLsbnInhS4DgQcSKen6F75Ob/kr33S/R6If+Nt/V7/lP3ySVsPh/R7KC4r02o/U6IP7N72+akhv/prbizof8xe/VJ3rN4su3acXqv3n/35PxhgIBAKBwN3iOQsKKaUPk/RP7KUPlvRnJe1L+oOSrp2+/lVVVX3P7a5XFm5zMtRut3M0HSIK6UdowM2AzZ8fL6jm1muin+12O+faQ7QHg4H29/c1Go00nU41Go10dHS0QQrdjg4hYuy2RpKUWx9SWJGCknRYWK1WOR3Ax+wFHktruYsNzE1Snn8ZhS4LKpb1AjwdBNKHyOKpAAgTHgEn+k09BNaHNAU6WUCenbx6JJi0CUg/XR94lp4qgbCAY4W15to8J/+BsEP8yx+OwW1BjQnO8/oB/Pj6IkT4enr6B/UVpDOXBdeBxDMX3DWSspOBZ+VjZa0Qz8p6CCVhRhhgP3M/6ojwPLmmOx98D3Ftv4/XfkCw4TOH2Edbzm3z9jX1lBC/R1lvoXQp8N3hz8LFGP9sbnP5uBixrTbDRcS9/i4OPBx4/x/7eP3Yl7/4KQ7n4V1v+Ei9/Gt+8H4P456i/rLH9O7f/SH571f/rp/Rv/uQ//icr/ff/ux28ecvP/PL9E+/+TdIkl7+nw+0fttP5veufenHa9Xc/K7rv2+t/ne++TmPI3Az4ns4EAg8zHjOgkJVVf9T0kdLUkppR9J7JP0LSb9f0tdXVfW1z+GaGz8eye/1epnwQAQ8L1zSRts+rN1EX53kQn4gPeR841jo9XoaDAa5TgAgwkrEezKZ5M4QvO/58Vj9ndhwH9oserpFOU5IHQUgJeXaAKyXr0W5hp72UEaRnZQianirSEmZyCOGsLbj8VjSZreBZrOpXq+XU1SYz+HhYXYd0IXB0xL8XqSB8BypNYFoAKF1gk7dDNbNUym82KKvm6MUgEoLfrm+5bll7QV3NnAeIoV3DEAkKNMimGPZ3tALRJafA09dKMdXCk7sdf8M8BwRqUjFKdNvfF9zngt0vpf8ObP+1MoonTakzCAGcc9yLi7clfNzx0H5U6ZIlCidI9tSKC4yXojv4sBLF+/6M5+g436ln/r8b5B0cYqO/vgf/0b9pq/71Q9+LYWU9Av/58dJko4eW+oXftMLL9r8mSs/rT/zFT8tSfrE3/w79YG3fXx+74d/79fp0k534/h/OLyiv/wxn33La6Zj6ak/80P3frAvUcT3cCAQeJhxr1IePkXSz1dV9YvP9x/jLiZIJ1b3sjMBRAVy744EotyQcCeZXmwQq/d4PM62d/LgsfBDerw44WKx0Gw202Qy0XA4zIIHRBDyi4vi+PhYo9Eo11KAVCFOEAX3ooFe/I7j3FGBrRzS7Gshndm1fcycB1mUzsgvkWOIsBccxEUBIUZI8Wg6ZIz6BDy/4XCYo9HdbncjGu4CByILWK/XG605SxeAF8fs9Xra3d1VrVbTfD7Pz9PrLHAeRNyt8NzXW3iWNQBKNwLn+nP2VBYvfsj6MmbgjgfW2lHm+/MMPBXB3+cefD48JcXFEdbC3S2kXvC7t/9kzl4jhLQeX58yNcRTeRDSfO9Juulzx5ptK3jJ2Nxt4KkRjNVFtm1iwzb3ga+DiyXn1Vy44Lhn38WBlx7e8Vc/Xv/l9/x1PV7v6yKJCS8V/MwbX6fUOdY7PvX+pZH8wEf9c+mj/JXuTcd8we4z+oIvuPUYF9WRfvmTX6LataY+5MtDWLhLxPdwIBB4qHCvBIXPlfTt9vcfSil9gaS3SvqTVVXduN0FPFIqKUecyZsnck36gRMqIpvk4+NM8BoHpEZA+kk/oLAgEXjSKyRpf39fvV4vj4/xIChMp1PVajV1u91MKrvdbiY3ROQnk0nuqEBaBiIF4oF0RlBdMKEwH9F73Abz+XzjOP8hx5219BaLCAvMG1cE6wQgZ1500NMZpDO3hKd+NBqNLCYsFotMGkkr8Qg9z7TVauXuHJKyiMEPz0w6ES36/X5eMwQcCDvzks6i+pJy/QjGg8NBOnMReF0EyKtb74mmsyYIPBBoL2zIM0OIgDBDxHEoeOtL1thbkzpRZ04uOjGflE7qZZSpD8yjLHaK+OB7DwELgYlxkrLiAoGLSU7S3cnAdZ3Y8zlxkYx94OkgfMZdENm2T9kzCAGc46kmLqC4QAc81cEdMNzHu4s8AHje38WBlyZ+7us/Tv/+d37NqZgQuJf4mb/7a/TEK5/V2z/yG9StbXfDPWhopYbe8WnfrF86Huv3/Iov0LW3PhaOhTtHfA8HAoGHCs9bUEgpNSV9pqSvPH3pmyT9JUnV6X+/TtIXbTnv9ZJe76+t12tNp9NcSNBf5x/3pAhAZBqNhmazWe6oQJ6+V8jnGuv1Ord/JCoOqUJk4PyUki5dupRTJnh9Op3q8PBQs9lsgyz2er0NBwJOCOmE7AyHw0yoSA/A/u0uBy8mhwOBbgsQNYgjdSXKQoqM97xCgFzHi0Z6NNrX3UUeSCPE2lsD4rTwXHjuS70ITz9pNBrq9/va39/X7u5uXg8EG3d0IDi4+MBcPVLuKQM8B4gwZBVySBFJrlMWQsQNgFDg1nlP8+j3+9rZ2cmdKMoUBl9TJ/nsDU+FoRMG4hMFRcs6AhBmBCf+6105vBWlpEy0eS4uaK1Wq422n4yL/UjByXq9rtlsJkkbYpU7FNxN4u4ZSVmAQczwe3BNP5/9706d5XK5IV6xx7kOQoQ7fOgCg/OFOSJClOk2nMscHxRB4V58F7e3RDMDLw187Ov+pz6kcbHFhCd/sKN3f9z4fg/jrvAzb3yd/utv/ht6st6X9NIQExwfVO/rBz7qn+ttH7bQ5y3/uD7oL7606lzca8T3cCAQeBhxLxwKv1nSf6uq6mlJ4r+SlFL6e5L+zbaTqqp6k6Q3nR5Xnb6WydH+/n7+x72TuKOjI12/fj2TQRca5vO5er1eJotOcCELkPlGo5FJTa1WU6/XyyTUW1NWVaX5fJ7vN5vNcv0D6ebWiG7dh/S4cNDtdrW7u5tbU87n842aAU6gPEVAOhNFILgelS2j47bOWWQgcu9iDcd7BJxorqckMA+IdqfTyR0DptOp5vO5hsNhLvpYOiVwj0BA6eKACwSRZL1eq91ub4gpuDZwFbAebv93sny6p7IThDx+1gNCzXNBROA8oubuIvD6EvwX4csj6J424s+1LBTJGrgYwl5DrGLP8b4LRl4YkvmDVqu14UbAEcDPfD7Pz9WdAcAJPU4FXDiIAawLzxfxgHOpb+H7ls9DVVXq9/sbBRzZe9zXnQ5legpjYs+4YOauo7IApqf6eEoMQoU7K3zfUzPkAcDz/i7eTZcfqPyOwEsLf/vJ/6TP0uvu9zDuGD/7DR+rH/wtX/dQuD4+utXS/KloWXkHiO/hQCDw0OFeCAqfJ7N2pZQer6rqfad/fpakn7iTi5S5zb1eL0dEIRzY2ieTSSaDRCzd5kxrSaLmnOeRXncXIARQ4A8iBCGczWY6OjrKlnnIodcRoAAiJNjJLOTo+PhY0+k0CxoQd8biY4IMkSeOtd3/67UXfB1dxOCa3qoPseD0eeXXnRRyPiSeNaUmQLvdVqfTyQTVnSNOKiHo3Jc50cFhMBjk9WDOEHoIMeu6WCw2UhBwFDBmxkIXC1wa0+k0z4W5udvAiS7r7cUhndi6Vb+09zNHnCg4HFgf1plnyFpIZ7UuqIHgRST9GbsowXoyLubshQ09XYFUHe/y4Y4UdyjwjKQTAarb7WaxDveEtwgFPHsKm7JnvK4F60yXFj6npFfwmUAMdIHAC0d6kUffWy5iMX7EN9wtuGT4bLBHPHXD02IeENyT7+JAIHB7/MJXf7x+9Ld/nS7tvPTFBPCWT/1b+qQ/8+V6xV8Ol8ItEN/DgUDgocPzEhRSSl1JnyrpDfbyX08pfbRO7F3vLN47F/xD3q39RC89Wi8pEwii706Q6NIgKbdnJP9e0kY0v7SFQwQhtxBYctprtVomHl64za/nzoEymrxcLnN6hqcLUNsBlBFV5srYSdPYVtDPc+H9eozBBQTmDJH3fHoEmk6no729PfV6vTyfdrutRx55JKeM1Ot1jcfjLFoQIXchwYthVlWlbrer/f19Xb16NR9/fHyc3SWQ0JRSJoZ0AvDaGDz/sl0lc2s2m5pOpxvFEb0gIS4AalNwPy9GiHjj8DXDlcBeJTrvIoc7WrwmBtfgOObpQgUiB+NGEKIeRvns2VvsUxw3q9Uqiz6eCuRpFxBs7tvv9/NnAiGJcfNcuC9zbLfb6vf76vf7ea3cBcH4vTYEIg0iBscwNi9wyTqmlNTv9zfcCIxrNptt7DtqN5R1MhAk2u12Tv9h7q1WK9dBuei4l9/FgcD9wpEejA4P7/3yT9CPf+HfUis9XNb0Kzs9rToRPD8P8T0cCAQeVjwvQaGqqqmkR4rXPv/5XBOC5FFWWhFipZfOLOKIDZA/yAPRZ8ic1w6AaOFmoBsD16ZWwvXr1zfyxpfLpZ555pmNfHlIDxH6o6OjXDyRyCeCh7sNyJOnC4K0aeH3lANJOWKLAIGrwjsLYJP3Qo5lDQnpjEQ7mWPc7XZb3W53o8il1yJwR4d3HeB5sVacS20KnhkOkMFgoP39fQ0GA7Xb7RzF5zkyH4QYyDnigLtNcI9AXBFfPCUAVwkRZxdcmM/Ozo46nU4m/Q6vCYDln3VDmIK0Iip46grPCbHEC1tS/4P3uba3I2WP08lE0kZ3CXeF+DgRArzuhacmIJb4PXz+7GWvYUGtAuoR4MQpP8fMxcU34GIhIog7RbzYowsPrCnPlXUgfYnreXqEF60s0zu8FoQXkET8cgfHRcYL8V0cCLzY+JwP+kTpIosKKenZL/o4/fgf/0ZJjdseHni4EN/DgUDgYcWF+tcyxIF0BUm5YB/1Bjx67IULISEQYezuXrsAQobboN/vZ9LA6+5EgGRBNmq1mobDoUajkcbj8QbRxk6+Wq20t7cn6awYIeQasovw4JFSBAeIpBeS85QE3BmkVHBNdyuUdm4IpBdJ5Hdeh5R2u131+31Np9NcK4JxNhqNnNpR1m1g7HRzcHs7Y6fNI66HS5cuaTAYZCGI9BZaepJiwrV5Pp7i4oIJTgWP0tNhwwtPQlYh2Nj3IcuefgJhh9DyGvU0cFTw/NiXrLGfSxoE61XWCADsOZ4V1+VciLqn3LTbbe3t7eVnzvkeccc54akDXNMFBS/ciMDkRS5JJ5hMJjcJJqQL8LkqCxxKJ4KZuzZIjWGv8re0KQj454RuIT52PmdeG8KLPCJO+O9cl/Ey/gcs1SEQCLzQqO1o9Nm/Rm/9S/evJWQgEAgEAhcRF0pQAFizpRNBAULh5JoINhFtWkXyOhZuCKGnUkjK0VYikVSAH41GmRCOx+NMvHBI4DiQNgvlkc6wWq20u7ur3d1dzedzTafTnDrhdRScTBF19eg0xNUJOYKJFw4Ebp9HUPBUCK7nKQHcl4hz6Yhg3mWtgNVqlTsxTKfTTOwhcy40ME7u0+l0dPny5exMKCvrM3/WlP8eHR3lZ+zOAxcJIKM8d28n6pH00uVCWgvryLp7EUZ3NJTAqUHaAmTZxQBcGr6m7C0XhLy+gz93RCbWlOcpnQgV1LRgHLg2+CwQmacWBuPAScOeoWYFcHcC94SkI3jxGePzV64X68wzItXH9yprz/NzYQxRiXXDhYFQxGcIQYN7sxYIGu42cCHKn4kLK6VoFgg8yPix979ch6+caa/2YKTxXCjUdjT5na/VD379G+/3SAKBQCAQuHC4cIICZHI2m+V/1EMSEACwt3tUHuI1Ho91cHCQycmlS5cyoYSIQoaIGDvZnk6nG+3ojo6OcsQUIlQSxJL0Qyqn06kmk8lNTgQni51OJ9u1vVCjj4lj/W9ImoslTuJYM8ipOzqImkOwIHbc24kwJAtSOp/P839xbHgHB6K9XkSRe9HycTAYaHd3N7fwhGjyX+z01JtAVCAtgDGW5JWUDeksBQPnghNyn6Ok3KoSYcDFHC8U6X8DiCh1OtwhwP6RtCFsAdICmIN3jHAnhIto7irwPeV1QLhWvV7PdQEYByk+kG0Eg+l0mtNevIYDzw0hwp01fEYYqz+fslhluSaMi89lVVX5841DhM+VO5fc+YLQ6AINqS08Z28vyXlenNTXDbAPmE8g8FLAE3+joe/9+y/T5/QP7/dQtuLL3vNxUnUBW7SmpOHn/hr90NeGmBAIBAKBwDZcKEHBo5gQF8h5t9tVp9PJEVUvzMe5uApGo5H6/X4u/gepnE6nG8X2PGfc2x12Oh31er1srfaIOTUdpLO6BCklDQYDScoV8MfjcU4b8Og/uezcG3s/dv1ut5vFAo/KAieUXpVe0gY58joMfr5b9901wTGkbTA/1pY1pNAl+fsustTrJ+0k+/3+hv3f15x7EjXmWZN2gFgxmUxyaoikjSKNXsfA3QS+LuwRzmMcnOsuAIgjwpEXHYTEu8DAeVybQpUlET5vzV0kcDLsz5DfXUBxQYqxeLoF18NxA4n3+XtBzaOjo9xpYzQa5bafrVYrCz2IHp6SA8n2FAGcCjzPMo3D3QleC4V95mkoCBeeolD+MFd++FwhNHnRTb47arVarvHBmNz1wN7xa5XCSCDwIOLo016rz/gb/+nCigmS9M5PaUrV/H4P4yZce8PH6b/92UhzCAQCgUDgPFwoQQEgLBwfH2s4HOrg4CATm3a7ndMhvKAakcn1eq3JZKLRaJTfJ5LqpBeLuKSNlnTcv9FobKQtuNsAYgwxbbVamaBBgmhfWFaop0gh1vptc/coM24ML5oIkYM4S5viBvUGnGRDjj0q7Hn05NZ7twGEAwQKUg8gg0TdJWVCDflkzVkvTz9hvXlepJqQCuKCApZ2J6p0usAZ4C4Cai+4BR9yW0brscr72rtDwB0gvC9ttpGcz+cbZLsk0qAUA8qUAMbvTpKyToTfG0GlXq9rMBhkUcJrASwWiyyCuaCwv7+fCXSv11O/31e9Xs/r7l0eIPm+57xWgq8FohMpNJ6awrNgD7H+3gHCBQLg9SPa7faGi4Rn5e4FxEF3M3gahXTWdcIFC56fCwjs/UDgQcezXzbRn7j8jvs9jHPxmv/8hfrgxU/f72HchHf975+gH/+yb5AUwmIgEAgEAufhwggKHmWG/EPYnn322ZybT+oBBeNwJXhuPG3j3LJPtXoIBiKApwD0er0N6z1kZrVaaTweazgc5g4LDojtbDbLFnaIE1X8KfLIWNrtdiZ9EB0i8L4mnnPuEVqPFEOeAOTNo7kuKHgEHSEA8gXRLyPIjIHxeeTc00e8owORbi/KB+EnxYC1Go/HuXuGF1OUNutHkApRVdVGK0DWCuHDSSqiA9fmPZ8jLgSvL8B4PUXCySvPaLlcajKZZFLqVn32h0fauS7nU4DT7+v1Lvg8eCoJAhN7lPoHu7u7WYiisKKnDO3u7mowGKjX6+V9uLOzo/F4nOfie7qsScH6ecqBpOw6QPzgObB27CF+uDe1Rxy+Bjxf30eezuOfFZ6juxa8cCX3RmiRlIUVT0nBmUAxykDgQcbh7/04vf41332/h3FLvPqrDnS8uHjpDt/3hr+undS/38MIBAKBQOBC48IICliPKQCHGACx8uj48fFx7nPv0UZIN6QeEkStgl6vt1FQDpFitVqp2Wyq0+nk+9BRQlIWFA4PDzei4i4AcD9ytn1e3qUBQkmqAaQLK75b7omok+/uBQmdtPo1vcNAWd8BQHq5r5Np5utkFfIFwedYSDG2cp4ZY+z3+zkyDAleLBaaTCZZ4Gk0GtmhMBqNclTebfqS8vMlNQJnCOTRBQWfXzk3hAEvCigpk2evccF7vp7M0dMXKFLp3Qm27W3W04UCj5J76grX5XcvHspe8GKXdHDY3d3NbTgZJ6k3pAx1u13t7e1lMYFUEyf87FlSH3COlG0m2S/lerujxPca18XJwvriWkEocdHAHS9eUBSRqvxMMG+O8VQNOoXgpPA6DDxzd2iU4mEg8KDg6NNeq2e/bKLXv+a79b/uv+t+D+dcvOYffKk+5AP/434P4yb87D/8GF3eecv9HsaFwu/42d+kp/7V+H4PIxAIBAIXDBdGUHDCQYE2iH+/389V3afTaRYesOlDrrwoIIQFotJoNLKgQLQWUozjgSgoRSGHw2HOpXbHAQXo+FtSzqWXzvL6PVotaYOoMm6IU5lTTyTVc+IhkpDZMioraYMMbits5+PgGFIV+Hu1WmXXgXRWY8ALRHJPj543Go08p2azqb29Pe3s7OROF9JZy8DpdJoFIdIbaMXppN5TMNxGzzgQC3z/eJScuUNIidjzvhcd7HQ62Ybvuf6enuFRecbg42EfIhS5awOUXSSA/01ajRdARNxhPJBlyD0FLxEN2NNci5SBZrOpfr+vdrudBZrRaJSFBe++ULZV9Xob7qBhPKWDxlNy/Dh3g7BvSNPx7wRPQ+FzgnsI1wGfCfYyAgvCgn/O/ceFOP+ceneHqKEQeJCwc/Wq9v/lyd597d5/utBpDpL0Yd/ypfrQr/1JrU7TGC8SvvUTv0WtFIKi48d+/hV6zY+89X4PIxAIBAIXDBdGUADeGYB6A71eT/V6XbPZTNPpdCMvular5QKKEE4nKxBUjwB7lJmCbER3p9OpDg4Osu3e88ax/Hu1ewioR5sRC7BWe2E/4HnlXMuLAeIKYOwQVeZABNhdDCX5gXxxDcigR+yBOwGwe3e73ZxiUNrvIY+4P3gWnA9Bl86cDd49gPUaj8e6ceOGDg4ONJ/PN9IYEG2ks64WFL0kfcXXFDHEj/c1K9MZOKff7+fIPvcoLfoe8S4LK5bFET3aTZS7dESA8m+uzTW8gGf5bCVt3Bdy3uv1siDgbUldgMFRgvNmOBzmAqK4BGgLyp4suziwB70GCUIdz4/9z95zkYPPAHuCZ434UbocvNAmKSKSNsSBbUVHt9XCcLeDP8vymZxXEyMQuGiotdv6zP/8k/qS/ffc76HcMa7+97VWBxevUOTse1+l1zZ/RFLzfg/lwuB3/tyn6sP/0jVF35tAIBAIlLhQggL/yKfjgXdCoC4CJL60RWNjJxoN0eRY6aztXpkuAMnxiCdknQJzpEUgIJBK4fclouypGU7AnGjigpjP5xsV/MljLy3ZEFMvdAdZcxKFRd3rHZRr7MX/pDPRwkUMF0A83x/iSIoI4gO1IiCy3W5X7XZb0+k0R569EwKFKxFwRqNRHiPrBrF3uGPACSOuDtaB/3pOvANhqNls5k4H9Xo91x7wmgDMF3LPmvA+aTDsM3czsEZcz4mxP1t3qEhnEX2ENa7NnDnWi3yWr7tIRBpJOX9SUFxMANSGYNw4GBCGSqLO/mS+zIFrUwiVugTsF08FcgFIOqv9wXp7WhNuF0kb7iKeAWvp6UulcMaz9XMZhwtUgcBFxpf+7M/p6s5Qv7b94DhqPvzvfJle+d3/TRdRsvsdT/yYurUQE8CffN/HaP7ZSaunf/F+DyUQCAQCFxAXRlDwYnfeXhBC75ZsSIF3GYBoe9TS7dWQdE81gDR7+gPXms1mmch5lJXoJmJEGY2mAKMTkjKKDFFkTJBwSBJR2bLrhKQNIQGixNpB2JmfF5ljXk6gIGekgqzX62yLp2AepB7B4ejoaEPocSs96Pf7OVWEdAei04gV6/Vaw+FQzzzzjA4PD3OU2fPvPfLtqQWeF+9iDUUlJeX1clFiWx0JigNSj8CdDR5Vbzab6vV6WTjhGS2Xyw2CjavC00I80u77hXUBnMMzdtLrhJvXEBNwa7iF32s2tFotdbvd3B3FRSt3dHAunz8IO3uStBVScXxe7AWvK0Hazmw2y2uBwOfdHvgcuWiHI8ldEaWbg33pn3N3gXi9BHfqeA0MFzP43LAO54lygcBFwh/5uZ/Wb+3O9SB1Inj1P/pSfchf+xGtjyPefZHxo4ul/o9f+RtVrVZaTz5wv4cTCAQCgQuKCyMoSGeV5Yli9vt9dTodHR0daTweb7RppD6C52CXufNOIg4PD7Ver7MVf7FYqN1u52ipR4ghUP7D+0TxsceXheLcZu8RY0iTkxvGDCnfVnxxuVxuiABY0D31QTpzJxBpZcxOiiBQXqwOpwHkkOOczHnVfK8LgKW+3+9vED4INmSS50Q0H+FlNpvp4OAgd+nwZ+cigZM/z42HzEOaWWsEn9lslteSZ8PauUMAkgmRx1UhbRZrxPnCWpWpLOwb78jhRQ69CCbg+fC6iyV+rAsqpOhcvXpVu7u7uZtGt9vN1/RipbxGO03IPGt0dHSUO0AgPpUCAtdjjRGq2MusgbsJqLvghSe3rR/3A16fg/Hg5GBOpFOQnoEgxLX4DCCI+F5yEQdwLGNljKWIEQhcFKR6XZ/94+8+FRMeDKyqtT70375er/lTP6SL+sna+4FH9Ccuv+1+D+O+45eOx/qqD/51UjW830MJBAKBwAXHhRIUJGVXADn8kE+IrEcgqaoPKfGOCRCNbrebo8FEy71eASTDi98RWT08PFRKSZPJJLsOIHZEtr1QIKSNtoYQa8gMEftaraZ+v5/TM9zWPh6fVFAm/YKWgvV6XfP5fCvB8dQNj4xLyp0CWq1WrjXR6/UknZCoMlXE0wQ8MowzBBGGn16vp36/v1EQj7QLyDXrA2nEATIej3PHBo+wQ6j9b54L4JlKyukVFOmczWbZxSFtFsNkvdxlggtmPp9rPp/nyD0iggsAnp5APQJqapAmw7lef8GJsRcYdEu910nw1AcXQthXvV4vp2l0Oh212+0sWM3n8/w7+/7g4ECHh4fq9/sbe3s2m2VRoNfr5Tl46o6LQTxPPmveWcGdFS5ibSvayTrzueWezIO5c39PW3KRxt0r3vmBeiukDlGMk73uxTwRTNzVJJ0IKeyxQOCi4YN/qK4v3nv//R7GHWNRHelj3vz79Jo/cLGL+tXTRUzCeHHxU8up/thTnyhdWNknEAgEAhcJF05QABBTnAAU+IPQEFmXlMkENnsIrNv+IQxEZCFhkjainE6mJOng4CATl/V6rfl8niP01AFYrVa5MCGEzNvNYYeHOEH8+/3+BmGCzDSbzY1UBaKq7nigeGF5D09rKO3xWOM7nY5SShqPx1kEQYQg8u9EChLmkXqeDxZ1BAAcHk4YcQ9Mp9NMoLdFj7fZyxFU2u12HitEl0i13x+y6y4DxAxEEdYAt4OkPGdqWmDh57n5tSHOkrJrg1x+J7mlhZ6Coi6U+DyZf7kO3Jfof6vV0v7+vvb399Xr9XINC9aHNVmtVppOp7p+/bqeffbZvHen06mGw6HW67WuXbuWx464xZy9BSjgPW8h6vUhcLR4OhLPls8P42INcXZ4p5FSEECUwfXg68Z+8s8BxUTdLeJ7mhQdr5vC583TSwKBwPPHeD3Xb/ixz9eT/6+33++hBM7B989qenbVlyT9fz7q4yQ9OM6XQCAQCNxf3FZQSCl9i6TPkPSBqqo+8vS1y5L+iaSnJL1T0udUVXXj9L2vlPTFklaS/khVVd97p4NBAHBC70UVIWm87m0LIZzT6XQjggzpbDQaN1nznbR7mz5IGWKEt+wrW+d5sThIKdFvJ1jSWf47P4gYttYbpA5iymsIC1jv3V3h//V6BvV6Xf1+X3t7e+p0OnncrBHz5FjGibiBMOORcM9D9y4XRN4htp5GAlknZYOuHBBGd5o4ueO5cz+eCeeS+uJig9v1iV5zX0QRF52wzuOY4Jm5W4Pxen0Ff49n4pZ6niNr6qkzzJW95XN3Ao/zg/vWaidFMBETaO0oKRf5ZL8tFgsdHBzoAx/4gG7cuJHFiPF4nPf59evXtVgs1Ov1skhVujJ8v3pKD3sQh8Ziscjk3dfPRRtSJ3Ay+GfGRRtPa+AZs4e4lnftcMdCVVXZpeKfPXe+cE3/zmGt/ZyLhBfzuzgQuFeYrpf61B//vbr0W3/2fg8lUOD7ZzX92+FHSZL+2x/+aNV+4G2n74SYcB7iezgQCARuxp04FL5V0jdI+of22p+W9H1VVf3VlNKfPv37K1JKHy7pcyV9hKSXS/qPKaXXVFV1R6XS1+t1Jjvtdjv/g54igRAUouSeZ04+PykNTvhTSpl84VKAJFHrALcDtRpKh4B0ljvuhA9A0MhH7/f7G0XtcB5AyCHjzWYzk2Av2Af5A57mgTsC0QWitFwuczSfOhOS1Ol01O/385pRv2A2m21U8YfcuvCByEH7TgQQb4dINJvilkSwnSSTCuLRcE8D4F5Eq70+Aevua1FW36fAIccxFpwBOEO8ZgbrA6n1WgGIDawD57C3SEGh6wjdHBhz2YmCFAHIq7sjmLsXouR1HBUuppHegYgByWfdWGNPdaCLxmQyUbvd1nw+12g00uHh4YYYxLr5c/F5MS536XiE32s+sGfLIqPlZwbRwGsgeAqKCw0uJDAO7wTBWnr9j23iCPNj7bg2+wPB5IJ1efhWvUjfxYHAvcBRtdLHv/UL9bLf8VP3eygPLT7zZz9di+Pt/9R7/3d9kF72t35QklTT217EUT3Q+FbF93AgEAhs4LaCQlVV/yWl9FTx8m+X9Mmnv/8DSd8v6StOX/+OqqoWkn4hpfRzkl4n6YfuZDCQGkiB/+3V9kmDILrNuafjzaTf6xDs7u6q2+1qPB5vRIo9zcC7Evj1IEocC/GFwJCiQEcH0gtwMxARdVLmBROdXBKt9ar1XlgQVwNRencFEGVFTEBEkLRhGccp4PUCvE6CdFZYkev1+30NBoP8rLxTBISONUM4cKLsNQ1cOOBZePV/t7n73CRtFPpjXtRr8DaE5OwzNtJQIJ5ea6NsN+i1D7y7htvynVxTw8HhAoinPrizxFMbEAwQBhBpPKWE5z8YDLLA5oUVuQ9kejweazwe5/QBF412dnZy4U3pjPS7g4dUFH7nGCfzXoDRC5T658ddPYiBPEvEOxcIvaCidyjh/p6KgQhES1nuXRYkBZ5a4k4VP5f/uohzEfBifhcHAvcCv+w//QF96Of/9/s9jIcWH/PW363HPu/d0mmHnxIv07tf5BE9+Ijv4UAgELgZz7WGwmNVVb1Pkqqqel9K6dHT15+Q9GY77t2nr90R3NLvEXbp5B/4FN3b2dnJboBut7sRFSWSKW0SBiLoCAqnY88EaL1eazKZ5OiuRzbdqcBrnjOPGCEpOwS4P78jPDBGCA+Elvdc0CBa6lZ3T+1wkoqYwNglZWHDo7uj0WijaKG7CJiPF0mEnCPIcA+6PCBKeBSfyDLHQuLJrSd9wDsHIGYwTm+ByXU5zwk/UWZel5TrI9RqtQ2BhmOdNPu5XmvDi18iMrgQgMhD20bvNMJ1cJlwPe/WwXV9z3MOrhb/TEjKaTsUY9yWmiKdFTmcTqeaTqcb5Bx3gqTsDuAcxs612FcutlRVlbuJ8GzLuiV+LOtJKgbOCoSGMr2DtUZocFHAnwlr7ekJCGxeO4V1dUGK9fbjfBz+mfDuExcUL8h3cSDwfPCq73q9diY1feiffPPtDw68IPjQ7/99es0ffY9W54gJgXuK+B4OBAIPNe51UcZtTdu3lglOKb1e0uvt70y4PDUAskJ3ArfTQ87oKgBRks5s2RAbJx8eked9BIparaZer5eJqHQmPHhBPU83gGSWZJE5OUF34kUON+kE0lkklnO4lpNRcv4h4V6BHxLutn2iy9jcfZ18/SXlAo4UJex0Our1etmFIZ2JJkdHRzky7OtCKoWTa6/B4K4IJ4lEil3kcbcJjhMi+NjzWTNy+LmuF4YkMs8z8HmXdRF8PzoZdTEE4YWaDOwrF0hcrEBM8XWi+CPz4BngtPCuG5KysEM6EB1BnOAjNiGOzefznM7hIhZ7ms8BbhE+c+xr3B3uGAKkirBu/r67LbxbAmIha4WoAlgzRBUElW1tP33f4XrgPVJ1/NnwWfD97oVLeT7sOUSZBxTP6bu4re4LOabASxyv+pevV/8ddf2yb3yb1g/oZ+cX/s6H6d//xR/Qp3UvvJi4FR/xQ79XtR/a04d9+zt1fO3a/R7Ow474Hg4EAg8Fnqug8HRK6fFTJfZxSR84ff3dkl5hxz0p6b3bLlBV1ZskvUmSUkoVhNzJLATTI/QUziPa6ZXyPdKIKEFklqitk0muvVqtMgHb2dlRt9vNRJVoNJHZWq2WSZLn+EvaiNIjAuB08IKHXBdhpNPpqNVqZdeAt1JsNpsbpFjazElHSIAEug0cJwdr5G0RnaAzLtoR0g0CUk1RSLetc73xeJwJH7USJpNJrs1AFL3f7+c6FZBXL3q3LUJcRsed/JdihBdJRHDxehoIVe4yIV0C0s35CA+eQw9B9X3BcRBy31/uUmCcPFPG5w4cJ/aePuJr0u/31ev1cpFJWpCyN3z9p9NpTncgJQKyPJvNJG2mYkD+Sa9grRENPFVDUq6JwV5zss71+MzN5/ON+bLOEH9P/6C+hxfRxKmDwIAIwX89LcNFCB+PC3kutPlz4QeBkXFfcNzT7+LddDn6xD0g+Mk/+yv0fd/wFn1K5/6n5Xzo//37deV7Wvrw7/sFHb//aT3IjRd3v+3N+omveoU+rfuO+z2Uu8av/JHP0yu/cq7Vz7xdF6uk7Ese8T0cCAQeajxXQeG7JH2hpL96+t9/Za9/W0rpb+ikAM2rJf3InV4UYuH/qMd2DSHEZk9Un8i+d2UgGt5qtXLrOOzdRJWxdEubZBQhwqPQjMdTENyaLW0SYkhLSV4hyB5ZTSnlIntOQhEJPM2A173ugBeihBy7awBxgIKXJel1UQVBodfrZZJIsUvECo8Wl9F4CN1iscipG7gTeG5e/8HTFjxXnjVkrtzH0xY8d58xsH4uImFvRyApazC4ywK4E2VbWknpsCg7EJR7mueMSMZz9GKLEHqEIAg81+/3++p2u7kIIXUqvNOHk3HqJyAiQb6Pj0+KkvI5Yd4IHe12O++LUjDwfUP0nn3OWuCg8dQX7u+CnKfEuLi1XC5zO1P2HWvv+wAHhReM9M8dYkFZF4K9Ip11/EA84rONqFcKkBcUL8h3ceDio/Vv36L3HF2SOs/ctzF8+k//Vh395Zfpw372aR2/691BYu8jPunHP0tP/omZjt/xzvs9lIcR8T0cCAQeatxJ28hv10mxmSsppXdL+nM6+dL8zpTSF0v6JUmfLUlVVb09pfSdkn5S0rGk/7W6w2q2VVVlgixpI6LJP+xXq5X6/X4usjgYDNRqtTKZI5LfbrfV7/dzVJlOBJAYrORUyScSSTcDr1BPrjXkurSJOwHG1s5/nch40TzIC2SXFpheBA+CzLUXi4VGo1EmpZ67T568n0e+POdD8IgK42TwyG2tVlO73Vaz2cxRbC+IWRagpEYE57pQgNvCreWz2SzPRTqr18D7TlpJQfFaAu7CKAkupN7dGMfHx3mNeAbsA65DgUqeG3n4uEO8QKi7ORgv48R1YJ8bScqigNddIOWAa0Lwcb3Q3pMaEKXoNJ/Ps6MGsYhUDCfxOBQQn7zopaSNNBZP+fAIPc+QzxB7H9eDi2asqTtEPNWhTA3xdAd3lzBnfthvZcpC+eNr7/URyuv48ewX5oKDw2tvXBS8WN/FgQcH3/EZv06/+j9+mz6i2XlR7/vGgyf0Xb/r12rncKzqPT/6khMSvu8zP0qf+H3/U69rNW5/8AXA5/7Cb9Dg9810/L733++hvOQR38OBQCBwM+6ky8PnnfPWp5xz/F+R9Fee02DMZk5VfgjUer3ORQZJj4AsQkKwgBPJRTwgWg7hLLsqUKSQWgGIBZ7bLekmkYD/ep59t9vdIN0QLJwOuBy4trep43UispBdF1kAYshiscjEkfO9hoDng3u+ONdwmz8R5LKIYNmq0t0XtE/kmU0mk0w8XSBB9HARgXm7qOGFEz0qzdw4l73CmnitDc4j6u8tHvlvq9XauC/OAHcecD/GyDP29o7MEZFAOhNKvJ5AKZ4gYJSpGn6uXx9xA9GAZ87eoKDncDjcSEeAULtgwmfJa1QgjPAzHA41Ho83xo1QgFiAyFYWTWQ+XufD0wlckIHok16B64GirCml7LzguXFtnoXXj3DXTFn7wusr+GeXMTPH6XSax32R8GJ+FwceDKx+7hf05b/6t+rbf+y7tVd7cUSF/zKXvusTPlSrg595Ue53P3D8jndqXj0YYsKfu/YRGv7mY62G1+/3UB4KxPdwIBAI3Ix7XZTxOcNzqJ24OwGBVNEScDAYqNFoaDgcZgLkedqQKbowTCaTXACPqLULCtQr8MryHmGFpEBwVqtVdjRIZ4TXuw94RLjf72fBwMfp0eBms5m7WSACDAaDnEoAwYSMUqvAo66QQ0k5vYPxScruAkQXBA8nuGXRQaz5kF4IqVvjfR4uBHiVf9IfiHKztqwHz57nwBpxHRdFvL6B38/dAJBPt7Gzh5hnKSa4i4M9iXOA5+CFDUvHhMOt9hzrwgT7xQUKFx5wJ0jKroDJZKLDw0MtFosNN8O1a9ey24bnwH5zJ4A7O3BM4NQhTeLw8DCLWbTbPDo60ng83kiT8HXiWuVcETMQZyD+npbgIo1/hlwMcyGvTA/iWO/Y4UIK+x6hiM+/f5b5DPl9HoAaCoGHHKtnr+t3v+rXq9br6F+9/T/l1xvp3rlrjqqVFtWRfterPkmq1qqOD+/ZtS8qvvo1r9Urfv779apG/34PZSv+x3KuP/Vqnsfwfg8nEAgEAg8xLpSgAAHBauwV3p1kScoWcLfzz+fzXLQOAgNZ9WgsBI02itPpNEdCaV0IEBEg2JBArg+5Zaze7tKj52UledwB5PwfHh5uRPUh7xSJPDo6yg4M0jDIk/eIO6TMybCkfE1eZ6xOMIm0r1YrDQaDXEix0WhoNptpNBppMpnkPPv5fK7hcJjz+flxwikpd5fodruZYLrFnjkjWkibRFza7H6Bq4Pj2DONRiOvDaICKQysBcSRbghl0UTWxoUNruGiEh0lWFP2hzs+OJ4Ugm1dI9hjToARmSSp1+vl65DmcHBwoMlkkq/J+iMC8HmC8Pv6cW/qWfAMGIOLc6UDwZ0BnqrDcyidO/67O0/cSQAQoRC7ELfcNYHDgn3iooXXm0Ds4Tny3cI+d2GNmiO4W1zMLIWxQOCiojpaanWw1Gc88aslSYvf8mv0j9749ffs+q//VZ+p1bPXJS1ve+xLBdXxsb7klZ+oN/7iD6ixrVb/fcRoXdOXP/UJepieRyAQCAQuLi6MoLC3t5ej6U562+22Wq3Wxj/8EQQgE05kIWxup04p5daSXmDOW94hOnihRUkbUUu3o0OWvRsC5Ju/d3Z2coG50r3ANb2QH685sS0FEemsnoB3e6CoHtF2SChk0dMQ3KGQTrtNsJ5OzL3g32QyyXZ6iPZoNNJ4PM4uD7eJU4+BZ8NY/XxcCxSOZAxEpFkTH1spNHiE2vPhvVUiY/JzWQ8EDsQVz9H3gpXSWV0G0jcQEBifiwVeh4MxQm5ZpzItwEUM31sUNUwpaTqd5nVPKeWiiaPRSMPhMKcKkb4CtpF8Pg/8Pp1ON+ozkP7DOlADw10rzJ11QGjjc8X70llaijto/JiycCLPh2flBRhdBEEo8R93J3j9BO7n1+b7wgU9nosX6wwEHhS0vuct+uIP+sR7eMWH107/Ja+8l+sYCAQCgcBLDxdGUHBrNUSQon/kyk8mE1VVpU6no1qtlomV1w+AsEPsqRYPSfCCiZAPyD+RZHc4SGeRdrdDuzOBYyj2SJoFZM27BrhNvyzkR9V9SK67Mjztg8g7EWrEA7o44GrARUCNCa+f4K4L7u2EDSJGasJwONTh4WEmX+TZY8PHNo+Lo9lsblTzhwRC/iCVnjohaaN4po8XeKTb2zp6nj9pGZ7SIOkm8s942Cve/tILMPo6kdaBSEALTsaEcOKWfh8P8/eigex1d5kwHlIsELmw6JP+wtwmk8lNNSrKFAzGBTknks+4edbeBYK95ikr1NXgXBd7StcFz4ZxuuugFNdclHDHkn9mnPgzBxcs3FHgwgn7jTVDTPRCpX5PPpulgBUIBAKBQCAQCATOcGEEBemMEJA3TnFDquhLUqfT0d7enlJKunbtWiZrEGsv2AiJdaICGYIIQlidMC6XyxzhbTQaGxFQvw4knAKGHuH0KG2j0VC/38/Xgni79duL9Eln0WnpjERC+FknFyqILC8Wi1yrQTpzcUDqPWrNvVgT7lk6KHAnUDAPcQfi70UH3YYOafP7QYyJyjNn3BVen4DnyVhc5PAoNWSUaDNRe+BRae7tNTrKZ4LYxFycaHqLTk/ZYO7sU1JnvEaBFyNkPYi+e1tKnhUW/4ODg1zPgkKd3grSaxe4G8P3vZN/d2J4dxDcEf4scZd4KgJ7nfv4vXgm3iWBteI67BfG78UiPSXI3QM8A4QxL3rp6RLMzX+89onXN/H0CK7FnNxhEQgEAoFAIBAIBLbjwggKHsnudDrqdrs5TQHS0+v1dPnyZV26dCmTXIhnu93OVmevV+BR81qttkHspbM89jKCXq/Xc8cG6YyYQ3hIK+B1op+dTidXop/P5zcVNvT6Cd55wUkrBQAhNjgwSH3gul6sD6cA4NpOyCTdJHgACBSEst1uZ/I8Go10eHiYSSwpDk4iKXJXFrRzUcFrGrg13qP13l6TaxOpd4cIxBhhiDlDbt1V4gIC9/UxlE4Dt8Bvm5NHxCVl4QnS6vfg3ggG3j3EUyFc+GGuLjj4niL1gnFCsJmvfw7KTgVlfQCO9dQHHzspFE7gff6lqOKpOP68eO4uArEG/l9PC2HvuKi0LXWD63naiz8vxsQ+KwUI4EJHOBMCgUAgEAgEAoHb48IIChCNdrutXq+nXq+3UTyxXq9rb29P+/v7kqTr169rOByq2+2q0+mo0+lkgkdLRY8Er9fr3B0CMYBUASdL/E30n9+drEN6Wq1WJj1uca+qKkfwSb+giB0gFYHxku6A24GWkGVaBhF+b/GIq0JSLpSHoODRZuBRbY/MTiaT7A5hzovFIufnE2nHMeJWdNaF9SZCXRI0J6xepA/izHGQShdZvC4B+8Vz8V2cKYsFuovCCbKTYr+m5+CX1v7y2tJmK8mym0FZX4DCkS5cONHlfNwBTtZJ8fEIejlnTwPxn5I88wzdpbNtnf1z5M/bnSB8TjzFxMfiqRDlfnDyTsoNqStelwO4AMI1GCvvu6OB5+ACBO/78y2dCi6IBAKBQCAQCAQCgZtxIQSFsoBas9nMgoIXs0NgODg40I0bN3R8fKz9/X01m031+/1MIJxYOeEhEoxzgZQKJ4XeXcKJIzZviAkiADnYXLNMCcCRQD0I6YS4T6fT7Hjwwos4CCBv2NAhV17QzwmxtCmkuMiBI4K19ki856LjQHAsl0tNp9NcBNA7G5QF6xA1PF+dNeHe/t8y4l8Sb4itu0gYO2vi6wQ4D9LoUXG/Nw4HyLy7I7gGz9zXzjsHcB3fa76+HHN8fJwFrdIR4OKO35v5eXcInCg+X3dx+FqW4+V+jNVJdmn554exlCkg3MM/P9ve91QVFz1KwYbny94uxQR3evg9/dmXe9zHVM6x3Iflecy7vFcgEAgEAoFAIBA4w4USFNwZQJE6ItdEjquq0nA4zNFo8v/39vY2IrbSSSqA11jwGgXSWSFFj3Q3m82N/HWu6Tn7iAAeZSZKzHhxF7gV3e3cnkvvxRDdsu159zgTnChLm0UeAaSu7CrA+U48uQfXYt6ersDf3gmDazkRZi4ucrDOHOOFD702BuSNZ+UOE7eyey0DrxtQuhvK38u/mZM/hzLq7UUTfT0Zn7sqXLAoxQaeL8KRi1x+bNk1wck5aSZeNNThtSx8D/D8S5KNQFB2ayjJM58ZFzF8X/kzKM8vnRIuVPB5L4UgRB6v5eB70+dUplWU2CYI+Dr4a+Xf/hkLBAKBQCAQCAQC23FhBAWvNSApR21ns5mm06kkaTqdqlar5b+x/UNOPGd8Pp/nrgfSph3fya5XoEcokM4s7LgTPDLv4oHb8Z10eeG+MoruBBWnhBd/9BSC4+OTNoXksmNR59ouWLCGwIUL5u+iCusGcYKATSaTnMPuhJffcT94XYkyv96JPM/Io/JlgUKPdpfpGe44IXLvz8bfc/GgLN7nz9uLK/J6CSejfp0yjaCM9Jckt1arqdVqbTgbPI+fY3ieCBQ+ptlsttGR4FZjZY39mbE//FgX8lw8cSCO8buLXj5OJ/fb0ho8vYPjtt2vFEu2vV+me3APUDohHNtqSpTwOQQCgUAgEAgEAoHzcWEEhVarlYky9ntaFR4eHqrRaGgwGGyQH7ej8zeuA9r7LRaLXGdBOqunAKFBKOCa5NdTPI9otEdK+S/ReUhtaUV3y70TZXc0ELkm6uoknNdwWiAmlHUFfA0RHXiNiDbOC0QQJ75OgCGQuDOcBHJPSDTXQRSp1+tZwCFtwwtjOmnddn3Wy8eP2OIulbI9Is/DCze6yOHOA871+hWgtLmXhJfnxXNhPKWI4tF01sbdJi7G+LOATJdFJBGazouYsxbnkWM/zok+Y952LH970Uufo3/2eN8/W36fsr5IKSK58LPtOO7ha+NzcriQcCunwXnX3yZKhbAQCAQCgUAgEAhsx4UQFCSp3W5vRBtxJ2Dzpg2kdEYKvY0fZKbZbOa0CIoiUqhQOutyMB6PJWkjog9Joop+p9PZSEeQlJ0ETmohwSUZRODwbgwQVSdPs9lsIzWBY7yqP0DgKCO13kLS1wkyyvpSJwDC7ZF3yO42YlkeCxlsNBrqdrvq9Xr5PHeZeG0JItXAI/Yc7yTU7fhOxt0N4GPxKDn7xaPjzMXTVFx44Jl4vQBfg1KActHBCbGLIqTkINS4AFZ24JC0UVyzfM63Ira3s+eXBLp8r1x/UEb4S8fCNlfCefuHPeTHbSPx28Zxq/GXKIUfd2eA8xwILrJJZ2kYgUAgEAgEAoFA4GZcCEGBCHar1cr/+Ieo4Szodrs56u0EVDojOTs7O5nYOoGhrSTRXgomenTac9CJcHsuvxPcqqo0m81Uq9Vye8XFYpFrBfC3dNbBgXOI7NMFoWwLSWoA98QtAEFCOPBUCie1TmYhsH5dr1Pg7gtP+3DS75F23BFeRwFHCNdwYu3EbFu038WE0iLP756W4Y4Iv7a7P7ylJ+tUCgBe4M/n584DJ7VOqr3wZiluuJAiKbc9nUwmG8eVzpXS4u+uBF+TFwKIPndzvOO8yH4Jd8G4qFCmY7Dv7wWJL50vkjbErVuN1dOSyuKjgUAgEAgEAoFA4AQXQlCQTsjXYDDYaGXY7XZVq9XU7/czERgOh1oulzm6TAcDCAMiAc6DZrOZSXyn08k29dlspvV6nYUG4DZ9j7xCTmezmcbjsWq1mnq9Xs59P885wLXolkDaAOIEhf3obOHHebcEL+zn9Qic1FLITlImpaRCSCd1JUpSzzxLYslxLjQwXs/75zr8TecMFxcg9RAzdwa4I6MEa+TX4/l6GoPP2cWE0j7vJN6FEM51oYDXygi9R+d9DXwciBWe/lCKGE52y5QCsE1g4e9yXM8VXMvFML++F8e8nZhwq7GVhUHdoeDzZq88F7gQsC0lyute3EqwKJ0pgUAgEAgEAoFAYDturkRXIKX0LSmlD6SUfsJe+5qU0k+nlP5HSulfpJT2T19/KqU0Sym97fTnjXcyiJSSer2eBoNBJu5E//f397W/v6+Ukubz+UbOOs4DIv07Oztqt9tZJKCmgEfnSWkgSu+57JD6brebI5NUsZdOCDvncv1ut5vrBzixrtfrajabOdVgvV5rPp9nMcTHxlw4H/LtqRyNRiOLJLzvNvMyz55oPuSa11hvX3tpk7xKNxfuc2GAOSIylBHqbW0JV6tVrt9wO5JGmooLHIyjLLLo90W8gQT7XHw8uC0cLuD4nErCzzXZe7hq3CXiYkJZj8F/nFR7rr6LFNvI+d2KCdvW2+sWMJ6yk4I/4/PqEJTpCeeNrRQTEH74LwLYcxUT/P58H/i1PHXG/y7ncpHTG16M7+JAIBAInI/4Hg4EAoGbcVtBQdK3Svr04rX/IOkjq6r6KEk/I+kr7b2fr6rqo09/vuROBpFS0mAw2LD4Q6L7/f5GfQDI9M7Ojvb29tTtdjPZ9Q4P6/U6CwMeZaeuAGRmuVzmlAPEiKqqNB6PNR6PM8EkrQIXAGQS4YAq/pDKRqOxQTYh0syl3W7n86ixAKlzMUE6Ia+NRiMLHFT89wgxYoKLDU5UOd4JeUl0cR94eoB01uGA190dgijDM2MMkEMn89vuzfNnbMzVST3iiIsHpVgAtpH3MsKPoODXxynCNTxFobTo87rv33I/u/NhW30AF0dYP9YWeNHNO0UpuJTjK6P0CBqla6AUiu4E24QXUN4P0a0U4tyxsM0hcqux+Lpvc6X4/MvxnjcXFxQvAL5VL/B3cSAQCARuiW9VfA8HAoHABm6b8lBV1X9JKT1VvPbv7c83S/pdz2cQVMI/PDzUfD6/6R//RPQhysvlUpcuXVK/3881DDhnPp9rOp0qpaR2u52PJ4rPsVjncR1wPxcOpDMy70JHvV5Xp9PJ7oOy9oJ0YtdHcMBSjgOj3+/n4o7cF+GDKD738y4J6/U6j83fO30mG9FXfrgWhB4BwN0EXM9t4W515/pOzNw9sFwu8zNE3CGFwls0SjenEUACWdeyBeVyudwg+56OsC2S7yQSgYfXIeykO5S1EEqru5Pv0qLvdTy23cOv5cfgtChFhhIuFt0O/kx8HVywcOGgXDN3Ufg1tzkQWHOf8926KErhxn9w//CZKR0t5d7x9zjX71He0/dfeYyLGczrIjkWXozv4kAgEAicj/geDgQCgZtxL2oofJGkf2J/vyql9N8lDSX9maqq/uvtLoDdeTKZ5HoE/h7E2dvskWrgJKSqTgrgjUajjQr/y+VSvV4v10BYr9dqtVpar9eazWbZsQARxuFA+kNp92+32+p0OrnoXtn2DsGB8VXVSdcBSAoWbyeXEG/SIrwwnRNjov8QLbf4I1C4jdxJ0baaE6wPRS05b5ugUBIwJ6zlcU7sWTdqInAOqQ1ci/+W7oOySKQfh9jCevh+8HP8PC9EWVrjy2j5tuh9OcdtZNXXw0kye6W81rbPhM/rPHCd8pkR/a+qakOQKe/hTo7yuufd18d+K1fCrVCmg9xK6LgdfP3PO96dJucVfXRxq3zeDwie93dxIBAIBJ4X4ns4EAg8dHhegkJK6X+XdCzpH5++9D5JH1RV1bMppV8t6V+mlD6iqqrhlnNfL+n1krL74Pj4ONcWICWBFIT5fJ4j3Z1OR51OJ0fbIUyQ4/l8rm63q9lspslkkqPSHqlPKWXi7tFQyBXpD2URN+8a0Ww2NwohAo6BwDSbzQ0ng7RpAYc4T6fT7JbwooVeOFHajITjtCCVw8fgogGuDMg013M3BoKCEzTu5w4DBJ+STJbk1FM3vKikp4CU6QEuUHBPJ+Wl2NRoNDbW1YmuR5xZQ5+7OzpKknyeOMAxpTOB+7ht350BLibw/u06CGwj1GV0vRRAGBNuD++MwXnuENiG2wkYd0Kwb+UC8PfK6/ma38odUDpG/F7nuSNcBDoPF72Ownm4V9/FbXVfrCEHAoHASwrxPRwIBB5WPGdBIaX0hZI+Q9KnVKf/kq+qaiFpcfr7j6aUfl7SayS9tTy/qqo3SXqTJF26dKkiH39nZyenEzSbTTWbTR0dHWk6nWZxgNQBiLh3HoCocs58Ptf+/n5+DXLLud46UTohFF5M0dsOAgQKnBWeusD1dnZ2cl0FaiRMp1NNp9N8bCkm0EHAuz/42JifdNY9AtLoxRKrqsrXkpS7PUAsIapeW4KUBdYAcUHSxvy9/oBHmb1ApD3jDeGj1WrlNfX5lN0W/Ppcz+s2uLuBtArvnsA9uZ4Tap8Pe8UFhbLo5LY0iLJug+8LF2S4VwlvC3orcn437RP9ebIPgRN4j7jfTeT9bqP12wSF84SN8rrn/X67e5333p2OvXzWDwru5Xfxbrr84Ew8EAgELgjiezgQCDzMeE6CQkrp0yV9haRfX1XV1F6/Kul6VVWrlNIHS3q1pHfc7nqQVDoZkE5A94TFYpELJFLQ0PPzx+PxRhqDFy+E5NHdAWs/hIG0BYgsbQ9rtdpG1Xmu6XULjo6OcucJJ824Enq9nprNphqNhubzeRY/JGXBAvcFhSFbrVYmkuv1OrsKnOwwVubFOLcJDBBNhAmItqchuD0eIQIHCNdA/CiLCbrLgnVzsggxR6Rx1wHrWhLgsqAhe4QxlWKLF1j0YpRcw8WBUhzaFuH3goFE+FkrFx8AY+FZuY3f18LdKX5MOddtRQPPI8U+FgQPxl7WhnDHRonbEWhPRSmvxQ/3Oy+Vw90J5Zi23d/30rZr3c5Jcd58b+dkuJv73G/c6+/iQCAQCNwd4ns4EAg87LitoJBS+nZJnyzpSkrp3ZL+nE4q2LYk/YfTf5S/uTqpXvtJkv5iSulY0krSl1RVdf1294AEEcFGNGi1WloulxvdFiTl4n+LxUKTyUSz2SwXQKSoIXUQ+v1+rmUAPM3ByboTMVIZSGugcCGiR1VV2TVREsrVaqVOp6PBYJBFDm9ViXDBWF1k2NnZ0XQ6vYkcMh5EDWodcA3+hjQ7YXO7vaQNscKJOIUgXcwpSbBfwztClCSb+yKo4EDxjhFO/on8++/sDZ45Yo2/nlLKbULp/rEtLYDnwtpsS2vguLJDB6kVODjc1cB57CX+5jivX8E6l+IQ75fHligFBtbcf3xv8Iy2PZsStyLNPCN3QLBvvGCor4cXzyzTGLYJBDwf1haR0budAPYRnTHOm4vf+3ZzduHgVufcT7wY38WBQCAQOB/xPRwIBAI34066PHzelpe/+Zxj/5mkf/ZcBuLWfiLatVpNk8lE0+k0pxU0m81Mfnd2dnKRRUg6LgbIn5NYukWsViu12+1sn+dajIHaC7gIJGVy3Gq1JJ10kxgOh5pOp/laEMpms5k7UNTr9Ux8IL+MZz6f55oJ1I7AYZFSysReUi4gSZ0JJ3XSWTQXd4KnCHA90g1wBZBqgKhBQUxSHTi2tOZXp+kjCCE+RxcdSPdgzfw50H2iTDeBBDphbrVaWTCCxIIyGs9zSqfpKFVV5XkiSvlPKT6wDzzdg9+5P2N1AgzhZtxeOJPnSL0P9hPj9QKQrBP3Lp+xOy2AE1/G7k6Mck39WWxzSJQChNef4Fx/logXDheyfN9scxr4Pfgs+zPe5hLwOZVr4M9z27M5Tyi4nehyv/FifRcHAoFAYDviezgQCARuxr3o8vC84bZ0SZn4E9n3YoO85qkICAitVkvT6XSDkA8Gg1zDwN0FdF3w9pCStFgscueHTqeTx4OtnujrcDjUcHhSVwe7PqSq1Wqp0+nkfHqIuR9HmsNsNtsYF04EovrUU4CAQ+B8rTz1gLVsNBo5RYA0Bk9poEuGF1LEJdJoNHJdCu6DYMLfRNo9xaLsMkANDCeVCEIuMnANj/zzN8UxPSrtBR4RXObzeV5jnBU4C3gOOE6cDJfpCD5urxvh9RHcYcH42Rul0ECkHZGD1939wPW8AKenrDAu79xRkvOqqjaENGp7bCvs6ELKts+iiyyM34tYev0O9kJJ1EvBgjn42nEtf16+V7YVSHS3ROn02LYuXGfb65znz575BAKBQCAQCAQCgdvjQggK0qaF2yO0pBtAWo6Pj3Xjxo3caYHaCbu7uzlSLZ0Q4F6vp16vt5Fbj0jQbrdz1wjIJhHk5XK5UTwOYsrfdJKYz+dZ+HBnBEQeoo0AQr0D6jscHBxIOqlXgHAwm8026iHgxqDGAgSM9fGcdeYNMd3d3VWz2cwuCEi3R8SpDSEpOwFwhpDiAYEvreZlLQVfM4+OQ0Z5H/GC8yCHng7BvREIOA+hyK/Nc2MMTohdYOAc1pD19XkiqkDsvTOGE1+/HvPzcTKfRqOhbrerbreba12Ue469yX3dMcPnwtfB1750Evi6bhMTzoM7CsqUBe7J/uI+Lsac5zwAPMvyeXOsr6/vq3IcwMUErrNtrrcSExwugGxzRAQCgUAgEAgEAoGbcSEEhdVqpdFolIso0sXBCQuEZzqd5r8hx71eL6c/zGazbDPvdrsbBRQhJ+THHx4e6vDwUO12W51OJ5PNbrd7UwQVIoiVHnJO3QPP9ccRsVwuNZ1ONZvNckHI5XKpyWSSC0kiVEynUy2XyyxeQB5xN5SWfJ8Pa+TRd8i/JO3t7eUxl3nuHgUu7em8Dsni3svlciNNwe3wAJLoEXt3HkDaEDP8eMi5p0s4sXQ7PIIIgoVH+LmPt6/0Z+oWfhezcGlwTSe/pNh4BxKvLeCCA50+Op1OFgq4PsIUa4eYg4OEPcocPfrujhAXGRAkym4FXhOgTK1wQcOLc/JsXSRCdCE1x5+1Cw9OzFmPshYI9y9TG9ylwWueSsO+9ZSGEqVT4XbigDsu7qazRiAQCAQCgUAg8LDjwggK4/FY0+k0iwOlhRoi5fnvx8fH2Q1wdHSkyWSi+Xye7f4egV4sFtnCzfVJJaCGANHXMkJJ9BTCDjGFkHHPVquldrutXq+no6OjPKfxeJxdCogJi8Uik01pU/AoybUX62NOjKFsuQiRglh2u131ej3NZjMNh8OcJlAWpPRIO44Ir99A5B5BAAs/Dgq3nHt9BtbYi0ICxIBarZbvxbyoS8HYnKSyH3x9PIWB1ylgKWmDyHINijmyP1hj2pb6+Rw3m81yGgbPc7FY5BaWXKtWq6ndbmswGKjf72cxx4sNcry7IkhtgLRvKzyI6MTz4zxSQ3zPeLqH1xPwvV0KRv4ea09KDp8bdxWUKSCSNjpkIL74PMoaCP55QuTw2h9et8FdB/5MXYxgn25L92D/MAb/zJ8nxgQCgUAgEAgEAoGbcSEEhfV6nSP5JSGCCBE59YjsfD5Xr9eTJE0mk1zTwCP8RMGJqkOmvS6DR/+5J38TWSUfHbJKVBfCARHt9XparVaZwA+HQy0Wi0ySqJ1wfHysZrOZiS/HSJtElxoPTvxIAYFUllF/Ck32+311Oh1dvnxZw+FQ4/FYkrIwAtnnvt4FgYKKPA/v+gCRpfOFryNighNeXyf/2wmrF3J0l8c223tZlJA5lfZ8xoi44cKDF+F050K329Xe3p7a7bbm8/mGwwGB4ZFHHlGr1dLh4aGm02lOa2BPIrj0er0Nl4ynXnhtBHcG4GpoNBobaS6+xpBqF24oWunk3h0MHO/pGC4o+Zp4LQvuwT1d+EIoYM6QcyftPE/W0d0eXsvBP+84EFxA8z1SiiLuOHExgT3jn1HOd3h6RemwKO8VCAQCgUAgEAgEznChBIXJZLJRBwHQGYEChhRFhHDQ7rBWq6nT6WyQOMigEzBcBU6kGQfkkqgxNRL83KOjoxxR31YjYLlcajQaaTQaaTKZ5PMhLKWF3m3WHkX2egqSNuYE4XISx/sIM7u7u3rZy16mXq+n9Xqt/f39jXQMakV4vj3jwNnQaDQ0n883CDjElPl7VX5EH28T6cX7iOR73QXvkAE59xag2P+pXeHXKbsZbEt5YLw+fsi31+ig7sT+/n4m0ewtioP2+31dvnw5E2vqcnQ6nQ1nAm4Vak6wB50cQ/a93Shr5i4U1hiiy37BNcMaci/e47pOsj0C78IZRU25h4sguByWy+VGa1GEL/YOwgiihj9bb9fpKQZ8nnET+GeB/e3uBOBCgXcmYf7+efEUj7LuhAsP7JPSSREIBAKBQCAQCAS248IICuPxeCOXWzrrJECE08ksXRjc9t3r9TZIgxdjRABw8s19/H6LxUKdTidH9yGdkJvj4+NMXpyAQF4gvJBUHzNki3PdHQCIsi4Wi1ycj7FDfksrNuSs3W5ruVyq1Wrp0qVLeuKJJ/TUU09lIrtYLHIxSlIAyI0n7QPhpNfraX9/P6+7W8id6CGkICp4Ooh3HOD1brebo+84H1wYgYyzdog6kjYKSiJYkNLCc2RMfowTeK8xgXuF83u9ni5fvqwrV65osVjkOheIUq1WS1euXNko6IkAAjFm/GUbUHcWIAQwR9bOyS7PiHl5SgjPzLtoIBpAqNk3dPKYz+c5VaFMKWKdEBy8AGRZQ4RruKuCeSIQsN/4nLnoULpS+GwghrDHvN6DiwllnQ/myR727xAvpFo6YcoaIdLN4gHjZ+8GAoFAIBAIBAKBTVwYQWG9PunWQBQd+zgERzqLfkvKZNyr83tnBUiWtJkuAMoih56v3mq11Ov11Gq1NiKeTkalM6LsaRR0VKCwYK1W02Kx2IiiO0HxCD5jcnu9R+t9PpBQ6kWwZggiTzzxhF7zmtfokUce0WQy0e7uro6OjjQajXK9AMbNWkOI2+22+v2++v1+JsSQW1I7WC9qR1BfgaKYZXcGvzYCEWvBvEh1ICLu6QAIFzgsSis/6wIQjngGCBwITaSb8Ew7nY6uXr2ql73sZer3+5pMJtkhUlUn7Sv39vbU7/dVq9U0nU4lKXcSKesBuGuDe7iLxrtv+LGIF9560sUTJ/MuKCBguRCD4IZo4kKCO05YF/Y57hz/fOJM8DoQfK4g7v5ZcheNF590p0XpFnDni7sSON4FD+++wX7hs8pnysUD3x+eGlOmOJw3tkBgG3auXtUvfdGr7/cwAg8ZnvhrP3i/hxAIBAKBQMaFEBQgeI888oi63a6Oj49zXrbnNjebTXW73fwaBe2cHEEoIHDSGYGAzHjRPoiDiwMQdK9P4PeitsF8Pt9wN3A9nxPOAOYCuUsp5RoFwG3uODPc7u+WeeoU9Ho97e7uqtFoaDQaqaoq7e/v6xWveIUee+yxXPSRXH8n70TzEQKItvf7fe3t7WWRBALphf0k5fXp9XobUXvm4LUMuCckl+g+BNRTTJxY0hoU4upWfCLOnuLg68lYfX9wbrPZzOkozWZTV69e1ctf/nJdunQpF19EMEG4wbUyGo1yh4+9vb1cP6HVamXy7GPyLhC9Xi8/E8bGs/A95OvNXN1d4KkbpBT4XDudzkbBTndLuCOkbEfJXBFxpDPhjPfLMeHG8HQdr43AddwxgcjmYt8294Kny+CCYA/x2Ua08M4sXGtbkUX/TvFaEu7C4f5lvYVAQJJSva6f/ZrXqnpkqXf8xm+838MJPGT4kMe/RDvzpFf96R+630MJBAKBQOBiCAopJV25ckWDwSCTDareEx1vtVra3d3V3t6eJpNJtrU7gYRwSGcEHyIPgW80GlkMcAKK2wHS6Ln4RO+5Nh0lIJFEiD3FAjK4WCxyi8mqqnKhPcQCSDtRaQh8o9HIOeqef0/+Ou8PBgPt7+/n1pvdblePPvqonnjiidwBo9VqZSJHnj45/15jgjQHSDIkDns9LgUvgMiaIcBA7Dz679Fpt6FD5py0O5FmfXBU+Hs4FdyKj/W9jLC72MQ+YAwpJe3t7ekVr3iFrly5otVqpcPDQ83n87xuJSnHnbC7u6tLly7ljg9eeJMf9h/CBe4EOmMQ6fdCk9zTSbMTYP+hu4N3RWB/lMU3SaFB7PI6BqwrLhHf66ybpzh4i9JS5GDPSCdCFuvP82RdSNNw8YHPMHvF14Y9T9tNBImykCPX8zoaPO/yPuw976bB/T1FIhCQpJ/5lteq2VtqZ2etn/+EN97v4QQeUvz857xRh+uZPnrvj+o1X/oj93s4gUAgEHjIcSEEhVqtpsFgIEmZyJUktl6v50KBq9VK0+l0o62hg5xxL0SH1R7iPRqNJCkLF0SKERMQM2azmcbjcSYr6/U65/93u90Nuzh1D5zk0CayLN7Y7XbV6XQymccxQapE6SCAMHpRv3a7rd3dXQ0GA02n05yq8Oijj+Z5DAYD1et1PfvssxvF8yTlKDxkfG9vT1euXNHly5dzK08v+shzwH7P7/1+P6c8MBdcFdwLd0mn08mvMxZqVXidCtIjILQe5WeejJF14d6cy9p5LQfWjnoUu7u7euKJJ7S/v6+qqjQcDjWdTpVSUrfbzaIO95/NZrmmRqfTyevL3FljSLMXGUTg4VlCwil4SLFPUk28zgW/UwyRNcXlAgEn1cGLIUKW3VnAmuBwQBwoHRSeOkT9BMQIgKvA3RJ8DtnLXjfC18mdBC4KeFFPd8YgFHGd0g3CcV6fhPF5wUWvMcE1mDOff0lZGAkEfuE7Pko//onfoH6tfb+HEghor9bRD3/G1+tjm39Ur/nit97v4QQCgUDgIcaFEBSIIM5ms41INiS7VqtlKz6EDILl9QyIRi6Xy2xnl5TFiXq9ruvXr+vGjRtaLBaZXJE6AMng+tQcGA6HmbwR1WeMnr/trSUhhLgbSKsgOkwHANI7iCAjgDhBdReBF0akxeHe3l4miFVV5foPe3t72t/fz3NnLegggTAiSZcuXdIjjzyiS5cuqdfr5fQJj047eWUN2u12FgR4Xt6tgLH2+/2cmgGxh9DxHBAUPM/fW1lS64D5UoOAe+zsnLRc9NoPvM81EYBwely9elVXrlxRvV7XbDbLHS2oiwChZH7z+TynLuDmYD0hxYgVOCukM1eHC0TSmRiGuOKpJh6597nhNvF0Bcg2UXwEGxdi3L3As0XkwG3T7XZzUUyP6DMeXBtez0DSxli8OCbHso7UYnB3AA4TT4Px2hfsI09vKdMqGAuiXykmICT5eiBa+HeHu55wbAQCv/idv0I//PFvVL/Wvd9DCQQyHt3p6Qc/9W/qE775j4WoEAgEAoH7hgslKBCVx9IMIRsMBrp69aouX76sw8NDjcfjjYKAkPHFYpHdCd7qkB/cBh7xpHo/hA1xIKWkw8ND3bhxQ9PpNKcvIHCUlmxIIpZ3zzv34nBeQBLRwUUEouFEliHSXuUectjtdnX16tVMMol8kwrx1FNPqV6vazqdbkTKcV6sVqsc0d7f38/iA/d2olUWSIRscQ5Cgufyu6sBq7oXtmRuzNuj3uwF1hzCiNPEj+WaRPd7vZ4ODw8zSXeHgef4X7p0aaPOBNdAuGGcXmdCOinEuLe3l8WX4XCYx4mYNZ1O87PwtBqPzPs+TCmp3+9rf39fy+UyF7f0ceHMwGHhjgAcAL1eLxecRDDyFpfeFaLX62XxBRGFtVgsFnktuEYpVvj6s7/LfQpxRzhgD+K04HNOSoMXW+RzKd2cvuBFMN09hDjBnLzQooM193F6sUr2bTgUAj//j3+V3vLxf0eXdkJMCFw8PF7v64c/7W/pB3/2MX3lP/oCfdBfiIKNgUAgEHhxcSEEBUnZxg0BgaBTfX8wGGg+n+uZZ57Re97zHtVqNV26dClHUz1lALLsUW7qLpRF7yAVEE8cCFVV6eDgQJPJJI+rTEvwKvDkYY/H4437Q5y8dSBzhajy4wSHSDek2O3apH9cunRJV65cUafT2ajA/+ijj+rDPuzDdPXq1dytwAvs0ekBh0C/38/Wfa+W71Fqr2+A9b7b7WbCxvy88wAkbX9/X1evXtXu7m4WezxnnfUEnpfvThRqYEhnrgM6cqxWq5yywnpCgIl4SydiACkwCDGefkFLS58zUXHqHly5ckX7+/v5WtPpVJPJJLtaJpNJdkBQRNTFIxei2Ff1el37+/s5JYQ95O4a0i/Yt75WFNTs9XqSzsQLCLaLRzwzal9UVZW7ibhAgQjgjhNff8Dnxz8LwEUoXBvMpd1u53lyrIuK1Fxwd467DXjP3R6sMcIAYoLXa2A/+PVLwcE/i4GHFz/zxtfp7b/+G9QNZ0LgAuPRnZ5+R2+sX/8HvlbXv2itz/+K/02D73jz/R5WIBAIBB4S3FZQSCl9i6TPkPSBqqo+8vS1Py/pD0q6dnrYV1VV9T2n732lpC+WtJL0R6qq+t7b3WNnZyfn7RNFhQQNBoMcNb9x44be9a53aTabqdfrbXQJgBBALiA+kLxWq5WjljgapLMWeURjEQUgJ0RmsT67BZtcerBcLnNkmmt7UT/mChkqiTUpF9JJ+gf1GDwFAFfG/v6+XvWqV+nxxx/XdDrN+ff7+/t68skn9dhjj6nVauk973lPJrvL5TLXCJBOcvohkggYkD1cE4wNAkiaAcIB44WseW4+46bWAIR4OBzmZ+VOAC8YuFwuNR6P8/24v6dheBFMhBvWld9J8aiqSp1OR/1+X41GI9/TiSuRf2pHOKne2dnJY8CZwHMaj8cbrUG5JgUYJWVnC+KIFzCkbsju7m5eF543jgxEBfal73GOx5kynU43nAVlu8lOp6NOp5PTOrzThKdkUFDUC2G22+2cngAxJ32HcXkBUxepvGhkr9dTrVbTaDTKRRwpDlleVzoTkLwwKHuBe3oNhm1CAKIHaR9l+hQCmAsoF0lQeDG+iwNn+IWv/nj93G/7O9pJkfYSeDBwaaerSzvSf/66v6Ojr12de9z/+x2/VZNPvn7yR7WWCkE1cD7iezgQCARuxp04FL5V0jdI+ofF619fVdXX+gsppQ+X9LmSPkLSyyX9x5TSa6qqOv//bDorygiBhdBAMogAv/vd79ZwOMzE2lvh1Wq1HH31InLePQES4ff1+gLr9ToXUYRYQeq2pTa4RXo8Hud2gtJZFwfSAbyavV+PHyKiRPtxShCRJqrd7XZ1+fJlfdAHfZCefPJJ9fv93BKy3+/r8ccf11NPPaXHH388dys4PDzUaDTK67harbIrodPpZMLHmrsVn8g/6SBeOwFCTqpJrVbLpBgBg9aK1E+AEHohTQQWt7dDaFkvbPysA+uFUARhJuWCcyDgrVZLly9f1u7ubiaJnA+5rqpKzzzzTI72U2vAiwSSFlCdduwYj8cb7QpXq5W63W6uRcBY5/O5Op1OfpaIGMPhUFVV5VQNijlKZ7U/vJUqYG+xxzkfMu1k2OtLUPNib28vH+udJxDRqCfBZ8udNv7sEDvY9+Vz9efpBUkRp6qqykIRLhGuibDgTg5PGUF0dGEBIcBFBfY3a9FoNPKzYM44R/z7xMXCC4Jv1Qv8XRw4QWo0tW5V2kkXR1AKBO4UjbSjRjr/++uff+h/kN598vuHffOX6kO+7ie1Go6ldXw93AG+VfE9HAgEAhu4raBQVdV/SSk9dYfX++2SvqOqqoWkX0gp/Zyk10m6ZbNkyGCtVsvR9PV6nQnhaDTStWvXNB6PJSm3B4R0LpfLDQKFvdpbCbrt/OjoaMN2jcsBSzbV7CFi7XZ7o1AiAoGkTGywyff7/TwvyC7FFiGq/X4/32c+n+eIuRd3hKR6KsHu7m4WFJ544gk9/vjj2YZ+6dIlrVYrXb58eSN6jqgwmUw0HA61Wq1yDQAK8lE8DxLtrgkEhXq9ntcFMkuXC8gaz5DCmBT947q4LSCECCwQR4QdJ4BOSklhYM3dFQEBxGXBc8div7e3p5e//OXa29vLz/n4+DiT6263q9lsljsddLtd7ezsZNLL86EbiaeoQJJZS0l5bXjNUxVwShwfH+fuHIg7uFKob4B44RF0nBfsSVwHiBTe7tI/W9wX4c3bpBKpZ63Zhzwfr71Qplkg5CDCeecUL1S5Xq/V7XY1GAzyM2RezNG7gbBn3O0iaaNQqafb8FnlNeCpEuxF5rltDOy7i+ZQeDG+iwMneN+XvVY/93nfeL+HEQi84PifX/xN0hdLr/uqL9Xlf/QWVfbdGbgZ8T0ceBBQf+UrVDWef1Z7mi91/O733IMRBV7qeD677Q+llL5A0lsl/cmqqm5IekKSJ+69+/S1WwKSSQTc2+XN53MdHBzkNASPHEMqsIx7GzjIEYQMAi8pR4ghC9jOKcBIVFRSvp8XB4QkuUDhFeqlM5JMOgJ/Q8wgbBBSbyUIWXaLPIQRF8KTTz6ZawdcunQpk6jHHntMjz/+eBYrEDToNtFsNjN5xeUBCWu1Wjo6OsrOACLGdNdAoKH+QK/Xy9cm/QMnAxFm7PXNZjPXciAqzRrigChbEfJf1o20CaLn3rpSUo6AdzqdfH2KDT755JN65StfmYsoXr9+XUdHR9rf39ejjz6qWq2m2Wymdru9IaywNh4xXy6Xmex6hxCeK+kHEHfEJumEqELiDw4O8h7DIYHDYnd3N7spEJ3Y2wgZLibgioB8l2TcXRc8W1wqjUYjd0VZLBa5nSjzQDyQztIFWBuuz+fDC4iSBuJFHXd3d3PLT0QHLyrpnUSogYCwyLW97gKvs/eoocE6eQcIRB4+v3ye+QwiFiJMdLvdm2orXFDcs+/iQCDwcOJHvvqb9LGrL9XuL8xU+///WKRB3D3iezhwLuof/JSWL99/0e73hr//nfrM3vR5X+dv3nhK3/2GT5YkNd99Xcfv/KXnfc3ASxPPVVD4Jkl/SVJ1+t+vk/RFktKWY7f+Xyml9HpJr5eUI7PSSVQdxwFRZEgiRFU660M/nU4zYfIicpK0t7enfr+fC+UhPHh+9NHRkQ4ODnLtBKKU3DedthjEFu0RSwgL5LbVauWxefs6CKB05mgYDoeZoBP95npu4yY6jOV8d3dXV65c0SOPPKL9/f0sEkBG9/f38zrygzuBiDwkknXtdrtZFMEd4dF0alggBOzu7uYaFqPRSKPRSNJZ7QCILqkHOAew0EP2uadHpVerVc6rl86i4xTm5Dn62jBfSbnTAcUVu92unnzySb3mNa/Ry172styFg3MvX768sf+2tU2ENLu4ICnPBdFD0kZnklarlfcGY4Oocj5CAfuMzwPPnHm6iAZYY8QdBDXvaIGogJBFqg5iAikr1P8grYI0By9OyHqUa4+gRLqHd8bgOeP8uHTpkprNpqbT6YYLCEEQkcs/ozhWPB3KHUIUCe33+xtClIsFXlSU8z19gtoJCGsIeIiQFxj39Lu4rSg+GAg8rPjhv/ZNkqSP+/Iv0d4/jqKOd4H4Hg5sYGd3V4ef/uH579Xve0Zv/uhvvX8Deo74Y5feqT/2nd8qSfoVP/x7tPvtH6f9H3zXC+paqD7hV2ryZOfc91sHx2r8+2iTe9HwnASFqqqe5veU0t+T9G9O/3y3pFfYoU9Keu8513iTpDdJ0uXLlyvEA2znRBmxn0P+JeWiexxDlN27MFBhH/LiRRg9EkmE3aOoFAc8HWcmR9va43kKBcIAgkQx33y8dyFABMGCLmkjNUBSJqF7e3u6fPmyHn30UT3yyCMaDAY5Mj4cDnMEmMKCzzzzjJ5++mldu3YtOy8gkZDKy5cvZ8JGKgCkm6gu4g5knToCpFLwHq4PiBwEWlIWAngGrBP3cHJ748aNHKnvdDp65JFHdOnSpfzsPR0Cog0QJryN4od8yIfoqaeeUrPZ1I0bN/Lc9vb2NBgMco0DabPQISINhJV0C/YirgzSI9h7uBNwsHA+zol6vZ5rL3iXCcitpywguLg44R002Bte7JNrsadYJ/YonVPq9boWi4Umk4kODw+zmMd1uR7jQGzyrhx07eBZutjiAkS329WVK1eyOwH3S6fTyXvFC5+yT1hXBClvD+trhuOGz5qnOSAMMnYXzFxo4Vp85+Awusi419/Fu+lyhCUDgYccb/6aN+pXXfoyPfoN0YLyThDfw4GM2o7e/4c/VrPHKv3M7/um+z2ae4of/9hvkz5WetV3/0Ht/sQr9cQ/eLtWB4f35No7H/4avedTr0iSfv3nv0X/18vfcu6x3zne01/5O79XkvToj05V+4G33ZMxBJ4fnpOg8P+0d+6xlV1XGf9Wrsev+7Yd20OmmeZVJRUqaUpGDaBqJB5N0lZJhRRSUVEkREEU1CK1EFQJCqJIFFEhqKiUqNAqhVRBoWpaJCAKlCpFSlJgMklIk0ybgUw6M/aMfe1rXz/G480fPt/2usbjGU/s84i/n3Tle4+vz/nu3ueumbX22muZ2f4Qwsnk5fsBPJc8fxTA35rZZ7FWgOYGAE9dwvmwsrISWztyhdO3yuNKoV/VpuPAVXB2MPAr5AxSsBgesJ7dQCeJTpEPFDBQ4a/JdH46HnS82WHBr3IC6yvE/pq+/gKdYTp81ERHkI45974PDQ1hfHwcw8PDMUshhBCDCVyhnZmZQavVwpkzZ9BqtbrqO/hWj3QauTLNYAeAuE9/cHAwfia/VSSEtbaa09PT8f383JxTv9rPcfLFJ+nQURewXv+CDiczMvr6+jA9PY2lpaXoPHNFmynwzJ5gEKS/vx9jY2M4cOAAGo0G2u02ZmZmsLS0FIs2MlXfZ7r4Vp5Mx2fWw8bVbJ8x41P3GTRgxwXOIbDmhPN6ftz8Hn7/nOfjHHBV3+vyK/C+oCezJ3zniVqthlKphPn5eXQ6HXQ6nRjgYCDEX5fONzMTeG1mH3D++Z3zQQ+ekwExbnHwwQMfjGCggHPMLUAcM9+1AlgvsrhRq//s1ME5JQxY8Hvpt6r4gp55ZqdtsRBCAMC37/szvGPoY7j6DxRUuBiywwIAjv/hbTjfBxz7+Td2/Z1X3vMA8B7gmhs/jBt/8yhWXcHw7dKzfxwvf/QalG+axjO3Xtq43VOZwT2/vfbee77/kzjyxG247qEWVp954bJ1iNfPpbSNfAjAYQAjZnYCwO8BOGxmN2Mtdes4gF8BgBDC82b2MID/BrAC4COXUs2WzgoL0kVxiTNAJ5xOLx07/mffr7R6B8AXbfQtJvk3AOJ5FxYWopMDrFfY53uok4EBnp/O+sbgAY9thi96yBVUv9WBziEDJ5VKBWNjYxgdHUWz2USz2cTQ0BCq1Sra7XZXjQZu75icnESr1YqOKwv/DQ4OxowC1g1g9oB3+P2KPFegkzkGgLiqze0pXAWmQ8hK+iyeyeN08vz2CwY5WFeCjnZfXx/q9Tp6enpi3QTODX/PrBBmX7CbRE9PD4aHh3H11Vej0WhgcXERp06dwunTp6OOTqcT549BIWqjQ7+6uhqDD77mBq8JIK6as64At3SwW0i1Wo11FnivMROA8FocY9/+lA4xX/tOBczGYOcEFuH0W0ZKpRKq1SoqlUr8LNziMDs7G9/PwByv5ber+Lok/NwslMnggi/YyGMM5FUqlfg5GNxg5xF+LtZmoHYGAGZnZ2MLUR/Q891eqGOjRmYA+YwJX1Syp6enK/OD9ywLrS6+jn8od5o0bLFYY/+/t/HTL7wPj9309aylCJEJg1f04t9++U/wY9WP47pPqIYgkR0Wm/HSXx7Cd+/6c/TZvqylpMYrd92P6+u/iOs++OxldYgpNZt49fNNvHTo8jM5Hr72ceDax/HuW9+L0q9dj/MvHrvsc4nXx6V0efjAJoe/sMX7Pw3g09sV4h11Ogx+bzmdsJWVla4Cdly5pXNCZ8j3mAcQVyy56s/UcK4s+zZx7KjAVVyuiPpK8D7DwXce8A4IMxwAxBVXZltwe4V3Kn0nAzPD0tISqtUqxsfHMTo6GtseDg8Po16vx9V5XpNO7PT0NKampqJ21gqgg0hn2HfD8BqZGULHc2MhypWVFczNzWF+fh4hhOgg0iFku0jOnx9/zi+wtj2h0WjEgJBvOcjx43YEBpWokbUw6KAODAyg2WzG4o7VahVjY2Oo1WpYWFjA1NQUXnvtNXQ6nVgzgdtZGJyoVqtdhTepgU79xj33TIlnUIfnYbeShYWF6Owz84GBB5/pAKBrfHkvMqDGVXduH/HbBVgLoVwuo9VqYWZmJp6fc8qij74DAgspckyZ6cCtOLx3eV0GrfzKvw/AMCjBz++7YPA+WFhYiIEqv3XBB544HtyGwywKvndj9gEDA7yvfYYNgPgd9UE8ji2zZzhevhXtwsJCzC7JC2nZYgGEp5/F/zx9G3BT1kqEyI7RUhm/9d6v4ZFPjGYtJTfIDovN+Oodf4E+68taRuocO/xF3F46hLDNgIL19WH1kUEcvfGhHdHxTzd9Ax/868OY/rkDWHn1xI6cU2yPXPRE48olV0K988l0dBZ9o7Pr0/CXl5fRbre7Og1w9ZpOCLCeCeHPQWfcO9N0wLiivLi4GB07OjzAeiaCL7pIGJzwWxq4gkonnU4R9dFJpONfLpcxOjqKK6+8EiMjIyiXy3GlmZ+bK8x0wKampnDmzBm02+147Uqlgkql0rVNhMUkmWFA59BX26cOYH0FnYUwW61WTGfn+1ns0QckvGPMcaGT22g04lYHavCFAxmkYSYBHWm23mQ9h3q9jrGxMYyMjMR6AyMjI2g0Gjh37hxOnDiB48ePY2pqqqslItPoFxcXY+0Fn+bOav9cpfedCdguk84uaxOwKCXHn8EmBiM4z3S6fTbLxpoHvlaCL/zIrRb9/f0YGhrCgQMH0N/fH1fy6VT39fWh2WxieHg4ZoFw/qmFGTDMdOB3Z2MGALNoOLfs9OELN7L2AOsP+L/33T0YXGDmEH+/sLAQAy5+3hmc4Nj77AJuzWGdD2rk+HLefHaCr6vgt0EwO4NZJAyQiL3H7Afeic/87INZyxAic+6uvIxjD749axlC5Japb7wFb9m3Wf3NvcHBb5cu/qYNXP8E8I83/sOO6vjym7+JH3n0f1Fq1Hf0vOLSyEVAIYQQHTs6PQCik+HTw9ntgUUSuYLtWwjSAaLjyAwEvxobkpaUALo6P/T29natmFIT9XBbALDeso5OFZ0mOoQ8r9/CwKKH7GxAGExgtX7ujx8eHsb4+HgMJNRqNQwMDODcuXM4e/YsJicno0PEYox+Rbe/vz86ekz/9quuvgAkAyq+xSUDHt6hZcYAHW4GOjgGvk6CP4e/Jts10mHjirjXxiCTL5zJa9KhrtVqaDabqNfrMUuCelZWVjAxMYGTJ09icnIyBgr8fcNgQrPZxOrqagxM+UKM1MJgFbeWUBNrTZTLZayurmJmZgbz8/MAEB1X3pN+iwfnyAecqI/X9g4wdfD7wRai1Wo1FuGkdgBxbFi8088xgC5dvAeZ4eG1MfDB2gaVSgX1er1riwS3C7BVJgODrEUAoKuY59zcXPycvHeZ5eCDAbyf+vv7ozYf5GDx1Y0dMBgs2hhk8FtvfNFNvmbbVF+kUew9OqNX4O7yXNYyhMic0VIZTx7+HF7+4juyliJELvmN6/8Fg1f0XvyNb1A+d9UTl/E3T+6CEuCPxo7iF548Cuu53CaG4nLJxf+WuSpMR5QODB1JOoDecaaj71eUuULsiy8yFZ2r63TcuBLKVXRgzaGi086tFlwV99fx+9q94+0L03GlnHr499wiwMKBfHDVm9fyTvfQ0BDq9XoMOPT19WFubg4TExOxYwG3Z7Rara6sAzr8PT09MQ2feOeUgRKfQcAK/D79//z58zEVnM4x9+9zvHzGAoMtvsI+i0syY4IV/pk1QQfQby+h08r0eR+goKNKnXTEOUYzMzOxHgWDRQwmmBlqtVqsJ8HAAQs+MuDis0cAxI4DdHZ9RgszZVjgr9FoxGwKBnY27uf3WTQcD79lhg4zt8QMDg5idHQUjUYDs7OzOHXqVNzyUyqVUKvVMDQ0hEql0hXQ8VstOM68f/gd4/zy+r7wKD8HayL4uia8N3k/+wKerJfB7RG+BgaP+ewfzr3P4vE1ODhO/G75v2X3ERZSZSDCF5Hka19A0l/TB17E3uOHHjiCa//uV7OWIUQuGCmVMTbWylqGEEJclHur04Dlwr3dU+RixLln2fe1b7fbsYUkV/c3bo2gk8qgAbctAIhp03RufF2GxcXFrtaEAGIqN1f/uQLNYAO7BpTL5ZheDaxXwgfWK877TgOsOUD9PgDB6/E4V2vp/DIroVqtxr+rVqtYXV1Fq9XC/Px8dJKXlpYwNzcXV9bZkYKfnfvl6ZTRmeJKMLCeJUBHkGnnIQRUq9UYNPCBFDquG+sRMKjAIAQzI/r7+3Hw4EE0Go3odA4MDMRAxfLycjyHD8RwbjmvvnBguVyOn4nBgE6ng+npaZw9exZzc3MxM4X799vtNlZXV+N2EDqszM7wwRW/cs96HkyJHxwcRK1W66pPUCqVUK/XUavV4hxyTnynD57btzvkfQSgy+FlIIFbDcbHxzEyMoLl5WVMTExgenq6q10qC1QODAx0BTB4fzE4x/Pz3mPwgHPnuypwrritg1kRnU6na8uLDyr19vaiXq/HWhn8vlKPzzbiPcXPD+D/BY94P/G7x+wEXzeCQQMGXrjViEERtu7kWPvvOL/DDFb6QIXYO6x2OuhZ2LsprEJs5Ftvexgv3X9r1jKEEELkEPOORmYizCYBzAM4k7WWy2AE0p0m0p0+RdW+U7oPhhCu3IHz5B4zawN4MWsdl0FR71GguNqlO132uu69ZIf1f+L0ke50KapuoLjad9UW5yKgAABm9p0Qwo9mrWO7SHe6SHf6FFV7UXVnSVHHrKi6geJql+50ke69RVHHTbrTRbrTp6jad1t3LrY8CCGEEEIIIYQQolgooCCEEEIIIYQQQohtk6eAwv1ZC7hMpDtdpDt9iqq9qLqzpKhjVlTdQHG1S3e6SPfeoqjjJt3pIt3pU1Ttu6o7NzUUhBBCCCGEEEIIURzylKEghBBCCCGEEEKIgpB5QMHMbjezF83smJndl7WerTCz42b2rJkdMbPvJMeGzOwxM3s5+dnMWicAmNlfmdmEmT3njl1Qq5n9TjIHL5rZu7NRfUHdnzKz15JxP2Jmd7rf5UX3m8zsX83sBTN73sw+mhzP9ZhvoTvXY25m/Wb2lJk9k+j+/eR4rsc7z8gW74pO2eEUkR1OXbfs8A4jO7w7yBani2xx6rqzt8UhhMweAEoAvgfgWgC9AJ4B8NYsNV1E73EAIxuOfQbAfcnz+wD8cdY6Ey3vAnALgOcuphXAW5Ox7wNwTTInpRzp/hSAj2/y3jzp3g/gluR5FcBLib5cj/kWunM95gAMQCV5vg/AkwDemffxzutDtnjXdMoOp6tbdjhd3bLDOzuessO7p1W2OF3dssXp6s7cFmedoXAIwLEQwvdDCMsAvgLgrow1bZe7AHwpef4lAHdnJ2WdEMK3AExtOHwhrXcB+EoIYSmE8AqAY1ibm9S5gO4LkSfdJ0MI/5k8bwN4AcBVyPmYb6H7QuRFdwghzCUv9yWPgJyPd46RLd4FZIfTRXY4XWSHdxzZ4V1CtjhdZIvTJQ+2OOuAwlUAXnWvT2DricuaAOCfzew/zOzDybGxEMJJYO1GBDCambqLcyGtRZiHXzezo0n6F1N2cqnbzN4M4O1YixAWZsw36AZyPuZmVjKzIwAmADwWQijUeOeMoo1PkW1xke/RXNsEj+xwOsgO7yhFG58i22Gg2Pdpru2CR7Y4HbK2xVkHFGyTY3luO/HjIYRbANwB4CNm9q6sBe0QeZ+HzwO4DsDNAE4C+NPkeO50m1kFwCMAPhZCmN3qrZscy0z7JrpzP+YhhPMhhJsBHABwyMx+eIu350Z3Tina+LwRbXHe5yD3NoHIDqeH7PCOUrTxeSPaYSD/85B7u0Bki9Mja1ucdUDhBIA3udcHAPwgIy0XJYTwg+TnBICvYi095LSZ7QeA5OdEdgovyoW05noeQginky/KKoAHsJ6WkyvdZrYPawbob0IIf58czv2Yb6a7KGMOACGEFoBvArgdBRjvnFKo8Sm4LS7kPVoUmyA7nA2ywztCocan4HYYKOh9WhS7IFucDVnZ4qwDCk8DuMHMrjGzXgD3Ang0Y02bYmZlM6vyOYCfAfAc1vR+KHnbhwB8LRuFl8SFtD4K4F4z6zOzawDcAOCpDPRtCr8MCe/H2rgDOdJtZgbgCwBeCCF81v0q12N+Id15H3Mzu9LMGsnzAQA/BeC7yPl45xjZ4vQo5D2ad5sAyA6npdfpkx3eWWSH06WQ92ne7QIgW5yWXqcve1scMqj+6R8A7sRaFc3vAfhk1nq20Hkt1ipiPgPgeWoFMAzgcQAvJz+Hstaa6HoIa2k557AWifqlrbQC+GQyBy8CuCNnuh8E8CyAo8mXYH8Odf8E1tKFjgI4kjzuzPuYb6E712MO4G0A/ivR9xyA302O53q88/yQLd4VrbLD6eqWHU5Xt+zwzo+p7PDu6JUtTle3bHG6ujO3xZacVAghhBBCCCGEEOKSyXrLgxBCCCGEEEIIIQqIAgpCCCGEEEIIIYTYNgooCCGEEEIIIYQQYtsooCCEEEIIIYQQQohto4CCEEIIIYQQQgghto0CCkIIIYQQQgghhNg2CigIIYQQQgghhBBi2yigIIQQQgghhBBCiG3zfzOH9RcsWu1FAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 0 68035\n", + " Min thresh = 1000\n", + " Sliding\n", + "\n", + "\n", + " Winner = Sliding\n", + "\n", + "\n", + "043s_iimage_10395655826502_CLEAN.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADDCAYAAAAya0IYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADOrklEQVR4nOz9eZhk2VndC68dmTFHTtVdrZZaktUCCZAAi8GMn7F8MTMGxP3gA/wANhgx2lxfzGhf2/h6tjE21xYgLCxsRvliGQyyQWAzGBAYzGAEyIAQSC2pp6rKzJgjM873R+Zv5zq7Iquqq6s6s6re9Tz5dGbEOfvsKaJrrXe9705VVSkQCAQCgUAgEAgEAoFA4KmgcdYdCAQCgUAgEAgEAoFAIHDnIQSFQCAQCAQCgUAgEAgEAk8ZISgEAoFAIBAIBAKBQCAQeMoIQSEQCAQCgUAgEAgEAoHAU0YICoFAIBAIBAKBQCAQCASeMkJQCAQCgUAgEAgEAoFAIPCUEYJC4BlHSunNKaWXn3U/AoFAIHCClNLbUkp/5gavrVJK73mTz7npewOBQCAQCJwvhKAQeMZRVdVLq6r6qbPux7WQUvrTKaX/mVK6klJ6MqX0+pTSQ2fdr0AgELibkVL6Rymlt6eU9lJKf5hS+mtn3adAIBA4b7jVwuz12ot/FweuhRAUAoHV+C1JH1dV1bak50j6XUnfeqY9CgQCgbsfr5H03lVVbUr6CEmfk1L69DPuUyAQCNzriH8XB05FCAqBZxxuq00p/a2U0r9LKX13Smn/WP18cUrp61NKjx1Hqj7W7v0LKaXfPr72rSmlLy7a/pqU0rtSSu9MKf1FV1xTSu2U0j9JKf1RSunRlNK3pZS6q/pYVdWjVVW90146lBQW3UAgcE8gpfQhKaVfOI5GvSul9C9SSq3isk88/h5+IqX0j1NKDbv/C46/qy+nlH4spfTHbuS5VVW9paqqkb20VHz3BgKBuxAppfdJKf3U8ffsm1NKn2Lv/VRK6S/a338+pfTfjn//meOXfz2lNEwp/f9SSi9PKb0jpfQNx9/Jb0sp/bmbba/sa/y7OHAthKAQOA/4s5L+raQdSb8q6cd0tDcfkvS3JX27XfuYpE+WtCnpL0j65pTSB0pSSunjJf2fkv6Mjr7k/lTxnH8o6cWSXnb8/kOS/sZpnUopPT+ldEXSRNJflfSPbn6IgUAgcEfhUNJfkXS/pA+X9NGSvqy45hWSPljSB0r6VElfIEkppU+T9A2SPl3SRUk/K+n7bvTBKaWvSykNJb1DUl/S9z6NcQQCgcC5Q0qpKek/SvpxSQ9I+kuSviel9F7Xu7eqqo86/vWPV1U1qKrqB47/flBH39kPSfp8Sa9+mu2VfY5/FwdWIgSFwHnAz1ZV9WNVVR1I+nc6+gfoP6iqaiHp+yW9IKW0LUlVVf1oVVW/Xx3hp3X0Rfwnj9v5TEn/uqqqN1dVNZb0jTwgpZQkfZGkv1JV1aWqqvYl/T1Jn3Vap6qq+qNja9f9kv66pN+5paMOBAKBc4qqqn6lqqo3VVV1UFXV23Qk7F4l0h5/n/6RpH8m6bOPX/9iSX+/qqrfPv5e/3uSXvYUXAr/QNKGjoSKfytp92kPKBAIBM4XPkzSQEf/3p1XVfVfJP2ITr5Hbxb/V1VVs+N/I/+ojv5tfEsQ/y4OnIYQFALnAY/a7xNJT1RVdWh/S0dfukopfUJK6U0ppUvHKukn6uiLTTrK6Xq7teW/X5TUk/Qrx9ayK5L+8/Hr10RVVZckfZekH0oprT+VgQUCgcCdiOPUsx9JKb07pbSnI1Hg/uIy/479Qx19B0vSH5P0z+279pKkpKOo2Q3hWDT+VR39P+Abr3d9IBAI3GF4jqS3V1W1tNf+UE/he3IFLhcpY/69fMsQ/y4OlAhBIXDHIKXUlvSDkv6JpGcdq6Rv0NE/VCXpXZKea7c8z35/Qkf/MH1pVVXbxz9bVVUNbvDx6zqypG0+jSEEAoHAnYJv1VH06UXHBRK/QSfftcC/Y58vifzat0v6Yvuu3a6qqltV1c/fRD/WJb3HTdwXCAQC5xnvlPQ8rz2jo+/RR45/H+koEAYevIE2d1JK/aI9vpdvpr1rIf5dHMgIQSFwJ6ElqS3pcUkHKaVPkPSx9v7rJP2F4yI3PVl9hGMF+Dt0VHPhAUlKKT2UUvq4VQ9KKX16Sum9UkqNlNJFSf9U0q8eq7KBQCBwt2ND0p6kYUrpvSV96YprvjqltJNSep6kr5RE3u23Sfr6lNJLJSmltJVS+ozrPfD4+/aLj9tMKaUPkfTlkn7yVgwoEAgEzhF+UUck/2tSSs2U0st1VFPs+4/f/zVJn55S6h0XF//C4v5HJb1wRbvfmFJqpZT+pI5qjv27p9mepPh3ceDaCEEhcMfguO7BX9aRcHBZ0udI+mF7/z9J+hZJ/1XS70n6heO3Zsf//drj1990bOH9CUmnFat5SEcpEfuS/qeOKo2/4hYOJxAIBM4z/qqOvmP3dSTGrirS9UOSfkVH/1D9UR0d+aiqql6voyK433/8Xfubkj7hBp/7Ckm/f/zc75b0/xz/BAKBwF2Dqqrmkj5FR9+NT0h6laTPq6qKugTfLGmuI6L/XZK+p2jib0n6ruPUMuokvFtH/z5+5/H1X/I023PEv4sDpyJVVXXWfQgEbgtSSu+jo3/Ito8LgwUCgUAgEAgEAncVjh0O311V1XOvc2kgcMsRDoXAXYWU0iuOrV47OoqQ/ccQEwKBQCAQCAQCgUDg1iMEhcDdhi/WUY2F39fROeqr8n4DgUAgEAgEAoFAIPA0cdsEhZTSx6eU3pJS+r2U0tfdrucEAo6qqj7++PSGC1VVvaKqqneddZ8CgbNCfA8HAoHA2SO+iwO3G1VV/VSkOwTOCrelhkJKaU3S/5L0MZLeIem/S/rsqqp+65Y/LBAIBAJXIb6HA4FA4OwR38WBQOBux+1yKHyIpN+rquqtx1VMv1/Sp96mZwUCgUDgasT3cCAQCJw94rs4EAjc1Vi/Te0+JOnt9vc7JH3oaRc3Go0qpaSUktbW1rS+ftStw8NDpZTUaDS0XC61XC65/qjzx9dVVSWcFrTD71zL+1VV5XbKZzYajVpba2tr+X76c3h4WPu7qiqllFRVlQ4ODnK/aI++eP959mKx0MHBgZbLZb52fX1da2truX3e9/Hy3EajobW1tTymsu8ppXwt8+Z94jrgY6Btv2e5XOrw8FCLxSKvDc/2vtM+/Tk8PMxj5Hk+F95/XyueTzv+49c5eH/VHqCfZZvAr2N+fSzlcxzcyzzRBs/zdvx93w++L5knnxtft9P6wf2r5uF6910P5T2nzc1p/bnWa9dri8/q9dbhNuGJqqouPhMPusV4St/DkrQ26FcvfHipR3+ze1s7FggEAk8FU400r2ZX/0/wzsBT+i6O7+FAIHBesa/LK/9NfLsEhVVf+rV/+aeUXinpldIRcdza2tLa2pq63a52dnY0GAw0Go00nU41GAzUaDT02GOPaT6fa319Xa1WS5ubm9rY2Mgkl7ZcRNjc3FSr1dJoNMrCwe7urg4ODjLp7/f7euihh3Jbs9lM8/lcvV5PFy5cULfb1eHhoXZ3d/XYY49pOp1qbW1Nh4eHGo/HWl9fV7PZ1HA41P7+vjqdji5evKhOpyNJ6vV6Wl9fz+LAYrFQVVW6dOmS3vnOd+rJJ5/U+vq67rvvPm1vb2tzc1ONRkO7u7u6dOmS9vb2JEmbm5t5XnZ3d9XpdLS9va1Go6HpdKr5fK7pdKrlcqlWq6V2u63Dw0PN53NJUrPZVLvdVr/fV7PZzKLA2tqalsulDg4ONJ1ONZlMtL6+rsFgoG63m+e5qipduXJFjzzyiPb29rRcLrW+vq75fK7lcql2u61ut6vBYFAjyLPZrDaGqqq0WCzUaDTUbDa1XC41Go00Ho9zWyklDQYDbWxsqN1uazqdajQaZTED4YM1l06ElpK0r62tqd1u53u73a7a7bZGo1FNBOp0Onk8w+FQVVWp1WrVCDp76+DgoCaWdDqdvN6Hh4e1eez1eup0Omo0GprNZprNZhqPxxoOh1loabVakqTJZKKUUv48HBwcaLFYaD6f1wSCVQKLz0ej0cj7zEWNUlhzos51jA2xysWIg4MDHRwcKKWkVquVRajTiL6LI6yJC2HswVarpUajkT/Lq8SeVqultbU1zedzLRaLlaKZP7fszypBZlV/V7z3h6feeL5x3e9hqf5d3FFPL3jzJ+sFd+o/2wOBwF2JX6x+8qy78HTwlP5NHN/DgUDgvOInqv935b+Jb5eg8A5Jz7O/nyvpnX5BVVWvlvRqSep0OhXkXpKm02kmpsfXqtVqaXt7W0888YRms5kODg60tramZrOZScD6+rpSSjWCA/mvqiqLEd1uV6PRKBMayOrGxkYmkI1GI5O4TqejxWKRydd8Pr/qmevr69re3tba2pqm06mm02kmkNPpVNvb25lUStJisdB4PM7kdrFY5HFB5pyI0c9ut5uFEQhyp9OpEVuIG24KIvKA9/lhnKWL4vDwMIs6s9lMm5ub6nQ6GgwGGo/HWURwIgjZhyCzPuvr63kMkNBms5lFHdwX3r/ZbJaJeq/Xk6QsAhwcHOT7nLQeHh6q2WzmtnCBzGazmnui2Wxqc3NTe3t7NfIsSa1WS61WK4s07uJwMWN9fT0LRPSZdiCw9NVdJohZrVZL8/m85gLpdrtZdOh2u1mYcSGhFIJK8u3j4NmrhAfGg7PE9wzvuVOCdXR3DXuaOVgFd9M4SidOs9nMr7kYwp7wtUBIOM3pUOK0168lJNwFuO73sFT/Lt5MF54Ry0cgEAjcQ3hK/yaO7+FAIHCn4XYJCv9d0otSSg9LekTSZ0n6nNMuTillwigpk5pOp5Oj2UTMp9OpLl26pPl8rtFolO+FdBElhrgSJXY7ea/X02KxyK6GxWKh6XSqxWKR3QSNRkOTyaRGuCDmkBvpiJgOBoP8XElqt9uZoECiIb/dblfNZjOTyf39fQ2Hw0wcESPa7baazWZO94B0IaQQSZ7NZur1eup2u9llAEGFkOGm4BkICLTBPPCMMgpOhJz58Wg380m/ptOphsNhjvZ79FhS7gvzX1VVFgDoN6Tc3R/dbletViv3RaqnTSD2QOwhuuvr65pMJlkcwBFRVVXeN+Px+CryTJueZuMCz8HBQd6niArsFe5l7dhfvkcg5w6PuOOUgcCXaS7eJxdYfN+VJJ696wIGQhRpOp5m46ky7B+EEBcV+HydlsLBHLFGzBt/I7y4U6FMgaA9T0Xx99xFclpqRokbEROeoZSK24Wn9D0cCAQCgduC+C4OBAJ3NW6LoFBV1UFK6Ssk/ZikNUnfWVXVm691j9u+F4uFJpOJut1uTVTo9Xq6//77VVWVLl++nInpdDrN7XjEH3KE8CAdiRT9fl8pJV2+fFmz2UzSUeR7NBppZ2dHnU4nE18s+J1OJ7sDIDcQYkk5hYCou0elJ5NJJl44D9bX17WxsaGtrS2NRqPcf6LTuCloDyLFM1qtVhYalstlzc3h6QDu1nAXAikHHt3neogbxI9xjsfjWlScuev3+3n9lstlJvDtdju359FkSPJsNquJNP7MtbW17OKQlN0QrVarJrSwd/gvggkpDJB42oK4QtBxn5Aqwnx53QLmrLTv80x3KtB/1s6j8ETYIeaQe0+daDQauU/uFihTOBAs2E9O3tknXMvz2QP0z/exdCSEeV0S+uR/c6+LD2tra7XPrgsF0okYUL7uaRbsPfrPGEq4Q8PHy+fV++vXrKq/cBqulx5xp+BmvocDgUAgcGsR38WBQOBux+1yKKiqqjdIesONXg9hbDabGo/Hms1mWURotVqaTCY14ozoAImAuM7nc3W73UyYIL5EoPv9fo6yko5AtJUcfuouEIVeLBYaDAYaDAba2trSeDzOz6ZuAdFuCHO73c6EmRoHly5dyikARPBpE4s/RAqiBnkriR2vSyeiQb/fV1VVOZ0DsupiBpFs5jyllAUKn0O3mntqCJF/yPtsNsvEmdQUIuaQd1wQjKfT6ajZbOb5p/8QW4g7DgzmAyeIOzy4HtEC+z31Cfr9vjqdjubzuSaTSZ7j+XyenSQQdBdZ3NHi8y4p137gXgSf+Xyex8JctFqtTO4RYFwQcLCXm83mVTUums1mnh9fWyffXmfBXQUuAnn6C2vBHmk0GlmQSyllkcVFDOaAehye+tBut2viUekcKIuhMhZPtXFR4FoigLsREE3cueNpJ1x/M3gqQsR5xFP9Hg4EAoHArUd8FwcCgbsZt01QeCpwmzIRZcg9BHI6nWp/f1+bm5va3t7WcDjUfD6vRTGJjJO2QDQfkr1cLtXtHlXN7ff7meRPp9PsKphOp5kITiaTWqHAbrer7e3tWgFBhA1qChweHmpjYyMLBpDu+Xyuvb292ikO0lGe+8bGhmazWY10+Zx4jQEi12tra5nc8wzSKSBBkN3JZJLJFTUgKHDnhfK63a4ajUZONWBOeB79a7fbuXaCz5mkLKZAwD0CjxDC3HA/ffDaBES9h8NhFiQQFSg4WdaFgIwyLgQH+gopn0wm2t3dzfMPEC7Kk0Fov7Tc++kgXhiU8VJLotls6uDgIO+XRqOR+8QzvEgh81aSf95z0YB1Zl9Ty4D7vC1/HSHJPx+sNX1mr7E//PPKZ4uxkZaEUFcKEcwhz3b3grsB3LVxo/UN3C3iKTM3IwS4m+ducCkEAoFAIBAIBAK3E+dCUJCUSfGFCxdqRNNzwYk6P+tZz8qiAlFf6YhM7e/vZws+RAPSuLu7q5SSLl68qJ2dHW1vb+uxxx7L4gSklUKHm5ubGo/HuSghZHkwGGh7e1sHBwfZTXHlypUcmUUE6XQ6OUKPoHDlypVM2Iha41SgPgAkqySUbulvtVrqdrs1IulEfDQaqdVqZeu9pPxfUjDcvk99ASfYRK+prE+EutFoaHNzU5PJJJ/2wFy7td2PUvQUEtqCJPseAKRQtNvtHPmfTCZ5DrxQIdc7EFb8NAauWywWOQ0Gx4sLCQgbXifCc/gZm6daQKQ9Ou+1E9xJgHiEs8HH4KKSF3osXSruNlgsFnm/uZDi81qma7h4QIrFfD7XbDarjc/dH8yJdHKihu9LhCcKhp5W08DTFkonA++XuBa5Z12YK69fsQouZlxLdAhRIRAIBAKBQCAQuDYa17/k9gPSMZlMcsqCH8HnFub9/X3t7u5qe3tb999/f470Qtrm83nOlffq8VtbW0opaXd3V4888ohGo5F6vZ42NzczYcbxwMkQHPfHMX+QOBcVNjY2sj2f4xyHw6Gkk2h9t9tVv99Xv9/XYrHQ3t6e9vf3NR6PNRqN8ph7vV4tHx5yJikXzkMk8Hx7jof0IyMl1Y5mdOv8qsKBs9ksp5W4EDEYDLS5ual2u50jvwcHB3lMTnQ9Cu6nN5B+AiDenpIBSJWQjkSBfr+fa1dAlimgybNYF57J78wNLgpSMPykAgQjyHsZ7WaOaNsdBe5k8Hl2ss/eYf1IZcDhguvAHRD8eCHOqqpyDQme4WkCiDTuPCkdDYwFYYh2ESPYx8yvX+/uBu8fwoGLFL7WnpawKsXDa434Pe5sYD14rUxn4B5PfVqVcrFKsCgFg9IxEQgEAoFAIBAIBE7HuXAoQE6Wy6X29/ezoAARgyDxD/39/X3t7OzkAo2kLHQ6newGgDRS3JF0hStXrujSpUt6/PHH1W63azn2FKibTCaaTCZqtVrq9/saj8caDoc5txwChOhBSgZ557u7u/l0CU524MjHw8ND7e7uZrLs+ev9fl+SsmW80WhoY2NDV65cySKJF85DIEBIQQjhdYoAIiIgCPA3Jx5w4gKRZUQa5p75QQggxYG+EBF3q3oZLUZ4gOhSd4HijF4M0E+e4F7cFZB0CCWvI5h4ioXXIphOp7WUCK8J4IUXnahCpj2FhGeVZJb1cHcNDgTWzk8QoZCoO0Joywm/E3lScbx4JM4PxsGa0oaT77K+AvUv+MFl4Y6Oknx7TQL/3Hr/V6UqlHO2ShgoXQpe+6HcX6eBsXuaUClalGNaJTC4eBQIBAKBQCAQCARW49w4FIhu7u3t5WMU3bLu7gCIO2kJRFdxKfgRe5Jy5N1dApcvX9b+/n4m9uXJDpy80Ov1cj45R1FKJ7b4drudnQ47OztaX1/XbDbTE088kfP//bSGtbU1zWYzPfbYY1lk4NkIHBR4pIjks571rHw0Izb1fr+fiT/RcfpVVVUuBjgajXLtAuzt1EAgNUM6STkhhQNCSvFJjzBD0In2k47gzoSySr+fKuBEEpEDAQHS7sdKklLg0XccJX5qg9/vhJBinwgd7jyATCN4OImHhJZ1LwDz4cdweqoF84Po5YUpXcRwx4GLLvTTj+1sNpt5T/rnguu8mCfr4Kknnv7Aus3n8/zZQqBi7vykCtrgecD77eTdXQKr6ic4VtVScDcJogliEN8bJen3FA0/lcL7XAojqxBiQiAQCAQCgUAgcH2cG4eCpGy33t/fz0f+lUXmsPlDrrrdbi4oh72dH3LKAcXrIFKXLl3SxsaGer1ejtyvra1pPB5rf38/2/x7vZ729vYyISSqz4kBRKMHg4EuXryo/f19jUajTNoRDabTaSaw0+lU4/FY999/v7a3tzUej3P7iA64Bba2trItn8j25uamer1eJoyIDE6iOAnBixMShfbCjE7CnDAyVqLuHhWXlOtFcOoFNQk8rx7nAz8e2Xait6oOgBNrxAoXFBBrHDgSPKcfYsqpBE5UPUUCEuq2fSfTHrlnL5apEohHODrYUzhIILNeONAFjFJw8bQU6lywtjhbECQoosi6+l5AtKNtL/JJX1JK+TPkbgYcFe48YL78s8l7qz7bq+Ck3kWP8h4/hrWsBXEaPM3B0ydWOSJK54SLH4FAIBAIBAKBQOB0nAuHghMsKvDjQID4eMTRSShRej/xwXPHvQYBxJvXptPpVe4FyPOlS5f05JNPSlK29peEhhxyyD4CQpnvP5vN8nNTSrkmAHnvm5ubuv/++7NdnSP5/KSAnZ0d9Xo9SapFlSGbbvknuu+pBk7AB4NBHicEGPKKoLO/v5/HhmuBdjgxY319PQsy3Mt8MtfuPmA9SWmgDU+HaDab2tzczMUmnaxLJxHzMsLswkJZE4P3EXOcNK5KdQBejBDxw/cXog9pNhB81toJLWN0twdrxn5CtPH9i+sBx4e7CXiGE2SELk8R4jk4J3B+0C4CE66bVfUocLLwPo4a1q+sj1BiVRqEOwxWORhcrPBTMCTlwqarBAwXJBBSVtWAKP/28YWYEAgEAoFAIBAIXB/nRlBwmzwRb68r4BFT/j44OND29rb6/X4mhpAbbOJeEA6ix38Xi0U+4YF7OTrx4OBA+/v7+ahH3ACQUkjr3t5ePjaSVINWq1Uj86QN4HiQjsg14kkpaHjqACRzfX1d29vb6nQ6eY4gjtIJCfSijeTUI3Jw3CXXQ4SdNHOyw2Qy0f7+fj6Kczab5b4gKlDw0lMnPK3AixBWVZXTQ9bX1zWdTmvChEfJWQfqC7grglQC9k1J2v11T4lgXrzYItd5zYbymEPEGd+nTsxpn3Xz1AFP8WDfesFJCL2nKDBe3/MuhDD/9HXVsY6sE8/2wox+DW4NJ90uZNAnFw/4XJUiFj9Ozt094eMsCy76mH1tWAPf454e5cJM6epYhdPcEi5OnVYPIhAIBAKBQCAQCFyNc5Hy4MXkquqo6B4R8m63e1U+OJFySHVZHFCqkwOOgfRIq0eHifxCSCh8x8kHECoIWL/f1+bmZo1wL5dLbW5uZrEBx0JKKZ8kAJbLZa5xMJlMdOXKlSwokFohnVjVvTjixsZGzskfDoe1NACIJU6G4XCoqqry3+TxuyvAc+Wlk8KCzK1b/CHOpKZI0s7OjgaDQe6P2/cRYGazWbb/0xfWj7SJtbW1fBIDIgPrACGFNHM0JqTy4ODgqsKOTs5PI7iebuAkGhLOtThFmIMyVYG2+ZsCh+wpFwhIMXCHghcC5Dp/zQUXHAguwgHadRJO/QFPn3AHC+vuNSi419M9mHOvT0DfVxF4T61gL5TpNavqH/j9XmCTPeunYuDkccfLKidE2a8bSctYlXoRCAQCgUAgEAgE6jgXggLEBuK8WCw0Go20t7dXszU7ecIdgN2etAepXuldUq6ZAHEl0us5+NQnoPYCQgOnNVDwUVIm9pubmxqNRlloWCwW6nQ6arVa2VbebrdraQ+4MDh6MaWUay5AHiGdTtYg3js7O5KUo/vz+TwLF54H7y6Lw8ND9fv9nJYA2cM+7/AieB7d9mg5xJJ1Ym040tCjxxBJ5ptaD1VV6YknnsjjRiA4ODjI6067pIbg8ED0of+spwsGLsa4i4C1pm2uoVaDixIuHEBicVDQ/mw2k6Qa4Xexyo9fPO35Pk/sO9beay40m81MnksxwAU35qvcQy6WeKqBzwN95IQQrzWByINbxWtRlHBi76KJn7DhRSldZHHBwZ0k9IP7XBxjXNeqq+B9K1Nmyve5JkSFQCAQCAQCgUDgdJwLQQGyCMGnoN3u7m4m4SWIkr/73e/W1tbWVVF6SZkQeUR9Y2OjdiICRezIiXeC6AUYvYheu93W5uZmrjewu7ubI8e4F0ajUU6B6Pf7WQCQlEkuIgWnTgwGg2xv5xrpJPrdbDa1sbFRiz57jrmkfFwip1ns7+9rPp9noQNngBPTdrud24DYIlYgTBDBhswPBgNJym4KSVcdDVkWXaSvvV5P3W5XGxsb2tvby8dQDgYDTSYTjUajLA5B7Fz8cVeAg7Ej2kAaGSf3umvAXRdlEcjSQl/ONXuV6LjXZoCAl3Pnbbn7xEUH2l91WgOCDfPrTgkEH9JYSAVhn/hRmT6/9NlFBReVXBSgf5D3VXuR8ZfpC6XrAgGm7D998JMufMzsJ0QNTwlxl5LjNOGg7HfZ10AgEAgEAoFAIHA6zoWggE3cTweA+GLrd/cB5G8+n2s4HNYq2kNCiHZji8Yl0O12V1bel6TZbKbRaJSPfiQavyqi2+v1tL29rb29PV25ciWT4PF4nAm910vAlg8RYgw8gwKIkvIxlZJyzjoEDXcEdRmIVBMNZx46nY56vZ4Gg4Fms1mNwNIXn1PcBZyWwd8IHm4rp99e8wLCDznn1AbAehHhxkJPRH06nWowGKjT6eRUE0gr9Q8QWMp0Fi/u6CcAQFSZP3+NaxABvD4C8Mg8r7OvvL6A1zHAteDP81QI1pH1d+FIqhcfdLKLGwDi7H31+g84GcqUAgg5J6OUxS59zjzVoZwj+kLf/HXWBvGhPILSHRpeV6GsXeAiiq+Vp1GwV5knxs56uBjkba9yHVzLiRAuhUAgEAgEAoFA4HScG0FhfX1d/X4/1yw4PDzMJwxwRB7A+g0h9uKEDkQBCAeExPPhiV5DjkmjmM1mmk6nOZpO9N7J3vr6ujY3N7W5uZlFguFwqG63m2sF4ETguEqpnpLhuemkDzAWhJTpdFoTFNz+DnHjWkjWcrlUp9PR9vZ2LnCJIMCcc60XnfT5cAIMYcdp4NFj2qN/0+m0dqpEWYgPF4ikLIRMp9NsqacwJIUucZG4I8FJqZ+wQNFHamAwF5Dukhye5kJgf7jtn8j+4eFhTlcpXQIAUuvE3SPsrD/r4OS6rEvgdn53L3jdhvl8XjueE1EKoYOjIKWTFCM+P068vWYB/aEPTupL4aU8BtNTUzgNxUUX/wz6EZSlEMKaM1b/7DGnjA2nAq+vSnPhmf7f8vdyfwQCgUAgEAgEAoHVOBeCAmSi2+2q3+9nmz4/kASIuOdfc410cpwdqKoq2+mxUvMsIql+FJ90RNT29vZqpxlAUkkZoNgeqRC4AHATSCfHGyISUNSRUxHIc3c3BbUHIMCtViv/TdSbNAnPNffnLRYLjcdjdbtdVVWV55QUEreOE/V3Yom7gJMKmBcnmZBBPx2CiHuj0VC3263Z6hFAJGVxCDcGhA0xBjdCu92ukW0EBfYARJUI8mQy0WQyyYKE1wLgOW7fdycDc4IroyS0zAMCDn1H3IGEMwe+/1yE8nVyMYDxrxITfJ5diOI+xAPShChAikjlggbts44QeebG00JYN/YFc+lFOj0Vw+tX8BnD7VK6Z7iG/V5+Zkvxg3Fyz8HBQd5T7qDxlBFfh1XzfRpKsSQQCAQCgUAgEAicjps+NjKl9LyU0n9NKf12SunNKaWvPH79b6WUHkkp/drxzyder63lcqnxeKx2u62dnR1duHBB3W5Xkmpkze3NEATIKUfZEU13Qkn026OakjL5dHK5WCy0u7urvb09Pfnkk3r88cf1+OOP53QJ0hOGw6HG43F2AmxsbGgwGOSI+Wg00mw203g8zpF2t6Q7WWdsuBz4nagzhJGjGiVl5wVHVuIYoBCj1yEYDAb5NAY/WpHfqfoPmcMZMhwOcxFH+uaFC5lf6aR+ghcMRPCBrCPsQA5JlaA/y+Uyj4dndTqdfEKHF/ZrtVpqt9t57pvNZj6Gc29vL8836106Qnw/lCKACzU8EyGIvk8mk1rxQ99zLlzRX69JQD+cuC6XJ0VBnaDTlqdI0Eei/n5MpbtHVtUfwS3ghRwZtxc+dBcFv7sY4s4NdyVwDfuafeUOjzLdwz8bPh8IBS4E+Z4tBRbqWbhjgmtYH08hWYXy9TtBXLiV38WBQCAQeOqI7+FAIHAv4+k4FA4kfVVVVf8jpbQh6VdSSm88fu+bq6r6JzfaUFVV2t/f17Oe9Sx1u11tb29nyzsgSt/tdjUYDGo5/6QESKrl0UNicAlAcqkOX5Iwt/WPx+NcT+HRRx/Vgw8+qJ2dnVp1f8hLu93OaRHS0XGN1Amg3x4pd0IJ+XHnhBPIdrudiyYiTvR6vUy09/f3dfny5VrEdjKZaG9vT61WK4+72+2q0+nkExY8z3w2m2k4HNbIGVF4It4IHJDxvAksFUWSJpNJbYwIJJw8UY4Zss9aQHaZL8bZaDRyagvE0iPuCB7j8ViLxUKbm5s1V8mqYoflfLujwFMgvMhkp9PJz+D4Rkg2QNySTqL4vsa8XqZZICogvDBXXjzQI+w4ZVh7TynweSrTL0py7Z8xxkO/yhQCF3Wo1UA6CeuIe4f9Uaaq8DdteZ88rcEdKlzvfXPHEu14jQUv1Oqf9RtxKoA7JOXhln0XBwKBQOCmEN/DgUDgnsVNCwpVVb1L0ruOf99PKf22pIdutj0I/M7Ojvr9fo2oQiwgvhcvXszOArfse/V9fielANHBBQSPVkOG2u12LSo8n8915coVPfnkk3rggQc0GAzy64gJkN2DgwP1er1aAUM/ptJJklvtIUGeaw7xSinlQpLD4VD7+/va3t5Wt9vVZDLJ6SG8Drm+dOlSLVWDaHez2VSv18vRcGoxTKfTHF2GbJOGQF+8FgHXSEciAlFy6iFAWIkcr62t1VIR3JqOkIHrwGtBIGz4sZKSagUfW62WNjY2dHh4qP39/VyHo9/vq9/v50KQ7KWS1NIPrPRO5F1wYAyeltNoNPIewL1B310AcOHBUwzYDwgjpM0QsXcHAfsCAs1+8TGx1kT3IeusP3NfpjfwOm1JyoIZAoe7aFxYcFcNBT29v55S4890UcXdRzzfPy/ulvDPiotUPNP7J6m2tl4H5EZAu+cZt/q7OBAIBAJPDfE9HAgE7mXcdMqDI6X0AkkfIOkXj1/6ipTSb6SUvjOltHMjbXgePCSm3W5nazzkZDqd5mhxv9+v2a6JbHPNcd8knZAKgChAW4gJWPNJYSA6/+ijj+rxxx/XeDzOjgPqBeAEgOy12+0cxceWD4njWoijF2okckq03IkQRROvXLmivb29XIDQiylCpNfW1nLKwmg00pUrV/IPzolOp6N2u61er5dz3HFWQJLJfycS7mkHrJnbzT3tgjQUovLuLqCN0o7vTgpPR2BNiXwzNuaQMSG0dDqdWmHKzc1NbWxsqN1uZ2KNE8JrMtA+pNkt99PpVJPJRNLRsZessYtP5akbkGBfeyLl/mxPL8Cqz5xLJ24AhDJ+2Etl7QYvTshnoN1uq9/v14QP+nlaGoCnrLj45kUeaaOsA9LpdPLn0oUDnuP7wPvhYoKLKi4o+GeNa1cJC8yd1/g4DaX7g3bvhJQHx634Lg4EAoHAzSO+hwOBwL2Gpy0opJQGkn5Q0v9RVdWepG+V9B6SXqYjtfabTrnvlSmlXz7+ySTFc/UhlhBKCOTe3l4mhIgAXlfBK/tTONHz2yEctIn4AIHB2n7//ffrgQceULvd1mQy0Tve8Q498sgjGo1GGo1GuW3s9+5KcELn9RIg8hBbBANJ2YXhufakYUDwDw4O9MQTT+Q6AR7hHY/HSillZ8JwONTu7m5NVNjb28tRf9wLvV6vVsRPOilO50UHud5fc5FkVVFCUgNwCLCuPJM1sX2RibPXXfAUDdbVXSsIIYPBQJubm1kkIb2FQoVu4YdEOnF3Ysz6sKZSPc2ANURg8vQNiDfPdCGA8bFX3bGA4OCCF/NW1pHwPtCGpzUwVuYNAYnXy1QNXwP6wBGeXisDsYdnuqvF6zN4zRIXVhg/4/X0Iy/I6EKB1/Eoa6n4Nb6e/jtOJZ+r8ppSPFglMpxn3Irv4oVmqy4JBAKBwA0gvocDgcC9iKd1ykNKqamjL87vqarq30tSVVWP2vvfIelHVt1bVdWrJb1akprNZrWzs5Pt99JJrnVJ1lNKGg6HtCFJucaAV8MvUwwgYJAR7PSLxUIbGxvqdru1qvjNZjOT516vp8lkkgk6EfDxeJyj+dIJoS4jrvSbKD91DCBPkF76x98QKkn5aEdqNwyHwxwF9nFRyLHb7Wo8Hme3RrvdzmLFYrFQv9/PpB0XhqdbeEqDjw17v3RSL4E18nx3/uvEfDqd5lQVhAwKcvqxh8d7J7dNXr5HpUk5gdBLyvOGa4MIO5F1P37U19oFBdrhNeYaJ4rXJ/A1xrHiqRs4WJrNpqbTaXZZeP0BFxRcIJhOp5rNZtkFwLwwj4gtrIPPDe2VgtByeXSSCukuXmeBNfP7/HSG6XRacwTwGXJXhp+Y4nUavPCmOzFcUPNUkFVOARcAHGVtBD73/hrrQl+fShrDnSIo3Krv4s104c4YcCAQCJwzxPdwIBC4V3HTgkI6YhevkfTbVVX9U3v92ce5ZJL0Ckm/eSPtdTodDQYDSaoRHkk1snFwcKDJZJIJI+8TvfeIrqRMypxwudXc6ytAgsjN7na72tnZUa/Xy0dJQoAgpwcHB9rY2FC/39fly5drJzOUlez5LwT+4OAgOzDcaTGdTjPZ8yr1a2trOQ1kOBzWxkvKiIsFTmSJ6APGh2PAI8N+FCf3MN/0RToi4KPRqCb8+NwjSjQaDU2n0yyCdDqdnN7gogCOAp5FBB9xh7llDnjueDzW5cuX80kMuBG8UCPk23P0EX+of1Ha812QQpjwdr3oH2IKTg4EnPX1dW1tbanT6ejy5ctZOOBYTAqPlvUBvJ8cN+rpBYgK/X4/i1vSifOCvrsTgtM2Op1OFpoQohBzvI4Ha0paCe4L+rqqICMuBa7z5/N3WUCUWh7sBXfJINB4rQYXgVy8c8HAn+uiBXtglVCwyqlwJ9RQuNXfxYFAIBB4aojv4UAgcC/j6TgUPlLS50r6nymlXzt+7RskfXZK6WWSKklvk/TF12uIf7A70Saa6xFTLNhEnCFPGxsbOUoqXW2hh5RAyiHX7giA1CMoSMrkkMg/kXAIIUdD3nfffXrooYe0u7urK1euSDqx9hPhdbLkxAp3w3w+z3UcODaRAocIBJBU2oH4MQ9SPW0CIs54PGLsxQ4hk1jOXUQgFYX5p1CfkzXIJwSVAo2ScpFF5s/bJ/re6XQ0n881mUzyqRLAjxX0QooQeMQbd2McHBxksWRtbS2nJHhdBhcPut1uFjRYc087QZBiTqmJQT/KIo8IXDgeEE8ajYZ2d3fzvLDH/GQMCLLXL2BMrGer1dJkMsmOj263m49MXOW4KEURd30g3uAG8boQnqZA6grX8dkpBQnWdzabXZVyAelHfOAz4IIF8+epSewTRAx3idDPMoUBRwoilddtcAfDnVYj4RTcsu/iQCAQCNwU4ns4EAjcs3g6pzz8N0mr/jX+hptpD6KB02A8Hl8VYT1+bo4IczwfJxdAbCGhEAaiu+WRkh4Jh9A6efRK8kRfIWOdTkfL5TLbzS9cuKCdnR2NRqN8vzsinMC6SNJqtXIEXzohn7TrNR7cws6c0bY7M9zdQR0K5oNxQcApPOkuEObZiZoXKnThwYUF+kTKBUQWMjifzzUcDnOE2okskX/qUtAHUkKA590zvkajofF4rMlkUjvNgbllHWnXx+drUFVVTTQqI97SSd0Jd7PgsKBNF2jYw4PBIJN1BIhut5vXt6yl0Ov1JKkmGjl555nT6TSPwT8jXqSQdfF5oJ9lHQdEC5wDTsBdxGI/+l50UcGdJqVzxdN6eA1XA/PMZ5xrEanYc+zB08BnzN0UjM8dB9cSFe4Ed4J067+LA4FAIPDUEN/DgUDgXsbTqqFwq+DE26uyQ1Kc5KbjonzksxMNhXA4aXbbvJMtSbW0BKK72Ma9+J0TcUi0Ey9Ofdjc3NR9992nRx99NBNgJ/YegYZMUeCP/HMv6kiUHDcBZM5t+PS1dGRgU59Op7kgYSkokFbCCRpueXfrNwSPvrhDwmtD+Fi9sKYLHbPZTFeuXKmdgoFbxPPcSQXxsdBHr/gPMXfrv4sQHsWmDSeZLjBQlNKL/gHW2us7IGRwPekmbtl34g5Z9tM4qPdAFJ31YS1cJHASTkoFx4VubGzkfVWKaV6fAKLvc8va8DlwoYs+uTDh+5m5oK1SNKPvXOduDy8+6vUOWGP//LL33dnDWpbCHXAR0tN1/DPt3z3l54dxuCASCAQCgUAgEAgE6jg3ggKF6IjoeiQRl4GnDUCuG41GFgRIWYB8Qa6IZhLNJcoLiSRKCglvt9vqdruSTogwFvODgwP1+/18BN94PNZjjz2mXq+nra2tnJbg0VjInFf8p7YBwoCLCh6JhlBD/iXVCLz33wkYxzbiAPB0EEgSLo8yf78k1l7DwfPYAfe7k8Cj1R7pH4/HGo1GeX6Zc69h4IKKOyBarVZOHfC6FKSKeAQb8oqA4gUEeQ57hXoEiC+QXa/RQaqBi02Q316vp/F4XBOdSrGIZ3a73ZrjBHEA0uvz5aKXF8X0Whq+r8uTI1xAkU4KOjIeF9pcVMAB4mkX/ln0VAR3zPC3rzuvl3UpVokJ1I5wQcRTS9gbZUFLnuN7ktfKkyxc8FmF0r0QCAQCgUAgEAgETse5EBSqqspF+yAVg8EgFxOUVCvwhljAUYpYv7vdbrbaE9WXToiUEx6PTkPSvNieR3QlZeI5mUzySQ0Q0ieffFL3339/Ls545cqVWuS0LDYI+eN+z1/3WgOc4uDpBRT683z0UlBwki6dpAUQAWZOmHsIK/0o0xggt94XrnWi6KkeiCBlTYaUUh6f98VdCF54kRQE1oB2+JuIvqeKrBIV6CPz5CS/dJ24MAO4148JZf5SSjlNYD6fZ+HH54V1Q0TwIphc52kgnj7BeNiLpLFQowPy7pF3BBH2eimsMS+4ELiO57hjpUw3KlMZWBP67Kdh0KcytWBVOgHrXR6HSduM38UTH7OD55dw18S1cC3RIRAIBAKBQCAQCBzhXAgK0lGkejQaSVKOOGO/LgvkSSd1CYi0Qv69cB5kidz45XKZCSP/Bb1eL4sGWKmn06nG47F6vV4mV7PZLBdf7PV6qqpK+/v72t/fz4KGpJyWQdE5BAXs/kS3nZy32+0shECMB4NBdilAEhmnkzV3FiDEQLadNPopBpKuIqAlkXYniEd63UVRRoBJMZBUK+SHWDGZTDQej9Xtdq8iw0TVmQ9qUqwisT7utbW1XNeCdkpBwMfOXPlxouyL8jUXmthf7BF+iJwvFguNRqMsMnjKCnNYilXu/GDOER/cheJkn7ogOEPcleDjpu++5rgnyt8RuegLbhrWdxV593VjHlwE8bQYSbU18Nf57yqxyp0l0okzxGttODy1wVM0SlHjeniq1wcCgUAgEAgEAvcazo2g4MUHNzc3M1mSTkgGEX3SIYhse+oDle8p7sjJAR61dsLjOdODwSBHRxuNoyPtrly5UsufJwJ96dKlTGomk4n29va0sbGRBQMEAcjpbDbL4sRpY/PIKykLXvXf50o6ibaWtnEXWxBCOMVCUj6yT1ItZcLrOPD6qsKSzEVJ5ErbutdAoD9+7KITat8DfnKEC0qQe4oo+hxKysUgacOJsBN6xsqY6KcXZOTasmaFuyh8Xng+AtJwOMz7CUcGIgynmSC6MG+cNuI1KNy54ekCXs+hTENgzN5/X1MXsjy1AzHA95gT99JhUNZTYL97vQjaWFX00901Tv7dReACYvl84AUoPT3jtPQFFxyuhRATAoFAIBAIBAKBa+PcCAqccgABJlIMgYWAeARbOomgO4hwQtwgU05UiPhyPUTVo8IQe2zYELzyCEuew3U4DTzyi1NgPB5n0QFiB3lk7KRI8PpgMLgqsl5G331szBG58IzPc+qJ6jt5px1PAUC8IToOwfQ2PWWC50vK1ndPVYD4eYV+j4JzxCPklDmhoKWk2r3MkYtFpEv4PqENFyJ8fZhH30veL/pEO+xP31cUM0Qsmc/nWeDwmhY4XijkyLyz7qyB73eP/jPHLiB53/1kEl9/r4fhQhbteHqJCxf8IBDwHHcNsCd4Nq+z37y4p+8FxC1SYdy14GPy38u2aY/fT6vT4Pe4G8bb9PEFAoFAIBAIBAKBa+PcCAoQQ7fqS6rVTFjlLsDy7cSJyDw/iAKgPD7QC7xBciCLOBKoQwAZdiKSUtL+/n5+blm8r9FoqNPpSDqpxYBTARfFxsZGvpY2vRaB1xtwZwJk0x0FzBEElyi3n6bAM2jXx+IRba/XQP/8GRR1LKPVkFXqQOAk6XQ6tSKNXo/AyS2EF1IPOfZ9wX8ZH0SfMbgrgmtXEciSbNI3F7PYl5D+jY2NWoqFE3tEBZ9zxCnWj1offtoBY3cBhZQe+uUOC8aIwFISfS9k6E4PPgPujHFhyOdvVVqLfw698KkLI6Qr+doyD6WTgFQY3DG0VaZHODwFyp/BOMuaEqvmx/uwCpHyEAgEAoFAIBAIXBvnRlCA5EOwe72eOp1OrnVQ/uPfnQoIDl5hH9JDu140zu3WkI/FYpFTESBVnU4npzS4Pd8j0hAOaitQ+6Hb7dZOmlhbW1O/35dUP+qR8Y5Go0x8vQYEkW4n0gguWP+lE4v6YDBQp9PR3t6eZrNZLvTHs6jyz31e28CxisA60XNHREm+iTovl8taegcEkSKYLii4mMOc+BGbzLcLIhBg+uKii9c+wEVCPQdPn2FsPg5PB8HtghBEP71QptcRcPGDdjiVAMcBR3XieEFs8T5AyP0kEl8jF8D4DJQpD1500d0ejIlrfD7pp7tN/OhJ+sUa0wav04a7UUpHkY/Dhatms1mr6cB88F9Ps/B9ynhZV/+sc72PydfKxSTa8NcCgUAgEAgEAoHA6ThXggI/EGxIGaQYO7UXGpTqNQScSELuPZ8csud2aezevF9VVT7Kb319PZ8iAcHDvi6dRNVxQXS73WyHJ2oN4fL+0G/s8ePxOIshnFhAFJjUCql+7GMZced3P7KROeN+2iN9gOtJvyjdDy4G8BwcAfyNAAIZI7LO3HIqAWktZZtlmgFj8foBtMWxkd4HL/7nJJ959XoMXteijO5DtP2EA68dwfxJymtcRtC9TsEq8cVTJBCEuIY+QM5dUOB1BAEXBrwuggsA3idPdeEar6vg8+hEnJolfgrEqsi/72kvouqkHSDYsQa+p8u94XPre5Nr6KcLGGUKzmntuLPBv0MCgUAgEAgEAoHAjeFcCArYxJ0IYXsvLfkluSuPxUN4IH+f+xqNhra2trSzsyNJNccBtvnpdKrBYJAj6NJJJBiixevUS+j3+5ncQkbm83lNAPBif57q4FHu/f19tdttjcfjWj2J8gjLkihKygRbOiKpCDD8IE54O06ecBK0Wi2Nx2MtFotaRJtrIK8QNuko+t7r9fL67e3t1YojQl5d4JB0lbgC3P3hBRo9Rx8xxCPjOE18TzH3CETMG2Qdku1HWzL2MopOm/xNCoSTbK/14UUT/SQL38ussaes+Ovl0Y2+v0tS7/vNHR/ME3PINQgrLnj5/T5OBAVPn/FnlAKKCxfMnacleb9ctCpTYEpHEs/0/rqzgOdeTxgo95ynfbhLgb5dKy0iEAgEAoFAIBC4l3EuBAVJ2Rq/Kn8aYumk0YmVE1+ux9qP3V2Sut2u+v2+ms2mrly5kk9dgPRx3OKDDz54VfQZotRqtWqF89bX19Xv97PLoaqqWkFG0hZ4BoSIPtJvjoWcTCaaTqeZkDqB57SGw8PDGiH3lAbSPRwenff0EMbHPZ62sIp0nfZfrxtAmggkFDEFckxNiE6nk4UP5pK5Ys7LFAtPTZFOiCF1E9w14oKQi0fc42kJXruAuXARiXb8mayVp4v4PqFdBAon6fy4IFI+D9B3T/vxH69J4Mc+esSe+z0i723RB8ZVkn5Sbhir11rwPQBKMo4QQuqFP9vFAUQHFwxLEYb2ynSNVcTfx3EteB8CgUAgEAgEAoHAjePcCApOpLDlQ/Z5jeioR6+JnJZR1tlslvOyiaDzw/GJECWiu+Sz7+zsZHI9Go1y9BpBASI3HA6zQEEEnnZGo1E+Og/iA2l2cu+OC1wSkG7GwvjH43GN/PM6Eff5fF4jZS4MuBiCoFA6Dkgv6XQ6uS/UkoAUOul1F4MXzXRHgqScTiLV60f480uhA4HJSTLkttvt5r3iUXLaRQyiX35t6QIAKaUsBEFkPb/fRQGuL0m5E30XIjw1hX64S6BMDaD/qxwRPJP7eI1nuDjgbfhclakeLmr4mE47QrKM4vv8rJozf70UGngmfSlFgNKt4KkVzI3PiY/zRuBCz6r2w50QCAQCgUAgEAicjnMhKPg/4iE74/FY/X6/Vk2+PC4Qot5ut2tExusS0IakGhkmfx0yBjGez+caDoc5bQISDmmtqiq/NhqNNB6Ptb29XSNPkmoE2Yv/EamdTqeaTCaazWba2Nio5X57FHu5XNZEDAoyQswhZJApaj2sKkbHOL3QJc+dz+fqdDr5FAYn1tJJaoifGOCkDiGEZ3jtAdbTUwEgnIgQJQF0QosDYjab1QhkWWCQOfJinBB/SDEFEt0J4cUtnaAzRhe7fD4ajcZV6QerrPf+frk2RPe9SKKTY98TDh9jGel314pH/EvHBQSfU0lKUs1cshec8Je/c73vcZ6Pc4cjVaUTRw73MQc+hmulLvh73l8/ycT74fet2muekuJ9COdCIBAIBAKBQCBwOs6NoOBRV08NgCQ4AXTS4iTVay5gn/fcbdrEuYAzQVItSjwcDjWdTnNhRkiQdERa2u12dkWMRqNaygOEhnFxD8QZmz8uBopHeqV+z293IuptIq4wHvq/WCxyugeuDuYF4tZut7MLxPPYIeeMl3QF3A1uc3eyT5/d+UBUnTQExsTctdttVVV11ekEjJF23Fbva4uY5HvB01Tom7tZIPuNRiOP3VNL/HQKXzufl9IJ4CcpME/l+jtZ9b3oBNuFB0Qb9oTXQPDUGeaEveB7hTGTfsL79N3rG3APKSm+Dt7n8h4vZkgfXeQq65+Q6sJnxwUB2i9rQZRY5V7w1zxlo0yDOK29Ve0EAoFAIBAIBAKB6+NpCQoppbdJ2pd0KOmgqqoPTildkPQDkl4g6W2SPrOqqss30h7kHaIpnViRITyeK+/F7JwYEsGHWHi02fP8/Ug+j5RDtiFk3W43P9drAqSUMoH3//pRiS6SuG2f4oukZ3gU2W3gEC0n9YwNMs5YcE7QR+aQlANPWaAt5qzZbGZC7UTeiyKWZNiJvNdf8Dx75pD1ajQa6vV6OR2E1ArG6wX9fA5IgyhTA9y+72vqEfrSyu9943QKnn28r2uOAxwqLgixZ9bW1vJeQSzhuEtP3yAiTzv+O0U1S0HEXSnuLqF/7m4oRRUEHRcoPJXBhTmcEmVqB/PmDg0X8sq0C59HdxCUzgn2mq9vWbRyFW6U8DNXvo6nORZuxfPOA271d3EgEAgEnhriezgQCNyraFz/kuviT1dV9bKqqj74+O+vk/STVVW9SNJPHv99XUCAIGtObDy670c+ep68V2r3WgDtdjtHgZ0YuVXbySEElZMWaMePLvTUC1wK0+lU0+k0H/9InyGYkjQej7W/v6/9/X1NJpNaxNznAUfGdDqtpXo0m83smnChRFIWFBA5ILAujngkGVGBPjJGJ6mkQDBOovSMyYUHTrzo9/s1AYG+48JgvJx0MR6P88kSvhaSamTY58eJKqSWezmhA/LMWPzZzIO7I1xsYX+5GFQ6KVz0cCdISimf5MEe8xSVco+X/2Vey5QTF1EQViTVxuZzxnxD1CHxtLPq2EtEI3dISCeiUllrwedkVXqHzxfk3gupev0I3/urHAPMZfkaYy6FAk8ZcsGk/CndJKe1d4fglnwXBwKBQOCmEd/DgUDgnsPtSHn4VEkvP/79uyT9lKSvvdYNpAA4aYCoeU60n/TgkdnZbJZt1NKJRZ/ocLvdvqpKv1S360uqRW4hUbgZSoKPSEAtBcbgxSKJ7BPVXiwW2t3dlaTa0ZCQnTLH3YWLVVZ0+uL2d49GAyfEfhoG43WCJSkXjfSIdSkEcISl2/4h8/QVOz5iEIIP4gHCDUdwep0KJ6i87v2n715roIysu3sF50tZKNDXknvdMs9aOPHmGp9/7vW9h6OFKH+z2czrvir6Tf+YmzLi78TYnSvMr9daQEQj7cdP3fD6ID5XPMv3j6cQeF0K/9x4GoaLAZ4awnv0xcUaH6OLOuVRjj733MPntUTpjvBnlGKBCxPl63eosACe8ndxIBAIBG4p4ns4EAjc9Xi6DoVK0o+nlH4lpfTK49eeVVXVuyTp+L8PXLeRqsoF92azWS5WWJ6C4Ec7OvlaLBaaTCbZPg8pgWi0220NBoMaaXFS6cUdiSxTe6Hf76vX69UKO5LXTp/29/dz4Tkv+CcdkfPBYKCNjY1MsDmtQTqpReCRW37W1tY0nU5zTQfP24cweSQW8aLX66ndbqvb7Way7IIEooykGlH0PjM3FO3zdACIFu8zD4hCXO/ziSCAALO/v6/hcKjJZFIjlTwDsujPpA13bZDm4ONEeHKhBTeGR8S9NgfzAin3kzYgzC7e+P7xOWNecQSUqQe4C1w88bQGF0YQI9wt4DUcuNbHyByRqoPAg3sC1wKOE3eTeD0NPpelqOHknv6siu7z486LVUdTls8rT6woHQ6+HxjPtZwKXM/79Ie+l9e5COLulzsAt+S7OBAIBAI3jfgeDgQC9ySerkPhI6uqemdK6QFJb0wp/c6N3nj8ZfvK8nUIGNHJw8PDHF316vtegf/w8FCTySQTh+l0mq36EES3N5dH+UHkt7e3dXh4qL29vZoLwt0PbvWWlI9qJM2AvnvuOSTSUxEQPSCUHAdJDQA/upC6CIPBoOZa8BMsINElSZROotQ8050QEGFOh/DUBHcplFFpb6fX69VSFxivj8ePxPRigvP5PFvyXVDAsYGDwEUFPwnBST3rAYFmHvxYTRdSnJS7Y4E1TillUYTXPT/f0z3oO6d39Pv9nB6CWCapRuhxeSAErBqjH+dJ/zzFg7HwPi4A9iFjnM1m2aXBnsBRwh7z+fB5cXHH33dhpHS/0Ff2D3UlcG2UKQllKslposIqEaB0ZwAXPlalT5QpGsypi2WrnCTnFLfku7ij3u3qXyAQCNztiO/hQCBwT+JpCQpVVb3z+L+PpZReL+lDJD2aUnp2VVXvSik9W9Jjp9z7akmvlqSUUkWhPiKynt/tOerH99Zs0X6dEzciy1jqJWVCK51EtyG13W5X9913X61eAtd5znVVVRqPx2o0GrkAoo0r/9eJi9ctYCxEZMfjsSSp1+tl8YKIshM+dwAQAXeiSZvcR8FB6jtUVZUj9dIJIcW9QLSeSvzSSUScwoG0Dxk7PDzMbQ6HQ83n8zwOiPZyucxEGxJNPr+nongqBX3kPiz6zIdH2xm7izXMX0nkvVaDi1Ye7ecer81BhJ15hMj6sZFO3rvdrlqtlrrdbhY5fP/48aB+aoUXlqQPLrYwRj+9AfGEFAacPKResLZ8Vjytx1MS3PkCygh96S6gz56OUDo43J3AWrGGJXGnH+4WcEHB14c1KwtJ8nzuoQ3mie+ZUkxYJR7cKQ6FW/VdvJku3NE5HoFAIHBWiO/hQCBwr+Km/7WcUuqnlDb4XdLHSvpNST8s6fOPL/t8ST90I+2tr6+r2+1mu35pTfeih5AqCFpZ3M6JgZ++IJ04IIieQlIRBgaDgQaDQXY4SKqJF27ddxIKaeF3CO5sNtNsNsu5814A0cmw12bodrs1pwZugeFwWLPh+8kXngZAND2lpH6/r8FgkMmnF/5zNwPPo6ZBaSNnrLPZTPP5/KrUA6LsntJA4UlSUohMlzZ96cQ1wo/POwIMRLS00yMalbUOiNQz/36vW9o93x6xgzoF7jpBvKGWBqKGuyQYL/vL3R5eF8H3qhNjxANEI9YWMYTfac+PGkWUYOwIOMwvAgmCAsIEn7VVBHtViomTfObLBSTmtiyOyfwyT6vSJfwansc+R7ha5TrgO6NMyaBdd3yULpXSicD4VtVmOI+41d/FgUAgEHhqiO/hQCBwL+PpOBSeJen1x/8QX5f0vVVV/eeU0n+X9LqU0hdK+iNJn3GjDRJllU4K4fEPe04qAF4k0G3/EE2wXC5znj7kzos3loR8MBjke7ifKDZR6U6nkwm6EyAIGNF8SBvED9LtpIh+EMXGRdBut7MLgog10fGyPoLXmuBYSgQMiBZpCZJqRQiZdwr7+VGUToRTSnkNfL6ZO8iwk11EH4gwRA8hw0ko8wBpl+r1JVhvFx08Kl0WsQROXP2eMhLPMZo8h7V09wLk1l0T9JvriH5PJhO12+2aWAG595Mr2D9O6kmr6Pf7WaTBxVDWFXEXDG3QBxcM3JHAPOJ4cZIP3HHgYlpZ/6Es2uhikKczIAp5qhHCRvlcf3Yp1tAH7qPWCd8Dvsb+/eGft9OEglL8WJVicU5xy7+LA4FAIPCUEN/DgUDgnsVNCwpVVb1V0h9f8fqTkj76qbb3xBNPaH19XZubm+r1etlVMBqN8j/0sXSXx+tJJ9FsIpmQleM+XRUNlU7yryHdToacvHquv0f2vZK+VD+KjxQFxAMIVbvdrpFq+gEODw/Vbrdz2oFb3WkTCzkRbKLzjI++TqfTXIySYo1Eecvj+UpCy3zTJ1wirAVkXzpKSyA/vyT2iCmQSS8cKB2lV/jJGKXgw5x68URIH66SMhef+fSaA97f0trvKQwAkQUSz7zzDIqHMh4n2+U15UkQtO/FMOk/64hjp9lsajQa5SKlXpuD8bkTAOLvvzuBZ5zsUSfcTqi9DZ9HTxVBcMFZg1vEBRl3YCByrEpTKB0CzMWqz62D6yiK6mvqKN0Xp7VVpm3cCS6FW/1dHAgEAoGnhvgeDgQC9zJux7GRNwWPXnueOaQRUohgwFGQWNkhKCmlXFjQ7c0lIP7r6+vq9Xq1OgIQH1wDkFzaJvK7sbGhRqOhy5cvSzo5AlI6IXtEUCXlVAF3UEByEEd4Pn1j7IzNiSL/bbVamewDiu5BnN2FwNwSsfb5BfyNMOFHIFK7wQUP+kzk2+37TvghoS5MIEYgfHgtDJ5FqoU7DFz4KQlpq9XKhQY9Ku9Et7TXewFJ2vc6BV7jgetKx4m3B9mmPbfve8FE9htz6DU72Mdee6KM4nudDZ872nKXgq8vfWSe/W/G5C6EMoLP/vV9hOhXOkH4PHhNjpKw87oLINcTAXiWi1gulF3rPuZhldhwvecGAoFAIBAIBAKBcyQoSKdXYpeUSRgElGJ3RG4h8xCWUlRwwQIi46cASCe1GmhjOp1qf38/9wtHAhHn0oINCXWy5eTGo/f+X4g16QMcgUlEn/ec/EH+nRR74T8IK+R+uVyq0+mo1+vVaiVIqtWLwDZO/3muk3kXFcoINKJIo9FQp9PJ6RylZZ65doJcrgXz2W63a2TZhQs/ccEdCuV+8Pn1KHmZflC6LPzEDK8l4MKXR+092k7KCGkk7XY7n6zA/Pr7uEPoE+tM3Q3mhTX3Qo702+tuuGOiFHf8eZ4+wZhdLGLuXQhwgYv+41JwgYR5KFG2seo7wP/263y/gFWFHL398nqfG9/vZR+vJUoEAoFAIBAIBAL3Os6VoACc6HS73UxyS2t2eb0TeWod+HGF8/k8iwLc49X03Q3hJB3i6kcIjsdjTSaTq46gRKhot9u14oUQPo/YlqSOcVLAkAg4ZBQyRzR5VVE78u+duHuNA6/94NHd0g3hRQTpH6kknrLRbDazrd9PHqAfzBtuASe10+m05sQAbnkHbpEv94o7G/gbt4E/l/9C/t0t4JX/vYChC1Du9oA8u8PESbSPxfenFyt0N4yLVOwBnBasSzlPnlrg8PQPd3J4LQXGynwwJ1zHvLjzhPfdrcAalHUKSkJffmbLWgp+XbmvXfTxtCT6z/WlMFH2sdwzzF8p/AUCgUAgEAgEAoEbw7kRFDzHWlIm971eL0e5PWJe5kxLqpH6klhSmX82m9WORIQIQbTG47F6vV5OD4BIEimuqkrD4TD3kdoGuCHK6v4uKAAv8odwQeSawoc4Lw4ODtTr9dTtdq8SQ8iB95Mf6KvnyUPaOV3CiwN6aoZ0UmCQdhkfogY1DxgHz6UAI6cTODEl0l4KBH5yAfDCeozT++r3+zw7sfaUEG+DvvoPr7E+ZcrAKrcJ9SiYX7+e+eSkDH/PiX1Jgr1mAHvLxR53P7gY5uTY01nK8XvhxfKYTNws/llclQZQvl/OnX+eyvQFF7hOa9/ThVyQYK2ZW17zQp+rnBPXgrsPSuHB90UgEAgEAoFAIBA4HedKUOCIPwQEiJtHJz2C7gRCOnEWQIQh1U7isOPTHoSbCLuf4OBpDJ1OJ9dP8OMDKR5ZHgHpbZSnU4AyxcMjyBBBv9cFCGo+SKqJARBNj+q69bzRaGQS704MxByIm6clYKPHeeGvSyeFF7nPBRue6ykBZVTcj2CUTtIJPP3C3SRY+Knj4HPp682c+f5xwuttulPF2/MUAV5vtVrq9/uSlIUqdwWUpBlhirV1ZwpjKSP0rPHh4WF2huAscOHCBQEXBphP1mWVgOHEn31BGoX302uI+D7js1cKNGWdBBcGvB+rRIlV4F6/1kUFH4/fUzoWVrkgQjQI3MtobGzorf/q4TPtw3v89aEOf/etZ9qHQCAQCAQCN49zIyhI9ar1EBIi90TjIVarIsMuKHDCgaRaPn9VVTmn32312NgHg4GazWYmiqQwICjMZrNMjGazWXYUQLr8tAVvG4LrJ1MQtYfceLTeLee4M6ip4KKE2+6ZP9rEls8ccI0LCtRoQByZTqf5dUg9hJ818dQMJ9GkN3Q6nRqhXEXy/cjLslig14GA0Ep1G7235/Ppefz0yecRwuyOEuaK+VnlIoB4Ei3v9XqSVJtv+oJwwd+4Onjdr/E6Dl6zgH5SeNTFIv+d/VweUQlwJPhnzPeDf34YKw4L1gHnw6raBS4m8Jkq3QeMFxGoPD6Stk9zhrhg5g4aF4YcpzmXSiFklbBxI+6GQOBOxO/+yw/Ve7/k7bXXeutzveU9/s0Z9egIX/TdH6l3fuqzdPDuR8+0H4FAIBAIBG4O50ZQqKpKe3t7Sillaz/Er9VqaTwe5+hwmQPu0WYIuxeaSyll5wHFCCE0RNwl5eJ3nU4npzZ44buSTC0WCw2Hw1o6AWQJAkmqANHixWKRSW+3283iSCmQSKodS+kiACJBu91Wv9+vpWYwNoQVF2eYN8QSBACi/JPJpHYqhR+NCTz6DkGX6jnx1HtgnMyPFxakfY+2Q+R83ek7z/B0Ebe9M288h4Kd3M8JFYvFQt1uN6fCQFg9Cu5tuwDhv3tKBydslATZI+mskQshnhJQ7i9IdOmkQCDw5yGW+NwgCHlEvozS++fDhTDarKoqr4Efccn9jMXbQwRijct0Aq9b4Edclo4HhAPWnTomLgKUqQk+545VLgR3gvg6MfZA4G7C737Lh+onP/mb9HBzcNZduQrf8byf0z9844v0Ux/2gJaj0Vl3JxAIBAKBwFPEuREUcB5AdJ0sSaoVpHNy43UKIHheQ4C2IS+rctOlk4r7fjwkqQPUbPBIJ31DQOh0OpnEQaZIS8B+nlLKhJ0+ch3teHFAL5QI2S9t6swNaRgIE15zANI8Go2uivhC8mgDsWE+n+d6CGtra5rP57U18gKZLiYgJFAUsywG6SdpMCdOrOkvJBqRh7mAPDOvpMeklNTr9bKg4PNY7jMvyOdE1kUoF0QQAuibW/tXiQf+XBcU2KMQeIQnd7IgSiHW+ByXjgzviwsruDL8WaWzw9MSaMuvceHBU0bKFAc/stL3AXPDnvBnMy6cMIhT3ic/6pK9UKY5uSB1GlxEYZ5d+PG/A4G7De/6qo/Q3/6Sf6MPbv83PXf9/IkJ4Gvv+12976+/Xd/yoveRwiEUCAQCgcAdhXMjKDgxAx6Z9Sg1ZMOPScSWz9GIHjl1e7ekGkmhTYiu2+Y9os6JBFxPqgPiAD+QZQipOxx8nK1WK4sWEEs/DpJaEl7M0C3eECRqRbgV3msmICD4/GK1h7Dt7+/X5gNnQ2n9LwEhpE+kT5Ae4uPpdDoaHUefXCjx3Hz6Rj8RNFJK2dY/Ho9r7gB3biAEeZoGgKzzXI/8IwB5MUmfa4+W4xbBmeLk1kUcBBN+nECXBQXdCdFut7MI4OKRj8UFLf/8+BozDr/XyTpCRple4GSeZ/kecFHB+8NeYy7Zh+X4y/kincLTdsq1IgXEhQPvg4sfq9IW3IURCNwLmH3in9BrvvWbtdX4Od2/1pd0fsUE8Em9qR5665v0tQ9/6Fl3JRAIBAKBwFPAuREU+Ed/6U6YzWbq9/uZgBMtl+rV6KmLsLa2psFgkEloGb0sI50Qj9lspr29PQ2HQ83nc128eDHXApjP59rd3c1OBG8HYgsgTS508BpEyaPCfoyfp00wJggoUX5cDrzm4gaEFReER3i9yF5VHRUKpMikux8gyZ6fj4NCOhEDSEmAAGKzJ7WEv3EmQErH43EmmcAL6yF2SKqNm3lxocgj6syviz6laOROlZROCjs6+SbdxSP+pcWfvcZeoF0cLy4quSjiKS2eOoHow7qx18uxlNF2HzvrhSDmxN2PtPQxA3cSsLZeP8HFFa/54fPqTgoXHhAovD/MAyk3jMdTQug3p5349wR7w4sy8p47WVi3UrQ6zZGwSjhbJaQFAucZ6YNeqh/7jlepnc6/iFDiZe22/uEf/KK+9j0+QlqGABgIBAKBwJ2AcyMoSCcV9CGqy+VSo9Eok1Ry8yFrTq4gOrgUJGUrPIBUe+68H5Ho6RBE6anfQLoABN8FBeB572UtBydjTkzn83nOwXfyAinz9Icy4i4dnTIwHo8zwer1etm1IOmqvH2KSjrJnU6nWbxw8kiUH4eGuysgz1jz2+12/nFSjOjhtv5er3eV0IBgAJH0+guQW1IafAwU24Tkc72fWoFw4k4A9gD7yO9lb7gThLGvr6/ndWO+vK8IGxTSRGRhT61KryBFwYWLbre7ksyWzgKPvCNgIGT5EZh8NkpxxJ0IiC3lXnNxoBQy3BVA/3wvl64Txotw5KIDYyndSH46hKdO0A5rj1DiaST+eWK+y5QHxu+iiH8nhagQuKOQktqpeda9uGm8rN3Wl77lLfr2D/wALff3z7o7txVrm5tS42mkXC0rHe7t3boOBQKBQCBwEzg3gkIZceY18rM5IrCqKvV6vRyZRBTwegZcB0l1a7xHNClQKCm/R9FHSER50gLk0SO0RPIhOl5McVWOu79X9sndBJJyMUp3QiCsHBwcaDKZqKqqTN5xOZQResbBsyFqCAKII157gvUo0wK8KCHtkm7A891q7yc5OJFmPimi6Ovf7Xa1ublZEx78mc1mMxekJJ3CU1+c6EPOq6rSeDyuuRXceu/wdXD3hhN5xCFPI/HrfO4RTZhXF60QYGjDo+ygTH8oiW95HWNg7vzYRW8DuCvAXSr0gTXms+UnrXBv6U7g9zJlwx0LzFWz2awd6crvnn7CcygW6qkbLjxdy4XA2EqRw9NgEJwCgcDZ4NP6Q/3Wzz2mn/u4h3XwrnefdXduGdYuXpS2Tpwj//gnvlcvbXVvur0fHXf0Lz/+E47+2B3q8PHHn24XA4FAIBB4yjg3goKjtHJ7dLtMb0AogFhwioOfEEAaAATRo6tu5ccJQaqDR3MhLBAz/p7P55pMJjlqv8rB4ERUUk1E8Ki1R38hx6RtUJcAIuwCDP2hD8yHCxUQNObU2/a0ER83c+558ESgsc7PZrN8fGSz2dTm5qYkZaGiLBTJ736yghdRPDw8VKvV0sbGhgaDQU6TmM/nWVzxteh0Oup2u+p0Orlt1pg56Xa7NZKNiIR7wtNQnEz6PHrU3lMrynnGmcFcLhaL/Dye4/PvDgUXTEq3iqclrKoT4GvLOE9732touMPAxRX/3LFHPWWHvrtg4EIUopYLhOwdHyv3uOjhYo5fy+fDi7K6IEOqB+JU6SzwfpbzU6bR0Naqwp6BQOD24xvuf4u+8PUX9a7PfaEOf/etZ92dm0Kj39fBB7wo//3410z0Pz74B+yKmxcTpKO6E5/0M6+XJH3kb3y6en/nIbV+/913lQgTCAQCgfOPcyco+D/qIVpOciFMTgAk1YjOcDhUr9erWbs9xcFt4bgfIKWr8rC5vtvt1grMeYX7kjgtFotcSLC0j1P8EWJEdBwC404Br/hPJNbJJOSaUyb4m2MS3WpPkchV0W3IFmkb5RoQEe73+1l44R7mGDHGawJIR2kZ/L5YLDSbzXIqgtcVwP0AKSdVYW9vT1euXNFsNpMkDQaDWnqFk1nWGKcI/fY94uN154STfZ8nrwfh4gHrWaZEMA+8h8CFY4L5KCPpPo4ywu6pMp6q4ATdU3l8H7P+TtoZswtH7lLw/eikH2FrsVhoPB7XTgxxUQzwPD5rLg4yLq/BwTPd/eAii48VsEe9poILBz6/PnYX08r0DYSLlFKu2RIIBJ5ZvOb5/02f+OpPVOMr31vL3/ids+7ODWP4mR8mSdp9YUO/+Zdf9Yw88+fe/99Lr5Me/tEv0ku+cU0H73jkGXluIBAIBAI3LSiklN5LkkvtL5T0NyRtS/oiSXjvvqGqqjfc5DNy7YRms5lz191yTbTVCxru7e1l8uFpBZAZP33ACzdCBCF+9IE8/a2trRoph7wvl8tMsCmSCNHygoIlINWkZBDRX19fV7/frx3PSH+cTNI2/+WHZ0GIKaqIs8PrPrjV20me57JD2judjra3t2sCCO/THyd78/k8CyuMj/nu9Xo1sajb7arVaklSThmhf1VVZedJt9vNNRjoH/1GvHFSCRGdzWaaTqdXCQjU63DXQ5nigGBT1l7gGR7x9pMLEHVclCpJracfsKfKtB/W0QWIMp3FxZBSSHMRwp0Inq7hNQ/YCy4kcG+73Va3281pN5PJpFaYEZGN9AivSSEpF6zkOkQ3HCUucLC3XARhflhjn1NPt2ANyuKanqKBqFgWvSxFnvOOZ+K7OBA4K7zhvd6gj/rHr1D/a1+i5a/91ll355p4/Es/XIftpF//mmdGRFiFP/ik79DD+iK95G8chlPhGUR8DwcCgXsZNy0oVFX1Fkkvk6SU0pqkRyS9XtJfkPTNVVX9k6faJsSsTBXA1k4BQ0lZXMBhAMmlrgBCBO0iKkCKKOgGoXDC74XdeH6n01G/37/KJg7h6ff7ObJ6PD+1mgI+JtIiII687+kXHhF3q7zXJ6AfpQtC0lVOhLKoXWn3Zm7oF79DCjmBAFGBoxNTSnleJGUSDYGfzWY1h4WTfdwDTtClE8cGkWEntOvr6/lYUNpkXPTXXSwIGaPRSKPRKNePcPeLF2+UTk6XwHVBoVDG56QTMaXsI4UYPb2A/c3zXFApXS70v0x14HUnwRBk2vLUGYCIUM49ApjX7eAZ7kBhzvgs0A57nvZZexw9rCVijn8+2JdeOBRRhrXAteAOCz9pgte9GCRz4XvfwbNZK2/L5+1OEBOk2/NdHAicJ/zM+71e7/dnvkzP+bWz7slqvPuvfIQmz6r0i3/um7Sz1jvr7ugPPuk79MLWF+i9v2qhwyeePOvu3BOI7+FAIHAv41alPHy0pN+vquoPb/Yf4U6G/HQB6YhUDAYDjUajHOGGrEFmnGCTNy8p104oCYPbpDk60U8EgMweHBxkEu3FA6WT/G2pXuyNyDduB651EYK+ebE++klb9BVRYj6fZ0GhLC4pKb/uFf49HcEFAyexTsB5JlFeUin8qE7mbTab5TQE6Yi4QdohkF7fwgkyQsRgMLiqwB9iDydLSKoRzHL+yvoDuFkg1svlUpPJJPeJ1BU/1YK193QS1gYxwU+S8LoarA37wB0b1L/w0yhIx2C+3WlD25664UUSXUzwyLuvracvsC8Q3VgDXDjl2pTPYT6ZB/Yia4Jjx50znraB+MD+9toIni7jpzkgDPmedmEGIYU1Kr9HPP2BuTmtDgLXunDDnN6heNrfxYHAecT7veK39cTP/XGlX/j1s+5KDY983UfoO7/4n+tD2k1JZy8mgLd+zHfqpd/+5/T8z5tqORqddXfuNcT3cCAQuKdwqwSFz5L0ffb3V6SUPk/SL0v6qqqqLt9II56DzQ/ighNAv54Iq6Sc+jAYDLS1tZWj5UQ0uUY6ISI8YzqdZqcBZBvhotVq5aj4bDbTeDzO/XR3AWIDIgDFBp3UlOR/Npup1+vlPiGS4AjwtAInSdzr79Eubfi4PY1AUn7Pi1fSh/I4TLeZe20IXBROcOk74/Qoskf2e72ednZ2dP/992s+n+vy5ct5DVqtlqbTqabTaSaTCDMII06mnQQ7OcXBUpJDJ8rASTgkmOMwm81mPk0DosvccSqI7wei6i50uHOiTEFwIYXikj7PTnJLYQYgErh7hf1NxJ9oPK4XqV5fwesZ0KYLUi6gSKq5KvhBXKAPLsog1jFe5sKFN3fp8BnxVBUX5NxV4d8LfB78HsZT/uPO22N/0u/yc3CH4JZ8FwfuTKzdf59633x32ty/9+H/qg97jy/R1i+cdU+O8PiXfLh6n/aoXvXiVx2LCecPb/7w79HH/PCf1drHzVStSLsM3DbE93AgELin8LQFhZRSS9KnSPr645e+VdL/Lak6/u83SfqCFfe9UtIr/bXDw0ONx2P1+/1syfZCevzjvySU2KjJUyfVQKoXBHSRAkLuEXS3pEsnNQEge9PpVJcuXdKTTz6p6XSaiSL58qX44aTGnRBEeqWTkwSkusMAJ4YfHcipCryPoOAnV5QuBY9yc61HoImsUyCRtimuCGnzNIT947PBcY4Mh8PsBFksFppMJnk83j/IaqfT0QMPPKDnPOc5unDhgobDYSaNRNIhzrPZrCaqME53VXg9gXKswF8HiD1l6oRH2/3EAd9jOA1ooyyOWZLza9nu3SVBeomvkxc29LF43r+nJdBHxra+vq7BYJBdJQg3Xl+A+xGJvF4E4yL9w91AuB5cIPB1cqcMxU9dUCD9AqEGsQRHx3Q6zc4c5hHBgJQgT0FiDPTf05k8jYr7EIWYS1wSzBuf2TsBt+K7uHOOIqyBp47U7er/fY8fOetu3DZ87jf8qN78lQ/pDz/jAR287Y/OrB+XP//D9X//1X+tT+pNz6wPN4o3vs9/1MenDznrbtwziO/hQCBwL+JWOBQ+QdL/qKrqUUniv5KUUvoOSSv/dVNV1aslvfr4uhxuJSrY6/VqxGQymWg8HtfSDTwq6qTSiTj2ewigpGylx5JPFNvFC+z+ThAnk4muXLmivb09jcfjbL9HiDg4OMgEc7lc5igzRBEHhqcrQLokZbcDDgOvtg8ho/+4AEpXh3RSX8KPYWSuGDvz5mTLRQPmGUIIiRsOh9rf388pC/TP+0OffD2ccN933316+OGH9dznPlftdju7QNxO73nyHoV2osg1Lrq4OMCzud/TU5yIM2+0w38RXHimW/+dnEJuKVgI0WXOqevhxQVZd3du+Did3JeOA4g8r5Ou4f3zKD51J0ivALRBoUQEIi9AWdb1gPjj3vBTHrxOR1mEEoGFVCTmgHv5TLM36a+nBDEenuF7hLlhHdzVUVVVXkd3cRwcHOTr+Q5ABHLBZnd3V3cInvZ38Wa6cMfmetzraHQ6+vyf/Nmz7sZtxZdvv13afrt+8Mc39ZoP/SAdXn7mA73jT/9Qfcvf/Bf6sM7a9S8+J/iM3/gjve59HjzrbtwriO/hQCBwz+FWCAqfLbN2pZSeXVXVu47/fIWk37yRRpw0Qeb5h//h4WGOYkMgiLxjEacNJ/KQyclkUksP4NSDsgCepEyyB4OBNjc31e128/OvXLmi0Wh0VR8gHwARA1cDRApSTr/cmu0RZu8HfeQ0B+kkFx1C7PZ32ubHiW+ZesBceXS8vIZxujWctA+EFu+PpxK484L16Xa7uv/++/XQQw/pgQceyOsCGSSFgnlEpFllYS+r87OOrK8/G0LrRRRLu74fsck84+DwugsuYPj8UpeAeaEwI+KO73OvC+D7CTGHuSBtxotBep0APi+cksFYuG+xWNScNF7fgDQEUnkYX7/fz/filnABhp+qqrKbiPWezWZZnMDJgeCEewhST0qSfwd46glzTe2SMnWhTH9wIYbvDRcW/H0XM3heWQtCUk0EugNwS76LA3coGg195uCOEb+eFv73wZ5e9Kv/SV/zoo9StXjmjnU9fPkH6t988zfp4ebgGXvmrcDnbT6i1ykEhWcI8T0cCATuOTwtQSGl1JP0MZK+2F7+Rymll+nI3vW24r1TUeaXe6QQYuJOhLIIHkSQ9yigJykXD4Q8leSdKLeLBJAtSDY5/ZA9t007mSNSjxgAeSRS7ITJc9eP5/OqmgxlxN/b89MqnGRLJw4Orz0Bycam7q4KLz5IxBui7NFb/h4Oh3mufC1IVSE1AyJJW/1+X8973vP0ohe9SP1+X+9617syWYa0D4fDLApAaFkPJ3jL5VLj8ViSsrvBhRLmFKIrqRZl58QQF2DcYeI1AJrNZq51wTwyNo7A5D1INHuzLEJY7jkIN2tRpoe408PrcbBupPgwLkk1xwLzT0SePYcIwt5i/jyS7ykl7gQo0y68JgefY+BuFYQM6eQUj/J7wFONylQVhAO/lueV6RO+HqwF6+SFM722BO+VtSjOO27ld3HgDkRjTd/7lp/QeSoKeLvx/q2Ovvut/1V/7nkf+Yw8r/G+760f/O5XadC4s8QESWqmNf3jt71JX/2CDzvrrtzViO/hQCBwr+JpCQpVVY0l3Ve89rlPp03qKLTbbfX7ffV6vVwRH2LnRxFCCCTl16nDQPQUa76kTAClEzGCSDK29K2trUxgl8ul9vb2cs0FyPva2ppGo1GNuEknZNOjqC4ouN2eiLanCzhxh4gyL6tOq5DqQoRHiCFQpZPBo7ZOYonSlzULPKpO7QY/mhD7e7fbzaINBBTRhLFTjHFnZ0cppdxeo9HQYDBQo9HQeDyu1YDgXsgj7XoxTS8WyHy504LxMC+eClGulz/DSTtr5Ud8epFB+kQbzDXPRJzyozNpw90KJZzYe6Td03LoI3vQUw/c2eCfodlsloUL0isQktibfK7or4+Nsftr7nbhPubSU1W4jn56eo9fzx5zNwZ7jrlx10W5ltR98BoJfN5x5zhKh86dgtvxXRy4M9Do9fS9b/mJc3Fc4TONrUbn+hfdAqy/4Pn60R//fknPzPNuBy40oijj7UZ8DwcCgXsVt+qUh1sGHAaTyeSqyvJOiiGT0kkuuJOA+XyeRQHI63A41HK5VK/Xy9FwiPTu7q729/drBQIlZdu3Exx3T3jkHzLotQDccQC5l06Ik3QiFtAmxNmj2BSBpE1IvueY46KgCF+z2cwEmLY8Qu4Wc++XOyhwWhDxp76D14GAqG9sbNQEDFI+gOf2087u7q6m06na7bY2NjZqRSd5JvvA0y8k1Ygmfff3vHAjYy7TG1zkcRcJwgDRfxczypoN7DWEAdrxVAPWlX3r6S4evceV4vU8fHxchxCGAMDrpavA23GyjIuH9SPFgmKitMUeYU6Z39lsVqvHsFwu81q7IFa6Glh3T23xuWA+vFiqC1SIA+wDL27q+9zFQvaJ1xXBpePzglPEU64CgfOM9Wc/qL//C//hnhQTnimkZks/+vM/fNbdCAQCgUDg3OLcCQr8I76MBDuBhzR41N6j1FzHaQX8YI/3CCyRXk9HoG3qMFAMEtLhAgBkmyMOITHuWPCoM/Zwii66MCApkzqs6BRgpLDkfD6/KuVCOqkdgL0b8k49CQfpIMyDR84habQPcXOyxjqxRjgLmFOIO8TQiTzEkcKW+/v7Ojw8VK/XqwkgzCcikZNk5rHVaqnb7dbcAp7GwrXeZy/mSDu8V4orXjPA0xJ8bemrE2fGzZ5x2z5jKlNknMD7fvGxudjj+8Sv9RodfG7KOh3sAea13W6r1+up3+9noa2qqqscBr5/J5OJJpPJVWk6jrJGB58taqF4aoevA59//1zwbESZxWKRj8MkxcaFI/Y3bgREQ0+tYr/5CR9el4N5CATOI9be50X6oh/+T3r/1p0bNb8TUH3Qe0v6pbPuRiAQCAQC5xbnUlAgejmZTLS3t5cjxESWyV2HiHiU2l0NkAXepwK/27l5JpZxCCDkcTabaTgcSlJOlXAbP30isg7JcULukVpqDlDUsLR4E9X2goeQa+omMMbJZJJFBM+Ld6t2mf/uxet4FvfyfOYHQcX7hgjhRAvLPOSw1+vlcSNmuCA0m830yCOP6PLly3r88ceVUsqnesxmM+3v71+1dl5PgT7gCmCOyJ13saAssocg5ISWfnpdjdJqTyqJzzHz7Ln3pFN4aowLUT4GL4LJXvYaHWWaAP0qI+gQdfYBz0JwQSwrHRvNZlP9fl+bm5va3NxUv9/Pz14sFrU6GF7HAfeICxjsT9agTFnxugley8PFBMaHeOMpP6uIPXvV04j85Iby6NbRaFSbR56FoOBiQ5lGEQicK3zI++lPf+fP69P6w7PuyV2N2Sf9Cf3kq79dUriVAoFAIBA4DedOUJBOjo+DeA+HQ/X7/VoVfogrlnRPSXB7+XA4zH8PBoOrTgzgeZ1OJ9daaDSOjlekJgPWbsgQz0ZMkFTLB3fyzj2QXwh6SSx5vdFo5DFxv9c28Ki3k1XGQV94vrsYIH70EUEEAcRFA+ZBOiF5tMMxexB+T6PAGeGnM7gThPz9Rx55RI899pjG47G2trayo2Q8Hms0Gmk4HObIMpFyP9mC/rmogxvC60wgRPn4GZMX4/PjD9fX13MhRwglRNrrV0CmIaQuZHFqgtdroF4E42DPeF0E1pG/ifL7c8uUFPrr6S+eQkMtEPYyJL/b7Wpra0sPPPCANjc3r5pLr5nhtR/4bDBnzCEE3/ee13vguV7I0fedpz2Ubgf/fPtnBVGMOeOz1ul08hGV8/k8Cwy4ScqfEqRweIHHQOC8YPi3R/rqC79/1t246/F93/rNWkt3XhHGQCAQCASeSZwbQaHM4ZdOiIpHar24HMICEUWs+t4e+eoUBPQigx7J7vV6NbECQgEBg2h5dNsLyZHL7c4EnAU+FlDa8EvCCNy6zti9DxA1PzXCSaWLEJBTz6tHUMCVwfgZC0SZSK5H8HEw4LqYzWY53YM5wL3QaDTye5PJRMPhUJcuXcr3DodDNRoNXblyJZ/yAHn0lA2vB+BzxE8pGCBiIOK4+OI1DRAPcAicZuGHODPfvn9ZOwgxBB+3B+0hArh7hGg8/fKUEebCxRH2j4/ZxR3aok/Ms6dtdLtdbW9v64EHHqjVIvDTVHgWa+2nmCAIsOd5pq+J94m9hjjhghmfXf/clIU2uc/dPi4qSScuEYQt9pCvN2KRiwm+L/yzEnUUAoHzixf/2Bfrxfrl29L2O7/mI7TReNNtaTsQCAQCgbsJ50ZQ8Igy4B/zWJg5DYD33A4OeYTcQIDKvHvu96P9INy4CPx4RLdDEz2FfPj79Ong4EDj8TgT4TISzni8L5B1J2NO/hgfrgXPw6f/RKm9eKOkGjmEhLoF3esm0H+InRM6z+33exFoIJlefM8FBZ7JKR6TySQTuul0qitXrqiqKl25ciVb051MAhcYcGdAHK8Ft7j73prNZlk48pz5soAmggBj9tfdLeIFJb22gDtZTnNUsDfohwtqXleDeXCBg/3R7/eVUspCGmvBni9rffT7fW1vb6vdbud5YE4QRHCJ4K5AGKJgKf3hWubaU0bYG5xEUYopnkLiLgrWyj/vZX0IxAKHC3TuxGFcZXqDfwe02+3afg4EAucP7/m9X6IXf81/v23t/8sveZUGz9ApEoFAIBAI3Mk4N4KCdFJoj3/wQ0SJMnvkHaLg6QtEjak279FZiChkEELrR+1J9YKNRDIpLOcRWyclHkmWlJ/vZNfFBCzo7iBwAkSuPcQUQtnpdGrH/TlZ6nQ6NUu7H4nnBfU4TaHb7eYIrBfEg6Q7yaVP9JF58jQPahr4/djd/b8Ul1wul+p2u9kJQj2Iy5cvZ1s6YoyvsUe36QPzwPWsCXAHiLsKII3uXGBd/EhEXAwUAvS6C/QDYkxNC671qDpReK9Nwbp4tH19fT23gzvGC4vyujsCuKas84EwxjzjKPFneSrKYrHQeDzWeDzO93ktD9J9GFuZ9sJ4XEBy4YM+ucjioqDvO1I2vE6Du2J8Pd2BwFr4HqS/5d70FKi1tbV89Cmf4dKlEggEzh7v8+1fpvf8B7+ianl4/YsDOqyW+pS/99W6qF84664EAoFA4C7EuRMUiPpCsrzYn6RMtPiHv9vxPY1BUi1f2wlNVVVZUOC5kCeOW/TCdC4kcKQghN3z3LHNe7QWIcTTHzzCj6PAxRKuRRygDSLUnU6nVkCQqCpEGGEDYYQ54jpqSTB2nksU12sHsB6eOuEknpx11sPrQ3jUGHs8bZPTPpvNNB6Ptbe3l1MdXDBywccjxqy1k9TylAacAL4nyogzY2KeDg4Ocu0MdxBAZNkbiBFemBAS7kdsYq33lBX2BW1B2st94Ck4ngrjBR9XCSmMgVoXOF34r38O/JhLxIT9/f3sEkGcQnTxoobMX/m3C1Hu7KB//rqLBbRP/yg+6fPN3Po8IYy5g6EUjvh84nJi/3lBR0QZPmfhTggEzg6v3n2O/s1f/7Mr33vBf/51LY9r6wSuj6UqXfy2EBMCgUAgcHtwbgSFsuI6ZAkrvx8RyfUQa0i/5+179N8L3pGSMBwOc7TY7e2QGCeG0okrQTqJqLZarVrNBiKkXu8BUQQyx3WMg0iukzt+/DQLCBQFKGnbn0XfXOzwGgKMz0UPiOR8Ps8uCEgdBLvMaafOAISs3W6r3+/XItKNRiMf6ei2eC+Qt1wu86kOTzzxRO0YwrJGhad+sB7MGfd4LQHmclXNBU9PKOs8QJyJhvu6OMH0uh6eh+9iSil2+bx6Ogn7zdfQRRB/zdNvEHPa7XY+/YO+e3/cUYPIxhwvFgvt7+/nfVM+1/sP0XenAH1zYQDRwY8AdYLu68Znkj3CWnhKD3ud8fB5xXXhjiKeRUoHwiDOGOasdD35ZxEB01NgAoHzhK2vbOgbX/cS/c2Lv3XWXbkt+PFxU6//rD+l/q//4sr3lytfvXWY/NjD+uDWL0m6O4qyfuJn/UU19Ktn3Y1AIBAI3KU4N4KCW7SlEwszhNCjnJ6bXdYocLs6UX1Pj5jNZhqNRjltwMm1kwwnrx4d91oERDolZUI6m81q4gNkyFMFIHI8t9VqXXW8ImKBiwY+dgQYCBbvLRYLTSYTHRwcHZ+3ubmZSVKZDoEg42Tdo+EIJNwnnUSYS0GBfnsxPnec4DohnYG0j9FopMlkkgsj0odV+8PBertA4zn8kmr7gOs9qu8pC6w16wcxh+i6k4G2XdRxEYK18HoevEYffc3YO+4GoN+M1cmypHyNu0OYB9oksu/uEqLvrPF8Ptfu7m4m/4gouEu8RojPm88L0f9Go1Fz3CCusX9Ycy/+6SlK5dozT14DhP0nndRB8cKQpHX0+/383OFwqL29vexK4noXDXz/uDtiMplctRcDgbPG4Vt+T7/08c/X6376EX3mYPesu3PL8Ikf9Qqlw6V0cKjl23/7zPrxaQ/9unqNu0NMkKS1N71ZIY0GAoFA4Hbh3AgKwI/OW1tby0TJi/GRTw5pggBBKkpXgudTl3nztENE03PD6YfbxCFEkmpEC6LjggZRVa4h9cFJE8/1NAWKL0IqIdvSiXAhndQA4HQFiua5+NBsNtXv99VoNHKxSK/Ij4DgLggXLebzeY1UufW+2+3WiuIxvwgWCDNOVCGcs9lMe3t7unz5svb3968q6FgeyejzJZ0c4el7xnP1PS+f97jW01ncaeLRfUl5LpkPhBMEE3dAuAOl3CukeWCpJzXE9wnknnF5Og37mj2J48XXBDKOQEXahtfxKMfHPF6+fFmTySTvY/p4cHCg3d3dWnFH0oWYT8bB5wkhhf7gqCjTUdwdwjoh0jBOX1MEFMSAMhWD+5lrTh1ZLBa6fPmyRqPRVXPJHLujo6xnEjUUAucVB+96t8bL9ll345bgEz7+s5Te9k4d7v3BWXflrsMnfeSnqlr84Vl3IxAIBAJ3Mc6NoOB2byLYvV5P29vbmUA5SYSgOGH3aDtOA3LYKcjoBIhILjUFvMq8CxMevRwOh7mCvhN6HwekxHPwHfTJTyeAFELmJOUaEURevaikuyeYE1ITEBL4L8dCek48/YbQObnzone+NqQpeAFLcs6J9GIvh4xNp9MsiHikGWcC88l75P7zt0f3PX3BhZEyes0clDZ8yCh9hLiWJwp4WgDAwULBRNYHx4Wv9aqIue9VT4HgmbTBPLXb7ZojxtNnOp1O3g/ev263WxO3IN7uFmH/4dbxYpmcEOEFDz1txteDfrMHIfI+Z4zVUyx8nzBnzWYzC20uUiFeIBy4cMJnGlHIXSi4K+bzufb29rS/v5/FFcBnFBGidOm4syYQOK/4vvd5SN+XnqfXvO2ndaHRuiOi6ovqUIvq6LvvY7/yL6n/+l+Wlr9zxr26OzFezlXtD8+6G4FAIBC4y3FuBAWpnv9PNNdPDvD8bi92SKFCCPrh4aF6vV4mdU5eIHuQP89ppw+j0Ujj8TiTIOmEwLsYQZsIGG6nh7yUuelexZ/oqo/bn+nF7XgeFn1IJYQN0o5Q4akLzCHjr6qqdjQgeeW058+VlGse4JyAZHlOP5H4vb09LRaLHM3ndQQaJ6ekOrAO/lzmwcWBUvBhjiC+pFXwDOkkXaUUTLy4oAsnjNn74PUmGHNZw4F59ToBLgLx7FW1BzyNgT3ihQuZG/ZHr9dTq9XS3t5eXj9eR1QjSl/2j7XiczEej/P9BwcHtWKFzFnpNmB+EAZoj72PCOE1HJhfPkNeqJK9MZvN8ueI67xeA8VMXUACXu+C+6fTaS70Sb/Ybxyh6Xuw1+tlcc3FnkDg3KKqpOpQX/j8/48avZ7++W+/8ax7dF183I/+Fb34y35JktTX6hoJZ423Te/T/1r8z7PuxtPG//Gxn6/DJ37vrLsRCAQCgbsc50pQIErrpM6jtF6UsdVqqdVq5dcg2d4GogRtSydOBrdge/FHiLYXcCPtYjwe1+zeXuUfwcFPCyhrMFBzgX4SjYaUkXIByfJxOLEhWg6JIuJOtBZC5/n6nlsP6XQrOQTL72UNer1e7oPPH20wBvLUpZNaC07YJGUxwdMznBi6UwWBhGezF1ibUmSC/LtzgbX3tAgvMuj3eepHuQ99TO4kKN9HFJhMJrn/9MH7zmvupEAcYR5wOFBckD3OkZ+IAawRe8JFCy9aSR8RHNh3iGfL5VK9Xi8f5+mfFxcl3JngKTb0m/QX1tg/w2V9EVxEiHL+uWFP8prvOy9wWbpUXOBCNCOFw4u/UlMBwcEFQhetAoE7AcvxWH/pj33kWXfjunixfumsu3BdvOWDF/pLOv9zeX2EmBAIBAKB24/rCgoppe+U9MmSHquq6n2PX7sg6QckvUDS2yR9ZlVVl4/f+3pJXyjpUNJfrqrqx260MxCPsqAd0VYi7GXeP0Tdc7cRE9zmjmUfUo9dX1J2CzggLNwPeXOhwB0BkEauITcfNwJk0FMdpBOy6USKkxfcZUB+O0dbuoXcSS3z6PnqtOn5515AEkGljO77CQjMCSDVgyj7aDTKlnPmi6MUq6rKEWby+/1kA9rxdAaIPvO4XC6zqFPa18tCgJPJpCaCeGqKjwlxwQk08wgBdlGAvcDrXjPBj4ss95CT8NKBwnW+nxHQEBoQkSD3PH99fV0bGxvq9Xo1pwpr4gUQXUygjsXh4aH29/evItSsvdcE4TPK/Lig4IUfV0X1Ie6048dm0j573k9k8XQHP73D1xEREXHMHTie6sR8I9R4rQ36juDltRTOC57J7+JAIBAIXI34Hg4EAoGrcSN+3tdK+vjita+T9JNVVb1I0k8e/62U0kskfZaklx7f86qU0tUl+1fAreseFYXsQTq8WJ104lRwssV7LhxwGgGOg263m63jZXRTOiF4XguAHGtIB+TZC0c6vBCeF9rz4nqIJ61WKzsBIL+QKY/skisP6Wq329rY2FC3272q6B0EbTwea39/X8PhsEbwIXFuSXdhwmsClOkXEDtqJAyHw1rUHnt/mfIA2R8OhzXRA+BMIJLPf/l9Op3WCgCCMk2Cky48ss48emqJrzF95FmsAYUpR6NRJsXMg9vz/UQF6cRJwp70H/Y87fveoQ/MvZNoSXnOqTXCM3Cq+IkNRPjZr55+w5GduEg4TnU0Gml3dzevaRnZL10Jvnf8M+vz7IKBC1X+2WfPuHvF65F4bRMEQ3e8lHsFwcRTLfy0Ev9c4U7yPXsOXQqv1TPwXRwIBAKBU/FaxfdwIBAI1HBdh0JVVT+TUnpB8fKnSnr58e/fJemnJH3t8evfX1XVTNIfpJR+T9KHSPqFG+kMdmkXAdzS77n08/k854x7fj3EA4LpRx9C6Dmm0ckOJMfJn7skJGUS4+kB1HngfY+SexFEyJXn87darUyisJqvra3lCLxbr6fTaU5FIHKMBR57OaSOSHVps4cIQ5r8eELa9lSSss6An05BxBk3Avn6RIydwBKVRyiBMHrk3iPqPBuiDKHkXs/tx1nh9QicjPr9XMM4EQBYY9rDWYGtnn3g81DuHRcrPG3BBS5PO2HN2Ku8L9XFHCfxPgeIELg6OA7V62J4sUtSG0jDODw8zDUEGOdsNsuCU7PZzGkUjIU6FRxVylg9uu/zgjPAxToXprzGAvuJveBOEXesAL4L3MWwXC5zf3Fq+GfCRUv/nNM/5ozrmOfzgmfyuzgQCAQCVyO+hwOBQOBq3GwNhWdVVfUuSaqq6l0ppQeOX39I0pvsunccv3ZDIH8fQYGifhAhSDkEABu9W+cPDg40Go1q5A+CAHnzKDwRSCeOHqmmTSLZfgKA/3iU2S3bLmxA2qST/HHa6vf7arfbtWi+pJoogQvDI9ZeRwKyClF1wswYIVBEsj2y7wSZ+XUiTr/pl0eqeYbb41cJCv5cnudwgkcEnnGURzNCOplT0l7KdAQvsOc592XUuzoupOhkvNPp1CLvnl7h80u/GAPP429ILGIG9+ByKZ0LnmaxivCyFvP5XMPhMDsUcIl4isHh4aHG47F2d3ezIIMIxFqwJ/hMIeghEnQ6newMYawIfp6SwfxLJ+kjTuLpN64CnD9esJJ0CL/f01K8lgJuDfYYbSPy+P73opcppdqz2a/Mj+/Fc47b8l0cCAQCgRtGfA8HAoF7Gre6KOOqhONqxWtKKb1S0ivt71wwkB9IFuRuFWFDdPBItOdSew74dDqt1WOYzWa1ow/9Pe5DMHB7uxc3dELp+eFl6gXpDZAynBOQndL67wIJpIZijm77d8KEGMM1RFchwWVuukfspZM0hdLmDUn0PvHD/JR9cacGBNiLKSKmlIICBNrFINbDI9gu0IxGo/w346AtFygAIoI7Czwlgog38HlbVUvABQx/PnsWousFMol+O1kmqs9e9nux5EOcOUVhOBzmvruDgHluNptZLIB4ew0NF9I8vcbrlPgRjt5X3/flPkJAgPi7GOeuGT9O1OeS+faTLtw5hGDCmNzR4yc1ML98HhETXDj0NA3udyHyDsVNfRd31LudfQoEAoF7CfE9HAgE7gncrKDwaErp2cdK7LMlPXb8+jskPc+ue66kd65qoKqqV0t6tSSllCq31EP22+12/l2qH5/oUX8IP0Tbi8653Z8K+C4WQM6IGnsNALfVA9IcvB0XIkgZcPK4qhI9lm+eWb6HKDGZTPIxjBAynuU/pIuQduCEyh0MPLcku5JqEWtIO+kcx2uWiSdErt1u1wgbpB9BwaPTLjgQUWdd3dbvJJu/mR8i4zgEOE0B0s0PbXqU3sUZ5sHh4pMLBO6kgLh6kUXWrFxj9kt52sZsNtNkMsmCgotnLiCwZhBliDv9QUxjj3U6HY3HY43H4ywmME5SUnyv+Tww16yTC2m4fVxwYQ29HR8768QcMQ/0xdMUfA/zfIi916xwcYC195Mu+By604br/aSK8j0XcEqX0R0gKNzS7+LNdOHcDzgQCATOGeJ7OBAI3NO4WUHhhyV9vqR/cPzfH7LXvzel9E8lPUfSi6QbOyPKbdyQDc9f9voDpET4EYgUzoNQr6+vazgc1p4xnU61t7enlFIu2Mi1TjDdaYCN3gsBkqcN2YEklekNUj0VwNtH+PBorZMsRAmiwkRVx+NxJlRlrj3Ey10XHn3nOtorbep+sgQiCGvjJHc8HueaFogSknLUm3kqo+zeBnPiRR6JwLuwgogCIOU+Z07CsbHjSPH0FSe7q5wApTAjqUboIdqsG04AyPKqyLe7MHjGZDLJ6+piCvPNPLpTh7VhHtvtdhbcuOfw8DAXVZSkbreb18+FGq5d5YrxfeFzhHDiRTxZd8aOAOAiCfvZhYvS1eHCDW2yF8qTIXw9Se0pRSv/bDAu+uniko8ZoYYf/4ydc9zy7+JAIBAIPCXE93AgELincSPHRn6fjorN3J9Seoekv6mjL83XpZS+UNIfSfoMSaqq6s0ppddJ+i1JB5K+vKqqG0pCTimp2+3WSAHkFtIPKBbnFnMivlS9L10FkASIfL/fV7fbzRF4t7p7lB1r+Soi5QR9Pp/nug9OYKQTUcHv9Wgw4/VoqxNpiOZkMqmdMuHFIj2C3263M6Hzo/Oc0LsDwa3yFNwD9I3nuHDjOeuS8v2eV09ffK3KNom0++kTHkl2wufrTRsUOaQNRIaSNDLfvOaEkzlCQMKK7xZ6TgiBzHqBQk+LcPeLk1d+hyz7PCNqIKxQv4E2cQXQf4/4O5EfjUba39+vfT5KIu17gDmB8EOomW/2Ns4HT2NBdPKCmny+mCecEfTVn+/739epPNmEOfBaFbTtThL/PPpnzcVCF98YA6fESPUikO5YOg94pr6LA4FAILAa8T0cCAQCV+NGTnn47FPe+uhTrv+7kv7uzXTGI7JOBjgBwSPjkjJ5mc/nGo1G2b0AifX8fsg20WfP+YY8UBneBQDIEqTF0zI8Vx84UV1VH8Bfc7u8kz1ObvCChpAxyDWEyPPVnTA7AXciztjKdA6IlhdfLKPZzIW7DLiG9t01gXsEMs61TvpIXSjrXvg4iYCX0XJPd/H5chs9pBFhaFVqAj9E9MuTB5xkQzZJRZFOamaUBJR1pR8umnhU3k8zQVBwh4DPY7meiC+koezt7dWcM6Uw4QKTt+V7gH2F44PjRl2goW3/DHlRxdKZ424NT8EpPzfMoY+Nz3gpNvke9H75/Lv7xPeEt42w5mvkNSXOC57J7+JAIBAIXI34Hg4EAoGrcauLMj4trK2tqd1uS6pHjYkiTiaTbMmmwOF0OtVoNNJischuAyrn93q9fErAcrlUr9fLR+VBTLl+sVhoOBxmp4NXuYdUQLbdku/CAhFbJ+4QNMbhhRI9bx6it76+rl6vd1XePMICv7tV3EmU5/dTzJI0AU978OivW/K9Xx6lddLL9TxrOp3mv31sbncvo/W87gX1vF8IEjgoIOxeawEnigsNXrjQI+1eA6F0LLiA5Hn7rO3a2lp2z1AEcjKZ5DV3IQPHgtee8BSXcr38+U6+6bvn/XsNBRfJpKP0G05xcLJN/yTVjvd0p4xH7D2CT02S/f39XKuiTANwEcD3vBe9xCEBWef5/jx3+rjDwIUl378lPH3DnRbssdOcBnwuEbZ8f50nMSEQCAQCgUAgEDiPODeCgheu88gldmQnXp1OR/1+Px87N51Or3IjNJtNbW1tqdlsajQaaX19Xd1uV71eLxMScuwhOU5IERTKPHMIFaQV8oHo4XbsMj/cUQoCkJlut6vl8uRIPSdQED2e7X3yvkknDooysl5Gip1MuwW9fA7z44RPUh4n9zMOfmduEEK87gCpGx4J9mgzopH/Djnkme5sgPQCrwGAkOPpMF5DwVNE3EXgzyLCz/v01x0aKaVc/wJyX+4Dd3iwVr5+pRDiohTOEsQG5o394sIJTgrmm999f4CSpB8eHmbhZDQaXRWxZ25Oq1fAtXwuy+f59V7A00USBBTu9ftdEPL952JKKTKU7h6uwQ3i3wPukjpPaQ+BQCAQCAQCgcB5wrkRFLa3t7OowA/FBRuNhsbjsebzubrdrgaDgbrdbib/rVZLg8FAKSUNh8NM7rvdbq4PQNS42+3mgn5EIUsbP+4GiE5ZZA+iJKlWb4HXIIOQN69u71Z9j5BX1VFVfnK5PV/ciRLksBQU3H4vnZAxj2ZTj8Lz0ieTSRZPqMvgpB07PyJDOVdltJ9nOZjH2WyWT2Tw8Ts5d1LuNnifF57P67hCvIinE1ba8FoakrLDhdcg5C6iuMBCmoMfLViSUz/Rwy32kFn67WSV+11MYE59bVcVt2RvUQwTlM6LMuJepgvQPuPms8WYnWg74S9/973qc12mG7hrx+eaPrE3VqUV+b47zUVQinCrwJr4mBEZS3dIIBAIBAKBQCAQuBrnRlDwqDiCALUTnFRubGyo0+lksnN4eKjBYKBer5fzvF1Q8LQBjl4kWl5GVrmOUyQk1QgkpJboOkX5yFP3Ao+rIr48r9/v56goFnTG2263M7HBPs+9Xu/AUy6ods/Y3KXhUXav/+AEk5oTXmXfXQw8s0yV4DpJV5FwL/Lnrojl8uQEC49w+zMhc/63pJoI5NezLi5OcL8X+POIf+kc8VQL7ue/iEHuhqA/fhIGbppV9RQQjXy/M99+nV+zWCxyCg7X+Bp7JP20fP/TxsW4PcrvwpDXEihdCJ6WAbx+gbfl6R6k/PieYf7YL6UoUc4J77t7yN03Po+8xr7wz0P5rPl8nk8I8XQML+4aCAQCgUAgEAgE6jg3/1qeTCa1vHNJ+XQHrNrdblcbGxuSpCtXrmh/f1+NRkPdbjdH2CERkEyi0BAvj7pDmJwA4k5wQWE2m2Xih+W83W5nFwIEB0D4IC0uBJCPT9QeUsYJApBXJ0MQRY/UQ/LKwoJuaUeEgPyVZLuqqlyzwkmWR+X9PR8D80H03KPPZXqHE+ZVtQucwJU1AyDdZeqJpwE40fc0Ekg819GXMvWj7Cfr5+S6zN13UaEUYryOA/uMeSvnwSPtHvGXlFM4WD+ELOp6lLUbHGWNglXzX86nz5s7EtxVUPZdOkm5oZ++BuxBahTQBnPGNYzdhQ7vl+9fT2XhmtJJUI7bTxop9zm1Jbw+CH0p93IgEAgEAoFAIBA4wbkRFGazWS66yGkPRPE9F1+SRqORHn/8cU2nUw0Gg0z+3VouKRdg9IJ4OBAgDxB+dwTgZMCm73Z/iH+73a6lL0DMpZOq/wDy3Ww283GVnirB86iqzzP9dAcirNJJrYLSMVDa4V2wKAmsn+bg1n5vgwi85/YzHor9lY6G8jku1vBc5sNPc3BiCfmmKCa1FkoCSf/dBeEkuiSYpFNwTxmp9vSI0lnhZLok1oBI9yqhoOyjE3sXhJjPkuACPhs4CEohyIkwe3YVPO2A+XH3g590UQovpWDg+7wck7sQ3L1SFtr0tI9SDOBZ/Lfcp/5+KTz5fiUVhT66wwd3QrnGISgEAoFAIBAIBAKn49wICp6bj5jQbrdzhBer9GKx0Gg00nA41MHBgTY3N3MbKSV1Op1MQMfjscbjsWazWT4tgJoMRMdxQXixQUg0qQTYoKmdgGUfMcLrFCB68F+PeiMc4JooLfPYrj3qTRSaeeE5bnd3yz8EHULnFm4nkdwjKRN7XicNw4m5E0e3qbsbw+sisB7uROB4Pp7JfHmhQl8D5ktSzdIPEfSotAswZX9B6YpY5YDwe13o8DZKUuyvM9/swbLAn6+TP2tVuoELBQDRgjVyEgxcJHChoRxDGbHnd9wPfh1r5HNX9t3H5Ckavi7e17IeB89fhbKPPqelAMD7LjaVYofvB3f2lPt31T4KBAKBQCAQCAQCRzg3ggKRVwg7RJ+TBUgD8GPd3G4Pweh0OjmCKyk7DxASms1mrX4Cr/HM047l8xMTSucA/YHgePoDhAkRYj6f5+KEvM/9kEVs4l6Ez5+V0kkBQcbreell3jrPQTRhnF5w0gsWMnaP/vKa12Hgd+baSbFHkH3uEGuYlzKijCCCC6Sqquwyoagka19a8REHyqi89wvC7k6Y0u1Q1gtwuODhBTDLvrCeLpR4XQW/nsKK3o6nP3gfmIeyRkPpmvC+8P6qtBEn+aVYtSrFYJVjY9Xxlr6nGLuv+WlOBF8zf8/XyPfjqlQX75cLdqXQxF4o5wqsSiUJBAKBQCAQCAQCJzgXgsLa2pp2dnYyiXQHAKSXUxqoleDkoDw9gdeItCJUSCfV3OfzeU43aDab6nQ6NYLjEdAyUg8JwT0AUSeiDSC+kFRs7JwsIJ1E3jmNYjKZZKEAh0aZo484sFwuszggnZCu8rnu8uBUBMblEXTapk9uDS/JoIsunv/PXDEP7jpBYIDQ0xePOLPOOBkQYLjen+GE3deKuVhFoP2/EF4fG6knp5FMnxOvicBeXCUu+Ou+TrTDM72fTqh9T5JS4U6LcmyrUhROI+4O/1z59XwWfU8ASPtp4o6kmmBGH2+kPz5Xq/q6qo3y+ayvP5s97ILhquc+lX4GAoFAIBAIBAL3Is6FoNBoNNTr9TLxh9yORiONx2NJyrUSiM7jRiDq7/n5knJke7lc5nsPDg40nU41HA4zGed55Fhzr5NcdxzM5/NMUjzP3ImtkxQ/ChPxgfeHw6Emk0muFUEBSMgwrzvZdiJUHrmXUtJkMtFkMtF0OlWv16v1lSM2pRNhwiPhflygW939ue4+YI68+KHf531F1PDoNXUnZrNZdmWQ5lBVVa6rQe0K5gPgCqFN75+LBavIpwsOPp/+WknsASQaUYU+0K6TWtryNXShp6x14MUKV6UDeKqHuwP8FIlVRPl6f/te8PX1tJYSPLt0Lvi11xJnrgd3JTB+UAom/rufWOL7/DQB4npzEwgEAoFAIBAIBFbjXAgKUp2kQfwh4J1OJ4sC+/v7Go/H2f5OJN4FAdqYzWZqt9vq9/taW1vTeDyu2ed7vZ5arVbtxAQisZJyIUiq6tMmqRilbd+jsvyNxR+CiIgxHo9zrryf3MC4cE6QmuA2b9IW3JHghRhxAJR1GCRl8oljQVJNxCkLAeIYKK3lns7gZM2vYR5dkPDxUbuCvrfbbXW73TzPpKuQBsM8ITjQrp/W4X1mvugX/eaaZrNZcze4COH3AIi2pwAwzlKE8dx9J9mryLGnl7BnPI3EcdralMU5+W/5GjgtBcLHWTpzyhQEdy6sIuyMyfvg95zWr1X9OU2Q8Pl1wYZ7/JhRR4gGgUAgEAgEAoHA08e5ERQgyYgB1D1ot9saDAba2NjQfD7X7u5uJvWQRqK/ThwgqhcuXMh1Ezz63ul01O121Ww2NR6PM+EmGkv0mxoF0+k0ixweOSayXebjU5uBa0ejkVqtVm6v0WjkGgHSSWFEovTdbjeLCZKussUjNkBmqSkAOYUwQ7qZX+bCT16QjlwCXowvpaR2u61Op5PTTJz0SidEmH4zb6ynR7u5Zn19Pc+7rz3rydqxfjwPYccj4r5XnLRzMgRuD9YJsDbM36r0CO+b30NbVVVl0s+ecMGBvUCtCQQQXw8XF/xvb8/74CTfawSsEg1cFCjHsur98l6/pxQrXDBZlRYAyff2Vj2bayXVjn291r2r1qcUFOizt7VqnIFAIBAIBAKBQODp4dwICpLU6/W0XC41HA5z5L7f72eHwXA41HQ6VUpJg8GgZvuWVkfHIY6kOlB7AAdAVVUaj8e5poITd/72SLc7ECDBZVHGkrAiZAwGg2zbh9xTfwHiSSqAOxu8LoQTIi9wSPSf9/30CuaM8frJFS4WQBy9j+12OxN35saj1rguED9KskkaC+SaOeV9xA9O56D4JvNLPxE2ylMaXLjgHvoPiXShp+y/OxQ8+u9AnMHN4k4RJ9w8x+323j+v17DKzUJ/XehxeD99/sr6ALzHM6UTYn7aGMEqIcLFEncX8Nnwe8vfTyPy3p6nj5T33Kig4CJOKfr5+Etnhj/LRaDrzVMgEAgEAoFAIBA4R4JCt9tVv9/PKQkQVSfXk8lE8/k827zdFeDHQErKNRKoxfDYY4/pypUrmk6nNVKLSAFx96h1aVfvdDrq9XrZeQAg+p1OR5JyX0jZ4F4voMjvXtEfUrO+vp4LR0onNnjGdVoE150CRGrpW6/XU7vdrh3hyLw5IeX5Jclzq7pX7mcs7XY716xgbg8ODjIRZx5X1SloNpt5XhFYmOPDw8PcH8iek/rSaeFEWzpJY3Awh+XRiF7A0kkqhUI9pWRVEUUn8C648J7XTfCxOIH11A1f4/I5PONa6RnA6zJwX4nT0jTKFAtPVWB9ShfEKjHECb2n35RrU/a9dECclrrB56M8oWLV3Kzql4sXISYEAoFAIBAIBAI3hqv/NV8gpfSdKaXHUkq/aa/945TS76SUfiOl9PqU0vbx6y9IKU1SSr92/PNtN9IJ7PWSNJlM8qkOTnK8AB9RbHLIvTieo9lsajqd6vLly9rd3c1kFVKLtZ6ofLPZrFW6l+oF9RAipCNyRVoC1nfSFUhxGI/HtWKDXDudTrMrojy27rTK+JC30sbtLg3mqtfrqdPp1E4F8BoJKaVaQUq3zzPnTsSdjLprI6Wkfr+vra2tPC+4M9rtdhYxnEwyBq8b4KkYOFM8vcFFE0g084OIsoqY0g7jKfPrOb6TfeBCAePodDrq9/vqdrun2v+9XfrIWJycugBQiiNldB+Hy7Ui9G7393s9Wu9CR/naaaD/LhaUY1wlJvD80/rq/+V3/7ytaq9s8zSxhfbKfq1qr3RNuMhznvFMfBcHAoFA4HTE93AgEAhcjesKCpJeK+nji9feKOl9q6p6f0n/S9LX23u/X1XVy45/vuSGOnFsaadooueP40RoNpvZng+BdxLpZMAjzZcvX9Zjjz2m4XBYI7uHh4e5LgL3QlL54RnY6L0YIySYugNc4yRwfX1dvV5Pg8FAvV5Ph4eHWWhgrNQUwLHgRyZCRhEDnJwuFgtNJhPNZrPsLIA0Qu6ZS0/lODw8zEQZsu0kE/GDPjAvbnNnvtbX13MqAq/xfBce/DQMFxVms1mtTcQSFwhY+5RSFgB8Xk4jye4K8Mg4Y1mVqy/VXRODwUCbm5vqdDo6PDy8SgCC+Lujw/eS72NPTfF+rCpmyLhYH09buFaE3kWgUkxwl0MpRPg1kPwyFYA9WLbxdMHzSqdMeQ3zsuqZ3j//jLjzYJVY4OMoT4O4FWO7DXitbvN3cSAQCASuidcqvocDgUCghuumPFRV9TMppRcUr/24/fkmSf/fp9MJ/rEPQYbYQj4hOvwOeSrvd9IEQb106ZImk0kuMAhh5SQJBAuIGM+BGHOagkeniXxTH8Gt4hAabPzUIFgul5pMJhoOh7VTG1qtlrrdbh4LRN4JnjspEAsg1k44qXvQaDSyi8Pt/bgVuIa+MtcQaS92iasDZ4OLCTwPQpiO0z4YA8/0ugzMMQSu3W5nd4pH610sgii6g4BrVhVVpG/l+nqdibJ+Qnl/p9PJoovPn6en+AkgJRlF5JFUW+90nCrggoYXE6RPFIBE2PJ58/H7kabMU+nYgIif5ijgM+VE+lquiDIVaBVZ98/i9eA1IU4TE64FFx/L/tyI68Dvv5nnP1N4Jr6LA4FAIHA64ns4EAgErsaNOBSuhy+Q9J/s74dTSr+aUvrplNKfvNFG0nEKguem8w/9xWKh/f19jUajXMDPj4gk+gzZgeyVRByi5mkLkEJed7KIC8FPU/AaAYvFIkfZJeUIuqRMSCGl7qwAiAmQalIVIN8ezeZoRIgiBNfH7EScSDoRfIi3j585YC4hlogxiC44HRwID14Hgqi6P6N0E5S57lzv1wKIvZN6P56R670Yoh896kUiV6UF4AZxNwPPZb+wt1xIKPen/14WaCzrOzDO0gXge9nJtUfdnXD7KR4udpViDPexl0q48OFCj6dh0B+P9l/LFeJzfJpTwsfjYku5T7zdVU6D09wH/oxVf9+oUHAjgsQ5wi35Lg4EAoHATSO+hwOBwD2Hp1WUMaX01yQdSPqe45feJen5VVU9mVL6IEn/IaX00qqq9lbc+0pJr5SUT1yAcDhZrapK+/v72tvbq0XorZ1s+y9z/iFQg8FAg8EgX+NV/yGgFFQERNohpxAQxITpdKr9/X1NJpN8wgF1HUgbaLfbWdjwVAncAZ4eAJknNWGxWGixWGRihRjBeBeLRY5QO2GGWCIouKBRVVXuk6d0OHn00wnc2u/z7cdkelTYXy9PxWBsTm5d4MEVwvo7Me10Onk+mLdVfaOuBYIIr1G7ouxredpESYKZy1V1DqQ6wXdRgjHjiHC3Ca/7+FYRZk+J4LryWe46KMUEJ86lKFHC3QSrRA53dbhAVToC3HHhr7G3/UjWUjzis1nWovA2ynm4UdzI9ae5I+4UQeFWfRd31HumuhwIBAJ3FeJ7OBAI3Ku4aUEhpfT5kj5Z0kdXx/8Sr6pqJml2/PuvpJR+X9KLJf1yeX9VVa+W9GpJ2traqhAVWq1Wjuyvr69nF8B0Oq1FmyFPROpxE0A4IFEU1Gu1WvmEhzIi3m631e12M9Hlb8i81w+AnI5GI+3u7mo2m6nX62Vi71F1L4Q4m81yjQRSJU6znyMoAP5GuPDCipA0J5NY8Futlnq9Xn6mOzWI0EvKropSOPAosVvxIZUe2S6j65LyPLuLomzfnSakh1Arwwk/J0isyuf3+3u9XnZuOMn3VAkXb5hvUjYYG+kVZW0Cn4/y+bTP3mNNVuX+lxF/1s33r7sxyn3C/nXhp0yd8GtcKPDfS0GK310sWEWqmSsflz8HIY454Dnu2HCUQl8pJvgpJ+UaXEssWdXv01wKpTByp+BWfhdvpgt31uADgUDgHCC+hwOBwL2MmxIUUkofL+lrJf2pqqrG9vpFSZeqqjpMKb1Q0oskvfV67UFum81mPj6y0+nkaDxkEnIGOSTyX1X1Ix85rpEj//r9fiZo1FLwGgSe1gAxdSv/8dgkKR9feenSpdoRlKRI9Hq9mhCxWCw0Ho9rYoa7DDwyKx1FpieTSX6d4pF+rZ86Ia2OpPIsnBLMC/PkZJ3nel/KuhK06QIGzofZbJbXxJ0UPg9OoF2Q8DoIiEiMkRQY/usCREkKEXL8uEtPBShrDzB/ToA9iu6CwGkRfN4/zR1Am/xun5PamrkARnvuACif7fD6FavqIPC7j8v75O4Vxnqa+8AJPGMrBQt3Gbhjw8Wustioj8UFhXJe/TXfu6Xbwee5nPPTRITT7r8ZR8QziVv9XRwIBAKBp4b4Hg4EAvc6risopJS+T9LLJd2fUnqHpL+powq2bUlvPP4H+Zuqo+q1HyXpb6eUDiQdSvqSqqou3cAzMsnt9Xq5mOFwONR4PM4nFTiB8xoC3W5Xg8FAKSVNJpMsNKyvr6vf76vX62k8Hmf3w/r6ukajkaQTokcFf4iSn4jgpOPg4CD3q6qqGglGEGk0GppMJrnIJAKB28XpZ7vdztF4L7gIKfPjDJ3YrCKjToA4qaE8dcHrA9AXnsE6lPUo6B8FGFkPxABqG0gnKSSsV1ko0AWA8sQId3V4IUbWxd8vo+gIJ05SnUS6OOARc4Qaajn4KR0uYHiKBfd7/1eJDx7d9/nw90syLmnlWp/mMHBhw+fG59HfA7iBPKXDr1tFwP25vpZO+r2Pfo07LnwvlHVFXKBw0cnn3+fc++XPL398rR2lGLfq/fOCZ+K7OBAIBAKnI76HA4FA4GrcyCkPn73i5deccu0PSvrBm+mIW/Lb7XYm07PZrEaEOW5wOp1qPp/n69fX1zWbzfI9WP49/YC0ivl8nk8AqCynm+gtggKveXRfUo4It1qtbM/3Sv64CiaTiabTaU534Idih9RcoE1PR6CfuC3oB+9BnqU62YUMMide9JB6Bf1+P4+FfjrRLaP5zJukmuhSVVVeh7JWQOlI8LFLJzUVeCZgLn0dKUDoKIv2OWFHDPC2nfS6U4S1ZE69RscqgcWLIbIfeT5tQlzZQ8yh7x0vcunzyb1l9J/ncz3zzJ4oxY3SlVE6CdgXs9nsqnoa/rMKZfqHP7tMleAHgQ7XEATfjxP1dpfLZZ5nL2JZ1qNwuKjjc7Gq7gPvrWoDnCcxQXrmvosDgUAgsBrxPRwIBAJX42kVZbxV8IgmkWbIZBkVhph4BX9I32g00nQ6zfc5YfWCjl61H1IM8cM2D8mC4GGpXywWajab6vf7uf+LxULT6VTdbjcX/xsOh/mISNoiPYAUhjK6z9ghev4ec0AdBrfXQyyl+pGHPm8IK/yX93iWdFJEkPHzd6fTUbfbrRXTYyyeWuJRcMip12sgr55nkFrCsyFwOCZYe691wFxA7LkHN4anhjiZpU/MH8UyPTpPIU4EjZJQurBVnljhtTmYH4i8n0LhhJu1RfBCuPB0Ez+OcpU7wQUQP+501TGWpRuC/eduAifv/vkEXEdfvA/sfdbbUzfoG3PMs5rNZnbHeNpPecyov7/KreGfkVWv+5ytQukSOe0ZgUAgEAgEAoFA4ATnQlCAnOI2cNs1RBGSBYHpdDqZ9M7nc+3t7Wk6nUqqEwcIM4SmqqpMJLmG9AnqH0CanKSTOoHrANLG0ZTSUbSf4o84ELi/FCkgXoy/JIgQLieBpeW7/Nuj+UR3u92udnZ2MpFzQQEHRKfTqaUZOChQCQmE6HFE5uHhobrdbj4lAwt7mafP8zyVgLWF1CMU+SkW3W43u0CYK0QKj6h7TYjSseHRb+YHQYH7PQVgVZqGixh+XKa7SlgH/7t0KCB64OpA5Gk0GjXXDQVJPYq/ymnAs9jPFNpkHVgvTy/wWhguAOG4cDLNPlvl3PE0FfY219L/8nPkzhLAepRCRvnZuBax57PjKSplakxZFwK4YOGffcbM5zsQCAQCgUAgEAjUcS4Ehao6OhoSUogtfGNjI5NvSByR8larpdFoVLNaE2Umko4wQS2D8tQGng2R9Xu8SCP1AyAdOBXG4/FVaRH7+/vZWUBU3tMbPLWAyDVk1cfvFf79vtJazjMYR6fT0WAwULfblXR0/OXm5qYGg8FV4sxkMtF4PM61K2jX8/4Hg0F2bdDvvb297GqADJKmAhBGIJ5Ew5lTXAJOhgHrgwDi4y2j+G6Xd8LrrpdS3HAnAa9xEgYk3nPrPY3C5xDS7OTTyXiz2ay5I9hfzAd7ibnnGbhUFotFrr/B2F0EgUTzOwVHvf8QfkgxhUNpn2e6QFeKSp7e4YUSIfBe06RMv/D7y0Kg5ftez4HUF+bO14t55nuC/eauEfZReeQn4hH9KAUU9lBZOyUQuBVIzZZmH/3H9eOv+baz7krgFLz8r3y5Nl7/P1a+dyvX7s9+2p+Xfu0tkqRqEaJlIBAIBO5cnAtBgZoCLgaklNTr9XK0Gnv8bDbLJJPIKMSU1z13HVKGA4FjF2ezWS11ANGACDLRXidQEB0nVDgqiNpDgpzoIxC4k6AkLLRJ/QUnOpAoCKRb2/2oPUnZgdDv99VoNLSzs6OdnZ3sIkAYQQBptVo5VYPjLFNKucglggFEy50f9MvrVLgwIymP3+cG4uaOE8gkJBdnhLsTysJ/7vogdYV0Ca73ugNelJM0l06nk9cQAkrRSXeLsD8QtJx8eooFQgGCDm4Y5swLaCJQkGaBk8HrMfB8F9bYh+4aYK24nrWBYLOGXn9jOp3WXpOUU3rYe4gAnuLgKRmMjz4wb+VRnO7GKd0w5Xv8Xq6hFxT1dCAXKBBIStHC0yFWpUUwD7hAWMeyXkQg8FSxdvHi0S/3b+sNP/nvJP2SpKudOoHzgZ/7Z98m/bPT3r11a/eff+jf5t8/8QM+Vjo81OETT96StgOBQCAQeCZxLgQFiOT6+rrG47HW1ta0sbGhbrebCb4XtSOC62QaEkW0lEgktn5JmURBziTVoqJOtD2CyXVETT1izfv0DeIKqRmPx7moIu9Lqlm8vU6ACx7eL7fje7QcEQXS1+v1tLW1pa2tLTUaDW1sbGhjY0Obm5u1dBI/5QLiDDlFDPHCj+4kQJhx2z5HU/pcQYS9EKO7Q5zUMT84OXAwuJjDPav+ixjC+rr932s2dDqdq8iyF17EUVGmDnhdCnc4+KkWfuzoYDCo1Q8oCW4pSNEW/fR6De5sYH+XQpeLGj42fvi8MLe+jyDSPBuBgHnzlAavTeGfB/rodSz8NdYaJ42LZcyR7x/2mpN6xC13J5TilYsTZd0IT1vhu8bFHfrCvaVzJhB4qlh7r/fUa3/iu/TAWv/6FwfuWbzhV39cvzGf6us+6fOVJjMdvPVtZ92lQCAQCARuGOdCUIAgQFCdYDtBRxzo9/u14nPSyekDWMIhhLgTuNbz3Hm2Ew7IP+ICRQchGE7muN9JR1l/oaxLwO9u28Y27qdX+FGOrVYrW9SxrkN6cW6Qh0+6w+bmplqtlgaDgQaDgba2ttTpdLIDwiPY9MUJptcK4L3FYnFVUUgIOESPOSmj0IyD/nsU2PcB4+r1elc5EtgLzB97BSHC58z3D8R9c3NT6+vrOY3AxRSPwJe5/vSn3+/nVBevFUAfcMkw16PRqNaO7zl/JqkGvAZRZm3cteNEmX3HHvLTKNrtdhZDKPbpY/RIPu4SP6XC94W7Trxmg68xc8FnkTUqi0auqs9Q7hNP12BfO+n3VA2fV2+X/tEHF8bKIzzZ84zL5/dadRsCgWuh+og/rr/3Pa8OMSFwQ3j/VkdveOMP6O888d76uc/9AC1//bfPukuBQCAQCNwQzoWgQNSVyC/2fP7R79HNTqeT7fxE8iGIy+UyCwIUY9zf39dsNlOv18tE2kkthIlnu9WaUwwg4m5fx2I/nU5rVm9JmdRCNJ00eV6+/3gtB3+WpzVwLRHWVquVj4BcLpeZ9CImNJtN9Xo9bW5uanNzMzs0sORPJpPcT3LvSYOAhEonuege6ZaUxRavBeFAtIDQuVPBU0icaEMi3ZEBmaRNRAxQVVUululEU1Keg263q3a7fVWRQO733Hx3P+CUwKHgogkOkaqqNJvN1Gg0tLm5qV6vl8msW+ypQ1DufXcVlMdWQnK9UKMXEUTI8CKM7Xa7Vjix3+/n+WTvIwywngg1CHKsi58WwXjcTVDufU8B8RoZq4QQhxN3FxNw4PA6QhRjcKcD+8j7V+5P3B+TyaR2DKufIOPzGw6FwM1g/vF/Ql/5/3yfXnb8HRoI3Cj++v2/oy/7V9v6lW/5cF34jSshLAQCgUDg3ONcCArSSeTQi8ZBCtyC7bZ1CP94PM5t4GJYX1/PJxF4tNEJFaIAkXFPWUAIgFx7FJm0BCeHkF4cBkR7ie5CBL22ApZxTw1wAYV2eR+ixhxxnCOEqN/v147bI+ffawSQWuKRWkglxBV3AiSUNeAeRBiP7gMIHAIN11VVpdFoVGubfrprBELs6SQIBH4aAASRIztxjrj4guAyGAyyMIPg5P1dJTBAaHkfgYs57Ha72YmAgNTpdLS9va1Go1ErpljWuWAenYSXxNz3lQtSrIP3BSGq3W7nzw4nkfR6PQ0GA0nKr1GLpCw86n0pHThlelG53l63gPVyYYZ2vG0X1/hMQOS73W5OeXLRza9xMcrTP1wUdJdEKbaw5uxPL0hZthUI3CjGn/6h+nN/50f0af3hWXclcIfiVQ+9SfqHb9JH/sana/PrXqLlr/3WWXcpEAgEAoFTcS4EBSKHFMjzonDSSWV/t/IPh8OcIuBEyckJ1m1IcxltdCIHgYWEkKNNVBtL/XK5rB0JCdmClEBuaQcxBMeBR0zpg+ehl5H3MsWi0+loY2MjpzJAziFgYG1tTb1er1Zsbzabablcqtvt1mpLQP6dgHm9BQfCBBHhMrLM+kHciJwjZCAalcXuIKFEkIHXUnCLv68Zc0if2AOQaXd5lPUT+L3M86cWBakoPIvjTbe2tnThwgWtr69rf38/H59JakopNpUuBE85wAlBNN7rFbh45WkBUv1IRZwY1Ldg7hCe5vN53usIZuxFn0uve+A1JVgvT6tg77gY4VF9F4rKtIRSlHA3CkKQi3J8jnzMjNs/Hy5e+NgQI712Aqk9ODxOOzIzELhRDD/zw/Rpf+ON+pLtR866K4G7AD/3/v9eH/UPX6H+V723lr/5O2fdnUAgEAgEVuJcCApEJFcVaINQQTLIY59OpxoOh5pMJjXS41ZlfsqorxNlouFOSLxIHqSOugYQcSdOkBJOMvCILVFkXAuIGLznueg82+swlKdGDAYDbW5uamtrKxNYXBTSEQFqt9va3t7W1taWms1mJkrT6TSLNZPJJM+dF6iEUK46kYCCe2UuvEfWKezHvPk8+PGT5XF+3g7zg1vCCavPBw4Pt7czd/1+X1tbW5m80xapCWUNDT+dYG1tTVtbWxoMBhqPx/m5k8lEknLRy8FgoKqqNBwO8x5CUHJRwYm8pyp4lBzhxMURakLgqmGMOG0QvSDNvV4vn2AhKR9J2el0MoHmeExcGPSHvcv+wf3hc+TRe+bPhTzGyn9LN4KLNp62UO49hDB3w/Djz6VdF0J4posJpHSw9100QSDzdAdPkVhbW8vrHghcC8PP+FB92t94o776wu+fdVcCdxF+5v1er0/+F5+gtz76/nqPr3iXDh9//Ky7FAgEAoFADedCUOAf/0S0KWZH1PTg4CCTZ+kozxuHAs6F7e3tnAJBdLwEJBgiyhGC0kndg8FgULNsQwohlETHSZHw6C4nJxBpHo/HuSikCwhO6soccIQRt4hDfhBVcCi02+0sNECM1tbWdOHCBT344IPq9/v52E1I13w+12Qy0eXLlzNZdoGlrHngNSP4r1vvKUToggJE1aO8frwn5NXnsczpZ548dYK1QDyZz+eaTqf5GE6I7fr6et4vkEcKTPr6IBRRI4HrW62WNjc3r6oLgSiytbWVCzxy/CT7yk+bcKcB88K8eTpJ6Vbhb9bNCwpynad30P9ut5v3FAIDp33wuVhfX8/iFgIGIgiCA59FP5HDCyG6mOYijrsD3AHCurpg6IIDjgfG5EUkmQMXYLzYotdycFeQi2DuCkFQYq48bcT3r38mA4HrYfrJH6LP+cY36Mu3337WXQnchfiRF/8n6cXSZ/2H/0178+dosVxT46NjrwUCgUDgfOBcCApORKhpAKGgPgLXIThA5JrNpgaDQY7Ek+s+Ho9rFmbpJCrukVbpiJjOZjN1u12llLIwAdw1AXnzfGs/rhCnBWICUV4nYX5aBONydwIkGwIH+cPS3u/3c4qDuyMkaTAY6PnPf74eeuihXEOC6C9/T6dTXblypTa3ECqv9E+ahhMryBckjfmAwJXODcQE5ozjML2OAPMAmXWRhfWBaDNm1gzCDVnmOkQeFxdIu/CTK5hXCn0eHh5mu70fi4lLhmt51nA4zGsJ8UVMcIu+Oy9YV8ivi1aA+7H1M6/c7yk8a2tr2f3BCRSdTkcXLlzIQhtRdp7NnmafIt5wqgLEm/3vtQqYXy9m6QSf1/x5rVbrKmeCp1W48IPjhv23ysnj8+ft+WfJfyd9iD3EXi7XCVGFvoagELgeDl/+gfrSb/p3+qyNy2fdlcBdju9/+L/k3//6r73fVe//0Pf+ST3nH/38M9mlQCAQCATOh6AgnUQ6IRGkF0wmkxoBmM1mObKOjZ2INTn8kCUIJPdC7CCOkE+vb0CNBAQFqt8fHh5m0kpU1yP4iBsc1zcajTQej2tF6wBpHDgXytoOjMVJO0dA9vv9XGuCKvjL5TLP08MPP6yHH35YW1tbNdFgPB5rNpvlfuG2cDcGfUcEwToPGXYRheeX9Q2Yd8YMsaNgpacs4BTwueYkA+mkhgDztLGxoX6/r8lkotFolGtVsC6evsH6Ir6UVnnEhmazqQsXLqjf72s4HOZ+eL/ZO71eTxsbG7X6EAhbzAP7lj3tkW8XCdhXZeoD9xCF9zQFF334TLgYg6ixvr6unZ0d3Xfffblehjtp2u22Dg8PNRqNNJlMrqo3QbsuyLkI4sUr+dtTGXgO88Z9rI8XzvT9j8hEagjPKFMu2CfMn7tf+NyUtRZ83nkfoQqhEXGMPVjWwggEVmGxsR5iQuAZx9954H9e9drnffmb9Ftf9CxJ0qs+/39X+vlff6a7FQgEAoF7EOdCUIAsEt0lx5+ou3REOi9fvqzlcqnxeJzt6RALSCeWbi/MBjnitAaIEiRDUq2o4mg0ylH10ootScPhMBNdCAm1GLxQpEdn3ZqNVb88RpEf7qFv3W5X/X4/58OTG08kfTqdqtPp6MEHH9R7vdd76YUvfGGOSrfb7VpeP0TbrfecmlEWv6NvfurF2tpa7g9km9cl5Wcxp15bwE/YQChxx4N0cpQnpJ46At1uN9cs8KMNIZJel8BPbSiLfNJPntPtdnXfffep0Wjk4p4uUPEciKYTfqL+pFt4aklZt4N5J32HOQWshaTsDvCjKksxgfYRfbzmwc7Oji5evKjNzc38TMh0q9XKggwpHJ1OJxc7Zc692KWfIrGxsZHnmjl294S7GVwo8WKZvOfpD36CA/Pl+8rdCXxWcam4O8YdSe6U4PhXRCxSZXy9cIJ4KlIUZQwEAncKXtzs68XNI2H8g7//X2pWSX/pAz9Fh09eOuOeBQKBQOBuxnX9vCml70wpPZZS+k177W+llB5JKf3a8c8n2ntfn1L6vZTSW1JKH3dDnTjOafao9XA4zKQHon/lyhVduXKllue8WCxytB0QPXYxwSvBQ3y8YCOEZzQaaTgcZjs3xN+PLPSaBUT5Ia30G2s1tQ68Ur4XEyzzy2m/0+lkEWGVmOCnPFBE8H3f93310pe+NNv3y6Jzs9ksF7JEfKFt0gIQACD93vf19XVtbGxoY2MjH+nnkWs/SQIhAvu4EzdSBzxFoXQZUL+CKHe/389pGy7EeFSZPnLiwWAwyO95UT5EjG63qwcffFAXL17Mdv/Nzc2c4kB6RrvdVrfbzWkbXpCStfKCm6xTWfuAe1w8of+dTicTej4HFH500QtSv729XRMWiMT3+33dd999uu+++/JnSVJOI/BChY1GQ1tbW7r//vuz84LPh9cbwenT7XbV6/Vy/5hf9rC7INyNUaYNICR4nRAcC5JqIoiLDQhNiCfsNW/LP2MuzLmThe+NUnhkHdl77h45D3gmvosDgcDdgeeuD/QezYFe/xs/pte94xekxtr1bwpcF/E9HLghNNbuzJ87fb4CZ4YbcSi8VtK/kPRvite/uaqqf+IvpJReIumzJL1U0nMk/URK6cVVVR3qOsAq3el0coS/zH8myshrRLwhGl7YEVLqUVJJNSHBTwDgfcQJUgm8Ijy/Y/F2wsF9/E1aglfA5z4EBScxuDGcIE+n01xcD9JPwUCEitlspn6/r+c///l6yUteoq2tLe3t7WXnAOIJpJ76ENQO2NnZyekI3GPrmY/Wm8/nmYTiuPDUBAreUfwPcQJRQJI2NjZqkWjeg/h1u908D7SP2CAp14BgzSH7rVYr9w9BhNMwnESTqgLZvO+++3Tx4sV8Tb/fl3RCNl0A4fn0p9FoXHU8aLm3qO/gFn3SYtx+j2UfQP4ZN2uBcEW9BBwSrEer1aqlOhweHtYKibrIhIi3sbGhXq8nSXnM5akH7Mvt7e2cLiEpi0hel4J0JfaS19TwveiFE0k/wHXkRTrZL2XNDXckuXDgDhXml70hKbugxuNxTnViD/P9wDysEkPOGK/VM/BdHAgE7h60U1Pt1NRr3vbTeuX7f5Kqw6WW+/tn3a07Ga9VfA8HDGubm1LDUpcfelBveOMPnF2HngY+6UM/WdUz/P1w5ePeRz//zd92S9r6uE/7XK39rz+66vVqcaDlceH8wO3BdQWFqqp+JqX0ghts71MlfX9VVTNJf5BS+j1JHyLpF65342w2q+VnSycigKcOUJ19b2/vKhIpnZBBJ/L+PoTQT4yAlEBYITJu6/aaDbTj9mu3T0Nk6ANF8iChjMmt/RAXj/SSXkB7/X5fFy5cULfbzWIFJz+853u+p5797Gfr4OCgdroEkdbxeKz9/f08vsFgoIsXL2pjY0OLxSIXsfSUB8grzoDlclk7YQExgL8hruXpDMvlUr1eT81mM5NgJ44c8cg+AJ6fj7iAYAS59/oTkGWi6UT9/QhMRCFOwtjY2MjkltoIiA4IKp7y4fZ9RDBJOaUDx4Kvb+kU4B4vSOluDxwWnU6nJlo43B3D/m42m9re3tbGxkYt/cY/A8wX/aCgJvvEi4V6wUUELCf3/rmlTzh6PL0BYQJniKcosCY4A7ifAqlehNFrefCZ4TPI52Y8Hud9ymcOlwPjQ2RxscRrJ7g4dJ7wTH0XB24cqdnS+GJERQLnH89dH+gNv/XT+pdXnqc3fMz76eCRd551l+5IxPdwAKw/+CxVg57+/Bv+iz5zsHvW3bkl+NFf/JEzeOpP37KWfuw//NuVr3/xOz5cb/+ch/Pf1bseC4HhFuPp1FD4ipTS50n6ZUlfVVXVZUkPSXqTXfOO49euCaKCkFui55ABIsTSETnZ29vTdDrNxMat/WUKAlFmj4xDxolSQvggb1y/qo4CpOO0Ym3liQjSSQFC0g4gM5BdyCAE1avlQ+pJNRgMBtmtAOF73vOep+c+97lKKWlvby+LA0RiqQvBMZutVksbGxva2tqqHa3oZEo6OfEB8UBSzYkA0YMsQuwgqdzT6/UyEfSIM+9tbm6q1+tpMpmsTEPhufQN4cNrNEjKYka/388EmLWGWEPWL168mEUMnCCsmReOREDxqDyig3RSZwEhhNSRyWSS6x14DQf6ymsIWoBaHbgQiKIzlxRjpI/U0JCOaidsbGwopZRraJQnFXitAJ9br6HBfsBlgsuiLILJvJUpAmV0v0yBKD+fLtDwGeVa74ufNOGpCnxmeTbiG0VGPYWG2ifuJqFtd2XQ/1LIOae4Zd/FgRtHWl/Xpc/5IP33v/OtZ92VQOCG8eXbb9dbf/iifvtz3lOHb/m9s+7O3YT4Hr5HsP6852r+x+5X/x+8Xa974evPujuBG8C3P/cXpJ85+fu9/9WX6nk/fhTgXHvTb6qKAtxPGzfr5/1WSe8h6WWS3iXpm45fXxXSW1nVLKX0ypTSL6eUftlrFCAgkAoAqQFUpvcTCCADkGWiu+Sc8zu2cEgiZIMIvFQ/3lE6iRxDNoj2E13Hwg6xkU7yzrmGXHee4wXnvJI/9n2PbjMGr6XAPBE5xrUwHA7zMYaTyUSXL1/WlStXtLu7q93d3RzlJz/fyfJsNsvzUVraGa/nrkvKIgiReSz02OIXi0Um8KRNMG4IG2vFnLEGuDD8yMS8oQoLPCQcBwuiC6SSNcG2/+CDD2p7e1sppdpJGO4gabfbtfsRospCkuvr69m90ev1alH8fr+f54M6DNSVKEk0hJu94M4KnAaragxQbJN0B051QEDy1AFPPfC9TT/cWcB+ZP45vYK1INpPWwcHBzUBw1MMmC8vBFrWfvBaBWWKDn1CeOt0OtmBwnzx2cOdgpBD+/QZJ427E3w9fG95P88xbul38UKzVZcEVmDt2Q/ql/5+iAmBOw/f9Oz/ocFrLqvxspecdVfuFsT38D2A9Wc/qOFnfph+/5t29MbXvVave+FPnnWXAjeJ3/mL36o3vu61euPrXqsn/vyfkM6ZI/VOxE39a7mqqkf5PaX0HZLwyLxD0vPs0udKWumrq6rq1ZJeLUmbm5sVrgCcAJDZRqNRK8THcXdldBOygW0dkYIfz4f3yC9kBqLrRIe8bMQLyAgEFPcCVe/dtUDbEB4q0nM95JcUDre+e4Tcixh6gUHaoaAfhI4TJK5cuaInnnhCly5d0mOPPZbHQASf3H1IGzbwkvD5kZpE4rnGCTj9wNGAFZ7xYWVnbVkfxuQpFZBRJ8HuhJDqdnzWlPlARPLjHTnRYXt7W5ubmzo8PNSVK1c0Go3yOiP2cK8X5UQ88rXF+cDpELhGqqqquUhIz/CaAtPpVJPJJO89ouWICUTpSeE5ODjIc+51LnAJ7OzsqNfrZTeKR+HZz+7y4DV3ZkgnaRgueCAEeLoHn0n+hqSzLxmXCxZeX4Ln899ybnmunyLijh6EQMe1hAAfO2IW/XG3hosvzNl5xi3/Lk4XzveAA4HALcHrXviTeviVr9SLv+yse3LnI76H7240Njb0zi94P+29z4H+4FNuTa5/4Pzgl//2t+r9t75Mz/6mnz/rrtzRuClBIaX07Kqq3nX85yskUe32hyV9b0rpn+qoAM2LJP3SjbTZbDZrpJxCd5ApSdlmPZvNcuTUK+kTCeZIOEgeZAISj2XdCavb5nk+QgTEiBQJIrWQEScd7qggyg2B9BMi+v2+tre31ev1cioCYyFX3yvpE/2GPEOuIYVee2A4HOrxxx/PgsLe3p6qqsriBqSMnHfSIrwAodvhsflTMwHhBkcDLgQEBsZDlHg0GuW+epuM14twulDhKRVOgiGDXO+nHbAmrAMiATb4fr+vqqq0v7+f02ZarVbeE9SXwFEBmaYegxNc9qs7YXB3+JGe7D1Pj2DOEbpwofAcSXku2f9OgiVpPB4rpaSdnZ18RCQFORkzxFxSzWXDXCGu0Q9fexcAyiMX/ehOSdkxUaYlOHAeIWbRH57hYofXc+CzxpoiJngaiQsBZSFFFzj428WPEt4ec3decTu+iwOBwL2Bl3/gb+uP/rcP0vp/+ZWz7sodjfgevkuRkv7g73+YDjaWeusrXnXWvQncRvzGV71K73XhS/WCvxblTW4W1xUUUkrfJ+nlku5PKb1D0t+U9PKU0st0ZN16m6QvlqSqqt6cUnqdpN+SdCDpy2+0mq0fO4il363VftybpJyfjn1+1RGFkO/hcKjDw0MNBgOtr6/nGgzSCanyqDNkl+fTposbLig4QSM3HNs+YgJuC+lEaNja2roqj97TJCDkWM9LhwXzgD2dPj766KO6dOmSRqORRqNRdgMwR8frmi3zEFss5J6u4cQKgglxxnHA8ZVOEhEZjvdF/i/CRmmJ5/lltJjfPRpNFN1PQ3AHgAsmEF8n/MPhMJ8qwL1+ugevQcxxdXihz1JMKF0SpIMwt5BdaltQh4LxuDBC+glCi68zggOizdbWli5cuKD19XXt7u5qdFxkBtLO58Xnn/e97ojXDbHPfp4PHASICf45KIufIsIgOPha8RycF17HgPb8M+wpQcy7p2ew1uyRsnYD887YfS8yRj7rLqSU83Ue8Ex9FwcCgXsD//r5P6sv/HuV/uirP0CNn/3Vs+7OHYH4Hr538L++8wP1Bx8XaW33Cn7jz3+L3mf7K/SiL//Fs+7KHYkbOeXhs1e8/JprXP93Jf3dp9IJFw4gNxDe4zZrvzebzRy5x/ru58dD1LCb7+3t1dwJu7u7NQs51/oxeZJqZBZnAoIDJIhnSqpZrUsCxmuQywsXLqjX62W3A22UUXd/HqkPWM43NjZ04cIF7ezsqNPp6NKlS7p06ZKeeOKJmpsCogwZJQcd8j+fzzPhw/rv4/MIthewTCnlmgWQvFJk4DrqNHQ6nRxNh1izpjzPrfLMiacFeKTZ1w+3Aacs0G/6iLg0Ho/VbrfzaQgIPogDXpvA3QmMcTKZXPUeYgP7cblc5tQD9hm1EBAv6Pf6+ro2NjbU6XQ0m820v79fS+9gXjg+lHnpdDq6cOGC2u22xuOxdnd3M8mWTsg3v7OPnFSzN0nL4XpcA71eL4+dtBTpxEHkQOjxGhlet8QFv7IwKY4PalTQJ4Q0xsDn0cUDxEg/dcRTItz5I50U2MTVRI0I9hrXnicxQXpmvosDgcC9hdc8/7/pg9/r/XTfz551T+4MxPfwvYM3f8y3Smpd97rA3YF2aur7P/Ff6P/SnzjrrtyROBeHrHvklr+d3EMaiEBz4gHkARJA/QDIwXK5zHnqVM0fjUbZ3g8BKi3hbjN3ZwRWdyKtTl68aB8RVSdsFOSjEOHW1pb6/f5VKQbUFZDqhLDVauXii0SA77vvPj3wwAPa3NzMpPLd73639vf3axXt3cEBocfmX1bu98J5nnYCUfUCmevr67rvvvtqdSsQarD8szbSkTPj4sWL6vV6tWg4qR2QOy/C6JFkCL8LLFzLMzlRAtdDr9fT9vZ2rVihHwHKeHyPuSjlKSLz+Ty7G1grL16IEEYaCddJynUqSMFgfM1mUxsbG3ldKaoJmacuBSd94DxYW1vT9vZ2FnOGw2Euisj4/fnMkdcqYG+RPuTuBRwdXrDQ0w+ACwzcx1ryOi4STy8gHYkUCK714ov+vtdi4PPmNSC81gXjw8XgtRi4n/oeCEie2sR8+d4NBByp3dZLfuiRs+5GIHBL8Bf/zx9W9ZEvO+tuBALnBv2fuah2OvdFmQOBc4Nz82nB3u35414MTjoiCf1+P0fYyUd3OzxRb7dWQ/7H47H29vZqhQGdhPjfEFZECooMIkQQHfWUDAgIpxZ4/6n+P5/P8ykEg8EgE1xJNeIFgaM/nv/PEZvPec5z9JznPEcbGxu5+OKlS5cymcSdAEknEk5dB48SM7+MpdFoaDKZ1NIDEBgQaDY3N7W9vZ0j7qRW7OzsqN/v5+MmF4tFvn5ra0uTydFRLaQceCFCSJ3b9SkKSZ+ZH5wprAlHKpLmwFhbrVbeX5w84cIITgN3iSA4cO18Pq+dduGOD689gAsBtw0pMKQwUB/Dn4tzhroOzWZT29vb2Q3BMZ8cq0ok3lNqSG1hn5WCGO4ST2nw9B7cCex7F3QYC4Kerw17i7HwvMlkklN3cBLRRlko1Ys04mj4/7d3NqGVXmUc/z25+TA39yZxmnEmzoedSkWK1DpIEZRZiU5nM7orLtqFIAUFXYiMFKQuFRRXCiMKRcTZqNiVWERxpbXa+WQcO6MF2w5NzYwxKWEmE4+L+z5vTy5Jpne4ec85M/8fXHLzJrn55znv/ZPznOc8xx/9p3/E96Df05407K9q8gSC/21xg0nfUuT3V9xjIf75zXosCPG5M1d4YvrfqWUIMRSemn2NU7NjTKQWIkQGvPePXU4e+DUtK+LYaDFEPjzeSya9deTN1FKKI4v/lr2SwCelvrob7zP3CXy73a472q+vr7O8vMzS0hLLy8v1Cm3/KQFebu4TNl/l9WqFuATb9fgKa3wCQpxMAGqtvhoeT1bjJo8+0fJJ8K5du9i7d2+9vcCbAfpKsScjvNHi+Pg4s7OzdVIEYN++fezfv59Op0MIgaWlJa5du1Zr9USIVxtMTEwwPT1dV3bEK7W+Mu8TcZ9E+jj4RM7xBMnc3Fy959+3Lnjiw8f0xo0bTExMMDs7y8zMTL19xP8un/DHpzY48fGak5OTtNvtWmt8tKiPcdyYz4+w9CMrfXLuWuNjD+MqBU8QtFqterIfNxH08YyrKfz3emWCb/PwCW+8XcCTFXHFSKvVqrVNTk4yNzdX97LwLRs+/v6e8ImuJ33W1tbqSom4h4jfs16d4D/niYS4aiHe8hFvXYhPe/AklSdL/DhMv7e8iiI+xtWTCf63xNU5/acyuCa/1t+AM04gxU0n+ysKbt68WR8v6+9tHxd/jThx5fpi+u97IQC+duWckgniruPk97/HyMMfTC1DiOQcv+8lxpRMuCeZsDGO7r6QWkaRZFGh4JMx/8fe/4n3lXuvJvDS+G63y+rqaj1h8ImLTwp8Bd0nHb467ROx9fX1DcckeiIgTgL4qvbS0lK9LSDuMh9PkuKJZdxgzldbXb9XJ8zMzNBut1lcXKwrJrxhpL+mr4R3Op26R4InAebn5zl48CB79uxhdHSUlZUVFhYWWFxcrBv6eeVDq9ViamqqnpD7JCw+ItJj7xMzn4ytrKxsaD4J1Ku7rnd1dXVD48dut8vIyEjdP8DL9r10//r16xsqHvpPA+hfYfZTF6ampjY0KOx2u3VfhHjc4+0Bfg/EDQ79d/t95avg8dYGrwDwShPfpuDX4j35XorvDTBdsycO4nJ6j50nC9bW1jY0GxwdHWV6eppOp1NXd4yMjNRbG1x/vF3HkyPxiQ0eI+8l4THx3+MTZx9X/z0eC389/5on6uL+B/FWj3a7XTet9MSNV4zEE3evygE2VMJ4Mis+4SVOrHlVh/+N8eki8XalePw2SxB4kse3zdy6datO0MTbUOLkRP9rCHF4fBlop5YhxFD5wNgUqCJLCCHEHWA5NB4zszeBt4ASl33mkO4mke7mKVX7sHS/L4Swewivkz1mtgxcSq3jDij1HoVytUt3s9zruu8lH9b/xM0j3c1Sqm4oV/uOenEWCQUAM3sxhPDR1DoGRbqbRbqbp1TtpepOSakxK1U3lKtduptFuu8tSo2bdDeLdDdPqdp3Wrfq24QQQgghhBBCCDEwSigIIYQQQgghhBBiYHJKKJxMLeAOke5mke7mKVV7qbpTUmrMStUN5WqX7maR7nuLUuMm3c0i3c1TqvYd1Z1NDwUhhBBCCCGEEEKUQ04VCkIIIYQQQgghhCiE5AkFMztqZpfM7LKZnUitZzvM7BUzO2dmp83sxeraLjN73sxerj6+O7VOADP7sZktmNn56NqWWs3s69UYXDKzT6dRvaXuZ8zstSrup83sWPS1XHQfMLPfmdlFM7tgZl+urmcd8210Zx1zM3uXmb1gZmcq3d+srmcd75yRF++ITvlwg8iHG9ctHx4y8uGdQV7cLPLixnWn9+IQQrIH0AKuAA8A48AZ4KGUmm6j9xVgru/at4ET1fMTwLdS66y0HAEOA+dvpxV4qIr9BHCoGpNWRrqfAb66yffmpHseOFw97wJ/r/RlHfNtdGcdc8CATvV8DPgT8LHc453rQ168Yzrlw83qlg83q1s+PNx4yod3Tqu8uFnd8uJmdSf34tQVCo8Cl0MI/wgh3AROAccTaxqU48Cz1fNngc+kk/I2IYQ/ANf6Lm+l9ThwKoRwI4TwT+AyvbFpnC10b0VOuq+GEP5aPV8GLgL7yDzm2+jeilx0hxDCSvXpWPUIZB7vjJEX7wDy4WaRDzeLfHjoyId3CHlxs8iLmyUHL06dUNgH/Cv6/FW2H7jUBOA3ZvYXM/tCdW1PCOEq9G5E4D3J1N2erbSWMA5fMrOzVfmXl+xkqdvM7gc+Qi9DWEzM+3RD5jE3s5aZnQYWgOdDCEXFOzNKi0/JXlzyPZq1J8TIh5tBPjxUSotPyT4MZd+nWftCjLy4GVJ7ceqEgm1yLedjJz4eQjgMPAZ80cyOpBY0JHIfhx8A7wceAa4C36muZ6fbzDrAz4GvhBD+u923bnItmfZNdGcf8xDCegjhEWA/8KiZfWibb89Gd6aUFp+70YtzH4PsPcGRDzeHfHiolBafu9GHIf9xyN4XHHlxc6T24tQJhVeBA9Hn+4HXE2m5LSGE16uPC8Av6ZWHvGFm8wDVx4V0Cm/LVlqzHocQwhvVG+V/wA95uywnK91mNkbPgH4aQvhFdTn7mG+mu5SYA4QQ/gP8HjhKAfHOlKLiU7gXF3mPluIJ8uE0yIeHQlHxKdyHodD7tBRfkBenIZUXp04o/Bl40MwOmdk48DjwXGJNm2JmU2bW9efAp4Dz9PQ+WX3bk8Cv0ih8R2yl9TngcTObMLNDwIPACwn0bYq/GSo+Sy/ukJFuMzPgR8DFEMJ3oy9lHfOtdOceczPbbWaz1fNJ4JPA38g83hkjL26OIu/R3D0B5MNN6Y30yYeHi3y4WYq8T3P3BZAXN6U30pfei0OC7p/xAzhGr4vmFeDp1Hq20fkAvY6YZ4ALrhW4D/gt8HL1cVdqrZWun9Ery1mjl4n6/HZagaerMbgEPJaZ7p8A54Cz1ZtgPkPdn6BXLnQWOF09juUe8210Zx1z4GHgpUrfeeAb1fWs453zQ168I1rlw83qlg83q1s+PPyYyod3Rq+8uFnd8uJmdSf3YqteVAghhBBCCCGEEOIdk3rLgxBCCCGEEEIIIQpECQUhhBBCCCGEEEIMjBIKQgghhBBCCCGEGBglFIQQQgghhBBCCDEwSigIIYQQQgghhBBiYJRQEEIIIYQQQgghxMAooSCEEEIIIYQQQoiBUUJBCCGEEEIIIYQQA/N/w2J8+68KKcwAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 0 105462\n", + " Min thresh = 1000\n", + " Sliding\n", + "\n", + "\n", + " Winner = Sliding\n", + "\n", + "\n", + " VFOLD = 7 of 15\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsIAAAGDCAYAAAAh/naNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAACZK0lEQVR4nO2dd7wcVfnGn7N7a3rvPQFCqIHQu4AgoICoFAWxISr6swuIiB3FrggiKmIBqYIQehVCSSghJISQ3khvN7fv7vn9MXNmz5w5U3bv3nt3732+n08+2Z1yzpnZvbPPvPOc9xVSShBCCCGEENLbSHX3AAghhBBCCOkOKIQJIYQQQkivhEKYEEIIIYT0SiiECSGEEEJIr4RCmBBCCCGE9EoohAkhhBBCSK+EQph0KkIIKYSY1t3jIIQQUjg98RouhFgohDi+u8dBygMK4V6EEGKlEKJZCLFb+/f77h6XiRDiYvfi+5HuHktHEUJMco+lqrvHQgjpfQghHhFCfN+y/EwhxIaOXJuEEE+717cDjOX/cZcfX2zbRY5HXW/V79tGIcQDQoiT9e2klPtIKZ/uyrGR8oVCuPfxfillP+3fZd09IAsfB7DN/b/kUJQSQnoRtwC4UAghjOUXAvinlDLTwfaXALhIvRFCDAVwOIDNHWy3IwySUvYDcACAxwDcK4S4uBvHQ8oYCmECwIvCPi+E+J0QYqcQYrEQ4kRt/RghxP1CiG1CiKVCiM9o69JCiCuFEMuEEA1CiFeEEOO15k8SQrwjhNguhLjeckHWxzERwHEALgFwihBipLv8RiHEz41t7xNCfFUb391CiM1CiBVCiC9p210jhLhLCPEPIcQuABcLIQ4VQrwghNghhHhXCPF7IUSNts97hRBvu+fiD0KIZ4QQn9bWf1II8ZZ7TI+44y70nEed00OFEPOEELvcqMYv3eV17nFsdcc+V50jQgix8B8AQwAcoxYIIQYDOAPArXHXwgT8E8C5Qoi0+/58APcCaNP6SwkhLnd/I7YKIe4QQgzR1t/pRqd3CiGeFULso627xf3deND9fXlJCDE1ycCklBuklL8BcA2AnwohUm6bK4UQJ7mvQ3+/hBDThRCPudfot0UPeEpJglAIE53DACwHMAzAdwHco12sbgOwFsAYAB8C8GNNKH8VzsXvNAADAHwSQJPW7hkADoFzd/4RAKdEjOEiAPOklHcDeAvAR93l/4JzsRWAdyF/L4Db3YvbfwHMBzAWwIkAviyE0Ps5E8BdAAbBuXBnAXzFPdYj3H0+77Y9zN32CgBDAbwN4EjVkBDiLABXAvgggOEA/ueen0KJOqe/AfAbKeUAAFMB3OEu/ziAgQDGu2O7FEBzEX0TQnoBUspmONePi7TFHwGwWEo5HxHXwoSsB7AIzvUYbj+3Gtt8CcBZcIIcYwBsB3C9tv4hAHsAGAHgVTjXaJ3zAXwPwGAASwH8qIDxAcA9btt7WdZZf7+EEH3hRJP/5e57PoA/6CKd9BCklPzXS/4BWAlgN4Ad2r/PuOsuhnNBE9r2L8N5fDYezsWyv7buJwBucV+/DeDMkD4lgKO193cAuDxijO8A+LL7+goA893XAsBqAMe67z8D4En39WEAVhvtXAHgr+7rawA8G3NuvgzgXvf1RQBe0NYJAGsAfNp9/xCAT2nrU3CE/0RLu5Pcc1BlLI87p8/CufAPM/b7JIA5APbv7u8T//Ef/1XGPwBHA9gJoN59/zyAr4Rs610L3fcSwLSQbZ8G8GkAH4NzY78XgCXuurUAjndfvwXgRG2/0QDazeuiu26Q2+dA9/0tAG7W1p8GR8TbxhN2va1zlx/lvl8J4CT3tfX3C8C5AP5nLPsjgO929+fJf6X9x4hw7+MsKeUg7d+ftHXrpPvX7rIKzt37GADbpJQNxrqx7uvxAJZF9LlBe90EoJ9tIyHEUQAmA7jdXfQvAPsJIQ50x3U7nLtyALgA+ajBRABj3Ed7O4QQO+BEbHXLwBqjrz2FM4lig2uX+DGciAjc4/W2d/teq+0+EcBvtL62wRHLY5GcuHP6KQB7Aljs2h/OcJf/HcAjcCLh64UQPxNCVBfQLyGklyGlfA6OZ/dMIcQUOE/o/gXEXguTcg+A9wD4IpxrlMlEOD5ddc18C04gYKRrTbjWtSbsgiNSYYwh0W9IBOq6us2yLuz3ayKAw4zflY8CGFVg36TMoRAmOmOV9cBlApwo8XoAQ4QQ/Y1169zXa+A8vu8oH4cjKF8XQmwA8JK7XD3Suw3Ah1w/7mEA7tb6X2EI/P5SytO0tnWBDwA3AFgMYA/p2A+udPsGgHcBjFMbuudknLbvGgCfNfqrl1LOKeBYI8+plPIdKeX5cB7J/RTAXUKIvlLKdinl96SUM+DYNc6A/5EnIYTYuBXOteJCAI9KKTe6y6OuhYmQUjbBeVL2OdiF8BoA7zOumXVSynVwghpnAjgJju1rkrtPQWOI4WwAm+BEf21js/1+rQHwjDHmflLKz5VwXKQMoBAmOiMAfEkIUS2E+DCAvQHMllKugfM4/ifuZK394UQsVUT2ZgA/EELsIRz2F87M4cQIIerg+NYuAXCg9u+LAD4qhKiSUr4GJ6pxM4BHpJQ73N1fBrBLCPEtIUS9G2HYVwhxSESX/QHsArBbCDEdzgVc8SCcSPRZwskw8QX4owA3ArhCecWEEAPd8xVFrXvu6txjXYeIcyqE+JgQYriUMgfHwgIAWSHECUKI/dyJKbvgPF7MxvRNCCG3whGbnwHwN2151LWwEK4EcJyUcqVl3Y0AfuQGMSCEGC6EOFPrvxXAVgB94ESkS4IQYqQQ4jI4c16ucK+nJmG/Xw8A2FMIcaH7m1gthDhECLF3qcZHygMK4d7Hf4U/j/C92rqX4ExY2AJnMsKHpJRb3XXnw7lTXw9nRvB3pZSPuet+Ccf7+yicC+qfAdQXOK6z4Ez6ulU6M303SCk3uG2lAZzqbncbnIv5v9SOUsosgPfDEc4r3PHfDCe6EMbX4UQiGgD8CcC/tfa2APgwgJ/BuTjPADAPzsUaUsp74URpb3cf5b0J4H0xx7fbPT717z2IPqenAlgohNgNZ+LceVLKFjiC/C445/ktAM8A+EdM34SQXo4rUOcA6Avgfm1V6LWwwPbXuxYMG79x+3xUCNEA4EU4T/UAR6CvghMcWOSu6yg7hBCNABbA8RR/WEr5l5Btrb9frm3tvQDOg3ON3gDnul9bgvGRMkL4LaGktyKcHIufllIe3d1jKTfcrBRrAXxUSvlUd4+HEEIIIaWBEWFCLAghThFCDBJC1CLvmStFpIIQQgghZUIiISyEONVNJr1UCHG5Zf1AIcR/hRDzhVPD+xOlHyohXcoRcGYSb4FjuzhLOvk4CSl7eM0mhJBkxFoj3Ek5SwCcDOfx8FwA50spF2nbXAkn59+3hBDD4czMHCWlbLO1SQghpHPgNZsQQpKTJCJ8KIClUsrl7kXydjipTnQkgP5umql+cHL1dbR+OSGEkMLhNZsQQhKSRAiPhb8YwVoECwf8Hk6qrfVwZmn+X0iaEkIIIZ0Lr9mEEJKQqgTb2JJam36KUwC8Dicl1FQAjwkh/iel3OVrSIhL4OSJRd++fQ+ePn16wQMmhJBy4JVXXtkipRze3eOwwGs2IYQYhF2zkwjhtXBKECrGwYki6HwCwLVuKdqlQogVAKbDKXTgIaW8CcBNADBr1iw5b9685EdACCFlhBBiVXePIQReswkhxCDsmp3EGjEXwB5CiMlCiBo4yaXvN7ZZDeBEt6ORAPYCsLz44RJCCCkSXrMJISQhsRFhKWXGLVH4CJwKX3+RUi4UQlzqrr8RwA8A3CKEWADnsdy33OpchBBCuhBeswkhJDlJrBGQUs4GMNtYdqP2ej2cUoSEEEK6GV6zCSEkGawsRwghhBBCeiUUwoQQQgghpFdCIUwIIYQQQnolFMKEEEIIIaRXQiFMCCGEEEJ6JRTChBBCCCGkV0IhTAghhBBCeiUUwoQQQgghpFdCIUwIIYQQQnolFMKEEEIIIaRXQiFMCCGEEEJ6JRTChBBCCCGkV0IhTAghhBRIJpvDpMsfxN9fXNXdQyGEdAAKYUIIIaRAGtuyAICfPby4m0dCCOkIFMKEEEJIgUgpAQCim8dBCOkYFMKEEEJIgbg6GKkUpTAhlQyFMCGEEFIguQIiwqu3NqEtk+vcARFCioJCmBBCCCkQNyCMlIiWwrtbMzj2uqdw+d1vdP6gCCEFQyFMCCGEFIgXEY4JCbe0O5Pqnl6yubOHRAgpAgphQgghpFBUSDjGHKEixko4K25/eTU27WrphIERQgqBQpgQQggpkJyaLBcTEVbrc7m8EH53ZzMuv2cBLvn7K500OkJIUiiECSGEkAJREd44j3B++/zrlnZn4tyOpraSj4sQUhgUwoQQQkiBKF0bp4OVIyKrKeFszhHCTL1GSPdDIUwIIYQUSNKCGkr+ZjWPcMYVxVUUwoR0OxTChBBCSIEoXStiQsJKMOse4UxWCWHnJ7ilPYtv3Dkfmxo4ea4Q7nplLXY2tXf3MEiFU1FC+Im3NmL2gne7exiEEEJ6OcrqkIr5FVXyV88aofatSjsi+pGFG3DnK2vxgwfeKvk4eyrvbGzA1++cj6/c8Xp3D4VUOBUlhG99YRVufGZZdw+DEEJILydfWS46Iqy20yfLZVyPcNq1RqiosjRSrHUW89fswK6Wyo6kKnvJ2u1N3TwSUulUlBDuV1uF3a2Z7h4GIYSQXk7Os0bEbGjRtu2uNaLaDSd7Kda6QAhnsjmcef3z+PQt8zq9r86kpso5d+pcElIsFSWE+9am0UghTAghpJuRCdOn2WSa8ggrW4VXdCNX3Fia2jI49EeP43/vxFevU5HUN9btKK6zMkHdRLRlijxphLhUmBCuQmNrtruHQQghpIcyd+W2RBY8LyIcs50tyNuWdX7HqkoUEV6+uRGbGlrxk9mLY7dtz+Z8fVc66ngIKZaK+kvoV1uFxrZMl/moCCGE9C4emL8e1z+1NHY7NeEtNo+wJSbclvFPlhNeGeZCRponrIyzDRWNTld46jZ1XimESUepOCEsJdDUxqgwIYSQ0pPJSbufwSBpZTmbNs1HZYWvjWKDPErUJhHC7a7/ojpd2UJY3TTQGkE6SkUJ4b61VQBAnzAhhJBOISdtMdwgMuFkOZs4VeJNCdh0KnzbJKjgbjZBSLnQiPDra3bgqGufLLssE+qmgZPlSEepKCHczxXCzBxBCCGkM8jmZCJBmjR9WmRE2FXAqo2irRGp5PsX6hH+1WNLsG5HM15Ztb24wblc9Z8FOOInT3SoDR0vIkxrBOkgFSWE8xFhWiMIIaSns+dVD+GXjy3p0j4zOWkVryaeEC7CYaDEaFooj7C/zUJR7SSJCLcXGBFWFopMByOv/3hxNd7dWbrKeZwrREpFhQnhNABGhAkhpDfQlsnht0+806V95gqNCBfhEW7N+D3CSpQWq+0KEdKqmEdVQo+wihxnyizy2hEZfP5NL+LgHzxWsrGQyqaihHA/eoQJIYR0ACkl1mwLr0aWTTZXzns0HxdYtTmOVVRWidFUARFdax/ubrkkEWGVsSJhRFiNsb1Y30Yn0ZHiIy8s34qtjW0lHA2pZCpKCHvWiDYKYUIIIYVz6wurcMzPnsKb63Za12dzuWRZI5KmT4vwCKfdaGtHrRFqr2wBWSPSCT3C1a6Pud2SnSGTzSVKX/bwmxsS9VUIdEaQUlFRQpiT5QghhHSEOcu2AEBoVDj5ZDnn/7jJcmZbLe1ZL2uEEsCqjWK1nfLLJnEvKK9v0vRpKnJsi1Yfd93T2POqh2LbuPQfryTqqxC6ohw16R1UlBBm+jRCCCEdod0Tgvafv2yygLBWYjlmO+31U4s3Yfp3HsbLK7b52jDbLBSlUZMV1PCnboujusqNCFvqP6/b0dxtkVnqYFIqKkoI96lWk+WYNYIQQnoySUXhlt2tBXlr86nL7EIwm8slEpTZIibLPbNkMwDg5ZXb3L4kJl3+IM7/04ve++JQEWGJ215ejeeXbvGtffrtTZh0+YNYt6PZSzeW1CNc7W6nWyOmXTkb19y/sMixloaeIoS37G7FET95Au9sbOjuofRaKkoIp1ICfWvSjAgTQkgPJ4km3LK7FbN++Dh+/ujbidtV1oAaIyL8y8eW4KZnlzmT5RKlT3P+j0+fFt6YeYzF6mB9stwV9yzAR29+CU3aXJp/z10DAJi/ZkfBBTVUruOMNrhMTuKWOSuLG2wIuZwsKFdxT7FGPL5oI97d2YKb/7eiu4fSa6koIQw49ggKYUII6dmECZ25K7fhjN/9Dy3tWWxzZ/4/vmhj4nbNYhaK3z7xDn48e7E3CS4uIl1MiWWzTfMYOxYP9re3ckveA50v/pFPn6ZbQ9oyOexstleOU5Hzzi5cccuclTjnhjle1DyOniGD89+fniLsK5GKE8L9aqs4WY4QQno4YcLgO/95E2+u24Vlm3cX1a5KAxZiEfaEYpwukZq4jEKP8ppNmn0kSX9m78O1RmgN6ucvXw5aoM0SEb7oLy/hgO89am272s0uke3kUsZL3c9zdURqO52eIhzzGUO6dxy9mYoTwn0phAkhpMcTpnNsntxCNISaLBbWvpoTFie01Hax6dMQFKReGzER4qTkrRH5ZbqVQbdxZCwe4ReXbwttu6vyCKvqeElvBnpKZTkVEe4px1OJVKAQpkeYEEJ6OkkmjhVR3djzyIY1r6Kqcb0XM1nOLK5Rco+w1lnWl+Uhb+NQx19VaB7hTrZGqAh1JrEQ7szRdB3qY+gpEe5KJNFfghDiVCHE20KIpUKIyy3rvyGEeN3996YQIiuEGFL64SprBLNGEEJIGOV0zS6WOGEQ5b2NQqUBC2s/43mEo9tJnD5N2l8Dwehn8enTgtYIXbfmcx7nvb7phHmEPYHaRUI4aUTYtllLexYf/MPzeGPtjhKOrHPJe4S7eSC9mFghLIRIA7gewPsAzABwvhBihr6NlPI6KeWBUsoDAVwB4BkpZfizlg7AyXKEEBJOuV2ziyVMGOjyLT5jQxAV2QwTwkqIxVojEhbU8FkjAm0ErRG7WtrxwBvrI9sM7UtrLqNFhD3RnrJbI5LQ3skeYSWEk1THA+w3DW+u24lXV+/oUGq3pZsa0NLedcE2wcly3U6SiPChAJZKKZdLKdsA3A7gzIjtzwdwWykGZ4NCmBBCIimra3axJImOFqMdPGtESIAzaS5fLxNDRyLCASEMfO2O+bjsX68VNBnQdh7041CvBIQX8U6aPk21nQk7YSVCRUaTn//gsmyBx2bS3JbFSb98Fv93+2uJ93l2yWYsWGsv150ENVTzM9zR1IZJlz+Iu15ZW3TbJBlJhPBYAGu092vdZQGEEH0AnArg7pD1lwgh5gkh5m3enCxFigmzRhBCSCRldc0uls56VNzueYTtHWQLjAgXkj7NjAkHPMI56ZV+LiQqaXqPAb/XVuaVsGeNqE7oEVbnIRMTEW7L5ArKA2xSVaA1wnbMWc+uUpwQVqWv5yzbmnifi/7yMt7/++eK6g8IT5+2YksjAODvL6wsum2SjCR/CbZvVNg39f0Ang97xCalvElKOUtKOWv48OFJx+ijb00VWjO5TvcrEUJIhVJW1+xiSfKouBi9k4nxCHuT5WK6V4KtkKwRZlA1Kq9wnOUCAN7Z2IDjr3sKW918yjp6ujNfHmGVPi2hR1gRl0f4x7Pfwjk3zCm6QlqqA5PlpPGZFSuEvc+qC10KKiJsfh/VeTDzXZPSk+QMrwUwXns/DkCYgek8dPIjtr61TpnlRk6YI4QQG2V1zS6WMKFapMbxUEIwPH1a0ohw6bNGhPW4ZlsTfvrw4kC09Ianl2Hl1iY8+damwD42r62TNSLnvnaW6RXobKg+8+fNPspF63cBgFWUJyFdoFdW306dlo5aI9T+XenWFSGT5doL9HIv3rALX7ztNbyyqqys/hVBEiE8F8AeQojJQogaOBfO+82NhBADARwH4L7SDtFPv9oqAMDumD9eQgjppZTVNbtYCrGkFiJc2mImy2USiiE9E4NJNie9R9t6O2aXph82m5Na8Yv88q/dOR83PL0Mb673e1Gl97/FJuDLI5yPXrcZNwLH/uxpyxHkUc3kI+n27URIZDMpKvBp8wjvamnHpl0tvmW2iLBnjeioEO7CiWtheYSzXkQ42bE8tXgz/jt/PW59YVVpB9gLiBXCUsoMgMsAPALgLQB3SCkXCiEuFUJcqm16NoBHpZSNnTNUh351jhBuaLGXgySEkN5MuV2zi6WQ9GmFkMlGC7q8GIpuJ19iObju148vwQk/fxortjT6BI4ZpQ2UWJZ5UasLYRUV3NHUbmwfPkibR1iPCKu1W3a3etst2diAc26Yg9dWb/f8vmo8cd5qb7xFfi6piKwRx1/3NA798RO+ZbaIsIpeJ3V9mOcv6U1QKVFDNb+PnjUioZc77ntNwqlKspGUcjaA2cayG433twC4pVQDC2NE/zoAwKZdrZg+qrN7I4SQyqOcrtnFksQaUcyPvvkYPazfuKigV2LZYo14cbkz2WrTrhZUV+WFTGvGH+a2ZZHwIsJarHlQn2oAwM7mdizdtBtTh/eFECJSsOkFNfSIcFSe5B89+BZeWbUdZ/9hDgBg5bWnB85X2GnxIpsRY4oiqrLcNovdQt/Ky6NcoDUim5O+iGvcMTa1ZZASAnXV6UTtJ0F1FfAIe4VPkh2LlxaQSrhgKs6FPXqgI4Q37GyJ2ZIQQkilkiTi25Hcq2FCN2lBDTV3zKZT8vYG4eunpc0/tyVpieWB9Y4QfurtTTjpl8/g7y+uih1jxjdZTh933lBhYutfjV+dl7gblPhIvn29l0c4oSVGb8esrJd0slxYFNZmNQGAGVc/ghN/8UyyASZEjTnUI5wwvK1KYMdNaiRBKk4ID+tXC6B4Qz4hhJDyJ1ZQQQaE4D2vrsW9ryXLuxoWOCt0spzNJeytEX6x2pLxC2Ez3VhO2iOEA+trAADLNjsulmeXbPb1Yxuqb/ya9k2aFcPb1YsI5yL3y3tdo9trbMvi6beDk/vC0oiFoXvI8xFhf1uxbQR8ufH2gnU7mhO1nZR8xgt/p63ud6VQa0RbpvOF8D9eXIUn3trY6f3c/cpaPPjGu53eT8UJ4brqFIQAmjlZjhBCeizhleXygssTMu5/X71jPr7y7/kJ27d34AnFmP2jSizr6/R2Wtr9IiVolZD5iV/aCah17RWqry2723z92Maqe4Rz2na5iIi3zS5i5hFOfoNg52t3vI6L/zrXy5e8qaEFuZzUIsLJhLC0vFYT+gqxRuh456wL3QVel0afre0FRoTdz6e9CyLCV/3nTXzqb/M6vZ+v3TkfX/jXq53eT8UJYSEE6qvTaGpj+jRCCOmpJBFcHZncHyqEEws+539b8DGvr4RvjM0xv1t6RFjfT41lpztZbmujM8Et2iOsWQe0dqLy9NrW5bNGxFkj7B5h07M6b2U+Ct7Q0o5Df/QEfvDgIk+8Js0j7J8s59oC3BsLPWvEJ2+Zi8ONiXa2NgA9fVrXKeG8NcLfpyqooiLCr6zahtfX7AhtR90EJIkI72xq9yLOgfGUgcd4U0ML7pi3Jn7DElFxQhgA+tRUoZFCmBBCeixxP8g5WXzmCCB836wRZQ7v39nAVvjCb43QPMIh4sPXprIiaPspcajE0dbd8dZA3SOsxrC5oTUfEbZ5hC3nXG0Xl1HB054hvlvFtqb82FWV2L8+v9ITwokry+nOD1f7qaioHkR9cvEmbNhln1NkpuhLmjGklHgZLwLWCH8e4XNueAFnXf98aDuZAiLCB3z/UVz8l7mB5S8u34opV87Gq6u3W/bqOi659RV88643uqy/ChXCaVojCCGkBxOnh6SUvkf+Jv98aRWWbtodun/YI/ikRRXUdlYLpyeS/cfR2h4tUnK5vDzVx6deqwlR3hPRkMfq5v7q1VfvmI8HFrwbvo91spxqz/UIhxxCPg2Yvw1bijg1Pt0qorJG2MZgQ1oiwkoEJs0j/Ofnlvved0f6NOlFhP3L1blJWgFQ3QSYdpuw/l5YHiwj/b93HO/58+9ssbSfwwf/8DzmLA2uKzWbG1rjNyohFSuEV7n+IkIIIT2P+OwE0YLl2/e+idN++7+C28/GWAAUemaIwDr3/5QQvsiriuiGj8k+eSos2hf1CD/rE4r55erRuW1P282BGseb63bh+OueirdGxESE9fHZzkfSiLC+mSmE0wkny/32yaX+MXVBQY1MNuezJYSl6wuzLgCOpeSFZX4h61kjYiLCpk991dZGPOcK37R7V2e7GVm7vRmvrt6Bb93TdZHarqIihXBNVQqvrd6R2FRPCCGkskjiEY7bJsovGWeNiNNCeWtExDoBn+KMF8L2iLA5YU0RNUbf72NEpDd0H6/v/OuVW5tCz3nKu0Gx+25tfTVr50MdeeKIsHZi1as2r3x0cZXlvDLSRe2djOsefRsX/Okl772yZ5inSUV2s8Znvnzzbnzpttdw/p9e9BVDSWqNMIuRHXfd0/jYn53xeFF5y2emSnH3rUlUfqJk1KQ7X6ZWpBA+ZR+nkkZcjXRCCCGVSRIh2pHIXZigM3PShu/v/G+NCKt18Be9aE4ihL3+88tVtC8QEY4YYlgeYW/fmLLM+pj87+39hU2WixLC+o2BerSffLJccIzqmDteYrmo3ROxdlsz1m7PP9GOmyxnno/3/OIZPPW2Y2FoaMlroPaE6dN2ufvYBKZZ5nrOsi1Y76aLUxM962tKV0wkDF9VxaRlAjtARQrhwX2cnIrKaE8IIaRnEfoI3v1fyo4JlngPctz+ruiKLKhhZn+IH5MSqPrxex7hUGuETdTmLNv5drb0Hx85DrNjeB5h4yCjhLDumS60MpqtoEZHU4dlzNlznUBLe9bn47Xd+AD5iHDUDZlun8h435Ho87fLjQibgjaXk4Ey1xf86SW891fPAsj70vt0gRDuaipSCPetdT6IRgphQgjpkcRN+nGsEfn3fmEUL6ayMdvHCmE1WS7CI+y8Tq7WpUX8AnoO3+Rj9HmELafStqstGmuem7A+1Wkw2wgTcjlpRoRdK0ARWSO89GkdLDPcFXbL1kzOF7UN9wg720RFyG03EnERYRVF7luTxhtrd3jLWzJZL0OFbsdQAce8EO58a0SRzpaiqUgh3L/O+SB2tzKFGiGE9DQaWtrx4RtfiNwmJ/MiYsWWRky+Yra3TtcUaia8iT/rgGV9jID1rBERbUsZHwU227RZM6yWhVz0CHUBZdvOJv5tAtJcFO4RtleGC50sl5O+dHLtCfI32zJF6GNszzgv7Nkv4j+IpLaMQto0ac34I8Jh6dPUZ5GNiFLrE+OSC2EnIty3tgof+H0+HVtTW9b7DG3nTwUeGREuE/rVOnXXdzW3x2xJCCGk0tjRFHFt1wRXmA7RF1/455et2+iiL4klILB/3ggcum9OSrxoSVMVRjYn7ULYMpi2bM4nuANtWfII+8Zo6z8Q/ZWBG4IwrahEVCYr8e7O5nxasKjJcm1BIRclRsPm/6m+ouwVcZYBNaZCKCaA3NKeQzYnvZLIZnnofNvO8kw2v62JLnrVUwP9e2FjV7MraGv9kd3mtmxkLudGd05WXVUXeIStt5edR0UK4QlD+gAA3onIEUkIIaTnopcjtq2LwzbZyr8+uKw1k8XTb2+K7UOJx3mrtuOGp5fFjsU6Pk372MRhayYXPVkuRqXFiWdARd3NcYV5I5z/FqzbiSN+8iT+8eKqyHEEJ8vFWyNs1eSA/LEoj6/txuGbd8WX3i40Ihw3odKG8vWqqLAtXZ7edjYnQ1Oi6R7hdm3sUaJfRYT7VPsFbXN7XghnpfR9zmu2NWHB2p0AgOqq5CK1qS2D659aWvYZvipSCI8cUAsA+MEDi7CjKb7CDiGEkMohiUcwlwtPc5XkZ9cnqhJ6aH/28Nu4+K9z8cqq7XmBaLNVuMvUjPtCUIJIF3OmQAWcaGDUcdrSr/n6se0TsDVEi20d9ZEt3rALAPCyW0o5dLKcLNwaYSsSou/T5lojNu1qxX2vr/Pt+5/X18ceQ5QNIW48SVECOD8ZDu7//raU9s0Ykwp19JzAGcMmMX/NDvzdvRlR/HvuavzkocUAgNpqv/y7+5W1WL650e1bol07F8f87Cnc+cpaAIVFa3/x6BJc98jbuH/+uviNNbraI9y1CeFKhJ6uZkdTOwa5WSQIIYRUPmZKsmeXbMatL6zE429twgHjBwGIziOcRLxJCWzZ3Yq125uxx4h+lvXBRlZtddJebW5ozecbtrXt/t+RLAZ6RM4WqdSjhLbzEFZQwxujbR/z8XwuuN22RnvwSVkj1ON6lfUqTCzmcn4hZ4sIv7OxAQPrq7XjsNs9PI+w28YLy7fiheVbceTUYda+wzDzNOsUM6HShoqCq2huPn2avb+oiLBKaQb4x96WyeFMtxzzhYdP9JZ/6+4FoWP/47P5KnvZnAz93Ar5Tiv7apxv2aSLdXBlCmEAOO+Q8bh97poOp0shhBBSXpiP3y/6S97nmy/lG+7RTPLIOislTv/t/7BxVysWXPPewHpbE7VVThStLZtLNKmrmN8n1ao6ttdWb7dmSGptz2piKdhOUR5hIyJ6wzPLvCihQgksE5VGTkU6vSplERHhVos1Qh/Cyb961stkYLZls7aYgqvQiG20LcOyfVHWCP+kNpsnXH+fzclQIemLqGsnThfOLe1Z1FUHfb3Rkfdwm0ghola1YMu1XU5UrBA+ce+RuH3umtgUO4QQQiqLJAImyiMchcrtm5MSG3c5lblsT8RtQ6hxhXC75s+NEpnqUX0hqOayUmLjrhac/Yc51u3asjlNNAf78WWNiAhb96utQlsmh7ZsLnDef/vEO4nHrcSO+k2uTodXKXOW5/weYfdcmbl89ePQV/knyzn/x5UXjiPKI5yk2EgSlM3BzBNsNqXuY7I5GVpuOSoirNjV3G4VwnFebJsdBwBaCzjH+VzbhQnhrhbOFekRBvIXpKh63IQQQiqPJJE2PdWYSdTuwrKN3UMbXKbEXVs250WtrRrTXVhMgQbVr5QyMld+mybGbaLGX1AjvJ9MLudV7+rIpCZ1Xj1rhFGcITg+f6U9zxoRMQS/3SMY8Y7TA3E3Tkkn6gHAfa+vw6ZdrSFbh/evorhKEIdFhNVYM7lcaMBPv5HIZHM+XaTSnG0PycASdayZnCxNRNhtoshCfwF2t2Zwy/MrOlRR0kbFCmH1iCrMRE4IIaQyiSqIoIJFkR7hiGlkKtqk97F0czAD0f2vr8ekyx/Emm35crheRDib8yLG5hCa27JYsaXR265QdHEbFUlrbstia6MjxGxi0xdJjfC35nLxojUJ+YiwI8684gwhNwPZnPSXCHbH691gxGTykL7lzv+mSPvsP14J9BlF0ojwlt2t+L/bX8cnb5kb2Z5JezafHq+hpR1vrtsZKLH8wBvr8fqaHT5rRJgQ9t1I5CTGDa4HAKzf0eLVWwhLKBAp+nMy9CauECGsjkH/Gk+9cjYu/fsrIXs4hH3rf/DfRbjmv4vw7DtbEo8hCRUvhDc2tHTzSAghhJSSZBHhiDzCCfScrgNsxTvuc7MMLHp3l7esOu16hDPhHuHL/vWq97ooa4T7fzYnPYFq40ez38Kb65yxxYpGyzD0qLV+XMWixE5bwCNs3z4npW/iXXvGP1nOZnOY9cPHtfH7hX5jayYw/vlrdvjex1XO80XRteXt2Rw2N+Sjv0qYbthZmP7QI9bfvPsNnPG757zMIqrry/71Gs66/nnvfSbCI9zYmsXf5qxEWyaHTDaHacOdSZ+rtjain5sneEdIvYWovzEnz3EpI8J+n/fDCzckbkNny+7WgseQhIr1CNe6SZ2/8u/5OHvmuG4eDSGEkFIRFa3SrQ3hEeFw8pPtkolUXRDVWCbLma3MWZYvoNGRiHDc8N5w87oC9vOlCxlbhFzC8VjnZD56W4p0r0okKrtFWGQxm5PY3tSGoX1rsLWxLZA1oqUt+tzpEf1/vbQaf39xlSf+wrD7fJ0MF3fOW4ObjMwJ6hi+fe8C3DFvrbXvQtCzZKzd7ghgJVQD6dMSRIRvfWElctKJLmeyEmMG1aO+Oo0VW5rQv87JtrEzxBoRdQztFr+4vs7GtsY21FSlfJ9B1N/YdY8sxtsbGnDzxw8J3cZE3cikSxzCrVghXFNAUmdCCCGVQxJrbc4VcTaii13k949inRup03/3aywRYbMvPcuBLgJrqlIJI1muAIqIeJtYs0bETJZzbiSc11WlMnFCzxqhLCj27R5/ayO2NbZheP9abG1s8yLASgDqj/1t6Iek8uXujvBUA1ERYYFv3PWGb3lWSk8gmTmIvZuVRBmrHZrbstbx5VO/2T3CUVkj1L4/f3QJAOc7NmFIHzyycIMXwd4eZo2I+HK1ZXOhNpF5q7Zblx/0g8cwrF8t5l11knYMzv8qIvzYoo3euuufiig0E/J1LHbyXRwVa40o93QchBBCiiNqkpnSC87vdOERYa/0b0KVaZug1dyezXuEje1Tmqhs16wRtQnDWPrkqaRjLCZrhET+PFeVIMSme1qBvLgO+yzve309tuxuw4gBdc52qqBGLloIT7r8QTS2ZoqKXjslrA3BGbKtPmzzPqGYbBF7X/0wTv31s8F+QlLtqeOLyhphUpUSqK9JY92OZu/GoiVkHlXUw4q2THhEOAplXVCoY/vpw4uxdFMDPnPrvILbtLVHIewydXg/DKir8rzChBBCegbROU7zaafCI8LhbecjwsnGogsnJS6b27KhUWfd16v7XKsT/lZ548vJxJPXrAU1fELYFgnNiz1lAegI5qN2dR6a2qJF3Ij+TqXYdiMifNOz4RHDzQ2tRWUOyORygc897Lumn3tTeEV9h3a1tIfaB2wWB3UcZtRXjSvKI2xSlU4FfOWZXM6XZs1rP+IPoDWTK0mNBnUK125vxkm/DN4EhKEfgf7xqO90qUs2V7SKvPjISdbch4QQQiqXqN9gFTmUkZPlIqwRWsQ12Vg0Iez23dSWzS83mtGFiC4magqMutqil0nGqPBXnrPtlc8MUAprhNmHanNXyGQthSmE1Tm+7eU1kfsVk+AimwtG2cPa0c+pKYTvfmWtubnH/tc8is/GZEXQUZaI1oz/5uq11Tu8cSStl1CdEkgbY71//nrsffXDWLKxwRfZjrrJWrxhF3a1RH9uSSgmch7VhvpMSl0/oqKF8JC+NZAy3ANDCCGk8ojLcQqoynIh1ogEAjm5/zb4Q9zcplsj8uvNLAU+IZw0Iizzx5c0KGc7X3rf1slyekQ4VTprhEJljdBTpNkY1MeZ1NWmrBFGO9Uh0epiRNaqrU2JhbD0RYT9637/1NLANvrrJxdvSjymNq+wBvCThxYH1mdyucQR4VRKwPwoVVnwRxdu8H3OURHhlvYc/leCFGXFxih166v+eZmltEtFRQvhof2cO8mw2ueEEEIqj2hrRF4wFZo1wvaYtZCxqAhqS3s20Pcba3fgzOuf96XZ0idAJRbCWr/FeoSrUsInFmyHKpGPCoaJzUIwh6oiwg0xkcX6GmdKWkbLGuHL1BESSS9GY51304vYYWRRUNkzTHwR4QQR82JFny5y9awV+jgSC2EhAtYI9b1b9O4u37o4283OmEh+EkpR+CJn+ZulENaYMrwvAOB19xECIYSQyubhN9/F3a+GP3rO5PIRtDDCfoD1pclFpta3FrU005ytc9Nh6RRjjVDtZXMyuVg3dEFtVco3Uc+eNUKWdLKcOVYlunbFRITr3fK/ysphVgy03UAUcpNgslorkKL6sz1q14VimAzWRxBlZYkSbnFloTMFTJZLp/KReK9999jW72jxecHD8gSb+3WEYj8j/Xzr3yvVHvMIa8wYPQA1VSks2xKsCkQIIaTyuPQfr0auz2oe4SQTnXR0ofLowo3WbQJt6R5hiy1DNWlLN9VRa0Ri+4axYW112m+NsE2Wg26NKIVHOEwIR0cWVSngds8i4P9cbectm5N45M3kRRkOmjAIr7oBM1XAQiGlxO7WoNDUDycs84KOM277eYzytMaJuoIjwiEfZUr4P+c4kVqI2DzvpnxBGimlZ20oNh5sJoVQbTIibEEIgUH11aEJowkhhPQs9FK8YVnWQpdrv8zrdgQjuPZ99MlyebGmfpSV/9aWJsxnjSgwIrxqayNWbG1MtI8Zja2tSvnEV1iJZSWgS5I1wuhCiZldzTER4RoVEXbPYzbnE/Y2//J9r6/HfK2gSBy6mF5jRIQlgEZLfl91TjPZXGgqN/205mR4WeKWiJzIcYIzk00+Wc5mjVCkU8IXLQ7LE6xsMoUI4ReXb/Ne+793iZuIxMwW0RYTzS6UihbCgGO0Nz0/hBBCeg7jh9R7r7NaVDbs5zBMkBRSAEGRs0aEgxkrzIIIQD7KCQQjmyftPcLanxKBt89dgy/d9lqiMZoR39qqlDFZzrIP8tH1UkyWC+Tndd/GeoRda4RuedGbGuZmldBZs70psCwK/fhMa4TM2QtxvLF2JyZd/iBeNyZAhhFlZTGFrK5V46wRbdlcYiGcTonQHLtCCF9EOEzoekVjioy66unyivUIC8OM4hSXkd6YSm2NqHwhXF/DrBGEENJDOWaPYb4Irx6VDbVGhAiSolJu2TzCOYs1wiaEc+FCeNTAOkwa2ifYX4IwmmllMK0RdQFrRLANKWVJJ8uZY1DnJy5rhBLC6qbBFJQ2MRUVYbWha0NzEpiERKPFGvGf19YBAB5KaMHI5exR1rZMLuAfV+WP1foosjlpzQNsI5UKjwjnctKf4zpMCKsy4u76qNoVq7c2Bb6venQ9yd9bknLVUgK3vrAKyzc7T0hojTAYObAOG3a1dPcwCCGElAAljBTV6ZQvwqvEhpThEaewx77FEBYR9oSwuy5riULrYsO0RqSEsFZITSSEDeFq6gInIhwtJvUxh4knRTol8JljJkduYw5bddkSM9HL8wi7480aNzi28xEVITW/PybBwhX2XMdq3IVk7rCJusv+9So+8scXfMsG1OenZyWJ9u5uzUQKUkVKhGe4yOQkaqpSGD+kHh86eFxoxLc67RfCUVXcjr3uKfzluRW+ZXpE2Dx3+44dgEMnD/Ets/n5zS6zOYlb5qz03lMIG4wdVI93d7QkuqsghBBS3piR0+q08Am9KHuCIuz34A9u/tdC0H+oMxFV7WzWCH0b87jC5EWciBciaGUwj7e2Ku0TOvaIcF5Ax2WNkFLiiKlDY7fxvQ+8sFNnZI3IGt5vW6Q9KiKshLWOfsOhhOe0Ef28cdtShak+CpmwaPvsHl0UnJTZtyYvhNsSZITY1dKOPjECHwDShv3BNz430j5r4hAMqKsOveFSQrg1q4RwdJ8vrdjme6/7qYNp/VKB9pLc+OWk9FURpjXCYET/WrRlcyWpgkIIIaR7MaOTVemUL9qqe4TDfkPDxORvnyxcCNuikzmZF59qdVxkr9oQm0KYTsho9EinGRE2BUdtteMRVuLUFpWVyFsQqmPUjkR0ZBAICpp89otooVNb5S8LbFZ/a7dE2qOyONRZBKM+cvU5KcEoYc+Zq/ooJCKcNN2dPsYkXtyGloyXbzmKlKWynEIJYWfSXHgbtaY1IvZbav/cndf+LavTQetGknOWzUks27wbH5w5FumUKNq/HEbFC+F+dc6Xw2Z2J4QQUlmYgqs6JXw/lnpBjbDJb7Yf12In7ui7tVv9yc7/YZkFFGZEOE5Ymgysz/tK4zzCtVVpSOncEEgprdFqJyLsTpaLjQhHT6izpbJTb+N0TnU6FTie5Vvy2TIKjQjb/M5686+s2u4uE+74oiPCiYWw4RGO0iRJo5vqK7K7NYO+tckiwmHWiGzOyWoRtQ2ge4TdcxzzNTVPj4xY50SE/Q0msTG1ZnJoz0pMGd4Xg+qraY0w6VdLIUwIIT0FUxRVp1OhwjbsN9S+fXHjue6Rt73cs7ZotGp3487ouSq1ASFc2DiUEJYyGDUPpE+rdvpqz+ZCo6e+9GkJBhO1ibRE59VNSpyQrDYiwgBwzg1zvNcZi+iJir6bkXcAVi+2F1WX9oiw6iOp6zIrpZeFAwCOv+7p0G31m6Ko9uuqHPG7uyUT630GgFQKoRHhTC6HbA5Ip8OjxoDmEc6qiHCQKcP6eq/N4es3nAFrRDroi09ia21tzxd+qU6naI0w8YRwzMxUQggh5Y/VGmERU7mIyXL27YufR/Kvl1YD0PzJxuP7F5dvxb/nrYlsw4xUFhgQ9kWEzaiaeWxKQLVnJBpa7bZBxxqhBEb8YKLOnkR4+rS4014VkekAyOeN1onKomAVwpbt8hFh+2Q51UfS+UeL393lm9S5ZXdr6La1VeaEUPvx17k3NA0t7ehbm8AaERMRzroR4agbHzUWVZnQ9uRCP8fmd08/Xea66nTQI6z+pp5avAn/e2czgOCNS1vW+SyqUgLVVcL6hKMjVLwQVl+Op9/e3M0jIYQQ0lFMUVSTFtYIb9RkOWtEuANjmrdqG9oyOXuJZQRz09owxU+h1ogBmhA2jztQYrk6H9ULCxJJmbcdJMkjHCVopcUfK7V1UdisETr2iHCEEE5YwS/vEbZbI1QfSaOPn/rbvMQeYfX5KMKKragocGNb1joJ0CTK/5vJOZP50qmE1oiIyXLVVfmFAWuE+/6OeWvwzkZ/1d8qS55jdc4+cctcXPjnl61jUk81aqpSqEmn6BE2mejmYbwj5m6cEEJI+WMK4TBrRC4nsTaksEKYcC6WF5dvw08eestXYtmrLCclRliKPpiY4kMIEeu/1NEjwmbE21ZZDnCsEWG2wZdWbMO5N70IAOhfFx9tjDp/EsFH/Gr7OG2YjosIWz3C4ULItKAA9ui7+jxyIdYI1Uec91snado+c4xh5bfrNPGbxBrhRHvtbTmVGKUTgU9gjWh1j9tmK9EjwuYRq8/9m3e9gQbju1ddZckaYUufZrxXwrcqRWuElWH9anHladOxqaE18lEEIYSQ8ifwOLUqZRVTv31yKf70vxXWNmxCWBVIKJalm3Z70Ul9cphjC4jf/4gpQ3HG/qO994VaIwb10SPChhC2TJYDnGhmXEELIJkQjjrElVsaA2Oav2YHfjz7rUQ3IGFCOCXs83+ixKlNCF90xKRgn+4HIKWM7EPlxU3yeSWOCBtPB0KFsLZdfYKIsBDhleXW72xBY1s2NiKsRK66AbFtqUewzc896vOuTgU9wut3NOPWF1b6lpmHkPcIC9QYVRNLQfy3vwKYNNQxbm/Y2YJh/eLvzAkhhJQPSzftxrjB9airTgfERFxqLxtmZG7R+l341t0LOjRGIYQ/Y0WEF9LGHiP74fcXHITHFj2E1kwOqcICwr6IcLB4hT0ifPNzy3H0tOGxbeuVzsKIOsaTf/Us9hs70LfskYVO/ty+SR7ph4i3qiKif6bI/OJ7pnkawdenskbI6CwUShD3q62KvamIE8L/+cJR6F9Xhb+/sMq33OZrBvIeYSDcPqETlxotv034N0/AuQHxJstZNg0T7gAi75iq0imkhP9c/23OSjzwxrv+MZhC2LWpVKcFLj1uqvVmpyNUfEQYyF8gdjQxlzAhhFQSO5vacdIvn8EV9zhCNZh7tPCfKXOC07bGtqLHp0iLfE5bPdetnoYsCvXbrn7kO5I+zezPfK/y1P7jxdWJMioligjHiP2wc9CYoDxwOmSyWJJsFiZ1hv82JYS1/ZQmhKMizGrSXL8Ek9XirBFTh/fF1OH9AkIu7Dj1KLDpK1ZM1jI4pFPhleX0vqKsEf3qqnxCOc4aYZssF/ZdqU4HI9a2vM8mbZm8NeK0/UbjxL1Hxu5TCD1DCLuPjGw+H0IIIeWLymrw0vKtAIKCKi7HrQ1TkDS2dTyrUDolvPRYTrqwvDVCdRelQZQAUP+LkBLLYegeUVN8hHmEAWB3gmJTSTISjOhfF7k+KmIcp2dDI8JFCGFbvmZbO/pkuZb2XGhfTe53J8k5irshUgJTn/ioxmhD/8xr0nbBqI87JaJFLuAIZVMsHzVtKD52+AQAzg2XPh5b1gw9y0Vg4mZEYRFbHuGoaLxCpbILy67RURJdYYQQpwoh3hZCLBVCXB6yzfFCiNeFEAuFEM+UdpjRqDtlleuREEJ6M+V+zdZRGQ+UKDT9rsX8+Jk/xFHptpKSEsJL5ZWTEvocLhUBi3pkrH7/vchwAX0/+bXjfOIlKD787/XMCS0JrAVJBOe+Ywfi/suOCl0flds36lF81PpingYEs3PY29fTpzW3Z0OFbrPrq03yOD5jqYJn63NI3xrf8jDtWlsdHxHWbxRTItr2AKiIsNFPVRpD+zq20kGGELZNZqupCr8pkyH7OGMNinDze/P2hga8uW6Xb5keEe4MYlsVQqQBXA/gfQBmADhfCDHD2GYQgD8A+ICUch8AHy79UMMZ0b8OI/rXYs6yLV3ZLSGElB2VcM3W8Yo6pPOTlxQfOnhcwRYCICiESxYR1rJGSM8aIb1jMEWYjlmqNlVAieXqdMrn/YyzRjRoUWBb+jHTb5p0JPuPGxS6rjHCghH3GYaJtyT5jU0ChUtS9oiwOgXZnERbJudZH8yxNLdnUVeVSvRkImlE2BTCYedHnywX5hHWbxTj/L+AvSALkH+iPqC+2rfeZvfQ+zSPOSqtoS2P8Kqtjb73p/z62cB+XlnsbowIHwpgqZRyuZSyDcDtAM40trkAwD1SytUAIKXcVNphRpNOCew1qj+20yNMCCFlf83WUT+k6pGu/sP68w8fUNSPnxmRamotQUQ4JbzZ6rpHGMhHZCMnEbmHofZKieS5jYXwi6WANcJ4P2Zgvffaln7MHGcR9xoBooSwKby+fNIexvqQaGcREUAzchoWJVWfmXo0r0oYm9s2tWVRW53GgAQ+6jiPsPqOD+uXTAjX1+SPJTQiXKA1ojWTC0RlpVZmelCfGp9YjbuRMicz2nJK62PNW4OcZUuMXMP2MavJct0UEQYwFoCepHetu0xnTwCDhRBPCyFeEUJcZGtICHGJEGKeEGLe5s2lLYAxoL4auxJ4oQghpIdTEddshXqcrH6czR/R4iLC/h9nMyJ88MTBgX1WXnt6ZJtpLWuElNKzdEiZ91FGPT43DyPqsG668GAvRz4QjPQFC2r4Fxw2ZQhmThiECUP6IJPLBcSdOc6SCOEI+4kpzqaPGuBfH3LairHF2KwRNkGtBF6zJ4SrrGNtzeQwakAdfvHhAyKLWowdVO8rsWwj5UWE/dmtws5/koiwHqmOS40GOMLfFiFXQnigERG2aVpdkJrWBr10t22s6liTZMEw+yjGM56EJCOx9WweZRWAgwGcDuAUAN8RQuwZ2EnKm6SUs6SUs4YPj0/pUggD6qqxq5lllgkhvZ6KuGYrVEQpn9fVGGgx6dMMQWJ6hGeOH1Rwm+mU8BXU8EeEEwhh832ENeK9+4zyjdGM9JlCw4wQp4TA5KF9kZMS7VkZEJSBiHBBjuXCMbM2mMIvNCKsiaWxg+qt25jYskbYmlefZZORFcIWPZ46oh9GDKjDV08O/IkAAA6dPMRnkYkjqTVC93rXhmRX8EeE4/t2UvcFN7zwiIkAgIMmDIq9+dS/P6YQzkn7BDvAqRKp2o58emKO2csj3DkR4SR5hNcCGK+9HwdgvWWbLVLKRgCNQohnARwAYElJRpmAAfVV2NXcDillQTNxCSGkh1ER12yFsht4EWFT1BUhhOM8wsW0KUQ+ipjzFdTIPwqO8ginDKEfJzb03zFHzIVbI0zdIQQA4fTVns2hOpVCC/KCRRfs3/vAPiWJCEdhRllTQuDzx0/VboLs++ki76hpQ3HHvLWxfQUiwimB6pQTidRPm7pZana/GyraaxXCw50UZeHeV4FshCXAxLRZhDlA9KHUJogIh32vB/Wp9tLLtrRnfVkr+tak8fkTpuGQSUO8pyJxfx++iLCR9cH527DvV6V5hGurUmiI7CVPWzafR7gzSCKv5wLYQwgxWQhRA+A8APcb29wH4BghRJUQog+AwwC8VdqhRjNhSB+0ZXOJar4TQkgPpiKu2Yq2jOsR1iYv6RQTEY7zCBcj/FJCeD/wTkTYeS1lXiCpKJdtzGafKRE9Dn1dSvhTacUFHp2JeE4DmawM+KzVOM/YfzQ+fuSkouwnhWAGpwSAb546HVed4czhDPMCV0d4UcMITJYTjrBb8ZPT8b59R3nLs0ZEuG9ERHj8YMemIkNc3QLOd8P0CL+z0S71hBB44mvHYfTAOneM8ec/zCOsF5wJ8wcP7pOPQLdmcth/XL74ycLvn4pDJg3xbR/nM46KCEfl1dY9wgVZI9pV+rRu8ghLKTMALgPwCJwL5R1SyoVCiEuFEJe627wF4GEAbwB4GcDNUso3O2XEIcya6HyQ971uBj4IIaT3UCnXbIWqYBVmjYibBW/D/CFuMqwRxVgBzEpyekEN9VoJBJuX1OwzTvvo26dTIlHRCyWWU0K4EVCJTC4XeKSsoqZqnJ0dETZvDEzdmyRrRFvCsrpBIWz3VqviKKY1wiZK1ecadgMyfkgfbG5oxWOLNvqWn/yrYAYExdTh/bzPNOwptt5fuEfY/z2xoRdjac1kMXpgtM0k7k+uRuszKIRlaE7p+pq0d6wFWSM6OY9wohLLUsrZAGYby2403l8H4LrSDa0w9hrVHyMH1DIiTAjp9VTCNVvRnom2RhRaYhcICuF2Q0QVM+dGT+tmpojKp09zftxtgkRpHRVV1KO2NvQmhBCBIgwA8MTXjsNJv3zGG0vf2io0t2eRyeYg4BjD2zIyIKK8yLW7vJPmIHmY58M87tA8wppiPnH6SMxesCG2r0BBDX2SoRbRVd+JZiMiHFV8wxbo/PzxU73qff+dX1ggLl9kxb5e7y5MOOo3OSLkKcOgPvnvjhLFt37y0NCbqzhrhD8ibFoj7BHhX37kAJw8YyQWrd8VaCOObs8jXEmM6F+Hrbtbu3sYhBBCEtKuRYT/+dKqwI/orpbCJ0GbbQQnZxWu/HyT43J+j7DqTgnhJI+64+ay6KvTKYEBdUEhPKi+2hcB/e77Z6BPTRoD3KIIUsKNCBvWiIAAzq/vjOhwXMaMuIjwZ4+bghOmj0jUly1rhEL/WiiPsGeNiPAIe+WYLdaIlAiWDU6KWW3QRL/ZCvOf+6wRKWGNWg9yxa8QwHdcO8qxew7HzAmDrW3G/X3oFgUzPZ/z9xAcxIl7j0T/unyxjsIiws5n1J15hCuGof1qsGV3x2vKE0II6RratMly37436M5QaZ0KIW7SUjETqlWTSmzkU6nlZ8krgWCLqAXEoGWZf73f+2mL3tVUpbzthADef8AYLPr+qairTkMIR7xnsjIQ5awxBLtPdHeCEjaFnnn+w4SXWp4kP67CljVCoeuzjx7uZEloaveXULaNJcy2A7gli4s8Z/nji982SUQ47ByppwnnHTIB/S03VIFxxRxPlFfXyRrhvP7ZOft7y9Uxqv8L8Qira0R35hGuGIb1q2VEmBBCKggzfZpJktK2JsE0VmbWgoKb9GKBKkOA6RkG8sLGdiymWIobg/4UWAigzpI+q6YqPwvfbE4IZ8zt2VxAQHiC3RKR7IyJc+axmu/jhXAwBVsYZuTU9lncdOHBGONOVFNpV6PSp0VFSJ0SzomGZt0XCN4YTB/VH4ATXVWCMezvwJc+TXt96OQhGDnAyVec944nG1fcVyBKxOpp5PQIrvddSxUeEW5p7/48whXD0H412NLY5vNyEUIIKV/Uo1X9R/OyE6bhte+cDAD49DGTC24zrrBBcZPl3Alx6ZSRPs0fLQbsgkMt8tKnxf6ox0+CctKChT1eF/n0aWZJZS86J4yewlN5RaGyH4QRiAibHuEY5VVIRNjMrqDv9v0z98GHDh6H4/Ya7i3f3OAEz1RuX9up9qwRFm1hprYrhFTI98U7XzL/dxEeEbbfxByk2R4KsewA8daIKBGrPy3R2zFvumoiUg2aqOp/nZVHuEcJ4WF9a9GWyaEhotQjIYSQ8sHLI6z9SPetrcJgV5jUVqVxofsYW+dX5x4Q2qaZxsqWuqxQ8inS0v6CGpo1whPCVmuE8pm672P605swBUx/leEgJbxjs/twJTK5YPo09S5l2VcJzv3GDrSed/tYBc45aBx+fPZ+eI/Fyxt3/uOivULYyyTbiMoaMWZQPX7+4QNQW5X2xPjm3a3oX1fliTtbP1WeEA72l+6ANULtZ/apv1d9h0eE/dYIfSh/vfhQfOroyd7fUtLvfdTxHDh+UORn4UwkDQrh/M2XGnfyc6aEcHfmEa4Yhvd3HgOoOzxCCCHlTV4I55fFPTr/8MHjcPbMcbFthlFMBM9LkZYWboooZ7k+OajKi/BZhLD5voDJcuZwH/jS0fj9BTN97QbSs8FfUMPWdsoyXvX6ffuNwg/O2jdyjDq/+MgBuOCwCfjLxYd4Qt1s0zc4jbBor9DW28TXGfuPDiwLFtSwj1d1uaWhFcP75Use2z67lHETY7ZTrK9a7Rdmm5HI21jCorC6OEyl/GJ9xpgB+M4ZM7zvatLvfZjQfd++o/CfLxwVaZ3Iybw1yfa9Uv8nLT4C6NYIRoRjoRAmhJDKQuUI1X98oyJkQPwj3vU7mn3vzUfaYfv/4aMH4bITplnX6UUzzDKyWS8CFp8+LW4M5nonJZbz+tfnHojfnHcgJg7tizP2H+Nsl8pvZ+7veIQlqqvs1gTbEEzbRNxx2DeK3sdsOy46mBLBm4FzZ43Hzz60f2Bb078afhz5iPDQfjXe52vLTKA+T1s2hI5YI9TQAt9vzYqhxhN2HL7JcpYIrGonqg2TuO2iUhpKrcKeXwircTkvzDLTUTAiXAAjXCH8zqbdBd1tEEII6R5s1oi4iWVRv9N9atJYsdWfT97UL2G65bT9RuMTR02yrtOLZmRz/oIanoiK8ggXOFlOj4Yqzpo5FmceONZoxy5q81kjcoFImifALPt6wjpkXNZod3TA1+IRNtaHnAzP/5wSwfOXso/FFP1hok512ZbJYWjfWi/aa4vuKq2pPucvnDDVm2yXFqLoPMzpkCcIepaKi46YBADWPNKAP31a2LHmPCGcbFxhn4da3mgUqNGRWtYIu0fYeT9qYB2uv+CgRONpbs8ibfkOlIoeJYRVRPg7/3kTP3xwUTePhhBCSBxKCOtaNXTykEvUD+LEoX2xckujb1kgh0TE72lY2zktIgxo6dMQnByULI9w9HGET4IztvP+D7NGyEAkzYz6Rj3CDuvP1p45drNN773xAYdFhFUkU+2+8trTMW1EP68P2xBN0R9+HPnlg/vmRaZNBJrWiOp0ysvi0RFrRNi51sfw+eOnYtmPT/OyWpjoEeFwIRy93kR9XcYNzlegG1BXhWvevw8AoDFiHlZWyxqhB+dNG05VSmDysL6R41C5nVvas52WMQLoYUJYLyN4z6vrunEkhBBCkrDCFa0Zzdcb9qjYex/xmzhhSH0g93BSawQQHglVbSjPZj6PcNAj7IjcsIbcfhJ6hONskaodmxj1SixrjfzgzH08EWibLBcWYTbX+/qKSU8XGzEOsXfYbgb0fLTWiLAh+sMSDei7VqdT3udrryynSiy7whzCE8WlyBphjlH3CMdNFAyzFPkqHyqrQoEeYV2o/vDs/bxgY1OEEL7ingU46/rnAdi/4/pNWFT2if61VXjwS8cAcDzCnZVDGOhhQlg/6WZSbUIIIeXF6q1NXtncNk0Imz/YZsQtSkPWW/LtmhHhKCEctq49l0+fBvgzU5jp06KLJ+f7sW2T0oQCEB9tjPL05j3C+d/DC91H7c6++fGa/eu/p2fPzNsxTpg+PHI85r76GMPeK/EZdqy2DBphFd3MFFthNxym+PesEbaIsGGNEAK+zAhqHDMnDMIB4wdZ+7OhugrzxJuWnrnfPgm3feZw3zJd+IedP2+sCSPC6pwN6pP38epDTCectGbrT2p/K7Z8xGqXAfXV6OcWkWluzxaVTzwpPU4t/umiWQCArbvb8IV/vlpUnXpCCCGdz66WfOS2tV0TwiF+Wk+ERuQJtgrChB5hAKEh4Xb3t0RFsZQQfnX1Dvz2iXecXbVoamjZXKioYkj3njhVY40WL55wDSx38gi3tmd9PlJ9DKZvU1+mFq289nT86twDvfW/OW8mbv3kocaYjWMwxhK8kbELv7DIZ5h1w7a1GdFNYo0QAjhiylCcsNdwfO8DwUwZnjD1zhu0iHA+oluVEuhXmzw/bqg1Qvj7UwzvX4upw/12Aj3aL4wiLIrxQ/oAACbFWBEU6vPSz6X+GV5y7BR845S9MHZQfWBfXzuWz1M/h6af21nuLMvm/BURCynAUSg9TgifPGMkLjhsAjI5iQcXvIuXVmzt7iERQgixoEdVW7WghSmcVIR4UB/H/ra9qS20TVsEMBARjlDCYbpTeZlrDGtE2L5xwbfQtF7GGOMeZ3uCzhJ13d2awfqdLYFMCPmoXHCsNruETl11GhNcYWWOWe87akGYUDaFk+1mwIu6C/sYzUfoYafPFP911Wn89ROHeh5k2/hymq1Faq/zNw8Cvzr3wMSiLUke4cBYjHVJIsIfOGAMbr/kcJxz0Fjr+rA+0imBPjXKC51vu74mjS+cMC32OONuSm12B7VHTkrfsTIiXCCTh+bvegqpZ00IIaTr0PP9Lli303sd9AQ771XKpe2Nfg+wf9vgMtMjHCUtY60RET/Iuq0gzgOcCpnspZblRWBkMwErhdeO9tp8MqqLOP1/83UYcZPj4jJkBLIkpOMiwsHXKfcc96+twjXvn5FvKyXwu/Nn5rePyUgR1r6vf4tVQUU2fQU1BDCifx0uOWaKtc9Au+5uaSEw2/XDqmMz+1OYkwHN9GkzXWvGwVplOSEEDp8yNHHWBbVZdVp4kwKtmVBi2rHto99M2ISwOvaclL5jZUS4QOpq8o8mqjvx5BFCCCkeZTcIPs6G9b2KCG9tDM8Vn8QaEZmtIWasUZN2vPy8Ee2YIjSsDfVfXEW18Mly+ddbG/0RdNMaoe+qosc2ERYYY+h6P8GsH/71YRFhb389DZeRom7B907BxUdN9m3//gPGhPadX24fn+1z8dKZKVuLIZzz3nCHrHbyorId6JUIZ4wZ4FkNouwwZhU+vf2UEDhy2jC8ctVJOGnGyNA24tAjwvWeEA6OqTXGehpljRAiJFDp7pKT/pzOFMIF0olZNgghhJQINUGuzpjgFnhE7v4ID3Yn72xviogIW37VTK9llLgMjQhn/R5h+775MSRNexZYbkR4k2aXMLfS99u62xDCXjqt4LZRVdTMPr33MevjIsJKzIWJRtv4kheHsC/321ii21Lfl88dNxVnHTgGFx4+0W+NMLJe6IU3or8vruAMeKbDx2Keo2pf+jTn/6FapbxiyHuEU6h3A4u2v5m2Yio4aqncbAUy1C7ZnPSdF7NiYCnpkUJYP3ntnCxHCCFliXpkb3pYA4/OPY+wI4S3NRboES5gslysRzgqMqV5RWM9wqGRSn90MWnWiIA9QXu9Zbc/gm7mlU35RKHzv2kniR6E+dZ+IxNGXkjaI8e+jAUJbxDM7YPo4jqmDe379+vzZqJ/XXXeZy3yBTXUcetVB6OeIIT5wPPWiOBnYArhqIqMxZKyRIRtpzGucJnt3Oe8FHT58U4Z3jfvRdbOYSqVP7edaXPtkUJYnxnZHjG7mBBCSPehrs9hs+YV6gdV/Vget2d4Ci+7R9j/Pj65WRA11qgf5LDH7ToZzWsc5RG2iVR7n/btdKGoLCV5/Hll9fORJMVWXEQ4zNpijlkRX2I5v94mjqMIE8z+dGDJIsLWdlLBCn16oDRSCAvVvhqrajM8Kh81Wa5UlddUF1Up4aWitX2fM3ER4YibUmeyo8D9lx2Fez93FD5j+KqVvUT5hGs7MSVujxTCh08Z6uU9bM8xIkwIIeWIrbwyELQy6I+cX7jiPfjjhQeHtmnPp2tvL+n++lijIsK+lFzhXQAIz3Wv9jNFURhKWJh+Tf0w/voJf7qzoDUivy6J5SDW9hFzYxOwToQeY1DkJ63epz6ncGtEcgEZl3c60hphefyvUAI6qsSybdx3XnoEvnHKXgCCk+dKgTrHVdpkuaxlMHERYdvQzKcR+48bhIF9qgMCX51DtZwR4SL41NGTAdAaQQgh5YryGJq/ceYPrD6LfvTAeu/H+Zg9hgXaTJZHuPDIWSaXPCIsIWOtEfXVaWtk2szkEBetXL2tCQDQ0OKv9qX2GtavJpDvVa+K5vSl9+9uEzVZLiL6nGT7pBHhL5wwFXuN7I/3zhgV2DcuIqzSbYWJ7LhMETrWSV8y/zRDT58GAJ84apK3XdSE/bAy2mfPHItZEwfj0uOnWvc7ZNIQL4OKaSsqBfm0binvKUxLWzawXXucNSJislywT/96FcNU3w1OlisC9TiC1ghCCClPVJTVFIQ5aQph+/K/f+owXHX63r5lNk1miroocRkmysyCGjYKmYBlThA021B7FyPafe1YbwzyRQ3MbcziEda2TQ9wSN+K2IhwSAR06oh+eOQrx2Jw33yFs6jj0lGTq5IU1Ig7x3ZBl9/XtDZMHNoX/3fiHgDiskbY2x/ctwZ3fe7IyIIVapfOLD1cpXmEm9uDQrgYj7A0IsIKYXwHvLLlrtDnZLkiUL6Z3z35TjePhBBCiA0lLk2tYDralFCwF7GIfgwPFGiNSAn8+5J8GdtfnXsAgHz0OloI53/M46KMcdaIpJHP0LFoqdxM9Fyu5jZJhHcwIux/HyZy8uv92yuxaN7o2IRUWBTVJO9tta/320EimwqJCOf3tY1F7RPtEbZH/ZN85GrfOH91MehlkOs6IISjbsJCb4ZU2541wjl/jAgXgfryLd7QUNjsV0IIIV2CEpfmD6bpR1Trbb+7cROzgMLyCJvrz545DvXVac8aEZlHuICIcG1V2nvsbOvbnDRXKFH7q9Nh89t6j6gj8wgn69tsM6yFsBudaG9u9BjyHuGQiHABn5U1sqlNOLSlustPhIs4BuP8F/KZe0I4nbJMhuwY6u+yOi0wamCd+7pwuRgVSTcxN1XfPyX0O7OyXFWntdzN6B9aayYX+hiKEEJI96Csa+YPphm8UOtzFiUcl3ECsJRYjtEZNiGX9TzCUeKskIhwGr89fybO+N1z2NyQT2/m5SJOIKSiCCu04YzPtEYE94tu3HwbY5Uw3gduXpQdI3ADFN513CTCUlojouajOdaI4P56CrLwfeFuY4wtwUfgTWhLCTz65WOxZntT/E4JeW31DgDAjNEDcejkIRjcpwbnHDSu4HYKsUZ47931o10Bnu4CIdxjI8L1mvC9Y96abhwJIYQQGyqPsPl7aWZlCvMI2/a1CblXVm33vY/NzRvoI7+kviY8flTIA+666hRGDqjDl1wvqdmXrfxxIQjjf+s2FrGc8uuRkLZN64O93Xyb0VaJsCwJUSIy7rQo4RSWOUoXt7HWiEhBZ7exxFXL821jTLYrxJ5SlRYYMaAOB08cErtPUuprnJMza9Jg1FSl8PEjJxV1QxZV3CbMXtOey2FE/1rc/bkjAWhZIyiEC2dAff5idfV9C7txJIQQQmy0Z3OoSonAI/FCrBFR/tOZEwZZ+y00y4F6O6CuyloNK9938NF4GOopZVi0VDVV7Fyo6Mlyqi+/AAPy6bgKyRoRtz5YMMK+PjhJMthRUvuAEsKt7XYh7MudbAzIFF2Rk+VSekGNPGFV43xjUALaPD8JPnMV7OsTcWNWLP/69OG4/ZLDEz9JD/ubiM4jbNwMeU8FgDP2H4MxxkRBWiOKoFSJpQkhhHQO7dkcaqpSASFsPiIfUOf8VOkBDkVUsYYR/e2lZuODW3YlPLhvTaQA81sMontQ9r3gdoVHB61jiYgFe/5WqzXCv4297bi+497bI8LmjU7U5xSbPs0Vca2Z4CQvc39TL9RWpbynFbb1/nairRFRFg71PTfFcpLP/Pi9RuDPH5+FyVoBsVIxfkgfjB/SJ/H2NekU2rPB82w7L95ETWO5fsz6zV9WK0DTWfTYiDAAzJo4uLuHQAghJIT2rER1OuVNRFOYXuD3zhiFa94/A988ZXqgDf0H9MwDxxj5Ye2Coti8t4Pqq2OEsBvViujbJCy1WKkmy9lQbgH7ZDm7TUEnzupQaEGNdEhE2PY5qSVx52WKKxDDIqY2O4giSaou3Rphi3KqIGmSrA5xEXMbNVUpnLj3yPgNu4AwkWr/jMKqSWqvtTfqO8H0aUVy6XH2ZNSEEEK6n9ZMDtXpYET4uL1G+N6nUgIXHzUZ9ZYsC+o3c/TAOvzmvJn+mfsJiinY19uF26A+NZH7ipDXUYRFTzs6Wc62m8pSkfdpquiztl8CVRBmHQl7b7YZZp0oJMFT3M3MFadNxx8+ehAOnRzmnQ2Kf0Wyx/D5aK4att6K+tySfH5xNxblTlhGCWtE2L0Ji/KV6xHyTBdEhHusNQIATtx7BA6aMAgL1+/C/DU7cO9r6/Dd98+ouC8ZIYT0RNqzOdSkBXa35h+rPvqVYwt63Gsm4rdFN03iMg6ECbvBfapjHpPDHYv0baesHda+AoJA9amitZFDjWjXv+Oi75/itdnREstxk+UCws7YPqyksG0yZKBvy8Q0G7VVaZy23+jQ9VGV5WpDcjzr6FFgW27cQiY7mjqy2KcA3UV4RDi4zLsJC2yrWyPyr5tanYqJA+pKmyLO13entVwGCCFw9LRhaM3kcOb1z+OWOSutSaEJIYR0Pe3ZHKo1j/D3z9wHe47sX1Ab+UT8ft8rkH88HbZPGGHRqkF9amIyGQTXfeWkPfHGNaeE7xMiEgu1Rsy76qTI9X1qqryIerDEss0aUXwi4TBxH/ZeCUFdCN/9uSMi++ioWNSP2fzcospoK/LnUM+wERRzUaM0P4dgK5VBqBCOLEQSbo3QvweNbmnnwSXOlazToyPCQN4wr2hpz6FPTcjGhBBCuoz2bM7nET5r5tiC2wg+hu+4NcIUp0oUDupTHRm1tLUbG9ENiaYmraCmGNbPPzEwcreIiHA6gU2hUA0al+tZvdcdMnuNGmDv29vHv/zFK04sKHoe5SU3dYMNb6JbSmjR4fz6tHFDE4UnmitNAbtUh/hpbBkzcjYfCfyfgT5RUTGoE4VbjxfC9QEhzIgwIYSUA20ZiRrNI1xMiiT1GxwlRkxMofutU/2T8MzdslpVuVbLj3TojpZF750xEjua2r33SgBUp4VXYMRZ7h5DsQU1EC6ulJjPp0/Lk6S7gHUkwu9pa9Pc35p1ITbq7N9AVUBLij99mn/d8H7xosvTc0J47/QR5S0uDhcfOSnYRkh0tNIIG37U5xo1gdL2Nza4LyPCRWN6zWiNIISQ8qCxNYPa6hTeM30EHl20MdEjaZO8NcL/3nzt3yf/+uaLZuGkGdGz7/W2W7XfkKOnDcNzS7dY21WYgu2mi2b517v/p1OOEDYFVLEaKWo/81zp50kY59PedrQHOMr/advA9jnFlUbuuDVCf+1v62cfOgC3vbwa1z3ydmw7oRFhL8orsPLa0xOPpSdhO64rTtsbNVUpvP8Av39bF8223M+DOzEi3KM9wgBwxNShOFt73LZ1dxujwoQQ0s3kchJvrt+J6aMG4Lfnz8Rz3zqhqInMUdHHUGtEShd+tjaNBZqVoMWNVl1w2AQMNHyLtty9cYek1verddpSwZskJXoB4B+fOgz/+vRhgeVRu3klllPBMRYTEY5jnJGTNmCNsHQad96KnURoa98cz5C+NfjCCdMi9/elT1NtFuwRLiBNRhkT9ndreyIzpG8NfnT2foF0aPpnYMv9nLS4RzH0eCFcV53Gr8490Hv/kT++gBN/8Uz3DYgQQgiWbGpAQ0sGsyYORl11GuMGJ0/gr5PP1KDei8C64D4xQtj0CGv7qYhwbVUqtCqc7q9NOjFv3OB63HzRLPz+/IPcMSTb/+g9huHIacNij0HH/1i/8DzCcZPfTB/1IZMG44EvHq2NzY9NMMUddyknyxUjqqVhL3HaDLYfGZkPKS7RUyjE1hNnjehMerw1wsa6Hc1Yv6M5UMKPEEJI17BxVysAYOLQ4gSwIi9E/Llx/evMffKvk0Rx8xFUgeY2J52TLUKl9pOQmlCKHr/qvyad8lk0Cp0sFzYW2+5R3lQvp29EtDIuy4EpogUE9h07MHR/21yr8OOOF5hJSFJ4JQr95qgQf3pP4kdn74tXVm7HWxsarOsLecKjfwb6U/vvvn8Glm7aXfwgk/Tdqa2XEcfuOdz3/r7X13fTSAghhOjisiMEI8L5dWERKd/vcwJrhJ4q6yOzxmPv0QNw0RETYyuqOc0niwhXV5ltOf8XYZuOxSzta7MJFFLcwjxhpogOTJYz3tsjwtFddjgirH0uHWkqlcpHwO0T8OIj88HzVxl89LCJ+KX2xL0j+K0R+YjwJ46ajB+dvV9J+gjtu1NbLyP+/HFjgkLPv1kjhJCypXSPhU2PcHyLvhyy1hYNYaJFUEcMqMND/3cMRg+sD50UJmWyR+P6WMzqXLaJbIWQrxoX3F8X9mYfKvdy9GS56L4DEeGYGwbbDUtYNNGbLNdB9dLRiDC074R6qjFzwiBtg8Ij1yprSqXJkwsOHd/hNvTPg9aITiJ4kemmgRBCCAmk8CqWlCHc9Gt7WFEIPQJpjeKGeoujtxOWdXGPh9Va8zfK8wgXnT4tHL0qGgBU6bmXk9xIxGSJyMrCIsLFHGOHU46V0Bqx/7hBePJrx1krIhbS8s0XHYK7XlnTYbtQV3PhEZNw4RGTMOnyBwPrrnjf9EQRbv3v5BNHTSrd4BLQa4SwSdzjKkIIIZ1HqXKompXQ9B/UXMgvsG+Ck2V9wPNq8R9b21U5jZGPcsZpPDVEM3VcR9OERWaNMKrwWausRXgjYifLGSc+mNnDiAgXcIxqy2IyjPjbsdkYkmN6wKcM72du4fSTYJhqkwlD++Cr792r8MGUMZ89bmqi7dTfy9HThuGM/cd05pAC9BprhMmW3a3dPQRCCOm1eL7Kjk560sQn4BdZYVXg/LP7o9cD4aLd3FUXV7ZiFTYyWecxsFmmVgm9sDLRcUQJRe94LGo5bZxPa9sx72MjwoE+i4kIF7xL6P7FiOqw8sjees/6E/85kI4XkOlQ313eYzdyybFTvNd/fHY5/vr8im4cDSGE9F5y3uP5jrXjFYCwTJYLiwj7hLA1a4R98lLwEb/pfc2/9vy3MT/s7a4QrkrZRXZHs0bYyEVE42dNGgIAOHji4Ii2o8eUMyyecRHhQo6xo5Fy25jC2rrpwoPxiw8fENlOmHDLp6hLMpb4bXo66u+XQriTufK0vTFGK8PIzBGEENJdlMojHC6qwjzC8XmEk/Wls8eIfj5xlaSgAgC0uWWVq6tCJst10CNsT58WntrtmD2GYf7V78Xxe42Ibdt7b3SSzcVEhI33xYifjsol/2Q5+zbv3WcUzjl4nHWdLWWabX00DAkrMu53hkK4C5hzxYnYc6Tj5Vm2eTdeW729m0dECCG9j6ioZCHk06cFrRZh1gj9x9bqEQ7JnxY2Oe4TR03Cw18+1jcWzxoRc3zt7gz5cI9w5O7hJDivtnMvIAIV8+KajrNGREXOgcI8uqWa32OzsRSCjLmRkwV5hBkSVn+r5pORriDR108IcaoQ4m0hxFIhxOWW9ccLIXYKIV53/11d+qGWjke/chyOnDoUDS0ZnP2HOd09HEIIKSmVcM0ulUfYFBF+j7B9H99vbYKIcKjocd/WVKWQTgmruIoTWcoaUZ22H0exETJh/K8TWVAj0aP8aGFrRuKDHuHirRFeHwXvYeDzCBe+e9yjfHqEC0NFhDuaV7wYYrNGCCHSAK4HcDKAtQDmCiHul1IuMjb9n5TyjE4YY6cwZ9lW7/XGXS2oq0rH3gUTQki5UynX7HxEuGPtBNKnaeEdM3tBHj0ibPMI+997YzVCR2rfvOjNj0VtGyey2kMny8HXdqFE7RcZrSyBDjGtEUHh69++2FK8HaHDeYRdYnelRzgRWddY3h0V+ZJEhA8FsFRKuVxK2QbgdgBndu6wOp8z9h/tvT7sx0/gmJ892Y2jIYSQklER12xburNiyKf7cv7zeYRD9knFRAPDonhhgslWoS1tiOMwPI9wwBqRLKIcRpLJcjYBWkx/5vkKCOGAR7gEEeEORlOTTJaL7D9m3yTDY0Q4j3s/WLbWiLEA1mjv17rLTI4QQswXQjwkhNinJKPrRH5/wUG+97taMvjpw4vxvt/8r5tGRAghJaEirtmlqixnRoT9eYQTTJazrA971B9In2b4eHVRHlXZTSdvjbAX1OioNcJG2PGELSu0s9BAvNeH/323R4SLmS2lbiZC06eVZjJobyFXztYIhFiMjPevApgopdwthDgNwH8A7BFoSIhLAFwCABMmTChspF3ADU8v6+4hEEJIR6mIa3bJKsu5P5y2TAiJ0qcl6D8u+qfGoK/1skbEWSMy0R7hYk+PMMW5hi3VnLdfMX0Z782IcFzJ5e7IFNDZk+Xy/fROCv1Is2U+WW4tAL2Q9DgAvrxjUspdUsrd7uvZAKqFEMPMhqSUN0kpZ0kpZw0fPrwDwyaEEBJCRVyzS1dZzm3Pex8fEdZFUGEFNfzLTTHvVbmDbpeIPr7powcAAPYaNcA6hmI9k5GTtLw+ShQRNjCzRijRaPqgO9Kn7OB0OX/O5+KtGSJERdnKV4eOpeDey5+qAsPs5Z4+bS6APYQQk4UQNQDOA3C/voEQYpRwP3UhxKFuu1sDLZUZP/ngftblqtIPIYRUIBVxzS5Z1gglPi1iNSyPsC8iHNFm3HIzc4BPXKWC47FxzkFj8fhXj8Vxe/pvNJIW5Agj6rxG5REOE3aF9BU2SfHBLx6N775/RmB5IYdYsvRpPiFcfDthNyqn7jMKHz9iIq46I3i8io6K+XKmUEE7rG8NAGDCkD6dMZxIYq0RUsqMEOIyAI8ASAP4i5RyoRDiUnf9jQA+BOBzQogMgGYA58mwK1AZcf6hE3DFPQsCyxvbshhY3+tSLBNCegCVcs2OK0iQFHN3n0c4JKbht0bEt6kwf9vN3MV6ZDFp+jQhBKaN6G9bk2j/qHbDiMrhXJw1wr9XWCR+j5H9scfI4LEWEwXs6LfVX1Sl9JPlaqpS+N6Z+0a2ccmxU/HSim04ecbIgvsvdwr9TE/ddxRuvmgWTpgeXsils0jiEVaPzmYby27UXv8ewO9LO7SuIZ0SAT9TU1sGA+uZSo0QUplUwjU7qccyjqjKcqHWCN8+FjEYMiSzLy/7gmfIDW7bUY9vsdHKyMlylvRpNekU2rK54rJGxEyWixOtBUW9S/TkXLcsFHOObQVcCmXaiH545hsnFN9AGVOoEBZC4KRuuiHo9WFP83EUADS2ZrphJIQQ0nsoXWU55cstYLKc/toaEQ6bFOd/H+oRljI/ga6DeYCLzhoR1OYetmIPta5/1/T3FtKXiRKbcS0W44Pu6OOLUqVP6w5PayXQHZPeiqXXC+Ffn3cgDhg/yLfsmSVb8MRbG7tnQIQQ0gsonUfY+d82+a54j3BYX3aPsC1rRCpCiCZB7dcZeYRttpRbPnkIzjpwDPrVJHpQnIiqdLKxF5Q+rdjBRNCRmzGmR7NTSTcIvV4ID6irxueOm+pb9oMHFuFTf5vXTSMihJCeT6k8wnqmBrO9b5463bqPP2tEcp+sKXrMKLQta0TRleG8yXZFCmHEK3G96YMnDsGvz5tZ1OS8sAh60swB+jFecNgETBneN3afUlrai8kjfPZMJzV3Bem9LqWSIsKlu/WrYEYOqLUu392aQb9aniJCCCk1pSo44IkYS0R49KA6XHj4RPz9xVWh+9sjwiHWiEB2BOd/W9YIr6BG0R5fZY0ocv+IfvPR+NJnYNBJGhXUt/vx2fZsTvm+Si+wivkO/uyc/fHdM/bplPH0BNIJnwaUA70+IgwAowbWWZd/5z9vdvFICCGkd5DzfKodI+gR1qK9sIu0uLRVySfL+QWlbtNQArZoa4QK6HZC1ohSVfWLw/MIx0Rvuzt4WIwQrkqnMLAPJ9WHMXpAfXcPITEUwgCG9XMiwodNHuJbvm57c3cMhxBCejylqixn7p0yorLx6cvi28y3HZ01QrcIqChnMZPPnHF1cLJcxDpb1ojO4Idn7Yt9xw7A3qMHRG5XiNjvHI9wJzTai/nZh/bHHz52UHcPIzF87g+nxvvL3z4R/WursffVD3vLi72AEUIIiaZUleXMghrCiAhH9e1sY/EIJ7RGmIUp9PXquMIyV8Rha7MQCs0a0RHCztfBkwbjgS8eU5I+TEr580x7Q2n5yKzx8RuVEYwIu4zoX4f6mrRv2SurtmP9DkaFCSGk1Hi2gg7+CplC0R8RtgttXUMVFBE2OvOi2pZUaXoqtWJQIrXDk+Us5ItBFNW0pS871cXMQothiFuBrI/xe90RGBHu3TAiHMPsBe/i08dM6e5hEEJIj2BHUxve3tBQMp+qmTVCF6sCoqjH/+EeYf97s7qYWi8hvddmwaakmJkoCiXKYyxLbBIOnSzXCROmvnXqdEwd3rek1diYAq13w4hwDM1t2e4eAiGE9BiuuGcBzr3pRazf6TxtK1lBDcOmAKiIcPT+hRTUMEWl5xFWE+O0yXJKkBdrjVBDKNYjHLXb546fBsBJH9qZdEYKrfqaNC48YlJJ7QwUwr0bRoRjaG4PF8JtmRxyUqKuunSPaAghpCezqaEVAPDQgg0ASuERdv7P5xEWvnWREVGEiN6EWSPMFHA2a0Su6IiwG2UuWkyG7/epoyfjU0dPLrLd5D1VSlGFTnBwkAqCQjiGprYs7nl1LQbWV+PEvZ1HMYvW78Iba3fgRw++hYbWDFZee3o3j5IQQiqDejdwsGFXC4ASFNTwUnS5732T5ezWiIH1+UioNSKc0BoRXmI5n0kiV7RH2N5n4v27UIOGRWeTFtTobhgR7t1QCBtc8/4Z+NXj72BnczsAYO7KbbhlzkoAwMprT0cuJ3Hab//XjSMkhJDK5d2d/gnIHS6xbLw3rRFmxPf1q09G/7oYIRzSVzAi7F+ur1UasMPp04qeLNd1hJ+vLhxEB6AQLg1Pff34om/8uhMKYYOLj5qMi4+ajFdXb8cH/zAHC9fv8tb96dnl+OdLq7pxdIQQUtls2Nnie18qj7DtvUBQ6PY1qoUWkj7NXKx+9NOWcsgdt0YE2ywEYRHnXU2lpCWrFMFe7kweFl8auxypjOcW3cBBEwbjvEPyufBqqlL40ey3sHJrUzeOihBCKpfmtiwajQnIHc8a4X9vljkOrDf2L0VBDVs5Za+gRpFCWLVVrEe4K8VdhejdUCpFsJPOgUI4ghlj8tVw2jK50O2a2jL425yVaM+Gb0MIIb2dNss1slQFNWztCQQjvub2tt6TllhWk+XSFiHc0YIaapyV4BE+dd/RXddZJ8CIcO+G1ogIjttzeKLtZlz9CABgZ3M7vnTiHp05JEIIqVhsNoEOT5YT5nt/1oioghth/YelTwtWlnOXq/Rp2n55IdyxyXLFl1juGnX39g9PRW1VZWdOoke4d0MhHMHYQfUFbb/ZTQs0Z9kWjBlYj0kV6pchhJDOIGMI4bD0ZoUQ9Ajr7YuA0g32Z/MIh/QVVlnOS3XmLJcyX1CjWCFsS8lWEO5una3xSiWC7/7ckV7VuK6m+BR1pCdAa0QEVekUvnHKXrjlE4ck2l5d8C7400s4/udPd+LICCGk8jBFYSnkhymETeFXVEGNhNaIXCBrRH69ykxRrFBUXVVC1ohScPDEwV0+2UoV/KAO7t0wIhzDF05wKvCctPdIPP7WxshtKzFtCCGEdBVmRLgkj6QDVgfTAxzdh9UjnNgaobJG+AWVBPDZ46agKi1wwWETIvsPQ52bdJHhKmER513FbZ85HEs2NnR5v4VSlRbI5CQny/VyGBFOyM0fnxW7TbGzgwkhpDeQzZZeCEd5hIF4a4BNBCWeLGdsr6+uq07jCydMQ3WRSlaVPx5YX5xdoDujnEdMHYqPHzmp+waQEFXwQzKI1auhEC4h1MGEEBJOoLhECcRalEc4SRf2iHDItmF5hA0/byl01YShffDE147D4VOGFLV/d0SCK42rz5iBmnTKq3ZIeie0RhTAg186Gks2NiCbA75+5/zA+tkL3sV1H9q/G0ZGCCHlTzbnT59WiqhlVEENIElE2LYszBpheITdw1GTrUotPacO71f0vnzaH89HDhmPj2j1AkjvhEK4APYZMxD7jBkIADhhr+E4+IeP+9Y3tWXxq8ff6Y6hEUJI2dMZHmGziUKbtFaWC9k2OFnOyBqhIsLo/seDaqQUxIREQ2tEkei16nV++wSFMCGE2DDnUXRG1ohgRDhmslxBWSOil5eV6CynsRBSxlAIF0lNVQqHTS7OuxXFnGVb8J/X1pW8XUII6W5MIdwVk+WKIUw8m8tzgawR5aM+6REmJBm0RnSAS46dgpdWbIvcZtXWRowf3Cdxwu4L/vQSAOCsmWM7PD5CCCknbAU1OkpS8XnWgWNwzsHjAssLGYN5GTfzCJcTzI1LSDIYEe4AR04dhqERlXDmrtyG4657Gr+hXYIQQgIllktR0cvUoMP71+KsA8fgwS8d7Vs+elA9jtljuGX/5GOI9QinSpc1oqMwNy4hyaAQ7gD1NWm88p2Tsej7p+Dxrx4XWP/hG18AADy9ZDPeXLcTJ/3yGTS0tCdq+7ybXijpWAkhpLsJRIRL0KYp+NIpgV+fN9Ob2KwIE6eFjMEU7qpNVVq5nKQndTAhyaAQLgF9aqowbUQ/PPuNE/Drcw8MrJ+/Zgeue+RtLN20G/NWbU/U5ovLoy0XhBBSaQQiwmWg1jpmjQjLGtH9dP+ZJaQyoBAuIROG9sFZM8dixugBgXXqgvmJv87Fows3+Nb9/YWVuP6ppYF9WKmOENKTCHqEu1+uFTKpLFBZzvAIl8HheOSr3ZXRoAgpQyiEO4GpI4JJ0F9cvtV7fcnfX/Gt+859C3HdI28HoiUt7dnOGSAhhHQD6ua+Ol164XjpcVOty4spqBFGuEfYbctdTo8wIZUDs0Z0Amb1JABoz/qvjAvX7wx42BrbMr73ze1Z9K3lR0QI6RnkhXAK7dlsyTIbrLz29NhtwopcFDIEU1sqwZs2lXAZ0NlDGTmgFtMsQR9CKg1GhDuBD8+KL9l4+m+fw53z1mDh+p3esl0tfiGsR4TbMjncMW9NIGpMCCGVQkYTwkDXeIRjrQ8diAhLwyNcTnR2RPilK0/CPz99eKf2QUhXwHBjJ3DCXiMSbfeNu97wvX9jzQ7fe10I/+Hppfj14++gvjqN9x8wpsNjJISQriZrCOFykI+FeYT97708wmWYtFcY/xNC7DAi3El89rgpBe/zuX++6nvf0p63WKzZ1gwAaDLsE4QQUilk3QhqjecR7kKZFpY+rSMRYfg9wrGddSFlGKQmpCxhRLiTuOJ9e2P11ias2NKIxRsaimqjWYsIt2ac17VV6ZKMjxBCuho1f6JKWSPKIBTTEY+wiginVdYIlFFBDZRfJgtCyhEK4U7kho8dDAB4fc0OPLpwA/7w9LKC9m/xCWHnB6Qtk0MuJ8vyURwhhESRdR9yqawR5eCtLSQqbW6rPMLlmKFBDakcRDkh5UwZ3I/3fA4cPwjfPHV6wfs1tzlCeOmmBjy2aCMA4Jt3v4HL73nDW/+X51Yw3zAhpCJQEeEa98lWV8jH2PRpHWhbXXrzOXud/3lFJqRyoBDuQn75kQMAAD87Z3+csNdwPPLlY3GuJcPElGF9AQAtmRyeXLwRJ/3yWd/6O+atxZvrduL6p5bi+w8swlHXPulFJgghpFzJGHmEuzIi3BlXSLOyXPnFhWmNICQOWiO6kA8eNA6n7TcaddVpfOQQRwBXV/mvUn+5eBb2HNkfR//0KcxbuQ33vLrO2tZX/v06xgyqBwBs2NWCnc3tGNSnBtmcRCaXo5eYEFJ25MysEV0g0uK66MgY1PEop1q/Oucn9XMhxT26EsZGCEkGhXAXU1ftF6hV2myRh/7vGOw9egC27G4FANz6wqrQdtbvaMY7m3Z775UQ/uQtc/HMks348kl74AsnTPN+cAghpLtREeGqVDdkjQihkPRpJkprquOorUonKu7RlZTBKSakrKEQ7mbUI0IAmDLcsUTUV8dHcxvb/OWXtze1Y+JQ4JklmwEAv378HRw4fhAG1lejLZPDYVOGlnDUhBBSOGo+Q02VKqjRdX2H2sc6MAZpeITLibBKeoQQPxTC3cyMMQMAAH+88GDPzmBGjZOwo6ktsGzL7jZc/Ne5AIA7Lz0C1ekUDhw/qPjBEkJIB/CEcBdWloujQ9aIMq4sRwhJBp+bdzNnHTgW/73saJyyzyhvWTolcNXpewe2vefzR4a2s7O5HX9+boVvmS6OP3zjCzjr+udLMGJCCCkOzxqRLh/h2JGRfO29ewEA6qr4U0pIpcK/3m5GCIH9xg0MLP/0MVOw/Men4blvneAt61OTxgNfPNraztbdbfjBA4t8y3744FuB7a65fyHe2Rhd4GNXSzsy2VzkNoQQUihmieWuiKTGpk9LMIZ+tfaHp586ejJWXnu6VyCkHOmIB5qQ3kCiv14hxKlCiLeFEEuFEJdHbHeIECIrhPhQ6YbYe0mlBMa6mSEA53HivmPzovmM/Ufjv5c5wvj7hggO45Y5K/HeXz8bul5Kif2veRRfv3N+kaMmhHQ35XrNDgjhLtSPHbEIP/7V43D358KfyJUjzBpBSDJiL0NCiDSA6wG8D8AMAOcLIWaEbPdTAI+UepC9GT1aoX5ELjl2CgBg1IA6azQ5DnWB3NXSjuWbd2Ph+p3eupZ2JxL8n9fXFztkQkg3Us7X7GxOIiXykeAuiQjHSN0kQxg1sA4HTxxcohF1LbQvExJNkvvxQwEslVIul1K2AbgdwJmW7b4I4G4Am0o4PgLg4S8fgy+9ZxqmjegHABhYXw0ASLs+u++cEfiNw/sPGBPa3thB9djZ1I79r3kU7/nFMzj9t8956xpa2r3XW3a3IpeTngC/f/56vLF2R4ePhxDSqZTtNTsrJapSKSgnQTlotDCh/OmjJ+MPHz2oi0dTOhgQJiQZSYTwWABrtPdr3WUeQoixAM4GcGNUQ0KIS4QQ84QQ8zZv3lzoWHst00cNwFffu5cXHR49sA4AMGmok27tw7PG+bbff9zAgKetT03abas/1u1oxlX3velb3+56gndpQvi79y/E+X96EVOvnA0A+NJtr+EDv38eyzfv9u27uaEVt728Gn9/MZ/3+Ob/LccV97zh5UQmhHQZZXvNzuYk0imRr8RWBpXlwoZw1RkzcNp+ozttPISQ8iCJELZdJsxryq8BfEtKmbVsm99JypuklLOklLOGDx+ecIjE5OyZY/HXiw/BeW51ugF11fjhWft66wf1qUFTW8a3z6NfORYrrz3dS8323/l+68Me334IUkrsasnvt7slg5dWbAv0/55fPON7f8iPHscV9yzAd/6TF9c/fPAt3PbyGnz4xheKOsZnl2zG02/z4QIhRVC21+xM1hHCwrNGdLhJEgJPLSHJSCKE1wIYr70fB8A0kM4CcLsQYiWADwH4gxDirFIMkAQRQuCE6SN80ZSPHT4RC793Cs45aBx+fPa+aGz1C+EhfWsAAK+v2RHa7vcfWIQ75uYDSao4B+CPFEfRmsniu1q0ecWWxth9Vm5pxKTLH8TzS7d4yy76y8teDmRCSEGU7TU7J1VE2HlfFpXlun8InQKtEYQkI0lBjbkA9hBCTAawDsB5AC7QN5BSTlavhRC3AHhASvmf0g2TJKFvbRV+8ZEDfMv+9enDcOS0YZH77TNmABau34W/Pr8ydJv9r3k00Rh+8egS/M0oDa0qOoX96D2x2In8PvTmuzgqZqy9lZb2LFrbcxjYp7q7h0LKn7K9ZmdyOZ81oisiwrHp03p47LRnHx0hHSc2IiylzAC4DM7M4rcA3CGlXCiEuFQIcWlnD5AUxw/O2hefPXZKoLSyKuOsqK9O497PH1Vw++9sbMDHbn4JTy322xduenZ5YNsP3jAHk6+YHZqbeKvrI352yZbwMqgJueX5FfjCP1/FY4s2Ys22pg61VU58+MYXcMD3k92MkN5NOV+zlUc4neoGj3BY+rQeqhQ7ei0lpLeQqMSylHI2gNnGMuskCynlxR0fFukoowfW44rTgtXp7vzsEXh3ZwvO+J2TKeKtH5wKADh9/9F48I13E7d/8q+cXMTPaXaGMF5bvQMA0NSexQB3uriUEof++AkM7VuD90wfAQBYva0JF/91Ln597oG+/f89dzW+dfcCzP/ue72MGWFc818nn/KDC95F/7oqLLjmlMTHVM4sWLczfiNCXMr1mp3NSVSlhCc+y0GDlsMYCCHdR/mWwyGdwtB+tb6iHIpNu1oAAH+88OBO67uxNYM125rw/f8uwm+fWIrNDa1YvKEBOS1w8cySzZj5g8d8+93qWi1WbW3Ezf9bjldWBSfw2WhoycRvVGHkcj0nypPJ5rB+R3N3D4N0IZmcREqILs0jrJAhrtly8Cl3BrVVzsRoNT+EEGInUUSY9Dz+/PFZGD+kj/f+U0dPwbLNC3DUtGH42OETsHpbM55dEkyX9PrVJ+OfL63G3a+sxZbdrahKp7CtsQ0AMLx/LTY3ODaHs2eOxb2vrfPtu2JLI659aDHeWOuPbt74zLLIsfatcb6mn/vHq1jnCqeV155e4BH3DBrbMuhfVzqf8JOLN6K1PYf3dUOaqB/PXoy/PL8Cr1x1Eob2q+3y/knXk8tJVKXzk+W6orJcnNDtmTIYmDFmAH509r44bV+mgCMkCgrhXsqJe4/0vT9131E4dd9RAIAfnrUfAGDS5Q8G9hvUpwZfOGEavnDCNADAv15ajSvvXQAA+MYpe+GxRRvx2KKN+Nap0wNC+II/vVTwOP/07HK8vNKJACsRrHIidxaZbM6X4qmzueX5FchJ4JNHT7au173Vja3ZkgrhT94yD0D33Fio9Hjbm9o7RQg3t2VR38nfFVIYGSOPcFdEhOO8sj00IAwA+OhhE7t7CISUPbRGkFAOmeSUFP3EUZNCtzl2TyfLw1dP3hMfmTUevz1vJh7+8jEYNbAOT3/9eDzwxaMT93fREcGL9o9mvxVY1tyexRE/eQIPvLEe3/vvQrRmnFSoLe3BlKhzEniYdaSUmPbth/D9BxYVtB8AbG9sww8fWIS2jH1SYBjX/HdRZH9bdrd5r5OmsSuUja41prPZ3tiG7e4TBCVAOmNSz7LNu7H31Q/jnlfXlrxtUjzZnERaCKTKKIFwT7VGEEKSQSFMQrnz0iOx8trT8d337xO6zbjBffDiFSfi88dPBQDU16QxfdQAAMCkYX2x79iBuPtzRyTq73sfCO9HR0rg3Z0tuOxfr+Gvz6/08g/vd80jAICTtGj3zc+tSNSm8t62tDsi9q/PrwwUJYnjpw8vxs3PrcBDbyafdKgTJgg3NeRFamcJ1q/dMd8rpd2ZzPzBY54HXEUDM53Q75INDQCAh9/cUPK2SfHkK8s577siIkyhSwiJgtYIkohHv3JsaKRzlFvyOYyDJw7BfV84Cg+9uQHD+9di0tA++NTf5vm26VuTLvoH65O3zEO/2iq0Zx1B9ZFZ4/D4WxsBAOt3NCOTzaEqnUJLexa1VSkIIbBkYwNeW70d1ekUnl+6FXe/uhbfOnW6r1z1zx9ZgvZsDsftORw/f/RtfPmkPXCq67drbM2gjzHmF5dvBYDEEeH2bA7f/28+EryrOWPNE7xpV75M9bJNu3HMHsPR1JbBt+99E988dS+MHlif9FT50EtlP7d0C6596C18+/QZRbVVDEoEFRpBT4L6WB5dtLHkbZPiyXoe4a6vLMdsYoQQGxTCJBF7juzfof0PGD8IB4wfBMCJfH5w5ljc43qIH/3KscgZv1JLfvg+XH3fm7hdq3QXxW6tkt7IAXlhvnhDAw7+4eMY2rcGy7c04rPHTcEV79sbX79zfmDS3k8fXowTpufLyP7leSea/PcXnawV37jzDZy672is2daEY372FH52zv74yCH5Al4rtzp5i5P+3h7xkyd8tocP3vA8nvja8QCAbY1t+Pa9C/C9M/fBRjciLAQw+80NuPioyfjFo0tw72vr8PaGBsz+v2MS9ujHLKAye8GGrhXCrgqyWVo6DqOA5UjGtUaoG8iuiNbym0AIiYJCmHQ5Qgj88twDcfr+o7HHiP6YMDSfvaI6LdCelaipSuGqM2bgwPGDcM7B49x1KSzesAsPLdiA659ailP2GYUHFwRtCEP71eB/3zwBX7ztNby+Zgd2NrdjZ7Pjrb331XU4etqwgAhWnPrr/4WOu6E1g7+/uArf+Y9TQvqbd7+Bk2eMxHNLt+D6p5bmNzSU8PodzbjrlbX4zDFTvMlb2Zz0iWAAWLY5X476INc+sOjdXTjrwLEAgPMPnYD/vLYO2ZzEn13Lx6J3d4WON47OiMQWgooGrt3ejMNK3DafhpcnZollQgjpbugRJt3GiXuP9IlgAJj77ZPw8rdPBAD0q63CeYdOQHU6hWq3EMf0UQPwlZP3xNIfn4brP3oQHv/qsb79P3rYBIwZWI/xQ/rg08cEszBsamjFhX9+ObB81sTBicasRLBi5g8ewxdvew2LXU8qANzwzDLPX7y9sQ1HXvskfvnYEi/CDAC7mv2T3o6aNhQp4UTL9ej2qq1NmL92B4b2rcHM8YPQ1JbFii27MaJ/PsvCyi2NyOZkQNjuamnHzx95G7c8vwIt7VlsamjBuzvzeXvbjEp/64rI6bt6axO+fe+C0KqBUajqYl+7cz4Wrg/emLS0Z/HKqu0FtwvA53c+7Tf/w2zLDRPpejJZt7JcF96p8KaIEBIFhTApKwb1qcGI/tGeY51pI/pj5bWn46H/OwbXfnA//Ojs/bxH7qfvNxoPfulo1FdHp9C6+3NH4jfnz+zQuHVWbGnE2dfPwR3z1viKg1z3yNtY5vpydxpC+IS9RiAngQ/d+AL2/e4jvnVPv70Zw/vXYr9xTiGUHz34FjY15H3Dx//8acy4+mHsedVDABxBe9x1T+Ert7+O3z+1FNf8dxH++vxKHPqjJ3DET5709rNZEiZd/qAn4qWUVoGq8/W75uOfL63Ga2t2xJ2WAOt35Cf+nf7b5wLrr31oMc65YQ6WbmoIrItDP7ZF7+7C5//5asFtkNLjTZZz/0a7ogwwvcGEkChojSA9gr1HD8Deowf4lgkhsM+YgXjrB6eipT2Lva9+GFICv79gJq64ewFqq1MYWF+NA8YNRFU6hRU/OQ23vrAK/WqrMHVEPwzvX4u5K7bhjP1H4/a5a3D1fW96VfCG96/Ft06djq/fOR8AcP0FB+GNtTvwx2eXAwDe3tiAb971RmCcJ/7iGfSvq8LMCfkI9JThfb3qT2ER0KOnDcO04f0AAE+9HSx00upGg19esQ0vLNuKVVubsMr1LAPwebCllLj+qaV4KCSjwqf/Ng///PRheOKtTfj0rc6kxpeuPBFrtjVh3OA+vsmRKtuGmXHiycUb8eLybbhSK/M9d2W+IuB9r6/Dlt2tvn1a2rOo025a1E3D6m1NmDaiMI96a4ztQwkwZhToWrJSoiaVZpSWEFI2UAiTXkFddRovX3kS2rI5jB1UjzP2HxPYRgiBjx85ybds7EzHn/uxwyfiY4dPxDsbG7Bs825MG9Ef/eucP5/Jw/ri9P1H4/T9R+OK0/bG/DU78PDCDbhj7hpsdXPm/uyc/fHNux1h3NCS8ar2PfDFozFtRD80tgZTtS354fu8KO/5h01AVTqFn3xwP1xxj1PApLYqFRB8H/njC9bjv+6Rt73Xk6+YHXmu5izbiilXzvZF0g778RO+bc6dNR5XnDbdi+yZtgxVqOOwyUOQyUmM6F+LD9+YH9v/3f56oN87563BhUdMAuAI1QH1TgaN11bvwHumj8Rb7+7C5GF9AQD3vLoOH5k1DlVp+0MtW7T7+qeWYsKQPvjiba/hyKlDMWfZVrx+9ckY1IclaLuKTE4ipRXU6IqCJxTdhJAoKIRJr2F4/45XL9tjZH/soWXQsFVkUxkyvnXqdN/yOcu24D+vr/ct23esY3eoq07jlatOwsE/fByHTxmCq06fgZqqFC4+chJumbMSk4c6AvD8QydgeL9aDO9fi1XbmvCl217r0PF87PAJ+OyxUzGkbw1eXL4VB44fhE/cMjd0MqHi3/PW4PllW7B2u+MrvufVtbjoLy/jyyftgaOmDfO2U2nyhvWLF5vfuW8hvnPfQrz87RNxw9PL8OAbjq/3d08uxfD+tbj6voX4xFGTMHpgHX48ezGyUmLPEf1wwPhBWLejGau3NuGE6SMAwHdj8bnjp+KGp5f5bgbmLHNS3a3b0Uwh3IXkchJV2mS5PjVd9xPUFTYMQkjlQSFMSBfx8w8f4Anhq07fG9NG9POtH9qvNiCsv/v+GbjytL19lbhOmuEUDDlg/CCcss9IrNzShD8+swyXnzYdh/4oH7n93fkzceD4QTjvphd9E+Gmj+qPxRsaMKxfrVdOG8iX3b7js0fgmJ89hc0NfusCAE+sA/BEMADvuH79+Dv49ePvBPYzM2Qo/vzxWbj3tXV44I38ZDb9GBRX37cQgFPS+z2u2FUTFw8YPwjzXY/ypKF98K/PHI45y7ZCCODX5x6I4/ccgRueXmbtf1dzYUVTSMcwSyz37YqIcKf3QAipZCiECekiqtIpPP7VYzF/zU4vJVwcQgjUVIX/lNdWpbHXqP745bkHAgDeM30E+tdVYeLQvnj/AY79477LjsKsHz6ODxwwBr/8yAGoSqewdFODL9+yTl11Gvd94Sjc+MwyXHna3rjn1XX45WNLcMmxkzG0Xy1uuvBgjB/SB796bEnBBSvu+fyR2N2SwUV/eRnD+tXixL1H4sS9R6JvzRv497z4nNGtmVzA2zxfm6i3cmsTjrw2PyHwTDf13GePm4I/PrM80N75f3oRi75/SpdGJnsz2VwOaSE8S0+f2s4/78fs6eQG/8CBQTsUIYSI7npcNGvWLDlv3rz4DQkhHWbV1kaMH9zHF1nuKO3ZHPb49kPe+3NnjffE7F2XHoGRA+pw1ytr8YEDx+DKexbg2D2H4wsnTAMAPPzmu9hv3CCMHZSvipfLSUy50u9fPnjiYHz9vXvhklvnoS2b8wTU3Z87AufcYPdD65gR9oaWdtz6wips2d3qFRT51bkH4OyZyW5MdIQQr0gpZxW8Y4VSimv2ib94GtNHD8DEIX3wh6eX4evv3ROXvWePEo2wMCZd/iAAu72JENLzCLtmMwxCSC9gousxLiXV6RQe/vIxaGnPYeOuFpyyzyj89EP7oz2b8/I+f+XkPQEA//7sEb59ValqnVRKYOW1p6OlPYvmtiyuvn8hrjp9b4wcUIe5V52EqpTA88u2Ys+R/TB6YD1mf+kYrNnehF89tgQfPXwipJT46GETsWj9Llzz34UYUBe8vPWvq/bE+BXv2xsn/+oZtGfoHe0qsm5lOeXhZiSeENLd8CpECCma6aMGBJZVh2RySEpddRp11Wn8TsvtrNKqHbdnvgT2jDEDMGPMAJyyzyjf/vuNG4i7Lj0iNjVaTVUKz3zjhA6NlRRGxp0s19jmZPXoW9v5HmFCCImCBTUIIT0O5gcuT3LuZLlmVwgzIkwI6W4ohAkhhHQJKmtEo1u9kBFhQkh3QyFMCCGkS8hJRwhPcj3rowbUx+xBCCGdC59LEUII6RKUR/jy903HqfuOwowxQY85IYR0JYwIE0II6RKyWafEcl11GodPGdrdwyGEEAphQgghXUNWOhFhQggpFyiECSGEdAnOZDn+7BBCygdekQghhHQJ2ZxEB9NME0JISeEliRBCSKcjpXSFMH92CCHlA69IhBBCOp2cW8k6zWInhJAygkKYEEJIp5PJ5QAAVWkKYUJI+UAhTAghpNNxdTDSzBpBCCkjKIQJIYR0OioiTGsEIaScoBAmhBDS6Zz+2+cAMCJMCCkvKIQJIYR0Oqu3NQGgR5gQUl5QCBNCCOkyUrRGEELKCAphQgghXUZzW7a7h0AIIR4UwoQQQrqMbU1t3T0EQgjxoBAmhBDSZWxvpBAmhJQPFMKEEEK6jJED6rp7CIQQ4lHV3QMghBDS8xnRvxZ9atK47D3TunsohBDiwYgwIYSQTqctm8Oxew5HdZo/O4SQ8oFXJEIIIZ1OWyaHGopgQkiZwasSIYSQTqctk0NNFX9yCCHlBa9KhBBCOpVcTiKTkxTChJCyg1clQgghnUpbNgcAFMKEkLKDVyVCCCGdSmvGFcL0CBNCyoxEVyUhxKlCiLeFEEuFEJdb1p8phHhDCPG6EGKeEOLo0g+VEEJIEsrtmt3mCuFaRoQJIWVGbB5hIUQawPUATgawFsBcIcT9UspF2mZPALhfSimFEPsDuAPA9M4YMCGEkHDK8ZpNawQhpFxJUlDjUABLpZTLAUAIcTuAMwF4F1Up5W5t+74AZCkHSQghJDFld81WEeFyEsL3X3YUtrLcMyG9niRCeCyANdr7tQAOMzcSQpwN4CcARgA43daQEOISAJcAwIQJEwodKyGEkHjK7prtCeF0uug2Ss3+4wZ19xAIIWVAkttzYVkWiB5IKe+VUk4HcBaAH9gaklLeJKWcJaWcNXz48IIGSgghJBFld80ux4gwIYQAyYTwWgDjtffjAKwP21hK+SyAqUKIYR0cGyGEkMIpu2t2WzYLgEKYEFJ+JLkqzQWwhxBishCiBsB5AO7XNxBCTBNCCPf1QQBqAGwt9WAJIYTEUnbX7O/917EnM30aIaTciPUISykzQojLADwCIA3gL1LKhUKIS931NwI4B8BFQoh2AM0AzpVScsIcIYR0MeV0zX7irY2YvWAD3t3ZAgA4YPzAUndBCCEdIslkOUgpZwOYbSy7UXv9UwA/Le3QCCGEFEO5XLNXb2vC3a+uBQB89rgp6FOT6CeHEEK6DD6nIoQQ0insNbK/93p4v9puHAkhhNihECaEENIp7DkqL4SHUQgTQsoQCmFCCCGdgi5+KYQJIeUIhTAhhJBOY/KwvgCAwX2ru3kkhBAShEKYEEJIp3HrJw/Fx4+YiD01vzAhhJQLnMJLCCGk0xg/pA++d+a+3T0MQgixwogwIYQQQgjplVAIE0IIIYSQXgmFMCGEEEII6ZVQCBNCCCGEkF4JhTAhhBBCCOmVUAgTQgghhJBeCYUwIYQQQgjplVAIE0IIIYSQXgmFMCGEEEII6ZVQCBNCCCGEkF4JhTAhhBBCCOmVUAgTQgghhJBeCYUwIYQQQgjplVAIE0IIIYSQXgmFMCGEEEII6ZVQCBNCCCGEkF4JhTAhhBBCCOmVUAgTQgghhJBeCYUwIYQQQgjplVAIE0IIIYSQXgmFMCGEEEII6ZVQCBNCCCGEkF4JhTAhhBBCCOmVUAgTQgghhJBeCYUwIYQQQgjplVAIE0IIIYSQXgmFMCGEEEII6ZVQCBNCCCGEkF4JhTAhhBBCCOmVUAgTQgghhJBeCYUwIYQQQgjplVAIE0IIIYSQXgmFMCGEEEII6ZVQCBNCCCGEkF4JhTAhhBBCCOmVUAgTQgghhJBeCYUwIYQQQgjplVAIE0IIIYSQXgmFMCGEEEII6ZUkEsJCiFOFEG8LIZYKIS63rP+oEOIN998cIcQBpR8qIYSQJPCaTQghyYgVwkKINIDrAbwPwAwA5wshZhibrQBwnJRyfwA/AHBTqQdKCCEkHl6zCSEkOUkiwocCWCqlXC6lbANwO4Az9Q2klHOklNvdty8CGFfaYRJCCEkIr9mEEJKQJEJ4LIA12vu17rIwPgXgoY4MihBCSNHwmk0IIQmpSrCNsCyT1g2FOAHORfXokPWXALjEfbtbCPF2kkEaDAOwpYj9KoGefGxAzz4+HlvlUuzxTSz1QEoEr9ldR08+NqBnH19PPjagZx9fSa/ZSYTwWgDjtffjAKw3NxJC7A/gZgDvk1JutTUkpbwJHfSiCSHmSSlndaSNcqUnHxvQs4+Px1a59MDj4zW7i+jJxwb07OPryccG9OzjK/WxJbFGzAWwhxBishCiBsB5AO43BjUBwD0ALpRSLinV4AghhBQMr9mEEJKQ2IiwlDIjhLgMwCMA0gD+IqVcKIS41F1/I4CrAQwF8AchBABkeuqdCCGElDO8ZhNCSHKSWCMgpZwNYLax7Ebt9acBfLq0QwulJ6f56cnHBvTs4+OxVS497vh4ze4yevKxAT37+HrysQE9+/hKemxCSuscCkIIIYQQQno0LLFMCCGEEEJ6JRUjhONKhpY7QojxQoinhBBvCSEWCiH+z10+RAjxmBDiHff/wdo+V7jH+7YQ4pTuG30yhBBpIcRrQogH3Pc96dgGCSHuEkIsdj/DI3rK8QkhvuJ+J98UQtwmhKir5GMTQvxFCLFJCPGmtqzg4xFCHCyEWOCu+61wzbQkGbxml9/fhgmv2RV9fD3mut3t12wpZdn/gzPhYxmAKQBqAMwHMKO7x1XgMYwGcJD7uj+AJXDKn/4MwOXu8ssB/NR9PcM9zloAk93jT3f3ccQc41cB/AvAA+77nnRsfwPwafd1DYBBPeH44BRaWAGg3n1/B4CLK/nYABwL4CAAb2rLCj4eAC8DOAJOXt6H4KQZ6/bjq4R/vGaX59+G5Rh5za7A4+tp1+3uvmZXSkQ4tmRouSOlfFdK+ar7ugHAW3C+zGfC+YOF+/9Z7uszAdwupWyVUq4AsBTOeShLhBDjAJwOJy+poqcc2wA4f6h/BgApZZuUcgd6yPHBmTRbL4SoAtAHTs7Zij02KeWzALYZiws6HiHEaAADpJQvSOcKe6u2D4mH1+wy/NvQ4TW7co/Ppcdct7v7ml0pQrjQkqFljRBiEoCZAF4CMFJK+S7gXHgBjHA3q7Rj/jWAbwLIact6yrFNAbAZwF/dx4g3CyH6ogccn5RyHYCfA1gN4F0AO6WUj6IHHJtBoccz1n1tLifJqNTviRVesyvu2HrsNRvoNdftLrtmV4oQTlwytNwRQvQDcDeAL0spd0VtallWlscshDgDwCYp5StJd7EsK8tjc6mC89jmBinlTACNcB7VhFExx+f6rs6E84hpDIC+QoiPRe1iWVaWx5aQsOPpacfZ1fSY88drtrOLZVlZHptLj71mA73+ul3ya3alCOFEJUPLHSFENZwL6j+llPe4ize6IX24/29yl1fSMR8F4ANCiJVwHoG+RwjxD/SMYwOc8a6VUr7kvr8LzkW2JxzfSQBWSCk3Synb4VQbOxI949h0Cj2ete5rczlJRqV+T3zwml2Rxwb07Gs20Duu2112za4UIRxbMrTccWcv/hnAW1LKX2qr7gfwcff1xwHcpy0/TwhRK4SYDGAPOEbwskNKeYWUcpyUchKcz+ZJKeXH0AOODQCklBsArBFC7OUuOhHAIvSM41sN4HAhRB/3O3oiHC9kTzg2nYKOx30U1yCEONw9Lxdp+5B4eM0u478NXrMBVPDxoXdct7vuml2qWX+d/Q/AaXBm7S4D8O3uHk8R4z8aTpj+DQCvu/9Og1Pm9AkA77j/D9H2+bZ7vG+jQmasAzge+RnIPebYABwIYJ77+f0HwOCecnwAvgdgMYA3Afwdzmzcij02ALfB8c21w4kSfKqY4wEwyz0nywD8Hm4BIv5L/Dnwml0Gx5HgOHnNrszj6zHX7e6+ZrOyHCGEEEII6ZVUijWCEEIIIYSQkkIhTAghhBBCeiUUwoQQQgghpFdCIUwIIYQQQnolFMKEEEIIIaRXQiFMei1CiOOFEA909zgIIYTEw2s26QwohAkhhBBCSK+EQpiUPUKIjwkhXhZCvC6E+KMQIi2E2C2E+IUQ4lUhxBNCiOHutgcKIV4UQrwhhLjXrckOIcQ0IcTjQoj57j5T3eb7CSHuEkIsFkL8061IQwghpEh4zSaVBIUwKWuEEHsDOBfAUVLKAwFkAXwUQF8Ar0opDwLwDIDvurvcCuBbUsr9ASzQlv8TwPVSygPg1GR/110+E8CXAcwAMAXAUZ18SIQQ0mPhNZtUGlXdPQBCYjgRwMEA5ro3/vUANgHIAfi3u80/ANwjhBgIYJCU8hl3+d8A3CmE6A9grJTyXgCQUrYAgNvey1LKte771wFMAvBcpx8VIYT0THjNJhUFhTApdwSAv0kpr/AtFOI7xnZRtcKjHp21aq+z4N8EIYR0BF6zSUVBawQpd54A8CEhxAgAEEIMEUJMhPPd/ZC7zQUAnpNS7gSwXQhxjLv8QgDPSCl3AVgrhDjLbaNWCNGnKw+CEEJ6Cbxmk4qCd1KkrJFSLhJCXAXgUSFECkA7gC8AaASwjxDiFQA74XjSAODjAG50L5rLAXzCXX4hgD8KIb7vtvHhLjwMQgjpFfCaTSoNIWXU0wlCyhMhxG4pZb/uHgchhJB4eM0m5QqtEYQQQgghpFfCiDAhhBBCCOmVMCJMCCGEEEJ6JRTChBBCCCGkV0IhTAghhBBCeiUUwoQQQgghpFdCIUwIIYQQQnolFMKEEEIIIaRX8v9XjeHg4wkc7AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "117ns_image_417221672548_CLEAN.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADDCAYAAAAya0IYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADlbUlEQVR4nOz9eZhl2XnWib7rzPM5EZmVqkGSJWFZBsG1sY1B5gLuphsMF0zTD3Bt+mFuZPeFvlyGCzbQTG5o08bQ9HMbg2iMzcXNaGa7MQauG9ySB9mWB1mWJVtTqUqZVRkRZ9hnPmffPyJ+K969M7IqqyqyMjJzvc8TT0bE2Wfvtdda+2S87/d97xfyPFdCQkJCQkJCQkJCQkJCQkLCK0HlQQ8gISEhISEhISEhISEhISHh4UMSFBISEhISEhISEhISEhISEl4xkqCQkJCQkJCQkJCQkJCQkJDwipEEhYSEhISEhISEhISEhISEhFeMJCgkJCQkJCQkJCQkJCQkJCS8YiRBISEhISEhISEhISEhISEh4RUjCQoJrztCCB8MIXzpgx5HQkJCQsI5QggfDyH8Z/d4bB5C+OxXeZ1X/d6EhISEhISEq4UkKCS87sjz/J15nn/Pgx7HyyGE8FtDCJ8IIWQhhH8WQjh80GNKSEhIeJQRQmiGEL45hDAJIXwmhPCHHvSYEhISEq4aLluYvZfzpb+LE+6GJCgkJFyAEMI7Jf0NSb9N0hskzSX9tQc6qISEhIRHH39G0tslfZak/0TSHw0hfNkDHVFCQkLCY470d3HCSyEJCgmvOzytNoTwZ0II/yiE8HdDCNMQwo+HED4nhPC1IYRbIYRPhRB+lb33d4UQPnR27M+GEL6qdO4/GkJ4PoTwXAjhv3bF9Szy9ZdCCJ8MIdwMIfz1EEL7LsP8ryT9yzzP/0Oe5zNJ/52k/zKE0L8/s5KQkJBwdRBC+OIQwvtCCCdnn6n/nxBCo3TYrz37HH4xhPANIYSKvf93n31WH4cQviuE8Fn3eOnfLunr8jw/zvP8Q5L+pqTfeTl3lZCQkHB1EEL4uSGE7zn7nP1gCOHL7bXvCSH81/bz7wwhfO/Z9//h7Nc/GkKYhRD+7yGELw0hPBtC+ONnn8kfDyH8V6/2fBcMN/1dnHBXJEEh4Srg10v6/0o6kPQjkr5Lp3vzGUl/TqeKKLgl6ddJGkj6XZL+SgjhCyTpLIr1hyT9Z5I+W9KvKF3nL0r6HEmff/b6M5L+1F3G9E5JP8oPeZ7/jKT12fsTEhISHnXsJP1BSdclvUvSr5T0/ygd8xslfZGkL5D0GyT9bkkKIfwXkv64pP9S0hOS/qOkv/dyFwwhHEh6WvbZe/b9O1/9bSQkJCRcPYQQ6pL+paR/I+mGpP9W0reFEN7xcu/N8/yXn337eXme9/I8/wdnPz+p08/sZyT9DknveY3nc6S/ixPuiiQoJFwF/Mc8z78rz/OtpH+k0z9Avz7P842kvy/pLSGEkSTlef4deZ7/TH6K/0OnH8S/7Ow8v0XS387z/IN5ns8l/VkuEEIIkn6vpD+Y5/lRnudTSX9B0lfcZUw9SePS78aSkhKbkJDwyCPP8x/K8/z78jzf5nn+cZ0Ku3eItGefp5+U9D9J+sqz33+VpP8hz/MPnX2u/wVJn38PWQq9s3/9szd97iYkJDyK+CU6/cz7+jzP13me/3tJ/0rnn6OvFv9dnuers7+Rv0OnfxtfBtLfxQl3RRIUEq4Cbtr3C0kv5nm+s5+lsz80Qwi/JoTwfSGEoxDCiaRfq1M1VjqNbH3KzuXfPyGpI+mHzlLLTiT967PfX4SZTrMgHANJ03u9qYSEhISHFWelZ//qzBhxolNR4HrpMP+M/YROP4OlU/+Dv2qftUeSgk6jZi+F2dm//tmbPncTEhIeRTwt6VN5nu/td5/Qy39OvhSO8zzPSud7+m4Hv0Kkv4sT7ookKCQ8NAghNCV9u6S/JOkNeZ6PJH2nTv9QlaTnJb3R3vIm+/5FnYoT78zzfHT2NczzvKeL8UFJn2fXfpukpqSfvox7SUhISLji+CZJPyXp7XmeD3RawhBKx/hn7JslPXf2/ackfZV91o7yPG/nef7el7pgnufHOv0c/zz79efp9PM4ISEh4VHCc5Le5N4zOv0c/fTZ95lOA2HgyXs450EIoVs6H5/Lr+Z8jvR3ccJdkQSFhIcJDZ1+eL0gaRtC+DWSfpW9/g8l/a4zk5uOzB/hTAH+mzr1XLghSSGEZ0IIv/ou1/o2Sb8+hPDLzj6c/5ykf3JWKpGQkJDwqKMvaSJpFkL4XEn/zQXH/L9DCAchhDdJ+gOSqLv965K+9swVXCGEYQjhN9/jdf+OpD95dt7P1Wmp2re8hvtISEhIuIr4fp2S/D8aQqiHEL5Up55if//s9Q/o1PSwc2Yu/ntK778p6W0XnPfPhhAaIYRfplPPsX/0Gs8H0t/FCXdFEhQSHhqcfWj9P3UqHBxL+q2S/oW9/r9L+p8l/f8kfVTS+85eWp39+8fOfv99Zym8/1bShWY1eZ5/UNJX6/QD9JZO/7guG5IlJCQkPKr4Izr9jJ3qVIy9yKTrn0v6IZ3+ofodkv6WJOV5/k91aoL7988+a39C0q+5x+v+aUk/o9NU3f9D0jfkef6vX/VdJCQkJFxB5Hm+lvTlOv1sfFGnLRh/e57nP3V2yF/RqenhTUnfqtO/Rx1/RtK3npWW4ZPwGZ3+ffzc2fFf/RrP5+NNfxcn3BUhz/MHPYaEhPuCEMLP1ekfss0zY7CEhISEhISEhISERwpnGQ5/N8/zN77MoQkJl46UoZDwSCGE8BvPUr0OdBoh+5dJTEhISEhISEhISEhISLh8JEEh4VHDV+nUY+FndNpH/aK634SEhISEhISEhISEhITXiPsmKIQQviyE8OEQwkdDCF9zv66TkODI8/zLzro3HOZ5/hvzPH/+QY8pIeFBIX0OJyQkJDx4pM/ihPuNPM+/J5U7JDwo3BcPhRBCVadtRP5zSc9K+kFJX5nn+U9e+sUSEhISEu5A+hxOSEhIePBIn8UJCQmPOu5XhsIXS/ponuc/e+Zi+vcl/Yb7dK2EhISEhDuRPocTEhISHjzSZ3FCQsIjjdp9Ou8zkj5lPz8r6Rff7eBqtZp3Oh3VajXVajWFECRJIQTt93vt93tJ0m630263i9/neR6PPTuPJImsi0rlVC/xc/jrklSr1eL79vt9PG+1Wi2cm/NXq1XleV44Rwgh/pzneRxntVpVpVLRfr/XdrvVfr9Xo9FQv9/XcDhUvV4vnGu73Wq322m73Wqz2cSxcI1arVa490qlEt9fqVTifWw2G63X68LvfS597JVKRbVaTXmea7vdxvdUKpV4X/7FPfp9+rVZH+6d40MIhflg3vM813K5jPfL+2u1mur1uqrVqna7ndbrdbwW493v9wohFNapVqvFe+Qe/F6ZB+6FNeWLOd1ut3HNQgiFdVyv13fsN67j68G1mFfOwz2w57gH1p1zsGd5H/PB3JfHx3wzFq7NXvQ53+12cU18b/hzwrlCCHFtuDff977/AXPs1+C6PkZfF/8dP/se9PcxP5zP3+P7vPwZUT6n378f7+/Z7XYv5nn+hB4+vKLPYUmq9rr52966182faN/Xgb1eCM2Glk/UpfDyxyYkPDTIpeanM+kxatK1VKZ1vnpYn+RX9jfxI/Y5fD8RqhUtn77ceWo9v1K+TV7eCQkXYarjC/8mvl+CwkUf+oX/+kII75b0bumUmH3u536u3vSmN2k0Gqnb7Wq320XiuFgsNJ/PNZ1ONZ1OtVqttFwuI4laLpfabrfqdrvq9/vabrdaLpdqNBrq9XpaLpeaTCaRaGzPPigqlYoGg4GeeuopNRoNHR0dKcsyzedz1Wo1tVqtAmnsdrsajUaq1WpaLpfa7/dqtVqq1+tarVaRaK5WK52cnEiSut2u1uu1jo+PNZ/PJUlf+IVfqC//8i/Xu971LnU6Hc1mM4UQdHx8rBdffFGTyUS3b9/W0dGRVqtVJLHXrl1Tv99XlmU6OTlRs9lUCEHz+VyVSkUHBwfqdrs6Pj7WJz/5Sc3nc7VaLY1GIzWbTW23W83n80gmmYNaraZKpaLZbKb1eq1Go6FGo3EHgVytVtpsNpFcZ1mmo6MjbbdbDYdD9ft9rddrZVmm/X6v4XCobrcbydpgMNBgMFCz2VStVlO73dZ+v9fzzz+vT3ziEzo5OYliyG6308HBga5du6ZWq6Vbt27pueeekyQ98cQTGo1GWq/Xms1marVaarVayrJMktRqtSIBbrfbUaSq1+tqtVrabrdxH41GI924cUO9Xi/un2q1qtlspps3b2o8HqtararX66larer4+Fgf+9jHdOvWLXW7XbVarXh/3Nd6vY57Q5JOTk6UZVkUzNrtdhSUWI9Wq6UQgm7duqVbt27FOYTctlotHR4e6oknnlAIQePxWJPJRJvNJh7TaDTiWoLZbKYXXnhBu91Oh4eHun79uur1urIsi3PX7/e12Wx0cnKi6XQaz8X+4Hl88cUXtVgsorAhqSBySOfi3XK51Gq1UghBzWZT/X5fkuLzxXpA6BuNRlwrnrdmsxnHwTPOHPK75XKp+Xyu5XKpEII6nY6q1Wq8DsILe6BWq8XnZrFYaL/fq9frqVarxfNIimuZ57mOjo4+cW8fe1cOL/s5LBU/i1vq6C0f/HV6y8P6Z3sZa6ly/efqo1850r75GLGvhEce1VXQz/nzP6H9dPqgh/K64Pvzf/egh/Ba8Ir+Jn7kPofvI2pPP6Of+sNvutRzvuMv/Ix2L7xwqedMSHhU8G/zf3zh38T3q+ThWUn+hL9R0nN+QJ7n78nz/IvyPP8iRAGPVPPHPGSjXq+rXq+rUqkUIulO4iARRJedICA+QISI7hIV7nQ66nQ6qtfrheixk+rNZlM43263i6Sv1Wqp0WjESPJwOIyEGcK53++1Wq30kY98RO9973t1+/Zt1et1tdttVatVtdtthRC0Xq/jPTYaDTWbTVUqFd26datA+CGuzEmWZdpsNpGclaPkm81G0ikJ7Ha7GgwGkfT6a2ROMIfT6VTb7VatVkudTkeNRkPValWdTkf9fr8wZsa22Wx0dHQUxZl6va7NZqPtdqt6va5OpxOFiWq1qkajoVarpeFwGIWRLMt0+/Zt7XY7jUajKPwgJg0GA3U6nbgevV4vRvpZuyzLokABuWROJWmxWGi5XGq320WhSlIk2r1eL84vos0zzzyjWq2m6XSqyWQSBS/ujblHYGJvOJndbDYxU2Oz2WixWGi73arX66nf7xeyMJib3W6n+XyuPM8jGWecCCXcO3Pte2E+n2s2m2m326nZbKrVainP8ygSkQ3Cc4OQhVDT6/Xiunmkn/lHhGu32/FZOnvWtd1uVa1W1Ww243UQtiqVilarlRaLxR0ZM9Jp1kmj0dB2u9VisYjZN2RdtFotNZvNuIbSqZDX6/VUr9fjM4DwgQiD+LBYLOJzw9j82g8xXvZzWCp+FtfVfN0G93ph/6Mf0lv/+VzVRfrrPOHRwa6Z6+N/6Bc86GEk3Bte0d/Ej+Ln8P1AqNUuXUxISEh4dbhfgsIPSnp7COGtIYSGpK+Q9C/udnCe55rNZjFqDBGTFAk6JLDb7Uo6FwQgVYgSRNkhH5PJRNIpUfb0c782qfTXr1/XYDC4g0QgGkinUdH1eh0JGGnSiB7VajUSdiL0zWYzkqvdbqeTkxN99KMf1Q/8wA/o+Pg4Rs45br1eazqdaj6fRzJXr9e12+108+ZNrdfrSKDKmRqz2Ux5nqvX66nZbGq/32u9XkfBxsso6vV6jMyTDs/42+12vOZyudRisVAIoXBfCAPD4TDOZbVaVb/fV7vd1maz0WQy0Ww2i+vlWQ4IMJ7aX61WY9ZAq9XScrnU8fGxQgg6ODjQcDiM5LJer+vw8DCKIu12W6PRKBJdRBbmkmyP/X6vZrMZ991sNtNqtYpzBeFEQEG0ghBfv35db3zjG1Wr1eJ+JSsmhKB+v69utxuzLZgnL+VBLGAfsXaICqPRKAoBCA+IMqwFolatVlO/3497nGcGUaXX68Uo/Gq1ipF7MiwQ7trtdny+IO6IaAgt7A/mgzXzUiXuF6Fst9sVhEIyf7iHarWq/X6v+Xwen1cEGa7rQhXCo3QuNpBdgqAkKa4fzx5ihQsPZEVQOoGo4OLMQ4xX9Dn8KCO870f1hh98qNcyIeEO7Gu5am/9rAc9jISXR/osvg8In/vZl37O9s2KtFm//IEJCQkF3JfwW57n2xDC75f0XZKqkr45z/MP3u14SMDJyUmMCEMUpKKoQPSTiC5EqNPpaDKZaD6fRxIA6YAQSopEwsaq7Xar1Wqlg4MDDQYDzWYzZVl2R/02AsJ6vY6lDkQ8fbybzSYSL6LJkEuI5/PPP68f/uEf1pvf/Ga9853v1GAwULfbjRH31Wql6XQaxYxms6l2u63lcqksyyLRhcS22+0YTSYq2263Y/TV6809Qlyv16Pw4B4GZIZ4VHe9XsesBLwKOA4iSFp5p9PRZrOJBBAfBAQTMh4gk5yfte90Olqv1zHLgTW+du1avOfNZlMoY/AyA093X61Whfp499/Y7XYaj8eReFYqFS0Wi5hJ4N4PkuL1nnnmGe12Oz3//PORxCNIEMnPsiyWOrB/ERLYu7zGONk7zDEiW6VSUbvdjp4TkHhIN0IPghKiC9F8SjMQdXimOp3OHf4e2+02ihvuS4BwhTDgzy/7wf0rut1uLMlZr9cFMYLzIN5QRkQJQ61Wi6JgrVaLzwaCCGuNIIFANZ/PY3YGAtBms1GWZTEzo1qtar1ea7VaqdlsxnIg9+9gP5Z9VB4mvNLP4Ucd7c8s1Tjpaj1KwkLCo4FtL9cnf/Mzevp/fFirsh4PpM/i+4Av/gX66a/oXvppP+sfPqftyfjSz5uQ8KjjvuXz5nn+nZK+816OhdjNZjOdnJxE8gVpgRhAQFqtViQckIR+vx+j0BBfSZFMjEYjNRqNmAJfNmwkK2IwGMTSgbP7iNcl3btMSCFLZBi4MR/p7kRNJcVsjI9+9KP68Ic/rCeeeCJmFLTb7ShWEKWFVEG+x+PxHQQZYgQppUbdBQJ+DzH04xBEmAcXHBAo3JgPEocgUavVtFgsImGm1p312O/3WiwWkVQSweaeuV/IYKvV0mAwiO/n2ngQ2D6LQg5lCewPouDcJ+Pgft1Tw8sdyNSQzo09+b2X3rC3ZrNZFELW63X0rmi328qyLJ6XrA2MF908EeECAYZ5pVSBdeNe2cPskdVqFbMLvGwDDxLWBOGDY/AEcd8HIv3MD/sOuGeEzw/jQYBjX9RqtfjccRz3CvFnPtgnZJCQkeH+E4hq2+02enIwPvdCcGEPkWC73cZzI7jw3CKqIaR42cXDilfyOfyoI7zvR9X/nHfp9uc/6JEkJFweth0pfNHPV/7+n3jQQ0l4CaTP4svD9j/9Qn3i116+2e7wp4PyyePhSZKQcNm4EgXCEAzMDElDpuYcEtjpdLTf7zWbzSJ5hnzxOmntlUpFw+FQJycnkVyQ2UCEk8wI6rdXq5UGg4GGw6Hm83kkchAqCBffQ87cS4EIKOSFFHiIO4SbcoyPfOQjevvb3643velNkdhA6iB97r6PoDGZTCLRR/TASJEsDAgoZFRSJLMXZWxABJk/jiVlXFIkXOv1OhL9TqejXq8Xz+/kjp+9LIO5Xq1WMRuB+4Vwu9cC/g9O7rwzh5N5ygEQcjx93bsj8F5I7Gq1ikISJBSvAC8toe6+3W7r4OBAN27ciOflPWQQMC6PqOOFsFqt4pp5tw43JWTuydrhvpmr9XodI/uLxSKm+LOulBfkeR7vjWeLEg8EOsblQgpCGWIMggDPDXuVOfL1cf8T5oKsEcZFGQTPid8368U5KSNCgEK4qdVqd5QpsdfISuB67A+EMLwxNptNFD9YC57phEcL1z5wotkbD7S6ntY24dHAerjXJ37tQIdv+yXxd6P3fkrbZz/9AEeVkHB/sPq//SJ9+lfUlFcv32T3xvdNtHvx9qWfNyHhccCVEBSk02jqeDzWdDqNZoGktEuKKd90OZhMJppMJrGbA18QyP1+H+vWT05OtFqt1Ov1NBwOlWVZjKZLit0CJpNJNHMbDoeRbDtZhfR7KvRms9FqtYrChnTeso+06sFgEImXJL3wwgvKskzPPfecbt68GUkN2Qk464cQopEeUWs3niQzwk0qIeXMmxMoulO4AEEpQghBy+UyElle8zaH0nmKO6aN1Wo1pqS7hwXHQvoRB1arlcbjcTRWhCQvFgtNp9O4HtTgcy3PIHAPAe6z1WppsVjEMg/KCbgXMk0QTBCYqN/3LAZJ0eQxz/NIwNmDtVpNvV5P165d03q91snJSWGe6NxBtg33jdCBoEKpAdF4MgIQq9x8EFGBayOekalDtL3dbkeijqjkPhrsMYQU/D8QWBgz64zYcHx8rCzLIun2DCEyQfAjYazMSVnAIuNosVjENS13ZGC9PLuCZ4BsI4SUXq9X8DPhGfTrsd6LxaJgLurzznPCexFYEh4N7H/0Q3rL9h362G+6lkofEh4ZrA/2+sy7zn+ePf1Zqk/fHH++9s3fJ+Wpy0nCw49bX1DXvn75n93XfySo8snntXv5QxMSEi7AlRIUKFmYz+caDoeRwEuKkdRms6nhcKjJZKLxeBzTzt1RfzqdRvJJNJeoOJkLkB6IzmKx0Gw2i/XovV5PR0dHUdSgdn08Hms4HMbIrEfKIYxOhiD5mMYR+dzv9/EePvnJT+r27dt68sknI4mmVSHnpZ6bqLAb00E8JcX0blr2OfmmiwRp+ERiiYzz3tlsViC20rkwUe7KgN8EhpTeUtNN7fB0IFJMrT+EGn8MskWoheceEClYMx+Pn4N18haS3W630P5TUsyMaLfbUcRASIGE4h/AHEyn00LmDJ4D7C03E8W3gW4C+Ais1+soFiEUeYSeLh50OoCg+76RzssvIPtkU3hmwmw2i3uE7B6EBf8ZUs85mCMXwHq9XhTOEMkwM2RdMJfM87xQlsK+xRgS0YBsCi+f8AwjvhCTED3Y56y/i1eS4nwgtJF5wf1560rKY3iGEFEY/8PsoZBwMXYf/LCqv+5LHvQwEhLuG2afVSRcmz/wLlU20o3/5b0PaEQJCa8dk6/8Jdr0748w1v/kSrvbR/fl3AkJjwOuhKBAOjgkfjqdRs8DovBEYAeDgfr9vgaDgY6PjyPp3263kbASoc6yLHYLmM1mOj4+jm74EHdvY0cEF1d8iLukSHazLIsRXdLVvd6csgfGsFwuI1nHF4BIKsLB888/r49//ON6+umnI1GUFKP+WZbp6OgoEjVIJOTeo7vuH+CRXYgSpQmQYEjlbrdTu92OZJbUf8gwpJ31orsDponValWDwaBg5AjIDuCYzWaj27dvazwexy4EdOtoNptRIEJE4X4Yr3cXgESTcUGJCVkHRM29jSb/SqceAs1mM96Ht1CEtHL+3W6nF154QSGE2OUBUcJLMxgv5p1ubIlIht8BIle5tMDbRvKvdG5Q6kIPZBxBxUteMLCUFNcP0a7b7cY5LYsA0rl/CFkJZNCUWyqSScMX+549iJjD+Hz9yHJwU1NvC8lnAOUZkgqk38thGo1GnCcXsnyeGAv738s93BuF8SGoJCQkJDysmH3WXmEv7f/Al+jJv5pEhYSHE9nTlfuSnfDE+6X6D35YKWctIeHV4361jXxFgGx1Op1Y6kCrP4gJhBLi0O/3Y2050etarRazB2hZSHs8rzWXzlOgIeB0HyBlv9ls6oknnogEigg7zvNOdInWepR7OBzG32HcB3HqdDoaDAaFVn4/+7M/q0996lMxQk0JQ7/f11NPPaV+v1/wFiATgpZ5dCegqwAks1yG0W634xyR/UBWAOTTW2AiamD8x3kqlYoODw81GAxi6jrz4oICWQusMZkSROnxqkC44bq8v9xesUw8EXIoA/E2gt6Ck04Tng2AlwHjwayQDIfxeKyjoyMdHR3F8W23W73wwguxfSclEG4iSv0/Y8fboGy6iIADqWYvlT068LJg7+GfgAEnwlGv14vGj9PpNGZ4UBYhnWchuLHhYrHQeDyOUXs3tOR+JpNJFPfIGpBUaDfqJTt0SWD87nXBGnuXC886KZd7eDYCe4LnrOzfQAaJZ9+wZ90QlM4a7Av2vBuquvCU8GjhTX/tx1WfXIn//hISXhfkFSl7814f/7p36fbvfdfLvyEh4Qrh5Le/S/On7g/lb2R77c+yWhMSEl4drsRfVJAliBcmcpBNSTG9mmj5cDhUt9stGBGSOk1Jw3K51HQ6LbjKcxwZBu6HQMSUCHGv11O3241khVpxfAUgRng+eMp3r9eL0e/5fB5bWlLjTS09WQ6z2UzPPfecXnjhhUhEufeDgwMdHByo3+8XyiGIyNJOsdFoaLlcFvwcEBGIiFM6wpi9UwDE1Qmdt2WEmEOAQwgajUYaDocFjwMEFsQFvofoekcM75ThgoBH1Ykqu2ElxJkIO+PD+A/i6/XwTi5J7actY7fbjVkxzBMZKdPpNJp7IhK98MILMTum1+vFzBeILBkkdBWgZp+WjKwR60+kvdFoxG4i+ELwjPi9sAb4ZbDHyZhAuGAdOb8LFXiQkLEwHo8LRobsT+YDUcxLEXxOEU/I2OC6PFNu2ujtOCH+5euRGeJdX9hLnJfPBT+/d3YoCwI8O/hMkJXCXkN8Q+zwTJuERwf76VRv+e/fr+oqCUYJjw/yymmryZPPzXXy25OokPDwYNuW8vtgaXTtA0Htf/FDl3/ihITHDFdCUJAUSRKlCEROZ7OZJEWy5i3wRqNRjPxCKKXTUoFutxvr6Ynqe8p1u92O5QNE972dJKnrkDuuC5lxR/xqtarRaBSN8miPeHBwENvynZyc6Pbt2zHlfTQaRbNAyN+LL76oyWQiSYVuEu12W9evX1e/34+1+0SC8RsYDoc6PDzUfr+PJJlIv4+VVG8itYgyTtS8HaWkSODn87lOTk6iH8B+v48lKBAxCCCZH9TPc6/z+TyKCng6OAEndZ+xcxwRbY7z9HsyN8rfU0JBjTxlHG5uWBapWEdPd99ut9F3go4jq9VKR0dHWiwWajQaOjg4iJkiCEJcE5GD60LgEXAA1yMNn/FDsiHKEGjpvK0lAg/ZL16aQEtRSnMkRdGGZ4l7mkwmUVTgmWF/eOaEmywi6uDdgNjne2K5XMZ5kIpeFm7o6GKU+4cgTHmGBHshz/O4Jzm3m0EyR979w9tNspeZX54Z9m7Co4l8s9Zbv+Z9CqmqJeExQ16RXvz8XNlv+sUPeigJCS+PEJTfJ+037CXt038CCQmvFVdGUOAPe48MetQUQkGkf7/fq9fr6eDgIJYXECVvNpuRfJNqDwknwwDSAfmlpAKiR3o/hJmItpu4dTqdWDsvKRLKLMsiaR+NRtE34eTkRMfHx5HsX79+PWZY0Ary2Wef1Xg8LswBpomQS5z8R6ORQgiaTqfK81xveMMb9MQTT0g6bxuY53ns4jAYDGLbTcaPVwT35e0JGRNlAbVaLQoY/IunBOcBlFZALl0QwCfAhQuIKh4HbiCI+OFeGnglMH/lmnl+9jnzOn86XdTr9ViSEkKIYpQTSdYegQAyi0kn3h43btyIpRwID7TfRNiSzgk23hWIPQgilEMQ6addIpkBeBP4vvCofaPR0I0bN+L+4nnAP0NS9CxhLngOJGk+nxeyKNrt9h1lCd65gTkpl7m4fwfrSTYA8GwHylG4Fs8uZq2+rmQDkXXBccwr5RndbjfubdYSkerw8FCNRiOWZ3hmhgseCY82KuuUpZDwGCJI+1pQSJ9xCVcck6/8xRq/I2ULJiRcZVyJ/0kggW4mB3Far9c6OjqKHRCm06mOjk6dWEnxPjw8jO0VJ5NJNPijpl9SjJ4SZcWpnmh3t9uNUejxeBzfR9QX4kKZg7e0419KJBaLhY6Pj2O0vd/vx9aV1K5fu3Yttqak2wPZAvgo0OGCDAui9ggSpGiv12tNJhONRiM98cQTGo/Hsea9Xq9H00QyCcjkoJaczguelQBRx4uiUqmo2+1qOp1GvwSuTYmIR5ElxTR2jBMROSB7kEJIMMQYEkfEGZGI92BuKJ0SY7JbECgcZDcgWBCBZjyUIVDOQMo+pQ3SqSiBiCApigCe4UCr0YODgyhQ4BfBfZZFFCLv/oWwQVtLnyei+Ox9/kUsY38Qged83lKUkos8z6O3CESatYH0Y4ZIhkQ5u4A1ozSBziKca7FYFM7NnDvcK4PMANZEOhcrFotFoTOElzEhXMxms7iXED2YGzdrdI8Q9pePwbuVJFPGRx9v/RPfp49+4y+Wkq6Q8Jjh5i+WqqsvVPc7P6C89NmckPCoo7IJqs+TFWNCwmXgSggKkmKEtVw3TQR+v9/r8PAwZi1AAKk5py4fozqik5JitBMy6SaAZB1Q2rDf7yN5oX0d9f4QeVLEIZaIFJQnQHhPTk4isSNy7dFYShlI657NZlFQoM0kkWnplDzjLQFB7vV6MVtgOp2q3+9rNBpFQoagMJ/PY4nHbDaL/gzebpFxYEoJsfMuD71eL5aXEPGG3PHl7TQhx56q7v4BmAsiMpDxwfwuFgtNJpOY/cF8u6jCOCg3IRMFUk6nDMgpZQlec4+o4CaA7q3BuMqlLr7+rVZLo9FIx8fHUfAg2u5tH4nCM4bdblfwD3GzRTovkEGDkSLziUDhUX3Wys1GIesHBweSFLNW8N1gHREP+Jm1YC64nt8zYoF0LgAAsgz4nvnzLAteoysGz6xnzPBM8fwhGLiIhJ8EggHHdbvdKGoxZ6yxt7LEy4Fx8ZXwiCPP1b5Z0eLJ9IdlwuOH53550Gd/+nOkH/jxBz2UhIQL0TzZqbqsade63P+Pex8P6n7791/qORMSHldciZIHr7OnXp1uC5DHLMti6jZeCngekAUwGAyiGSORRdLmpVOSMhgMNBqNYio6ngKQT4ir1+PT+YDUdxcVvI0fnSD6/b4qlUo0YyQbgvptIuD1ej1GtvE+wAQQl36/jpPyyWQSDSe9FeR2u9Xh4WGMypIW7638yEhgbIgxZESQRSEpEkbmkQyELMt0fHwcCRzCB3MkqWD26K0Fy60CIagIEZzPyz74ItKMSWCWZbF+Xyqm6xOZJ3OEOWJ/UNrCNb08AZLKGmJ8iNEi+wKfA8gnZST8jnFwDV4vG/4hEgwGgzhW9/+gBIK15LyQdObYyz9o7UmWBGt/cHCgwWAQswkoSSEjwYn8arWKkX8MFCVFQ1BKUih58dIjF9oYk4+VshNfU8bgzzViH/sSzwb3d/DuDswP4hjmjWXvBa7B3uf+3OAxdXl4PPDGv/x+9T92Jf47TEh43ZG9uaPK2f87CQlXDc3v/EH1P/6gR5GQkPBSuBJ/QUFsMBokKp5lWSSktEPs9Xqx9hvSQBYBnQ+8TR7p0kR8iTaTOk3EnKwGb2kHkZfO2+15KzqimZAOIr5kNJBePplMIgFCgKBlJS0OJUWSjjEeggpiC1F3oveTyUTr9TreDxF9au8xu+M+mAfIEw7/CCaQXkmRjDFfpJdDxDiGMgZPIy93IqBdp0fAaXFJlN5bV0IA+/1+JKiz2SyKP9IpMaW1oxscYsSJSR/En/mGIFMzT/08Y3PBw6Pj8/m8UO9PCQPrznwgKtBiFIGI83U6HfX7/Sj4QKAph6FcgUg9BJ79iJ8CYpi3kYSQs58lFYQsN6PkWWM92+12HA/7nedjNptFUcHbKpJlsVwu4znw4+D58FafLtQBxASfa+aEvY8pKNeik4oLAp6RgHDle5Tj6TjBZwdCV7lcxw0fEx595Ju1nv62n3rQw0hIeCB4/pcGhTc+9aCHkZCQkJDwkOLKlDx4+j7GhRCsxWIRWxZCDCEFm80mEgJaCnrKNVFUj+63Wq1CO0iv//ZsAEgQZNhTvSFuRPUBJKter8e6d1K5ETE4jvIIotzT6TQSNwQT72rQ6XQ0mUxixwkyEkajUSSwCAj9fj+Sau6d6Dvp4hBqfkaYabVaBdNABA1EDiLsHhWHVEPAEHIgh6wTUXaIPaR2vV7H1oyQY9aZ8oFyRBvBhWwHb2GIQMQewSuCdYGsEuEnAu9ZCLwHQWS5XKrX66nT6Wg8Huvo6EjtdjsKNJBV5hEfAUSfdrtdqO2vVCoFTwHINHsQscU7XiAceQcEF70wDKVjgkfwOR8ZGAhTZLE0Go1oAupjYM9QSuJlGpicSoqZGeyl+Xwe22YixlF6glcCe8WzW/iX57PVasU1cq8MxCbpvLTGs4g4/2w2K5iO8ly5eMD5yLwgCyJlKCQkJDwOePFdT+jacze1P/NYSkhISEhIuFdcCUHB29lhTEhaOmST6P1TTz2lVqul+XweI/Blp3pIAQSDCDOO7t4pgeP2+30sq8DIzcsJqPuHaEAeiYwSzXRy7h0Flsul2u129A3IskyHh4fxnIPB4I5oKl4POPkPh8MorED2yCTgerzG/bkZIuPwGnRJhbmSTgkc5BYxhGOJtEM4ESp4L78j3d8zRUgpx0+CbATIJmUcRLDJ+ED0YK7dn4GsAMQCyLWXNBDRJjKPAEFGBZkP8/k8ZouUPR1cmMLccrFY6NatWzHjBPHIvTe4Pt4OrBn3JJ1H8km3R9CCHHvZBN09JOnk5CSKJ/h+uDfBfD6PLRhZF47Bb8C7YzSbzZgBgMcHx7MnfX4RPxApJMXsC/YDzzF7mPajmEfyrLMPuA77kmwVnktvXYlYguDk43JRh31cPsbFAvYUz75nsCQkJCQ86rj9ebme+K5uEhQSHhss3iDt/6+fr8r3fuBBDyXhKqBS1fFv++LCr0YfmSu890cf0IAeLrxqQSGE8CZJf0fSk5L2kt6T5/lfDSH8GUm/V9ILZ4f+8TzPv/OlzgWB8JRvooiQq9lsphdffFE3btxQp9OJ/gFEY4l4erqzkzoi+kTgER+c6BLRp03ecrmMbeeIDHuLPDICnJiT6SCdu+RL51kQOO2Px2Ndu3ZNg8EglizQnpJMgvF4rOFwGEllt9vVtWvXCqn9RJgh1ogckCmIO1Fij3qTXeGp7hBXyDrdCjxyX47ulz0SILTlFo5eMuJrR30/JRne1YKxQHiJ8rvA46UnkGLG5GSXqLWXbnA+WmF6qj/7B7PEk5OTuO+azWbMnDk6OiqYWjJfjN/LaHx93d+CeSBjwbs2uNCACSWiDUIEx7ipIHvAzRolxX3BXuC8kGkEEAQVSXGfe3YQe8bbkzKHXkLCuiKIMF6yHrhvMk4QvNwkkYwKnmUXthDVWGMyGchGwgPEhS/EIfs8i881ApEbSl5lXOZncUJCwuOLZ7/ibXr6m060P/s/M+HekT6H7y+e/O7ntbz2tJZPXJ557maw1+StbY2+99JOmfCQ4oX/5l3Kq0GTn1PcX9O3dNX6hV+ip77ntnYf/PADGt3DgdeSobCV9IfzPP/hEEJf0g+FEL777LW/kuf5X7rXE/HH/HK5jDXYdDSAqM7ncz3//PN68sknYwtBUpQhZ9J56zfOW6/XNRqNNJvNIpGjXSKk2NOlORfR8E6nE/0B+IIQIRLwunTegk5STLlGzECgwL/g5OQkms7RrtDNIGm7R4bFfD7X4eGhRqNRjNSSvs6/kGiiui48UIcOkfWUdsgm98e80nLSa9Ln83n0aPAaf8+wgAxST48HgXSe2u8RYC9FIKLN+DB3xCODtXKxACKOmOJz56IPewKSS/ZGvV4veCV4FBxfjna7rdlsFsko4kCWZYX2k7yv0+kUfDDYs971gD3o84AwxR6kvIb5RISCXHu2ynQ6jXsny7JYWlOOxrM3yQ6gNKHX60VhgAwhBLZarRa/Zw+z1xA2GKukgqiAbwXn4HmgZIT94oaerIP7LFAuw3s5n/teIEaQjdPtdmN5EaUNnunA3Pj9utfJeDy+14+yB4VL+yxOSEh4fDF7816q16UkKLwapM/h+4jtz35c1dXTD3oYCY8YXvjqd2k9DFq8YS+FOz2z1qO91iNpef2aqr/uS/RZ3/oz2n7m5us/0IcAr1pQyPP8eUnPn30/DSF8SNIzr/JchZp7zOuIGEqKnQ0+/elP621ve1skMUQoy07ykGZJUYBwo0CuKykSF28/R1nC7du3de3atZjR4K0iIYEIGxAViB5lE5CbLMvUarViGcXt27d1/fr1WHuODwRp53S3qFar8f3tdjuaUkqK6d5cx9PG8ZQYj8fRGNBr6mmnSFTZzR8h25QCeBp6lmUaDAaF+5VOySkGlNwLJSj4ONCi0ssRfExEjb1spNlsxuwI7w7hXQX2+31MpT84OIgiBIIChLhWq0UizPWHw2Ehao+oQftM7oHoPHPf6XRipwnGSpYAHSAGg0Hca1yf+/HyFrIKSOtnT3udv5tBktHiHQsweoQA41OBnwL3xTPB79y3A+NHL9lh3VhDxBeux7PjJTBch2wgMnM8E2Y+n8fsHy9n4LllTIgW3oJTOhW3ECz4PaKNC37sdS8HaTQaBUGGve1lS9K5KHiVcZmfxQkJCY83PvZHfoHe8nU/oNy8qBJeHulz+P7jjX/rg/rYH3in1qPLy1I4eqfU+dVfpMZ3vf/SzpnwcODFr3qXJp+dK6++vPk2e+6jv+9t+jnfsNBuMrnfw3vocCldHkIIb5H0CyXR0PX3hxB+LITwzSGEg3s5B5F5iBSRYY/e0rrQybqby0EsIXRuFAiRg2CSku7p/l66wLnoJLDdbmMmAmQMgkR5BlFpIsaNRkOj0Si2kYRwk75OdLtSqWg4HBZEBQgPZRiklSMM9Pt9Xbt2TQcHBzHjAmIEEWw0Gjo4OFC/34/Ra+6fjA2yG2jJCFmnZR9kG6LsawUBzLIsmkXSZpFxE50no4G1IVuknD5PmYAbDUI6mVeOo5Ui41kul7GrBmuPMOB+AUTzJ5NJTO/nNQgpAg1jY90hmKT/kwXiNfdkBzCfrA8ZEKw/a4agwhy46SVrz171zhWtVkuj0Sh6TTBPdFvgHHSDoESCPVKtVtXr9SJRl6R2ux1bV3Iu5pI5RHhB0GP8dFtAQGMvYNoJ0Uco3Gw2Go/HUYSCyLuwBMF3kcbLedi3iDyMg3IRRDnmnEwgRBPWnAwSBCXPFHqYcBmfxQkJCY8vNoPLI2uPK9Ln8P3B7mSst/zFH1Z1cXlmyftmrl37SjS8S3gdcfS736Xx5+TKqy9/rGPby6XqK3zTY4LX/BSFEHqSvl3S/yvP84mkb5L0cyR9vk7V2m+8y/veHUJ4fwjh/UQ0PbLpKdqYqi0WixgJJZW+XKeP8aFHGj36SlQd0u21527qyLlpm+cGjBAQDOHcFK5er2s4HMZxtFotHR4e6uDgQNVqNRotQszG43GMhB8cHGg4HEZjyjzPNR6PYwQZEYJ6dHwRIKWIHJDgEIK63W7sAgHpxucAIQRRwYku5Ip78Gi1pEiYafHJfSHUEHWnHaR03mYTwYjjvMuGk2fMEhFZSHFHVIDUe1R8NptpOp3GsXsbS1LiEQyk82wU9h3E1k0SveUoBJv9BfFlXbgXyDRrxfmYK7I6PCODucQMFBECQcM7YtC9o9vtqtvtxvGQuUDrUIwgsywrmCGyZ9rttg4ODmJZBK1ZMZ50HwsEsCzLohDjz5m3Dt1sNrFryeRMyXVzT/ZglmU6OTnRbDaL8+CiEvfqWUeUMCB0uKEjYoWbbpLdxFzyWdBut+O9eZaRl0G4meNVx6V8Fmt10SGPBXa3j/S5//PzD3oYCQkPHB/9+i960EN4aJE+h+8v9sulwl7SJXZ0zlM3p8cO+7qUv0oG/NN/8h0KpQ5/Ca9RUAgh1HX6wflteZ7/E0nK8/xmnue7PM/3kv6mpC++6L15nr8nz/MvyvP8i7wuGjJAqrR0HmXmGKLvZWNAiBdRWyKjpKK7s76kSFK95AEhwF32ibwTlYWMcX0M/Xh9MBhoNBqp2+2q1+tpMBio1+up1WppsVjo9u3b0aF/sVhoNpupVqtpNBppNBrFrIDpdKosy2JqfK1W03w+18nJScHV3+vrq9VqJH28p9/v6+DgIIowkmLqP+OWFEscEBUgxxB6STEKzbxDxM7WNJI1sjjwaICUz2azSJo9uu3p7u4Fwf2zJ1gb9gXXYl1JgSdN3kUjyhXIwIBQeq2+R/+r1Wr0jHABwCPZkE++L+839oYbVjKWckaNpJhl4efC76EsoGCu2e/3owCFP4J7QPAev7dOpxMNJ9mbzJeXQ3Bt1tvLccgY8tIk91tgnKw568ucszYuyrG/vKwFUYA5IFOEvcP6ui8Coh/ZChiMMue8zr7xzBzmkTV7GHBZn8V1Peb/Se73qmwejjVPSLhfyCtSxf5eSLg3pM/h1wdv+ZPvU9hd3uf0c78saPelX3Bp50u42pj81l+ik3e8ekUqr0iVJCjcgVctKITTv7T/lqQP5Xn+l+33T9lhv1HST7zsIMyAzaPvtKTzL+rDScmWFInEfr+PxnK9Xq/gEC+dp08TbXUCy3V7vV6MhHtdOqKCl1Z4KjhkFXJIXTgE7eDgILYkRBSgTCDLMm23Ww2HQ924cUPPPPOMRqORNpuNbt++rclkEskNBDPLsjh3kKUQgnq9XvQTwKCv0+loNBppMBhEE7xutxszGiTFjg/4WEDe8S2AfDrBItPCRQRIcLmzA1HmLMs0PWtL1e12YxRZKrakdKEIQcKjzhzPOkCCIcfsKTd3hIR7GYWbbrKWeEo4efcuBJJiKr2LKowNQk8dP4Sa9UJkgYgTfW80GvF4bw1K6r6n35OJst/vNRwOYwtSj7JTGnRwcKDDw8Po1YG3Q7/fjxkOlNzwnED8vYTFzUG9HSiZGYyVfcA6kXnh7S8ZA6UHq9WqYEzJ2kHs3fPCn1sEAfYCz6D7iAwGg7iXyTby8h7GiVDB9Vjrq47L/Cx+3LH9xKf09r/9oqrLJCokPMYI0ke+7hc+6FE8VEifw68v6rNweVkKQdq2qwq11+JTn/BQ4TX+F//hP/PzpIck4PR64bU8Pb9U0m+T9OMhhA+c/e6PS/rKEMLn6/RR/7ikr3q5E1UqFXW73RgN3Ww2Ma2Z1HqIFyZ4vO615ZBWjA8xepQUCaN03lpOOk9xJ+Wd+nUIO20GIZAhhEjuEC5I3SZiDDF2cztP2V8sFrE2vtFoxBaSN27ciG0qp9OpPvOZz+j27dtxDvCAYBzSOaHbbDYx6txsNuMx1KR3u11dv349ElXc8fFkQBTAGR9yKp23DHSBAbIPgaYm38syvN6edfG6djfj83vh3lw44DyQSEQcd+5nvfr9fjyfk0JMDTmWeYCA4hVRNork+mUPBsboNfik+7Of2D+IFG7KSMYA98scQmg99Z5MGUQvxspx7pPB+9mjeE3Q7YPyCeaXyDyZFexNBAa6WCDaMR/4TbBHpPOSBYQLFwqZL8ZAdgQZN4vFIvo/YE7KGMmw4LlFqPJWlFzDTS6l81ILxATG6eMho8U7iPiaX3Fc2mdxgrT70Ef0tn/c0Mf+i8FpvWRCwmOK2pveqO2nnn3Qw3hYkD6HX0e8+c++V89+7ZdoeeNy/o/+1K+q6u2feYf0Ix+8lPMlJDxueC1dHr5XF2s8r7i/brVa1XA4jDXztCUcDAbRO0FSjDDeunUrlgVALHgd88TBYKD5fB6JPqn/kEeixJBSxADp1L2fFG28FRaLhabTaSSzkD/IJJF0b+EHoZIUI/zNZjNG3I+Pj6PwQAS73++r2WxqMpnoySef1GQy0fHxsY6OjvTMM89EUYG0ePwNVquVTk5OdP369djeEId/auwpDfCuAJQ2uPmdt/27mweFpEjOSbuHYBJJprsChNJb+uEbwRyyflzHxwT5JfrsAoNHms/2ZZx3DBC5thtoQuid8EKsJ5OJxuNx7AzAHmM/IHxwPQSYbrdbEADIQKBdJ2SYUgRKCTzKjiDEHEiKggnjX61Warfbks5r/AeDQfRoYKyUKCA49Hq9mBmBEET5Bms/m82isEfJAc+CZ3wgTiCI+PPjHiMIH/iUsH4IQ2TtkGlD61gEQOaTvSOdi4AIRggQZGy454N3jZGk8XgcW6HSrpIvN4Xk3A9DycNlfhYnnCL/oQ/qsxqfp09+WTeZ1CU8lshruT761W/SW/5EEhTuBelz+PXHm77hB/SRb0h+HwkJVwFXwtoUQQEjOAgnXQqoxZdOSefNmzcLHgJlAkXHBVK8JcXUeCcrnkY9n89j5wOi04gETqIQPWjjiLjA65Jiyj7X9Pp+J8e43FPWADlqNpsajUZ68sknde3ateiLsFqtYrmCZ0IgMhwfH+v4+DgS18lkos985jN6/vnndXx8HO/NszUgVZBfBADuydv1IRh45gPEq9FoxKwRMkcgxAChQlIhoowgALn39pcQX67LWrIfmGeuDdGUzkkoUWcXezxDBYGGbA0EotlsFtP0IcJ+bs7JWCGu169f17Vr12KbUX7v0XDOwX1wb+zlcrcChBf2LNeDrDcajfgMcR73HmFticy7IOCmnl4ChDiDQONtQOm64WuMeOPXossFz51fH2PJXq+nTqcTnzlEDdYZ8Yc5IFOCa5L9wucH97Tf7+8QULzzhRsuekcV9uTDICYk3D+E9/2o3vTdczXGV+K/yYSEhIQEQ77PdfCT6f/phISrgCvxlxKu9hAWIu5eFgBwbIcgE3WHQGEY5waLvM8d9/kdafT4DiASuLABSSKVX1Js4Ug5gjvyIxh4zb1HeN1Ucrvdajqd6ujoKKZ4t1qtWNd+7do1dTqdaA5IzT5f7XZbw+EwGj5+5jOfia0pIUmICicnJ5EwUSYCUaaMA0LOfTL+skcCHQY8mwDySCaGdE6QIc7l2nhItUfMOZ61Yr0gwYgcLtZA2judTuwKwthdFCl3A5AU9xtElvNRXuKiEWtPhJuyDUnxuG63q2vXrunw8DCSWMw5EQUQGhBQAHuISDtCC2vAnmFPUtaT57l6vV7BkJRzU07AmjKX+BFgYsj1KH9gX3vXE15HIIDsQ/zdQBSxpd1ux+fbu7DQGaRarca147nBqwHxB1GHcZF1wjU9U8FNH1erlabTaTQb9WffM3EQmphXL9lIeHxR+d4PqPN8KntISEhIuHLY73T97/ywrv9IEhUSEh40roQDCWaC1HlTgz6fz2NElPp96sRv374dvRIajUYkm2QV4EVA1JVopbvZQySI2M9mM43H4yhqSIqtFN0PgGgz3RSIrvqYITObzSZ2SCAyzXggK2QXHB0dxXR2TAP7/X4UT7Isu6OtJRkLJycnOj4+jm0ovfMFnTHILOj3+5EIQmwhcZRHeE05RBQTR+aacUJWKVmAjJW9FMpRaiL2kF/aYHqWAscyVrozeJmACxoIElIxQ8G9C9zjACKNl4L7LnBuOl1wjHed6PV6MaKPaSHnHY1GMXOFfUd0nPFxHYdnHXBdxB5vgwk5xvCQPYPHAuUdkGq8MLj2arWKXgbsJ/eDQBxjv242G7Xb7Sh20CmEsgpKH8g8YH0vEgURDDDo5HkkI8O7NnjGjM9XuRSEZ927WWAEyl4tZ624LwdCDcINol3C440b3z/W/A0jrQ9S6UNCQkLCVUK+Wunw239Mlc0v0K0L+2ckJCS8Hrgy4Tc3LYTgk67sre3yPFeWZXrhhRc0nU5j+rXXTEMYIbbempBuDG5KRwS52WzGjgmQSogihJzfM14EDiKblE14dwPPWPB0dY/608GCFoMYKeKpAFHjHNSbU6NPachms9FkMokdCLwVHmILQgdkH3LlfgNusog4QXkFxJhSB8grBNZFBSLsbnxIhw43XSQKTdQfQ0uPfiN6eOQcgQHi5+0nfQx8uYeD+xc0m83YAYMxcV03oCQrgnvx7AeME09OTmI3ksFgoMFgEMUtxCeIrHtDcN7FYhFLAjwqDyD33GuWZTHDxUsMeCborOEZGO5t4QTd2y1yf0T+/bqcg2cVEYtjEM+8ZIM1oJvCfr+PXh9eWuKCDuabiBiIFGTUuOiFmMO4yaSQFDtn8Hv2BmUlnonh5o/s0YTHF/sP/KTe+o9fVG2WomAJCQkJVw37LNPBB24/6GEkPEb4Of94IeUpe9FxJQQFCA3pyk4sttut6vW6hsNhjLx6twcEB4hiue4ZwgBpI9oOqfB0clrnce2L2hlKKpBf6bwevNwejxIMRAzS0yErkFLuO8uymOYNWfdUcIQEIueLxSKKH8PhUIPBoGDmR8S33W4Xoq6Q8/Jx/F46J1JEqsfjcaFzBOIJx3tqvXeNgDx69kG9Xi+05mRtmENS4KvVahwn72UOIJcuzEiKQgtdLyDzXAvyifBDpJ0xORmXVNhPrJubGTJ/7qewXC41Ho91dHSkPM8LnheMFfHAyyg4F+aj+Ah4Vw3EEMoV2KsIBghpvmdcUOCeEVrcLBLC734ZkgqigvuWlI06/Zl1k0buj3tkT7C+CCh4mbhogUDh+4C18Bagfl2yWSgJqtfrBQEO48tOpxNLMBAM+RwhUyVP/2EkSNr95E/rs//286qukqiQkJCQcNWQf+LTeuZ7Xn0W2VP/Z67w0x+/vAElXFkc/vuPqfeJ10Z/Kz/0U5c0mkcHV0JQgDAQJfTUZqK0vAZxxB+AkgLSmYk2SoqEA1LgEVmyEsgOIOWejADS5BmHpJjVgFjgEXvIB+OC2CAwSIrk17Mw3Dl/Pp9rMpkU2t9hNkenADIFiKb6HPT7/UgSPXrsvgWQQ+bZvQgQFZxMQeDm83ksyYDILxaLeH0nuhBCbx/o43GBpuxtgKhAloNnQzD3vF4WHdhLdOSAzHc6nUJ3AelUBJrNZpIUy23YO14WQ0SbeZXOCTHnlHRH+8ftdhvbIXIMtf5E0BEgvASH+cAAlDIFMl7IVEGYcmFgtVrF97DmlOGcnJxEbw1EJp4ZMgu87MDFAF4ny4D7d6NGjEglxf3hXRkolUGAwmcDgYesBrIPsiyLpTW+J100KJt6+msu+lHGg+eJzz9j9+wMsj7YywkJkrT92Y/r7f/Tzypsk6iQkJCQcJWwn8/Vvrl81e9vvbjR/qxdfMKjje1nbqq2ePXBonf89ReVm8l8wimuRIHwdrvV0dFRJOhE6Cl5gPiTnu8p8BAu2sY5WadPfbVa1Ww2K2Qc5HkeMwBw9+dYyCEEAxJEq7/NZlOo2YZMQXrwUZDOU/ARIxgbJo4uKCBAuOEcUVZq17kOc0K2BundlB9Qw+8tD93MkPljnn387hdBFJ0sBdYohBDr34m641Hga0NWCaIFmQZuBggZZJzejhIy6JkCROu5LpkLnA+SPJvNomnibDbTfD6PhN29IRBsvNTFBSoMNJmLcscFj9o71ut1LH0gW4C59naIpP+zRvhSOJFvtVpRsEE06Pf70ejRu5lwXs86geBzfcQLj/S7IOLtMRH8XECgrMf9STjGxRLuy0s3vBzBX+eLDB8XJrzsBlGFZ9OzTzz7R1JBBJlOp1osFgWhQzrPYmIta7VaFGxSyUOCY/uZm3r7n5srNOr68J/8nAc9nISEhISEM4T3/6Te+MQX6Nn/9JXFSp98b67a9/6YUj7i44Mb3/ojWv+3X6D5068sq+Ud77mt3Yc/ep9G9XDjSggKu91O4/E4RtgbjUYk8cvlUrdv346EH4IEAV0sFpGceCtJshG8hR1Ry+l0GjspYATpRMxN78gEoDwBUQHiwr94ECCIQC69xZ270BN19tRuL4mAZHpZBPdMxB7S674QpNfP53P1ej31+30tl8soniAGQFLJLoA4cl0v22Be8G/gPjqdTowir9dr9Xq9mDHAmFhPSLi3rHRDPObdPRO8nh9Sy1xBaOkgcHx8HAktx4/HY9Xr9WiOOJ/PC0actIo8PDzUYDDQfr+P7TvxZnB/A+aBtXDzRIwiEcEkxWvQflE6LyXxuWX/Omn3VpU+f4gMeFbQ3aHb7UbxBhNO9iWZH4xvsVgUSoG8VSJ7jPd6VgCEfjAYxKwIBK9Op1MwUERo8FIN7+zB+xDRmAeuxzPG3mAu3BDSfUoc/uxzn3wueFtZhD4ECQQ2Mifm83kSFBLuwP5MSH3Hf//T+vCf+JyLO88nJCQkJLyuyLdbtf7VD+rt/3tVL/7OX6Tjn3cmEVz0GX320vUPBPX+8fen8sbHDPvlUk9/4/crVII+9md/kbbtl17/t/3Tlarv+3Htzv6+T7gTV0ZQmM1mMZW63+/HdoqYrUFavPUbhIfUZKLkkATSp52AIkKQReDRZggQKeXU+XuZg6QCwSGSC1HhfiBRfO+k0MkytePNZjOOF2NGr23ndb8v5stbUR4eHmo6ner555/XZDIpdDPwEg03tJMUI+JE7XHudyGAKDSZAxBwwFxRpiLpjswBSJ6XiUAwmUtvm+geEIwTYYM56Ha70c+BsUmKPgbcE54WnqmB+NNsNjUYDLRYLGImxnA4VKPRiPNNVgtklL1CmYR3OqAso1arRTJP2Q7iCKIE81b2MmCPe/kAAoGXBDQajdiWslarKcsydbtdTafTghGok3Xmbr/fR+8LymrcR4N1A9461V/HoNSzT8rZAm5CiaDAOpJ1w7PmmT1c31u/si6sAePieBcGvcOEl8xQesPnCvfH50gqd0h4KexuH+lzv/GT+vAffLPypDslPGrIlcp7Eh4+5Lny7VbX/tf36ZqkT/+xL9Hy+p1ksfOZoKe+8b2v//gSrg72O+V76S1/4n33dHiSnF4aV0JQoCf9wcFBwWQPogU8ewGyQYTVXdk9rR/SAXmQTsnyyclJJOJEMxEJOB8ky539ParuLeXcSI5uBJBV2j2S4cBxXN8J8nw+V5ZlsSSi7ILvxoLUg+NTQPvNg4ODSBJns1k8RlIUHtw4D1M6iC7iBen4ZEhAqBEDarWannjiiUiapWKrRm+56N0eiDz78fhDMP9e4tDtdjUcDqNYQakBoke73Va329VyeVo/x1znea7JZKIXX3wxEkzfS7QVxAARY8aTk5MYISejQ1KhPSHzhUBBhwhPvS9ny7BOpPVzv7Rv5FmAkAP/2c0+p9NpvA5dRxCVbt++rclkEsUqSD1iGfuF80HqmWMXvVg/L0lAhOEZZJxkEPH8uZDhGQHexhRy70aPF+1Psj/cE8QzPshuYc5ZMxfxyPLwDCPPcPDOLAgeCQl3w/bTz+lz/lZXH373tQc9lISES0XYBX3Wn06EK+HhxjN/Me3hhITXA1dGUHCSj6BAGniz2Yxp3ZBpT8v36K0b3UEwJEWC690WsiyLkU5SvSEckCcnhu5UT621E0vKFSBnZC4glpARAMniHBDhRqOh5XKpLMtiKQaRaIgUpQukilcqFR0cHMQo62Kx0MHBgVarlW7evFmYAwgexMrr4JkHxsJ90S0BDwGfC0g3pRRZlhVIO/AafsglxBEBiXn3chKEjeVyqV6vp06noyzLonEl2Q/dblfdbjfOlaQoFqxWq4IZIUaOCCbb7VZZlmk8Huvg4CASc0SGsmEk5N6FENYe4uplLIBSkRBCLLdxE0qfT9bEvQNI93dRC08F9jWZLIPBIGaqzOfzgkcIBJrrcA/z+TyKKpQt8LqkeA1ENLptuOjC+pJ1wXFkEHHv7kfhwMOAeXNRCXHD/RMQjfgMkc47sPBFRoMbTpZFBJ4t7pvnv1yik5CQkPBYIJeaRyk7ISEhISHh3nBlBAUi7tS8IyhA6hAaiHJCCmjF5/XffBGZL7e2k4odJPjXfRQ8W0E6r333GvFutxvJHuUACASIAAgMnKfZbEYC6ve+XC5VrVY1HA41m83U7/djNHk8HivP8ygakIFBR4Msy3RwcBB/32w21W63NRgMoimgdC4SeAo85RiUT0DKnZDjVUAk3IUUiHK/31etVit0qUAoYD6Z57J3AhH+xWIRS1R8bIhHzDuCgEePeY3fkzHgrT0Zf7klJKSbDJhOpxPFA/aRp8QjHjAvnN8JOMIDe47rYxJJpkK1Wo1lHN7y0E0eEWTci4M9xb7zzIZWq6XBYKDhcKjxeBzJPfPqJRluVIqA5F1NeM4wc+Q5QyxbLBYaDocFEaRcIkHXE/YBr3v2kYsqEHrEv7LPCNkG/M4zkDzTgbkjs4a1Zz+5gMD1ERBcvElISEh4nNB9tqKn/nKK7CYkJCQk3BuuhKAgKRJqooi0byTFHrIgKRIkNxL0FGsILe91t3jIkKRCJgHv41reMhKhAFHCTffICiDjgHvBaI6I7Xw+L7j7E2GGCC4WCx0dHWkwGOjk5CRG/DEOdDNFotFE5Ykul+eLmn0XECB3pJEjyrTbbV27di0KIKwDYgdE1f0HGo2GJpOJXnjhhSjacM+SYvcBb/foWSW8BgF0okyqe7fbjeKGdyQAzC/XI4PF25DiX+E+GN7mcbPZ6OTkRCGE6ENA3T3rzn5CLPLSGsi+G3EyTh8v+wLzRHwXeA/lId6pwoUfxutjms/n0VTUTT4xq8QsEWNOFw1YfzJ+vKsD+9mzJDxLBqGBfU3mB/MkqSDwucEiAknZu4TnlueEzJCLOj4gJPq+8OwQnhP3OiFDheea7AXPuHERody1IyEhIeFRx/Cng574G9//oIeRkJCQkPAQ4UoICkRwIQxEzCHO3lbRyUi5XrvcKQGS5XX/F6VE8zt3u/d2hOVoOGOWFLMBOp1OQYTIsiy6y5fJC2aAkCyiopDzW7duxUyHyWQSI9gQUYgSY5QUMznICpCKrQPddA/xAeDFgFfB7du3C9kACB8IKUTaiYCPx2N1Oh2NRqM4Pq6NFwbEz1sQYsLnZo+dTiem4DMmDP+IihOhdrM+b/WZZVncR56q70QRUQPiud1uNZvNJJ1mAJAZQfaEm0w68cfYk+g9Uf39fh9LapyYk93Aujtphlizhm5w6MdIKmRpUPZQFrva7XYUgRhTp9MpZOeQZeI+DavVSrPZLIo87CXmn/3P8zEej2MJi2cpMGafe+6pnCnBZwBzzhyU79mFFp5txJZyRoFnLVGawbr6c1/2r2DPJEEhISHhccLhjwVd+99+WPk+ffYlJCQkJNw7XpOgEEL4uKSppJ2kbZ7nXxRCOJT0DyS9RdLHJf2WPM+PX+5cnjmAP4CXIEjn6eb8we9mbp6eL52Sg36/r16vF1scSioYILbb7YK7PkRjuVyq2+1GgQBS4m0Jie66p8FyuYzkbD6fR/d/SDTkEoLq90fGwHa71WQyif4Bi8WiUNoAmSXLoN/vF7peeNS8PHcQqNlspkrltP0fWQhkRUCSeS9EktT18Xis2WymJ598Up1OR51OR5PJRMfHx5FMujkhJB/CCvHzn5kv3st4XRByMWi/38e5rNVqMaPC15ASBo/uszcg34zFU//JLGEP4SFBNkGWZVGwgtja81DIHkAoQSBDWEHQcfGFFpWeDcPec9NDxoUgwn5lvtxroSyYbDab2KqRkg6eB8/+Yc3J4GE8iHKIY/yOvY8AIBUzBBAV+Jm58/nn3Ih6buLJPbu3gz8/rJ8Lhf5scb+UP3lZhnuicH3/DLnIE+Qq4jI/ixMSEh4/PPF+6eCf/Zj2yYj2VSN9DickJDyuuIwMhf8kz/MX7eevkfTv8jz/+hDC15z9/Mde7iQQIIgE0Urg5nCYt5XfXyZVRLw7nU48H7Xg6/Va6/U6pmoTwfUo7Gg0ik7vXqfNGImi07aP8SIgQHzLZofujj+ZTGL2Ax0l1uu1ptNpLL0gxdwJqte5k9ZPXT5eC06IGDPknUhwt9uNUX2fc67darUiiSYdfj6fq1qt6sknn4zEeDabqVqtqtfrxRIDMjPKaefuSeBRYQQb7kUqGuZ5yQIlEcwFgonX2ZevDfFsNpuxtMJNFqvVaizJ8HR6rkOLyizLCiKUk3iyOrz8w0s4mP/NZhPXy0tAXGhxg0J/FtwAcblcajabxTVFYHDCDolHlKLLA+el44Sveb1e13g81mazif4YjB/CTZYFHgshhEKmjs+PC0u+Hqwn1/YWm4gVTvDdzJN5Z048Q8hLJfI8j+0jfU69VIU14xqeUfEQ4VI+ixMSEh4v3PgB6eA7flK7LHvQQ3kUkD6HExISHjvcj5KH3yDpS8++/1ZJ36N7+PD0P+L9D33SkfmDH6JTq9XU6/UiuYKAzOfzaKTHeyCoRClrtVosI+h0OjGCCwl29/xWqxXJIpFVqeiNwPXJgnCjN95DfTiEjMyC6XQaI8yHh4fq9/sxjRuS6U7ziBU+Hr4QUCaTiWq1WoFkM3dE/N0LwCO2EFIyL2q1mk5OTgomk7vdTjdv3oxrhiCDCHJ4eKhmsxk7JUDWGSOGiZIKte/MGYTWu2d4JL7sJQD55xqcD/LI+rG3II7uH+B7EIGHcgD2EkSW8yKMcA73ACAThf3C+Olw4KQXkuwlMohXkqLPBWUWHMdazGYzZVkWyTiCBZk4ZM6QjYAwhTjHuLlPN1ikVIbXfK5ciEHwcrEI+PzzPc8i88U8uFEne9g/EziG+2csZLp41gvnRnygPSfHsG9YD36PGOefSQ8pXtVncUJCwuOBgw8GPfF9xwqffE67yeRBD+dRRfocTkhIeOTxWgWFXNK/CSHkkv5GnufvkfSGPM+fl6Q8z58PIdy4lxNBSiDonj4NOaDd3osvvlhoL+hERFIk4k7G3b+g2WxGkiqdd14ga4EUeo9qQ1LK0U3vHuBp65IKbSS9zh2y1Ov1NBgM9MILL8TX8WPwFoJ4Dbgjv/sHQHpXq5UGg0EUAiDoHkV3fwhJMSLPfNG9oZzhcbaesSZ/vV7rhRdeKJxrvV5rNpup1+vFsgdECK+Lp4MHAgBijt8f4zg5OYmiBSSZvQBxbzabBULK+rBGEFAnq+wbj/Z7hosbf06nU0mKc+q+HPFBOCOli8UiCh5kitCakhICN6r07Ar8IjyThjGwHi5cISxlWabj42MdHR2p0WhoNptFsWSxWMRzuXkppR3sUS8PYf7q9bqyLNN0Oo3dLFhrL9fg92VTSZ4ZhA8XIxA/vI0l6+zrxfHup4B4SAYK7ymLHYzFfTTYb9Jp1g7nRKBjzjme+XgIcGmfxQkJCY82Op+u6M3/6FPKxxPtTsYv/4aEe0X6HE5ISHgs8VoFhV+a5/lzZx+Q3x1C+Kl7fWMI4d2S3s3PRBExM0QI2G63MVpdq9V0eHio6XSq2WwWo6JuqubmfE6OERkgthAiSdHrgLaFm80mRvOdcEI8vF4bEkYmxHA4jHXYkEXIHWUZGBF2Op0Y/YVkeSSalPNWqxVT1CXF8fE9RIi0906no8FgoGazGcsTpHPXene7R8jo9/uxvh5CCskdjUZ68cUXlWWZhsNhFC9chIGkuQeFd0DwVHkMA+v1uqbTaRRIECc4p2eKICgwj7PZTJ1OJ4oURP47nU4UHVxUQNQoR8+9BAPSCwElgr7b7eI8IgJg3Eh2C+/31pj4WRDZR5hA1OJa3rUAY8v9/tRIE4ILAWfPVCqVuAbz+Vy3bt3SYDBQu93WdDqNQg7PCc8G88v+9rlhnKvVKnZvwGQSM0lvyeidVTzzAGGBZ8c9D8reB4zTOyz4PF9kWundUdh3PP/uHYHQQFmMl00hRiEykIHjHSm8jOIhwKV8FrfUuV/jS0hIeICorIPe/vWnHwv5dqvt2f9HCZeK9DmckJDwWOI1/bWc5/lzZ//eCiH8U0lfLOlmCOGpMyX2KUm37vLe90h6jySFEPJya0Hp3BEeggBRHgwGhXRwUvcdkBdIGeeAOLn7PkaEGOJ5ZoQbCnprREgQ5CpOaCkd3iOwTqDwX5BOvRogv/P5XKvVKpLZ1WqlLMtiBgSEb7fbRUIrnZdCIALcuHFDt27dir4ITuzKGSB3K8vg961WS6PRKJKwfr8fxQAEG66BaIKoglgCiSwbRkIc8SjwEgjGy7jcdX+z2Wg2m6nVasXx7Pd7dbvdOD9OmNkfrBvjgch7hNv3RJ7nsdTCOy/4WrspJgSe3ztJZr343tszImRVq1UNBoO4bxBRfF7wzWD82+1WJycnevbZZ9XpdKI3hGc6sK8hz5SecA++J3im9vu9Wq1WFCQYB3uFrAWEA8aCXwhZD142gNDg+87PwXPDe8qE3ruFcC4XOTw7AjBXiBA8Q5y/XEJy0fN+1XFZn8WDcPhQ13gkJCToNE5+hnd83Ye1P8tI2yXDxfuK9DmckJDwuOJV/7UcQuhKquR5Pj37/ldJ+nOS/oWk3yHp68/+/ef3cj6PHENCIAUQgMlkonq9HiOx1IpfFH2G2Hj7QS+D8BR7aqkbjUYUFZz8Exnm904+vBYesk72AOQFkQQCROYEte0QV7IdTk5OYpcJjAIhxdT4006STIButxvHg/AyGo1iC0XGxnUgx5DMyVn9JOfwqHK1WtVoNCp0NcDY0I0qma/1eh1bJnp02aPGkD4INmSScoMQgobDYaEdJn4FZd8GJ9iMxfcB64W/BuJUvV6PkWnKEJzgso5ExL1swvcNBBRRKsuygijD8eWyDvdPKPsoYP7IsYwfIczT+kMIsezh5OSkIOaQaUBZCJkeZPaQtcM+5bnJsiyaLDYajZgN4VF8F4wQSFwA8qwe9olnk7ivhT8ziBrsWffb4PxewuHv45lxHwrElHJJA+Mqr4s/054ZdFVx2Z/FCfeO2jNP66d+77UHPYyEBElS2EvKpc/+tqnyD/ykJGn3cPvAPDRIn8MJCQmPM15L+O0Nkv7pGemvSfrf8jz/1yGEH5T0D0MIv0fSJyX95ns52X6/L7iwEx2FuK5Wq1gjfnh4qG63GyOVTjqIVEMqaOOISR4dCJxQQCIpWfDoPNkCnBODR48ct9vtKERA3CA4RIG9VR4EB3LjXQ0QFabTaSS9+/1es9ksRoQh0hDkTqcTo/uUClQqlVhW4D4STvB8PJKiUz/wEg0yCDAA9BaYEDIi6pIKtecQxN1uF7tAuLEix5DSLkm9Xk/dbjeaOjYaDc3n82gmSZkK40Z0gsBDnlln1gATzGazGe8BjwNEp3KXCNYF4sza4V3Bvbg/Q9n/gE4RnlHiUXg3RJROO37QqtJFGSfhLipgzkhWgmcX+LPF2rNXWD/2M/PL+Or1euxgguDgz4aLQ2QpILJgsNntduNr7CWyKFgfF1bYA3g7IPbgv4EgVzZl9MwG9zxx40XGzriZB+axbLJJadAVx6V+FifcO/J2Uwovf1xCwv1E2EmVbdDT/3Gr5nf8oJKE8ECQPocTEhIeW7xqQSHP85+V9HkX/P62pF/5Ss+HuSGkF2IIKT4+PtZ4PFa/39e1a9diVBpSg1ngZrMpRNglRVICiWg2m+r1elGQgDy58R3EgigxpImoKCSOcR8cHERyAhnB/wEiR+s6yMtsNot+CG7gB2mXpMFgIEmRKHqpQpZl2mw2Gg6HMdruXSAajYba7Xa8PxcLvF0fJDmEEE0a/R4kRfEAEQORhvl10lkWaojk8/3ZPonv9RaNjIN1YB0RjCD8iDBu0AdZ9MgzYI8gQLkQRfQaccij+OxJ94aA2BNBZ33cCwJfDfdIQCDw+4dgs/asHyUJzIF7gtAhwU0LGQOCEvPhfgKIHy5m0YYUn4TZbBbLJCj3QHTCT8E9EDyaz3PnpS+IbJ1OJ+53nkf3N3Hij5+Ilwlxf8xvpVKJmRg8Z+69wB533wZMPREv3DQUMQi/FtZo9RCkCF/2Z3HCvaE6GOjDv+8ND3oYCY85wjbo8Cekg29934MeymON9DmckJDwOOPKFAhDUjxN2r0I3C2eqCdO9e4RAPkh04EIPdFhJ5aYCnq7O492emo35AThgmg2BIyoN2QecgSph6hzX5BDCA5iBeUPECqivJDasq8E9exEjCGUu91OzWZTBwcHCiHErhblsgMnmk7svFaeYxE+ILxukkdZCPexXq81mUy02WxiVoJ0TqQRbzA3pHzFAblDEIGYIjw0Go0ouIzH4zhnbpRJaQT7q91u31GigiGnn5cxeko8RJ41cPNOF1CYX0wu2c8uYECcm81mzDyhEwTGpJR/IEgRdfcuJMwne0ZSzLpwkg+xL2epYHqJGOZeDpD1LMuiuFH2XPBnw8tays+wr6WXKLnwVy4f8iwIxCsva/L3c12eGdYHjwwXKnkvgpMLiZSteGvWhISEhKuGsJfaNytqvZAnMSEhISEh4YHiyggKkiKB9bRuyBEExQ0VpXOvBI9Ie727pEL0UjqNikNMERWkc4M2iAmETio60nN+b6E4n88juWQMkHXEDAgOEWT3V9hsNjENH2NBItY4++OnUI4EQ77cMJDMg16vF6/HfZaFBBdeOK+TMoivGwsSRYb0LRaL2AaTUgXWEjJbLvvwTgCeCcFecNHE5xwhqVqtqtfrqVarxeh6edxE/x3uJQHJZ30pXSFrg3F5twPEAY71cgCv/UcokE7bM+LTwf3hfeFZD7PZTEdHR3eIPgAvBfYk6+0Gj6yTZ6EgTDDfvB9hzUsZKHUg62WxWMTzeGmCPxPue+KeES7wIc55iYgLMb4uLjByb35tzu9Cg/t+uHkjGS3sBS9x4NgQQiwzWSwW8VlJSEhIuHLIpdGHgq79r+990CNJSEhISEi4WoKC15u32+1ohAg5hzBBAKVzw0bIGuSUiKN0Lig4cfEvJzCeMu2ZBpAXr2UnookoQEkCJAeCwrggqOv1WrPZrFBPP5/PYzvAVqulwWAQU88hZWXjQ15zIsW4iOhTJz+fzwslDxDWcsYDppUQTaLKvO7lERBnSkMODw8LZLzVamm5XEZxg+g+EWonjR7dZ+45v5NqiC7iUKvVUqfT0Xg81u3bt2PJCeTViTlRfM96IeOl3W5H0r9er6PZJfdPJJ7ze1cSQFcDj/DTmYOo92q1KqzPYDCI5SIICpS7uC+IE23vIuEeBKTu+772/X5RGYjvHRd1vAyHOcBYlNcxg/RSFS9Z8bX1feFdGZhD34OMG3EP4cT9EdwHwbt0+DPr53OfBs8M8jIJPntarVZBuEtISEi4MsilJ35YGv7dlJWQkJCQkHA1cKUEBU9HHg6H6vV6MTIMgSECWwYEokwAIPNuYOeRUN7L90Q2pfPadKLJ7iqPyEA9N8KGGyB6S0PKIhAfKGVwB3pIsNdzu1M9pRN0eZCkbrdbIF1kE1QqlXgMwgdmfcyxEzXu1csr8HlgvBBaXwdIHn4BLnYQFWY+KBvgy8m4G/R5uruvp5NlyiPI6Gi32zFrAmHKSSVZLUTEvX0lhNfT4hEa3EMBsQBRgcg79w9pdmECYYz1z7IsCmJkMVCGsdls1Gq1NB6PY+2+r62XbtA2E4ENEFl34caNThHbvNSA9fSMHO6FPcg9sQ7+HCA4uecF5yF7h3txk1A30vQsAoQfhCiyG7xLg4tQ5SwO5pb1LbdD9VIhF0Lo9sEXY0hISEi4Knjq/8zV/fbvf9DDSEhISEhIiLgygoJH2Gnr1+v1Ypo/6dqUI3jatEexy7XlHMP5iVBeZFBI5Lrc/QDiS0kChJaIJ8e4WSHlBr1er1BCQHkA4yXd3VP93UeCuYFcSafp88fHx3Gch4eHkSD7sZChRqOhfr+v/X6vLMtiqYJnTXgaO+UNCAMOJ6aIDz7/XlZBOYFfz40byV5g7iHh0nlHCo9Ge8YB5N7X2Im3e1W4GFSv12MKP2sHeffIuvtXeIaJCwrsM1LrETe8IwVtF5kHynPIZnDhqNVqqdfraTabFQw/nURzrxB1b2XJPsPjwueG+fIMFp9rRAfmjd/x3NXr9dhFgnH4vPvacE68O8jGocsKa8pz5dkXrBPzjRjk52at3OejLCh4qYx/HnBflB9xj4xnv99Hrw7GkJCQkHAV8KZ/s1Pzu374QQ8jISEhISGhgCsjKJQBiYGYuIDgggDR+3J6NMScc3ndNYTZRQwM9qg99+wDzknqOkTUo9dORj1CCunGkR5S6SnvnM+JFuUGHh33yD113hj/QbjcXwFiBinDUJH58ZR3ouPMYdlwDzLnkW/uEfLl3RAgbpAyyK+nunMca102geR+IMLlbgVeRgDRRxyAJGZZFtehnIXgZResoQs7nuLPF90J3JegXq/Ha1PmwhrRJcFJOAad7rcAicdocrfb6eTkJI6fsbKPAKSavcv6lp8lrutzQ8aKZ5JwrO8h1muz2cRMBcorfF28jIS5DCFouVzGc3rJEu/lOWbe/VlwvwNEGNaOZ9WfY+4PcYX5KWc1lcszOC/CEJlRjCchISHhQeGN/26v9qcz6cc/rHyfPpMSEhISEq4WrpygAHH3mnrPTJBUIGmIDhCVi4zeIImepg7Bhaj58cANFSUV/ASo3acEQTo3lfRoJ6Ss3W5HfwLplNxNp1ONRqNYQ+8p9U5m6N4AwWVM+/1ei8VCi8WiIHggjniHgHILPU99572kzntUlrl0oz6IGhF0N4ikpENSYZykvTsJl84zATzzwTsAuDjk0W/Ei+l0qjzPNZ1OoxEk5Jq5LHcW8MyTstmfCxkewfeSEC9P4R657/V6HbMSsizTfD4vrAv7iDKC1WoV7431JruFDiKM2UsYIOqIEghkEGkH68e4/f69mwhCg5NzLydwgQmij1eGexF4+0c3buS56Xa78blzwZAxuujEXmo2m4XnmHlyjwT33OD9/prvJ/dH8NImH7/7qSQkJCQ8CDzzPXt1/u2PaX8mzCYkJCQkJFw1XBlBwWu6PVINMeaPfqKIECcIlkeSId9Ezj2bIYQQU8uJJF/USk5STH2GtDlpRyCA1EA+cOGHKHY6HR0eHqrZbKrb7arf70fi610PJMVz8zokc7vdajabqd1uq1arqdPpxNR9iCwkiCgyc+qR/8lkoslkEiPkTtzcfBLhpJzhwVetVtNyudR8Po9zAFnj+hA3BAiyCer1uvr9flwvBBnIOMLGRaaR3If/vFgsFELQfD6PhobdbleDwUDVarXgW+Fu/owVUcHX0UmoewcgCHlpjKfNc4+MnywKN2VEGNtut5pMJsqyTKPRKJJlfAYo+XExh33KWOmcwXxQ6uIZBIg0PDeIQL7PETgYs7/XCTjfI4xgsumGpd7JBC8C1oGsG7+Wiy1eOsO+LHd9QchCZGy1WvEeysaO/uV7200tee5YbzJAyveakJCQ8Hri2geCrn/nR7WfTLQ/E1YTEhISEhKuIq6MoCCdiwqeYeDRYcAf+0QkIXguPkDgnDhgFEgXhcFgUKjn91RxCAiE3CPBEDLa/s3n84KhHaR6s9loOBxGAt3r9QpRZY+GkzFQ7nIACWTMdMBot9uaTqcFoz6/NtFkP+d6vVaWZVqtVtHsbj6fxyg6rTTdJ8AjwOUuGRcJIl6uIalgZElZASSRCPTJyckdvgYudpQzRPyas9ksiiX4Q1CWIJ1nREA4yfBg3cvz594C7Ef2xmazUa/Xi3PAsZSxLJfLKAZ4dN4zSer1epwnWkSORiP1+31JKux7nzv2G0ICc+kE3LMXyl0h8G7Y7/daLpdReOBZcpHEBQg3RIRgQ+i5DmPAjJE9zrj418tX+B4xgewbL31wMcOFMS/dYE7K5RfsLxcUWGf3gWCfeGYC/zJnCQkJCa8Xus9W9Mw3fUD5ZqvdJrWvTUhISEi4+rhSggIomypK5+UKTjg9BbscdYTU8jv3FiCy2mq17uhrXybHZVHB+9lD7lqtViS+HtldrVYaj8fqdrsaDodqt9sajUaRqPAeN3REIOHn+Xyu4+NjSYriBOdCwICEbbfbggke9eCeKUD2ACnnZBpIp6UVXnsundfbO/mmnAACzbU9VZ57clM/STEDg3mdTCZaLBYF40Ffg7IfANkGRO2zLNNisYiiDvPpPgdkpni5A/fDz35+IvTMoYtOjJv7QuBgHsm6IHqOwIMxpZdVUPayWq2iOaf7W9Tr9ZiFQPYBZT7sFffuQITwdp3sIe9ogBjBHncvAebGW1yyBr5G+CJA5N3HhKwD5p7f8wwtFouCjwPZI+USCH/2fS97KRDCGPdTFiC9dMFLXICLCC4+8BnjJVAJCQkJl45cCrlUXQS95U/9gJTvtU9msAkJCQkJDxGujKAAqcELASM/N4sj8uiAKJUN1IgAU97gAkG325WkKChwftorzmazGNXF6d87KHhLvFqtpn6/XyCvEEKIElHYWq2mVqula9euqdlsRnNG6sYhkNK5b8Jms4nzkGVZJNLtdjuOHW+DPM+VZZnG43E0YaQjQNl7AdI3n8+VZVkUCbwjAOR0t9vFLAbq+yFgpLqTFcE1PKPBU+whhAgD4/FY6/Va3W43zjEkr7w/XHghuwHjStYCwi8VuyKwfzx67Wn/bu7nfguS4h50j4xy60O8CMg+8U4CLoowZ5wbgs06OLku+4lAnNmbiAuMr9zJgOwCRI0y2S4bm3pHCffIYF4Q9LwsxLMImCOIO8cjWngXCkQJSoO4btm7wefAs1PI3smyrOCj4sKXCxP83js3sJ/Y874XvIwpISEh4bJRWZ99FufS277mfQ92MAkJCQkJCa8BV0ZQkE5JBK3lILUQJ6+pRxiAlEDevRba07bLKe0hhJhZABHpdDrRF6HT6cTIOeUGEGvGKSkKAR4ZJnUdk0AiwkStiThDavBwcD8GJ41kClCu4KaQGAQyhnq9rtVqFX0Eer1eIUpM1wfOnee5ZrOZVqtVLBNxczwXSUgzb7fbcR55fb1eazKZqFqtajAYRAIP0XTi7ucnCg6pY93Lte3SedcFov1+LoCJZrl0BGLpxpHeScLnBGGC87uHg5cxIBBR2iIp+iPQMcNT7hHL3OjThRXmgmwN9g1f3B97hqwD9xDxtH3PWnDvi7LQ41kubnxa9uNA5PB59AybstcAa+dCn2cKsKf9mfXOId5lhPGVS598rG5KyWcD9881yMzgnJ4Jw3n4mfssXzMhAeR5rloWtO2maHLCvaG6CqqcVTG87X/5Ge1u3nqwA0pISEhISLgEXClBAYJCNBIxwGvm3XAOXGQc54QV80AnCV5vDpGltaBH3cfjsUajUYz2e/QawiQpCgrdbjeSoUqlEu+D9HHOT1aDR/elcyf92WwWOxhAbKnTJ/KLOOEkMs9zjcdj1Wo1HR4eFko6nEB6mQhjddNDshG4V45frVYx8k1aPt0M8A/w2n3PIHETTc9GAN5OkGwM1pESFkQW73zgxoDcHyKFk1OEHI530YH0ez+37znew/sRH4jEu6mii1ouGDkJZw9K59kAnNM7FTA+BDYyIhBi6JjAedgP7unB+fw5YQ95C1SuBdyUkHOzX5hTz+qQVBDwvGODm3aSxcGz4d4H5RIUN6MkO4esH/excE8PMja4dxe0vJyhfL/lUolydklCgmM/neqzv+kT+qk/8uYHPZSEhwRv/Pcb1f/N+yVJKfcpISEhIeFRwZUSFKTz1PMQQiGV3CPVtAYsG/cRoYTgQJ6ouad0AZLQaDRiZkCtVlOv1yt0l6B+HmIEyYQcQiYhRZB89x0gc8LN8DgPXSbwVHDTO77Kvg6co16vx9ID7hFyTsbAfD6PooZ3snAi2Gg0Cin6RP+lc4JPZgNklvvtdDoFvwfGCPF0QureAd4pwf0NWF/KAKjTXy6XmkwmcdyIGr7WEEcvR2HszPlyuVSWZapUKur1enessQtE5RR8vud68/k8CkG9Xq9QduCZB2R2eDcGqWg+uVgsVKlU4j1T9uLzU94feZ7H+5IU1w7xxYUU76jAPeCXUZ57niXWkrX2bJLys4o44CIBBB9xxkUlF4c8W4L9ht8EgoHvV8bKs+6ignuqkJnghpFeBoGHiN+Dg32QMhQSXgr5aqXO8xXNn0rCU8JLo3FSUeNoqZTPkpCQkJDwqOFVCwohhHdI+gf2q7dJ+lOSRpJ+r6QXzn7/x/M8/857OJ+kIiGDICEqOGmDwEIMykZ+bizoJn5OrChBgDBDqiH7XItINOP0DAdJkVy6CWStVoslFNyDp65zPa5NPfh2u43lFtJ5Rgbfcwz18xhMMgZPXR+Px9putzGDgPuC4OEZQXYCLRIhoJgu8j4yLWj/yLU9Kl32OqCEgGi4Z4g0m81YQuHtKmezWbwnCCaGh5BDN41kzTkn5pO73S522KBsYzabRR8I5pQ1wx+A33M/d9tbCD78TCkOe4KMA6Lsnr7v4hNkGCLNvQAEAObTxRLm3zM5KGHBQNTLBzzyzh68qJOH3zvE28UxSDjfs65uask12JNcnwwFzud7g2eMsfC8ITR5OQqigwsOvhcu+mzxDBHeVxYT/D3lspqriMv+LE64d+xevK03f9vH9exveYtmb06iQsLdce2DO+Xv/4kHPYyE+4T0OZyQkPA441ULCnmef1jS50tSCKEq6dOS/qmk3yXpr+R5/pde4fkKqeZkKMxms0jMIEeSItmABHr6OqQGIQEy4sZ5kqJBI4aDXJs697IbvqfMkyUAWcPfgLaFEDp3uIcASeep2B75z/M8RtGdFCFArNdrnZycqNlsxvNAqKfTafR/QATAH8E7OTSbTVWr1ejp4NFjsg+4r/l8HucVEkz7w81mo3a7HcUQzuXEVlI0lES88K4JtMD07gysDXPC78oRfsYFWXeRhTKM1WoVhSFJ8Vzu0eDdF9yUEANAn2Mi9FyLr8ViEUl0u92OmSSYeyLYlEs1EHMQZBgLmQhkBSAIcY7dbheFIRczOJ6sCDIYXADgGXFRhvPyDDr8Z/fEKJfoeDtI5haPB/a//97fQxYFr1/kacCYy19kD/nvmE/PinGTRV7j2u4JwT3558lVL3u47M/ihFeG7aef0xv/SVXjX/S0xm+tav701d4vCa8/Wrcq6n/kWGlnPLpIn8MJCQmPMy6r5OFXSvqZPM8/8VpShBEI3MdgPB5Hso0/AenUXoZQvi7ZAESIJcWafiK8tVpN3W63EMGHhEHuPR08y7JI8omue2o3hI62juV6fSeKbsoHAd9utzHq7B4PkiIpPTo6in4NzIV0WhYwnU4lSb1eLx7PHFAm4NkHiAQeaWZe3bmfuvWy0V2WZZEEu+EjIoakSHArlUrM1qAUo91uq91uRzKLMEQLRSLY3L9HvKVz7wwyEig/cD8AJ55ukMiakn1CK1D2CccT5WcOOR5xCO8F5pfWhsvlMrboLI/dz+9ZA36/Pnez2SyKTDwnRPm5F0oIPBPG/S64DvPCv7yGCOH7jj3hXgzsDyfhnKecAcC5vRTBST1zArl30c49NnhfOdOg/HvPVHCxwD8jmHOO53VEQxcVOC/Cy0OCS/ksTnhl2H7iU+p+4lMavOOz9anfcCOVQCRENG9X9ObvONL+x37qQQ8l4fVD+hxOSEh4rHBZgsJXSPp79vPvDyH8dknvl/SH8zw/vtcTVavVWCqw3+81m81iKj9kJoRQiIqXzfOc4Mzn89geEpLqZJpuD5CxPM+jrwKO+5zPSRzHeDQUwtdsNtVsNgsu+dI5AaZzhXs9SOddCjyFvFI57egAWYJctlqtOE/MB1kIEGtPWc+yrJApMZ1OY6SbuWH+OR/RXrJFvLTBiZl3S2CuvItEq9WK6wl5pasDBJY5ZE1YO+bATR3xGGAuKS9gDslK8H0BqXcSXfZg8EwC9g/ZGpIKHgxu9sd7vLSB8hAItZe4IAi4F4ILTmQ8cI75fK7ZbCZJ8VhvoSgpvs+7nZCN4c+FdE7IeT+lJk7IEau89KNscumZDcA7IyDY+PXL/5azCjxj4W6ZFeUyBf/e/3grX8eFHPaq7z/u5SKB8iHCpX0WJ7xy7D78Ub3pn+y0O+w96KEkXBFUp0vtPvSRBz2MhNcX6XM4ISHhscJrFhRCCA1JXy7pa89+9U2Svk5SfvbvN0r63Re8792S3u2/Q0Do9/sxFR4S7w72HCsVOxdAjIjGko5OGQJkFiECkkd0migtbSCJTEPWIfIhBLXbbVWrVU2nU02nU+33+9jKsd1uq9/vR6LrEV13zfeMgGazqX6/H8UNRAev9UYMgIhKipkBZFTwHvwgIOO8BtH0rgJE9dvtdnyvp9evVitNp9NYjuAeCeXUcE9Xpw3ibDaL6+ZlDYgy5a4KRPkZU61WixH6RqMRO0lMp1PNZrNC2QJp9i58EGFm3GQ0eIaDR6q93IE5L+8/zw7xaL2/n/shI4VMFUoi9vu9er1enEPGhSklJN8Fjos6jHANLyFACKHExDMfOCeZMGVTTc8cgOjzMxlELhI44S8LCsxF2evAMwHYk4ydDKGycMA1yuUJnrlRzmTwzwo3nfRjy+KBz225BOQq4zI+i1vqvC5jfZSx++jHHvQQEq4QUjeHxwvpczghIeFxxGVkKPwaST+c5/lNSeJfSQoh/E1J/+qiN+V5/h5J7zk7LpfOa9oh2JJiNkG5zt1TtFutVnwvRACzvCzL1Ov11G631Wq1IsnvdDoFLwJIN6n4tICEwPMvRJJMAkoY/H2IEZBWiFi9Xo/k14kVJJGuE1637VkMROgRC/iZun2vcYeg44VwfHwqiFcqFc1ms+hNQWS9TIrP1qhQluGeFGfrFucZMYcx+2vT6TQaFnoknAg+947w4pkQ3AdZKpROEI0nA8SFEO6L9ZlMJsrzPK4Hv6PLhmcoONllXRBfPCuhLBL43Pn8MAbuy40JIfSdTifudb7m83l8n5dN+PhYIxdNKGthv3FN9w0ov9d/Bu71QEYJ4hvPy92yB3zM7N3yPIGXykIov8bxwEWBi8QH1sdLHdhjXtLh9+5ihGdoPCR4zZ/Fg3B4tR0oExISEq420udwQkLCY4fLEBS+UpbaFUJ4Ks/z589+/I2SXpGtMRFDJ9m0/sMVf7vdajabRRIPOSAtn/N4era70EPMyCjwaL0b8zmhgpxBQLkG46rX61FQKLvWuycEooeTTsQJFwUQIbbbbcyO4Br1el3j8Viz2Sx6DlBiUavVNJ/PVa/XI7Fer9fR/wFRgy4IEEQIM/cKcWO+yjX/3jGDLAYvsUBMcPM9d/GHmLNeZR8Gnx83HvTrIUh0Op3oKSEVySDHOdklEwBSjEjkghVj3O12UYTK8zwaS+LZwNp6lJ9xerQc0QkhjH3QarUKIgNfzAnz4+ajLuogkLAnEbO8tMLLDHgP8FKVss9COeuE4/04h5eS+Jz6+VjTMpF/OXhWAT+/EpSv434OXm7hx9/tPq8wLvWzOCEhISHhFSN9DickJDx2eE2CQgihI+k/l/RV9uv/MYTw+TpN7/p46bW7ArIJ6fMOCESl+/1+JMQQNKK40nnJQ7kWG78EIuSQLMwBIZZeV++p4l4nDvmSzksjIPNlczi+R9SA8ErnhAbhhCi/dJ6aDSFzYknJBffLXDjJRAThNYQFSgk4nuwOWhdCnN2UD3LrkWDWh+uTIu4p+syld1/gvXgqNJvNKOQsl8tY/oAI4iUVEHaEj9lsps1mo0ajoeFwqMFgEI/zNowe6WbefE2d9HrJAGtHO0+EFjIAeB9fjUajIKTg8cE8IoTQRcPbGnJtN3JE/KFkxoULF2ncF4Jj6OSBaHFR9gT37gKKH+dZG+XsFd8D5SwHzs1cIMqVsxCAzzVzRRlQ+diLsgnKJQwOX++LshH4vuwDUT7mYcBlfhYnJCQkJLxypM/hhISExxWvSVDI83wu6Vrpd7/t1ZyLlOxKpaJOp6N+vx9T5Wu1mnq9XvQYoJ4e4gkBIWLN+byMAGLq0eTlclkw0pPOI+JkAEjn0WGIFOTdO1J4mj0kxVP/yTigpMGjyoyX+vmzeYzdFRBKEEX83kjJn8/n2m63BR8G9xdYrVbRewBxodVqqd/vq9Fo6OTkJB6HfwFZAYzfSSjz534DLmo4PDsEPwtS4CH+XEtSzMrw9p7cO9kprF2v19PBwYH6/X4ksmQkkE3ihBPBCbLr9fU+dq5Fm0xKQ7zMgbm4qEsA/yLiuCcDnS1cDEBQILuEe2ZePHuC/cqXC2/Mn3QuOPF+J9acj7F6B4pyeQ0iDXsBMcGveREhL2cTlIWdu+EiMu/P3r1mJ5TFDh8H4Bm9Gy4SKq4iLvOzOCEhISHhlSN9DickJDyuuKwuD5cCUrr7/b663W40OyRa69kGGCZ6FB3i56AcQTonNJAh6u0lFSK1btbnRnqUIkCcPYUcIu6RY4irG911Op14XY+Ic06v83aTSbIJSMMnEl2pVGLbS0pAGBPXKBOparWqVqulTqcT5xIfCr4QFBgjnhZeRlImqsCJbbVaVafTUaPR0GQyiffoWRCUEJCuD2n2ThSHh4dR2FmtVjHDodfrqdvtqtvtSlJBfOl2u4Ux4gMBqSczgz3DPnKS7JkSzGOlUomtOelU4T4GkFS+mDtJsTyDvcp8UIaCXwHXd4GKLAgyUDyLwP0JPLOG87iowX24KOGRfn8e/XiyZNh3brRYjvq7H0W5nMBxNzJfJvoXZf+U33/RuV6tGHC36yUkJCQkJCQkJCQknONKCQqSYjZCq9UqlCFA+DF4Kzvs014PMu7u7E4OeC9+CKTjO6EmZZ7xkFVQr9ejILDZbNTpdOK5MHqEHErnxnWQu1qtpm63G8kj0XmiwFIxquoGg5gvEiUfjUZqt9taLBaxrSBlCMyHk0hIESaALgxQgjCdTmONvBNSzgFJ5GdEDrotSIpZG54FQFmFrwvnR7RgzhCPaI/IWiCAcFy73Va321Wj0YjtMyXFUg+PsEOyERe8nIY9RXmIk2qIMp4YtOjkX+ak3FXCy2jcR8OzANws0TNtfK2YPy9zcINMN0p0rwa8MRgT9wp8HcqZB2QtlFti+v0hPrgYUS7vuKgU4m7iwUWlCBzPOXmufT/eDXcrfbgIryZbIiEhISEhISEhISHhFFdOUAjhtCUjJAhS4d4GpK17FoDXkZNV4O32PGIMWZrP54V0b+k8XRyDQEiTd29AdCgTb0gWXSEgjU6WiWi76R+EzLs/eHaDdE5cKZ2AwBHVXq/Xarfb2mw2Go/HMfOi7OXAefzeEFQ6nY46nY5ms5kmk0nh/WQt7Ha72Fnh8PBQvV5P6/Va4/E4Rv7b7XaMoLfbbfV6vWgYyVxRlkD7ROYUcQPDQqLwGA2yXoPBIHZHYH9QonD79m1JiiKDl7Q4UfY18g4Z7oHgZQ6ICggKnJfrkwnjJSOsrQspXobg4lZZPGP+y9kwEHz2OV4ebkKJUHYRYfaMBgQoz8QBzImXcvAze939FMq+Bxf5G7gw6M/8RZ8DZX8FL3l4KaL/csLFvZRMuBiURIWEhISEhISEhISEi3FlBAWP+ErnRmrl1yFx6/U6CguYNkIwIWekhnv6dDlVm4h7OTsBcugeAkSqqfGnraSTz+12q6Ojo1gnD9n3Vo5ee8+YINoQfUQJ5gCCClFEOGH8ZFLsdjsdHR1ps9mo3W5HnwXgWQFOhFutVpznEIKyLCvMu49tPp9HAurdLCCWXMdr7X0tmRfpPNpMtsZyudRoNNJgMIj3SwYA69jv9zUajaJBJ8R4tVrp6OhI0+m00DECY0Pu1yPrPu8uTEB6PVNFOhUpmCvO4fdQTv1HJGBPeytIhJ3VahW7SHgpiPsr8LNnOrhIVi6bcTNFf664F8988JIH3/dkRDiZ9/stl0p4JsTdsgReiuxfJCCUsxNeSlB4Jf4K9/K+JCQkJCQkJCQkJCQkvDSujKAAyqTIo9pEZ+fzuRaLRSQ8eAdALD2F3dvweTu9/X5faDnpBnyQcCcxRPJ9HFwLkQPCCPklYkzmBKTMTRWdrEGefDyY54UQCsTYzfKk89r81WqlxWIRU/XJ9qAsw1tf4j/Q6XTiPDvRlE4JtGdJACLURLjJ3AghxPOTdTGbze4wIVwulzEbwGv/EWB6vZ56vV7BqJG1wbQT8YIOFYvFQuPxWFmWqdVqqVKpaD6fR6PDdrtdEDfKnhXuDeCmlO67wbEuTkBIvesBZRz8nv3AvvYsGoQU5thLBjyDwoUbRAHPivGWpu6lwF6AiLsgUfY3KO957s3HVS7N4Fz87qUyCPx6F2UMeGaAz0f5/C+FVyMs+HterTCRkJCQkJCQkJCQ8LjhyggKkLaDgwNJilF/iCrEfbPZaDabKcuySG6IrCIqICy4oIDwAEHGq6HZbEZTw8ViUeggUa/XI/mE+HlNPv4G7gPgRNMJKeKHR9W5b4ibdB4JlxQFBAwAES68Xp33QIbd30A6zwBwg0HIPFkdnmLv5221WrHsgHO6JwLiTginbRPdRJKUfPeLcAGA8zM3zA+CQp6fGkF2u91IMpl/zBghm6T5z+fzWErB/a5WqzvaQXoZAevTaDTivFOi4H4SLghIukNwYq4ZDy043ZeAfUjZC9kejNM9CDzSz9xB1L18hXthP3LvTtzL2TU8Cy5ela9b9j9gDTiviwn36pfg43opn4Py6/6MMI6LSP/LZUHcTTB4uRKKhISEhISEhISEhISLcWUEBek0Gv6mN73pDkM56ZxkQMIwpYPkuTeBE1S+x6G+Xq9H8kYUXJJu375dKAVYLpfR9M/FAuk8Or9YLLRcLmO7Rwg05NSzF4gwMz7I5WKxiJkPvO7lEWWi71kJLh54/TulDrvdTtPptFAyAIHsdDpqNpuR2IYQYkcMMgBI7fduD/zL78lqwPeAUo2yASGdJJyUAyejHln3FHyi/166QhvMLMuUZVn0Y/ASAM8oQOS4KOrNuiNiMf/eNcTNE70Ugr3mZTZk0Li3gptFIj6wnpB8shK4R4/4+/y7x4B3feB3rAHmlphdehaPi1fuBQIQMTyjobx+Xmrha+jZED7+Mnn3NSgfy7708iQXvC4zkyCJDQkJCQkJCQkJCQmvHFdKUIDk1+v1mCkgndfm7/d7LRYLzWazGK1eLpeazWaFCD2GiZJi2QEkrWxk1+l0NJ1OI5GAgFGW4AIF4gbCAWUEkDcyCiCNRKvdFDDP8/g7Itm0VYRokqJOyr93CuB+mBv3KOC6CAGz2SxmNDAXLlhQ2rHb7dTpdHT9+vXYMaHVasU5Wy6XyrIsGkCWnf8hzdVqVfP5PGaAeKSZf5lfxlEm2O75AMmkVIXxU1aC4MD7ERR4D1kNfr907GD9nBAjBkGieR9wQaFsYMh6usEie5pyBkQpNzpEcOF+KSMpZ0B4VgXziFCBoHFR1J/5Zg+wD5ycuxjAscwpIgPziQhWJt5l7wTfZ4zfhRCfH+CGjWXRwcUIFxnAKxEXXknJRBITEhISEhISEhISEu6OKyUoSIpRcggy5I0U+8lkosViEcklbRMPDw8jySuXE3j0mAgvpNNbMbZarUi8IHQeRSZqjVjgQkOj0YglEHgHbDabwlg9okyWgmc/uGs+JRmUKeR5HueA6zJWT11nzOv1WtPpNN4LBBJSTXYCY+p0Orpx44auX7+uXq9X6NSAyaF03p2B+3dzSbpMeEo98wWJJ1MBrwXWlvvk+Hq9Hs9PG0kvf1kulzHi7oIJYoYLCtIpUaaEgzlxYs1+8S/mlnN7KQ2ikncRQexZr9dxT0gqZDAwJvaml1CUSxrKpJl9gBkmoo+PgXtl3rzFpZcmsGblaD/7jzl101PPDnBcVMKAKNZoNO7osuE+I9w7QgbjQGQpl0L4WMuZBJeB5J2QkJCQkJCQkJCQcO+4MoICBAF3fk/9Jk2dUgcIOhkAWZbd0TXAWzOSOu7RYC8rkBQJO0TL3fbLrSohXRChbrcbo+1cn/dRXkHkG/jP5c4CELFmsxlLKoBHqsvEivkgSwIC6Z0oIPQYMtLm8fDwUNeuXVO/34/eCMvlMmZgQODxVFitVqrVaup2u+p2u4XxEdWGoNLFgNIU9xXwNH4XU1gjL0FoNptxLfDQ8PaHeAjQ/pK0fkgxJJ+fvRzD18LX0Ms4KG9ACPAyAW8NWavV1G63CwaXvkb8jEgB+efanhnB8Z6xgP8F5Tse0UeQaTabhVabZGP4Mf4ze8n3PfPh4lA5K6AsvLi3AqU4LpR5CQXv82wQBBcvrSlf4zJRzmy4n9dKSEhISEhISEhIeNRwZQQF6c62g05E3DnficZqtYomjbzPjdu8ft6j+JAXj/q2Wq0YiZcUibkbDbq5orv3c37IHkTKz0UmhGcqYNJItJuIOdkSHE/WAfX5ROEhnggAZeM9FyAqlUoUEwaDQfxCZKB8AB8FxAHmCnJPGr2kWCIBMaQ0wc0sPYpO5Br42Lg+QFiB5Hq0HRHJzSClU7Ld6/Vixkg5is04KV9wzwXvmuBignsTsO+8/IEx8rtKpaJ+v69GoxHNPhF6EHk4J/vF55DX3NQTEs5eRUjxUh1ep2SFdfPyAkQVb1nKa/7skXnj68E6upjlc8L1HV7CUBYTXBBjTOyb14vQl6+ThISEhISEhISEhISEe8eVEhQgHE7cISgQDXer5z2SCl0dvEQAg0Ei1qvVSp1Op+BO76n2bmDoYoITwd1uF9P7GSdE1KPNF90fpI2Itpv4YSxYTjeXFMsP5vN5jDZ7WYZ7PrgJpBNfiCvkDWNGhAuueZFjP9fj/iD7ZDg4kfQMCo9Ucx6iz97mEIHGhRRKFBBTINMYTnrZg3emYEwuBHmUnTlhHO4zQYTc5xExAyHEW1lSloEgwhwPh8OYtQIQmXw8zWazkM3gnhiMj/mT7vRTYM85USe7BXEHDwcyMSDwnhXiJRp4QbAOlKQwby6KlX0yGAvPJL8nA8HFNr5ctHB/CfaeCyf+eyf/vmfvRRR4JZ4LCQkJCQkJCQkJCQkX48oICu53IClGhqXzdoXliLW/BukkggpBgmA6aYGYQDglRREAQkmZgRvsSYrnx1cBjwTIGJkD3JPXzjMGshUgYNK5oz7kiQgx5QqTyUTL5bJA6F1QAC4wIKDQvpDae+am2+1GoaWcgeGEtSwOQJzJePAxeOkK72O8AG8J/Bg4D3MHIe52u6rVarGcZb/fx/FTguJEFzLfarUicWUNILne6pN5wh+jXGrDfLrvg2cXuJDBsZ4dgG8E1+LemFPWw+eGNfWSlbKfgpexuDklAoJnWiDa8Jw4+Xfi7lkDXoqBoON+Jogy5QwcFxPYx/4Me2YLWRZci7nyn70kw69TxqspU0hiQkJCQkJCQkJCQsJrx5URFPgDf7FYRMLiUWOim5BFSCYp90R8OZ4oLMc7WZeKjvr8jqwBiBhkbLPZRAHAyc9kMtHt27cjkfQWfU76PBpLFJrzYCJIirxnIRCtRhTgWAirVIzM8rP7N3jHC0QFFwC4BhF7XiNzwrMImDfpPFPEyz7KZQSS7vAEkBRLCfBhgIy2Wq1Iuu8mmrigwBoSgW+1WjHrAvLPuFiT5XJ5RxcQ91TgPdwba+t+CBzDl2dnOLHHMNTPS7YBY/KsB7IwXBAqPx+sMWLCRR0RIPWeUVN+Rvze3b/AyxNYB4wt2T8+rvJ12cNeaoRoRLaHl22QKcR6lrtV+Hm8dIPrufhQ9nh4rUhZDAkJCQkJCQkJCQkvjTvz8ksIIXxzCOFWCOEn7HeHIYTvDiF85OzfA3vta0MIHw0hfDiE8KtfyWDyPNdisYgEsUyanZC32+0C+fTIJ2nk7Xa7kNbvporlcgbIDRHY1WqlyWSik5OT2KbRyQtdFGazWUwR91aKXoMPWSfK62Sfe+10OhoMBup0OoX7LpsNDofDaILI+bhvSDHlE2WPABdEyqR4vV7Hkgv8GBAUyCaAxHrrTSf8lIBsNhvN53PN5/NCyr6PEVLvKe6sp6fveyTcyxZ8fhBfOp1OzCRAkGI9eS9CCfPia+rjwlix3W4Xsj7c56DcvcPLBmhnOp/PC74f+EQ46WeOmXP3DmHOPFrPWMm24HjmqdzVhLH5ebwbB1k/TujL3iMuXJVJu2daeNtJxB/3pfBuD1525OJMWSBhvsqZCi83rntF+Zp+jauE1/OzOCEhISHhTqTP4YSEhIQ78bKCgqRvkfRlpd99jaR/l+f52yX9u7OfFUL4eZK+QtI7z97z10II1XsZCITo5OQkpug7iXABAJJB14Futxuj1tTeE1V2LwNPGcdvwT0QII5uTkeE3lP68zyP5E86r/uGmCMWeMkAgLT6F+nwdF7AIJHxUBJweHioXq8XCa2XhdwtMo3ngEf7yQqAjCMiQH5dBOHnLMsi6aXMg3OVI+V0YWB8ng3BWCGxZHFcdA/Mpd+j7wOfA+/QwV7iS1JBoPCsFMblXRbYX2SceBlAOWLuXgI+7sVioel0GsUgjnGRw4m0izGeQcHYPLJPVoN7f/C6CwkIQMwdx7NPycRwAcvNE7kXzwxgb7lQxb0hSHBN1sQ9QVzU8vd59oeXYfh8+XpxzsuA30cZl5nxcAn4Fr0On8UJCQkJCXfFtyh9DickJCQU8LIlD3me/4cQwltKv/4Nkr707PtvlfQ9kv7Y2e//fp7nK0kfCyF8VNIXS3rfvQwGQgJZINWan72bgtd4u2cBv6NMgfcRgS1H0hEUJBXOXQZk3FPUIcY+dghh2eiRyLundHMuyC6mhN1ut1COgQdEp9MpCAGAiDDEsF6vF7I8IJy0UyQlP8sy1et1zedzhRA0nU5Vr9e1WCyioICAsFgsNJlM4nwhgJTnSDqNzk+n04KRoXRO3FijEELsxHCRhwFz5WUaHI/QsVgsCqnviA3r9Vqz2SwKRGQCIPYgFLiZIud2QYFzIuwwx2QSXOQZwLjK/hscV478c2/lY/GMYKzMoWfbSCqUJvCMeFmAZ6hQIoKZJHPr2TqMD48LFxg8Y6RMwsslGl6yVBYMXPC4W8kCzxzPLceVBYl7zSTwY30+H5bShtfzszghISEh4U6kz+GEhISEO/FqPRTekOf585KU5/nzIYQbZ79/RtL32XHPnv3ungDZbTabsfbcWxhC2CA6jUZDg8FAvV5Pi8UiCgqSClF+iAxkiKg29fH+urdcJEIK2YWYI0BA9CH+7j0Ake/1eqrX6+p2u7GUAvLmqdwQLietnsrPWDD5IyqPUIExJKIFpJP3NZtNjUYjDQaDaDw5n89Vr9c1Ho/VaDRiqQRZAavVSlmWaTqdajweazweazabqVKpaDQaxXXzzIc8z5VlmbIsKxBRSXeYaQKEFLoJZFkWBaFarabhcBiFjsViEUtGEE0grswrmRaUGjC/kH3PUPDMBemcJHuGDPfBmiL2uDcDa49vAuTeSTJ7xEmsl2+UBQVIOb4F5fIKn0s38GSeEXPKc+BmjoylLKR5+UO5PMHH5+D18tg8y4h59mwj1qAsFrjAV75uudzhbnAx0t//UpkH5ZKLK5alUMZ9+SxOSEhISLhnpM/hhISExxqXbcp4UZjvwr/GQwjvlvRufq5Wq3rqqafU6/UicV6v1xoOhxqNRprP5zHyDJHsdrvRqHG9XkcS6OSvTDY9zV86FQXc7R/C7iRSOjeGdM+FTqcThQ+i3RBDhAh8HBhjo9EotDOklR9lHswFBNBTz2ezWSy1cKJLRwXGfTa/kZBWKpWYneAt+5bLpZrNZpw7vwaZAlmWaTKZaDqdajKZaDabFbIT3FegnBLPGpAR4HX6kqJnQqPRiNkXnjIPEUZwWC6Xhc4FUtGTwL0g3O+B8zrJZ029/KBM8P1ePM2e9WaN8GQgqo9gVY68O2EuZ16Uj4WYs5b863PCenspCNkjlPyQlcD4EFOcJDtx98i9l0tchLIo4uUlXmrk4pZ3EfF9Ws4YYFyUMfl572YM6WPy9XV/CY5xeNbCw5CpcI94VZ/FLXXu55gSEhISHiekz+GEhITHAq9WULgZQnjqTIl9StKts98/K+lNdtwbJT130QnyPH+PpPdIUgghlxRbEEIK8zzXYDDQaDSKkWXq+yE8EH1vvwdR99aBbj7oRNFTsBEt3PvAI9lOeCl14FzevtKzEGhlWK/XC0aBXt9OZJvuBBBX7on5GI/HWq1WkSxK5zX2XibgkV/+JWMDUYWIM5Fs2hlmWRaJapZlOj4+1vHxsWazWXyfR/WdsLvY0el0ot8D88c4ma9ut6t2u10ocSHzBPHD6+e91IXXuAfPFPB7L5Nn5pdjOA7Se7Y3o4hDCQvCh3TeuYL3IHTkeR7XvkzO8zyP5QsuWDGPvu5lcYP19O4gzIOXMvj8kK2C2AEx91apCFaczwUEzu0ZAncj8T7XrDO+D+WMChdPgGca+Lm4pgs/zBvXuqgM4qJzlfFyIolnlVxxXOpn8SAcXvkbTkhISLhiSJ/DCQkJjzXuxZTxIvwLSb/j7PvfIemf2++/IoTQDCG8VdLbJf3AvZ6UKOvJyYlms5mkU5Gh1WpFMaBM1rz8AEFCUswO8FRw0vw9ku/XJvLtJRBE2iGTjAFxA8LWbrdjpgBlApPJJPpAMF7PmsAMcTabxfIOiJgbBSJ2UNaBSIGI4f4CZBfwfieLeV40k6S8hLKMzWYTa/9Xq5XG47GOjo6iF0G73Y5lExzvosh8Po+Cx3A4jC0EWUcyPBAU+v2+rl+/HsswmGvMKfm30WhEXwIi+/gGcH1v89hqtdTr9eJ+gCB71opngyAWQFoRmNxgk4wD9y1oNpuSzk05Od4zUFh7J+kXlc94mQDZHETi3cPBI//8zPW9zIHyAu+kgZjm5Tllcu/z689U2cfAM2DcIBFBwefSzw3KmQnsU8+q4TjvKuJdL1yw8HM6ykLJRWMpv/+ic19h3JfP4oSEhISEe0b6HE5ISHis8bIZCiGEv6dTs5nrIYRnJf1pSV8v6R+GEH6PpE9K+s2SlOf5B0MI/1DST0raSvp9eZ5fHNa8AN66cLPZRFLohnplIoLA4MZ0kmJWgJcxQN663W6B3JVd5J304T9ABNwjvZDzWq0WvRicUEKK+Nmd+/k9UfXDw0N1Op14j0SlPVui0WjEbg+73S4aEpIdQKQ8hBBLKTxzYT6fF8gq912r1aLIwPW2261ms1kha6Df76vRaMQ5Xq/XUbRAWOHcLnQQnfc1aDab6vf7hbIR7rHb7UY/DUQIF14guawHhFdSFBS4Z+9IQGYI0W1+x5g5V7nWn/c7CSebhHlwM0gnx+wnrsG1EQJ4/ez5ifvD9xsCkRsjcpxH/T2Lxs0rPRPBsxPI7PGMCM/2qdVqF3aMAE7wOUfZJLUsIpRNLO+WReLwbg9lrweOv0gg8MyNsphwN7HA16ycrfCg8Xp+FickJCQk3In0OZyQkJBwJ+6ly8NX3uWlX3mX4/+8pD//SgfiZQdE6yEn8/lc4/H4DlLjpMDNCZ2AQaQhIu4871FhJzhEsjEe9KhomRBh7JjnefR3oFUgv4egQ0zIPICsQb6dIELOJUWTyFarFT0lXHjACFAqGvS5+EIKP+IHhBgvCS8X2O12Go/HsQyDr263G+cbouqdExizz6s79a9WKy0WC4UQNBgMYmaCm/8x14gnzWZTs9lMWZZpNptFchxCiH4FtD9k7ZgzsgyYc4+GO8n0veEdFNhrEHzW0YUiBKuL0uTL+83LMbiO+2S494Z3dgCICT4HnBtvDoQNjEs9G8ezJsoCGuNkf3gLTt8b/h4vZ0FEYB3c08P3NO9zjwgv4yg/iy50+Dy4sOCfCReJBeV5vBevhItKKB40Xq/P4oSEhISEi5E+hxMSEhLuxGWbMr4m8Ec+LRJHo5H2+70mk4nm83msDwdecy6dO9OXzfjm87kajUbBXA9Sf1E0lIi8R7oZF1FbSTF7gt+RWQFZgmRBop0YuQcCYghEE8LlpBaiNxgMdHBwELsdnJycRL8JzwrgPnyOEC8QahivZxRIilkWrVYrmlY6gWQuJRXab2ICWPYP4JwnJyfK81yj0Uij0Uj1el1ZlsVSBiLjlEcwf6wj4gDXRUyg9IC1Yh/QpcJJbjkF34mri0xlgckNGQElDkT7L9qTfh3PlCgbIfp8lcsaXPhgf5HBgPBQ9jjwkgcXdTxDws0NXUjjWggoF/keeJkDe69er6vdbkehChHJSxQ4/qISDq7r5y4DYewiYbE8xovaWz6sYkJCQkJCQkJCQkLCVcSVERQgkNvtNnYkaLVakTQ7KQ8hxO4OEB9viUfEWlL0RYCclq/pkVhvcQe5zfM8+jl4XbhHfelKMZ1ONZ/PI2GHYFMm4QSK8UKGIcD7/b5gJkmKP+NjXiBe5bILOjYQHXayzT2T5o7Q0ul04hgg7tVqVdevX1ej0SgYQkLuIbdkQkDeLrpX1nC5XEZzSEmxgwTZFc1mM4orZHxIiv4JkHAIJWTVswfInFgsFppOpzF7wLtbSIpjZvysFeA4F3QwBHWPBQQMiPrdRAu8ECglwJzSxQvPXEBY8k4F7G8XOvz87BGMH73Exstf3CDxpYi9l9sAFzdcJGAdGC+CFXPlhpKeJVEWelxEK4+Hc5Vf536Yg4tQfm4vylooH3+31xISEhISEhISEhISTnFlBIW3vvWtMepKh4B6va75fK6bN2/GdHfPFoB0QoCJdkOYISEuFJSd4yHGZCVI56QYvwBMBN3wEUAQaRXo2QkIJPwOokc2g0f5J5OJOp2Out2uut1uPB8tGrmHwWCgVqt1h0kgRLIc9XaiCMHEH2G/32s0GhX8FjBl7PV6Gg6HkhRFC8i5lzlIxQj8crmM4hAkbz6fx+4RzWZT+/0+rtV4PI5ZBpBuBBrGfHx8HA0uaUPpZoYICJRAkL1AOQfngXBCLr3shP1RJvoQXkwxERRYS7IF2B+Q+3I5BXvOOzP43CHCcKzDhRT35oDUe8TfO50wTu7BMzH8WShnaXA9RAkn1GWzRc/o8AwcBBG/93LJBHgpwu7z4c+/g2wjskXK7y/fl4+hnElT/jkhISEhISEhISEh4e64MoICZLPVaqnf76ter2u5XOr27duRTEIuvAUi5LZSqcQUdCeKm82mkC1AlNOJGWTTBQUnSqRg8305Hd47DiBEUC6xWCwkKXac2G630Q8AwWC5XMb7ITOC+4FAE9VGdIHku+EecySpEOnmHj0N3s0Ju92uVquVJpNJFDparZY6nU48fjababFYxEi/e0JIp5kgtJbs9/sF08Qsy6JAwM83b96MwoF3XvAOG3gunJycaDKZRELInCLmIG4gwrAnKKPwbATpzhaGkFS+R0By8klGBL/DS8HT+SHoZEQwP1yXn721Zzm9nj0OkXeyz7oyHhcu3LvCSx3wyiC7xPe8l2CwBp65UM7g8HFwTZ4rz4jwEouyOOHzw328HMplIQ7Klzxz5m4ZFeUMhbtlKSQxISEhISEhISEhIeHecGUEBcitd3ZYLpeRjEIAqtWqOp1OoWUfAgBu+2Q2QDA7nU4k5KSqE9GF7JBVQMTZSxpCCJG8Qk5DCNE0kOwD90coE2+InGcpQIIx1OM+vRTD2/cR/V+v1zFaDkksE2buA+IGeYV0UapBu0REF67ZarVi1sd8Po9ZBmReMDeQR+7JSSklAsw3pI9sBcigZ5tIxfIPyiUgwOwDvCDwyMiyLO4l5qJer8cSCrIOyBLw7A6Oh8SznrzmWS3SnSS47LvAfLMOiCWe2UL2iotA7rMA3LywbCLqGTgudHEf3Lt7YFQqlUKpigsW7sFRbkXpmQI8h5wfEcrLOlxIuEhsKJc6XFRywTyWPS18jj0zxNfD1+Ki9zrK5RAJCQkJCQkJCQkJCfeGKyMoEBVut9uSTg3v5vN5zDgg4k7Nv3cHkBTT3VerVaz7pxWiG815OQJp/lwbDwLPSCDKC+F2MklLSSejEDvGzTgZS6PR0G63i/XlZCm4DwQRXEgWWQ+47y8Wi/h+/BU2m03MWHBhomzy12w21W63C2Z7jNvFB8owjo6OYuYCWSTuDeFp9wghbjpImr5HpXe7nbIsU61Wi50eILm+H1gX71TgJSTMK14J9Xq90K2AbA/WjJIA7s8zC5zcujjEuOh0gQhQrtv3zALfO1yPeUXIoTTBPRG8FKNM9n1+EVog1H5PXrLBfHnZAmNi73EthCCu5fu53GGBMbrvBCSebA+EGOae9/izXC6b4DhfF587fgdcJPBsC44vr2tZTOCcZXEjISEhISEhISEhIeHecGUEBQgT0e/5fK6Tk5NIuCHkGB5S3tDpdGLU32vbx+OxttutBoNBzFjA4LDdbkdySLq8p3wzHsogvGQCkgIpdO8G3P4hoYgWRGoh9xA/fuY8eBhI5xHbarUaux7gR8BckbmAgDGbzbRcLjWbzVSpVNRutyMZJNKMPwU+CpQHlFPmadM5nU6VZVnBA6BerxeizsxLq9UqkFLIHyQPIrlcLgsmfswPmQwuGnjHB++iUa/XtVqtouhUJuTMK3sFIutlFT526VTscSEAcuzZKBhIIgi8VBTc240CSDzndyJc9kEot3ms1+tx3/I+n0PEBKkoojEuxAEX4sq+ChdlFJBtU/ZOYO486+AiY0RfE39fWezyPU+2w8sRfX+u/H681KEMXnMzynspvUhISEhISEhISEhIKOJKCApkDUD0MeubTqeSzkkbbekkRSEAghLCaUcDSgdms1mhHIHUfSLN1N5D4MtRWOmcSHp6OSSn2WxGUjifz2NWAFF5j+z6+z3N3UUBbz0JScQzodPp6ODgoNDdoN/vR6KOL8F2u9VisYjCiZNNSgSGw6EGg4Fms5nyPFeWZZpOp3HumGtKRshO4F4oUUBggfSWO2awrsw/mRuUpZS7Oczn83h9SDHikpcgeFYFxLdc348HBevvhNbPIZ1H8FutViyh8HIXSie8DMaj814S4RkqCFSIVJ6F4eTVSTRjc58D9rZ7dfj7XEjhPGV/Ai+ZKJdPeFaHl374+b18gbFwvF+T9zAW7qWcdcF5+dc9EhDvuHeEDP9ygYGMD79uGV7O4GN074WL4OuQkJCQkJCQkJCQkHAnroygAAHO89M2jbPZrGDkJ50aGxJxpm6bLADEhtVqFck13RGm02nsJgCh804FHs2EMG2325gyD9EtCxvVajWaFUK2PIPB0789Asy9cB5IHSUPEF48CzBOxMTQHfylU3EF8QHhoNvtRuIHIfeyDe/ogKgBeaOcgHthfTiXp5I7afU6e8grpRoQt3IGRpZlUYSB5HlNfNlfoEy4WXvOWTYQxMPBfy+dlx+4eOEdEtz/gmP5vZ8H+P6AYHuGAv+yRzgfa+PZFWQrANaUNWD8TsQRUJgXz4BxEu8lCy56lbMS/P68tMWFGxeOEDxcZCmXIfh7GA9wPw73KvH3+P1c1M3B/UrYp/66C1OIPtx7ufyCa7FWCQkJCQkJCQkJCQl34koICp7yvVwuI+mkDADhgE4I0+lUm80mZjRAQj2KPhqN1Ov1tN/vozgBGcFrAKGCVoaeau+RW+k8gwFi3u12oxfAcrmMwoD7G3jmBAQQXwCP0ENoiJh6JB3/BMQCPBuWy2UkYZQANJtN9Xq9QrSY+ZVOSdtisVClUtF0OtVqtVK1WtVisYhZBoxLKhJ0yJmTYSeNbnRJpF9SJMIIAt79ALKPmNBut2MGCqD1I14MXO+iVPhyhJz2kYgtnvrPentZC/OPQOORaxdbymUT7nfgfhRktDCn5c4P7lHg+4Uv1pE5ZB082u+CAvflYy2LAO4Z4gIAe5+9jsjB8YzVxQQvWyCLg3N5poOLUMDXzteS+75orpzk+3N5kV9C+Ro8u8xRWRTxZ8XvsywcJSQkJCQkJCQkJCSc40oICtJ57TY15t4pge/xTZjNZtrv9+r1emo2m9HYbz6fxzIF0uWps3ei4N0ePHouFcsdnMDSDQEjRkmxHECSBoNBJKl0KICEIVgsFgvlea7BYCBJ0Ugxz/N4znq9Hgm5+zZgiuhlBU5wMatkvJRWSCpkJczn83hfXJMSDcwnfX7KKfpO9Dgv4sxut1O32y2IGR4RZi0BnSqc8HNeb/vpnTEgqeUUeCfYRJR9Lcpp8S4oIdb4uL0TAl+eSVI2J/RItpsnupjDOvGzCwqQdu/MgV+Fe2hIxQwCL7+RFD02PDvCszUwC/XSAhcAeEbcWJNnkufCfRAYZ1ngQFTjufFOLeWyBcDrjGG32xVadXJM2azRnwc/z0VigcNFMV4vZyslQSEhISEhISEhISHh7rgyggLkVzqPErpPAWTY2yW2Wi098cQTevrpp5VlmW7duhUzCCRFM8EyWZTOCSPEi2i2pAKhIXJfrVY1GAwiYV2v15EE9vt9Xb9+XcvlUuPxOF7DjQe9rSIZFU7wKFEo+xNIihkJ0rl3BOeCNDabzUJGBaUEPhYEAlpzYiBJ2QPEdrFYxEwLCP9F5QiSIuGkdaffr3tJlLs9eFcLL59wAQHCT6TfTRK9NIM58vaUToZ5HUHGyxmI1HuGikfEvfYeMYVxYvpIJwne750dGH+5vAHws2cBUH5CZg7CD8d5JN7LBHiN/erlAV6K4FH+Mgl3+Br4uiPQeCkA1+A54rlzY1Ley/UvIvieReLCCeINx/k+cM8Iz84ol10guvieuOi+y94TCQkJCQkJCQkJCQkX40oIChAATzsnIkxGAW0hvU56MBjo+vXrOjg4iJ4KuPEjJkiKogRlAfwM0SAqTykE74EEj0ajgmkfpJ7jut2ums1mTK/H5M/LBxAUWq1W9GVA0MDDwIkRLTDxgJAUU+0hs5SEMG+LxaJgIOhlBn4/TqKcTGEKeXJyEtP+GYdHtT0CDrgGdf6sEyUmni3hLSI9ywAvBQidt/D0dogQZs9IQMDgdc7NcS4QeSS83BbR96QLCOV0espPOp2OpPMMBCe+niniGQ4uBkByGTcRfSfGvlYuDHh5jAtWFxlQekaFiyT+/Pnr3gLTO4DwPi/9wK+hLPz4OLyUgWtxPd5TLm1wQcf/dUEJAa6cUeSiBMKRi3SeUeFr7uIP+zohISEhISEhISEh4WJcCUEB7Pd7zefzQtq2R9FJm8aAbjQa6fr16+r3+7p582YkaB6ZhphA5spkG2KIseJqtSq0oqvVaur3+7E7BASx3Klhv99HPwWpGEV3cuR+BM1mU+12O5ZAkA2QZVksp+j1egWxxH0ZeA8EmywBot6UavAFKfN0djcgnM1mmk6nunnzZpw7CD7EDUKMYSWiCcd4+YgTYW/3yO84HsIN4XPSJ52bTpLezzW9RaGTYvcl8M4Vnr3AnmAMkF3vXODHevQbogr5Z67KQkA5A8PH7HOKGMG43ScBkYXxO2HO8zyWI3g2CuIZmR5c08tKWINyyr+/5s+P+zb4fCGieSkJc+DZES4E+Tx4qQKilIsHPD8+Ht/LLii4iSbXd0HDMyA88+FucEEkISEhISEhISEhIeFOvKygEEL4Zkm/TtKtPM9//tnvvkHSr5e0lvQzkn5XnucnIYS3SPqQpA+fvf378jz/6nsZCGaL+/0++gpAlGazmebzeSEVudvt6uDgQDdu3CgQ2rJhoXROVCC6lAxUKhV1Oh11Op3YGhGPAV7v9/vqdrtqt9uF0ghep6PCYrHQfD4v1HzvdrtYJgChckLK9SFm0il5hhxBeKfTaSy54Hjmab1eq9VqFVLfycQgxd/r4hkXYO6Oj49jdsJyuVSr1VKn01Gz2YwCAl02EFVarVbMIFksFgWzQwgs5Q5ebw98PSF2pNl76QpknnKAer0exQK/F+4ToYNzuijiXgqe5VBOv3dByNfL9xplBuWygTLpdzNKsmCcXPO6Z8wgbJXFFSfSPteshZc9UJqBlwFgzE6mnXj7nJCdgDjBc+mZRJ5t4OdxDxD2A0IUa8q/XMezDVy84L69dITvESj82SrfCz/7mgPG7sIE17hKGQqv12dxQkJCQsLFSJ/DCQkJCXfiXsJv3yLpy0q/+25JPz/P8/+LpJ+W9LX22s/kef75Z1/39MEJOTw5OYkdHiCepNw7cczzPJY7ELWXFMmtm8iRQYBnwHa71Xw+13a7Vbfb1eHhoXq9XiThpLAjOkCApNO0++l0qtlsVhAUNpuNxuOxJpNJTP8ut8ojEkzZQbVaVb/fj0IFIsZ8PtdkMtF2uy1kITAe91XwbgQIGW7SOBwO1e12C2n1fEHmIYonJyc6OTnRZDKJa9DpdNTv96Po0uv1oqAhnbZaZF793NJp9gXX9rXARBOhBu8HjoFIumcBBNjX0SPQrB1k3DMHyhF1jqXEhDFJKhB05oaMCF9PyC/HQ+LJpOEcPscXRdp9vlgfzzZwY0rvwuDE3aPy/Mz9ujDmY3BPEbJ93L+DefOSAi9T8HFSZlHuDtJsNuN7XBBiDSmfYU3a7bY6nU48h88fa8QX5Uesuc8ha+rnRsigNKj8HuaLY8uvXyF8i+7zZ3FCQkJCwkviW5Q+hxMSEhIKeNkMhTzP/8OZyuq/+zf24/dJ+k2vZRCQiMViETsF4FdQJnlEltvttnq9niTFVpOr1SpmN9RqNbVaLY1GIzWbTU2n08J5ut2ubty4ocPDw5hJgDgxn8/juBqNhna7XcyS+MxnPqPNZqPRaBRJ0Xq9jhkKRMgh7W5GR3lCCCESYyKtkgodCUjrJqrdaDRiFgDtH2ezWSEy6/dH1oJf+yL/ACeskiJ5Pjw81PXr15XnuSaTSWxJmee5ptNpJPKcw9taQr7poIFhIiUerC2p/GWTSS/bQLRB3OG+KO+gzaSXCUBmXWDBn4DxeWkFwoWbOkJMXezwSDxrzO/oiiEVux54W0MItmcb+PpBfNkLPh7GWX5mPCuFdWBfMmfMOefzkgSP9peJuWcHeEmFdG6C6Zko7D0Xacjm4ZyICaz/crmM68l4EM64JmKA3ztz7kIH1y6XdnAPni3h9+OCQtnY8aVKIl5vvB6fxQkJCQkJd0f6HE5ISEi4E5fhofC7Jf0D+/mtIYQfkTSR9CfzPP+PL3cCSN9qtYoRYZz3IQCerl+v1zUYDNRut7VarTQej5VlWfQggJAPh0P1+31VKpVYTgGpJ1IOUS97KRBlDSHEOvGTkxMdHR3FjgyQH7IoJBW6BkgqRJslFSKzCBa8hn/CbreLvgyQ6UqlEoUO0rIpk2AOMcgrdwegY0M5Wu+ECYED4ovYQleNwWCgXq8XS0IkRYPLxWIRsztarVbB88HRbDbV7/fjPddqtVhqwhp7mQGlDd7Vg4wQ/CEgw+U2jMytk3o/r/sW4OOAmOMZFYgUZS8JL91AEOEenfz6dSHsnFNSFDc8vb7se1DOZvASCyfb/Ixowlp6eYaLGmWfCPdI4P4Zn/tA+F5jnjl/o9GIzweZRYhJjI1yHMD35VIMiL23UuU+2edeZiOpIPS4/wGigwtCXMfFHuaC9fXuMw8BXvNncUJCQkLCa0L6HE5ISHjs8JoEhRDCn5C0lfRtZ796XtKb8zy/HUL4Qkn/LITwzjzPJxe8992S3i0pplwvFotCxNXN4prNZiwXaLVaOjg40GAw0Gaz0Ww202KxuKMTwGg0Uq/Xi5F/vBUgPRBeyJK3g5ROSUiWZZJOyc2LL74YSxGcjDgpd5M8T42XFEsHiOyX6/IXi0Vs90jE3iP3HpVFbGk2m5FQk3IvFdscem2/p7TzHklRXIFoPvHEE7FNZrvd1sHBgQ4ODiLZJQNku92q0+lEAYNrtVot9fv9OBZKTzqdTqF1I2OhvICovaQ4T8yzl62U55breKYJZN7LQZyw8rqDueY1yLNnvZDezxwyBgQPj5AjfjihZ6xcx8m/R9vL6fkuJLixJCSaOUF08ewMb0vJmL0shPO7qODlKhhqusjAuT0rha4nkgomqqwv2RKITohynj1QngPmlH3hRpXurVAWyso+EV4e4nPNXHqXCI73UqurjMv6LG6p83oNOSEhIeGRQvocTkhIeFzxqgWFEMLv0Kkxza/Mz/5qz/N8JWl19v0PhRB+RtLnSHp/+f15nr9H0nskaTgc5k6uISlOLCVF8ttut6P3wHw+j0KBG7w1m83osXDz5k3N53NNp9MY0YXYS+d+BHxBVLMsK9TIkxHghnKQSshmOWsAQsrr1O67z4JnOSAUbLfbeH3KLiB37Xa7QCCJBDMWhAfG6oSa+2X8RP+Hw6F6vV5s1djr9dTtdpVlmYbDoW7cuKFut6vbt2/HUoNerxevQyvL+XweszT6/X5Mc2deeM1FAYizt5zkdaLvlLkAfl9uFYm4AZH30hO/f8bSbDZjuj2iQdnzAFGH6LpnJ3hnDQwjLzJAhBA76SWbwo0dgZsTemYE52ROIPnsN89GYH9xf2506KSdc7FfPIrv5R4u9Hk2BNev1+uFLBWeG7JJXFBDUKrVarFcpFyKQJZQu92Oc8feQBh0ccMFqPK9sBd87hEhvMWpr5sLQFcZl/lZPAiHV6fGIyEhIeEhQfocTkhIeJzxqgSFEMKXSfpjkn5Fnudz+/0Tko7yPN+FEN4m6e2SfvblzucExtvAQS7a7XahxhpzQNLxId1O5DARrFarWq1WWiwWMQOCc0MsIfRZlhXStJ2UeaQSQkPt90WE0Gvwt9ttNJEjPZx7o8whyzJVq9XYQpIac78WxBIihZjgXRQWi0U0CIQ48j3RYM7JfV+7dk2j0UjD4TAKKphTVqvV+BrCS61WK3THOFv7Qko/XTgoa5hOp1qv14WxuycCUXbGJ50TfgQU6VRA8Kg7Y0QAYH75vYs2kGJEEB835BIS7XX3EF/S9hGJANf1lH6EHM7jWQ7cq2crMA5+T0o+e4tnw9eW8TqJLhtSYuzomTBck2Nc3GJfXES8PYOB9zMfZDAgmNGBg3N3u9343PI+zzgok38EA/e84Ng8zwvmm4hgPheeOeKigJs2si/8vP58M04XCa8aLvuzOCEhISHhlSF9DickJDzuuJe2kX9P0pdKuh5CeFbSn9apg21T0nefET1a4fxySX8uhLCVtJP01XmeH93TQM6IVrnu2b0KIBIHBwcxGg6ZhtCdjVndbleNRkPL5bLQuQBCBMGTTg3wZrNZzAhAgCBS3+l0IuGHkEDW6LQgqUDaIFcuNDgpdgKON0K321W/39d2u9V4PI7R/nKWAUSJ+5cUTfcQGDzjgwg5kWA6ETDOg4MDveENb4gZCpvNJvpJNBoNDQYD1Wq12H2i1+vF7ANJsVsFBLLRaGg0GunatWuSpMlkouVyGaP4GFmu12sdHh5Gwor5JffpZRS0pmSt2SfuV0F2wEVlDHT2gKx7xge+HB7th6C6oIPZIySfOYR8ezcBF1oQnjyjwP0IypHwRqMR15Xzcg2uTWYA8+beDohcHmUvl1q4T4EbGVIWQblMCCFmhpSzHPy8jAl/BPYgAg97ptVqxbIcxAq+8D5hvT2Dw40a/f5Zd/eq8JIHfufPYLnUiLFwj4gglOlMp9Pyx9UDwev1WZyQkJCQcDHS53BCQkLCnbiXLg9fecGv/9Zdjv12Sd/+SgeBUIA4UDZjpARgt9tFUoLnQDlKTWkB0XEyEyAsZD9A7larlebzeSSc2+02vueJJ57QwcGBGo2GZrNZNAYkAj0ej7VcLguRZe/i4JFViL1nNBD55t92u61+v6/FYhFJDNFzCGqn0ymUaNAVQ5Jms1kk5NwfogZiAmSP6DltIWnDiQDDODudjrrdrpbLpWazmWq1mg4ODmKdfq1WU7fb1XA4jOvX6/V0cHCga9euabVaKcuyGFF2o0ayEyB9WZbFyDblA81mM4o2ZGiw/l6D7zX+Xk/PcZBvz3yRFAl3r9dTu92OEX3mDiGk7LdQbi8JKfcsEPcskBRFC95XPp+XsXiWBBkRnIe95SU3HMv+pQyI6zj5l1Qg0uXsEi/jKRuksg/Zz34OiH1ZgGk2mxqNRhoMBrEbBdjtdnGs7XY7lsP4mLxlpmf+MFe1Wk3z+TwKGC4wlfcEnzdetoJ3CIKFz5eLEQ8ar8dncUJCQkLC3ZE+hxMSEhLuxGV0eXjNcDICGSOCTfkBBKfX68UaeVpEQqwgna1WS91uVyEETSaT2M4Rklmv19Xv9wuCA5F9zB0lRZK5XC41n89VrVbV6XQUQog14rTm63a7hXr7svu8myFCkDAPRFDAsLAc8eaYdrsdo+u0ysQkEJHAPSSazWYk35g94puw2+0KUWNq3Bkb3TBIUc+yTHmeazgcFtYNMaHb7apSqcQ2ndevX1e73dYLL7wQU97b7XZMh3d/BDJLptNpoSwAwQEiC9F3Eg2phKRj9gfBp+af+Sc7wtPaqfunPMNLXZxce7mMC0EIB1Ix1d49KmjfSNaDpHhvHuUv+yEAMhbI2vCyHDcmZB/7vLrYQUlDucsF1+YZRNTh/nwvuycEP5MxgCDjPhm9Xk+Hh4dRDEPcYg/P5/NCe0uEQq7pIiNriljRarU0m80KXSP8/n0OmSP/l7n2khnEBbJ1EhISEhISEhISEhIuxpURFPgjXjo3PYSwE7Um0tnpdAqGeev1Okbn1+t1JKLL5VLj8bhQd+9p9xAwFyYQJWg5udlsNJ/Pled5oSUghEg676jgpngeFYUAcY8QNjpXEMUlvZ+SBMgrHhGknjMnEFXp3DsBEsU5u92uVqtVwVCSiHyv14slCi5UkBHQ7XZjRHm320VxAULYbDb19NNPq9PpxHT5drsdPRnI3nAjQK/Jh5T63LN+nu6OtwVCSdlcD5HCU+mdJLrg4yUoiEGYZZJVgHBASYtHtCnrQKghMg7BZU/6F9dot9sF74dKpRJFLM7JfJO1w/ozLkoI3MgQ0WQ+nxe8RiD+7BHAMW5U6J1WyNqgfMRFJkkFkcGzcthfXJOWoAcHBzo8PIzkn3vOsizuES/3geyXxRnG1Gq11Ol0YqYQ5Ul5nmuxWBTKOMoiCuNzDxX2oXuHzOfzQlZDQkJCQkJCQkJCQsKduBKCgqRINIhiQ9ghtyEEdTodHRwcFMzxIN0QLHwPKpWKptNpLB2AREDCt9utjo6ONJlMIhEF3qEgyzLdvn1bkgpZFB7JRqCQim0HJUXCjpgB4eE1RIBerxdJGCnrHEM03zMauKcQQjSndBJIxNfr/kmbh2CTwUDkfD6fazwe6+TkJM7vcrmMaf+IDpSeHBwcqNfrxfmndOLw8DAaaULiymnr0nl3jRBCXG+yTbbbrWazmabTqSaTidbrtYbD4R0p7a1WK3oveHYC2O/3hUwN5oGMBu4Tc8zFYhFJP8dTdgDBZE7J4qAswMUgJ+2IQYgh5fGxztJ5dwEvo2HOWG/2uqSC+OH73N8DsSbTw7M7uAbPnQtTrL/fT6fTUbVajefxFqgueng5zLVr1wpiGGUw+JqQUdRqtXRyclLIvGDcnBuRrNPpqN1ux7aulOi4camXinh2BT+7MOTGl5vNptDuMyEhISEhISEhISHhYlyJv5YhhHRDaDQasfQAckE0vN/vR0EBIuodETqdjvr9vna7XSQnECfq70l7h7wTAYZkQhCJoK7X61iO4MZ0pHR3u91CxJ1oPITSU+9J+Sa9Hg8ExISTk5NYXgAZ9HaTbopHtL8ceZVOSRpzRfnIdDqNhBiC55kA8/k8Gi8S/YWk046RsfX7fb3hDW9Qo9GIpQrtdlvD4TCeG3+K2Wym+Xwe1xZCR6lJnufRf8EJ8mw2i2JCr9fTaDSKvhebzUatVku9Xi9eB0JY9kIg+k40nPlgfkMI8RzuZeD+HETtvZxGUjwP3UTcEDGEoMFgEDsVUBoASfbz8y9ZHAgK3tHAM2g4nvlyM0qIddn3AXhHBLJVyGRBXCOrgcwEni1IOgIWY3SfCi8DGQwGUQgiUwaDUS8/8tIiz4RgHZh7yiLY6whBzDliAmNwYY97RvRhXyBE+vPNebrdrp577rlL+6xLSEhISEhISEhIeJRwJQQFiEG9Xo+p0ZQZQKCdIBOth5hQ8kAHAgQJMgsgJpgQEmElTZ6MgXL0HoJIFgIZBYwXsue157RGlM4JH6QfMQGy6MaCm81G0+lUWZYV2u1hAkkZB69xTcg5BnTeTcHT3p0wMT7mvF6vazKZaDqdajabSTqNfGNWiZhCdBmi1Wq1YstLSC0dFbIs04svvqjJZBJ9LDabTYyEQx4pGZDOTfQkxTWllp9uG+4xALEk0k3ZCOff7/fRuwESjn+El6cgXLmvgIs2EGb2nWdJeDTcsx8obyC67pkILgbxO8Qi1gyvCCL+eZ4X9oavL/fumQpkzyAq8G+z2Yw+IOxRBDEELp9HxDbunX3BenHvLm54d4jr168XSpTckNIFAvY/zzFeEZyPeWCPURqCOMB9+zHMLeIBmRMu1rEP3DQ1z3N1u92UnZCQkJCQkJCQkJDwMrgSfzFDtq9du6Zer1eoPyc9G2JNazkIktesdzodHR4eSpJeeOGFSI4lxXPQEWE+nxfq972rBJFuj1ZzPUg1EVpSw4myQ4YgNZDEzWZTSMmnfEA6J7lEZyFw7XY7ElMXB8gekBRJOkZ97tnA69wfBJzxdrtddbtd7Xa7mI0B4SPSvlwuY0tIsg2Gw6EqlYrG43H0rmi1WppOpzHjYzwe69atW7p9+7ayLItCC/M0n89juQNCh7cyXC6XMRUf80jIKxkq+B7QsYLfMw+SYkbAcrmM9+i1/4A0f+bPxSyyRKjbZz2JnLOG7B/Wzs07yUhgvTyK7+KCpDgOBC7aeXIungXpvCSGtqFOmMtRd0i5Z7p49ga+AZ1OJ3oJcA32DvftxojMgRtMttttHR4eRvNTSXcQfwQkslFOTk6i7wKCQvn55TnY7XbRh6Es9rig4KUgzAXPN3PkWRfMP2JGMmVMSEhISEhISEhIuDuuhKBAnftoNIrkBtJOxNTbDUIEyBSAsFFbvV6vI9HwEgMICdFbyhCIckrn7vqk1kNyJcVoadkkr3wOJySSIjGHnBCFZ2ykakuKJAoPBMgR54IwkVlBZkCj0YidKIiueueLarUafQ0AxJk0d+ade8XHAcHh6OhI6/Va3W43tpacTCaRaJ6cnESBZrVaxfINN5Bcr9cxGwJCzZo4WdztdjETwom8p/AjEiBWsEfK7RVXq5Wm02nMemF9mSNEIM5PGjxrTBcI9gvlBIhObr5IBgY+IOxX7yLgfgLu6UGmAvubDAD2GGU+Xv7C+RBNfO64jps3Yk7p67xaraKHCd0+2P/clxsZQvi9A4nPJZ0d6CBSqVRiuQN+H76GXnrE3Pk6IxR5NhAZLJvNJgpPCDUuHtAJxQU3FxP4/ME3gftiT/vzn5CQkJCQkJDwUCEEhS/4eS9/3I9+WLl1zEpIeCW4EoICKeKIAZPJJBIMSTE66qUAkmKrRDeSkxQjl0TCibpC3PA9aDabWi6Xkdy634G3IiT67WSXYyHD7i5PhNkNBslecDEBAo+nAen1kmImAuNwEovIQLSdjA3IMpkA3DtiCkTM2yoyr3QJWC6XseUfJRG48h8fH0ezSzwXOJ65hRRyPogrWRRkNDCvfm+QSLIVqL/nNS8fQXBijHg84JOAqMM4p9Oplstl9KPgHr3jhKRCtJ219P3HuMk4cGNGIu7MM+IE9+N+GKy/+zhI5+SZcXBe9jtZAOUUf4g53TC8vSrvIcMHoQ7BiflExGCveHSftfJOE+xj1oXrkFVBKYULUuPxOAo4eKfw7HhpRrmdpQtrbooqKZa1uDkq8/X/b+/cgyQ7y/P+fN3Tc+n73HZ2VztYt+UiQAhZKJIcU1DYBkRcMuWKQ+yKXZAYp2KqjANUYbtisFOucnwv20EuHFlgYoMvgYRcyjFO7HKKBAuBJSFAErK1SEKr1Wp2bt3T0z2Xkz+mf1+/3ZqZ3dXOdJ/efZ+qqZ3pPn36Pd/5zlf7PN/7Pq8txbHdK6z3g/XU4DzcW4fD4XA4HI60YuTYUa2/4qo9308y0jffltvzfTA/91pl17e7XsuttpR88SuXHKPj8kcqBAVJkeCvrKyoXq9HMrobaYfY2372EBl2x6nPZ4fSmtrZenzbdQESD+myGQXsxrKrjjBh2/pZ00dJkbDYlnW8Tqo+7RmLxWIXqbXp41ynrfuWFAULqVM2YneEG41G1664Je2QWHakKbdgl9Z+P4S80WhodHQ0ljOsr6937aJbZ3xKG2wGxfr6umq1WlcWAPfTCjSIFIgEtlMEIhFEOJPJxCwG5giGjfhgUOrAdVvDQYCoAQEmFjITuJeQWnbIOR8p+nZn25ZVWA8AAHG23hEICvb7EDDIiGAe2swBsgmscaSkWMZiRS6eA/w3EGvIiLHdHaxAttvctAQeoQBjVOZRvV7X0tJSNPxkbHnO8UhB4GA+9IoJrAOUD1GyQccHhDQEEpvFg/jINUidLit2jjKeCIDuo+BwOBwOhyNNyIyPq/bW10iS6nMZLb/s0rMpn/rurKTuVtm51VHNnvgH8e/yg2e0+fenLvm7HJcfUvG/5Uwmo2q1Go3nqM2HRFNjLSkSNXZjcea3Ke+QB0s62DFHXMhms9rY2IiZELYmnN1jXrftGm1dvSWntj7d1t/bz0mdmnfrdE+rRYgk8VvhZHNzM5Imui8guECgOB+p3q1WK5JcPmezMLLZbEznR8CBvHMuSVGc4VpWVla62nyWy+UosnCPIGv2uzBvJP3ctvmzpnl0HrDXCgmk64ZtHUnKP9kPtA61u88ITowXYhH3W1JXpgIknDG337m5uRm7XSAASJ3SBq7L7oZzftsKkfvBvJM6ggIp+NZ4kWwVK9xQmsJcHx0dVblcjgadlFJIit+JcGSFNK6B+2j9Gnif7AArvjBHKbfAQJNrqNfrWllZif4IXF+j0YiCF88kZo9W2LPXz5yxpUVkFTDOiCs8HzyDVjxB1EHQ4Z4jJnDt3CeHw+FwOByOXqz/o1vVmO6Q8MxWosp//MKhfNfKD96mrVz7/3M5afGViAiHV5q5UUr0zOtD/Hv5muMaXzimmf/xuLbOnj2073UMH1IhKECqaVtIejpkAoKAURykCF8CdqnZzYZ0Soq7jhCuYrHYtYsPEacVIASU3XXrdt/b6570dXakIWxSJ22/tx0lpQ3sCo+Pj2tyclJTU1NxF5+dXJvaDyGGPLLjjnjQbDbjTjmky+6SUyogdTwe8FvgHBBVdmYRXRhLBAbGHZImqcsvAjJNNofUMYe0vgYcx30m44I0f4wg+Zw1zrQlHpJiSn2j0dDU1JRGRkZi1gVjx30kRr7DttpEkOHcdChgDLa3t+NYkVnAuRAnGHvGmrgtgbUdHmz5ie0mwnkQAJgTlHTgc2ANLm1rTjI5APfKkmQrJtjdfeZC7zF83pZz2FIXyD1zFCNP5icCIR4nGEDakiAECetfwPfYrA2bpUHsCDG2JELqlGZMTEx0XYtdT+x9QxjysgeHw+FwOBwRt92o5769KEmqn0i0NW681ralZuWOrsOnvt7UyP/+0kV9RfIdN+nsTfmu11av2VaSHayvU31+W/V5aX3mpLLrJ+Prcx+9X2fefcu+nz32qUe0tXDusEN0DAipERS2t7dj2zi7Oyqpa3eYnedGoxEJk21pZ93qIcVkMVhzR3Zh2VWFXNo6dcgHxMrGy04sO+/NZvMFpQi2e4TUMXzk+7meI0eO6NixY5GY2c4BrVYrejhIii0ZIbzsyNpxRAyBwEKkLbm2AsDGxoZqtVok0jal3fpYIMLw3WQ/WEd9iHZva0xepwyBmn12lhEoyC4gE6LZbKpYLMZxtaZ8UsdYEj8H2hVSkgDJhnAyjyD/EGdKJOz7kGN2+W1mAeKDpEjwEWNs+QtzkmMwD+R+IQxQMoHhJvOGTBdLeBlHXrflHGR52Awd4rYE285lqWNkyX20WTjcY+YMGSgIQ7bUYnx8PJos8i/zU1J8Pjc2NqKYYD0hyAiy3yMpinZW4LOiG/MDsQJ/Cs7FXCPjgnGRFLN5MKW0YsJuY+ZwOBwOh+PKQ3jtK3XqzoI2SrtnLyYZaeX67vfWjo0q97o7dj1+L2wUE20W05shWT9hYkukjffdosbc/vG2fuzlClvSVb/8N9L21r7HOoYPqRAU2AFm57t3B7TVaqlUKml6elqFQiG60kPkIW6SIsGBCEFybes7BAlKBqxbP+ncCAaSunasIZSjo6OqVCpd5QHsNkudHXnOiaiAwz5CwfT0tGZnZ1WpVGJmAkTJ1rdLHeJDO0FrFGiv3woYmElCxm3rRsQHqUOKrRDDNbBDbcs2SNPn3BAy6+lgd7ypdScNnvG0xoAIPtlsNhpz2vp9m2JvsyiYD1tbWyoUCtre3tbS0lLs7sG1WEFB6mRT5PP56GFBZgzzD68LjpU6LQh7jRM5P5ko+EQgHGAemM/n1Wg0Iim3LQ9teQMCBcQWbwcrLlGKYv0x8M+w4hTo9a6w4hL3i2uygkKvKSVCCedibhEXhqHMIY7lh/mAcSZzlb9tDFy7FQRt+YMtM7LPFuNNdgfns/MJXw/WEbKA+EyvmOhwOBwOh+PKQ/Zl1+vxf1zW1sTFZQlsFhJtFi7jjlFB5xUTJGl9dueYJ392x5Mhuy5d9Yv/95K//rHfuVW//qY/3PW9z6+e1EM3X8ZjnyKkRlCg5hlSBlGFCObzeVWrVW1tbenMmTNaXl6OJMW2g4TgUH9vd3UhsLZGGoJljfToGkAduO1CwA6+ba0H0bWEV1JXyjYp+s1mU4uLi6rVapqamtLU1JSOHz8eiQyEy5rpQboZD8SOEILW1tbiDjRp7+zic32QPXscWRwYGpIVYDNDbMkCHhT1er2r1AMxAdII2bWCAqRZ6pRL2I4ZGxsbkXRnMhktLi5qYWGhi6TSCWRrayt2mYDkcs8hhLxvzRdtqYH9kRSzBpgDzJVMJhN32vHzsB4HkrqyBSCtdLSAlLITPz09rcnJyfg9CDMQZTpqQPatnwZziPtBBoLUMUa0BqDM+96SCpv1sFf2jfUUsGNmj7XeBDzDeGNYQs49r9VqXUIB2R+UZzD3rBjIvUf4IyMG0cB6WiCkMScLhYJKpVL0mLDzwZZSLS0taW1tLWaPcD6yeXjN4XA4HA7HlYmR+RN67F2z2h51cnqpaFXa4kNZeuIXb1fh6aAjv33xwsKzP3mHPv3eX9Jc9gsqZsZ3PeZ781/SqW+uxb+/59Pv1/U/eTgeF1c6Muc7IITweyGE50IID5vXPhxC+FYI4YH2z53mvZ8KITweQng0hPDmCwkihBDr0u1uPmUJ2WxWU1NTGhsbi2Qcoid10rYtIbEGiTbboVaraXFxMZZB2BR/PgeJgvhah3yIa6lUigSYtHWbaWHNDdnxRkyAzM/NzWl+fl6jo6NaXV2NpnR8jy1XgCyNjo52tcnjexFIrLjBzjkCBO0K6/V6bKtJWjjHYnBogcdCo9GIaedkEkBiSetHKLAdLtgVhuzy+9raWhR/GE/b3cPeC8ggng622wfH2xIZSV3mi71u/WReFAqFmKZfr9djPGQr0InAZngw1+gOQFyZTCaKB4g6lMeUy2VVq1UVCoV4P8fHx6P4QHcJBDQIufVAIG7EBGucaQm+bWvKvUfoQbgjdms8iDhClwieGeYjxzGHmOdSp7UrHgaAeYNYaLt3EJPNBuB8HGO9UKyXCde4sbERPVdsLKVSSSMjI3Gd6BUtKPOhLKZUKnWJQIxPmgSFfqzFDofD4dgbvg5fecjOTOvR955wMeGgEaStsUQr125r4UdvP+/hI8eO6jNP3xd/7n//b+m6XHFPMUGSsiGj63LF+PPYD3xEn3n6Pi38i9ulTHbPz6UeIez/MwBcSIbCxyT9tqTf73n915Mk+RX7QgjhBknvkPRKSccl/UUI4aVJkuxbLANpob7a1vKHEOIOutQhH3goYGLXarViC0iIZaPRkNQpB7DEond3lp3Z3p1SS3rYtaTe3hJva8AIsea7Ib1899bWlqampjQzM6Nyuaz19XUtLCxEwjU2NhbLB2xNPwSxUCjE3Wyb9k0GhdSppx8fH1elUok795bwWRO9tbW1rraC7OLSQtOmndsshF7zR9L0IYeQUUiczWiASEMWrecERByiTakGu812J53rtUSbe4DPhf1+jsfxHxO/7e3tOB68hnkgr0uKfhmUk5DhQutT5hZiE0JDuVzuyixAMLLdG2zLVIwEpU72AWPD7r7dgUcIIbsH8o7QhfBDCdHExERXtworqkmKgg+ijhXGuId8D9ki1vuBuWb9D7inCES09eQ8hUJB5XJZxWJRtVotrgdcvzVFRRxpNBrR/8KWHdVqNa2ursYsIq6j1WqpXq+rVqvFbCPmD2sIY8dcTwk+pkNeix0Oh8OxLz4mX4evGISxMT360yclr348PARp8RWJRn7oNlU++cVd/RWyc0f037/0Z5JGX/j5i0A2ZJQPo7r/5++Wfl767n/yTmX+z99e0jn7ihDUvPMWPfWmvcWQbCvo2g99WYnxL+sHzpuhkCTJX0u6UFvOuyR9KkmSZpIkT0h6XNKt5/vQ9va2arWalpeXI5Hmh9aG/Mfe9qOXFHdYqdtux/yCTgSQLgwBKS2QOi72tmWgdZMnrd6az9n2epZIcT7OAzHF/wByOjMzo2q1qlarpSeffFL1el2lUkkzMzOxE0TvLnq1WlWlUokEkV1iiCvxJEmiUqmkSqWiarUaSwUQYTY3d1pQzs3NqVAovKBbA6n4ZDQwdggs1hAQEgeJ7vUpsGTQ7orzA9GD4NtWhryHqeL6+rqWl5cjyeT+2JaBkFnrP8G1c43cb8SSer0er8+Wz9hOFPl8Pt4TSfE7bckGZB5jyEqlEoWIiYmJaBhoPTCsOSYkFy8N5jfXxvxHnMjn810eFHYcEZPwCaDbAuaY2Ww2lobwTFHKgpdGb9cDOkdAuhlL63ViyzWs8GDPi+i2sbERrxUhjbmO0EDmC+djXaCMgjIbDC3xruCZs74fGH0uLS3FseBzVmyR9ALD0TSgH2uxw+FwOPaGr8NXFrJTky4m9ANBOnuLtPZ9tyjkukWDkWuv1n/98p8dytd+7o/uVXLHa5S9/ppDOf+BIZNVdnpKm2+8WU99V3ZnTu7xszWW6NRPf7uy5XJfQ7wUD4X3hBB+WNL9kt6XJMmipKsk2eKUp9uv7QtM9KyhIKRjfHxc09PTKpfLqlQqajabOnPmTNwlhlzbnXV2GhENrNGgrZ239fmQNtL12aG06eeQRsiz/V5SzSGJ1NQjRPCdZAzMzMwol8vFEohSqaRqtaparRazLRAKIOGcF4IP2aJzArXgU1NTMfWejgeUVLRaLeVyOZVKJZVKpUhkIaXU1jOuGBJK6mqTaAkvY8LxEFTKRhhrOhhY00NLrBkjdpkZb0ouVldXY5kGbULtHLKZCbbshXtAxgU71bb7Asfa1pnWMBFBi+yW3haRiBAbGxuqVCqanJxUs9nU6upqFA3YLZc63Q44b6vV0rlz57S8vBx3za1/hZ2zpOEz5xgTyLbtUGE9ILiHfL8VNuyPva+2/IhMDFtqYUUbW96C6WavgMS10ImCzgo8b7QHJVPDGk0SH+UKlEPZThSMpRX4iB+RiflrfVUozSBzBkGtt1QmpTiwtdjhcDgcLwq+Dl9uCEGPfODqQUdxReGZ7ww60bpJ+b94SNvr69JtN+rjf3K3sqFwaN/553/6cUntbIWNLekLD73oc40cO6rWdUcv7NiVdW0/9Mj+x1z9EknS1kxZj/5Q8YLj2Chv65vveZW+7Z7HtXXmuQv+3KXgxf5v+W5J/1ZS0v73VyW9S7vreLsWHYUQ3i3p3dLOLidE2raKy+VympycVKVSUbFY1OTkpBYXFyPBhwyQms3Oq02xhyBKndZ4dtcRognRoOUipJG0auK0jve2jh/CInUIjTWJhFCVy2VNT09HY7/19fUomkxMTGhhYSH6GxSLxdgVYGRkRGtra1peXo5EjJ1dW1IxNTUVxZfx8fHoVYD3RKvV0vT0tI4ePapcLhfPZ93xIYjr6+sx04NsAHaWrSmebVeJl4DN3mDnmzhtyz4IIen+tgUmQgM72Y1GI4oJVlAgK4GY2MFH9EHosfceYgtxtPX7vIf/hM2AwGsCUz/mBXOJ7h/FYjES1Ewmo3q9HmMl08J6PSwtLcW5TTyQYptZYUk+ogjPAvMYQryxsRG9Sfi83em3Bp52HNvPZ7wvzPXeOLj/VvDgswgS9nXGQlLMILCGp9wvW/pkTSGZZwhgCBb82GfPZjlxXXw3GRxWrGCuUmpjRcOU40DX4nHldzvE4XA4HHvD1+HLEJlXv2zQIVyRePpNGb301NVqzpf0m3f/lmayhycmWHzuj+7VYxt1vfMD73vBe9UvntbmE9+UJDXuulVbY7sn+D/z5k098db/cEHf93Nnb9Dn/+XrFP7fg7u+n3nVy/XIu6ovOkNmfXZbp7//eh35SIoFhSRJzvB7COF3Jf239p9PS5o3h56Q9Mwe5/iopI9KUi6XS2ztu7RD/EqlkiYnJzU1NRVbRj777LMv2Lk0sXQZKtoOD5KiYLGbm7s1xSPdmV1U601AirTUMf3jOMQJa2aXzWZjBgFEDPK6tbUVr5HshMXFxWh+SLcJSiNohUjcVijJZDKqVCqanZ3V5OSkstlsLHFYW1uLMWazWVWrVU1OTkZCZwURiCyCjCWedhwpB2B33xrlWXKOIWE2m41lKewmI15YI0u7I8wYYcKZyWS6SkLssdbIsVQqKZ/Pd7UDtCKQ1NmBt34XNkOCOYjPgy19oN7eZkTgoTA9Pa25ubko0EDmETroUlGv17s6k1B2Ybtj2J1/5ij3hevh/LxPFgm7+BgwTkxMKEmSSMbxeuBekNljyTnPiC2nsLD+DnZMpY5HRW/rRbI/bKaDFRQQscjOoZSC+cD7zEnbEQLBwwouvfeb9cF2MOEZRkywwgvnTCsOei0uhyl3nXI4HI6LgK/Dlye+8cNVL3cYEJ5625R+5Ufv0Y2jexsuHgZemivo87/xOy94/fq/fKcK9+0kF/3Jv/5lvTR36SLHh2a/pn/1m2U99oGblf2rL3e9l9z+Gn3j+yeGav69KEEhhHAsSZLT7T/fLgm3289K+sMQwq9px4DmpKT7znc+m0IPcrlcNGgrl8s6cuRI3MWGYFg3eZtlYOv4IU2WTEqKRHZrayuSLeuOj5u+JXaUF0C47Hexk2xrxHdLB7e7rYVCQUePHlWpVFKj0dDZs2e1srISDewmJiai0R9ZGOxwNxqNSG4hS8ViUYVCQaHdNYMdf1vKUSgUNDMzE7sNWENE2/ECoz2uwbrsk0IP6aNUwJrtQc7Y4ccjg6wAPicpjhu7xogmiExra2sKIWh6elqzs7NxrCGh7CyXSiUVi0UVi8VIqK2XgPVeQDhhzkBCKYvg3PY4ykhsJwCEpyRJVK1WNT8/r0KhEEUDS365Fkg9ZSL8kLlhPQPsc8EcxC+DbJDx8fEYG+e04g2iCF1E6BDCcyApznXrZYEgQvcHTEvtc2SNQ5kjvG5bV0qdDAnO0dtZhWfKdp+gnIMWnphI2taeGEpaU0/7vFtBjLWGvxHCrDkmcdvrTCsOei12OBwOx8XB1+HLD623vG6oyNzlhMp1i/rE2z+mV46mp8vW42+8V3ojfx1cxsRHrvqCrvmBG/Xycy/X2ks6ngfPfGdWSfbSdcXmpJS56QZtP/C1Sz7X+XBeQSGE8ElJb5A0E0J4WtKHJL0hhHCTdlK3Tkn6MUlKkuSrIYQ/lvQ1SZuSfvxC3GxtWjSArObzeVUqFRUKBZ0+fVq1Wi0SCduqEOJHyrN12LdmcBAYUtZJiWYHnx1bu2PfvrbYVhEvAEvq7I47YoKkWHJAvbekmLY/MzOj2dlZNRoNLS4uxl1rUt6pKYfcQPxtdkCxWIxEirp76sshlLlcLpLFyclJlcvlaILHWBLryMhIvMZardZlnIigYw0WC4VCJKD4AfAe14G/w+bmZozRpsTjlSEplkWwsw4ZnJyc1NzcXGzxiEACSFOvVCoaGRnR8vJyLFngM9x/slGs8AOs2SLxYIRYLBajWMN8IEugXC7rxIkTmpmZUaPR6MoOgGivra1pZWUl3hdJXVkMEG6I+24lFVJHSKOchPnEd9RqtS6TSc6XyWRiO0hELsQm632BpwDjjFCByGE7O1jzSz6LhwLPTe81IFBZ/worjLEmWNGILI5WqxUFBJtlYDtA9Hqk4KHCeEuKIgvCGGuOFTt6O8EMGv1Yix0Oh8OxN3wdvjLwrTeMKMl4oki/Ub3+nO551SdSJSYcNuauPqcn33ZE60csFz6Yudec2da5V1dUfeBATrcvzisoJEnyT3d5+Z59jv8FSb9wsYH0pkXzH3o8B7a3t7W6uhr/s29NGG1NPp+3adu8x+v4DmC8Ryq1pK7ac/5GpMAQj11gyJIlyHYnlB1psgsgUPl8XkeOHNGRI0c0MjKilZUVra6uRuLD7qvtJmHN7IibnWlLvvA8aLVaXe83Go2u+n47NtZTAuJM5gVjxg7x+vp6JIG21h+SSMs9hI5GoxGJMQKJ9WPg+8m8YLw2Nzc1NjamfD4fSwnK5XIcC3aRbdq79WqAbNoMDEoYpJ2WolwbwoZNie8t2ygWi7HUwbaxbDabGhsb0/z8vObn5xVCiJ0oGCMEq6WlpS4xgWthl92KO73EnSwQfBMg8HhJ4LEB6bZdSyDYZLQwRxCGiIMOFwgizCFaMvKazSiwc4i5gHhnDVERHzje3jc6M/BZa2TK80krTSsgWM8UK8rwTNr3bObBxMSExsbGujIYbJbUyMhINDS168qg0a+12OFwOBy7w9fhyx9L/+x2bY+4mNBvVK5b1L2v/v2+lzkMEv+5XtTZhZJ05IUb68OG1FiY291mSbEkgPaHjUZDKysrkQRAhixxHBsbi69Jnd1lCKbdsWWnnV1J0vUhTpjjWYIEkUb8gBAjTtjdbnblyaKgfCGfz2tmZkaTk5OamJjQ8vKylpeXu1LbIUq2U4LtGEFmQLVaVT6fj+TT7q5CgmkPKKmru4QVSSBpExMTKpVKCiGoVqvFFHlJXSn0iCoIGNwvxgJSB3GlVIQxhsDZchLaEWIyyJjNzc2pUql07fLjuUD8vX4ApLEzryg9IMMEYoq4ZL0QgDUWZIeee8D1EsPx48d18uRJTU1NRTGBEgmEsOXlZTUajThukFxrTkm5iJ2bNkbIMdkgiG6jo6NxTKwnCM9JNpuNJJpSEjwpyIpg/DY3N7u6aSCI4Akh6QVCBc+a9UKwxqm21IHMGu6ZLV1grjOuoNfPg+/uFTAoV7ECBs8GmUiYnFoBwfpUIAIVi8UoGjkcDofD4bgysHJdOJB0c8eFY/wlq/qDG+/VK0avLEPSrzWukp4fG3QYB4LUCAoQCn6nJ321WlWSJJGQWdJpj7V14ZQvcD68Etht7XW1t6nwnBsyRFw2dd3usJOFYJ327XWwmzs6Oqpqtarp6enY1pHuC5RP0OqSTAZ2j7ludocxOiyVSsrlcnHXnPIL/Ce4HkSNcrkcOz/Q0QHiye40hJsuBLYUgdZ+pMyTecE1Wh+LZrPZ1WGDayJbwGZa2LIQxIRKpaKjR49qdnY2lpggDHBuW/Nv20HiIQDZ7M2QsNcOWbWdHIgX4QbTSQQM2jHSieP48eM6evSotre3tbKyos3NzUjEFxYWYocN/CTs/GAeUp7BWNi2jDaDBOJMZgPZHYhNkH0EFTJiiAf/hl6vCD7HfZAUM1Nsy0V+pE5ZgjVB7DVStAaH+DEgIiAqWMHCijaIJswJm3Vhr73XeBEhAEGLLAlKeaSO2aQ1aMQfZWJiImZNpN2U0eFwOBwOh2NYkT+dUXiqolfcfmWJCZcbUiEoWNLJru34+LhKpZIKhYIajYbOnTunM2fORFIpKZYH4OpvXfMhAta0b3x8XIVCIRINWk1CUmgft76+HmvNIZyFQqGLDEnqquu23gfERjYEpK5cLscUfklaXFzU8vKyVldXI/GB2EP2bN09O825XC6KEhA6rpkxQxiAgOfz+a7uD9aIznoPZDIZLS0tRfM7Wy5ChgWGfc1mMxJhK8YwBpjekYI/NjamJEli1wZIre1uQObA9PS0jh8/rrGxMdVqtZg1goEh32NFAEldO+yQ7yRJusad+8jYIEjZ7JZek08EC1uCMjY2prm5OR0/flxbW1t6/vnntbS0FK/FtuuUFMstJHW14EySJIoNfNaaW9rMCbvbzjy0MUOuIdbMF4QpaxLZ+9wx9xGJyKbgfDZDAJB5YDNUePbI+OF+MQcQZazvCaUx1qCTUgtgzRqJjzHhejjGZgfRRhOhwQoviCBW4LCtQofBmNHhcDgcDsel49mfuEMbpeFPPx8mNF9b1/+8499LKp73WEd6kQpBoReZTCZ2LNjY2NDCwoJOnz6t1dXVaKTIbvfExESsb2cn1QoKlqAgOkjdre4gdqSNIw5IisZ6EG9Icb1ejzXxkrp2niFCEDJ2uiuViqrVqiSpVqvp1KlTqtfrMY5CoRAFBYzy6vV67HIA8aGTASUAzWYzEnTIJddNGvzs7KzGx8cj0SqXy5GE0YbRdpDIZDIxo6HVasWU+ZGRkZjxISnGjCBiSwUkRfHCxttoNGI2hR1bqdMulG4VlIQQF99DZgolLcSD+EB5BjvqiDvcI3wymGuVSiWKFVwHu9/srBPT2tqaRkZGVCqVNDc3p0KhoOXlZZ07dy5eL9kKCDNkCNAVwZYvkKJv56WkKGCQ1SF1smoQY8he6D3f2NhYnEu0RbTlEPZYCDnPjy0hsiII71lhhbaq/FgDRJ4fxDyeEZtdwHxkbKwvhhWLbBYMYh0xcf/JykFI41nkc9bTgUwFSpsQIhAAbdmGw+FwOByOyx9b41KSHuukKwLZkW1dk7vyxIQffOKNOvNvrpW+d9CRHAxCGmqEQwhnJdUlPT/oWF4EZuRx9xMed/8xrLEfVNzfliTJ7AGcJ/UIIaxKenTQcbwIDOsclYY3do+7v7jS476S1mH/P3H/4XH3F8MatzS8sR/qWpwKQUGSQgj3J0lyy6DjuFh43P2Fx91/DGvswxr3IDGsYzascUvDG7vH3V943FcWhnXcPO7+wuPuP4Y19sOO2xN7HA6Hw+FwOBwOh8PhcFw0XFBwOBwOh8PhcDgcDofDcdFIk6Dw0UEH8CLhcfcXHnf/MayxD2vcg8Swjtmwxi0Nb+wed3/hcV9ZGNZx87j7C4+7/xjW2A817tR4KDgcDofD4XA4HA6Hw+EYHqQpQ8HhcDgcDofD4XA4HA7HkGDggkII4S0hhEdDCI+HED446Hj2QwjhVAjhKyGEB0II97dfmwohfC6E8I32v5ODjlOSQgi/F0J4LoTwsHltz1hDCD/VvgePhhDePJio94z7wyGEb7XH/YEQwp3mvbTEPR9C+MsQwtdDCF8NIfxE+/VUj/k+cad6zEMI4yGE+0IID7bj/rn266ke7zTD1+JDidPX4T7C1+G+x+3r8AHD1+HDga/F/YWvxX2Pe/BrcZIkA/uRlJX0d5KulTQq6UFJNwwypvPEe0rSTM9rvyTpg+3fPyjp3w06znYsr5d0s6SHzxerpBvaYz8m6Zr2PcmmKO4PS3r/LsemKe5jkm5u/16S9Fg7vlSP+T5xp3rMJQVJxfbvOUl/I+m2tI93Wn98LT60OH0d7m/cvg73N25fhw92PH0dPrxYfS3ub9y+Fvc37oGvxYPOULhV0uNJkvx9kiQtSZ+SdNeAY7pY3CXp4+3fPy7p+wYXSgdJkvy1pHM9L+8V612SPpUkSTNJkickPa6de9N37BH3XkhT3KeTJPly+/dVSV+XdJVSPub7xL0X0hJ3kiRJrf1nrv2TKOXjnWL4WnwI8HW4v/B1uL/wdfjA4evwIcHX4v7C1+L+Ig1r8aAFhaskPWX+flr737hBI5H05yGEL4UQ3t1+bS5JktPSzkSUdGRg0Z0fe8U6DPfhPSGEh9rpX6TspDLuEMLVkl6rHYVwaMa8J24p5WMeQsiGEB6Q9JykzyVJMlTjnTIM2/gM81o8zHM01WuCha/D/YGvwweKYRufYV6HpeGep6leFyx8Le4PBr0WD1pQCLu8lua2E9+RJMnNkt4q6cdDCK8fdEAHhLTfh7slXSfpJkmnJf1q+/XUxR1CKEr6T5LemyTJyn6H7vLawGLfJe7Uj3mSJFtJktwk6YSkW0MIr9rn8NTEnVIM2/hcjmtx2u9B6tcE4Otw/+Dr8IFi2MbnclyHpfTfh9SvC8DX4v5h0GvxoAWFpyXNm79PSHpmQLGcF0mSPNP+9zlJn9FOesiZEMIxSWr/+9zgIjwv9oo11fchSZIz7QdlW9LvqpOWk6q4Qwg57SxAf5AkyafbL6d+zHeLe1jGXJKSJFmS9FeS3qIhGO+UYqjGZ8jX4qGco8OyJvg6PBj4OnwgGKrxGfJ1WBrSeTos64KvxYPBoNbiQQsKX5R0MoRwTQhhVNI7JH12wDHtihBCIYRQ4ndJ3yPpYe3E+yPtw35E0n8ZTIQXhL1i/aykd4QQxkII10g6Kem+AcS3K3gY2ni7dsZdSlHcIYQg6R5JX0+S5NfMW6ke873iTvuYhxBmQwjV9u8Tkr5L0iNK+XinGL4W9w9DOUfTviZIvg73K14Tn6/DBwtfh/uLoZynaV8XJF+L+xWviW/wa3EyAPdP+yPpTu24aP6dpJ8ZdDz7xHmtdhwxH5T0VWKVNC3pf0n6RvvfqUHH2o7rk9pJy9nQjhL1z/eLVdLPtO/Bo5LemrK4PyHpK5Ieaj8Ex1IY9z/UTrrQQ5IeaP/cmfYx3yfuVI+5pBsl/W07vocl/Wz79VSPd5p/fC0+lFh9He5v3L4O9zduX4cPfkx9HT6ceH0t7m/cvhb3N+6Br8WhfVKHw+FwOBwOh8PhcDgcjgvGoEseHA6Hw+FwOBwOh8PhcAwhXFBwOBwOh8PhcDgcDofDcdFwQcHhcDgcDofD4XA4HA7HRcMFBYfD4XA4HA6Hw+FwOBwXDRcUHA6Hw+FwOBwOh8PhcFw0XFBwOBwOh8PhcDgcDofDcdFwQcHhcDgcDofD4XA4HA7HRcMFBYfD4XA4HA6Hw+FwOBwXjf8P4tF7AiFwndAAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 187339 96848\n", + " Min thresh = 1000\n", + " Not Sliding\n", + "\n", + "\n", + " Winner = Not Sliding\n", + "\n", + "\n", + "117ns_image_426794579576_CLEAN.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADDCAYAAAAya0IYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADnLklEQVR4nOz9eZxtW17ViY4Zu99rdxFxmtvkTZJsAaEAgVRSy6KkxOZjh4JC+bHBJrHUerZVCmXZleXTsn/PQkw+WvCeDYI+BBUVRLFLkiSxQBIzU7K/N+89bUTsvt/r/RHxnTH2OnHuOffec27EOWeOzyc+98Ru1pprrrn3jTHm+I1fyPNcCQkJCQkJCQkJCQkJCQkJCa8EO+c9gISEhISEhISEhISEhISEhEcPSVBISEhISEhISEhISEhISEh4xUiCQkJCQkJCQkJCQkJCQkJCwitGEhQSEhISEhISEhISEhISEhJeMZKgkJCQkJCQkJCQkJCQkJCQ8IqRBIWEhISEhISEhISEhISEhIRXjCQoJLzuCCH8dAjhK857HAkJCQkJpwghfDKE8N/d52vzEMJbX+V5XvV7ExISEhISEi4WkqCQ8Lojz/Oflef5D5/3OF4OIYSnQwjfF0J48eSP3zed95gSEhISHneEEH5dCOG9IYRJCOGHz3s8CQkJCRcRD1qYvdfx0t/FCS+HJCgkJJyNjaR/LunXnvdAEhISEp4gHEj6K5L+7DmPIyEhISHhFOnv4oS7IgkKCa873FYbQvgTIYTvDiH87RDCMITwUyGEt4cQvimEcCOE8HwI4avsvd8QQvjQyWs/HkL4xsKx/+cQwksnCupvd8U1hFALIfyFEMKnQwjXQwjfGkJonDXGPM+v53n+LZJ+7CFORUJCQsKFRAjhnSGEHwkhHJ18p/61EEK18LJfdvI9fCuE8OdDCDv2/t968l19GEL4FyGEz7qf8+Z5/i/zPP8uSS8+yOtJSEhIuGgIIXxuCOGHT75nfzqE8CvtuR8OIfx2+/23hBD+/cm//+3Jwz8ZQhiFEH59COErQggvhBC++eQ7+ZMhhN/wao9XHGv6uzjh5ZAEhYSLgF8h6f8raVfS/y3pX+h4bT4r6U9J+hv22huSfrmkjqRvkPSXQwg/W5JCCL9E0h+Q9N9Jequk/6Zwnj8n6e2Svujk+Wcl/bGHcUEJCQkJjzjWkn6/pEuSvlzSV0r6XYXXfLWkL5X0syX9Kkm/VZJCCL9a0jdL+jWSLkv6d5L+3usx6ISEhIRHASGEiqR/LOkHJF2R9D9K+jshhHfc6715nv+Ck39+YZ7nrTzP//7J70/p+Dv7WUm/WdJ7XuPxEhLuC0lQSLgI+Hd5nv+LPM9Xkr5bx3+A/tk8z5eSvlPSm0IIPUnK8/yf5nn+sfwY/0bHX8T/9clxfp2k/yvP85/O83wi6U9yghBCkPQ7JP3+PM8P8jwfSvozkr7udbrGhISEhEcGeZ7/eJ7n78vzfJXn+Sd1LOzeIdKefJ9+WsdlCl9/8vg3Svp/5nn+oZPv9T8j6Yvu16WQkJCQ8ATg50pq6fjv3UWe5/9K0j/R6ffoq8X/muf5/ORv5H+q47+NExIeKpKgkHARcN3+PZV0K8/ztf0uHX/pKoTwS0MI7wshHIQQjiT9Mh2rsZL0jKTn7Vj+78uSmpJ+/MRadqTjWrDLD/JCEhISEh4HnJSe/ZMQwrUQwkDHosClwsv8O/ZTOv4OlqTPkvRX7bv2QFLQ8a5ZQkJCQsLJ36x5nm/ssU/ptX1PHuZ5Pi4c75m7vTgh4UEhCQoJjwxCCDVJ/1DSX5B0Nc/znqTv1/EfqpL0kqQ32Fues3/f0rE48bPyPO+d/HTzPG89/JEnJCQkPHL465I+LOlteZ53dFzCEAqv8e/YN+o09+B5Sd9o37W9PM8beZ6/96GPOiEhIeHRwIuSnvPsGR1/j37m5N9jHW+Egafu45i7IYSscDy+l1/N8RIS7gtJUEh4lFCVVJN0U9IqhPBLJX2VPf9dkr7hJOSmKctHOFGAv03HmQtXJCmE8GwI4Rff7WQhhPrJ+SSpdvJ7QkJCwpOAtqSBpFEI4XMk/Q9nvOZ/CiHshhCek/R7JVF3+62SvimE8LMkKYTQDSF87f2cNIRQOvmuLUvaCSHUT2qNExISEh4n/KiOSf7/HEKohBC+QseZYt958vxPSPo1IYTmSbj4byu8/7qkN59x3D8ZQqiGEP5rHWeOffdrPF5E+rs44W5IgkLCI4OT3IP/h46Fg0NJ/72k77Pn/5mk/5ekfy3po5J+5OSp+cl///DJ4+87sfD+S0kvF1YzlTQ6+feHdVp+kZCQkPC44w/p+Dt2qGMx9qyQru+V9OM6/kP1n0r6m5KU5/n36DgE9ztPvms/KOmX3ud5f6OOv2v/uo7zcaYn509ISEh4bJDn+ULSr9Txd+MtSd8i6Tflef7hk5f8ZUkLHRP975D0dwqH+BOSvuOktIychGs6/vv4xZPX/87XeLwi0t/FCWci5Hl+3mNISHgoCCF8ro7/kK2dBIMlJCQkJCQkJCQkPFY4cTj87TzP33CPlyYkPHAkh0LCY4UQwlefWL12dbxD9o+TmJCQkJCQkJCQkJCQkPDgkQSFhMcN36jjjIWP6biP+ll1vwkJCQkJCQkJCQkJCQmvEQ9NUAgh/JIQwkdCCB8NIfyRh3WehARHnue/5KR7w16e51+d5/lL5z2mhITzQvoeTkhISDh/pO/ihIeNPM9/OJU7JJwXHkqGQgihJOm/SPpFkl6Q9GOSvj7P8//8wE+WkJCQkHAH0vdwQkJCwvkjfRcnJCQ87nhYDoV3SvponucfP0kx/U5Jv+ohnSshISEh4U6k7+GEhISE80f6Lk5ISHisUX5Ix31W0vP2+wuSfs7dXryzs5OHEFQul1Wr1VSr1VQuHw8NB0UIIb5+s9lotVpps9kohKCdnR3lea7VaqX1eq2dnR2FELTZbLSzsxOf32w28Vi8xs9xMhaVSqV4LF5fKpVUr9dVrVa1Wq00nU7j44zHx5fnuUIIqlar8fylUkmVynE7bY7t42BcHIPXlMvlOB/L5TKOd7VaxfP42Dkf18x17+zsaL1ea7FYKM/zODeA93AvuLb1er11TWeNMYSw9f5SqRTvgY+DMfrzXIe/jvkql8tbrwkhbK0Ffuc9Pl885/PF/Pka4NzFtcFxfUzMW7lcVqVSiddRXF/Mc3Gd+v3xde3rwdcr88BrivfA17/P9Vn31Mfnjxev3+fYn+Pa/T2+ForHLt4jv967fa79OR/jy6E4Dl+rrMWdnZ077qOPz1G89tVqdSvP88svO4iLiVf0PSxJpVaWv/mzN7r+wcZDHdh5YNPLtGyf9ygSEi4GSlOpfHssPSKNvmYaa5HPX/5/BhcXr+i7+HH+Hn4UEcolzZ6un/cwXhVqLzw6n/FXirzd1KJ3sb8S6jeWyueL8x7GA8VQh2f+TfywBIWz7vDWkg4hvFvSu6VjElWv19Vut/Xcc8/prW99q55++mk1m81IJJ0UzGYz3bp1S4PBQDs7O6rVagohaDAY6Pbt2/Ex6Zhg1Go15Xmu5XKp1WqlcrmsLMuUZZk2m43m83kku91uV7u7u+r3+3rppZeU57lqtZrq9bqeeeYZvf3tb5ckffzjH9dwONT+/r5Wq5WOjo40Ho/jOSDBly9f1lNPPRWv++rVq2o0GhqNjtu4NhoNrddrzWYzVatVXb58Wb1eT+v1WteuXdN4PFapVNLTTz+tSqWi0Wik69evx2uDwC0Wxwu23W4ryzLt7OxEQrter7VcLuNjt2/f1mg0UqVSUbVa5X5oPB5rMpnEa93b21Oe5zo6OtJgMNBwOIxjrtfr2mw2Gg6HGg6HyvNc1Wo1kt56va5ms6lKpaLZbKbBYKDxeKxqtap6vR7H2mg0NJ1ONZ1OtVgs4ut47bPPPqtWq6UXX3xRg8FApVJJzWYzigaLxSIKJLPZTCEEZVmmdrutvb09tdtthRC0XC41Go10cHCgmzdvarlcqt1uq1arRaFhvV5rvV6rXq8ryzI1Gg2tVisNh8O4RubzuSqVivb29rS7uxtfVy6XNZvNtFgsoqBwdHSkz3zmM3HeqtWqms2mWq2WKpWKVquVarWaqtWqZrOZhsOhSqWS2u12XPvj8Vjr9VqlUimuE9Yk56lWq3EuptOplstlJOfz+Vzz+TzeY9a/pCiClUql+JpqtRpFsM1mE+cFwa5cLqvRaMT38NlcLBaazWZREOG+MLZKpXKH0MT5dnZ2tFqt4hpm3QKO6ULiZrOJa4DHqtWq8jzXfD7XdDrVer1WCEHNZlPtdlvlclmj0Ujj8XhLDKtUKlHoczEGAe4zn/nMp+76TXexcc/vYWn7u7iupt70079cb7rY/49+VZj8wp+jF3/BY3hhCQmvAW/4oY2yf/thrUdjabM+7+HcFT+a/9B5D+G14BX9Tfw4fw8/iii/4Tl9+Pc9e97DeFV42//0AeWrx7PR2eqdX6JP/orKeQ/jZfE5/+9rWn38k+c9jAeKf5n/gzP/Jn5YgsILkp6z398g6UV/QZ7n75H0Hkmq1Wo5pARRoNvtql6vR+LF7q6kKBggEkC4Qgiq1Wqaz+fxsdVqFclSuVyO7xmNRlFsgMxUKpVIQrIsiyQRAjMajXT79m31ej212+1I0qvVaiRMECF2+MfjsWazmZ5++uktwt5oNDSbzbRcLuMPY9jb21O329XOzo6uXbum4XCoGzduqNPpRIJ2dHQUXRO+OzuZTCLJPJnn6DiA/NXr9ejkQEhZrVaRGK5WK41GI3W7XdVqNTWbTc3ncx0eHmo4HGo2m2lvby8KEjs7O/E+QHKn06lWq1Uk7RyDnXucAqVSKQoRIQS1Wq14P+bzua5fv652u62rV6+qVCppNpvFNcBc5Hmu8Xi85XhYLpc6ODiQJPV6Pe3s7KhSqSjLMvX7fU0mEw2Hw0iQK5VKFISm02kkse4qkKR6vR7J9XK51Hw+12q1UqNxvJOwXq81mUzi7naz2dRyuYzrc7FYaDKZxPXFeuF68jyPRBdRbDweb7kvfNcet0ylUokiA2NzFwOuEBwGlUolinMhBNXrdS2Xy3gOCDafgdVqFR/zNbVaraLox/FY++4u4ViAxxACfB3iAOEx/2wxr4hovn5chOA9fN6n06kajUb8vE8mkyjIuSjDcRgHn6NHFPf8Hpa2v4s7Ye8x3ctISEg4Cy985Y70lZ+nt3z3VOF9H7zQosIjjFf0N3H6Hr44CLXaIysmSFLp2ae1+tTz935hQsJrxMMSFH5M0ttCCJ8t6TOSvk7Sf3+3F0Pg2VkcDAaaTCbq9Xqq1+uRPPmOZLPZVLfb1WAw0GKxiLvLkAh2kiF9kDuIHSRDUtyJXS6XKpfL2tvbU7VaVa/X0+HhYSRHENd2u61WqxWPm2WZZrOZRqNRJCgQ/dlspqOjo7hbPp/PtVwuVa1W464zZHGz2cTr39/f19WrV7cI0WAwULPZjAQMotdsNiUdl0NA9Lh+J2CQY3ZkN5vN1o5xqVRSlmUaj8fq9/uq1+u6fPlyJJgILpPJRJVKRa1WS9IxeeMesMONY2Cz2ajVaqlcLqtarWoymURHAUS72WxGlwo735C66XSqa9euaX9/X51OZ0tE2mw2cZ4RINypUC6XoyjA/dvZ2YmuiMlkoul0GstscHO4WFCpVLbKEJh7J88QWb/n0+l0y1aPq4B1NpvNtlwGjBWwAw+hZX45FuPydSBpSzSQToUKyDNEu9FoxHIJFwHm83kUthgTu/YQfHcYICR4WYyXp/gYWRtewoK7ALHBhRwv8Si6KhBeEGdY64vFYkuI4HWUKFFWxXldnKFEyb8jcE08onhF38MJCQlPLj72tQ29RZ+v8uFE6w/9zHkP53FD+i5OOBd8+Pc+q7f+gcdPUNhptzW7dLHdCZI0/6w9lT/9wmPrEnE8FEEhz/NVCOH3SPoXkkqS/lae5z99t9djS8ZS3u/31e/3denSJbVaLVWr1WglL5VK0Z3Q6/WiJd+t0BA0r1cv2qQh2ezU7+zsaDqdajQaaTAYaHd3V7VaTY1GIxIUJ/JY17F5Q4al02yBWq0Wd++Pjo6iNX65XG4RdC/pWK1W8fqfeeYZPfPMM5pMJrpx40Z0W0DMJpNJJGbValUhhEhkEQzY6YVQQlJxR3BtoFKpxN3qg4ODKDKwA16tViPRgoie3PNYWoFzIYQQHROMBzLJvGM/r1arkdg3Go1omccZwTi4H+4qqVQq0dI+nU41n8/j2KijdwcBLg3cApVKRd1uN65Bdvdd7GFu3KKP84X7CAGvVCqxTMLXpaQ4t+7QwLmAY8adOJBydwcgtnBPFouFRqORZrOZ6vV6LClBsCkKS4DShVKptDUW39F358N8Po+vlxTHwRhZa5K2XB3MqWeauAuA+8/88V/W9hnfL1EIQJzJsizmm/A+zoUA4k6Oer0e76Ffh+eVFPMoHjW80u/hhISEJxsf+9qGpIbe8t1Nhff+5HkP57FB+i5+dLH+ss897yG8drzzC6T3/9R5j+KBIn/7G3Xty897FPfGJ35lVe/44K7WN2+e91AeOh6WQ0F5nn+/pO+/39e3Wi2t12uNRiNNJhNNJpNowabsARIKgYOwrNdrDQaDrR3RxWKhRqOhLMu2LOBFoaEYEsiueKfTiQR3Op1u7cJOJhPVarW4805mALu/XgLg9fFkBkCuKD1wm/dqtdJgMNBLL72kTqejTqejN7zhDVHsgGC12+2YX7DZbNTtdrdq3ykvAJwTMebkHm2FNOLugJCGEGI+Aju7WZZFIs88S4r3AiIuKVrRcQIwh76bDSlnfDgwyuVy/PdkMtHR0VEcG/dksVhE90S5XI7lCL5TjkA1m83imBE4siyLhJR8A64dMFZJUcwiF4L3TqfTuKY6nY6azaYmk0nMXYBQ48TxnXPuvZc0eOgjjgsvR8DVgKsE58N8Po8OjFqtFgUR5pN5RrxgDUrachAgTnA/CZ+kJIY17uGfXrJB6RHXhxDHuXFyuEOB9ejlFu4G8WDR4n85DoKPl1n4WGezWRSUKpWKms1mXP/z+XwrjBG3AvP+qOKVfg8nJCQkfOxrGvqs1peq8gMfOO+hPDZI38WPIELQx3/NoxnGGBGkj31tS295/3kP5MGh1Ovq9s/q6LFNm3xE8dAEhVcCSE+r1YoBfaPR6A5SwI4rpGNnZyfW3LtFPYQQA/Kw7Pf7/a0uC+yyOgnxWndyGur1erSBTyaTmJewWCy0t7enVqsViT7EC4LD7jek+MaNG7p69WoktpA/3yENIcR8B3Ikut2unn76ab3wwgvRzt/pdDQcDqPwMp/P1el04g4418+1utWea5UUCZXvxHLd7Ey73Z4OHBBbSJp0mrCPqICAAZHkONwjHofAQcBxorjlfzabaTKZxPuD+MP7vZxB0tbjCB+4ApwwIlbh/EBwciLJmNxlUCqVNJlMtnIwBoNBFDcQXpzIsz7JT8BJwfVKigSbnXUEA87jWQjSqQCxs7Ojo6OjWE7Dbj3lEI1GIzp9mM/RaLQVEIkQwNwiKrTb7a2OFsUxemaHl/x4CQKOFeCfOebYA1h5nmOeBXdfFDuyICoxR3w+EQ9wwiBwMQ53SrgbIyEhIeGJQZA+/YvLeqb5TjX+0WPERBISXgFGX/PO8x7Cg8FOrumvfow+y5f2dOuLk5hw0XAhBAXIRKPRULPZjDvv4/FY0mldNbu5/LEPeWq32zEID5s/boennnpKly5dijuU7P562Bq/s/NOJwIn5wgdnJvz9no91Wq1O8opIOpYxzebjQ4PDxVC0O7ubizlIP+g3+9Horter9Xv93Xt2jVlWRavYTKZ6Pr165Ec7e/vx91/rp1x7+zsRNu9pEjuPFOiWMLAXHMtkFBP14dUIihQjy6d1rd7iB4lFBx3MplIUiR0dC1gJ5774Y4UCLjnXOCm8A4EkHnurTsLEJK8g0AxX8EFKY4pnZJU7zTgpSE8Np1O1e/3YyYE7hgIu5eZeEBoMbSQa3ehxIm8t2FEcGCODw4OtFgsYhnOer2OYgnOBeaGspVmsxnvI+UhjAsCjgPBBS/PKWBNch18RnDoMF6IPo4SB9fsQgz38KxcBuaCseMy8LnjvThsEA9ms5larVYU9OiOAVhDXg6UkJCQ8KQg35Fe/HklXa3+XLW+633nPZyEhNcVR7/py3Xri/Kz+3M8Ysh3pOtfVtKb/tF5j+S1o9Tp6KVf8rSkR7cc9XHFhfhrGaKJU6FUKmk4HOrmzZtxV5qdQv7oZxeSHW/yCdjZ3tnZ0Xw+12QyUbvd1lNPPbXlDKjX62q1WqrX61s70x4CR+tBdnEhK/P5XKPRKBL2Xq8XAyR9d5O6bUiwpCiW0FWh1WpFgQGiCJkZDoexxWOz2VSv14tkT5KyLNOlS5fU6/WUZVk8Z6vViu4Gb3vItc1mM/X7/Wg/91wCfgaDgQaDQSRj7OYj7ECOIdbSKRHG6u47v+zMQ0DL5bJarVYUViDNkFzuE6UbnN9D9HCmQP7dleGlEJDbLMsieWauPFvCyzW418wHa0463t0nT4BxkZdB9wgEG+5br9dTpVKJrgTvIlAkwd6tAALuIYyMi+cItmQtcI9ZI4hL0+k0CkWsfUlbpSPMHS0/JcV7gGuHa/VMDhfzXNgh2wAhwN0GjJvPIPOPmIHgw3UyRy4acV7OyXE9v4HXuQMDYcnLS3BBEZwqJUHhcUL7vZ9Q52PpfiYk3C/ycq4bXxI0/Lqfe95DSUh43XD7t3+5bn/h4yEmgHUt18E3PAKhAy+DUKvphd/x+Rq8JYkJFxEX4q8rduRHo5EkxXaLN2/e1OHhYdylZRcb0odtHBLuNnBC/uhH3+l0tLe3J0mRzLObz24pXRcgNIT9QUIRHhAKDg4O1O/3FUJQt9tVp9OJxAaig/jgrS0poUBQoA0l14BzgZp1guMggYga0jFh3N3djcQRQt3tdnXp0qV4DEQF3xnG0QCx984AzDW2/qIDYzqdajweR3s780I4oaRIzNhdhqgiOuzs7MScBN9ld1LPOClngHxCUhkXLhGvyfdSAkQeCGzRscD4cD+w++62fIjqbDaL7UCZT7IVJMW5cdGg0+mo3W5H0urdCIohhJ4t4EGfAOEJhwPjazabeuqpp6KowBpjbdAWk2tjLvjcQNIRkWhTynlcrGEcuB68G4TnlHBvfG79GhApPOeBYE1JkegX54F5pbSGDhYc2wVC1qWLEXyGiiU2fAfwmUuCwuOD9fUbqgyTTTIh4ZVgU81184uDhr8+iQoJjzf6v+Hn6oVvepeOPidX/pj9rz8vSeNnH2GFZKekT/+hL9H4DY+emPDJb3ybwok7+HHGhSh5kKTBYBDJGfb2W7du6aWXXtLVq1e3UvoXi0V0Mnj2AM9DVtmppcNCp9NRv9+Pu+cQHYgXpJQWjQQz0krRU/QRQQ4PD7W/v69er6crV67oxo0bkYx7KF+e57ETQZ7n0ZHBji8iA4ScHVkPg2R3GYs34gU73JxzNBopyzLt7e1pOp1qNpvFcWVZplartRWut7e3FzMiED4g576b7qGTiAW8nywJiBsEmbmVtrsWjMfjLSLONXigJY4E3BUQcgg4BBlBh/PRPhThQdLWjrekOEYPlvQOCxBNyCXCCER5MplEQYYxSccOGgIZEZAQr8gIoVOI1/lL20IBwZ/NZnOr/ANyXcygkBRbnTI/dD/BGUJbVgQLFwak09IQzsdnwksReD33sl6vq9lsajwexznxIEf+TRkL55QURSgEAO8YQc6Bl2NwH71bhKStch1vP8n73C3jAgXn4/WIJ3zecHkkPD7Y/+6f1KL7RRp+9qP3R0lCwnlhU8017wa1z3sgCQkPAfNf9mV66cvLWtelvJz+33AR8ak/8U4t24/mvZnvbxRKpcc+QvLCCAreAUA6/gN/NBrpU5/6lJ555hm95S1v2drd5XXsnvqOMlZ0dievX7+uLMuUZZna7bb6/X4sRYBUQiiwPN+4cUPNZlN7e3tbWQO4Fujc8NJLL2lnZ0df8AVfEG3n3jlgMplsETFcBryGXXpEgDzPNRqN4s45O6WQOlr5QZDoMAB5okvGarVSu93Ws88+G3fUOQak08/f7XY1HA5jtwyulzmCmLFjj5CB8MCcHB4earVaRXGGe0l4pHcHQMCAGOKm8J15z7og3I/XN5tN9ft9LZfL6Oi4ffu2hsNh3BFnLRAKKZ12bvAOC+56YZeaMSAoeCcA6bRtIsQYsSmEoPF4rPF4vBWaiDhFiKeXNkinbR4RlJjvLMu2yLpnD/BZ4PqyLNOVK1fi/Pf7/eiQYMz+XsbGddGGk2t2sQHRynftyYrADcAcuZiCcAd4DFKP6IagiOiCcMhnGYdBsRzB76XfQ1/HCHYuanhbSBdlWA+IQwmPDzaTiZ76lvdr9YfeqemVzWNlaU1IeJjovyNX/delPIWExwc7X/R5+ujXd5WXcuWlx53uPZr49B97l1ZZrk3l0b4/H/3jX6g3f9P7pc363i9+RHGhBAVIF7u76/VaBwcHunXrlt74xjeq1Wrp6OhI0+k0ugQguM1mU81mMwYyQkTH47FGo5GOjo5iEOB4PN7ayYcoUatOoOMnP/nJLZs89fo7O8ftAWlvefPmTX3mM5/R3t6eOp1OzB7AMcD7IPEQHXaL2cFlxxoSRxL/YDCIO7WNRkPPPPNMzEEYj8caDAZbJQ/j8TjmP+zu7upNb3qT1uu1rl27FgkUjg/peGd+d3c3BmFSfoDjgJ1fyD72coihdCqWQN7Yzef6XFyhzAHSjCjkpLNobWcX24FNHqK4t7cXj0WAJvkAiAqUzCCuMHZJWwTWSWqj0YhtKhmTtE1IWUPtdjs6UQaDQez+4GUF3l6xCB5frVbRWXP16tXoXliv19GpIZ0KBG7T393dVbPZVJ7n+vSnPx3DRnu9XhSycJ64cOKtJCk9GY/Hd4h9nM/LSLIsk3QcLkrGA/cfoQBXRlFoYNzMj2d0IGCwBouCAvPv64X7Sr4E4YtHR0dbLiCcMH5NngHhWRQJjw/y1UrP/tn36tN/7F1a9JKokJBwP8h3pE1ZUghS/mj/cZ/whGHntFtTqZXpv/zxz5Mk5UFSeELWci6FR2mDPwS98Ee+/LH5f/Smmutj/8eX6S1/6PEVZC+MoAAJ8N33crms0Wik559/Xm9605t0+fLlSMSPjo5i1sJyuYwkuNVqRRKAdbrf7+vWrVuxWwAEkV17dtohc6VSSdPpVLdv35YkXblyJR5rNpupVqvFmngI/I0bN9RqtdTpdNTr9TSZTJRlmebzuYbDYdxFLo7LSwqw7EPgFouF+v2+bt++rWq1qm63G8k4oYu8BvIJiYY8dTodZVmm/f19SYqdHggSZFeZnW3IeZZlCiFoOBxKklqt1lZnAK7BCbWkaJH3Tgar1UrNZnNLYCGkUDoN/YPQYkVnB5udfTp78BpJkagOBgPt7u7q6tWrkfx7HgZ1/ggOfq8h1BB2SVGY4t+S4rgQlXgM8sn9Q9wh3BLhCLcCbhLGw3Pci81mo06no/V6rVu3bsV8DlwdWZap0WjE8UOMcbRIxxkaOHZcVNjd3Y1tWUul0lbHBgQSSjTIi6BsBueCd6XwcpFerxdLBbhWPtuQdNbXYrGIn1myRphLzo3rguwNzsP7cWt4iCfw/A2uR1IsA/GWov4dhEuEsM27taxMePTxxj/1Xn3qT77r2EaZbnNCwj1x48uk2tGXqvb9P3beQ0lIuCdCraZQKunj3/yFWmVPiHBwF5SnQW/4M+8972HcF0Ktppd+15doduVRUkDuA0HaaTa1eUydrxdGUJBOOzhgU4YMHB4eajgc6tlnn1Wz2Yy2fCco8/lcrVZLzWZTjUYjkj7qu4+OjrS3txeJKcLFbDaLpAySibiAzZzsAV6DrZ/2ktTzDwYDdbtd9Xq9SNTYLZ9MJvHYLoSMRiN1u90tsjsajTQej6O40O/3Y9kFxJ/gRvIeED8g8IeHh7GFIR0rQggaDAbRKYDVfTwex3p4Sh9KpVIsY2COPZwS4kjoJR0XPBcA2znEvN1uxzr+xWKhVqsVS1U8iI+1wK401vssy2JQpLeERPi4deuW3vCGN+jKlSuRBEP02YknI4DrR2SifAFxCkcA9wtyTiDler2OnRDYCWdHmyDETqej1WoVyz28bamLGAgkiBieV3B4eKhbt26p2Wyq3T6uYKWzxuXLl7fWkrtiJGl3dzeeH7cEnS68EwMlGBxjvV7HzBGO6aKIC18IRGSaQPzJQvDWl3QT8fwIL32g+wlrjHvA+QjTZI0jBjIm6VT84bPK2ut0OjHvYTAYSNJWECZilmeAeFvXhMcTn/XH36vn/9d3ab73mP3hkpCQkPAEo9Tp6IXf8fknIX5PtpigXKoMHg3VfCfLdP03/VcavfHx+39yvnNS+vCHf+S8h/JQcCEEBXZaCQakBSQkgR3VEEL8A9+tyNjuJUViw84mLoHBYKCDg4NIECFQThgJSvQ689VqFZ0EEKpSqRTr/z3pfjKZqNlsqtVqKcuy2KGhWCvuSfJ0X+A5QvaYC1piElrZbrdVq9XUarW0Xq919erVWKpAx4Usy7RarXTjxg212+24+09oX57nGo/HkUi5kNNqtSJJ5DwHBwfRtl8M3JvP57F7hO/os5vfaDTi9TF+SPlisYjj8TA8SKR02qpxOp2q3W6r2+1G9wavJaOBgMxWq6XLly/r+vXr8fogiS4mcXzmcjAYxHuGqOD2fenUWu+BmQge7JAjHtXr9egs4P562B9z6G0OOd94PI7C2rVr1+I1UcpQrVbjWjg8PIydPLiOdrsd3zObzfTJT34yulP29/fjDjyfF7IPEKhYdwgLdI3wzwVzyw/3g/yGYugk50NA4b40m83ofGH9Uw7BOvCuKHx+6ApTzGdgHrk3jA1xjeOSV+HiA2sRZ0KxzCbh8cNzf/pH9NG/+HOSSyEhISHhMUDp0r5e+rp3PJIdAR4Gwjro2T938d0JpV5XN3/N56n/9idcAHpEcSH+WmaXEULjIX3Yrm/cuKH5fK5er6d6va6joyNJirZpdlyzLIulAG7Dh+APBoM7bO6QjPl8Hp0BTjghL3meq9VqxTpriCJCB2SRzIVSqbTVXQJRAsLFcRmTp+6zc4ywwE7u0dFRzEhoNBqRNB4dHen27dsxxG8wGGg0GkW3AS6EWq2mdrsdiRbEzneZsZtLp+0Wp9OpJMW2jXRoqNfrkUAjnDiZo3SC91MuQvkIeRhO3CjHcCGEHX4EE8iniwSskytXrsRuFp4VQE4Fooi372R9MCZaWXqb0mIXAMQnxAQCI9frtabTabyPjUYjEnAIM2IFu/DeUlE6DXxcr9c6PDzUiy++GAUfnse1wHFLpZKGw2F0xDD/Tz31VMzcYFy0lpQU3Tjc9+l0qn6/H0WFbre71VmBeWBucWUUWyxC3LleRB0EQOaaFpaj0eiOrIpiK0fWHm6XYqeGYokCLgrPgODeMf+4S7gnCHo+1oTHGHmuzsd3Um/rhISEhEccpatXdP1XvyV9n4Nc6n70vAdxb5R2d3X7V3yODr4giQmPKi6EoODt3nw3WzpNcH/xxRc1GAzUarXU7Xa3BAV2LUmo73a70dbv2QyQOicXkHLa8yEqkO7u4WzsDOd5HtP8KQfA3j0cDiMRIciRwEh2QvmRFIlet9uNTgfIfa1Wi7vKEK/BYKDhcKirV69GcgV5Pjg4iHZ1dmMnk4mq1WokVU5ypWPBxMsacG94TkG1Wo0CAeQVos+8S9oic7xuvV7HMhN20AlTlBSFGkg1Cf/Ur3vHBwgs1nWveeeH7htkZXDvIOjcP8aLIwFnyWQy0XQ61XA4jPeE8gnINOQakkx5BmKLk1zvRsI6hND6Lj7CCOPyTA+6jtTrdT333HOq1+txDXkZAfNKO1NKVNrttp555pnYDnQ6nca8D3eF4NzAOYPDwkt7/N54eCi5A35NCC3cQyf8uCLG43Fcq4hwfE4QCXHEkKlQr9fvaAPLZ9VzG3gMoQiHkQcxetinfzcgtHFPEh5vXP3W96v0m79Mh5+f/phJSEhIeFQx/aI36uhz0vc42P/JoN3vuNgW+9Lurm7/8s/RrS9O9+1RxoUQFHx3sGghhyAcHh7qU5/6lFqtVuzgAJEjBA9S1O121e/3twLgJG3ZnSEM0rGIgfWaGv/xeLz1XkkxNG8ymcSwQ+l0F5Rdbzol1Go1jcfjrTIET6Vn9xt7O+FzkGwPhWPn+OjoSLdu3dIzzzyjLMtUqVRiVkStVouuBreMs8sL2fYcCcjraDSKHRqc+EG4mHMPjPSdYea3WE5CVgI76S4ESYqBihBWyh08x4Cdcuag3W4ry7JIXLmPEHxcLsU2i95e1EsWptNpXEOE/BG+CdGlDIR5c0cB6wRHAAJMuVzeclqwliCp7Iwzr4hIvjYlxZ37a9euxQwNiDHuGHIcmH8yPZrNpjqdjjqdTszn4D7j6OFzIim+7uDgQEdHR7E0AhHDW4ayLj1wFDC2SqUSBQIEMpwX3BOCJr1rB2BeuF6cLWRBIDLwmXahRzptO0pug68VFzd4Dy4WRCi/DwmPL/LVSlf+0Ud0+PlvP++hJCQkJCS8CpSfe4Ouv70qKbkTJOmp9+Zq/YMfPe9h3BtPXdKtn53EhEcdF0JQoIUcZBYrOb/TjeATn/iELl26FNvmsZPoRKRSqajT6ajb7Wo8Hsf2c7TDY8cTC73XjLPz6aQegQOCggBAvgGEYzgcxrwC2g9CSL1OHyK3WCw0Go1igB6uBEICcVewcx1C0HK5jLvPo9EodkrAdeClAOzqut2fenHI1Xq9jsn/OAhwiLCjjHuENoEIP07OnBi7GOG2cq5LUizx2NnZieOBqDcajUhaPXeAXezlchkFG3bnIaCINYwLQQHiPB6PJSmWJpC9QDgn9ndKZijHoASjGDjZaDS0Xq+3QhdxDZDhgXuG0hZ3BFCCAkHHAYOjhDIG1tVwONT169ej2EL4KONjXJS0cE7uPaUXdJ9AnCPnYrVaqdFoxC4lg8FA1WpVe3t7cU78nvu4vTOLZ2CQm8C1kDWCaEg5DG4XL0uh9ABRjrnjM8TnajqdxvlnLbgLhbXjYZC8xl01ODi8rMO7QCQkJCQkJCRcTKye3dPwzen/2ZL0hn+1UeOf/cetHKuLiFKvq5d+4WUlEejRx869X3I2QgjPhRD+dQjhQyGEnw4h/N6Tx/9ECOEzIYSfOPn5ZfdzPALgKGkgq8Ct9oPBQLdu3dJkMont5rzWGQJCYB3hjsWWeL6TDiG8ffu2Dg4OYstEyBaEyW3ukNrJZBJ32A8ODqL9GhLtggIuBRL2l8tl7MQgnYa/UScPucG14S6Ow8NDHR0dabPZqNFoKMsyZVmmXq+nLMviLj1jpE1kq9WKHRWw9iPatNtt9Xq9GHoJ8YLoI+AwVv8dQuthjezCQ0Cbzab29/fV6/ViuQVCCAQUN4A7AzhOpVLR3t5e3OVGNGk0GlEg8DIN1g6EEMGIcfNet/kjmlCiQjiid/RAvOKekpdBaYIHLrLD3Wq19NRTT23lH9DqkV1xiDTCEmUkPlbptOsDWR/ummBN062DXAmcMMWskuFwuDVeSfH9vV5POzs7unHjhobDYRQ7mGfm2N0afE5YN1wnrhA+p3xWOcZms9FkMokOA+4RzhdcQ97JgtIYhBLuWXF+/d4jDjFWDyWlTIXPIdf2KOBBfxcnJCQkJLwypO/hhIuC535wrcYP/KRyC5i/qAhZpsFbnxAxIZfe+nePznsUDw2vxaGwkvQH8zz/jyGEtqQfDyH84MlzfznP87/wSg6GNRkXAb+zi0+w4K1bt6I9GgFhs9lEErpcLqPToFarxR1q323EPeD29dFoFMkV5BqiU+xxLynaxhkDhBiLNuOjbSUEmeuCFA8Gg2gHp7Xh/v6+1uu1XnrpJY1Go+h6gIRNJhP1+32Nx2N1u13t7u5qPB7HjgvsQI/HY02nU61WK125ciWKNIeHh9G54cGV2O0RaihrIJsCAuuWd9wJkDVq4HGPsKNcrVbV6XQkHZNWOm4QyOfEmuP6nBOcuNlsdOPGjdgNhDKFRqMRd6ClbULIenK3CWJGtVqN4gpkFqJKpgPZEuy2UybCdfMeXCesYcopaD945coVSdLR0VEk+N7+EoELEYF1yVjI1+j3+7GMhAwI5or17jkLBGIy914awrpiHfB7lmXqdrt66aWXdP36de3v78fPGC0k3YXggYYe0Ml6YZ3QPpLSHBwWuA4I0kRgQLxCLOK8rEkXNfhc8lrvqMLnjjlgjXprS47r8/iIOBQe6HdxQkJCQsIrRvoePkeUP/uz9PGvaulJ3+l+7gfXqv/Qf1JubdgTLgZCLm1+8kPnPYyHhlctKOR5/pKkl07+PQwhfEjSs6/yWJHEYedGJIDYskt5eHiop556KobFkQuwv78fQxAlxd1tdqm9iwK5CxAtb2VHl4YioYUMudUbgsPzHhoI2Ww2m1tkpt1uR/s17R4RMuj6UK/XdfXqVeV5rhdeeCHuMENiF4tFLHvY3d2NFnUILTX3g8EgEjN2yb1tJHPPbne73Van01Gz2VS/34/El3sCSURowMLOXFWrVXW73ShWIEbQqaLX6+nSpUtb5R68T9KWkITzhGDFYhcP3CBZlsUuHu6agBCy600YIgIB4g0/XBNEnHFxLRDldrsdxQnPMMDNQPcD8jUkxfORI0E5AgKG5yhQvw95p8sJa4/MgeFwGLMHEHLcZeEhi95dwrMjXPRhXGRFVCoVZVmmdrutyWQShS2uhf8yLi+R8U4hrN1WqxU/TzgKGIeLBoSs4kjw9SEp3j93w3C9LlwARA7WRHG+WQeILFyLl91cdDzI7+InGeuDQ739Owb6L7+5c95DSUhIeMSQvofPF3m9qsXuxf//9cPEs/9mk8SEC4x3/PlP6OJ7Rl49XnXJgyOE8CZJXyyJ9I/fE0L4TyGEvxVC2L2P92/ZjrFWU6fearXiriLEGZLIji07nN7Gzl0MHBvrtZNhyhOwRSMu+I+3CsTuzq6yExRIFE4JShywsZNZsL+/Hy3akGOILaLG5cuX1el0ItHmebo+3Lp1S6PRKLb246fVasVSgNVqpWvXrunTn/60xuOxOp2OLl26pGazGckVFvh+v688z2OIHy0h2b2H1FOOwb1zoabZbMbWnu7UGAwGms1m6nQ66vV66na7kbAxBu69lxDQtcJLHxB8ZrOZRqNRDHGkhIGyBBeKWEsIFB4UuLOzs9Xhwzt34DaAfLJrztphXXG9CE3MTzEzgXIErsl32FlPjEVSJLdO/BHZyHnAmYIjAucMhBuHy3Q61Wg00ng83grNHI1G6vf7Go1GMTvBwzMJ0yToFGGGYyGkIQy6qMPn0buMcFzWDYSfMZHr4KUoXrLgbSSZG79erxl0EcVDXvm8ekAk6xnxsChmPAp4rd/FTzTyXDtHo/MeRUJCwiOO9D2ccB4oTzZJTLiA+Jy/9ILe/r/8J62uXT/voTxUvGZBIYTQkvQPJf2+PM8Hkv66pLdI+iIdq7V/8S7ve3cI4QMhhA94f3gnaL7zjS1+MpnEneButxvD6gaDQXyfJ8xD+iCIkBjf0YSAuKjADi1lAozPbd2QFyd0lBtQd+67txBIcg84tteGHx4exnKAZrOpdruter0eW1tKijvUR0dHGg6HCiGo1Wqp1WrF0gWvG4d4Hx4eamdnR5cvX1av17sjeHG5XMY2l4gZXHej0dDu7m4k2Fj6sb37vfPddfIVGPNisVCz2YzH8jaVCDYQSrfN44hgPRBCSB6Et26EpEPycbhQNgFJ93wFxCjEGgIWqc1HROE9HlDJLnelUomCALv3rBnWC/cKh43vprMuyT3AWeOdLLhmHB64HRAScBN4HoFnCozHY/X7/SjMSYpuGQI5Ee4Qcyg1YR65ZsaJm4BzME+IdU7+3bninyufH0QlnDzj8VibzSaWYSCU4cKZTqdbosFZ7R9frluDOzVYf6zfR0lQeBDfxUs92X+MrD75ab392/vSxc6xSkg4H6TPxT2RvofPB+sP/Yze8l3Te7/wcUR+3NGh8gMfOO+RJEhSLoWN9La/PdRb/+CPafX8C9pMJuc9qoeO19TlIYRQ0fEX59/J8/z/J0l5nl+3579N0j856715nr9H0nskKcuyvN1uazgcxt3GWq0WreQQNnadsWRTKz4ajWKLO3cLeDigZxB41oGkLQIoneY5eJcBdmaXy2X8t+cy+PHzPI+Bdy4oUCrhjggI0+HhYWxPeOvWLZXLZT311FNbJRaXLl2K3TBWq5VGo5GuX78eBQf+CxknzK/Vamm5XOrWrVs6ODjYCl+kY4LPFWUbWZbFnWK6B9ANAqKGA4TSBurpvTUinRsODw9jlkCn04nODFoPQrxbrZayLNPR0VHMmEAA8pC/Wq0Wd8e9vaCXPuC+4N+4C9wB4N0FOBd5C9jzyawguwG3iJ/HXTYEObI2arWa2u12bCXqIhpk13MQvHtFuVyOrgNcOaPRSMPhUN1ud8sVgcDjOQ4IBdKxGEF2AteBCMfcQuS5hmazGYUDRBo+d+PxeCvsUVJ0x3CNiGXFEol6vR7vDevI7xHdLubzuUajUXQVhRBiBgPfF4hIHN/vJfPrn3HPegAu/tBCtij4XFQ8qO/iTth74inD5ic/pLf8gy/Ux7+6qbz8xE9HQkLElR+Tat//Y+c9jAuL9D18vggXvKPBw8LeTwW1vvt95z2MJx5hI4VV0DP/bq36P3n/E6e/vmpBIRz/pf03JX0oz/O/ZI8/fVJLJklfLemD93M8SIaTRw9aPDm2JMUWcY1GQ/V6Xbdv39aLL7645WRg11I6FQjYfazX69EG7w6GzWaj0WgUj4NdH8u/pEiAsb5jJ4cQQ0zZBSYQEms5O+HY86XTXXZ+x3a+u7sbz1sqldTr9VSr1XT79u24Ez0cDnVwcBDzBnq9ng4ODqKLgHaS1PZfu3Ytzkm5XI4keW9vL9bjQz7puEGWAi4JCKK7Pfy+ICJQmsJYFouFrl27FkshsiyLWQK+84/Dwl0T7IZzTuaEe8SYcGhI26LSdDqNGQyIOm6Nx7HAPWAnnXIKwjUpR/DSGA86lBTXAg4VMhkok3AXAySeNcKxvL4fgr9cLqMQtVqtomjFjj1jWS6XGgwGMa8D1wMuBhwFkmJ4KeuOOaAjhYdQHh4exmtnLnFz1Ot1SYqtG33t0h4UsQWxy0m/d1vgM8M9JleCdYX7gZwGxAbGjNuBe+DlSrhIJG2tJe4J6wS3DwLNRcaD/i5OkMJ7f1LP7r1TL3zlA6kKTEh45LGzDCrPnuwa9ZdD+h5OOA+EVVB59ghT1/Va5UnQqvmIXkMuVUbHHKj9CWnv//qRcx7Q+eG1OBR+nqTfKOmnQgg/cfLYN0v6+hDCF+nYHPdJSd94vwf0mn5IGbvRvgM7Ho8jOZdOgwWPjo6izZtdfOmU8LoTAWLidnKcBxBg7N7D4VCSYvDdfD7XYrGI4oEHFTKmw8ND3b59W71eT5K2iLHvakuK5Qs4BZbLpW7cuBGJnrs0Ll26pNVqpaOjo636eTIkarWarl69GsnmdDqNx61WqxoMBjHLAWJKECRtLQkjhEzjCtlsNlFUoCQAccADBSGSnIff6Zpx8+bN2Jaz3W7Hc7EGKDfhvlO7P51OY8kC7hAP5INUIzQUWxiORqMoXHiXAif4zAO7+IvFIpaOtFqtuDPulny6CHiIH8eE+HoJDvPETr50arv3wEvpNDCU9ewlA4gorVYrhnV6jgOhjQg23j0B4k62B1kfnifAmieoEsfEarVSs9mMwg/HY70OBgOVy+WY08Gc8DrWBtfN553PooeUeuYBLg3mk5IKvhOKGQlFIAR6eYO3kSWUkvWEi+cRwAP/Lk5ISEhwdD4qNb/nR+/9wicX6Xs44XVH9kJQ5+89uiR2de263vK3O/rIu/fPeyivCPUbJ5u9C+npv/jecx7NxcBr6fLw7yWd5Qf+/ldzPA9j9F1R6XTXGiJPjTcWfOznEGMIMcQE0oCbwHfMse1D/qTjMgCcDL4Lzu+QMm83xy4oRLtUKunGjRuSFM/hdedca7lc1mQy0dHRkRqNRtw9pQyi1WpForlYLLS/v69erxfr2f3Y7Ma3Wi3t7u7q4OAg1tMj1FB64HZ3Qvl6vV60jnNMcikkxd1pSCQiBlZ07PT+3pO1Eu/TbDbTrVu3NJ/PowOF+0UtPUn/8/k8EnZaYHId3hmA+0tbRemUvLpQQQYHv0NkabkJoW00GrFlI+UFCAick3XqpQ+IMawl71JAiQZCGfMlKc6350iwbhEqFovFVhkNJB+3QbPZjI4Od75wLoQd1hLjZA172CaiDs95pw5EN4S3SqUSBT7EJTIe/LPIWqFkg8+JO3sQQdxV4NkZ3Fc+NwgglHUwXw53IbEmOT7rQFL8TuAzzPW4i+Gi4kF/FyckJCQ4SrOg7Pr63i98gpG+hxMSXh3CZKb6jR3NrlxsB1Tj2o7KJzEdT33L+5U/Ag7W1xMX4q9lhAPC9ihbGI1Gkez46yA3y+VyizBAuiVF8YFdckgQO73ssPJ6SZG8QCoGg8FWBgIki2OzQ1+0dEuKLS6xYUNEl8tlDFKEsIWTjgbT6TQSz8PDw5gLwU4pu+b1el2dTicKIsyLh9GRQ0C5A2NA1KBGv16vx5wEbPWSYpI+u7qlUim2moQo02FDUuxG4VkC7DozR5IiicUpgf2de8gOMZ0ePDSSeafUBUKOkMK9JhwQks59ZW5we3gpjHdlkBRzJ3xNsbPNnCMyeAkB8414cXR0FMfWbDbj2JrNZuygIZ12r8CpwLVDdBFHhsNhPFe1WtV4PI4CmDtLWOvj8Xgr4BRxAmIOGUekQXhAROMzVq/XowDk76c8AQHBX7NYLGIbUoQdyj4Iklyv17HEAhHRM0p8TP4d4KVRHrzJ55z5Yy27YAOKIg5rju8WHB4JCQkJTzLqN4Ma3/v+8x5GQsLLonRrqOZLLU2evtjE9EGhNAva/ejdA6cfFaw+9bw+67vLev7XPH2h7l21v6PWp05LMa78y09r9fwLklI+7Vm4EIICxIXWfxAgduAhAYgBkH0CBbMs26pvx/7NzrhbtiHhkiIJ87Z9bjEfDAaxLIAd8EqlEh0K1Jt7u0pKBNiN92wEjjsaHbcm88BA7OyMAfLY6XS0u7sbj390dBQt+Ni9Sd7HAg7ZQizwNnuQp8lkEnf/syyLJRlOoijnYPcXMuyEEkcCpJlrQVBAqGBXGEEBQYJdY3b6p9NpTPVHoIAgcuydnR1lWRbnDPeBu1sQTXynm3UGiaRUodjtgnM3Go0tN4qPwa37lHIQvEgpxGKxUL/fjzvplABAZNvtdlyTdKjwXAXEDQ8phDwzrzhZPPeA53E1jEYjNZvNLcHMux9wPRzfxylpq4sFTh/PIWC+j46O1O1243rzsg7EO1qL0uKSNejdQzz/hDlHcPLg07PcC7zeBQW/T6x/vw8eCFqv17Wzs3NmZkdCQkLCk4bSNOjyT6SuAwkXH+uPfkKXfnJfn376yfj/dmUQVPunj0dI6vqjn9Bz31vS87/yiibPnIOokEtP/UiuYEpB86WJwn/4ifh78iO8PC7Ep269Xms0Gm1Z7WkdSIcA6bSlHqQD8gshZnfTd/+9RpoQt/F4rEajEY/pnQEglZAdhAl2v3k9hAOi5bkPuCwQFbgmDw90yz27+tjx6c7A7vP+/r46nU50BOQnXTAgP5BSdnIh9pAv75YxnU63XBgER2LHHwwGkVh6mB02dfIUEFQY+3A4jM4SL1fx2nt+d7LIjjoEcLFY6OjoSOPxOJJIWhhCBNnNp1yk2G2BufXzI7Z4WB+CEIn+kuLuOjvnBPN5gCOOEnbbKTVgzeAoYY4PDg7U7/dVLpfVbrfj3EmK14uY5Lv5xRaMHibqAhAODa7Z2zQioBEEyrjm87mGw+FWVwdJ8RzMBcKA50EASl1wi7CWEGk8WNLDPhFrqtXqlhug1WptCXQuBHm2CmUZ3lmCe+25GPx4+Q1lTTznziXmn2vg/iUkJCQ8qShPgsr/6sfPexgJCQmPOdYf+aie+z5p9lk9XXtnVfP9ByMsVIZBz/z7ezs5UtvN14YLIShIiuS2Xq9vta+D6HrgGqR8NBppd3dXlUply/YMuYJAuuVZUgxfkxRJqpcAsPvf7/dj6jsEQzoliqTbEyI4m83iORFDfCe+SGKc/C8WC92+fVuLxULtdlvtdjsKAOPxOFrpKfdgfrxrADvr7GY7IGq+s8xOMgIFpQg7Ozsxu0HSVvAd45ZOSw0oAyiSL59bhCDIorsDEA/YoR+NRrpx40bMMaA1IZZ65lxS7OBAWCICh4tJCENcc3FeEH4YE2uMHA0ELV7vcyIpOmCk404JxXMMBgMdHh5qNBrFEgDmY7PZxAwCSXeETiIccG+5dsQCCD+BpFmWxewJb5eIWMVaYf1TjoIYhoi1WCzU6/Wi04EOEIhvXpKBcwdHBiKfC3t8fj2XgfvpjgoCJ717iodg8tldrVZRUEP08hIXz2Hgfnm5gzsweC/ZEqxTHk9ISEh4ElGaB33W9x3o4piQExISpONyhzf+48fvs7n+yEdV+Yj0puffpnW7rk98dUvr+r3/Dnv63+fKnp+c+dzOZKnNBz/8oIeaUMCFEBT44556b/6Y951yr92WFEkRtdvFNn7sxuIicHKwWCwi+V8ul5FAjEYjzWYzZVkWu0Asl8s4DsgYdnFKDQgS7HQ6kSxL2rKoe12317PzMx6PNRgMIqlqNBpqt9uaz+exRaSTJ+bBd+dBqVSKpA4Cz24uTguIHPMG4cPBUbSOewtHJ9W+60+woZM4Py4kUDrNYaADBfNGVsLt27eVZVl0IDCf7k5w2/tsNtNwOIzzwn3FNUHpgjtKuMZaraZutxszO1hHLmgh2CAW+O4418Q1jMfjWPtfq9XU7/d169Yt3b59W1euXIkCWLlc1qVLlzQYDGILUNwp7rhgPMwPx2X9EZJ5cHAQywo8hJDPASILz+GqQBRiLVHKgqgyHA6jm8HLRfjsUqbEMRFVcCXwXz6b7vhwgQmXhgtPfAan02ksZ8nzPF6P50twT4vZCNw3zukuFsQxzk/XjKIImZCQkPAkIaylt/7N61r/zMfPeygJCQmGnWXQW//mNa0/+onzHspDw/pDPyNJeuvBZ0uFTbqzkL/wkjYnOW9FpL/iXh9cCEEBYsgf9B7WV6vVIqmiDaJ0SrTYOcXuj8UbSzWkYzgcRsKLk0FStMND8mnFSM25uwEgXU7mERywS0PE6EjghB2yRLYBj0NIERXIUeh0OpE0UhLC6z1gkd1odz5QdlGv16PTggwFSGmj0YjigNeKEzLI3CPqcH98ziBwkrZcGJK2Qvs4Dg4A2h8yztFoFEnqcDjc2j3m2G7Fb7VacfcaJwHZGe42aTabsSTGySX3Is/z6ArwQMDpdBozGaRTQu6We+nUsUAYobcS5fFqtarRaKTbt29HxwsCU71e1/7+vm7duqWbN29qOBxutZIstlxkzrwEgDHM5/NYWsH99M8WnwXWCsQckYT769kUuCn4vBB+6vNA6QNrFUcDa51MFG9L6WuF0gqcPIhQCCWU3ACuh8891+klGV7q4GuUMSMY8Xr//sHJQnlTwpOJ5r/+aX3Oj7f1ma95s4ZvTn+SJDxhyEMSExISLhjCRnr7X/q4Vteun/dQXhc8zqLJ44YL8dcyZAAbOfZrktche/5vdogJYYSATCaTGKboNee7u7tar9ex9R7lCB4UyFggX5B+7wDgPeyLBF5SFCtoRciO+mg0igQGwQAChCvj6OhI/X4/XtNTTz21RVAheZ5uP5/PdfPmzUieIWM7Oztqt9vqdDqxbAJXhhNA5hNy6iGY3oHBOyVgz3d7OPPDHEiKNfHsrLtlfzgcxnN4Fw920L3jBeeWFO8nWQMIOLQoJG/B6+Kr1aparVa08xeJogdYMtc4RdzWz7xQnsM99LIBCDz/LpfLsQyBLAXyMDabjbIsU7fbVa/X0+HhYXQpsHYRsDyHg+e5HwgQrD0+P6xn5qPYMhWBgvXu9n7KSKRTocvLVxAymEfuFdeF84H1QxcH1qY7HIqfKeaQzzRrnnXljhnm2DNTWIvFcgiO62GMxVIqxBAcTp4ZkfBkYTMeazMe6+lvO9L6f/zZ5xMUlZBwHsilt/2pD6advYRHDrV/9Z90Zf9n68aXnfdIHg7e/r99SKuj/nkPIyHhDlwYQQHS6HX+7Dxje2a3F0IDMYAokwOwWCw0GAziDmYIQa1WK+6ukweAFZsd63q9HkkZogOPIR7weici/O6dFrB+Y72HfDtpwmmA0JBlmW7duqXRaKSDgwO1Wi11Op2Yw8AuMcfs9XqSFF9/+fJl9Xq9eB53QxwdHcU6+na7vVVygdXfSZnvCkMaIeI4QyDqtFhEDPJARkoGEIHIophOp3EucZJAUhEtGL/vqs9ms1gO4XkCLswA33FmHXlIIffPiTZigGcQMGaEg/l8HktRNptNLKvgmKwB5mFnZ0fD4VD9fl+3b9+OuQwEeFYqFbXbbTUaDR0cHGg0Gm25IDxLgTFRNuFtGr2DAySc9/J5YY1yH5kn1hQEHsJNNxDCOiXF8hHm2102hGiuViuNRqMt948HY3r+h4sIAJGBzxkuGT6LBLh6RgPn4jPJGix+x7iAxveDC5l8ztzZkPDkYjObKSRmlfCkIJfe/s0/oU0KpE14BJEvF9pZ5lIepHDv1194nPwJ8jl//pNa37yl9Sr1Gki4mLgQgoJ0ujuNRZnANnadqQ3f29vTYDCQpK22cVj/EQxI4ZcUCdt0OtV0OtVgMIguAIdbshEcIK2QSEiy73IzDs9GYPcY632j0dBgMIhkFmJIRwAIIcd0UcGJDWJKrVZTq9WKmQNHR0caDofa29uLxJ0dXieQvjMLkWfuIGmSIlGEKBezA7DBMz++6+zkEKGG90MeOQ7P47bgPlDeQqkB5RqSdHR0pEuXLsW58S4gxdp4CDXXgwBBu0vPvMCBQtcMbPEQcgSeVqsVQyC9xSX3nXXAtbKTPhwOY2tFuod4lkSn04nH5R7654PODZLiGuS/WP+l0x185oT5RGBhtx/hCYGNe0Hwpa9j7wji2QyMjbVBlgLrbDQaRdED4t9ut7e6r0jbmReIIi5Mce+Kc8ZrEFgok/C5wOHha85LKLhGxsyacAdGQkJCwuOOsArHzoQkJiQ8wmh9949qP/tyHXxBrvyCmgzD6v7Ujrf9nb42P/GfU8vChAuPC/HXMsSV3IFGoxHt0tJpGQLkiB1ehAfpeNd0Op1GWzQkRFLcXb506ZImk4lu3rwZreHU3kM0IO+QNycxiBCUDLAr6thsNlEIYSeec9ANAKt+s9lUq9WK78Mej2gwmUx0cHAQ7de+W0rKf61Wi60NIaMQeM8v8HZ8EEvm0LMDECKYf67d3QrNZlP9fl+DwSDmD/Df8RmhKLRXhOhBGCF6blXnviF0sCZcXJhMJhoOh5H0uhsAscCdLXTjcBGI3Xp+aMlJ+0PuvRN/Sep0OqrX62q1WncID7VaTVmWxXWHyMCu9+HhoW7duqV2u72Vo4DY0W631e121e/34+48IhBrhk4ajHm1WkWXg9v53Q3jnzMP9XTC7hkNnkfgwaGDwSDOnxNtjsnngnvAnNEm1fMgWq1WFLVYe96phM+gi2EIHpyTMbJmiiLHWZ1ViuU1LqCxfiTFY63SbkBCQsITgNIs6K1/5WNan5QjJiQ8ytj99h/R+hu/XP23n6+oEFZBpcWdj7/lz/9nre+jdCGZ4xIeFVwIQUE6rrf3HXyIgFu1qcUvlUpROCDxH3cCj4cQYrAiO8wEEYYQNBgMtFqtdOnSpa2dSN/ZdUs1ggI7oZAfrwX3Lg7s2kOKqX3n+iitcCLsYYOz2Sxa/LMsk3QcuufWcbf6F4miBwq6dX8+n2uxWESijs2d8XluhJM5yiU4LrkQlBAQAOkuCOk0fI+8Ab9u2mJ620/fUWceyMpgXTSbzVhyQNgkx+U+uU3ecxYkxVIXiCvlFMvlMl6TZyAgdknHwlWWZXEMiBBY8+lUgEDipQmLxUJHR0c6ODiIHThcCKhWq+r1els75RBb7hmuEHbUuV4e49pxr7BGOAYCE8KSl/x4u0kEMM/JoDsKopNnO/DZcdGL62JNcmzPgsDVMB6Pt9YKQgxuCEQD7iHrAjGJ17jDwJ0UCBRkTvjn2wURgl35LKeSh4SEhMcZ5XFQaRb02X/3Ra2u3zjv4SQkPDBc+hs/os3vepeGb9k8MFGhNA8qj+6/lqL7sY06f+99dzy+PuO1CQmPMi6EoBBCiMF1vkMMKYDosuvpO9KUExwcHMTacSd2WZbFrgEEJEI0R6ORms2mGo1GJE3sxkM0iqnxkA52ryEjWLAh/+Q5ICBAforvY8yQ/m63q0qlElsAsvuNW8PLCnguyzKtVqsoDLjI4cGBzWYz1sRjRedxQiizLIvuALfeTyYTTSYT5Xmudrutvb29eF3kTfgutXcFIG/BgwsZv3ccgHRCHBEIPNOA89GacTgcxnafBE/O5/PoGKjVarGkAyAUUPLB+SGjEGDOJSm6UyaTSQy/RDTimJStuJhBFxDcKQghEGbPEWAHvtPpxK4kiATuwOHeIBDNZrOtsgLew7pBSODavESFUiIIdLGbBKQakk+JB3BRBkdDsYUj91A67YxC2Y6X0iCaFF0kXprCvLNWAEIA1+CfY++Iwdi9LIbX8TiPpXKHhISExxXlcVDtIOjpfz+U3v9TyVKd8Fjiyre8V+F3frlWzaDxGzavLFchl7IXtpWI3Z9Zqf6P3/9gB5mQ8BjgQvzFDHGA/Pkf+BC7ZrOp5XKp8Xi85RoIIajdbkciD7mHVLXb7bgLDFGlwwNErd1uxy4Jm81GR0dHcZeadofY0iEcHLNSqcSdVuz3EGsIJdZtBAJIVHFXlTZ9zWZTpVJJt27digQSKz0Bil6CkWVZJGzsWk+n0zinCA60oUSY4XrYRSdkUToWAiD37LBPJhPN53N1u11lWRa7FcxmMx0eHsZ5IYsCJwaEkEyLYjtEsim8daAHLCKCIC7hDKBrR7/fj+PAyTAej6Obg3vNHNFW1AlvMUwRIo3Qw3pkV5559rA/dv6ZJ0QDd4twTOaFcEqEMF9HZH7QNQSyT9eOarWq5XKp4XCowWAQwzbJW/CgRFwcjB0yP5lM7giR9Pewmy9pK4fDcyIo7ZEUSx68dIU1zGeQch5v3chrcVi4S8lLblijnr3gJQ+4lBDymFvENh4jELXoanCBkM9TQkJCwuOAnWVQ56PH/+5+cqnKD3zgfAeUkPA64PK3/ogk6fbv+HJtylL/7Wc7D7MXdlQZmssyl/a/7b2vyxgTEh51XAhBYbPZxFR/drIlxd1OCCYEi11WCCtt6arVagyXWywWun379tbOraSYwYDFHoIGUXFL9Xg8VrvdVq1WU6PRiCQV0uwhkoy33W5vkfvZbLblQmB8zWYzHscJJUSa9/b7fY3HY+3v76ter0dyjTCxWq3U7XYlHQdJUsoAsfIAx1KpFIm5dNquk3ljPgn6g6xR+gCBJKeh3W5HEn90dCRJsRyAMdAFAVLIsdjF9m4EeZ7HFoW9Xk/tdvsO8s48Hh4exusdDodRQPLSCFowuhuCa2QHul6vR+GEuaB7g6R47yi1QWhB0EEMoWyAa1gul1tdPGgDidui6GBhzt0lMR6PdXR0FEUF1thyudRgMNjqxoG4xPpFnPGMCXdeIFwQtujrmLXtgoq3WGR83DvmhOvjMT5z6/U6CiB+XHf9eCgia9PdBaw75s7FID4LrA0+14gdjJP5ZR3y2fP2nC4m4eBISNj/4EKzSxWt66kEJuHRw5Ufk5RL5dlGze/50fMeTkLCuWD/235EoVJV7Wt+9pnP7/37T2v1/Auv86gSEh4PvCZBIYTwSUlDHZcDrfI8/9IQwp6kvy/pTZI+KenX5Xl+eK9jYa/HZo0zgER2fseOD/nhtY1GQ81mU+PxOJIAiHun04nkv1Qqqd1uq91uR8KLUICgAMl054C3kPQdTIgHhLToZGAnFTIGyfGMAnbIIZ+VSiU6ACDIuBwkRXKFzRsxhKwDdoDZ/ZYUSyZarVZ0LzAuz4UYDAaR/ELEIbPuuvDsBS9JwKLuNfmcHzKYZVksrTgrb2E6nca58Q4XTraHw2EULY6OjiLxRZhgTTkh5f0IOwRn+i62txHk+iuVSgw+3Gw2UcAgt8FLBpbLZRR9KI/odrtbmQBcHy4JiLjnFFDKgaBA2QE5FfP5XKPRKLpB+FywhophlKxH7pV0WpaDGMH1SYpiCHOGw8PbNTKnzCHiClkhlJYg8PEZ5ri8xsUe1pM7A1wMwGHjgiLHZo5ZhxyDzx2fWY6DSwNBxrMYJMXvnUcBD/K7OOFOVP/FB1R+57uSoJDwSOHp/5CrPNmo9s8+IKU8mIeO9D188ZEvF2dmGkhKZT8JCa8BD8Kh8N/meX7Lfv8jkn4oz/M/G0L4Iye//+F7HcSJkO9O+g4zv/vOodes40aAdM5mMw0Gg9hODtLX6/W0t7cXiR+ugdlsFkUFCLgTcggfye8QJyfN0mkdNjvTkFx26hErisTJnQrsoNZqtS1Ltr+W65vNZtrb21Or1dKNGzc0n88jISV8EDIFMWaOOCbuB/IIuCc4FTxbwFtueuAgLgSC+1xowI7PuRqNhhqNRpwDDyYcj8extIN8C6z04/E4dr2gvAD7vF8roou342St4DTA7YIgxHF9HSJCQeYlRdGK4MxiwB9El2PhHGBNMl5EIu6HX+NgMNgqefBuEN6tg/EhfBV35pkL3s/4GAPr0MsGuA7mmAwKjlNc5/z7rLIJjsUPn1lJW0ISWRrSadtR5tThn30XDlw0Kr6Pa0eU4L2ImMyDl2nwmX3EQhkfyHdxwtl44z8b6GNf09am9kitiYQnFM/+8EbNf/6Tyk82BBJeN6Tv4YSEhCcOD6Pk4VdJ+oqTf3+HpB/WPb48+UPeg+u8TaF3aqB8wZ0CEHd2vp0scXwICzvG7XZb1Wo1Bt2NRiMNh0NdunQpChPuNKDsAceAh9tBXHFUYOvmmtgFhVDjBuDckD6EE4QLT7jn+r2d33K51O3bt3V0dKSnn35aWZap0WhoNBppOp3GYEfKKLCKS4qihocLQkypnWfs7ApDVhFVFouFWq2WGo1GzL+AREKUh8Nh3DmnHSgtGT0zgPnEIYJQUq/XdeXKFTWbzRjYORqN4nEYiwskiD+QZ9/5RnxirnGpMCdkHeAc8C4B3AtEAcpLvAuGiz+8lh11dzHQApJ7450auH/MuTs0WGeePeBiAZ8LbxvJ+1k7ODs8M8DLNiTFz4SkKBLxHo4l6Y6yAv9MugjFGvcSCubdO4O408c/t/5ZZB6KgZ4OxoLggvvC76e3BPUSHB/TI56h8Iq/ixPujvwDH9Tbxm/Tf/lt+8pL9359QsJ54Or7pO5PH0kf/aQ2SUy4CEjfwwkJCY89XqugkEv6gRBCLulv5Hn+HklX8zx/SZLyPH8phHDlXgdx0sMf/JAySDDEkV1GhAcIOISftocQFwiCdEyS6GRw6dIlvfTSS+r3+5FcQPK8UwHdG+gQQX08QgA/bn+HwDAuwvP8GieTiRaLhfr9fsyH4JrY3feUf+zt0imZW61W6vf7un79ut785jfr0qVLkYAeHh5G+/1wOIwWewQC5s4Jvu/eEoQJESTI0a3mOCAQUooODm/Dx7xif8dN4DvAm80migqj0SgKQ9wziDsCkqfwu2gAmeX+Q1YRaMjqcDcBpLVcLsdWpIzJya8HBXpJCe4F5o/zk/GAcMJ7cW4gpBCaiKDgRJr7zXVKio4Lv0bGQkaA7/xDrr1Uh/WFCIO4xPNkSbC2XSxyYu73sChO8Duv8XvBD+/zcgPeXyyj8c8/18ZjHhTpXSb8M+NrjVIJBAnP8iiO5xHAA/kuTnh5rD/0M3rHX53qw7//Da8sLTwh4SGj96Ggp/7FC9rcOtBmPD7v4TypSN/DCQkJTyReq6Dw8/I8f/HkC/IHQwgfvt83hhDeLend/M6OsaQYSDebzWL+AeS4+HqEAw+a8zpviAUlDdT/41K4ffu2pGOCcXR0pNu3b2t/fz/W/EN8CXJkBxvigvjAOGj9R624Eyta+EFm3aEA+YPcQrbYDYe40ykBEr/ZbHT79m2NRiM99dRT2t3d1WKx0PXr1+Nc4figfSNOAg+gQ+CAlHp4XZGYQsbIEyCDgXFPp9PobqBOH9GmUqnEHXvmBeeB29c9P2M+n8dz0OkCR4rvJHuNP+OFsEKA3fniIYMcA6JeLHlBBMAJwFhns1lci+4cYbd9sVjEvAdKXhCuEI4AIoYLEghTXIN/Thi7lwG4iwFnj3exYOw87jv53CeyCBCeyBc4SzxgXvn8FR0Kfnze49dSdFFA6t1N4K/3Eo1iqYaPA/GI+8Ta8+vwHAfG5mN5hMQE6QF9F9fVfFjje2ywev4FveN/OyFsV/b1kd956XwHlPDEojLY0Zv/yockSfl8rpX9jZRwLkjfwwkJCU8kXpOgkOf5iyf/vRFC+B5J75R0PYTw9IkS+7SkG3d573skvUeSQgi57yBCmiBrIYSt2nPfLcaOT8Ba0aIMsfQcgVKppG63q263u1XHT205jyNASKfZA07wIGSQfIhguVyOgXuM04PlnDyNRqMtWz5Ej9cQOgjZuXz58lZwJaUTnpeAgNJoNOIOPHXwfi6uBeGC+eZaRqPRHeF2xVKDnZ2dKCoUx1Sv12P5CKRuOByq2WxuEW7KAjz5n3IRWiZ6JsBkMtHBwUEUdCCgRZcL95p7AEmGhPp68PIIhCkP8fPODJ4FQLcQsiUIovRASO4/42QtI1BIioKRt09kzos77p4RwjEhy5QCFAMV8zyPLgpvw8j1+GfAAzG9lIR1xTwXHQueR1CcG+BCAvfEPxeIJJyHc7KGGC9jLro0OAdj4vWsVR8/1383QaEoglxkPKjv4k7Yu/gXewGwPmmTq8NDve2PPK/Nl36uPvZr6y//poSEB4S3f/NPHH8vbXKtl6kTzUVB+h5OSEh4UvGqBYUQQiZpJ8/z4cm/v0rSn5L0fZJ+s6Q/e/Lf773P40Xyyx/5OBAgRpJiYCCEAgLHjrd0Sny9TMLrwyFgzWZTWZbFYyNcsMMLKWP3l9p1rONOwCjNIAMA0uzkDVJZTKX31oOQSVwFtNybTCax/GJ/fz8eT1IM8SPkjy4O5BaEEDSfzzUYDOJuOV0r2In39H/PsmDOnIgtFovoFtnZ2YlOCyesw+EwBg2SDbBYLGKgYZZlCiHErADaVkraIpqQVHb0uScIIAhJ3FfuCWKDiwKsJ4gj95PgS/INvDUhY+KelMvleL3F8gMn8E6KvQMGJNtbfwLcNcwBaweBw4UFd1XgIKjVavEacVngDPF8AsbpAYQuZCGquHBHKQluHcqQODf3BWGCa/VSmqKzwB0KrCXuAeA+uijlopy7WnzNeIcQXs/nhc8d13qW84LP16MgJjzo7+KEV4Z8Plf4Dz+ht7431UAkvD7YPALfS08a0vdwQkLCk4zX4lC4Kul7Tv5IL0v6u3me//MQwo9J+q4Qwm+T9GlJX3s/B2O30eu9ffcZ+A4lxHU4HEaXADuTvhuZ53m0l2PLZgeVHWLIN7kBHKu4w0kAIa8hUwFHAGSG3Wx2o3k9hI88AwQF322H3EF6CI+kHr9Wq8U6f8j1cDjUdDpVs9mMIouLHxBkFzcgnbyGeSELAeEDkispjs9D7IpdKCBxtPf0rAPyIMiboKQBgs6xcH7gcPDMAV7jx4X4OZl18s31+E47QhHdNPx1ktRsNreI+3Q61c7OThSdzhIUuB7WGqQUocLt/JQ/eFkOTg9f42R/cI9YFxBsF+F43sUZjkOOBa4Bzsvnz4k8Dgk+ixB3b7/q65k5KJYmMC8Ieu4Q8fvGtXl4KUJF0SngYh7ri9e4yEcmBPfKr8kFBnc3FMs/HhFR4YF+Fye8Slz8dZKQkPDwkL6HExISnli8akEhz/OPS/rCMx6/LekrX+nxrl27FkUB3zn0OncIjwcDUo8OIMCQTUgOO6Xs1rN7CllGLMiyLHY7kBTt+7Tuw30gSaPRKAb8NZtNdToddbvduFPvdeBe+w1BgYRBDKVjEktZgec3cDxaRZIzAFk6ODjQYDCIbSp5HPcErgMIqosCtVotkk5cCWQhLJdLNZvNSCp9R5duCcwT5A7xBlHBAxN57Xg8jrvnPOf2eNwTZDNsNhsNBoNI8J2QM79exoADwV0LvNfPS9cHJ6TeFpPxcnyfW995Z725uMJ4nJgiKpAz4GIAa5NyC297ydy6JZ91y2s9WNCDQ/0xvw/A598dA75uWRO4Evyz6qUFXIs7Q/yYHM/FkaKDSNIdLgXm1DMxvASE4xUFQHczUKLE+32sReHAn7/oeNDfxQkJCQkJrwzpezghIeFJxsNoG/mqAHlmpxjy5a37CN3rdrux3h/7uNdB5yf5AE44IOC+ew6xYSe8Xq+r1WrFnXOIH+QMco674PDwML6HH0oM/PiNRmMrqK+4mwpJYned39mxZre1Wq1qPp/r5s2bWi6X6na7kSTevHlTh4eH6vV6kYBCqhBUsMBDDHFCtNvtOE8+bkgqc+n5C1777y0tEWIQO8i9YPwEWHowJLvygNdBrL1bxGQyicGXbt+nvMJzHLzFqLdJ9Pln9x9xx8tOeIy1hUsCYoqogSOC9VUksghclAnwWL1e33I0uI3fxQN3FzD3XJsTeeZZUlyzHkTIMVjXnMuFEe+KwefJMypcxOE5zz8ollHwPp9fF9c4DueuVCp35Dv4uf3+vVyZAq6Ju5Uz8FpJd4gfCQkJCQkJCQkJCQn3hwsjKEiKu9utVkubzUbj8Vij0SgSEsginRbOEgewbrPr6TvG9Xp9K2SOHfwsy6KYISm6H2jp5zue7Oh7b/ter6e9vT01Gg1JiiUH7N5CyBmnjxGSCqmFDHkwYb1ej0SU8Y1Go62MgMPDQ7300ktqtVqxBINxI0qwU+1BeJB6715AqYOTSsQCLyfAueGdKxgPZG02m2l80sKq1Wqp2+1GG7qkLcHAx0ueAM9R3rFarVStVuN8ufOA6/Iddi9pgez6jrSTc28n6cQU8QD3wnQ63XJicF+5bj8nJNrLaHgt2Q2sN59vD8z08hGfK3eMcG6/dubYib8TfO7xvVwExRIBiL07Cnzn38seiu1SzxIDfIzMvYsyLrh58KK/18UJ/utuGn+9g3Nx3Yz9ESl1SEhISEhISEhISDhXXChBgV1sSZHQ070Ai71boyH3kGCI1nA4VLvdVqfT2Qraq9frcacb1wJZBL6r76QMEklZBd0eILXr9VqNRkOtViuWVfiOeKVSifXvkHInqRBy3A2UdxDs5zkCiCIQtdFopCzLYovL69evR1EDd4GHEDrBRTwh4wFBoZhb4SUjkGHEneFwqMFgEAUHt7EjiriDAKJc7LBA+QlZCR7wB9zdwGvd1eA79Iyfa/BuBMwFQoKkO8QAL4Hw0ggvtfHdfOaZMRXn2om3zy/nYs6cGDuhdVLvZQ1nEWmfD8I5Ob6TcX73EgrcHKz7s47t5y5+Vork3Xf8Pfj0buTenRHFkoazrvEsnDVv90Jxzl0cud/zJiQkJCQkJCQkJDyJuFCCgqQtopjnuSaTyVYdd71e3wq7g5BRm059frlc1u7ubrRQj8djNZvNLcdBo9HQ3t5edEH4cXzHnraM7jbAso4wgdvBA+vcCQAZn81mMacAsYLzZVkWw//IbmBOuA4CBOmiIJ1a6kejkT7xiU9EgispChSeZYDzgfwI2kMi2HhAnzsH7kZwuQ4XbHi/Oz/W63UsJXABALIOyffSAgQc6ThfgmyEoguAczkJxVGBmCBt70hDoKfT6VaWhj+PSwHhA4GAPAuO5zv+nichKV6nh2RKOnO33c+Lk6KYUYBYxPH8/V7774S/aPt3Fwbw8dxth97HAnyHHzHFS3v8vcV/nyWEnHXeV0Lqi8f2azlrrs+ao4SEhISEhISEhISEe+NCCgpuc8ZOXtw5ZMceIlhsJ0n9eL1ejx0QJpNJFAE2m42azWYMK4SkrVar+LqdnR2Nx+Mtizs2d7IXcBIMh8No/WeMHkborQ2lU6LutecEKkLG2Q3nXKvVKgY0Qmop2WAs4/FY4/E4lo6w2+7dC8rlcmwbyfVCur2GnXvgeQsukkAemTfadzKXiBaQftwYvrvuJBbnB8KO52cwP9Ip6fQgQXccQAzJJ3BnBPfAsxG8UwWOjiLRJn8AgYRQS3cjMHd+bfyX5z17wgl/cXec455FvH0XH1eIw0mzE/+zyPTd3lf8vfj5KzoB/HWMvehYcAGKx4vChYtVLze24pjOwv2WLfgcJSQkJCQkJCQkJCTcPy6MoAC54AehwHfGvU4eJ4BbziEyuBjokLBarTQYDDQej++ww3vpgocKQvLZMcdJQDAgbgfvyLBcLmNYIPC6daz9ToIgqVxvnucxIBJ3RqVSUavV2nJBQNjcZj+ZTDQajXRwcBB387vd7lZYoJ+PH7IIKDkplj1AtpkD/ovNn9firPBuDsxH8ViQQa4HsYPQy/F4vBUAGUKIWReII2e1tvRWjn5P3XHh+RA8j6jE+oL4e27AYrGI9532l0XRg/My17g9fI16N4u7uRRcbCp+TiDmLu48qN31lztOsfTB3RA+tqKDwa/prLGelYdwP4LCy4kJHKtYvnA/uJdQkZCQkJCQkJCQkJBwjAsjKKxWK33iE59QCCHmCZTL5bjjDrF0UAqBC4Fd9Hq9HrstUCbR7/djqYF0GugIeaQDAqRfOiWIRWv/YDBQq9WKxN93/j1YDjcDQkeWZWq327FcgTwCnBK+a42tn24F5DNArj10kR10xA6utVarbQkfHIfrYre9XC5vZR5g7+d3rns8HsfnPXjPswqKQg9jRgjAuQG8+8FyuYzlD7Tm9DIBroFzeUtEb3eJG4B7SFmDpK1x8zv/hfwzX173z5rZ2dlRs9ncClREfOK83lnBBQfKPYotEM+y/TNvdyP4vOZu5P214n7IevG1xbKCovPAnUZFIcJf/6DEkVcrCiQxISEhISEhISEhIeH+cGEEBUmaTqeazWaq1WrqdrvqdDpaLpe6ffu2SqXSlkggKXZSmM/n2tnZ0WQyie4BdugRItill06Jv9f612q12BoSQuiZCb5zOh6PNZvN1Ol01Gg0ou2ekojpdKoQghqNRiSlCB17e3vRzi8dOyTYxSc80sdJS8F2ux3zECiD4LiIAcPhUMPhUJPJRCEcd5CgDEE63Z33/0KecTjgkIC8M55iJoE7LSgZ8DmD6E6n0yi6zOdzSaflGogF5EV4loQTdg9n9OBO/ktZDIJFMQiRHITNZhPvLfeoWq1GgYXQRUlbIgZzxDEpQeHeu6OB9yJ0ONnHKcE1ufjiWQjFnf677da7MPKgcDdxwHE3wl8svyg6D17uvWeN4W5IDoKEhISEhISEhISEi4ELJShIisSVcgV25rHP0wmBHzo2FH/YHccdAKn2DgcQeHbpIc50hmAHH9IJ5vO5JpOJOp3OFrFutVpxJ95JN+4BhA6EksVioVqtFjtEIAB4zT+kkWuAkEJ4CY3M81yDwUDD4VA7OzuazWY6PDyM81UURSRtuSbG47Emk0mcNy/dQJSp1+tRgJFO23wuFouYYbGzsxM7TYxGo5gpMJ/Po4vAWzVyv5gjSfHaPWDRSSQZEPz78PBQg8EgZhUwZv9BNCCLwktkEA48T4M5Zq4YEyIBThbuMSKMd7aYz+fRdYHAwDwxRgIfvfyDjhkID8WODu4QKboT7jc34G6k/Cy3BMf1c9ztmC93jmJpxL3GcjckMSEhISEhISEhISHhYuDCCAoeRkeYoqf3LxYLjcfjSN543DsSSIrhf4PBIAYTemcIMgPyPI/ZCO4SwO0AAW02m7GeH2K/XC63ggw9A6DX62lnZ0dHR0eRDLq1HRcDhJi2kNJpmz0IVr1ej10nNpuNGo3GVlcIwJg98G6xWMQ5WK/XyrIs7qRDqCH3vV5Ps9ksOkSK94NxImowPubJnQLcH8g64griDcTdwzHJQkBcWCwWW/efOfa8gXq9HjtA0PoS4aNUKkX3CcSVNVCtVrdKLnxtQORZH9xfzumiEqKCt6KUjkWq6XQaXSO8txhiWBQEXOQ5q0MCx2GMlGh4+KELDUWx4eXKEjyTxMt77oe4v5wYUHz8fkSJex3/fsWHonhRfM8rPU5CQkJCQkJCQkJCwp24MIKCdNrjvlqtqtlsRsFA0h278c1mM+4sr1arKEJI0ng8Vr/fj3XoTz/9tBqNxlYdt3QamOhJ/ZBaJ24A2zukcTabbYUYUiNPhwhKGyB+2ONbrVYUBSDGBPVxDu/84LvTHhboO+LSafnEZDKJjgDyCMikwNbvQkG73dZ0OtXR0VHc6Ud0WK/XsSMEHRyKwZVFsu1lFYgbCCGQXoQdFxkQALy9JWOmLSY7/ggBzFcxM4HuGwgc7mphHhGMCEzEtXAW+fc1wJphbFwbZByC7u/z0g0n8UViX8zfKL6OuUVAQLBiXhk711oMd7yb0FB0Ddzt8bM+s/eLV1OqcJYocT/HuZt44XN/v+dPokJCQkJCQkJCQkLC2bhQgoLvjGIh924M7LrTraHVasXshNVqpWazqWq1qvF4rNFopM1mo/39/Ui+IHQQMAQLSizomOCBf3cjE7Rb5HjL5VKj0Uij0Sha4XkNxHAymcRzVKvV6MZgZ5gddso8PCSRjACEB6z2kHB27XFPUIbQarW2RAcnoZQnVKtVLZfL6Kpwgu7X73kCiDDMRaVSUZZlMeeCOfcyEhcApNOSCUlbYoKHOyKSMCeIHTgZPI8AkuhZD17O4Of1/1Jy4aUkTuSLQgOv89fyvAtTXC85EQCy7xkJfgzG5GNgLl0oKLZg9ABR7hfn8fPxWTsLxVKElyuNuB9SXhRM3FFxL9ztHPeTsXC316VyiYSEhISEhISEhIQHhwslKEiKu9eUBPhOqaS4G5xlWSS4EEuCDwn0g1jjekAAwIFAlwbfYee/EFLq4IETxn6/HwluCEHT6VSj0SgKHe6o8NIIugTweKPR0HK5jMSREg/CBkMIsfQBYupk0Xe/Ic3kIeCkIBPCwxzZZa9Wq2q32+p2u7Hkgce97SLnc6s/58ZFgIMDYQOxh3NDrhEQECYQjDzfgHOs1+tYvsLYua/ufGB+nLwyLgQcxAiyKCi5oIMFa4LcDB+PdCp6eTYCwgTn5Z4W15OHhHJt/j5EBX4Yu5fCsI6K7TdxW9D6krnlPF6i4sfzMRYzNl6OfBcdAGcJBEVBwgWFs8ImX+4cZ+GVCg6vxiGRkJCQkJCQkJCQkHB3XChBgV32drutdru9RaLZlfUAP8ocVqtVbBvJTrSXLEAaIYU8TmtC77jghIdcBIgZY/Cd68lkEp9bLBY6PDzcOi+CQgghhhI2m81IDBkPWQpOUM8K5RuNRprNZrHVJJ0gxuNxJP8IBcvlUuPxWEdHR3FeJUVyD+Gu1+tar9fq9XrRzQABpw0lXREIsPT2hwg0dM8gXJKMCg/GXK/XkbxD9N3p4DkJ/nie57FsYzQabbUT5X1OUD2EU1LMcvBuFZ7f4OINjgjm00koc+f3hXvtAY/+HCKDXxfH4DHWrAtG3qmC4/N+FxqYR0Qqnw/PaCi6A84quwBnkW+/J2flPxRR7PogKc7xgygjeK3lEwkJCQkJCQkJCQkJrw2vWlAIIbxD0t+3h94s6Y9J6kn6HZJunjz+zXmef/+9jgfBgODSahARwa36kEPS/sk08J10auMh7oQCQob9XN6hwLspIAJwHMiQpEicV6vVltsAlwLhheywE4K4Xq9jEGStVtN8Po9tICHXEFRvCcjO82Qy0XQ6Pb55J6SeQEUvmWg2m1GQIVMBQk7Gg3Qsouzu7sb5wh0BYQ0haDAY3JEPwRzgKmA3neufTCZR5PGuDdyjxWKharWqXq8XhQhIr5eBeNeORqMRRaDhcBivj8yBYpcHSVu/s3ZcTMB94DkDvA/XhAsFxe4T/PAeP4a3oMSV4ESfH87lopXPMXBBgTWS58cdQRB6yNzAleJlH6wpF188V8IfP4t8Ixpx/cxlES/nEPD/Fh8vlkc8SDzO7oQH/V2ckJCQkPDKkL6HExISnmS8akEhz/OPSPoiSQohlCR9RtL3SPoGSX85z/O/8EqPCTEkHwDCtVqtYq29h7JR8kDnBHbFKXGQFInmbDbTaDSKO/uStsSDk2uK5KtYBrFerzUajVStVrfC+LwdYpZlWq1WGgwGMTQSgg7xYiw8n+d5zFbw3WJIqJNXz1Hg2PP5XEdHR5pMJtrZ2VGr1YrCAcGQEGfmEScEbom9vb2t3IH5fC5JsasG55ROd+i5Fo5N9wREIN5DC0o6MkiKpRDr9VqdTueOkEMXILysgzBGulogonjGgnfFeLnwvaLQ46UJHgTqLgrP2fCMC28xiSDgLUuLQZvMXTEQtNgq1MtYiqUDCCUeSMrxWfMcxz9fnNsfKzoh7gaeQwC63ywD/3fREfF6BR4+rmKC9HC+ixMSEhIS7h/pezghIeFJxoMqefhKSR/L8/xTr/YPd4gNJQs4CjzBXjq1TEM+2d2tVCoxiNFdCDs7x20e5/O5ZrNZdBMUQ/Ugl4gL7PqSgwA5rlar6nQ6kXhDbiF1XuYAAfPOEjzPschHAIgpvqtNG8TZbBZ3hpkvrotWi5KiEIHQwXm93r5cLqvVaml3d1e9Xm8r14DrRSAodrTgmqRjsotYgzjj4gD3FJGDaxmPx1udLwiIpCMDc0HQJOPwzhY87jvzjNnXCaIA4o7vzvO81/VzDIQqD0gEjNGzD1xkQIDh/rlDgfXmmQVOuPk3c8z4PBfCPxMuVnDvz8qT8HV/VtlDUUwo7uozTi9lKJYvnFVCcZZo4B0oingQ5P+ssT/OooLhNX8XJyQkJCS8JqTv4YSEhCcKD0pQ+DpJf89+/z0hhN8k6QOS/mCe54f3c5AQQtylnc/nmk6nkZwWQ/d8t5f3Oiny91AmUAyjg0R6SQU77pBg3g9RdMv6fD7XaDRSCMetIDkupNqdFjy3Wq0iYafDAvZ0xsdOvnTc1hHBBHEFIcJ37iHMEErmgH8jlmCNp13k7u6u9vb2NJvNYmkEpQuDweAOazu75U7aJUVnAvcGMo6DABeBdJpVQbkG5SLeJYLXuVWf9UAphXTqkkAA8VwH7i0BicBFI9/pZw0hCHj3D8oXWAOsH4Qd3AaUtHiphIsLxWwFruGs0gHuoQsKLpIAFzd83SOe8LliDTNmd+FwnGK2QxG4HorlET4XLpjc7Tg8/qDyFM469sv9/hjjgXwXJyQkJCS8aqTv4YSEhCcKO/d+ycsjhFCV9CslfffJQ39d0lt0bP16SdJfvMv73h1C+EAI4QM8tlwu9fzzz0dC7mn/kBQndl6qIG3b8SHe3u3Bd3Albe0qQ6TY8c/zPJJihAFaGDYajegOGI/HMUfBWy16zgNkzl0KWN09l2C1WkXXQ/F52mgiMHAeju+dF+hMwTVIx4S/GJBYr9eVZZmazWYsNajVavH6AHZ8b7PpZQGUInAc5pewyWazqVartZW/wH2YTqdxXNVqNYosOEfIg6Cbx9HRUcx0cLs+5S6ILt6hwXfVEQsodWg0GlvdGly4Osv+D5mGjLtjgDXr88NjTu6LpS15nt+x1n3ea7WaWq2WWq2WsiyLXSgQh7y0wcsnvIzmrPHyfLE8w0WGs4BwU3Qm8F/m8+XwcuUojlcqNpz1+terrOK88SC+i5eavx5DTUhISHgskb6HExISnkQ8CIfCL5X0H/M8vy5J/FeSQgjfJumfnPWmPM/fI+k9J6/L2W2nFaN0WirAbqx3O2AX2BPtIWOQJbICJpOJlsul2u321k45ZE9SLLNAZKAWH6Lt5K5SqcRARif+Tg5xPfA+SCqPQwCr1Wokx8wB185Y2D3nmnxesI4Dyjt4HpcA42V3mznyzALPlOA65vN57MgAaeZ6JW0FSmZZplqtFgk/50CUcQHIyTVz4+USPM4cEmBZDKDkWKyF4rwg0rjI4ATbx+PkfD6fbzlTEAl4n7d9RPhg/PzOHOE+Oatswl0LxVIcdxcgKHE+L9vwteIii5/PnT3+XncceBgqIk/xOEV3wllwEcOv626vu9uxHpSr4G7HYVz3clI8QnjN38WdsPdkqC8JCQkJDwfpezghIeGJw4MQFL5eZu0KITyd5/lLJ79+taQP3u+BnHz4rjG175BNCN54PFaj0YjE3t/HrnmpVNJoNNpqG+kEVjqtpafOf7FYaDQaaTQaRSLnu8bs6npnBndMIBwsl0s1Gg01Go3YhQISBTn2AEJIKvkRWPwlRcs/wYo4D8hkgDC6IBHCaZtHrhFBxI/LWHBOQKZpUQkR5drccu/3jLILXBvr9TqKNxA33AHMn3RaekBORLPZVAjhjjwG7ju5C7VaTZLi+wgo5D7RUpQgTEg+x/L7xbUzJ7gKmGMvdUHQ8dIA1gfCFj+eq8BreZ2/10k+jyHI8OOlMF7uwr/dheCvO0sAcPLsXSUIXLybQ8OPexb8c3gv4eGssXDsokvirPKK+zmWv/9uZRCPgZAAHth3cUJCQkLCq0L6Hk5ISHji8JoEhRBCU9IvkvSN9vD/EUL4Ikm5pE8Wnnu5Y0VySr1/cRdbOt3Rn8/nGg6HUQSQtEXaIFmQEydK/rpi5gKkbbFYxM4JbkmHaHrXAXanx+PxFokt1qs7wS/a0CH9CBGMk9DHzWaj8XgcXRO+O++lFNJpu8LVahXLDNxd4Z0GlsulJpNJzFAYDAbq9/u6deuWrl27psPDw7h7T3vOZrOpWq225Q7xbAGEIOaV8yBcOFklHJKdelpisntfLpeVZVmcM0oHarVazAlgzny+iy4K2leSh8B4vezF15GvR89M8JKHomPA3SIuODDXZ+2EF0WVogDAOiZwkznBReP33oULn2MXHNyZ4WuGcXnZA2ufcyCScO2cz0UDfmcufB4BzxeFD8bgosHdBISXExXOwmMkGpyJB/ldnJCQkJDwypG+hxMSEp5UvCZBIc/ziaT9wmO/8VUeKxIIdudDCGo0GrHN4HK53LKXj8fjGA64XC63ds15HkJLdwdv0UgdfbPZVKPRiEGJWZbFkgpvj+ftEylTgAzTTYLz+6627/7W6/U7dnAh51w3pIznx+NxDICkdl5SFDfIDYAseyDharVSu91Ws9lUlmWxXITgxcPDw0hOx+OxhsOhbt68qRs3bujo6CgGVFLmwfzh3CC4kmwCLyeBJHL86XQahSJA14xqtap+vx87VrArjwjCuJnHarW6VaLitn/uq5ehMB8uLLnYxOu5h3fbzeZciAnuKPC1jKgDKKkpOhEA5B13THH8XppTHBNiAc+fReKLnzFeX3T2+PiK53G3iLt9zjpP0d1QnJ/ia84i/C9XKpGwjQf5XZyQkJCQ8MqRvocTEhKeVDyoLg8PBOzqOkHBgg+Z5zWeBSAplh+EEKLQAIEkxI6ODZQMYLv3sgrpeLeY7ACIp7sXKDHwwETveODjh6yxA12r1aIDgTBHCLLv/nr2ApZ9hAAIOo+5XZ/zzWazO0ihd2hgbmkHScBkv99Xv9/XaDTSer1WrVaLrRxHo1EswyiVSmq1Wup0OgohxNwEiCnknjHM5/NIfLkXzDWhg5vNRqPRKDpDEFoQkWivyXggpUV3AtdWzCZAlMChAGn33Xgn53cjy75OPZDROziwdtwt4ZkdEPmii6AYeukOBJwaLip4+KOLKv5fv56zBBDWRzFPwDs+OM7KfijCxYBiSchZ7o+XK1V4mBkHr9TpkJCQkJCQkJCQkJBwigslKEjHZKXRaKher2s4HG7tCEMqCdnjB8IP0ZxOp9FaD+mt1Woaj8eaTqeq1WrRQl60gHv4Yp7n0VZ+VmkFRLHVakW3gNefcwzPF2g2m7GzwXQ6ja4Bdsvr9XokrOz4Q1AhzTxHOCGEqEgWOe5isVCWZZpOp7GFZqfTiY6PUqkUwwun02nMQHD3ACIOhJf3emcNSDXzUiSCTrB5jBIMb4+IswThYTQaRQHGS0O8VSXkvtFobJFzz0pABKCkhrGwFiih8FIUJ+PMKdcCvLuH32vCMZ1AF8UyCD+iCP/1coGiSISgUCwJYk4oBykKWz4OXzPcM7/Gszo9FMt0PGy0eD4fNz/uDOF4LgDdDa+F8N9LMEhiQkJCQkJCQkJCQsKrx4URFCA7lUpF+/v7unz5sg4ODmKgIsSa3XUA8fEWj8PhULPZTMvlUq1WKxLV+XyuwWAQxQeIFyQZEuclCb7r7mQO4imd5gRA9r3UgcchmdVqNTotyIJwt0S9Xo95CVwXpQxOQD2nwOv1/Tls9t4KE9JZrVZjDgQ70dPpVIPBIBJ4Qi0pQ/HWmFyjt8fkcUlR6HHCxtwhrEhSlmUKIUTBgPlDYGAOPciR83pnB2+X6KUWPMe88JiXCHg3kKL937s8+HW5A6OYy+Fz5CKTrzHPSGAtuOui6PLgvrmAU3TF8F4yIxgz5N8FmKJgwD0ozlPxNUWR46yshaKQwdrgdz+WCxvF4Mr7RbFbR3HMCQkJCQkJCQkJCQkPBxdGUIAIVCoVtdvtWEbA7jKk3WvL2VUv7oZXKpW40w8BhKiuVitNp1MtFov4Gog9u/CVSkWTySTW7HuXh1qtFrs2kOsAiSM0kQ4D7Oh77gGvgSRCYrlOQh0p4cBNAcllZx1SCGnkvCGE6IzwUEdcB06GmV+uH4cCc0GpCOeoVqvqdruqVCpqNptRcKGbA/fIbfbcAw+mbLVasfQDMu+dJmq1mtrtdjwXGRqTySQKHR6OCcH11pAubDjhdcGA9eJrkOM4offWnUV4iQIk3Ik598xbSrqjw9c+83xW+QHlKaxh2oH68XyduwuDz4c7GRAZXBDgvRyveL0usABvn+nXBBB6fI37muB3d3y8khIHD3cszmfxGC543OvYqRQiISEhISEhISEh4d64MIKCdEqk2OH1nV9/DbvWlDZ0u90oMEjHpLzT6Wy5D5zgQjywuk+n0/hvzuEkx2v0ETsgiJDwYiAgrQ85HyQP27rvMnuZAGUbzWYzugxwADSbzfh+5oFwSLess9vrzgRECc7B9Q6HQ61WK/X7/VgS4sINxyL0khIIXBOILmRBIJgwfzhLIJWcv9lsxvviJRxce6vVioJCqVTSYDCI2RHS6e4/oZTABSh293G2OGktEk0nyh7UyP27G8n1EgoEKcpBXIxAbHBxquguKB7bMxlYK4gK7k5wcs7riqUFxWv18hNcHaxTFxWK1+plGd7lgufPEmoQFXCW8LwLGf7es0onzoIf4yx3xL3ef7fXJDEhISEhISEhISEh4f5woQSFSqWiN77xjcqyLBLw4q4uZGi1WsVd9yzLYhcBSh8IaDzLAl1s00iHBUoPPLSPnVVs5G6H53Wz2SyKIL4LWyRKdFKoVqtqNpux9R4iihPFVqulxWIRnQPSKTHjOnhfsaWipBiat1gs4nsoCWg0GtEZMB6PNRqNYsgjwoFnGjiBrNfrsVyBPIsiKSVjAfeIhxHW6/XofHAxAaEAh0alUon3kRINt8czB9Jpy0/PAyiWDjAexBwvp/A2n47i2pG0RboZA8fw8gR3OPAc4+S+c7zi+mSNel6Fd6fgeKw57i3r0p0W/njxOnA6+Pu4z2dlMHjgposdxd+LZPysMoezBL67ZTfcC36Muz3/cribeJCEhYSEhISEhISEhISXx4USFGq1mj7/8z8/BhdS881uuXQqKEinbew6nU4MrYPY8F8CFt2V0Gg0Isn2jgscH9cAhJZwSAiqt/PjGOQNMC6cAxBB2j5OJpNYDtFoNCL5hbhA8mgv6W0hIXS+0+6WdkQOOhm484ESCs6NUNLv92PZwng83hI4yGDgmJwfNwLXy661O0pcVJjNZlGgoIUl8+S76bgm3NnAvJdKpUh+CWus1+tRtOEauS+IQMVdcOaS+eR8LijwuqKLhHsEGS+SYuYBMu/CA+d054OXa0jaEgH4/awgQ4Qizg2KLhV3hrA+PF+iKH74c8VjS4qfQYQ+xvNyDgPub7VajY85SS8KF54R4kLDWcTe57143FeLJCIkJCQkJCQkJCQk3D8ulKAA6cV9gEBAlgB2f4hRqVRSu93W/v6+SqWSJpNJJHGQQOz9EOIsyyIRnc1mkYxgiWeXn7KFarWq6XS6tbMKgfX2hxzHhYrNZhPzHFarlYbDYcxdoH69Uqnc4XSA7EKIIdPY+D1cz0k9AoakSEJpbYmTgRDCcrkcXQnMG+UOjJnzFR0GkD5yLrx9ZbFt43K5jCLK7u6u2u12FDM8bLFarUaBhetG3OE+efkEY/GSEQQA3CQch/EUbfjuwEAA4bxO8ouOlaLg4IGILoC4sOUihotWRRLubhycDBzXXRguNPBev1/uFuD9Z+3Uu3jgpTN+XMBriuUFZ70WuKPD38+13+19d8tBcHBtr1QAuN/Xu0CTkJCQkJCQkJCQkHAnLoygwB/5hBseHBxoOp3GFpIQH0ixd0VotVrabDY6PDzcqjGXFK3z1IyzC44dnwBDdnyL9e6cjx1WFw6ol1+v1xqNRlEokBSPCfEjawHRYjabRaEBRwEp/uxue+YAzgoIKcem1MBJJT+0usSR4dfF74vFYqstI2QYMUWSjo6O4nUgQiBKcK24MLwG3x0DCCPsis/n80j8fa4RWlxIIJARUQHSLB27WthlP6vk4aw1xpi9nMO7VSAouNjkJQt3I9tnPY5IhnjhJTvF9/p8cS7EFy9l8Y4aTs69RALBhNe5o6BI1osCSnEei6UMxZKF4vwWSb7P71kBkmfdn+Lvr5dr4KwshXuVTCQkJCQkJCQkJCQ8qbgwgoJ0SsLH47H6/X7csa/VahqNRls7ndLpLjNdB7wzBDvq3pUBkuv5DG7jdrLjOQmQwmq1GkmW13ojCCBwFHd5fbecbg8e2IcIUiTipVIpigKQfEooEAFCCPH9lCq0Wq1ISsF6fdwWMs9zZVm2JVzQbYL34L6o1+sxg8GFkdlsttWi0QkmTg9KE9y+T4gkQgJkErHHiS/OCbpyMMfSae4AwhHEn84HEPC7kUMP2/Rj+P1nXMwd1+SdCby0hfXozxVFAIi1ZzW4EFEk9sU8Ao7pXSr8PUV3Aq8rdm9wV0KxRMI/W5yTzwnPF/9bbB+JcOUuBCfl9+NsKL62+JjnaNwv4S+6NsDLiQip/CEhISEhISEhISHh7rhQgoKkWMtP9wGyCSCXEBvpdDfe7eTF8EYnUk5aIffkK0DACAeUTskxdnNq+D2ErxiO51kIgOO7ZZ5jOKEDRcHECVC3290i8+v1WoeHh7GkgS4RnH82m8USEt/d9rlzkQQ3BMGJnIsWm5vNJnZyaDQaWzvVBGPmeR6dBH496/Vag8FA4/E4nov7tLOzEx0ckjQajaKINJvN4g438+75AxD16XS61SLRLev8zpwhJhTJqO+uIyKc5UY463cn+mft3PuadGGC19wtJ8DHhljinwOukee4fuaiKMQhPHl+h4ttPFYU70ql0tZnynMoitfBffRyEB9H0f1wNxSfey1uAS8JcjHjXudPDoWEhISEhISEhISEs3FhBAX+wJ/P55pMJrFjA+6C8XgcCRNkxMsfnJxL2rLwu82fx7vdbiTMvpvr4Xm4Crxcgk4QhEYybnIK3EYvHZdcQK5xQSBssCvubSidNLPLz044wkaj0YiEer1ex04QkDlcG8PhUOPxeKu04+VIVHGneTqdRoGAspHNZhPFHklqNBrx/mG3x8lB6QLXSkeJxWIRsxi4596aE3fCbDbbKj3gHIgXEFtCCp3oOlH1XXSOUSyHcEcJJNkJt2dVnJUx4MTbx+nv4bHi8V0AICfiblkGzKWLCbzOcxKK7gQXSjzg090CZzkLfF1wPp8v1pILNt69xMWEs+a7OHdn4eUIvY+h2N2j+L7ifXQxpTjPdxN4EhISEhISEhISEhJOcWEEBel0BxbhgNpziCp2cciXdyvged/BdoJC6QTHgvhIx+QBJwRZB7Rs5Bjs6EJeeQ3OAEIMyUegswFZBJBmjuWBhL5DzDywiw2Rp0MEoYqtVkvScbkFooun3UNMyYbo9XpqNBqxNASCS/lBCMchi8w5YYrD4VDz+TyKLO4cqNVq0Z3BsZxwStqaZ7IQnPwjDrCrzXnP6oCAQMG8IQwUQxMlxa4PLuyUy+U7ch6KLRzPIpGQSy9PKJYfuGhVLHnw9xVLGfzeM8c4CzzPwwmwn7soVgDe458ZJ/pFW3/RyeDiBPfPr4VxOBn3OSiGW95rl9/LRopixd1QzMrwub/bvXTnhOdMnBVayb1NwYwJCQkJCQkJCQkJZ+NCCQrS6Q4sO/G0LizWnxdb/0EwfUfWbdxeO+1EFPJNdwVECsQJCB7HgtyPx2NJ2gpNlBQzAgiUlLRFqhg/xJjXQ27IGdhsNlGkIACR90COOSbBlbyPa2I+m82mdnd34/GcsFKmsNkcd9OgpeNgMNDh4aGOjo62HAKeT+HtD30X2tswcn8oW6CkZLlcRrGCa5UUu3twT4p2fXeecH3MMePzlpaMG0LtQgPClAsP4G7CAtdVdEAwD7zOxR2Hi1xeBlMUGYq7934eJ7lF8s/7/Z54Loe/j3vIZ8TntejuYP0V57qYr+Dkm2tzt8Ld5pi58Ht1VklKEcXck6L4U8xaQKg7S8QrHtfvY0JCQkJCQkJCQkLCnTjbY2wIIfytEMKNEMIH7bG9EMIPhhB+5uS/u/bcN4UQPhpC+EgI4Re/4gGd7NRCiLHdO5Hkj38nKt4qkO4AEMtiACA74RD6+Xwu6bSDRNFO7r9jx3e3AYSec/lusZMsxj+bzTQejzUejzWZTCKJdgu2uzAYE+d2AsnrERkIU/SykN3dXfV6PWVZFksfGKfvgkNOJ5OJDg8PdePGDd26dSu6H+bzucbjcRQKnBx7VoWXbCBiuHAB4R2NRjHjAXHDuwE44ebeMm5EEwixi0K+ljzXwK35xQwAJ9B+Xp8XL3cAvjt/FpzkIl746wn8LIY9+rrxNeHXVCxv8PN5TkRRxOB6fGffyT0CAh1S3DXgGQtFQaAonngJx72EAdYQ5/e5ZYw+Ti8T4cfH4igez9f7WUKKl81cJLze38UJCQkJCdtI38MJCQkJd+KegoKkb5f0SwqP/RFJP5Tn+dsk/dDJ7wohfJ6kr5P0s07e8y0hhJLuA/whD7lCJIBwSqc19E7seK2XSnA8tzPjBKAcwX/Y1fagOicdkrZaJlIiAHl3Qsi5gY/Zid54PNbh4WHMFOB8Tua4Nie/TgTpurDZHLePbLfb6nQ6MSwRQp9lWSy9wH3h53TRZLlcajqdxvwFCDyP0w1C2m5H6AGIzLm0vUuNEICg4BkXEHaEAu4D81kk0LyGtpjNZvOOcgAPLnSC7gS06CRw0l4scfAfv78uBHk+AoQcIcGzC7hOsjdYPy70OMk9a3wIb8xFkdQXx+7XWSTVLqJQVsOa4d76Z84DPV30Koord9vh99cVxTEXSJjLsx6/m8BSPA+vK94vX3fF742iKHFB8O16Hb6LExISEhLuim9X+h5OSEhI2MI9BYU8z/+tpIPCw79K0nec/Ps7JP1qe/w78zyf53n+CUkflfTOVzs4SKh0djAcpIzX8hjP12q16BrADTAajTSdTrdcC/5fCB3H4ofa/vF4HEshWq1W7KrgBNKJFgTeuz5wXbgcqtVqLGvwUEhJ0UVxci/ic3meb7VWrNVqyrJMnU4njqnRaOjq1avqdrtbJIljcn7mkWP2+30NBgMtl8s4Hg+GRNRYLpdRZPEuDAg3TrwhwE76IcTefcOvnfICdtkhe07Ci6Sd63ESypxDnF0w4PVOip18Ahcmik4SJ/bMF+PiPcXjuxBQdHsUCe7dnABkbLhTw+fZxQO/B35txbwOxk0+hpe1LBaLeL3F62R9ObH3vIu77fa7SMS69XtY/HcRZ82Nz6d/ht19UBQYiiUTL3fO88J5fhcnJCQkJKTv4YSEhISz8GozFK7mef6SJOV5/lII4crJ489Kep+97oWTx+6JEIJ6vV7cvXZC5a85OackRQKECEAXB8odWq2Wms3mVptBt/gX7fHr9Tpa84tg1xhCm2WZWq1WJFCQFLoyQGog1wgRAALWarW0v78fO0F4jb603WrQz0PpxGq12trpZqy1Wk29Xk+1Wk2dTieSdkmxzKNWq0lSdFlIisIJWQ08R/aB1/AzLjIjiu4R4LZ1v7+QbN/9PksAcJu9CzWUXngrTNwarIuzxsFactLpOQD+WtacOxa4t4gYCAOM20k3a8Hbf3I+J6ye9+F1/mcRcXcr8FN8vXczYG6q1erWnHg5BEQbQcfXQ7EUoUj0mffiui2GK/r4/LOMmEEOCAJa0ZHg8PILnxd3JrlYUbzXjPEsB4UHdkqKwaYXFA/8uzghISEh4RUhfQ8nJCQ80XjQoYxn/fV/5tZkCOHdkt4dB1Iu67nnnotugJPXbKX423sj6aEUgSBHXueWbWz6nvRftDxTFjEYDLbIv1v52UVtNBpqt9sxG4ASBSdvEMf5fK7hcKjJZLJFfkulkrIs06VLl7S/v6/1eh1dARxnPp/HbhWUC0BsGVOlUlGWZarX6/Ga6vW6Op1O3Gmu1+uR4Lm7Yb1eq16vxxKJ1WoVsx1cPCEcs16vR9cH92k8HscSimLJCa4GdxdAAt1uz9z6jrqTUxcaijZ+t/pT0sHOunfzcILtYZEcg/vHfJ9VbsC5PaSTNVEqleIcFC34HgbJPPNvv346mhSzO/x1xZ12Fzy4PtYg10f7Vebf8xgYJ0KMCy0+x8W5RuChfIQ59fvju/7+3FnHaDQaqlard7T/RDgqCggcw0U6H19RiCyWaOCw8fIHRBEXaB5hvKrv4rqaD3NMCQkJCU8S0vdwQkLCE4FXKyhcDyE8faLEPi3pxsnjL0h6zl73BkkvnnWAPM/fI+k9khRCyPnDno4H+UkugucWsLNdKpXUbDZVr9djmCF2bAhOu91Wu92OZMjD+wgmnM1msV58PB7H3ABIjf+Uy+XoSmAHHAJJCGKxHSVCCCUPXCPlBc1mM4oBZCkgUECkcCC4lRuyQ3lFu92OO/Lr9VrValVZlt01FG+9Xms8Hsd2kHRYmE6nOjo6ijuyiDaMcT6fR6cCbhBaQRZzBDgn+RROpk/u+VamQZHUQeycWLvAUPzxnWd3PXhZgqQtpwfnxFni6+gsosr4ilkJHhh4lrPBHQvFbAYfG8flProAhWBWzEpgfph7d3r4GF0EwUXjwYNcm4t4nv3hgo5fWzHbw0l5MSjRnRd+H6rVahSDvHMEDhrKZ3wMnLvoGvFyD7+m4v3ykhf+y7ldOPKynQuKB/pd3Al7FyuJMiEhIeHiI30PJyQkPNF4tYLC90n6zZL+7Ml/v9ce/7shhL8k6RlJb5P0/vs5YLFOm9KDyWQSBQXIDC6BnZ2d2CkAEgaBoPMCZAcSBEmRjh0AlC3QaQGiPp1O41ik47KAZrOpVqsVx0umAE4EuiFwToQEdqQh+LVaTev1Ws1mM143TovRaLQVSgjZ8jINyJHXu+NigDBmWXZH6z0EClwTOBCkYzJ1dHSk4XCo5XKpRqMR3Q04PXBRTKfTeM1co9fAM0buGYQPglmsb0cEYh6YXyd87lDhOebEu054iKATae/2AVmE2Lq9vRgyWSTBOBCcbBYFg+LOtu/G87s7I3yNImZAqr0zBM4d3/337AQXsyDRtVotHnezOW7PyZoDLkoUXTusM9/R98f8mjgWc8Znjc+lr12CTfk8sH65BtxEzHFRyLhb+08Xn/yaOK6vG3f58Dhj5LWPgKDwwL+LExISEhJeEdL3cEJCwhONewoKIYS/J+krJF0KIbwg6Y/r+Evzu0IIv03SpyV9rSTlef7TIYTvkvSfJa0k/e48z++7kTvkisDC+XyuyWQSA/9COO5a0G63lWVZtNRD7iEp7Kyz4wwxWq/X0V3Ac4Dnut1uJPbkMvBDC0QyA2azWaw1RxCQ7txxl06DFxuNBvMaSfnh4eFWYCTOgWq1GoMfEU28bSIEHeGD2nNyDdbrdcyDYNfZj7HZbLacEbdv397KTiAoslqtqtPpaLPZ6OjoSLdv34429yzLtkg8JLHoVvD2fggHvrPsJFE6DY70nAHmDfLsLg7mi7KX4lgARJ4xF3eheS2Pu6Dg2R7SaStDt9P7fxkf5y1a9iuViprNY2vjZDK543mfEwgx97AouLgT5SyXAmQZJwD5G2eVTbB+3MnBeRh38Z7wfoQAv9cuvPj1sI6ZR7JPmFt3kHhpQrGkwcfg9wa4s8SFDJ9rd4nw2EUTFF7P7+KEhISEhDuRvocTEhIS7sQ9BYU8z7/+Lk995V1e/79L+t9f6UDYTa1UKnHne7lcxvIDSFuj0VCWZXGHlI4Nw+FQm81GnU4nEjrvEgA5qNVq8X3+/GazieQOwpTnucbjsSSp2+3GHVEvv4DsECbn9ntezw4+5BtySunBzs5OLB3guHmeq9frbZU/ME4EB0nRxeE76MxZnueRqEISvSsEuRGUlkynUzUaDe3v76vX66lSqajRaKjb7erSpUsK4ThEcjweR/IOASSrgpIVdqghirVaLYYCLhaLuHPOPLgVHzLNXEunpM/dBOGkRMbJN2uJ9cJ8chzGzHi4b8UdedYAjgQEE9aFH4vHINT+nItd7pTxwEt3ZfjnwUUZ77jgrUOZB3+e7A13EPgxOZeLZTzmQgSfO57jHiAmeekBwgvPu6iGOOBZEsXSE+4Zx/ZuIv6Z9HlCWPAfL0lxcUXS1vEYj3fAQGRgjSLAXJRQxtfruzghISEh4Wyk7+GEhISEO/GgQxlfNSg18Dpp343EBp1lWQwJ9LyF8Xi8Zc33EorVahUFBC958BprJ5jszEO4EQEkaTQaaTAYRLcEJRCQeMgxO/pnBfU5mcHVQH4Dj+cnGQ+EI5JfsFwuNZ1Oo02ccEXmYTQaxQBIdmQJ3PPxNZvNSDwhdIg1nU5HWZZJUgyOvHLlikIIun37tnZ2dqI4Ua1W1Ww2I/kaDAZRMCDscbFYRLdFsdvFfD7XZrOJzg3mSlIUYpgzdzL4Ljxg7ryenpwHyDz3udlsbs2JhzXiHGCc7lTgHE6OWUcci9chkMxmsxgESjcDSllcqOBanMQi/iCEMRce3thoNNRsNlUulzWdTreEA88AcXGK+XQHwlkODG836tcF4cZVxPFc3EAQosTEhRov4XFXSK1Wi+KPB4n6PLlDwR0oXrLAeLkez0wAfs+4Tl9PjHc0Gt35hZWQkJCQkJCQkJCQcHEEBXbwvcYZctJoNLZqpZ1gQ+gRCygPQEwgywBSTXihpK2ad7dAcxxeg6BAScJsNouiQ6lUivkJkCyIK4IHrxuNRjFQkt1rSjx4PyQXUs5YCaek3AIy6m0lKV3gvb6TLG1bv8vlchQbsixTCEFZlml3d1dPPfVUPHan01G321W329VyudRTTz2lZrOp6XSqGzduaLFYRELrhB5hgvmHSLtQVC6XY2YDAgljRkzw3W2ugfXirgQnvpvNcWcDdyywjooEGmcEpSGeW4Djg/uJm4I1IZ12VcDlAcmGVHN+SbHbAk4Vd1D4rjrrjvFw3zg314jIwXFdAOG8LmAxf0XRwB0DzBX3h88B66HolmDenYwz5mK4J/eY4NBi3kQxuNI7LuBoYd0W3Ry+LrhWXuelHC5KAMRHz5YollAkJCQkJCQkJCQkJNyJCyMovOtd74olAL6jXK1WYxmEdEpWIPaSolPg6tWrqtVqGo1GkThQC+4hb5BnSCfExgWMosWePAJ29REZEAIgp26dxz3gwgOOB8hVo9HYIj0QNQQRdrcpifDODK1Wa8vpgJggne4244pgt9d37qVj8YTOFaVSSXt7e7p06VIkX1euXNEzzzyjTqej1WqlS5cuKcsy9fv9eL69vb1Y3kBXB8pXCN3jhwwHzrdarVSv16PYwPU60SU40nfQvUbeMxEAY0AEoDUha8BDHv3+3610wp/312CR91wL/+Ex1lW73Y4iGPeM9eSiAS4Ezu/uBBdauH8QbRdiGJ+P1y3+PFev16Mo5aVBuCj4LE2n063ARHeaeOnEWeGKzWZzS+AollK4wODtIz3Pg8wH5onxe6mDOxS4Tl9Lfr/5rBXFCC9lQtBLSEhISEhISEhISLgTF0ZQmM/nGo/HGo/HW90dIDTL5XKrRhyyLUmtVku7u7tqt9uRiEAysJo7KYU4IAoULdSQI8iQt2T02nUe8x1XShdwUfgurnRKWrDVYwEnRLJer8eyANo4lsvlSN4h5DgbvK5e0h0iiO/OInjwO/Oyt7cX56fb7ardbkdB58qVK9GVgOADmWy329psNtrf349hlbSwhLRBiCHAkEtvE5jnedxh5/5BpplXrhPS6zvUfv94DQGaAGLqc1kM+uNes+YQCXAT+C4981oUInituwI4Nx0zIMeM14UKSVuuC46BUMS6hmwz33TvgAwzv7gYJG11kqD0gbmFqEOguR7WvueCFIUW/1whTBRf54GZuIE8C4E54XxcE2NwRwTvRbRwd4e7VLgOL8FgPvjc+Xz48ZirJCgkJCQkJCQkJCQk3B0XRlCg1t3FAg9UrNfrkRhQ7sBubqvVigGGo9Eokiqvz6/X6zHAjx1+jufWa9/tZFcVG77bpSHX6/U6dp7wNoa4BiB+7FhLpyQny7L4vlarFZ0RCArL5TKGQjrRcwLooYaUOUCEzkr7x2HBdTEGrO2dTieWmJTLZe3u7qrT6cTdarIQPIgSd0G9Xlev14stOCXFvABcF8xDs9mMxJESB4IhXYjhB7LHuHwX20tW/H1O0L2MxcfCzjX/JqsA0QYhgHmHzHNs5tEJuId9umXfS0NY557NwBziNoDEIz54aUIxT8TLeDgfJNvLiFi/jLfRaMT8CklbO/+ejQAJd/HGu1sgJHB/vHsG98sDF53w+3p2gcYzGhi7l4D4WFzgcRcLDhkv92FeXWDxeeG1fLYSEhISEhISEhISEs7GhREUlstlrEtnF15SJIjYuiHxkCrIvNvIISuQwkajEXc8IfOQIf+3pEjkIYe+Aytp6z10B3CiSj07IZBO7lwUqFQq6vV6arfbWi6XmkwmWzXc7JISxCgpXgdkj3wC6TRAjh398Xh8Rw05DgAyCyibcPIJkYOEZ1kWxz6ZTLbG0u121e/3tzpxtFqtKLiUSiX1er2YUTAajSKJZYcYIYBWki6CIJBA0hFJIN2Qe/IZ2KV3ez/3xEsseNxfhxOBUgN2zRGjpNNWkpQW8BjrwvMNmHN2zbkWyDfX4iU3rC3EE0g499HXdqlUuqOEwx0ExWBEiLG7IYrrHxGjWDLhTg+OwdiLWRHF4zmJ573FMoxiWCLHQsDyIEx3VnA8z11w0cQ/E7gfeK4YNFnMbuE+JiQkJCQkJCQkJCTcHRdGUIAYrFarmKNAEFu73db+/r4Wi4XG43EkXNJ24BtEDQK22WzUarXU7XYjEXSLOWTDk+dns9lW/Te7/ZAydtxDCJFIs9vMWDiXExrfla1Wq+p0Otrd3VWr1dJoNNpqVemdEwhbDCHE3WiAU6NeryvLsi3XBdcBcaOEgvDBWq2mZrOpXq+ner0exQLfMec6J5OJ+v2+rl27psFgEOvr6/W6+v2+ptNpLPuA2EPE2+32VqkKu/7SKQGF7EKImQuIKePn+WazudVOkJBL5pZ74+6NosjANbq44I4FnyN2uBE8RqNRzPRgfKDoCMF9wWvITCAnwoktYhFziQjhxNbdBUXiSytQXufn5xzu2kCwYGyIKt7ektdybRB2xDk+o7zO59CDGhmnZybwWeFzxPPFMglEI18rOAh8XEX3BHPopR3+HcAa9DIK5tIdEQkJCQkJCQkJCQkJZ+NC/LWMfXuxWGg4HGo0Gmm9XkeLeLvdVrvd1q1bt7aC+Xw3UlLcBYfgumVeUrTme0Ahu6eIBpB33xmHAJJZQEkASfaQaK/npqyCHX524LHet9ttZVkWrdcudEC4JcUOEn6d2MbpYkEWg+8YQySx689mM41GI81ms0jYKHfI8zzOOfME0ZrNZrp9+7Zu3bqlW7duaTwex/ewU+/ErthGEsJZr9ejKOM7zi6kcB+c1DvY6afOnuuo1+tb1nt+vMuAh/mx5pyQM3/8Xi6Xt8odvLsD7UX9nnkHAYg6ApmTVsgz18N6KYZKFsfjjgh3QLijxssBWCecnx17D1J0ocUFGuaRvAMv98Ah4AKAHw9Sf7fdfcQcghYRsRBrGINfP2UL3qFFUnQBeYkDAk9xbTF+L59AnCuWTRRLJhISEhISEhISEhISzsaFEBTY1ZzNZppMJpGcs/vcbrfj88VAPbIHVquVBoNBJM0eCMex6NTg5EU6DVdkd3RnZ0eTySSSp+VyGXvRV6vV6D7AHu+7mogSWPsh0lj1ERIo75C0RcrZzW61WtrZ2dFgMIg79J5uXySZ0mnQIm4ASTFLgvaM7r4g22A8Hms0GqnZbKrZbMb2nXmeazAYaLFY6ODgIHZ2YHecXfZGoxGFABwETsQgkJvNJtr2ET84Fi6G4XAYj0Ppgc+P75y7Jd5LD7zjgjtNPMzQ3QFejoBDA8LruQW4J2gJClln7tlJp+OFZwhwfb7mWW9niQeQed/Vd6eAixj+HIIDwpmTfOaG+fISDF9LrCGf86IzwjssuMDAMYo7+x5miXuAz4CLhEVyz/pCmEMk4jPg2RGsac8SQSDkmO5UcScJc+yOEndCJSQkJCQkJCQkJCTciQshKEjbYYGekg+xo6xguVxqNpvF+vzLly+r1+tpvV7HzhAQAt7Drj+5Ah72yE7/fD5XlmVqNptbFmxKMKbTadzh9daMAGs1RJP8Ael4J3VnZ0ftdlu7u7vRVk7nCm+ByS4q5Q2z2SxmNBTt7NJ2ij2/T6fTeJ2LxSIen9A/z2JYLpfR2cH10y1jMploNBrp8PBQR0dHmk6nW6GT0ml3Ct/VRURBHGJ3GcGF1/qOvBNzJ+qcz3emIYNeX19M/sfl4Tv2zK0LCi46cV6CJ9kRR6Dgfcxdcew85yQU54SXG5wVBOiOA46JCFEUE3BLIDCR0wEZvlsHh2LnDJ9v787AXDDXxS4PjAvSzmcCsYLxM+ai+4DyBe6Ft7tEpGAsOEVwurjDCEcLogGZIJ7F4o4LwHjI4ihmePDdw/1LSEhISEhISEhISDgbF0JQoI6aoEV2Zt1FMJ/Po2Awm82UZZm63a4uX76sTqejo6OjrUR2CIJ3iHDCT/YBjgcCHpvNZjwP5RMIAhAkXu9Eid1QQgHb7baq1epWt4Ner6dOp6PlchnFjjzPNZlMNJ1OI8n0TAjfWUaAoFRitVptBQ5i56bkY71ex2ugHKHVasW2jTg2sI4zB+zo4xgZDoexvMLdHi7Y+E45HRhwLUinWQOlUmnrHvhOu5dQIBRQbsCx3drPGDg+84dgAhkk2NJzIXgt10zXEFwxjUYjBiFCdhFCiq0VXVwolhBAuskLgDS7w8TXLA6QYrlIsQxBOt1VZw0UA0SZMwQGPl8ICi6a8VlxscpdCsy732fWoGeM8HipVIr3xjtjFHMVGBPnYm14WCVz7ddULh93CiEYldcwbz7/Hk7KfSyXy+r1enF9eIcQ1h5ZFgkJCQkJCQkJCQkJZ+NCCArsXEOe3R4O+YYYQ8Ilqdlsan9/X71eT4PBIDoR2HGHcFJj7+n87GpC0ti5L5fLOjo60uHhYdylJ8+h1WrdkeAPmZlMJvE9dDbwuvNGo6FOpxN3X1erlUajUSwDgHxBlCDNvN47KeBeQETwgLt+v69+vx8J0WQy0WKxULPZ1N7ennZ3d+O8QrIhgtj5pdM0ftwOODq81IPxNxqN6HZAtBmPxxoOh7FTgndY8HND+j0skWvncWzvzLsTci8jKHapcCLtXUEkxZaivrPvoZuQZY6BKwXbPYTVRQW/X6DoWuD1xewAF9BqtVrslsF7pNOSFsQTFxS4fi/dYH6KwoC7FnD8IAwxThd8cHngDHK3Bfkifu+YOw865H77sf2a/bh+fK6fa+C+MYe+Xvivu51crPBsDvJN3J1AyCRj5HUJCQkJCQkJCQkJCWfjQggKxV1RJ+qEFnqtNGQKe74TbHbH2ZGv1Wrq9XqRiHitNDvX1WpVWZYpy7IoXiAkEHgHyWf3lPfjchgMBprNZluOAnb13bbN2BaLRXQ04Ihg9xwC650KOK7nAqzX6zjuer2uw8PD2IHAMwMQIchvQCTwZHzq/jmvdCySTCaTrYwIds3ZGSZzwcsUmA8EB3bZPd/BnQ3SafgkGQbSaTtH5t/DNL07AteAoOAdNRBWEHXa7XZ0n3jLT9Ya5RleYlDMGOC/lEFIiuN2os/a9jHiNjgrf4MMhl6vp16vt+VcYW1IivfAr5PcDrJGuIc+HtaOf97m83kUgvxx6U4HBp9Ldxm4sMI6RKQodkxw8YdyDebHXR8ubLjwwOei2KXByxPczeOZCO7GYC78e8YdIdxvskwSEhISEhISEhISEs7GhRIUIG+QAdoTOpEiGR6C2Gq1tnbqPfiNMgPKERAU2CGHDFJzj80fMoQIUQyxq9frUSzgmMPhMO6CS9rKYWDn33dY1+u1bt68qfl8rsFgEHdbN5tNDJZEFMA9wBxQF87j7FAPh0MdHR1tOT1qtZrq9bp2d3fV6XRULpejaMBcNRqNSOYnk4kODg60WCx069at6ORgB5gOB+PxWKVSKWYNIM6EEOIxCMBEXKlUKnH3mBIDjo04gxAkKe7isw7IZIDwUz7CGF1EYd4kRfeG19PjCKEsA7JN60vCNxGVKDXwsEHWW5EMc24XPqRTd4CXcQDWUqvVUq/X27onXo6A6AEJR5yBNJO74aUTvvOO48PXqIsuXkLA9eIGKGZ3+DxTLsT5GTME34MkPdfCP/e0FSWXA2GM+0RrU3ei8HlkLeIg4RoQVs7q1kDQqgtr3Cf/vCckvFYEQmOvXtGH/+Abz3k0CQnng8/5a9e0+vgn73i89NbP1kd+19WXfe/8L77vIY0qISEhIeG14p6CQgjhb0n65ZJu5Hn++SeP/XlJv0LSQtLHJH1DnudHIYQ3SfqQpI+cvP19eZ7/zvsZiO+4eso8OQEQacgQ7Qm73W7MDJBOSRAdFVqt1tYuJTvhvtMsSePxWDs7O7F0gsfZHWZH2i3l7LiORqOt80KOnAAiFDBWxkPoI9ePewAhwAmTdGqh951ZSHW/39dkMomEjPFg73aSXAxRRCS4ceNGLHUYDofxnpANQakDXSE8q4HSjIODAx0eHkZ3BXb5ZrMZ3z8YDOL8c26CMbMsi2GREHzfXWZemXPGgMXdRSBfX8yj2/l5D+fwmnnWoOdLUFLjIhgE19eG1+LjPvHuB7zfx+FrthgQ6CGF3iEB8YDPCfeeXAUv36D7iYsulBMgGPBf3uvzwe49ggBr2+fWy4oQeIqOAi9FkbZDG7km5obnV6vVVgcY1jZjRlz0sFPEK9wIjGW1WsXuKcXMC+btrE4V543X67s44cGi1OnoI3/i86Rw79cmJDzO2LTqUgiSdzz6rOf04d/98mKCpAvz+UnfwwkJCQl34n7+Yv52SX9N0v/HHvtBSd+U5/kqhPDnJH2TpD988tzH8jz/olc8kJPAN4gyxBdAKvjJsky9Xk/NZlOj0WgrwBCLPwGD8/lc/X4/EmEIiHRMJMbjcSwhQFgo7kS7HZosB0DGArkJXpPtxJLSBrdfs8tcr9e3hAbvnJDnubIsi/Xgnqi/s7MTyzRwNQACGMkgcFIHQe52u5IUCeFkMtFnPvOZKIggQlD6gdBAKQTug+FwGMWUg4OD2P4RAsf1eTkHLgFEhlqtFltXDofDrZaQ3uUBou1tFSH9ft9cdKGsxbsJcG8QAlhDxU4COGPI2OB1jN0DD1mDnN/JNcTdz8kxcNPs7+8ryzL1+/3oLGAOuWa6E+DywGngu+nNZjPeU9Yta9XzIFhnvjZ4H84Q6ZTk8xoXE7ged3Mwx+4majabW9fs3S1cPKCswbMpEAcQCNyZQwgqHVoQNVgzrA/cGIyJ+8u/ETsQrBArLhC+Xa/Dd3HCg0Hp6hWFcln/5fd+lhTye78hIeExx3/5hp7e8WcuaX3zpiQp1Gr68O979pxH9Yrx7UrfwwkJDxzlp65q/YbLZz+Z58p//Kdf3wElvCLcU1DI8/zfnqis/tgP2K/vk/Q1r2UQkDYndL7LS032fD6PJJQdfO824Lvu7BpL0tHRkY6OjjQej2OwnNvGIfvSaUcAFxUgcEXCD+nw0gx2k8fj8fEEW8o8XRMg9JAlhAGumV1lrgNBwNtneu0+7R3zk44WHMMDBiHnjJGOD71eb0vAQDTAMg8JhohtNhsNBoMoILBjj7jANfrYcAxADBF2ILlcEzX4lGvg0OD8HMNdAZBALPfALfFcb6lUimP1ucElgTDgIY2MpdVqqdFoRGEFcG1FN4FngfhOPOSb469Wq5jzcfnyZe3u7sbSg1qttrXu/N45Mfd1w7W3Wq2tHAjG6qSczx5CD6U55IUwv+SA8Ln0nAPWMe6U+Xy+FZTINXMvKEnwde/CGWITnyuu3x93AQTXkncu8XlyZ4uvHc+8YC4QcAhi5B5dFLwe38UJDwblz3pOH/8tz2nR20hKYkJCwuOC9D2ckPDKsfmvv1iL3p2lp47nf+1aH/+qv3nmc/N8qa/6nb87/l67NVf4kZ98oGNMeG14EJ7e3yrp79vvnx1C+L8lDST90TzP/929DuAlDhBF/rDP8zxa5CGnXrONY8AT/71uezQaaTwe6+DgQKPRKL7XCTmkZTKZxPNXq1V1Op1IpiBWkCeIC+OA2FSrVY3H4xiSVySVCBVO5CChOB2azWYkdjgFvP6fOaOUYDweazAYREGBcUA8CdFjRx+xgfA/J86SYptIJ8WICZvNJjoUZrNZFIKkY3JHNgPhfOw4k32BMARR475zTews0z6U0gd/Pe38mBeyISCQ3r6Q95Gjwe481nYPHGRNeF4A89hqtbYcKJBXjl2cQ2+ByH32Mg120iWp3W7r0qVL2t/fV6PR0NHRUXzdarXScDiMnxXG7EGlEGCItq9vxCxfM3xG3LnAmsHZg6vGQxC5Jy4GeMCkdyphLbDmmRsvZfKsAuk0QHM+n0fHT7Va3RJfXMzxPAnm3AMpAZ8Td1W4aEEHES9vKn6nPCJ4zd/FCQ8GL/xqxISEhATH/L96o8r/+kDarKX1Wp2P7mjw1sfqs5K+hxMSJIUv/Xzd+uK2JOndf+B79e7ui6/6WLVQ0b/5G++Jv//RG1+gf/5//nxJ0pX3Hmj90x+521sTXie8JkEhhPC/SFpJ+jsnD70k6Y15nt8OIXyJpH8UQvhZeZ4PznjvuyW9WzomSYPBQNPp9HhQJ+SQhHV2tCE3tVpN7XZb+/v7sb7fSyQgOLPZTDdv3lSpVNoSE5zA+G4qZBg7NXX97KIiNEjaIs7e0pCaeZ6XTkUE6bRmntexU+rEDudAt9uN1ncyGNgBZrcfRwWtISGSTvYgapAjBIX9/f0YbAh5Y87Icmg2mzEQj7n1HAZIJCRNOrbb42zgfF6qsbOzE/MXyGYAOEgoSfGwxmIoIGuH+8XuN6/3a6aEwXfMfXcdIuluCI7farXUbrfj+Skf8eBNxgcR97IW7iuuCElRlGg2m7p69ar29/dVq9Xi/cSRMhqNtjo0IEZ55wnWFc6LWq0Wuz3wmiIxxtrPeq9UKrGkA7EAQci7i/iOvV835BuBoOhmKJY2FMe02Wxi+Y+HqnqJCXPHuJkLRIrlcqnhcBjdQYzf8ydcGOSzm2XZ1lzwXhd9Ljoe1HdxXc3i0wmvEDtf+Llads57FAkJFxOf/OUVvf1HatpMJspXKz39nR/W4I++/byH9UCQvocTEqTSO96qT3zdFb3xF3xaH/jcv/1QzvGnr/yU/vSf/ClJ0pf8+K/T5APv0pu//XmtPvX8Qzlfwr3xqgWFEMJv1nEwzVfmJ8wgz/O5pPnJv388hPAxSW+X9IHi+/M8f4+k90hSvV7Ph8NhLDXAwkzI2ng8ju4EUv89cHEymURRwQkkhIodXLdhE5TnO6yQPIiMp8V7zbfvXjebTTUajbiLys4958NtAVnH2eDkmrGye9rpdPT0009HCz9dE/r9vvI8j7Xik8lka4xch6ffS4oZCIgL5XI5zi9EkRr0F154Yav+nF1qnBLePaK4881c12q1KEh4hwHCAiHuOBVqtVo8z3Q6VbfbVZZlGo/HW+0tIZeMgXFIp3kF3i2Ae8C6wWXhJSCIKcXyAMQISCdkemdnJ4oduBq4ThcouD5J0Y6Py4FQ0F6vp3a7raeeekrtdju6DhBcKpVKfK13MPGSj2LLRdact+HEqVEk5cyPu1q8ZSeEnDlgLYUQNJ1O42sRJxijzzVOCxwRjNmFBdwczC/r09cN67mYf8Fx+DxQSsNnimvks8V6IhfFhSlcL4gj7mi5yHiQ38WdsPdIWTIuIm5+aU/zvcdqxzUh4aEhH0909Uel6z/nvEfy2pC+hxMSpPKb36SbfynoQ1/8La/bOX/8S75L+hLp87/wN2h84536nD/wQW1ONkETXj+8KkEhhPBLdBw489/keT6xxy9LOsjzfB1CeLOkt0n6+L2Ol+d57HQAuSNMcDAYaDAYxF1nCN2lS5dULpej2MAf/14DP5vNIskr1lCfjDcSTkLfKF2AcCFAQFwgZ5C+LMskne6Au3MBoubhhF7X7db6xWIRXQKdTkd7e3vxWkulko6OjtTv9+MuMi30PHiQJPx2ux27JUCO3BHhgXaMKcuymCXg4gHXhvghbdvlvQREOrXfIwBBjCljoIzFSxf492KxUKPRiPcMAQaBxwURxsZ9ZD7Jf8CWX8whkBTHAbhXOA4QSMrlcgzDxE1R+BzEcRRzCrzswgUMzg/JpeyEtYxI4WKXd1rgnvm1FO/RYrGIYoyX/0CYuVeeM8ExeM5LRyD3iAQIVKwF39nnc+elS8WOCYggrIOiu4FjuqvEAxrd9YCjhNIf7hH3klwISjC4JuCuFa6fY9FW8iLjQX8XJyQkJLye2Mxm2n3fi7r+c54576G8aqTv4YSE4yDi/G8u9P53/KNzOf8Hf+6xMeidz32t5suyZvOK3vTr/9O5jOVJxP20jfx7kr5C0qUQwguS/riOE2xrkn7whBDTCucXSPpTIYSVpLWk35nn+cG9zgGh9xp/8hHIPoB8Ezh3+fJl5XmuyWQSwxZp54fd2tPai+UHHmrHGJzkcwyIGq+D9NCystVq6ejoaKtNpKRYm+22bem48wLt7yBSLlaQneDtDyHbEOTZbBa7ICBaYM/Gvp5lWSxnYJ4gaJBpXARZlsXSBpweXi4BuYYoU0fPmBFcIL7cj1qtpm63G0mt2/UpH3ERBuKN+wE3SlHkAcwJ/8ZJwVxwj7mfjBfhZjqdxrliN5x1ABlG2EK44h57CQtgrijLYVecxyVtiQV0Kmm32zHAkk4RHI/3+DrxHAR22cfjcRyXW/Uh+iEENZtNbTabmEnB/fAyFuk0HDHP87iGPQwR94aLCYzPO04wBy4QMH6uwbMligGIfEb8cRcdOQ5tR4v3nLF5q1DuG69lXZKzsFgs4ncJgthFwevxXZyQkJDwemNz7Yae+8Grev4Xle794nNG+h5OSLgL2pm+/x3fc96j0Pu/+LslHQc5fsN/+Cp94NNv1Gd/fQpwfNi4ny4PX3/Gw2fGcOZ5/g8l/cNXMxBPjqeMYDqd3hGOlmWZ9vb21Gq1Yq7AZDLRcDjUYDCIYXvsHmOBh2hROy+dignsskunhIVyCX6m02ksN6jX6+p0OnFXm914auQ3m03caafMAvt8vV6P5N5b2EG+siyLrRpdoMiyTO12W6VSKV4P1wohgiQhNHS7Xa3X60iOEAOwxB8cHMQdbcgXYZIeVsjONoQRhwZzyK7wzs6OJpNJDLdE7GBu85NOFwT8QZy5JwQKIlJwHZwLFFtvFrMK+N0t+MW8gdlsptlspna7HUUYxAPKYZjX6XQaXTCStgQVfue4/E64JmUc7IIjFrE+OTe775VKJQoXXsrgjgx/zAMfERc8MJT3sTbJwmBucAR4SCLrldIi74bC5wJhxINH+aywBjk278cFhIMB9wLzMZ1Ot4RFhAkCMCm/8NIEd2P4OmFefT0AxCeuGyGRtUyOhX8OLgJer+/ihISEhNcTm9lM9R/6T3pD6Qv1wi+8ON+5ZyF9Dyck3Imddlu/+h//6HkPYwu1UNHf/ex/rVtvHOtd3/k/6LO/LrkVHiYeRJeH1wwIpnS8g0wY42AwiOQDcp1lmVqtViQUdH+glSEWdW+56LZ0r8V3Gz+Ez9vt+W4rtvlms6lLly5FUjkej7Ver9VqtVSr1eIONSn17IJC+iBkvI7dV0oUsiyLpBCxoF6v69KlS2o0GtGK7c4LRIz5fB5JbaPRiG4IyCevh9gfHh5qsVjo8uXLscbfyxek0x3k4i49ZJDAPOaD60PswB4PiaOMg/IK3g+5Jk+BUgecEr5rz33hd+bSuzpAPr0kgPUAMfZ2hqwL0v8pceDe0aGCoEp27L1ThJegEKrIdbdaLbVaLXU6nWjVZ94Qk+hogMsCIc3Lb6RT0QQCXi6Xo8CFYAOhR6gjKJOxeaAhpRFe4lKv16OY4GUO3iaTY3B/mSvEJ19DOF+87StuFEQUMjW8/SV5G6wTRB7PH6EMgut1J4K07YhAFCs+zhhxZvh3QEJCQkLCg8E7/s/rWp9R35zP52r885/Q09Uv1ks/P5zxzoSEhIuKUNp5TV0cHiYulTL92M//G/rib/89ettv+fHzHs5jiwshBUMosYG32+0oFkDYIVbsWrPLPJ1OI8mG8PC6ZrO5VW/PzroTNHY+aZnX6/ViSYBb8dnx3d3dVavV2tq1xXnArmir1bpD2PDAQHb5OT9jhlz5Tne5XFa73dbly5fjuBi/EzxIMLvaZC9ABJk3jjmfz2PpBQF+iA+cAyLaarXiuCB9CABepuCk23MRsJEjeHAsSiO4Vhc7mA+/X8UaeoC7wkk0O9mIHogDrAO3+Lu44+0xWVeMEUIOaBnqrQulY8JPGQW74JTH0CGCsdRqNXU6HXW73TiHlKJ4lwJ30LArz8485+Q6eB1lCDzn5UR+77g2F30I6UTkIFfARSyOy711xw9wMYZOLdwf7i9OA3JE+DwhsLmjg+viPvMYgoi7GrwjC//FPeMOH3cqcCxKUOg8k5CQkJDwANC/ezZNvlwo+54P6PKPS8pPfhISEhJeI7o7DX3oF32rfuav/tzzHspjiwshKEinO+Hs7A6HQx0dHW21vfMWj1j1p9Op+v1+JLkQJggagoK3f4P4Q8LZ7aSmHRJFeB8EEPIXQoi79ZK2ugBQtkDJg3SaYr9arTQcDuMuPySxWq2q2+1qf38/ihXsyhddFsU2dr47zu5vvV5Xr9fTer3WcDiM44LgYmlnt5q5gPhDQpvNpnZ3d7W3txd35REZ2BFHiKELgJNDSDs/LlB4+QT3DYcA5QUeogmphfRx3RBl71KA/R8yCln0nXYEC59XSDoE2UmydJpx4TkM5CQwFgizd53Y39/XG97wBu3t7cW8C6z9iAxc+3Q61XA43CrrADyPyEGGgpc+MA4EK8+koMwA5wfuhOl0Gueb7APWNGLMeDzeyjPACeBlSTgIEOEQN8j8mM1m0aGCu4B1wrpmfKwp1qvnVnh4I9fp6wQHi4dico8QDBBLyG4gP4HPEfNfzO1ISHhZhCClJZOQcCbC/TQ/2azV/dvv01v/4I+q9fyOwloKayVxISHhomKnpO/96X913qO4J2qhoo9/7bfq03/8Xcf/r054oLgQJQ/SaanD/v6+5vO5+v1+JDkAcsQuJrvqng2AoIAIQKcACIu3m4P0cWzEAogkjgDS3vf3///tnWuMZNd1ndfp7up6v/oxo56RZFEkpUQWYkZJ5AAJDCFwYpkxIPlHIDlAYiCGbMUUEhuRETkGYgWwf8iIY8CxJYOGBdmCYcWAE0d5IXEehn5ICSXFJEWGGomiSInDmenpR70f3V1986PrO72rOG/OVN0a7gU02F3TXbXvOedecK2999rrqlararfbMetpe/6Xl5dj1ppMty2ltuPx7DVVq1Wtra1FMYNrJls//bc2W2t9FGxPfrvdjllWSDDvA7HOZDJaX1+PUwbIUlOGT5ZaOiViCAjlcjlm9fF1IGaIKX9HiToChKRI2ij7t6X1kqKBIHvHekKOWQeECtYA8shZkU6nF1AuT9VHsViMhNVWV0BUqbTgvW1mnt5/9orPYI04f8fHx9rc3FSxWFQul4ueHyEEVatV1ev1OOFhb29POzs7GgwG8VxJp0IF7T+cG/vv1hQzk8lM+Fqwpvw7lQxHR0cxHs4y1TW0MlAFhIAhKf6XNgbuK/bFej4gGtjpFfZMcB/y+ZiuUk3DfcbvhhCiUDQYDGKrBK0yrIVtg+D+5L94XLB/XIetGmK9pidsOBw3QufvfL/2v9eZj8NxLbz9Ny/r6OrVW/vlJNEbfu2L8cedpHuPonI4HK8VmZB+Q1Xw3E99Ut/X+Glt/eYTSkzS0PHakApBAbPDM2fOqFqt6vLly7E82mZErXleNpvV3t6eDg8PJ0b+QSQxIyRjbFsD+ExLzCGJZFPxQaCVArHjWuZxlMRTYQBJQdAgNggaf0OG+dy5czp37pxKpVIUIDBmbDQa6nQ6ajQa6vV6GgwGMUNu+9wtSZZO/CckRRIeQoiEGRJYq9VUr9cjgdzd3Y2GhPT808NOZvng4GDCud8aLCIMEA9EkUkKiD2QNn6fOC0JhOj3+321Wi0dHBxEAYBMMoIPQg5CAKQeYj09USCbzcZrY18go/hecPYg81TPUHUiKY4yJXaqHvL5fPzbYrGo9fV1lctljUYjtVot9ft9VavVuHe9Xk+vvPKKXn75Ze3t7U2YI9pKAsg6ogYVL9KpGHBwcBA9NlgTxBhJUYShqoCzy5pgTEnWnikqdhqK9amYvpcQpdhf1p02h+mKEXtO2HsqFKhi4PPwBcnn89GQtd/vRyHt8PBQvV4v7v30NBKMQmn5kBTNOe1IUNqb0mTI6Eg/lgoFHWWDPJXqcLwaK90gTU3ycTgc9wf+uFvS+4vpH7UNnvqnn9R7nv+Qsv/py/MO5b5Bav6PeW1tTefPn1cIIZZ023JvSrFrtZrOnz8fCY902j8O2ZJORxfakvjp8mVrBAi5bLfb6nQ6kSxTAVGtVlUoFGJJOs7wEFamKkiKRIcsNyXuiAtkXbPZrNbW1lSpVOIYw0ajEXvnyVpD9CVNlJST9eZ1+vYhmsPhMBJ/ytOtbwFkd319fWK0JL3rlphZ13wrHkB+2R9GUELgKC9H7KACwxJeazzIPpIh393d1fb2tjqdzsR5kE49JBABpiceUNVhzwix25GJfHEWJEWSCSGdNoGU9CoxIZ/PR3EGwowRo82oS4pZ+F6vp8uXL+uFF17QxYsXY9UG12NHIiKc0BbEmiEGYM5JhYCdXgI4k9NjUDk7rDstPXbKim1Nsa/xZX08bCsCghJnwno92CkcSZLE82NbkmiVwehUkhqNhlqtVtxvSVHEQ7zg7y2oLEGQ4F5l3WyVhh116XDcDKNHHlbjbfOOwuFIJx74o5aOXvruvMNwOBx3G8cjPf5X/tK8o7ht7L4jo6UUjQZfdKRCUFhaWtLZs2e1urqqZrOp3d3d+D/5kD1IU71eV71ej+X81g2fDDhjHiEjECVrgmjLmunVxo8BIgn5ph3DZkUhh4yfgzR2Oh212+0JEk9lwfSIQ4znGFPZarWi6WG329Xu7q5arVY0VcRfgfYBSCTXQfZWOi3Bh1QTA0aMjL6s1+vKZrNRbIDMQq7IKpMVR4SxJoSsaSaTUaVSidllqibwW8CnwY7DZP8pwZcUq0B2dnZidty2SkAiESUgf+12O477s5UPCBS2ymVaDJAUTQLZM2KZbr0gVsQqPCoQnSjzhwiTPW82m+p0OrElI0kStdttXbx4UZcvX1a73Y6xWxHK7oWdrnF4eBjbT6ZHh1p/CAQG652BpwbnyI6c5Hwj2Nh9kU7bD9h7abINgvYf2wJh20bsmaFah4qdQqEQqyRsVQZiAr4gVK1wVm31jjVNtddAFcVoNIqjZhEdqUChMod9ty1XDseNEL74lDa+5ufF4ZhGbntJS+1XT3ZwOByOeeFrP/tJ6W1vmXcY9w1SISjgip8kiba3t7W3tzeRHebfK5VK9BlgSgEEn3Jm64FgM6fSKYmBqEmKZPPo6EjNZjOWkOOvQM92LpdTt9uNLQh4M9CCkc/nY/UC5nd4IPBFH7ekmLlFALDZdqo0yMBCmm3Wn8kLkDtbJk7ZORnYbrerdrutdrutfr8frwmPBIz3bP8/WeVpHwL6yvmZz4H4WlM99gtPC/4GTwnptK8f8sfv0LtPlt9eG7CmmUyqQHygcgNSyD7Zz7PVBogkGB8iWuDNYasfbCk8RoV2LyGp+XxehUIhihT4WuCPgGhy9epVdbvdSPT5N6oyWHNiQTiwFQK0h9hWEoQb1t5eKwQdIYB1ZW+4ZxDsWD+7rtabAQKPeSmxWh8D/t5Wo3AvjkYj5fP5OMHFGiPa8ZScZWLkHqBlgbPCPiJAAUQtKnikSSNIWzVj/R0cDofDcWfY+tJAo+e/Pe8wHA7HPUJycKjve+LH5h2GY45IhYcCZKHX6+nq1auRSJA9hoxUq1VVq9UJYgHptCZ80+Pr6EW34+CsiR1ktt/vT5g2QiBzuVz8zE6nE9/PklRKxAeDgSqVShzNaIUE+rLJ/pJxZg0gNYzMHAwGkTQXCgU1Go04jQLSRGUARJN+e+sNQEabbD8kjz5y1gMjRDwa7KQCsvC0BdDuYSsLKFPnWqrVqvL5fPxc60vAmpC9JxON4IIXQrlcjutk94XfJcZutxsNJTGShOBaXwabxadSAfEJEop/hvXjsKQUoolXBj4VtDUgvOCTMBqN1Gw24/kiA0/FCO0MVE8glkmKEyCsIaOdGsI1WIGGdgPrF8I12n3ibFpjSd6H6+Q8UNEw3TLB2eU9MEwE7BFVLvbM8P7cC/b+oEKDz5n2a7AVLlwHggD3Mp9lx45Kim1Hds0RbRAXvdXBcSeofL2hxoNrGpy5FTt7h+P+R+mlJWVf2pVbnzkc9y+Oez2d/+hA+sK8I7k9XPjZnN7+kbKOx8lkx50jFYKCdEJq9/f3o0AAQaE8nL5+jAsbjUZsT8A7gaoASRMl3tMz7MnU2vF6NpONKR/EGEIHQaF8u1wuR5LVarXU6XRUKBSiMSKjB7mGfD4fS/Kz2azq9XokjOVyOU5baDQaUVRhMgJeDGSwp0UJ/h0iBKmiWgISP21CiXElfflkym0mnIkK1Wo1vg+CwvT7kTVGBDk6OoqtIXa0pS2xh+AjukBC2SfECXweJE34JvDeKysr0Y+CknhbEWIJst1/SDh7hbEm1wHxt8ScFgPOmvU0WF1dVa1WU61WUyaTUa/Xi5MdqHZhbVlf/BEkqdlsKkkS1Wq1uLe2xQQRwFYVWA8L2lfs2MbBYDDhtWC9Pagw4OxwbXiPYDQp6ZpEnfVFoLOtDgg50wKV9aawIzxtq8W0QIaowahHO5HBThChYmY6xunqIL6ssIdxqhVMHI5bxfHTX9f3jN6uF9+/ruGGiwoOR/XFIx19+6V5h+FwOO41tnf14L/5sL71gd+adyS3jBf+5qf1tyuPuqBwF5CKel5IKtna6b5lMve4/GNWCMmDiJJhlDRhEmcd7u17Q3DJ9kL0IY78LCnGRvYebwBc+unfp9ye6QCQGjKgkNFaraZyuRwz/ngP0EIASUTgIAMPiW6327FqQDrNuh4eHsbrhrwjEFB6DonCN4K+c8rH7VSAaYd9iKF9D1o+pgkanhOsDZ4OeAJgIogIYY0ebcUF+29HQlJ1YVtPKpWKstls3FNi47psPz8igr3OEIIqlUrcC67LChDWjBAhi+kInMN6vR4nfkinAgBi08rKygQhpuKB8ZHdbjeSeM4s+0YsdrKBnRhCmw3tQPiA2PewFUGSJtoiqDAB/A1nxY5DRaSxoyO5XjuNQlKsooDMIyhJmjBFReCy+2IrcRCcbCsTbR/cB7wHMVINwdliba0IQduENaG01+Rw3CpGz15QZnHMrh0Oh8PheM0YtVp6+y99Qw9/9h/OOxTHHJCa/1uGgEM6ACXshUJBlUpFS0tL0dyO0mtLbiEfZEOt+ZuFzW5a0k//tnQ6as7+bM0G8/l8bGsYDoeRUNLPbisErFCRy+W0vr4eY+Yaj46OIgHv9/tRsKBNg2wt120nCpA1huhSug6x43MlRWJLuT4El5594mVfpBNRBwJvCb99f0mx1x8xYXd3NxpBQlYRV8hq2ykdEGiusVQqqVarxX2AFGK8SUUBHgsYUHKdnCtMGfP5vKrV6qsc/BEuKpVKfF+y8tKkISHiCa/RlmG9LKrVahS/EJpYKzsK0voeHB8fq9lsRoPApaWlSNaJH7JrDRQRYzAnbDabcf9ZcwQShIF2ux1HLCKuIKLZihPOEG0WvJ81OrRrg3hRq9WUy+UiSUcgs+0KCA/cA/a88T1iAEKdHUXKOiAeECeihxVu7AQP68VhxTNbxWTFCofjdvHGP3xBL3zorTqoe5WCw+FwOF4fGO3u6eyXj6W/N+9IHLNGKgQFhIDpCgVLbNbX13XmzJlIiGxPPn3blM8DhATrVE8mdHocINMMrLGfdGpGyL9bAz5Kx3k/Mq29Xk+NRiOOYYQ0kU2nVQICViqVJsZE0nawubmpcrms7e3tKI5Y4k6Wl+wrxIyYiWm6p52pFt1uN2Z++Z5KhEwmE/eEzDhtGBBDsvcQc4Qd6SRT3Gq1ohEhxMxOK2CPIYG2XQMSXiwWYyUJ7Qa2moUKBD6T60DYsG0qq6urqtfr2tjYiIIPawbZZz+tnwHrRntEpVKJRpC0itgpGPYs4R/BOYewk43n30MI6na7khQrV+wUEVt1YsnzcDhUuVyOk0Lw8bBeA4gGkmKVgTVUZM3tPWKrFPgs6x0B+BwEnsFgoGq1GqtCqBagKsVWO3BfcJapnKA9g89ChOIcWs8IW/UgKbZUUI1jzRvZQwQpniHsN9eMeMOZdjhuF0eXLuuBfz2UVlb0zZ97SMcZn/7gcDgcDofj/kQqWh4kaXd3N2bIAYJCqVTS5uamcrlcHPlm+5xxk7cZTwgSRIyfqRKAkFjTOUbYQd4h5ZAZW/5Php33pzKAPn/GPYJerxfJra18QBTp9/vRh0GSNjc3tbW1pXK5HEkk72dLv20LA+T24OAgTrGgmoBr4W8gs/1+X7u7u1GYocd/OByq2WxGEj8cDtXpdCYMCm3JOOSVrDoTJlhfCDpVHKwhAgPtKpTTI1iEELS/vx8rNNgjMt6FQiGKM9Z0kr1ABKDSYWNjI+41vgNWEGA/qJrAR4M2C8QY6VQg4BqsuECVCoQWfwNJcX8YW8iZRLxZXV2N/ga0FOCDMC2YQdIRKDqdTmzr4N4gZs6ANVCkumTaN8COakX8kU4JO/cp54n1p9rG+iXwu9ZIk/OCLwr7b+Pgfs3n87EqxI4DtWIARpyce6oZqNpBXLDmjtPiA1/SqSkobSsOx+1itL+v0dWreujjT0muJzgcDofjdYDSH39V7/z1n553GLeEH/y7/0BHr1yadxj3BW5aoRBC+LSkH5G0nSTJO8evfVzShyRdHf/aP0uS5D+P/+3nJf2EpJGkf5QkyX+92WdQbk8G3AJDPkz5GNtoM9a8hyUijDHk38geQyIkxcw5ZJKMMG0LtkweAmN72Y+Pj2OPOnHs7e1FLwNEBmKi8gExYTAYqFgsTmSrkyRRsVjUuXPntLGxoUuXLkXXe0gePeTj9Y4Z63w+H8ctSoqZd2usCFFmDaWTLPXZs2fj31MlQpWApNiPT4aX6Ra2OoLJFvTv2xGGjI6UFHvYIYRWSLAVAsfHx2q1WhNtFRBsYqCVhLJ64iBDzjXT5lEoFCZGYHKuIJysCWsLWbbCAllxhARrOkhFCOtLLLSn2DGijAVlTKadtMH5JqvOOaIaBkEMok0bA/uJaMAaUR2DmGXvHdbcTkGwkw8g6dJpCw1VAcViMfocIK7YSgPOPkIfn2cnnyAUMsrRtjYgOnGWqbiwLRlWDOSZMb3/tu3J+j9YEYFrQPCwY1PTgFk8ix13H8e9nh766JclSStnN3Xho2+Zb0AOxyxxn4lp/hx2OG6M5OhIKz1plBxrOaQmbz2BUXKsv/HhDyv3p0/MO5T7BrfS8vAZSb8h6femXv+1JEn+pX0hhPAOSR+U9L2Szkn67yGEtyVJcsMZbKPRaKL027Y85HI5lUql2ErQbDbjSEVICUIBIoDNYFO+zdf0SElLhLvdbszuIlAUCoWJ8Y+1Wi0SLUQQ2/vPlArKtCVNxCadZFEtuYbgdzodhRC0tbWlhx56KFZaUCXB50BUGcPHOlihgOskDj6Ttep0OpHoYT5oW0/4TEZikk1nsgQ+BJB/SC4TDYjRErZpc0FILvtBVh3Cy5qzjtPVDnY8JAIBAobt+UcIwOcATwc8Bcj623YOS1gp2bekmPMEweazWQs75YDJE1SEdLvdWK0iKVaqQJoh6NaQkfNyLV8B6zlhzxnjRZk2wlnDzBOybNtl7KQKsvMYgrIm+JIgKtG+YCtUbJz2fA6Hw3imuXft9A/MLTkT7J31iWBd7HvYEZj8TgghtsRwpqhYkDTxbLDVGbZNadogds74jO7xs9hxj3B8suxHly7rwX9yec7BOByO14DPyJ/DDscNcfbXv6g/f+4xfePvf2reoVwT3/+Lj2n9P3xp3mHcV7ipoJAkyRdCCG+5xfd7n6TPJUkylPTtEMLzkt4t6Ya7RnZxehoDJLNQKEQy22w2Y2k32VoqEKSTHvFGo6HRaBSd3CFKZNNtT7ikmClfXV2NGWJIEgIFBnbFYlHlcllJkkSifXR0FLPAZG4xMeSLayILenh4qFKppGq1KkmxRWJ9fV3nzp1TLpfTzs6Oms1mzJTbFgmujfVClGm320qSRNVqVfV6XcViMf4NZNuKCZS90waBSGJHBSIQ2OoBiBzXw9/2er0oqlD+D4m1oyspP0fwsC0KEGrblmIJN9nz8fmc8EhACEJksBnmJEnUbrejcMP6SacCkyXk/Gw9IKRTIgoJ59zgA2BHWxYKBVWr1ehbwBQCfrbVJ3ZKCRUanFHWiL1kzzijdo3xJEAkwrjUClTZbDYagSKWSIqjM7le4oPcS4oZ/+nMP39v/RbwusjlcvH6OQO0YUDm7cQSBAvMKe11Uklk/RvspBbagVg3BDVEBe4Z4iAGe1Z5TrRarRs9umaKWTyLHQ6Hw3F9+HPY4VhsfOOwq5V+qpJF9wVeSy3KR0IIT4cQPh1CqI9fOy/pu+Z3Xh6/dkPYkXIxsHH5OBnLTqej/f39mMm3DvMQG4wAydJD0uz8esgwhMI6vNfr9ZiV5XUyv9MZ4WazqatXr+rw8DBmlRnZSK895fi8HzFLJ+RpfX1dS0tL0cwum81qbW1N6+vrOjg40NWrVyM5RXSBEJPVJb7BYBBbEkqlkjY2NuKkAcwhQwjq9/vR+FGSSqWSKpWKRqPRRPUHrvhWxLDEEUNA1rHVamlvb0+NRmOigoK9sWXmw+Ewjv1kPayYYE347F5AehFQEBKYqmDL+dkz/jZJEnU6He3s7KjX601k2jkTkFYILGuOGFMul1UulyPZJitPG4qkmCnPZrOq1Wqq1WoTxn6QapvFp0qkUChEw0oqO8iUIwbYqQ9cH99LpyNWp8eo8tmIERg52n0iJsQvKnOOj4/juEv2w5oz2uoJ/kY6NUzMZrPRh8N6e9C+sry8HD01uI+5J62XCd4ceKhYQZC/YS+psECIIV7OGdfKFArOgRW2ENcWAHftWexwOByOO4I/hx2OlOOJ4aE+8ImfU/X3//e8Q7nvcKeCwqckPSjpEUmXJP3q+PVwjd+9pgwUQvjJEMJXQghfsVMXwPLyciRWTD/APwEysLy8HCc8SCeZdEYukpW1GW1LiCi1J6NJ+TbZyulSc7LNtDo0Gg31+/349zazCZGDuNgsNNULEEjIUrVa1ebmpjY3NxVC0JUrV3Tx4sXYCkKfPZlWsvgQLgwAGWmJ+SDtHxA126aRy+VinzhGgQgntg/fGk5Kk+R/MBhof38/tkTYag98DyDNkqL4MG2gaYk4ZeqIGpDjacEJgce2RDARgevlunq9nvb29tRsNiNp5trsuYCkWvNHzPkQaPhbW+aPn4Y1i2SaB2tnhRVJ8QzalgnEL3wIrJGonYSBGGGvHaGADL0VE/j75eXliTGXxMTZskam9j4ifmDXiXuGvbe/Z30VuD8QTuzIVOLBe8OurxWtGInJueBc8Vk8Mzg/tjrJnkPWdHqkJfesFRJTjrv6LD7U8Fq/4nA4HI7rw5/DDscC4AP/5TGd+eQX5x3GfYk7GhuZJMkVvg8h/Lak/zj+8WVJbzK/+kZJr1znPR6X9LgkLS8vJ7bdAbJLj3uv14u92ZBrSyjpxyebbjOokAjaDMhWkgEme0qVwbTZI8A8DuKFoz3mb/T3EzPmiNaJnvfAIHB87arVatFcL5vNan9/Xy+88IJ2dnYmyK50SrIgpfY6j46OVCwWVa1WY+l9p9OJpIlybz6/VqupUqlE0YY+eao5rBGgbXcgc0y2nXYUO50BgmiNKG0PO+uOn8NoNIptAwggfLYl49MTFqznBnuIzwQVFEtLS2q32+p2uyoUClpbW5sgorTAUI2wtLQU1yuTyahWq0W/But9AHFFTGC8KGX6nCvWxmbRbck9MdAiQvsLa8C6IUpJJ9UGvA9CgfUfgNjbaRGIFrR+UKFhxSQ75QARgtYCqk24p6bbQ6w3AVUVCGxcD2djuj2BySiISlYossSfigfixO/DGmLaFhrWeTAYxEoMK9LYKQ+0lFiDSuutkEbc7WdxJax5HaDD4XDcBvw57HC8GvVnpd9qnNeHaxfnHYok6XPtutaeXL75LzruCHdUoRBC2DI//qikZ8bff17SB0MI2RDCA5IelnRTC02beYZsQi4hr/RNW+M5CAKlzNIp4ZY0YX5nxy5Om93ZrKQtIYfE2v7xVquldrsds9aW3FtXeAgZYgPEFmJGu0a9Xtf58+ej2ePBwYGuXLminZ2diSw+4gWtFNbHwHoTkBG3lRGUdUuKGeFyuaxKpRJd+jEqtL33thKCdg5IL0TW+gsgONjeffbEmuRVKpUJgo5hpB31h18FVSPW5ND20yMw2T2mFQT0+33t7OzECR6U1pORx0zSltEzEaFUKqlUKkXfB9aBrDqCEqaCXOf0+WYt7OjDaVGDNUWIgsxT7m9jo5LACjn4fXBdTJLAA8HeS1wH1097ghVJmNgB6ZYU70EEPSsicCb5KhaLqlQq8T62a8/6InwRp3TSDkQVxdLSkgaDgZrNZhyrWSqV4vOBuLhHbCsFgghtC1S+2AqT1dVV5fP5OOrSCmq0faQZd/tZ7HA4HI7bgz+HHY5Xo/bZL+lXnnjvvMOI+KVnH9XG425fcq9wK2Mj/0DSeyRthBBelvSLkt4TQnhEJ6VbL0r6KUlKkuTZEMIfSvp/ko4kPXYrbrZWUKD/mexlsViM0xMgApAnyAOvTZev93o9VavVWNINiaGagc+1ExR4L+m0B9wSG4gYhoXD4TD6FlhHeYjWdLWDLcvO5/Pa2NhQoVBQu93W4eGhut2utre31e12I9GBZJLxtVMLJEUjRJvVhVjbsnWyt7xvqVRSNpuNFQI2qwz5tP3+XDdmfrb/HpGlXC6rVqvFNUeYQDAol8tx7VhPRA767CXF6yY26/Rv94b9stdqhQzMKvv9vtbW1lSpVLS8vKx+vz/R9sLPCCL09FNpQcUDsSEe8dkAIo/wwVm0Xg42s092HWEIA0zIPWccsYZ9ta0dvKfNuEOmrSjFPZDNZlWpVCb+xk6mSJJEg8EgGp9SRYDAIZ1OhrAVQLR+WB8H9pR9syMmuV5bkUFs5XI53nMIJLlcbkIE43VroogwaM1XuT+596XTKhHOMGfSTp0YDAYTxp3zxiyexQ6Hw+G4Pvw57HA4HK/GrUx5+LFrvPw7N/j9X5b0y7cThM3o2mw7Wftmsxmz59b1HqJlS5Z5HdKVyWQmJgokSRKz0ZA5a9qGkAGRseP0bHY6hKButxvJI/4K02MsLZFETKCku16vq1wuR2LV7XbjpAbppOKhUCio0+nEa5YU2yeWlpainwMGhbZagGkCrA3Ej+x/Pp+P69Hv9ycma2SzWbXbbTUaDTUaDQ0Gg5gVzmazsUVhZWVF7XZbIQTVajWdOXNGq6ur8RogvLblI5vNxnaJJEkmyuAhjplMJpbl8zfERtUFRBLRwLZJsE5UItC6QEsFPhK0EnBeEETo+yd7TyUA5oz2DFABwHvZtgey3LwPWXj+jVJ9yLBtkWF8qaRoImnjYK+n/UdsqwSfRdsA4k0mk4mVCtwbVBIwnvXw8DBW3NjpCJwhzhhCnRWdisViFEkQAKdHgdIWZK8R48tcLhfvW0whuV8wacWAlYoWqi24V6zAkcvl4v2AOGV9NKwxJV+ZTEabm5u38yi7p5jFs9jhcDgc14c/hx2OxcMndh/W2d9IT4LofsQdeSjcC9BnDxnCIZ8JCLaUHKLA95SdW2Hg6OhIlUpFkmIGGaHAjpjjd6lwgJhIiuSWqgdJsRyazKp1qIew05dOywUtAmS+ERQqlYpCCGo2m2q32/ELAmyd9a1hJOS81+tFc0hImB31CGm2YkI+n1e5XI7TLJrNpvb399VoNGJ2GF+FRqMRR1eORqNIEiGF9Xo97hniR61We5WYAwGWTg0eIdlULtBSQJUJ1QusN2vA3tPSQCyIPfbfMplMXEuIKj4Zdi8RPxBEisWihsNh3D/p1NsDMo3YQJuENfCzZokQeTt5xBJZCwQDqlBYW64bEcx6ddgKBM6HNY7kM/BRYJ9YJ8g8pf5M+6AiRtLE5AfuN+4B7k0+k7Nt/S1oOyDzz/4zXYG/pYKFc0ZsnG0ErH6/r93d3dgWVCqVYlUF1Q/SabUT54AqJ4Qxa7hItQnnaWlpKXqMOBwOh8PhcDgWE3/WepNW/udX5x3GfY3XMjbyroIsrXRSUn7mzBnl8/n4P/gQDLLAvV4vTnkgWwrImGJ8iIBg59VDuCidJnMJkeMzmSJBOThl57Qo2NGWELCDgwO12+04rhHDvHq9rlqtFnvL8/m8hsNhJEetVmvC3I/sML4G9Knn83kdHx+r1Wppf39fSZLE9yR+yDprStUB/gnSiZjwyiuv6NKlS5FsbW1taWtrS91uVy+99JKuXLmiVqslSZHU9vv96CGwtLSkfD6ver2uzc3NKJhMZ9wRFojJjiPM5XLRINCW60NcqXKwxBkyTHae38Nrw5aq5/N51Wq1mIHG/6JUKkUBKpfLqVarRcNGSv75fQgyIhQjPImD32ffaSFoNBpxFCetDsRNJQbvTUsBJJhzCkG3ppfW7NEaNRIrVSmQaz4P7wr+1pqTjkYjtVqtWK3CeSPDz2ch+FDhgDiBr4m9F6w5KUIdFUTT0yCYfMK10QIBsUfMomoGMYGKl2kDRe5XxAvWzlYnWC8VnhEhBFUqlXhmHA6Hw+FwOBwOx7WRCkHBGhZms1ltbW2pWq2q3+/HdgfplIggJpB1JhtsSYI1VqMM2vaJ2xLn4XAYSRUmcYPBIJb3S4pkypJWSBCZWEbttdvtiVLsQqGg9fV11ev1SPzX19cVQlCr1dLly5dj+wREmuoEa8TI52Uymbg2kuL7VatVraysxH5/CCzXBmHDVf/KlSva3t5Ws9lUCEFvfvObdfbsWXW7XV24cEEXL15Up9OJVRgQzsPDw+ilgBeDbfmwlQKIA8Szuroaq04w2IOg08Jip2JIiuKIHUNp94u1twSc/V1dXVW1Wo2kHOFgc3NT9frJqOjl5WWtra1pc3NTmUxGrVZLe3t7E6NHaWEh445ZoR3H2el01O12J84CYzot8WcvbMsC2XX6+WkHQZyxPyNq0WohKfpHsAeW4HNv2coK7gNAvFwX95OtNKFygvXgvmXtbQUH7Q6IKdMeJ3YsLGuCaMb62TGYGF82m03t7u5qMBioVCqpWCxGodD6k/BZ7BctUzxH7JnBZwFBh7PnYoLD4XA4HA7HneHP/czz+qHnfmTeYThmgFS0PNgsM5luSdrf349iAKXneA1sbm7GLD+l0ZZkQXxw/CdjS0YScUI6LcNPkkTb29va29uLGd1cLhdL6C054TOmCe1gMNCVK1ei/4LN3kP4Id27u7t66aWXolcA1QwYz0GMlpaWYv87pLrdbscMLZn1crmsdrsdM8K0OkBkKc2n759sejab1Rve8AY9+OCDqlQqunDhgr7zne+o2Wwqn8+rWq1GISCEoLNnz2pzc1Orq6sqlUox0wzhxATRTlqgxWNlZUX7+/uSFMUYRjTSDoBQYDP7VGxAuhEwIMecAYippGhAiEeDbTnJ5/Mxvmw2Gydt7O3taXd3V71eL4ovrCNnwPpNQHQRoRC3hsNhFBg4g+wlXxBZsvVUkVDxQPUCv8e55TNtew1VGWT3h8NhFGSsIIfnB2II997R0VE0hJQUfTaKxeJEqxEmm4gHEHGEFyowEKzw3mBduA7WkuukbcjGSOUBcbHOIQRVq9VYxYGfB/cwZ0FS9MdAWLT7yLmxoiPChx0l63A4HA6Hw+G4PYwaTXUO1+cdhmMGCNOGbnMJIoSrkrqSduYdyx1gQx73LOFxzx6LGvvdivt7kiRJjzvjPUQIoS3pwrzjuAMs6hmVFjd2j3u2eL3H/Xp6Dvv/E88eHvdssahxS4sb+z19FqdCUJCkEMJXkiT5y/OO43bhcc8WHvfssaixL2rc88Sirtmixi0tbuwe92zhcb++sKjr5nHPFh737LGosd/ruFPhoeBwOBwOh8PhcDgcDodjseCCgsPhcDgcDofD4XA4HI7bRpoEhcfnHcAdwuOeLTzu2WNRY1/UuOeJRV2zRY1bWtzYPe7ZwuN+fWFR183jni087tljUWO/p3GnxkPB4XA4HA6Hw+FwOBwOx+IgTRUKDofD4XA4HA6Hw+FwOBYEcxcUQgjvDSFcCCE8H0L42LzjuRFCCC+GEL4WQngyhPCV8WtrIYQ/CSF8c/zf+rzjlKQQwqdDCNshhGfMa9eNNYTw8+M9uBBC+KH5RH3duD8eQrg4XvcnQwiPmn9LS9xvCiH8rxDCcyGEZ0MI/3j8eqrX/AZxp3rNQwi5EMITIYSnxnH/i/HrqV7vNMOfxfckTn8OzxD+HJ553P4cvsvw5/C9gT+LZwt/Fs887vk/i5MkmduXpGVJ35L0Vkmrkp6S9I55xnSTeF+UtDH12q9I+tj4+49J+sS84xzH8gOS3iXpmZvFKukd47XPSnpgvCfLKYr745I+eo3fTVPcW5LeNf6+LOkb4/hSveY3iDvVay4pSCqNv89I+j+S/mra1zutX/4svmdx+nN4tnH7c3i2cftz+O6upz+H712s/iyebdz+LJ5t3HN/Fs+7QuHdkp5PkuSFJEkOJH1O0vvmHNPt4n2Sfnf8/e9Kev/8QjlFkiRfkLQ39fL1Yn2fpM8lSTJMkuTbkp7Xyd7MHNeJ+3pIU9yXkiT5v+Pv25Kek3ReKV/zG8R9PaQl7iRJks74x8z4K1HK1zvF8GfxPYA/h2cLfw7PFv4cvuvw5/A9gj+LZwt/Fs8WaXgWz1tQOC/pu+bnl3XjjZs3Ekn/LYTw1RDCT45fO5skySXp5CBKOjO36G6O68W6CPvwkRDC0+PyL0p2Uhl3COEtkv6iThTChVnzqbillK95CGE5hPCkpG1Jf5IkyUKtd8qwaOuzyM/iRT6jqX4mWPhzeDbw5/BdxaKtzyI/h6XFPqepfi5Y+LN4Npj3s3jegkK4xmtpHjvx15IkeZekH5b0WAjhB+Yd0F1C2vfhU5IelPSIpEuSfnX8euriDiGUJP2RpJ9JkqR1o1+9xmtzi/0acad+zZMkGSVJ8oikN0p6dwjhnTf49dTEnVIs2vrcj8/itO9B6p8JwJ/Ds4M/h+8qFm197sfnsJT+fUj9cwH4s3h2mPezeN6CwsuS3mR+fqOkV+YUy02RJMkr4/9uS/p3OikPuRJC2JKk8X+35xfhTXG9WFO9D0mSXBnfKMeSflunZTmpijuEkNHJA+j3kyT5t+OXU7/m14p7UdZckpIkaUj6U0nv1QKsd0qxUOuz4M/ihTyji/JM8OfwfODP4buChVqfBX8OSwt6ThflueDP4vlgXs/ieQsKX5b0cAjhgRDCqqQPSvr8nGO6JkIIxRBCme8l/S1Jz+gk3h8f/9qPS/r384nwlnC9WD8v6YMhhGwI4QFJD0t6Yg7xXRPcDGP8qE7WXUpR3CGEIOl3JD2XJMm/Mv+U6jW/XtxpX/MQwmYIoTb+Pi/pByV9XSlf7xTDn8Wzw0Ke0bQ/EyR/Ds8qXhOfP4fvLvw5PFss5DlN+3NB8mfxrOI18c3/WZzMwf3Tfkl6VCcumt+S9AvzjucGcb5VJ46YT0l6llglrUv6H5K+Of7v2rxjHcf1BzopyznUiRL1EzeKVdIvjPfggqQfTlncn5X0NUlPj2+CrRTG/dd1Ui70tKQnx1+Ppn3NbxB3qtdc0l+Q9Gfj+J6R9M/Hr6d6vdP85c/iexKrP4dnG7c/h2cbtz+H7/6a+nP43sTrz+LZxu3P4tnGPfdncRi/qcPhcDgcDofD4XA4HA7HLWPeLQ8Oh8PhcDgcDofD4XA4FhAuKDgcDofD4XA4HA6Hw+G4bbig4HA4HA6Hw+FwOBwOh+O24YKCw+FwOBwOh8PhcDgcjtuGCwoOh8PhcDgcDofD4XA4bhsuKDgcDofD4XA4HA6Hw+G4bbig4HA4HA6Hw+FwOBwOh+O24YKCw+FwOBwOh8PhcDgcjtvG/wdHDqIuX+7UmgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 307828 110310\n", + " Min thresh = 1000\n", + " Not Sliding\n", + "\n", + "\n", + " Winner = Not Sliding\n", + "\n", + "\n", + "065s_iimage_1896534330004_clean.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADDCAYAAAAya0IYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADthElEQVR4nOy9ebxlWVne/+wzz+fcW0NXdwM2QzcqioCIDCYQUYMgRmMciEFFZfKnBnCKJtGYGINxjAMoRMWBOOCIkYiKIyKjjM0gg9BNT1V1pzPP+/fHvd91n7Prdnd1d1XfW1Xr+Xzq0/ees8/ea6+19un7PO/7Pm+SpqkiIiIiIiIiIiIiIiIiIiIi7glyhz2AiIiIiIiIiIiIiIiIiIiISw9RUIiIiIiIiIiIiIiIiIiIiLjHiIJCRERERERERERERERERETEPUYUFCIiIiIiIiIiIiIiIiIiIu4xoqAQERERERERERERERERERFxjxEFhYiIiIiIiIiIiIiIiIiIiHuMKChE3O9IkuTGJEmectjjiIiIiIjYR5IkH0+S5AvO89g0SZKH3cvr3OvPRkRERERERBwtREEh4n5HmqaPSNP0rw57HHeFJEmekSTJG5Mk2U6S5PYkSV6ZJEnzsMcVERERcTkjSZIfS5Lkw0mS9JIk+WCSJF932GOKiIiIOGq40MLs3Z0v/l0ccVeIgkJExMFoS/ohSddI+jRJD5D0o4c6ooiIiIjLHwNJz9Tud/DXS/pfSZI88XCHFBEREXHFI/5dHHGniIJCxP0OT6tNkuS/JEnymiRJfn0vIvXeJEluSJLke5MkOZ0kyc1JknyRffY5SZJ8YO/YjyVJ8vzMub87SZLbkiS5NUmSb3bFNUmS8l7066YkSe5IkuTnkySpHjTGNE3/T5qmf5Km6TBN0y1Jr5T0pIs3KxERERFHB0mSPC5Jkr/fi0bdliTJzyZJUsoc9vS97+GzSZL8aJIkOfv8N+59V28lSfL6JEk+5Xyum6bpD6Rp+sE0TZdpmr5F0t9KesIFvLWIiIiII4EkST4tSZK/2vuevTFJki+19/4qSZJvtt+/IUmSN+79/Dd7L787SZJ+kiRfnSTJU5Ik+WSSJN+395388SRJvvbeni871vh3ccRdIQoKEUcBz5T0a5LWJL1T0uu1uzevlfRfJf2CHXta0pdIakl6jqSfTJLkMZKUJMnTJL1E0hdIepikJ2eu8yOSbpD0qL33r5X0/ec5xn8u6cZ7dlsRERERlywWkl4s6bh2Cf1TJX1L5pgvl/RYSY+R9K8kfaMkJUnyZZK+T9K/lnRCu6LAb9zTAewJvp+j+N0bERFxmSFJkqKkP5L0p5JOSvo2Sa9OkuThd/fZNE3/+d6Pn5WmaSNN09/a+/2Udr+zr9Vuhtcr7uP57grx7+KIgCgoRBwF/G2apq9P03Qu6TXa/QP0pWmaziT9pqTrkiTpSFKapn+cpulH0138tXa/iP/Z3nm+StIvp2l6Y5qmQ0k/yAWSJEkkPVfSi9M03UzTtCfphyV9zd0NLkmSL9TuF/P5ig8RERERlzTSNH1HmqZvTtN0nqbpx7Ur7J4j0u59n94k6ackPWvv9edL+h9pmn5g73v9hyU96nyzFAw/L+nd2hWZIyIiIi4nPF5SQ7t/707TNP0LSf9X+9+j9xb/OU3Tyd7fyH+s3b+NLyji38URWRQOewAREZLusJ9Hks6mabqw36XdL93tJEm+WNIPaDfTICepJum9e8dcI+ntdq6b7ecTe8e+Y1dbkCQlkvJ3NbAkSR4v6f9I+jdpmv7jPbiniIiIiEsWSZLcIOkntJuBUNPu3wvvyBzm37Gf0O53sCR9ina9D37cT6ndqNknzvP6PyrpMyT9izRN03t8AxERERFHG9dIujlN06W99gntfk/eW2ylaTrInO+aOzv43iD+XRxxEGKGQsQlgyRJypJ+V9KPSboqTdOOpNdp9w9VSbpNuyYx4IH281ntihOPSNO0s/evnaZp4y6u92hJr5X0jWmavuHC3UlERETEkcfLJX1Q0vVpmra0W8KQZI7x79gHSbp17+ebJT3fvms7aZpW0zR90/lcOEmSH5T0xZK+KE3T7n26i4iIiIijiVslPdC9Z7T7PXrL3s8D7Yq54NR5nHMtSZJ65nx8L9+b860g/l0ccWeIgkLEpYSSpLKkM5Lme9kKX2Tv/7ak5+yZ3NRkqVh7CvArteu5cFKSkiS5NkmSf3nQhZIk+QxJfyLp29I0/aOLcjcRERERRxdNSV1J/SRJPlXSCw845ruSJFlLkuSBkv69JOpuf17S9yZJ8ghJSpKknSTJV57PRZMk+V5J/1bSF6ZpunFfbyIiIiLiiOIt2iX5350kSTFJkqdo11PsN/fef5ekf50kSW3PXPybMp+/Q9JDDjjvDyZJUkqS5J9p13PsNffxfJLi38URd40oKERcMtjzPfh27QoHW9r9o/O19v7/k/TTkv5S0kck/f3eW5O9/37P3utvTpKkK+nPJd2ZWc13aLdM4hf3HG/7SZJE85mIiIgrBd+p3e/YnnbF2INMuv5Qu2UQ79Jure4vSlKapr+vXRPc39z7rn2fdjMOzgc/rN2o2oftu/f77sN9RERERBw5pGk6lfSl2v1uPCvpZZK+Lk3TD+4d8pOSptol+r8i6dWZU/wXSb+y1yECn4Tbtfv38a17x7/gPp7PEf8ujrhTJLE0MeJyRZIkn6bdP2TLe8ZgEREREREREREREZcV9jIcfj1N0wfczaERERccMUMh4rJCkiRfvpfqtabdCNkfRTEhIiIiIiIiIiIiIiLiwiMKChGXG56vXY+Fj2q3j/pBdb8RERERERERERERERER9xEXTVBIkuRpSZJ8KEmSjyRJ8h8u1nUiIhxpmj5tr3vDepqmX56m6W2HPaaIiMNC/B6OiIiIOHzE7+KIi400Tf8qljtEHBYuiodCkiR5Sf8o6QslfVLS2yQ9K03T91/wi0VEREREnIP4PRwRERFx+IjfxREREZc7LlaGwuMkfSRN04/tuZj+pqR/dZGuFRERERFxLuL3cERERMThI34XR0REXNYoXKTzXivpZvv9k5I+984OzuVyaT6f12KxUJIkqlarWltbU61W02w202g02h1soaAkSbRYLLRcLrVYLDSbzTSf73ruJUmi2Wym2WymNE1VKBRULBaVy+W4jnK5nJIkCcdLUpqmWi6XSpJEuVxOaZqGseTz+XAtwPVzuZyKxaIKhYKWy2UYRz6fV5IkIvsjSZJwLa6fy+W0XC7DuTlnPp9XoVAIY14ul2GMi8VCaZoqn8+Hz6dpGq7j8zObzZQkiQqF/SXm2ovFQvP5PIyf14vFovL5vPL5vIrFYvide+Ee5/N5GAvzzz35uDiG8adpGuaUe/b74b8cD/iszwXzms/nV97zueNzjJfP+PG8xueWy6Wm0+nKfuBcrCOv+e+85nPDPHBsLpdbuY6ve3bMrAn7Jrtfs/sq+1r2vg+a1+w5ucfs/fozwud9D/re8vNmP5MFzxpzwRxl1yh77ux9+Pxn54X5za53dozZcfo1B4PB2TRNTxx4E0cb9+h7WJLyjXr6kAcvdcf7qhd1YBHnov7pqa4tjA57GBERRxIfv3mms5uL5O6PPJK4R9/F8Xv4CKJR1Q0P2TjsUURE3O/40CeOK9kZht972jrwb+KLJSgc9KW/wiqSJHmepOdJu3+8X3XVVRoOh5rNZrr22mv15Cc/WU996lNVLBZ14403anNzU8ePH9fa2poWi4W2t7e1ubmpW2+9VTfffLOWy6UqlYpGo5Fuvvlm9Xo9VSoVPeQhD1Gr1VIul1OpVAqEvVgsqlQqBVIzHA6VpqkajYYKhYLOnj2r8XisWq2mer2uXq8XyMlgMFCv15MkHTt2TCdPnlSpVNLm5qb6/b4KhYLq9XogjM1mU6VSKZD89fV1ra+vK5fLaXt7W3fccYe2t7fV6/VUKBR0/PhxdTodSVK/31ev11OpVNqdxDQNIsZoNNJsNlsRASqViubzufr9vpbLpUqlkqrVarjPYrGowWCg2267TfP5XNdee62uvvpq1et1ra2tnfOv1WqpVqtJkkajkba3t7W1taUzZ85oMBhoMBhoe3tbw+EwzNV8Ptd4PNZwONRwOAxkbTKZaD6fq1KpKEkSbW9vr4xxbW1Nx44dU7Va1WQyUbfb1Xg8DqLDfD7XdDpdIX6sKSS8VqupWq0qSRItl0tNJhP1+31tbm5qNBqpWCxKkmazWSCxklSr1XTy5EkVCgXdfvvtOnPmjEajkUqlkiqVinK5nObzuarVahh/Pp8PY2ffdLtdnT17Vv1+P9wzAkOhUNDJkyfDHu73+xoOh+p2u5J2xZDpdKrJZKJyuaxms6lcLqfhcKjFYrFCnJfLpQqFgkql0opo5D+PRiNtbGxoPB6rXC6fc+9+Lua0XC4rn8+HcVQqFZXLZS2XS41GoxXRDAFrPp+rUCioUqmEMRQKBS0WCw0GAw2Hw/AZnvd8Ph/mlT20XC5VrVZVq9WUpqnG47Gm02kQfLhekiSaTCaSFJ5jxunCHeJQv98P40iSROVyOdwn4tt0OtV0Og1zwzkLhYLe9KY3feIuvuuOMu72e1ha/S6uqKbrbvwSXXep/tl+CaP9ymN69YP/VMUkf9hDiYg4cnjcv7z57g86urhHfxPH7+Gjh+WjH6U/++1XHfYwIiLudzzluc9V+Y/fFn7/8/R3Dvyb+GKVPHxS0gPt9wdIutUPSNP0FWmaPnbvn5bLZYiID4dD3Xbbbbrllls0n8/VaDQCOcvlcqpWq+p0Omq322o2myoWiyvko1arqVQqablcamdnZ4XULRYLTSYTjcfjEMFdLBYqFotKkiREpyuVimazWSBztVotEDrIS5qmgWRBVMhogJhMp1MNBoNwDGR/OByqVCqpVqsFYiUpZGRwL4vFQqPRSN1uN5CwcrkciNB4PA7jn8/nGgwGknYJMvdEtBXCRPbBeDzW9va2JpNJiJxzH5VKRWmaBmLpUV6IIXMOxuOxBoOBZrNZyLbwKDT3t729rX6/L0khW4K5nkwmKhaLarVaqtfrYd0ZNySPzInxeKzRaBT2T6lUCvcNES0WiyqXyyqVSkEUymaNTCaTFZGo0+mE113EYA6zWSvcH9dx8oy4wV6YTCZhLSuVShBspF2BpFQqhT1bLpdVr9eVy+XCfmIMo9FIvV5Po9EoCCqADJRmsxlEJgQtzzphT3u2BCJJPp8P+wvhwvcJQgSfH4/HkvZFDdYkl8sF0u4ZRNJulgD3vFwuV55j1pJnlucCUWM8Hms2m/F9siI0eQYI2RqcfzgchnNxPrJHEF2m02mYj0sYd/s9LK1+FxdVvt8GF7GKnc/b0B8P24c9jIiIiAuPe/Q3cfwejoiIuNRwsQSFt0m6PkmSBydJUpL0NZJee1cfIKJbr9eVz+e1ubmpm266SVtbWyESS6QaAtJsNtXpdFSr1QJZSNNU5XI5EOrpdKputxsIApFPCAZEBwK8XC5DVB0i5FH22WwWRIVisRgit0S7IWqLxSJkDkCG+BzRacSSdrsdMgEWi4U2Nze1ubkZiKekFbJdqVRUKpWCSED2RKFQCOPN5XIhsgw5XSwWIQukWq2qUChoZ2dHGxsbQRggelyr1QLRpczBU8MLhUIgahA5SGW/3w9EFFHB/yFUsB7M12g0CoKER/0RTiSFOZUU1mM4HAYSihjC/EAKiaBTnsKYPbXdyWyj0VCz2QxRbBdIEEG49/l8ruFwqPF4HEp2yKjg3Ow1MjwQx7JlEBB+yHyapkF48HN5Kj9ry2cZI9krzWZT1Wo1zBfn5xhfPwg2ooK0T64RSnzOINzMNeuEODifz0P2jI+Lf4gy7EcENxdJeB0BwEshyDzgPHdWZuEZFePxeEVQZB7JYnKxkPu5RHGPv4cjDhcv/fDTNElnhz2MiIiIC4v4XRwREXHJ4ee2H6jS9vn9TXJRBIU0TeeSvlXS6yV9QNJvp2l6450dTwrzbDYL5Gk2m+n222/X2bNnQ8aAp0qT9o+ogHggKUSwIZ6k4EOM+J1IJ8SCc06n0yASQFjH43HwEIC8Q3ghatI+kSoWi6EEAHI4n8/D+6TiFwoFtdvt8K9UKoVI9nA4DIRMUsh0IEuj0WgE0sexlG+MRqNA/hg78zydTlUqldRoNCRJvV5PW1tb4fwQ8EajEUQJSKvX5UtaifB6RsVgMAgEG8IMqWPOsr4ECB6ILbVaTSdOnFCz2Qz+GFkvBkoRKKdwUkjEnshzoVBQuVwOogJ7j3O6+FQul7W2trYiKuzt7RViy7/5fB6yVVh7xBDPzuj3+6FEhPcgv7PZLIhIzNF0Ol3JivHsACfDTo6ZT0QPxCUvm+EZ8ewRRA8yUpgvBB/33HAhCOLPPI3H45Xn1EsW+DwCAXuWe0Q88OeT+eQ5QIhgnhAnmIfJZLKSleTfCZ4NwfkR3bhvSiLIKLpUcU+/hyMOH+2nf0SfnE8OexgREREXEPG7OCIi4lLDD539VP3Oi/+lkr9713kdf7E8FJSm6eskve58jiUFGzKLt0G/39cdd9yxYgAHQcIvoVwuq9PphLp7MhTy+XzIJsjlcitiAunn1GETfSYKTN01ZI/sAkkrNePVajWYEhKNhqSRVQER8iwI/BRIv87n81pfXw/ZDmQ0IDjk8/kQwYXYkqGxXC5DdgeCCsSOz3EtyNx0OlWlUlGj0QhlEltbW+p0OoGsEcmu1+va2dkJWRoezSUCDZmDNDrBd9NCos0QQUoJKMFAkOj3++r3+2o2m1pbW9NyudTGxsYKOWctiJRPp9MgnLAGWWNA1ofyEEQgz0Jgnlgnyi4gvk7m2ZMQXVL63VvBy2bIeOn3+6pUKmq1WitlAxD0vecniCieuYDgxDp5tghr4/OZNedkH7M/vNSB+2RPQ7zZV4yT+eNZ4rysBxkAiINkPjAHfh2ff37m3NPpNNwHgggiBMd7JgRZH15yY99HYe/5fvD3WWNKZzyD4lLFPfkejoiIiIi4OIjfxREREZcKvu+OR+rvvv/xqrz+ref9mYsmKNwTQFzJUoCkzOdz7ezsqNPphKhyr9cL9e2QiVqtpmazGeryIYIeVZUU0tk9xT7rXN/pdDSfz9XtdlfGAdEEkGqyKfAh4FyQE0z8+v1+IIDVajWcCy+FUqmk9fX14Angc+ECBcQHQuoZD55dAJmC0JG6XSqVwn1Tn9/r9dTv97WzsxNEGAhaq9VSqVRSr9cLAoETXEnh3BC/Wq0Wxj+dTlfM9LzbAcSUUhYi8BhfIohgqtntdjUajVaIIKSXLBKMKiGuRK+5LkSTjJbxeBwELNZtMpmEkgm8JNwrw00LEWecwHv5RbVaDaINxJ0SCTcGRYxxEuvkm/lFyIEYk1XAuHhOKPFgb5Kd4D4LnJP/enYAogTz4MczBrIUEFjcM6PX6614jrgfBc+Viz1+Ln9G3eeCuSLbiOwd9jsCBCJIkux2LvFMGNbFfR2yWR8+Ry5KRERERERERFxZyB8/pptfdOlmK0ZE3FP8xt8/Xjf80fmLCdIRERQKhYLW1tZ09uzZ8JqnkXe7XbXbbSVJEhz7W61WIBNE68+cOROc+Gu1Wki5hwS5gSDnJ+oPoahUKsHIDnIHyYT4EknHBZ8IabZFH1Haer2uWq0WRAVpnwgjbJDu3Wg0VK/Xw3kgWdyrtC9WYOgH2ab+3A36CoVC8Gbgum5ESWtOug0Q5YdEQ0RJC4f8Oknjfcg7gg6lC5JCyYFnM3hHAdYg21VgsVioXq9rfX09ZIdwTu4R4jufz9Xr9cL6u4O/Z49ICpkoRNNdhCGjANEHY0Ai7ZRwIBR4OQXzBil2wssaeFo+9+EtM72NJsdLWtlfTrq5H0oNINLsYTwJEHY4Rzbbw0sKKJlB/PKyDK7JPGSzKlinwWAQyDvPCSabZBrxOS9P8P96pgZigGdjuPjjWQYuVLgxKaIbQqMLMl7KwXxnvRgiIiIiIiIiriB0Wnr/E3/9sEcREXG/4PmffIIe9lv33MvpSAgKuVxOrVYrlBZAFkjtHg6HoZ5/MpnozJkzkvaN1mq1mlqt1komAB4DRK6dvPJZaZ8U4T1AxkC5XA5E083qsvXpaZqGzAFJKwLGeDxWr9db8VWQ9kssIC+UOEC6uLanpCN4eLeARqOhRqMRHPiHw2H4r3c44GeyKLw9oZdBdLvdIEjgAUCpg6TgveARfe5NUhBHuAeyFLyLBpkBTuqkfZKNyIGoQPp9q9XSsWPHQsTdnfkRgrj+9vZ2IKleK+/1/5gn0pmCjgr4TODhgFjEWNkL3oJxMBgoSRLV6/WV/eElIoyTMSFIeWq++zrQgpF5RdgiW4U1ZAxZoYDjvI2oC2LAMwEoqUAk4L7K5XI41j0XvD1kloRD9t0zg7IiSnC85AF/DDdhZFxexsDz5fNJBxAXDADPLJ9BDOQzno3A3GFAybxHRNyfeM63v0R/9rKfUzkp3v3BERERERERERH3Eb/ZW9PPft9XqX7LSLk3v/Mef/5ICApJkqjZbIZosRNn6s3p5pDL5bS9vS1JwYyxWq0GAYG0eDwO3C+BLACPQkKgRqNR8C3wNG9IFsQCkst7kGPIu7cLJBV/uVyG1pdEUb1WHALrrSIlrbSt43PuJUHZA9kb29vbK6RX2id93tkCsgqhJQLc7/fV6/U0HA4l7bZAJMIPwWM96KRAS0buBaLMXLj3hHfjwESSc+ABMRqN1Gg0VuadVPlisah6va6zZ8+G1HQ3fEQYQVDAEwNRQlIgntx3pVIJBn5uTsi6UrcPIS2VSqGDBeeZTCYhQk5GB/PhEXPPAqC0AGGFYyDW1Wp1xRCR68xms9AWlX3tGRv8TqcMng+yDjCNdKNF98UgQ4R9SbcF1hMhzMtrIPfcY9Ys0iP/PJeDwSB0JyEjh33i4gBlE2QrsS8PKo9wbwzEAy8ZQTRCjOE59mfdRQU374yIuL9Q/cO3avFz6cGd6yMiIiIi7lcsP3GLHvufX6i3/7eXH/ZQIiIuKL7wWc9RMtv9Ozc/nKn+rrfc63MdCUEBooHJoKQVE0NS4ml9t7GxoZ2dHdXrdTUaDS0Wi9Dmr1gsrkRGPc1+Pp+HzgaQCaK4TkYx4vPIr2cLeKRYUiiHIFOA87pQISlcxwnXZDIJ0Vpq1yGinMsJn5OjXC6ndrutRqOhtbW1EE0ul8uh7SQlIJVKJRDhXC4XxBlJgWRtbW3p9ttv1/b2tpbLZRAAmD+8GBhLrVYLZpjMC90dsmnl0r6oAKGl3SOtHhEuxuOxGo1GyAJAbEiSJGSP0F4SQYPxMQbv9kBWhNfLIwiQEeHlB56xgfhC1NrLK3z/MreNRmPF+wBxiEwNj4g72QXsieFwGMoFvKsE/gv1el2lUimsMffOOVizWq0WsgO4JmPyMh5KNSSFrBfGslgsgk+E+424kMPzQUaBtC+aMM+QfZ5lsod4TgEZEYBMJEQ3ni1e41ouYCGcILxQhkL2TLFYDGKJ+6ggKEwmk5XOGBER9yf+zVO+Wq/7m98/7GFEREREXPFIZ1OtfWh02MOIiLggeOKLX6C1t94mScr9034mwn0Nnx0JQUHaJwCkRBMNhZRMp9MQtc7n8zp9+rROnDgRUvApAfDoJ4TYiQfZEB4NJjLrhBSS5sZwkgK5I2rb6XQkKdT7e0q6pJAtwPghQpRgcO8QWkh1tuOF+xUMh8NABtvttk6cOKHjx4+rUqloc3MzzNv29nYo98BTAF8Erj+ZTFStVtVut7Vc7naMoIUkc1er1UI5CAIIxLFarYZ0erI0MEf0Mg8vkSCLgjlGOPJ2ftPpVLVaTdIu8e12u2o2m2FvSAoiDIKIl5SQWcGegpATvc5mDTjRh4g6sccfAkHEMx8Qk4ii08qTsbB23lrUr5ftOkD7TEQ2RCiuBal2fws3KOTe2EdeDuF+AZTB4AGB+MW6Uh7Bc8Iz5C0g/dmAjGe9ETDJdKGjWCyq0WhoZ2dnxRgTYcKNH12IYU0RSlwgcXNLjEJZWy91QOhijb0UhWeD/eVCR0TE/YXFx2467CFEREREREREXCJ4xuOeobTbu9vjmv23ab688OW8R+KvZYiLk3+iopjNDYfD0EqQTgW33367rrnmGrVaLXU6HR07dixE2D2lXNIKySdSTnQW0tdoNFbKD6RVYzaPvkJmID6kR5OGXq/XA2nn3ryeO5fLqV6vB8M+r013o8NsyQUkkhr3jY0NbWxshJKPY8eOhbp2SkiItBNth8Ayv5SDtFotzWYzbWxsaGtrK6wBBovlcjmUPUA86/W6hsOhdnZ2QgYBxNFb+yEEIcRQ249/AV0CSFVHZGF9RqNR6PzAPoEEIjKQDQG5xyCSDAgntk4iAeSU7heTyUT9fj8QVUwcvdPCaDRa6SiAcOERb9LnmXvGy15yY0PvttDv98P6S6slKkTcSf9HrAC+3z0KTxkA52EuEG/6/X4w33TRAzGBjKFsRo4/Z252yj/WhbVEQKxWq0FEY22YA38mPNsAI0aEM54H5pXnh/XGXJKMCAQGF7EQIfAJ4XeEvoiI+xXLhZ7+mZ+v1733Lw57JBERERERERFHBLN0oVm60JNe+iKdfJmVKCxvObxB6YgICkQrNzc3V0gEaeakefd6PTWbzZCSvbW1pTvuuEP1el3NZjP8q9frIcKOqOB153RfcOd5J30QJqKlGCS6PwIkjtaKRPuJZFMrTs19lsCWy+WVmnAn0MC9ICCIRHKJzk8mE/V6vZB5kM/ngzDS6/XCcWmahvlBNPGIdqfTUaPRCNkFZ8+e1Wg0ChkYjUYjiCxkKdD6EFHEzQu9/txTx3mtUqkEkYVyAaLnTnqdIOK74GaHrBs+BqS0Y3ZJmQJrfVdGe0688e3wrhIIBt7dg9R51pL5gbx7CQzHuuBC6QL70Lsk0LWi3W6veBe4BwTp++61QTYDZR/Mk7+OMMNews8Cgu+ZHN7pwDN9yLrxdpGISuw5vDsQPDxbgH3Aed1bhGN5j/NyfwhQburp+wFjU8/AoOyHfYwvBCUzvIc4hLFqRMShYLHQR2d9PbTYOOyRRERERERERBwiJulMn5hP9S//+MW64VveqpN602EPaQVHQlDI5/M6derUyh/03t7NOyYMBgNVq1WdPHlSt9xyi2655Ra1222tra1pfX1da2trQZggbdyJvJv8kUHgbR/dBM+7CIxGo0BM3QwQkkeatNfAk4FAfTqRUEog3Hiu3W4HMo/BHMdR1kGqN4IKbfnSNA0ZBIyv0Wio1WoFso4AQqtJMgOYXzfMG4/HuuOOO3T27FmdPHkymFvS6rBerwcxxceH14W38WN9IWieNs9rnpHh64DnAZFk9gfHcU+sB6nz3mmB7hnAS0f43evxuS73VKlUgkkl90KmAPvH0/kh6BBehBQEKj6PgES5jRslIh4Nh8Ngpuhkn3klE8AzFVyMQRjwNpM8By6OIRDVarWQtQKYY4QW9jnlM3S3YA4g6T7PnJ997Z0oGDvr7BkBnr2DqECZBeKId3Vgj7KeXNs9IOr1ukajUVgDrsF6I4QwN56lERFxf2KxvaNvf/K/1Uve8Md6ajV2G4mIiIiIiLgS0V+O9fnvfrbWnvFh3aC3HvZwDsSR+Gs5n89rfX1dp06dCsaKHsWE7G1vb2tra0tpmqrVaqlcLuvMmTO67bbbNJ/P1el0tL6+rna7HcgRpn2SAsEiau8mhZVKJdSNE4XGeBBDOdLbPRLrpQxkJEgK7Qgpr4AsjUajcF3IPVH9RqMRyC8p3ngwQFAbjYY6nY7a7baazWZo75gkiQaDgYbD4Up5BO00pf1SB643mUy0s7MT7tXnajAY6PTp09rc3AwiAWUcgGtCLD07AZJGtJi1yPoXIGZICiIA98FauYEi5JNzeGaDpCB6QDgplXFS7FkKjBMzSxci3MPCa/Uh2YhCbrbp0XzPDOA9skKkfdNChBOyZvCZQAwjM4P3KBFANHBzRC/JmU6n6vV6KyTb32cN2QvZ6Hwulwv+FN7ZAZDt49kurCnPk3ds8Hvl3hBxuF/KarhH5oxz8H3AM0Z5knfTYD+QhcGzTkmEP1eIeJLC/LvXQvRQiDhMzD9+k1769c8+7GFEREREXNEo9Kd6xc41hz2MiCsMi3Sp77njUfrC936t1p7x4cMezl3iSAgKklSv19Vut3X8+PEQgQek+s9mM50+fVqDwUCFQkGtVkuDwUCf+MQndMcdd0iSjh07pvX19eC1QFaBu/UTMeUf6d6tVit0gSCKmc/n1Wq1VK1WQ/kDUVQnyJICgYZcEtnudDrqdDohEwIiUygUgoiAQOGp9LS5dD8CjqO0A/LpHQG8RSRZDYgfpHtD9jA8pKYdUUCSut2uNjY21O/3Q3o7AgaiDMSM7AuEICftkDuu6ZFl/jF/jBMTSM9K4Bx0l4BEIzw4ILD9fj+M31sFurjCPkEIIZ3fTTtZY0oAEJIYF200IeLut+GiUDZDwIUtyDzrQKYCJQOspbRb/kGnCzcx9MwAyDTdNLhH7od74r6J2nMOL1nBSJPyHSfv/PPsHm+zyXVpTcpec3GJOSTDwU0lER4ozfCsFn+O3f+EOfEMIYQlnjNEFz7PvXoWhpcgRUQcBopbI73otsce9jAiIiIirlgs3/V+/ep/fuZhDyPiCsOT3/tv9K5HS60v/uhhD+VucSTCb07IaYEIofD3MWg8e/asTpw4oVarpTNnzmhzc1M33XSTKpWKyuWyjh07Fsikt8aT9p3oB4NBuD5EuVKpqN1uq1qt6uzZsyGi6fX0brgHMYHwQIwgkoPBIHSfWFtb03w+18bGxgoJhyD2er1gdAd5Q0RhHI1GI0SMJYXab49OZ03qIKLcsxNThIxutytpv4Um5R5khVSrVbVarRB57nQ62tzcPEcQcKLnYgJ17AguLib4HvASE6LqkEsi5JRmMO8QwWxdvHcF8DadrLd3LUAIkLSyvhBUJ9DZfct4nIC7waiTZkg3x3gnkOw5nfCzFm6SiaDj3S0QMRCuyMpg/qvV6jklH3yOeWavMV/MC/4FXmbCMV6mwvkAogJZDJRwuMjn4hdzyVwgIPCzZ5YgOLhIRBkD13YxiOyXRqMRyk/YG545geh1Z14bERH3JxY3fkhv/x+fK/302w97KBERERERERH3Ax7+t1+n6776PYc9jPPGkRAUIIYQajoW4MieJZ+UDVQqFTWbTZ09e1Znz55Vu91Wp9MJZKVWqwVHeWmfOM5mMw2Hw0DqIMqQ7E6no9OnT4foNv4MxWJRvV5vxbSx2WyG1yg3IMrPdWiB2Ol0ViLmpNXXarWVKDWkmnNBeiD2+Xxew+EwRPPdB8BT+4kYe+u8rCklkX4EGKLREEmiypjX0cqw3W5ra2trZdzuzs+YuZd+vx/e43qsq3e5QHggM4HyBfYJ5SaMh/ecFFJi4eaHkE4n6whBWc8AL2txeDkDogERb4gwXgWIAIhOrDdmh94dgag6WTlZouzPiEf9/TXWgPIN9jXz7J0ZOJ+XP3CvLuJ5qYaLcl7mQymCt/Nk32SzINifiD88b8PhcCVjxDu9HOSvQSmKGzEyZr4vJIVMA7JmyHzxUhZv3QqYO0opIiIiIiIiIiIiIi42Hvz6b1Juq6jrv/vtSu/+8CODIyMo8Mc7RMfN7IhOYrhH5B1SDHHa2tpSvV4PKfHeUx5yS2kAogTRXVLNT548GUovqCufTqdqNBqqVquqVCra2dkJRLhcLq+ICRCoer0e7mkwGKhWq6ndbmt7ezuUTIxGo2DeWKlUVowbJa1ESb0rAOnatG70SLe7/UO83dgQEswYaP1I5Ljf74f2kZ5uPhqNQlS3WCxqfX1d3W43ZIF4KjrXdUynU3W73RWfAogln+Mcfk8QRq/hp+ber8ex7BNq+qnh92uQ6UAnCIg25zqoE4STaRe32LvZNpDeKtT9CzgvmRTSfhYHc5PtjIBIgViEkSH7i/IMxs4+x0PCo+8uAhChB/6s+dy7lwkCkWdjkAHh5/HsBeaPkgzmzMs73L/B9793+WBMmGLyO88cGRUuoPhneYam02koUeHzXDPr1xAFhYiIiIiIiIjWu07rU9/4bH3w837tsIcScZniwX/wPH3a939Ui7Mbl5SYIN0HD4UkSR6YJMlfJknygSRJbkyS5N/vvf5fkiS5JUmSd+39e/rdnctbB2aj0B4tdMIg7RsXko7d7/dD9J0OCxAporpuvoeXwnQ6Vb/fV7fb1fb2tpIk0fr6uur1eigV4Lzr6+s6fvy46vV6GDsE1jMSyuWyOp2OisXiSo02ooSn9iMkuNs85DPbznI2m6lararZbIZzeNTdI7Z+//yXbgDcK5Fx0sB3dnaCUV232w1ET9JKu756vR4MHyFgCAvSKoHk88yNtN960wkhwgUp9Qd5AkC0iXR7FJwxuueErz9eAVwLAQa/DCLcLgZ4txE3aMzOu3ssuKjjHQ58Hj1y7yTbzST9c17CkS1z4XPsv+FwGEiyZ39wzwgTWR8L9yrwuWYe+MdYXJjxc3EdMkyGw2EoYfHsCrJPWBPft9mylGxZSVas8DIJ3ndTTzIqWJNerxf2I/eLYHKpGTFeyO/iiIiIiPPB9b/6Qj3+u16gG6ejuz/4CkD8Hr78sfjIP6n8d83DHkbEZYiH/eVz9PjveoE+/b9+QouzG4c9nHuF+/KX81zSd6Rp+g9JkjQlvSNJkj/be+8n0zT9sfM+0XyunZ0dNRqNc2ryiWZDICEP4/E4+BuUy+UQ7d/a2lKn01Gj0VhpTej14AgREA7IzmAwCIaHx48fD5FijAsLhYLq9bqazeZKCYGbCToxxTQRoudCSdY4T1oVAIjU4u7PNSnBoFxhNBqFDAhq5In+Zo0BIW8ucpCp4H4KW1tbknZT0ieTyTmlDNK+BwCRaUop8HrAt8GPxWmf+UJIyfoUkMZfLpfPiU57S0l+94wBMli8Pt4zGZy8S/up/QgnbqoIOXUS7yaZLj4wPjcSdELsooeP1b0bvGwAkuvCigtGEGCOy4oYGIq6JwHPGh4JDhcJfF4g4u6rwHGsGWPLlihkS04wHHWDUL8/1gQxinlI9jppuCeF72vm0cU0n3P3XWA9fV8yXu+WcYmZMV6w7+KIiIiIu8PDXv1C3fCjH9JiY1Mv+sQLtSzl9ae/9krlkyPj830YiN/DVwAe8Nsf00Me84362Bf+0mEPJeISx3fd/mj9w3c+RpL08A/fofnNn9SlnBN7rwWFNE1vk3Tb3s+9JEk+IOnae3OuxWKhjY2Nc9zznaBA3CAvZBbgfQBx6ff7Wi6XarVaajab2t7eDp/3dPxKpRIirBBhJ1D1el2nTp3SaDTS7bffrsFgECKs7XY7CBKevu0p4oybqDaRcE+v9mh3tl4fYlOpVMK91Go1LZdLbWxsqFwuh2jvZDLR5uamTpw4EbIF3OUe4tTtdoM5n6SQ7UBqPQR5c3NT8/lc9Xpd29vbGo/HarfbwQjPx8z1IIgQb5/vvT2y4gfBmhABlxTIIkIOv2d9DyCrEHbWDO8KPAVYTy9HcINEBBb3rvB1YA49IwGy6YSfNcUkk4wBaZ94+97LZp4gYrD3KQUYDAbBuyDr38AeyXa34ByU0rgwlb0vjvdz8rt36vA968+gC38INdmxsAaSgiDoopZ7R3jWB2PyrAnmj73C/HrbUN8jPl9eMsJ1WCcvcZD2vRdc2DjKuJDfxRERERF3hYf8/vP1qf/9/Vps70iScm98l3KSnvkFX635el1/+ppXHer4Dgvxe/jKwPy22/Wp3zHTI37ha3XjE1592MOJuJ/xxBe/QJ33bl6QcyWDkQqfeIckXdJCArggub1Jklwn6dGS3iLpSZK+NUmSr5P0du0qtlt39XlS8HO5nBqNRoiyZomBtEvQqR2fTCYh7Z5I+2KxULfb1cmTJ/XABz5QZ86cUb/fX3HM57+kXksKddlkGSwWC62vr2t7e1s7Ozva2dlRt9tVrVYLLRvn87n6/b4Wi4WKxWIoGyA6DInx9nVe/tBsNleirZ76DXHjs+12O7S0HAwGoSUl0d7RaBQ8JCDMyZ5JH/4AlHlQrlAoFDQajTQajVaI42w2Cy0jz549q+FwuOK27yn7kFrEBLwYPDvkrtbdCaFnPVAK4uaKXpvvEXTmC18CMiGymQO+rxCCIPNZIQhANCeTSegu4X4M2S4BTqC9haH7JXDfHhH31wuFQhB6mAfKAFxk4XwIKhyT9RnwjghkwWRLSbLr4kaH3FN2PbNZFy4YsVZ+vJcokG3g88XnPVOE8TH/fv+st5djeBaFCznMlYsk/j7Ppt+LCxiXCu7rd3HE0UTjD96hz3jYt+h93/6ywx5KxBWMh/7Fc/Tw73i3FvZdCRYf+LASSU9/5FPV+2cP09/+3C/c/wM8Iojfw5c3Fmc39KCvG+upf/ilesOnv/awhxNxgfD0z/pCKV3e5THNzbdpsYwdwA7CfRYUkiRpSPpdSS9K07SbJMnLJf03Senef39c0jce8LnnSXqepEBsSYeGjFOCUK1WA6kk2gqZbzabK+aLvJ/L5XTq1CndcMMN+shHPqKNjd2aFKKjxWIxpLkT0R0MBmo2m6ElX7PZVLPZVKVSCTXXW1tbWltbC+IBwoakEGmFwEC0vYzBI7lEz7NRVyfXEKRkz4gPItzv90MmBU75iDJO+skWIII+Ho81HA5DJ4Ts654+PhgMtLOzo62tLR07dmwl24IoN/Pp0Wg3GOR+3IvgoKi4G+h5Cj1kmZIKyGeW+DMe5mo4HIZ95FkGnhbvmQJkSzjZRIjgWnhjSPtiiGe2QIY9g8E9Hbw23w0o2Ue+B/gZ8QwxgHG7YSdr7MaIiBzspWxGgl/L558SI8/4gNB76Uu2tME9JPzeXXTI+h4Ui8UgDriI4EKLj9kFEjKWyIjBT8NNN4GLiA4XZdx7wctCsvvsKONCfBdXVLv/Bhxx3kjnc137I3+vp/344yRJ/T96gN74yN875FFFXGlYTvNaHiAmOBZnN1T7/Q097f8+Tp/8jsfqnd/2M8opudflELN09/9zH77x0qhdj9/DVwaWg4EKXzTW89/8BP3CA/7+sIdzSYFn+q7wlBf/f2r+/j/cD6PZRzo7c79e73LDfRIUkiQpaveL89Vpmv6eJKVpeoe9/0pJ//egz6Zp+gpJr5CkcrmcQkRJgXYy4XXj3W5X9Xo9mN0NBoOVWnFI2HA4VKfT0VVXXaXNzU1tbm5qNpsFEgNhIerc7/dDl4MkSYJ/AG3/vM4bkudRVsYKILMQMcoTarVaEC+IunvqO6KK161L+x4FkGZIqteXj8fj4PXA+UjtJvtjMpmEz2JmiRCCl0S1Wg2kent7W2fOnNHJkyfVaDSCqSOlCuVyWfV6XTs7O6HTBSQaMusZBYgqbvznoks2Ou4iEvPOPLnxIqTcf/Z2l5VKJaxNNhXfSwogpYwjW5PPeJzQ4pMBSXYxyEsDsq0r3eCQdS2VSislCWRcOLHNZkJ4CQJ7ErNBF0gkrZgT+nX5mXl2cYx78fEyNp9PjuUcXrIgaUUQ4Zqcm5+9RIRn1MtsKDvy+eW6vlYuBjCfPkbGT9aFz7mbUR7kfXEUcaG+i1vJ+qVxw1ci0lTpbKpcpaJiPkZIIu5fTNKZND1/USCdTXXtS9+kL3npZ+sjv/Zo/fWTf0aSdHW+dl7iwtZiqEG61HOf+Vwt3/0Bpekb7vXY7y/E7+ErDMuFPv64kX74PQ/X13XeoQcUGuf1sdOLgab3898WeUlXn+f47g0+Oe+f97HPveEL7laYbOjNl1yXgysd91pQSHb/Wv9FSR9I0/Qn7PWr92rJJOnLJb3vfM7HH/W9Xi+k45NeDnmczWbq9/uq1WqBKA+Hw0BEvBUf5PPYsWM6fvy4br311iAWZFO9a7VdNXg8HodjOI97FUBUR6NRMHZzcz5A1gFkB0NGPBHa7fYKgXXDOzwO6vX6Cskm4s4YILUQLUQVyCfdLBaLhUajUSBSlUollEwgrkCGIZdkLbjJo2dbuB9BmqYql8sr5pe044RoI5xkvQDoAuCCAnMBEYXYehcJRJcsyYQwMh9knpD+z2eypTT8nI1qQ2YBafEYWLL+7BfPZiBjgBIdNxTNlmy4fwKCBdkGTtKdmLvvAmNjT7IHGZ9nMyyXy9B21MtYmGPPBnCy73PmHhlZoYGxueDlc47g4uM7qDyC67g/QzaTwbN9smUcvp6eyeBZK4gvnknjWCwWIfvoKONCfxdHHG186OcfoY894hcPexgRVxie8p6v0Q0veOu9+uzDnv1OfZM+T5L0yH9I9LT2e+72M//x+1+i9qvfLOkD9+qa9zfi9/CVi79+ZFV/rc/T8/7xY+rkB3d7/I9+9fOVvv3+3QaFa6/RS/7m9Rfl3LO0oJ982KPuwSfuWkyIuDRxXzIUniTp2ZLemyTJu/Ze+z5Jz0qS5FHaTe/6uKTnn8/JyASQFBzhAaaLOzs7K1Hl8Xis7e3t4KGQpqmq1eoKAVtbW9M111yjzc1NfeITn1hJt/d0bTwRptPpCgGHfECayTrIGjHSktKjmvgqUKYwHo9VrVa1trYmaZWk4eewXC5VLpdDV4fxeBxI22g0CudH5JAUPBsgmN6Oz9Pmiexy3lKpFIi6t6acTCaq1WohGwFCDDGHPLvXg9fXcz66NHD/EGUIJH4SiAReQoCAxOsc5+UKXnZAloaXB/BZyPFBfg5kezipRCjhNW916e87oXVy7RkzHvV20gx5zWYPsJc4hvX24/ndCTDjggB7hoMLDcwla+ukP+s5kW3HyJxny1NYG54BCD8+HzxH7EMvzcgaOWbFBfdMYC7csBMBxj9/0D/G62UV3Ku/5uvr2TJHHBf0uzgiIiLC8cl5X7ffvK6WPnqfz/Wex6R6jz7zbo9r6833+Vr3M+L38BWOV9zwkPM88v7XlOa33Kr/+dC7f+4iIu4t7kuXhzdKOqjA+HX39FxEC2mD6JFwCCsmdbSHJHsBUrpYLEL0GPNCCG+1WlWr1VK9Xg/O+RAMiB5u+JQVQNohhbVabaWjAD4LXh9PBgDu9ZQ61Ot19fv9IHrU6/WQdcA4sxH3er0eIqqQcQgmxB6RI9ulgXpyIuTMUbFYVL1eDyQQESJrSIgA4D9DJslUyJYlIMCQYYD/RaVSCZFe9yzImhdyHogcmQ2DwSCsIxF8J+WsA6UaRMel3VaYnl0h7QsICAaeIeCZA8ylv5fL5cLedDKPeINoxF7w1pncJ9kU2XIA1pb9zjGAyDrrxH5BhPDovWewIPYwh9yjZ2NwHBkJzG/WTJLXPCsAocoFBxcMfL24P7qzcD3PduAcXgripTDMmYsLWSHE78EFRBdBss+/Z2MA94Y4yriQ38URERERjtvmff2z179YNzzvbYc9lCON+D0cERFxJeOCdHm4ECAlnW4BkGsi1eVyObRNpMxB2k9rdl+DZrMZjBwhzpQu0LEAYuup9pBhyAhklvchxxAphAzGLilkDnAfjBsyzLGdTidE+w+qT2e8+Xxeo9EoRJSJQnudubTqsA8pg3xRGiLtp9CnaRo8BhgHc7FYLIJok8/ntb29rV6vF8opGC/z6K0fiWpPJhN1u90Q8UUgoIwiS/w89Z3zMc90oXBTRuaWsgY3EkRkYDx+XifxwCPe3I8TdM90QGBwH4NslgHz6F4gXmJABgP356Sbeyeb5K6eF59b1jVLpJkXzCSZFxeQGJOXAnAOb0vppRn+Gl4aXo7De6y1+3l4ORFj8GwIhA/2q4siLir4+Vg/Lx1ivC4gshbZMpesqHCpiAkRVx5a7yjrtU+q6Uvrw8MeSsRljq3FUE983UvudalDRERERMSVgSMhKPgf+HR8gISQ9i4ptESk1SFEnwgpZRG9Xk/NZlOLxUKDwW49E5FhSiWIJlcqlUD8IGSc06P3kkIZBkQG8uIkK5fLhTpxsh4gWNvb2+HajUZD9Xo9zAElFAgSkKFqtRr8DCDw2bT27M+MGUNICDYlIZDVwWAQyDFz6d4L/X5flUpF29vbuvXWW9VsNtVut4OoQ+kHpBgCxjXJUnCRwaPVkF3KHCDJZGEUi8Vgrujz62noZFCQxYF44wKK+wdwXfetgDgjlpCBwTpAZp1c+7kYh0fp6fTgogBiD+Mii8DXE6I8GAxCxoWTX54V/9nJMiQ+WwbgXTe8dAF41N7LX7z9JqSde+Hc/Fwul1fKJRiPe2Jwfb+WZyPcGbgnN/N00czX0f0S2FtezuAZJ1lPDfdriIg4irjqZ96kH3nG0/SlsctDxEXEJJ3pc37zO3TDd0UH+4iIiIiIu8aREBQkBXJKVsFBdfWUCkA4Z7NZIOCktw8GA50+fTq0k4RY48tQrVY1GAw0GAxC5N+JP5kBXMsj5tVqNWQpQEJIpZ/NZppMJqpUKiHVHWPCxWKhSqWiSqUSIu71ej1E2Ll/ScG7AMKUprtdILyMgyizn5/j3BSPWnl8FRBdIMmUXUCAvUMB5SWSgqiwubkZ0tmHw6GGw6HG43HouOFZH+megWGv1wsmhqwthNjbC5LxUSwWNR6PNRqNVkoYEIYQdfgMxHU8HodOHvl8/hzRxb0fEGay2SG8j0hC2QvZBlkyCpzcZ0sY7qwGH8LK+BE0GCvr4q06s14K2RR9P46SCwQY/52MDsZAZoJH5xGZKKG5Mx+K7L17KYED4YexcT035MxmZGS9LHxv+VjJfslmo7CmPmY3xQSevcKzi8CSNWqMiDgKWP7qSf3mD6zpa5qxnX3ExcFjfu7f66E//KbDHkZERERExCWAIyEoQBp3dnZCzb+nhCdJomZztwdxrVYLwgGp/7RjxLxxOBxqY2Mj1KFDiGib2O12A4GlfWOlUgnkG3O5bM02GQ3VajVkOOANQA0/ggQk3QkJ/gqTySRE6yEvTq64tkfxpd0MjeFwGEo/ILtOgCG/bpoo7afcMxfMjZcR1Ov10M0CE0YEhPF4rLNnzwafiOFwqH6/H/wZEFYgvQgG+BuwDpB3J/pkOEynU5XL5SBQkFVCRgiEFFGBrA7O0+v1tFgswvyxtxABSGnHxBJwfieeWRLt5SA+r+xRJ6kQWSf/fi1pNUqPkOHHecaElyCwP+4smu++Cm5UyefZ2xznY/KWk9wHwgieIN5q0b0ssoICn3cTTebJSb7vx6w3BWPmXL6eLp64caVnDGXX2MfEObzbBOdjHFFMiDiqaP2fN+tlw6/UqR//33pKdXn3H4iIuAf47B98oR7wC1FMiIiIiIg4PxwZQSFrFAihhFCNRqOQBl4ulwO59DrvWq0WUvVPnz6t2WymZrMZIr0IDkTN8QWALEG0SP+XtCIMuAEjBJkMCEg8LvZeLgGJ9uyGyWQSfB6coBI5L5VKodsEadiQwVKptJKyTeSf8TIWSSsRYIjWaDQKRNzJIiQUQgrRR0zZ2toKppeDwSAYTToZy0bk8WOQFMQUiKmXOng6PKn2g8FgxagQ/wjvaOEElfII9xTgHqnt91KHbF09RNrFGAwEnXyS7eElB4wna2Lo2QyeBcB1ONbLHdw/xMfn80D5gXdBYA1ZO/aMiy6sp6f1+3wwl3fmO5Ddz1kRgHvw7A/G51kl1Wo1HEOmCsICc+UlCS7c+LV87zFON3BkfF6K4l4Z3C/P62w2C89vLHuIOMqo/sFb9UM736BrXvUzuqFYv/sPRFxyeOgbnqMH/ubqn2m/8/M/peP5i7fej/+uF+j4/7nkOixERERERBwijoSgAGGH+LlZHRHTfr8fOhpAYLI97SuVSohATyYTnT17Vt1uV6VSSddcc00g8NVqVY1GI/gAjEajcF5v+edEDBEDUcEJXpa4EuWHAEGicrncStkG9+7Evd/vq9VqBSd/7hHhA3NIBATO7y0dERQgapwLAucdFyBSkHuuh28BnSzI/Njc3AzzRnYD12Z+3GsA8kZGB6Uh5XL5nG4Pnt3gRBS4CALhcwND9grn8W4KzBckGCLrUWzmhEwKRKQsvOxG0ooA5e/7uBEHnPh6pNzNGyWtkHT/HTGKTBRvtcp8IY4gongGAWvlxJy9jGhClkg248LFL54BSoZYF3+f8XpJhLcC5Vk7yBskm+Xhopuf1/eIZ2Nk58/9LVxw4Hn160haWc+IiKOK/F/+g/79M79JaT6vP/njVx/2cCIuAL7vjkfqnc/5DEnSw2+7RYs7Tq+8/+wv+WYtywW9/g9+7YJe9zH/9YW66s07ar/nbVIUUyMiIiIi7gGOhKAAKSfiXy6XNRqN1Ov1ViKF3okAYYB6f0khe2E8Hqvb7QYfgFKppLW1NV199dUqlUq69dZbAwEdj8fq9/saDAbBCR9Sm00Fd5d5jwpDmEqlUkjd9pTuwWCgXC6ndrsdCCAkBp8HSOBwONRoNAqRVCLMvEcZAIQXAsSckEFRq9XU7/eDaADpI2OAsoas4Z+bK2JuuLOzE8pSlsul6vV6EAb4jBvjeXmCn4t74DhMF1k/yK+TP2/36GnokHY3a/TrM/9kc0BamT/GlCXwHq0n88Pr8T1LgfmjDMCj3xBgj4D7OL2MwbNTeM8JLffgZJiSGTclJQLv4PzMi/uTuGDgJQ1ulJn1TXC/BS+N8DXhvrMknv2MoMDn8Lzg/hGbfG183SkX4bnjvhEoEApcVPAyHObF96Z7JrhBaETEUcfyPR+UJD3jc56uxdXr+pPX/vohj+jKxRd/0dcot9VV2qrrdW94zXl/7hmPe0Yg8elkouXZ99/psct3f2D3M5/zdE1uOKU/f/Uv3evxPvhPvlmf/p9vlSSdPP0OLWfTe32uiIiIiIgrF0dKUKATgUdVJQWhoVKpqNVqrURT8RWABGGcSIeBnZ0djcfjcEy1WlW9Xg9p5hDtXq8XxAePUiIaUA4hrfa2J8IPgXZSI+2Tcq7FmGmzRyYE2RUIEJhMMmbINXXxGEhSogCRIxoOMXXSR6QeLwhe9xacnvnAf6fTqUajkXK53ErmgndpgIiRHYIwka219xR2zwjw4zjWr8/90J0Cos418RXwcbs44ueCOCIYQMq93SHzQcZFkiTBXNKj2dm9wnWc+M/nc9VqtZW9AunOCjoIatlykGz5AaUjnBeSLu0LYAgF7A3WkYwUb5Pq8+RknnsDLgJ4aYwTfif9vObPi68H52LfkhXCe+5hwWe9zMHLQNhvWUHGxRjmnXX07AyedfdiiIi4VDC/5Vbpllv1xQ95/N0e+8p//HNdna/dD6O6NHD9nz1X6TSnjzzjF+7xZx//n/4/Hf+Nd0qSluMPailJt+i81gEsx7fc4+vOb7lVeVvvm178GL3nW3/2bj/3Y5sP1199zjFJ0sPn7zrHQDciIiIiIuKe4sgICpVKJUTUSbv2sgEi4mtra7rqqqtW6uTz+byGw6EGg4FarZZarZa2t7dVKpXUbrdDRwKIAx0XvGUkBoKlUmklYg7xckIJ+XCH/tlspm63q1arFc6XFSCAR+5JG5f2/QM8QwFzRMgrpSFOniBdpPOTIcC1KdPgd4/wUlZSLpfDa4gOEGyECMiXZyEgyPhYs1Fx5olsi4MivxBn9yKAODp55Dg/r5Nz977w6zBP3L+XmkgKXTyy65VNtWcfIPh4dgEiB9kf2SwLJ+HsI8+scO8D9gTzye9ci/1DVoz/UYhIxV72UhMEBi/DQEBgLrL7hXEyFt93HOPE3oUC3+suMLBXvFVrVnhi3b2NqhN+LxtB0MIzwQWRg/wg3H8kmwmRFTUiIi4lLPdE4bvCNz3o8+6HkVw6uF7vkCQ9XY+5x59d19/roG+K81mHCwGu84D/8SY9/X+c7/jvn7FFRERERFwZOBKCgqRAmIbDYSDyxWLxnPr8Xq+nBz3oQVpbWwtRa0g27fA6nY5uv/32kLINser1eiGq32g0VtK/R6NRiCbj4QCpdaO9bJTdiQlGgt1uV4vFItTwI0j4Pc5mM62vr4dz1+t15fN57ezsBIIEIRuNRiHrAXLIGDwaC1GUFDwT8D6AhGI8J+2nqEMO6bDhpQBE7pkXWnW6VwUkzsm/u/BDoMne8LaBCDPeKYGxktHhnhp+HwhKeExkrw+ymRK8xn9dNHBzRNYNso9hn5/PjQJdIODcHh0n+8W9BhBYPMqenRc3lPTsCDfrLBQKIXsEOPkeDAYrwoUbMPr5yS7xfcu9ub8FooKve9YA0q/jY2L8zAV7D1EI4cfnjnnw0hpJK1k4XDObceEmlL4H+ExWcOB+OV9ERERERERERERExME4EoJCLrfbcrHT6ajX60lS8AEgwgpR6vf7SpJEjUZDkkLaOqRpNptpbW1Np06d0unTp0M0e7HY7f6wvr6uZrOpTqej0WgU/AQWi0XoKoCYAFGjnSQEw+vVIccQTtpZTqdTdTodlUqlEP0nauwtJzG1IwqLcCJJrVYr+EAQkec6iAmQOnfEz5IxyjHK5bKazaYGg8HKcdJ+2QmiApFoBAXaOkLIEBQgYxBSiJyLBJBRovvz+Vzlcjl4L0j7xJ6fAfeGaJSNcrtDv2duIPBI+14JCBScw4m8ZxF4poNHy7lfMmi4Zwi2lzD43vbSHTIsHFm/AMwJPQNGUsimcbDG3s7TsyZY00KhEMQfN+L0+UZgQLBCEONn9qYbKjrhR2RAwPPMhWxJBPfl2ShkW5AV5FkJ7A8XB9wDwksteE6zpUnAsxL4HeHD18+vERERERERERERERFxLo6EoCDtpsM3m81ALqRdk0WyBiAVvV5PaZqqVquttGqk+8DOzo6OHTum9fX1UAYhSYPBQKdPn9ZVV12lYrGoRqOhRqMRIrJ0T5hOpyoUCioWi6pWq0EQWC6XGo1GwSkfkuWp36S6b2xsBM+BY8eOhag2JozSrjAyHo9VLBYDialWq5rP59rY2NBwOFSj0QjX9u4WTuIoWajX6ytCAe951gWEDfGEaDBElXO6Qz8gDdzLJJIkCZ4ERKil1Ugx50FYyKbDezQ5G0HmHKwx4/Notke0nZR7tJ/5gHhL+50L8MbAF8JNFNmLHunHWBICSlSfc2ZT7t1ng9+5N+9W4VkJeCSwt7g/9qYbPEpaEVrcp4HxIDa4yAKJ5meeQX72ziSsXbVaPdCYlL3mZRwe8XdRydfEz+XnlBTWKZvRQKkN6+7nzWZ6uK+CCwbZ/ZbdO5LCc+olHBERERERERERERERqzgSggJ/0FcqlZXIdTZKulwuQ8tCMhjm87lGo1HoDLG9va3BYKBGo6FmsxnKAOj80Ov1VK/XVSqVVK1WVSwWNRqNJClEnckWKJfLgYRL+xFmiDURb4i0k9/ZbBZaQJKhIK1GPcfj8Ur7xFKppFqtFkoiptOparXaOQTIu11AoiDGlH2QBTEajVbq4BEUyKLgfGQAuKDgUXr3HJjNZsGvAVGBbA4XBCCF1O0jjgAvEUA88O4AlFq40OCp9G7YRxmGn5+18og15JvxOth3fl7uP3tOPw+lB2SPID5wPGvnRoUuJPB5SLwbXJIJ4Nclo8VLR/w6HMe8SDpnflwYStM0eGb4ZzxDgvkmw4Tx+vOLUSTnvDPjQz7rJQUcz7FukuklJwf5O7hQcFBGgZc1ZMs0pH0hxcfJfyMiIiIiIiIiIiIi7hxHQlBwJ/1yuRwyE0jRhiRQ1tDtdrVc7raNXC6X6vf7wTBxNBppMBioXq+r0WhoMBioVqsFgr25uRlIHYIB5KJWq62433tk2gUBiCGkA5M+PB+k/dT18XisZrO5UtIwHA6DOAEhTdM0jHk0Gqnf74fPSwpZDkRxETKcUEM83WzQRQg+WyqVwmeZV5/jbEbBQWUJ1O5LqzXqvp5eGsBr2faWHpFHPOIY95HwaDnw0gU6fEBWnXgydifwB8Gj0YglEHfmAR8LBC3m0gUEz1Bwksv8IRIQ0fdsC2m/BALS7a0QEUjcmDBbioNQhODF/SAmZdt8IiYhcLFmCDr4dhw0PvcRIXuHc7q3BnPjmQn87sdResJ88V8Xu/x17s0zDbKmjuxJnxPPivA186yNWO4QERERERERERERcde4T4JCkiQfl9STtJA0T9P0sUmSrEv6LUnXSfq4pK9K03Trrs5DtJQ/+CHHw+FQ0mrbt8lkotOnT2s4HIYSAfcSmEwmISW9VCqtdHSgE4O3SfSuA5Q9cC4nzxAeb82H4EBZBCaIEBOMImezmVqtlvL5fPBOgLyRHcF4yuWyarWa+v1+6PbAfBSLxZWosGceIBBwboQRXodYIng4mYfIZSPxEFOP5LthYbVaXSGeXsJAFgnk1Ikl53GjQRcr3MgPMs/6uFeCpJWoN3OUpqn6/X4gwe4RkE2L97nnv2QfePaGGxIiXFEqgr+Ai05+3oOi3QgnzEE2e4Fruv8A68Ieo1zFP+clCy44MCbPqHAPDIQISUEkcTHC95vfl5/TBQ/2npd8uIiRHZf/PhqNziH3CArMXXZeOEe2dMHFDPaye0dkMxv4mfNnRayjigv1XRwRERERce8Qv4cjIiKuVFyInN5/kabpo9I0feze7/9B0hvSNL1e0hv2fr9LQDIgsUTXIcNZcnHmzBltb28rl8upVqsFrwHS7zEVJAOhUqkEPwTKJvAQqNVqarfbgUBB3ilfoG4bY0hec/JKJLtWq53TmaDX6wVhxMfAPUq7pQ+UclBqkSRJaN/onR28BIOof5bwQJwwYazX62GskD4nVxBasiEQARB6uD4gsguZzpZGePkEmQre3cEJJoKMZ0yw9rzOOP0cXovP+nBfLmJ4mjxCiAtIbizIP8btXQWyJSvU8nv2hq+DiwoHRbuZK/cB4HNuCMp4mHM+y3oNh8OwNyHyXkaSLWNhDjEDhTiTJUFmEPPjnS64tgtEngHDuNyQkf3ogtxBWSZO5BkHa8p3gmcTcE6fF/8u8WM4t2dnZIWMrJdDdpyXCO7zd3FERERExH1C/B6OiIi44nAxioT/laRf2fv5VyR92d19gMwByOFoNNJ4PD4nnRt0u11tbm6GKHGz2VSr1Qop3fS4lxSyBxAWXHigHh3SfVCqNCSEzAInpU5Gl8vlSukDJHg6nYbODxBwsiAgbJKCoSRmjp5mzzjo9NBoNFStVoMjP10sXHTJ5/Oq1WpqtVpqNptBhPBMgmyGAAaVLo7cGQnzyDskFnIKaWXeEGD4bNb/wUs2uAb1+i4O8Fk+w/kQALw7RbVaDaSZ+YOQejZEuVxeKavxMhcn8pwX4cO7bTDnHu1GNGJdPOrt4oWDcXlZhHc2QBzh2CzpdoLPGBmXryHn9g4jLmB4NwefE+bd/3HvnlXiAqE/T15O45/xfcgzgZjFHGY7O/he90wdfy+bycAc8rwwj9lSDP93ieMefxdHRERERFxQxO/hiIiIyx731UMhlfSnSZKkkn4hTdNXSLoqTdPbJClN09uSJDl5dyeZz+fqdrsr5oeVSiXUY3tttLTbIeG2227TbbfdpvX19UCea7Waer2eJpNJ8FFwo0BKHDCWw/SOUgcEA2k/5d+jxETbGQuRZNpNSgqZC3gMcJ5+v69OpxPS1IkOc/3BYKDNzU3V63XV6/UwN/l8XvV6PZAhsjLy+byGw+EK2XJyjz8D4/Kotdet856Xf+BlwVwjZHg6vUfvAecn64B5c+KMuODr4pF6SKmnzC+X+61BpdVyAeBp+5wPjw1MKiGkXNfHyppxHz5X3g4Toi4peEIwXie8Ho13ASQ7V4zB15F15r7Yu4yZcgdEBebMj/cSBIQKXkOgyfor4JeA0SlZKOxpb9/qGQKIHAgufi+cw4UUJ/lk95BN4p4Rvt4uwrB/fa45LnutbDlD1jvCv1+yuMQEhQvyXRwRERERca8Rv4cjIiKuSNxXQeFJaZreuvcF+WdJknzwfD+YJMnzJD2P3yGN0n47PIhVluxLu0T3jjvu0PHjxzmfGo2GdnZ2Qn04kVcMG/EWKJfLWiwWIROC4yAclCv4f/FIINXcI8leasFr1WpVtVotpG+Tmt5sNkPknfuGBJGp4WZ8RO4Zf5Ikqtfr4dxubijtO/M78ZvP5xoMBoFUQwS9vl3ab1vpUd9isbiS2k9016O9ks7JBCDDgjEyLtZYUsjUcDHBMxc8Is4aM9Zsy0fPehiNRiuk2UUWj/CTBcG5EYC8xIFrOVH1bAk+C8F1kgup9nNxn4gfPnc+fy42eGYGc4DQgWDFOFwA47NZI0PKcrIZBOw3smEQ1CSFNSLThtf4rAs53H82e8DLILhnyowYpwsw2Tnw7wa/P4QBPy4LFzEQe/x4XyPm6RLDBfkurqh2scYXERERcbkjfg9HRERckbhPgkKaprfu/fd0kiS/L+lxku5IkuTqPSX2akmn7+Szr5D0CklKkiSF+DoBQUxot9tKkiRE5Im8d7vdYLKIoNBut4M4Ua/XV5zdJ5OJer2eGo2GarWaut2uhsNhIFOeyu4RYSe7Hp3GeBDCOZlMViLI1Wo1ZBIQTe50OqE0YjKZrETwIbS9Xi9kQ1B+ICnUt0+nU3U6nVBOwfU8Pd8JExF6T8mHfHIvvFYul0O7SSeO0qo5HtFsiC1tJT0K7NF7J5AeJUfM2dsTIRXf0+k5r3sCuP8B10Ec6Pf7Go/HB47fSxm8nIT7J0smG7n27A9KTbysQNJKVgbHcQ0HZD67LlkxiL3mGS1uEkg2w94zFNaU7Bufb54b9rebcnq2DQIS4hhznSXe/l8XAxAl3PPAywsA1/TsISf9WSGG471cxcdxUDkEcA8Hz0w4SETIvnap4EJ9F7eS9UtOSYmIiIg4CojfwxEREVcq7rWHQpIk9SRJmvws6YskvU/SayV9/d5hXy/pD8/nfOVyWZVKJUR6nZS6N4GbxBFxhkjR8o6MAXwN3LGeaLsTlMlkotFoFIgrxATSCoklNdyzGTgXWQBkIrhZItdP01SVSiX4E8xms3C8tEuI3bTRa8wxKYRQkgWRdaH3tH03lPQMD8QQ917wWnY/xtP1IckuUvAPEaLf76+0xSyVSsGM0rthMCbKTRARIJVkZnAdTCshuRBW1oTP+5o52S4Wi8FXwY0ZuS+PqEOu/TgXmLy7AsKKZ3HYMxLWwH0R3DsDv4/s3kPkYB3ZT26ACLlmrSDwZI7gscDasC4uTPnaYVbKvfA6x/mYnLz7uvGatN9ONOt/4PODKOIigQs83nHFxTf3w2B9+OdGlF4OAbx0wkW2SxUX+rs4IiIiIuKeIX4PR0REXMm4LxkKV0n6/b0/1AuS/k+apn+SJMnbJP12kiTfJOkmSV95PifDbNBbEHqqerlcVr/fD8R4OBwGsgX58xZ8Tmjb7bY2NzdD60gyCyAbkDBIrEeMiepi4EgU3Es0uCbkbjgchih5vV4PhpEQr1qtpkKhEDpN5HK5UArRbrdDZNsJWq1WC6nvlHRA5txk7iCBwTsRQIKJYHu6vUeNOQ4yzvmZH9bJX/NyCbIC7qx8gXXA+wLy6pFqjoXQcv+QQbI4qP9nLSqVSiD5bv5HiQTrRzkKgFgyTjIOspkKXIcyFe+AwTqTGcB43YuA/ZI19WS+/Fo+Zz4+HxNlOGmaqlqthuOyxoOeeUPmjoseXrbibRqzngZZTxMn8z5fviY+Fj+G67vHh+9Hv57fi7/PMf4a58kKHYiR2c8f9PslhAv6XRwRERERcY8Rv4cjIiKuWNxrQSFN049J+qwDXt+Q9NR7er4PfOADesxjHqNmsxm6DUAyiFR6hN5Jhtfee0o+okC5XFa9XlelUglRdLoQeCZBLpdTo9EI/goeIc223isWi8E0knIJIrueyi5JjUZjxQiwVqsFD4XBYKBCoaBarRZIXqfTCffpBJqsBNLRceYnI8JJPN4E7oXgpopeH8+49tYvpLm7MJD1VsiWDjjBr1argbhRc48A4WaEfN7LScjiyBJ3L4mB3NIxw+/BsxT6/f5KK9ByuRzEKXwH2F9ObBFRst0GeM+9ExCdvN1ppVIJWQg+fuYB8LuXMLC/eJ/PIlb5GBkD+2M6nYbrcE9e0pAl8S48MX/ZjAIyeHgGDipFYIzMlV/HMwEAe4d75P48SyD7uez5uLYfz37xY7M430yEO/v8UcSF/i6OiIiIiLhniN/DERERVzLuqynjBQMEw6OkXj/vBA1SQYnBZDIJBB0C5J0LKDOA1HoqNyS4Uqmo2Wyq2WxqMBhoNBoFcgQpdDJXqVQ0HA41n89D+rtHWCE9iA9ulocvQq1WC74QpKIjDBBN9/nAU8IjrYgZRMOd4LmYMJ1OV6KzksJ8OnEjYu/EF7hfAtFuL/kg6s790nqQeeZ3CCev+bVcMJD2STvzlyXQvvZevuHZDZKCNwL3zfwiKFDGwue5ppNfzu+iAiUqnqEiaWX+PZLv5o3ZrA1P6ffIepaMsw6AbATmlLni3txQ0ls7Mh7mhPN4yUFWFPA54j79WD83n/V78gyRrLeCl3K434HPVTbDJNtdAzGN+fTSED/mruDXvFREhYiIiIiIiIiIiIjDwJERFKR9EQFCSJo7oB4f0jsYDHT69GkVi0Wtra1JWq1bdxf9crkcUuOHw2E4P4JCrVZTq9VSuVwObSDn83kwVoRAEVGHNHvtfb/f12g0krRLyOv1uhqNhqrVaiA5nprearVWxIvBYKB+vx9Eg2KxGEiUlzRwXQg8vhHudSCtdnqoVCqB8JLKT4mICxBcy7smIB44OXajQweEDo8IJ9jevhHi2uv1Vsol8D7wkg9IO4KICxgIOt7GkjE7sSYjI0usGQvjdoLPuNmP7qXhBJq58mtlMxnc+4H7cMKfFQ08au8k2ssF/B6y+8TP7/PrPhieEeEGnd4BJFtq4CUs2XICf1ZddOC6fpyTfD8Xol/W8NLv1Us9OGc2a4Rjs61Ns/B78Hv1/0ZEREREREREREREHIwjJShIq6n3kCKIR6lUCh0PJGk0GmkwGGgwGIQotZPgbreryWSiVqsVjAEho5gC+rnX1taUy+W0s7OjwWCg8XgcPBjcOwECWa1WtVwuVSwWV9pPZksjPDWfqDrXdGPIfr8f7hHjRogqJJuMAp8j9z1gjBBbCBvz5mnxXurh8+ZlCqyJlyZICpkW3rLRW0AeVNLgGScQdHwT3Imflp/uNeCeDVkS6OUlningc8O1vAzEMzZ4LWvYCDzK70KAR77dE8HXhs8hrrgQ5e/fWVYA95nNcMhG7r18gHG5EOYZNj6HXjLkvhFZkcIj957J4VklLrJ4mcWdlR+4eOFCSTYjguN9HH6PWZ+JuxI7HFlB53yzGCIiIiIiIiIiIiIijpCg4H/IOyGUtNJNoVKprJjd8f50Ol1x5ycTodvt6vjx42o2m2q1WqrX6yvu90SNqckvl8sqFAoajUba2dkJ5RLNZjOMT9olTKTNQyQxTnRDvvF4rG63K0nBFHJnZ2flnvl5PB5rOByG17x9Is79EGvP4pjNZkGwIOvAfR0gTd5+EMEB0oZ4wf3xnrd+TJIkzA/lGT4f7pWA8SPz4//c/R/iiCCUy+22ZERccTLoogKlIEmSBHNMPDYgm7SnzNb3cy+QYoQU92CQzm0d6UTeo+wQbhdcyM4g6p71J/AME/a8ZxC4Z4fvk4PKI7KZA9nnyfeYGyV6VN+zW7w9alakujtxwMfp4oWXsGTJ/50JJMDLTLLPjI/H5/Ug4SU7lux9ZH/PzmVERERERERERERExCqOjKAAWcWh30matJre7FFkiCUu9ZQv0BGCNniVSkWtVku1Wi2QYUgkAgNEpFqtqlqtamdnJwgPzWZzxc9A2q/Lh4B5az9IzHQ61dmzZzWfz9Vut8OxRILJYIDsjcfjYCToNeQIB/wX4jsYDEIWAIS2Xq+vEEQIkfsfQOC9DMEFA0oznCQz/1ybchEnr4gYo9FIk8kktO10U0Su6z4AXnZAyQqiDPeQrY33MgPIOfPmXhvsFSe8jDebBcI8uVjgJp/SfjaDiw0uUGTFGR9rVlTIihXZLgesS/Y6/ppH8TkGZKP6PqcHfSYrqDjJz5L0rMDANTg3zxNZE5zHRYqDxAAft+8rz6jw+feyI67vr/n9+vOQ9bfIIluKEhERERERERERERGxiiMjKEhSrVZTo9EIBBdyVq1WQ2s8otluqkcav6RAxiEDlArU63XVajXV63V1u90VY7v5fB4MHqvVqur1utbW1tTv95WmaTB+JPoPyeI6RM5Ho1FI18YMcblcBk+G2WwWPCDIKKAcgnvmvSwJ4n64DtF3yjY8K4FMCa+nR0RxskuWRT6fDz4OtVpNlUpF/X4/RLO9NANRZTabaTwen+NLQHbGZDIJ5NVfh/B7JwP3h5AUMgY8AyJN0yB2eKSd67t5IuIFAo+XdrDerCHkFIGE60s6R1BgLhEpXBDJii7ecpR9iWjh5NXLQFwY8DXPCg1Z8ss9eBmAz5tH+CHtTtLJhvD5z5a7uCEl52VO/J79ei7m+D5mrE7W/dz+Gtfi+u6p4Pfs1/K18mfIxRif5zsTDe6qVCIiIiIiIiIiIiIi4ggJCovFQu9+97v1eZ/3eYEkJkkSvASWy6XG43Eg8rzW6/VWSBFEztv+QXYh706OicZvb28Hg8disahWq6VOp6PhcKjpdKrhcKhCoRAi7ggZeB5A8KmPdwK8XC5DKUPWF0JSIJ5kObgvgaQQna/X6yHzot/vh7nzlHqPkEsK8+URWyeM5XI5ZGhA4DGD9PR4yHOpVArkFtGA65MhkEW2Pr7dbqtUKgXTTDdU9FaLdOLwSHmlUgnE3Emu+xewTrPZLAglzEtWrMh2K3CCz88QVsirewNARjk3GR9eupBtkejp/x5FB9myAo/oOzF28s5x2VIH3md8CFeebcEYvYzEyX2WlPt8sD98/P45z1jIEnvPbuG4rIfFQdkWwM1JPfPAMyf8/NlzZv8bEREREREREREREXHPcGQEhTRNNRgMVghIoVBQrVYLxKPf74foNiSAjg3SftmEp/9Lq90jqMuX9mveMWDc2tpSvV7XsWPH1Gg01G63Q/p9v98Pke9sjTukvVwuBy+HyWSi0WgUSBSZBRznJoseieUf7S4pTeA+PKsia84o7ZM4shUg0+VyOZQhuJke85EkiYbDYSCetVot3IvPVbVa1Ww20/b2dhgTxBbRh3FICqULnFfa94aA3HNsdo0wsKRzBiILxpGMi3uB0PNaqVQKggKk2k0wKZ1gDdzXwdeYdfauA74PWWNe92i/Zxdk/QnI2sgKA566z3443/T7rKDAdVlHFxQ4lmyTrNeAZzXgB+JGiAd5ERwkanCvWbjA4nPoJQl+XFY8QQzxjBEyXrLlLY6DhISDshFiuUNERERERERERETEXeNICQpu0iftGx96in6pVFKj0QhRd9LraYsImcaXIBt1Rqjwuvt6va7RaBQMFBuNRiB/+Xw+EFv8Czy6723uMHyEnHorRGm/6wOkuN/vh5IOosMQdyfWZC54ZJj7nU6n4Vp+v+4l4edFtPFrMDYyPmixyfseufbINKSaNpfeFpE1lfY7QkDmIfDMJ+caj8fBC6NSqQQxgbWixMKJP1kiEELvZuBtMZkDRB/PaOH6kkKZBOdz4p1N6fdUfL8PXvNMBubDszW8pt/LQjxzwcm5d/PIlgz4fGfLHRAU2BdeqgBp9w4UXMfLiFhr9nc2I8HLLBifZyD4+Jgnxu9Gnn7dg86ZvT/W2zuM8HnWwfcr8PKJbNZHdqwREREREREREREREQfjyAgKAJ8EN1vLkhdILOTNI7qSgvBAFNqJrpdB8BqR+uVyqZ2dnUA8OY+TV9LZ3fwQggr55v1isRgi8O6r4IIG4gAp+3zO692Hw2EovaBzQqvVUpIk6na7oXQAEuRRZIQHSedkCTgxRIThXJJWBAUXeyCoTuDcS8FJNyUA+E0wPt53Yulg7IPBQNJ+aj4ZENmUe8bn4g336WIBJNTXhDGxV9xMMFsi4tkzzLkTdO9Owvter5/dg1mi7J4SLhAxx56dw2e8lIA9lu2Uwnucx0k7n3UxJDt2z5TIjvWg1w8SO/w+syUZ2c9kRSl/zcUAP87LhNh77Ins+Tyrhv2C54qvy0GZCxERERERERERERERuzgyggJ/uE8mk0BUkiQJAsNkMlkhHETWMTyEUC4Wi0DayV4glX+5XK6QdYQAJ2qUPrRarVByIe0KHb1eT5LU6XRCx4j5fK5+v69er7fSXYEU+2KxqDRNgyDgGQ5Zjwdp36TQjQ273W7oVkHKOqUTtVptRXDxNPpyuaxGo6GdnZ1gyIiZpc+3R+WdKHt0GwFmNputXNvJtH/W09CZa0pB3JSSzzH/7qeAyOGChmcCcA8cT8YGc8/YKdPgHNwzokWxWAwp/9nIeZbEe5YJ2SGQ6izxdC+MbKYEezZbLpHN0OHe3NzS75059uwFPx8CCgKQG0VyDS+JyJZ1eEmIn/ugzAEfo5fksCe8xITMjCxhn06nK1lJvjezooDPE88a2TJ0GkE05J+XKfk/9wnJenNQchMRERERERERERERsYojJyh4/bmXKgyHw5AFIK0SXnfjJ1rNuRAU+JxH0yGExWJR9Xo9iBBExTudjqrVaiAXg8FA3W5Xudxua0kIyGw2C5+hJeR0Og2ZFGQfkMLPfVSrVY1GoxViyJhHo5GGw6HG47E2NjaCsAKhh9Q3Go2V8gWfOzIsIPL8zv1AsiFQlIksFoswLsbqpJJjK5XKSgZIsVgMnhcIB3zO23TiH8E4iZgflDVRqVRWBAHWMEsCEWAQCubzucrlcijXcHNEPCqYR8QmOnlkM188Hd7NHTmX+yT4Xoasc34veXCi7h4NB9X+H+SRkRUTXJzKZji4L4S3KHXzwqxA4L4jHtXPeiG4wMAeZKzeZSQrthwkCvj8eclSNmvizrKSEMyypUou2vl98jkvk8i+XiwWo6AQERERERERERERcSc4MoJCNrWZP/4hHBBCj0YT6eR3J6nU3I/HY21ubqpUKgWiUavVVK1WNRgMgrkfZFJS+OxkMlGz2VSr1QqlD5gR4rOAcSK1/pBdgJEhxAaRxEk6vgHFYjGQ8263qyRJ1O/3dfbsWSVJEso8MNHjPiC8RM49wwMgKED4ndgT9addJaIGY/VuDxCter0ext7r9VZq68maQCzI5/MhwyLbftDLC4hw8zPZI/V6XYvFQv1+P9TLM1YIZtYk0z0InBBD5plvv64LKlmyDdHmfiQFXwhPq3eRQ1oVP1xIYT59XFmSzOeZE66XbXvpmRr+LLlQwH2ToQLhdtLv0XrOh/jCdVwQyc6PH+Pj8H3o4/JSFX9uPGMiu4/I8vESBzIJPAsjl8sFUcvn3OH7kHvidb+viIiIiIiIiIiIiIiDcWQEBWnVeM6jullPBY+qe3SW9GgIHhHKbrcbShSWy6UajYZarVbwH4C8jEajlQjwYDBQqVRSvV5XtVpVs9kMmQIQm2azqWazKUna2toKEW5pP/pKNoKPfzKZrKTKI2xAjDFT7PV66vf7QRAh2j8cDtVqtVaIMeneLrJI+8SVDA7vMgGJRlSAlNFOkjICru/+FZBoukdk6+Sl/YyQUqm0Ytjo9+q/e+QakkdrzuFwuNK1wqPy3K8TU6+dZy3chNGFB/daQKxivO4zkC1tyEbWnXxD3LPmhBzrcwSx5hyMg2t7SYN/1u/V9xP7IEv8Ec2yn3HS7qIBok7Wm4FxuT8H5T0ubJDlkPVByZZPuJji2QgIPoydfcd4mSvPzOFYfFD8/hmTX/uu1jT6J0RERERERERERETcOe61oJAkycMl/Za99BBJ3y+pI+m5ks7svf59aZq+7h6cNxBXSLubv0E83GTRU9Ady+UylClMp9NA6kulklqtlqrVqobDYSA04/E4EKc0TTUejzUajQKB9fR7sgiOHTumkydP6tSpU7r55ps1Ho8DKXTjP87hBpHuQg/Z93FjQujHc+/cM5kOECjvEuBEDHLo6eReZoD3AOTKfQsgld5y0wUe9wlgfPg9SArlGZRSACe3CDXSLqEjeg6h884dnuYPwZ1Op4FkQoB9bl1QyIoWvE4WivtGOHl1EkoZiwsGEGeO9fc5h0fCmceDslrY/+x373SS7XQhrXofAM/y8b2VzYBgPvB8oGwgK4x5iQ9j4TUvbfEMCn+uHe734NkqLrr5+vg9ueiIuOXCEffhogXX5D4ZkwsOrIfvD4S2o4yL9V0cEREREXF+iN/DERERVzLutaCQpumHJD1KkpIkyUu6RdLvS3qOpJ9M0/TH7uk5ScmuVCoaDofhD3r+wHdyANHyaPByuVS1Wg0ReEhpv9/XeDxWo9EI3gaNRkPNZnPF1HE0GoXSgkqlEs4NQYG4QzL57DXXXKPxeKzhcKjbb789kEfG6QZ8ELWsySSALELGES8QViA8lC4gJCAsZKPUkFNS3SFiECVPV2c8dLJwwg6hR3jZ2wOh3SbkDPHH21kS8cf80Em7tF/OglDCa95xgjnNlnJ4pB4S6aUMvoey0f1sZJr5Z819TjxN3zs+4EuAwOMCCMKCmzxmBRnPInFBheuwnn6fLqK5P4Gf20tgXJjJeiq4MOTeDpVKZaU1q6+NlyOwNr6O/rweJCw42XexwseR9bBgrVzwY969pIG958an3o2E87nokJ077umg/XEUcTG+iyMiIiIizh/xezgiIuJKxoUqeXiqpI+mafqJe1tzzB/utVpNtVpNvV4vROg9gu/p/B5t9ZR3zAm9ReN4PA6Eh4h5vV4P4gXlEZAlCHStVlshkE6Kx+OxptOp2u22HvCAB+jWW29dEShcGOA+XJCA3HhknSivl28cFIF3ouVZCBzvbSxrtZparVYQBpzkYXZI5JtreDmJe1d41Nh9LRB3WAtpn6RxrxwHSQXuXcH46MDBvEv7ngUHGRNmxQYyJiCOXjYDIT8osu0ZF4g4HuX3TAVS7j0TwNtWIkrNZrPg0eF7GFHH18MzFrz0h/l0sk4WiZs6sg7sE8QVXz/gpN6JNMcyt4hKTuyzZQzeZcXPn+0akiXw2fP4vsjOi2f7uHB0kMDEOHwOXCzysikXeryEJCuGXCK4z9/FERERERH3CfF7OCIi4orChRIUvkbSb9jv35okyddJeruk70jTdOt8TpIkiarVqur1eujK4EIAJElSMAGsVquBdPEPIuxtFafT6Tmk3gkiJJzXKQ+AFGZrtr0Eo1Qqqd1ua21tTRsbG5pMJur3+6FcguP5r/s80D4RgpQkScgAwHiw1+uFqKuLBvxjvhAwuDbZGnSkGA6HK/Xx0j5po1yC+XMDRQglkX78HpwgepaBp75TDsA5vDY/TVNVKpUVMgvR8yi4G/MBT63HTyHr0eBCkGexOLFn7MD9BxA3OM7NFiG31Wp1RShhXsgK8funlIT9xDxnI/FZnwdKTVyUkfYFFs9AYD96q0rPNnGDTb8f1pI18P12Z8IQ12cOPQuCOeBevfME//VMDPaZlyMgmGQ9GVwE8PGxZg4XIPiX3Q/sFZ8P/EMuwT8GL8h3cURERETEvUb8Ho6IiLiikLv7Q+4aSZKUJH2ppNfsvfRySQ/VburXbZJ+/E4+97wkSd6eJMnbeW00Guntb3976GBAlHgwGIR2jETREQhoD4gBm5NBshA4DxFn/kmrhoWebu1199KuDwBlEhBFiArHe3SZDAaMBL3WPUvQs9F2IuhkUiBiSPt1/9PpVKPRKJQnIHxgQknbR7pMNBqNYNrokV7mANPJZrOpRqOxUnrg4gm+FmR1AIQGXPUnk0lYH8YM+WesCBDuxI8wgZhDe8pWq6VOp6NWqxVMMslAwRCQjhtZEunk2VPYed9JshNNRClPmWcOfIy1Wi2UnTAGskMYIx4NfhyCj3cnQDzw8XBviBO8RptEN8xk79dqtSBWscb+bEDKGZ+PCYHOnwHPMEAg4byeOZI1UWSc/rx4pgTndELP/qxUKiulJNkxHVS6QoYS1/MMBS8N8XmQtPKc1Ov18LxkzSSPMi7Ed/FMk/tjqBERERGXJeL3cERExJWIC5Gh8MWS/iFN0zskif9KUpIkr5T0fw/6UJqmr5D0ir3jUkj4xsaGpF0CT9SdiDjRSS8lkBRIN8aCkgIhaTQaGgwGgfBmCUKWYEn79fsecYeoQLokrWQvDIfD4NVA1wOPXHtaP9F1N5BzYcFJEfeHkELUdDgcamNjQ51OJ9xHZn5XUuAhndPpNLzn9fmePp4ku+0qu91uOIbrlkqlkL3gggvz6JkKHrXmeIgv10dw8Ug9hNJFn3q9HlL3iR7zPvMFIPtcu1KpqFAoBINLSivcTNLbJ3o6POvgRJY1kxTuGTGAufLsBy8pQQRwYcLJMGuAYJYtCUAgQUiQ9qPpPB9cg2fFfR08qwDhAqKPmMEcuZjk2UHsIRcZfB69BAa/A9bVPRsYK2vhogO/e5YCa5T1fmC/u2DAvfvv7AsXnFxg4jnx74KDfE6OMO7zd3ErWT/6phERERERRxfxezgiIuKKw4UQFJ4lS+1KkuTqNE1v2/v1yyW973xP5PXZRIjTPeO/bOqxR/TL5XJ43SORkDwyE7xGHvKCSIBbvEei5/O5+v1+OH+tVgvlAbSCLBQK2t7e1k033aTbb79dm5ubKxFu/BYQSAaDQYju53I5NZvNFfNHxgAh9Jp8/3k6nWpnZ0eDwSDcO0S/UqkEUj8ej0NZAUKMiyUQu+VyGaLBbvqXJbt7ayxpP5LsXRXIBuE8zGP2PBBUBBiIrUepPd2d7JDRaKTNzc3QytLN9RBjWGtpPwOFvcS+QVRg7Zl7Mks4l5ekZLMYmAc8OzC+ZG2lfbLv0XL2E/uMcg3GeRAZ9v3OXvJuHQg43Bdr4+TaMxJ8b/m+4plhn5BFw3vpnhmiZ91A0rkn9pP7fUhaWU8XaHgeua77oJA94c8Hz382y8H3jR/Htd0Hw/eKj5/xcF0XLi8BXLDv4oiIiIiIe4X4PRwREXHF4T4JCkmS1CR9oaTn28v/M0mSR0lKJX088975nDMQJ/cMgIzgPO9p36TyEwkm+uupzUTgveTAybtHrLnGcrnfjSGfz2swGATvBghQLpdTv9/X2bNntbOzs9LxoFgsajQaHdjVYDqdhki1pEByvLUj947IMh6PQ6YB9+KZDpDrSqUSDCNHo5GazWaY3/l8HjpouPDBuYiIc29O1CSFVH7v1uDRa6LbksKcU/rg/hUQYMbpJQm8zr0VCrtdOU6cOBHmk3Vhrbw2H2GC8SGOOIlm77TbbVWr1ZUSGsQXzw7wOXfDTcZGFgRzxDncE4BzkNnCvHqGBJ8lm8aFNI/ae3mBG3q6HwR7mwwffmfOmC/fh57N4kKXm0n6mJhX9rxnI3B+rs3acK9uTiopiGgOv1cv15G04nHAedkXWZ8MF2R8Pb0cgu8ZL3HxcqOjjIvxXRwRERERcf6I38MRERFXKu6ToJCm6VDSscxrz76P55S033bPiRxmhZCqWq0W6tAhrhA9CE2xWFSj0dByud/pAXJONNTT9anXB6PRSMvlUuVyWePxWJPJRLPZbIVAnjlzRnfccYcGg0EgPaTK01bRjey4B68nJwqNkWO1Wg2RdkgipR1Ekev1upJk18Sx3+9rMBiEyPJwOAwEvtFoSFIoLcCTwkmjtF+OIe1mOzAX/X4/kHxp38fB1wIC7V0sEHZyuVyI9ELy3DfBMyIgdYwD4aFQKKjZbKpSqQSvBhd+vONEtuODp+SzZohM1M17FouvC4TfywGGw2G4R8g3pTCeCeO+HQhVZMSQMSEpZBi4sJLt1OClN27syL04WXZxyefAMzm8lIF5Bu5V4qIMz6ETfD83cPHEvRac/LsvgsPPi7Dlx/jP2ZaaCIBc38sbEOx8rC5cSvtiFmNEALkUcDG+iyMiIiIizh/xezgiIuJKxYXq8nBBATHFWBFSMZvNQj07pMqJA9FUj9x3Oh1Vq9UgBpC54LXl7l8AgSVqS2p01njOo/o7OzsajUYrdfPSKjny7AHS6El1dwLs7SLdM8Hvk/FQprGzsyNJK0R3sVhoNBqpVquFCDVGiQgDXifuYsfOzo5ms9lKtJz0dyeJGFU6yfbUdxdEIPrU33Munw/PbvASBtamVqsFcj2dTtXr9UJKPoIRog7XYpyAcWEOyTwyly60cE+LxWIlUs25Idf1el3NZjN0FGH9EU0QA9jP3AeElj2N8IDA5IaH7CGeC54HL0Upl8tBTCPFn/eZS+b1oNIixooZpreCRFBA9GAcPBPuYSCtdqDIZh0gFLg3gpN8z8xhj3jmA2PybIes4aI/e5yHZ85LaxB62OfZDIxs14iIiIiIiIiIiIiIiH0cqb+WIRKz2SwQGKLxRPqpnceB3dOw+SxkBBJHdJLopbRP9hEXIHAeiWcMZAMQIR+Px6GzhJu90XpxNBoF8ohZpKd11+v1ldTtbD35bDZTv99XkiQrEVdvOQnm87m2t7cDGcejgXuaTCba2trtUNTv90O2AVkFg8FAy+VSa2trobtDt9tdidQe5J/g3hMQfM4LPPODsboPgZdKsI4QROZ2PB6Hey6Xy2q326EzhLTvUQBBppyEtHc3o2QtncgjLiCUQJhdpHBiToYLnRA8W6TZbK5kKLBXyFDBd6PZbIZxcF3Oh1hA9weIOWICZJ759lIC9wVgHoGTaNbRiTbnoZzDO2j4OrnBKGPz/cmz4OUGnkngpT9kMXCMjyVbguGlJuwrRBB/Hnju8MVgfJ754eU1/jn2KO9lS04iIiIiIiIiIiIiIlZxpAQFSJzXuZNKDjEjgkx6OeSJqDf+AOVyWdVqVbVaTaVSSTs7OyE7IZ/PBzLsJRaVSiWUDHiXBcgFAgE+AmROeJ28iwR83omXpBUBhM9yTYwGh8NhuDYkkznw9PLFYqFerxcI5mQyUZqmajQawexwe3tbuVwudFQ4qNMA2R8QNYQZ5pYSE6L9i8Ui/I4o4+nwAKJGNgbjZy5d8MmKO/g4cL1CoaBWqxWyL3w/EMHG6DFJElWrVVWr1TDP2bHhVVGtVkN2iK+hl16QIcJasKbssXa7rVarpXw+H9bAM0KWy6Xq9brW1tZ0/PjxQGyXy2UQoFzUIoPByx4cLgq5IMGeYW7Zf9xDNhPAnz0XISDt/ln2bpakczzvZ80S3ZPCP+v+C9nzZNeINSSLAGGCshKO9ecsi+w8umGje0dky10iIiIiIiIiIiIiIg7GkREUPIJJZJmf3ZCNKD3RSY9+e3cHUstrtdrKNaTd6Hqr1QrEYzQaBcIs7XcvgAxNp9OQvp7P5wORpqWdGycydsYk6RyiDrGGLEHoMcjj/cViEUo+vH2jpJWx8TptERFLisViOLe0b2LnrRClVaJJCroLGJhB8jlEnGwJiNfksx5uiicpfJaMCjwhMMbknoj6u6kga9tsNtXpdEKHCy9zYZ8gKNXr9RDFdsM+RCnmiWwYNwxknn1Nff6Zu3K5HMbEenNvrPd8Ple1WlWr1QolD4gJg8EgpN0D93o4KJOjUCiE82a7Y/DcAC+dyRJ4SLibEUK8ETU80u9lDu6JANwbwt/n+fBMCBdv/DO+N9lfPAOsgbcCRUR0AdDnkmtwX379bHYD88vzGTMUIiJWkavXdebfPvKwhxFxCaDzkYnyf/kPhz2MiIiIiIiLjCMjKEirhoxOZqR9Ag0xIaJM5NnN+yCSjUZDtVpthWxA9GjX6L4JaZquGD+Sxk0HgH6/H85drVZDtwMn+qRbu1kc4/fOBk6KXAwg4s01nUgSdYYEQ4hIqac8AsGD+eR6tK/ELwBxAcIKyWcss9lMo9EodDPwdXJXfC8JIMLr68Z/neiSZZDP59VoNLS2tqZWq6VCoaButxtIPJkAEHDuodFohCwMjyizH8rlclh/F1pYW0QXn1/IMkIV90UWQ7ZtoXezaDabWltbC+8j4iB2zGYz1et1tdtt1Wq1cJ1KpRLKZxBF6PDA+HzumQ8yINyfwbugZDMG8JPIpvFTWuEeHZVKRbVaLexhrsGzybV4Dt3Xww1R/Xp+PzwD7tvhgiJ708fpnTMoL2I9XTBhvt0MkjnjO8AzhbJdKdi/XqoTEXGl45Pf+0Qt96xoZq2lPvKslx/ugCIuCXz7rZ+j9/7Hx6r0+rcf9lAiIiIiIi4ijpSgUCgUdPLkyRAN5g9+wM/VajX84Q8pIYoNCfVUcSLX0n7LRrIBms2mhsOhdnZ2VnwMKLeAGA6Hw0COyuWyWq3WSiRT2k/PrtVqK+0HuRfq/blXSDNCA3X+TtQYM+d2g0ZA1wMIqhMszuFtNBFnOCekbjQaaWdnJ3gyMN94U0yn05WsB+4ne0/uY+EikWc0eMtARCDEDbI2PFpOeQDlBrVaTY1GI3hAUF7gZBzhhXvw7ALWCf8EN4D0lP1KpaJ6vR72QrYsxzuO1Gq1UFLC/DabzXB8pVJRo9FQvV4P4+p2uyttPr0rBGUh3n2A19wnBLLM2vizwh5k7jzjh3mngwlzjMgh7Wdk+DpCthH3WDf2qpe5IOC5gOMtQV3M4Drsd+aaZxxPEPZMsVhUvV4PnyGLh/kmo4YMFBci3dQScC/Z7KeIiCsVN33/EzW+Zq53fcmPq52rHvZwIi4x/PQ1b9O3/FBe/+/LH6eH/+JI6dvee9hDioiIiIi4CDhSgkKpVNJ1112nQqFwTj95SSskCNGB16R98zeM9Yi+OjF24tlqtUKqPan4iAmQoEKhoNFopF6vp/l8HtLwiXxzbsiYd2XgdaLxklai9BC7bE26O9JDgHg9S4AYN4IKbSEhXZDJJEkCsXLDO+ZwOp2q3+9rZ2dHg8FghYRJu2JDmqaqVCrB3wGBgui3R/g9ZZ9jeY+xumBARgHX7Xa74T5ZI0ggZLvVaoUMCoQNCCSik7cFdJLIMWSaOBn1shtKXLKp+d6akawRxAnO5+KIm4lS8kBrTspJyBDJ5XJBeMjlcoFEM588H+wL7pm9l80acXGLvc681Ov1IKywD5zkIyx4BwwXFcjg4D6BixZ+38wd6+nmmN45hT2DKMUziXCGmFKpVEIWEZ/zFphekuOiRfY99mE2wyMi4krErd/1ROWetKXfetRP6JGliqQoJkTcO7zs2jdL175ZX/dZ/1xnv/nhWtz4ocMeUkRERETEBcaREhQgvUSCPfrpKem1Wm2l7t+d9L21nDvpu8EgGQEQHsiPt+hzc7npdKrhcBiOp5wCUunp7RCbrPeDk08vCyCaLu2LDx5JTtNUo9EolEgwLwgefM6juYwdsuWGhJ4Z4L4Mg8FAvV4vtErkvIx/OByGTAhIL6TO/SM8vV1arUtnPvg8pQtOLpvNZhAA+v2+JAVhxzMDEBSGw6H6/X64v0ajEcpGIImcbzKZrLS3LJfL6nQ6yufzYX3dH4B/kGVKJSixSdNUpVIpCB7uFSApXMO7dkCwfWxu2gmpxWsBQu2GotK+YSR7xkUoylUQZ3i2yG5gTRFCMDglc4c1ZWzZ9o4uiPmezgoK7n9AtogbILro4d04fO79eUBQoIuJdwvhWWUMPAOc37N1vHwDMcvbiFI6FEWFiCsRt7/oifqZF/y8nlJdSqoc9nAiLhP86qf8jb7n1x+l933ZAzX/xM2HPZyIiIiIiAuIIyMoQGImk4lGo1GIHDpRwmgP4gGB39ra0s7OjmazWTBvm81majabK7X+kBleg7TwM3XyjAGSSCo6EVrS4CE2eBTMZjN1u91wbbpG4MvgYoILCh5F964CEEnKDSC0Xs5RKBQ0GAxWhAIi2m5iB9HkHtzTIU1T9Xo97ezshJIBxsB5veUjpJRruBeBR7IlBXPNrGt+LpcL2R7z+VyDwSCQ23K5rLW1NUkKZRakyne7XeXzeR07dkyVSkWTyUQ7Ozvhs5QykMFCRgulGJRIMJfNZjNkstAVIyvoeEkLRNPLUFhDhAFfY8bDuSHqXgLCfFDK4H4DLr74c+KCF8d5KQSCh5/ffTi4F89EyZYHuQkjpSa+Pw8qCXAhIZu9gaDgwoSXl3AfnlniP1Oeg9Dg3g5+TS9b8awefvYMHTJEKMnIZqJEUSHiSsLGc5+gX/j2n9HjK7G7ScSFx49c9S694k9O6w+ecL0W2zsHHnPrdz5Rz/mGPznn9Q9+1eKAoyMiIiIijgKOjKAAINGQI1KcvRuApFBzjsN7r9cLHRHoykCbREQEryv3Gn8izfl8XoPBIAgFdBFwU0PIXbPZ1GAwCMcRvUcAoD6bz0LYIE2SVsirkxnIlXsjAI+ee+tBCCQRXd7z9HCiukTv+RyknDp6SeE+3KsBAsw6eEeFcrms6XSq0Wi0UvLBvSVJosFgsJKOzj1ghjkcDleIPt0u8BGYTCYaDAahZKDZbGo6nWpzczOUoLgYQGlEo9EI99rv91ci1xhsLhaLUI9P6r8LT97hwom8lwS4l0HWh8HnejQaqVarBVLMHq3X6yuCi5sQck4XNRAXON6za9hzvm8oO2BteP2gZ9CNFbPHZkUwN2JEYHFBgeeScyN0cCxZCdwfIlC2m4SXI/n+zHZ08HtyocvHxLGICe5X4dkNPocREZc7Tvzm+/Ssz3mB/ulLXnnYQ4m4TPG89q16xD98Uv/t4Y9XOpuG18fPfJz+2/96hR6Yf6MeXGyc87nfzE/OeS0iIuLKRP+rHq//8dKflyT9+x/7Fp182ZsOeUQRR1JQkBSiyf1+Pzjk++uFQkHD4VBnzpwJ6dKUBJCe7f4JEBnek3ZJBl0C+Cwp/Ri3ObFyLwI38yOrASI3nU7V6/VCBoCkQFzwU3AS5nXkPgd4I1Br7yUZXJcMCCdCHsXGXwBAlrkfRAA8HiDOo9FoxbSO8hGPHHMdIseURfC+tCuaDIfDYELoBFpSiIp7K8lcLhd8CxAJWHdEAAwsa7Wa6vW6Op1O6EqR7RZC7f5oNFK9Xg/r7WUGlElA4r0dI/NOGcd4PA7Hsg9cRPE19EwNLzWZTCbq9/srJRjsY9aTeWGMrB97BnHKSyG8m4aLDzwfEHvf05QLZaP5LiY5KOUgc4W9zD3QsUJSEJsQsLh/vw4ZIp6102g0gsjgyI4pK7Y5suVF/mzgxUGJip+XcUYxIeJKwy3P+0y99+k/oVjqEHEx8aRKTr/80b/QzYuyfvCpX6n//Ve/rkryJq3la5LOFRMiIiKuLOT/8hr94kN/+07f3/++kP7q+35cw/9wcTKYnvi6l+iGF7z1opz7csOREhS8rn8ymejs2bPa3t4OJBLSSYTTybTX50MGiT5zXj5PG0EMGiFDWbPC+XweWhs6uUGocB8GJ5AQ4awDP2UGZFd4CrZHnyE3vE6pB5F+yg/G47FGo1Eg2swh6eFe/iGtRm89qouI4tdI0zSYLzJ+T/93skakmUwDxI80TdXtdgOB9/IVPk9qP6TZfQZKpZLG43HwdiAqjcjCvTabTdXr9VCy4aUVbgZYr9eD0SHXQeBwzwDGAilmXiDRklZItK+9+yo4IYVk478wmUzU6/VWWn2Wy+UgcHlHCRcR2C++T3zcZGh4pgDrhyhx0DNHJgvnd2NN9o5nZvDadDoNc+HX8LGw3pQpeXeKbBvMbAmEGy2y971dJHvKhQWu6UIdY2WevOTHW076c53NdoiIuNyxLEiNXBQTIi4+ri40dHVBeu3f/p7ySRQRIiIuNJJi6W6PSeczyfjARRlHoSAl+39L/erH/lJrd/P/mWLyLp2vuNjOVdW+SH+q/dOXvkKzZx4sVnzpQ5+kdHFuNi+4P+b2KOFICQqSVjILIP6UCuTzeVWr1UB4ibR7LTRkm5p6TNY8Sg9pGA6HGo/HIZUawgPRGY/HoewBUgrJgIxgjgi5Y6yci+g9BJVoMOck8wKy6UZ0tMVLkt32g8ViMXg00KKQkgovpaAuHqIJGYTYuT8FgkDWnJL5dfLn3g9cx8k3YhBR56yJo6ftM4ZGoxGyCxCHOGe73Q4lKJLCnCRJEkQZScHTol6vr8wJpJ7sCkpVuG/PjiDtHpGBe0H0aLfbwbMBrw7mw+v6pX0DRMQGT+EnQ2AwGIRuHLVaTdXqros6HTA4l68d5JtjXHxB7MgSe0g1cwFBZo95CQrXQ8hgHg8qf+BYL2VwIUzaFWLq9XrIegEuhji8ywbn53NkDCF01Gq1FQHRPUNcQMG00s0epX0BgmwF9qWvuwsqEREREREXHvkkirYRERcS+bU1qVDQS9/2R3tdeu4cn/lT36IH/vKHtdjYlJYXJsqfFEvKddrh98lvVPWGT3+tHVG/INe5v1BMDs5W/X8fe/Ndfu6zf/CFuur3PiJJWpw5c8HHddRwZP5idj8DNwvMkiHq3YfDoTY2NkL6PH/8Q35xbce00FObERM2NjY0nU5DSjYECiKT7UVP1ByylSSJOp2OOp1OGIu03w7RiQ0RW0SSRqOhtbU1VSqVlRINSSF7odlsqlqtajabnVOH75Fnav8RAMgQwE8imybPeEA2kkvE3Ts3EEFmPhAfsmUlTtjcp8Lh12u1Wjp16pT6/b62trbCMYyfEga8CLx0Yjweh3Wu1WpBZGEs2T2BOIMRJGUVXlriogBiAoSfiDlzSGTeu2W4pwEiC21GKa1YLpcaDAYhi8CFDCfGWfPEcrl8TmcNouseUad8B7gBJAJBtqTCPQ1YY8QTxsHnsqQ/W0YhKRhkZrtSkHHDPmF/+Dyy/xFh2PcuGLhA4c8oWREukHlJAwKNv+9r7s9V9twREZc7ij3pA9OhPq1UO+yhRERERETcAxSuPqV0va3HvPr9+qGT79X5lK6990Uvk14kPfElL1DnvVtavP8f73VUPSkUlHzqw3Tbv1jXu773ZffqHJcT3vEDL5d+YPfnL/rKb1Bhe3RZt829W0EhSZJfkvQlkk6nafoZe6+tS/otSddJ+rikr0rTdGvvve+V9E2SFpK+PU3T19+TAZEVQCp4qVQK5ERSiEzmcrngpUA9/N71Q9QWwgiRgQQuFovgceBGi5BgIqHuCUDUnUwAhAzIJuQOMQQyDpmBKOHG32g01Gg0VlK9+exwONSxY8d04sQJpWmqra2tEGWV9rMgIMd0oiBToVarBUEEksoYmJtsNBfyR7o3ZBNBxA0yIadueOedEyDHCB9ckwg9wgcZAydOnFjJEPEWgv1+P1wT8YBxIih4C0kIIJ01ZrOZer1emG/GhwGktO9VgY+Ek1vO3Wq1QgkMwgCE27spIELxD8KO6R/mlZgVZqPwklYEHQixrw/71rt4IEhhEknkXtr3FvD2jy4CkT3ixJtSEMbE/kaQ8FKAbFkAwoYLTj5GRza74M4yF7KtZL0ECRHMMwuypSFk3fj4EFhccPEyh6ygeNi4v7+LI648nHzZm/Ql179EH/3qnz/soUREHEnE7+GIo4jCQ67TmZ8p6q2P/q179fk3/cTud/6Tn/88FYYLFd7wjnt2glxe21/9WL35R+P/Ow7Cn77mVVqkS33h1z9X+clSub9952EP6YLjfHLNXiXpaZnX/oOkN6Rper2kN+z9riRJPl3S10h6xN5nXpYkd5IrkgGEF0GBP+QhB9J+BLxWq2ltbU3Hjx/XsWPHQsSZz7gLvpN/r20fDAba3t7WaDQKZMfT3/v9vnq93orHAqQQsozRYjbV2yOo+DR4R4dGoxHaSpK1gEEfHSbK5XLIfiA1n/IMCC5Ci7cU9FRv5sQzDZgXos2YFtbr9SCW+FwiOOAP4LX23DP3xrmSJNFoNAqkvlqtqtForGQ7JMlum8719XVdddVVOn78uFqtVhhLsVjUYDAIHhaIOVk/C7o94Jfh3QHIZCGbpF6vq9FohGMkrZShuF8BokGr1dLx48fVaDRWyg/cn4D/usklY4cEu8khc896sOcQhTyqzr5F1ME3w/0GEAhY/6z5ope3eBtQ2osiyrBvslkFCBhO4O8MiBNO8l0s89INnmkEP553f8/HjqDlpqo+j56p5Iaq2ZaTZLu4zwXPN8+0mzkeIbxK98N3ccSVi/ynXa/2Q7fu/sCIiCsXr1L8Ho44Yvjw867WWx/9mvt8nr/+hVfodb/689p+9hM0+IrPPe/P5VuNKCbcDfJJTn/xq7+oH/+1l2v72U/Q9Gmfc9hDuqC4W0EhTdO/kbSZeflfSfqVvZ9/RdKX2eu/mabpJE3Tf5L0EUmPO9/BOAEh2kgUdz6fhzaN9XpdJ06c0KlTp0KUfzwer7jVuwkihm7uFeD146SwQ17m87m2t7dXBAdvf0iXBi/TCBNqJJN2jBjtuUEdBJ0Wl0S/ERQqlYrW1tYCufa2fKTPM2dOsjwazD/Ik5M8NxJElPD6eWnfoZ/3IJVO+ry+nnNh6EgbSrwsvCygXC5rbW1Na2trarVaWltb0/r6uk6ePKljx46FLAdPYc/6OJBBgV8GBJE1hqhDZCHaTpq9SwEEvlAoqF6vq9VqhawGab9VqZdGUM5A1gcmkv1+P5hIMgb2HF01OA8iBB4Sfg9k3LhAxWch0tJq94esRwGfd7GIufVsAi89OCjTwvf2QaKCi1kO5oVzuNkk4hBZQu774d4dPCNunMh+JFOIlph8H/gcuaDDfPnv/r3DvnDflaOA+/O7OOLKxE1fekL/8Nh7F+GKiLgSEL+HI44akkc/QqceffsFO185KeotP/Jy/eyP/bQ2n/OE8/rMx7/tERfs+pc7Hlmq6C0/8nJ99U+8TsMvP3/R5qjj3nooXJWm6W2SlKbpbUmSnNx7/VpJ7lLxyb3X7hZJkqjVagXSjgAA+SHCOZvNAolzx38iu9J+B4JsFwg3KkRMoF2gR9whjU40Mf6TdtsPEsmEmEEEOYefx7MDIItEZl0I8QwM90/gfiFPjKPf72swGATCKilEriFlHq326Domfi6GEIkmI4ByE0SWLFmnVIL3mS+yMhB26PDAPXr0n2hwuVxWo9EIghHrxviYz4O6D0BiGY97VvB5J5BOVNlbROsZCwKEZ5FgpOieF5REkCVDZgvrTskFhHY+n6vX66nb7YY9m90D3mLSPQrY/5SlkDniHR0gxogZZKqwvlzDxQSO9ywhumowRhfdXCBjbfz5QpRw00Q3f3TjQ38uGAvno1zCyT3XRGBgvTyDg7n0bhSetZL93uFZlPbLibIZD0cYF/y7OOLKRPLZj9C1X3TTYQ8jIuJSRPwejjg03PbP23r3Z776gp/3UeWyXvqfXqHvrD1fJ3/uTXd63Ed+4vH66NdEz4R7ihd0btHPPruv2u8f9kguDC70X8sHNa4/0N0jSZLnSXoev+fzeT3gAQ9Qo9EIxNejqXufCWZtXqtPWYKnLwPIezayLe1Gl0n1n0wmGgwG50RuIXTtdjuUH7hQgK8BJNWRTePmvBBLItP9fj+Mp1qtqtPpBANB7h0BA6JDpBu/CcZK5kS73Vaj0QjkVNrvJAFBRYxx4k2Em7G4EaC3PoTUQmbJtPA2jLlcLmRTuJ9Ao9HQ+vp6MA8kq0TaL2uBAEL2MAfMGjy63wHkkiyEgzIyfK0g2GQHIE5QGgM5Rrjp9XohS4b1ajQaoQMIZSkQeMSVrA8Ba8a4KGFgXJ5NAEknw4H95CU47qmBOMB1IfVkQmSzEjheUhDaxuPxSkkFzxRz5h4K7rvA8wVJZ568bMgFnqzQ5dfLzoOXZlDKQjkIIhJeGFmhzAUOL7nJ+iV41gQC1VHLUrgHuFffxRVFM74rEflHPFy1n7pDv/PQPz/soUREXE6I38MRFxeP+0w99lnvuWinf2p1oR968S/pP+a/UVf99Lmiwod/5TH68Be8TOdXQR+RxXd/+uv133/r6Qe+9+B/90Gls+n9PKJ7j3srKNyRJMnVe0rs1ZJO773+SUkPtOMeIOnWg06QpukrJL1CkpIkSZO9jglE/SEfTtAgiogJ0n5qMkSNuv18Ph8i4BAK0tFpK0mq/HK5DKQSclWr1dTr9VaM+ZrN5kp2ARHzLBFk7JA+r8km9Z8IMFFvCGyz2Qz1+v1+P6TOExGHwE2nUw2Hw0BOmY/RaKQkSUIpQZIkQTiAQJGdwNw6IQeQtIPM7jzTww3y3BjSz8Hn6NLAPTI25t3NKf0f44e4e6o6xyOUIIJUKpWVLgwQyaxg4aUvEGLOlcvlwp5BUECw8fIVN4mExCMu4d/Aay5g+L6kFSWmk24g6OUI0n73B8QT5pd96aKZG3P6+ZhHnh3mAnGD19x3gGMh457xwjqxLyDnTuxdZGBfsFf8eeL5ZT3IjsH7gnXl854p4WUylN8gFrg3BHOBWOPPsXt1HGQSecRwQb+LW8n6ldM0OUKSVLjuQXrwqz6un732LYc9lIiISxXxezjiUDB4UE2/+KA3XtRrPKM2lr79l/SfFt+4kqlw8+98ht73+J9XPjm301fE+eHrWmf1df/sVw9870v//GmaPPnClbJcbNxbSem1kr5+7+evl/SH9vrXJElSTpLkwZKul/TW8zkhJn0QmMVisWI+B/lyQzainvgJDAaD0BWg2WxqfX09ZB+MRiNtbm7q9OnTOnv2rObzeTA1hAw5GalWq6rX66rVaiEK7caAnp6NeV02KgyJ8drwYrGofr+vzc3NIFggFBBhr9VqobvDxsaGdnZ2QkTb08iJyPb7/RW/BwSQBz7wgcFQENLpJo7M12QykaQQ8fb6/bBR9n4nUu1eBD4X0j5ZhARz77VaLWRfQOQwGYSwd7tdbW9vh0wAhA83BXSi52QRQk55CuvlwoFnZHjmQlZwQACaTqfqdruhKwhz4fPEOiAMMEfsC87JeBEVBoNB8Jqg3MTHg3jD+bOeH07K3QPkoAi97zPIsvttkPGCuJMVkdz/wrMS/BruzeBGjBB3N7xkbfgv3U2YP8bn5qzsKcQOsgso7/BnjlIfxC7+uWjAc+Bz5f4RXsZ0hHHBv4sjriyk9WoUEyIi7hvi93DEZY1n1Mb6yZf8vD7nXYvw7+8f/0rVclFMuFh47fV/ooe/vXjYwzhvnE/byN+Q9BRJx5Mk+aR2u2q+VNJvJ0nyTZJukvSVkpSm6Y1Jkvy2pPdLmkv6/9I0Pa+cYSL6kkJ6Nm0AvVxguVxqMBgEr4VyuazRaHROS78HPvCBarfb+uQnP6kzZ86o2+2q3+/r7NmzKhQKOnnyZCCNEDvIS6VS0Xw+DxF6/Ajc/wBi6iZ2o9FopaRhPp8HYkupBCnls9kskMK1tbWQzu3R/ul0ql6vp9FoFIwBITpkUjiZRyyo1WpaX1/XqVOnwj1xPITSfQGI6Fer1TBG1sQj66SpE7336L9Hlsk8gKROp9NQHoA5JCQZsafX64WuGqPRKJBMiLpf06PTEEsyEsbjcfCbGAwGISND2vcQ4BweMfeotXfJ8LIQhCuO870KEfe0eW/bCJl27wwIOqID+8i9QMhG4XgXGrJZBz4/WfNMT/Nn3NnsAdbTDRG5FxfwsmaGWbND4J1N2L+IWoghCC/Mo6Qwz9nOEv6sITbg/eDrUq/Xg4jhGQouQLpxKvfs43Zh56jg/voujrgykBRLesH7369acuNhDyUi4pJB/B6OuFLxlOpST6m+116pHtpYrhT84FV/ra/REw97GOeFuxUU0jR91p289dQ7Of6/S/rv93QgTriIVkK8vcwBUzvSnPkcfgSdTkcPe9jD9KAHPUiSdPbsWW1vbwdShlkbUdnBYKCdnZ1gtueGjhBosgIkBTJMJgJEZTKZqNvtBsd/ot1uBkcUHtJI94Vkz4iRmm3S7BFVDnKf92grPgmk/NNucm1tLXSs2NraWikj4R/eBGRlcE+shbQffZb2sw+4Z8+aIOrL54lYj8fj8B5C0HA4DK0yERVGo1HITmi1WioWi8F8D1FgOp2q0+kEgUHSSuSd3/HHWC6XwTDRs10QF9hDnn3h9+7rmM0AmE6nwXfADQ99XyIccc3hcBgySbLX8MyJbCkB84tfBXsxW/4h7RsXcj9eFsTYuFZWDKDkgvIVv4b7L0yn05XoPcKNixbsG7JZ3JuA17Jj57Ne5uFmj2RPcD+IDPiLcBznZAyIPZTd+N7yfQ2OonfC/fVdHHHl4Mvq/cMeQkTEJYX4PRxxVJA+4bP0mp/4cUmNwx5KRMQFN2W814A8ICZsbm6q2+2G1GvvJtDv91Wv10NWAy0l8WG45ppr1Ol0tLGxoa2treCZ4GQGUYEIOlH5crm8QuAABIbOE+6f4P4NTp7IbCC63O/3gyeDd1JoNBpqNBoajUYhLR8iSaaE+x54dJsWh54aXqlUdPz4cbXbbY3H4xWyBLnEU4GMjlqttmJqyXq4jwI/Q3QB8+m155JWui14xNxNA7e2tlStVkNGB6JPrVYLWQz4R0CCIY7sG6LckH4IvHfvYC4hw06YuW+yL7LlNW7Q5yIA/3XhxYUf9gf372vHHHkU3s/LuPiMixrsOR87xBsTTebbCTXXY0zupQA4H8TdxTT2l/s5UDbAtfxe7gxZY03EHgS97PtusOlwwYI547/e8pIMBbIjss+CZ914txWOiYiIiIiIiIg4Skjzia4uRDHhcsUknelZD3mKpEvDmPHICAoQ442NDW1vb6vf74eIIpF8shf6/b5KpVIgYxCDQqGgVqulTqejJEnU7XZDGQJZAsViUY1GI5Q1QGKzbe4op+AaELBqtRqO8Wi3R0M9ms11ed3NCSGqjAdDSe4THwHKJhAxhsNhuBc8Hki5h1S2Wq1A1CGAXmtO5LxQKKjT6aycg4gvqePD4XDFPM/LBLzzgx/DetZqtUA2PeJMqj91+xC9LAGnHMAzUuhAgWABfD9kOyQQUUdQgDS6ZwcCEPPj3Src0M/v3+v9WWc+i8jButKOkb2aNQx0oi4piC6IFm6SmM1OYM+laRoyR9iXPmYXBLJEnXv07A32KWMuFArBUNK9Nphzh5tLenvVrGmj+5cwXjIKvPuGG4J6iUQ2I8F9EDxrhPtjzj3Tw0UGntUkSVaEs4iIiIiIiIiIo4BkmersYqDj+fphDyXiPqC/HGt7eW7w6rk3fIHS2fgQRnTvcGQEhc///M9XPp8PKeFpmob2fRAaItsQEcwGpV2y0Gg0dOLECTUajUC8IaC0hKxUKoFAQ2zc7A2yQa0/xBQCRqcBiHDWTA+i5HXamPxBAD3S7F0giLQinpAaDxGirAIzx2azudJKD4JUqVS0vr6uWq2mbre7QjwpL4AgkrEB6R6NRpIUSiYAWQkehfcUczfQQwjqdDpqtVph/pwINxqNUM7hJRa87+aAEEmc/pvNpprN5jmu/YyJf4hOXpLg7QlZFy8LcD+Dg8pW+Iy3YPR5JdIOSWaOvQsEYgb/3DzQyW7WpDHb5cPnDl8C97/gcy6IuFeAl3DwGTJjKKHxc3rGjp8rmznAe26eyb1A+BEKEA3caNFLGrzcxdfNW066USOvZcUEfBm8fEdSyBKS9s0d3WckIiIiIiIiIuKoIXnTu/VlL36J3vjTv3DYQ4m4lzi9GOhJr/5OPeQ//P0B7146YoJ0hASFfr+v2WwWTAjz+XxoIwkZowUfEfS1tbXwx3+pVFKz2VSr1VKhUAilDERJ8UTAfDDbtQBS6e3jPK0cYuvtCD07wiO+pM1DYCUF4oqAISmcz00nKT1AWEHUwEARIYNzIAhAeCWpWq2G1pOQJCLn/X4/ZATg2wD5JaOj2WxqbW1Nx48fD0KFm/M5AQRefkK5AZ0ypP32ibw2Ho+1vb294huBiATppPsEZDCfz6ter4fsC0/fZw08Ms9eQVDwUo4sUXcSj4jkpo3AsxGAR9MRvRBLsiUUXv7BHnDDRMaXNRH0Ugp+Zqy87wID40T0Yf2yRDmbXYEJpvslZDM0OK+0X2oBGINnW7iZJN4b3Dvzx/OBiEOWRdZYMns9917JZmPc2THsU8/WcI8VsiGioBAREREREREREXEx8Plve96diAmXHo6MoLC9vR3M80i3bzQagVhi3iftEpBrrrkm1NlLCsaNmLMhDCAmjMfjcAwExWvIIV1OMiBjvAfh8TICT40n2okYATGFoDBOxAvGQ8RZUiCHROchYBBwMgj4LNFbxlUqlXT8+PEwl5hb0oViZ2cnZBB4ijzmlMvlUqdOndKDHvQgHTt2TJubm6FrAuKClwuwHp59gC9Eq9VSpVJZESWq1aqOHz+u0Wh0IOGv1Wor7QYrlUoQZ4rFYhCZIJ5efuDGfu7J4a0iXYDwqL2bAUImEWGy0XZez+fzmkwm4XiMJpnvrMGjR+AlrQgAXJvyAfwrnJQzFsQjvCAmk0nw5OCz2X2dzYwAblbppQZesuPjAt7xwk0bGStCmwsZwJ8NPkuWDqIMe9zXxoGo4cJRtmTkIHjWCd8nLiognkRBISIiIiIiIiIi4mLgPdOxph9sHfYwLhiOjKDQ7/cD+YaM5nK5EJX3Gutyuaxms6laraadnZ1AtOr1eiBQEGzIOEJFo9FYMbKD9ED6aW8HsZK0QojIfGCsbniHuZu0X4uNuOG+CtkUbSeoXBuSh5eCX4c0evcQ4B5arZaOHTumXC6nbrcbsg7IcJhMJitp3rRpxK+hUqnoxIkTOnXqlI4fPx7WBvIKCXSjR4/oElX21n+sHZ4Pa2troRyBe3OyC4mka8BgMJAk1Wq1kIFCNgHCj0f/PeLPvTNmruVmisAJLPvHr+EZKZBQovlput89gxIBPDL8vhCLmBsfq9f4Aye7XjbC5yHFtVptpTPCQR4JfMbnzu+HMbu/Ac8A+xnfBPYc8+ilBO4v4oIXe5W9xLkwHc0KE15S4evl9+3dPQBCCmNx8YD3EKJ8rDzDLp64+BIRcTnhtm99rKS3HvYwIiIiIiIirhicXgz0+W97nqYfbOnB33d5ZCdIR0hQoOUhgkCxWAwEzclDsVjUyZMntb6+HiKa3uFA2jfOo00jgoSXL3h2ASSSyL2n4JOhwLW63W4gQF6K4UTaa7jxHiiXyyvtFqfT6QoJlPZ9CiClnN/JrbRKgpz4tFotra+vh3aRdLkgaj6ZTFQoFNRoNAKhd/ECH4pjx45pbW1NnU5H3W43mCAialQqFZVKpUAKyRhwAYaWnIgQ3B9zl8vlwpj83jxdHRKJF0Gn01G73Q6Ej0g3yGZQePvNLLH3bgnMv3eOwADTsxpANn3fyxGckONBIO2TZCfHLm64ISUGkdwnIpZnyUgK+xeCjHjj6+lzyZ73jATgWTs+vxzrnSb8nOxzN3JEKPAMBMbjwlg2A8B9ODiHeyS4lwhlP+7rwDPh65w1v0Rg4TXGjZ8JY+Q8WbEiIuJywMf/2xP0/m/8WUnnZv9EREREREREXFgs0qUe9ocvUKGbv2zKHBxHQlAolUq66qqrVKlU1Ov1AkmBSJHeXCwWtb6+rk/5lE9Ru91e8UZwt34IQb/f13A4XOlc4GUQbrYo7RNesgUgMZDCbrcbMgDwHuh2u9rZ2QnRW8gX5yCS7y0k+/3d3t9e0+7lB5A3aT97AeGD14i69vv9cI16va719XWVy2Vtb2/rzJkzQVAYDAbByLHZbIbuBxA3atVrtZpOnDih48ePq16vhzKSarUaDCjJEMjlcmq326pUKhoMBsE3gKyKyWSiWq0W/mFUiedFr9dbMdx0gusCAyIE2SUuAkBQER5Go9GdZgww5946kEg9ZN49FrJlKi7+eJ2/Zw54yQzeFhBxiKu3FoVAZzs0uJFj1ksCgs16YOLJ/WY7m7gxIp4a7HVp3weBueUaCBAHZZAw9y7ocE/MAf/cw8ANHnn+WAMvW/EsIhfceB54ZnwefSyMwbOVXDzk3MwP5qbsA3wuDiq3iIi4lPHhn/lcve/L/5fySemwhxIRERERcR/Qes9ZPfKtz9J7Hvcbhz2UiLvAw3/5hcqPEt3wQ2867KFcNBwJQaFYLOr48eMhWk2bPTfdgwyfOnVK6+vryuVy6vV66vV64TiPli4WiyAoEJnH8JBzQ5QwzvM2eJBAoqAIFBBpxIStrS31er1AQgaDQRAMGo2GqtVqILBpmmowGGg8HoexuGs/5BEyC5lBWKEbg5N6yGO9XtexY8fU6XQ0HA7V6/V0++23a2trS5ubm6EzRLlcXjE5LJfLgeSVSiV1Oh0dP35cnU4ndJ6A0NNZgcyDSqUShKDbb7893DeklXO22+1ArguFgqrVavCAwOcBTwWEodlsFtYBI8dqtSppv34egkoKPS0ZEWnwDZD20/O9pt9Js5s6su7eWYHr8jqE3ks0vFuEe0pI+14FrAGdOdyI0LsMsMdcMOO+uG+yEyhfGQ6HoXTFBRAXOSDdvifdS8DnhSwN5s+zddzEkFIf37MuEHnZgLevlFazFLy8BHC/Lg64wFIoFEJWD2AdmH/3dHABSNr3taCEyD0oIiIuN/zjLz5W//BFP6larnbYQ4m4wrFIl3rsD3+r3vkfX3bYQ4mIuGSx+MePKvnLJ0qPO+yRRByEh//SC9X8J+nBv/oOpbPpYQ/nouJICAqIBpBxUtSl/TZvEKdaraZ6va7FYqGtra1Qgw8RKpfLWi6X6vV6oXME7QbpOIDo4NFTiFI2/d4JnEfQvYUj5yJCPhqNAtkhwo8XAPdH20qiwpBqSSGCz337HEHUyYTI5/NqtVpqt9s6ceKEWq2WNjY2dOutt+rMmTPa2NjQcDgMxK9ara74LpTL5ZV2nK1WK/zDcBARADECwuotOHd2dlStVkPkeLFYqNVq6fjx46GNJ/NMXf18Ple/39fOzo4Wi8U5JQIQv1qtpmazGUg28wb5Q5QYDocrUW+EF/d8cKLvNfmQ52KxqHq9HqL+CBCeJu8dNSDu/Jd79PIP7sXT8bku94qYQGZD9jM+ZsoWyLqhmwfdOg7yknCyTsYM+93H4vchaUUUYaxe6uBZOO7twL9s5woyTkBWvPDMEc868AwOad/EkfIkxB0vgfBMCtaCcXm2BRkjXM9FqYiIywX/+MufrTc99ae0lm8c9lAiIvQvvuUFOvlHb9HjBi/UW3/45Yc9nIiIiIh7jZ/bfqBe811PO+f1h/7d+7XY3tG5zdUvPxwJQWG5XIbSAaKuhUJBk8kk/PN65nw+H4g7kclGo6G1tTW1Wq1QjgDhpIWh+x4QQa3X6yFaS0o1BMSJE2SzVqtpPp9ra2srjNejoKTfS1ohgcvlMnRc8BRzSYEULRaLUB6AeFCpVNTv91ciqowLH4Zyuazjx4/rmmuuUaFQ0G233aZbb71VGxsbQXCpVCpqNpvBI4LIP2UYy+VSo9EoGFfiYQG5IgoO8a9Wq7rmmmt08uTJkN1Bhwaivevr61pfX9dyudTOzk44B6IEJRusedbjgtR//B62t7clKbQLdR8F7okMEsg02RV0tXBRyAkm5Je2lPl8PtT6+z5wA79sFwTPaCDLAXjWCRkp2TKPbCYCgohH530swDuN+BwcZCTpngC+lw7yDPBzcA8IWTx3iEzMLeIA85ktQ3JkzSIZowsQPF8IbIgO+B14VwifRxcgfK64FmID+y4rYDC2KCpEXC54wg0f09WFKCZEHC7++bc8T/WP91V9164h6Pqvv02fu3ih3vIjUVSIiLg3uPbXP6gHf/pz9U/PfOVhD+WKwtOe+bVKFntZ0KOpyh962znHLM555fLFkRAU0jTVHXfcEYzWarXaSiR2NpupVquFYyFNCArlclnHjh3TiRMnVK/XV8oTIHbZVoDuSSBp5X2PppJ+X6lUdN111+khD3mIdnZ2QkSVdOt+vx+i10SBOSekh24D0j6B4h7TNF3xGwB0OCCaiscD2RDtdlvValVra2tqNBrq9Xra3NwM2Ruj0Uj5fF6dTket1m57kuFwKElhrnd2djQej4OYgGhCyr1nchSLRVUqFZ08eVLXXnutTpw4obNnz4Y0/lKpFAh8p9NRsVhUr9fTYDAIRA8Rw1tYermJR/LJKhgOh7rjjju0XC6DYIEw46aPZJKwBkTwvYsAxNXNGSGpx44dU7VaDdkfrH+W/OM5wbo4OfbXPPIPfB9C8rmXrFEkZBdizeckhTIDJ71OhNnD2Qi9d0/wThPuzeClB35+hJDlcqlqtbrSptXLjYDvcfZv1ujQr4XAwViTJFnJwkBkotTBTTEd3LePJ3td97zwPeHlMi4KRURcqvjoqx+t3/2Ul0uqHPZQIq5gfN63PV/1175dy6WZL8/nWvuNt+kZf/F0ffzrr9ON3xpLICIi7gkWG5sqbj38sIdxReDJz3ueGu/8pCQpveXGKyLz4HxxZP5a7na7WiwWQRTY2dkJ3gHSPlHCfK7X6wUzxE6noxMnTujEiRPBW4HI/Hw+Dyn2EHFPv3fij7EgHgGQjPl8rna7rQc96EE6fvx46BxB9gTndE8EiArn8Wt6hF7aLZ+oVqvB7BES45FXN9cjwg2ZPnHihK677jpVKhVtbGwEwjccDjWbzYJIQJRX2o0st1qtEP1fLBZqNBrqdDohk4P59wgzKfmUIbTbbXW73dD5AdLYaDRUr9fDHHhWxnQ61ebmZjCUZD6k1RaakPb5fB48IKrVahBd3NDRBSCQy+VWOofgmeH7yUs6Op1OKNvwOnvOTVcLUuQhq9nOFL5miATuY7BcLlcybw7yEcBLAiLN2A8ivlzXRRI3rXRTRf7rvhCeRePlEl6SAbwEyUtg/FrsUY6lUwR7g3X154Zr8F+ej6yJImPns4gPDhcHecYczA1zQCYO+5f5jtkJEZcL6vWxGrkoJkTcv1ikS13/O9+ih3/PuyRJ9clbpQME4HQ+1/yWW/WAl96hL/6Jx+sfX/lp+sfP/0VJUj6JxrgREXeHh/ynt+mh1z5HH33qLx/2UC55LNL9v/2u/7Pn6uEvuDH8Xpm8TfMDvsMijoigAOnEwK9cLuvMmTPnlAekaarRaBR8AQaDQYiUnjx5Uu12W5PJRNvb26FdoKRA4CAgnu7sEdPZbKZ+v6/t7e0V07okSdTpdHTVVVepXq8HYWI2mwXSTv96N3SUFGrbuR7+D8vlUltbW5rP56rVamH8XttOBB/SC/mH7FBDf+rUKZ08eVLdbjd0c/DWf2QFSKuZDqVSSePxWJubmyELg2u7ISDngnhJuyUmdF3wtPlisahqtRoMFIkq12o1VSoV1Wo1jUajkHnh2RBOYsl04NwISf1+PwgeLsxwHUigZxAgYrgnhhPGZrMZSh2SJFG/31/JXiFaTulHNtPCfTdYey8ncANCiDBj9nIBBAov1/AyB84BuC4lJ1mvBUi1+z4gipDpkn0OvSODCzDMA+NHQHLhwIULXnMxyX0syPrwNfP7co8IXuM+JYX3fezux+DZC1nBweHeDb5mzFkUFSIiIiLOH1uL3QzIZ97471R/2sd0vd6s8/4WXS60HC/0sGe/U0/XYyRJX3zjtr6+9X7Nz/8sERFXHNL5XMtJXrN0oWJycdtd95djVZPSZSH27SxHWtrfuW+ZrOknH/Zp4ffr9Y74zXOeuFtBIUmSX5L0JZJOp2n6GXuv/aikZ0qaSvqopOekabqdJMl1kj4g6UN7H39zmqYvOJ+BlEoltVotdTqdUKPt9cxEgieTSTDg44/+TqejZrOpNE21sbGhM2fOaGdnJ0S13QcBkgDZdEf++XweRApv0Xf8+HFdf/31uuqqq8IYZrNZaI3oRnvZCDXEyn0IeK3b7YZuCc1mU8ePHw8+BDs7O/uLtEd2SqWShsNhIKyUHpw6dSp0X2DeEFOI/iIIjEYjzedzNRoNFQqFlbaE9Xpd+Xxew+FQtVotCBnT6VTb29uhDADfBkk6c+bMiviD+SVlK9x7q9VSo9HQYDBQLpfTcDgMggCE070M8LxgfSDq0+lU3W43GEpOJhONRqOVjgKYcELIIZ/ZrgOck4wL9gACFnuFLiFcEwEAYiztG/9xnGcMEPWmpSWeGd7BgNc5n4tALoQwfsbF3CGw8LlshB0xA18GwPiyXg7um8AYmDc3GmWvQeLJxvC1lPa9Frw8IpvNwPW416yBJ+PNZvx4mYY/X4hADva0ZxC5kMWzfXdCxGHg/voujrj80O9X1F/GLIWIC4sbpyMN0v3/n3x4ekq/+vBHSZLq+tgFucb/e0RH/09P1MfSN1yQ891XxO/hiKOKG7757XrKn3yl/u6Rv3dRzn/bvK+bF2W9+HtepGu//cP6zmv/JLz3uHLxLj55dMA9gB945nO0fN8HD3FElw/OJ0PhVZJ+VtKv2mt/Jul70zSdJ0nyI5K+V9L37L330TRNH3VPB0KEmKg/JNejrRCHwWAQiKlnNfT7fd16663a2tpaSVuGwKVpGroFuCM/xBFyhukgBGxtbU1XX321Wq2WbrnlFu3s7AQxgXN4Orq0T4zcbd+jzn69crkcPA4gyd1uN8wN2RIusORyOTUaDV1zzTU6depUMLbs9Xor44Ic0QEBH4fFYret5sbGRigLqVargSDixk95Ra/XC+0ua7VamD+yIjx6jHiws7MTrouYQmtJzBuJItPZYLFYhLGUSqVg2AhBxKCS8g1IpM9rs9lUs9kMGRgQeWmfkJJ9gc8CZNc9NyCrkNpsFwHPRHBC7GQWLxBKcCDUnh3gewQBxMsZOJ97M2T3lgsgkPVspwLvbOB70ttRsjbsMX5HsICMS6vdMfAJKZVKK/NBeYh/JvucZEU4X5tsOYSbaLoRZFZM8FII5gUxCCGIz2TnnbU9aoKC7qfv4ojLDw/7d+/U5/7uN+lNn/u/1c5VD3s4EZcw3jqZ6V3jT5Ek/d6//RdK33nj3XzissOrFL+HI44obrt9TacfMdDJfP2CnfOT875eN7hBP/XrX6YH/vc3qaE3a+e3pf+sz9k9IJfXV9x4myTpZKGrL6v3L9i1LwS2FkO9pv8wSdJPvOZf6VO+/+/t3SgmXCjcraCQpunf7Kms/tqf2q9vlvRv7ssgPBo4GAxCKQDRca8HJxq9WCyCGeHx48eVy+W0s7Oj7e3tQHCBp107OYUgQWwhqt5GrtFohJICSdrZ2VG/319xlydiCqnLRokhVFyTa5AFsba2FrIslstlEAXSNFW9Xg/n4j6I3p48eVLXXHON6vW6ut2utra2gjeBGxMyB+PxWMPhUKVSSfV6XZPJZKXsQtqPWPvP3iXgoBIUNxRsNBo6efKkcrmcNjY2NBqNgnkf7RQpE/E0eUg8YgL+C+wLsla8M4NH8SHf5XI5+DdICq04Iagu5Pj+I3LvbTrdXwKC6WUG2cwB9ihklpIAvDk8m4B9Adl1Q0o3RfQWi4gBXNvFBO7NW096dB7S7L4U7tPAPPjYKB9wzwQn2VkxARHCPQo8G+AgrwkXDnyPSQrlDl5+4ZkKbrIJPOvD54X1Yw1dhPB19XITPFGOCu6P7+KIyxcP+Iob9cTf/WY98QEflyS98oF/d7gDirhk8NFZXy+9/V9Kkt7+K5+lky970947V5yYEL+HI440rv+Gd+gJv/atestTflbH76OosLUY6rtv/UL9+TseoRu+5a16oN508IHLhX7303Y5Uu6znqw/fsVNkqSnrb1XX9HoHvyZ+wHPvflJkqQ33vQQPegr3ytJ+hT9/V19JOI+4EJ4KHyjpN+y3x+cJMk7JXUl/ac0Tf/27k7gRmv9fl/9fn+lBv6gaCVeBMeOHQtkGIIjKZAnJ/5EoonAFwoFNRoNVSoVpWm6YiwoKbRjvO6669RoNDQcDrW9vR06OhDp7PV6SpIklALw+ayJHyQRokTHhKuuuiqUIPR6PfX7/UDU8SLwzhKM9dixYzp27FgQIYbDYRA3IMHui0BXjGSva0Iul9NoNArzTfkIIgYZGlwTgsU9DgaDIOyQFdFut7W2thaEnclkokajEe4DIcJd+NM0DV0byFaAeDuBzXYi4LjJZKJer7dSjlEqlULEOdvpw4k5JJXzQX695p97RyyYTqcaDofBtJLzuOGndz9wj4disXhOeYTfF+dDFOC+DyqrSfY6IGSzXtwclONcsIA4u3mjt+HMCi6UepTL5ZABwOf4HSNNxkDGimcmQOT9XrxFpntR+LOfLXHwLBFe98+QzcF988/XkHn08hTWPfudcwnhPn8XR1zeeMBX3Kib9n5+3B9/peqlqf7yEX94qGOKOLrYWgz19Pc9W6c/dEIPe9GbJUkn74xURID4PRxxqHjYs9+px73q2/XOL/jZe5WR9oR3f4Uk6fTZlh727HfqBr31vD+7fPcHdNPn7v780ud8rX7sq06H937rEb+iB13k1sVP/9DTtTWuarHMae0ZH5YkPUjvvajXjNjFfRIUkiT5j5Lmkl6999Jtkh6UpulGkiSfLekPkiR5RJqm50hUSZI8T9LzpP2UfroreAQcYaBWq6ler4fa+mq1qul0Gmrf3aldUiidwFOg3W6r1WqF2nMEAPcSIDIJmc7n8zp27JiuuuoqlctldbvdYAiJ6Vu/39dgMFClUgnEB4InKQgKkCbILe9Xq9WVUoetrS2dOXMm+AQ0GrsPHx0tILqdTkcnT55Uo9FYMaDzqDDkn3uG1HIMkVn3ojhx4oTa7bby+XwwT6RchLFC1vEWaLfbIXME4aDb7Wo8HqtYLKper4d1YW289p6otmd38J63k/SUfvaFtJvVsr29HUQWSSsZHXRxgEgjsODDQbvSbAkB64QIQIvQ0WgUBBwXR8gCQcjxeYfkujjD+Em3dxNSSSGbRVqNwntLQ9/vHMPaAog2c4co534KHO9Re8YGIffsjqy4I2lFpPHyEDdoZK/hqYAQw1pljSCZW7IkXFBwE0he4/nw+/H2mmScuLDhhqX8l3+XiinjhfourqiWfTviMsXaMz6sXL2uT3vVs/WBJ/3aYQ8n4iLgU9/4bE365XNev/aaTb0xU2f9uHd+pc7c0V55LRnkdf23vUUtffSijvNyQfwejjgquP4b3qFH/8yL9IF//bMqJ3fvb/DItz5Lvc26lEo3fPM7pDRV6z6OYf2X/16yphNP/Z/fpfnx3b8Xk/xSH/vCX7qPV5BedNtj9YfvflT4/dO/72a1bo/fV4eBey0oJEny9do1pnlquscA0jSdSJrs/fyOJEk+KukGSW/Pfj5N01dIeoUkNZvNFGInKZQ6ELGs1WpaW1vT+vp6KBXgj33MCGk/2Gq1QgYBUWS6DhSLRW1ubmoymajdboc6eycYkH8IDPX4+XxevV4vEMmdnR11u90QRU/TNBBvCFi5XFa9XlehUAip99I+oSY9v1arabFYaHNzU5/4xCd05swZFYtFNZtNJUmiXq8XMhsgdGtra2o2myHjAmIOCfU2eF4bXq1Wtb6+rrW1NY1Go0BOm82mrrvuOj3gAQ9Qq9UKc0f5RT6fV71eXxkT3g9JkqharQaivLW1pe3tbeVyOTWbzfCetEvwIOWIQBBUb2Xo2QV7+22l3AHhp9/va2trS91ud0V8oLvGcrkMGSFOuilBwEiwUqmsRNCzpHQymWgwGIT1J4vEo9sY+nmGCmaFy+VypWuDg3Ewf9yDZ7ZwHAQ+m8nhmRjSqokhvhEQd54xshoQWLzc4KByDl+HbAcE92bwEhb3jODaPMOUzEyn05BV4fPvBo6MmfP69wPw/eP/XPxwUSFb0uD3elDr1qOKC/ld3ErWYz+kKwjLwUAP/pbb9ZAf/SZ97It+8bCHE3GB8ZD/MtHi/edG5/KffoMe/rUvXHntoa+6Q2sfPufrIeI8Eb+HI44arv+2t+iztr5di5L04a97+YHHPObtX63Be9f1sJffpPknP3BRx/OQ794vN0gKBT38B1e/gx70+E/qzz7tj+7yHDdOR/rXr35J+P3qv5vrhte9Lfw+P+hDEfcL7pWgkCTJ07RrOPPkNE2H9voJSZtpmi6SJHmIpOulu7f6TdM0EFcM8NyVv9Fo/P/tnV2MpPlV3p9/dXd911vV3z0z9s7umkWEoMRGiCDFsriIArEUGe7MTbhAggSIkotIgCwBicQFUUhuiJBAIBMUgSKRKAglUZwIgiKhEJMYYwPGC157d2Z6Zvqjur6rurveXHT/Tp+q7Znd2cx2V3vOI7W6u7rqrfP+33+9M89zznmO1tbWbJIDWXcI5tHRkRFXhAT8AqbTqbU1MCGCY9JnDxGUZOQfQYFy/eFwaP4JnU7HMvCSrP8boktlQLFYtMoFssGnp6dGRDEe5Pzv3bunN954Q8fHx+aNQBa9VCopyzKLK8sy1Wo1I+iMxYSYkwGWZMcgg//yyy+rWq3qzTfftJjX19d1+/Zt84rodDrmFUE1B+8JQaZy5Pj42L4fHx/r4OBAo9HIvBD8FIHpdGpiAsfx1QDzIgJr56dRUH6fUjLRg2sB+R8MBppMJqpUKlblQbUF5Na3K0gXowm9YDWZTNTv983w8vDwcMZDw5f0+z3EdaHqxosT8wLBvP/AfBWA9zKARPtMPNUPxOI9GPzv0mwVgf/8+faTy3wGfOWCb4cAXmCYn5LhhRx8PQqFgo1+5THWY2Vlxa6vN0lkfXzriff88OIL6+a9G/jZt1/4FgeeA2hXWWQ873tx4MXD6ePH+iufWtFHPvvDGn6sqz/7aFQrfL3j9E/+XC9/au6x6wnl6wJxHw4sKu7+5O9LhSV95K0fvvTvt35nX6df/P0rJ+L5yYle/tSsn0H6tm/RR77j8jjBSi/Xy58OH4RFxLsZG/nrkr5T0kZK6S1JP6UzB9uSpM+c/0ecUTgfk/TPUkonOvv36e/neX7wTu9xcnKidrttBol+QgNEmky/N4yjVWE6narVahnxp1oAIt5sNq3nfzKZqF6va3V11cYSQnA9eZtOp6pWq1pfX1etVtNoNFKn09HBwYEODg7U7/ctS5xSMuLBhAi8C8imQvg8EV1dXdXS0pJGo5F6vZ52d3fV7XatooKsNwICFQWlUsmqK8jw7u/vW0yQcyo9EBs2Nzf1Td/0Tbp9+7Z6vZ5NUFhfX9drr71m4ydHo5FNsuAalEolVatVVSoVI3fVatUqOrxYgrcCWWiIsTe+g7itrKyoUqkYwZRkIwm5JrQDjMdjlctlqzZBPPB99FR6MPqS6Rm+KoI2FaoJvFmnn8SA7wRTRfC3YGypdOEJQRy0ICBYUC3jW0xYCyph5j0JvKjCfqR1whsW0tbDOnL+tL8wllO6MDG8rNwf4uyng/gWCT53nK/3tpgXJjgmr/F+JR60hxAnnw3aRfy4U97bVyX4FhnA8zlHHuO7b3dgz/LerA1rxXVZJEHhKu7FgRcTJ/fua+vn72vpv7yij/71H1LrH35Nv/2N//m6wwoEFg5xHw7cOExPtfXzl3ufLJKQmH/2C9qKIqkbi3cz5eH7Lnn40trIPM9/U9JvPmsQ/Ofdew1AWvBO8P3m+BtA0IrFolUhSDKjREb+Qbw7nY4JBaurqyoWi+p0OkYGveEevgvr6+s2AnFvb08PHz40P4P5XnVf0QDRIWtPlp4MOe0KVER0u11NJhMj2KenpzOjGn3WHg8JXnt4eKj9/X31er0Z4s70itFopHK5rJ2dHd29e1elUkmPHj2yEY6bm5v6hm/4Bm1vb2s6nZoxJpUHEETIJKX5GGlC1Fg7MuKTyWRmusN8jzyVCXgU0J7AuEiy5nyXZG0kKysrJhr5iQ/j8dj8HLa2trS2tmYtJaenp1ZtQDaeSg5viFgqlUz4ocqg2+3a6EeeB+nlGgO8FvjiXGnr8RUbXFOEiXni7r0ZvIcGggr+D74qAu8KX+3AGnsDSt8ewvF9dYYXPfy5cV195QSfx/mJE746QLpoeSEWxDdEAiageFLvRQHEKISgeSGG/eXFDf5GZYc/Bvvaj8pkTbzJ6yLgKu7FgRcbp69/RbXXv6Lp51/VD/zaR/XLL/3P6w4pEFgoxH04EAgE3o7nMeXh/xv8R97/zH/2S6XSjLmb70encoD2BQg+2dxCoaBKpaLpdGol6xwTUgr5gzzQ7jCdTrW6uqrNzU0jGPTrt9ttI1EcA2IKIfbigSQjLZC2arVq0yXwEiC2QqGgbrdrWdQsyzQej82XoVqtGkne39/XW2+9pf39fSOPkFgmOAyHQ2tpWFtbU7vdttL9arWqu3fvant7W+VyWf1+X3t7ezMZ/GazOTNuk2oLyBlZX9YI/wWqNyB0CECsic9EI+r4fn8yxL5XnpYS3w6AoDAej7W3t2cGk1RQIDb4DDXXBAJJtpyYqUKgOqHf72s4HM5Us1CN4Pv1EQD8+/De/ty90STr4CtZpAsxijWAPKfz6SLsL64DwoAXGBC+vDiDRwHCjZ8ewvn49gqEL0m27xGzaNcgbgi6F0D8NeW57G2qhDh33yqB/wR7bt63QZJ9zn0FAnsDsA7+HuMnoPBa9pM/95tiyhgIPE+cfvkvtfs92/rZz7ymH1v/8nWHEwgEAoFAYIGxEIICBIP/6FOpQBbY959DLJnQUCwWbdQhBATCl2WZNjc3rcx9OBxqbW1NzWZzJmPrs7CQCvwGsixTnufq9/va39/X4eGhkRhc9un3li765yHzS0tLVnHgzQ1rtZoRWd4bIkRrAx4MVGVImvFnGI1Garfb2t/fn/EQYB05v5SSarWaCRNvvvmm7t27p+l0qlqtpg996EO6ffu2CRRUOxBvlmXWkgDx8rHiV+HHVk6nUyPzfp090cR7AlJLVhr/A84ZcildVLPwd47FWiIiUcEhXRgTsn4QXD9Sk6oXWm5Go5G63a46nY6Gw+GMwEDrxXwZP+fnrxXtJ94DAfLN31kjDCI5T0wl589TkolgEF6qH3wLAeIbx6DlB6EFMYsRpYhEEHPi8WICnw1ei4jlz8WPefQVAf7zxfM9kadaRdLMMfy+5nMiydoR+Jv/HM2LIDyPn/k7E138uMzLvBUCgRcNJ7sP9bvfsaX/sXRL//qP/5NeWXl/x30FAoFAIBC4mVgIQUG6GB1Jvz4EXLro6YZ4NBoNbWxsqFKpaDwea3V11Uj7dDpVt9uVJDNdhNzXajWtrq6qXq+/LSsJeN9Wq6VyuaxSqWRkDFM/KiQgrhBeiJnPcJbLZSupZ+rB+vq6tWGQefWZaIiMz0JDDvFoWF5eVrfb1ePHjzUYDGaytMTV7/dtHdbW1rS8vKyHDx/qrbfeUr/fV7FY1Ac/+EHdvXtX6+vrGgwGun//vg4ODoywY4jpfQYYlwiB9eRXkk0oKBQKRsYl2TqSHYYESzLCT4sG50tvuz8G74fHA1Ui80Tfl8jjKQFphdB6kl8qlSy73ul0dHh4aG0nfOE74ScwcL18OwQVK8SGaIKgwTlTgTNPwP24SQguJNe3ASC48XxaBhBYPImmmqFcLpunCG0cfgSlF+4QWRAmAGuBeOXFBH/tEJ/8FwKZJ+vEhQDj2zO80MhnlHOabxXx6+Q9K3gvpp9Uq9W3tWb4qgZ/XwoEXlRMz/8NOZquaDBd/IkngQv83b/3D7T8J3943WEEAoFA4AXAQggK3vmdyQdkpMmQFotFa1lYW1vT1taWtQlA/I+OjnR0dKThcGjHo/9dkprNprIsm+mZhkT4Pn9aGCqVivkC8OVLtWlxgBhDbjhetVq1kZP0neP1gDjRarXUaDSMiM4bDrbb7Zm+8mKxqCzLlFJSu91Wp9MxcovZIy0RkHXaMNrttt544w1rC6jVanr11Vf1gQ98wEZqQkLxDlhdXVWtVlO5XFatVlOn0zHSix+B77+XLtpWaDWh2oI2CogjrR6VSkWSzPvAZ4nxkhgMBtZK4tsgyuXyTGk8IoL3NZh3+ieDjVBxcnIyY3LIZAd8EzBF5BojTHiwd3ymX7rwU/DVNmT0GZ84T9Z9GwLnMz85AfHCVyL4fcwxfAUDnhGSTICArOO5gGCDUEMLjhc82O+Xtb8gAnC+gDU7Pj62Chz/N/Y35+a9OTjWfIsNggyCHi0T7EMvvCAuIFwUi8UZscH7Mfj7EusVCLzI+LFX/sZ1hxB4RiwrxIRAIBAIXA0WQlCQLkr56/W6lpeXzTAwyzJlWWZZySzLtLW1pWazacQYUtbv99Xr9WZ6xCE+1WrVRk9iuEapOWSHcZBUQdTrdctMP378WAcHB1byjfkiZMaXSSOMZFmmRqOh4XBoxCylZH4OZHTJtktSo9FQtVrV/v6+CSHEVy6XlWWZqtWqVV2wdogNrVZL6+vrZkhJrKPRSF/96ld1cHCgQqGg1dVV7ezs6Pbt26rX60aYiR9yT5Yd7wZIFi0kPg6ug2/7gEwfHx9rf39f0kUWGZ8FSCo9+RDvUqmk8XhsUxl4LpMvqDZAGIAs9vt9ZVlmBoOQZN57eXnZ1txXifgKjKOjI3W7XTPLhPSytxAMfO8+5+4NOf3ziI9sOX/znwGeO0+GMcGUNOMpgcDhR1j6/n8vmrHuXJv5cZW8t29j8NMW/HWjOoW9h5jmWxqoEvDVC16IAH7N8FOYr87w5omcO5UW/vPH54zfJc1URFAB5asSfLWDr6TAeDIQCAQCgUAgEAhcjoUQFCBptVrNstWU9zONYTgcSpK2t7d1584dIyR4FBwfH5vRIOSbsml8C3ieby9gAsLy8rLu3bunXq+nZrNp0wHwB3j8+LGNtmw2m6pWq0Y+mTThXfjxP4C8QMZ9KTdGkpCbcrmsjY2NmTYCRAH63mu1mpFqsrIQulqtZmIL1Rz4H+AjsbS0pEajoVqtpp2dHW1vbxshlWSEfDweG4GnTJzyfTLAe3t7Gg6H9lwyvsVicWacY6FQUK/X02g0shJyqhoqlYqZXnJOkmZMA7n2CEAINBDMwWBgkw2olEDM8VlzRk8OBgP1ej0TbBCGiKnf71v1B1Upkuwa4vkhaea4xAiB9d4NtIH413pTSZ7j22V8ZYIfO+nbNLy44bP3iCjeeBLRAHHOXx/2pm8d8NMeAPuS85s3TZU0412B8OP3OX+/rNrDe2ogPOB3gHDDcYmHdfJrwXr6daatyrdl8DdfqeCFncvaIAKBQCAQCAQCgcAZFkZQoI1gaWnJsqcYL0Lc8UBYW1uzaoFarWbtEO122zK13kne99lTYYAZXUpJWZZZebv3IMAX4ejoSI8ePTJhgLaJ8XhspB/iUa1WrW2DbKknP77Mv1arWRYeQaBcLqvb7c5MQuBYtVpN9Xrd4iKLSvn89va2tra2JMky+vS6Q+SYiIE3wsrKivr9vgkHxEnrBCQNMkbW34+QlGTGg77P35sxeo8FP+lgOp1aO4mfzoE4MF/9gU9AnucaDAY6PDxUp9OZGRGKxwYZZqover2e2u22Dg4OzO/CT+SA9B4dHZmY4Mn0vAeAn6wAeYfQc2xJ5icgXWTgIbZUCbAerCXEGcwTW0Qejs9ziM9PzcCXwL+Wazfv6eDfy/sTeHNNJo5cJmRwHF+dgMmqdOFJwPl5U1Out29FQFjy14DKCX8dvLDhz9UbPtKa4QUbwPnMG1qGoBAIBAKBQCAQCDwZCyUoUL7OyMRqtaqUkrrdrsbjsTY2NtRsNnV6emotAsywb7fbarfbM2XnkBRfgo7fAJUKWZapUqlof39fp6en1nIgyQwF9/f39fDhQ0lnLRitVsuEAUiR912g8oD3lGQEeDgcWsUBggKtBsRLtrvRaFiLAxUC4/FY3W53xrNAkrU6VKtVHR0daTwez2SiK5WKms2mmVcyaYLjUTpOiwKiA4KCJ2JUE3hfAioLyCIjCvmKEK4J5edcu8umGCA2+F571hNjxNFoZOeKqNJqtXT79m2tr69rZWVFg8HAJmHs7+/r8ePH1taC+SftJ/hQ0M7hySSxe8HAE3fO3Zfbe78Bn2H3Uwm8YaD3MJj/fHgvhPnpB3xxHDL8EHJ8Bni+n9TxpEkGPibODbLvxzsiYHhjRIg7IiHx0wrEuqSUVKlUTPjxAhXH5wuxxj+GWOU9GDgGa+3H0PppGv7acq7zfhAhJgQCgUAgEAgEAk/HQggKhUJB9XrdxAMmAUC2B4OBUkqqVqsqlUqWwWdaQK/Xs9GJnlh5EgxhxEwRgz1aI6g0IGMKGSFjPRwOrS2DzL/v04YgEyPeChBvKiKkMxEE4cGTHknm2VAonE2EIBtPlpn1kWTCyMrKilZXV9VqtTQej9XpdMwfgIx/q9XS5uamtRB48QajRCoEaIugHcETWkmWSfYZZD+RAkGBKQzE7wkov7NOXC//HaJ8cnJiVSCeEGLCiThQq9W0ubmpO3fuWIVJp9PR3t6ednd3tbe3p3a7bS0qtDn4agBaIhBLiGc+8z9PoufbB/z15Pw4Jz8G1Zfac67zfg/SBbGfb0Hw18WbeXKOZNy9nwLvx77l+nofCIQkfw18VQOv4fn+3CD4fgwllUHeWJNqkqWlJZscwr7mM+GP4R/za8d5+jXybSQcE8GOVgpvGukFF+9REWMjA4FAIBAIBAKBJ2MhBAXM0kajkRFmqhNoKyBLj6EcWfalpSX1+30j/WS6fTYS0K5A+wOO8JT4t1otI2KID4gcKSXV63U1m03zGZAuRAsM98rlsqSL3npK2qk68MZ+KysrVtJPpl46I4+Mm/Rkbjwez0xCQCxoNBpqNpsmOHS7XfV6PSvZ39zc1M7OjprNph4+fGgk0o9nRPTwZfCe4EkXZMubJzabTS0vL+vo6MgqEiSZECRdCCisi58AAJEjA37ZZAYv8rAOjHUcDoc21WJra0s7OztqtVqaTs/Ghx4cHOjx48fa29vT0dHRjHjAfuH9fAUG8OSaVhNfbeGz2b683vs9+D3pzQ7nDQG9WOJNIGkx8GIC/gPEzs9exPKija+E4PXeSJGMPp8J307B6znWvFkiBJ9jMpUEsYjzR8yjaojr5vcgggR7FDGB60YbkZ+cwfN99cj8OEk+g15M4By9d4Q3tAwxIRAIBAKBQCAQeDoWQlCANPR6PR0dHZmxnx/l6DPIkB68EDDQoy/eky/IFv4B3pjR927neW7Z3FKppK2tLVUqFRuNKEm1Wk1ZlinPcyPj9FtjwMgEAU+opVkCCFkhm49g0O/37Zx9yf/y8rKNXJxMJjNCRKvVUqvV0vLysrrdrg4PD9Xtdo30VyoV3bp1Szs7O0acfLY2z3MzKETYofLB96t7UYNRipVKxYj+/v6+HZtzYkqEJ5LE7UkcWfVer2dE2I8OnB8pyEjHvb09LS8vq9FoqNVq6datW1pbW7OWmMePH2t3d9faHDgn9hH7RbrwFSAe6UJMYNIBUy3wcYA0+xYCiGqhULD3m69i8a0JiCYYHULc2f8IUpw7YocvzffH84IEe8lXW/jpEJ5sQ9gRunx1AsIBexYxiYoDRDU+P1w/qj98dQrXvVKpWFUSI1SJx7dh8BnwIguCAoLXvO+Bb+Xw7SW8N5MeiJPnzLdJeCPLQCAQCAQCgUAg8HYshKAgyXrdh8OhsixTvV7X6uqqGfZJsiwkhKtcLpt3ApMJ5jO3EDqej5cB5Hc0GpkYIZ1VMdy5c0c7OztaWlrS3t6e9vb2dHp6ah4EGAF6Ejk/whABAIKOCAHBg3j7VgH6yiVZrLQWYJzoRRZ8EWj7ODo6UrvdNkFhaWlJGxsbunXrllqtlh48eGCECwINmafig5J01rlWq2llZcX8JDqdjkajkaSz6QjeSyHLMklSp9OZMXWUNDM+UpIJI35tEFRw+PeZcMgs78c4Rwg840ULhYK63a729/f14MED7e7u6vDw0NoAIOi+esWLG5cBMuqnOQCf/YdkY1zpWwB8yw2E2Pfye58J7yWBMANplzRT5eB9N1gz763BuXF+/vMhXVSG+KoZzstPUIBcs36MI6XaByGBa8n7+soM9g2vLZVK1p5DFQPPo2qI68TklmKxOCOqsMd85YQX5BAKuIbsOdYNUccbMHqzyRAUAoFAIBAIBAKBJ2MhBAVICOZ1zWZTt27dUpZlRuBWVlZsegJVBJKMiOIF4ImNN5Cr1Wo2BtKXkHc6HSPJiA5ra2uqVCpqt9v62te+pn6/ryzLtL29rVqtpt3dXesBp8UB8gO5o++/Xq9b20av15N0RsQht0yWkC6y5Agg0hmxQwBhCgRZ+0ajYcaDJycnOjg4MDGB6oVXX31Vt27dspJ96UKYQSQ4OTlRvV43kYPzwRPi+PjY1glCSbaYNgJaVHq9npnv4a1A2TstDRBHxBGqHiD48+aFkHNEF7wP6MvPsszEHioPHjx4oL29PXU6HfOGoHJEenJPPdUAkEpIP9fWGxJ6c0Fv/EeFh3RhLulHPPpWCCoFvMGlJ8H+/T3hRcCSLtocuG6S7HMyX9XgqxE4rvdBuEyAQFzwExUYtcr18eR/PB7bZ5TqAUQCPwKVFic8Q5g40u/3Z4QN2nAQY1hnzhOhgwoFXsd6EhcVOFSWzIsQXEfOK9oeAoFAIBAIBAKBp2MhBIXpdGpVAFmWWYm+L8+u1+uq1+uWAW40GiYOdDodHR0dGWGo1WpGIgqFgrIsU6PRmMng0puOGAGpWl5e1tramkajke7fv69Hjx7p9PRUm5ubarVaM0aGZPSlC1EEok7bRqFQsPGGx8fHqlQqVp5NXzdkk/OlTYDs6Wg0suxxrVYzIzoMJff3942YQXyr1ao2NjZ0584dZVmm+/fvW0Yfo0lJ1rpAKT7kqlgsqlqtWivF48ePTcioVCrWAuBFEswM8aDAGJL19ZlfPCww5GMdKK2H0HFdqBAgS8/3YrFo+4J2iIcPH75NTKBdAY8MP72Asnze00+tADyfagNJJk74NgEEBJ7rPSMQbDyJnn8PX6Lv2ynmhR4MMxFr+JwgRkGafaWAJFtbX6HizR+9AIHRoa+moLqAfYigguCDtwj7s1qtmgiFGFGtVpXnufr9vnq9nrUbIbSwv4vFolUVeDFtPB5bLPg0eFNHL0Txvr7CgefM+yX4agoEHITLQCAQCAQCgUAg8HYU3ukJKaVfSSk9Sil9wT320ymleymlz51/fdz97SdSSq+nlL6UUvqudxMEkwcg8xsbG1ZKTdvA+vq6ZSj9qLler6der2fZXk9KqXaAGHszOMb4QfggZfV6XdPpVIeHh9rf39dkMlGj0dDGxoYqlYq63a5NFoCk0CN+fHyswWBglRJkXA8ODkwUYAIE3gVkiyF0nB/nijCCiIJBIV4Qh4eHevz4sREqSNLy8rJeeukltVotI3pkso+OjvTo0SMTcTC3HI1G6vV69n6sBVlj3wLR7/e1u7urbrdra8n4S6o2aGPxbRGQcUitb2mpVqsmuEgX/f6SZtoNIOxkymu12sz7+YoV77tANQbkkf3FOkPOvaHm/HQDjBKJH7EAQYFz9caWnAfVJlQveJ+A+d991YLPvHuzRknmSYFggTeBFzOoEkDI8ddiXuTxEzeWlpZMkEEgQ0SD/BMrbT48j2vpJ2N43wTGlULmT05ObFzn/DkSP+dLtQHvyxhVzslPeaHFg88jf/PiDZ8/3nMymWgymcyIR4uAq7gXBwKBQODJiPtwIBAIvB3vpkLh05J+XtK/mXv8X+V5/i/8Aymlb5b0SUl/VdJtSf8tpfSNeZ6f6imA9JXLZa2urprRH8ZrzWZTzWbTyCzkAgI834PNF+ZrfiICZHc4HM6Y5tGPXSwWjZh2u10Vi0Vtb29re3vbsukQdgwYySKTyS2VSmq1WjYhgnPjvX2GmIwymdRyuaxWq2WZXelM5Njc3NTm5qaRIDKztAqUy+UZo71Wq6WNjQ0tLS3p/v37Ojg4MGHh4cOHOjk5UavVmqmygLQ3Gg2rmjg5OdFgMLC2kZSSDg8P9ejRI3U6HRNIIMnEjVAAIadqgesN0aQ6Yd71fzgcmkCBKaQ365M0Y4BI7H5SCL/7aQ6MGPQGflQpcD049vw0Az91wRt++vYIXovvBGScc/KiD/AEHzED7w0vOHmjRdaVL+mCeCOWsE85DkLHfOvD/FhGPBNoQ2LdMDJEiPNmkLSgVKtVqyZgbRE1/Ou9d4Kf4OFbm/j8I654UcgLQr7ahefSQkHVAgIE6+wfn38tLRsIRAuET+t9vhcHAoFA4Kn4tOI+HAgEAjN4xwqFPM9/T9LBuzzeJyT9Rp7n4zzPvyLpdUnf/i7eQ+VyWevr65aFpxdeOpuuQGYzz3Mruaev35MMpi1ASiRZuTvkAU8DiPBkMlGpVJoxOBwOhyoUCqrX69rZ2VGpVFK/39fe3p76/f5MDz7ZWgSASqVihLLb7apQKFhVBALGYDCwLGipVDJS2Gg0lGWZkcCUktbW1rSzs6NGo2FrBonz6wMJzbJML730kiqVijqdjtrttnq9nv087zchyTLMk8nEWjfIPtdqNW1tbVkrCVM1qAKBqHGNDg8Ptbe3Z4RwXgTwJNdPNWDqBr4YEE5vTMhrvJiAIWW321Wn0zERx4svvDfHILPP/vMtFt5fgOuCoMDzvYkhe4p1Q+DAOFKSCUAIEf74vDctIsRK5QGiD8IFVRT+9cSIXwFr570WvEkpnwXvl8Dr/Rr5iRHee4N1wdQUTxEvHPnqDK4xBqNHR0cmQtA6Mx6PreLEXzcvIPopIYhI3l/B7yd+n29v4Ls0WxWC/4Nfm/nWl+vEVdyLA4FAIPBkxH04EAgE3o53FBSegh9NKX3+vPxr9fyxO5LedM956/yxd0S9XleWZSYWQBYqlYo2Nzct4+krAyhtHwwGJiaUy+UZ0z/fhiDJiB+ZTdogGo2G1tfXrTWCzGSr1VK9XtfJyYkePXqkdrttJIusMxlxCCXVCt1uV5Jmxh76XnP8CIiLknXMDJkscffuXW1sbBgJ8iZzjUbDTCRTSqpWq9ra2lKWZer1erp375729/dNMGCiBWIFmV9EF8QUn1FvNBpaXV01oUe68A2AfBEDfhE+uwyxRfDwngP8Tnber+c8vBmfF0PYB71ez8QO1o8SeUlW6QB5hbBDsBGspIs2BL+XJNm6IYCQxfb+EZJsjSXNHNebLwKMKX1rAxU2tNR4QYLjeF8J1oP9jkeDFw0QcyDR88cgJto/EFe8kOFJvW+loQLB73NvlMj1RuxAlOB57DPabKgCIX4qkfz6sRbAtzH40aV+yoMXKbjuVCX4tgnuQYskKDwFz/VeHAgEAoFnRtyHA4HAC4v3Kij8gqQPSfqwpAeSfu788css0S+du5ZS+sGU0mdTSp+VpGazqXq9rslkYuTh+PhY9XpdzWbTSqUpVz86OtLBwYE6nY5VADDGzpdiQ3goO/cjGikJz7LMSDhl/vgIeK+G+UwscbTb7RmDu+PjY/Mi8CX5PAeyWavV1Gq1jAhBtCFukiyuQqEw44NAhUGtVpvxX2B84ng81v3799VutzUYDDQcDs3Mbn5CwGAwsDWnVYFWhEqlou3tbauO4PXewZ8JC5PJRLu7uzZSk+oPMsZk+X2Lh/cZgAzzGp919llyrgul8vT5+/OEFCMcQHQh5RBPSDTZe0rj50vi/dhG2iY4JsQTAo9YhceGb/UAkHRED2+EiIgwX/0gzZpCsocRCtinZP45PtU7kGj/WWBPIBx4ocNXlrBGrAFCihfC5sdV+vGjvtUBwYljSjKzRva/nzbBdWONvfGlb4Px1RfedNJPa2AN/PXnuewBRDAv4Cwwnuu9+FgL1eIRCAQCNwFxHw4EAi803tOUhzzPH/JzSumXJP32+a9vSfqge+oHJN1/wjF+UdIvSlKxWMzxHOh0OqrVapaBxzsBsrO0tKThcKjd3V3t7+9b3zXTHyhphkySPaWUGdd2SBSjHWu1mkql0sxYSS9MQHa9DwNEnDJvyMh8VhOfBcjMaDTS6uqqmQlOJpMZM0mI8crKijnit9ttI6444/N6BAk8KPI8N0PJYrE4U97vieXx8bG63a4ZMvb7fTObxOQRcz0EEm8AyN/r9br29va0u7urw8PDmTaQ6XRqVRcQc86D0nPvXcB7+PF90kVFwjxBhLSSDeca+R57BBeqK6gYgCB74uyz1D6L7dshEA7w+ej1eiYAkF0nbi+YeH8PX23i/T+8iSB7A4HAP44g4NeJ/c7xvOkg6+vbBfwITd+GwvPmBRDf/uFFNy8msKbezJAWCkan0n5ETIhTGJVS6YNYANlHYOG8/M/+HP20FI6Rzs1CiX1+/dkX3g/Em7UuKp73vThLa5f+ZzcQCAQClyPuw4FA4EXHe6pQSCndcr9+ryTcbn9L0idTSqWU0iuSXpP0B+90vOXlZdXrdcuSe1f41dVV682H+FLW7svvfRbYZ/HP450hQxCHcrmsLMvMRA5iDmGmwgF/BAildFbSzuSDer1uHgnSrCs/xIssPTFQdUF5P4STMZhMhUBg4P2Pjo7MN4IKAJ85Zyxhp9N5W4885wWhph8e3wGqEijfh2ienp6q1+uZKz+VCYgJJycn2t3d1e7urpFf1t6TQMQeT+K8eIBI4deqUChYKTzr6dsS/JQA1rlSqdj1o5oCsk6lhCea7BG/TisrK/ZcSTNEneoERBMmG2DY6KsdgBd0PCDCVKdgXMg+pqKGNfLtQOxV1pvnsQf9nmdtGaHpq1Wq1aoJcvOE23+ufKUH+8NP5oCAeyEC4QBzT0Qm77PAfvQtOf6azAsG8+aRrDN7gDhZG1pUqDby1ULeh8K3SXihZ5HxvO/FgUAgEHg2xH04EAi86HjHCoWU0q9L+k5JGymltyT9lKTvTCl9WGelW29I+iFJyvP8iymlfyfpTySdSPqRd+Nmu7S0pMlkoqOjoxnxoNVqaXV1VcvLy5bRZkwkRM6X+0OYyFoXi0XL7JZKJSN9x8fHZgRZr9dniArVDpPJxAwVIWtk1vv9vmXsq9WqeQNA4ryxnSf7xWJRw+HQXjOZTMzfYL4fX5K1R0C6RqORDg4OdHJyYkR+PsNOebw3e0SsoEIAQkim2Jd4e9HBk1qmOnAe5XLZqg6++tWv6v79++r1enbtEBJ8GwHr48UGQPuCrz4gq0w7BdfWVyp4nwbprHVmZWVFvV7PzPo4DwQa/B181YM3LKQ1w1cXQIIh/vgUnJ6ezoz49IIN+9KX6vvKAa4xe9j/DPFnL8xPd+DYHI99xzpPp1Pb77RNIEDRAsRoUCpIPNn2BJ7PBiBOL4DQRsF+pErAiyN+QgrP8W0j3g8CwYFr4q8zQoJvU/ATL3xlg29dQiCkqskbj3JeeKCwvn6PXjeu4l4cCAQCgScj7sOBQCDwdryjoJDn+fdd8vAvP+X5PyPpZ54liDzP1el0NJ1OVa/XjVBkWWZ91SsrK0Zucc/3buwY7g2HQ3PGpz1hvt3Aty4wWWB+Tv3BwYGGw6GazaZSSmZaSBaVdgLfXw/ZIRayoJSFQ4QgMwgjkD/pwsyPTPFwOLTMKtUSZJsRGzwh5Mu3cDDKEtEAwYU2EOmiUqBer88Y4xFjp9PRysqKarWa+v2+ZbQPDw/15ptvam9vz1pKyAjThuCvC60GCA6eFM9XlJD9lmQVGggevt+fNUboAMTCtWICAoTc7yvel+/++RBORBRP7PFTYB8jjvm2A+DJvx8Vyfl680PWHMHCi1UcywsR/rVUKkDGaQmZFyIwMcXngb3i4/JmkvOeDYxZxYTUj+L0VQK0Y/i2Dz4bfpqC987gMwT4GQHDX0cvLPmKB8QF3oNRpN54lZGTCEfe24M9tSi4intxIBAIBJ6MuA8HAoHA2/GePBSeNyjTX19fN88AX7ouySoAKJuGnEDo8BY4OTlRlmVGPOgXhyBDeijzljSTkZ5OpzYxAGFCuhg9Sbm47+H3DvG+FxxSVavVjLD50n/+7mP1PewQYcgRoywlqdvtWjsC5A6ilmWZTYUYj8d2fCZjkBHGpwGiXKlU1Gq1LKt/fHxs7RWnp6fKsswyvfz94cOH6vV6M9eL2D2R5Zx9uwGg+sOTbz+m0YsJVBVAeIEXKcjAQyy5BnmemzcEAhJVLbynJBNLPPxUBy8YzJfuSxeGhD4L7sv3vYEn6yXJRAD8LPAR4XpBcLnOnvD7LL0XGOZNH3nce3ZwPE/S2Yd+fYmH1gjfIuEFB96fFhyOjeBCnFxHX1nAuiNssN5UmEyn05kWIJ6PqSeCAGvuzSoR4LzI4isgOE8vKPg9FggEAoFAIBAIBGaxMILCZDJRo9GwzHapVDJiy3/wT05OzGNBklUI+F5zytzpc2e2PM/3LQjSRT+2dEZcO52Oer2eJCnLMrVaLfNkYNQdxFa6mF8PeZFkIyQxSSyXy2bgKEnValWSrA3Dx+CNIP3vnphCjEqlko2LxHAuz3ObVkGGu16vq91uW3vFPKFbWlpSvV5Xo9EwAUWSrXe/3zfzSmIqFAr2t+XlZa2urhqho+rCl5RD/iCVPnPNNfWl7phnQoT9tQO+nQISiZjBmvK+tCn4qQa0v3gC7Cch+KoTsvi+ZcNXhSwtLalcLlvpPmIPZHiePEsXRod+vCTCkfcagEz7Fg32ml8T/obYJsmMGnmNz+Lzvggk3oyQ9+Z5jOFE0PDjJ4mDdUew4Tgc168BVTlcV/Ywe8Qba/L59R4S860R/v25Nl6o6/f7dt6+NYO2ENonvIcH4k4gEAgEAoFAIBC4HAvhOEZZd7VanflPPP/Jh1zStz5PULxJXKVSsfYCX53g+9/5ki4ytWRCIUF+JONgMFCn05lxtfcl5Z7YkPnHqI+WC4zm8DaAPCGKIIBAZDlPstD8ThsBBG86nVrrBtUOiAJUK6SUTFDo9Xpqt9tmBMl5rq2tqdlszhgE0pZxfHysWq1mlSBk1Pv9vlZWVkyIYOQfxM17MfAaX+ovzU7AgIR7su8z174awFdy+DVHWOC9uL6YAtI/z3Xx4xjL5bKJEKyzpBlzRtYeYs418ASfPeHHZiKOYabIeXAcrjtiFHuTMnw/4UG6qDSAWEOeLzMqvEyI8caDfCEcUHHDcxBFfCXF8vKyfda4BjwHUk5VjBfcuL7NZlPVanVmWgXn4L0+EKmoFuCz7vcXa+lNVb2giDjj1wxxxLfhAPYZ1zoQCAQCgUAgEAhcjoUQFFI6Gw8pycbG+bF2pVJJ/X5f7XZb3W73bYSLzCQmi2RBKY1OKVk/PmTej5yTZFnTXq9nxAjvAnqvOQ7VAHx5sgMJhpQzVrBQKKjVaqnRaKhcLluLAkTWZ4+9zwMVDGSaKaX35oj02FOhwbowdhJBZDAYWDuHdFYpsbq6asaXEC7IHJMdiNET6H6/r8lkolqtpu3tbSPoEPHLSLMXGzC3hIxD5iGTkmbGL0IsfSYdggo5hCAiAHjC6Xvw2R/j8Xgm+81zvQGkJ6e01SAKeM8FhDDIMS0CPA8/CuLwJBZfBW9M6CsI2LMII+xVvs+37EiameqAuOWrcuanN3C84XBo64uYgCBA1p72Fj4fCDWsBRUoVPbwWlCtVlWr1XRycqJut6vT01MT6dh/VOIMBoMZLwO/t7xHBGvhWzIQhlgjLx7gMYKo5F/PMb34EwgEAoFAIBAIBN6O5DNz1xZESo8l9SXtXXcs7wEbirivEhH31eOmxv684r6b5/nmczjOwiOl1JX0peuO4z3gpu5R6ebGHnFfLV70uF+k+3D8n/jqEXFfLW5q3NLNjf19vRcvhKAgSSmlz+Z5/m3XHcezIuK+WkTcV4+bGvtNjfs6cVPX7KbGLd3c2CPuq0XE/WLhpq5bxH21iLivHjc19vc77oVoeQgEAoFAIBAIBAKBQCBwsxCCQiAQCAQCgUAgEAgEAoFnxiIJCr943QG8R0TcV4uI++pxU2O/qXFfJ27qmt3UuKWbG3vEfbWIuF8s3NR1i7ivFhH31eOmxv6+xr0wHgqBQCAQCAQCgUAgEAgEbg4WqUIhEAgEAoFAIBAIBAKBwA3BtQsKKaXvTil9KaX0ekrpx687nqchpfRGSumPU0qfSyl99vyxtZTSZ1JKXz7/vnrdcUpSSulXUkqPUkpfcI89MdaU0k+cX4MvpZS+63qifmLcP51Sune+7p9LKX3c/W1R4v5gSul3Ukp/mlL6YkrpH50/vtBr/pS4F3rNU0rllNIfpJT+6Dzuf3r++EKv9yIj7sXvS5xxH75CxH34yuOO+/BzRtyH3x/EvfhqEffiK4/7+u/FeZ5f25ekJUl/IelVSUVJfyTpm68zpneI9w1JG3OP/XNJP37+849L+tnrjvM8lo9J+lZJX3inWCV98/nalyS9cn5NlhYo7p+W9E8uee4ixX1L0ree/9yQ9Ofn8S30mj8l7oVec0lJUv385xVJ/0vSdyz6ei/qV9yL37c44z58tXHHffhq44778PNdz7gPv3+xxr34auOOe/HVxn3t9+LrrlD4dkmv53n+l3meTyT9hqRPXHNMz4pPSPrV859/VdL3XF8oF8jz/PckHcw9/KRYPyHpN/I8H+d5/hVJr+vs2lw5nhD3k7BIcT/I8/z/nP/clfSnku5owdf8KXE/CYsSd57nee/815Xzr1wLvt4LjLgXvw+I+/DVIu7DV4u4Dz93xH34fULci68WcS++WizCvfi6BYU7kt50v7+lp1+460Yu6b+mlP4wpfSD549t53n+QDrbiJK2ri26d8aTYr0J1+FHU0qfPy//omRnIeNOKb0s6SM6UwhvzJrPxS0t+JqnlJZSSp+T9EjSZ/I8v1HrvWC4aetzk+/FN3mPLvQ9wSPuw1eDuA8/V9y09bnJ92HpZu/Thb4veMS9+Gpw3ffi6xYU0iWPLfLYib+Z5/m3Svo7kn4kpfSx6w7oOWHRr8MvSPqQpA9LeiDp584fX7i4U0p1Sb8p6R/ned552lMveezaYr8k7oVf8zzPT/M8/7CkD0j69pTStzzl6QsT94Lipq3P1+O9eNGvwcLfE0Dch68OcR9+rrhp6/P1eB+WFv86LPx9AcS9+Opw3ffi6xYU3pL0Qff7ByTdv6ZY3hF5nt8///5I0n/QWXnIw5TSLUk6//7o+iJ8Rzwp1oW+DnmePzz/oEwl/ZIuynIWKu6U0orObkD/Ns/zf3/+8MKv+WVx35Q1l6Q8z9uSflfSd+sGrPeC4katzw2/F9/IPXpT7glxH74exH34ueBGrc8Nvw9LN3Sf3pT7QtyLrwfXdS++bkHhf0t6LaX0SkqpKOmTkn7rmmO6FCmlWkqpwc+S/rakL+gs3u8/f9r3S/qP1xPhu8KTYv0tSZ9MKZVSSq9Iek3SH1xDfJeCD8M5vldn6y4tUNwppSTplyX9aZ7n/9L9aaHX/ElxL/qap5Q2U0qt858rkv6WpD/Tgq/3AiPuxVeHG7lHF/2eIMV9+KridfHFffj5Iu7DV4sbuU8X/b4gxb34quJ18V3/vTi/BvdP/yXp4zpz0fwLSZ+67nieEuerOnPE/CNJXyRWSeuS/rukL59/X7vuWM/j+nWdleUc60yJ+oGnxSrpU+fX4EuS/s6Cxf1rkv5Y0ufPPwS3FjDuj+qsXOjzkj53/vXxRV/zp8S90Gsu6a9J+r/n8X1B0k+eP77Q673IX3Evfl9ijfvw1cYd9+GrjTvuw89/TeM+/P7EG/fiq4077sVXG/e134vT+UEDgUAgEAgEAoFAIBAIBN41rrvlIRAIBAKBQCAQCAQCgcANRAgKgUAgEAgEAoFAIBAIBJ4ZISgEAoFAIBAIBAKBQCAQeGaEoBAIBAKBQCAQCAQCgUDgmRGCQiAQCAQCgUAgEAgEAoFnRggKgUAgEAgEAoFAIBAIBJ4ZISgEAoFAIBAIBAKBQCAQeGaEoBAIBAKBQCAQCAQCgUDgmfH/ACv8+T7qAX50AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 0 510713\n", + " Min thresh = 1000\n", + " Sliding\n", + "\n", + "\n", + " Winner = Sliding\n", + "\n", + "\n", + "065s_iimage_1901852337971_clean.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADDCAYAAAAya0IYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADv9UlEQVR4nOz9eZhk2VndC68Tc5wYM2tsdbdGJCFkIQFCWGK4wrIxkwFxbQyywQaBBgwYG9uArrEvvh7AYBuMr0DCjAaM4cOADVxbxswggSQEEkIDmtVDTZkZ85gR5/sj87dzxens7qruqq6srr2ep57OjDhxzj577xOda73rfd8kyzJFREREREREREREREREREREXAsKN3sAERERERERERERERERERERtx6ioBAREREREREREREREREREXHNiIJCRERERERERERERERERETENSMKChEREREREREREREREREREdeMKChERERERERERERERERERERcM6KgEBERERERERERERERERERcc2IgkLEY44kSd6ZJMmLb/Y4IiIiIiKOkCTJh5Ik+YtXeWyWJMnHPMLrPOLPRkRERERERJwsREEh4jFHlmXPzrLsN272OB4KSZJ8ZpIk70iSpJckyU6SJD+fJMmdN3tcEREREY9nJEnyr5Mk+WiSJIMkST6cJMn/dbPHFBEREXHScL2F2Yc7X/y7OOKhEAWFiIjj8aeS/nKWZV1JT5D0Z5K+/6aOKCIiIuLxjx+S9LFZlrUlvUjSy5Ik+eKbPKaIiIiI2x3x7+KIB0UUFCIec7itNkmS/ztJkp9NkuQnkiQZHqqfz0iS5FuTJLl0GKn6LPvsVyZJ8q7DYz+QJMkrc+f+R0mS3J8kyX1Jkny1K65JklSTJPnuJEk+kiTJxSRJfiBJkvpxY8yy7GKWZffZSytJ0aIbERFxWyBJkhckSfLGw2jU/UmS/IckSSq5wz738Hv4SpIk35UkScE+/1WH39V7SZL8zyRJnnQ1182y7D1Zlo3tpbXid29ERMTjEEmSPCtJkt84/J59Z5IkX2Dv/UaSJF9tv//tJEl+5/Dn3zp8+Y+TJBklSfLXkyR5cZIk9yRJ8prD7+QPJUnyNx7p+fJjjX8XRzwUoqAQcRLwVyT9J0lbkt4m6X/qYG/eKemfSXqdHXtJ0udLakv6Skn/LkmST5SkJEk+W9Lfl/QXdfAl93/krvOdkp4h6XmH798p6Z882KCSJHlikiQ9SVNJ/0DSv37ktxgRERFxS2El6e9JOi3phZJeIulrc8e8VNLzJX2ipC+U9FWSlCTJF0l6jaQvlnRG0m9L+s9Xe+EkSb4lSZKRpHskNST91KO4j4iIiIgThyRJypL+u6Q3SDor6esl/WSSJM98uM9mWfYZhz8+N8uyZpZl/+Xw9/M6+M6+U9LfkvT6R3m+/Jjj38URxyIKChEnAb+dZdn/zLJsX9LP6uAP0O/Ismwp6aclPTlJkq4kZVn2y1mWvT87wG/q4Iv40w/P8yWSfiTLsndmWTaR9O1cIEmSRNLXSPp7WZbtZlk2lPQvJX3pgw0qy7KPHFq7Tkv6x5LefV3vOiIiIuKEIsuyt2ZZ9qYsy/azLPuQDoTdB4i0h9+nH5H0PZK+7PD1V0r6V1mWvevwe/1fSnreNbgUvkNSSwdCxX+S1H/UNxQRERFxsvDnJTV18PfuIsuyX5P0Szr6Hn2k+LYsy+aHfyP/sg7+Nr4uiH8XRzwYoqAQcRJw0X6eSrqSZdnKfpcOvnSVJMnnJEnypiRJdg9V0s/VwRebdJDT9VE7l/98RlIq6a2H1rKepP9x+PpDIsuyXUk/JukXkyQpXcuNRURERNyKOEw9+6UkSS4kSTLQgShwOneYf8d+WAffwZL0JEnfa9+1u5ISHUTNrgqHovHbdPD/gG9/uOMjIiIibjE8QdJHsyxb22sf1jV8Tx6DvVzKmH8vXzfEv4sj8oiCQsQtgyRJqpJ+TtJ3Szp3qJL+ig7+UJWk+yXdZR+5236+ooM/TJ+dZVn38F8ny7LmVV6+pANLWvtR3EJERETErYLv10H06emHBRJfo6PvWuDfsU+URH7tRyW90r5ru1mW1bMs+71HMI6SpKc9gs9FREREnGTcJ+lurz2jg+/Rew9/HusgEAbOX8U5t5IkaeTOx/fyIznfQyH+XRwREAWFiFsJFUlVSZcl7SdJ8jmSPsve/xlJX3lY5CaV1Uc4VIB/UAc1F85KUpIkdyZJ8pePu1CSJF+cJMkzkyQpJElyRtK/lfS2Q1U2IiIi4vGOlqSBpFGSJB8r6dXHHPMPkyTZSpLkbkl/VxJ5tz8g6VuTJHm2JCVJ0kmS5K893AUPv29feXjOJEmSF0j6O5L+9/W4oYiIiIgThN/XAcn/R0mSlJMkebEOaor99OH7fyTpi5MkSQ+Li7889/mLkp56zHm/PUmSSpIkn66DmmM/+yjPJyn+XRzx0IiCQsQtg8O6B9+gA+FgT9LLJP03e///k/TvJf26pPdJeuPhW/PD/37z4etvOrTw/qqkBytWc6cOUiKGkt6hg0rjL72OtxMRERFxkvEPdPAdO9SBGHtcka5flPRWHfyh+ss6aPmoLMt+XgdFcH/68Lv2TyR9zlVe96WS3n943Z+Q9H2H/yIiIiIeN8iybCHpC3Tw3XhF0mslfUWWZdQl+HeSFjog+j8m6Sdzp/i/Jf3YYWoZdRIu6ODv4/sOj3/VozyfI/5dHPGgSLIsu9ljiIi4IUiS5Fk6+EO2elgYLCIiIiIiIiIiIuJxhUOHw09kWXbXwxwaEXHdER0KEY8rJEny0kOr15YOImT/PYoJERERERERERERERER1x9RUIh4vOGVOqix8H4d9FE/Lu83IiIiIiIiIiIiIiIi4lHihgkKSZJ8dpIk70mS5H1JknzLjbpORIQjy7LPPuzesJ1l2UuzLLv/Zo8pIuJmIX4PR0RERNx8xO/iiBuNLMt+I6Y7RNws3JAaCkmSFCW9V9JfknSPpDdL+rIsy/70ul8sIiIiIuIBiN/DERERETcf8bs4IiLi8Y4b5VB4gaT3ZVn2gcMqpj8t6Qtv0LUiIiIiIh6I+D0cERERcfMRv4sjIiIe1yjdoPPeKemj9vs9kj7lwQ5OkiSTpGKxqGq1qmq1qkajoTRNtVwuNR6Ptb+/r0qlokqloizLtL+/r8ViodVqpfV6LZwWSZJovV5vvFYoFMJ7pVJJxWLxAccWCgUVCgUlSSJJWq/XPj5J0mq10mq1UpZlG+eXpHK5rFKppCzLlCSJCoVCOHeSJCoWi+E8gPc5b6FQULFYDOf1c3KfHMt9FYtFFQoF7e/va39/P1yrUChotVppuVyG++N1fi6VSmEcnJc5qlQqqtVqqlarqlQqSpJEi8VC+/v74VjmwOeCc/nc+Jzk1yfLso3XOTb/Of/d18PPVSwWVS6XwxwyTsZTLBbDOnBtPs86+Tj9HpIk2Zh7jiuVSmGuHwzH7UXmidcKhcLGeHwMjM2PyTuLGHt+7vz6+XvL35+vl+O4deP4/PXYY74+XIu15hh/3c9x3PWPu2+fE/75GrI2fJbx+LjZG35Pfl1JGo/HV7IsO/OgC3xycU3fw5JUbDaypz5lrYt/Ur+hA7vdsTrV0LPuvHyzhxERccvgQx9d6sruKnn4I08krum7OH4Pn0A063rGU3du9igiIh4S7317+qjPsTzb0LPPP/jfJ299+/zYv4lvlKBw3Jf+BktIkuQVkl5hv6tYLOrUqVN65jOfqec+97l6/vOfr3q9rne+85368Ic/rHK5rCc96Umq1+saDoe6cOGCLl68qOl0qul0KkmqVqvKskz9fl/D4VDz+Vy1Wk2NRkNJkqjVauncuXMql8uBbOzu7mqxWChNU7XbbVWrVU2nU61WK5VKpUBMBoOB9vb2NJ/PtVgsNJ/PAxnZ3t7W2bNnVSgUNBqNwvknk4nK5bJarZZqtZpKpZLG47EkBeI7GAy0u7ur1WqldrutWq0mSUrTVNvb25IU7gdSv1gsJEntdlvtdluz2UwXLlzQ/v6+0jRVvV7XcrnUhQsXNBwOtV6v1el0tL29rWazqTRNlaapGo2GyuVyEG4Wi4VqtZrOnj2r8+fP60lPepKe9rSnqdPpaDgc6uLFi5pMJhoOh+r3+5pMJprP59rf31eWZZrP5xoOhxoOh1oulxtEtlKpqNFoaLFYaDqdarlcarFYqFQqqVarablcajqdBmFguVyqWCyqVquFuVyv16rVaqrValosFtrb29NkMgnHnjt3Tt1uV5VKRZPJRKPRSOPxWNPpVIVCQd1uN1xrf38/rOVisdByuQz70MUJSO7+/r5Go1EgoYVCQdVqVWfOnFGapppMJlosFoG0QmoXi4Vms5n29/eDWLO/v6/BYBDuN03TMGb2cqPRUKVS0Wg0Cq/V63UVCgXN53Mtl8twH+zxcrkcxJ/VarWxtuz/RqOh1Wql2Wym5XIZnklEMOlAzIKEI/Cx57mf1WoVRCeEpk6no1arpXK5HOZrf38/rAXPQpqmQaRZLpcbIhWiA2OpVqsb98xey7JMjUZD3W5XkrSzsxM+k2WZ6vW6tre3ValUNJ/PNZvNNBwONRqNwvpy/Gq1Cs8z4gnr95a3vOXD1/wNeDLwsN/D0uZ3cU2pnvzOz9eTb9U/228R9D7vhfr97/z+mz2MiIhbBi/4yx99+INOLq7pb+L4PXzysP6E5+l//cyP3uxhREQ8JP7yXZ8krR88wHk1uPCyF+kPvvm1D/p+8Y73Hfs38Y0SFO6RdLf9fpek+/yALMteL+n1klQoFLIkSbS/v6/d3V1duHBBT3rSk9Tr9VSr1dTtdrW7uxvIarlcDuS03W5LOiAEi8VCWZaF9yaTiWazmQqFgtI01Wq10mAwUKvVUqfTUblcVrlc1mKx0P333x8i9JANzgkJrNfrgdwlSaJKpaL1eq39/f1AsOr1eiDYxWIxECY/b7FY1HQ6DffRarU0n88D+cWpwf1CgJ1wQeJms1kQPKrVqtbrtRaLRSDFnU5HkjQejzWbzTSbzVSr1TQYDNTr9bS9vb0hMvT7/RBxn0wm2tnZUbvdDo6Rer0eyBzCgKSNyPR8Pt+YG7BarcLvRI0hjzgm/JharbbhPCmXy5rNZprP5+GecZxAQMfjcRBzEDGI8K/X6w0iOR6PtV6vValUgri0v78f7oN5rFQqgXCu12uVSqVAmKfTqXZ3d1Wr1dRsNjUajTSbzTacBuVyWZI0Go2C8FEqlVSv1wOhhdgjYEGaWcNisRiEEwQVxsqa1+v1EGUvl8vhfthPzB0iAHMLmUes4v6Yk+Vyqfl8Hj6zWq1ULBa1XC41HA6DoME9VqvV8PlKpSJJ4flxMaxUKm04HHAg8By6W4Fji8ViEGd4tiSp2+2qVCppMBiE1yeTifb399VsNsP+YDx8DrELNxCihTtXbmE87PewtPld3E62r39RnYiIiIjbG9f0N3H8Ho6IiLjVcKMEhTdLenqSJE+RdK+kL5X0sgc72K3Z0+lUV65c0eXLl3X58mW1223V63V1Oh3t7e0FQlKtVrW1tRVInVuYpYPofrPZ1GAw0GQyUZqmgTD0+3212+1AtFqtlnZ3d4NLgGivdEAqIesQufF4rPl8HogsJKfX66lcLqtarQZxAyJDVBeitF6vA/FGFJEOiP9yuQwklHvz9Aii9pxjPB4Hwg+ZWi6XKhQKIcpdLpeDGJKmaYj4z2YzSQpRY+45yzLNZjONx2ONRiMtFgttbW1pe3s7kF7u2VMKyuVyGIfb3ZMkCSQvTdMg5EAgsyxTtVpVmqYhqs3cOpz8Qoy5V0gskXEcIDggPM2BdA8IdKlUUrVa3UgLcKHIxSHpwClA+s1oNNLu7q7OnDmjRqOh9XodyCwktlKpKE3TQFg9vQS3g6deMD7eI6KPG4d9xudwW5CiwvkRJhBWEIFcyJG0Iagw98wZr1UqlSDgcL7ZbBbWkXUeDAbhmUHYwSmxv78fnCvsc08D8e8D/osIg4CEmMNeRTQ8ffq0qtVqEM/4L64W1hUniAtfCFYII8zdLS4oXNP3cERERETEDUH8Lo6IiHhc44YIClmW7SdJ8nWS/qekoqQfzrLsnQ92PJFH/oDv9/u67777tLu7qyc84QlqNptqt9saj8eBIJLX3263A1EmApskSUhf2N3dDZFhJ4BE/hEQut1uINjD4TBcA1v+dDoNpBP3AKIC5H9vby9E+guFQojEEmWFjLqNvlQqhXSM46zf8/l8Iyfd6wlgbx+PxxqPx6rX68F6D5kmOktEH+t3uVwOYkSz2dR8Ple3293IZ8c1gZW/UChoa2srzM14PA6E1sdMZNrngfuCmDtp5hyFQkHNZjOkjRCNlxT2ht8DRB3iSjqAuzm8dgGEnVoTOB5IDYBcSgrk2YkngMzy2mg0Ur/fV61WC24PUiim02kQPxgfEXbGISmsz2w2C+KMzwtpEYVCIYhOCGJ8DreKOz7cJYLDYDabhWMQ4BAJEOyWy2UYE3vPx8Jz46kIvD8ajTZcFghGOEOcqHMdvgfYI16HhOPYW9wjY2Xuz549q3q9vlHnBGFgMpls1G9gbjxFghSnarUaxu8Om1sN1/o9HPHYoHT+nC696NFZEiMiIm4dxO/iiIiIxztulENBWZb9iqRfuZpjC4WCarVayOleLpe6cuWKLly4oLvvvjuQdP7IX61WoWDjarVSt9vVdDrVZDLRarUKEdhKpaLTp09vXAur9mAwCBF58rq3t7dDfYPpdKpGo6FqtRry2onYQjoQFSD6i8VCg8EgEE3EDa4L2V0sFkFQgNhubW0F0oZwAslBzCA/H+JHFJhx4KCQNq3cRPKTJFGv1wvkjyhxr9fTZDJRkiTqdrsbQgZkDLs/6SRJkujUqVP66Ec/GvLqIaBOCBF+iBRzj14Az23v7AXqGkBEIZSQftwO1Wo1zC2pC15AEhLqkWb/mfQOd1gQSWf+cCrk0zKI/DebTc1mM41Go43aFLg/WEOEM4i911tA1CC9hXlBaGLfuaiAa4AUg+FwGMbJPvBimR7dZ30h8IhEnAcxxFMEcBTgmGH+SqXSRm0DSeHe/Vjunb2PWIEjgloHEHsvyMm9IICwDrh0er1eSKvw/ecuDo7neozf00a4R8QSv/6tiGv5Ho54bDD9c3fpg1/4+ps9jIiIiMcQ8bs4IiLi8YwbJihcC7B0e7eBwWCgCxcuqNfr6fz586HewWAwULlc1qlTp4K1vtPphKJvEKHhcBgK0JEDTgRVOkgt6PV6kg5y9YvFYhAQpCPLM9ZyhACiq5AOCDokBlcC4gFRdkge5JwIMeQRog4Rc3s4/+X60mYlfsgRNRyIvkLgIEfMLc4CSSHaPxgMNJvN1Gq1AimDPHq3CL/3drutra0t3XvvvYEc50kghBMbvke/nSBSswJyS9rIfD4PDhDEBtwRnMejzZBA7pd5cGcENv48oa9UKioWi8FG75F+F448PYB1h6gPh8Mw79wzws1wOAykHeECtwKCAfvQC35SQJG6C2maKssy9Xo9TadTNZvNICBMJhONx+NQTNFrEXCvPvfUo8Dt0Wg0Qi0CXA8+d81mc8MhwLPCGiAEUX+CufIaIuxvxoK4hYDDXHttC67DvXidDASm3d3djXoJvM/v1DbhXKydu0EWi4Umk0l4JnFPRERERERERERERJxEPP0nXq2nrt/4qM9z7g/G+vz3fo5+6Rn/3zV97kT8tUxeM8QdK/6lS5d0+fLl0NkBkrmzs6PTp0+HzglUeu/1eqGiP6Sg0+kEEoSjARKDNdtt0JAar3FQrx+07vE2hUSUiRavVis1m82NVAYi/Zwf0cQr/pPrTVE4qv1Pp1P1+/0NoiwdETEfD3ULJIWij/v7+yFyzfUpVAlRZU4khU4TdEGo1+uhToBXw8clwnydPn1ajUZDe3t7gXwS7ff2hBBlyKZ0JLpICpFjRIN6vR7y8z1i78LPcDh8QIQcAQSS760CpaPif3nrvc8lEXyvZ3BcgUlEBYpuEjX3VBicHxRJxIWDqIDIwzmw20P4ueZ6vQ5dPjqdjqrVauh2QjoEogLdOrwVojsF+B1g7WefUQeC8fK52WwWrsvYmf+844AUGU8jYX/m90WSJMExwRyyVuwnT12RFIQe9iPrQ1FTL+aIsOPpHayhC0RejJNio1FQiIiIiIiIiIiIOMl4+j9/p65HMmXyxj/We9/0QukZ1/a5E+HnRVBwq/JyudSlS5d03333qdfrBdJUKpU0nU51+fLl0HKPAo2QYWzaEHcKNHqU3iPKnMfJjKdYSApRTogL5JX0AwrAcX4vuOcFGhmfEyTs8pCqer0enAKSgjvBRQWIMWQKciUpRHbL5bIajcaG46DZbIbfS6VSKMY4m8108eJFXbp0SaVSSc1mU6dPn9b58+fV6XTCfXjUmWttb2+HrhOQR/LqPTKO8OHknJQISRvzSPeLarUa5hOkaRrWGycALgxcHPk1cDEon/7gawqx5HOss+ffQ1gRHJgbPyeCA8fhAGBPISwUi8WNVpCkMng032tnIDS5KIPoQuTez8czwLHS8e4W7p+9ilDHs+SFH7PDdo0ICzg5SP8gZQVBiH3BvLg7wF/3sbLPPT0mL65xTcQ4XzPfi4g3CGysRa1WC5/FddNsNoMweKvXUIiIiIiIiIiIiHh84/n/9NVajcbX7Xwf8+M7evGffNE1feZECApU4Sf/HSI1Ho/14Q9/WPfee2+w6VcqlUDAR6NROAfdEqgX4ASTz5F64HZojwJ7hJmCj06WICyQMM9L92g1Tgi/hrfsIw/eidZwONTe3p6Gw2EgoLVaLaRRQLYgRRRzpK4D1n5ILKIBxRHJSaeTAoIKn8NpceXKFS2XS6VpqlarpdOnT6vb7YbOBUTundg1Gg21Wq2wbi7OQOqYG0gcvyN8ICjN5/MNd0m3290QczhntVpVp9MJLgrIrZN5SWFPsV5eP0I6stFLm0TbHSsQYI5hP7n44M4Trs+5IeoIHKS6uFMFdwHRccbJGLzo5Hg81mAw2Cg66KkTHOutO1148j3vYg571+tPIBwgVk2n0+DcgXxTN4K2orhsPK3EnRjeFtLnerlchrQlurfgqHHhxvdg3n3ibgbOjeiI6ODFVdmriA6IeTyjERHXG9Xff68+7v/92ps9jIiIiIiIiIhbHJ/8j1+t0z/6Vml9/Yo9r/70vWq8Svqsv/q39O2XP+6qPnMi/LzFYlGnT59Wv9+XpEAwV6uV9vb29P73v19bW1tqtVohckuxQKL4FFak6wORYC8Y6BZp6iMQKU2SRPV6PbRInM1m2t7elqRQeV9SINL5GgtEciE9EEvIJtFnT33o9/tBoIBM4Z4g6o+FH+LPdRAGvJ2hE2cIL+P1dI56vR7cEES2EWp2d3e1t7enO+64YyNKfeHCBV2+fDk4RSB9ELpOp6P5fK7hcBjSKaSjjggIKMyViwMunhBVH41GOnv2rLa3t0PnANIlaJuInd3JMbUJiP7zursOPOqN28LFAxwN1HRgj/p7fM4FCoj6bDbbiH67gwDySgtIXC1c26P2zA1CDWIBbUsZH2lC3moSkcUFBQgya824eT/fdYOfcbWMRqPQBaVWq4Xn0UU6RAueG3eLeAtQxoIjyMUXBARPU+BeWFuEGRcgacvq8+X1GfwZxRmD4OGiIulDfv2IiOuF9XCo1kdim/mIiIiIiIiIR4aP+3+/Vk/5qXt16p63KlsuHv4D14j9D3xIyQekP/jsJ+rzak+3d/7NscefCEGhUCio0+no1KlTQVSAtM5mM125ckX3339/iLKXSiXt7u5qe3tbtVotkItWq6VWq/UAJwEdGyA1nqMN4fCq8BT8W68P+tdDEiHuXsxPOojQj8fjcF3InRPc1WoVqueTmjEYDDQcDkM0mWKUpVJJnU4nRE0hPNRscMs2qQZOED36jivCyTKuBRwHkP35fB5qE/i8pGmqarUa6ixAviDJ/J6m6UZLR8QUT1mghST1MDgHYkmj0VC/3w9ku9lsamtrS5JCWshwOAxuCyegiAueD+9pIfl8fPaA70OIrbsMmAtfCwi42+9xosxms9AVhHoYpBJwr16k02s/eNSd7hgISwgohUIh7KW8mMX4mB+6p7h9n8+4a4LCnOv1eqNmSJIkQVTyrgrD4TAIJrgA2J/8F9GEdaddKXPKc+jiBYIf+4LzuIjHPHoaEK6D6XQaRDlvRevpVByfr4HC+SUF0cuf84iIiIiIiIiIiIibhaf+6lfpY7/ufXri5A8ek7Tc/fsvXNVxJ0JQgLSeOnVKvV5Pe3t7gWAul8vQkaHVagXiiNDQaDSCoyFNU21vb+vee+8N0eI0TQPhxjruZJBoqhflm8/nGgwGqtfr6nQ6ko6IKVFLoqWcgwg9x0gKhSalo1x1IvuIAqPRSJPJJBy7v7+vXq+nbrcbUhogWU5+OScpD5JC20zIGiTXBRTpyAYOSfMOAffcc49OnToViO50OlW73Vaj0dDOzo52dnZCDj25/h7ZrtVqG639XFDwTg4QXqL8y+VSjUZjo14D84K13tMnRqPRRu0LhACv7wCcZHvNALe0cy/51zwlwFNz3HrPXoKAZlkWCiMi+vg8+L9isRgcMHTBQORh/yNm+L0iUiA0+RiYU99TrD/n9laTkoLwQNtU0gEYd7VaVbvdDvOJgEYahqeGEOH35wFyjxuDvYAIMp1Ow/qy53GlIAh4Sou7cWazWUjLoI0q7iDpQFBEyGGOjiuA6a4U9kFMe4i4EUiyTMtspXJSfPiDIyIiIiIiIm4rTNYHroM/mNf0r57+CeH1p2dv0yo7eS7HEyEo8Ed7vV5Xs9nUcDgMJCbLMo1GI+3t7en8+fM6ffp0iIBPJhPde++9ajQa2t7eVpqm6na76nQ6uu+++zSZTAIBg/hRMA4iQ0R9Op2GCvbNZjO0ofTIpluuPeLrdRSIwPKZbrcbiD4kDXKKUDCdTkNdg3K5rNlspl6vp2azqW63q8uXL29Y0h3UHsi7FNxhMJ/Pw/klhWi4z42nLOzt7W1E2IvFojqdjra2trS3txdqV0DyED7G4/EGWUNMgfx6O0js/+TO08kB4gr5xI2A5Z1aDkTXIabeRpBCl4gG+XQVt8QjXrAXeF3Sxhx52gBzQtFBBBnvqoA4wGcQBvIOCfY/dSGYr+FwGApSrtfrUJfAnS9O0HEpeKcCBAXfN9wL64MLCLECJ4ELbhB/XDGsV74V63w+V7vdDp9rtVphLIgwkP9qtRrmxYF44J07XBCC9PPMMX5Jod4D9+hpGC70uaLLM4lbBAeNp0JFRFxvdH7iTfqEO79ef/J3X3uzhxIRERERERFxAvCR/ZFm2cHfnX/3mS/R+vDvW12X/g03FidGUID8QHwRDSB/o9Eo5JSfO3dOxWJRvV5Po9EoOBGkA5JLzjcV87H3Q8YgnJAFIrNYxNvttiaTiabTaYi8HtclwAsrEtX0nHBIHS0QpaOoPZ+HYEOQibD2+31tbW2pVqvpzJkzQbBgvJBEajggdiBeeP0EWi1i74Z050kd933x4kXde++9etaznqXTp0+HeW21WppMJoFMUieg0+kEEowzBEJar9c1mUxCcT0i7cwZpJlUkmazGVwh0+lUo9EonJeIuKSQRiJtVv9394W3iHRRAVcGnRCI6JOKIB2JDR7p59682wN7jLQE1p5rUeAzn87g3S9IRZEU7o/94jUbKHiIE8TTKdwN48TZu2gwbi/QCOlH0CCFxesRMD7fT4zdC10iMHQ6nbAWXrwScQt3A+f2opGsldcxIAWC37kmAqC3Im02m+G8zF++PgXn9NQK76TBWHB+RETcCJSH0rsWEz2rkt7soUREREREPASK85V+ayZ9Ru1mjyTi8Yi3L2b6s8VZvfZVL1fp1956+OrsIT9z0nAi/lqGuFBVvt1uh+J7VO8fjUa6ePGizp8/r62treAqmEwm4Wcn7fV6PXR1cOsz5MiL8/F5csir1aoajUYoDggRIeIsKURH/R68sJ+kEPlttVohsutFG6kZ4JFsSLYk9fv90MnAuwdgBXeHBMdICrUJsHNLCsIGAoZ0QL76/b7m83lwMZw5c0a9Xk8XL15Ur9fTU5/6VFUqFc3nczUajZCWQgtJzkuF/3K5HCK9EN00TUPBSaK/3vKPzhqz2SzUa2DOvdo/8ygpuDK8gB+El2OoewFRzYsZzDUOBfYDwhNEEzcF5BcngxNQb9vJ/sp3mPB0FHfNIETt7++HFAmi85zPSTdOAep7QObZ69SygHizXxmzW/pp5UlKkKRQyJRnAXcI43cHDvfIenv9Bk/94V6oM+EtRN1V4+tAuhJ7x4tfss+9m4U7FbzDBaIQ7iTSeehC4YKCtwSNNRQibiTOvvb39PlP//t6/1//gZs9lIiIiIiIh0D25nfoNf/olfqdf/+6mz2UiBOO/z0t6g2D51zTZ371B16o0697o0p668MffEJxIgQFSYGcpGmqdrutwWAQcrCxc/f7ffV6PZ05cyZ0c5jP5xsWbO85DzmDSGLV92i1dEBy+v1+IEpOICHb3rrOo5cIAV6Qzu3nELp6vR4i8RDkc+fOhSi/52zT8nGxWIQcdyfC2N0ZG0X2iDYjrkD2iCBvbW2pWq0Gt4CnHEDOaP+4XC61t7enyWQSOjCUSiU1m00tl0vt7u4Ge7gLN7VaLRDSyWQSSDOklePykf79/X0NBoNg0SePnoKb5NnzO1FoyDmkm3Vygs9aQ8Z9vhuNRrDNu9DEzy4sSJt1IRBH2KeeQsL9ebTcCzqy1pyTlACEIHcVQKaZb0QTxu4Em1oBCAjU+SANgToH7AufTy94yLPB3me/e8oG5+R8rFGWZaFDCnuWfZ5lmfr9vnZ2dgLRz9dE8GeZdfS2mD4+hClEC+pq0AGFtVsul2q32yGtYzQabQgHXmOD+5E20yMiIiIiIiIiIiJuT3zlRz5d9407D3nMpZ97os6+9veu6byn9cZHM6wTgRMjKBClTpIkRKLJUYcsDIdD7e7uand3N5BOiLfn6ROxJ3oJASNtwosWkv6QZVmwkS+Xyw3BADLnLQSPi3a7C8AdBfv7+6HOAC0Ph8OhBoNBIPmFQkHT6TQQG6zqXq+BWgFO2ofDoUqlUsgfr1arGo1GunLlitbrdSjaCNlsNpvhvrD9M8bFYqFGoxG6UEwmEw0GAzWbzVATgKh1kiTBqdBsNjeEFTpqzGazUGyx2WxudDjgmp7jjx2e+/AouHRE7txlAulnbbxoJvDrUcuC3PpCoaBWqxXy+90qn8+f53q4CRAeOD/7AlKNyECevn8OAu7pGogT1MLgXhExptNpSM1BpNnf3w+FFBkj4/Dx5t0XTuDzwgkikKSQRoMQ46k9OBF4VmhhOR6PVavVQnoGc85eJJWl3++HYoqsE0KZF+100ckdJ9xDq9UKKR+IbO5UQYiYzWZqt9vqdDobrTa9q4cLFbEgY0RERERERETE7YefGXX0f73lpRuvPf2f9KX3ffAhP3dW99zIYZ1YnBhBQTqqxl6tVtXtdkNrPEjF/v6+9vb2tLe3p7NnzwaSQjSclpPkyDebzQ1CSrFFLM9EhiEckPl8RBp4vQSEB8gOBARig2Wb4yUF9wTkdTKZhE4SHhFlDkhjgJhzH54XPx6PQ8S9VqsFcrVcLnX58uWN9o2IMxBLnA2ILjgVmDtJQVBA8OC6RLT39vY2CLyPzSPKaZqGFoLeWQMhgnVkXrzVpYNzQgBZJ8+TJzXBC+xB6qUjtwICCc4LxsS5gY8BUusuA6+dAInFOeOuGV9PxBfGRE0LiK/vT/YoohrrTEcN3nOhAMHExw08DYh7dWcG8GNGo9GGiMdedMeDdODEQRjClUD6BTVSvEPFbDYLTiKu5YUWXQjKrwciF4IK4yKlxwtw4oBJ01Rpmm6IYC44IfwsFosHFLSMiIiIiIiIuD3Rendfn/GOl+q3nvPzN3soETcAT/vpV2383n13oqe+ftM5cPJLI948nJi/lrG4TyaTIBRUKpUQWYdEEN1st9vB2kwawe7ubrBnE72VFAg/58KR4JFhSATRVq/Kj1AAcaPKv7e+g0h7O0as3l4pv16vq91uazgcqtfrhVx40iS4Bq4Dt5MzL/kaAaQS0OWClIWdnR2Nx+NwHogawgHpChTBxD6PE4LzEKHGLeGiCyIDLf1wV0A4l8vlRjtBosdE0FkjBATWATu8R9IhyYzdXQqso3SUSuCuF0QLd6jkuzQQ4WbtuS57Ksuy4CCQFO6TeyC9JU1TLRaLsB+9vgGigjs6PCrutRoQOxCFsOqzD0jtgaR7fQPpyFHBz17HgD3mQhXwZ4NaBIh2zCUCgHQkKuCI4f5Jx2EfIZCwhxFWGCMuBwqUMl4XOrxOBXPmc8/xnJvijxRe3dvb0+nTpzcELtJSSO/gWZlOp0FoioiIiIiIiLh9sf6Td6v/Ky+Sri09PuKE4Bvu+2T9+k9/8oO+/zHffW1pChGbeMSCQpIkd0v6cUnnJa0lvT7Lsu9NkuT/lvQ1ki4fHvqaLMt+5aHOtV6vVa/Xtb29vWFF5o9+j0Jj/Z5MJsH+D1HGgr+9va1KpRKs+liu2+221uu1xuPxRiE+z8cnMikpEE7IKqSf8RAhpusCQgMEN190j3QHyCA5397ekM8R5YWweo0DWvPt7u5qOp0GgWA+n2u1WilNU3U6HbXbbV2+fDkIKF4pfzweh+h5u90OXRqYS6zjnrcvKdRF4FruWvD6BZD38XgcRBYEGBdJILTMCZFr77rgBNtTDjxq7WKCjwfxwOcdwQI3BMUg3W0CoUa4gDRDaCHk+dSU2WymVqulVqul8Xgc1hAByls1Hj5H4f4g66RNYP93+/50Og01Mrxuhbs2vGuEv8a4Qb7jiD3bG8UjPR0D0QB3RT7VRDpyqbBGLmZ5jQxPnfBrA09L8ZoSfgwCIM8P7yEeIriQFkW6lLdolRSeee/wQOvYk47r+V0cEREREXHtiN/Dtwfu/JUL+rhP/5v60xf9xM0eSoSk5/7Bl6n+sw9d0wC0PjzTE34nigY3Co/GobAv6ZuyLPvDJElakt6aJMn/Onzv32VZ9t1XeyKi2KdPn9ZsNtPu7q4kBUs+0VXID9Z46YBQNJtNjcdj7ezsBGv2HXfcESLOWMghQFTHB56aAOkhKkzkFwJFbQGIEPUMiNpS8Z6xQaIhsQgTELjhcKitra2N1At3PxAt964AkLFWq7URTc6yTJPJJHy+1WrpwoULQSCoVqtBSKDdISSw3W5rtVrp0qVLKhQKoW0mggJiCSQZwosLACGFeySK7h0N3FbvufxeKwGRYTAYhLoWvI4wIh21D5Q22y7iBnGi7PUfsMB72sN4PNZ6vQ61H7wmhtdVkI5cBL4fKVbIGHGl0LrU6zMUi8VQxwJHiBcDxbGAOwdxBSKOU2E6nYb9hrBBcUEvKulpIQ94gA+dEgha7EmvC8Ha5I9vtVobaSSsiReNzItYPg7SdLhHRD93aOBYQGhDzGE8Pv+ICqwR52CeKpVKSHe6cOGCtre3w5zjUvF7wbFwKwgKuo7fxRERERERjwjxe/g2wOrPPqD9971QetHNHsntgRf9vVepfnn5oO/f9aEd7X/gXY/hiCIeDI9YUMiy7H5J9x/+PEyS5F2S7nwk5yICv729HVo4zufzEJEnWl6v1yUpdHWASLVardDecTAYqNfr6fz586GeAKSBGg3SUYoFwgLF4SASEEq6ExBphbi59RviDCGEIEEq5/O5er1eiMZDuqle79XuJYUWd3RkgJTlo/KQLI8k4x6oVCqhAB33js18PB4HkUVSKKyYpmkgXggP/X5fjUZDnU5HzWZT3W43nAPiShcJgAhCu0FIMcfganARIV8cEAKOQ8VFpDyxdEcC4hRCiFvkvQifOx1chPEOEJBiF59Ip/H18PSQ5XKp0WikRqMRWoKyhuwN6lZ4dwF3BUjaWAvaLHo7TUQiXDPu5iA6T2Qfseq4IoPebtFrNrgjIF+0EdGA/c1a+FoiNuRrIOTrjlCg1Oua4PrBrUFKje999hJrk+9gwTmox+FpI5PJJKwve4vnjr3iz9NJx/X8Lo54bPHMf/l+ffLTv0Rv/sSfudlDiYiIeBSI38O3Dz7mu9+rZz/9b+idL/zJmz2Uxw0+9z2fK/2dB6aYtt79Zmn94JULYh+uk4PrUkMhSZInS/oESb8v6VMlfV2SJF8h6S06UGz3Hurz+/v76vf76na7OnXqlEajkQaDgYrF4kbxOaLAy+VS/X5/oxhhs9lUrVbT7u6uRqORlsulOp3OhnUcsg3x95SF/f19pWkaOgBQwBAS56ICUWQID0Q9T0SoG8A9Yv+HqFIYEQLu1euddHmHAESRh6pAT7eLcrmsTqejnZ2djU4RCDZex4D8eKzeCADr9TqsR7VaDfMsHeW250kX9n9y8HEFSNootgc55vPeMWM2m2kwGGzUUPAoN8TRLfeMmZ/n87kkBXLrqROSQleO+Xyu6XSqRqOxQVyTw04DuDBYbyz9iB3sQ0SCPCH2LhYQbxwfpI4QnacFJVF1XBTMG3NBXQv2IXPqNSbc6cKc4LRhj5H24AITc4rAQP0Qnj1EC+YXcQ7RATcQBH0ymQTxgzGz1l5XAhcPzor9/f2wdxBtcPEwD/yOq8MLNvLcX7lyRZ1OJ9wTzyPClotZXuzzVhEUHI/2uzjiscXq8mUNxnfc7GFERERcR8Tv4cc3Vld29MSvmOklv/gF+t8f999u9nBuGfzFl32VKn/y4WPfy+ZDrYf3PcYjirieeNSCQpIkTUk/J+kbsywbJEny/ZL+H0nZ4X//jaSvOuZzr5D0CumAwOzs7IRiac1mU41GI0RvqX7vedeDwUDSgVXfUxTIf4eMVKvVUHfBI9ouKOCAIP8dgYBzeHQVOz/OAq5N1J9q/hyLJb1er29Utk+SJNR4gHQybrfsIz5IOpZQO+H2WgykOGxvb2tnZ0fT6TQQN2oukBZBIUIvbIhoQQvMnZ0dVavV4PqARHvhPEgxef71en2jpSLH5V0W7lDwYnuQa0QWz5H32gBe0BIhId/hwO+LNYfIs16ILowTgYLXXeCBfFLPgDFA1HErSArpDR5VP+5+INyeAtDpdNTv9wPZxlVDCker1VKz2QxzSBFNUi+oDcF1GY/vOcZFCgaiW9794EUfqY+BA6DVah27D7k/5oI94R1Tms2m5vO5JpPJhiPEhTGcHbh6OCY7bEPpqT+eCkEhy/V6rTRNQ3oEz4gXqnRBxNf9VsH1+C6uKX3sBhwhScrWycMfFBERcUsgfg/fHliPxyp91kyvfNML9bq73vjwH3gcYJWttVZ27Hsf2Z/q73zMX3jIzxeXfxi7JDyO8agEhSRJyjr44vzJLMv+qyRlWXbR3v9BSb903GezLHu9pNdLUrlczu677z51Oh2dPn061AegkJvnwxNhJBIL8aGaPGQFSz6ugzRNQ7QTgov7YDAYhMKKs9lM29vbkjaLL0IQIb0IG0SccREsl8sHFK3jGMgObgDIFZFkIv+QRa5PVBwiynxACiFa0kE6AWNBUOl2u5pOp6FAIHMgHVnFiZ6T5uHXhyAPBoNwbVI9mO/pdBqIGutDzQfO4fUlvBMD5BNRwesUONHP59J7zQlPlWDtEY4ghbgCPAqNYOWCB/PjggJrT4Qe9wGFO13AgMRzP/l790KDzJ8XMJQUHA7MM2NAoBqNRhu1D0i5wH2CMwdCno/c+3OEy8drjiwWCy0WC6VpGq6JcwdxAUIOwWf/+vjr9Xq4NsUvEaNc2CI9BPGEvcMcsQ6575AgvvGedwLx4yeTiQqFQnChFAqFcK+kRLFWLsg8lBPoJOF6fRe3k+3j/1qIuGF4ypf9sT71f3yxfuM5P6tyUnz4D0REnBBcWo21OPx//l2l2BEnfg/fZliv9KEXTPUv3/5MfUX3rdf8DNyz/9jWaCpKusPG2F9PNXyIdII8PvOn/qGe+i0PJZ4sHvngIm55PJouD4mkH5L0rizL/q29fsdhLpkkvVTSnzzcubIsU6/X0wc/+EHNZjN1Op0NuzbkSNJG5B/SWyqV1O121Wg0JEmj0Ui9Xk+7u7vqdrsbbfa8SB1kq9lsqtfrhYKDq9VK3W435HZDYrFUQ+JIW2g0GppMJhoMBhsWbUlhfFSRh+xICuNFkOh0OiqVSur1ehtkFLJKugQuCLdrQ+awwnvLvDRNNRqNNB6PJSlY6iHuaZoGol2r1ULRxcFgECLQRLOJ/iM+tNtt9Xq9YPNfLpdhDj0n36vz857b44n4IzBAIslxdxs/JNM7eBDdR8jxdAxPGTnco0oOOzMgKjAXXugRgYh7Y+48es/6cG7uhxoIrLXXy5AUxBiEE1wHEHuv+YCDgiKZCEgIZwgCCHCIDQhFXrSSPeh1ObzwZ76TBeKDiwrMK3OK2IZAxute24IxUOuEa/j8sGc9rSFfFJLx8x5r5mkqrJcX8UQ0IOWCfcJ+xPVEIU7a094KgsL1/C6OuDlofvYH9O1/9Dz987PvuNlDiYh4WLxrMdF9q5a+66+/UtlbDr5Wvul979RnpQ9ePO3xjvg9fPviNz++rt/Up+kV7/2AusXxVX/uu5/3OVoPhzdwZJsoPPdZ+gf/9ahezzf8x2/SXf/q6rsePFW3hxMj4pHh0TgUPlXSl0t6R5Ikf3T42mskfVmSJM/Tgb3rQ5JeeTUnm06n6vV6IWKLfZ4aBLgIiLYSPcQWTfeDWq2m4XCo3d1dXblyRXfffXcouAjhISc9O2wrx+vD4TB0cWg2m6pWq8FOjaBAJF86sndD4LGlEzWFFJL/XavVNJ1OJWnDDg8BI7I9Go02CuVBwL3dXZ6oI77Q6o65IA2EyCuEvdFoqN1uB3IKKUSsYD3G47G63W5wO9B2kTXASQKhg7it1+tAmp28u0DipJmilMw3qSpOhInyky+fd2Xk3SKeq4+7gMg5BJdxIbCwjp4G4C1GadfI+J3wQtTH43G4JxwteeGANqC4CxBXuBaknUg5tRxwbHDvkGcXX3A7eM0RSLq7A6iBwHsuUHF/vg8rlUr4nHeTQGTgWC8WiqsCkYRnDwHMXQSekoSg6AIH6RgIWjwTPl/uwPG6JFzLaz8geOD0QITwtCHffycY1/W7OOLm4P/76LP0LaffrGah9vAHR0TcBLx1vtCvjp6tn/+Ol6jzk2+Sc+N/+6xP0Nv+cE+d4kSv6t578wZ58xC/h29zvP4ZT73GTzx2YoIkrf/4XfrXT3tO+P0uxRaKEdcPj6bLw+9IOi7585r760Lw5vP5Rm0E6SgqP51ONRwON6L1nt6ACwASsrOzo/vvv19PfOITdfr06Y1WfpDX2WymRqMRyHev19NwOFSv19O5c+c2Uii8ZgCEBHHCW/p5ATyIH9Zv6kJAoiHOTvgYj6cgeAcCSJC7JCCSbi2XtFFokroPjKlUKoV6CIgbo9Fog4gNh0Pt7Oyo2+2q2+0GQQM7OmkYjUYj1KhgrNIm2cVhwD2R3+6FMr2YItZ6b+XHuJzoURwR4QSCT5oARJmCjFjs2XPMvaQgSnGt/P6UFAQD9oRHybkWx7jrARcJpJUaF8wVIgAdCLwNItF+Fyi8RoG7ArxIodeq8J8RWFgT5sbnmUi/1xFA/PD1cTGFsVJPo16vb6RxkJbR7/dDkUau4XVCIPhe64G1docRQg3pR8wL98j58oKCp0NwXc7h+5g6Hicd1/O7OOLm4fRfea8+9Re+Un/wyT+ualJ++A9ERDyGeNNspZf/4Dfqrn/1e+roTQ94P1su9GvPaaj0lI/T+3/urL7r/NtuwihvHuL3cERExO2ME+HnLRaLajQaIYqLNRyCWSwWN1pGUlBPUuhQ4G6DarWqxWKh++67T/fee6+yLAuvE1XnGGontNttNRoNrVarkPoA+QUIDFiiGSMWeJwORIBJg4AkIo6kaRqO9TaFkDRSKzhno9EIhSohZYyHqD1pIeTdS0dEGNJJpBuyCfHmPPP5PHTIQLDwgpVevd+FCogxhLPRaGyINtPpNFT697x+HB6z2UzD4TB00oB0jkajIJR4zQP2gBcR7PV6gfxxfuaYKLW3EuT+cQdMJpONMXDfTkgBotBkMtmw7HtHDmo5+Fwyb3RzQFBhz0CmESB8ntzSz36BaEsKDgcn54DPIIq46EMBTZwYPHsuWlBLgrVnf1FI0n+Xjpw7zBvPCJ9fLBbq9XoajUbhPT8+L/Iwt9Q8yX8HuOjgAoG/htDH2uFW8TVmnphHT4uIiHgscP6L3qVn/+bXaJXdWt1FIm4s/ur7/6LetZjctOu/abbSV/3w11+VPXr/gx/Wn3zFM/Xn3vQ39I33P/8xGF1ERERExM3GdWkb+WiRJEnI45eO6gxA8BELqtWqJpNJIFjY9MfjcUiBqFQqwQlAIUEKJaZpqlqtpna7HaKz0+k0nLvZbIaWicPh8AHt+BAs+v1+qOyPLR1bN7ZxXvfigJ4qAMmH6EubxAuSCalBbMCK7dZ7LxjpRRWZSxwFFMQbj8fhPNRt4D7JG4fESQqEnTn0FAXSJBA6PD+esdENACJPCod0FDV2AovrhPQQF3W8iwKii3dh8Gi77yevuYHwgkUeFwp2dyeV7EXOwTxx/QfrpsB6rFarjeKbzCvENh/l95oF3lECZwLX9zWj+4MTc8bKPOCeYQ69/aVH6/nHNb2ehaQg1CAOeXrDYrEIv7O/+DzjwG00Go00Go3CM+ndIZhDr3nBPVUqlSBOMQ/Ml9eyyIsI3KcLDcwHgoIXqvRzR0Q8lnjay/5IT/9/X60PvPR1N3soETcZf/NDL9bv/tEz9LGvG+qLX/oPNDu7r3d+wX9QWqg8/IevE96+mOmrX/f3dfd3Xr09ev0n79adXyy9/bOer6d80SdKkv75S35Of6O184jH8Y7+6Uf82YiIiIiIG4sT89eyFy70wnzSkeW73W5vtK6jUF2/3w9k3okzFvLhcKhTp06FdAJy5ofDYSAmdF2AOCE0YI/mGMgLwEFBccc8kScSioBB2gWRZy8+6ZFXdxVQowEQ0acCv4sGfE46itYyJncjeAcFhBhqRODogGghKODk2NraCt0TPPLt9RP4HdcDbTWdtHqF/rw13esy4Mzwbh8IEayBiz5OEJkb5s/bN1LzgntgnXyuXRzwVA4XLyjy5y4FHA6sD86R/P6dTCYbRNY7N3h0nM/4ujIej9b7erNnPa3C3Sm4CyDe3tXD93AeiFY4gxAsuB6fXa1WGo1GGwUzcd3gDvA0E66NSHTc3uAcdLNgDVkLL8TIHvH1creKC0zHdYrwOY2IeCzx9K/7Az1z99V6z8u//2YPJeIxxk8OT+lf/MRflyQ94Xdmesav/4HWkp74xwfvf/JHv1HrqvSuV7z2ho/lI/sjfcW/+Ue68/seWa51+Q1v0TPecPDzv//yL9G/ePLR305//Krve8iuJh/7O1+uwjta4ffqR/6fRzSGiIiIiIgbjxMjKHhuuHQkKkAeEQGorQABms/n6vf7oQBgs9kM0U1SF3Z2drS1taVms6l6vR4Egul0ulFIjtQK3ATY/CHZLhZ4tJgIMcQIZ4K3UYTAeOs6t3VzLs/v9jxy5qBYLAbhwYvY8d+82AGxhShDavf390MnB0SLRqMRCjIicFC7AuGk3++r2+0G6zrCAHOFdZ5oOSSdVnxEsiH23rrPo8uQPzpTNBqNjag5KQLsEyLmHOOF95hfIu3UQGDs7pZwuz+CxHQ63RANmHeEHuaS9fcIuK9nXqxwt4Zb+1l79prb8XGpcEy5XN7oguLdMRASvEMDJNsFGebSz4kDxUk31+Z8uIKYL3dVSNpIleF5aDabajab4XXO7U4AnBO4fFy08nthf1NnhPQaL/7p6RfuYsinwiBKILhRQ+IWKcoY8XhDlukp3/5mPWfwtXrH37vxxDHi0eGZP/xqtT54dcd+2te+Wd9zx1s2Xnv+t706/JxeWenuX3xwAn/Xv/o9KUn0/I++WtOzid759Tdmfzz/216t0jzTuZ+4PoXbuv/pjera7y+65+uUPUTS7VN/84JW7zvqenJf/CqOiIiIOLE4EYKCt3qDoECuvHhfmqZK03SjYwBR3slkok6nozRNQ6cACHqv1wvF+Eh3IP3A3QdO1PispEBsiKhChvKF5KrV6gbR4T48ki0pRIY5p+fQk8PuYgNk0gvEOfmVFPLTOQ/FCiF1zIl3OKCeAKjVaup0OmFuJQXRgVoNjA/bvnc28IgxxA0xAYcC88X6kM9OxN4j4sw7xJb5ZV8wz4gsCBMQ+8FgEOpEUKNDUrgPBB7W30UKxBtPOcAJQIqHpxb4XmHdJG0U8ITEuosDR0Kz2QzjJoWFa7tI5C4F73bAOkLqOQfzy7726DsdD7xtJGPHocJ7vn/Zrx7153Ufr+8zSDwumUajEdwDDtKb3EXDWnnrUa7LfSJesc8RGRAaeCZYZ3dU5FObqAfCcx0RcTOQ7e/rru/7Q734T78mvHbPy/b1vs/8kZs4qgjwsb/z5Tr/Ywff2U/73T/Vqte/qs+9++3P0YvPfsLGa6d++RrbsWWZTv3QG1VIU7347V+j+z61pPf+7evjZvnz//BVqvVW1z6ma8T2jzz0+aM/LCIiIuLWwYkRFDx/3HOeqSEAofDopBcz3NvbC5F2b8U4m8106dIlDQaDEIGHsBD5Xy6XIU8fAu+RSQiVV8QnIk4U2CO5FOTzoosQZqLDjUZD0pENndoEECRING4It6ozJm9n6PUCIGle2BKyzrFObGezWSisSL6/dED8B4NBaM156tSp8LlqtRrutd/vP6CIohfPI19+Op2GWguQ3Ol0qsVi8YB8fu4bJwnIt8yEECOcEMFGiOI6kHX2GgIArx1H3BGNcIkQ/WZd2avsD++24EKSpI2ODogyLjTRfQRxgPcYkxNc9iJz5i4enhfWGFHHXQjcH3sIUYZniwKIhUIhuB/y7TVxB3mBR6/zkBe8FouFRqORqtWqWq2WGo1G2BvuruB+6IjhqS+kTQDuDaGPa7KW3mbVUyf8u4PxuZuIMbgrKSLiZmA9m6n6y28Ovz/zref0OedftnHMv/2F/6hnVdLHemi3Jb5r92n6tb/5KZKkp128rP37L0i6NvKbvfkdql6n8awnE1V/+c36mN/t6HN+5mV6z9+r6QN/6Ycf0bk+8Z+9Wufe1Ffn7W+W1pHOR0RERERcPU6MoCBpw4ZOnQCvTO9WZqKk/OFPtXrSGobDobIs03g8Vr/f1z333KM77rgjnA+reblcDgTuuIruTrKIXJMKQEScc+BKyLsMHBB+rgdJRFDwqDfE26PARK49Qo044Xnw3IvXLoBYedR9MBhof39ftVpN9Xp9w8IPeZ/P5xv1ISC68/k8zO/e3p76/X64N0Qf1hFiyvUZE/Pk52aeuI/5fB7a+VEfA5HGPysduBKw1heLRY1Go5DC4qkP0mZ7RCeUzC97EaKP+IKAwFxxHif7XjiR1/gd4chFE34vl8uhSKHPB/PgrT/dycNYqEHgdSMQT/J1QChG6nUGcCdQz4QxspbT6VT1ej0QePYJ48G5ArlHVEDYmUwmQbTi2cKZ5MU3ebb9OeLZyNff8E4aPBd51wTfMwgKzI8/j3yeuaC+RETEScH+hYvShYsbr/2DF36xVDgRDZse98gWS60v/6kk6SRJjateX/qjvp75dS19XvtzH9E5zl56q9bLxcMfGBERERERkcOJEBQgROv1OkQhiX5XKpXwRz5/9HsNAyLeHE/hRdoB8vpoNNJkMtkocEghSDoKQHI8nxsnA4UTXfQgpQACiO2cCOtxRBGyiu2aYoDkmBeLRY3H442oudcXYHxEj7GIQ/whh9z/crkMhfGq1WpIEaG142Kx0GAwCI4LCBQCAEIEnRooglkqlTQYDNTr9bS3t6crV65oZ2cnkF1y8CHBEGHWG6Ln6SfeicDz3r04J90t6JQBOZcOCDNrzDzxGt0EPOWDyDbzytpBNp1geo0AdzIQ5Ydgu1MlXygRAQCyzlrhmODeEC+8WCDr6XsBYYf94B0M6DpRq9U2ovccg5hGzRHqXrgjwgUR6l2wJogWfo9e/wEXjzsGpKOuH9VqdUPQIWUGsA6slYsSvM+z4/PL+byjhcPXHoeH1+Zwx9GDiYwREScJRMkjItbDodbD4c0eRkRERETEbYYTIyhUq1WNRqMgKhCdJMIJ4a3VahtFEJ2MlUolNRqNjbaL5FJPp9ONegFEc9M0DWJDvgibF9nz1naVSiUQWoojMt7FYqF6va5msxlIP60VaYPJmLGLY+knL987LLg9GwIIaUJIISJP6getNREThsOhGo2GWq2DismME5FjOBwGMksNAi/Ex32ORiPt7u6Gee31ehoOhxoMBtrd3dWVK1fC+hGFHo1GISUB6z2OCsQGCLw7VRAhfK6Zf1IbAMQPJwkFEhFoEHsQVSQ9gPRDTJlb6YjUSgpjZD8xfki2F/3z2gzechEBAHcA42A9JpNJeBYA4/SaBexvovEIBIhXRPoRXryYokfvEegQf5xAM35JQaBxx4CTcdIOqFXhLVLZb/xMm00vpIkYwL3SFYJx+L26S4haCaTXIIL4nHqNBE8hQkBBdOJ583QfFyYiIiIiIiIiIiIiIh6IEyEolEoltVot9Xq9QOwgBvxOpX1IzWAw2ChmCBmbzWbqdDrBhk3O93K5DGkQEApIRa1W28jlh0gSVYfgQGb5TK1WC3Z8sFwuVa1WA6GFbBH9pIr8YrHYIL3kilNcEbs1XQ68eCCfabfbIV1DOiB+CAu9Xi8QeY+aIzTMZrMwHlweWM9LpZK63W5IhyAS3O/3Q2vJTqej4XCovb09DQYDDYdDjUajjQg69ndIGaQNZwBr4OkA0lG0mfF6q0vpKIWAKLdX9Ed08OKN/f5BsSyILPPpThfW3usPeAFEd0y4hZ5zOQF3Z4Mf53Z8ovykI3hXCvY/98oa4r5xR4K7FNhX7J9yuaxqtRr2ixdi5FlirjgOIk/bVD7nzgzmGLJeKBTCWpJq4i1XmXMEDZ5pf55wBnhNhFqtFsblgoMX/uTefV+wXp4ehGDia8/z78IRwgT3GAWFiIiIiIiIiIiIiAfHiRAUJKnVaqlWq6nX6wWC4bZoiAckhw4F7XY7pEXQmrDb7QZBwdvlke9N1Nu7CnhePRZ3Ugqazaba7XbI9ya6j62cbgJup3cruqRA2oiAE5mHhFKTgYirj89Jz2q1Cs4JLxZJygb34l0JGBftEiGvEGhvkwk5w2HQ7/cD+RoMBpIOosyDwUDr9Vqj0UiDwSA4EahvQHQYUu9RYOYEgki0GYGIsTDPXkAxLxw4PILNZ1l79gsEmc973YT8+XjPCXWelPo6eLoMewCrPgUwESY8RcHt/J6SQMoIc4nwguiRb7UoHXWwqFarIX2IazWbTY1Go9D1wOs/1Gq1sJ8Rnbwmghdc9HVwZwPz4Oko7jwBrBF7lz1dKBRCWg1z5y4LhEN3DyD4MY++P/gecUELV4IXufQ2n4gZiEKxy0NERERERERERETEg+PECAoeTYXA5SvmE1FELICE0b1hMploOBzqzJkzIWfe2w6S0817VJh3WztEBRv4eDxWoVBQp9MJEVMKBGLvxl3gefveWpFILSTLc9YhmzgRms1mqNSPMwLBBHLZaDQ2xAiIEuTZyaB3DyA6PBqNwrlIvUBowDFABL3RaITj+/2+5vO5hsOhWq2WCoWC+v1+IP/UbmAuIbJcnxQHSRviC3PjaQPeqcJrJECmvfUi71EMkPuEiCJSkDfPcZ4/784B4E4DyK/fEySbdSAa78KDixZu/fcin07uS6WSptOpKpVK2BukivAs5Ds5MNelUim4cJrNZhAUGKMXfKSIKA6QYrEY0oVYT7o4sJ6cxwsbenoHx7EGvj7uZvB15f5I5+H5ms/nSpIkFAqF9Of3hz+vpA8hAvDcH7e++YKM7iLxQpLRoRARERERERERERHx4DgRggKEGGLjREBSINeQyGq1qna7HchgrVZTq9UKeffky0OGuQZEA5JCVwJvz7e/vx9cEACC1Gg0lKaphsPhRr46kVUIL5+BZM/ncw0GA7VarQ1C69Z+6gJkWaZWqxVs40SaEUaosu+5+d61gRQMCvl5oUMIHIQtX8CRtogQ41arFQgs9RgofAkoaOmdBDxan2/d56hWqw8oPsg5+K93cmB+PSLtdQEgvO5KwI3B3DBvHCfp2Ci6k1i6dnBvEH/+OYGGnLIP+Bzz66krCDkuruCuQBiC9FO74DiXgM+Ptz312grMHa4fF7r4DG4A3/MuorAW1C5gvOwvRCuvmQGZR9hx0c1rllCDAQENoYHnzB0i3B/PNW1fSXPBfcDYXYBgznBuMK8uKrBf8q6MiIiIiIiIiIiIiIhNnAhBwVvDuRUcMko+NpFT6UAUkI7+8Md1QLSfFIM0TYMQATkrFotqtVpqNBra39/XeDzesHDP53N1u11J2nAUJEmiRqOhUqmkyWQSUi6od0DKgFulEUfG47F6vV4g45CY4wiUwyvQQ1g9N9xt9pA9XAikWECiPULsFnxcDETyx+NxIFLY1yG4FAHk+pPJZMPl4a35sOHjOGk0GhuOBOnAqp+maSgA6eTPhRJeZy4Qn9ziTrFDrxXBz16gj5oM7B/mJV+skOu7CMDc4YDwdeI938dO9jmXW++TJAmuDk/7YB+S00/EnLX3fca+cWcJ98i42Idcj/V2McUFPPY940YUko5IOXvJnQs+797lwT/n9SX4fD7lhnVH9GBtfLyci/ofpCp42slxqRrMs6ek+Hs+FxERERERERERERERD45HJSgkSfIhSUNJK0n7WZY9P0mSbUn/RdKTJX1I0pdkWbb3UOfxnG2inBRUhDhBsojUU9MA4sTxWPOpDwAhJkJNgcRmsxkKyBGZh3y4uMH1IUcIHESS1+uDrgxuuQeQLF4fDocbZE066nCBUOAV9RlTvvuEk1OPyjKP9XpdvV5P4/E4pHggAqRpquVyGe6Z8bmAQ7pH3r7OmGmTyFg8ms1a4STw4+v1euh0QWRZOhCHvOAi8+IRaeDF+rx4HgQXtwXj8TQW1p5aAd7RwdfLO0awt4hok05BAUvIPj+zL7yuAGvoHQg8fYH1dtLsVv18zQkn5dw/NTikgxQghC/uC3cK9+1iANdkbJyXf+xZT50BXovAhRsfm7sKcLPg4PC0FwpB+vn93Hmhx9Ms6BjB+7zu53LgXvD6CV4T41bD9foujoiIiIh4ZIjfwxEREbcrrodD4TOzLLtiv3+LpP+dZdl3JEnyLYe/f/NDnYBIJEICaQy1Wi1E3N3SLh0UcSRKzWe8RSDW/FarFQgO6QDT6VSdTiekFGA9hwTmK9vzOuSSsXnEG9JGVNeLuuWL2nktBUQUisd5OoPb/d1OD7gvyDu58xRN3Nvb02g00mq1CvcL8a1Wq6GNJtFnj2wzLknBmeBkDUdBXuigwF6+IKIXCPQCfpICWYWsQ1K9AGGe3HqxTY86A08rcWcAaQ+sO+IM//IOEebBUwFII3BiDDklpcVTKpyc+75gbNwPKQK+T1ygYfwuQrgYgXBDoc18GgWtQXGRSEdiD+Q/7zZg/FzHizQCF2+8g4M7BHAq4OBAtOHn4xwKzD9jOy5dxIUXr4/gtRZ83l3A8P3in/E1u8XwqL+LIyIiIiIeFeL3cERExG2HG5Hy8IWSXnz4849J+g09zJcnZEI66lBA4TvPJUd0wBUA0YOEeBQZQkr+PzUFINtbW1vBHl6v1wN5qFaroTgcZMjt3t6/3gUFCA9joRWkiwx8rl6vB/LqtnIvokcRQMgTtQAgwhBICC5CQb1eV7fbDSLAhQsXQtG7Wq0WCklC+r3jQ61W28g7h2jiDJGOrPzMA84NHCGQ4zRNA4Hks9jsXRhZr9cbLTY5h9vPy+XyBqn0fyAvtjhB9nOyv5zMO2H3dASHp5UwD1wPIooohTjkYgiR9nxBxbzbw+sWeL0IvwZpDzhA8mNj7/j5SIOhUCf3wJ4mdYL78c+yn/NOieMEMxwKnubBuPMpLS6IIJ7lx+ApDYVCIXQucQeIwx0X7APO5U4JH58LCT52H8ctimv+Lo6IiIiIuK6I38MRERGPezxaQSGT9IYkSTJJr8uy7PWSzmVZdr8kZVl2f5IkZx/uJAgGTv4heBAKCglCjNbrdSDBWOZxHEibUVVIOsUNJ5OJer2e5vO5qtVqcDFA7tI0VbVa1XA4DMUS8+SL8x3eZyAuvOb3QtTbo6WMG5GEcULWaZ0nKRSPg4hyzGQyCQSOgo+4HLa2tkIhxZ2dHe3u7qpSqajb7Qby70UQfa6o6cA8EhH3CC8We8hiuVwOQgmk2av4u1XeUyg8vQXHgbfw9Ag9xzqBzrsBOJbrMocuduRFBaL5pIxwbW89mh+Tj8MJar6AaH4+nUx7rQfec3LrhFvarCsACWfPcNxisdBoNAqFPT3dYTKZhHGmaRrSd7g3L7DIXufZ9NaX7gpwlwDP8nGRfU+xcMeNp++4EOjzwzpy7/P5PHzuOLjLwgWGvOCUFwryrohbDNfluzgiIiIi4hEjfg9HRETclni0gsKnZll23+EX5P9KkuTdV/vBJEleIekV/L5arYIrwNMTCoWCZrNZIPekQEwmE6VpGoQFCLVHFMvlshqNRiD2EDvOB2GhlR6f80r5/COSSRTV87chPVjKPfrvFfzd/t9oNIL4ATH2CDNCBCkEfh7uh3x0HBJEniHl586dCx0KxuNx6H5BEUYKVnoNhHykH5EBgYR7nM/nIWWCtWs2m0F4AHSSyOfF04HBhQzW+nB/bNSOoO0k68E68JpHmBEv8vUVvOaEdER+3dnCZ3B+kHYD3KGAeOQtFCHHSZJoOp1uiDWIBe6OcCcADoq888LX3gUI6YGFFBGR+v3+xlwjPq1WK00mkzAPCDnsKxwrCGwUhWQt3ZnA+POiAE4Sfz5clDsudYf3Ofdxv3uhSuD7jXXOp24gOPk1/dn2cdzCuC7fxTWlN2p8EREREY93xO/hiIiI2xKPSlDIsuy+w/9eSpLk5yW9QNLFJEnuOFRi75B06UE++3pJr5ekJEmyfDFDCLMkDYfDQM4h2tPpNBBcSG6j0dDu7q4mk0kg4mmaajKZaDgcqlKpqNlsar1eq9frbUSbq9VqSFEYDoeq1+shWoqIQfFFt0P7eD26ipiRpmkg2ggXRIJ5ja4UkEUs7zgB1uu10jTdqD3gLfWISpPnD1mvVqvqdDpBVPFor9eDoOUl15aOouXcH2SVa89ms43q+04qKe7nKR1eQwBi6MUgme/RaLQxvxBU0iWYZ28vynk8fYS58nahTux9TAgw7nJwN4nXsmB+fIx5IopzAcHD59LnCpLM+56ewX2608bXJp9K4UIAYg9zNJlMgvCCqEV6jBeWZC4QciiAitDH7+4uyNcm8Ht08eY4gUE6qrVAGg5r5kKMC0PuoPCUE66Zbw/JmHwNmHv/nP/3VsT1+i5uJ9u37iRERERE3ETE7+GIiIjbFY9YUEiSpCGpkGXZ8PDnz5L0zyT9N0l/S9J3HP73F6/mfF4A0YmTEwqIP6QJyz0Rd+zliAzYzD1Hn3x83idqC4HhPSKz5LBzLBF+oqZO/BindJQqgKhBbQNJoR4DdRS4Fl0ApKN6AxBB5sJrDyyXy0A+B4NBcGhMJhNNp9Mwlna7vUHmmTdPofD0ByL0vO+pGwgJEFkKAHrnCoQLLzLIOYnqc7/elhMy7RFrdxMwz/kIPSkJnk7ghS3zkWqPXjNeCGd+jrmeE2HEGAfn53WIOq4a1hzwfr4bgrs5mEcvHkhxQ9aMZwFXACIMThhJIT2FvYs4wHwgWrCmOBHm83lIq8iyLFwH8cnTSHhe2QPercSfxbwjgP2HCwaBhRQmrs1eytc38DljTt0NwfHHiR3cO6/lhcJbBdf7uzgiIiIi4toQv4cjIiJuZzwah8I5ST9/+Md3SdJPZVn2P5IkebOkn0mS5OWSPiLpr13NybyIIn/sez0CCEK+zR7ReQorkg+/XC41mUyCO6BUKgUyDIkl4ur1AYjYD4dDlUolNRqN0IFgtVqp1WptWMQlhbQLzgdhLxQOuinQbaLdbm9Ey9frtcbjsXq9nqrVqra2tjYivtwL8JoDnFs6IEPj8TjUkODePKKLO0I6cDCMx+ONgpZewBD3B9f33Pp8nj2kUDogrt4Fgug8Y2RNJIU55XXm0s+HUABp5njIv5/bBQPGiRAA8XRxwK363CspAO6WYX25Hy+G6NeG6PvvXNvTJDw1wzuKMB7maL0+aoVYqVTCWvt4mAfEGlwHXvvA3QeLxWIjxSEvGkHkvW4CohbXceKNKOViEmuCIECLTknHpmqw57yLCvPhdRcQDVxcO04cOq5Yp6+3Oxa8u0i+u4eP8RbAdf0ujoiIiIi4ZsTv4YiIiNsWj1hQyLLsA5Kee8zrO5Jecq3ne/e7363nPve5G+0GIeq1Wm0j0ktUk6gxxJVUB/71+311u93gXICwQSzIJYdYQxgh+pPJJLRxJEpPmgBE5PCeg3sCEuIOBsB1qHcA2fGaDJVKJVyLrgzr9VrD4TBE/dP0IL8OwgkR7PV6wQXBeREVPCILIZ3NZiFNIp/Tjl0fgsfnvEChw0k/7gqPHLuDIG//ZyyQSC8CSWQ/nwaBYCJpgzQvl8uwDu488FaPHslmrVarlSqVykbbR3fGcB2IJ/Z8yDfknbHQlcRJuItFiA/+s7c9deHEhSHmFcHE6wogyPn6EeFn7vLRelpKco/uAHCnh9fAYB+5owOHgQtt/sy4gMQ/d8jwX8QEFwJ8r3DvLhowJt+LfN7HfVxahr+X30vHfeYk4np/F0dEREREXBvi93BERMTtjBvRNvIRgZoHkH9vISdt/sHvhfP4Y58cfM//3t3d1dbWVnAV4B6ApHr+PESeVAEnUxBjhAsi2bwOweEc0pFFHwEDckV6RqVS2chrz1fyJ2oOSSSNo1Kp6I477tD+/r5Go1HInYcYeq64t/yDZFFDAWHGi+hxbRwdnM/nnTHWajUVi8Ug4uTrHTB27gMRhPx9Ckk6mWWstK90N4nXTvA9we+IGS6asB8QgLzOgpNEdx+4XZ61kRRIMfZ7xu3ChacteMqHE3COR3jh+u5YQKTwyH3exo8jIt/RAsHH21JKCkKDp3Mg2nmEnnNSwDSfBuICiDsE8mP0ug7uAMp/HvEJsSAvwuCScMeO1+PI10PwveGijacT5VNd/HgXEPK/R0RERERERERERERs4sQICjgFqDkAmcEO74SEXH6i6xBNJ9Kz2UyDwUCj0UhpmgZC6KTaSZWkYDcnvx8S45Z0ItHSUTeI5XIZiBEkznPBIe+Mud1uB+JJhwovdudj7HQ6StNU0+k0tM6E9HsUF1IIsc6TKa/ULyl0eUDo4F65Lu0E/d6d+NN5wovfudDDWrpl3wkd94uLgvvhv7S2lI4It7cURfSArJJiQE0HulKwd/iMR/alo24SLv4wb+wl6aiLAiJB3pGAEECBUEgoxN7PCZzYOslGiOHzTmoRY3yumUPG7mvme4q5Yf65X++EwfxzLT7rrg9P4WDuXahgDN6CM4+8CwKnBeP1fcLc+RrybHG8703mFRGK+0Lwc9cC52cvuHAShYSIiIiIiIiIiIiIh8aJERSSJFG9Xle9Xlej0QjtA71bABHi+XweahxgPSdiDAHDUTAej0M0OE1T9fv9jTQB6YiAQC48euzF/SSFcRHVx34vbdr3XSDAZYBg0Wg0whhLpZJarVaIMuPSIF0Cose8IDZgL/cOBU4SGS9kF/EFRwEEC6Ejn0aCi8JbM7p1HZcG909NB6LLXnARYgohhDhDcN1i7vfsxSJZJ+6N61GLgj0iHXVzgED6XHv6AuchfYJ0COC1AhCtuAf2AgTf3QP+We7b3TR+fbf1My/MqzsucIEg/PAceFcGxu8Rfj5HgUMXIzwlIJ8G4kKG7xUn8r7nGYPXP2AP87sXnPTnzdfXUyl8Ht1VgmDje4G5QWxg3vPXyDsX8tdwcScKChEREREREREREREPjRMjKEgK9RL4L5F+IsoQk/39fQ2Hw1BjwAmbEySIZpZlStM01Bkg5xw7Nd0byuWy6vX6BvFarVaaTqeBgPA5cvUhpKvVKrgZvPUjBMYr7nM93odAusjB+BlrmqYPIN4elYcE0S6S6D6klOu5zR5hAVGG+5vP56rVahsuhel0Gj4PMcQa7+SM6v9EhZl3FxqkI4LoAgOv4aJwZwX34bn33gaSFAqIpNv/nbh7BJpofLFYDNFxj9AzTgg4c8w5PTUmTz6PI7HcA3ABx1MVSClhznxfeM0BBBu37nMfPseclz0uHaXIsAbeNpOxcV/uBskLBcelUHDPPo68eMLvPIOcg33lx/GzOx7y++K4lAUEK3clXI1IEMWEiIiIiIiIiIiIiKvDiRIU+EMeEgNBoZgeUfPJZKLRaKROpxMir7PZLJApoudEVSFo6/VajUYjtFWE4BChT5JEaZoqTdMQncfRIB11HZhMJsHy3mg0NqLcREydJPNZFyS8cwTkiir83JO3tCyXy2o0GhvkTNqMtHtU2q3xHoHFLXHccW6B9/fm87lGo1EQIDyP3e8ZIYhot1vsPRWCjhsIB4gf+TQI72LBfCJU5FNcWHeQdwB41Bs3A2Sb81OzwYlpPoKe36vguEg4YoRH/jkPY8vb7BmnE3d/TzpycXBf/p7fU37tAeIAAhgCmo8ZwcXdOy5m+Np7wVO/N19bn698cVB3sPi9+Fz5ejAGX2dfd3cvcA8uCOUdIfzs58mnp0REREREREREREREPBAnRlBwIpu3rktHhejcNTAYDAIxGo/HgfQQ3cWqXavVQleFRqOh4XCo0Wgk6ShS61Hcer0eBAgIiHeXgDBBunEPMGYKS3ohOIgTEXm3qfM++fAIIfkChLgLPMfdW0ti+cbFgUMAAg0RdSeFdBT19kJ/LjhAxLxrA10MIL+skRM4J2t8zgtgQkI5zomm1z7IF85jTD63Thq9eKOP2cnner3WdDoNEXtPbcFFQftF7iGf1sA5ncQ63IKPUOFpFC4IeL0A/6+3o/T7Zn7YU8wta8nzxNzzXHGfjJ97P47I5+sLeEoF90W6hz+rrJG7FXxOfB7dkZPfS/mUjPyz6GkgLjz45xA7XPDLr9Fx4lEUFCIiIiIiIiIiIiIeHidGUFgul3rjG9+oT/qkT9ogOhAVyCfRa7ocjEYjtdvtQEaazWaIgHMOigKu12ulaaparbYRRYXA5vPUEQU4hwsKiAFJkoQuErgeIPmIEkTdvWaAW9S9HoOTWC9KiNAgaaMDAsUOvUAdv/v90BEiy7IQ+acSP/NTr9c1m80CWeX+GDfiC6SStpIuIkDK/J4gtRTF9Ei/p3C4tZ6UDi+KyPEuVvBZnB/SQccPFxD4DKTeo/84G44Tb6hr4fUwpKP2ke6WyMNFAhcE/L8uFjDPjNXTfFzM4HjENW+x6e+7WOFr7fMhKexxTwvgfr07Q14cQKBiPnhm/BwuSrljwNNevOaBpPAee9A/7+4J78BynCPCxRB/ZvM4TmSIiIiIiIiIiIiIiLg6nBhBIcuy4BqAzEFAB4OBxuNxSBOAUFATAcJRr9fVbrdVKpU0Go0CwSRdAAIMifIoKmR5uVyq3W4rTVNVq9VQAyBPHN29QA0C75jgToXFYhEs/qvVKhB6zkEnCIj5eDzeIMOTyUT7+/uhpoGnGfCZPClFDGg0GoEY0naSNI3JZKLxeKz9/X2laRoIIeII3TKS5KBgJvfIeuVTD9xN4HUTvPhlPuffyTpzw3wSVSYKTn0HxuD2etbRayB40Ul3NCD4UCjQx+jEnFQAiC0tR12syBP948ipR7/dAeLzwLgRypwAcyxznE9rcHcA98I6+r7lHhDXOJ8LOF57xFs2Huc+cKcE8P3on2WNXBzJiwI+P74WngrlqRwIW+5m8TQjF8Acx7kS/HMREREREREREREREVeHEyMoSEckzjsPNBoNtVotTSaTQMQpxphlmfr9fnAmUP9AUojcJ0kS6ilArojGHycoJEmi4XCoVqulcrmsNE03IsUQaQgqEe5arabBYCBJ4R64H4g4zgHIOo6BRqOharUaOipMJpONzgxekd/JEeSKf94azwkSYgVOg3q9HtIx5vO5isWi6vV6KLjo9Q3yAokXc/R2kIgYjM9bMbo7ANINAZQUigO6s4Nz8Dq/O5mFrLIm+bQC7tvnCgHCo+/5MebJuNcWcIeBpy94e0Pfy556wPxxXtpMSkfpB4vFIswxe5Zz4DDw63BtxLd8y0gEAwQ4Tw3Jp5B4qomnHrGfpaM0JHfpML/efpT1Yi59r5KS4nPl98P5jksjkbThDuGz+WfUHRLSA9t3IiYx9y5eRERERERERERERERcHU6coEDRvtFoFEhrq9XSYDAIJJRjaNE4HA5DwcZWq6VKpRK6OUiblfEhx0SvIU3L5VLD4TCQsDRNderUqZBWwOsQGH52Wz8Ehe4PuA0QRiRtRO2JtNNRgQi1290hbOSC5yPb+TZ+XgwRgaBQKKhWq4WileTSO/lmXj0CLinMIcTc7fCNRiOkdYzH4+CkcNHD6wA4afQCi7Rf5L4QgNgTXNuj/8w3rzFmiKNf04mpOwWYc45lbMytuzD4PZ9a4IJOXlDI1w5AjMB1wfo82FjZZ9wnAlC+RgLndQHFO1BwnmKxGEQz7sfdIy6aeLtO0nXoFMK6+pjdfeIpGLyXL8ToqQ55ccbXIF90kWfVU3Hy9+Hr7KkWXJO9kt9PUUyIiIiIiIiIiIiIuDacKEGBSL7n5ZdKJZ05c0bD4VDj8Tgcd1ykHhJCIUYIspNgbOwQOidOpBfQSaLdbm/kYnuU2wk+VvzJZBLOWygcdH6YTqeqVCpqNpuqVqvheEgvY6GuA1FrIssQplKptJF2wL1KCnUluN9araY0TTdqRCCizOdzzefzDTu4V9nP/ywpOBLK5bKq1WpYI9oQOjFk7ESpOT/k19/PX4+IPASQtYOMFgqFkPbiKR787CkKx+X9O8n3XH4cI4wXsQLBo1KphPQLSKnvV47nfd8DeaLqxQOpXZBPL8g7B/xe3CXhKRuQbD6DIMO9Il5ArBHTvDimz1e+U4TfH0KFj8dFFZwKeRcADg1EDZ+bfDpRXrBgXJyT9qTe7cHTPvy7gfd9/d3h4vvc9wtjiYiIiIiIiIiIiIg4HidOUCB6KR2RFQg5+fOQCciCF3Kj+B8Wfqzi3n4PQIwgFMvlUtPpVLVaTbPZ7AEEw6OtdHaALHsdAGo1zOdzTadTZVmmZrOper0eroMo4Dn5XjQQAYGIO+6LYrGo4XAYxkXE2gtHuiAzGo022jMmSbLRJtNTQZykQzgLhUKw4eeFAl8zhAq3yXOcF470ThPu9nBy6AIRYg2k2qP2pK+wPozDU0O8xoDPDe4P1sBJsc8VP+cLFEKG8wUZEXRqtVoQbY7L1fe0EebXo/GMh5+9jsFx0XRSVXwf+DxC8t1lQ60MUm98vyPieFcS3AX+LHnaEONwks4auFDiAk9erHOBgfs8zu3h+8HXDMEhn/rB+vsa+3x4G1FPj4iIiIiIiIiIiIiIeHCcKEFB2mwXB0F0uDXdSZoTX9o+pmmqQqGg0Wi00fUhb7/36PaD2aDzRLBarW605UMEOM5B4PZu7o0CkBAgUiq86CKCwnQ6DeSXsZNWgUAAcWfc3iFiNpspTVM1m01J0mQyCfdRq9VC/r27NarVaoi0z2azcM5Go6HpdBoI4/7+fkh1gCA7KXZLPvOHUACYO1wLuDdYr7xwxLwjiOBaoAaFE37mxWtI+Dr4/nFRI098ETHyKQl5NwF7w2tZQJzdRcAY3TnCHJPO4yKHiz/cI+diPAhHefLudRNYAyfX/o979XlhLZl7vycXPvLr7s/0gxU19WfEhSCfe/7rIhFOB8Z53Hq4oyJ/vnwKTP7znlIThYWIiIiIiIiIiIiI43HiBAX/gx4rP5F4b0sIeXebPJFYL6i3Wq00Ho+1u7urNE2PzYl3sgYhhihh6c8XfYM8IkZIB7UQJpNJiKiTIuDRVidb3lmCTg9OoPl9PB5rsVhoMBgER4SnbkC0+S+Wco+QM14v9EhthXq9HtItkuSoM8T+/r5qtVp43Yvzec67FzXk3IgTLqxICgIKaReejuEtI3FE5IljPh2G9BZILce7WIDokBeSPIUFoclbaubt7l43w6P2ngLgLhMECubFUzz8v16skdQE9psTfXdZeCpOPtLP5xm/d15wAYD5RIjjNT+vF7r0sRwnHiCQ5M/jxyFSePqIC05+fndZ+Jz5PXvagqfPSNqoRcKYPA0j71ZwMdHHHRERERERERERERFxPB6xoJAkyTMl/Rd76amS/omkrqSvkXT58PXXZFn2Kw93PifqXhCQ9AGP2EoKkXUI1nq9DscT7c+yg5z90Wik0WgUCAcRZM9xd7IqKZBkctEhNYwLokrHCMYJYeecnmueLxi3Xq81m81C3QYnRU7eIO2j0Si8TptHCBUkHPEFZwfRaP5hx18sFlosFiGivlqtNJ1OQ10H7puuGb42jMFrHDggp/l0AI8ce5487gQv/Oj/SKvwooA+V/xM3QjcHF7hnz1ynN2dYxCWXOjhWK7jxTzzxJufiaBTn+C4DhS+D9wJ4Ckgfn72gAsUiC75OS8UCoFMIyw5mAPELhc6jkstyI+H9/L7Ou8QkBTSjvz59vl2wSAvTvAM+e95hwHz5/eZdzXkx+X34p9xMdPPc9JFhev9XRwRERERcW2I38MRERG3Mx6xoJBl2XskPU+SkiQpSrpX0s9L+kpJ/y7Lsu9+RAM6JJfr9VrT6fQBpJQ/7iuVitrtdiC42Ohns1kgWuv1OtQb6HQ6wfqOoOCfxU1Qq9U2CDqRas+vns/nGg6HStM0pFZIR8TV8+0h0N6yz6OyTl7pXsH9kxPvhRSpB+CRewjnbDbbIMQQJIi4pwh4BwwEG2pUIIokSRIKPXq0F3LuEWNJgcgTdXfXCLn9CBFO1p3YH1cbgLlzKz7z5JFqf491pUOBrwOf9fv36xxXdwCQQsEaMQ/UwmA8zCVr5sLScSIM9+5uEhctSJnwuh9ehwI3DeNgn7EGTpI9dSBftyHvPMiLYPn33QmRTxeBuLso5OklPjbWx0UG5jsvFvic+P5jbpmf49InfI38HD4mv/6tgBv1XRwRERERcXWI38MRERG3M65XysNLJL0/y7IPH2cbvhpAQiB7kG3P63fiuV6vgztgOp1qMplosViE9ABIFoICBJpreLTbO0tApl2ggOgQZZYUrkO9BlpdQhY9lYI6A5wTooq9nsKDzWYziBbT6VTD4VClUincG84E7wghHbkhIF6cD5HEo/rc52q1CmkG5XJZk8kkFItElOAzkGfWwyPH7sKAxDKPCAeIPMwTogjr4YUxXXxZLpchZcNrLOQjzsy5iwJOePNFPvP1Mqi/QQ0G5tT3pu897pmCisyRu1vy7gj2o5+Ltc5Hx/PRend1IM4wX163g3lKkiTssYcCYgDXzDsFOK+fx9fpoQoXukvouNQHBDp3duB48XPkUyx8PfNwcSWfWuJj9+fGnURenJTrn3R3wjF41N/FERERERGPCvF7OCIi4rbC9RIUvlTSf7bfvy5Jkq+Q9BZJ35Rl2d7DncDJk+eqU6xOUiCBWM6lg9QHIp/Y9mezWbDx9/t9SZuCgl8HskbdAz4naUPQgJiTu48jACt+p9PZKP7oRAiCR9eH9fqga0Oj0ZB01PUhX5hxMBgEhwJEHps6ggJzk6ZpaOno8ykdtZWEBEPKqtWqGo2GKpWKxuNxiOpCUnFoQMwRBzzKzHy4c4LUinK5rPl8HjpN4A7hWAgbTgJeh9jzj/aUED6IoQsZjBeXRJ4IusjgYo6TUNbC58GPQbBZLBYbLgX2k6dseIFB1sPFBLp4MGfe0nQ+nwchhfMgUnm9gONSOBDjEIDy9+jzkv+sP4P59APG7IIPxx53bubKj/O58P3oQkLeGeDzmHckAN+zPv8+Fhe+/HUXMT31g/tkf95CeNTfxRERERERjwrxezgiIuK2wgN919eIJEkqkr5A0s8evvT9kp6mA+vX/ZL+zYN87hVJkrwlSZK38Np8Ptc73vGOUO+AP+6JHkNAIDaQZ699AGknuj2bzTSbzTa6CkDMnHyRUpDPUff2keTFE/11IaLVaqnRaGzYzfN2dWzwiCRO0iCRToQoXshrEG3mwwWNVqulVquler0eyDcuDO4Dss15kuSgAGOapqG4Iekg7hJBpFksFppMJur3+2FecHe0Wi01m82N9AoIstddcHLutQZms5nm83m4DmNlfan9wDgRUCCb/lm/BiTbBYnD/feAugZeSBB3ByIHpJT5hBDnI+CklORt9+5qqFarqlarStM0CDrlcjkUyPQ55LrUteA+PPUA0p1vO4o45ek87sxw0cBTIY6r5cG9+bVd3HDBgLk9zgHgKQe4FHxMnjbkx/u//HkkhblDcMt912wc78Uy6/V6eGb8XhgX3wW3Aq7Hd/FS8+MOiYiIiIi4CsTv4YiIiNsR1+Ov5c+R9IdZll2UJP4rSUmS/KCkXzruQ1mWvV7S6w+Py4i4X7lyZSOi7tHWfGtBRABaOE4mE81mM+3u7oZoNfb+8XgcagyEmz+MmHOuPFEjcox7ADLJZzmuUCgEMi4dRcwhqBBnnAYOXBCz2Uzj8ThERN3+7vn/0+l0g1RB5Le2tkIKSKFQ0GAwCEIGrgLSGhgDQgLkDSKcpmkYN2OeTqfhH/cP8YXsZtlRZw7v9ODOBC/Q58eR5sFrTqbzJJDUieMs+kS7nfRyfebWW0d6rQxPQfDihvk6Ak7ivTAlYgHn9ragnuLh4oYXpGRNmVuux+u8566GvAOAPePdSVgfrxGRJ/bMnYs9noZRLpeVpmkQl/LzkE+LcJcL98A5fZzsbZ4Fd6D4M8Tc5V0/iE6MEbeSf38cNz++52u1mrIsCyLZgxWpvAXwqL+L28n2LZfjEREREXGCEL+HIyIibjtcD0Hhy2TWriRJ7siy7P7DX18q6U+u5iRuV+Z3CAuRcIgguesUM6TtIURoPB4HJ0CapsHlMJ1OQ4tBbPlOdIgATyYTSdoQEpbLpRqNRiAyLgwQXUbogLRTp0A6yoOHEDNmhI/lchki/7PZbCOyu1qtNlwWzAtpE/V6Xd1uV5VKZcOhsLe3F0QXSeHckEzmJMsyjUajQKqZZ6/9MJvNNJ1OA+E6XOsHkD1EA58HBBcnwID1RVBiXrmXvH0fwaPdbodxITZRQ8DbjXoKA6kyeQeKdCQQeQFOj7oz7/lWhMwFokWtVgsCgnfW4HqkWyBAsRfzhRsRatg7fj6fb9bJo/CeVuHiiJNzCLU7fdyB4ekVnMPrargY4GkDvr6IeZB91tHnmBQPvwcXU3w87AuEAxc2OJb3WGcXBzgP18Wxwb2R9uFzeYsJCtfluzgiIiIi4hEjfg9HRETcdnhUgkKSJKmkvyTplfbyv06S5HmSMkkfyr13VfD8fEgc5N7JHse5HV06asdI0UTIxHQ6VaPReEDKg1uzIRAe/YQUNptNSdJkMtkg39QlIM3CnQiICIyP85TL5Q2CCqGiLgIkjY4MXtOA1AnSBZIkUb1eV5qmgWRNJhOt1+sQUUYMYQ4hkuPxOHSt4LhisRjcFtPpNAgM7kRYLpfq9XpBKGC+arVamHsXXuiEgWOCdIW87R6CWq/XJWkjvQPRpt1u68yZM1qv19rd3Q1zUSqVQmcQbxOZJ9msi+83dwZ4pwruFyLs//W0Cv7hhEDQqtVqajQaIdVkvV4HEQj3Au0u8+Oy52yDHPuxXrfAXRzM5XH5/wgwuFMQi/KdT46rf+DzWSqVwl4nrcSLPDJuF1i4Z1+LvECDaOKvuTCBo6BYLAbxj7F6agXpJ3kRsFwuq9lsbggsPMuIYd594lbAjfoujoiIiIi4OsTv4YiIiNsVj0pQyLJsIulU7rUvfzTnhGg0m03VarXQ4WCxWIRIb6Fw1LoPgkKkF7LgLfvSNA3dIMbj8QZBdlu227G9xgBEsdPpqFwuq9frhagu+fCICZPJRHt7e1qv12o2m6G1JfdVr9fV6XRULBZDigP3hJgAkYF0e+SaY4i2DgYDTSaTIFZkWabxeKzVaqXRaKR+v68sy5SmaSCljH2xWGhvb0/9fl+9Xi+sAYTXRQ+PwM/nc+3t7WkymYRze4cFXAK0taT2wWq1CkIH8++FAT0iD9lkfREVut2u6vW6Tp06pULhoIDjaDQKc4VrwYUD5soFANbaySdCC04HBAxv+cn6uGsGuNOF4p6lUinsIWp7ONFlDIgOuEBcKODauApYP0gyjhPmnueA+Wce83UOIOfL5TKsrafyuLDFfkGw4tnz+eM5QPDy2hWkx3iXBhwBCD9ec8P3uI85PybvbuHj8haVeZEDscUFLT8na8L6jMdjnXTciO/iiIiIiIirR/wejoiIuF1xoiqO8cc+pAJLOGQV4g9RoAAbUVKcBGmaarFYBBJDq8Usy0INAM+BzwOr/3K5VLFYDNF90hfSNA2RUHLmafPo0XkIlhMhSCfvuZV7vV6HKLanB0BsIF4ugCyXS02n09C+EJLtxQ2phdBoNDa6VRQKB100+v2+hsOharVaIGP5toOQNuZCOnBBkJrAvEFinQR7W03vWgCJ98ixE1VPXfAIdJqm2t7eVrVa1WAw0JUrV8L56MDAeFxomc/n4TjfUxBJiLik4CxgHIgqXkiS/YO4hXuElBZSXkhvwEFBIUAXOHBukO6Sj47jwsnXEHERh3Vx4sy+w42ACISY0Gg0QloMc+N1LBgDBUIRCnAzsDc4P+IeAp+LYTzbvve9wCXrzzq6ewXhwp0grI3Xv0B08fSFfM0LBCXO7bUdGC/HHOcYiYiIiIiIiIiIiIg4wIkRFJy8Uh+gXq8HkuKCgkdrJQXCB0GF/OZz/efzeYiYQkQ4DyQR4kTkdzweq9VqSTpKfeAfRRAXi4WGw6EGg8EDSHy+0KBHij2K724JUgLclcE9MGbPiR+PxxoOh9ra2tJ4PFav19NgMNioxeBEy23zs9lMvV5Pi8UiCC9JkgSXA+MjKi8ddUPw/HtILuQOosx6Aq9fQGSde0Sc4d6m02kQBSCshUJB9Xpd29vbarVa2t3d1T333BNqQSBesJbudmAeEQbYAxBiXAOMCeEIyzz3Tr0GTzlwpwlz6HU22MsuInBPkOokSTQajcJe8Og5ZBlRi3QWyDtr4MUe+ZnfvS4HpJy9nBd/INOsK24aRDQv5ikpzB01N5hrL4DJPkc0mE6nwQmE8OIpSsyx12hwoSBfU4K18bonzJV/Jl+Ykv+SVuXXusVaRkZEREREREREREQ8pjgxggLAsk7BQYoqIip4m0YcCLQYhHB7ZJhIqFvWiX5CVnE5zOfzQFCI1HpdBbdre1vB+XweCkG6jZ1aDnyWWhBEtxEZ8qTLCyN6Hrw7Fbx+BI6KXq+nfr+vfr+v6XQayDf3QNcLXADz+Tx0xuBYHAij0UiTySRE3F1gocVjvg6Bk7t8xJq6Ey6oQPgRErzrAdZ/SYH4egFEOlucOXNGrVYrkGsILgSYlBTWgug898NnaL3JPkPQgjz7/CFY+P6hLgDn497J8Wc/ct8QedYTcYZ5II3E1xqRQ1JwwLgg5UU6cSN4fQc+w5xy3+12e2Md2fvM9Ww2C0U7IfeID9JR5wSP9PNZhAzcPtwHbhYXixBL+JzXX+B9dxx4jQd/NhhTXmxhb/K6Cyw8j6yjf39ERERERERERERERByPEyMouP14NpspTdNg8fZ8eP7Ap1uDF95DLJhMJoHwQEopQAhxJgoMgZUUnAG4D+ggwe+4B+bzgx7BjIsODBAft7hD9hn7cDgM18CeD5Hx1pikH+C+4Pz5NATufz6fa3d3V7u7uxoOh8Hl4eQJEkwEnZx+6ShyzPHj8Vjj8VilUkntdlulUkmDwUDD4TCkdkgKYo8X4fMUAAQPiLqkDVu9zyPjwAHBPTcajVBEj/uuVqs6deqUnvCEJ+jOO+8MzhJIKm4GcvOlo04bzD2EO01TdTodtVqtjcKYvhcqlYoGg0GYf0gx9+9OEFosMl7mltfoNtJoNMIx7A1INW0euZ9yuaxWqxVSFHhGmN9qtapmsxlqjxSLxZD2khd6XMRCYKEwpNd2wG3CGvEeIg1CEGuCA8gFFuYnn7riNRcQDXDBIKpQh0I6cgflBUQcC9JRhxh+xmGB8CgpuFLywkTeucS5Y8pDRERERERERERExIPjxAgKAFLhf/iTr51lWSD0tVotdCAg6k1RO6Kh0lFkcjqdajAYaLVaqdVqhQKLEJtCoRCcEZ1OJ0R/ifp6RwbPBYdISZuRVe9t79ZxUhS8E4R0lMedpumGtdtt9RBiiDuEE0FhNpvp0qVLGo/HStM0FGIk951zOmHf399Xo9EIIgNCAffj4gYdI0inYL1wK7iY4mkRLhhg72e9AJFiIsOTySTcJ9F8yB8EtNFo6I477tDdd98d0k5wKrBnxuPxRpQeAk3RQlI9ut1uEBQQjiiiSacN7jfLMjWbzQcUUERMgfhLBwTWUyhY63K5HGopSEepJ17EkLQM5oB9OR6PgzMB4YFUi3q9rmazGYQRUnl8jB79R7TxdqqsE/94nxQKxo34wT2RwlKv15Vl2UYnC55rb0mJYECqgdcG4Tx8xtMxJG08hy4QeN0E5gfXjbtTuKanSvC8ugASEREREREREREREfHgOFGCQrFYDNX7x+NxKKCIFT/LskA0J5OJhsNhiGTSQm42m4UoPJFlyC1kVjrKuYZolsvlYEVvtVqhm4EXOszboYl8O0mGrJHD7USUY7DeSwoWdMbgnSzyhBBbthfgk45cHaQ9rFarUIARIcMt56R4QKpwYdAZgnoCEEYizVwfEcM7N+SdGZB3SGa1Wg01JXy93U0AgU/TVMvlUqPRKMxFpVLZKHDJXLZaLZ05c0a7u7vhvET1PV0EwpgkSRBIJGk4HAZyzJp67j3EtlAoaDKZbAgsXMtJd7vdVqfTUbPZDGkGvIcbhTVI0zSQ/1KpFEQg1oR1w33Q7XaDGMJ52e9cg+tQ6JF0Ey/2yXww/kqlEhwLXm8Ekk9hU1JsuAb7mj3Cs+BOEH8WXKQgLYNr5J0AXg8h73zhvrgPF98An2FdvXbCYrHYqHHB8+TpOF4QMyIiIiIiIiIiIiLieJwoQaFarerJT36yyuVyyNkulUpqtVqhPSCkkvz/NE2DJd8LCJIHj6iwXq8DWfN8fI/sJkkSyCXH0g4S8kyElvQE6SgH3q/tqQQAwuK599i7ibZiF+e6nmbhxRQ5N04FovOz2SzYzLHK48Tgv14TAmHASR8EHvJG9wHvxgBZc/eBdJSjzvt8Bnu8F6j0HHbun/SDLMs0HA4lHZFGt6ZzHj6Tpmmo+UCNDM6N+ABpRvTgHC42eBcLLPwuMrBezWYzXIO0AlqCUjASEQUXCK0h2ZfVajWkPeB6aLfbWiwWweFAoclms6lOpxPmHLeMCxTsXeaLcyCGuPjg6Qrse3ct5J8PnhnG7zVAIPocQ9cRF6Xm8/lGC0jmgJQgTxvxtAqvIcF1eM69xgQCgDsdKLbpjh/f854KwvHsk3wHkoiIiIiIiIiIiIiIB+JECQpY/iEuEMhWqxUKH1JAEKLrlm0i5ZBViEmapqG+AoKC5/67oOBkCUEB5wK1DCQFwki02vO4EQHSNFWj0QhRUekoGgpBcvLPz6RuQLQQFjwX3IvN4RJwoo44kM+B98i9F6uEGHMsEWjumbkjYs+185FdrunV8okoc5wX2WSdEGhqtZpOnToVRCVvcQgRzneUIJ2gXq9rNBoF9wURd4D4gXjhEXRy5uv1enBwSArE07szcM++Z6QjJw2iQrFY1HA4DLU4Go1GINCQVq63Wq3UbrfDXvcaDNRboBDparUKtSwQlIjEIxiRvtBoNAKplg5afXptEkg3dUUoiprf64ho3p6Ua6RpGlKEeM1dKxQA5VqIfGmaan9/PxQAlY6cCZxXOnJBsFbU+uA9L+yIA4Ln9qG+a5gT9hL7ibVxoTAiIiIiIiIiIiIi4oE4MYIChA1iOJ1OQ3FBb3VITrqTRd7Pn8sFBUmhFaJHHxEjWq3WBlGCPLk7gbSHUqkU8tm9AwCRfIiYkx/OSVTd7fWeu46IQUcLb5cpHQkSnn4BkfJOAxSg9Bxzz49HsPHih/lzOPGHnDGXPu9+by58uNDAnHibRS9GiWgDCV2v12q1WkFQyBcTdCt+p9NRt9vVdDrV3t5eGIfvD4+w41AgxUI6KpxIpJ6uHb7X2E/cLx0VGD/pGltbWzp16pTW63VIQWm328H1glDC2CiuOJ/Ptbe3p9FoFAg+NRS8QCTtRBERGEu73d6ovcB95WtgcD7EO0Q7xsA+hGBvb29LUugcwp52R0m5XA51NRCNPN1gNpuFsbD3vTgo+509TgoI+xWBz1MdEKNcuOD6HOMinHda4XuA83vhUz4TW0ZGREREREREREREPDROjKAgHRABKtUPBoONKvdeoyAfYfWIJMcQRSb/HCLvtQA8uonjQVKI3iMgQHb6/b6yLFO73Q4Ez6/FOagbAAmFnLtlvF6vP6A4nHRUjwH3AIUKsWl7GoFHzDmeeeAcjMNFEebTx7FYLEJBQ4o8uhXcI/REdr244XQ6fYDjAWJJPj8CAsXzAOvAPbGGp06d2ojU0wXBHQXNZlOnT5/WaDTSYrHQ3t7ehsOAop3NZjMIL1yHApyLxUL1ej04BLIsC6kP1DKQtCEeEf33lqOtVisUZGy325rP5+p0Otrf31er1QppEnRq4D4Z42QyUavV0nK53KiFwH2QBuC1ErxAJe0f2cfu4EBw8bVBTGs2m0GoYD+xD5g731usAedGGGBvUFiUFBJJYT6pLcHzmySJ2u12KF6KEMT9UVySsftasJ6kfEhHLgZ3GPAZnDaIW4guAHECJwsCQ0TE7Y4ve/d9emrl0s0eRsRtjFd+weRmDyEiIiIi4kFwogQFCBxF8GazWSjMR20AIpfdbjcQivF4HAgPhMCJKVFS7/wAucUODklerVYaj8cbreO8ewTkzQkUx3pXhtlspvF4HCLekgLJ5f48CgyRgxC5KOGV+bmepBDphdTP5/MH1F9ANMCJ4O0nidCPRqNQp4F5JI8esutdEjyv3aPVXM+t50Tt3b3BtT0Ngrnm2pVKRefPnw+FLels4B0kII7dbldnz54NnRIuX768YVUnvYR5wH4PcZ3P5+p2uzp16pTa7XYQWLhndwl4aodH2SHXRMWpZ8D8UUOBrhLespT96oUhcRAgYHi0H3GH39kD3irThSWcNLguPC2l0Wjo9OnTyrIsuClwguCSwDEyGo02agx45woX0nCOkC6yv78fOo50u92NYp10Q2FPTCaTkB7C/XvaDWvh4o6LU/kuFtTUcNGRWij57x7WENEupjxE3O542ptr+rZzv6o7Ss2bPZSI2xyt2HQnIiIi4sTiRAkKkFTpgHwPBgONRqMQ1YasNpvNEIFcLpchTz3Lsg3SB7HZ2trSaDQKJBaiJSlE9/1nxAbILjn5XlsA4iQdRNg9+osln99p3egEX1IQKSCe7rggjxyLuuf6SwqRak+38NSI+Xyu0WikarWq5XKpVqsVCLyLFNVqVZPJJMylpGAFJ58e0srYsL4T2V6v15pOpxv1BRACIIelUmnDck/6gKQNIo4gQr2A/f199ft9zefzQFBZO3dcpGmq7e1tnTlzRjs7Oxtk0yPipGnwOrUeSJuo1WqBADsx9yKPCBle7wNBgH8IWYgH3W5XlUpF0+k01N/odruhxgHdHCDqdOmATDOvvl85nuu7SIHLACEJkaLRaGx0SaDThHd1wBXDnFE80bsmcG13n0hH3UoooMgziXjRbrfDfmHOcBDh2kB8ISXIn0/mlmvzjDA+hBx3IbmgwBjZ4y7suXDm7V4jIm43JKWS9IZzeu2dvywpigkRERERtyqScuVB38v2l5IFZW4pJImSUvlhD8uWi2s6/qrPF7GBEyMoEOGHAFGxH7Lg9RUQEyADo9FI0+k05KlLCq3yIM/FYjFUxyeaD0nzqLtbnHEaUPyO1pVOyHET5CO0TvooMOiRW3cmeJcD6ch6zXicMEJsscNDlpwIIph4WzyK/0GQidg7SXYbu0d0vdq91zyYzWYhd50xJ0kS3BnAo7906nDHha8b0et6va7Tp0/rypUrkhQi5swTaRYuNCDWbG1tBUGD/SQpkGGAoEHaRLvdVrlcDoIJ98v+y6dxeCoL+4JxEunG/t9ut4OIgmvj1KlTQeghX5/PsE8Qs6TNLiEQdeZ7uVxqPB4H4Y0IvqfCUHQS94+nSrBeRO+5Fh0S2F+sm+9bhAsXE7hPXAKFwkGLT1qCetoLc0ZKSJqmwX2B0MFc+/kR4DyF47h6KuwrxCO/D74TPBWGteA7ISLidkIhTXXPTz5Z7/jYn7rZQ4mIiIiIeIQonj4lFYv6lbe94UGPec73fK3u/pE/kyStrlw5+eJCoajiqYO6Xh/82qfrXa987UMe/lsz6Ts+5S9Jkj781U/XO7/+oY+/Gnz2F/xNFT588aqOXe/tKbtNuoWdGEHBawjM5/OQzw+ZxbZOLjxRVz4DUcBCPRwON4g156IjAoXtpKOaCZI2WvIhKEAsINmkXFDEzgsxequ8PKHjNXcuSHqAjdvrH7RarY3zM0ait6QCEGWHxOE6wL7vBebW63VIIXHnAYUQOQdFLJ1YeX0HAFGfzWaaTqchhQLC7sIG7gXpiEhub28rTdOw5uVyWd1uV91uNxQw9FZ/zBFiCt0JvAsFLhYn4/V6PbRylDadEWfPng2Rehey8nvD95qTTUgqrgQi+G7fh9A2Gg3VajV1Op0wb+T2eyoDwpTPF0LOfD4Pc+GpLJPJJKREeHqGpI3OF15DotlshjQfF0l8vyAAIKTwz/eXp2wg/iH4MEc8Azzv7J9msxmIPXsQ0QgXihfT5N7cjcE1EOEYN0IDAgxrxe8u7nFur7ESEXE74b3/4uP1/k/5gZs9jIiIiIiIR4DSU5+srF7Vd/3yj+rZlfpDHvuOb3yt9I0HP/+Fv/3Vqt071Oqd77nxg7xGFJ/9TEnS+Kkd/ebrXn/46v962M99Rk36jD/muIc//mrwP/7bT1z1sZ/yLa/WqbfuStKJnNfriYcVFJIk+WFJny/pUpZlf+7wtW1J/0XSkyV9SNKXZFm2d/jet0p6uaSVpG/Isux/Xu1gyG8nugxJgCQSQfaq+pI2csyxZ0OAsNBDBCH5RJ69SKETlf39ffV6Pc1ms2Chns/ngTQ2m00tFovQ2hEiBjkiAkwrPUB6AtFV7sVdCXSy8K4HvV5vw/7NfEG6yHN3+70TKs+N55oeGYdw0Z4QUs17zAFii1vIPVWFlpnMp6QgFOQL7/lc1mq14BwpFApqt9sb602hQhwgjBvy550ovLWli1Gkw0Aeud9KpaJ2ux2s7hB85sjJs0fvPQVhvV4rTdNQ2JFr4JhAOED0wtZfLBaDw4b5kY66YnjLTTopsLfcocK5PWWHsRJ1Zz+AdrsdnBkXLx6orRB2nkXfp3mXCsKYC0aIHC7+5Ns8eioJrg0EEGqoeLFLhCLEwsPvmbC+/hpCU/65bzabwS0BEDroQEE6BWKSz9VJwGP5XRxxe6J0910q3hGL30VEPBji93DESUbheR+nz/hPb9Y3n/ozSQ8tJuTxaz/6HyVJn/mVX61klak4W6nwO390/Qd5DVj/H5+gVbmgX/mxH1QxufUCPL//Hd8ffn7xy79GpdlKxV//w5s4ohuHq3Eo/Kik/yDpx+21b5H0v7Ms+44kSb7l8PdvTpLk4yR9qaRnS3qCpF9NkuQZWZY9bP81iAa2bf55sTos714Q0Yvz5e3XLg74e5ARLPHUInA7NCRvPp+HXHkIX6fTUafTUb/f36iGzzic3HJvRHapDcFx3qoRsuyR6na7rclkEhwX0hFx4/MQPjotONlmTIgVXsXeo/yILZBASKN0lKsPqWa8HmX29A3EB9ZnOp1uEFCcApBE8uWZK5wZuAwg7Yg/eTfLer0OjgxcAZBRAAFnnr1QY16o8EJ/kHU6ApA+4vUqGA/iCM4IhCHmX1KYE/bDYrHQ7u6uLl++HKLx7kbBeYBYgEDFOanN4XVBcBtwPU+XwfGAK2N7e3sjDQRhCIEDEYZ9wjU8jcKfI/YfYpWLV+z/yWSiXq+3kSbD+9Ru8MKidNTwAqjuOHIHDXvMa6Wwr1lf0kKof8EzQaqPiycnzKHwo3oMvosjbl98+GVP1Hs/49FbQiMiHsf4UcXv4YgTiOxFz9XTvvfdh2LCI8ev/8iBsPC7s7Ve8w2vUu2X/uB6DO+aMf2iF+j7v+d7D10WJ+pvsUeE3/ihH9SV1Vif95p/oOpgpfov3px5vVF4WEEhy7LfSpLkybmXv1DSiw9//jFJvyHpmw9f/+ksy+aSPpgkyfskvUDSG69lUPmIKBZq8vUhZHlS7tb+vAghaaO1pHTUdcHb4FExn9x0rNwUdITs1mo1DQaDBxT9k47s714l3nPPPQ0D8gPR8+h7vV7XqVOnVKvV1O/3tbu7u1G8DwLGNSG9EE9JwYLP3DEejyxD/hnzaDTSZDIJaRGQLxwE6/U6uEHy+epuGydFgHlwIkekvtVqhc4KHlmH9HN/rB3V+7lP72aACFOv14PAkM+9Z424byenfm72zGKxCAS92WyGgorsHReA2u126AAyHo+Da8ALSUKiScvZ29vTRz7ykVArwlMYSBlhPiHjiC6SNgiwCzz87KkTzGOWZWo2m9ra2gptORHavCgqQgH7ibojfj9ej6FSqWzUkqAIJS4L/k2nU00mk7A/PLWhWq2GVCOv89BqtSQd1EZBVOCzXDMvnLAvvPsFc0OqA8+JdydhD7KXTwpuxndxRERERMQR4vdwxEnF+15R0hvu/P3rdr5PrRX0Df/2p/Vvmi9T66ff9IjOUXzmx2h+Z2fjtSTLripK/0X//FcfNmXjVsPpYkO//53frzdMyvonrZer8xOPbF5PIh7pX8vnsiy7X5KyLLs/SZKzh6/fKcln557D1x4WhUJBZ8+eVbVa1XA4DOKAW/jpLOBCA8R4NpuFQo7kxeMkcHcA0WYiuy4CQGAh1kSKPYe+2Wyq2WyGiDGvc03vpOBdICRttJCkgjxWf+7D0yNoHUj0FwLENYiy81ls3pApLPedTidExiGJ+RoIXg8CgjedToP93B0RkHTuzfPrnbhBDCGFXhSyUCioVqtpe3tbrVYriDNum8934vD7w+Hggg37CMcJn2MucQ94KgoFGNlrRMUh0ZPJRJPJJOy3VqsVBCf+y5xSO2GxWGhvb0/D4VCNRmMjvYa5R6i4cOGCLly4oPF4HOYZYYl7J5Le6/XU7/dDlB3hgXXxtBn2H8KM1xMpFotqtVra2toKaRSsiaeYeBtRnkeEKS/aiROjWCxqOp2GtaCDCKIcogjPHucZj8ehXgdrylx5kUsX4tz1gNDkrhl3JvAeYD6YN8bOmvMaqRgnHNf9uzgiIiIi4poQv4cjbipmn/8C/Z8f/+brft7/szlQ75/+gl5feam6P/7wOlix29HwMz82/N77mKImT8i1386kO9sveMgI/YVvfJFelH6fpMdnp63PSpfq/ZP/rO+qvEzbP/z40Bevd/jtuL++j01ETpLkFZJeEQZSKuk5z3mO6vW6Ll68GAgfpIVjOp1OaNEIaaJQHcUEJQXxod1uB5IwnU4DcfFie048IUPeKtAjneS+kxbgOe5OTCHZDir/U1MAyz3FDCGmjMGPhwR7AT+3znuleknBvVCtVgMJ5t79OAjbcDgMUXeP6rvzwq3jTrQ8vQOSJh0JFRQgpNsFkXs6DNTr9UCouaaTVnc7MD90+5COUkqIrnu03S3u3mGDucR1AsklAk46BaJStVoNAhX7i/3G/aZpGnLwh8NhuM9+v69arbYRqZ9Op+r3+9rb2wuFNSHzi8UiiEWQ4el0qsFgoH6/H1INFotF2Avsp1qtFlIYmAfOyf20Wq1Q+BCnBNeUjuo2uPMDIYL9gDCQrzXBvkVcoBMI98FneD7cXYQgwl7zNCB3OORrQQD2iad/kELhAqF3cWDe8uku3nXiFsUj+i6uKb2RY4qIiIi4nRC/hyMeE9z/aUV91/m33ZBzv7xzQatv/UX9kL7wIUWFQqOhC1/6ceo/07f4+oEHJtJ9n1HQdveFqozWavzcpqvivn/4In3fq35Af772+BQTwJc0+/pnnz+Qfli69LUv0uT/GEmSPuYf7Wn/wx+9yaO7djxSQeFikiR3HCqxd0i6dPj6PZLutuPuknTfcSfIsuz1kl4vSUmSZO4+mM1mgXAQleT9NE1D5BjruJMlSEOapup0Omo0GoE8Qto9/5rXnThDkpyk8js2dCK4nvOOwADJ9LxtiLEXQiyXy2o2D3p8TyaTYJ2H/GL/9rx1SDaR33z3CJwPkkJeeLvd3uhe4TnnkjZECcZEEUU/hoJ5XNMdCZBDJ/10o4Dk4siAxKdpqkajEdwGjUZDhUIhdAhgjZIkCXULmBsi5cy1t+uEBDMmCv/hPvE6Eeyd0Wik+XyunZ2dsKYQ9zRNQ0S/VqttuD/G43GI7OOMYJ/N5/NwDbp/4BSZzWYaDAYhhcHTcubzeRA5mFtSUKil4akzXtSTDhJcl2j/ZDIJrSHpPFEsFsPrzKOTcdIvIN6NRiMQdkQ6r7Xh3Ri49v7+vtrttqrVanjWXCxkj63X6+DggdTTGpXnFJEnX3TVHTvu1vE96o4Ersd9Mm7GkyRJ2Jteh+OE4rp+F7eT7VtWQYl49HjiL1zSJ7zoS/W2T/7pmz2UiIhbCfF7OOJxjVd07tN3Pi9T98ePfz8pV3TfVz9XoycfIyAcg6wg7TwvU2FR0NnCp6j5sweiwv3f9CJ9z6tepxfXr+48tzr+7cf/jL7n1/+S/uldP64vahwICl/5Xz5dFz9vW6ud3Zs8umvDI61y8d8k/a3Dn/+WpF+01780SZJqkiRPkfR0SddUdQJhAGINESaSiDUZUkOuulfHXy6XoSsEqQJeRd/JG64FbxPohQolBVcAJFg6Eg+chNHu0rscMH6iydwfAgZj8e4DkOssyzQajTQej0PBRcjRcDgMkWVJgTwjcpTLZZ0+fVrnz58P7QndRs9nIOGQX0gpdSLIiy+Xy6GDAa97a0HmBEJJ5waOQ0ghJYEaDKSZEDWnu4PPDQTYOzWwVxACPBrPGkJePe8fe78X6JzP57py5YouXLig0WgUiCcuhFOnTunUqVPBgQAZ9ZodENfZbKZer6fxeKzJZKKdnR3dd9994dyAlp/L5TLMOY4L9hbC0WAw0GAwCGtOjQsEB+9wwr4iBQcBgH3JXFBMcTAY6PLlyxoMBqEdpdeowOHBdXDK5GtNuLAgKTxzPMer1SrsYxfiqJUgHbXlzAt6CDDcP88daywpuHFcKPM0GU8NyQsOiJI4nxCIvPbECcYN+y6OuP2wes/7NPhA92YPIyLiVkP8Ho64aej/zT+v//BX/+MNv84PfeHrtfe3X3jse/d80/OvWkxwrCuZLn1SQaO/9imSpOHT9/WS+u1Ts/Sz0qV+5Zm/EsQESfqRJ/62Pu3X71VyGMC+VXA1bSP/sw6KzZxOkuQeSf9U0ndI+pkkSV4u6SOS/pokZVn2ziRJfkbSn0ral/R3rraaLX/8e3S/UqkEAoio4HUEKEwnHVVjh0xvb29re3tbWZap3++r1+sFsuDRSC9M2Gw2tVwuNRgMwuvY4EulUohQ8xpkleO8NgMRa8gtUVDIGWTcbfcIGKRVSNJgMNDe3p4mk0lIH6DoH60UPYrr5P+uu+7S0572NJXLZe3u7m60OvQ6BzgOEAAosLdarTZqUpTLZS0WCw2Hw0DIPToMCfPOCW6R57xE6b3+gRdihLh7gcZqtbqxB4isl0olpWm6UWcBkorYQBHFXq8XItgQRWoTQDrZR4ytXq+HaDXEnPv3fH/usd/v68qVK7py5coDag/QLWR/f1+j0UiDwSB0EalUKmFPMQ6/Xyf3/JeUH+9SwF50co9w5gU9C4VCSMvY2dlRv98PtSI8xYBrsbbUKuFZ8qKFOFMg6PnPIbS4S2A6nW4UP8RNhDvEn5PhcLghhuXrM7Cv88IB52bP5etuMBYvNMm5TpJD4bH6Lo64vfHMf/l+ffLTv0Rv/sSfudlDiYg4cYjfwxEnDdNTBX1Wunz4Ax8lXlxfa3o60Vb+jSTR9OwjdxSsq5lmWwUNv+lF+tXP+deSmo9mmI8LvOb0e/TbxRcdnx91QnE1XR6+7EHeesmDHP8vJP2Lax2IW/bzrd6IIg8Gg2BXdzs0xxG9r1ar6na7StNUs9ksEHKvOUDRQSL7kGJJG4SE6KkX+xuPxxudARaLRSCIOAYgboPBQKPRaKM2Ql5MgDxRUK/dbqtSqYR7vnjxonZ2dgJBc6v7crnUcDgM94DI0Ww2df78eZ0/f16r1UqDwSBcG6KLsMEck06QJEk4j3dbwG0A4YQYkgribQa5x3y+Oykj1A1gTTiW+Wd8iBkIKPP5XMViUVtbW6GuAfsH4owo5dX/IcGQby+86MKDF4/k2hBW9sPu7q7W67WazebGnN9///0qlUra29sLRJm55vP7+/saDoe6cuVKaJ2IIwOwHh71h+Dmi32yr6i34PUIvBMEHRqoPbFarTQajYIAQg0NniPpqLsEzhIcHogkzEu+tSJpJnzOnw9qZSAA+X1D3hFVEJO8XgkuDk/1wPHiIowXcETIqlarD6j3kO8MgeiH2Oj1Rm42Hqvv4ojbG6vLlzUY33GzhxERcSIRv4cjbmf8+t/9Ln3BPd/0iLs+PBjWn7enX/vEH9LpYhQTblWcmJ5oq9VKe3t7krRRDR9LsndygDwTta5Wqxv53JVKRd1uV7VaTbu7u7rvvvs0GAw26ht4lFQ66vLgZBnHAcQKgkZ+99bWlpIkCZZ0IqYUxyNlAXLqhRohmm6th+zV6/VQEX88HofocbVafYAA4eRHUhAFzp07pyc/+cm6++67deHChUBGIdRepI7aBLT6g8x7dw0fv9coAPlaD6wFXTG82OVqtdJkMgnCCUQQ4u2dFjwHfjweazQaqVwuh8KWRP4RDcbjcSCmnstPhN4LPHohTMQGLzjJPXGfs9lM/X4/CESMj7Fz3dFoFIiuF23c399Xv9/Xzs5OcCc0Go2NfYXzwetg8FlJG+TdBQbIN/uBz/r4KWZJnQfcCS6E+drxOcY1m800Ho+VHXYdYd18XBznBR5Ho5F6vd5G/QcXfMrl8oYQ4EIQQqM7LpiPJElCeg7n8Nom7CfvruKFRxFDmH+/ttcPiYi4nfD+f/Pn9Z5Pe60eD32/IyIiIh7vOP/v36inP+HV+rMv//4bfq3TxYbW15k5Nu4pKHnPlk5/cuP6nvgWwSo75KHJwf9zl9lKX/SpL9V68pGbOaxrxokRFCCSEBNSEiCNtVptI8eZSDKWakkhIklhwcVioXvvvVf9fj981qv+U/E/n2/uxQW9sr2nBJD3PhqNAmGazWahzkK1Wg2kTVIoUOiV7akVAeFB1PCILAQ2H62u1+uhcwPj5RqNRkPdbledTicUN0ScqdfrIfde0gMiuN52j5QFJ4D7+/sh0uupCl4jgs9DYE+dOqVSqRQ6PHAM64pYMBwOg6ABOcQCv7e3p8uXL4ciiKSAMLbJZLJB9mm56RFmL+DJGuBYYY0h1OTc44KhPgbOCkg571PvgL1LygvzlyRJSDHo9Xoh95+1ZmxeNwB42gNCEuQb4s5c0v2D1AiKeHIMqRnUDKAmgZN3RBauzVoSweeZ9AKj/ux4SgGOBtqHel0CXBcIiNJRLQqeR67L8V63g+N49hEcXazjfe6FcXmXGOp1eGFRxkvNlIiI2wVZ4egPm4iIiIiIE44sU/IYeuP3a4lUKErr65O9s/zzQ739U//TdTnXrYiP+cVXSaVMv/3Z/06S9DV/5Wu0/tC7bvKorh0nRlB41rOeFez8kgI5Ib0BIiQpRPAhX5BKCBZEcnd3V7u7u4GMQaQ7nY7OnTun+Xyuvb29QCyyLAukEWGAgncUvaPVY7vdDsQMortardRoNNRsNkOUkxQG8tux5EtHbf0cROM5N4RMOoiuQvypuI/7AdJJTYFz587p3Llzko6KSjJnkEzILJF5XnPrP8ewJpA6t957wTvuuVKpqNls6tSpU2q326GuAS6OWq0WCjySHz+ZTLRer9Xv97W7uxvWfG9vTxcvXtSlS5fCOJg/uilQ8K9UKqnZbIYWjF5g0Yk78wFhRHAaj8cbJN87CxBFdyIMwWY8fI4CiRxPaoqnSHhBQMg58+rikYtQnn7BeNibuGK8BaIX22TtqbWBwIGwIh2JF9JRag4kX9JGvQbGzZp4OsFisQjHcF3cH+x5HDPuQuDc7hTCWcR6Ija4YIB7BQdTvrAk983r7vTIp5FwPU/HiIi4HVBst7VuxhTviIiIiIjj8ZZ/9v16yQdertKvvfVRnysrSM36yalV9Vjj0mqs0qCop37LG/Vyfdrhq7eemCCdIEHBSYC3eUNMgPRCwnEYSNLly5e1WCyUpmko6DcajTSdTnX58uVgwebztVotFD2EaEkHBRBpG1gul0OLxGazGWoyUDCxVqsFIkuFfOmoiB/CAWkEkGOPBnNfEHTuCYJFJwAXIZrNZmiv6PnjFLLj93PnzqnVaoUUAMQWt7R7jjzRdbozMC4vUEetBG8zScFKxueOD9o/4iBwezwdIxBeiKyT+nLhwgVVKhXt7u5qMBgEBwhFKCHpe3t7GwSW4omQerplQOSJXC+Xy1AkEbs8qSMQXk+38PaE1M3wGhDY5rHw4zrxbiQ4Z1h76Ug4yxcFBN4GkXmVtBFNZ0xehwOXB2kdEHTWzAk2jgYvMMo1eEYQR+j2wJ5wMQWBxNsxsub5+8P1gGCCyCEpFOH0rg8uCoJ8bQuKWrIO/Jf0lrwA4q4MTw9hf/DcRkTcLvjIq/+cPvh5r73Zw4iIiIiIuB3QXdzWBYD/wptfoad+yxtv9jCuC07MX8tOTj16S2E36YistVqt0ArRCyhCKEulkobDofr9/kbKAedJ0zQUe4OIcf29vb1AzCHPHF+pVIIDgcr1/X4/RHqJjBN1hvB7sUeIFOeGBNZqNXW73VCMEcv/bDYLpJB0BhdHuDeP2J4+fVqtViukBuCeIL/dawxQTHEwGGzUk2i32yHfPm/9h5i66OPFARknnyf3nlSAYrGoVquler0exsS60HXhQx/6UEhz6ff7Yd68FSWOErpqUAjT6yW02+2wvogeTmzznS+4H089gBR7bQVPCWAveU0ARJf5fK7JZBLEENIg8udj3r2lJYIETgQX1Bg34op3ufAOFqx1Pp3BuyG4cwBhwGsWME6P4jNOfmd9cIbwmgtN7CM+54DII2YhFODSQVTBSeN1PSaTSXgGEb58bv07Ip/qgxjFe4ggXsskIiIiIiIiIiLiGGSZmh8uXHPbyKwgPekJOzdoUCcfb1/MtHh3+2YP47rhxAgKuAggoQgL0mZ0E7IGgaTjQrFYDGST6DXExgvtYceHFNKVADGh1+sF4sp1OG+z2dS5c+fU6XQCCXd3AkQUVwBFFCUFMuSEmH9ErtvtdiBSCAGkKxBlhvRhw+e/dGJoNBra3t4OroXd3d2Q90+dAjolMNecP8syjcdjVSoVnTp1Stvb24EUlkolTadT9Xq9QCghix6h9+i8pBDJZ44QEyikNxwONRqNwnhGo5H29vY0m82CeAL589QTovDsD+Z1vV5rMpmEDh6tVkvFYjFcwyPo/rOnnrD/XEwAHi0/jmwiPCG2zOfzsIZei8ILKvLPu3d4ugnRdOYd8YP9zDh93yNG+We9yGS+yCOihadH5B0FPh+ISu7a8JQlr22C+ODihc8/7+dTD0hBQVBw4YfzTiaT0D0CQe24gqEg76rgNV9LnvlisRj2WETE7YCt9670nTtP1zef+rObPZSIiIiIiBOIl33wM1W9OJInx93xA2/Vn33HJ1zTebLqWr/+7F+8voO7RfDOxVR/9af+vp7ymseHO0E6QYKCk1RPAYCoLhaLUORtNptt2L8RAIhuUkzQiQR5/nwGosBxEDAIeq1WU7PZDGkOtKI8d+6cCoVCaAdJqoBXi89X2Yc0ISAgaBAVJhpKegCRbS9i6E4Noq24Bah7QM2CTqejLMt06dIl3X///YG0U9GfXHzuHXJMR4qtrS11u11tb29vEDlaV7qDRDrKu2cckEnW0VMrKpWKWq2W2u229vf3QztBSUEgooMD6wgZL5fLoR4Foovb5CGfly9fDh0UIPceQXcbu0fLWUPG77Un8sKLF9CEIHN+ouj8y7tSPMWAeaIehre8XK1WIeoOkZ5Op8cSa1wtrLWnG3iKSr6GgRcAzbIsCHbHkfi8uMH+c7eEF/nkdUQYn2euz3kRJbxzxHQ6Dc8XYpHvfwQU0iW4Jt8n3inCxZS8Q8JdDawrYmDs9hBxOyH9+d/X6z/jJfrmvx4FhYiIiIhbBefftNI//uzn6J+ffccNv9YHvv+Z6rzz+raNvF0wWs/0nP/2DapdKOkp/+z3bvZwritOhKAAocLiTJSeNoqSArFaLpehw4ETc4ggufucDzIJYZIUruH2bo+WesV9rlWtVnX27Fm12231ej31+/1A9EmL8Ii/k00ncRRVhPBBuBk/cwCZgihKCpF5RA9s8ZDAdruts2fPqtFohJaAFy5c0N7engaDQRgzxBli5kQ2SRJtbW3p/PnzQVCQFEg+QgxzD/niZ29hiEgCMaMYY7fbVb1eD/UncEVwLi+E6S0svasH3RKAk8uLFy+GtaMOBTUWJIXXWBPEJgjncZFzXvf0GqLh+XoYTtClow4MnU5HxWIxzKWkIIwhapEq4wQY4cf3AmQd0Yo6FMPhMJzfi4165xLG6q6HfC0Gd2xwDOM7rg2qE3nGJh3ViHBBwefMnRKkjniBz8VisVFbxNfKXTIu5ni6hjsPPMWD91x0lBQEJ56z6FCIiIiIiIiIOMmo/8If6Ke+6AX655914wWF45At93Xnb6x174uvLk00K0hf8cLfvcGjOll41uu+VoWF9Ix/9fgSEsCJEBQgIJ7nLh3k1BcKhdB5wbsMQKIhbpAOctSxQ+ft6ZBizxfHJQDBgKhA8qUDMt9ut7VcLjUYDEJdA8YLwYRAeS0I4GTLxw45YqySNtIZsPszH16LAYGiWq3q1KlTOnPmjIrFogaDgS5evKidnR31ej0Nh8ON9nxEpj0/PUkSNRoNbW1taXt7W6dOnQpRce4XgkWUH6IMMSRnn24TrVYrFAdcr9ehGGM+Rz7LsiDKcL+tVkt7e3sbLTUZ+3K53LhWtVrVcrnUzs6Odnd31Ww2g8tjPB5vdA8YDoeBuHIuiDKE2wtRcqx0VKiRrgrejYE1Zn2I1JMuw/6hyKaTblwG7DuvFeDFEt0hAfllfNwr98X+Zc8zJhfweCb8Wcy/5p0q3LHB2BEXvK5CvusD5+aZyLdz9FQMPuf1Hzwdwp8nXDG+Bl4LhOfNz8u8+XjzdSlIVfHvo4iI2wEf85/H+tIX/AX99FN+7WYPJSIiIiLiKvG0H1rrG5/zfH3PHW+5cdf431+pj/3d+7Wff2O9Uvorf6Qnzp+rj/zl4nEfPUImPe3/N9e3/7V33qhhnhg884dfrdYHD35+4g+/Ucoew/6ejzFOhKDgZAzCBEEn9580h1qtpjNnzoTihdiucSY0m81Qx2A0GgUHgZMZBAVyw/MFDvNt9iqVSihSSJFEzyHnvJCi/Pm4R7e456vie0E4osHL5TLUHHCrPmOiVgHk/dSpU+p2u1osFrrnnnt0+fJlXbp0KaSJ5FvmQcrdjdHpdEKaR5qmoSYBhQVxYxApT9NUd911V5jnS5cubbhGEHj8s0TkPbqeJIlarVYg6gglRK4hzi7GcE/NZnOjKwZRbMSS9XodugbgCoEAS9posciY/Fpeo4L9gXvGayp4aoJH7tM0VbfbDa6QfBTfu1z4OiPyOLxQqTsQcLUwz+6KcfcJDhAEC3dlEJl3MYExeBcMxocA4EUcvQCip8TwX59XT+Fh/3Nf+foniG6sLdf2+3wwuLMm7yTh2XQxgf1w3PxHRDzu8QfvUP/vfJy+7gc/Rf/hzt+/2aOJuE3wmosfr9/7x58iSVp+/Y5+9+P/600eUUTErYXCb79Nb778VOkGCgrpH9e1/8EPH/tetlyo+utv1xOz5+gjn/3g9PKZP7Sn7IMfvVFDvKl4yZ9+gVb/7lz4/Wm/+6da9fo3cUSPHU6MoADZg0B47QSIzNbWlu666y6dPn1akkJld+moWCORT9IFIPtE853Ee6QWgkxUl7QExArvWACwZOdt49QU8IJ1nBvCTC68R6eHw2EgM7gmWq1WyB+HJFP/AIt4rVbTqVOndPbsWVUqFfX7fe3u7urKlSuhZkKeHCFieMHD9XqtZrMZOjDUarUNci4pFErs9XoqFAra3t7W6dOngzAwGAy0XC5DLQUInHfMSNNUkjQej8N4/FiINeSfeYD0ZtlBm8HhcKhC4aCTA3vF18Dz70mfcFeItNmxAKKO+8NTD0jhYH0QW3B5SEfiEcBF0Gg0NlpTelTfUx08vcHrLOTFARcknHC7C8HX2dMUeD4g/d4VIk/OvQgkbhLmE0EvX+yRfer1F1wYOC5N4rjrOXxNvbVnvtiquyHyn2d9cLowTl73lCNP0YhtIyNuR6z/6E/1gS97ir7nF5+sb9z60M0eTsTjGG+arfTtX/zlSsYzVf/szZKkxtvv0uecetnGcX/2Zz94M4YXEXFLofvqlf7pLzxb337m+kf/n/I/X65n/eh79FC+zWw+V/XX3q67i8/VR//SplPhGT/SU+FyT/v3X5CSRJ/5lV+tX/+R/3jdx/lY4oPLkb72C18Rfq/tDbX/4TeH328nj+uJ+Ws5TdMNEu5t94gct1otnT59Ws1mU5JC1BxruZMFagW4tRuSiIABycXSv16vQ82EUqkUiFi325V0UEcA2zz2cyKZq9Uq3IOkDau0R2a9IB4Eajqdand3dyPaWy6XtbW1FVwbkG/cCPn6EbSsHI/HunjxonZ3dzdy9Yn60uGBzzabzY2x4A4g8s09lkolNZvNjfoASZJspEbs7u6GKH6r1QrjhCRCylm/S5cuhWsi2DBvTo4bjYYkBfcGwgHtIpljt7pn2UHHCiLhpFWwVl440NsJEo13F4B0VPvCW5vi/KClpwsBksI+xlGxt7enyWSy0f4QIcsdK94W0YHwgAOB8x+336SjyD/1RxAxXATLA1Eg74DwNBveY01xdbiwwP2zHl5oMl+3w6/NGvi9+DEugPBceUqI14LIry1j8kKRiFju/vFCmp6aERFxO2H1vg/qDS9+uj72jffrs9P5zR5OxOMMy2ylL3rBX5FWK60v/OnGe/sfvUfKBTCzLBbIjYh4OOx/8MN68198gn76d+7Tl7b2rtt5/9yb/oY+9hveq9Vw+LDHZsuFam94m57x2/WN19ejkdZY/rNMlTe89ZYVFT73M/+qktFEWq+1vv/o++vaGmc+vnAiBAVEAAgPJAzyKh0Q6Xq9HqLbFOUj2isdtbKjMCKEyQvsEdWHLGD7d6eDdyWA0CA61OsHDwjt6iaTSUhNgGQvl8sHFJg7rjgcmM/nQVAg8k0hPy/OyPjIsZ/P5+G4RqMRSO54PA71Izz6TioJ5LdUKoXoOYQbIQCSCLlFVCHPH+fGE57wBD3hCU/QcDgMdnpqMVCQkbQUOlFsb29rMBgEBwmOCK7J6zgnqtWqkiRRv98PBNeJoK8V6wdZJ5LOedlrpEAASCrk2d9DeGAeJWkwGKjX62kymYTUDq7he5i9ulgs1O/3Q6cL9hXR++Oi5p464J0cuGcIM44NPoe4Ajlmf0raEDD8db939pkX0/RCjQgqPkeeSsIxOAIQQtw9wXObd1MwHgQXRCNPUXCxwN1NPGc8e15w0Qsxcizn8s4vLjQgOEZE3K5YXb6s73n28/S9SSKVy/qld//mzR5SxOMAX/Apf0XrKztaz+672UOJiHjcYXX5sn7045+hp7/7t/VJ1UcWFFllB9T42y49T297Yaq7Vn+m9fLqi1Rn+/vKHk58OBQVPu3rX6nf+b7XPaJx3mgwD5L06d/0ter8wh9Jktaz992kEZ1cnAhBQdJGBXpy5yleB5HzqvzT6TSkBjh5R0ggKgtJIuooHVmfpaMIKCSMOg3SUftHz91267U7FMrlcvg9n1fOfz0CDamVFLocOBmCtHk0nkKFzM1isVC9Xler1VKn09kgod6hgBx9iglC2J/whCfo/PnzWiwWoSUkxR+pFZBl2Ub7xUuXLgXyuL29rXPnzqnb7Ya6Ds1mU9VqVY1GI7gEZrOZqtWqTp8+rbvvvluNRkNXrlzReDxWoVBQs9kMQg1zmGWZtre3N9osIvx4dJ519yg00W9IpUfDvX4Fa+PrI20W98vX92CPUVeCriOSNtpKMj4I+XQ6Ddd3W73vQ/aYO0b4x36TjpwPCCmkBfkeZ+8jBuDkYF948U+vA+KpCe74WK1WD0hj8c4OCATuGPDODMDdDghniCmMj73HHCE0cu9eo4TzeVqFp4d42lG+vkOz2QytZllXF6W8zkVExO2KbD5XJkmzmT73zk+82cOJeFzg3ps9gIiIxzWy+VyvecoL9NoP/462CwVtFdOHPL6/ngb3wDBb62ue+Gn27g10B2WZGj/3+3p+99X6rW//XqWFm+cK3VtNNn5/ydu+Ume+4D3h95bedFs7EB4ODysoJEnyw5I+X9KlLMv+3OFr3yXpr0haSHq/pK/MsqyXJMmTJb1LEivwpizLXnW1gyFyDrnwAmxEfPf39zUejzUcDoN9PE3TEHH2AofuTHBHgHQkEnBuoq3uduB30gs4N8SW60sK5M7dB/nicYdzF4gk3SgQMRqNRojGe5QdAcCJLlHvUqmkbrerTqcT7oXjcB4wHtwIo9FIlUpF29vb6na72tnZCaQPUomwQc2D6XSqXq8XiFyr1dJTn/pU3XHHHdra2tKVK1dCAclqtRqcFvP5XJPJRK1WS91uV81mU1mWaTKZKEmS0FoS8WQymWi9XitN00D+IXUUQSQ1gn9e58Ej6og/XqsAxwN7xAWMByOQ3n2AbheIXfV6PbTNJD0HYYyOIKw59S7I1c+nHLBXKRyKs4Kxs88g7uwPRBuPunsxUGp3SArnzNdaYM28KKEXciRNw9OLcHzk55t9lK+FwB7OR/2ZB5wCPLecw59ryD7zx/lcmPHUCuqqcL+euoG7h2f7uJaZJwmP5XdxRERERMQDEb+HI24lfO2TPk2FNNW3v/Oh3WX/5EteoezNN6flpCSd+qE36gWnv1E//Krv1dNLy4cVQB4NPrI/0oVVdeO1dVbQP33qizZeO6P3KOLqcTUOhR+V9B8k/bi99r8kfWuWZftJknynpG+V9M2H770/y7LnXcsgIGDSZos6SBKpBKQeZFmmnZ0djcfjYDeniCBRYW+JBxmDTFD/AMJ85swZJUmiwWAQjoPIb29vBxIIMen3++r1ehqNRhvV4z29ARLrBRFxC+As8MKHpHMgqng9AYruMab1eh1EgXa7rTvvvFPnz5/XeDzWpUuXJG12csDdQJRaOhAEzp8/r1qtpvvvv3+jkCIdH8rlcqjD4GkUELEnPvGJOnXqVMjL9yi3z/N0Og0uB0mhJgREMEmS8BpuBlwinreP0AHh5b3VahXcAh7hdws9bgsXmeggkrfruyvBiTuWeHelsF7e1cDdIU52IeIuhnA8/0UgoX4HUXcv1MmzgrCFO4F0CooMugiRT7nxFKNqtapWqxXaYHptB/YlriBINwTd6y14SoSnNkgKgobXKmDfeMcH1lzSRuqCi3Du/sHl4Gkv/JdzMBcuuLDHfJ587RnjCcOP6gZ/F0dEREREPCR+VPF7OOIWwnoy0bc95ZMf5qibJyaAO7/z9/Rt3/nJeu/rPlnf+hm/HF5/efseFZNrd4uusrV+aHDXA15/7Wu/SOe+7/ce1VgjHoiHFRSyLPutQ5XVX3uD/fomSX/10Q4EazNRxPF4HKLAh9cM0WRJGo1GG60kiRRLRznriBJOJrCP7+/vq16vq91ub0SSuT41BbxSf7vdDoIF1yBi6/nziAFuKycnHVcDOfeSQltBih76PReLxVAMEMs7BJruDufPn9f29naItEvaiM7TurBararf72t/fz8QyPF4rL29vdC5gE4MiAakV+DIkKROpxPSHarVaigA6SQRwi8duTwQXUaj0QZZY51oeYiYgYDh5JXjvc6Cd8uAxHPvnufvhQPdZZKveeApAayD7yGcFRBh6kogInndAzoieKtFnAwIV15DwUUL6ShNxgtbSkdiAk4CT22o1WobFn4vsumAjFPvolqthrXGzdHtdlUqlTSfz4NTh39ex8EFBR8vQAjwYxDffN65Z6/5wNwyj7gjWAuEKq8pwTV9/d2FhPiYdxX5+L3Q50nAY/VdHBERERFxPOL3cETEjcUzXvlm/ZzOht/f8Nsfp1PVsV531xsf9DPfs/dkvXN058ZrO/NU48+4/IBjzymKCTcC16OGwldJ+i/2+1OSJHmbpIGkf5xl2W8/3Am8QBwF5rw+ARF6j/pDACDK0lE6wXA4VK/XC6QTQsJnyO2m60Defj6ZTDQejzes1mmaqt1uh0i9R+QRIBAYIDKQa9IaiNjzOoJImqYhHcHz54+rD+G542ma6o477tD58+eVpmmI3GfZQftBH6MXuaTGwXQ61c7Ojvb2DirBYg9P0zSQeumgxgMFCJm/s2fPqtPphA4KTpDdBg/JxVkwHo+DK4CcfwrlQX4RX2ij6bUzSPfAyZBvHcgemk6nGyQW8spegry7A4Y6EewXzuu1G0g34LyMhdfdcs+9uTOEayKKMJ98DjIPYfeaA9JRG0iv/cHaURST8yBKILzkaxkw3+12O6SouBDDPvDPsJ+Za373Div8DlH3+XJXA04KJ/aso68Rc0S6iqcZHVeAkbnzgp3MkbeO9O8FFw4Yi++BWwSP+rs4IiIiIuJRIX4PR0RcRww//YpGpZJe+N//zwc9pvGvOyr++h/mXh0fe2zEjcGjEhSSJPm/JO1L+snDl+6X9MQsy3aSJPkkSb+QJMmzsywbHPPZV0h6hXRUOwFS6kUFITekCEhHNmpywyEAkM3hcBgi8eSyU8Sw2Wyq0WiE4oOSQl48JG00Gmkymaher4didKdPn1aaprpy5UqwaUOGIPu4FZwUQ7C96B6pG6RRNBqNkO7AvUOuIDycn+vVajWdPn1aZ8+eDRFpyKi0aXPHag/5ow1jv9/X7u5ucEwgsBCxlhTqGnhXhmq1qk6no2q1qtFopEuXLqnX64VCmJBHCBwFKCn+OBqNQnoDUXJEHsZKpBzBwlMXWCui8bwHcUf4cJKbLzaI+OIikNcr4D5xy9BdgfmUtDHnCB8uTPm+ZG9xPJ9BeGJfuAjA9dy1gqPB94I/C7gJvPWhpxO4AAOhZ+2deOMUcVcBzg6ul0/tcBcJn/H0BM4B+fdaD3QnIR0B8ctdHt5tg3nzVAevC+Hn9oKr+fn4/7d3LjGS5dlZ//75iPc7KyuzHj3dM+32woPQYCELCWQsgbA9m8E7e+UFkkGyJViwsGUJGyQvQNhskCyNZcsGgS0kg7BYYRDIG4QZw8y4jadxt7tVru56ZGS8n5kZeVlk/k6eiKqsfqgqM9J9PilV1VGRN/73f29c9fed73zHAyHIixOrozvXFS/rWVzQq+tbDAQCgT/PiOdwIPBqkJ2cqPbD7133MgIvwGf+v+WU0o/rLJjmb2Tn/weeZdlc0vz873+QUnpP0ndL+sbq72dZ9nVJX5ekcrmcbW1tLU0jgPgwOrBWqymXy5lIUC6XrY8dUkj1FzLqCSJV5kajoVKppGq1qlwup9lspul0erYZW1s2CpIWgO3tbTWbTe3t7Vko4Pn5S9Iz/80kBd+b7adKeIFAkiqVimq1mo1Y9NXr2Wxm4gbVZAh6vV7X3t6eWq2WNjY2NB6PjUiybz78zrsjsIYjjFCdPj4+VrVaVaVSMWI6n881HA41Ho/t/fV6XfV6XScnJ+r1emq32+r1ektZDYwLPDk5sX71xWJhYg+uBtbKufmqvJ9k4LMECKOkvx/i7p0MWPB9Jd9PE6Alxk9a8GIDRNg7ZbiWvMdPDfD3gP9c7kvuVT7TE28q8d6xgcuF1wlA9CMbV3MBuM6rrS/sKyIYzhVPur1LBGcMn8W/0yrE9eX+8MTduwfYK/aW8/WOBYRE7i9+149v9GKJFypwEPAZvIffQ3DxrTCrYoIXD3xmiQ+EXHe8zGdxLbWy1X8PBAKBwIsRz+FAIPB5xmf6v+WU0g/pLHDmr2dZNnGv70rqZFm2SCl9SdJbkv70446HgOBHG0IQEQ9yuZw5GBhNSGDg0dGRjW30Vm9fiYbcYQuHXEI4yDSger69va1SqaR6va47d+6o0WiYdV7SUnXbEyffMw+J9PZqT2r4jHK5rK2tLavaTyYT+xOBg2PzWaVSSbdu3TK3AQTdV5kRVU5PTzWdTjUej5f2m+o0ZDHLMmtlgCjP53MNBgONRiObqFGtVrVYLHRwcKCDgwM9efJE8/nc+vHZd9ZEpXs2m6nf71uwJteX0X3SRSAmOQUIAfl8fkmEIHeiVCppMBiY6ODPnzVQ6fajE3l9tWIN2ada7QM+fd+/pCWngR/l6F0mZCxAkrkenqwSwugzJ/g3pj2wbp+j4G35VO5XJ0dAjP0PRNsLd6siyGp1H6GC7wprW21TwFEE8fduo8vGtbLH3tHhv1u4ZhCp/L3D32nX8cGo7AcuB87TC1Ts3eqeScsBjeuKl/0sDgQCgcCnQzyHA4HA5x2fZGzkb0r6AUm3UkoPJf2czhJs85J+9/x/uhmF8/2S/klK6UTSQtLfy7Ks80kWgoBAlZHKYT6fV7FYtEpmlmVqNptWnYWsUU2GcFKphCjTXgCx8BZ6iAviw/Hxsb23Vqup1WoZWaFajO0egk9VlHYHH7SHfZt14LogTLJYLOro6Eij0cgcCWQs4J6gNQKSg2sDcufHWHoy7MdnTqdTI2f1el2lUmnJBfHWW2+p1WpZ9XsymajT6ajT6WgymSiXy6nZbKpUKllV+eDgQO12W9vb22q1WqpWq5rNZtYCIcn21udMbG5u2phMxkZ6gsz+UE1P59MWaJ+o1WpqNBpGeH1bANeYz/SWeMg7Ig2fzXXEkUBvPuRfuiDBvI4ogXPAuxcQGnwLCsdYDR1kTayd93IvIkTxJ+GePp8DB4P73i4FJfKa/9OTatqCvNMDYu+DJHEVcH/6XAbpgozj9vATJfy4SR/c6cd2ch35HUQq73jhOcH15H1kWgCfhcD14bnCdWWdfL7fM9/CsQ64qmdxIBAIBJ6PeA4HAoHAs/gkUx5+7Dkv/+ol7/1tSb/9aRfh7dn0p3tBIaWkfr9v/fK5XG6JqFEZhhT4Sv7x8bG2t7dVqVSMfPsqNp8BycECD4FvNptqNpvK5XIWTDgej836DQmD1Eh6JvzOV7Gp/HoxAYLY7/fVbrfN9u4JTalUUqVS0Ww20/b2thqNhnZ2dpZEgeFwuGR3p6rsCRy/t7+/b9MVptOpNjY2dP/+fVUqFSNZ4/FYT5480cHBgbVZ0A6BQDEej7VYLLS7u6tbt24ZqfNtHewrJNHnK3gyiHNBusgp4NriRqHHvtlsKp/PW7YD5BQXim8H8G0mkNzsfFwijgoEAtwA3BuehPpxit5JQSsBogjk22dncC39qEwELJ9LAKn1Y1N9VoIfLQm59iGenC8iySpJ9vkFCCOQet/Wsjr1gGu4vb1t+4QjhuOsVvp9FgitC+wHYz65vt5lwfc6n8+rVCotiSz+vBBY/GhIgDhEq5APq2SvuY68xmf4kZd+H64bV/EsDgQCgcDliOdwIBAIPIu1aBCGzEmydgfIQqFQsAopLgPs+kwiWCVLEEjINyn2EHtI92ryvA/fozLKSEZaLnAMFItFjcdjq24SLMnxES1Wk/MhNhAhWj16vZ76/b6RIpL/+TuZD+xDtVpVuVxWlmVqt9v68MMPNRwOjWhOJhONRiNrAzk9PVWlUtHt27e1u7urQqGgwWCgg4MDzWYz3bt3T/fu3VOj0VAul1O/39ejR4/06NEjTSYTNRoN7e/vm1vEjyG8deuWdnZ27JiIF1jP/RQNXylGcJAuCDr2dJ/Q768r7gWyEyaTiabTqYki5FxwD/H5VNMh9UztINvBtzYgdrB+2mG4jpB4H8zp8xd824Gv6HMOCEt+XbzGcRAv+G8IO/c2ZNlnCvj3IahdFkCIYEUrhm+Z4bP9cRB0uBa4hfg+sncINn7Kg28rIefDZxv4/WCPcK7k83lrX+F7jzBxcnKyJB5yD/GnD6ZEYEBg5JnCHrN2L06uBjQGAoFAIBAIBAKBZayNoIAdn+q3dEbaK5WKEX1Iua9CT6dTS6TnWD43gco+PfzShauByi2THabTqQXyVatV3bt3T7dv31axWNR0OlW73dZwOJR0EYIH6Yf0+J5tPy4wl8vZGiFiTF7wFnayAwjPwxFQrVaX+tCbzaaKxaL6/b4ePnyohw8fqt/vW6UZ5wAjNY+OjlSv19VqtVQqlTSZTPTkyRM9fvxYWZbpzTff1P37981e/vTpU33wwQd6+vSpsiwzhwfnC3ktl8uq1Wra2trScDhUp9PRcDi0vaY6DEFlsgZr5Ji0Q/hrwh4islCdhhBOJhOrdDMJApJ9fHxsn+Vt9JKeEWQ8EfUuEu4z9s+LQpLs/ZBTyDjXic/mWJwDvwOR537h3vWtE9zLHBPRwVv1fauDXyMEmXYgfoc9QOxg9KWfQnJ6emqOGz82E0GF74CfouEni0DIPSDovsXAizSr35VKpaJSqWTCEu4OhByfyYAggjCEiMa1wlGBGwIRie8u9zR768M2A4FAIBAIBAKBwPOxNoLCZDJRtVo1+zR2dKY/pJRULpeNYEO4IQ0+9X4+ny8FGa6OFQS0I1DlhoAVCgU1Gg2z8RcKBfV6PXW7Xc3ncyPJHpAVXxFedU4AbPtHR0caDodGGj1h3trasikTkKBut6vT01MLTkwp6cGDB/rOd76jg4MDI9mdTsfIvnQ2FjOlpJ2dHeVyOS0WC3W7Xb3//vsaj8e6c+eOXnvtNX3hC1+wNoIHDx7o4OBAJycnJkTQq+/bFxqNhmq1mg4PD/X48WONRiMjYogQEEecBQgBkkxUmUwm1j5AhZ5/9y0qkHx+x5NhhAhPBrHo+3aLUqlkzgTfGiHJyD6VbEZy+pYLyDhuCEQNn5kA+fe5EN4xQLsIQghrZnQoBNiHDPrsBZ8zAHw4pBfMvGvC50yQNQEJPzlZHpHpxRJP/HFwcC7sHxM+EAhXJ1DwXfDfB4QTjsX3j9Gu7DWiAp/PPYUYNRqNlvIx/JhP7z7xmSM4Kfz+IGjy3+FQCAQCgUAgEAgELsdaCAqSliYObGxsLI11RGCoVqtmhZak0WhkvydJw+FQ0+nU+sC3t7eX0vap2nrLPoR0NpuZpZoe/b29PdVqNUmySQe8R7ogn1RPqW5T5fep+xAwSOXx8bH1rLN+3ueDHcvlsubzudrttkajkQqFgprNplqtlhaLhQ4PDy0AMaWkyWRiwZWNRsOcCj4Esd1u6/Hjxzo8PFShUNCbb76pL3/5yxZ2+fbbb+vdd9/VZDJRoVBYqhT7lP1araZKpaLJZKJ2u612u20TGUqlkrVHIB5Alg8PDzUcDk1AWg03pMKM8OKnYtBigJjgJzasTlnAVUAVn+MXi0WbvuAnKFCZ9sIB4gIOBDI9pGU3DMfh3oLQe0FEkrknJpPJMxkE0sU4RI6PUOFJOQSbe3wVnrR7sYR7kns8pWRr8C4NCD65E/yZy+VsJKon9Ny3ftQl+0ibkt8vrodvTfH5GJVKRdVq1QQ1rgHnsDqVA3EAQQGhEVcSzxTW4QUo9sufi8dNmPQQCAQCgUAgEAhcF9ZGUKBqTHo7OQRHR0c2+cFXLSFM5XJZxWLRJhxADLBn00tNOwVWeiq9VIr5vFKppLt372p/f1+NRkP5fF7D4VAHBwcajUZGOiAhVMXpy/efs9r+QDo9LoDZbGZrgYCtZgTMZjN1u10dHh5qsVjo9u3b2tvbU6lUUq/XswkMPo8AMWRzc9NaSWq1mur1urIsU6fT0cHBgaSz/IMvfOELFtL43nvv6f3339d0OlWhUFC9Xlez2TSRBJKMsHF6empuhuPjY2uBQAjo9Xo6OjqyaQr9fl/D4dBI72AwMDdAsVhcCiPEmQEQjzzxX81mkC6mE/j1sve0k5CHAan1Pfd+L2khoWWAz4aM+1BO7gtv4V/NdaBvfzwe2/t8uwDiAu0QrMWPMvTtCvzp2xn8+EUfcsj7yT1AQOCz+A4hGPgQS36Pe3lVJPGhi769gPuAa8UesyZ/Htvb2yqXyyqVSs84L5gwgSjAs4FQUc7X53UA7wzxAgTfO0RBnwviW18CgUAgEAgEAoHA87EW/8fsxwTSM+8T9yGLuAPK5bJV61utlk1bkC6Ivu+Dxv7sK6zPqz4zDaJer6vRaKharWqxWKjX62k4HC6RFt8rzroQRTgmFnZG3hHwJ8kqz1TvfUWXVoHpdGrV/8lkolqtZu0J29vb6na7S3Z1pj/s7e3p9u3b6na7lgFQLBY1n88t4+Dk5EStVktf+tKX9OUvf1nValVPnz7VO++8o263q1wuZ9bzVqulVqtl7SXsVUpJvV5Ph4eH1hrRaDRUqVSUy+WMsHM9hsOhut2uVbtXJxz4ijxk07cwcN0gl97xASmkSs318Jkc3EcQ1Ol0atdptb8fMYc1rQYLsnauP5Z8nAO+Es/19ceF0LImhCXvTvAhi5608++rUxQ8oWZtCBu0BeEYYJ/8BBDCEH0Lhj8+58Z3C3eFz3ZAoMiyzBxH7KMfg8k50JbBd4OgTJ+l4fMraOHAobIa7Mk+r4ou7A9rQOzzzhW+z15UiByFQCAQCAQCgUDgcqyFoCBdOBRoc6B6CiGmKo4NerFYqNFo6Pbt2zo6OrKANggS5BDSVKlUjGT4IDes1NjAy+WyyuWyGo2GUkoaj8caDAZGjnEy+F5yX7mFSNOmQdUdAsmkBunCTg1pzbJM1WpVjUZDp6enarfb6vf7Zv+/c+eOvuu7vkulUknD4VCHh4eaTCZGOiuVivb393X37l1JUq/XswoxYx7pNc/lcmo0GuZOOD091QcffKBer2eVYNokGo2GyuXyEnnLsswcEqx7d3dX9XrdSDuOjtUARSrk9OZjxadCTrWaKjrtHMVicSlTgPNCtEBQ2NzcNFGG6rp0UdWWZEKCt/lzXhyL9flpBxB1iCnuByz7iA6QVq6vnwCCO8E7E/z5+J5/H4Dos0J8tZ9WHj9ZA1JMWwTn4d/L+FP2YbWFAoHAtxistoawJkQI2lD8GE0vsHFcgHCQy+VMTPDOH0QTPgMhBDGB6+tbXfwEFb6H0sUYVa457/HCi3fEcA8EAoFAIBAIBAKB52MtBIWUkiqViiqVio6Pj23cIRVJH5ZIhfz09FStVkuVSkXD4dAqp1jKfT80vdm4EiANkKVSqbRkB4eEQ9YhQ7gmIF1UfD05YW2+Qu57uiXZNAnG4rHuarWqO3fuqFar6cmTJxoMBpaPsLu7a5MYUkqWQ+CDKRuNhu7evaudnR31ej0TMGazmYU/4gbZ2NjQzs6OXn/9dZXLZfV6PbXb7SX7/sbGhuUNIKjguGBKw9HRkcrlsrVGlEolq/6zX36iQy6XWyLyHG86nZq44wk8pJeWCcIrNzY2NB6PrVItyVwVZDh4og6hx93A9abi7Z0AOFd8bgD3C++FWFPpZs2QXv7dtyJwDElLI1D5DkiyoEbfWoMrBzFhNBqZ6MC97fMOINKIHf47QK4Av+8r8py7n1biJx94IYHPXm018QIOwoV3QPhwR4QOzi+fz9tnencKDgPvQJlMJktighcK2Fd+j33nunhnxGXwxwsEAoFAIBAIBALPx1oIClTCt7a21O/3LVjQB7dVKhWrlFN1rNVqZt+GGPo599ik/Xg5eumxOpfLZave00fPOMrpdGoixGw202AwWGpbgMzwd0gw5NJbtyE2k8lEw+HQCP3m5qYODg50dHSkWq2mZrOpLMvU7XbV6XQ0nU6Vz+d1//59vfHGG8rn8zo8PFSn0zExQZLy+bxu376t/f39pZ5wEvcRLKrVqhH3/f193blzRxsbGzo4OFhyCHAei8XCWiQ2NzfVarUsWJCcgnq9br3vVL4Hg4HlJTDa04tBEGVJRnA9Maea3+v1zD2CmMDkhsFgYIIDgpHv2fehiJ6Acy/4MD7aVnAVIFIgvuB88a0I3tnAtfZjKD1p5XfI1CDLwWdB4CBBFIDMcm7Hx8caDodLkzSYVoGbAtCewPniAvFtKH48Je9h/XyPuHf5fvkASR8+6dsv/B7x/WW/+Tukn+uNaDOdTu11H0jpWzkQrPje+UkVrMnDT7hAbPQtS/zp/871jSkPgUAgEAgEAoHA5VgLQYHwttFopG63a0QeYrOxsWFTC3gfLQae2Hn7Oi0Evu9c0pI1HWEBGzsTEaioIh5Mp1MNh0PNZjO1Wi0Vi0UjNAT2UUGXLsQFCBrkhTaA6XSq3d1d7ezsaD6fm6UfweTx48dqt9s2pvLu3bt6/fXXtbu7q6OjIx0eHmo0Gi2l4xPEuL29reFwaK4KxITt7W3dvXtXhUJB/X5/6b+73a4ePXqkfr9vFWNcE6wBAYTrgihB7gXOA8Zr9no9O1cq/djUIaG0DsxmM9snT/iYhOBzD0qlko6Pj9Xv9+0aIFbgpvDBhb7NwFv0fQsCrg0cAIgJhIFyvr63nuvpRStJJkhB0mmxgFyTLYCrgIo6DoPVthJEEf4dC/7qHrJ/iATSRRsP+zedTo048x3gXNk3zt9/fxBpEAQg7D78kv3wYaTsBSR/VYhYFTsYHQoQH3B9nJycmIPD740PpvTTVPx30E+U4If70oe5Ip7wPQ4EAoFAIBAIBAKXY20EhaOjI3U6HQ0Gg6XqOO0QrVZLtVrNSHm9Xpd0EWbo09t9xoHv/5Zk2QDeSSCdCQO4AajE12o1G1HIyEimSkhnVezxeGzHxiY9n88tjd5XOSeTiXq9nuUd5HI5a1vguLPZTL1ez6ZAbG1taX9/X3t7e5KkDz/8UAcHB0aAINytVkuFQsHWSqtBv99XlmU2HQJivrOzo1arpeFwqA8//FCPHj3ScDg0McGLBpPJRPV63Ug3DhKqyhDh+Xyufr+vfr9v6/cV5MViYceQltP7cSBwPrQ7rGYbUKX3OQR+ZCHOB6ZBrIb3+dYTX+Wn0u/DMXO5nLlTcDxwDK4pn8v5eJEB0sq1ms1mdk8SLOinD3jnAPcP5+1zFSDBiCK8b3W0JOTYB5TS1oPI4LMWuB68zx+Dc0Cc8+eWy+WWWhR8WwjCHd/J1XBIL6YgBPnQR5/PwHcUsWZ1EgRr9k4Df/6sF6EJeFFGumhlyrLMRKtAIBAIBAKBQCDwLNZCUJCkfr+vdrutwWBgleZisajNzU1Vq1Vrb2BKgB+JRzXdp+f7rARP9CA/hANiA6dSu7e3p3v37tmoxMlkYq0HuVxO5XLZfo/Po0qPHduH+vmqMsS7VquZWMF6scz3+32bxCBJu7u7euONN1QoFPThhx/qyZMnGo/HFu64WCzUarVUrVZtfN50OtVgMFC327X8gXv37qlarWowGKhcLqvZbOr4+FgPHjzQgwcP1O/3zWrOuUE6IYIpJXNqQITJMaCyjePA97Jz3j5E0Ff7OXe/V7RUIPAgniCYeJJ+enpqAYzlclnValX5fN4yMHwOAFV1BKdisahyubwkevhsAO828MDVsHqvQcZ9QKgn2n5/j4+PTVgiFFGSuW98SwVCyNbW1lIgIYSbz/fVeci/XwNihRdFEBNws+BW8BkTPnPC504AL0CxBkkmICH0+HBJRBMEQRwTPl+DY/scBr8O9sm3OPnzIjOCe9Q7Mbx4wXVDcFhtaQkEAoFAIBAIBALPYi0EhSw7GynY6/W0WCxUKpVUq9VULpdtgkCtVjMi5i3T0sVseUQBgv6oNk8mE+XzeSO4kErpYsJCLpfTzs6O9vf3devWLRUKBWsvGA6H5gIggwAnwurIP4gfJAiSDxGEQEO0IfxU6BFWZrOZGo2GvvjFL6parWo4HOrhw4eaTqdLGQbFYlGNRkObm5saDodWle/1epY/cPfuXTWbTQsYJN8Bd0K73ZYkW4NvGcnn8yoUCioWi+ZMgHBNp1NzS/hsBJ+0T5AjbgMf6AfZZC8gk1wTSUb2ERtGo5Ek2dhJnApM1KhWq6pUKiY6cW9AJjn21taW3WdkJPiKuiTbAwiwD/z0UwQgp8Bb5dkb8gg82WaiiM9LKJVKdm58jhcNIL8+B4BzWw3T5Dj8Dt81n+fAMRlRSvsIv7OaEeJdAfybb1vx7RDca7yXffTZCas5C3y3gBdjVjNREA9Go5GdC/cfgsPJyYkmk4m1MLHXZGYgOHBPcn34ibaHQCAQCAQCgUDgcqyFoHB6emrjEQuFgnZ2dnT37l2rSjMBgskJkBWIJmIEBJ9qNZVsT0qodM5mM1WrVSN7tVpN9XpdxWJxqdXBh70xinAymVh4pCTVarWlgL2UkmUHQI586wPnMB6PjQxmWaZOp2OhjVtbW9rd3dX+/r76/b5lS5RKJUmyUZkECR4eHtq5dzod9ft95XI5tVot3blzR8VicUnw8C0K7DvrpIIvnYkMlUpFp6enGgwGJiYMBgM9fvxY8/l8aQLBbDZbGiXoiS9OEUlL/85IScQSiJ+fuME14zhMwBgMBiqVSsrn82o0GioUCuYMoIVhtXLuR5BSFSfcEcKJ04RJHZwbDgqcKpPJxOz7Pv+B4/gcAH68A4L3cU/j3kDwIsMAcuzvR+lC9EDQ4DiMX8QBQw6Bd1J4lwdBj9wntJP4PBDWyhQMHAY4ChAIfMaBd0zgjEAo4TtKWwHtJYgafuykdNFewrnzWbTNIPqwB1xHvx6f4yDJ3EleMFmdzBEIBAKBQCAQCASej42Pe0NK6ddSSk9TSm+7134+pfRhSumb5z9fdf/2Mymld1NK76SUfvCTLMIH1tVqNb322msWwAjx44fgQnIM+v2+er2eEUJfhYegYZuXLrISqFxS8aaPnhA+KsSEwDGKkBGHBNxR5cZ1IOkZOzjkLJfLqV6vmx2eqQrSGSk7PDzUo0ePNBqNVKvVtLe3p6OjIz1+/FidTkflctmEFRwAW1tbVl2mzxw3QLVa1e7ursrlsk0J8OF2h4eH6na7ZuunZQP7NyJLPp+3cYXD4VDD4VDdblenp6eq1WpqNBpLkx5oAWEfIPBcDwg4OQKDwcDEHwgjOQjY61kjpBoienp6ag4Wf20giuyLdGHL397etnYav3cQeV6TLkQIfpc1cjzpIjTQj2LkfvbVdFwUkGtyHhAIaPXxn8O9zOt8Bt8Z7kMcMpLM2YPNn8q9n0rCOTExgQq+bxngOuDG4Jz9WEtcIrwf54xvFfACAZjP5xbcyd5yHM7ZCxv++uFoQIRabVfwzgS+Y4h2vAdxhHPJ5/PmTFkdkbkuuIpncSAQCAQuRzyHA4FA4Fl8EofCr0v6l5L+1crr/yLLsn/uX0gpfY+kH5X0ZUl3Jf2XlNJ3Z1n2wkZkiPvGxobu3r1r0wpI5qd62Gg0LMgOez7VeMgIxB4yRyUZazNVVemiT9/bsCHdEC768EnMh1j3+33rgffVUNbLOnxGgiSriOO2gLAOBgMjiIVCQXt7eyqVShoMBmq32yqVSqrX6yqVShbk6EP0Go2GpDOB5eTkRDs7O2o0Gmo0GlYNHo/HJqBsb2/bvuEAwFa/vb2tSqViow3pr/dTAhaLhcrlsvb395XP520UJuQZm7kPOEQU4JwJj4R88rtMaJBklXrINPkBOAUqlYpKpZJSSiakQBwRjOjHhxxCPrm2iCw+80CSOVqohFM99332CFW+5Ybf8339Gxsbdr05V0l2HjgTuJ7sE84AP2mElhdyF/wUBkQYrjVtPn78oXcmsJ+ICf4a+IkHTEHx1xMHEfe3J+h+LCTH9O0aiFcIHZwvwh7uHtZNOw17zj3ohQuOg8PGPwc4jn+d75AfN+rbcnxOy5rg1/WKn8WBQCAQeCF+XfEcDgQCgSV8rKCQZdnvpZTe+ITH+5qk38qybC7p/ZTSu5K+T9L/eNEvQQzu3LmjO3fuqFarGTGBXFGVz7LM3AndblftdluHh4dm26f6v1gsrKceIkOlFZLs2xAgP54wz2YzC6qDrFBZpfJLfsFoNDIiUyqVbGKDdEEepYt+dyqpkGwIc0pJ9Xrd2gy63a5SSta6QOWZqjg5Cvz3fD5XoVCwvAeCFfv9vg4ODjQej81C3+12zbKP2wL3Bw4R9gJCx7nU63XVajXt7OxYmKG3mEPWqLxTgYZojkYj+z2q0FSm2evVKRFkIUgXLRNccy80QI4ReGgHWA1F9ASSSrtvyeB6cV5eHKBP348r9VVv7i3u21X7PzkbwOcaQKZ9xgCOC86fz/etDkxNGI/H6vV6lv+AuMF9B5nnHkbMwBXixRc+34/8xElBK4GfesJ3wDsL+N5yb3BMhBk/MYP73q8P0Ye18toq4ee4iBzcS3yGb+Pgd7mHWB/H4/1eiLluXMWzOBAIBAKXI57DgUAg8Cw+tuXhBfiplNK3z+1fzfPX7kn6M/eeh+evvRCQo2azadb1o6MjszRLUrFYNKcCoXvdbtccCqTzQ0Y8kURggDDR2gCBo8d8NTSOYEPImP/M0Wi0dJzBYGDkvNlsWj9/sVi0zwQQI0bg+bC77e1t3bp1S7VazcSMarWq+/fv295AOn01eLFYaDwea3NzU/V6Xc1m00h1r9dTp9PR4eGher2ekXMmNIxGIx0fHyufz6taraparVoF2ofk+faTer2uarVqlWvWenx8bFZzHypIFRxCOxgMrAJNFRwyR0YCoyf5u6+k+3YAzp12jNFoZC0UuFMkmbvAt08gyiAm+FGjnAvEmXsDgQDy6sn3amaHv96XZSdIWnq/r6bj3uEa+co89yz7yvdmOByam8QLFAgjXC/prL2Aa4QARyYG60LQ4B7AjUBeBPu6+hrngTjkRQSfy4BQRZCk3ws/yhNRi/PidfbTtyl4N4r/3iEusA7OHWGIZwL3yZo5FC7DS3sWBwKBQOAzIZ7DgUDgc4vPKij8sqQ3JX1F0iNJv3j++vMi0Z9b4ksp/URK6RsppW9QHceeD8EbDoeWiwBpLpVKOj4+Vr/f1+HhoTqdjtnGCYuDMEoXI/PIBKAVwVdJc7mciRmE2TG+kaBH6SzADVfEbDazlgByCyQZKYOUemeFJMuFQBDI5XIWhIeo0mq1lFLSZDKx6RJkGTDpgAo/AsN4PLYxiwgCZA202209efLExJHpdGr967gEsH2zHulC6CHsEbJZLpeNiI5GI3U6HQuY5PjeVUKPPmJCt9s1kccTOEjdeDy2dgyyErjGrAv4qjQuAml5qoCvVnuyz58E+1GxxrHhiaX/Hdwk7LkXEfjhHoRgI255d8LqOE3Ox58r9wnkl3sXkQKxhONzTdkHHwzpz5XfoRUBoQ7hzp8T+0IGBO0CnBvfV+8O4f4naJEWmNV2Ct/egTvB/3iHAEIf5+XDGNkXXAh+lCbuEP7bCzLe6cPvc23WzaFwCV7qs/hY8+e9JRAIBAKXI57DgUDgc43PNOUhy7In/D2l9CuS/tP5fz6U9Jp7631JH11yjK9L+rokbWxsZFjoi8Wikc7RaGT2f0hBoVDQYDBQp9NRp9MxQgxh8C0SEFQmJlQqFRtRuWrhhihDeofDoQ4PD7VYLMwS3uv19OTJE5vCUK1WJckyDXxAI64JXynlOIy629jYULPZ1HQ6tXUyMQKCW6lUtL+/r0qlouFwqIODAz158sRyGLDYb29vW7vC1taWCS4ILIQMpvMJFPTkZ1lmOQS+N92H+CEoEFrHOQ0GA3W7XXW7XTuvyWSi8Xi8FMxIjgHVcc5V0lLLA2vzrQe+ik+LAdeEPAwq3Fj1uU8g7hBR8gkQYTxxZg2QSpwjrMFXxiHhflwkpJ1KOWskb4A+ft6PSwQRDPHF5wpwTNbhK/wc11fcETr8lA7OizYN3+aDzX9zc9PCNH22Au/F/UCLjt9Hro8fXcl6PYFHtCgWi0vuAog97TmIT17MYh8QVCD8iEYEjrI/iDYrz5ulcZL8ux836cWtVdfMuuJlP4trqbX2CkogEAisE+I5HAgEPu/4TIJCSulOlmWPzv/zRySRdvs7kv5tSumXdBZA85ak3/8Ex1Oj0dDOzo62trYs9V+STRAgmT/LMh0eHpodHuIJaYIwUDmVZNMOCCKEePm+cSYhzGYzdTods41jq6dSjBOh1WqpVCqZY+D09NTs4NjUaRWQtGTvZs3ValWlUskmSUDsmX5A+wMtHo8fP9aDBw+sPx7BRJKNN1wsFup2u+r3+yaYeLJL5dyPCaxUKkujESHliBNUlSFhEFHyKyDPs9nMpkaUy2ULgoQkIhQQusj1wTWC+OEnJEDyIJP8Wy6Xs/GbnvwvFotnWlog04Quci78jieQkGiq17RxUDEnDBQi6kcp+n5/QhjZWwi1F3RWrfyS7Pw4Nj/+fQg8/px9ewrvYZoEYoZfJ7/H/tOS4ydk+O8Ue8MP6+Pe9i09OATIb/AtM6zZizfFYtGEBhwUflwma/GZEpLMoeHFBNwP3l1A2wdrQBjxOQ9eWPL3uXfDrCNe9rM4EAgEAp8O8RwOBAKfd3ysoJBS+k1JPyDpVkrpoaSfk/QDKaWv6My69YGkvytJWZb9UUrp30n6v5JOJP3kJ0mz3djY0M7OjlqtlrIsU7/f13w+tzaIQqFgBPLp06eWVyBd2LZ9TzZ2/JOTE5VKJd2+fduCHj3JhfSQDUAFnQwAjg9pxPrO+EayE05PT1Uul5daDbyFmoqyd1Dk83nV63ULTOQ1H1iIa8OPlPzoo480GAyMVFKJJyQPokplnmq8zw6gypxlmbUvsC+sEeLFsT2xPD09NSfCYrFQrVaTJHU6HQ0GA0kX9nraArDZQzwRgxBsGKPJ/YAYQCWcajxro8+fSjWiQKlUsvOBRG5sbFgWAuKHJ+oQUC8s8B6u12ovvg+PRLSQZPuey+WWxnVCcNmTVQeGt9bjPvBr5Ljsl58KIV24GLjXisWi7QUihm+rQPzwDgqmmjDNAUDY/e/6kazsn98L1j+ZTMwFw73qwThWWmXG47FNZ9na2jIxwTsK2CPvQvItDL7VAQGC+4bz9FkOPnPBt1V4R8k64CqexYFAIBC4HPEcDgQCgWfxSaY8/NhzXv7VF7z/FyT9wqdZxMbGhmq1mjY2NtTpdNTtds3uX6/XjfQeHx+bewCi6SuxEGdS6KUzh0Or1bJJAFRffZgbVnk/sg8yASmhyi2dkSCOh2W8UqmoUqlYBoAfG4gtGwIqyarrvV5Pg8FAhULBRAqyFcrlsrIs00cffWStBT6rIMsyI4zz+VzT6dTIFISLEY5+BCfkmgo6bSC0EXDuftIB5yBpqQrfbDZVrVYtEJHMC0+UIesQUCrW5EksFgsjvBA8Xx1GLJpOp+acQDDiWBDpfD5vewhhpuef8+L6Pa8/nvf46Qir4yx9RsB4PLYJIoB9Zc24E3zLAZV1zhFCSwsOa/GjNqniS1oi74g0Pm8EEY6gRu5t7mV+OFc/hcG3Sfh8Ce4fwkYh/ZB9RAfuHcQA31JDe4EXPqSz7IfJZKKUko169fkP7Aefz3EIn1yd0sK/4y5hX3jd31cIPn5cKbkR5XJZ/X7/Ez/LXiWu4lkcCAQCgcsRz+FAIBB4Fp+p5eFlA1I0HA5tagMiA+RiY2NDg8HA8g98FZLKPhZ/2ga2t7dVr9ctlZ7wRIimD0z0dm5fwT0+Pl7qx5cupgX4tgnaMXA4eHs5BGyVnE4mE7XbbS0WC1UqFQukJKTSiwkE27FWP9UCm7p0YemmYnt0dGSOB4QTqt31en1JGOF4kGYcAJ5ASzIBp1Qq6datW1osFnr06JF6vd4zCfu+Iu1HKPqKMxV770KALEN6n0cC/boRnSCRfmQgRLdYLJp7BXIvXdjdcaNAcj1BhiT7Cjaf7/eGrAnaXnyop3RBivl8n3XAvQsZZ1QiwgsZFb4FAIcAAZ2lUmlJRKFVx7skcJ149wnrYU181iqhz+fzqlQq5r4AXnBAiEDgKJfLdt19ICLZKDgTaH9g7yeTydKkDO5LXDf8u3crIARwDIQvHwRJ3gbfY0nm0uBeYN/XyaEQCAQCgUAgEAisG9ZGUKBKzThBnAX1et16nkejkYbD4ZIFHZJByn+1WlWxWFzqmcY1gJgA+Zf0TNUYq710Nm7Sj8mjGup7tEm/RwzwuQZZlj0zMtJb5XFM+EotZEs6q9oeHBxoMBgsCRGsj/exLlouOMZisdBwOLQWCcQDSbZPEHPfVgAxHI1GNiISQYU11Go11Wo1lUolEz18gB/vQ+zwxI9rTvjlaDQyAcPnIfA+fgdSyv7RtoG9X9LSeErvckAU4hpDJHF7cD9R5fYTQDz55N7jfuCaInpJWhpHyfFWcxo8aYUI00bgJ5AQlsg97rMU/Ovcq965AXn3eQJeEEF44buCmwJRBgGM95MLgUDgQxD93iAObG9vmzDm980HWyLASReTKnzwI+v1YY/s7cnJifL5vLle2FP2iN/n+iEe4lDx4Y4EjnIc3B3rnqEQCAQCgUAgEAhcJ9ZCUMCyf3JyYqMam82mdnZ2jGBNp1MbT4j4QNX15OREo9FIuVzORt/5qutoNFK/39dsNrOkeaYOQG5yuZxVZCGr9ILn83kNBgPLGCBAkLX7sEP/GmIDpBIyDHnxVXj+zVfVEQNwSXBsqqmIEIgSVKzJCphMJrYvhULB9oyqsQ9CLJVKZn1H7CBcEccH1Xvs6ltbW7ZGRAmmTZAPAWnzLgeI3Ww2U7/ft/528gJ80CHp/1SbOWcfZFmpVMwiD/H04w4h35wfmRWSLKjRW/d93oBve8ExwNqZzkAGhyR73RNRL4D58D+f3cB9AJn27Thck1X3B583Ho9NjMDxAdmXtCQUScthgxyXlhmfBwGpRsDI5/MmJuCW8c4d7tv5fG4jJn0ehnRB2JkkQQaEb8/wbUZcT75DCDm4lBDovMDnBRxEhmKxaPvDD88cxCaOixjCdyMQCAQCgUAgEAg8H2shKEhnZKTf72s8HqtSqWhvb0+VSsXIzcHBgdrttgUnjkYjcwNQKSYskaqtpKUgRklLeQYEM5IjQFgjhIZxdicnJxoMBjo6OjKBY5XYTSYTI9S+F1uStWJAPiE0VKUZF0k4HTZ1zguiy5/0gyOMLBYLVatVNZtNI2WcNyMzT05O1Ov1bJ98e4B0UWVnbePxWI1Gw0Zjsk/0wvsAP4QaT0QLhYI5ShBEvC2e60iFGPcBQX7Hx8fm/PCZCIyKZO/o42fdfu+pvFNlZ4qHpCVRStJSKwktMZznqiPEjyaFyLNOyKyfIMDveELvHRQQY0lL10OSCVuIDT6XA6ENUoxTAaFM0pIg4Scz+PYBAjE9efYtAAgnXHuyFhDtfBvCfD63Y6+2EHF+iCAc12c4+LYE1s/f5/O5BoOB5vP5UhuKz9LgPvD5FzhYEHMQumgDYsIJDhDvKgkEAoFAIBAIBAKXIz0vmO7KF5HSgaSxpPZ1r+Uz4JZi3VeJWPfV46au/WWt+/Usy3ZfwnHWHimloaR3rnsdnwE39R6Vbu7aY91Xi8/7uj9Pz+H4f+KrR6z7anFT1y3d3LW/0mfxWggKkpRS+kaWZX/5utfxaRHrvlrEuq8eN3XtN3Xd14mbumc3dd3SzV17rPtqEev+fOGm7lus+2oR67563NS1v+p1b3z8WwKBQCAQCAQCgUAgEAgElhGCQiAQCAQCgUAgEAgEAoFPjXUSFL5+3Qv4jIh1Xy1i3VePm7r2m7ru68RN3bObum7p5q491n21iHV/vnBT9y3WfbWIdV89buraX+m61yZDIRAIBAKBQCAQCAQCgcDNwTo5FAKBQCAQCAQCgUAgEAjcEFy7oJBS+qGU0jsppXdTSj993et5EVJKH6SU/jCl9M2U0jfOX2ullH43pfQn5382r3udkpRS+rWU0tOU0tvutUvXmlL6mfNr8E5K6QevZ9WXrvvnU0ofnu/7N1NKX3X/ti7rfi2l9N9SSn+cUvqjlNLfP399rff8Bete6z1PKRVSSr+fUvrW+br/8fnra73f64x4Fr+SdcZz+AoRz+ErX3c8h18y4jn8ahDP4qtFPIuvfN3X/yzOsuzafiRtSnpP0pck5SR9S9L3XOeaPma9H0i6tfLaP5P00+d//2lJ//S613m+lu+X9L2S3v64tUr6nvO9z0v64vk12Vyjdf+8pH/4nPeu07rvSPre879XJf2/8/Wt9Z6/YN1rveeSkqTK+d+3Jf1PSX9l3fd7XX/iWfzK1hnP4atddzyHr3bd8Rx+ufsZz+FXt9Z4Fl/tuuNZfLXrvvZn8XU7FL5P0rtZlv1plmVHkn5L0teueU2fFl+T9Bvnf/8NSX/7+pZygSzLfk9SZ+Xly9b6NUm/lWXZPMuy9yW9q7Nrc+W4ZN2XYZ3W/SjLsv99/vehpD+WdE9rvucvWPdlWJd1Z1mWjc7/c/v8J9Oa7/caI57FrwDxHL5axHP4ahHP4ZeOeA6/IsSz+GoRz+KrxTo8i69bULgn6c/cfz/Uiy/cdSOT9J9TSn+QUvqJ89f2six7JJ3diJJuX9vqPh6XrfUmXIefSil9+9z+hWVnLdedUnpD0l/SmUJ4Y/Z8Zd3Smu95SmkzpfRNSU8l/W6WZTdqv9cMN21/bvKz+Cbfo2v9TPCI5/DVIJ7DLxU3bX9u8nNYutn36Vo/FzziWXw1uO5n8XULCuk5r63z2Im/mmXZ90r6YUk/mVL6/ute0EvCul+HX5b0pqSvSHok6RfPX1+7daeUKpJ+W9I/yLJs8KK3Pue1a1v7c9a99nueZdkiy7KvSLov6ftSSn/hBW9fm3WvKW7a/vx5fBav+zVY+2cCiOfw1SGewy8VN21//jw+h6X1vw5r/1wA8Sy+Olz3s/i6BYWHkl5z/31f0kfXtJaPRZZlH53/+VTSf9CZPeRJSumOJJ3/+fT6VvixuGyta30dsix7cv5FOZX0K7qw5azVulNK2zp7AP2bLMv+/fnLa7/nz1v3TdlzScqyrCfpv0v6Id2A/V5T3Kj9ueHP4ht5j96UZ0I8h68H8Rx+KbhR+3PDn8PSDb1Pb8pzIZ7F14PrehZft6DwvyS9lVL6YkopJ+lHJf3ONa/puUgplVNKVf4u6W9Jeltn6/3x87f9uKT/eD0r/ES4bK2/I+lHU0r5lNIXJb0l6fevYX3PBV+Gc/yIzvZdWqN1p5SSpF+V9MdZlv2S+6e13vPL1r3ue55S2k0pNc7/XpT0NyV9R2u+32uMeBZfHW7kPbruzwQpnsNXtV63vngOv1zEc/hqcSPv03V/LkjxLL6q9br1Xf+zOLuG9E//I+mrOkvRfE/Sz173el6wzi/pLBHzW5L+iLVK2pH0XyX9yfmfrete6/m6flNntpxjnSlRf+dFa5X0s+fX4B1JP7xm6/7Xkv5Q0rfPvwR31nDdf01ndqFvS/rm+c9X133PX7Dutd5zSX9R0v85X9/bkv7R+etrvd/r/BPP4ley1ngOX+264zl8teuO5/DL39N4Dr+a9caz+GrXHc/iq133tT+L0/lBA4FAIBAIBAKBQCAQCAQ+Ma675SEQCAQCgUAgEAgEAoHADUQICoFAIBAIBAKBQCAQCAQ+NUJQCAQCgUAgEAgEAoFAIPCpEYJCIBAIBAKBQCAQCAQCgU+NEBQCgUAgEAgEAoFAIBAIfGqEoBAIBAKBQCAQCAQCgUDgUyMEhUAgEAgEAoFAIBAIBAKfGiEoBAKBQCAQCAQCgUAgEPjU+P9RRanwvx+0HwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 29072 430792\n", + " Min thresh = 1000\n", + " Sliding\n", + "\n", + "\n", + " Winner = Sliding\n", + "\n", + "\n", + " VFOLD = 8 of 15\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsIAAAGDCAYAAAAh/naNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAACGLklEQVR4nO3dd5gb1dUG8PdI2r4uuBv3im0wBmx6xxQDSWgpEEpIQggJhCSkGUiDFEgjJPkghNBCQg2BUGzA4GAwxbhh494r7r1sU7nfH1M0M5qRRlppNdK+v+fx493RaIp2d3R05txzRSkFIiIiIqL2JlTsAyAiIiIiKgYGwkRERETULjEQJiIiIqJ2iYEwEREREbVLDISJiIiIqF1iIExERERE7RIDYSooEVEiMrTYx0FERNkrx2u4iCwSkTOKfRwUDAyE2xERWSsijSJywPLv/4p9XE4icq1+8f18sY+ltURkoH4ukWIfCxG1PyLyuojc6bL8IhHZ0pprk4hM069vYxzL/6svPyPXbed4PMb11nh/2yoir4jIOdb1lFKHK6WmteWxUXAxEG5/Pq2Uqrf8u6nYB+TiSwB26f/nHYNSImpHHgNwtYiIY/nVAJ5QSsVauf3lAK4xvhGRrgBOALC9ldttjc5KqXoAYwC8AeAFEbm2iMdDAcZAmACYWdj3ROQvIrJXRJaKyHjL44eKyEsisktEVorI1yyPhUXkNhFZJSL7RWSOiPSzbP5sEVkhIrtF5D6XC7L1OAYAOB3A9QDOE5Ge+vIHROT3jnVfFJFbLMf3HxHZLiJrRORmy3o/F5HnRORfIrIPwLUicpyIfCAie0Rks4j8n4hUWp5zrogs01+L+0XkbRG5zvL4V0RkiX5Or+vHne1rnu41PU5EZovIPj2rcY++vFo/j536sc8yXiMiIhf/BdAFwKnGAhE5BMCnADye6VrowxMAviAiYf37KwC8AKDFsr+QiEzU3yN2isizItLF8vi/9ez0XhF5R0QOtzz2mP6+MUl/f/lQRIb4OTCl1Bal1J8A/BzAb0QkpG9zrYicrX/t+f4lIiNE5A39Gr1MyuAuJaViIExWxwNYDaAbgJ8BeN5ysXoKwEYAhwL4LIBfWwLlW6Bd/C4A0BHAVwA0WLb7KQDHQvt0/nkA56U5hmsAzFZK/QfAEgBX6sufhHaxFcC8kJ8L4Gn94vYygPkA+gAYD+A7ImLdz0UAngPQGdqFOw7gu/q5nqg/55v6trvp694KoCuAZQBOMjYkIhcDuA3ApQC6A5iuvz7ZSvea/gnAn5RSHQEMAfCsvvxLADoB6Kcf2w0AGnPYNxG1A0qpRmjXj2ssiz8PYKlSaj7SXAt92gRgMbTrMfT9PO5Y52YAF0NLchwKYDeA+yyPvwpgGIAeAOZCu0ZbXQHgDgCHAFgJ4FdZHB8APK9v+zCXx1zfv0SkDlo2+Un9uVcAuN8apFOZUErxXzv5B2AtgAMA9lj+fU1/7FpoFzSxrD8T2u2zftAulh0sj90F4DH962UALvLYpwJwiuX7ZwFMTHOMKwB8R//6VgDz9a8FwHoAp+nffw3A//Svjwew3rGdWwE8qn/9cwDvZHhtvgPgBf3rawB8YHlMAGwAcJ3+/asAvmp5PAQt8B/gst2B+msQcSzP9Jq+A+3C383xvK8AeB/AkcX+feI//uO/0vgH4BQAewHU6N+/B+C7Huua10L9ewVgqMe60wBcB+AqaB/sDwOwXH9sI4Az9K+XABhveV5vAFHndVF/rLO+z076948BeMjy+AXQgni34/G63lbry0/Wv18L4Gz9a9f3LwBfADDdsexvAH5W7J8n/+X3HzPC7c/FSqnOln9/tzz2idL/2nXroH16PxTALqXUfsdjffSv+wFYlWafWyxfNwCod1tJRE4GMAjA0/qiJwGMFpGj9ON6GtqncgD4IpJZgwEADtVv7e0RkT3QMrbWkoENjn0NF20QxRa9XOLX0DIi0M/XXF/f90bL0wcA+JNlX7ugBct94F+m1/SrAIYDWKqXP3xKX/5PAK9Dy4RvEpHfikhFFvslonZGKfUutJrdi0RkMLQ7dE8CGa+Ffj0P4CwA34J2jXIaAK1O17hmLoGWCOiplybcrZcm7IMWpMJxDL7eQ9Iwrqu7XB7zev8aAOB4x/vKlQB6ZblvCjgGwmTVxyg90PWHliXeBKCLiHRwPPaJ/vUGaLfvW+tL0ALKeSKyBcCH+nLjlt5TAD6r1+MeD+A/lv2vcQT4HZRSF1i2bQ3wAeCvAJYCGKa08oPb9H0DwGYAfY0V9dekr+W5GwB83bG/GqXU+1mca9rXVCm1Qil1BbRbcr8B8JyI1CmlokqpO5RSo6CVa3wK9lueRERuHod2rbgawBSl1FZ9ebproS9KqQZod8q+AfdAeAOA8x3XzGql1CfQkhoXATgbWtnXQP05WR1DBpcA2AYt++t2bG7vXxsAvO045nql1DfyeFwUAAyEyaoHgJtFpEJEPgdgJIDJSqkN0G7H36UP1joSWsbSyMg+BOAXIjJMNEeKNnLYNxGphla3dj2Aoyz/vgXgShGJKKU+gpbVeAjA60qpPfrTZwLYJyI/EpEaPcNwhIgcm2aXHQDsA3BAREZAu4AbJkHLRF8sWoeJG2HPAjwA4FajVkxEOumvVzpV+mtXrZ/rJ0jzmorIVSLSXSmVgFbCAgBxETlTREbrA1P2Qbu9GM+wbyKix6EFm18D8A/L8nTXwmzcBuB0pdRal8ceAPArPYkBEekuIhdZ9t8MYCeAWmgZ6bwQkZ4ichO0MS+36tdTJ6/3r1cADBeRq/X3xAoROVZERubr+CgYGAi3Py+LvY/wC5bHPoQ2YGEHtMEIn1VK7dQfuwLaJ/VN0EYE/0wp9Yb+2D3Qan+nQLugPgygJsvjuhjaoK/HlTbSd4tSaou+rTCACfp6T0G7mD9pPFEpFQfwaWiB8xr9+B+Cll3w8n1omYj9AP4O4BnL9nYA+ByA30K7OI8CMBvaxRpKqRegZWmf1m/lLQRwfobzO6Cfn/HvLKR/TScAWCQiB6ANnLtcKdUELSB/DtrrvATA2wD+lWHfRNTO6QHq+wDqALxkecjzWpjl9jfpJRhu/qTvc4qI7AcwA9pdPUAL0NdBSw4s1h9rrT0ichDAAmg1xZ9TSj3isa7r+5detnYugMuhXaO3QLvuV+Xh+ChAxF4SSu2VaD0Wr1NKnVLsYwkavSvFRgBXKqXeKvbxEBERUX4wI0zkQkTOE5HOIlKFZM1cPjIVREREFBC+AmERmaA3k14pIhNdHu8kIi+LyHzR5vD+cv4PlahNnQhtJPEOaGUXFyutHydR4PGaTUTkT8bSCH1QznIA50C7PTwLwBVKqcWWdW6D1vPvRyLSHdrIzF5KqRa3bRIRUWHwmk1E5J+fjPBxAFYqpVbrF8mnobU6sVIAOuhtpuqh9epr7fzlRESUPV6ziYh88hMI94F9MoKNSJ044P+gtdraBG2U5rc92pQQEVFh8ZpNRORTxMc6bk2tnfUU5wGYB60l1BAAb4jIdKXUPtuGRK6H1icWdXV1Y0eMGJH1ARMRBcGcOXN2KKW6F/s4XPCaTUTk4HXN9hMIb4Q2BaGhL7QsgtWXAdytT0W7UkTWABgBbaIDk1LqQQAPAsC4cePU7Nmz/Z8BEVGAiMi6Yh+DB16ziYgcvK7ZfkojZgEYJiKDRKQSWnPplxzrrAcwXt9RTwCHAVid++ESEVGOeM0mIvIpY0ZYKRXTpyh8HdoMX48opRaJyA364w8A+AWAx0RkAbTbcj/SZ+ciIqI2xGt2fm3Y1YB+XWqLfRhEVCB+SiOglJoMYLJj2QOWrzdBm4qQiIiKjNfs/Hhr6TZ8+bFZeOCqYzDhiN7FPhwiKgDOLEdERORi8WZt7OD8jXuLfCREVCgMhImIiNLIMO8UEZUwBsJERFQWJtz7Di788/S8bU/0RnQqpfsckX87DzSjORYv9mGQBwbCRERUFpZu2Y9Fm/ZlXtEngRkJE+Vs7C/fxNf/OafYh0EeGAgTERG5EMbBlCfTlm0v9iGQBwbCRERUVgZOnIR/frC21dsxpuhTLBKmHPF3J/gYCBMRUdl54sP1rd6GmRFmLEM5iiWy++XZuLsBexpaCnQ05IaBMBERlZ18BK9GjTDjYMpVPMtA+KuPzcYfpiwv0NGQGwbCRERUdhQUmqJx/GfOxpxvTzMjTK0VjSeyWn9vYxS7mBFuU75mliMiIiolCQU8NH01fj9lOSJhwUVH9cl5W2yfRrmKxbP73YklFJqj2QXP1DrMCBMRUdlRSiGqByFLt+zPaRuip4SLlRFWSuFPb67Axt0NxTkAarVsa4TjiQR7DrcxBsJERFR2FIBONRUAgI27G3PahmRepaBW7ziIP765nD1oS1gskV12N55QaI4xI9yWGAgTEVH5UUBDSwwAsH1/U06bSNYIe2f19jZGC5bBM/bbFGWGsFRlWxrBQLjtMRAmIqKyk1AKB1vi+te5bcPsI5xmnTF3TMHVD8+0Ldt1sIXBKwHIfrCcViPM3522xECYiIjKjgJwsFnLCGcbjBiMZF6mGuGZa3bZvj/mF2/g6oc/zGmfVBrmrNtt/n6lk237tHhCoYUZ4TbFQJiIiMqOUsDBZi2zlu3taUNCD2ISOYyWm7V2d077tGLbtmDavr8Zl/31ffzwuY8zrmsM2Az5KDhXSmkZYQbCbYqBMBERlR0FlZIRHjhxEu6fttL3NrId8U/tw/b9zQCAldsOZFzXGCwXksyRsPHr1ppAeN3Ogxh++6u+jo00DISJiKjsKAUcbEkGwsbAs9++tsz3NoxMMMPh9mPXwRZMW7Yt7Tp7GrUJL4yuJOkYH6b8BMJG0NyawZcvz9+ElngCz8/dmPM22hsGwkREVHa00ggtEI4lVNa1mkCyvpMlCqkm3PsOvvlE+bV1u+aRD3Hto7PSDnbcdVALhDv6CYT10ggfcbD5+9aajLDxa54u8E7wTocNA2EiIio7Sik0tCRrhHN574+ZgTADB6elW/Zj8oIted/uW0u34ZF31+R9u34t3+JdUvClR2bipy8uxA69NKJTTQXeW7kDQ26bjM173XtVx/SyHD+BsPH71hJL5Pw7Z9zF8KpJvvvVpRh822TEEwpKKTz+wVq8v2oH7nx5cbv9PecUy0REVHYU7KURuQx4MzJn2dQKFyLbJn6iqDLx5cdmAQC+csqgouw/rrwHSL69fDsA4KYzhwIA6qvC+PbT8xBPKKzYegC9O9WkPCeb0oi4ZVBncyyB6opw1sdvZoRdImGlFB54exUAoDEax7Z9Tfjpi4vMx79yykD0PaQ2632WOmaEiYgokFpiCSz8ZG/K8oemr8Ybi7emfW5CKTRHtWxcNJ7IrTRCD4ayeW68nWbV3Kzf2YADPlqMuSlWdjJudgrxXmenXhoRVwo7DmjZ4Ygl8Jy+YjsGTpyExZv2ZTVYzvqByyiPaIrGsWBj6t+AF6W8A29ryUVLLIFGR/nH8q25TUVe6hgIExFRIN35yiJ86i/vYsOuBtvyX05agq89Pjvtc5VKdovQSiNSIxulFH764kLMWqv1Ad6+vxkDJ04yBxoZQVE2fYi9guaGlhjezBC8l5vTfvcWvvC3D3J67r6m3ALofEn34ceYsdDali9qWf+1hVrJyJx1u8z2aX6S+tbfUWPA3Pf/PR+f/r93sVMPuP0et1tpREvcHgg7a5GXbmEgTEREFBhz1+0BoE1jnC2FZA/XaCKBhEssm1DA4x+sw+ce0IK1NTsOAgCenrUBQDKoyCoj7LHuj/+7ENc9PrvdZd0WbdqX0/N261nXYkmXkW7Ua8+tgeXexii26VN5G78D4VDIEphmmRHW72bMXaf1o3Zmb70Ym3Arp4laAt9oPGHuw7B5T3Iq8rnr/U0Yki/ReAJ/nrrCfG3bEgNhIiIKpGxujq/fac8aKwVzhq5oXLmWLMTcomPLjpMZ4daXRqzVg+xcSwXKlbW1ndWuhuIGwuk++xhBqfX34uanPsJxv5oKIBnQvrF4C+55YzkAfxNqOGuE31i8Ffv1zHjYzwag9c/W9pe6vrP0wtmmbdbaXRg4cRLeXbEDl97/Pr7zzDxf+/Rr674mPDR9tevP+/m5G3HPG8tx79Tled2nHwyEiYgokIw3TD+3lU/73VspzzUydnGP9mnWZU3ReMp+khlh/6UR+RwsV6gq2Zfmb8Lxv34z56mn82VvYxTDbn8VD7y92lxWGdHCkl0HtEB4+orteHfFDtfnPzVzPS65/72CHFs8oTBj9U78b2lqOUuj2Y3E/fUzfm/eWrbdnNjCyNDG4gnc+MTclNr3vY1RRC2/Z0s278PXHp+N/foHp7DPAZOJdKURMX+lES/P3wQArvX5rXHDv+bgl5OW4OlZG7Bks/1OgXFsbZmFNjAQJiKismMEwTX6yPsWl6DFmiHbsrcp5XEju5tN1wiv0ohcgtpCjRf7/rPzsXVfs9lerjVe0oMmJz8fCLbrpQT/nrPBXNaxWmtmZfTqvfrhmbjq4Q9dn3/r8wvw0fo92Ryub0opXP7gDHzlsdRa9GRG2D0Qdvt9MQLTtTsPYtKCzbj56Y/Mx3YdbMGYO6bgj28sty3z690VO3D3q0sBWEsjtP9/9/pSs2bZelwt8dRA2LC/WStF8puF9mtvg7bdW59fgJuenGt7zPigUIzPZgyEiYgo0ATJN2RnFu6h6atxzC/eSHmOkWGqrdQCYbcJEqyDnbbsSwbCxu1lI5ibvkLrFTtw4iTckuF2sVdphLE4m9BC5SEnvLcxmvKauX0oyNXNT33kutzPhwe316QirIUlfmti88UI0gx+SiNaPEpm3O4gJGt29f8tT92jl4G88vHmlH34OZ6rHv7QbItmDLjbeaAFSzbvw31vrcIN/9ImPrEG7ks370Ozx2u8+6D2Whg/i3yxDgb8ZI+977JRylGMbiElFQhv2NWA1ds5fzYRUbl5ef4mDLt9sm1gnHJkt4DUIO6Xk5a4Zs+MbFdtlRYIOwcGAfYa4a37UjPC1mDOyPQ+/9Enac8jiyqKjFq7LaUUxtwxBROfX+Cx/cIFHX4GGBprWOtZjdf8Zy8twtQlybKEVxdsxo2OLKKhtefxzvLtGHPnFFsJRro2eE16Jj3qkVGNuQTIRnJVUuNg14DT+cHNGkTuONCM/3r8Hhqr/e2d1Tj/T9Ntj1kD4YnPL/AcyLhbD8zznRG2nXPIfs7GS5BLm8PWKqlA+LYXFuCWZ+cX+zCIiCjPfvDcfETjytZVwczMWoKAliynn62r1G61u2VB447SCOfbfqYAyy175TUAz1gzm8kxWpsRbtKD/+fmbHR9PNeex36ydp4DES0SLjXg1p/JV/+RLEv4xhNzMcmSMbWKtvITg9E+b+763cljS9c+TQ9Svc7RLZgzgn23zKfby9nk+OBm/Rv42uOz8Z1n5pldKszjaol5BpKNLfGU12+VR2LRCIT3NkbxwNur8paldW7mzcVb8YN/azGd8XdRjNmfSyoQroqEWzUHNxERBZPxxm90V7CyxhvZvgfkUhphyBQour1pZ4rJsiqNyKGcwsq4ve4Ve+eaSfWTtfOVETZmQRPv0hc/sunqAQDLHP1yk+3Okscxe90uz+cn26cp19fWvUZYW9FYXdnWTz3nlIywZRWjnt2ZeR7109exv8m91eArH2/C/dNW2ZZ5DUzbrZeJbN/fjLtfXYoFeRo0Zw3mFYDrHp+Nf+sf0lga4VNVJISWWNv3mCMiosKq1O+Nrt2ZDISN98R4KzLCtXpG2C2AtgZr+5tiZmBr7C5Tnavbm7Zb8LyvKYqPN+7xecTW7Wf9FBsjELYGmtbgN9fsm5/6Xz/rJDPCluPL8DTXLHwWwfPUJVtx3r3v4IWPklly42dmfZ2++4z33WfjdykaS7h2c3D7EOBczXoabpO9pCuNSGenxyC7dY72ggDM1mxOzr+xXH4Pn/hwHQZOnGQLzL22k0gos3Qkl6nQW6vkAmFmhImIyo9RMrhhV3IQjfGWaA0srO8BfibaqNEzwm4BtDVYi7lMw5yxNMJlmVsQ9JVHZ5lBgPHo3sZoxqlzWxsUNLaktt6ylhG4Be0zVu/MGLT7CXKzyQhbY8RMJRVu2/WbEd66r8kstzAmawHStxxLJ5ZIePTrdRssp+9LpZb7uL2euQbCXn2q3foyewXNTrkMmvvDFK0DxtZ9TbjxybnY5rjjYv1A0xJPmNn4TD/KB95ehX9+sDbr40mnpALhykgo62wAEREFn/G+aB3QY7xZvr1sG95aug0AbJMAjLljSsbt1umBsHPyAMAesERdeg1nCubcYhO3gMVWe6o//sSH6/C5v70PpRQSCYVH3l1jTt1rbj/t3jNrbNHOzwjCfvriQlxy3/uWx1Nfk8sfnIHP/F/63rxxH4FnNsGyddxUptfcbbt++yH/9MWF5tfWTKXx9GwHh0U9SiPSnYPx87f+mrgNrkvXNSJdTLzP48Oh0ZfZtsxnIJzLoDlj2//9aBMmfbwZv5+yzLPsoSWesNQIp66ztyGKFfrYgf/M2Yh3V7r3lc5VSQXCzAgTEZUn4+3PWUcIAH/+30p8+bFZAHIojajSSyPcukZYApBYPGFmSN0y0U4frNpptqwy/O3tVZhw7ztpj8fIPh5sjqEpmkA0rjBl8Vbc+cpi/EbvBWuu29qMsKM04vEP1mGxZSKDs+9527UmOxM/A+GswbJXoGq83tb2eLkEwm6B5OrtB3DFgzNsdbDOUpg7Xl6EjzfuMV9nP9MgW7XEEq4fVtyO0XjJ3E7P7Zwbo87yBH+/C3sb3TPCOw82+3q+G+fx7WuK4mcvLjQn3kjH+rO3BfOWdVosJSZu53nRfe/inD9qf1db9jahd6eaLI4+s5IKhJkRJiIqT8YboC1mcnnvzzoQrjAywulrhOMJlVIKkW6w3BV/n2FOn2u469WlroGOWw2scZ7ReMIM1vY5ajZbWy5pZJjTZfSWWbp0+B085wyMTrprKiYvsHcksL52Xj2B4y4lCZkOwS0b7dY14jevLcUHq3di+ortlqXJHW3d34RH31uLz//tA0sgnH7fVvVVEcQS7tNDuwXmyVkKjYywwr1vLsevJy9x/WDR4ChxsL4uzhZsEcuBe2WEZ63d7boc0JKM6Th/3nPW7cY/PliH2zza8ln97R1t1kCBeH6wa4klkjXClpfiH++vxZMfrsdavb55f1MU+5tj6N2pOuN+s1FSgbDWNYKD5YiIyo1ZQ+uSEbbKumuEkRF2LY1I7mHJ5v3mdLiGQvQ0NbZpBAXReCI5aMyxbros4NQlW11nw7NqytA1wmmPj5prQCsjsdq0twm3vWAPiqyTSriVYACWgNG4Le5rEF7qz9/IOt731kr88Dm9HRdS23FZXwdj0oiEsnSNyKIWtq4qjGg8tZxGKeWaEY4rRyAM4N43V+DBd1a71oofbPGuEXb+rVg/6OQyWcrkb5+Kc0b19Hzc+UHD+DCyP8vpkK2vivV1s364tX6A+tlLi2y/V5v13/fendtxRrgqEkJC5dZehYiIgsttEJFbIJh9H2GjfVr6jPAnexrxq8lLbPvNNhDu4+MN2jxPfdst8YRnj+F0e//qP2Zj/B+mpd2XW9cIJ+tLvPOAv9vnbllZZxbUNhDR43V0ZoT99AN2+5kY+/7d68vw7Gy9HZce3XhlIXfo56qUMtdx6wDhpa4ygmgskZLB3ri7EUs2p05UkTAzwbD9D7gPcGtscWaE3cstNu1pbHXJ6JDu9eigf2B043zNc+mmIuKoi7ZsI2r5G0j34W+TPhvdoXnOCHufeQBV6un75lgCkTxP/UdERMVj1uV61BEass14pc0IZ9hWNoGwUgp9OtekTB0L2DO9RkATNzPCynzzd96az5QhdWYNnRpajEA47WqmHS4Dqtyky8qa61h+kF6D64ztGIfnp/uD38FyIZcJGqwvgxE8KpW8HZ9NWFFbFUbzntT9OjPjBufP3TpZilvpiPNn6zUw86S73/J9zE7fHj/M/HuKhL1/SZwfctLVrr847xN8tH5PynItELaXIhmaYwnLnRLv492j9zc+pK7Se6UclFQgXGUJhOuqinwwRESUN66lEY43xVXbD+DPU1dktV2jRjhd+7TqipBrxjibwWqxhELHmsxvqeYbvpERtmQVRbTluxta0LW+yjMjbH2NEgmFkEek29iSOSNs5beLgOuAtTQdN7xqrY11RATTlm3DtY/Oyrhvv+3TxGXwldvLkFAqGZxmcQOgtjKS1d0JZ42w9bkNLh9onJNduGaEfR7wgK61rn2Ev3vOcPPrdMnFbLqpfPvpeZ6PeT2rxVIelO6cjNesMs+J0JJKq1ZGvC9oRERUmrwyRU7/eH8tljpmBcukrirzYLkaPVg2j0f/308LMOu2/EyfnJoRTthmWLt36gqM/eWb2LavyXUKYsBRzmAJXhtaYphjmREtWSOc7riSG7P2rk33PmtkCLtaMnPpbp97/UyNdUICvL5oa5pjdN+uYdGmvSnTDRufDayvlbjM0aeQ/FCSzZTTRsmNU8eaCtflyclatC8ONidfa2cNdWU4lBIcu85i6PNwrzt1cMqyi486NGWfXpx3AHLrZiLe7dNiyb+BdH//RvY60+C+bJVUIJzMCHPAHBFRufCaZUs5ckh+M5ZWyZnlvAfLVVe4BzXZTEEcjSds61tjT+vXRkxh3M3XMsLJzOiURVsA6GUKHru3vkb7m6J49L01aIrG8b1n5+Oyv35g1lIawZRSCo++tybjOdg6PbTE8eK8T7DVbepp/Twr0wQkzo4c6dYREd9lCXGXsow7Xl6MU35jLxEwXvJMQZtSyfP2GtTnxut3xqvWNiUjbCnncJZG1Falbtt43ltLt5ndQPwGpM7a5yV3TsC9lx9tWxZJUz+T8iHHkoG3d+Xw9tTM9ebUzU7Wv4F0p2R8mE33e5eLkgqEjZNnRpiIqHxY39DTTRyw62ALDu1UjeMGdvG97VpjQg3XwXLaMq+gxu+MZdq27N0CvMKK5G14a0Y4mRk1go69jdGUjN9fp63Co++tsQWsz8zegDteXox731yBBZ9o3QdOuvt/WLltvxlgNccSuOPlxb7OwbDzYDO+/fQ8XPnQhynrGRnCdDOOWbOIboHws7M24HF9hrCQ+C/f8PqZOOMC1xphj10Yx/fLSUtcH39o+moMnDjJtsx5FyHT8cUddwKsnAF4rcu2lVJYvGkfvvzYLLPNnt9AOBISTP/hmcnvXeqB05VGpJS9WPZ79cMzfR1DOtbyoHQZYeOORS4z3aVTUoGwtUaYiIjKg/Wtz8iqfrR+d8o0szsPtKC6MuwdZTqM6NUBPTpoI8zd3jeMN3jnrVbjfd5rYN6l96fOvOZspeVVjpBwZAajcWWrETaCjCv+PgNz1u02n7fjQDN+89pS3PHyYtsHhN16lnzHgWZboLdo0z7z9fN7F9Ua8BidDNbtPIh3lm93Xc9vRtgasO1tjOKVjzfhh//5GDNWa2UcAvEdCPsdwGjUTVv37bWLTAHl715flrKs2qM0wjk7oLkPR9cIK+MDy/GDtA94HapTyysSCli/y17n66PJBgDttejXpdb83i37W+kIjqsrkj/bbKcez1aL5W6KWTrkso9m/XViRhgMhImIyomzNGJvYxSX3P9+SheDnQebUVsZ9t0F4bzDe1neN9y6RqQvjWiJJVDhkj2b6zIqPp6wB8LWY7TWpu5riuLyBz/AGn1GN60+0sgIiy3IWLgp2V929lo9aBR74GZkIFtiCdt+QiJmaUS6zLb1tY9bAn8jEI7GFa55ZCY2WIIw43VLV1dqfS2sAfa/ZqzDTU9+ZFs3FPKfEfZbt22WRtiy9O77yBRcux2bV0b4YEvcVjttSBfgGT+nX11yBKb/8Ez06JjaDSChVEpp0OodB1LWc+MMfN0+pDkzwoO71Ztfp8sIW+Xa2tatNMLtzn9TLAGR9GUcuSipQLgq4j1nPBERlSZnaYRX+dvOgy2oqQh7BjRO1RVh8zZwuoywV1DTHIujPk1/Vfu2EvaMMAQLP9lrG7wGAFMWbcWM1bswW8/2ahNqaI+FRGy38q1B3C59AoiudVX2yQj04KNFDxLM/Yu/mldrSGMNePY66jmtg7eM/Ve4ZOaMgNlZI6yU9s/t5yBoXY2wGyN4tWb1vWuV02/LbWY+a8bUqqE5hjqX35mEsvcstj1Hf22rImH061LrOhgsobRuIlbODxRevLqKWDnLJayzt8UTCTS2xDH89lfx8vxNnq+jc2ZEv6ylEcbr43YNaGyJozIc8jUoNRu+fvVEZIKILBORlSIy0eXxH4jIPP3fQhGJi4j/Ii6fWCNMRJRZUK7ZuUgo5dqnFtCyRTWVEd8zpVVGQqjQZ1aYtix1UI8RVLkFdID2XuMW1LjRaoQtxy3Ap/7yLi776we2Uo6Djlvn1tZRIt4lBXsatSCoripsC5aj+vthSzxh+3ggEM+pjb1Y9/fOih22x6wJKOM8nbfTX12wGaf+9i28vXy7LajetKcRX35sFgbdOhl7G1IHPEoWNcJGNnrhJ6mzsVkZE2pY4wWvUhdrNwO3INTt0Lw+PB1ojpl16U4J5V6GYUyeYQSsRtLPfozIOJOgFz8ZVOPvxCAiePDqsQC013zV9gNoiSfw56krPAPhvT5nJnRqtvwNGNlmt4RnUzSe99ZpgI9AWETCAO4DcD6AUQCuEJFR1nWUUr9TSh2llDoKwK0A3lZK7UrZWCuxRpiIKL0gXbP9smeEFaIx71vVNRUh34FwVSSUfqIAY2pdj1VaYgnPsgknpZCmNCLJ2RbL2j5NILbXwlrRYEwmEA7Z21Bt299sbscq5DMj/MPnPjYDGOP1GNOvM6Yt22Zbz/q+a7Q6cw5aWrRJm1Ft/oY9ttfiW099ZH4Q2eXSOUBEfGUtAe01fnv5dnzqL++mXc/IGlrLQrySaNZb/R2qUz/4uAXpXr8XDS3edxG08pnU5cYHFiNgdauBTShlzoaXydgBh6C/pSbYOP5vnTUUfQ9xn/3QeA2sj4/u2wkA8OTM9di4W8v0d6uv8gyED7QqI2zUCGvL3OK8plgi7/XBgL+M8HEAViqlViulWgA8DeCiNOtfAeCpfByck3ErwjmAgoiITIG5Zvtlq1NNpJ9qt7Yy4jt7WBUJpR1hbryhO299G4fTEk/47lmqAEfXCPdjdAuEjSAk5MgIWwPePXomNWYZXAcA8zbsAaAFDtZbxiLuM5Y5HWiO4a/TVuEvU1eYgWyvjlUp2T1r142nZq4HkBqw1ZjTWcc9a3n3uGWE4X9641hCYf3OgxnXM6dtjmfOCFtfc7c7AG6HZg2Ev3nGEHz9dK1Xb0NLzJzN0CnhURphfGAJmxlht0A4/c/ztOHd8fT1J6BDdQQPXTMO//jKceZjxna/d+5hePdHZ7k+f7Pecs+YJlwk+byP1u/BH6YsBwB061CVcg4qTRbXj9cWbsZPX1yUcVtN0XhBAmE/93z6ANhg+X4jgOPdVhSRWgATANzk8fj1AK4HgP79+2d1oEDyF9RtFhYiIgIQoGu2X9a3VaVUypSuVn4ztIBeGuFj6li3msNEQiEaV773l1Deg+WsGhwzhrXEEuYgo1DIkRFOWANhPWsbT7hm5LTBclZaaUR9VcQc+OZlb2MUD7y9yvy+tjKSEnS5JaCct6mNAK4pmvCs5XXrBa21T0t7iKZ4QiEcyhwMGS+RLRD2yAhb13HL5rp98LIGZAO61poffA40xzwn2/hg1U7XjgvOjLBXjXC6DH9YgBMGd8WCn59nHofBT2mEMTDVCIS15yWPY8U2bWBeczSe8jpG4wqVEXGdndGPWWuT3VGM3223bRUqEPazRbdX0Osq9WkA73ndYlNKPaiUGqeUGte9e3e/x2gyAmHn1INERGQKzDXbr5TSiDSjl2orw74Hy1RF0q9r1Lq6xQnZzmKllCMj7MjOGg46gpmWuDJv3wvca4QFYgbCUX3gmZNXaUTX+tQOBk7WLK2IFuA6d+F2q9pZW228Vo3RuOeHmT0epRF+f6bReCJjYJdIKMQt3TQMXoGwNcB0ywi77S5s+/kmSzuaogkzM+705cdmuXZcMH7+ZkbYo49wurvhzrsa1jshfspOfjRhBD43ti/OGtnDc5sAMGXxVvxezw4bjL+jfDQySFca0RxN5L2HMOAvEN4IoJ/l+74ANnmsezkKeIutTp8hKNOnWyKidiww12y/7KUR6QNhrWuEP1UeI/sNMa/SCEt3A/+BsKOPsMd6zj6z0VjCDCS0W+fJx6xfG4PlrF0mrFpiCdtORbSMsFsrLydrNwKl3GtU3YKcqEtm0FjXq47UrTQiJHAN7t1oGeH0vwFxlZzcxFoO4fV7tXpHstTCb5cQ6zGERWzBstdgOSB1WmRr9wkjA+v2OxdPpL8b7vwgYb0T4icj3L9rLX73uTHoov++9OpY7btNWfLn3vrxW0bG3LU0IlakwXIAZgEYJiKDRKQS2oXzJedKItIJwOkAXszvISaFQ4LaynDOBdlERO1AYK7ZvlmCA2dm1akmiz7CVRneNI2sofPWdzyhzOzhCYO7+tqXViOcDAS8EpzOnr7ReMLMnsYT9pZp1uDQCIJicWVmFY/p39l8vDnm7BphZIRTe9I6ObO0boFwYzSOP725wpzAAwBG9u6Ysg6gZe68fobRLJc7xRIq7QBIwN7Bw1kjXBEWjNEHgRn2W2IKt0DYLQC1BsKhkP17r44SQOpkFNYOEUYlgmdphEtG+PPj+rrux9oX2G9NPQCcOLgr/vC5MbjtgpEZX2eDUdqTS0bY+aEmXfu0opVGKKVi0OrHXgewBMCzSqlFInKDiNxgWfUSAFOUUpmr2FuhriqS0n6GiIg0Qbtm+5HaNSJDRthvaUSajPC9by7HH97QbvG6BsL6m3vn2gr89rNHZtxXQinbTF+20og0OexoPGEGxwmlbLfObZNS6OtELbNw9bbUc0bj9sFycT2r3c1HaYSzP61bsPHW0m3445vL8eP/LkQkJPjmGUNSMobG3drGqHdG2K1G1jkZiRsjOHx29oaMgZ11umtrB5KWWAIXH9UHZ47o4fVU19KIjIGwo7QjXcs9Z4BnDZqTGWH/pRGdalJnoQPs9dt+A1pA+729bGxf1FSGbTXC6RivdS41wh0dXToS5mA5t0C4MF0jfN0DUEpNBjDZsewBx/ePAXgsXwfmpaYi7KslDBFRexWka7Yf1hAorlTa7GBlJOS/NMIloDDc++YKAHo7Msdj1oxwZSSUccIFwMhkJ1f0m7VusZRGOANC68tgBBuxhDJLSax1qi2xBKzJ38feWwtAm4Ajk90HHRlhl0y6EeQeaI4hobTyBGftqXG3dl9j1HvyCpcSiLeWbc94W70yEkJzLIHpK3bgpCHd0q4bV8rMUjpLIyoiIfN1q6sM44wRPTCkez3+PFX7faiv8jc40hqMa4Fw8jGjjNOqe4cqbN/fjC377L2AraURxsvp9gEuodzb4XnVzFpLI7LJCFv5/R02su7NOXT06lhTgd2WOxLGr4db0F+0PsJBU1MRznlkIhERBY8tI5xIP1WrNrOUv+36yR45+/ICjkA47K8Uw9lH2G/W2jpYLpZQKdlxgzVYNr62ZiWdrcE+WL3Tdbn7MdjXcXvdjNfj7eXbkVD6ADFxzwhHEwpz1u9O2QaAlEF4hvdX7Ux7jNYPNZkm1UpYPlBYz605lkBlOISwHiSGRHDfF4/BLecMN9fxO4GKrUY4JLYPJc5tdO9QhbsuGQ0A2JoSCGvnFQkls8puwV484V4aYQTCztfVWhqR65TEfn+HY1nUCNdWhnH7BSPN751lJMY23ALhbfubff/tZ6PkAuHqilDWs+UQEVFwWd/EM3WNqIj47zDgZ6BbWFIzwrGEMusdKyMhXxm1hGWAFmAfLJfu6VqNsD5YLuEcLJdaGgEkgztrMLa/KYYmlxrNy47pm/XtZLfXzRnkuLU8MwLhhuYYJn28Oat9ZnNMzgGHTvbSCHvXiCpLRtjt5+KWzXUTsZVGwFEakZpVrtWXObteGR0irNl1t4xwc8x9kGTyZ+t9FyXT4MLWSnaNyBwIP3j1OHzttMHm984OGVv3NSEWT3je+V+9Pf+VXCUXCFdVhDmhBhFRGVGwZ0GdA8qsKsL5KY0wiEvHAmtGuCpiz0D/+MKR8BKPWzPC/o5x98EW/HvORu35js4T1s8D1rILY3ILZ6Zvw65G2/fXnjQQh/Xq4NnX1ku6jLAh7JIR3t+k3eIuRLLKGhxm6hwVTyR7UaeURoRDZmDoFiBW+3ytQo4aYeu23IJpI/N7oNn+2hxxqDbg0Pr6uv3eegX/lR4ZYat8BcJfOXkQHrhqbMryaFyhoSWGv1l6UXtxBvnVjt+1WEJh054mNHj8Dn2yp9F1eWuUXCBcUxFGE6dYJiIqG/aMsHebK0APhPNYGlEVSe2Z66wRtmb7rjt1MNw4M8LeDdTsnv/oE9t+rZQjI2zcRnbLCLvp2bEaQHaTkADut+ad5ROhkKT8HMzSCD9F1VmyBoeZ5hLQ2qfZb7HH9LZz1gy/W6a/NsNrde1JA/HijSfbSiFCjvZpbuUVxs/Oeew3nD4kZV23jPxBPYB2/siNWuB0Qw3zFQjXVoZRGUndViyucPsLC1N6ZLtxnpvbz2D1jgNoaokXpAzCTckFwtUVITRxsBwRUdkwB3+FBAlLNm/6D89MWbcyHErbhcHKT2lEZSSEQd3qbMtiCYXmeDIQzqZG+Kh+nQHYs7V+38+dgbCta0RCmRM1eGWEnXp10gbKZTtYyk9GOORWI6wPljN+fun66WbL+rPMFHBZM8KNUfugucpIMiPsVmKT6ZhH9e6IMf06p9QIW18LZws2QTIQtmZ2RbT6Yad0GeHOtfYuIM5JTdzkOljOqaYy7Do4L5pI2EphvnzyQADA/Vceg+e/eZJtXeeHMrdBlZv2NKExGndtQ/eD8w7L5dDTKsFAOOxaB0VERKXJqIUN61MMRxPJoMWpIhyCz65OvgLhqkgY3z1nOK49aaDteJKD5bKpEU7g1GHdcPmx/WzlHn45OyoYr4ux3AgMjPrlTFMNH6IHTdnGQf4C4dRMo5ERNoLOm8cPy27HAJ674UTX5bZAOENGOJGwtPTSg2ajjZr2++NdI+w1K5zBeI713EXspRJuNcLGdudv3GsuC4m4Zutb4qkxzua92iC7Do52Y0ZmOt2EJLkOlnOqqbC3VHv0y8cCsPe2BoCfffpwrL37QlwwujeO6X8IPrj1LPMx4+f41yuPwcTzR7h2EYknEp6B8I1nDs3LuViVXCBcWxnhFMtERGXEeCuMhEQrjdCDLrfsU0VYfGeEIz5aLVVGQqgIh3CWpbfsroMteH3RFgDaG7efOMKYFc7oKetzfgj7NhLOQFj73xhMZ7TaMoLSTKdnvH5ZZ4RdNuwcCKVlQe3r7Guyl0b4nZXPMKJXB4wb2MX1MeugKmsM4PazmbN+lzmDnTnJRzw5+NEIDN2eW5thsJzxWlpfIudr4VYa4Rbwev1eDelen7LsOb2O3Nk32M/0yYUqjTAC1ViGaa97d0r2uzay3eeP7o0bTh/iOvFKPKHQ0BLP+KEkX0ouEO5eX4mdB1vSttchIqLSoawZYcuIf7eJACoiIf+1Bh6sAacR9DmD7ufnarW7NZX+JvAwbsVH9KDImqHz3YbKERQYAa+x3AgMkjXCyWN2ZgqNY9H272v3JudIfiB1gJpIavcO83j118LPYEWrdAGbNTjfbwuEU5/z3WfmY+3OBgDJQNgc/BhOdo1wrRHOEHwZL7n1tQ9J+vZpgPtsc14fUAZ0rcOauy5AB5ft9OhQbfve+Bm3RY2wszTCqE9ujiV8T69c7RgsF0+kPi+W0CYPSTdDXz6VXiDcsRpKaZ/YiYio9BkxY8QojdADKbfMZKVL1wi3bNR7E89KWWaIK2U+55xRPQG4B5KA1gHAT0bVCFbDYW0QmTWmTXfb2lAZCaVkhI0BX0ZgaQQGL87bBMB+3ofUps4gF3HJCF96TB/M/ck56Y/F8bofbZnK2RAW70DOeC2ybduWLoNvPVdrRjjTj8YsjdBfw4pIciIQt+PPNLDQzAinTKiR/N5twF2Fy4e6dL9X2l2F1N+bHh3tNcVGkNsWXSOqIvZA2CiTcM5MmGkbVjGXDjEJpdDIjLC37vp0kdsPNBf5SIiIKB+sg+Xilj7CbgFuhUvNrnu2zXt/CaXQvUMVTh3WDd/W61gPP7RjSrYK0Pq/+okjrMccEvskHX7KJIZ0r0+pl0xOtGGURmjn+b+l2wDYA5xDalOn2nXLCEdCkrFkwRnAjunbOWWdkEtphJPXfryel+72ejgsmPb9MwBoHRQqwoKFd5yXMdvuzAhXhsNmWYNrH+EMM8sZ+7OWZzt7KruVK7gdp7Ham7echqevPyHlcbf62Z6OjLCfD2n5C4RDtoDeuGNjTUweN8i9tMXg/N1yGywX0ycPybbbSa5KLhDuqNfH7GtknTARUTmwD5ZL1sS6vYFXhFPbdrn1fk1XR5xIaEFm30NqLQOnBPN+ei5+NGGEbV2/g+WMoDUc0ta3vr+7BTRWIdGCDGdQYATXRobVGRhYX5+ONS6BsGUGteS+Urs9aNtOhgPOANYtMyeSOsWyk1cg7BWYpQ2ERcys/YHmGOqqIqivimQMxmMJ7YOVtR1e+vZp7ncGjH0b+7MOGguHJG2w6fXrY+x/aI8OOGFw15THXaoGUgJ1X6URregacedFh5tfV4RDjtIIe0b4gavG4tmvuw92NO4qOF8nt0A4kVBojCZYGuGlY7X2x763MZphTSIiKgXJwXIhKKUQTSh9KmX3jLBzqdsbpvWpXz1lkO2xX0xajGg8gUrH7erqijC61NkDSq0WNvM5xCwZYa00wjoxRvpAuCoSRiQknoFw3FEaYcg0iUNysFxymRbAph6DddvOrJ1bQOs2oYaTV2mE1/PcasLNx0Jiq102AlE/AydvfGIuVm7fD0D7IGU+1+WpFS59crXn2ctMrFUcbvXSvmQM4lMjYeeHBePDiFv5jVHiEk7zumZyzYkDk9uLhBylEUZGWIvHOnqUFwHA4185Dm/ecnrKcqPXtVUsodDYEmMg7KWTmRFmIExEVA6sg+XiCYVoLOEZFLlNeZwpEP7Jp0bZHntj8VZtpLtLTar76P7MgYR1kgutNCL5mDPAdQYzVRVaSy/nekb9pNFOznme1u24lXUkuyNYM8LuGUJbIBx2BsLupSeZsrFuNd7O47ZK1w4u7CjpMG7Re/1ovnrKIJw2vDsAYMrirfjuM/O1Y4qEzCDW7efq9bMW8/HU9TJlhHPl9vnJ+TubLtubbY12Js5A2Pj6lY+1mvX6NIFwh+oKDO2R2g3j/754NO74TDLrLGJkhON57UOdTukFwrXMCBMRlZOEpUY4obSMkFewVBFO7RqRbWnECYO7IppQrsG2e9DnY7CcpWuEACkDna48vr/5tXNgXlVE62TgfI5REhF3dI0wWIMvt/KFZObTR2mE5fnODwNuGeFQKHNG2Bq0WbOFXiUVFWmCyf5das2OHNq2vcsbAO3Dz8VHHZqyvMryQcrtqV4BrZjP0f6P2LpGZP5Q4CrLFnvfP3d4yt9FusFyf7r8KIzp28n1bkEuKsJi+3Bj/Az2623zOlSnludk0rW+Cp8b19f8PiyCWEJhT0PUcwBrvpVcIFxfqdUE7WtiIExEVB6SGWFAy64a2axXvnWKbYY5tz7CNS7ZUGeQ00OfwWtYj3rE4gnE4gnXjKVbZjWbwXLhkFY76wxqD+2c7KXqDBgqIyFEwuLaU1XbtnuNsDUocgvgjUDFevjOyR8M1oywM/Nc5fqaZC4ZsQaVf/zCUa7Lvda3Ov+IXvjGGUMgIuZ5VqQpbzC43SmoCCdnlvObEQ5bppM264tD9ufkMntbtq2mrz9tSEpGOF2d9viRPfHiTafkdbCc9cNjxJHBd5slzw9ndv3+aauwvymGHi5lE4VQcoFwKCToWFPBjDARUZkw4j8jsGuOJsw32SP6dEK/LrXmuhXhUErw41oa4fj+lZtPwXM3nIhIOISWWAIJlfpGDriXRvip/4xaeh+LpGborMFI13p7q7OqSBghEddWUlaDutXavg9bgiK34zazpo6gzY31NnR1pf11cfvAEA5lzpRbOwzYpiT2eJ7bBCoAMOGIXmYAaATlxrrpjsDtTkFlJGRpn5b6HLdl3eurzP0Y/6ebYtnJ+OD28k2npDnazCrCktKGzTiMXGYyzH7/9tIIa+nFry45ImVqab+sH+isr2P3+twC66z33yZ7ybOO1QyEiYjKhRE0Gm+CTbG4Z32j1j7NvsytLMAZmPToUI0eHapRERazpZZ7aUTmjPAt5wzH5r1NeGrmenNZs7FNvWuEMxC2vtn36VyDj9bvse0zHBIzq+zFOZmCNaB0zX6GUvsIe8Vr1oxySo2wR920W6bRqPM2vrYuN5+bZUbY+kHE+Pkkg/zU5xivtdtrUmmZUMOtfMbtQ0+3DpXYsb9F31/qsYZEoCRzIDq6b6eM66QjLq+531kW86HS0T6tU00F/nb1WJwwuGvKjHfZsJ6TNaDv3rFtAuGSywgD2ovPQJiIqDwYb35GcLOvMeoZCIdDqaUR7llc931FQoIGfZIFt0kOXAfLOYKPm8cPw12XjrYtO9isbdNo6eUsjbAG2H0sZRLGY+GQmC2+vETCghm3jredS/K4XbK25oAy94ybc9sGZzDo/uHAvY+wNbPsbDHmdtxWnj9zsZ5nWD9e74ywcS5epRFu/ZX/euUxKT9Twzkje5nnarw2Ydvt/NxalPmZaMXJ7S6Gtq2sN5U1t04u5x3eq1VBMGD/fbOeR1tlhEs2EGbXCCKi8mB0iTKCpekrdqSd9MFfaYRXwBdCoxkIpy+NSHZd8D52w4Fm7T2ptjKs9xG2RybWIM/Z87cqEkZYxOw84SUcEvTqVG373u24DcmMcHKZ17mkO0W3ANU5m5rBenvcGlw7Z2Lzux9t/eTXxsCvCvNnk7ot47zd7hRU2Uojks89f3RvXHFc/5T1rz1pIL511tDkRBpm+zT7B4dc2qflErs6P7wZu22LQLgiz10o3FhPoxsDYW/MCBMRlY+H310DwJ4pTNf6yVcg7PF0e2lE+sFy035whr6/zEHOAX3a37qqiN41wv649XycQWulz9IIZ+Bu6xqRrkZY7EGb1eDudQDSB2Ve5SJuQWhNZeoHCeuxOI87036cx2y06Iq4ZLsNRsDmWhoRsQyWyxAB/fqS0fjJp0YhZBssp//vqHnOZTxaLsGr83e27QojvNvh5ZX+mgzuXmf70FdIJRkId6yJYC9nliMiKmmb9jRi4MRJ+M/cjQDsAVL6jLD97d9tVi6vACESCpmBsFu7rmq9VjYSEvQ9RBuc5qcjgNFCqq4q4hqcVYa9uzJE9E4TmQbLebXOAtw7O7hltJ2H9uWTBgJIH5S5tpQLuQd/1lZd9hph9zIJq3TlMAYj41yr78d1Ugw9SHbNkofTzyxn9cXj+6d0mDD+dw7wyqUzQ6YBbndfOhpj+nW2LUspK2nDwXJtEQgbd1K+cvKggu/LUKKBsFYakUt9DRERBcOCT/bavg/bMsLezfSdIcdR/TvjkqP72Nfx7EwgZmlEugk1rE/3VxphBMJh1wCrypYRtu+3ulKbWS5jjbAjhRnJkBE2e9/CHrTZtqG/BuneTd1byrlPsWytEbZmsO2lEe77cQu4nesbgXBnfU4B1xrhNKURNRXhlFZofhiruj03lKGDRi6TzgHA5cf1x4s3nmxb5gyEjZ9tW4RDmabUzofkLJNtl+suya4RA7vWoSWewJodBzG4e+pMJUREFHypGc5k4OTMCN9yznDMXLMLQGpgYUxiYeX1PmrLCHt0jaitDOP2C0eay/yMzD9gZIT1XvdOlZEQnv36iehUU4HV2w/YHhvSvR6f7G7MWCPs7HLhViPcpa4Suw622Nazvl7OQ7P+DO75/BgM79khZb+uUyw7gr9rTxqI/U0xiAAf6j8nr64RXgO+vO4CWPdTZwTCNZUpjxmMzHK1y1TRoZCYSbRsAlRnRth5PnHHNv/11ePxxuIt+McH6zy3mY/SiHJj/Gza8jxLMhAe1bsjAGDVdgbCRESlynk7OV2N8M3jh5lfOwPTcEhSIjzvwXLJ9l5ug+VCIcHiOyfYt5VFRrimIuyaOauMhHDcoC4AgE17G22PDe1Rjy17GzPWCKcrjTACYbdteGUrzzisu+01uPSYvq7ruWVqxVEX+3N9mtyJ//nY9XitQbxXZtG7Rjh1nUP0jLDbpowPOM5gysgQG/XbWWWEYX+ONcPdpa4SOw82a/vWg/xThnVDLJFIHwj73nuS24e3XLcVRMZ5eJ1nIZRkIGzcEmHnCCKi0uUMRK2BSTZdIyKhUErg6xXjWPfp9/ar3xrhukr3IBiwB/bOcztlaDd8sGpnygA7J2dg5zZYLu6yEbfDX/mr8xESwasLtwBI38rLNSPsMZuatSTFON6O1RHH7GHu+/FTI2ycnzH97u8/PwZf/PuHtvW9JuYwXqNk32r34/jxhSNxlKM21/j1chssVxlJ9iZ29hfOt5Q+wsa3bRgJv/rtU3OePCMT42fjddegEEoyx95Rn56S0ywTEZWudJNOVKR5I3SGF9kMVLLtw+ftVz/vyQeaY6jVgwPX2/XWGbn0r4/u3xlr774QXeoqPYNDK2fgbg0WjDreTAPuzBrMsFYm4DapiJNr5txjimXrskhIMPvHZ+PdiWfZjt2r566f0oiY3mvP6Axx0pBu+NPlR9nWH9bD/U5xMiNslDG4H8d1pw7GuIFdXI/B6znGcns/5tT13rzldNc2bX45fxbJOLjtIuGRvTvaZnsshHxNC+1HSQbCxidBtlAjIipd0YT9Nn7YEkSke2N3PhIJCb5wbD/bMu+JI7wzs178ZPYONsfMLJnbe7h1X0bm01rG4GdCBj81ws7XFEhf2uHnFrTb+Ycsk0jYulI4jq9bfRU6Vld41gv/8QtjzCDZKyNs3X1UD/S9puV9+EvjcNelR7pux8gIG4FwNrFWsjQi/XrWQNUMni2PD+1Rj5OG6F1OcqkRdhyAEZCeO6pX9hsLsLYsjSjJQDgSDqG+KoJ9bKFGRFSynNlLazCYzUCiUEhw3KAu+OGEw8xl3qURlvILl04Lrtv38Z4cSygz0Eo3gMv6tbVLhJ8R+c4smVsgnO0ALCOr7Hzel04ckPzG5dCsXSOs5+bMCLsdq/H1nRcdjkuO7ouTh3YDkK5rRPK5xqx8PTome8xag8/xI3u6dosAkoFwhyrtrvKALnWu66U7Bq+MsNu00l6/g8Y6uWRxnSUDh3auwfyfnYvrTh2U9baCjIPlfOhYHWFpBBFRCXMO7LKGBZnqZd1Y64S9wspIms4Untv1WetZYU7ykPqYLRAOpwbCfuqVnVlj57TFXesq8Z1zhuMn/11oWy9d1wtzZjJHUHbHRUdg7c4GvL18u2v/WOsUy9YA1tpVwVYv7JLBNZYYGVqvPrXW87zprKEY2bsDzhje3Vzm1t7NjREgj+7bCQ9cNRanW7aRiXNCDUCr7Z5wRC/bMZyiB/WA9+tunH9uXSNSt9naKY6DyK3Hd6GUbiDM2eWIiEqaMxCOW27rt7bm0aucwZoRdptwIZttpUgzUYM1yOvWQZs69tNjDk3uw8cbf0oPYEdwOecn5wBASiDs57V0C8ruv/IYrN5+0DXDGg4lPyDYMsLm4/ZjtZ6fEcwZuzTuDLhNCgLYg8+KcAgTjuhte9zvz9Haa9kIYP1KBu/Jg/nXdcebX3eurcSbt5xmq531+pG2pv7VT013vt08fhj2t3HisS1rhEs6EGbXCCKi0uUsjbB9n0tGWNy/torYAmG/NcL+9m+slykj3LG6AovuOM8WmPmpEXauYgsWfB6jM+BNly2uq4pgdN9OHseS7BphDfKN4NiZ0fOq6QVg9uD16hSQKSPvOxD2KJnww89noaE97D2YvT7cGItzap/Wht0UDLecM7zN99mWpRElWSMMAF1qK7Hgk71ojsWLfShERJQDZ0Y4YYnScgkSrGGHV/BkL43Ib0Y4OaAqfY0woAWZIY8aWu/te5dGpDtEP6UR2QqLmMF7lUuNsPN8rMGq8zGjvtYr25npQ0K6DzSPfvlY82u32ff88iohSfscj+XGzz2X2XHDRcgIF4Nx58ZrAGU+lWwgfPzgLmhoiWPj7sbMKxMRUeBEHYXAUUtGOJFDkOAnqKvIISPsN1hMzj6W+phX/avBVyDs2ES6LGu2sn25re3T7KUR2kJnRs8aLH/vnMPwmTGH4jJ9Ag8jEPY6h0znli7APfOwHubcA63JCBvHkE3tujnFtbO2uxU/q2JkhIvB+MD64a3j8dp3Ti3svgq69QIyZpTb09CSYU0iIgqiaCxNRriVg+W82Nun5TkjbJZGpK6f6fa+r9II53OsGWEfx5Vum9nWZIdCycF+bhlh5+A/6/l371CFP19xtPm9mRH2+DCQ6aXJVBphvLatygjr/2eTxc3UNSIXxagRbgu/uWw0IqEQvvfv+QCSH1gPqav0VT/fGiX70cKYXnHXQdYJExGVopij5621RtjoF+/GKxbxE6/aJ9Tw9wbrPxD2HiyXcR85DZZL7VmbrV6dtDZkxw3q6mv9ZPcEMQNht8Fy6Y7HmdR0az1mVZshk1ud4QON8evit5bYjfGzzebjgtdrkCyzyJ7f2RBLzReO7Y/Lxian+LbP0FfYfZdsRviQ2koAwC59fm8iIiotUcdgOSMg6lRTgVsvGFmQfVa4DOzKxO8bsbFaLjGpnwAnZbCcxyxm5x3e03f2c3D3ekz7/hlZzxQWDgmazYywpX2afh7psp7O7PewnvVYvHmfOWusU12G6Xy9uk0YjDsNrcmmmsFrFhlhz64RWbZPG92nk9lrWUTw2ndOxYR7p/s+jlJk/TstdAeJkg2Ee3WqRjgkrBEmIipRzsFyRob4xjOHmLO0pXPGYd1x1oge5vd+AttcgiH/AbN7jbCfN3LrOp8f1xd1VRE8+t5a+3E4CiC8gue/XT3Ocz9uJRADu/mfWEKgZTJDkgwwrT8rPx8GnK/HXZeOxheO7Yf+Xd2D8UwZ4Uz9oBMZSi/8yKX3r1epTraB3cvfOsX2/YheHdG7UzXOHdUzq+2UEuvfaWvr3zPuq6BbL6CKcAh9Otdg9faDxT4UIiLKQSyu9IBK+378yJ6Yu34PThrSLf0TdacP745rThxofu/n7TKXwUa+M8IeNcJ+nm99s7/k6L5oisZTA2Hxfk6hg4XkMQigFEQEpw7rjq+fNhhfO22wZYXMx+MsA6mtjKT9mddWpg9VMn1QMWLXcCsGmhl7yG6wnPvyfNS8fnDr+FZvI8jyUfbje18F3XqBHdWvM2au2VXswyAiohxEEwlUhEPmLfaTh3bDjWcOzfg8I6vpfIP0VSOcQ0Y4Ob2uv/Wctcd+MsrOmki32/3p+gi3URyc3LcIwiFJKWExsqBpM8JZHmxrb40bWdzWZITNaZGzKo3IrQsGOTuiaP8X6mUr2cFyADCgay227m8y68qIiKg07G+KYn9TzF6zm+U2nG+Mfp5vdI3IJrhyTgmc6XgqHK3D/AR+1uMJh8R1YFfaPsJpjyv/EYR3kJf+caBtZw0DkiUcrdnvHz4/Bled0B9jBxzi+zmeXSMYCGfkVhpRqFKQks4Id66thFLAmh0HUmZ0ISKi4Br98ykAYPZ4BbKZuMJrNH7m5/fWuyRkk0Ax+vdm2r45q5ojEPYTf9kywiFxHezm3E4++whny6vKIFkekua5bXys5mC5VgTCfQ+pxS8vHp3Vczw/LJR0CrJtWP+GQiHB+xPPQtf6yoLsq6R/HMYtimsenlnkIyEiolzYuzj4e45Xz1s/zz/SY8rgdHxnhPX/naURfgI/a5YwLOI6WDC19thfaYTtoVbeQDW25dkaDJL2caDtM8JGNUNb79eza0SZtkDLJ+eHlkM71/ju+531vgqy1TYySB/pysIIIqLSVNGKoCCXZ1ZFwhjSvc58/8hmP5kCWuNUnBlhPwF6yJHddWsZ5nyprNstRPlDOl7BXLLPsPdz2zoONAJh58+l0Fgakbu2/LBQ0oHw+JE90a2+CiN6sSyCiKgUWWd6a+0tc7/Pnvq9M7Lbrs/BOp6lET7e1G1lDiGgrsqlRjiHwYH5lum1SDepyH++cRJeX7SlIEH7rNvP9gyejDsIbZ2JTU6x7L6cvLXla1TSpREAMHZAZ6zb2VDswyAiohxUeEwKkZMCv3lm7hqh/Z/SNcLHtkOOwXLpbgP/cMJhqK+K+JpSOl/m//RczPnx2eb33qUR3sYOOAS3+Zgo5WefHoVeHauzOr7uHarQpc69hjSRh64RufDqPczSiGDxFQiLyAQRWSYiK0Vkosc6Z4jIPBFZJCJv5/cwvY3s3RFrdh5EQ0usrXZJRBRoQb5mO1UUISOcLSNwOXFwpmmIvQbLZV8j7GSNnb55xlAsvOO8Ni0x6FRbga71VWbw7XV7Px+fRb588iDMuG08QqJNmtJaKg9dI3LhtTeWRnj7zzdOxPfOGd6m+8xYGiEiYQD3ATgHwEYAs0TkJaXUYss6nQHcD2CCUmq9iPRw3VgBjOrdEUoBSzbvz6qtCRFROQr6NdspkkNG2KuVa6Hii6pIGFO+exr6HZJ+GmKvGmE/pRHOrhFObreK/d4+tq6WrzE1mXrk5uPW9uq7Lmz1NgBLRrgVUyznwqv/NLtGeBs7oAvGDujSpvv08+M4DsBKpdRqpVQLgKcBXORY54sAnldKrQcApdS2/B6mN2NqyE17ONUyERECfs12qmxFH2GnQpYKDO/ZATUZpvpN9hF2dnfIvP2wY7Cck9s2cklwZjMhRDqe7dPysvXCaM3McvnECTWCxc9vRR8AGyzfb9SXWQ0HcIiITBOROSJyjduGROR6EZktIrO3b9+e2xE7GHOQN7bE87I9IqISF+hrtpN1+tzWZhGLHV8kZ5bLoTTC8hS3W+duQb7vjLCvtXwyu0KkL40IYqjX1jXChnQzAlLx+QmE3X5izo+UEQBjAVwI4DwAPxGRlCIPpdSDSqlxSqlx3bu3vu4HSF5EWSNMRAQg4NdsJ2uWNetA1tlFIQ/H0xpeM8v5CYSt67gmLot9cg7egbB7OUAQBCUAZUY4WPy0T9sIoJ/l+74ANrmss0MpdRDAQRF5B8AYAMvzcpRpGLPvNESZESYiQsCv2U51lkC41YPlihxfeLVP83NcEUv06xawBSSGM3m3T0v/eDEVKyPsFJSAnDR+MsKzAAwTkUEiUgngcgAvOdZ5EcCpIhIRkVoAxwNYkt9DdVddEYIISyOIiHSBvmY71VhLI1q5rbZsJ+a+f00uM8uFXEoj/nb1WMu2gxE8XXvSQADeQWVQjtNNUALQgBwG6TIGwkqpGICbALwO7UL5rFJqkYjcICI36OssAfAagI8BzATwkFJqYeEOO0lEoBTwl/+tbIvdEREFWtCv2U5VkeynWPYU2BrhzM+11gUbmeXzDu+Fr54ySF+W+3Hlc3KCW88fgZW/Ot82EYp9X3nbVd5FgjJYjpFwoPiaWU4pNRnAZMeyBxzf/w7A7/J3aNlTSnHGFiJq90rlmg1k7pbgxqvvQbGv/q2pEQ47JtQwt5nFNvxobdMIEUnbhkzM/4v900jV1hlh5fGbyj7CwRKMj0etdMHoXgCAvY3RIh8JERFlIyh1m/mQzAg7BvFl2T4tbBs4pw8+a8VxteUrHOSBYM6fS1txfigISokGacoiED7/iN4AgC37mop8JERElI1ME0m48Vqr2HcEzWyo4ziyzQhb7+Ant9nKg2sjQR4sV6wA1JkZDvKHhfaoLALh3p20Ocn/8f66Ih8JERFlw60MIJOglEY44xmvQDzr9mku9cKtCfKtT62r8lUR2WpBDPXauka4Xn+tjxton5qbCeFgKYtAuGdHLRB+auZ6JBL5mkCSiIgKzRYIZxkgOFcvdqItU0uxdKx1t26vSWvOzagLHjvgEHzjjCG5b8iHIGc7w21cGtG1vgpvfPc0/PrSI+zHwUg4UMoiEO7Tucb8+iAn1iAiKhmRHAbLeWnrGMy5O6/4xldphEdG2NhmPgLMr582GNUV6aeJbq0Ax8FFqUcf1rMDqiL217zYJTxkVxaBcCgkuPvS0QCA/U0MhImISoW1DVep9RF2BjRe+/dzRz7k0TXCCIBbNVjOzCoX/vUx9xDAYI+ZWHJTFoEwAHSorgAAHGhmIExEVCquOmFA8ptWxinFjr28At7sM8LJ5fmoETao1vZO80HyELgXStA6lHxmzKHFPgSCzz7CpaC+WjuVt5Zuw/CeHYp8NERElMnN44eZA4qALPoIZ4jn2ireSd2Nx2xrWXaNEI+gOHdtFwCGzOxzm+3StyBlhJfcOQGVkbLJRZa0svkp9NIHzN316lJsYxs1IqLAMjKTzrik1aURevTVVgGPM9jzrhHOvC2vY05+OGh9NrdNhpIHMQLWBWVmOQCoqQwHKjBvz4LzW9FKw3rUm183RuNFPBIiIkrHaO7jzAC3erCc8X8bBWPOmmDrbmfcOh4PXj0WQPZ9hK3yESu1ZWwqjv+DhIEnuSmbQDgUElx5fH8ADISJiIIs4ZURzrZ9msfzixXvWAPeXp2q0ammwvfxeAXLRlCfj/LeNigRDnJCOHA1whQMZRMIA8DZI3sCABpbGAgTEQWVEQj77brgl/H8cFtFY456WGcwa2S+s8lQ9z2kxva9sc1S6ZAf5D7CfmcupPalbAbLATD7IzZFE0U+EiIi8qI8SiOklakZMyBtqxph/f+wCGIu6VavWmg33eorccs5w3HJ0X1sy0stdmvr8hSi1iqrQLim0giEmREmIgqqeKIwg+UMbV0Lmikj7CdLKiK4efywlOVmRrgVdQ1t+WqYPYvbcJ9ErVFWpRHVFdrpsEaYiCi4jNIIZ8Dq/7a6e1BoPLutbs8ngz6xfW9QMAL+3I8nv6fShn2EGQlTiSirQLiuUktw722MFvlIiIjIi1ftbNaD5Ty6NrRVQvh75xwGAKjS+8E692tkvlsTFOajRrgYXSOC5K5LR+PUYd2KfRgUUGUVCPfpXIMO1RHc+vwCvL5oS7EPh4iIXHj3Ec4ujFIp4aHo222bcOxrpw3G2rsvRCTsPvubUc3QmlIN46ml0zUieKHwFcf1xz+/enyxD4MCqqwC4VBIzAFzP/j3/CIfDRERuTnhrqkAXAbL5WmK5bbuXOBVDmB2x2jFtvMx8K+13Tiy21fb75OoNcoqEAaSA+VqK8tqHCARUdkwOvu0uo+wszRC/7+tB8uZ0wo7jiebwXJeJA+D5VIz54VjTt7GOJhKRNkFwg16D+FuHSqLfCRERJSO8za634DRKyYs3kAtoyTDvtScOKQVgXmpxZPMBFOpKbtA+KFrxgEIdlNvIiJyKY1o5fbaumuEwcwIO3Z77MAuqK0M44bTh7Ri2yVWGsH2aVRiyi4QPnNED3zjjCFYtGkfWmKcWIOIKKhSSyNaObOc/vSg9BHuUleJxXdOwNgBh+S8bXOwXM5bSGrL2emYi6JSUXaBMAB0q69CPKE41TIRUYBs39+MJZv3md8bgWPvTtUA8pAR9sjMFppxHoXYbV4ywm34evBuLJWashxRVqN3jnhv1Q5cMLp3kY+GiIgA4Kw/TMP+ppj5vREzPfeNkzBn3e5Wd0gwSgDCbd01wvi/APs1N1ky7dMKvw+ifCrLjLAxw9w3n5hb5CMhIiKDNQgGktnDPp1r8Jkxh7Z+B0Vqn2buvgC7Lb0JNcT2P1HQlWUgbGSEiYgouEI5vgMdfmhHAMDAbrW25eZguTauETYUIgDP9TWyOnZgFwDAgK61GdZsPa+Bg0RBVZalEdUMhImIAi/XwPGqEwbg2EFdMKJXR9fHw0VK8RSyRrg1fYSvPWkgzh7ZE/26FD4QZgBMpaYsM8LWP0SlFH703Mf414x1xTsgIiJKkWsgLCKuQbBRo1us0ohCZKLzUXcsIm0SBOt70/fZRrsjaqWyDIQPNie7RbTEE3hm9gb8+L8Li3hERETklO+AtZCD1ooln+3T2kIZvfTUTpRlIDx+ZA/z66YW9hImIgqifCdQzT7CRQrGClIjbJZG5H3TBZFsJceImEpDWQbC1RVh3HXpaADARxt2F/loiIjITb4zt4LilkYUpmtE/rdZSCV2uETlGQgDQOeaCgDAtY/OKvKREBGRm0JlhIvXNSL/2xSzfVpppISLNakJUa7KNhA+rFeHlGV/mLKsVSNviYgofwpVI1ysLGohygFKbaa2EjtcovINhAd1q0tZ9pf/rURzjDXDRERBkI8euVYJPc9RjqURpZLDKaeBitQ+lG0gLCIY1qM+ZXk8USJXEyKiMpfvoCmhR4vhIqWECxEE5mNmubbEMJhKTdkGwgDw7NdPTFkWjTMjTEQUBPnO3Mb1QLhYWcnC1Ajnf5uFZATszAxTqSjLmeUMh9RVpiyLxkvlczURUXnLd+BojAFp6/ZpxuC8Qs4s55USfuCqsUXLgKcTvCMiclfWGWEAePmmU9Cnc435fSzBjDARURDkOyNsXN7bukbYCEQL0a0ilKFrxIQjeuGcUT3zvt+cMddEJabsA+HRfTth3MBDzO9jzAgTEQVCvuNVozSirdunhaWQGeECbLSAjICdlRFUKso+EAbsFyfWCBMRBUP+M8JGaUTbRmFmaUQB9mv2ES6RHI5xnIyDqVS0i0DY6p8z1gEAmqJxBsVEREWU79rWZEY4r5vNyDgNzixHVHraRSBcGUme5qPvrQUAjPjJa7jiwRlFOiIiIsp3kFesPsLG/gqxXymx9mlEpaZdBMI/nDAC3TtUpSyfvW53EY6GiIiA/JcSGF0jijVYjjXCltIIFglTiWgXgXC3+irc+ZnDi30YRERkkfc+wgkjEM7rZjMyu0YUMCNcKsw+wkU9CiL/2kUgDAAtrAcmIioa5TLaq2ClEW0cCZsBcEGnWC6t4ogSi9+pHfMVCIvIBBFZJiIrRWSiy+NniMheEZmn//tp/g+1dVpiyUA4wWmWiaiMBfGa7TaZUaG6RhStj3ABp1guFaUWsBNlnFlORMIA7gNwDoCNAGaJyEtKqcWOVacrpT5VgGPMi7gl+N3fFCvikRARFU5Qr9lukxnlO8ZLqCK1TytcQtgyoUapKa0AntovPxnh4wCsVEqtVkq1AHgawEWFPaz8u/joPqipCAMAfj9lmbn82VkbinVIRESFEMhrdltMb9+ppgIA0LNTdcH3ZWV2jShAsaE5w3LpRcJEJcHPn20fANZocaO+zOlEEZkvIq+KSOBGplVXhPHCjScBSPYSBoA/TV1RrEMiIiqEQF6z4y4lafkO7iYc0Qt/uvwofOusofndcAYsjUhivE6lJmNpBNzvbzh/1+cCGKCUOiAiFwD4L4BhKRsSuR7A9QDQv3//7I40Dw7tXJOyrLYy3ObHQURUQIG8ZsdcBiwn8hwJiwguOsot5i+sfE8MYtXWk4O0VrJ9WnGPg8gvP39iGwH0s3zfF8Am6wpKqX1KqQP615MBVIhIN+eGlFIPKqXGKaXGde/evRWHnZv6ytS4v3NtRZsfBxFRAQXymh11yQiXy7jlQk6oUWoZYeMzV6kdNbVffgLhWQCGicggEakEcDmAl6wriEgv0Zsdishx+nZ35vtgW8utpU6HavdAeG9DFCu3HSj0IRER5Vsgr9ltkREuFnNCDU6xbCq5+J3arYylEUqpmIjcBOB1AGEAjyilFonIDfrjDwD4LIBviEgMQCOAy1WJ9FDZ1xh1XX7Rfe9i7c4GrL37wjY+IiKi3AX1mu02WK403iUya4splomoMPzUCBu3ziY7lj1g+fr/APxffg+tMK46oT/+NWO9+f1ej0B47c6GtjokIqK8CuI1O+o6qVF5RMJh/d5qIdunlYpy+XBD7UeJleG33i8vHo0/XX6U+b1XIExERPljndQoqbSCPC9GaUQhap5LrTQiOcVyiR04tVvtLhAGgIhlGO62/c0emQoiIsoX5zT3nxvbF8f071ycg8kzI2sbL0A6tNQywoYSPWxqh9plIHzK0G4Y2LUW1540EAAwdck2NLbE8ZepK/CVx2bZ1nXrfUlERNmJ6hlhY2KjW84dXjb1r2ZGuADvF6X2ErE0gkqNrxrhctOptgLTfnAm9jZE8dj7a3HzUx+lZCsM0XgC4RB7DRMRtUazfo2tr46gMRpv82mQC8k4l0IkTkotI3xYrw4AgLNH9izykRD50y4DYUPHGu30nUGw9WIWY0aYiKjVjBrh+qoItu9vdm1nWaqMc2FpBDC0Rz0W33keal369hMFUbssjTB43Zbb35QcQBd1HeBBRETZMMZi1FVpd9jKKSNsxPSFKI0oxc8LDIKplLTrQBgA6lymWH7wndXm19EEA2EiotayZoQB9wmOSlW4gBnhcqmjJgqqdh8Iv/X9M/DKt06xLbt/2irz650HWtr6kIiIyk4yENZm8wyXUSBslC8wI0xUetp9INyjYzVG9e7o+fj5f5rehkdDRFSejNKI+jIsjTAzwhwsR1Ry2n0gDGi36Pp0rjG/r66wvyz3T1vZ1odERFRWmmPJrhEAECqjd59kH+H8b5txMFFhldGlqHWMT/KnDuuGpqi9Lvi3ry0rxiEREZUNoztPh2q9NKKMIrzC9hEun9eJKIg4tFNXow+aG9i1DtNX7Eh5PBpPoCLMzw1ERLmIxrQg8fJj+2FQ1zpEyuh6WsjBcqwRJiqs8rkStdLfrxmHm84cihOHdHV9fNv+5jY+IiKi8tESjyMcEgzoWofPH9uv2IeTV+ZgOfYRJio5DIR1Q3vU4/vnHYZjB3ZxfXzmmp1tfEREROWjJZZAZRllga2O6d8ZAHD4oZ3yvm0GwkSFxdIIh+4dqrDwjvMQTyi8u2IHbnxyLgDg0ffW4pKj++In/12IcEjw888cXuQjJSIqHdG4QkW4PIO6cw/vhRm3jkevTtV53zbjYKLCKs+P561UXxVBp5oKTDiiF35w3mEAgI837sWURVvwzxnr8Nj7a4t7gEREJaY5lkBlJHUCo3JRiCAYYEaYqNAYCKcRDgm+ecYQ8/vr/zmniEdDRFS6WmIJVEX4lpMtDpYjKixelTJg6xoiotbTOu/wepotZoSJCouBMBERFVxLLIFKZoSzxjiYqLB4VcrRnHW7sXzrfvP7eRv24NN/eReNLfEiHhURUTC1sBd7TnhXkqiw2DUiR5f99X0AwNq7L8RD01fjl5OWAAAWbtrr2YKNiKi9iiVUWU2iQUTlgVelVrr71aVmEAwAK7cdwJ+nrkA0nkjzLCKi9iWRUGCJMBEFDTPCPkRCgpjHHPIPvL3K9v2tzy8AALy2cAsmf/vUgh8bEVEpiCeUORUxZe9bZw0t9iEQlSVmhH248czsL0CLN+9LyQrvbYjim0/MwfKt+/HNJ+bgYHMsX4dIRBRocaXYASFHa+++EN8797BiHwZRWWIg7EMkxyzGG4u32r5/9P01mLxgC8794zuYvGALXvl4Uz4Oj4go8OIJhQhrI4goYBgI+/CVUwbhmhMH4L4vHpPV83764kKcdNdUNEW1ThIC+5tALKHwxzeW418z1uXtWImIgiieYEaYiIKHgbAPdVUR3HnREbjwyN5Ye/eFvp+340ALNu1twtqdBwGk9oNMJBT+NHUFfvzfhfk8XCKiwEko1ggTUfAwEM7BsB71AIBRvTv6Wj8W1wbaOd8D4h4D8HYdbMEP/j0fuw+25H6QREQBEk8ohJkRJqKAYdeIHLz8rVO0npghwYifvIaudZXYmSZonbF6J2as3onfT1luWz5t+XbX9d9YvAX/nrMRkbDgrkuPzOuxExEVQzyhEGJGmIgChhnhHFRXhFFfFUF1RRjzfnoOHr72WABA/y61tvWeuf4EAMAvJy2x9Ro2TFvmHgg3x7RuE0YmmYio1CUUM8JEFDwMhFupc20ljurXGdN/eCa+d+5wAMCIXh3w7NdPRNf6St/bWbpln/n19v3NAID6aibsiag8sI8wEQURA+E86delFjUVYQDAmL6dcdygLhjaowMGdavz9fwPV+8CoNUH/+V/KwEwI0xE5SOhwNIIIgocBsJ5dPLQbvj+ucPx40+NNJddOLq3r+cebNEm15i1dpe5rDkWz+8BEhEVSZxTLBNRADEQzqO6qghuOmsYOlRXmMucs8sBcL09+NvXlqGxJY4bn5hrLmuJpT6XiKgUaaURfMshomDhVanAml2C2aW/mOC67u3/XYCYpaVaiyOIPtAcs7Vc27avCfuaonk6UiKiwtEC4WIfBRGRHUdjFdiwnvUpyyo83g2en/uJ+fXwnvVojmqB8IvzPsG3n54HALjy+P741SWjAQDH/XoqenSowszbz87zURMR5VecE2oQUQDx83mBffG4/njxxpOx9u4LUV8VSRk8d/bInq7P27a/GVOXbkNLLIE7Xl5sLn961oaU9YiIgi7BKZaJKICYES4wEcGYfp0BAHN+cjYE2hvB58b2RUgEv7zkCAy7/dWU5+1p0EoeXlu0Bbssk3XEE4ptiIio5DAjTERBxEC4DVVFwubXv/vcmLTrjunXGfM37MHNT32U8tjmvY3oe0ity7OIiIIpzowwEQUQSyMC4EsnDkhZ9siXxnmuv3lvk2s3ijnrdmP6Cm22uhmrd+KIn72OtTsO5u9AiYhylOCdLCIKIAbCAfDDCSNw8VGH4p9fPc5cVlvpnax/bvZGWznF3sYo3l2xA5f99X1c/fBMKKXw9vLtONAcw9/eWVXQYyci8oOlEUQURCyNCIC6qgjuvfxoAMDM28bjQHMM1RXJzyi9O1Vj894m8/tnZtsHzI25Y4rt+x/952M8O3sjAOCTPcnn3fDPOTh/dC9cdFSfvJ8DEVE6iYR7D3UiomJiRjhgenSsxuDu9RBLLd1lx/TNahtGEAwA+/U+w0opvLZoi9mGLZ0nP1yPgRMnobGFM9sRUX7EEgmEWSNMRAHDQLgEXHx0H/xowgh8eNv4rJ+7V+8+sXLbAXOZUgrPzFqPC/88HYs27bWt39ASw20vLAAA7GlsARFRaymlkFBAiBlhIgoYlkYE2GNfPhZd66owtEc9hvZInZjDj90NWjD76f9711x231sr8fspywEA1z8+B+9NPMt87JuWKZ6NCT2IiFrDmBCTGWEiChpmhAPsjMN6YHTfTq3axu6GKBpaYmiyBLVGEAxotyvjCYX3Vu4AAExbtt18rCkWx7Z9yRpjIqJcGFPDc4plIgoaX5clEZkgIstEZKWITEyz3rEiEheRz+bvEMnqjMO6AwAeuXacrVTiyuP7ez7nx/9d6PlYLK7w8LurceVDH+Lv76y2Pfbuih047tdT8fL8TS7PS+DFeZ9AKZXtKRBRgQXtmp3QrxMsjSCioMkYCItIGMB9AM4HMArAFSIyymO93wB4Pd8HSUmPfOlYvP6d03DWiJ7o2bHaXP7Li4/wfM7zcz/xfGznwRb8evJSAMCrCzfbHvvlpCUAgG899RGWbdlve+yhd9fg20/Pw81PzzN7Gu9vikIphR0HmrGG/YuJiiKI12wzI8zSCCIKGD8Z4eMArFRKrVZKtQB4GsBFLut9C8B/AGzL4/GRQygkOKxXh5TlImLrQwwAA7umzj73zTOGeG577vo9no+dd+87+NObK8zvt+9vBgC8PH8Tbnt+AdbvbMDon0/BEx+ux8l3/w9n/n5ahjMhogIJ3DU7rozSCAbCRBQsfgLhPgCsjWs36stMItIHwCUAHki3IRG5XkRmi8js7du3p1uVfHr3R2fi3R+dCQA4eUg3/PzTo/DexLNw9sieePjaY23rXnVCf5wwuKtt2clD7d+n88c3lyOeUPjnjHVmhgcA/j1nI5Zs2QcAeGvpNjTHtAzxtGX5eX/dsrcJ63Yyw0zkU+Cu2Qn9esEplokoaPx0jXC7cjkLQ+8F8COlVFzSXOiUUg8CeBAAxo0bx+LSPOh7SDLrGwoJrj15EADgIccUzWvvvtD8evGd52H+hr1Yuf0ANu5qwHsrd/re31UPfYgPVqeu39ASAwBMXZoMfq99dJZtv+ms2XEQP31xIR64aizqquy/lifcNdV2Dh+s2olpy7bh1gtG+j5uonYkcNfsmB4IR8IMhIkoWPxkhDcC6Gf5vi8A5+ipcQCeFpG1AD4L4H4RuTgfB0itM/O28Xjf0h4N0KZvPnFIV1x9wgBs2uveFeJbZw3FxPNHpCx3C4IB4I3FW9Meh1IK/569AXsa3HsTf+eZeZi+Ygemr/DOOhlZpSv+PgN/e2d1UQbq7T7YgjnrdrX5fomyELhrNjPCRBRUfgLhWQCGicggEakEcDmAl6wrKKUGKaUGKqUGAngOwDeVUv/N98FS9np0rMahnWs8Hx/u0Z/4e+cehhtO964ndpq8YEvKMms94MJP9uEHz32Mo+58AwMnTsIHq3ZiT0MLBk6chNcXbcH8DXsAAOli2wfeWWX7vjHqPvOdUspWuvHnqSvwzvL8lOJ84cEPcNlfP2C3DAqywF2zWSNMREGVsTRCKRUTkZugjSwOA3hEKbVIRG7QH09bY0bB9o0zhmDtzgYs27oPCz/Z57rOl04cgCP6dMKkBZttfYbTObRTNRIKOO23b+G8w3tieE/7AL9rHvnQDFatbdvijgBzq6WP8UvzNqFrXaX5/YGmGGork7/CM1bvxNf/OQfjR/TA8x99gh9fOBJXnTAA97yh9U12K9NYvf0AmmMJjOzd0ba8ORbHZ/7yHm6/cCROG97dXL58qzZDX0s8gapI2NdrQdSWgnjNZtcIIgoqXzPLKaUmA5jsWOZ6MVVKXdv6w6K2EgmH8IfPjwEAvLl4K9buPIij+3c2H7cGjzNW+y8J6N25BnPW7QYA/H36GnzvnOG2x6PxZMDbFEtmdicv2IwLjuiNUEjw8vxNuO+tleZjS7fsx4/+s8D8/kBzDFWNUVRFQqiuCOO25xdgb2MUz3+ktYv75aQlOGVYN8s+E6hwdPQ/6w9vp5wnAKzb2YBlW/fj5y8vwv++d0bK+TW2xBkIU2AF7Zqd0OfzYR9hIgoazvNDprNH9cR1pw7G2AFdXB8/aYi9w8Skm0/Bs18/0basgz7QrXt9lW35O2lqf62Z6MkLtuDbz8zD3oYovvXUR1jq6F9s9bOXFmHMHVNw4xNz0RJLmE37rX764iLz6+v+MdtzW057G6MAgI7VFeaybfuT2ektnHGPyLdkaUSRD4SIyIGXJfLt0mP6YM6PzzbLCBIJoEcHe8Br3Pk0ZsAzzFq7G51rK5DOUf06A9B6E4+5c0rG45m+QpsWeurSbZhw7ztYu7MhZZ2Za5JZ7LeXb8fAiZNw+wsL0BJL2NZLJOxB9KY9jQCAjjXJY/6VPsEIAEy4dzr+tzT9AEEA2LCrAV97fLbZVYOoPYpzsBwRBRQDYfJNRNC1vgo/+/QoDOxaiyE96tC/Sy2uP20wvnLyILz2nVPx/fMOAwBcfHQfREKCvockB+rtaYjis2P7um57VO+O+PcNJ3oGy5NuPiXtsa3OYia7Jz5cj9cX2Qf3Db5tMs6+523E4gk8+p42ax4A9O+iHf/Kbfvx4jz7wPuvPJY5w3z3q0vxxuKteHNJ63sq722IYl9TtNXbIWprCQ6WI6KA8lUjTGR1wuCumPaDM83vb7P08x3RqyOuOXEgAOB/3zsDnWoq8PqiLfjhfz7G/VcegwtG98aIXh3M6Zvfn3gWovEEBnStAwDc/8Vj8O7KHbh/mr1DxOGHdsJ7E8/CyXf/DwBw4ZG9MenjzThrRA8cP6gL7np1adpj7lAVwf7mZFY2oRTO/ePbtnVWbjuAB95ehdcXJTO9/5qxHj+cMAKz1u72+/LYGG/8D09fjc+MOTSnbRjG3DkFleEQlv/q/FZth6itcbAcEQUVA2EqmP76FM+fP7YfPn9ssq3pdacOxviRPfHuyh0prd1OGtoNJw3thtcWbknJ8vbpXIO/XzMOQ3vUY1C3Otz3RW25UsoMhDtWR3BEn05Yv6sBG3c3ms997bunmUE0AHyyp9HsAGH1+ynLU5b97rVlGNK9Lsuz13oOvzRfyyLP37jX13Ni8QQilkLKv05bhd+8thQP6xOktMQTXk8lDw++swrjBnbBMf0PKfahtFtmIMyMMBEFDEsjqCgGdavD1ScM8Hx8yndPM7++9wtHmV+fM6onBnWzB6UigjsvOhz3ffEYzP7xOXjyayfg9e+chuE9kz2SayrCePOW083vf/vaMt/H+s8Z6/D4jHXm929Yjs1qx4Fm/HnqCuw80AwAmPj8x7bHx9wxBU/PXI+maByLN+3Dqu0HEI0nMHDiJDz87hr884O1GHr7qxg4cRJmrN6JNxdvxW9e0wL8r1oG+t3zxnJbn+R8WbX9ACb+52PEChxsK6Xwl6krzDrsQvv15KW49P7322Rf5I6BMBEFFTPCFEiRcAhPXHc8+h5SY5ZNpGOUYxjqqiKY8t3Tce2jMzFt2XbUVYXRpa4eZ4/skVO97urtyez0sJ4dcEz/zpi7fg/+MGUZGlriOKxnB/zwP1rge88by3HP58fYSiwArRPFxOcX4IPVO816YyOov/fN5djflCzduPzBGZ7H8uepK3DC4C44aUg32/L73lqJc0f1xDBHz2anbfuasLshitrKMPp10bL2exuiGK+3krvy+AEY3bdT2m20xpLN+/GHN5bj/VU78dT1JxRkH0opPD1rAz51ZO+CbJ+yY3SNYPs0IgoaBsIUWCcP7ZZ5pQwe+dKx2HGw2ez5++DV43DJ/e/5KlX4/efG4K/TVmLV9tSBeP271GLu+j34y/9WujwTuOXZ+Z7btQ66W6OXf1iDYD9+8O+P0aWuEk9+7Xi8v2onXpj7CV5btAUPv7sGc39yDvY2RDF95XZ86kitLlkphRmrd+HJmevx8vzk/mfeNh49OlbjnzPWmsvc2tA5NUXjGPGT13DXpaOxdudB9O5YjWtPHuTr2A/otdrW/tEAMGfdbhzRp2Ne+jNPX7EDtz6/AB96TAm+fX8zmmNx9D2kttX7oswSrBEmooBiaQSVtVBI0KNDte37F286Bb+97EhUhkPopvc7HtC1Fo9++VhccVyylvmzY/vij5ayjFOHdcP8n54LALj9wlG49qSBvo7huRtOzLyS7vBDO2ZeCVqN84JP9uL8P03H1/85B6/pXTB2HWzB/A17cMuz83DTkx/hrWVa9vvFeZtwxd9n2IJgADju11Nx6m//hx0HWsxlq3ccMAN0L8aMf/e8sRx/e3s1fv7yYl/HHYsnsH6X1ubuo/V78JXHZuHIn7+OWWt34bK/vm9rUefH/A17MHDiJMzTp+g2GO3q1ri01AOA03/3Fk75zVtZ7Ytyx9IIIgoqZoSpXTIG8P33o0/wnWfm4dVvn4raygjOPKwHjhvUBU1RrU72yL6d8eMLR+KRd9fg8a8cB9EzWt07VOGiow7FY++vNbe5+M7zUBkOYfiPX4VRwtuvSw3GDeyCI/p09JzC+s1bTsfZ92hlCV87dTC+88w8z+P+0YQR6NWpCt99Rss4WwcEGh56dw1WbtcGAn750Vl48mvHY/X21IGBhg27Gm3nYWw7HBL86uIj8Ld3VmPTnkacMLgrHrxmLBqa4zj9d9MAaCUVhrG/eAO/+9yROGtET2zc3YDaygi66FNiN7TEUBUJ49x737GVmfxvqRaov6DPBvj4B+twdP/OOP+I3qiu8M4Mt8QSuOeN5Vi0Scvsv7pws9mH+pevLMbc9VqXj/mWAHnu+t3YsKsBJw3phoYWLRvdHOMMgW3BLI1gRpiIAkaUj9ughTBu3Dg1e7b/mb6IgkYphX/P2YjpK3bglKFd8YVj+wMAVmzdDxHgg1U7cdrw7hjQtQ6rtx/AN5+Yi47VFZi5NjnJx8NfGofxI3vi+sdn47Th3fHZsX3x/X/Px+Du9RjVuwPOO7wXAGD7gWb88Y0V+NmnR5kB4lF3TsGehrbvK3z7BSPxq8nemdtHrz0WX35sFjpWRzDz9rMxbdk23PCvuThhcBfPabo/O7Yvnpuz0fz+xjOH4KYzh6ElnkB9VQTrdh7EoZ1rzHP/0iMz8fby5GyFo/t0wkVHHYrPHHUojvvVVN/n8tJNJ+PIvp19r28lInOUUuNyenIJas01e/qK7bj64Zn49w0n4tiB7jNXEhEVktc1m4EwURF8sqcRH2/Yg/NH5z6Y66Hpq81+zH7998aTccuz89CppgIfrd8DALjh9CF44G173+bRfTphwSf+Wr6lc86onnhjceYZ+NwM7laX0kLv7JE9cUSfjrj3zRWtPjYAGNOvM1688eScnstA2L83F2/FdY/PbtUHDyKi1vC6ZrNGmKgI+nSuaVUQDGj9mJf+YgIevHosQgLc8/kx5mNfGNcPk28+1bb+0B71OKpfZ/zve2fgh+eNQMfqCF799qmYeP4IXHdKcqDbPZ8fg6E9kq3nLjumL35z2ei0x3LZMe4zBnoFwZWRzJcet9kC31yyNW9BMKCVTvzT0hqPCsMYGJmu3IWIqBhYI0xUwqorwjj38F5YfdeFAIBLHQHp5JtPRdf6Shz/66n4ztnDzOUnDumKj39+nvn9jz81CtefPhjN0QT6danF+JE9zbrdP+gB9pLN+81a4tOHd8c9nx+D7zwzDwO61uKXF49Gr05VuO+tVfpx9MH8DXtSOm7cPH4YBnatxdmjeuKx99bi7JE9ccGfp7f6dfjqKYPw8LtrUpb/8uIjMHPNLvzp8qOwflcDpi7ZhjtfWYyKsODK4wfgsffXFrxvMgHNes19lY8PQEREbYmlEUTk6u3l21FXGcY4S01nSyyBj9bvxnGDupgDBw1N0Tguuf99nDasG269YCR2HWzB3HW7cfaonnjg7VW4+9WlmPb9MzDQMSHKtn1N+GjDHowf0QMLPtmLwd3qMW/jHjwwbRVWbT+AhpY4Fvz8XKzZcRBn/SE5LfaArrW4+oQBuPSYvuhSV4kVW/ejX5dazFyzC2MHHIKQCGoqUzOQL877BKcO645wSPDQ9NW48cyhOWUqWRrh3xMfrsPtLyzEh7eNR8+O1ZmfQESUZ6wRJqKiUUphb2MUnWsrs36eNeCe+J+PMX5kTyzYuAeXHNM3ZZbBtsRA2L9H3l2DO19ZjHk/PSfr3wEionzwumazNIKICk5EcgqAnFnnuy87EoA2CI9KR3NMK41gjTARBQ0LtoiIqKCaotpgucow33KIKFh4VSIiooJqjiVQGQkhxJnliChgGAgTEVFBNUXj7BhBRIHEKxMRERVUcyzBqayJKJAYCBMRUUE1R+OoruDbDREFD69MRERUUFpGmG83RBQ8vDIREVFBNUXjbJ1GRIHEQJiIiAqKGWEiCipemYiIqGDiCYVGZoSJKKAYCBMRUcFc+OfpmLNuN+IJVexDISJKwUCYiIgKZumW/QCA04Z3L/KREBGlihT7AIiIqHx1qIrgs+P64sYzhxb7UIiIUjAjTEREBaMAhIRTKxNRMDEQJiKigkkohRDjYCIKKAbCRERUMAmlIMwIE1FAMRAmIqKCUQpgHExEQcVAmIiICkYp1ggTUXAxECYiooJJKAWGwUQUVAyEiYioYNg1goiCjIEwEREVDLtGEFGQMRAmIqKCUQocLUdEgcVAmIiICkIpBQDMCBNRYDEQJiKigkhocTBrhIkosBgIExFRQST0jDDDYCIKKgbCRERUEMrICLM2gogCioEwEREVhJkRZhxMRAHFQJiIiArCyAgLiyOIKKAYCBMRUUEosGsEEQWbr0BYRCaIyDIRWSkiE10ev0hEPhaReSIyW0ROyf+hEhGRH0G5ZrNrBBEFXSTTCiISBnAfgHMAbAQwS0ReUkottqw2FcBLSiklIkcCeBbAiEIcMBEReQvSNZs1wkQUdH4ywscBWKmUWq2UagHwNICLrCsopQ4oo3M6UAdAgYiIiiEw12yzRpiRMBEFlJ9AuA+ADZbvN+rLbETkEhFZCmASgK+4bUhErtdvw83evn17LsdLRETpBeaazZnliCjo/ATCbpewlOyBUuoFpdQIABcD+IXbhpRSDyqlximlxnXv3j2rAyUiIl8Cc81OmF0jiIiCyU8gvBFAP8v3fQFs8lpZKfUOgCEi0q2Vx0ZERNkLzDXbzAgzJUxEAeUnEJ4FYJiIDBKRSgCXA3jJuoKIDBW9CExEjgFQCWBnvg+WiIgyCsw1O8EaYSIKuIxdI5RSMRG5CcDrAMIAHlFKLRKRG/THHwBwGYBrRCQKoBHAFywDMYiIqI0E6ZptbJJhMBEFVcZAGACUUpMBTHYse8Dy9W8A/Ca/h0ZERLkIyjXbiKzZR5iIgoozyxERUUEk2DWCiAKOgTARERVEska4uMdBROSFgTARERWEWSPMSJiIAoqBMBERFYQx/I41wkQUVAyEiYioIBLsGkFEAcdAmIiICsLMCPOdhogCipcnIiIqiGTXCOaEiSiYGAgTEVFBJDitEhEFHANhIiIqEGaEiSjYGAgTEVFBJNg1gogCjoEwEREVhNk1gnEwEQUUA2EiIiqIZB/h4h4HEZEXBsJERFQQCc4sR0QBx0CYiIgKwsgIMwwmoqBiIExERAXBKZaJKOgYCBMRUUGYE2rwnYaIAoqXJyIiKgizRpjFEUQUUAyEiYioIIyJ5VgZQURBxUCYiIgKQinOLEdEwcZAmIiICsKYWY5xMBEFFQNhIiIqCHaNIKKgYyBMREQFwSmWiSjoGAgTEVFBsGsEEQUdA2EiIioMszSiuIdBROSFgTARERWEMVguxEiYiAKKgTARERVEsjSCiCiYGAgTEVFBJCfUYChMRMHEQJiIiAoiYU6oUeQDISLywECYiIgKQpnt0xgJE1EwMRAmIqKCUOwaQUQBx0CYiIgKIsGZ5Ygo4BgIExFRQRg1wkREQcVAmIiICkIxI0xEAcdAmIiICsIYLBfiOw0RBRQvT0REVBBGjbBwSg0iCigGwkREVBAK7CNMRMHGQJiIiArCzAizRpiIAoqBMBERFURyQo0iHwgRkQcGwkREVBDsGkFEQcdAmIiICsLoI8waYSIKKgbCRERUEOwaQURBx0CYiIgKgjXCRBR0DISJiKggzBph1kYQUUAxECYiooIwaoQZBhNRUDEQJiKigtATwuwaQUSB5SsQFpEJIrJMRFaKyESXx68UkY/1f++LyJj8HyoREfkRlGs2u0YQUdBlDIRFJAzgPgDnAxgF4AoRGeVYbQ2A05VSRwL4BYAH832gRESUWZCu2UbXCNZGEFFQ+ckIHwdgpVJqtVKqBcDTAC6yrqCUel8ptVv/dgaAvvk9TCIi8ik412wzI8xImIiCyU8g3AfABsv3G/VlXr4K4NXWHBQREeUsMNfsZB9hIqJgivhYx+0aplyWQUTOhHZRPcXj8esBXK9/e0BElvk5SIduAHbk8LxSUM7nBpT3+fHcSleu5zcg3weSJ4G7Znf7Tdn+/vBvo3SV87kB5X1+eb1m+wmENwLoZ/m+L4BNzpVE5EgADwE4Xym1021DSqkH0cpaNBGZrZQa15ptBFU5nxtQ3ufHcytdZXh+vGa3kXI+N6C8z6+czw0o7/PL97n5KY2YBWCYiAwSkUoAlwN4yXFQ/QE8D+BqpdTyfB0cERFljddsIiKfMmaElVIxEbkJwOsAwgAeUUotEpEb9McfAPBTAF0B3C/aoIhYuX4SISIKMl6ziYj881MaAaXUZACTHcsesHx9HYDr8ntonsq5NVs5nxtQ3ufHcytdZXd+vGa3mXI+N6C8z6+czw0o7/PL67mJUq5jKIiIiIiIyhqnWCYiIiKidqlkAuFMU4YGnYj0E5G3RGSJiCwSkW/ry7uIyBsiskL//xDLc27Vz3eZiJxXvKP3R0TCIvKRiLyif19O59ZZRJ4TkaX6z/DEcjk/Efmu/ju5UESeEpHqUj43EXlERLaJyELLsqzPR0TGisgC/bE/i3BWiGzwmh28vw0nXrNL+vzK5rpd9Gu2Uirw/6AN+FgFYDCASgDzAYwq9nFleQ69ARyjf90BwHJo05/+FsBEfflEAL/Rvx6ln2cVgEH6+YeLfR4ZzvEWAE8CeEX/vpzO7R8ArtO/rgTQuRzOD9pEC2sA1OjfPwvg2lI+NwCnATgGwELLsqzPB8BMACdC68v7KrQ2Y0U/v1L4x2t2MP82XM6R1+wSPL9yu24X+5pdKhnhjFOGBp1SarNSaq7+9X4AS6D9Ml8E7Q8W+v8X619fBOBppVSzUmoNgJXQXodAEpG+AC6E1pfUUC7n1hHaH+rDAKCUalFK7UGZnB+0QbM1IhIBUAut52zJnptS6h0AuxyLszofEekNoKNS6gOlXWEftzyHMuM1O4B/G1a8Zpfu+enK5rpd7Gt2qQTC2U4ZGmgiMhDA0QA+BNBTKbUZ0C68AHroq5XaOd8L4IcAEpZl5XJugwFsB/CofhvxIRGpQxmcn1LqEwC/B7AewGYAe5VSU1AG5+aQ7fn00b92Lid/SvX3xBWv2SV3bmV7zQbazXW7za7ZpRII+54yNOhEpB7AfwB8Rym1L92qLssCec4i8ikA25RSc/w+xWVZIM9NF4F22+avSqmjARyEdqvGS8mcn153dRG0W0yHAqgTkavSPcVlWSDPzSev8ym382xrZfP68ZqtPcVlWSDPTVe212yg3V+3837NLpVA2NeUoUEnIhXQLqhPKKWe1xdv1VP60P/fpi8vpXM+GcBnRGQttFugZ4nIv1Ae5wZox7tRKfWh/v1z0C6y5XB+ZwNYo5TarpSKQptt7CSUx7lZZXs+G/WvncvJn1L9PbHhNbskzw0o72s20D6u2212zS6VQDjjlKFBp49efBjAEqXUPZaHXgLwJf3rLwF40bL8chGpEpFBAIZBKwQPHKXUrUqpvkqpgdB+Nv9TSl2FMjg3AFBKbQGwQUQO0xeNB7AY5XF+6wGcICK1+u/oeGi1kOVwblZZnY9+K26/iJygvy7XWJ5DmfGaHeC/DV6zAZTw+aF9XLfb7pqdr1F/hf4H4AJoo3ZXAbi92MeTw/GfAi1N/zGAefq/C6BNczoVwAr9/y6W59yun+8ylMiIdQBnIDkCuWzODcBRAGbrP7//AjikXM4PwB0AlgJYCOCf0Ebjluy5AXgKWt1cFFqW4Ku5nA+AcfprsgrA/0GfgIj/fP8ceM0OwHn4OE9es0vz/Mrmul3sazZnliMiIiKidqlUSiOIiIiIiPKKgTARERERtUsMhImIiIioXWIgTERERETtEgNhIiIiImqXGAhTuyUiZ4jIK8U+DiIiyozXbCoEBsJERERE1C4xEKbAE5GrRGSmiMwTkb+JSFhEDojIH0RkrohMFZHu+rpHicgMEflYRF7Q52SHiAwVkTdFZL7+nCH65utF5DkRWSoiT+gz0hARUY54zaZSwkCYAk1ERgL4AoCTlVJHAYgDuBJAHYC5SqljALwN4Gf6Ux4H8COl1JEAFliWPwHgPqXUGGhzsm/Wlx8N4DsARgEYDODkAp8SEVHZ4jWbSk2k2AdAlMF4AGMBzNI/+NcA2AYgAeAZfZ1/AXheRDoB6KyUeltf/g8A/xaRDgD6KKVeAAClVBMA6NubqZTaqH8/D8BAAO8W/KyIiMoTr9lUUhgIU9AJgH8opW61LRT5iWO9dHOFp7t11mz5Og7+TRARtQav2VRSWBpBQTcVwGdFpAcAiEgXERkA7Xf3s/o6XwTwrlJqL4DdInKqvvxqAG8rpfYB2CgiF+vbqBKR2rY8CSKidoLXbCop/CRFgaaUWiwiPwYwRURCAKIAbgRwEMDhIjIHwF5oNWkA8CUAD+gXzdUAvqwvvxrA30TkTn0bn2vD0yAiahd4zaZSI0qluztBFEwickApVV/s4yAiosx4zaagYmkEEREREbVLzAgTERERUbvEjDARERERtUsMhImIiIioXWIgTERERETtEgNhIiIiImqXGAgTERERUbvEQJiIiIiI2qX/B0mF80T5l9gtAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " FN ROI = 135ns_image_2418161753608_clean.nii.gz\n", + "135ns_image_2418161753608_clean.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADDCAYAAAAya0IYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADowElEQVR4nOz9eZRtW1rVi/a56rXmqiJiF6fMPEmSSWoml1SyIcUVsKkINgrxXXygzwLRBHxYXwURr169+PQK4n33iZoIgl4vlQUgIiAqopJJkVRSZAJZkcnZ5+wdxSrmXGXEmu+PiN+IvuaOU+xz9s4d++zRW4u2T6xizjHHGHOe6P37vv4lRVEoIiIiIiIiIiIiIiIiIiIi4k5Qud8DiIiIiIiIiIiIiIiIiIiIePAQBYWIiIiIiIiIiIiIiIiIiIg7RhQUIiIiIiIiIiIiIiIiIiIi7hhRUIiIiIiIiIiIiIiIiIiIiLhjREEhIiIiIiIiIiIiIiIiIiLijhEFhYiIiIiIiIiIiIiIiIiIiDtGFBQiPuxIkuQXkiT51Ps9joiIiIiIcyRJ8v4kSX7Hi/xskSTJR77E87zk70ZERERERERcLkRBIeLDjqIo3lgUxQ/f73G8EJIk+f1JknwgSZI8SZLvSpJk936PKSIiIuKVjCRJmkmSfFOSJJMkSZ5JkuTP3e8xRURERFw23G1h9sUcL/5dHPFciIJCRMQFSJLkjZL+kaQ/KOm6pJmkr7+vg4qIiIh45eOvSXqdpFdL+m2S/mKSJJ9+X0cUERER8ZAj/l0c8XyIgkLEhx2eVpskyV9LkuQ7kyT5v5IkmSZJ8t+TJHl9kiR/KUmSm0mSfDBJkk+z735hkiS/dPbZ9yZJ8sWlY//FJEluJEnydJIkf8wV17PI19ckSfJrSZI8myTJP0ySpP0cw/wDkv5NURQ/UhRFJumvSPq9SZL07s2sRERERFweJEnycUmSvD1JktHZM/X/lyRJo/Sx3332HN5PkuTvJElSse//0bNn9VGSJD+QJMmrX+Sp/5Ckv1EUxVFRFL8k6Rsk/ZG7c1URERERlwdJkvyGJEl++Ow5+wtJkny2vffDSZL8Mfv9jyRJ8l/P/vtHzl7+2SRJsiRJ/p9JknxqkiQfSpLkK8+eye9PkuQPvNTjXTDc+HdxxHMiCgoRlwGfJemfSdqR9NOSfkCne/NxSX9dp4oouCnpMyX1JX2hpK9LkuQ3S9JZFOvPSfodkj5S0qeUzvO3Jb1e0pvP3n9c0v/yHGN6o6Sf5ZeiKN4jaXX2/YiIiIhXOk4k/VlJVyR9gqTfLulPlD7zuZLeIuk3S/ocSX9UkpIk+T2SvlLS75V0VdJ/kfStL3TCJEl2JD0me/ae/fcbX/plRERERFw+JElSl/RvJP2gpGuS/qSkf54kyUe90HeLovjks//8mKIoukVRfPvZ74/o9Jn9uKQ/LOltL/N4jvh3ccRzIgoKEZcB/6Uoih8oiuJY0nfq9A/Qv1UUxVrSt0l6KkmSoSQVRfFvi6J4T3GK/6zTB/FvPTvO75P0T4qi+IWiKGaS/ldOkCRJIumPS/qzRVEcFkUxlfQ3JX3+c4ypK2lcem0sKSqxERERr3gURfHOoijeURTFcVEU79epsHubSHv2PP01SX9P0hecvf7Fkv4/RVH80tlz/W9KevOLyFLonv3rz9743I2IiHgl4uN1+sz7W0VRrIqi+I+Svlfnz9GXir9SFMXy7G/kf6vTv43vBuLfxRHPiSgoRFwGPGv/PZe0XxTFif0unf2hmSTJZyRJ8o4kSQ6TJBlJ+t06VWOl08jWB+1Y/t9XJXUkvfMstWwk6fvPXr8ImU6zIBx9SdMXe1ERERERDyrOSs++98wYcaJTUeBK6WP+jP2ATp/B0qn/wf9hz9pDSYlOo2bPh+zsX3/2xuduRETEKxGPSfpgURQbe+0DeuHn5PPhqCiKvHS8x57rw3eI+HdxxHMiCgoRDwySJGlK+peSvkbS9aIohpK+T6d/qErSDUlP2FeetP/e16k48caiKIZnP4OiKLq6GL8g6WPs3B8hqSnpl+/GtURERERccvwDSe+S9LqiKPo6LWFISp/xZ+yrJD199t8flPTF9qwdFkXRLoriR5/vhEVRHOn0Of4x9vLH6PR5HBEREfFKwtOSnnTvGZ0+R3/97L9znQbCwCMv4pg7SZKkpePxXH4px3PEv4sjnhNRUIh4kNDQ6cPrlqTjJEk+Q9Kn2fvfIekLz0xuOjJ/hDMF+Bt06rlwTZKSJHk8SZLf9Rzn+ueSPitJkt969nD+65L+1VmpRERERMQrHT1JE0lZkiRvkPSlF3zmLyRJspMkyZOS/rQk6m7/oaS/dOYKriRJBkmSfN6LPO8/lfRVZ8d9g05L1b75ZVxHRERExGXEj+mU5P/FJEnqSZJ8qk49xb7t7P2f0anpYefMXPyLSt9/VtJHXHDc/zVJkkaSJL9Vp55j3/kyjwfi38URz4koKEQ8MDh7aP0pnQoHR5J+v6Tvsff/naT/r6T/JOlXJb397K3l2b9ffvb6O85SeH9I0oVmNUVR/IKkL9HpA/SmTv+4LhuSRURERLxS8T/r9Bk71akYe5FJ13dLeqdO/1D9t5K+UZKKovjXOjXB/bazZ+3PS/qMF3nevyrpPTpN1f3Pkv5OURTf/5KvIiIiIuISoiiKlaTP1umzcV+nLRj/UFEU7zr7yNfp1PTwWUnfotO/Rx1/TdK3nJWW4ZPwjE7/Pn767PNf8jKP5+ONfxdHPCeSoiju9xgiIu4JkiT5DTr9Q7Z5ZgwWERERERERERER8YrCWYbD/1UUxRMv8NGIiLuOmKEQ8YpCkiSfe5bqtaPTCNm/iWJCRERERERERERERETE3UcUFCJeafhinXosvEenfdQvqvuNiIiIiIiIiIiIiIiIeJm4Z4JCkiSfniTJu5Mk+dUkSb7iXp0nIsJRFMWnn3Vv2C2K4nOLorhxv8cUEXG/EJ/DEREREfcf8Vkcca9RFMUPx3KHiPuFe+KhkCRJVadtRH6npA9J+glJX1AUxS/e9ZNFRERERNyG+ByOiIiIuP+Iz+KIiIhXOu5VhsLHSfrVoijee+Zi+m2SPucenSsiIiIi4nbE53BERETE/Ud8FkdERLyiUbtHx31c0gft9w9J+i3POYharajX6zo+Ptbx8bGSJFGSJJKkoihUqVRUrVZVq9VUqVR0cnKiWq2mRqOhZrMpSVoul5rP5zo5OZEkVavVrWPw3/xOZgb/Jkmioii02WzC97vdbjg+7202mzCmoih0cnKik5MTbTYbVSqVreMkSaJaraZ6va5KpaLVaqWTkxMlSRKug/HW63VVq1UdHx9rvV4zL6rVauFa+O5mswnn5HxcB8dkfni/UqmE9xkr112pVFSpVHR8fBzOwTmZO364fn5OTk7C9xgDx/ZxMV+MmfNKCvMK/NzHx8e3rZGvHXvDj8Wc+mt8ltfK+4LPMDa/Ro7lr/t1+D5y+J676DN+zuc6ho+5PE/leWZOy9fkr5XPzzh9bS8as1/rc12TzxdzddFc+LH8ei46l7/v75XPddF4LvreReP0ebzomiTtF0Vx9cIDX27c0XNYkqrdtPiI12z07M+37+nAIiIiIu4EC+VaFcvb/yf0YOCOnsXxORwREXFZMdXRhX8T3ytB4aKH/tZf+kmSvFXSWyWp0WjoTW96k/b39/Xss89quVyq2WwKkSFJEg0GA127dk1XrlzRYrFQURR6/PHH9drXvlatVks3btzQu971Lu3v7+v4+FitVisIAlmWqVqtql6vBwK8Wq20Wq10fHysWq2mZrOpk5MTzWYzHR8fq9Pp6KM+6qP05je/WcPhUOv1WsvlUuPxWPP5XI1GQ5KUZZmm06kmk4kkaXd3V0mS6ObNm1oul+r1enrta1+rq1evKssy3bx5U6vVSq1WS0VRKMsyLRYLNZtN9ft9rddrfeADH9B0OtXVq1f1yCOPaDAYaDAYKM9zjcdjLRYLbTYbzedzbTabIMS0Wi0dHx9rNBpJkh5//HE9+uijqtVqQdwYj8e6efOmTk5O1Gg0VKvV1Ol0NBwOtVgsNBqNtFgsNBgM1Gg0gsDQbDbV6XRUq9U0n891dHSk2Wym+Xyu6XQaxiWdk+/j42MtFgslSaJut6tarabpdBrODZFbr9eaz+dar9dByOl2u6pWqxqNRjo4OFBRFOr1ejo+PtZsNguksFKpqNvtqtPpbK1hnueq1+thTlarlYqiULvdVq1WC0TVCT3zyPvr9Vqr1SoIMM1mMwgvWZYpSZJwPM7BPCMEuACzXC6VJInq9bokKc9zrdfrIBqdnJwEMalarWqz2aharYZ5X61WWiwWWi6XKopC9XpdzWZTRVGEvdxoNMLcXXTdTr5PTk7C+xBuBKfyT5IkarVaqtfr4TjMD2MuikLr9VonJydBIFuv1+E6XDRjHjabjVar1daY/Hw+xrPnRhDaeK9SqahWq4U19LUtPXPCfcu68lq9Xg8CGfeUHecDz/u0u7x4weewtP0sbqmjp37hM/XUg/pne0RExCsSP1b8h/s9hJeDO/qbOD6HIyIiLit+qPgXF/5NfK9KHj4k6Un7/QlJT/sHiqJ4W1EUbymK4i21Wk2tVkv9fl/tdluVSkXr9VpFUWwRhcVioZOTE/V6PVWrVc3nc2VZpvl8rmq1qn6/H8glZLVWq6ndPlV5IQu87tFqovKQ7Gq1qizLdHh4qPV6HQQOCNBisdB8Ptfx8XEgdqvVSsvlMpD09XqtLMt069YtTadTSVKn01Gj0QgkDqIFAe31ehoMBpKk8Xis/f19HRwc6PDwULVaTev1WtPpVFmWheuA3M3nc0lSq9UKr1WrVfV6PXU6nSAc9Pt9bTYbjcdjTSYTzWYzLRaLQMAbjUaYJwi0k+1+vx/m+Pj4WJVKRe12OxBfiCk/i8UiEGeEBY5PRgEZG4vFIpBjSeHzrF2321W73Q5ZCUVRaDabaTabablcqlKphOtHNGo0GmHOmSNfZ8CeWK/XgfR6dgDkebPZBEGEcUJyz/Z22LOMgb0MWZUU1h1iC+H2fVEURRCQPNOA7A3GyfeOj4/D/iBTg7EjDvGDkIZ4wt5xsccFCMQCXq/X62GMy+VSJycnW+sinQojZHQgALGefMczVnxOytdWXgfuGf8+63lRpgLfZS0YG8IIWTYXZSo8oHjB57C0/Syuq/lhG1xERETEQ4I7+ps4PocjIiIeNNwrQeEnJL0uSZLXJEnSkPT5kr7n+b5QrVbVbreVpqlqtVogIZQMSArRaQj78fGxjo6OtFwudXx8HEQFiC1RRkQKyCqEwtPJIQ9+vvl8rsPDQx0eHgYyTSR5uVxuEZFGoxFEDj6bJImm06mOjo40mUxUFIWazeYWSYYIQRAbjYYee+wxXb16VZvNRrPZTIeHhzo6OlKe5yHCO5lMNJ/PQ4SVuZjNZuE1iCoRf65tZ2dH/X5fSZIoyzKNRiPNZjNtNpsgPCAKQNIQURApEH8geq1Wa2vtII6QtuVyGT5HdgZkm/WHyC6XyxCJZ/yMtVKpaDAYKE1TtVqtEKFfLpdBVKjVahoOh2EOEAAgz1wrZSEuBPjvkHj2SjltH/Lq5Q9kwHiUHOLPnkaw4DheQuHlGy4qeBkMY0RsoMSFcTpJ9qg8goCn/3N9nl3gogPCA9dKSU5RFKEMqdlsqtVqhbEzBs98QDjyDIPNZhPuXc9MQEBAOOA8Pv/l8igfpwsQZXhGBN9D+OG6gIsLDyju+DkcEREREXHXEZ/FERERr2jck5KHoiiOkyT5Mkk/IKkq6ZuKoviF5/q8Ryfb7bbq9XqIQDqZOD4+DsSx3W5v1fDzIykQ1uVyqdVqpWazGUofwoWfETP3IfD0bkkhff7g4CCknpe9CObzeSCbiBZkTKRpGojaeDxWs9kMZHexWOjw8HCLwJGGfeXKla1ShuVyqaefflrT6VS9Xi+Q4vV6rU6nE4SY+XyuyWQSIvTL5VLL5TL8PplMAvns9/taLBbhJ8uyMPeIJhA26ZSILRaLQNrI/Gi1WoG4Qn4puYBkQqqzLFO32w3zhwjEHqBsAT8M1om1Wi6XyrIsiBmUBTj5XK/XISNDkhaLhY6Pj7dKaDzbgnNI2hKbnMRLCmSZuSGN3yPwgEi9ZxO4OAMp9+g65JVr8mNCyCWFY7iXA8dCMGF8ZFMwV+v1OpTXcI3SaaaEZ4Vw/ItQjvK7Vwh7lnnhd/fPYC0op0F84dqZZ8bEvLlQwZxyLu5b5oD3L/KE8GtgfXx+/btlH4gHDXf6HI6IiIiIuPuIz+KIiIhXOu6Vh4KKovg+Sd/3Yj5Ljb6kEHWez+e3RTghjMvlMqTne9q5pK2IZp7nyvN8q7yhnKJO9BbTRKKXnjWw2WyU53kg957ZAGGFKDo5p57dyRO17Ds7OyHqD3mB8F29elWvec1rtFwutb+/r81moyzLdHBwEKLrHlnt9/vq9XqaTqeaTqchc6FSqWgymWi1Wunq1avBA4Jr6Ha74fNkXJRr+cuCy2KxCNkERKaJkpNlQiYIpSB4J3hNP4QdIugiBWuHgEFJzMnJiebzudrtdihjYczVajVkNniGBB4KrDmCBcdGVCobNvrvpOBL2ipvgVQzX1wXGSyereEp+ay1G066JwTk38k0a+EE10UL5p/1476CxDNf7DdEBo7DPceYuPcYkwsY/DeCE+P08hvPfEDE4hoYK8Khl7+wN/38nrnA8Zgz/y5iBYIix/ZMg3JGkgs6bpLpJRuc70HEnTyHIyIiIiLuDeKzOCIi4pWMeyYo3CmIcjYajWD+5n/gQ+Ag3e49QLSYLASi/pJCVoLX7kP+OV+ZsEF4IPyefUAqfrPZDFkS4/F4K6Wd75Bu3mw2gwDgtekeqa3X65rNZppMJsrzXI899phe9apXBQElSRLt7+/r8PAwEMlyqn632w3zA4nGJ+HatWuhRIHxVatVtVqtQF5ns9mWpwCRfF7DBA/TSgg7mQmSQmYGhBJPC+nUhJCSFcZN6QHzznxBBj3q3Wg0wpog2CAguJEiWSyYE0rnogDRb0oCeI/5cvEAeNkB5pdOWsseAVwLUXf2D2UxkHD2tH+HdYF4M6ZyVxH2EGKFr5GvBcfxEgsIv5cpNBqNINhx/LLHhGcTeNYFa8T96NkPeFIgGHGfMXb33HDPCv++zw3XUPY54Dq5dxF6LvJDQCTwc3hmSFlMeZAFhYiIiIiIiIiIiIh7iUshKFBPD3HCRM/JDeUFs9kseByQui+dE1lIPySUzgN8HhIDWUWY8Hp5Ir1E1JfLZRAsSMOez+dK0zScH48EhIP1eh3c4z3tH/I5m80CqSHdv1ar6fDwUKPRSI888ogef/xxzWYz3bp1K3SouHnzphaLxVb6vbvkk9YP2Z1MJrp165auX78eIvteXuGO+UTtnWDxOem8zIOad1LsneAhonhde6vVCu+RqVD2efAoMUIPewJSi7EiBpQQWM9AgHySbeIk1kklXRPcI4JzuBGodynw/dTtdgPZZE94JJ19zXe5fhfBnOgzv4zBI+MQZC9x4HUfm2dE+OuMkbXlGLzv8+umkb6WTug5P78zDjdKdOGMTAn2g7cZdc8EXuN+5DzPlaFR9kkgw6Fer2/5RJTLFtzA0t8v72OOGRERERERERERERFxMS6NoDCfzwPRh9h7XTdkYTabBU8A6bxrAqUSROmJ+ntUO03T8FpRnLZs9Ag8JIzobVEUyvNc+/v72t3d1XA4VK1W03K5DN0RhsOhut1u8AhAqPCa+Hq9Hur/6VAxm822yg8ajYYGg4FWq5Vms5lGo5GeeOIJXb9+XYvFIngm8D0ECnwSEBI8bR1it1gsNJlM1Ol01O/3Q+mER4VJ218sFkHQaTabQaBx4YCxQHzdN4KoN+sqKZRXkPGAIMIcs5Zcj3sHePcEotWr1Up5nofMDyffEFai7WUwBvczcP8N1oLz4sPhrQXzPFelUlG/3w8lFZgLuonjer3eEktcMPAyCTdwhNB7iQHz4JkBrJ1nhyCGYZ4pnZNnBAzGx17hMxh2uuki+xfTT66HMbJuPpeMze9RP7+bOzpZd2ELUYHv+R7x8oXyMwRRp1y2UM5o8GeMCxtci5e+REEhIiIiIiIiIiIi4rlxKQQFSYGQORmGRPE6WQrUpy8WCx0cHIQuDo1GQ2maKs/zQAI7nY7m83koRUjTNBBR0uOdHEHUOGae57p586a63a729va0s7MT2hR6HT1mg5PJZKvkAJGDsY9Go0A25/O5xuOxarWaHnnkEe3s7KhWq+npp5/WeDxWv9/XYDDQzs5OIFKr1SpcD/OGMSRdJmjRiDDQarVCxBeDSkhwvV5Xp9MJRBCBhTIKItpE8CHZZG8kSRLmm+N6dNrd/bvdrk5OTjQajbRer4MfAUKJdHuqOxkLksJ3GOt8Pg/XCJl1gYFSETc09FIC3wesPVkLzJuLIBBdBB6yL8hcIZsDUlomspSaIIK5B4H7Anj7RR8v10WWA68x1y5gcc2UFHiLRjeh5F5qNpthDzE2jutlGET2y9eJIOB7300nuTYX28rCQL1e3+rOwvVzXWSSeLYEY/RzIeqBi7IOvGSKLBSuk2P5Ho6IiIiIiIiIiIiIuB2XQlBANIDQOvGBJHjNc57nW+nu4/E4EKFOp6M0TUN2Q7/fD587OTlRnuehNWK73Q5RTcYhKUSPd3Z2JEkHBwd65pln9Pjjj4eMhHa7HUg5pK7X6wVSMp/Pw3FqtVoQOsguIEpNRB5yfPXq1RA9JhtjOBwGEp+mqbrdbiDg6/Va0+k0lFYkyWk3B7IxkiQJ3yEzg9ch3P1+fytyT0mJpECsmRfe99aLGFp6KQPCEFFgSBziRZ7n2mw2YdyYQpaN+FgbyCTHlM6zDcrknz3jpSCIBF4qQtmGex54+Y2XXiDUeIYLwg7ZFpJCe0xP74cQI2CRDYBg5mUAfl0cB8HF59U7MThpxwARUu5ZDJPJROv1OmQP+DXwvbK5IplDZLEwLvYIBBwREGGC9YbskwXgGTysi6+5Z1BwfDIovOykLEq4/4KLWOXnDGPwDBueL2WhxDMXIiIiIiIiIiIiIiJux6URFEi/9j/kIRIQO4jEycmJptPpVgR9Pp+HyO/Ozo6SJAnZAEmSaD6fB4K5WCy2DORI14bg0qlhMBio2+1qPp9rOp3q2Wef1fXr14PRICUT0mm0N01TDYdDSed15rQz7HQ66na7mkwmgVQS4aaLxGq10u7ubshIgEjW63WlaRqyAprNZngdckSpAt0Qjo6Owjnq9bp2d3eDCFImURg6cny+47X1blIJeXZy6Wnxnv4uKbSWhKj1+33VajXNZrOtYxBFdz8A93aQzn0G3NiRMTGXfIc59Ih0s9kMAoZ0SkSZM0mB8JJt4ESV77gvBnvK9ytZBMwze5vPU1LB/pMU5gyBAa8GPw/j8XIH1oFx0m7RMyPw/2i1WqF7Bt91HwjPBOC+QjCjS4SXFfB9zuNr4/4KLo4AzyJgnjyDoWxuybUhhnBMRK5ymYNnGbiJpZ/fSzA4vl9fufwhIiIiIiIiIiIiImIbl0JQkM7b2Unn5mtu6lcURUiPhyTS7YFuC4eHh5JODfPwUsjzPJAwar8hCd4eMU3TIFSQ4j4ej3X9+vVA5kejkabTqfb29tTr9bRarUK0GwK7s7OjVqsViOXx8bFms5k6nY56vV5osch56bKQJMmWiEEXAghdq9XSdDpVu93WcDjcIsrz+Vx5nqvRaGhvb083b97U/v5+mCsvyyBCjdkefgS0a4ScSeckEeLV6XTCuPgsgkSn0wlryDpybknh+iqVitI0DV0aiNqTQeBRauk8zd8j1hBoj8Tjy5CmaVhbSDZCByUHnnVBxkKapqGcBjGE6/TUfPYQYhaEnGwP5o0WhuwDzwTI81ySwjEgr7QwlU5FizzPw3V4aYaTdcg7QpELZGXBp91ub7VSdLLs5J15c8GODhwuPvBZPu/eCnQwQYTy4yJceDmFeyBwjZ5xwJwjjrjAxD3tPhHui+LlJD5e969gL/jeiRkKEREREREREREREc+PSyEoQLik85plCA9/0BPxhaRAErIs0+7urhqNhpbLZSh/gIRDCiEYq9Uq1L072SBt3dvEuaM/HRPe9773hZrzTqcTUtmLotBoNFKz2VS9Xle9Xg9GhRxvMBgEXwai5d6Kj9p8DAApI+B6IZzU69P6UlIwSux0Otrd3dV4PNaNGzd05coVLRYL5XmuwWAQyKXX1mM8SAtIrgdzSwg2fgWkwZPxwDx5CQfRXog0qepkBEA4IdyereEEkjFyvW4ACHHlvIvFIrTzpISinK6PYOE+AWWPBW9Zyfx6nT7fceGDc/A9shnwaSiLDWRs8Jp/RlIQgFgfj8C78OZtF9kPnoHi3R7YV25WyXmZJ/cOYP7d18TbSyIClMsWGJdnGrgowzk9owCPBvaRPwc8S8M9Dtyk08/tXhKAayiPgWtw/wQvv4iCQkRERERERERERMRz41IICpQsUNsPkfW6aSLNkkKLRcjWZDLR1atXQ2eIyWSy1QGACP1sNgskgfaJ4/E4GMn1ej0VRREI6WKx0HQ6Va/XU7vd1nQ61f7+vvr9vp566ikNh8NAcpIkCd0ZdnZ2tsgMpMSN79ztnn/JNPC0a4ixk5zBYBDmzIWS9XqtdrutRx55RFmW6caNG7p586be8573aG9vT2maBvLYbrdDmcFisdByuVS73Q5kHSHAPS3K0fJ2u61utxv8ACC1ROcRVWazWRBeJIVyFc5XJskcY7lchlR9iLh0XkLhQgDHofSF9WftIdKk+2NO6SaCvh+Zf4wnIeRuTEhpA6IC8+hZMKw/WTRkAXBc/xz7AuLrnQ7IYmF8kHS8ACjb8EwOrtmzXMgk8fN7ZoMTc8YO2d9sNmEOOLdfo4sijAuhyEUR6fZWjQgYZLmwbm7MyPncf4I54j5kfjxLge4x7sPixpeelRMRERERERERERER8eJxaQQF0qIhpu58DwmhXn2z2Wg4HIYSAvwRiJiXCSKgLR4Rfoj1fD4PRNR9GzabjbIsU7vdDiQ2z3MdHBzoscce0/Xr1zWfz5VlmdI01a1bt/T0009vZVVgVAepbbfbW6UX/X4/EKCTkxPNZrOtaC/lAO7aX6vV1Ol0JJ2TacSI1Wqler2uK1euhOyBD33oQ3riiSe0t7cXsgDq9XroPuGmim6EyffxMIBAswbr9Vq9Xi+Y/s3n82BySPYAQgyEkuh/p9MJGSHuYbBerwPBQ+wgc8JT+BEr2BOYMpIVAUF1gu9ZE3guNJvN4IUB6fSuH/zrWS6sH1klrG+z2Qw+EAgPzAMlIx7V91T/cvq/Zy0wv15i4R4CrCdrdnx8HEQTPuvCF8dzUs21Iri5MaqXC/H9Wq0W/DI8u8FFHo6PIFT2RuCcrA8CBHvE55/7gfd87GUhxsUNz+DgPRdN+G65uwyfj4iIiIiIiIiIiIh4blwKQYE/8j0KCwmAHBKhJsrcarXU7XYDkczzPBC+i3rdezo1nRG8PMGj9Ji/4WFwdHQUiDO+DFmW6cknnwxkmGMdHR3p2Wef1XA4DASJrhIQsV6vp+l0GkgRLSeTJNky43Oy7672eBYQsfW2hRg+9no9SdLNmzc1m81048YNPfXUU1uZAp1OJxBTT+3nXwgs8y6dd0vwjAo6SvAjKZRnMI9Eyr0cwj0oIJ4QSsZFxBoBwKPc1PS7HwVrzdxBniHrkMXFYqFut6s0TbVcLkPXCifzZSPIct29+xqwb/DioCyAtWy1WoH08jrdIiiP8BaQ3s2h3HXDTSMlBaNHj9YjWrA3IOOIB/4v9xaCHtfuJolegsT7fr9xbzDH0rkvg5uH8l3WyMsOEEIoYWFfsmddqEE8cu8JL1NwYYMyH28PyjVRnsGY2Fvs/WjKGBEREREREREREfHcuBSCAkZrHiX3VH5aDHq0NMuyEAGXziPmkkLk3M3pIHlEWieTSagRl04d/Cm7qFQq4bj4D5C27mJFkiTqdDrBEBGzQwgdJBISxfn4LK0f3byPMSI+QCbdy8Ajr5QX9Ho9zWYzTSaTcB1pmmp3d1dZlmk0Guno6ChE9ikpQczguj31mwwOvB245na7HbwgEHLcHNNN7RqNxhbJJrrsZQW8xvfwt4BUIrIg0LDejNuPzZx7G0x++C77jFad3i2BMV9UluLk0rNgIMD4QnS73SDwQP6ZS8pyvMOA+w4g4HhknqwAJ/pkrfi+dw+Asi+ClzFwXI/CI+64qOB+Fj4W1gihiPF4txS/Nvb4RRkMiB7enQFyzx7knmIPsp6Ijsyzd7/w8g2yRzi/C0Pun+Bimpe5ZFmmiIiIiIiIiIiIiIjbcSkEhSRJtLu7q+l0GkofIAUQzcViEToDEMn3dHg+T/kEEe1KpRI6K0AyITxu2lcUhbIsCwQTEiNpq++9G/cdHx8rTVP1+/1AdomWIhxUKpXQGaHb7W6lijvJIdqeZZnm87nW67XSNA3HZPyQbMZDpwtKGPAsQNDo9/uhdOHpp58OXhKz2SyQZzfggwiv1+uttPmyUz7ZAOWWlZhJcs3SqRDQ6/XCZz06zjowp0VRqNVqKU3TQLzpFMCx6O7gmRb4aXiJiZNmSCj7BB8B5slNGll/IutuConYRTSb9aXLAmIUQkye5yE7g8wS5oh9wvX4/QCpL3sxeHeEculE2RwRUYTPIuD4/nG/B8+CAWXiDTnn3qRcBIGKdfGsIuYdEQIxxcsMvCzBj+9mkpI0n89D5gbCgxubetaCi1sIZgg83NdeyuFzXRahIiIiIiIiIiIiIiJux6X4azlJEnW7XTUaDR0dHQWyS70/GQpFUQSyUa53r1QqoUYdAt3pdEJU2AkfxnwebW21WprP56EmHqLGeVarlbIsC+UQ6/Va8/k8nBejSE+ZL7cNJJug3CrQ07ohZMvlMpBfottOjr0cYrPZBFEDQYNSkVarpcFgoOVyqWeeeSakla/X661OCy7GYAyJUNHv98OYmF/eg/iRHQB5pIQAsler1dTv94OZZrnMgYg0JK/X64XsCaLTnr3BtUvn2RWsO/MKCfUxQi4ZF8ejNENSMBL01Hz2n2c8uEmid1RgXimDmEwmQTChBMAJ9UWGgIyTa/BSC8bohFpSyM7AN8JbbyKmuQli2ajQBRdJW4IFc4ugQAYMe221WoX97l4MlH6UhQGya3jffRa4bvY4a5ymaRB43O+A+8Z9R7j/POPDz80ceulE2QTSy2kiIiIiIiIiIiIiIm7HSxYUkiR5UtI/lfSIpI2ktxVF8X8kSfLXJP1xSbfOPvqVRVF83wsO5IwgeUQUwz6impAfd6b3emrIDiLEbDZTmqahTh4SicM9kWkIZ57nWiwWStM0nMOjt4xhPp9rMpmE6HO321W/3w8Ey8eDw/18Pg++DZB3/A7IXMjzPAgJCBaSAhmDpEJ4yCqgxAFiTDtKsgzoaDGbzfTMM88E8YM5hHgtFovgESEpGD9yHZ7h4TX+3sYPQYOIPAQXsi5pK+uALhFuuuelIGSlVCoVzWYzrVYrpWkaxCb3gDg+Pg5p8RBj7zrgHSi8xIY5wquCvYhfgZtmeikBZJW59o4SzWZTaZqG9Sb7BiGGfUF7TEQOjuOvS+dlEVwvc7LZbEJGCq/bPbolfLj5Ivcac4QYQnaGdF4a4h4nzCPiAWPzDBHWg2OTseI+HWRP+LqQ7VHO9HHhB+NVBBzWiH0FOI4/VzzDw7MuvKUk+8ifFZcdd/tZHBERERFxZ4jP4YiIiIcZLydD4VjSny+K4qeSJOlJemeSJP/+7L2vK4ria+7kYNSZQ8Y8So6hGsTFswcgCnQE4PPT6VR5nms4HGowGITosEcz6d7gxoweuXYjQnBycqLxeKz9/X0dHh5qsVhob29PV65c0c7OTuj24B4L9Xo9lDIQPaXufrPZaGdnJ5QWUNcPmYPEeZQX4kukmJKOXq+n4XAYsiGcKLbb7TAGrh0C7Cnmbo5ZFnIg0hBDSKS3HGSOmEcEjslkEuaS0ofRaKRerxfaPHoU3g016/W6hsNhIHjL5TJkXhA5p3QBuKmkr93x8XFon8h3u91uMLnES8CzQDxy7a0Iyx4d7EvmM0mS0KozSRJNJpMgpEB0QXlei+K0tSSZEp7FQIYI2SVlUQFxwiPvXlqCcOAEnvmh/AUPD8pvvGSAe4jjegcO5t4FPy/XYf4oTWGcXJOLKf5Z9++QpCzLwr5krGSgcD2YUPKel1f4HLi3A/PKdT8g3R7u6rM4IiIiIuKOEZ/DERERDy1esqBQFMUNSTfO/nuaJMkvSXr8pRwLTwTIjZctkDYO0aX2vdvthug3nRYgapLCe5PJRHt7e+r3+yEy7rXajUYjROj7/X5I1Sf9n88TpYVUTadTHR4eKs9zFUWhvb09Xb16VVevXt3qGECEmawD2jq6PwTeDURmIcFOxCjRwHeBY7darVDCkabpFhly/wY3goT8eWTYI9Oce7VaaTweByEGskzGQ6VS0Wg0CsSOqPPJyUnIJqhWq6E15mQyUVEU6nQ6IWo9m822osyUvuDzABAQDg8PNZvN1Ol01Ov1gkEkkWQXNlxwgsC7hwZCFeUxnU4nkH/fm16S4aIF8+aGivyLQCQpZIQgiLBPKVFwY8Dy3vDOJ96ZAGGKMhP3cuBay5k4XL9nCCCmUTpQNgWVFLImIOCSgvDFnGOO6XPPuLh3PbMF4UI6FQcQFLn3yRzhfmO/sv/wD2GszLfvQ8ZRNsBE+OEamTsybMi+yLLsgSh5uJvP4oiIiIiIO0d8DkdERDzMuCseCkmSPCXpN0n6MUmfJOnLkiT5Q5J+UqeK7dHzfZ8/8LMsC+n2Xn8PaSOq727sRJMhpRAxSDP13XQaGI1GgZRD3JyceXcBoqdOVNy88MaNG4HgttttPfLIIzo8PAwtIRmjt+bDwLDb7Wo0Gmm9Xms0GqlSqYQ2mERuvYVklmWBzBK9Pjk5Cf4PjC1N09ACk6gvEXzIIIQWYk/WB34QzOnx8bGm02nwaWi32+r1eqGW3UtFvCQEQWY2m6nZbKrf74eMgOl0Kum8OwMmkJDOarUasjqSJAn7oVqtKk3TUMoyn8/V6/VChgPCB/PDOLg2iKOkINBAmJknrt2zO9xsUDo3hSyLFm4EyZqzhxFidnZ2wn6ENDMu9iyiFfNFRgCRfhcaOHc5e6Gc6eFlHJTRuMCCuMHcMG5ed1NML3NABCgLMC6+uSCD2IPwga8BQhfCjJN/zsd+3Gw2WxkgeFLwPdYLU0aOg5DAvzxT2FvMlZuRUjr1IOHlPosjIiIiIl4e4nM4IiLiYcPLbrKeJElX0r+U9GeKophI+geSXivpzTpVa7/2Ob731iRJfjJJkp8kDR0yJ53XMkOmIIOQvMVioclkEsoO3HXfo8xFUWg6nYb6awQBUrIlhVIESgNIDyeq7waQTgLX67Xe97736dd//deDseTe3p4ee+wx9Xq9rZR2SBamge12W8PhMBCX2Wym6XQavBGc7JIpcXx8vNVB4eTkJHQOIE0dP4dut7vVgcJb9EFS1+u1JpOJbt26pYODg63OEIgaEPgsyzQej4M4gZDR6/XU7/e3ou2SgifDs88+q8PDw63SCkgwpBYxhDmtVqu6cuWKHn/8ce3s7IQ57Ha7GgwGW1kCrVZLw+FQ/X7/Nh8JN5uUtsUAMjPYc2RTsEfwWYBcelcLr8Un0o1wsru7G9Lyj4+Pg98GmTSYTZIR4KSZbAmi4t1uN5iKMmb2OaIWAgVZDu5zgLBCKQ++DmRBMF9cR6fT0XA4VKfTCSIYhqCeRcK1cx7mkfvTy4a4J92vg+N76VGz2Qxril8I95n/zvnppME8cI9xz3sGAt/lHkYgK3szILggcOFZ8qDgbjyL11p+uIYbERER8YpDfA5HREQ8jHhZGQpJktR1+uD850VR/CtJKoriWXv/GyR970XfLYribZLeJklpmhZEcSF2ECh31uePfKK0RFPxBfCaakoNnEhAEsfjcSA7ksLxSJ8vikJ5noeo+PHxsY6OjoLHA7XxlBuMRiPdunVLSZJoMBjo6tWrWxFZSVsmi0RR2+22ptPplkmjmwl6ez0iuBDb+XweCBqp42QR7OzsKMsyTSaTIDjkeR4i39SGk1lAlgDtNrvdbiCFHj1fr9d65plnVKvVtLOzs+XRICnMnWdzzOdzHR0dhXIC5oI6ee8awFpKClkcfB5y2+/3tzIqJIVr6na7oUzCfQ88ii2dtwH1dHiu1UUk5v6i7hsIU4yL66dEB5FruVyGMhMMKEnJxyeEc7IO+FJ0Oh21Wq1QEiSdZxB4VoLvMxexeM3LCCD3nrHCHnChjQwEL4fxchGO4+UkXLd7a7g/g5P7Wq0WPCUwTp1MJreV4Lg5KgIA19ztdrfENbJxEH0YMxkqs9ksZOewdvzg4TGfz5VlWRAtfJ4vM+7Ws7if7D4YFxwRERFxyRCfwxEREQ8rXk6Xh0TSN0r6paIo/q69/uhZLZkkfa6kn3+hY0F4iLA7kSXi7SnNEECioUR0vfyBSLqndnP8Z555JrQuRCDgXKSaQ5IRIaTzunHIMm0p8QzA6yFNUw0Gg+AjgB/DbDZTtVrVfD4PUVmi9kRsvSUeBJy5QEQom1AS7aaEAHInKRBFj+6maboV2ZYU5mZ3d3erJaBnRVCysL+/H85BhJ22f6Syd7tdzedzzedz5Xmuw8NDdTqdIE5wXv4bIcPLBdrttnZ3d0M3De9YURRF8FtA4BkMBkEogHi6/4FHrdljnJ/IvotRCAuQ1Ivaf3rZAefBZLJSqWg+nwdhIsuy4AGAWIJAAIHm+AgRblgpKYhmLmYw96w1+xUfEcbIPVD2TWAvIVghNJAtxB5znwXWiXG7WED2wnK5VJqmW8KCdwJZLBaaz+ehjIHWrWQBcW/69zxDg7n0jg9cpxtJ8l3uqcVisVWagVDJfkAUQei57Libz+KIiDKqw4F09v/DiIiXgk2Wq1g+R9Q9SVTd3bn4Pf/Y6HLvwfgcjoiIeJjxcjIUPknSH5T035Mk+Zmz175S0hckSfJmSYWk90v64hdzMMiYE2k6GkDEIQGQGcigiwf4I9RqtfA6kdWiKAJxpUWjt1BEKIDkExUmqoxR4HA4VKvVCsSQmn/3bqBTxWw2C4IA0W0IE0SGNH/p3Glf0hZplE7FAbwUIE6IIpQx8H3KB3gNYgUJZE4Wi0Uwv2TOKcXguwg3iAtZluno6CiUh/R6PbVara1zYZqY57nm87nG47Gk86g58w15JuND0pa7PhkX7AHMExEyPPOg3W4H7wjS4D26vl6vQ8o9hNdLBDwDgbR8yPR8Pt8i8541w75lzTxjBIGI8gaOgeCQ5/mWPwOiFN/neF7G4z4PPgdcJ/cBGTDsL/YnZSGci/kiC4ayGOlcVPDSBc+GaLVaoZMFmSmSgjCAZ4gbTUoKnTYQdhCKyIyYzWZbIiJiBaU/CBf9fj/sIfYdIh4ZFswba8p+9hIJxsT6+L31AOCuPosjIkDt0Uf0q3/iNTruxoBpxEvHYz9SqP/TNy58b9Pv6N1fOHzBYyy+9tKLu/E5HBER8dDi5XR5+K+SkgveuuP+uhABUtHdsM1Tzp1cExEmMku0HmIMUd5sNhoOh0GAkBSipqRY93q9rfp6Mgakc2IkKYgX+CCkaRoyDRAGpHOTP9KsyyZ5jJvPQGwhM7jyUx8+HA7VbreV53kgypBWJz2kmnsduxNP5pp55Yca+3q9rvl8Hs5frVYD8XTvCr7H+T3Lwbst0K7z8PAwCCq46XsmAmnrjA2iR+o560NmAB0+OD+fZx1YO+aesgFaK5KhQOtBRBPKZiixQFhyrwdJYZ09Wu5tCMkAQEhiP0raygrp9/uSpDzPgylou90OYglz41kTXoLCteBfgYiG6IFXAy07y/MlaUu8YnysX6vV2tpHbmzppQTcL14GURRFyALy8iIn6ggKjBfjVBcC2SNk3ngJBcII2R7MDxlMrGeSJKHkhCwH9gIZT3yPbhHeQvSy424+iyMiQO01r9b7/l+P67i7ud9DiXjA8fQnJ3r6kx+738O4p4jP4YiIiIcZd6XLw90Af+xLCinmZAwQOYU0QU4gXMvlMkRiiUiTJj+fz3Xt2rWtCGm9Xlev19NsNgsRao+QI1xAYr1jAxF60ssRAogSj8fjLbM6r4snok2UFaJIajrdJSBilEcsFgvt7OxsfRfBgfFSluD1+ZB+CLxngUAMKQchSu3eChBl1sXHSGTcCSTgu8yzp9TzOU9H9ywSJ5B4OmD8yB5ot9tK0zSs6Wq10nQ6DWIC4hDHgUwWRREi3252yJx4FwJq+8nCgLzjr8E8MN/echCiS1YLmQCIKOyJNE3V7Xa3BBnmlswGhBaEK67LiXk5OwZCjECBaORg/X29uKcQxMiEgeAj9ngrR/dsYB5cFPDP+XsIIZ5JgGko4h9r5+PlfYQPSSE7hv3K/eelL5K2BCnpVCxEEPJxusHog9A2MiLibqP6+tfq/f+P61ruRjEhIiIiIiIi4vlxKQQFnN4hAx41hohA4D3a7pF/yG5RFOp0OsHNPsuy0MbRI6yUK2RZthVl9o4AEBI8DUi5Xq/XyrIsdEE4PDxUr9fT7u5uiIaT4n58fBxaGnp3CEwgiboul8ut8g5IFaT0ypUr6vf7W479nprO50ejUTCLdKNBP2+5Hl86z5wgXbwc+a5Wq6Grhrf9c/Ll9e5etgKBI1LNOTz6z/v8S309Qs3Ozk4Qinz9IPh8B3NDT+dfLBahNIUxeMo/uMissF6vazAY3JbZgSjA97huCD6iRqfT0WQyCdfrpR5k1SDYtNvtUIIzHo/DvvNyDfcRILMHM1PP2EHAStM07BOyDDyLw/ePi0uIGOxnz3RhTHzH72OEJJ8T9pJ03lEFQco7SniGiht8SgqiQ6vV2uqAwvW02+2tbA6ERu4B5pxyEOYJ8RChkvXAawFBIyLiYUH1N7xOH/ysq1pci2JCRERERERExAvjUggKCAikmEsK0WAvc/CIoadYk6lAunez2dTu7q52d3d1eHgY2h3u7u6GCCcGfxwPMgRB8cimdEr2vD2d19vv7+8rTVP1er1AaIggQ+TxCfC2iRB6zwaAIHONEOU8z7Wzs6N+v6/Dw8Otjhek20OCPPrsBI9xI3Y46ZIUCOl8Pg/R4k6nE9aDrgOMCeM6d+CHwBH1RRTBk4G5ZxwIEpwfYGKIkHTlyhXt7u6G94iYc/7FYnEbkUVcIEOCc7k3Ab4LfIcsD+8EQKYFngdkMCAukZXgtfc+BrxAIM2MwQmupJCBgOkmogD3gosS7C0yCSD6rD+mm1wLZSusJeKBlyRwDM69Wq3CmBAluFbEKfYV60LmiZdV1Gq1IPBx3jzPw/5qNptb+1BSIPVegkLZE8fB0BHRzL0oPBvIhQ/ud7/Ped8NPLkGuo5ERDwsmL5hV7NHo5gQEREREXFJUKnqV77pzff0FK/7I++8p8d/peNSCAqbzUbT6TTUlCMw+B/6XlO+Xq8DGYCQr9frYAB4cnKiXq+na9eu6caNG1qtVsrzXNevXw897Wkz6Kn+iBcIGxfVl+N9sFgsNJlMAgmbzWYh24FMCwi0E27I5Gq1CkTTyxO8jIHvnZycaDqdBkLvRAjxoNVqablchjRuJ6EQP59D3lssFlvp49S+r9frMIcQ3F6vp+FwGDI+cMtvtVqBFHNdeCYcHh5KOi8N8LaD7iXhfgPSecbFZDJRkiR68skn9cgjj2g4HGo8Hms+n2s2m4UygzRNQ7QbNBoN9fv90J6QTAvEDuYaEswc8RrEfblchgyHNE3DfDFXiDbMEwIKZNxLMPwaPSLukXQyFfgs44LksrZeakNUn3WAfHu5DmQeUaf8ftl/ArNON4RkPIhToBzJ9xIHhBWykFarlSaTiRaLRRAUEDdc8EGc4x5HLGK/kDnBfvE978aYLujxrPBMJ8bL/Pi1xpKHiIcN/Z/4kCaverWyp6KoEBERERHx8vD+r/4EXf3YZ1/4g8+DWmWj977pG+/SiC7GJ//A52pTXGSDcorO3+gr+W8/c0/H8CDjUggKkkL3AkmBfJeNBIkMO5nhs+v1OnRhmM/nGgwGeuyxx/Rrv/Zr2t/fDwQGAgoZpb0hx4RcEpGFcOE0T8QdsgvJp9acjg98t9Vq6dq1a7p58+ZW9Nq9FYh6E30lC4COBZBVSBZRddLB+R6GfpLC5yFTkDE3s3TiRAp+r9dTrVbTdDrVdDpVtVrV3t6esizTbDYLWR0ezXdhwIkh3R3W63WYJxdOjo+PNZ/PQ0lEOboPKczzXDdv3tQTTzyha9euhQj6fD5Xp9NRo9EIGSK0xIRs046QCDhZCvgOcC72kqSwRxAg8M3wLiLNZlPD4VBZlkk6FyW8xSavuSDGPHnXkotKEMgM4VowyWQv8lmyKLxsgMwMF6UkbYlznIPyHQQN2kZSAuOZM5yDzBzvLlI2b3RjUwScavW0ZamLWD4f7BuyERgz3hJuPopgwzqSPYFgwndZPzwraC3JHmYuarWaer1e8F3x1pUREQ8Tlh95XYursatDRERERMSLQJLotT/efM63//aVv6c3N5/7/cuCH/nof/287/+9tz2lX549cuF7P/Se1+s1n/9z92JYDwwuhaDg9cqQLIiBdwSAPEF+nBxjJjidTkPpQ6/X01NPPRVen06nunLlSminRwcAabtbAYTEI6RO9CEhh4eHgci44SA149Tyd7tdLRYLHRwcKMuy0FKSDIXVahVSqxuNRmjDOB6PAzHt9/tbvgRkVvCap6VLCnNJ/T0EjnIH9xIgU4GyESLqeZ4rz3M9+eSTqlQqOjw8DCIMRJNzYbRHCz/pVCSaTCZb7Sf5Yb4RgBAb1ut1iG7TkvDk5ET7+/u6ceNGEGy4JsouOp2Odnd3NZlMtur0pXNvBEm3lW04mfU1JIJNtspsNpN0XhYC4STLxbMbvIViWchBrHJzQ/YQ5pysK2UiiE0cx8smuH7mHrHEDSo9m4SsAcoh2KfMu5doeAkBew4hiZIb95somyCSLeHZEO12W8PhMJShsD71ej2UeDAvjIk5RESQtCW2eTlH2XyUcgovT/HMCYQe7muEnCzLwj6OiHiYsNyp6ziNgkJERERExHPjsXf09NuGvyRJ+kP9/ef55OUXE14M/szO+6Wd91/43tEj/1H/5l2ves7vftsnfLROjo7uzcAuCS6NoEBqOVFB6ue9m4EDsuOR9vl8rsPDQ41GI12/fl2DwUCPPPKIbt26FUoUhsNhiGoTue90OqGzgqeGQwo9Ckz0mrKGLMs0Ho9D6juEyKO0tFCk5vv4+Fiz2SzUq3M9TnQweISoU8NPdNfT9hEOfIxkMECu1+t1aKnppSOQSK5xOp1uZVxMp1OtVqvQaWE8Hoc58a4CLhZkWabFYqHZbBaEDMiim/5J520Q2Qd4AEBsd3Z2guHgrVu3tLOzo2vXroX0eVL+aS95/fr14L/AuNxbodFoBBJN5otnobgRH+UKEGyyBRAjfD+U14B1YX96e0I3VdxsNprP52o2m6G8AHFHUiixcLLu5RmIMhe1N6xWq0H8oQsK3+VaKbFgDjF+LIpCk8kkvMYerdVqoTuKd5koC1jMH0Ic5SBuxoiwhGBHhgvwjhDMD1kIZPUwz37fIV64UIDQxb3vBq0ueDFW7tNY8hDxsCH93p/Wzu7H6uhNUVSIiIiIiLgde/9tR2978odUTy5/a+0PB3aqnecVVd780/9OmyLRrx3v6O+/7vUfxpF9+HApBAUiiU5wJYUIPzXiXn8O3OdgvV5rPB4HI8bhcKgrV67o8ccf1zPPPLPVIrLb7Wo0Gm3VZkN0SZEnqguBhkB6zfpyudT+/n7IjOh2u0rTVMPhcCuDggg65oHSaRSUsgEio1zHyclJEETIGmi329rf398yEfQsCsjZyclJ6GBxcHCg2WwWiG632w0ky6PGXkYBqW40GhqPxxqPx1stFF0Y8Pp21seFDElbUWTvmOHHYh4khch1pXLaxaDX62mxWCjLMt28eVP9fl/D4TAQTdaj2Wxqb29P8/k8+FxASjku54HMV6tVDYfDMP6jo6MQ0YYk+9h5jSh/+dogoN4KEzCn3oWAOXODQi8LYM8hTOD3geDCWBE/vJsBYgBknSg938EI1T0kWJtOp6PZbBa6k9BmlTkbjUaazWahW0ar1QqiCdkDmDEiZC2Xy1DahMkp+wghg0wQ5vL4+Fj9fl/dbnfLR4I5Lhs58jpCC3sT0QcRhf3f6XRChg2CIt1DWLOIiIcJxXql6lpSIem5y0kjIiIiIh5CLH/wKf2zp/6VqlFMeNH4HxqnvPbNzZk+5UNvlyT9wfd8rpaf8sz9HNZdxaUQFIgu88c7hANy5x0dyiQCUAKR57lGo5FGo5GeeOIJpWmqxx57TOv1OqTDE6Xk83RfgGR2u11VKhVNp9OtdnmcB8FDOo1uTqdT3bhxQ1euXNHOzo46nY76/X6IakMsIZ6dTkfValV5ngcxBVGA7IHpdKput6urV68GY0Lq352EbzabMH4i6GR2NJtNdbtdnZycaD6fB7GmUqlsRcOlcw8AIrO8PpvNlOd5IM+UIHh7T/6bcgIEE1L8vSWopK2IM6+vVqtQzgDx95KFVqul2Wym/f19Xbt2TVeuXAktFiGNrGm73dZoNApkP03TENHGf4E1YT07nc4WiXXxA7NH9oN0LmRxPfgn8D7zCMnGG8BLIBC4vOQHQ0Z8G7zWHzNPBAREBcZJ5ox3gIDsI2Kwrm5EiijjRp9ebuIig6RQbuP72j1HkiQJ3hKdTkd7e3tb9x+CD5kDfo2ewcE8IRa1Wq2wV5hHXwfv1EJ2AiIZewkPiFqtFtpisscYCz4ifh9ERDxMGP7Tt2vd+QSNX19EUSEiIiIiQkmtpg9862/QL73pn0mqvODnIy7GoHIaZPue132/Pua7vkCPft57VKxXL/Cty49LIShQy++RaQgA7eV4/aLyB39tsVjo1q1bGo1GyvM8RDfb7XYgDER4a7VaID5EuSWFqCURacgq9dhOEvncfD4P3g2DwSAQ3YODA+V5HsQC6tsheG70B1HDG4BSg6IoQpo5EezpdKrRaBTKAvgcZJw6d8hpnueB5ErnIk6tVguGhV4awPmJKpP+3uv1QvSXNHKyFBAdWCuIqbc19IwMCB3nL7cI5XuAshjPoMCw8qI6eJ8v5sxr/flv9x4gs8TFEu/isFgstNlswn4iYwWCn2VZILZufskaM9+AzzjBZz/WarUtAo3pprf+5LiIMxwTcUlSEB28XIfrY/8R3fd7pNytBENOrp09UK1W1e/3w35wkQlBjowEBBsX6TB55J5ycYG5YL/QYcRFBko/OC57z00h3T+C/cmep5SCrItOp6NOpxM6nEREPIy4+g/frtWXf6Lmj8RuDxEREREPOqpnnfReCCeTyYWv/8rfeYve80n/8G4O6aHHz37ct+o1b/siveFP/bI20+n9Hs7LwqUQFCSFlGbqxZ2w409Ae71y6YMTwM1mo9lspmeeeUaHh4d69NFHQ0r/fD4P5Ny/R+o2hIyoPinmRO/TNJW0nQbt9drz+Tz4G5Dq3Ww2Q5aCp/XX63Xt7OxsdQfw485msyAYNBoNHR4eBpK9u7urarWqyWQSiD/GjUSh8U24KKNCOifsaZpuRYn5LCUh0+lUt27dUrfb1WAwCN+Zz+fK8zwc19PQJW3V9DuRRTyglAQySNYABNy9Fur1emhjSCScLBUEDD9veb1brVYQQrx9pZsw0uGj1+uFLAZIrRsQMleIYAhEtCIlE8FT5t0AE2ECMYnsEYSSwWAQfEMQpTgu2QusIXNYqVTU6/UC4Ufg8gwILxui7Sp7gCwGxA4MCbkP2d9kwiDU0BWBjCI3BKWEAEFkMBio1+tps9kEs1HEDK6/1WoFk0tEnOPj4y1BCg8G9gXZPghu7DfpvMuDe3Rwv5LFIymIJayBZzH5vRMR8TChurerIma0RkRERDywqD36iFSpqEjbeveXXn3hLxTSG/7uB6WTEx3feOWk419mvO93faM+4qu/WG/4q7/8QBs3XgpBgT/yIZ7T6TREviF0EF4IJ4QNQEZJVZ5Opzo6WxgyFIgEE911HwTvcU9tOUQfMQPyiNmgmzc6CSMFPE1THR0dBRO/+Xwe6skhqBBtou4cD5IN0aWdHT4IkMssywIB6/f7gRASSZcUrsUJH60yKRsg8s3n2+12uCZ8KRAcIJPj8ViSQiq+R7edUNM2klISSC7ZARBwSgTcGJMxc3wEJ+m8hp5ItKTQeaHX62kymYR9RYTcO4X4/kOooiuHR8vJfECImM/nt/kOEAWHlEO0JQWSjyhVbm+4WCyCiSV+AggTbnZJVwPIOyQb7wSEHkg3xJnxOhHnun1MHI+9yD1CVgHCCnt8d3c3ZBc0m82tlpJcO2uG8SL3EPdzp9PZEpDKZTlcM3OB0IAvAiKK71/PtOFf1giRgv2GUWO73dZgMJB0np1DKVJExMOG2qOP6Nf+wEdocTVmJ0REREQ8iKi+/rV691uv3pkwnEjv+vNPqrJM9Lp/3NbJr75PklR7zavVfDK7NwON0Hv/p3+kt/zcl2rvH7/9fg/lJeNSCAqQNIgyqdiYIUoK0U6PKpcBeWk0GprP5zo4ONBisVC/3w+tAvmMdB7N9vaLjIdUdkkhmozxXZ7nobYc9/qDgwMdHR0F0zdImtfKQ2QkBTKPqzxj8FR3iKZ3sajVahoOh+p2u9rb2wtztFqtApH2LguQd2k7Yltu00nknHkme4CuDfv7p+6l/X4/zA2dJ7guSiScjK/Xa81msxBB984W0nn3By91IJrO3ELIIY3uY+D19tJ5qQUGh5gbEs1m3TH7RMDg2KyBlzJ46QPH9z3oZoy0P1wul6F7Qq1W2zL9a7fbIRLvYgffI5WfDgdejuNCgosAvM9/Iyow/1wT3hnsa/db8BIViDRzk2WZ2u22er3eVqYQAgHrh1hCm0nmh9IINzi9qJSk7E2BWIKwwZg9OwOhhPnxNp7MHWVLiIQueLFWiBPeneQiv5aIiFc6bn3aazR7PO79iIiIiAcRlTf/Rv3K5w9UVF9at55Ns9B7/sgj+ohva2rz8+/SB37f4/rFT/z6uzzKiFcSLoWgQEYBBnpEwb3tIoSPDAUix+VIM5HVk5MTjUYjHRwc6MqVK1ut70jlbjQaoRsC6fDSKcnt9/uBEJLaDyGlvAJCd3x8rMlkosPDw0ACIVlkA+CN4BkIjUYj+DVwXEnBqwFRgAg+QsBisQi+AFxLOYJNJJZMBMz3iN5CEiWp1+tttY50nwAyOsbjcSDOmCdSAkJau5d/SKfklvEjdpCpQGlKlmUhM4X1kc6NGEnfdxLKPGFyyfkgv04yncy6UAGZLZt8Qla9uwgGibT6xLeAsZBNgxDjbSbb7XYgxdT5eztKWhWyZ5kP9ib71a/TuzhApDk2845vAnuG7B1v1+ldSHwOER4QCdhz7DuOw33AD5kKCDCIQWXTRUlb10QGgu8hhBWEoXJZE88DN5LkmcA+Yc29zaYLZy5iuSEmogZZExERDxOqr3+t5lcTnbZ5iIiIiIh4kFB8wsfovZ/Z0ab58p7hx2mhD/3uXT3283dpYBHPi/x3Zbr+H5/S8Xvf/7yfq73m1Zq9/uLylcYP/OQ9GNmLw8sSFJIkeb+kqaQTScdFUbwlSZJdSd8u6SlJ75f0+4qieN6iEFKl5/P5FiEgiggJICUcYsD3POrvBHG1Wmk6nQYjuUajocVisdWmEuKPoEAEHWGAdnuQTMZD1BQRYrVa6fDwUKPRKBAjF0IgWRAtIs2tVisY6EHwce9HgPDUfjIC+BzlBpguuomhizCQTMzsEC0gvXQygARinEgKP2OczWYaDAbq9/tK0zQIIowBB3/OJ536QYzHY/X7fe3u7qrX66larerWrVvBxNAzGrg+2g5K5x4H1P7zHer1uW4+Q8kA1wJpZEzu0+HHYz+yvuyp2WwWxBFMDCH7lGF4Sv58Pg97j/2JWMN/s56IKRwLT49GoxHMDvM83xLLINiIG07IOSb3h5ei4O/hHRU8Ys9rlPggOJCBwTW6PwL7jvvOjR5dAHAhEJGB75A14h4H5bIIz6Zg3IvFIohh9ly6zZjRs1Lc44K9tVqtQpaCP0celAyFu/UsjoiYvvFKzE6IiHgJiM/hiPuNzf/4Zn3w09o67twdQXjVK7T5lN90V44V8fz4pU/6Z/rU3/DH1bxAUKj2+xp/+m+UJGWPVpQ9dcH/owvpkcHH39lJi0Ld7/yxlzDa23E3MhR+W1EU+/b7V0j6D0VR/K0kSb7i7Pcvf74DeAr2arUKJID/pvaadGo3mYNwO4jWn5ychFZ/1FxDFImkQmhdlKBdHxF/BAdvoeeElrFPp1ONx2NNp1Pt7u5uRZEhq+W2hE5aIe1cr3SeDcE1u5DB68fHx8qyLLSaZD65LqLR7uyfpmmoFYcsQvAQV6gtH4/HyvM8pOS72MA8MteTyST4B0DI5vO5RqNRMOZrNpsaDAYhM4UxeL0784T/A6aM+FHkea7ZbLZlgugRe+YIIQYS66UckrbWlqwGL0/gGhAkIM9kESDAcDxfUzfapFODty90Y0nKItbrdRCH6DbAGJgnRArvQCJtZ98wL4gFfB7RyksmPPLvPiW+xyDklFFw3d4a00t6KDdgXIvFIgg9/jrkn33K2FgH9jRZMZyL9WCu+J6vvXd0cBHQM2mYK+YWc1ZEzQcsQ+FlP4sjIvo/9bQmr35S2aujqBAR8RIQn8MR9w2Hb2xr3bt72WXH3UL7b2zfteNF3CEqVR184cfppJlo8jr+n/wc/29OpGc+4Q6PXyTa6d/+pd1fnCl5+8/e0aHuRcnD50j61LP//hZJP6wXeHi6ZwJmhwAyROSZ+nuvGXdBoWwGCGGldh1/AqKw1IsjFlQqleA6T9o138FLwaOenJNzHRwc6ODgQLu7u8F4j9TtMrnjd0gOx9hsNoF4857XyUOMSA0nvR7fhXq9HiLh3qmA9HfIHlkJkCvGhW8DmQwQf44JEavVaiGimySJRqORarVamD9Pb3dPh1arpStXrqgoCo1GI928eVN5ngdCT/SfjALKHxCK5vO5jo6OgpcEZJduAHgm7Ozs3NbCkI4hXF+9Xr/NNJBzuCkixN0j1t6hws0hIakuHnlnEc+gofTF14H9iWCDrwHk3csbPGvDu2S44MbvrAP3Anub+8kj86yFk25KIVhTbwFJu0juI8bm5/XOCd4mk38944fuI+xJ9gFeFnyP+eVcLmr488BFOkQRf9bgncA+YkyUOT2guONncUTE8Qc+qObRE8pefb9HEhHxikB8DkdERNwxbn7ZJ2pT05m4f49KEBPp6E23Hzt/MlXj4z7x4u/8vX9x4csvV1AoJP1gkiSFpH9UFMXbJF0viuKGJBVFcSNJkmsvdBAEBUgTbRa9Bh7CIykYtAEvj/BoMinR5Vr29XqtLMtCuzsIBITV09ghs06enDwiZkAs8W24du1aMIjsdruSzknL2dyE2nx+32w2ocNFkiTa29sLZJPzcd18H6LP+KbTaRAnIMneftNd83kP4oiI4u0PIVheakHJCaICWQTdblf1el3T6TREkp2AI37UajX1z/rh3rp1S6PRSFmWhfnykow8z0OEmfKQ5XIZ5onOEf6DwLCzs6MkSTSZTIIPBlkv5Qg6JJ694H4X7EPfCy7CsCekc5HJU/gRLObzuSQFso5oQnmAezosl0tNJpMwz07COT73hLd2dLGHchXpPHrP2hRnHRs4PutNFoiXrCBaePtG7jsXwxiD36sIQYhdjM3n0QUAjo+ww/Wy55bLpWaz2VbmCFkOHJt55X3uTxcHvKSItUVwoxWld+J4AHBXnsUREevf8bEaveF+jyIi4oFEfA5H3DcsPvPjNH3N/R5FxN3AjT/3icqf2EjJC3/2XmA12Gg1uLPvvFxB4ZOKonj67AH575MkedeL/WKSJG+V9FZ+pwVcnueaTqeazWZbpRAQbghCOa0fIEB4Lf5sNgukFyIHkSf93lPKISWch+inpC0TOwQLorLHx8c6ODjQ/v6+sizbiuJDLDken/dWhtTSTyYTtdtt7e3tbZnnEUGmbhyRwE0BnZAi1JTNCyFPkH4it4gJngJfrVbV6/XU7/dD2QHzwrUxtxAx1ggjQGr2MYLE2DFNU33gAx9Qs9nUfD4PRJHMAVplInogHuBpAOFj/iD/dNnwLiF4b7BeXDMCAPM6GAyCcOFZGwg55XIX1g9C7gQXcsx5KWnhON4FhLHyHUo62u220jTdMnF0Yc0JL0IaIoWXKFQqlWCy6fPEPYFoVK1WQ5YM11X2xOB4XkLge9QNGyUFcSDLsjBerrNcLoLfCeuDyMR9wzgR/Pz6KWvybA3fj27GSdaDCyB4TnjbywfFQ0F36Vnc0gOdkRFxF7Du1XTSioaMEREvAfE5HHHfsOpXdPIyjRgvwvQ1ha6+6eZdP27ENj766/6EHv+hd+rpP/+Jyh+/f2LCS8XLCr8VRfH02b83Jf1rSR8n6dkkSR6VpLN/L9yFRVG8rSiKtxRF8RZJobODJI3HY2VZtpUujiEepNpJr6Nc9+wp6RA277xQFEXIUoDkewTbuwOcjTsQ3fl8HtoSQmyyLAukGa8BjB9JXS8784/HY83nczWbza1sBm9bSES5Wq1qPp9rPB6HsgKizNJ5HT3XgthCpgPjx7XfCap0nq4PoaNkg3KRxWKhw8PD0PEAIzvm0FPIETTwrpAU2iNWKhVdvXpVTz75pK5evRo6TeAl4R4ImEIiKlSr1dB1gTH6vvDa/FartbUGZBMwLx4hR4Qhvd/LRdyYEIKLoJQkyda1u4+CdxOhgwndPRBgEHIA67xarTQajcLeZz/43vT9jdjBvsTrwQ0p6Q6CyOT+GcyVd8hwoYYMHsbItXA9+A9Q4uMlOpSWcC9T6uEdXVgP7mmyVdxjwY0VyXbB64P7i+4giD2M00s6WPNypgff8wyIBwF361lcV/PDNeSIS4rOd/+kXvcVP63+eyqx0UNExB0gPocjXokoaoX6jeULfzDiZaF5VOjGl3zsAykmSC9DUEiSJE2SpMd/S/o0ST8v6Xsk/eGzj/1hSd/9Yo7npnpOdiETHpH0qKj/lI93EXHkHESTIantdjuQcEiWm9wRNYVoEAkum0Jijkj9NT4IkraIOqSTaCuR/+FwqOFwGEo0iApL2oo4E/FGtKATBkST43utOpFXfCP8Gt2tn3HzPuSP17hGyBop+16XT2SfNSh336hWq9rZ2dEjjzyiq1evbnV/oDQCourdCBAoMORzsYh1LvsJcBw3BWRe3XSQCDXr6WMnG2S1WoW1dBNI5sDLHzx67iUTtM4cDAYhDZ/557PMI90zuE7OTXSfe8U7IDD3nA9xIjnr8OBrVk7pd3GE/e0GhWQn+HqnaRq6frBn2EeMB5EOgcgzPrxkibFTjoAQ50IQIgDPCMaCcSvjd68JF3tcjGRd3fuBTCXukcuOu/0sjnjIsTlRsVzq2tf/mNo3H5iSn4iI+4r4HI6IiHipWBcnKj7n4NQv4QEUE6SXV/JwXdK/PiNyNUn/d1EU358kyU9I+o4kSb5I0q9J+rwXczAn70QS3UiNiL13VvDIKb97JgHHLROuRqOxlWoN0SZdmvpuiAYGfoyD4/gxOC91/0mSaHd3N0SX3fEfUYIxQtaIjkOgIPKNRkNZloWsCknq9XqSzkUKSgUwroRsMWbmlbGT0s3YSH0nEg7h9jaH7kEBQSVaThS+2+1umWoC/CM6nU4wyqzVarp+/boeffTRYNg4m820v7+v+XweTBfxD0BkgCzO53NNJpNwbYgqEGHmlsi8l2cQEWfPkeXhwlRZLHJhiHR5j/BjJuklH4hgnvXgUflOp7NloOnH6na7wVsCEDX3Dhpkguzu7oZ2qKwr17ZYLAJB51ze4YFxU7qCQSiZIYgBfIYsAI5FiQWeHuwJxAzPOkBAcM8KBCDud/wWXLQh64U18C4UaZqGa8ZAFa8VPlfOgnDvicViEcQ/xsN+eQBwV5/FERGSdPNLf4vm1x+Ykp+IiPuN+ByOiIh4Sfjof/wn1XmmkF7/4KYFvmRBoSiK90r6mAteP5D02+/0eD/7sz+rt7zlLUFE4A97T53vdDpbr0nnUWAXFSCfkra6C+AngFEcZAvSTrTUswIQByA+TgwhV57dcHJyosPDQ43H4y1xgDIJsgCI9kLMpXODR7IQptOp9vb2tLe3p+VyqcPDw0A+SRcnkwFihfhBOQCkl7FzzVyrZ4IwDkgv2SLl+UU0IQruQoUfW9JWNwrGdHBwoPF4rM1mo729PV25ckUHBwdaLBbKskz7+/vBjLHT6ajf728JMpD/PM81Go1C1B1SSuTZiSvr5Ovoa8a+wKiwnK3i5TIY96VpGrJLvCsDGSFeIuD1/p5VU6/X1e12t8g0xJeOGOx5F89YV/8srRkxg2R90jTdKqkgSwDzS8p2yMRpNptBPBiNRpIUiDXXwb3EvUn3h1arFbJnyDhhD1CywP5GFEEY4T5sNBrBQyJJEvX7/SBMYDLpHSdYHz7D+nJtZCGwb/CucO8TRA/updlspr29vQdCULjbz+KIiIiIiDtDfA5HRES8FPzyOlfvY/d1+Cu793soLwv3om3kSwKkt9zVAMIBgYAEX2Qo6H4KtBbsdDoaj8e6cuXKVsp7uSsAr0vnvgH4FUD6yFxA8IB0QdYgktPpVJPJREmSqNvtbtWTM0Y6CbhRn18PUfyiKELd+61bt0LGA+OFILmAQoTbSxmc4HONEEKIuBtfuocB2RSIGHmeB4LPOIiKux8DIg7XTdT58PBQh4eHWq1W2tvb09WrV/Xss88qz3P1ej11u13N53NNp1P1+33t7e0FMYmsFOYdsUg6T2dHUEIkcUNKsjm8TMb3mHsU8F3v8uCRce++ALkncs86IAK4SSMCC1k5zBEiB/Pu/8218TkXwzxLxkUPBAbKLBANmCtJoaQELwhEBTI90jQN1yJpy2OEeWE/Qf7pouKtIr38hLGWv7ter9VoNNTr9cIc8kNGDdkHCEDsQ/a8d5NotVqhvGK5XKrVailN0yCAIawgvnBc9tZqtQrdSCIiIiIiIiIiIiLuJj79P/9J7f6XpvQbH9zsBOllmjLeTfBH/fHxcajxJ+LuxJAIp7eu87Roj/bTOYC0cUixH8/N2fiRztvUQeRIqfcoM2TNa7wxWdzf39dsNlOj0Qj15eUWfZgNQojr9brSNA2dBkjHbrVa6na7IV2fa4PYQ6aq1aoWi0WIxmJ0yDxK2ioHcHIJQfQad4QVJ9Z+rQhA7XY7kGTmzmv53VCQKDLZFq1WS/1+PxjrIcB4V4g8z9XpdHT9+nXt7u6GevkkScJYWQtILqTaMwTcgNHFJ4Qd2nWyzi7aMIflNHjOy7xVq9XgjQDhd98PCDVZHqy/R8z5jo+5LBrQ/aHdboe5884ORP0hyRB7vDDIsCGjBZEEoSRN01DC4qUibnrJ3LCHJIU1RFjhmlyk8VIf4PPMNZDJgDjh69BsNrWzsxN8GxBmGA9ZRZh4Ijy4pwZeC+6zwrVwL3u2UkTEw4Terx+runxAizkjIiIiHjJ0nlmrlsVn9oOG3/mGX9LRAy4mSJdMUCCy7MZrXs8P8XYi4CTRCQoEj+gxkUhPxyfVmde9W4KbJkq6zfCOyD/18N45Yj6f6+bNmzo4OFC1etp2cTAYqNvtBuLvNfyQdaKz/X5f3W53y+APfwTEFrotjEYjLZfL4BNANFg6jT67qED03ucCYi4pmNpJCsIEayApEGx+x29iMBgEc0n3tcDLwY38mOPpdKrxeBy8FCg3oLQlTdNgWEgWR6fTCWSdeSALA7LPtRJxJrUeIuzRfuaBY0A6y2Z+iC387maDkE4XXjqdjnZ3d8PnuC72MHuWMhii8O7JwTjc4JH5JzrPuCDILi5Axr2co1KphMwIFzkg6T5frAliAvvWDVG9wwivkTHjfgSUF7nQ5OUOvvcqlUro8uG/53ke9izzwT5hXt38kfKTskmor6mXV3l2Ds8S5iki4mFE+7t+XI2j+MdpRERExIOA2n98p7ofut+jiLgTfPPkmn7wZ990v4dxV3Bp/lpGUPDWfdJ5BoJ0LihANstRVT7H8ajvpiaatHSI1Xw+Dy0eIWWY2lFXTlTXU+c9yg9Z8y4Ay+VSk8lER0dHW1F8IrdOZiB2nu7uBBtSxncof4BoYdaIuEF2g6QtM0IXSxBYyDjgda6FFn8c18kgBDk56yCBNwF16ZK2ujKUy1MgtmSOlEs4iCrv7u5qMBgEk8ly609aWUKcZ7PZbb4JCBq+H7geCDCRbEnh85B7xiWdewewVi5oeQtEyhwg9qwrQhbXwrH9GMfHx5rNZrf5RUCMacforRRdKMHkcTAYhD3CMcj6YH/yefYy88H4PJqPcAER93X2jAgvPyhnEbFu5TIJF2q8dav7ppBh4J4RvpbsaZ4PvtfYm+VnA3vJfT/cb+MiY9GIiIcNj/z4ImYpRERERDzkeO+zV/Rdefd+D+MVh6/5xd+pV333K+P/sZfqr+ZyajeEA4IL8aE1nJMjj5Z6pNFJDOnUkAcMF2nh1+v1tNlsdHR0FFLpncCUje0AooOnqU+nUx0eHoY0eEgwNe6MFZLnXRaItJZ9JCQFjwUI0WazCaUVEDDqv4mEQ+i8cwMZFkSfvSsC2QbevtGv+aLyCSLYXBeChIsUnt0wm800Ho+3BAXq3qlbn81moWwB0UBSyIRoNpshm+Pk5CR0F0D0IdqOJwD7wb0lXBzA6BBCyx5CLMI40Y0nPYUfM8PFYrFFqCHnkGWOD8lmbVg3rtm7aDDviDnsNfeDcINExBE/h0fqyxkE7BP3BSl3JiFDgH3A2MjYcfHGjTqZe88oIvPIW1fyWpIkyvM87CvuC7//yhkmrLlfC34QeJ9wHXwXIZG557jMFfshIuJhRfU//ZSqn/KJOmk++OmYEREREREvDZtnW/rug9+k35P+l/s9lIhLiksjKLhfgqQtAYA/+J3gQs69JWTZb8FJORFMIvytVkuHh4eaTqcajUbq9XohkkmGAcTVvRSk8/Z+3gUAogm5y/NcBwcHwVwRosoYy6n0fv1Enen0gEcBxAniTYQb8u8eDYgCEC1ECjdrZC5brdaWlwMkjWg95BVi7WSb38nCQFjgHNJ5a0YnllmW6eDgQFmWBWd90vOHw2HIhEB0WK1Wms1mqlQqyrJMJycn2t3dVa/X097e3lYrUObK24syx8wNhNmj7O41wTXwuTzPg/jAvuTYtGP0dpbz+TwQXIDg4OsNiaZjBGUgvne91KAcVYege4kHvh7sJReV2L+UxiA8AdYNwk35A/uakhifSzcaJbOD/cZnWAO+i8dHvV4PXhJkN5Dx4+f3zhtkJrloVgZjIvOIThwuNiHAcA+4eEDJAyJWRERERERERERERMTtuDSCwmaz0Qc+8AG9+tWv3mrLCEGG4HoHBsgKZNTT2CEzkrYIutdeV6vnrQf39vY0GAyCyzt+CE6+vLyi2Wwqz3NNp9OtWnpJoRxgMploOp0Gg0B3pydt3d3+PcMCYjedTkM0metzLwmirXmeBwM6L+tAFPAsjnq9HjwfIJ9kVThR884MlIHMZjPNZrMtTwCuvdfrbUXQndB6VgYO/pPJJLQGhMBKCmvDeQGCA10JlsularWaut1uOFc5Dd5N/DCt9LEhiFCO4l1GqtVqyJJgHIgkkH6i85xjs9koz/MtLwTpPA3ffTwQhur1eijfQBChlAOS7d0iGBueFNJpVxBEt36/H66D9WdsjBORajabhag89457hDDfiAUIGdxP/Ddime+J8n5z8a3VagVBQZJGo1GY5+FwGESn2WwWDCgRNtrttmq1Wij3YV+5YIUo5magZMIg1LBfEPgoAWGOj4+PQ6ZERERERERERMTDih/+uTfobYP36K2Dp+/3UCIuIS6NoEC0tBztlc4FAf4lpZyfshO+CwveNg6C6S7v1N5DLL0sgqhpuYsD9d5EriEhEMRer6ckSZRlmcbjsYqi0NHRkabTqTqdzlYrPW9zCOn1TI3FYqEsy0IEfb1eh1INrzlHBPAyCDwWSH2nHr/spUA5xnQ6DeUQlA94yQKlEZA4hAKIG50NIGh0P2BN+G6z2QxkfrVaqdPpbAkl1PwnyWmLUC8BgXhzTM4N6XVjTvfM8JajkHM8AyiLIP1dUhC1WCOOA+GWFLJASPUnBd9bG/IdJ73sZeBlE76vy1kxXJ9n8bB2iGAIVAgys9lMh4eH6na7W20+vVSAe4xsHIQkSVtCDBkiiAjz+XxrDrkXKT9pNBqhSwR+HH6fMs/M+Ww2U7Va1dWrV4PogljBPmQuMPYsPwsQDTgXGQ94fCAGIrKtVquwt8m+YM3oEhMR8TDjNf/nu/Qrf+GjtIllDxEREREPLSp5VTdWQ0lRULhb+P63/CN90eDzpZ974n4P5WXj0ggK0jaxcpNFSDdEpyiKYDJHpBWxwLs0kGpNVJ1oc7/fV7/f197e3haxIMWayKqXVHgNOhHkbrerfr+vyWSyFYmG5C2XS41GIzUaDWVZpqOjIxVFESLIRLsh207qPAsDkuzXs16vgzDB+LrdU8MUSCUt96bTaUgxL5dJNJtN9Xq9YOa3WCxC5wEyF4qiuK1TARkLmPgxPsbaarVCGr93qyiTWLIkiJ4jAiAIQUr5l2uUtNWVwTM7PALtc8qc00XAyzbYU+12eysjgfUkAg/hdn8L9iRr5mSWPYMgghDFfmNuIMkIU2QouNEh5/NSCtL1OQ/CGOcky8X3mEfy3S+AfQ35TpIkiETsO+YE0YpsBAQkymfK5S5+bZ7tUqvVQpkE4hZlMC7GsH6Mm+cFpU/AszlcUCJzhutzgW65XG61InXRbTKZ3MkjLCLiFYcPfPEbtGlsXviDERERERH3FVe/6Z1a/Zm3aPbYvXlmf8uP/FZ95Kc9qz/QO7gnx3/Y8EStq6d6B/pVRUHhrsJb5EGQIHO8TgR4Pp+HqLP7D3jdObXWGPq5ez+lD9RXTyaTQOrci8Gj2URNIapE5SEv8/n8tvRpuik4eSZKWibCTup6vd6WrwCZCESqIV9cIySL+YHsQ9QRGKhPL9esIx4cHBwEcicpzLG31eT80+lU0+k0+Asg+jD/HvGVtBVdhxzO53PVarWtsbJmEHXKETDYg/BmWRaurV6vhzEjAkgKxJ1uAcfHx5pOp1vp8KDZbGo4HOrg4CBEp/GfgBgjNrlXgBsXQvARtxAEuLZyBgWiAoKEZ8i4OObZOi6c0TIUUPcP0eaayaThfTfURABDwKFEwbuKkJ1SHr93g0BsYfzMiQtNXGuWZeHcvn/JQGKvYMCKaOJdNcg04L5kr7mJKFkZ3EP+b7VaDZkTlOvw3ODejhkKEQ87Ng1JrwwT6oiIiIhXNIr1Ssk91H+T40SLTf3eneAhxA++86N1/SelW2+53yN5ebhUgoKXAJTTo0lrh3hDqtyl3ksd+CFKL0ndblez2Uz9fj+UDKRpGjwIKIUgvRoBwk3lSLf3KDEt/SCQXh7h6dqQKfdKKJviUdZBi0Dq1D1zotfrBeLkNe4eKcZc0k313Eei3KEBYQUCl+f5VqkJc+tEMcsyHR4eamdnR2maBvPEWq2mNE231oa5c2GCOULsYe44lxs+pmkaUur5HJHz9XqtZrMZro8oONdHaQV7LMuyUIvP2kGqe71e8JLAg4K5dyGJiD3GnYhKlNKwLt7ykKwHXt9sNiFbwjsxIFzwwx7xDAjEKEQUJ+KITVwvY0Og4R5hXRCtWq1WKD9h39LulAwOsjkQfRiXl6GwB7lHvMRBOjc8JPrPGjIHiCyUGyEGcd0cg3sEk03KWVgfyoUAAhfHYX9iosln3PzS201GRDyMSNaSCkVRISIiIiJCf/P7f49e+9lv06e2Y+baXUEhVY6lZCMVlfs9mJeOSyUoSNpKlfYUdtLeifQjKpTFBL4LYSI1m3pyb4VXr9fV7/c1Ho81mUzC9yDulC0QGXVCCEEkgk1EEzIJKYO47u7uBtECMzpIPef1VnUQJq6Z89GNArM4xggpQhChHSUigxNLBBJECcbjGSLtdnsrOi+de1NAsrIs0/7+vvr9vmazmabTacjIcEGE0gqyC0hnJ6uDmnsyJiDr0+k0fA6RgOwCN+d0gYR0eTI0MB5M0zRcB8KEixueleIdNbyzhu8vxAa8EjgOawIx99R7jsscU3pSLtcok1iPsntEHyLOd5l7oupe0uHRerINMAblfO6PIJ23haTcAHGDjAfEDMoJuD7323CDR85BBgDlJ5yf73GP+9xKCiUgrEez2QylO2Rd0G3EyzLI4uA4nJfSIIRK5ot7l3syIuJhxpNf/aP64Fd9opa7mygqRERERETox2av1Se0flHNJGYr3A30vv0dWg4/QaM3PLheRZfmr2UIkpvweZcBCDtRQyK7pNBL55FHbzMHqSRNHQIGMXbCgh8ARnGQbU+xh+RAgDkvpoq0ZeS8EPpOp6N+vx8MB928brVaqd1uq91uhy4BRIal0zpuxo3XQavVCmN1p32i9ZQqIA54xwT+pYOFp6gT+eZ3T1VnTujCsFwudfPmzTCm0WgUCD8Rb88m8Oi7dJ6eP5/PNR6PA7kkSu0miJSt7O/va7PZqNvtBh8N9o+XljD/i8UitN6EQOIN0O/3NRgMwp4hk8HFIogw88D31+u1RqORqtWqBoNB6DzAZ91EEXhLSsirzzX7xUt3IOnMXavV2iqBgLDzI512TOD6mU+yHNgv7iVQ9g9hT5ev3/0PIPyIepg4+r6C/Pv1UNqB2OL3m2cpcC/zWbpVsC+YO/6btWX+2POr1UpZlgVxSzo1f6T1qJdqYPDoGSC+fhERDyue/N9+VO/5mo9XERN2IiIiIi41moeFZo8kKmr3jpz+yOe8Uf/tn7xW//Ij/63qSfwfw91Ac1Soskq0aTyYosKlERSk88ggkVLIIWn+RN89Xd9Twz21nhIDiNRkMtHR0VHwDpAUorWdTie0+iNyC5mA8EH2iNoDIrd5nofINP4CeZ6HyCnlFYyNdn2QNj8P5Iz6dSLBkjQcDtXv95WmqUajURjjbDZTnuchqkzduc+Tm+8hNvh1IX4QXXbi7ySc1HJJYV4rlUroakH2BGODMEKkIcmYViZJEsoeiFZ7xJ45WSwWyvM81M17NJrz0FGA83MOPCsg++12Owgz0+k0RK2Pjo40Ho9DBwGPuFNugfDg/gCISV5aUs7u4F8yWtrtdiC53v0hy7JgVMk5EBQQHzyLAXGLdRqPx5rNZmHOyWLh3oCk4/cgKZS4ePYDmTGeSUPGhWdbeJcR7kUXqSifwOAUoQ6hwDuklP02XFRCUPAWnMyFe1XgB0IGDuVSksL8co8hGCIkIMQgMnH/RERERERERERcduz+k7cr/yufqOXuvSWmy095Rr/2gbleW+++8IcjLsQPzyvqvef0b+Xet79DSj5et35zok39wRMVXrKgkCTJR0n6dnvpIyT9L5KGkv64pFtnr39lURTf92KPC5HxtnaQiE6nE9L93YiOCCuEirp4J/9EIKfTaTCtI+qepmkgrJBQ6TxlHPLmXSfKzvzU5UNuib5zPtL9vayB8RFdx/eB6xkOh+F7nKfT6Wg4HIa2duWMDid/kEfGyVx4zftqtQqCACnjjUYjECuuFxKcpqn6/X4QQahTx3eBHyeDeBVwPk8tZ64pjXC414B3L4DIttvt0F5SOhVgPBruIsTh4WEguN7O0bMRxuOxlsulJpPJVncPN+Zk3NVqVWmahv8m6s/ewFuBtXDSjRhCWQTzwVgmk0kQL9j7lBUw716i4kaczBfR/jRNw/fKRp4chywS1hpBZD6fB8HHSz/4npc5kCHhZSQcj8wJSVuiFd4M7okinYsJXDPzhnDCvQvx5/Or1SqUyPAsQDBhDRH6lsulut1uyC5hX1CGQpmUi4eXFffqWRwRERER8eIQn8MRDyN+13/7Mr37U75J1eQBLv6/j/iyn/0CPf61Pxp+733bOzR63b0Xg+4FXrKgUBTFuyW9WZKSJKlK+nVJ/1rSF0r6uqIovuZOjuedGiA15fcpTyACD8mDsELQyWTwum08FSD4kB6OBanwLgMQrXLte7m2HkDE+Hye5xqNRqGDBDXrROOJorrRIYCguUhBFLfdbgfytlqtturZieZCrvAuIItB0laKPW0FSWeHvELKXahA1EjTNIwXQaFWq4VSAwgkWR5cuxv0eYcETytn7hB7EETI6EBkqFararfbGg6HITsFosu5yXA5OjoKEXv/PuIRpRak8mPkx/VC+vkdsYY54FjMk1+DG4wimkB0O51OuGbKbVgTJ9ek5UN2EZhcdOM6KKlBbOEc7Af2B2PHgJBSA6715OREeZ6HjAyEB0kh88WzBLhnOQ/ZBl5ygtiFqOLr5Aaem80miAaMHWGI/eummDw3XEzxVqaU/+CnQXYCGS29Xi88fxCAEOoehJKHu/0sjoiIiIi4M8TncMTDiNf+/p/R8kPH6iSNF/5wxIvCtXeu9eufWnvgshTuVsnDb5f0nqIoPvBS/wAvmypiMMcPJAJi54SLHwijE2JPS3fPAr4LMYV4QYhJr06SJBAQr413IgUZ43ucG7KeZZl2dnaCR8JkMtF0Og314LVaLZAgSCvRc0QFzo8QwvWTqg8B4nN0k8C/gcitR4vdFwDi6B0nyseDDEJwGTN+FmURqNx5g4gzJJLvkloOsSR9nW4WtVotlDqQRYG4hKGk1/AjxlAyMh6PQ/kC4/AWoOyRoiiCNwDzhrjkmQEQe1LpKXVYr9dbpTOeRUOpyWq1Cq8j9LhpIZ+VzlsgQq69VAeyDkFm7drttvr9vobDYVh3OjNwXAQLL+HxsgDuOcSAxWIRIv1k5njLTe9CgsAlKQhoiGd+DvYn3gnsL/ajlzfRwpOsAcQcjEi9xSbzyXX4PqfjCz4jmKhSHkXWD2uJgPWA4WU/iyMiIiIiXhbiczjivuLx/zTT+z+rfU/q8a/8VKJi/zD8/pZ/+Gf0i3/i6+/6eV7p+MbxIxp8W++215vf9xNK/sdPkB4wv8u79dfy50v6Vvv9y5Ik+bkkSb4pSZKdF3sQTy9240SPPJZTz4+Pj4Pjvncg8Gi4lxJATL3+utPpKE3TUI9PpgFRZ0/TJxpNVNRJMwSP80IwiYCTkj+dTgPJ5VhOpMkscNLotd2kxjuhRwBhDlqtlvr9vnq9nnq9nrrdbjBT9DRzxonYwBgg+J6K7qUeRHaJ/kIG0zQNhokQZ3f/73a7wc+AbAC8FyaTifI813Q6DX4XRJ5ns1kwGySrBPPJVqsVzuVknPR7SeG6yErh2p20+75BaCLTxUsbWBf2EcSaKPpkMtFsNtsiyuXsDPYShNZNK5kzSgN4zTsmQPbZX8vlUq1WS1euXNFjjz2mq1evKk3TLS+S+Xwe9rJ7Z7Df2u12KHkhwyDPc928eVM3b97U0dFR6BjBfYUoQCYMQlN5btg3iC+Qdb7DvCBMcDy8K7gPEBeyLAv3BWtBiQjig4tjvO5mkpQEuYjn6/OgZCiUcFeexRERZbz2O/LT9pEREREvhPgcjrivqPzXn1Fy8sKfeynY+fmJTs7afkvSk3/zx+7NiV7B+K68q3/6Fz5b3e94x4Xvf8R3Tu7Z+t0rvGxBIUmShqTPlvSdZy/9A0mv1Wnq1w1JX/sc33trkiQ/mSTJT/IaZQIeMfVov6fTe3o2AoB7EpBKTzSarIdyNBjTOmrCERBI/+e75e8xJjeao2yAMWLO6G0TERn4HmSxbOYHuYRIT6fTQPIREiDJzAECgJNthBJ+3HCybBToJnsuKkjnPgqQr1qtpl6vp2vXrmlnZyeIMru7u9rb21O32w1RbDdChKTTejDPcx0dHWl/f1+j0UhZlgUzSxc3lstlmDfEGcQM9gPRbDcHLBsjQhK9jMOj1LzP2iNKlMUJiLyLXKwLmRQYLuIV4d01fE6ZVzIvyE5hLd0vQFLwN/BSl2q1ql6vp729Pe3t7YXMDa51sVhoPB6HCD3jxdMA3xHMJblvKC04PDzU4eFhuDb3weAeoowDcYdyBL829gNjYO65B70kxcUU7itEmzzPw9g5F8IYogPzjRDDWrFX2Fd8zzM92ONkZjwIuBvP4rWWF30kIkL6iZ+/3yOIiLj0iM/hiMuCj/wnz951UvrofyuU/PL7t1/cnOiT/vQX390TvYLxzuVKf/+PfZ5a3/vjz/mZ4qd/Qa//hv0HSsS/GyUPnyHpp4qieFaS+FeSkiT5Bknfe9GXiqJ4m6S3nX2uOPv3dFBnRA6zQelUbMiyLBABIvIQACL9njpdrVaD8RulA96PHiJYjg5DQCA6RDe9rhpCCprN5paxI+/P53NtNptA0NwboWz45uP3sUCiGo2Gjo6OtFqtdHh4qNFoFFK0EQlI5YYQQeg4JvNE5N1bHfIaZA8y7vX5ngbe6XTU6/UCiaO7AgaPEESML920EFI5mUy2ju+189I5KfUuBvhkICjww1g9ik7qOnPtv0NiOY5326BEgX3knQAgq0TO2a8QXPc6YGwIIu654ZkmlCHgj+FrwvxiSEinAkpNKANgPdI0DaSfewgBgQwV9hU+At5FAqELQk1XBO+a4KUi7gPinSLIuiGbx8UffjCO9Pu8nLHgmTmeWVLuYOHZPl6S5FkJ7tFCZg+vsaaSgijCWB4QvOxncT95AJ2AIiIiIi4P4nM44lLg5Ffeq4/62pne9Reeku5CsuW1H5d63/fftTnzY3N0/8WP61Nnf1w//A3f8PJP9ArGjeNMX/VZf0yVn//pF/zsybt/VW/4uoXe9eee+DCM7OXjbggKXyBL7UqS5NGiKG6c/fq5ku4orAFhhzg66YYE8S+p3pK22tR5SjZZAd4potFohBR06vrJiHBTN1LIiWK6yzzfJ53dSyDW63UgxxAliIk70OMlIGnLfZ80dI7LXKzXa41GI+V5HtozUqvvHQwg71xbURTK8zyc00tD2u12IJgIEBgHQrK5dogm1878UjsPiSxngHgGgHc9IHLPd4mOr1ar4DfBebk2P4aTfs/SYK9gKojfAmUveArMZjN1u90wJ24siLgAsXSBp9xSE1NKyDlp/exFhA66i5SFGkQo9yRwsYoMGc7rmRiIXicnJ+EeoPwGAQ7hCBEHcs2ekrRlPul7FAGO8hNEFBcU2CO+RoyBe5o55j7xLBkycjB7dPNLxs8ac06yF3xfcQ95Rop3gJG05dmAKFOtVoPogPDBPD5guKvP4ogIx/v/xsdLyQN3T0REfLgRn8MRlwbHN57RR331Su/+qte/rOPs/lyiwb94pzbr1cUfKAo1/91P6ZO/9K36kX/wtpd1rpeD3/kFX6jGrz77wh+8B3j69zyln/7LF3tJfManfb4qRxNps9Hmxrte9DGPP/ghveFrNnrX//yquzXMe4aXJSgkSdKR9Dslea7L/54kyZt1mqjx/tJ7zwtP/4Y4edTXI/dO8Ol7763sPKUfYthsNtXr9UIaMwZ5fM971XNcBIjxeCxJwTjRBYjlcrlFNL21nreD9CixR90Z40XRa0g27RGpg+fauTZIKqn57vMgKUTSOS/RcLpjQNQgaY1GI8w9JBJBwg0My07/7nEBINukojsx9jaCpNyz3lwvY6PTAGUSo9FIw+EwtEZkXdgrkG4i4AhRGCryu6fBU0rAuD1rwtfa9xCZAmQItNvtUMfv6fSQfvbo8fHxlukh4gzZCHafbZX2MA68DiSFtcSEcTQaaTQahTX3vYBQg2+EpC0xjLaJdGwgE4C9wPywRggHfh961pB3qfD9z57hs2SGuPDBGjJ+F/IkbT0TEO08K4RzeOkLWR+sHb+zPo1GI2QbuQ/DZcbdfhZHRJRx0opiQkTE8yE+hyMuI04ODvVR/9sv691/+fV3nqlQSP33VLT7LT+mYvMCfw9tTtT+np/QJ3S+RP/1a77+JbWSPCk2t7322R/7GdqMxi/q+5XFT+v4hT92T3DtHzyrz/jGj7/wvc3iXbr9yl4cjn/9ab3h71X1rj/9+OkLL7SGd+l/1a/6wRM1f+j2TIr3P8fnX5agUBTFTNJe6bU/+HKOST23p9zzR763f4T00GIOMuNR/nIkfTAYaDgcqt1uh1TosvDghnGkw282m1D7D6mB/LgRIwIEZLWcZo8IAcmSFDwBIHtcP/4LjH1vby9E8X181LtDdKVzQ0JKIBgznRUg8US3MbCDlDNvHIdosKfWk0lAhJd5Zt28M4dHmj313dPLEQUoleBaSJvHg0E6dfd/9tlndfPmTV29ejXsDd4fjUZhXSDgkFwvBfA1grQTzSYa7wKJd3vgOrg2z2yQtCU+kIXhWSNuNEhXA67DBTHq+jm+Z7yQDeFReD4HIeac7Gui+Pz4PcVacW9RVuTdMRifl654mVGaplv3o4sMbhzKfmT+mEvW3MfiviJnz5iQ1YKwguBRLifie4gZrKd3FPEuH1zPc/mmXFbci2dxRERERMSLR3wOR1xWnBwc6g1f+2t69595tZQUKqov8IVCSk4SdZ5JdO3v/+iLP1FRqP+t79Dv/tbfrPd/9SfoHX/oQsuQC/Gbv+9P6/Vf/BMXvHN/Mg7uGJsTbRb3Jgh1/IEP6iP/3Aelj/tovefzus/72epSeuqr3n5Xznsn2sTdahv5suF/yLspmqc3OxEtCwaQAUiHRzBJBScKDPGgxZ/XgDt5IuIN4aG+nWgpvgmUE9AGEHNGryOHpHpLS6K2kC4iq3ggIFhAuD0FH3GACLKTIY8sc75Op6P5fK40Tbdc7rlu902AeEnnAoeLCcPhULVaLZBWzuFj4XuQU/8M5JHPpWmqVqsVuj4gDEEEETWYI0wCn376aT3yyCNbHQHwqJjNZppOp5pOp1sElDnGe4K9R0cDou8cy30nfMyeESEp+EewB71EgnIAgFBAFoCkLf8C6dyHwn0IyEYgiwfCzmvsC7JXyvvP7zP2IlF9J/HcW6vVKnRT4POIPi6ucA7G4J9lT9C2lP3CHvUSCubL7zlew+vESyE4nhu48kygDIO9hOjhnUzYk3hgeAcMnkOsa0RERERERETEg4rjX39ar/0LTyv52Dfqfb+3/7yfrSwTveqv34GQcAGe+stv1+f/5U980Z9/vS4SEyK28OP/Xa99bi/H+4pLIyg4nFR5lNzJhKcie7TT07o9+uk10RBM77bQ7Xa36sAh15j8QaparVaIGEOUfCykWkP2+Z1MhE6nE6Ll7jdA1JqMg5OTk5ChQBtGN1HELM+zK2q1mjqdTjg2JoKc16/f0/YhoJK2It2MzR33IXkIJ/gqUCrhhoKSAoHD5NIJsJNvb/dJujuRbS/DQAzI81wHBwfa39/XcDgM8+rRfzwK8jwPcwMpxRfDW4XmeR5KJKrVaohQl9tMusll+Zr4lzmjLp/vYAIoKWQBtFqtLZLsaf90ZSAKz153PwL2GSITghb3A34jrLl3ZajVakFMKs+dZ3d4FgLr45kwzHVRFFttMLk3WAdKTBANXDQhk4fyDcZCh5N2u61KpaIsy0IWh993eJ+wP9k77FvuW0o02P9e7sMakFkSBYWIiIiIiIiIVwqKd/6Cnnrn/R5FxCsNl05QoKMC3gGQ4X7/VE0jPZ+oJeIAafJuwCadixOQBaKwnvoMaeA1iApCAmQHYcMNCCVtnY8xEFH1mn5eg7h55BgCD+H145PB4MSP+n7/XrvdVrfbDeSKKDPX32q11Ov1AvGUFGrUPf0fnwZvack4JG1Fo6njJ0o8mUy2Shv4rAsF3q4QQopZIpkcHm1GtPByD+YUcsi8+lxybPaMdNqZgtadq9VKaZqq0+mE9XeRwMfEvFPe4SUsdALxUhZEBYQdxj6ZTDSbzcJ48Y2QpCzLgphQq9W0XC41Ho9DFke3292K6LMfGAN7nHG7GSSCmJtHct2QekQNMiIYF3Mxm82CAMGe4zPMC3va7y8/LvvK9713USETwz0jEPoQBjz7hutGTKAEh/vDM2JYYzfV5HcES8/qIAMiIiIiIiIiIiIiIuJiXCpBwQmhd19otVrBy4AoqNc2OwmAKHA8FxA8CixtRyjzPA/f5d88zzUajQKZxFGeKCukFjLJ60SJiQJ76zlIS57ngdRvNptA+CgTwDyQaDmlCJDWZrOpbre7lV1ARNbr/Dk+89VoNNTv95XnuabTaRAU3C/AsxO8tITjEe0mZR5S5yZ4fL7b7YbWnm50R2aHl3Z4G0TWlLnzLAbmgGg75+Pai6LYIs2YOeIp4CntTlgh0d7ZgUg1mS6eleLtDYGTYG9FCBGmfSQCAefIsiwQZvYZmS0IHPywNzk24/HshMlkEjIsJpOJ8jzfMi3kXNw3vM5e8JIjRDeybJzgl+8Z5qvVat3mVeAioAsKlH9QDrFcLoNw4aaM7o3gYgKCCMJJt9sN2S2sR3n/cSzOjWiF+IDo9aB4KERERERERERERETcD1wqQUE6J2eezg15KJvElWvyiSZCdNwcEWJBTXhRFOr1eqrVasqyLHRxcKIzGo202Wy2IvCSQgcEiIxH7iGTpLHX63X1+/3QaYDaeAwDIcGcl3RzSBXCihsgMid4LXgUnUg8fgeMCzJIW0mIFOnkkEmff/dR8C4ETjq9NSbr5xkCtLT0MhHvcsF3IL+YEzppJXpczv7wmnraGno3BTJbxuPxFumktIRyCy91oaMDBphuUsi8k3WCyAP5hMDSztQzKPyaIc7SeYR8Pp9vGWBC4smMgRTzPTwsXLBA1KJMgPWczWYhY4EsAd4jO8B9PBDhyASgdGG1Wm11hnBDSu7H1Wql6XQaTBLppsD+5H71TAo3XkToybJMWZYFTwuODcotTrk2F3d4jfuJNqsA41P2HfvbRSbf2xERERERERERERER27h0ggKEgx9Ia7PZVJ7noQTB05khlW5eR7YD5IVoJHXc7XZb7XZbtVotRNwhMwASglEihNHT3olsImhA1IgGt1otDYfDEDWVzqOyuPt7ScRsNgvkE8GA9G+IKJkVkG2PqNIOEHIMccvzPPgzQNDL5SHSedo/kd9KpaLBYKCdnR3V6/VAzur1ulqtltI0lXReWsJ6QLi9VICMAsihCwqYRDI+vosIwhywxn4cJ9AIBm4Q2Ww21el0NJvNQiZKr9fbuk53+ieDwbMY3PzPPQ4QeyiBcCNDv37Wppw9Aql3XxDO45kd0+lU7XY7lAO4R8VisQh7qFqtarFYhPIJhBgXrNh7/Dd+Fawd+4CxMxeeneHlQowdkYP2oK1Wa2uPudcDAgUigQsB7A2yLMhMQXRCrCCzg9IiRBEEEM+syLIsiDuIJmRAkFWUpmkQs7zcKCIiIiIiIiIiIiLiYlwqQaGcin18fBxS0InMQv7c5d4JhLeWk7QVUYcYrlarICYQ6XSiJClErp3sQSZ5z+vyPRIKqYFEdzqdYCjn5F86N4BEUIDkIqI4YYVccT2SAgHi2hA4pHNSCNFerVbqdDrqdDqBHHI8F2Y4Nq02r1y5op2dnZAhUKvV1O12NRwONRgMtiLM+C9ACvFKcDd91odxu9GjC0pequFmkcytGxFSbuFdOFgT9pWkUPaQpqnSNA1zw7q7GSEilYslrBVtQzkH38XckYwDrpX97EajHBPBgT1A1gfZCmQweBtD9p8fm+OVSbxnBSAieAYF2SRe8uLZAF4S4n4eEHYMSAFlD8DFJc+kKe8PL0nyEhy/TvYlAh5CD/cS+4jMBwQXz/rxbCPWnwyONE1vK5OKiIiIiIiIiIiIiLgYl0ZQ8Cg1EX+IjBv/ISRAEr21I4QNIkJqOmTKu0HwGelcyIC4QMAQLIjottvtLTLk0dJGo6H5fB5S77mOcpq8O+RTRgDZp0SC6+NzXoPONVDCQCkIr3kE3c0EmWMn9S7g8K8bJg4GA12/fl3Xr19Xv9/XaDQK4kOapur3+6H7Aun4RKghaN4pAlLp84dYs1qtQoSfNZYUhBKOw5qRgUFJCON3k0fEozKJRVzyqLa/xz5gPrg27zTippFeJoMxICUQmHgyH+xhiD5p9pgnss9cjCKK7mU2nIvj+njYw2Uy7KUBLkKx77yFqGc1lEUW6TxyXybevM6e9L3G+TxrpSwUepkNmSqMB8ENwu+lG74uZPrwPtfie4h7x0ulyLpxc8lyBk9ERERERERERERExDkujaBApBaC4R0NIELUartZnH+O77kDvxvZQU4oHWi328FYEGJMSny57WGSJOr1elvp+HyuVquFjAKc8J18ehcFIuaDwSAQR1K7AeOUzo0jPcLtpnaSAnFFgODaiOCT8o9ZIcdg7JyHSDhGgL1eT3t7e7p27Vpoq8n33QOg3W6H/2ZOqM2HQEvnhNuJmhNjxst3IJ8IMrzPNXe73VDTz7Ug3BC9xqgPUchT/xFeOB9rBZnkGl3AcvKO9wDiDZ0juAbv4MD6OhH3eaQ0gfeYM++i4JF/92pwgcJFM44Fmfasj6Ojo60MAfYBx3VfhjKxJrPFhToEGjeqRFxjv2EyWRRFKDlKkmSr5MjP4WKa38s8B7gmfz4w15Ry+L3jwpOvhe9FfBi47zlGRMTDjo/6P39d7/rTj0vJC382IiIiIiIi4uHBpREUpNtLHrxOm+g10UnIDGSBDAMir51OZyu92UUFiA0EnQwIzocRHJFKTP2Oj481HA5DZBnSiwkgUfNy60ci1PgW4PNQjl4TWZ9Op1oul2o2m7p69aqazWaIUpfr/hFhEAzSNNVgMAgmkAgZdMngHB4RJssCQuxGgrSipGyj1+sFAYYafwSFLMs0mUyUZdlWqQCdK4h0M/esD94WANGCrg+r1SpE8t30ESI5n8+DCaOnybMfptPp1jXxHu1JpW1yiVjEfiGzg3nn/IgdCBisEaUKRODZH25EKZ17BXgHC47rJTWsj6RwHawdafz4hjiB5/se+ffuEZTHtNvtkCHDdUja2kMIIC7ocK9iMMpYWW9EFif8iEyIQS58cI3c62RFsCfKogpiIgIO88G1IC6xF8uGmpR88J6XUSBIsC4REQ87jj/wQb3hf1/pXV/+mvs9lIhLiuoy0Uf+7XdJktZvekrv/b3NF/hGRERERMQrAZdOUEAAgLgtl0uNx2PN5/PQ5nA+nwcSC6nw1GkIqJMofhAc3OCt3W5v1Z17VgFkBKGB+nt8GyRtpUynaRpIMOeuVqsh4glJhpB5yrkTSfePgDR79NvHWK1Wg6DQ6XTC9zzTge9AyojaS+eEFTNBDP3wFuh0Our1ekrTVL1eb4uMIVRgRjiZTDSZTDSbzSSdlzr42kBOWT/II+uT53n4DuuIwOKCAWUCbkrInkFMYO2IUAOvzSeTwcm++yWwPlyDixPsP0i6Z2RgHkqKvZescC7ELIQtsgwmk0kgxWmaBoNNrhXCDukmOwCRCrGNrApA5gHCCZkEzA1dPyglYf/5993rwctWXITxsgzpvEsD60+mimcWIDDxOT7D63yP7JrFYhGuhfmlzIX7HUGPNaA8iu+TjYHhqgtf7r0REREhHT/zrF73FSNVXvW43v2l17bfjJkLDy8K6fVf+TMqTjY6WZ9l4/3XkV73442tj33oz36s5tfO/n8S90tERETEKwaXTlCAbDth2t/fDy79btZGmr+nk3uWg5dJEDk9OTnRZDIJhJ7yAEiok72y/4GkLSNBb+9HxLxerweCTbSYKDWEnTr55XKpLMu0XC4DmQStVkvdbleSbmuv5z4SELlaraZ2ux1q4Z1MUQoBoYJ0eTmBdN5Gj/k8OjoKRo50RaAFJEQeYYVjetcBSi2ceDN2J//MNfM5mUzCXNJ6kDkkQ2WxWGgymQRRx00psywL5NANIj3C7tkv3pXByyDwNkAUodtClmUhyi4pXD8iEHPpfhRcNwaB7vvB9xCF+ExRFGHe/TyStrwGED4QjyhB4Fp5DX8Kb5fJ8RAFWDuOzdrgM0EmiZcJIFKwF7Is2/LR8HsREYGsFPcy4XgudrE/2QdcK88K6VzQ82t3k1EXsIALI+wfN27luYBwGRERcYpiudTJr7xXH/nn3xdem3z+b9Gtj72Pg4q4r3jdV/2MNvYcliQVhQoz55Wkx//Wj0pJovd99cdr0yh0R7jDj0dEREREfPhwqQQFr/92wuC1zXyGqCIRVHez91IDadvp3gHZJ1o5nU41nU4D6YdQEe2H8CIWQLLcuM/FCL6LKz6Re8QIN7tj3C6q1Ov10IIP08JWq6V+vx8i+dJ56ry03baRuYT0Qe49+uv17XmeB3LoJNVJ32azUZ7nIZV9vV7r6OgokGAEBTdNdBM+1gyvBiLE7mPgdfZFUWyZJkKk8WhgTIDMBSeIzCfX4u0PZ7OZJpNJiHazlxCcIOVkiDDuZrMZIvye3QLphpTyGiUyZBown+ynzWajVqu1lenhe0xS2J+8TmYCc5NlmarV6pbA5WA+0jQNGRfsdfdmYB/ja8E6M7aiKEL7SuAZQrzO/cPrTurd28E9I9yvAfGDLArPLEJkYI+TDeLlI8yxt+nkOcIzhL3Def1eZo4iIiIugAmB/W99h/rfeh/HEnFfcUe9cIpCr/nKt9/xOfaL/IU/FBERERFxX3CpBAXpXFSAwJdd4108gOgSyfZacRcmiNhL5zXxkJhOpyPpNKJ869atLW8FN4ZDwJAUIuBODj2VH7JTNiMkBZ3rZAwQWchMp9MJPgx8htT44XCoXq8XCHyWZSFrweeE60aMkc6jvRBLFxvIMGA+pPOsAa9Dd5GCbIX9/X1lWabxeLwV4fauAhBWxrBer7da+bngQ8mLd9dI0zR0UICwdrvdsJ6seTnd3uvwGVOr1dpy+M/zPKwjx2i1WmFfeamGpK2MDvfxYK39swg8zB1+DJ6dwP6kVGYymYTyGta5UqlsZUeQCeHzhZdB2WiSe4h9BFlGACJDptzJwltucmwv5cFrwo0+EbkwJi0LBt7lwsU396fw73PvexmHZzSw373LB51ZuC9cWOEcZPZ4u0r3/QDl3yMiIiIiIiIiIiIizvGCgkKSJN8k6TMl3SyK4k1nr+1K+nZJT0l6v6TfVxTF0dl7f0nSF0k6kfSniqL4gRc7GI+qS+clDJBtIpOecVB2f3dBgWh7p9MJIgFEyL0FiBxDwNwgbjabBbf6clkChBUwdsgQUewsy9Tv91Wr1dTpdEKNt4/dW+p1u90Q0YaA9no97e7u6urVq8HHgLIGUsERY5bLpdI0laRA3In2Ql7JQEDkIDLd7XbDXDI3kEnc+FkLb60HgWP+3PAOEujXSlSfiDLj4TPU0rMvOO9kMpGkYFR5tucC+XYjQvaQdwSRtDVeSjzKwgFEmvMiMtCZgD0JWGuuH6Lr6wLZJ2vjInLL9fp3ptNp8FXAt4K9zFp6K0gEGxcXnNQz9172AvH27iaUx0jnZQWeleH7140UgWd4sA/IroDIM5fsEcbjmRFuIomAyBp720z2kWc28XnubdbTu22U18m/X87yuJ/4cD6LIyIiIiJuR3wOR0RERNyOygt/RN8s6dNLr32FpP9QFMXrJP2Hs9+VJMlvlPT5kt549p2vT5LkRbma8Ue9iwpObogGU9sMIYHMuLkbJBWyRUSzXq+HVo0uXFBKQET67FrCMSH1CAV0kHAy2Ol01O12A2lDgCAKvtlslKZpEArcI4CSA6Lv+Cfgk5AkSYjSN5vNQBL5vndKcO8GN8ErE6iLSFe/31eapur3++p2uxoMBqGbw3g8DmsAIc3zXPv7+6ELRrlMZT6fh/R/5hoHfcwGB4OBer1emBfWw70rOKd350DQoBTBU9YRejDJxDsDESDPc43HY00mk9vKA8g2wKjRuw3wGYQlfkeQonOHe1g4afaWme5Dwd6E+LJPySLA6NLLLmazWZgPfvcyHc7BGiAusG504mi322o2m7e1nFytVsrzPJR4+H3EOiOcUObiWRd+z/KDqETZC2Nljb0bAxkYjMezj9xk1UUC/9fn3k0yuV95NvAZ747BD/vgEuGb9WF4FkdEREREPCe+WfE5HBEREbGFF8xQKIriR5Ikear08udI+tSz//4WST8s6cvPXv+2oiiWkt6XJMmvSvo4SS9YMOclCfwOWfbUcIgI5Mq7QhBd9GwDauM9EwEi4ZFJbx/JMSEfzWZTaZpupYOXsygQGjivlzwkSRLEBE/dhuBiYOfp/dSoUyqAqSQkyrMgIKfHx8fq9XpB2CB6S+o488W4OT/iRKfTCRkLaZpqd3dX9Xo9lHh4ZBsSuVqtlKaput2uNpvTbhSNRiOk00PUSHOH2EKYPcWdiDRj9JIM5sfHjudDv9+XdG5ayPxAXJ3cS+d1/h6N5ncEBTdL5Djl/eJ+FewTJ9hOUhFBXAyBsFL2QTvO4XCo2WwW1pRr8mwJF8sQPShl8Gg72TBk6XCMarUaRDTMKSHzzD1jROzw+9TbaLLOLkiw3l4OUZ435p37ibXnh7VGgPO9xH3mbUDZ717mctHzwcW1snmjH5PjXRZ8uJ7FEREREREXIz6HIyIiIm7HS/VQuF4UxQ1JKoriRpIk9I96XNI77HMfOnvtBUGU3EkDRAYiSa00ZAVyw78QSdL9SdVHhIAcICZ4VgNEmnMyDoivex844ZnP5yGDodVqSVKI6JLuTSSeGnb3MSCCjDEhYghk0MsC3ByPsZH278QRMQJjQ0ipR1shynTOwLeBsoZWqxUEhul0Gur7Ia9Ee+lO0G63t8wqmSvml9/JKMEk0ctUyMhgbb18AUIIQeR6yWxw3wSEACeyiEouWHkrSDIb3IOB1HhEJtaD8ZKBQuYM61T2LiBLhH9djCrOujqwL2jD6ddCdoOn97uhofsasC9Zf/fp4Fz4gbAWPkbuE9aGve1eAk7KvbTCx+XCUPn7LuixpxBdvDyB8bkIgZDBMT1TyIWU8nPBxSDgpVO+LlzXZSt5eA7c9WdxRERERMQdIT6HIyIiHmrcbVPGi/76vrDZT5Ikb5X0Vvs9ROGJsvLHvJN8Psu/Tk4giURdPSJZjkKSgQBJdONCWhQyJoiod1qAjEKOIYfSeQo3WRXD4VD9fj8Qbszrbt26FVofEjH2bAKc7VutVqhbz7JMm81pRwAiwIyRFH9Joayg2+1upe9DyHq9XjA6ROhwkYM6fLoKtFqtLW8Arg2/B17zOfQ0fyedZH4gTHhNO+KAewRwHG956OvN3Lh3A+dC+HDHfrIhEIk8pZ89gRDlpBui7P4BrDe/Q/w5D2N3cYSMFgCpJsMFQo2AxmfonuHjceGC+YNsezRfOs8GYG+7SOKE3Ik38+/3m2cTMeecxwk+hLxcquCCDVkYDsQNMj4wK/VzNJvN0AaTsfj+8vGyPpK2juXZK3zf/UV8jzyAeEnP4pY6F30kIiIiIuLOEZ/DERERDwVeqqDwbJIkj54psY9Kunn2+ockPWmfe0LS0xcdoCiKt0l6myQlSVJAqGk16E75RNyJfvKHvtfrQwDc8K2cHu0O8R6ZJfoO8UBA8Ag358C4ME1TbTab0KpPUkgb9+yEdrut3d1ddbtdHRwcBLIynU5Dd4Rmsxlq2SnJIKOA9HQi6BBkIs+tVkuDwSBkKhRFoel0quVyGaL3TuY9fR8RhWgypHU2m6larWo6nYYyEEQDj/RC7qjNh0gjjEBcKZmQzqPC7iWA+OFZJ5LCukkKBJMsBsaVJMlWJJ+IvdfXQx6dHG42m63MEzwXyAIol7Q4KfVsAwQd2jiW58CzAhAR2L/u5cF8Suc+DuxJBBNJW/4C7HGPypM942aJLnz43iQDgbmDjHOtHrH3/+Y7LvCxv9z8kH3B8ZhH9znwrAtEJhdIELhWq9WWwOOlEPy4uMD4/Njl62AP+Gd8j5QzGi4p7uqzuJ/sxm7vEREREXeG+ByOiIh4qPFSBYXvkfSHJf2ts3+/217/v5Mk+buSHpP0Okk//mIO6HXopKtTh04pAp9ptVq3GbBBuJw8OJlyYsp5nEx4/TfH4f0kSbb8AtrttrrdbiDckkL7RiLIkG1MByFrEGgIKb4O+B5Uq9UtQrzZbEJkmmtjTpinZrOpwWCgxWKhyWSi5XKpbrer4XAo6Ty9HwKNgSDvjcdj1et1TafTkDXAOKnf91p9SVvCDcQLgo0XAJ/nOB4NRohwsQaC6ESR9SPrge+xfkT3ncB6inu1WlW/39+KwmMgyB5hzM1mM5SFlMmx70M3HmS9yU5YrVYhY0TSliEiP8w7GQzMB/eBG0vyPmNlb3n0HYHA9zpjdt8P9jd7yIUF4N0WuF73IOB1z9xgzcpZRGSFeMaJCygc00uSuF434aSsyFtDclzPQPIsl3L2BnvNsxHYy56h41ka/ty4xLjrz+KIiIiIiDtCfA5HREQ81HgxbSO/VadmM1eSJPmQpL+q04fmdyRJ8kWSfk3S50lSURS/kCTJd0j6RUnHkv7fRVG8qEbunhYNEfKoqbTdmx7S46TU66FJTYfAtNvtcC7EAggeGQn4GZTNBDGBZFydTidkUlDzvlwulWVZ6IzgQgEp6N5xgQg2RBbDRaLSdKPgGiD6pHrneR7MDSF0m81G0+k0CAYQwUqlom63u+Un0G63tbOzE0oX6HYAiZNOfRZ6vV6YXyLFLrZghOgZCJBsSL6XgLCuzDtz7KTYSXPYqGclHRBoyOByuVSe5+G7ZCwsl0sNh0Pt7Oyo1+uF75CN4W0Q2SPsr0ajEa4JsSJN0y0RxP8tzrp0kPFBFxKi7y4mMEYXK9j3XA+ZKU7g6VQB2WY+2DOQdsZA9F0694iAJPv+h9RTRsJcl0tK/J7jGPy4iMaxPNMHlLN9mHP2gfsmHB8fhy4YzJGXgng2kQsIvmdcvOFfxujCEveQly1xjZcJH65ncURERETExYjP4YiIiIjb8WK6PHzBc7z125/j818t6atf6oAgI07WIJdEMomgI0KU07i9PEA6bxdJhN5rwDkfhDnPcy2Xy60yhOPjY2VZFtLs6fgA0RuPx8qyTLPZTIPBQNJ5hBYCjZgA4ep2u+r3++F3b31JzX+73Q4RZvcNgOh4VwPEh9FoFAg0vgnSKcmdzWbKskySQjcB72pQNp/kfHgMuE8B0WG8KojCQy55zVPeXfBhjhqNRiDPXDfjQOxgTHgRuIBE+0RJoRTAO2bQvYI9wpxNp9MgHlGqAkkn84HvsM4QV++m4J04pFMDzk6nE0QNz2LwLAT3VGBfk95PiQQE2MsF3CiR11zgYP9zPewT5pwyDPZ8URQhOs/9x15jX7qQwD4pmyNyTexVL22BqDMOz17wkiR/ndaW7iVRNlD0DISyb0IZLkD4/nbzTcbnPhEuUNxvfLifxRERERER24jP4YiIiIjbcbdNGV8yIBNOGEjpB5ANiJobqUGCiNYSfYSYtVqtEKUvp8Xz32USh0cBhCNJEnW7Xe3s7ChJTjsqcB6PAPs1uamcpK10dW/dVyaZkF/IJoTWuy94yrZ7IiRJovl8rmeeeUaVSkVXrlyRdFqPnue5Op2OOp2Odnd3g9nicrlUu90OpJDrnc1mOjo6CmaP3mUCwugdJjyrgrkpCw0QX8gdx+RaEWHc+8LLIlz0QDxgHiHOrLH7J7DW9XpdeZ5rOp0G7wnG5maCRN8RdhBA2BuYCrpvQrvdVq1WU5ZlIQsiTdOQYeBigWe8bDYbjUYjTSaTrcwOPsu1Ea1HSJLOW62Wsz/KBomUYrgQVC4rQZRhb7kJJiVIPjbAGChH8ZIBBBsIvWd6eKYD4+b+RozwzBEXpHx+XLTw+4+94Jkhnj2C2Mc1+zPF5yYiIiIiIiIiIiIi4nZcGkGhWq1qOByq2WwGktjtdgN55g/7PM81Go22HO8hDpADiC6GhhBoCKib/VHjP5vNJCmYLULiyRyAuLTb7TAmJzjl8guPDnvtuqTgLcBrF9X9Y7bIOSDTEDIEBciWd2sg2s13GCvkslKpKE1TdbtdrddrDYdDHR0dhTlBtMAkD+8I7zjg/+2RZW8bCPklU4P5dpSjzZB/FwZYI0kh64DvuPhDNgniCzX9LlaRicJ1LRaLIFy5cIE3BUKFE14vl6EUhrGX2zA2m00Nh0MlSaLpdLq1FyDwCDneiQMjUohvOcIOefbSBPe0cNLvmQHefcONDim7qVar4Zxcj5calAUbzoXQ4x4TmG6WS4i4DxBs8PNgvyAmSOdeE+12O2QGcV8hKjInHNO9GthjiDTljAO/Jq7FO3BERERERERERERERDw3Lo2g8OpXv1rVajWYsEGe2u128AygbWKe51uRRCcEEBEIT7vdDjXSEJuyA7+LD2maBiLtEU5MBYlCI0Asl0vNZrNAEsuZCp5CvlwuQ0o7EWaIraStsgxvB3lRqjtZAGQFQKQgQ0STMbD0dP1+v6+dnR11Op2tUgf3QWA+L8ri8FIL5rh87awJ18/5uVaf16IogohBtgbH5nOk8Ht5CGP1bAbKUtxDADIO+K77V1SrVc1ms1Dywjp3u93gbwFR9UwF5tu9BMqp/ZR1+Nx6dwj2JqJJq9UK+83nnn1EVghCEWTdMxgQRzxDByHGo/+eVVEWJNj/3h2FMVECg0CFb0hZfED4ct8GsnTYl2RvIHR46QQihZfjeAcMz37xMSKqeZaMvweYO+bX90jMUIiIiIiIiIiIiIh4flwaQUFSiMgul0v1ej31ej212+3QFSHP85BiXiY8bsgG+XbfBbIeer2eOp1OqBv30ggipZVKRZPJJIwL74E0TbfIy2q10mw203w+DyS00WiEz0EaaW84n8+1v7+vg4ODICSU6/QRP1xYcL8CIsiMb3d3NxDscgQWUk5KflEUStNUvV5PrVZri1jRVQChBeLqHhDMtaRgcIgIQsQYQs8xPd0cYsq5iWITkefcjAVBQFJoXUlKvh+TbAA/jqSwDohO7nfQ6XS0s7OzZaDoxpBcB2tdjvQ7oWUey2n3RN+ZTye/ZJ6wTu4fgaiFCaZnrtAFBDHB5xJxhnEsl0sVRRGOy3VyTExF0zTdKkVhv3EveTYC4pVnQbh44iVL5XGXSwlcuGJvkbnDHCFESNrag3zG9zsiBHOKwMW5WEPO6RknPDP8WH68iIiIiIiIiIiIiIjbcWkEBXd/x7Sw0+koSZKQBUBKOH/ou1Gdm7IRgYYsSOfp1GQsuMu+Gwg6kUFsmE6n4T3IM6UXBwcHIWOi2WwqTdPQYaHT6YQI92q1CjXy0+lU0jlxLYpC3W5Xe3t7IUvDrwFSL50aDx4cHGg2m22RZ+bOSRTmgdJ5xkK32w0kmrkjY4JrcNLFv358T2P3uSJbAd8Jz77wDgBkRsxmMxVFESLkHj3nWp34EWX3WvfNZhPOTZtOOm94SQxp/IwB4QZBggwVSkO4Difh7sPA8ZkvCClEGqKPAEJ2iRNp9wio1WqhJSlZGmQqQOi9CwFlCt1uN4zRxSk3VUTgmc/n4Zzl7iLMPZk57m/BtXnGAONnH1wE9yxAYGO/IDYwd37+cuaHdC428Fq5IwNChYsTZDpw//ga8fxAuCuXPXhmUURERERERERERETExbg0ggLEgbT14XCobrcbWsdBIr0lYTkSWiYFHpmG3EGm+SzR5izLdHJyEto8Sgop6N4ZAb+C0WgUBAKiy4PBQP1+P5BICPDJyYmyLNNoNFKe51uGixBIBJSiKALxkxTaU3L9m80mpOX3+/0QyZ7P52GuEBIwyAM+HkjyaDTSeDwO3Qio3ff2g5A+TAjdzwCxZLlc3hZxXi6Xmk6ngUQyBubcz+nkFPGmbMjnRJY1n0wmyvM8mCQ6IYQ0U9qC0OKRaeaDDBGyYkjhd68G5gNiCyEnq0ZSIPGdTmfLzJNrcRINKEnw0gGEFubcTRS5BzB79OwVxsC1UkZCVg+iCUQa8Yj1kM6NGGlhiYCH8NFsNkMmgZcFuCGi39eUdjBfLkB5tkfZEJHvc30Ass88urcE64Uwwp6fz+e3lUTwPW8lyWcQQi66poiIiIiIiIiIiIiIU1waQYEoKiRgOByq3+/fJihAbLIs2/I54LtlQDqcRLnJnXQqHOR5riRJ1O/3JZ3X95+cnGg+nwdy3mg0tFqtNJlMdHR0FLwUer1eEEGc1G42G02nUx0eHmo2mwUCtlwuQ4tBoteQOHwN+HFXfEosiLJD2o+OjjSdTrc6DkCKmCfEBa53vV7rmWee0WQyCaaYRPKZG6K+bl65Xq/V6XSCoME8IXjwWYQR5sFr4GnZiAdEWSBycowRZqVS0XQ6VZZlQRSCmFLaQnQf4t1qtYLgISm0HWVPIXBAfIfD4VYby3K7R4wGKSFAIGDcrB0kmsg418a+kM4j7e7pgOBF5wqEFgQIN96knEZSEC84brljBuemdITvML7y/cU6+V7wOaDswueHcztYBzKDEANd3OG4fN+9QnwfureCdC52cRxfC0lhDciycAHBS068zaWkMHdcf0RERERERERERETExbgUggIZCaPRKJAJot8QVFK63QCQNHX3NSi3cHSRoZxuDdHNskxZlqnX64XoPISzbBxYr9e1WCw0nU63siZ6vZ663a7q9bqm02mIfM9mMx0eHmoymYQ0eaKl1PhDYDkvxA+DP66DDgVkUrRaLU0mE928eVO3bt3SZDIJtfGQLOYNEklaOaLI4eGh5vO56vW6hsNh8KsoEzv3t2B9IKuQNKLpEH136mc8tK7MsmyrhaB0brDo5BBPgX6/r8lkEsozgJdxdDqdMGeMiWtmXpfLpbIs03K5DC0bId7uP+C1/OxD5o55QZxAhIFYsycRWTzjAwEDMiydE3uIrJdBeNaHZzK4D4EbVLLvneh76Umr1VKaplutHBEV/LwIWwgC0rYnB0IRopfvOcD1ebvTclnLRXBBruyRABA6vPTJTSkvKndCVPRWmGVPBxelymaeERERERERERERERHbuBSCAqUIN2/e3CKzkDHEAwiERyH5o5/Udo9SQh7cNI9IMq8TSfd0f0oIIK9EnXl/PB6HEgki1UR+MXqUToncdDoNmQe8RmScqDutFyVtme0RyaeenC4REOHNZqP9/X0988wzGo/HoXUkxIiMBlLwnaDj1cD1QawXi4WyLLstMouog4hTrueH1CGWQOrLNehkL5B5wDkRbZy8npychI4UtVpNk8kklGp45Bufil6vF+YaoklGB+NEDIIQe3mECwDuy+CZAlwXn4c0Q6jLbSxJ53fzSQi7l7GU5wny7maBkN4yyUVEoyTCRQgED94jS8XXl+t2bwLmgSi/+5v4/eOlED4uovueUVEWUnjPO3pwnYg8Xh7C9ylZ8MwWL1coZz64J4ILTX6f4PPgnSrK1xQRERERERERERERsY1LIShICgTeo7CQQfc78Hp4adutXTpv9wY5dfJApwWIDlH1arWqvb09NZtNzedzZVmm6XSqPM/D8fA4oMMCwgd11p69QLeD1Wql8XgcPuedKobDYSDPXqcNycG0EKLj5BAidXBwoKefflpHR0eBUHpt/Gg0CmUckKZutxuIN3NXqVSUpqkajUYwe4TskpnAdXlpA2SOkgdIJySM6wDe7o9IOVkcq9UqtMnks9VqVb1eT/1+f6sbh6Qtz4PhcBgyFJhD9ol3NKhUKmFNXUTwMoRypwyi65SIYCpJa0pe804bEGT2LeejRSP+FowTQsz1k9FQFgOcULPnET8ovSlH8REbENhYU9+7rBHZA+7xgQDhZQp+XzFXTuDLooFnDzF+xCSyJ9wXwzuF+PWyhxEoeN/3ImNx4YX55nU+h/jjJVBuIhnFhIiIiIiIiIiIiIjnx6UQFCg7SJJE169f1xNPPKF2ux1S071umki5t7aTtEWyPO3bCQTkheg2xK3b7arf76soitCWMs/zULpAZDlJEmVZFjIavM670WhskXTp3JQQsuulG0TVifbS+lA6TdHnOhBWPIJLJsB4PA4+DoyDqPtqtQqGiFwbmRTNZnPLBJFSDUgYkXXmix9KQCBgCA2eZg6BhfARvXZBxDtp0MEDkYHPUt7S7XZDNgXj5fvU5Xe7XQ2HQ9VqNU2n00Boj46OJCkYLUqnKf+DwSAQWLJJLsoUYL4g3hBxynEQwFxEQFxhPRBZkiTZ6nLgbTsh35Bo5pCyGxc8EATIiMHTgZIG9iL3Vdl/AYLOZ8vGkYwHEaTsG0HnEsSUcukCQhhZPRzbCb93nvC9xf2LYMPxPRPBW2WW186FAveCcIGD9aBUw9twumDC/fx8pRkRERERERERERERDzsuhaBAF4Q0TfXoo4/q6tWrQWTwVo7U6OOy79/3yDjEGvLmXgj+PsQNcztIx3g8Dun1fHaz2Wg0Gm35KXC+Xq8XygiIWCdJshU5duO6VqsVMgXm83mINLtwwnV5i0aOS9nEdDoN5BUi5iUEHBNPgE6nE1pxUurhKenMjWc5QJghlZB9CO9isQjlIBBoIuLumA/pIwOl3G0D8DslIUSxy+0E3W/A0/LxMyATBXKIySEZAqwNYozX3yMKQZ59LvCuYH28TMI7czCHCC6QXCfz3qGBeTo+PlaWZZpMJmHMzKu0bb7I7wgPvseYy3LU3UsMvJSA8XkWAfue7BdMRCnZ4Nq9rIjXec07WyCUdbtddbvdQOQRdxAa8OcgS8b9DDxrgmtE/PA9XM4+QFRgbd14sVwu0mg0lKZpKJmJiIiIiIiIiIiIiLgYl0JQkE4Jd7/f15UrV9Rut3VwcKDJZKL1eh2yAYhmepTVI6iQZzc1JGoMqaS1I787wYDkYTxH1BfSN5vNQpR2s9mo2Wyq2+0Gc0U3uluv1xqPx+FcEJxOpxOirGmabhlIens9r9H3yCtRZ9oAQpAxnFuv14FMu7EjgouXZnikVtKWCR/fI1sB+PVDysnAINpLaYITS89k8A4OEDjIL2sA4UNMWK/XStNUkkIWiXdj8GwKz2JBDKhUKur1emo0GprP53r22WdDSQ2CAvuQtPvhcKhWqxWOhRDUarW2TDul8/ICiDECFmOlXaK03d2hbAS5Xq+VZVnwvmg2m8rzfKvkg+N49wrPYCgbWzKnrD3n8WOxB/ielwcgpPT7/VCm4p0TvKSHUiPmkPnHN8OFBhe9mAPGKp1nbjBPfN8FIH/Pyy88g6nsu8Aex1PDy4WazWa4n8veDhERERERERERERER27gUgoJ3duCP/DzPg8EfEW4ijHzHCYNHbiHETojIaoDIV6vV0HrSxQTvPOC+ABCf4XCowWCgW7duBTNJoqnz+TxEihlPu91Wv98PBI1sCzfH83IF9xYoXz8Eh+i5dxbodDo6Pj4OmRWk1282G+V5rqIodPXq1TAX4/FYi8UiEDsvNYAkQ7ooU0CggJC6XwStOSHgCCWQRRdKnFiTtu8p761WKxhPsgYIH5RzQN5ZG8oviISTeTAYDELUezgcbpFNiDHRa+YZ4Yc5paUoa+/ZCJ4S7xkTLipI24SfjAPEIheO6EIBsfVSn3L6PfPA3LtnA6UGbtLJvmbunOBzLZ4JgEAkKewnTC+doCM+OXH3ciSEB95DfFgsFltZJ/hTeKYJAoCbsHJMXzcEAM9o4DPc+9znfr0u6iDKebvR6KMQERERERERERER8dx4QUEhSZJvkvSZkm4WRfGms9f+jqTPkrSS9B5JX1gUxShJkqck/ZKkd599/R1FUXzJizhHIC/j8Vj1ej38Me/16V7n7oSlbNwGQSfbgM+SBdHr9UK6PkTFCS+ZDU4aMS4cDAbqdrsaj8dqt9shuwExwVPYe72erl69qm63G2rQOR5p+d4yECKNPwGlFavVKmQ/eFo23QYg7KRnQ6AhvnSGaDQaSpJEo9EoZH+Q8dDv9wMB9jR9zlH2VYCItlqt4I/A3HFcgF8DmRRcA3PX6XS2SkOYBwgz3QkQPer1esgaYPzetpKymF6vF8bf7/fV7/dDtByhhG4d7A0IPIIPJpqUBECEaZ3ImL3cAMHAibcbBZLdQfmMlxVwzexFxCqPvntZTK1W03A4DGvnpSFlA1PWAnEMcu+lJy4A8bsbm/r9x1pK594OgHMi8nhpDQIQ14XIwRzmeS5JQWiYzWYhg6DcBaTsl+Cii5fcsA+4r30srA37nGwJrvmy4MPxLI6IiIiIeG7E53BERETE7Xgxfy1/s6RPL7327yW9qSiK/0HSL0v6S/bee4qiePPZz4t6cEIoPLUb4kO0sewmv3URVjNNmjg17BjqFUWhXq+nK1euhJIESVtt5KTzmnRKHqjzlqQ0TbW3txfq6jEGZPwQakCtOIaOdLIgMj4ajXR4eBii/NSm37x5U5PJJETwuWai/kTPIUlE7slw6Pf7IXMCckSLRUmaTqchQ2E6nW5FuhkTWQ3eBQHS6tFj5tc9EyDRjKtsLMh6lX0FEBPcO4EWlhzPWxQ6kaSl5mQyCZ01er1emH9KMtgXEFIXBcoElM/4eOkCQrcNxsr7HgGH2LPffB0RFDClnE6nmkwmt10vkXa6Wvj+cgNDHz/nZv34QXAoH6ss1rnYwGtch3Re9uL3mK8/e9IzQJrNZujCMZ/PgyDjGSFkukD4aavKvnfhhvIKL19g3prN5pYA5b4g7mHBXmVsLnZ5R5FLhG/WPX4WR0REREQ8L75Z8TkcERERsYUXzFAoiuJHzlRWf+0H7dd3SPqfXs4giKTyxz6RWkhHuZbao6Kezu2ZCpBFJzR0VuB47XZ7q8tCURTa39/XdDoN5BOiValUtLu7q93dXWVZtlUrD+HCGBBC1O/3Q0eF2Wym8Xis5XIZiBXlCc1mU/1+X+v1WgcHB8rzPGRDQMql85aSnMuJPC0WMfHbbDYaj8eBTEKY8jzXaDQKZQtkTuAnMBqNlGVZaCFJRBdySIkI6+QlB6TES+dO+4xb0paw4EaPEGa6NjBnHIe1LqfVE00n4yPP8xD5xlARgkktPwIVY4dQEvn2Mg2fd4gt8+RmjxBer+unC4N7YJBBM5/Pt6LuZHBI2so8YR972Qv7Dk8EF6qYM4ixmxB6lwTuFa7Vs3q8LajvLQQKjuGdPsja8LIV3zdkx3APM/dk4eCZISncOwgYjM2zB1zoa7fbIYsHsGc8+8BLejyzxucAHwv8K7wc4zLgw/EsjoiIiIh4bsTncERERMTtuBseCn9U0rfb769JkuSnJU0kfVVRFP/lhQ4AyYAEFsVp+0ZvC+eO+tI5aXDnetKm+bxHQSF4kkKKO2n1uLnnea79/f3QeQHCWKvVlKapdnd31el0NJlMAtFi/E7ypdPshE6no6IoNJ1OdXR0FNLPIUUIF71eLxBD3P0Hg0EgUBBMSSFyDzGCBEIwAZ4Cs9lsy9sAYYPoOKZ+WZYpyzLleR4IX57ngWhRcgGxK3duYJ0gcNJ5pkKtVttqJch33VSw0+mo3++HaDukFCI7n89DmQLzwJrTdjLLMi0Wi+Bb4ZkMnI9yA/eF8Oh1tVpVmqZK03QrS0Y6b+dYrVbV7/dVqVRCVg2knffZl2QyMCd015AUSnLYE0TWESC85IN0fTJNEIgg82S+QMS5X8jGYB8j9LiwwtqxnuXMDTIA2HOYidKFxTNc+Cy/k8nix0uSJGS5ME8IfdxXnhHjmRjMIWVI7EWOzZp7yQJZDYzfOzz4Pct1s34ISQ8QXvazOCIiIiLiZSE+hyMiIh46vCxBIUmSvyzpWNI/P3vphqRXFUVxkCTJx0r6riRJ3lgUxeSC775V0lul89Twq1ev6sqVK6E9I+SsLCYAJwtkGBCdxa0egpCmaTB89FIBiNRisdCtW7c0Ho+3TA8hc71eT/1+X5KC94Gb6jUajUBI3GCS9o6IFDjIE9H3rgGTySSIA/z4/EgKRB/SC5nnd/wnmLtaraZer6d6va7pdKrFYhF8AzD6oyxhMpkEgYXXuEaPHPu4ECq8jSPkEYEIrwJKMqrVqvI813Q6DV4Hw+EwZBR4TTvR97M9E/wP3PyRrhZkogyHw9CSEX+C8XgcxsV1+mcQExgzpJn3mANS6bvdbsg2kM7bXSKiQOz9Wpyw8xoiTavVCuNBIHB4mUKn01Gz2QwZAl6+Q4aK72EEKNbIs0SAtwhlLllPXxP2ddlvwzOHvOOFd3lI0zQQec9+YK/7Pc53JIUsBO5z9iXf4R5FhOD4zJt03v3CvRa8K4d3dPDjeebDZcbdeha31PlwDTkiIiLiFYX4HI6IiHhY8ZIFhSRJ/rBOjWl+e3HGAoqiWEpanv33O5MkeY+k10v6yfL3i6J4m6S3SVK9Xi+Gw6F2d3dD9wWizpQ/eNcARABIDKSXyCbEl7RoophEpklxhzwhWEwmk9AdwNPOG41GKCegAwVjgpBzHFK4ISlkJUBg3TdgOBwGg8jJ5PT/L/1+PxBMBBGIDuIEpQHeng+/gGq1qoODg9CBAcJGZJwOCJAyTBbxTyCq7eSQ9+v1utI0DaUjCAN5ngcRhTnwTgFn672VxZHnubIsCyQ4TdNAkiF/q9UqRMGlc8M9SDPzz/gg21euXAnZJUTDx+NxEEsw/SPbgz1D9oV3NCjvPYQoPz7iFcdhfJK2fBuYBzIWeN19PHxdPOOA+cQLgj3FGNx4ENLMvvRxeLTeCT8ZFj5GN130jg6ICWQJMB6ugfsMEcK7TrgBJOcgE8cFBV9T9hoZIIgwjNUzWji3Z4UwF4yT43BdCDnsMc/IeBDaRt7NZ3E/2S3K70dEREREPD/iczgiIuJhxksSFJIk+XRJXy7pU4qimNnrVyUdFkVxkiTJR0h6naT3vtDx8CdoNps6ODjQM888E0gf5JN6a0+v5186QkDmaLdH5wDSxYkMUyIBsSYtnDRsabtzRLfbVa/XU6VSCTX0s9lMo9EoRK09zR+CSZSfSLenUeObgNdBlmUhw4CoMHXmiAB4Guzs7ChN00DiSIHvdDrhs0T/SaEfj8eBICEiMDaPNvOdsp8FZR3tdlu7u7saDAZKkkQ3btwIc+ydJiBknEM675xAOYakUIqCCMN4yJggilxOz2d8XG+lUlG329WVK1fU6/W2ouSUdpAlQtkEUXJKLdycENGAjBbG79F9Hw9rShYAx+czCEmQawivl4hQYuH+AnyOLJt2ux1EFE/h904hRNv5LvvJhSKEhLJY48aLZMW4z4ELTJ6R4qUVtE51LwMn/Z794OKLe4Iwb17Ww/xwb7inSKVSCYKZCwGcyzMTECU6nY7a7fZtHSK8ZOSyCwp3+1kcEREREXFniM/hiIiIhx0vpm3kt0r6VElXkiT5kKS/qlMH26akf39GUGiF88mS/nqSJMeSTiR9SVEUhy90jkqlor29PZ2cnOjZZ58NfgOkf2NgVxYTIMekYuMj0Ol0Ajl20gVJcg8DSRoMBltmdGUSTNcEygXwOtjf31elUtHOzk7wS0A8gOhDrN05n/eazWYwavSWeJICCUYwybJMq9VKV69e1WAwCK93u10NBoNgAIhHwnw+D6QLccavD7KNmIBnBaILhA6yBxFO01TXrl1Tv98PZQykrDtZw+8AQcIj8JQoeJmEd1ZAEKH8hEwMd9+H0DPfXqognbeqhOSylmQWQFy73a52d3dVq9VCK03EAc5NFgXjP7svtrICyCohCu5kFN8DSmskBXJfFrIgzi6iuAmlZ+y4KNFut4OQNp1OA5H2SD3ZAVwbwpdnYHgXCc+ecJNSSkPc6wGRoSiK0AGC+wxxzufd15714r5jLN7Fgzn3DCUXZpg7v1bW3MUQL3NAgEGgYJ/wOW9BeRnw4XgWR0REREQ8N+JzOCIiIuJ2vJguD19wwcvf+Byf/ZeS/uUdD+KMtGCMSKSRdPWL+ttL53Xr1Fh7tBJCABlrNpvq9XpbXgQnJydqtVohEs3xiIATFR4MBmo0GoH8025xMpkEEkkWxP+/vfOJkWw9z/rzdXV3/T9V/e/embn3BuzILAxCxkIWEijKApHEG5OdWWWBFBaJBAsWjiKBWWQBIrBBiuQokQNCsZAAYbEiIFB2GAO2Y+OY2MRy7HvvzPR01//u6uruw6Lr9/VTNT0z997MdFf5vo/Umpnu6nPe853vHM3zvO/7vJKy0aK3APAZrndrays7ytNm4GTKxRBIbrvd1sHBgarVqgaDgba2ttRqtbJw4f4IkC/GHEL8y7nBIWXh3ofvpoXStXcDbSKINbRW+Jqdn58vjMXk9z0jzmfwHXDy59ns09PT3KLg4y85D5l/stG1Wk2dTicLK4gJ/Nyz2RBa1ha/BdaEVoTllhkqQvyaaYchyw1pdaEL80RJuZJmuTIAIs0asce9rJ/fRyhzos0z0Gw2F8auLk8pQCBxkYjnwH0d0nzyBUQc8QG4vwAVA773XbhhgopXf/Bs+XN8dnam8Xi8UPlAZYFfK9UQvr+8LQjRw70VuAdUsiAYeWvIsvkia7JKuI13cSAQCASejXgPBwKBwNN4GVMe/tQgkzkYDDQYDBZIqY++W/4det3r9fqCd4L3eJNdbrfbC0Rk2V0eAg+oMsDbQVIumx8Oh+r1ejo7O1Oj0VCz2VS329VgMMjkE9INWYe8eP88ZPLk5GTBYM7JlhsgNptN1Wq17FtwcHCgbrebvzeZTLJQUK/X83qen59nQzzMEBltyBrzJ5l/+tZns1kWEoqiyFM4aNOAvDJtAYGEDDRrynUyLcIrB5YnNuBlsdxGAkFEqJGuRiSy3vgzeI+8Gypyv93Fn/3iYwgxh6TdAb8KrzrwkYiIAOxVzk0rCtUk3H/2hFfDIHx4NYX7MCBm8Cz455vNpvb29nLMXmlAZYl7NrCXuWZEEK+S8ZYFvwesG8+ot3B45Y23IknXYoqLOoBpH4yd9IksLijMZrOF55oqGEQGf66oxKBNxK/Dp6YAv7cIToFAIBAIBAKBQOD5WAlBIc3HNr7zzjvq9XrZ0O1Z/7EnI+yGfm5et9zTThUBWeOiKHIlBD4HZJ7JfiMotFotbW9v54w2GVEyut1uV41GIxOuer2eSb6XZ0Nk/M/RaKThcJjj5ZqpWCDbyzQByBLrQ/sDFRO9Xi+PeiROMtW0RIzHY/V6vYUsMAaEkEymMXAMWkoQZY6OjrI4QFvGdDrVYDDQyclJJu4IPVQm9Hq9hYkDtVot30uy74gJrC8VE8TI5xmH6aZ6CEMY8zESkvYPxAYy0lwzlTC1Wk1FUeT2Dch6URS5IoNqBjcwhFzT1jCbzTI55/dYR+m6NH+5EgFy7GSXfchzwn7iOmq1Wt6D4/E4txx4lY23BzAFhHvHPqjX6wstRe6hARBXiIvY/TpcpOK58YkavidTSrl9YzweZ78Snlc3RmWyilcu+PvBq3S4Xh9xyu9y773SwZ9R/u3rHwgEAoFAIBAIBG7GSggKkvTo0aM8XpHyb0lPZTPJUFOR0G63swcCRIXspFcokEklo82oQ8iF+zIgDmAWyM/cXZ9xjO12OxM4srz0x0P8IDOQFggj5esQH+naZZ7sNq0gkOXRaKTpdJpL3C8uLnR8fKxer6fhcJgFBa6XEYfNZjP7MPg6Qc7Ozs5yeTxmdWTaETYk6fj4OLdQuIfBaDRaGOmIZwWkcTKZ5HYMyulpZzg/P9dwONR0OtVkMsmZc9YPwabRaGRhBCFBWjSAxAuiVqvlaorl0X+bm5s5du65pFyJQcsJxn3tdjsTUUixCylUP9Ce4vuVbDmtGOwr9ohXeLB/2HNuZkgG3qsvmLpRr9fzNXDNLoyx5ogB7BOEIz8/5/S2m7Isc0UPgoQLMzfF7dMhMAv1tgdJWQQiPgQggDDlbSbeRoNw4P4I7B2f1OEmj9L1iFnW0J/7Zb+JEBQCgUAgEAgEAoFnYyUEhfPz80yUyd4uE3361clq41PACEOIHWZ/lJO3221Vq9VMIsiUOlmGOHAMspvtdjuXaENex+NxFjww7IMsATfN85JySfnaIL6Xl5d5ugNVEJR8t1otXV5e5vYKyHtZlrlaYDKZ6OjoSIeHhzlD7T3yjBpEPIEcUr3BRASy6Pgy0Ibix2P05Pn5eSb2kDVIJPeHSgIqInq9niaTiSqVijqdjtrtdiZzs9lM0+k0ixIu7tBfT8WEdJ1BpxSe42CWWZalms1mrnwZj8dPTXHAq4Hfp9fe2y98soIDU0l8J4ilUqnk9SGDzr7l3Kw9rRh8Hp8N7pMTXMQAWkLYtwheTOiAXHO/aKfg99l3TLnwSh/uAcdmnyLG+EQGrpf75Of1iSDcQyolqORAdOPZYM+7OSLnZ41pmXABxEUeRA4X0lhHH8PprTaAfebP/rI3QyAQCAQCgUAgEHgaKyEoQBop9Scr6tUJkAm8ADBZJCMLQcdh3sfCQdzIpPp4OB93t9yfTYaTsneIm/exM0LSHel99J1niiE1W1tbOVvfaDTU7XYlKZPTRqOhnZ0dbWxs6OjoKBOx8Xi8QMaePHmi8/NzHR0dZTJOzPSje9m3l4djYri5uZlNEqvVavYigIw6YSMrj5iAQaVnhSGG3IPRaKRer7fQFuAjIjGzpDph2QDQqzxYb87HPUTQoAIDQQbRgPvt1QXE42tC+wfnhTRTjs/5PCbpulLAp2ewf2q1Wl6jarWaq042NjayiAZ8D7mZJcIB99XbIKheubi4yN4P7E0+Q/sMrScIQkVRaGtrK99XJ+rsFwg6AhTXT5UHAiDH9+oifu4VPpLycdijnU4nG4i6HwLxUBHkYycB+9P9HhAFaEfxFiUXHf15ZU19vCc/CwQCgUAgEAgEAjdjZQQFMpVkB32UHuXWCAgIClQqjMfjBQ8ESZmY1+v1nN2H7JBFpcQdIutZXshdURTa29vT5eWlhsNhHmfp3gvD4VCdTif360vSaDTS9vZ2JlRk++v1ejYzJJuPT4L7FdTr9SxWQOoQRjDfOz4+1mw2ywaJEDsy1KwlAg3iyObmpjqdjhqNRvYQIPtMJQZeCtVqNftNUL1Qq9WyASNklHsC+b28vFS/39fh4eGC4z4TOdzMj8z76enpgveAZ559IoZnsL26hD3jLSUYKyIkQVDdr8CrKiCmEHOusdFo5NJ9NwplVKP7MVBdsty60Gw2cxUE4hKE1ytepGsyzt5nL3G93FOy7/yca3I/EfYNFSaS8nQL4uA4CHe1Wi1XBTSbzTyOEyHGxQ32DoIKe45nmv3obUh8D48SxBmqFLydwteGcyAM8Jx6JRP/ZmoH+8xNJNmr0nVbilcnLLdnBAKBQCAQCAQCgaexEoKCdEUkIKcQIzK9OO8XRZHJPsTXS+UBwgFO+cfHxwv97ycnJ7n8vNlsZvJAvzcZVHq4t7a2NBgM9O677+a2AgD5gfBAdiGdXmLvhA8iCxFE9Gi1WtmTgWkMjG4km81aUabOtZN1pcxeWvSgwE+B0Y8cm+zzaDTKmWfPgkOqyBJT2s65feIG52VaA5UhxMQakVFHhGH6A4SaCgPEn9lsltsZJOWsNDHSikJ8VFBAeCGjrLOX9zebTe3s7GRjQr/Gs7OzhT57SDTCAZUYCAOsgRtFsmch0exBqlQQABjX6Odhr7CP2Esc56Y+f/7NdS4LBu12+ynvBJ9M4QaN7uWBvwnnplqFKgfIPsBzgfvK/WB9EQNcUHQRhN9zI1OEBvYcFUmIOb7/2A88m5hQeiWIT9bgHJIWWnkCgUAgEAgEAoHAzVgJQYGMJu78kEjKvVutVh7dB4n0CgGM/CCNl5eXCyRoMpnkTOh4PM7Zd0ZOUnXQbDZz5pny/EajocvLSx0dHWkwGCz4LDjBJgMKoSRWPk+2lMxvu91e6Dmn/JvSdrLJZE6X2xdovSD7j5kgJMwrPSBUCCWeFSa7LF0R0Xq9rvF4nMk/GX4INIID8AkCnNfH+7kPAMSZjD/n9vvt6woB5Xe8+mSZ+EMKIfN+PfhccC+ka/PLdrutg4MDtdvtfF0ICOwF1hwRAAPL7e1tnZ6eajQaZRGLdfOMOIIAbTUXFxe52kW6br3xcnsIM7FQpeEEmM86aXYfgptaO8jMIzD4VAyeBypDaMlhH/goT28R8NYXFxp8RKdPulhuKfDr5VnkPi97NbBHEOMQBFl/Jj3g/eDeGC5Y+fhKBAq/by5cBQKBQCAQCAQCgZuxEoKCdGV0B9kn0+gZSEgk5cj0RDtR9DJxphT0ej1JyqX+4/E4EyVICZUElEBLymXkKSUNBoOcbfesPCTOyQikjhGCkEiypfwpacFIDnNGDAC9919SXg9GJpJt9iw9a0DpPkQNHwkfs+ml4GTcWZPT01N1Op1MptxQkoxztVpdOA6ZdIQehB2y88QIGWRyg4+RxPzSR1hC7Hwt3B+AcZMIJmTYuSY+Mx6PnzJLbLVa2t/fz2LCZDJZmB5BFQk+D7RQSMrtDO7pwN5kTaRrg0M3giRmYuR3IbnuD8H+wWcEwu5tIdwL4qQygQoLrpe4vPqCY1KdQ+sP/haIMZPJZME7hD3J9UDOz8/Ps1cEz5MLTIheXkXhwo97nNAO41UeXq3g7Qkcz6suarWa2u12noaybNToBrAuDvo+838HAoFAIBAIBAKBRayEoEC/PWXL9JtDoiEqkDUA0YEAQTRbrVYmFpPJJBML/AbItPOnu8+TyXSfBFoVptNpFiQQEOi/h7B7RhtiDQnkOjzrLCmfm3YL/AK4BrwXms2mxuPxQnk3pG0ymejk5CQLBO4T4eeAcPvaQ6wQIjC6lK5HRvpEB5+WwbpSjQABhDz6dIWyLHPLhZspVioV1ev1TKQRbbyvnftCZYb31EP8aOWgfYPyfO6DdF3KXqvV1O12syEgUygQmfARkK7NHF0IQADxdgPigOyzJsul9C7QLBt4unDm3hvusYHIxn6i8oT1oc3Bz+FxLlc7ICZ5dQkCDYan7G/uL+D58AodxAQqHUajUfa/4BhcDxUcLhb4GEgqd/ieCy9u/ugiARVIrVYre67ctB5efcDz7McLBAKBQCAQCAQCz8fKCAqU9/toSPqhIQievSVj7F4C/L6kXLWAASEu/JAn2ihms9lC9rparebSboiOpNw+cHJykgmcmwxKWmgPkLRAYry0ularLZBIRvuRhaVNw/v8ET/wiyBzjtEdZApPBv7O2lKOzxeZXQgy54e8QdR9hJ4LIJhiMgUBkYN7xPmYFgAZbrfb2RMCIcPvs2eYJeXz0IrhxoG0fiBItNvtPF4RrwTp2ucCIJKQkWfs5snJifb39/N1S4tZahdUXIjxCQPcf/ak+1oQA8TdhQN+5oQd0su5vIqE/ca5uVYECPfz8GM6mfeJB+wjjkk7it9L39O0KHHNLnzhz0FFD+IOlTk8E36N3iLCNfukEdpM3DST5wq/DGKjPYc94v4Tfm7+7tMeWCsfXRoIBAKBQCAQCARuxsoICvwHHpLMn/R6859+qgmoLHCjPem6xJwMPcIB2d6iKNTtdrPL/eHhoYbDYS6hhkBAqpgK4Vlz6YqYNZtNtdvtXI2wPI5Suu4D5/sQeie70nWGFIGDSgifnABxhxzRSsD6NJvNTP5p8Vg2jeS6IL34M0jXZJF+ecrAIWVeQr88ntKJLfcHEkr7CC0EHIdYqKhwws66QVBZP0QesufECNG+uLjI7SlUrDjh99aPsizV7/fV7/fzSE6v4ECUabVa+bjezuBCA/FSOUDLAcIPcbrvhU90AOxfWgG8RQCxzQUJvAPYf/wO98wrM4gZ4jydTnO7xOXlZRawfOwmrUA8B1QSOHnneFTZbGxcjcRESEB4oe0CsYbjU83hIqDHzH3zyiGeHdbaJzp4+w3PC6afiBA8c3whrvk5iTcQCAQCgUAgEAjcjJUQFCBk7mvgIx0hAZRAewaXbDS92/S/n5+f55JnJ8/1el1FUajRaGRzPJ9zT9bV/RHOz88zmffJBwgKlIkTF0Z01Wo1H8PJDi0BxA+BhbSPRiNNp9OFcYaSMmmC1EGWESoQPnx6hZNexhO6wEE5OOMEz87ONBwOdXJykoUMjoFwg8jgHgicw8v2+YyX5p+enuaKkL29PTUaDY1Go9xG4d4DkHkqESTl6hCAcIEwQesHpfSQRRcBILQnJyfq9/vZZ+PBgwcqiiJ7I1SrVXU6HXW7XY3H4+w/QQUIFSv4fnAORC7iZR0QgtzU00v/qRRZJrEQaQQZ9jdr7tMw2B/eLsP3ue/cE9Z4Y2MjtzUgJhADVTue5SeLz97xkajb29uaTCYajUYL01TYDwhLy0LUaDTKa0xlDevsogXvCiqWEAKI1cU8RBZidLNHf8bdp4LjgDBlDAQCgUAgEAgEno2VEBQk5Vn3W1tbmSAuj9ojiwlJQUzw3moIO4KEj/UriiKbtFFCT+88JAv/AgQH7wH3rDu94pTY4xGAaNFoNDKBl7RQJTAcDrPpXUopt034pAt6wDudTo5r2Qmf62VN+HN/f19FUeQsOeX3TMqAMJMNdnPI0Wik4+PjHDOeEMutCAg7yx4RlPd76TqxInjgVQABRADxTDzZbkm5nJ17KV1n2jHz43OQWCo7IJ2QUy9lPzs708nJSW7F2N/fzy0nGxsbKooij7akrWI6neZpH5T0+1ohFnkVB/uIsYuQe8QAft+rIRCGlj/j5ofeekHLCW08khb2JOek4sHbdagM4HuQbEnZDwQRhLGWCDY+GWNraysbYLrvAmILrRXuI0H1AONYm82mpGvxiv3DdSD8sf/cQJLKG+7BZDLJe4VzuS8H1+XGkggsN3lPBAKBQCAQCAQCgUW8sJ43pfTbKaVHKaVv2vc+n1L6UUrpa/OvT9vPfiWl9N2U0ndSSj/zXoJIKeVsP4TGhQT+Yw/xQVjgyysDlic9kOGWrsgRokJKSf1+X8fHxzl7OZ1O1ev1si/D5eWlhsOhhsOhLi4uFqYwUB3gZI9zIDQsE5nZbKbj42MNBoP8O1RVkJV1YlMUhba3t7Nw4uQQU8TJZJK/yrLU3t6eXn/99TyBASJLLzzGlL1eL5NbBIt+v59bQMgyU4Gw3N+OOMD6k0nGM4Djuhkln4fwIwRUKpWFaR4YD9LWQDab47DmZNN9tCDEvtFo5NYZH8nIz6k8qVQq2tnZ0cHBQRaRzs/PVavVVBRFFq68FH8wGOjJkyeZBPPFfUZYoT2BShjEDs+U+/jSZrOZCbe3miAQsKbL+5619+kNTti9csGnYSAUIYr4WE9aZdy3xI/Peb1FgEqds7Oz7HPBvVn+t3sxjEajvOaMmGQ8J3EvT4aYTqcLrSqYcbrI5ZNBWAv+JHYmd1CdQZWU+6esCm7jXRwIBAKBZyPew4FAIPA03kuFwhcl/QtJ/3Lp+/+8LMt/6t9IKX1c0mcl/XlJDyT955TSnyvL8kLPAYIC5e+QUkrHndg4QV0erUjLQKPRULfb1U/8xE8sZKGZHMHoxSdPnmSxwMdWemuCt1NIiyZyZHshVU7sIJbeDoDZolcakAF2EaVWq6nT6aharer09FTD4VDT6TRnezFPlK7K9geDgc7Pz3OWvdVq5bXxTDPVDKPRSBcXF9rd3c39+pA0RlIiQHDN3r/uAg9kFKGj0WjkaRiQS4gxx0BMoBLBPQDIUjcajQURiR5+stFkpMnO++QJMuNgeVQhn2GqBa0M3ENi8naC09PTvNa9Xi+bBDr4vGfjLy4ucjk/FSpUEjBBQVrM8OPdgEjBtZI9dxGDL0g3f6cdxdtc+Erz6Qtk91kvKhN8vCPtIZeXl1ls4/PLniN8DkFEUhZiECt84gbrzfGo9mEPUq3EdRCfj7HEtLNWq+XYfY/gKcI1Adpj/PmmxQihAaFshfBFveJ3cSAQCASeiy8q3sOBQCCwgBdWKJRl+fuSjt7j8T4j6UtlWU7LsvxjSd+V9KkX/RIkGRIM8ZKus7Je4g1JcDNHvnd2dqZ6va579+5lMz+qCxqNhhqNRm47oN1hMpmo3+9rOBzmTCkZbAgbIgIl3S4ePItYQrYQOnq9ngaDQe77hpQidEDcIf/j8VhHR0caDAY56+z+EcPhUKPRSJeXl2q327p375729/cXRgpKUqPRUFEUqlarmUhWKpWF8nKIuwOSCEnzbLRXPkjKFRVUZnB93BsIHsf0lgfWB58FhAGOgQhycnKSs/xu0oloQUk8xNurIoifPcQ9hUhS0eIEGtJJJcvjx491eHios7OzBa8DNwpkzyJajEYjDQaD7DnAPqIqhQoVCDzE16dxuO8F+541ZV9zPrL1+H6w1k74IeT4grjPgWf4ub6TkxP1er0FvxEqSNxs0p9H1oHzcn3eIoGHRLVaVbvdfqoNBhHP185bGWq1Wh5Den5+/lRLCfcEkcXvK2vN9eBVQhuE+2CsCm7jXRwIBAKBZyPew4FAIPA0/jQW5r+cUvrGvPxrZ/69NyT9iX3mh/PvPT+IeUaf7H273Van03mqMsEJipeXO1Hc2tpSt9vVzs7Owui8oii0t7enbrers7MzHR0d6cmTJzo+Ps5klbJnzOUgF4AyawwMvW/eM5lOWMlwDwYDTSaThZaN7e1ttdttFUWxEOvW1pYmk4mOjo5yWbeX+nMOH4PJcWgb4Tj8rNVqLUy/oHVjNBplIQWvA28X8JJ7J80QLrwCOp3OgoHiYDDIZnnEAGEj88z9ZaoEpfmz2UyDwSB7TXBvKU2H/JHhh0RCUqkGQSSBMEMyEXtcVGAqBpUIiEKDwUD9fl+DwSALSVQ0cA2egXeBZDgcqt/vZ6EE0M7g9xHvDIQCWnAwwaTlQ1L2GCEGjsOzQ5uMjxuVlKt6BoNBFqI4HyaH3rKAMNTv9/X48eOFSgJEEIQrjiVpoeKG9eH87BdEDoQcWnQ4P8+ht6tA9Dc3N9VqtdTtdnMly7JxJc8wMXhljVc60XLC9XAv3L9hDfDS3sWBQCAQ+ECI93AgEPjQ4oMKCr8h6SclfULSO5J+ff79m/73Xd7wPaWUfjGl9NWU0lchbuPxWEVR6I033lhws4fQ+tQFN0zz//TT+16r1TI5KYpCr7/+ut566y3V63UNh0M9fvw4E1b6qBm96NlhP/5kMsmGiBBCTBshtZ5p5meY+JGNxdBxd3c3tx1AHilVp5oB80TIGAQbsthqtbKQAGmHIOK1UBSFOp1OJqrNZlO7u7uZeHrPvpd+4+Lv4zDdFZ+RhZgXcjzWdXNzc6FqAdGCPnVJGo/H2V+A0Zz+BUmUrjLNXDPmiVS0IAC52SL7hjWHXHIttGh0u91sCkmLDf34CAyIJ81mU91uN5Pk5b3CMabTaW6ngaziP+B7jjYTKgXYP4gsvqc4VqvVygamrMvGxoY6nY46nc5TmXdi8vYNWgjwrmAvI37QcjQYDHJVjZsiukjAsyldCxvub+Hxu/GjdD2elckPtAEh8PixEYa4TioYEFq8tYNYfMIHn+Xzy20gs9ks32taVzjHCuOlvotnmr6SIAOBQODHGPEeDgQCH2p8oCkPZVk+5O8ppd+U9B/n//yhpLfso29KevsZx/iCpC9I0ubmZjkcDtVsNnX//n3t7u7q0aNHmeCQ5eQ//W46R5aZ6gVKwE9OTnR6eqqNjQ09ePBAb731lprNpkajkR49eqRer5fJNNncZRNHSdmUDxKGKCBdtwrgIwCpJUNOdtszvogRRVHo4OBARVHkMnMy54grkhaqEtwckKwqmXfOTVsGGVvaHciaX15ejbus1Wr5nMtZezfElK6d/hEXIH6VSkWdTke7u7vZnwFDx62trTxRQ1KuJEgpZbPDk5MTHR0dLZgVUqWBMSV99bPZTLVaLWel2Qc+DpFyeIQGss/cE/YI1Qz1el3dbletViubHUrKEzecjCK64ItwenqahQTEJDfOPD09zb+DN4JXRQD2OCM63fuANhj2MZ/xEYrz50f1el07O1dJEcaLYvDoAgLPDQaEVDgwEYS1KctS4/E4V+PwWSoA3NNCuq4yogLB/RUuLy+zcEB7BnvBxQu/Tp67+TtmwX8D0YzJIbRE8HwueyX4iE1iZS2oLEHs8RYqNw5dVbzsd3GRdm/8z24gEAgEbka8hwOBwIcdH6hCIaV03/7585Jwu/2ypM+mlKoppY9I+pikr7zoeJD63d1ddbtdVSqVbJhGWTQkxEe8eTkzhIVSfsrTDw4OdO/ePe3t7Wk2m+nhw4cLDv2QTDLzZFOl6x5wxAwn7peXl3k8Xkopkz0MBhm/yDV4yXVKSa1WS3t7eznTzHkpR4cwL0+wcKJOVYFXUiBOeKYdcoY5JaScNgrK7qmiAJ5tRrzAKFGSiqLIlQ6IKP1+P1dB0Gbh/egIPtPpVMfHx/mcPm4RgkirBv4LXPdyqwNCBOaHVCewdrSYkOHnuFSyOIl3P4TllhYmeJB9p1Kg0WgsjAd1LwxGVyIwsIc5pk9gkK4FBog9Ygr3kmvn/lJlsLu7q2q1mqta2L/uKwDpx6DUKxPG4/HCerrA4OMzqbZASKMNgsoQMvs815zXjSVdwGKfIUwgMPD7tHogArAXXEjzdhP3TlgederiI59lfzJVgnNR1bLsj7JqeNnv4kAgEAi8P8R7OBAIfNjxwvRbSul3Jf20pP2U0g8l/UNJP51S+oSuSre+L+nvSFJZlt9KKf0bSf9H0rmkX3qvbrbValW7u7uq1WrZN4D/+CMgeJUARBoyBsmTlF3eIe2vvfaaKpWK+v2+Hj16pHfffTf390NSPFO63AtO+T4Zas4xHo9zNtX76E9OTnR4eJj758loQ8Ag9QcHB2q32zmzO5lMcvm/dD01AuK3sbGh3d1dtdvtBQIMMWKtaJ8AlM+fnZ2p1WrlTLaXd0O+yOCzDlwfpeIcl753SO94PM5CDdUT0nWbCJUdRVFk8k9GmmOQHcYHo9VqZZJLP31KKVef+PUxPYB1Rmxxco03Bz38TnA92+6Zc6ZV0B7hEyZYk36/nwUCfAWogGA/IIyxH3x8IkSf6RsIXNxL7oOkPIkEsst11mo1HR8f68mTJzo9Pc1CBnsEUc7bCBCBWD/2MZMzUkpqt9t54gm/R2sKgoN07Y+AuOCCDl4e7pPgYy+d4M/fIwsmoN6mAlz0caHE/RKoOkAA9MoQ2obYuwhnvE/cGHZVcFvv4kAgEAjcjHgPBwKBwNN44f+Yy7L8Wzd8+7ee8/lfk/Rr7zcQXN5ns9mNmWsItKRMLJd7ob0/mvL4+/fvq9PpaDqd6uHDh/rBD36g4+PjXA5PdQREyFsKKFUne+8THSiJd0BkptNpzhQTNxlgyN+DBw907949VSoV9Xq9bAzJ5yGoxEWrwJtvvqmUkh49epRjlZR9ExAvfCoEBLHRaOi1115To9HIrQbeG49wATlvNpsLTvusP0QWoslIwV6vl+/Pcsaa7HZKKU/W8Aw5RHBzc1Pdblf7+/uqVCo6OjrK10f5vgtJLtLMZrM8ThCRwNsbdnd38wQEJ4zeRoPI4GRzNpstEGInzhhaeuk/whOigK+t71s3B8TfoCzL7HuArwJiyrIpJZl+6UpoePjwoUaj0UJJv4sjAD8LKjdYJxdXJOVxjOwjnodlIYSKCveo8JGltK7w+3hGcEzfB7S6sFbStReCrx3PGuaJPo2FY1FJ45MnfGILIiX7i2tAVPPfWwXc1rs4EAgEAjcj3sOBQCDwNFYiBZdSytlciCkE2w0B3aBO0kLW1Kc8kD3f3d3NGenJZKJ33303tyFQ7g4Z8hn3kCuyxpRDOwmF4EA8IFk+lo+KitFolFsBdnZ2dP/+fd27d0+dTkeHh4c6Pj7WeDxeOKZPsZCkVqulj370o3rw4EEm2Z65xXQQkz9G6yEO0Gff7XYXJiY42adKAqHCx0qScSZ76/eAc5JVpqpg2TCRjDjCCvFyLEwX9/b2VBRFHlPon+WYEH4XnYgBgYlYd3Z2dHBwkK+HCgA/P9MbWq3WwlpgjAghRvTAMwIBB78KiKoTbB9jyXUCrg1y7+JDpVLJZpcQd0afcm8RsB4+fJj3Ba0mkHPiQMDwCgI3NPRWB+JgP3Meb89g7Tc3Nxfahby6AGGO+8+4SjeNxAuBZxFxCVHCxzciNrjRpLc5ICyxzxAKiNerD6bT6VNGji4KIjwEAoFAIBAIBAKBm7EyggLVCRj7ISg4YSB7D+lw8iFd9efv7e3l3vaiKLIJ3OHhoY6OjjQajbKAUa1WNRwOc+ZzNBqpLEu12+2cnaYvX7quAoCsEQOEFPIB0ZO0MIaw0+no4OBA+/v72UcAQcHN5CCUELharabXXntNDx480M7Ojkaj0YJpHYIIJd6UpPsUALwDarVa9o+QtNDC4eS4Vqvp4uIiZ+i9zYRz8ndIIqIK94jMNIQYYgqBQyAgxkqlkgkzLSVuuMcak33nHIgJGCVyb/FdeP3117W3t7eQ6ebeAM+UQ7hpd/ARmr4GEE/EiEajkQUm3xd8HqHFM+kQ7X6/n9eGKhZEADcDZVymT4x48uSJHj9+rPPz84UJFH6fvKLGz+/+BJB01pXzLFdfIICwfq1WS41GI+89zoNJqItdo9FoYTIE5o48Y1QHeTsGrTguhrAn3bdEUvYK8T1L5Q7vGp7TSqWidrudW4XYYy4yrlqVQiAQCAQCgUAgsEpYCUEB8gXxhoR7XzeZUy955ouy8G63mysSGM3YaDTytIXJZKKLi4tMgMj6XlxcZKJDmTeTFrwtYGtrS0VRSFI21pOUs+KePSVLOplMdHl5mUc3YghYlqV+9KMf6e2338493J5Rnkwm2dSv1WrpzTff1P379/N6QaQl5ewwIwGpdvCMcVEUKooil7SzFogYLnxAAhEYINX4BlCKv3y9lP4TH6SYthKfIAG598kUeCzQBkJVB8eAzHpJOkKFT9ogK95ut/XGG29ob28vn3d7eztXVHA8b5fhGhAUEGN8sgLHYr25VtYD0QGS6+X1bmzJ+gwGg5yxZ/QnIgIxcd1UMvDnYDDQ4eGhzs7OsmAkKf8+VRU+YYJ7LCmLQG4QybV4tQE+DAhQjJKs1+tqt9v5nIg+XslB1cB4PF5oW3KDSXwhqByhOsnXgPvEiFfEquXKC0SNZVNFf2dwnVSaLPs+IGL6lJVAIBAIBAKBQCCwiJUQFCRl8uqZSciPZ2mXzdskZQNGxAQM9DqdTnZwp9IA0tput9Xv9yVd93uTAR4Oh9mozict4Kjvxnr+u5ubmzo9PdWTJ080GAyymED/fbvdVrfb1cbGhsbjsb73ve+p3+/nDCsZV+9bx/dgf39ftVpNvV5voQ+cbDyE2jPm29vbebIDn5tMJjo+Ps6EEDJPlQHiA2tPhhj/AD8+PfGMkIT4ekbfS+q5Z2Ttt7e3M2GFTJZlqcFgoMFgoNPT01ze7w7+3k7grRd4F/BzRlpSpcKxyMIvl+5fXFwsVDyMx+MsBkynU43H47yOknLrBveeL+KiBQIvBaojMLzkvpPp59guIniGnPYSBIXhcJjFCFp9iNW9QDxL71NDuAYIOfub58tbgZhwgdiFUSUjQN0XgWtjH0hPC1ack+vZ3t7Onh2YNrpJJkC8Q3hh/fDOQGjhveDPN5UfTHCgKsNFGm+B4HiBQCAQCAQCgUDgZqRVKOlNKT2WNJZ0eNexfADsK+K+TUTct491jf1lxf1nyrI8eAnHWXmklIaSvnPXcXwArOseldY39oj7dvFhj/vD9B6O/xPfPiLu28W6xi2tb+yv9F28EoKCJKWUvlqW5V++6zjeLyLu20XEfftY19jXNe67xLqu2brGLa1v7BH37SLi/nBhXdct4r5dRNy3j3WN/VXHvfHijwQCgUAgEAgEAoFAIBAILCIEhUAgEAgEAoFAIBAIBALvG6skKHzhrgP4gIi4bxcR9+1jXWNf17jvEuu6Zusat7S+sUfct4uI+8OFdV23iPt2EXHfPtY19lca98p4KAQCgUAgEAgEAoFAIBBYH6xShUIgEAgEAoFAIBAIBAKBNcGdCwoppZ9NKX0npfTdlNLn7jqe5yGl9P2U0h+klL6WUvrq/Hu7KaXfSyn90fzPnbuOU5JSSr+dUnqUUvqmfe+ZsaaUfmV+D76TUvqZu4n6mXF/PqX0o/m6fy2l9Gn72arE/VZK6b+mlL6dUvpWSunvzr+/0mv+nLhXes1TSrWU0ldSSl+fx/2P5t9f6fVeZcS7+JXEGe/hW0S8h2897ngPv2TEe/jVIN7Ft4t4F9963Hf/Li7L8s6+JFUkfU/SRyVtS/q6pI/fZUwviPf7kvaXvvdPJH1u/vfPSfrHdx3nPJafkvRJSd98UaySPj5f+6qkj8zvSWWF4v68pL9/w2dXKe77kj45/3tb0v+dx7fSa/6cuFd6zSUlSa3537ck/XdJf2XV13tVv+Jd/MrijPfw7cYd7+HbjTvewy93PeM9/OpijXfx7cYd7+LbjfvO38V3XaHwKUnfLcvy/5VleSbpS5I+c8cxvV98RtLvzP/+O5L+5t2Fco2yLH9f0tHSt58V62ckfaksy2lZln8s6bu6uje3jmfE/SysUtzvlGX5v+Z/H0r6tqQ3tOJr/py4n4VVibssy3I0/+fW/KvUiq/3CiPexa8A8R6+XcR7+HYR7+GXjngPvyLEu/h2Ee/i28UqvIvvWlB4Q9Kf2L9/qOffuLtGKek/pZT+Z0rpF+ffe70sy3ekq40o6bU7i+7FeFas63Affjml9I15+RclOysZd0rpz0r6S7pSCNdmzZfillZ8zVNKlZTS1yQ9kvR7ZVmu1XqvGNZtfdb5XbzOe3Sl3wmOeA/fDuI9/FKxbuuzzu9hab336Uq/FxzxLr4d3PW7+K4FhXTD91Z57MRfLcvyk5J+TtIvpZR+6q4DeklY9fvwG5J+UtInJL0j6dfn31+5uFNKLUn/VtLfK8ty8LyP3vC9O4v9hrhXfs3Lsrwoy/ITkt6U9KmU0l94zsdXJu4Vxbqtz4/ju3jV78HKvxNAvIdvD/EefqlYt/X5cXwPS6t/H1b+vQDiXXx7uOt38V0LCj+U9Jb9+01Jb99RLC9EWZZvz/98JOnf66o85GFK6b4kzf98dHcRvhDPinWl70NZlg/nD8qlpN/UdVnOSsWdUtrS1QvoX5dl+e/m3175Nb8p7nVZc0kqy7In6b9J+lmtwXqvKNZqfdb8XbyWe3Rd3gnxHr4bxHv4pWCt1mfN38PSmu7TdXkvxLv4bnBX7+K7FhT+h6SPpZQ+klLalvRZSV++45huREqpmVJq83dJf0PSN3UV7y/MP/YLkv7D3UT4nvCsWL8s6bMppWpK6SOSPibpK3cQ343gYZjj53W17tIKxZ1SSpJ+S9K3y7L8Z/ajlV7zZ8W96mueUjpIKXXnf69L+uuS/lArvt4rjHgX3x7Wco+u+jtBivfwbcVr8cV7+OUi3sO3i7Xcp6v+XpDiXXxb8Vp8d/8uLu/A/dO/JH1aVy6a35P0q3cdz3Pi/KiuHDG/LulbxCppT9J/kfRH8z937zrWeVy/q6uynJmulKi//bxYJf3q/B58R9LPrVjc/0rSH0j6xvwhuL+Ccf81XZULfUPS1+Zfn171NX9O3Cu95pL+oqT/PY/vm5L+wfz7K73eq/wV7+JXEmu8h2837ngP327c8R5++Wsa7+FXE2+8i2837ngX327cd/4uTvODBgKBQCAQCAQCgUAgEAi8Z9x1y0MgEAgEAoFAIBAIBAKBNUQICoFAIBAIBAKBQCAQCATeN0JQCAQCgUAgEAgEAoFAIPC+EYJCIBAIBAKBQCAQCAQCgfeNEBQCgUAgEAgEAoFAIBAIvG+EoBAIBAKBQCAQCAQCgUDgfSMEhUAgEAgEAoFAIBAIBALvGyEoBAKBQCAQCAQCgUAgEHjf+P8zGaNRkIeNzAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 127407 228771\n", + " Min thresh = 1000\n", + " Sliding\n", + "\n", + "\n", + " Winner = Sliding\n", + " FN Patient = 135ns_image_2418161753608_clean.nii.gz\n", + "\n", + "\n", + "135ns_image_2454526567135_CLEAN.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADDCAYAAAAya0IYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADs3UlEQVR4nOz9ebhk6XrVB6594sQ8nyGzhlv31r26msESQghJeFAbQwMPDY1pMNhtZCbJGOMJGgQNNpYxLSNssJu24NIIgY2ZjDEYYzNaDVgSEkIC62q4ku5cmZWZZ4h5OhGx+49zfu9ZsTNLVZWVefNk1beeJ5/KEydix97f/iIq13rXu94sz3MlJCQkJCQkJCQkJCQkJCQkvB3sPesTSEhISEhISEhISEhISEhIeP6QBIWEhISEhISEhISEhISEhIS3jSQoJCQkJCQkJCQkJCQkJCQkvG0kQSEhISEhISEhISEhISEhIeFtIwkKCQkJCQkJCQkJCQkJCQkJbxtJUEhISEhISEhISEhISEhISHjbSIJCwuccWZZ9NMuyr3vW55GQkJCQcI0syz6ZZdm/9Bafm2dZ9uHHfJ/Hfm1CQkJCQkLCzUISFBI+58jz/EvzPP/OZ30ePxWyLHsxy7K/mmXZnat//L76rM8pISEh4d2OLMt+ZZZl35Vl2SzLsu981ueTkJCQcBPxpIXZNzte+ndxwk+FJCgkJDwaW0n/q6Rf/qxPJCEhIeE9hDNJf1jStzzj80hISEhIuEb6d3HCGyIJCgmfc7itNsuy35tl2V/Msuy/zbJsnGXZ/5Fl2RdkWfY7syy7n2XZZ7Is+/n22l+bZdmPXD3341mWfWPh2L89y7K7Vwrqb3DFNcuyapZlfzDLsk9nWXYvy7I/mmVZ/VHnmOf5vTzP/2tJ3/cUlyIhISHhRiLLsq/Ksuy7sywbXH2n/pEsyyqFp/2iq+/hkyzLvjXLsj17/a+7+q4+z7Lsb2RZ9oG38r55nv/tPM//gqQ7T/J6EhISEm4asiz74izLvvPqe/ajWZb9Evvdd2ZZ9hvs538jy7J/cPX3v3f18D/JsmySZdm/kmXZ12VZ9tksy37X1XfyJ7Ms+9ce93jFc03/Lk74qZAEhYSbgP+LpP9GUl/SD0j6G7rcmy9L+mZJf8yee1/SL5bUkfRrJf2hLMu+QpKyLPsFkv4DSf+SpA9L+hcK7/OfSfoCSV9+9fuXJf2HT+OCEhISEp5zbCT9+5KOJH2NpJ8r6d8qPOeXSfpKSV8h6ZdK+nWSlGXZ/1XS75L0L0s6lvT3Jf3Zz8VJJyQkJDwPyLKsLOl/kvQ3Jd2S9Fsk/Zksy77wzV6b5/k/f/XXL8vzvJXn+Z+/+vkFXX5nvyzp6yV95B0eLyHhLSEJCgk3AX8/z/O/kef5WtJf1OU/QL8lz/MLSX9O0qtZlvUkKc/z/znP85/ML/H/0+UX8T93dZxfKelP5nn+0TzPZ5L+Y94gy7JM0m+U9O/neX6W5/lY0u+X9Ks+R9eYkJCQ8Nwgz/Pvz/P8e/I8X+d5/kldCrsPibRX36ef1mWbwq++evwbJf2/8jz/kavv9d8v6cvfqkshISEh4T2Ar5bU0uW/d1d5nv9dSX9N19+jj4vfk+f58urfyP+zLv9tnJDwVJEEhYSbgHv297mkkzzPN/azdPmlqyzLfmGWZd+TZdlZlmUDSb9Il2qsJL0k6TN2LP/7saSGpO+/spYNdNkLdvwkLyQhISHh3YCr1rO/lmXZ61mWjXQpChwVnubfsZ/S5XewJH1A0n9p37VnkjJdVs0SEhISEq7+zZrn+dYe+5Te2ffkeZ7n08LxXnqjJyckPCkkQSHhuUGWZVVJf0nSH5R0O8/znqS/rst/qErSXUnvs5e8Yn8/0aU48aV5nveu/nTzPG89/TNPSEhIeO7wbZJ+VNLn53ne0WULQ1Z4jn/Hvl/XuQefkfSN9l3by/O8nuf5dz31s05ISEh4PnBH0iuePaPL79HXrv4+1WUhDLzwFo7Zz7KsWTge38uPc7yEhLeEJCgkPE+oSKpKeiBpnWXZL5T08+33f0HSr70KuWnI8hGuFOA/rsvMhVuSlGXZy1mW/Z/f6M2yLKtdvZ8kVa9+TkhISHgvoC1pJGmSZdkXSfpNj3jO/yPLsn6WZa9I+ncl0Xf7RyX9zizLvlSSsizrZln2K97Km2ZZVrr6rt2XtJdlWe2q1zghISHh3YR/qEuS/9uzLCtnWfZ1uswU+3NXv/9BSf9ylmWNq3DxX194/T1JH3rEcf/jLMsqWZb9c7rMHPuL7/B4gfTv4oQ3QhIUEp4bXOUe/Du6FA7OJf2rkv6q/f5/kfRfSfrfJP2EpO+++tXy6r+/4+rx77my8P5tST9VWM1c0uTq7z+q6/aLhISEhHc7fpsuv2PHuhRjHxXS9Vckfb8u/6H6P0v6E5KU5/lf1mUI7p+7+q79IUm/8C2+77+uy+/ab9NlPs786v0TEhIS3jXI83wl6Zfo8rvxRNJ/LenX5Hn+o1dP+UOSVrok+n9K0p8pHOL3SvpTV61l5CS8rst/H9+5ev6/+Q6PV0T6d3HCI5Hlef6szyEh4akgy7Iv1uU/ZKtXwWAJCQkJCQkJCQkJ7ypcORz+2zzP3/cmT01IeOJIDoWEdxWyLPtlV1avvi4rZP9TEhMSEhISEhISEhISEhKePJKgkPBuwzfqMmPhJ3U5R/1Rfb8JCQkJCQkJCQkJCQkJ7xBPTVDIsuwXZFn2Y1mW/USWZd/0tN4nIcGR5/kvuJrecJDn+S/L8/zusz6nhIRnhfQ9nJCQkPDskb6LE5428jz/ztTukPCs8FQyFLIsK0n6mKSfJ+mzkr5P0q/O8/yHn/ibJSQkJCQ8hPQ9nJCQkPDskb6LExIS3u14Wg6Fr5L0E3mef/wqxfTPSfqlT+m9EhISEhIeRvoeTkhISHj2SN/FCQkJ72rsP6XjvizpM/bzZyX97Dd6cpZleb1eV6vVUrlc1nK51GKx0MXFhdbrtbbbLc+TJOGqKJVK2t/fV6lUit9lWab9/X1VKhVJ0mq10sXFhTabjTabTTyn6MwolUoqlUqSFM+TpO12qyzL4vjF51cqFe3v7+8cn9fs7e1pb2/voXPe29tTnue6uLjQdruN5+V5rjzPtbe3p/39/Z3X8niWZfFee3t7cc7b7TauNc9zVatVlcvlneezNvv7+9put7q4uIjn87z1ev3ItX7U9eR5rs1m89A5F1+b53msCY/59fpac685Ds/JsizWnN/t7e2pXq+r0WioVCppu91qsVhotVrFOfk5+vtxbPaX3+PtdhvP83Mq7jmOv91utV6v4zx5bLPZxLFtr+/8zHN5bXF9uWe+Fv469g+fAR7zc/b3LK6/r/cbgdcX3xsUz5l18uf7fX7U3uK/fv6876POrbgevp5v9B7Fdfc19uf66yVptVqd5Hl+/IYLdHPxtr6HJanUauYf+uBW936o/lRPLCEhIeHtYKGpVvkye/Nn3ki8re/i9D2ckJBwUzHW+SP/Tfy0BIVHfenv/Ms/y7JvkPQN/Nzv9/WVX/mV+lk/62dpOBzqx37sx/SJT3xCr732mkajkSSpUqlob29P6/Va6/Va9Xpd3W5XzWZTrVZLlUpF1WpVvV5Pr7zyio6Pj/WTP/mT+sxnPqN79+7pwYMHyrJMvV5PWZZpNpspz3OVSiVVq1UdHBxob29P0+lUy+VSknRxccH5xrnXajW1Wi21Wi3dvn1bL7/8srIs09nZWZCf1WqlzWajarWqSqWi9Xqt1WqlWq2mbrer/f19LRYLTadTXVxcqNVqKc9zzWYz7e3tqdvtqtFo7BD5crmsWq2mi4sLnZ+fS5IajYbyPNf5+bnu37+v+/fva7lcxhr0+32tVisNBgPNZjN1Oh3dunVL1WpVw+FQDx480HA4DMFhPp9rNBppsVjEOu/v76vRaKjdbqtWq6lcLmuz2Wg2m2k+n+v8/FxZluno6EjtdlvValX7+/tB2FmP1WolSUGQEY64t6vVKs6lWq1qb29P2+1Ws9lM+/v7ajabOjg40Pve975Yh/e///362T/7Z+sLv/ALtd1u9alPfUqvvfaaTk5OQrCZTCaaTC7H5kKGq9WqsizT6empTk5OtFgsVKlU1Gg0tN1utVwuQ6DgHm23W+3v76vdbuuFF15QvV5XrVbTer3WbDYLAWw+n2symWg0Gmk6napcLktSiBcIXuyB+Xwe+63VaqnZbIa4s91uVa/XValUtNlsdtZwsVhoNBppb29PrVZL7XZbkjQej+P+Ib6Uy+UQZBC+fA/u7e2p0WiEEIdIgmBRrVZDIEGgckGD469WK223253Pqj8f4Wl/f39nTfb29lSpVEIYm81mWq1Wce7cL4B4tdlsYu329/dj/RFiEO54PsILewuxkccQKnh8f39fr7322qfe5PvupuJNv4el3e/imhp69aO/WK8+r/9sT0hIeFfiH+Z/51mfwjvB2/o3cfoeTkhIuKn42/l//8h/Ez8tQeGzkl6xn98n6Y4/Ic/zj0j6iHTpUBgOh/r4xz+uF198UUdHRyEU1Go1TafTICaQAsjMxcWFptOpVquVer2e9vf3tVqttF6vVa1W9fLLL+v09DRILMSh0Whos9losVjsEAxJ4TjwqjqV7qtzjwr1YrHQeDwOIlir1XbI8WKx0P7+vmq1mqRLAjWZTHaeP5lMgoRBJqmcQrgqlYoqlUqICpBB1sLdARDh8Xgc5L5SqWgymWgwGAQ5h7jXajXN5/Mg2t1uNwSHyWSizWajcrkc11Eul3VxcaFSqaRGoxEEcLFYhBCw2WxijZz8QTgl7awnj3MfnDgXiepgMNDt27e1v7+vO3fu6GMf+5hu3bqlo6MjHRwcBEk/PT2N19RqNS0Wi1hbJ7ec22QyUZZlQV65hmq1KulaFJlMJjo7O1Or1dJqtYrnVKvVIPEXFxdBkKXLKj6vL7pSJAXRn8/nKpVKqtcvKxPcRwg4r83zPIQeBJOiW4X3dQcA64ujAscFwg5k38/NRTwXEvgd+xoSv1qtQqDBfeHiFPe8XC7HZ4Vj4vrx9fLPgAsRrBmfTa6F6+H7Yrvdaj6fq1KpPNIV4a93JwPX+xzjTb+Hpd3v4k528ORDdRISEhLe23hb/yZO38MJCQnPG56WoPB9kj4/y7IPSnpN0q+S9K/+VC+Yz+e6c+eOPvrRj+rLvuzLwgHQaDQ0Ho8fqohCLHjcq5TlcjmI8MHBgY6OjnTv3r2orFPRlRT2eEmazWaq1WpBjCBAEBpIfrlcVr1eV71e197enmazmSRFFf/o6EiLxULlcln379/XdrtVuVzW3t6eBoNBtCRQzS+XyxqNRjsWd8h4o9HQfD7XYrEIUtVoNGLdILNHR0e6uLjQcDjUdDrVYrHQZDJRrVYLMaNUKmk2m+n09DSquBBgWk14D0mxroPBQOPxeMehwB9JunXrlk5OToJcOvmF5HKe3mZABRoRJMuycHM4aeX+bDYbXVxcaD6fazabqdlsarVa6ZOf/KReffVVtVqtaIHo9XpRwS+Xy+EA4ZoQUyCPVNGn0+lOuwP3CiyXSy2Xy3A8rNfraLnwyjvCAAILBBkiz/UXCSsiFy0bfh8gvlmWqVarqdFoqFarBfGeTqc7IgaiQq1Wi/sAiiQdUWexWKjX68V+RXBjndxpwmv9HvO8xWKhxWLxUMsPjhUEBt7H2xrY++xLHCIXFxc7z2Ut+YOIiLDD/uI1uI1ciCiKLNJ1O4i7OZ5TvO3v4YSEhISEJ470XZyQkPCuxlMRFPI8X2dZ9m9L+huSSpK+Pc/zj77R8yHps9lMn/70p9XtdvW+971PnU5HrVYrCNZqtdrpn5euWxIgB9i2aVvo9/vRPlAul4OUbTabqPpDpKmU1mq1ICGexSApKvrYsCFTVHgPDw932gqoMFPlL5VKmkwmyvNclUpFnU4nKvA8D9eBpCDJr7/+us7OzkJw8Cp0vV5Xp9PZeXw8Hms+n2swGMR5Qpi4Xs9WgEQhMJRKJdVqNdXrdU0mE81mM00mEzWbzSDJklQul9XtdnVxcRFrwLoh1nj12W3o7hSQrqvv7ibACYFrBCv/crkMQjuZTPSxj31MnU5HL7zwQgg+7v7A2eHEnLWCvLu4VC6Xd84b4UfSDsGlGu5uh0qlonq9HseA5DrZLmZy+M9cHwIFeQSQXu7j/v6+qtWqWq2WJpPJDuGGJHMc1or153dO3D27BNGK9eb6WT/fK/yOx1kHWkBctAC4izh20UnhToJqtbqTScF7ueOE8+HzUa/Xd+4vYgeCIvuJe1itVkMs8VyF5xlv93s4ISEhIeHJI30XJyQkvNvxtBwKyvP8r0v662/xuVHZHY1G+uxnP6vDw0P1ej212+0QFM7Pz4OgQQYgExDixWKhwWCgcrms4XCoF154IUg+xAzC1mg0wrYO8aFa7pVQiDrkptlsRlXan4d4sF6v1Ww2dXR0pNFoFEIFwkmWZZpOpxqNRup2u+EimEwmQYog6LRySNKnPvUpnZ6eqlwuq91ua29vT8vlUhcXF+r3+3rllVdULpe1WCx09+5dXVxcRCsCwoGH/C2XS81ms7guSCCki2uv1+saj8c6Pz8PUlqv13fWhbwHJ4P8HuHCH6dtYrVaBWl2okyl3a31EMT5fB73DEGHPVOr1YIwc65u70esIRNhtVqFwIJjQ9KOq4Rz5NgQ4YuLC9VqtZ2AS66fa0DwwiUhKdwNXBv3hNYLBB7OBUGl6NqADONAGY1GsY+LoZFO5nGX4CLACeRCw8XFRQgFOHCazaY6nU5kRnCetCmwpxDlJO20wiDOce3uCvB96S1N3Dt3MHgoJPfRXUWsGUIEn+di6wffB7gQik4Gnvs84+18DyckJCQkPB2k7+KEhIR3M56aoPB2AQHcbrc6Pz/X2dmZXnjhBbXb7ai+VqtVLZfLnQA4J2xelR0MBrp3755effVV9ft9HR8f67Of/WxUXD3oD2Ilaaf6DhGGMEmK6nOr1QoC5SR0MBhoNBrFuff7fZ2fn4eVvlarxXV4375XRUulksrlstbrtYbDoSqVirrdrm7fvq3XXntNg8FAnU5HnU5nJ4Cv3+8HUSyXy3rw4EGIJ/P5XBcXF0FsWUMq3hDo9Xod2QyILxBzRI7JZLJj73dC54n5kFqvrPu0BsQb7qETO9pTfBIGhBGhZblchkgzmUz06U9/OtodINH041Pdxgo/nU4fegwy7+fENeEGKZfLajabOyKEV7/dQYBLg2tDuOG6pIenZyCe0Wbhk0lYbxdqCCftdDrabrfxWaF9BHHI3SCsr7sZ2N/uXpEu3S+03FDJJ3PDq/2IHlmWxX5EFHLnAHCnkE9H4TMiaWdv+utcZEJ44b755AcXlFwgApwP5+vCDcdMSEhISEhISEhISHhj3BhBwQnbarXSycmJDg8P1e12NR6Po0oM8aPKDQGTFOSGUMKzszOdnZ3p+PhY7XZbrVZLo9Fop9LN406Cms2mLi4uYtoB1U7C/Xx0IFV2SOt8PtfJyYmOj48jWLLT6YR1Hxu8p/9DNj2BHsv2drvVeDyOPIV6vR6E+tatW5HLcHJyooODAx0eHoZYgbiCtf3s7Cx6+7Ghe2aBV4chZrgrEBsg9AgynGfRfUBFGMLvbQZO+rxKjYDB/aWH3YPzWC8/F0SP09NT3blzJ9oUIIUEcDJNYTabaTQahUhVHB3oNnrA67H48zwIPU4JDy9kfdmz3F9fYxcJ/Bgu2ABvDylOKajVauHm4fWEEBJ+CBlnj0G2N5tNOE4QclarVex57jGZB4hitEcURSLpugWIz5Jfg3TdykDbhAc3kofCz8X74GGfCCEe8FkckYqjhO8XXzv2Cp813BDFzImEhISEhISEhISEhIdxYwQFqqIQwfl8rvl8HkRpPp+rXq9ruVzuJNhjUab/mR58qtAPHjxQq9WKiQRMJYBsN5tNNZtNDQaDIGK9Xk+z2SxI1GKx2OnZ94yBUqmkwWAQhGS5XOr8/HwnpBDrOOSM7AZIGBXjZrMZxEe6DHmEYDGdARFlPB7rxRdfVL/f12w209nZmR48eKBOp6Pbt29rMpkEeSZxX1JkCtD3zx8mBuR5Hq4LxB1Ilz8ft4JXfZ2Q0aPOfeLcaVVw5wH2fYieT9iQtJPkT0Wa4+AeYArFeDyO9hYfj9hqtXaIKq4N1sYnG3hwZHHSAW0GiEmLxSIINufq7Q+4BHwKAXvcgwEh5eRHAPaJdG3v53wQxmazWRD9TqcTe5mJI/V6XdVqNcQH1gUizXkQMooowWfO2yFwrjQajVjD+XwerTzu5uEecQ8kRTuF7w3aJXjcxRoXUTw7Bbgo524O7h1CmN8TnBQe6Mh6Fn9OSEhISEhISEhISHhj3BhBARInXZKM6XSq8XgckxNms1nY1CeTSSS4Q1ydBJJ+v9lsdHZ2pqOjoyBrEEcPhWs2m+r1ekHEIPwck+dBPiEutVpNzWZTpVIp2gtoUzg/P4+JEVSiqZbTi88xIGHdbldZlmk+nwdZpooLaatWq5pOp5rNZiEq9Ho9DYdD3blzRy+//LJarZZ6vV706nsqvifcF+3ktEGw3t4L7zZ+QgYRJmgTgfhyvZBPxAJyE6iCS9cOBarsVJQ5L9bUiakTTs+D4N5ACFl72mmazWaQXUgnFXBCHDlfPz8XU9w9wPuxBohKPpGAa+Z9PGfCybz/HucA10zAI0IEmRgIUky+4B6Wy2XN5/O4LlpcEDtcyPAciVarFdkcTApBoMMZw3tUq9V4DLcNThamUFSr1XCFcP77+/vxOZauJzowEvXi4iKEH+4Tz0M84GfPRODz4m4G9iHvjaDAfvA8jaJLxUMhExISEhISEhISEhIejRsjKEjX5JKxfKPRSAcHB+EsaDQaQcLG4/FDFWAIHW0Ly+VS4/FYw+EwiAUEHRK3WCzCpQCRx8Zer9eDMBIEOJvNIo8A8g0JPj8/D4J1dnamVqulWq0WlWxyH5zgQFSpvjebzSDIhP7R6gG5a7fbWq1WGg6HOjo60tHRkYbDoSaTiV5//XW98sorIVJQdZYUIsxms9kRaEqlUrggDg4O1Gq1dggttnScBl7lhaRJ2gm6IzzTQwTdfeDuDN7D0/h5TwQd753Hku8kXFI4VRBCvA1jb29PnU5Hh4eHun//fuwR7+NnEgiEnYwOxAkfj4iwMZ1OQ+xBfIGkIjwgYD3quv26uObi6xAHaDHhuZJirzBWlH3uDghCP3kMIWk6ne6c72azCdEly7IYQco+98BCrhdHCxNKfKwowhOfHR816g4Sdz9wf4Ffp0/78PvK40Uxgv3GqFVEMv+9C0vcG87pUY6IhISEhISEhISEhIRr3AhBwSuD/Hc6ner8/FzHx8c6PDxUq9XScDjUarWKoDiIHKMfvRp9dHQU5J8JAITKQSIkxZg4qrB5nms8Hu+Mhuz3+1HJxYGACwACDqkjm2EymWg+nwfhI8SuUqnE1AbEikajEeSZIEGEFQ+OpOe/2WxKksbjcYRXHh8fa7PZRGAjAgUVeUgxAgxkkAR/chEgXwTveQsGBG61WsU4S+6D97UjNkACEQQAAX9kReA6YeIA7hAcHbPZLIisB/VRQSd4kd9LijYGiCsEv9vtqtPpaDKZhPjBvVsul7EPvLWGc/GQSSrxHHs8Hu+EKXIu3C+fclHc926v9/uOqIVDJcsy1ev1yCXYbDaRjwEpZp2KjglEAvaBt9jwZzwex/0nj2E+n8fnAdcPoo2PoXShgmkr3BsySnzago/l5HUIBdw71t/3oAeWukDjUzz4HnBhx8WuRwU4sg/YM0URKSEhISEhISEhISHhYdwIQUHanT0vXRL909NTDQaDGAdYr9c1nU6DcFAhh4BCdqRLUtLpdPTaa69pPB6HLR/rNwQDe3qn09HR0ZHOz891cXER0xUgXrPZbCfokOkKVDm73a6m06lWq5XG43H8vdls7tj6cV9AiLCrk60AAapUKjGC8vj4WLVaTffu3dN6fTnNgdyH8XisXq+nfr8fwsW9e/ei6u7BdNIl0VytViqVStErD/Fl5KZ0nXsAmfNWAg8jrFQqGg6H0SoCiYRouuMA8o0AASnnvReLRdjlIX7lclmNRkOj0SgIIGQRQQZHgk9ngEBj/0c0YMoFgkmj0YiwRW9DabVaO+4UD7LkfajSr1arINBuxYfgU6mneo7LAPiYTtwRm80mrp01xzHRaDSCcDsh5lge7unuAwQQb71AnCC8czabxeek1+vttPsghLFnaCMqtrywZ3BA0E7CeeAokLTTxkErE2vhYyY9M6Nare7kUDh8moW3NSEq8Lg7EXw9WCf2ZlEESkhISEhISEhISEi4xo0QFPwf9NK1uDCdTnXnzh0dHR2p2WxGq4CPvaM/m1aG1WoVhL3ZbOrw8DB6xEmth9gR6Ac5glxRJcZRQL/4eDyOijAVfUh7s9mMqi5ugvl8rsPDw0jQn81mEeDoyfi4BNrttrrd7k41F/Lz4osvam9vL7Iams1mHHMymYSAgusApwR98ZBTHBgIAkwgqNVqOjs7C1LZaDTCzUGrx8XFRTgTJO3kQcxmM7VarSB0TsgQJyDE3FtC8xCLPPQQwaVWq6nRaEiSRqNRhG/i5kBAYF/gEkGYgCASlskxsc57a4KHJ1JV57oJfUR4wMbPc7k2AhIBVW/WnlYZRioihHkrxHK5jFYKWjNarVbcNxw13krhLgqfhoHzoWjvhygXK/rT6TRaaxCHcPogHjD60t/TBQJcMHwWaX8pVvt5nbtaaBviMdwIrJ2HieZ5Hvfa/0jXo0e9ZYbPPIIFwovvIb5DmOaRkJCQkJCQkJCQkPDGuBGCgldT/TH6+l9//XV94AMfCJJRKpXCrUDffKPRiJC1wWCg4XCo27dvq9VqqdVqBSHCdZDnuVqtVpCU9XodbQwQfMhKq9VSp9PR/fv3g1xKiryEw8ND3bp1Kyqto9FIo9EoWjaoeE+n03A3EOhIG8JkMon3r1QqEYAHcev1ekF+ptOpGo2Gut1utCDQrtBqtSLYEWLW7/d3bOGQWYg5pBt3hzs4vOWCoD4cDxcXFzo4OFCv19vp76e9A5eCtDsCEEJaHPlJKB+CDK9rtVrxd0lB6BE8lsvljrOBn9vtdhB6pl0Mh0Plea5msxnjSBGN/HwQmBBn/Pwh7YR0ulPBx5/iOOF5jJuU9BBZ5dq4JlwdZG9wL2h/oH0H4Yp2CNaHlhD2C8fwqn65XI4cDZ/g4RNX6vV6fMZweLDO7FGIP+/NvfS9UMyUcGLvwYmSdH5+Hmvt4ZfkijDSEjGG+8X3BsCNxB8XGRDs3khUQDhMokJCQkJCQkJCQkLCG+PGCAo+C55wus1mEwGHBwcH4RSAJFYqlbB9U+2G6JydncUIQezr0vUIR7IYcCRQzW80GkHo6auH7EAQmUKwWq00GAx069YtHRwc6OWXX9Z6vdb5+bkmk4nOz881Go10eHioZrOpTqej2WwWhLder6vT6UiSTk9Pg+C22+24JmzekPfVaqVPfvKTmk6narVa6na7EZ5HJgFtGRCu6XSqTqcTVu5arRatF4yIzLJMt2/fDgcHhBii5uRaUqx1uVxWt9uNKjTVf+zuuBR8soGknYBNLOlY3NfrdYgLkHQXQiD3EFwXEXBL4OJg5CjCwWAw2BlZiXgkXU8aoUJNhoNPR8BhwD0hOJPMDc87oAVkuVxqu92q3W4HOUZAcKGAfe8ZFsWpETwXYYd8Bog7zh1EiclkoslkEnvDQytxcEyn053xjA6CFBEnPPTQHQfcB8QtnAySQsxhf7BHcAYhPJXLZbXbbW2322ij4b6zl7n/HAN3BufvrRecI+KMC2qsKT971gffPS4eJiQkJCQkJCQkJCQ8jBshKDwqUZ2q+cXFRTgODg4OgrhBBEivh3xghZ7NZprNZnr55ZeDjDjxkC4ro51OJ6r53qLAc8bjcbQUkOLP2Eaqtpxbr9fTiy++qPPzc02nU02nU52enurg4CCCABFAvAqPgMB71ev1IFo4C0ajUVSMW62WJpOJZrOZ2u22SqWSRqORLi4udHR0FKJCs9mMCvRgMAjihnBCBR+yiiODEYxUezebjbrdrvI812QyCXGGrIl2ux0uArIREIh4PYQOcYDzxrXhEw64XwT38XeIpXQpOuDUkBStHwcHBzuW9k6nE8GPR0dH+vjHP667d+/GOXIvILhUxZloQJW6OMlCUuQCuKsBAYFcBlopcCkgpNCaAZH2yRUcB8HLWxhYS0QfQholhdjDPWDPIo7xPjgxyJLgvnu4I58jwhfZ+5Ieai/AJcH9ov2DcZeMOp1OpzujMLkmzpl8hEajofV6Ha1LOAuY3ML9x/HAfeOzjdDg5+rgHrKerNP+/n6sDUIOLoyEhISEhISEhISEhIdxIwQFSY+0IEMKIOZMYXDCSAWRKjskZjabaTQaablcqt1uB6mGyFMFb7VaKpVKmkwmGo/H0a8OKUdoyPNc9Xpd7XZbo9FI8/k8KuFOwjqdjm7duqXT01O9/vrrGgwGms/nISo4IaJyXq1WoyUCB4OPKPTRgVwjYx+9Mj4YDNRoNNRqtaJae3R0FCMmx+NxOAkgbs1mM6rWRTIGWYb0sVb04s9msyBr/I5z9qo71WAcAOv1Wu12O6rruAIk7YxTdMKKgwH3BcSV99putzGqE6cI14qTBSfJnTt3NBqNYu+w1/iDwMC5kSngQZKQXLf6Uy1nL5J/wXWsVqu4X5w/Uz329/dD2GIUJ9fMfnWnhKRYf+4l78H9IzeD9/cpCLgN9vf3YwwpDgD/ve8Lwhc9f0JSOCQ89wN3D6GSuAQARN5HkHIfPQDThRmEHVqUEDq81QSRwe8r7+9THbwFBEGF93A3hDsyEhISEhISEhISEhJ2cSMEBf6RDxGAVEKOaC3odDpBKvgHvwfR+Sg5SZpMJppOp2q32+p0OuF2YALD3t5eCAi4DcbjcZAwKpfT6VSTySTC9bBwM1aRUYdUtI+OjnR0dKTRaKTJZKIHDx7o4OBA/X5fk8kkCAtVaYgy1vLJZBJWewinpHAhUNVerVZBjMvlcmROQJyweLdarRAwcEA0m03V6/UIC6QSDTGTFOtK5ZxgQiroBD8itnQ6nR2hARs8pA1ijGW/3W7vVMX9Pel59352pgVAIOmrh+AzanQ8HsfaMxGj1Wrp4OBAL7zwgj7zmc/sTOmQrjMecBj4eEEmWCAGIJZA7N3J4aSa43F+uAQ8kJP2A9wGiGCsIZM0JO24IVhXjumZDU6kybbAeUGOCAGXODAQXTzwkrUnn6LRaERLBaNNETjY01T6S6VSfD4QO9g3Pp3DnUmPylHh88+5uyvBW2UQLLhmwD5CUCAbQlLcC4QD7i2TUPxcEhISEhISEhISEhIexo0QFKRrEYG/Q0YhSGQpHB4eBqniH/xeWYdIu/WcIECIBKR9s9mE64CQPsgOpAQCBQFCsIC8n52dhX0c4swEhUajoZOTE7322ms6OjrSiy++qF6vF0F7XBuiAqMcCVjk/eg932w2evDgwU7KPxVtxI71eq3xeCzpmnTS2kF7BmM0qWxTbUY0kK5bTqRrIohA0Ww2Va1WNZ/PNRwOdXp6qk6no8PDw2hZwD3A+kHA+ftkMtkRHKjKcz8ROTyckMwAhAvs6E4kp9NptMhwXlxrp9NRt9tVr9eLjA1J4YhBEIDoQzBZG5wK/th8Po9jsD44Rqjws35MUeDYvI4JHUzjODs7ixaOPM/Vbrd3xh66jZ97V3zsjYIWJcUoU8S1RqMRbTa8XroU+PgMSYo9jVjEKEx3YXjrwnK5jH2AM8LzUvy1fKa91QYgNrHP+a5wd4Hv0+J18znzlhGfqsH3DI4Rv4dpbGRCQkJCQkJCQkLCG+PhFLa3iCzLXsmy7H/LsuxHsiz7aJZl/+7V4783y7LXsiz7was/v+gtHOuh8XVYkCH2hAj6BAIfmUelEmGB6vl8Pt8hqxyT/v/T09NIwYdEkE9A7z6Pj0ajeJzgx7OzM52cnKjX66nb7cZ5Qn6zLNPJyYk+8YlPaDAYRN86pAjS5UTLWxAgznt7e/Ha4XCo4XC4U+Xebrdx/Tg6Tk9P41pox2g0GprP50GmK5VKTCqArEoKZwJOAEnhPqASDcHcbDbRBsL9xO3hIxEl7VT4eX7RCeFuBG9p4T62Wi31+311u93o7fcRifP5XMvlMs6BEZX1el3dblftdnsnE8AJajFAslKpRKaGW+YRApiO4VkU3AfGSNIOIF26bjgn3g/7f6fTUb/fV6/XU61WCwECAYrxoy68SLtjV50c03aAaENLBZ8hzoc8EK7JnUKEmHJcXAfsHZ9cQeBivV7fuX+cL6ISLQ2+12jh8fBEFxlxfCDScDxe54/zWeJeMO6S9eE8cG/g2uBeIsK50HGT8SS/ixMSEhIS3j7S93BCQsJ7Ge/EobCW9FvzPP/HWZa1JX1/lmV/6+p3fyjP8z/4dg6G5drt006U6NP2sDds196rjmBA2B4TEA4ODsK5QPL/aDTSeDzeIUZkGkBsvbpKOwDnM5lMdPfuXd2/f1/L5TKI4N27d6MKXSqVNB6P9elPf1oHBwd6//vfr36/H0QOQuS2dghNuVwOa/5isVCr1dLh4aHu3bun4XCoRqOh4+PjWBvIG/kOs9ks1qZUKqlWq6nT6cS14KzIskzj8Th64iFvCApMEODvVPvr9Xqs/2Kx0OnpadyDcrmsyWSi4XC4k49BbgWWddbTq/6SovfexSDWh/YKBBDC+3ieB/RxrQgTuD0gq94249V/7rG7XyCiRcEBBwWCA2IF2RfL5TJEAyrztFEghjH6lLwPxo7iWEGI8VGcng/AZ8hDLREW/J76VATpuvrvIyB9AgOfNUQlPqPVajXuM8+HwEPisyyLPci1I441Go0YH4oLZTKZRHsFLiVaENx1wT3mO4Lr4/y5fwgjnIt0PcYSgYTr9ewI9pIHi95wPNHv4oSEhISEt430PZyQkPCexWMLCnme35V09+rv4yzLfkTSy497PCrkVK2vjht/pzp6enqqF154IaqOTmggxJCq9XqtBw8e6Pbt2xG0SG7C0dFRtBgwfQFyQVUXku8kGVGiWq2GLf2Tn/ykfuzHfkxf/dVfrWazqTzPw9oO+ZzNZrp//76Oj49Vq9XU7XajGortHPJLpZvARJwRBC52u90QGaiySoocBAgfgZAQMQ+cwwXBGEOq7JwTFW2q6RD79Xqt4XCobrero6MjNRqNsJMPBgNJlwSu2WyGoMN1cV+c0Lq7BLhLodlsBunldd47P5/Pd7IfPGxvu93GCEYs/zgOsM67QIBwxD2mvx9hgnWi5QXiiYDA/mMNcBi4df5Rdv/ZbKbxeBxZHLVaLSZnFN0PTnLdZUBgYqPRiHBPD5WEXONGcBHASboTaEQP2nG8RYW95yGpHlCKGMHjvD+uAvY3YgX3ghYlxBEEGxdO/PvhUeKIwwUYPsusDeM9CdzkPXzyxPOAJ/1dnJCQkJDw9pC+hxMSEt7LeOyWB0eWZa9K+hmS/uHVQ/92lmX/NMuyb8+yrP9mr4esYaGnzQAC69Zwt9ZTdUYIcJuyj1ukJ73Vauno6CjIGgQOksPUBazi0vUkCaqeEL5OpxPV/vPzc332s5/VZrNRo9GIime1Wo2+eFoh7t27F+fCNAYEA0lB2EnIb7fb0TYxGo2ip54MA9oKeC0kmgowZB5xo1KpREBhu90OwohN3RP+nSDOZjOdnZ1FG8lkMtFyuQzSXyqVNJvN9Prrr+vk5CQEAUmxlhA7n44gKbIJut2ums1mEFSINaJApVKJDAYn1W5hR2RiPaTrtg4Iox8XUs99hjR74CIW/TzP4z7yOw87JFsCuHghaWdyAgIYBH06nUZrRLVaVbPZjNYMQhpxOnDttLq4E8GJMUII68VajcfjcKT4GEy/P76fEGk4LwIXh8Nh7FvCDXkN58P9IFeBEZfeelEMa2Skpn8/sH/5g/uneJ2sKefsDiP2FO4Xn7TCXuL9vP3lecI7/S5OSEhISHhnSN/DCQkJ7zW8Y0Ehy7KWpL8k6d/L83wk6dskfZ6kL9elWvufv8HrviHLsn+UZdk/4jEIGKnzkEDgkxgYHecZCj6uTtJOFRtLeafTCbJGQB85AEx/oB2CMZOe8QA5px+/3+9rNBrp5ORE5+fnkVUAUeJ99vf345jD4TCmQzSbzXBfYMWmDaJUKqnf70cVdzabRZtCr9eLqRAeTIdbAIILucOqjlMBp0Ov14s1gTTjkij2uztxXS6XkYxPlgHOjAcPHmg8HqtWq+2MmsQST7sKbgrIIkTfx4PSl+/2eg9t9NaMi4sLVSoV9Xq9CAUcj8fhJHD3AW0uHL9SqcQ0CMim2+p5HYIKIgYuAPYaUxkgpVwnBJjXIdzw98lkosFgsFPdR/ja398PZ4GLCZ6xMRqN4jPhJL1cLkcLAfeejAsyQnwqgoMwQxfVPFPChSfuL04QF0EQPXCD4OjwdhBJsT58Xj0YlGvmc13MP2CyBOvJtXqYpaQQG9hTfK74ziiGXvr3z03Hk/guvlAak5mQkJDwuEjfwwkJCe9FvKMpD1mWlXX5xfln8jz/HyQpz/N79vs/LumvPeq1eZ5/RNJHJGl/fz88yeVyOUgJxHIymTwUagcZIKiNHm2qnC5IQGjL5XJUkafTqVqtlqrVarQ8TCaT6CUvlUqaTqc71XKcBvTkt9vt6HG/c+eOPvOZz+iLvuiLglxut9sQLxg1eefOHWVZpk6no1qtFgLIfD6P88SJsVqtguiT2dDtdmM6A+SfEEjWw0MApUvidn5+rnK5rE6ns1NtJrsAAoWlHpIHqSd3AlKL7R37PM6Ci4uLaCPhHMhagPjTQuI98Lw/xNsr8fv7+/FeTqh9GsHVnpKkcHaQX3F2dqZWqxXklffHTYDzwPcK4hLZHhBqF5WKLotH9dx7SwDVcvINOF9s+ePxOAQVpmm0Wq1oO5lOp9Ha4CIAa8MkEwQMb/Fwpw+tPpwTozhpY+DYXCcCH+/lDiCIOOclXYtNCCpMI/G18mkfgH3FGiMUMMaRtUTgkK5dKLg1+D5A9MA5QTYCbSmlUkmNRiM+z3zG+Tw8D2GMjif1XdzJDp6vC09ISEi4IUjfwwkJCe9VPLagkF0ywD8h6UfyPP8v7PEXr3rJJOmXSfqhNztWsRca1wHVZirfkoLIeJUXwudVX1oGcAE0m83olR6Px5rNZlFZzvNcjUYjerula2FjNpvFMRuNxg6RLZVKUUEmQwAC5qF+7XZb4/FYg8FAo9EorsnH97EOEFgmBGAZd7s8IyJ93SDLngkgXY9gpE0BMYLnUMmlp9wr77QRQIIZPQlBm0wmKpVK6na7qlQq0Z4xGAyCpHnFGJGF8+b3PqECgss9YK2l6ykBPskjz/MQihBeLi4uwgVxcXGhBw8eRKYFGRGevcE6UZnm3C8uLkI4cHs+a4MzxgP+2Be4WqjwI/KwDhBqz4eYTCY6OTnRwcFBtF8gCHB/PevD7y+BhsVJEB7wiRiAa8HFD/aIpJ3cAgg6wYYuNBWr93wuucesNWDvuMDC/qW9gPvgox0R89wtgqjB+ntbA58Vd2awHh726sKLC5MITc9JIOMT/S5OSEhISHj7SN/DCQkJ72W8E4fCz5H0r0v6P7Is+8Grx36XpF+dZdmXS8olfVLSN77ZgfgHPr3cEGTs9BCL+XweBAESgDWaKjt94fRiI0oQylgul9VoNNRsNkOk8FF/Pn4SsgER2t/fjxR+SA5EZjab6cGDBxqNRpKuR+FxTKzZ2+02xl/iEJC0U73n/O/duxckDnFjPp+r3+8HIYJQUhGWFCKLj2yEJM1ms3BreGsI5HexWISAIimei6DC/fEWjO12G60j3W5XkoJALxaLCE6k3cGzAyC8rA9gXZ2QQtwhu5BDRBcP9kOkoBrPey6Xy51cBAIPJe1kZbC3CGDkXpMp4IINVn2q6+v1OtwCkGeECqr9hHoiWhAsyf4h3NPbMjz0kfemrWG5XMZ4TA+i5FpwELAXuMecE3uDzwwiGZ8z1t8FJ4h9kazzd/aJixvcOxdpeNxzLNiTuDEajYYqlYoWi0V8btn/CEV8Jty1U6/Xd/I2XOhztwqfFx7ztofnAE/suzghISEh4bGQvocTEhLes3gnUx7+gaRH/Yv7rz/O8fgHPAQce32e51GhdYKCxVnSDpmjWgk5lhS91Pyd4EeeJ11XI7MsU7vdDvLhYW/kEkDUcTxAuu7fv6/PfOYzO5kMOCcYdUh7BWF23W5XFxcXGo1GYbunB38ymWg8Hof13Ku5XgX3KQScG+fPebbbbfX7/SDlrM1isYhKODZyjgM8+wAiyNosFoud8DuyGSTFNUL4vFLsRJRMByZsUMVmXX1kIwSc11er1SDvkuIYTFcgeBGBAEGgXC6rWq2G4MH1sva+11hbfx8nnKyL9/7jQIG8e8YFpB5HBXuZcaXn5+fabrfR3lLMOYAo42apVqs77ovFYqFmsxlk2qc1cP95LxflqNJ7iweCDOIYnwWf0uGCAwKBj1+E9HPufv+5h7yOtUWIcUEGgYhz9uN57gXvNx6Pd7ImEFQ4f8/V8FBJd048D6LCk/4uTkhISEh4e0jfwwkJCe9lvKMMhScFCDH9+h7MNp1Od9LuqTAWR7tBFj2wzyv48/lci8UiKp3FZHsIEDZqSAgiB8KDkx+ISK1W02w202Aw0L1793RwcBBBi/P5PEZcStd94ufn51qtVtEzT3XZLfbT6fShKQ7+vpBs2jm8V9xbFbimbrerLMs0HA6D2Pq6EXLHPYB48Vwq+jyfezGbzcImD/GjAg85xOnhoxkh1gQQVqvVaEdBNPCKOFV1r2hznbgbcCGQh3F4eKh2ux39+uv1OiZTkD3AcxEvEBO4boint2a4AMU1+j7h3HEReJsC1+SCFXuZXI3hcBiv4z19vyHw0AJCqwNkm6p+rVYL0cKzPTx7wIm/iwWs6Wq10nA4jKkhHAvHhodLIqDhmCEDgefzeWIP8PnkcQg8BJ91oo0JMQjxxPMk+DtuEAQvFzR4PfeA9/B2K3ejPC9tDwkJCQkJCQkJCQnPAjdGUIAwtFotdTqdqOJDIIs2ZCd/xSR4yAkOgtVqpcFgECMfqcRDvp2wY9NvtVo7pNcT9BuNRkyDgLAzVeD09FTb7VbT6TQs5O12W71eT71eT5JibN94PFan04nz5g8EiJR9T5yHhDkpoo2j0+k8NEoSMYV8iHa7HZkUkEDC+Mrlsnq93s6UB86B37tDwac0sJaQSirrkH53HThp5ZiM2ITIsd7kFNAG4pVtJ3uehTCZTGIUJ5V/qv2sB5kZkG5CGL2dASGDcFCEC8Qb9oM7R9xez38h5hBqH1XoTg9JIRYgijDaFMHG3RWe0UCln9DS+Xwe7o16vb5j54fku7Og6ABgDRAaimKWT1dgYgRknnvO9XPsRwkV7qRhjxTDFH2vMXEE8cSzFng/FwS5Dn7nzgvEMc8i4fPFfvfxlQkJCQkJCQkJCQkJu7gxgsLe3p5ms5mazaY6nY6Ojo6iPcDFAwL3IKceAgcgXRAcwubK5bIODg6i4kluAdVM6VJkIE0fCz+BdhwHRwCiB4RekgaDgbKrsXyM81uv12o2m+r1ekHOZrOZTk5OQrhAOCn+l/537OoQWog79v5yuaxWq6UsyzQej3dyEJbLpUajkcbjsY6Pj4M0brdbNRqNqKxTuW82mxHQyHU7iZSunR0+FYJWCggl7SHeilEUgryNoNgGgOBRr9eVZVlMD+B57A3652lnYH0nk0nkPFAlx5HgORm4TvwPmQXuLuD5nI907RqhbYDzhtTiCoD0F9t1ELew57fb7VgD9ltxqoFnFSBcbLfbcMLkeR6TIXhsb29Py+VyxwnE3uA4iA9cC+8NaKuQFIJdo9HYyahwlwDXydqRccJ94pjcCxf3vO0EFweOG54PyETgOnAZcAx3irgDwfMhXKzkvrvzJSEhISEhISEhISHhYdwIQcGDCAeDgRqNhhqNRlSbvc8Z8gBBhMh4RdUFBSrSkHzaJqTrcXueFwDhpFper9dVr9eDNEmKkXRUwiH3+/v7MdJSUpC49Xod0x2azaa63a7Oz891enoa4yNdRICIeT8+z5EUhMrHVpZKJbXbbbVaLQ0Gg50RiZvNRuPxWKenp3r/+98frxuNRpFfQOAjooGPCsSlsN1uoy2CtfAxfhB56ToXwXvqqYzj4PBgScIRPeuBAEfS+hlt6AQbkcEnP/BfJmscHBwEUUcM4vUIG/zM/mk2m5IUa0g4IsST1hlEJXdoeMhj8Q9riZBRr9fDWcD4UNoZuF7Ok/3OcxE4IMe4OcgcQRDi/ciXkBT3ohi+yShF9iHr4e4GR6VSif3j4gkCgrsdXDhzEYHjuAvFRRPP3aCNgj8eVMle87wGhAbex9tOPFMC0QF4TkpCQkJCQkJCQkJCwqNxIwQFSVHlnU6nmkwmQfyK/fLSJcGlVYCcAgekz6vntCoQyEgVmIorz6Nf/ODgQL1eLzIFvFJPFZaWCqZSQIIqlcpOVsN0OtXZ2VkQ2263G4T3zp07Ojw83Hl/SDE2b0gra+Qhj7PZLNbt4uIixmQyTcKr+4PBQMPhUEdHR+r3+5EpgLPB7fMQSNwgVHohrdK1VR5bf6lUijaPTqcT5+JiTLvdjnvolWBG/fX7ffV6PZXLZY1Goxj3iEOCPQF59V59SSEaLRYLjcdjDYdDjUYjHR4ehu2e422312NB3a4vXdvj6f13slwMOoSMuvOAPelrw/N9n0BYG41G7HUq+BBe3C48TksIIyWlS4eDdC0UFEMXpd2RiYhyPhGEc/Xxm+wJH8/oQlCpVIpxqqwfbRycj0934DzY39KliOdr5OfL8/yYfg2siU97QJRwZw9718Uonsc1F3M7uH8JCQkJCQkJCQkJCY/GjRAUcBhAeLDrU8WVLv9h32q1gkB6RZVqN8fBeo/FW7qe3nBwcKB6va7bt2/rzp07O6GEhLkxvu/4+DiEg16vp/l8vhO212g0dHh4qPF4vON2qNfrarVa8YdwxZOTEzUaDbVaLfV6Pd2/f18nJyfRbgDx8pA4BAVvpYBAI5AMh0MtFgtNJhP1+331+311Oh0Nh0Mtl8udnnVaAGhtGA6H4XAgP8DbFzzU0W3lOBI8hwJCRhhjrVYLRwNru7+/r16vF6GTTuYQI7rdbljUJcU5S5dVf96HCr2TV9aqWq3GaFAyC3BZQDr5O9V+Agx92gaVbZ8gwL2WrvMAPMcDwjqbzUIE8fVrNps7xJx1QoTwHArafPwaPbDQnSScN24InAWePVH8zHkoIveW6j9CGevsk1jIMvDzkhTk3ket4j5gHXEpeBuCCwNkVBTdHp5tIF1PZuH3/nx3LnBtHoTpoZK0i9Au4yGc3P+EhISEhISEhISEhIdxIwQFqo0QIUgpBM/72mu1WhBon1nvYEoEoXxebUdQODw8VLfbjYR/yAqCAUQbQsHoxfl8HkSjXC7HiMT5fK7hcBh95bQpQOwXi4XOz89jlGCr1dJisdD9+/e1Wq10eHgYpB6HABVV0veZHIEbgtaEcrkcxFmSOp2O+v2+zs7OdkSB7XYb69LpdHYEhWq1Gi4H4P3utHlAKiGJnI/39ENgaTOADDJpgeBNiDAiwcXFRbhTWAsnip7E7xMlmFBB5f7k5CQIa7fb1a1btzSfz9Vutx/q5ecc1ut1tHu4yIR7grWXFNkNOEU8TJM1QHChjQS3iQsjHiDok0C80o9whUsBgs77IEi4E6dSqUQAKA4FXss0CEQjb23wyRVcC2tPDgPnz/t5FgL/xSXhAgfjO9nLiEsuNLDe7oxBEHEXA04G7vd8Po/rRpjziSB+3p4JgajgUzYkRQaGT+BISEhISEhISEhISHgYN0JQkHZJDCRCUpAG6To7oFQq7aTYM6LQK5Ck5EOQcSxQIb99+7Z6vZ6Gw2FMAkAwGAwGGo1GIQDQwgBZccJUrVbVaDSirYAJCl6lb7Vauri40Gg00t27d1Uul/WBD3xAvV5Pk8lEg8FAg8FAR0dH0cpBuj3uhXK5HPZ8rm+xWMS6ubsgz3P1ej0dHBzo/v37Ich4rgC9+5BVQhjddYAbotj6QDo/lWwIH6ST+zedTtVqtcItMJvN4h640IAtHqGEnATyIWiHmE6n0QIhaec4VPNZl7OzM5VKJd2+fVvj8VhnZ2fqdDoql8tqt9vhFJnNZhGI6K0eTqgh1eVy+SG3AySec4K4engl5BZxgr/jIoBwuwiGWML+9bBKSTsE37MNGK1IBglrNp/Pd5wmPoYTeGuHdB046UGT3CefMoEA42McvX3EAz3JVTg7O4vjcHzIO8GX7C3fkwgs3H/uE9eNoFGv1+P6/N7wmXGhkfNkPychISEhISEhISEhIeGt4cYICt4HjTggKazXknbIHpZ8pjB4qjuEYT6f6/T0NAgDFeZGo6Fer6fDw0MNBoNoZYDoMWqSKQyEHdZqtWghINCOUYMQFCr2k8kkrg0hhBwDLP9HR0dB3CFkvA/XJylEBEgs4X3L5XJnQgWiAeuJE8Lt5BD91WqlcrkcPfw4CMbjcRBFHwOJfZ4WATISIPQIPRA01hM7eb/f13a7jfYQgg/JeOA6CJAslUqaTCbhIGF93ebO/uD9CNHDCTEYDHT37l3dvn1b3W43zgMxgekTq9VKp6en8TPVbsglwo4LNj5q0LMTnKwSwljcy2RH+FrhgGEcKY4FJ+rFUY/FdgHOc7lcRlaHB2siIkDsaR9CcCqGgkqXwkVxLCsiB+fvo0FpVeA1/Mwe86yIyWQS68TvuYdcT6vVihYkPhOEd7qjgH1Jew3r7YIOz/UQVyamIOwgKvkUkYSEhISEhISEhISER+PGCApuucaVgNWexyBEVMkJV3TyIl2nwXvIIVVa0ug7nY46nU44D5wEQ9SYOuHkDNLhZM9zBCRFZoKkmFDg1u2TkxNNJhN96EMfUp7nevDgQbRFQGZpJ2AsJWu0XC7jsclksjP2z8Mo6a/vdrs7YYrb7VZnZ2dqt9tRsUdIgdBC6Dkeln3em2vBoo/gQMW46HRgHXBDcD9wi7RaLY3H48hQoOLuIxK9791HGrqQgeDUbDbj/U9OTnTnzh11Op2dsY+9Xk+r1UrHx8dB1nGK4MAg36HRaGgwGESVHkCm2Xv8zHk4Efe9gOgDeH9cCkwA8eo54w5dOPPPA4KRBxAifLGfp9NpiCbSNeHmHDgG//W8AifpkHB/3DMvaAeitYLz59i0++BIQQTw9eVY3AOEMVpJ2N+sq48Q5fWeb4GogNjha9RsNnf2rn/fJCQkJCQkJCQkJCS8MW6EoIClHgEAcsJUBR8RRxUV2zn9+kV4qBqV0/l8rs1mE+GOrVZL9Xo9Agr9HHgPKp/T6TQmT0D0arXajk3dQ+5c0KASDImhynpwcKBqtap79+7FtIbFYhHZAzgVaKXAFTGbzaKC6qGJkFhvHWFChmc7jMdjPXjwYIc8QtZwHTgRpWed9gfEHwQQnlMc98cIzkajof39fTWbzWj9mE6nkqR+vx9OCT8GRJXKMWIRLhGIpz+X5xDgSfbB/fv3Y2Tn0dGRms2mWq2WhsNhWPxdNBmPx8rzXI1GIxwcjB9FkFgul0GSaYGhbQR3CK+Trok49w0y7SQXcsv0DRw4kuKauYcQXlwbvNYDNckcwZGR53nsbV9fJ9PeQoFAUsyGYB/654514DwQCFwk5LO+t7enZrMZbgwcAe6M8M8T7Ruez+BuGB8Ry/m7w4J9tVwuQyApjmnlO+ZR300JCQkJCQkJCQkJCY/GjRAUpOsq93K53CE0EDfpeowcpMStyw5PdXdLOP3f2PBpZZjNZtFqgJvAE+M5Fu4FCGOtVtNkMgmSA+n2yrz3hyMMIDBsNhv1ej0dHR3pwYMHmkwmGo1GEZgImSWQDnIEIZUURB1iSP84uQ5uv8dhMZvNdHJyolKppIODgyCarB2Emx52J4Y4QhAwuI69vb2dDAQq6bg8OEdEktlspvl8rvF4rKOjo2gxKMIdG6wp5JL77O0V7CMyBzabjUajke7fv6/Dw0NNp1Ot12s1m011u92d0YS0X5CjwbVXq9Xo6ffKOcdHEPM1YS8xtpB182o77gIfRdpoNNRut2NCB/kZOBvYd2R5cO3S5fQIRDhJ0Z7D/qStxF0JuCO8au+BmNwT7j+iU5ZlkYnB732PEBSJSMY+IeOEnAefEEKrzWw2i+Mg4Ph4Uu6xt51I17kj7BUXIfgs+V72cbM+EpRrdvdTQkLCk8X+yy8p7zSf9WkkPCfIPv4PnvUpJCQkJCS8AW6EoODVSP6xj3UcgYHKImTRLd6eDi9pp6cfUkM2w8nJiU5PTyMbgdBFRj0yhhGiB+Gh6uvVWqzz9IKv12sNBoOoLiMEcE1F18JisVC/39fx8bFef/11zWYzzWazcEMQPscaeeihJ9E7keX6G41GVPbJeViv1+r3+9rf39fZ2Znu3bsXtvbRaBREb39/X91uV91uN9a0SDYhXQgRxevynAkyKjgWpHg+n0f4pU844H5CGrnv7ANECX6HAMSaeGAkFejRaKThcBihjs1mU4eHh5rP5xG4SPV/uVyGu8GnC7htH8EEEcXzKAgMJZCTY0DgPVNjvV7Hz7SkEDTKtfF+hGd6voOTcelSVGCfIhRRyWdtXITjvPnssV44Ddi/uGFYJ85xOByGMOKhjK1Wa2fiB4Ka70n2E3uLfc10CG/bQODjc8e99T/+PYI44QIgnx1ERR7jGjkf8hm4twkJCU8O+y++oPUHbukzX9vS9JXtm78gIUHS4j+/Ef9cTUhISEh4BG7EN3TRKg8gCk6wJO2Q6mLyO2SEXATPLpjNZjo7O9NgMIhKcLvdDms4VXx6souTAyDFVLEZC9nr9YLs0R6xWCw0mUx2qsmQUEmazWbhbkDcqNVqmk6nGgwG6na7O4IHlVPvq+e/Tog4vldvIb7j8Vj9fj8mLiCwUBG/uLgIctnpdPTCCy+EI4Jrd4Lm7+G98hBlt9oz2o/qMhXz2Wym0WikZrO5MybTwzi98sw6Ficr4P4oWuxxEqxWK73++uu6d++eXnzxxVjz/f19zefzWNvj4+PIeLh//3602XDuHBNxAGGE+0GLgqRwBrC3IfeeZwHpbbfbMZoTAQOBpl6vx2M4YPzz4KGDnnXgeRMu6LjwhGsEJwUCEZM5yDBhbKY7Ogi2pIWH4+JgcWfF+fm5FotFjI/0NUJoc8HDw0URahB5aCtBmPDgRPYk1178DmEd2CveboNgRJsIn5GEhIQnh9k/8z59+hfsS0piQkJCQkJCwrsB70hQyLLsk5LGkjaS1nmef2WWZQeS/rykVyV9UtKvzPP8/Kc6jldaIWoEqUFWqYo2Go2YFOCWZcIVh8NhkBEIILbri4sLnZ+f6/79+zo4OAhiS7uCvzcp+4wvJNAOh4JPfyB3oNFoqNvtxvVQ/QadTicmNwwGA52fn2u9Xu+4I+bzuabTqc7OzsKOjuWbtXKbe7G67WF9CCEQLqZC9Pt9HR4e7ljSl8ulhsOhKpWKDg8PoyWA8Zd+bNwCkFtP/XciizNEUlSwJe0IA6wTYgu99xBM2i78PCDk0nUrCn9nigHA6UAo4WuvvaajoyPV6/XIsHCnQ61W08HBgV566SUtFovYN4hO7KtitgB7Dns9eQoIFR6WyHpAeMnHQBTD1k+GB8eAfJMzwmPkWXh7AgII78PPvjbsefYuYhAkntYZ3ovpIrwHZNyvwYVBn2CBGEILCQGdPqnCp0046ceZwprwGZK0894IFbgUWBsXFLxdivtDWwn7GFHNhY+bjif1XZyQ8DSx/4FX9PoXVZTEhIR3I9L3cEJCwnsVT8Kh8H/K8/zEfv4mSX8nz/NvybLsm65+/h1vdhDvwYaoedWd6i+EyAPV8jwPcpPnuc7OzoKslMvlqJhTyT47O9N4PA67ebPZVLVafSjBH3IsKSrJnhKPM4L8BcgJVnnpmsQTFMjov9PTU33605/W533e50VmAVZuzpHWA1wKZDTghMB+zuNeraVyzPhKD5yUrq3x2Ptp0yAUkskWk8lkpyed6jBCAKIJ116tVncS/Ll27hN2eojner2OyRs+JcAD96TLNgIXNNgLXCdiAu/BhAG/j5vNRvfv39enPvUpdbvdWG/e2zMFDg4ONBgMdHJyEmtarVZ3AgA5po8vRKRC8GLdJO0IIexdBBlIM8S30WiEyObVej4Pfj+YOuLuDtbXnR4QZc8o4PNGFgdkHSGGfYfrp1KpaD6f74wrBbgcaE/gfBAsuD9O7Lk2no8zg88uAgO/87BHJ/3kU/hkEBdYPOeimD3BeyHc4P5wMfA5wRP5Lk5IeBrYf/klfeaXv5LaHBLe7UjfwwkJCe85PI2Wh18q6euu/v6nJH2n3uTLE8LgeQMQE8iYpIcs5pASXkOVdTQaBaGDYCIoMHnAyV7R3o24wWuLuQ6QmUajEYICpJ8QOUgqtmmq381mM9oPPvWpT+n+/fv68Ic/HMIAFXnaNHyKgaQgPaxBq9WKUZacG84OQhGd0E8mE81mM3U6HXW7XY1Go4cyDkjdPzw8DILJOEd60Jlu4X3qCACQR2zynLeTQu7fer0O0QNbv3QpIHiSPwSQ49br9Zi4wT1CxKAi7cIUz5tOpzo5OdHrr7+uer2uo6OjeB9vmajVaur3++FOgbh7fgECk4sZPgGEMZhFNwnn5FMauM8IIAQf4oyRFATbhS7Oi5wMhCPukbtbvA2Ba4F4s18RQxALmNzAGhFUSPuDt1o4uUdoQozA3cExWUP2j4ctct+8rcPzO/zzwPnwGJ97vlMQiYrnSGgk9417xz3ylqrnGG/7uzgh4Wkh7zSTmJDwXkT6Hk5ISHjX450KCrmkv5llWS7pj+V5/hFJt/M8vytJeZ7fzbLs1psdxEPgPJxNUpAFiKT3mHvPdjHwDgEBAufOAir3VGghwYgC+/v7EaQHISMgjmNhya/Vaur1emq329F3DWmhOswEhPV6vWPdPjk50Wc+8xl98IMfjJaHonhwcHCgTqez01bAdUBY6/X6TvAdvfpucYe8zedzTSYTdbvdIL2sLb30CDvlclmdTidILYQVMcbJM9V1SOpisQghxwMUeQ4EfzKZaDqdKs/zWENJcX04FHxdEIbyPFe9XtdqtdoZB0jFH6s9gZocYzQa6d69ezHOkpyHomOAdhPeq9iSU1xXH8XI2nPfcCQA2hXYb6wV7QnkKhAOyO+ka2GC66Ki7yILUzSYaMKeIeSQfAc/Z/6LQOMtKhD5vb29GP+5WCxCCHQnkXTpzJnNZpFHwLVC7l1YcVHKnSq0IfiYSxeJfAKIdD1C1IUez0ygxYHr5FpdkGCNi9NangM8ke/ihISngdLtW/rErzxWanVIeJcjfQ8nJCS8J/FOBYWfk+f5nasvyL+VZdmPvtUXZln2DZK+IU7k6h/6VJl9RCQTGiDHxb50CFnRgu0WeQgIpJvsArdldzod9ft9PXjwYCd74Op8Y3ICrgOIUKvVUrfb1dHRURAt71tH4JhOpzo4OFCr1YpK6p07dzSbzYK8SooWjlarpePjY1WrVU2n05h44RkFs9ls53VUy3kewZKbzSbWkN9TFfbxhxDV6XQaoZDNZlPT6TRaDer1eryGdgfW20PtCGKEZEJ8q9VqkGXaU6j4Qwi5PkghhNbFotVqFdkG7XZ7JzyT8/BMBo7DeE7COYsjMAk5hASz7yDZ7KdiW4x03ZZA24VPKyns/3hfdxW4A8bFAK+W42bBBUCopHQ9stHzH8hBQNRA7Gi329rb24t97IJHkVD7FAiukzXx1hSeh7DFc719gceLLiAPbSwKSJ7LwHkgGvk0D/Y864LoUZwewnp6oCXX4HvAHVI3HE/ku7imxps8OyHh7SPb39eql8SEhHc90vdwQkLCexLvSFDI8/zO1X/vZ1n2lyV9laR7WZa9eKXEvijp/hu89iOSPiJJWZblkC8Ijs+D9xF+3nMNCcPi/igS7+nxEInZbBZhd1R7eR2tD6PRKMhd0QoPWWLUIgF2nU5Hs9lMw+FwpzrqIxZns1lU4ieTiV577TX9+I//uD74wQ+G5RsxoF6vq16vq9ls7py/EzIXX7x6y38hqxBwyPh2u40wOt7TJzRA/j2cMssydTqdCJ9st9uxlrQF+JQARieSG0G2AiP7arWaJpNJ3FcCAZ3wISpJ10ISdnncGThMyB1gPRBM2AfkESD6IAyNx+MIZ/Q1RfzwrAEItU/d8AkC5HjQgsD581oPLeT10i6J9fvLekmK4ErudbvdjmvyqRa4fQaDQZBl9psLAP6Hc6Na72vl51PcQ96KwDVJivuN+wQXiKS4Jne9IHLxOXlU+4GDdURMw7FESwgiDPvKXQi0X+AuwSWB04bvF677ecCT+i7uZAf5o56TkPCOwc7KfspnJSQ8t0jfwwkJCe9VPLagkGVZU9Jenufjq7//fEnfLOmvSvp6Sd9y9d+/8laO5xVQFwY8w2B/fz8s8liqr84lxsN5NRRi5ECEgLxCRAmsg0R6+jzH8/C8+XweEyW8kn1wcKDJZBLk2oMlaTdotVohnqxWK52enur4+DjaB7CkQ6ggbI1GI8IYqVxL15Verrdoj2dSBdMxvJfc7fvS5TjL7XYbUzOohtO2kee5ms1mPE77gOc+cGxcF1wLBG88Huvg4EAHBweR2j8YDHYCCLkGWk+w50Mkuc7FYhG5Fe12O9wVEEXEJe4954YD5eLiQrPZbKeHnhYSXk/F28UEzpE8AKYdQNB9IoMTdCrr7CNINiIHBBp3Bu9T+OztBBV6W4+7D/r9fow/RdShFcKnW3jOANeCy+Pi4kKTyWRnj/j4Rq6DTAKOU6vVYtIIn09/vedokLlRnNjBelar1QgP9e8KAjn9M+6CnLuTuBe4mjxjw9tRPGuDoMibjif9XZyQ8KSxfu2OPv+339f2q75UP/kr6s/6dBISnjjS93BCQsJ7Ge/EoXBb0l++Igb7kv67PM//1yzLvk/SX8iy7NdL+rSkX/FWDgbRhchUKhW1Wi1JCpdBu92OUEVcAjy/VCqF/R9C4eQU8kjVl7BBcgMg1hC07CrozvMIqMZi5797967u3bunl156Ka6j0Wio0+loNBoFiYJ0LpdLTadTjcdj1ev1IHKDwUBnZ2dh3Z9Opw8R0Hq9HtZ2t+FzvlSXaa2g7YKMAHrxpetUf+k67K5SqYRg4IIEwk6pVAoR5ejoKFoNFouFms1muBSognvAnv99NBrtuBFoq+B+IhJ4KwX5FVSyyQbwAEpfF9paptPpTiuAV+FZN+41lXsXlmhBYD9y3pvN5iGxi8o2uR3kfhDMSY4EgosLARB0nDJ8Dti7ZFZA3JmwAWglQFhCFGi1Wrq4uAhBTFJcA60RVPZ5HFFCUmQxsG/82vhMueBFOGie52o0GjvtEewrHCa+bqyjnz8tEDyH3BEENVwVuB24ly4AeEsP5+2tTIiH3sqBEMSxffLLDcYT/S5OSHiS2Gs0lL10Wz/2m28/61NJSHiaSN/DCQkJ71k89r+W8zz/uKQve8Tjp5J+7ts93p07d9Ttdndsy6TSQ5AYbUeYoHRtfYYAeB8+RAuygEDAlIci8fVQR6qz4/F4Z2QkpCi/Gk959+7dqE5T0Wy1Wmq1WhHUhyABuRwOh1ENh6ifnZ3p4OAg2hxoqRgMBup0OkGUPDSQrIJKpRKk1bMNuG6IFeP+vPUAQk512W31iDUQOEgyrgBIH+tICwNry/tzDwlIHI/H4d5g5CaiEP/1cElJ0YrC/XViz2sajUYcd7PZaDAYBEH1AD9fF6r33CP2naQYmcnaENbpkzc8wJCKOcIEx0LkQVSAqOJE4RhkIiDmQLrJxvDcAsQyD4zkdYgVTD3hPfn7YrHQaDQKss199RwCb4PxNg0PNy2eJ+foeQc+uYPn4OpBuHC44ODBj3xOASIaTqVGoxGZEAgCLmiwj6VrkabZbIZIxfNYS2/juOl40t/FCQlPCvsvv6Qf/W3vf9ankZDw1JG+hxMSEm4qSrdvSUf9R/5u89EfeyLvcWPKbxBl6ZoAQC4g6PyO6jjkzqcJYO12Mka//Hw+13g8jtGMxSBACCBEj7wFbNsePJfnucbjsT7xiU/E2EiISL1eV6vVivGVCCLYtpky0Wq14liDwSCq7DggxuNxuBUgpk7YvSXCg/u8NxwSSc4A7RhU3t2+Lkn1ej2q+awjFnqyISaTSZBR7oGfB+/JMbCt40JhDS4uLkIggsTjDIGcZ1mmVqul5XIZrSkIBFjX3b6P5Z8WDMZ7VqvVEEGoyO/v76vT6cS9cxs+bge/Xt8XkiLA0oNEfaIF+Rfb7Vbj8TjWvWjnl65FAgQRt/Fz793tQT4BghXiGRkY7EXu8Wq12hmnuN1uNRwOY7Qja+LTRFgvzwPx9giOxT11Vwu/5/PpoYw8xnM94wL3CI4EHCsIZ3xuea5P8Gi1WqpWq+Fk4LPA9wiuCXd3ePuPT8Dw1ouEhITHw4/+1iQmJCQkJCQ8Glm5or0PvHz5w3CizYMHz/aEnndkmS5+7lc89PAnfsOFPvbP/+mHHt/kW/28r/+NkqT96VrZd/+Tx37rGyMoSNduAx8NSWo74wRBcSKAEwdvX4BAzmaz6NPf29uLCQRuuYb4kx1A24JPdIBA4VIYj8c6OTmJqipVc0ZQAs8RoC0Aosi1M4Wh2WxGWwcjG+nrn8/nQQyLVncncpApesl5fyqys9lMe3t74RbAio9VfjabBflCjDg+Po5KO3kMTgy9DYLQRaq+3CtcAIQh4lCAxHHvNpuNptOpJO04JVzwgQw7AfT2FHcSQMQhzhBspnQUnS5U18m52Gw20SYAWef5CDzuiEGgIt+hXq9rOBzuTADxdgQs+ePxOM7bcx3YL27/d1GCnA7Es+l0GsGa7GFv35GuJ6qQJ4DgxfkgjiEMeYsA9xzRwkMc2WdcI9fh+4Cf+XzyGSyKF7Qo4bpA/EAw8/YEHx/qjg3AMThP7pmLl+wxRKHnKZgxIeGmofOTexp9OE13SEhISEi4RvYzv1SSdNGr6ZO/+PLfbd2PvaBb3/v4U1WzH/mEtlfu9fcqzr/+q/W9v//b3vLzS9me/u6f/hOSpL806egP/Cf/2pu/6E//9498+MYIChAihACfSU8Vfz6fazabhWXfCYMn5zebTc3n8+hZh2jhTmg2m1HVJIDOe+UbjYZarVYQueVyGXZ0t3dLihYCrz5TEYeQcn5U751E4YogTJBKLP3vkqIa6wn0vP98Pg+hAhEGcoWQACmC9LuoAWnnGJIi8JFrg9C32+1wJnh4Y7VaDYGCUEOugTVE4PB1I1wTou5jIj1EDwGC5+FqoMfeAwP52Vtm2Euk+9OKwj5iH+Aw8F5+b5NYr9c7YyYRB3g+wEnC/WYPeHWfPQ2B53FvKXFij8OC98fqn+f5TsAg+xwxCnhrSrF9BqcBe5Jr4riIbggItK745ARaFGg7QvRhvYvZDHze+SNdE36/j6w9YgjnWWy5IFuD/e+hlbQiIbCxfh7OWBQXeF4x1DUhIeGt4/Yf+16NvvUrn/VpJCQkJCTcAGz/uZ+hbXnvUkQoTPwZfkGu4Re0H/vYL/6Dn67q+Vr73/mD0va95y69+1u/Vj/wH/wRSY837vyXt0b65f/Zm4sRpYeNDpJumKAAASxOdpCuiRZTHooE30UBQgIhFNjrp9OpWq1WEBBJQdzcGVGtVqNyTsV5Pp9rOp2q0+ns9H5DqKiaQlKKlViIMuTJrd9Uamlz6Ha70f9eqVR2KvS1Wi0cCh486FMJOD4kyQPmIE8ICpDXVqsVIxwlRSWaai7EtdfrRQ9+nudqt9s7Vn+fVOFjG6neIxpADKmQF0dIFtcWotxsNnXr1i31+/0QmFxg8fVm/3Cc/f191ev1EBam06nOz891eHiobrcbzghvSyAQkwkiLh5wP9mjEHUq/Z59wN70KQich3SdxcA+57gICu4G8FYJ3gehx6cqsJasvXQdssl/p9NpCBMuGLCH2FeQcifY7ihh77Nu/I7jsZYcw0UmxLIsy3ZaQNzZ4NNDivcXJxCiAscthjQSIulOHvYs4oj/4doTEhISEhISEhIeD5uv+wot+2W9/jV72pafzlTUu/9sJqmsFw++UnvrXPX/8XufyvvcRHzy932Nvv/f+C9Uympv/uSnhBsjKEDcaEdwCz6hcrPZLLIQfKyepCAdzJM/ODhQu93WZDLR6elpVE8ZbcjoSB8xB6nCxUDIn3RZUYe81uv1qBhTNZYUxJ20fOm6NcOrnogPEE+s2uv1WuPxOAi2B0tCfOr1etjZIeik8Du5rFar4VCQFCIEln1vJ4C4enaChyh6kj7Bd7PZbGdiAtef57lqtdqOUIO4URQe3MLfbrc1Go2ifUDaTdyHaJNJcfv2bW02G92/f1+j0WhHUPB1o60AggrBJZzzzp074bxAbJGuLfP03kuKfULOgdv5uR7uu18v518UFOjp53hOrP2+8JriZA6cG8vlcqdtARHBxY9iwGCR7Ps4Un9PxAHaDngfD0F1V4yvH20jnmnCunA8xB5aV/gceP4Hz+Ee+zVxntz7orjE+dEi4u0ofK5ZDz8O51oc2ZmQkJCQkJCQkPDmyL/2yzT4/IaGny+tm7mkpyMmOO7+nEzKMx03v1rdP/M9T/39bgL++L/6bWrtPTsxQbpBgoJ0TZQkhYOAcLy9vb1wKGA1dzi57vV6ajabki6D8SRpOBxG+wJ2e6zYHhYnXYfyEWJIQKATe4iwh/dRSSeZnn7/Wq0W1+Mhfh7CJylIDy4J+vdHo1Fcj0+l8Aos9noED0IsIfVepUd88bXF9k+QZKfT2RklybGLrhDInZO5ZrMZLg0PzSRIcLVahegAkcc5gPOB6+P1EGeu6/DwMFofXn/9dZ2fn++M2aTVwycg0MKBwDCdTvX666+r0+mo3W6r0WjsCAIukOB0QNAi2M8r8R6eyD1yFwoiD6/FTeLjEWn9oFrPOkoKAv4oYiwpxAmEIw/K5JqKRN1Juf/OHRM+NYG9TRsQIgP7n32B2MS98M+4B3b6+E7cOA5aFdwtgPPGgzy9/cH3u4eLFic/+Geec/O9nZCQ8M5w79/8KknJ5ZOQkJDwXsLeT/sivf4vHGhxLK26z+D/AZl08hXSpvo1Ovj27/7cv/97EDdGUGDSwfHxcVjtaR+gYi5dW/kf9XonDD7+EZJPsj+kDMcBpMqDDYshg97fD9nDxSBdV14hrsXefe9fd2u2pAjtm0wmms1mqtVq0VqxWq00HA5jxB3nSJ86TgmIrZNXn/RAG0Kz2Yzqcp7nO5Mi6Bl3RwJtILQL4Khw5wECS6VSeUjQ8N56ro/7xf30SjKvwZJPdR8STrZEo9HQK6+8EpkC2+1Wg8FgZ1Rlo9GIe+JuFCrsEPmzszONRqM4B94XhwwojhdkHVzgYc24LoQNvyaOw7qzP11QkBT3rDgdQtLOMRGTWE/yG3w0Y1Eo4TPiThH2vZN+rtvfl8wPbyvyNiXyFTw41UMsgbtGuDesK89DlHBnCIIJnwd/LWvrn8niCFV3I/A8Px93FyUkJDw+Rh9KYkJCQkLCewX7L76gT/2aD2lTk1a9Z/v9n+9J51+SK/8NX6PD/28SFZ42boygIO2SS88d8LA2fvco8BrIMkQF4gbphYTO5/OY5AAZh2iSoO8Ez8UMdyjwO0lBriBVTHxgbOTe3p6Gw2H0rUPU6/V6uAew0hMmeXp6qizL1O12o60DQQHC63ZwAhobjUak/tfrdfV6PbXbbc1mM52cnETwnrd8IE7QOgJ5bDQa6vV62m63Ojs7CzLLOrdaLfX7/chZ6Pf7yvM82lRwJjgJlrRTPeb+Quh9nCEi02g00mAw0Gq1UrfbVaVS0XQ61dnZWUw7QMQhfA+SKinuPaQV18J0OlW3291ZD1pMyuVytLJ4rkKxjQKLv1faPWwRx4VPX2D/8Jh03drgZJ018H1RJOc+KQFi7cKPP8+r+uRleM5H8bPItfjzOA6fB/YmQhbiirdQFO91cc3cUcAa8DpahPxzTZsHz+GaERrcacJz3LHB871NhvXyQM2EhIS3jy/61k/qR3/7q8/6NBISEhISnjJKva5+4t/6oNatmyMk5yVpfpy9+RMT3jFujKBA37hXeiEljHJz98CbuRSobELuqeDX63UdHByo2+1qs9nE2ETIk3QdACkpHABUNp2geOXYreO8FhLrleDxeLxjW0d4aDabUX3n+VSzyTug79wt8djs3SFBbkC5XI7sBK6h2Wwqy7Kd3IFKpbJTFeZYAHLZarWi5x53h3TtBiDrotPp6OjoSKvVSicnJzv5AZBI1gALvY+59CBKrpXzIBCS0ZTcz06nszOmkuvnnFgX1hoHB60aOEja7XYQdkI5IZiM2ySjgjGPiAUIAARqspf8On3cIa4Jf16tVgt3hGcFIJS5AOPXyT3zTAtvNwHFary3zXiAJHu/2Lbg4om3drB+xfwBrgNxjXstaWdMq4sVPBdhje8EBAXOg/dzd4YLB77f/Heco58XLhzA+iZBISHh8bF5cCLp1Wd9GgkJCQkJTxFZtaof/6Yv0bZ689pFl0dbPfhNX6Pjb3t3uhS++Pv39XOqWz3udIcnhRsjKHgVlAkBCArS9XhGrzA6nHS6gwFxgMqmk+v1eh2Vc7d50+dOBZ8xiD7CzquexYR8iBwhkEyNgECRG8DxODfeiz8Q6/Pzc81mM43H4whrpKWAa8aC7m0Inh1Ald4nHXCNEDOq+T6NQboUSGhHuXXrlvI813g81mw2ixwIiHS9Xle321Wn0wkHCCAbgqkSeZ7H7xk7iZODCQTsCSrl3DNcCr1eT71eT51OR81mM0aCcj9oN+G+brdbtVot7e3txd4gMwM3AsQaEYjMAMQJnAX1ej0EBVoGaENhf3g/vxNkJodI11Xz7XYbe5x96hkZ3Guux0esurDVbDZjDyOYQMCLYhxknf1KZgRiggsbkkLs4704N3cRuZPCz5PPIUKDBzF6xoe/3sNSEYHcbYRQyOfQWy8QTHhd8buG83AnBvfCR2ImJCQ8Hn7iW9LIyISEhIR3O7JS6UaKCdJl68Om8i7999xeSa/WTlTKnn3x68YICpJ2KorY0i8uLqI3fjqdRlUZR4Oj2CYB6SCIkYq1j5rDku8BfpKiKuuhfFRXIWqQQCcxnEcxSA6CRu4CPzP6cTab7bgOeH9ID9cuKQixCy6TyUSTySTIbrt9OcvVp0kgnjj5k67bN2azWZBaD9uTFK0TWZap3W6r1Wrp/v37ms1mcTwEgUajsZPuD0mu1WrhkoCUkqngNnjaCZiyQI5Do9GIKSCTyUTz+Vy9Xk+VSkW1Wk3NZlOdTmeHCCLKQG7ZG51OR9vtVg8ePAi3AECgocrtDhd+T1tJrVbb2T+cKwIPFXBabFgTd3qQWcExABMtipV/1oU/uD0QNtg3OGTeCBzT3TkQaq6D0Z/kN3iIIu05Hq7pz3WR0DMg3HWAwMY6IdbxPuSXuGBTbLXw9gx3Erm4hlDB9wb3lPtYHBfpjpqEhITHQ7bOlJdu5j8yExISEhKeALJMH/t9/8yzPoufEpMPbHX2a79GB3/y3eNS2Gs09MLfLenf63//sz4VSTdMUKCa6+Rxu91Gsj6jCosEntc62XIbc7GSStWVdgBIM8KDdB2YB8mjwg1xI7CRqnaxvxx4tblarardbqvb7Wo8HkcY33Q61Xg83rG0c30cH7EEEgbZ4b0laTQaxQQFeu6pPDN9gTwFXutjLyeTSaw3JJdMgSzLdqZQ8AehY7FYqN1uR17EbDbTaDQKog5hZN284s495b9kFJBtISmmXkAMx+Oxzs/P1e/3o3qN0MH9JKsBwjifz6NtgbGiw+FwZwwi2QT8nXuOoFCtVqPS3m63QyTxXAj2o1vsIeBOll0k8D3j4YUQaZ+awOekWJnnPb0VAALP3nHBzM+X4xUJND+7+OAtO8vlMkQfd94sFotwwHDOLhb4+7kTAiELZ4NPtPCsBz9P2i5ckGQNXaRBZORzxjqyfuRYcI20kiQkJDwePu93f59+/FuTSyEhISHh3YrS4cGzPoU3RyZty5ckfHtVyHyeUTo61OTPdPQn3/+Xn/WpBG6MoOCCgPdV0zsO0XMbuZMwfs7zPAIIq9WqptNpEAMqzpA7etgRA6iGepCcV6/n8/lOgGK73Q4S7WIDZEhSuCEajYZqtZrG47FarZba7XY8dz6fazgc7lixmfbA2MvNZhMtEd4+Qf4BAgmtIS4OsHbD4TAyHCDtnBfEb7VaRSU9z/MIPsTRQY5Do9GItgaIY6vVivMdDAYaDAbhTCBXAHLP++FkYJID94tpFN67jyhTqVQ0m810dnamW7duRRUah4S3eXibhQsv4/F4p6ef9gzuAUGS3FfcH06OfWRksb2BfQtB9fYFd8mw5i4Q+F72NUCY4Gef4MA9dbECEcKFKt6DrAb2OGvM+UPOOZZnElDhh+yvVitVq9V4Hefl00RcVHExwPMPXGDgv3wO2S8uFLozAZHKxSTEPTI83JXj68k1FcMo2Z8JCQmPj9qDPS2OkzCXkJCQ8G7Ex77p86XnoKNg8MW56r/op6v53//DZ30q7wj773tZn/jDff3wT/9vn/Wp7ODGCApOovb29sKSTtUdZ4EHzBUrwpAqrOiSduz4EEyIBQQRAkR7gAsC0nUyvqfPuwvCCTkkC4GE/IR2u61Op6PpdKqTkxO1Wq3ooV8ul9FGgcWeqQKQYd6v0Wio2+1Gnzuvh8jhelgul5G74NVt7PxUshELWFcIGCGEkMVGo7EzxrFSqajf72uz2ei1116Lqr2TWUg9bgNGI7pro9FohJthNpsFgca54JV0H28pSdPpVKPRaKc1pFwuR/4EmREe1ohzYzqdRg8+YobvNdYOxwpZEawR6wARdndKce84Sfa/sy+LUxYgyBBhhAivnnO/2XMu0EDcPf+A6Qu0BVCRR/hANOP5ZERA/n2cposp0nWLiN8bxAnPJOB8WSPPOvDnes4DGQju2HBHkI+o9BGb7g5x0YK/s8Z8tlhHv3+p3SEh4Z0hX6/1/j/8g3rtN325pu9LokJCQkJCwrPDor+nztGhNienz/pUHgv7H3hFP/qfHuknv/ZPPutTeQiPLShkWfaFkv68PfQhSf+hpJ6k3yjpwdXjvyvP87/+ZseDAPCPfnILyE6APBdbCgrnFESNNgEPZoNEIRpARmghoDo/n8+1XC6j7aKYFu/BfNJ1NRfyD9HkPPf399VqtdTtdqMloNFoqN1uh62efAQEBRc3GA+JsEEWQ7Va1Xg81nQ61Xa7VaPRCHGBfAIn1e12+5GtC4yGRGiAuEPMXYDBoSApHA7kLyBk1Ov1nSkABERC1CCvuA3IykCAyLLryQtU5Gl38fPxfAjaVRhhScsG+wGSTS4BxJOxoYgHhAdOp1NNp1PN5/MQQTwTQ7oeZehTPXz9/Hlcl09I4NzYR+xXfu/TJyDzuDF4jLXy6j37lPUu5nlQxef8fUwpQgGCFffO2zKKnynuhXQ9BaL4GfXpEC64FdfVJ06wXgR14qjw4/hUCM+B4HPHNbH/+GwiJPh0FhfT/DpvOp70d3FCwpPEdjbT+779R3Tn//7FGn8oiQoJ706k7+GEhJuP8y/JlW2+QMf/009o8+DBm7/gBmH/A6/oR775WB//F7/9WZ/KI/HY/1rO8/zHJH25JGVZVpL0mqS/LOnXSvpDeZ7/wcc4ZpAdt7cjDvg4yCJh8VA1SUGEJIVDANI7mUy0Wq3UbDZ30v2pVPM8+vYRFur1epBSwgSxjNfr9XAgkPwPIMZMV0AgQCTwwEBJQVInk0msQbPZDAs+xyuVSppMJjo/P9fFxcVOWwG5BpvNZmfyAuIBx4CA4mjwcMT9/X01Gg01m83oi6ctgDA8n9iwWq00Go1CjCDLwXMtIIbcM66de+uWeknhACGrAYeBtxbM5/NYc8gwAhFkuVar7aT4c1/o9Z9MJuEO4DGEpWK136v3fj/8ZxwEfs6SdrITWGcyGFgTb8XwsZlcExMSnERDrAmh9M8EcJHHHUF85nyyBXkXjLp0wYl14vpwV3jLgX8O3VnhWRKec+CfY5wHeZ6HqOH71p0eHqDIZ95HVbKfELHcReL74FHfQ742NxlP47s4IeFJIl+vVR3kGj/rE0lIeEpI38MJCc8Hzn56rjz7sG79jxttTs+e9em8ZUz+mRf18Z/3kWd9Gm+IJ1V++7mSfjLP8085gXkc8A94CDPkSVLkGzyKAHj1F0DesNZTmWfqAFZ+Ji7gUICIQkLIKmD8HPZ4iDJZA9Jlf/6DBw+C/DgZhFx5qwSk34k21VMS9A8PDyNTwJ0PWPfH43Fcb6PRiDwF3Ao4EahcF9P/F4uFzs/PdX5+rtFopOl0qlqtFiLE4eGh5vO5BoOBFouF8jwPNwQhkFR/5/P5QwIMJM/t504SWQPPBKAy32w2Y0LFdDoNZwnrhBgynU6jpYJ2F8i2twTw83q93un195GOiCPkBHA/JIWjhSka3FP2BySZ33n7CI+5GOKBhByfYELcGB7U6cGJ7nTgtZx/cd/xOyZsYPFn37gzgp95jL3me8edQN5G4IIDf1z48ON5bgq/5zPq+QcILu6WQEzwzAN3N/C9wfsUwz+Bt2D49wnv8zw4FAp4Yt/FCQlPCnudtk6+Ik17SHjPIH0PJ7xn8P6/udanfsH+c5GjAM5/Wq58/wt1+89+VBsbb5/w+HhSTcK/StKftZ//7SzL/mmWZd+eZVn/rR7EyZgn1Ls1H8LCH+m6EgvJQVgojrOjjYKf2+22Go1GEBUn9ZvNRtPpVMvlcmfqBC0Y5+fnms1mcX79fl/9fj8CG729AmL2KEItKSriLngMh0M9ePAg3gdS7jb/1Wql6XSqyWSi8XgcrSJkKeAkgHhvNptoS2Dd1uu1BoOB7t+/r9PTU52fn8cECsYr9vt9dTod7e3tRbaAn2+1Wo1WDneSFO3kvsbcJ85Jus4IkK7DLFutllqt1s59guhDWJfLZbhOIPa+3qyVTybg9ThFEKrcho+tn73H/up0Oup0OqpWq3Ht7XY7XAsQYklxPt7nj0Dmwpi/ht+5ewESzXmwrqxZcUpF0SnBuddqtQj15JgurLnI4uIez+c1Lj4UhTnOiz3O57GYhcH98VYK7hFr4GNg+bzQIoTQgoDhLR5+3ogLhGC6Q4LvmSL8vJ4zPJHv4oSEJ4nt6Zle/s7U7pDwnkH6Hk54z6D8t27G2MK3i8EX5brz9T9Ne1dFyIR3hncsKGRZVpH0SyT9xauHvk3S5+nS+nVX0n/+Bq/7hizL/lGWZf/o6mdtt1vN5/OoTOJIeNRovqKVu2jjhoxRQcUO3mq1wiHQbDZ3guYgnRCw+Xy+Q3axyA8GA52cnER/fa1WU7PZVKfTiUyBi4uLCBqENFNFxyEhKQQK2hnyPNd0OtXp6akePHigs7MzTSaTmNqA4ICoQNWYKr+n4vva4IJgIoOTRKY/TCaTEFGq1aq63a56vV6MYyS8ked5/3qz2Yy1dWLn5+jrzJpyr6guQ+5oC0Es8nBDiB7vBZH2arYLAzgQ2FNue8dtUK/Xd/ZAll1PwSAkUpIajUaMnKzX63HffYSkpGhzKJfLIUDQBoKwxRpJimkS0nW2gTsSPB8A0u2kF3EJoYdRoU6mERR8JCvCCeeFaMM+K96rotsEQYJWHu5JsQUJ8J6IXC5S+HsUWw0QU9izOA4896QoRrJ+rAHn7ZMg3Dnka0yL0vPkUHgS38UXWn4uTjXhPYbtYqHWx86f9WkkJDx1pO/hhPcc8lxf8B2DZ30Wj4Xxh7b67G/5Ct39D772WZ/KjcMH/5ffoK/7jb9R33r2eW/p+U/iX8u/UNI/zvP8niTxX0nKsuyPS/prj3pRnucfkfSRq+dFKRAyR3geVWCH25QhGvydyiwOBcLtEAYggY1GY2dsHy0CVM/39vY0Ho9VrVYfqm6TbQDx8Oo54D339/e1WCw0Ho+1t7en4XAYYYmQKU/flxQEyQMaqXxzbHc+VCoVTafTyIUgB+Di4iLGKOJYQFjxyjVVba8qt9tt3bp1S/1+P7IQIMIQOvr1EQWw/HsAItkH3usP0eWe4aKAFPr9hGC6fR6h6Gof7QQ6StfkmqkTkuIaXSDiv5DN6XS6s85O+nF1tFotHRwcRLsJRJy2CEIwva0C9wb3nT3r4X9e8UdMQNRg3VwY8fvJ7wjMdAcBBJ/18pDD0WgUryFIk+PxHqyNByc68fZ2I3ccOGnnuZw/rRIIRHxePYOC9aN9hefzmeD4tKfwWWOtaBdyRwf7GCBiIVT456Rerz/0vfMc4B1/F3eyg+fSlpGQkJBwQ5C+hxPec8h/7BOSfsazPo3HwuylrZRLn/1dX6v3/f7vetan8znH3fVEv+6XfMNDj3/xa5/S5sED/W8//uX6u42fbb/55kce50kICr9aZu3KsuzFPM/vXv34yyT90Fs5iDsPCJ/bbreq1+tBOpyAAXr1q9VqVGV9igCklB55aXf8IEn/Dx480HA4jMR8yE+5XNZqtQoyOJ1OowUBwnh4eBhkBXIEyYG8nZ2daTqd6t69exoOhztBhFwzhGo+n2s6nUZYJOQT0u9ODKZFeNW3mPDvIw4h64Q3Qhh95CLiAETZQ/UgkJBCKuJcg6QdRwQODarfkG2Iq7scIK4+chLnhdvr3VkyGAw0Go0iEyPLsnCGSAq3CM4QXCU8BkGfzWYhmPBH0k7LBG6Dg4MDjcfjqOyzD71lwkMYEQXYF5JifXBLFFsv5vN57EUn0JBe/7x4EKK3DxRbJNyZQegpQosHZbqwgEsIks798hBKXlfMe/DzQ6jxqRIIet4WI2lHMPHWDFpqyMzwa2YvcX3se64FkYt75WvEvnSBxCdrPEd4It/FCQkJCQmPjfQ9nJDwvCGTlv33ho73z/6Wb1T3ez5z/cB2q+3dH37D528+9pNv6bjvSFDIsqwh6edJ+kZ7+A9kWfblknJJnyz87i0B0kXvPNVRJ1Z2DjGJgKo0JAWyIGmnoumkEdI6mUx2WhG8+rtYLHYIEVVdiHGr1doRPortGIgW2+1Wg8Eg2jq8/9vt3Ly/tEt+IP2EzS2Xy7h+r+wzhcCFCsirpCB1pVJJjUYjhINWq6Xtdhshj4g1nAOvwyGACEDVv9jnPplMNBgMdsb8QfJKpVJM00AMoO0AQu2hk+v1Wq1WK8QERCfGZjLNYjwehwuEFgMIqj8PlwYCDvkTzWYz7iOWf1o12u22er2eer1e3EOIMS4XXuPhgwhjOBi8vQFxgJYByDBizBvtB0Si0VWYDGKR3wPuvYsc8/k88jBo1+E55BKwz8gB4f09t8DFlKLQxfngNvB1cMEIpwpTPFgfd+jgEvDPNCIVzpVqtfpQCwnn620NCBvF1gZvE3IhyFtdbjqe1ndxQsITRa7nKrgrIeHtIH0PJ7xXkS+X+sJv+bh+7Js+9KxP5bGRl3J96pu/Rh/4D7/7WZ/KI1H7a9+nr/hPfpP+8e/5tsd6/Sbf6qt/92/Wwf/wPVo/hYywdyQo5Hk+k3RYeOxff5xjFQPqICzNZjOImhN+ABGGDBO2iPUfguU2dEg3NnAIDOTGK6eIA5AgJ+a4ApiGUKzuY3WH/CJceGie9/R7vzwiAwQO6zpkmAkLEElGRiKYHB0dBVn1bAjaFFgHRAHWyavZVJKdbHJMrPw4N4ptAtJu9dir2z6ZAYJfr9d3ggW5PnIBfIQlLSbF3AsqylSvcV94TgV7gXXg9xBYAjg9cwIiiujBPfAqPqNE2avF8YlkDTAClf0MqfZpJlj9WQvp2gHBHuXvOFc4vgdIFsk7QgaiAY4P9ro7FVgfF/F81CN7nJ8h9/Y9sCMoFLNPPGjSgzk9P4HPBxMyPPCyKE4hEPF7XDO0UvgkB96XtXPxx7+PXPi56XiS38UJCU8Dmx/5cX34L9T1E/9K41mfSkLCU0H6Hk54T2N1oWydKd9/Tiv9mXTRyvWZ3/21euX33cDWhzzX8bd9t77k8N/SD/ym/1LVrPyGTz3fzHZ+/qo/+1v1od/+3TrQ0xNLblziGOQVSz2jFT3x3ckJ1XiI8f7+vg4PD9Xv9+N1HGcymURlludDTKjGI2Z4Oj226eLYRggZDgXIS7PZVLfbDRcAr6UKLilGIXpivU8SgHBBBhkziQuB3nFIHmsC+er1erq4uNB4PI6KLoIHRNbXlD9eoaWqy3ux5m5d9/DMophQq9VUr9fDvu+jIXntZrNRs9mMlpVyuRyiDe0lq9VKnU5nZ0IHogTrg8uC/AGq7EzGwPlQbGng/roggDAxm83iHhG42el0Qqhw4u7ihqSdCSOr1SqcIJBedyr41AOfWMDvESE4X8Zx5nkeuRO8xrMh2NucE6+ZzWZBtmnHcAGC8/HH2CseBMk6kufh7TlFZwWfHfYJbgnaXLx1A6EHFHNE/Fw8O8UdEjhMEFr4nNGiwzrR/sKe5ry5P8URqwkJCY+P7GKjvVWmbeU5/QdnQkJCQsIjsTk/1xf+f17Tj/67Lz3rU3l8PAcOuld+33fpS/u/Rf/dv/z/fuTvf3z1gv70F375zmMfeopCArhxgoJ0bZ2nKg9J8FYC4BMCJAXBh6BSsadyS5Ve0k4/ONVnWiawynvlezKZxDGpzAInPRBPxkpKCqLIFAis6vTIY5WHbF1cXITlH0KNbR4yVAwuJFSy2Wzq6OhI2+1Ws9ksRIZqtaq9vcvRj5Ba3ACQJ4iUt4uQNcAaQbabzWYQdeChjVTTuQeeB4AgQS+/E2pJDx2TjIFKpRITFlg3HBMu+vBczgXxCRLM9TUajR0xYTKZhN2ftUF0cEGH9fcQxOIEg+J+RYgoEnSILudZzOIgv8FbY9h/ZA34dSJAIHSwZ3EjeD6Bn+ejph4UJ0ogcuB4eFRLgGeccC9dUCiGN+Kw4F7jOEAw4D4jzngAp2cnFM8BEYH3ZM+5Q8OFDxdC+Dw/Lw6FhITnAfn3f1SvNn6GXvsX6rpo5dpWk7CQkJCQ8K7BxVrl0Z4uOs/vmOC8JJWODrU5OX3Wp/KG+Lzf+j36Pb/1Zz3r09jBOx4b+SRBhbVSqQTJlK7/sc9z/PlOOCDOTk7d1eBuBnrQpd159V4JhuxK2iHeHvq22Ww0m83id5A+Kub+XO9PdxLnIZC4EshqoELKdAqO6/Z7KslU4mmNYB1wTVQqlR0iCLH3ajnTLhBevKrbbDZ1eHioarWq+Xyuk5OTCLIEiA2LxULlcjkq84wq5HwQP7yqzWPeelIqleLcuYe9Xm+nRYLz9zA/X1fPHygKMm7T5xy4lxBKJ77u+iiVSmq32zt9/rhhEAAIvvTxk6wx5+RBnDgyPDODe4v4xftA/j3gEucLotGjgi+ZEsJ9cweN526wd/n8IAR4XgRuFw9D9KwF/6z6OnMtxawJhA7aQ/zzz/p78COBqQgy/vnysEbaXviM8RgtFew9z51wd0dCQsKTwd7f/wG98vu+Sy9+90alxXNQDkpISEhIeEtYv3ZHH/yLZ8/6NN4RVr2tPvtrvvBZn8ZzhxvlUHDi764Dr3A6INIk+i+Xy8gSKPZvQyohGxANqr24F3AKQOggWzzuVUyI8d27d3V4eLgz/o5xlxAXJ7H0myM8QOyKEybc9UAgYavV2uldZ4weAY2QccSRUqkU7QKlUils5gg2Tq4QJBBGJMW1EyzY6/WCxJ2fn2s8HgfhZ91YX1oMEDcgjP5f3mO5XGowGOyMYoR4ehWdcZa9Xi/EjGI+AK/hPLnP3B/aHfg918c+Q5RBTIAkz2YzjUajcBF4oF9xSgWOgEajEc4Q1tL3kqTIDyiGC1Kl5zxYNx+5yXO9Ss++YLQpJNoDM4sZIcX3eZQbCMEFtwp72fe1izouaDlRBy7u+J5DFOBxdzO4K4Isivl8rkajEeKaB7H6dwc/8/nzrAb/TPp3RhIUEhKeDlo/fKLyl7ygTS25FBISEhISEp5n3ChBQdIOAZGuZ927pdnt0bQveEV/MplEe4JXNXmNpCBgbhWHEHIcJ2ge8gb5gKDfuXMnXgsRwkVAJdrfyxPqseF7FdZt5gQjlstl9Xq9SOifTCZB/KrVqlarVVTxCaTEAXB4eKj9/f0IJWy32+r3+zEJwkklBJ1ARCYscE/q9bo6nY4kaTwe76wRhB0yhnW92IfP2rNWTDSg0ry/vx8iCMSV9pFOp6Ner6dGo6HBYPBQxRoBZrPZaDwexzm6I4R7SKsDhJt9QYuAu07m87lGo9FOS4SHXLIvId3ucCmVSppOp5FfgQvB15w9TluL53W4Hd8JvBNsv0aO660Kvv+8rcFFHRceEGY8M8FzBjabTQglwEM1JYVTw1uLXEjxlgtEAB/XyXt7+GVR8OJx8ilciOT3/n3Bf13UcueKZ1A8qpUiISHhnaP0xZ+vT/+SYy1uPb+22ISEhISEh7F3PlL74wcafyh9v7+XcKMEBa+mS4pqrlcJ3c6OoOAj35ikQPaAh7jxHlScIY4QOtLmixVkSDaVaElhPaeyfnh4uBN+B6H0SivHx6rttm8IoKR4HCFjOp1qvV6r0+lE2ORwOIz8AKrRrVZrZwoAjgeq5IRdVqtVdbvdeMyt86zDZDLRgwcP4ly4rlqtpn6/v1PdJhxwf38/2jIAPfvcx+KkDa/qU8Hn9e12W51OZ8dt0ul01G63w5mB/R4QYMl7uvuA+89rmSBBWCSOEM51uVwGsZzNZppMJprNZmq1WjvtBz6FgKo2rQ+ERzJmkj3gIY5+fe4q8LwC3APe+1/cp+xLFw8QnXyah99rjstast9d8PD2Andx0K7i7T+soaRosUGooDXEgw49j8LBGiDOLBaL+ExICqGCdfcgSxcCOF+/do7tIqNncHBM8i4SEhKeLIY//VDzF9I/NhMSEhLebVi/dkfHP3hb4w9Vn/WpJHwOcWMEBQja0dFRVPapChfHRVKFpLrOH4jvfD6P6jXEzFPoIXWQSW9lcEIJKYH4QUgkxdhJzy+YTqeaTCY7IojnNfh/IVUeLoewwbXQzsGoyU6nE+MECYncbrcRUlir1YI8ch1cO+ILEyjIQiDxHvGD6vtkMtH9+/dVrVbV7/clKQQJrr1ararZbO7kGEhSs9kMwsc6TyaTh4gkowelawLH/fFwzO12GxXoZrMZQg5TGBgTWcwc8JGW6/V6J9sAoQanAcIBORLcJ4gmwgUEvRiw6FV/J66Mx6T1wrMZqPb7eFDpmsTjkPAQS66RrArWnPvOuvuEAl6D+MZ7uGjAOiHO8d6+P3GgFD+LuDn8c+qfC/aNt724q4R1c1HBxQmfEILrxVtYyFzxCSLuQPJz4r8+OYPWI8Qv7o8LPQkJCU8Ove+7q/ErL2v6vvT5SkhISHi3ofyx19T/4c/T+Zc8fy7P/Umml//2mdL/nd4eboygIF23O3jA3v7+fvwj363lnnJPNZae9sVioZOTkxAIpGvSAGEm+NAt5w5vQfDkfgg/1nsPO5xMJhoOh+EokBSWeK8kIyy4y8JbDzhXiNpoNNpJ+ocsIoi02+0IPYRMsX5cKz391WpVh4eH6nQ6Qcyd2NIGsVwuNRwOdXBwoFarFe/JqM1ihdcdFUxP4Fwg/jwXklcul9Vut6PK32hczicnm2KxWMQ587s8zzWdTncmM+D2wN5OGwxtH7gDII0eKlhsY/Fr875/J9xOjj0IlBBLyD/XTIWetfYxlpBhH4noY0M9LwCSi2BVtOQjyBSnJ9Tr9XgPnu9k2/NJWEd3KXAuuFt4PUJBcbwkr3EHhOdg4K7wFgMCU3kv9o50PWWkVqup1WrFsTknhCf2v6+PtzNwPYhB3sZTq9XinnC/3DWUkJDw5LD+xKdUGbyk6fue9ZkkJCQkJDxpbO7dV/Puqzr/khuV/f+WUFpm2v7TH33Wp/Hc4UYJCj4NQVIQNKr+kCHIuKQg1diWa7WaNpuNBoNBHJNxjUdHRzo4ONhJ26eCDol0C7b33UPIqIo2m82ddH+Eg8ViEe8tXc+5Jy+B50B2OLZPmHAixOMQY4jRfD7XfD4Pp0Cr1QqBBZKNUOIWdUZa7u/vR5V/Pp/vTFegiuw5ChDu7fZyFOV4PN4Zqykp3pNr9dwEXs96gXq9HteL02I8Hkf4IXkJENyLi4sIbxwOh1Gl9wBNBBTPRZCuK/GQctojvOruoX+QThwY3vuPwAJ5hWz7lAsep/rurggf5YmrAALrgYfsNw/Q9OkTPoWhOA1huVzGvn1UHsKjyDJrWSTUEHfuHaSbgE8EBZwSkmIdqtVqBExyH1ywAQhrnmnBOXv2iIeY+iQN7q+HmXorBCIGa8K9d0HH21DSlIeEhKeHW3/lY1oefKFmL6U6UEJCQsK7Dc2/96Pq3/5Snf+058+lkPD2caMEBXcEkPTPP/J9goATKYheo9HY6emGPECAarWaOp1OVDh5HmTRiQSki+d5+j12aUgUNvRarab9/f2okD4qqd777iFJkoKUIxqQ7dBsNtXv99XtdrVYLHR2dhZVWEQVqtKIFePxOAIAETyoCB8cHOjg4ECNRiPWiDYNLO5F2/xsNtNwOIzzHQwGGgwGIWb0er1oA2FtIHcEUnprSLGq7jZ0iCHZAEyuaLVakqSTkxPN53Pdu3dPo9FIo9FoZ2Qla+yuFc+l4Pz5HfcM14WkWHuugzGLTF1AIHBLPs4a1pnz9xyN6XQaThN/f9pHnLgiIvl+8/3igodb8j2fwVsKXNQpHr/YguCTG9xhUMw44D56vgNrw8QPhC1/P4QYhBPW18Uez/UgyJH7S1bHo4JZF4uFxuNxOE9ckOM9m81mCEJktjQajThXRKKiKJWQkPBksTk51fv+6P+hT/07P13Lo/Q5S0hISHg3YTMa6fjP/hNtfu2Xa/Th5+M7vjTP9Op/9UNK6VlvHzdKUABY5pvNZuQEuPXb4a0DuBQ87A8iS88+pIfKMEF7WPARCTzIzicJQCohNOQIEHzo54pbwlP4PeuB33G+npIPGT0+Pla73dZ2u9X5+blqtZpGo1FMMIDIrtfr6NVfLpchekAQPWlfUhAnpit4y4OP3RsOhyEMUPE9OzvTZrNRs9ncse/XajW12+1wlsxms3CH0AKA0wTxh3vIMSDJXD92fQjxZDKJiRVMaHDngzsHIMuQ04uLCw2HQ61WKzUajR0hxHMAsMHX6/Wd8E7uX9EdUMzBoIruEyU4V88p8LBDd4ggWCBUQKyd1HMunongogjnDAnnHnrrA9MYgGcK0JribQ+8j/9MBgfiG6IKQh2uH66PVgbuL9fKGiEC8D3A/SuuF+fgYg4CD44OztFbo1gT3198D7gI4wJOQkLC08F2PNb7/8A/0if+o5+pdTNVsRLeALlUe23+5s9LSEi4UdjOZrr9x75Xt0slfep3/EytelfCwsOTyZ85snWmD/1H36/NxerNn5zwEG6UoEAvdLPZVLvd3pnI4NZuSTs/Ozmlak+VnVA8CE+j0dD+/r56vd4OaYLA4R6Qrvv9IbwQMaqi1WpVnU5H3W535zx5LZVnr/4WcyDcrk9VnhaOZrOpZrMZveU4GMbjsSaTyY49X1KQ8nK5HJVYD4CEqPEzAgYZA/V6Xb1eL4j76elpuBS8/308Hkflnb8j0nCuBCJyLhcXF0Fsi5MjmMwhSY1GQ41GI0YB+r1drVYxPhLSSgUfIsk9JxfCW0rYC1w/AZe+B1gn7PdFZwkOhEqlEg6aYm4Fx+L+LpfLnfGbvj94D2+PIDNAUghYbsF3QYzWHYe3DnkLj4sr7jzArcPPRQGDVqJiqKELK3y+EGV8/VkLHEDuUnGRxB0/3q7ga8QxWZf1eq3xeLzzWUAQYc9wLhyHVh3EC5wdiC6g2JKRkJDw5JFfrKSkJSS8AbKN9AXf/MP6ruQWS0h4LpGv19J6rfd/83dJV//m+8lv/dlv/ro9fc6Eh2wjfd5v/56HitYJbx03RlBwcsO4PenaWu392496rZMJCAlV+8VioXa7HcQSkitdV8chGRAnLNuQSx7z/vVKpaJ2u61msxmVYAgRveCQFCrVkP5i9RRBAXIm7Y7UI9vg9PRUDx48CFLslm/PcnBSxs9UiKXrNgvC8GgbaTabWq1WkZvgrQP8mc/najQaWi6XO6MqsY9D3HlfJ29Uf/06PUAPgYVJFIQxAtYLgQfiyLE4V84bkurtCIQJ8jOBmjgq3KlCZZ01Zg24Jir+BENCxnELcL48n8DL9Xq9MymC/e17zKeKSNctHbRJIKYhsPA58d5/1sHHO7IHqO6zdohlxTGmPMdbLIpuCZ+8wvv4Z9bXw1sqHvXlXWxXKAY+ssZ8fqfTaXzOaGPBrVKcJlF8H9/ffi7ejpSQkPD0sFer3chqVcKzx94y0xf84Y9rPRo961NJSEh4Erj6d9bn/bbvedOn3vltX6vlkf27rPrkyf7eMlMm6UO/+/uSmPAOcWMEBemaSEjXxK04wtGf6/3e0nVllsq1k+BarRZ2/kqlom63q9lsFhVO2gywQFOx7PV6kQkwGAw0Ho/DuVCv12PM5dnZmUaj0Q6RQ8yAJFOthmBCrl10aDab8RquhbYIqteQVwIWubZ+v688z6OFgT+QZPIXnPz5ZIdOpxOCBGTZ8x+k6zA+XkfWxa1bt9TtdrW3txdhiYgqntjvlW2s6i6AEJLH9RDuiIDCxIhSqRQuFkg41wUZdpcAx2GfeJYBzgNp1xHAffDpBpwLeQ/1ej0q815RZ624RiZV4PBAkCruYR8nCaFmL+BgQCTa29uLaSC0DDjx5v4DBC32A+KZB1qyPt6e4S4RD3j0IEg+n34f3ZHBtZHTAeFnzfls+CQVDxRFBOHacaogznA+7uJw9wjnVPyuQGDiOJ67wT5MSEh4Oij1+/rkb/5irZup+pxwjdI8U2mZ6UP/zR2tX7/3rE8nISHhGeClP/hd1z/slfTp33PpashLuS7aj0/++X6RpA/+0Z/Q5t79ZJJ7AnhTQSHLsm+X9Isl3c/z/KddPXYg6c9LelXSJyX9yjzPz69+9zsl/XpJG0n/Tp7nf+Otnkyxas+EB8hk0SbtFVnvXYfYQ6harVYQXklhV0dQoN+70WioVqupWq3q9PQ03ufw8DAqwePxeIfQU0HHXQBpIeQNcrLZbDSdTmOUYK1Wk6QYIwi5J/eAyQuQUqrerAvVaYgtrg4IPOQSoksVHSEEYojAUnSGcHwPwaTqTOUcktxqtXRwcKBmsxkiCgSQaQy0aNRqtcgp8HsJWcY9cnBwoE6nE2vOunNsd6HMZjNJ12RWuibPnmnB+yCYsNd8RCkCwHw+32l1YA1Zx8lkEo4MSC5CS7lc3hlBSCYDYhFikrsBaJnw/3qoJ3ug6NJBrEAQcfJcFBMg/ll2OUoSsYK18LYCMge82u+tEX48rpF18tGV7CdIfjHg0e+jiyfkgPAZ8rYdF+IQErg3npfA+ns2hzsv+Mz6CFSOXa1Ww+1wU/C5/C5OSPhc4LVf88VaHiYxIeFyVFv17PL/DS/+/amy7/4nuokzdtL3cELCM8B2o/f/x5cCw/4r79Onf/X7JUkXrTcQF3Kp8fqjW1b5fpGUwhefIN7Kv5a/Q9IfkfSn7bFvkvR38jz/lizLvunq59+RZdmXSPpVkr5U0kuS/naWZV+Q5/lbumeQQEbruT3bUWyB8DR2ev6dRFQqlchOoP8c1wHkDbIMqfYsBCr3w+EwyNLe3p5arZa63W5UeHEMQIA9CNGr5pDecrm8k4RP6j9tBTyftfHqs3Q9hYJqM8djzCZCCQSW3n6fAAG5rtfrkV2AMELGgBNDDyzkevv9vg4PDyPdn/Odz+c6PT3VyclJXCPCBWTNHQr8rt1ux2jLwWCgBw8eaDgc7oQIInZw/zzjgXGYEF3uJaSzWq1GQKeLNLg4INTkSnC+tJ2MRqMQYmh3QZwi6M8f49o8o8AJMIIGYlDxM8H+Kk6YYH/4vUGU4V5764C7VWj54Jw9iJA2IPaWC33sYw835Dz9HjyqNYK94Z9hD3f0+8V1eUuStwC5MOBOCM6Re87veC0OE9aP7wEPbERMI5T1BuE79Dn6Lk5I+Fyg/dmNZi/uafsUrKwJzweydab2JzK1Xt+o8T/8w2d9Om8F36H0PZyQ8Myw/sxn9dIf+KwkKf85X64HX9Z46DlZnuv4277roccTnh7eVFDI8/zvZVn2auHhXyrp667+/qckfaek33H1+J/L83wp6RNZlv2EpK+S9N1v9j7ea01110MKi5XZIlF0kuHkCeIP4YYIFu3SknYq2ZJCiGi1WuECgBjWarWdUZXValWtVmunNx8SCHGDXLoQwntS7S9eJ4SQMY1cK2TSyRvngWBCVoC7AYrVYZ6H2wKxhPYQ1hRixnqQHcE6EBLI++MsmUwmmkwmyvPLMZie3M+YTUSMWq2mXq8XbSQeQOluD3ILEE0gzt4mw731nAWq7awT4ZMeash6Piocs1arRdYCLRm4Qebzeew19iDXRmCgj3OUFCGe/I7JDOxbdypw7xE8vA2Ee0tYIfeZz4gLbhyDaSBOtDlfdwM4GadVhKq/f27Zx/759VwUX1tva2A9fDQsbiBvYXAhzu8pv2ef81wEEc8rIZiTxxCIisGVPJdrvin4XH0XJyR8rtD8S/9QlS/4Wi1u3ZzPWcLnBkc/kEm5tL/YqvUXnwshQVL6Hk5IuEnI/vcf1K3//VmfRYL0+BkKt/M8vytJeZ7fzbLs1tXjL0vypI3PXj32piBszivcxcR8ANEpTmaggs3vqEBmWRaEnQT4+Xyu0WgU4+KA28shcggRXlWl1QD7OKID0wwgNB745uTFe8+ZFtFsNsOZgHOA9yBY0gMiIUhOfjkvzt8JPGvDcyBV5Ce02+2oyuN2WCwWMaGgXC7r4OBAvV4vRAtfB7e8S4q8iGL1nzYM1sZt6b1eT4eHh1qtVjo7O4sJFKyV2+l9koFXtj2U0IP3+JmKPOKApGhdoPcftwDiBZXsk5MTjcdjdTodvfDCC9H+Qh4BewCXBC0tnB8igRNuRBv2Pu+JEOEBgx4OinBSLpdjb7sY4q4WF50IHN1ut2o2m9HO4m1Cvl/ceeBBh16993VnnyNYkZFQFO4g/i5acY/4nOMk8PvsYY3ersAxcTNwLsUcB3Ik+BxyrryvCzHPwejIJ/5dnJDwucQL37vUp39eJbkU3gM4+seZquPL79T6X/m+CGh7FyB9DyckJLyn8aQbhB+V1fzI/2NkWfYNkr7BH4PcuK1fejgNnior/9inMkl7Q61W26m0NptN9Xo9dTqdOPZ4PNZoNArCCrFDlMCN4AFy3p/upAM7/Hp9OVWCkYkQQEhh0eYNAW21Wmo2mzvVZwgbffRur/dqrI/p81GMkGFIkQcGej8+lXfCJy8uLtRut+OcEScIjHzppZd069bl/ysvLi4ilJD2Ee4TlXvaV7yiDHFDPHHSTY4FLg8nrggKkGZC/HBGeH8+LR1OFjkPjoFgQp6FE1tEAQgrAY2np6eazWYhuJBh0O/3w+lACwcZFqwLFXiItId1IjB4VgMtHYgHbuNnPxLoyXX66MriXvNAw8ViEWvENXruAMIL58i5eNuDpBBnIPKea4DoRHCmf555Hp9H/4z7Z92/C9jX7nxwYUFS7FsXEfw9uLc4WlgX1pXjcL7PgaDwRnis7+KaHrYOJiQ8Tez/ne/XB+dfpm2lpE/8kkqa+PCM8OL/nqt28nCL6UV7X5/9Fx9vfG7r03s6/gFrVfz+H9d2PH7sc3wOkb6HExIS3hN4XEHhXpZlL14psS9Kun/1+GclvWLPe5+kO486QJ7nH5H0EUnKsix3EuAZBhBGJ1381wkkVXCcCO5QODg40PHxsdrttkajUYT7DQaDsKo7wdzf31er1Xoo9BHSTnXf3RE4E+ibdyJEdR5CiVCx2WyihQCCQ/XZr42JBo1GIwINOQfI7mq1ClEDMQWBpkgYpesqLJV3H6lJ0ORms1Gr1Qq3RbvdVr/f18HBQRDIRqMRQgRrOJ1ONRgMdHp6GhMZ/N4iZozHYy2XS83n8yDICBhFgotLhfOGqHubB0Sda7naWzukHUGhGGxJiwGk04WR6XSqk5OTqO5LuwGGiEH1ej1aLbLscjwkWRrFKQUulnDeniXhLRxU2d3h4vDwQXIzXHhClHKHAa0FODL4XNF6gTjB/vb74PAwRcSt9XodghxtMwhx3OfiZ8SvjXviIgt7jHX0/AM+n6yfT6VA+OA7xfcVP3uWBW0g3Gt3P9xQPNHv4k528K4pGSY8P8i+65+oJOkLBl+ibW1fP/GvJEL1ucSL/yBX+3/9IW2vQqMd+9WqPv+zH36s45bORlp/6jPx87s4fjN9DyckJLyn8biCwl+V9PWSvuXqv3/FHv/vsiz7L3QZQPP5kr73rRzQWwLceQDBKlqvHZCMZrOpbrerdrsdFd1KpaLDw0MdHBxES8VyudRwONRwOAz7swchQkip/tJnj9jQbDZDJMjzXPP5XMPhUKenpxqPxzsVeW9bcJeDhyMy2QFS49dPyB/jASGikEFeV8yDYDwjJBHy5GKIr7GHBdLDXq1W1W63JSlGJDabTXU6nRBlaOvYbDaaz+caDAa6d++eXn/9dZ2dnYXQA6hY03LCeTM5wqvOnqvh7gdIXrHFg9+7YwHy6A4Fd33wWlogPGSQ+4QowH3gfnr/PiQ2yzJNp9MQFLhffl9dMGPd5vP5zqQNiD7klse4ZxwHkcBFAPaVv9YzHXx/ItRApqfT6c7EA3dtcM4c08Mh+fzwmfHPqYuB3tog6SGBhGP7feZe8noPGuV9aAGqVCrxmfKMFUQk/+7wdhLPVGE/+DncYDzx7+KEhGeF7Q/+sJRl+qL7H3jWp/Kewvbeg0eKCZKUL5fSD3z0sY574789nxzS93BCQsJ7Gm9lbOSf1WXYzFGWZZ+V9B/p8kvzL2RZ9uslfVrSr5CkPM8/mmXZX5D0w7r8f8lvzt9Gmi0EHTs4lXaIEVZviAIkEYLBhAD6yWu1mg4ODvThD39Yt2/f1nQ6jWMiEkA6mY5Qq9WitQDSNJlMYtwjgYT8t1wux2hEyBjEHFLihBfCBclhWgKE1u3qEGYCBM/Pz0ME4bW4G3BLUKH1CRL01HuGxNX92gm0hHA5MWe8INVfztvJ2Gg0itcPh0Odn59rPB7vhARSCUa8WK1WO5MYWq2WGo2G6vV6tK0gfnCPqB5vNpsQfRAo/PpZX+maMHteBbkRuBpcHHAHAqR+NpvFe7FenD+tEARO4vYo2ujZpwgz/L7YJkBrAVV8CLZPW/D2Gd9XrJVPMSk6L9g7bvV3Z0ORQHPerB+iD+vqggTXyXpy/X4cxD8XSNyF4fuD57Iu7FPuK++HOMd3ABM8WB8XhyqVSuwjd6MgnLiQVZyq8qzxufwuTkh4ZshzrT/+yWd9FgkJj0T6Hk5ISEh4GG9lysOvfoNf/dw3eP5/Kuk/fayTuSJHkGqIValUUr1el6Qg9g4n7hDwUqmkarWqo6Mj3b59W81mU4PBIAiQ9/dDdqjgU4HHeeC5AwgOkPYsyzQajTQYDLRYLOJcXTzAwo1rgue5+4DfYeUnl4GWgul0GhVvsg06nY56vV7kGFB5pzceQYF2CMZcMprS0/NdSACsIdkSXlWHTNKuIF2SY8QEXs/zERQgzIPBQKPRSFmWqdvthqAAIMeeF8D7ch880BCCjLvCcxP4GVEAcoqg4JVr3pdzpwJPxdtJLtdw+/btECoIx+QeNRoNjUajaAVwNwP30/v1cSV4OCL7mucgdCEIuQsDUr3ZbKL9xo/tLRVO8ou5C4gjLiYA7om3oiACOtgjuH0Y58r7cx3sRa4RkcX3m187IgJ7krX3vA+uw10MLoh5Bgq/5975mNebJCh8Lr+LExISEhIeRvoeTkhISHgYTzqU8R2B6jPkw1sZIME4FZzgOLH0x7Hst9vtaGug6jydTjWdTiPQkOoxYwvPzs60Xq81mUxULpfVarWiek51k3YHCBkj/mq1WpAizrler2symewQY0lBMLGLQ8xorWi1WtG+MBwOdXFxEcLA4eFhjGv0Kr2PMoQkIl54ewXv50GTTsCo8CJsMLEBkur5DHt7e2GZh+iRG+EBhFSIuReNRkO9Xi9yCAg6ZAJD0TUBuS+Xy2Hh9zwL9gOVZgQIBAXs/1T8IbNe/ccdA6H0sYeEdkqXrTCIBdJuPgRiDA4BRAPaMXhvBAPOzUM5+V0xGFTSTgsF+571LJfLsR/dEVM8RxcG2Ive/uKOIHd8ABelcHqwhjwXsWE2m+08xzMOcDe8UZAix2Sfcv1kNeDI8BGpRYcEYoXvDw+B9NwShA5ft4SEhISEhISEhISEh3FjBAX+ke/ks9gDXa1WI+fgUeF0HAfiwvQCHzMpSYvFQqPRKNoUIN3dblfNZnOnQlkqlXbcAp5mD2mTtEMCvV+btgVIoYcJIhxAvLzVoNVqqd/vRzsEAgHkrtFoqNvtxvq4fd3PvVqtar1eh0sCcaJY9ef5VNax+kN6W61WCDeEU3qVebVaaTqd6sGDB5pOp0HkfS08A2Nvby9GVdbr9XCgkCcwHo81Ho9DnPD77VVtzpusBgi5dJ3qzzX56E8XfjyjwQWFi4uLnUwFhAMcA9PpVOPxOMILIc6IHLRucB6tVivGi3K/2S+8B+Mn/V4g1pDH4AKaCyM+HYJ96kKMuyNwD7hA4qMTuV6upUisi+GG7FvggaE4clwUcFdM0RnD8f1xHAXewsK1cj+4v7T4sO7+HeLfNe6A4PkuhnBfExISEhISEhISEhIejRsjKBwfH+/0m/toRu+pfiMLsocKQh7yPA9ngaQQFV5//XV98pOf1MnJSZDPVqsVZO78/FyDwUAXFxdhW0cQoLJPSCPkxu3fTrKq1Wq8P0GGtCD4ObkzgWyEZrOpLMu0WCwiX4EKd7vdDoEFYgfJ3Gw2qtVqqtfr0brhYwNpVYBM8lr67p20kleAI4C8CW+zmM/nOj093QlibLVaO5V4nsv6UU1vNps74wvPz8/jv7PZTFmWqV6vBzFlnYoihYdDYtPncUg5v4eEs19caKjX6zs997SE4PqgTQL7Pg4MWj84R6/q04bj2QUIHe4+wGkiKQJFceQwjtSr9EU7P1V4RmryuXDhAneCtxWwhj6NgzV0h0vxPdnnrFcxZ4P9DjHndy54FIUD6VqsKLZFuMDorymGP3rIIucmKVwSrMujRC7uezGvJSEhISEhISEhISHhYdwYQcHHz0FgPJ0eN0Cxkgjc8u429Vu3bu0ICovFQicnJzGykMo25Bb3wtnZmSSFpbpWq+2QFSq4ECYnufyhXQDSTYgflnsn0ogJOAm63W70whMiSfAetnWcC5LUaDSCSOZ5rk6no1arpfl8HsLJcrkMIcPt3U6kIGdFouVBj4PBQJLiPQaDgYbDoR48eBDBllTjWXPAfURocUJKFX42m2kwGGi5XEaLiedcSNf99D4iknVE4KGNwAMQ2V9efaaijXOA62cPUf12BwSCACLTZDKJcwS4ariPhDG608ADLz1Q0gUCxATO2cUod/J4CwoiA0KLZzEsFosQolxM4ZydsLMfyNLgnPmdE3TWtiiS+QQPny4Baed93RXhgZsuInoGAveaz2CxjYX18tYbju1tMu6m4To4t+RQSEhISEhISEhISHhj3BhBgaq1B805GSySuEeBCj1EudfrxdhDiCiVZq9qQkQQLs7PzzWZTNTr9dTpdHaqs5wTwYLD4TCq7k5YIcqQH3dXlEqlsL4jAtAGAXGDGM1mM52fn+vs7Ex5nqvdbkdbBpMpSqWSFotFECdJMfGiVCppNBpFK0G32w3hwl0ghEVyfm67R1AgiBDyfXBwEMSNinalUlG73dbR0VGETVJlnk6nQfLK5fKOCFMqlcKFgnsCcYVJFRA/zoX759kRtMT481zwQSiAFHul3qvrCBVeuebvOBDYG+v1WqPRKO4ZghIBnUwN4bmSdnIMcMK4bZ/WBMg/5JwwSsSDIqnnmth/vBdribDknxM+WzgC3AXBc9yhw/U7is4cwP5xIcCdNIgUfh4IIB6q6ZkS3t5TFB8QVDyzgs+/T43hmjy7gvfxc0sZCgkJCQkJCQkJCQlvjBsjKBCK6BZwD9OTdufZu6gAIb64uNB0Oo3WhW63q3q9vhNmB6FkVv12u40E/+l0Gq0F3gMPkZIURJhK/Xg8jqqrp+NzrvSRUwWnqk7LANVVD+DzQDmq9YPBQO12W71eT4eHhyqVSppMJtE+4ZVpD3ys1Wo7vfOsL4Q5y7JwTpBHwB9cCRAtchK4PsgpBBiho9PpRN6Ek0/IP5V3LOjFNgsf38caXFxcROsJ1Wwnxpwf78H9Xa1WGo/HcXzyIdgLvJ5gP66V9/EqtbtofG1oKSHIkPPytgr2DQSYfUI13fcQr/NwSPYO4hfv4YGMxc8TkxNoWZEuMyqm02m0guDm4HPgZF1SjLnETcM6uBvBsxB4zPcga+rtEu6icHGINWB9eT5r4t8PLtzx+qIgwfdD8blcp7dVIIx50GhCQkJCQkJCQkJCwhvjxggKXn32ZHknWE4IioBgDgYDNZtNdbtd9ft9lcvlndF3HAOiJWkn48CFBNodvLrtwW/n5+cajUbqdrtqNBo7oY2Q7uVyqdFoFHkAiAmEJXJcSDbEkGruYrHQeDzWbDbTiy++GH9wKFDpdqs+5BPS5dZ7CB4V8TzPd8YLumsB8g3Bms1m4SSB7NKnTgsHa+Sksegc8bYB7pu7BzykkAkAEFtIPO0fOAw4Z0ixh2DiSKF9AkGC8+Eee3Cntx8gCjlYd1pkeGy5XGo8HoeQ4uvnIZLcp2IuAIKFpMhkYAqDuwR8yoM7X7gGWmu459JutgJCgE/K4FhkRHBPECQ8K+FR4kFROPAWAklB0t0NAOnnXtCq4nvA38tbcTxgk/uEO8PzQjyssnj+7AdyWjzHxd8vISEhISEhISEhIeFh3AhBwYldtVoNgkhCvgfcvdE/8CFBo9Eogg17vV6M0KOKzZhHSUGSfNycB+k1Go0grcUwt/l8rtFopPF4rH6/r1arpU6nEy4JSDQuAqqxhCXiRPDwPc+PaDab0cpA4F+329VLL72k27dva7lcajgchquBY3ilHvIIQUOs4fpqtVqcm4cvQrRoN5hMJkE8Ia3T6VSDwWAnLNP75xEpWGvusXQd6OcCA/eByjnk23v4nTB6iwLtIj4akDBD3CGIIIvFYidXgH3HtbEHnOxCTJ3oQuzZBxDT2WwWAgZiCPfV3QRct7spuH/cO7ffszY+xcBHO7JvaV3hOr1lyEd+4jBxtwbv62MeEVvYN+wt/+zymeB82V+4PGg3cNeGhyKy57x9w/extxpxLxAU3GFQdCK5WONiQjG/gmO5yMVjyaWQkJCQkJCQkJCQ8Ma4EYKCpKgy8ncnWLQkvFm10NPhO52Obt26pVqtFkRmtVpF2J90bceGjHqrhVfc6c2nkildV66xqzP6EFLL7wgW5Ph7e3txPR6W5zZurh07/Wq1UrVaVb/fV6/XC3cCa1Wv11Wr1VSpVILcc85Yx/njxN/DDD3Ezy3/CDDT6TTaGzabjc7Pz4O8TafTWGMqvaPRSMvlUpPJRJIigBGi7MIBBBHSXLTdIwCwnlTeERnIdCi2fnhLhLcwSNeE14UJh5NYxAIP2CQMcDwe74giEHHWmuP4WEr2Ds9ztwzBlJBfn8TgWRxkCSBa+BoxuhIyzzogHnlLCdfmx/K8D0SYn6oFAHLu7SsukrnYwT32cNWic8BDNN3RIWlHZPB8Bo7HH86L9/U2HRcQXJhxp4VfW0JCQkJCQkJCQkLCo3EjBAVIjaTIE4DwOlH+qV7vlf3j42O9+OKLOj4+3knmH4/HOjk5CQcEr3Uxw5P9IT5MHvB8AxwUVPUnk8kOcYLIeWVW0k51mvejeu0kiwotJLDZbKrX66larWo8Hms8HsdaeYCgk8pGo6F6vb5jW+fcvSrsVVt3i0CoqfTPZrMQD7gfpVIpxAWq4JwDIYyILdjwWbtarRbCCO9bDO7jnBEnIMqINwgCCASeOYBLgveSrsUqF3WAixvS9SQJjk0eB8+F/HNeOBZKpVIEYiJO4ZLhPhWnXUiKCQe4C7yKX3TR4DZBPOG5xSwNdxS464J75y0ETqrZ6/wBOAJ4jYsM7F+f5MDngfP2UEXgBJ+cBD5DRYGhKEQUCb+3QvjvXVDxzyifzeJx2ZPJoZCQkJCQkJCQkJDwxrgxggLEn/FvVKwZhyjtVg55ndvfW62Wjo6O9MILL+j4+DjG9UmXlc3T01OdnZ1F0jsEBoIEoUBMoHLpVm5Idq1WU7/fV7vdjskRELxH5RFAXHArULGWFISdvnvEBNwR+/v7Ojw8VKPRiCkGhEdSeffKN6R0NBppu91GZgPX6cGGrLNPTuD3HvSHDZ73pdWBgEpIIH33iAt7e3sRQOm97AQCIn64qOM5FJ5DwB8XPbwfnvV3UQNnAdZ9D2b0UENP+GddXGRiKgftDPxhMghrstls1Gw2d87RhRNvaeDY3v+/XC7jPnibCWtLxgD3xMdUuhjiLg8+H+6K4fxcvMEN4NkZ7Em/P57PwefGhQ8cGZyHO3mKgY2sB0SefQrBdwHO3S3uHvGWJP9u4Nz8Hntbi+8Z9hAiIuv4UwmZCQkJCQkJCQkJCe913BhBoVqt7uQbSNfElh7+oqDgr8ed0O/3dXx8rKOjo6hSM75wOBxGlRxygY0dUsWECCc+kB1IPjkI7XZb+/v7Go1GOjs703g8DjHB7fhUpJvNZhAmKvhMpXCig/18Pp9rPB4HoSNTYTwe6+zsTIvFQkdHRzutAlSlLy4uYroBgoO3OkC0PIiSKjzX7TkH0rXwAdmcTCZhyfckfV9fztt71T14kevcbDbhIiCk0Ylu8V57b767BgiK5DU+4QIRAHKPg4CsCG9ncQcLox+lh0m7CxG4J2gvgbBC/L0VA3eCV8qpxvM4ogNr6G0hxfUsugZ4Dm0VTp5dbPA1JrzTAxER3YphiLw/a8JauYAGvLWH+8Tz/TPmGRgufPj0Bnd9+HsVWx3Yt75O3FfWphgi6YKX35eEhISEhISEhISEhEfjRggKbnPnZyq7HhAnaed5RbtzpVLR4eGhXn31VbXb7cgfoLI8HA53ggMRFBAFLi4u1Ol0dqrnkBNIDc938oVQAXGpVCrqdDoql8saDAZhYa/X62o0GkHG5/N5kBeq6KwFdvrFYqFGo6Fer6dWq6X9/X2Nx2PdvXtXq9VKBwcHqtfrarVaQYo5X6YN+BQDyDWuCqq+lUpFzWZTlUolRALpukUAQosgQQWZvAWfzgGR4/0gZy5Q7O/vB9GGpCNu0Cri9xsrv9v/3b0gPWxr5/UusnBeVPohps1mU9PpNM5Zuu75Z3IEQgXXQd4G5wF5lxRuAkaLev6EtyB4e4ILEcVRlBB+Kuiee+GfBXed4LTBcYAYhMDEevjnDrHBz4vneFaE5w0gJvm1u5vB2wac+PuxeO+iqONuEB5z0u/Bkn6/fS/yOHkVfP5dvHQB0UWxNxIxExISEhISEhISEhJuiKAgaYeU1Go1NZvNcCdQ0X0UIALlclmNRiPaEPb29sKG3ul0olLsM+drtZo6nU6QTW9/4NiQDuzorVYriBPWdUb7easDJB7C1Gw2QxCYz+fRQ18qlcLm7pkFtAJAgCuVirrdriqVikajkR48eBDOikqlona7rel0GoJBnuchciAacG5Uv+fzeYgunU5nxxnBcbzvnVaPIiF0QcEry5BjrPM4AxBlipVl1pT7QyaCEz/Wo+he8CkZiEYQf58YAZmULl0kvV4vWhL29vYicNGzL/w+eyuEBy+6PT/Pc02nU83n8xBt2KN+HbglWD8PKwQ+wYBj83r2l68n4y0rlcobtkY4Scd9wH9dfHEByYk6cCeAZ4G4iODiTrFNwvdjMavAn1cMK+WeuAPIc1fcieF7gZ89O8RdEn5exfNISEhISEhISEhISHgYb5o4lmXZt2dZdj/Lsh+yx741y7IfzbLsn2ZZ9pezLOtdPf5qlmXzLMt+8OrPH30rJwHpxepOe8H5+blOT09jYgAk6FFko1wuq9vt6vDwMFoczs/POd8glO4+IKjQq6ReeV8sFppOpzo/P9dsNotqL4Tm/Pxc5+fnyrJMjUYjSByVZKrvPonBq820W5CJQAXciXK1WlW321W73Vaz2VSe59Ea4in3rCPWcR8j6aMLverrpBSSNZvNIqcBAoYYQOWboEzeywUWJ3huled8CZeEAHMvfDqFtx8UK9zcaw/AfJTN3l0s3uPvpLJer6vb7erWrVvq9/tqNptqNBpB7r1X350QrB37g6kKCBGj0Ujn5+eaTCZBenFWeAXeyapXzH0ShQsiLrYwThTxij3Evua9irZ+H5/J+vh1SgpBwYNHuV+4GngNQh4uDncaeAuMf15xoHAc9p50PbXERZZqtRqfLz+m790ifH/4+3PvaOdwwYO14LPzKKHjWeJz8V2ckJCQkPDGSN/DCQkJCQ/jrTgUvkPSH5H0p+2xvyXpd+Z5vs6y7D+T9Dsl/Y6r3/1knudf/nZOAiIJCKCbTCY6Ozt7yGbtzwONRkOvvvqqPv/zP1/ValXD4VDr9VrtdjsqwVQ5pWtLNcTXxwh6Yv94PI7cBchNnucajUaqVqs6Pj7WrVu31Gg0gngul0vNZrNI9m+1Wup2u9rf39dsNpOkGEmJi4KJBV5Jh9g0Gg01Gg2tVitNp1ONRqOdSj0E010StFhAdD3rwAkqIgbklMkMEMbJZKLz83ONRiOt1+s4JwQgb1Xg2sihkBQOBa6JtgraE1wYcfGDfeHChGcyuMsAkYU14BwQVGaz2U4rA68tlUrqdrvq9/va39/XYrF4KOyP83CnBJMzJIWzgWtw0cCJsqRoYeH8PH8B+Lr5NBD/rPge8XwLF9y8NQghqFqtRtsDZJ17BcH2XAryHDwUsdg64OIZQHzwsEPOw4l8MZuB6+fzyDr4WrgYgADA+3Fv+Wyw/u4g4b3cZeM5EZ6vcAPdCd+hp/xdnJCQkJDwU+I7lL6HExISEnbwpoJCnud/L8uyVwuP/U378Xsk/d/eyUlQdaYqvt1uNZlMNBqNgpS7NbkoLJRKJfX7fb300ktBvFerldrttg4ODuI4niAPqYTAuluAloDhcBhTDWq1WrQ7eLI/tnkqx5PJRFmWhaCwv7+vTqejer0eIXtUWjkGRLvYP+65C/V6XdPpVCcnJ1GJhlw6MfVRh2QOeHuAEzf/HRXfxWIR57larXT//v14T+lSuJG00+pBNdkt5DgzyB7gtY1GI1oCyJfwUYHS7mjCYiYBx4RkStfjFhFPGBNZLpdDKCHIj+o4v282m2q328qyLMSU6XS6kyvgAgwVeUnRRsNe4hpYhyzLol2nGH4IOGfuOS4X1qIoUvh5eUAjj3lFHUHFnSy+93mtu0h8fGKlUtkZacljxRDRYrDhWwHChE+M8GkjPnml6FDx9/K2Gm8PwtnhYiDX6Z8d3pdj+1r52t4EfC6+ixMSEhIS3hjpezghISHhYTyJDIVfJ+nP288fzLLsBySNJP3uPM///psdgH/EQywhYvSs83tJD1UOcR0cHByo3+9rvV5rNBqpVCrF6Mj79+9HRZSQR1wQ/J0UfzIF6H9HFMD6DSnz7AICEXE/uFDARAjpmshkV4F+VHyppgPv+UZQIPzxzp07Gg6HQfx8VCXk1W32OAo4Pr9zccYrs7gyIMp3797V/fv3NZ1OY6oFDg7W30mw96/j9iC7gowGXAPkSCAAFHMeWAvIHcIAAgrv4QQeUtpqtR7KKJCuCbwHf1KlHw6HD+0z35vcD1oMptNpiAp+3tj5vV1B0k67AI4IiDpCSbE9wSda4JRgXSDefB6o6ns+AevF+fNYcQoDzgTuqQsW5JF4Ow/vw7m+UQ6BOwy8XYH1l66dC+64KIZr+vG4Fj6Xft6e9+A5CcVcBz4H3u5RqVTifrIGN6nl4S3gHX8XJyQkJCS8I6Tv4YSEhPcc3pGgkGXZ/1PSWtKfuXrorqT353l+mmXZz5T0P2ZZ9qV5no8e8dpvkPQNkmJufZ7nqtfr2tvbi2pxMTit+Pe9vT21220dHx+rXC5H3kGv19Px8XG4CSBjHBenAYKEjxUcj8cRpudkFqFjuVyqXC6r0+moVqvtEDCcCt5GwWNuS+fv9GxLl0TMq7/09LdareiRPzs703Q6jQBARi0iAPikAyq1HiTpFnsquhCq5XKpyWQS1z+fz3V6errjEoEg07vPdAgq3xBGRAfvU6e1YrvdajAYxPQOJ7u4RBAhOGeq6rgoqG6zR6rVarwP7gMf1SgpxAwyJiCL/N3HFjop39vbC1cC+xO4c8HvP/sWdwYVcvYJa8kecLeBt5z467wdhGN6iChClQtuLk65qOShjKwN1+vuEF7v1X9aezh3UAyn5L04N59IwXM4h6IToZg9gZDnYgVZHi7ouEOGY3q2gwtxCBvcO29VQdh8lKhxE/GkvotranyuTjkhISHhXYX0PZyQkPBexWMLClmWfb2kXyzp5+ZX/8rP83wpaXn19+/PsuwnJX2BpH9UfH2e5x+R9BFJqlQq+Wq1it5s77PmH/mPsh5DcLrdrprNZggH5XJZvV5PzWZTr732WoQMQpbdji9dhxnu7e2FgwGrdHFsIkSk0Wio2WzGVASmUlA5hgAiaHh7AaTHq+pY4Z3sIi7s7e1pMploMBjo9PRUm80mnAu0NkiKcyEvAteFB9/xB4HDK9ZnZ2c6Pz+PdZzP5zt985J2eushbIgzV/fyoRBDfqb6u16vY9Qma8vz6NVfLBaq1///7Z1bjGzrWpbfvw9VXedDH+ZhrclaG9leoDFIDDHRIBdGYN9suYMbSTRBEkg00QsIiaCGC43gjQkJBAIahZigkXglGg03IqJuYCNu2Zu92K65evapzufqruFF9/P1VzV7nhZzdVezvjfpzDmrq8b4xz/+Gpnv+7/f+xWeC89DLPFEGnEBYspYyYfAeUF2QKFQWMonoFTBlx0wJyldBm4yDtwJkGfueaFQUC6Xs3XDHE+n0yXBACBu+JBLf32sed5DaQDXzecQkbwTAXHHh2T6PIXVMELWIsKanxsEEt9Bg/uIE4DXvKDEPfHn9kICc826AByHOYbs83mfEUIOCWIU+SD+tRueO7bWEMVWnzuMjfGsO97ms7iamutT4xEIBAL3BPEcDgQCn2Z8LEEhpfQdugyc+UtZlo3c6/uSWlmWXaSUvl7SZyX9wauOB3HCmr7aJvImMQEiXigUVKlUtL29be6Dvb09FQoFs6XPZjMNBgMjsT693tvmyU3g/Ku7qr4tYqlUsiBCWg9CDGkZSTkFpHM0GtluMeTLE0TIjd81lS6JcafT0enpqabTqXK5nIrFour1uu3oIwCcnZ1pOBzaHEDOsXGzq+87aqSU1Ol0dHR0ZJ0xIJfs/HtyDlEsFAra2tqyeWdecYN4S7mfD4QPXBy8tlhcd9ZAmKEswgshnhBzfF9zj4uB/AvpOougXC6bq8N3UyBbQZLN/WKxUD6ft+4avtMC50Y0QbDhfnMtBFlSFoKQA/GlRSpiFsTYk1t/fX7dIyhA7rl+L2r43AbGx4+/DsQr7i3HoOsG8yJpKbeDY1Byw1yvZj6svs6/XyZ2sD68WOCdBVx/LpezNeXn25+b83Is1jbCHPPvS4EY4zrjbT+LA4FAIPBmiOdwIBD4tOOVgkJK6RclfZukvZTSh5J+VJcJtnlJv3r1H/Vfz7Ls+yV9q6R/kFI6l3Qh6fuzLGu9zkCoxfd2+ZuEBN4rySz/hP3xGchSp9NRv983K/94PJYkC5Zjt1m6JO39fl+DwWDJWu1dEpDAcrlsVmuOCbGCgPiUe3IEqOeHwPhjr+7c+vMNBgMNh0MTREqlkprNpprNpnWOIAMA0r67u6vNzU11Oh0jauzE0naSMc9mM3W7XbVaLc3nc1WrVdVqNSPk3m3gSwgQD4bDoSaTiTkmvBiE+EEmxXg8NlGCXezZbLYUBCnJXA8IMMyxb+vJ/eF1Pov4QTtHxkF5BnZ25t63YfTXiJhARwYvdLHGOD5jQCTwXUtWuzEg5CBCUTaD1R6HCPcMsEaY09X8BMQx5gWRxJcdMFa+J750hXkhlNJ3bsANwHX7Thz++lfbfPo58BkKCBcILP4zfAf48WIeJSuU8fDc4PuFw4R1uDoW5gfHiC9LQgTD4eAFv3XAbT2LA4FAIHAz4jkcCAQCz+N1ujx8zw0v/+wL3vvLkn75TQfhrfPsLlOHLmlpV5N/Q74ajYa+7uu+TvV63UjQaDTSaDQyhwJ5COxg+iA+CMR8Ple/3zfy5XdJsfdjmYfsciwyBEajkXq93pIzgR1jrOy+S8HqtW1ubpod31vfu92ukd7ZbKZCoaB33nlHzWbTAg4pi1gsFmo0GqpWqxoOh1b+gJDhSx8ISRyNRup0OhqPxyoWi2o0Gsrn83YtuATIWaCcolAoqNfrWRlJo9FQoVAwV4B0mTlQr9e1sbGhdrtt5yXfAcHFZ2X4zgoQRr+b7tsm+pBMCC0CBUKOJCtd8edlHlgb5GOwBryzwJNl74IgtBN3gbf644pYDTH0YoKv3d/e3l4SSJgn1hznpzsF928+ny+VmvgwQUpafE7B5uamvS+fz6tYLJojxZep8D1AgENU8e4ELwxQCuPnbPU760tLvOMAEk8Jz01z550JPvfCr4VCoaBCoWDH9B0feM2LNNxP38mDOVp97tw1buNZHAgEAoEXI57DgUAg8DzeRpeHPzKyLLMa8n6/r16v90J3gnQdxlgqlfTuu+/q0aNHKpVKOjw81GAwULFYNKcBO5fdbtfaR0LOIEjsgBKmCGEtFovW2YBdY5wF7B6Xy2Xl83kNh0MdHx+r3+/bDnSpVNJ0OtVoNLJjQ4b4t3S9Qw6xowOE382G7G5sbKher+vg4EDlclnHx8caDAZW+iBJe3t7KhaLRv4gxjs7O+Y4QFhgfKulIOPxWJ1Ox+z0XPdoNLLSjJTSjcGKkLHNzU2bQ47jiSWE3peFeEItyUou2D2G/EnXIXx+F5rzehcD70WwQoDwZRoQSyz+EE/KT1gX/rPMJaTXiyW4K5gXv2bIK/Cklfd5Es68U47AWkUEIGvACxnM2XQ61WKxMOGBeUMMgdizS88c8Dnpuq2kz5Rgjn35BOPHOeGdJxB+L6B5t4bPo/CuBM6JaMJ8ICggxPgSCUoY8vm8fW+YUy9IcVwvHiJCUabD57zTJBAIBAKBQCAQCCxjLQQF6bqOvdfrLe1Y3wR2TavVqh48eKBGo6HBYKDj42MjERA4XArtdlu9Xk8XFxdqNptWMw1RhdyyS+vr7SEe2L4hGc1mU0+ePFFKSaenpzo9PV1qM+k7TCCA+PA3dk7JE4CYekeDd1BMJhPt7u6q2Wxqf39fo9FIg8HAiNBisVC9XjdBodVqWTeKZrNp+RQQ5fF4bA4On3ewWCysWwYEmBKC+XxunQ6m06nOzs40n89NKPFiAiUG/K5YLGoymZh7wJcI0Fqz3+8v5SuklJZKYHwJBDvQnkBCGClfYEcfwarX61npCfe0VCrZdbPufHnAatkLGRTSdYYDAgRlO8wnx2AsPphRui6dgGQjyPAac+fzCgqFgo0fMYaMBMQDxoIQMJvNrAuFd8iw7jieFzEg/ByH9/txeoeF72BxkwOH90DWuad8XxBZvDPJi0e4H7iXq99b5teXUSD+cO58Pm+CC2NDbPHdNciE8KJUIBAIBAKBQCAQWMZaCAqIAOPxeCkY7WUoFot69OiRms2msixTp9PRYDCw2mpfF93v920nv1gsGiFmh9mTG7IFKpWKSqXSkoAgyUhws9nUN3zDN2h3d1cfffSRPvjgA52enkq6tov7XXaC9CTZeRE1KKWADHmBgF1/dlHr9boePHigXC6n09NTDQaDpXmhXSYdLkqlkh4+fKi9vT3rZsB1+nIFX6/e6/XU7XYlyVwWdKrgGBB/XBB8FgJHp41Go2FCA6TRh1763WaC9abTqWq1mu30czwIImJEqVRSuVy2c2N5984A5n1ra8tKG8bjsSqViprNph48eGC71Z54egs8IoPPJeA+Q8YpqcApAjlFjOBeeneGt/bzewIjuWa6hxDGmc/nbY37Dhw+cBOhxe/iM17EF0ApzGqXFO6TLz/ymQveSeBzB7xowrx59wpiAg4c5oQSEJ+BwntwYKx2w2COuX5cIb5Lhv8e8V7ujxcQvaPBh3+GQyEQCAQCgUAgEHgx1kZQ8O3pXoYsy5TP59VoNPT48WPt7Oyo0+mo1WpZOUClUlG5XNZsNtNkMrEww8y1e8zlchoOh0up8b4cABLHaz6crVAoqFar2TkODw/V7/eNtJCbABlhZ3WVOGKvn8/nqlQqVlLA7qnfpR+NRnbuarWqyWRi72VHNpfL6eHDh0Y2z8/Plc/nValUlrID2H1lTthh5zzkKdA9AwLtW2dybq6ZsgyO02w2tbe3p52dHRMdPPEmcwBCSYbFcDg0Gz5k0JNJ5nVra8vCOH1bQ39Mrplxd7tdy5k4ODjQ3t6ems2mOWPI2ADeko8wRakKu+reJcEuv88TYF17EUG6Fp0g2uye407wu/a+lIIddsbGfWFuKNdAqEG88WURPjiR7wPuBV5jreKU4b4iYHjxxF8L1809B15wYs16lwNlHd514B0M5XLZshHISOHZwXeO0gbmxZfHrLbtRHTg2cOckWOxrjkKgUAgEAgEAoHAOmEtBAVJS+TlJkBoLi4uVC6X9eTJExUKBQ0GA/V6PQ2HQ+XzedXrdUvyv7i40GAwsF34nZ0d1Wo15fN5ScvtKL1dm3rywWBgtf9Yobe2tlStVvXOO++oUqmo3W7r5OTE3odAwJj5nHTdbg94O71vz5hlme2085npdKpyuazd3V1Vq1VdXFxoPB5rMpmo0+kstcvc2NhYElF8qQaOCEoPIN38jk4MlAJwPT5IDxKJ68C3WVwsLttJ7u3tqVar2X3d3NxcEnnK5bIRQch6u93WxcWFarWataOUZLvyEER2mn2XCcIqcZ54Gzy74ogwuVxOjUZD5XJZp6enarfbevbsmYVP+u4NpVLJymYQoCD/vtzAiwkIUBBr1jWCCyUMCAH5fN4INeuD62PHHJeHvxbvbPElJAhYqzvxCDqINJJUrVZtl342m2l7e9uIOzv/rEPGyz337g3/PfLnhZR7ZwHHRmTAwYMY4NtH4johdHUwGFjpjW+t6l0J/vuFCOIFBS9CeMGCY/huMSEoBAKBQCAQCAQCL8ZaCAopJSO4N/0nHjEBYvLo0SPVajULDux2u9rZ2VGz2VS5XFalUrHa+36/r8lkYju7WMohYJKMmHgiAfmkTSMiRalUskDE8XhsZQeQJMiO70QAmfIp8hDt+XxuhJ8uE74bA7vm5+fnqlQqqtfrtsM/Go3U7/d1cnJiZRqz2UyDwUBnZ2eaTqeWYUDmASUV0+lUW1tbqlQqZpXv9/u2w10sFiXJ2jyWSiUbjy8t4N5xveQm0NbQiyb8jrnP5XI2x4PBYCmLwdfRs9sO4ffuAO+0IMCP8gzuNY4M7s3u7q4ajYYWi4WePn2qw8NDffTRR+r1ela3P51OtbOzYy01Ca30dn5yCjxZxuFSKpVMuGK+Ia+sZcg7nRwkLTkUECF8BoTvLsH7WbOs39UuCr47BGKBDzpEYPJuA58lwfFWnRS+m4ffzfcdFnwpDb+Trjto8HvGtFpmUi6XresIos5kMln6vC9d8CKPF78QRXy4JK4NLy7w/WScr1N+FQgEAoFAIBAIfFqxFoICBP6mcgdfD06pwP7+vnK5nM7OztTr9SRdlgJQh72zs6OLiwu1220dHx9rNpvZ6+yMejt1oVAwss0YptOphsOh7VrS0YG6/ZSSOp2OOp2OkTgs5942L13bvX2ive8SkM/njZxBLnFXDIdDe8/e3p4ODg6sPeXJyYkODw/V7Xa1vb1t5R2UAUBsIaNc02g00mKxULlcVr1eNxLMn5VKxboIpJQsOd93gqhWq0a2IG50dKjX6yoWi0vEFSJOmCaCD44ISjYIHMRlgJhA6YDPR/ClChsbG9Y+E4HBBzhSF7+1taVms6l8Pq+zszMrWTk+PrZdb8oEpGui7MUhf08g1wR8IjR4QQWXgg8rpNTElx/gZuHaLi4uTATDmeDP40m8F26yLLMsCt91w7c4hWBzj3GXUB7ivx+IEd6VgpDE+ga4cVbDJ/33me+iD4bker34sLOzo3q9rnK5rPPzcw0GAwvbpCwGQcKLVt6Rw7xxbZLsu+E7Y3BvOI7/XSAQCAQCgUAgELgZayMo3BR+5kPgsLM3Gg1VKhXN53N1Oh2NRiPLCPAt4Tqdjr72ta+p3W4bWfU10r4GHSs1ogY2fHbxIS+IDyTgexFkMploOBwaacWGvrpbyvEh0hBIdk+xtk+nUyvX2NjY0MHBgXZ3d7W1taV+v28kuNVqaTQaqVwuGzlkDrhmdvd7vd4SAa/VaqrX6+p0OmYzLxQKKpfLlnRPSQTlJpRQIDiMRiMVi0UrI2g0GqpWq0uiAMRU0lJZwnw+12g0snmCoPuyAdoe+lISn1PhO0CwG0/5ie+OwPHq9brq9bpms5mOjo40n8/17NkznZ2dSZJ9hvWH68J34BgOh5YjQJ4B4/OdGfgMDgVPaiHCnAdXAkR4OBza2vdlB34OIPi+VID1DJnGwUC5At1UVoMhIdLcY8g9jgZEBd+lwYOsCnb9fXkPAsF8PjenjyS7J4zFhyLiQsFlgmMIkalYLJoo4cs6WO/++0ZpCGuD90pa6rDhBZYXCSKBQCAQCAQCgUDgGmv1v2bIhLcZQ1DYvSbor9frWakBO7u5XM5s/0+fPtXTp0/VarXMwo/w4PMHEA8g5r5Noq89xznAbr1Prmf3HCs/Y8myzAQCT8AgmATY+XA66TrBHtdErVZTs9lUsVg0EeX4+FhHR0fqdDpW+769va1Go6FCoaB+v29zRh4BO7wIJQTysbOPMLC9vb20i0spAWQTYsluM8GPBGIWCoXnyJnfkZdkZRk4TMgQ8DvliDc+XI95R/CBOPo5YB3RwpMd6kKhoEajIUkmoviyFd+VwZemQIjJazg/P7cgQ44xGAys8wTjYLwQeWz1kpbGCWH3xBYHBIIOZRi4SHxnA4QtvyYRgcjf8AGfEHjpWpjgczggWJv+OJ5o+44KvhSCcfmSIq4bESalpMFgsBSe6EMSvaOC+4cQgEhGqYh3BDFfq6GOnJfjeGeNd2ewRn0rzOjyEAgEAoFAIBAIvBhrISi8rE6ZunXEglqtpo2NDbPJQ2KKxaLZoyeTiY6Pj3V2dqbJZKJqtWqdH3AWjEYjC/1jR3h1R56MAdr0QWZ8Gj+dCXz9uh/3qh0cYu6t5AgiiBuSlnaPvcsAIvzBBx/o6dOn1t6x0WjowYMHOjg4MMfDzs7Okpuj2+0aMcvn86rVanbs7e1tm1vG4cPzfCcF7llKSbu7u8rlciZOIADgToAgIjBMJhO12+2llpcEH06nU0nXAZlY/ekoIcnCBnGU4G6B2HJf2GUHxWLRrmUwGJhzhZBIb6HnWhEu/L2hft/nYAyHQxOIuN+IGAgziCyrXR5wUKza79mdh9z63ATWH44Fxkh3Bs652nmDc/l2jn5X/+LiwoIny+Wy5Wh4x4IP5oTgEyDpRRK/pjkv5Qi4Ungf33/uO6GRPjCU+18oFFSpVGyd4Wbh+8U6Q2hAOGMdeZHDrw//nGHc3MNAIBAIBAKBQCBwM9ZGUICIAOzPvk6cenJ2bCWZxbxWq6larUqSWfup66/X67YzjZDQ6/U0Go2WdrD9ub3joVAo2OuQjsViYe0qERTY6eSaPAFnBxkbO0SL13xoHJkHkGNcFZCqs7MzfeUrX9Hh4aHG47FlOzx+/FjValWdTsfEhM3NTZ2dnenk5MTqz7muer1u569UKkZGcUH4sgEC7/zc7+3tGbnzpHU8Hi+1V/TlDd1u1+aMdP0syzQYDGwnnfvMLj/EEcIIsfe2enatcRd4sgi5hWATPilpKe/A50hA+CGovv0j9wunCeUMlNPwPj7PGDyZ98Gj3AOILCQdWz/nwIXBNXrhAweOd0F4QceLRJRDkAuys7Oj8XhsxL9YLJq4RHmEL2WAxHtnkHdH+OwKrhfHA+4gRBS+96w1BB2eCYyb+49rBYGAa6LMAacB88gP6wGBxosdvI6w4stkIpQxEAgEAoFAIBB4MdZCUMDCvVru4G3g7MA2m02zS/vabogGdf0E7O3u7mpvb0+5XE79ft+CDiG93kHAWCAcdCuQZOQN4jQcDs2yT223JzQQRsgQRGZ1F9y/h51hiLOvfad14WAw0IcffqgPP/xQ4/HY2u49fvxYBwcHRsJxUgyHQz179kxHR0dLZL1Wq1nuAnOLGNDtdjUej02gwQlQLBaNcDcaDWvdyTUQFjmZTIyAIrIMh0N1Oh2dnJyo1WppY2PDwjVpBQiR9vkDOBcgf5QX4CrAzg6pZazMAbvqPoeB+5TP51WtVpdaLK62C/RlGj70EHHAtziEhHL9vmTCr21fMsLOOE4b39KR8ft2n5QTMA7p0n1RrVZVLBZtF94LG4gIvrsEP5Ro0GWDLIxSqfScI4Jr8K0zIeC+fMGLBb50RtLSveP6KElCsOA4iDYIdoVCwTI1fIijd4XwWeaXPxkzziCfgcL62d7etvIaBKsIZgwEAoFAIBAIBF6MtRIUsK4DbOCEqj18+FC1Ws3aK7KbTzieLzHgOBBrSC05ApB1zu/D+CB1ECvqwf0udLfb1dOnT3V0dGTj9TZrjjMajSTJXATUtPsWfXzO7/ZCan3rw/F4rKOjI331q19Vv9+3MoXHjx/r/fff197enqTr3Am6IDx79kyj0cjq13d2dlQul01wgBz2ej21223LE2AX+Pz83JwEk8lElUrFWi9C4s/Pz9Xv921cvu0h897tdtXr9ZRlmarVqrWi9CULkD7mkKwLXALY7SGA3DvuCwIJnTgg1D4ckvvO2sE94EUc3CUEACJCMEYcDauBiD7kkLXlHSiSbOcdQYxzIFT5dbsabuh/eB3CT+aGX/+UmUDyfS4D4hJ5ExsbG3ZffQAk84vAwNrw99gLLaxBvxYXi4WtD8Q6xCjEHX/9vjPJZDIx0RCRAnEFtw/n5R4x7zg5GDdjpoyGZwguhvPzc41GIxO4aP0ZCAQCgUAgEAgEnsfaCAr8CTFhBxOiX6/X1Ww2tb29bXXekswqDTEkxb7X6xmJwmZNuYMPGJSug/MgHiklVatVlctl5XI52/WFTI5GIx0dHandblvHBM7j+9f77gKQRvIa/G63dyJAkhFZfEcJ3AbtdlvS5c50o9HQe++9pydPnhg5RKjARdFut22MqzvGvqsFpSLMPWUBdNYgeHB/f1+7u7va3t7WeDxWq9Wy8g/IIbviOBcgk4vFwiz1Ozs7tmPtyaovOSCfwJckcB+4BggyQhFtL+fz+ZKbhSwDdqEh/ogUq6LB9va2ORi63a7NS6FQsDwMyDoEGwEIFwH302dqeCHLdwFhvfjrZ05W7y3XAGFHcPE7+75cg5aR1WrVrhshotvtajKZWJtGnzeAc4DvGufjPGRlIBrwPr5XYD6fW8kNzh8EQ18W5OdoOp1qNBrZ84D1S/6CDzvlXD4fwoc5kqXg20+uBoxy33CYEKQZCAQCgUAgEAgEbsbGq96QUvq5lNJxSumL7rUfSyk9TSl94ernc+53P5xS+nJK6UsppW9/nUGwSw05wB1Qr9etlvzBgweq1+tL3Rl81oHflW+32xoOh+YGoLyBH+rRfV21J/Llcln7+/tm+YfoVKtVbW1tGfEeDodLrRGx97NzDVEm3JGcAl/f71tXYv/2bRMhjtPp1IImcWzUajU9efJEn/nMZ9RsNs3KDelqtVqWnYB4gZsA0aXf71sYX7vdfs5OX6lUdHBwoEajYbkM1WpVm5ubOj4+1h/+4R/q5OREp6enS1Z/HBW0x8S27jMoRqORlTv4cUOsaXHpswAg9N4e70sLCoWCdbbwYgG/W+0a4YUf6vxxIBSLRRUKhSV3A2GJlB4gQmHH9+QekgppLRaLlotAGCHkm/IEsiNwXjDmUqlkDhP/fuladPFCkReqyuWyarWaarXakhuDa8Dxw7VzP3ARsA65r4yN7wbr1peXAMQSBKNqtapqtWrX5UUHSnIQpBD/ENZYHzh6fNtQ5tx3aSA00ztTVp0inB93ByIajonV9ph3idt4FgcCgUDgxYjncCAQCDyP13Eo/Lykfybpn6+8/k+zLPsn/oWU0jdK+m5Jf0rSY0n/MaX0J7Mse+X/yrG9b2xsqFQqqdlsKpfLqdfrqV6v6+DgwHaKJ5OJ7e5CIAuFgorFok5PT5dINAICGQSeQEKgsE4DLP07Oztqt9sqFAra3d3V/v6+UkpLnR182cJsNnuu3nxzc9PcFVtbW0besJj7LgUcC8GDnVXpMmiSa0fgqNVqevfdd/Xee++Z+CHJzg+Zxy7OdSPeICz0+311u10Nh0Mj7dIlSX706JEODg6skwCkud/v6/j4WF/72tckXQdrbm5uWitIwi97vd5Sez/mBvcCn4ecsts9GAye6yTAe3EeQPpwXtDpgO4LPohSku1MY7eHjPqMgSzLrDRAkokDtAzlNcg1JSQ+/A8RwbeMhOxiq/f1/F4MIHyQf5PjAWn3AaCIChB5SgQuLi6MtCNm0GliPp+rWCwqpWTuEq4RwQ7xhFaSlK5wbYSEknmBeMfvGS8Efj6fW4Cn7wBBKRFZFRsbG9YJpNfrmcjDcchOwA3h3RO4QPz30a9N5oa1iHDD528qRVozh8LP6xaexYFAIBB4IX5e8RwOBAKBJbxSUMiy7NdSSu+/5vE+L+mXsiybSvpqSunLkr5F0n99xTmMIBQKBR0cHGhvb8+IDd0EBoOB7dBT988uKmn4rVZL/X7fiIV3CsxmM0uYh3xwHAjV5uamDg4OzBqfZZlKpZIajYZlDnQ6Hdvp990AIMNYsxE89vf3VS6XjayxY+8zInyoIA4MH9RHhwRcAJVKRU+ePNHjx48tqT+fz9v19Xo9tVotTSYT7e/vW3mCb4fY7XbtZzAYWLcAiG6tVlOlUjELPJ0fut2unj17pmfPnpkIsZpjIMl2vxEWfBcHyCdEmx+IOXOMGFIul21XH1HG2+7phkGNPZ0RsLUjLpFZQOtRxsG99+B+YLtHYMDpwnpFfEDc4Fog5aVSaam0gXtPcKEkI+b8HTLP8SDxiEVekIK4UxaTZZnq9boqlYqVg3DuwWBg6300GpmzhEDT8XhswhHrhDmgvAg3gHf20DaTdQxRJyDVt3rke4mQ4ztIDIdDC0+l9Snrn7Xlwxd9iRSC1qoIwPwg3kmy5wNrCLECYW8d20XexrM4EAgEAi9GPIcDgUDgefxRMhR+MKX01yT9pqS/k2VZW9I7kn7dvefDq9deCXYRK5WKhS8eHh6qVCrp4cOHyuVy1lUB+zREE4t0r9fTycmJ1emPRiMjm94qLV3uWBeLxSUClMvlVCqVrFXkaDQyskP9dafTWdr5huRCyiCK+XxexWLR7OZ+13w4HGo0GhlJRtzwrQAhqVtbW2q32yYOQJCbzaZ2d3dVr9dNUIA4UUpwfn5u4YfY/MmbmM/nFsLY7XYtewBCDrHCen58fKyTkxPbyaVcAkGAa/NEE5IGSVwsFrZLDkFHXNjY2DCniXcJFAoF62CwublpdnxfR+9biA4GA0nXoYQ+cG+xWKhUKqlUKllJBbvYvmyGa8BJMB6PjXCTU4Cow2d8RwucBIgnvtSFvAHEJC+mIWqQL8C4cU4geHgbPmPJskzj8Viz2UzlctkcNpQjIAxI1w6D09NT9ft9OzbknrlmvFwTToHV8FHvBuA6EBlwfjAWHAbScktN3AODwcCcKYRGMjafUeJDJ3GDrHaK8R07cEPwLOA7hvDhW776so11FBZuwFt9FgcCgUDgjRHP4UAg8KnFxxUUfkrSP5SUXf35E5L+uqR0w3tv9AynlL5P0ve5f2tra8tIMjkC5XLZghifPXumwWBgO5K+Jz27m9Pp1NwFrVZLg8HAwvwgoQgEEHbIJHXjpVLJyiuk693MXq/3nKgB6YSA05KR3eZ6va5qtaosy6ytIrv6fmdbkrkeKMNgN57r4ByVSkX7+/vmfGAeKBPo9XoaDAZmxacMYTKZWHvIk5MTdTodjcdjK/+AdEH6ptOplUI8ffpUJycnSinZbrWkpTwEdrfpWOBzFGaz2dKusK+597X+xWJxyYVB7gBhgrg7SOH3IgyOFiz1vmsEO/qsF2z8vI6gQTgn94v5YX1BchEqEKMgpFwjx6TUgLXCa15w4fN+DJRWcC2M25d7sEZYg4PBQMViUfv7+2o2m7ajj6MCMWqxWFi7U74DEGuyGhgbO/oIKuRG+JBMnCC+uwluh4uLC8sewZ3jHQbb29t2LygxQDihfAhRhTnjur0Twbsi+J0XXnyHEC9k+KwNzuPX5T3AW30W76j4yYwyEAgE/vginsOBQOBTjY8lKGRZZr0SU0o/I+nfX/3zQ0lP3FvflfTRC47x05J+WpI2NzczCCWtCLG8NxoNSdKzZ8/09OlTzWYzq6umnp/d0NFoZE6Ddrttdnt2pAn4g6jiDoC8YfOnVSQEcXt7W4PBQP1+X2dnZ0t2/eFwqNlsZmF9BM4tFgtzEWxtbanVapnLgGstlUrmBvAhfpBEHBHtdttIEIGVBwcHRky9++HZs2c6PT01l0axWNR4PFa/37dzsQvc6XQshBIS6ctDFouFxuOxBoOBDg8P1e12jfCyy02rP3a6cV1IstID3z3DZwlA5HAj+BwLrqtarS51bfC74YgWCAOSTAxiV5wuGdPp1DIzEJfYgcchQvcCrh33gA+zxDXBLr4n7b7sRbruzsA4uW7p2mXgRRZKBnC94H5gl57OB5KWOjn0+31zzNTrddVqNRNNKPPBBcJ9m0wmSyU1i8XChBLKISjboZyIdcH3hmtnjvhB4Dg/P7c1OJlM1O/3TcBBxPCBjZSA4B5g3rxYwbX7YM3VTAaCWJlzX5bEZxCGmHtcGAiMPuhznfG2n8XV1LwXKkogEAisC+I5HAgEPu34WIJCSulRlmWHV//8Lkmk3f6KpH+VUvpJXQbQfFbSb7zOMWnRl8/nNZlM1Ol0zBY/Ho/10UcfWYAfu5FYtVftyfP5XN1uV71eb+k16uzZCcdWDbnFtQAhomZ9NptZNwIC86bTqQaDgWazmXK5nJUW+FZzuAcmk4llO+CCqFarS84JCKN0HRRIBgHXzHjptECAHe9pt9s6OjrSYDBQLpezXWXGvrW1pfl8rlarpV6vZ+F8vtOAdxQQfonrAXLHLrEky1aYTqc2f54oIib4VoJY2L0QAJGljp02m5VKxUQKX8LiAw0h87wGMSRDYDAYLL2f3Wef8g/B5fq98wASz+4918ma87vfZHoQJomt3ud2YN2HCHM9EHqQy+WsO0gul7MdfMp1ELoIaazVamo2m9rc3LTcCtY94gRuEoIaKXHxGRGUTvg1hJjA947rReRhHslyGI/HKhaLJpp1Oh31ej27N6vZI3wPp9Ppc/Pi3RDMC+sBAYD1yxpBKPIiDt8rHzgpaSnYkucJAsW6uxQ+iWdxIBAIBF4f8RwOBAKfdrxSUEgp/aKkb5O0l1L6UNKPSvq2lNI36dK69YGkvylJWZb9bkrpX0v635LOJf3A66TZUp/NjiEWf9LtSXz37d7YQfQWaEgwO+a0nIP0sIPebDbNPs2uKHZz70aA+EF0IT5YyCmfKJfLFhyZy+UsfHBnZ0eTycQ6T3S7XS0WCwsexFVA+Bx2e3bP+RORYjabaXt7W6VSSYvFQt1u13adcU+0Wi2z9mPb7/f7Rma91Z9dYK6FP1d36QeDwZLLwNfL40DAMeLDDrG3Q8qwrVNLzxz7XXPKCBAUfAtBAgfJIJCuSaLPGKBcolwuG2H1GROeQHq7P24MCLikJbGCbAzcE4grfoe/UqkYcaflIiUk7L778gjq+jk298OXz5RKJbtWrpM1wU+xWFSj0bDyIMpZcOyQfwDZrlQq5kq5+u4aoUe4w7GB00eSiVKrLgE/X3zvisWiLi4u1Gq11G637RzcB67dt9GUrjtyeJGNNUf4KOUtviyCEhXexz2mnax3o/jz+QwL1gLrketbB9zGszgQCAQCL0Y8hwOBQOB5vE6Xh++54eWffcn7f1zSj7/JIFJKKpVK2tnZ0Xg8NqJM6QH14ZAnHAWkz7MbTmcD3zZSum7/trW1pXq9bhkNkDp2Obe3t5es2ZBWCAc705QFQNT29va0u7trrofRaGSZBq1WS4eHhzo9PbXsBIgalnXpmpCx2+3bTnK9ksz+D+mTZDu+rVZL0+lU5XJZWZbp9PTUrOuQVQglJR+cnx1b5sHXvPsdX8ZFjTwWdlwEhDDyGa5H0lKpBMGWfgeZ93NPINfcY2/Bx87vyx/4s1gsmqCCiMS4ILu+PSalHYgTPlMDQcE7EyCyOA8g7dVq1Y7JORC9vD3fd0vAoUGgJ4GHnId7T+mCL6vwYgrX7J0zrDVKSRB6SqWSiXUEW/pSBUg+a5mwTc7JtSAIeIeL79ogSZ1Ox4Q0nw3iO0WwNjmW79pA2CQlK4zbuy5wKyD8rHbI8AIG643XvFuCa5Rk3/F1Knm4jWdxIBAIBF6MeA4HAoHA8/ijdHl4a0BQgBiQxk+rw3a7bUGAED3fk57dyXa7bdkJkBW/I12pVNRoNFQqldTpdIxIEMQGeaV7ga8V59yIAZBaSjWq1arK5bJarZaRs+FwqLOzMwtynE6nqlQqRkQhX767AKQKIuPLOYrFour1uiSp2+2as4FjE7KXZZk6nY5OT081n89Vq9WWUvvJAOAzkHCIK6Qru2qzx864r+/HUp9SUqPRUKFQ0Hw+V7vdNpKM60GSddAolUoWrOhLF6hjZw4g84RJsrPMfYCM8znmp9FomLiRy+Ws/OD4+NgyNCgZoJUk10gZBPccl4ZvB8r9omSFTA86gyD8QNIhqLhWcDrM53NzQ+BsoXSENeaFBIg+QFBDZPG79JQCIFJIWjo2bg2O49t8kjtA+QfuFMQiRC4yGjjGqrCzWCzM2bC6piUtiWWQe9YZ14NQiDsIocCHfCKKIQR5MYjv9Wpgpv+TMhjv1EBI8wGRgUAgEAgEAoFA4HmshaAAIYPA+hZwvV7PSOUqYWC3GZs9ZIpSBF+Tv7W1ZTuzkB+fxcDuLCSSLAAIF0TWtwnc3t5WoVDQ7u6u9vb2lnZez8/PdXZ2puPjY41GI6tRhyxyTMgq9ndpOahPkgkPtKD0Nvz5fK5+v29OBOmyG8XR0ZHG47HK5bIqlcpSq83d3V0tFguzsRcKBeXzeXNy+BZ6kkxMwNVAJsR0OlWtVjNHBGGPCAWQdUpaqO/35SR+h5hrZv5wiuCw8G0bvegwn8+1s7OjR48eqdlsWiBjs9lUqVRSq9Uy10SxWDSBhZIS3yZTuhZC6GjA/eHe12o1PXz40AQVghohv4RB0gLT30ucDWQSVKtVNRoN24nHVTGdTq09p8+Z4H5QEuPFLspMcEAQLujbPHJ+HAHe5cH7+AxjRCBjbKxV76RhHfNZL9QganhBzrsFfAipnyuEJ1wmOIgQKXzeBC4H6Trw0rt+EAdW20AiZPDdXs1qKJfLr/cQCwQCgUAgEAgEPoVYG0EBouprqkejkTqdjpU7UGIAQWHXu1wuG0GBTCEi+M4PhULBdiSxpkMcERT8ediBpoQBAsS5CoWCheZtb2/r7OxM7XbbhAycFdjKvcOCWniyIyCevI6YwS48AXmQMbpbkImA5bvT6dhONe0KCWk8ODjQo0ePVCqVdHZ2ZnPEnEKkGMt8PrfzMq8IB8Ph0OafcXa7XXM4QPalS8Fib29PxWLR7PiQU+aUXWZJdn8JFJSud9KZS+aTcou9vT3V63Xr6lAqlbS/v2/lFQhSzWZT9Xrdau39nAMEFcpKCGPk8++++65qtZp1yaCTRrfbNbcNgYqIATgGUkrW3hTHCSILxBxhbTwe2zhpRcpaJQeDOSb3gqBNyLbPr/COHMI66c4BkWa+vcgDEPoQDRATmL/V+y4tk3r+vrrGIfW4DhAXyOAgQwLBEGcQ69GXWCAOeTGQMfrzSlrKZGFtIZTk83kLbw0EAoFAIBAIBAI3Y20EBb+TCunv9XrWEg/7tq+5z+fzlmwP+YVoLxYL6xSB/Z26cHZvpeu6b+q02Vmmnp0gQIg3IYEQKHIHCJ/Dmu7b7knXAXck6nMtkByIFcSdsXkhguviNXbxLy4uzF7O/HkL/nA4VLVa1cHBgZrNpu3ysmOP62P1PD5PwbeI5LpKpZJSSmq1WrbbDznzc0TAIsIDu8vMKZ01uKc+hwBXAk4Bftfr9ex8zWZTDx48ULlctvPt7u4qn8/r5ORE/X7fuiDQxpPjetIpyTpQjMdjzedzFQoFFQoFczw8efJE77//vjqdjnXdGI1GNh7ey842RJr161sv1ut1bW1t2WeLxaJZ7nFk+HaOkox4k19B2CjrxYeV+gyGVfJPVgjuD+latPHfIdak79KxKjpQtoBDwmcTMLfenYOzQbp2pPg/EUcuLi5M2ENcou0qY0Qo8W0sOT75Evwe0cQLK94h491IhULBus4EAoFAIBAIBAKBm5HWoS1aSulE0lDS6V2P5WNgTzHu20SM+/ZxX8f+tsb9XpZl+2/hOGuPlFJf0pfuehwfA/d1jUr3d+wx7tvFp33cn6bncPyf+PYR475d3NdxS/d37J/os3gtBAVJSin9ZpZlf+6ux/GmiHHfLmLct4/7Ovb7Ou67xH2ds/s6bun+jj3GfbuIcX+6cF/nLcZ9u4hx3z7u69g/6XE/XygdCAQCgUAgEAgEAoFAIPAKhKAQCAQCgUAgEAgEAoFA4I2xToLCT9/1AD4mYty3ixj37eO+jv2+jvsucV/n7L6OW7q/Y49x3y5i3J8u3Nd5i3HfLmLct4/7OvZPdNxrk6EQCAQCgUAgEAgEAoFA4P5gnRwKgUAgEAgEAoFAIBAIBO4J7lxQSCl9R0rpSymlL6eUfuiux/MypJQ+SCn9TkrpCyml37x6rZlS+tWU0u9f/dm463FKUkrp51JKxymlL7rXXjjWlNIPX92DL6WUvv1uRv3Ccf9YSunp1bx/IaX0Ofe7dRn3k5TSf04p/V5K6XdTSn/r6vW1nvOXjHut5zyltJNS+o2U0m9djfvvX72+1vO9zohn8ScyzngO3yLiOXzr447n8FtGPIc/GcSz+HYRz+JbH/fdP4uzLLuzH0mbkr4i6esl5ST9lqRvvMsxvWK8H0jaW3ntH0v6oau//5Ckf3TX47way7dK+mZJX3zVWCV949Xc5yV95uqebK7RuH9M0t+94b3rNO5Hkr756u8VSf/3anxrPecvGfdaz7mkJKl89fdtSf9N0p9f9/le1594Fn9i44zn8O2OO57DtzvueA6/3fmM5/AnN9Z4Ft/uuONZfLvjvvNn8V07FL5F0pezLPuDLMtmkn5J0ufveExvis9L+oWrv/+CpL96d0O5RpZlvyaptfLyi8b6eUm/lGXZNMuyr0r6si7vza3jBeN+EdZp3IdZlv3Pq7/3Jf2epHe05nP+knG/COsy7izLssHVP7evfjKt+XyvMeJZ/AkgnsO3i3gO3y7iOfzWEc/hTwjxLL5dxLP4drEOz+K7FhTekfT/3L8/1Mtv3F0jk/QfUkr/I6X0fVevPciy7FC6XIiSDu5sdK/Gi8Z6H+7DD6aUfvvK/oVlZy3HnVJ6X9Kf1aVCeG/mfGXc0prPeUppM6X0BUnHkn41y7J7Nd9rhvs2P/f5WXyf1+haPxM84jl8O4jn8FvFfZuf+/wclu73Ol3r54JHPItvB3f9LL5rQSHd8No6t534C1mWfbOk75T0Aymlb73rAb0lrPt9+ClJf0LSN0k6lPQTV6+v3bhTSmVJvyzpb2dZ1nvZW2947c7GfsO4137Osyy7yLLsmyS9K+lbUkp/+iVvX5txrynu2/z8cXwWr/s9WPtnAojn8O0hnsNvFfdtfv44Poel9b8Pa/9cAPEsvj3c9bP4rgWFDyU9cf9+V9JHdzSWVyLLso+u/jyW9G91aQ85Sik9kqSrP4/vboSvxIvGutb3Icuyo6svykLSz+jalrNW404pbevyAfQvsyz7N1cvr/2c3zTu+zLnkpRlWUfSf5H0HboH872muFfzc8+fxfdyjd6XZ0I8h+8G8Rx+K7hX83PPn8PSPV2n9+W5EM/iu8FdPYvvWlD475I+m1L6TEopJ+m7Jf3KHY/pRqSUSimlCn+X9FckfVGX4/3eq7d9r6R/dzcjfC28aKy/Ium7U0r5lNJnJH1W0m/cwfhuBF+GK3yXLuddWqNxp5SSpJ+V9HtZlv2k+9Vaz/mLxr3uc55S2k8p1a/+XpD0lyX9H635fK8x4ll8e7iXa3TdnwlSPIdva7xufPEcfruI5/Dt4l6u03V/LkjxLL6t8brx3f2zOLuD9E//I+lzukzR/IqkH7nr8bxknF+vy0TM35L0u4xV0q6k/yTp96/+bN71WK/G9Yu6tOXMdalE/Y2XjVXSj1zdgy9J+s41G/e/kPQ7kn776kvwaA3H/Rd1aRf6bUlfuPr53LrP+UvGvdZzLunPSPpfV+P7oqS/d/X6Ws/3Ov/Es/gTGWs8h2933PEcvt1xx3P47c9pPIc/mfHGs/h2xx3P4tsd950/i9PVQQOBQCAQCAQCgUAgEAgEXht3XfIQCAQCgUAgEAgEAoFA4B4iBIVAIBAIBAKBQCAQCAQCb4wQFAKBQCAQCAQCgUAgEAi8MUJQCAQCgUAgEAgEAoFAIPDGCEEhEAgEAoFAIBAIBAKBwBsjBIVAIBAIBAKBQCAQCAQCb4wQFAKBQCAQCAQCgUAgEAi8MUJQCAQCgUAgEAgEAoFAIPDG+P+Qa93kp56tBgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 109149 30032\n", + " Min thresh = 1000\n", + " Not Sliding\n", + "\n", + "\n", + " Winner = Not Sliding\n", + "\n", + "\n", + "081s_iimage_2959672151786_clean.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADDCAYAAAAya0IYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADwZUlEQVR4nOz9d5xl2Vndja9z762bU1X1dJgZ5YxACCQGCUwwIgibbIzBvGQQIBuDzQsYzGvgJRgMkrDxC0JYBP8AEQwIEQwWIggZSUhCBMURCoM0mume7qqbzs23zu+Pqu+udU/3qHtmuruqe/b6fOrTXTecs8/e+5xPrfU8z3qSLMsUERERERERERERERERERER8UBQOOoBRERERERERERERERERERE3HiIgkJERERERERERERERERERMQDRhQUIiIiIiIiIiIiIiIiIiIiHjCioBAREREREREREREREREREfGAEQWFiIiIiIiIiIiIiIiIiIiIB4woKERERERERERERERERERERDxgREEh4rojSZK3JknyyUc9joiIiIiIQyRJ8r4kST71Cj+bJUny+Ad5ngf93YiIiIiIiIjjhSgoRFx3ZFn21CzL/vSox/GhkCTJP02S5DVJkvSSJLk3SZKfSZKkddTjioiIiLiZkSTJjyVJ8q4kSYZJkrwjSZIvP+oxRURERBw3XG1h9nLHi38XR3woREEhIuLS6Ej6AUm3SnqKpNsl/eiRjigiIiLi5kcq6bO1/wz+Ckn/JUmSjzvaIUVEREQ87BH/Lo64X0RBIeK6w9NqkyT53iRJfj1Jkl88iEj9XZIkT0yS5DuTJDmXJMn7kyT5dPvuVyVJ8vaDz74nSZKvzx3725MkuSdJkg8mSfK1rrgmSVI5iH79Q5IkZ5MkeXGSJLVLjTHLsl/OsuwPsiwbZ1m2K+lnJH38tZuViIiIiOODJEnuSJLktQfRqHuSJPlvSZKUcx/7JwfP4fNJkvxokiQF+/5XHzyrd5Mk+cMkSR51JefNsux7six7R5Zle1mWvV7Sn0t69lW8tIiIiIhjgSRJnpIkyZ8ePGffmiTJ59h7f5okydfa71+ZJMlrDv7/6oOX/yZJklGSJP8iSZJPTpLkA0mSfNfBM/l9SZJ86YM9Xn6s8e/iiA+FKChEHAd8tqT/n6RNSW+W9Ifa35u3Sfp/Jf20ffacpM+S1Jb0VZJelCTJR0tSkiTPlfTvJH2qpMdL+qTceX5E0hMlPf3g/dsk/ccrHOMnSnrrA7usiIiIiBsWK0n/VtIJ7RP650h6fu4zny/pmZI+WtLnSvpqSUqS5PMkfZekL5B0i/ZFgZc90AEcCL4fo/jsjYiIuMmQJMmGpN+R9L8lnZT0TZJ+KUmSJ13uu1mWfeLBfz8yy7JmlmW/evD7ae0/s2/TfobXSx7i8T4U4t/FEQFRUIg4DvjzLMv+MMuypaRf1/4foD+cZdlC0q9IenSSJF1JyrLs97Ise3e2jz/T/oP4Ew6O80WSfi7LsrdmWTaW9H2cIEmSRNLXSfq3WZbtZFk2lPRDkr74coNLkuTTtP9gvlLxISIiIuKGRpZlb8qy7HVZli2zLHuf9oXdi0Tag+fpP0j6cUlfcvD610v6T1mWvf3guf5Dkp5+pVkKhhdL+hvti8wRERERNxOeJamp/b9351mW/bGk39Xhc/TB4v/Jsmx28Dfy72n/b+Orivh3cUQepaMeQESEpLP2/4mk81mWrex3af+h20uS5DMlfY/2Mw0KkuqS/u7gM7dKeqMd6/32/1sOPvumfW1BkpRIKn6ogSVJ8ixJvyzpC7Msu/MBXFNERETEDYskSZ4o6YXaz0Coa//vhTflPubP2Lu0/wyWpEdp3/vgBX5I7UfN7rrC8/+opA+X9I+zLMse8AVEREREHG/cKun9WZbt2Wt3af85+WCxm2VZmjverff34QeD+HdxxKUQMxQibhgkSVKR9BuSfkzSqSzLupJ+X/t/qErSPdo3iQGPsP+f17448dQsy7oHP50sy5of4nwfJekVkr46y7JXXb0riYiIiDj2+ClJ75D0hCzL2tovYUhyn/Fn7CMlffDg/++X9PX2rO1mWVbLsuwvruTESZJ8n6TPlPTpWZYNHtJVRERERBxPfFDSI9x7RvvP0bsP/p9qX8wFp6/gmJtJkjRyx+O5/GCOt4b4d3HE/SEKChE3EsqSKpLuk7Q8yFb4dHv/1yR91YHJTV2WinWgAP+M9j0XTkpSkiS3JUnyGZc6UZIkHy7pDyR9U5Zlv3NNriYiIiLi+KIlaSBplCTJkyV94yU+821JkmwmSfIISd8sibrbF0v6ziRJnipJSZJ0kiT551dy0iRJvlPSv5T0aVmWXXioFxERERFxTPF67ZP8b0+SZCNJkk/WvqfYrxy8/9eSviBJkvqBufjX5L5/VtJjL3Hc70uSpJwkySdo33Ps1x/i8STFv4sjPjSioBBxw+DA9+DfaF842NX+H52vsPf/l6T/KulPJP29pNcevDU7+Pc7Dl5/XZIkA0l/JOn+zGq+VftlEi89cLwdJUkSzWciIiIeLvi/tf+MHWpfjL2USddva78M4q+1X6v7UknKsuy3tG+C+ysHz9q3aD/j4ErwQ9qPqr3Lnr3f9RCuIyIiIuLYIcuyuaTP0f6z8bykn5T05VmWvePgIy+SNNc+0f8FSb+UO8T3SvqFgw4R+CTcq/2/jz948PlveIjHc8S/iyPuF0ksTYy4WZEkyVO0/4ds5cAYLCIiIiIiIiIiIuKmwkGGwy9mWXb7ZT4aEXHVETMUIm4qJEny+QepXpvaj5D9ThQTIiIiIiIiIiIiIiIirj6ioBBxs+Hrte+x8G7t91G/VN1vRERERERERERERERExEPENRMUkiR5bpIk70yS5O+TJPn31+o8ERGOLMuee9C9YSvLss/Psuyeox5TRMRRIT6HIyIiIo4e8Vkcca2RZdmfxnKHiKPCNfFQSJKkKOlOSZ8m6QOS3iDpS7Ise9tVP1lERERExEWIz+GIiIiIo0d8FkdERNzsuFYZCndI+vssy95z4GL6K5I+9xqdKyIiIiLiYsTncERERMTRIz6LIyIibmqUrtFxb5P0fvv9A5I+9v4+XCgUso2NDVUqFdVqNRUKBS2XS5E9sbe3p8ViEV6rVCqqVCra29vTcrnUarWSJGVZFr5TKpVUKBS0t7envb09ZVmmJEnCD0iSRFmWaW9vL7znn+X7hUJBxWJRhUIhvO6fKxQK4Ti8VygUVCqVVCwW/VrDOVarVRgL39nY2FC9Xle1WtVyudRsNtN4PNZkMtFsNlOhUFC5XNbGxkY4F8dbLpdaLpdhPJzXr2FjY0MbGxvhvIVCIczTYrGQJG1sbKhUKoXjlEr722Q+n4dz5Oc1P++8xuucx6/V18w/mySJisXi2vznj8X4PcMmv7bAP5NlmYrFYrgmH4PPJ+dmDiRptVqFPcj1sI68dqlj8B7n2tvbC+P1MbCPmXPflxxXUlhXxu17KL+3+a7/nv8e5/Xj+nj9h3vAx5afYz+/f9fXJz+v+WOvVqu1feLHzN+D+bm8v3H4/HIMHyPz5N+RpPl8fj7Lslvu9wTHFw/oOSxJxWYje+xj9nT2LbVrOrCIiIiIB4KpUs2z2f0/6I83HtCzOD6HI64IzZqe+NgLRz2KY4k7/64hxS6G1wRD7V7yb+JrJShc6qG/trJJkjxP0vMO/q9Op6PbbrtNz3zmM3X69GlNJhONx2OtViv1ej2dO3dOOzs76vf7uuWWW/TkJz9Z1WpVg8FAk8lE0+k0kO9SqaR2u61arab5fK7xeKzFYqEkSQIZhzyVy2UVCgUNh0Mtl0uVy2UtFguVSqVA6kajkUqlkjqdjur1ujY2NjSfzzUajbRarYIIUKlUtFqtlKap0jRVkiQ6ceKEbr/9dlUqFc1mM5VKJW1ubmq5XKrf72s6nYaxLJdLFYtFPelJT9JTn/pUlUolve9979Odd96pv/qrv9Jdd92lNE21vb2tpzzlKVqtVhoOh4EI7e7u6r777tNisVCz2dTm5qbK5XIYT6lU0i233KIzZ86o2WxKkprNpjqdjmazmc6dO6fxeKxGo6FTp06F4546dUrNZlM7Ozu65557NBwONZ1ONZlMnHRpMpmoVqvp1KlTarfbkqTpdKrpdKokSdRoNFStVrVYLJSmqebzeRApVquVFotFmM/NzU11u11NJhOdO3dOk8lEi8VCe3t7ajab6na74TsIS0mSBKEpyzJVq1UlSaLFYqHFYhGIY71eV7fbVbVa1Wq10nw+197enlarVdhztVpNy+V+c4h6va5yuazd3V3t7OxoMpmoUqmE44/HY43H4yCCsJdqtZr29vY0nU7DXlutVhoMBloul6pWq6pWq9rY2NBsNtNoNNJ4PFa5XNbW1paq1WoQknwu2cMIQLVaTcViMcxlqVQKc8s+hvzXajVlWabJZBLWl2svlUra2NgIognC0nK51Hg8DsfrdDqqVqtK0zQIVRyrXC6HeWNP+/Gr1aqKxeLa5yVpMBioVCqp2WyqVqtpd3dXw+FQs9ksCByICY1GI1xHmqaaTqdh3+zt7QXBCFGA+304HKrf7wfhslQqhX+n06nG47GWy6UKhYKq1aokabFY6N3vfvddD+jpd3xw2eewtP4srqquR7/1s/ToG/XP9ocpSrffJn0IUS0i4lpj+f4PXNPjvz571TU9/jXGA/qbOD6HI64Eex/1dL3y137+qIdxLPHcR92hbDE/6mHclPij7H9e8m/iayUofEDSI+z32yV90D+QZdlLJL1EkorFYpamqc6fP6/d3V3dcsstqtX2ldnZbKZisRiIibRPrAaDgSqViorFosrlcoiMz+f7G6hYLAaCnyRJIFUQFIgEkdFarabRaBQI0mQy0cbGhhqNhlqt1lrGRJZlKpVKqlQqGgwGmk6nms/najabgcAVCgWNx2MNh0PN53NtbW1JkiaTiUajkdrttprNZoj4QywXi4UGg4GGw2EQBBACptOpPvjBD2q1Wqnf72t7e1ur1UqTySQQKuZN2idz3W5XWZZpPp+rWCyGTAaue7lcaj6fq1Kp6OTJkzp37pyyLNNgMAiEbTQa6dZbb12LUlcqlUDYILYQ98lkErIsWq2WyuVyIOq+Hk4289kHs9lMw+FQlUpFpVIpEH+uRZKq1ar29vYCeSYKXiwWw7wQBWdP7O3taTweh9cLhYJms1kQJNgTkGLIdJ4Mk60ACa9UKmEtuTb2bpIkYZ6JkiOCsKdrtVo45nK51GQyCcfm2hkDAgyZPIvFQhsbG2o2m0FU4L35fK5yuaxyuRzGwe8uZjnpLxaLWiwWmk6nQTgpFos6f/68ptPp2jUjTCAqcP0IOJ7ZA9Fnn0+nU+3t7alWq6ndbgfhr1qtql6vh/ni+GSV+PWSmYDgwbVkWaZyuRyuL0kS1ev1MEbuAa4XIZEf7u8bHJd9Dkvrz+J2shUl/RsIhQ9/srJqSb/88p9RpxCjmRFHh+d+7pcpe8PfHfUwjise0N/E8TkccTkkG2X1Hxef+feH7BlPll73t0c9jIcVrpWg8AZJT0iS5DGS7pb0xZL+5f19GGKapqnuu+8+PeIRj1C73Q4kqNForEWep9Op0jQNUWYIQL1eD5FeSapUKsqyTLPZLJANyGexWFwjG5VKRfP5XGmahtdns5k2NjZUrVbXCBNkpdFoaD6fa3d3V/P5PIwVLJdLDYdDjcfjUKZx9uxZjUYj1Wo1VavVcN7VaqVGo7EmRLTb7UB2IF0Q6DRN1Wq11kh1qVQKEV8v+SDSzPjn83nI2FgsFur3++HYzWYzRGrn87kGg4FGo5EqlYq2trYCESVKzhxBwGezWSCB5XJZlUpF9Xo9iDRkNXg5C2QWYQHiy2edjLJ+i8VCrVYriEgIG04kvRyhWCxqY2Mj7IHpdBrKP/iddWcsktYIJvNLuj1lOC5EePkA8yAppPJD9iH8ZK0UCgXV63VlWaZ+vx9eZ8wIIF6qwesQbvYTGREQfvY+ogeCEHuUYyJUIIJ4aQli1Wg00mKx0Hw+V71eD2vuYyErwDMVIO6sY6FQCMcpFApqt9shU4CMIAQAxu+iAnPJnJEJwjWwrxDkuG6eF4CxVyqVMNfcJ3z3BsYDeg5H3EC44yM0PVXTd77oF/Tc+kxS/MMy4mjx2y//WX3G1z5flf/1hqMeynFEfBZHXFUUHnWb/vI//dRRD+PY4nd/4+f0Wbc946iH8bDCNflrOcuyZZIk/1rSH0oqSvrZLMve+iE+H4jhzs6OdnZ2Qho3hKdarQZSvFgsQjr01tZWSFUnhZmMAQhEoVBYi/5CdJIkCanNlUpFi8VCvV4vRGGlwwwJUqg9utntdkOWxO7ubogqe/07GQnz+Vybm5uq1WqhnKPVamljYyNE3Vutllqtlmazmfr9vk6fPh3IcZIkobSC6+n1eoHkIxwQ0YfM+/xClCgtgGQTtXfy62RwOBzqnnvuUb1eV7vdDhF9CLmkEN0ej8drqea1Wi0Q7n6/r8FgEEQHxgaBh6BDpIvFYohas14IJmmaqtFohGg76fcQdklrGRl8H2EHkYlzIqAA1ptz58k9IoZ7JLgngAsIfMb3BnOc9+lg3ZgPzsF1OaH2rA5P9ScTx7MBIMhcE/cGWQK+V1gvxBjWttFohLG6nwnHdB8D94FgTlxwQajjWNwPCGqIOOxtvsd94BkmtVpNi8UirAtrw75iztjzzDX7wH1HKNnwObtR8UCfwxE3BvY+6aP0tBf+jV5w5q+OeigREQGVZEMv++kX6bO//9tU3d1T43++/qiHdGwQn8URVxNJqaR/+GdnjnoYxxoFJdr5qmdr6+dee9RDedjgmoXfsiz7fUm/f4WfDSS03+/r7Nmz6nQ6arfbIUpar9dDmYK0n+I8GAzU6XTUaDTWUrQhmOPxOJQWIDJwPiKhECtKBarVqnq9Xkirzpv3gTRNVS6XdfLkSdXr9VBLDyGGTJKlAMGr1+sajUZK01SVSiVE3xkfAshkMgl1+JByCBGRZyK5zWYzECEitWQ2QGwhYLPZLBwbk0ZS3CHPbgBI1kev19Pu7q5uvfVWtdtt9Xq98H3mhdR2yC1AuCGLwDMk3AyRqD5lE0S03f+A45I9QWS7XC4HLwR8FfLmlW6eCJl0QcFLGarVaiCTeD6QTeKZD2TAOLlmDt30zw042XNefuKmgB4pz+87iDqkmHEjiHCtTsLdDJPvstfK5XKI0jOHzLMbN3o5B+dmrH6NLiIwf4wDgs/e4/3pdBrWnP3OXmQ/cQz2E9lH7BvMXNkLZGn4fvbMC47jZSLSobA4n881m80+pNnjjYAH8hyOOP5YPucZeuwPvSOKCRHHEmdKTb3x+35Kr0jr+o6nfqW237qKwsIB4rM44mqh0GzoLd/8k0c9jGONYlLQb33fj+prfu4fHfVQHhDOf/2zNT69/3fno37wL5VZcPe449jk8xLxXiwWunDhgs6fPx+IF6nH1OVDAnd3d9XtdnXrrbeuZSBgUHf27Fk1Gg1tbm5qPB5rOp2ueQeQug85QVjo9/uB8LrbPaSD6O1wOFS329WJEyckSWfPng11+xBfsil6vZ5OnDgRBA9IlEedJ5NJEBTwEDh58mTwIZC0ZlI3m82CmR0ZHBgNOtkCXAsGlmQR1Ov1QNqpuYf8lctltVotDYdD7e7u6sSJEyG1/lKmfqSge5cI746AUabXsENGESQgdIwFIghR9fmC9JKdgZgAySaLgqwMz3ZgPig58e4B4/FYktYEDO8CkBcJ3FCScwMn5Z5tUq1Wg2ko8+hzx3e5bhckWE8XRjCLZCzeAYUyA+/qgTBA5g3HJEMhT6bdz4B19SwfL7Xw7ifuc8E8MCZEHwwnJa35ibCv+D9jRXxarVbh855B5PAsCfeIyIsq7A0yJ9hLERHHAat//NF69A++Uz/ziP9z1EOJiPiQ+JzGWJ/z9T+pH7nwBL0i+RQ1fz2KChERVwVJore/4AmS/uyoR3Ls0S2U9O4ffbYe923HO0th/AUfqw98+v7fqT/9qf9dn17f/1v0Mbd/nbRKVEwLety3vu4oh3hFOBaCAtF3SYF8DIdDNZvNQAhx2ncX+el0GtL+MXHDbX9vb0+7u7vq9Xra3t5Wo9HQcDgMhB/CQuR5sVgE9/hisajJZBLIpRNNSiAg7qPRSFtbWzp58mSIvFMPj5njbDYL3QG8JWO+Tptafn5P01SLxSL4LbgJX767AtkIjM07F3hUG4LkxMt9ItI0DVkNdBjA22GxWAQRx/0nGANmepQmuJfBYrEIZRWcDxFhtVoFp3430oPoO7Elmk4U3+v3Ic2Q6byvhKRAEj393c02KQMhQu1dPSC8kH6Oke8mwWecjHqkHeGE7BDmx00rfX49op4n6m6wyPjyPgL+fbI+/DPcd4yT3z27I98uE1AuwXqyNsw5x/XsFb6/WCxCCQpZRZRj5I0kmR+yORCS8E3AAwG/BOYhv9cR3Xzf8pxBNKTMgnKQiIjjgPueVtUfPfI1Rz2MiIgrxndsv0uF79nTL37pHTr5oqoKf/bmox5SRMQNjQ/+5lP03o/970c9jBsCzUJVf/HFP6Zn1f+dnvCvjp+omT37I3X2O+b654/9M333iXdc9P57/+nPSJJ2V2N98uO+Rum7usdaHDkWggJRWwg5JM/ToBuNRiB3Xk6AQWOn0wllC6T8T6dT7e7uBrJB7TVRyjRNQ5R/c3NT7XY7GEDu7u6GSOZsNgvlCRAszkUbwNtuu01bW1tK0zSQ61arFaKyg8FA9913n2655RZlWRbqxDudThACaEWJOEDZBiTQjQtJqYf8S1ojuflUcYioY7lchvNtbW2FOXLRBRM+vBMGg0EglfmU+L29PVWr1VCC4R0a9vb2QumHdJhazrWVy+XQMYC5dSLpKf7uayFpTRQgc4LUfRccWC88HCDtLihICoSSz3Mub1PJXoKkE0XnvNTl56P6wLMRGo1GaMMJ8UXscMNExuilFPksA0wOGZMTaU/5z7d3dKLvc4E4xXWxR/JGju7PQIYD94939nBDSuYSAY77xNts0mkFgYt58y4XZPtg0upCiF8X68IeHY1Ga8aYiIZe/uClFhERERERDwzftvVufdsd79aP/Lcn6E++/A5lb47WARERDwZ7r3qE/vrJvyipcNnPRuzjZLGhP/3sF+iTSv9WT/z642EYW7rtVnV+baIPa73+kkJCHpvFuv7mjpfp7U8f67ML/+7YZiscC0EBAoSzP8Z+nsJcLBZDBsHu7m6IUhLdrtVqgQhQh43PQJqmgeB47Xez2dRkMgmZCqvVSq1WK4gHLlpAhCBy1MxjIke6OeSQum78HZbLpXq9nur1eiCZXCckyLMPMHrc3t5ei3Z7bTtEjR+IMPOQjzIjRkACMSYkkk85Q7/fD0KGZxKUy2UNh8OQPcJYMP/DIG97eztkXrgxYbvd1n333bdmuCcplJvU63WlaSrpkMwNh8PwGiKH1/OzLpBlSUGQobSCmntJa5Fu7+TgnRqcjBOZZ5x5EYTuHrRWZN8w717Lz35hDAhV3nUB0cJFAs8wyQtE+U4GpPWTacN4+L+LBu4Pks8ecBHAW1Vyj/he89ISjgMYs7cK5f4DLozQ6SFN0zUvC7qnUKrDurKHyChiLyKY5LMMvNSm3W6HrAgXINy09Abv8hBxk2D+3I/Rj3zTS496GBERDxrfsf0u3f4rO/rlz/wELd/zvqMeTkTEDYXGq2/Rrz7u5Somxct/OGINjyw19eef+SJ94n/7Vj3hXx9dpsIn/O1U9cJczeI5Pa9zUQfvy+Ip5br+8At/TJ85/zY95juPX6bCsfhruVAoBMf5xWKh0Wik0WikM2fOhMhvqVQKXRCazab6/b5Wq1UgjZB2CAfmh0ThIcbewaBWqwVSSHSXzAK8GvJ+BETe3ZtgPp/r/PnzodUlZKlSqQRDRaK3aZqG1HFPU5cOSz9cqOj3+yE7gTpvUuVxqIewe9cFSggg06SGQ4Bns1kQNObzuRqNhrrdrjY3N1UqlUKLR8+OwKdgPB5rNpup2WyGyH2tVgvGma1WK7S8HI/HGo/HqtVq2traCh0vvE7fBQvMLRFsEHOYf+bdsxJYT4QESaHFpKRQAgEB97IByCSChKf359s+IlgggLBnuR7PbPA19XaGbvTIOdgziChOur3shjGyx/lMoVBQs9lcu05ENVp7QqLZG3kjQ4xKvd0oPxh/MtesjaSwBxeLRSibYU2ZPzc4ZQ/6feJlDghGCAHsX4QNsk7YM5B+N1pF7GIvuPEl14/w4J0eAPOIWBMRcdRYNAsH7SEjIm5cfGnrgp7wql/X9z7zM7S6sHPUw4mIuCGwLyb8gTaimPCgcXupqdd97gv18en/rcd+x/Ul4894856e2/lbfWL1oR/rcRtN/dmX/qg+dfjtuv2H/uKhH/Aq4lgICpJCSz0I02AwCMRjNpsFEt3pdDQcDgMx8fpzSDt1/zi4k8WAMAFpgoDTPQJXdwiMO/9j/kY0mZR00qXTNA3krl6vh6itR8KlfQIGkQVO9hA1MIa7cOGCut1uiMpC3CCLlE5wndVqVY1GQ+PxOIghkDHmAD8DhJwkSdTv93XfffcF48tarRbKBaT9CLC79EPCqX9HVGg0GmHuIXGsycbGhk6dOqW9vb2QNUJmiZdM8H/MC1kLBAOi/94FIu+1ALmfTCaS1jsNMCeQRfwmvATCf8hgcM8HRBgyTnxveUYD4/e5ZMxkx0C42eOYHCIgID5wfOlQMJL2xRXKAgaDQSjD4HhJkgQDSz7Pv9xztVotiATuW4DA4m0meY+194wXiDr3MftlsVis+VHQ9tMzR1hvjocYCLFHBHKzT0pvmD/KYfIdMHjGcC4+52anfP5SnSUiIiIiIh467qhs6KVvfoW+6nGfomwxv/wXIiIexhj9wWP1u4/79SgmXAWcLDa0bF2fv+v+/hc/Sq/5xJ84OG9dxeTqlamcKTX1+ue/UMNvWOqLvvlbVf+t4+EPcSwKcYjuQsayLFOapkrTNJQYQJiJhNfrdTUaDa1Wq1By4P4IlUpFp06dCmTXo62kg0NCy+Vy6E5AtsLm5qY6nU4ghF4qgQjhJRmQJGriMRckYk80mCgu5JTjY04H2Yc8eiYB2RoQPSfFs9ksRKKr1ao2NzdDuni5XA7GjhwDAgUBJLvj7NmzStNUzWYzjNVbdRKRJ6rcbrd14sQJnThxQtvb27rllltCK0dIeL5rQ6fTCe9Xq1V1Op3gc1Gr1UI0HNGDrgGeIcK/rIdH7BkvApDX0kM2iWxDlD1VH2LrpDTfghFRIS9M8H0vBWHtJAXhgjHjnUBWDue+VGYC5/drZG9vbGwEDwH2sRtgcj6ukfVwbw2fW+4z9oykIODgZ0CZEASfzALEC793EHJchCETBUGPTAIENUQ0MnnI7EH48Q4WzE3eVyP/HfYM9xklJV7KxDPC91VERERExNXBmVJTv/ne1yjZiBlgERH3h6RUUqcyjWLCVcR7P+8lev93f9xDPk6yUV77mT/3Y/S7d78p/Lz7U35OZ0pNnSk1r6qYAJqFqs6UmvrT//ZT2vukjzoWz9JjkaFAP3jS4yEgtDfMRxnL5XKI4koKRN5JJ3XUrVYr1GM7CSdV36PjkF8ishjFQcS87WC5XA4tISF+mDE2Go0QFSbqnmVZGPd0Og0RXMaTJIkajUYw5iPqjMFgsVhUq9XS7u7uWoTZySoeFESC2+22NjY2QiS3VqsFIuWtGxnXYrHQfffdJ0lqtVra3t4OfgpeCy9pre0lXSAQZiBjk8kkkHY3v6vVaqF+fbVahescDoeBTEMiERS4XukwzR8iyJzSDcS9BOr1ugaDwSXd+iGdzKFnRRD59u4O7C03HEQEQVBiTF4e4SSX9YToszcReigz8TGyr/NCBYSaDIBWq6UzZ85od3d3zdgQgY0yAm/l6GaX7BE3V8zPlWcQcP8wL+6DQlYB5/Y2lo1GI3RkmU6najQaITOFTij4JniWg/uAeOcVf44gzPl+Zd74DOIFc+ReHHyG43smUURERETE1UG9UNZ/f/cf62seeWP1iY+IuF547y99mN75pP9x1MO4+ZBc/iP3h+L2llQo6uf/6uU6WWzYO38p6foLP8WkoFe+7OckSf/0H32esmGq1QGPu944FoKCJHW73ZBODVFI01Sj0WjNzA2Pg9FoFAz0aDPp7Q/xIcAU0WvxV6tVyEgYjUbhPQgUpJIIpZcbkNkA0ZMO2xtWKpVgWOetByUFUjyfz1Wr1dTtdnX27NkgLlAH3263AwGmBePOzk4ooYAYQmYhSt4pw8lUsVgMXRcg2RBmIuVEsLmuD3zgAzpz5oxOnz6tzc1NTadTDYfDQK44FxFeDC69gwCp8F6PjwcE10+Gh6QgBDBXHpnOCwVeN8/cE12nfh6fB0gtpSblcjkQY7IXIPjuVYG/xsbGRoiOc+2IWQhMXlpAlwXfP2QuIEJxnRgNQmzdMJFMAAg08A4HPrdpmgbfhGazGQSc+XweSnQQA8iUYZ9wXjfi9AyeS7U1dcNNhCnmzEk83/XP1uv1Nc8HMo8o4XGPAzcqRdTw7hrAhQXmhr3tBpLT6TRkvHDN+Swk6bArRjRljDgOKE329KbZXM+oHH0UIiLiaqEoqfikx2v1zr8/6qFEREREfEiUHvMofcHvv15f07lXUuOyn7/e+L3XvFzjvbm+8NO+VKu3v+u6n/9YlDxkWaZms6nTp0+HdHgi1r1eL6TKQyCq1Wog6JDr6XSqwWCg4XAYXqM2HMLgaeLSYVs6SKVHNCETfJfPTCaTEDWlvAFylaap+v1+MIVstVprafOSAgmndR1j55itVivMwcbGRmgrme9+4K72kC6IFuUM7t9AFoLPo3SY8cFrZFoQbT99+rROnToVsi4gzGR4nD9/XsPhMJzD21tC4CHcpMrz+VqtFkz2vItHpVJRu90OxN1NE52gQwDxUFgul6pUKjpx4oROnToVvDA8fR2xyFsocgzG6DX21Pl75J1uHogNpO4jhHmnCN97/I6Q4dcsHWZAMDZ+uDb3QHCTTO6Dfr8fIvyU9SDkkMmBWECmBXNZqVTCHvaWmogm3s6VjAr2E2uCuNJqtVSv14PnBRkp1WpVs9kskPp6vR78RBA5KPsh8wHxC7HLxTwXABEA2CO8xjjJguAavRMKQhdrQFmM74+IiKNE5ffeoK/+8W856mFERFxVnCk19f1/8MvKnv2RRz2UiIhjheLjH6Pbt3tHPYyIAxSe9mR95G++90BMOL6oF8p68R/+nPb+0dOv+7mPxV/L/OHe7XZ1yy23BHIzHo+1s7NzUS09ZITODZADCAa+A0RN6b7gEUcMHSEskFL8DCASRID5zmQyWRMsnEBJCoIDZJGoNGSPtpiUJJTL5UBKyVbodDqhjMBLL5invb09DQYDLRaLUJMOiSIVn2NB2J3kuvcD1+AtHJMk0e7uriaTiWq1mk6cOKHTp0+r1WoFQkYmBGvk5Q1Eg/MkljICfBio12ctqG9HsKBbBN0AfOxeesJxWfeNjQ1tb2+HjhVkTDAfThq964KLCpge1uv1QIYRRDDG5DUvzfFuEfzuNfpuAiodZtwgFLmYxdgpA/FMBQg1a4cARxcRMjaYG+/4gRBQr9eDGAahZ59zjvl8HrJ48Fxgn5ARQrcPxtRoNNRqtYJYgoCBASiZSG5+yu+U63jmCsfnvIgXktbmln3nWR1+7ZiNck7WP99i1K+RuYiIOGq037/Si3u3HfUwIiKuKp5RKes5LzlebuUREUeNd/6rU3rVh73iqIcRIUl3fIROv+Ru/dCpvz3qkVwRHllq6nv/x89q+ll3XNfzHgtBgQgkZoLtdjuQmTRNg08BpGWxWKzV60MoII57e3sajUZr5QaQezfbg0AgKODUD6mRDs33PEIK2XHfgG63G4g/ZB7yhrniYDAI5omFQkGdTkedTieUbfiYuU5KBCBj0n7N/HA41O7urlarlbrdrtrt9pr5nLe9gyQzZt73kgLKHsB0OlWv19NsNtP29rYe+chH6tZbb9Xm5mbwYYDUjUaj4LPAWjJftBwkHR5BxLtucO1e37+3t6daraZOp7PWspB0dr8+SCKEn/nvdrshMu2mlF4vD2mHPOY9KUqlkjqdTihl8ValbiTq2S3sGzeDdNLLOrmhInsHcUVSiNBDvPnd14lrYU6Gw6GGw+FaWYSbDULs2ZtkEkDmuX9ceGFcCCTecQFRodPphEwQshI4D/ctY8fElOwB5mtjYyN0CGEfUEZEKRPXw/3rmQmsGeuTz9JhrKwZc4+olBcn/feIiKNG/Tdfrxe+4nOOehgREVcdH1V7n/r/17OOehgRERERa8g+7iPV+LF79XOP/POjHsoDwsdXC/o3L/wVDb/4+j1Xj4WgADmB2EJspEOjQfcaIEUaoQBSQqQVsjiZTEKEkeN6KjgmdZjJUS5BLbpH+D1qyw/kFOM5XPb9mrzUgm4UkB08HiCTs9lMw+EwZCt46YF3RiASu7Ozo16vJ2nfRJFosTv9e8aFu/yvViuNRqPQgpOuGVxboVBQv99Xv99XqVQKosKZM2dUq9VClgJjGo1Ga/4XbvoIKfZSA0gh52KO+S4Gju12W5ubmyE9PkmSIEwQiUYwKBaLmkwm6vV6a1ktiEQcg7IGou6UIkiHHgkIWmSbtNvtsL6+fhyfNYfgQuJ5XVJYN7IZpEOiDqF3s0LEBU/f53Oe5cA5ibSnaRqEKe9KwXkg/lyrtwpljvJdSCD4Hun3+4BMArJRPCMG4YVzu+kjn2evNBoNdTqdcE9IUrPZDIIdggiCjJ8HIJaxB5l7SUEApNSJrCTEIsbhXUAiIiIiIq4dPr2+0KO/8c6jHkZExLHBbX+2p++576lHPYyHPd7/aQ395uNfedTDeFD4Z82BWl/3get2vmMjKBBJJ8sAEiIdljBgvgfhIU3bU8Y9zRwTOa/R9np6N8iT9qPyo9FozWiPf71LBKTYU/zp5uDtFiHyRK9Jx5YO08pbrZY2NzeDqWGapur1ehoOhxoMBuH/lEh4OnyWZSEi7SncHIvrQyCB6HnHitFopMFgEI7vRJUshclkokajoc3NzdAaslAoBDNBzPRo88n8S4ddDpgzL33wNo0IR3hJQAYrlUpoRYlfgEf4IabsmdVqpd3dXZ07d07D4XCtFt47EVC+kqZpiFQTXXcjP+rrEX/Ya4gKfj2MDVEFM0GPrJO9wdogMLgxIWNDECNjQDoUPMi28PKS/LkRBVxUIFOAzBAvw/A2kU7AyRpgX2DC6SJP3uAz73fA+5RBQPpZS3wrSqWSut1uKFfh/nRhibHmyzV4zbNEvCsEQgF7nE4y3DvejcS9MiIiIiIiri2+7vSf6Z5vfejt3CIibgbUXv6X+pV3POOoh3HT4bPu/Ew94pWjK/rs8lOeoc/4nL+8xiO6efCgBYUkSR6RJMmfJEny9iRJ3pokyTcfvP69SZLcnSTJXx/8/JMrOFYgyfV6PbR+cxd+zAxJz4bEU1rAa55JgAEcqfkICi5KOKn1tn4AIiRpLarsZJrXEBWIxkOe3MeAYyBolMtlbW1tqdvthujteDwOYsKFCxd07733BpEDQoVwgT/DcDgMteUQKMZJCjrZHAg3EGNKFgqFQiCVlGH0+/2QJYHRJGUpzAnZJIPBILS49K4Z+EB4nX1e0IG8e/Se/yOSIAR5aQXri1DDa71eL4zHswXcGwMSi1CV91Ygy4OSF0lBuGANvdtCvn4fYYAouO8pFyFcGHFBxzs1ILIgbiC4efkO9wPZN3myTLSde221WoXSFd8TLroUCvvdRzY3N9XtdsO4IOb4mvj8UkbA+LxbBfc4RqOULXgZjN8TzKOkYFjabDbVaDTUbrfDOciCYe8ivDG37j+B8IGfw2QyCcfAE4OMKNb6OONqPosjIiIijgLPqa209/H9ox7Gg0Z8DkdEHH+89W2PkF53ZV4I/ceV9eNn3niNR3Rt8X2P+W29//+5PkLtQ+mJtpT0rVmW/VWSJC1Jb0qShLyQF2VZ9mMP9IBO5ohqQvgmk4lGo5E2NzdDBoCTS8gxdfCUHkwmE2VZpu3t7SA6VCqVIAAQsYX4Q3hxted9z1KYTqfa3d1dq8mmjSVEmugw9fe7u7tBsEBwYPydTieIHJAcScGscW9vT5PJRNLFdeCQztFoFK4PEWG5XIbMATwkSP13U8PZbKazZ8+G32nRuFgsQqeNra2tkG5erVbV7XaDweR8Pg/HnEwmIUPCySwCCFkERP5dYMnXsJMlMJ/PgxhE+0pv8wjBBRBhIvsuKLiHAZ8tl8tBIHF4Hb0bIzo5zxv7cXzOxVg4J+976Y6vI51DOBZzAxBP3OuB/eHp+wgmzCfnlhQyMcbjsfr9ftirmIQixlHKQ4aJ+3PMZrMgPrlxKf/6NTPuNE2DAMA9MxwOQ5cLOoDgi4GggNBUq9XUarXCfel+G5zTMzI8EwOvEDJlvFSFa3VDyOl0Gu6FGwBX/VkcEREREfGAEJ/DEVcVj/u+qb7+55+tn779tUc9lJsCz33HP9VTXnReq6MeyHXEs6pFLZ4yvi7netCCQpZl90i65+D/wyRJ3i7pQVlQu2Ed0UMnBtS7Y9DY7XZVqVSC+ZyndkPEMHIjek+atrfyI/LppnhENokKQ4Zpp7darQKp9fKMYrGowWAQUq+n02nwJeh2u+r1ehqNDtNsINZpmgaSDzEmako993K51O7ubiB7XAfRV1L3m81miKxzXUShESAYL3PLXO/u7qpUKmlraysQPFp29vv9QLAQXJrNpiqViqbTqXZ2dkJU2v0RvA6/2Wzq1KlTIQqNgECLS/YBY8Kks9ForAkx+CQAzzQhW2Q6nYb95KZ8vAapr1argYgvl0s1m821SLrX9iMsMV6PXpOVgicHcwtcWHFzUUmBHLOWRMpdMGP8XA8E2P0LEI8oE0Eo8s4V/J4cdGLwDBQMS903wMUL9kyj0VCv11O/31/zroDU+/5m/7H3EMi8lGg0Gmm1WoVyFu/SQckBBF9SuKdYT4SrfLYLmQ+IbJTUkOWUJEkQwfBboLwDsYU9f9xxNZ/FEccbj/+xO/XUJ3yp3vrsXzrqoURERBjiczjiamP1tjt11yhuoauB59/9LBW/LNPy7vcc9VBuWlwVD4UkSR4t6aMkvf7gpX+dJMnfJknys0mSbF7B9wN5kxT+4Iek8Ec/deWS1Gg01iLUtPnz1OsTJ04EcaDf7wdCT8q31/U70cavwbMXyIxgXL1eT/fee28gRE5m+cEcj24Fnk4OUZnP5xoMBiG1n7ICIvpkM5DKD7GSDuvpiUiPx2MlSbKWFp4kSSCAs9lszW9AOqyrn8/nuvfee3X27NnQYaFarWo8HuvChQsaDAahNMAd9iGmEEVq8CWtmRdWq1VtbW1pc3MzeDoQ3Sbzw9sBUofv5Sw4/uNNQSQbE0pJa9kfRMKJuLsBI0JRs9kM0fx8BwM+599F7MDjgX2EpwBk2TuK5AUG1o4f/BsQYnyPcixvH0n3Dwi1dxnxzAk+jygxn8+D6Sei0NbWllarlXZ2dnThwoWQ/cHezLdnZI4krXX6kHRRNghlP61WK7SR5H4G3Lvszb29PaVpGjInaB9arVZDCQmCD+NizRCovHSJe5N1RHhAiMG3gvlJkkTtdvuSY70R8FCfxRHHG6vzFzQZVo96GBER1wSvu+Ol+vsX3fjdHuJzOOJqofB5Q/3A+Scf9TBuaPz47qP1vueUtbz7g0c9lJsaD1lQSJKkKek3JH1LlmUDST8l6XGSnq59tfYF9/O95yVJ8sYkSd44mUxUKpVCTTuEzgUC7/YwmUwCufHae9oxQsJOnDih22+/XfV6XaPRSL1eT2maBiM6CAwlE0RJvaUhpKPdbgey7BHXnZ0dDQaDQPqm02kg4LSBJCLs7SghZpQrjMfjizoicH7OTSSWFG6ED7okQMLq9bpOnz6tkydPql6vB5JGJFZSIFlOurIsU6/X0+7ubvBCgGzee++9oRtErVYLBpZE3Immu1iDmSYiEBkHCAKQOemQsOI1UavVwtoy1mKxGOYRscAFBOav2+2ulRt4lwsEFcaIUMQ6QGK964jPH4LP3t5+a9LpdKpqtap2u72WAYNXBxkveVGBjAUyFQBZMAf3SBgH14oohZBGtgRdKCDfCE1cN8IG+2Q0GoXSlWazGcp42EOUEyCceBtM6dDzgqwMN2GEnLMfMCvd3NxUq9UK15M3SOV6ybrB/8K7dPj8SVoTCDwDhTF6eQRlQO69gnjAvTCdToMxJB4lNwquxrN4odn1Gm7Eg8QTv/Zv9Il/9/lHPYyIiKuOZqGqvcre5T94jBGfwxFXE6vBQK/56KZ+Y3RxWW7ElWG0qmo1GBz1MI4M2eU/clXwkASFJEk2tP/g/KUsy35TkrIsO5tl2SrLsj1JPyPpjkt9N8uyl2RZ9swsy55JSrZ3ZZAOyZWTLuq3MZBDFIAQQpipiT558mQgmIPBQMPhUJPJJAgJHp3OCwqSQmT9xIkTQRCgs8TGxkbInlgul8HhHvGCrgXuxUAKPmRXUujs4JkRkE2Id6vVCiUdbtI3Ho9DejZZEZICAYNM+/ectEKyKMGYTqcaDAbBu2K5XKrX6+ns2bMaj8eq1+va3t5WqVQKxJQosUeFEQAQFSC+CACsqRsBUsaRpmkQdCD5lFI4wcYvAE8NSGmn09Hm5mYQGchiwLPBRZtms6lWqxXW3UUsxAdEGa610+mETAUi5q1WS9vb22o2m2E+IPWSQhZCpVIJe909OzwDwTMrvLsD14vAQkYDHg+dTkdbW1shs8U7pbAHmeN+v6/xeKxKpRLKXMiW8XagCHXsH0pAOK6bgFKSwb4m24I93Gw2A4FHgGHfHTwTQjaKtxFFmCATwUUB9+PgnO4l4eaXktZMLhH1yCSZz+fhGeJZPDcCrtazeEOV6zfoiAeFd/7kR+mVH/5rRz2MiIiIHOJzOOJaIFsu9ZInPlZ/OjkWjfluKPz84KT+/GkP36y+z3j7Z+lx//Kvr8u5HkqXh0TSSyW9PcuyF9rrZ+xjny/pLZc7FiSbNoZ5EUE6jEjyuve390iqlzwUCgWdPn1anU4ntKobDoeBsEJWxuPxmqkipBZPg83NTW1tbQVjQ+8WgSEetd9EOslQgPARSWV8RNPd8JGSDggU10spAeTfzQwh/fP5XGmahki6k3oIGgaNnIPj0zKSVn0QQ6LNk8lEu7u7Onv2rJbLpU6dOqVut6uNjY3QXQKC71FhJ4AIFETZWXNIttfVY8DJteLC78aLPjeIDAgi+Zp8BCMi+0S8XdSg1IV159pLpVIoV5lOp+r3+2seHXgX7O3thfR+RALEHK6f9YfkYvDIHNDhwcsh8t0dvBMF88Fa0eWAYyBw+b3k5HlnZyeYKyISIXQguCyXS6VpGsw33fOC+aa7iXdD8e4h3K9k+nAf0TGEDBHWjtaZiBWsR6PRCGKOZ3xQNsE9xfVjvOgeLZLWxDXfQ5LCMwiz1GazebnH15Hjaj6LI44/nvIf3qfPv/Nzj3oYERERhvgcjrjW+E+Pe5pekd4QRtHHAh9YjvSyJ9/6oL9fmmR69+LKWkxGPLQMhY+X9GWSPiVZb4fzn5Mk+bskSf5W0j+W9G8vdyDIm7dsy/shQJ6cJFPa4GSb7+7t7alYLOrEiRM6c+ZMIHpE5yH4kHH3J8hnTJACjet83oAOAcLbD1ISQCaCtw10QQBRAfLmnQLwNoAo0bmCa4CUQ+LJlpDW22Yyv6PRSIPBIMwR4PyNRiOMk7aApVIpmEKePXs2pPifPn1a3W43nIfxQJ4RFaj5Zxy+hggG0mEnAyLoZHcglBB5zrf69CwTjpemachQybJMg8EgiArenpT5rNfrQTSg7MbLQygn2NjYCBkhzE9y0OaT18hi8Qh4lmXhenjdxRdJwR8Cnw6yCUqlkmazWRCLuM58hgmGm8wte4Y1dfGB45PRslgsgs8Hc0KrzmKxGAQ3J/mIFNxD+Fl495HlcqnBYBDmH5GFzA1KDigVIeOG/UpWC6UalA8hErg/BSIGe8hbR7rBpd+Do9FIk8kkfI77bTgcajQahVKlGwBX7VkccbxResTtuvelW/r9J/3+UQ8lIiJiHfE5HHHN8f898Ul64c5jj3oYDwt0fvF1+qyf/fajHsaDxrlVqne9/9R1O99D6fLwGknJJd56wH/pQLgg8ZJC9gGO9h6dhkQQhYX05wUCCAwp3aSsEwmHWEPKiEhLh50n+Pzp06fV6/V0/vz5kBaOiVuxWAzeBtTQQ4gYPwIB2RSz2X6NHAJCrVYLxIkWd5ICUUdkyHs4uPkgBInIq6fP1+t1zWYzDYfDQPiZS0iut9IrFApqtVohayLLslDKgQFgt9vVcDiUpFDz7vMiaa3dIu+xvj5vTq4hu96xgPIWDAn98+wPNwv0+WJf8HnvHjEcDlUoFNRsNoMg5V0ByDLodrthX5ExQWkDGSme8eBeFRsbG2tiAGMol8vhtb29vdBukxIRN22kDAchBo8L5mQ8Hodjsmbsf7qOkC3C68wzGTEYbCLUsT+9FIl5ReBCiJvP52o2m2tdNdw8ktITvssepA0qYgKvIzS5KeloNForN+F+xZTTBYW8N4dnaSCIcA+yhyhh8jasN4KgcDWfxRHHG+/6V4/Qnc/8qaMeRkRERA7xORxxXZBleuXHntFbX3WrXvrI1xz1aI41vupdX6KC3v+QjtF8f6aXp019XuPGylQ4v0r1rD/+Jj3hK9903c55LApysizTcDhcEwRIxZd0UTTS68ohHJ7aDwGCMJw4cUKdTidEhfPdCDg29dgQbDcNxMCu2+2GtopEnd2/gFR/yDkEy0kNJn8+znx2A6QMUQJzQXf8z5shkoK+WCxCWQamjidOnAg1/pB8XPMp9/B2mqvVKnQBQEAgUwGRhDkpFAprJpQejXfSz/UTTacsgegzY6cEAFIPqXXzP44NOWat8FLo9Xqh7R+tDTk3Kf1kGHBO5oY9Qdr+YrFQp9MJe8gzP9iTmGRSeuNml/V6fa1Wn7WlxWiWZUEEaTaba4aUZOL4fmWdidiTIdPv98M+g5Tn/TiYH9L6EXp8jxHV9zXyzhYckxIG9oy3bfQMGjxCELO4p8kUutT1UWoxHA7D/ib7hLlDqMOfwQ0ePbsBcL+wH8nk8GcCGRqsZ770KiIiIiIiIiLiqLCXprrnc+v6jLd/1lEP5dhika1UeM5DExMkaetnX6v/9wVfpl8bda7CqK4PRntTfcwffIue8BV/dV3PeywEBUkhyun19h6Nlw6zBiAqRBo9hRxCS6RR2hcUbrnllrX+9V6GQBq1pLXsAaKbRFrr9XowkoMYEonm3F5/zutEdiEw3gKS64Z84suAD0ChUAieB24mCCGGJFKjzvlo1dhoNLS5ualTp07p9OnTwbTPyRZGjPhAePs9HPqZO9Lf/X0i8hcuXAiReMg15HBvb2+tPCU5aHfYbrfDOclWKBQKoSTB/QZ8HlkX/zxzg4Fiv99fS8fHu4FWlpBnyKeXQUA4J5OJhsOhVqvVGuF00sz1su8Yp5ciIEjU6/Ug/tC1AsNI0uzxnnBPDU/L5z7wsgzvUkEXDPYXY+W6EAAQaXz87Hs+y3jz3h3MX7fbVbvdXut64Z4hiCusB6VBzBv7yEsmEAoWi4V2d3dDCUupVArlJcwr9y7Gm2RhuCGkpItEPZ4v7CXP5sh7o0REHBecft1K333uI456GBER1wQv3Hmszrz62PxZGhFxbLE6e06lry3qGW/6oqMeyrHEE1/xjVftWLe8+LX64Rf+S708Pf6eWotspY/8tW/RE7/uDdf93A+65OFqAhKAXwAkFO8EN7Tz2mrSqSWFqCoECrKF4EBLPUz1iC5DVDBfI8PBfRTIJvDUe1Ls3SwSUQESDKlxIsa14nVAW0Sc8yuVitI0DWZ51WpVg8EgtLv0bgBkFdB2k2gxHgTSITFutVpqtVrBRJDoK9kdvV4vZEmQQk5KOt4CXAvzgYDCGt13333a3NxUu91eKxnhe2RMNBoN9Xo9SVKj0Qgp75wDskpJhBM/5pGI9Xg8XiOT7BWMB/F88Mgzgg7GnpKCgENpSJIkoUym1+sF00FPp/fyAy+D8GwAsig4v5cBSAoZDOPxWMPhMHyOz9ISkdc9I4UoPlkOZJuQUeKdGSi1YQ97WZB0mG3D3DMniBmcm8wCSoQQHVarVRAl+DzlRJyD68HMkjF5pwiEDzJUMMJk7ieTiXZ2dtRqtcJnESQwzqTrg68t2SoIh+wR1ggw14gd7NOIiOOA2sv/Ur/8eXfoBz797456KBERVx0/e+ezdduvvO6ohxERcUNg+d67dOpbH6cP+xfP122f/H698im/c9RDOhZ40s99o5743Vf3OXLLi1+rH5x9mbrf/dP65Nrxa237hF/8Rm0ME2lPevwP/sWRjOFYCQqkP0taI44e6cT1303tiD5igOekAkLZaDRUq9VCtJOaacoMiIZTIw/hI3pPPb2XSZAyD+kmqspxKD2AwEGwIHNcF6QGUYQacwQDOhBAzpkj6uyZJzpPkEJPRJeIdaPR0GQyCa0NOXe5XA7nQ8SAjJHpwHVRhiBpjfAzV71eL5DaPLGGtNMC040MB9Yjljngx/0K3DSSTIr5fK56vR4yNiDO7CvmzvfWaDQKAgyfI/WergPVajVE8IfDYTA4ZN+50R8iFuNFBCEbgH3O+xBqsjwqlYoGg4F2d3cD4b5UhwxIPqISAhqfHQ6HajabwTeBVqTsFwg9e9LX1cUL9jB7zMuFKAVxcQsRazqdhrXy0g6yUMgu8JIHz9Lh87SP5JrK5bIajUYw2ZxMJmtzjTiI8MDzgv2SZZlms1nYIxzby53cc4QMitHoxqqbi7j58biX7ulbPuKZ+vEzbzzqoUREREREHCFWd75bj/j+dyv5/afqmU8/jMr/2HcdT+J7rfHh//X5eswL3rjWLvxqYevnXqvvHn6dpp2CXvm9L9Bm8aF13PiRC0/Qr//4p16VsT3+ZX+jvSPOqD0WgoK3UoQgQ7AxSpMUhALS3CEJZDbw+el0quFwGMgtvgMQf6LykA9IYb1eV6vVWutp74ICUXKImPsZeAtLiBzGhm6q52UGkF73hiCCP5lM1gQDiFjenJKIMuSbSD1R5Ol0utYVo9FoqN1uh8wHN81DSHEjPM6JYCIpiAi0XuQaaJk5Go1Uq9XUaDTWzCgnk8mavwTCED/exs+JoJNGjAClQ/PGvJ8BmR4ICKwlHQYkhcwTN+jjGinhQOzgHL5v2HeMmfHlo/rubYFAxHVBeBExvNUoWS2so68TwgSZBBBkhKRerxdaM+LNwPtehsF+ZR/RWpSMj3ybSBeHKM/gniM7wT0OXMDodDphH/CDFwUdJFyc8ftqNBppd3c3ZDjwHTJMKJVgfAhd0+k0ZLqUSqU1o0/pMIPC5899P9jrERHHCYU/f7PecN9jpSgoRNxE+K6zT9Pt3y9dfRoQEXHzI3vTW7Vt/ns/8J6v1PfWi/f7+bu+cE/v/YyXXoeRXT887QXP1yN+6q+1t5hfs3M0/ufr1ZD0BXd/s7L7n94rQnlnru3XvvaqjOs4SEfHSlBwQzmipRAFSSEyijO8lzlA2Ig4U1Pe7/fVarVCFgL12UQhSZ1fLpdqNpva3t4OqfQck6wFCDRkhXR9jlcul4NwANEkWg4JgjxCGBEliPySaUHE17s/kMGBYED9uaeVM1fMoUeOSWmvVqtqtVoaDAbhM0TlPVKMqZ+LOx7l9ywAShwgtMw15Ryk4zOHdKWgHACByEtDpMMWnm7ySLYBkWhP5ydVHSKIISPzjbElmS6IABB8Mjy4RheqQD6FH7HmUtFxvzbPSvD/u+EmXTPYT5B5J7veLpW97lkgkG3gvhP8zr3F8b1cAGHJ232y3mReTCaTUA7QbDaDsSYlFogfCA17e3uhswbeF3hEeJmKZy5QtiEpdL6QtHYOHxuCkGedMJe0ZWWO8iahzK+bT7rIERERERFx7fCe8Qllb37rUQ8jIuKmQPFP/kofiu8+5Y0n9Zn/5V9et/E8FPzC7/yMThYv3XHrMX/4NXryf9nPmr7tzr++blH68h9cf4+C445jIShAsBAJiGxC6KVD0YEU8OVyGQztSNmGwEEY6LzgLeqcEHt2AMQBwo9I4an1ROtJq/fIKBFtIqT8610JqM1vNBra2NgImRYcw8kOpBfCSYQfEgXZo/wAssbcQfI9Y6Ldbks6jOATiYegI1xA0sj8oBzAMwcYl/tI8J3BYBDWJi/6DAYDdbvdEAEfj8dqtVprc4vg4JHxfGcDzwqgHSYeEZBUSCMiDOUPjJ1MB99jHJvzMR6OxWekQ48BF10QWRCWyGxxIQERx8/RarVUr9eDaSFp/+zR/FwgEtAmkkwOBC9EBe9qQDSe40CyyYSpVqsajUah4wr3G0KLlyGVSqXQvQGijvgiaa2UAq8G3zuTyUSDwSAIFtJhq1jOiSglac38lAwZ1gEvCb/XEOj8ueAtLVlvrpNMEK6FcfN+RERERMS1wY/vPlqDz40ddSIirhdWZ89JZ88d9TCuCF91xz+TCpc2a33y4E7tHQTiIo4Wx0JQkBT+kIdEUFcNSZUUCAkR6EKhoO3tbV24cCFE2yWFiD9t5waDgbIsC07/XtMOCfNoJySGTAPS1omi0klAUkg9h+zSFQEPAoiomzxSmtDv9y+KXEOAyVIgTd6FDTckhFxx7USKl8ulWq1WiLaSNp8nlIyxXq+vlQ2Qko7nBKSfz3j3Bkg+aeqUPTAPiBWSghlis9kMa8T3ETcK9uAgsj2fz9faDrrxH4TVyaJ7VRBVR1whDZ/1QMyASHonDvc4YK08dd+7gwAEG/YV2RIuVpAJsre330KUc1SrVU0mk7APMFyklh8BxzueeLYL+4y18Xn09H4yHTCJlBSENM7v1zybzYL3Bf4hCFVcswtMzB3fxbgT4YF72Ls8cBzOieDD/ZXPYkDQ4xnB9XqnCc8S8vaZCC3ecYL9w/5zE9CIiOOEvSySr4ibB+NVRavzF456GBEREccQy3vuPeohRFwBjoWgAMFwY0Cvm14sFiHC2u12Qz02RHhzc1M7Ozva3d1diyYvFgtduHBB7XZbnU4npD5DPvLmcRA06bBlJD8QeIgaBAgy6saF7XY7pG1zHm+vCBGt1+tr0WDGB2EjckyGgJvIeUo3pndEvqkR9w4CedNLSWsZG7St5FiQQfdVaDQaa0QeMknKPWQSoj6dTkO5CeUPrA9GmdTPI4rQUYLoM10wLlV24DX3aZoGAiopCASUJbBeHJPvQsCJeJOBQBSdOaWkgQg4woKvGUIBY4f4+ueBiyaYWTabzZC5wfr5+kwmk5AZQ4YJogQGl/mSDS/vYT9B6l28IZLvpovMD+IKppDu44FIwxrTdpEOE8wlIlOj0Qjz4p0dWAMyIRDOfM64Vs8SYSzuM4Gg5tkG/Mt9xnd8T1CmxPogJEZEHDe0P/Pd+r/+4pP1C4/6YxWT2GYv4sbFr406+rOn1Y56GBERERERDwHHQlCQDkUFyAmkdjQaBSIM0SiXy9re3laz2QyZBxApCDWEmxTuVqsVvBfcxA9CCLl2EzZIEmaDg8EgENx2ux0IoKS1qGer1VK1WtVwONRoNArklegwhJboqRNISB1jIgILaeV7TrA5X5qmgVRBhPBvgHBxfEQORBSuq9lsrvlYsCZuaChJo9EodGYgi4LxUNefpqm2trbWzDUpUajX6zpx4oQqlUpoWZllWShb8CyIfIYKApOXkriRH8IAwhJEmgwLT4snzZ5r9raOpNLTrSNv3sdYOK97QEBW8W9A1KBcAGNEvgPhRmxCzOEaIPMYgubJcT5TgOO6J4ebQ+bvPci0Z18gMgDP5nAPAgQuzzBxMYe1dJEg74Xh2UKcy4UgsnL4P3vDx4f/g2eLMC4X41gX9r2kcM1e9kL5Suz0EHEccd/H9fTtb3qm/sXW63VHZePyX4iIOGb4jVFbL33iY456GBERERERDxHHRlAgyk33A+mwxhki4anUtIGkzIDIKOnvhUIhtPsbDAZqt9trZBNS7gZ1ROfTNA1kwiO0i8Ui1LgTzSei6vX0vEdWgxsdSofdKji3R6slBa+Cer2uer2uXq8XjjkejzUej9dM+ZgL0sq5dog3gshwOAzn8g4VbnDnXTZ8vBgtQmxHo5E++MEPamNjQ61Way3q654PZA1AAiGaGxsb6na76na7Onv2bKiBpwxiOp0GEoyZI3PGGpCJgfBBZoek0MGBtH2uz/cT5Ng7NHhmCcfe29vTcDgMUXQIMCII+415RyRCaGF/eHYJHhvsH0wr2Z8QZqL43uGDjhP1el0bGxtBUPMovHTYxcC9C8ga4Jhcq2d8sH6M0e8BumF4Jo9nQbDeZHYgPLDuo9EolPDwIx2WH7FH8lkFHI8x5c0v3WRyNBpptVqFDhCsqZceuWjCcT2TxLuaREQcV7zlGXt6iz5Gn/qWoW4pDfWV7RujJjYi4sW92/RbH3bLUQ8jIiIiIuIq4NgICm6ERmp9vuMDqd3U3ENuScf3aCXfnc1mwfwNAu1eCZDSarUaygxoFeip+EQyJ5NJIEqk7UOiPL0dskiEmvR5iDVtJYn809YuTdM1s0m8DVxAgZBz/FqtFog0ZCtJEk0mkyA6LBaL4MovKQgo+UizE39vU4g4MhqNgsv/zs5OIG3SYZtNCGqxWAwmiGQKQIZZr3q9HrIWWLPxeKzd3d1wTMisZ0wg0HjbwvF4rE6nE0Sh8XgcIs2UmngrTAi2p/ojOEAyJYVrx/vBvRDwAYAYQ9Ixy+TaEcdcePEsE8g2GQ+8lo+scxzEmmazuSamsU85B3vbPSXIjqDTQr7Thpf7sC/YA9yfnmnhZpou2AAXNdwI0d93IYs197IJf064UIFYl+9q4eUdmGS6KFOpVNYyUvz8Lgz6uSMijiv+6MNbSion9Nd/8Uj9eGwnGXHM8a/v/lj9/bNXkqLpbURERMTNgGMjKLiLPmTfo/dET+fzuXZ3dwMxpZ7cCQVwcghpoMMCwgCkjiwH0tvzAoUbRLpxIqUI5XI5tM0bj8eq1+uSFOruITSQJ9L/aeFIVweyCEiPp6aeEgiyNPAb4IfzU7qBMAD5hhRjMlgqlVSr1UKkmbpz3ifd30USjzDjdwHpc5M9UtUhubyPoOCdOci0cCO86XSqe++9N6wLwhAEGzPAJElUq9UCuWd9mDuIPd4OXAOE140u2WPMlWcUsKaIP8wbvh9u5udlDG6MyLEQCHzfI9pwTPYJBJ41QkDiOIhSkkL5ClkNbi7JmnJPlEqlUDqR717i3gp8n/uQDB0yUhD5vBVr3hMBocE7mXjZiJfzMD5vvepGoP484F/2OKIQe4j15DjezcIzIZgHL7lgD0iHHUAiIo47stlMd37Gtj7vNz5DL3/CHx71cCIiLsIXv/dTdNdgU90vOqdsGZ3ZIyIiIm4WHAtBwcmHu9F79JyoPBHqNE0lKRBqIr2QOMiik0ii1USjF4tFyFDwVHYi527Y6NFaIvv4BhClp3abkgkipJ6iDZHydHI370PQ6Ha7IYNiNBoFsgr5gkzzU6lUwtw4CYKIQ84oDUCE8QwESFe9Xl8zt8ynp0PofX4RFvz8zDsZHETQ+S51/xB1IufL5VI7OzuSpG63G+aWz2MESGcPygsKhULwHWBNvRsF4gHiEC1Gp9NpKBnxrAOPpJMVUK/XAzElIu8tDSHIkHbq9xEYuEb2EhkNvCcp+Bl4FwSyNzwV380l/XqdrLN/IdeAcXnpDZ/jnuS8kkIJD8IUohPX5USfa+L+4DO+d5k3L61w8s//XcRDOPOOHuw9Ly/x0hIyHTxTBBHB54drJzPDnyMRETcKVucvaPqtHy694qhHEhGxjue87XNUef6G2ne+W7F3TkRERMTNhYckKCRJ8j5JQ0krScssy56ZJMmWpF+V9GhJ75P0RVmW7V7mOGup9tJh6z2vV/c67F6vF0gKmQpEs4l8OyGAsHNcyARChkdSAbXeHkH2jAY8BShv8C4Ek8kkiAhkF3gEGrGAso3xeBxq/j2TQjpMo88b4nFeBA2IqbvVM2eQRhdeiNbiozCdTjUajUJEH+HBBQrq5BkP14oYJB067ztBxsPBy0jIEmE+md/VahVafToJhDhCdikjgSB6Wr+bAeKrwXEQNBjHeDzWdDoNWSUcz7072FeUPrhJI+MCCEhknbjQglDA+rvxpJNbL8lgjoiis2ddoMoLEv6eXzvXw5p4SQlAlGANPSMny7LgC+LmlFwzPwgV7KM0TdeMKRkPXgfsSc9OcKGN8XjnFS+jYb3Z954t4QaWvk/dHJL59nORSXEj4Go9iyNufBQ/cJ8e98dfpXd/ys8d9VAiIvSF7/5U/d2rn6DH/uquVne+46iHc00Rn8MREREPV1yNDIV/nGXZefv930t6VZZlP5wkyb8/+P07PtQBIAekxtMaD5GA1HtIUpqm6vV6StNU29vboWyA0gEIA2ULCAiz2SwcF3KGbwJEFbd+iI47+/txO51OIPQQbyexntkAyYJEUl6BVwTX7VkICBbU4nutN6KAE/hKpaJWq6XpdBoIFqID0XJ+pwyDEolKpRIEiclkon6/H4ScWq0WWm16FgXkn44OLkB4xwMIq6RARBmTCwyNRiOQVDe5hOgiinhaO+8jLDBeSjsgtYgIXDfjr1QqYe4nk0kgl0TIKdegewER/dFotNa6kP0DcfeuGPhD8DmyNBAlGM9kMlnLimAuPbOB8UG03VsEAu6lFpBjn1M+g5jiQp0LewgOlKSw15kbNzOE2LvgRlcP79SATwb7xo9FdocLR54dwD3JON14lcwa1gDRIi8IIKC5OJc3afUSFveRuEHwkJ/FETc+lvee1ZP/Q1kf9dnPX3v9q7/x9/RNm3cd0agiHk74leGmfuQnvkSSdMubx3r0/3ntwykrIT6HIyIiHna4FiUPnyvpkw/+/wuS/lSXeXg6gcHhv9lsrhkPSofRUq+jR1BoNBrqdrtqt9shFd49FiBSpKS7EEApxWq1Cv4CkDUil5DOcrmser2uzc3NNTM4CJSXUTSbzXAeNyesVqtqt9tqNBrhuAgHdKNg3ERsGbvXijuJI3pMrTznIuPBDQ1JG4foItzQzWEymQRRo9PphMwPjx57uQCklbaUHJ9sEsi8+y2QZeLmlF7zDoEkowNhgai+p+O78SXXz1iZC9aT6DjZBp5e7wSWMTBmF3GYN492830XQcgq4NqkQ68Ksko8i4ESB7IQ8qUTCF4ueiFAuNGkk2/p0LjSCTyZN35PeRkO/hBkfuSNF1lvRDCuDdGD9SYbxLNsuGcoj0BA5PhessFnfB35rosfnlnAWPmOpDXhIF925D4XlL1wbi8puQHxgJ/FETcHlne9Xyf/2/vXXvvttzxHv7od20tGXHtUekudfNVfHPUwjgviczgiIuKmx0MVFDJJ/ztJkkzST2dZ9hJJp7Isu0eSsiy7J0mSk5c7CGSZ6CEp6NTFHxxrLbo+mUzU6/V05syZYJTXaDTUbDZDKjffh4RDFIjoczzIr6SQ3i1prXsDRAxC1+l0JCmQ0Xq9HrofuHBA6QJE2ssdaPuHmEHUN29I6SaB5XI5+CXwGlkXLigQ9SXCLO0TvjRNQx2+G++RMTEajTQYDNbaeLJGXk7hwot0aKpJFgTHRfihqwBmivwfUop44r4DzD0kmeg0kWy+5yaJGPSRYcC+cjNNxkqZiftL+DVQ8+97kN+9PEda71RAlghZJm7MSfbIcrkMohG/e71/oVBQt9tVo9EIAhrZHVwD6+zdHLyLhAsqPnbeJ8rvpJ1Ivd8v7i8CEEHcTBOhxgVATEG5bxCJOJ77KSAoMJ68j4H7Tfhn+I77RXDN/Pj3uS73juBzjIHv30AZClflWRxx86L4p3+lxlEPIiLi5kZ8DkdERDws8VAFhY/PsuyDBw/IVyZJcsUFckmSPE/S8/gdEu51z0QzSU33WnInZwfHC2aKkJjZbBYyHSCx9Xo9ECTp0OyRY0BSpUNSTqS2Vqup1WqFdPZyuazRaKTZbBYyJPhsmqahtKFer6vdbocxeZSbtpPD4XAti2A2m4XsBkkh5VzSWtq9pECqiaQjNDAWvB4oochyxoBcJxHxvGcF/zLfpOuXy2W1Wq2QZUDmh5eYpGmqnZ0dNZvNQN6pp4cA+nr42hPRrtVqqtfrGo1GYQye+u6knWMSXUZg8HIHd/V3QDCZV/wpEHkYGyQTkgzhdUNCj4B76YnvqzRNQ4TcDSDJ7CDTgzUhCwNhKT/X+b3iogfn9O4I7HnGxxy4kIdwwHueAeHrxT7yrhqeuQI59zIFJ/Z5zwcXP8iacMEFQQ0xiPN51oGLCn7NXv7B3vDSEObKzR9vAFyVZ3FV9Ws1voiIiIibHfE5HBER8bDEQxIUsiz74MG/55Ik+S1Jd0g6myTJmQMl9oykc/fz3ZdIeokkJUmSQUqdzHpdvrvdE5l0QeHgOCHyD9H3KCuEgbR86u/9+8Vica2toWcnSFojkJgtEl2F2ELCdnd3A/mDUI9GozUzvGazqeVyqdFoFCLvaZpqPB4HMQSxolKpaDwehzF7dNbJFDXk1IQjxpDJ4Kn4kC38GTqdTiBuHqlGWPCIfrvdDpkeEHvPGIDQX7hwQcvlMpSAcP1JkqjT6ahcLqvX62lnZyeIHawx5Hxra0tZlmkwGITSAElrJSBkYjD/CDQIUbwnHbZx5Dqd7EN+yTCAnEoKQoF0aD5J9gGlNT4GF4U4PpkG0+l0rY6f7APKNRAcmKssy4Ig1Gw2167dx0GmAiUB7H1INOdEROLcrDt7tlqthv2aF1QYD8d1fw2ELcg65Ry+n9j/Pj6IvpcvIF4xD/5d6bCkwcUbuj1wvYgx+f3rPgrufXKp0onjjqv1LG4nWzeGC2VERETEMUN8DkdERDxc8aD/Wk6SpJEkSYv/S/p0SW/RfsOqrzj42FdI+u0rOR4lAV77Diny9nPD4fAivwVIBaQaMjObzTQYDEKEFbHCa/YHg4H6/f5aW0lq251IInZAxDzCSdSV8gqIHKUblB6cOHEiEGjpMCJOaQREcDqdqt/vB0J56tQpbW5uqtlsBnIFcWWMXjZSLpdD+Ue5XFaapur3+2tp9ETMEUgQaIrFYmgbSaTWCRblJYy53W6HrA0yFOr1ujqdjjqdjpIk0e7uri5cuLBW588aV6tVNZvNMFbIHeaUjENSEC8AggVzzNx7KQJp98PhMGSuuFjlhJ99xT4kfZ9jzudzjUajYAKZN49M0zSIEVwjEXX2HWIV5NuFMgi3l1UwHm8RSbkIXTLY85QCsefdK8TT/z2Lg/n268Rbgr3h94H7SiAqeMcPv5cRcujg4ZF/NzxkHiD0+awF5gaxClHCP+t+ED4We16tiYsuquR/uE7P6DjOuNrP4oiIiIiIB4b4HI6IiHg446FkKJyS9FsHpKAk6ZezLPuDJEneIOnXkiT5Gkn/IOmfX8nBIOiSAqHDF2EymQQiCZEh0jsajdRutyWt10F7S8B+v68TJ06EUgYId5qmgQwSqd3Y2AgEt9frhSiuR6ZJSUcEQORwokZ0nDKDbrcbUtQbjcYauSMaTDkGpG40GqnZbKpSqWh7ezuk8fd6vbXUfM/WgGwVCgU1Go1ADufzecigwOiPOn7KI4jWQzI9mu5En84Q1PeTiu+p88xxv98PRL7Vamlra0sbGxvq9XqhHKPZbAYBpN/vr5VkQNJZK0gwxJtrZ+34Ht4PZKK4FwPZGRBdxCBEA6LZlEtA2D3jwQ0j0zTVZDIJx3STTJ9XhAL3ZIDAkiGRF0P4DNfHOBmL+zzgHYH4gAB1qcg7a0u5AvuW4zuRdyNJ9j/eBsyLlzQgDPk65UtBvNNDvtTB58C9Szi2CwmIApzP70H+ZU/mhQ/EEc98Ai543AC4qs/iiIiIiIgHjPgcjoiIeNjiQQsKWZa9R9JHXuL1C5Ke8yCOt2aQiEGek2CvcaYWPh8JdTNDItvT6TSQIwD5hNDQvhEBoVKphPeJfEOCqH8fDAahfSQEx0WLNE01m800Ho9Dp4NqtRoc+93HgFIFUvNpjUkGQ7vdDuaGzIek4A3Bv/76xsZGMH6kTMKd/L22HfLkJBeyzpggkAg9pPhD7F3kgPzVajXt7u5qMpkEgYSxpmmqjY0NtVotSQolE26myDHH47EkhRR5RA4yFNg/7gXAOvhegHAuFovQVhRhgfUHXBOAcPu8IRo4oWaOuQ7IMsadkHDGQ9Qcks865tPzyXDgnKT/5w0yuY56/bAO070OvMzFzRDZF17O4D4Ifn3cJy6QeAYP65cvSeB+Y63Yh5RS8Hnfk8wHpTxuwuleFV6m5N4J7F2EEi9V8fH7WvEs8v1wXHG1n8UREREREQ8M8TkcERHxcMa1aBv5oOEkyt3c8yn+1JcT/SWCWa/XVa1Wg0EdRoKUPLg7P6QBQEZo+5gXJvLkIk3TNW8FosBO5CeTSfBSQAQgG4HvUQ5Rq9XWaurJrphMJqrX6yH67SUd0qGg4MQN0zrGQTmCdFgWQrtCvyaIJWQKkkZ5Qr59J9c9Ho+VpmnIvCC6L+23pGy32yGKn6bpWgYHQoOLNhA7xurEHUGB8SEEsBaQZCehzAnH5LNOitl3EE8nz5ShIAK5UaHX8/t3nKjyPoIQc8x+JBOCdSMbgNc8s4AOHVzHYrFQvV4Pc+rCEHvd59JNOLnPmGPO6R4E7m0gae38zJ+XILDP+C6CBdfLnme+WEMvy3CRgEwQ9gBjRFghMwaTyvl8vlY25W0hXfBiLyPkJUkS5p7zuPATEREREREREREREXExjo2gQAYBpIIMAOr5PdqIqEAKtWcoIAaQ/kynA6K7o9EoCBWkpSMekPLOZ91HwYkJkdbd3V0lSaJGoxGIH5HZer0eatohzOVyWSdPngyZD5C0Vqul+XyuwWCwRqLn87mGw2EwZ4Tccz2S1ubFCaBHgpkT5tl9A6h3H4/HQdxgLSBTbrzngsVkMgnGlvmyA9ZmY2ND7XY7RKIxFSSzAJJcq9XWWg569NhJtaehe1YAa4dQ4SSS73NtkPjxeLyW1cLrrLd7E5CtUavVgkeGtyaFALtAQwYH2S8IH74GdEaAPOPPAKFlLC5aENnHbNOzAXw8jBGhwVs1+mfZB3t7e+H6+L4bKSJAeGlLPsLvPh58HkNG5jJf1uHZP3nxwwUNzo2gVq1Wgyjmzw/WxUUR1tP3F+N3rwnmDKGhWCyG7JiIiIiIiIiIiIiIiHUcK0HBa50xnoPwSev15aTME7WmLt4FBUnBuNHrsBEUIDhuXDcej9fS9j1V2ltZQnD6/X4g//4djAt7vV4wZ2QsnU4nEF18DLrdbjCHJOIMwRwOhyFdHoM+j9xD/DyaCrnD5wETSumw3EOSer2e0jQNbv71el3NZlO1Wi1EbL3mnXVy8ot5oJd8MD+UrEBiR6NRWD9EADfOdEGErg158isdRpiZc79m5sFfRySStCaCUApCicvGxobSNA3zhGDhXSB8LxJhz5v8IYwhmFDKQ0QdIHp5qYZn0RCR93IFN8vkehkfY2X/UA7jngLMs3cx4Ji0USXzACGMdXYxxEUmBCP3QkAgcFJP1weuJz8XCD950Yv3EfwQOpg3Pyfvu88C53dTTJ4dPm+Ihayzl7xERERERERERERERKzjWP217CQEouRkyEFavTvdQwr5vBscEkGXFCKQRFIhEqRQQ0TwCyAzgCizRzohxflWdAgbRFALhcJahLpQ2DdCpF0kvgQICogUGE9C7hi/15Qzd5JC9gIlApC4er0eUsGpr+e8ROXphOBtJyeTSTiXp8QjqiDWMF4EGcoKGOtkMtF4PA4dNLzMANNExu++BJB6n3cvvWBeiFDnCa2vJYISQghp7mQ61Ot11Wq1YGSZF5HIovCoO+dgXOwtz5BhbC4iSQqlLZTmuGjD6/zr+z5fjuBigKQgHnlZhx8bcQbxR9KaGSUiG50VGKsLbew7FxTY73xe0lpZkZfKIPBxTX6NnIeSAxfPmA/m2NtJIlSwL3iP8fBTqVTWykE4no/bxYuIiIiIiIiIiIiIiEvj2AgKkCOIAKTCU8vzruu0hRyPx9rc3AzRcK99p64asgwuRTQhipIC4SKqTecJjgEZgrTxHXedpyMCpGaxWGg8HgcyOhwONZlMtLOzo+3tbXU6nVBnz7H5F1Lr7RTxjCAC7iICRJCxMY75fK7JZBIitaVSSc1mU5PJRP1+X6PRKPghuK8BJSD8sEZEpbl+BAEXFIrFonq9XjCjpDwF4o445KZ6CA1eS895PAMFgQMDT15nnZg3F6aYCxdoJpPJ2vVBThGASqWSGo2GhsNhIN9e6uA+FYyLeWAvs3bU+bsBIqTWW1TynnsOuDcCr/vcSQoeHYho7qvA3vU9A3F2kcfLfDxDwo/DOb1EAIEhfx+4D4obLnI8hCDEN8/S8FIi5sbbazIOBD33xuD7LhS4+OfCpe8pxCbPhImIiIiIiIiIiIiIWMexEhSIkEJmyBjwmngnR9T+u2EepNKjwqTV48lAKz0itd7CDuICSeSzktaECUguEX1qu53YSAokkUgoZQ+VSkWLxUK9Xk+7u7vqdrtqNBqBGBP5BxyjWq0Gl3vMHF08gMgjrnitO8QQo0cnk61WK5gnDofDMO5qtbrWgQLS6en4XJuLLB5Zz3sIkBnCdbKe4/F4TUByYstxmXevs+e8iECcH6LI92ezWRBl3GOBuUNUcDNFykm8pCTv/M9+gVCzX9wIs1KphJIVMiSYs7x5Yb4VI+dgTD52IumSgijBvOS9R9xXA5JPhgZgD3kLUa7Bj+NZCV5m4Huf+9YNTtkPfN+FRBcZPNPGhQzGx5ogQOZbSfo85OePPeelTIyT5wbZC6xlRERERERERERERMTFODaCQpIkmkwmgQhBkomqQxQAhBOiulqtArmGnLgHQpqmGo/HarVaqtfrwYvAiYxnNhDFnc1mStM0RDLTNNW9996rWq0WOj3U63XV6/VgRuhReyeFlC/MZrNgtLi3t6d+v6/5fK5qtapmsxm6CkCIId+S1O121ev1Qop8uVxWvV4PYoyng0PkEF8gnpQmUHZBOn+r1dKFCxcCGSeTwCPjTvI9Ep0noBBwoufSoZklc+MeCU7W/cdLVbysA+EH8uiGfoybc3t5gHcU8M9L+10YyEzwcTkhzpv4uZdB3kCRz7rxJOIBe8qj8IgXfm4v88iTZvdUcANNWpS66ALZ9+tjrXy+GTtigAsBTvwh4JVK5SJxh/UiG0fSRdkbXvqAGMc1krnCHPoaM1e+J3zt83PDvvOOJZcSJ92/wUWr2OUhIiIiIiIiIiIi4v5xbAQF6dCQDgJE5BsSCnmT1t3+iWp7dBIQ7SUqjC9CkiRK03QtCummhURfIcHeJrDf74duAoxROoxU+1j4P6Z1kkLqPySHjgNEXfFf8Ggy0fft7W3t7u6uReEhcqRpS1prF4l4QjcBPA0gf0T+Obenm1OPj1DihM3T7BFu9vb2QuZCoVDQYDAIogBEbTgchlKAS9Wou0cFn8u7+EO+PbWdcg6PmDNHCB55gcWj0mQN+H6A2DOeUqkU/CfYD5LWulzwukfRySaRDom2d2hw8z/m1v0InERTxuGeDPgeMG68G6rVaihvyXt/cD/5OHxNWTM3oPSSIj7jgorfT4h9EHXuK78W1pRsGPcOYX3Ym6xR/v65VCmFC5B5AcS7pHhpCfuAe4A1zWekRERERERERERERETs41gJCvkUbf7Yl3RR9BOTQ28RB0HNp/lDNMfjsYrFolqtlkqlkvr9vtI0vSja7OUSiAIudEgK5JPfneB4TbikQPS4pjRNA2nb2NjQdDoNmQGtViuUGXgqvaTQPYLfSd1uNptrvgt0nyDaiqBC20Mi/5BaJ4dkWXD+vJggHabW4ysByYakk2kBeRuNRoFsZ1kWovPuxE9HCfdJgPjPZrOQiSEdtvxzIaRYLAaPC66ba5lOp4GcOsl374ZOpxN+JyPGiTNrSdcRJ7ae4u9ii7coJJOFbBOyX3yfurGkG0+yrz0S78aTRPjJ6kEoczLOWiI6cS+4OaGPnbn31xAEvJzCBQn+Zb+QfUAGC/PoghvXjxBINoe3xGQO834GjJNMnbxRpYuP/txwYcmvx40evfTBDSMjIiIiIiIiIiIiIg5xrAQFSWv17RC2PEnzLATIKEaD+bpzSAEkii4O7tDvhHA2m6lWqwXi6Snz1P6TDYDvgxvvSYd+EERdGRctJBE36G5AKQQRd88C4BhZlq2ZFEJ+l8tlSHHHy4FSA64V8ktklii6EzYnVcwh2QCICZ6tMRwOA4FFVCHTggyLSqUSWjAul8swPjJKyPJgztzDwgUeJ9QOF2XyghCtDlljSOF0OlW9Xg/fQRDxLBOOzZpy3GKxqEajoUqlot3d3eA/4KKCdwxgXhBa6N5BNxIvuUBA8fIH9ylwos8cuYiEeOCikAsOHJPj4VfBvLEG7oswm82CKWW+W4OXn5AlgxjC9TKn7j/h65HPOplOp0GwIVOCOfGyGDez9DX3TBNvcekmou6J4CJGXmhwH4aIiIiIiIiIiIiIiEvj2AkKkAJIMzX+wMka5BtBodFohM95VBTX+16vpwsXLujEiROSDmunPQV6MploNBoF8iett8nDo0E6TMeHTJbL5dCCkdeo5y8UCqGzQZqmOn/+fBgjHg8QN8SG2WwWshW4TneoJ/Pg/PnzayULCBWj0UiDwSBcGwQU0uuiDGRza2srXAPki2g3KemenUApBmOaz+cho6DZbIYMkFKppFartSZ8IEBA/pzseQ28l6AgtjB3bkDJmjLn7B2P5iNkUIJAVsN8Plen0wlzBCl2ccNNGnltPp+Hbh4eCUd4QghygYn3OaaLVPmsBfa53x/MCWNz3xA6IHhknz1DRgqmi6vVSpVKJRhZIja5jwPf5dyXass5m83CHuM7LiBwboQQ953w8g7vEIE4wZp6OZT7OHh2h1835/ZsI87l2Q+FQiF4W+QzUryEIiIiIiIiIiIiIiLiYhw7QUE6rKEnkumEiD/6y+WyGo1GiMYOh8NQo+5pz9JhpHg4HOrChQva3d1dMxuElBKxHo1G6nQ6oTyA6Hy+paV0aJ7nnyGrAfIFkTxx4kR4DQJHpsFkMlGpVNJoNNJoNAoECmILAadTxHg8Du/1er1gDFmr1YLZJMcmKr6xsREyIijzWCwWwXeg2+2q3W5rMploOByuRa69br9UKilN05AB4eaAzNd8PtfGxoY6nY5OnDih+Xyudruter2uRqOhYnG/laS3N/T6ezcadIHJfQ34PyZ+eGSQyg8B5bohouwjjguyLFO1Wl0r+UDI8M4VpNgjGOAtQLTdx4zoQYnB5uZmEAAo0+CzHhUngu+ZCJ4J44aDrI2bf3r7TS8vkBREHe+egqDB9XIfSuvmhcw9oox3t/CMArJZ8l4L3MtunOoeGKvVKoglzC9kn9d9TPnnRj4rA8HFRRfagiKI+TH9/vX7PCIiIiIiIiIiIiLiYhwrQSFPHoh+Eikmskmkms/RfWE4HAbPBMimpPD58Xis++67T91uV1tbWxf1n0e0wDSvVqutRVtrtVqIMJdKJTUaDY1GI6Vpqs3NzTWjwbyRG6SezAfIGFFpSKek4BdAlHY0Gq15OXgLxtVqFa69Uqmo0WiEsgTIpHsN8FOv11Uo7Hd5GA6HIWvAjfFclHHDOoQexs2/HJeI92KxUKvV0qlTpzSZTFSr1dRoNLS1tRWyCBBNuM7JZBLWwUsqPPXcyzY8ywPynS+faDQaa34N3n3CBQXI52KxCKn3EFGOxZ7BJ8J9H7wsw9sWekYFGQnsA64LEQSCnjfLlNbLMFwo8Eg8x/MyHYiy72VEELJifBw+FubYSzvckDJfisE5yMhBjHFxysUBH79n9iDYeIYF9z7r4fcvwop7PfA+10KpiZfw+PhZQ8/iiIaMEREREREREREREfePYyMoeK00xDDfStDrpr0eHAJMtDffFg+Mx2Pde++9ajab2tvbC7X+fJ8SCciEp3E7UaFFJRkR+DO48R3XhCkgx6I9I0JIpVIJxJrIMhFVulFMJpPg1QDh5xyQez5D9DzfApEsBwwByXggO8BT+InsQ6AhdXSJkBSEBIz79vb2Qr06nSXG47E6nY42NzeDYNFut3XLLbeszR/ixM7OjtI0DWt8KYNET3OHNEJY3bPARR2ILcKHmxDmS2gQXCjToJwDco+wUyqVwj7yyDpzjX+Aj5d5Q7hwk0v2q5c68LpH/dlfeeNRJ+KQbe4jPy77yEUZL9VwM1FIvHsweLmCezdA3D1Tx7uMYCDK3mUO2Dt7e3uq1+tr5qe+J5lj77iBwLKxsREESMab74CB4Wmz2QxCnI83X9bhz5yIiIiIiIiIiIiIiEvjQQsKSZI8SdKv2kuPlfQfJXUlfZ2k+w5e/64sy37/So7pf9Rf6j2IL2aNTpi9zIDIpEcyIT+e9eCkxWvIcbiXDtPDIUgcv1arqVKpaDKZKE3TkEXgEVyICyQK0tloNMJ1SPtdGsbjsc6dOxdKBba3t0PWw+7urkajkVarlU6ePKlms6l2ux1MGZ04SfuEmk4KEDYvv2AO8C+A7KZpGrIsEGxon0cmBfODsSRdHdznAuI6GAxUr9fVbDaVJPttOslicDJOVkiSJGo2myEyPR6P1ev1gpCxsbERPBooT/A2lF4qk99PZJa4OAERh1QiLvlcbWxsrJkLuokgAsp8Pg/ZJdKhoOB7h7IF9paTbo7n+43yjUt5C3g2gvs78BqZHYgs+bID5sTNOfP3GtF7hC+OdSlfAeYEMs86ICiwzi6MeBtNL42AyPv6QPj9fvKxsn6MlecB95h3aeG+5Rng5+Z4+dKN445r8SyOiIiIiLhyxOdwRETEwxkPWlDIsuydkp4uSUmSFCXdLem3JH2VpBdlWfZjD/SYTla8JjvvWQCIkEMovA6bKLNHuXkNoiOtp21zHFKeISFETiF4Lj4QsSZDwc3kiAZT7pD3IoCo+Th7vV4glJ6hcP78eZVKJZ04cUKtVkvb29trnRIg0nSMmEwmawZ7iATeEcNJW5ZlGo1G4TUnpYgLXg4yGo1CdgMeEZ7a7hkXbqTnkfWNjQ3VarXwGmvPsXZ2dkJWAW0op9Np8Hdg/iWF62WN8IggMo5IQRYLIghjRCjJi1QuZLngICnso7xwxb7iumq1Wsj2QFDwTgkuFrhQwPk5H9kHvodYIzJVmBPWldIC7idEJoQLJ92cmzn1LAJEAEQ17gNJayILQgmCAfvBPQ3YD+xBFxu4Xs/qyJdDMEb3PvD3GJOXcbjHBOVKlOW4+aM/O3geHHdci2dxRERERMSVIz6HIyIiHs64WiUPz5H07izL7nqwKcJeB47fAeIA0VI3druUmzvEAsLkdfOASCaRU36IhGJWR1STencyFqRD00hJgWTv7e0FgiStR1rpQgBxc1d8jgfRxHARo0iI4ng8DgJDtVpVq9XSZDLRYDAIxI7yislkEjIHKAugTAPDP0otisWi0jQNho9Zlqler69F1Bmjr4tngZB1gLCCgMO5+T8RfcbgRLhYLGp7e3ttrsjOmM1majabqtVqa+9RE89YSPGHCLMHXNRg/VutVvgOJJIouKS1rhEuRjFm77JQLBaDGaabNLKfuSbmF+HBx+tlCZzTMyf4rKQ1Iu/p+W6W6CUffM59FVxQQHhxvwZIPZ8hI6Rer0tSEJYQLbge70zB2rihqfstMNY8PNvFSyg8a8LXjAwG7jd/BjEmbx3JPen+H4g9btTp9+gNhIf8LI6IOPf8j1P/jtnlPxhxQ6L6rooe8YN/cdWOd+dLPkZJ+dr6zcy+57XX9PhXGfE5HBER8bDC1RIUvljSy+z3f50kyZdLeqOkb82ybPdKDsIf9O5pAJGBGBLx5weiAFyY4FiQojwBI6IPQfFINASjWq2GaKaki0gWQgBRVOnQxI7MhFarpUqlEogwUXKOx7W7eR6eCESDmRtINB4LPjayHCCnTtwgZqT+b2xsqN1uh4wFWk1C2iiLcD8KshQQA5hbn5fZbBbGjQEeY8IcEdPI2WwWMh263a7OnDmjZrOp1Wqlfr8fhA1IHoLIaDSSpODD4NFrMgbczyGfdcAc+pp5qQpkk/0mHZY7MJ+ch/fc06Jara4dD0HAS2woI8lnGjDHvte9PILPeYmLmyTSNtJfd0ENAcH9SnwMvndYW4Q6nwPWEfEgXybh+xtCzxyxPyjZQYxgnC4a8L57e7gPg2djIFD4Wkj7mR2IOi48YHxKFov7U3D8G9CU8ao8iyMeXig8/cM0/OFp+P17Hvc/9HmN0RGOKOJa4i8/aaF/9wn/4pLvtb+0p9WFncse4+9f9Cydeco5SdI7PuInVUk2LvONh4Y7XnD+mh7/KiM+hyMiIh5WeMiCQpIkZUmfI+k7D176KUnfLyk7+PcFkr76Et97nqTn2e8h5RzixOsQQ0lrrQWdVHiGgkfVPWIqHXYFcNLG616DD9Gv1+uaTCbq9/vB84B2gBBAouFO1Hiddo6eXTGfzzWZTCQdRsILhUIQB0ql/faRZD7k3es9Nb1SqYRuA4wPb4d8zfnGxobq9XqIsEMKPcW90WgE8QPSD4i6Q+6ckPN9LxnBpwHxo16va2NjQ9PpNGQyMK/b29s6ceKE2u12iH4TER8Oh4FMVqvVUHvPcSnLQMTAUJO5QhzxLgqISx7Rnkwm4Rx7e3tK0/SSEX9fc894kQ4zOqRD4gzJd+IO2JtecsPeZLzuewBp9zmHfAPWzP0ivA0i64bIgvjingseVfFsm3xph2cOeLmGX1/+/pMOxQ/ff/mSDJ4Hk8kkZH/k58/LlXycXDPHznfL8LnkM4gTrCnlGDcKrsazuKr6dRlrxNEjKZX02Nfu3xOPqr5B37H9riMeUcT1wh2VDb3mab95yfe+7ZUfpXS1H3h4z3Bb2afcvfb+B77r4/RJn/9X+omTL9ATNxoHr15bMeFGQnwOR0REPBxxNTIUPlPSX2VZdlaS+FeSkiT5GUm/e6kvZVn2EkkvOfhcBtnxEoSD9wJpoebdCYib40m6KAPBCZuXHJDi74RG0loUmWg2AgeR1CRJQpYBJQicH7ECAk1XBiL73mFhb28vpN5Tc+515GmahusmTb/RaAQCiwdBkiQaj8dK03QtAk8au88hZBzi790yPAtiNBqtiSYQdCK7eAlAAn3NEFxms5kGg0GYOzIOKJ3AzJLsjGazqW63qyRJ1O/3g6CAKMCxXUCCULPGrIkb9XmpAd8h+4U9RtYF7SyXy2WYT8QXb7vI/vDSB64NYurlIfkyCc4hHWZ3MA732PD7gv1JKYGXQTDHviaMz/eyZwG4AOD+An5Mz3DxEhWi+uxnvuueHfwfUcRbUiLmsd88AynvnYAY5L4InoFEq0/3+2B/MBbP5kCgy4sznJPj5uf3BsBDfha3k63sUp+JuLnwKX+X6szGrr68fUNFfSOuA3709JvD/2fZQr/6jjNr739M9cf0lHJdUkMRl0R8DkdERDzscDUEhS+RpXYlSXImy7J7Dn79fElveSAHg1zyf+nQ4A4SAHmgVSRk3COn0mGEmMg63yEtHwJDVgLk3w0T3Sshy7JAoCgHKBaLgWBzbCKsLkQ4MSdKP5lMtLe3F46JpwHo9/uqVCqBPNbr9dAhwgUFyi6czHkpxcG6SDr0kCBLIB/RRfiQDqO/zLuTLc7phBliSpkBnRogod1uNxwPXwi6Izi5ZowIChgBesQ576HhLRX5gQC7EODp8cyTC0qQXtaLrAf31uAa3YeD60L8cD8PjEMRuxivg/3C/ONLwdwBxCX+rVarqlaroQUoZQSsP8TYyTPZMsxzuVy+qAODm3xyDObd20dC4CUF8Q0RAiEB8Qm/Bc8C4hq8FIb1cyHRM0s8o8D3HHuEe9rvBzJmyJTg2P6s8RIUb1d6A+GqPosjbk581lt39U2bdx31MCJuAFSSjUuITjF6fhnE53BERMTDDg9JUEiSpC7p0yR9vb38n5Mkebr207vel3vvSo65VroAGYA4OOFDQCAFHTLmNfoQJ44tHWYxSFqLgBI5dnIznU6DAAFx4T33aCBqO5vNQq0/8HIFiFWSJCFbgi4NjJEMiclkslaWAQHkc17+ABHytpluNMg18V0/L2R4MpmEThBeTuERfMpPIM7z+XwtOwRvhkKhoF6vp16vFzIWxuPxmuN+mqYhCyNN0zCntVot+EQ0Gg3VajWNx2NNp9O168fc0rsHOKnMsiwQbMwRGScRb9aBOcpndLgXhb/OWjC/7skh7ZNrJ/GICt5VBEDO2SOUyvA6+0BSmB/GT5cMovylUincA/luFVwb4/B5Yy6czLMnEKXc5JQ96qaVlIG4oOUZAZ4l4lknl8qUYI05LvPtfhPSoWDGZ7x9p+9RxChECTI28ufiHkKcuVEyFK7Fszji5sPH/c08igkREdcI8TkcERHxcMVDEhSyLBtL2s699mUP8lhrkUfpsD0c6ekQFtKtId/UWiMM7O3taTQaaWdnR/V6PaT5e9o0RIQad0wJG41GMAacTqcajUYajUaazWahiwPp8HRKKJfLoTtDuVxWu90OxAQii5GfixOSwphJh4cEZlmm3d1dlcvl0LUBeBo6hItMAQg0GQ/UoDOPjIP2kh59JlKNsADpKhQKgWBlWRZMJomqNxr7qY+0biSrgi4P+EX0ej3dd999arfbQaTo9/uSpPPnz2t3d1cnT54MYka5XFaz2VSz2QwlEmQFsObumeGp7cViMawp0X7KQGgricCA+IBppZsS5p3/HWQPYOzpJBty6tkV7tMhKWQ5eNYFxNaPl+9qwrEZFyaQiC/z+VzD4TDMo/sOsMfccwEhjXuQ++5SxpJ83sk45qWIbXye+wsRCVKfL1nhcxxbOsxKckHB21x69gBlGu7x4M8Qjs+e2dvbU6PRWBN8fD7JRPH79Ljjaj6LI25ObP6fLX3PLX981MOIiLhpEZ/DERERD1dcrS4PVwWenu8ZCpJClNmJHenakkJU1o0RSXHOt7SDoEDUIIWQSUQAT9n22nxEASKgZCYsl0s1Gg3V6/WQKdDpdNY6IfB5CDVECgI9Go3WxILpdKp+v78WGfbuCJ5az/xw7rxJnketid57lJrsDDI9iCjjeUD0l/aN+BvQMhFhhBKO0Wikfr8fyGOv19Ndd92lra2tIFhICnOC+SJlDvhQbG5uajKZaDgcBtLtafeIHswRc1GtVkMGBKUhEFKEEM6NOOFmg1yHHxN4a0Hmmfl18p0kier1esjSoHzCPRzITHBDRwQN9vOljAbJcJEOibv7iXgrSPYO6fwQa+af0gM3HOU7iAXlclmDwWDNK4F7i2vw8h6/x7yNpvuZcO8xbjJGmDv3TfF9zth9rf154R1N3AASsYfvIyxhAupdIvyZFBFxI6O4vaVWKbaBjIiIiIiIiLj6OFaCgqS1+nYHxM4j0PxAJLzWH5CB4OTaiTIkzckGqdXtdjuUUgwGg1D3TwkG0XxS0iGp9Xp9zWPB6/ulQxd+sgVarZY2NzeVZZmGw2Ho0FCtVoM5I5FXjA7Pnz+vfr+/ZjroaecAMjefz4MJItFliB3ZFrRhhIghXlAGgWcCxI4Iu4s8rFu5XA6eD7PZLGRanD17VpPJJAgt7XY7ZF+QBYFQUalU1G63185P1gGEkK4PnBehBwILSWafMOZOp6N6vR7mNE1TDQaDQKbxEaDjg5c++Fqytv667zMEAeaL1xBuvHQFQu6iDyIBhBgCz2co62EvIa4gPOSJP6aeiFmIMuVyOUTtEbukw8g9YhteHewhymbIxOAepRTDO24gWLG3vIRCkhqNhpIkCb4blOyQ8cJ8+TV59wwv8XBxjf1IppBnXrhwRFkF638jlTxERHwo3P3SU/r9R7zs8h+MiIiIiLipUdzc1N7jbruizxbSmVZvjx2AIi6PYyMoeNo3NenAvQOIVkJ8qGEnMkzLRDdXxBOA4+fd+vnxYxaLRTWbzWB4R/kA55EUoqsY9znB9vRxj/Z6B4TZbBbq5ZvNZvjdjfQQPkjn57tpmurChQuSFDIjtra2tLGxEboLQNQxFPQfiBrn8BR0BAWyGHwdKANw8gzRZx0hkeVyea08Ym9vT71eL5hRNhoNnThxIhDI3d1dXbhwIRj7QUAhmdPpVDs7O+r1elqtVqpWq2o0GoH8MUZPv3cTPiL2zBUEczQarbUPhcwSrYYo01GE/eYmgXzf0/g5HqQVUgzhldaNL1mDSxkP4gXA8dzskJIS1pJSHG9lSZkHogHikF8fWTKs7WKxUKvVUrVaVaVS0XQ6VZqmwYtAUsg0ccGFcbvHB/sKgYZ72TuNUDrj9zP3onewcAEGsYPPeiYE88QY8lkS0qHJJefhWYNPhYtzERERERERERE3Eqaffcfa73d/ckF//yUvvqLvvrh3m172Hf907bXmG/9By3vuvWrji7g5cGwEBenQRyGfnUC6tRMKIo/4H0BW8oZ6RMep4Sa12mvJETDc8V1S6DJAir+kUJcuSePxOERj/bzuVZAkSajbh1hOJhOlaarZbKZWq7XW0aDRaARBwL0NiDzPZrPw/cFgsFa2QGaFp7U7OZW0FhHGlR/Rgvchtog7CDWQL0lBhMA8knEgQjiJc1NJsiKGw2GIGiOYjMdj9Xq9QHo9DX57ezukrp8/f16LxUKNRiMQZ3wMfIwQX8aJqSN7hblx0lgqldRoNNRutwPR9NKCS5UQSFrLnGG/IgCwr30dvGbfX0OQcq8Nb7Po2ROITp4ZgPDEmrHPmRvWm/lx40OIP6IW3yFjBPLvZQWA8SBI+D3ox6UcyE0VEYe4Vu/uwDwzVr8+3+9eqpT3Y6GUgU4wzLV0mM3gZpmIHzeKf0JERERERERExOwzP0aj2w+pXZZIb/ren3rQx/uG7t36hp9+ydprj3n587T95sc86GNeKU7+1p1anb9wzc8TcXVwrAQF6dI1y5BLBAB3g6f2nhR7oqzu4O+RYSLYHml2gzrO794DiAX8HxNExtJoNNbquyFeRNopG/DyB4i7O+5DsEkv53y1Wi2UCBAlpu1jmqYhgu1RWchsPtINyYNAQkgpJaB8g/lzg0HG6KIP3S2m02kgZ5A+CCICS61WU6VSCWTZhQdJwathOByq1WoF4We1WqnT6Wg2m+n8+fNrZNw7KyAuQBC9cwLGlt7mkLWHACPcdLtddbvdIA7hsUDWAqUu+a4EbuKYnyOIsXsuIDiRKUAmAO02MQNF8GG8jAPyDhlmPhDd2OesgYsafB6SnzcuJVvHO06MRqOwXzwLg3u0UChc5FXB2ChN4bhcA+vOXpEU5sV9JVyccC8U5tozOxCBEGTcA8KFBJC/H9lL7L2IiIiIiIiIiOOK5XOeoQ/+o4q+8gtfqe/YvrYlCu/9vJdIn3dNTyFJesxHP0/Ve5/0IT9z+nVzlf/wjdd+MBGXxbETFDx7AHgk2EkD0f/d3V3VarU18zcHhAqxAYLh/gkOIp10c5jP52v11ZAqJ3cQxrzwQZSf68DwkPIIiJd7LjQajTC2QqGgZrOpra0tJUlyUa0/RAnyBZEiXZtafW/lxzwzl4gr/JAt4YTOhRfKJSSF7AQyMCgvITLPexBoJ9Q+97xGlgMRdye9zWZT7XZbnU4njMtNAjFx9BR5vs+akXHBuNgf1WpVrVZLe3t7qtVqoV0mopRHrvMZM3yf0gK/Di+1kQ4zHCiR8b2BKObeHohRZAy4Z4D7iuT9MyDS9Xp9bUyXMjPEK8T3NBkc+GpQjsN1I5xxTMQmn2cybXxsjMONEd3MkvF7mY/f93lRIZ+t4feczxtj93nIz4dnQPFZ1iciIiIiIiIi4rig9NhH623fflKS9ClPf5te9cjXHPGIri7e+7kvuexnnv9Zz9L/+vw7Lvu5+8OH/cDdWn7g7gf9/RsV7/nhZ2vZvf+A2elXF9T+5dc9oGMeG0EBwkuE0yPs7t4OPNo/HA5DdwSEBwiDdGhcB3mq1+trHgXL5TKY90GmGo1GIEWTySSQnfl8rsVisdbpAYGAVHFIpneqWCwWmkwm6vV6Wi6XajaboeTAOw2QkVAoFELrP9oBzmYzDYdDDYfDQBLr9bra7XYgwJBRBAsnuUTcx+NxyBaAPEH+INSNRiNkG9DFws3/iH7n0+c9o8G7BZBJAKFLkiQY+rnvBJF1J34INvV6Xd1uV9vb22tiBWSW2ndaJ3qEmkwAyC5ZA5yvUqmseQ1cymiSqDnXjqElogxz5MKN1+azbxEPWB8It5+X/eRGi5gWIr74Hqc0gWP6GkGWPXOEz+GrwH6jlKRUKoU9CvlHoHBPEsbLmmIkitDhpSGM2VtEcq94dkKhUAgZJZTSII555g7wUhFELenQ38E/gxCCBwaveSaEl17lxcaIiBsRmy9p6iee8Ch90+ZdRz2UiIiIiIiHiOKpk8peOtd7n3R50n0z4ydve5102wMjvo7nPP5zdH70lLXXBmebeuLXv+GhDu1Y4cLXPFuLz+6F3//ko39Ut5ea9/v5n/iER+m/f9HHhd9v/5ZUy/f9w4c8x7ERFKTDcgIioPyRnzdq9Np4iP1wOAwp9E7i81Fw72LgpnWICU7ERqORhsOhpEM3eIQByg4gW6Ry413gkX3GjxiAENDtdgNJGo/HIRoNAU7TdK2Gvd/va3d3V2mahushsl6r1daIH+IGHSMYH8LL5uZm8IZAhJEUDAvJQKBkA+JOVoSkQHjJ3PBUdIghQol7XiDisJ4Q4by5JkSSaPF0OlWj0VC32w3k3X0iWIdmsxmyS8hSoDzBSXWSJMG3ApHIDQfZa/7DcTy7wEsVvJSBtp4ICO4lgEhA9guCD/uRcbBXWT/mzfc+HTrYt+454GN2nwHuDSfY0+k0iBQ+7+7RQWcMSeE1hAO+y3Ui+HmJBuf1spPZbBbGxncQGzgXgoGbVLrQgyDIHkJcyGch+HOm0Wio1WpptVppOBxqNpsF4Ws6nYZ7JSLiRkfl99+g1/6Hx0ZBISIiIuIGR6HR0KN/d7BPpiMeEl71Ya+46LV7liN96//57PD7O//Hk3Xip197PYd1VZA888O19V/2sy++5pZf1hc1+/bu/YsJkvRNm3fpm+44/Hvh3/zPj9H52eb+Lx936e8cG0HBCY97JvAef+y7w7uk8BnIh0c8qSeH1HAsIvPD4XAtpd6j5JC98XgcyAxE0ds0IgjgDUAHg3z7PrIDJpNJMGKEeEPqEE08HRxytlwuNRgM1Ov1QuS/0Wio2WyGbhSQcDofDIdDjcfjNSNJ6vI9ksy8FItFdTqd0MKS8glIOGOELNNNgPOxJl5SwuuepUB3DAg5ppae2eGeDRB8ztVoNMLccU73QqBVpRN6rsEJL+IRHSFYd89ykdazDPxYlJV4Lb906PnBOrE/OIZ3O3DvBi8hcLGIz7OHuBfwbMB4FJ8CSDomlC4IsCbe5jFN07XzuuDhmTYIcqPRKMwJJosIbcyJC3Bci3uDIDK5sOSlCNxbvO5mjKxR3g/C9yDH8ayYvBDSaDS0vb0taV8c6/V6mk6na/uQsUVE3Mi486fu0J8/4oW63B8RERERERHHGEmif/KXH4ji8DXEmVJTv/yYPwm/v/o7/kRv/KbHXvS58V5Zf/606vUc2mWRbJT16W8+L0k6tfG/9KWtq2Nq+V9vPczY+NX7+cyxERQAxNaj5hAfd2zndaKplA6MRiONRqM1h30nBe4Q78Z0ED6vxSZqS0TaTd0gSK1WK6Si49XgUfu9vb3QOrHX662RUrIJqL9HjJAO0+y51tFoFPwcECkg9BBEz7wgWgupJDqPQMB7kMFisRii3IwdY0OIG9/F5BAxpNVqrbVdRPDhXwi8d5jgeiGG3uYQsC7e1o81RAAgQk50HdJOaQDlDZBE1tKNNslOIDsEAUQ6LK0hyo6gxPvsC0lBOGCfINpQyoM4QsmNiyvMMWP0EgEn45hBIhJ46QYp/JPJZK0DiV8D95gbNLJ2ZCBgbsp73sGC9SQzAj8K2lCyxmThkDHSaDTCPUfZgwsCiGpk/ZBxI623l3QfFM+M4FnA/cz8eKeL+Xweuj0ghpw4cSIIEVwr3WAw+4yIuNHRPjP8kOmNERERERHHH//2XW/Tc+uzox7GwwqfWJU+sfqeS7736ku/HPD9X/6VKrzmr6/+oAynXtvW1556dfj9E49I4zh2gkI+AwFiK+miKKzX/NMODxHAo8NEON0sEXJHWrdnC5A+D9nz/vWQD/4lXV9SiBxDlDgvJChNU6VpGnwfqtWqut1uIEecl7IASaFjwWAwCIIDBpOkuiMmVKvVtTp+r2WXdJGvAhkaEEk+m6ZpqKMnHZ0OE4wL8ud1/nR7YPwIOpB3xsF1Qsohz/yQVeBkHQFmMploOBwGcklZB9fhJNuzPpxw+vnoLAEBp9zEBQUvw3HDUBdMPDWea/NOBM1mM+xf5pqxeQcH91JgP/m9gajBHhsMBoHouz8EvhmIQpLCnmCvkS3AfVKr1dRqtVSv14NwguiByOTXjchBC1HvmoGpY6lUCr4l+Wi/G0wi5LDf2N/sR/YU9y/rzXG4dkQV7lde7/f7ob0sggJCXLvdDv4kZDR4Nk5ERERERERExFHiP7znr4+MLEZcGpdbj5e97P/TIru4eyH4pL94vh7zxX+79tqn/F2qL++8+YrHcLJYVzEpXP6D1xjHSlDIR075v0fkSa93nwJ3l6eVIkIAtfdE5Gez2VqaupNLd5HPO9jzf+/mAJGHeBNJhSzmI90IGNRmdzqdkHqNkRxRUU8Fx/wPkcSd7yF3kG+Ow/ncbI7uCETziUx77TqReie1lAaMx+OQGeCu+JBwUsz5ft4AMF83z7kRAXgNousGfAg9rC9CTT4jgraaXpbgnS8AYgKfH4/Ha74dXp8PKIkBzWYzlEtIWvNV4Bh0hmi322vr5P4eCDUIVJS8uOjiv3tJkJtHetcK9qYbI3rbSYQq9xtwso1gxJp7pop7QSCG5Lt1SApiF2IKZN3XACGMvcrecQPMfCcJ9hriAdeOYahnoOBpMp1OQ0aMl7VwL2Nuyv2xWu23UM2bwUZE3Ig4/fnv0Be++lP1Px/3R0c9lIiIiIiIB4hko6zbiiPFsrUbCyeKjQ/5/p2f+D+0uHu928JGUtSNuM7HSlCQDiPR3qJQUiDe9XpdksIf+97iDg8DOhZAZsfj8Vpau/sX0EEgb/jmfgwQUl5D3HDTOjIgnChD9vr9vvr9vnq9XjCkc9EkbyAHEYeU08WCKO1sNltLoecYnmEBweY8iAK1Wi1EsEmJlxRq7skIwM0fUgfBKhaLocxjNptpNpuFdPbVaqXRaKTFYqFWqxWu0yPoCBeQ4na7HUwpIYNOkiWtCT5kQbjXhJeXzGazUFrCZ5kzotvMC3sCAskeQlhw80BveQgRbrVa4Xf2IsTYzQ3xfPCMGd9TiDCNRmPNUBQhzL9H9J99S/cSSiiyLAviBceRDktnKC8pFAohG8AzR1izyWSiwWAQovSIWd7mslgsBrEBoYDfKTeh/IP1d4NO6VD4ItuE8zMPiFFe4sJ1UUrBOlLS4MeX1ju+8F32E8IdogJz5aUlERE3PLJMw084rxe+5bH6d1uXydGMiIiIiDhW+Ia3vU2P27jxSGbE5bEvINz4OFaCAun8kgI5IjrdaDTUbrdVKpWCaEDrNwiItE5QvF6bFGZJobUgZJvPQDIgPhyTaG2+Dtvr3j11HRIK4SU6OhwOtbe3p3a7rXK5rE6nE4gvjv2e0g2Rg0AzLkiel2cALxXwKKyTdYQThJjxeKzBYKDVaqVTp04FwkqWBYQeAYN1oHxjuVyq0WiEdcO3wU348in+CEEY9y0Wi9D1gnWEiLr/AyKGk3jpsNZ/NpsFUusiQ5qmgeAiFCHQOMlm/7kAgqjCWnlbRi914Fj5vUb5yGQyCesFAZYUzu1E2kUX9hL/8nnGwDmZD8Sc8XgcBBeO7X4QTpg9M4j0f8aL+OD72z0PnKAD7h9EB8g7x3O/EjKP2OOM21u5IgRdyvwSAY77kPvFzTcpn8j7SbAnKfdwA0pKViIibha8+sIT9K8236lKsnH5D0dEREREREREXAEuW3SRJMnPJklyLkmSt9hrW0mSvDJJkncd/Ltp731nkiR/nyTJO5Mk+YwHMhiM+kjvh7g1m011u90Q5Z1MJoHI5L0R8CUgap2m6RrB9HptJ7iSAinCSV9SOCeklJRsItGQYTIicN0nagsxRTCoVqvqdDra2tpSrVYLIgrX49kDfm2SgpM+BoqQqclkEggfmReMBUJFJgJZG3S2ICoPieM1n1/mqdFo6MSJE2o2m0GsgYgyJ25KCBHkOiB5lUoldJMgGk77R8iyZxKQGeLRYkQiyLHtv7COkFYXhBB5aNPJGrMnpMOOIaxDtVpVs9kMUX/2pYs3+FmQ5s+1kO5PlgSCEPNbLBZD5g2lH2QDUC7Q6XTUaDTWzBnZEy5YeGYKGRasvfsKcJx6vb72HoKB34MuyjBmL+vhvkOsYu38Gllf7nEvLXJ/h3wpDa+77wPmqYzVu17wXTJT+L4fn2wF5uv+ulv4eI4LruezOOLmxOSTzur1sygmREQ8WMTncMR1x7Oepq3i6KhHERHxIXElLg4/L+m5udf+vaRXZVn2BEmvOvhdSZJ8mKQvlvTUg+/8ZJJceS4HAgAGeRAgSCrRRwi7dOj4D2GBJFEjjpGh12RTT85PXmhww0cvgZAOXf09k4ExH8xBINAQ2Fqtpnq9HjIbOp3OWjQeEQGiAznjvJA9UvM5jpNlIueQeYQKhA4nSU7CvRQEMjyfz9Xr9YJw42JDu90OvgHMGX4LrVZLnU5HnU4nOPx7p4x6vR7ILCR5uVxqZ2cnGObxGYgja8wcIYZQP4+w4pFn5ptjQZjdk4P9QhtK9h/zxHpD6huNRhCHEGW8DIG96p9pNBrqdrshW4DIOe1I8YHwziXMF3u53W6r0+msdUrImz4iuniZEJ8pl8tBjECk8U4O3tWCtc6LSS7gIey46AY55/zuk+DeJe79QXYMhN09L9xIkz3MXHknEDIp2PuUsWAMyg/3IplNktaymNwbwrOdKCE6Rvh5XadncURERETEJfHzis/hiOuIj3nxm6MZY8Sxx2UFhSzLXi1pJ/fy50r6hYP//4Kkz7PXfyXLslmWZe+V9PeS7rjSwXhE3mueIcLT6TQYGhL99qgmqdcQNKLMRJSJIi+XS6VpGkiOE/l81oFHR6mbx2AO0QEiRkTYo590UGg0GiGC7cIF0VXIHqUddK1wDwAi2hBuDOSIAJNiDrHCd0Faj/RK+8IH5QFO8Pb29rSzs6P77rsvCAmIEq1WK5R6FItFdbtdbW5urtWek3nAa6T+e/cCsiNWq5V6vZ4Gg4FKpZK2trbU7XYDcZa0limA2SDGnO72z9oiarRarbAPOC/jYd1brZY2NzfDnvBODswZ5/FOEVy/dChoQeAZJ5kH1Wr1ohadEHRECM5HJstsNgtZHwhk7XY7tCeF3CNgMEfMNeTcfR28o4L7GnhJih8n3zGC9/LdMyg7cANNMgloY4qAwv3EPmUOvdyC43INZEZIh2UfXtowGo00nU5DlgRiB4IHYpvvoXz5BKKcZ5C4iepxwfV8FkfcvPiK//08jfdiS9SIiAeD+ByOiIiIuBgPts/EqSzL7pGkg39PHrx+m6T32+c+cPDaFQFS4eZsXh9N9BTyQDS62WwGEzjp0EAPEgGJdQKGUWO+laCTC++04ES4VCqtRT/H43Eg7xD+fHs/zgUhpqaeOnWyDrrdrra2tta8IiBj0mHrTCLVXu4AwUaYQfDI1+276AAxJdI/m83U7/c1HA5DdgSRcLIiuA6yDCC53l1AUpgfCD9rCzHs9Xq67777tFwuderUKT3ykY/U1tZWEFwghU5m8waWbn7YbDbVbrfDtRzsz7U9hqBQKpXU6XTWnP0puyASzjy73wIig2dfsAZOyBGSfJ7JJEjTNOxjrsWJr6fiuyjg2TJO5n2feekCYpxnppBB4cIAooj/6z8+zwBSzn1F1gb/z2fa5I8N8WddQb4zR97Ekev0z9Hy0rM3PBOF8/j+82eId7RAnON6fGzHFNfkWRxx8+KJ3/CX6kdBISLiaiI+hyMiIh7WuNr5vJcqOL6kTXqSJM+T9Lz7O5B3CJAUiAE17dI+uW61WsFMje951BViABEnpX8ymQSS710E3FzRU6mp/W80GoHcQ7JcoCgUCqG8gbFwLDIYWq1WiFAjmECKut2uqtWqdnd3NZlM1O/3Q7064oe3ykM0cNJJenehUAjZDh7txf+BOfOykvF4rH6/r263u+ZlALGGePMepB9RBMGB1yHEHh2W9sWECxcuaDqd6pZbbtHp06d16tSpcF4i9aw5kX2yCyDplBFAFCHYiDFeSkLUWzo05nR/g4N9Gcgp1+jZBZLCNUJYaa3JdbvPhmcOIC5MJpMg1pB5QzYIngsQf6LliBFcD3vGW2ZyPBcUfO8C94hwwu5ihJcJcf+5uOaiH3MiHZancD8x79wrmEQyV3khg3/z3hl5b4x8+QSdSFhrRCEyfDgv2S0cB+EqTVMNBgONRqPwbKBrzA2KB/Usrqp+LccUERER8XBCfA5HPCT8w3/8OP1I50WSokF0xPHGgxUUziZJcibLsnuSJDkj6dzB6x+Q9Aj73O2SPnipA2RZ9hJJL5GkJEnWHrBe8+/kGUJKpJYoMpF1Pu+Eiiiup3p7xBliki8HIKVaUigHKJfLajabwVwRco1gMJvN1oQESDvZApAdIteYKkLG6vW6Wq1WIP9pmmo0GoX3EQAYm3edgFRhsIjwgs/AdDpVv98PGQPMMWQN00ayJsiS4PopwaBbAiLFcDjUeDxWo9FQp9MJYgBjcHEHAkeq+mQyUblc1smTJ3Xq1Cltbm6Grg8YVUIq0zRVv98PIgGfmUwmWq1WqtfrQQSYzWYajUYaDAZr5oSsa5Zla9c7Go2CCFCtVkP7RrI68OHwMhzPnOH/GHIi8JBVw7G904VnJ7iw5ZkR7gGyWCyCkSQZCW7emc9A4DyQej4PufZSknyGAFF/hDjviuGlEz5+jsG68BngWRUICl7awH2EWMd38yUm0mHXEoQu/CBYb9ZQUhBMyCxptVprhppZloW9NRwOQ/bIfD4PAsMxx1V9FreTrdgn8ybHvS9/iraKbzjqYURE3EyIz+GIa4JHffJdenrsNhVxA+DBljy8QtJXHPz/KyT9tr3+xUmSVJIkeYykJ0j6yys9KOnTktbIB4TKBQNv7QYZ4XfICt8nkuo+CUSWXVCA9PN9zyqAXGH4RxSbdHW6SUAsIVYIGxAqCA/HI1rK9SMyuDmed6KAgKVpGsgmvhH1ej2QeUlqt9va2tpSo9FYi4znybF0aFLnZJd5wxBwsVgEA0rmD28H1oN5I7sDcSVfbjIajVQsFrW9va3Tp0+r2+0G0g2JZ32m06l2d3d1/vz5YMLH+b2DAGUu/X4/dClg/hCD8FeoVCpK0zR4RRSLRTWbzTWzQu+6ANHOr6dH+t3Lwv0U8l1EfE6ACwnSoaiF/0C/3w+CEN8j44Tx5dP8pcNsAl53TwTO4x0X2LOYOZLZ4N9hf0iHQgEiH3vCSxu8IwT3pJsfLpdLjUajQN7zRpruv8GeIrsEYY41YS9721RJoayH+5b9vlwuNRgM1Ov1NBwONRgMNBgM1sSFY45r8iyOuHnxE097WWwbGRFxdRGfwxEREQ9rXDZDIUmSl0n6ZEknkiT5gKTvkfTDkn4tSZKvkfQPkv65JGVZ9tYkSX5N0tskLSX9qyzLVpc88MXnUb1eX0uhp9YZwoqzv6deSwpRYY9Q7+3tha4FkBqIk3SY9k0UV9KaSz7EyjsO8FMoFNRsNjUajdTr9YKZn5ccQLoRMSBHnIvzuCM+JQSDwUDj8XgtLZ5rwBuALgFuQsnrtJZstVpBZCD6i2gACc2b85GtgLjj8454Ih12u5AOyRqdNSCK3jEBUYSWhIvFIrShvO2227S1taVisRjKPAaDQViP0WikCxcu6OzZs2vdEtgHjIV2l952lGvyCD4Rd8SXQqGgzc1NtdvttdIIhBE3AUVE4BikxpMZ4FkZRNfZW/wfgcq9B7zl4nw+v2RZAJkhDheIPDMhv24IAsvl8iKBLd8hgqyWer1+kQDBZ9yngH2NeOL3GWvkJRT5EhNKQvy7XsJEhhBwo0Tuu/yecyGO5wTH4p4ulUpBRPCSB9aRe/C44Ho9iyMiIiIiLo34HI6IiIi4GJcVFLIs+5L7ees59/P5H5T0gw90IEQiITyeUg2xlhQinHwOskOEVzo0QIRMETGFlEBoSO0mWurnIcIOAaE23TMCIIStViuQ6na7vdZRAb8BN5GEyEL6JIXoPiaMjIWIKsSX2nKO22q11Gg0VK/XNZ1OtbOzEz6LMAC5cqM8IsaSQlo7ZNbry5OD9oeVSiVkFRQKhXBOjufZFWSKcN10NSCCT4S51WrpxIkT2t7eDt4Uk8lEg8EgCBer1UoXLlzQvffeq9FotCYiQHoZA1kbGBt6C0dvD+gmjNJhSQc+EZRVjEajtTaDnFdSECzIBkBsQNjyTBkXb8h8YM3JVGCM7uFBlgKkHnJMpD/fVhPhAOLsrUVdQPNyHD7Lnvd7zNtiuiEjY3NxjONLWhMF3BTUy5dc4OCc7C2O694gfA9/BO5XhCREqvxYvOyDdaGdKGvs2Qj5OeCYxwHX61kcEREREXFpxOdwRERExMU4Nk3WIThE3SHYbh6Id4E7y6dpqmKxqHa7HYzZIDxOPPAaIHqJYWA+IioppKt79JgxQmIgQN1uNxB+DBezLAvlBdPpNLSDpEY/b5rn5nBu0OceC4zf6/AZByni4/FYg8Eg+El46YeXHUiHrfcwDsT8cTqdhjGSTk6GBuUPiAGQP0z/ECZqtVogvRBdCLi78bdaLZ08eVKnT59WrVYLJouk5uPRsLOzo+FwGOYCssv1J0kSMls4j5NBJ76XKulw8QHRIt/Zge/hHeElBPmSFDdJRLxyYcO7EXi2TalUCtk17BvIsJdasBd4zzspIFIhWiBOYarI3pMU/oW0U7LgXh3eGQTBhc/khQbG46VHLiogbvgYGCdr4h0dKDfi2rxVJnORZVkQBFxEcCNHhAzmuF6vq1gshuwE9hrXxXOD9YyIuJnwnz7sWXrCnX+kM6XmUQ8lIiIiIuJ+8J5ffrre8aSf1YOvTo+IuH44NoICf/xLhyTDHe1JjU6SRNVqNZBIyhKazWYg5dS1Q6Iht7VaLZB80ua9Fls6FBMou4CQ8D3IHCSsXq8HAlutVtVut0OE22vuaZ1IxB4vgkajEQg/hJrvQNAxPvSUeyLenU5HJ06cUL1e12AwCOUOnuruRnpe/++RX+Z2sViE6/OMBoh1o9FQtVoNteduolev18N6OKEFtN1sNBoaj8dqt9vqdrtBgPBrJ1OA2noyQVgjF5nI7MDHwVPeff/wXSLfEFj2i9f6Q36ZL4wVIe9pmq4JFYDMAD4DoWdfkSXjpRCICvnjeckEn/USA79vWC/3PUDIcKNGNzjkPcQn5p9rRQxh/3ANPo8O5hQCz/gRFjwTCIEGeMcIFxH4YV0orWD98WxAhMsfx00pyRCp1WrBjBEzVbxAuFY3aI2IuJnwnW97XRQTIiIiIo45CsU9FZMoJkTcGDg2gsKpU6fWopiQDpCv8Sb67dFx/AdImYf0k9ItKbQThIDyXc5Fd4XJZBLKCehMgB+AZ1Iw3o2NDbXbbbXb7TUhBALpEWpvR8e1uJEehJrI8mg0CtF2yC7EzbMFRqNREEI8O8Jr+jF6dNJHZNZLTTB0JNKPASTZIYPBQP1+X9K++SNmhhjf0W6RjI5utxved7M+yO5sNguCB+aPlElQvsF8500GIbcQbSet+XIHLzegHIHyGX53ouvRevff8DkEboCIh8ZoNAplJHlCzlgZG/vGI/tOkDk3nS28BIZSAMQMxC/v8MB+y4P9hKAiSWmaBkJOxgp7yzMM8q0jMS5lffLZOFy7Gzl6FgBdWdyPgvuBOeFeJSuFjCTPNnIDzEajEUQSMnKYI4QK9xNBQHNxJCIiIiIiIiIiIiLiYhwbQQEi5+72RJwhXkTMiZAT3c37D5Ah4FF5ouYQEEgYYsJ0OlWlUtFsNtNwONRisQgkmRIGaT/KjtcDRJhzefcHygUwGsQkkcgoaeQYykHqa7VaIGJ0NxgMBpIURBRJajQaqtVq2traCq0mR6NR6EwBiXSzPozw3ISR6K5HZWu1mk6cOKFutxsyJJzYI3asVqsQ8cVngg4JlG7MZrPwPuJKr9cLxpZkeHDNzAViBIKRZ0xkWRbaTjJeb93o7QddOAHepcA9DLylo5N4z54hi4Tovs+nR/4RdyD/7t/BPEOoIbFeApM/N+UQnvUiKRB2ulSUy+WwDxA+vIzI4ZkO7muQJEnI4KlUKkE083ITzu/X5vcApRteduLZNV6S474bzGe+9MHLNTgG9zomly6cITqwtswz5SPsEe9a4nPKnNF+MiIiIiIiIiLieqD06EfqVHd41MOIiLhiHBtBgbr/fKs9iMDGxkZI5yYq6w7slDHQVpAoL5+huwGRW2r9C4VCaFHYbDZDzXipVNL29nYoYWBMdBmALA6HQ81ms+CRACGE4LjPg7c55PxkAKRpGkwbETTcJK5erwfSCznEBLJcLmt3d1cXLlwIYyXKi3hByQTEH0JG5JnIdrPZ1G233abHP/7xarVaOnv2bIjkUrKBSOFwQ0KuiawOBAXEgsVioVarpdOnT2tzczOUXrBWEE6+y3tEmBGcIKGUWuRbdTIW78AASSalH6M+z4jhuN5lA1LqWQaegSIdCgvsM4+ee5tF9w/wrBXO7eUMiA1upsj1u/BAJoqbLzJWrjnfqYToPJkriAAAES/fvQEBiPnzzyL+sE+5TubFM3VYE0lrpTVeRkPGCgIg+4N9hM8J14fY5WIN46OUh3FwfyGeAL+HY4ZCRERERERExPXEO775Vr37I1581MOIiLhiHBtBAYLkde+SAgn2VoaQVUijtF/KgCs/hILIPIQDc0PKHYjEDgYD7e3taWtrKxy7Vqup0WiE70DUiOgT3RwMBmvt80hlbzQa4fhEzulgwHg8syBNU21vb4fyCnetJ7rPdUEIMUycz+fa2dnRzs5OOD516B59pSsC5RAelYZkbW9v6/bbb9fJkyclHXYQcANACBckFtLn0X33gSD67i1Bb7nlFt16663BFwESKa0785OBIikIAWSEVKvVIDJxne6RcKl2knTOuFTpg3/PRRMi82SI8Dmun73GOn+oDgZuHCgpnAtPC64Vgs49AS5V0++ChwsjjIXPuCki7+e9OyDi7j3g3UA864BjcHwyc7yMwOeY1xHb2JdcN5kHvsfypQ7sR1+HvNDFZ/PPEc6LiEZpE3uPferXExFxM6H35c/W6eL/kRQzbyIiIiIiIiKuDo6NoECk0f0HSHdvtVrBC4E/8r2TAwTW2/NJWhMUcHZ3/wJaDaZpqkajsVbvTcbBcrlUmqYhggz5xIvBvRUg2ZRlQKgQCTgvppKFQkFpmqrf74eIbpqmIdMAMcWzLarVanDxh3ANh0Pdc8892tnZCb4JRHGJktfr9ZAST8cEF1cwYzx58qRuvfVWlcvlkK5PHX2lUgnXwbUC95WAxHl0nTR8Sep0Ojp9+rS2t7dDKr+bN0KKOaa3V0QowWTTMxjcUBHC71kD7AXIN+N1EYI9BsGmLAVBiuvyDiCsfz4ln+i4ezswN/n0eiew7AUfu/tBuL8A8+vdH7ykRTo0S2TNOR8km30iHWYTlMvlNbHDvTjcr4DvsBcoB/F2rghrvj9cbEBMYP04V95DAsHAr5/zIja4XwO/M/es03g8DqUOLgRynWQakVETEXGz4F98+x/qiRtRTIiIiIiIiIi4ejgWggKEFfLMH/mVSkWNRiNkClCfn48i4kMAOYNAUUYBIYTYTCaTQPIgMB65l7SWYYCxHmQWAgxBWy6XgRxDeukM4SiXy2q1WqHbBL4JOOmvVisNBoPgMdBqtYIHA2KEdFgawJgvXLigc+fOaTQaBaKG6EHU2Qki5JOx0yry5MmTeuQjH6lTp06FaLwbX9Kiz8knpNqzJvjdySIZBJ1OR7feeqtOnjy5JvD49eX9M9yPQjoULyCapK0jRjn5hdi7h4KbH2KIWSwWg2jiPgesJQQzf93eOYO18VR7sgG8TAKyzLVQKsJxKC/h+5yXz5Ll4VkTLhI46XbhxzMRPHuDfcD1XspMND/vXq7BfFOG4IaljN/nxOeCchfPOHJDRYQDPuc+Ey6cuKDoAg7eLH7/4yfCNbvpoxtH5suqIiIiIiIiIiKuJWb/5GP0BZ/0+qMeRkTEA8KxEBQwP3OHe48ME6WEoCIUFAoFtdttVavVkLYMwfGIc7PZXBMDqMeG2NC+kG4GCAwYKFJG4eQY0ulk2FOqIS2kZlerVZ0+fVq33nrrmteDm9Jhwjgej0NGBiUekErO22w21e12NZvN9MEPflDnzp3TZDIJxBRjQ+aSLITFYhEMDYnmIjqcOnVKZ86cUb1eD74OzDVZFhAyRBvKEOg44dkXRPXdOHNra0u33nprMJ+ECEI8mTePlLuvAO/73NKG07s1uB+Cd9CQDski/4fQU1KDl4AbgrowAOF1EYtjQfQZq5dBYGLpWRx8n5p+BAn2q3e0YK5ms9mawMK1lcvlMC+eieAtRCHdeQNDzwhhvd0cMU+6uQYEFzJiyNhBAODYrCfjw7uCEgnfU8BNLz3bg3N7+QfH8O+xtxFeuP/5bF6o8ev0sUdEREREREREXA+c/4gN/ejpNx/1MCIiHhCOjaBQLBZDFFtSSD2G+HuNNmSQ7AVJawQS4p+v8yezgGNBGmu1msrlcjAwxKneTQ3dZwBSiHCwXC7VbDYDcYdc4elQKpV0+vRp3X777dra2tLZs2clHbrXc61pmmp3d1eLxULtdlvNZjNE3D3y3263dfLkSZXLZd199926++67tbu7q9VqFTIJEE4gjpRqjEYj9Xq9QOooz+h2u7r99tvVbrcDuUX0gOjRptGj6kS6yR7B7BFyx3sQzFOnTqnT6UiShsNhWDfPKPBafi/tIGI8Go00HA6DyOPlJBBTSRcRTu8UkI+W8ztihRNJbxWKCOSCFOQ936WB98kW8CwJf99LbdwzAuI7n8+DmIOYVavVQsTdDQvJOMGYk3GyT/P3nAtfzBnvUQrg3UEYr/tIuFiRN0/0Dg7cP/go4IfhHSS8IwPr514GPjb37vAfjpUXvZhnxoBIyfF5TriIEhERERERERERERFx/zgWgoKkNWLjXgSkLRMF549+CAmmcp554ORFOmxZh1hRr9dDa0OyGCStpUdDyvER8JRqvA28zz0kGYIHCZzP54Gwb21trdX2E2WFSI1Go9AislarrZkRQpDK5XLIyhiNRrr77rt1zz33aDKZhAwBT6nPp3AzLq5BUhApGN+FCxc0GAx0/vz5tXaa+CBA8Oke4KUOw+FQvV5PaZoGjwNKM4rForrdbih1gMQiTLhg4R4A7AGEijRNA2lGACDLgc+T4eLX7e8jGrhgwdy4aOKdDrx2330YmAs3r3RzQP8ex/ayETdTdJ8E9iyCiZewcA4X4Lz7gfsQQPR9v/E+3R3yHRc4P++7UMK8kWHg5TNcM+U8vjdYB4QXL13w54CXSwBe43ueZcL5GVe5XA4dVMg8KZfL4Vr8mJRCIAbis4Bwme9mEhFxI+OP/vkz9I9+/526oxINRyMiIiKOG8Zf8LH671//E5KKl/1sRMRxwrERFCCGXvIAsSJrgBIASEK1Wg2kB7IFoYbgQBqkQyKEN0GWZWsmfJPJJJAPCCfHcDd8T8Mvl8tqNpthHJLWyJCLCXQXqFaroaQCUjSbzYI/gado4yVRKOy3UGw2m+F8d911l97//vdrONzvVQuB8uwEL8NwA8hms6l6va69vT21Wi2dOXNGnU5Hk8lE58+f12Aw0GQyCXPp0XH3EvBU+cViod3d3WAOiaBANwvIu5susp7e4QMy7xHy4XAYPCImk8la+j6kOZ+eznrRHhMBBaGH+SGCT3aFdNghIcuyMP+IXS4MuNCAF0O+0wHE1M0b+b6XI6xWqyAK+Ti9JSbXAeF1vwP3nnBRgqwKyoe8M4qbjebn30stOJ6ktb3pXRckBUND7p96vR7WYj6fh3vmUp4IXmLgZRJeQuLZK2QuuecCJU61Wm3NY8XFlnypBvuZ/3NfRg+FiJsNj/iFD+gZ5fiHakRERMRxxLxR0LOq8RkdcePhWAgKRDkhJfkIMKaNRO29ZhzCCZkna4FMAUkh+l0oFLS5uRlKCfb29lSr1UId/sbGRjCAHI1GkhTSs73W21O5O51OIOYQSs5J9JMMAwgSWRFE1qfTqS5cuKDd3d0gKHhdN1F+OjzQneKee+4JJRWQJ8/WcHJKuQelAk7gq9Wqtre3JUn/8A//oAsXLmi5XKrdbqvRaChN01AmAXlFCKB7Bt0pyJaAwLbbbbXb7bBOfM/FHvwU+PHuC/hakJEAyfPWgdJh7TsEG/8LouK+p5h3yO9yuQyCVN63wI0XpcMOD+wBj8gvl8uw/1ykyNf244PgbRkpIXCvD+kws4Rx5c01vWzCW1kipHhJBPvRRQ6O7+UhiEa8z2v8zt6GoHMOSoc8+wSwVhD5/LXxO+UO+e4SrDlrjSjAdxEWms1mMFTldcxEB4NBEG0QGb1ThmeUUPLj2RMRETc6nlQ/q2JSuPwHIyIiIiKuPy7uDB4RcUPgWAgKpLSTmSBpLXJInT/krlarhairpDXDu2q1qvF4HIz9JIWIdrFYVL1eD+nPkBsiwRgL0tkBk75KpRKIP5FQRIHVahVaTHrmAin3jJ+xeNQ0SRINh0Pt7Oyo1+uF6Hg+3RqiCbGFYCN6ILRAnEajUZgLTAadrDOe5XKpRqOh06dP65ZbbtF0OtXZs2d1zz33hG4Uw+FQ/X5/zUuBuvRGoxGI2WAw0IULF3ThwoVgGlipVEK0GALf7XbXzP+Itjt5Zf15DbLuHggIBZjuMc/4Z4xGozVvAubbCTB7h/l0w0HvkoDw4lHtyWSylr7PWCGwbmLIHkdEyUfa+R4GnPP5fG1/uYkg9wf7g4wESSFrhxIGzuP3iRuf5u9B5h1xTjpsx+jeAsyPlzt4q9R8i0gXCtnfjM+zElyEYF4pX2K+uce8JMbbilL6wfkRKsmu8THlO1iQAYJ3Cns+IiIiIiIiIuJaYvGpz9Drf/injnoYEREPCpf9azlJkp+V9FmSzmVZ9uEHr/2opM+WNJf0bklflWVZL0mSR0t6u6R3Hnz9dVmWfcPlzuEp7vgEEIkn9VnSWmq3d3UgAovoANGE4IxGIxWLRW1vb4dSA8iidJhavrW1JUmBqLtnAwSZenJpPXOg0+moXC6vCQHU5kNeIH/1el2DwUDj8Vi9Xi90dvBoM+eBLGFCh+lemqZhjJDG5XIZMgkYFz4Q3kIzLP7BWNrttpIkCWLCbDYLnR5IEadcg5R7N7uUFEjbZDJRlmXhuKTZ02mjXC4Hso9gM5lMQlkCJLVQKKy9xrgRF8jEgIy6KSTr7+vgXgX5Fo+svxsBIhCwV9x3gAwD5tQNGllvz6LxEgEXU9i7EFvGhiCF+EF2ho+NOef6vHSEPeKZAl624OUmvOdzwr+sLSKLl+hwLayBG0ByTawZc+LZHRyT+58xuDkj14gglm8Ty7nIZCATyD0+8MTw5wWvu9+FC0R0csHP4bjgejyLIyIiIiLuH/E5HBEREXExruSv5Z+X9Nzca6+U9OFZlj1N0p2SvtPee3eWZU8/+LmiBycRWqLqpC1DeIhkQ7LcoA5AKDxV3clVuVzW5uamGo1GIHcczyPCfJ5osAsCTqwgcUThu91uKJWg44BHuREnIH6UOfR6PQ2HwzUjQjd0hNTNZrMQNWW+KHEg4s53GCdE3cktYgDfbzabKpVKStNU586dC4aNTvwg/pyX0gHEBsaMgWWlUlGn0wnlI94C1CPYuPy7mSHnpRUk10sEmag7ZBlyDaGFEPJZJ+I+V57u7/vI/RjIavBzJEmiNE2DQaV7A7gJIvs2j7xHgWddMDayHLwdZh4+bjcV5Px5TxLG6SaW7DP3gfBxeIYFIhdj5l/EHm+pynxIWtuD3LeesUC5CRkEnIu1wlfEy57yRpaebcF9j+DBNfBd/BQYCxk4w+EwjI3rdwHlmODndY2fxRERERERHxI/r/gcjoiIiFjDZTMUsix79YHK6q/9b/v1dZK+8KEOxIkntf/4FBB5lA4jp5A7IosY51E3DrmaTCYhQo5fAoJAsVgMhJWsiNFoFIg/JNbNB4mIQ5jITqDDQZqmaynvlFF4psFsNtO5c+dCFwU+4+SfCLabInI+L6EgbdxJb7lcDmKE1+dLCiUKCCiQ+nPnzilN0zAX0j45o33maDQK80zklmwSavbJ7Oh0Oup0OsEgk3XlWjw7xJ35nUhCShmvk1WOkS9R8G4FrIG3BcRrg/IFzu8ZDJ4uj3DCOkj72Sv9fn9NtPJ2pvgoEEV3+LjYQ3lxwctRXBBwjwM+75kTLqTQrtTX3TMM8pkNCBIICm6UyHn9dc8s8OtgDyA0UGLBmF2IQwBxw0rPevGuFOxXL2Fx7wQ3evTjescYSWHfeIYP14Y/CIKK+zocF1yvZ3HEzYns45+u28u/ddTDiIi4oRGfwxEREREX42oUCH+1pF+13x+TJMmbJQ0kfXeWZX9+pQci3RmyB9GgPps/7uly4IZ3kFWijJBTvttsNi+qdef7hUIhRNMht5ALJ5cQFyLtnBcyTGcESA3tGDudTiB9e3t72t3d1blz53T27FlJUrvdXusA4AIBEec0TQO5gtAxH+5y7x4CdFmAdOUJJMeYTCaBhFKugNiwsbERIrnSer16s9lUpVJRr9cLZSWtVitkgnAON9Ybj8drgg2kv1AoaDgcBjHBo9yIBe6bkK/LZy5cUGDt86n4zIO3IvQMEUlr88M40jTVzs5OEBOYI67NO4K4P4KLAV6GIR16Ifj+98wJJ7QQYxcl3JvBPSIQ3TinCwPcH24WSjaPn8ezLhgz94Zfi3RoNMk9Q1aE+0r4NbqPgZuVMg4fL99jH/h+RnT07Bb2CYIKIh4ZJXhmcGwXbVxY8rm4QXDVnsURNx9O/Oe79EXN/lEPIyLiZkd8DkdERNzw+IHzT9bv3f3US7zzI5f8/EP6azlJkv8gaSnplw5eukfSI7Msu5AkyTMkvTxJkqdmWTa4xHefJ+l59nsgdJ5+TW08zvYeccS1ne85OcuyLLQsbDQaIePB08SlQ0Gg1WqFkgDGAMnEiI9siVqtFsgTUfQ0TUN2AWSRlpG1Wi1kCywWC33gAx/QXXfdpd3d3VAqAZHOR0TdnJCINCUaON3zPuSWUoFWq7XWntINA4nWknJOdgVz3Wg0go9CmqZB0IB8VqtVNRoNjcdjffCDH9RgMFCj0dDm5qba7bZarVYoU2Ft8InAU0BSqHlH0GBcXkoB+WN93dCQ7ALEGm9h6BFv5ojOEpSLsFdcZPHMAv6/Wq1C9gvp95TleJkMGRFkNxCZh2Bfiri6YJXPhPHynHwWhe9TLxVhr0K4nZy754BnmFBWkC/zcNNCsoeYZ9bB96kLEC7uuD+Kd1Vgzl3sclHFMxz8WcG/LibkBSf3UqB0AgGNDAU3isxnJXiGxHHH1XoWV1W/XkOOuI4YfvGz9CXbv3nUw4iIuKkRn8MRDwXVuwd6zts+R6/6sFcc9VAiHoZ402yuL/yT54ffH/lbBbV/5y+v+PsPWlBIkuQrtG9M85zs4K/+LMtmkmYH/39TkiTvlvRESW/Mfz/LspdIeokkFQqFDJLlqeOklHtElMgqpMGj+gfHCoSx2+2GDAFJgWwcjD98HgNBSeHYHNMJC+/TOQFynR2Y0+EFwFharZZardaaEdzu7q7e+c536q677tJ0Og2khzTrfMq7n5voKuUdXCck10nsxsaG2u226vX6JYkfZJtxUX5x6tSp0BawVCppPB4HgYLocblcVqfTUaFQ0Pnz5zUYDFQoFNTtdtXpdNRut9VsNsOYEUqILkPCmX/8AsgucRLprTo99Z+94saQkG2O7eKDZycQuYe0cixvI8m4EQkwt2T/1et11f7/7Z17jKTZWd6f05fqrkt3dff2zOzFTrxebCfrEDnGmGscixDWWIAxkcAgRYAgBAwoJEHBQGRMJEAQwIlCBDIY7AC2Q2IuNkIhJCFCCRfHgL3YOL4uxsvu7Exf6l5dffvyR/fv9FPf9MzsrGe6q3bfRxrNdPVXX73fOaeO5nnO875vtSpJmagyBwg4CBi+5pygQ56dYCNKlb5r16QIIHbx/KR7eIcFJ/LlWhA4bVh/PCdzjHgnnaQ7sGYYG4qhcm+u8e8jf3uxVeZGOklZ8Plk3NwZQTFGxsFrmng9BV/jfB+YO8QqxEBPZSFWdwhNizvhdu7Fy2mtKP8+MP3ov6atb1i+ct5hBAJPW8Q+HPh0cfChj6r31s+73gFwIHDbcVAc6sG3fLskaXEj6flv/P2nfK+n9D/mlNIrJH2PpL9XFMXAXr8gaasoioOU0nMlPU/SJ550MEZo+A99SimnI3D6uri4qH6/n/PE+QNBwLLv7RylE4Lpp46zs7O5/aHb6LHJQ/oggxAjxAPqMHD6DqmpVCpaXl7OJHV2dlaDwUCf+MQn9Mgjj2hra0uNRiOfKpOeQdE4SNzCwsIYYfMT6/JzFEWRx6TRaGS7/3A4vMbKjRPh4OBAnU5HnU4nPzvF68iLxzlQrVZzwcVKpZJTAFJKWl1d1erqqtbW1nTx4kWllHJNBbflOymERNIdwsWD8mk9Oe5lEQEwPggSLha4jd7TafwU3l0C0okzAmcMn8ca9cKVjJs7ERwQe3e/0GqR+yO6uAjgp/gppUziGTvvOuHjJGns2RFw3MXidR88RQSyzriUx4g5QkwgFYF16bUOeHavUeKil6ea8O/TahZQ72NhYSELYIhDXlDS0yaYC8QE1hcCAt/j8hz6fjINuFN7ceDpgyuv/Xy9/sFfOu8wAoGnLWIfDgQC04bPfONrNTeQnvMfnrqI4HgybSPfLunlktZTSo9K+gEdVbBdkPQ7xwSMVjgvk/SvU0r7kg4kfWtRFFtPJhDPa5c0lm5A/QNOjmlRiEvAc9ghH4uLi2On2RAMJ5YQrnq9LknZWu+n96Q4kCMO+eH9MzMnnR2wWc/OzqpWq2lhYWHM4t7v9/X444+r3W5nwkJeN7FIJ8IHBBqiyCk6wgNCAUTVT42Xl5c1NzeXn4kaFLSKpLYCBeoOD4/aQSLGzMzMqNPp6OrVq9mBUK/X1Ww2s+uh2+1qd3dXtVpNq6urajabWllZUa1Wy0UcJeVxq9VqWdxx18VgMMhdE1yUgWCX89mZawQArzfhKTB8jjsbPLefNVFOcfAcfCe6CDnl9pKsMSfKZYGCNY5I43NZTr3w1oee1sIJO4UYuYauIu6OQJArp1/wPhdp+K6xHlhDPiaMs7uHvA6GuwpwzzD33I97Mr+8z10SjC9zwvOTBuHdO5hDnC84dogV4YOOMD4X1L9wtwdry10yk5TycFZ7ceDpg81v+jz94D97i76iPrj5xYFA4KaIfThwJ7H+u3+p+3/rm/XIK3/uvEMJPE3xwn//Wq1+5ED3/cZ7VNzGTmZPpsvD157y8puvc+07Jb3zqQTilufje+WTTW9JJym30oPUeMoAAgGnqZApyB1/OGWGdNGWcX9/XysrK5mMQL7dLs/7IYOQKshQudjf3Nyc9vb2tLm5qW63m0+ZIUc8v3SS1oEwMjs7O1aRnpglZSFicXExE2BOchcXF7W3t6fRaJQFCEk5nYFceJ55bW1NtVptTFzZ2NjQE088of39fTWbTS0tLeU2k+Sh4yBZX1/X+vp6ToWAhEKCcYu484MxQFDA5cHYOSCkg8FAnU4nP6ufsEMM6XLBXADINy4J6aTLhBfNJAYIPwTVCyzyjOXWlKxh1kK5FoEXPkQwQjTZ398fK0oqKc+bCxzllqHD4XDM7eCFDstpIMRdTq1ATHBxA7g7AeeDF27k2RjL09IsXNjB1UAHFcaFeP19nmZBu0vGJaWUv/d8j92d4OkNnlbC+xEpmC9iQgDjmSYFZ7UXB54e6H7N5+onv/+n9bLF844kEHj6IPbhwJ3E/qN/pQf/1b4eWPxGffyLfuG8wwkc4/lv/TY9592fnjD/7v/8c1pI8ze/8A7hM97+rXruO4f6a+9/vw77fd3uvKqJSBJ2QuUki1oAECDIMSSedoy0VOR6CDy2cmze/HFCBrmBqFLAUVLu0uDdCvgDOeF0tF6v53oGbr+GvOIE2NnZueaE2ltBQn6oQ0BOPGPjzwcJc6v44uKi1tfXM+nf29sbK47o7SJJSVhZWbkmBWJ7e1uXL19Wr9fTysqKLl26pIsXL2plZSUTOXc2VKvVMVfG4uLi2LPiGuFZqDvQ6/XUarXGilpCmlkb/Ew3Cu+kwUk7RJRxZJ6YX9aY2/4h24wPp++MkxPnslMCm723+eRvr3ngjgWv6YDY4e0h3aXjtR1IVyifmiNo+OdJys9XdiyA0Wik0WgkSbmOAt8fFxLcfeE/c70/s9cyIH2i7HLANYHTwL/v5Xnnc/gML7ZJKg/3KM8T6w4xge8GsXlKj6dm+Lrke8vvA4Fpwu5DL9Gbf/Qn9TcrUdwtEAgEpgn7l5/QC75zVy9+69foT17yn27+hsCnjVd+8VcrDUfX/f0DVx7WoR3uPhV81Rc++W6yP/a779ALK9VP6/Mc97/7H+tvvOGDOux2daeOySZCUJCUbeaQk729vXyS7l0BIElYqstEBjIF2YDkSidF1ziF52dIakpJy8vLmp+fz0SFU/D5+Xk1m03V6/WxbgNzc3O5RWL5JBhSu7u7q83NTW1tbWWXxcLCgtbX18faVUonokWz2cwCBSTHrd/tdjuTQpwZa2trqtfrajQaY50OSP/wE27I7tzcnNbX1/Opfq/XU0onbfaomdBoNHKtCSdstORsNBo5pcGt757Xjp2cdJW9vT212221Wq1stYeMMu69Xi/b2umm4PZ1SDCvQcr5TOB1NjwFwMUExtMdLNKJa8RTJxCxnBQjHCA4+Bh4PQTugxji6Tplsu45/bzP0zQ8VYZ16kUvy0CYK7sJvLChuzocnhrgn12uOeDpDT7+jBPOCq51Z5Lfw10L3H9hYSHXMOEZvQMGxSm9owX3ZpxwypAKwfzjpmENlNMkAoFpwWFlJsSEQCAQmFIcbG/r0lcP9RW//Qq963n/9bzDedriH3z1N2j+4U/ooPORO/5Z+4988klf+92f+SXX/P+z/YoH9X/+7c/c0md+2Ue+VIdf0dcLRg/rcHR9weR2YGIEhfJpc1EU+eS8TBjJYYdUQYYgs5zMVyqVsdZ+kvJJOQTFT3aXlpa0traWf0frxMFgkOsHLC4uZuJZFEUm0ZCkfr+fRQLs8r1eT5ubm2q1WhoMBrmt4vLycia0Tlrr9bpWVlYyeXZLNwKIV/Pn5JeUBC925wTTiwWSwgF5L4oiOwUYSwQdujeQ+tHpdNTtdvNncuLL/PAlYK6w7ePQ4IR8OByq0+loMBhkkcZz5j1WUiMozIkTgjVD/Qrg5NXrMpxWk0JSLmbJfLAOnWhfzznh7hccNYxhpVLJhQS9AKF0kq+P0OCn9U6iGRvmjOdg/qgX4IUGeU9ZKCCtgWfnJB4y7XU8SAPxNpVO/N1NxHzTgYS0BX7nYsnu7q52d3fz57OufS9AXELw8GdGFGHO3YXibqbTRJpyKog7OSTl+QshITDVKKTB4a7m06zm0+zNrw8EAoHAROFwZ0ejlz+hh9JnSZJ+9OO/r+fPj//fZDalc7XRTwMGh+Mpvi/5me/Ss3/4jyRJM4fv08FpbzpnHHa717zW+JU/1EP/5bPyz4+98wX6o89+yzXXfWhP+r4HPu/oh+KyVJxN05iJEBT81BWyQYFAWva1223Nz89nUuu53m57hlymlHKhQHcAQFTLbR9pL1mpVNRqtTQ3N6dGo5GvX1pa0urqqubn59Xv9/N7FxYWMsl2e3+1Ws1Ep9Vq6cqVK+p0Opqbm8ttBxFMIEDSkeCxtramubk5tVqtHCcdFrDDQ7x5DwUROWl1Cz2F6aQjUoVLoigKNRqN7ATodDra399XtVrV6upqfkZIH/emfWK1Ws2pEm6vp3bC7u7umEsD0YVijjgdvE0jdnYvwgkJhpRzT9bLaafxEEZEGi/wyCl2rVbL8wmB9tPqMrF0wu9rl7FkXfG61/gg5nKrU59Lbw3pQoN/P1zIYD4RKhCyINseF+KKC3OICX7a78UqOeXnM9194nGllHLqBPfk2RApcAlRKwP3j7eNLH82dSxITyDFw5/P3Ql83nA41Gg0yrEwp144kvXpAoO7TK7n0ggEpgGLv/kevfpZL9Wj3/v5+t+v/XGtzoZbIRAIBKYORSEVR5T3e+7/nGt+PfzKl+rn/t0bb+mWS6nQPXON2xLepOIje0fpCf+z/3z92oMXxn73bN2ergbngsMT+ePeV/+5Xq2XXufCs5dJJkZQKBdqazQaWl1dVaVSUbvd1sHBQSb4fvIJUeAkHvK5tLSkZrN5TbE8J3ULCwuZmDabTd111135pLdWq2lpaSmfclKUEHK6vLyslJK63W5uS5dS0srKilZWVnIbSmozDIfDTOCpuVDO5XeXAaf5s7OzWlpakqRM2HgOToHp6jAzM5O7K3ibvd3dXaWUVK1Wx4pBenHH01IrvF0fhH8wGGgwGGRhhDQI7oU4sr29na9DPOB3tKLkntIJkYVg7u/vZ/cCJJJ59JNu3BuQXC/yh/UdEcFrLVAnw2tB4BThWk8nQLwpf46nUHjNBC/o6CkOPD/zWRYtnFD7s5XdG55iQ2FMCnHyHXDHhnRSA4HnQQRgbXJPBDkXMvxeTrg9rYPTfcaPOSNmTwNh/dAWFfGCAqv7+/u5ACiimHducDeFp47wXfTvSNnt4XUlvKCmu2v4XgYC04xn/cjv63Oa/0I/8lW/rL9XfVzrs/XzDikQCAQCtwnVX3+PvvPXv+CW3tP5us/Vd7/hbWOvPVS7osbM9FXw/dDuQH++e/c1r//sgy+5rR0MAjfHxAgKfoJarVa1tramS5cuSToiffPz86rVjk5Z/FTaLdVcC2F0EujpERR39IKLuBmuXr2a6yVUq1V1Op1s/a9Wq7luwPz8vIbDobrdbm4Dubi4mIWMarWaf0f8EE2Eg3q9nkkx5JEUgk6nM1YTwolY2SKOCLG1taV+vz8mMFCfgNNyXAEIEU5mnRhKyq4IyD0F7+jaQN2EpaWl7GDg2q2trVzw0C3odHTABYCoADGGXEK8/RpJmUw7qSyfMENqIeK8H0GBudjf31e73c61BzjlJq+e8fC4PGXBi4c6WS4XTYS0Ishg94fAnlZ8kPmRTtpkepFPd+kg+uzv748VtwTEwZrxgpXuTkBM4ZqyQwF3DO/1uhQUwySVhfmh4wjOAQql8n3yehPM03A4zC0gXTghfu/o4c+IOETtFK8NQTy4VFxcOS1Nh+cOBKYd97/uD/Sm1z1X//IX/6H+4OU/pYshKgQCgcAzFstv+0O96W3PHXvth9/9Cn3xs07qCCzO7OkHL3zwrEO7IUbFnl5/5bPHXvutt32+7v03pzkOQkw4a0yEoAApg1Q3m03dc889qlar2fZfrVYzKYOcSidt+Ditp6sBp6WcxEP0IHRLS0u5lsLKyorW19fzySXpCHwehI1YET82NzfVbrdzLvvCwoIuXryou+66KxdiHI1G11jC+WxPX6BWAR0a+AMxgghBznAd4OTADbG/v6+lpSXVarWxonVeewKBBYu/n0p7/QDGl7QL3ovwsba2posXL2bXRb/fV6/X08bGhjqdTi7uCOimgevA7f0QVYgnbSmxplN5H6JLTNQMYA0w506SPaWE6yjwSBtJBA6ECUSVMqn01AMXqcqtI72GAP/m5N1rRLgjgdgZG8absaE7B88FKUYMgcxL17Zb9BQB1hYCAmsL4o2IRa0LruXZvBMFsSHi8IzldpGewkHdDq/1ISm3bpVOajXg5iC1g/l0gY11OhgMtLOzk+Pj9bJbhTnjvu5K4H18F8KlEHi64DP+0Z/qlz7wmfrna58471ACgUAgMEFY//KP6H328+zKuh5655fd9H2/9oJfVW2mckdi+sa//Lt6rN/MP28Malr/8vHiifdOc/rC0wwTIyhgMa/VarlFIUXkpBPSBFlEKCifnpIuUa/Xx04dpRPCwqkpBILuCBsbG9rf388pC51OZyz/Heu+dFTEr9/vq1KpaHl5OZ9qX7x4Uaurq7p69WomfcQ4Pz+ver2eO1fgQIAs33333br33nuzy8DTIiCXlUplrIbD2tqaarWaLl++rN3d3SxMLCwsZOLlYwQhRORANPGuEBBlJ2/ku5OrT4rIpUuXNDs7m3Pj2+22NjY2NBgM8mk6BG84HObCihBo5hRiSYcOUkk8991FIubVbflOkIGTSCeZiFJeZBHxB3s+gFh6qg0iAe/lNV9v5Y4BXgyRFB/pxEHjjgrew33KKRTEAqFGTOB74YLBzs7ONR0u3PrvNSaYY9a6j2VRnLSD5B687kKft8ckNsYBdwJx88zUPcBBImnMUcLPo9FoTFDgc0ij2d/fz3U4vBApIo+vCe9AgkuiLDSEoBAIBAKBQOCZhINWW/r77Zte98Jf+DbNLdyZfP3nvb4tfeyR/PP6HfmUwO3CxAgKMzMzuUXhhQsXtLi4mO350okd28lvuZI8ueTLy8vZ0cDrTnro/HB4eKharZbrIdAykUry7XZbw+Ew1zDo9/va3t7O9mpJWltby50flpaWcuybm5tZUEAEocMEHQq8cF+9Xte9996rZrOZc8DpKkGaQ5ng1Go11et1jUYjdTodHR4e5s4Uh4eH2Q2AICApF3iEMDHGnp/v9RA4geZ3RXHUsnN1dVWXLl1StVrNn9Pv99VqtdRut8c6L1QqFR0cHKjb7WaSCnljbLzLgbel9OKS3p3B42Sc3YLP2vBT/LLDBZs+IgX39RQZLxDJ2ONi8Os8dQS3AkKKuxNwinCfcpFFXAH+OV481GMA7vLwe3E6z7gQs6dLQMq9NgTjzPNDupkHClZCysuFJOkY4SIg9+ZevgZcDGAsed3rICCaIJAQX1EUuXYIdRmIg/XrbSw9HcNFJtYAbiIXlQKBQCAQCAQCJ3j+N/7xHbt3/A9sujARgoKkbO/HRj83N5et8XQhmJ+fHyPnbk+Wjkgjef2exy6dtJbklBVCAmmnywGEq9Pp5DaKd999t/b29rS1taWNjY1MsFdWVnThwoWcy7+6uqp6vZ6t9OSDQxDr9bqWlpZykUPin5ub0+rqqu66667sLJCUnRa0cKQjAcSJ6vfdbje3yaxWqzo8PFS329Xm5qYGg0FuC7m7u6vZ2dmc6sF4QNoh6Z4rT/E8CHlKSbVaTc1mU41GQ3t7e/kZ+/2+tra21O12x1IUEIKIEyIP6dvb21OtVsskjoKU3iWCNBNJWRxBREAkgPQyh15rw4sIMr5OoCHU3Jf1RD49ZNlFDIg4QoSf+HvaxGg0ysIOYo7n9ENgPT0BhwGCAuve40WQQBApF7XkxJ/ruF+5/WT5pN4FAa+34OIDwg3fMa9ZQWFV7sd30IURPoM54vvoDgpPeyD1hYKTzB/iE+JDvV7X7OzsmDAD3InBMzO2nlbDGCHIBAKBQCAQCAQCgdMxMYLC7OysarWaLly4oKWlpbFTy16vl/PlJWWrN8QIokDxRG9HV7awewE82jdKUqvVyl0JDg4OdOXKFT3xxBM5b31nZ0fb29tjBR1JlRgOhzkvHGdDq9VSr9fLwkKtVlO1WlWzeZQP5KfGc3NzuR3mxsaG2u22KpVKFhMoSEnhvXq9nslOr9fLVn0IX6vVUrfbVbfbHSNljCGEDRJ3Wo0FTtO9fgSEq9FoZFGEwpTdbje7EzzvHtKIgwGS6Sf/xCApW/QhqG5TZ445Jfc6GljjvQ6BOxz8JN2Jt3QiSLkNH5cDxPy0rgKQUFJYfNx4vt3d3bHOG+4ecMGEE3hcBogR0kmhRifd5e4QPlbuinHRoeyi8HQH2p8yNl4w0tcr93JxxQsYMlbehcQJPGuC9csYuADBGvRUEZ4J0YLPRUwoiiK7eby1qcfI/Phz4XxCQPMUmhATAoFAIBAIBAKBG2NiBAXSFS5duqTDw8NMwsq555LyKaK7DSAxLiRQYM4t1G5l56R+e3tbrVYrn4o+9thjunz5svr9vu677z7t7Oyo0+nkDg90NsDKT+rEwcGBtre39fjjj2fxwU+icTbgYMB2Dwna2trKr2PHdsI3Pz+fBYaiKPK1iAnSCcnq9Xp5PCCktVptrJigg1NyyDLjg+OBtAjaExZFkYsw4u6gdgLkldSQnZ2dXBMBJ4p0knuPY8Gvc7GIU3tPfeCE20m8n947YSbtwHPqvVMB8UK4IaI8N2RTUrb7M6bMCWKOE/e9vb2c5lFOJWHucJmwJljTxOzigBPh8im7F0Z0sciLGeIyYMy8PkjZXVEeo9NSLfiZuBCBWE+sa78GeDqGux/KqQk8J3PqbhIEG8aGdBl//nKs7DUuvvizsm7LYxEIPB3w29/8hfqit39ILzoWiQOBQCAQCAQ+XUyMoIA7YXFxUcPhUL1e75ocZsgGBdcQGfzkEXJNYTnSH7BAY92HpAwGg5zjLimf+lNPYXFxMadeUMyxWq3mzgC8bzQa6erVqxqNRtnt4N0GaPl3eHio4XCodrutwWCglZUVra6uan9/X9vb22N2/OFwqNnZ2dyWkVaUnPy6pduL1EGwcVZAxp0wu10f0YUT5JmZmVzvAZLGSfyC/Ud0d3c3Cwl0duAkfm5uLgsNjD2EE1EEAknOO+4ESVk8YoxJc0EAQGTy9ALIM8/oaSVOSKWTFAhJY2KVd1eA+PsY88fnlXHHKQKBx8XA6Ttj1uv1ckFP6nV4K0/mgblEUGGOAHPB/akvgFBBm1CEMhc0eFZEG65jPBgDJ+Zlku5CjKeA4MbxlAHmhjXLPJG6VK6F4n/z2YhrPp5ex4LnIiZ/P8/vBUDLz8BrXkw1EHha4Q8f1vc99HXS3OzNrw0EJggf/fjPn3cIgUAgELgOJkZQqNfrWlhYyCfaTtyoDyCdFInzU0+3NtMNwKv7IxhwHSQGy74TpZ2dHW1sbGh3d1fLy8s6ODhQr9cbOzlGiICwcNoMCaHOgac14JgYDofa3t7W1tZW/kxOd6WTjgB85uLiotbX1zPpJp+c672iPmNB+oV0UjPA6wF4twpabPJskGty0WnFh+iAMwBBo9Vq6bHHHlO73c6kGIdJq9XKgoafBEtSu93WwcGB6vWjnuikRbgzgXvxfpwLZXC9d6fAHu+dAJhnFx/KJ9CQYEQL1gxElPvzundZ2N3dza4V5oj3QLapJUHbS1wzg8Egz787DZgvd034eufetA3t9XpZTGD+vbCluwK4BuHD00/4rNPg6QieaoNwRT0Md2GwdqSTVpkuGjmBR/wi/YFx8GKXuG/8dd7rc+tzRNwL1zmddTGIcfNxDgSeDjj4yMfPO4RA4JZRFKObXxQIBAKBc8HMzS5IKf18SulKSukD9tobUkp/lVJ63/GfV9rvvjel9LGU0odTSg892UA4rcVK7rn32NT9P/iQCE4bIdReXA4rN8SwUqmo2WxmK3a/38+t9rhnq9XKtvbDw6PihogHXrNgMBhoc3NTly9f1hNPPKHNzU3t7OzkTgedTkf9fj8X3atUKtrb28t1Bnq9nqQTgcRPunu9nrrdbhYCaLPHZ0PIRqOR2u32WBtJSdldABgX6aT1Hvfx93m3BOmoq0W/388EFicAp8+PPfaYPvnJT2prayuLCZKyC4M/jG+tVsuOj263e7QArU2ktwOEUPKn0+lkQcFt/NJJ8UTmGgHJuw+UibQ7NrzeAUUiXbxA2IK84nyoVqu5UKhb+xGOuB5RgC4FjD1iSa/Xy2SeefVig4gsCEblAoaIWIwpdT88PYD3QtoZP9YCz+2FOq8H3B5eFBMxiHQcXBisPwQDxuG0cXGxyr/rTu7dgeR7AvVTarVafp8Xg/Tvgj+HO024v793kgSFs9qLA4FAIHA6Yh8OBAKBa/Fk/rf8Fkk/Jek/ll5/Y1EUP+4vpJQelPQaSS+UdK+k/55Sen5RFDfs/oGrgJZvnGpTyM+t2IgBtH3DNg859sJ3CA6cnK6srKharUpSLqRYq9WyrX44HOa6AJDJSqWS20ZCgiCb/X5/jEgtLi6q0+mo1+vlgpKVSiWnDnDK7S3yPPcfYtVqtTQajbSyspLt4N1uV1tbW/m9e3t7WRDBAYG9vlwbAAs6BNZbBnquPqB6PvegzWZKKRcg3N7e1sbGhjY3N8c6LDhJJcWBYpDVajULGnwOJ+PumID8IirQIQHi6MTaOylAjCGqiEqgLD7xMyQeEQAgyvjpPeu0Uqlk0s6Y+mk6zycpCxD7+/saDAZ5vBBemA9ED2JhXunAwTMAFyEQUChKWi6ciAiBIMNrkOrTBAQEGZwIXriR+xMHY41wVq6lwdi4GML93RHgRTSJkc9nTD3NwkUi2rEilrAmuRfrk+d2FwNz6euEuZ4gvEV3eC8OBAKBwA3xFsU+HAgEAmO4qaBQFMXvpZSe8yTv9ypJ7yiOvGmPpJQ+Jumlkv7gRm9KKWlpaUkXLlzIZABiD7H1Lg9u/+Y//rzmhRJJTZCOyASFDSG61Wo1E3Hs4t1uV1evXs31ErzqPGkIEOPBYKBWq6XZ2Vk1m83cCaLVamWRwXPzIcf+TKRn0NkAwgnZQTjY2dnJ7gneMxgMNBwOValUMumtVqv5xNpbbPLcTt4YS/LnvT3kzs5O7vIAKaP44OOPP57FBAoTkvfvZI3Taggx5J254CTbays4ucWtgXgEWXbih/uE+UCYYHw9TUFSdieUf8fYIzi4Hd9bClJYE4LvJ+5OWL3FKevHUwsQGDzlgvcjQLjThlh4Dsg4r5NCgAjiBRIh2aQc8Jpfw8m/Fyf0Dgh+yi+dnPozhqwBRAPG+TQhBKLvKSc8A8VIca64O8ZFr3J9BFwZzAXXeG0E0pwQtGZmZrKIibjFeNCqdZIEhbPYiwOBQCBwfcQ+HAgEAtfipikPN8B3pJQePrZ/rR6/dp+kT9k1jx6/dkOklPTAAw+o2WzmbgfdbjcTmXq9rkajkSviU3RQOiEnksZIGO0MO51OJplubac+weHhYbaLb29v6+rVq7mjgbfP29nZUbvdHiNxnC5DWqjoPxgMtLu7ew3BlE5y7XkNQr+5uZmfGzECAQLhwgs9cqrtVn1InFvrIcdch3jAqTYtHyVlAcTJHekTFFIcDAa6cuWKrly5kk/FywUReWYKQ0LEIXu85lZ35pJxpTAnnTCazWbuDuFjT9FCxATGghN0d6ngZkFgQbAZDAZqt9vZ4UEKBXMDwWccIMOeIoFgVE7J8DaJxOApKP4d2Nvby2uPOZPGUy7clSApv4f5KrfU5PviBSV5D3GXaw0gQLgTAXHBBQjmmu8WIgA/s+Y9XYT3OtHH9eCODC+eyfpxYYD7SsrEn3FC0EIgQRxAuCMO5gFxknQZhLRqtZodTROO27YXBwKBQOApIfbhQCDwjMVTFRR+WtIDkl4k6XFJP3H8+mk91k5Nxk4pfUtK6b0ppffOzMxodfVo/7169ao6nU4mIPPz82o0GlpcXMx1DzhBlTRWfJBTUqzktJ70WgGQG0ittyrk+rm5uVyUEKLXarWyJR4iWT4xJmXCT4IhtaQhYMWHbBdFkesqbG9vq9PpHE3MMTlzUcF/5mTerd/SuPXf3QIILC5EQLAYHxwInHRDUL395OXLl3PRSgiYOxP498LCgur1es5pRzyYnZ0dS79gDhuNxthJPELDzMxMrr3Aqb4LBz4P7m7gmXxMJF0j7CAmjEajMfcBAowXuWQ8nGAjZJSLRZZFAD5POklzQezgWn7vLSY97cCfibXk7g7/Lngqh7sDfJw8BaTccpM1wv1Ya8TmIg3X8Fllku7ge4hLhXu5w8LTGxAT3KHAe3xucIEgTiAM4bDxwqxeH4F7saY8hcJjmWDc1r14T1H4LBAIBG4RsQ8HAoFnNJ5SxbGiKJ7g3ymln5X0m8c/Pirp2XbpsyQ9dp17vEnSmyRpZWWlmJ+f18bGhq5evZpPK73QIgQ2HbdyhIAgCmClJ10CclYujAehIJ2B4omQ9JmZGS0tLWVCBnGDzHOinY5bUUrK8XW7XfV6vXw6zyk2pMVP1pvNZnYD0BGBNpfubJCUnxunBATV4YSOmhG8n/aHtED0toSSxmzdCAC4DqgXsL+/n1MvIMCj0WjsxN47TnCyS5FKrmXc3SWCzZ2UAGz2xEp8/N7n13PkGSNJY6ITJBFnAvNA3QzmCBcGYo7b9yG17jTAPo9Lw4v6ld0gXpODtc2aQDhxwu7dTvy+/O1iDqQbAcFdNJ6uwLy5g8TTS4iR+XBXAw4B1pW7ILg3QhJigj8X8SLWIBDgkqDYp6dIEA9jTfqHCxUucHiNBgQtUqAQ4Lz2A84mF+BYB7Q+xd00qbjde/FyWotemYFAIHALiH04EAg80/GUHAoppXvsx1dLotrtuyS9JqW0kFK6X9LzJL3nZvfjP+6f+tSnxqrzQ3ZotYizYGFhIQsLnotOHvTOzk4+aS+3SsRSvrCwoNFolAso0soPMuGWcjo9YIEfDAbqdDo5raEoCnU6nZwSQaqAW7Ddyg+h29nZUafTGesk4TnwnOpD/nZ3d3P1fNIZyFv3TgYAEabX6+WuEp7/z/s9LWN5eTmnFnhRPUQV8uIRcCBeXIeYUK/X87Ps7e1pbm4ud9hwgujkktevVzQSklq26x+vyWtEKOIs1+BAYPFxpHBluZOCpwIghBADogRpDvxhvfF7SD1kmxggsjwHBJd16qf75fSJcgoB9/Q/XitAGu/O4DU0INzljgc8h9e98JobuBaIj2egvgfPzfopuzi4P8U+WZe+hrnGBTTqjZDm4cUwmQvqgSC0eS0UF4BwvPh6RKhEnJtk3O69OBAIBAK3htiHA4HAMx03dSiklN4u6eWS1lNKj0r6AUkvTym9SEfWrb+Q9E8kqSiKD6aUfkXSn0val/TtT6aabVEU2tjYULvdzuQDQYF8b4gqBBPS6HnPkjKR4SQUeKoBNmjs7tvb2/k0uFar5dNyyBOnlNQngDRBVCnmSFE/CLmfbu7v76vT6WSCAtHH6YDIQYeFnZ2dXEdBOiGzTuaI4zQ7P+kZkCZIIeQfcuXF+EgtgQhDwpkHTqlxYUC8IKnYxGu1mubn57N4Mjc3p1qtpnq9nt0FkE0n8F73gHlmjKUTmz/Et2xH516kaDBuuBNYH6Qp4Pyo1WrZmeEn3e5yYAy8+CP1EHxcmQ//vacwQHy9RaPXAaFlpa9hxBP7Tubx8KKG7qoAEHqeizF1IQbBy8n0zs5OTgGinkBKaayNq68jPsuFIVwq3gWDufZYvZWnp4l4KghkH3GhKAotLy+PiQKIE4hJPKvfy1Oj2Fu86whiIG6gSRIUzmIvDgQCgcD1EftwIBAIXIsn0+Xha095+c03uP6HJP3QrQRxeHiojY2NTHiwbUOmRqNRPvGHGC0uLmbiAinj1FiSqtVqJpPcM6WkRqOhWq2mw8NDdTodbW1tqdPpZDEBAo37oVxAsVxpHkcFbf4gXpByTr1xFiAEkJpBugTWfU53seF74TqIGKSZDhC4ImZmZtTv97Nw4cUBOXWmrR+CCa8tLS1pcXFROzs7uThkvV5XvV4fO33f2dlRv9/PKScIHQgpOEggcJJyqgFkEHLJ80F4JY0RS7fjH6+tMTJray4/p7eE5Bm9ij8k0cknNvp+v5/v6e4In3dcLS4WIORApiG3EFdqU/hnO7H3Ao6sfeJCYOD0n2dz54W7Ejw9wWs0cH9fuy40MJ+0hqSuCGkgBwcH+bmJxQUXRCBP4SBtwsUV1jDz6gIfQozPtY+/13jAAYMLh+8hz8D9SY/wcSXthdoJXlOFtTIajcZa1k4CzmIvDgQCgcD1EftwIBAIXIunVEPhdoPTe05Fh8PhWCV3SAxkAsLEzxAbLOzNZnOM1HoaxF133aXZ2VkNh0O1Wq1sWYf4+QnnzMxMPg2FyCFqYNP3k3DeA6mfnZ1Vo9HI9RUghpAlr9NA0TiP1TsneN0DxoJODgsLC2o0GhqNRup0OllUaTQaY6SZ+CBquAmoZr+/v692u62trS1JUrPZlKSx56UGhOfJU2gR27oXrvR0ASz+Lj54vQLqATiB5PMhg17gEhDX7u5uruYPmfS0F4gnpFtSJsHENzs7q3q9np/P61h44U7EBNIomBsnrjwf49Tr9a5J9eD5EHlciHBxCaHLnQaeYkCsrBu39/M3sZTdCawvxr7f76vf72fHAt8D0kPKzg1JuYAp44A7wUU/xsnnle8yYoJf68IJYgkx4Tjx9AfEKE+BQDQof499vHkmf1Za1pa7cQQCgUAgEAgEAoETTMT/liEx1CfgxJ2T29Mqrbv13U+/KeKHo4EaBTs7O1pZWdH8/Hw+2acugreJ4+TVyT5tBDkN9e4PCBfSSXHGVqulvb29sdQH3Amc9jqhhcBQABELOL9fXFzMZHhnZ2fMnTE/P69araaDgwNtb2/nZ1peXla1Ws3xcgrMuNEOcn5+Pp/o9no9Xb58Wbu7u7pw4YJWV1dzQUbEGa8ZQH798vKyVlZW8v0hhwgRvE9SJoSkR3Bf8t6dxDN2kHyA2MTaGQwGWayB1HoaiQtLpBJALHk2yKunYDDG0okzoZxeQqxu1fcijhRKZO4gsF5MkjjKHRkYS8QLnC3enpLPZx170UOH15tAXPD6GbgxqC1xcHCQU4yIzd0P3MdTNqjFABDJeCZPs+F9jC2CUDn2cgoKwhiCGjVGnPhzPSIE+wTfW187Pm6kvFBXxdOJAoFAIBAIBAKBwLWYCEHB88r9tFFSJh6VSkWNRmOM6Dv5ghxQLX5ubi7ny/d6vVyDYWFhQf1+P58Wz83NqVqtamVlJRNcCAr3I/1hOByOnRJzkg5JRaigPSKn195BgmeCWCFAcPLfaDTyabS3TLxy5YpardYYcUV4SSmp3W7ntpDValXLy8t5bNyWD+HjZBuSNRqNtLW1pX6/r/X1dd13332q1WqZCHsaAsSO+gNLS0uqVqtj3SRwG0CmcQ9ACBE4IITSiQ3fn49xc8u7pHyiDAkejUZjNTZwMjDeiFOsG06nJeW5dleMOwEozIkLxd0q7mAgpcDTVBBTmF+ek9+7CAK5RcRBhPHPRNRyFwLP4KTYC2qWa1SQ0uP1SkjT8dobiAmIMS6CMHYUP+Q13uvjzf15ZsYa8YaxYSy4t9eKYB752btZ+Dx7ZwhPmymnZjCvCFwIX168NRAIBAKBQCAQCNwYEyEoQGzIr3cCBcFaX19XpVLJ9u+y9dp71HMCvr+/P1ZTodls5lxwTyuo1+tZrOB67g1x9R71EDRcCk7Y3GGB/Z8q834iimCCAEERRsZDUs7n3tra0vb2dj6F9xoAlUold8EYDoean5/PBJ9n5ATZT8/JLfdxunLlihqNhprNZq4zQXcIdwWQEiAd1UeA2G9vb+vy5cs5BYIaExBESdkt4UXz3IoOoXMiWj5JB5Buxq5arY61EUXw8ZNpr1eAoCKdnJ4jgECecRgQO0KDx+G1HZhzdw7wM/ek+wRryms0+Gf483tqBmIB69NP9T29wYtMeg0FhBdcQaxpBBx3tPBevofuAOF7yjwjBvK9QiDkO+0pEYy7C0qMi38HvBYE9+X7znOXn93TKiSNtaYk7YdxJH7mme+WC1eBQCAQCAQCgUDgdCQ/5T+3IFK6KqkvaeO8Y3kKWFfEfZaIuM8e0xr77Yr7rxdFceE23GfikVLqSvrwecfxFDCta1Sa3tgj7rPFMz3uZ9I+HP8nPntE3GeLaY1bmt7Y7+hePBGCgiSllN5bFMVLzjuOW0XEfbaIuM8e0xr7tMZ9npjWMZvWuKXpjT3iPltE3M8sTOu4Rdxni4j77DGtsd/puMPPGwgEAoFAIBAIBAKBQOCWEYJCIBAIBAKBQCAQCAQCgVvGJAkKbzrvAJ4iIu6zRcR99pjW2Kc17vPEtI7ZtMYtTW/sEffZIuJ+ZmFaxy3iPltE3GePaY39jsY9MTUUAoFAIBAIBAKBQCAQCEwPJsmhEAgEAoFAIBAIBAKBQGBKcO6CQkrpFSmlD6eUPpZSet15x3MjpJT+IqX0Zyml96WU3nv82lpK6XdSSh89/nv1vOOUpJTSz6eUrqSUPmCvXTfWlNL3Hs/Bh1NKD51P1NeN+w0ppb86Hvf3pZReab+blLifnVL63ZTSh1JKH0wp/dPj1yd6zG8Q90SPeUppMaX0npTS+4/j/sHj1yd6vCcZsRffkThjHz5DxD585nHHPnybEfvwnUHsxWeL2IvPPO7z34uLoji3P5JmJX1c0nMlVSS9X9KD5xnTTeL9C0nrpdd+TNLrjv/9Okk/et5xHsfyMkkvlvSBm8Uq6cHjsV+QdP/xnMxOUNxvkPTdp1w7SXHfI+nFx/9ekvSR4/gmesxvEPdEj7mkJKlx/O95SX8k6XMnfbwn9U/sxXcsztiHzzbu2IfPNu7Yh2/veMY+fOdijb34bOOOvfhs4z73vfi8HQovlfSxoig+URTFrqR3SHrVOcd0q3iVpLce//utkr7y/EI5QVEUvydpq/Ty9WJ9laR3FEUxKoriEUkf09HcnDmuE/f1MElxP14UxZ8c/7sr6UOS7tOEj/kN4r4eJiXuoiiK3vGP88d/Ck34eE8wYi++A4h9+GwR+/DZIvbh247Yh+8QYi8+W8RefLaYhL34vAWF+yR9yn5+VDeeuPNGIem/pZT+OKX0LcevXSqK4nHpaCFKunhu0d0c14t1GubhO1JKDx/bv7DsTGTcKaXnSPo7OlIIp2bMS3FLEz7mKaXZlNL7JF2R9DtFUUzVeE8Ypm18pnkvnuY1OtF7giP24bNB7MO3FdM2PtO8D0vTvU4nel9wxF58Njjvvfi8BYV0ymuT3HbiC4qieLGkL5X07Smll513QLcJkz4PPy3pAUkvkvS4pJ84fn3i4k4pNSS9U9J3FUXRudGlp7x2brGfEvfEj3lRFAdFUbxI0rMkvTSl9LducPnExD2hmLbxeTruxZM+BxO/J4DYh88OsQ/fVkzb+Dwd92Fp8udh4vcFEHvx2eG89+LzFhQelfRs+/lZkh47p1huiqIoHjv++4qkX9ORPeSJlNI9knT895Xzi/CmuF6sEz0PRVE8cfxFOZT0szqx5UxU3CmleR1tQL9cFMWvHr888WN+WtzTMuaSVBRFS9L/kvQKTcF4TyimanymfC+eyjU6LXtC7MPng9iHbwumanymfB+WpnSdTsu+EHvx+eC89uLzFhT+r6TnpZTuTylVJL1G0rvOOaZTkVKqp5SW+LekL5H0AR3F+/XHl329pN84nwifFK4X67skvSaltJBSul/S8yS95xziOxV8GY7xah2NuzRBcaeUkqQ3S/pQURQ/ab+a6DG/XtyTPuYppQsppZXjf1clfbGk/6cJH+8JRuzFZ4epXKOTvidIsQ+fVbwWX+zDtxexD58tpnKdTvq+IMVefFbxWnznvxcX51D90/9IeqWOqmh+XNL3n3c8N4jzuTqqiPl+SR8kVkl3Sfofkj56/Pfaecd6HNfbdWTL2dOREvVNN4pV0vcfz8GHJX3phMX9i5L+TNLDx1+CeyYw7i/UkV3oYUnvO/7zykkf8xvEPdFjLulvS/rT4/g+IOn1x69P9HhP8p/Yi+9IrLEPn23csQ+fbdyxD9/+MY19+M7EG3vx2cYde/HZxn3ue3E6vmkgEAgEAoFAIBAIBAKBwJPGeac8BAKBQCAQCAQCgUAgEJhChKAQCAQCgUAgEAgEAoFA4JYRgkIgEAgEAoFAIBAIBAKBW0YICoFAIBAIBAKBQCAQCARuGSEoBAKBQCAQCAQCgUAgELhlhKAQCAQCgUAgEAgEAoFA4JYRgkIgEAgEAoFAIBAIBAKBW0YICoFAIBAIBAKBQCAQCARuGf8fePoSAZY3p1UAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 0 776530\n", + " Min thresh = 1000\n", + " Sliding\n", + "\n", + "\n", + " Winner = Sliding\n", + "\n", + "\n", + "081s_iimage_3320344386805_clean.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADDCAYAAAAya0IYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAD450lEQVR4nOy9d5hs6Vndu3blqr1rV3U4fcIEBaRBIMACCyHAxsJgkgEBtjHBwCVJCLDJ2dc2DlyygCsQCGPAiGCwL7YMAkwSWaBAUkBxRkw4qbu60q5cve8f3b+336o5o0lnpvuc863nOc+cU12169vf3lXTa73rXW+U57kCAgICAgICAgICAgICAgICHg0KJ72AgICAgICAgICAgICAgICAGw9BUAgICAgICAgICAgICAgICHjUCIJCQEBAQEBAQEBAQEBAQEDAo0YQFAICAgICAgICAgICAgICAh41gqAQEBAQEBAQEBAQEBAQEBDwqBEEhYCAgICAgICAgICAgICAgEeNICgEPOmIoujNURS94KTXERAQEBBwjCiK7omi6GMf4XPzKIqe8Rjf5zG/NiAgICAgIOB0IQgKAU868jx/dp7nrznpdbw3RFH00VEU/XUURd0oivaiKPrlKIpuO+l1BQQEBNzMiKLou6MoujeKon4URe+JoujbTnpNAQEBAacN11uYfbjjhd+LA94bgqAQEHBtvEXSx+d53pZ0QdI7JL38RFcUEBAQcPPjJyQ9K8/zVNJHSPqcKIo+44TXFBAQEHCrI/xeHPCQCIJCwJMOb6uNoujfRVH0S1EUvTKKosGR+nlXFEXfEkXRlaNK1ce5135hFEVvPXruu6MoevHasb8xiqKLURQ9EEXRl3jFNYqiahRF3xtF0d9GUXQ5iqIfjaKofq015nl+Oc/zB9xDS0nBohsQEHBLIIqi50VR9CdH1aiLURS9LIqiytrTPunoe3g3iqLviaKo4F7/RUff1ftRFP1GFEVPeSTvm+f52/I8z9xDBwrfvQEBATchoih6vyiKXnP0PfvmKIo+1f3sNVEUfYn79/8VRdEfHv39948e/ssoioZRFP3zKIpeEEXRfVEUfevRd/I9URR97mM93vpaw+/FAe8NQVAIOA34FEk/I2lD0p9L+g0d3pu3Sfr3kn7MPfeKpE+WlEr6QkkvjaLoQyQpiqJPkPS1kj5Wh19y/2Dtfb5L0l2SnnP089sk/ZuHWlQURXdGUdSVNJb09ZK++7GfYkBAQMANhaWkr5G0LenDJX2MpC9fe86nS3qupA+R9EJJXyRJURR9mqRvlfQZks5I+gNJP/9I3ziKom+Oomgo6T5JsaSfexznERAQEHDqEEVRWdL/lvR/JO1I+peSfjaKovd9uNfmef5RR3/9O3meJ3me/7ejf5/T4Xf2bZK+QNIrHufx1tccfi8OuCaCoBBwGvAHeZ7/Rp7nC0m/pMNfQL8zz/O5pF+Q9NQoitqSlOf5r+Z5/q78EL+nwy/iv390nM+U9JN5nr85z/ORpG/nDaIoiiR9qaSvyfO8k+f5QNJ3SPqsh1pUnud/e2Tt2pb0ryX9zXU964CAgIBTijzP35Dn+WvzPF/keX6PDoXdB4m0R9+nfyvpByR99tHjL5b0/+R5/taj7/XvkPScR+FS+E5JTR0KFT8jqfe4TyggICDgdOH5khId/r47y/P8dyT9io6/Rx8r/u88z6dHvyP/qg5/N74uCL8XBzwUgqAQcBpw2f19LGk3z/Ol+7d0+KWrKIo+MYqi10ZR1DlSST9Jh19s0mFP173uWP7vZyQ1JL3hyFrWlfTrR4+/V+R53pH005L+VxRFpUdzYgEBAQE3Io5az34liqJLURT1dSgKbK89zX/HvkeH38GS9BRJP+i+azuSIh1WzR4RjkTjP9fh/wO+/eGeHxAQEHCD4YKke/M8P3CPvUeP4nvyGthfaxnz38vXDeH34oB1BEEh4IZBFEVVSf9D0vdKOnukkr5ah7+oStJFSbe7l9zh/r6rw19Mn53nefvoTyvP8+QRvn1Jh5a09HGcQkBAQMCNgpfrsPr0zKOAxG/V8Xct8N+xd0qiv/ZeSS9237XtPM/reZ7/8WNYR0nS+zyG1wUEBAScZjwg6Q6fPaPD79H7j/6e6bAQBs49gmNuRFEUrx2P7+XHcrz3hvB7cYAhCAoBNxIqkqqSrkpaRFH0iZI+zv38FyV94VHITUMuH+FIAf5xHWYu7EhSFEW3RVH08dd6oyiKPiOKoveNoqgQRdEZSd8v6c+PVNmAgICAmx1NSX1JwyiKniXpJdd4zjdEUbQRRdEdkr5KEn23PyrpW6IoerYkRVHUiqLonz3cGx5937746JhRFEXPk/QVkn77epxQQEBAwCnCn+qQ5H9jFEXlKIpeoMNMsV84+vlfSPqMKIoaR+HiX7z2+suSnn6N4357FEWVKIr+vg4zx37pcR5PUvi9OOC9IwgKATcMjnIP/pUOhYN9SZ8j6VXu578m6Yck/a6kd0r6k6MfTY/++01Hj7/2yML7W5IeKqzmNh22RAwk/bUOk8Y//TqeTkBAQMBpxtfr8Dt2oEMx9lohXf9L0ht0+Ivqr+pw5KPyPP9lHYbg/sLRd+2bJH3iI3zfT5f0rqP3faWk//foT0BAQMBNgzzPZ5I+VYffjbuSfkTS5+d5Ti7BSyXNdEj0f1rSz64d4t9J+umj1jJyEi7p8PfjB46e/2WP83ge4ffigIdElOf5Sa8hIOAJQRRF76fDX2SrR8FgAQEBAQEBAQEBATcVjhwOr8zz/PaHeWpAwHVHcCgE3FSIoujTj6xeGzqskP3vICYEBAQEBAQEBAQEBARcfwRBIeBmw4t1mLHwLh3OUb9W329AQEBAQEBAQEBAQEDA48QTJihEUfQJURS9LYqid0ZR9M1P1PsEBHjkef4JR9MbNvM8//Q8zy+e9JoCAk4K4Xs4ICAg4OQRvosDnmjkef6a0O4QcFJ4QjIUoigqSnq7pH8k6T5Jr5P02Xmev+W6v1lAQEBAwIMQvocDAgICTh7huzggIOBmxxPlUHiepHfmef7uoxTTX5D0wifovQICAgICHozwPRwQEBBw8gjfxQEBATc1Sk/QcW+TdK/7932SPuyhnhxF0TVtElEUqVwuq1gsqlgsqtFoqFqtaj6fazab2XMkqVAoqFAoqFgs2mO4L/I8VxRFOjg40HQ61Xw+V61WU6PRUBRFmkwmmk6nKhQKKpfLiqJIy+VSy+VSURSpUDjWXfI8V57nKhaLqlQqqtVqKhQKGo1Gmk4PpxOWSiWVSsdbWygUdHBwoPl8rjzPbZ2z2UzT6VSLxUJRFKlara68d6FQUKlUsrUfHBysrIe1sA/sk8d8Ptd0OrXXcRwPjsMxDg4OlOe5vTfr8fvN8aIosvMtFApaLpdaLBbK89zeq1gsrhwriiL7e57nqlQqqlQq9hjr47y9i4Zj+etbKBSU57kWi4UODg5W1sJr2AvWUy6X7X6YTCa2Xn+vcGzOmeOwbq4j7837cS+yRn8f+WvAe/Fcf1y/v+uP+2vIuXNvRFFk73lwcGDvuX6NeYx70r/f+pr9feb3fP36sB+SbD/8z7huvMZfV/85vtZ196/jPK91//r9ZE/83zm/9dd6+OMc7cVunudndOPhUX0PS1IxifOnP+1Al99Uf0IXFhAQEPBoMFGmWT6NHv6ZpxKP6rs4fA8HBAScVgy0f83fiZ8oQeFaX/orv7VHUfQiSS+SVkmEPfmI0J4/f15bW1uq1Wp6ylOeoo/4iI/QcDjU2972Ni0WC7VaLc1mMxUKBdXrdTWbTdXrh1/CpVJJBwcHGo1G9h733HOP7r77bm1vb+tDP/RDde7cOd13331605vepNlspp2dHZ05c0bz+VzdbleTyURxHKtYLGqxWGg4HGo2m6lWq+ncuXN6znOeo6c//em6dOmS/vqv/1rz+Vxpmuq2227TYrFQr9czIrW/v69+v696va44jtXv93X33Xfrnnvu0Xg81s7Oji5cuKDRaKSrV6+qXC5ra2tLaZqq1+tpPB6rXC6rWq2ukDMEkXK5rJ2dHaVpquVyqclkoizLtLu7q+FwKOmQ6I3HY0lSuVw2ASXLMpXLZTUaDY1GI+3v7+vMmTPa3t7WeDzWpUuXbB9brZba7baq1aokaTabKY5jXbhwQZLU6XTU6/W0WCxMqNnZ2dHm5qYGg4GtdblcajAYqFar6bbbbtOZM2eU57mGw6Gm06lqtZryPNd0OtVoNLK9PXfunOr1umazmebzuZHVK1eu6NKlS0rTVHfccYcGg4GyLFOapmq328qyTA888IAWi4XOnDmjRqOhixcv6t3vfrf6/b4mk4mJDvP5XMvlUrVaTbVazYSqer2u+Xyu8XisYrGoZrMpSer1ehoMBivrqVQqKpVKms1mWiwWJvgUCgVNJhMNh0MtFgtVKhU1Gg2VSiVNJhMdHBxouVyqVCqp2WyqUqnY+SOEzGYzI/6LxUKLxUKFQkHNZlNRFGkwGGg4HCqKItVqNUmy51arVSVJomKxqCzLNBqN7PXValXlclmTyUSTyUSVSkXlclnT6dSEC+7/JEm0WCw0GAw0m81ULpeVJIlarZYmk4muXLmiLMv4vKvVaimOYxNgEAYh+V5AY62IfJJsrZLUaDRMNGK/EFDq9bpdp+VyaZ9dhED2EKFssViYqIQAw7kUCgVdunTpPY/5m/Bk8bDfw9Lqd3FNDT31zZ+sp96ov7YHBATclPjT/LdPegmPB4/qd+LwPRwQEHBa8Vv5f7/m78RPlKBwn6Q73L9vl/SAf0Ke56+Q9ApJqtVqua+KSqsVcFwA/X5f3W7XRIN+v28kCCJGxdyTEQhpo9HQ9va2ut2uptOpLl68qFqtZsSt0+loNBppNBqp1WqpWCxqb2/P1oArYjab6eDgQFevXtW9995rIsQdd9yhTqdjgkGj0ZB0KCRQGYfoIwpUq1UTAMbjsabTqeI41nQ6NZLbbDbtseVyac6GarWqWq2mg4MDjcdj9ft9ExjiONZisVCtVtP29raiKFK/39doNDKyiqBA1R9S2G63jTQfHBxoY2PDnBSIFM1mU41GQ/V63QSLixcv2r5B4rh2VK83NzdNqOFaIXqUSiW1220TgqrVqiqVipHZ+XyuLMs0nU5Vr9dVLpe1WCzsukDgIdKtVkvL5VKj0ciuR7vd1v3336+rV68qTVO7fxAAoigy8uldD9VqVQcHB+r3+0asJZnIUiqVFMexiQe4JAqFgpIkUZ7nGo/HmkwmKhQKRvK73a6Gw6EODg6UJImJF1mWmfiys7OjRqOh4XCo8Xj8IEfAZDLRbDazv8dxbOc+n8/tudyD8/lcg8HArj37hmOD+4NzxkGDC4DnSjLH0Hw+N1JerVYVx7E2NzdNgOA6sNflctn2jXXO5/MVMYHzLBaLJoLgKOLe4nohHBQKBXs/HAZRFKlSqay4fhAXcLQgXHGeiDRxHF/P78UnGw/7PSytfhen0eb1D9UJCAgIuLXxqH4nDt/DAQEBNxqeqAyF10l6ZhRFT4uiqCLpsyS96iEXcUTqpGNLtbeIx3FsleDLly+rWCyaELBYLKzaTcsBTgWszxDPyWRipDWKIg2HQ+3t7Rm5laTpdKrhcGikv9lsGgHy1erZbGZV2IsXL5qbgDaKg4MDI/Osj7VAvGq1mhEsiMtgMJAktVot1Wo1I1mVSkXValV5nms2m1m1luNKh+6DbrerS5cu6fLlyxqPxyoUCmq323rKU55iwsVisVjZY4SJUqlkFXrIMQR6a2tLm5ubRo6pgC8WCxNO+v2+7WepVFppv0AcKpfLqtfrtkfs63Q6VafTUZZlKpVKqtVqKpfLqlQqSpJEaZqqVCppOp1qMBhoPB6bkAAhxIlQqVTU7XZVr9e1tbVlIsNisbB7YzweW7W7Xq/bvVatVu2a+BYafgahRdTJskxZlpl7II5jxXG80oYRRZEajYbSNFWtVrPqfJqm2tzcVKVSWWnjgTyXy2VlWaZOp2OVfO5z1kBbAYR+Op2a4FWtVk0sqtfrRt4R73g+74cTB+GDVhZaLHAB8FlBAKzVaqrX68rzXKPRSN1uV8vlUmmaqtVqqdFo2DlmWbbS0sI94T9XPA6pR+TgeVxvPhtcO/8Hlwnr5rPH50Q6bqFAsCiXyyutJezvDYxH9T0cEBAQEPCEIHwXBwQE3NR4QhwKeZ4voij6Skm/Iako6b/kef7mh3o+hGs8Htsv+15YiKLIKvTj8VjD4VBJkqxU/guFgrIsMzt/kiRGmCQZmaJ6OplMrGrq+9QXi4WyLFOxWFSapqpWq2aNhpjxWgSJS5cuaXNz06rg/X5f/X5fcRwbgUUowO4+GAy0ubmpVqulS5cu2blmWaZGo2F5EZCpRqOhVqtlGRCQRkgSxGexWGhvb0+DwUDb29uSpJ2dHSVJon6/r/vvv1+j0cgcCdj4G42GtYdIh5ZyXBPD4dBcEgcHB1Y5HwwGJnZAtMmn4A+VZ4iu75XHkg5xp0UkTVNrAUBoQrig7cRb1yG1pVJJZ86cser3crlUHMfWWjEcDlUoFJSmqTkP8jy3vfZZEbTcYMGnZaHRaGgymdg+USWfTCZ2zlTDeQ3n22w2rSpOywRtJggeAFFlNptpPB6bwOGzGri3pUN3hv/sIGQgbOBGoOXFZz/kea44jlWr1VYEC5/rQVvRuqDA54L7hXu/Uqloc3NT9XrdrjHujfl8bu/vcx4qlYo5MLi2fNZoL8ERgSjH3vJ8Pkfuu8iuBUIE7SK8vlwuq1QqKUkSc+Kwl36PbzQ82u/hgICAgIDrj/BdHBAQcLPjiWp5UJ7nr5b06kfy3GKxqHq9rlqtptFoZDZlqpDT6dSq56PRSMPh0CrYVBErlYq1RJw/f171el2VSsWyByA09LhDOiEXrAOLdpZlWi6XqtfrVqGF5Poq/Wg00v33368kSXT77bcbuR4OhxoOh9re3tbW1pY6nY5lINRqNWVZZhb3ZrOpfr+vKIo0n8+1v7+/Ejw3Ho/VaDTsnKnyss5KpWKEDBcDBJUsgkqlojRNlaapkTb2dzwe2zogy9jy9/f3tb+/b9V37OmQUfrvqQRDeGezmdrtthqNxooIIslIoid6OAOWy6W63a5Z0XEIsO9RFJmYgZiCVZ/++Xa7bevEZZLnuXq9nuU30OcvyfIAvOWea46LBHGFdhYcAtKhowCBBxEB8u8dJo1GQ81m09o0JpOJ3Ye0HeAIYF9o+cAxAKiicw4+W4P7GII9n8/Nvj+bzWytiC7T6dT2uVqtmsBxrZBJ9ofjeleHv586nY6kQ2GvWq2aaMRn2Ds//LH5TCPOcJ8j2PBe3smwHtbIeXuHDHuKwOCFI+41XBI+pPNGFhSkR/c9HBAQEBDwxCB8FwcEBNzMeMIEhUeDUqmkra0t6432AXCj0cgs2ITNTSYTJUliLgVJVmUeDofq9/u6cOGChcZB5CGK6wn9iAoE/UG2Ic1edMClAJklc+Hy5cvWukDeA1XuVqulM2fO6NKlS1ZNR3BAYCiXy1axn0wm6vf79h5UZBEMsHND0HziP5X62Wymbrer+XyuOI6tgo0ogkhDtgKZA41Gw4QSRAwcFRsbG2o0GkZQIb+TycRyE2gFwGq/s7NjYYPkXGRZZn/32RmVSsWuORkYPlfAhxzSZkDVfDQaGTmH0EuySr0P6PQBgZBriD6CFvtVLpfVbDZN6CADIUkSyz7g3xzLk3labWjrQDzj9ZyDn07Cfcn9tj7lwrsn8jxfEUbIxUDMYC2sgVBERCk/1WI+n5uIgUDgibrPKOBnfFa5NjgVCGtEJCD8s1gsajqdGlHnvuFepO2Azyj3O+sjtwM3DM9DuGEf/T3FPYLrYH0ChZ+gQm7HuvAQEBAQEBAQEBAQEPBgnApBgSkACAdYjhEDOp2OKpWKms2m9fWfOXNGaZpqMBisTHjo9/sWXodNn/BG35ctaYWQ+nA233MNuRiPxxqPx0bO0zSVJKuezmYzq5ojXjzwwAPK81xPfepTzRnQ7XaNQFF9hbhCgDgmZA5BwafwE6CIjZ1/x3FsIZXdblf7+/uWEUAyfr1eN+GGc+73+5ZNUa1WlWWZCRRU52nF8K0iEFraJqRDkQWS22q1jJBDIn3gI2vzRBwSToijzzSAtOJI8aMVacdg3b5nnio/7og8zy1vgTaNjY2NFZHDuycgplTeeZx7BUKNM4L7ybsRfBgh4pUfrcl71ut1I9oICH6KAfelH7XpBQicDOsjEskFIa/DizqA9+DcfEgq4gyCBcf3QY6IN5KsLYg8E782hDPufc6Vz4AXMxAZcMHgOhkMBittJbRWsOZ18dDvlW958K0frJ9ziaLI2qgCAgICAgICAgICAlZxKgSFYrGoVqulzc1NZVm2QrSotDNCsFgsWo82kx7IYIB0UR1tt9vWe0143mw2M3I4Go2sagxx4++QE4gixLnX66nVaq0EMNLOMJlMNB6PVa1WVa/XlWWZrl69qkqlottuu02bm5uaTqfqdrs2vk86zouoVCp2nljTsaVD2unjZ9wgpJl8iSiKtLGxsdJCwqhKqrwEI+KIIBsB0YJWEbIkEC2yLDNCSgVckvXps3Y/uWA0GlkY4Ww2M7GB6wShlGT/ZjQne4v1HaJI+wOv8YGPy+XSwh0PDg6UpulKmwTtL0zEoH2F9gb2gmPjjiiXy0rT1EQLcgh4XhRFFhyKcAGZ7ff7RkoROhA9/DQDnB9kBnhSCzhf1sgx2FN/P+HS4DNGGwZOGlpTaFlBIPDuHQQAP/nAj7+kzcG7BRBW+DktDD7cknNh3Ygtfg1+jKwXjmhxqlarK7kr7Jtfm3dYrOdQcEw+Y9zPhIZ6oSUgICAgICAgICAg4ME4FYICZK3ZbKrValnugSQjPRD1crmsbrerLMt0/vx5bW5uam9vT5KsEg75p+cd6z7kp1qt2nhCgvqoVEM4ERWk4zaHg4MDDYdDdTodbW9va3NzU+fOnbMWhTiOjdQicmRZpsuXLytNU21sbNh6qTqnaWoERjrsOSecDlKMU6NQKGhra8tIpO+798GDVK6pgs9mM/V6vRXiRRWYijShjBBrBAAEF0SaSqWidrutarVqZBi3BUGWvV7P8gqyLFsZozgajSx7QJJNGUA8QnRYLBYmBEHevXXdj3uEFEL+R6ORer3eSm88xx8MBuZw8EGICCKNRsMyJOjX9y0IOFPIGOB+m81mJuL4dos0TU244jEcD9JxPgF2fRwN3K/eUeNdHF4c4LnSg10JXGOuk3emcJ/xGeMxBDd///uqPmSd9+OzQ0go98b6urkH/L3OdeE+Yz9oo6CdgfNAaOIzipOCkY88FxGB57IXtM4gKrAmfo6w4EdjBgQEBAQEBAQEBARcG6dCUCiVSjp//rwGg4EGg4HiOLYeeYgE1XRIQKfT0YULF7S1tbWSgdBqtTQejzWdTi38DXs6Ixslqd1uK01Tey2j77Cd0yuOo4HsAx7zosJwONTVq1d15coVLZdLEwUgWkwv2NraUrPZVJIk6na7Zl9nGsRwOJR0SLQQQRhv2O/3JclyDiDzVPfjODZBBCcBewv59MScPYH4IZpADJvNpjkvfNI/bhGCJXktlvh6vW4kGlcItndv34fg0k4BgfeZEBD1brdrAgiiAjZ4SDDnlSSJzp8/b4LS7u6u6vW6JJnYMxqNTMRBvJBkrQ8EXzKqkPVCzLlXsOwT0Mm95gWMYrGodrutixcv2vE9GfeuCwi/JNtXHvMk2QsGXD/fauCnMRBgyB9JK+KBz27wggWCh7/P/Hv78aO8J2vEqcH94V1BXFecNnmeq9Pp2OekXC5bLgPP477AqYNgx399OKdv/1h3HvEaHCfeGeRzGriXOZ+AgICAgICAgICAgGuj8PBPeXKwtbWlnZ0dG19HXzWkhz50bNL33HOPBeaROyAdJu6naapyuWyV6l6vp1qtplarpSiKtLu7q36/bxkLBOXFcawkSSwlH6cDZEeSrY9pCI1GQ3feeaflEvT7fQsdZD0+aJBQOYLwoiiyaQiS7HXkFUBSF4uFut2u9vb2rmnThsiyX35yAsIF5wXposXCCzZU2CHN0nFvunRIuofDoVW5peMEfezrhFAmSaLlcmn7gSiD2AHhpdd+OBzaSEtPvHu9nrrdrsbj8coYSm9dp5JNq0uz2TTSv7+/r9FoZC0iXFNEFASXLMs0nU7NaUIOBfcW702QJo4Irg+tDpwX+91sNldGQBJKCGG9lshDJb5Wq0nSCikGvqWBa+CdABBnWiz8NA7uM8QyP6UDQc2LAHwW4zi2nA6fh+CDKKvVqnZ2dtRsNk2IwqXhSToiEu0XjBb165S04vxAgCK3gekhtBmxZtwdfDa8M4J730+m8N81XjzyoklAQEBAQEBAQEBAwCpOhUPh4OBA1WpVm5ubNrueNH9IliQNBgM1m03N53Pt7e3pbW97m5797GcrSRLt7u5qMBgYsZBkZFuS9cdXq1Xdf//9unTpkhqNhsrlssbjsY05bLfbK8QGsgpxhJwtl0sTJRqNhnZ2dozgetLOcyGraZraKD1s8HEcW74ClW3EBD8Gj5wESWaP91Z62g58lZz3lrTSD+8DJ7Ms02g0sgBGBAiEE64PlWLyEyBcvC9EH6dIsVhcyZaA0PkJAl4MwLZOACdhfhBd39OPS8GH/SEKFItFnT9/XpVKxUSlLMsURZHiONZ0OrXsDYQHMiQmk4na7bY2NzfNHVEoFNRqteyeIpeD+wtSzn4gtiBq5Xlu4aDc0/6Pr9zzGPkZ3P+Mu0S4kmQiEfcN710ul02sYowk+8d/ucfIw/CjEhntmKap3R+ITZwn97m/PyWZMNBqtZSmqTljcOnEcWzXEFLvQ0K5T3EJ4KQgPwRhgnuO+wj3B64XRBnvMPJCHPvn3xcBBpeCf25AQEBAQEBAQEBAwINxKgQFfvlvNBpqt9va3t7W3t7eSkigJLPGS4fk+tKlS7rrrrssd2E4HNprPAGB+CRJojvuuEOdTsdGIdLm0O/31Wg0tLm5qYODA129etUmRtRqNZsIQKV0Pp8ryzL1ej2dPXvWxlhCvqRj1wAkvNvtmphQq9Wscl6r1VYmVPh+dC8CMC6x3+/bmmlj4HlMeyiXyzpz5oxVvJnaQN+6D/1jKgTVdd6PfWc6QJqmRvzZZwgokyhYN9X7KIqs7QFhiD57wjche5w3Ak673V7JXWBSAgTbB/lBjBkbmiSJEdVKpaJut2tVftwCg8HAiDKTMxBLkiTR5uam3SeSzO0xm81MmKAtgjBHSCznBEFtNBp2jT1J9c4DiGy73dalS5csD8O3XXD/cZ0Zl1osFtXr9VYcEr41ggBJyD+5CYyRREzgZwgVwLcG+fGMXC/WjqDA/YFIhbtoOByuuEK4x/24SNqa/LQKrtF6qwXnhADDunyLA60nXA/Eo3K5bJ9ZP3YSt4606gIJCAgICAgICAgICFjFqfhtmV/wSe9P09QqmZALbOjYxgeDgfb29qyCDPHsdrs22o/wPYgMlm0qpxB6qrD7+/uaTCba3NzU9va2kap+v2/V5TzPbfwiIy13d3etqg/BlWRiiM89GI1G5saoVqsmeNB+AdGCbJGvAJlFyBgOhxoMBtrd3dXe3p4FOEqHveuDwUDz+dyqwIgK2Pd9xZYAuul0ascfjUYr4XS+pQQBSJJdF0n2Hrw3LSlMZGC8pg9+xJGQJIm1OdAnjyBD5dn31UsyQg+RTJLERjvu7+/bz4HvySfQcjweq9/v2whRSKh0nGWBy4O1I6DQYsJ1YprFtUILq9WqHY+1ADIQvKiQpqkJB9Jx1Z7sgSRJjHDjvvHjILl/WJ8fudhoNFQqlaz1g+NJsnNHwOG98zxfGevqXTxenKLNw2dTrLdeIBythybyOSYrxf+M82QP/YhJvkPYK1pI6vX6ynQTnBLsCcIPGSEIbf6YAQEBAQEBAQEBAQEPjVPhUPDEAfGg3W6r0+kYMblw4YLa7bb29vaMmEOm2+22BQoOBgMdHByo3W4bGZ/NZlZZxw1AbzyVTUk2EpLqNu4CbO4QJ28jHwwGK/309HAz+YH3gzxPJhM1Gg2laart7e0V8g3x9Kn7Xoig935/f9/CBQeDgVnbIZUEObIeessRY+I4NgJFT7snnTgqOC6tEVS0aYUgZ4HWBggaFnSuZ5IkK84L9hNCDNFEWMK+z6QMBATcHwg1/X5fg8HAJi+wf/P5XJcuXVKz2dRgMFC/3zdHA2IChJuRkj67wYcP1ut1NZtNu4d8gCHtLuwjFW+IOHtCC4jPavAuFl9VZ58h4MPhcCXAkrYQppAQRlqr1Wyqxng8tsfJOigUCpZhwPnT2oCo5PMl+ExwvrzftTIO/EhPPst+nCQZJT5sk9cjKvipKpJWghy9y6BSqdi4Vl4nydbt7yufJ8G5c98iOnBNuf/Zaz/VIiAgICAgICAgICDg2jgVgoLvHaevmx5squaMTGw0Grp8+bJGo5FGo5EuXryoO++8cyVwj+T4zc1Nm35Axd2LFfSTU5EcDAbqdDomKDSbTZXLZUvwr9VqNm0B4nJwcKBer7cS+geRYvThzs6OCoWCBoOB9binaaqtrS3LRZjNZtaXTvsAJC9JEp09e9bOCxs+7gbImydbBNcxbSKOYxNQPKnm/agOQxi9FZ+KNi6GSqWiyWRieQk4AxAG2E/IGqR2MBjYmEIfFEnVnBYFQh+73a6Nv6Q1Bcs7DoPhcKhut6s4ju1cy+WyOp3OSn99lmUWusf6qdhj0eeYZGH464zwgnvEk1ccG4hCkqzP3/f7b25u2p4T6sk++AwGPg+0hnjyjkvCizySjHyT20Bmhc/+4PpzzYbD4Yp4w73LZ5K/+9BIWhJYJ/DBh/5zwNpxKUh6kOjkhQXej33mGiL8IWLhJGGvfA6Hfw/u60qlspJvwn3Ae5dKJWt14HXc8whEAQEBAQEBAQEBAQGrODUtD5AfUt+9hZwWhyRJdO7cOZ09e9bI/e7urvb3962ie3BwYK0IkH9GMEJSarWaBTJCJuhDn0wmRrQIUGS8IGn1vV7PiDkWdvIPqNDiKkAYSNPUCDPjFbe2ttRqtVZCDiFskEJIeb1et1YMWgMKhYKdG6SqXq9bVd+PhPS5BjxOGN9wODSSLmmFWOFwaLVa1pIBsaOKTZsKpJbHfW97HMcmdiBa+AkH5FTgLEGAuXjxonq9nrVJQBxLpZI2NzdVKBTU6/V09epVa3NAnCKMkpBOWjkg534SB1Z975TA3u8t+D5jwod+cg19v793VhACubm5qXa7bRkStGX4sY+4GHzlH6cIFXsEndlspuFwaCMavUvGj+jk+D400k9q4LkQf/aZNofpdLqSUeCDDRE+uD44A3wGCETeh0V6MYbHESUQb3gcUYH7CdECAcNPnOD+9dMlrpWJ4DNREEf8hIdCoWAjMAMCAgICAgICAgICHoxT4VDwAXEQ3zRNlaaper2ednd3dfXqVY1GI124cEHL5dLcBOQobGxsWGsBRH53d9d68yGyPusAYuqJCUIApKzVaunKlSs20lCSVV4ZT0iPPcGDkCrp2H3BVACq71EUqdVqqd1uq9frPWhPaE8g9A+nAoIAUwuk4ykZkkxUIcCOLAI//QL7POcCeUZwoFIOgYTAMTWB8Ze4DxA2IHBUzXkvWjo4Hsn/HJcqOe0RfpzieDzWpUuX1Gq1bPoHSJJE8/lcvV5P+/v7Rv6n06m1jkgyMYYWGtbAehGXPHlFeEDYITQU0UXSyoQDRAgv8uA68a0xW1tb2tjYsHwBquoIQtyXkGyILoKCH/EJIMwck3sBeBGI5yDoeAEIgk8bhp/mwPsgviDAQMp5PvtH6CGtNtxT3LO4RdhD3sMLDewr58B9Q6ijfy1CCPvA3nFvrYsnfN79PelzLxDD/PUOCAgICAgICAgICFjFqRAUGANJeGGSJGq1Wmq1Wup2u9Yrf//99+vOO+/U5uam9vb2zC1w+fJlnTt3zqrgVMCHw6GGw6FZtakgkzewXC6t0klFEjJENoGklWkHkLIsy8x5QIW02+0a6eRYHK9YLCpNU+3t7Vkbx8bGhjY2NszxAEmkyg2Jwo7farWs8o54giODqrWfhDAYDGzNCCdUj33PerFYVJZlK8+FAEqyVggIIK+hd79WqxnRRBzyJNGTPF+JxwFAjgFCDQSfNQ+HQ7s/ms3mCslrNptWqacFZDwe6+DgwKzxTPiYTqcWYJnnubUjIACQPUAFnrYRP4Kw3W6v7AHiEdeZc8TZwV7u7++r1+vZ/ZYkiV1bsidwNXingiS7Ftj9cRn4PabNBnGJ6Qp+jdzLiBeetNMGQ8sQIptvgUAw8RkivId3IiCS+JwI/u5FCu94YD8RTnxbBaIajyHA0FbEZ9ePkeT91n/uHRCsjf/6jAzEuNDuEBAQEBAQEBAQEPDQeMwtD1EU3RFF0e9GUfTWKIreHEXRVx09/u+iKLo/iqK/OPrzSQ93rOl0qnvvvVdZlqnVauncuXMWtIhIMJ/PdeXKFRuzmKapVXN3d3dtvKOfOsDEARL6yV1gUgNkmOo5gChhI6e6SX82/esIFrgQqET79gUq6P1+34iat4sjnJDZwLGZHIADwJNbfp6mqeVESLIgSAiYJLOsQ3ohkX4CALkVkE7yIphigLsD4QJbOSSYfd/Y2NDOzo7SNLWxhVjdIZ68hrYMgiYJRiSJv1gsWv4EEw/IYOC4OE7IcKDtANKJFZ/WA4QPAvz8nvkRgz7LwjsBcHNIxxZ+KuqsCTGKjIUkSbSxsWFCFwGRiA6sCcLuf8b7+DYLpjw0m80VxwZ7zPNYl3exeEGHoE5+RoUf5wHHIJeD53OeuBvIAPFTGSDiuDxwNOA6QajABcMe+OkbBGyyHj+ekn1CRPHCRbVaXcmkQDzwIgZiFe4FXuuDUbnvb4RJD9fzuzggICAg4NEjfA8HBATcyng8DoWFpK/L8/yNURQ1Jb0hiqLfPPrZS/M8/95HeqDlcqm/+qu/0u23325iws7Ojq5evaorV64YQbh69aruuece3XXXXUZie72eEXYyD/b29oxwXr58WbPZTM1m0yr4kFoINZV7Krn0tvvqKJMNlsulTX9g4gJjJBld6cPpJFmFPY7jldyCdrtt+QKQrXK5rPF4rEajoTNnzph4MBwObfIDVX0mSEiytfX7fZtWUC6XrZ3CiyYECCIcxHGs7e1tO2dJRvS8dRziyXHIkEC8qFQq2traMtJI9X02mylJEttHJhD4AMparXZ4U7kRilSV0zTVwcGBOS4g1uRA8DzfPz8ej1WtVtVqtUzYIRMCMYH7Kssyy22g3QD4dg8vMhC4iDCCaMH1pfWhWq2q2Wxa2wRZBNKxy4Nz8bkN/HwymZiohGjAfYVbwAdprgsJ0rGYgEuEe57QU84H5wT3gR/TieuGlhffrsI1pM3EZzdwX3DfsR4vKLC/Pn9Bemg3A+4MjuWDM1mvFyE41np+g38Pn+dRLpdtP28EQUHX8bs4ICAgIOAxIXwPBwQE3LJ4zIJCnucXJV08+vsgiqK3SrrtMR5L9913n/7yL/9ST3/603X77bdrc3NTW1tbNqaQsXj333+/br/9diPCuA46nY52dnaMSNOjT+AgRAiySuAjBEI6rGBnWabpdGokin50iB65C8Vi0aYHdDqdw808Inf06UsyEnnlyhW1220jQ2QpUJnl2Gma6uLFi1blbrfbK9V8Hx6H2JGmqbrdrmU8rI8CXC6XSpLErO6TyUTj8dgq5DgUeJzj8L5Y6b21XZLSNFWz2TRHB4QtSRIj3L1ez1oGkiRRu91eGWlZrVbNRYE4gfjB9apWq0qSxN6DtUtaCdvzOQLkIOBwQXDhekPMqbLj4qDfH7FJ0oqzgoq8bwuBwPvqO04Dqu9pmmo4HBrR9ufm2xIg/ohLOGO4dpwnZBfhB+cNQhmkGqLv21FwKNRqtZUxl1T4vauBzw1ig3Q4DYV7z7sz/IQFHACSFMextR148u7FmXq9vnJdEIcQCXyIpw/J9K4DLyrhpvCTKHg9rRHSsRsJN4O/zwuFggV7nmZcz+/igICAgIBHj/A9HBAQcCvjumQoRFH0VEkfLOlPJX2kpK+MoujzJb1eh4rt/nt7PZXh+++/X+94xzt0xx13WGBhq9UyQQHr/WQysZ/RltDv9y1gr16vGymmUu6t+nmer1TEqYpCxLCmx3FsoY4EwkG6m82mEdXhcGiEBtLJSELs9wgCkOW9vT3deeedKpVKarVams/nGgwG1g4wHo/V6/UsV6JcLqvf72tvb88IHJZvSCTE0LckUI2lFYR+9l6vpyiKzI4vaWVsoE/Sh/CSbwFRZQQngs14PJYkEwvYTyrYHBMSWigUlKbpyrWB8JFBwfhDrs9wOLS1NxoNa5Vg/djbaSMg68L3ziNOeXs7uQsIQrynn2pQr9dXyDlhhBBnLxAgdECycSMgCkHaPflm/V4cSZLEWge8eEILip+wgJDEmhFl8jxXHMeq1+saDod2D0sy8u4zEKRDMYn9ID+D0Ew+CzhheJ0fb8m9z7nisuDzxjniCKFVwU+G4H5GUODeYJQm+4uLBvcLLRhcB+5HjuXdDbhc/M9YD8e7VmjqacXj/S4OCDgpfNu7/0K3FYcnvYwTx9fc8081/QeXrt/x3vlWPbO8d92O997wN/Nt/dAznvWkvNdpRvgeDggIuNXwuAWFKIoSSf9D0lfned6Poujlkv6DpPzov98n6Yuu8boXSXqRJCMKw+FQV65cMQt6vV63SioVR5L3z5w5o83NTSP0TFDY3Nw08oClGsIRHY2iy7LMyBgVZjIVqJjTPkAY4ubmpjkher2e5TuUSqUHkTN6yAl+zLJMy+XSshImk4mFSXKc0Wikvb3D/+kTqEeFOEkSNRoNq7r3ej2rni8WC7VaLZ05c2Yl5BDS5nvSEQAqlYqm06llS+COWO/Dp9IryY7HGE2q21tbW/aeiBre4eCr0IQ1QlAhjxB8iBx9+5wvwYnsJ2M96ZMnX6LVaq1UoaVDwjkcHv6S6oP7IItUp+v1uhFcAiqbzaZarZaKxaI5AGgDYfRno9Gw602lnPsAAQMC69sbEFW8zR6HAaKWb/ugko5Dxo/mxKWAKOKnGCBWsIeEUeJcQDRZz2rANXBwcKBOp2NTG/gscs9zH3rXBPewdJxRQa7GessOAhfXiLGhCBAIiF5o8m4ORCv/My9MIVwVCgU7Jq/3AiOCk/8s8H1wo+B6fBfX1HjyFhxwa6JQ1Nt/5O/qzZ/8spWHG4WKpORk1nSK8Kpn/rpG98307F//ct31pW+QnMvqESGKpKig57xhqX975s+e1H19n/JEH33fn+lbL3+E3vrc5aNf+02A8D0cEBBwK+JxCQpRFJV1+MX5s3me/3+SlOf5ZffzH5f0K9d6bZ7nr5D0CkmqVCo5FdYrV67oypUrevrTn66NjQ2laWp2aKqRo9HI7PztdtsqkVmWWRWdajuEwKfHQyR9AB0EkHT+4XBoVXIqp5ubm9brPhgMzIpPVZ9j08sOQaNvfrlc6vz589anznSH7e1tI63dbndlcgQtE41GQ+122yz/2OpZJ7363W5XR3tq58fkCcguQZDrtv/hcGhiihdWcDlApNM0XREg2LN6va4kSSw8E1u8T9jnfAgXpJUAIooVnYr4eDzWcDhUo9FQo9Gw4MtOp6ODgwO1Wi1Jh60l+/v7JhRwrrgpIIpUy/37QVgJwqTtAfs74zqx/7MfXuTg+nKeHE86zlXgvXEl+P/6oEOEID+dwE9b8CSZvURUwNngJztwjyMIAT9Zg70CuAu4D3GZ4LRAiIJ4c65RFKnf79uYzSRJNB6P7b5GROAa04LDJJdKpaIkSWxCx2w2s3vaiyN8NtczPrzzA5cB19G7R3BZcP/igIqiyMJWoyiywNPTjuv1XZxGm7ceAwh44hFFKrZSPfB5z9ZffMuPSHqDpDCS9aHQKFR09yf9Zz3zu16i9/m2Nyifzx7+RZKialX3/fwz9Kbn/+zRI0/+HjcKFf3A+dfrk3/3E7X8pJ4OjgoMtwLC93BAQMCtiscz5SGS9BOS3prn+fe7x8+7p326pDc9kuNBWvb29ixIkd5zX7HMj6YrFItFa0lAcBgMBur3+5L0oJYGwg/PnDljzgQ/+YCQOIgbzgiqyJBlKrSQEkiTrxjPZrOV3AGC/zqdjvI8N6FkNBrZVIZGo6Ht7W1tb2+bI4EMgyzLNBqNVC6X1Ww2bbID1V4s+u1228gyRJ0MgXa7bT3qpVLJWjawmrNXTFlANOl0Our3+/YYWQ24B7rdrmazmbU4xHGsNE0lyaYp+L50hCBPqKmSS4eTFAgwZO8hnFj3q9WqjYBkLCjXhNBGX7mXDnMlWA+TO9I0NYLZ6/VWsjNYjyTbR+6H+XxuIk6tVrP2HMI5JZlg4u9DL5Z4l0e9XpeklRwKH+rI3xGa/P3sBQoIMzZ+QhARHqjc+/GUOAD86EifjSDpQbkKEG1fvfdCCPvAMZvNpkqlkkajke2xb8XZ3t5Ws9k0AQFBhM8cfxAufEsH1x53ASIH+12v180Z5CdNsF7cHNyXHB8nBy0rpxnX+7s4IOC6olDU5JM/VK9+y+8diQkBjxTv+Bcv199+03NVfMbTFJUfWhwoNBoqPuNpetvLPsiJCSeLX7nr1/TAzz1Fxa3Nk17Kk4LwPRwQEHAr4/E4FD5S0udJ+usoiv7i6LFvlfTZURQ9R4f2rnskvfjhDuTT8zudjt797nfrjjvuULPZtD9xHGswGGixWGg4HKrb7Wp7e9tI5Hg81ng8VqfTsYoyjgFIAqQXkivpQWF4kE4IBj/3ffwIAJD3crls5I1KLlVnyDIkudPp6Pbbb1eSJNrd3VWv19Pe3p7a7ba2t7c1Go0svA/SSl8/4kWaptrf37cxkpBq3zoSx/EKOaS6j7UcVwEEy1exqY5DQullh7Cxj5xPnucrThDEDOm4D568BJ/8T86BD93Dsp5l2cr0DTIafDbDbDZTlmXa3NzUzs6OkWNPqLHpE94JCMPM81zdbtemaFCRRhDAebBOsj15Zp8ZbelHGTYaDWstYaoG9nrv0iBrgzUjTCACLRYL1Wo11et1I8s+MHQ+n6tWq9nYS9bH58u33viQSe4JCDzigXdLMNWEz4gXhRBBuPbcU1mW2eOsE9cKTiDaOgj25H4m06BSqajZbK4IZLQ48TwfYimtZirwcx8uiksGYYUcEkJD/bn6FqBTjuv2XRwQcF0RRRq98Ln6gx/+sZNeyQ2Lt3z5j0hfLj33/36Jtv/rg90KhWZT7/nqD9RbXnL6xJq/fN7P632+7cv0jK997Ukv5clA+B4OCAi4ZfF4pjz8oaToGj969WM4lv0SPxqN9J73vEdvfvOb9axnPcuquJC2LMs0GAzU7XYt0JBgRuz0hNtJshwAP0oR4iXJ+sT5w2u8AEGYHJVTnAJUXiFA9GQjCJw5c8amHiBqQLRwQPge/yRJdObMGRuPSMsGYxBHo5G2t7cVx7ERLUnqdrsaDAa2Jl5LxgDg/Q4ODsx67gUQkvx9QJ+fogGxZTykdEhm9/b2bL/iOF4JxaM6TjsKAZcIChA2rj8iDW4Ifo4dvtVqqVwuG3Fl/WmaKk1TczNQ6SYEEYLuBSNyOqhwM66ToEP6+f1YRR9cuT4JhCkK3Ie4QRAF/IQQX1GnEk8Ffzwer1jwEU+YChLHsVXOCS3Fos818w4NT9J9kKMku9ZZlqnZbKperyvPc8u78LkQODv8/cHffbgpjiE/rcLnenhBguuSpqm1s+AUQvRJksTaiBBJyHDwUzYk2fFYL/e//07w0zwQvhA1EQ7Xp4acZlzP7+KAgOuJ3ud8mF77PT960su4KfD6//ByfUj5JTrzij+TDo4CeuNY7/mq0ykmgMbT+io+42lavvPuk17KE4rwPRwQEHAr47pMeXi8gMBQne50OnrggQd05swZI32eNAyHQ2uL8C0PVGdxJniyDzGjX9qPKiyVSjbGUZIFNxK6BznCLo8TAGLLeEqq8RyDkDzfK59lmRHlKIo0nU6tjWCxWKjdbmtra0u9Xk/dbteq2hBNzov3pq+c6nOtVlOz2bRqL1V1pkFAxAuFgrrdrgX00bsuHZNMRhZevXpV+/v76vV69v5pmlrFmPeuVCpqt9vmMEA44D36/b42N4/tj568+eo3ggJiAkS13++vVO6xq5MnwZp4LuGbklbyHDh+v99Xs9k04oqoRB5Es9nUxsaGsixTlmWWQUA1nHsKQJZpO+B+9cINJB9nBq09CF4+B8FPg0BUoqWkWq1aUKJ3g3ANaUuhtYB9RFDic4LogzOG+30ymdgkDNaG8IQggsPAj6SklcOLRd6twzrYN+5NhDfED996xP4hwiB6cCw+Z57802rC/eKzKHxYKW4OBATWy3Vg/wMCAh4dLv/LjwgtDtcZb/w3L9cHNr9cF77njxVVq7r7mz5If/Mlp3uP//rDfk7P+o7P09O/7elavuPdJ72cgICAgIAnAKdCUJBk/fKSbJJBr9dbsfL7efcPPPCALl26pGc961lmTce+jKsAIgPZmc/n5haAiDCaj3A4iA92+u3tbbNn07aAUAH5rFQqGo1GVl2lR5zKvK/qDodD7e7uGkliRCVW7DiOrScfgsb+IFJIMnEgjmNFUaTLly8bUUOQkI6D77IsM6s5Nv1er7dSzY7jWHEcW5W7VqtZLgPTNQjm63Q6arVati8ET5KngPhCbz8ZEtjPIY44NyStVNKl4359SUbCIeXeeSHJpkvQ208VH2GC9g1aDBAhOL6fXoHIAPmn2j0cDlWtVm38I1Vt1s7EAD85AaEMAYCWBtwj3J84IOI4NjEBlwWfDdp7aG/g77h32BPOifsHp42/J3lfP2VjOByuBCf6z4NvESLwkBYhRAucPLiE2AeEFj6j7DvOENxC0dEoUKZscL34PK2PfF0/VwQY3o/PHKKCz2hAqPOBrH4qBPf8DdLyEBBw6vC73/i9Ukirv+7466/5ET1z6yU6qOZ61z9/+Ukv5xHhb/7ez+j5H/ZlagVBISAgIOCmxKkQFPy4OUlGUiH8fo48lnKcDAcHB5YXQFCgJDWbzZXxcJA/qvvSoXDBiEpEAwQDT75obYAg8lreK01Tjcdj3X///RqPx0aWFouFJdRj9yfxfmtry0gbLRKDwUDtdls7Oztqt9s2zQFBBQKHYCLJ2jgWi4WJCLVabWUyAMLKeDw2ZwVBf1R7yVRot9sr1v1ms2nZDru7u5IO+9T5O8eWZJZ1KtxUwCG7tKo0m02zm2Opr1artl7puKJM9Zjr4iciQNoRWvb391daE1jH+iSAOI6tdYEWAIg0goIn/djxcX0gKuAaoD2A9/HiFwIJ2Qe0MfhpBJwre4XgxT3rq+p5nivLMtsLWjo4JgIAk0T4fHFfcO7cc9JxngbOHNqMEHA4Dx92yWcEISWOY7sn5/O5RqOR5TH4e40gz+FwaG0/CDwcm0kLiDnc74hqrFmSiVHcIz7PgecgJPgAVvYJYYbvCY7Fft8IoYwBAQG3Ft7x+TeGkBAQEBAQcGvgVAgKkoyweYs31UR+8ScNn8kGnU7HfvEn/R6iBJnx5Gw0Gq0E9Q0GA+3v71vAIqSWCQu7u7tWlaePnCorhGexWGhjY8Ps/VQ1cS7M53Pt7+9rNpup3W5LOgypIwuBqjXixO7urra2tsx9gEAhySrAiAg4OGq1mtI0NYIbRZHlCXC+vrrfbDaNPJMhAYkkM4Dgy+l0qnq9rs3NTRNUEGj6/b6JM6wPMkmLha9oc55M6PAE3Fv9ueYQUcgelWPuAe4D7Pk8J47jlakRPC7JRBUq30wdoG0GVwKCAm0xGxsb1v6xXC5tysZgMDAXAvDVbp+FwXVACPEOAQQgiC73v2/xoC1jPp9rMBhY64Z3EZDVQAsBRBsiTouPpBVRgXsZFwQuFkQUPpO8jw87xaHiRyx6kYnncp7L5dI+E9Jxi40XYCaTiXq9nl0L7jPuP8Qn9o8WEgQAL3hwv3LP4ErgfOr1uh2Pc/NTMwICAgICHh+e99Vv0Dv+6lk6+Ku/OemlBAQEBARcZ5waQQHi53ursakTvthqtWxaAa0CV65cUbvdtgomhGNjY0NJkhiZms1mGg6H6nQ6arfbZpsm5JEWAizk7XZbpVLJshYQJ6rVqoUmNhqHds7NzU0tl0s1m01Jxz3/uBQGg4F6vZ6Ra6zb586dkyTt7e0ZCb969arSNDWRwxMi6biijfixu7urVqularWqVqtlxIrUfuzrWPYHg4GRZ0QFqu5+bB4/gwCnaWp7zlryPF9pwYAwdrtdayWBLLJXCAfeeg7hZGwhzhKO68MXERkgvn6iA5MwECuk42ozwYi00xBAiQhCm4RvT5Fk4gr3H604hUJBm5ubZo33bRhU8iHfjB9kbT6E1I9qJPuDrACq5zwHFwKtMggTkGXf3iMdVu9p3SAoUzoUtGgtWJ9gIslyHZimwb6zHxyb68b9TGgpTgNJK0IHkylarZYkWfYB4hOfF5wcCHesA6dSlmXm3PEhj779BIGP7xbaXxB7WL9vu8G94MUrjhEQEBAQ8NjxQxdep4/Z/qDT80tnQEBAQMB1w6n4bvc5AZAyCOR0OjUbOoGFuBmyLNPe3p61JPjAPR9CSEAgQXytVktxHNs4QSr5EDg/EQLiKh2S4mazqcFgoMFgYFVlJgLQZgHJSdNUkizw7tKlS0aiB4OBzp07p62tLSNphAju7u5qZ2fHqskIJVROWUuxWLSgRESFZrOpbrdrrRpUWTmP6XRq+QjsN4SL6jBVW9aF0AORh8zSYgKhRHSBpEsyspamqVWNEUgQBOi3x8aP2wRi6Ns6PIGEtLKf0vGIREYRImBASgm3pPWBMZvj8diuI6MdaRNBjKI1BIcAQgDr574lu8CPh5RkogLn6UUfn7ngww5924cXLUajkYkrCEaeEEOK+VwgUnB/s89ce6ZVrAsbrN1PQJlMJrZHCBEENXpRhXuJ+4pjEgzqcyBwBPiWIj8+1LtI2G+Oy70pyUaHjkajB01rYG9wubAvHAMhjvwPHAwBAQEBAY8fX/uKn9UPf8In3vQTHwICAgJuNZyq35apwGLt9xkHSZIoTVO1220TCKi4+0A2iDOkzIfB8TzGOVYqFQ2HQ+u9hhhJhwSKqnyv17Mqfpqm6na7unz5svb29jQYDDSdTnX+/Hndfvvtesc73iHpkPCnaWrnQqV6PB5bMOPtt99u/flUtDnvXq9nrRyepE+nUyM5TLaAfKVpuhJsyTkSUFgulzWdTo100YrAY4PBQEmSWJUeUQFbPRX8/f19a+uIosjIrSRzA7DvVJW9WITzYj3DQJKRf57vgyjpqee64p6gCk/VGlEBxwlhl9Vq1UZsQqy3trZUqVQ0GAxsygEZCn6yx3A4NDcArQu0WXi3AcRUOq7OQ4Kn06l6vZ4JYJBq3DK0p+Cy8dfYOwNwldBq4PMO/FQT2k8QLHgOYYlMhPDuA0QF7zDg+bR4MNYSFw3H8GMufSaBn9KAcIAjAacNzyXPhHuDkaoIFj5vgn/7EZlJkpgwg2OFexAxDeFLkl1fLyDyeSS3IyAgICDg8eMfNyb64Ur54Z8YEBAQEHBD4VT8tuxHs1EdJQ8AcUA6Do9rNBpWVb506ZIuXLhgggIkFAeBr4ISfHj16lW12+2VsL5CoaCNjQ0tl0sb47izs6NWq6UsyzQcDlcIINX5++67TxcvXtSFCxdsOgOEdTQaqd1uW3YCAXrT6VSdTkd7e3s6f/680jQ1RwUEmCp+mqY6ODiwCRK4BXyfN8GOhULBCHK/37dKPZVX8ggIIGRfGRtIlgKtE1wPBIVqtWpuEXr4IaW+0owogQCAyIBbAHLqCTs5EFSW4zi28E2ukyesEEpJRvy4NxaLhfr9vhFW9kk67tcnn2Bra0vNZlO7u7vq9/t2v/l2Aq4FDpIoiszhQlsO58VzWaMnpNjqyd8olUoajUaq1+smBPF6Jg9QeecaEKzoRQDIuncP4J5hHCmZD35yhJ8OwXmzj2SP+DGR/jPqyTatARyfCRgQ80ajsZJR4Kd/cG8gBvkRqXwXIOpxD/uQVoQkxBD2ZTgc2vkjbjFthEklCAh+igUOCr4T/NSRgICAR47PedY/0q+9449OehkBAQEBAQEBTzBOhaAgHU8LwJbd6/UsFZ5QRCqQBB4y2WBvb2+lMjybzdTtdm2sI8QBUjMcDtVsNhXHsYUhQmIXi4WuXr2qK1eu6OzZs5ZCT1W/UqkoSRI1m03t7++r0+nogQce0FOe8hQ1m02dO3fOgvsg7Nvb20rTVJ1Ox95vsVjoypUr2t7eVr1et0otVVxIECS8Xq+r3++vVIgrlYrlNvB++/v7RsZoK6BXXjp0TiRJou3tbSNXCBh5nltFmKo57SXL5dIyAKIosrYBAhaLxaKyLLPnUeVHxPDj/iDznvxBFhFcIPWFQsEIKoIRdn4IaL/f12g00pkzZ7SxsaHxeKwrV65Yj7+vuCMw+EwGBB/IJcII9+F8PrdAUBwtrVbL7kGEIkkrThncCVxHpnyMRiM7B6rwOBjWRQxaCpiagQDGXiI08BmCYPsWDLILWBeTI3xopiS7XyDsPI4A4FsXfCUfJwwiCvesdOxY4bozuYT9QPjw1zWOY21tbalYLK7cm17EQATwmSv+fmRveC4CBOIGawd8VqXj7Ak+iwEBAY8eP/c3v6kwNjIgICAgIODmx6n4bRlSA0nBnt/v97W7u2sEg4pzkiRKkkT9fl/D4VD7+/tKksTC3CSZMOFHPjJ+zxNUkvwRC9rttk1QGAwGunDhgpIk0f7+vlVR0zS1yQ6QTsYosj6IJyQIS/WVK1ckyfrwfZAgxNSPiYR8bW9vWwildxO0220LzkNU4LjeWu8r3u12WxsbG6pUKur1ekZo/Wg+yCzBi/TZQwL9eyIe4GaoVCra3Nw0UpplmabTqRHrQqFgZN6P50ySRO12W71e70GVe0QNsi4Yw4kTYm9vz4Iy4zhWt9s1N4HPYPDVdJwbPtCSKRAQWCrd2ORxLviMjvW2mXq9vnLtsfDjLqBNh8kjksyJwuu4BrwHrTDercF6eA3gvPivdwVw70Gq/YQFQGWffccB4HNKcBjgJuDeajQa1k7jRRbCK8nq8JMi/NQF7h9/r/kpE4hRCC/r6/aiAlNXfA4FYzc5pndS+OBHH/gYEBAQEBAQEBAQEHBtnIrfliF9wFuV6W1vtVoWxufHyI1GI129elXScUsBAXT9fl/nzp1bsd3zmizL7HES4Gezmba3t3XmzBmNx2NlWbZSgccqXq/XtbW1ZT3ru7u72t3d1dmzZ812j9Uch0CSJEZYsiwzIj0cDm1aAGQVIogrotlsWr86IYKQbcIOeT8cHaPRyKzxjBsknwASVyqVzELOH6Yq+KC7crls+wHZW69QMwIT0gshZFQnYowkI9i4EHCAZFmmdruter1ukyJwLXButBVAVunFL5fL5pDY2NjQhQsXtLe3t1LhLpfLiuNYGxsbKxM3CEfE0cJ7+DC/+XyuOI5NLIBoQ6TJGWC/CQNEeGCd7AEknLYeyKt3KDBxxE/jkGTk12cB4Gigqu4/I97dsT6tAWEFcA+wfq4X74mYgKOnWCyujO7EMUOLwroAgTPEB6Fy3jzGcWm78KNJ2R+OQ1sJDicvfuBUQKBhZKrPx/DBo/5+9kGxAQEBAQEBAQEBAQHXxqkQFCSt2KwRBLCDj8dj67Ond51KNw4FrNMQH6zrEGcsz5AOiEu9XjfSPx6PVSqVtLm5aS0TkCEIFgRye3tbg8FAnU5Hw+FQ/X5f29vbRrgRIAjF80n4ECHW4/vZsbDzftPpVGfOnLHRmYgVkP56vW693lEUKUkSy43gOAgny+XS8h+YilCr1ay1RNKDQvOwoGdZZoSdNhCfs1AoFJSmqSaTiVX3CWzE5o6oQ9Cgr+ojItGSUCqVbEQlBNCPQ+R9aUVAVMGZQXaEd4oQqunHNvb7fcVxbEIGLoEsy6ytAocH14lWB1px/KQDgjN5nQ815N8+UNAHEPo2AxwEs9nMWmxwNHDPIBBQyS+VSsqyzFwuXEOfP4EIwVQIxAPECkI8uU8RBWhl8M4UHBK04gwGA8tqQBDh7+wf548gsO6cQKxhYookGwHJOrk+65kP/rw4LoLZcDi0CSvkfnixic8qn3F+7h0QAQEBAQGPHd9+9f0VjSYnvYyAgICAgOuMUyEo+GozxNdXIrG7U0mm5aFer6vX66nb7ZqVHdLq+6999bhWqxkhk2R2eFoXJpOJ0jS1CQ/kD0A6fKW70Wio2+2q0+msTIKgoopLgmkKPsG+3+9rZ2fHiC0VamzfkE4EFc6b43vCz2shgJubm0beqHYjwGA9R1DgMUQcSDN7JsnaCBBdhsPhyl6v979Pp1MjmN1u1+z+WOJLpZJV6BEMcGww3YLrT6uEJ5fY3n1QIGSz3+/be9B+QPWZ/Auq6uw1wkSj0bAAQF4DkUagYi3L5dLaVRCZfOifn4rhJxHQ64+7AYLvAxD9qFDINvkefiQljhw/DQQ3iXca+PYArhN75nMmEDwg4YgKXpji8zOfzzUcDpWmqWWR8Dkl42R/f3/lPgScE8Gr3lXkR76uZ5/w+WBaAyNluRf952h91CefD1w6fqQmjhQ+m7gWJAVBISAgIOA64fe/5sNVuucNJ72MgICAgIDrjFMjKEBg6Wn2AXxUM6m++ywF8gKoFkvH4ydHo5EGg4FVMH2QoK+YMvEAez4Ohf39fSM4AIJBSGSpVDKXBGMHG43GSpAe9nhvh59MJiu99L5fG7cAlfTBYKBms6k0TVWv100c8GICZIisg42NjRWiXi6X1Ww2reUiyzILG0zT1LIUJpOJiQ6Q/Wq1ak6ILMu0u7urbrdrrRiQbUkWyAex7nQ61prRarXUarWMDGdZJunYccC0Co7nK/E+qBLyiGOBnzGJodvtql6vrwT1ISB58kkFHUGAiR79fn9F6PEhfT4AEeDqYH9xSiCwLBYLO1fCDX04oT8vRBraQNgLRCxcIhyHdhKEMYQE/9niuOuCBCLZ+h8/icOvi8cIl8yyzO4xPkO4fPxYxul0am03fKYRL/g5z4XM0+5BWwp7gNCCqLBcLhXHsV1f9pz7vNfrmSOBe4x95ZwQ0riP/PMCAgICAh4/PuYtn6rqfV0tH/6pAQEBAQE3GB6XoBBF0T2SBpKWkhZ5nj83iqJNSf9N0lMl3SPpM/M8339vx6FKWiwWbUKBJKukzudz7e/vWxWZlodWq6V+v78S8oYgAahiQhwlrRAuqrvegt1qtbS5uanZbGaEFrIFAULASJLExAEyGzY3N23aAknzvvecCmqv1zPinaapkTNGC0J8aXFgQkOn0zFCjXhSrVZVrVYtRLDRaFi+AnZu+sclGenP81ybm5tK09RI4nw+NxHBj9bDZTEajdTr9STJQiGZLsCeIE5AIBlXubGxYc6Dbre7EtLnAwch8zgREJF80CDnwb3CRAlINz8nFJB2Cp4LEa/X6yv3x3owog/ow+pPT753QkBscRwgsiCU4ayYTCYmKPiWCFwBEHdfkcdZwGMID4Qikkdw9Lm06444B3Gm/cA7F7hOfN5wJXAN1ids+NaC9QkcvV7P3s9nFXix0J+LbyfyrhCuKXvC5A+yRXh/1s/a/ThKPtNMRUFUoR3Ct574nAeuxY2E6/VdHBAQEPBEIPupCyq9/bUnvYwnFOF7OCAg4FZF4Toc46PzPH9OnufPPfr3N0v67TzPnynpt4/+/YhArzp/II1Y2QeDgU03IMhxY2NDSZKspNV7FwGEytvmITG+faFcLlslNEkSnTlzxgIB/fSJLMs0HA7NXcDUBAh6FEVqtVra2NiwgD9PnPxkCZwCkEufH0GVm7YL2hYIWsQujgBTKpVsH3x1lfemSu5zCMiViKJIaZqqVqtpPp+r2+2q1+up3+/btATaTVqtltrttmq1mgkrklbECmzzzWZTrVZL5XJZw+HQ8hKo+LdaLQvqQ7zh2vnsAvYQ9wcOEO4NBCTGb1K19/cVYgzCBBMiEBMIFWRP/XQD8gykQwcG4o+kFXIsyQQo7iWcDn7kondeeBGM96HaDulFYMK+z33O/uAMQMSBlNNawqhR9tm3EPjPhM8ywF3DvxF+EATILoCM+ykNw+HQXAc837d6EDaKkOHDKv3nlXaQdbeDF0lwcnjxzgt3CAu8hnaS6XRq15i1IKhxL7KeGwjX7bs4IODx4F0/+8FKCtWTXkbAKcFdv//52nzt5ZNexpOF8D0cEBBwy+GJaHl4oaQXHP39pyW9RtI3vbcXQDaoDPs+b2zaWPepLvILP6nyCAlMIGB6AhVkKqgQVj9Wj1wCyBeJ/nEcrwSzjUYj7e3tGXmivx/hod/vK8syayNoNBrWzy7JQiJ9ICPWbV8RZ/3sA5Mu0jS1DADfJ8/+rLeB9Pt9m9YA6ZJklnNs8t4BwD5TDZZkoot0SM4ZO0lwZRRFqtfrFqzI8XBc7O7uWm4Eff9cuyiKdOXKlRVhxBNUSDlZBpBMiD9CwMHBgeUY+FwE8hhoSYCA4yjAgdHtdlemN0CmcUsQ6ohDhn30eR/rzgbuJ+5XWgEg27467h0BfnwoFXnaYLh3/X18rT5/CDTnuz6K1LclsKfehcCxaTPwIoQkcwkhVvnj43BgHxAV/GedzwNODx5D7OF9ELJwP3APe4cDGQm8h592gaBAy1GlUrHPtHfBcM/dZFMdHvV3cUDA9cB//4gfVTkKgkLAIaqvT7R851+d9DJOCuF7OCAg4KbH4xUUckn/J4qiXNKP5Xn+Ckln8zy/KEl5nl+MomjnYQ+y1lbgx+JR1YQAQIIqlYr1qUtaSXCnIsvPIRwQJm+xhxAWi0ULeBwMBtre3laj0VCv1zOyzpg/iB5/h/ww7WFnZ8eIJ20DfkpBrVZTs9m0rIJ+v69+v2/EE7GCkMdSqaS9vT2bRgDJ8+cwmUxUKpXUbrc1mUx0+fJldbtd1Wo1JUmicrlsEwIkWQhdvV43wkaFH0LriaVvP+F9IHveQUCeBcfCjUFAY7/ft+kLpVJJGxsbmk6nllfh21Mgw/1+X5JW2jiwwXtBJkmSlSq+J+W4FHxrDO6EPM/NlbDe58+UBAQCwjEPDg40HA5tfyCpXDdJ5lghP4D7ASHKjyf0zhEIuJ/MgLXf9/uvjzf0fxAtpNW8B47vpzrQWuCFL86rUqlY+Cj5GtzvntAzPYTzwNXjP9OIFn5NfG4h8jgPEPw4V6axIDwhMOFYQWTyo0j9eRPKyTWVjoUHvh/WhR3/+hsA1+W7OCAgIOB64n1++wv1rFe+SzeU1+uxI3wPBwQE3JJ4vILCR+Z5/sDRF+RvRlH0N4/0hVEUvUjSi/xjvlroreDD4dD65yGv1eph9QPBYTQaWY/+aDQyIkOVlaA2qsj0uUN2IMy0M5w9e9Ys8nme6+zZs5pMJur3+0beaYOA3IzHY3W7XWs98FV/Wg6oct9+++3W693v97W/v69Wq2XkimwF1r+3t6fNzU3FcayNjQ3rVacCj00bl8JwONTe3p76/b4FIbIvuDhozyBPgFYCrPKcl7ekQ5ghcTxfOrbQsyeVSkVpmhpBJguDdo1arabz589bu0Sv11OxWLTRgz5/AscEzg9JJkLgaun1eqrX62o2m0Yaj+41I6q4FAj5JBPCBxb6QEKyPViLFz3YF9ZLJdy/p580wj3uhRb20Yclci/ioIGcsw+IAbQDEDIKCfaBi56oU9XHGYBg5Ns3uI6eTBPMybUn56JcLtvYTsQH3pvr5luQvCuGn+OY4L3XR5b6/cQVQXsQ7ptGo2H7lGXZyj2OWMK6eIzRn37t7DHvx/fQDYLr8l1cU+OJWl/ALYRve8E/1c/90S+qVaif9FICTgj/9F0fq/Hnx3rf7j1a7N8ykQHhezggIOCWxOMSFPI8f+Dov1eiKPplSc+TdDmKovNHSux5SVce4rWvkPQKSYqiKMeiDNGXtNJWgLUdm7+vHPs597VaTZubm9YawbEgy4gAnuD5iu18PrfQwyRJ1Gg0tFgsbEoBWQ4+wE6Stre3bVTdaDSynABfffVj+9rttuI4tkr3pUuXVirSVOaTJFGz2dTu7q4uXLigjY0NnTt3Tru7u1YxxjnBXvGaXq9nNv5KpbLSMsI+Yv3Hmo+AgG3dh9yR75BlmSqVira2tuy8ut2uBe+xj7PZzAQHqvS4AEjoR1hIkkT7+/vWcsCITdbBXnPtGF+IQ6FSqWgwGCiOY8tmYKoH91Se5+ZSGAwGdq8Ui0ULPvQOAMgo9xpOGXr/Jdn0DS9gsT4cKLzOZxP4aQLsIf/14ZzcL37/Cc3k85IkiTkk/FSHa1XYvePBP491+uvNe0nHogPHZ7SpJCPs3q3DdWOf2Fs/HYXnka+x7ixgzxASGQHK/iMq+D98Z9D+hLDEWtcFBa4Z4hDfMTz/Rpn0cL2+i9No84ZRUAJOL778t38ziAm3KP5nlugVf/dDlC9GOhjtnvRynlSE7+GAgIBbFY9ZUIiiKJZUyPN8cPT3j5P07yW9StIXSPrOo//+r0d4PDUaDRWLRbNXQzIkWVsAldFisbgStgYhoKrMGDsCDfkZJMWLDfP53KYbQMB9CwHEyFfpEUCw5e/v79uout3dXaVpamuiAk5FloovhBmRgzGOOAZ6vZ6FPg6HQw2HQxM3sM5jB8+yzKz/kE1s6OylJ7Y8h4r/bDZTmqYWmEduAaSM9gIvNBDkuL+/b+9Nu4m/FsC3ZkRRpCzL1Ol0TKzpdrsr5LJWqynLMiN8hGLy/n46gL+OhEiy17RKcD1qtZoJK9wn2PXXAwn9CFMIL/ed7/uv1+smGFEdp71gNBpZiwf5C5BvRBcq7xB98iJ8qCNC0HpwKVV67jP2HrEA8u4DFX3rAeIY15gcA7Ib/DQK4Mc94ibwbUUcU1oV0rgnaJXhfXkee+SFBT8tw0+Y4J5aB04Orhfn7vdvPeASx876d9KNgOv9XRwQ8HgQlSu6rdiTFDIUbhWMDmYa5nN93lM+SsoPpLx/0kt60hG+hwMCAm5lPB6HwllJv3z0S3dJ0s/lef7rURS9TtIvRlH0xZL+VtI/eyQHo6JYLpeNHEOYILfj8fhBIyGplK5XfCELkMQ4jlWr1dTtdleS9qnO+vGF5BpgZfckySfwr1eNEQb6/b71d1cqFe3t7VnPPsn4vqIKAfaVWN/XvVgs1Ol0tLu7qzvvvFPNZtOs+uQYxHFsYxixwlONx4oPafK5Ec1mU41Gw9wOTJKYz+eqVCpqt9vWk+8JK8QcYePixYvqdrsrvfO8J73qnDdkFcEnSRJtbGwoyzJJMpHGW+p91Xw4HJo4QOsBryOrASGAajjXAgcAuRLeGePbCyTZOiG8PA8Xg5/mgMjFniAo0JrjxQrW3Gg0jBBzL/ipCJBvBA+/h4vFwqaeMM6zWq1qMBjYueBE8GGFiCC8n4cPZfTvt+54YE2IYewN7Qq0JHBMrg2CkiQlSaIkScztwP3GuXGtcQhwHC9U+MwIf524rl5IpPXEuyp8BgnnyDWiReoGGR95Xb+LAwIeDz7nr9+t51SDmHAr4Z++/8dq2e/rcFriLYvwPRxw06B45sx7/fnB/r7yG2sKVsATjMcsKOR5/m5Jf+caj+9J+phHe7z9/X2laart7W2NRiPrhYZQe+uxHyVH5bFarWqxWFgQIZkLTAOo1WpGbiFqnkh64iUdB+r59gvcEZBGyIpPsKeqm2WZBQhCyCFoVGBxWRAoiGuAsZWQT/rhET3iOFaSJDZlwQf4+eotEwwgs15YqFar2tzctEwH3qdWq6ndbps7AXEBogmZhowhSnQ6Hbtevl3Ak1hfGUcYYI+bzabOnz9vmRK0nEDyCKIcj8e6dOmSrXlzc1P9ft/EDj8hg/dfLBbWVsGek6tRqVTs38CH9bG/3Ge4Hnz+BoSf/fUtHlTu6/W6iSiIGLREQNbXXTc+UJJ7kH3114L7kv96kYLWEPIFmHZwrakOPuxzPB6vtBV4Io/oRYsAIpt/jv8secHPj35c/5lv+0Bgo60F5wdhq1xfL0Dw+eKzzfq5x7z4wTXwWS1+r2kT8q6M04rr/V0cEPBYUXr6UxUX3n3SywgIeNIRvocDbgYU3/8uHVTLevWv/ux7fd6HffNLtPWGjpZvebt042RNBTyBODW/LVMV9dVkP7/eTxzApu+T2T3pXi6XVnmnOgmh5w/kh5A8H8IHwcA5QCU9iiIlSaLoaEyiFzt8+JtP+69WqyujDCE5koyAUu3FJQDZHwwGRgIrlYo5N5rNpra2toxE027AsSGk3rVBS4Ukez/Ibb1etzYAxAbpOHE/z3MTPDqdjrWRjEYjc1zQwiEdp/9Dqr1lnX1HdIHY4iQgaI91UDnmZ6PRSJ1OR8PhUPV6Xe1221pPEEtYH/kXpP8jElD9x/2AWIBTAwHFk37uGX+/QewZ6ci954P9fKifF31wSlCV55rwWhwa/l7xzhauFUKbn4yBawfHgBc2mJLAa7xbhT3m/b0A54NSfSiqdCwA+BYBnuvbDhAJOFfECPaJz5GftOBzHLhW3OsIdfP53MIeEY+4n/25DQYD5Xm+Ih7xGfHjP73wEBAQ8MhQeM7766N+5nX6J8mtZ3cPCAgIuNFx8A8+WD/7ypdpuxg/7HP/9DtfLkn6+1/xYlX6C5V++w1P9PICTjlOzW/M3orvSbhPqYc8+8qpfxzyx9jCOI6tAjubzVZCHyE8klZILOsYj8eaz+dW1eb5kGSqpbkbt0jFGxv3eDy2bAis3lSRfXsFJGk8HptQsrW1pel0qvvvv3+lv5t11Wo1pWlq2QqDwUDD4fBB1niO74PsIG8IFpubm0ZI6dmHeEOS2U9JK6MtsywzMtdqtYywUcWeTqdG6OM4tv33zg/ezwsZjGREJGKfmbjABIx2uy3p0OHiJwL4/IfZbKZut6t2u23uFa7XfD7XYDCw+8Oft2+pgIQj3tRqNdtfxBnyBvw9xTX2uQLc015g8U4TXBO+dYB9Ym99FoCfYuDFBsQB9huhBxeEtEqoWRMiECIcFX8mTOCU8J8lf79B9n0Ogv8cS4cCCZ+PdRcI+8/a+IyzTt+WgYOFcFKfH+GzLDhv377Ccbzbybsk/P4HBAS8d/S/c6Jv2nrHSS8j4EnGP33XxypfjE56GQEBAY8D4097nl7+Az/4iMQEjz/44R/TMj/Q3/uGL1f6c699glYXcCPg1AgKgIqrJ4P84t/tdvXAAw/o7NmzK5VIUt2jKDJRgfA5n7LvCRUiA1bqZrO5MhnCz7snRJFWBQg5bRn0+lMRhiRScSU7QZIFJZJ/ANmbTCYaDAZqNpvWdjAajbS3t2f2/Hq9br3zklSv11faOnq9nr23H5tIFb1QKNjIRcgXhJ/9G4/HNs6Qf3Me5DKMRiNzGHAsQu4QBhAJ2HtPNGlnkGRtBDgCfG4CVex+v79CdP2kA9oiaHGp1WpWLUcc4lrhOOFaMQqRLA6EC0/EWSPHW88e4F5D1PIZHjgMqHojCniizH74cZCeAPP+3Me4GmjH8JkiOAz8Pcr7+vwDP07SO2Y4Z64X151zgXAjdlzLlcAxvJjg2xe8kwJBgc+vd0NwnX2Qot8f/u3zEXgv72jyIo0ffbl+HdkzRAqOEVwKAQEPj+knfag+9vwfn/QyAk4A48+Pb7lpDgEBNxN6/+L5+k/f/uN6duWxTeYpRgW9+ru+X/9w8+u187Lw/4FbFafqt2WqvRBD+uEZiTeZTHTlyhVdvHjRRgVSBYfAxnFsBJnqqa9+QughgFT7CVGklaHb7RqBY9ICZIPKPOtCbFjPDlgsFuZYgFQxro5ee/98n/IPucax0Gw2jdTRPrEeQkdWAtV8P/kC4ivJzjVJEhNqsiyzynC327U2BN6PSQSQMwL5siwzAaFYLJrwwdo4d4gu55emqarVquUKMF3Au0hwR+BI4Nwg/6yDjALW6KcWQG5pJ8DZIWllL3GUIGh5mz/kk4r1OnGXjh0GiFVUvsk08KKKdOxO8BV6T/ypyiOA+PBPP/aT6z4ajcwhw3v6lgCuuyfoXhDwbgnv3uG6+oBIHDU+g8BnFfBvnBS+dcO7ZBAouAbeRUQmhRdgvCvBT+fwzgPEDt/+sx6syOt8pgdYvz5emAsICLg2/vYzD/TtZ9580ssICAgICHgU2PviD9c3ftPP6WPqjy9QdaPY0Pd+zY/pu1/2gddpZQE3Gk6VoDCbzWy8XqPRULVatTGSnrz1ej1zBiRJYuMUK5WKBSFCvqjUQoywQUNKyS3wEw9KpZKNrkS0aDabRtgbjYYFB0IcIbKQTiqnVGN9VZjqK4GInrCtV2MhiOQJQFgXi4V6vZ6JBOROkLPgiRLkzjsyWq2WtYTQ+gAxHQ6HSpJErVZL0qoVnLWUy2UTfyDC9O0zQQGyjxuBdSPgUHnPsky9Xs/EHO6D4XBopHI6ndq9AYllH3EoELyIAwThh1aO5XKpWq2mZrOp0WhkEyH8cz0ZhRhDvFmLn6IgrU5PkI7DOfv9/so4SaaVeBK/fp2AzweBZA8GA2tDkGTCEy4TH/bpc0XI1Fh/D58nArlGVGBag6/i+zDHddeJP3dPxP1rfC4DAooX0HzbhW+B8s4QBB3W6VuLcCf5a43w5h0M6zkXXEMPXCI+byEgICAgICAg4GbB/FO6+sykd12O9f7lnt75/c/XM742tD7cijg1ggKVRohCtVq1yizEEQEB4kNPvh+fhwV+NBqthCvSvuCT4KVjskxFHjs8GQMEMVLVlmQCw+7urrIsM5s77oVKpWLVUarr5C1guYZYe+IC0fZ2bloUIEpemOC9aalI01T9fn+lLcDb/8lpaLVaK9V8yDqtDLw3Aou33rM3VJ9xH9AKARn3BJXrRGV7sVhYvgDXqtfrmRiwv7+v3d1dE3X8GEHpOJ8A0sr74SRhj3AbQKx5Le0Ee3t76nQ65lTxoYqeaHqbPveRr/DzOMSY3Aeq5Yw8xUKf5/lKqCHngIuF+5+WH1wh5HbQmoGwwWeHSr/PMyBTgSq9b0WAhLMnPkiR6RDc29zfiF6+XcOTdUCLgXfnICggHnghqtFomDNlPWeEtXItef9arSZJK58vPnc+O4Hrsd6+4MUSL5j5eyBkKAQEvHfsvujD9f0f+TMnvYyAE0LzlQP1/lFDB6OQoxAQcCPh4td9hF76gT923Y53vpTot/7J9+pjKl+nZ37ln1634wbcGDhVggIVaGmVJCZJovF4bP+O49hIebVaVbvdNtLlyRABhn4CAsQBMg3ZkI7t+VTPySfo9/vWqkAg3+bmpi5duqT7779fi8VCzWZT586ds+OQqN/v983Wf3BwoE6nY8/xoX+QdSrTkL04jjWdTo0cp2lqRJrWjOVyaWIKkw2oSiNaSDJy3mw2rUWkUqkYkfYtFD7PgH2EwPI4BLJWq6nVaq3sJ/sNqWT/EIj8ZIv5fK7RaKRut6tCoaBut6vLly/bWEz2QZKtA8HJj0mUZOfKfpKP0Ww2zZ2CcNLv95Vl2crow3VCzv3ie/t9ngKk2uctcK60XLD3tLywx+wl7Ri+2s/9DMj/4B7GSeGDGHFjrLsNvBOCewLLP58Z1szECv+Ybxny9zfvjyMA54Bv2fHtP35N3L/sNW0zftIF6113SfjPKuNiWacfQcnnolQqrYSS4hrxbR0+oJX7zDsvAgICVjH/uOfqI777T/VRyX/WxzXmD/+CgJsSv/C039EnlT7qpJcREBDwKDF45uJxtzqs42nlRL/9Kd+nj118vZ7x1cGpcCvhVAkKkJw8z9Xv97VYLJQkifX6QyIgBFSV6/X6Sk+3D5yDqGHD7/UOrT0cCwcDz4+iw6kMTFCAtNM/Pp1OzSlBGwTEuF6vr+QiQMSxykuycESItiSr9kNU/Vg+n/cwGo3UbrfttdjdIX9Y/gkaJB8CgolrAQLtQyEhbYg2XjBg8oEn07Sk4KKgrWE4HK6EG8ZxbK4ET75pS4DAIipIshBFBIXt7W0bAUqrCW4SKt+cX5ZlRmBxbrTbbW1tbdkkj+FwaM+jGo6Dg3X7Vhlv08cpsz4RwNv1+ePvQc55PUsBou/dDN794MeYcn14Tx7juNPpdIWg+3Ph51w7n60B+DeBl2SOsGY+M/7zg9PA543QFoJY4fM7EBF8ngbrQxzyogb/Za/9vnlRzgs6tBvxPAQX1uhDN/3ECC8GcX2DqBAQsIrSU+/Ul/7m7+hc8Q16fq348C8IuOnxFW/8M/3QM98vzKMPCAjQ08qJfu8zvlf/cPwNetq3/MlJLyfgScKpERQAhMmH6EFuIJm33Xabms2mxuOx5QX4gDXIKe0FEIk4jlemOSAoDAYDLZeHoxE3NjbMkk4fOXZygIV8Z2dHFy5cUL/fN/s2BMxXX6VjRwIZAWQaQMoQQ6RjUuqr+rQiZFm2Yt3mGPwX4u1HRdZqtZVqNySM6i8j/BBeECuwqLOHfmQgDgEfuoibIcuyBwkkWPVxmrC+wWBg5JNRkOwvbgucFOvhkpw35JE2F4h0q9XSxsaGNjY2tL29bcGa3BvcEwgLTJfwIoCvfvMz3w7hsz0QAHxwoHc4+NfyHAg6ogWPE2YI2YXgereBzyTwa/LP4Vh+ggFtPbTg8DmBfOM4YH0+8wBCznH9Ofhz8qGT/vz4jPP5Y59pz/HtF3xe/J75UEc+c/49OS73Na4b7mHvkuAYvl2F19PmEwSFgIBjFNstvez3fk5PKyeSgpgQcIh/3Jjotne/Vt/0tA876aUEBAQ8Atz3LR+hv/jk75P02CY7PBxuLyV63ed9v3Y/Z6nP/jffoI2fDsLCzY5TIyj4gDiqmlmWmUNBko1G9LZ96dimTnbBcDjU/v7+SuUYwsgUCJ+oTw82SfPSse0fYkFPNuQMUeLMmTNGiKVjazx/920ItEBMp9OVaRPeJQBpoj0BAYJRkVSxfVsDOQh+vCMV++l0qkajsZKHQCYE6yI/geo75NeTaY5P8OXGxoaNlkRs8bZxX+Vn/whA3N7eXhFXeE/el73e2NiQJBNJfJAfAocnu0yqIBcAgWhra8umZJAXgQiEUIG44Fs/uCf9mEquK+e7HrLIv5nwIK1Om0C08K4F/15egPIiFGR9vXUH0cMTcf69npfgJzKwNn8PAlp9mJyBCOPFCcQCLy5w77L/fBYQffjMkBdCC9F8Pre2H/bQB0l6R4Mfk+m/Ozj/arWqKIpWhBL2lDBWxD7EMv7tRSD/uQwIuOVRKCoql/TLb/4tVaPkpFcTcApxVzmSCkXp4PpaqAMCAq4/DipSq/DEiAmgVairVZD+6Dtepo/de4lqv/JnT+j7BZwsTo2gIK0m0EOqJ5OJNjc3jSyNRiONx+MH2cp9yNvBwYFGo5GRh8lkoizLdP78ecVxrP39fSPKCAeQCG8Dxx7fbDYlaWWkIcdut9vWagCpQoSA1FJphqCPx2M1m00jUtIxMYS4dzodI2feUu73x4sHWZaZ04LpEbgCJpOJZUuQP4DQwahEyJcnwV7YwQ1SrVZ17tw5nT17VrVazVwFuA+8IONFCOlQENrf31epVLLcCz8VgH54qsWEVNKOkGWZiQ2IFVSyPWnE3dBqtZSmqbWiAAQCCCOEn/uICSCSrLcf0YqQTHInWCvrh6DTgsN5IAb4sYjca7SG4Frhc+BbK7x1XzrOMfCjFNkHyLtvJ8Dx4NsurjXBYD1wEYeJF70g+BBw1uAdKdzPCECQdvbDTx1hz33Qor/PyfvwLoz13AMv5jAZhc/b+iQK75bwLSH812d+BATc6iimqX74r1995EoIU08Cro1GoaL/9+7f11d/4Cdq2e+f9HICAgJOCcpRUb/3ilfoEz/pc3TwF2856eUEPEE4VYICZMxnIECW4jjWYDDQcDhUp9MxYgOxhCBC5tbHJ0KQkyQxIgxhqFar2t7eNoJGtd5nI/hpDD6oDgs4jgOq535MYL1eN5FiMpnYVAFJRuog77znaDR6EBnzVveDgwMjsuVy2cY9kv6PcMAEBYg3AYecE4JBlmWSjkUdb/Efj8eWJ0FeQrvdXrGGM/pxPB7bBAaIuV8nDgEq357oe1LMuElaWzqdjr0Ogo6YQe8+94O/ZxqNhhFYBCdEGMYN+nwBxJHhcGjhk4gVs9nMchvYI6rxtIAgerGfnCciFGIP1wkii1OCCjv/9tZ+qv5U71kv1X1fZeez5F9HGwtiSaVSsewC3+LhgxPZK8QMrhnXzTt9EGoQGLhPeT33AE4EaXVco8+W8PcfYgUOEUQrXu8dI4gerJHPKUKHb3ViT3g/Pm/sKfdMQMCtitIdt+urfvc3jsSEgID3jrvKsb749X+hV9z19JNeSkBAwEOgEMeap0+++3J8W6zqXwUX082KUyUoSMe/2Hv3AKTcj4ljRB4CAhV2yCGCAiIC1X6q8/1+39ocsPH7cY9MI6DtgrBCSVb5l2RiAgQQUkbF1SfY+95yiEq9Xrfj+nYKfw64ExAzyCig2lupVCyVnlYA2hr8+Mtyuax2u23W/slkshI86NsNfJWe59VqNW1sbOjChQva3t4218J0OlW/31e/31ee50rT1IgaxI31QzRpzyA00mc6QLYhdYy7PDg4UBzHarfbms1mJnKUSiXFcWwTKyCf9XpdrVZrZX+5pyRZ+J/PZQC+Os36cDJw/QgEJcQSIo8rBLLugwkRMMiFICOC6yk9eEQif7zAcK0qO/vmswd4Ty+0eIcNny8vUFyrxQCH0PqkBk/41z/H6+0EPjgS4WY9/wFRwo9i5f0QJWhF8u0L/NcLIuwFAgTX0YsY7B3nMh6PHyR6BATciig++331Sb/0x2GCQ8CjQruYqfCc9w+VyICAU4qrn/NBeudnv/xJf9/X/PiP66Ne8iLVX/W6EOB6E+JUCQpUGCEYPmjRp/pD2H0fuu/3J0gRMkQIXaVSsRwFquvz+VzNZlNJkqyMk6Pf24clSlohU1Q7IW6shZaFcrmsNE3tNT7IELISRZHSNLW1+vBDCG+tVrOqdr/fV6fTMdLOJAPpMGuAbACqr7gUmHpACCGOBmzn6yGBPvyOcMzt7W3ddtttOnPmjOr1ul2D6XSqXq+n4XBokxQQfCB17CVOAsh9q9VaqTL7KRQ+FBHbPhM4EEJoqeCaIgzQgpCmqU2+8H3x4/HYWmc8+YW0QvIh0FxjH0rpe/d9cGSz2TRRgfNC/OGasweIHzhbuMd8NoRvOeA9r1XZ95Z/rr8X3rxown4wrcO3LvA8P6YSko3o5veM5/p7hnNcDxpFGIL8c74+UJVWGVwFPlgVxwdtMD7Lwbcu+Ht4HethmJJWhKb1iRoBAbccnv9Ber8ffpO+on3vSa8k4AbDx9SX+j8/+Rb9xQef9EoCAgJOG37/5a/Q85MvU+tnw0jJmw2P+TfmKIreV9J/cw89XdK/kdSW9KWSrh49/q15nr/6ER5zJXgOt8ByuTTSD4mFTEAoqNwXCgXr5SeQDbJATz5VcR/wR2AeIgP5BnEcW2+8n01PxZ/nUpmGgOEKIDWfdfhJE1mWaTqd2vjJ6XSq0WhkFXzaMhAOqNR3Oh0TSCB4CC6DwcCqxt5Oz9SDOI41nU7tGJKMGPoee7IfyAqI41hnz57V9va2CS8QP08sOV8IMC0dCCW+2o644FtMsiyz6rRvYyH/wY/BTJJE8/lccRxbhoWvbkOAfe4BkyUYWent++wbwpOvfkPwIeEIJ9xXkHIfNilpRazhPdYdBuRk4HrwRB6BgJ/5fA7uSQQY2hNozZG0MrLTf86kBwdD+kwFRAxf/Uds4Z7xLTk+6NGHL65PwfDiG6/z0zF82wNYn8awPkHCt0/4thdeKz04LNULGl7w8qLTevbCacUT8V0ccOvi4O9/sO78nnfo+86/8aSXEhBwwyB8DwcEPDK89nt+VB//s8856WUEXGc8ZkEhz/O3SXqOJEVRVJR0v6RflvSFkl6a5/n3PqYFuaA5/wt9rVZTHMdGjrDge3IwGAweFLIH2Yf4UdH3Ywg9oUIYWC6XqtVqarfbqlarVjH17QGSLIOASj9EFIGgVCopTVPFcWwtB7VaTZ1Ox3rtIZAcx6ff+8otRI3n+EBJ+r5xXjCxYj6fq1QqqdVqqdVqWTuDH53IHvkqd5IkqlQqlstApR9xhcyEXq9n7wHp90n+R/eKtYnQUiEdV60hcmRfcG19SKVvK6F9BcEDsQaBxYcQ0rdfKBRWch4mk4ntqQ8C9K+FXPr7kL2O43jFvcB5SjIHQ7VaXXEd+AkSPgDQi2jz+dzEMh+2yM/86M719gQvRPjqvyfF3jEAuefzgiDiswpYl89Z8PkG3pnjhQr/eWIffa4Bazv6/rjmHvqgTc4bJ8T69eA4PObdFqyHe8E7NXxuB98/7B3X6LTjifouDri1UHjO++tdn9XSh/z9t+kn7vzDk15OwA2Mj26+Vb/9pV+krR+/dUbFhe/hgBsBxfd9hpafvH/Sywi4CXG9PL0fI+ldeZ6/51oW40eDSqWyYsP3ZIgKKEScvnxINfZuT5AhpVRweT490n70oh9ZB9GkEkwLgq+sMrGh2+1qNputED/pUATodDpqNBpGVBnXyBSK8XhsbgiIOlXng4MDI3cQ4GazuRLGV6lU7BiQSdwNuCeYQtFsNldIEtMf1vvx4zg2wjyZTCzYkOMPh0PN53MNBgMj6AQjklHRbDYtd2AwGJhzgPPyThAIHKKCJ8d+ZCPXGbHHCwE+dM+PH/RWeNaMoLAewueJMb337CuiFATdZx6wbq6/J92IGn6MIefHfQKJvZaAwXsj/Eiy+491+zwOPymCtfgWhPXcBX/tfZ6CPxfWwWfMtz6wHtbgybs/Bo4U7gnO0bfFeBEEsRBRg/Pg8417hz3j+iE+8BrOD6cH9xUOElpDWKuHF2ZuIFy37+KAWwfF93umlt/X19vf7+dOeikBNwE+oTHVSz/rXunHT3olJ4bwPRxwKpHdtak//9BXnPQy9Pb//Fzd9SWvP+llBFxHXC9B4bMk/bz791dGUfT5kl4v6evyPH9YOYxKq29F8LZlSNFisdBoNFK321Wj0TD7s3Sc/r5OAiAe3ipNddePm+OL3wfnkQfgQ+58DzfCgCeV/Jf2i93dXQt+hAhXq1VzExAe6c/Ph1JCbPM818bGxkqFnxYGSCRV8clkYsQXso8o4Cvhvq0kiiIbt1gqlezcIJ84CKhW4zrw0ywqlYparZba7bZKpZK63a65HLgWiDNY/TkXiKTvw0dggtyt5wdwDSH7EEsECNwR9OATBgi5x+nhpyB4Ug+JpyVGklX1Ia7+fkVkQhhCZEGQQPChPUM67tX3k0sg//wd8YTpEd5hEMexkWLaRNgb/zni/vYBieuE3rdn8NnznwnuRUm2b+vtFJB5/4d2iXU3Aj9jH7nm3kmAY4P7B8HNj0Tl+j+Uo4DvFoQ7n72A0MCavMBzI7Q8rOFxfxcH3FooPeUObf2Xy/qvT/n9k15KwE2Eb3var+gl3/Lluv3/+eOTXspJIHwPBwS8F7zx439In6WPOOllBFxHFB7+Ke8dURRVJH2qpF86eujlkt5Hh9avi5K+7yFe96Ioil4fRdHrpWP79O7u7oqlm8oyj0my0ZGEFkqrfdGQwqP3eRA58HZzX9UGviJKgGGn01GWZUZ0qYRKsqwFCF2WZStWbIQHyKuklT53iLu0WhWFWEHAmGbg2x4IXoQwUaWmAs/PGeVIK8K1xBJaHQiSZF1kN9AmMZlMbEoGDgMq0DgwCJKksk5rgh+PyevYv42NDW1vbyuOY7sOCCJM9uD50nGvPkIG15dARtomWDfkEWLsiS1EUtKKa8KPHcThwj3BZAscM8PhUMPhUKPRyCaIsK+QV++mYYoH60M08gTZ/5drR7uHb+lAPGG9vnrPObIGRBme4+97H2rqM0b8NBB/3HVxx382yALx99e6kwSXjf/88RxEJvJCuObAt2D48/Sf4Wu5L65VMWLP/fp9ZsqNgOvxXTzX9MlYasApQp40gpgQcN3xUTVp9oGjh3/iTYbwPRwQEHAr4nELCpI+UdIb8zy/LEl5nl/O83yZ5/mBDg1vz7vWi/I8f0We58/N8/y5R/+2PAImElSrVQsvXCwWVnWeTqe6evWqLl68qG63a6MfmWDgSbI/NiQhyzJLm79WxZT8A+k4ZLDf75sgAFEmD6DZbKrZbK6MnZS0EproiRotHRAc3+LhLemsier/zs6Ozp07pziONR6P1e/3V9ZJ6CPhkuxZo9GwsYo+wV+SjfHz4zkh9EyC8O+xWCy0v7+vy5cvq9/vW0U8iiILR/T9/fP5XMPhUN1u157rWw3Y+0qlomazqVartSJC4H7wffmIB2Qp1Ov1FZGC82CMI2II1XVCOyGLo9HIghoRTKjCS8eTAHybw3g8Vq/XU7/ft3BNhIXxeGxODP5A0CH0nB9CF6GUnLMP5OQ8ECh4LI5jcy5wPN8qtJ71gSjiQwy90OHBZ8A7LyTZZ3Dd0YPA4V02rAfhgn8DjuFdJjy+LvbxGeLnfsKK+06xf/tWBz8C0rdEkJfCtfJtUggifr03AB73d3FZ1SdxuQEnjeLWpr74l3/tpJcRcJPi1z/yZbr3X99yVcjwPRwQ8DBICzV9wBuuBwUNOC24Hi0Pny1n7Yqi6Hye5xeP/vnpkt70SA7iK4uQHN8vjTWbX/h7vZ46nY69hgo85NdjuVxaNR2bPeQeAkI1FAI8mUwsB0CSjURMkkSNRkP7+/tm+YZE+YoqhJlxfJwHxJYpEH6yAmSbyi3Elmr7zs6Otra2VCgU7FjslSSr3lerVZv2UKlUlCSJrYP9ocrtyS8VfMIV/XXB6XBwcKB+v69erydJK6QNggshI4NhOByq3++bK8DnG/hQSK4Da/MTNI7uLSPTnAchm4gCy+VSaZpqc3NzZeQgbTKdTsemcfA+o9FIvV5v5d7wgocXAthrhCHAev30A/bHj2ykJcULFuyzfx3X008c8I4CT8b52bXI9XoOCe0FPOannnCdWe9isTBnAKGNtVrtQUIc17RcLptow1pxH+B0WP+8e2fAumPCf7b8aEzCOfnMeSHCZzH4zzXP9xkr7C3OF57jr9eN5FDQdfouDrg1EJUr+s43vFofVKk9/JMDAh4D3qec6DUv/h59fPcbtPOyW6b1IXwPB5xKFJ7z/vovL/t+SclJL0XFqKB/vvmnepM+9KSXEnCd8LgEhSiKGpL+kaQXu4e/O4qi50jKJd2z9rNHBC8u+HYFetp9qOBwODTinue5RqOREX1ICFVpHwRINZjQw0KhsGJnp4KNpZy1UP0ejUaq1WpWxaQlw/eLQ95wTEwmE1UqFbO6N5vNlbBDiBA2ftbC4xB9qt38Yd3r/e7sIUSY3n7cHPlR2B9OEL8H6wn/OEYGg4EuXbqk8XisdrttxLJWq60EMZJVgJhAkONkMlkJOcQ14acNQKyp0kMgi8WiBUziEPFWeIQCP0aSqniWZdrf39dwOJQkGw3J/YE4w7HYO0/KyT7wxB8S68cQco/6iQTci37soQ9h9PkGfsQkogX3kgf32/p6/M8hzr7lgP32lXsECR9i6T8XCE2+3YbryXXxwYbeFeTHMfqWC9Y7m81M3PHP9RMwvIOAz4yf8uJFiXVxxn+++Bmv8W4E7iXOe921cZrxRH0XB9y8eOW7f1fbxfiklxFwk2OnGOuPvvkH9A/3/9VNP3s+fA8HnGbkpYLep3zyYgJ4XrWsj39TX7/xAelJLyXgOuBx/cac5/lI0tbaY5/3eI7pq56SVvrNPenil//xeGwj+qrVqtI0Vb1etzYJSMZ4PLa+9m63qyzLrDIJmaa6vr+/r+l0qgsXLmhra0sbGxt64IEH7HgEIVLhhCz7sD+qq/wZDocmalBdZ4wkGQEEB2L/h+iPRqOVQD9EEQghBJF9Q0RgHb5VZDQarYTuSatVXL/vTKWgjYHr4MUWSJefuMDxcA0QcEkmgx+T6EP4cG4Mh0MjhBBSLy4xttEHKvKnXC5bqCRhldjvCUrk/CH9VNe9rd6TX9biRxFynn6SxLptHpK79vmwv/vQwWq1ujK6MHLBmQg/ODTWBaV1eIFiPSfCTxDxjgvEEC9cIIwhMvkA1HXRwb/HOnxwI6/za0SgwG2wfgzvJvBuBH+vPhT8ulmfz2fATcG/feaCz2A47XgivosDbl4UGg21CsGZEPDkoFGo6LXf86N6QedLVf+9N+tgdHNmK4Tv4YCAR4ev3Xy33vzav6f7nj886aUEPE6cqhLcepaBrwzjPPC/4EOoqGbSGkAw4bWeh70dEcCHGyJSQDJ8BR9CRxUX8QELdalU0nA4VJZlNtYQsst7UCmm6l6r1dRut1emReCASNNUBwcHFvaHIOKdBJJsn3gvvz/siw9g9HZw3Afr/fWeyJNpwPtPp1OVy2Vro/DCCe4HSCFjMaXj3nvGDnpSTsW50+lY2GN0NFUBoWg4HJoLQZLlKEAYyY3wFnv2FKGH51Gx9q/neFwfHqcS7ivcwOcGcH/5cYQ+WJTXIUxw7vybUYo+gHG9NcJnH+B68Y4dzosKPA4Mnx/C/e3dCD7nYD3c0Lem+PuKn3P9veCCW4H2FD6DtBrgRPCfNd/KQGsNn1scBL7dBDHAf0+stzx4F8Z6ICT5CbyG//q9ZMJIQMDNhNJtF/STr/0llaPgTgh4cvGanzicI/mJn/BZKuwPpTzX4r77T3hVAQG3AKJIkzP1k17FNdEsT1Tc3tJyd++klxLwOHCqBAXgw9Aga91u1yqGjFxkNCKEHmLqq9aQNIjidDo1p4AfM+krntJx1ZV1ELDoq608x4+eg9xA+ulzXywWNgEAMaHZbGpnZ0edTkdXr17VeDy2CQlJkijPczWbTfV6PWtXkI7zDMgoKBaLajQaRpD9ubM/+/v76vV6RrK8HZ6MCh7zQoAn5+yFn+BAwOBkMtFgMFCz2VwJwPMVf0gwogh7RLuKpJVWFM4T9wL3hc+e8OMIOXeEGIIOuVb1ev2aYXuekPqwP/5dqVRW3AJcU+5NSLmfaMC96wGpRpjATUK2hHfeeLLsSTPr98f0++mr6j7w0Gc6sPbZbLYyLhHRyd9H3nVwLbGBz5yfhlGtVu0+oPWI608LShzHJpqMx2NbB58jH+rpBQzO2QdG8j4+k4PrQO4Dr/FtFXx+/ZQM9s+3TAUE3Ez4pj94tXZCq0PACeLXfv0XJEkXF0N94Wd8mQqjmZZvefsJryog4OZF6fbb9BtHgt5pww+cf70+7X98vCZf9wEq3ndVi0uXT3pJAY8Bp0ZQgHzRz35wcGBkkx54RhPSIkCFsdFoGHn1qe6+V79QKGg8Hqvb7VqPv69GS7J2AirEPsgNEcATJA9EAAift7v7EZHeDcG4QyrNPgwQq723wrNuwgN9RbtarVr1nvOHaOFsGAwGklYrzLgjJNm5sUb2DbI8mUyUJIk5B9g/RjqyT5wTIyezLLOJEL43nSowz19P9WefmOTgRSPCG9kP/u7bPTgXquXVanWFlPsgQtZAJgX74YUljsUeevhpDhxvvSXFXzMvSvBe7BlrQsBgDddqX0Do4D7xggbPXV+vd0bwb57rhRbcNXwWeU8cAH5v/H3D9fGtBV64WG+XQLzxAZS+jYL/+ufNZjM7LnklwLfScF+sB2t6cRKBgc+n/4zcYFMeAgICAm4YnC8l+vVXvVI/O9jST3/Rpyj6o7846SUFBAScAP7nM39DepX0Pr/zhXrWt1W0eM+9J72kgEeJUyMoAAgfQgDESzruh/ZBd+skAes2ZNj3XXe7XSPVTISAWCBkLBYLcwmUSiXrv8fiL8nyDtZHG6Zpqmq1aq0BkD3s2hA0hBGs3djdOX/peOwdNvFqtWoOCV8BZ4wlLQeILNjOER/Yw9lsZg4NSdbK4AmpDw/05K9SqShN0weN56QlgxwKzjXLMvV6PRul6AUhyKbPRvDXHGLNuuI4VqlUUpIkdh8wChOSyd+bzaZV4Nkr1kSQJyQZW/u6m4D95Rr4Pn9cGezreqsJ9yZVcZwx64IQZJW99q0T61VyXyn3LhmAmOaFNAQcjukDJDl/Pl/sPfebF9xwCvA+6xkNCE4+VBQnDO/rWxn8HpFJ4vMQWLef4IB4wBp5b8ai+qktfC4Qq7jvfaYJ6+Rc/YQJLy4FBNxMGPzz5+tM4Y8lNU56KQEBhs9t7umBH/sD/dpXv0Dl33rDSS8nIODmQqGoez/zzpNexSPCu/7hT+pp/+6LtfXHt2vnl98e2iBuIJxKQeGhgtB8ijzEABJLDzzEBsJFpTvPc3U6nRW3AVV1ScqyzDIakiRRkiQWprhYLFSr1VStVo3oHhwcaDwe2zhEiDKVe+nYbeGrqfyddgF+7gMAvTV+3dEgaSWckLGJ5DfQAoGlHMJVr9fV7/c1Go00HA7VbDaV57mdHw4A9hmyzzpwgrTbbZv2QF6Er+760MVut2t77FsTfCgkoZMEKEJe+TvHq1ar2tzcVJqmRjZbrZYajYaJNggVcRwb6aTCLh1b5f1z/f20bnnnNdjyfTuBz5nwoZZY7slswAFD0GSSJCYocG4Q3/VwTZ/1sA7f8w8hxp1RLpftPNfHRPI66dhhAOn3OQnroYWIaf76sWd+33gf72LgWJ6oc25+QgRrlmSCoM82WQ+55Fz9/eQnbHCNEXX8PYc7gWvsBS2f8REQcDNg8FnP1/77FvRjX/Ajer9KEBMCTh++YfNd2v+eWH/8rz9M1V993UkvJyDgpkGhVtVffd2PnPQyHjHu/vifkD5eetqHvEi1S+8rSbrz22+ZsbM3LE6doAB8JdH/ck912E86wNqMLZ/qse93n8/nGg6H5gzw1UuqnpBG7PEQNQICJWkwGFgvNoIClfpG4/AXNd/X7cP8II3+/AgOhNSwrnK5bP+mH511+uophG09sJDnIwIkSWKhh3mer+RI1Ot1NRqNlYkGHI+1lctlbW5u6syZM8rzXIPBwPaC1xcKBQ0GA41GI3sOzgEEFK4n7zWdTtXr9TQajVZs695RgWhUr9ctb4F8iWazqX6/L+mw7SRNU1UqFVs3zgCq6NwzCED+Xlkn7+uiAn/3LS8IJevXlYkVPpjTi2Dc24g+vjXACwBU3fmvBwIbrRHsK+vweRp+egNr8OII18ePTkRQ8sdBBODniAMcB9CWsC4geeeQXw/77cdSsk84HXhPXAXrrSB8Lvw6uHY+y8OvxQs3/lhevAwIuJHR+9zn6/O+7Vf1Fe1gIQ043fiOs3+lr/v3Jb1BHxpEhYCA64S/+cFnS7rxCPndL3yF/f1pF75UhXFRz/jqm3v07I2MUyUoeMu2r6R6EoDFer2Xm6o41WqIEGQbJ8D29rbZ8amYY7HHHu4JECSnXC4ryzINBgPV63U1m00bR0nYIZZ4b8kmad9nMyRJYg6BbrerXq9noZPtdtv+SMe5CZKs2upD9qjoDgYD66VH7OBcqNQmSaJWq7UyKrBUKlkbA1Xi5XKpXq9nggHn0W631Ww2LbAR0thsNlcEF64PuRe8p58mwF6wN5PJxCz2vmrtyTz7QLWbDAoIJmGR7I8XLRCbpONQySiKTHBYJ5Q+zNC7Ztat8J7Y+jGa3IO8n3cKYOvnNf4cqPpzb/vAR37G4z78k2OyXu5rH6DIur344bMCfIsRnzMcNz6s0gtD/jPLMb0YRJaBf1//uea9/Xkh4nGdcRLwcx5HaHgoUYjHcal4gZBjIeCsf+dwXf13QUDAjYjLf/8giAkBNwy+7/wb9a3/caHXTj80tD8EBFwH3P2PT2cY46PB3Z/y4xoeTPSBza/UXV/8+pNeTsA1cKoEBUnmDJC0UjWFeJBPABmgwlupVKzqTn4BlVfs2OVyWe12W91ud6Vvfb0S68lFo9EwMkUQpLd/Q8p80KMn8kmSqFgsajAYWJp9mqZqNps6ODhQp9PR3t6ehsOh6vW6kiTR2bNn1W63TSTBKo6VHav3wcHxaERCD+M4VrVaNfeBD+1LkkRbW1vmQCiXy6rX69rc3DS7O8Tbj8BkfwlkJMSR6+P/8HNIOq0XZC7QvsBYTdwctJAcHByoVqtpa2tLeZ6r3++vtCPQNx/HsQU0rucDUKVeLpcajUbqdrsr4wm9a8CHewJfuQZ+KoN3MSCQ8P6cK7Z5xJE8z8167+3+XtxBvPKilL9HrxW46AMQCaJEAOB1Pidh3WHhj40bxAttEHpf/fehmt514dsbEAY8IfeOBN+Gcq39ReDg/vCBk35cJyLiuii0fq6+vcO/ByLDutji7++AgBsVe1/84frBj/npk15GQMCjwnec/Ss996kfqa2TXkhAQMCpQVKo6XUf94P6sJ/5Sj3j8/78pJcTsIZTJSgQ2gfZk44t0kwL8P34i8XCEv59ddITBIhDrVbTmTNnlKap+v3+yog5n7ngq/8IGQQ4+jYKyArtEYQF0v6AjZ0gxdFoZFMKIMOQIdaKAEE2ALkNrK9Wq9kEDCZOjMdjEw4gg5KshcOvF8EChwHHJJfAj/XzVXLaSiCaVHwhmpAupjFUKhVrYUCogEz7FgjW6SvJXAOq0hBVsgfq9bparZY2NjZs2gdrwHEwHo9NZKE1Q1qtnnOu63kb3t5PYKN3DniXAfdZnucWAkh+BeMXGVvI8TlniDL/XndIcC/7aR383Ls9OAYkn/OB+K9nc/j39efOz7nGPIdJK4hEvp2H98UB49syWBviAvvlXSY+k2I9zwGBBAENsDaf8eAzEvgZQo8PzgTecbI+xpN1co+GLIWAGxnZ7ZE+NR6d9DICAh41vv2bf1IvfefnqPiaN570UgICAk4Jtoux/uQFL9Pz/+u/1DM/P3w3nCacKkFBWiV9kAuIHRXser2+0nOO9RnC6lPoF4uF5vO5Vf4REaTjPIZrBd/5ajHHlo5JM5VZwgzjOLZQROz3VDghXLgp6BOn+t9ut414NhoNxXGser1uRIh1+F7y9aowffyIFGRJQARLpZKazaa1buBQIBcBJwMVdYQQ3gtRYjgcqtPpqNfr2Z7QVhDHsVqtlvI8N0EAdwYtJwgh7MFwODTy7Svf8/lc5XJZrVbLnBHtdlsbGxva3t5Wu922a0PoZBRF6vf7JirgsmAKB+fEPeEFDM6D+wD3BqKFpAfdI7hSvDNCkrk5EA4gyIQxsh7vOvAtD769gHvH39d+OgaOBFwX3Kt+IoXf1/UMA+6ja7Vo8BoA8fb75PcFsYzWFdolvAsAQZB7ywsarJNz5nHOD5fEujjgw0BpheB+9SNQecy3taw7IBgpyh76TImAgBsJ3c/7cL36i75bUnLSSwkIeNT4x42JvicuKnjEAgICPHaKsd7w0S/Th/zoV+uuL/uzk15OwBFOVYMwtmvIMOQZMrZYLNTv99Xr9VbaB5IkWSFJnuxA2KhqQ56wntdqNTWbzRX7vHRsNaeK6vu/IUmIAK1WS2mamoAQx7Ha7bblCkAsERQODg6MZEdRZJkJOBc8OYXw8DjuANaAO4Kxin5KAQ4HiJO38fscAj+SkvUnSbLidoBoDYdDdbtdI+sQ0V6vZ4IEZJzxkrRleMv+YDDQpUuX1Ol0LD8BIcPv7/b2ti5cuKDz589rZ2dH29vb2tjYUBzHdg5pmtq17ff7unLligaDgYbDoVXNuVaQW4IMIZvstXcrsA4EHS/iSMfTAoB3ubCnfhoEYhLHgez7NgyeB+n20yh8ToF3O/jQT0+MIc8+h4KMDT/JwL8PlXke43O1LiKshyryfAi9PwffLrHuxEBU4Xg+s4TXIyquiysIQ95J4wMj+ewgbPjsCO5t/znGkeTP0U+HCAi4kbCsSU8rBzEh4MbFf//RH1Dh77zfSS8jICDglGGj2NCbP/llevd3ffhJLyXgCKfKoZDn+Uo1GKs4rgJvScZy32q1bEwgxAsyQiV4Y2NDOzs7qlQq2t3d1Wg0WiFYuAzWreJkK3gSCTnyPfMQUn9MQv8gtd4CfnBwoP39fRuF2G63rQ0B67i3ctMzTtCiT7mnlxyCxs+91Z41+dYK7+zwoYdkRvhwTMgY+RWXLl3S1atXrapMdgLvzeOlUkmj0ciq0ggqTNyYTqcmCNAmMZlM7JrgTMC1gXBAgCT3hA/JJIsBwokzIY7jlaq+78f3lXMfdOjbCRAD4ji2a40oIF3bWUOVezKZWNXftwCwNs59Xczyx/VVfR7HjeLXiwMBYi7JMkUg6jzmSTz3NCITDhLveMDh4CdG+BBFL0oVCoWVLBPuL8QuztET9odyCSFSIJb4NiFej+BASw6BkJwz58D1RGRC+EFk9O8d8hMCblRMPuV5+tN/98M6ZTWDgIBHhe1iLEVh2k5AQMCD0ShU9Df/4of1wVe+Uue/78abYnGz4VQJCtJqEjwEBGLje58hg0mSaHNzU8vlUru7uw86Hvbzzc1NyzKgsk7+AtZ2KteQP1oDIJGSVqqpnkQyYjHLMstAKBaL1qYBvGPAOw08ySdkjlYA1jkej62vHKGBfnGq0F5UKZfLStPU9pN1047hJxdIMoeB73PHaVCpVJRlmYbDocbjsQaDgVXF2cPpdKr9/X1zXvgqtK86I5hIUrPZ1MbGhorFopFjBAJIor/u/r8QQP6eZZllQEBGyV4ol8saDAYm7njhyLcKUNGm5WR9bCKEHCEAAu6dDF64oIoO2b1WJZ79XiffrG097JD95HU4A3zLAj9nwgVhloxX5T1Ylxd8OC7XCmHAZ3T4XATWvS6C+HPifsQ14NsP/OfDP46Q49uEomv8cono4EUmxBVaYRAg/d7HcWyjXvne4Rr6KRsBATcUCkXNmgUVoyAmBAQEBATcvChGBeVBczwVOFWCgrfjr4sJtA1gWc/zXI1GQ61WywQBTzxBsVg0+/50OjWRgOcROifJqtRUOX1mg0/Kn06nko5JJSTfuxFY6/p0Av8ab8eGrC2XS+3v71ul3/fyU0knfBCClGWZBVb6cYuSVqzchB9GUWQOCgjleDxWt9u1lgOIFCGIxWJRvV5Pw+HQ2jdYX7PZNAfEZDKxyrsP1mRfEBOoENPm4SdjQOiiKFKWZUZ2vSPC52uQc0BOA60giBSIAKyPe8q3O4zHY7sG7AH3Hc4L/3zemxBRHuPeYRwle8A++x59L2h4Yg7p9rZ8387CY9zf7BciF+dwcHBg4lO9Xjfhg/OBrPOekH7pmEj7dgfuCz6X/vNGawJgPd7JgMjhAx/X38sLQggJ604B7wRBBOFYnAtiDXkrhDxyHv51Xsjhs8P1QqQJCLghUCgq+4zn6k++90dPeiUBAQEBAacA/2OY6p8k/ZNexhOG6VauQrOpg6MA9oCTwcOWMKIo+i9RFF2JouhN7rHNKIp+M4qidxz9d8P97FuiKHpnFEVvi6Lo4x/tgiDXkC+q4VjCfRUUQup7q9ernbVaTUmSaDabaX9/35LqPXGDCPrqZL/fV7/fN4LqrfMQM0lWocd+Ph6PlWWZtQcsFgvVajXLSKD6TdUfsoMg0u12de+996rX61krgX8/qua812AwsJGRVOSZIEE7QKPRsMpzqVRSo9FQkiRK01RpmhrxhpAjpFDFTdNUURSp2+0qyzJbLxMiyGFgioXfD0QCRjjSbsLr1238kE6q+1SKEZk47npbx2Aw0O7urvr9vpFlxAbfvoIog3jkQwq9oMF6cT1IsvdGEFhvReA9/IQBL6R4QQXBRNKD7PaSVsQnLP/SMWH2a53P5zbqc/04xeLh6NM0TVdaYMrlst3LtCogGPi1Mw2D64NjYT1rAlcADgPvBOBasucIROsuD8Qvn5ewLiZ4x4AXgHhvP5EEwYC18T6cd6PRMNEGwQ/3jv+eOS14sr+LA24wRJEG/+xD9Yc/9GMnvZKAgJsW4Xs44EbDf37OB5z0Ep5QvP0LXq79Fz77pJdxy+OReCJ/StInrD32zZJ+O8/zZ0r67aN/K4qi95f0WZKeffSaH4mi6FE1IlO1J4AQuzXkn6on1WGq75AYRAWECQg8vfUQWlwK63ZyKsiIAtLxSD4s1PSYFwoFpWlqFXwIF8ehT92HNELgIEoQZVwL3W5Xe3t7yrLMMg0gjRAySRqNRtrf37dMiHK5rHa7rWazuRK4x5ohk6yvVqtpY2NDGxsb5oyAALInCBEQbK6HH5XIOREOiVuB6j7X00+f8O0GEFce8wSu0WiY+IEgk+e5iTWsczKZqNPpqN/vW+V/PS9hPTzRW/Y5JzCfz5Vlmfr9vglZXF/aWrgHJa2Mj+T+IVjUk2mEBkg/5+pDO3FBeJHMv85X2TkXfw7+Z9xXPuwTou8DOXlPhBwvWOHoYa+9GMf7c5/5QETEJcQK9pfrUKlU7OcIDIgMPrzSt87wej7ffG79+/r8CC/0eIcQz+HzOplMVlxFPreBz/4pwU/pSfwuDrixUKjX9ccvDc6EgIAnGD+l8D0ccAMhXy71Ge/8Rye9jICbHA8rKOR5/vuSOmsPv1DSTx/9/aclfZp7/BfyPJ/meX63pHdKet4jWQjExFeiqST7CQWQFSqNEFVPWHxLA+MGsTZDvHxqPQQT8ol9frlcGumCBDKiEAJEpd/bs7GwU+mnyu9HSUI6Ja1UdslOQMzAfj8aHc4Sh+AzGpGcBaZV1Ot1q5T7PUCwGI/H5magwg8ho/cecttsNm2tWPclWcuCD8Jj2oUPTGSvfRaAzwSQtDKu0OdZkKPAFA9GXk6nU41GI7vGk8lE3W5XV69e1WAwMIs+gkCWZRb26G34EOfRaKR+v2/7Mh6PzZ2CY0M6FpXYCx9A6YULrqGv4kvH2QCIDOuCge/7RwyjBcC3aXC/evcDz/FZD35kJKSdNVOth1TzPOl4zKpvIeF9+dx4Qc47Jvj8cf8gYnjiTrAoxN07knwOhW+v8AKQ30/e0ztC+JxyTlwT/53CY4SD4kLh/kDYWA82PWk8Wd/FAQEBAacBH/OWT1Vh/3TZmMP3cMCNhnw61eSFCz3vz//ZSS8l4CbGYy2/nc3z/KIk5Xl+MYqinaPHb5P0Wve8+44ee0SABFEN9y0OR++1Qoggrr7XHVIB+aC6TWggfe2e7EGMICaQYdwB61Z1SHS1WlWappZdAImqVquSjqc+IIZAVCCBVL991ZXXeqIG0S0UCkqSZGWSAcddzxbwlnQmMECW6/W6nRPvJR2LF+QsQAT5410OXCvpOLwRJwL7z35imYeg8ccTQQQRBKNms6lms2mhihBsRJiDgwMTCzqdjgaDgabTqbkIFouFRqOREUR/j3BP0YKBKOMnE/j7CMLLPtGy4Ymuz9eAoHJdH6olh3/78Y3sKZ8BsjEQknxbAu9HWKHPcvCVdZ637izw//bZJN5NslwuLY/BT0/gM+DXzjX3LQM+WwEnhnew+GyUddeDd43wb7JH1sMv18H18uIBwgL7jCjH55AcBu+K4LFTjCfkuzggICDgpLF86Vkt3vO6k17GI0H4Hg441Vju7+vMi+p6vx/4PL31I3/mpJcTcBPievt5r9VwfM2Y9CiKXiTpRe7fZiGH1EnHAWw8h95xTxJ9ewEVSEhKkiQ2daHb7a70q0MaqE6uJ7v7n2MB973VEEVEDjIFECEQRcbj8Yqdm6o8ffpUcr1N22c7QORwQTBFAVIFCfWEcL1vHPLN3hKu2Gg0jDTWajWr1HsSiUhRq9WMsFNlXw9AhIhCfKmuE4LXbrdtTCQuAEnm9sAej/vBV6ERjMrlsl0PXBCMZ2RPaE2gXcGPhPSBnxyXKQI4DHiebzHg3rIbey3okio8x/XVbsQeX3H3wsv6z9hHBIU8z8294bMk1qdaeMu/dxT4NQMv2PG+CHQ+uJJry5SR9fBGjsHnz08U8a4KzpmWEvbXf8Z9OKV3LkgydwPOBi8S+bUgynG9EOQ4H/aQ64Wowefaf3782m4wPKbv4poaT+SaAgICAh4R3ud3vlDPevNlLR7+qacZ4Xs44NRgcf8Devo3lvWM//iFeudH/+RJLyfgJsNjFRQuR1F0/kiJPS/pytHj90m6wz3vdkkPXOsAeZ6/QtIrJCmKotwT0PVRff6XfUbJ+eR++up93zptAOs5AJBhji1pxTKOSAB55+eICtVq1d4DtwCkHnIOKfVuBwIZPYFbLpcaDodm8aflwCf84yyQZCSffSgUCivtEZAgHziIWEG4Xp4fToW4fPmykiTR9vb2ShgdAY9+MgRiCUSTnnyflB9FkYUC+mvIuRaLRaVpqjNnzqjZbK6Qbz9xg8o/rRMIMj6PgRYQxlwiciBc+PGNiC+0fZD27++da+UpeDdAlmW2J5B1aVXAIXdgPY/Bk9JriQa8BqGM+5D7jf3hvfy948dvegGKe4B9497gtZw778u9xjlA/KnkrzsReA3E2+crsDZ/HFwn7CufDdbkP58EjSLY+T3kXDgu1wtBgNd4p4x3O/nAyugo9NXvJ58t7zjxDqlTiuv6XZxGm2FOZkBAwIlj4zU1Le7525NexiNF+B4OuCGwuPs9et9/LT3zP/1fescLfuqklxNwE+Gxlt9eJekLjv7+BZL+l3v8s6IoqkZR9DRJz5T0Z4/kgBAsb4H21VbIkh8n58mMD8KDwKRpqmazqUajYaIDkxuk1fGUEFJJNt0gjmNFUWTV/YODg5VMA6z1vI5KtG8noJ9/PB6vEE4C3/r9vvb391ccGfwMMj0cDlf62P2eQKo8OYUMQqwRHdivwWCgq1evan9/346dJIm5PiCPHAdRZn06AgSf13U6He3u7qrb7Zoro9lsWhsIAY7st3dX+HF/jUbDxJWDgwMNh0P1+32rMM9mM/V6Pc1mMyPDWZbZ9feCzGQyWWlpkI6dLuQLkGvh7fkA4s6+Qjoh2dw33FuQdOCFLO4XyDd2e9ZNpkOWZSu5IHw+vKMBFwT3xbpQhYCEQwPRAyLOe/v2H58vwOfKO3AIQmVCiXfTIDxwLXHBeAHPt0lwT/p7dzabWaYBGQ5+j7wQ5PeCvacNCND2wj74tgz2ivX66+xzMW4AXPfv4oCAgICTxNNe9SLt/O93nfQyHg3C93DADYPF3e/RXd+ypw947eee9FICbiI8rEMhiqKfl/QCSdtRFN0n6d9K+k5JvxhF0RdL+ltJ/0yS8jx/cxRFvyjpLZIWkr4iz/NH/Fv5ei+5by/w1Uxvt/bExoflFYtFC0NsNps6ODgwcoFFHZJLVRiLOkGFOA6Gw6FGo5FarZbSNF3Ja/A99wgUiBpMT8A9wRhFbOOlUknj8VidTseqtH7SAULFaDQyYuf74wkn9OICBLZardr0CUQUWhogWNJxoF2pVDJXAcIIBN9PM/A5E41GwwhalmUr4XZRFKnVatl5zedzVatVazvx4XsIE0x08GJOr9fTZDJZyXdAIECs2NvbMwLNtfOBhggeEEdEEcZrQiy5JpBcX/2Wjh0G3r3g2wrImeBn3onAf7n2kG5PlBEWfFBhuVxeqbT7z4qfduDbFxDmcNxApNfbNRBoaMPhs+eFF87FZw+QaeG+Ix4kaLB3/j2Bv/f4vEDiaavwWB8duf7v9fYK9se7P7h3WDffAd6dwrER/Lw4cRrwZH4XB9x4eMlf/sVJLyEg4HHjfX7nC/V+3/ZOLffWcw9PB8L3cMDNgMV77tWdL9nRC37m0/SaD/ifJ72cgJsADyso5Hn+2Q/xo495iOf/J0n/6fEsCiLmRzpCdOv1uvWrFwoFCwr0veWQG/qlG42GVX0lrVTvJZmVH+t/kiTWLrG/v69er6fxeKydnR0LNPTH8MQJ0hpFkU1JIJTQJ8lDmBnNt7+/byGPiA5UqweDgZrNpqTj7AYfEsjEC58DgVgiHRNVMhxweVAl98/Dzg7pRrzBNj6bzTQYDFYmPeAiwIUxm80spLHZbJqLYjqdqtvtarlc6uzZs+YcIQCz1WppY2PD9qDb7VobhZ/yQGtDo9EwAYDqMgTRV5uZ8OHHF/qxlX7aBu4Qqvl+vzk2x/EtE37vuYe5RjgKfCsF15f39pkHklZyNXxWiM/O8CTfhxwiYPB6BCAEJ16HcOMzE7ygwP74dgsvdiBqcI4+8NI7XbzrA7GP9/FTIzypv5ZogACCC4XjedHHizw+LwXgfLnWuq7179OUoXAS38UBNwb+w92v0/Oqpz5ANCDgveLvvuEzddeL3qblUbbSaUT4Hg64WbC8fEX1f9LUF//m39NP3PmHJ72cgBscp2bIOr/AQwx8DzePeQIPQd7a2tJ4PLYZ85VKxcjj+nQAKuM4ESAWVImTJLGpEL5CTjsCZGS5XKrRaGhjY0PNZtNs3T5NvlQqaXNz01oFOAakjtyEKIrU7Xatur69vW1kzI/wq9VqlrDPpAjCC1kvIYRUpml3QCigvxzXAZkVg8FAg8FAo9FopeefTAMIahRFmk6nGg6HRighy/TrQzIRCCDovA95EltbWyZcRFG04iZpNBp2TO9O8CMHyXBgWgZ2dwL/JJkLARLqySzE3LcFcP+M3C8ziAmIVT640N+7HNv34CMM+X3BUeNbGiDQkGocDJ7g8rgft8k+VKtVc234FgafM+LJup9awTq4Lz28M4J7mmBIzse/HiBurJNy9kWS7SdiBC4hWlA8fOsB70Omh3ScHbI+IQYhhHuGDI31DAyfPeGv87WEjYCA04hnluaSgqAQcGNini/1uXd/nLZf+C4dHIQCfkDAdUMUKapU9M7/9MEP/Zwv6+v7X/l0fe3mu5+8dQXcdDg1ggLEwxM1n1YPwfK9781m0+zaiA+QOtwJjHWkeg2J5eckwEuyqjqZAVSEeczb4Qk8pJJMxXkwGFh2QJIkRoR9D32j0bAK+8WLF03wgKgiKEDel8ulms2mptOpOQsgcgggURRZzoAfqYk7AuLkw/R8ZZ095LWSjORyTfz1oQ1ivbLNVAMInw/fk6RGo6GzZ88qSRK7DtVqVWfPntW5c+eM9OHOkGS5CdPp1Pad9+52u+r1emZ7Z7wmbhbfN+8r9NK1xzZSNfcTAbg/vcjj3S2+3YV95d5iXbw3RB4hhXsZkQHhwIct+s8H7gZEI8QW1uKnS3DuCDHcrwgoy+XhlBGcE9wnvoXAT1HgmN7p4R0G6xV93CHsuXcheMGE84Hs89njXLyDguf4165nivj2Er8eL2bwd9btW6cQUryAExAQEBBwfXHfYqjfGj1dP/+sC5L2Tno5AQE3FaJqVe/8jx+ivJhfe97IEd7++ane/psfp4//9Jfq2ZX6k7fAgJsKp0ZQWLdBS8dZCpAPiDCVZ/IUcCxA0BAWIFBU4j0R5LWQxziOTaCgUg2BSdPUiDS2fsQHevURAPgZ/f04H1jD+rogUL5iC+n0ow9Ho5EajYZNbGA0Y5IkKy0diCa4KwhVXA8b9NVY3yfve82p9pJ/AIElwJFz4mcQWP7OaMDlcql6va48z62tg/2qVqva2dnRU57yFO3s7Bhh92shFJP3960DtFpwrXgNpBphhSo0ayPEczAYrIRt+kBNPzkBQJ69q6FcLpv7gnvQ5xb4qQi03SBUcXzeF3JL0Kgn9LQ/IEbweeFcuP8QdqjOQ6xx5fB+PsTTj1L0AYbAtx/xeeP9EDJ8LoZvQ/DuAS+GeLKPsOJbEvz6/Z77lgwvYvh2B+9e8C0OiERM1ODcPBC61p0XAQEBAQGPD380OdAkL2uel/TSZzznpJcTEHDT4t3/9kOUlx5BFtTRr7if+stfo1fdgKLCW2cjlSanK/PqVsSpERTWe7Op6mKFJgyuVqutEA8qsFi+fbhiHMdqNBorgYi0PFDpJkiPdod123QURSYMkAWwWCyMSJJWD6FKksSs+zzHV729C4BWjXq9vkLApENSMxgMlGWZisWiTZnwwkO9Xle73ValUrHWDM6f6jMk0vfhQ6o8MZOOQwkh+56M8hyyDKRjazskD1cALRmerMZxrFarZcSaQMlWq6WtrS1tbm5apgLOhOl0qizLTEDY2NhYId48l9YPMhB4LfeMd11Uq1VJstYI9pf3hij7vabtBnLJPUTLAcTUE33uYYSK9dYTWnKKxaJNNeBe844MX6n34Y+QYmk1hBHBjfUgQPjQQl7riTjtNNJqJd+3A/jAS0/0fZsSe+QFBo6Fu+Babgbv8PD5FgRr+pYM3h9BB7FhvcUC14G/h/2EkmtlJPj2Ks4jICAgIODR4e75UL/Yf7DN+vdf+Gwt3n3Pk7+ggIBbCKXbLrxXV8JD4VN/+Wv0ky/8Ub1x/FR99cY9131dTwQ+82Vfrwv//Y9Pehm3PE6NoAAgBvzdhwxC/H3FczQa2Xg6CBjPT9NUlUrFQvuw8CM4kKDvK80QEN97TRbBaDQygkmQIaGJiAyIGBzLV585Hj3aiBrkPnhnBjZvhBCElTRN7X0h8X7vvAUfgouQAPFlLz28+EB4Io4CSC5Bkzg7fLW9UCiYwEH7BftOGGQcx5KOwx+TJNGZM2dsGoWvINNC0u12zYkhaUXsoMXBT6Pw1XcIMteK5/mpFAg5ZDHwWknmcEBo8G0TTAPx4gF7xWOQV8SE2WymRqNh9y/tK4gEOD38Y34yhT8u18qHJUrHzhOwHlLI9WAN3I/c836Kig+V9NkDBD/6lgLfWoJbhM/Utda5/lnn3wAxhPfyrTxcB5wgvBbRA3eRdCwIsGfeBXWtNfHc9e+fgICAgICHx+4y05fd80K98Y3P0DO/6rXXeMY9T/aSAgJuOdz9RU/VsvbgKVuPBF/0/32Z7vqPb9Vb/895/djtf3KdV3Z98QuDDSX3P7bzDLi+ODWCgicr0jGZgUD5BH7pmMD0+33t7e2p3+9rNBpZ9bpWqymO45VgPKqd0jFpgBT5wMXJZLKS3QAZZy3NZtPWgeWeHnVIPiTFEzkEg8lkYoGMviILQYLgemEDm3iapsrzXMPh0AQEnkOFttFomJDCubMGJkKsjyNEZJnNZrp69ar29/eVpqnSNLXKNOfvQ/18pbjRaFhrwzrx8z3qkL40TbW9vW0OEPrWETRo41ifsICggDgASWT//FQFL5ywj6PRSP1+30QaXgPp9+0f/vpzb0rHYY08jhDir/26M4Sfc3/TjuGFK+4P7xDBecB+0i7DcThvjuHbIR4qD4H94Jj+ce+y8JNRfIYE+w98FgfnjpMIgcSHULKv/lr69iEvqPFz/37e+cD1821TXkjj+V6AWG+LkFYnPQQhISAgIOCR4wP/9HOU55GyvYbu+tLX6ZnaPeklBQQEPBZE0uL9n6r7PmNXH/BDn6vnnLtfr3zqa056VQ/CT/V39MPf9U+0+fOnW/S4VXBqBAXILL/ke8LEHyqp1WrVcgd6vZ729vbU6/VWrNG0MEgyCzsEGHcCFnIf6gah8cSDLAOs5lTp8zy36QiQaG+Vp/9/OByupO9TMaYCDhn3oySpvEPkaKfwgXIQPN5Lkk19QICgkuxDKX32A8QNgtbpdNTtdm1SAyM0IWDssQ+sKxQORxASQsljnCdEs1gsmpjBFAxGa0J6h8Ohrly5ov39fbs2ED1IKKIR5+ZDO31+AfcP15n19Pt9C+L0pBvhgGuCeAG5pMLNzyH+iEjcl1wbHBreNUMGAc/xYYPcP7Q7+BYFnuuvM+0l0jEB5lzWBREvTM1mM3P2rBNnH0KISOVbGnwLBefrBTN/vPVsA38NuCe5logCo9HIriHHXb+u3uWzPurRuwp4n3XXxnoug3899wx7ud4SERAQEBBwjKf/5hcpz0q66yteJ+Whjzkg4EZHXpDu+dSGnvbN9+u2z7hfux/6gfrU7/0EveqZv37SS5MkvWZc0Bf+xpdo+/VFbf5kEBNOC06FoEA/ORb99TA3HoMQ1et1a2fY29vTaDTSaDRaERQajYZVR70VG1ILSaaKzWjB8Xhs4XqQteFwaL36kszKvVgs1Ov1LN8Aaze98ZPJRL1eT4PBwMIaCZP0FWfGJsZxrOVyqeFwqH6/L0lmi2dMImIDZBqCzXGSJNHGxoZ6vd6K4AA5x84OmfNVaKZUDIdDbWxsqN1uK01T6/Mfj8cW9OgT8REqmCDgxyRKsrWy94gUrVbLQjURCK5cuaK7775bu7uH1Q2EGy/S4AbgvcjP8DkcVKTJa/CjPf314np6N4Ef44j7II5jc4548cHfP94hAHhPHqfqzhhQhBZ/j/P32Wxmrgbem3vYixx+ugFihf+8+M8SRJ1Rmz500gs7/BshzAsTtI74gEbuQX7uRQwvJiCgeGcNAhefX8QVxCIEP1wyvB54F4b/4wMm/XO9wAZ4PXsQEBAQEHBtfMBrP1cHf96SJD3rB9+k5dHvKwEBATcf8tf9tSbf/Hf0/h/75frYF75OP3ThdSeyjivLTC94xTeofiXXXT8WhITThlMhKCAA+L53SWZz9mSRajj9+BBghACIos8JoN0BuziBiQT38TxI1mQyURzHRqRxGJB50G63lSSJhsOh/QwCxPFms5nG47H6/b4Gg4EKhYJuu+02bWxsSJL18UP0aQMYj8fqdDoajUaK49jEiXa7bZMTINCQZ9ZcLpe1sbGhUqlkj0GsIIGz2cxGUULwCCaE4EqHbQmES0La+/2++v2+4jg2YjYYDFamPHAMiC2EuNFoqN1um9DTarXUbDbNiUHuwt13362//du/VZZlK2Mbqd6zNsL4aOdAHPAtHBBeLzhBNuv1urW1eHcK7TJY5iWZewSnCu/rCSjXHpKMm8CTU98+4B0WiCXc857A+35+HvMBn9Jx24MXBHxAJ44K3BPrrQa8zo+k5L7j+aPRaOUxHAW0EfnzZa1cF99a4ydoVKvVlfBDH64oya4hQg0CmZ8CgZjhnUe4Ury44B0biAkcn/tmPRTVt6EEBAQE3Mr4Vw98qP745c+VJN35h1e1fNthCNryvb0oICDgpkD0J3+pO/5Eessffoie+/Tn6uu/8Rf0Wc39J+39p/lcn/KtX687fiaEL55WnApBwSffUymGJPGLP+MKNzY2tLm5qWq1agTXtxTgLMAJQEWa7ARyATxJgmjRvkC4YqlUUpZlmk6nKpVKajQaajabStPUwgsJTeQYECCEDoL+2u22tre3tbm5qfF4rL29PSO45XLZXp9lmXq9nrU44Eyo1+srVWJeU6lUNBqNJEntdltbW1s2wcBPFvB2e9ZIFRxBhH1mj+I4NpGD0Y2sl8kTVPAJjsSuD5lMkkRbW1va2tqyKQ+NRsOs8rQYZFmme++9V/fee696vZ45OhivSDaBr9CPx2Nzf0A4CehEJPB5CUxSwOGCi4RcBcZY1mo1OwdGfCIAcD1xNSBE0PZApR1xAlfAevindNymAOnGqUC7BD/jOvkQREkrLTueeK/nMniHhHdpTCaTlfOQZG09PiMDou8JNqLF+nQSvzafQeKzGshXYK18dn0WhM9K8Xvo3S7sC84hBAre24s0PkuFx33rBH/86/w6AgICAm4lDA8m+uQX/0v7d+3yWFuvP6wKBhEhIODWRPF336it35V+4u2fph9NS3rly1+q20vJE/qef+9fvVil0YHarw6uhNOMU/XbMknsEAQqv9JhFbbVaun8+fNqNBoaDofa29vT/v6+BoOBVR2pMEPE5/O59vf3TSigQg6xqNfrSpLEKvck8dfrdc1mM/V6PUmycMJ6vW5EiPGGtDLgeKCdgIpsoVBQmqY24pFxkH6MYLVaNRfAbDZbScj3NnqcFYgeBAPWajWdO3dOaZpaBgJrgDT6iQXkO3hXCGJBHMdqt9srbSAIB61WS9VqVYvFQsPh0MQbsiZ833ocx0rTVGfOnLG1SbLnkz0RRZEuXbqk97znPep2uystHYzV9DZ27g3vzMjzXPv7+9aCwD4Nh8OViQmVSsVEIQQNqvWsF/HAT1Sgwu6JPS4J3BSNRsPEAKz866025GAwahRxwedljEajFZGN+4n7AeKMC0DSyr7w/oSEIhisOyN87sJ69gSPr//BgYDg4R0FvB5B0LsC/HH92FI+6wiInBvvw+PSsYsB0cC3enhHkndzIOp4UcMHPHq3BvAtPQEBAQG3Cj7yq16s9B2Dw3/kuap/eWxtDo1gAQEBoPAHf66qpC/95C9RXinp11/1yut6/L/zXV+uC7/XlSTFf/lnIZ/lBsCpERR8W4MPTZOOA+iwyS+XS+3t7enKlSu6ePGi+v3+Sr6BJ4yMHsyyzKYflMtlq4zT/z4ajSwngcolVdxms2njEKl0ruccIFLQguD712u1mra3t619YDqdajAYGImFENNyQSAirgJJK20co9HI3AvD4VDT6VStVktnzpxRqVRSt9u1Kr+vkv//7b17jGRpetb5fJEZ90tGRGZW1XT3TE+73cCOLRhmwTIGGUsgsAejWUv8MRYgi2XXNjexK3a1tmyM18J/sAtGArRejbE1gJANyGuvtfIuHqFdDZLN2GM8HmZsD0z3zNBdXZXXuF8yMiLP/pH5e/ONqKqurp7qzMju95FKXRkZceI73/nO6Xqe73mfl51w6v8h9LQy9G4G6dyxgXsA8YXx4FbwGQveQl6tVm3earWaqtWq2u227aofHh6aC2E6nerw8FDdbtecAScnJybQ0FaT74Ag40xAxOl0OqpUKmq329YpYjgcWmcLSjv8rjO1/7Qkrdfr6vf7RvbpWkF9P0IT5BlxZlWsYU2zBhCAaGE5mUxMNPB1/VybfD6vSqVihBkBg/9KMlLv7xnfahRBie9nrphDBBEfpIhLRboMRIWEr+Y8cFzfVYP7h84gjJ9z9GTeZ5vgROH33inBdVoVJlafHV5482KEz6Twn2fcqy1buQcQLgKBQOCdiBf+n/9GH/ibr9vPtXuf1tlZPPMCgcCbw9lnf0eS9Kf+4IclSYM/8Jw++eMf+6qO+XX/8C/rvf/7r+vs4t+4gZuBtRAUID+eiEmXreeKxaK5BrCn371717oBeHdCrVZTs9k0IkgXiFwuZw4BX4sNaYecQogJYtzY2LASC+zuuAvIImDMnsx46zmlEsViUcPhUIeHhxoMBhYOmcvl1Ol01Ol0jGRD6mezmarVqlqtlgkSksxqz2727u6uarWaer2eEWI6EUDGIFaj0chKOXzNOTu67IpzTqPRyLIQyFPAAl8qlTQYDKzuvtFoGIHnmtEtgs+TK4EQcHBwoP39fcurQOjw4XwHBwdLIYU+ADOfz6vf75s7pVAoqNPpaDQaqVQqaXt7eynR39fe4yChNEOSOS1YQ+xg++/jOvuyF4izdwVIspINL45QmuMdA7glzs7ObL1wLX2ehA/0PDk5scwOSk4o5QGlUslEIy8ykKnBvOAo8CA3xIsRjEHSUtgighRiFy4KHyK5GubIXDNfzDNiiz9XP06CTfkZoY/3+3IFXDbcq8zDqhDinRpStI4M3BwsYv848AgssvPn5t3FWN/zu/740u9+9/wz8ZwLBN6BeO+Pfkpf+tvfoEX5yf/fkBbS1/zgrz3R/1Xmd8+FyfLr9/Rt//obdfcvf0i/8Tf+kf1+I72x63ORnemlT/y3+t3f+3k9N/uUshA2bxzWQlDwO8DSZes6hIRKpaJGo6FisajJZKL9/X3rSMCutSQraSiXy0s739PpVLdu3bIwRoiErx+HOEH2CJvzLSp9VgDWdp9FsBqSRyBeu922IEPECOk886DZbKrX6xnBh0hB9nBRIDIcHx+r0zkPQqHrQ6PR0K1bt3R6eqr79++r3+8vET3OEQJHKcBsNtP29rbt3lPywE45JOv09NQIKgIF+QiLxcJKFLa3t03Q8QGB7OZDDH2ApiQdHBxYHgZ5EOw4b2xsaDAYGLGu1+uqVCr2e98xA0Go2+3q8PBQp6enFgSJi8XPyXg81mKxUK1WU6PRUD6ftxwNb5X3HRYQgCSZwHRycmLOAx9K6AmyLwHw2QbT6dRKSsgswEkDYfYtOr0Ygujid9o5NzpD+NIJ30mBucJxIMncD5QMITL50g/p0i3AefiuDpR+IAZQ3oFwwfn60ETyC1izpVLJMky8Wwn3wmonBubct6T0wgX3K2P27hKeOVwj78JAEAkE1h1/9n1/RP/67m9c9zACa4be2UTf+cFv1+Lw6OKV6bWOJxAIXBHOFsrNpUUmKT323UtI86TsrQqNWaaz6VTv+bFf1od/7EP28u4vN/UP3/uLD/3IX/rP367OHz7WS/p1xb+4bi4eKyiklH5K0rdL2s+y7OsvXvtfJf1pSTNJL0v6C1mWdVNK75f025K+cPHxf5dl2fc+7juoBWcX0u9Elkol3bp1S3fu3FE+n1en01kK2fP2awgMhAziWigUtL29bZZ9SD3hihAjOk1AEiGKlUrFSI/flZa0tLPq5sxqx9kdJjvh7t27Ojw8XGqfeHR0ZN0DCEIkqG57e1u3bt1Ss9m00MHhcLj0XZVKRblcTr1eT/fv37egQumyrSOdIXBe4Gxg/FjOmUvEEGzkkCs+AxmmdISUfcQcfy1PTk7MlSFpSUCZz+fa29vT3t6eut2uJJmIQ6jmwcGBBoOBEWMvNuTzeSPRPqRxPB6bMwLxiZaQrDmIMRkWo9FI3W7X1gOlF4gxvoUhc4TAIslIvRcPVtsZUpKAIIWYALwTYDWY0bsHfIgg7gB22ClZwNVAqQTvgyz7XXvWEveDDzb0gY6+Takn56wNn+/gQxnJgVi9Vzgvjo2Tg9cQIJgLH94oyYQVXDWsBYQWL1yt5kH4MfjcBAQXjrEuuIpnceCGIsv0qyfnz5FSWuj3FkrXPKDAdePzs4n+xz/x57Q4fPm6h/KOQjyHAzcFz//Qr+grP/KHdFrL3pSosDFJSpn0/h94+uGHB9/U1Uf1TY/47fFT/77A1ePNOBQ+LukfSfqn7rVPSPr+LMvmKaW/I+n7Jf1PF797OcuyDz7JIChjgJR4ElMqlXT79m1tb29bdwRINTv9kpZIMTvn3W5Xp6enunXrlnZ3d1WpVIxQecLsd2i9TTqXy6lerxtB8gny7Liyg+vLNEqlku280iJxc3NTvV7PiDclDOzY53I5lctl21nGct9qtdRsNiXJdt673a7Z6NkNPj4+1v3799Xr9YyoexKKk4PshOFwqHa7vRR4WCqVbE7phOBbVHJ+7IiPRiN7HVcF1nM6UWxsbKjX66nX66ler0uSjo6OtLe3Z+LN0dGRut2uETnfEQHCzu65J6SrJQPkUywWC5sb3BiTycTGsxroyHn3ej0TPXCTcN0p6YDYMg7WKEIVnSHYzWddI2ZR2sAa9vkLrCPKQrgXvIjid9Qh7D5vgvWLqIEIw3f6Np2rotPqHHMMf495l4N3a/gQRf85gk1ZK/7YXnh7mBBD1ojPivCCCfcyY0bkoCUo42RcXFfuWX9M//vV8qU1wsf1Nj+LAzcXf/OFPyhJyn3979F3/KtP6sXCnv5YOWyj70b80jivv/vnv0vpP/7mdQ/lnYiPK57DgRuC53/oV/TqD36Tspw0az383zP5fk65U+n9/+BzWlxkwwUCT4rHCgpZln3yQmX1r/2S+/HfSfozX80gPEFkx5Nd4lKpZPkABwcHev31123H0tueIU9bW1tqNptGRjY3N3Xnzh21Wi1JUr/f12QykXTZZg4CDon1Cf9Y2SEu1P2z04wFe1UIgchQf356eqrxeKzNzU3dunVL29vbOjs7sx11H5onyToSQE6n06m1mqQUhHmaz+dW/vGwevjFYqHBYGAEi3H79o2QrNPT0yWhgp1vjslONy0ja7XaA6n9kE1q+0ejke1+z+dz3b9/X/v7+2ZJ7/V6tjvtresQSTpP8N3Seegjws54PDYXAmUQpVJJWZbp6OjI8iqKxeJSkCKkl44XvV7PnBvD4dDcCuQyrApQZDrgYPCOBrpMIFogBsxmM7tWlI5IMqGBHABfOgDpRfihbAeRgHIbn1vg53MymZgzhXXNdfKdVLxAw7kiWHAsBBqEFt9BYTVfgfBSxA5Kg1hL3v3C5/zxEIh8iQbnyFyyJhFjyuWyBV3i8vHv8eeNoCFdOj64JtzDjHcdcBXP4sDNx9nnfkc/+1/c0vg7/rR+5vs+J0n6i7uf1DeWNq55ZIGrwMf7t/Tx//4jKv7Krz3+zYEnRjyHAzcN7/3bv6xctaq73/P7Hv77n39d81e+HO1gA18VnkaGwn8t6V+4n19IKf2GpL6kH8yy7N8+7gA4CyqVitmpNzc3rbNDo9HQfD7X/v6+EXC/UwwZIIBva2vLbPIEGjabTUv9Pzk5sVwEMgD6/b5Z9iEVBAtCKrCPk0PAzrmvcUcQ8cTy7OzM2hdSVuAt9ZwHJJff833S+U53v99XsVg0ct3r9TSdTnV8fGwki11eyB673b4Txmw2MzFFktXke5cHYgI5A57EIj4QaulDCk9PTy3HAnGGnezZbKa7d+/qtdde0+npqbXa9PXxfqeb7yiVStZWk5wJiPLJyYmVcDBOSOV4PFan0zFhqlAomGOA8bLj3u12re1kSsnWCmsEoo6QheDB+qNWn//igqCsAsfB6emphsOhEX7OGfLMGoIII9YgnkiXJRCIKeRZlMtlm0/CHxG/RqORCWkcn+uNs8S7JBB2uN4cD3HCzwfXBdGAzxP+iTgBwWd9Q/R9KQeEn84njBdnAnOBwwSHgySbT76ba43A4IM4Efu4vxAwuBdZF+skKLwJfNXP4sA7B5Wf+5T+88+d//0v/NBfU/MP7V3vgAJXgo1/vKPq//2p6x7GuxnxHA6sHc5GI73nx375ob9bn8LOwE3GVyUopJR+QOdr8Z9fvHRP0vuyLDtKKf2Xkn4+pfR1WZY94KFJKX23pO+++Lvt5FPzTPvHZrOp+Xyu4+NjHR8fW8AbtdPueKpUKlYewM4t+QPlcll7e3tm6UcE8OULEBys45VKRdJlkj0kCHcC30+Jg0+LhyRDfNl59QQcq7qv9cYd4FvoQeywzlerVY3H4yWyU6lUbIyIGIgCnU5HR0dHKpVKShdtLQuFgpVXQPIoWyDQcjKZWKkAbRspz5AuCZwPs2QshFD6Vpdf+cpX9Fu/9VvqdrtWSsJuMSUc7JhDNFkbkFd+B5FlXIgpPj+j3+/r5ORErVbLOjZwrckQgMz3ej11Oh0TWcjZ8AGb7ORDNoF3ZmDVp5TFrwnpMmfBi1CrHU68bV+SHWs2m1lexmw2szVOcCluFZ91gHMCEi3JRJNisWhjYA36LA3WZz6ftwBQ3Al8hrXpOzX4rA5J5vLhGiEMrOYZINLQ2YXj+6BSxolog/iEaIWIQvkJc+jdCat5DzgimBfcDdzHNwFP61lcUuWqhhy4QrzvRx7+D8nAOxGRmXBdiOdwIBB4t+ItCwoppe/SeTDNH8sumHWWZSeSTi7+/usppZcl/S5Jn179fJZlH5P0MUna3NzMfCJ7Sknlclntdlv1el2j0Uj7+/tmzackYelENjfVaDSsteJkMtHZ2ZlarZZlKkDAKGWgcwFkmt1K6v9LpdKStRoS5AMHIb6QTJwFPlTPW9YpYaDlI8TH7/hDuBA22HH1uQSeIGHz920JIZG0zSRgEvEACz+ErVKp2G44VnUEio2NDU2nUxsDAZa5XE7VatV2jTkuhJTjzmYzHR4e6otf/KJee+01SbLrNJvNjMQieEDIuTbs9iPSMJ5+v29rQpI5Sk5OTiwPgWtNGQM76ePxWL1ez643x1+1xvN7wHpg3JQF+G4OvqwCEcPv/CNc8bvVDid+jfjxIdiQSzAYDJaupRcN/DhZqwgjkHbWEjvxq7kiviMEJJ0MELqQMP/kL/A67gxcAL50wQtbPjuBeWZeEGR8uQTn5csRECwYD2Gh3HsIPV6A8KKGb53pnk+2DtYdT/NZ3Ejt6D8YCAQCT4h4DgcCgXcz3pKgkFL6Vp0HzvzRLMvG7vVdScdZli1SSl8j6SVJr7yJ45n9f7FYqFgsWrlDoVBQt9tVt9u1wDQfggjy+byazaZarZbtXJdKJTWbTdVqNXW7XWvz59vj4UjwGQBnZ2dLu8dnZ2e2842N2ofLSTISQw4EmQmr+QjU9hOQCCmqVCrWLo9jQHh6vZ76/b4JH9TsI2xIWiKplEcwBsQK5ongSsi6pKW2gGQ1QNBTSlZeQRcHBIxarWbk2mc6+Lnodrv6yle+oldeeUXD4VC1Wm0pIBKCiqBDloMkI8CcL50fEDh8eCAZCTgysiyzIEgEHNwik8nEMidYUzhQvFDkHQqIDAgErAGugc8OQGzw7RH5PQ4P1rt3u0DKcYfwGdbzYrGwvIjJZKJqtSpJdv9kF10QAGIHQgx/L5fL5hzxpSS4BHBkQMJ9WQPz7btGcM9KsnXvBRAyI1g3XGPKb1YDILmfuBe55yH5fG+5XLZyCv4wr7gP/NwzP4iJiBM+iNFf63V3KDztZ3EgEAgEngzxHA4EAu92vJm2kT8t6Vsk7aSUXpP0t3SeYFuU9ImLf4TTCuebJf1ISmkuaSHpe7Mse2w/EEgwu+UIAVtbW1osFup0OrZbChlfRbFYVKvVUj6f19HRkebzuba3t9VqtVQoFMzCTn02u9YQSnZBfbgcddrSZWAdBNETE2zzkB7aAY7HYyP/EDuC/CQZ2UGs8EF17KBCfE9OTqwFJXMGUWKXnHEMBgMdHx8bQabtJSUh7BpjZfeBjLPZTN1uV/l8Xo1GQ81m01L6ySio1+tLtesQOcou/LUkj+Do6MjOvVqtmqCwWCyWwgSZX+btYg2ahR/yjdtAWnaAdDoddTody25ArCLHApeKzxNY7TrAvFHOQcmFL7fhOvmsA5wJkuyacK2YDx8E6Qk0O+HFYtGuIWTb75IPh0P1+311u13NZjNVq1XN53Mj7BwDEWO1vSnnhlhFuCaEfnXH3rdo9CUYrBmORykPggufx5kwHo9tvnkdwcSHmvprv+oa4PtZX6xf1iCOB+YBYQ/nDuC7EKq8MMg9vho0uQ64imdxIBAIBB6NeA4HAoHAg3gzXR6+8yEv/+Qj3vuzkn72SQcB4YJMVKtVbW9vq1qtmhAAAX3YjmEul1OtVlOj0bDyiLOzM7XbbSPTkMnT01MrjfCkVrrczcWaDaGBVEIg+cOuuieVftfZlyL4nXRs4fydWu7VentKD+js0Gw27Rw5lt9Vl2RlFOwa43jIskw7OztqNptG2Hz3AUnWGWM+n6ter2tnZ0f5fF6vv/76kpOA8gjq5Gnt12q1rN6fORoOh7p7964JHLVabamTBnPgCR6Ej51+Mhy8YMP8+QyMTqej8XhsO+mc23g81sbGhobDoTqdjgkR7O5vbGyoWq0aYaVcBuGJLApPciHajF/SUstN2kj60gmcD4BrzlxB8hGj/GdoWTmZTMxtg6sGkWOxWKharS65a9h5Z417co2Y4F0NXoDg/ZLMqYGwQzmOL9XByeDbUHJ9EPIQeCgxYX16IcKXkXAf+LWKsIXLYDUrAoHQu3d4xuDUQPzhmYNAtiomrJOgcBXP4kAgEAg8GvEcDgQCgQfxNLo8fNXw/2jf3NxUvV5XrVZTLpcz63Ov17N0/FXk83m1Wi0Vi0UdHh6q3++rXC5bGGOn01G32zWi6OvXPYH3SfCQu3K5bHkBp6enttt+enpqmQQcw4fTFYtFFYtF1ev1pZaSpVJJ5XJZw+FQkiw7wJNVSHO/37cMgGq1au6C4XC4lNUAkUopaTweK8syez8EslKp6LnnnlOhUNBgMJAky1tYrYcnv6JcLltLRpwjBEZC+Pv9vgaDgTk42B1m93tvb0/37t2zIEgcFuQx1Go1SbIdeTpEcD6QUDIAcrncA4GUBPVBKpkzX3vvy0RYZ1zvcrlsQgelBnyX33VHAPElN7gYfGYA3RYoE2DnHQIMaeb6IWBVq1UrzZhOp0bqKTtBYBoOhzY3nL93c1ASgLjFdzKXCGneTeFJvM/vQADY3Ny0MhMcNJBxSDprhfuBkiLW/mq5Tj6fV6VSsYwGX8LDNWfupMvQRlwNnAvnj2PC/97nM5DBQSbFqsBAPgrXFzElEAgEAoFAIBAIPBxrIyjwj37KHcrlstnUB4PBkqV7FTgaaJHIDnu73VaWZVb/z3ur1aoREHb5IRKQMF/SQDnCaDSyXXCfWQAZgQRXKhWzY5fLZSNYkGW/+765uWlhlOxes0NKzXmxWFSj0VCtVjNHgt+B51jT6dSC+mq1mhHDra0tbW9vWxAiu7iMg1wJX8teKpU0Go10fHxsY6tWq0a8actHpgQ7+ZCyk5MTDYdDHRwcqN/v27UlBNDX7ONwyLLMAvwYJ0IF5ytpSUzwLTy9WCBdtiD0GRJcD4Qq5heRxDsKVoUnSPF0OtVwOLTWmLgKsotuFWROcN58zjtRyNXAxVAqlSSdlzRQjsEapByF82TdrDoA/Hi98OZzMpgz5oWxMCcIFYgdXHvKMCRZhw6cCtJlCQPX0bclxUGDiEPZCqUu/hxYRz5Dg/EjOCAW+FwFnC10RkEkoOyG+xqBxIc9+papfr4kPVB2EQgEAoFAIBAIBC6xFoKCJCNeOAIIpsPCTwtA/tHPZwqFgp555hnVajXre99qtfTMM88on89rNpup3+9boCC7phDCVqtlXRQgNogFxWJRuVzOauc7nY56vZ5ms5kajcZSuBxEqtFoGFGCqBEeV61Wlcvl7BgQI4gSrRzpzlAoFLS7u2sdJ+im4MkkRBI3hyQbA+Ov1+vWjcGXkPj2h9TA+7KS8Xhs+RUENHqiSR5Bcm0/Jdmc7+/vW6tPxJnFYmFOEcQVdssRSBB7fPglJNG32qRlpG89KGmpxSA/818yHrzVnzkntNG7Ibg2viyAMgLOl+NBnAeDgbrdrrkMfBijDwhEPMANQGaHz5+QLvMVEE0YM9/vsxk4L38dfVgk65Fz4LoNBgNzJyCSEGIKqUcsQ2DwrggcGfP53NYxawXRAmcA68GLCThFeB/jxKmAYIPg4UtkKBfxYZRcL1qMehEKwcB3akHs4GfcFIFAIBAIBAKBQODRWCtBQZIRZwgeO+GeEIDNzU3dvn1b29vbJh6USiXt7Oxoe3tbuVxOe3t7Oj4+Nnu9J261Wk2lUsl2R6m/L5fLZqem3ntjY0OHh4fqdrtGmHBQYCdnF9oH7yF6sLOPbRwCKsnEBIQUduwRJiBxEEJcBBCfxWKh0Wik4XBoFnys5L594MbGhrValC53fOn6gHjCmOhCUSqVtLW1pUqlYh0c9vb2TKRhhx/yNh6PdXR0tFRawTEhioyNHWfq6Mk3GI1GkmQCD9doNBpZmB8ZDoRMIirgguC6+Hlgrfk8CElWZuAFJcQexovw4EUdHBkQ0dlspuFwaGTc75hDzglepDyArhPeacCa8K0rfTgjxBpngw9KZK4hyt6F4x0qiAk4ZFiTZE5wPShf4P5ByKFUg3li7rkXODZlDl7EWW3n6INJEam8GOOFFC8S+BwOn3HiXQxeQEEcAr4cwpdwIE6QFRIIBAKBQCAQCAQexNoICrSy8x0ARqORut2u1duvolgsWvAi9fNbW1tqNpvK5/Pq9/vq9Xpmna/X6xoOh9rf37cdXm+dlmRE0ofgQfQ6nY4RQnaiIR+euPJ97MoT6DiZTCxkkY4H1KP78MHpdGoE1ncfgDB62zi7w7geqtWq6vW6isWiBSRS946jABIMsWbHl3aEjUbDhBfCHTkezgTaQjabzaUyh5OTEx0fH6vb7RrhRDiBLEIoIbAQbAQHdrsh2n5e2an24sOqxZ2dcAj32dmZlcJIMkEAMo6IApnHecJ7pfNSCUI3ubact6Sljgq4VTgW50v5ALZ7HAy+swLrDjEJS74XkxCUWMPMO+SbnXauLRkZXozBqUOpgy+RYI1BsGkViviGywBA0nE3cM1x0PhyFD+/zAeCECIDa5NrSkkPQh7XnnvItxvlO3DgMM/cK6wXP27vbmGtMsdexAkEAoFAIBAIBALLWAtBIaVknRcgyOPxeKldoQe7q7u7u7p9+7a1VyScsd1uLxFTSLHf1W42m6rX60uERVomPPP5XN1u10gH1m1JRlIQBSCKEF6IUqlUstaXvouDr4Pn+32tt3c6sJPMLvV4PNZwOLTdWLIMIGbFYlGVSkXHx8dLJJdQS59PAOGk7GM2mxmBRDAhTBBnR7fbta4TxWJRR0dHki5D83BYeLEG4QWRhNICQgx9mON0OtVkMrFwQwQE8hJwZfjsDR+uSYnL1tbWUtCez8zgekNa/bwzrxwTAcELIKzDfD5vJRieqLKWIO44G4rForkYeI8vE0BkQISCYPt7BTcL5BqCT3gjx/XOiNlstpRTwXnTktR3q/DBjIhJlJCw1mazmblC/PXlZ64na42gU74D5wOuHNYX65LP+qwRzgWRj+vnz9k7S/znfVtI3uMdQl5w4L9eCAkEAoFAIBAIBAIPYi0EhVwup3a7baSZmnTq73EP+H/w1+t1Pffcc6rX60ZOarWabt++bV0UyAuYz+eWxE9LQZwQ7Iyzq4p1Gku33/Wmvttb9SFDvt6d9HrKCHq9niaTyRKZLRQKtnsOacFl4evG2+22fT8End12X7vOMamr96UF7PRD8nA3ePv3ZDLR/v6+heJRXoDAAHwbw3K5bLveEFTmmGwJHAmtVst23Y+PjzUcDq1jhCQ7H66/DyZkt5wSAfIeEGtWgwgh5T580bfp9KUR7PD7NpQQb64v5TRcWwgqgsxwOLScDN9mkfIddtRZW7RM9J0SSqWSEX/fWpKgS64pZRrVatXyKMjBQExCCEGE4ft9iYKfNzIjfFjoqvWfY0HmfRcIn3VBiQNry7sG/HxzP5FvgcvCt8L0gaG04sRxwPg8EOhY075Vpncn4MjhPdwP/p7gtUAgEAgEAoFAIPBorIWg4Lsd0MYQsoRY4APSCoWC2u22dnd3tbm5qdFoZKS1XC5byBuEFpIOaWDXGPs3JNMTFHY42WWG6NHNwbfB80F29XrdxAJJFhTJDjaklu4Rvkbf17FLss4KfseWwD/s/jgwfJaBLyGgVMGXFEAsmct8Pq9ut6vZbKZarWY70RBlT96x41OegehDSYDvVAH5pCtAoVDQbDazAMBKpaJSqWSdIqiN910guD7ssOM02djYUKVSMTcL9fl+nUCCcQew6+67DlBGwfUh6A/S7oM3ueZgc3NzqcUja4Bjs6vPOkM8Yc1IMpcGLSGn06n9zK48WQSQeJwIzJPvVgGZ9xkDiAt+nTJfdJhgLiQtlalIsvNnnhB0fEmGD8ZkjSFM+JwDwPpHiPKdFnzJhR8P5RYcj/WMuIPA4T/vRTwftsjvEFZWXQqSHvg5EAgEAoFAIBAILGNtBAW/Uy/JdiKpp/b/sK/Vatre3laz2bRa/kajoZ2dHXMXICr0ej0j7RDEUqlkdfaQY4QGrPiIGL5NI7uf7ND7NHvKEhBDFouFhfMhkkDifXCdD+Hz1vNcLmdlGVi9p9OpOp2OlS74EotSqaR6vW6CBsIExLFarerk5MTyKLDVE7SHk0CS5VfwuXq9biSX/AiC+chnYGdZku3wIuSwy85u+nw+V61WU61Wk6QlRwDkFcKHiwNCzXd4crwq/vj2lYyHFp6rdfGIVpJsJ5+QylqtZqSdLAHfuYNuFrPZzEoQ/PySBYIDgXIHn3UAER6Px+r3+0uhiohSEH0f0InzwreRpEzGE2+OxS4/5wl5x5ECfBkA7+Xa+bIFzg/yzm4+LgffGhM3j+9oUiwWl8p4EAYQKHAI+EBJBBK+mzH67/Z/Z15wFvl559wQm3wJDWuW1wOBQCAQCAQCgcDDsRaCAoCsIAqwcy0t7xbW63U9++yzqlarmk6nyufz2tnZUb1et04N1Kn3+33b6Yeo+9p0LNAQb0gFNnfIEfXZkEDyHminyPHJAKDOHDIK2fMBkJJMnOA1xlQul9Vut20HXzoXWQ4PD62zBGUJpVJJzWZTzWbTxBLvRqhUKqpUKmb9h5gSaAnJ95kOi8VCtVrNzhPSiCiC6CDpgQBBzpdzOj091XA4NMKdz+fNtQBx5LrjLMnlclY2QkAj19+n+PuddLIjfKijd4QgHPnyDC8gMQdeQPEtLplbyC0BmpLsXCjL8GICpR3eveFdIsPh0PJCmK+HlZkwRz5PAjcErhvWPdeZ+wYCT4kDQgbguvn7A3GMtqjco74M42GuEJ8RIl3mFvhSAi8kcJ/5gEqfd8E9RdAkThJfloLohCsEoW71vvOiA9/jHQqrgkqUPQQCgUAgEAgEAo/G2ggK7ESzGzkcDo00eFQqFd2+fVvPPPOM7STiWCBkDpLC3wmxg/xAcNjRhqBABn1bSL9bDlFCQGAXmWOs2qMhTPzed4CQZJ0c2AXFxo6YUKlUbMcbsnh0dLREPAm0bDQaS6TShxRy7ljWeT8ZDwQ8UqrhLeTSecghjgyIN86RQqFgO/84Q9iZJmSQTAV/rSnFIFwP0QJhp1KpaGdnx8ok2L2G2GLv9wS5XC6b04NdfZwMzL+35SOk8BrtNsvlspXcUOpCmCQuD3a2yUKQZPNL6QZ5D34ucRawlqbTqQaDgTkKILc4WnDJ8DPjZq36khtcI4gcrHPKJhBOVoMWEU0oB2BOmSfms1armZiwSvh9a0YvfiAO+ZIjxAWOSzkGxN+PZbXtI4SfMiHcFThYfIcO30qS72Es/hy4FjwTpGW3QyAQCAQCgUAgEHg41kJQgBRBMAhoW93Nl87JcavVsp31crmsVqtl/eIhuuPx2HbDK5WKOQ4kGcFDODg5OVG321W32zU3AyTZh7dRkgCx8mGKkBvI5+npqcbjsZVYEEbHDqzPZqDGXjonQTgDyBtIKalWq1m4o7e5l8tlbW1tqV6v2zn6UgNAmn+xWFSj0VC1WpUkS+3HxVAsFk2w8GRSkgUjQsD4jlKpZKF/uDv8TrZvVcl8SLJrDHllLqRL0QFBR7ospWB+IcN+hx5nyGKx0NbWlsrl8tJu/mqaP4Tdu2N8a0rpsg0hjgQfcsi84BqBsPo8AuaS8fI5yi0YL9ffiweetPsOCVxjHww6Go1sHF7EYAyUOtDFA+HNB1ZSTsH5eecG9wSiD8flPT6nAHeEd4lQroBQ4Ltj4P4gNBUhyZc8ITj4gEzOi2N7+ADVR4UseuHAlzl5F0UgEAgEAoFAIBB4ONZGUPA2dS8orL6PdoWQSnZbIUHSg8QUNwEEh5142h52Oh0dHR3p8PBQzWZzyblAlsNgMNBoNFKhULCyAKzlBBJWq1U7F0lLggg7rbS3hNSNx+OlLha0UTw7O9Pe3p6m06nq9fpS2QDEtVAoGGmGpGPjh1xx7gQHElzJTjRzXi6Xtb29bW0fSfKnPSblG+w48/21Ws1EGd+JglISHz7I7rSvmUcsYI5wgDQajSXizJyzg0zJAWSU13BP4ByZTCYWLgm4hrzm8w1whHhi6XftKcmA6CIsQYwhztKlOCBdBkT67gqIDl4YKJfLNk+QYX7GfcJcc3wfLkmJDQGUnjDTVtS7aTgfBCm6drCDjxOgVCqZSHZ2dmbX3Qs+3lHhv9u7ABgr14qyIcQw3uOzGHy5iw989B0r8vm85XvwOa4drg/fLtL/Hvgx8rlAIBAIBAKBQCDwaKyNoDAcDiXJyK+3wvMPe4j+Sy+9pEqlouFwaLvH2KQl6fj42HIHPLnyx4C4LxYL3bt3T/fu3bN0fwQBvns6narX61k5BOPDISGdOyekyx1PLPHAjxNHAU4K/xlKPg4PD9Xr9Wy3l/OB/ELYcVlQctDtdpcIFjvK5ABA3BAGFouF6vW6uRZ8DoAndv56SDICXK/XlwLz2GFGkBmPx0skU9JSa0yIOLv6iBB0T4AkMueVSmUp+NKXIjCPZC/k83n1+30TCSjR8N0YJJn1fzUEFBLKHPj8Akl27bk2ZBT41okcQ7rMF8DpQI2/d0mQ5+GJOqJJoVDQcDhcEiK4hrgfyL7A1YCIhpCGC4Fx+Ovjd/8RAhA5NjY27JoQTongxjgh7F4A8r/zoZtZli2tYz9XlIz4kFaeDdxjfM9qeCpiD+IU42Ddcj39NUY8Ya65B1fv4UAgEAgEAoFAILCM3OPekFL6qZTSfkrpc+61H04p3U0pfebiz4fd774/pfTFlNIXUkp/8s0MwtfOQ9S93RvyUC6X9dJLL2l7e9s+56337Khj46d8gTp2CLh0TgYrlYp6vZ4ODg4e2MUmwK/X6+nw8NB28qVzazm7+J54UF/vyRBlENT2V6tVNZtNVSoVDQYD+6y3WJ+cnFiYJC0CfSYArgtPyHwLR9oxkg2BzZ5dY+YIUaFarardbiulpPF4rMFgsBRQZ4vlgux5dwItDSlVIUcBBwc5Fp6sSnogBwCyCNnv9/v282g0Uq/Xs3IQhBHvAMBqX61WTUzodrtWAuAJsm856LMKIMm+04B3UEwmEw0GA83nc1s/iA3kRvjdcenSpYC7AoJbKBTsGpLdQBik7zBA+YLvduHr/VeDKglf9PPrxQrEGZ9tgRDS7/dNHOHe435BaOI+Y036ThrMFcKLv+5cA4Qprh+il29tSp4JeQ+IRt5Z4AUqwHgQEBi7v4aM04/Piwk+k2HdxISreBYHAoFA4NGI53AgEAg8iMcKCpI+LulbH/L638+y7IMXf35RklJKH5D0UUlfd/GZ/y2ltPGQzy7B1ypjc4dM+wDD3d1dfeADH1CxWLQWhBALX/9NoKPPTKhWq6pWq0thjBsbGxoOh1YeAalhTIPBQN1u176nWq0a4aVMADv88fGx9vb2rJUiO/XsykLUyCmYTCbq9Xo2B5BviKzPXoAE+cwCT7JGo5H29/c1GAzUbDbVbrfNSUGnC4i7DxXM5XJqNBra2toyZ8bR0ZGJOezo074S4g8RLJfLms/nRkTJd/DBdpKMVHIdETUo4SiVSrZz7TMlcBj0+31lWabt7W21Wi3rIOEFhdU8CT8WdqF9u0Nf87+6s+4D+xCifGeFUqmkra0tW6+QbN8VxJdA8P2QZeaV4EF/TSUZASdwlFagtIn0Qhtg7D4/ZGNjw/JDWN+ICbhKvIjncyaYT9wvkqztKsdazX/wc8T1517x+R5e2CEs1AddIiwwRx7cd2Rm4Grw58i9ijDjS4pwh6x2cUCMwf3ixZE1wsf1Nj+LA4FAIPCG+LjiORwIBAJLeGzJQ5Zln0wpvf9NHu8jkn4my7ITSV9KKX1R0jdI+pXHfMdSGjvdE2q1mlmya7Wann/+eb300kvmHJCW29iRw9Dv960cgh142g/Skq/RaGixWNgOOu/d2NhQs9nU6empBoOBhsOhtVksFou2o8vP5AqwQw8Z9a4JXAJZlqlarSrLMnW7XY1GI9tRHY/HKhQKS+0NITveLUA5AwQSMiiddz5ot9sqFos6PDzU4eGhZTa0221Vq9WlnV922avVqgaDge7fv6+joyOzwntHAHZ6H4B4enqqfr+vXq9ncystl6lIl20PcQB0u10NBgObQ/IhPJFGZMAt0W63Tfjo9/tGVH1rwkqlorOzM3W73aXuDLgDKBfhPPy5+BIAH8Yoycg3c0KAKKIBnTp85oGkpTaiCGDMPSUJuGb8GMjlqNVqNkbG4EUQxudfOzs7W8rpIF+CDiicAwGWvj0k9wHrnblD4EJQ8vkGlIh4hwLv9fPoy2y4zxFqGAfH5x5jnnBl+NIGhCkvOjD/vr2mL3+QZE4oL8CwPhH/OCcfyroOuIpncSAQCAQejXgOBwKBwIN4Mw6FR+GvppQ+e2H/al289qykV917Xrt47Q2R0nnrQ6zP0qUlWjonJPV6XS+++KJKpZKRcUm2U0+S+2AwsB3zLMtUKpWW2iqWy2XV63UrORgMBpY3UKlU1Gw2rfvC/v6+5Rr4neJGo6Fbt26pVqsZyWHXnBBD31mC2nMI4MnJiQ4ODoxkDodDDQYDq6mnXMHb2CHwCBiQz36/r8lkoo2NDdudJ/yRsdTrde3s7FhLSDIkIGWM5+7duzYnOAoQFNJFICZhfPP5XJ1OR/fv37dyEcbqOyZA/HF34JBANMLhgLDDrvzm5qYGg4FlAhCgCemfTqdGCjmnzc1NI++EZAKIOe/jZ0QhdtaZc9YeO9q4VBAgKCPheIQiIopAaCHSEFcf3MjPrHsErI2NDbXbbVunnBfHgfR7kg95xm1DLgaOmul0as4ZxuqJOvcZXVF8pxLe590MPmBSugzdZI4QKHzJD/cK72ctrJZNUK7gcyAA586xVktNmBdf6sPnKfHg+NyPCE+SzHGxKoqtOZ7aszgQCAQCbwnxHA4EAu9avFVB4cclvSjpg5LuSfp7F68/zB/80H+Vp5S+O6X06ZTSpyUZ+fPWfv7Bn8/nVa/XdefOHY1GI8sKkC5D1ubzuUajkfr9vhEU7PTVatVIErZ4SSY60CmiUqmo3W4ryzIdHByo1+tpPp9bbT6Bfs1mU1tbW2bl3trasvFDrCVZIr8Pl5tOpzo6OjIrP/kAfA+t+XzCva8rxylA1oIkcxuslg6cnJyoXC7rzp07euaZZ4z8VioVm7fFYqH9/X29+uqr6nQ6Zl+n5ATS70Mvh8OhlWgwHknmKiFokGtZqVRULpc1m80sr4Lv73a7VptPuQZCzHw+t1IVjknHDVwHngwjDLCeIOtcMwQgRA7psp0m1wlxibXowxwRUxgbjgvaaTIfvp0kFnzcJxwbsk27RHI/zs7OVK/XVavVTPDwAZIX944RXkQAT9pbrZaVvVCa4NcOWQNeZOEasUYWi4WVRrAGfWcLL+T50FTEL9YEn5OWW2hSBuMdA6v3P0KBJ/Y4RHzIJOsdscGLCYgezCH3LGPhuxDwbpCIAJ7qs/hUJ2/LIAOBQOAdjHgOBwKBdzXeUpeHLMv2+HtK6Sck/V8XP74m6b3urc9Jev0Rx/iYpI9JUrVazdhF9bZ5dl3L5bKeffZZbW1t6ejoSK+99ppOT0/VbDatPGAymdhu/ebmprkSGo2GOQsgWLRr7Ha79n3UjDebTQ2HQx0dHS21QoSU0LayXC6r3++bEOEJC+GGOAf4vSRzVviuCL1ez8aIxdu3uYOsTqdT23FmtxUxQZIRK3bVC4WCbt++reeff96+c9XizvfTHYJuFa1WS41Gw3IXsMP7FpoQ1JSS6vW6kV+IP2UejBlnAQ4AciUQfiDGCCWFQmEpR2MymajT6Vj2AtedeYVIQt4nk4lyuZxqtZoajYZ1KqC1ot9h57pRIsAaZMeb0hqcHzgVpHNhitwO3i9dEmzWKOeAiIUI5duk0jJT0gNkGJLubf+ENeIk8OKXzzkgL8GLdPzx4hLfw2d4L9cfBw2ZET5/guPhzPDhiIgSnIMvNWB+VgMkGe9qVoIvVeC5wRh8FgSvca1xhFDasCoweAHC5y6sM572s7iR2jdOUQkEAoHrRDyHA4HAux1vyaGQUnqP+/E7JJF2+wuSPppSKqaUXpD0kqRffewgcjmz/UNQIbv5fF537tzRCy+8oMFgoJdffln3799fStan1ACy3mg0tL29rXa7rUajYRb66XRqO5HHx8c6OjqyXdjNzU1tbW1pPp/r6OhoqdMBZHM2m5lbAsHDJ8b7jgvswhN6yOu+O8RkMrEWl+z6UtaAfZx58F0ZJC0l0BNqBwlEXCmVSpapgIDCWC+uo5FOdsbb7bZ2dnZUr9claantIvXuBOhBFiHBuAJwkfA5shCw83MtuF6VSsVKRBBvfL085zsYDNTpdKx8hG4YdKYYj8dWdiHJritdH3CwsCsuXba/JLjTtxSlmwQCBevMlyrQTYGdfEoa+Jwv//DZCpQyIJqx809XD186QTmPzwLgGARjknPgS1KGw6GNjbWMeMNn2eX3+QGQbQg81wJxrFwumyiFaIAIIF12W2C8dGqAqPtSA36HMOEJvg+z5Hde+Dg9PbXymdU8Ee5ZH2rKd/Az9xjv8eIh98e6CwpP+1kcCAQCgSdDPIcDgcC7HY91KKSUflrSt0jaSSm9JulvSfqWlNIHdW7d+rKk75GkLMs+n1L6l5J+S9Jc0l/JsuyxvdeyLFO/3zciTWhbSklbW1t65plnVCwW9eUvf1mvvPKKJFmwIp0aaBGIY2Bra0u1Wk3tdlulUkkHBwfqdrva3t7WaDTS3t6ehfdh54d0+g4BWODZXUXEwDFATgHkEZKzWCy0vb2tZrNpxzs5OVGtVjPy410MkODVkEhIkk+9Z8x+F7ZardpO9d7enmazmXZ3d9VsNjUajXT//n11Oh0rY2DnHIcGu9rSZctAX+PO+CCPkmxXF+ItXSb9e6v8YDAwolcul+2YnoCvErfVnxFJZrOZjRNxxocB1mo1SVpycOTzeQ2HQx0fH1vgIXkSgC4LjFmSzY10WfNPlwdIO9cfUo4TxrenREBC4GBN+ZIBXtvc3DSXDcQbocgHURKo6TuTIMxIWsrl4Jp6JwjH4RqS/7Aafug7VXj3BUGknLsPR8Vhg0BSKpXsHuA6Qeb5zGqLRj9nviyB9yK04SrxHTR8O0nKh3xYI5/3LWkZF8IKzyG/Hq4bV/EsDgQCgcCjEc/hQCAQeBBvpsvDdz7k5Z98g/f/qKQffZJBLBYLDYfDpVZuEL/d3V3t7Ozo+PjYQgN3d3d1584da3V4eHio4+NjSechgtTdb21t6bnnnpMkHRwcmEgxGo10eHhoO+QQCkouIKOSjBSORiMjcgQJssvua8DJFmg0GkbusNmzm8/x/c4xdm3CAFd3eyFU7MyzY71YLFQul1WtVo3wdjod5XI5NZtNbWxs6Pj4WK+++qoJD5RIMIZisaitrS3LIKBEwWcF1Gq1JaKGeOFr2n0QXz6f13Q6tXKKUqlkrgfOG9K6unPtcw74O/PKXDM2QgYl2Xx7kk24I+4M1sfGxoaJHD4AlO8nrBKSiQsE0cBnA7AueC85AtJlC0gvJnBevuSCnXrfnYIsglXRpFKp2PWgbAQhLZ/Pazweq9/vW8kGZBrBxO/eM1+sp9U8Bi+MeHcAY/I7+z5UFccHrhvuLY7HHCEacCzCR5kX5guHDGOgLGZra8vKghAJWFOsHS/EIEjwXczrw1px+i4h64CreBYHAoFA4NGI53AgEAg8iK+my8NTA4TGJ8ZLMocBpLjf71sJxO7urpVKHBwcaDQaWZ4Au7cvvviims2mtUSEnPV6PR0fHy+lvksyN4AnSxB9uj0gfuBQgFDN53PrPkHdfkrJWlhyPmQkSJeWaogV9fl8P5kIZBR4ezs2/+FwaBZuSigWi4Wq1arq9bq63a6+9KUvaTQaWdAf58m4EBgIO/QhfIy71WpZOKIP3vP17qvvJZ/h9PTURInVbhDMg98R90GIHIfsAYi+7wzALja76ZBDShIoK8HBwBxQwkJOBKUfvmMDLgTEB7ITIMF8F84E36qRefa77xByX6ePoMH69O/3jpfNzU1b46wjH94J+aV0yJcEeceDD0xkbv11QeCi1IP1cHp6aqKRv1d9CQ3rGTcDOReTyWSJ2HvBzB/Ph3lyL1NqwjXjOjEPvO5LNBAeODb3OPPP2nlUCGO6CBP1mRqBQCAQCAQCgUBgGW8plPFpAwIhycgP7R5rtZoFr+VyOe3u7mp3d1fValWz2UyHh4fq9XqSZASEzgZf+7VfK0l69dVX1e12tbOzo5OTE92/f1/9fl/ZRXtHSAMkEZLE3yHE7Iz7+v/NzU17DdLUarWUUjKrv0/GhwxzzqudCiDykB6s46TX+5R+LP2+8wAuh3K5bGUCh4eHtjNPa03pMgzRtxGkth8SVq1W1Wq1LIQSMkxJCAQRQlqv15Vlmfb29pYCDBFY+F5J1oaS8gM/3353mHn03Q4oCfGuBtaLJB0eHlquAu0dCfGEREM+yUGoVCrWRpIuEog1fmff71hTnoIogq2enXff9pHrSpeN1U4ek8nEiDTrCjEBwcR3YeCa+9IRupxQQoHYwjzhSKE7AoKHd0/47iGlUskcNpKWRCDO32ddeKGBkgQCM33wJuucOfYtMXHyMBYv6HFsXy6B84F15cMVGStrmjGuzom/1qxRhLZAIBAIBAKBQCDwcKyNoOBtyhCn7e1tNRqNpdT/RqOhVqulQqGgXq9nZIed80KhoK2tLb3vfe9TvV7XK6+8ort370qSWcTp4FAul+0zkHSILcSSUDl24emiIMmyFSCt1HOXy2VLm+d4pN/THtCfu88l4FjsKJOojzOB2nXKNyA97OBOp1M7VqfT0fHxscrlstrttmU2+DpzhARIpSQjpBsbG9ZucTabWUAj769UKrbL650e3rVBJwLmj7FJ57v9WNYhdYgJ5XJZtVpN/X5fg8HAOhhAnGu1moVf+nmvVCrq9XqaTCbq9Xq2k91sNtVsNpVdtGjkukpSt9s1Uu7XIeSdc2LefRcHT1IhtYgfZHkgUFBC4cHxuQ7kW7AW+Az3BL9DDPBlGwgMtEplfSEWrBJx34WBa8dYEdq4JhzXrxEvdHixzbsCED5YB7hGvBCBOwnRBlGQUhfuf59vQEkI88a68LkXXBeEI9YtTgrGx7OFa0mb0Vwut3SvBgKBQCAQCAQCgWWshaAgLdulC4WCbt26pWeffVb1en3Jnt5sNi2MEes/9u58Pm+W+1u3bunk5ET37t3TYDAw0gQphkhRT4/joFqtLhFldtCly1Z3WP0rlYomk4mRDogwYgIkB+t1r9ezEgVECnbvS6WS2e4ha+Vy2UoLGA/CQT6fXyJeWMFBr9fTYDCwNpcnJyc6Pj424g3BlWRWeqzpWNbr9boajYaVUnQ6HbObs8tNcCPnQnYCAgUkFNIHUce6z/t9fgTj8eUKZARAbIvFopWDkCtQqVR0enqqw8NDC3CsVqva2dnR9va28vm8lXVUq9Wln3HEIDrxHTgJfGYF5JvdbMbBtTo7O7NWlSklDYdDE3L8NZXORSnKZ3K5nHXKGA6HVpLiywgkmdsBmz/rDFHGk37mB3eH706B4MNOPYIJwojvYiFdOktwDOHOYA78muIcIfjcf+R/+I4NPtSUzhMIP8wbzgbvuMC9wNojE4Tr4sUS7z7wmSWsRwQwypXI2OAaBAKBQCAQCAQCgQeRHlVDfKWDSOlA0kjS4XWP5S1gRzHuq0SM++pxU8f+tMb9fJZlu0/hOGuPlNJA0heuexxvATd1jUo3d+wx7qvFu33c76bncPyb+OoR475a3NRxSzd37G/rs3gtBAVJSil9OsuyP3Dd43hSxLivFjHuq8dNHftNHfd14qbO2U0dt3Rzxx7jvlrEuN9duKnzFuO+WsS4rx43dexv97jXostDIBAIBAKBQCAQCAQCgZuFEBQCgUAgEAgEAoFAIBAIPDHWSVD42HUP4C0ixn21iHFfPW7q2G/quK8TN3XObuq4pZs79hj31SLG/e7CTZ23GPfVIsZ99bipY39bx702GQqBQCAQCAQCgUAgEAgEbg7WyaEQCAQCgUAgEAgEAoFA4Ibg2gWFlNK3ppS+kFL6Ykrp+657PG+ElNKXU0r/IaX0mZTSpy9ea6eUPpFS+k8X/21d9zglKaX0Uyml/ZTS59xrjxxrSun7L67BF1JKf/J6Rv3Icf9wSunuxbx/JqX0Yfe7dRn3e1NK/29K6bdTSp9PKf31i9fXes7fYNxrPecppVJK6VdTSr95Me7/+eL1tZ7vdUY8i9+WccZz+AoRz+ErH3c8h58y4jn89iCexVeLeBZf+biv/1mcZdm1/ZG0IellSV8jqSDpNyV94DrH9JjxflnSzspr/4uk77v4+/dJ+jvXPc6LsXyzpA9J+tzjxirpAxdzX5T0wsU12Vijcf+wpP/hIe9dp3G/R9KHLv5el/QfL8a31nP+BuNe6zmXlCTVLv6el/QpSd+47vO9rn/iWfy2jTOew1c77ngOX+244zn8dOcznsNv31jjWXy1445n8dWO+9qfxdftUPgGSV/MsuyVLMtmkn5G0keueUxPio9I+icXf/8nkv6r6xvKJbIs+6Sk45WXHzXWj0j6mSzLTrIs+5KkL+r82lw5HjHuR2Gdxn0vy7J/f/H3gaTflvSs1nzO32Dcj8K6jDvLsmx48WP+4k+mNZ/vNUY8i98GxHP4ahHP4atFPIefOuI5/DYhnsVXi3gWXy3W4Vl83YLCs5JedT+/pje+cNeNTNIvpZR+PaX03Rev3c6y7J50vhAl3bq20T0ejxrrTbgOfzWl9NkL+xeWnbUcd0rp/ZJ+v84Vwhsz5yvjltZ8zlNKGymlz0jal/SJLMtu1HyvGW7a/NzkZ/FNXqNr/UzwiOfw1SCew08VN21+bvJzWLrZ63Stnwse8Sy+Glz3s/i6BYX0kNfWue3EH86y7EOSvk3SX0kpffN1D+gpYd2vw49LelHSByXdk/T3Ll5fu3GnlGqSflbSf5dlWf+N3vqQ165t7A8Z99rPeZZliyzLPijpOUnfkFL6+jd4+9qMe01x0+bnnfgsXvdrsPbPBBDP4atDPIefKm7a/LwTn8PS+l+HtX8ugHgWXx2u+1l83YLCa5Le635+TtLr1zSWxyLLstcv/rsv6ed0bg/ZSym9R5Iu/rt/fSN8LB411rW+DlmW7V3cKGeSfkKXtpy1GndKKa/zB9A/z7Ls/7h4ee3n/GHjvilzLklZlnUl/X+SvlU3YL7XFDdqfm74s/hGrtGb8kyI5/D1IJ7DTwU3an5u+HNYuqHr9KY8F+JZfD24rmfxdQsKvybppZTSCymlgqSPSvqFax7TQ5FSqqaU6vxd0p+Q9Dmdj/e7Lt72XZL+z+sZ4ZvCo8b6C5I+mlIqppRekPSSpF+9hvE9FNwMF/gOnc+7tEbjTiklST8p6bezLPsx96u1nvNHjXvd5zyltJtSal78vSzpj0v6Ha35fK8x4ll8dbiRa3TdnwlSPIevarxufPEcfrqI5/DV4kau03V/LkjxLL6q8brxXf+zOLuG9E//R9KHdZ6i+bKkH7ju8bzBOL9G54mYvynp84xV0rakfyPpP138t33dY70Y10/r3JZzqnMl6i++0Vgl/cDFNfiCpG9bs3H/M0n/QdJnL26C96zhuP+Izu1Cn5X0mYs/H173OX+Dca/1nEv6vZJ+42J8n5P0Qxevr/V8r/OfeBa/LWON5/DVjjuew1c77ngOP/05jefw2zPeeBZf7bjjWXy14772Z3G6OGggEAgEAoFAIBAIBAKBwJvGdZc8BAKBQCAQCAQCgUAgELiBCEEhEAgEAoFAIBAIBAKBwBMjBIVAIBAIBAKBQCAQCAQCT4wQFAKBQCAQCAQCgUAgEAg8MUJQCAQCgUAgEAgEAoFAIPDECEEhEAgEAoFAIBAIBAKBwBMjBIVAIBAIBAKBQCAQCAQCT4wQFAKBQCAQCAQCgUAgEAg8Mf5/WOtvGTnMGk8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 18509 161139\n", + " Min thresh = 1000\n", + " Sliding\n", + "\n", + "\n", + " Winner = Sliding\n", + "\n", + "\n", + " VFOLD = 9 of 15\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsIAAAGDCAYAAAAh/naNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAACLGElEQVR4nO2dd5wcZf3HP98tV1Mu5dIrqSSkACF0CD0QEOyAIlZ+KIioqAHFRhEs2EAREUWkiEiT0FsoAUJCEkIapPdeLtdvd5/fH1N2ZnZmdnZv727L5/16Jbc75ZlnZu+e/cx3Ps/3K0opEEIIIYQQUmqEuroDhBBCCCGEdAUUwoQQQgghpCShECaEEEIIISUJhTAhhBBCCClJKIQJIYQQQkhJQiFMCCGEEEJKEgph0qGIiBKR0V3dD0IIIZlTjGO4iCwTkRld3Q+SH1AIlxAisl5EmkSk3vLv9q7ulxMR+aI++H6mq/vSXkRkhH4uka7uCyGk9BCR50Tk5y7LzxeR7e0Zm0TkVX18m+JY/ri+fEa2bWfZH2O8Nb7fdojIUyJyhnU7pdREpdSrndk3kr9QCJce5ymluln+XdnVHXLhUgB79Z85h6KUEFJC/APAJSIijuWXALhfKRVrZ/sfAviC8UZE+gA4BsCudrbbHmqUUt0ATAHwAoDHROSLXdgfksdQCBMAZhT2TRH5o4gcEJGVInKaZf0gEXlSRPaKyGoR+ZplXVhErhORNSJyUEQWishQS/Oni8hHIrJPRO5wGZCt/RgO4GQAlwE4S0T668vvFJFfO7Z9QkS+Y+nff0Vkl4isE5GrLNv9VEQeEZF/iUgdgC+KyHQReUtE9ovINhG5XUTKLPucKSKr9GvxJxGZKyJftaz/sois0M/pOb3fmV5zv2s6XUQWiEidHtW4TV9eoZ/HHr3v7xrXiBBCXHgcQG8AJxoLRKQXgHMB/DPdWBiA+wF8VkTC+vuLADwGoNVyvJCIzNa/I/aIyMMi0tuy/j96dPqAiLwmIhMt6/6hf2/M0b9f3hGRUUE6ppTarpT6PYCfArhVREJ6m+tF5HT9tef3l4iMF5EX9DF6lRTBU0qSCoUwsXI0gLUA+gL4CYBHLYPVgwA2AxgE4FMAbrYI5e9AG/zOAdADwJcBNFraPRfAUdDuzj8D4CyfPnwBwAKl1H8BrADwOX35A9AGWwHMgfxMAA/pg9v/ACwBMBjAaQCuFhHrcc4H8AiAGmgDdxzAt/VzPVbf5xt62331ba8F0AfAKgDHGQ2JyAUArgPwCQC1AF7Xr0+m+F3T3wP4vVKqB4BRAB7Wl18KoCeAoXrfLgfQlMWxCSElgFKqCdr48QXL4s8AWKmUWgKfsTAgWwEshzYeQz/OPx3bXAXgAmhBjkEA9gG4w7L+GQBjAPQD8B60MdrKRQB+BqAXgNUAbsqgfwDwqN72OJd1rt9fIlINLZr8gL7vRQD+ZBXppEhQSvFfifwDsB5APYD9ln9f09d9EdqAJpbt50N7fDYU2mDZ3bLuFwD+ob9eBeB8j2MqACdY3j8MYLZPHz8CcLX++loAS/TXAmAjgJP0918D8LL++mgAGx3tXAvg7/rrnwJ4Lc21uRrAY/rrLwB4y7JOAGwC8FX9/TMAvmJZH4Im/Ie7tDtCvwYRx/J01/Q1aAN/X8d+XwYwD8Dkrv594j/+47/C+AfgBAAHAFTq798E8G2Pbc2xUH+vAIz22PZVAF8F8HloN/bjAHyor9sMYIb+egWA0yz7DQTQ5hwX9XU1+jF76u//AeBuy/pzoIl4t/54jbcV+vLj9ffrAZyuv3b9/gLwWQCvO5b9BcBPuvrz5L/c/mNEuPS4QClVY/n3V8u6LUr/a9fZAO3ufRCAvUqpg451g/XXQwGs8TnmdsvrRgDd3DYSkeMBjATwkL7oAQCTRGSq3q+HoN2VA8DFSEYNhgMYpD/a2y8i+6FFbK2WgU2OY40VbRLFdt0ucTO0iAj08zW314+92bL7cAC/txxrLzSxPBjBSXdNvwJgLICVuv3hXH35fQCegxYJ3yoivxSRaAbHJYSUGEqpN6B5ds8XkUOgPaF7AEg7FgblUQCnAvgmtDHKyXBoPl1jzFwBLRDQX7cm3KJbE+qgiVQ4+hDoO8QHY1zd67LO6/trOICjHd8rnwMwIMNjkzyHQphYGWxYD3SGQYsSbwXQW0S6O9Zt0V9vgvb4vr1cCk1QLhaR7QDe0Zcbj/QeBPAp3Y97NID/Wo6/ziHwuyulzrG0bRX4APBnACsBjFGa/eA6/dgAsA3AEGND/ZoMsey7CcD/OY5XqZSal8G5+l5TpdRHSqmLoD2SuxXAIyJSrZRqU0r9TCk1AZpd41zYH3kSQogb/4Q2VlwC4Hml1A59ud9YGAilVCO0J2Vfh7sQ3gTgbMeYWaGU2gItqHE+gNOh2b5G6Ptk1Ic0fBzATmjRX7e+uX1/bQIw19Hnbkqpr+ewXyQPoBAmVvoBuEpEoiLyaQCHAnhaKbUJ2uP4X+iTtSZDi1gaEdm7AdwgImNEY7JoM4cDIyIV0HxrlwGYavn3TQCfE5GIUmoRtKjG3QCeU0rt13efD6BORH4gIpV6hOEwETnK55DdAdQBqBeR8dAGcIM50CLRF4iWYeIK2KMAdwK41vCKiUhP/Xr5Ua5fuwr9XLfA55qKyOdFpFYplYBmYQGAuIicIiKT9IkpddAeL8bTHJsQQv4JTWx+DcC9luV+Y2EmXAfgZKXUepd1dwK4SQ9iQERqReR8y/FbAOwBUAUtIp0TRKS/iFwJbc7Ltfp46sTr++spAGNF5BL9OzEqIkeJyKG56h/JDyiES4//iT2P8GOWde9Am7CwG9pkhE8ppfbo6y6Cdqe+FdqM4J8opV7Q190Gzfv7PLQB9W8AKjPs1wXQJn39U2kzfbcrpbbrbYUBzNS3exDaYP6AsaNSKg7gPGjCeZ3e/7uhRRe8uAZaJOIggL8C+Lelvd0APg3gl9AG5wkAFkAbrKGUegxalPYh/VHeBwDOTnN+9fr5Gf9Ohf81nQlgmYjUQ5s4d6FSqhmaIH8E2nVeAWAugH+lOTYhpMTRBeo8ANUAnrSs8hwLM2x/q27BcOP3+jGfF5GDAN6G9lQP0AT6BmjBgeX6uvayX0QaACyF5in+tFLqHo9tXb+/dNvamQAuhDZGb4c27pfnoH8kjxC7JZSUKqLlWPyqUuqEru5LvqFnpdgM4HNKqVe6uj+EEEIIyQ2MCBPigoicJSI1IlKOpGcuF5EKQgghhOQJgYSwiMzUk0mvFpHZLut7isj/RGSJaDW8v5T7rhLSqRwLbSbxbmi2iwuUlo+TkLyHYzYhhAQjrTVCn5TzIYAzoD0efhfARUqp5ZZtroOW8+8HIlILbWbmAKVUq1ubhBBCOgaO2YQQEpwgEeHpAFYrpdbqg+RD0FKdWFEAuutpprpBy9XX3vrlhBBCModjNiGEBCSIEB4MezGCzUgtHHA7tFRbW6HN0vyWR5oSQgghHQvHbEIICUgkwDZuSa2dfoqzACyGlhJqFIAXROR1pVSdrSGRy6DliUV1dfWR48ePz7jDhBCSDyxcuHC3Uqq2q/vhAsdsQnLA0i0HAADjB3RHNMzcAm4Y12jSYL9spfmB15gdRAhvhlaC0GAItCiClS8BuEUvRbtaRNYBGA+t0IGJUuouAHcBwLRp09SCBQuCnwEhhOQRIrKhq/vgAcdsQnLAiNlzAACPXzMDI/tWd3Fv8hPjGr1540yUR8Jd3Bt/vMbsILc47wIYIyIjRaQMWnLpJx3bbARwmn6g/gDGAVibfXcJIYRkCcdsQnJISyx/incu3LAPf351TVd3I4W2eOHWpEgbEVZKxfQShc9Bq/B1j1JqmYhcrq+/E8ANAP4hIkuhPZb7gV6dixBCSCfCMZuQ3NLc1rX2+Y92HETPqij6da/AJ/88DwDw9RmjurRPAPD6R7vM122xRMHW3AtijYBS6mkATzuW3Wl5vRVaKUJCCCFdDMdsQnJHS1vXRoTP+O1riIQEq28+p0v7AQDPfrANl//rPSz5yZn45oOLzOVt8cKda0v3NyGEEEKIg5A+7bQl1vUiL5bID+vB7a+sBgBs2NOAsf26m8tbKYQJIYQQQoqHsogmkZq7OCJssHJ7XfqN2skrq3ZizvvbPNfHdC9wJBRC3FKQrZA9whTChBBCCCEOjCwIzXkQEQaAmb973XydriqwleeWbce81cGmAHzp7+/iigfe81xvWCCiYUFdU1vK8qC0xhL49J3zbD7jroJCmBBCCCHEQTSseSNiOXjsv+tgC65+aBHqW3JTwDGegVXi/+5biIvvfienxw2HBAebY+hdXQZAE7aZsKu+Be+u34dL/jbfdf0jCzfjvY372tfZgFAIE0IIIYQ4CIcMIdz+x/5/f3MdHl+8FffOW9/utgDYbAkdQVOrux3EaoGoa25DH0MIZ3CzsKOuGdv2N/ke65r/LMEn/jQvcJvtgUKYEEIIIcRBJKRJpLZE+yPCfbtpucW2H2hud1sAkIMu+bLzoHs/Y/qB2+IKja1xMyLcpkeE4wmF7zy8GMu3evuZj775JXzqzrfM9y+v3JmrbmcFhTAhhBBCSpJr/rMEjy/a4roulxFhQzBuy5EQjgVUwplYKKzsqGtxP65+LQ7o/mBD4BuR4g17GvDoe1vwjfsXBj6WUabZINHJGTIohAkhhBBSkjyycDOu/vdi13URXQjnIkeuIUi31zVhzvvbcKCxLc0e/gSNCGfrSd510F0IG9fCEMJmRFhfbtw8ZKJlm1rtfWzu5Ep+FMKEEEIIKWncJnuZEeEMVF0snsDqnfUpyw0h/MGWOlzxwHu48kHvzAxeDOlVmWwvjUf42Q+244ePLcXB5uwEt1fE2bgWH+44CAAY1rsKQNIjHBJDCAe/Zg2tccQTCn9/cx2a2+JoaKEQJoQQQgjpNGb86pWUZUlrRPCI8K3PrsTpt83Fpr2NtuVOn/G63Q2B2rPaBKzaMp3l4fJ/LcT972zEweZktDUTy4GXkDWsES8s34HqsjCOHdUHQDIirOtgW1/fWrMHD7+7yfNYTa1xPPX+Vvzsf8vxh5c+Spk8V9fcllG6uEyhECaEEEJISbPVxbsbNq0RwUXY22v3AgD2NLTaljt9xkHtFvaiFcl9gkZcrUJ40k+fC7QPYBeyVgxBv35PA8YO6I7uFRFb30RXwlv2N2HzPu1m4KK/vo3v//d9z2M1tsbM67NxbyO2HtAySkRCgi37mzD5p8/j72+uD9z3TKEQJoQQQgjxIOjEND+cwjeouLZGfq0WjaCT4KzWiAaPlGhuWJvffqAZI2bPwZurd5sCOR5XCIsgGtZkpJu15IRbX0lbla8iGkJDaxxVZVrxkqfe34YL73pbXxc2LRivfthxhTcohAkhhBBScqQTk4boyyZrhNNO4fQZtwUsQJHwiAgHFcJ1ATzCSzcfwA1PLbfZD95Zu8cU0Qs2aFHu+9/ZYK6PJRRCViGsXyOn/eLjllzAblHwnpVRNLXG4XY2FdGwWb2uhx557ggohAkhhBBScqSL9BrizCt6O/fDXebj/+Q+2raNjuirU7gGLUBh7BeSVCG8cU8jtlgKU7ixp77Vdz0AXHjXW/jbG+tsEeP/LNyMKx5YBCB5QyAQe78EKNOFsCHsnZaKFduS+YStJZkNelZG0dgaQ4tLpoiqsjDqdGtH94po2vPIFgphQgghhJQc6SK9RoTUSzBfes98nP27113XOYWwMxoaNBOFIYQromFbf+NK4aRfvYLjb3nZd//dLkJ4f2OrzbJgeqEdUepljvy+Fh2MuFIICRCN2FPM+XmX65pjKZPeNCEcR3Nb6jWutEaEKxkRJoQQQgjJGUHFqFtE2BB0By15enfUNZti1emNdYrueELh5ZU7zPevrNqJax9dmnIcQwiXR0K2/gbNALGnPjUf8NSfv4Av3DPffF8W0aSgM3+vIWrdjhRPKAiS1ghDCPv16kBTW8q1TArh1IhwRTRkTvarilIIE0IIIYTkjHRp0cyJYS4RYae14UBTG46++SWs3K5N7jIiwgeb27Bq+0HXMs1f/scC8/WX/v4uHpy/MaVPRtaI8kjYdXk6nNkrDOav22u+NsRsg6P4RjqtHQppmR1ELB5hv4hwU1vKdeuhe4TdIsIV0bBZuMPtM8gVFMKEEEIIaTf/ensDnlu2vau7EZi0k+X0+KabhaK51S7MnP7XxxdtwZz3t+Er9y7AWb97DW2x1Da6u0wAq2t2iFH9MOVRu1wLOlnOGRF2E/+GEE45tkPUCuB4LxB9wpwZEfYRwpv2NeJ/S7baltVUlqE1njBF+G2fmWKus06Wa+vAsssdF2smhBBCSMnwo8c/AACsv2VWF/ckGOnElaHp3LZrSpMWbP76vZi/Phl13duQalHoo5cn3m7JYbyvsdUsWwwkI78Vjohw0ACp0yPc6NLvaFiTuPUOIWycv5e4NYpn9KiImoLbeanCIUE4JGiNJfDDxz5IacPw/u5tbEVZOGSmUTMw/NlBs2xkAyPChBBCCCk54ukmy+k/3aKohqc1EnLGSd3ZeTBVCPfSBe/iTfvNZfsb7ZFlwwucEhEOaI2oa2rD9JG9zfdO+wOQjAgfdAhhZ9TZKJbhfD+iTxXW79GyZzijyINrKs3MEm5Ul2lCuL45hvJoyGYBSSgF49JnUuY6UyiECSGEEFJUtMTieD6NTcPNt+vGMx9sTymJbESEDRGZTpe6CWFDaNqFsKMinWWynNu+Vv7+5jq8vXaPbdnBlhimj+iNa84cCwCoa9LEbmU0KTiNyXL1LQ4RnsYaYdwDjOhbjfX69XFe0khI4HevUKFHgBtaYiiPhG2CX6lkH4JW4ssGCmFCCCGEFBW/feEjXHbfQsxbvdtzm/QFNZLrv/yPd23rjIhwWSSYjNrlEMJHj+xtRmBX76w3hakREX5+2Xb8Ze4aW/q0dH3/2f+Wm1XZrFSVhxHRBbsx+azSYkHwiggnrRHaTy9hPLJvNXYebEFDS8y2TXkkhNZ4wnfSXXnYEOExVLhEhI32silqEhR6hAkhhBBSVGw/oBWa2F7X7LlNuiijVXo5fbIpEWHfxGFJAWrQt1s51uxq0PvYhEMHdsd7G/djv77dZfctBAAcO6oPgGARYS+6lUfMtGX/fGs9AHtE2PAIO4VwMn2a9rPF4dMN6daI2u7lAIC9jgwV1eURtMYSruWXDYwcxjvqmlERDaPCEhHWrBGMCNvYWdectooKIYQQQkobI+JppOVqbotj6WZ7gYi0YtKyuqrMHjds0ds1BKq1qf49ynHsIX18m+5dXWaWMN5+oBlj+3dHSIADujXCiDS/s1abcFfuiAj7pSlzUlUWMcXuU+9vAxAsIuw8hjPXr2EZ7lauXZvtdc245j9LzPWV0TBa4wnfKnoRvV/r9zRi9c56W0TYZo2gR1jju/9Zgivuf6+ru0EIIYQUDTvqmrFww970GxYQhqAyIrdf+Nt8nHf7GzYx51U62cC6trrcLkSNdg0hbBXVHz98CM6ZNMC37V7VZWiJJVDfEsPu+lYM7FmJimjYbHd0bTcAwNrd9bbjGGQWEQ6bYtfAmp2hLOzlEba309TqFMKaiK3WhfB1jy418yhry8NobPHPrhEJ2ftV4fQIG5PlGBHWKI+EOjQ8TgghhJQap982F5/881sdfpzWWMJMs9XUGsf3H1mCnQe9rQvtIRkR1oSYkcrMGp3MxCNc6YgINzusEdboaTiUGkF20qsqCgBmNbmBPStQEQ2nFJYw7AjpCmr4nUtVWSQlu0VFNH1E2MA4lDNlnNFiN/0m4aOd9bb1lWUR32gwkLRGGKRkjTAnyzEiDED7sPy8JoQQQgjJDC8BlGu+/e/FOPLGF6GUwkPvbsTDCzbjrrlrO+RYRt7d5rY4Wiylg62lidNWlrO8ri5zjwiXuUSEQyJmlNQLY/Laax/uAgAcOaIXyiMhs69Ga4YFo8KRPu2+tzbY3vsFCavLIymT+mwe4UhywpofTmuE4RH2Ev1VDjsHABw3ym4ZsQr0p755QopHOEGPsJ0yRoQJIYSQvCbhEZ2cs1Tzp7bGE9i0V5vv01efaJVrDEHV3Ba3PZ635qNNl5tW+XiEDZuA4b11CuFuFiE8uKYype2wYSsoC+PEMX0xqrabLoTtFdoMYezMGvHyyp22936R1+rycIoFwWr1MI7lrCxnYPTJGa12eoSdOItjAMA3Tx2Dp686EQN7VgBIeoQBbdKdPSKcjHzHWGJZgxFhQgghxcwTi7dg7a769BvmMc7sAgDwyqqkcGtuS2DLfq0AQx9LFbVM2byv0VN0G4/cm9sStkhn3CaE00WEk9s6PcLGOZZF3KwRYtt+eJ8ql/5pP1vjyuyrZo2wR12T1gh/ueZXea3aMlnOwCqMjb7XN9s9woAWsTbsG14RYa/od5XL8u4VEUwY1AMvfudkLLr+DFs/IiGx9VMh6VOmNUInGg6htQMvBiGEENKVfOuhxTjjt691dTfahVMwvbVmD77092Qe3pa2uJkByhCmv3hmBf6zYFPgY+ysa8YJt76CW59daTvunXPXYOfBZrPdprY4Gi2TvGxCON1kOcvqyjJ3IWyIWGu74ZDYth/QoyKlbUNEtsbipj3AGhE22jPeOyPCTvwjwpGUyXJW4W4cyxnxBYA3LHmYnZ+rYRJ23iQYuFkjDNFcXR5Br+oym0c4Eg5BRLD+llk4ZVwtlMUa0ZGT5QoqjzAnyxFCCCl2MskIkEsSCYVQwJLBfjRbPLk3P70CH+04aF/fljALTBjf6X/RvcKfnjY02DF00fbU+9tw7TmHYu6Hu3DpPfMBAP+ctx6fO2a4vl0cDa1eEeHgQtg52cwQaEZ7VmEpkrQ+AED/nt5CuM0SES63RIRjDiHsZT8waIt5n0tlNDVrhHVrQ1alCF1LP4HUyXLGuvJIGNGwpERtq1wEstNrbY0AW0sxh0R0j7D2nhFhnWhYaI0ghBBCOgBnJoJssUYW73ptLV5Ztcu+PhY3iy9kK3AMb6nRzm3PrzLXbT3QbApVp0c4EyFsxbmpca0MoWaN0YVFbDcUzohw327JSGhrPGHaA6wRYeMGoUUXn90r/IWwX0Q4FLJ7cSujYZsSNkS8mxBeY7HpOK+B9dbAbcKcm0fYaaOwR4STr0W0a2v0bc2uetzxyuqUwia5oKCEMCfLEUIIKVY64ks+E3IViXYTVFYONsdMAZzJd/prH+7CUTe9iJ11zaZAamqL478LN2OJo1iGIXJb48rmEX5xxY7kNumyRiiFU8bVAkgtLmFGhJU9Mgxo4s4aEa7RU6UBmii+/eIjTKEcT1giwpEwFm3cj5Xb65JCWBfG6YSw33UMi917W10ecbVGOCO+APDC8h0pywysQXK3iHUQcWyNVFuj7iKie4S1vjW2xvGr51ZhV729VHUuKCghHA2HEEsoT3M8IYQQYvDsB9vxwZYD6TdMw4HGNltkrKPo6q+2TCKkfhhC2EvYb97XmNUxX165E7sOtuiRweTy71qqmZl9sNgzGi3WiBvnrMDCDftcj+3sr4JWCrkiGrJFUF9YvgN/eU2zcizcsA+rd9bbhGVIxB7ptEwIe/u603DMIX1sQjliTpbTtpv5u9fNG4VkRDgppt3wFcIhsQnO6vKw7foZfc/04xfLOZRHU+Wk1Qbx9Rmj8PUZo2z7GH1zay8k2ufhvDmbftNLOZ9MWnBCGPB/BEAIIYQAwOX/Wohz//hGu9s57/Y3cNpv5uagR/50lTfYPH6OfJiGNcItwggAG/YkhfCvnluF9bsbfNubt2Y3EgmFvt20DBN7G1OzGzip11OBbd3fhPcd0eK6Jm1/52Q55+VXSntEb/hVDb72zwW27U6/ba5DCMNmjQiHgAe/dgxe+PZJtm2S65MRYQPD8mHoHTebgRU/26iI2MR4RSRsy4iR7e+dVdNGQ6ly0jphcPqI3vjBzPEp2zi91wamR9ila/PW7Mm8sz4U3GQ5QPvFSDeDkhBCSOGjlMKSzQcwdWhNl/Vh497G9BvlAOfj984mZx5hPRrrVajDGhEGgK/f/55nW298tBuf/9s7+P7McabY29/YagpFLww7xOqd9VjtqHiWtCXYxWMskUA4ZMmvCwWBQJA+WupnjQiJ4FhHIQm7UNZeu33+RkENZwU2J9YAoZGRw0pZxOG/tRwqayGM1HOwYpug59H9SNg9HqsJYfe+7TyYW3tEQUaE/fLlEUIIKR7+9fYGXHDHm3h11c70Gxc4XR0RzqRowYHGNnzroUWo03PPWm0FxuN8LyG8vc4uZPy80fUtWvvvbdhnpk99/aPdOP+ON33751ctL2zJ2GDFefpuEWEjM4UTW0Q4ZLdGhCRVBVqFsrGt1cJhYKZpc2nDivVcjr/l5ZT1PSu1aPrIvtWa/9bFGpEpVu3rzFMMwFbNzqv3XhFhiF5ZzqVvO+tyW5a7oISwcVE7Mo0GIYSQ/GHFdi311uZ9qVGuzuDu1zumBLAbuYrIZn38DIT4na+twROLt5qlfq27HmyOobE1hoMuBRqAVCHjLP9rpVu55o3d29CaUdYor2MDWhYFIPV8nddfQRPCIslUanM/tGfAMPe1dM3pEXaLlto9xIYQTrWSGJHedGnt0gUIa7uXY97sU/H8t0/SBWxurRHpIsJuNwNe+5nbK/cqhYwIw98LQwghpHgwvgjTPRruKG6cs8J83dER266eCJ6uwIQV49NQLlkTvvfI+5jw4+ds2Rqs7KhrdkQTvaVImx6m3dfYhta4fzYKK34RYbOYhWO+0Qm32iOp2qlpqdDSZfSwWSPEYY1w+d21i0jt/N2EsLVNL/Y3tmJ1gAlkg2oqEQ2HcmaNsIpbN4uDNS+wV/cjLpFkrW0tIux2c2jNwpELCsojXBbhZDlCCCkljC/pdI+GO4O2uN1Dmmu62hqRyfGNj8PQKW6PsL3E6L7GNtRURbFfn/Tm9ljdwAh8ZRoR9hLhQPKmytm//SmT8JQWEUZ6j7DTGmGdO+b2u+uWP7fJTwj73AhO/fkL/p1zILAL+0yeRERCYmbbsJ6Wm8XBegMgHuaIiMskO8DqEU5d9+tPTQnc3yAUVES4LGyUJKQQJoSQUsD4ks4DHdzheewLKX2aIWyMPdy0VL1PVLamMhnV84sIG9/3B5ra2iWE3awKfvYJQPcIQxNlChlEhEP247lpPTeP8NGH9PZsP5dPRELiXlkuCFFblNfb/vGxKYNs0tfr79frvESPCLtF4nNR/dDWXk5b62DMyXKMCBNCSEnQ1dYIK5lYB7Khq7NGZHJ8p7Bxiyq6Pb01PsaeFiFcFkAIe7XnhTPa+4cLD7f0wT0i7CTpEZbMIsIiNtuAmz/WKiKNaOp15xyKi48e5tp+Tn//9fNJJLQ8vZlYcqzRe7Ett3+G3zx1tO28vYSw19MALWqt/V5VuOQoziUFJYRpjSCEkNLC0J75IISfWLwFI2bPwbYDHTNxr6utEW5Cv6k1jicWb/Hcx88a4VwWkmRhiB4BIsJKKSzVC6KEQ4LWWPDrY72Wk4f0xNDelbZ2gSARYT19mqSv+mc9XqaT5QzBGA2HcMP5h2Ha8F4p24dE8PRVJ+K+r0z37UcQBNr5nPHbuRj3o2cyskZYJzaGfCLCImITv17WCO/JcsmCGumKibSXghLCTJ9GCCGlhRGt8pp1brB08wFs3teIV1buxL3z1mNXjmeWA8D972wEAKzcdjDnbQPphfDs/76Pm+Ys75Bjex3/+ic+wLceWozFm/bblpuT5fSH7G5RRWd7z119Ekb36wYA6FNdZi73yhpx39sb8I956wHoQjjLIJjALriMbgWNCIfE3fphJV0eYSdW7R9xiOYTx9S6bC+YMKgHThxTa7t22WAcbs2uhoyr9UY9JsA5I7shQSBrhFshDm3/ZNS6u0v55lzCyXKEEELylngAa4RSCufdbq8g99LKZN7heELlJKJs9CWdXzRb0lkTHnp3EwDgh7MmdMjx3fIIG1XfUvy5urJJRoRT23MK4VBITNE3fWQfPL54KwDvzAErtydvOCIhQWsseNYIZ1+tn38yIpxGCFs8wuk+mxRrRJqIsC2a6jh/txsDq7BeeP0Z+Oq9C/Diih2+ffJCHOeTi4iws3SyFhF2t1FY8fL7hkJGHmGgW0XHStWCigiXMX0aIYSUFMYXtl9EeNPeVKvCbktEuMUhoN5euwfvbdyXcV+MVF7ttfJuO9CED/RH/laswjHmCPike4yfLbc8s9L1+AZGQQenOHN+Gm77OsVjWARnTRwAADhxTF9zuZdHuNxyzLBI1t/9AnvUNRkRTn9NRYJWlku+dmo7t6wRttRjjh3KXYSw8/r72KrTolkjku+tn51ngQsdLxuLc6+Q2KPAmU5wM3zZcaXQPR+EsIjMFJFVIrJaRGa7rP+eiCzW/30gInER8Z7+mCWMCBNCSHryZczOBUEmcC3evD9lWdQiHJrbkt8ZSilceNfb+MSf5mXcl7juoW2vEP7Y7W/i3D++keI7tZ6r83vuo53p88Rmw51z15iv3cSsIT69BFIya4SbNcL+PhwSfPG4EXjv+jMwtHeVudxLXFnFXzjcDmuE2IVn8IiwkbFE0lsjLBuk+mVTt7d7iO3nf9ZhA1AWDmF4n+Q1cgrhzx411L9DPoScleUS3n134lUkwxkRDondFZzp8xjDx6xZI7rYIywiYQB3ADgbwAQAF4mI7bmMUupXSqmpSqmpAK4FMFcptTfXna2IaPkb/XLtEUJIKZNPY3YuMO0ISmHtrno8rNsDrOyt16K/1u/iMsvj5qa25HfGhj2NgY/tFHcx0xrRPgz/srNCllXnWaOfu+tb8JvnVwFwjxbmClchrHfKEOnvrt+L7/x7cXIDfbm7NcIuXLX8uoLeDo+rlxAujyRzNisV/GnwoQN72N5rEeHkMQzvab1LSeOlmw9gtX7TYZxSKJR+spxVTDqjn+msEc6bjME1lfjwprNx2OCe+rapbZw6vj9+fv5E3z55IvC0RqSLCFvX2yfDOQ4hdnGcafpDLWWd1rd8sEZMB7BaKbVWKdUK4CEA5/tsfxGAB3PROSeVZboQbqMQJoQQD/JmzM4FRiKDhALO+cPr+P5/3/fcxqpV6luS3xPNlu+M5dvqAABVZekLY7TFPYSwjyjaWdecNsXnoJ4VAOweWMAuRFssou9bDy3Cm6v3AMitEN7f2Gp775ZH2BCfxrrP3/0OHl20xRTIxh5LHVaPSEhSI8IeashLJFnPNZFQKZ+HF4NrKmzvQyI2H65SCo1tcdco73m3v4HTb5ur2WmULuiQ3iPszBphJW3WCA/xGQ0ls0m4kW4CqReC7PMIh0NiWj/8NLOWQs5yzAz7GhLtmioFdOvgyXJB/qIGA7Degm/Wl6UgIlUAZgL4r8f6y0RkgYgs2LXLvV63H9Xl2sDlV4aQEEJKnLwZs3OBEWm74oH3bBYHt22s7K5PRlutQtjwC1dE0wthp7e4zREdddLYGsP0m1/Cj59Y5tnmjrpmVOgifK2jLK4tSmc5p70NSS9rWSR3le027rVHx/08ws51CfOmQHv/tX8uSNnXOQnLI0GA5/W0CuG4UoEjwlVlduEkYhfhCaV9Vn40tca1rBGQlAIUblgnGjoFv5tgtYpEryisUbbYK6uGs90pQ2vS9NKyn9UaYbn+6bzQkVAyR7JfxDeUkj4tM0TE/J3LB4+wW/+9LtV5AN70esSmlLpLKTVNKTWttjY1PUg6DGsEhTAhhHiSN2N2LnCdhOVY5hRcI/pU2YSwNZJoiKkg0bQWh/Ay+uJcbmB4Tv1m8x9980tYu0vLxOAU9tZz9ZrAlNuIsH2ymHtEWPu+NXIMG5fNKzp71amjMXPiAMRValour4iwdbsH5280b1ysArCxNY4t+4Plb652RBAF4kifptJaLBtb41oeYUmm8vKjxfJZOgW/qzUiTVYJIPm5e00mtC6eNrwXxvXv5t9JHaNqm4H1dy1d5DtsE8KWNh3baV339hAH6aNx41kRDWP22eMz2j8TgvxFbQZgdWUPAbDVY9sL0YGP2EIhQWU0jKY0d3KEEFLC5M2YnQvcUjs5v6yd7/t2K7c99rZaFVrjRhaK9Md2Cl5DDHpFJg0hmc5n6dYvwH6uzry0BtkK4Vg8gbtfX2uLcjujok+9vxXLt9bZljkjwsYUKMP/60wld0htN4wb0N2sCmbFS/BZRea1jy7FbS98qLWdpRm72ml7EftnopDeYnncLS+joTUOQ8+lE4jNluuaGhFO3d66jXdEWBfCASLCInaLQ8o1sOAICKMtnjA/m3SXPBJORnrFR+iK0xrh0+b4Ad3x1RNG2paFLBHhkAguP3lUmp5lT5C/qHcBjBGRkSJSBm3gfNK5kYj0BHAygCdy20U7VWVhRoQJIcSbvBqz24troQanEHZs45yMZSvTq78Okle4xSGWjMffXtFQI6uEV15cJ04hbD0PrwlMmaahMnh00RbcOGcF7nh5tbmsocV+fk8s3opz/vC6bZnhBXbmGDZEf0LZRbs1Q4MzBZyz7/+78gQAqZ/nln1NtmNkSmpE2H7shFKmjkgXqDTPR6VaWaw02yLC6a0R6SrPAckJfl4eYed+VrEe8cmvpmWNSG7b1BZHhS620xXXCIdC5nH9hK5zspzfE5hnrz4JPzrXnhs7JMnPv6OLSqY1XiilYiJyJYDnAIQB3KOUWiYil+vr79Q3/TiA55VSDR3WW2gT5pg1ghBC3Mm3Mbu9uEXinIuck336dCu3vV+xrQ5lkRCOGtHbFJ/ZWCMMjeBV2MEQjREvM6zH9mf//nXsa2jF9rpmc51XRDhIOjk3jPZ21CUtI14+2a37mzCoRitJbBzOjAjrXYlZUslZBb11MpXzhsEZKZ00pCdqu5eniC/DGpFJxTMrzslV4owIW6wRlVH/4JoR2UwohVN/M9dzO2ukPchkOesmXr8vRiTYWbXNq91M8gFbL61Smv2goTWetriG3SNsWeHmEbauziJrhEFHl1cP5EBWSj0N4GnHsjsd7/8B4B+56pgX1WURNNAaQQghnuTTmN1e3IKv1i/8tngC+5vs2Q9qu9kjwjfOWQEAWH/LrKRHOIBW9fICe+WzNcRQ0C/ubfub0dwWx4ptdSnrbKLGlvHAv83mtjieXLIVnz5yiC0iZ2TJsH5/eglAN9uAMzrblrDaTSzRUEtVNWfE2zV7guURuPP4zmNGQoJTx/fD88v9K6ql8wjHE8AfX/4IQPIp80lja/Hah6kTQgXBskZYI8LO80yXNcLr96Ui4h8RduKXy9iK6KnJrFSXR7CnoTXt71c4lLRG2KwZDiUckmA3m359TLaVfD1teK+s2/SioEosA1pEmNYIQggpDdyiglZRctWDi/DMB9tt650RYSuGOFMKuPv1tVi65QB+f+Hhrts2e/hIvawR6YpPOHlyyVbsaWhxXWePCIdSlicSCgea2tBLt4Hc+uxK/PnVNfjaiSPx19fXoXdVGU6f0N/crzKaOtm8weO71C093OOLttjyHhvXQEGhLWYVwqlR4+Q6l0ljkjoh0owIO/rRvSJiK5TihZFhykDELgwXbdyHt9dq80ONtKxRr89MP58gNyAGzqZcrREBIp6VevYLLxGe4pW3XEc/8RwSpJxQ0MwMYbFEhC3LnacozqwRGWpi6/bG9Vn2s7MC3xRkQkGVWAa0uzdaIwghpDRwzxqRfO0UwQDQxxERtmKI1a37m3DjnBV4YrHXPELvCVXWSPH972zA4k37bcszeZRr5Ad24vWYe+PeRnzn34vxq+dX4fAbXsC+Bi0a/udXtQpxRrGO/U32jBBGaw0tlohwi/vTVTdHwjMfbMf1j39gih/TP63sNwYhEVPkBYkIh0KSEvk1oqtOIS0WEeaHmzXCmT7NwLhB8PrMtPRpAbJGxOxRcStuTVt9xF43TkYU33kdDBy2bZsw9o0II/UzDiyErZPlbBFhO0FuBvyw7m+8ri6PeE4cbA8FKYQZESaEkNLALRqW7jF1n2rviHCyUlr6Yzd7fNdYJ9/98LEPcMEdb9qW+01UCkrMwyMMaBPfnnpfE/DOlGKGKLVWdTvQ2IZfPrsSQNCIsHe/DPHTHEsW1GhzWiMMIZxwRoRT27NmBzAwMjAYj/p/MFNLnSUAgsxDTMkjDLEJT2vmKSPq6hVpFDMinM4aYckakWFlOe+IsC6EPX5ZnX7eUbXJ9Gl+EzY1a4R9324ByxhHQkkThJ+2DTluWtrjEc52gmjgY3Vo6x1AZVmEleUIIaREcIsIp5vQ48waYSVoUYY572/D1+9/z3WdV+W4lgytEX5Yxb5bc0aU8Nw/voGlmw+YQsPwKVvF08/+twxr9NzFjTaPsFdE2Pv6OiPC8YSyeYStHtI2x7V2yyUbDklKRgrjBiSe0NJ6GRrVmpHCj8qyVGuElbrm5HlXpY0Ia8f08oUbtPh4hN2EXJD0aUZE2O1vAEi1DX37jLEYq+cSjvqY4EMuVo8eQSPCITE/Rz+hm1pQI7O/Cevvilf+6VxRcEK4W3nYTFpOCCGkuAmSR9iJ1+PTeEKliFivbecs9bZMtMYSONDUltJWph5hP6zix+3RuFXovrV2t1lwyq0SnNUmYUSE73trPV5d5V4tMBZXuPGp5dhhyWLhpNlyHOt1sIrVZ5el2laciJtH2Gzb7knVdkjbZMqNg1OAH2xOXg/Dc+wVQdXOB+kLcLQldYnz+G5CzqpTvUS4IYS9brysfxsCQTQcwvGj+/q2aWydrTXCFhG2tWg/nhFJt77PBJs1Ih+yRuQTvarKsL+xVa/40rEXhxBCSNfiOlkuoS2/5811rvt4RZBaY4nUiLCHpq7wKWW8emc9pvzseXzvrHH29uOZZY3wwyoO3aKR1hy9e+pbURENoaktbj6it4pnq5AyhPD1PmWg31m3B3e/sQ6rdhz03MYaEW6L2W0cmZx+WNw8ws6IsJv08sYZNXbuZY0IG+uMm5fJQ3ri/c0HLOs1RZfOkmkN0AVJn2bdxkuEV0Y1iRY0Imxt1yvlGuBu9RjWp9pzeyvhUCiZNcJyXqmT5eziONM/Cfu+jAjb6F1dhlhCoa6JUWFCCClGtuxvMiegeUWEX1yxw0yL5sTre7MlFk/J+OAVXS6Pegvhj3ZqhRWetEy0e2j+RlMs5VwIu9g5rEJ3d30rKqLeEWGrEG6JxVHvMUnOwLiurtuJvU8xhzUiJJLR+bt5hA1hHE/AIYSD8/D/HYvJQ3pqXXbsXq+L1itPGW0uMzJzpFREMyLCaSyZViHs7K/b76M9fZq7FEsbEXYRwka7ftfMbdX4Ad09t7fi9bTDzRph3zT7yXIdkCjCfqyObT73GLOBvVLOEEIIKWyOv+VlXHDHm1BKYX9jW8r6eEL5ptHyEgEtsYRLkQx3IVwR9W7fECbWx+GzH12KhxdsBhA876sfTiEbCQmOH93HXGYVZnsbWszsB4ZX1cjzq5SyCdqWWMLX8mDFz09tjdo6rRGZPK0NhSTF+mFEu42IsNFe0GZDIpg+sjeG9q7S9nOsP9jShpAA3z1zLKYOrQEADOlVaW679hezMHFQD/N9SMSWbcPKhIHadla7RUpE2DVtXHoPbGUaj7D1shmT34ym/Iq6uOVFHtE3aERYYFxR+3k6fNHtTJ9mjTYzIuyguz6z0VkakhBCSHGx9UCz65wQpYAeFd6z3D2FcFsitayxnk/4zdW7bcsrfCLCphB2fA8ZAi6XEeH73t6A9zbux0ljazG2fzJqZ7UT7GloNSPYZsYFXSX98eXV+GBLsmCHUggshN0KiohjXTzhqCwXMMWZQUhcSmYrTcDHldIiwta8tQGyfRgaMJndwN6fuqYYqssiEBFcddoYPHv1iZg0uKfZH+2nGDtD4O4RHlxTifu/ejQARwq5DAtqlHvcdBk3N87sGwZumSyMa+WfNSJ1styAHhWe29va97BDpEaEAbTD3uCWR7ijKDgh7FYdhxBCSPHxvm6PcJIua4TXd25zLO4a5bxxzgp87u53bMucHuGaqqTwNiwQTt+o8f3k58904vUlbwjd6x//wHzvFTnc19hqRrCbHVXZnl66LWX7219enfb4QHYR4VCGHuGQiM3vbNAWV4gnVErWiCAY/lKxCmgAD112DAAtettNnxwWDgnGD+hhPvJ3lg82IsKNHtaIqvLUGybn5+QWIbdeo0qPm65kHmH3z2G4i683ZAphv6wRqZXlgorNiK2ynGV/l3O2WUwCtW7vo9vrjqDwhLCeKJtFNQghpLjZ3dDqujyhlG9eVy/B6BYR9sKZTaJ/99SImdM3arzPxBrgJUAu/9dCfLDlgCnADza3ec6eVyop3M1iFLo1wi2V3Lw1ySIefqLdTwi3WD3Clslyzvyx6TJohEKpHmFA+46P6+I/Wcks6GQ56NvrP/UXhv0hoVLLMIecQtiyr1tmC4MyF8EZpHy39XfE6+lDlVlZzr2NMyb0x+yzxzuOrQthv+sudkvQxUcPS9vfnpXa76EtImz5PL575lhcNH2o/TDtyCNs3ZxC2EE1I8KEEFISuM2KN5Z7CRPAzyMcT5sP1jyGQ2j7VaszMKwS6YovWPHLkfrvdzehV5V23IPNMU9BoFTy8brhZTUiwr18cioD7kLOwO1aGZc9OaHNOVkus8faIXEvGNHUFtei4FlMlrO4Gowl+nuLHcFxo2N8ZOJQzwLxFHFe2asyFW5efnRj+Ql6SjQ3DI9z8tjp+2BYTMojIZw4pi9uPP8wAMCDXzsGT33zBNd9DOuIV0GNmqoy/OITk1OPY77OdLKcxUPN9Gl2DPM4q8sRQkhx41VRK6H8K8OJPlHHqUdb3NKneeAU2n5fxp86cggeWbjZDNB4lcR1w6/dZVsPoFdVFOugR4T9g3zasfV+GynNelelEcKRMAD3wJLbtXJG1LX0afZiEtZzioQEflPbwy5ZIwBNCCcSCpFwsr3A1giXqC5gf5TvtA4YNz5uEeFMhW2mBSC8IsIigleumYH+PbwrJXpNzPP7XdFKRisoBRw2uKcZRT52VB/PfYzDhEMhi30k3U1OOyLCtpupzPbNlAKMCGvanUU1CCGkuPGKCMcTaawRIXHN3PDG6t2BI8JuInztzefgqtPGpCw/b8ogAMmIcLqCH86+erF5X5MtIuy1rVIqpb9GTmOrt9mNMh9rhFGlzorzOM6CGk5rRLorEXLJIwxoVe8MX7RT2KbDKdTcoqRO64DxmTmjyYLMhXCmBSD8soyM7FudUjI6yLF9I8KifS5xpTLO72u9MUm3b7uyRthENK0RNnpWRjGgRwXeXbe3q7tCCCGkA3EKpN9+dgoATbT4TZgLi7g+8v/zq2sCe4TjidTtQiExvZJWuul+UzNjg4uw+9VzK1MyUwD+QlhEe+QMaE9BvQSBQqr4NqK56UScXxo6Z85lIPXcXlq5Ey+u2Gm+d6bNSndTEAq5X6/mtjgSzqwRLpO83JCUn6kRZacQNrrp5RHOhI5+lO+H0X//PMICpWB6sINgXB9rCe1MzjJTMWvtftAcx9lScEI4FBIcUluNXfXMI0wIIcWMU0QZkbOEUmmsEd6lk61V0PwwRPjtFx9uW+4mhI3ytIZwdHNG3PHKmpTMFIC/UA2JmD7Rz04b6itanHYMYzJbOiGai5zHL67YYb52Wgn8PifAiAin3nQ0tSYQi9uzRgQl5FBqSWuEJSLsiIQ7I8LWqHJ7RFxnI867ALdtkLz5CBq9Nq5PJJSM+Kfb11Z5LtBRLH3Uj3HcqD4Y2LMyw70zo+CEMKDN9vRKbk0IIaQ4cIq7pBD2F3iaNcL9q9fITZuOeFyhuixsprAyDucnhA0ONrfZIs/NPlXJ/ESeQDvX7hUR3PyJSZ4CS7lcD6OwRiLN+RqToNqDNbqaUMpujUgjxMMhMXMeW9nf1IoNexr1ks2ZCaqkDhbHe2uf7RfeuA5fOWGkbR8gvbD9+xePwp2fP8KyfRcq4SB9kKQQDhoRNjRXt/JISlYOn8ME648LxjGckxo7goIUwt3KI2lLRBJCCClsnPYEw+4QTyh8uP2g534hSXqE/3LJkXju6pPMyGo8oXwzJRjEEkrPiWv/AneK3hvOn5gSVV20cT++eu8C873fnBZ/L6dAKYWqsrAmCH0UmdNGYvh7E8pd7BjXoF/3cqy/ZVZGuY+dWFO0JRJ2ce+X3QPQztHNI3zlA4uwasdBNLbGbZPlAlkjUny+qb5Z5/n26aZdhxnj+tn20V67Y/TllPH9MPOwgebyrrRGJC0e3ttYfdlBI8LG73BNVdTcJ12kvD0eYaPt8oh3YZtcUZBCuLo8zIgwIYQUOc7orfH6rtfW4BfPrPTcLyTAHRcfgZkTB+C08f0wbkB3fOWEkYjoOWu9RN9HOw6aEcx4QtkeAxs4LRfl0TCiLolj5364y3xtLb9rcMaE/jhqRC9sO+Bd5c3IX2s+ivb0CKuUiYVG9dVEQrmKEKMQRC5Em/VGIOFIKZbeGuEvlrVsGakeX/827T5f40VGKbksYtovbZ0bmWaN6AjSpU8zbjKDRmrr9N/hnpVlrunT3I+TvTXC6JdX1b1cUpBCuKEljn2NbVizq76ru0IIIaSDMPLIGhivn1uW9KS6PToVEUwZWoM7LznSTJNlpIyK65FeN8747Wt4fPEWy7FDKV/2zmhyZTSMcJpoqltEuLosjPEDevjuB2hCMjkByn0bpVIjwnsaWvT93a0RRgamdAUvgmDNxBF3WCPSERaxTXx0dqe5LZFxFoYUn6+x3HL9/Cqv2fZBcI9wv+7ltuN3Bn31/NaHD+tlW+7rjJDk70tQ/3Wd/jvcszKa9sbMwFZZLsOLYmxOa4QH4/QZhCu21aXZkhBCSKGScMxqd/vi/c4ZYwO1ZfhtY4mEb3TqsUVbEYsnEE8kXEWi84u5Ihr2FJM7D2rRXi8rn3PClhMjTZwRcPYTHs6o6l69Kl884b6fEWkL641nWvDAirUEcCKRWUouEbtH2FkJr7ktnswaEbiynMMb7CLc0t0AWO0VQc/n0W8ch99fONU83n1fmY6fnDch2M5ZckhtNzzzrRPx/bPG2ZaHHdfAilbW2p43OR1GFpKaqmjSqpJup3ZYIwyPPa0RHpw/VcvZWNdEewQhhBQrMd2eYOAmSNJF9gwMcRJPuFcDM3jtw1341fOrUqLRSneEOq0RlT5CePpNL6ElFjcFsZN0GRtiCWWLsHpbI1KF8L7GNsTiCX3yWuo+hsBIJ8b9GFyjzea3Tmoc0qsqs4hwyB7NNto00Lza2uugzbrlArb+BFIny6W0gaTYC3rcIb2qcP7Uweb7E8fU4kvHjwy2czs4dGCPlL+DFHuIBcNyA2RujampirreWLjRHmuEMdmzMyLCBVdZDgBqKrU7xv1N7nXoCSGEFD6JhLLZDty+tP0KQlgxvrTb4irtl/KijfsxsGcFImFJiUI6hXBFNOQrJsb96FnPdW4FQ3pWRnGgSfNjakI2WLUwt7zK+xrbNCHsE9luj0fY8Fq3xhOojIax6MdnoCIaxsrt9qe1nzpyCJo8qsE606cNqqnEks0HbNuEfUSdG+KQvm7p09JNDrRHhDvO69CjomNkmL/OT17zTD//ymg4+XuYZtf2WCMMu01neIQLUghXREMoi4RwoDF1AgIhhJDiIOawRrh9mQbNg5vpl7IzImzg9AhXRMMQ0aptpcuQ4KTJkVatV1UU711/BkZe+7TWh7iyTXbzqyzndux73lyHf761AX2qU8ssG0I4U4/w+AHd0dQWx4Y9jWYUMpZQqIyGzFLBzn7++tNTPNsLhcRWuGNIr9ScsdYsBenSsQHJzzo1J3Bym3QC0Jpxwti/MhrGmRP744nFW1Pay4a3rj0VVdHcyjDjyYVZjc+lkyFJTmIMKlDLIyG0xBIQkcAeYWvbmd5vteh/G2VhWiNcERHUVEaxn0KYEEKKhtZYAg/N32i+j3tMlrMS3BqRfJ0sueuxsdKitW4iMTUirFsMsoisOoVwVVnEJh5iCWWb7GasC4cEg3pWmNvFE+5C+M+vrrHtZ6XcQ7S68Z/Lj8VfLjlS2y+SjIBHLensQrbrG/xaOLc9c+KAtNsEbdMZuLRHhANaIyTZQCQk6N8jed3v/fL0jPrlZGDPSvRMUwI7W/xy/dpuCAJe25evmYHHrzheazugR1hsrzP7DJtjnRcRLkghDGg+FVojCCGkeLjrtTWY/ehS831b3C6E3TRb0Py3Yossaz/9fKJG1ggDIxCZ4hEuy04IK6QW2jCKdyT7kLAVqDCuxcyJA3CnLkwBbyFsEBJg3uxT8c51p5nL0kWErVHkkX2rUaMXEimLhMx9oh62lWwjpb+/cComD0kt8BF4cpbj+OJQwtZTzeTzMq9/OCnnZoyrxdj+HVv6tz24lZV2rgOCZ40YXFOJqUNrAFhuJNPsa7uByTIiXMGsEd7UVJaZPipCCCGFz54Ge3Ajlkg4hHB7rBHWiTt2YelG3Csi7LRGGIIyi1LFTt+sUwi3xRUaW+OWyUn6Codvta455puPOBwSDKqptEUzxVwXsi/Q+cqJI83X0VDILNlcFgmZ+0Q8ovWZRHBbY8lrEAmFXPfNNC+vaQuA46c1j3Bgj7CY1z0SkmR+4Yx61Pkkbx7crRHJ15mfSUi827ZhsyNldowWMyJMa4QnPaui2Hmwpau7QQghpINoiyfSWiOy8QgfObwXAODEMX09tzc8ws4vcKfNIKg1ontFBOMH2COIbtYIJ69/tNuM2oVcotpuOKPW1v2MvLMGXv2utvQlEhaM6FMNADh38iBzH6v4tx4jE3FlCB7Ae2KaGXkM2GxK1giXiLBbERTXtmC9aRBXUV1oSJafVXIfo53UdY9cfix+o3vC7XakzI5jpGsLUgWyvRSsED5qRC+s3dWAbQeaurorhBBCcoDzyzLVGpH6ZRo0/Zd132kjeuGDn52FMyb099zeK4+wE68JYk7c1nYrtwtfZ0TYwDk5SdIcL+qz7umrTsR/v36s+d6rnUpLX6LhEIb1qcLyn5+Fi6YPs3iE3W9SMtEuVntISNztL36pwNzw8gjbIsJpJ8slrQVGexFLgZWCkcFpOppN1pDk5MPUfaeN6I1PHjnEtl2AbqRwynit1PWUoalWmVxTsEL4CL2KyrItLKpBCCHFgPPLsi2esD0WdxNYQSNGzowB3cojvlGqWNw9a4QT58QxP6zHUwq49ZOTbesPH1bjup91kpzx3q/vUR9fZb8eFThyeG/zvdeNhDUibESYqxzV6KIeEeFMoqXWiDAcVdwOqa3GvV+ebjtvpxO6Vq/mZiUZsfT2yaZNn2b5ab3+SVHtu3uXY3xm3zptTMo6W/S+HUI4YJVq7XWGhzlvyiCsvGEmRvfreB92wQrh0f26AQDW72no4p4QQgjpCJxi1E1gBZ305BYN9PtyjicUImHBmP7ad81F04f5th9ENDuP16dbOWaMqwUAnH5oP3xjxmj3tp2P+uEvQpw3B34px7z67RWdtu5jnWzoFbmf6ZIFwopROEHbz77uS8eNwMlja833bj29+wvTUpY5vatuXta0JZYtYjo5udJqlclvJRwSwfpbZuGKU1J/p7LJGmFr27SVp4uqW15ncb0qOsEfDBSwEO5ZGUVlNOw7QYAQQkjh4PxOTvEIu1ojMvcIG+LZNyKsZ43o170C62+ZhfOmDErZ5vKTR6W06Yf7DH6NI4b38ozOGf206lnfiLBTCPv0yUsIVfoIYSOKbE1t5ZXd4/aLD/c5OtBimSznvNERl/N20q9HOWZNHujYz/2nlbQlli1tGZvaPcK+u+c11q5nY8ENHhG23sRmfpzOomCFsIhgYE0FPcKEEFIkOIVQWzzhKLGc+m0a1BrhNpkrbUQ4zTf97LPHm6/dLAYVFqHoZWcIUq7Wuc5rUpmBc7Kcm5A0FiUzLNjxjwhr7ZeHk55Zt0wEVWXhtDcqRgUxZxvWdgzSpQJz7ucnWtMKYct1saavy3ePcIB6I7Ybrmwm/flZTuzbub/ONwpWCAPAwJ4VjAgTQkiR4PyudFZ3c5voH40EtUYkXxui1UtMKijPynJehF0658wCYW1NOZb5PaI2mlaW2K7vZDmHKFc+MWGvw/oJYatHOGwRiWZ/M/EIt9mzRlgJO847XSowZztOr7Ct7bQFNZKNmdaIcOF4hP2wRYTblTWiY60RnUWBC+FKbNtPIUwIIUVBijUiQNaIoGmwMo4IB8saYeA2+arS4nEUcT+gW3Rt8pCeNiHqtEZ4NGXijAhnQ6Uu4t0ugSmEI+7ldo2PJIggtqdP87dGiAC9qhzlol0O4fx83Xrhl1nDuW9yslzIXJHPwi4tlq5nkzUibF6DdIdxt8vkGwUthAf1rMD2uma8s3ZPV3eFEEJIO3GKi1igPMLBvmHtHuGQvsx738wjwi62jZR8vqn7JaOXyZVPXnkCfvGJSSltJwVhmqwRKZPlfLvuSjddCH/+mOEp64yIejQcMkWv2w1LkKtn9Qg7z8nNG/2DmeMxa1LSE+wmSJNRWx9rRFpLTXJfa0GNQokI+/WvvVkjzBuUNNtZm87nvMup2bsLiLj+1/HZu97G+ltmdXFvCCGEtAevyXKvXjMDCaU80mBl7hE2RJufBgjiEbbitq11mcBdGBrLnLtbI90pkVKks0YEnyznRVkkhKU/PdO1yIdhAykLh2z+WQNrBbx02CLCjnVGOyP6VqF7RQTfnzkOlWVhfPH4EZizdJu2jwBj9CxSZjuOSLBr1ojAEeHkBDm3AiuFSK6sEX7ZSAD7720+X7aCFsJGLmFntR5CCCGFh/PLUrNGhDCir1bVbE99ajXRbCrLhQMotZh+7KC4WTScUUe3qJixyClsrZPvTOHhsp8bqenTvLf1QgToXhF1XWf1CLtZI7wm4LnhlwnDuCZVZREs/elZrtuFRPDNU8fgmEP64MK73rYd3yyH7BoRTiOEjZ8pEeF8lnSarQYADh9a47mN9Xq0JRKe23lhXP9Emt8r65XK5xuIghbCpx3aH5XRMCYM7NHVXSGEENJOXCPClmVudoCg1girgIm0MyL81DdPQENLzLbMTVjZIsIi7tYIj5K9bsdWFpNwJlkj3GLCTnHsbM6vfWONJoS1167WiADq579fPw6f/PM81z547W975K4f+5hD+rj001uQp/OWu3uE8z8ifOKYWsy/7jT061HhuY31s03xXAfA+KzjaZSwPWtE/l64ghbCADC8TxUOOgYkQgghhUeKRzhhj8q6+RmD5hG2fg+HTCHsExFOKIQ9RPZhg1PLvrpmJnD019XPqi9y9sWqMYzXyUwT4vtIu2elPZLrFxH2asVPtxjNRSNiXktbBcCA6bUA4MjhvTyP6XWjYi+y4t22KWZdJ1mmiwgnz8HMGhHK93iwhp8IBpKf+Ylj+mKqT+TYc3+9gUQG1oh8pqAnywFa5ZEXlu9Ie2dCCCGksNA8wsn3btol+GS51IhwLrNGVOo5g//vpENwpV7Na+Kg5NNKMf/TMKK7SY+t8/gqZVuzrTQR4RQhHOgM7Pi1bwggq0fYGmDNNteuU2Z69SFoOWe/46ezRlirpyU/o1DeR4QDoZ9E/zSC2Qu3SYyFTMEL4b7dtDrjr67a2cU9IYQQ0h6cIiMWV55lfA2Cpk+zbhYOGhHOQAhX65PKeleX4ZqzxmH9LbPQu9r+2Nm1OY+opWtwx7JIXE67R4XWh5oqd29vJvidutG1qNdkOfNGIzPVmK6ghkHmEeHUdWmtES6pv7QSy4WvhK3n057900WEC4WCF8KfnjYEAPCVexd0cU8IIYS0B+f3als8YbNDuAmjoN/lVmETThMRVirzrBHV5RFb21rf7ILNL9WX89xilklMyrRGKHMfpzXijAn9ccr4fgCAmhRrRKpgufLU0ejbrQzTR/Z2PR8/wWcIIKtH2D6Bzf4zKM5jBrJG+LVneoRTt7JW/fPY2fxpeoQDPn3Id4zrkU3qNOt+xfIgvuA9wkeN0P6IB2QZ4ieEEJIfxB2CLeYQo34ligHg0mOHe3qGrbuGA0Qsnf7kdBhC2JoOLMUj7HK45EQs+3KbNUIXwNbCEqk5d4HGVi0nb8+q9NaIqUNrsOBHZ7ifTBqUKYTFPEf3G4BgQktEO7egEWG3ctle7WrbpK6riHpXzgNsOtjuES4CLWw9n2wws0YUiRIueCHcu7oMRwyrMQchQgghhYnbF6trfloXvnjcCPz0YxM919vyCJspv7zbyzQi3K1cE1b1lsnbfsLOWWLZySTLhLyUDA9IFWQhETOTRbUj92+un2AbweqyiMUa0Y6csSERxF3yRHvdh9izcXi3Kz7bpIsIJ4txWD3C+Z8+LQhuUfxs9i8pa4SIzBSRVSKyWkRme2wzQ0QWi8gyEZmb2276060iipXbD6Itnnk+PEIIKTbyfcz2IuYmhF0KYThZf8ssXxEMeBXUcG9PQRPCGXmE9WCMNa2a89Gze0RYP6bj1Mf0744bLzjMts7w/vbvUZ7St5AIGlu1Y3er6NjAkNUaYUZdQy4iP+DlM3ZNtUYE8Aj7CVOfNG4ZRYT118UTEdZOwutG7/9OPgT9e5R77h80j3ChkFYIi0gYwB0AzgYwAcBFIjLBsU0NgD8B+JhSaiKAT+e+q940tMSw62ALfv/iR515WEIIyTsKYcz2wm2CmNWX2Z6JSrYSy2F/j7DRj8wiwpr4tEaE7T5e/8f8bsE1ozCGYY04a+IA/O6zU3HlqWNSRaLFGtG9PL1H2EkmkU7jYwqHLNYIa7RbXx/Yv20IVsdyT2tEwIiw3/HTCmFJ/rRljfDdq7DwutG79uxD8cYPTvXcL+kRLg4lHCQiPB3AaqXUWqVUK4CHAJzv2OZiAI8qpTYCgFKqU1M41OqZI+av39uZhyWEkHwk78dsL1yFcI5CcDaPsCm83Ns2+pHJ5ChDCDe3xZPHcYnaGhgFIIwlbpIibAoO7b2I4ILDB+uWBPu2IREMrqkEAPTuZs9WkWu9Yk395pY1whBIQcW116N6z4iwBBPCfscPGhG29q9YIsIGfpPl/P7ugpZYLhSCCOHBADZZ3m/Wl1kZC6CXiLwqIgtF5AtuDYnIZSKyQEQW7Nq1K7seu/CrT08GAIzoU5WzNgkhpEDJ+zHbC+dkOa9l2WCNJietEe7bxrKICJ96aD98ZtoQ/GhWMvhuFXIXTR9qiqhZkwbi80cP0zum/XATFX7WDLcMC7d9diru/sI0UxB3FEZPQwJXa4RhEzl5bG2g9swsBgGzRthyFvuIXT/RWpFSfc+5bzJS36LbLntURorCIxzkiYd/pL3ErBFwf57jPP0IgCMBzAJwFoDrRWRsyk5K3aWUmqaUmlZbG+wPJAjdK6I4dGAP7G1ozVmbhBBSoOT9mO1FPJ76zfrehn05advVI+whBOL6bLBMskaUR8L45aemYJBFhBrNnzKuFt85Y6z5wQzoWWEKLdMa4dKmKYQDCI6QCHpWRnH6hP4p63KtVxKWiLARObQGz3tWRvH690/BDbrHOR1Jj7BjucfnEzwi7E26ioTWSP2KbQcBaBMYiyEibNzoZXKjZWVEn2oA8PURFxJBHPWbAQy1vB8CYKvLNruVUg0AGkTkNQBTAHyYk14GoG+3MuyupxAmhJQ8BTFmu+EW/f3B2eNz0rb1O99Mn+axbSyeeUTYDeM42qQycfXCmoLLJyIcxIvpJ9By/Qg7adVICnmnaB3aO/gTWqMNt0wYbnjlanbSLtFqidQ36r7vSUNqsHlfUzsazQ/MG70sL9AXjxuBMf274YTRfXPZrS4jyO3uuwDGiMhIESkDcCGAJx3bPAHgRBGJiEgVgKMBrMhtV/2pLotg8ab9Nn8WIYSUIAUxZrvhlj7tlHH9ctK29TvfqCrmFfUycgFnkjXCDac4dIt8emWNsB4/iIz1E4S5jgjbPMIuk+UyxZyYllJi2X1722Q533bb0Sckr/1vPzsVv/jEJAyuqSyKynJGgq32FNQ4cUxtUVwLIIAQVkrFAFwJ4DloA+XDSqllInK5iFyub7MCwLMA3gcwH8DdSqkPOq7bqbyzbg8A4Lll2zvzsIQQklcUypjthlv6tFxh/dI2HA9eOsAQwu2OCKcIBSPyaRVyPtYI06ea/rr4dTXneYRtk+W0ZZF2VF0zbSIORdJea0SuGNq7ChdN1zzdxSD9jM+vvb/fxUKgZINKqacBPO1Ydqfj/a8A/Cp3XcuMWz85GZfdtxBtLh4zQggpJQphzDZ4YvEWfOuhxbj1k5MCTYwzqpBlijVimi4i3BrTniy2OyLsaD8Z+bRso4s/14hwOHhE2G8Sl8pxTNgoqBGyWiNykNouNSKc3hrhF5V0u95BMZt1FjMpAu1oWH/a+/tdLASfCZDnHDNKS0WzjxPmCCGkIHhrzR5866HFAIDfv/iR62Q5J9l+dds8wmkqy5kR4XZEOQFva4T9JAyx6506Lojw95vXl+uI8PdnjsMhtdWYPLQmaY1oh6gKeXweXk0GPVZ7MjwkdbByXV7IGBFhCmGNohHC3csjiIYFexsphAkhpBA40JQcr0MhCRgRztLXaM0aEfaPYrbGM88a4YYzMYEhzKwCzc8jHMnAI9xev2Ymux8+rBde/u4MdCuPtLtcr3bsDCfLBTxWey6J1+dSDL7YWCKYB/7PnzuiM7rT5RSNEBYRdK+IYmGOUu0QQgjpWMRmVxDXyXIp+2R7LMvrdN5IQ/y010PpaY2wTpYzj5l67mZEOc0NwjGH9MYVp4z2XN+RhkG3ghqZt6H9DFpiOdtJXpng5d0uAh2cnCyX5mTOnjSwE3rT9XRsQfJOZm9DK+av24trH30fN398UlHcuRFCSCmwfk+jWYjBj2yHddtkuYC+1vY+OvaqLGddakYeffZPJ2QfuuxY/w06UAmHcyKEU68L4G/3yJa/XToNlWX+VeUAn4hw7rvU6SSyKBhTzBRNRNjKg/M3MXsEIYTkOU2t9nSXy7bWddixrN/5hgBIJ7RyHRGGGfm0LvL2AWeSR9iPXE+Ws2JWlstB+rSgJZbbw2mH9sdxo9Lnv03eoBTfbDkjO0tnRNYLgaISwt85I1kYadPewk96TQghxUxDayzjfbKdAGX90jdepxNa7RUKzt2Tc+WSK8YN6A4AGOZSgKI9uXmt5HqynJWkNaL9bQQtsZwp2Z2++w1KMUhHpk+zU1RC+KrTxpivb3q6y3PDE0II8WBHXTN++FgWqYuztUboP61f/umaar9Q8LBGWBZ/7uhheOKK43HK+NTCIaY1op1CtiM9wkYfc1FQw0l7I8Lt2dvLslIEAeFAJZZLiaISwoA2acDA+diNEEJI1xNPKFz/uLsIPm5UH3zxuBGe+2Y9Wc6lFHC6eSTtFwqO1FuGNcLRrylDa/xbaa8QDpKNI8u2TVtDO66Vlw2hI6wRQTGP7Lh27UnJli8YHuGuvL75RNEJ4fu+cjSOGtELALD1AO0RhBCSb5zz+9fx/PIdnuvPnew9Wz3b726zAprVIpGmrUiOZ2uZh8sw/ZeXjP3z547Ak1cen7adjowIGzqxPRFhQ5A5k4ZkKtRG9LHbS9pz3sUcEY5zspyNohPC0XDItEic9pu52LyvsYt7RAghxMq6PQ2e63YdbPGvFpatR9glu0HHR4Sd6dPcsyN4721YI9wl3dmTBmLykJq07XSkR9iI4rYnIpwUwu4R9KA89+2TsOLnM1OWZ9Mzr0mMxSAdaY2wU3RCGLBPOlix7WAX9oQQQogVpRRa9cptbqzf05CzSVJW3ISw8zj9updj2vBe5vtcR8zMyXIBm/UrtpFvtEdUeZ1npm2WR8KBUqNl1qf2ifN8JB6woEapUPRC2G/AJYQQ0rm0pBmT2+LKPyKcdR5h7afdGmFvbNLgnjh5bK35vqOEQtCotmcKrzyipU37PCsi2csJ43Nwis588AinWCOKICZsVDJn+jSNohTC1kG0JcYJc4QQki80t6WOyWUOEeX3/dzuSV0+4ioSFltfIuEOEsIBm00KxPYdz3l9c0mDPim9e0U06zaMzzvVI5x1k+1GvK59EWhH42ZvRJ/qLu5JflCUQtjKB1s6LkE7IYSQzGhuS0aEZ00eiOU/P8ucvHPTxw/DA1872lesZlsx1GjTFhF2KK1IKIRyqxDOtRJzyRoRYPN2xYN/MHN8oAl12V7XRj0XdPeK7AvV/vS8iTikthrDHZPdurI6rJji3Jk1ovD58vEjsPBHp2NkXwphoASE8FPvb+3qLhBCCNGxRoSry8KoKovgS3q6tIuOGobjRvX1jZhmK0RMj7AlyuvUuZGwoDya9JiGO6LGL4JHhCv0vgx3KbYRlK/PGIXxA3pkvX86Glo0IdytHUL4uNF98fJ3Z5jna9CVHlYvC0SuovRdiYigT7fyru5G3pD9b26BsPNgC5rb4il/YIQQQjofq0fYEDo/nHUoZp89PljFN33VD885FGdPGhD4uEaT1jRfTrETDgnKwh0YETb7Eqzdob2r8NcvTMPRlvz4+UZDi3Zj06Md1ggvutYaof1MyRpRDCFhYqNoI8KPfeM4nDhGqye+t6G1i3tDCCEEsEeEk5XWBBGLAA0SER7SqxJDegWPlBqiyi9rRDQUQnk02Y9cRySzmWh1xoT+HSIyc0VTm+ERzn1crUutEfpP50RFCuHio2iF8OHDeuHzxwwHAOyppxAmhJB8wE0IO3FLdWYgFvGcCeLSprONUEhQHkk+Pcx1RNjMuVuEaqo9k+W8yMuIcFG4hImVohXCANC3WxkAYE9DSxf3hBBCCAA0u1gjnBiL3VabZYoz1CNJcR2yLLNvEw7ZMyx0WPq0ItRS3cpzHxFu7/Vvj4/XzBqRsjz7Nkl+UtRCuHe1ZganNYIQQvKDIBHhIFHfTKOqxtYRn4hwWMSRNaJ9X5HGsYwJeEY0MR+1VHv71BEp2vIij3ABT4ojwSjqyXK9q/WIMK0RhBCSF1gny3kF/EzvsMs6MbfJ7LhGmyEfj7A4hHC4nXmETxnfD1+fMQpfO/EQx3Ha1Wxe0b9HOXbUdcxT1/Zep3bt71HMpCt9y6RjKGoh3KMigvJICDvqmru6K4QQQmCPCHs9+k6KXT+PcGbHdasslxIRDtkLarSnWprR3g9mjk/tS17GhLPjmW+dhL0dZD/s2oiwe5q04vnkgnHdOeMxoGdlV3ejQylqa4SIYHS/bnh22XbsOkifMCGEdDUtVmuEp0fYZ7Kc8TNDkWQcy5Y+LcUj7JgsF87tV2S2/uZ8pnd1GUb3694hbYe7Ugh7HLqYPrsgXHbSKHxsyqCu7kaHUtRCGABG9K3G5n1NOP22uV3dFUIIKXmsleW87A1+gjFIqWQ33NOnObJGOKwRpGvpStGZ9Ag7K8uVmBIuAYr+L76mUkvpcqCprYt7QgghxGaN8Eqf5ltYI7sJZ4aAifhUlguH0ClCmD7TYHTldZoytAYAMHFQT9tyfnTFR1F7hAEgwRmfhBCSN9gmy6VJn+YnOrKNCFv3S6ksJ3ZrRK4Rx8+8Ii871XWcNXEA3px9KgbX2P2xvEzFR9FHhGceFrwEJyGEkI4lUPo0eEeEk9aIzI5rRBftk+Xs24Qck+U6iryMKuZR0KhHB1SpywanCCbFSdEL4ZPH1uLyk0cBAP6zYFMX94YQQkqb5liArBE+PmBJeREMMyLs4xE28ghHw4KfnDchswNkQD7q4HxizlUn4s7PH9HV3SAlQn7cdnUwRoW57z3yPmZNHoiqspI4bUIIyTvsk+X8JaFfZbmMC2oEjAiHQoKPbjono7aD98Hel7wij7o0tHcVhvauanc7LIZBglByivBAUxuFMCGEdBFBCmokdAXjHhH2m0jnTdCsEZ1BZxzm88cMw7KtdRnv99vPTsH4AT06oEddSB6JfJJ/lIQinHnYANw4ZwUAYOv+Zgws8uTQhBCSrwQpqGFMcvaLCGdeUCM1N7Fb1ojOoDN02Y0XTMpqvyOG9cLwPtU57k3u+d5Z4/DhjoNd3Q1SBBS9RxgAhvRKPmL56r3vdmFPCCGktLEKYS+LQEJXwn4WgsxLLGs/wzZrhOD2iw/H2fqk6o6OCJtZKvLRGqFTKHlyrzhlNH5/4eFd3Q1SBJSEEAaAebNPBQBURjsuNQ4hhBB/Wiwe4bCH5hpcU4lPHzkEf7nkyJR1WVeWMyLCjv3OnTwI/bqXa+syVddZks9SM481evbQK0x8KAlrBAAMqqnEqNpqjB9YZN4nQggpIIJkjQiFBL/69BTXdYYAzrighr5DxEV9x3VPcqcJ4TwWm/nct0wppnMhHUfJCGEAqC6PoLEl1tXdIISQksUaEW5P9oTMJ8uleoQN4ons2swU09+chzHhbCPthPjx2DeO6+oupKWkhHAkJHhl1S6s2n4Q4wZ07+ruEEJIyREkIuxH9unT9GO67Gd4khkRztx7TYgfhw/r1dVdSEvJeIQB4KMd9QCA6x5b2sU9IYSQ0sSWNSILRZht1ohkRDj1a89I15ZNf7Ihn/Pb5mO0mpCOpKSEsDHYdSsvqUA4IYTkDc02a0T27WScPk3/6ZYizfAIhzo4HJrPkWCDQugjIbmkpITwGRP6AwDmfriri3tCCCGlSZA8wn5kX1DDJyJsWiMy7k7RUUxCOJ8j7yR/KKk/+1s+Odl8/dfX1nZhTwghpPRQStkqy7XHI5x5QQ3jmKnr4mYBjyJSgVlSlNaIIjwlkjtKSghXWHII3/T0CmzZ39SFvSGEkNLCKoKB7DIUGHtkPllOMGlwT4ztnzpR2ogIl7IQNtPSle4lICVKSQlhJ8ff8jI+2HKgq7tBCCElgTV1GpDtZDnDGpH58f/3zRNw/tTBKcsH9KwAAPSqKsu80SKjlG8GSGlS8rPG1uyqx2GDe3Z1NwghpOixpk4DsvPkisur9vK9s8bhiGG9cPzoPjlr0w+Vx6XOKINJqVFyEeFXr5nR1V0ghJCSxDpRDsif4g0V0TBmTR7YCf3Jj/MlhCQpOSE8om81zpsyyHzPWaWEENI5OD3CWeXtpZYkhOSQQEJYRGaKyCoRWS0is13WzxCRAyKyWP/349x3NXes3VVvvm51DMyEEFLo5OuY7YwIZ5c+zaBwoxgMwHQyvN7Eh7QeYREJA7gDwBkANgN4V0SeVEotd2z6ulLq3A7oY86ptGSP2N3Q0oU9IYSQ3JLPY3ZzmzNrROZtGPaFQhSTeeIEKRl4vUkQgkSEpwNYrZRaq5RqBfAQgPM7tlsdy22fmWpGIuav29vFvSGEkJySt2N2LiPCBaiDCSF5SBAhPBjAJsv7zfoyJ8eKyBIReUZEJuakdx3EsD5VWHPzOThuVB+8umoXRsyeg/qWWFd3ixBCckHejtmGR7giqn31ZJc+TftZiBFhg3zsejFGTwv5d4R0HkGEsNufh/PX6z0Aw5VSUwD8EcDjrg2JXCYiC0Rkwa5dXV/m2GqRsPqGCSGkgMnbMduICBvFjdqTpSGfU5B5kc9a89qzxwMAulUUYVbVfL7wpMsJIoQ3AxhqeT8EwFbrBkqpOqVUvf76aQBREenrbEgpdZdSappSalptbW07up0bopYklgea2rqwJ4QQkjPydsw2hXBEE8LZFMUwSgAz2pdbPnvUMKy/ZZbte5GQUiDIb/y7AMaIyEgRKQNwIYAnrRuIyADRb+1FZLre7p5cdzbXxC0j6ZZ9LLdMCCkK8nbMbtatEeW6NSKrEstFYI0o7M4TUlykFcJKqRiAKwE8B2AFgIeVUstE5HIRuVzf7FMAPhCRJQD+AOBCpfL/L92oLw8A89bkvW4nhJC05POY3eKICGfD1aePAaDN9Sg0itGHS0ihE8gMpD86e9qx7E7L69sB3J7brnU81ojwvsbWLuwJIYTkjnwds52T5bJh5mEDsf6WWbnqEiGkxClpM9CAHhXm66VbDmDFtjokEgq7DrZgXwOFMSGE5JLmtjhEUPI+1Lx/XEpICVHSo9EVp4zGj2YdCgDY39iGs3//Or5877s46qYXcfgNL3Rx7wghpLhoboujIhIuWYuAMH1Bp3Lq+H4AgLMPG9jFPSH5TEkL4aG9q/DVEw+xLXt1VTJFUGMrcwsTQkiuaG5LoDwa4lwx0imMG9Ad62+ZhalDa7q6KySPKWkhbGDkT3Qy4cfPYcW2uk7uDSGEFCeNrXFURbOfKFcs8EaAkPyBQhjA/508CtVl7oPz2l0NndwbQggpTuqa29CjMlq61ogSPW9C8hkKYZ0FPzrDdXmCt+6EEJIT6po0IUwIIfkChbBOZVkYQ3pVpizfz4pzhBCSE+qaY+hRjCV8M6QA0uwTUjJQCFuYOKgHAOBjUwaZy5hGjRBCckNdUxt6VETRu7oMAFAWKa2vIDojCMk/SmsUCoghiAFg2wGWXiaEkFxwUPcI//KTU3DDBYdhypCeXd2lToVx4MKHn2HxQSFswXhaNax3FR6/4nhMHNQDSzYdQGNrDM16aVBCCCGZk0goHGzRrBE9q6K45JjhEM4eI4R0MRTCFow7PRFg6tAanDS2Fsu31WHCj5/Dmb99DUs27cemvY1d2kdCCClE6ltjUAolPVmOsp+Q/INC2ML5UzVv8ISB2uO6kX2qzXUb9zbi/DvexIm/fKVL+kYIIYVMnT7xuDsny5ECJqTfzfBhRvHAEcnCuZMH4ZzDBiKk/6b3qOTlIYSQXFDfolXq7FZeuhFhA/pMC5fTDu2Pzx8zDFedNqaru0JyBJWeA0MEA0CPCg7YhBCSCxpatHkW1eWlW1mOnujCJxoO4cYLJnV1N0gOoTXCh5qqMtfljy3ajOVbWXqZEEKC0tiqRYSryxl/IYTkDxyRfDikttp1+bf/vQQAsP6WWZ3ZHUIIKViMiHCVRzn7UoL1NAjJHxgR9qEiGsYN50/Et08f67qeKdUIISQYZkS4jPEXQkj+wBEpDZccOwJKKfz2xQ9T1n3zwUUoC4cwa/JAnDNpYBf0jhBCCoOGVsMjzK8dQkj+wIhwAEQEL333ZNz6SbtB/oXlOzBn6TZ84/738OSSrYjFE677v/7RLry6amdndJUQQvKShhbDI0xrBJ0RhOQPFMIBGVXbDWP7d/dcf9WDi3D3G+tc113yt/n44t/f7aiuEUJI3tPYEoMIUBEpXSHMpBGE5B8UwhlwSG033/XbDzTjgy0HsHjT/s7pECGEFAgNrXFURcO2FJWEENLV0KyVAT0DlAY9949vAGBGCUIIsdLYGkMV/cEAAMW0EYTkDYwI55B/zFvvu/7qhxZ1TkcIISTPaGiJo7rEU6cJGA0nJN+gEM6Q7hX2iMZnpg1x3e6PL32EtngCV9z/nrns8cVbO7RvhBCSrzS2xlBZ4qnTzpjQHwBw7Kg+XdwTQogBhXCGPPaN4/CDmePN9xdOH+a63W9e+BBX/3sx5izd1lldI4SQvKW5LYHKaGl/5Rw7qg/W3zILEwf17OquEEJ0SntUyoLR/brj6zNGme+H1FR6brtsy4HO6BIhhOQ9rfEEomF+5RBC8guOSllywui+AIDa7uWoqXKfRLd+T2O7jvHKyp1o88hNTAghhURrLIGyCL9yCCH5BUelLLnrC0fijR+cAhHB898+CWdN7J/T9t9aswdf+se7uO2F1Ip2hBBSaLTGEiinECaE5BkclbKkqiyCIb2qAAD9ulfgL5dMa1d7rbEERl/3NB5+dxMAYH9jKwBg7a769nWUEELyAFojCCH5CEelDqJHhfvsaGv+yJ8+uQwjZs/B3A93YePeBsQSCj/93zIAQET/wognmG+SEFL4tMVpjSCE5B8clXLIyWNrAQDLf34W3rr2NNdtbn56BVpjCTy2aLOZd/jSe+bj9NteAwA0tsYBABG9+lJbnEKYEFL4tMYSKGNEmBCSZ5R2Uscc89cvTNOqJ+m5MufNPhXXP/4BVm4/iP87+RD8+Ill+Ovr61BdHsHvXvzIs507567BhIE9ADAiTAgpDjhZjhCSj3BUyiFlkRBqqsrM94NqKvG3Lx6FN2efis9MG2ou31Pf6tvOLc+sREi0iHAswawRhJDChx5hQkg+wlGpk6iIhnHy2FrUdi/HfW9vSLv9r55bCUCLCO+pb8G989a71qdftvUAlm1lvmJCSH7DrBGEkHyE1ohOpDwSwq6DLYG2XbJZE7exhMK3H16C1z7chWNH9cHY/t1t2836wxsAgPW3zMptZwkhJEcopdDKyXKEkDyEo1IncrA5lvE+rbEEth9oAgCc+dvXcOpvXsU/3lyX664RQkiHEUsoKAVOliOE5B0clTqRXfWp0eBRtdXm6y8fPxIA0N2Seu1AU5stc8TaXQ346f+W4xv3L8TeBn+vMSGE5ANGhcwoI8KEkDyDo1InsttFCP/8/MMwqrYa3csjuOassRjau9IWOd7f2IbWWOqEuaeXbsfLK3ea75dtPYARs+fgdy+yEh0hJL8wxjBGhAkh+QY9wp1Im0PQGr7e5799MgAgHBJMGtwTm/Y2mdvUt8RQ3+JuqbAW7TC8wr978SNcffrYnPabEELagymEGREmhOQZHJU6kfu/dgyuPn1MyvJwSBDWC2gcMaxX4PYeX7zFtS1CCMknWhgRJoTkKYwIdyJTh9Zg6tAaTBrcE/PX73XdZnS/boHbe3rp9pRlLMBBCMk3DI8wI8KEkHyDo1IXcNqh/XHt2Ye6rhtVG1wIe/GnV1fjQGMbRsyeg8cWbfbcLp5QiMVZsIMQ0rG0UggTQvIUjkp5xtDeVThxTF/z/ddnjMI4S+7gGeNq07bxy2dXYfP+RgDAna+uxdtr92DE7DnYfqAZAMzCHJfeMx8n/fIVJBIK89bsxhf/Pp8RZUJIzuFkOUJIvsJRKQ8Z0UdLqXbB1EH4wczxePpbJ5rrIqFgH5kxea4lFsc/31oPAJi/fi/a4gmMvPZpfOz2N/DG6t3YeqAZ97y5Dt98YBFeXbULG/Y05PZkCCElD9OnEULyFY5KeYgx4W3ykBrbewD48bkTcO7kgbbte1ZGPdtqbktARNtfKYUXl+8AALy/+QD6dS8HANz39gYzd/HqnfW5OQlCCNHhZDlCSL7CUSkPqdUFareK1LmMw/pU4faLjzDfnzWxP+b/8DQs+9lZrm1tr2vGnPe3AQCUSn4hAUCDnpZt24FmhHSxvKOuOTcnQQghOkyfRgjJVwKNSiIyU0RWichqEZnts91RIhIXkU/lroulx2UnHYKbPz4JnzxiiLnMiN4a3PKJSQCAWFyhPBJGdXlSNB8+rMa13YMtMcxZus1839AaR1k4hNZYwhTA1z+xDCNmz8HB5jYkEgqNrckcxhv2NGAfq9kRkvfk25hNjzAhJF9JOyqJSBjAHQDOBjABwEUiMsFju1sBPJfrTpYa0XAIFx89zGaJePmaGXj1mhnm+/49KwAAMZfJbY9943g8+o3jUpZf//gHeEG3RhgYs7kbWuO25ZN++jxunLMCE378HHbUNaMlFsfJv3oVZ/3utYzO5Tv/Xoy/v7kuo30IIdmTj2O2USaeEWFCSL4RZFSaDmC1UmqtUqoVwEMAznfZ7psA/gtgp8s60k66lUcwom+1+X7a8F44pG81vnOGexW5I4b1wheOHZ623ds+M8Vz3T26gL3u0aUY96NnAQA7D7ZAKYW/v7kOI2bPwcMLNvm2/+iiLfjZ/5Zj457GtH0hhOSEvBuzW+PajTaFMCEk3wgyKg0GYFU7m/VlJiIyGMDHAdzp15CIXCYiC0Rkwa5duzLtK7HQvSKKl6+ZgSlDa8xlD3z1aNx1yZHm+5+cNxEAcNQI72p1H5syyHz9h4sOd93mpZX278kPttThZ/9bDgD451vr8ebq3Z5loA3uen2N7/pcsOtgCy69Zz7W7WbmC1LS5N2YTY8wISRfCTIqudXsdT6P/x2AHyil4i7bJndS6i6l1DSl1LTa2vT5cElmHDe6L86cOMB8Hw4JPrrpbDz8f8fiCN03fNr4fvjeWeMAAC9+5yREwiF00/3F/R0+ZC/2NiZ9wm0xhc/d/Q5OvPVl1DW3AQDe27gPTy/dZuYrBoANexqxcU9j1nmK31m7B2t2+We0uOOV1Zj74S68sDy14l5HMW/1bmzay2g3ySvybsw2hHA0zBLwhJD8IogQ3gxgqOX9EABbHdtMA/CQiKwH8CkAfxKRC3LRQdI+ouEQRAQ365PrvnnaGFx+8igs/NHpGN1PK9RhRHPH6IU7IiH/L6tL75lvvm7QJ9Pta2zDJX/TorGf+NM8fOP+97DXMrFu7a4GnPSrV/DLZ1e6tqmUQsJHJH/2rrdx2m/mYtnWA57bGELcq/2O4OK738GMX7/aIW0TkiV5N2a36h7h8nC4ow5BCCFZEUQIvwtgjIiMFJEyABcCeNK6gVJqpFJqhFJqBIBHAHxDKfV4rjtLsmf8gB5Yf8ssTB1ag3BI0KdbMvr7zy9Px5WnjEbv6jLMv+40vPvD0wO3u3lfk/l6yab9OMUiCn/85DLz9Zb92navrkp9vPr00m0Yee3TOOS6p9Meb9Yf3vAUzHVNmhC++Wm72J774S6MvPbptBHlbGE1PpJn5N2YTWsEISRfSTsqKaViAK6ENrN4BYCHlVLLRORyEbm8oztIOp6TxtbiGt0u0a9HBXpVl2HOVSe0u10jf7GVtkQiZdn972wwX9/9+lqMmD0Huw62oLnN/antIdc97So+65pSfcpPLN5iRrCfWLQlcN+tKKVw41PLsWTT/qz2J6Qzyccxm0KYEJKvBBqVlFJPK6XGKqVGKaVu0pfdqZRKmWihlPqiUuqRXHeUdC4TB/XE7RfbJ8999YSRWbTTw5Y7dO2uBryycifueGU1WmJxxBMK2w8ki3jcOGcFAOCom17EUTe96Nnuks37U5Y1tiWFsPHFe+szyejwqh0H007qc6OpLY6731iH8+9407Y8Fk8V9YTkA/k2ZrfG4wiJvUomIYTkA7w9J56cO3kQelVp5Zs/ecQQXHPWONxw/kT0616OH8061Jx0Z2XWpIH4oyX7xCOXH4efnT/Rts2X/vEufvXcKoz70bOY/NPnsGaXe5aHg80xNLfFXbNANLgI2kZLLuQZv3oFANCzqsxc9tyyHTjsJ8/ZhLeT5VvrbGnh5ry/Dbe/vNpcv3DDPtOn3EohTEgg2uKK0WBCSF6SWsOXEAt3XzoNm/c14fypWvalS44dgUuOHWGuP3ZUHzyycDMaWmK44PDBOGVcPwDAyeNq0dwWR2VZ2HUKu4GzkIeTLfubcNk/F6QsdxOzjS1x9KyM4kBTG7bq63u4lKk+5hcvYd0vzoGI4NZnV6JHRRQV0RC+dPxIPDh/IwDg+4+8j+8/8n7Kvp/88zwAwPpbZqGlLSmE7523HvUtMVxxymjf80nHLc+sxOmH9sO0Eb3b1U5QlFJ4ZOFmnDdlECqi2U9k2rCnAf9bshXfmDEaIUb9iIPWWIJV5QgheQmFMPHlyOG9caRPXY4jhvXCEcNS8xT3qIiiR4UWTT76kD5ZH/+038w1X4/p1w1NbXFs3teE7z3yPtbvaUAkFML4Ad1RXR7B9rpmjO3fDQf0SXMjZs/xbHft7gYM612FP7+azG986bEjPH3Jblgjwj/RJwZ+7uhheGXVTsyaNAhlkRB21jWjtns5RPzFYSKhEFcKd85dgzvnrsH6W2YF7kd7mPvhLnzvkfexcvtBXH9uSvGxwPz4iWWY++EunDim1pbbmhAAaIklGBEmhOQlFMKkwxnZtxrrb5mFJZv2mz7bLx8/Et87axwO/fGzgdsZP7AH/njR4abAveOV1CId2/Z72x6snPabuThzQn/bsscWbUFzLLjdodVl29+9+BH+MW89KqMRDO1diVl/eAO3fnISPnvUMN+2Pnf3O3hr7Z7Ax86GZVsPoLktgSOH97IsqwPgHmHPhD7VmgXlvY37KIRJCm1xRoQJIfkJRybSaUwZWoOfnKdFHb975lhUloXxxg9OwXvXn2Fuc8whvfHm7FPxwNeOTtm/JUC09o7PHYHagIVBnl++w/b+u/9Zgv8tcaZbded3L36IfZbCIgZGirb739mAd9buBaD5igHgz6+uwZNLtmLhhn24/eWPcN9b6/H7Fz/Cq6t2drgIBrTUc4a1w+BXz60CAKiUeguZUaN7sd9a0/HnQQqPVkaECSF5CiPCpFP50vEj8aXjk9knhvSqAgC8cs0M1FRG0UuPLA6uqcSsyQNtKdgG96oEANxwwWG47flV2NeYWkDjpLG1ePBrR+PeeRtQXR7BnXM7prTz7178CL978aOU5a9/tNv8abxeuf0gAOBWj2Iibmw70ISBPSs917fEtJuC8ojm691R14zN+5ps0d5M2LS3CbF4ApEso3aNemGV9zd7FzwhpQuFMCEkX6EQJnnByL7VKctu/eRk/OTcCWiJJfDhjoM4fnRfAMAlxwzHJccMxwPvbMR1jy01ty/Xv2hH9+uOGy44DABQGQ3jty9+iN9fOBW761txzCG90ae6HMf84qWM+3jJMcNx39sb0m/o4P3NB3z9ym4c+4uX8YnDB+PLJ4zEYYN7pqw//pZXUN/ShpU3nA0A+OLf38WKbXW45syxuPLUMb5tt8UTiIZDWLGtzly2dMsB/OTJZbjp45My6qeBMenRLUpuZb2eAWSEy+dNipdW/XeOEELyDY5MJG/pVh5Bvx4VGNq7Cqcd2j8lq8FF04fiS8ePwDPfOhHPfOtEvPidk1Pa+NbpY7D+llk4f+pgfOWEkZg4qCcG9KzA41ccb27Tp7oM93xxGi49djiuOXMsAOB7Z42Dc37bZScdgmhYWzhOL0fdkTy6aAvO/eMbaInFbZP4Nu1txO76FjS3JbBo4z40tcaxbrdmyfj18x9i095G33avuP89ADBTxBk89O4mzFuzG394KTXS3RKLY/M+73Yb9XR2LbGE7WbBWdp6xq9fdS1JHYsncO2jS11T5VlRSnVYuWzScbTFGREmhOQnjAiTgkVE8JPzJqbf0IXDBvXARdOH4isnjMTofpqoPXW8NnnOiKieNXEAdtY14+K73wEADOlViTdnn4orH1iE3352Kvp2K4NAsGD9XjzzwXZcNH0YHlm4GZ86cgi+cM872F3vHx0NyrgfaRMKDxvcAx+bMshWQvrjf5qXsv2Jv3wFK2+YifJICH96dQ1mHjYAo2q7meufX74Dzy3bjhbHZL94QuHiv2rnescrq3HR9GH46ccmYt6a3ebyX396CmYeNgCRkNhuTOqakzaV6x//ADPG1qKxNY6zfvcaHvzaMTh2VB/sPJickDdi9hz0ri7DxdOH4f53NuDGCybhwfkbsXJ7HR77RvImxcln/vIW1uxqsPnKSf7TwvRphJA8RboqujJt2jS1YEFqflhC8o0r7n8Pc5Zuyyil2aa9jVixrQ6X3bfQXCYCGH9uI/pU4aaPT8KcpdvwwDsb8bOPTcSMcbX4xdMr8YtPTMJfX1+LP73aPn/zDRcchusf/wAA8Pa1p2VlB7nq1NH4g6WgiEH38gjmfv8U9K4uw6PvbcZ3Hl6CSEgQcyl9PX1kb/z7smPwrYcW40mPyYgzJw7As8u2Y+KgHphz1Ymu27y/eT8+druWdaSz0sv5ISILlVLTurofnUV7xuwL7ngT3SsiuO8rqZNgCSGkM/AasymECUlDPKEQT2RXGWvXwRYcddOLOPaQPnjga0fjxjkrcN6UQZiqpxjbtLcR33l4Me66ZJo5UdAgU1/xv75yNOav3+tqbUhHWTiUcaW8Wz4xCSu3H8Q/5q0HoFUVfOaDbXDRwmkZ1LPCLIJy6bHD8f2Z41FdHkE8ofDaR7swY2ytTUj/6ytHQwSmbzxTWmJxfLSj3tV/HRQK4eCc8/vXMbBnBf72xaNy3CtCCAmG15hNawQhaQiHBOEsq6XVdi/HXZcciekje0NEUopWDO1dhf9cfpzrvkt+ciYWb9qPxpYYKqJhfOkf7/oe64QxfTFnqX/6txPH9DWzWRisvfkchEKCl1fuwJf/EVzozH50qe19TVUU3z1znJmSLRO2WvIY3/vWBmzZ34S7Lz0Kc5Zuw1UPLsL1506wJXj7/N80q8bL3z0Z2w8045GFm3HzJyZhd30LelWVobo8ObSt3lmP2u7l6FkZxcrtdehdXYa75q7F3W+sw8vfPRmHWGwjpGNoaI2hqpxfN4SQ/IMjEyEdzJkTB2S1X8/KKE4eW2u+P3xYDRZt3I97vzwdO+ua8b1H3scvPzkZ50weiJgezZ0wsIetjU8dOQSPLNxsvr/rkmn435Kt+P5/tfLRF0wdZJZEnjo0NfVat/II6vWJcAN6VGB7nSZYv3PGWNz2wofmdrMmDcSVp45GLK7w2xc+xDVnjcMtz3inixvRpwrr93hPvntxxU5bRPyGp5Zj0uCe6FUVtaXNO9VSefDZZdvRqGevOKRvNW7+xCQcNaI3Tr9tLsb064bbPjMV593+hu04K7cfpBDuBPY1tKJ3VbSru0EIISnQGkFIEZFIKGw90IQTbn0Fnz9mGI45pA+ufGARhvWuwivXzMgqsv3nV9dg9c56/PrTk00PcDQcwhfumY/XPtwFAHj26hMxfoBdhD+8YBPiCYWzDxuAu15bi1PG98MRw3qZfViwfi8+dedbtn1G1Vbj1PH98NfX17n25ROHD8Ytn5yMl1bswNf17Bd+XHnKaNz+SqrH2Uq2UWFaI4IRiycw+ofP4OrTx+Dq08d2QM8IISQ9tEYQUgKEQoIhvaqw+qazERLRUsBdrE1Gy9be8fUZo8zXRvo4ALjz80dg3uo9eGfdHozpl5pO7jPThpqvvz9zfMr6aSN645HLj0VFNIzfv/QRbjj/MAzoWYFEQuHDHfWYq4vsZHtD8MNZE1AWCeHsSQNx1Wlj0vqh04lgQCut/d0zx6XdjmTH/iYtgt+rqizNloQQ0vlQCBNShFgrxJ07eVCHHKOqLILTJ/TH6RP6Z93GtBG9AQB//ULyJj0UEtz75ekAtAh3yEPAf+eMsRg/oDv++dZ6zD77UFx+30I8fsXxCIWAl1fsTPEwG1x5ymiM6d8N500ehFU7DmL8gI7PCV3K7GvQ0gg6J4MSQkg+QCFMCMlbvESwwTmTBuKcSQMBAG9fd5q5/MLpw3Daof3R0BLD7a+sxtb9TfjNZ6YgobTy3QaHOjzVJPcYnu7ejAgTQvIQCmFCSFFS270ctd3L8etPT+nqrpQ0e/WIcA0nyxFC8hCW+iGEENJh1OkeYQphQkg+QiFMCCGkwziop9/rxjzChJA8hEKYEEJIh9GgC+FqCmFCSB5CIUwIIaTDaGiJoSwSQjTMrxtCSP7BkYkQQkiH0dAaoy2CEJK3UAgTQgjpMBpa4qguD3d1NwghxBUKYUIIIR1GfUsM1WWMCBNC8hMKYUIIIR1GQwutEYSQ/IVCmBBCSIfR0BJjxghCSN5CIUwIIaTDqGdEmBCSx1AIE0II6TA4WY4Qks9QCBNCCOkwGltjqOJkOUJInkIhTAghpMNoiytEw9LV3SCEEFcohAkhhHQYbfEEq8oRQvIWjk6EEEI6BKUUYglFIUwIyVs4OhFCCOkQ2uIKAGiNIITkLRTChBBCOoS2eAIAGBEmhOQtHJ0IIYR0CDEzIsyvGkJIfsLRiRBCSIfQakSEI/yqIYTkJxydCCGEdAimNSJEjzAhJD+hECaEENIh0CNMCMl3ODoRQgjpEMysEbRGEELyFI5OhBBCOgRaIwgh+Q6FMCGEkA6B1ghCSL7D0YkQQkiHQGsEISTf4ehECCGkQ0hGhGmNIITkJxTChBBCOgRaIwgh+U6g0UlEZorIKhFZLSKzXdafLyLvi8hiEVkgIifkvquEEEKCkC9jNivLEULynUi6DUQkDOAOAGcA2AzgXRF5Uim13LLZSwCeVEopEZkM4GEA4zuiw4QQQrzJpzG7ldYIQkieE+Q2fTqA1UqptUqpVgAPATjfuoFSql4ppfS31QAUCCGEdAV5M2bTGkEIyXeCjE6DAWyyvN+sL7MhIh8XkZUA5gD4sltDInKZ/hhuwa5du7LpLyGEEH/yZsymECaE5DtBRie3Z1op0QOl1GNKqfEALgBwg1tDSqm7lFLTlFLTamtrM+ooIYSQQOTNmG2mT6M1ghCSpwQRwpsBDLW8HwJgq9fGSqnXAIwSkb7t7BshhJDMyZsx24gIlzEiTAjJU4KMTu8CGCMiI0WkDMCFAJ60biAio0VE9NdHACgDsCfXnSWEEJKWvBmz22KaEI5QCBNC8pS0WSOUUjERuRLAcwDCAO5RSi0Tkcv19XcC+CSAL4hIG4AmAJ+1TMQghBDSSeTTmB1L0BpBCMlv0gphAFBKPQ3gaceyOy2vbwVwa267RgghJBvyZcxu5WQ5Qkiew9GJEEJIh1BTWYax/btRCBNC8pZAEWFCCCEkUy4+ehguPnpYV3eDEEI84W06IYQQQggpSSiECSGEEEJISUIhTAghhBBCShIKYUIIIYQQUpJQCBNCCCGEkJKEQpgQQgghhJQkFMKEEEIIIaQkoRAmhBBCCCElCYUwIYQQQggpSSiECSGEEEJISUIhTAghhBBCShIKYUIIIYQQUpJQCBNCCCGEkJKEQpgQQgghhJQkFMKEEEIIIaQkoRAmhBBCCCElCYUwIYQQQggpSSiECSGEEEJISUIhTAghhBBCShIKYUIIIYQQUpJQCBNCCCGEkJKEQpgQQgghhJQkFMKEEEIIIaQkoRAmhBBCCCElCYUwIYQQQggpSSiECSGEEEJISUIhTAghhBBCShIKYUIIIYQQUpJQCBNCCCGEkJKEQpgQQgghhJQkFMKEEEIIIaQkoRAmhBBCCCElCYUwIYQQQggpSSiECSGEEEJISUIhTAghhBBCShIKYUIIIYQQUpJQCBNCCCGEkJKEQpgQQgghhJQkFMKEEEIIIaQkoRAmhBBCCCElCYUwIYQQQggpSSiECSGEEEJISUIhTAghhBBCSpJAQlhEZorIKhFZLSKzXdZ/TkTe1//NE5Epue8qIYSQIHDMJoSQYKQVwiISBnAHgLMBTABwkYhMcGy2DsDJSqnJAG4AcFeuO0oIISQ9HLMJISQ4QSLC0wGsVkqtVUq1AngIwPnWDZRS85RS+/S3bwMYkttuEkIICQjHbEIICUgQITwYwCbL+836Mi++AuCZ9nSKEEJI1nDMJoSQgEQCbCMuy5TrhiKnQBtUT/BYfxmAy/S39SKyKkgnHfQFsDuL/QqBYj43oLjPj+dWuGR7fsNz3ZEcwTG78yjmcwOK+/yK+dyA4j6/nI7ZQYTwZgBDLe+HANjq3EhEJgO4G8DZSqk9bg0ppe5CO71oIrJAKTWtPW3kK8V8bkBxnx/PrXApwvPjmN1JFPO5AcV9fsV8bkBxn1+uzy2INeJdAGNEZKSIlAG4EMCTjk4NA/AogEuUUh/mqnOEEEIyhmM2IYQEJG1EWCkVE5ErATwHIAzgHqXUMhG5XF9/J4AfA+gD4E8iAgCxYr0TIYSQfIZjNiGEBCeINQJKqacBPO1Ydqfl9VcBfDW3XfOkmNP8FPO5AcV9fjy3wqXozo9jdqdRzOcGFPf5FfO5AcV9fjk9N1HKdQ4FIYQQQgghRQ1LLBNCCCGEkJKkYIRwupKh+Y6IDBWRV0RkhYgsE5Fv6ct7i8gLIvKR/rOXZZ9r9fNdJSJndV3vgyEiYRFZJCJP6e+L6dxqROQREVmpf4bHFsv5ici39d/JD0TkQRGpKORzE5F7RGSniHxgWZbx+YjIkSKyVF/3B9HNtCQYHLPz72/DCcfsgj6/ohm3u3zMVkrl/T9oEz7WADgEQBmAJQAmdHW/MjyHgQCO0F93B/AhtPKnvwQwW18+G8Ct+usJ+nmWAxipn3+4q88jzTl+B8ADAJ7S3xfTud0L4Kv66zIANcVwftAKLawDUKm/fxjAFwv53ACcBOAIAB9YlmV8PgDmAzgWWl7eZ6ClGevy8yuEfxyz8/Nvw+UcOWYX4PkV27jd1WN2oUSE05YMzXeUUtuUUu/prw8CWAHtl/l8aH+w0H9eoL8+H8BDSqkWpdQ6AKuhXYe8RESGAJgFLS+pQbGcWw9of6h/AwClVKtSaj+K5PygTZqtFJEIgCpoOWcL9tyUUq8B2OtYnNH5iMhAAD2UUm8pbYT9p2Ufkh6O2Xn4t2GFY3bhnp9O0YzbXT1mF4oQzrRkaF4jIiMAHA7gHQD9lVLbAG3gBdBP36zQzvl3AL4PIGFZVizndgiAXQD+rj9GvFtEqlEE56eU2gLg1wA2AtgG4IBS6nkUwbk5yPR8BuuvnctJMAr198QVjtkFd25FO2YDJTNud9qYXShCOHDJ0HxHRLoB+C+Aq5VSdX6buizLy3MWkXMB7FRKLQy6i8uyvDw3nQi0xzZ/VkodDqAB2qMaLwrm/HTf1fnQHjENAlAtIp/328VlWV6eW0C8zqfYzrOzKZrrxzFb28VlWV6em07RjtlAyY/bOR+zC0UIByoZmu+ISBTagHq/UupRffEOPaQP/edOfXkhnfPxAD4mIuuhPQI9VUT+heI4N0Dr72al1Dv6+0egDbLFcH6nA1inlNqllGqDVm3sOBTHuVnJ9Hw266+dy0kwCvX3xAbH7II8N6C4x2ygNMbtThuzC0UIpy0Zmu/osxf/BmCFUuo2y6onAVyqv74UwBOW5ReKSLmIjAQwBpoRPO9QSl2rlBqilBoB7bN5WSn1eRTBuQGAUmo7gE0iMk5fdBqA5SiO89sI4BgRqdJ/R0+D5oUshnOzktH56I/iDorIMfp1+YJlH5Iejtl5/LfBMRtAAZ8fSmPc7rwxO1ez/jr6H4BzoM3aXQPgh13dnyz6fwK0MP37ABbr/86BVub0JQAf6T97W/b5oX6+q1AgM9YBzEByBnLRnBuAqQAW6J/f4wB6Fcv5AfgZgJUAPgBwH7TZuAV7bgAehOaba4MWJfhKNucDYJp+TdYAuB16ASL+C/w5cMzOg/MIcJ4cswvz/Ipm3O7qMZuV5QghhBBCSElSKNYIQgghhBBCcgqFMCGEEEIIKUkohAkhhBBCSElCIUwIIYQQQkoSCmFCCCGEEFKSUAiTkkVEZojIU13dD0IIIenhmE06AgphQgghhBBSklAIk7xHRD4vIvNFZLGI/EVEwiJSLyK/EZH3ROQlEanVt50qIm+LyPsi8phekx0iMlpEXhSRJfo+o/Tmu4nIIyKyUkTu1yvSEEIIyRKO2aSQoBAmeY2IHArgswCOV0pNBRAH8DkA1QDeU0odAWAugJ/ou/wTwA+UUpMBLLUsvx/AHUqpKdBqsm/Tlx8O4GoAEwAcAuD4Dj4lQggpWjhmk0Ij0tUdICQNpwE4EsC7+o1/JYCdABIA/q1v8y8Aj4pITwA1Sqm5+vJ7AfxHRLoDGKyUegwAlFLNAKC3N18ptVl/vxjACABvdPhZEUJIccIxmxQUFMIk3xEA9yqlrrUtFLnesZ1frXC/R2ctltdx8G+CEELaA8dsUlDQGkHynZcAfEpE+gGAiPQWkeHQfnc/pW9zMYA3lFIHAOwTkRP15ZcAmKuUqgOwWUQu0NsoF5GqzjwJQggpEThmk4KCd1Ikr1FKLReRHwF4XkRCANoAXAGgAcBEEVkI4AA0TxoAXArgTn3QXAvgS/rySwD8RUR+rrfx6U48DUIIKQk4ZpNCQ5TyezpBSH4iIvVKqW5d3Q9CCCHp4ZhN8hVaIwghhBBCSEnCiDAhhBBCCClJGBEmhBBCCCElCYUwIYQQQggpSSiECSGEEEJISUIhTAghhBBCShIKYUIIIYQQUpJQCBNCCCGEkJLk/wGQwFaTwebwGQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "193ns_image_634125159704_CLEAN.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADDCAYAAAAya0IYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADdGUlEQVR4nOz9eZhtW1rWib5jrVjNXG1E7L1Pmyc5mUlmkoCQCmImliUlpShlB1wbrKsISmLVpbSq8IqgYldlYX+rHh+V5IrIFRVsUFFKQBSBh6TVpEngQGaSzck8eZq9d8Tq+3n/iPiNeOfYcfJ0e5+Ivfd4nyees2OtueYcc4wx14n3/d7v+0JZlsrIyMjIyMjIyMjIyMjIyMh4Kahd9AAyMjIyMjIyMjIyMjIyMjLuPmRBISMjIyMjIyMjIyMjIyMj4yUjCwoZGRkZGRkZGRkZGRkZGRkvGVlQyMjIyMjIyMjIyMjIyMjIeMnIgkJGRkZGRkZGRkZGRkZGRsZLRhYUMjIyMjIyMjIyMjIyMjIyXjKyoJDxqiOE8J4Qwudc9DgyMjIyMs4QQvhACOG/fZHHliGET3yZ13nZn83IyMjIyMi4XMiCQsarjrIsP6Usy++/6HG8EEIIvy+E8MEQwjSE8C9DCIcXPaaMjIyMexkhhFYI4ZtCCKMQwsdCCP/rRY8pIyMj47LhdguzL+Z8+e/ijOdDFhQyMs5BCOFTJH2DpN8v6UFJM0l/+0IHlZGRkXHv489JeqOkT5D030j6EyGE33yhI8rIyMi4z5H/Ls74eMiCQsarDrfVhhD+XAjhn4YQ/mEIYRxC+JkQwptCCF8TQngmhPDhEMJvss9+aQjh50+PfX8I4SuSc/+JEMJTIYSPhhD+sCuup5GvvxZC+FAI4ekQwt8NIRTPM8z/XtJ3lmX5A2VZTiT9GUlfGELo35lZycjIyLg8CCF8VgjhXSGEo9Pv1L8VQmgmh33+6ffwcyGEvxpCqNnnv+z0u/pmCOG7Qwif8CIv/Qck/cWyLG+WZfnzkr5R0h+8PXeVkZGRcXkQQnhLCOH7T79n3xNC+O323veHEP6w/f4HQwg/dPrvHzh9+adCCJMQwu8JIXxOCOHJEMLXnn4nfyCE8N+/3POdM9z8d3HG8yILChmXAb9N0v9P0oGk/yLpu3WyNx+V9Bd0ooiCZyT9VkkDSV8q6W+GEH6VJJ1Gsf5XSf+tpE+U9OuT6/xlSW+S9NbT9x+V9HXPM6ZPkfRT/FKW5fskrU4/n5GRkXGvYyvpf5F0VdLbJX2upP8xOeYLJH2mpF8l6XdI+jJJCiH8TklfK+kLJV2T9IOS/vELXTCEcCDpEdl37+m/P+Xl30ZGRkbG5UMIoSHpOyV9j6QHJP1Pkr41hPDmF/psWZb/9ek/P70sy15Zlt92+vtDOvnOflTSl0h65ys8nyP/XZzxvMiCQsZlwA+WZfndZVluJP1TnfwB+vVlWa4l/RNJj4cQ9iWpLMt/W5bl+8oT/CedfBH/utPz/G5Jf78sy/eUZTmT9Oe5QAghSPpySf9LWZY3yrIcS/pLkn7v84ypJ+k4ee1YUlZiMzIy7nmUZfmTZVn+SFmWm7IsP6ATYfcWkfb0+/RDkv4/kr749PWvkPR/lGX586ff639J0ltfhEuhd/pf/+7N37sZGRn3It6mk++8ry/LclWW5X+Q9G909j36cvFnyrJcnv6N/G918rfx7UD+uzjjeZEFhYzLgKft33NJz5VlubXfpdM/NEMIvyWE8CMhhBshhCNJn68TNVY6iWx92M7l/74mqSPpJ0+tZUeS/t3p6+dhohMXhGMgafxibyojIyPjbsVp6tm/OS2MONKJKHA1Ocy/Yz+ok+9g6aT+wf9p37U3JAWdRM0+Hian//Xv3vy9m5GRcS/iEUkfLstyZ699UC/8PfnxcLMsy2lyvkee7+CXiPx3ccbzIgsKGXcNQggtSf9c0l+T9GBZlvuSvksnf6hK0lOSXmMfecz+/ZxOxIlPKcty//RnWJZlT+fjPZI+3a79ekktSb94O+4lIyMj45Lj70j6BUlvLMtyoJMUhpAc49+xr5X00dN/f1jSV9h37X5ZlkVZlj/88S5YluVNnXyPf7q9/Ok6+T7OyMjIuJfwUUmPee0ZnXyPfuT031OdBMLAQy/inAchhG5yPr6XX875HPnv4oznRRYUMu4mNHXy5fWspE0I4bdI+k32/rdL+tLTIjcdWX2EUwX4G3VSc+EBSQohPBpC+Lznuda3SvptIYRfd/rl/Bck/YvTVImMjIyMex19SSNJkxDCJ0n6H8455v8dQjgIITwm6Y9JIu/270r6mtOq4AohDEMIv+tFXvdbJP3p0/N+kk5S1b75FdxHRkZGxmXEj+qE5P+JEEIjhPA5Oqkp9k9O33+3Tooedk6Li/+h5PNPS3r9Oef98yGEZgjh1+mk5tg/fYXnA/nv4oznRRYUMu4anH5p/VGdCAc3Jf0+Sf/a3v+/Jf1fkv6jpPdKetfpW8vT/3716es/cmrh/feSzi1WU5bleyT9EZ18gT6jkz+u04JkGRkZGfcq/rhOvmPHOhFjzyvS9a8k/aRO/lD9t5L+niSVZfkdOimC+09Ov2t/VtJveZHX/bOS3qcTq+5/kvRXy7L8dy/7LjIyMjIuIcqyXEn67Tr5bnxOJy0Y/0BZlr9wesjf1EnRw6cl/QOd/D3q+HOS/sFpahl1Ej6mk7+PP3p6/B95hefz8ea/izOeF6Esy4seQ0bGHUEI4S06+UO2dVoYLCMjIyMjIyMjI+OewqnD4R+WZfmaFzg0I+O2IzsUMu4phBC+4NTqdaCTCNl3ZjEhIyMjIyMjIyMjIyPj9iMLChn3Gr5CJzUW3qeTPurn5f1mZGRkZGRkZGRkZGRkvELcMUEhhPCbQwhPhBDeG0L4k3fqOhkZjrIsf/Np94bDsiy/oCzLpy56TBkZF4X8PZyRkZFx8cjfxRl3GmVZfn9Od8i4KNyRGgohhLpO2oj8RklPSvpxSV9cluXP3faLZWRkZGTcgvw9nJGRkXHxyN/FGRkZ9zrulEPhsyS9tyzL959WMf0nkn7HHbpWRkZGRsatyN/DGRkZGReP/F2ckZFxT2PvDp33UUkftt+flPRrnu/gdrtddjodrddr4ZgoyzL+O4QQj63VaqrVagohqCxL7XY7lWWp7XYb/12v1+MxKTinn8NdGo1GQ51OR/V6XXt7e1oul1osFvFay+VSu90uXmNvb0+NRkO1Wi2ef71ex3thvLvdTpvNJv4uSbvdLl6z0WhIkjabjbbbrUIIlfFzfUnx2rzGcbyf3ut5r4UQbhkHrzMnvO5j8fnnWP7N66wDr+3t7cVj/PybzSZeg/vZbrdx3kII8XcfA6+d97m9vT3t7e3Fz/g97XY77Xa7eGyz2VSz2YzHMS6O9znhvnx8PhesG/fDOHx/bjabyjzV6/Vb5tvng3v1dUjXP31OOJax8jvH8Nl0P6TPQbr/uA8/vlar3XIP5+238/ZSurfPG4Nf1+eE45h/vyees3QfpWvqa+3n5nnyMS6Xy+fKsrx2y81dfryk72FJqve65etft9PTP1vc0YFlXDyWr+me/OPW/01mXADCTmp+ZHrRw7i0WGiqVbm8W3frS/ouzt/DGRkZlxVj3Tz3b+I7JSic96VfYQohhHdIeockdbtdff7nf76efvppLRaLeMx6vdZyuYyEvCxLNRoN7e/vq91uqyxLTSYTTadTLRYLzedzLZdLtdttdTqdSGYlxf9uNhttNhu1Wi21Wi1tt1ttt1tJJ6Ti4OBAb3nLWzQcDvXYY4/p5s2b+rEf+zGNRiOtVivduHFD169fV7vdVrfb1UMPPaSrV6/q8PBQe3t72mw2+tjHPqZf/uVf1nw+V71eV1EUCiFoMplEonlwcKD1eq3ZbKbhcKgHHnhAtVpN4/FY4/FYtVpNzWYzkvHxeKzJZKLtdquiKHR4eFghuIgd3It0RiohSxD0zeak6UG73Vav19NqtYrzDsGez+eaz+fxfK1WK4oektTv99Xr9bRer7Xb7VSr1dTtdtVoNOJa1Wo1dTodHR4exvcg+4vFQs8++6xms5k2m42KotBms9FsNtNisYj3v16vo/DQaDS03W41mUw0m83UaDTU6/UkSUdHR1osFmq1WnrkkUfUbrc1n88VQlC73VatVtNyudRyudTR0ZFu3rypfr+vxx9/XPv7+2o2m5V5cNLOmm02G43HY41Goyg47e/va39/X+v1Wk899ZSOjo4kSfv7+7p27eR522638ZrL5VKNRkP1el3dblf9fl/1ej3uy+l0qvF4HI+RpPF4rN1up2azqd1up729PfV6PbXbbUnSfD6PoheC13q91mq10nw+12q1imJFu93WwcFBhUCv12stFot4DvZcisVioXq9rrIsNZvN4v5hXIhozDfrvFwutVqttFqt4rPYbDbj9ff29uJ4EAPYy+xX31OIAa1WS51OR4PBID4r8/lcx8fHGo1GWq/X8VqsF2JgWZaaTqdar9eq1WoqikL1ej1+j3D+RqOhj370ox885/vsbsALfg9L1e/itjp6/D2/VY/frX+2Z7x4fESqdTp6/5/6dElSWZe2rdxG+qKwNwt6/E+966KHcWnxo+X3XfQQXgle0t/E+Xs4IyPjsuLfl//s3L+J75Sg8KSkx+z310j6qB9QluU7Jb1TkobDYbnZbNTtdlWr1bRer2OUHiGgVqtpsVhEQrlardTv99VsNjWdTqMzAfJApHG9Xkci7JHM7XYbCQ6kFUfCeDyOn/Vr41ZYr9eq1+taLpeazWaRiEJsEBsgcsvlshKNlxSPgSCNRiM1m82Kg0FSnINGo+ERU41GI7VarYpYADH1SDek1KPbCA3cN/OGeMD1iKj7a3zWI+4IGpB8yBtC0HQ6rbgX/JxcF5Gj0WjEud5sNjGKzNi4HkIJggb3AunvdrvqdrsVwQgnCMR9uVxGUYc5Y30RNNgrCC2ci3lmnE6KF4uFjo6O1Gw21ev14rkYD6IFe7bdbkfnAhH/1WqlWq2mVquldrsdP4Mgs1qtIol2sQxXAuTex41zZj6fq9frxf3C55kDPsdr7qxhPbrdbtz/jMudGsxFvV6P+wtRZrVaxX2X3reLE1wX4Y/nyd01iFD+zPizwzz7fTBW5oN902w21el04nfCbreL3xF3KV7we1iqfhcPwmFmlPcRdrNZJLH1T3mzPvAFVy54RPcv6osXPibjrsVL+ps4fw9nZGTcbbhTgsKPS3pjCOF1kj4i6fdK+n3Pd/B2u9VoNIoke7vdRpInVa37RF13u506nY7a7XYkCE56+FxKNCB+k8kkOhUkxShtq9XSaDTSbrfTRz7ykfg+hAzySxSTyOt4PK6kW/T7/VuEBCL5jLHf76vRaMT72e12arVaMfLPfRBV9bSI1WoVo+8QQncnAMgaxNrnlEhwu91WURTxNenEkQC5g3Tu7e1VzrPdbqOo4ffIuCGRRL7n83m8f8QTJ8M+R7zG+ZgfiKd0IqwQUWdMm80mCk/tdjsSeMgozpRut6v5fK7xeByFEYg3kXjWiT3nogznI7KPgDGZTDSfzzWbzTSZTOK+XK1W2tvbU6fTiWT2+PhYm81GBwcHcf45njlzyz73T6TdCXYIoSLCMHd7e3tRVOL1xWIR15P5RGjy+U7Tc/xZYm1dmGPNptMT2263241jQwhhn3gqS/r8cs9HR0fx3IgSPBcuKiAKsV4uRHFfuF44D8JXo9GI41qv11FU4BlbLpe3PFN3EV7S93DG/Y3te57QY++56FFkZNyTyN/FGRkZ9zTuiKBQluUmhPCVkr5bUl3SN5Vl+bx/qux2O43HY22322iNL4oiRg8hBhCK5XIZI9WQUoipdJbW4FFj6SyKz2dWq1VMo1gsFpFEIBpMp9NoGeecEN/NZhMdC8vlUs1mMxJI7Om9Xk+TyeRkok+v52OUFKOvXB8iDyHk/onmQ5gQNIjgOjlMAUFjPl1wgUT5/Gy328r5PH0BEcLJF/MjnTkiWFeEh9FoVIkOe0Tb59VJJ+PDyt9qtaJdvdFoRFu/5+kzN+l9unODdYDou31eUjwv42R8RNu5D8a3WCxiOgeRe1JXIPVeV4KaG4xluVxWhJVarVaJ9LsIwVilk1QH1ol5RmRwgcafDebJP8v1fM3Yb4xzNpvFFICU+DP/zAEkHLGKeeY5aLfb8dliv5K+wRiYJ8Qhr1uS1qrAKcKzx9ojkCEUcUxRFCqKIq63O3oQqM6rL3K34aV+D2dkZGRk3H7k7+KMjIx7HXfKoaCyLL9L0ne92OMRCur1eiTI5ES7FR+CR46/F0SE6DmpcLLEOSCKRJKxnLudnqgmEWrpLP2AyLckHR8fqyiKSHals0J6jUZDrVYr5s0jKpAG0O121el01Gw2Y844RNZJsv/bCxNuNptI7CG70hlBcju5W/oBEVoXXzya3Ww2VRRFHAP1CnBl7O3tqdVqVdIriuKsiFBqS4cgk8tPCgUCBXPM/UHsIcAIN36viCR+bmz91K5gTpxse1Sa95x4I/JwP14sEWEAAougEEKIwsRyuYx7FyLMfLtY41FwxBx35BBZdwcF4gb70+fDxR1PF+K5IE2ElArG5ddMnx+i+MvlUkVRVIpe1uv1uHa8xjPE3nRni6SK84W9RApH6uZhLRC5vPAkY6S2hjtZ/JnhPv0ZIBWFefNruYB5XirF3YSX+j2ckZGRkXH7kb+LMzIy7mXcMUHhpQACQv77YrFQu92ORMwJvUfAV6tVzHf3yDYEBgLGub1GASTMC/FB3FarlWaz2bk1Dfb29qI9HQIFMYLAEUmm7gBkB5ICkZ1MJjGC60RMUiVi724Fj5h6xwD/vH9WqtZR4DX/t+eXt9vtSMjI7+dcpAuUZanxeFwprscaIZAwFgjudDqNBBDynwoDTr4hsMxlGnGHXFIHwEUlCCq1LnAYcF9u00eMmE6ncTxOoN2KjwjgLpAQQtw/CFMe4ea+WCdJUQTzGg2cw7uVQH69iChzgFDmThffpy5GeQQeeFoA+9ZFBUQw0Gq1KoUVgafiSGe1NvxemCeui0jhgs9isaiMxT+H+4Jnis+4COmiiO8hP5fvK75jSH3wvcTP3S4mZGRkZGRkZGRkZNxpXApBQTojztvtNua2Q7aJrkqKkUbPl8bVQJQfQue2Zyfmnr/vRMuL6kEoer2eGo2G2u12hXTjlMCK7Z930g5pIm+d7hTUTfCxQeKlqljiBJZzU2CQ+3SLNvMDoYOoufvASdd5dSZI/fD5lE5IMy4BUlSok0A0vSiKim2f9BCi4j7HkiIZ9JoIKSFnnT367vUzvL6EJE2nU3U6nXgvi8Xiln3j14ecUpcDYWkymcT79Sg3JNaLW5Ke4vZ+F3sQniRF0cVB7RBSKTh3GlH34pte2wP3A/OQChm+f/gs+9j3rKdz8LzgZPHaDMynOw6A3zNwp4yLUewznhHIvTtszhMLcCp5Wgj7Pn02uIYLG16QEqeD71sXRDIyMjIyMjIyMjIybsWlERQgjNJZgUSIFC39ziOEkCLqDnhFekgTTgVIeqPRiPnTXifAxyIpFnqjxZ/brfv9foV4O5GHkHF+T5HwPHrAfZ9XhZ7rO5lkDjyn3QUXvx8i1G63dyLtdSUYhzszvMgi56e4IHn4/X5frVarUvOCFABIJKSXYon1ej0WxmQ8RI4RC+r1eqVgJUIDx3ung1Rw8uKDrDvWfHetMJfsOa9DgfCz2WyiUwNyynFcmyKM/M4YmFvOiaDg1n5Pn8AtATkmNYdaHAhUnM+dCsyxiwOkc/g9+X6FVLM/cQ/4PKWiEkKdC0aIHOv1+pYCl9JZMVTfq9QLoZ4C8+wpP14jgtdcGCO9BUGA+/RCpThaEEhcLEgFDy96SQvOjIyMjIyMjIyMjIzzcSkEBSdcnuaQRjIhJESb3d7vEds0NQKyDPkgEk7+v9vlnbRT3Z+8cSe09XpdnU5HnU6nEkWHSEln5BEyz/i4FtFTWkxOp9NKwUCs95577lFYz8WHzEG8ms2mWq1WjIozH16Iz10NkDGImUfQ+S/pC2VZVoroEcGmsKY7I1g7xsHYcQ8sl0tNp9PKOngRRM/n9wg8aSmkmrg4gnMAQQGhA0HBCyRKiuIN40Zsot4AXSJwXiBK4cZgPAgSkFKcGVjrEV0QOCDI7H9IPjZ+J/o4F1KRjPEzZ143gDV1ocePY21xMqQpCl6TwsUTro9DgLFC8Cl0yTPDPnanBGN0B8dut9NkMomOBJ430jkYB+PzMc7n85jiwnPsQp7XVkGsZO3cyeQ1WVKHRUZGRkZGRkZGRkZGFZdCUAghxJQC4AQA4gFxwY0gnZFP6YwAOFGGeBA1h/Cu1+tKu0EItkd45/N5JImMqd1ux6grdnAnhbzONSBozWYzknDuC/LSarXUbrcjGXMC7XUgPPLslnDpzDnA+5Bsor9ejJJ78UJ0fI4fdzIwt5Drvb09XblyRUVRxMgyhRbpigG8kKSLBswJ781mM0mquBKYb3ejeD0ISXGOPbc+LQRIugUkHscG9wRRpbAmc5mmn1AENE2rQZiiCGO3261E0efzuSRFQYR0D4oxejFI5s5bQCI2eDFF3ws8B3ye+2OuqUXhKQe+3uyfNPXFHSaLxeKWIoUIM4gxLlhwHdwR7uhAZHAByEVET+HwDiYuDnnnDOaIfcye8yKluHmYJ+ZyMBjE+/NaKqQmpTUjMjIyMjIyMjIyMjLOcCkEBUmVVnie2+2R3E6nE6PuDiecZVlqNptVisVB2BEbXIxAUHBSByC3zz33nDqdTjyu3+9HQooYgmvCAVFBXEDUcHcFpI5zrtdrzWazSKI8xSElkV75nnQB7kk6Idae4+8uBIQZTwXBqcCcIdwgekC+p9NpTHNwC3uj0dB8PtfR0VE8Bzn23pqTuXFHSBp55pzU0ZjNZnG+XFSgUKAX1XMhwOeeIpykktB60nP45/O5ms2mut1uFIlYK08vgXxCstlH1PHw1JcQQnQYeDoBBJpzuEuCHyfKqQUfcQcxADGKz3ItWpviXPE18xQCkLoJfA7Sz3NNhAIn+dTUQJRAEPD5dFHM62B4WgpCBGKOiw7+TPh6Mb/MDy4dCqOyN9gHpK1wL+z5six148aNW74bMjIyMjIyMjIyMjIuiaAAEYPsE7lFBCBiXavVdOXKlUiIPVqbWrk995vI83nkDEIOuQBpxXvvQOAtIiXF6KkTPoiLEyh3K3DP0+lUg8EguhdarVa8X1wN9Xo9kl3Gxo/XlfA6Ali6IfJuIYdUe149UW2Idb1+0gKy1+vF6HOr1YqR3Ha7rWvXrsWotM8Zlvd0znALsAbAo9YpYfd2lk6CuRZknuJ8iApEpKUzspmmVKRdKhBlEClwjTBeb4/o7gLWyFNiZrOZiqKI636eEONugrSOh7sQfK1Jw2H/T6fTSgpKWijU0xA4byqeuYDB3nXhgvnD1eNj5PPsERcIEMi8MGIqxEHoWTdalbKv/LkkjQdXDPAio+xhOnR4oUVSl5gbnqmiKGJ6hAsY581VRkZGRkZGRkZGRsYZLsVfy06G+d3bMELIiLRCFP0zXuRuOp1W2tc5iLAiRqRV7iFTEFvP4cc67XnfAILH+NPrQwQhn3SlgHwjQCBWEFFuNBrq9/uV9ARcDzg4vJilR5cZs9+HdFbPgNZ9XpjQHQ/dbrcSzaXbBYSNVouMhfNOp1PNZrNIGrGt43hI1xqi6cQSUo84wLzhOEgdG15rotFoaDabRZKNgwGRAaHKWxW6c4Iou8+bF3D0CL0XTGQsXDMtqLlcLmNqB/MwmUyieMHrvq9cLMOxgJjBse7QIGoPIeee3a3hgkMqRnFNr+nAfXnUH5BGwJqkroM0nYZrMXaeR+bVn1PWgWMRnlycQoTw83O/CDY4EHhOmSPmgz3h6UxcLxdlzMjIyMjIyMjIyHh+XApBYbfbaTQaaTgcRrLgbf7chbBer1UURaxdQETRSR72ZY9OeiFCCJ50FmHmcxB7IrKIDxBqopmc1wkm/4WQEYl2skRElkgr7QrJuyeCCxGD6GK/JhqM9RtSxLHuNmAOvW6CzxHncBu756fvdicFCoui0PHxcZwD5tLHyH3w48TZ23liW/fothdM9DQIxkr0m/WE7Hr9DHeauLjhQo901lGDsTGXXBsXAHn0vOZE3cUmXA0IIZIq4oy7Nqhnwbg4hztImIe0foYLCl6TgDX3gqCp2OLrxTlcQGPM3l2Bz3rhRN/z/p63dWRted+Le3qNDoQQ35/se54X5pTXKYzpYgjX9nGzH1w0YGx+v4wJuBCHyHeeKJmRkZGRkZGRkZGRcYJLIShIZ4XviExOJhPNZrNYW8HJYhptTDswQFioHeB1EiCyfBarunRG3iEqRNSJYEOmIRrUIEgJGOfgvF7Iz4spDgaDGClHBHDbP+PpdDqRYDpBlM4K0LntnGuQE95oNCqfbzab8b49gu5E3kkabTan06mazWYkieTJTyaTGKF2Quu2dO8g4PZ33mNtmUfadEpnBA+C6nPsLg3mj3ERuWdOvdsB80uHie12G7sxIAIhLHgxRMbH2N3twTiZAy8Qynin06lGo1GMtLsDwTtneEoK12QuPDXBhSl3APh+RsDylB/+646W59tHHONFTNnz7qjwvej3zBykwgL37TVE2Au+x/2+04KY6V7l3O12W81mM4pZCAvMkwsw3AN7CNeQOzkyMjIyMjIyMjIyMm7FpREUnORBHCF7nuIwnU4jWfAih/zhTzFBop9OcJ0IQl5wEpyXaw4Rd/s1Y0VccCu55/V7hBMxo9VqRaLM9SCUFI3zSD4iy9HR0S2iQuqK8Mgv9+nzyX0yR4yfc/CeOx/cEu628Ha7Ha33/GAx5/4RUzydgog80Xlv48i1nEziDvH78bVI7eiQXjopTKdTSVK3261EwblP5hdS6STWyTdz5XU5vAikd/1wgso5nejjvpEUxSreWywWUdDw9Blfbx8/xNrrPDiph0Dzmu+VVJDih3lBePJaDhzD9VNxgfc8TcLrV7jIxJ70/V8URZwL9oYLFBznbgp3Vfi9IJY1Gg1Np9NbOmb4HmAdXcBxASwjIyMjIyMjIyMj43xcCkHBCTrEwNMV3J5NcTtyp4kMu5XbK+975FtSJBqez09qA1FpSZFEI0hALjwHHRJOZwaKMhJNJ0UAR0C/39fBwYEkRes77gBs8xAZr+/gHQW8kr50RjghURAuahYgrPADaU7nDuIL4XJbulvbvWMGeey0JWTcTlBxQjAOyJ+3GvSWgBBMBCOP9rulPXWrQKjdreL5+h5pdgLq88i6IT4wPqlagBCxyCPc1LzwyL8LCt5RgH2Cs8JJu6+RuwUg5QgvPi7EllRoYVze+YGxuzOB99xJ4NdgPiDfab0GnuHzhAdPjQB+LReTPEWE+fcUIh+Xp0MwDy5S+DVYU0/34TjqaJCe5PUVODYjIyMjIyMjIyMj43xcGkGh1+tFAuzF7LxqvRM4PtdoNCJ5TsmydFbQEXHB7dtOHJ10p/nnVJ2H+IxGo0juB4OB5vO5ptNpJTrt7fwQS4qiiK0v6/W6ZrNZ/NxkMlFZlppOp5G4QYKcGHqkPY3Icr/u6qD4o88jwgCpC5A5xpoSONaD63i7yKOjI43HY+12u9hVAtLn0X53HEhVhwgWdeadOej1enGPeL0Gr5cBuG93rZwX2edz7lpxMuqCgl/PBZ40tYXikd7WMBVBXABAPEGU8VQa7sOBGMG4cNLwuosILhKwX0kt8JoTiG4hhIq7xsUCXx8/zmuReNFF35eg0+lUhKE0Pcjnik4dLpLgVGB+fC94/QvEGa894ddDRJRUqc/CeVarVWxJizjkIkhGRkZGRkZGRkZGxq24FIICZAmbP69BDD33XqpW4ofwOhFCVPDCdYvFIkbKIeu9Xi+SbI9M4haAdPHv5XKp8Xhcqey/t7enTqejwWCg3W4XI/YQWhdCnKBQi4AWeJDL2Wym9XodCT+EdTqdRnIFMWLMkC0v6gfcoi6p4pjABSApjhNnCL8jDmDzp2YBRHY+n0cHRaPRULfbjWOnGwV1GCCEs9msIujwWW/px5ykRQO5F+7HU1jAZDKpkFrm1ov5ucjgn/fPnUfu3U3gVn6cIQ72sqfauPuE91wUOo8IcxzPhKRKPQi3/TNXu90uXp99mYounkqSFqdMn7V03qnJwDE+Dr8OcEcIc+bOBZ69VLDxgo++nr4ufI51ZY5cKDxvnj3FhflDXMjOhIyMjIyMjIyMjIwXxssWFEIIj0n6FkkPSdpJemdZlv9nCOHPSfpySc+eHvq1ZVl+1wucKxJYqUoQSCs4z6LtEVMHhJh/c6xHaXE1eGoEhGI8Hsfr1Go1dTqdOD4nZuSoNxoN9Xq9+P54PI7V/yHirVYr1mrYbrdqNpvqdDqxIwIuAlIHmBefG8+fdyIECUNocIu7kzMnwum5EVZoz0jKRypQzOdzlWUZ18U7RCCaUASQOaduAmMgos9YnMDyWmpbhwh6VFw6i1w7AU7TK4g6p0UxndB6tNrFHx+H1wHwcSNssQ4uIqX7knOlRQcZOw4R7+rA3DIPfoyvqbcN5d681gGf984H7hRgX7mYx7h8boB3QHDSn5Lz8zolsP98b7q7g+fanQmO85wRpOAwtvOEo1Ss8D2FyMB6+v67zLid38UZGRkZGS8d+Xs4IyPjfsYrcShsJH1VWZb/OYTQl/STIYTvPX3vb5Zl+ddeysk8Z9mjhBAKCJaTOnLtz/ujn/N4QT3cCURlzyN+VP7Hgt3r9WKaAoKBpBjd97xyor44IhAUKGiYkvder1epPI9IQStL7wKQ2to9usy9ehR8sVjEzgGkbODcSKPLTrKlM5KOk8FJ2XQ61XQ6jYSTApmQUcbR6XS025106/AaFggDXiTPUzt83f1+3YXh4kqa/uBRciebaXtFzuUkNnVl8J67BDi/1zZg37iY4M4K/uvjYeyM31MRUrJMvQ/OgfDjogPPUCpi+By7S4DzeRtQJ9HuokhrQ3Atr7vh9+LX9hoc3BO/e3cVT6/gs6Qq+TPurgcXZ7gvRAXWzQUWd0+c5zJhTngNkeguwG39Ls7IyMjIeMnI38MZGRn3LV62oFCW5VOSnjr99ziE8POSHn055+IPeoh8Gu0lwumt+yAPqT0b4QCytd1uIzHn817fQFKF7Ehn7fYgme4AINe/2+1Gmz6t6YqiUKvVimkTRMYRC4i88tNsNtXr9TSdTqMgMRwOY50CilBC9BgXggMEyMkeRJm2ibVaTf1+P6YYIBIwXy40OPGcTqfxOsydW+O97gLHeLRbOrHFr1YrLRaLSkQ8TWVxksm4gEeJnVBD9ul2kIoBbnP33HsEH4SetKaCk01/zYll6pLw/efX9Eh3CEFFUUhSzNH36yFgLJfLKEydJ0ZwPZ8v7gsCnooCvj98r3u9DXc04CihFglrR50If1b8+eVzvk+8rWf6GVw78/k8zgn37kIZLodUmEjTGZgvdyTxPHg6Def0Z8bbfp4n/lxm3M7v4oyMjIyMl478PZyRkXE/47b4eUMIj0v6lZJ+9PSlrwwh/HQI4ZtCCAcv8hySFAkIJANyRs0B6cyqXJZldAIQ5XSiSdoBpEE6sezPZrNK73mIsUecJcXaBbPZLBIXIuSQbcbkgkNq04aQIw7wb2oOeJTYBRQnZXt7e9rf34+Cg1+PMaxWK+3t7akoCtXr9VjrAadGv98/N0VAUsUVsdudtOd8+umndXx8HJ0Iu91Os9lM4/FYo9FIs9lMrVZLw+FQvV6v4iSBlPGzWCw0n88juUTkoeYE9+npBKlrgd/T/HbWnrmWqqkU6T3zGcaBuJDm03MuFyVcgHCbvNdW8DQK9hWCBDUsvH6EH7fdbjWfz2NtCqLtvpc8Mu/we3bnAOkrPEdeJ+O8NAwIOffn8+buDifd3DvulF6vp3a7HeeM9U3rGiBmpYJGWt/ABTkfCz+k2TB+3y+kM/H8eVHXtFaEt+B0AeNuwe34Ls7IyMjIePnI38MZGRn3G16xoBBC6En655L+57IsR5L+jqQ3SHqrTtTav/48n3tHCOEnQgg/4SQS8Mc9tQWoOXD62Qr5QoRYr9eRhHlLSCK4kEAnqU6kziPa0+k0FvmDrHsOu3TWVs9TBZxUStXcfFwNq9VKw+FQ7XY7jguRwMmUky4ix06u6SDRbDZVFIX6/b76/b6KoqgQvX6/HzsnOMlL8+6ZByK55WnNhN1uFztajMfj2KGCtApaIo5Go9ipARIIqWUdIOAutvgcOoF3spe2j2SOff94RBoC3263K4UhJcVUlE6nE10hCFeMlTEREfcOA+6w8I4ZCDjMCeIXr3e73ViXw++5VqtV6nzgBHEBTFLcv+wl3BDcNwIZY2MefE743fdYu92OApUXjXQBiGcNEu+CHHOKQJPWWEgFAZA+M6w7+9Gf21RM8todiCe4e3jfC3z6j4s7qeDgwtjdgtvxXbzW8tUabkZGRsY9h/w9nJGRcT/iFXV5CCE0dPLF+a1lWf4LSSrL8ml7/xsl/ZvzPluW5TslvVOS9vf3S09D8JxnqRpFh+ikec60pzu9biVaiT2ftn5OoCFjkEYs255rjasAwsk53LVwcHCgg4MT4Zk6Cy6QuF0fMQTbdbfbjWRyvV7r8PBQtVpNy+UydlRoNBrqdDrRlUGXCZAWbnThgbF44UgEEkkxLcGjxoges9kskkTmEqHAC0jS7WK9XseilMyR2/A9wu8E3QmpizWsP06A1Fliey2emxoDjJH7IYWE63mEGhcFn027HtAhxIUhPttqtVQURaWYqJ/XiwN6sdCyLKP7hf2fplewJuw5XktrXzAmhA1Ph/G97ukYTphdAKPGBevEvbTb7dje1NfE6xiQ+oMrw2uj8DmvvQDcleJCjd87z0iaHuNj9PQLd8kgKHA+5iGdCz8v3yN0MbnMuF3fxYNwePcoKBkZGRmXCPl7OCMj437FK+nyECT9PUk/X5bl37DXHz7NJZOkL5D0sy90Lq8DAAmmJzwFDom+Eyk9vVZFRIBgklfP75A0bP3+WQieR3Ahfp4nT+S5KIpYG2G9XsfIaghBvV5Pe3t7ms/nun79eoWUcR+QeogzKQC0kISsF0URc+6xqPd6PdVqNY3HY43H40oHBsiPR2rdlg5RRGiAhDmRXS6X8bV+v692ux3dA7PZLL4HKVuv17HuhRe2I9ILIMwIAsyd29FxYXAcJA7LPXvERQMvfOgRftws5N6z9l5TgD3R6XSiMMVcuZDA2PhxSz4CDutMWgjEmgg4n2FeXCxj3F6gkHtiDPyeijCsMYQegYr94MJYCtwD3hGEz6WEH+EA5wbPpbtZ2HfsJa9dwBr6ddJ0C/YV+9+Fg/NSKwDdRjgP40PsYk+t1+uKCEf9DO7BRRyvo5CmlVxG3M7v4ox7C6HVUq3XvehhXCpsr9+46CFk3IPI38MZGRn3M16JQ+HXSvr9kn4mhPDu09e+VtIXhxDeKqmU9AFJX/FCJ9rtdrFwH8IARQddFKDAIqTDrfkemXdrtJOidrsdCVhRFJGwQGK9fgFIC9kRvZ7NZpFQIgxwLoSP+XxeiQIvl0tNJpOY0hBCiOfpdDqxHsRyudRgMKhE/T0qj1PCUwEg6QcHB1F8QKDg/qUTNwSvecoH80WUnhx4yBatNL0wJaQVUYSaE9S0oPCep5FAHl1QkBQt9x7Z5lpE/h0QWtacfeJOF7f0cw3mfbFYVGoEQJgp6OkCgosaTm6JdDthT1027rxwki+pkkoA3MHAnktrGLCePAekafhrzDdjdYeC34u7J86Dr3MqtPj9MlfMI2PmuWC9zpsvd9EgtLmTCJEvFZVwHblDAdHFx+9uJncjMSfAnQvPl55xSXHbvosz7g2EVkv1hx/U0Wc9oo+9/aJHc4lQSp/0f3304x6y+9gz2t0FrqSMS4f8PZyRkXHf4pV0efghSedVLHvJ/XU9+uq/S2eEBcLvZMHt3ogNkFVA1JiOB0Txvf1gWq/AW0RiHfc2kEVRaDQaablcajqdqtlsxvfJnS+KQuPxuGL1xgVAFH1/fz8Sds4LKd/f31e73dZgMJCkaI2H9LRarUrnhLIsNZ/PY4S21+up1+vF+gVuNx8Oh7EbhReJ3O3OKv67PR8iB7HGZSEpRt05D7UhNpuNWq1WzGn3VAuIIuTQUzVwKhBZTp0m/NfdATg+3FVCTYHz3A1cx9sVIk55JJ3PItY42fS9y3/93tKii5Bp3+vpsW7lZ125//Rz7lbAzn/e+2kKkc9Z6n5Ix+f3xzNI2pC7NBirCxR+Lu/GwvukELHHuFecA74254mDvJYWuPT1AOwD71Tix7mwwP7x9JrLjtv5XZxxl6NWV+1T36j5o319+DddfnfNq44g/cIfe+TjHvLY9z6o4slx/H33079wp0eVcQ8gfw9nZGTcz3hFNRRuFyAwpAukEWkvpOa5+G7nx4ZNlJsINSkORD+LoqgU7XPxwgknZNvTHkhbwCkAQcZp8Mwzz2i9XqvdbqvX62k0GkUhA/Lmle6xxTtpg1CR5uHF7dwVQToEqQEUpKRIJWQ+LYznc0knDCe7PjduI2c+eI1OEo1GQ7PZrFL4UlIl3QJHRb/f13K51NHRUYW4egFAdxd4BNr3A9eB+KfF+rxdoB/POZh7inrSmQB3i99Hs9mstCBlnVwMaDQasb6CR749+u2pDC6M+LnOSzsgbSKt6+FdMXAppALBeSIE5/b2j16Tgb3vggL71J0MXkgSUY+5Yf+knTdc2MDVwue9Wwr70FMS/DnkOqQ2pE4Dh4tw7oY4T0j0Ghv+TGRk3BUIQevf8FZ98L9rvPCxGc+LD//GuqT9k19K6fXf8SslSfXFRuWP/8yFjSsjIyMjI+Oy4lIICp5znZJ4SRWBAAIJ0YD4YvtvNpuVqKcXovN8b7dfOzH1yLxb6gF2eKzdTgopWDccDiPZxAbO+SAodEvwSv+4DhAHILrSWetJPk+HAogirgCI8nK5jB0kUreBV+b/eAUGvcVeo9GIhRulal498+IpKV4rIIQQBQhEIwQDj3AzPj7jAoOnRzgYN/fBfprP53EveMqF7ynukfMQMedcfn3mlPt2hwFk3l0B3CtrzmecIPs50voMjJG0DxcPqDXAfkjTAPzcLpilbgr2nT9TCEjsQeaC+3aXhtc5cOdB6rLgenyW5xzXB+vkz6Q/rzz3OAu4Dxfn3N2RXnO328VuHt6lInVi+F7yNJOMjLsB89/+q/WRz8n79rYiSO//wpM6LfVFWw8/+FmSpM6TE+3e/XMXObKMjIyMjIxLg0shKPDHPYQiLZKWRqIXi0UkGhBYiAwV5iEkEBYnR27/dmu228ElVSLcpAKs1+to42ds0hmx9YJwaXTUCQ/pEjgqcE6UZanRaKTj42PN53P1er3YsjGtOeCk1+tOQDK9Y4G3TEyjri440NbQHQ+kY3iHC++C4ES0KIooCnH/rA3EsdfraTKZVObq+VJeIKDeTpH7d8HC9w57xN0WFIPknFyHe1itVvFYfy8lwi4AuLOEefauEk60SUXxdBvf1/67k9u0HoS7L5g7UmZcPPHnxtc7TRvwZ8BbK7rLYLvdxnQenoO0raIT/nRu0lQKT+Pgmv68uSADGJc/A17Y0Z9b3xOIjex/fw59n/l8+DOSHQoZdws+8uuzmHAnsW2XevJzTzvePLuvwSe/TZJ0+INPavPhJy9yaBkZGRkZGReKSyEoQDQgi6mjwEkDaQeSIhnnPYgOhe7ckt5sNjWbzWInAyzcHtmGQKW57LznFmls44vFQrPZLJIiJ3FOmFPrunSSwtBut2PNAEi3pCiSbDabSOKYGyzjXCO1ynN9bOXtdlutVkvtdruSQsBYUpeAFxAkKt9ut9XtduPYiDB7Hr07HwDWfCd1dCfgOpBBz7Xnd98XHhnnM6SFMA4EFVwbtVpNnU6n0tVAurVeAR0hqPcAXMSQFIkwa8Ie83QJ5tIdBYw9jbr7eEMIlcKB57kWnMy74OWFBhmDk2+uB9KUIeabcfCZWq0WU3t4xvwcXmwxfT0l7+yHNB2F970Ia5pa4SkI7q5wV4rDa0pQ38PToRC9GGO6FqxB+j2QkXEZcf3L366Tmm8ZrwYW13ZaXDv59+SR16o5fkySdO2bflLlevVxPpmRkZGRkXHv4VIICvyRT1u3lHg5OXBhwYvuOdFIyQ2iwWaziWkJV69e1W63i/n/bt/Hwg4ZOa/om0fIl8tlrNWQkhAi3ZBDdwKUZambN2+q3W5rf38/EmNPR4D4eO0D7jWNqnrefggnnQza7XYULSDxjH0+n1fG7IKER7IRJziPdFK7gSJ3zIc7FYgmu7iBayB1JHiXDcbPZxEiuIaLHb7WnnqCgMEeQkhxV4mTV79H3ANOXt1WjxDl7hdIdkraWf80PcfbPrLPnMx7VwnGwL7gGXAXBCKNz6nPTRqJd8fAx7P2cwzzhtjB9X0u3S3joAbFfD6/xaXge5U9xxx4W0cXLHAvuIPARRDfJ3t7e1GUYz/wWXeEMC++p3zOMjIuO47epPPLwWXcccwe3Wl2+u/V//yZCqdfwXuzUtf+zrsubFwZGRkZGRmvFi6FoADpG41GFYJKm0fpLPLvNme3tbvFnPZ/Ht2WzuoQQCyKooitFSE4njdPxJiiglzXXQjL5VLj8VghhNi1gfG66MDxTkC9TaRHsVutVnQGeMoEXSy8aGWaAsB9egE6xBLPT3crerfbjddkXERrIXakLSD2eGqBuye4By++B4HmPBBgxkN7TF5z8kw7UeaBY3B+OBHns16w0O+DdBj2hhfzg1Aul8uK7Z9UhZRgpvvERR3myN0UzWYz1shgzM1mM7bx9IKffAY3AuNzkc3blAIXalx08LGnaSK+d5xgu2DgKRee1uCFE31OvH6BOzh8rXzuEM+84wapTF4fgftL1yJNe/Hzcw9eUNTvx1uo+nmymJCRkfFSMXvEBN2dtPgzny1JOnhip963/8hFDSsjIyMjI+OO4lIICl4HYJH0f05t2hQqpC4CDgNIS7PZVKfTiWR0uVxGkpj2uPeccIitk3eIqZMTyDaEc7VaRScAx3nknvuTzloiOgmktoMTRyfOkiKxxbng9ROw2mPv924CZVlWhBLSFDwtAfLbbDZVFIWm02mlYB6Em+4bkFqizmk3DsgwtRO8jgGR47Is1ev1NJ1OK591J4LXK6Abg8PJopNXhChSW/weGQfrxngkVYi+t8hEePK94E4Er8Pg5NrJK/fHenGc16ZwYQYhQlIUG7Drs65eSyNNd/D95o4QPg+B97H5td0RwZ5kDnGOhBDU6XSiqMZ8ePoJY2AcPGdcj/+e5zLw58cFufPSe1wg8/vHQYKQ5YJEmo7ha+Lzxf7PyMjIeCkoa9Ly8OT76ulfHfTsW99+yzFv+D9+Vrvx+JbXMzIyMjIy7iZcCkGBaCD2aEgLveqlswitVG1NN5vNoh0foru3txc7HNy8efOWvHuEi263W0mpkM7Iu9uxAYQM6zdjdwINaZrNZhUCQ1cGOglAtHAppISIMZyXy+22cogZx/d6PdXrdc3n84o1XzoTBfr9vrrdbiRz1Bngnm/evFlJVyDCmzoTsLGnqRb8l2PTdpMHBwd64IEHVJYnnTHm83mcH8aEoOOFFFO3CeQSBwHH7e/vxzVmHxVFEfeSuxkQblqtVhSg0kg2BB4HAa4NT51woYA5oG6F5+e7K8ILaTLfFL50JwzjwWWCQMb1/JzcIzU4fC8vl8sYkT9PaHAxJHUm+HPq65t+ztNzUmGD+3dHC//1Pe21DRDFOH8qQJCC4/Bz8SzxedbSa3ogFrGXMzIyMm4nyr1S23P+2vqlr/vUV3Te5nHQY//bD7+ic2RkZGRkZLxSXCpBgegyOc+QH68b4HnfRJLd9s/5PMcckkOkVZKm02ksMpjivIgtpHG5XGoymcS8fC8oyI9HQT2KSj0Dz7nHYeG1Bzw1AoJLC0evseApHU6Q6/V6TFHw4oG4FJbLZZwbOkjQ8rHRaKjf71fSQyBvtFiUFF0R2+1WnU6nIoJ4QT5Io1v/Dw4O4vxdv35dH/rQh6LLBMKJI6Pf71daYuJggbS6IwMgTvh4fXz1ej0KFUVRxDaJ2OqZZ4pl+nrhFuC12WxWcYu4Rf+8lAQn6ThqWKPlcllxonhBSJwtXn+AOaMIaVoTgdc8TYg58XoCXrfAx+7PJedj7BSvPO++Ie3uCOHZ5XeelVQs43fuE+eI1/8gHcjTiM4bb5qS4nUSmCscDF78kvOybzIyMjLuBMq9V5ZatTws9d6/8TYN3lfTg9/wYyfn3G6lnLKVkZGRkfEq4lIICrPZTDdv3qy0diPy71FxIt1E+akp4Bb91Wql+Xyu4XCoZrOpo6OjGEX2nHrPF+f8nnYgnZCmTqej2WymxWIRo//b7Vaj0SiStDQdQjqrbQCZgpx6zn4azefHLffD4VCr1Urj8bjS4hB4sUDOz9x4C0m3eCPYQAiJ4jOWoihiPQHIm1R1Bezt7anX60XRAXECl4mTORwbm81Gw+EwOkggisfHx5pMJre4QRBImIdGoxHP410CUmHFi0e6g6DT6UhSJO2kRUAsPUVDUqxxwPoiPDhpJ/qd1tjwlATfBz7P7AVPxdlutzEFwomtixGk/SBkQeo5N8IczwZz6MTeC5p6egFwgSJNs3FXRJqmkD5b3CtzyprybKdCQyouuFvEHUpeR8FrH3Bcq9WK64EIhbNotVpVajEwX+488vvJyMjIuJQ4/bocfeJOo7/6mZKk1373Vq1//19UmqMvIyMjIyPjTuJSCArSCcHGfp7+EEV0G750RlTICaewHSS31Wqp2+1Gu35RFJpMJtput5pMJhoOh5GML5fLSDAgFggc6/U62vu5rhdm5N8UieQzHqFHEIG0+jUQAvxeAAQJcsU8uEBAZNUdGByTijTMdXqO5XKpzWajoihuqdXglnO3mkNoGSedFHq9Xoz40mKSInvT6VSbzUa9Xk/7+/u6cuWK5vO5nnzyyZjnznU8xcH3gAPXA102IPa9Xk+1Wi06O8j5JwVhMpno6OiokoLi163VahoMBhoOh1GoQpRywcAj3an13wtquv2ftfeaBp1OJ84hbhAnzqmToNlsxj3GnkREAp5mwLzgZoBwI2Sk8+rkGtHEiybi0nBRzkk9c5PWIvBUCa+HkNZRcLcA84bgwBriwvFrIlggqJD64W4himMC5hTnBPvQn8OMjIyMuwEf+ry6Hl99uho/8FNZVMjIyMjIeFVwKQSF1Fbs0VR+57+eV54WcsMST6FDIp+QNCLUkML5fK5utxuj6tQygPyHECrEFHINUXELNeeFDKZkBHcEBAdyBsFC9KCWAQKHJHW7Xe12O02n04qIAVlMU0H8vFjlPdIsKXaWgIy506IoCklnOf5OXBEIIHaedoCY4kUMmYfNZhMj8dKJ+6Pf76vX60Vy99RTT2k6nVaIrpPOXq+ndrutyWRSydeXFNfY62TQQYEaG6QHcL+kGCDouPuC+zg8PIzpB7PZLDokcMvsdrtY3NNz8dPuJJJiYUWfb4+0Mz+kQbDO7GuvKUAKAOvizhd/jlzUIhKPkIV45YQckcjrPgBP32Dt2afu2uA84DwngY/L9yzjZO48lcHFCMbDWni3l3a7HVNZXARiDP7dkToi3B2VkZGRcTfiA7+todeVn6a9H/zpLCpkZGRkZNxxXApBAfBHvpNIqWo9hmB4kTuvYeCdBiAkoNFoaDAYRPHAyZ+TGKzj3h0C4kI3BIiqE0NJkRzzOkQPB4MTPrei+736fULccTd4IUIngtIZgYQMQqwh0ZBmorDcO8SLecRujyuAzzjRdwKbChYQYu5vNptV1pdIPLUaHnjgAT3zzDM6Pj6O65bWECAqXq/X1e12tdlstFwuNZvNoiNBUqxJwfnX63W0vHOf1GZwwarZbFbqZeBwYb2lM0JN3QT2IXMsnRVD9FQFrkHNBNbTXTGp+MUc+b7xVJLUGeD3QXQ/FTa4B8bBHJ8n0Lkw53uHZ47xelFEnj13rTBuxulOAu6H/c7YEIY4B3OH48KfjzQ1w8/B+NrtthaLRcUFwX36nuQ+U1dFRkZGxt2GX/7tTT1e+3Tt/cd3S7vstsrIyMjIuHO4NIKCF2NLyY2TWgoKpvnXkCzICG0G0yg3EXuID5/xz0tn7QCp7M8PEdDpdBoJqEf+ST0AkJuyLDWfz6MzwMlju92+pY1fSpg87cGj6VI1Es1x0+k0EnqIOASSdo+Q8m63W4l2O3EkVYG5cSeAE0LA+BAxEF7cqQDxpctGWZY6OjrSaDRSvV6/pR0l80jRSNamKIo4F3TQkBTTU+iyALF1pwtzzjx2Op0oHLitvyiKWDsDEkxEnP3KvnJ4TQf+6/n6fM7TONxNwn/9GG9b6cTa02TcBcI1fa94AUWEBS8myr17PQxEFq9BwnyS6uH3yXPnYp87YHzcqfvA6yR4yg3PPOdmLXje+I5wpwLPGM8eziB3L/FcMM/MC98BGRkZGXcrPvBbG3pN8Rlq/5sfu+ihZGRkZGTcw3hFgkII4QOSxpK2kjZlWX5mCOFQ0rdJelzSByT97rIsb36885RlqePjY+3v70dikP6xL+kW4uPWcYgFr9M20cmGpzR41N2Jk5MviBwEhvfdVQBJJCLP9T1H2yOdTvy5vndacIFDOkuVoNVdWqTOI9UubLhlXjojaO7EgIR67QXO6xFiz6GHuE8mkyjuMG53XODqKIoipilQPJPOFRzX6/V0cHCg4XAYSTMtDj2lAecDc1iWpYqiiASfOSW1JI36M59eh8AFAUQILwaaEu9utxvdLb4/XQyq1+taLBZx3tjjzLF3JWCfpoIQ4yFFgTlj/dN96gTZ3S1ehNDniDExP0763eWAmMT9Eel3gu9iE6k57G3mx+tj+H51QQURw4Uff2b8eWHsuCio+ZA6LnwPe3qQw0UZrxOROpwuM27Xd3FGRsa9hSc/t6aHOm9T79t/5KKHcs8jfw9nZGTcr7gdDoX/pizL5+z3Pynp+8qy/PoQwp88/f2rX+gko9FIvV4vRge9VRzEzG3TTo49ygkBICruVm/y4HnfCwxCcCeTScUtsVgsYpSb6D4FAB1OnkBalA/SDWH0VA0nyZ5zTu48wkJqBYfUuY0dIkqXBgr8pfPlZJjIM84C4ATsPJt9KpawZrg5cHTgVEBQcDGHrg+0iGRNWD8EHZwWPq8IAJ4qAdFcLBaxvSFjdvHERSGi/q1WKx7jLUDZK41GQ51OR6PRqEJwGZfffypQsdbMG6kz580fYpCLTYyZooOsm9er8HXmfJJuaSPKeNbrdXR6+DzzeYQhfvfjEGqYK/YUc8l4zqsn4S4LjmXdvYCjp1B4LQrqjpCixP5drVaVTiN8xluApuvi95Y+f3eLoHCK2/JdnJGRcW/hY2+TDvpvf9HHh1I6/KZ33cER3dPI38MZGRn3He5EysPvkPQ5p//+B5K+Xy/iyxOS4tZqyJoLCk7cU5LMDySDqKNHUxESIDBpjnuaXw6pd5IxmUxiYTsiuRB5J7qe3w0585aX1Bcg0g887QISDlmCXFFkUKrWa+A+idJPp9No73ebP2TeUwKY93a7HTtfeOtI5tYj6i74SGd1ClxccZfDbreLxQ0hs81mU61WS0VRqNPpxHkljYDjut2uyrKMhRGd1EIqSSlII/O+V0hlabVacR085cXv050hLoIgPPh6Ib54jQaPhq9Wqzh2T1PxSLjPJ3NQFEVcA0+7CSFUrPzsGcbu3S8QLhBWqJOBu4NruosC8YC6FID9nopi1JOAmKeveeoJx7hDgefCi05SZwIxj/Gloh9rzbPEe6w9/0bU8+8L1pD7TUWFuxgv67s44+7Dm775hp74QwexjWBGRgVBuvmpL+G7rJRWf+yztbcodfUbsrDwCpG/hzMyMu55vFJBoZT0PSGEUtI3lGX5TkkPlmX5lCSVZflUCOGBF3Uiy9/2iDPk4rxq9JArPu+RdLdYY9OHmEhnduo08g9ZI22BdorujvCWjwgKaW42+fhOXCDWnIdIMwUXuT4El/aS1F1A/PCc+zQy7sRwuVxqPp9Hl4NHYL1OAMKGz5u3zFwsFpFUQ4Zpo9hoNGJrRcaMaOK1F3xtR6ORjo+PNZ/PK6SX9XRhZDabaT6fx33A2qVtFWezWaX4YqfTqcwdBJy586g2a+7zyevr9VqTySTOqadMQKZZO/Zo2k0CcH3m0VMVcA7Q7cNFIu/oAFmu1WqxIwitUHn/+cgyIoanKkDI3XXCvUPAd7tdrEmSpnbwb+bUBSfmyyP93I+LTewbnDsurvm8Ur8CIcLrJbhTgh/ESU+F8HnwczFP3P/dlO5witv2XZxx92H7nif0SX/rcf3C//TQRQ8l415AkCaP7xR20uJrPvvcQz7hn31M2196/6s8sEuP/D2ccccRGk19+I9/5kUP49LgNd83ln7sZy56GPc9Xqmg8GvLsvzo6Rfk94YQfuHFfjCE8A5J70hf96hlSv75N3/oO7HzWgd+rvQzKSFKLdO1Wk2DwSAWXsTaDvFz27Tn89NK0fO1IWTeccKFEP5LpBhi4ykDrVYr1mPodDqV8UPGvKMCRKvb7Wo6nUo66VbBvfvn2+12bKVJjj7OBsiqk3aIGcKAOwt8jTxKTmSftBJJmk6nevbZZ/X0009HocQdB2V51jqR4yG8jFNS5RoUmAwhRJeDk0uPinuBSASjdrtdKezotRgQDCDM/X4/7gOcFogv7KNOp1NZLxwGOAPcGcN6QIzZE+xfXB8Qc36azWa8Vxd5OB9w8s81OQ6xaLlcVubI007W63Wsi+B1Jfx8vh48m+yFNB2ClAU+4/vW151nDPiaMj6EIMaaph25YOjijjskECOYJ74H/N7uAtyW7+K2OndqfBl3GNsPPSkpCwoZtw9lTVo8sDv3vfd+6YN6499eavPkR17lUV1q5O/hjDuGD/+Zz9a2WUpB2nTPfy7vR/zyF/YUftvHT+nqf0i68o3ZbXUn8YoEhbIsP3r632dCCN8h6bMkPR1CePhUiX1Y0jPP89l3SnqnJIUQSoglBM5Jo1QVBSACXkPASXtKvOyalXQGj6JClkIIsTsA7y2Xy0javXOApNh5Yj6fx6i5JA0GAw2HQzUaDc1mM41Go1vytokEu+3bx+4EDPIIcfTrOcnz+05/T4svek6/F39EKGi329G6P51OI/lGgCHq7ykNLgi5TR4hBYGBlo83b96sRJTJ2WcecRtwXaLK7A3EFqLXEM3BYCBJseihR8kZA+kfRLIRR9JOCKnART0C7snbP+IymE6n0anBfXjdACf+LhAwhwgTfLbf70cHBuPheJwVXkwScA/UFYA4c33cP6QmsE98zTz1wesXuNOA87grg2c6TSviWUOgI6UI8YLPeooE1/BWpml9BM5LKgvPd1pPJf3e8H2LSOlOnrsBt+u7eBAO7+ocj/sZ5WajN/+l9+mJr33DRQ8l4z7Atij1i3/0tXrjX5poe3R80cO5FMjfwxl3Ak991Wdr/kCpXWOX09rOwbZVSq2Pf8zRJ0nHf/njiw5hK73ua7Po8HLxsgWFEEJXUq0sy/Hpv3+TpL8g6V9L+hJJX3/633/1Ys5Hzrtb/jebTSRREElep2CdkwbpjNg4mYY8QVIgEy4mONn3Gg3eWYD8/G63W8mt59xOdieTiR566KHodsCWz/mIbnNOxBTINgSH1ApIEwQH4cVz51PSDDnCRg459uP9msw3RK/X62k4HMb74R4h9wgUnoKBhR4CjiDCvazX63jc8fFxnHvu07tGeHTYBYBkH0ZxyNMBcByQksAxbsmHzCLQsP8g76QV4CzgPFjnfX95ZwbqXnj3ARccvA6IE3EcGpJi9wLm1e386V5lv3uxUMQvaj3UajWNx+PYOYPaJAhUjM9Tdzg/+8kJOdd18cPrGnAsYo2fw0UCSXF/MF/MK2Ny5wDzjwjCOrNvXVhDZPGUCE8D4ZlwgRKwR9L2pZcRt/u7OOMuxnKpsJUUTqLLGRl3ErtGqSe+7i1605/+ae1OC17fr8jfwxm3HSHomf/x7Zo+moWEV4qyJpXNF9DpSul9f/1t5771uu9YqPbDllax25573P2MV+JQeFDSd5wS2D1J/6gsy38XQvhxSd8eQvhDkj4k6Xe9mJNBFhAUqDyPJTvthiCdkC4i9Z4n7tXuid4ul8tIpCCdbpWXFFMFPJLsVfFTtwPEJoW3Rmy32yqKolLcDeLvHRgosjiZTKItnjFhxfcODBAkruc58OG06N5qtYpF7vx9J0sIAx7Fh/jh6MC+TwRcOnMEUHuhXq9rMBhU6j6kpFQ6ichj0ycaPpvN1Ov11Ov1Ko4JCOZyudTR0VEUI5wAco1ut6tWqxWr/EM0uRcXe/gvkfrVahUdE27R95QPTy1xJwHpKbzHXpQURRpIO//m3tmPzBWFM2mfyPNArQ72tqfPuJvAXSfu1GEP4DRZrVax8CbrkxLn85xBTrq97gdEHeLu9SF83/uxzAVrwDx7jQon/2kajacSeTFXFxPc9cH8SGfilAuLfr/ML0LNXYDb+l2ccfdiOxrpDX/8R1R/yxv1xDuuXPRwMu4HBOkX/7dP0yd+1Y9K5X0dWM/fwxm3FTf/wNs0+sSc2vCqIUjl8wg37/+itvRFvzr+/ua/8ITK5fK+F1IdL/uv5bIs3y/p0895/bqkz32p55vP57p+/boeeOCBGKnG/g7hd0LIH/wesaUugHd1IKrvlfU9f5uIspMvUhq8oB/RTiLeacQWUumF7iD1dCggbcDz4xFL0mKKdKmAHHtuPy4B8vIhfLQY9KgxJHOz2Wg6nUZCy/3gsvA5xD4+nU7j3PR6vYqLAuGB3HuIOWN0gQIy52uW1n7g/hkTjgHmx6PoCADelQMCutlsImGnDgTOizSVgnVFvGI+fX0c7kZwkispvo5AlIoYXsjThakQQqWlJvdDuoSTYt93XNsLbTKfvE8tjE6nE8UvOiWwHux1ftwNkBYmRIRAIPHUJJ4nUoog+LyPGIUbxucdcYBUEfY8c+iCBnuQe+C5SIm/ixHuSmJ/cp9pGpV/jnFfdtzu7+KMjIyMjJeG/D2ccTtR63a1a170KDKeD0983ZsVttKb/vL7tH322YsezqXApQu/OWEj2k3aA0TFo98pqffq+l6EULq1ijtwez6FEImSQpIhrJPJRLPZrNLKEjLj1nWEDM/pPj4+1nQ6rbTJ2+12Go/HkexCuLw+gqc5IFYgTDi5dys+ZJ77L8syziM1Gc5zJaQF+1yI6XQ6cU263W6cN9JNGJ/npbOeCBxlWWo+n2s+n8d5gjCzjggVTlg9bcDTLLyYH4QeFwNr7rUbEDhYEzpUcLwTSAgt1n7mBhLL3LlQ4Nem7eFms4npLb1er2LBTyPzXpvAx+WFPN0p4Ck3zB/FC9nTFM1kHOwB1qUoChVFEfcvbgZqRXhKi68Vrgv2nLuDeH7TFBFfCwQz3Dq4kbhf9qzPBedzdxEiRloXwd0PvM/nXDDi/J4WwbNxngMpIyMjIyMjI+NOYfKbPlU3P/m+dvxcepR16Ze+6hP1pr9baPOBD130cC4cl0pQCCGoKIqY206EFKKIBT+NINMSkloBXnQP0uctAaUzMoSI4NFriJtHmp0IOclzQYHzk7/uJAryDHHC0YDlHQFDUiXyz70jrKxWK41Goyg4EPWHgNOukvvyoo2SKgKAW+mBCxCp0OIF/HA5uOODuXW7u6cF4PCYz+e6ceOGarWaut1upaWjp0HMZrM4314fAofGdruNa+8RZ2936FFyxse8kybB/ToJ9zx93mc/IJSwZxE1XLBiHAg/RNrdHcDcsC9YZ1JkGD9knXGz15hr6YTss66so+8BzuGdJFgT5oRaHz5fOCi4V86Ns8dTjbhPronQ48fhnGCf+Zr5XPMssX6kIfEcnJdO4/OPaMBYfJ/794Cvve8x7v9ucChkZGRkZGRk3BuoX7um+ZWaTrqQZlxm7Fql3vuHH9UbvrWl7c//0kUP50JxqQQFSRUC4MX0IBbeck46I04QLiKxWPnn83mM0EIWPE/fyQ3WeMiPt3SE8GC3dkKYturj8xDp1CkhVSPriAxOHt3mvdlsNJ/PY1G9GzduqF6vazgcql6vxzQEovOMAxGE6Gu9Xq90PWDsLpS4QyAlwd61IJ1zJ5ZEqoHPJ1FlxAKEFK/Qj6D03HPPVUQRItGQUukslcCj681mU/P5XNPpNP7XyaJ3zvBaDp62Adx9QDpE2obQ00ggw7zv+xPBgGNJ0SmKIookkGvEG1IL2PcuAqXpJC4GMA5PXYBge4FPF8FwKZBi5PUn2K+sJ8+Rz6G7B9hj7Bt3KaTvu0Do4pdfK3Vi+HNRlmWsE8GeQAhgXX2tqLXh9/h8bgR3MmVkZGRk3IorPxXu9/oJGRm3Dctf8Vrd/JT8PN0t2HRL/fLvvqbH/+Wedj/18xc9nAvDpRMUpDNSgaBAtBGhwN0GTqj4r9uasUQT4fR8cbf0e643Y3C7NykPED2ImpMtyLZbrD2S76QGctpqtbRerzWZTCJBS+9pPp9rNptpPB7H+gIUkEzvzQkXJNijrk4wGZu7QVzM4b6YT+8WwT3hiGDO0uKQ0ll+u6cVuHsAws08d7vdyri8NgbknToPFAfkd+aZeWKNWQuu4fPmRDzNo6eWB04S9stkMonjx2XB2EhL8e4HXkwyrU2AO8A7OzDWyWQSRS8vooiYAJhjxADfw+l1Id/sGfY49+v72+trIEBwbcQJr0HhogLwNAnAs+UFV5lrf5bcDcLzwXeCpEqNBebZ95qnRvm4ec2FB9bLUzOyQyHjrsRzRzr4uavZMptxx/HQu6TeP/uxix5GRkZGxoVhtb/Tx37tgR74qYseycXhUgkKHnlOi+O5zfrj1UYgUk1RN4iL53lDTCHpTiCxjXuOuhd+bLVaFdLkLQ69QjzncGu526o97QAbugshnreOO4EaCFwXool44fniCCY4Ejg/6R84AZzAOel28QOCjADRbDZj5ByhweeV8bjrgXVFqHChhbXltW63q263q1qtVnFKUDCz1+tFAovbATKKwDCdTmNhTFwMEF+PqLMurCEEV1JFPIHYevFMxCQvgOn7zVMQvD2k73XmnfaOqWjGffo88XmHFyhFxMA9QrHJVGzgfr0FqKew8Ey488TdKBRP7HQ68b30fLvdrtLuFCcK+xcRBVcB53Xhwp0WnINaHnyWuUGs8+sgDngqij+v7pbwzhVpi86MjLsF22ef1ZWfeVg3P7lz0UPJuIfx6H/aqfNv360yt1DLyMi4zzF/UNr9V29V7YfefdFDuRBcKkFBUkVQkFQhFJArt8+7lR1y55FKoqZUqMc67kTDCZtf14vscf12u13psCDpFkLsTgmIlUdA+X29Xkcyxlhok8ixFMabz+cxOu7R6pRYQkIhd6QWSGcEma4T/X5f7XY7Eic+R60G0gJIBVkul7FrAOfmOLfDI1K4uwSRhPx3imcirniUXFKsceAtCJlLimZKVbeDzwHtRD0FgL3iIgkCB6SU83jBQAhyvV6P60XtBlwQ3Bf3A0EF/jsCEsIHUf4QQjyPCzOSbqmZkbptvN6A10jwFA0XMFwccGGMPeIiG/uaZ4z91+l0VBRFZS29ngLX9TQcr0vA3LNX3U3gLh7WFIHEXTTuhnFnjc87v1PM1btVeNoIP77nMjLuVtSf+LDe+C2P6NnPGujok/Jezri9eM337dT59z+t3Xr1wgdnZGRk3ONYD3Yava7Q/g9d9EguBpdKUNjtdppMJtGOzh/47lJw2zlw+zfEj8+mLeZ4D+GB/G7P5+fcCApEQnmfiDxCBcSt3W5LOrNpQ6ogUZA6fiC0w+Ewjh0iTJSVIoF+r15t39MXUkcHUWAKPDKvRJY9jQBA3BEhPI3Do/RElheLhTqdkyjYer2O3RN87ZbLZbTuz2azWECTMVLrgIKbpDp4jQdJcS6ZD09/cGv/arXSfD6viEPcG3PGNZhrj7BThNPv350xpEDsdjvNZrPolEBQSF0rkqIrwot4IkhIiq4RF588Qs9apgTanS2eAoQbgz3nLgp33/iccE13KvCM4HRhDKS7eJtWrs1edlHEX2demX8XSXh+GYe7cBAm2G/MnTsvvNhqukd4Btm7zLc/M6kzyZ+NjIy7CdubN6WbN9V+49sueigZ9wB6H6jpNd/50fj77qMf0+7UNZmRkXH70PqJX9LV13yKnvuVWQjOuHtwqQQFSBPRcnLTJVU6I3iFfz4nnfWcT4urEXX1SCnkisr2EBcn2J5LnRItCIsXkfQoqrcGdFcCBNTJJGkUREYh9BBLSJHniqd55ljacVK42wEyjAjhggX3mUaIuQ+i2r1eT41GI/50Op1K2gACC2P1uhEQfP5LPQrs5i6uELWHJDqxh3hKigSZ8RBtlhRFFK8ZwFp5m0K3t+N6oIgj7SEho4zZSTdzTOcB0hUQTKhVgLDibRg9LcaLNbK/uX/2tHfcgNB7dN2FBifwCArMhde4cFs/zh8KNLKHGGOj0YiikHRWh4LP+LE8s34PiBfchz9DXIs9wDPBXvTnz1OEPMWF9XA3jKc0AERJhDnA8aRSMD8ZGRkZGdLevNTm/R+46GFkZNzz2I5Gao53ksILHpuRcVlwqQSF1WqlyWQSK85LqhB3/thPrdUQZOz80pkV3msLtNtt9fv9mG6ApZ/OCW75dvKZFj2E0Gw2m0hEIaB+rFTNbQdOpkklcMt+WkQxfU06a31HFJX/zufzeCz2eW8ViGgzmUxi9Nkt+5DroihiNLfVaqnT6VTIqLc79HuiQKKLGrPZTNPpNDoaKEI5nU4lnUXHWcfRaBRbY3qqAgRwNpvF9zzf3+EOF/YQDg1JlbQE7gsxYzqdRpGH+cA9wTh9veg24AUNIc79fj8ScvbdfD6P1+10Oloul1Fo4R49VQSnAPuAzzJuF7FYa9aGtBTELtwj3hkEZ4On8LhAwHpLqjgx2Pte28QFOS+YyLm9GKeLAxyHENRut6Po424XnjkX2RhPei3AuLyWCSk5Ljh4nQXuL+36kZGRkXG/oftkTdf+/k/kJnYZGa8Sut/5kzo8+NW68SvyU5dxd+DSCApOBiAJDsi8W5AhrFiYyY1utVqazWbxOK+O3+1242cht4gNRJCx9TOO5XIZiZIXrfMCeJ7fvlqt4jUhqpBgSN9qtYqR6fF4HEkShBJS5N0g+DfnTzsHpMC6z9g9rx5XACTNz5HWqPC0ChdVuA8ILm4PfjyP3td3s9no+vXr+uhHP6p+v69OpxMJ5GQy0fHxsWazWUU0gvy7K8BdGl5rA8u/u0m8foJH6F1w8NoVrMtwONTh4aE6nY5Wq5WOj481mUx0dHR0SwtRSK/XbXDhw9/3aLsXF2y325W0CQQhSLC7Xnwvet0ExCZSSdj7OC3YG0T3vRYJqSicg/ckVVqMsgfPux9/ZhFY0ufc0y282KV3b/BuDv78uSuI/Qq8bkT6PqIb9+YpDmntBb+HjIy7Gb1/+qM6GLwttyHLeGkopVBKzRs1Pfw33pUdWxkZryLKzUa1jaRS2aiQcVfg0ggKDiLnZVlqNptF8kGRPe8q4NXxicJ6YTm3f+NAgFylbQvTKLBU7TbhudZ8FkKNM8KP95xzz3Hneq1WS5PJJBZn9PQKLyjInHAPkE+vpZB2LIDE0zHBiSb3CqlMyZ23h4TYEbGFME6n01scIG5/J9UibbvHXEynUx0dHcVaAxBp5pB59nWBnLqzgKizdFZ4EXIMUaUOhpNM3z/MhYsV2+02ihvXrl1TrVZTv9/XbrfT0dGRJpNJRbTiPNjwvasCrTBxKRCFZ165v+l0qlrtpCgm3UdIn/AUCS9S6fPKHPE8EOFPu3/4cf55r98gndUj8LoGvoacB9cCe5fnkz3l13GnAnvRazAwd9PptPIHLMIXzxDnYM+6yMCzQLoHrWO5P/YHn+Vcvo8QQ57PAZORcdegLFVbS2EnlVkfy3gxKKX6Iuh1X/uuix5JRsZ9i/1veZc2xdt1/KYyf3ffBQg7qba9f4XXSycoQBRxCEBqIIMU/XNrNdF0hAjIPYX3nGRAgolgEw2GECJcpETCo+TSmXDgYoEfK53ljnsrPSfHHrV2CzuChpNHyBXEyp0VWNj58fx6Ojo4cUIEwN0BCaQ7Bu0ZiURL1WJ3Lnh4oUJIGCkUzEmn04lOD2oEXL9+Xb/wC7+g4XCoN73pTRoOh/HecDsAxuGtMxFgmGf2DTUqEGxcUDpvnzEnnppCJNzTTRChOp1OLIApnbk5PJ3Czyup0grSiwNS6BCBiGNTG747RdIUmLR7iHc38XokrK8Tc3fp4D5w0Y4aHN4dgvGv12tNp9OKO8PvA9GNc7gzxO/LU4jchZQWSuR8jNuFBT/GHSOp+8ZrRrAn0rQYnjHOf55rISPjbsPBP3iXdl/+dh29uVSZNbKMF0BjEvQJX5fFhIyMi8bVb3iXdl/52Zo/UGrdK7Nb4RKj/76aBv/ohy96GBeGSycoAIiGR5QhBpARr3XAce12W0VRxN+9DZ90ltdNZNhzyyEoED0K1bn44HnYTjYgZR4dh3gvFgtNJpOYlsG5IFzcLxZy7ORE/D167HZzPpMWZ0SgcFLGvXHPXigSIpZG+D1dQDojr4wdksu4EGdwJ3A9F3za7XYs0Pjss89qPp/rypUrunr1aqVOBY4I1nI8Hldy6tkHrAOEkLlGGPFoNuTanQ+sIfOWriH7oygKDQaDuFe8WGS3241E3rtiuPDiRQx9nhBdELLcRcG+4Ly+Pu7M4HPsDZ6bNMWDeXPnAcelDgfGjiBAuoTXoPBn0dfE9x8CE/fAfnW3gddJSPeZO2vcOUEKiIskHMe8MR5cTggsnIdCmu6E8PX3a2Zk3O248o3v0vxrPluLB7JIlvH8aD9b02u+/kcvehgZGRmneOBvnZDUp77qszV9dJdFhUuI2jqofXR//7/10gkKqc2Z6CEEwzsfpLnTTgKdoEAUiaKmlnqPUpZlGVs3IigQHYVMet0CxrRYLGKUvigK9ft9FUWhWq0WawNQ4NC7Tbgbw4mdF35M0y54jfkh/xxxwKPGOBgkVaLv3s7S5woXQbvdjqkS3CdkvSxL3bhxI3YmQECgEODx8XEk+RB7J7YQXsjdYrHQ8fFxjPx79Jo59PoPrKlHxL39JwSSKLs7P9hfzL/XOCAFgrF6+1LILS6FoigqLpN2ux3HQApAWu+DcbN/SIlgrdlH7O10vlx8QCzY7XaxM4XXMSBNwrttMK9eN8EFABcVSMs4r5YJc+cFKtN5St0Z/NvdCOw/FyQAgoGLZF6ElHlhD3gahj8r/uz494XPR/q948h5wxn3EnofKdWYnjw/48fzH6YZVXSfrOnRv/Nu7XbbFz44IyPjVcXDf/2H9cxXfrZ2e9LkE+5v8nqZUFsHXX13qcE/+pGLHsqF4mULCiGEN0v6Nnvp9ZK+TtK+pC+X9Ozp619bluV3vdjzQgKwWXtOtpMhIpfewQAiTBQV8k07PunMoeBE2YvCETHlxyPhjMdz+J24eEcKCJ2TNv8v6Rl0mnCyw7kh0hRw9Lx/7sXJHON3wuU1FhALvM6Cuz4gXUSAsehDYFerlUajkZbLpUajUST5RJjpknB8fKyyLFUURaU1H/PebrejGEGawvXr19Vut2NEeT6fx897jryLJ9JJxwcXm4iqe0qGp8KkXQg8hYB9BrFF6HGLfbvdrogPLlBAcCHL0lk6BfsWIcH3MXuVa6VWe87lXRO4X7f1M0YcJ07wuZfFYhHnzNfFP+dpC9yTH5OKG4yR58VrmKTuGIg/6RUu8Pkz4MUYuVd3DHjdBdJyuNZ5KQ7u7vC97ylInMO/i+4GQeFOfRdn3HvY/5YzG3vjy96eK4hnRAzeV9PD//A92lptoIwXj/w9nPFq4IG/9cMKe3t69st+tY7ekr+/LxphK137yVL9b7u/xQTpFQgKZVk+IemtkhRCqEv6iKTvkPSlkv5mWZZ/7WWcs0LgIdHuLPD6BmnhvaIoYr4+56vVarEwoZMhzuVEkeguxGixWEQbtZM6P7cTR0+LgMClqREIE5DDTqdTsaZzXm+thzhBXQOPrtOOEaLNPbi9HwLF2J1scU3qTVAroNfrVYotcm/MC3nxWMmZz/l8Ht9z8s+8eyFEd4VQnDKEoOl0qtFopO12G+eHsVH0kPtZLBYxBcRTYRgXa4VAwn3gBnBXh6To6HBHAeKSpDhur4XgKRRemNL3NY4X/o1IJJ0VBvR0FMQO7uU8suzCASQelwzPB3uR/bhcLjWdTiv3Qz0Ndw04YUfwcscPc8p1gDsdGCv3d55jw+/Jx+1EnvtICT5Ckosx/j3ibgafN/ZkKhLyWU8xuhtwJ76LM+59HP79H1Hriz5LkrTs13Tj0/Ifp/czHv7eZ7Q9Or7oYdy1yN/DGa8Wys1GD/zDn1Lx+b9Ci/1a7uBzQQg76ZEf2qn4lz920UO5FLhdKQ+fK+l9ZVl+0MnFS4Xb/iGEHqUn59yj1kS5IZsQPc5HlJ6WhtIZ+fee9BBxJ/PndU1AZHA7uqTKOLyGQmopJ3LuLgzIkkdSaetIUUU6BRCVRgyZz+fxvvb29mIE3d0RtDeUVBFoIIsQXLfCE30viiISUhdJGONut9NkMomiAgSSdeR8zCUFNb1OwWaziQUX9/b2NB6Po8uBdo2+Fi4KcW9OIKmpwTiXy2WcD+8MQUFKXwMIuKRYXHI8HkcxB0cJ+88LIrrbwcUp6UxUSAtt+ri5ttc24N+s63q9juKLdzth7F6c0EUN1p51Q7xxIQxRyF0v7nZxQc7rFrDf+LfvMYBAgXjBOjI3jJfnyR0UXBfhzc/FPnK44OFigbtxfN1c6HCR5G4RFBLclu/ijPsAZanuPzvJlR/sD9X/yBsveEAZF4pnrl/0CO4l5O/hjDuK3Wym7j/7UQ2uXlHYvSm7zV5lPPY9W9XWOzX+/U9e9FAuDW6XoPB7Jf1j+/0rQwh/QNJPSPqqsixvvugBnZL78rSWAf9eLpcx8l0Uhdrttvb39yWpIiBA9rDPhxA0HA7V7XZjETYInLdm9GiuEw9JlagtdRCIBENoKNzowoDbxCGp5M0T3aabgbsgIGzu2JDOLN38l/shSt5ut2OEnZSO6XQaUwCw/ktn9RS8+wM29OVyqfl8Hsk/1/QfSBktIBEXEB689kR6D07gSJXAUUEKBLUaPG3DnQ4u+LAWCBSIR4gkkF/2l3QmFuBaYM18TZi/8XisoiiiwOMWfBeKfJ5wyvD6YrHQfD6vRNIhxByDSOHOEpwjzANEGUKcpv54CgVwgUJSFKNcfHBBCXHFRTPG6u0YvTAqe8ndHv5Mk4rkLg7Wn/3rnRZ8j6TiHddIr8O5WBvmivni3y4auKjgosp5aRh3CW7bd3HG/YPt0bEa3/MTFz2MjAvEXSmfXl7k7+GMVwXb567r2ne+V4c/+5Ak6aP/dV+zR3N9hTuF1373Vs0bC+nHf1a6C1JiX028YkEhhNCU9Nslfc3pS39H0l+UVJ7+969L+rJzPvcOSe9IX/cItOdGe/SbFIaDg4MY3faijLvdLkbY2+22+v2+Wq2WptNpjFbTvhBCAQn2HHWPJJN/D4mjfSBEFRLo9QakagV+8uf5N7Z2ivlxHq5Bob9arXZLsT6cBecJCpA2otnz+VybzUbD4VDtdvuWFppeKwGi7gS41WrFiLjPDR00vHo+okyn04nihdvruQ7uABwUCB4UsfRijZBpRBLmGELs1wshaD6fV8SHtPCek3KEHnc9+F7kOK+rAVllzXa7Xbwmc+lpDO58IVXDaxBA7lkP9idCGvvUxRivA8B1pGpkn/O7+MO13bHCGPze7DmNc+0tXP3ZSd0JLqoxHndg8Jz6/LCH03QH9pR/JhWo0vVCKGTcnIfnzQU+7tFrKfj1/fyXHbfju7itzqsy1oyMjIx7Efl7OOPVxvbZZ6VnT0p0vPajj6rsFrfnvAcdvff33J97sf1MTZ/wL5655fXdBz6s8jQwnFHF7XAo/BZJ/7ksy6clif9KUgjhGyX9m/M+VJblOyW98/S48vS1SAikKsmDHED+2+22BoNBjKbT2o9OAxCXdrut4XAYCQXV8GnfeHr9SG4haakdndaARJ/7/X50LKTF8iCCz1ckMHUy8L6kSLjpKIHY4PnrjJeoNPUjcGKQasB5Iah0mECgwfXRbDaj6DKbzSKJRSiYzWaxrgL3S0oGQozXRPAOEW6L9/QVJ6UuiiCokLaAkML8estA6YyoMlfsG8QQ6YQkUl+jKIpKvQBvI8oPa8H5GePNmze1Wq00Ho/jvuQ8nvLAnHAfkuK+InWH9fM0CUQQWjRKikIFXRe8roi7P9w5cR7JZ04QlzwlgPGlNRHcRcAYXNzwlAUv3Mh+ZQ/5euFgQSiTqq0aAfdGUUiv4eDFLREkPG2IMaYuBm+n6Q4gX2t/jlPh4S7AK/4uHoTDLLlnZGRkvHzk7+GMC8PmyY/cvpPV6vqkD1675eUnf8/r74kuE2/49rkaH3j63PfK9Vrb53Ia2EvB7RAUvlhm7QohPFyW5VOnv36BpJ99sSdy0cBt+h6NTPPU01xrIo1eSFCqVtvnfa95wHlTa7RHSImwF0UR2xm6aOCWb87jNRNwHkD8ICwQVu4TC79Hb9O0A49m0y0CWznXZ24gtZ4X74UdPc3ECahbxjmnF7YDbrP3cTNmT2fwKLYXtEwjzozHiR+ODL93r1fge0U6SyNhXF5kEhcBe4J59BQI30fSSUeJxWKho6OjKLYwXlJZqIHAmvl6ePFKzulz6RF99oAXmPT9yDUhz+xH9hpz7Z0rVqtVvAfmK037IYUhLSzJOvk6O8FPnRN7e3tRBFmtVrHWB3VOKK7JPXnKCPuB7wGEBUQKzuspG772Lk55kVJ3hfge4d7PS9e4mxwKuo3fxRkZGRkZLwv5ezjj3sBuq81TH7vl5Uf+7pF0dwVbzsVuOtMmt8i9bXhFgkIIoSPpN0r6Cnv5r4QQ3qoTe9cHkvc+LpxAOEl1EutpCJD8Tqejbrer/f39ioUdJwKuBSLrfNZz5Yms0zUAorlcLlUURSSmRFe92r/Xd3BBAcLkQsN5gkKagsCYnbS5u0BSJd+91Wrd0smCH29JSX0Fn+/ZaYsoRBKPDLvlH+EB8oZIgaOCn729PfV6PXW73RgVd2K7XC41m81ilJ85gch6ZN1TOhaLRbxv9ol0JpKwb3jPU1EoLAmpB55nT+TaCbsXHJSk8Xiso6MjjcdjSWdOBFI23GbP/HjrUc5LdwlSNFIxhPlvNBoaDAYajUbRGeJr5ykaLuA4KWb9Ebjm8/ktDiD2SafTuaWtJnPrbVUROqjh4XUuPGXGXShc01tx4nLhWOmsAKOnVDB/7npgrrfbrfr9fkW8YQ9R64S58loJ/hrz6TUpeD7vFtzu7+KMjIyMjJeG/D2ccT9gt1hIp3+TZ2SAVyQolGU5k3Qlee33v5JzuvU8zWuGlDmJlBTFhG63K+ks6l6v12O6w/HxcSSTabpAp9PRlStX1G63NRqNIumiFsPBwYGGw2FMdej1epF8hRA0m80q9vGDgwPVarXY/YCotd8jxB3C590pPLcfUuatHGnbCHl/8MEH9drXvlYHBwexbeNqtVJRFGq1WpVoM9Z1Uhu2220s/Aep9SJ8EFkvFug1JDgnIPWA+2FOWKvZbKbRaKTZbFapFYEVHsKXkkfpLFpMlNpbUFLPAaLqDgPORWqMpzX4uiE+uJgBmUU0ePLJJzWZTNTv9+O6LhYLTafT6HpA/PA0Bk9rQaRxkUk6E9SYe4Svsiw1Ho8jsYe8+2dWq1V0qHgBStYBZ8V0Oq1E96UzAcPrhHirTGpopN1C3GVCyoEXNWQc7EHaiiIaUACUteMc3FeaVuHOBQi/p5qk3x/cG8JL6l5BtDjvs57ydDfgTnwXZ2RkZGS8eOTv4YyMjPsVt6vLw20DkUes7JAt/rj3KDZ/7FO8sNFoxMg90f9Wq6X5fK7JZBKt3kR/OS/Og8PDQ4UQdPPmzUj+2u22Dg8PNRgM1O12I5HkPHScIH/f0yMokEhRRa7nNRokRZLoRMgj7m5Jd1Cgst/v6+DgQIPBoGIfp04EwoGnc6SFIrlfiBzHUciO47yDg6RKxJ/INeIDhJyINI4FCkWyllzXI/zMoafAQLC9zoaTU+4nJcwQVepthBAqBQg9xcEdCzhUPGXg+PhYi8VCg8EgRr+5JgIIpN7z+tmr1P/wVB3u1fP7eZ80Be7fibYX6WTcHun3Wgi4Abz4pZ/HhRzIPfA5SfeiCwDuZvHUh1QcRMRJx+uOgDQ1x/eICwNeV8KP8XQjf+58/OfVZ3GRxP+dkZGRkZGRkZGRkXErLp2gAFFJyZLXTvC0Ao+aS7fm43ukUqra2NPCbF4szsdRFIX6/X50EzjZ8TztNNpNNDxN14DMeDTUx+n1ApyMeToIxL3b7cYUA8+j93oG0pnTwedWOnMXOHGiIKIXG/Q596J+EPkQQkwtQMTA2k8hxvV6HSPt7kIh4s65vHaE15YAHlUm+p52LmAN+B0nAe4DWkY66XShhbx/BJPtdqvxeKzj4+PoTEBsSK30ROFxQmy324qzgPvytWH9ScNhvubzeRQUuA93IHDN1WoV23ymhUVZC173jibst+VyqclkUqm54M8RYpCnWHhRSZ/3lPTz3PIe65+6SJzsu8CBeEhqka817yHY+Vy6MIBYkwqULuK4GHG3pTxkZGRkZGRkZGRkXAQunaCAs4CuCkRWqYzf6XTU6/XUbrd1dHQUI/SQaXLc2+12JAuQc6LDRNC9hSOOgtVqVYl2luVJW0e6OnhxRFIm3EkBAcLG7/n1TrSoeu8F9Dgea3mtVovpA04Ui6LQwcGB2u22rl69qoODgzgHpA0gUuB8cFHDI8nco9dsgDA74eKcy+WyklrA70Tj+S+58ZA61pBrUrPC0wb4POkPaV49c+Xk1G340lmOPuPlOCfOjKPZbMbxsU7T6TSS18lkEsn/crnU8fFxdGm42IObhr3mwpG7FyTF6zqh933POSaTicqy1GQyiXUu3BXC/uMHwi+dEXKOnU6nmk6nkXR7aoGkikh0XnqLFx51F41fh73sDhy/BvB0H+984o6j1DHgRJ9zs648p14XIk1dcHGN87J+PsbnEyMzMjIyMjIyMjIyMs7HpRIUvOAbKQxOehuNRsUpAEH04npY6t22j/XaC/+lOer1el3dbjda1p0oeaFEiBdpExBFxsf5IcWQPUgPBArBAxKFM8LbCtZqNQ0GA/V6vQq5bjabsaYCrSLTMXtuO591MuZot9uxdoCTbyeFXlPAf2cOnVxC/FKiynqka+CODJwejN8LBCL8+D1S/wGBxvPfPeUgJaSQynQMCAsIIswhrhI/3smqd3cg7YYxAa9VkaaMuDV/u91qOp1Wihuy53EjIABRPJM0H08dQAihXgZkm+v6PfDscC13IHDvDk91YN+wPxCA+LzXi+Aeea7dLcRnWcf0fGlHCvZJ6gBCEPFzeGFUvhtSwcD3RFqLISMjIyMjIyMjIyPjVlwqQUE6K4zmqQVOBNyu7ZFTCOtkMtFkMlFRFNrtdpEYEvmGdEBE3B3AedNr+nVpD8hrbtuGiAHOS946ZDiEEIv3QZi4B3L7aQNZFIU6nU50FHBeWkVSeFFSpcictw3EMs8cMX7G0m63owNjPp9Hyz4E1nPJmReIf9qK0esNuDjBvTGf54kGCBCQ5DSVJRVDEJQ8xQERoFarqdPpxGO5vt+Tp0ownsViEVsr4kbgGNIhvI2np8aw1xABcMR4DQes9JBwBKy0E8NoNDq3SwjjgPAzbzhFSJngnknbQPjwoosuBiAIQOxx8jg8DclrQLhQ4cfiqkE0ceeMC2Qu+vh9upvGz5vWUHBXQupESPdL6lxIhQN3l3APGRkZGRkZGRkZGRnn49L9texR8fSPeycLIQS1Wq1IOmj3SIs9UgfoKMD5nEBS1Z+OBXwGsaDf72swGER3Qlr7wIlst9uNLgPuAxs3ZMWj6IxHUsxxJ0pfr9djJwkKPnY6nRhlRtzwVpIQZkhht9uNDgkK+1GQ0NMKsOB71waix24Ph+whmvg8Mh4XZaiDwDHMGa95QcD0WBczPDKO28PJq4sQbrl3ZwZj9fx40hq8WCKkHzHBxQ23w/t+9FoRXk/Ca2m4pd8LVaZpKH59F38QHDyC7lF/F8gQH3C7zGazKFKlboCUwLsgldaucGeIt/H0fez37MeSKuEinbuDWDde90KJXvvDRUF30fhc4BxKz+NpEb5/Gbc7JPx1v5eMjIyMjIyMjIyMjCoulaDgYoJHEfndLf2kDdAOsFaraTab6ejoqNLGDzIFiSAyC/kgyt9oNKI9XDohHYPBQMPhMEZrnTg5CZMUW+5JqkTnvdo8vyNMuC3c7du4D2iJSKTUCRv/hrBBAJ0g4zgg4s48cN9e5V46I94QKY9Y8xnGhVODa+F0cEFBqnbn4HcKDCJQtNvt6OKg7oOnK/j+8HN5S03mBXHF8+R9P7kQ4k4DSdHFQRtQd8J4WgbY7XaaTqeaTCZxTzabTRVFUSHJnmqT1gFICxl6mghI6y1w7/55roEYRktGH7MLCsynP1uezoF7gnVkbkkJWa1WldoRnM8JuKeZpOcH/pw70WesPl6e2fTevQ4K+yrdN6lAct6z7AKmPxMZGRkZGRkZGRkZGefjUgkKHsX06CL2fSeLEFjPE5/P55WaCkQkJVXyuaUz675b9Yla836aYgGhgbg5WYbwQQhxGsxms1gQj7FCZqiF4HZ4iDu2cF7v9Xqx4CK1HCRpNpupXq9rMBhUiCrHTCaTeH1PG/F73u12mkwmsQNCWleA83U6nVjbgjXAseDEHet+GpVGtMGej8Oi1WpFkrrb7WI9B9IZODc5/t6OE/LLPblTwLsJuKvAu0e4OMNn0i4K3tWCvcE1SJHApYKwhGDBOBFNEDGcKPt8IWQgYKUuDeadz3FPLvhIim6VlEhDwtlLnNP/nYob0kmdDebbo/lpkUzGz/j8eBdRXBxkfj39gnVPUxk85cIFInfT+J7z+fX96alKPh5PufLvi4yMjIyMjIyMjIyMW3GpBAVJFSKbRueJmkOOh8OhlsulxuNxLJDoUXgn/tIZkXG7NETMaxhQGFFSpSgcIoZH2yXF9oPY5LkPHBOj0ShW66dzAISO1APpJPVhtVrF3yGZiAoUpOz3+1EEgKRC9Gn5SD2ByWRSIc7YxknPmM/nsQuApxKkOfEQfyeQnnbBeH1uOQ/kjnX1TgKeAuE1JtLrM6c+704MnQi6MMQ4EUFYRy84iOjg7g7pLEWFOfZCi9PpVJJifQrmuNPpRJGIKD7nhGy7sOEukTT1w+eTcXMM9w+B5hlBEPJUBxdCeE5YI4i8XxcxwecvHZOLMOnzwHsuCvAez9x57oO07oE/ty5O+b+5D35H6HGXS+o6cJw3DsbJvWZkZGRkZGRkZGRknI9LKyh43r7n1BMRLstS/X4/VuSHXHhOvpMPJ22QufR3OkRMJpPYaeHBBx/UbreLhR1xFTDWsiw1n89jAbyyLFUUhcqy1Gg00tHRUaWdH+QUcoeg4ffKeIGnavA5iKATwt1uF6P0kHfIlUd+uQfmwCvbI0wwJ+m4EHQWi8UtTgHWAoLrtQNSh4aTWC/a5+P0ehlpQUnfI9JZKoVHpiGJrCXr7ekP7nhhTBB/nBPsB0nRAcB9uIjFvLpYxPg8Z5/94y4C9itpOk5w0+KVzKmnD3A88+yCgjsdEDl8LhDfEEZ8ftwNkd4Hr/vvvMYaeRcK9q/XNPAUGE+5OU9I8fQIFwhcBMAVwryxPohV1L1w4csFslSoyIJCRkZGRkZGRkZGxvPjUgkKbrd2QOQhUpPJJBaFozaAEwaOo8Af5+ZcTtY8GuvuhNVqpVardcsxpAoAt/inhd0o7uekn5xz0ge81oBbvZ1MQQQhXn4+BAlaR45Go3gfbp+HwEFacWXgFGCu3P4NAfSijdyTR6q5HsIApBoLu0ex6UjhFnUXkTzlxCPKrBlCBUKApJja4dfknjiXw6PznAdBwKP9bvHnGCfI/LdWq0XHBwQV54mnpnAtL8DI/gghqCiKKNowbndjABwUTpa5FwQFOojwOnsHEYi9i+uGeeG8PjfNZrPi+GAPUb/D6034HHuaia+jiywpqff0Cb9e6kpw94K3IT0vvcOfAfYQe5W19T3nYkUWFDIyMjIyMjIyMjKeH5dGUEhJBdF7fse27oSCFIM0Qurn4Vx8xgkhEUwnF05eKEAIudrb21Or1YqF4bz+gEfmIYuTySS2BeR+ut2uJGkwGGgwGEQ3A/nhaXvHdLwUyyNfX1IUPiDTpF/UajX1er1bRA+P+JL+4C4Bdy/wvtdJkM6iuedFe90l4pZ8SbGdp5M21g+BgZQBP84JJCIFxBbiuF6v1Wq1orPARYo0qu5iD/NcFEUUSNy+z95DUEhz691F43vQiwHSvYFxIoLQecNTdVgL7o+xeE0HL+Lpgoy7HryjhQteCFesI4KEp/bwnq95KrAgviH44ZxJ54TnLk2/8FQGxBi/n5Tc+xryOW/ryOe8XkIqkkmK6+7fOX6Oj/d7RkZGRkZGRkZGRsYZLo2gICkSYAr9EU316LC33xuNRrGqPgQBgglBqdVq6nQ6sZWkp0BIqkTzSafodDqq1Wp6+OGH9dBDD8U0ACLgqUOByD33QBoE3RUQJrgn6awLgxNE4CTG60Hw3mq1ig4H7pGxcMx5OeH8uOOBNAl3PnAfRN4h6NPptFLokvMjAPAZ1s8t/qwZzg3uTVJsk+iCjzsQpLNaFqQSSIr2di+cSdeOVCyaz+exqKPb7d32j3CRXtsFEhcUfJ7deeDuBzpGMA7EIu/m4OKDdFYc0sUUv6bXfEBYQcRygY3zsN+cWHsdBUQLFyGc0HNvaTtIXC0+L55C4gVGEWbSmhGsbdomlP3kAh/37HOQPjPuTOF3Fw08ZQOBkvVKCzOe55bKyMjIyMjIyMjIyDjDpRMUKCyYCgh7e3vq9Xra7XYajUaVloF7e3vqdDoxKg8xoH5At9uNTgLy1SFYTpggdN1uV81mU9euXdP+/n4kuu6QkM6IB4ScczphTe/PC006uUur8UtV0YH7YYyQaNIPqPEg6Zb8dKLxq9WqUjAQQt7tduPxHsn2OghpVwSf59SCv1gs4mvp/UJwz4sQp4TXo9hp+z5vkcgYIf1e18GLUXIOijamzhfWgTGmZBSBwsUl7yrB+kDQqTXhBJ118LQJiD1rguvDybSPhc+lUXp3GXi6BHPj9UK89oSLEKnV38UzT+dxN4o/p153IYQQ95Wvh4sFfs30WfFnhH213W4r7iUH68n5WafU4eMdSNyVxPdAWkciIyMjIyMjIyMjI+N81F7ogBDCN4UQngkh/Ky9dhhC+N4Qwi+d/vfA3vuaEMJ7QwhPhBA+76UOCHLVarVi3j6EPY1qEl0dDocaDAYx+g8RIKpKbrpHniGfTmwgD0VRqNPpqNfrxXZ5dDPAEp9WwW+327EoH2QSQYMof7fbVbvdjtZwiJ3bwDlHt9tVt9uNc7DZbDQej3V8fFwhtRCu1Wql6XQaC/oxTzdv3tT169d1dHQU0y+kqogBqfZIPykPTug8eu3576kVXVIkkpA5Omhwr/5Zt8c78aRuhosYXMvn0+tTuLDge4p6BYgrkEbIMPeMW8LbEfI+jgPm1yPa6T7CEcO9+7m499SK710FPHLO3khz+338vMYP1/bUHfY7ghHnTu/b3Q9pEUbvAoH7BwHO19Gj/6ng410hvJNFCk958PoI7rrxuUz3CnPrNRsYt68f48CtxDnTe79ovNrfxRkZGRkZVeTv4YyMjIxb8YKCgqRvlvSbk9f+pKTvK8vyjZK+7/R3hRA+WdLvlfQpp5/52yGEul4CnJB4hFI6s3C77ZmUBycIXlG+1+up0+lIqpKwTqej4XCobrerev2kxeJ8Po/XpnAhkVIEBS98B1FpNBrq9XqRtFEHIYSzrgnYv3EccC9u2280GiqKQoPBII47zf3GkeCCyGaz0XQ61Xg8rlTqX61Wms/nWi6XsQ2nd1bAIu9WfebJI9r+XroG1GtAQIG0Qcq8jgERe7f9k87iaSXNZjPePwJMURQVt4aTc9JOvE0g98F6eV0KqWqp51jIPwTXRRM/l9cZgCCzpqTN0PnD3QQIYhB87tdFDUSl1LnhwgGCBqIbhS79elzTO0/wbPg9cl8uoEDggRN0J/c8S+4mSgUaRCSKXrpo5WvhTgy/jtdUkM5PYWCOeFbSugmsJfPo9R5c9EIkdMHiMgkKepW/izMyMjIybsE3K38PZ2RkZFTwgikPZVn+QAjh8eTl3yHpc07//Q8kfb+krz59/Z+UZbmU9MshhPdK+ixJ73qh63gkMoSTLgidTkeTyST+0T+bzWKxw7Istb+/r4ODA+3v70cLu3RWEZ8iiI1Go1JoT1LsXEDOPpFrLwTJeCBvRKlxCEhnNvCiKCJBR1CAKEMeJcX0gdO5ja9BFtMuEt6Vwl+HdHItxsEcUWNiMplEAQLy6q0fz2sVmBIrxuoRYYhcu92uWMiZk7T4H4SN+eF1d1N4qgXuhNVqdW5evHTmgkDEcaJbq9WiSDSbzbTZbG4RHSDT/uNilXf/cMLJ3DiZdlLPfJ8XUYfU4iJIXRLMC8IPRNjnoCzLWCyT43FEsH+9DSWik4tH7rzw/QGZ95QHd3yw/ogjrBXjZJ/7se7oSGszSKoUpMQ9wufSbho4H/gc8+HPVCp8+Bh8PVw4Yvy09HRR5rLg1fouzsjIyMg4H/l7OCMjI+NWvNwaCg+WZfmUJJVl+VQI4YHT1x+V9CN23JOnr70okFrQ6XR0eHiodrsdCSgRbgiiJB0eHurKlSsaDoc6OjqqRIuxwFMULnUU8EO03lMFIHhp8TYi0OTYu4XaRQvOReoEEdHdbhct+pBwT7uAAHobPyK8ELiUeLobgsJ8RNJXq1UUO5xkrVYrzWazWDCQuXcBgOshWkhn0WEnerxeq9UqNnnO56IJBI/5chs8rg/SRDwS7akWXlPBybvb9Vk/RBPvYOGE2S3uvm5+/54+I53VbnAHg9v4WTfulWNYc8itCzcemfeuGC6OMOcu9nA/fh+cD3GA8zB2TyPg/tz1wXm5H3dxnOckkM5qZ3B/rKuLSqnDwe/BBSkXOVLxyuuY+PwyBl9jXvPWmi5qnOem4bMuuNwFuCPfxRkZGRkZLxr5ezgjI+O+xu0uynheOO9cz3AI4R2S3pG8FusH9Pv9c+3T0+m0UlBvMBhEJ4NHjN0mPhqNtFgsopW+2+2q1+upXq9HYo2jgJoHpDdAcLHtT6fTWHSQVnhEinEvMD6/jkd9i6LQYrGokBgIIJZ/SJWTSI8IOwmE/Dg54ngixl4LYbVaRWHEyRlrwLw1Go0oJhC9hZBRy4HIPPfn7ThdoHA4ufP1hZCSwuGRdebLnQA4FObzeSWyz3spmUSocEEIIsuc+Piks+g3ZNqL/J3n5Dgvai4pukY4xh0XEHxfO18zPuMFBT01gPedtLvolM45wgJ7lrVH+OAYL1DoQgzjZP8wz7hJ0i4f6dp77Yw0TcWv4zUlfP3cYcBz4ikS/qyl+9DP7QIJcAHE3UR3IV7Wd3FbnTs5poyMjIz7Cfl7OCMj477AyxUUng4hPHyqxD4s6ZnT15+U9Jgd9xpJHz3vBGVZvlPSOyUphFCe/jdG6LvdbsUVsFgsNJlMNJ/PK1HUfr8fax14vYN+v6/hcKjdbhdrCxRFoYODg5ibP5/PY6oDkfxut1uJ/jvRhXzhGnDCnubd447AQi2d5cIDCGw4rbXgzgqbp4rgcF7uubfta7VaFWu3OwW22228Z4/6ppHYWq12S/HI8rQAprsr0numg4EDl4STXGpNeOcH1oFxeqoDbgRvTeiCwm63U7/fj/UCEAcgyMytCwGen++CCg4B5oG13+120Wni5wB83vPy09oT7JkUTpD9vz4O0i7ocuBCghcb9T3mwhLXSQUm5gSc19XAibrvCU8T4Ty+P3kmXQRJhQo/N2PkWObeO3c4PA3jvHn087nTxAUvd2ywR7zWiJ/rkuK2fhcPwuGlKhqRkZGRcRcgfw9nZGTc13gxRRnPw7+W9CWn//4SSf/KXv+9IYRWCOF1kt4o6cdezAkhzoPBQFeuXFG73Y7W/MlkoslkotlsFv/gbzQa6na7Gg6H0d5ODnm/348dGiAQFE7s9/vR/eCEgci/W9rTvH8ICOQZ0koagef0U4DR76/RaGgwGGh/f1/tdvvcfHQn34yLczmJg7xDKCHynU5Hg8HgXKEDIuVErd1ux/ND/pw8My6Ok3QLgYVgQuRZC9JTqOtAYUjEke12G2tiUO9hNptV2lxyHQgh68IxLnaQ2kEevqQK8WZ8LgYwBr8On3PRA6QdEXxsHlHnPD7/uAQ8t99rSaTwFA8fgztbcBukhUxdwGEO3KXA+5B1Fzp8bdM0Be+6Atwx4SIN50BA8pQZ37fMkV/Tz+fiTHpsKgik6RTuJGLv+327k+m8+74LcNu/izMyMjIyXhLy93BGRsZ9jRd0KIQQ/rFOis1cDSE8KenPSvp6Sd8eQvhDkj4k6XdJUlmW7wkhfLukn5O0kfT/KsvyRTVyr9VqMdWh1WppuVzq+Pg4uhKcJDrhIFcbsiCd5VpDEohSIyp0Op1YhR+iTzoEpNQJjKcGUAyPz0JUvKAfhRghtxSd6/V6MbrsBB7hAZLlZMpzwiGtq9VKk8lE0pmVPoSgoihixwvEFz7jxDpNiUCscDLmhNfrUXjNBSeJDo96cw6IIOvlXSGm06mm02mcX8aW1jzgvwgqOEGcRLPeiBxpXQeP4LvTAFIsKToduF8nmjhUSDtBTJJUcYdQz+Kc5+ncvc8P6Rg+d3wujfI7GWePc2+4SdjDXJe97N0W/L68uKKLHex35go3ke9P7oU9wLx5bRPeYx85qXdnhadE8CwwBgQQf/aZI+7b54y0jDQFxwU/Xx8XJi4TXq3v4oyMjIyM85G/hzMyMjJuxYvp8vDFz/PW5z7P8f+7pP/9pQ7EyS1/0Hs+vrcY9B9s/OPxWLPZrEIqIBZOnNrttoqiiMSdIonkaHvRtxCC5vO5NptNpYUkggSkabFYVCKrkioiASQttWQ7ySIajwAxGAwq9Ry8aOF8PteNGzdiMUOIeLfbVVEUCiFUCvVBUp3wAk9ZcEHBx8y6eHQYwum2fD+npw64QMG1GBfkkTUiZYWUCy+86KKIFy+kGwSdHJycp7UOWG/eY3/wvnQiNKTOBO7R022cPLvQwn/dLs+YUqLtwglpHl43QKqmtkC0XVTBFcNeQajCLYKwQS0QXAOcM10vBAXAe153oNlsVoQW5s/FI+qPIAikDhnIu6dEuLPC95M/k56SwPcCAonvSU9jSJ0efj5fI86LgHFeCshF4dX6Ls7IyMjIOB/5ezgjIyPjVtzuoowvG5CU9Xqt+XwuSdECn0bPqU3QaDS0WCx08+ZNTafTSASJqEOWptOpdrtdbBPJecgH5990ZPBUCIg1n4FsESGm9Z9Hyvm8k2fORYQYEujugeVyGes9QPj4L84IiPh4PI7igTsOvLI9Y/F6Ah7BTesdAB+z1zFw8uXRYRcGIHncn9vjGYu7TXwtEJUQExirj4d/k56yt7dXKQYonRDn9PxOYD2lhDninlzYgrgWRRFfQ/zg+qR6sFbUWEC8YkysC+P3AouQd+o/pGsAOM5TBnidtJXzxBHvyLFer+P8sv993aUzoQNCzeeZm3QfsLfZK753cE2kxNyFLXcWpWNJHR1O9F1oYVwu3LnLJ03p4Bi/f9ab1KXLJCZkZGRkZGRkZGRkXEZcGkGBlIButxsj73RfSO3Hg8FAvV5PV65cieR6Pp9X7PWQGSL+bmmXqgXqyrJUu91Wr9erVKcndaDZbKrT6USShQNAUiXi69FergGZ5j1IIC0xl8tlJeXAK+f7mFPbPeRHOiNkXkAQ4lur1aLAwOe8CJ8XppMU53Gz2cS2l5Ji4UTGjtWf1BFAjQeivRxLTQRqT+C+gBAiArgTwSPoiDgpISfFw1MPSEfwNWE+vIClk32pWh/ARaR+v19JveD1EIImk0ll3r2DhBNkRA2vzVGr1eJYGQNjc/cBYhLn4D32B8KFpzYwBu/iICnOibs92AfMfZoywrPg9S/cnYF4lKaQeA0KHCSetuB1JxBJuDbXRWhibn3vp0Jj6kzgeWGcjMtFh1RQcPHrPFEnIyMjIyMjIyMjI+MMl0pQ8EKAFPbzivweXU7dAFK1PgA54ePxWDdv3qwUN8TlMBgMKu6F/f39SmFCnBIUcnRhgpSHzWZzSys7STECTBTYWzBKimOhw4Tb0aVq/rekWJuB9yC/LhZANLHzQx6dGELMIWlEoyF3s9ks3ieOiM1mo/l8ru12Wymwh+3ei+M5effCkIybsXoEH0s+roq0oj8Elmi518Vot9sKIVTacELSm81mpZCjFwX0OUd0YF9xDKJAWriw1WrFcdA6k/nwtAEXhIjyMw7mx10JPAfsAye7nIs9zth8XBDgNFXDyb0LUdKZq4U5Q9xIW2Lu7e2p2+1Wujyc1ynERQnEBy9iyXuIAzy/7MdU6HB3gaebcE134/j3gadQeMoF53PXiotUjMl/MjIyEtTqqh8ML3oUGa8Gtlttj44vehQZGRkZGZcYl0ZQgPTwxz7V9NMoK8JAURSxOCKRc0mV6OdqtdLHPvYxPfvss3rd616nw8NDdTqdCsmAXB4eHurq1ava7XYajUYVO3mj0agUKfRIOwSRcdJRAjJ1HklyEkOkHrIFyXFbu+e4IyZA1kkR8S4G1H2AeBVFobIsKykffv1Go6HpdFqJikPMuEfm2NtgbjYbTSaTisjA+RgrRNpt5tR76Pf7CiHEqDXpJF6czzspSGf5/aQcQHBZF69R4NdMizs6IfWaCWlBznq9HlMe/JreYYO5n06nkciSroHwcB5JR4hwQQHyTI0PT/XwY4qiqKST0J7T223yvLBfXFzy6D7332q1KoTc15p18zoQ1DRx5w+CIOflx9N32GPpfLhwyOtcLxUYWC/ECf8ecSGO19gjfi3f6xxzXjvJjIz7GXuveVTaq9be2Ty0ryd+T+eCRpTxaqJ5XNPrv/nJ+Ht540jb0ehFfbbW76t25eB539984EOveHwZGRkZGRePSyMo1Ot19ft9dbvd6CygfgJkCsIHweV1j1rz/nPPPaftdhv/2+/3dXBwECv3QxrIe+90OrFYo6c9uG2eMUiqkFbprPiiH0M02X+HBHm9gL29vShipFFtLOBpq0aK7tEBAzLpRfgg3/1+P7ok3NFxXpcGL25HK0yvE+BdLdw9Avl2wglRdgcDJJU8fhcv3HGAO4XPedFG1g6STxrAeZH5EE66XzCXXrzQc+Uh3S5kebQdR4R3T/D5css++8LFDd8/7KlutxudNL5eaToOzwdz6x0afP9zPPvMawucR+ZxM9DVAgHE0wrcFeF7mv3u4k8qSng6g7sFWFd34zj8mWHufM09fYQ5S2ts+HldIEifXx+fr1MWFDIypPobX6/3fsmD2nSzU+d+xWq40y/8sUfi71f/y6M6fPfNk19+8QPaWUCn9mmfVPns8Sfv6+lf8zwnLqU3ffOZKFWbLLR5/wdu17AzMjIyMl5FXBpBYX9/X4PBIHYxmM1mMQrs+e/Ao+EA94IkTafTSLj39va0v7+vw8PDSM6dhDnhhaRCfiEvkErISRrJXy6XMdJJbQRJsauAdEaUIIekFGy320p7SS98x/khnYzTiT3ncJdBURSSTtI1XCChxoGnJTjxTQvjubUdN4GPB+HAyX2afw5Z9eh/Wiuh3W6r3W5HtwZtL6mRAFFlT7BWpB+kBJVOCJ7e4MUIIbaQc4/2swbUJ+j3+7HGBmkUzAv7wgmrE17WPi0Gyn6mhgZiWbvdrhS5PK9eBo4CjmE+2AfubEhrBvj4cFZ0u91bCll6YdPxeCxJ0QEinbkafA1xxHg9CAQ6nlN/z1NZ/Fnycbow4QKB12lI0x1Sh4oLEee5F/iv12NgDDnlIeN+w97jr9XqsSuSpA/9hkKbbq4jknGG535lqed+5b4k6TX/4dPUPDp1iNWk9/7O1os/UZB+8Uv346/tZ2t65AdP3AzNX35Gmyc/cptGnJGRkZFxp3EpBIUQgh555BE1m01Np1NNJhMtl8tKgTcnoF5rAZuydJbnTXSbqPpgMNC1a9fie0RX09aDEBQi+VSn9zZ7fN6JiwsGboOHcEFuIVfcM8IAgsJyuYwk1gkS3R88HYD74x7X67VGo1EkzEVRxJQGzkUBRRcIEFg8Cs19eE6+V/OHiHok3Mfl1fE9Bx+k3QOYQ0938c4NbqNfLpcxxcOJMnvB3QJu++90Ojo8PIydMXAhuIjAeRCBWDvEBIg3Y0NEQbzhfn0/uiiF6ETqBOvvXR5YK15DDEEkcDeOt8X0/evR9lSE8/lnrZ1kI8DwXLFvvWgj94m7J3Xm+PXYP97mkd8B4pSnYnhNB9bBax9w3vPqIHgKgwsPCElcy+tNIHixJqkjKSPjXsfeww9p8hmv1dEb9jR5HBEhiwkZz48nf0NN0ksQET4OFtd2ev8Xnpxr8EufoMGHHq28X/7Au27LdTIyMjIybj8ujaBANBMLv5NSIpAegfY6CUS4Dw8PdXh4qGeeeSYS5FarpWvXrunatWva29uLpHoymWi1Wmk4HMZ2kSlhOq/AoAsSRIbb7bZ2u5P2lJ6aALkjCutF6Yjk4qKYTqfabrcaDAax+CKiBETM0yHSaCwkCJLnVncvXuctDiHfXnfBU0e4Bwg9RRhxCkBkvaWidzyQzkglc+rEldf4HYFktVpFUk2aQafTUaPR0GQyiYUnGT/ij0ff3cYunZD1Xq8Xi2si8rhY5QKCzxl7AwFBUqyrwBgp4IlYsVgsYpcM9ir/9VoRaZFKb7kJEJj8ntmfabQ9LTgI6WbPIUqwj9kHTtSdVKetLplnHCUQffYiIgT3686PNHUpdSXwPeBj9zX1/eL/Zp3OEx8B6TSsKykyXjzTn3nGmZFxP6B+7Zo++gWv1+iNO2URIeOiMXrjTqM3Vr9/V+/O6WcZGRkZlxWXQlAoy1KTyaSS1+6V3NOcare3S9JwOFSv19PBwUEkTU72r169ql6vVymOB1GCJGKJ97x9hAC33OOegJA1m011u13NZrNYqJHUi1arFc/hrgVIHMSYiLsTVk9x4N9OejyKiiiw3W7V6XRiNByBATHDWzw6sSTFBBGn3+9XrPqQUQo0OjH0gnmec891IHAuCElnAgjkn2g7hByxgk4QbstHVPDq/d5VgHvjfIgirVarItbQtcDrDXAM45jNZnEvUkCzLE8KXLoY4O0UJ5OJyvKkFWm3263UJmBvI1J4dN9FrVQMcTEIskxLT373dpLeBcIj/J4SwXOFWIYriHVDqKnXz7quMAe+Hp4q4elE7l5BOECQ4HOpEOAODdJxfO5cBHARxGsssL7uTqA4KaKidwVx4cUdGzxrGRn3KkKrpWf/4K/SpgiafELe6xkZGRkZGRkvHZdGUIC8OUH0QnRSteCaV9KHWBVFESPc0glJox1kCEHz+VzHx8eaz+darVaR+He7XR0eHqrdbuvo6KiSykC0HGHAq/XX6/VIrMbjcYzauxjixMmJEHUCuGePeNNFgnt2IYJ0DMglpIsClqRNMHZEC378nES8vbgiboDUnu555ZBUj0R75wnECV8/T6lIreVcm/e9YGBRFCqKQvv7+1Ec6fV6lS4X3ooRAuo1LXzPUGODSLp0Qsi73W7sguGilK8lgs96vVa73a64RNiLXIdrdbvdOAcIA1xTOnMfOBlmjTlXrVbTcrmskG7WhfWA/Hs7RgQSd20geHW7XUmKAos7VICnJjCfqbjCuCjiiZDH/XiaDvfD+rjogzjB73Sx8HQIXwN/htinfCewL1h/SZVx097TU2ZclEgLSGZk3JMIQR/5o5+h2SM7SblWSEZGRkZGRsbLw6UQFJysQkhSOOEk0g0hwM68t7eno6MjLRaLaLV+8MEH9drXvlabzUY3btzQaDSKJIE0iYceekgHBwdarVZ6+umnK7UbpLNCcm7Pd8KUFnrjM3wO4ozFfTKZSJImk0kkw27JdqILOSyKIt6jpOiu8PO76wASSscM7P2NRqPSahOiD2nGEUCU3Qm2F8D0gpAIHV7HACLp1nVJldx/j5C3Wi0tFosofDCWg4MD9Xo9PfTQQ9HxISlGzCeTSRRrILUICE64iVCTngKp7vV6CiGo0+lEIcVz+SHmpEsgIkBqvbaEp+RsNptY/8FTEBCKeI3xIYzhjPDoukfMcZu4mMV94/TgOWFeGRfr7mNCvHBhhrWEoM/n80oaD2uL6AOJd6cKrh/W3EUA1tnrFiCkQebZ6+xpX0d/DrkmdSlIJfK5833s881z5M+011RhP2dk3JMItVMxISMjIyMjIyPj5eNSCAqSIrHzCvpSlcRLqljLPRWBav9Y/0lhePjhh9XpdHTz5k0dHx/H6DfEl6J6fN6FBBcKICieBuF2ao8cQ+4kVWztRGclxSJ3XNsLD/I+1yb/n2iypGjfJtKL48LrGGy3Wx0dHWk6nUbyh/CAeLFarTSdTqM40u12Y5qFR5edcPE7YgDuCoQQ2n/6HEhnUWLpRBBwIcm7GJD+Qf2Efr+vw8NDNRoNzWYzzefzeG3WIL0/WoFCePf393VwcKBOpxM7K0iKtRl6vV6sg8H848AgKr63txcFC3ctDAaDKIRsNhu1Wi3t7+9XyKing7iNnn3aarXU6XRiPQtaS3qHDuZ4NpvdUgwTR4Wn83BuhCxED9aLCPx6va6IH8wtrgv2c7vdju1VESFwzuCa8XGx7hQ1dadF+iyznxBIvDCpp0nw/HhNBRf2PLUCdwZCSSps0ZVEUhQhENSA13LJyLiX8IG/+FnKzoSMjIyMjIyMV4pLISgURaFerxcjl9QioLaAF2XzqKbnaUuK9QAQFCCkkiqEDzJP1NrTFqRqMTYnk0SsPQ++0WjEaLmnZninAifiaZE7F0cQVIh8cx1IL+8VRaF+v6/1eq3nnnsujhtiihBwdHSk8Xgcr5NGxRE/IFLUTqBlo7su6vV6XCNSO8qy1GAwiM4FiDxjRWBIyaX/16/B2EgVGA6Heuyxx3RwcKDXv/71lTljj4xGI43H4+jC4PVOpxNJ6d7eXqyzgSgAEWWfUCPCI9bMt9/TYrHQcrmMrxHhR9ghgs++YC2JdpPOwuvsIYoc8hlIv88raTvuYGFPrVar6EJhT+ESIJ2AQoSpc4L1QGhLu4C4E8GfKcaN0IHQ48+o3z/Cwnw+rzgKVqvVLSJJ2jmEedjtdhXBLhW8EIAYF+4G2qdyX+wzzkXtDFq5kvKTHQoZ9yq27by3MzIyMjJeIULQ+/7K227LqV7zHzZq/d8/flvOlfHq4lIIChCPxWKh4+PjSLqeryAaZMUrsnteNrnvbt+fzWaSbq1JADlyC39atwGCThTTbdNEQEkvIErLOT2f3btDIGpAgubzeYy2E1l1Gz1WeYSMTqdzS/pGp9OJ5FiqEvRGoxGL0ZGzzjx2Op1YPHC320ViTW0GIt1pPQJqDjAHabFGz2uHpHpqRlrMzwvrdTodXb16Va997Wt19epVHRwcaDabRQHI3SDMDe03KbhIh4XhcKgrV67EcTAvtVpNw+Gw0kqSqD11EUiLcHcAwgDn8QKHTqZZP69pgTPG6ywMBgMVRVEpisic4zogWs+YvLMBTgkEFOaZyL4/L6yLd3dg3+HIQFDiXth31LGo1U46TkDAcUCw55zsu4uHuSVNxtM12LM8s/x4MVBqNKSFJplXT3XhmWXfegFJdxsxVzxTrVYrCo9cKyMjIyMjIyPjbkfYe2m0r/aGx/XEV1x9ESe+PQL1h39jXfqNL06cuPJTQYff+sLiQ5lrYb0qeMGdFUL4Jkm/VdIzZVl+6ulrf1XSb5O0kvQ+SV9aluVRCOFxST8v6YnTj/9IWZZ/5MUMBCILsYQc8Mc/JNxTIjwXGyLJ5yBqThSxanMMpMOt3+RyS9U0C3LAU+K42+1isUeIOC4BIq6cO21vxzkheBAoCDfXArS37Pf7lShxvV7XwcGB+v1+JFBEfLvdbnwNQcEdA5vNRu12W8PhMIoOzLuTNgjyecUacWdAXNfrdcX54AIHKQtepNJdH9jTm82mhsOhDg8PdXBwoGazqc1mo/39fdVqtdheFIfA9evXY67/cDjU1atX4/gPDg60v78f59aLCkLmXXCSFMmo5+EjHLBHvesCx3uLR3dfLJfLON5erxfvHYGkXq9rOp3GGgfsIXd5pA4QxuuvISC4C4d19nuHzCMKkI5Bccb0eev1etHhIakiijgx94g+zxPz6DUpeN8FQObQz41Y5W4BF0K4V57ZTqejXq+n4XAY1469PhqNNJ/PozjC9aWTNJ1erxdFKfaBpz9cNF6t7+KMjIyMjPORv4czLiNCq6WapUWfi4eu6Yn/4dqrM6CXi5fQHfb6W0tdf+tnftxj9iZBb/ir73mFg3pl2I7H0n3gdn0xUtU3S/pbkr7FXvteSV9TluUmhPCXJX2NpK8+fe99ZVm+9aUOZDqdajKZRALlxd4grfyxD/k7OjrS4eFhtHPPZrMY7YSMYoPf399Xo9GI9QSks2gqhIVChdJZ7jRiAt0BSJMgajqbzXR0dKQbN25Uos+Qf4glIgFF87DAc28QQS+SSI43KRy9Xi+SQQQUigVeuXIltvfjHBBVSBn3y/uQTgglpBILuNdLwAngYoK7PZxUIvSQquHEerFYVOaZcfi612o1HR4e6nWve51e85rXxBaNm80muhOKotB0Oo1dLVgXSCd1IryOgAskRKTpJoDzAOILuZXOUgrYZ54asFgs4nWGw2HsODKdTuO8MXauyz1SGNLXeb1ex/twkYtngYi+C06kMDQajTg+ova+TjgicKxAthEVINekJbBn9/b21O/3NRwOK8IEQhViiXTWtcIJOe4K9j3OC54FLx7JWiGosJ+5X9wH7FWvt0JNksFgENcBeFePdrutoih08+bNuA79fl+tVkvHx8cxPYpUiUuEb9ar8F2ckZGRkfG8+Gbl7+GMS4Cwt6f6gw9Ikm7+V6/V07cn6+CewqZX6ok//8kXOoY3/39vKhydpKZrt9PmqY9d6HjuFF5QUCjL8gdOVVZ/7Xvs1x+R9P94JYMgcu0t6HjdiyTiRvDCedjYvT4CBMWLGA4Gg0oUHZJIQUKIH64Fj7RCWiDbnjO/WCx0dHQUC9R52gLkD5AWIZ0VhfNCeuSTb7fbSPyIiLsNfLvdajqdarPZaDAYRBeCE01SB/i8pz9wTVwSw+Ewkmd3TngdBUg04oG3yHTxASLqLoDFYhHFImodeKqAOxz29vZ0cHCgN73pTXrLW96ifr+vRqMRO2NAMlk/CDSFAT06f3h4qE6nEx0O3pEhhBDJPFF34Dn8CF24TyD3zA0CRVpU09MI3D7vKSl09qD+wI0bN7RcLvXAAw/E+4AsU/+A9fEUGF87F4489ca7TrAu7JGiKKJow7gRNBBmer2eOp1OfPbcQcC6OdH3tAccCd59gflI0yJIo2E9vd0pa5gWavV2kv1+Pzp4mD/2O9egngIODQQG5s2fn1SYuEi8Gt/FGRkZGRnPj/w9nHHhCEH1T/pErR/o6Zd+5wu4EjIuHE/84QNJB5Kk2jrojX+/r7Bca/P+D1zouG43bkcNhS+T9G32++tCCP9F0kjSny7L8gdf6ARY9CFBTmbSWgnSWQE2CPZ0OtV4PI5pB71eT1euXNHBwUGMgHt1f8jabDbTzZs3K4XZICdcF+s3pMzrIFAzARcCqQReeZ/7c1IHCcQa70SdMRJxls7cGszJcrnUfD5Xr9fTwcGBhsOharWaJpOJlsvlLcSIH6L13roQMuXz3Gg0Kmknks7tIMHnsalvNhtNp9PK2jDPCApEwbk+ZA/i2mg0NBwO9eijj+rg4CCmlDBmcuaPj4+jQ2G328Uiho1GQ+PxWO12Ww888EAUW0gpYU+RWuBpHNwna8GcMH46MZCaIZ2RXBdZJMX7Go/HsSYBOfpOWPf29jSZTDSdTrVeryvuAfY8zhwn04wTcYB9wXWpccDxtVqtUqyQe/RWod4ekmtIJ0VTDw8P4/w5OWcd+dxsNtNsNtN2u43FVtn/zBcCIGlBjI9xIEyQHoO7g5af7D2EhqIo4nNLwVKuSRHR1WoVz003DUmVVCPcEDwvFAa9i/CKv4szMjIyMl4R8vdwxh3F7td+ut77Re2LHkbGy8CuUeqJd1xR87im1317U9uf+8WLHtJtwysSFEIIf0rSRtK3nr70lKTXlmV5PYTwGZL+ZQjhU8qyHJ3z2XdIeoekSJb5Qx4RgB+3R0Ouu92uut2udrudRqORnnvuuSgoPPLII3rkkUf04IMPRvLtkWRqBcznc81msxjdTDsPUMAQB8N0Oo3kljx6IqiICV7N3+sfuJ0cYuMtEimIiBuBXHDprGsEdmzqIFy7dk0HBwfqdrtxbN6hAQEEB4C7Frw4nXTWrpEoMUQdWzxzPR6PI3Hd29tTr9eL0V1PJ8HWD7lFTGCNJcUigBBjyP9jjz2m173udSqKQpPJJBJCUjpws7jg4TUOpBNHysHBQRRLcFF4Pj4RcAQGhBBfM643m81i4Usv7ufrg2uF96glUZZlFDX4LCLEer3WZDLR9evXtV6vNRwOo9OBuUckYj950VFcOKT2uPjitSnY99yfCwdeHJH58DaLtCiF9DN+xukFRtnD7A0/nv1GAVIED0Qs0lnYu4hQntLh6UqS4rjcocA8s/dms5nW67UODg5iKsVkMon3ltZJ4FreaeOy43Z9F7d1eRwZGRkZGXcT8vdwxp3G6vM+Ux/6vEtRTz/jFWA13OkDX3hVn9Coa/dTP3/Rw7kteNm7MoTwJTopTPO55elf92VZLiUtT//9kyGE90l6k6SfSD9fluU7Jb1TkjqdTunRdCLg/EBGIR5U/d/b29N4PNaNGzd0fHwcI6z7+/u6cuWKBoOBjo6OIqHwPH1s1RSbS4vLUSBvMBhEWzr5/969wTsCeC0ByBz/hkCRI07U+fT+Y/0ErODURoBcHR0dxTFRbBEyL0mTySQWO+TapFjgsuBzTsz29vYqBS0RHSCWRLWLooiiDiS10+nEOgmcPyVjEHJEDQQMFxioPcA9veY1r9HBwUGM8PNZ3BW+Bswv67PZbFQURayZ4TUTlsulptNprMHBeRGAsO9zHtaoVqvFeyWS7x1BJN1yn57+gECEMOV1HmiPSioM5Nk7ZUDwmXvqWEDSESXG43HcA7gc0nQEjkfg8j3P6y4ccAxCHvUevNghe4V5xIWBc8UdOIgw7gKi/oUXbpzNZtFF4M+m1+NAoMCl0Wq1VBRFXENSVUiV8gKsuCzcUeSCJd8Pd0OXh9v5XTwIh/d+5aAMTb/o16h8CcWvMjIyPj7y93DGncbsC3+Nnvq14SUVLsy4vFhe2elD/92BXhs+Wbt3/9xFD+cV42UJCiGE36yTgjO/vizLmb1+TdKNsiy3IYTXS3qjpPe/0Pk8UkxUkWgphA8SRiTzypUrkbASyaRIIbnz1CTA3u6R+l6vF50MnU5Hs9kskiks7tRowM6PKIHgQTE6iDfHQki87oK3soPUkZ5BhNSLy0GSSOnwDhYQsEajEWsJHB8fx7EQyYfkeu495Mzz3L3zBFFzrN/Uo8CqzudJKRgMBtEqTkcFLygJWYaskebANbGgD4fDWGmfYpbY1Yloe34+4hNEGPGkLMtYV8Lt+YwFUYa0BU9pwalATQzWyVMxpJM6EZPJJK6XpOhgQbSSzmokUDsBeD0HHAWk3ODSYM97rQLudbVaxfOylsyVuxHYa6wftT/8ufI2iTgsfI+6C8RrHjA2BD/Ww+sk8P52u41uBC+iePqdUUmfYH15Hl208M4ViHikQqTOH2pfbDabKNDwPYNrh3XBtcO4fN18PS8jbvd3ccb9gac/q3bb2nxlZNzvyN/DGXcaoy9+m579DKmsvfCxGXcPFtd2Gn9iX913X/RIXjleTNvIfyzpcyRdDSE8KenP6qSCbUvS955GDGmF819L+gshhI2kraQ/UpbljRe6RlmWWiwWMfWBP/q9wKCkGBV/5JFHdPXqVbXbbT333HMxYixJBwcHOjg4UAhB0+k0RuilM1ISQogkllZ4RP6lkwr9o9FItVpNV65cUQghRjuJDGOlXq1WlUJ3TqYZkxMs7jetWg8hRNSA1AA6R9BykCgwaQ50FfDrIMoQafVuBxQZ9K4N2N49su0pKN72cjAY6MEHH4zRYEkxrYBouBNN0k1YT7fFX7lyJbatxEkwHo9jXQii3i64cH7fLz5PXlgTmz1pMZJibj8Em7VdLBYajUaRWPu+K4oiuhwQeYi0s88QTZgHhB+6KLA/XFRiLxBhhxS708FJuBfnpNPIZrOJ9+1pJd7iFPKPgEGRSebAOzi4kOCpO94u1WuASGfFH3kOvBYHAhWiBXPhbS65PsJJWmyVrhjMCcIJIgNuCIQ+r23CWKlTgljo+973EQLEZcKr8V2cce/juXe8XeXe5drbGRl3C/L3cMarjeP/59t0/dOCynr+3r4Xcf1T6+p98Feo/PGfueihvCK8mC4PX3zOy3/veY7955L++UsdBNFB/qj39op+TKfT0eOPP66HHnoo9pGn0j9RUJwLFAfks5B4CDH51hAzIq7L5VI3b97UaDTSwcFBvA7ihLfhg5BJZyTXbdWQKEkVgsbvEFVJkVj2+3098MADMQ0CAkadAi/0yD0hlBBt5Z7dRk9BRu88QfTYC2G6wOCkzusD7O3txRoFs9ksRnq9cwOkttFoaDAYaD6fSzojaowJkYR1cGcK6+LOBq8LgQsD54mkmAbi9R8QhG7evKnxeBydAMyBd2IYjUaxDkVRFDEtpiiKWMfixo0bsY4B6TGIC4wVMQERh3lJ22si4FBDAjEirRWAIMNrTs69dae3csSJ4Y4aam2wXl5vQTpLgUnnjz3H3LubxZ8vxsA4cITgHmHMzAUCiKcQsSZp0VM6lDAW1o9nQToRNSjk6C1LSQHiGD+P733gaUKXBa/Gd3HGvY/JYznKlZHxcpG/hzNebUwerWnX2L3wgRl3JVbDnVYHLd0dFbueH5eisgfkIo3YetG3cFp1/dFHH9WVK1fU6XT0zDPPRPIASSWC70QZsu952Pv7+7p69WpMi5BOSNvNmzfjGCC55PG7W4J/U8OAKvIAC77XhaAYJAIF6QHY3r3OAvNBLjn3D4HlPtzGzfU5BncC1fPpWODdACCzXtCQuYJQEvkty1L9fl/1el0PPPBAjNjzeenE3eEuDUQT1oLrehFGLxQpnUWeSW+B3G2325i2QAFOyDwW9U6nU3G0EO0/Pj7W9evXNZlMNBwOY42G2Wymo6OjmB6C24Ix+ZqTfgFZ9VQVFz64N9JeKO4oKQpIu90uOlK8+wLzgNjDnLjDw7t9+Dmo8SCduXEQJ9brtY6OjqLzA+CioSio/+Ae8BoVCFXuCmC/z+dz1ev1KMTwGm4UHzvPtJ/PBTTWg72N6wHij7DlaRiSYuqGpErrSMQCfmd/sXbeRYS59ZacGRkZGRkZGRmvJm582du1uJbFhIzLj0shKEBeIJwQ2zSqD1EtiiISeWzMV65c0ZUrV9Tv9+Px1BjAfg5BhHxB2slJh0hwDI6F+XxeSYlgLJB1ctg5v5Mh4NXrUzs790Bdgv39/RhpPT4+VghBg8Gg4tog+kokGlKGdXwymUhSLKjokWcfA24K4LnjEHrmsSgKDQYDdTodHRwc3LJ2CBVehwGiTXcESZFc9/v9GL1fr9exmCLpLOTII4R4y0p3JlATwwk+BLxWq2k8HutjH/tYdK0Qzae7AoUMnYR7qoBfE+GH6xDpxpFA6ovn8uPwIMef9AgvGOh7wYk3a4LIhCPFi1NyfS8g6AIR9wa5J13G94K7aryVJudZLpdxT+EWaLfb8Rj2ure99I4aqbNAUhTGOBfiAo4RbzWJo8KfAdaJf0tnhTY9FYUinIgrCE2M0efKa3zgoMjIyMjIyMjIeLWxKXKqQ8bdgUvx1zJ/uEM0nXT4MfV6Xfv7+5E8rlYrjcdjhRD04IMP6tq1axoOh7eIE61WK3Z8cBs3ZAdCv9vtKgUAd7udrl+/HuskSIqEziOxEC2u6T/SWTE7LPUIGKQxcN/tdluDwUC1Wi1Gk7fbbeywQK48hBjLP90tPAUCskoBR+omENGGrBIpZzyNRiMWcmy325XWlcylOyi8yN10Oo3RckmRlNGdgTVDqGA+IfGtVit2e6DugKc+MCc3b96MTgEnfk4QvRPEzZs3Y4E+r1+QpnKkFf69uCb1MlhP3uO/jNdz+anHQE5/v9+P0XeILako1A9h/3ntD9aP9YV0u1ABIOKIB0TnST3AMcOe2Ww2UUSiuCb7nz0N2cat4c8MKTQu7ngKE6/xDHMeXAr+fLsjg8+QNuIFIHmfZwExgs8jAiCY4JTx2hKIFy4k+HcQAuB530UZGXcdQpBCTU9+9a/RppujXRkZGRkZGRm3D5dCUIDAfLwiaHt7e7ETAOSfnPiDg4PYSpLIo+d0U5QQMk1eOwQRckFLQXLgd7tdzLmH2BKF93x4IuJOZiGGtLMryzLm59ONgsr/kNd+vx+r7tMdgXt1gumE1WtIELXGIVEUhfr9foyWQ765BiTM7fKQKIQAiiES8Yf80qoQ4u6uCOztEF7pjBSTBiIpkkoKCh4cHOiRRx7RcDiskGiAY2M+n0fRiOJ6rCP36JFpCjvSTYDcft7HgUHaTLfbrRTlS6PrCA9E1nEHIC6UZanpdKqnn35azz33nFarVSyYiNuFFBZPB6EuBOMn0g7Z9vVlbklvIcWE9yeTSRTOSBPxGiCsP3Ps6R6kDSFceFtF5oDX2ZtOzj29wAUcr0ng4gzHIn54m1CeVa8VwjncbeFOCEQgRBdvoen7BqGBNXbhhPFc9i4PGRkvhNBo6tkv/QwdvaWUlMWEjIyMjIyMjNuLSyEokJJwXjTQ8/oPDw/V7/ejRR2ySkTZc8whE5B67OpFUcT8dkgQhJnIvLsciJi6bRzSiogA8ZfOIv5lWUYLf71ej04KugsMh0N1u91IzJyMet68n9ct7YgJHgkuy1LHx8e3WMlxW0AIvVI/BRWZE0hbURQaDoexbsFsNouRYK4PCUUk8Zx9Hx9jAF50j4g4bRmvXr2qq1evRiLKuBEeEIW8BgRpJxDssiyjIwGXyWg0imIJpJt2oqQcsA+8KwBzBEmVFFM/SMngHJB/ajwcHx/HvcBeYdyePuOdJnAWQJBJLaFehJ+DeUn3ImSdPT6ZTDQejyvFPSHQRVHEYxDbvO4CtTl4RhGBfM/zbPE+7gcEBU+p8fOy7yXF5xXnic8R1+S5Y+wubnihRfYD88A+Yt+7mMGzxjURVXwPZGTcrah1OrrxRZ9+KiZkZGRkZGRkXCbUl0H1+faFD7zkuFSCgtuMvSAedmSi6LPZLBKvfr8faycQiZcUaxjgBDg6OlKj0VC/349EfjQaxai1dJLTTVTYo5ykF9BOEus8JA67+Hw+j8R3b29Ph4eHGgwG0f1AKoC3FIRYETlPu1tAhiCNRKG9XSLky10e3mXARQqO8/O764OoPZ0SaJFI0UkIOw4A1sI7ZUDuvMAhn/M6B257x6Gxv78f3QkIAtQiYBzMsdeASAsjemcBSCpklJQD7gkxQaq29ETsgARTD4F9yHpKZ6SX847H47gHvYYAhR1xOXS7XU2n00jofW68qwIFGNNCjYgx3DNj5D5wr3BvqbDUarXis4Sw4rVEcF6k7TG9GCjPAPuCY12EScWBtD7BcrmM6SFpIUwvwuh1H7yDBmJL2pqVPe61Efz87kRYLpfRxeDiWkbG3YZau63wmod19JkP6rlflcWEjIyMjIyMy4gHfmKn2g/+l4sexivGpRAUpLM/7N12DAEtikLXrl3TY489pr29PT399NOxMn+/348F/7B0Q2IkRbLu1fRbrVbMM8cyvVwuNR6PtV6vY3cHopNEcCeTSSQyWN15DRs6ZKXX68XWeZDZbrerVqulEIKuXr0ayQ8V5z0qDlmTzqz2LjQQTSWFoNPpVIrV4cRotVoajUYVUk1EHfKURmI9LWAymcTPUgNhb29PN27c0I0bNyL5dpIGySSdgrE7GYYYsi5XrlzRo48+qqtXr8YOAdPpNNr8r1+/rmeffTa2n4Rwu6vFU1AYl9csgBAjyBDJdsGFfejXQLzBweLpLaDRaMQ1G4/HsTMIpJc0irTwI/fpqTZ0GEAA8dQSF2YQ3jzFx9MOXHDh8zh2qJfBnGD/pyAn5BpxjXSN2WwWi5Y64XZHD06CtAAoIoSnLTD/7DWv38D7fjx7BucENT+Ojo6iI8KdPYgDuDf8Pr2WQ+r44FoIbBkZdxPC6x7TE++4ctHDyMjIyMh4Beh/ZKPpY3VtW1kYvhfRGNVUPD2/6GHcFlwKQQFC7yQNYtHpdLS/v683vOEN2t/fj4Xujo6OYmHEdrtdIQteHM5bw/V6vZizTntDSZG0uaUcizSiARFkIrZEtfkhGrzb7dTr9XTlyhW12+1I+qlUj/2/2+1GEkNUGLs6EX3mhjESLYfg4gzodDrR7QCha7fb6vf7t3SWgBBDxtwF4ORws9loNBrF9AnILRFwivzxnsPTURAUsLQzFq8BMBwO9dhjj+mhhx5Sv9+P0XiI4maz0c2bN6M7xIUT70bg1/fUAC/U550HvIgmxDIlsxRkRJTodDpx/C5mcA6EB67pxR25J+/q4PuOWh2kEyCOsS88FYC96XMLYSedBJGJeee5QihAvOBevF4Hn2esOCt4trhX1tidIlyHtXHHEUDUYq8gFLGmjMfP59dEcEEYxLlCSgPvS2dpSOmeZB35L8932jEiIyMjIyMjI+PVRvEvf0zNN3+25g9lQeFeQ2Mc9Nh/mN8T7gTpEgkKkGPpzKJcr9ejDf7w8FCtVks3b97U0dFRJN69Xi8SI88Jh5D5e7TsI1oJqcfqT+tHQBST3Hpy6SVFKzkpER59bTabsXAhpBubPJ0AOAfXkRSt5vwb8uTR/5QIU2Sx2WxG0QPHAuKJR2ARaYjO03UirYAPwXLSCkGXVGl5CNGVVCGBkEZPSXBHAPUjDg4OdHh4GF0RtCi8ceOGnnzySS0WC928eVOr1SoWsvSoMznxvp9csPDjfb5JE3Cy6wUIEYmm02lMUyDv3+sM8Dnmmf1GQU6EG7oouBuF7hHMm1v8qUXhLSL5vI8dIuzFD1kLF1Q8ao8AQhtM35MUhmw0GrHY42w202QyqbTyXCwWcT7c2eEpFqSheC0MBBG/Z1J/EA5c4PBzenFF6aRQJw4O6mmwzrhD2AteK8MFJ3/evQ6Lv5eRkZGRkZGR8WrjoR9b6EOf18ouhXsIe9Ogx75nrtoPvfuih3LbcCkEBaLAnqognZCHZrOpTqejwWCger2u69evazqdxtz//f39SgQektnpdGJ7yel0GsksEVwIEM4GbOdE78m5JoKLswASCFFygumvkU8uKboBvDUlQGAYjUbxd+zkXmzRi1ZCyHBn9Hq9WFsB0ePw8FC9Xi86JCCqtLosiiISXKLjkH+vH4DDQTohaJIqBBfChrhAtBsxgXl28kbaQb1e12Aw0Bve8AY9+OCDUUiYz+c6OjrSM888o6effrrSjtIj5Kyft0MkGo4wAclM63MAhJLt9qQ9p6e70O7RCzh6q0zWCOLNNXz/Mu+IS15IECENUQoHg9eigLiTdiKd1bdgz1MvA5HCU3XceYFwwDklRQGK6/FsQMZJyxiNRpVUEO49nU/cAF6U0VMfSJ0hhYK19XoKtIKs1WqxVSrPFce5oOC1DxBuut1u3LvsVanaLtLHzncN9VAQeVL3TUZGRkZGRkbGq4X6f/zPenzx6frlL+ho18iiwt2MsAl6/N8utTddq/zxn7no4dxWXApBwYvzOagFcPXq1djdwVMd9vf3JSmS01qtFonXcDisFG2DKBE19ejybnfSHnKxWGgwGMT88tFopMlkolarpX6/L0k6OjqKBNAFBQgJNncIDK4Eb1tJagYRbNrzQXA80g05d9LFa+12O+bmY7PvdruxpSEklZ/tdqtWqxVbGLro4eTKCSJkjLQK8spxbYQQYroKjhAXT0iZgHTz2e12q+FwWHEnHB0daTabaTqd6sMf/rCeeeaZ6FzxtpOSKmkfHn0mxcWLW3pUnPuWFK32TsolxdQKIvjePcIJM8fgSIGUu+DhBSC96CJz5Q4L1shTUXBIeFqCpwhIJ20euZYXFmXczLd01tIzrX3hQht7izFNJpPY5cOLJSKmcF+kH+Cc8NQd7+zAnkE88gKNCDNFUdxSRyQVaxAPpbMCle4q8GeJ5x1hw4UCCmTyvOA+cldHRkZGRkZGRsZFILzrpxR+x9svehgZLxOf+G0zheVWYbfT7qd+XveiLHRpBAXgkUqKMT700EOR4E+nU+3v70frO4SSiCTiQrvdjkUER6ORZrNZpZsCZBqSQcS22+1GMg4xpTMERI5ie15ArlarxUKM+/v7kYwgJqSt7ZxUQrJxReCCoM4DLgDIDWIEEXUIk9dG8DQOiGqn09FwOIy5+ggBCC9pnjvOEUm6du2aOp2Orl+/Hsnn3t5e5fzMB50cmCtfU0hxURR64IEHYt2E5557Tk899ZSOjo40Go303HPPabFYxLFRzNJrKEAWmX/Pq/cii7gL2DOksvh6MG84Hvi81y5A9OBYuiQgJHnHAD7jqSIQd4QP7gfRBFGEvbfZbCp2fsbunRVYN8QV1oLrMS5cD15kktcQKRAXuCcXbbxTgnSWruPdHhA/3A0gndWt8E4kiAkIGKwhc4sg4oVaXVDw8zIXPBtesNLbjCKweOFFhAQEMFJ5zvtuysjIyMjIyMi4CLzxGz6qJ77yYZU5znFX4LX/bqPOLz0nSdr88gdPONYFj+lO4lIIChAf7OZEEAeDga5du6bDw0Ntt1vduHGjQoKI4mMnJ5p+cHCgoijU6XRia0Mn5EQr3epdlqXa7XaMUhNBpY5Do9HQeDyOFfghMERqOY76BJIqbfi8GCDkt9frSVIk5bgYID+QTBcb+DzkkLoJRPF9bsbjcaw3EUKoVPZHPKAbhKcleKtD3r9y5UqlfSbk2QsBQrKdKBPFZt65fqfT0cMPP6xr165pNpvpqaee0pNPPqnxeBzJJvn77BHuzUkzYE1xRBRFEYm613SQFMkjwgYdOCDwOEOks24JpCcw/whFkF9PkUGoYQ4lVYpoXrlyJYouvvYIBKTFkMbCnmcePCWFPYgzwN0+tVot1tHgd0mVOfFClDyD1Ndg/ZgP9rALOZ56wbPo10KsczFvPp9rPB5X1oTCpYhCXvcDMYN9j2iD84PrkXKSFuDkWUxFH3cfuIvB0ysQGjMyMjIyMjIyLgqbX/6g3vRX5nriq18vhRc+PuPVx8F7gh74V++VJO2OjrVZr17gE/cOLo2g0O12JVWt0R79pRo+tRMg4xAP/vDf29vTlStXYjV+XAhuc06ryEPa9vf31ev19MEPflDHx8dar9eR/GH79nx0sF6vVRSFBoOB2u12JHFc3ws+EqGFfEPYILgQdEgzY/Z7oGDefD6PtReoFwH58noSTpAoOkeawMHBgYbDoZ599tlIbnFNIHpwbi9yCCBse3t7UbBAjMGdQEoADpJ2u61r165pf39f9Xpd4/FY169f19HRUewe4SkgrDOEVDrr5IAAwj6SzqLOXrzSx8IaSIotQKUzt8t4PI6k07s+8LuLG6Rh8AMJZ5/5WJfLZayRgeuE9SE1BnJO/QMIsrsavD0pRN47EnghSncx+N5IxQ7SHHC3INIhbKXrTYqPJE2n0+gE4Hnl2u72YE6YZ0QZ7tlTR9z5ArwrAwJHuh+9U4XPg6c+8J2QpmvgovD6H+5WyMjIyMjIyMi4KGyffkZv/otrPfF1b77oodz3CFvpjV/305XXyvVG2/tIRHC8oKAQQvgmSb9V0jNlWX7q6Wt/TtKXS3r29LCvLcvyu07f+xpJf0jSVtIfLcvyu1/ENSrRQlIWDg4O1Ol0tFqtdHx8rNlsFkk/3RwgItIZ6cQeL6lShd8t/JAnovetVkvD4TB2FBiNRtrf39dwOIyEEILn/euJzjOudrsdUwrG47GOj4+jg8DJqFvInRQhQECAIa7+I51Vt5/NZpXOBx6dJWIMQWIOIGbUofj/t3euMY6e1R3/P2PP2GN7PDuzs4TcxCUKrehFNAJEaYWoVLUhX1K+VPRLkYqUqgKJSm0lWqQCqmhLW+iXtkggqkDVguiFQlupKlQg1JKScElIQghkIWE3CbubufkyHs+M5+kH+/fMsTOX3c2s39ez5yeNxuN9/fq8z/P6WZ/z/M852GQLTLK7XavVUjpJq9VKdRg4N/UEpD2HD8k/u/l2t1rqO/zz8/Op5sXFixe1vLw81PGAVAfm0aobcHRxDFutVrqP6vW6SqVSKjjJ88yxrfxPLQlSUijAaK+LMSVAVCwWNT8/n9QT29vbajabQ6oO+778xmGdmZlJ9lMItFqtptoP3W431aBgTu01gL0frHLAvifqCRs8sHPB9RBoIlhha27Y97L28BqCAxTNZHzBKnKkfvCh3W6nOijUG+E+tzUXbGoC12BrUdh7fj/lBP9u1wdbx4TAGuk7tovLfgGlrBnHWuycDHqPfU+3fbqis786m7UpzkkjSmGg241B191Oqa/DTtb0Vlf1Y398Vo//wW1ZmzJZmLXrtn/ckO5/9AWfcne3d/RB1wmXo1C4V9JfSfrEyPN/GWP8C/tECOGVkt4i6Sck3STpCyGEV8QYDx1xWxyOneXZ2VndcMMNKpVKqRgjEnwcPPsaHKAzZ86oXq8nB5gK8Dg/OPYEJUiHwLm0BQcp7NjtdrW2tpak39QnsDukBBJsXQScU3ZVyePHgSdf3wYbbAs9AgGS0m44zp1VXvD6crk85NTStaJUKiXHs9FoJLUAjjuKienpaZ05cybtmFN3AXUCO9E2HYAd6FHHDzWG7ZhBwGdpaUkhBJ07dy61I7TOnpW9D+6rdP2kNZAaQRCCehKMISkAjB3nRJ1g61/0ej2tra0lFQwKBYITKEPoPmA7BaACIRDCuCDhl4aLjlJAk8CRrdUxutvOdVvpP2M8+vkZ7UjAHKIAwI7RWh7cd71eL6XP2CKWHAMcT0eJ0WKfNu1lNEXIptpY21AckOKBrVwX14NttibEqMNPSgPjhwLF1hNBicAckvqCkoHgjb1HcsK9usZrsXNymNrZVdgJisWTnLXpjJPQk279Qk8z//mAJOmZ33u9NpcGKsLp+IKDC6Enhd7eSWIx5jFf/F75Ouxkzc6OpraDd304iihNbffXlMVHpVOfuC9jg04uRwYUYoxfDiG89DLPd7ekT8UYu5J+EEJ4QtJrJR06g7bFHM4vknh2+VdXVyUN75bigNFWj4KIlUol7ZziDNoCgUjOrfNbqVQkSc1mM9UNmJ+fTzvQ7Piyw4rdklLdBaCoYqPRUKPRSI40u8A4vZJSOz4cmf2KDOKEjdZtIFiCVNwqKWzFfpsmQEBgZmYm1Zmg7kS1Wk277ux6l0qlVETPFuLjOinmZ3P8CayM2m6dzVarlbpo4OAxxjYlAWeb+W61WlpZWUm1IawjjnPONQDvLSnVJmDu6aCwubmpjY2NdD22GwbvzX1HQGA0rYSABjv2VrpvAw42GGVrJtiimrxnp9NJKhRri3XQ7f2CXRzLddlUAdISbL0LWxPDBiOsusLWKUAZQlFPFD82SGBTM5gnUllQn9jWohzPOFk1D39bNRPKDtsWEhUOSiWb7mA/HwQlCKTZ67X37GghyCwZx1rsnBziAw/r1sVX64d35iKz0ZlwpraDXnzfbgomSNJNf/6V9Pip971eCv0AwE71MpycKE23htfXhcei6p/cW6Iu/dbPauPG/uOQExfc12EnD/RWV/WKv3la33nnTVmbkk8G60uxHXTzB75y9PHOC+aFfNN4Rwjh1yV9TdLvxBhXJd0s6f/MMecHzx0JXRn4gl+v1yVpKB+/Wq1qYWEhyc3putBqtdIuI+0dcRisg4CDXa1WVSqVkhqhUqlobm4uFeWr1+uqVCqqVqu6dOmSOp1OcqyB8+PM40BbGT8tJqU9ZxfHh+J90rCc3Rb6s3UAJKUaDhTxwxEixcLWWaANolUH4LxRVBCneWtrKykRUF9gs6QUVEGqjqPM+GGHpJQmYHP1cWKRtW9sbOjChQspVQF1B3J5WxODMSd4sLq6mhQE/DvvQ34+6R5I2LHFjs/ubr+lZavVSooDxslW/ed8NlBjj0c9MDc3N1RM0KbDYAuFH21XDMaZgBMFMrGVAIFNpeCeAe4XnH4gMGTrOpDSYgMOVmVCioCtpWCDFty/vIbjOR+BBqtIsZ8XnrOpObYrBYE1O0/AvVStVlPAAMXBfrUUCGRQBJIAI+/B58AW1rTYAF/OOda12Dk5TLd2VNyY1k7Fd7GcqyPsBJVWgua/v6vKZ7564HEveU//S3vh9KKeuufHjz5vlG7+08O/6J/58J7f/aPYvkyLM8PXYcfJAeVLUwq7R68vzvFytQGFD0v6I0lx8PuDkn5D+wve9v0mE0K4R9I9g8fPyxunRsLKyora7bamp6d1+vRp1Wo1dTodbW9va2VlRc1mU1tbW6l+AbnoOGE4lxQUpMhgjFEbGxuanZ3V4uKiqtWqlpeXJUlzc3Oam5tLbeQkDe2kSnsOi1VV4ICtrq6moo4cx647u9c2f50xIBWDdpc4pDhSXAPOlpV8N5vN5NhyznK5PLR7i90EG6i9gDPHPNjgCOPE+blO61DitHOt0l7qw+i1b25upi4OktKu9vT0tCqVigqFQgqcWDUKAQyCNNjIGOM485jrtEERK//nfBsbG0OOPWoTXoe6gF1tdvFxjlFxMJYEWWxaCjv+xWIxqUpGU3ZIp7CFOqkTYeuBoGIg8IKtzIWtIUAww6aSENghsMH7MAfMp71WnHXmlIAPDjnjZIs52jQeglkEm7hnCZownlblwWfYBgWt0gdFDgEfGxCwigcCJnQm4T5HgWDvXz4LYD//OeZY1+KyKtfGSicTwv8+qKWbX6cfefty5woJu1LtqSnNNKIW7r38L+a95RXd8ifX3Rd5X4edsRM7m5r90ZQ6L/b21lA9N6Wb/vrrioMNW2d8XFVAIcZ4gcchhI9K+vfBn+cl3WoOvUXSMwec4yOSPiJJ09PTEac8hL32hu12W91uVzMzM6rValpYWEj57pubm2nXEQl1uVxO6QRIrHEoqL9Arj31DRYXF7WwsJB2nW1HgvX1da2vr2t+fj4V+qNont3pxW4CBXQqsE4LxfFsmgWOP8eUSqUUEKD7hJX0I8/nWnGGcNQJqFA0ESfY5oHPzMxobm5O8/PzKbBiCyhKSraTmoAioFwuJ4WEpFSlH+UB12PHf7QWwvr6uprNporFoqrVahrvcrmcAgTM19TUVHLoms1mCh5ZR9W2AOQa7G/UBdjGc6TESMMFDhkvm1bDTv9oi0LGlful0+mkQAlzYQMH9j6VNOTk09EEhQj1Puz8cR7rAON8W6fb7vKPpkQQVCEgZIsmcu8QlLG1FzgfQQDOaVUadqwkDbVmZcxQsqDSsNdkiznSvcPawFgT8LCpJaPqAuznfmKs+M1nczQIxueT83dz/p/Sca/F9bDoW9knjOq5jharFTVeLu3UfHqdw1n4dlDY6QcUFj5+3QUGrgpfh50s6F24qFv/Y1HffduprE3JnNqT/eDn0j89rN2cf287qVxVQCGEcGOM8dnBn2+W9Mjg8eck/UMI4UPqF6C5XdL9R52PgoI7OzuqVCqp5SO7iqQyFItFdTqdoTZ13W43pSxQD8Dm7lM4bnd3NzlLW1tbarfbmpqaUr1eV71e1/r6ujqdjmZmZrSzs6N2u61nn+1fIo40DiBBif3k9q1WS88995w2NzdVqVSS429rBAzGUJKGCiqWy2XNzs4m55UABoUBbXFHu6NKAcJKpTIU2MAZs8fXarUURKHYIrvqvBZnNsaYghjUE2g2myl1xHZisAUE7c4z48YYUQiP15N2QcBmfX19SBVCBwWuB0UDgQLqHViVBOoEm5aA/J3XMS7SXntFnFNbqJDOC9RWIFDAa3m97UDA+crlcgqsMBe2UKNVmXBf2hQEWxSQGiMEprgGHODR67f1D+w1Mi+j3RBQWdjrHu2mMFoYlICdVWzYFB2uF+UDKh9b08Cem2AKxRntebhnbJ2Izc3NfQMJnNsGV2wnCO4t4HpQbIymv+SZ416LnZNHuO8hLd4nzf/CHdo8Pa0Lr5nS7oz7K84wiw8HlRq7qv3bN3137wrxddhxsqN+dko3/etT2jn/tFyrkR2X0zbyk5LeKGkphHBe0nskvTGE8Cr1pVtPSvpNSYoxPhpC+LSkb0vakfT2y6lma7/ws1MPBBMomojDiZMoKakXcLzZKUUujmNXLBaTw7axsaGlpaWh9oWSkiOKrJvUAOo4lEqlJIu3Tgt52qgT7M4sDjcBDZwvnGuCGux0owrodDrPk2Jbh5eACgX9cIrZgab2A+clqGLTHdhV530IYuBQ4sQT6GCurPycscBhY9dZUmrLZyG9ASUK19JsNlMRy3K5nDohEFSx14jDaXf8JaXrsjn77NIT0LHjATjCdrfbKhxsYUkcb87L/PN6xgVnlOOsSsI6ywRMqOtgU2WwAVttgIZxt2kEXD+pE6PFFEcl/ZKG/p1zWnUAto861wQebGqKTcOwqR7Yx9zZ+5nnrTrFKheYu9FODxbGxNpMQIB7zI7h6HXzeSSd6qBrzpJxrMXOyaXwxW+oKuklz92h3ZkpPXVn8bpr+ecMM/eDKS1+p6+8Kz9wVr3V1f31+E7C12HHyQ/1s1O66bM/1M75p7M25brncro8/No+T3/skOPfL+n9V2IEjhO7/ziNxWIxtXeUlHaJcdb54l8qlVSr1VQsFoc6Akj9egg42FNTU2o0Gqni/unTp1MRvM3NzeQwtlqt1MqQQAYBBesAs6OJ09pqtYYK3Nn8cboq2EJ9Ozs7qlarqlarqX4AqRyoMJDBWwfMpgY0m810LTjWOEfb29uanZ1Nu79W5o3TaB1YSSmwwq67ddZtgb5CoZDaBOIEslvNLr6tAYBzZusbkFdPLjz1MmZnZ1PNBdIMSA3geQIatm6GTSPBwSeQQ1qFzfknoIN6gTQW2/WAIArpNIyd3XEn6EDAwhaXlPbqVqBiQYGBqoD3Qx2CGsHWBOA4jrWdMOxnyO7Yc7x12m3ABMcce81neChYhuLB1pGwXSpsQUY+m6NpDDbQZT9r0l5gDjUIaRijLT5tWgfjx71ulRiMue02Ys9rA0y8D+oQqzBhrvPCONZi5+RT+NI3VJB0++pPKXpA4bqm+Oyqds6dlyTlZ6XLN74OO3ki/PAZveiBU7r4mqwtyYa58ztpDXOyJRf9pHAYcDD48l+tVlNwQdpzwPiyj/M6NzeXnA8c9kKhkNo/4sDhZMfYbxNZq9UkSWtra2o2m0MKgVarlXZXW63W0C67zd3HVuvo2iJ6OMJ0AWD3H1l1oVBIjk+v19P6+npqichuOs4Ou/S7u7upZR+pDlwrcnGk43aHm11z1Bs4t3ZnFyecKv92F17a220vl8uq1WoKIaS2hCg4kPWzgz3qxPKbYMPu7q5WV1dTxwW7o8xrrfR/amoqpYigPsExLJfLqS0jagHqNJCCYuX8thvBzMxMun+YY2zg3uM5Ciha6b6koXSI0de22+30vowxaQh0I6DjBikmzCPOOGoXSUO756O781tbW89ryWkDEKR/EOyS9nb5CXaBDUBxv3NenG+CVdb5JzhjAyG25om9D7BttFClxSoXRj+L2EmQgfWiWCwOvcamnvB5Gu2EwRwS4HCck0h84OGsTXAyZiJ62DiOcyC9RkO1c11dfE3p6INPGPPfDar9z1kPhuaE3AQUcI5oJchOss1lnp6eHqrWjxR/cXEx7V5TD2BhYSHtSFs5NI5PvV5XqVTS2tqaLl68qG63m9r64VChDrDF+5CCkxqASgGHiCBAp9NJzjGOo+3YQM42uetI/ldWVpKaggBEq9VKu+TUIcAJI4Vhbm4u1YLodrtaX19PTq+0144SB45rAa6LopM4VLYeg3VYCYKMOoxWpj9aqV/ak8SjhMDpxHHmerBtdPectIfRnXFSEXBmcRhRvdh6D6SD0N2A3Ww7R5zXOuTcjwRNGMNRZ5rrsjahOuGaUE4QAOp0OtrY2EhOMaocghh2zEeDM7YAJs490n0r9ScVwxbdRBljPyNWDcNY2toaBEOoaYBywdaHsEoG7gXSGggYEdSKMabX2sKsfEbs/WPVBTDa9pE5syoDW+cB+23tC8aEz6qkZJ/jOI7jOI6TH6ZbUu+55azNcAbkIqAg7TlHVkrNbrEt6mZTGgqFghYXF1Wv19PxOL7soE9PT2tlZWVI8kw3hV6vp0uXLmllZSWpFnCCR2sFlEoltdtttdttFYtFtdvt5ADirKIAYOedHXOpr4KwhRkbjUZyKguFgpaXl7W6uqrl5eWkJmDXutvt6tSpU8nRQ2lh37daraaiiSsrK+r1einNwkrvR+sC2NoJyL0rlcpQYToCIDxGucF8cR4K8BG0QClBsMgWxrOFA1EULCwsaH5+PjnEOOWMm+12QGDB7irjTBOYmJ+fH3J8sZeddoJT/Fg1h235aGX0NpDBvWbrY9j2izjqFL606gSbsoAqoFAoaH5+XktLS8kW2kyisrBzKCmdBwcex9gGDWxwg7lnDglqjAYTRtMVbM0Krpd7dHQ++YwSoLJ1D2y9FI6zASyuyXaQsGqGUcWLDS7x2QOCKahnCP7YYBiBQdREtlMJQUvHcRzHcRzHcfYnNwEFmz+N42jz4vliTzcA65zg7G5vb6vRaKR8+VqtprW1NTUaDUnP37nEqcGZ2N3dTV0MbM42ThLtGdnl7na7KWBQKBRUrVaT84wDR3rC5uam6vV6cri3t7dVq9VUrVZTdft2u52K3OH48R429QH7cMSsysG2mrS78jbVAPl6s9nU2trakGwfx9hKySUNBQe4RhxYggrMBY62VUDg9HJtW1tbQ85bpVJJQRF2wrku0jw4N84kO8i2cj/BGBxe63wyfq1WK3X5QFHCHOBc2nvPtjTd2tpKyg8cThtwQBnB3ziz0rAEn3/HNlQUp06dGkqPwPm3Sg3bJYH7EyWI3cG3nR9I6bDnZDxtkUSbIsKxGxsbyV7GmW4L3I+kkth0B4JxthYDnz9rO4oP7jer4LEpN7yG+wl7mXeUO7ZjCcEVVEa2UCqBGeYZlYT9jM3MzGhtbe2I1ctxHMdxHMdxrk+CzavOzIgQLklqS3oua1uugiW53ePE7R4/k2r7cdn9khjjmWM4T+4JITQlPZ61HVfBpN6j0uTa7naPl+vd7utpHfbvxOPH7R4vk2q3NLm2X9O1OBcBBUkKIXwtxvjqrO24Utzu8eJ2j59JtX1S7c6SSR2zSbVbmlzb3e7x4nZfX0zquLnd48XtHj+Tavu1tjs/TdYdx3Ecx3Ecx3Ecx5kYPKDgOI7jOI7jOI7jOM4Vk6eAwkeyNuAqcbvHi9s9fibV9km1O0smdcwm1W5pcm13u8eL2319Manj5naPF7d7/Eyq7dfU7tzUUHAcx3Ecx3Ecx3EcZ3LIk0LBcRzHcRzHcRzHcZwJIfOAQgjhzhDC4yGEJ0II78ransMIITwZQng4hPBgCOFrg+cWQwifDyF8b/B7IWs7JSmE8LchhIshhEfMcwfaGkL4/cEcPB5C+OVsrD7Q7veGEJ4ejPuDIYS7zL/lxe5bQwhfDCE8FkJ4NITwzsHzuR7zQ+zO9ZiHEMohhPtDCA8N7H7f4Plcj3ee8bX4mtjp6/AY8XV47Hb7OnzM+Dp8bfC1eLz4Wjx2u7Nfi2OMmf1IKkg6K+nlkmYkPSTplVnadIS9T0paGnnuzyS9a/D4XZI+kLWdA1veIOkOSY8cZaukVw7GviTpZYM5KeTI7vdK+t19js2T3TdKumPweE7Sdwf25XrMD7E712MuKUiqDR5PS/qqpNflfbzz+uNr8TWz09fh8drt6/B47fZ1+HjH09fha2err8XjtdvX4vHanflanLVC4bWSnogxfj/GuCXpU5LuztimK+VuSR8fPP64pF/JzpQ9YoxflrQy8vRBtt4t6VMxxm6M8QeSnlB/bsbOAXYfRJ7sfjbG+I3B46akxyTdrJyP+SF2H0Re7I4xxtbgz+nBT1TOxzvH+Fp8DfB1eLz4OjxefB0+dnwdvkb4WjxefC0eL3lYi7MOKNws6Zz5+7wOn7isiZL+K4Tw9RDCPYPnbogxPiv1b0RJL8rMuqM5yNZJmId3hBC+NZB/IdnJpd0hhJdK+hn1I4QTM+Yjdks5H/MQQiGE8KCki5I+H2OcqPHOGZM2PpO8Fk/yPZrrNcHi6/B48HX4WJm08ZnkdVia7Ps01+uCxdfi8ZD1Wpx1QCHs81ye2078XIzxDklvkvT2EMIbsjbomMj7PHxY0m2SXiXpWUkfHDyfO7tDCDVJ/yzpt2OMjcMO3ee5zGzfx+7cj3mMsRdjfJWkWyS9NoTwk4ccnhu7c8qkjc9JXIvzPge5XxPA1+Hx4evwsTJp43MS12Ep//OQ+3UBfC0eH1mvxVkHFM5LutX8fYukZzKy5UhijM8Mfl+U9Bn15SEXQgg3StLg98XsLDySg2zN9TzEGC8MPii7kj6qPVlOruwOIUyrvwD9fYzxXwZP537M97N7UsZckmKMa5K+JOlOTcB455SJGp8JX4sn8h6dlDXB1+Fs8HX4WJio8ZnwdVia0Pt0UtYFX4uzIau1OOuAwgOSbg8hvCyEMCPpLZI+l7FN+xJCqIYQ5ngs6ZckPaK+vW8dHPZWSZ/NxsLL4iBbPyfpLSGEUgjhZZJul3R/BvbtCx+GAW9Wf9ylHNkdQgiSPibpsRjjh8w/5XrMD7I772MeQjgTQjg1eDwr6RclfUc5H+8c42vx+JjIezTva4Lk6/C47DX2+Tp8vPg6PF4m8j7N+7og+Vo8LnuNfdmvxTGD6p/2R9Jd6lfRPCvp3Vnbc4idL1e/IuZDkh7FVkmnJf23pO8Nfi9mbevArk+qL8vZVj8S9bbDbJX07sEcPC7pTTmz++8kPSzpW4MPwY05tPvn1ZcLfUvSg4Ofu/I+5ofYnesxl/TTkr45sO8RSX84eD7X453nH1+Lr4mtvg6P125fh8drt6/Dxz+mvg5fG3t9LR6v3b4Wj9fuzNfiMDip4ziO4ziO4ziO4zjOZZN1yoPjOI7jOI7jOI7jOBOIBxQcx3Ecx3Ecx3Ecx7liPKDgOI7jOI7jOI7jOM4V4wEFx3Ecx3Ecx3Ecx3GuGA8oOI7jOI7jOI7jOI5zxXhAwXEcx3Ecx3Ecx3GcK8YDCo7jOI7jOI7jOI7jXDEeUHAcx3Ecx3Ecx3Ec54r5fyA5ZSBCjdTuAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 403711 0\n", + " Min thresh = 1000\n", + " Not Sliding\n", + "\n", + "\n", + " Winner = Not Sliding\n", + "\n", + "\n", + "193ns_image_642169070951_clean.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADDCAYAAAAya0IYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADjeElEQVR4nOz9e5xlaV7VCa997nufW0RkVta9u/oOdNNcbJruZlR8YbCdUdQZYcAZdVBodHR0vHLRcfAC4iigju+g7ajoiAIOLwMCIwjKoHQ3NA200DYF3dVV3dVdlVUZGRHnft/vHxHf56y9M7IqqyqzMiLzWZ9PfCrjXPZ+9rOfcyrWetZv/ZI8zxURERERERERERERERERERHxQlC53QOIiIiIiIiIiIiIiIiIiIg4f4iCQkRERERERERERERERERExAtGFBQiIiIiIiIiIiIiIiIiIiJeMKKgEBERERERERERERERERER8YIRBYWIiIiIiIiIiIiIiIiIiIgXjCgoREREREREREREREREREREvGBEQSHiZUeSJB9KkuQLb/c4IiIiIiK2SJLk8SRJvvgGX5snSfLaF3meF/3eiIiIiIiIiLOFKChEvOzI8/yNeZ7/1O0ex3MhSZL7kyT5oSRJPnXyx+8jt3tMEREREXc6kiT58iRJ3pMkySRJkp+63eOJiIiIOIu42cLs8x0v/l0c8VyIgkJExOnYSPrXkv7r2z2QiIiIiLsIVyX9LUnfepvHERERERGxRfy7OOK6iIJCxMsOt9UmSfJNSZL8yyRJ/lmSJMMkSX45SZLXJ0nyDUmSPJMkySeSJPkSe+9XJUny4ZPXPpYkydeWjv3nkiR56kRB/WpXXJMkaSZJ8jeTJPl4kiSXkyT5e0mSpKeNMc/zy3me/++S3n8LpyIiIiLiTCJJkrcmSfLeJEkOT75T/26SJI3Sy/6Lk+/hK0mS/I0kSSr2/j948l19kCTJjyVJ8sobOW+e5z+R5/n3SfrUzbyeiIiIiLOGJEk+PUmSnzr5nv1QkiRfas/9VJIkX22///dJkvyHk3//9MnDH0ySZJQkyX+TJMkXJknyZJIk33jynfx4kiT/7Ys9Xnms8e/iiOdCFBQizgJ+h6T/U9KupF+U9GM6XpsPSvrLkv6+vfYZSb9dUk/SV0n6jiRJPleSkiR5p6Q/JemLJb1W0m8uneevS3q9pM8+ef5BSX/xVlxQRERExDnHWtKflHRR0tslfZGk/6H0mt8t6S2SPlfS75T0ByUpSZLfJekbJf1Xku6R9O8l/YuXY9ARERER5wFJktQl/StJPy7pkqT/UdJ3J0nyhud7b57nv+nkn5+V53knz/PvPfn9Ph1/Zz8o6Q9IevdLPF5ExA0hCgoRZwH/Ps/zH8vzfCXpX+r4D9BvzfN8Kel7JD2SJMmOJOV5/iN5nn80P8b/q+Mv4t94cpwvl/SP8zz/UJ7nE0l/iRMkSZJI+hpJfzLP86t5ng8lfYukr3iZrjEiIiLi3CDP8w/kef6+PM9XeZ4/rmNh9xqR9uT79OM6LlP4ypPHv1bSX8vz/MMn3+vfIumzb9SlEBEREXEX4G2SOjr+e3eR5/m/lfTD2n6Pvlj8z3mez0/+Rv4RHf9tHBFxSxEFhYizgMv276mkK3mer+136fhLV0mS/LYkSd6XJMnVJEkOJf0XOlZjJekBSZ+wY/m/75GUSfrAibXsUMe1YPfczAuJiIiIuBNwUnr2w0mSPJ0kyUDHosDF0sv8O/YJHX8HS9IrJf1t+669KinR8a5ZRERERMTJ36x5nm/ssSf00r4nD/I8H5eO98D1XhwRcbMQBYWIc4MkSZqSvl/S35R0b57nO5J+VMd/qErSU5Iesrc8bP++omNx4o15nu+c/PTzPO/c+pFHREREnDt8p6RflfS6PM97Oi5hSEqv8e/YV2ibe/AJSV9r37U7eZ6neZ6/55aPOiIiIuJ84FOSHvbsGR1/j37y5N9jHW+Egftu4Ji7SZK0S8fje/nFHC8i4oYQBYWI84SGpKakZyWtkiT5bZK+xJ7/PklfdRJyk8nyEU4U4H+g48yFS5KUJMmDSZL81uudLEmS1sn5JKl58ntERETE3YCupIGkUZIknybpj5zymj+bJMlukiQPS/oTkqi7/XuSviFJkjdKUpIk/SRJvuxGTpokSfXku7YmqZIkSeuk1jgiIiLiTsLP6pjk/7kkSepJknyhjjPFvufk+V+S9F8lSZKdhIv/odL7L0t69SnH/UtJkjSSJPmNOs4c+5cv8XgB8e/iiOshCgoR5wYnuQd/XMfCwYGk3yvph+z5/0fS35H07yR9RNJ7T56an/z3604ef9+JhfcnJD1XWM1U0ujk37+qbflFRERExJ2OP6Pj79ihjsXY00K6flDSB3T8h+qPSPqHkpTn+Q/oOAT3e06+a39F0m+7wfP+Ph1/136njvNxpifnj4iIiLhjkOf5QtKX6vi78Yqk/13S78/z/FdPXvIdkhY6Jvr/RNJ3lw7xTZL+yUlpGTkJT+v47+NPnbz+D7/E45UR/y6OOBVJnue3ewwREbcESZJ8uo7/kG2eBINFRERERERERERE3FE4cTj8szzPH3qel0ZE3HREh0LEHYUkSX73idVrV8c7ZP8qigkRERERERERERERERE3H1FQiLjT8LU6zlj4qI77qJ9W9xsRERERERERERERERHxEnHLBIUkSd6ZJMmjSZJ8JEmSr79V54mIcOR5/s6T7g17eZ7/7jzPn7rdY4qIuF2I38MRERERtx/xuzjiViPP85+K5Q4Rtwu3JEMhSZKqpF+T9J9LelLS+yV9ZZ7n/+mmnywiIiIi4hrE7+GIiIiI24/4XRwREXGn41Y5FN4q6SN5nj92kmL6PZJ+5y06V0RERETEtYjfwxERERG3H/G7OCIi4o5G7RYd90FJn7Dfn5T0+dcdRK2W1+t11Wo15XmuzWajzWajPM9VqVRUqVSU57nyPFe1WlWlcqyDrFYrbTYbJUkiSeE1tVpN9XpdSZKEx3gNx16v16pUKqrVaqpUKqpWq6pWq1qv11osFsK5wTEkhddzrtOQ57nW63V4L/+tVCqF/yZJouVyec1r1+u11ut1YcynvZfr4L08xr+TJNFqtVKSJGo0GmEeJalarYZjA38fx2W+GFOSJGH+1+u1VqtVGGt5rnx+/JjcV3+N3+Py6xgTr/ff/Z6XUZ6L8nwxl34+H6+Pz89ZnnM/no/Hx3/aWE+7jvJ5/boYb3me/f28zl9zvc+MXyuvPW3Oy9d8PZTPz2ObzaYw9vJaKc+J3xe/hz6O8vydNq/l9eevOW29OsrH3mw2V/I8v+e6F3928YK+hyWp2mnnr37VRpd/Jb2lA4u4RfCPaJZqvneHxyTlUvOT48LvEXcmZhprkc+v/z+hs40X9F0cv4cjIiLOKoY6OPVv4lslKJz2pV/4X32SJO+S9C5Jqtfres1rXqNLly6pWq1qOp1qf39fs9lMrVZL7XZbkjSfz1Wr1dRqtdRoNHR4eKjBYKBaraZarabVaqXFYqEsy/Twww+r1+sFYp3nuSaTiVarlZbLpSaTiTabjXZ2dtRut3XhwgX1ej3t7+/rU5/6lObzuRqNhhqNhkaj45artVpNe3t76vf7gQC7+MBjV69e1WQyUbvdVq1WU5IkyrJMWZYVXjuZTHR0dKTNZqNWqyVJGg6HGo/HgbzXarVA2pvNpqrVqur1uvI813w+F/NXr9c1n8+DiNDtdnV0dKRKpaJHHnlEnU5HtVpN1WpVaZoqyzI1m03V63VtNpswR5VKJRyH6xuNRrpy5YrW67V6vZ6azaaWy6UODw91eHio5XIZyKCLAox1vV5rNptps9mEuUS8Wa/Xajab6na7Wi6Xmk6nms/nms/nms1mQWzodDqBDHP/pWOCPBqNNJvNJEnNZjM81mg0hFA1n881mUy0Xq9Vq9WUZZlarVYgrovFIhDqsqDEMSqVimazmdbrtVqtVhChkiQJ90aSFouFFouF1ut1OCZz7ATb3++vYc1CqBGyuH/NZlOSghhVqVS02WwK84WItFqtwvVWKhUNh0MNBoMwLj5PlUpFy+UyiFxcd7Va1Wq1Cseu1+th3rmWPM+DuNRsNgv3xoU7HmPNrtdrLZfLMN9cI4IVYL6Wy6Xm83lYX2maqtlsar1eazwea71eq1qtqtVqKUmSsL6q1aoajUb47HNfOO5pIlCSJGEsR0dHT9zIl94ZxPN+D0vF7+KWMj3yod+uR87rn+13MaoXL+jRP/+62z2M24bWsxW98u/+yk073no4lGJb7TODn81/8nYP4aXgBf1NHL+HIyIizip+Iv+/Tv2b+FYJCk9Keth+f0jSp/wFeZ6/W9K7JandbucQjnq9rtVqVdjxhVxAbkajUSCkTmzAbDbTfD7XYrEIj0PGlstlIF2QZXbx0zQN5/Qd7UqlotFoFJwMrVZLOzs7qtfr4RjsBEPK2dlHUIDIQ/LG47Fms1l4DkDWuSYIMmRKkhqNRnhPmUAOh8NAmjqdTiBUtVpNu7u7YT6Xy6VqtZra7Xa4Dh6HnLqbgPmezWZarVbhWh2+w5znuer1eiB8EPHTdtIhr+12W1mWaX9/X/P5vOCkqNVqajabgVBClMskFFK7WCwkbR0p3I/lchlEA9YEYhRjgnCWrwdyzHFdGHACzHW5GOQOD3dNIBSd9l4n6tzz67lMKpWKWq1WuI7NZqNaraZGoxEECu5HeR43m00QAZxcu8hUrVa12WzCeV2IcmGBn7IjhvWa53kQLph75tznnrnmxwUY7ud0Or1mna1Wq3CtrFEeR/jhNb4WETo4vn/vnGM87/ewVPwu7iV7kUGdQ9QefEC/+qdfcbuHcVsxu2ejR//SZ9y0473h711RMppsH1ivtXr68k07fsRdhRf0N3H8Ho6IiDhvuFWCwvslvS5JkldJ+qSkr5D0e5/rDewoSsekutVqFUihE8vZbBYINk4CFwBWq5WuXLmi1Wqlfr8fiJ2fC2LhO9uz2SzsakMwJBXIke/WtlqtsPM/GAwCCUrTVLPZTNPpVIvFQvV6XY1GI+wGL5fLICZIKuxSV6tVZVkWxguRdqFA2u7w4gLwY+Mw2NvbC6/fbDbBlTCZTMKOPNcOQTw6Oio4OCCnXP90Og1zyE68zyvuCXacIaNZloXrhsBC5Ly8BWGH+8L8c83VajWck91kJ6usg0ajUSCliAyIM7yPnXsIqd9n5rdccoGbxK8bcn0aAWb+l8tl4X4znlqtFsQsXuflGn6d17Pp53ke1li51MKPw7VC2l1wgeD7fYf4uwOFYyA+lUsxvGSnLHwwVy6wnEbeWZvlkhYcEpyDOWWdIRa4s4P1Va/XCyIF4+CavDzKHQvnGC/4ezjifKH62ldJ9Zoe/UMXTt8DjXjRePQPXyz8Xhsles0/70mSksOhVk89fTuGFXE+Eb+LIyIi7mjcEkEhz/NVkiR/TNKPSapK+kd5nn/oud6DnbzZbAayjo15MpkEuzW7yhCBMumB4CwWCx0eHqperytN00Bc2YFk95YyidlspsViUcgb8B1kyLzb8rF3t9vtIHLw+na7rYODgzD2SqWiixcvam9vL4yB90CUT+YuWPQhdggS8/k87MR7WYGk4LLo9XpBzKhWq9rZ2Skc94EHHtB8PtfBwYHG47Emk0mw6+OmwEGxWCyCSADRhgRD+NlNl6RWqxXINoIFbgbEhVqtpul0Go6LlZ15wJ7Pvecc7hZxd0S55h8yTo4G7/FdeEgn95A5RJzxdcGaKZdycG5+p4SF37nmNE2D5f7w8PAassvu+WKxCO4B5gOBifNzrZRocC4XmSDQ0rWkvOy6cXHCRSPmknlzcY3PF+KLH8NJOfPmjzncEeD/Zbys87Kbg88tYgKZJ+4EcqeEiyt8Z7A2PAeE+eY6eP15dim8mO/hiPOFx7/yfs33Ns//woiXjFUn16PvuiBJ6n7sHt37c5ckSdVHP6H1wcHtHFrEGUf8Lo6IiLjTcascCsrz/Ecl/eiNvh7yMp1Og6jgRJJa6yzLAnmAGDhx4ViQdgiD7yBLKtSCUx7hu+JOICH1kKfpdKrhcBiOQ2nBcDgslCXU63XNZjPNZjPVarVQGtFoNHTvvfeGY2Pbx+LOriuEnjILyDyWfcbHtbgYAtli15o5S9NUOzs7arVaevrppzUejzUcDsNrIHHUpbMb7TXsiCrr9VppmoYMhyzLQgmFJI3HYx0dHWk6nRYC9dbrtebzebh3pwU2+niYJ57zEhjfSeZ5rr3X6wUhYzqdqtFoBGfKeDwOjglcAl4qgNDA/fRyg3JZgD/P/XFHQK1WU6fT0XK5DCU2OFlqtVrB6eEZCU6GOV+ZHHM+1lV5/ZbH4q4UjsM1lAUIHCOeOeCOBtaFVAw4dEcC8GP7NfB6P47/eFkFzyMqMt+LxSKUMvl94rx+fMbAa3muXALBc+dZUJBe+PdwRETE82P4qo2Gr8okSRd/8dOUXT7+f3bzJ39JuQmwEREgfhdHRETcybhlgsILATZyyAEEp1arFXYOZ7OZ8jwPu771el2tVivY/dk59912Jwyz2awQsMd7pK3V3HdCeVzaktflchkIqXS8K9/tdnXx4kVVq1WNx2ONx2NlWVYQMxaLhcbjcQjES9NU/X4/PI8LgDBCiCbXjwMBYoTDASGEOWq32yHEkpKLfr8fjg/x7Pf7Yb4nk0mYJwQFavYRN1zE8J1gbOPMeavVClkRjPfKlSuaz+eFMg5ECQQFP7fPN+QVgQm4+ADJRAyAgJJh4T9cW7PZ1Hg8LpQi4K7wnXGCGwE724wLkaUsOEhbkQxhp9vtFgi8j8lJO/PGNfoa9fIbL/HBMXBaBw/uO8eDfDMGnmOOXcjDIeFClQcplrMTuP6yq4TH3VFSLiXxx/y9rA9fa9wLzu/jcZdC+XvGj4+w451LXLjhuYiIiIjr4crn5OJPqUt7b1FlLSXrXO3v/9nbO7CIiIiIiIiXCWdCUHAyzA44Vnlq5iEd8/k8ZCBAYikxkLYp/+5ckBSCAefzeUjop4sDJAViBvFlxxdi6uUGWNTZ4W6324FIs9vMmOr1uiaTiSaTia5cuaLxeKwLFy6o2WyGzg++WyptnQvkIXj5A6+DzELQORdWe8oaEDskaTQaBdEBtwWvYzd4uVyGfAjcBYgb0nYXvSwqLBaL4Kao1WrqdrvBwo+jAWKKS4HdZpwiXoMP2IkmZ6Bcd48A5OUZhF6uVqtQliIpZDjgrGBcrCUvp0F8gLSW16QTesSMcsYBc8q99jFwL3Fi4KzA1s+1eWYEYoc7KjiHW//dHeHvRQRh7pgHvx4PJmRuvRxksVhoOByGEqVy3kNZWJC2DoZyyUXZeVIufeBzyvriWID74WUwLv5xrrJ7wQUU5smFKEpkmL+IiIiI58Mzbz3+b7JOtLPz9vB4//GFaj/5gds0qoiIiIiIiFuLM/HXMmQty7JCKULZbuxlDLmFrEkqlAY40YQces01RIMd4jRNA3E67Xm3tSMikHFAKUO32w3jx06P8ME4KCPAhUErSUoGGDPE3MkghA3hoVqtFlosIjwwVpwC0+k0dMVYLpcaDofqdDpqNptK01S7u7vBvYHoAjHtdrtB1JAUdqc9xJBwScpVyKGgNAUSvVqttL+/H0QFgjTLtn7mCcLtNn4EFReAuF5e5wR3NBoFR0C3272mBIbWkVybhxIirLhQACl20cfdEYzLiTz3EncM80L5jTsUVquVhsOh1ut1CItkbKwpds9Zm8xhWWhwlwQ/dD3xfBDWimdAeMAhAoCXGSFgeRtOJ+ouKkDcmRd3LrhwU3YUQPQ95JJjIyC4m4XPj98j/u0uCxc4/B7yHeRhkTwfERER8UKQV6WDN22/z4aPNNR60zskSQ/++LNaf/jXb9fQIiIiIiIibjrOhKAgbUsO2F2EQFCagMWfXWhJ1+xAYt8GEC2EBK+3JvuAvAZcDRALfneC6YF9kOtGo6GDgwPt7u4GYtbpdDQcDgMZbbVagbBDgClTgOjwX88TcFLlpMt3VdlRHw6HoZUl5+h0OmGnHjI7Ho/1zDPPaL1ehywFrttr1vP8OFwSwWU4HBacH07smef5fB5eR0tK5nc+n6vdbuvZZ58N+RPlmnu39/vutP9OmQsdOXyXntd0Op2QnwARp01mmqZh3SRJEuYMIcXLJDwroSzuAAinCxzMEe/BfYHAxHomuBCnAu+nRSlOBdbCdDq9ptbfHRGsNcbHXLrI4uUTLoJQ/gOhRpTwMhQHnw0PO3U3EHNWLlVxsl6eWy9vKs8/Yp67RLgO5t/FBL433LlTLmcoZ0Xg+PE5iIJCRETES8Wqk2vUOf5ue+wr7lF1do8k6RV/54PanJRPRkREREREnFecCUEBosPutu8USwr/9l1FadvCEeeC775K2+R4SJQ/XyZP0jHJb7Vawc1AhwbEDoL0kiTRZDIpdAsYDoeBLFGCAUFip54dYL+m8XgcavVdPGCnvlznDWFijiBeZCEgArh7g5p3ukp4u8Ld3V2NRiOtVqtCRwrvuoAjgdp+hAxIPDvf8/lcR0dHGg6H2tvbU7PZVKfT0WZz3I4Sgl+ed653sViENqCIG15ywGsRTXCpSArBmsxNt9tVkiRBVKGMI8uyApmm6wLzhtPD3S5un2c9QfSlbUkMQlNZDPA16eUZvhYQA8rCmIsNfAZwKvhOvXeV8HIIUC51cFLPWoBUX889gYjk94L3u1uD53w9+zp254CHWHLd3GMXNMrOA46LoOalFC44+LyVxYFyhgOuG9aAO00iIiIibgaWvY2Wx90n9dg3vFnKpco60Su+6T23d2AREREREREvEmfir2X+0B8Oh8ESDjHHbu9EC1JC2QGug2azqXq9HsoNfFc2z/Ngb3dyJ213N33HmDICiA2kstPp6NKlSxqNRppOp5rNZrp69ap6vV6BhHk2gO+Ms2tPdsJkMtFgMChct7Rtbeht9SDP3irQa/BHo1EoMYCUQVK5bghgnufqdDrq9/uBjCIOOIGr1+sF14SLDLyP2nZJGgwGevzxx7Ver1Wv13Xp0iV1Oh01Gg0988wz6vV6evbZZ3V0dBTuLfeQe+twgYT7zTX57rOvI/69s7MTxA7vSuCWf8QFRJ9arRacAJQdUMrBfWF+3IHA/YGUQlZ9zZbvqdfxIxghwAyHw7DmqOVHaIGoc93lEgpyRfxacV8gpLkgwnrwz4WHb3ItzBXv8TXF2nCHUZ7nYczuPOC4tH+khKgM/7z62PmdtcH1Ix549gHlJoiV7uABLmj48wiIERFnGrmka01EEecAq/aJozLP9dhff7uaB4ke/NYoLEREREREnC+cCUHBdw/Z1fdQRSfllA5I28C72Wym4XCoarWqLMsKtdW0W8RmD5GC1PkupVveKW3w0DuIWa1W03333afxeBwCDa9cuRLaKHoXCgio785CPBFFGL+XCXhNt++6ssMNyruuBP5B5jiP28eZ48lkUgi647jYvr2G3gUNr0vHWQChXa/XOjo6Ur/f12g0kiT1ej0lSaJer6fpdKrLly/r0Ucf1dHRUaFUAUs799sFlnJJSLfbDa6ELMvU6XSU57kODw+D0EBXhTzPw/rgGstlMswDJSAERuKQcMeMlx14KQS/u62fsTvJZf65v2RoMKetVis4YMpdIYCfz+37fp+9K0g5d8DvtweRAhesXKQrhzy6away72Uwvi74zDJuxtdsNsNni3O62OfCjeeiICB2Op3wOfLvDj4rm80mrBVfQ/7Z8Q4kiIix5CHirOPhv/IeKUn02Le+TZt6HoWF84pE2jRyTS/l+ui3vU2SdM/PS73vff/2NZvz3cI2IiIiIuLOxZkQFLwmHOKKZd8JJ0SNnWqIxWw208HBQdi99h38MtwuDfidModqtao0TUM5gu+AImjU6/XQPQHihLWeDhBu73Y7ul+Pk6XFYhFS912MKOdKQFBns1khVwLixpwRnuekn9etVisdHBxof39f0rHQgosCgukdMciigGBLKtj7vRRjPB7riSeeUKPR0Ctf+Urt7OwUAgQ7nY7uueeecN3sxEO0CVNkHpwcs9NM/sXh4aE2m00hD4PdfWkrKtHakXuLOMJ1eH5DmqZB1MGRsVwuQ1cDOmIw7+R7eDAia40MCP7LTryLPOQrMF7uBSUg3lmE97oIx/plfXrIJ/eEUE5JgVi7SMS98OP7zj2dOuhkwmt4PUScdcJ7ya5wlwP3BkGAriDuWmG9+GcVccG7MfBaz9bAjcS9ITiVjh7MnTuZGBtCB66f632PREScGeS5Xv1179VHvv1tt3skES8ViZSf/GnyzFulZ976eeGpN3zns8qffCr8vrESyoiIiIiIiNuJMyUoSNtANwgPz3sAIO0AsXZPp1ONx2NVq1VNJhNlWVZoY0gug1vAvb7cCRRkhF1NhAAyECCA0jGRYXcUsrZarQJxYQcXi3mz2QzXKG3LOGhfmCRJyGiASHmmgu98Q3685ADSikuh3W6HOWPX2o83mUz0zDPPhPwDb58Iwae8gJIEfhwuUjB30+lUV69e1f7+vh588MEgCKzXa/X7fT3wwAMhe8JLHbDOe1tD3wWH7LkdfTweh2C9fr8fiCLX49Z9yG+apuEciAfT6bTQ6YA5xa3iog5rAELOsdgdl1TII4C885jnAXhXCe45zhKEpnIIobTtIOGBiLTeRDxiXXPv3dHga6rsSGEOPO8Ad4u7EVxUQKzxjiEICmUXBYKAl3C4WMDz7hLwUiIXFJMkCdkn1Wo1fP4QVtrtdhi7iyYu5jBGD310p0RERETE7cSjf+QeScdCfLKWXv83Hjt+YrXSev/q7RtYREREhKTqvZdOfXxzeKT8lLLWiDsLZ0JQgECwe0k3hSzLwi48cGeBtxXEvj+ZTArEBKcAJNVrvt267sf1kLvlcqmdnR31er3gQpC2YW+UWDBObOo4BJzwQx7zPNd4PC7sXjM2rrUcuCdthRcnUh5Q6Meaz+cajUbq9/taLBbh2OwGQyCPjo5C6QWZEZx/sViETAXIGPfJ5wjRxOccN8FgMAj17klyHGaZJIm63W4oheAxvxbGzOOQO8i5E0nGyZqhHMJt+eUsCIQlJ+TMs5NM3AocZzqdqtVqXdNxgTll7nznG3B8fx279xBkhDDIMeu27JSBoJdDDb1EB7cM64X58/XuxLksJkDeuUb/zHipEJ8HF3o868AJO9cHwZcUwjK5HhdiXNBwkY3xzufz0PaV++zXy/nJT/D3+3eP516UXSYRERERZwl5VXr0618tSWo9W9Erv+8paTjW+vIzt3lkERERLxTV174q/DsZT7V66unbOJrnRvXeS1K3fe0Tjboe/Zq9U9/z8E+slT165YbPkV++os1JmXrE+cGZEBR8BxXSwm53u90OBAwS4LvkJPFDIMfjcSAvkq7p5pCmaeiu4BkFHK+8S8xuK+IAbgMn+djtITWDwUDz+Vz9fr/QscCvbzweh+uAxG82m1ByIW3r8anpd4s3hMtdD06eJRVyAbCi06GAXXdyDijXkKR2u616vV4QaDg/x6lUKmq324WxdDqd4LjAen758mUNh8NwTBdVuBdY8CGGhBJ6RwHPguC+Mn+QXsbq7gPmi+vxe+BWdxwOjAlCPJ/P1Ww2w9ggmtwTjokzoew+8e4Q2PJ9LrH9O9ytwNi9RaoLEbye6ywDxwziiZNlxsTOvO/GIy64MOKCBQ4Z77DAuHd2dlStVtVut3V4eFi4f3zmKK1h/VCi4G1cncz77/555TkXEXAe4DBqtVpqtVpBFHS3jaRCuY2LFbHLQ0RExFnH7J6NHv2j96r7WEX3veceVZ54Wusr+7d7WBEREc+Byps/TXm9KlUqevT3bgl69lRFD/7khRd0rOrVkVYfe+ImD7Cq5HM+7ZqHP/UFfQ1ftTnlDdfHJ764Kn3xvTf8+nvfd696HzldUEjma21+5Vdf0PkjXh6cmb+Wffedrg3UM7fb7eAMKFvFa7Waer1eaIvIbjc78U5cZrNZwVo9Ho91dHQUxACIDmBH1FP/yRCAIHtbOohtpVLRbDbTdDot7PJWKhW1Wq1Qjz6dTtVut0NnBm+DCfl3EggRcteFtA2aZMz8vlgsNJ1O1e12w+5wObQOBwIOA7fy41KYTqehlR5iC0QboQXgGoEEHx0d6cknn9TFixfV6XTU7XYDgSuLO8x3mqZqt9uaTqeSikF+Loz4eBABptNpCPmTtmGOWZYF8QXHRTmHAGGg3W4HMWU2mynLMqVpGhwlCFanlaK4ewTi790TEMggvJyz7D7x8dMNwcsMIMq4Y5g/d5iwduhG4veJ5yghQTxxIQEgPvHZcaHHu6B4NwlIPKUPSXIcvsg9cDcEc8Pa5V6c5sgph0uWQxOZJ8ZBBoZnI/h6wuEyGo0KghG5HjGUMSIi4jxg+OqNhq/uau+Xe+o9vlDz539d68HgRR9v/Vs+V/l1HFqtD3/yTO+iRkScVSSf80Ytd1v6xJc0tG5eW1I5uX+jX//vui/omNkn+7r0Cxdv1hAlSZt6oo+/8zSK+MLEhBeDy2+TLr/t9DmoThM9/BO/Ifzeenxfq8cev+Vjinh+nElBQVIINoQ80ULS8xUgkewsQwIgwOx0egif5xJsNhuNRqNgly8n0ksKIZBXrx7XKN57770hU4HMBoIB3ZJPjoATRnbhCdwbjUaBMHrJgwcEsisPUYfAckxEFS8XYE5ms5kODw+DI8EdDxBDMgMQPsiDgGxC4MvdN7het5BzDkIapWPnw1NPPaU3velNIeNgPB6H3eOyFb5er4eyBW/vV07mZ4efeYVgIpBgqa9Wq+p2u4HIIgCxq818uvXdO2rMZrNQnsL1dzqdMMb9/f0gfCBeIM54WQDjRrDwLiOeY8B84y5hjryMxJ0njUZDrVar4OhgPlhby+WykH8AqWZ8HmjIffbPpDt+/H4jbjGvhEgyH71eL7TB5J41m81wLoQVuqIg/HGfWWPlcgzGQ96GlycwTkRJ7id5G7h6vJOIt6/0PAqOEREREXFecPUzc139zLouPvRGNYYbtf/VB5SXWuVeD4vf+hatsuP/N33qNybX7RrSf/2r1L78yhseU++Dl+Mf/RERb/1MPfHbulrsbHTc7/fmYPLgRo8/WH/+F94BWKe5Hv8d22vtfPwB9R7fuh86P/bLMbD2NuFMCAq+84ltmt1dyDDkQyqSGogBdmlp63LgtTs7O4VwNxwGg8FAg8Eg7FR6WQOAdI3H49DZoV6vBxIkSUdHR5pMJmF8iAqIGh52yE+n0wm5DzgRJIWdVQ+gY+cUJ0bZ+o8jg/BEAvkajYYmk0kQDdjRrtVqIaju8PBQk8kkWM4hXhA8xsU8e7Ch79QzpnIA32Aw0DPPPKPLly+rUqmo1+spTdPQMQAhYjgcaj6fB4IM8SyLDk78ERy8pt9r8N3Gz7HYRXc3C9frJBUxajQahS4iiFL1el07OzuhVeXVq1fDnFer1eD0KHdRYG34Y5RsePkF18G/uS/tdju0GAWco1KpBKGG9xGq2e12Va1WNRwOw31EOEBYaLVaIdDS24DyGcAVw3X5Zw/HD4IeLS9Z54gg3AvmmiyFcvmOu4XKwgzH4DujXJLAZw+XD8fxsMxyOYwfw6+Jz2NERETEecOVz8klJdrb/TxVVtLOP33vdV+7+qLfoOFDDR1+uk7dNS3j6A25jt5w4/kyR696QK39+3XxRz+i9bPP3vD7IiLuGLztzfr4l3ROxISIm4XRKzYavWL7XbR78bNUWUhJ/tzfeRE3Hy9aUEiS5GFJ/1TSfTr2wLw7z/O/nSTJN0n6Gkn8X+Mb8zz/0ec5VoEQkiUASZYUCIyTSA9J9JZy7DiXd6OdDONquHr1qiaTSbDg+27sYrEIhIzdY3ZxN5tNKF/AHYCgUK1W1el0NBqNQsAfZMafPzw8DOSWa8WCDTnHZi8p2MidKHON1KxzPGrRcWswv+x0e7061u48z0P5BUIOwgIkFvLKffP8B+4NpBkCPxqN9OSTT2qxWOi1r31tIMiEJ1LqcfXq1dChwoP4OJ+3CvTSDm9F6PX5tLl05wjrJM/z0FmD5zgXZJU15hkdm81Gg8FAWZYFwkx5C3PCTnu1Wg1EHPeJjxWRAzHGyb7X8tfrdfV6vUImA7kIOHB6vV74XPA4nyHGKknD4TA4QXwslK+wfihT4MfbO/IZY7zcD1+vnJ/yF4Qyrq3RaITHvGOLu0V8DiD5uGXIAvFMCHeX8MPn2D9H7gCSVPg+IFOEMbr4cFZxM7+LIyIi7ixc/cxcyqVV+nZd/PvX/oG9+qLfoCe/sKFV59Z1tBk/vNH4YWl28XV66B8utD48umXnul2I38MRz4XRKzItdqOYcKtx8Bkn32O5tOi+Izzefnqt9vf/7G0a1d2Bl+JQWEn603me/0KSJF1JH0iS5N+cPPcdeZ7/zRdyMHYUvT2e7zKXgxnZsaZm3mudXVDAik1OgpMVyDF2cC9N4Dh5ngdrue9aQmxoTec155DEcio/5ByXAQF9lF0gXpDBwA4z54Xgu4Xd8wOc4DOG3d3dIHYwpul0GgIUcQNA3jyQEtIJKYawlcsecDVgY/egPunY3XF4eKhKpaIHHnggHJtsguFwqF6vF8IsCemjNAQrP9frJRvcX4h2+T4wP97dA0GDdpOQVd/BTpJEnU4nlIV4qcxisdB4PA73ptfrBWHGgwZ9PSIYkcuAo8GdEzgAsiwLTgN+ms1mcJUkSaLRaFRw9GRZFp7HYcC9cKJPIKQ7M5gr5jzLMg2HwzCniAKsqbL7g/+y/iDzCEV+TxaLRTgXZQaMuRyKyes984D3sBY9WBFwT931gSOmnJHggZMuhnAcFyLOMG7qd3FERMQdhkQ6en2uzR97hy793feEhze/+XP05P+noVX28rTHHT+00RN/5I16+Ns/cCe2kYvfwxGnIn/HZ+nKmxPdzDKHiOdBIg1eu+Uho4crar72WGB44KfHSt77wds1sjsWL1pQyPP8KUlPnfx7mCTJhyU9+GKO5TvzEGICAyH3EAYPhWOncbFYFGrSIZgQEwihW8tpB0jWgJMizsPOKDvNjG08HgcSTqlAlmXBRu4kDSIGEfd6cM8tgPRvNht1Op1guZeOd4+9bSMdBthNR0Chy4MHOXpAobQNfuRctVpNWZYV6ty9awHj7Xa7mkwmBYLLbjwEEmeJE1qEn6OjI1WrVR0eHurSpUtK0zSE9pFJ0Gw2wz2HcPoYGC818JSKeG4F95G1xOPljATmn/dSItJoNIL4whoZDAZBPMKhcHh4GPIUEGA4t++us6bIz3DXzHK5DKUdXk7AMefzeVibEOxGo6G9vT2laarDw8NArhFhuD7KDFiTjI8SjnKwIZ8P71aB64I17CUHXtKDgOJCnYszrHPGibvARSsyNfzeOMl30QcnkB/PhQJe64GdiHMunCHueeeTVqsV1rC7lc4ybuZ3cURExJ2JvKLjdHZEhbd+pp54Z0vr1stLcmaXNnr8G3+DXvlN75XyO4dgxe/hiOth2a1r1b5z1vp5xKaZa3rf8T14/EszVX/rO/Sqf/aU1h/52G0e2Z2Dm5KhkCTJI5I+R9LPSvoCSX8sSZLfL+nndazYHjzfMbyGXVKosWYXERIGWYBYU/PtrgI/BoR0Pp+HDAF2WakNp80gr0csgAQ6KXVnBPb5arWqVqtVIK3SMRHjuG6rZzyE/EEu2TWFnHEsRBSO6xkCTqSx+LubwDMN+C/vdXLo7gvOTfAkpQWXL18OrRKpy6dcA3KIg4LjQBA5L+KOt5zkvYQVunvERQyOx+vp2uHrhnln7kG5jIJSCIQn5s1LNbh2RCovvaBMRpL6/X5waeB6QBCBLEP4nYDTSQIHiDtRsizTer3WaDTS0dFRgYhTwoCwg+ugnHnA/SSbglBMD//0rgfMO2KRpML6LQdhemlBWfQg5FTa5nxQsuDtHBEIvNTBvxPKjhPpuK0p69CzJiQVcjgQVbhG7gMihp8P54cLEOR7nCfcjO/iiIiIOxOICuNvfbvyirSp3x6Ss+xt9LFveZte9Q13Zo1z/B6OiDi7WLdyrVu5fv1r7lOS36fXfPOvaDM8vU1lxI3jJW+/JUnSkfT9kv6nPM8Hkr5T0mskfbaO1dpvu8773pUkyc8nSfLzbleGeLBDT3geNnEIAH/sQ35ojQcRxB3ATqRUDGyDlGN/z7IsvB6ikaapLly4EHZ+vdvBcrnUbDYLRNMFg3JQHNcBoYVE5XmuTqcTnAvz+VzPPvus9vf3AxlzIYEdYu9MIB3X4tPG0nd+fUySCsIDZIxzSFsiyM4tzg+INSKAdFze4GGAWNtpr+ghjb5jLalwD5g7SCAlALQe5HgenImo0O/3tbu7q729PXU6nXBMrPfeJpA5w1GSnHSx8LBM5nF3d1e9Xi+UJHS73dDyku4OaZqGNeqhgjgtKFHgXOVWqGQW+FyzdiuV4zaX/X5fFy5c0M7OTlhHiEhehoBjhfXv8+xZEJSn0PWEeecz5O4ZX0cIRh44yVg9HNMzEPi8MW5+5/7xGsSPcl7KeDwODgnWLtfHmLzcyMU91kCWZcqyLKwj6VqnE24d5pbPiIdCnhfclO9i3XE25IiICENeOQ5evF1iAlg3c33sW98uXac15XlF/B6OKOCtn6lPfMmZyL+PKGHTyLVu5vr1b3qjkvr52jw6i3hJqzxJkrqOvzi/O8/z/58k5Xl+2Z7/B5J++LT35nn+bknvlqR+v5+3Wi1Np9OCjdlr39lNn1vdHX/ss4sI2W+328G6DFHy+nlIlrS1UkNCHOxc7+7u6uDgIOQaQOA8GwFbOfXa7HyX7fZeWoB40u/3w278cDjUYDAIx+OcuCrW67XSNA1j9Z3U8g41JL/T6YRrJXRvNBqFXWzGQ16BpPBerqnZbKrb7RZaGvp7p9NpIHTe5QFxAQEGUlutVkNoJRkA9Xo9ZANAuLk33K+TtVMocaFUolar6eDgQJPJpLDjz667l60gdrCOcIsgfrgIU14zWZaF9y8WC02n04IrwsMHsd7zOkQbygw4B2UIrEPElW63q3q9rqOjo1DesNlsQq6HBwxC9nG8SAr3AndPo9FQr9cLxN/LNLjnLsRxPpw93FeORW4E88cuPy6Gspjk7VuBh2Xy+ea/CAfcI+5zOayUzwQiH+4G3BE+fs+A4HHmgs+zl3GcB9ys7+Jeshd9mecUlUWizQ0k9EdEnAkkx6LCE3/pbXrlX7wznArxezjiGlQS5We/cvKuRl6Rfv2vf65e/42/pM1sdruHc27xUro8JJL+oaQP53n+7fb4/Se1ZJL0uyX9yvMdC+LV6/VUrVY1Ho+DZR+Cyx/+0jbJPlzESV09ZIKd6W63G6zlkDRyE/x9vuvubfggINJWtIBgYQEfDodhp9qD+9jlhMDQbcGJMNfAOZvNpsbjcXAPUHpBuYaXPEDgfC48U6F0rwoEW1JwVnjNeaVSCcSVbhLj8TiMr91uh11dxo07hHP3+/1A3p2A8p7JZBICDSG+EMC9vT21Wi0dHR1pOp0Gezr3HnGD97FuIK7MA6ST+4gg4G4IxuRzyJw4YaXjhocY5ifdMMiEIFgToYR7Czn3LiCIZpLCrr/X6TMG74aws7NTGON4PA7rDbcC94p5w8nA/Ucc8MwIdxcggkCqKXOBxOPmcBEEcYT16p9RHCY+BuaPz7CvSXcv0FUDgYvPswt4rAfm2N/rnwdEn06nUygtYi246wfRhee8deZZxs38Lo44v3jNX3i/fv1vvOV2DyMi4gUhr0jVXk/rweB2D+UlIX4PR5yGZL5WdZ7cUDvWiNuIRPr1v/I5ev23/KrWB7Ei6cXgpTgUvkDS75P0y0mS/NLJY98o6SuTJPlsHceZPi7pa2/kYNVqNVixCZwbDoeBILjLgN1Faso9wM3D+5wYAEh/ObwQwkKnCcgeO+/s5rPzC2Hjd0gyO7Lsypd3gKXtrjH/ptsBRJE6/PKusLs0cCsQtkdZhaTCDrjX1rOL610iOC7zgksAez6kO8uywtxJ14bieZ4C5/KdX8QI7qvvbkPAKX3wLhdY7bk27gOiCvPoAgNCEqUICAFcu7e79LEhcHjnEMg99wPLPesWIYt1dNr4+C/3DgdKu90Oc7VYLILDgnvQ6XQCcffa/3I+hKRCy1F3kXBfuWcEcfK6cqtNjg3h5zPnnyFECdpSMnc4UfgcIey4I8idA9w3z2lA/PPPiDuBECf47IKySMHzrDHEm7IoCFxQ4nNzThwKN/W7OCIiIuLlwqqd64k/+iY99Nfe8/wvPtuI38MR1yD/xQ/pwUtv0cffGcsezjryWq6P/plP0yN//s5wTL3ceCldHv6DpNOK3150f12IAzXV0+k0kAeI9mQyKbgWICvsWEIaIXO1Wq0Q7Meut9usIbMIBByPoEXKHCCZy+Uy7ARDcryrgLdihMxIKtjQIS4QG+z4tVpNw+GwsOO7Wq00Go3Ce7kOrh+BAmfHcrlUt9stBOMhLhDoB3EmJM+zCpgHSCxz6uUCEHvG5+39nHy7OyI/6TJweHgY3svckJXheRdYzrlX/O7z4qKNi0j8MD+eReEk1HfMEWn8GiHvnvrP/ULQIg/D5xrnBiTVywF4jec2IEyMx2PN53MNh8Owbmnx6esbtwJryrtuuEjAa901w5rks+WuhTzPw9qmDIVj+WfAs0y4R4hTvialbThpOaSTuSh/DplfXgdcoPF5Zk5caPD8DEQcz72gfMQdRYyH85eFlLOKW/FdHHH+kG9ydT5e0egV50IEi4i4oxC/hyMizj/yqlR9w2u1fvQjt3so5w5nQjKD6FBvLynsfnpmAjveXv9cr9cDmecHkiwpEGXIou9cS9uOCV5L7cF0ToQYp6QCiYbYklUAEZtMJjo4OCgQOo6Bi8FJNU4Ayhy4Ro7vIYaIGdVqNYT/UU5ACQI2deYO4GDI81yHh4c6ODgI87S7u1vooACR9/BJxuy7t+4eIdAPwus19QgZTg4hbWQquLjDGNI01WAw0Gw2C24UyK+XknirTMpbvByC+cR5AXFlbeAOYP25G4A1gPDTbrdDiYrfS1wn5FWw1rgfvuY4j7tIcH0wHsoa3IEDWNfVajUESVJCcnh4GMbguQi830m8k3HmyD9jHjxJdoK0zTpwEQcXAnPGvXGRAUHExTwPa3RSz7ryzyVOG9YeghvCHOchX8G7mtApY2a1ct7dxEWjcsBqRMSZxWatB77zF3T5qz5HR6+P9tqIiIiIs4DW02O1nt3V7J4o9p51rJu5Hv+yS3r4r0ZB4YXiTPy17CTJyxAgQZKCaOCkRNoSWcgBO8eQVNL+nTixa0ntN/Zwdl49h8HHxPkgZYzZQ/AgiATqUV/POHkdTgbILkSaa/fje3cJrh1Bod1uh/c0m01NJpPgXmi326GEwAUUd3NUq9VCRwcIOOMk68Dn1EsZfN5wUngZCi0NIafeCpSdecIUV6tVyKRgzH5tq9VKh4eHhUBFuhtA1lutVrDduyXf5557yBiY7+l0GjpWIHy44MPakBTmvdlshmO5ld7nxQM5EY1Ye+62qdVqStNUi8UihFOORqNr8jz4rwtqCB1pmmo2mwXhhevgd991532+m+/rxDsoQOhxKNCphGO4oFAujfFSA88lKH9O3ZUwHo/De7lWL3vy7AmOW3bI4EBI0zRkV3juhItsZC2UnUPnIUMhIgJsZjPd/0NP6OjPvOJ2DyUiIiIiQtLmgx/Wzhvepqfvud0jibgRrNNc+Rd8tpKf+aXbPZRzhTMhKEhbUu7EQ9qSeZLtsX9T6w3RgJCnaRp2x6np9zR/CE25AwOkiHN5ezneKymE4mEr91r82WwWdlVbrZZ6vV5od1lu6cfYIcIQSABp49icG1KFBd9zCyhDgPh6S8Ry+B0lCIg0k8lEeZ5rMBjowoULwR7uXRu8ZOA0ouXEjmDG+XweOjmwk37p0iW94hWv0M7OTiBtHuA3mUwkSZ1OJ5ybwEMPhMSFwS65Z2FwX738xZ0KkgriDiUD3CfWT7njg3c9cFdEWbBBzGCdeGtF8heWy6Umk0lwh7AGPRiUDhpejoJ7w0tBKKtg/VNCgsNBKpZ1IPAg7uC6IH/ktPvs5Sh0OuHeUiLEWuRel90K3BO/T4geWZaFefBgVt7nP/4ZBnwGvRUmYhQOHxfluGb+7eU5fA9EQSEiIiIiIiLipaD/wSsaPHJJk/ujS+GsY5XlevrzM93/M7d7JOcLZ0JQINUduzyEGdLs9fgQBdLl+cNfUoG0DYfD0KpvZ2en0LquXD/u5AEBA+JBeQGkabFYFIL1NpuNsizTcrkM2Qe7u7vhh51oiCbnh9RAmJgDdl/LLQ6p+aZbwHK5VLPZ1Gg0KnQl8HIEhJbJZBIIvgfc4QLBxcG98DBEd2dMp1NJCsS2TBQRTzzEkHIT6vL39/d19epVrVarQktA3BSVSiUch/Fxzm63q81mo+FwGM5NZwwXSlzAYV7d9UDpwmAwCKUlvV5PaZqq2+0G4jwej8NcONGF7JINwPg8ZNKDQr2to2cxSMciEa4SSYH4sjYJi2w2m+p0OuG+ka9A6QX3EedJp9PR4eFhEB7c4eA785IKJB3RBTJeqVRCOcB6vdZ4PC6sm3J7RSflXIM7ivyc/jwCiItgzKcLWjgn+Fwwbx7qiEOH7woEE3eolEstEPa8HAmBJSIiIiIiIiLixWL96EfU3L9Hk/tv90giIm4NzoSgADGArEsqpM1DKNyKzB/6EOfrZQRAGCE43joPouEZCeVyi0qlEroSSMWUfkghBAjSPx6PlSSJsixTt9vVbDYLZBxiV7b/I2rMZrNruh64YEAAHSF57HJ73oO0bUW52WxCxwA/JjvgjUYjEFKuBRLNmFxYcEs75I97RjkAJNjJNveYsgZcHuyqU3rAOVkLbk1vt9tBjJlMJqHVKNe22WxCfTzlF+RplMeMiMKYEbN43Lt5uNg0n881GAxCToWXuHjrQebfcwoITGT98MP9Z8ffgwBdbGJ8LhoRnphlWcgLYG0xD77u/PPEDy4Xsga4dtYbwLUhKYhBBEteL7zQr88/u07cEQNGo1GYN5wnLlT4WDzrgc4ViDcc389BxxbmlPtBS1acRS4yZFkWSi8iIs4L1s9c0St/5H498V/Wn//FEREREREvC+79109odvERTe+LGxURdx7OhKAAsScVH0LAbryHvfnOvrQNhZOK7fPa7XYgOZQX8G8IA8clY8FdB+4ocOLvdd+eEo99fL1eazKZFHIYIMq+qy8p7NxTx75erzUcDgPxkbb2ckLifMcY4oUF3ne33fnAczyPJVzaBkFCiJkLzu3E04MYvYwC8YH3cy98PAgWtEZ84okn9OCDD4brgqD6nFP6MJ1O1Wq1dOnSJd1zzz1aLpfB5g+h5f6wY897ua8+z96Jg7wB2oN6QCHv9daYBPUhRECSIcxcr7fr5Hd+PKvDcyJms1nI2wCscz4P3tEAMs06cCGM7AjvvuHj8Gss54ZA5hHjpK2wgODlAoyX57Bu/PPojhyfX8QGF2sODw9D6ZI7j/z9fjzcTOSBlM/nZQvMHXPuHVp83KxzXhcRcZ6QLxdqfXIg6cLtHkpERERExAlWn/yUXvF/zPT4//Bpmu9FUSHizsKZERTo6OCZBggK0rbOvUzY6BwASfNwOnbKsUAvl8trarOlIvFxMs0xIeOc13esvaUe5OTg4CDUckNS5/N5qBGH1OHKYFcWgsOuurfTk7Z13lmWhTnhfex++44w5ItdZcYxnU7DsdzazbF8J5nxcayyK4PQOy9xwOXggZecH/Hj4OBABwcHyrJMaZoGMuwBhLTnrFQqGgwGWiwW2tvbU5ZlIaSRnWTKIBAKINuIGmQR4FbodrsFwogDwOeP0gnuO2UaFy9e1Gg0Cud3twnXWSbs3o603O0AMozocnR0FNYXAgalN8zpZDLRdDoNAhFiiQsKdKFgXL6OXQRh3RLcyHOMuZxfwHwul8tw71hHhHzidHCRw8k5pSH+edtsNkFMY05YC6cJIQhKksJ9Yg75LuFamDtEovKcImrymH8nREScN6wffUyv/r87eux3NW/3UCIinhO1UaJX/J0PKtKriLsB6/2reuW3f1CPfcObtWrHvy8i7hycCUGBXXhvV0g9NLukq9WqEIBYJic8j1jArjXEEscCAoOksAsK0SrvtEKcXKw4rcOEuwKSJNFkMtHVq1cD8UX0oPMApEVSILgQpmazGfIGcGcAFwB8d9jH7Wn7HMcDJWmvl+d5qLcv34ty8J3XsSMKeAJ+OTHfybKH5FGCsV6v9eyzz+rZZ59Vs9lUv98P9f/tdjuE6DkQFyDO3grURRsCIdM0VafTCVkckHCI7O7ubiCjm81Gk8mk4AI5zZ0Bme/1eiE7gPmUti0cpW3XAl/LrFNq+30+NptNEEM8L4C55r9eEoJYMhqNdHh4qG63q263GzIBEGv4jCAusG4YJ3NAHoe3XuQeusvBAzoRmSh/oAyH83G/vP2iu4s2m406nU4QWjjubDYLYoWf010kLtAgCiAY+JgpfaKcBGGInBCERxxS7mDwoNSIiHODzVqVn/4lve5nqhr812/R5c+XFM02EWcNuZTk0iaWlkXcRdiMx3rVN71fH/3mz9OmfvI3ePx+Pjs4+V6KeGE4E4ICu5HltnaSwo42BIXXQUoQDSQVSC+EgN1GQv9OOzdkhfdICuUHdIlwggl59teXSSjE1cMCERTYwYe0kQcAgex0OmHcXv/PfPA+t9l7Gr4TLrete1Dj/v5+ILCSApHCTo9DgLn10g2/Ru9IwM4053KXByF5tJG8cuWKPvzhD2symajb7QbC7u9DGOK8dC3g/kN4GYffX981Z/24cDQej7W7uxsIsO9wkyXgXSG4Pv69s7MTiD2k03fBPUdBUrgP7MIzbp6jrCNN09AKkvtLWYOLCx686aGmjM9FH18no9FInU5HWZZdY/FHeJnP5+Hzwjrw++LXi4PIrxkhYDqdBlHLy5YQAPh8ILZ4Lop/VnjehRY+o+7uwKXjTgqO5+Ur3gGF63fHENfXarWiQyHi/CLPla9W6n7v+7RK366rb5Tyah7/cI2QJCUbSZtEquTKb0czm1yqzhK98i++9zacPCLi9iJfrfTqrzte+5V2W7/+TW8+frwW/+a43Wherei+73jP7R7GucOZEBQmk4kODw8DaWN30TMTJF2XJEAosfcjIEjS/v5+IGyNRiMEyHmdt++uuzAwHo9DzTjEB8JZruUmnJByhaOjI02n0xB4SF06hMcdF55MD4mGAEsK7Qshibg5IELeStF3jslyQDQoW8d9DBBHnnOrOdfY6XS0s7MTHASUI7Cr7gSb8c9ms4Id3gn+cDjUwcGBhsNhoRRE0qm75KPRKNwPaZtBIW2FJeYcAsy5yjZ2Xu/31sUAduq9CwBOhsViEVpedrtd7e/vB1GH4xwdHYXAP+bIBS6v04eY+xyxFik9kLYOFcbuAZ6Hh4caDofa2dkJa5mSCdoyrtdrjUYjVSoV9fv9gmvAX0O5DXkTWZYVukqQd8D4XdhxkY358HBEPnsuVFCC4GGTp5UycXw+D54PwXkRRfh+wMlSfhwhhM++lzdxbev1OrT4jIg4z9j9rvdqV9JTf+odmjy4uT0EMuLMIFlLF39R6n/3ezX+PZ+vpz+/8rITmdok0SN/IYoJERGb8Viv+bPvVe1Vr9RHvvqB48dq0qYRxYWXHblUnd3uQZxPnAlBQVLBfu45BZLCDn056wASl2VZYedzNpup1+up1+up3W5rf38/7HhiV5e2YW+QWIiv12nzuJcBsHPpu6XScReC9XqtwWAQwv4IG2S3l9Z4eZ4HsumCAiGJnmfgtmuyDtiRhVzSOhHRwd8DOfTrcBcIJKqcou/XSFkGc0NqPuUknJcuDtTP85jX7kMu9/f3VavV9Mwzz6jVauno6CgIQggnnnOB2ORrgTIIhKXRaKTd3d1CXoR3C4DIHh4ehjBJr/13Yo+Dwx0pEF2uBdLNcQhsdNs9643/kuPh5Jy5p2uEh0xOJhONRqOQ88Ca8M8BDp5yJwN3NUjHTpTDw0N1Op2QfUHmBPPM/SJ40cfBOD1rwHf/EamYGw9TZN37+7gGynv4LFQqlWvcNdw/7rULBf6ZJkuE+fXzsJa5V+UsBwQknDxeAhURcd5x/7e/R0/96Xdo/OAmOhXuUiSrRHsfOhYTJKn9f/2s7mm8TVc+O9nar28xmlcrevivRjEhIsKx+tgTeuTPPyFJWn7JW/T0W7eu28XORnn8c+TWIT/+XqrOpAf+ZnQnvBicCUGBOmsEBHZLIc/lDgkebAfxhJxDrnu9XqgjHwwGGo/HhdIHD52DdHjQILupjAGyBIF027+kYOeGrCwWC02n01DDTkkDO6PY6XEIMA+QaXIHyuGGEH0v+5C2nSg8yI6yCO/qwK424gIuAsibizdO+hBAnNhxXog/wgS16NSocx6Oj5MEAeHee+/VhQsXQo1/ObuANTEajTQYDIKbgQwD5gaySdtOD1fkWlhX7p4o196TfZBlWXA7MC9OsBuNhtI0DfPCuKjHpwzBS1I8K4Dr8+BQBCvOw468Z3Cw/txZg0hCOUOWZUEAohTA1yGOA5wTrCfuPWKYpBBoyXW7E8HLIUCn0wkilos/fE7K64q54Prd6eEOBcbnuSouqpHh4C4mhBK+K4Cfo1xmw+esHCoaEXEn4P5ve48u//F3aFOT8oo0eTDG4d0tQEzY/a4ime/98/cpT96myb0VTR64dcQlvVxRZSE98P/9QCwni4h4DtR//Of18I9vf7/yrrdr2Xn5VeBNQ5ree+f+PyJ7qqJkdZyZEMscXhrOhKAAkaB9ILv7hBSWyxPcQYCYANGXFMgX9ffenx4CDGFDPPCwNwiMtA2Q43ffoSWYzzs1QOAZAy4IF0Q85M/t4X4OJ590wGBOEDZwMrA7PZlMCgTKHRQuIvBvzum1516r77vf7I5DRN3CTqu/SqWi2WwWSkXcocGuvXdVgKQ+88wzBWLtZQrcJ9wHR0dHStM0HG8+n4edc7ot7O/vhy4O3hoQoYrfDw4Owv3iOr3UBLHKyT7Em/tN8OFyuQyiDa9B3ECsolSGuWM9cr2sIxeKPIeC3Xgnvy5QzGazEC7p18wPohAdIphrd2Os1+uwjlhvkgr3hfWKEOCkm88qwgPuB/8csB7dMUBWiJfbuIum/Fn08hie8zBFPpesf/9c8H7uF2NzcYH1VA4HjYi4E3Dv3zn+wylpNvXsH/jca56f3J9osXPn/hF5NyLZSBf+o7Tzf57uDOh/9/vUl3Tw379d64Z0+Gk3J2+j9WxFrSvHf9vc90Mf1erpy4pSQkTEC8PFd98eR0/tvnv19Je+uvDY6GFp1Tkfn+LKMlHvI9d//t5/+WGtDw5evgHdwTgTgoK07XYgFW3xEAS3vgOIFa31IJ7L5TIQX8ocIMEQB68fdxs/5Axi4eF6vuPtHRYYF8IEoggkn0DCZrMZ8g5Wq5Umk4mkbeAhY4O48ViSJMEGD/GFILEL7CQK4oZA4V0w3JaOeMBY3IHhpJf54PguNuASYC4mk4lms1kgmZQVMEeercBO88c//vHg3IA0Uy5ANwtKEvb399Vut8POPWUKnGO9Xuvg5MvBg/wQOLDWe5kI42Annh17CDiujnIZAW4W5hXhgLkgE4QyCq7HwxKZP8i7C0XAy4HYtXdRDMfFcDjUaDQKnwMEFxctEKjcKcKxcCRwDz1Qsbzuyp8dxsDcuihSLqXx7Ap3+/gcM59e+sGa8+8Izu3uHpwTPlYX2DxPA/GA59xJw9xGRNypyOfzU/9Qzd/xWRq+Mr0NI4q4VaiscnX+5fue93W4F5pf8TblN0FQ2PlPB9p88MOSpNXzvDYiIuJsYfX0ZV189+XCY7u/5XM1vm9bjvHM5+llL6FrHFa082vP//dZbbZR9gM/e93nYx+vm4eXJCgkSfK4pKGO78kqz/O3JEmyJ+l7JT0i6XFJX57n+XPKP3me61Of+pQuXLhwDZHneU/sPzl3CM5z67fXP0P2G41GIKGQM0gWx4ZgQ2akLdlwQIh9l9jdB040aVVIwGCapppMJuG80+m0EADowYbT6TRcG+PDreF15RAzzgFZ43knZW5nJ6yROnfEAnc/QLQ8xBIXge/8DofDsFvsHRMYB04OjsUxOOZ0Og15CtVqNZB/roGxkkGBpR+yTjhkeWeea+N1hGYyT2WrPXOJcONODIIFPYuAtebE1ssrPLuCdbPZbIJTAXcJuQ7j8VhHR0dByPB15XkAdIDAgYMQstlsgiOC+aMMBYLtGQEICnmeK8uygmDCZwCRg3Xt7hHWLuuA//oOv4eAeskL6wx3CJ9pd+mwlp3Ye5lR+TkXCfw87sTBbcPr+Ex4+QTrwN1QZx0367s4IkKSkvd8UL3o/ryr0f2e5xcfbgR3kyQbv4cj7gZU/90vqGe/Nw8/77qCwtVPr2v80HN/CzQOK7r3/S/MDdq8MpZ+7pdf0Hsibi1uhkPht+R5fsV+/3pJP5nn+bcmSfL1J79/3XMdIM9zPf300+r1egUCBSlg95+dxzB4a2XIzru0DYxjtxnyJm3D6ighQBRgl5Y6+XI4HS3sXKxAOHD7N4CYDofD0CrRsx7YEYWcOZHChu5ODd999Y4PkgJho4MF80VnCQQEukd48j7kEULFbr6n3vuOLeP2TAJIa7nEw90dfnwnfggvZBf4sbHqc/0uCPT7fUkK+QKsA8QYSSHbgDwDbx9J4J63HnSXC/eCdYZo4+KD33O37yPM8B6v13e3iJ8Tcj8YDMIYWJPl87DOaf3oYtF4PA7OBHcAMN9easDaoR0nbTf5DM5msyAYtNvt0PrUXT7cY97L9blLgbXjQmGZ1J8G//x73oELDS5ClIUH3svn2ssevEuF3zsPIeW+nyO85O/iiIiIiIiXhPg9HHFXofn/vP+6zz30a6/S6t7+c76/Opxp8x9/9WYPK+Jlxq0oefidkr7w5N//RNJP6Qa+PMvOBCfM7MQ7GQb80Q/5ZOfTSwgQI5zMes26dEwyyFvw3Xja/6VpGkLfGJvvhI5Go0KwI+LHcDgMu8iQ4Xq9HsbqO6neJUDaEjvmoLyr7mRUUiCwnpHAecskmX+TK8Dv5DF4oJ+kcD0EGboDw3fZEXzcgl4O2yu3iGTsvA+Sx667g/IKkv2x9DvxhKzyX8oJ/N7P5/PQlhL4TrbD77WXzbjzgDnmPpVt9YhakFUEE4g3IhZOBe4rDgsXFTg2ohDlMZKCAAR5dhGJsSB4+HW4K4TXudOh1WopTdPg+vDj+b1z4s/6dEeEH5v58uBVdyt46Ykfnx//HLhLxLMYXMgAPv+sG0lhHC64IJScU7yo7+KIiIiIiJuG+D0ccddi/ZGPKXmODAPp7nIx3cl4qYJCLunHkyTJJf39PM/fLenePM+fkqQ8z59KkuTSjRwIwkVoYnnnFzLNbj8gywDLPjva7CazU+ykx0kqpAzCg0MB0iOpEIQH6UdckLZuBHZ5qYEn1A1CyK4z5Npt7JPJpCBWeH5B2RXgZIdr5zoQFDx7oZxoz3PMr7RtLQlBB062JAX3BLvjHj55GhHHoYDdn98hdJzbRSSuH1dBkiTqdDrK81zj8TgcH2HCd+O5Xx6u6JkYrKXJZBLmhuskp8Et+8y3u0GcsPNvBCp3iLggxL0mx8DdAmWxA4cB95TxkQGB+EQ+B+4Z1hRrgutHuPAyFZwGjA13hJd+cN7pdKosy4K7hutyB4CXGvlaIPuAeWP9M053A5TXDq8rr3vWN+dw8YA5ZF35Z79cruJz42uKc/p9Pge4ad/FEREREREvCvF7OCIi4q7ESxUUviDP80+dfEH+myRJbtizkiTJuyS9y36XtCUSTmiAh69JW2IkbcmNEzyIFoS9XBOP2OC7+JQlgHa7rel0Gmz15B1wbElBCHDi5PXvToa4Rkmhvp7jS7qGWEPocFBA4iFVhBYydog71nt2qGkryHxBqDyY0V0c5XIHwgs3m02YH67PU/zdqo/jwwM2yW1YLpfBgeDlKBwX4sk5cSZwvqOjo3DtZeHlNJR3z7mfzDOlHrzWS2OYGxeRGM9ms9HR0VGh5SXrTFJwcNRqNWVZFs7pjg7m2wUmxsjcewmKr//xeBw6SBBO6p8bhAV38CC+IVhUKsfdORB7PFiUefM2kpzDx8Zj7sbhdyf/EHR3DzAX/hlmPphvL6Xw7wacKp5lghhT/vwxDnfO+HcLn02EpNNEsjOMm/Jd3FJ2q8YXERERcacjfg9HRETclXhJgkKe5586+e8zSZL8gKS3SrqcJMn9J0rs/ZKeuc573y3p3ZKUJEkOUYKEluvGfZcVkum7604Oylb6ssMBAjWbzQolDpzPw/fSNA3kiuN57kCapup0OhqNRoXSAQLnIMXuTEDQcKJd7jxxMi/h+lerVQhlpGMENnQnSX6dLgYgQLCLzL8ZF6TOd3mdsDEGrPi8z4UVSBvkG5LrooXXpXs9f/kaOA73j9KR8j0FvnMPyXVRghwJRCgXbhBSIKHuauEcrEEewwrvrRlZs742/ZyS1O/3w/jLr61Wq0EAImiS++6tLLlHZE+4a8Z36l18K7stuOc8h0jTbDbV7XbD8VhP5ZKIcjeLco4Jnx+fk/LcMv8+D3yGXBgqCxdlsRGHA+vUy5h4LU4hxufZKz5O1gDHPC9tI2/Wd3Ev2TsfvaAiIiIizhji93BERMTdihctKCRJ0pZUyfN8ePLvL5H0lyX9kKQ/IOlbT/77gzdyPGrHvVWi17dDOtnxlba7zl4+4Knzy+UyBP1BJiCZ9Kj3HXnOc3J9gcg0Go1CFgPhh+4a2Nvb02AwCIF/CBHSdte20+kE8kooIGMtj302m2kymQRHgpPfNE2VZZk6nY7SNA3ndMLNeMlsyPPjJP/pdBoyB7hOrgniD5mvVqsaDocFYQfhYb1eB/I5GAzC/YD04VBg17vZbEpS+B1RAoEDAk2NPqS4vIvNfDtpJmeA6+X9/HC/EB0oT8FtIikICl7K4K4ZDx6cTqdK01TValXT6TS0V/S1Ckn2IEFcAV6iU16/nk+x2WyC66BMwt094aULXA/Cm7s6GCOlLb5jz1zzOs8lYM16KYznGrhw4aKZf4YYU7nciPUH4ee43oUFl4KLIVyHi4fuRGDc3hnD3R08724L/84pj/0s42Z/F0dEREREvDDE7+GIiIi7GS/FoXCvpB84IV01Sf88z/N/nSTJ+yV9X5Ikf0jSxyV92Y0ekB3g8s6tpEAMIB+QV68N9xpy3611ezntCXm9k0ZyD8oBch4QSU4Bu7e8H/IlbYkSQY5Y+92azVghsr7Ly3i91pv6+UajoU6no52dHe3t7SlNU83nc+3v76tarardbhdKLzy4sdVqqdVqaTKZSCo6IPwaIOa4H3CHIBRA8CDrvV6vEHzoc8Y1sOPrBM1LJiD5ZCR4doO/jjG4s4H7lOd5mGvG6Q4UvxZEHcSa0xwD3pGh0WhoMpmEnXqcAR6iCPFmLc/nc41GowKZb7fbQUxAiHDBhvXNOJzgU94hFdsn8nocN2R3lN0CzFe9Xg/rxLtv+Hm4Z41GI4zz8PAwfKYQV9zVwvx5/gjwz7XfD57j/uJk8M9DOYDxNHcS40D44PNcFnMosWEtIvrxvrJo5c6nM4yb/l0cEREREfGCEL+HIyIi7lq8aEEhz/PHJH3WKY/vS/qiF3q86XSqT3ziE3rggQcC4fedRt/xdNLvdfuQCHaTnUx7bgI2fgg/dnAIi+8CU2IAgWQ3n11PXoNI4DXevlsPyeW6IO2ID4yb9zFuro1jS8ckrtFoqN/v6+LFi8F9AXnlmJ7Ij+ug1Wqp2WwGhwTPe4YD46PUA3JKyYWkwjHZFffdfV7nIYe+I17eSZa2ZQvMAfPqx+b1uEa844HvlC8Wi7Cj7mUdlD8wr+PxWNPpNGQckO/gXRB819zLXbgXns3BWMs/hFcibFGu4PkTngVBfoGXh3jrUsivE2cvy3GhzdecC2jSNg/B80dY675bz7UyJs+ecFGBe+NZH34NiGesIUQFd4dwTn+9lxqxhvi8IsCVj8lrOLe7TsrlN/75xSlxTsSEm/5dHBERERHxwhC/hyMiIu5m3Iq2kS8KkAK3b0tbwuYEyGukgVvky/XikgoigRNZLxPwunuOgQuh3W4H0kknBU+Kl1RwOLTb7VAP7zuoPA8JZQwE9tE20kmr16mXx0+nglarpfF4HIihizJkTvg1e2gdJLdsL+f32WxWCLJbr9caDodKkkS9Xk/dbletViu4AxBVCFOk9MTdCd7K0nejXdjAGVBuhej33IULfx7RZLVaqdVqhfvlnSwQYRBP6AxCicRwOAzndrGoWq0G8s6Y0zQN8+2ZCYyPe+eZC5QkMFe+NhAZnMBzfJ+vcu4GIhcE3bNIXGQol464GIQYU3YaePZDWVhyEc1FIHf7+GeKeSofrzxnXpbEeuA1Tvo9dNGv0wNMy0Idn21KbfjsuQvEv2MiIiIiIiIiIiIiIoo4M4KCtLXQt1otzefzQMB8R7terwciwH/TNA1uA2lbcuCkBYIKiSVbABJJ9wG3ZktbGzev99e4oICTgTEwntOOw+6tdxDwMgGs2L7Dyvh9t106JlZpmmpnZ0fD4TDMCd0VfOeZuURQcGHGSRdg3iHi7OC7qwGSjShC4KGkcE4PpWS+PDSSsXp7Tc90qNfrGgwGIRdAUnBFMAcOXBaQesoR+HfZou+dCTykD0Lu95Fr9bBC7wZAeKPvrLMuaIuKU2GxWBQ6hnjWgN8bHDXMF2vF1wivK4+/nHvA9fo8sZZ97RM8ybVybs8aKYcj+lriur1TSJmg8zvuF5wW7kZgPpl7/zxxP/13/u3fAbzXr9eFDc+K8OuNYkJERERERERERETEc+NMCQpSkfBJKpBT3z3G0eBkEcIBAfNe977Lz2u9FWCr1SrUhXPuRqOh4XCoRqMROisgCEA2OY6T/2azWSCFLmz4Ti2CghMYiDyWbkg3JNszHLwUI8uya4gV17pYLDQcDkOpQ5ZlQWxw5wOlIGQDME/NZlOdTie0pvRQv7I93EMzT4PvOLttHWLu88IPwNrPORCCTiO+CChcr4tCEE4IK8eFsFOicFp+gWc4cL9duPGOJVwbrRg9t4Djcj+ZT1/3iBZlEYB54/7yGfFODIgkkGafR4Qxd3W424FxsrbLDiJ3wXjwJIKLi0flMgvWm7sMWMN+D3mtuzOYd3c2cG1cp5fAsNYQprxMg3N53gjfFS6yRUREREREREREREScjjMjKLj93uvU+aMeogXBOI2cOKlzci5td5Z9p9ft2k7KOCa7pr77C4HxdnIQqDRNg8Dhu57svkNWIC7stnMORATe49kKrVZLnU4nENNOpxNKL9x10e12A2kaj8eBUEGiEBS8pIR5Yl4QLtz6zjmr1WpwVkDGKZNwYunz7nkUlAt4uYPb1SGFnikB4cRhUi5/YIc/y7JA1Gm96PkQzB1rCyGC60eIkrYhfb6W+DfuCI5LCQMCBGIL5+TauFYEhXa7HYQnt+L7e7zcoyw8MZ/MNfPujgEn856LwGdB2pZJeAkO98TLPby8wEtrEBsQDzzrgWv1IE+O6wGqLmaUBSqu2+ccuKjDPPraYM69BMqP724FnzN3N0REREREREREREREnI4zJSiwS+x13BCBxWIRSCY/vjsJvIbaxQLfAeWY5eA6Jx6SQj7B9WzV0rb2nPBF3ynlccgU4X/eGpGxcX5p64zAmVCv19XpdLS3txf+fc8996jf7wfxQNruOiNgDIfD0CaSnXPGy25t2UaOoOCiDjXmXkZBtgIZBQg0TozLZQZkVHCfyhZ7XttsNtVut0PwojsnWAtOrFerlbIsK1zLeDwO14urxMsu/Hr93hO8yDrye05nCElBCGBuRqORxuNxmBPfNfcygbJDBrcDjpdy2QklIC4muKDgJQ885uuZteWk3fMTPPuAtYjoMplMtFgsgjuGuYa0z2azwv2E7GdZFu6lj6cccoh44U4iFxBduChnPTBeF9T8/vPf8jmZXwQPnzd3JkREREREREREREREPD/OjKAAvIWdCwNSsQ6a3UYs7+UdcemYVLRaLXW7XdVqNc3n88JOPWB3FkLiIYaVSkW9Xk+VSkXtdjucn/r0NE0LbgTfEYVIQy45r7ssEATKRLJc6uA/7XZbnU6nsNvuO/vs5C+Xy7BL78IJpJFrl1TY/U+SRJ1OJ1znarVSmqahTEI6FkcYM0JGpVIJrRiBCz7cN99NdgHCSwNarVZh1xoxiXn1zgjlEgBJ17TGdIcEc1reyS4HgeJEKJNP7ku5JeX+/v41u/3lEgYv6eHayVNwsuxhil5S4+9ljTO35XVc3uV3N4A7bbxMwYUHD4mk5MfFONYWJSQIgJPJJIgZXjrB+FgjiHxe/uMhiuWQThcdWEde5uSlNu7qYE695Mm7u/A8ohjzWi6/ioiIiIiIiIiIiIgo4kwJCuwQQhY9lR2C4kQcAk06O8fw0EJ2tiEWdCzguOxcl7MN8jzXeDxWq9UKnR3Y6fYkeC9hcLLHzr7vBOO8kBS6RpD6L23bY7J7X6vVwm59u91Wr9dTq9XS3t6ednZ2rqmBl4p15tjNGRckGNJ4GtGXFBwIEG9s/ozXy0N4LT+QRXbVEQZ8LNjifSe4nBeBA4C56HQ64d65e4JzeXtN1kqapoUSBUo/cEEQGuj30h0qHM9biTrx5piMuZzX4Y4T1qLfL/IRJpOJJpOJ8jwPLgpvXUjOAnDXDPePefW2kpR1ePcRzs/zLtj5Z9AFKN7TbDYLDiAXjlwIZI1zvd7hxMuT3H3C2Hw8iC3+GfJSJXctuCDH815G5PNVzn7g2C5k+vdPRERERERERERERMTpODOCArvUHlZXrqOnlr9WqxWIhhN6b5fITvvu7q4qlYoODw+DM4H/OhFjB5UafEmh1j1N00By3RHglnEHDgEC/vI8D+TOyanbyhkPu+j1el1pmqrf7yvLspCb0Ol0lGVZIe+Bcbug0mw2Q1vEer0eRIjpdBrG5NkP7DJPJpOQZeHlApIKRBLnA+eHyOMYwW3gBNLnrrwLzzyWd6M5P3Pq5BKRgOwCJ/q0cvSSDHc0EMbJtVYqlVCywFi4Hv6bpmlB0HJxIcsyDQaDQKI9o4F7ioDhP4hKfr2+Zjz7wwlyec2VSzR8PTGfzIFnMoCyQ4f3ct8ILkXIgvBDzBGRPOzQf7zEwcMrWSsIhF7agcDiIkrZdULnl3JnB8CxOUZZKHDRsixoxPKHiIiIiIiIiIiIiOvjzAgK0rF74Nlnn1Wr1dLOzo46nU4gjZQctFqtYGeHSEpb6zeOBQgERDxJktCtwV/vrgTIEK0kIexOaCAj7Nizc1wOhIOcUebAzjqEyn+o2/caf64DIovAAMH03Xv/4dooRcCmDmnqdruFHWzmgBIIwgwnk0nYGYdk0QISoQQhwkk9x3OhxTtgeHeMcjYFxJMSAAirpCDyeEkBj3ntPffVsy28Rr+844x4hSDieQ4+RgQB7rNnY7RaLTWbTT3zzDMaDAaaTCZB3OBeueOCueec5TwO1h9wBwJzWC5P4LpxB7hQ48dCrMBBw2vL+SG8FiyXSzWbzWtKB3zey8TfcRo59xwRF2m8DMYdBF7m4aKDO4D8eS894fMFXATjXB6cetocREREREREREREREQUcWYEBcgBu8W+28gf+e4mcBu6h6xJusYJwE4vbfsQFSQFx8N6vdZwOFS9XleWZaG+HEJLVoNbz3lvkiQhG6FWq2k2m4XgxeFwGAICO51OIOGSCmSQkgrIjY+/UqmEtoc8hs3ex+jkyAUMnsfhAVmHwPMcZNKdA9wDnAt0MKCrgqRCeCbvcSHAd5R5P4IJYFebnWvGyL33EgeOxzwsFovQWhFhBEGlVqup3W4H9wG19lxfmqaFLhW4J5iH6XQaxuhj9pIR1l+WZWF+2TF3t0m5HIe1ztyUnQNcP2KNl2QwLx5C6EGSiE2UqJSFB8AxfAffj8/ck8fhQhHr1deed3PgOJ7tgZvIP/N8Zsli8NIM3sf98S4Uz0X8XaDw7wsP3PTSCM8Z8WNFh0JERERERERERETE9XFmBAVJhZ1Cr23nj3rfgQeQJWzXEAffzaW1oZNxD57z2usySfH8gSzLAukpCxtOTspkE1s79n8Id61W097eniSFFpUuBpS7ErjNn5IGdln39/c1HA7DfHinCAIU2+12KKNwIk64HnNLeQCiymq10mg00uHhYSDc5DhAusu17k6KOZ6HUnJ9TjydxJbr+J3YlbMXyqIS95GyBs7jZQOECXa73ZANMJvNCuuRfAM6j7CWcJW4Jb9Wq6nb7Wpvb0+bzUYHBwfXlE5w/LJYhNuFdezXx7xBhssOCp8j1jSEGXeLE3SyAvw9Tr59Xv018/lc8/k8kHufZwQ5FxQYh4sG7oRwR427LdxhwhrnmDiIEASZG28py9oqH9cFE0pyZrNZIZzVAzQ9nyEiIiIiIiIiIiIi4nScGUHB7cwQvtlsVigBgARDNrDkp2kaAvjc1QCZGY/H4TwQFIQB33Uej8eBeLDTDTlxYQIC5a0RnWi5Pb1sEecx/uuWfMieCyheY++tFiGLvus6Ho+DGNFsNgtk3uvD2U3HbYGDwgMAGRP3BPKFoEBpiKQwvvl8HrpqzOfz4Aag5AOxAoGjHATJOnDy5wKLk97rhfwBHz+vx7HAOkKAIpyRcgGEGO6vl2JAqtn591KJer2udrut8XgcxBfuI9fkYHxl8u4hhozFMy8QCDieh2vy48QbcQ5izbrweT0tm8HLOziui0Yu/vA6D6d0URARzh0x3vnhNPeBlyuUP9flEoey8OaCnLsQmGMXDPx4p70vIiIiIiIiIiIiIuJ0nBlBoQycChAUSI2HKUrHJCpNU91zzz2qVI4DB4fD4TXZCm5nhnCwS01OAIF84/E45BpAcmazWchkwD7PznGapgX7PqQIUtdoNIILACcFWQCdTifsJkOKvAVepVLReDxWkiShxABhgZ11yiU2m42Gw2GYE57362buPFDQd8shVE5+vR6f0oP5fB5EhTLRc4u6d99oNBoFFwBEkdcwjwglLtzwfsiyu0FwdvgxIczMJd06KFMZj8fhXkCsPYejUjlugcmccd2TySTcR0Ia5/N5eH+WZdrZ2dF4PNZ4PNZ0Oi0Q3nLJgbtbvCzBCbuXOkDoIcgerAixBy7Y+LldAPDXczzPqEA8KAdict+9NMZdFoiCvJbXlAUzn1scCQgpvIagRj7T7l7xchr/TsCh4yUbiEg4hXztcDwe4zpYmxERERERERERERER1+LMCQq+o+9kUtrWafM6HiNUEFJHCz5IJQTZuyIAuiaww4/FnawFSBW76hBSr1/3nWII0GKxCGUO/Fva2sDdMk8JggcAunNhPp9rPB5rNBoF0srxEDn6/b4ajUYIBWw0Gur1eiGd30sMIK7U5ft11mo19fv9QAK9W0W73Q45BJRLXK92vRyg53b08mvc7eE724zXAygheux4O8H2jA3uN6IPx4IsQlh5jYdklt0kzBf3/PDwUNPpNJRM0EUCcHy/506Gy7v6SbJtM0reB+cjJ8MzFHxnnjXt5QXlufdSEObOr53zMz7myt0K5baVTtS5F8AJP6IQOC38EXhWhItd0law4Jz+PcB8UZYiqTCHnJfPMN8XzK27TNz5wnkjIiIiIiIiIiIiIk7HixYUkiR5g6TvtYdeLekvStqR9DWSnj15/BvzPP/RGz2u76R7SB27mOwwSkWi1u/3Va/XtdlsdPXq1UA4CFl0QCoqlUqw6LO7jxjhZAwbOnXk5XIGJ4jSVmDwLAQnOGXxIMuycM5ygj+7w+yics0Qei/hcJv2arUKgYKk85evnZ1cdpuZL3cY4ESQtiSN9/O8kzsXCnB4lMl+maz6mL0cod1uX9PxADILifVdacg6AgSlFoyt2+0qSZJQJuO71rgfIM7uuPAgRkmaTCYFIYKxeHkM687H4/PvPwg+LpS4s4b75J8NL2MBXLN/dhBicB4wx7zPMwQAZNvXOe/h3+zkIwBQJgTp532IE4hECB9lVwCunnLHE3dvNBoNrVar4A7yIEeO79fH75zXBSwXA7mmclcXL2k6y7hV38URERERETeG+D0cERFxN+NFCwp5nj8q6bMlKUmSqqRPSvoBSV8l6TvyPP+bL+a4kBEvbYAcs9vuZQeSgiiQZVlwF2BDr9VqgTxCgtnJhPC0221JCtkBTvTYgUZI8M4InjngxLssgHhHBHaZCYYjx8FrvN0W7junkLjNZqOjoyNJCu6K6XSq2WxWcCB4bgJjkrY76J5X4F01IInkJlA24B0LvASF531+vYXkaS4FxsRjzJcHE5YDFr0kg3nmHjoBd6GAc5OBwY48wgG7/4gDiC8uWLhjhONCSnFreL4G99dbbvqcsMYQLNI0VavVKpTFUFrB+kHYQFTgdd5q0js8MA/efYRzUx7DD3PCPWWuuT4+l772/bOCKMU53CnBPWPeuG9O6hkX8+HfBe7McEeKC1ReyuNlMuRc+PWzRhAq/Xx+TA+4POu4Vd/FERERERE3hvg9HBERcTfjZpU8fJGkj+Z5/sRLtQhDvLDTQxCcBLCLDikkQwBSU7aC+444hMtbLUrbIDd3BrRaLbVarUIqv5c3QExbrVYYM0RqOp2GLAZe55ZqSDg5ERBvSGCZ1DB+SiAmk4kmk4l2dnZUqVQ0Go0CeWRXn9KK8vvZ2S3X1zvBrNfrmk6nGo1GhR3nNE3DXCyXy0IXBG+N6GQeYYX764TTrfhO+ly04dz1er1Q2sL9osSE+fRyAsYJOfXjVqvVIFxBipkb5sHLS7zMxcWG5XKp2WwWshp8vOyce74E6wDhAxGDe4eY4+9zlwHjddHJ8yR4zoUSB9kaCEKMx0M/XRTjWD537XZb6/U6lCVwXsi8dw05LWuBtcC5mbMy8WftlktGWGtexsNrJpNJKIvg80kJCtfsgld5fMBLLs4Rbtp3cURERETEi0L8Ho6IiLircLMEha+Q9C/s9z+WJMnvl/Tzkv50nucHL+RgXgMOGXW7PDvBBKqVU+6dfEL2ffd2sVhoOp0WrOiQQ88UwDlAsBzn9vpqFyIgUgQ7jkajgl3byYnnBbgV23dXIVcQYn8OEs9YcVy4cEHdOEQKguTOCEgy87BYLDSfz4PrAmIGqYPIu5uB17jLAJQFnNMyFLy0wNsOSgplG+wke+lIOYcBUQcnC/fMxSPfcee6uXZs9Lu7uyHbotFo6PDwMIg85bwM7gfXDTHleN7WkLIAf5776GsbYYNxelmNOz3cleHtOBmXXzPHwQ3BvDHflDMgbvn95Br83iJIuAhXDvJE0PLPCvcO4Y/z+poqf5ZZs+464ZiIMJ6twdh4L9fF593vV3n9c+5zjJv6XRwRERER8YIRv4cjIiLuKrxkQSFJkoakL5X0DScPfaekvyIpP/nvt0n6g6e8712S3nXK40EQcMIrbXcM+fHafyc+tVpNOzs76nQ6klTIP6BF4ng8LrSGRLDwzg64AQjf43WeYO/kjecGg4EuX76s4XAYnA7tdrsQqudWf3cHQHYmk0kgW5AkyKcTYXbmXbhgbE4qpa0Lw0k05LJciz8ajULJg9vWvSsEgMhRWuDW/HKIYDmsz+v8fT789eUSEbfAc39dNPIyEe4LpJSdf5wDiCG8xzsT4DCglKRerwfnjBNkX5vS1mXj5+G1Lj4xpxBzcjD8c+B5IgBxAbj7wz8/niWAEOQiAPPjpTll8QuxwufztM8sa4LjSArCl+cU+Nz4uuTeexaJH1dSwVlQdosg5riQwLV4WQTr2z+D5bXmLhef97OOm/Fd3FJWfjriLsXoy9+m4cOV539hxLlC82quvX/83ts9jDsW8Xs4IiLibsTNcCj8Nkm/kOf5ZUniv5KUJMk/kPTDp70pz/N3S3r3yesCO4JYtdvtQIogD5B9dnHTNC3sLkO0arWaOp2O+v2+xuOxrl69GlwJdEqAmKRpqna7XTg+RIKAuEqlol6vp0qlUkjul4o7wOz2LpdLHR4eajgcBks81+Xhh5AgJ4QeJscuKtb8y5cvB7KYZVkhkDFJkkK+AcGNbplvt9uqVqsajUZBZCm3WWTneDQaaTgcar1eh+Ou1+uwG8w8t9vtIObgDvASC+YIEse8+7xB6vmd8/A6aSuGSCqIDu5+kLb5BJSdSAruAhwXnIdyFo5zWlAgx0e8ms1myrIszLO/FuLKNZRFLp8L1jEil3Sch0E+iM8fc8Y88DwCAevShQsyHAjO5D4yBo7faDS0s7NTOL6vU9wEk8lEkkLwos8ZIhXv8fvkQooLGB4+ShtHAj7LOQaci/vnc4DI5W6mcqgjIhFzRJmLB5D655BMDB/zOcFL/i7uJXvn2p4R8cJRvXhBj/+RN1zz+LKTa9M4P4JaxI1hcl+i8f/8DknSpQ8s1fzR99/mEd1xiN/DERERdx1uhqDwlTJrV5Ik9+d5/tTJr79b0q/c6IEgEhBYHuMPe28hB7HG4u9p9c1mU81mM+xKk2fgpFdSCEukHtwdEb4L7G0HIUlu1/eSAoj5bDYLu7NeOsEuKjuoHg5JuCKE1N0YkoJDodVqKU3TcL0QrLI13smUuy8kFToqcAyvI/fgQRcE3JLOsTzMD/jOrtfR+86v71IzXu4ju/Ve4uC194CyAsYhbW38iDLuFkAg4H6RCeFuCV+LHgLJPWFtOan3chjPomCt+X9ZX4gSEGnWkocwsmvvc+llJzzmGQK+O0+bT8+q8M8Q2RfuWOAaEHVwnrgDhHkn14QARAQCxnF0dFRoccp8cV7vDOGlBy5k+RriOHxOcdD4GkUoYNxedsF/EbdcgCq7VCgpOke4ad/FEXcHKlmmj/zp12vdisLB3YK8lmt+wlc/+YU1Jf/Z2/Xq7x8o/8CHbvPI7hjE7+GIiIi7Di9JUEiSJJP0n0v6Wnv4f02S5LN1bO96vPTcjRyzUDft1m/IZ5ZlhfC7zea45SMkhx3W+XyuwWCgK1euaDAYSCrulKZpqp2dHe3s7GgymRTS59lphlBC4H0nmN1XSg/SNC0QKggsO9ReP8+/V6uVsixTt9vVarUKDgon+uUdXN7n+QSbzSYQKXIZyt0HGJPvnEOsORf/brVaGgwGhdp5rPCQSghXlmWaz+dBrClnYDiJpdVlefcXMcGJPmUOXmfPGF04abVaQeAgNwG7PR1CnHC65R3yTVBhlmVBSEDU8BIRrjlN0/CchwYiFCC2eFCldJwJ4bkc7XY7CAmUtRDMyE+5OwRgnLVaLQhYwHMD3PnBZ8jvi7R1NHAv2KFnbnA5eDkJDotyvoR/ziipYc2UcxT48awJz8XAgYOQ584J1hiCiZd88ByfTa7RA0XLApmXI4HzUvJwK76LI+5sPPa/vl15ckwwI+5ObOq5VJc+8pVd6Sverjd8+8e0eurp2z0sSdL+17xdh6/f/j7/W++7fYO5QcTv4YiIiLsVL0lQyPN8IulC6bHf91KO6Tvj7BSWiX6n01G32w0EFeEAAn14eBgI4f7+vkajUdj5xVJerVa1t7enixcvqtfrhR1ZyGmlcpy0n6aper1eIOqQMGzv0jFJJGvBSa+LI7gp2u12IMyj0SgQUs9FcOu25xcgIrCrPZ1OAzly8ud2esQFdyNAomazmabTacH9wTizLNPOzo7G43GBJDM2Wg8uFgtNJpMwPmnbFhC7PceF8KdpGuz4tm4CgU/TVBcuXAgiihNRPxbCCNdcq9XU6/XUaDRCTsZisdDR0VFYD04yF4uF2u12IegT+zzj9/wFSDmZGpQCMM/SNg/Ay2e4HxBWF10ajYZ6vV4oUUG8ybIsnJc8DRdCINoetOmlBwhArA/Gj0sH4Wi1WqndboeMEM+vwKWBAwLxzkuGEMYQapgD4PkJrCOEEkQM5qSc0eElJMyV33/GiXOH59zJwhokvLFarardbgfhzrNQED4QF85TucOt+C6OuMNQqerJr/98zS6eiGRJFBIijpFXJSnXr/7ZRyQ98ryvf/UPzlX9mV/evt/+X/5ikdRqWv1nb9bHvhRXWC75V/A5+DqO38MRERF3K25Wl4ebBrfCewChk2lKGsq25s1mo/F4rMPDw0BYPNyQH8gnifdeXtFoNMJuLMSNXWQnPY1GI5ApCA3j5fjtdluNRkOdTieQINwV5CLU6/XQFcKvA/ItbdtG8kMt/2QyKRAzadtOEGKOIMAuOsKMl0X47jqv9XKSsiXcd5ARFRB23Hng7gZvvYnjgvd78B6OBxwA0rYLRHmcvtMPgYfs41jAii9tSzMgxNxTd6N4qYh3DPDH6R7CzjnXyXF4LfPI2NzRwlxSvsJ5KHlBhKBswbMkTgPkn7Xs4aKQbO4d64e59TIMd134mmbNuLOgXIoB3LXBvz1w0nM9kiQpdME4TVDw8EUXbBizOwvcJeE5EZ7rwWsR2xD/WLucg+ciIu4EPP0/fr5m95wPx03EbcINkvbHfldT+l1vCb+/4Vs+Kp04DDfD4Qs8Z6LqZ7xej3717gt7X0RERETEmcGZ+mvZCQrwnWFPfXdygugAOfGcAyc6vlvqO8gQ4LKV3t/DWAgMhFTOZrNr8gUgzZQbQPIgS35OScGW72F11JdTJ+679E7sIaW+04oQQA06oY04IhArKAsZDoeFcgknw+xul+8T806pAyIMc+YZE5IKwY6QVQQU7ocHI3JtzBUE0zteQLydfJKJsVgsQn0+ZRDMNbvWXgbC2vFdeB8L7282m+p2u4XaeoQEjovQ5RZ87P+sA0oFqtVqoXynbMH3kE0/Hi0yOfZyuVSapte0gaxWq0GwKDtCeIz3cO3ce8+VQATidbg9cHjQGcTdFy4SkVXBPJWdBMyPu0Q8G4Hj8BjdRBCBJF2z5njMMyLKeR6+Zl2EKWeOREREREScjke/8TWSpMo80ev/tyckSflspvX+1ed8X+3BB5T32lFMiIiIiDjnOFOCQhkEKkICKDOAIMxms2BdhpSwc+/Biq1WS5PJJLgSvBTBBQO3ipdzDxaLRSEtv9PpKE3TQJAgx5DpLMsKx+N6yiQTh4J3K6AkAIcFu/wQpclkUiiX8DC/3d3dQMxms1mwxUOgXCBgXBBT5oMSCs8tkIp19xAuavch5Vwnu7sIL91uNwgfdNsYj8eFEL1y/buH+BGcSXkBRNCdDxDdLMsK7gGfb67BwypZJzhNPGeC3XtEBW+p6OuU++rWe1wS7o7hWDgQWq1WaG/qQoFUbJvIeTk35RGe9+Ehhi6M4bKBUHuJhh+D9cAaKAssXJ/PJ+IXn5c8z4NjhHFC0N0xUC5n8IBP5soFJNZsWVxhnfF+hCk+z+5QcIEIuGDFZ5fxeWlFRMR5Ru3BB7RuPf/rIiJeCjbNXL/6Z14hSWo/WdFDP/pseC5/8umCe6H6Ga/Xr3713rkoZYiIiIiIeG6cOUHB//D3UD8nD+zoj8fjQEggSAS0eXtC6qwJ3IO0Iky4/Z4abxcDECqoPYcc+1im02mhnp06fifZ7mTwHVByGyQViGaj0QgZBV7PTgYAwXKUYkBincCVWyxCprlO4N0LfHfdd4A9uI7zOuH2rAUnz4gjzDXBhNLWqs8cAQQFdsbLmQvskLv7wOdP2oYYujDBTniWZQWbOzvs7H6zi+52e3bI3YHAeRBEKMeRVCDG7jQ5zf3C671kgXvGc4Q1IiAxrnL4pV8rc+OuAd/JZ4278MXOPfeFXXvezzXPZrMgikHcEXRqtZoGg4FGo1GhrACBw0UuF5XK7paymACYFx73khB3NZSFMl9jzA/rjHuIq4dAyYiI847L73ylpvfFcoeIlw/jhzZ69F3bOIH7f2ZP7Sen4fdf+7IsigkRERERdwjOnKDgJKNcNw4pocxgMpkEcgwRJATQ7eOQaK8B9/9KWyEDouo7u5AnSikgMOxiz+fz4GDgObdTQ1g9cR4ijODBmOlQ4aTIOyxwHbyPEgkveUDUWCwWGgwGYQfaWyxKW/KdpmnIduC6EFIAgkG5BIVd+PI4mVNJgag5kS7vpkP03W5fr9d1zz33KE3TEE44m80C+bteDb2LOgQK4gTBPVK20c/ncx0cHIRuC6xFX3esFd/BJxeDnfl2ux2cGFevXg2vQdSizMFdC75WCMSUth0MfG2wBiipQSTye8DOvpfbIAAhGpHVgYuEe+RzCOn3nXsXojhGudyH15HD4UIBQo1nfbhLgrnBheAlIS7GsJ75LHg5hosG7j5yxweffa4dIcgzJ+j8ERERERHx0vDUFySSsts9jIiIiIiIW4AzJyi4vR6SzB/4vV5PrVYr7CSPx+PwHmzcEBGIIru55ZA83uf1+JIK5KjRaIQSArpI4E7Amj4ejzUejzWZTAIBcrGBx1wMWS6XweZOt4Fy7Tpg95i2lZQ/kF3AeSFr0+k0kM7ZbKajo6NCSYOHJPIY5Rv1ej0ELLrbgJ1sXBGQYo5XJsheq+4Bd/yQ38B1A+9cAMnb2dlRlmWFjgvScXcB5o4U//IPogOkFnLuoYwEZHJ+X4PAj8drWC9cS6VSUbvdVr/fL4wNd4mT+PJ8+dr3++DrgLXM+9M0LbQyHY1GQQDAXcB8cs1cC89BxHE+uJvGibu0zRjAmeOlE4hbXI8LMhD2MuFHYELo8KBGnxPmmzl38c27Xrgbw8fuzgx3qvDedrtdyBmp1+uhtMpLMiIiIiIiIiIi7ngkiUZf9vnh1+zyXJX/9xdv44AizgPOnKAgKdSx4xiAZPV6PTWbTU2nUy0WC02nx/Y5SJ27Guh8AAnhcYgP5JBdfOrW3WKdpql2dnYC6WQ319s24pZgNxkyD9HyYDzEAkgUrgVcA5A932VFiPAMBV4zn89DFwdEDgQESi4kBWs68wRhhJyWyxSYJy9HwGWBoICbAKLvc+rH53660OP5EogukGkIKNkLlCeQn+DlKggaThq9ZIG5hzB74KUHV+I4IHfBywdYE5BTMji8ywDz0Wq1whplnry7AqKABwBSHsH6pcPFcDgMbhvm0kM+2+12mAtKf8qOknLHAy+x4HcPCnWC791AINesIdbkcrnUYDAoOHeka3MZfE37PcJdQScOskP8c+gCA/cb946HSvp1MGdcJ8fhNRwbF4eXzbjwEEMZIyIiIiIiIs4LFr/1LRo+VH/+Fz4XEungjdtw6/qwpc5r337dl1/4R++T8tiG+G7HmRMUfEfbrciQTOzcng/gZN27QfBaaVtDjgWd80CG3D4N6Wu32+p0OoF0Q6zY/Z9MJhqPx4GYSyqQJcZBPTYCBm0iCZVcLBaB9EKw2E2nJEHadk9AXMAlQYvF1Wql0WikyWQSSLi7DLz0woUAd1VIW1eE7zx7eYiTtnIeBMfkuMwJpJF76NkPEM92u60sy5RlWdgN39nZUa/XC+eik4CkIBD49S2XyxCu6BkGoBy8yVqgcwf3xwk14Nq8BIJ1yvl4D64S1gLrlHEjJlAeAdFlLfv85aUvatYUAkWWZapUKkHc8mt1ZwLzwz12ks2alIruIG8RSYkEDoflcqnxeByEv2azGYQ+xJputxvIu1/TZDIpOEZYcwgA5fn2MhpEOe67k353SXgWCJkkXmLB+aWtSOdtPikDiYiIiIiIiIg4i6i8+dP0qd+yJ0maXcq1ym4uuV92cx286Tme/xNvl0qn3P3IUs0fef9NHUfE2caZEhScQLBzDAHwHUTghIkaeR5nNx0CRT7AeDzWcrlUt9tVmqah4wDhcRyrVqtpZ2dHnU4nEFcnX7PZLDglKpWKer2e5vN5eA6SxY8LAZAZ7PpY9j2jYDqdhh1pz2Xw93pLRHZq2WkejUaazWaq1+vqdruFhHvPcvASE2kbzsh5KBngnhCSiCPCd749y8B/Z9ycW1LYwUeMgaSy04+g0+v1QnnIeDwOu/bl0D2O5e4CzyhAHMElIW0DPHmuXq+r0+kUWkL6fJG/kKZpGFOe55pOp+Hesx6YI8+cYB0OBoPwby99kaQsy8KcSwprh/VDxoKXArjo5m1MEcuY+yRJwrpBhGB9eemI79KzPihx8LF4uCLuBcQqBBREBi85Yj4Yn5+PcyEceHCqZ1FQauPiTjm3hLEhTHJO7pNnlfA5ciEzigkRdwou/eCvab73Bk0eiMGMEREREXcCag8+oMd//yNat6Rl7/Z9t49eee25p/fVVH/zOwqPvfL/+HWtn332mtdG3Bk4U4KCtCWIEFcINx0PfFfZHQi+m8ouNTZ7FwUgfFmWqd1uFwihpFBD3Ww2CyUWkC9pS0QhjexmHh0dhZ1YdkMJWZxOpwUC5sTLAxilYxKJ84HXeVilt81D5PDAwyRJNJlMwk44QgPz5500vOYdcYBr9taBwG3yTtzZWSbQkfvHeT0gk2wBiG6r1QqiBcdO01S7u7va3d1Vp9MJ7gvac0rSdDotEGAvDXBbu5dxMH7uA6LJZrMJ42C+KFvhuBBgwhdZn5TLSFsxy++Nz52kgivB22Uidvh9Q0Tw7AUXvrh2X1eeJwDKpQCsW8ozPHQUhwjHxoGBkEUOBz98PrMs03K5DOQdURCxBhFiPp8X8jXK7RlxW0jHYgkuIS+7cbfLbDa7Jp+iPAenhSu6I8lBpgKlMBER5x3rK/uqLJ7/dRERERERZxtJs6mP/YXPlSrSKjubIvG6lWvdKv5t9dH/6bXS5rXh99o00UPf8p6Xe2gRtwhnTlCA5NJ6DsK2Wq00mUwKrf2kLcH1ennfpabUgLaPkKFut6tutxuOQ24D1ntq98sJ9sAT8Z0cebkAhIuSCsgWLgJJYXfYSwXcku+1+75TjqUeQjWbzXTp0qVClwrffWdseZ5rOBwGEYWgy3K9/GKx0Hg8DuUCHM+FHBc2Go2GptNpEBQgwggWHjzpuRLVajUEXULiuKeQ1Ha7reVyqXa7Haz51O57EKbb4d2R4AIO4ymH/0kq5BJwzX6PyyUdksLOPmvOQzjLIhQ734Rb8jyOA1wvnv/Q7XaDS8c7OJSFGNakt/KExDMvw+EwfL54L9eE6IPToNvtFgQRnA/kWCAy8Jkrj6P8uWRN8Jl1MYRj8Vn0tcj7PB/BAyXdQeHdHnjMhQXuD59NdzS58wJBLM/zglgUEXHukSu26ouIiIg4r0gSffQvf642jfOXWVAuxVi1cz3216+fzSBJr/tr/0nrw6NbOayIm4QzJyg4qYaQ+O627+p78NppgIRBmEejUSCs1Kp7b3p2Yf2Y7Mr6DipWbHaosV9j5/YxYzn33XsnplmWFcoPnFjTRQJCxs47lnV+EFsIAZS2pI3XQ6IajUZwfUBMyVtg7AgUvuPL/PjceJlE+R44GWfOILkcl2BHjuE2e6z9TmL7/b6q1W23BG8Fym41pBrSjvCCqIA4AAFGnKpUKqHbBcfA5dFutyUpzK2HfK7X61BGg1Dk5SWex+Bz4+vd8ykomeF8iBy4FiQVupl4lgPlIl4+wTpibXjrR+aexyUFQa3dbhdyR7xsgTXNfHY6nZB/gbMFQUBSyI4ACHrMkTsWACIVjhHmzbMdKKlAXOLzxee2LDpw/5hv5tDvhbe8RASKiLgTcN/ffo8++fXv0PTSJooKEREREecNlao++tffqrx2/sSEU5HoeYWRR//ipyt5gZf7um/6kDbjyUsY2DHyz3+THvs96fO/8AUgWSZ69Tf+nJ1kc8cEWp4pQYGdePrOe22113pju5a2tm8PxoOAQkg6nU5o1wgZabfbajQawXoPsdxsNur1eiE/gZZ8ThghIR7gSO4BYYsezIfA4GGE0rY7xWw2u8aKzzW7bdznASEAUuzjcZLOHJZ31r3lHkS1UqkUCCHEvkzSJIUxQjZpk+nCgu9wuxiBaOKChofy8ToI+XK5DB0U0jTVeDwOOQYu7FAOwb1mrjguIoqHACKkIDx1u11JCkIR5Jl5Q5DgHmLBX61WhfIX5sZzPCDJaZqGNerlIk7cXSxALOH8zCnOAOB5ImmaqtfrqVKpaDgcStoKbO5M8JBGfrrdrnq9XnA2HB0daTKZFDqhuFsgTdOQySApCEWIM3zu+LeLPIgEs9msINi4yOLnY11VKsddIRDIPHiT+417x8t2PHiREgr/L585/9xERNwpePhv/YIe+wufo1X7zvgDJiIiIuJuQKXV0ke+6XPuHDHhRpFI+Qv8M+zX/vIbb81YbgLyZq6PfNvnhd93P5Tonn/+QeWLhfJz3qb8zAkKEA8ILaIApHY4HAYiQkBeu90OJAwyCdlot9thh5QU/V6vp16vF3a7IR04F9j5b7VaIcsAOPFjV7Rer4cSgnJ3gDJh97ptSCz5EL5r7CKAkxos6cwN8NICnmMHuBxWBxFlFxlSDkmezWaqVCqhwwJOjnLde5IkoXUmY26329rb2wvvQ2DhecbsnSYYm5dVeE4G80S2A6QPRwi7yNS8c7/8vRD8yWRSmAfEK1oxIigwPy6icA7acJLXwdqDXCMA4RqBIJO9wLrL8zyMzQWUMnmmVIW15CUTXt6BU8bvMWKXByHizmCc7qKB7Hv7T0QR5sHdOjhJcAG5y4TxuZDF58KdIAg81Wo1lHxw33wuPD+EY+LI4HvByykYn987Fw9chJjNZup0OuGHtev3PiLiPKO6u6vH/+ina9WOazoiIiLivKB6YU+P/Yk3aNO8y8SEuwAHb8x18M1v1gM/nav9o7+k/CTP7zzieQWFJEn+kaTfLumZPM/fdPLYnqTvlfSIpMclfXme5wcnz32DpD8kaS3pj+d5/mM3Opg8z4P9GWcBdnPICeTUMwuazWZ4HwSAnWDq0yHXvgPp4YQQK7eFO+Eo19tLuoaMYc+HtPIeBAwP+oMoOdFiRxvgWpAU0vmdzDtB4jXsZne73UCwyZWA3Lbb7UIIJePwsgMEDyzn7NaTScH8e415uTaf63JhoNxBoiyylLsxkGfhIYhkK5CJ4YIB4hBEN01TXbx4MXQHYF49CBAhA8EDck94YrlcgTnidZBT3/nGaQDxZZ1yL7hWD2akywWuDM7NjjxziMDDPfDXu+uBMglEjGq1WmgNWS5Z8TatrB2cCZRR4OxAOOH17ljwHAx3Z7jrgjH6GvMyEsqMWA/cK9wc3AvGz/u8JKLsxil/bj2TgvlEiORazxJezu/iiDsPn/z9n675hSgmRES8FMTv4YiXGx//6k/Tshu/u+9kfOo3JXp48WalP/nL2pzT7K4bcSh8l6S/K+mf2mNfL+kn8zz/1iRJvv7k969LkuQzJH2FpDdKekDSTyRJ8vo8z6+NWD8FXn/uoYXY450AAYgw7/egNwgSO82EzXW73UCGp9Np2BWt1+vq9Xrq9/uhwwPnYwd/vV6H9+BI6HQ6hRwCyKTXppNnwI4s8G4EkEJvM0k4nGczME+IDb7DD5FjF5rzImLMZjM1Gg31er1Cnbvv+DIOyk8gzRB5umAMh0Ot12uNRiNJCsQfBwVAFGAX+vDwUMPhsECKPSQPkabX62l3dzfsmCM4cW89uJFyB6z3lFLQenK1Wunw8DAQ3rJAxI69j4fzSFtnigstkFKOibDhYYC8H3HDy1B4D2UxtGZE7IGk+xri/iKgMDaEKuYYYQd3Dq8fjUah/aMHIvIaxDYPsuQ8HpLIuvDXMlYXXMqCDPPoHT2YR8Qv78bBPHAu5hdBhuMjkHjZBcdA4GNMnrfgDiDWS5Zl4XyndYe4jfguvUzfxRERERERp+K7FL+HI14mVF/3aq2bz/+6iPOPT3xxVQ/rM9X6if94Lp0Kzyso5Hn+00mSPFJ6+HdK+sKTf/8TST8l6etOHv+ePM/nkj6WJMlHJL1V0ntvdEDlXV8P2aNNYLvdDtkBkG9szCS093o9XbhwQTs7O9rf39dkMlGz2dTFixe1u7sbrOuIA5RQ9Pt97ezsqNvtFnIZIEVY1Qku9FwDdvaxpEPAfEfayRB2dK4NMcFLEugi4C0MsYSzk8suMDvcWZap0+kEqzyt+iBekGEIPBZ5iFW5faCkQsZAr9cLJJdWmdK2Dh+SRhkJJK3RaAQHgXdkQAzwMhHEH8QI5sIJZLmlJe9jzORg7OzsaD6fB1GDsXH/WC+4IDzkkN1sD4ck54I1QbcN5pDyENZwpVIpEFWILcd2RwBryEtayrkakF0ELcbsQgXzwWfId/VZm4hGfJZ4H44H76SCMIKg4M6SxWIRHneHQrkTiIsUXprAGPn8Srom84TXuqOIz+F0Og3XxxrgO8JdCsA/gwgbBJ2yhsncOEttI1/u7+KIOwfVN75By87tHkVExPlH/B6OeDnx1Jfcp8VudCfcLfjEF1f1YO2zlP3IL5y7TIUXm6Fwb57nT0lSnudPJUly6eTxByW9z1735MljNwRIXLvdVr/fD60IISHsKkJ8IV7lHVZ24C9cuKB+v6+rV69qs9mEXVtIL2SdzIB6va69vT31+3212+2CTdrD9yD1uBogfF62QFp/o9HQeDzWaDQqEDtq5ReLhQaDgQ4PD7VcLtXtdtXv90PgIp0GaBfJWLDje4kI11eukUcYcdLHsdz+DQGlTMQT7nkvRA1CSAaBtM1xQJDAJUBeRaVSKXQAQFQYjUbXdGDodru655571Ov1JG27beCe8BaNrB3EAYhou91Wp9MJZQSMAacD4H2Uc3CfuD7EDMipuxW86wbzzPVRjkG2AsfCccM9dcs+11l2UpRt/rggKDuoVCqaTCYFtwrz4kKDd7Xwto5cD4KDu4TcVQH5RkjgvnMu7ikCCevcnQzumOHYrEM+357p4CGSPieIcXx+GRulTqxpPq8+N9x/z1hAcPLjz8++SnxLvosj7iw887Y9zS/GP0ojIm4R4vdwxE1H8pY3ab53u0cR8XLjk19Y0ev/bar8JFD9vOBmhzKelsV5aopIkiTvkvQufwwS2Ov11Ol01Gw2NR6PCzv8ENXyzrS3I8S6n2WZdnZ2CkQbQcGdD77DiphAICMEaD6fh98hN5BzSaHDAUQcwYHWjzgnAMdhp5xOEjzGWCGs5Q4K0lZAQYihFh0iBVHjGsthhcyl143jAPGQR2lLtiBcuEN2d3eD6OPdFbgG5t/LRShVQCxx0gkBpJTByTb3y0tf2E0v19NznyG/XHvZzk/mBO4BjoULAqGJe8zj3hmEeXFRhvtPYGG321WapiGsEZGI+5PneQi4RMxAoPCWjZzby0N4nV+n/5fXe6imf3Z819/bVnJsCD6CA3PhQhzXRZAha4R1IKkgKPA714frxssU3M3BuvCwRw9BZU2TndJqtcIYuBfMAWsUEYmx4ILw4NXZOa1l04v8Lm4pu5VjirgdeNubNX4w0XVuf0RExK1D/B6OeNG4+sau5ntRCL4b8eyXv0kX/vHPSZvzUx31YgWFy0mS3H+ixN4v6ZmTx5+U9LC97iFJnzrtAHmev1vSuyUpSY67jEIWIHjYusfjcdiJl7ZhhRB4djE9g2B3d1d7e3vB0p2maWg1mGXHX9bYxSHinU4nlDrgHuBnNpuF2nPqvMuk3XeCfZcVIuzuCu9OgGBRbh3o1m6OCSBb1Mizo+2kXzre2Wf+CLrjtZ7az+uZT4g65yKPwnd8yZxA8GD+2fEnb8G7MDSbzdDOcDAYFASBNE3DOTwfwkmniwruCnH3QbVaDTvUeZ5rNBppOp2Gx6UtISaAkx1+zsl5yQTg3xB6RBREIMgspJ9rQNjgOJBj1vtyudTh4WFwqjAmBApcGawFdwYwbhwKlLEwR6wH1i8tUn03HxGF++nzWRZ5vHyAkh+ui3MOh8OC+4C5O/nMF0QF1gzCCpkPrC93VUgqzAHH884SkkLXF7qcIMy4S8Jbzjp8Dj2Q8ozjpn4X95K9yDrvICRveZOe+JJOtMxGRNxaxO/hiIiIm4aDN+W6WEmUn6P/db9YQeGHJP0BSd968t8ftMf/eZIk367jAJrXSfq5GzmgE0Fs6tPpVOPxOAT4QTY9kK/b7Wqz2YT2hKvVKtT5dzqdQD7a7bZ2dnYCwYWQchzIbtl+DlHi+AgU7HyzszwajQJZg3iV0+YlFQg5O6XeNYG68NFoFHZTywIF8+Xk1HfbT3NgQNrcRcF7PRwRMQLShbBDhgLCynK5DIIBxJeddrpz4PSA9LELnGVZILDValWTyUTValW7u7va2dnRxYsX1W63CyGF7NwjBLA77aQTsu3zxfvZAee4nhuAGwMRAdHA7x/zxXkhxzhKOC/ihxPkZrMZRAAv15CkyWQSnAnMOTv1EHXfXXexQFKh44evr/l8rmq1GuaOFpa4AzzgkGwId7fwGl+3LkR5JgfXPZlMCgGIEHbWMSUEjAHXijsiaMnpooYLCaeFJDJOPsMuFLi7gTlCbPBsFMbJPLPGz1go42m46d/FEXcO5hdaUUyIiLj1iN/DERERdzVupG3kv9Bx2MzFJEmelPS/6PhL8/uSJPlDkj4u6cskKc/zDyVJ8n2S/pOklaQ/eqNptuy0YhGH1LJD60GEED12ciH+7KhDyHAZ4Frw3WmIBASa8y4Wi9C1ABFhPB5rMBhos9mEoECIFaKHkw92hrMsU7fbDSTHd9F9N50gRoiutM1scOHA6+nZ6UUkcLt3mqZaLpeaz+caDodBkKlWq6GUxEkX80OAIvZ1nCKexwDxbrVaunTpkrIs09WrVzWZTAKR7nQ6oTMDQgNkmR1pBIJarRZcIxcvXtTFixd17733qtlshh11zyxwxwfjqNfrgTDP5/NgsXeHBeuCuaxWqwVXCSSS+WRNlv+LGIUwMJ1OwzgpS4CMdjqdQlePJEmCgMDjrC8PfIQAl0sb+Cx4tgfXwmMuGCyXS41GI43H41CKQKmKByfyOeBxBAuyOMg1kRTuMdcqbbMGCLl0Ec1FAC93cAHN81GYh3KJh6Nc3iFtHToeMukOHEQEzk2pg5eYcB2e0XKWBIWX67s44s5A8jlv1Ce/sK5Y6hARcfMQv4cjIiIirsWNdHn4yus89UXXef03S/rmFzUYq+v3P+rLFmdpm7eQZVmhUwCkGfs2bfLYLV6v16HjA2R2vV4HQjKbzTQYDMLu7mQy0cHBgSaTyTVt+yAiiBKe74DdnV1fiCvX5SSQsUGqsNaPRqMQ3EcugVu33W7fbre1u7urXq+nLMs0HA41Ho+De2K9Xqvf76vT6YQOEDg7KAdgHOwyp2mqbrcbxJ3Dw8PgxGDuKSOBxC2XywIpxm0BMaPLg+/Ip2mqXq+nvb09Xbp0Sffff7/6/X64p8wX5JT7IimEU47H4yBqOOEk6M93/yWFe+6k2F0r3E/vogDp9G4LiAFObhG//Fy4XOgqwnlxW7h7A6HByyfIKeCz4c4aSk68HMI7aNDilM8Q88n4PFPDQxm5Rj4riAmnZTzgyOCzx7VxzRyX+WUuEXU8x4M59+wGxo7AVn6ee+JlG96Jwrs18F6uk9eS8eGtQs9Yl4eX7bs44vwjb1a1bkUxISLiZiJ+D0dERERci5sdyviiQRggFnHs3uWAN88WgOjM53NNp1MtFovCrjriwWw2U7fbVbVa1Xg8Vr1e1+7ubrDj874kSTQcDoMYUE6Hl7buAEgNQgHPSVu7N8IDZBTCxC6xW/e95lxSeJzQP94PEWUnF1LvyfYQtLJzAycERJU6cYLz0jQNc8018u/lchlIO9fgdfgQdy89IP/i4OAgEPZarRa6XkDOe72e+v1+EBXuvfde9Xq94PpwcWIwGGg4HGo+nwcCiaOCYEs6PTD37JZzTaw3Lxfweny/TwgkLhZxHISR4XAYBB/ORX7DdDoNOQmEGLorwh0IPOZdCLycAZQ7LkCOcSJICvPirSfdLUCIp5dU4GKgFAdHD9eNswTxA4EOISZNU/X7/cK1IUYhRCFQeDlF2aXjDgw/v6QwBncteecWaStaSVthhfEzJl8bnufA8x7eGRERERERERERERFxOs6MoIANmZwDyBqCAuUL7MZnWRZq0yEQngLPru9gMAjHhyBA9qStDbtMIiC7SZIEUsjup7Td6Yase2Cdlyl4jT4Cg5OU4XAY8gQ2m+PWltVqNVjpK5VKwVUgKdTckyHRarWCwwEBhHMzTklBsOA6fT74YT4h0XSXoHyCvAMINcIGQgR19IgBhA1CJjudTmH8ZGbQ9hJiSbmEW//ZaffHORfH5Hrn83noEuG744zT8yS4PwgK0lZMwBnhJSbMnXRMXo+OjsKOOw4TSWH3fj6fazQahfFht+d+QXDZGffyEQIuOZ7PNQQZhwbuB4QEBCjuFx0cPIOEz5W7f8oCGedmRx+HBCKKdCxgdLvd4BjyfAnCJqWtqEXwJ2GfLnAwb75mGX+53MFdCZIK4Z0uDDGffJf4Mfm8I+J58CbjiIg4b0jWuZJVorwWXQoRERERERHnBZXFaQ1izjbOjKAAoSXLwFsKlvMCPMiQxxEGIGAQguFJH0/q6t0uDXkop+hDWtyC7aUO7Ij6TrUTHQgJRAmHgndTcFLDNQCOBSkjuR6iR7mAhzByfR5M2W63Azn3UhHG7rv/nJOxuEDCf70MRdoSNXaMy50YnPRK21R9CGm321W/3w8Ek9aaEGRIvZc6ICgwP7ggcLiwjvx+IE650FPOZvAOFd46kmNxXaxJSmk87JI5QUghX8ODERE8mAsv8WF9bDabQG5Z64gAHJs1Va/XC50S/DoQHxgz4hfzzT3meilH8KwJrolrZcy4O3AG4BRgnTG/3J/pdBrWHu9DBGO9eVAkYkTZYULpyHK5DO0h+Rx5DoZnmvj1+XcN1+KdHfwz4dccEXHekL//l/Xw3lv08Xeemf/NR0RERERERDwPXvtXf0WbE+50XnBm/tJwQoU9mz/ofbcWokHa//7+vg4PDzWZTJTneegtT+3+1atXg+sBwgA5haA44YWkQJiciOR5Xtj5dSGAADxC99zW7XX6HkTnxImsBG8hWavVtLu7G7ofQJT4SZIkBOZxzRBwdqqxrrsgwDz7DryXAngyfjkUEiGCudxsNoFcHxwc6OjoKJBhSCvzCSnGbUG9PfZ+RBt29b3NIufznANpu5vPuRB9pK0rpdwlgrXFHEpFZ4mHYdZqtTCXk8kkOFdOa+foaxg3gIszngPhOQyeicC4/R6zk86a5V54wCUOAHdaUMLCZ8UDET2LYjgcqlqtqt/vFzozuMDm69ifRyRwMYQxTKdTDQYDjcfjwrxJCmvCxRDe7+GULibg9OBzxGedNck4mXvmjzE63KGDS4F/ezlQFBQizjPqo5VazzS07OUxTyEiIiIiIuKMo7lfkTbnrzvTmREU6PIAiXSbOIQfAoE1HqJIyF2r1VK/39dms9Hly5d19epVrddrPfTQQ9rb29NgMAgBgd4VANKBEwALPnX6vqNd3rkFECkvOYAYsfMKqXOnBbkDi8UiuBicbPb7fe3t7anf72t/fz+UHniQpOcvcA63gbNzDNH22nAPikTEyLIsdC5wYofbwYkXAYLj8ViHh4dhbO7KIKMBsk8Sv2c5IBC4k4Kx4iDwHAdIP/PJfDkhZoxHR0c6PDwMO+MQ7LIrBAGCYzBfkF6uzfMpXGxyF4u7JPweMHY6avB+XCbMLXkQiAKTyUTj8TjMn6TQ6QIHgKTwHHkaCBEQY+aZ3weDgebzuRqNRhCKAJZ/hDIXmbh27qt/RhCEhsNh+LwxD6wNyji8ZMjn0wUszkcZENfBfWINuXPGRRTvYOHrn+vlXrKWF4uFJpOJjo6OCmskIuK8IfmZX9JDPyPNfvtb9dQ7qlqnUVSIiIiIiIg4i8iequjhf/irWp/koZ0nnBlBwcPlNpuNrl69GtodQlwg+lKxjd5yuVSz2VS321W32w1ixGQyUafT0c7OjnZ3d8NOKWUJwHeISZuH0CIGeJcAJzoeIOePQdQ9bI8dbogt1yKpEOLoOQLuloCosdvLHEDey90fEAUgb2maXpNuz7z7eeheAOnyHAZez3jpIgGpZTzMn4daumODwELf5WaHGrJYFmxwf3DfXRSBtCICQWzX67WOjo40Ho9DNwRJYR59DbhY5KUx7HgTBokAgghRFnYajUYoT/CwR66H0g5annI+F7pYI+zAk+PhZB7CPB6Pwy4/Y6EF6nA4LAQpsmYg/7hLGC9zzXy7q8NDOheLRRAt/FoZK+uC87pQRqkOn0Uvk/CwRncQUEJC6CbiI2uBHAgcHAS1smY9MLMsKPi/GTtzVnY2REScR7R++OeUvuYdGj0SBYWIiIiI84DeE3MNXtPUshu/t+8GdD5e0UPf85hW+1dv91BeFM6MoEBXhcFgoPV6rStXroTWeb5jD0mkLpzyACdyWMAJfaNzhKRAImezWdgpdxKfZVk4lwe4MQYnMk6WnRh5+CEElR1TxAsIJAQXIYOgQs9HYLxHR0chqJHAQUg518g5eT1lILVaLQgK5fZ/HpTn3Qzc7i5tsyQghRwLEgZJpyTESzTKxNFdAswp85umaSiF8NwC7islIl4yAqFl/lxUODo6CmGECBeQVOlaMQFBhmugrABHTLmchfF79wXOwbhYL9yHVqtVaJuIcAHBb7fboVyFsh/OJymMhblA+HFhhtahCECck/IIgNBAwCb3B7LugZHAyxLc4YKj4ejoKLQjdXGOcheunc+jdzTx/A7/4bV+byQVRBbEAnc2+Zrj/ZR98MP5KHPw/IqIiDsB9/zHmWaXmlpl8Y/TiIiIiLOO6k/9gtI3viMKCncBuh+r6MEf/IRWTz19u4fyonFmBAVyEyBUg8Eg5Ao4aZGk0WhUqLf2Gv31eh0yFTabjdrttnZ2dgoET1IgLwQnesCblzZ4rThhjIgBXtOPKAFB9haM7PYiYkDGaPMHkSZXoNvthtp3r/dn97rRaKjX66larYbdbLpQQA5xaFDCwS4xRBQi2+/3Q6cIxgUpxwnBzv5isVCz2VSv11On0wk2dC/zAC4mME/eSQOSTB4Cu+pZlqlSqYQyCnbfh8Ohjo6OQhnMcrkMxJO5RTzhOrhOiLGLANxbxJPyDjshg9jsyS/AAeLHYgecEgvuwXK5DIIX84S449kOCFjr9Vqj0UjSNmOA8UgKawTHSzmPA8GE9yAQINAgWuACwV3BvUNAwvrvgk+apkEw4DF/Pet0Op2G+yQpiHyciy4Q3C8XMLgmPp/uyOCzwOeT93hHDVwqXCPfK9KxIOdBle5E8eBN5pRjRkTcKaj+u1/QKxefrVX7+DPxxDtr0vkLko6IiIi4a3Dv+440vdTXshfLL+9EZE9VdM8vLZT+2jNaPfGJ2z2cl4QzIyj4rir14h4W6MCOX6vVdN9996nb7YY//g8PD3VwcBCe39nZ0c7OTiC9fkxPp3exgJ1Nt1PjAMCq7X3rsXU7WUTAoOYbd4K03Y2FLJdr72lB6HXdtGtkNxziTXghr8dRgeBRr9d14cKFgoAB0U7TNAgY7DbXarUgWmRZFggsORVZlhXEDMgoJLfc7YIadu8qIG1DLKUtUfaOFLPZLAhD6/U67LYjJiCgsEPvbQndHcH4sOZ7rgPCAHkc3u6y0WiE1pXMFzv9vNdr8tlx98DL0WgUMgQQKchwcAs/pSyUL3gYIZkRrFdcEOQq4NLxXX3Ep+VyqW63G3b9vSwiTdNC1xCEKQi4Z0J40CkiAp8BujfgOBmNRkEoQuBgDXmrScpGXJxj/KxnF268A4QLSohd/vn2zhEuyiDSIGqVMzT8nkq6pjQqIuK8I/mZXxKem9cO3qyP/DfZbR1PRERERMT1kX/gQ6p98Tu07N3ukZxt3P8fcrU/Mbmpxxw90tbTb7+ph5QkVWeJXvUDx/yndmWo1WOP6074S/PMCAqQBU99l4rdH/hjH7Gh2+0qTdNgC99sNiF4kfcgBEBy3PHArjjHoCwCy7Pbyt05QP6AJ8sTlocIISkQGwgiO+FOyryeHNLlu70eXsgxqCGv1+uhnSQkyUk75B8Rgp1uiCPXjmsC+36SJIFwQoAhgJwXAskP5QmeGeECDrZ53AeQNe8g4YR7f39fV69e1WAwCE4IWjCSo4Ajg/MieHjbUAg01y0VOxh420Ms77wW54Nb4CUVWjNSXgLBZX1ICjv1rJUsy8L6QgjwjAAeYw6w7tPFAnLLnCFEsP7yPNfh4WEg2Ag5iF6IT17+4x1PEFFwA7CeyuVCiAC8zx007iTg/niJCNfkeQaUzED+IfdlhwDvRRzimrk/0jYcVVJ4jYsNvIZzeCCjl8Pw4/khERF3FN73H/WGg9fe7lFERNwQrj57J/zJHRHxwvHK731SH/nqB7VqR9ckaD9Z0UM//Ez4PX/yKW1ucpBh78Nd9T947009piRpvdb6Ix+TpDtCSABn5q9lxAKvuZa2u7Ll9nmr1Uq9Xi8Qck+WXywW6nQ6StM0iA7PPPNMqEP3Nn7dblc7OzuhZR415uyKk24P2ZJUsER7Cr2H8EFsIFZYsyHFPIY7gN16SSEdn9dB8pkjbzXIrmvZoYAoQHAeO/HU8HPt2OEh+2RZUL4hbVP0IeTU+rMbDWGGSOIAQMDx0EIIKGGRjIcddI65v7+vJ598UgcHB4X6eMQL7yTh2RZlaz/32XMcGIM7Kpg/HA1kLyBccP8htV5Cwmu8s4S3H4SIu63en2ONI4qV21H6cb3zBOUfkoKD4OjoKJRdkHPBmL28xIM5cVbwu2cVsG75zDFniBOLxSI4bSDyfMY4n6RrBD0XIhBk6vW6ptNpwcEAyXcxyF0LjJ8xsya8faivN9Yqbopy2Cpzy/ndsRARcadh/ehHbvcQIiJuCHk+v91DiIi4LVg9/nG95n+b6df/5Gu0ad6dokKylt7wbY+H3/PZXOuDg1t6zs1wKD06vKXnuJNwZgQFSIDv1PtuIYTH2/W1Wi31er0CiYYg0BWC2m920iE0WPopd/DdZ4iOp8p7izp3KUD22DkvE+/NZqMsy7SzsxO6T0BiW62Wut1uIGYcj3aW3iHAd46lbRggQYvsrvMYwXfeNYGsBXavEQ9oFQl58pBAJ9++IzyZTDQajTSdToOIQ2ZFrVbTZDIJ7ylnCkAaCU/kuOPxOFj5j46OgrDC7jVtMbGms04oM5G21nV29XkNcFGK1zPPjLfcQaBct8899k4SkFXcEy7GuCiAFd/zCJzMcg6fF2/l6GUKBA+SZ0B5BOIR7gnWKhkhdKzwUEKu2a+bz5931kCY8HnlOrzVo5e9eFtHxuCfNQQicib8s+VdVTgHTplKpRLcDdxbv9f++XS3A44QxBgEHdxBXiLjIklERERERERExMuN9eVn9NpvPi49fvSbPuOuyb/5tG9/UpvDI0nSahjJ/VnGmRAUCGtDUGBX2wPjyAuAzLRaLV24cEFpmoYdWWq1sblDmH2n13d/IXEQZNr4eQeHWq2mXq8XCDGEjdcxJloaOjnz+n3q9NmlZWc+TVNJWxs55BzhguuFZEFAIZ6QJcpAvPQBksbjEEYElXJuA/kFzBmBhJBo6dhhQZvI0WgUWikmSaJut6ter1cg6/yXx3CAeCI/r8P1QIbG1atXNRqNAskjqBGHACKUpEAOIdqUg3DfuHbG48KQpEAcaR3KY75Dzv3lHFwPJQGMG8cC7TqdpOKSgWR7uYqvU+9gwI49a4fyD9YGc0P7Rwg3Qlqv11OWZcF9gCgD2QeQah8b8+C5IovFQv1+P4yLa/LrRQREfGF+XXSYTCYaDAZhfvw8fA84mBMn/+6ySJJE7XY7CGeMgzF4UKXnsPD59PvDPXcxJyIiIiIiIiLidmBzQqhf9+d+XpULe3r061593dd+2nc8qfVN7Biw/M2fpcf/y+foevVSBA4zXTz0bzdK//UvhN9jjtX5wZkQFNwWD7lstVrBquw78PP5XBcuXCi0SOR5dou9TGK9Xuvg4CAQDkhZq9UKtn5IG7vqHsbITj+EOMuya2qvscjzuwc/tlot7ezsqNVq6cqVK4EU4aBoNpuBVHk9uGc9UDrBdUGEy6S8HHwoFcP1vDyDHXbKKQicJJzQuxswZv7NOMuhjBB87PG8D7HD6+4haxDNarVaCGGUjsl9v98P70Vw4PUuEkjbNoOILu4UcVu/1+w7iXbHA+fwjhOUALRarULrTV7Pjjv3i7niflPPzz1G+PISFoQg7jMlFV7/z/hxeFAy4wGYODE8iJKxuJjg14p7xM9VJtiUxXB8z2pAQOB4Xhbin2PEEZxALiTwXu++gTCGiOP3lnF6qQouCy9nQAjiWrjffi7WEGNl7iMiIiIiIiIizgLy1erYsfCnnrnua242Da/95Af02p88/bnHvvXtyl9CdWj7yUT3/e33hN/vzqKO84/nFRSSJPlHkn67pGfyPH/TyWN/Q9LvkLSQ9FFJX5Xn+WGSJI9I+rCkR0/e/r48z//wjQwEUgU8tM1Js+8qt1ottdttHRwcBBIsHZP+3d1d7ezsFForQh7JFoAwNRqNsGNZJoKMqVxnjv0bMuqhb7Tuq9fr6vV6oVvAYrEI5ROdTkfVajWQdg/6k7a72pyvXEdOzgMlERBDDxn01oaSNJ1OQ8ghO/GcEyINoXfxAeIsFUm7B2YyvwgNhEeye471HhLNe3CnJEkSnA+4DzxMkR1niLZnGrgoBKHn/koqhGu6C8Dh643553fPVuB+8xjE2e39zAvn8RBFPzfEtuxGcLhoBfF2IYZ7gqDEmoHY4xpAcHNRyMMNT/t8AXcG8FppG07JMVxQKAeE4kpwl4+7EDwYkdfznnLeBHDHkT+GkwQxxV0e7oDieebBy074TCBCnAW8XN/FERERERGnI34PR0QU8eqvf+/tHkLEGUDl+V+i75L0ztJj/0bSm/I8f7OkX5P0DfbcR/M8/+yTnxv+4nTixu84CiCK7G6z63/vvfcGBwHW/zRNdfHiRfX7/UJXBkmFsgi3mEOwnMBAvJxwNBoNtdttSQqp/1jqV6uV2u22dnZ21Gw2A7Fid5SadUhM2eaOCECug9fnu2UeQke9PETdd1v9+iBuCBqUL2CR9/KI8XisK1eu6OrVq9cECXrrRHIa6KBBtwgs4xA/z25AGHFSL23FjuFwqKtXr2p/fz/stnuLRO4/9xHxYjgcBrFA2tbzT6fTUJJBBoCXs7hwA2FlThAg+N3r7b0TCGKUd+bwHXrmrCxQubOCY+NugPAi/uDIKJ+n/Nlxh47nBnheA9dZFthcGCof1/MluP/uyEBU4P66K8DDMflse0YJr+O8LnAgBBCeiEhVLlMid4HPNmsM0cDnzUU7zutCEPeBx9zlcEbwXXoZvosjIiIiIq6L71L8Ho6IiIgo4HkdCnme//SJyuqP/bj9+j5Jv+elDgQC71b+cl35ybnV6XSUZVkIEvRdW/IVaK3Ijj0kgf+Ox+NQ+lAmZB6uSOvJTqejdrutZrOp6XQaSA/vy/M8hDtC6CBR3gnAOx5AsBAnpK1Tw8k0hK+8w851O2niGB4wSLnA1atXQ/kBrTQZw/7+vjabjQ4PD4PTI03TQP6Yu3a7Hco+eK+0bVvoJAwii/iBwMEcUApSqVRCdwdJgdx7KCdiDIKQtN3V5hoZDwKMl0fgEECoYC2VxwlhdpLtXTIkFUoSPCzSd/3ZPWcNsw49p8I7HLjLg/lgDeJmcXeBdyRwJ4l/biD0i8UiCF90NvCSoVqtVuj64GUc5TIerpd1z2uYY9YF11EWevgsUnLEuRuNRggK9eBMrkfauhbKoZjcI87jx0N4wjHk94zr5L4iEnEudx2dBbxc38UREREREacjfg9HREREXIubkaHwByV9r/3+qiRJflHSQNJfyPP839/IQSB/EAMnN+U/6iHbkAqeZ0d8d3dXFy5cULfbDbuW7Dh7oB+hfb5bTOvC5XIZWjpSJkEpg6SQOTCbzTSdTlWpVNTr9UL5BEQYEku9Os4ECCW7vh6AhziBIMCc8D7PUJjP54GIOYEj1b/b7Rbs7l7KwOvY5V2tVppMJgUSidgCoceNgGCBpV7akk9Jp4omkH9cH4gD4/E4zBljYu5wDNDGjxBOxuzlBLyH+nfgwYqQUl6LEwYiKm07jrAO3fVB6CJkmDwFBAUcG8y5E3/uIedn7fg5Go1GEBpWq1UoGyHbAkcKY4ZgnxYeCOHGEeFlQawv7puHK7KD74IIQERjvXgpA9eEY0ZSGCdz7e4AzzSpVCqh9MVLXNyd4+VFfF5pX+nuCs+j8LKIcvtPF4+4h4gjOBrOkqBwA7gp38URERERES8a8Xs4IiLirsNLEhSSJPnzOs7++O6Th56S9Io8z/eTJPkNkv7vJEnemOf54JT3vkvSuySF1HV3E3gHg8KAT4goFnvIS5ZlgYDt7OzowoULarfbYVd2MpkE0sgx2SWF2EBQvN0ihAK3A7vE7IAeHh7q8PBQ1Wo15CXMZrNCazyu0Yk8RAYyBYmCJOPAaLfbarVahdZ7kgq17F7bTleGPM+1s7OjnZ0dXblyRePxuGB1h9hBVr1EQtI188GYvZUhhBaXwXQ6DSUMzCm2f3aG0zQNhB3COxgMQuihk0fWBaIM3RfKGQLY3xE+uFeQdxwD5ffgDuB63c7vwZjcn81mEwgz7Q8h/4hKPO6tFF1Awo1QDhrk2rnPLsxICiGZXorCvLK27LNVaKvp3R2c7HONLs64wMax3K2AO8DXogsMLkY50edzzZwiNnkeSqvVCvfWhQwvT2AevbMDYhpwJ4OPGTHBPzusC9Ypj0kqODXOOm7Wd3FL2cs15IiIiIg7CvF7OCIi4m7Fi/5rOUmSP6DjYJovyk/+As/zfC5pfvLvDyRJ8lFJr5f08+X353n+bknvlqRarZZTIw2pcvJk51S9Xle/3w+tHD1gDVs6JREQ8eFwGMQGJ9NeUiBtuwFAfiE9JNtLCtZ9iLXnOtD6EsLkJQ6e8yCpkKcAOeL8zWZTvV5PaZqGNnjudKA8AhIMaYV0LhYLdTqdcP20M3TSSKAlVnrmjx12D1E8uUfBPk7JCDbycrkGc+mOAcSbLMvC83S3GI1GIeCSuW+329cIF172wf2gMwG7y2maqtvtqtlshvl2EaZerxfcAf4c98ODML1EwXfa0zQN9xWXQavVCrvovtuNgMB6Luca+Fr0jAMXfLxDAeQZEYK597WHKIPTAKGJ90HuCQWFmLPmPVzSBQbmhtcjspSFP88FcfB585IFXntaS1fWnnfI8I4q3DPWlGeCeJ6CO30QFvksICjgYmBOETjPOm7md3Ev2YsByxEREREvEPF7OCIi4m7GixIUkiR5p6Svk/Sb8zyf2OP3SLqa5/k6SZJXS3qdpMdu5JgQUOzt/IF/clw/d9jphlBBajebjdI0DTZ8yheOjo5UqVS0t7cXyA872NS9e1s9SIjXojMWyBfkjHrtLMsKRKZcbz4YDAqlDG5zJ1TQd9AhY1jgCaZjvMwF1zCbzXRwcKDBYKBKpRKcDePxOBB2iCwODwihtA39a7fbgTQyz5A9b184n89Vr9eDJb9MoplLyBwtDsmgIFfC0/ch8QQPclwPZvRsiNVqFe4vwgViUqPRCDvvCAJOZD0UkHG6E6H8GOsCco34ASF3hwHXBRmnxGG5XIZ77yUXkgKR5nPg7/NOD14ucNqxcUg4MfYcCtaWh1Fy/1lPCExOqF0E8fIRBCwfD8IGIpDnn6zX63BcX1OUJvE+7hnz7Tkn3sqU1q9cj+dLcP1e1sBccy7mxUuS+O85ERNu+ndxRERERMSNI34PR0RE3O24kbaR/0LSF0q6mCTJk5L+Fx0n2DYl/ZuTP9pphfObJP3lJElWktaS/nCe51ef7xwQDgiGk8DSWEIdPe0XHfV6PexOL5dLDYdD7e/vaz6fq9PphPA1ar+xVrvDQVIgeuxkEmoIEYX8UA6AY6Lcmg4CNp/PNR6PC10PEBDKCffeps4J43g81nQ6LbTC838PBgNduXIlWP6ZK0L4INTU6VNyMBgM1Gw2Q0Ai5Gs0GhXaWx4eHmo2mwXCivjQarVCiKUn7nO/nJB6mB/zUralS8dtPxFAOBYiE04Q5nA6nQanAedgjLgyII+QTvIVdnZ2gmjkDhkfs1v0WTPl7AF2tiGqlGcgtpRDFt2d4G4ZD1x0MYC1zfr19eKvcdcJ1+XdCjgfaxwizn33Nc068M9emWRz/xAEvETIxTjWHevdnRdO8sthnggbPIarhHILMjj4XHougn+umCM+A57NwA8OhnI50Fnq8vByfBdHRERERFwf8Xs4IiIi4lrcSJeHrzzl4X94ndd+v6Tvf6GDgHyUxQTf5ZaOCV632w3dFtilhnjS1hGSS4gdhIFdZM7nbRo5Dzu0HiYoHYdGMiZIPrv4/LBLjyCBEAERStM0EKj1eh3IOuMnY4GdWXaNIXkeKLhcLgOxXi6XGgwGOjw8DEKLlwe4mABhohSEmn7OB4GHOPNe3ynnOAQsHh0dBQcF95Prd7JJ5gDz5LXwHgjogXhe475arUJnj9lsVsiLoNyFa+cauI/uMiCwMk3TMB7mlrnwshfWBs91Op1CZoAHL0JUWVOIGh4S6YGXfnzIrosfCF7uJvESHH6XtkGhTpp9nB44OJ1OQ9kNpJt2nR4CKqkgEPEcAace1snjjInXIpCQZcH9K2eVeIcQzzvxNeClCi68gLKggKDiJRicw8tEyqGOZUHnLODl+C6OiIiIiLg+4vdwRERExLU4E4ljZSfCab9DiNvttrrdrjqdjmq1WrBbQ1gh1OzoLxaLsFtMLToig+9mexCcE1y3Q7uwAbnz+u3hcBiEDCdAEKX1eq3Dw0Mtl0v1+3099NBDIc+AHXeuF7s8u8bMCcQQQgbJHQ6HgTRBjtwaLm3LRRAueM7D8XyX3UtAfHd3uVyG0oL5fK7RaFTo0uA7zR4a6CKBEzXILwSYLhL+Hg98nM1mOjo6uiZAs0wwvYTBrfOUajQajUA2nRRzrdjyJRVElDRNNRgMCsGEvmY5LyGMfq2sP78vvBexSNo6EBBkvBTgNKLOawDn9gwQJ/2sNY7l4ZseplgWOri/XAPz4aU7OGcYL2uU93voKtfhj3vIo69Bd2uwlv2z6MJieX7LnTskBUGMa6Kcg3WIKyIiIiIiIiIiIiIi4nScCUGhvHuOlb0MyCm7y0mSaDabaTweazKZqNvthlr9+Xwecgva7XbYST88PAw71JQGYJmHdHoYIbujXk/vu/jtdluz2UyDwUBHR0ehvWF55xNy4i0U3cLOuXgv7oDpdBrs8pA6Sig4V7vdVpZlodMAc8U4IfRuQ2euGRvzTTmHdyDgveQa0OGCx3Bk8OPCC2MgzFJSqPfnviMKEWoJISw7CyCSBBeWyT7nhDiWAwWlbZeQbrcbAikpE2k2myFjw8kv80ZYpOdf4Gqh1MNbLpaP5R0aGAtj9JIAPzYEl1Ibz1XAkYDrgGMjCuHc8B17HDTeUQMHhdv+3fHhOQOQfMp6nMAjPuDYcdeHZzC4E8FdN2WXCud1N4eHTbpwwPn4TJUf9893OYuCc/j3jwdARkREREREREREREScjjMhKEgKu6fsnLoVHPLTaDR08eJF9ft9dTodjcdjHRwc6ODgINSPt9ttTadTDQaDsNvtbgZ2HiFakC/IiO/Ucm5IiSSlaao0TQsEjpIGJ5q8H3IJCaM93kMPPaQ0TTUej8O1Qe4gxLR6dCJKa8jFYhF22b0NHsB27w4BCDltNmu1mobDoSaTSbC7s/teLrPwlp5cO7vtTvY8GM93hL3G3cMlIc1OFH0d+PVwD7l+rqnb7RYcFmQdcG8h7KwpRA7CE5PkOMwRIQpSzPVAKpvNpjqdjobDYdihh5B6/T0lIoyZMTE+DxQFLgBI2yBBadt61F/r88IPRNhLHXBnuNXfHT/MKfNSFmAYMz/MGeuCUgx+Go1G2Pkvl16QS8LvLnaUnSbldU8QJwKKCz6r1SpkRzD3rCVEL3fk+HM4iDgHIqUHN0ZEREREREREREREnI4zISi4fdlb0LndOk1T7e7uqtPphB30K1eu6MqVK6FNYrvdVq1WK+yGU9YAmaGOHJGBsgjIuRMZgvYIS0RcwD3gtnxp6wRoNpuhO4MH8ZGb0O121ev1NJlMNJlMQslDkiShBANHAv9lPqTtDj/XTOgfAkq9Xlev1wvdDtjJhTC12+2QAyBtyxy4Hq9flxRcEJPJJFwnY/fOC54/wDXM5/NCyQbX4SSUe8R9cqu7B2OuVqtCqQEk010SiAkICYgq7gSQFMpfcLy0Wq0wHneIeKaFOyGkrcDDOgOIGU7QR6NRKKtI01SSwtpzccvdFdwb/st9oquEu06cNLsTgNeVgwpdvEEcKOcvsPYQHFyQw4XA6xEa+By7KwOngQsevJbX0DaU32kb666PcmkHuRSMG7cIjzUajUIZDp+t08pREEJcTODzHhERERERERERERFxOs6EoFCpVNTpdAIxOg2QrXq9HgLlSHyvVI7bJPb7/dDxAMcAoYuQXyd1eZ5rPB6HVnaQDCdEHgrn6e+Swm4opNhrul1E8JZ9/X5fe3t7oQMDIgLv41yQN4ghTgjINeUdvG44HAYC2Wq11Ov1Cg4Lz0GAVC0Wi2CBR4RBBMDhQGkDY+H+4GrgdRyP3Xg/lzs86AYBEebeY1X3PAfO5208EZ/cbo9oU96Jd3KLywLBaTweK89zdbvdcBzIZLm0wPM2IMaEPfquursjfBdf2raZJDSUOWU33btE+Nywzti19/vonw13AkDwvR0n80EgZ1lUcPKMiFLOumAsLsyUXQ+QdmnrYPFwU8oZ/J7yGSGzwluoMjf+2fN8Dxee3IGCQDOfzwtCGI4hb6FJIKlfu6+XiIiIiIiIiIiIiIjTcSb+WuaPdzoFsOMP4YBYQUbG43HITmg2m7rnnnv08MMPq9fraTabhd1gujhgZZeOWxJmWVZI+Pc2duX2cm4lJ9yRHVRyBiBZvotMKCPXwfilbQnAbDZTr9dTq9UKxIsxjcfjQjYBuQmIDpICAUYYkBQcCWmaFsoHILjeJeHo6EgHBweq1+vB9cBOMxkT7AgvFgsNh8NwLZSUZFmmbrcrSaFrBNfM7ri0dXsQJullBZQG8FqIMXPigFwTrFhO5/dgQ9aWw4WRarWqNE3VbrdDKYl3D2CuIbReX08AoWdqQGDdWl92rdDZg+vi+BBaHCK+Tvg38+MBk8CzCRAVuAZfg4y13BGD4zpR91IA7gnvYf3i5uCY3EdEsbKY4ON2IcRLExCI+Lx51wkXSFjbZdeIz4eHR/pn2dcH88Q1+dotB8RGRERERERERERERGxxZgQFD2Hzx9hVJDRvsVhoPB6H3cxer6fd3V21Wi0tl0sNh8PgOMCW7WGBzWZTWZYVjk9JgNusK5VKcEKUA94QEvhhV9oT6cv12uxk4wSASBIueXh4GEQBju/H4zHG7LkEuCrSNFW/3w/zQYkAToLd3d3g8BiPxzo6OipYzRk3ZK7X64WSilqtpvl8HuaXkou9vT1JRTcBu92QRSzm///2zidGtvQs78/XXf/r1N/u9v1recyMvTARMhayIiVCLFAAbxx2ZhMWSGQBUiIlCyMkMAsWQUA2kZCMQCZRghUpibCyComC2ACOE8ZmHDNhyFjK4HHP3K7u+tNVXV3VdVh0/b56T93ue+dO7q065XkfqdVddavOec93vvPpPs/3vs8LSbXGmjajA3KHJwXjx/E4DmJHuVyOhJt7zTySVqUcZJBAcunG0W63I5GfTCbR1NLW10src0cIKdfAmHP9ZCyQzm+7NyAmME9tWQTp9nzPZj/Yzh/WNwCxolAoxLln/R64p+uCDIIT5N/+uyXqzF+uzc5lKdtO0Xpo7O3tZbqacF/tcyatxEKOS+x8h64UN4kFFuulKOs+DfZ8VpyxnhZ8ZzKZxOffXrfD4XA4HA6Hw+G4GbkQFOhmYAkzJJ1U83q9nnH/h2iScWBJNgRSWpFKXPFtDbukSCj7/X70M7Dfg1iSSQC5py0lMUIQb4qBev1isaherxcJ8oMHD1SpVDQcDqMRorQipzYOKx7YcWD8isVivL5arRYFkn6/r8lkEknyfD6PnSOs27913i8UCkqSRHfv3lW73Y5ky+5AQ/ZKpVIk6OstPK0gAlmcz+dKkkStVivTOUBSplwArwvbJcC6/CMw2LaPdCQYj8eZdHpIJ90MEGAgsowJx7elLJKiFwPEE8Fqf/+6jWkIIWZn2G4CUtbY03p8UFZSrVYzWTS29MBmQ6yX1BAb89OWCRCX9QggLuY7MXIOrkdSxtgRwm3HF7HA3h8EHSum2cyTdZ8D69VAfJKi54Vt62nvoy2fAdakcb2DBBlOHINzW+NOsiIQinjuPDvB4XA4HA6Hw+F4MnIlKKy3b4RA4Htg05+llZmctEplJxV9nZyS0l8ulzPHt8TbEk+OBznGs2A6ner09FSDwSDjjs91UP8O6ZrNZrFbg92xTZIkZlz0ej31+/3H3Oghtnac1o0hES7W3fmHw6F6vZ4Gg0H8DASTLAlL3EgztwaGkF1ptatLtoX1K0BQWCwWqtfrkXxbUs81lctlNRoNVavV2GbT1tPbnXh7v7hXtnsEKer238kasS0zaYVJe1GuFQ+NNE0z5Q6QSUs+rcmkpEjAIcm2fSMiAue3ppO29SJdI/CpsL4B1kzQdttY7wzBvLIiy3pcZOuQmcBzwTzlOplvzH0EEuaJ7cZgswJs1wR7ry2Im3vNNdqSB0qUEK44js3+sYTfnhvhbT1Dg/Iaey/t/LFizLrppo3b4XA4HA6Hw+FwPI7cCAq2Jh3YtnLVajUa6LHTblP1IZLsaEI+ERPsa0u2ptNp3MVvNpuxltvu9tJholAo6Lvf/a5OTk5iSj5EB68BGz9mh7aOnLR2Wgeenp7q+PhYJycnkczZ2nau0xKharUaa8LXzerwWuj3+xoOhzo/P48dDNi5Z0ffjoMldmQ+QBIhl4wf5RiktzO+xWIxtqOEjHJMxoUyCo5DqQT3mHFEFLLmgZas2933arWa6fRABgfHKxaL0XODtPZyuRzFFe45hNsaJiJi4d1ByYU15rSdLYDN0JAUj0ONPj4XrVZLs9lMo9EoYwjKvLX3f53crmcCIMBYc0XbIYHvkGXDPUeA4F7Zcpq9vb0o6rCDj6iFGME945gWiCHWNJIsIJtJgBGmFfxstw+uk7lhM5n29vaiN4cVJBlDG7ONyxqe2ucLuCGjw+FwOBwOh8PxZOTif8wQOJv+zH/wK5WKOp2Ojo6O1Gw2484mu40Y4UF2IcQcw+7wQvIgr9VqNdMpAoEB0kmZRavVirv4lArY80srfwWbAbBeL75YLGL5RrPZjA70GDASB+PBLjm7pvgGkCJP1oXdtSVzwprzMR6UKkDabNcAm95+cXGho6OjmDnCrrwlupZIl8vleK8ot6A0gN1zyBnEejQaZQQFiHC5XJa08k7gt905Jj2dMQkhZDIPrA8Ex4M4kppvjQbZWeccttUlogqC1TqZhgxfXl5mhCCIO2UGZAZMp9OYLYDXxbvvvhv9M6xYsj52t+3+88yQCbHu6bEuFDG/GWeukQwZxD3uCdd3cXERM2tsWcpN3hL2vDyjPCe0c7QknmfTigbWUwUxxbZR5fmz890ac1LegnjG5233CeaWFQOJm2wlh8PhcDgcDofDcTNyIShIK2d/dmOpy753757u3bunJEnijjjEDeIBaYC8QGatuz6Et1wuq1qtxlRzCDHfs+QaEQIyCAEulUqZFHBes+NJLLZOnV1uSDO7+IghEFxgCR8p/fV6PXY34PjWpX4+n+v09DTW4jcaDe3v70ezyWazGbsMIAzY1Hfbvo/sCnbyZ7OZ+v1+FFPwlLD+EQgA1q2fjAyEEsg5XTIQO/DCgNjRPcHWx0sr0z2OC7mXFFP+p9OpGo2G6vW69vf3dXJyouFwmNmltmSU18SIKSSvIabcP7qIQOAtSbY7/IhhCEC0KMXHw7ZK5Z5hNsouPkIAmRSSHhORmC8ICTYjBjGL49vsHsYWQcX6I/C82IwgBADmD+UUZDzwLCCm8QzabB9bjmE7WyA4WHPFdQNI7j3PxU3PCvOOMUD0oYsH423LNm4zfrTihcPhcDgcDofD4XgcuRAUIGGWfELG7t27p6Ojo+j+jyEeRBrCst4WDqM9PAAKhYLa7XbMOoBYWwPB9RZ3iA04xA+HQ11cXERTR7sDXa1WM7uZHJdd8/V6dmnV9pHvW58Am03Bb4hroVCIpJrxw6uB1O9GoxFFDNLsq9VqJIf4D6Rpqmq1mjEADCFoNBppNBrFcRwOhzo5OVGhUIidJCCWZCUQuzWShBhyT2yNPjvS9XpdSZLEDAiyBciCYBwhg+sp6nanmfeTJIlEFSJv21Ry/2yGCR0TbLYGu+4IOJRWtNvtTHmBNS3kNWU6zA0I9507d+L7x8fHma4kZBEkSRLvc6/Xy8wrMi+s+MVcWM9sQdyypoTMb+YbggljXCgU1Gg0onBFeQ8CABkgjCXZNYgFEPb1sgTr84AYxP2z91xaZSRYgs+8tf4KXIv1b7CmkRzL3lOu0a4hnMf6SJDV4HA4HA6Hw+FwOG5GLgQFSZG4kR7OLi7p+aQws0tsCSIEH1IAObKklHT39S4B1miQH8QA6Zo8sZPe7/d1dXWler2e2SmHzPJ9SD+eBcQGwbXp8LbdHp+zJnOIBYgR1KvbGntIHXX4tmsDxN6m449Go2gCic8ARAtcXFxoOBwqTVP1+32dnJzo4uJCrVZLzWZTtVotkkjbupBMDsQN7h0p5tLKd4Brt236SEdnhxwxgXtAVoAlxHhv8Jo2jBcXF1EA4Lzcc5sdUigUYho/IgtEk2wBxALmKSUzZHNYIYHfiAbskO/t7anZbOrOnTuZLgzW9PDq6ipmz0DOrfBEJof1QbA+GNZw0WYLSIpCnO34QQePdc8QslvIHLAlIggFSZLEkhjKeW4i7fzNaysAkM1CfAh41t+AMbX3cR08++umkXSNsCU4iDfMS67PZu6wfpAp4nA4HA6Hw+FwOB7HU7ffQgi/G0J4J4TwmnnvCyGEvwkhvLr8+Yz5t18IIbwRQng9hPBj7yUICAikEEGh1WrFlHtq7iXFHdXLy8tYt788t6SVKzwkHcLJZyGk7DpDOiAit5k+QnwgpSGE6GtAmjtEy3aLgLghivAeO/iSIvm310Aq/Gw2y5RusJNsd9M5Px4QdK64uLhQpVJRs9lUu92WtBIUbBcLW5duxY3z83MNBgOdnp6qUqno4cOHOjo6UqFQiN0rEBDYqeb8kFquT1Ik75SfQDQhyLSyZHcesmt3vCnxgPhZjwxJ8diQW+vzIK122Ov1euzeYTNgbC0/ZRL2u/V6Pc4XK5yQsYDpJmU6xFwqldTtdnX//n11u90oIEirXfa9vb1Y2oIRoqSMmEAZAse24pdti8kcsdk5zHVARgP3AaPIer0uSRkRiHPxWVvWYsUDBA77vNl7jbCGoMN8IOPBlmBYw0nisMIQ12AzUbgODELtfGYOrmct8MzxTJINZFvMbhubWIsdDofDcTt8HXY4HI7H8V4yFL4k6V9J+tdr7//LNE1/3b4RQviEpM9J+n5J9yX91xDCx9M0vXrSCWynBEgAGQQQWv6jTw06/+m3LROtCR072exCNpvN2OoPgoIfAL4EkFSbQs57lDtYMsYOMNkKGABSh289CjgW4gQEEtJpHeoRNNZrz23qOv8GgT8/P48tEPk85PH+/fuxTGE8Hkdx5CaiRtu+Uqmk8XiswWCg4+NjDYdDvfLKK7pz545KpZLefPNNDQaDKHywC404tFgsMl4RkGcIH4SQn5vKTSCnjDWxsnPNWHMP0jRVq9WK6foIHGR32EwKS17tcSTF+2g9EogTscvusltSbzMO6ErCcQ8PD/XSSy/pwYMHmkwmOj4+jvOPseE+EA9CTL1eV7vdjkIL32M+UsLCmBEbQpptF8lcZMxsnMViUfV6PVO6ICkjXqwTdPteqVSK3hVh2fnBzm2byUIZD/OPZ5PMELIeyuVyjIV7x7OH8GBLaBCtrAeGnUPFYjHTFtOON9fKdeWs08OX9ILXYofD4XA8EV+Sr8MOh8ORwVP/t5ym6R+HEF56j8f7rKQvp2k6lfRmCOENSZ+W9CdPOUfMTLC7iPv7+zGlGkd5+5lKpfJYCz9q/hEIIA4QD0iU3Zm0Tv2j0ShTL29JLLvnlpRZt3uOhYiArwHtBiEuto4fMcLu4N9U7351daXRaBTPu54yTvZGkiQqFotxR7pWq6ndbuv+/fvxGiFc7FhTPkK2BeQR34TRaBTT0ampHw6HMR7KBLhmfBUgizbtnl10iDfjYHe+pVXqOjvXCDEQS3vPuX9cE/4J/EAiuTd07tjb24sk/Pz8PJYDkFVhhQJLdpkbCFecm/dKpZLa7baq1aouLy+1WFy3sLx//77u3r37mFcEWTjMT8w/yQBIkkSdTkeNRiOOM88Bc8N2NrFlKLVaLQoGtgTHZiZQVmR9DGxJDWNBqY81gpQUs0EkZQQXm11is4V4Fri3XLv1BkEE4Bmxwg9ig/U7QBhAZOQZpfsE/hU26wjhzWZzWHGELIW8YBNrscPhcDhuh6/DDofD8Tj+f7bffj6E8I8kfU3SP0vT9FTSA0l/aj7z1vK9pwJSQ2o/O6aIAvP5PJOGXC6X1e12VSwWNZ1OIzHBR6BWq2XIvXWepy6fnXNSyCeTiU5PT+MOK8IEBMPuHksrssJxKL2w5JrSjPl8HgkUpAbCLWVd6yFMttvFfH7djpLvWbJOWjqp9tVqVc1mU51ORy+//LJeeeUV1Wo1DQYDDQYD1ev1DHGGZFvCBbGdTCZxF7tWq8VSiV6vp7OzsxgLde+TyUTFYjGOBWNArMDW8tuSBHa1F4tFPGehUIjCEsfiGJDner2uSqWidrutJEli+cJisVCn04lklR14yD7XT+YEKfqkyrPzvb+/ryRJNJ/PNRwOo5cCZRNcK9kujCU75p1ORx/5yEfUbDZ1dnYWs10qlYpGo1GmXWm1Wo1zlXNg2mnLC7hPtkwDM0dJ8Vg2m8KOHXOG7AX+XiwWOj09jYIRIgHZJpyX0hNrbGnPt27eyPOSLo1A7ffJUGC+WMHBZlPwDHJ9XLsVB+y14slB9pMVkWwZDO08iZOY7JzNMZ7rWuxwOByOZ4avww6H4wOL92th/luSXpb0SUlvS/qN5fuPu6VJ6Q3vKYTwsyGEry1/YkaCJUrT6VT9fl/j8TgKAe12W4eHh7pz5070BGCHElO/5fEjybC7lOseARBb2spBXKynAbui1uNgMploMBio3+/r0aNHGQLLd4kHggT5tinVEGJIKBkW1NzbzgS2dhyhZTweR0EFEaHb7erg4EAPHz7Uxz/+cT18+FB3796NQgKme2QcWNM8yk1sK8NGo6Fms6n9/esWlL1eL5ZN2EwLYk6SREmSRDHGGkySCWFT6PkOZFRS9H1A7LEZG7YtINkAlDlAEtM0ValUit4RjG+z2YwtL/f29jKmh9VqVd1uV0dHR+p0OjH7pVwux++R0YHQs25qaTtxICR0u1299NJLOjo60tXVlQaDgc7Pz6NoxK4988tmBjQajRi/pIzQZMtL2OFvt9vqdruxmwnHZ+4ztyVlPA1s+QFlMdYINEkSSYrP0U2lADzDCDQ2O4TniGfDZvcgUtguEmQ5kH1j/RSs0MZrhEhJmePyXe4Rfgt2zbFiBXOZubYDeK5r8UzTmz7icDgcjtvh67DD4fhA431lKKRpeszfIYTflvSfly/fkvRh89GHkr5zyzG+KOmLkrS/v59iOAdBmE6nGg6HkbyQlZAkidrtdtxJHo1GGW8C23nA1udzHEi6dcO3ZnbSatcfIk+WQTCtF0ejUSRei8Uimh/S+g+DRIgQpQfWFK9arcZaf2rWbdo5KfXWJ2I5dtE3gZ1udt5Jta9Wqzo4OIhCAmMA6cWHgl1oyh0QExiLZrMpSXG33tae23RxOh/Y7gvWBwKyyjXzOk3TjCkm6fx8jl375VzLkD92nSGfNlvi6uoqiiClUknT6TSWQyCMWLNMxo8yEUnx3tXrdbVaLVUqlfg9vALa7XY8Pp4L1WpVxWJRSZKo2+3GONOlyaW9HmusiWhAFgLjZsmw9QtgDlMm0Gq1dHh4qL29PZ2cnDxm2Mg9YUwYf9vuFHNM7icCkH1GLAlfL1HiWogdsY64Ea/s7j+dJWw2w2KxiM8X84zxscIFc3O9UwvXMpvNorCCaaOdc3Z+keXE/MLbJM943mtxM3R3RklxOByOPMDXYYfD8UHH+xIUQgj30jR9e/nyJyXhdvsVSf8uhPCbujag+Zikr76H48W0blvmQF27dcm3u/l2FxHzRlLRMYWDeKzv+NssAhziIVvW1HCxWESCxS4oBo12hx5RgZ1Ruh6Qug3JtzX5kObFYqHBYJBprQjRW/cVQDihI4LNKoCoQxjZZWc8iRuBBvLItWJGaD0O2JG3LR1JD4ds2t+Mg239SHq5pOjoLymWU1hTTZviz7hCArnfnM/6NEDmSd/f39+PgsJkMoltHBFXyAhgvNY7DUBK6/W6Dg4O1G63M3X8HKtWq0VBhTmH8HR4eBi7OYQQNBwOo3Em50C4shkAFxcXsX2ibQeJsEWpBuPD+RF/+Bwii/USYT7yXWtmOJ1O49+1Wi1mtEiKmUI8j9YwkufyJgKOoGDJP+PBs0Omh6Qo2PFMUoZisyus7wbHsh1TGLP5fB7nCWIOnhTFYjHOZbJZ7LUxPnkXFJ73WuxwOByOZ4Ovww6H44OOpwoKIYTfl/Qjkg5DCG9J+mVJPxJC+KSuU7e+LekfS1Kapt8MIfx7Sf9b0lzSz70XN1tIDjucy2PFmnRJkaxZx312s6fTaUwj53iQC3aTbW08xATRAiLPbjCxlMtlzWYzjcfjTCcIdqntjipZB5BEfAAQMGxqPDuk1IyPRiMNh8PoxcAOP9dL7Tqmf3YHGKGEsgRIdq1WU6fTibuw5+fn0UgR8gapJjZ2cUejUdy1Xy/hQPCgGwRlKLZcgywLiCbHSdNVVwtECWlFSKWVL4JNi7e7+AgftDXEvO/g4ECNRiNmH9huAVwLQhLCD2UPlE7UarWMKIBhIWUEo9Eo7pQjBt20U07rRcYFPwpEK8aU+wnBnc/n6vf78VjMca6BcWBOM9eZm+VyOQpZGGOWy+XYcvXq6iqWQpD9w7Nln8VGo6EkSeI5xuNxxt8BwQ2BwooJVuSzZQ62VAMRzPo48JvxpHQJjwrGkOOveymsG5uStUPJzGAwiOfAT4O5ast97PGZG3nBJtZih8PhcNwOX4cdDofjcbyXLg8/dcPbv/OEz/+qpF99liAgB5aYQSQhrVYkWJ4nY6hIuYD1OQC1Wi3uVkOshsOhhsNhhgBDfiHLkiJBOzg4ULVa1Wg0imUClghZggS5gahZYmNb32Ei2ev1MnXd7MZKiu0tIZK8xy4zxL3b7WZaY1ohgm4NJycnmkwmklbtJtmdZVzeeecdzWazuENOtgKETlLMBGAHu9VqqVAoaDgcajqdRn8GylboLsF3GZN6vZ6Jc/3eW1NNXjcajUhqydKAAFcqlYy7P54YZAzYNHreg7RDyBlPYqlUKrEEwqbs24wOYiQjo9Pp6ODgQNL1zr7tMmJFAspVKC2guwPiDGN+E6mFfCMuVatVFQqFTEkGJpIcgwwWBBV8IxhnxAnKj8g24ZiIZzyPjNF69oDNDmIe224JiEdWFLBEnvlJ5gJZMrY9KWUPzE/GwbYI5ZxnZ2cajUZReEFQQNgji8F6UfB82myQbWMTa7HD4XA4boevww6Hw/E4ctFknd1NOiWQ3i2tyDjk3BIZSKsVBGwrQpu2XqlUIrGzafmkx/ObDAVJGg6HOj09jd4Os9lM/X5fFxcXGXNF25LS7q4SMwQH0QDST2kEdem21h6iNB6PdXl5GcstIGrsrrPTzs4zxLjdbms2m+nRo0c6Pj6OpEpSJPrT6VRJkujy8lKDwSAaBkKYKYmwhO3w8DCaBOJVQQYCmSZcLxkae3t7arVakUBeXl6q0+lEkQeBh2wDRAAEGFuyQkvIXq+nyWSiJEnUarViC0wEE8hgWHY+wN2fLIN6vZ4x3SyXy5GUk3aPlwMZFcw15hckl3aMzWZTH/rQh3R0dKRCoaCzszONx+M4dggelDUgHljzyiRJYgkM85WyEHb5Kd0ho4e5YUUBiPNgMIhzhA4OkHIEE7JYeIakVekFvgl8HjHHijzEzq6+FRxsa0xp1cGE55uSCM5hszBsJgOiivVHIduHceGczJNisah+vx+vjYwNzovJJmOJuSnXZOe9w+FwOBwOh8PheBy5EBTYiWWX0NZcQyCAzSRotVp69OhR3H216e0cV1qRFtvjnp1qRAHIUqlUijuyvV5Pl5eXkQxTGgGBg2iOx+O4A07mxPpPCEHz+TyKG6SiQ0bZrec62H233hH2emwnAY5XLBZjq8V6vR6v491339VwOIzfPzs7i94JtE9EuCDGxWKh8/Pz2GFjPp+r2WzGDhIIA7YLAzv9mF7u7+/HsgtILFkCiAsYQ1rDRVv2YHeL2SHHi4DWku12OyM6ISYwT/b392NrRsQDPkdWCN0MuLeWSA4GA00mk2gQSJkNJJjrbjabajQa0diS79EpgqwJ2kZaYcAKWpQ34Atgu0hIq3IT5nO5XFar1YpeEcwj5jzgb4QSni3mgvVsoHsIcfEMWtNUnhsp2xKUZ5esI47Lv1lTSutxYgW2y8vL2GWDNcEKIVyPFZ9YB/je+fm5zs7OMlkzVnRAZJGyviHESIaUw+FwOBwOh8PhuBm5EBQg4hADUrIhD5ZIWX+AcrkcdzMt6YB8UeONIRuGdogKEFiOYVveUXeOr4JtSdlqteIO5mg0ypxXWhElhI3FYhFJM0QG07mrqyslSRKvDeGC6yHtO0mSTOo69flWbNjb24stGwuFgi4uLqIRI7vctp4fY8bBYKBer6fZbBbLB9hBt10dSA/nniCw2Br2RqMRd8HxGUB8kFa7+tZscjQaZQQUK9hIirvZ3B+EANo51uv1aNCHySY70pbwktlBJw5KAzB5hIzaHXgrtEyn0zh/rHDFnCSW2Wymk5MTjUajuFPOOE8mk1iKYX0dILDcH8YcEcV2DLGmg/P5PN5vWx6EHwbzEmGDucS8sW0cuR7Gy5on2rmNNwVmknyf763DlobwGQQ2TFRbrVbM7lk3QuSecn7b3cKKdbYchaybi4uLeM12rLnX1mdjXcxkfXE4HA6Hw+FwOBw3IxeCArAdDCDTELlOpxPT+tmhhbjOZjMNBoOY1t9sNjMeBrj6Q7CkFenn321ru/F4HFOzm82mQghRYKB15XQ6zdS3s5MKgSNVnrp7SdFzADJOKjYGkOz8TiaTSKAwILTdA5IkUaPRiGQYsQMPBYgT14x4Il17QjAOxGJfU95hgd9Bt9uVJJ2enkZxxV4f5SrWHM+aVkICIXSkmUPa2Qnn3tjdaEgo4kK5XFan01G321WtVtN0Os2YW9pOBlK2uwAlH9bM8OjoKMbP/bfdIJiPpVIpmitScoNJIyQeI0/IPT4G3HdruMluPHOH65BWJTPEjJhga/tteUmlUonEmHtOqQ5CFMaVjCu+BGS4WAHPtgW157aZMjZO7q01W7RtPMF6m0eyC+y12DIPxBSbHUEpBdknCDQIB71eL5bvdLtdNRoN9fv9eJz1zAQrmFAugijncDgcDofD4XA4bkawRodbCyKEdyWdS3q07VjeBw7lcW8SHvfmsauxP6+4P5Km6dFzOE7uEUIYSnp923G8D+zqHJV2N3aPe7P4oMf9QVqH/f/Em4fHvVnsatzS7sb+QtfiXAgKkhRC+Fqapj+07TieFR73ZuFxbx67Gvuuxr1N7OqY7Wrc0u7G7nFvFh73Bwu7Om4e92bhcW8euxr7i45770Ud2OFwOBwOh8PhcDgcDsf3LlxQcDgcDofD4XA4HA6Hw/HMyJOg8MVtB/A+4XFvFh735rGrse9q3NvEro7ZrsYt7W7sHvdm4XF/sLCr4+ZxbxYe9+axq7G/0Lhz46HgcDgcDofD4XA4HA6HY3eQpwwFh8PhcDgcDofD4XA4HDuCrQsKIYQfDyG8HkJ4I4Tw+W3H8ySEEL4dQviLEMKrIYSvLd/rhhD+MITwV8vfnW3HKUkhhN8NIbwTQnjNvHdrrCGEX1jeg9dDCD+2nahvjfsLIYS/WY77qyGEz5h/y0vcHw4h/PcQwrdCCN8MIfyT5fu5HvMnxJ3rMQ8hVEIIXw0hfH0Z968s38/1eOcZvha/kDh9Hd4gfB3eeNy+Dj9n+Dr8YuBr8Wbha/HG497+Wpym6dZ+JO1L+mtJ3yepJOnrkj6xzZieEu+3JR2uvfdrkj6//Pvzkv7FtuNcxvLDkj4l6bWnxSrpE8uxL0v66PKe7Oco7i9I+uc3fDZPcd+T9Knl3w1J/2cZX67H/Alx53rMJQVJyfLvoqQ/k/R38z7eef3xtfiFxenr8Gbj9nV4s3H7Ovx8x9PX4RcXq6/Fm43b1+LNxr31tXjbGQqflvRGmqb/N03TS0lflvTZLcf0rPispN9b/v17kv7h9kJZIU3TP5bUW3v7tlg/K+nLaZpO0zR9U9Ibur43G8ctcd+GPMX9dpqm/2v591DStyQ9UM7H/Alx34a8xJ2maTpaviwuf1LlfLxzDF+LXwB8Hd4sfB3eLHwdfu7wdfgFwdfizcLX4s0iD2vxtgWFB5L+n3n9lp5847aNVNJ/CSH8zxDCzy7fu5Om6dvS9USU9KGtRfd03BbrLtyHnw8hfGOZ/kXKTi7jDiG8JOkHda0Q7syYr8Ut5XzMQwj7IYRXJb0j6Q/TNN2p8c4Zdm18dnkt3uU5mus1wcLX4c3A1+Hnil0bn11eh6Xdnqe5XhcsfC3eDLa9Fm9bUAg3vJfnthN/L03TT0n6CUk/F0L44W0H9JyQ9/vwW5JelvRJSW9L+o3l+7mLO4SQSPoPkv5pmqaDJ330hve2FvsNced+zNM0vUrT9JOSHkr6dAjh7zzh47mJO6fYtfH5XlyL834Pcr8mAF+HNwdfh58rdm18vhfXYSn/9yH36wLwtXhz2PZavG1B4S1JHzavH0r6zpZieSrSNP3O8vc7kv6TrtNDjkMI9yRp+fud7UX4VNwWa67vQ5qmx8sHZSHpt7VKy8lV3CGEoq4XoH+bpul/XL6d+zG/Ke5dGXNJStP0TNIfSfpx7cB45xQ7NT47vhbv5BzdlTXB1+HtwNfh54KdGp8dX4elHZ2nu7Iu+Fq8HWxrLd62oPA/JH0shPDREEJJ0uckfWXLMd2IEEI9hNDgb0n/QNJruo73p5cf+2lJf7CdCN8Tbov1K5I+F0IohxA+Kuljkr66hfhuBA/DEj+p63GXchR3CCFI+h1J30rT9DfNP+V6zG+LO+9jHkI4CiG0l39XJf2opL9Uzsc7x/C1eHPYyTma9zVB8nV4U/Ga+Hwdfr7wdXiz2Ml5mvd1QfK1eFPxmvi2vxanW3D/tD+SPqNrF82/lvSL247nCXF+n64dMb8u6ZvEKulA0n+T9FfL391tx7qM6/d1nZYz07US9TNPilXSLy7vweuSfiJncf8bSX8h6RvLh+BeDuP++7pOF/qGpFeXP5/J+5g/Ie5cj7mkH5D058v4XpP0S8v3cz3eef7xtfiFxOrr8Gbj9nV4s3H7Ovz8x9TX4RcTr6/Fm43b1+LNxr31tTgsD+pwOBwOh8PhcDgcDofD8Z6x7ZIHh8PhcDgcDofD4XA4HDsIFxQcDofD4XA4HA6Hw+FwPDNcUHA4HA6Hw+FwOBwOh8PxzHBBweFwOBwOh8PhcDgcDsczwwUFh8PhcDgcDofD4XA4HM8MFxQcDofD4XA4HA6Hw+FwPDNcUHA4HA6Hw+FwOBwOh8PxzHBBweFwOBwOh8PhcDgcDscz428BrDmm1lGTK60AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 371065 0\n", + " Min thresh = 1000\n", + " Not Sliding\n", + "\n", + "\n", + " Winner = Not Sliding\n", + "\n", + "\n", + "206s_iimage_1499268364374_clean.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADDCAYAAAAya0IYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADed0lEQVR4nOz9eZhkW1rVj68TkTEPmVl1h7490TMi0DSIyKCANpOCIKLYoF8RkEYQnFHhiyI4fFEm+YmijUzKrIgi86wg3Q0N0kAzd9Pz7b51qyoz5oiMiPP7I/Ozc51dWX2HqrqVVfWu58mnMiPjnLP3PvtE5Vrv+663KMtSgUAgEAgEAoFAIBAIBAJPBLXbPYBAIBAIBAKBQCAQCAQCdx5CUAgEAoFAIBAIBAKBQCDwhBGCQiAQCAQCgUAgEAgEAoEnjBAUAoFAIBAIBAKBQCAQCDxhhKAQCAQCgUAgEAgEAoFA4AkjBIVAIBAIBAKBQCAQCAQCTxghKASechRF8bqiKD78do8jEAgEAqcoiuKNRVF8xON8b1kUxQue5HWe9LGBQCAQCATOF0JQCDzlKMvyPcuy/JnbPY53haIoPrYoip8riuKgKIp3FEXxDUVRDG73uAKBQOBuRlEUX1kUxe8WRTEuiuK3iqL4y7d7TIFAIHDecLOF2cc6X/xdHHhXCEEhEDgbu5L+maSnS3oPSc+U9BW3dUSBQCBw92Mq6U/r+DP40yR9bVEUH3x7hxQIBAL3POLv4sB1EYJC4CmHp9UWRfFPiqL4L0VRfNtJROrXiqJ4UVEUX1gUxSNFUbylKIqPsmM/vSiK3zx57xuKovjs7Nx/vyiKh4uieHtRFH/VFdeiKFon0a83F0XxzqIo/n1RFJ2zxliW5XeUZfkjZVnOyrK8KukbJH3IrVuVQCAQOD8oiuIDiqJ45Uk06uGiKL6uKIpm9rY/dfI5/GhRFF9RFEXNjv+Mk8/qq0VR/GhRFO/2eK5bluWXlGX5W2VZbsuyfLWkn5X0QTdxaoFAIHAuUBTFexRF8TMnn7OvK4ri4+13P1MUxV+1n/9KURQ/d/L9/z55+bVFUUyKovgLRVF8eFEUby2K4otOPpPfWBTFX3yy58vHGn8XB94VQlAInAf8aUn/WdK+pP8r6Ud1vDefIenLJP0He+8jkj5O0lDSp0v6mqIo3k+SiqL4GEl/R9JHSHqBpA/LrvMvJb1I0ktOfv8MSf/4cY7xQyW97olNKxAIBO5YbCT9bUn36ZjQv1TS52bv+URJ7y/p/SR9gqTPkKSiKP6MpC+S9Gcl3a9jUeA7n+gATgTfP6z47A0EAncZiqJoSPqfkn5M0gOSPl/StxdF8e6PdWxZlh968u37lGXZL8vyu09+fpqOP7OfoeMMr1fc4PneFeLv4kBCCAqB84CfLcvyR8uyXEv6Lzr+A/TLy7I8kvRdkp5TFMWeJJVl+YNlWb6+PMb/0vEH8R87Oc8nS/rmsixfV5blTNKXcoGiKApJnyXpb5dleaUsy7GkfyHpZY81uKIoPlLHH8yPV3wIBAKBOxplWf5SWZavKstyXZblG3Us7F4j0p58nr5Z0r+W9Cknr3+2pP+vLMvfPPlc/xeSXvJ4sxQM/17Sa3UsMgcCgcDdhA+U1Nfx37ursix/StIP6PRz9MniH5VluTz5G/kHdfy38U1F/F0cyLFzuwcQCEh6p30/l/RoWZYb+1k6/tA9KIriT0r6Eh1nGtQkdSX92sl7ni7pNXaut9j395+895eOtQVJUiGp/q4GVhTFB0r6Dkl/rizL33kCcwoEAoE7FkVRvEjSV+s4A6Gr478Xfil7m3/GvknHn8GS9G469j74Kj+ljqNmb3qc1/8KSe8l6Y+XZVk+4QkEAoHA+cbTJb2lLMutvfYmHX9OPllcLctymp3v6dd785NB/F0cOAuRoRC4Y1AURUvS90r6SkkPlmW5J+mHdPyHqiQ9rGOTGPAs+/5RHYsT71mW5d7J125Zlv13cb33lfT9kj6jLMufvHkzCQQCgXOPr5f0W5JeWJblUMclDEX2Hv+Mfbakt598/xZJn22ftXtlWXbKsvz5x3Phoii+VNKflPRRZVmObmgWgUAgcD7xdknPcu8ZHX+Ovu3k+6mOxVzwtMdxzv2iKHrZ+fhcfjLnqyD+Lg5cDyEoBO4kNCW1JF2StD7JVvgo+/33SPr0E5ObriwV60QB/gYdey48IElFUTyjKIqPPutCRVG8l6QfkfT5ZVn+z1sym0AgEDi/GEgaSZoURfEHJH3OGe/5gqIo9ouieJakvymJutt/L+kLi6J4T0kqimK3KIo//3guWhTFF0r6VEkfWZbl5RudRCAQCJxTvFrHJP/vF0XRKIriw3XsKfZdJ7//FUl/tiiK7om5+Gdmx79T0vPOOO+XFkXRLIrij+nYc+y/3OD5JMXfxYF3jRAUAncMTnwP/oaOhYOrOv6j8/vt9z8s6f8n6acl/Z6kV578anny7z84ef1VRVGMJP2EpOuZ1fxdHZdJfOOJ4+2kKIownwkEAvcK/p6OP2PHOhZjzzLp+h86LoP4FR3X6n6jJJVl+X06NsH9rpPP2l/XccbB48G/0HFU7Xfts/eLbmAegUAgcO5QluVK0sfr+LPxUUn/TtJfLsvyt07e8jWSVjom+t8q6duzU/wTSd960iECn4R36Pjv47efvP+v3eD5HPF3ceC6KKI0MXC3oiiK99DxH7KtE2OwQCAQCAQCgUDgrsJJhsO3lWX5zMd4ayBw0xEZCoG7CkVRfOJJqte+jiNk/zPEhEAgEAgEAoFAIBC4+QhBIXC34bN17LHweh33UT+r7jcQCAQCgUAgEAgEAjeIWyYoFEXxMUVR/HZRFL9XFMU/vFXXCQQcZVl+zEn3hgtlWX5iWZYP3+4xBQK3C/E5HAgEArcf8VkcuNUoy/JnotwhcLtwSzwUiqKoS/odSR8p6a2SflHSp5Rl+Rs3/WKBQCAQuAbxORwIBAK3H/FZHAgE7nbcqgyFD5D0e2VZvuHExfS7JH3CLbpWIBAIBK5FfA4HAoHA7Ud8FgcCgbsaO7fovM+Q9Bb7+a2S/sj13lwURXnyr1qtlnq9nhqNhiRps9lou92qVqup0Wio3W5rZ2dH2+1Wm81G9XpdOzs72mw2Wi6XKstSRVFotVpptVpJkur1uur1urbbrdbrtTabjSSpVqup1Wqp2WxWftdoNNRsNrWzs6P1eq2joyNtt9v0JUllWWq9XqssS9Xr9cpYi6JIX/V6XbXaqW5TlqU2m43KstTOzo6Kokj/5uffbDZprLyvVqul9zGvsiy13W7l2SYcWxSFms2miqLQer1OY+Z6tVotnYP15HesXVEU+f3SZrNJ68W92dnZUaPRUKPRSOtZlqWazaY6nU5aU9Zps9mkteU1zs8YmBPn4775uBgL8+KYWq2W1svPw7zze8R7yrJMa3rGXq3cy7Pe6/ef8bC+vI89wXjYR/le8vvj1/B7zbzZRxybz4c55+fheOaW/8t58vnk+4L5+Pv519fKf886+P3he3928v3tc+F54n77uH1POdg/Z90/zsHr8/n80bIs779msucfT+hzWJLq/V75vOdu9c5f79zSgQVuD3bfc6MH68vHfmMgcJuwVanffOQBNd4xrby+0FSrcnntfzp3Bp7QZ3F8Dgeuhxe8eKqa7tTH4M7Cb873Vf/d+P8yx1hXz/yb+FYJCmft9kptRVEUL5f0cn6GlD744IN63/d9Xz300EPqdrtaLBYaj8eq1+t6xjOeoRe/+MV66KGHtNls9PDDD6soCt1///2q1+t6wxveoKtXr6rRaOjq1at661vfqtFopG63m95zcHCgRx99VKvVSu12W+/2bu+m5z3vedput3r00Uf18MMPa2dnRy960Yv0rGc9S5vNRpcuXdLh4aEODg50cHCQiPojjzyi6XSq4XCoixcvajabaTQaablcarlcqlaraX9/XxcuXEgChCTN53Mtl0s1m03t7u7qgQceUKfT0Xa71XQ61XK51Ha71eHhoQ4PDyVJjUZD3W43EfLZbKb1eq3hcKh2u631eq3tdptI5WQy0cHBgVarlS5evKjhcKiyLHXp0iWtVis1Go1ExNrttsqy1Gw2S4LNcrnU0dGR9vb21G63NZ/PKwLOarXSpUuXNBqN1Gg09OxnP1vD4VCDwUBPe9rTtLOzo0ceeUSj0UhPf/rT9V7v9V56wQteoGc84xnabDaaTqe6evWq3vSmN+nKlStaLpeaTCZaLBZqt9vqdrvabDZaLBaSjgn2aDRKIlGz2UwChSQtl0sdHBxoPp+nddjZ2VGr1dJ8PtdqtVK9Xtd6vdZkMlFZlup2u2o2mxoOh+r1euk6tVpNm80mHYeo02q1tLOzo3q9ngQrRBHuGUQbItzv91WWpY6OjjSbzXRwcKCyLNXv99XpdLTZbDQejzUajVSWZVrDyWSi6XSqWq2m4XCoWq2m2Wymo6Oja0j2YrFQvV7XxYsX1el0NJ/PNZ1O0++Pjo60Xq+T2MNeRMxgTRuNRhI0arVa2kvSqWjRbDa1Wq10dHSU9gJClaR0vAtKiB3r9VqLxUKLxULr9VqtVkudTketVkubzUar1Urr9ToJg81mU/1+X+12W6vVSrPZrDKWfr+v9Xqt8Xic1qrb7aY9vF6vNZ/PtV6vk9iFgMBasPen06nm87mOjo7Ubrc1GAxUlqVWq5Ve85rXvOlJfAaeBzzm57BU/Sxuq6vnvO7j9Jz4e+WuxEd/z0h/58IbbvcwAoFrMNku9BtHdX3qf/0b+qNf8MprPr1eXf7k7RnYzcET+ps4PocD18P3/fAvqFtr3u5h3BP4oNd+koZ/8vW3exjnDj9R/tcz/ya+VYLCWyU9y35+pqS3+xvKsnyFpFdIxxkKRD83m40ODw+1u7tbISebzUaTySQRt06no263q8lkotFopFarpUajoVqtpvV6rU6no36/r8lkkoiCZx4sl8tEBjebjTqdjnq9ntrttmazmR555BHt7u5qMBio1+tpPp9LUiI+klKmxGKxUFmW6nQ66XzL5TIRmtlsplqtlohds9lUq9VK7/XINVHqer2uVqulVqul9XpdiVwTjYVM+e8hbxCo1Wqlg4MD1Wo1NZtNtdttSUrrMJvNEtlutVopKuuZEpwXwlev19Vut9Xv99OcILmr1UrT6TSJHOv1WoeHh3rHO96hixcv6r777lO73U7RZ4/KQ0IXi0XKGGAsR0dHae8QPYYUN5vNRA5Xq1Ul2kyUn7VDmIHU1uv1JJY0Go0kBkCea7VaEg4g6B5lz/Z0ep37BNn3CDr3vFarqd1up+yR8XisyWSSSHytVkuEuN/vpzVxMs+YlsulRqORtttt2ueLxSLtBx8v52edEKny9cozESDY3Cfey/u5R1wf4Yi5IvBwT11w4Pdk3rDXXChrNpvpZ54tMg3q9XrKVCHrxTMNEBUQlY6OjiriQrvdTp8z7D/26R2Mx/wclqqfxcPiws031QkEAoHrYLZd6dvGz9G/ft2f0LP+3K/r+Xrl7R7SrcAT+ps4PocD18M3Hr5Qn79/p8Y4AnczbpWg8IuSXlgUxXMlvU3SyyR96mMdxB//RKtrtZr6/b5arZZms5nm87nG47FWq5VarVaK/DspbrfbWi6XarVa2t3d1cHBga5cuaKDg4MU1e71eppOpynquVgsUko+JHkymejRRx/VYDBIBB1iCGGp1+tqNBqaz+dJBIHcUmJBtgLkfbFYaHd3V71eT61WK82ZrIeiKJIwgngxHo8TQYVcQ4QgVhzDORArILWXL19Wu91OJBmi2Ww2E2l18sV6SseEE4GAsZI5QGkK4ybLQjqNoK/Xa81mM73zne/U0572tFRmguiD+NJsNlN0GkIpVUsQvNTDySykEiLrKe5e+rCzs6NOp6PFYqHZbJZIJEKV3wNEF9aI+XiZwln710k4gkJeAsE52JOSUhbDYrFQq9VKcydrA8EDAQcSznxWq5WWy2WKvkP+Ke1hLVwggOx7yQPwUoCcWHvpDSKVpJTFIindC55P5sB1eTZ49ihhQOjxa3AfJKV9OJ/P1Ww203OIoIDwwnNLFsZms6mUDVGys9ls1G63k6iwWCxSJggZMHcontTncCAQCNwqfME73lcHR930828fPKDOR/++nqVfv42juuWIz+LATcEPvNcF/fYvPE1f94xX3+6h3NV4/dFEj/z2/RoqMhQeL27JX8tlWa6Lovg8ST8qqS7pm8qyfN27OoY/3okIX7lyJRELUsMhTBCJdrutTqej8XicRAFIgXScbj4YDFLqP8QMcjWfzzWfz68hEO12W0dHRymFHjFBOq15J0pMpgHnz9PeISQQmNVqpcPDw0To+/1+OjcRWY4l9Zr0e85NtJxze9YCEWrIMcLEYrFIx3k2Q6PR0GKxSBkbkEMXOBiLpFRCMJ1OE4l3D4eiKLRcLlO2CSDD5OrVq8kjo9VqaTAYJEGBdZzNZumcnANyyDwgzZ7+7yTbfSs8mu+p76vVquK74OUS7mnge4I1RrBxzwb2sZ+TFH4yHrxEAAK8s7OjbrebylL8/jYajbQ+RNL9uJ2dnbSevA8xiPIE1gdw33z/IHq4dwNzPXmmK5kTzIOfKcdhDREqOp3jGlBKaBBqEAUYAx4cefaJCwyIdOxt9jXPpz9riCmsIedBgPBn0ktayNLxMpY7FU/mczgQCARuJv7N1XfTd7z5/dPPFz5rofVb35Z+7uj3b8ewnlLEZ3HgpqEs9foPq+tjfuBj9SN/4Adv92juWnz5Oz5aL/hbr7rdw7ijcMvCb2VZ/pCkH3o87/XILWQHD4FOp6PBYKC9vT1Np1PNZjNNp9NEGskIgEAgKJAVcOHChZTV4OIAqc/Uya9WqxSpJfJPCvru7m4l6wBCB/nn/fgmMAd+79eUlDICer2eut1Tpd4JNKjX6xoMBqnkwNP/KRnw4yFiCAGNRkOTyaRSCgCpctHAo9WMPTe0I8IsqeITAdGfzWYpKo3AgXCAsDEajTQajVI2x+7ubio9oTbfMyDcPHIwGGi73erg4KAStWfsbj7oggJrhUiAuEDEG8JJ+QbrQsbL9QwLGZcLFKx7Xk4Asff0fFL2IeO9Xq9SJsH9h+yz1u6hgchwlomojxeRxDMoIOB+r9hDHMvccuRiGT93u920PxF+EKNms1klM8bvE/cGsc8FsNyfge/dH4IyIs+QYA8jVrBHu91uRQTzTBhEGq7NfbtT8UQ+hwOBQOBG8fqjiT7iJ/9W+vmhH9vR8LtO/zBf34YxnQfEZ3HgZmE7m6n+yR0991/9VT3j6Vf0cy/+b7d7SHcVXrea6//8wPvoWfr52z2UOwrnIp83JzdEcxEGttut+v2+iqLQYrHQdDpN5QJEIEkFx5QNg796va4LFy7o0qVLWi6XiVDii0B5xd7eXiKYXpd+9epVtdvtRLQ9xR7yyzFOPoh0QsYwfyMC714Q+/v7FY8ForDeeaDT6STCCiElSwIyJikRcwjWzs5OKpkg7duFDi/RgAi2Wq3kLUDpAevN7xuNRiq94Hd5Wjnn5edarabFYqH5fJ7M+Fqtlrrdrvr9frofGHEyL0Qa1hBPDLwycod+9kNO/r1rhpdNIIKQYcL5vBQgz0JwwcI7krCuXM/vkRN11ouyC9Z0OBym4xE33A+A8gXOd3R0lNYRs0xKDJysu0eJz59xS0rCF+vgHgTscX9m+R3XcuEMAcvFGXw/WHMvJ8iFDkoY2K9ejsJ53Hskz9jh2fFMBYQexEZ/1nl2vcwjn3MgEAgErsULv+1zVDuxOWqMCr3oX8Yf4oHArcTm0ct60WdcVv0Pvkjv/hc/Ry/8kDfqB170w7d7WHc83rqe6GVf9/f1rK+Mz7AninMlKHiE2aOVy+VSw+EwRRZHo5F6vV4ia04q6vW6er2erly5ovl8rvKkiwFZBBAaTBjdR0E6bQdJtHw8HqcMhbxtI4SHyKYb2kGyKSVgXESPJ5OJjo6ONJ1Ok3Gdvxe4o76LGW7uB/GG2EK4B4NBIoiUhSCCOOGH9DO/oijU6XQqfgmkqjvh4nuIJITV15jsBL+3iB4cg6/F4eFhhcDhB4C4VBRF6gxAN41ut1sxcPRMBPaGCy6r1eoaMkkUG58I79zgvgJ5K0e/T17D76UgEG3m7yacbjCIGIao4CU0Lo5Axv0+E/lHRCIbh/Xz54x5+Gtk+OBz0Gq1UvmEi0F+bxBHmLOkitkmUX73NEDYcQHC19d9KRC72N95CQ1rjLDkRqSMi2fZ5yEdi248Q15G4Zk/1/PJCAQCgcAxXvStn6Pe2wo9/9//gsr1vZp7EAjcPmx+43f0nP9XOvrAF+t93/9zJUmf99f/mz5z9x23eWR3Hmbblf7Ml32Bnv4fQ0x4Mjg3goK7r0OiIPEQE9z5vasDRMEzBTD9O4vw8x5qzCHbk8lE0mmatHRMSi5fvqxarZbaTnqdN8QDESCv5+90OhUShUhCN4ijo6OUho1x4Xa7TVkWjIEOE55iv7Ozk47HyBCSy9w5F0aT3ilhuVym7hPecQHi6+vjfgHMEcLr0Wg3ZsSfwA0m3SyRdYawIRywXmRIeBvJfLxOJj393U0QuTbXhTh6CQnr5F0w3OMAAcaFFI+iuyDhpSVugOiZJYzDx8y96XQ66f46QfZSG/89zwMCEs8FXSycTOddUzxzQFLaZ51OR/V6PQlcXEtSRQRw8YX7yZ739cqzLZy8+/zcLHFtf5yetW/c5NLLjdzMkr2Qe05wHoQwz4LYbDaVz47IUAgEAoFTvPBn/ooe/N7jz9kX/ORvaHNweG0v2kAg8NTiVb+qB04qi77jNz5W37x//LfOj3zt16pfa7+LAwPgo//G5+vif7sru8w8JTg3goKb8jmZcBLEvxj80VLROw1A2Lvdrnq9niaTScVkTjqt12632xqPxxqNRrpy5co1UVDpuO77ypUriWBDeiWliDbZDRBbyBOGdO4JUJZlIq+TySTVzEtKppNe8kHbSUQL0vkhRl6vfnR0lEgS2Q+QUjoB+Pzcs8A9IZifR+Ah/u63QCZHWZbJaK/dbl/X7M9T2J3EMQ4ECI/+szbe1QGCiZcAxpiQ0dxA0KPgbnrpJSuUVDjpdHNAzoEYgZnmcrlMpR6cB9LMnnVPCiepuchBm0d/LtyjgfVGCECs4ZnZbrcaDodpb5Pez/OEdwYlAwhRiACbzXGbRxeCeC5zYYI5cZ9zc0Nf/1xYYO09w8XNLvkccGEGcSA3AGUclPTkZRQuBvHlXhPsMxczuN9eIhMIBAL3Kr74kffWL3zu+0mSXvTmS8lUMT4dA4Hzh52f+qVE7v7s2z9bOvmz8vD5Xb36X379bRvXecWHvfzlal1Zqvvz0TnjRnBuBAUi3d6RABIvnZJf6TQyChklhbper2symajX66ndbms4HKpWqyViDfklu4A6bjpHHB4eXmMORyT+8uXLqYUkadJkLOS1+ZJSNN1NAyUloYFrT6fTJHhQ0gGhQqCQVDmHGz/y5X4NkC4yCNzTgMi1pOSD4GUjlH9sNptEsL1bAaDrAaSU7zebTTKRZJ0xNnRyis+DpArxZe1Xq1XqXMBcIJG0SCSLgbl75Nsj60TVnaxzTJ6B4XuO8bswIqliBOi1/pBQj8hTcsMaQaS5FutEHT/HefYDe5usFDfTRGBiTcjkQXxxHwTWzI/hnpCVsFqtNJlMUpkQZJ7n7ujoKBkq5tH79XqdWoa6j4ULQQgyiCteZsE4EWnyUp9cFEQs4Gf2jIsBPBOIbIgFXraUt5fkHkW5QyAQuJfxK8ul/t8/8cnSYqni4ddKundNFQOBOxHFK1+bvt//hR197M99wg2d7+GvbeuX3/+7b3RYTyn+zdV304983Euu+/v2G39Rir/3bhjnRlDII7GQNo8mT6fTSuQawuuRZgSAwWCQWi7yurvf0wKQCOdyuVS/309EBJM7xjMejxOZctLS6/W0Xq9TJoQb202nUzUaDfX7fe3s7Gg2m1XO0ev1KuUAtEJcLBapDSavETWWVInkOrkl0jydTlP7vqOjo3QdyBfRZumUWENyEQ0gXIgBeX07ZojUxxOlpgRjb28vOf4TLec93K+8bMQNOVl/yDlZGZhh0iGB7/EBYG68j/KEnLx7iQ1RczwHIOrue8AxHsk/y1/BxQSfJ6IO+4kx+Z6HYLPuXNu7Ivg9l6oZGOxDxCD3I4FwI/ogaLFmXkqBoMS+YT8wd8oLmKt0WrqAqNBqtdLe8XGyBxDspGMRC8GEPcY8KSfx0iIEH+4bGQeIkS5eYVrJOnsmDM8HIgz3aDqd3vHdHQKBQOBGcHUz0xe++KO1Hb/pdg8lEAjcBJTrtda/f2PP84Of3Nafan7odX8//6AX6ae/+T/e0DWeDN7/H3+OHvieszuxlpuNttP4HLvVOBeCgtd3e6RwsVhod3c3GfvlaeRO1NwQ0SPDmDFSCoFPAUZ2EJ7FYpFID0QE0kUU3KPLkDDKIJrNZjqG3zM3hAbKAmazmSRpb29P9Xo91cC7MaKnkBPB9fmRxUCE3U3mut2uRqNRIvhEpoGnq7tbfx4hhlhLShkFpIRj0EhU2zNIIPieDSEpCTeHh4fpupSNeGQYor23t6ftdqurV68mUYHzQAQh3WQ4sPa0EIQY4tHgAgzrjJ8CAgXihftYsB6IBN7hQjr1RHBhwbsHMFcyACDw3hISsj+dTtPvIdhE4xEV3KcAYQ0hyr0T3E/C7wPndUHHDRzZV2Q75On/HMe+ccGKjBP2D88VJRcIGy4o1Wo19fv9dP6zBBkXa8jM8RIS1pt9zD7hOoxPOi0VYrzsCZ4Tjo8shUAgcK9hsl3oZe/2x6Tt+HYPJRAInCNsFwvppBT5LDR/9DX66Gf+oadwRMe4uH1llGDdZpw7QcEJYrPZTBFzug4cHh6mMgPptMQAEgihJ+MBA0S8BBqNRqUdoqSU5bBarTQcDrVcLlOqvUc3PaouKaV3IwxATCCvkDAirURBDw4OUjQVA0knWQBCgyDR6XQS8SzLMpk5usFfq9XSYDDQarXSaDS6xjTPswAg7h4p97lTxkAEmNeJmnvrTogi4stisdDh4aEGg0G6d9T7N5tNPfLII5rNZnrwwQclqXI9otJkOBweHqZ94H4Z/q/7OXgZCmUUEOt8XvggcE0vn3AxhXOxRykNobyDspucyEqn3RjwzmC8nkGR1+rnP5MVgPDinRK8hId7TQYP44Vk514CkPI8xd89LhBfGLcDMYBnj72MKOgiGM8kogBiAELAYrGoZM4whvyZcK+QXCzxMgwXeNinZ5l0SkodNThv/r5AIBC4F/D6o4k+790/QtpenzQEAoHAdbENan8v4twICqSauzEjwsJqtVKv16sIAu6CD1FytFqtSkvEfr+fyAvnXCwW1zj7t1ot7e/v69FHH00eBAgUnr5N14H5fJ5IM4SWsbjAwbUYy2w2S9kSkD03FpRU6QqAtwBiBSUUjMfrwhuNhi5evJhS2hknBIn2hJAnyCQiQa/XS6UL8/k8kWBPnfc2lawLpRwuHkwmk0oJg5sL0hXA2/8tFotUzrCzs6Nut6v9/X098sgjFdJOxBpyyRpwXwERfzwp8g4DiFZ84d/ga+4CQrvdThkLnn3g2SsezXdjR9ao2+2mLASfk6f58zqEHM8F7jFzdDLPM8F5uL+sg/s7SEoZPF4GAhBaIPRnRerZt4yDLBoEKDKBut1uevYYE8KAizb4bfi5XQBhPXzdfA08QwFhgowVL/3gvkjXZpaw1zlndHkIBAL3An5mXtPlTV/f9KEfre3inbd7OIFAIBC4g3AuBAXS9MfjcSJrEFHaOu7s7GgwGCSjPuBtJXPX+larpVarpfl8rvV6nbIViLhCCMkcIPKOwDGZTLRYLFK9tUfFicbO53NNp1MNh8OUlQBhzSOnnAsXfrIUOp1OMof0CLCbAhIl73Q6Kc2edpBuRkc6fKPR0P7+fqXenTkgzEDmOD9RbieflExAtrbbrSaTSZoDcyO6660Tj46ONBqN0vv4GbI6mUxSxgKiAhF4yD3X4RhIu6RKij2kkDWVTk0nnbweHR1pNpupLEvt7u5WvARYKwj0crlMJJQ2m7PZLK0DKfnsHfYFpNe9HxAJIKgQXTp4QIYRIpiDr7ELD4yRfY/Icxbxh9wzJjdZdDHK58Dv6KTh5pBudMi9cBNFBAP/Yl289Me9T/ycrI+XjngJkWdB5MKAl0QhwrBmXtLBPvJzuLkm9zS8FAKBwN2O/zS6T//5r36caj/3K5JCTAgEAoHAE8O5EBSoL4fwQShHo1GFNNZqtWS0yOtEIpfLZSLyCAfdbjeVFCA6EJVut9uJqCIgQAQhPZvNJokRRFcx/COCTjTWa9YRAtyAz/0Jut2u+v1+RQTxDAhILiSdcREhpxyAc5BJ4eRXOibUrVarUptObbtHl6XTFHfOT2TeSx2Yx3w+T8cQNYd8eno9pJgIda1WSx0EIP4QPS+rODg40Hq9Vr/fT+TdBQfPjvCoNHOA3HqpCuf3sgzuISSajBiOw1fDRR32Z7fbTQKOE1+EF9aAverE2MsiGJN0SvABgo6bMjJn4IaOPAuM2Vuu+hj9ODerdDNSz4xgXhzLPvWSAC/7cPHEX0P04v65/wGCBuuXdy/xch2EK/aDd3NwgcE7aSCquImoH+M+Ii5qRMlDIBC4m/HVV56n7//7L1Xr537xdg8lEAgEAncozoWgICkRfwga0WEIIKUCw+EwReaJeAJS9Iui0P7+fqVEgMwBjkFQIFUbwgaBg1iQNQCp7ff7SYDg2h715fytVisdO5/PU7Sd97fb7USYp9NpIrg+Hgi5CxfL5TJlNBBhn06nKYXe08AhQ6xdHqH2Thqemu9RZK+xJ/uByDKO+04GXVSg60C9Xk+ZFf1+P2VpULLBulBf78aFvV4vEW6i7FzHCTa/g2B6xwbWnEwE1tX9Adzgz6PmfO/Gj/hhsD8hr+474NFv1o3fu5jAfeV6HlV3E1L/nZN7F7S4dy4I+JyYiwskiA+epcAezktpGMdZwgbiAevoZUtuYsqz5eUZnNvHxNzc38GFBdYIcQhB0PcJz1xuQOoZJKyrd6Fw8Sf3sggE7mT82x/7KH390xZ67Ye+Qt1a83YPJ3Ab8S2jB/TPf/lP6Wn/taXuD0X/9UAgEAg8eZwLQQFi4k78GCd6CQJk0ck8ZKAsS00mE41GI00mE+3t7anX6yVjRYidt6ZzUzdSqRElcvIMWSM7wFPbj46ONBgMKnXyZEksl8vUho/j3ICOkgwXDxAbaD/pEVkvByCTgY4LdHZwAkiJQ71eT+ScdXSRRVLFKJL1hcDiMQAZhWzlJRoAIn90dKSrV68mIeTy5cvJm8A7VGA66X4S4/G44kngYgKk0uv+ydaABDphJhvBu0lIVUPQPPXfsy5YTxdjEIAQchg318W00k0IpdNovGcWEMWHkLuZoNfxe7YB+4Vov3sjQJDJ4PBuBy6EIdYgDDn5RqxwPwHuax7dp3wD0cPbUbrIRUcK9qULWayBex4wZ58P2Q6UHZFBk5u7uu8C95L3+LUYi2ft+H4LBO4WvODvvEqS9D7/8m/qt/7Sv1W9qD3GEYG7Df9nsdVf/u+fqwu/Vuh53/zK2z2cQCAQCNwFODeCAtFid9Snpzwt5SBcXp7gdeCbzUbj8Vjz+VxXrlzRfffdd40p43Q6rUTuPSINEfLWe4wNUga5J8IKidxsNur1eomAttttLRaLVH+OOIIIsNlsNJlM1O12UxeEPCOB1yUlks/YGHuj0UgZG26+SGTWo73tdlvdbldSNXINqYd8lmWZBBPIVi4eSEolJJIqhM4N+Jy0UobQarWS1wIGjAhJbrLp6+GZK06oub/MN/ew8DIAIuCUhLTb7Yrbv6fBQ/JZP0go70WI8ZR4yP9isUhEmXIP7oubIHrGAP86kXdRyLNIfL0Zq/sKIH7xbB0dHaV9n5c0uNjh2T65FwOCCdd2I0cvmVgul0nQ4H7xDHNNnh/PjvByChdoOA/vdUGl0WiktqOIQIhMeRmKrx33kz3jGRCMwY0aA4G7Dc/7B6/USy5/nn7tb/272z2UwBPAH/iPn6PGqFBZl379bz7+e7cpt3rJ13yeJKl9pdQLvimEhEAgEAjcPDxpQaEoimdJ+k+SniZpK+kVZVl+bVEU/0TSZ0m6dPLWLyrL8ofe1bkQCrzNHW3c5vN5Mkcki6DVaiXCAAn1SPR0OtXly5c1Ho9Tanqr1VKn00kGjNJpij3p55IS0YdYe9rzdrtNpnyk7hMhhZQTYe71eup2uzo4OEjEC5GEY8kI4L0QXaLO0qmhHsQ5r4eH/A+Hw9SJgHRvyJJ06suAfwGiw3Q6raSz2/1NaeVOcvOoM4TNCV0uYmDsiAEj5SYIPHRWwCMCAWY+n2u73Vbq5d0kz2v03bzQo+ye0i6d+gsgXDnR5fwIAcDJLNdAtOC+cI8lpSwShB+OwY+De+u/4zouVOENkZstcg+4HuTcBQGyCfiCHLMPXTDifBB0H5OfD+QeBL4+7HHfG6yN712yUYCXyuSGjJ5FxHnJLODanuXAl4+TsXnpiAuR7AUfk4sM5xk387M4cO/g6V/xSn3g2/5a+vnS+0uv/wv//jaOKPBjs4b+8Zd85nV//9zve622s5lUFPrAt/61674vR1FKT/+On78ZQwxcB/E5HAgE7mXcSIbCWtLfLcvyl4uiGEj6paIofvzkd19TluVXPt4TQbakUwM/IskQFO+40Gq1UsQc0glp6Xa7KTNgNpul0gOO293d1WAw0MMPP5wI1tHRUUr1J6KOgOEEmuiytzXs9/saj8dJlIAs1mo1dTodtdttTafTRHKm06k2m4329/fV6XQS0XMjRCdF3roO80DptKUkkft2u61er5e8FKTT6DSiCSn4CDKIAMvlMkXvz6pVZ+6cx83tSKVnjZzYkt0gKQkd0+k0ZSNI0mQy0Ww2S0QacWg+n6f6eObp5QSeLYAIAGllb7BPPBPFjfYQitybwMUl3st8IO4IQZvNJplYQkzZF5S6TCaT1E6xKIp0HFkV7vHgpB1SDXEm6s995f1O6r2cx7M4+L13sshNF9n3bgJ6ltDkP3NvvIzAhQYv23Dyjs8J3UoYr2cK5eNzUc2zBxALc5+I/B7nJSs8yz4Pru2lUHcIbtpnceAeQllq99tflX688GP366X/8/pkNnDrUZ+vtfvKV1339+kTPbt3gXOB+BwOBAL3LJ60oFCW5cOSHj75flwUxW9KesaTPFfyBYDUe125u/PX63UNh0MdHR3p8PAwlSFISuUQ/X4/nRPiwPnpjgC5I1K7XC515cqViiEeY/PxeCo3Xgf7+/vpfTj8c0yr1UptCr1tIQaFkCzIN8QZckrLypwEQuIocxgOh7pw4UI6HsJWr9dT1wTG4ATPOyZA8CDR3taP6+Uky7sYeAYF5/MyD7wirl69ms7nkWVEBcwwEXYo/aDshLkxD8oMPOIPSfR95GUKlI+Q9eK+AogKvBdBoNPppL3I/fZ2hF6Gwc8ugJDl4R4OdBqRTj0f2HfAo/VOmrnX7Dui74zByTQChXf58PcizjHfPDPHxQv2g3tveAYBYpG31WQtEaRodcp+4988+4HX/Gd/H9+7t4dni/gxtVotrRlr7Fknfh3Gy5zOM27mZ3Hg3sXm0iXt/NSlx35jIBC4BvE5HAgE7mXclL+Wi6J4jqT3lYRV8OcVRfGrRVF8U1EU+491PIQfEu6mh5BeJyMQdY71lHGv+R+NRpUINeny7tAvKUU4IeeSErElMpy3TvQ0cVoIEiV39//d3d30+6IoUocGJ5ZOcqhDx/Sv2Wym7AUit/mcvfQBTwYXC1hLxJnrpbNDVllD1oXWlgg+fl8gcpzHO1lA0iDtXuYxGo00nU6TUDSfz1NUn3IXShAQErzePe9G4Nf0aD3XdzHE6+zJIiAbgvs7m810+fJlHRwcpBIY5uG+C3kkn3Fxv8j8oHyBY7mH7t2w2Ww0m800Go0qooN7BDjB9XR/Mh8YE+Pi2twbhBnW27MxMENlr7NH3W8DoeesEgh/n983v3c8J5wn/xwA7ofgZQmemeAeHd6d4SwBxNfdS5nyY9xT4g7KUEi40c/iQCAQCNwY4nM4EAjca7hhQaEoir6k75X0t8qyHEn6eknPl/QSHau1X3Wd415eFMVriqJ4jRvNSafCgEcuIel53Tb1+bzPo5vz+VxXr15N5QAIA0VRqNvtJiLUaDQ0GAxSKj7CBSUG3W63UvcOQWcce3t7afyQSchUTkLxEKB0AQLL9SRVPBkoA/A6ek/3519IVrfb1XA4VFEUlXW5HiDVeCl4hD7vooBAgTdCr9dTv99PIomvi5dHcH/JAoDQQtz4mfFCXCHFdJhgfV20QMxwEu1GjZBwMjO8XSN+AU6kIZKsy2g00ng81nQ6TeU1mGoy1ul0qtlslsZMmQL3FjEHwYL7j9DFPCDHkG0IuAsj7g3gBN5LdehS4tk9LgKwvn4PKCvxvcAecnHD/QictJ8lkHjZAe/ni7Hm4kQuBvA54OKI7wffa7nRKCUyub9HXg7CeH1uub/GnYCb8Vl8pOVTNdxAIBC46xCfw4FA4F7EDXV5KIqioeMPzm8vy/K/SVJZlu+033+DpB8469iyLF8h6RWS1O/3ywsXLqQ0f+k0xZ705eKk1n8ymSSC7dFZatk91ZtWduPxOP0ekr+3t6fBYKDxeKxGo5H8DiCNXkfd6/VSWz3pNIX8ZI4pYwIC0+/3JUmj0ShF0CGQ3qYOgu7ksCzL5LNQq9V0//33S6qSMqLfjAPiKillNXCMpEpLPM8ocMEAMWa5XKZsAi8/IILP9ahdh4idFW3O2zY6uYYYcn3KUzjWsw1yIcVLPzySDYmmHMKJMIIHxNNLP84qTWg2m+k+bLfbdP9YP0+9x4TwLPi8nWjngoJHzFkvfCu4J4yP67JW/Mz+Yd4IWdwjniVKHDzjxzsecF6u5d4KAFLuJRpnlSvkmQF+vLcszUm+d2TwueXXRzzyjAKfqz8HiH1k3DBHyorOEjLuFEHhZn0WD4sL59+FMhAIBM4h4nM4EAjcq7iRLg+FpG+U9JtlWX61vf7QSS2ZJH2ipF9/HOdSt9tVq9VSs9lMHgPtdjtlFEiqpDdTew75lJTOATncbrcaj8c6PDxUq9VKafyYO7bbbR0cHGg8Hqf6/byee7vdajAYqNFoaLVapTaQkhKpx0jQRYGdnR3NZrNEsHJDvc1mk0oIJFXaNQKiuIwdQQKBAqLnWQysIdfPOw146QNz6Ha7yeeBuWPe5ynnEFCOc68ASDlRfyfrTv7ccJL3uIcAPhmMxbNW/BxOHhE5vHsF68gankVsfSwIEjkJpkQDU0PG4yUu7jXBfcr9BbxLhnScqcIYF4tFWk8vm0B48qwRshvYW97ZwfctJTQuJnHfvN0px7j5J+NG1KBrBeKN+zV4+QdjZ595SUYu2HhmhN9PMgx8z7hY4aQfXwvmhJDCuHx8LiogLPk4XSDi3iO2nHfczM/iQCAQCDxxxOdwIBC4l3Ejfy1/iKT/R9KvFUXxKyevfZGkTymK4iWSSklvlPTZj3UiooTU+yMYYMZXlsedFdrtti5duqQrV66kjAOIHuTI/QKkYyJx+fJl1et1PfDAA2o2mxXzRsz5ZrOZer1epTzASRhEzuvdicqXJ2aHdBuQTtP75/O5arXjtoYQsrymvNfrJXGCaxHBPzg40O7ubmq1CMFH/CDa7r/r9/vqdrsVV39KPBijE1taJELwmB8Ey7Mj8pKAPIWceUHSyRhhXYmG+733CD7jyh37IZJeTgByQ0WIuIs4nsLukXjPdiBbhPkwZjdnJAvF5+AlALyPcbHevmfIopBOjTA91R5y6x0XZrNZxTMCwutZPczD54wAA4nPxR32rpuRuhiS+0OwZz3zgrXk/Z45wpw4nvV0McrPzT3CT8PLPHz/cT3EBAQRPwfrkZdjuDdDDl8/3n8H4KZ9FgcCgUDgSSE+hwOBwD2LG+ny8HOSzirOf1L9dSGmEGw6FkB+aTn4zne+U1evXtUDDzyQiBC170To2+12ilZC1CaTSWrzCKFpt9tqtVqaTCYaj8eJuHrpBGNqt9uVKC4dCySlFPuiKFJ7xG63m1oiSqfkB8JCtwfIkIsXlBwQGb58+bIGg4H6/b7a7XYlBR+CRRkEGA6Hicz6nBACIHAIN+12O0W9iShL1xJUCD9p496FgvvEuktK8+NcPl8vR4DMQ7i9Ft9LNTxDwgkhZSeepYDogqji4D2UFECO88wCN6Ak2p8LDqxP/r0LLe59UJZl8klAYKGkxteY7BLm4W0zyRLw63p2ja9hni1CZxRP6UdQ4V6SkeICAnND1HFhAjLv5QmMk/3uHhd5VoILRTyf7CfPInCSz711EcQzSPx5YD0R4Fh3v5deHuJCxHnHzf4sDgQCgcATQ3wOBwKBexnnJp8X8lyvH7eFHA6H6Y/9K1eu6OjoSNPpVFevXtXb3/52Pf3pT5ekSvQSYkwmgdeUU67g0Xcit9IxQR6Px+l3nU6nYuaHWHHhwgW12209+uijyYSPWnBaVB4dHaVuC5PJpOIc79FR5kTnBBcs2u22ut1uauc3m83UaDTU6/WSEAIxyglfURTa399PYxuPx2lM6/VaBwcHqd2h19VTtuBE2SPE0ilZhfQSrW+320lM8LaL7neBoLPdbpMIJJ0KCoyd85N1Atx40Umhl8SQ+j6fz5OHAFkAnpnAXFgzsmL8d062XSCh3AR4tN9LStw00gUL7qnfP9bTu5fk6fdE7Cnt4bi8PMSPc0LuPg7sWRcanER7mUFeQsD7chGgVqslEYLr+O/cXyEvW/H74q0+EZjOei/3JReMXATIX3f/EPYP4gnvQfQgAygQCAQCgUAgEAicjXMjKHjtN1HYbrerXq+n0WikxWKh5XKpRx99VG9/+9v18MMP67777qukT0OyaD1ItBcyi4Ej1yMq22g0kvEghBVCur+/X0m5p6SCDAOuA3mWTonLWRFPr6lHVGAcjnq9rsFgkM49nU41nU4rJBQzSa+Jh+R1Op2UpeBtD2mDCbx+3KP6pMCTMSJVW0F6pwXOS0mFR+C93IPvqV/PSamTWs6R7w8IL+fg/kmnWQoINbT1ZE5eU5+n2eeZBC42MU88E9hLjBcxhHvF+T3C7uNzbwYntZyPnzkH30OePc2fa+XZED4XH0MuFuUlAU7GWW8XAXKCzpp4Nof7I3B+niHPJOB1fmaNfC8yJhdJ/Lj8Xrrg4c+5H+cZEYhB7tXgX3dChkIgEAgEAoFAIHC7cC4EBU85pmSAFHMvNdhsNprP57py5YoODw81GAwSkcfkjkwCjwR77babzTmRhsByHbpJ9Hq9RNa9HGF3d1ej0SgZ8vE7yInXq3vbujwdHPFivV6nrANIMB4SZG8sl0tNp9MUJafkoNfrabvdajabpQyDZrOpwWCg5XKpTqeTIv7NZlOdTkez2axCtjyCDkEn+k3Xivl8nu4Zc3RDSAgjr7k4JCm1TGQ80+k0dXfI6969xp7ruCjgnTFyAcQj1xBDj5RzrxGc3KAScspcPPODuUBCeZ35OrwGny98MKRTvwFEBSfFblYIvOSD8browWvsLUQa9g/v9/vncwNOxv0e8DsXLfiZEgrPsvFsCS/F8Gfez8M9Zd3y/XDWOfjeM2iuV77g82Qtec0NMfPx+WuBQCAQCAQCgUCginMhKEjVtnOTySSVPkD+pdNWc6PRSI8++qj29/fT7yHzThCoyadOvtvtpqg2GRAIEYvFIpEZIq4c5/3sN5uNer2e+v2+er1e8h2QlIg19d+YRUKU+D3dFxjrZDLRdnvsKE9WRrPZTGaNZXlsSukmkMwtT0lnnSB3lIBQ8tHpdDQYDFJ7TAidR9yJfnsUHYIFccXzgOtgQMj69Xq9NOacXNK6D0GBa/Ke3PDP0+PPqr3n/AgEnhHC9RElnAgvFotKijv30X0amBt7wTNenMh6zb90Koo4aWdciFm87oaXuWEk1yL7xrMJON9ZHSLYT35tF1SYG7/n33x93R8hnwfryL5kHN4thbXIS2d8nT1TgrIV99DgHLzXy0h8n3jphgs++eeMf+/vZ9/5XP3nQCAQCAQCgUAgUMW5ERS8VtkjyNIpOYNAzmYzPfroo3rmM5+Z0vE9GwCC6KZrlCZAEMkQIBuAzACu5R0mDg8PE9ki5RwfA2r23UCPzhGLxSKVAEinhov8bjqdajgcpmwD3tPr9VKdfK123BqPqL4LB0T5EVU4h3dIYH6swXK5VKvVUqfTSbXnngXhUW+P2na7XRVFURE23B8hjxDjQQGc5EHevAsC991JHsKPd4ZwcYLvvcae+btIAUmHSNNFg2wYJ7Y5WfdsCQQWMmgYB2tNLb4LNX6se0J4WYPfL4cLC+wF9hPjw2TQnyHPoMAUkSwaT+fPMxRcsPD18HvDNXMRAO8EF1u8IwP3Pz+fZxQgbHnbV39vbubIeXPDU78nnh3j4p6XXiCM+FhdwIiyh0AgEAgEAoFA4GycC0HBCQ2p/pBnJ0n8Ye9Gg94hIY8oElmGLGNEt7Ozo16vp6OjI73jHe9Ix0KQi6JIbSkhIbTtW6/XGgwGqtfr2tvb02w2S5kTEGPGiMeCE2N3vZ9OpylLwo+llWOr1Urk1kkNUX6i1ngNkEkxn891dHSUykVYIwwg8V3wEg83sfRSADIU+v2+Op1O+h3nl07d8738AIEG4txqtVJJCmsqKa0p3wP2AeaRRL09k8VNBfMyBCeE7v3g7UaZt4sh+V7kfvEz53MBwMfNOtCFw70B+D0EmLXLTQT9Z4Qq1o/75mPyY5l37rPA84R45GvEGuRGhMzL18+zDVhr1s7f41kuLmLkxzp592c5F1nOyozwa7tI5df0TCDOnwsEecnHWZkngUAgEAgEAoFA4FqcG0HBiRcECkLP65AIOjJMp1Pdf//9Z9Z6I0BAEMgIIErb6XS0u7ubuhNQPuCRTgg5xokQDYhRs9lM4yTrALIqKXUb8AgsWRZkYAyHQ+3v76cWgswDUk42gLcTJPui0+mkua9WK43HYx0eHqaMCgQXsilyoYGSADdqhGziP3B0dKSjo6PUjpP34NdAqQlml172URTHho6eaeJknLEhEEAMIYAQaCfZub8Crzkp9dIDT5GHcLvng5c55JkOLlI4CXW/Bs7rv/e97OMgw4D7me/9PKOD33Mt7hOCjo/P14E18owLSiDYx3lGhPs2IDzkPgn8nP+blxucJe6cJYq5L4TvmVqtlp45vx8uIHlmi3QqvPje8Gsyn0ajUTnOsyR8vO6J4eaggUAgEAgEAoFA4BTnQlBw0iApGStCqL2tIERisVhoMploPB5rb28vkZA8EkmEfLPZpCwFSh+ImENUvNUgZoGQb0/th2wPBgPNZjNNJpM0Nsi3R7Rz5ESt2+3qvvvuS+Mkrd7ruiUlcu9RYEwjZ7NZytygVWW73U5+DN1uN53PI8WYOOa176ToE+GlVIL0+/l8ntYonxtjpaTEhQTWCYLLGuErwfGk8rvIwlgQHvL942KDR8JzXwXIa6vVqrSa9Cg+IodnYeSigpNWrse99ewGP469SfQcIu7jZS687tkj7g/ivgRkFuRRf54XFzk8ywCBgvvjggDfsxfcPJO9xPjZl7n/BPPnfF6Owlr4Xvc96JkNrAl7l/vMvc4zIFzQyNc/Xyu/lntSsE7j8fiaZzgQCAQCgUAgEAicI0GBDARP23aSgaAwm80SKV0ul4l8N5vNSv26E1AijJ7GTNlAt9tNJNujmZAsN/IjYg8h7vf7Wq1Wunr1qsqy1GKxqNSKNxoNDYdDFUWRxuuECzSbzURcF4tFymzgWEwni6JIpRKSkqCwv7+vRqOh8Xic3oNQAFHqdrvXpOA3m80kYkDeGZe3doRQkuHgRpQIA6yNE02yLFqtVpqbk2NJqfyi0WhoMplcU2vvUWnujXtIeHkB43Zi6SUc3Afv8EEbRzeUZF7sgbO6UADWzoksa0AWC6Te55Z/7+dlL7lYg4Eke9ezALyEwtP3zzJ6ZE05zr1HeE4oz2EP83syUmgD6j4lrDXCBOvmv8/Xzz0deJ35kZ3k95L9zPH+eeFr52vjZqMOL2vI4XM7SxAMBAKBQCAQCAQCxzgXgoJHXr32HAO9Xq+XSM5isdB8Ptd8PtdkMtFqtaqUC3gKtaeYuzGjkz5vZYg4gZAwn8+1u7ub2jtSpkB5RL/fT5HbsiwT4eZ3rVYrvWe7PW0PmZs+1ut19fv9NGbKCSBlCAftdjsRv6IodHBwoMFgoIsXLybjRjwCSIufTqcpU4CIPONxAUE6JZKQwPF4nAg5ggGCh6QKWaR0xDsWSEr300mg1+RDuskwIVrtJNQzCljDHJQXeGTZ/QW4f4yTDAAXRhCmOJ7SlDwd3kUvSem6+Xr6/DmXJLVarUqdf060ed0NA1kzxBvPmKEEIPcGqNfrycejLMvkw5CTcC8dcR8E6VSgye+de5rk6+FCls/HMxpc2MJXg/ezXxAJ8+wJfs+c89IIv08+BuaTZzHl5SpePuF7KBAIBAKBQCAQCFRxbv5ahkR6qjh/9EOkeR+EZbFY6OrVq5Kk+++/P5FFiD8RXo+yS9UIc05AIbQc4+74TgoPDg5UFIUefPBBXblyRW95y1uS2ABJJgLu0Vvm5cTQPQOICM/ncy0Wi1SucOHCBS0WC43H44o4MRgM9MADD1Q8BMi6QPjITQ+dzBOhh6C22+1EihuNhg4PDxNpy1PPnTSeJSgQZaddJ6nxOYFj7T3NH9KdlwGwT/KIO1kuiAIumODT4PvAyXsuKrgAQnkN3+d+H7m3A6aAnLssy0RKEbd8rKy7d4Pg3zzbwMfqe9YFAr4QgPwcTry5rneeyI/PhRtfMy87ycUh9zjw0gNfBy/1QDzwubJGuTEjz6MbZHo5i4/VszZcXPCMh1zg8uucldkQCAQCgUAgEAgETnHuBIXNZpOiqKDb7Vail0Tt1+u15vN5yjJwgz8nmTs7Ozo4OEiRf0ggHglOZpycuXmgExTS/8uy1N7eni5evKher6d6va7pdFrJQkCw8HIHJ/8evfYIN5kXpPR3u13t7+8nIUVSyoo4PDxUq9VKBLJer6vb7abrI0JIVTd+6bT0gnH62LztH+elNMPv12q1Ur/f1+7urmazmebzeZonIoLPOzchdIKOv0Webu5kEBGGY50gQk4hsAg1iB0QZc9oYf4QS28Byjw9m4H3IyhAPpmjd6TwVp/4EbDWlEOw37kWJSsQZY+mO+mlxCRfE/fd8FIDzkNJgXea8DR/4Pc+94jg3vJ7L+Nw34e8LKFWqyXRjPvBM+2iSS6S+LzJkHARysfi94g9ks8FIY2fvfMI9+CsjJNAIBAIBAKBQCBwinMhKOR18cvlMpEsIu5EPSF6iAzT6TS1Jbxw4UKlBtu/p70jKeCUKkC6PQMC0uzRfbocEHWFSO/s7OjixYva29tLJo0cmxvI5Z4M1N5jMMlx0nHN/Gw202AwUKvVqvgRQNIQQjBkxHRyu91WOkAwdxcTEAs6nU6FuOVRWU+/J+pPtwFMKBEyGB8p9jmpzv0QEIYgl37fIPh5aQDk08/tRozMSTol0AgKnpqfE24IKu9jj0lKmR5OzpvNZtqj8/n8GpHECbdnBbi4gKjh189T/b10w+8f93C1WiUDU96Tw/0cGAP3iyi/Z21wHsbp2SgIHF7y4OdkPt4dhfMhHnBNf74Yi2fDeOkC68iz5wKjP6v+WcLYfC7+XLonQ1EUFWNORIXwUAgEAoFAIBAIBK6PcyEo8Ad/o9GomMNBHjudTkVQgNiRjn50dJQMEiF5lA9AdmazmWazmabTaeqE0O/31e/31ev1EqHodrtJrMBTAVIKweSc4/FYy+VS/X5fFy5c0P7+fvJ4gJxQ+pCnYxPZJstgNBolwpX7Ffhc3FByb28v+SLQFhOhAGEELwjGlKfXuzkjPhPU2zuBdCLpmQV8YXaI4EOtOkQRAgvxI1LN7/xa3GMEAy+TYC0YMyUmHgHnZ0QJJ+tOUNljgD3F/sm7NDhZZR1Yfy//yD0RPHrve8BLFtxDxP0bGKNH/HOTRb+f7oHAM+WZAcw3J/8Qdc90YJye8eDkPDc/dFEOXxHP8mFcPl4vi8jLPnydXIg5q3zBhQ8XC9iDfl8QDXxMrImLZ2eVfQQCgUAgEAgEAoFT3JCgUBTFGyWNJW0krcuyfP+iKC5I+m5Jz5H0RkmfXJbl1cc6FyRkuVymWnMn8xAfviAjkI/lcqnJZKLd3d1KxJpj2+128iUYj8eaTqdqtVrqdDq67777Us2+R6adMGMK6CRtNptpPB6r3+9rMBhoOBxqNpupKIpKuz7IDZ4MkCTGP5/PU3S20+kkgrRcLjWfz9VqtRL5OVn3VNZAxgJCBmOl5IJx+nza7XbKLmB9y7JMZRbz+VxFUajdbqdsCIiciyNOKt00sNVqabVaJSJPOrmTdI6n5j4vdYDEehSbc5MJgQDDmnrWAevEuRAvOA9AtKLMgDl5xJxxeYTchRaPjrvHQk7EpdOU+3zvs68RjgaDQRJgyAZhHZz0e2mPt/pEKPKsCvceYC++q7ISfy75ne9p7wxChoyfg5KOPGvARQX3MnDPExdF/MvbkLI3GV9eBsIxzJlrIxb4PeW+7+zspOfAS37OO27mZ3EgEAgEnjjiczgQCNyruBkZCn+8LMtH7ed/KOkny7L88qIo/uHJz//gXZ0AMuGp3hBfotCQX0iXd3OAhEMEIHmQ5UajoV6vp9FopPV6rclkosPDw+ShMBwOU/tCCAqEnvG56RzE5+joKGU6dLtd9Xo99Xq9NA46BDhpg1x76jfCAuRrMBio0+los9loMpkkYQBBwCPOkHeEANbEo7N0moA0O2GEOFHmgeEjAkOj0UjrkWcmQEgh0Z5+7z4CkFci4J5tQZkBJJ91cRIPgZROCShj8Y4J7mXgWREIIx4hd1EE/wnPgnASyjj417NLKFFg/GSWsFfdEFLSNXvC/SMQMTindJp1kEfzneyyjp4BwuveGhTRwve0ix9O8j0bBtGHZ4zxcJ+555Tv+Ll4lv3eOYl3Y0vv5JD7HrCv2Tt4LrB27vPgWQq8xn7ivlHSwL3jfnHd3DPjDsENfxYH7k3UXvwH9PYvuzPEs8Cdg/Jn9/XQV/387R7GU434HA4EAvccbkXJwydI+vCT779V0s/oMT48j46O9Oijj+qhhx5Ss9lMhAzSQeQVsz/+8CeTodlsJkIM6YJUQUQoZZhOp8mfYDKZqF6vp5KFy5cvp6i0m7HlfgCeRk2dOCURlBm4WZ+TOI8gc24MG4ui0Hw+V6fTUb/fTyLDeDyuRNE9/T036SMTgOuThTGdTpMIgXhDJgUCAsKGky7WG5LoKeHSaWeA7XZbabHodfDcK9aN1pae7YAA4T4HiDduXJl7BCCcEHXnPawn9yWvsfeUeEpcWDNvXZqn6XsU20UFCHWtVktdRnxsvp88w8Gv6+QaMQAhyN8P0ff1xjCzXq8nYQnBiX2DoMC9zssmmAPZDV564uaVud8CYgbnZZ+R5ULmAufm3tAS1luxcg1EBRdeWEf2N+PydfF966IC8+O5xW/En4lcrPL1vUPxhD+LA/cOdn/uonaK42flOd3f0A8/+Ku3eUSBuw0/+d51feOf/VBJ0sNf9nw1f/Q1t3lEtwXxORwIBO563KigUEr6saIoSkn/oSzLV0h6sCzLhyWpLMuHi6J44DFPcuJXAAki+uj1/XxJp6nsiAz9fv+amndSxNvtdvo9NfX4DUC4IJVkRORk3UkFRMyzDujQ0Gw2U3mCpJQGLuma9HOPEPu1XAjYbreaTqeJoEK81ut1ytrwbhCSKusEyfLIs6RKG07GiRjhUXDmDWnzkgIno35uxuLzYSysrQsFTk5ZI4ghXhH1ej1lViAYICZJSlFr7otnBEhKpNrNE31+XKfT6SRxxUmpz41xInwhlNAtBLFhMploPp8n0ux+HlzDu3zgt+FzdwLu98SNKaVTMYbrI/CwH/nZRQnPyMgj/C4quDjHejQajfQa9xXCjoEqa+SZMN41gfvD+Fg3L9nxsgz3PeA593F5SVDedcNLXZgf4p5nqnhWDGP0tprnHDflszhw9+PBVw71ksFb9Xcu/MrtHkrgLsdLOxu99Lk/LUn671/3i3rDsvoR9PBqV7/6fuVZh96piM/hQCBwT+JGBYUPKcvy7ScfkD9eFMVvPd4Di6J4uaSXn/U7r21GUIC0QyIoa5jP51oul4noeFr1arVKHRB6vZ7a7XbKEJjNZtrZ2VGn01G73dZgMNBgMNDBwYFWq1WlEwSAPFEOwFi5NlF/4B4MebmEExpSxonc5ynenmKPmLBcLlN6uWcM8L2LBJAwxso4IX1kayBcMC8no24w6eNxIuriCPcBssw94V4yX8oRttttpVwCEskcnJATOfboM1kE7o/APCCKkHMn8dKxoNJut1N3CBdoPLuANfWyGBcuuHan09FisUimnuwjouu8hjDg5SMu1nh5i4s0EG4nv9wX5umZFZ1O55pMC/clYNxeOtFqtdI9yD0p3NzQ/5WUyD5r7lkBXB+xwO+R/x5hAvGFNqkudJBhwnNIlgjZCwhvvhd5H+fgeUZ4dLGGNZ9Op7pDcFM+i9vq3qrxBc4BHnzlUN/47J9Wo4h2qIGnFn+mN5F6k8prm3Kr//OGx9dJ57M/fnYrhnWzEZ/DgUDgnsQNCQplWb795N9HiqL4PkkfIOmdRVE8dKLEPiTpkesc+wpJr5CkoihKJ3gQFifZklInBEgCxAHCDpFykgexgKQ0Gg1Np9NE5r07AaSbFG3ICmUBpEl7/TaZDRAcJy8e6XZxgYguPzebzdRxgtdXq1XydWAsRLURPA4PDxO5pV6fax0dHWk2m2k4HFbIOyn9brAIqSKK7IIBWR1eLpAT4DxaDtFl7d0zgnVnDTqdThJ5GGe/31en00lRftLs+/1+arHJPc+FjFxU8HR3BCUn6KvVStPpNB3D+13IQAgqyzIJVOyXRqORsmtqteOuD9JpVgffu6jkEXQvhUB0kE5bjLpA44ICIgFwrwIvAWDuOzs7KTOC19hPlFYsFotEzBEUEKF4FsiqQLxgLniXtFqttAY+VrJMEHT83pHlwTOD0JeTe7++CyG+v3gv+9FNJE8+a9J5JKUMBG/pyu8Q7e4E3KzP4mFx4a4KFwaqeMngrSEmBM4N6kVNH9p+fO8d3AHVZ/E5HAgE7lU8aUGhKIqepFpZluOT7z9K0pdJ+n5Jnybpy0/+/R+P53yQdlpEehp3u91OkUIITLfbTUQXMoPPQHlibCid1kpDNN3PIE9lz40EEQQWi0WFVCEoQH7OiiyfVaNeFMetKcmKIHXcfQ0QFHJzPQgUhL0sy0SEB4OB2u22dnd3VavVUplEvV7XaDTS0572ND344INqNpuaTCbXeBcgREjHEeaDgwONRqOUpeDlCj5f9zxA9IEMdrtdzWYzXb16bGYM2Z5Op5rNZmn+Fy9elCTN5/OUBdHr9bS7u6u9vb3UkQMRiOuTpeDZBi5IIXK4OSd7Br8Fj2TPZrNKhoR3qsAXY7PZaDwes/8r5N+9Eoiu4x/gZTTcQy+Z4XsfI+UURPLzUg3mxz2gIwjng0Tn3TPOymLISxFarValRMfJtosM2+023TefC3uG59J9G1wYALknB+dBuPAsFhf+EHMWi0USuNzMkuct97RgjszJy2d8jb1c4jzjZn8WBwKBQOCJIT6HA4HAvYwbyVB4UNL3nRCAHUnfUZbljxRF8YuSvqcois+U9GZJf/7xnOzNb36zms2mHnzwwUrJg6dZQ9rPMuaDtEFuOp2Oer2eyrLUfD7X0dGRut2uBoNBKp/AFZ/sg1arpW63m8odnCi56SBZEKTAU+dPZgDjI3INeYbMIEQQJR4MBqkFJPNzwgz5IZUek8rlcpkMG3u9XhJjfE4QcSLFpNu7aSVkDGGBtHHmwtykUwM+fw3vC2r49/b21O121Ww2NZ/PU9tKSiCcQEK+iWAzl+FwKEnpvJKSqNRutyvklnuBCOMGfqwVJNKzOIqiSOILYoaXhHi3EYSLdrud9ken00kChO9J7lWz2UyClmewMEcXDCDQjC8nufm4EaHca4FsEoQCyDniEj+7sMF4JVVELOblbU7dI8LbMyIYuEmll/4wZ78XLlYwJhesOM7FLjdcRVDAHwOBLP+s4PPB7w+CEnudcyMcgrNKaM4pbupncSAQCASeMOJzOBAI3LN40n8tl2X5Bknvc8brlyW99ImeD3PB1WqVCKN0al4IITqLHCAkQEggNbTsI/2elGz8FCATs9kskV5IvUfhvW2iE1aILGPdbDZaLBaJoEIYIapkUFAG0O/3KyZ0tobJzJHoLMQNEsV75vO5Dg4OUmSc9eB4Utn7/X4ioV6K4C0Xubb7Evgaew082RyQWPwYiCD3ej1J0u7ubiLgiCFOLMnWQOgoiiKVpuT1/KwrafAQxjxbwCP1lGgwFyeJzJGxE/nudDqV0gX2HWUj7C0vyfHODd4Ro16vp2wDFxQY93w+T2vPXIuiqPg5eKbBer1OY/OWh4D76j4HPB8uXnjZh5dHIEiQmcHzwT5l783n87SPOKcLE+694dkwiDzuf8G6nAWuyWcBIhfnRCTz7Af2A+uDCMLYMKvknOwtz6rgmXBh5LziZn8WBwKBQOCJIT6HA4HAvYxzF37zGn3/F7IAUV+tVslYjdR1yIJ0GklvNpvJdd8JBteSVDFhJHtAOo3el2WZzuXRUFK+IYWeGYDYsFgsNBgMUk04c4EAQS6ZF4QTUgf5JjrrAgrkCqHEU7Q5ByIGY6QzhB+LbwRiCETf/Rm4Nh4A1JZ7xwYXICB0/X5fo9Goks3AWkFGPQrtEXcv8Viv1+p0OlqtViljY7lcpvF61wgi0BBDPBHINkDA8JIJLyVBeCFC7yIWPgNeHuN1/kTnXSDKfRCIvPN+slEouXBvCS/N8RIOScnjwT0sEL4AAgv3ywUPBDKP7nvmCXuo1WpdIxzwzPk58/IMupLwHv71588Je+6D4NeTTtu3ItDwjJO5wzPhY8rXwjMhuEf+TFGakXsuBAKBQCAQCAQCgWtxbgQFz0Lgj3tEAm8fJ522Y3SzPEhT3nqPiDLHOCHKzdu8gwTkFKJCmrqTESKa4/E41duTKu9RWCdOEEQXFkj3h5x2u111u8cuv7PZLJ2PKDpiBWOGyJHdQZSVtHA6KzAfMgUgoogki8Ui1cQjJhDJdRLqzv383k0efS1ZN/cp4D565J4uC56Ozvf1el29Xk97e3vpde/agCCAIWCtVqt0BmCOrA+ZHJSseG2+CztnCQq0IEUcyEssckLMuHwNPd3eSTz72QUV5o8IAaF2gs95EGs8A8L/5Rny+8qeZE+7iIbIQYtMshS8HWSezcJ1gD9r/mz5Orj4wlz9fLkPgz8/zMd9NLxMir1aq9U0mUySkIV4w/ldlPS5BwKBQCAQCAQCgevj3AgKXhdOVoITZ+k0xVs6NvHb3d1N0W2M+6jdh6jSMQCCwbHUTFMvD9kjek80mOuTAg4JYhyLxUKj0SgRHSL4jNeJqcP9HjxjgTH3er1EtPz3fEGuEFsODw8TaYe89Xq9FIWeTqcps4OIOFF4j8iSyg7xpnSByD+EknWHlDmRJtuBFHU3xPSyCM7LOiAIcO+IOBPVv3DhQoqWez39dDpN9yevnacsgXF5VJ8IN/e/1WolE05EGfYB5JVyCAwB6Zzg4pF38CAjAn8Lzk8mDOUdtK6kpIA14/4iApAZsVgsUkSffeL/8j7GkJsiQpi5/77XKJdhj+ARkj+rPAOIOKwZ+8H9B7g2ItdZ2QPcU4g82QbuqeJtIRFIfK1cUPBnm2eVveUin+8dMipckAgE7hb82x/7KP2lP/9VeqDeu91DCQQCgUAgcJfg3AgKZVnq8uXL2t3dTQTlrGg3hEJSqn8nKwDzRVKtN5uNOp1OMs+DNNJycTKZpBpsiAkEFYKSZynwGuRvPp/r8PAwES8nIETCMY7ziCzZDSAv9SCVuyzL1FmATANM9miDuFwu03wh8Z69cXR0pPF4nDI0KI/Iuw1ISiTeDQrJ1oBUQ6w9awRyxvXwO5jNZqrVakmYkFQZAxkTEGmiybnIIUnD4TAZPWKghwcAwgERcebnZpGbzUaTyaRSPuIlMt7ZgAwGnzPv51qQegQoSLJ7GnCM+xNIShkJnU4nrUPefQFS7n4DPBtO3CHH3Av3ieAZoezjLAGHMg6EEBcp8hIOxoYPQVEU6vV62tnZqXgtsPdcGPRuDJ7lwhr6mrlXAmvuPir+xZx5rhg38+C+5CVLXMv3LwISa389b4dA4E7EC/7Oq/THpn9Pv/TpX6N+7XH26wsEAoFAIBB4Fzg3gsJ2u9WlS5f00EMPpY4HiAee4s17gZMnIuM7Ozsaj8eVNHhPh2+32zo8PExECpIkKRF9by9IVJ+6fW9vKB0TfQQGyhIgMJQuIIzg5E9k3MkjBInMA+/sAMmGmDUaDfX7/SQksEa03+z1eloul2mtMHAcDofa3d1N1/LSC+m0JaZ7IpBdABnzMgYnft5lAWLsZoYuopD2TieKRqOh5XKZ0vrJhOBebLfb1MnCU9URDnZ2dlJXD7Ii6Org0f2Dg4OUzZEbbHpKv3s+uDcC16Msxbs1OGH3NH/On2eFsAe83SnzcqPOvLzCsynYoy6KQcC91SciCCIP52Us0rGXhWcOeEkOQo1nBZD5Q1ZQrVbTbDZLzwaZBLnvCGPyjA7P4GDf+HPPM+4ZDJyP8iIEB9bOS1B4HvHc8OPd5NHPExkKgbsRz/lHr9T409bqh1YWCAQCdwVGn/qBuvIJsxs6x/M/72FtLl26SSN6Yth53nN06Y899KSPv/9/vU3rN775Jo4o8ERxbgQFB9FPatpJEXciIKlCJkm3h1AfHh4m8YBOAkRUIbJOFCEPRDkh7dJp9wZSopfLZYrQu3O/m+qRUt7r9SpRYTcaBD43FzDcfd9ryiFRkH7WifmQQUDmhl8LIcJLE/KUfjpgIC5wHOn3eFOQRUDHCdaf9WCelEiw7ryH8ZF1QaYCBJA0dIit/zyZTJK3QqfTqXQDmM/nqtfrqR2nR9TdUDLvdOE+CN49wc0znaAi+CCUTCaTVKePCOBZA142clYGDmvthDaPxnMO9jGCAPcP8cBbWZIxQIcPL0XxqD9rjjjie9PXw/c895gMD1p/cq9o9YnwQYkIzwLPMJlC3o3B9xuZK16K4Mae3mXDjUQ94yLPcGAuLoS52BHZCYG7Ee/47++hC/VfvN3DCAQCgcANYvth76vGP3mnPv1p36+X7779hs71sv/+JzRaPV1H27pqL33LTRrhY2PnWc/Umz756Zo/uH3sN18H8wefqZ3pM8/8Xetgq91vf9WTPnfg8eHcCQpOit2g0evSPUpJ1N9d9yEu2+1Wu7u7lXp4yDWRb8guZNMd5SFOlFNACiEf3gIR0trpdDQYDDSbzZK44LXrbvAnKXVgkE7TtiGZnjlBijxzzdcpT4tHPKH+Hh+BVquVSLD7Ong2AuUUCBXj8TilsBNZh2BzPzxVnHmwlogTiBUYTOJv4dFqz3BgTbmumxgCv/eQTm9ZSRaHr69/j2Eja8g9RxDi/pN6T+kEooiPyaP/XjIAMeWeMG7vviGpsna+V/z+5pkPbl7KfnPvAqLvrHFeNsR8PcrPXPi9ew24kMEYcuLtGSZk9PD8cr7cd4I9mgOyjwDimT15Fg0Cl6+hizuMl73PM+xeHXzmuBgRCNwtuPqDL9Qr3+db1Sqat3sogUAgELgBFO/7nvqL/+EH9VeGj9yU833Xc38qff/Fv/LekqT/8fvvrad/4m/clPOfhfr99+v3P+3ZWl588mKCJM0euv7xtaNCk2d+sPZ/Z6Pu9736hq4TuD7OlaAAgXIvAI8aQkAgu9IxIfcyAjeXI9IvnRIJviCF1K57qjfElqirp7PnJQoYHUL8SN/u9/uJxHm5A0SF+UIIiQBDLsfjse677740Lwhft9vV3t5eGrfPh3R4N+RbrVYaDofa29tLqfqQeidLLrggOjQaDU2nU00mkwphJ6LPF8eRuu/eBT4+6dSrgLKJwWCQruciCPNxjwzIPCIT0XpvRcgxrVZLw+Ew1fZ7FgT3g4g9kX/AGkJ2vU6fLhpkZLCOvndcRGBMHO8p/QhVeFuQxeG1+y42MEf2m3dmgEy7AOclLUTvAd/7Wvt9JYOF+42Y4AKOl4p4C0+Qk3HPMPGMG0lJpHJzRhf3vIODezMwz9yDwbtLeCtR7pGbT7KH89/z+RII3C142bv9krq1EBMCgUDgTsbOc56tL/iv36kP79wYEb8e/tkDvyZJ+oL7fkE//bv3S5K+8Nv+sp79pT9/065RGwz0hs9/gY4Gt2YOYNsoNX9aqeWFmp6x+sNq/WBk6N0KnBtBIY/GQ4o8lX25XKboO1FWIsKkvRPl3dnZSZkJHkF3HwMEhbIs1ev1EtmWTtPhERT4udfrqdFoaG9vT+v1OpHtixcvpkg3kWtJ15gxeqtDiAsdGDAVdINJj2pD3OkMANGGUB0dHVUiuGRTtFqtZBCJRwHRfz93nr7eaDQ0Ho81nU6TUaN7EkinEWoXXyBjHuGHgEMmKb1A6OC8RO5ZA8gr44RYck+IpiPI5KLK0dGRZrOZptOpiuLY/JA9wxyc5Hs7Tggu+85LRch6IHLuJBdAqJ1Ye7q9703elz8DnqXgrRPZLy4iFEWRRAC/lpdEIBwAvi/LMq0L94nfeWYBmQcId+xvF9w4L2KNl82wRxhX7hXBHCmfQEhz/w0XtXxNPPPHMxIQTRD/gItGgLkiROTdWQKBOxk/8UefpT/yy7+nD2lH5k0gEAjciajv7err/td36LmN/i2/1m6toz/Tm0iSPuyvfqWufEaV/H/++328NpevPKlzF0Who0H52G+8Sdg2S731w3f0bvM/pJ2f+qWn7Lr3Cs6NoODEiMi6pBQpd0JDtNSJZbfbTe+hJjt33+caeABADJ1EMhZImbfm4wuTwcViofF4nLovuGkewgTtE700QVIlAgrZppSDtpHT6TQRco8u5yUHEDK/vgs00nHZwXA4vCYrgTmRus94WaeyLDWfzzWdTpMRIGaHlHi0Wi3NZrNEECGXnjJeq9U0n8916dKlSvnAhQsXKpknXkpCe0vPXIAU+r33lHWv08cDYjQapU4ZZBcgOpBZ4evLvN0EE7Lue9QFKt6fe30wfzcV9YwHz67w0gPew/XJ4uC9iAouovGaewx4m1Cu7ednzTzzwwUW9pPvYff0YH8eHR2lazNuRIr5fJ6eS9p+sj+8VMbFLUkVcYosHtbNxQ6eX8+08PVHWEKEcEEDMctLJvx9kaEQuJuwOTjURiEmBAKBwB2JWl3f97qfUKu49WJCjv16V/v16mvf96s/qk15rSjwh1/96Xrmn/sN6Yzf3U6UO6Xe9LENPX/y3tIv/NrtHs5dhXMjKBCBfP3rX69ms6nBYJCIe6/XS6aIkD/PGtjZ2bnGEb7X66W6cowdIR5FUaTuCTmBkk4FBU+dxswPM0YIFATWzwN58oipZw244SFEFSJPZsN8PtdkMkliipdycD7IcLfbTccDyg5qteMWfL1eL50b4uWk0M34XNQhjZ2xLxYLHRwcaGdnR09/+tO1t7enWu3Y3d9r0CH9Pm4XBBBgIJmIKaS7e6tALy8hc4P7wzk9sownBeR2sVhoOp2m/cLxrIX7MiDwILR4dsNyuaz4Hrh3AXuSvcw94x5tt9tkBkkpCFkieakB55VORQdPyT8rGu+dHhAluM+cG5HOS4i4NgJdfm7WiD3nJR0IA9xL9n0uMpAp5JkWiB8ID51Op+LtwPl8PRkb+5j7NZvN0rPspTt520f3yeC9LhzyOYKglotDgcCdjtpgoLq2UogKgUAgcMehvr+rVnF+uk+1ioZUXPv66z7o2/XcV3yW3uMLfkeStBlNpO35yPgsa9Lvvayndz98gTa//Xu3ezh3Dc6NoOCAjBD5hWySzi9VzQy73W7Fsb9eryczvvV6rel0mggLBEpSpYUfJIPjIeOtVquSng0h8ZaMboznTv55dgRRd6+Vhwx7mnkeefeWf5PJJKXg014TE8jpdJqILOUJ0mk7TW8nCJljjJIqRBEiCBnsdDrp/iwWi1Qq4l0ZnNTTChLSzHWbzaZms5lGo5EODg60Wq3UarUS+WZNiarjh7BarTSbzXT16tUU8SYqz88Q68lkktLtIfPcM0i3dCrOsB/OSnNnv7gg4PN0Lwre68aPXuLihN+v6T4TiGJeSsB45vO5arVa2jPcM4Do4y0jyRaRqoaEXNtNHnleGDv7IfciQGhzUcB9IvK1ZL6Igi5eAC+3cSHEyb1nYniGjhN/H79nXfB77gf+CWQ9eKaI33M3AA0E7nR85CvfFuUOgUAgcIfiv772RyTdGT44v/+x3yB97PH3H/BFn6ML3/aLKu3vvtuKM0SQwI3h3AgKTlzIKJCUSIy7wEO0FotFxYyP6LWk1G0Bosn5+B7yhGjgEVuPyHo5gZddECl1gu4Gelw3j3CS5VCWpbrdbiVNXFLyJyiKQrPZTIPBQP1+X7u7u6kEwk3mIHJO+Oio0Gq1dHR0lCLs3W43eSkgyLgwAll0bwbIW6fTSdHz+Xye2k26twE/u4DivgKUSpA14pkdXJ+sBOrt+/1+En4eeeQRTSaTiuM/JNpT3z1aTamFl4Nwr701qJs1MhY3kkRQOKurAfBr+FduMupZAZ6dwNg9Go8oc9a+9DIeov/sTT8mN+B04SPfQ7mvg1+LZxNhwzNRWDcvPWAe/sz63mWOeIUg4nk2j4sSXv6Sm6giSLiwxL+sT7fbrXxesN74f/Avv/d/A4G7Af/trS/RX9v7rTBmDAQCgcBThl/4F1+vP7L5HO1/5zkSFQI3FedGUPDabk/NJrJOnb50mpZOyjwkAU8EUuYpeyAzwInhbDbTbDZTURTq9/u6cOGCJOmd73xnSsP2zhDSKXGBxHFtSDZjYj6edQB5IluA7ADSsvmXem6pSlCpnz84OEgmiW7ah6jhhNzN+VgDTC5ZZ4/aQwLxQUB46ff76vf7Wq+PW0iSrUEZCOfHbJGMCcZEKjteF6SVk6ng7v9kVpCdQGtJ9gHv4z5454PFYpH2AB4Z9Xo9iT3ul0B0XVKlJMHX0Akr94OsGV939hXkt9lsprG6Z4bfJxdjvKaf33kpBt4W/hrCiAsqEG3PdvCsGy9X4P0uRjAO9qOLCrzu4kF+HX72qL5/jxjh3S4Y33K5TGTexwU4LyUm0qkAxfee+XGWoOKmj9KpiJTvD47HeyEQuFvQ+5g36DVvaOpDr+3QGggEAoHALcOr/+XX62N/6k9p/ba33+6hBG4BnrSgUBTFu0v6bnvpeZL+saQ9SZ8l6dLJ619UluUPPd7znuVdAMn1tosQaumUtHgLR8oblstlhSyQCu8RW1oMci431/OoMuODaOHVUJalxuNxMq6D+LhZHOKEJE2nU/V6vVRG4BFSbxNJZL3dbqvVaqnX62k8Hms+n+vg4ECTybHzqpvqIbZAlpkr0XxINvD3cjxkinUjswCiDqljjp6W7pkDntLO7/FMQMhwQ8z1ep0Ehe12W+no4Wn6rKPfQ0oiKH9otVoVssu9zbtGONyHwztgIL6wJk6+pdM0ey8t8JaOboDIv56lwOt5pgtjzg0SnUTnYpc/HwgczIN96fPi2PxfF6OAZ1IwnrPmlQtlLuL4s+X3H78F5uvn9fvsc0ZY4nWebZ8H95TjMExFqJnNZhVhiLEiavgePq+4VZ/FgUAgEHh8iM/hQCBwL+NJCwplWf62pJdIUlEUdUlvk/R9kj5d0teUZfmVT3pQJ2QMkoHvgKebe2o2xJ+sA0+9h8TSOUFSiiATOSeyvrOzk1oy5nXlkGui1JAlCM1kMkkZBl6+4en8zG29Xms2m6Xx8HuPPDMvd9WnUwNiwmQyqVyHNZtMJslfglTvTqeTyhtYE4gpZoNuBOjCiHssUB7CGkHgOZZShaIokj+Cm2Ky/lzH0/i93t3JpK+HfzkhhRTiISCdlqmw7r5fnAz7tTxrAHKLSMP82Qd+X92w0DuRcA3+da8IL6PJCSzPgGcpsH65QafPwdeFvcs+daGA43OBwb88u8JfdzGEuZMRw/kQonjGvAuHl2B41gblB7lY6PvL7zNr5J4VvodZb55xxsueQhxzsdAFCzfvPM+4lZ/FgUAgEHhsxOdwIPCu8cKf+St64fgN6eftcqn7/m+hR983zK/vBtyskoeXSnp9WZZvOivy+3jgxAoSQRr6eDxOzviemu/tE8lEmM1myXANok35A60lZ7NZygqgVIFU92azqW63m0gPaf2cs9frVSLE0rHoMJlMUmkGxC2PrEqnQoj7OngUm/cyllxcwIyxXq+nbgOUeOzu7iaxYTweVzwEqHv3KDbihY/BfQNycz+i9L7ubmDnxNTH7y78EE2PYrsZn3cM8HkDXvcSEifm3rHBxRPvFuFp7AgHrCHzz+vvydzwMhgXJ9yI08krWRIQV88w8HIDX0vWLRek/N45uCe5UAH5dv8D32Ne9pDvU47Lsxd8H3t7UvYEa0tWi7eczA0veUYoS+F9/Ms6cb08Q4J94t4LvlaejZKvGef3ziIc561kfbx3CG74szgQCAQCN4T4HA4EDM/94b+q9/iHb9JmNEqvlculLnzvr6p29N565AOe2vFc/JVCeuTyU3vRuxw3S1B4maTvtJ8/ryiKvyzpNZL+blmWVx/PSTwC6sICbf8gSBA9Jw0c71kNRORprdjpdFQUhabTqaRTo7jZbKbxeJzGgWmipIoXACn1pO07wXFfAciyR4c9bT03PvRabwgMqf90UWDulD40Go3kx9But9Xv91PbOzooECGez+fabrfa3d3VcDiskGXWGQKbp41LSmUNzAePAy91YP0RDhhTo9FIng+sS7vdTvfDszIwikQEygWdoihStwu/x6w995exSEodL3KiTFmGd7LAoBPyyv3xaLZng/gaQYzPWju6YpA9AQl2H4yc+CKgLZfLNN6zyDGZK8wPQs8+Q4RwQcNFKrIvWCsvd3GvinyevB+RDzGt1Wql+8daMl4EKn++vbUjGRWeMeSfC569ws8Yo/oz54Ie42WOvm55+YhnTbAud6CgcFM+iwN3J37nG99f7934eUnd2z2UQOBuRnwOB24JPvRL/qZe80+//nYP43HhQ3/tEzX7nqdJkv7gj7xJ60uXrnnPdjrV3g+8TrXNe+odH/TUjOvirxS67wd+W5ur8RjeTNywoFAURVPSx0v6wpOXvl7SP5VUnvz7VZI+44zjXi7p5fZz+p1HDCHeRPM9giydRkwhg0SZicpDbChxIALMOSE4XktNxBPCKZ0aRBL53263qU2jdCxCuKEbhNWd8SGQg8FA3W43kX3KE5gHBoROvrztIGUVENV2u518B5rNpur1uhaLRSpHODw8TKaUZDdgTElaN6n8iCdcD6NC7ke3262kzi+Xy4qoAjknys46UKMOYe10Omks3HtEG3f855zcy8FgUPG2gPCzLo1GQ7PZLI2XKDT30IUqxg8J91IOz9TAPwKxg32ZZ6B4yn3ui0B03sstcvHDI/TeXYS1y0sdGAPZNrx+dHSUykq4HvfAjSk5B9kenIt74ZkYblKJqMLPnJO1c5Eoz0jw7z3bIzerJOPCs19cUHHhxsuJKLdxLw/vtkGphP9OUqWbhgtVdxJuxmdxO4jmXY3n/+et3vLSmvajG2ogcEsQn8OBW4mL3/wLx7vonOPjf/dj1P/bDXV+45WSpHf119R2PNbwh1+n3dc+KEl6+0c9oPHzbk2HrQu/Vui+7/+tEBNuAW5GhsKflPTLZVm+U5L4V5KKovgGST9w1kFlWb5C0itO3pfy/SHu6/VavV4v/cHv5ownx1Ra50EoiVJDlonyQyryum6IUV4ucTLGdC3GRnkEpBxAZqmvd6LXbDZTtgRRX6K5lC3k86/X6xoMBilS7OTOI/d+bco2aK/JcWQeEOnfbo87LEyn0ySqUKLQbreTQEAaOufyFPTcHJPzeqmIR5NZT4gqY3aiyLkQW6RTo83lcpnmRkcAj0bzfv718gonpk6MIZ+sP500cpNJrrWzs5OyWxyMwc0HaW3ppSysAVF9xAqux/1knclCAZB9rskXYoaXR5DN0Ww2UxYO9wZC7R0hECHIInCRgXkhACB2eRaIlyK52OLijIsMLl54d4mzyls8I8MFDi/X8YwEshXyEpTpdFrxBPHMEM7j5Q6s5R2EG/4sHhYXopjxLkbzS96hd2+EmhAI3ELE53Dg1mG70Uf+hU/Xj3/3N9/ukUiSPuJTP0ONg8U1r9cOJtq88Xce93m247H028eZ4k9/5yUVJ6b1TwRv/PTnaXH/2UJE7601Pes73qDtZKqNZaQHbh5uhqDwKbLUrqIoHirL8uGTHz9R0q8/kZN5jTtEw9PwPeJIFFxSSnnvdrsper9er7W7u5tIGy0OIVHT6TSRDggRgoG3ApROU9AhvpJ06dIl7ezsqNPp6IEHHlCn00kZBwgFEDtIGwSeaxKNdb8EhI1Op5Mi20SqWZ/5fJ68CiipICWcsVJu4W0oiQKTzg3h8zR2qZp+7iaTORAqMN2DyJOVwTFeUrFer9VoNDQcDiv+AVwfwWW73WoymaT7z+9dmGHd3CgREcHT7hFH3OQPQUlShTjnxBgS7J4HZ9XlQ9C5Vx79Zw85iWZdzvJ18AwcF7Y8NT83hJSq2QMIKryXsXsZA2IAgkF+7rx0gNe8e4aLMlyDcZNl44IB/+alFC4MXQ+M38eLQHGWjwXig98/niepapjpzwdrc4fVv97Uz+LA3YePuP+31Coaj/3GQCDwZBGfw4FbitrP/l991J/7NP3Yf/3Wp/S6z/3+l+sP/tO3Vl6rv/3/alteq3/dSH7B5uBQOjh8wsc9+1+PpPp1BPPNRuvZ7AZGFXgs3JCgUBRFV9JHSvpse/lfFUXxEh2nd70x+927OlfFSM6jyk4YpGpHBDfbg4hCLr3+3Umxiwp+fUkVso14ANHxCDcCRa1WU6fTUa/XU6/XS9F6xAsnvB7plU4jpIy72WxW/AJIuyZCz/kRS4qiSMfxOmUPCBXdbjdFZr1UgJ8hV0TWpeNIvUfZPeLd7XbV7XZTycdsNktlId5JgKg494F74l4RTkhZDyfPeFaQQYFHA1F7r5/3unxfcyfknm1ByYd3mXDS7KaErJt3N2APSKfp8r5f/V+uT1ZGXmLgwpXjrIi9E/yzSicgxE7a/blB5MB8EGHAS1L8nP69ZwZQCuP3DDBvhAfEhPy5RZRh/pzPyz38GWetGIcTftbZs2gcfJ5QkuPZDawBghd76ywB7bziZn4WB+5e/Pj7P6A/8hu/pw9p31GZN4HAHYH4HA48VSh+/rV66V/6TP3kt33jLTn/pjz+++cfPfIS/d8POi7Beff1L5/rUtBtCAa3FTckKJRlOZN0MXvt/3mS56oYF0qnpole45+nMmOeBoGB9HI8ngKk+VOr7dFNj34fHR1pOp0m0uLlC05qIJYQYwglRJyuCl5PLp22jcQ3oSgKDQYD9Xq9dA6yGKTTDhJOgEajkabTaZprHrWnPKHdbqvX62k8HidjxNlsdo0hIOf11o45afaIr9e8j0YjHR0dqdvtVsQShBDug0f38Ujgd5A8Pqjcc2I8Hmu73arf76soikRkGQv3RzoVmrrdbsXwEkHGzRcRfXI/AifSEHO/rxgBeqaBfx0dHVU6QjgBdkHHhS0XePJMA8bm7/V/XYCZz+fXZEd4iYWXgHgpCSU8nr3h83Fhxq9PVoqvHYJcq9VSp9OpdG/geWO+ninCWntGB0DouB7B53U3RfW9wfVcRMuzoBAVXPzwc5933MzP4sDdiz/xmkshJgQCtwjxORx4KrHzU7+kP/r5n63/+a+/Rq1iR93au87wfCxc3RwT8nG51Wc9+4/ab64taQgEctysLg83DR6FJbW52+1qf38/kQAirEQ1t9tt6irQOam78bICzOIgkaPRqBJVb7fb2t/fV1EUevjhhyvReaKZbroIWea8kEBKGiBIEEta00nVKDG/P6vsgqwFSclgEVFkNBqpLMs0X1zsPSuCdH9Jqebda8chVqw1Y5dOa/hdPHDPBLInDg8PNZ1OKyIC8DIE6tLJ8Gg2mymrg7F7W8rlcqnxeKzlcpnKUtwbAeRtCHMTP++wwLw9Kp+TRSft/vvNZqMrV65oNpupXq8nXw6PbvtaeeYFhN+7LHAt78jA+yHv+bh5nwsN7qux3W41n8+TuSgeCZ7uj7jGsWSXsF5Otsl0YD14FvEOIUsm9xjwjiBuNpqXmSCEubhFRoJ0avZJVo9nLXgphcMzFhDWXDD0tXJhh585n3uQnGc1PhB4oqgrSrMDgUDgbkHve1+tl33vB+vN//iD9a2f/rU3dK4v/fC/oPWb3nKTRha413DuBAWpSsSIdJIqLimla3vkUVKF6NGiD/NC6uCn06kmk0kiXr1eT3t7e7rvvvvSOSSdmZYuqZKtQKRXUiXKyfuI5jphwg2fsUHWPK0eEQUvBAg5RBvTRubrbSnJ5qAcoFarJV8J1pSyDMbeaDRSKYH7LXgkXTo12EMMcR8A5ku0m+M9DR8C6hkhkpKQwPi5Zx7ZZo39uNxbAtGBcbqgwDkgy9wjBwTShSrWAqHI6/Qh27z3LLLrvhHMwQUk3peXP3gZQ56VkBNpslrw7nCvEfY9IpyLSYzLDRKZP4Se8/txk8kkZdHkQg9rzr5G2MBrg/e5EAfOEtsQu/I9h1CYZ8wgWlEiw7GexeClDTy3zBfBgWNCUAjcTfjRd/5B/fX93w4fhUAgELiL8Owv+3n9oy/7wzd4lhATAk8e50ZQyOuwyQzodrsaDofa2dnReDxOhBtRAZ+EbrerXq+nnZ2dVBKAqeFyuUzkytPmpWO/gN3dXe3u7mq73arT6SRn/DyC7YZ83qFAUiJARVGo2+2maLFnK0DQu91uyh5wsuRExx3rIbGz2UyTySRFuiHcXvpBOQHRf7I36Bgwn88rJoq9Xk/SqQmj177zHo8QQyyZW6vVUrvdviZC3+/30/ez2aySzs+aOHFDECB1f7Vaqd/vazAYVCLtGDESvadUw8UMxk36PZkF7BlaBzqhJaLOdSCnkFKO475zjHtTQM6Z91kCAyUTiEV5SQRiCISdc3obUV9LzkmGCuU8kipdKZgLBHk+n2symUhSer5YA+4tzyBzYy96xol3xfDov2dusL8Q8bwThpfJuMDjWRteXoI4xXX9+r5/eT8iBs8B1/Pyh1xc49rMMxC4a/DSt+qjf+zP68ff83vVKKLbQyAQCAQCgRvHuREUgBPoZrOZIvVHR0eaTCaaTqeV1GjptP885ouz2SzV3k+nU02nUzWbzRTVhDSWZalWq5VKBxAeMDmEQFICALkgK8BLBsbjcYo893q9SumDpAqx3NnZUb/fl3RcznDp0qWK3wDrwNza7bba7XYyKYQ0ecTaU+ERXCD5pLp73bqXhEin6eIQWB87AgoZDx4lp/2lHwsRpkafqDmEDhEA00kEDDcTxJPBu19AmCF6vrZEmN0HwT0NEKzOagnIeD1bxLMq3GSQiDxjYRzsRy+TYEzuC4JA468xFgg58/LyCffsyI91HwLG4MdC7r38h4wByD33azabJbEG0Ss3o2RtPJrPtb2NKPePcbtXA+JGvjYuorCn3WMDHxQyELxMAwHD/UZcPCNjAiB+IBjxLPu9z4XOQOBOR+uj3qj3/+9/Sa/9gO987DcHAoFAIBAIPAbOnaAgVd3+pdMILATUI7QQCMQEiBEkcLFYaDqdajAYpI4MENvctX40GqU0bkSL3B8AQQLSQsTa09Ihh7mbPeeB2FFqQLq6d4Lg2mQXlGWpyWRSERQgQV4uAPJyBL5HFHCzQQQH6uNzV3/aWjJ3N69zggiBhMCtVqvUCaLT6SRDQMwhx+OxhsOh2u12pUzCiTvrsNlskn8EJpzsEYwr3cGfNWPPuMlgXspBhge+GJJShoDX2bN2ZERAtN0U07MXEBx8vzi5h7QyR37nmQ3MFbHDvSzy93o2iZfgMBbvDsEzxV6ZzWaVrhqIRP4c+nVdVHKRIy8TyNtkurmnvze/J5LSGnl2R37vfa3xichNFvlM8XPlvhSMza+DwBUI3G142p/5TR29bRNZCoFAIBAIBG4Y51JQkFQhPbPZrNLJwaPskhKp9fR3J6KQdsj5YDBQq9VKnRi2263G47EuX76cTAB7vV4ioJARz54gas/PHplmTBB1xgtB86yDyWSS5knpgKezM18IOASUunmff6vVSkIDpJrXWItGo6FOp1OJTLsnBAQYQkm3CMQEhAKvYc9Tzb07BIQNbwePnHMeT/fn+tx3xrBcLvXoo4/q8uXLFa+FzWaj0Wikg4ODSoYJa+mRazfoI2LuJJv3uxDBHHwNSaNnjbmvnh7vIoYTczcEhAR7xwvGi5hB5grXyz0D8i4KjMl9IDiP+1H4vp7NZkkooYwIQYbrs8fdW4Dx8qyx9/JMAfZZ7sfhbSe9fMQzFjz7wQUg1pFzufjjYo2kyrrhP5K3l2T83hUC4ScQuBvxXt/8edLJfzVHz1jpDR91a9qPBQKBQCAQuLtxrgQFj4xLShHudrtdKS/wVGVIPqnVEEMi/UR+F4tFIsWQeY+SrtdrXb16NZErzB3H43EiLh5phggT6YcIQZw8xZ+5cDzRfieanC/PKKBUgY4H/pp0WhtPFgFtL2u1mgaDgTqdTsXkcGdnR71eL6WP50QPssX6IErkkXfWHdLHWnrEl+9Z82azmdYTksc5XCyilh+RheyMy5cv68qVK+k+Uvt+eHiY/DUQRSgtgdQzR+bn0XHuEYCMeySe7ApKONinlHC4gOACBWvmxoasIdfAoNPXF3Lt0X72hWfDuA8DY3LBIY/Q+7PmAopUzWrJuyp49oFnPbD3fI/kJSC+JzwrIxcYfA0Qmbh37K+8pIXX3H/CS2gQmOge4s9hnuXkJSc+rkDgbsRzvviV6fudZzxd7/uaz72NowkE3jV+9x1ffbuHEAgEAoHr4NwICu5qT1QXx/jDw8P0hz5kmmhqu91Wt9vV3t6e+v1+cuL3mnSPfnuZA1FrUr8RDiD9XptOG0YnwozFo6ukjLtfg3QqGDhZd9M3iCDlHO6D4OPw8gJInJdXEFmHlNEdA+EAUUFSZWych9IExBDIpZsU+j3z0gf3IoAI+5pyHxAYvLuEpJTxQUYKLTHLstR4PE4dLtw0bzqd6vDwMJF8xurEkeyBzWajbrdb8cRwMUM6jZyThcD98NIVj3J7+QIE14muCxysg3tM5B0nPMLOefL19ui7j43j+dfFCOm0laqTfc8oYP38XL7/veTBO1cgtvi5AXvcTR23222658AFDNaU8+XlKawhnxdeLsI8eR0DTEkVPwWu7/feS0dc0AgE7nas3/Z2PfB1b7/dwwgErovfL6e3ewiBQCAQuA7OjaAAccvJNPXxXhftaeONRkP9fj8JCpQseEq0Zw9AJkkPl059DdxbwNP2IRhkD0AUpWppxnZ7bAJZlqU6nU4iZhzjHQKcdOap4e6hwPU90sy48B6AYOVt9fLzsnaIKKvVKmVLIEAMh8NkiJiXl0B+2+12xWMgJ4N+rxaLRfKkwP/BSR6dBiD+vK9Wq2kymSRyPR6PNZ/PKxHz+Xyu6XSaxuJeBvl9h0giWpzlxwFJJkPAy1e419TW4/nAnnUvBa7l99oFDo/ae5kOe5+9IqmyhxF13FjSy0UYP+UsrIOn7Tvx9pII9otnF+TiBcf7vfdzs1+YQ/7MSqflCmcdm5c4uJEoxyAyuPCYP1O8B1NJz67gGMpjvJTFS3c8EyIQCAQCgUAgEAicjXMjKEi6JqoIYZaU/AI8HRny0uv1NBwOU6cG3ofZYb/fvyb1m1RoyIR0arzo75VOjQEhJU7Cvd3iarVKkXJvPwex518i5p5y7yaRzB3S7STZ14CsBE/5LssyjU9SaieIAIMhIiTb68u9swbz9cg5mRfcE7JBOBeCAeaOfEEM3WOAsUyn03TMcrlM48MLgCg+rUAhjRBbRAYnp15KUKvVUnlMrVZLLSkRVHjPZrO5RrCQTkmyG//lNf6UhrCH3GDTiX7eGtLPBcHNuyAwLxdq3N8hF42Al7LkxNhfyyP0zBXhJM9u8VIHMg782ZCUylR8v0Lk2UN8z3PsWT4+fi87oYzlLPHRfTLcK8LX3zOU8uwDylwkVbxPQlQIBAKBQCAQCASuj3MlKIBms6nd3d30Rz3kG28DWihiMtjr9VIqOwSAYzD0k5QyCCBvtKQkguykDqLsngl56rV/n0diz6p9J4K9XC6TG72nrFNq0Wq1kpjgdfBEXDkXBMyjq070ILeUEFBOMBqNksAA+UPMGQwGqXTEyzEA16N7BgSO9fYoPJF6/Bo2m436/b6azaYWi0XKPOEeLhaLCpEejUaSlMoP+PJsDCel3OPcy4C57OzspL2AOOAlCawJ52GdfT7SqccAqfP83g0bIeAcwx7gOp4h4ffRywacrJPF4BkKjMF9GbxlopdFOMF2QcTvrWe3sEaMF3LtJpN5+UTu5cBz4JF/3uulES7gsBZejuLv4YuyH+br5RSsCfeDObDH/Xw8W8yVc+3s7FQEsEAgEAgEAoFAIHAtzo2gAAFpNBra29vTxYsXU428RzXzGn43/MuJCYQBwcDJCqn3dB4Yj8eVWn7Ik5skuoeDezNA1j16z3UkJb8ACM9sNkttI6XTjhAumCB0jMfjRHByM0LGQ+Sd8oJWq6XFYqFLly6pLMsKGfXafMi5R70ZPyTMyS3zIpo/Go0qqezSacQb8uYZAFwfjwIEBEoiXLyRqn4DZDL4fczJP3uA+5CTeifeiDpErjknWQUcw/h5n5euINj4WPPsCK7rnSBcTAC+byHtHqV3kcLJe+7bcNY68r3fc+C+HZRxeDTfhQ7usxPvvPSH/Z4bh3oZg2cHsDdcpJBOhQg3TGSsLjLknwW+J3ie3bsjz6bw+8LasU/yawQCgUAgEAgEAoEqzo2g4PCSgrNM5CBt7jewWq10cHCgyWSSyBDHQID9taIokvs76fPr9ToZzHmU2yOfy+XyGuNEJ7T4CxAVbzabiaQgBkhSt9tN8yJlPu96QFQfMQHRISfBvMa8IH3z+Tyl+Du5Z95OsHMwfy9vyAkahLooCg2Hw2tEBbI9OJ/7Kly9elXz+Tx5YBBB3tnZUb/fT9dhLfk5J8T+vd9XXvdSi7xWnu8hlF6SkJN91gnRx4k3ghJE3zs/5Kn8zMF9MaSqKeF0Oq1kDrDvWVf2Hu8H+Wu5AOfPA+93ou731tfL9xV+Bjn8HHQBYSzsb89KYE3cDJLjPbPAu7f4vmN8LnQwN17LBQfg4oxneLhg4Vk7gUAgEAgEAoFA4GycS0FBUoXoukHdZDLRdDrVer1Wp9PRYDBQt9tNtfeTySQdRykBBAXSV6/X1el0EvEcjUaJsHnKOOQiJyj4BQyHw+QXQLcJyCnRd0h1fh5KGRAtMHFkzC5y4BPB2DGrJCOB9+ep6rRerNVqKWpMOYW3P2RstMqcTqeaTqeVzg50Y/A5IH6QYcF9czNK1p9jKTGgS8dZxpEuHHhZgHQqIDjJ5FqAceXmfng0IIy4v4LfW8QUr8sngu3dDiaTiebzeYXoekYL83DSj2jk82BdPMsg37+QYEQsfAO4pvs1uIDE/XXDTjIxclGD37EnAQKCmz36HLkvCDdkurjvAvPxDha+RxiLl/Dk8KwMxCdECc/AcXNV9/1gTHlZhZ/b1zs8FAKBQCAQCAQCgXeNxxQUiqL4JkkfJ+mRsizf6+S1C5K+W9JzJL1R0ieXZXn15HdfKOkzJW0k/Y2yLH/08Q6G6PJ2u02R9Wazqb29PS0WC12+fDlF3fFPwDuBdHOvlYbMLJfLlBEAaYH4eV28p6FDIN2bAJBOnRMj2jiu12tNJpNKa0eO9373lF5AzngdMQUCy/za7XbqUAA59iitt/zjmsx9d3c3CSAQRM9MgNDymmcGeBtFN+LD88HbM7pwQrSY4+nKgFgC3MOCe8LvvRTAvQCcgLJuLnbkkXXItvsPeEmBE1Kuyzg5xtPpMfEjY4XjyEiRTjsiuN9BXgJChg33yz0zGD/X53UvTXARg98jLjkhdu8Ev1eebcOz58IDv/OoPfDyISfofp/8PnBezzLh/fk4uY4Tes8C4dlDyMrXyPeIl0wxJn7v2RZe/pCXMJ0HPJWfxYFAIBC4FvE5HAgEAtfi8WQofIukr5P0n+y1fyjpJ8uy/PKiKP7hyc//oCiKPyjpZZLeU9LTJf1EURQvKsvyMZu5Q/L39/crZAmCBhH22mp8CPL0cEh6nrrsbejc66DValVInqQKiYSoeCnGYrHQbDZL1+p2uxoMBimaT0TU3f89hdqJj0eDnVw5yaJ9Jr4SXFtSJSruc+P4drut3d1d7e/vJ5EB0Qby2Ww2K4Sb30GcPWILcYTMESH39YNsM3cyRNrtdrov3FeyBzDFlI4FjTzaz8/uceAkEcJOhNnFgdVqlbpbAC998Ci5R9cRNpyQuheB76+cSDvZPmu/+/deEsJe8fNxnlw4OItA54KCj9G7Rvh9JOuh1WpVBBLfl2etg4sELpC5kJOvqWdtMEfGmYsJLg7x+7M8JLgf7rngXgv5sfl94fPB1+scZih8i56Cz+JAIBAIXBffovgcDgQCgQoeU1Aoy/J/F0XxnOzlT5D04Sfff6ukn5H0D05e/66yLJeSfr8oit+T9AGSXvl4BpMTJf/Zo4qSUtkCEV8ncu69ACnodDqV0gOivLVaTb1eL5VFQLYhi06s3DyRqDtk3CPT3qWBMUHUnbx6DbtH/8+qC99sNrpy5YokVdogOtGE2Hc6nUTiG42GhsNh6oThkXGu32q10tipXffsDDwpiGyzRhwL+Jkykul0KqlqCOjEjbp6xrpcLivtNiWl9eY4j1JLp6TWWy6SvQFpdYHBSSZCg6fP50KEp/i72aALJi7s+P51gutZHKxt3trQS0wQTLwtKMjnAHifk3kHmRI5eede+PwYvz9vLt7w5SUPZ2UW5GP09zIX9jxzJSOCL++24IafZL+4GWYupvl1zhJfeC3/18WY84Kn8rM4EAgEAtciPocDgUDgWjxZD4UHy7J8WJLKsny4KIoHTl5/hqRX2fveevLa44Kn7vMzEX/IAsQSk0KPfEqq+CBA0DiXRx9J7e90Otrd3dVisUheCifzuiZqDWGXjsnjarVK46CTA+TMia8TZoQDoulE1J0U50ICJIpouXcQoPSDY9vtttrttpbLZWoJ2el0Ks7/CAmsY6fTSQQNEs57WLtGo5HaLrrJoZNb/qVkgUwNrk1avd9ryDUlJAgUHv1GUMgj9hBTWjc6EWWcTmw94u1p/Ky9E2xPdc89A8io4HU3FMzNMSl5Yc4IB1yHeZAdkmdc5NkqTnBdOHDBBuHiLHLvc+XecQxlP8w5P0fuTcA58/d4CYbvD+aUZxuwfszHsyh4H7/j3ng5iGcTeeYR4Bz59fNMBI7xjIk8U+Mc4pZ8FgcCgUDgcSM+hwOBwD2Nm23KeFZ+8JkhvqIoXi7p5dlriYB6JBUi7RHMZrOpbrebiD0EFkHBya53G3CiQObC3t6eDg4O0jX9+hCKdrudXieijS+AX8O7QpD1cHR0lEwOi6KoZDQgRngU2skWZL4oipRxQLYF0VmIOKQfoaDf7ydzPiLjeZQfAcI7aXhGB4IGJMzLBCDlHg2nTMDr1nlvt9tNrRpdJCErwMko6fMuCOVE1jstSNVMEP7lfqbNmEWcc+LuppLAM2AQhfJSCD+eebCXWQP3xvD1dkLMPD3DxoUO9gbn5xwunuXiiIsnvr/8mfOShjOe1Up3iZzoc5z/zHXOIvD5GNiTvo55poKT/Zzwu8El+8KzNXy/+LPFMWeVNeTjvQPxpD6L2+reyjEFAoHAvYT4HA4EAvcEnqyg8M6iKB46UWIfkvTIyetvlfQse98zJb39rBOUZfkKSa+QpKIoSo/EQnKccDqplZQIKmTZBQVaP0IIeA/nP7m+6vW6hsOh+v2+JpNJIk4ekc7T6SElCBnT6bRC3DyLgqgzBpPMo9Vqqd1uJ08GxAX8CpykQ6wkpU4JnilBVNZJH+n57i+B8EEnCr4o2QAQewQb2inOZrPUxhK/CQg9AgblEG50Cckje8KzPrz+XlISP1xcgfwhFuQeAO6pwffeVjRPgefeO1F0jw7fH6yPlzKQYXB0dJQyQ/zaklLnDY/oe/mECw1n1fV7+r9H1/31vObfTSvz0gvW1ss1vPsB68wz5H4ZnjHg52S8Tu5ZNyf5+fzy7A/fty5AIKT5unH+/Ht/tj0T4XriEcf58+LXz7OTzjlu6mfxsLhw7iccCAQC5wzxORwIBO5pPNkm698v6dNOvv80Sf/DXn9ZURStoiieK+mFkn7hiZ7cyRViwXK5rKSKS8ep/5jIeVmEk3Wi705kOFer1Uo+DA6imbTag1g6cZJOvQwgcxzLdVarVepKQWS7LEt1u131+331er1Exj2S7fX0kMPZbJai4mQ5eMYEJA6y1ev10joQBWcuEGM3tPPXIHPNZrMyzrIs02tEj91IcD6fazKZpDnSCtNLJs6K1kuqkGzmyHo7iWcv5DX8zAvxJv+dE2sEJ4/0eyYA54IUu7hFqYOn4XO/3XiTEoLcxJDzueCQlwjwOx+HizBOoL0Uw7N3OKebJXqGg+9pxo6gwB6mJOcs00QfK2vn5QcIQD52FyjOWjvuswtMLsrk+zzPunCB5HprlGce+DF+bkSM3P/hHOKWfhYHAoFA4DERn8OBQOCexuNpG/mdOjabua8oirdK+hJJXy7pe4qi+ExJb5b05yWpLMvXFUXxPZJ+Q9Ja0l8vH6ebbVEU2tvbU7vdTn/YQ/SJfG+3WzWbzZRC32w2U4cGCAuvSafCBOQY0rNarZKQ0Gg0EkEty7IiEniLQcgP9f6z2Sx5KFCywDU9PX40GlVq44nCY4QIeXKS5ueQlIi0E72dnR212+2Kkd96vU6/63aPU+bq9brm8/k1afkIHJvNRpPJJLV0ZN0RZMi0gIB1u13VajVNJpNkSlic1LI72YWIQmbJmKB7BHPlHnD/WG+i6fgwsJ5khzA3z2Tw+n/W2jNNvBwGYYPj2XNujunHQ8zJEPGSBu6fdNpxg/PlPzMujuOetNvtMztX+FyAez84MfbSEyfJ7lOQj8OPQ5RjHv7MOLHOybqLaf7c+TGMn33oYhjr61kkPPv+mmdw5BlL7Bl/jx/PHPPyhlyw8PecNzHhqfosDgQCgcDZiM/hQCAQuBaPp8vDp1znVy+9zvv/uaR//mQGMxwOU429R7VbrVZKtz8r8gtI9fc6/TxCjDs/mQsQKTIJaAc5mUwqrQ7xKEBw4Hc7Ozvq9XpJHHACS1Sd9HIXPtxY0dP3PZK8Xq81m820XC61WCzUbreTt4GLD6R5QyKZs9fG471QFEXyc0CoWa/XSSDgGszX0/Lr9XoSa/g9AgkE3T0cIK/5fGazmaTTUgNKBDydHXLv2QCezeAEFUAmcxJOBgUkmci9lwlwTdYxT/X3jg1kOCC84I2RezUsl8t0vdzcz8tZmA8dMmhNSltHz1hgXbzsgbUki4J7xJrmhJ/94IKJPx/uX+BtLAFz9fF7GcFZngnuMeL+JJ4Jwjz9fD52zuvr7PeQvZqXcnhGhq+9lzL5Ovs1z/KUuF14Kj+LA4FAIHAt4nM4EAgErsXNNmV80shTqp1cSErGix69z1O28RYguknqN2aAee20p5TjhzAej1OJAlFyxgfBQiRotVrq9/tqt9uSVGnlyHV8PBB/byu42Ww0n891eHiYovGMlewDzuWCwmq10mw2SwTLo9N59N3HkUfqN5tNyraQVCkDqdVqWi6XKROBrAWyCCDLnjVCFoUTYC9lIEOEewMhZa2JiCMg5JFxFxDyEhTegycE6+ZGibmZ4VlRaMQCL0cgG4QMGIQHMlxI2W+322mfYMjppphOehkva0h2jmcvFEVR2V+MG28L7r+LUgg0LnKwH3z+7A0XdHw9XWjx7Ax//jxDIxcBfA6M28sePNMiF8O8u4kLRfkz79kkucDo8P0oqSJKugh11nGBQCAQCAQCgUDgbJwbQUHSNanYklK01YkRBAMvBMioCwpOQLytYqPRqHRH4Pv5fF7JEiBC69kFvH+73VaId1mWmkwmko6J1XQ6TWPf2dlJbQYRRCDV9XpdR0dHms1mqRQAMk5ZBXMnus5cZ7OZLl26pHa7rYsXL6Y5QtTIjpCk/f19DYfDRH7L8tSokvlALDudTvoqy1Kz2azS2cE9IxAYIGt55ghlGdw7jvXotpN894+gi4aDkheH185zLsQR96Rgzp61wV7Lz8WXi0H8jDjC3K5HZJ3gu6jia+TiE+fztqKUGuQZNwgrTuDdy+IsckxWDM8Q2R75e3xdnKx7FB/RiD2J70FO+DFV9GyFPCPCRTDPPHEfA9bB589xjAHBxr0auCZjZe/7tRiri0x+jkAgEAgEAoFAIHB9nBtBwYkGpMuFAEgB3QoQAebzeSJK+Cl4+YGnZXsk3H0SptNpIs6eHUENef7VarUqkWOi0RCoxWKhnZ0dDYfDRO693SGCAtFzyjDcYA5i7T4RnU5HtVpN8/lco9EoRXZzUst4IJu0hoScEXGH9OatJjFd9FaECDB4WThBBZ4yTkSb0hLIs9fNS6dp9sx5NptVMkFcMMhr8z17w0sUPNLuBn7eItIJPcfkpQ6QVQg7Ao2k5AnB+BBNcoECsQDxhfsEEScrJe9G4SU/jBMRh3NLSr4e3POcdCOycK+8rIbx+t7hOeN1MlIkVTxFzjon644Qwz7w/Y/Aw/d5RoSXG1BelGc2ONnPSyR8LzBuxpN7YHAeBAYXG13UCQQCgUAgEAgEAmfj3AgKTpwkVWr4PfVcOm3lKCk57+/s7Kjf71dIGOdptVpqNpuVkgSPtnrrQRcynOxwLFkCECqEDUkp44AIe6fT0Waz0cHBQSUSC5FstVqJMEFmvXad1z1jA2K83W7V6XTU7XaTSEI6vRvvuXcCa+U17LVaTYPBIJ2H7hAQNM4FEfTSBY8cMz+PStdqNfV6vUoGCPeaMTjh5JyskxNHCL+kSjtIN8zMCSnr5caXDhcVvP0jBNY7JeQ+FT4WLy2AzAPfK7TNdLjvhhN991Zwo0TEMt+vfi0vGXDhx7McfNy+Lp6VwfOHSEB5jZe0MDZKO1yM4xni/C4EeXkE13UTSd7jrTj9Pb43WFsXm1wscM+GXITgc8VLKDwDxJ+jQCAQCAQCgUAgcC3OjaCwt7enfr9/Ta27136TMUBUlzaBZVkmnwQIf6122h6QcgVPd+a9eW01ZMOzExABms2mut1uJRUeZ3yIjKe4e5eK3LvBI/6M1VO1JVVKOIjkT6dT1Wo1dbvdlHng8/NUeYgd5IyWii5QMFdKE3q9nlqtViVjgug8mReMh2wFJ5CQTCes3pYS4u2Gf3whcORk1DMGEAD8vczjLB8AJ91OhD0yzXicYHuEGiGGfciXd4XwLgqcw01F3UiQOXjZQS52+FjdQ4MMFQQkz2RgzzoJbrfb6vf7qtfrmk6nFeKdp/m70IYI4RkejNPvg5cJsY9pGUpWCSJR7lXg2RiMg/uak/l8fIB7wXrys6+1l5bkWUvsDy/L8LFcz1shEAgEAoFAIBAInCNBAU8ELylwMuh/+EtKJMrbSeJr4NFMiIOnvdfr9WRw6ASXlGjS0zHUc3LhtfQQHKma6u4Ra0gmx1IrLymVNXiKttfxeycFBAU6LTBGr6OHALOWRMUh8+4lgPjBuFgrhJbFYpGO8W4VRVFUhJo8Gk8qP0aO0mk2A/NiHG5O6caJZFq4AOTZGx4JxwjShRiH3wvvSODCAGTUSzxYQ1pssm5OUL17BMcwdq7rkf7lcqlWq1XJQGHvcW/zjIu8Q4XvJ9YqL8twsQLyzz5xnwUvWchFoDzTgTVjXnnpEGNmnJTpNJtNLZfLSlaBC2eMjb3gX7mngwthvIbgRtaKCwLsSRdZPHsBuDDipTJ+nkAgEAgEAoFAIHAtzo2gwB/9TjQgJXlUE+FAOiXlpOpTZuDncDM6IqBE+D0S7lkKTli9tZ2nUHtdPeTUI6kQZQgcpoetVktlWaZU8c1mkzId6H6Qk2MnUkSXIeFuVAgxhhwyRiLtzN9r692YrlY7NoScz+eazWbJiwFieVa7xHzdvK0mQMSAuOWE100VHewJovN52nwuOpy1blzDxSmPsvPlJD9v5enRfKnqJ8D654aIEFfPRID8e7o/OCurxTs3UFLje4xzcj8oT3B/Dca2XC7T8bkBoos6vr/Zl6yZG4NyHzmGveGmm/4cuSDn2SA8Xy6m+Rp56YKXPVCa4evia5c/Ey56uGDiZqv5/fP7EwgEAoFAIBAIBKo4F4KCk2KPcna7XdVqtURqISSk6BPZJfoNufBUZUjOYrHQZDLReDxOXgH9fr9iOOceAU4OnYhKp4QFMUNSJRLtEXnvCtHtdtXr9dLri8Wi8n7G4sTYibwLHZgY8p48akxEmTIJjyY7cXKyhpAxnU519erVZFTp43CfBtYi95pgXJBD747gUX/vAuFZBz42X38ft3s75AQRQYX77xFpFx8gon5POYbreUSe91G6QdaCG37mpQy+3vze55hntlC2wNr7nmS+HuXPI/dOkj0zB4HES0W81MB9LziXi1CIHWRY0GFls9lUTBhzUcf9CvIv5sS6+vu9JMX3PeUQXrbgWRueoZCPw++/Z0Ysl8uKQSTvyc8RCAQCgUAgEAgEqjg3ggIRaNLEibp6OvpZhBuid5afAKnX7XZbh4eHunLlig4ODrS3t5cyGjBUhFhg3gjB9FRzyDTjmU6niVwyZo9wE6338bVareRnwHsg6JBASCNRYLIbIK0QLCK7+CIQBWbciB6TySRlRHBej767ud3R0ZFGo5EODw9T20aPILNOlDU4CUcoKYpC3W63kgXhJRacD4LKGiAKSUqtMV1Iyu8/JJljGOvR0VEqufAMFc7lfg/u4u9klwg4r7tHBXsRAQvkJoeM0UttPC0/J/Q+B0iuj8mFnJxk58KBg33g6wdcfEMYYL6UvXA97iNCQt5FARHAf3c94cOfXR+vl2ggcrnA4P4itG1FpHIvCPdT8HXL/RrYi77+fp9CUAgEAoFAIBAIBK6PcyEoSKrUuTsJhVhB4qXTTgnr9Tr5BGDKSJq4p1djLjcajTSdTnXfffdpMBio3W5rMpmk9pMYPEpKhIiMAk+1d9IKQW2320mMkE5b4nmbRn4/m80SWcbcDxIEkcmj0pKSIAHhc28DSalcguhqTvpx6meN8YjwKPxisdB4PK4IHpQvkBniRItyBHfaR8TB9DKPHEOuO52OOp1OxbARgQHRhTXK1wJRxMUYL7fIy2e4NnuCnwFr4ISVsXh6v5fY+D2i/p65nmUeyFrnpRW5bwOmi9JpxN4FDc7nxDe/3y50sLcYk5Nzvw7X4lyUO7hgwflchEDsysm3lwpxDY53s1Huka8Rc8jNNt3HA+NHrsN+ZT/k5p6SKkISX+7B4eJHXjoRCAQCgUAgEAgEqjg3ggJkA6IBuYMw88e9pytvt9tEZr19ordi5DxXrlzR1atXVZZl8k8g2kz3A4gJteZSVVDwL48gU0fvLegQCTwyjQBA1wBwVomGpIpJXK1WU6fTSdkSjJUoMiRtMBgkkQLRYnd3N11XUurWICkRf4QK93zwtez1eur1eikivFwukwcFxA3BxyPWzM8zHDxN3v0HWMdGo6HRaHTNGuVtKt3bgUyL3ESQiDvlFbu7u6rX65rP52k9vMQBwupjc2HAj/GsCcbo33ubR0gqQpQLFKwZ64QJZF6/74KKewpAtik3cWIsqbIWbqDo2R+cD7gYAJFHxGLMzI9sCfe1YF3IZuA8wMtQ3AeD59XFEy/J8Ou6IOElQuw1HxPzdF8LxAQ+T/w+e3lIIBAIBAKBQCAQOBvnRlDgD35JKeroLRk9Cp+b/XW73Wsi907uiLxvNhu12231ej1JSu+FIG82mxQd3mw2KbMB0uHRTScskFlPl/dSBognQgXz8jIHiBneEXkkm84UOzs7ySwR8ujrxxjdgJGsCMoDIO61Wk29Xi9ld+TEiiyBoijU7/c1GAzSmna73ZRVwP2STj0ZIPdOwCGsjUZDvV4vlZ6QccI9IdOAsgJPZed7/Aa4b3S1cHNMrokZ5nA4VLvdTmaYnhaPqSHXRBzKDUIRYlws4V83cvSou3RKUPNIv5fmIArgL+EGjbwfocw7TrC/nEi7qaETbjJDiqLQbDar7FnPspBOyxycrLsXxVldL7ieZ464yJNnT3AuN+R04cHvuWctcI8RZ3LvBC+/cHGAdbne2niGg4segUAgEAgEAoFA4FqcC0EBguGZCPP5XAcHB4n0QxCJZBLF9fp/2sfxO8jdbDZLJK3f76vb7UpSSuueTCYajUYVg0aIvqevc33IkpNW4EaCEB/GMJvNJB1HuSmvaDab6vf7SSyg5p8IN5F771QASZKUsgSWy2Uax3q91sHBQaVVJASq1Wqlcg+yHkgdJ7PByft2u1Wn09H+/n5qQcnaQuDr9bomk0lF/JCU5sw18Hqo1+tJoMBTotlsVowDKXUgi8TvNXsFIcfX3duA4sPB+C9evJiySyCe9fpxG06i+25a6AaACCWsgWcecD32iptRYvwIYed+IUCw7vhXIDa5KOJ7jhIaz7zgnrvw5eB9lCZ0Op3kqcEaupmpz8GFCcqJ3Jsg9y1gPbxrgnsqMF+eM+6ziwQOFwq4zy4oug+IZyR41omblHpmht8vBKQ8wyEQCAQCgUAgEAhcH+dCUMiRp4Pn2QZ5RFNSSn/2coLlcpk6O5CiPxwOK+QVDwVECAgsJFCqkhlP+WZsbtrnbfnIGthsNqnTQk6IKZVAUIAoUifuJSCQ4cPDQ02n01Qe4Gnr0imZk44J2XQ6rXgdIGJwXq4pSePxWFevXk2kdm9vT91uN4kOTiC9HMMj+pDI+Xyu6XSqfr+vTqdTiah7pB9RxjtdSKq07CQjYTAYpMwHL4fxYyCMrOve3p52d3c1HA6T6aRnHUBsWcdWq6VWq1Wpxee8rCnGkxBWN3GEdBPddxLM/mWsEHxKSRC5EJn8eXDyzLp7uYJ7NPg6IrLR3cRbTHIeyhoQLDqdTqXsCF8FfDx41tgHLgIhLrjxp2cXME73hfDyh9x40rMKzhoz+ylvP+kCiR8D8u99X3uWQyAQCAQCgUAgEDgbjykoFEXxTZI+TtIjZVm+18lrXyHpT0taSXq9pE8vy/KgKIrnSPpNSb99cviryrL8a493ME4e3K3eyQkGiPgn5OZ0i8Wi4hUwm81S54Fer5ei4kSD3XgOAkcqNSSPtHmpWmcPkXNCBRlyEcJr+iVpMpkkH4OyLFPWANdmHcgY8Cg0kXQvByA6jW8Cx+OPwHogHECkmQPZDwgwbnw3HA5TijxCBZF8j2Tn98+FHSeQecq7R/IlpTIKj2IzF8ZCjT7rn0fwIfd0Auh2uxoMBhoOh1qv1xqNRhqPx4n4S0oGkG4+SdkLQgpk3ctUGAvE01Py3cNgtVqlfUSphnTqteBGgJ514WUSfLFeLgR59oZf34UISlvy7AQXiRivdJrtwXPEWrhJaZ45kD+/7An2mbd25Vnxbg7uh+FrwjU9A8Ov7cSfNfFnMX9P3hYy92Lg3/MkKDyVn8WBQCAQuBbxORwIBALX4vE4jn2LpI/JXvtxSe9VluWLJf2OpC+0372+LMuXnHw9rg9OT1UmquzO8R6dhHz0+/1rCNR6vdZkMtF0Ok0RbGrs2+12EhOKotByudR4PE7RfloYOglz93iPxObu9RAkBAqyGMh6kE6N5Ij4El2H/EJw3DQPEgaBmkwmOjg4SP4Ii8VC0+lU4/FYs9ksmUtKSi74XA8cHR2lFprj8TgRpul0qje/+c0ajUaq1+saDAba399PvgPSaYmIGwu64R1EDtGD8/g4iGK7IOMkXDrtSgBRR9hgLO6VAPn3mvrtdptEGo7p9/u6ePGihsNhpQsFY+Eesw8oleCLfcH9pA2on4d7RlYJc0JE8LlyHcZOZJ/5svcRvrzsRlJFeJCUhCLGxLwQ4hBKEKmI7LvfBdd3gcOJtwtorJcbMvI9GT6sh2eheCbCWXBS78cB95bwlpa+n/wa+br5erHuecaHZ5VwrXOCb9Et/iwOBAKBwLvEtyg+hwOBQKCCx8xQKMvyf5+orP7aj9mPr5L0525kEPzh7+0XpaqngqczOxHwenJa7q1WKzUaDc3nc0lK5+W92+1W4/FYV65c0XQ6TcTIRQuIxWKxuCYt3SP4kBEMFyl5cMLlUXQEB0mVunai2IyX3zNvSFrezpHXIIycTzp16mesZCtcunSp0g1iPp9XBAai+hBTshJms5mm02ml+4JHtT3qzDworfAyBCeTnrXgAhIp+Ts7O9rf39cDDzygdrud1p9oN+fwcgvG1G6301z29/f1tKc9TYeHh9rd3U3eGVyfEg8EBEQU7mdOuPnyDAPKMvj56OgoCROz2SzdN+/i4d4cLrB4NgR7k+uxPz0S78IU+8iFLwQP9++gJMO7orgIwLld5GKdub8IbLyWezkwdsp7vBTBn33PIPDnhmfA1166tksE48k9FdhTnNezi87KtOBfhM3zJCg8FZ/FgUAgELg+4nM4EAgErsXN8FD4DEnfbT8/tyiK/ytpJOmLy7L82cdzEggRWQJOxCHomPrl6c8IEJBt4G75kA8I+NHRkabTacUPgci7dNxNoiiOnfA98jubzRKZhDDV6/XUecFr+hEJIHF8T/397u5uin6TVg6Rkaop3ZKSgOBiB+UTvV6vUioA8ZaUxBcyKHhPu93WeDzWarXSlStXNJ/PU+YHIg3dNsj68Kiwkz6P8jr5496wJmRzeF08ZJZ7T4kK93Z3d1f7+/tJaGBOnU4nrRNdLLwbSLfbTZkJDzzwgPb393V0dJREBhd+ON9gMEilAYyX8gD3WfBSDdpzsv6+Bp5twNp7eYT/W6vVUgcS1p65Inp4OQDriujgpQBe6oDIgZcCvhDehcOfEb9f/ItYhQjBfZSqHid+DPPw0hjG6yLCWdkKvnec5LvY5x0kXFzMu1EgWrj44yKf+0542UveUeYOwE35LA4Ebjbq+/t65M/9gds9jDsCnUe36n7fq2/3MAJPHvE5HAgE7jnckKBQFMX/K2kt6dtPXnpY0rPLsrxcFMUfkvTfi6J4z7IsR2cc+3JJL5dOCe9ZaclO+jyKSHq6p7zjLQAZIdKMCSPHUR5AqQDGehB2yDDjIX3eI9MQE4j3ZDJJvguQHsgOYgFjGA6H6vf7iWy66ICY4H4ApJ2TAUEdPBkDnhruc2FtpWrkmGyO0WiUzrlardRsNtXr9SoR3cViofF4rOl0mnwGyDJwQYF5O+nF3BByDNFzV38n1a1WKwk6dH4YDoe6cOGCut1u6sRRlmUSE6TTbgH8K6mSabC/v68HH3xQw+FQo9Eolb90Op3UJhRB5sKFCxoOh6nrghsH+r6EcLrAwTr4PsRYkzkxfxfK2OeereIlCext1skj/074uWduRsjeyLMbIPOYT3rpAtfabrcVgY32rJTyIPJxvxm3pIpnCKTc98HJZ0D6N/c3QNBzbwfeh2DirVG9ZMZNSYGXZJBJwhxy3wovq3CB8jzjZn0Wt9V9qoYcuAfw5i/5YEnS8v6N3vBnv/42j+bOwHeN9/WlL/4U3f8ra3X+xy/c7uEEngDiczgQCNyreNKCQlEUn6ZjY5qXliespizLpaTlyfe/VBTF6yW9SNJr8uPLsnyFpFdIUqfTSWwNckvtN1FIL3GABNB6cG9vT81mM5U4UDM/GAwSMaAOnUgkGQObzUbL5TIR/pz0tlqt1GoSIkQ0F8I3n89TFNszLNwvgdT5ZrOp++67T71eLxE2MiUgnIwT00DWAF8GIsuTyUSr1So59yMAkIHhpIgIvJeHjEajiudCv99PAgd19ZPJRIeHhxVC614HnqZPaYN0WtPvpoa8ThaGj5t5MybEIvc94BycE3JIO07u697eXqWjxQMPPKCLFy9WSkmGw6GKokjdN9brtbrdrvb29tTr9dL9ZY8wV/wRiPqTNUN2jYtijUaj4r+QGz466XWSC6l3PwDWnn/dG8ONDt1g0ct3WPs8w4FzQtQREDzLwf0Z6vV66kbhPiAIaC6+IDAwNwQnru2iB+/3fSOdZj/kHh1kI7lvBZkGua+HZ4TwPVkfni3BurImeQnPecXN/CweFhfONrcIBJ4Afu+rP1Db7la///H/7nYP5Y7DywZX9bLP/nf64kfeW9/+Jz9Iz/+uteo/88u3e1iBx0B8DgcCgXsZT0pQKIriYyT9A0kfVpblzF6/X9KVsiw3RVE8T9ILJb3h8ZyTP/bpVAChhjThgeCp4I1GQ4PBIAkHEIOdnZ2Uur5er3VwcJBa3kGS6P4AOfcIvkcrIYCk2zsJhHBMp9MKgfcIrBtKNhqNFOXd2dlJEdbcb4ExkbHAa1ynODHb22w2arVa6na7SXjwaC6kE1NKyLx0GtUnSu2ZHMwFgQIxxjMLIF7cs7IsUzQe/4Nms5ki4G7s5+UFkEz/F4LcaDSSOADOKrOAXEJWO51OSlen1ST+F8zN/RIgk61WS7u7u6k8wMUEfr+zs5PW230PPFvFvRTcOBRPBwSF/H65hwBwfwcXlzyThjR/RDgn+G4+6PuWteKelieGli6e8Jz1+/10H9gf3HMn6Z5R4L4PCDA8P3l2BfPknpPt4uUM3DMXG3PPCalaqpFnlbjA4O93YYP76iUu5xm34rM4EHiyeP1XfaB6zz/Ua/7QV2u/HlHWG8E/e+DX9M8+/tf0eX/oj+hn3/YeesbfX2nzO6+/3cMKnIH4HA4EAvc6Hk/byO+U9OGS7iuK4q2SvkTHDrYtST9+8oc5rXA+VNKXFUWxlrSR9NfKsrzyeAZC2QImgRB42iPyxz7Ex93z8xp+0rNrtZqm06muXLmiVquV0vkpFfBWj56qjyDQbrcTefQ2lhASjhuPx4lAQ8IgU4wPMtnv9yuE0n0OIDtuFIgpJITRI8gIFC54eG09GRdeoiGdpnF77T7r6gZ9lE5AaL3DgBsCcq5+v39N1Fk6zg6B/JE9sre3V8n6cEGh0+mk9+IpwLwh9VzbTQHZI3R2YP0RNShLoRSDDAkIaq/XU7fbrZBJSDnCDgIMEXT3vEAI4VjGw7w4P1kZXmpAyQbzKooi7f/tdpv282q1SmUa7g/ighjiCYIBe9DLByD2rH3u/eGE39fFs228AwPvzck6xpzcw3xvIObwGoIC53OBjz3K3mdOLhxw/bzUw4Ubvx7z5hngvvn5zgueqs/iQODJ4Pe++gP1w5/0VXpRoydFyvZNw9c949XSM16tv/ud76eHF/u6+pFLbWezxz4wcEsQn8OBQCBwLR5Pl4dPOePlb7zOe79X0vc+0UF4FNXT/b2VHxFnjO2IMFOOQPQTUgBphhBDuiHJZEHMZrOUwu3O83nUmVIM9yGYzWY6PDzUeDzWcDiUdEqaPCUfMk7knNchQnn0OBcTKKfwjgMQ7rNSwyWlKPJms9He3p52dnbSmnqEH8LkYgLkn/dLqpjhedtIvCog8V7jDvljvETud3d3NRgMEkGWTn0xKBnBfwBCyP2BIPN+xtzpdNL+gbQzv9VqpclkovF4nEwZ8cSgvSGv4Z3AWktKc/ToPffNTQ9dFCOSzvEIJhgbMmb3CpjNZmn/ci32PyUyXpKDsEF2BhkiBwcHKVPBW7CyVk6g3TPBS2o808JLKrjvTth5ZnyfIOzt7e2p0Wikufme4/mSrvVT8I4u7tdAJgxrTfYM52bcjM0zLdyTgvn7M8P1/XznCU/FZ3Eg8GTwhi//IP3YJ32Fnt/o3+6h3LX4qoeOyx7+zS++m37gvS5IZ5jZBm494nM4EAgErsXN6PJww3CHeo+Ul2V5DSHi/UT8IZ2QXyKzEGdvXQhhWq1WiZxQXkAEHCJC9gN17fP5PJEi2hV69waixGRXdLvdlEoOgXGDQkg54gMZBjnRn8/nFbLlpo8QWhdZINCYNSJmME8M75xQeWo5xFQ6zQrwLA0yJSaTSfIdgHAPBgO1222tViuNx+NEiLmfy+UyRbtbrVaFuLEO+Bf46/g9bLfblOExmUw0n89Ty0zvAtHr9a6JQs9mM00mE223W/V6PQ0Gg0qLT/dFYA0pn2DPkQ1Buj33FGKPzwOeGl6+gScC16BbB3sUss/6IspgIOltUL30BIGDzA9/prxdKoKYp/GzP51Ee3YF10L4wbPDSyXYu5B2BBI3TPWMBzcrZe7uteBjYY1ZE7pTtNvttH/4vZefcB94zcUlngmep7zUxJ+J8yYoBALnEW/54g/W//7Uf6WHdkJMeCrw+ftv0gt/9x36mhe8x+0eSiAQuItRv++iXv83X3Tm717wjW/T+o1vfopHFDjPOBeCAmnkRG7xCvDIodfh7+/vpzaOEBoIIyntkhKhQTzAzA2CK50a+S0WixQ9Jore6/VSvTcihKfbk+0Amed9lGRAJCF8nMsj/2RAONFzUuV153t7e0lAIAIOAYY0kX2BsSER8+l0WillyMsaJKVoOwR0s9mkNWH93UQSckemCJ4IRVEkAcDFDEkpKg859zF67Twp/MvlUgcHB5pOp6kzRlEUaRzL5VL9fl/3339/2gucB/I+m81UFIXm83nyQKCmHx+LnPjyRSZIu91OrUbd08C9I9zbgqwM/52Xq3jpBCSWfcr+ouvGcDhMQgZZIJyHfc66+n5hb7GegP0GoSerxMftwhrXJuPEy2e4lnsn8NzxfJIlJJ1m4/BMIGK5kSnri9DgrS4REb2jiD87iAouwnlGCcciJiFouAEsQoWXdAQCgbOx7pchJjzF+JjuUu3X/6r+v+e/+HYPJRAI3GV4w5d/kFRIKqRt4+xMqN/53GdI5TPe5Xme9uqtuv8tWuDeKzg3goL3fIdkeB05/z700EO6//77JaliHIgxH+SCKD7/jsfjJAJAJo6OjnR4eFhpP9ftdlN2AQR1NBolUtPpdLRarVLrSY6hfIIoOGOQqu76pMN76vp6vU7HtVqtNFc3BsRXgOuS+ZCv3XQ61XQ6rRA7yBcEXVK6LvX4kGHGC5nDRBBBBUEEwkgWBySeTBCI2Waz0eHhoZbLZRrPer3WaDRKP7tw5OntkElIvBN7N4vc39/X/v5+xeyP+SNWcE73qlgulzo8PKyk8zvB9O4GZBVA0t1DgSwGsgDIRuh2u8lXgnvGmnD/EKL44r5ThjEcDtXr9dL+5vmgDIYx9nq9iheIlyPwmqfxu7cCogvnZ/0QxRhXLozlniPsZ/9CrJCUsgoQfcjMQGzCW8RJvGcz5CagiACejeD+HoyJa3o7SBd1PCvEyyAQFwOBQOC84cM7W73jt9+kb3nP56u8Q9rbBgKBc4paXW/6Jx+gda9UWZTHgsK7wPWEBsfb/2ih4kM+8AkP5bnft1Dt53/tsd9YbqP06xzh3AgKkLTlclnJGIBgjcfjSkQcEoww4F9EGiGMo9EonceNFSE6eStANyCkpIGoKef3NpEIG54OL6lSh+8EEDIG4SPbgPmcFS3l2ogZRVEk3wCIuUeCWSsi75JSlNlJIlFn7gGCB4IOZFk67ThQr9f1wAMPJMNESDaCBcS90Wjo8PAwZQbQUYEsEt7j9fwQ58VioYODA81ms2s8IxaLRaVl4nA41HA41NHRkWazWZo3rSMnk0laX8QPr61nD0GMIZi0gsSzwc0/GQ+kmH3CPWdcrVZL4/E4Za5wbQgrnQvcO4FSn263W7nH7BUXDRB8EIQQudw/wLs6sDe73a56vV7KBIDUIxAhDrnJJNkM7AXWDqGC58hbgrIurBnCXT53iL5nBnjpk/uouPiS+5WA3LiTc3p2BmvEM4CgwNy5v4FAIHAe8bLBVf3mL831ix92nzYHh7d7OIFA4A5E0WrpzX/vD+locJO7WhVS+SQqR9/wSW3pk/7wY77vwq8Wuu+7X6tytQpR9RzgXAgKUrVzgLeF8+yD3EyPCLt0aoYoqVIWQPmEp9E7IBaQNF6jfIHzSKcRVK7r9diQUoQHjyYTHXdDP66FQADJ5vyII05+ptNpIsekykMeESIkpVT5fr+vnZ0dTSaTNA/Oxxq5AR/r7Ws1GAzSWkHi9/f3dfHixUT6MBR0g0WM+Ci12NvbU6vVSoIGBBGih5CxWCzSeDkPhofU8tM1otfraX9/X3t7eyndn9fJ6GCNyRqQTjNb3IxwsVik0g7uG4SS9WJueD30+33V63Vdvnw5iTn4afT7fQ2Hw0R8KU9xA04XkFx84tqQfum01SN7DQLf6XSuETVYNxfkpFM/BDd0hNQzP8QL1h3hjbIKsmQQKhgLfgyUeUD+81IHv5fL5TJ5nniJAlkl7E32iz83vmfzjATuM+dwIYn74Zk9iEUu1LjhaSAQCJxXfOn9r9On/uAf1+EnP13rt739dg8nEAjcQagPh3rrZ72Xlved7xbZZ+HKi0tdefGL9ayf2Kj9Y69VebS63UO6p3FuBAWvdeZnSDok5YEHHkjlBRBuiKcTZlLq8SBwd3oiwUS5yUaALEunxBnC5GIH5JTrMk4IHwQGYUFSiriT0cC5IaBuyEdpBeOVlDwNPCrvxnKMmewBN2/00gb8Huh4wbUgYBBOj9AzBs7fbrf10EMPaXd3t5LGP5lM0nW73eOWYYeHh7p69WoSOPx+kp0AacOfYDwep3FB+KifZ8wu8GAY6aUhCCmURUjHRBRCnLebhNhC6FutljqdTiVjg7ILiCztOt3g0zNtyC44ODhIpRmM1d/rhoPe1cCJsj8XzKXRaGgwGCRfjfF4nDwlnNSTLeFGnrn/iAsungnA3nJvEem0LAWvEO63+2q4OJOTfuaIiOKmjN61xP0Qzurk4IanbjLqmQqIITx33HMXtMhecbElFzACgUDgvOI7nvvTeuFX/BU971NDUAgEAo8P9fsu6uGXvbumz7yz/855y0fU9ezN+6j107+q8qSsO/DU41wICkRkIdLSaR0/qfKtVku7u7sVAoaggHDgvgOz2SwRNkmVcyNIOGEhsgnBcnKekzs3iMRPgDFATrwemw4HkFmu4RF0j1S76SKp2ERyIUbSqSu9l1n4mBET8F1grRmT/+wmiZRWeCYDXSMuXLig++67L/kCsE7MizaBZBmUZZm6bNAlA4JH+j/nhxBLSiSYseGnwZo3m031+/3kUYBwMBgM1Ol0NJlMUqkLHggIGRBYIvC+NxgXxpGIEqwfHSrwWvDjWE/uk3uB0FnCo+aUGpBF451OWBvuM3ubcTebzdT9YTQaJaPMzWaTrkX03bMNvNzAz8s1WSvpVGBygcpLKHgPmRB5BxHPeuC+8SwhCuXPlmceIHDwXHhGkGf7uAkjrzEvz07wLCS6c/D54GKEl1Us4z+nQOBdYvh66XsnQ31Sf3S7hxIIBAKBx4nDP/FCjZ5/Z4sJ4M0fXdez9WK1fjIyFW4Xzo2gAGkgogjx6na72tvbSynIRK83m01q0QhBgeQ4cXDC7JFpyA8kBef/7XabPAogWpC4/AvCLJ1mLkDEneQTWfW0bsbJ2Dx7AuNDMi4gdET1yWbwDhRnAULMmjnRg6B5Oj/z9/FwX1arVRJ1ms2mrl69qsVikcQTiHu321VZlhqNRqmFI5H80WhUiZ67qSYChHcXcJ8LNzbECBMPAAQm/ATm87muXLmiw8PjmlLIqXtj+L7zUhE8OhgX5SguMEHOuS4CAxkvkG8XpshomM1mFXNB9rzvCwdEHJGJjhS9Xk+9Xi/tV0pV2Mv9fj+d300kvXzAO0rgF3FWmQLrx75gb+zs7KR7QKkHIoSLCRyTe4gwHi/dYVysI3vAsxf4mfvp68b5eTbxdeAzYrVapcwEfw7djwGhxz9HAoHA2bj4Da/UP9/5i9r87e/QJ/ejjv924cOf/7v6/T/+fqr/9C/f7qEEAoHAU443f3Rdz9x5ido/9EvSdnO7h3PPofbYb7n1cDO+Wq2mfr+v3d1d7e3taW9vL6WqextFSYnwuRmjm8UBJ+jegg7yQ2u+brebCDrvJ5V8Mpkk0iupEq11Q7yzXOd5f058EBkYP6UUlGPkRAciCDHy+bkRJXOcz+fJ28BJnBvQuZEkQg6ZAsvlUuPxWIeHh4nI0hHg4OAgEVzORar7crlM4kCn00nlDKT9dzoddbtdFUWhw8NDXb58WePxWJJSOj7Ram/P6IaH3r2Cc/MaYyargPWjtSKvkbbvhBpfAUmJ7CO8IEa4LwadArzEJN+rLlZxPGOAZHO8dFpqQzYMpoG8Lxc9/JkgcwMzR8QFBA32kJcN0b0BA07viOBigotcuSmlZwz4c+hr7aaIrKtnI3DPa7VaEod4nb3nHgisdZ7hgAjIPDzThmPzLA3/vEA4cT+GQCBwfdz/9a/U177hpbd7GPc0vuFZ/0e//6fD9yUQCDw26i96vsbPOhcU8KbirS+tqdZuPfYbAzcd5yJDAfIBqYOkENl3g0OIEhFISAmReI/ge1aAk2dPLee6gKgkX2RB7OzsqN/vV2q8JaVyBzwKvNyA90GezgIih2cneI04JJI1wY+BtWAu7hFBa8XlcqnJZFKpZc/ryyWluvGdnR0dHBxoPp+nbBBIFb4CZVmmrgUQNzJJyEQ4PDystFjExK/Vaqnf76dyhtVqpYODA43H41Qm4B4DTn4hfh7RZt5kBrCeiAmMnUg6JoqeBcI5WWMEHsSCdrudrsEeZO287SPHuUkm7TvpSuIZJ8xLUkVIgPS22+3KfXWvCSLs8/lc0+m04ufhHRbc0JP9hQiGF4UbKfLMQfDZMy7I5V1EGBP3jP3upQf+e99/LtJwLe4D6+qmoS5UuNCBvwJ7wD8LPOvCfSpc9PHMBN7jbTcDgcC7xiOf+8H64ud92+0eRiAQCAQeB+bP3b/jvROuh0df9j668M2vipaSTzHOzV/M7Xa7UocOmQAQNdz8vVsAKeGkfNMFABM86dRUUKqKC07qnPx7DTjRWI9w0xoRIka0nrZ71PxDRD0NnGgvEXKEAAgXKfVObIqiSLX20qlRHinlrIFnMSwWi0TWWT9IHPOVTk0IJVWyMLyFH8IOZM0zHvAcwBwQ7wK6P5Rlqd3d3SQW+bkmk4m2222KdkN6mZ+vk6+dE2wXj9wvgmwDuoOQgeHeFdxbj2wTuWfvuHklIgKk3qPbLnSwTuxpzumdSHi/l6G4EMIxkGLvorFcLlOpg5dsIOxQIuA+HoyRfYlxKL4HZ7XWZC65mOBlHYwL0u/E30sdHGQWeBkQohKeDH5N1tqzPPic8PN7FgX3ar1eJxEMPxY3OuW8bsDK/KPkIRB4bBx+wDI8FAKBQCBw23HlvUtdKGpSGWUPTyXOhaBQq9VSO0hMBD2bwA3aqG+mPh9S43X/bmq32WyuIV6QDwgQICoNwYOoUq9PRBayQ3s7ouz1el2DwUCDwSB1VoCIQrTq9XqFlCMaQGpcjIAo0Z4RDwFIl3fCYH6YAdKyERLlJRYIC0R/ceRn3VkLouuQXog9pE1SEgjKstSjjz6qg4ODJPZQkkLpCpkkrM2VK1eSN0Or1Uqvu9eBt0P0zgHch/l8nrIOKNXABJG1w3/Da/9J03dzRYQZhIN2u53KTygJQaRgfO6zAfmkxGO1WqUMh+l0Wtnz7FPPGiDzhOcAA0vGTvScvf7/b+/cY2w9qzL+rDNnZs+955y2YGkLtLWEVMTSaC1eCBrkUhMr/5hKjESJpQKJGmsCYhQTCanhEg0JBgK03NVQY6OJCogQFSkHbGmhlJbSlF7kHKYze+bbe8+e2+sfs3/vXvvrzLkxs79vn7OeZHJm9uz59vre9/3enOd513pWuTuEbxXK2pU0IJL5Mg8EsUajkbMZEEp8VgCfJSlf2z8H/pkiPg9v8ujjQfxCvGGefHmCz3xAHPEZPL7jh6QBo1DWizdpRRRkHLg+cXtjSF8GEQgEdsfz39HUa678BX3iss9XHUogEAgEAoEhoxaCwtjYmGZmZgac7Knr9+70kgZOEn1rN054V1dXM9mWlAmFL2Uo13JzWulbDEI0Go1GrvuXlMUL3re4uKhms6mUkg4dOqTDhw+r0Wio1WplAcETM18TXz5thQBzL1LflM8b/EGWSAtHYPHp5GRx+Pp0X7vOuNDyj/IIX+7BGPjTdXwVJGXRxszU6XS0uLiohYWF7EvBfZIpQno+RA0xgBN17pFMBkoiWq1WJv8AAs8pO4JIu93OZTEYNVKq4TMEfKtACDNkkpP+gwcPqiiKvNY48fYdSRgnSDqZJO12e6B1JUKH75jgSwnIjIDUS/2MA8pGEBz4W3wyfGaMfya8EanUNx9kzbGOvIhWzhygdAZxwxtSepHDw4ssiB1+/W1sbAx00kC8Yh3gwVEuT/Dru1yeUH6e+Uw8NtbW1jQ/Pz9QpuF9V8hMKJcFBQKBk+OBmy/Qf156m6TZqkMJBAKBQCAwZNRCUJA0QKoglpiyISBAXDCbK3dN8PXbnIbjbeBJjz+5hWCRRk4GgO8EgZjgU64hKxBJ2gmSZk7Zhc9IgAB5Qzo+m/vCMR+ixImtz3bwKKd4e8NArslJLaUEngBL/ZR2avF9jJDQmZmZ7BXR7Xbz6TYxdDodHTt2TEVRqNFo5BN/MhxarZZWVlYGiCBGjwg6ZH1gYri0tJRNN71poTf/k/qmnhD6ubm5nFmCf0FRFAN1/8wlJpSdTiebRc7NzWlycjILLJBu5odyBC8QIY50Oh0tLy8P+C+srKwMZJuwtr3ppp8/RIeZmZlc9oEYgpjAHJMNQnYC98e9+ev7LAq6U+CvIPXLfvzaYk349o5e+AOc7iPU+GeVzISyoIEYxlghTFHawzgwJtw7GTPe26LcSYIvxCKyf8hO4f1eWGBtEX/Z8yEQCOyM5/3JvfqNH3+NPnfVnVWHEggEAoFAYMg4qcWnmX3IzI6Z2X3utbeZ2eNmdnfv63r3u7eY2UNm9oCZveJUA6EWG+JE7TuE05/i+1N3TiIhT1I/LZt0dW+6530BJA0QM0nZTZ7re88Erg84SYUYz85un8602+0ch9QXOiDekBWyFyBOkH3f2cGbCJKK709RvQ+D916QNGDI509gIViNRiP7HGDe6LNDfCnG5uamVlZWsmmj9xvACHFpaSmPOSIHJQVLS0s6duyYlpeXM4nz9+fT8Mm8oGXj2NiY5ufnNTU1NVDKwt8wf5BQSCXp++12WwsLC2o2m5lI8v7l5WWtrKxkAYguE9w7bv++wwICSafT0fr6ei4V6Xa7WQRBgCBrAnGr1WrlMfW+How32SPe52FlZWUggwLBqky8vbkj8fBMlb0A/Pt9GYXP/CBm/EgmJyezCECM/tnc2trukELpiTdU9GUMfm1JysLG2tpa7qZS9qzgOmWzRx8rWTpefGD+yFoplwkhZPr9hWdrp/KNKjGsvTgQOF1stdvqbtTmfOKcxGbakoXly74j9uFAIBB4Ok7lfwC3SXqvpI+UXn9PSumd/gUzu0rSjZJ+TNKzJH3WzJ6X0omdMba2tnLZAMSe1G2ImfXM4jypgNxBVHxnAYQCb2ro07Y9kUPEIG3cEz1IGaf73kne17AjPEBCScH2mRV8XzZq9KTJp2GX2w9CAn2KOu/nd77zAmMFaSJbwLecRBSBeJF+7lvxcXpM6rj3NyCLAkEIUun/rigKLS4uanl5WYcPHx4QSxgzroX3AeaOZqb5+XnNzMwMdEpgjlkjviuD9wxYWlrK98a8MRerq6tZ4Jientb555+vI0eOaGxsLBN/3xaR62Jcybjy3vX1dTWbzZwVgjhExgkxjI+PD5hH+lIO/0wgFJG5gVBWFIWazaaKohgQQbwnAWvWn7SzHqV+hwXWsc8QgewjCiDkMP5+TQO/JphfxgCxgnngPvBOoAWmb82KGORLF7wBJiIS90ZZCgIA98uzSBkN8+/FMwQe7t23k/TPSg1wm/Z5Lw4EzgQPfvgaPfzCD1YdxjmN53/ht3XFLf9TdRjnAm5T7MOBEYdtJtmmlKIzdmCPcFJBIaX0RTN77ile7wZJn0opdSV918weknStpC+d6I8gob4mG4LMSbOvw4bEkpIPKUZQkPQ0p39v7ti7L0n98gdIByebkgZOL3GGh4R5k0cEC+6DbAAIEKee/v7K7Q8hRXx5h3pvNuk9Dnx6OIKGpIFTVUjkxMSEGo1GJlEQb07aIc8+XZwx98TT/4y40mw2dfz4cbVarSzy+LFttVq5fIDX+YLMdjodTU9P57R770sxPz+vRqOhxcXFXFrACTZiBj+XU9l9SQpjQfYKppDj4+Oanp4e8JOAsDI+GPn5rAREFEwj+R2tMSHNZHisrq5m8uy7LLD+/NzScpJ1yvqjfIaSnJ1O1VmfjIkXbhBjxsfHB4xDWcs+MwLyXe5a4tcX2RFSv+OGb0PqhRFIO3H69zWbTS0uLg4YrpIt5P1PGDtfQkQMPB9+PHg2iY9njgwV7xWCEOTLhhD/6oBh7MWBQGD0sLjZ1sbyxMnfGPihEftw4GzA+Ge/qmceuU7/9+KqI9l7HCyiVLUK/DA5im8ys9+UdFTSH6aUFiVdLMlL5I/1XjshvJO7Fxbo4uCd2D1hgKT5lHVPSiFynpghGEAgIFIQbqnfJhDSh7jhuy2Qlp1SGjBs5ESUz/IZA5Bd385P6osJUt9PwWda8Dn+hNebMQIEDYgSGQ+UU3hSVz6hR3RBPCl3VIDM0UWCe+OkvSiKTOy8R8Lq6qoWFxdVFEVuT+jnj/d0u91snoh5I+0ep6enswdDt9vNpI+SDZ8pQhwQ/m63mz0ZmAM8EDAzPO+88zQ3N6eUUv4MvvDgYMwYr+Xl5YF2imRvzMzM5K4JRVEMlPL4z+50Otra2spZHL7e33tGTExMDHQwYK2zbnz5DwKNLx1C6OIz/fpbWVnJcUjKviTeoJT4KN3wxpZlTw+eNdYPa8yX5CB8eQK/vr6uoihyLL48yRs5+meI58ELBv65LmchIWyUnz1vyIj4yJyTNTMC2LO9OBAIjB5u/Pav6Xk331V1GOc6Yh8OBGqAy99xj7a2Iglo2Diph8IueJ+kKyRdLelJSe/qvb6TLLRj7zUzu8nMjprZUW+sBpHzIoI/fYUkQFYgRRAlX4su9f0LyGzwddlcB2IGcSmf1voyC0z3yFCA9HnvAX8CTwy83wsivosFnwNZh2hxgkyskCHGimwHTlWpe/fki8/h/hAjiqLINfi+rGRqaipfz9en+/HnxJrsBE6mfa085RpeaPGlIKurqwMtNzEqhMzOz8/nTgl4N0C4pX5ZAMIEawevB0oRaF8J0V5dXVWz2czeF3gm0F4QMslYcpqN10Sz2czZIbwXUs6JO2INc4GgQPYBmSWIZGQ4FEWRr4uRICahS0tLWl5efpoBoc9A4NqUhpDJwnWZi06nk++NOUV4QAjhWSl3SuGz/Ak/Y+uzBSDmdMNA6POZAhsbG3k8fTYQghX3yvV9xgfr1pdE+GfV+3zQ8YRsCl735U7Ex3zXzUNhF+ztXqzuvgQZCAT2B99ZL/TgfZdUHca5jtiHAyOHqeNrZ91p/sz3DijV//9tZyXOKEMhpfR9vjezD0j6p96Pj0m61L31EklP7HKN90t6vyQdOnQoQZb5D7w/oYQgkNruT2NJ76adHyftvl2e/xt/6ulPYvl8TvzJVkA04JrUePtWfWXhw4PUcV8eAbH2adpeWCj7KbixzqfzXtBAiPDEy7d0JL0dfwqIc7vdzieznGT7lG9OgDmdLwsoRVHkDAWfKs/9eONE5sYbaHY6HbXbbY2Pj2fTPMQLWiAWRaGVlZVsfEiMUj+TRNKAGMQ1fQcJn7HCWBw4cEBTU1O5VALRgesh2CB+kA3hT7DNLBNmxAlKNhBBiJuOHcxROZPGE3xEDroSLC0tZT8I1iviE/PDeDLPrBNKTvBb2NjYyJkYrDcydxCaeF3S09Yv698LZggOZOuwvvA5IDPBlyn47A6eUZ41L14hFHlx0HtDsC/4PYC1x7qhZIT59xkbtATls7xAVPaKqBv2ei+etyP1vuFAIJDx6Eahl99xi678g/BOqBKxDwdGEWOf/5rmLn+xFl9QdSR7g/mHDuhHPnKvtrohyFWBMxIUzOyilNKTvR9fLQm32zslfcLM3q1tA5orJZ1SHl45XbncFhJSx8/UkxdFkUmBT5X28IICP3OS3Wq1Mqnk995gDkLOCXbZTZ7UfdLOAeQewcObvvmTVci476gAmYJcQmog2fyO60nKZNcTTv7GG1dCwHwbSl8SAgGn1eHMzEy+H9LvJyYm1Gw2tby8nEkp7/Eih++e4T0c6FpQ7qxAJgciR6vV0tLS0oD5nv8sTr2ZW+Zmeno6Zzcwh6wbxnR1dTX/LWUCzBNrBPIK2WfcSM33nQQgs2NjYyqKYiCbwHtieJKNaCFpwIuBNTg+Pp67XeAvgCAm9f0BEGe4BvFAnFutltrt9oAXAutufHw8ZwQgAiDoIDB4oQ8BjHuS+galvgyG7A7uxZe4eAHMm1t6Uc4LRb47BOPGHsDckYXjs2SIAxHMlxD5lpNesEQs4V53EgnrhP3YiwOB08WF/z6h9//0s3TTeTtypcA+YHGzrZd97I/0o38c5fhVI/bhQKBaHLrf9MxPf0ubKytVh3LO4qSCgpl9UtJLJV1gZo9J+jNJLzWzq7WduvWIpNdLUkrpG2b2d5K+KWlD0htPxc3W1zBLGjj5lwbTkyHenJTSxx5y453sPcEvn6ZCOHwqvi8f4PQUomhmOeUeMgXR8oSpLHZwOl6ud/cn55yeco+efPl7geRxWguhhcj5e5c0UKPuMzEgUz41XFImsJSScMpPHLOzs1lg8KUKZUNBL46sra3lDgSMIaaHBw4c0KFDhwZKLCCGfEar1cpCCu04IYTU5PMzxPPIkSOampoaMAlkTPlsb+JImj/dMvgMxARfPuDJM69J2xktU1NT6na7WlhYyNkJZC4wd+12O2dZIP4wP2Q6+IyRdrudW1FKfSHFk+eiKHLtv886kJQzFHz8XuRgXjjNZ51w775rAh1CvFEhggpr1As2jKcXPojNX9+PI+vYm2r6tcr78ULgcxqNRt4/ePYQYDB4JFbEDkQyhCf2BfYB1iLCSNUYxl4cCJwJDn3kS7r9NdfpphfeUXUo5wTW06Z+/r236LJb/7vqUM45xD4cOJtw4dEltS86rO75o91z9sKvLGtz4amqwzincSpdHn59h5d37Q+VUnq7pLefThCQCNK3/ak7ZQgQHU9eIUfUPyNMkAoOUfblFJAKb7jo3eS9oIAx4Pj4eD5tx3RO6hsoEi/k1Z9oIyaQhUB8ECVOa733AWQVMufLEhA1uL+yxwTAoHJycjLHQoo9GRY+KwOCiicFZRNkWjQajWySSY2/N5LkPiGo7XY7Z4ZIyoQS0nrw4EHNzc3lsgTG3mduYKI3OTmZySUCgu9C0Wq1tLy8nNseemHEjxU+EKS0M54YAkLC/TqD6PP5rCP/3qmpqZzl0mw2tbCwkMectSlp4MQcgYPx8wIWQgdjsNJTXJkLLy75DAxfhoHghfjE+Jf9RBh7vBcQO7g2JUfeQ4S5QhDg+gg4/FzuzsLf+TXDuvWfxXspdTDbbgfKeuf58O1UERTIyOBeZmdnsyCImIBwQ9mRz9pgvbCO6mTKOIy9OBA4U0y854j+5j0X6+ZDj1cdylmNF/3FG3Swk3Txh0NMqAKxDwfOJmzdc7/GX/oz6p5fdSRnjguPSgceeUKh1FWLH6bLw54BQQFiRK0zhAOygecAr3FyCXmiDR2EyJ/al7sleK8EyODq6qomJyezkWBKKZNqf7rq67t9dgOki5p1iK8nZBApL6J40upJvtR3w6c9IqfDPo2fMfR/x6m+pIG0dR9TucyDOvxOp5PT4Ilrfn4+lyEcP348ixKQQa6BMNNut5V6HTC8aR6EmDaNkDlJWdjpdDp66qmnskEf98D9cq90lMBEkFKZgwcP5rght/7+IaIICisrK9rc3NTs7OxAtkvZzNF3k2D+G41GLtlYW1vT4uKims1m/r0/Sac8B1EEQQoyzjz6EgafSYMgMD09nbMB/DNCFgNj5p8rT/g9kcbvgcwJL44RH+ucdeoFC5+Z4suW/FrkWr5MyMN3wGCeIPj+fnwWgy91oJwm9bpwIC4haPA3PNdkcfhuJt6ckufCt9wMBAInxsS/HtUdv/NLeu7tn9Qrp6OGdT9w7Vt+V8/46JelcDAPBAJ7hEvueFQP/9aztXZ4NLMUZh9f0+biYtVhnPOojaDg/4UA+jpn/5//nYz2IN3USkt98g4J8lkKknJnAcoCIL6kz0uD9dWevNEikFh8evTy8vLTiDsnr+XXNzc3M2EkrZw4IWdTU1OZZPksDMbMEzpAGQXXZjx8/TnjzSkybRIhnJzQeyNG2jdCrBF7GHdOjmnv6NPdfUYIZQCQfMhkt9vNBBfiTKtExiulpOnp6Tx2EE86VCCMlOv+fTtQ7p3uB1Jf0CBeMheI0ZNYn+Fx8OBBra2tZeNEBBJS+8k+8KUTrEfiQxCjHKHT6eRMFrwdvG8D4gTgNB9RBxAn8W9tbeVnSVI2cvRlHL6TR/l5xOCQkgzui7h5Jrxo5uPwZTZlc1BvUuqzZKR+VwmuyzPCGiM+BCAyJFiXa2trucsF4lO5s4sX5byBZyAQODXYf92tv/6VG/RXEweVzPQv//zxqkM6K/ATt75Bz/rCko7c9xWlEBMCgcAeYuN7j+nA+rOrDuOM8Iy7pPG7vqXRlELOLtRCUOC0eX19fSDlHeI6NTWVa6Ah4pBrqe/BwKk65Jt6ebIbpD6p5lSTlnyk4XuC4UmX7+5QPuWFBNFWENKJQaR3rffmjJ6oSv3OFpAbBA+frs548S/EymdMcB1q8/k7f0rMOECiu91uJqnT09OS+vX68/PzOnDgQPY0gJD70+qyYWJKKQsHnI6bmaampnIphpmp1Wrl91L2Qbo6GQRkWDAOEEhO5T2xHBsby6UCvtaedYAIgdgAySybYnozTUk5NtYan8UaKYpCCwsLKopi4KTfp9njEeHXrDdZ5J5Yh1L/9J71wO+8ASeZDJzWeyLPdfnZZ9Rg1ohYI/U7ZyAu8DeIEYwpawCRZWxsbKCTAuMLKKnh+eb55JnyIhnlJZ7cl0sk+BsEA9avnyPG2neJ4Bq+tMSLhf55psQpEAicOja/+e38/S//1PX5+x/84nP05VvfV0VII4sr/vZmPf+dj+qiH3w1nMsDgUCghPHOlrZ62bmBalELQWFsbEyzs7P5VBsCAEkCEDXSoTnV9SeR/oT8qaeeygQI8u9rwsvZBxDrdrudzRh9Hb0/3S+XVkCsfB08YoLUb5fHZ3rjOkkD8ZNF4Wv/fbcHwEkt14dYT0xM5BNdn+aOmOC9FzgFJzODWnTu21+PcadMAW8Ff4+YADYaDc3NzWl2dvZphNifsmMoODExkf0C1tbWNDs7m8k/J8qUreDjgGDCXNFFwpNtxgFxgDFB4CE2n+2ytLSUBSSuQdkDa4jMkYmJCbXbbR0/fjx7J5Aq7zNkGF/Wj58LSQOijC9vYH15I0/vzYFfBZkHvMa6gjRzL3g6MFfcEyIK4+YJNjF4AY8YGT9EFsaJZ9Nnw3APzCumpV5M4PnlefRZBMTB+wDZB8yxfz4RFf2Y+hIQv1Z8DMTtPycQCJweNh7vd3049LEn9aq/v04Pv/VFeuB1ISzshtc/9mI9+pLtfe7KjaORJRUIBAKB2sPKJLWSIMyOS2pJ+kHVsZwBLlDEPUxE3MPHqMa+V3E/J6V04R5cp/YwsxVJD1QdxxlgVNeoNLqxR9zDxbke97m0D8f/iYePiHu4GNW4pdGNfV/34loICpJkZkdTSj9ZdRyni4h7uIi4h49RjX1U464Sozpmoxq3NLqxR9zDRcR9bmFUxy3iHi4i7uFjVGPf77ijQDgQCAQCgUAgEAgEAoHAaSMEhUAgEAgEAoFAIBAIBAKnjToJCu+vOoAzRMQ9XETcw8eoxj6qcVeJUR2zUY1bGt3YI+7hIuI+tzCq4xZxDxcR9/AxqrHva9y18VAIBAKBQCAQCAQCgUAgMDqoU4ZCIBAIBAKBQCAQCAQCgRFB5YKCmb3SzB4ws4fM7M1Vx3MimNkjZnavmd1tZkd7rx0xs8+Y2YO9fw9XHackmdmHzOyYmd3nXts1VjN7S28OHjCzV1QT9a5xv83MHu+N+91mdr37XV3ivtTMPm9m95vZN8zs93qv13rMTxB3rcfczCbN7C4zu6cX95/3Xq/1eNcZsRfvS5yxDw8RsQ8PPe7Yh/cYsQ/vD2IvHi5iLx563NXvxSmlyr4kjUn6jqTLJU1IukfSVVXGdJJ4H5F0Qem1v5T05t73b5Z0a9Vx9mJ5iaRrJN13slglXdUb+4aky3pzMlajuN8m6ZYd3lunuC+SdE3v+zlJ3+7FV+sxP0HctR5zSSZptvf9uKQvS7qu7uNd16/Yi/ctztiHhxt37MPDjTv24b0dz9iH9y/W2IuHG3fsxcONu/K9uOoMhWslPZRSejiltCbpU5JuqDim08UNkm7vfX+7pF+tLpQ+UkpflPRU6eXdYr1B0qdSSt2U0nclPaTtuRk6dol7N9Qp7idTSl/rfb8i6X5JF6vmY36CuHdDXeJOKaWi9+N47yup5uNdY8RevA+IfXi4iH14uIh9eM8R+/A+Ifbi4SL24uGiDntx1YLCxZK+535+TCeeuKqRJP2bmX3VzG7qvfbMlNKT0vZClPSMyqI7OXaLdRTm4U1m9vVe+hcpO7WM28yeK+lF2lYIR2bMS3FLNR9zMxszs7slHZP0mZTSSI13zTBq4zPKe/Eor9Fa7wkesQ8PB7EP7ylGbXxGeR+WRnud1npf8Ii9eDioei+uWlCwHV6rc9uJn00pXSPpVZLeaGYvqTqgPULd5+F9kq6QdLWkJyW9q/d67eI2s1lJn5b0+yml5RO9dYfXKot9h7hrP+Yppc2U0tWSLpF0rZm94ARvr03cNcWojc/ZuBfXfQ5qvyeA2IeHh9iH9xSjNj5n4z4s1X8ear8vgNiLh4eq9+KqBYXHJF3qfr5E0hMVxXJSpJSe6P17TNI/aDs95PtmdpEk9f49Vl2EJ8VusdZ6HlJK3+89KFuSPqB+Wk6t4jazcW1vQB9PKd3Re7n2Y75T3KMy5pKUUlqS9B+SXqkRGO+aYqTGZ8T34pFco6OyJ8Q+XA1iH94TjNT4jPg+LI3oOh2VfSH24mpQ1V5ctaDwFUlXmtllZjYh6UZJd1Yc044wsxkzm+N7SS+XdJ+2431t722vlfSP1UR4Stgt1jsl3WhmDTO7TNKVku6qIL4dwcPQw6u1Pe5SjeI2M5P0QUn3p5Te7X5V6zHfLe66j7mZXWhmh3rfT0l6maRvqebjXWPEXjw8jOQarfueIMU+PKx4XXyxD+8tYh8eLkZyndZ9X5BiLx5WvC6+6vfiVIH7p/+SdL22XTS/I+mtVcdzgjgv17Yj5j2SvkGsks6X9DlJD/b+PVJ1rL24PqnttJx1bStRrztRrJLe2puDByS9qmZxf1TSvZK+3nsILqph3D+n7XShr0u6u/d1fd3H/ARx13rMJb1Q0v/24rtP0p/2Xq/1eNf5K/bifYk19uHhxh378HDjjn1478c09uH9iTf24uHGHXvxcOOufC+23kUDgUAgEAgEAoFAIBAIBE4ZVZc8BAKBQCAQCAQCgUAgEBhBhKAQCAQCgUAgEAgEAoFA4LQRgkIgEAgEAoFAIBAIBAKB00YICoFAIBAIBAKBQCAQCAROGyEoBAKBQCAQCAQCgUAgEDhthKAQCAQCgUAgEAgEAoFA4LQRgkIgEAgEAoFAIBAIBAKB00YICoFAIBAIBAKBQCAQCAROG/8PdEVGwAckyeAAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 103498 135155\n", + " Min thresh = 1000\n", + " Sliding\n", + "\n", + "\n", + " Winner = Sliding\n", + "\n", + "\n", + "206s_iimage_1511338287338_clean.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADDCAYAAAAya0IYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADcT0lEQVR4nOz9e7hl2V3Wi79j3e/7UtWd7lwbQkCMYgQMCQjigwpy+MEJihgvoKABAT0oIhc9InJUBEE48JAQwQMHQREBQUAQUQRPLkAMQgISCORGd7q7qvZelznXfc3fH3t/xn7nrF19re7aVTXe59lP115rzTnHGHPM1ft9v9/v+w1FUSghISEhISEhISEhISEhISHhyaB2qweQkJCQkJCQkJCQkJCQkJBw+yEJCgkJCQkJCQkJCQkJCQkJCU8aSVBISEhISEhISEhISEhISEh40kiCQkJCQkJCQkJCQkJCQkJCwpNGEhQSEhISEhISEhISEhISEhKeNJKgkJCQkJCQkJCQkJCQkJCQ8KSRBIWEZx0hhLeHED7+Vo8jISEhIeEMIYR3hRD+2BP8bBFC+KCneJ2nfGxCQkJCQkLCxUISFBKedRRF8dKiKH72Vo/jsRBC+KMhhF8NIRyHEK6GEH44hPC8Wz2uhISEhDsZIYSvCyG8N4QwCSG8O4Twd2/1mBISEhIuGm62MPt450t/Fyc8FpKgkJBwPn5N0icWRbEv6bmSflPSa2/piBISEhLufHynpN9TFMVI0kdL+nMhhE+/xWNKSEhIuNuR/i5OuCGSoJDwrMPTakMI/yCE8AMhhH8VQpieqp8fHEL4ihDCI6eRqj9hx/7lEMKvn372t0MIn1c5998JITwUQngwhPBXXHENIbRDCP8shPCeEMLDIYTXhRC6542xKIqHi6J40F7aSkopugkJCXcFQggvDyG88TQa9VAI4VtDCK3Kxz759Hv4Sgjh60MINTv+c06/q49CCD8VQnjRE7luURS/URRFZi/tlL57ExIS7kCEED40hPCzp9+zbw8hfKq997MhhL9iv/+lEMJ/P/33z52+/D9DCLMQwmeGED4+hPC+EMJXnn4nvyuE8Oef6vmqY01/Fyc8FpKgkHAR8P+T9D2SDiS9VdJP6WRvPk/SP5T07fbZRyR9iqSRpL8s6Z+HED5ckkIInyTpb0n6Yzr5kvsjlev8U0kfLOllp+8/T9Lfv9GgQggvDCEcS5pL+tuSvu6pTzEhISHhtsJW0t+UdFnSKyV9gqQvqHzmVZI+UtKHS/o0SZ8jSSGE/13SV0r6dEn3SPp5Sf/6iV44hPDlIYSZpPdJ6kv6vqcxj4SEhIQLhxBCU9J/kPSfJN0r6a9L+t4Qwoc83rFFUXzc6T//QFEUg6Iovv/09/t08p39PEmfLen1T/N81TGnv4sTzkUSFBIuAn6+KIqfKopiI+kHdPIH6NcWRbGW9G8kPRBC2Jekoih+vCiKdxYn+G86+SL+2NPz/BlJ/09RFG8viiKX9NVcIIQQJP1VSX+zKIprRVFMJf1jSX/2RoMqiuI9p6ldlyX9PUn/66bOOiEhIeGCoiiKtxRF8aaiKDZFUbxLJ8LudSLt6ffpeyR9k6RXn77+eZL+SVEUv376vf6PJb3sSWQpfK2koU6Eiu+RNH7aE0pISEi4WHiFpIFO/t5dFUXxXyT9mM6+R58q/s+iKJanfyP/uE7+Nr4pSH8XJ9wISVBIuAh42P49l3SlKIqt/S6dfOkqhPAnQwhvCiFcO1VJP1knX2zSSU3Xe+1c/u97JPUkveU0texY0k+evv6YKIrimqTvlvQjIYTGk5lYQkJCwu2I09KzHwshvD+EMNGJKHC58jH/jn23Tr6DJelFkr7ZvmuvSQo6iZo9IZyKxm/Vyf8DvvrxPp+QkJBwm+G5kt5bFMXOXnu3nsT35Dk4qpSM+ffyTUP6uzihiiQoJNw2CCG0Jf2gpH8m6TmnKulP6OQPVUl6SNLz7ZAX2L+v6OQP05cWRbF/+rNXFMXgCV6+oZOUtNHTmEJCQkLC7YLX6iT69JJTg8Sv1Nl3LfDv2BdKor72vZI+z75r94ui6BZF8YanMI6GpBc/heMSEhISLjIelPQC957Ryffo757+O9NJIAzc9wTOeRBC6FfOx/fyUznfYyH9XZwQkQSFhNsJLUltSY9K2oQQ/qSkP2Hv/1tJf/nU5KYn80c4VYD/hU48F+6VpBDC80IIn3jehUIInx5C+JAQQi2EcI+kb5T01lNVNiEhIeFOx1DSRNIshPB7JP21cz7zpSGEgxDCCyT9H5Kou32dpK8IIbxUkkIIeyGEz3i8C55+337e6TlDCOHlkr5Q0s/cjAklJCQkXCC8WSck/++EEJohhI/XiafYvzl9/5clfXoIoXdqLv65leMflvSB55z3q0MIrRDCx+rEc+wHnub5JKW/ixMeG0lQSLhtcOp78Dd0IhwcSfpzkn7U3v+Pkv5vSf9V0m9JeuPpW8vT/37Z6etvOk3h/c+SbmRW8zydlERMJf2qTpzGX3UTp5OQkJBwkfG3dfIdO9WJGHueSdePSHqLTv5Q/XGdtHxUURQ/rBMT3H9z+l37Nkl/8gle91WS3nl63X8l6VtOfxISEhLuGBRFsZL0qTr5brwi6dskfVZRFPgS/HNJK50Q/e+W9L2VU/wDSd99WlqGT8L7dfL38YOnn//8p3k+R/q7OOGGCEVR3OoxJCQ8IwghfKhO/pBtnxqDJSQkJCQkJCQkJNxROM1w+FdFUTz/cT6akHDTkTIUEu4ohBBedZrqdaCTCNl/SGJCQkJCQkJCQkJCQkLCzUcSFBLuNHyeTjwW3qmTPurn1f0mJCQkJCQkJCQkJCQkPE08Y4JCCOGTQgi/EUL4rRDClz9T10lIcBRF8Umn3RsOi6J4VVEUD93qMSUk3Cqk7+GEhISEW4/0XZzwTKMoip9N5Q4JtwrPiIdCCKEu6R2S/rik90n6RUmvLori1276xRISEhISrkP6Hk5ISEi49UjfxQkJCXc6nqkMhZdL+q2iKH771MX030j6tGfoWgkJCQkJ1yN9DyckJCTceqTv4oSEhDsajWfovM+T9F77/X2SPupGH67VakWj0VC9Xlez2VSr1VKz2VStVtNut1MIQY1GQ7VaTbVaTUVRKISgoihUFIXq9bq2263W67VCCGq322q32wohxNfn87lWq5UkKYRQOp7zcr3dbhdfl6TtdqvtdquiKLTZbFQUhRqNhlqtlur1uoqi0Hq9Zi6l43mfn0ajoV6vp3q9rs1mo/V6re12q91uF8fGfzmG3+v1elyzEEJcC/+d43a7nTabTencgPFxjM+PY338HMPc/XXOU6/XS+vKOXa7XVxbzuNz9XMxXr8fvnasr8/B5wy4Lp/3c/D53W4X5+x7wvcB7/OeX99fq362uscYk8/Bj/d199+rY6v+7tfiuOp9rh5f3Qs32m/V81bP7WPwe12dv4+zOrfqc+ifqa5x9frVdfX7d976+RwfC9XvllNcKYrinsc88GLiSX0PS1J90C8+8AN2evht3Wd0YAkJCQlPBgtlWhXL8PifvJB4Ut/F6Xs4ISHhomKqo3P/Jn6mBIXzvvRLf8mHEF4j6TWn/9bh4aH6/b4uX76sBx54QB/wAR+gw8NDLRYLrddrtdtt7e/va29vT71eT5K0Xq+V53n894MPPqjVaqUXv/jF+oiP+AiNRiMdHR3pd3/3d/Ubv/Ebeuc736nxeKxer6f9/X3N53Mtl0u12211Oh11u13tdjsdHx9ruVyq2+2q3W7r2rVrOjo6Up7nUZjodDp67nOfq3vvvVfNZlOPPvqosixTr9dTs9nUbDaTJPX7fXU6HW23W61WKzWbTX3Yh32YXvCCFyjLMj388MN6//vfr/V6XRIjWq2WFouF5vO56vW6Op2OnvOc50RiX6/Xtbe3F9eg0WhoOByq3W7Ha+V5rvF4rKtXr2q9Xl8nNCBw7HY7zWYzLZdLbTYbrVYrrVYr7Xa7eF+yLNP73//+eK1er6dGoxHPOxwO1e/3oyhUFIXm83lcB0QeScqyTNvtNgpB7XZbvV5PWZbp+PhYIQTt7+9rOByqKIo4nkajoUbjZMuuVistl0uFEEoCVAhBi8VCeZ5rsVgohKBOpxP3CL8z5zzPo+jRaDTU6XTi+5PJRKvVKr7HDwJIp9NRs9nUYrHQZDLRYrHQdrstiVqsN0LKcrlUs9lUr9eLohdrvlwutd1uJSnue0nxugg/jUZD7Xa7JG40m81I6CHQi8VCy+WyJCxUBQVJajabqtfrWq/XcZwuyLho4GBfNptN5XmuPM+12WxKx7VarXh/XOBj39Tr9ZIwxr1dr9eq1+tqtVpqt9txjVw02G63Wi6X8Vx8FhFvtVrF+8E6su9d6EIQqgofJrS9+5zvs9sBj/s9LJW/izvq6YG3f4oeuF3/bE9ISLgj8ebiZ271EJ4OntTfxOl7OCEh4aLiPxf/7ty/iZ8pQeF9kl5gvz9f0oP+gaIoXi/p9ZLUaDQKiNdisdB0OtV8Ple73Var1dLR0ZEWi4WOj4/VarXU7XbVarW02+1Ur9cjcajValoul3rkkUc0m810+fLlKCpAFLMsi0S62+3GCD7klEwIXodsQcJPxx6zHqbTqfb29uLnIHCcY7lcqlarqdVqqdPpaL1e65FHHlGn04mkEmLeaDTiGkASEQbW67We85znqNvtRhGF8UpnBJvfl8ulpBNBYz6fR7IH8eJaq9UqvgY5brVa2m63ms/nkWS2223t7e3FtYB0QhKzLFMIQd1uV7VaLZLm7XYb7+dwONRwONRgMFCWZarX6zGzYbPZRLK42Ww0Ho/jPWJOHhHnd8+GqOyvSB7r9boajUaJMDabzSgcVM9H1oh0lpHgYgykebvdqtPpqF6vRzFqPp/H+15da0nxM1wTAuzZLLzO530uPgcnwwgznlFSzZDhXNVsD+ZXzYLgutXP+e98FnFkOp3GtZPORBz2KtksVWGL8yBAZFkWnyVe53yeacJe5Hnld89cAJ5JgYDAc4a4Vc3ieCJZDRcYj/s9LJW/i0fh8LadbEJCQsIFxZP6mzh9DyckJNxueKY8FH5R0ktCCB8QQmhJ+rOSfvSGgzglPpBpIvNEKaUTguyRZ0mlyDTR5UajESPzIQQNh0M95znPieJEt9uNpJTyCiKVnLfRaMQIZ7vdjtF3J7NEWpfLpbIsi1Hj7XarzWYTMx7Oi5QimnA9SAtzW6/XWiwWqtVqMeOB8oh+v6/BYBCjvBBjjoeYL5dLzedzSVK321W321W/31ev11Ov19NoNNLe3l7MKmi32+p2u/H1g4MD3XPPPZEME9nnXKy137s8z2MUGZLc6/Xi+I6Pj2O2SbPZjIS80+nEe0gZCcKCixfcG4i0r52XqkgqkcpqyQqZBJB97j/iCNf0zATuOe8hxuR5XsqyqJJ66Swtv9FoaDAYRBEsz/OYFcJ1fG8iVjwWqfWyHDIcvPyFjBEyK6qlCNWymeranVfO4fNCKPEsH65FRsBisSiVG1VFi6ogxH504QFRAeKPaPFY5R8uevH8V0t4zitr4R64GHGb4kl9DyckJCQkPCNI38UJCQl3NJ6RDIWiKDYhhC+S9FOS6pL+ZVEUb7/R5/mDf7PZaD6fazwe69q1axqPx7p8+XJMlyYVGhJGFgCEbG9vT/P5XIvFIqazHxwcaH9/X/1+PxIr0vwhjJAHSKyn7ddqNR0eHkYCv16vY6QfIoLw4WSGSP1isYhiAFgul1Eg2W63ajab8XXWAzLU7XYjCeZ63W5XWZbF0gsyLRARIJl5nse0dISBauQckkUpB2SeLAMn5M1mU/v7+/G11WoVCTYlEp5+vtvtIqlcrVbxniAi+Ge5v93uSc2g+z945Nk9E0j/hyQ60eQ+eNYJ52KeLig5Sea6nM9LCxCbOIZSDM5D6UHleSiJMpI0m81ilgup/ewDhCzuDXtIUslbQjoTv1h7xsD95jlBXPBIvPtXVL0OmLMfy55nvyMksQ9ZBy8p8FINMoq8ZMGFIsZKRo+LZJQmUZrhGS0IPv59wneDZ3ewVi42cP2qCFTN7Lgd8WS/hxMSEhISbj7Sd3FCQsKdjmeq5EFFUfyEpJ94Ip8lZZzUfiL4jz76qAaDgbrdbozozudzzedz9Xq9mJpPuQLRd0SJyWQSo/D7+/vq9XqaTqela3ta+G63U57nMQJPDXq3242p+rPZLBI1J7wQUI8yt1ot9Xq9GDmG7BLNJ00ecgdJhQBLitFvN5ojQ4G08E6no36/L+nM9JAMgOl0qnvvvVej0UhFUcRjnHg6IfWxNBoN9fv9WE7hhLVWq0WxgzR+ItEQ9na7Hckf10JI8VISBCW/tqfVQ0Dn87mKoriOtCMSebp79RyQTvcrcOGG6/BvPz9Rf/dRQCQiA8VFGOnMRBPBi3MgHPg52EfsacbN50IIce4Qco/08xmEB894QEDyLAxJccwOiLivB/9ln3As5F9S3Bcu1rl44OUeZC4wd8+GqNVqJWPVZrMZy34Q1BDuOA4hgD3ic3cxAXGJEiPuG+fxUicXpW73LIUn8z2ckJCQkPDMIH0XJyQk3Ml4xgSFJwOIFmTUiSlp/UQ/PUMBwoYPQK/X02Aw0PHxsWazmY6Pj3V4eBjT9/f393X16tVI/D312muxyRRoNBqx9IAxUncP6YCYeaq5pBJRkU7KHIjaSopE8rx0ba5DWQVjgZy2Wi3de++9euihh+J5KF2g7KDT6Wg4HMb1pFSB63ka+Xa7jb4MkFsnrUTzPbINKaS2HcKK6LNer2P6O/9mPpQ6dLvdKLYQ8ebH6+Qh2Rj/cU1S4hFhuB/cB0pQXKTgnuJZwfGIARBzPy8ZLIyt3++rKIpI4L38wgkra83+JNOCsbsfAVF4xCwIOxkmHpVnn7B/MEas1WolkuwCAuNzkcKzHnyOHM86MkYEAjdVdN8JUM368WfCvR2q5Racxw0T2Xdk6XhnFfc14VyICF7S4eUszIM95MJgNaPCn8mEhISEhISEhISEhOtxIQQFAOEgSwHxwNPJIQfVOu71eq3RaKTBYKDBYKDlcqmHHnoo1nYPh0MdHh7qwQcf1Gw2i4TDTRkhSdTXQ1yqBn1ETqUzQaFKlLzMATEEoaTZbMYMAzwSms1m9DxoNpsajUYxY4JrrNdrzWaz2O3i4OBAR0dHkdQ6UWy1WrELRJZl8XNeB+9iDa9BZBm7iyAevSbS7x0HuBeYKtZqteiP0O12Va/XNR6Po6iAwCHpuqiwR6G9uwKGlb1eL64zhBMURRGJvUfSq2UuPicyBDBDZE2JqLs54na7jZ1GvDODpJJ3AP/2tPlqBgDlHuwXjvHSBAQdT8fnGPcw8NIOru+lJaw194VyAo7zTALm7wIGIgUknzIYyn74vVqW4d4ULmp4VonfO/aW+6N4NhDr4Yas/nxWBQGeSenMJJI5czwCZbW843Ytd0hISEhISEhISEh4NnAhBQWIEsTCfQaqLfSIQuZ5rqOjoygq8DtkeX9/X/fee68uXboUWwVWiTTp4W7k5i717qNAhNNJmaejU18PeaF2/vj4OJJHOlk0m834X08nx0+AMZL6PplMYuvL9XodDR49YwMjSX5HmHAxhE4OEEmyQvr9fozkI75A7gCEi1R0xt/pdGL5A34OkGKyO4ii43vh95E1hMQjIAyHw/hZxkv5AGIQxyDAMFfIpdfxS2eEnuvgXUCGAFkbLkhw7xA13LSQfcB1/VqS4hgZC/sagswY6HRARkfV/4DnAEKMCSjPBmIQkXg8P7hvLiIwr6qIwWedrJNFwBw5r5sneoaJi1ee1cMz4cKEl5549gT3mPvKs+HlOggWrJMLFYyL5889NBDDyP7w8XHNqliVkJCQkJCQkJCQkHCGCyMouKs6pAeiKJ2l1ENEIAoQO0nR34Dsgs1mo6tXr8a6+36/r3vuuUdXr16NHRa4NqSiakYnnZkler27p/1nWXZu14NarRZr9QeDQfQ6gCg6GaTMgfr++Xyuvb099Xo9HR0dRTPDWq0W20AeHh6q3+9HUQNyxr9pu7i/vx87ZMzn85j14Y75/CCYDAYDFUVRunav14tkzz0RyHSAnLtpISINpQeYb7KOiCYIFE5WSXMnrb/X68U5VMsknDRXSSfRdy8tgdjX6/UoDHBPvPsDhJW5kSXS6XSiiIK5JtfgWDcNJJLPeZz8Mt9GoxFLVCD47HPIr5f7IIggciBM+Vq4YOL7nftR7Ybga8Sz4KUErJmXGLj3AudGgHJjRM/M4BjG78+gl+X4+uF7gAeIl6n49V1IcWHSO7wwrna7HVte+rq5DwPPf0JCQkJCQkJCQkJCGRdGUKhGNFerVYx0Q2AhHWQIQES63W6M7j/44IMaDAYaDoeRqG82m0gCMVikpEIqO9xDJjEVDCHEdo6MxTtLEI2dzWaSpOFwGA0Z3eiNdHYIn9fOQyy9zSSkudvtajAYRPJVLS+AaE+n0xKBcqLHOjSbTV27dk3T6TS2ifS6dfexcMd9r5l3/wLaIE4mE202m9iZgHsonbVa9EwGvA1YE8gga8HaSVKWZcqyTLVaTZcvX9b+/n78LF4MHE+0nDXY7XYx24L1rnpnIDZRApBlWYk4u6EiYtFqtdJ4PNZgMChFyiVFzw3KdDAspFzDhQ7WVDozPmTtqlkFVRHLjSIR3xCRuC5iCd4jCA8ILNxjFwZYF6573n95biDzHtFnL3mmCXN1UcGzXrwkweftIoF346Akysth/D0EDTJxmPtut4slLfhk8F1CBwkEMBedEhISEhISEhISEhLOx4X5ixkSwb+dOHgngyzLNJ/PY/r8ZrOJpHu9XuvatWu6evWq6vW6hsNhJBZe8z8YDGKWgqe/Q248+kvq+Xg81nw+L5E4CLB3j8CN3x35t9utFotFjGhXjfW8ThtCLp2QaUg6kfN+vx8j/US5ESk83Z/0fcixE/npdBrn4qSZrg3cg6I4aX85mUyiAMP4SN9vt9uxkwXdOjqdThQ8vBadjhXtdjsablJiwTjwFCCqzVojdHBNxCa/b+yhTqej2WxWiryz1tJZhgKeExyDYESGgHtSICBRbrNarXR8fBwzUxBnKFuQFFP6EXMQI6rCgIs37tng98efkaq/gkfjq5k1iBeUhnAOL0Hg/jiRZ52I6CNo+JoyXvY080coIaMFQcN9OTwTwP0WaAvJPPzHMyNYk+rr/kwhFPhrXpbi60rGTq121uoV0SMhISEhISEhISEh4XxcGEHBCYJHmDFmXC6XkWgRhfSuAYPBQA888ICyLNO73/3uGG2GUFBn7VHb8XgcU8FJAceYjXPv7e2pKAodHx+XIpdELyHWdDFwMufEH4LSarUi+URoYFyeBn4e8cOLodfrqdPplMgeqdlkM8zn80iI8zxXrVbTaDTScDjUaDTSZDKJxBeiVxQnLSkhX5BCSg2yLItkjLWSTsj4dDqNwk+3241Rcm9PSPcHSCjzc/NDUtvJLqjX69Gskj3g6+8lLqwHJpgcw/vephAhinG6UISgQFmDp/tLJ+IM5TWUh3DNEIJms1lJWIDcdjqdUgcR91eQzkQtgBjj5JooOvuCqLt7H7AuEP9OpxPJMv4VnhHg12IPepcE1qzqO+I+Ff488Owsl8sY+UcIY+wQez+Xlwv5ejBWF08QKKqEHwGP59l9PbyEgufSy4TY15TqJCQkJCQkJCQkJCQ8Ni6EoODeA6Rjk/Y/Ho9jdBeywGe8XR2tE1/0ohdpPp9rNptpMplEUg9J99RxSdfV1nv3hvl8HgUISLwTaerZnRy6YLDZbDSdTjUajaL5m0dOq7X3EHDGAJnCp8Bd/iFEjBsBY39/X8fHx3rf+96nq1evlggYAoM73i+XyyiqQL48eu5ZB5BU7zxAZBhCO5/P4+dZI8oKIG9u0LjZbKL44aUIkmJ5B2Mh8g1BJSqe53k8J/eC++GkvUq4EQNYB/Yi5Jrf8alw9Hq9KHxlWRav2Ww2owDDXqOExEs5GBtrCpFF2HCzQifWkHrP/iA7xPe3ZwwgUuH3wPNyHjgHz5x0llHAj3ec8HvlmTLcL0QW9hGCCOPzcoqq+EeGCvvWSxwYJ8+LCyDsSfY8YhNz8Q4cvMbewgskhBAFoYSEhISEhISEhISE81F7/I8882g2m9rf34/Ef7c7aZc4m81iZBwfA+nMlZ6Wi9SQE4U/PDyMBHa5XJZaLxIFH41GMRrukWvGg5EdZJdWjUSt3Xm/6gJPGYCnprv/AWRWOjOghAyR5eBZAN1uV41GI/oJOCkn8g0Zk046WnS73biGkL8sy2JUl7G5aR0ZBNJZBL3VasVWnBB2yB3k0cUdzB8hpW7Mh6jjZF1SFFI8BZ//QoYhmZRKsEbeAYBUeTJGyETxEhQHhNF9H8hMQNQJIajb7cZsCQi7ez1sNhsdHx9rNpvFsXFvWB8fn/840eXfzN1LYapeA/455oKhI3uY+8zerpJzN+PkWp6pQNaFdzDxThkQe+5/p9PRaDS6ofcA94ZzuiDGfBEm2E/sR45pNpvqdrvRN4V5eGlE1VeBfeTPuKTSPWQelDGxdqnDQ0JCQkJCQkJCQsKNcSEyFOr1uvb29iJhOT4+VpZlOjo60mAwUK/X02w2i0aCCAXD4TC67mdZpuPjY9VqNQ2Hw1j3z2eJVkIu9vf3dd9992m1WinLMkmKKdJkD3j0nC4RkHDPNpAUTeI4T6vViueQzur2q8Z2EPtaraZerxcN5DybAOHi6OhI9Xpdo9Eokl+P/mIM2Wq1NBqNlGVZfA2CBonzTBBPbZ9MJrGsAlKFQEIGQ7PZjPMnhZ4ILxkPeD7gTQARJ3NhsVhEgcLTzvlhjPyXjhIeyWddMTxENKqSRi8HYN7stdlsFjMq3KTTxYdqSQuReF83RC3IsQsFfj2P/J/XktAFLhcUEG/Yn14qwr8Ri/gc+41ngD2GuEFWhgtp1ZaPzJ9yktVqFcUZyki8OwZ7xDMofC/7uNwQkiwUMor4nUwHN1n0Lh7nCTFuqOj3o9rhAVHEs2w8KwJhIyEhISEhISEhISHhfFwYQQGiMxwOY3u88XgcyR4RX8jJdDrV5cuXNRwOI0GaTqfxs4PBIGYYYApHJwjEhb29PY1Goyg8eElBv9/XZDKJXgMeHV0ul5FIE+VEPMB4j7FCdL3VH6QWEJ11kubEE1K/Wq2ieDKfz2PUXDpLPSd74fDwsFQf7ynmCBCsD1H4zWaj8Xgcx0KWBVFlyB4p5qwl14DozedzTadTHRwcxPsG2faoPeaa1baPXmPv3hKQZ+msG4C/B2n2DAeHp8QTrWatuVbV2LCaIk/bQogoxJbrISwxV+A+BG566IBQV8fOeP1eMhbprMUhHiMIK9wrhCMEEcblJJ59ht+E3wu/b5Li3vcODuxxsn/wouA+uZjAfFhnPuMZBN7FxdfBDU1ZBwQgslh4ryom+H31DBDGVjWBrHpaJCTcUQhBx3/hFbd6FAkJTwjbH3/TrR5CQkJCQsINcCEEBTeOI+WcmnVKD8hQ6PV62m63Ojo6Ur/f17333qt+vx9T7VerVezwMJ/PdXx8HMmsp/pTd7+/v688zzUej7VcLjWfz2NpgiSNx+MYxUZUkE4yDLIsi9HgZrNZMg/sdruRsBBB9naR3uaP6DiCgtdyu2Cw2+1i5sZwOIxZHRjhOfnpdDoaDofabDalLAWyNWq1WhQVIMjNZjOuIbXpbpYIcSP6iwjjWQ6QRcjkaDTS/v5+bC3pUX3uC+vt3hbnZWqQ3cB7rAvlHy7ceCaGk1bKMDiHdxeANFczDFgv7gmEGnjGgZN/7q9H/VkDjvGsFY5xYlw1JgRkwSD+OFH2SLxnNLDn2u12yfeDNWKfujkmJoouNnhmC+dhndgfvV4v7nlECS918flQnuTlCy4euPDCHvHnyfclGRTnrZmX23gGigsKvOeeKAkJdwqu/tVXanF4+l1Rk97+17/tFo8oIeGJ4eW//OitHkJCQkJCwg1wIQQFqUys3PAPUrBYLJRlmQaDgUIIunbtmh5++OFolgiZyPNcnU5HBwcHpRaJGMT1+33NZrPYWrLX6+nw8DDWnx8fH5f8DqbTqTabjfr9vvr9fkz973a7MYoKofEyAk+p9uwBorgQsBBCNM6DrEHecMj39oPz+Tx6KZBdQNTcxQ2O63a7pVT+zWajPM8j+aXFoyR1u12NRiPNZrPYgYJ7w33Ax8DNAiGfTjo9pX44HMasEkQIbwfpnhDVrhjco8ViUYoce/kGGRyURXgXCCebLn7QRtG7FZClQfmGVM6EqJ7LI9wQXTc7JLJP1oTPy4kxOK/m358Pj+xLuq77BHOmvMLH3mq1lOd5FGLcF4HzcT8QKziP3yPvtODX97IFBAVJsRsG+53xVT0U3DSV17zkRVIpg8g9Rvz+eCYFYkO1DIb3vAwG0cQNR6vCR0LC7Yz3f/FH69v/xrfoFZ364384ISEhISEhIeEJ4sIICqBK1Jz4QFIhOlevXo2CgH+mKApdunRJo9FIvV4vZhnUarXoLUB6+mAw0L333htrtY+Pj7VYLK6LxNN+EDSbzejhALFpNBrK8/y615yUQOggUG5IJ521RoR4Mv/BYKDhcKgsyzSdTnXt2rVI1L30QFKM+lN2gWGjZw8gCtC5Yr1exwwLBA83j+TeOEmVzowTO51OKSLPmnENMja8fR++A/xOmj4iB8dCFhGFyKTg3rj3hZN7xss5uC8uYOR5XiKj3W63tA+9NILPIUa4AFbNrmAtEDq4v96pwq+D14CXdFQFC/cG8HvtwoNH9NnT7gmA2EXWgO8xhCB8LBC1qkaaeCR4Rweu5/4Go9FI0okZKKIE56EUxkl/tZzBs3N8vchiYJ/gfSApjpc14fnzz/A5z3zw+Zy3zgkJtzMe/NKP1rd8/uuSmJCQkJCQkJBw0/GU/2oOIbxA0v8r6T5JO0mvL4rim0MI/0DSX5VEftpXFkXxE491LgiAR7/9j3+InkcNibiOx+MYxcbVH9K+v7+v4XCoPM81n8+1WCw0HA7V6/Wi8VutVlO/348p4bPZTIvFIpJTCLdnDDC+fr9f6m7gkVQID1Fb0vchQJgbOmnE64HOFJwHYk23hcViofF4rPF4HMfnwgRp7b1eT1mWxblA3BAFsiwrCQCQdMiUR6xJw0ck4JzeiYF7RqQXz4der6fBYCBJpcwC6Yz0kg3R6/UiqYe8un8A43XSDuGkG4QbAXrrQO864ZkGfJ575+ST+8c9IpLNvYWAI3QQIYe4e8tSqVzq4lkQzI+5sB5c18k260JJQlXk8fNB4iljQBTzDAjOT9p/VcjgnIzBBYX5fB4JvndJ4Dml9EE6817At8L3ANfyeVQzFBDa3DsDs0zKdNiP3FvPVuFeeUaR7/XFYlEyxPQxXmTczO/ihDsPD33JR+ubPv/b9fHd3eN/OCEh4SkhfQ8nJCTczXg6YbiNpC8piuJ/hBCGkt4SQvjp0/f+eVEU/+yJnqgoikh0qsZ88/k8EtjhcBiFBSLt/Fc6Ex6ItLdaLT3/+c+PZHg2m0Xit7e3V0rTPzw8jCaQXr8PMUVQ6PV6kTgx7nq9rul0Gs8FEEBwwoes0f3AHfrdVR6CDXkvikLT6TR6RkwmE223W00mk9hCz2vnF4tFHFe/3y+RZdZoMBjokUceidkYZGwQ0ffIL4QPsu7O+9wvCKmnli+XS00mE126dEndbje2BPTUdQimEzuEHCLYCAGers8YIdVkdniGAWPiGF5nztx3jBQRHfBqwGBzuVzGe8l9h8jmeR7vE/ex0+nEMZGp4i0OIeCQbm+PyHzxRWCPezmDZ500Go34jPAZ7iP7Hj8M5sW6YeoIODcCEeUziEWUq3AuPCvIunDhx/1BEAsQrphbtdwDMcazNDgOkYHnBuKPuIOAQFcWXkPc8BIYn6uf27tncO3bJFPhpn0XJ9xZeOQLPlqv/cJv1cd0UulOQsIzjPQ9nJCQcNfiKf+1XBTFQ5IeOv33NITw65Ke91TPt7e3p4ODA83n85jejKFglmW65557NBqNdPny5Ujwsywr1fav1+toRogQMBwOo0GjE69+vx8NCheLhbrdrl74whdqPB7r4YcflnRGPrxrgEe/N5tNidhRy1+rnXQ68LHRSQKSAin07IVer6d+vx+JpBNNSDfZFHmeR7NKN5jDa8I7U/C6R2+LoohjJDJMJgfjazabmk6nsdSADAqP8HqKOoSb38kQoCOFzw0vCTpvzOfzOGbWhiwO0vExzaSkw7MIPJsCscHr5yGGLixAOpm3+wR4m1DMBrkWAgOfhYCSzRDCSdcMj7CzTyDlEGjWCHLOPer3+2q1WppOp7GtKQKLR+zZi8yd98gGQJBCMPF1c+LMZ52AIy54yUU1ck+2gqQo/IAqmSc7BLgIw081m6EqvvA5xJ5qFgLPDZkULiDgUeJj83mxX8gwuV0EhZv9XZxw52Bxj5KYkJDwLCB9DyckJNzNuCl/LYcQHpD0ByW9WdLHSPqiEMJnSfolnSi2R493jk6no8uXL2u9Xuvo6Cj+kZ/nua5duxaFBLotEDWFgOF/UKvVNBgMSg7zzWazRNCJNvM6qf+UFOR5Hg32vHaeKK13dai2N4SoeHaFR2QhK27iSDSX8/R6veuIznQ6LXkEuAt/1T+BqDaknM97RBqSi3Fip9OJYgWRfY6lI4ZnClRJZNW8zok5n+/1etrf39fx8XGp7EBSNMVkfYkyE5FGQGKu1ah1lmXRbNLXELNASKlH1tkbvV4vZoG4dwCCg2ddzGaz+BrEmiwGxAFKZnq9XskQ0+8x94BMEl9XL7HhWO4hWSKeus+5ESp4RhqNRjSz9O4NXsbjRo1e3uK+Cm5+WJ0PmQns8+o+4B549B9hwbMM8DTw/YdIhD8GQmKtVrvOk4HvBPY0Ikq1DIksCdaU99lLnjXkXUBuF9yM7+KEhISEhKeO9D2ckJBwt+FpCwohhIGkH5T0xUVRTEIIr5X0NZKK0/9+g6TPOee410h6jSQNBoNoejgYDGJ6PPXhR0dHes973qN+v68HHnhA/X4/kkxS3dfrdTTYw0dhuVxGsufEgLT/2WwWSXmWZTHqTOTYo9MuWgyHwxjJzLJMw+EwkkTPZvBuCIgQpKC7p4KTKEiPO/DzmcViEQm8CxTutwBRolMD6wshpMadcXnEHSGG9zAUZC0glpBmb9tXjYZDWOmKsVqtYhcHumog7kCquVebzSaWckCqaXFZq9VKhNEFpWrtv3tWMB/PmkBgarVaUYThvkhnpRVOkiHuCAiQdi+Z8DIQ9glCib/GWL0zBiKVl6dIKo0L/wjOyRp41oSXK3hpQTVbwbMr2JcIEniGVEtHKDGq1+vqdrul8oXqtdgTLnp4douvG9divzEm6ax8yO8tvgnAyzq8owrHUtbjpU48Fxzj4+W74XbBzfgu7qj37A044ZlHIa2LrZohmTEmJDwbSN/DCQkJdyOelqAQQmjq5Ivze4ui+CFJKoriYXv/X0j6sfOOLYri9ZJeL0mHh4fFbDaLBJLINKR1tVrp6OhIDz30kI6Pj3X58mV1Oh1Np9PYsYAShCzLNJvNNBwOY33+er1WlmUxPZvoMn4HRMYlRWLjpGKxWERiSVo+kVJqyIkAVw32ICtuOLfdbqNZoqRSlwYIlUd7IYx4IxBNlRQJEOPABJBrQn7xZHD/ifl8rvF4HE0iId2QQsj/YrHQlStXlOd5jPxfvXo1puJLZ8Z6Li5IZ5kKCB/D4VD7+/uq1+tRxBkMBmq325rNZhqPx3EtqlHyg4MD1Wo1TSYTzWazkhFlu92OpBei2Gq1IuFk7fHi8GwCyk0gyqwpa+iCAj4XXmZAhwsEF/YdXhmUNLg5pLdbdBFJOjMPdFHHSbyk6M+AkMTe8c4IXJ89xt4nM4SWq+v1OrZ3ZA5eDsA6eGYQ5/OsIUmxdIUxVP/rnhJVwYC9x+cRBShf4BjWirV2wcIFDtbYs0NCCJrNZqU5edmEP7+M9XbAzfouHoXD2yslI+Ex8cJ/+AZ9yj/8CL3r+z9MP/PKb5Mk3V/vqR5SGURCws1G+h5OSEi4W/F0ujwESd8p6deLovhGe/3+01oySXqVpLc93rm2262m02kkZwcHB7F9IxFFDPDIKiB6DMmALCyXS02nU+3t7UWHeYgjkV2p7JzP+05QSIeHcOBhsN1uYxTZo+QOj8wSaSY6zZyqEWWO8zWZz+dxjpRnSIpiCOaT1IZzPGTaPQrcqA8xBLEEM8qDgwP1er1I5IiC03mBkgL8FDgn6yKddGnwsgsndazF3t6ems2mDg4OYvS70Whof39fly9fVpZlms/nMRMBMk7rSUifizneZcI7fng0n/eIVl+9erVUDuB+AZ4K7yn/3Cfmj/mi3zvaU3rmANFuyC2k2Uk8+x9fB66PUMJeIxLPsVVjTJ4D1oUxeMkIn+XciFuUfHS73ShMeeaLCyiUA5FlQZvSyWQSu1k4mfdsEa6NGMa+Zj7ss263G+8zzwvPr/th8J3Q7/ej8FddHy/PccGLEgzvxsHa3Q4eCjfzuzjhzsQDn/kr+lz9YUnSx/7KQl9x6deSqJCQcBORvocTEhLuZjydv5Y/RtJflPSrIYRfPn3tKyW9OoTwMp2kd71L0uc93okgtqPRSO12O6a7E2EmkjmbzXT16lVNp1Pdc889sSUkKf/ue0C5A8RwPp9HojoajSKhI5pOBF06q6OWpNFopPl8XiIaGCFCQgHESzpr3cfneB0CNZ1O1Wq1ovkeAgIZAGQxNJtNjUajktcAn/FuE0RX8YLwOvQ8z5VlmZbLZYzguju/iweQM8Ywn88jgW00GjEyjhcBNfqe9k5pA0aYRMklRVFkb29Pw+GwJHhAPiGBROohpkTc9/f31Wq1NJvNYgo9RFpS3DuQaermEVRo9zmbzWK5S7/fj0QZIiop+lt4LT7rjcEhpRRkTLAPN5tN7LIByUcQ4DPugeDeBdXyDfY1xLrZbCrP83ivyDzgHJ5FMBgMosA0nU5L0XfPaBgOh1oul7Ecwjtm+DGsE0JbVbjAfNMNOhmzd+rAW+G8zIVa7aTlpKQ4T86FSMTYEa64J9XvAUQoSn+azWacJ+dkzb11JkLJbYCb9l2ccOfj5z+so6O3fKTua4/1pYfvvNXDSUi4U5C+hxMSEu5aPJ0uD/9dUjjnrSfdX9ejlO12O5ojQi7IDoBcevQVsz6v25dOBITZbBYJi6Ro3AdZgxRBLCAV1LMTGW+326U2kpBzSZH0kHZN1BXSw/EYKkrlTgEQZSKlXoNOKjrkrtPpRPIESYakOnn2+ndIJT+II/g7EHknc8JJtXRiQgipbbfbpcivG2OSxg9hY050o3APCT7f7/e1t7cXRRoMJovTjhPMt9lsxmi4dOY7wNozV+aCUIMp4nK51NHRUbwfg8FAtVpNjz76aPRS4DpkQZDB4u0DIaouHPT7/RLBJVuEc3r5CKUmjBERwUsC2EfeupK9WiXo7DP3ZfDuHuyzTqejbrcbTTfJUvD7X6/XNRgMoqDB5/08ZBdw35kfwlPVTNLNQiXF95gvAgmCiXfPIGPAvx+4R17ic16JAmuGCJZlWfwc5+S+sN7+XYRoUu1acVFxM7+LE+4OvO0jdnp785K+9N1JUEhIuBlI38MJCQl3My5MPq8bCG63Wz3yyCPXpUBDoLIsU5ZlMZKKKSN//BNRns1mpTIBjp3P5zFSz3vdbje2JiRCSWmDpEggvc2hR64hIvybrArEEL8eYgUE7L777tNwOIwknOvkeR5JNuSONpqS4hhpq0lE2UUKSB2Ea7PZaDweR4IGeapmKRD9Z33dKHO1Wl0n4ODN4CnpkHOi5d6lAHKKwWa9Xo/jAl6KwDkRGXa7nXq9XpwjgodnXDD+fr8fyzUQB8i6mE6ncYzuT8GYqsQZIIoQlUdgQkzxtofeDtNT8Mk6YS3ZG+7n4QTYhQBJsQMGvgKUREC8vexGUmxl6eUvvt5uXElGA+IM3ghuMOkiEZkwHOMihxuGehYB98RFGuZC+YH7b3g2CuUmgOuxB5gPQhttQSVFo0rEK88e4jnHF8JbZCYk3El46Is+UtIv3OphJCQkJCQkJFwA1A8OtP59Dzz2h37u35378oUQFJwE1ut17e3taTQaRTIgKRKPzWajyWQSI9wQAu+mQMs+z2bwCO5yuVS/3y9FSz0CTTr2ZrOJXgCQ2X6/r8VioePj49J5GQdkBQ8A75iAGSDkh7RsSJYbyjmZhEgOBoPYLo91WywWJc8Ib3vnEX3S7BeLRRQliJSPRiNNp9NSyQMZDUSbmZ9nWUhnNegIMt7VwEsj/DWPIiMaEJmG8EOQ/b6yjggjEEayJvgM2QGsLXuCsgrINgagHt3m2mQQQKSdrDtBJlMCY08Emna7HSPwblJItks1KwHy7PfAOzZA/iHfXh7Cv1lPUvgpdfBSCPYV3TQ4xtcNsaXT6cQsoGazGfe0Z0EgKCD4uQjEeroQw36k1Ie95YaW7DHmz1r6+pLdgVjC/vb2k75+7G9KRjg/98C7c/BdQIeShIQ7Eb/0t79F0u1hOpqQkJCQICkE/c4/ecWtHsUtRff9Qfd90xtu9TDuGCw+5eXx3/NLdV192eN4wv7c+S9fCEFBOqmTPj4+1ng81sHBgQ4PD3V4eKgrV65E80GP8E+nU0ln3RMgmKR3DwaDmO5OpJ9Wc6T9e3o1ZNfJoqRIQiRpOBzGGn6M57zuWjojQZCV1WqlPM9LxIwILqQNMQHyR2o84gTkeDAYqNfrRWNKxolHwv7+/nXZBm7kBwnD8JI5Q+bwcGBdvAyFKLwbE3KsR/zr9XrsIAE5xBxTUkl8QRBhjUmt515C8jz1nGwS7imEjzp59sNut4vjdSGDCDRp/YzNSTDXcGHJ19tBCQUReu+GQMnFtWvXohDA9VyQcSLuQgT3ECGLZ4Aovps5Ir6xlvhNcA4vr0AwYb9x3vl8HjM2nFB7Vwr2omeAkLni2RUunHnXFH9OKOtwgcj3CJ/Dq2K1WsXfEbrYRzxXntXk97LZbOratWulbhk874yPPYdQRJlRQkJCQkJCQsKtxDte93KF7ka//cdfe6uHckvxpsVWf+5lr7kp5/rQ//Nhbd77vif02ff+vY/W4oOe3VbixSbog//KLz0j5579mVdo15Ae+UhZsdZTbzBzIQSFEE5aKV67dk2j0Uij0Ui9Xk97e3va29srtXWEII7HY+V5rtFoVIoce707hJfyA3wQsiyLJEs6q+WWVCJ7XI+f9Xqter2ufr8fSS2+A3SDgKiQ1u2tAKkzJ4OC7ABMKCF9Hq2nPj3Lsrg2eCG4ez7mlL1eT+12u1Quwbi8MwbElI4TENE8z2P0GHEFootIwDogUrgoAfnM8zyut/s7sL6QS4wb8YvI8zzeC9LXPXvEDRq9i0CtVoummm6MyPy9rICx9Hq9aFLomQAQUzdeZE+QEeBdHTqdjvb29krGimQ4QHSPj4+12WzU6XQUTrtgeHcS1pRxkKLPuPEUwZfChREyMCjrGY/HJXNOJ/oIO6wpohbCFM+HpCgSUeZDmY6TfYQZOrUwZvalZ7ZA2FlfMmoow6B8xcUFxuqlDJ5BgvDFXCgNYhxeRsT3BiIN95I1ItPGvSCSoJBwJ+LRH/0QNaNvXEJCQkLCRcU7vv0P6Xkvuqq3/75vVa92WxhFP6N4Raeu3/4T33lTzvXpH/jHNc4/8Al99rs+5Jv18vazm7W6Lrb6oz/5GXrw4X295LP/x0055+zPvEKLg6DxSwoVNzFJ8cIICvzBP51ONZ/PI+GDbNNdgBRyiDbkAILs0Xhv/eYmg+PxOGYpeMQVck0U1WvqIVL4L+zt7WkymZS8EM4TNbwbBGS62WzGbAfECMbpRo6kblPmcf/998djSOfv9XpRMJlMJqXSCko+PE2+ShLdBBKCDwkj+r9cLiO58nvBmL0cgLXymn9P3/csEKLJ0+lU4/FYWZaVyiOqUWMyGCB/rLGkUntRHw9CkBtxsmdYBzwBuE8uSPk6eE2932cXTKSz9HtIPeLRbDYrZYqsVquYMeBiAnvfDUTpQuHzYfxkWpCdQmYGXgDL5TKabvo9gjTTSpP7wb5br9eReHOfORYiT1YQGRGTyaQU9UfI4D7yWUQBLz/wfeP30/cA4+N4xsFzw5zIoGCPIkCRpVTtAkL7T8+04dlNSLhT8OAP/1597PN/Wz/23O9TKndISEhIuNh4x+terp//k9+o5zcGkpKYcLPxQx/000/i089+CWwz1PXfP+yH9Mg20yu/54v0QX/xrU/pPNuP/3A98hEnAbL5vYV2raeeiXAjXJi/lhEFIPbSWctFiBYp8qQ+O+nhWK+dlhRTlyFVq9UqElja2yEoeEs76axlH1HW7faklSPu/p1OJ2YGkF5OtL3ZbMZUeMiLpJJ5JCSdGnf8ABAUms1mFD+oXffsBU9hl07KRiaTSSSHTugoAXAjRgQUxgDZRlRwMcbJIx0LIMfetYL75vOqklXWst1uq9VqRTFhOp1e1waT0hCIIx4YRMa5hqQ4duZCNwv2E4IN5yWyT+YAa875EA24BmOh84FncLDnuI/sHe+WcOXKFUmKAgBlMz5e7wjSbrc1nU7juUjzZx/iI0JGD6LW8fFxLIuhRABhir3OfFxo4lnp9/s6OjqKe50uGgghPlcXh3gmEbF4jnwPIGDQMtQFNzIN2MtkcbCnHJ7pwD7H88PHgpjAnvMMDwQJn08IJ21FGY9noiQk3M743R96qf6/P/Qd2qt1lcSEhISEhIuN3/zWj9IbPvkbdH9jcKuHknCLcW+9rzd//Lfq5d/1N/SSv/SWJ3RM40Uv0O981gskSZtuoW139zhHPD1cCEHBI59eWlCNQpPaP5vNYos7P365XMbODt5ir9PpxBaDRHdXq1VMZ4Z0EtHFYd7N5CBkXibQarViRgWkyz0L6DBApFpSPD7LsvgeZJJUesbsDv/umwCBrWZlkLbebDZ1cHAQyRbrU61/53WP9GZZFucHOWO9IMqk1rO+zItosqRYf87YWI9arRZ9LPI8j34XGCDO5/MYdYfQ+72COCIokMkBaYa8k01ydHQUCST3iPWHcCKOeIq7t9r0fUh2CSaPeF24NwDEW1K8V71eL/p6QNwl6fj4ON5TxKZOp6PhcKi9vb3Y9YTIeVEU6vf7pW4I7G/EkcFgUGrB6WaajMmfHe9E4l0R8jyPhpIQes/GIZuEZ4p58RwjfLiw4d4NXi4zGAyiGISASCYO3VK4/2TesHfdaNLn6t8rCAW87lk2XkKxWq2iqEKmRELCnYAPe86Dp2JCQkJCQsJFxu/841fqLZ/2DTqoJzEh4QSX63299Y99q/7gt3yxXvLX3/yYn63fc49+8689X9v2MysiOC6EoIAJISSLCColBB4lh3R2Op2S/0Ce53r00Ue13W61t7en++67r1QzTzq4pFK02yP8GOlBLDyC6+nzROMhQ1mWxRp6Uug9fR2S02q1ol8DteIIAh5ZJ/pNJHs6nUYPBoQJ/AGq4yRbQFKpIwLZHfy4JwBkUlIUFEII0dcBAufdGACkC38IUu89awBCSfo8WSJ5nuvg4CASUG+zSeSbayNkSIqp+5BOxikpZoQURRFLKI6Ojkpmm27i6WnvtEhk7G7k6XNot9va39+P+5H1rZaBcC+Jhg8GgyggQG6Zs5s9knnA/ZnNZpLOWlVi9ujXZG7tdluHh4dxvzAHSSVjxlarFcUtMkIg/L1eLxJqhDSIN0IT5QlkI7jvgQsK7jdB9oW3nOT5dwNEsoYwe+TZ2Gw2ms1mJcERUYl94AIA+4Y9TtaEi1WeBeXj5z4mJCQkJCQkJDxbePBvf7R+9bO/We3Qu9VDSbhg2Kt19Ruf/m36/UdfpBf9/Tee+5lav693fNmLVdSf3QzbC/EXM2S3KIoYhfVuAJIiqR+Px5F8EMnHMDDLMi2XS127dk3z+VwHBwfRNR+DOurYIRAeuZVUSnl3EzgnyESHMYKD6GAcx9ghvNXUea9T53xuIOjp73gsFEWh6XQao89kAxBt9U4AkGdIEeIFxnoQWISB7XZbMiJ0Iu8dFtyDAWNLyLn7WTiJg8jh7YBYsFwudeXKldgqk8/yngsInI/6eObMejnBXywWsTSAev4sy6Lh4Hl+ABBKCC+ZIRBKBCIEnm63q9FopBBCJLyUo3iHDEpsSOX3/QYZdq8E9h73j6wLL21xYQMSz2fcbLLX65WyC9zjgX0rnYgzeZ6XSlA8Ys9nfExk7ni5gZtwImIxJz6LIOUE3sfO3mVtqp1XEE6yLIuigrdl5bzsSTqGICSQ3eDj4Zl0ccb9E6otLxMSbkeEZkuNWtrLCQkJCRcatbp2LakdUsvqhPPRDHVtW5JqdWlX+f96ra53fM3vt64Nzx4uhKAgnRAsUvGJ6lZ7yUOMKXvwWnpaS+KNkOe59vf3S1kCRDzdIPA8YimdtSf0SDKA4HW7XRVFoaOjoxjxh2RLilFgoskQLPdAcMLi5QiQT+rNES3waHDTQlrqQTZJQ2+32xoMBiqKIkZ2yU5AjOH6/JcOEd4ZQ1KJZCEycB3uC5kmZHlwrN9TCKZ0Uid/dHQUDQqZM6ab7u/AOiI0QNZZ26qxIVitVhqPxyWhB7DO1fn1er24H5gnpJbPeZcBF75I6Wc9KBtgPbnPbs5JRN73PcISQoePmfIMfmdePsbhcBhLeYqi0GAwiF0U2NtVXwr2HufgmavuNzIaELe4F/P5vFRW4B4TiAH+3LEP+Z15sJ54VVTLI3xMrDP+CW5ciQ8D9xiRx81TeR4pqfDnEAErIeF2x2/+Py/Vv3vBayWlriUJCQkJFxXHf/7levsXfdutHkbCBcdvftZr9Qff9wW691vfcP2bt0BMkC6IoAA5h7wtFouSsz7EFwILAYKgEY1tNptaLpcaj8caj8fa39+PqdxO9DlX1VSP9zwi7tF2CBFZA16L7oQE8utRdzIQ3OCRjAFvAUjkXTohuf1+XwcHB3HORN0hRggTrAskCfLnBo3eJcG7GtCWEwGCjIP1eq3j4+OYTl4tAXEi6yUKEHzpTExgfAcHB3GN5vO5Hn300eifQHR9uVzq6OgoZhJALJmzryviEuKPZ4ngz9Dv92OJBWTRo/TVdH2/5xD64+PjWKPPenqZhQtgkGf3wID4sqf4XVL0gfBIuZfjUEbjXht0LfDMFp4l9mir1VKe57EcpZp90263dfnyZV25ciX6SvC8+D5i/zI/XytEB0g5n6GcR1KprIR58sz4swVcoOGZdHGl0+nEZwcBy71H3CgSAZIsKExU3SjVu4JUfVx8HAkJtys+6C+8VR/1g5+rN3zUdyQfhYSEhISEhISbigshKEiKqfK73U5Xr16NLvB7e3vRLBARYTAYlNL3aaGHDwA1+tPpVP1+P3osQHCkMxJBCj+RXOCmf3Qf8Fp0CB318JwfLwCECQg9hJrjJZWi0nyW8bMmkChSwCHekkokjxKFXq8XCRiEr9/vx44CbqLnKfheBjEYDNRsNiNZp4ZeUiS9zNfTznnPDfUgzqvVSnmea7lcxnNxXVLTvctCURR69NFH1e/34zW4b9wfN6KEJLrHg8+xSg4RkthLiAxcG4Lp46S0oSgK7e3tlTwvqmKVm1AiKHDNqv8AewLBgPd4nfG4aMS+8EwNX1eEDUoSXABxkCWB4EQHFfZkNUuBsg7v3NBqtbRYLGIWjItNUtnXgufIu6qwZ1y8IBPEs2AQgUajkdbrdfTIYP5eAsJ+lBTbaLpvCc8HmUtcg+On0+kN1ywh4XbE8//U2/Wdb3up/tbhb9/qoSQkJCQkJCTcQbgQfy1DIkgVJ/I4Go20t7cXOzBAzCaTSXTMJ+pPXTvZDFeuXInR7sPDwxgFXiwWpQiqG+1BFqWzFHhIWp7nMZUcYzcIpqRIlpwUQfKImlMrT4YD6dj4EUDCx+NxTIn3lPzlcqnlchmJqgsgECaIF1kB7r6PN4GP2aP0eDHg9i8prglk1om2/xtDSEQWouq8R1bFdDrVaDS6TihhnNV/LxaLmBngKfdVs708z6PngHtUeDkEn0d48CwA/y+EGAIK+c2yLN4rzCSZF4IB5Rsu+vA+IgNdEhBTmI8LGJBl9i0ZALT0pCyDTJdqi0dEB/bNfD4vZQKwH/kshqGUDvnnyA6hRSvZQ9xrb4mKv4FnzrhHBv/GBwOBAbNROkdUiTwCixtDUvY0n8/V7XZLggA/VS8FRDUv5WGfuIEm98BFmoSEhISEhISEhISLiOKjft8tu/aFEBQghETkqX/u9/vq9/va29vT1atXo+M+6dlOxiCoEMX5fK4HH3xQWZap1+vp8uXLMR0aQkEKfLvdVq/Xi4TOuzXwbz8O0zjqxyFWkChIjRsbQq4Ys0feIc1kRWD2520tIbXz+TyKEszH3firAodnS3i6Oe+79wFkWzrLjoAc4xfhkWpPhXfRwKPljNfbT65Wq5g5cunSpfg661Sr1TQej3V8fBznD3mGkDpBh5xCwhE0OHY+n8dxIcZQi08UnjIFsgNYG4QUL93AN4MxZVkW0+1ZY/eYIIsA4uwGgWS/eJmCR9OlcmmBl2wgFHENzotgAfFGdKADAsKDd0HgOuwxshR83k7EyXwg44Lr0EUEAQExQlIk7v48ZFlWyiJBtPJyI+4j+wihDfGGzCXv8MDeJGOIchwX2fiuQaxAdGB+7MuEhDsFr/sPn6hX//mvT33NExISEhIS7jD89p++dSWNT0tQCCG8S9JU0lbSpiiKjwwhHEr6fkkPSHqXpD9TFMXRY52H+mZvGcjvpOyPRiMNBgPNZjNlWabpdBqjoRAVyD/EwFOv+/2+9vf3deXKlVhXTu96zP9Wq1WM/kKYeM9bPuZ5rl7vrJ3LdruNrQtns1mpbSBCCRHXPM8jESaK7eni3W5Xw+FQWZbFzgl0sICouSkeZBFS5b9D8LIsi9FXL7OQFIkvxoF4K5BeDtGGxLlHQjWq7l4OEHdJpTZ/HE9XCiL9kHvWbTQaaTgcRi+EZrOp+XxeiiRzP7gHnqKOaWJ1r7i5I+uFf4eTXwgs84PUs76z2SyWyly7dk2tVkt7e3uRwCIWYcoISSfDxH0E8jyXpHgtCDcE2Pc06+tGhWTesDZeaoGp4Gq10mQyid0uEIgg6ayBdzEh68QNG91gs1oa4i0z/RxeujCfz0sdFjxTgqwUREKyMCTFZyGEoMFgEO+Hm0rS7pQ95CU3fMfwvNMVAjHKjTHZy16WcdFxs76LE+5sfMBXvFG/+ZkD3X8hQgkJCXcW0vdwQkLC3Yqb8WfFHy2K4or9/uWSfqYoiq8NIXz56e9f9lgngAC4mRoRRlKqaYXXaDSU57mm06kmk4mm02kkCZBgoopEniHKkFTq+SEinv4MuXJS1Gq1YjYA3Ra89WAIQaPRKJq+QXaIxrvBHwQN00PaWfL6cDjU3t6eJpNJjPYiOHhdOlkKkM9r165F00LviLHZbOJaeb09EXI3A/ToNITVya8LNxB37o/XrkM8KfeghMPr+SlRGY1G0UwT0tzpdDQYDKKBY6/XK2UPeEaEd9BYLBYx8szazOfzWCpCJN/LXhA7qOGvdmQAnvVQzTxAoIK0cr93u51ms1nJO4K2lu7XgLDBOnsWhWeXQHARIPgs52Buo9Eo3h+P5nM+J9ZuMsm95tmTFEUbRBhEMvYNYoF7T1RLcTzTgewWsjl87HwHYLDo2UGLxSLuTc9ocEEMUYXxI0IwDgQjxArm7e1avURDUiwBuU3wtL+LE+58/K1/9Nf0M1/9jcmcMSHhmUH6Hk5ISHhG8eG/9Jm6/79e1UVqBv1MxCk+TdLHn/77uyX9rB7ny9NLCSCx7rzvZmydTicSuOPjYx0dHWk2m8Vje72esiyTpJgeDVkbjUY6PDyM3gdEkN1wUVIUFLyVIVkLkBtIqXTWjaFer8c0fQgPJFpSyU+BUgCEBo+Y7+3tKc9zXb16NWZqOFGiFIJIa6/X02QyKUXsPWq7WCx0fHwchRNS40kvp7xBUiy3IOrMvLxLRrV0wls1Mt/5fK7hcBiNMmezWbwnrOf+/n4pCu1p9O12W/1+/7puDIzZo9BeboGogIgEqST7wYkp986zHVxw8fmyTt1uN94nN1XECBRijCgzm800m81i1H2xWEQDUifFiBtkUvAZ9/RAINvtdrp27ZrW67X29/fjM+SlFQgr7C9EFs9iwcCSfcVc3IOAfcR+8BIP/CC4d57RAXyfcDxZO9560wUM7i/ZQdwLBAGePffUYE5uClk1PWWfubBAdgxijYuLvHcb40l/Fyfc+bj0nW/Up1z7Yv3st75W9VC71cNJSLjTkb6HExISbiqyXz3U9u1vvNXDKOHpCgqFpP8UQigkfXtRFK+X9JyiKB6SpKIoHgoh3Pu4JzklGwgAkAon5WQODIfDmN4/Ho/10EMP6b777ovEBSJVq9U0GAwiYfU6daKjTh6JdHJdSBlkEpIKaVssFur3+yeLaN4DROuJ/LqxIkSZSDvEkcg+pIyMCMgrEVvGReQWQM4gUogQ8/lcs9lMx8fHsdTC23NCiFkbd/Df7XbKsiyuJVF+sgtYS4wmPbK8Xq81m81KIgXElMwM1tTbcTYajUjgGCveBO47gH/GbreLRpmSYjaAryfEGfNHXoN4S2cGnOwFIt3sG7oUDAaD+FnpRERA6JpMJvGz7qvBfKWzzAaPetPyFECM3VgRwYv9g1BCNgzlOIgciDDcT47t9XqRYEOoEYfIDmCclAp42n/VeJP7ROkFz7KTd45DvGB+4/E4+pZUjRTZ856Z4e9TosB6eZcTMkzcw4J94mahCIo8fxzHsV4ScZvgpnwXJ9wd6P3wm7X71kL1Wz2QhIQ7C+l7OOFp4dJP/IZe/OGfr3d+5utu9VASEp4Unq6g8DFFUTx4+gX50yGE//VEDwwhvEbSa/id/vKkikOgITYQj8FgoOVyGcnUer3W8fFx7EwAkYH0EOldrVbqdrtRUPAWj1xPUsnUj5puyAbnzfM8kl0IJqUA3W43tm701Gki+YPBQOPxuGSi6K72EF1aVlI+Qb2+m/4x5tP1LJUvuAEiKfKY+LEms9ksRqyJVHtpxmaz0fHxcYkIQjpZb65Dyj9igxNnjp9Op6V2kp4F4CIO5I/IM+vc7XZjuj7HEinnGnmeRwIKmWw2m1FYctGg3++r1+uVfCIkxWwBSDBlHXg51Gq10twGg0EUYLzEAlNCBDHW2Ov4EY7cgBFQ3w/J7fV6JeGH96ulK9xXMmLIJMC4lI4UrJ+32vRMAxf1GAefY6xO9BGK3H+BvellF55p4vtVOvORIHOI/cXzz9y9+wf7jeeZMhbOx7HsbbwX2B/MG8HKfSNuFw8F3aTv4o56j/PphISEhIQbIH0PJzwtbK9eU/f9KXMs4cb44P/22fqgr/+1C1XuID1NQaEoigdP//tICOGHJb1c0sMhhPtPldj7JT1yg2NfL+n1khRCKCAuEMDT1+Mf9JBq/useAhAAjyaSwg55hix4hJ9oukdcPbqO2R3nhvxQP09aPtdChOh0OsqyLEbhmQtR/clkUiIvkmKk3g3uGBOk11PqIWena6l2u629vb1Sin+VVNXr9UisifxKigQcg0JI6Hq91nQ6laQSISS6DblutVq6evVqJNEQd8oc+AzrWDX4IzuBY90bAg8IyjIQJCDU7AfMByHzkEiuz1ghyggQfI614hjEGx8/Ak+n09F8Po/EuN/vq9PpXNeS0PcU69/v90teEmQicB+qGRnsrel0Gp8NSDF71Ak02SSUfiCesfd9Tohhvg7Aibh3VGBvIYAhPLEWlJrgi0G7ymrWAmKXi2LsAzIuEMJ8rIiGPDusqz8/Lki6UIBJJZ9jzIzP22EiePCMXHTcrO/iUTi8bVIyEhISEi4S0vdwQkLCM4mP+9VX6QP/0v/S9rQ72UXCUxYUQgh9SbWiKKan//4Tkv6hpB+V9NmSvvb0vz/yRM5HKYF0VgJBNJcMAEmxu8JgMNDh4aH29/djnbV7HkBmXKAgMuvESlJMSYeg8jkIB3X6Toowl+v1eqWouKRSlB9iLJ15HkCIIDJeq89/iShznJdOuBM+64TpZKvVKmVUQHbdgJDUd7wkEBeWy6Vms5lCCDEaD6ki84B1gmgxBsQWSaWSADcX5Hf3ViBbgfIHiDulL4xRUvRS8JaGXi5BFgEZF26O6KUV3Ft8JcJp54BWq1VqV0g7QQgy6f1E9Z28escFL3khuu8EnfVGlGAt+bfPh7Vdr9caj8exLMSvifDAmhO5555zftac++eGjYB94CKF7wP2nmc1MG5vKek+G8zFyXk18o+w5Bk0tHQkq8gzWiSVSlO8tMMzg7gOogfZLO6tgmDkPg+etXPRcbO/ixMSEhISnhzS93DCzULYSetiq2ZIRWkJZ/isd3+cup/0rscuxd0FqXZr9Mink6HwHEk/fEoaGpK+ryiKnwwh/KKkfxtC+FxJ75H0GU/kZO95z3vUarV06dKlSC5xlndyIp2Q2H6/r+FwqMPDQ41Go5j+zUIXp+3o5vN5jLaTat7r9WLXBMiYm+aNx+MYJYU0uVkg1yBDgai3R00hewgLLhp4PTkGjZ5O7oICxJm09dlspuVyGVtBQpCI3vt4EQYGg0F05ud1J8kQXaLGdCRgHdfrdeyy4SnhXB/CSOkDUXuOZw6sA8Qd0uuGmHzeI8wIC5BnL0/waLOk6I+B0NFut0uGg+7V4O02aSPqwoCXrSAMsdZ08XDPBEgw3gqUxdAZhPvNmIiCu/8EWRROatmviFvekhHRxLt6+HzZj5JKEXiEOs+KcYGqmuHBnoTEM17umR/nzyqvc6/8GXZPC66H6AG8C0f1mWR+iHle9uPXQhjkeUQ0ZK1ZG0QounLw/XMb4KZ+FyfcHXjHeqWXtlKnh4SEm4T0PZxwU/Dcr3+Dfs9zvzD5KCRIkrbFTv/nIy/Tw6+cPO5nX/xlv6Df+oY/9CyM6no8ZUGhKIrflvQHznn9qqRPeLLny7JMjz76qHa7nUajUSTukFknOJA8MgGkM5IEqKefTqeRwDabzVi3TqYAhMqNGWezWTQvxPCQSDbXpiyAFHzIIcRHOouOQsJ9zKTNLxaL6OzvrvxEyZ24QWoxhczzPBJ6rof4AMGs1Wra29uLZNM7akCOmT/kCj8EoriM3wk2hJj15Xykqg+Hw+uIHWtBLb+3YYRYIkhQDkA2hVRuYXhexgjHANbRo9HujcH601IT0kxkH6LrngVu5Mj8qiTesyfIuGBNEa7IviGLxgUk1tGNRDHzdG8Bz2Zw4YQ1QcBBHGEPermPk+pqN48bdW1gDb1Dg4tmHOv3u2rS6M8t/0XccpGA9eTcPCecz589PwfeCwhGLpJhtohoUBRFqRQIwc7NJi8ybvZ3ccLdgS95yR/RF/za2/Sp/fzxP5yQkPCYSN/DCTcTrXFN79nM9MLG4FYPJeEW4gdnI701f5He8gef+N+irXFNq71nP7v2mWgb+ZThbQ8hdaRsY3AnnQkKkmKkFV8D6YxcrtdrTSYTDYfDUt0+53CBgJ/t9qSLQL/fL4kGs9nsug4E/OR5HskgqdlEjhEM8FyQVMp02Gw20cyPGnEnxZBTTzeXFDMpqMt3d3xJcU2IyHa73VjL70aUXlZBmj+mhd52jwwPIrmUUSBuUK/POJfLZcye8DWGiHp6uqQ4R8++oMyCbAgvEWAvcI9YK87n98BT7Zkz9wqyv1qtorADAXeTQSepPm9KKhi7ZwSQqdLv95VlWSmKToYGWTNuzsi+cONA7/rA3NzMkLVFnGEe7i+AoMA9YLy8Xy1ZYR9wLdbC/S5Ydwfj9yyTagYBogR+D6ypix2UDLG+rAf7qdVqxb3ia+5ZSi6IFaemoex3RDGyiPgOYkyUQiQk3Iko1iu97qM/Rp/6P3/6Vg8lISEhIcHwwn/wBv3xD/0C/cbH/r+3eigJzxDeuZ7p9df+8A3f3xVBv/LhT7J8YbfVA1/7P/Sev/nhWtz77IoKF0pQ8DRvUughXB55hGCsVivNZrNSnbRUbl3HZ6Wzen1ICTX3pOFDZEI4affnJQO0KvQUeMoQms1mjBwTxYbMEun39HauVa/XY7cAJ/n8eLq/k0eyKiaTSSSZHpWGZHsqvUefIcrSmVN/tSbfsxIgzVmWxTIPvAowQQynZoJkAmCciPADsd7b24sdIsgU8Ig4EeftdhvNKElD59xVszwn2u7Qz31FCGCOrEmr1YotJ8lm4Z5yvJfF4IXAOhP9pnMCJNpLCcisqbaH5D76fUWs4TycHwNS5klmgIsA/oxUs1r8vD5G7+bA58lacWGGzB8XKNhzTtp59rwEwe8rQo7vSc5FhgpihIsorJE/9+53wTEIfozDy0gkxbIZnlmeWy+pYf95FkxCQkJCQkJCwrOJ+tsGetMf2uoVneSlcLvhn159if7LIx/ymJ/5zbc/Ty/5G29+jE88NS+E3WKhF7327Xroz71Um4GU3/8YwkIhjX7r5vyde2EEBY+OQvR3u12JTEMmqFsn+kxqOISTqDxmbqTWS2elEBxTNdxDiEA0gFD7ON2DoNfrqd1ul4g184C8DAYnKUseTeY9UuI9qsw5XBQhco/gUq/XY9kDxpREU8lIgCCdVxognRnVeTkAkWxIlRtJLhaLKIiMRiMNh8PoVcF8IKp0fEA8ISre7/dLrSG5b6wP97coiujDwL0nS4VSBamcPo9g5EaO7CMvSeF+ekkCe61qpAlBpgbfU/RdXHDhqmqgCTkmk8K7ELjQw35GhCDDBaLspSXuLeLmgqy/E2fugZucehkEe8p9BNzTA28SFzVYH/YK10S4cINVxALmyng5B88D9365XMb2qzyD3g3Fn1GuR2cWnhuEEs94wDel1+uVTDh5n/vsYtVjmt8kJCQkJCQkJDwDeMHXvEGfU/x1fc/nfpM+op2yJS8aPvi/fbaKIpz73vO+t6n2j//iYx7/Er3vmRiWJGl7PNa93/YGNR54oa587PMe87P73/OGm3LNCyMoQHaks24IDjfkI1qZ57kWi0V0hneSKp2QDwg/GQVEmvM8j0QP8uGR336/r36/HwUN6UxMgGSSqk7JAaSGtn+QKQi5R88hU51OJ3augEgzBsjudDpVlmWaTCbabDaRaDEWiBOZEN7ZgrR7jPsoTyAqTNo7RJuoMSSX6Lp0VpJCtJ/2nUSJPZU+z3M1Go3Y0YHrOVmXzgSB6g8CR6PRKGWHQAC9BEU686kgUs3nWXv3JHChhnlIisc42fWMC/wrpLMOFmQ9eDnOedF95sU+ZgwYDbogwT1lPRFPHE503QvBnw8XviTF58XXg3vaarXU6/VKggLj8kwGRAP2FmUR7DnvolEtQfFngvc5J/uT7BlEmapHgws9PNfsN8bFPXfhgfuGCEe5S7/fj/eOMhbudUJCQkJCQkLCrcIL/q836C+tvlg/+IVfrw9u9m/1cO4a/PtsoC/5D3/hMT/zQV/yZumCB50273qP9t/1nmflWhdGUJAU0/8hS0SX3bsA4oEAASFxkz+P8PM65BLSTI97SI1nD0gnpGQwGMTIpRvDMab1eh2j7pIiqfH6csaOFwPjd9Cyjnm554CTJiLzRIu73W5M0W+327EsAEDWO51O9Acgy6HX68UotZvZeap4o9GIWR5OAqkx7/V6UbRhvanHh8CRcUIZAdfxGnlP5fcfv5fMC7JI/T1lAUSqff7L5VLT6TRmV3hZCU7/Tsw9W8XFGq/PZ9xVwu4kHTJe9R1gLt6mFPGGsgrIOHsRIQZC7iaQjLFa6sMY2IMQeUw03cyUfcdnERR2u10k1wgn/NeP4x6w7oggzMezewBrynX8mamuN+fhXiESbLdbtdttdbvd6MHA88f3hJcI8exzb1gfz1DwcgvWIiHhTkVoNPTe199zq4eRkJCQkPAYeO7XvUF/dvK39Z/+7j/T5XoSFZ4sfjJv60tf97lP6pj++3f6oH/1pmdoRHcmLoyg4AaJkAqIDwTMo6NS2SEeIuH13JJKrvbNZlP9fl+Hh4e6cuVKjNgSmfboeLfb1Wg0ih4NkDhP4YY0V1Pc/XPnGQg6eYLQEs2GOEKK/N90JgghaG9vT4PBIJ6PDAzOs1qtYmYAUW5MF6UzEaNq9ueRY48Ic28gX5PJpFRe4uQV0YRzY87ohpJZlinP8zhGju31enH83Efm4Gn1LlzMZrNSRot3ryC67zX2TiS9Pt9LYNwI0Em0Cz9Vc0kyRCC8iFFcq9lsRkGIfQNR5755WYXP3e/BYrGI58HI0b0RPEMDsYfX8d3o9/ul+053Be65l5+Q0cKasu/Zj6wxz653/JjNZvH6btLJ2leFGzdVrHqfsDYuOvT7fS0Wi9gtw8UezlUVBpiDt0atfm8gnqSSh4Q7FqGmX/2o77vVo0hISEhIeBzc87o36lOPvkS7pvSmr0vtJMEf+IVXq/sDe4/5mfZ4p+f+2M1J60+4MS6MoOBRcWqZIVJOPCCVEFhPO8fLwAm9m+SRSj0cDtXpdDSdTjWfz7Ver2P2gJ+L1zxKCjFtNpuaTCbKsiySZtLXIWYQGmrzcdSv1WqRSK9Wq2gIOB6PS+QMwgPRoiYessQ6QKJYC68fh4h5LT3XlM4i/pKuI2sQcn53U0FM7Fgj0t2raeeSSj4R0kmL0KOjo5j5ANF0/wxEBbIPMOn00gDEDcbCfmk2m1HQcCFDOmuNCHl3Qz/fY17mIp35TXjUm//ywzojOLEXPGOFiL5H0Lm/vM49hOjzmrcjnc/nMUuB9oeU/eAxwr3mOWDe7I3BYFAStjBBZUwIKuxt1mOxWMRnFEHOPUdcPOEc7A83oGS/etYAcK8Fnj+edxddePYYb9XfAc8I37tudsnnyHJwcYMMioSEOxEf+YvzWz2EhISEhIQniOH3n0TMP+HBz1X+nKbe+A13rrDw0m/5At335uXjfu7577qqzW//+rMwooTHw4URFByQCUiDm6/x4yQVkkEKPpFhPAMWi0XsQAAxx7TQr0NklYisp2S7WSHXmM1mmk6nGg6HkbzO5/NS6QPkEHJF7TalCHgSUEKAQEEnBC/fODg4UKfTKXUbkBTJKyUK0lnquaRIrrvdbvQkgPwybhcTIOFEcom6uweAVCbZzM09BIj8EjHmvJPJpNRGskr6Ic8QZcgkJJzyBa7FWpABkmVZqdMGe8rNDsmAcD8AFwn4r4skkFLEAY+0e0YF12Y/OKGfTqcxOs5auwEmnh8YDa5WK3U6HQ0Ggzhuz0hgr7vZJvN1VKP+kHf2gbfChPi78STncPJNmQHnwp+jKlLhGcE+IgME8Y9/u1jDvmIfepkIGSasAQKSl8cgUHDPuPf+Pq/xb79PVWPKhIQ7DV91zy9LSvs7ISEh4XZC47+8RXuNhj75f/6Z0uvv/pqm3v7K771Fo3p8fNwXvEaDdxw/oc++8N3/U7sse9zPbR73EwnPFi6UoEA6uUeH+TdEhD/0IYakOUNWMFLk+CzLNBgMNBwOI5Go1+uxS8GVK1dK1yLqTkkAEV0n527ERytFBA8IML4KTrhduCATwVPUj4+PlWVZKZ2ec2w2mxiB5hwQWrwRSCun+wRE0Qk548zzXL1erySsQMi8Dh3zSq8r93aZkFBJunz5sg4ODiKZpgZ/tVrp4OBA+/v7cX2ILCPGtNvtkmjjRJPfnbyzrt7BAcGD+4aogjCDgIDQk+d5vJduQAiJxfMB4QqBBAEL4l0dR9X0kf1FBgDij2cmsC+94wE/mIQ6ufXrVkk594q19nvLfuJ1zom5ovuE+N5yIQJxzNeJ8ZM5wTqwZyTFbBP2rRN7/uvg3C6GcE32LyU/rCeZE2RSIMpw7/iOmc1msWuFl3q4j4J3h0lISEhISEhIuAgoNhttf+0dpdde+Fl9fXL3E27RiB4f3Wtv0Xa3ffwPJtyWuDCCQpUsAogABJc/8t19fz6fq9ls6rnPfa729/dVFIWuXr0a34MoEd2GuBFN9Yhsq9XScDiMBA4Bgc9JZ9Fdb5lHpJz0e6LOCBJ0mKDdpRMvyGCWZTGiSvcBnPelk3pxjOhIM/cUfvddQCggJZ4ac+8yQBmEpOvIKuLNeXXoeB2EEHR0dBTr5AeDQRR7nGxyXYh+lmXRaBIfiG63q+12q6tXr+qhhx6KAkye59eRX9bO09uZk3sjeJo82RiUJCBEsReazWbs0kGZC8KDZ1C4mAVhZt/iU4EYRQYC43aDT99LiC5kx3APZrNZjPqTfcO94vrsQTw+nPhzrdVqFZ8DN0lEUHFRzrMsWEPPAkF4qPqZIAoggHh2D8d6OQXlGHQZcXh5CM8RpRO+huPxWHt7e7GMhPISjsnzPJqRemmKl4Rwj30fIXS4h0hCwp2GT/3gj9OPvuPn1AwpSyEhISHhdscuy6QnENVPSHgmcGEEBemEcL33ve/V3t7edVFMJ4tS+Q//9Xqt6XSq2Wym++67T4eHh6UWdJ46D8H3NH5ID4SHVpBVc0InsB5RBpBOxu0O/NVodpZlGo/HJdGiagAH0YXcU9LAHBBEIEjz+Tx2p6C8YbVaKcsyTafTUqvMZrNZam/pJRiMBREFQk6KOvX3RHLn8/l1bv6sK6aJfBb/BiLYz33uc3Xp0qUo/hwfHyvP8yjUzOfzSJhZb/cFgAy7uANRRRSQzmrvq4IHAoyXPnAOxCfEGcZDm8VOpxMFLhcFOBfE2gUrNy1kfbwsBH8E2mIiDIzH49IeZF6eUQHcE8LLhHgeGJ+TefY/e6vX60UPAoQW9xTA/8I9LbgXeIz4XM/LLEHgY6xklPh95fnl3wgLWZbFZ9GzM3jmEEO4L3x/uDhUFaUQ/ChTIZsnIeFOxC7L9Gkv+yT9xP/86Vs9lISEhISEhITbGBdKUABOFCCOiAoQMUoDEBXo2LDZbNTr9TQcDpXnecnAEcJEyjOZDRj+zWYz3X///RqNRrp06ZJms1mJyHs7Qc9aQNyAFHJOJ+DeLtFFBU8595p8J/mkZnukHoJHZH82m8U0fye0wCPjboLIZyl/IKLrHhUQWdaQlpWUllBi4WUinplBu0Lu4WKxiC0un//850cBabfb6fj4WNeuXYvRecwTd7tdNN+jxIKSC7I1EJwQTljr2Wx23f2CgELYuVf8m4g+98BT9dlnbnrp4/BSFeDkm7lCdrkumRF4RCAucN+K4qSrA0TdPRTcTNJbcnIOvEQg/1XPBU/19x8vcWBeeGX4NT1rx8VAsga89McNEjmef7sRI69VfRzcy4Hn29t5Mg7W170Q/Bnz8yM2up8CAmNCwh2LYqefmZ9lKLygMUm9zhMSEhISEhKeFC6UoOBlDxjXQbLcXV46S7F2vwUisdJZ2jRp5JBSIuREPd3YD6LI8RBu75Dg7w8GA41Go0gK6QzhpnTMC3IP8Z3NZrp27Vo8F54H3v1hu92q1+tpMBjo6OgoRlB93MxROvNr8KhwdS6tViv6H0BKmSPncEFDUiwdcI8GJ310zhgMBgohxIwIbxnpRoIQaDISjo+PVa/XtVwudeXKFU2nUy2XSx0dHSnP8zhW/kvrTIw2SemfTCaSTkoiEEYw8Fyv13Hs7LHZbKbJZBLXm44G7XZbeZ7HUg6uRQYEe8AJ62w2U3aaaoawwJq58OUChKSYjVE1pXQSTYYC+9x9GXgWeHYg8QgLq9Uqmha6nwbX8XN6RH+328XnploiwjGeHeIeBbzuZSGc17MUOL93mnAvA+6tZ5K4iOJZJIgsbuKIaMSeY1xVbwtEJEos/Puj6uuQkHAnYXvlqr7uxb8//n71r7xSn/F//OdbOKKEhPPx/s0jt3oICQkJCQk3wIUSFBAFxuNxjIJ3u11JJySRSOtyubyuBhqiuFgsYhkA5JrsAlK4PXoOSaKmG7ICaCFJWra76ne7XQ0GAx0fH0dSSGT/vJaXEMCq2SIZEIzDx8DcOp1OnDuvQ4wllbwcgKe+E81nPVyEINuh0WhoMBhcN1aIFgJBu92OggDdHUajUXwdss583OnfvQ02m42uXbum3/3d340eDxhTUqpB5N/T/RmLk3MvLZhMJpGoIygURREj67Q3xLCPNZcUM0IQKSSVBIBqJgFklqwCSDmeDdXsDo/6E7mvtsOkAwTX9qwM6SSbxA0ZvYzDhQPGTVkN+82NJT2Dh3vFOF2I8/INL33wPVYV/rydqLdq5Hy8jyABPDvChR4XDb2kiDX2shuyDSSV9iHn92eIchvG594YSVBIuJtw6TveqP/yHSlDIeHiYVIkr4+EhISEi4qnLCiEED5E0vfbSx8o6e9L2pf0VyU9evr6VxZF8RNP9LxOGiAeEH/c+PnDHxNCN4wjMgn5dgFAUiTOEJCiKGIk1Y3iyH4g6wCSNJ/PI4nq9/va39/XdDotGQUSSZfORANIqxNB93lwt/vpdBqzAKjV7/f7pTkA5ubZFRAoBBTm2G631ev14rFVMsn1ut1uHBelG/P5PKb/SyoZPTrxhOB6ujjRYUnRh4Ao/HQ61aOPPhqJL0Z60lmXAiehXnIiKXaicD8AzsE+Id2ftYScZlmmLMtKBJUWjdvtVlmWlSLYnnVAyQaCxGKxiGU4tBb1velmoggKCAfeHcTh5oaU6ZxXxsJnqyUPIYS4X728g/VkjyFsuLcAgh3PmB+LeMcPGQS+38nYkRQzCbhvzMsFCo7xefEs8x7ig5dZII4gLHp2hmdU+HldJMB/gZIp7x5zu4gJz9R3cUJCQkLCE0P6Hk5ISLib8ZQFhaIofkPSyyQphFCX9LuSfljSX5b0z4ui+GdP8nw6PZeks5IGNxEkskw5AOQQEjGfzzUej2OUNMsydbtdHR8fx5ICyhf6/X40Lnz/+98vSZHcQO48uuxECWLCuSBEniHg8/AfhxM26cwULsuy2G2CEgXMFl2Q4PhqiQOEjbUigt3pdErRX7pBIKxwPD4DCBHedtFN8SDtkGXIn9egc22EC0zvuKebzUbT6TSSeS/rcDLJuL1dJmUZZCgQpYccIgZ4d41+vx+FBowP2X8YBHKfvA0kYgViFJkQlGL4PXYRhPFTcsL6cQ+9RMD3B/eTe1IVabwswjuVeFlBrVZTnuel/eV7s7pP2VN+PZ+vi1P+OYDwwPPIfUJAcZNGBBcEEy8l4X74fmNP8Tkv0/D1Z4zslfOyDapGiy4ouUiCKHPRcbO/ixMSEhISnhzS93BCQsLdjJtV8vAJkt5ZFMW7n+4f4JB4iP1isYjlD/V6XQ8//HAkTJBdIr3uSwC5OTo6Ur1eV7/f197eXozU33PPPdrb29Nms4lRd0mRlEImIE8QNQiVk6pq+QFkmfHxeVoCSmdGhk5EMS88OjpSCCG2jGw2mzGq7p0qpDMySdq2j5XIt7f5I0q/WCxitwY6J0AgqyUanqUByZ9Op1FQQKiAmHEP3ayPsgMXawAeBJBAsgoQjtwrwzMTEHAQnSRFjwxvd1j1b2i1Wtput9G0EyNL9+BgHbmfjIUsDUoiOF/V5JJ5cR/ItEFwYI29Vh/ijSAkqWTAyPwoJ2Gc7lPg2T2cFzLPXDyjxwUFQOlK1dwTYYd14d9eOsF9QczyDKFqVoJn2rgA4KKZl0L4HnDiz7/d/4O5+jq6j4J3aTlPsGA9/Pq3CW7ad3FCQkJCwlNC+h5OSEi4q3CzBIU/K+lf2+9fFEL4LEm/JOlLiqI4ejIna7Va6vV6ajQasY59OBzGaDpEERLi5B4S0+/3I8l+5JFHdHBwEAl0q9XSaDTSaDTScDjUaDTStWvXIvGj1h6CwrUgd9R+Q5o8irzZbGLEnswCCCHkhnPQmg8nfwhalmWRfBJdxmdBUoykI1R4SQRCDF0LILWQJ8g06eB0ZyCF3yPS3m5vOBzGkg/G4MKGEzsEHI/yItRIZyQYc0jOJymWZJB2D+n1Wn7G6EJBCCEaIzIuLwOQVDIqZH2cYHsLR283yVrgS+Cp+ZzHPTAA71d9OhgzWQQuAnhmgJsJehaKlydQbsE53PiRMXAOLzdw88bzslOqHiDnEW5+GCuCimcvcA32n69PNSOj+pwwLhcZOc4zhbxUg3MyDn9+vSyC7iEIXaxlVUystkO9DXBTv4sTEhISEp400vdwQkLCXYXa43/ksRFCaEn6VEk/cPrSayW9WCepXw9J+oYbHPeaEMIvhRB+qTSg09R8ShKkM0NGSaU/8p1sEfEnM8Br5efzufI8j8ZrEGsIBaTazwWRhJAvFovoFwB5dK8Gj9B7WjdzQSCRFMkNwgUkF6I3m800m80iESMCzvz8WhyLyOB+EZAiCJikUnTYMy0QUgaDQTSVJPuh0+nEbInlcllqAcl4PJpM14f9/X3t7e2p3+9H4YD3EQUYDwICwoYTYe6TZ3t4C09KNvBO4F6xNp6mz1phEogXxHw+j+S/alzI/BAW3LMBwkomCOUO3tXB95G3cGS+CCCQfI5xjw3up2cUeOkH13JDUd8DLiJ4SQrrRdaBCzaeGeHXd+GiKqbxOV5z4cmFIT7vggv3yDMX2GO+T6smi9W1wwvEW7UisuGP4l0dWGPPeKgKlbcDbsZ38VqpVWZCQkLCU0X6Hk5ISLgbcTPCb39S0v8oiuJhSeK/khRC+BeSfuy8g4qieL2k159+rrBjIrFtNBol8gUx4gcztVqtFg0SvS2ip7JDHIn8S2cRUrooePq2p8u7ESREg0wAyKgb4SFY4LPQbrdL5N7LDygb6PV6Jd8DN5WDZEGkEVooNUCAWC6Xcb6Y2PX7fbXb7Sh6eNSXebj44e0jKSVAVKjX69HjodfrxZINSSUiy9w4nvVjHk4aPSsCAmp7JJI7vycuRPh73FP3DEAYcGLvPgnsMc8uIUoNQfZsCM7hHRyo3SezALGKY5kLBNaj/mRgsGc93R4R4zyRwK/hGQPSmWknZJ81cjGBkg/ECEg7P4gj7Onzyg3Ou74bnHrLTO5ZtZUkqN5DxDSuyT5ygYX5utBRzWhAJOC54jiOpYOIeyy4x8Nthqf9XTwKh7ddjUdCQkLCBUL6Hk5ISLjrcDP+Yn61LLUrhHB/URQPnf76Kklve6In8gikt6YjGg35bLfb0XgPcnpwcKDDw0ONRiOFENTv96M3AKnwmDIiUECs8GigNIBItIsJxalpICn5+B0cHx9rNptpOp1quVyq1+up2+2WOlNAjCBqEC/MDpk7BAihZD6flzoLuNiCYCJJ0+lUk8lERVHE8e12u9jVgfID6SyaK+k6Uu8RWYQG7gdjJMLf6XTUarVKZQDV0gbq02u1WnT8d/EFwu+CAq9xHFkJtVot3hNP+/dafAQXJ5qM3csTGJ+XtripJudDRDoPkGSuz9g4D+sJkfaxI3Lw72qphJPgqieCry1lNy4UcO/88z4HPudGhIgkHFfNOnAPBcbs4hDnc7GM8oyqYSWf4Xw+52qmAdfx8gtfF7/HLh74XH3sHIPo4OUNfM4zKbyc4jbBTfsuTkhISEh4SkjfwwkJCXcdnpagEELoSfrjkj7PXv66EMLLJBWS3lV57zHBH/NEiSEwHiGHsDSbzZghgLdAv9/XaDTSZrOJfgvD4TDWxldbSRKpJjpP9wHpLOrqEW0i706Iq9kElFrcKD0bQLLJCKimXJNV0e/3I2klottsNiNpgyRj9EdU29eSuVWj+dKZGR5kjyiwZwFADnmP9fBx0fGg0+mo0+nEMXkEvl6vq9vtRnKX53kkxVV/gKIoophAtgclJpSdeBkHxJNOET4/otPUzbNOm80mlndwH3yuZC5w75mHt4OklamXaCAkcW7G4WKO7wPAuZ1Yu4DAvvQyC78PXu7i8Gwb9ppnX3B+J/JkU7gAAPx+sZd4Bqpz8tIUnhGfB2DNGAPXdkHOP8s82VeedcAYvOzFPSC4l1WPDc+QYJ7nredFxM3+Lk5ISEhIeHJI38MJCQl3K56WoFAURS7pUuW1v/h0zomnwHQ6jWnX+/v76vf7pUgipNDJEcQQ00UnZtPpNJIDhAgMESE6/X4/RpOPj4+vI2yeAo3XAR0FiJZjwuj13ZJKRNbJPanru90u1rO32+1YX7+/vx/T0bMsi4QIQk2ZAN0GPB3cPwtZbbfbsQuEl0CcZ3RXHbvPnWwOrpXnuXa7nQaDQUyvpwsCPhKMebfbxfvrXhbu/cB/veOHlwy4X4NnHbjxHuP2NHnvYsHYqdOHqLqZpd9bT9l3/wL3fPDyAvYaBNs9BDy9njX1shgyGoBH6RE8EB+cADupJ8rOWF38YG1pHUr2iZdZ+L7wbITzUC0ZIPIPeffMk+pzATxLwltcVksjuG/87tf28geu598b3Gv3njhvTp4xcTvgmfguTkhISEh44kjfwwkJCXcrLkyRsNdmL5dLjcfj6C2AqWGWZZEMVUsjIP8QJ1Lsu92u+v1+7JyAUeNsNotdJLz2Gm8GJxtVgzrGSRYBEX08CDiODAGEBKL20pnPAP9l3hy7WCw0Ho91cHAQI/KPPPKIttutut1unC+mdhBICBzlIIwXoaXb7ZbEFLIyvJa+2WxG8o5I49kRzMkJI+fjXhLh9/p3N2Pc7XaxzSWf9/vDGrhohADiZJtzMQYXPiSVRIpOpxOvj7Djtf3eleBG/gWeaeAlIufV9bMvfd4IFYgonvlQTbX3OXqmQ3WMXt7gZRSSSgKDCw8ela96WvjeRYRwYcKfBx8H77nAQlkO+9sFK8bk1ycDxrunVD1N/Fll7/rnvJzDM0y4B+xhv9/MjfvJut2o5CUhISEhISEhISEh4QIJCpJKZBBSQOtFSaXILcIBpKIa9YWAeBQW48Z+vx+JHYQcIkP2gEeyMVbMsiwSeRccIIRE0Wu1mvb29q7rRsE1IalOEvM8V7vdji0kydJYrVaRCE+nU83n89iVYrPZaDwexzF760Kc+xE6Qgixa4OXkHiZA6UUvtYeXWYdIf/4NXj7SCd0fk+Zv6ehI1h4KQJmjnhIeF0/ZNANE8nscJ8H7ptnXfA+ppycl2u7kaHPxUmvGzBWDfvcrwE4cQeees/vHOekGq8N9nP1HL6nKBfw9fbyGe6dXx9h7kbndVNC1oSMCM8q8NIhzoFwUBXhPDPChRcfu5eO+Dz8Wi5guJcG3xM+Jhd6PCuDNUXM4/ujKigkJCQkJCQkJCQkJNwYF0pQkM7IC3/4D4dDdbtd1Wo1zefzmKVQFEV8nfp3T6uG/M9mM223W/V6PQ2HQw0Gg0iKMQiE3NLWj2g2Xg6QPgiSR7lxiaeUAJGB7goewcXQEILrKeZSmXSftxYYTO52u2j6iACBYWS73Y7lGLRvZM54LjQajdgRA3PJPM9L5nZZlpWi25DWvb29KOLQmaJWq8XWkNUuE5QkrFarKLpgqOnCTL1e13A4jJkC0pmB43K5jKURkEYvR4Goclx1P0AUPRpfFRA4t5/XRSWPipMlIZ21MWXdXdjyshbpzPwSEsw5XADjc3gSeMaCj999CcgmcXLsgopH8N37wP0K3LuB/emdJDjGP+ceI8zDryudEfNqpgef83Oyb6qlONXvBn+NNWJ+/hkXhxBEWDffB17KUc3cqIouCQkJCQkJCQkJCQlnuDCCgkdyiVS32+1IhMkmgCRKKkXkIezumTCdTiMxpvMCpolEUSE/ROnzPJekUoSWyHi9Xo8iAaUR0+lUzWYztlDEewFCRvQe4ky5AZ4BHm2Xzsgkc3JySOQagcF9ATAAhKgul8uYWTEYDOLrRP0pIxmPx5EUcgzlCB49h4RhgCkpmk+6CWa1rKNKMjFWdJGmGpVmHZg/wkKv14v35TxTQo9IQ1Cr5J/IOePjs07YpbP0ee6D+yMwJ+8u4WN3XwbuVdU00D02qmTb16LaEaFawuDZAi5I8BnWiFIZBBnWxc0UvVTBx+qeIFI5C4LPMk9fL8bkopx7XPi9qJ7PX+Pe+Hg8+8S9IryMwb9TzttbnIsxVDuHeClGQkJCQkJCQkJCQsL1uDCCAoA4QByLotB8Po8p8BARSL6TOSKmGMxNJpMoEJDN4GnYkLzzUtqJ5EMwEAgQGSCneZ5HYYOIPO9XMw6I1EPgnYxJZ2Z2ZEm4l8N8Pi9F9RkzJpBkCxBxDuGkdebh4aH29va02Ww0mUwiucabgnIBSBoZEIzLsyQoR6imzNdqtSgozOdzLZfL0r3gPNvtNrbr9G4YvsYuBDihR6Q4L42eFH3WGG8EUugXi0WcM3vM096d2HpUniwFb4lYfc/FBQQiouGsCevgZRrug8BeYv/5/LkXN4r0cx3m5UJFVZDyjACpnNbvz4ITcc8cYG9XRQD2rmczsD9c0PA1r5ZN8FMVdni/mingZS1+DN4Lvqer2Qo8h+wlb9vp5/TSjISEhISEhISEhISE63HhBAUAYVgsFrHjwWKxKEWOncRIKkWtyUCQzoj6YrHQfD6P6elEM6uEmHaC+BQ42fLab8gWjvutVkvD4TBmMkBcfHyMg8gwRK3b7WowGCiEoOl0KkmazWbKsky1Wk2TySSWS5CNgVkjY+X82+1W/X4/ttGkleJud+JN4ETf19PJMtFsosoYMSJWSGVCylq5HwXp/og5bqZItgjj9fXkc55BAKrp+9wLN+RzUu/HIJLwIylmtbBmrGNVQGA8kH9Ic5UYs5/IDjnPJJDr8R6mlYgSkOLHS7dnHtwb5uPCk69PNdpeJe5eToA4wZiBR+59LrznIg/H8uNigot7fo7q/eR9F+VcNPGSlOpecsGI8/K7i1C+Fn4+FxoSEhISEhISEhISEq7HhRMUnKQTpffWiJJKkVwAwYGA4zPQ7XajMEHXhE6nE8sCvH6+Xq8rz/OYCk4WAT4LTpS5pnRGSjFGxHuB2nZPPYdceZ1+q9WK4oCkGMXP81yTyURFUWgymcSSDzfs6/f7JUNDSXHuEGRIHiLGYrHQbDaLazcajUrZB6wHEWY6RHBNN+HjnlHOkGWZ8jyPxG673UYjRHwqPKLsogDZGbTirHodSGdkkGPdsNDLHbhGq9WKRo5VAcVFq+12G1teuqDgGQYexXYy7UIA68WcXLjyMo5qxNyzV7g2hPa8MgvEETIOGDeZHFUvAJ8XopAbJzIezsWc/DxVkHng4kW13MGPY3zMxTNgmLOLHwgU/sxwfr+HPn6/VtVY0TNevAyDcXI9X7+qIWZCQkJCQkJCQkJCwhkujKDgKcxu9AbhhhwQLYd8QYogK3meR48AsgVoQzmZTDSZTNRut7VYLKJnABH05XIZOyogAkynU00mE83nc81mM00mk5hiDgEipd47UkD8Icbe9pD54lfg5RvSWd15nuc6OjrSbrfTdDqNxJ2sBwivm/9hfFg9J2sKoaTUoV6vazQaaTAYSFJs9egGhU4KMQGUVGoR6OaOmPwxF/7rkXo3JOS8GElCSD3yXo1MM3b3GHCxBzSbTQ0Gg1InBNafLJIqiQTVqL6vP+fz0gXvQOLCz3w+v85TgDEwD/YvAlq73Y4eDFX/ANbNBQ4fn4sW1Sg/pRV+b/wcXNOJtPsiQOb5nWtUhQn2Dnuc63m2gY+b45vNZpxjtYTDyyKq5Sc+Hxc3WCMfG+OreiS4gOFzT0hISEhISEhISEg4HxdGUACe9k5kFnLrRAdSSlYAZAAyi1GidEaCa7Wa8jxXlmVaLpex/KHb7UYS6GnSi8VCWZZF/4I8z2PHAY8We1TZhREn5JA8UubdwA5hoEoct9uTbg2ICxBiBBSEDOnM00FSye8B8YCsATc1xKjPuwNQhkA2AcdAkBFWdrtdFFbwZ8Czwg0tfZ5khHj0mJaWGEY2m011Op0oGuBjwfFe844ZJZ01qp4BkF1KPjy7QTohz/1+P5YcIAb4PfDfubeIXQARwMUCz0wgs8Q9CKp+HpBl95jgHroYw5o6ECL4b9XY0Ik28/fMBe/8wJr78wiJd0HCMwKqoke1NMgFBc8G8KwPz0yoZgXw3Ff9I85DVWThNS89cSPKG13Tj0tISEhISEhISEhIOB8XTlCopmdL5Yg0pK5aRw0BI8OAaL072buhIASTenc6CVQj6uPxWLPZLJJGJ1x8fjqdlojhcrmMWRCAa2FMx3jzPC/NlWsjjly5ckXHx8fxum5CuVgsIjGitEM6I0mIDmQOrNfr6F1ApkK9Xle32y2RVgipG0oSaZ/NZprNZvE9yhk8G8PNCp18emq7p7G7GSVZFZBpCDzeD8wrhKBut6vRaKQ8z6PY4+IO12y1WlG08H3DelbLGfw+IAwhdPE783QjRvZvdY8hVDjJZp5V74eqVwfz9bp+XmeM3q6Uubu44aUbVTNNj/aTHcDxLoj4mvFvv0b1GXZhxcUhfvf3fYxVsQSy72KaZyr4dwLXfiy474ILejfKUklISEhISEhISEhIuDEunKAgqRQpJe0ZEsv7EIHBYKDLly9rOBzGVoikszcajehjMBgMNBwOIwH2NpGUO0C4IFKQ5yzLSmTNsyHwSsBjgJIBSDn1+9TpY9bHOPynSoYQGzBdhBjzeQgoGQW0hGSNILXz+Vyr1SpmSAwGgxjRpvSADA3OSXYGxB7xAgI7mUy02+3U7/dLPgP4LXBOqex/wDWqXQvcb4JrQKoZK1kJiEusC2LGfD6P1/WMBQevIfqQ4i+dmUy61wBjZJyss7fpdBLse4h1YU7AfSF8zggRnsEAuD5jodyDveXPhmeFUPri5/JMDvw+pLMSE8/y8B/m6VkF3A/fu1zTs3gQCxAEGAfigq9B1VuB9ykN8bXwjCXmWy178eeLf3vpiK8113AxJiEhISEhISEhISHhfFw4QaGaBr1YLKJzvXT2Bz6kni4CTmyIdjoRGo1G2t/f13A4jNFqTAQh5YvFIhL34+NjLZfLSFalk7aDpF7jQSBJ8/k8Ekai69VIt5sEDgaDmCUgqUS8+B2ic16E21PlN5tNLDOgpIBUfkoUsiyLxNaj9US2EViyLCsZN+52u/h5j8S7qACxpsyENWedvDYe4cPn6VkizI3MCUgyhBkC707+EHzm7uUcnklCtxCAqIEZZ7vdjqIS86R9J/e12tWAPQpR9tr7Khn2fVAtpXAvDs9C4HzcO87B/DyLgHIdxuIEm9eAZwlAtF3AQ8xxf4lq9kB1Dj5vBD3WhzlzbxgLJRrV8/jYPEvGDRj5vZphwNjcV8WNMznORS/3lGAvcs1qeUtCQkJCQkJCQkJCwhkujKDgKcfVf0Nmq33h8QqAvJBJgBkjBLBer2swGOjSpUvq9/ulTgOQUswEL126FIkLJnvuywAx9rILSN1qtVKn04kExR33ibIjflSzGFqtVhwz6fWIJNWofafTib4RZBl4Fww395POotoeDcZEkP/meR4j/KyxmwI6GYagEkluNBrqdrtRoOBYJ7ZeOiGp5HvBXDHfpHwBYlgtS2BNET4QEzi/R8M92g5c2CDDovq5ago9Yob/7p0XnMR6Oj2AHLsHhM+b+1Sr1WIGC/PDUwGi6+Uf3pbRMxOksj+AC22Mu2o+6GNzEu/Hu5EhWQjVbAKuzbFeZuHX8/FWu2b48+F+D26ueJ7XQtUXwvec3yc3/PRzupeDP+MJCQkJCQkJCQkJCdfjwggKwAUESB+R1k6nE+u5t9uter1eLGVAGMBkkEg3ZngHBwe6dOmSBoOBHn300UisqOuGvEBqKYfw9zABRFiALCECeASdyL9HyZ2sIBCQZeFp3swdsYH50u7PSb1fi8yIer2ua9euRcNJCJt0Rp4gquv1WrPZLJZFIGp4xBpTSsgzAghiDuaXy+VSy+XyOiJNtoD7EEjlLhEuDDEnSKd/FtJHpw+yD9yjgvITJ/EuFCAUsU/c0JJrOsF0MiupFPH3e4oYgKjiZSzVSL//DjFn7L1eL5bhLBaLSJTpSkHWDPMi4u6knWucV45QbbvI+KrdHRDweL1q2Micq2IVz4ZnRXCuaglDteSBZ8LfZz9WRRqH35+qD4JnNVCOwZpXu0ZwPffFSEhISEhISEhISEg4H49bIBxC+JchhEdCCG+z1w5DCD8dQvjN0/8e2HtfEUL4rRDCb4QQPvHJDqher0cjwePjYy0WC7Xbbe3v75fq1t0PgK4AbpxI1J1IN20kIXDtdjseK52lO+MlAFn19Honb3gLOOmlXIBOEhA/SDbHYtzIT1VkmM/n0UiRcSEIuPEkhAsCTolDnufx35QL0NUCrwKIonTWpcKN7yCQECyOw8RxMBjE9fOUee6RZ0Awt/l8HufB570mnnuIDwUEjywE1pLPjMdjjcfjKFiwNkT8IYaUenj2CASdSHU4Nfb0DBKIJyIA950ff48fJ9JOchGlEMYwx+z1enEMjUYjvke6vpfSuDGnk+vq6+4H4B4D1Yi7ZzAwVhdQfB7nZdGwjjw/Loqctw7eNtSPPa8FqGe1MNdqxoILGO6H4efyzAuefe5d9Xp8viqsXBQ829/FCQkJCQllpO/hhISEhOvxRBzHvkvSJ1Ve+3JJP1MUxUsk/czp7woh/F5Jf1bSS0+P+bYQwhP+y7zRaMRsA0/ZJ3rtRBpiBgHEaA9iALGHUHsEkhT90WikXq9XMqiDmCNMuEkjr3W7XfX7/UiciHYul0vNZrPSdb1doXRG7BANEBS8jttJPySQUgdS9N1bwUUQrpPneRQlFotFNJj0dYXou1mkl0PwWYg8mQDdblcHBwdRUHA/i16vFzMNIJAemXYTPIilZ4FA9CHH7ungEWXEF/d6QDTytUTE6fV6JePO4XAYPTEQD7rdbqlbCKUHvOY/LiI4gXeRgf0KIL9kRTBP9sXpM3SdGNPtdqPXQzXjgL3jWSNO5Pl3de14DryzA8Tfn7FqBgb36zxvg+oP73l2gmcYeImBk3heYy1dFGF8iAdk4SASuNBXLeOoigkuFHo2gpddXTB8l56l7+KEhISEhHPxXUrfwwkJCQklPG7JQ1EUPxdCeKDy8qdJ+vjTf3+3pJ+V9GWnr/+boiiWkn4nhPBbkl4u6Y1PdEBE72u1WvQK8Kitk4N+vx+zEyDA3jWADIVOp1NqmVev16MgQDtF6UTQoPsDhOt0Da6rDYeMu0+Bt/6DoEtnmQuQPY+yQ7Ax/SMbgKh7rVaLpHk0GmkwGEQijcAhKZaHQPpms1np2pRLVMdLK0mPinurQP8sIL0e0shcJGk4HGq9Xuv4+Lg0HqlMuBFrWHdJcd263W7JDJNjndQ6QW232/F+IkJwXo9K+1iIpEPg2+12/DctOBGDILuUSjQajViWUC3hcF+Ffr9fyuzwVpHVebOW7s/hJRxutuhZMexP99qoCgAO1ozyDMSwamYD5RWemcO1WBd+rwoSDki7CyaeXcGz7N4TiDEu1LkI5teg0wd7t1rGUfV1YE8wN59jddznzedW4tn+Lk5ISEhIKCN9DyckJCRcj6fqofCcoigekqSiKB4KIdx7+vrzJL3JPve+09eeMNxADWLR6/XUaDQiKfZUZ6/NRwyggwEdIiCCnpLt3gROhvgcggCChXskQEQ4N+URHpEnWlyv17Ver0vX8Ai0p6uTLQB5IpMBHwjEFcoiiNp75Nej91mWRbJGFgJiCQIMkW/3EdhsNsqyrOTRgBhDZJ37wFhWq1UUJsge8U4BzNWJvdfKe7tJSKtUrvmHRHu3CSL4+/v7cX7L5TJ+lqwD9lCn09F6vY4CjosPzIt9QdcL95Pg3vA799eJvHtLhBBia1JKLsia8GMRI6peDqwX80VEIrOG9QBVIeE8Usw+dpNRPsu13SeE9fSyBS89cKGkGu13QeE8nwPPgGANuRfu51F9330l3F+jKqIwXubNWPm8Z7P4PvPrZVl2o6+ri4Bn7Ls4IeGp4nf+8Su17V7ILJ8Ew31vKDT4gTff6mHcCUjfwwkJCXc1brYp43nhvHP/qgghvEbSa+x3SSrVkztxgCx49BbCA+GFLHikfbfbRT+BzWYT09dDCJHUe5s4CAzk2EsMPCshhBAj85RaOAkhwgoZhVQReffIrkdDIVpEZsfjcRy3Gw16VwbprLuBEyuMJUnxRmiQTjIX5vN5JL0c6+IE86u2JSQFn1IKRA8IOa0xa7Wa8jyPkWe6bZAxMpvNIiEl0sw9oLOGpEgIuU9ew99sNmMJA1kE3tITsQGvDNYxhBAFA4SGw8PDGBWfz+fxv+4L4FFvJ7WIAmRZUDax3W7jNSmxQEDhPpP1wD1krSRFYYp74uIDGRJeVsO9dHGsStq5NiUu3jECgcczIPz59D0CQeeZ4t74dR3MyUuAmAef95IF3zd8hnnw3cAzv1gsSn4QwJ8xLwlBpGs2m1Hg49l1A8jzsjxuEzyl7+KOes/kmBLuYLzvKz5am5edZMa9+aO/QQf1tJcuOv7pH3uJ/uWffuUN31/NWvrgz/2lZ3FEdxzS93BCQsJdgacqKDwcQrj/VIm9X9Ijp6+/T9IL7HPPl/TgeScoiuL1kl4vSSGEQtJ1UVyIMOn/AJLhXRUgq6PRSJJKbRTzPI8GhwgWbnoHqXC/Aq4/GAyikSL+Cl6/D+EG7vUAuUNMwFjQsxlulJ7ONfisdELE5vO5xuOxptNpJLtEaFerVSTndF6gFAFyO5vN1Gq14tgpr0B88fR0bwPpRBixh2N8/txHuku4r0OtVtPh4aEODg60Wq109epVTafTGJGmS4WXM3jqP6IH9wLyh6DQaDS0XC41mUyiaDQcDnXp0qVSRgqCDnuA9Tk4OIhlKuPxON7ralYLQgveDIgB7hXhJS/uWeBGkB49J6uFtff2mzwP3m2E+77b7TSbzUpp/S4UcG/Y5575g9AhnRlzeuZP9Vqcj/HzDLI2TvhdAJHKnTGqWQ4uxDAHxAhEHNbAX0fwo0sI3wPuScI5EX4QFBBx2BPcD9bHX7/guKnfxaNwmMLKCU8KV17zSj3n1e/Wa1/0bfq4Dq8mQnQ74Msu/aa+7GN/84bvj3dzvfq//qn4+3t+8gE975++4dkY2u2G9D2ckJBwV+OpCgo/KumzJX3t6X9/xF7/vhDCN0p6rqSXSPqFJ3rSEEKMJEu6TkSoutTvdruYbt/tdvWc5zxHw+FQi8Uitnx093sICFH1PM8lndX2E2n3CPRgMIhZDvgSQEoppXBy0mq11O12S6Z0RFch6Hgo8D6ECqIrKfoYQNyXy6Wm06nq9brG43GpY4KTbPedwI8CIu4lIYgItCF04ztIIaS23+9HbwJPCXeiz/jX63WJZE+n00hUe72eLl26pMPDwyiuQFAx1pMUCe1sNotk0Umul52w3h7Z7na72mw2arfbunz5si5dulTyqGDevj77+/s6ODgoZQNkWRZJKqUv7EMyMgaDQalcpVrywueXy2WcJ0KDl714RJ/PAyforI9nnZChgJiAUaaLUe4hQgkIPgm1Wi1mrlCugZCHoCGdCHPtdvu6rAfPIHK/Ei+h8TIC9rx7PyCmMG83hGTOnI/SmV6vp263e112gT+LeGxIigau7GnW3stevPsIAsMFxzPyXZyQ8EQw/guv0D/5O9+hP9FbP/6HE2477NW6+okP+Yn4+5tetNWPvfpl+pmv+xiNvu9Nj3HkXYf0PZyQkHBX43EFhRDCv9aJ2czlEML7JH2VTr40/20I4XMlvUfSZ0hSURRvDyH8W0m/Jmkj6QuLotiee+IKarWaLl++HE0HIev8sV8UhabTaYy4E42eTqeSpP39/Ziyfnx8HKP1EC9S0DudTjRrnM/npdp9BAU3a4PoePo7Kd1uyAdZcgd6SZGYkBEA0fI6c46F9HvauNekHx0dRRFFOiNdXMejwXhO0ILRU7s9ErvdbnV8fBzJI6nhcYOczodrSCrNH3PM+Xx+nbEeQg2mh8PhUHt7exoOhzGLga4L3vFgMBhE4grhJLUeUcMj+L1eL4oYy+UyZmf0+/2YEYGgg4BCqQPHMY5utxtFF0hrURSRlCImFEWh/f39mBHD3HmPDiSUikyn00jmW61WLJvxqLlH8BGZ2HvsBe4t94/MBaL3iGak9CNmYWzIZ1hPT+tnnvgSeIYI6+WlGpyb+fvz5mMGvkfds8A9PNjP3t2B8fn+otsK5N+FBwQVRAtECrIpOFe325WkmJ2w2+1idhHP4UVqH/lsfRcnJDwRLP+3P6TXfc0362Wn340Jdz5e0anrFZ1f1Z/+R7+kd331Jb3u1f+7il962+MfeAchfQ8nJCQkXI8n0uXh1Td46xNu8Pl/JOkfPdmBhBBitJc/5Pkjf7fbKc9zjcfjWFsPMSD1ndecxEDW6vW69vf3I5Ebj8c6Pj7WcrmMZn5OjIDXgkN2nFgyVi9vcEJFFkA1vR7i7NeEYHkdunQSZYWkjsfjODZEi91uF8sWIFOMgXN79wk6DlBagtjh6+7194zXs0U2m43m83nsiNBsNmNnDiekRKwlaTQa6fDwUPv7+9rb24sZIcylWkqxWCyiyMA9JELt5QdE2/v9fpwzXg6XLl3SaDSKHgfMoV6vK8uyuIf6/X4Usyjt6PV68Vj2gGcbuCDCmrig1O121e12tVwuS3uIjiXsBcQkxBd8Ishm8awZyC2CAmMiEk/3EgQDLxVqNBoxq4XXybrwKDz7h2fyRqUWUrl9JGNnz7Ef6ZjhmTwYQSKwMRZvD8r+9IwkL8tgD3gpC8f5/vNMCTe5JPuBOfCar7GLjRcBz9Z3cULCE8GmW0tiwl2Kl7Xbell7po/8odfp8z7uz2nzrvfc6iE9a0jfwwkJCQnX42abMj4tQDyqr0GaibK6AWKe5+p2u9GQb7FYlEz5ECD4PKn20plhm5syEhXHr8DN76pESlIkwG4eBwmjkwLHIDRAlCFYkDxIF6UD3jpSOhNPiEIzf46HABHthZRCOCGGTp42m42m06lWq5X6/b4Gg0EkelUTvFarpdVqpdlsFsdCNoB0VtfO/JvNpobDYSR6GDJ69gKChKe+IzZAjpnrfD7XbDYriUrD4TCm+SOGXL58OZYd4GHBnKvRbDIcELMYO+Uuw+FQIYTYMYT7sV6vtbe3VxIraA0KqUWM6Ha70b+i3W7H/XqezwDlBo1Go3RvSd33mv6qWSHryX3t9XpRkCKzhzWpCgPV7hMuMrjXh5d38Brimu9l5tPr9UolQZB9hBa6g1TbejJXxC2EHu4b2SQ8F6yni3qewcPz7p4UXkLFuiCA+bkSEhLKKD7mZfqZb/5WSen5uJvx/MZAP/T//aBe9aGfoO1kcquHk5CQkJBwi3BhBAXIBYKBd3qQTozwaL9HijtkACJCC0PILgR9MBjEa0AMOcYjz+7UT4kC5MT9ArwEgqgq0WHex6zRRQY3uiObgm4TdI1AqOD1+XweiR7jgBCt12tlWRbLPjgnEVfPTqgSPQgl60E6vpszumEk82ftXDzgnNxDyF+3242CA+UmEO08zyOBcxILWW+329rf34+eA5TBSGcEl+O9BKDb7cbIs2ebuHM/mRH4BQyHw+h74d0HEEDITnFRAoLfbrdjVwpJ6vV62tvbi/sInwKEKgg/xo1SObuB8UPUuVa13SZ7hLXHV8DbdbLPfL2qZSS+Rr5W7Hvv8EFJDF1NGB/iFJkHjAWTS8w/3aiSMZEtQzaHGy/ybPPc+D1DLKmKjGSs8Hy4H4qP081HpTNxiYwEf+YSEhLKKILUDklMSDjZB2FvJCVBISEhIeGuxYUSFPAQcMM39xeQztroUS9PBHO5XOr4+Dh2P+h0OvE9zg+xWS6XkdhBPrku9e7T6TSWEkCK3WiRf0PIqcWH0GO+SH2+dwhwcuct6yaTSSw/gBAT/YVIQYy8SwOChpeI4BMgnZk2IpggKHDtanaEdyloW0qr164zH/e0cGNCXoMge8s+xA2IHhFqP7Zer2s4HKrX66nZbJZMMT3NHvGC+wGp9CwP4H4UEOrBYBDvDyQTUnzp0iW12+0o6lCKAKn27gaMo9/vx4wEyDaig+/FqscAe4L1QJw5L0rO/fL6foQZz5RwXwr8QKqlOS68+Bo6mXbxzQm2m0h6eQxZGZh5IiZQ1uI+CN5VgftehWcUIFa4xwNwU0Ufoz+vXurgng7+XHhJhJ8rISEhIeF6/Pibf0yf+PyPkHbJHiAhISHhbsSF+WuZqK3XfbugUK31pnxBOhEZ8jyPEXvMAj1qmee5Hn300Rj599Tn+XweSQ/eAGQ5QOx6vV4kMdWUcC8JoHPAZDKJYoJnIwDPdCAlnfpxN37EHBDCA5lmjJAizoOZnKe0E61lnKTVIyYwLo/0QmqrdfEQcdbXMzs4R57n0c8BLwHINSUFzBehodfrRaNM1oeIe9XwkvUkGu1jcTNMBAX8GNhjfs8g4s1mM4pKkqLZJNdiDL7mzIdSCbI8PPLvxNTHxt5oNBqxPWU1I8S9ERBgPJPHhRs3dfSx8ZxwftYVQ0P3D6he3zMl/If1c3NRz3RAjGK+7kvgWRJO9tlbnNv3FvAMAxc3vBSCZ8U7sAAXccgqWa1W8dlkX/N8XyRDxoSEhISLjN3HfJhqP//WWz2MhISEhIRbgAsjKNxzzz06PDyMdfqQNvwJvIVbtXSBSLuTW8hWr9eLddFkHLgD/nw+13Q6LXkcQPBI4XbHd4/wQpAajYb29vYiOeR4IvQuBLjZIcB8D/EAEuskC+ATQd27pBj1n8/nWiwW6vV6kZQxXs7D2BEgmCdRb6LcnNfHyNpCwjk/Ao50lg0BgSY1nW4TvO/zJRMC4uteD/4zGAxK9284HJbKWaoRcwQAiKh3TqC+HwLK8Ygp3W43mhZyr+v1uvI8L5XmuJDkXRx8T4KiKJRlmWq1Wmx16YaFPn7W3zMJPIvHBQsXuMjWcdNSshMg127aWS2f8GvzGiJZVbRhzi4qsA9cPKn6i3h3FM7jBouMgzISzl8tw/EsEEQhnmHG7J4lCD/sfb4PqmsIPIMhISHhDI3jhb7q0Zfqq+95+60eSsIFwY/862/Xq57/8ls9jISEhISEW4ALIyi4QZ8TDjd/a7fb0RCQP/Y98utdFPgZDAYajUZqNpuRDEJ0a7Warl27puPjY9Vqtdhuj7R2L5mAuEA6yI7wdH5JUVDgfJDG9Xodr+/kDRECwuZlAh4xR4wg9b8oipIhoosVRNsh7KSe8169Xo/Re4QJyBrig3cbcK8K1hty6CUCED/aRO7t7enSpUtRrAghKMuyKOLkeV7qzsDnlstlJN7Uw0snaf3L5VL9fl+dTqdkiugR/PPuFeP2kg4EBhcd3DzQM2YQHsj2oE0mpTWe1s/9cKLNdebzeSzxoOzEOw94Gr9nwzBWFxKqpQreOYFSFebGfSXC7yU3nv3jRpEIVZQJuXkkJTYexfcyFt+TnpmDOIcoAxAEfE+5h4RnFnBuBAPvkME4uA6ZB+6h4c+Kl0IA9hHnSUhIKGP3tv+lN33eR+j3/Z2X6TNe/FZ91T2/dquHlJCQkJCQkHCLcGEcxyDwbi4HqcaUDhO2yWQSCSdp79TwQ8px7h+NRtrf3y95JRA53m63yvM8dg44ry2hp5ZzjHsAcC0IH4SHDgGQWK7B+LwuHQNHjzJXsxgoJciyrETuzjNP9AwO1pJUfPdngLxyPiK5bkBIOYb7MxDV3W63JVNI2hW2220NBgNdunQpdmHAs2I+nyvLMmVZFsUViCtR6clkouPj4xLhJArd7XY1GAy0v78f15dxuYcDn/d9AUmGfEJSq74PrAPrxHW9VSHj6PV6Mb2fH7937Anv2kFGBkSXLA1JsTOIZzfwXHg2gAtNzIG9zLq5WOAlDRB+DA09A4A1cS+Q+XwexTDprGUp2S6IHi7sIERQVuCRfi838OfRz4cI5+KKrynCkHsqMA6ydTCTZO14nXm76OTPhAtAeIQkJCRU8KZf0fM+/e363v/4R271SBISEhISEhJuIS5EhgKO+hAdor4eQSViTHSb2nmPbHpKNqnnEDWvm3aSiZDgHgE4++d5Xqr3Ps+80FsNeoYE1yX7wFPknbRT409nA4/Aeru9Wq0WSTi1/6wPqfZE8/M813Q6VafT0XA4jG0XvYWlCwREsH2t+JyXb0A+G41GJGaeaYBQ0mq1dP/998duBwgZu91Os9lMk8lEs9msZJbHfKfTqa5cuaL5fK7nPe95UVSizKHdbms0GkVizNpS/lL1s4AQYo7IOBCqWAuIt4sCrIMTUi+l4bPHx8dRLKiaQLJXIM3VLgS+99g/7C3uuwtNfIYMAVL3KYVZr9clg0w+i4cGY8avgv3mggBrib8IgpJ3XeG8UrnchIwX5uPlQog/bhjKHnbBwMWE8zIHWEsvCfE1r5YFcV03RGWvVoUy1ox1SIJCQsJj4wX/aaXP/fg/rO984X+/1UNJSEhISEhIuAW4MIIC6fuQAEiRpzRDMjzK7OUOHpGnBIGoJNkNkF8i895VAjJBPb+kmCnh5onz+bxExojIQrylMwHAiRLRVN534gSxZS6shWccEH3e29uL5RnSmS9Cv9+XJF27dk3b7VaXLl3S3t6eOp1OFAYQaDyV29PMPXtjMplE8UbSdSIM5QtOyBuNhkajkQ4PD2MLQ+YLgUOEoFwBErxer3V8fKzFYhE9DFarVRR2vMUkhJrsCv4dQtBwOCwZ95GtMBqN1Ov1tNlsNJvNlOd5FEYQrABRdc7jUXWyFhBWIMiMiXvGvUT0QKxqNpuxOwcmoJ4p4EILmRTekcM9AlxgcIHCS2gYx2azia0+F4uF8jyPmSmUGrE3PIOnOnaeK0oyEMh8j/E8UtpAlox7QLDvqhkdZGkwL2+lyjogUnFv3OCxarboYiLHVf0SuDbPHRk+ZGUkJCScj8Z/eYve86V/UF/8TQt90/2/dKuHk5CQkJCQkPAs40IIClK5Dlw6IfWQeTcKJDLstfNOyiEu0pnZ4XQ6VavVii0lERSInHId6tl3u12skXdCCdHIsiyaDHqqO1FqoupEdamZd9M6T7f3WnvImxMeyDLdE/jx6xF9X61WGo/HOjg4iB4OkDCIGkKNeyhQloEvAOIJhBWix33waK53Mmi1WhoMBlEA8mg7ZRtuyAih3Gw2cV2LotD+/r4ajYbyPNdkMolmnVyDNfQsDzeVhEg2Gg0Nh0NdunRJly9fVr/fj1FnSL3X8/u9RpxyQWcymWg+n8csA4g5mRueIQCxh5R7JwyOY5+58MKeYw/zXxd7KEOQFO+x+xW49wDzhMRXxTRJMYqPYOKZOHg8+HPlHUGqnTAYI/vHsxaYJ88DfiM+Zi8/8RIM7wTjBox+73h2z1sL5u8+Fz4PzwTxsSckJDw2aj//Vv3iox8oJUHhrsUnf94Xqq1fvNXDSEhISEi4BbgQggIkAWIrnWUtkG5OJBRys9vtIqHCZK/T6USC7UICkdDpdFqqRSfCKp0Rt263G4mEm9W5mRz15N1uN5ZehBBinT3RfUoR3OgQkuTRYE9Nhww7vLSArgZEeUnfJhsArwayFiCGeC94tFxSqcOAmxJCtKUzkk3piXc18NaJPlfS8D2F3EUMrgdZ32w2Go/HkqRLly7pnnvu0Xw+12QyicKJdNZ9gHuDULRYLOL6sj5EpO+55x698IUv1D333KPdbqerV6/GtP8sy6IIgDDE2nrHgCzLdHR0pOl0GksCyFBgnSDtVeHAyy64557Z4KSYch+P4CMIQbY9Q4b15vPV7g2r1Sr6CUDCeY194sSb54AxYC7qgoC3Y2QdPEuA8brXiAsDHOPPAaUMbrbofiU+N//OQPRwg82qZ4N7q5DhUi11cS8F9qOXHCUkJDw29v/aVl/171Pnh7sV7f/4P271EBISEhISbhEuzF/Lnh7vXRogqh7x5499oovu5E6EcjqdxhR4SNhisdBwOIxkRjprubhcLmMbQT5LJJRrIGJAEN1dHiIJCYVk02EBYuJp3pBp5k+mhJN9iC9CQa/X03w+j+9DkugW4VFgBBDPNvCIsXRGzGazmSRFEcJT/j1rxFPNfe4IPczp6Oio1KGAc7KmrD0EjnXt9Xq699571e12NZ1OI1Elqo6g4GZ93D9EJfctGA6Hunz5si5duqR+vx/T/KUzkWixWESRBDJLa0dIapZlGo/HOj4+lqRoEso5vDMAXhQuBiBYQGRZC7wUED98T3oKPvfDfQkwBOVa7gvAmrtI4FkBbmroohp7nb3qHT+cxCM2IEIhHHCsj4Xz+LoirLgXBHOl3IFn1I0VXYTzzBIvcar6MXgWBnuOz/E+a8Dz4gJJQkLC42PzO+/Wo6vhrR5GQkJCQkJCwrOMCyEoNJtNDQaDmI6P2SJtAxuNRiR63rbQRQc3XnM/gk6no3a7rcViEc0fSUl3EkGqPwTHzRElxXR2T4/udrvxXMwD7wTpjMB57b272XuNtvs+eCRXUom0egR3t9tFM0sMK+mcgE+Am85xbidcCBCkxnuKvfsseDaGCxMIDETWvaMBNfdOoquEj84V0+lUIQRdvnxZ3W43diyQFOeHQOSiDWIJ68jnINX9fl/33XefLl26pHq9Hss68C/AeM/bNiJOSGeiTJ7ncW8xpzzPled5zLpwki4pZhIwVu6ZlyMAvy9eDsO9J1Lv3SIw3WRcTn6r7RfZp9XMkRuRZvefcAFMOvPDcNGA83lrUcQengVEgfP2IealiF3VteKes27+HuvtYgSiIdfjWSK7BLh451k0CQkJCQlPDP/bh3+itHv4Vg8jISEhIeEW4UIICpQL+B/znn1AlNUFhWoZAQSP2vd+v6/9/X3df//9arfb0fyOEogqAXM3+GrUskpAiMzTEjHP8/jZaoo76e2r1Sp+RjojvpKi/wGp656iTfQeQz3S7PGCkMrdBLxOnt/doJBru+EjUXVEHK8fJ6LLvCVF4cfr6hFSSK1HYCADwTMKEDF2u50mk0mM0I9GozhnL0WACPu9QnDBVBGSiZgjSXt7e2q321GUgjR6BgZlHEThET0offBz493R7XZVq9U0Ho/j9RC5vDtClmWl0gDWwCPg/I5JJcTbhSOEAZ4BOlaQCcFec4FCOvO54N5zHUozaHfpIpC3l+QcXm5CeZHvJRcaeDYQl7rdbnyW2DOc130RvPTGr8XaukDiPiNky3h5jq+J+zP4HvS95KKJi3nVMouEhIQbI7TbaoQkxt1tONrmKvL5rR5GQkJCQsItxOP+tRxC+JchhEdCCG+z174+hPC/Qgi/EkL44RDC/unrD4QQ5iGEXz79ed0TGQQlAaRQS+XUYzwLOp2Out2uut1udOyHFEHAIBv7+/u677771O/3IxHx9Gzv7sAY/PpSuX1fdbyQS4+Eko7tteBu+ueEzQUAJ2hOmBgDUW4IJETRo7XeJYDSDNovcn3EDsZU9W6gu4X7OiCcDAYD7XY7jcdjXblyRZvNRoPBQIeHh9rb24sp6EVx0o2BTBAIPNFnN8ejPILshF6vp+12q6OjI125ckWS4pzdCJA1OTo6il0hEAMwTmR+3jGEdpqUUrRaLfV6vZiZwr33kojZbKbZbBbXgz2HSSP3mvKWVqulPM81Ho9jNoS3HcWIETLtdf+e6cB+4cezANxLhPtOyQ8Gnb6XgAspXkaAcOKReaL9Xh7gBqT+nLgfAfsJwu+lNU7aeRbck8P3JFk83uLRUc3i8YwHFxyrJUSUM3GsCzbs/fOe+YuAZ+O7OCHhqWL6I8/T//3cZMp3N+Htq7n+wh/+TG0nk1s9lGcN6Xs4ISEh4Xo8kfDbd0n6pMprPy3p9xVF8WGS3iHpK+y9dxZF8bLTn89/IoOAoCAOULN+fHysRx99NLZfxISv3W6r3++XIvqIEgcHB7p06VLMHoBo4vZfFIXyPC9F8/2/XMPryHmP9z1K7SnXEENJ8T2vV3eigqDghA94lgLZAe12W8PhMBJJF0eI0ns5BmIGJMmj0FwTDwiPqtNVwTMEKO1wsYT6fSLQkPpWq6XhcBg9MSaTSST9iBrMab1eazKZxMyTzWYTxQTWkZIGjiOjAmHA2/utVqu4b8gaoUuDt4jkfOHUNLPT6UQvAogxY3U/jV6vp9FopFqtFg0aWSM8FbgW4or7ajhhZX+5aSIk2LNcINTSmR+Ak2Re8xaqGBzOZrOSoMU94Ly+Z92M0UsK3JNDUsw+4HlDFPGMAy9PqPoZeGkIogH71UU/7xrinUX8GapmILhwxzPoz5OXGLmI4+U47E0vgblA+C49w9/FCQkJCU8EP5m39SWv+ivavPu9t3oozza+S+l7OCEhIaGExy15KIri50IID1Re+0/265sk/emnO5BqPTUp/vV6PbbvI3JPBNZrtKWTOu3RaKRLly7p4OAglgfMZrNIgjD2k1QqC0BI8JZyVR8DJ30QbIgJhnvSGVlzUQKQ4u21/3gnVEGNPk771O6TIeEtFIkiV53vScnH3X+5XJbKRTxrAEKVZZlCCDHiDlFeLpcxut7tdtXpdOI51+t1NFTc29srmRnSbQOijpjgdfyUTNBFodfrRQJIN4/hcBgj/USUvcyCz5FqDwHFV4J0f0/7R6BCCKBsxrNmuKfcY9pbcrx378iyLI7JU+fdA4FrVstSKIuo+mp4Or8Tbjd8JJOB+dPRg33vRLzqR8B53XOB971UgzF4iQP3GUHCz1vNkHBTSgQQn6+LB35+FzU8M8I7TJzXlaF6PP9lD7qYyNhZP89quCh4tr6LExISEh4Lrx8/V//2Cz5J9bfefZ0d0vdwQkJCwvW4GR4KnyPp++33DwghvFXSRNLfK4ri55/ISSBxpMETVd/f34+RzKqRnbvdIzQQbW40GpHsSmdkBgM+yDRkhugzad4eDYasQBCJwhLtdiIGEZVUIl7SmbBAOYSn3ntWhEeaPRuBczebzZLYUa0vh9wtl0u1Wq1SqQBkzsUTyPBisdB4PI6mhO4rADGXzro9eE0+mQyUEGRZFksMOI71d9KJYMS4OVcIIZYaeNYI84AwI3AgHkFYu91ujLzTjnK5XMbsAfftQNzIskyz2Syur2cT+N6czWYqikIHBwfRy4DMGkQivz9E5hEgMLek9SOZElxXUqkNKkaC7BPPiGGvevo+mSnsLRcQ2I9eQkDpgxt/uqjgGQJkwrioQeZHvV5Xt9uNc/YsBTc7dYECQQ4xAXGG9SRzwPc6zyX7FkHDhQG/Z17qwTVZs3a7XRL8XGz074fbBDfluzghISHhRvj6ay/Wj33FJ6jzX3/hVg/loiJ9DyckJNx1eFqCQgjh70raSPre05cekvTCoiiuhhA+QtK/DyG8tCiK6wrsQgivkfQaSVEAcNO69Xqt4XAYSxdwp3efAI+uOvGm1eJ0Oo3RdI9Qu5hAxHgwGMS2gggaRNK9fh/y4S7/EBMfD4TEyR7HcSwkh6ipixIQMoibv1ZNfSf66t4K3hrTRQ/pLLKLsIJYsFgsNJlMYnZIu92Oogc+BJgc7nY7HR0dxc8Ph8OY0eB+BW5ayBpC0txbgGwERBOIKp4M0plDP0STMgbmALmEQK5WK02nU127di2O3zML8A+gzACDSM/68GwF1mi73arf70fjSc5LeQTRfn48wu6lCd6BgW4kfA5hxk0iId2e8eAlDH49ruUGiYgzPC/sZ/aWmxYyDkQB5uQmjexn9i73s1qyw3lcIOB58fV13wPECwRBhBR8MXjW3f+B++alED4+jmXe53Wd8A4TviYXHTfru7ij3rM15ISEhNsI3zW5V1/9hk/V8368rv5/ePOtHs6FRPoeTkhIuFvxlAWFEMJnS/oUSZ9QnDLXoiiWkpan/35LCOGdkj5Y0i9Vjy+K4vWSXi9Jly9fLkjJh4R3Oh3dc889GgwG16VZS4pReCLtkCmIUpZlmkwmGo1GGo1GMYpKKQDnqNVq2tvb0+HhoTqdTqnWvtVqxUgvxA0C4hkGnlng7QYh4qRlQ1TInHBhgGMkxTaZTvA4F+clkgsh99aSXtMPOXNi6LXlEDPIWzXjArHFsz9arVY0K6TcgKwFr0lnTZyYk4ng5SCMf7s9aTVJ9geRawQHfAVI6ScbgDWHAPJenuc6Pj5WrXbSfpTzssbMc7lcRoNFxuTkHOFBUqlDgmdW+Npxn6rp+hBn38+QY0Q19jSEGwJO2Q/iFKUSPr5qlgzn9vuBOAU4H3vvvAwF1tzH7Otd9WXgdcbkAhv3vnqsGyjyjNAlgywCnhUEAfY2z4a3pvS9xlp5GUf1fF7a4Pv/dujycDO/i0fh8GI6UiYkJDzreN9mpk/4ni+VJO29Q/rg737jLR7RxUX6Hk5ISLib8ZQEhRDCJ0n6Mkl/pCiK3F6/R9K1oii2IYQPlPQSSb/9BM4X0+Fns5lqtZqGw6F6vV7JGA0yzGer6die8j0ej6O3wWAwiOnwnjFAmvb+/r46nY62262uXbum8XgcTfsgG27KKCma3HEOb2fpAgSvQ1DcsR8BonoMBJXrQYQ8xR34OSFOiBgeSfaIuXstQK48vZtINhH+9Xqtdrute+65pzT3xWIRW3TWarVSCj/EkSgyPgHM3cnnbrfTfD6P95i5QuzwYiCq7BFnj7hzLa6PoEDWhKRSyQslE3SG4BysAffG1973ImvPWrD2zIEfF8OqRoWIPtWyF0lRVJHOsg3cqwPxQDoTnTabTcyc8IwN7jXX4Dmoijw+x/OEBV6v7in2Pq+zh93skX3g68N7rBvnR8jjfW/v6PccwYKMGs8EYgzM331R3B+D++sihfuqXGTc7O/ihISEuw8f8FOfq/23tK97vb4o9MB3JBHh8ZC+hxMSEu52PK6gEEL415I+XtLlEML7JH2VThxs25J++pTQvKk4ca/9OEn/MISwkbSV9PlFUVx7IgNZr9eRvOK8D8l1DwHSykmH9xRrCAbu9sPhUIeHh2q325FUQE7IhiAavNvtdOXKFV25ckXj8TgSZE+B9tIF9ySQynXbvEaLQSd1pMfXarXYAhMi7BH2+Xweo65eZoEw4QKEGyPy2SoZ8sgu6y3pOvIrnWV9NBqNWNYxHA61v78fx4mQMhgMNBgMYitHav9dDCCjwsUUTAghn2QfOKHmHBBo76zh43eC6HXzWZbp6tWr8R6QPcCaz2azuNbuL+CCDeOhPMVJPB0aEFLo/uGEm/96KYsTdRcxPEJP9oWkkueFCxkIGET0XcRyccCNPH1czIN9yb5mrzMWz/zxNXIhwks5yCbhnnLNqpgCgee/7EUXQFgf5sNYIP4Ic3yG58Qzgdw/gbF7+QM//mwURRGzbi4Knq3v4oSEhLsHH/jTn6Pf+/cf1ua977vVQ7ktkL6HExISEq7HE+ny8OpzXv7OG3z2ByX94JMdhJNIj1RCqmmXSBr7ZDKJJBAiQ9o9tfchhFKWA1HxEEL0Tmg0GhoMBqrX65rP53r/+9+va9euabVaxWinCwaeAl2NrjoBn8/nMXJPOQHp8D5nTAzxhoBYuaEexzAOSJRnT+AXQAcHr7WndAMyy3GQLCLeEC+i94gCeCTQBtJNH3u9nvr9vur1uq5evar5fF7yUaANZZXoeSQacYIIP/4GiD4IEnQ74B4jMuAtgMFip9OJZByDxX6/H6Po3pEBEcbJJGvgBJv1dcGFvZHneTSxxFiRsgq/106kXVTgPrnJIBkgAALt2QjMR1IsV/HsBM+sYQw+DjeMrEbm/Zl0YcHfu5FY4R4WlCJwLog8IiHdWsiGQUDx0g3PSuIZQCgjqwWfCPcSQdRwY83zSn683MFLXdhX3lXiVuPZ+C5OSEi4e/AhP/9Z+tAvf1Cbh95/q4dy2yB9DyckJCRcj5vR5eFpw1OenQiHEDQajbS3txeNFomYE+UnSku0XzohrqPRSP1+X7vdTu9///ujyOCO8KTqF0URo9lE3j0y6SUP3prPjSB5DV+B4XAYSbiTJUjkYDCILv6UV0CGq236PLMCsgRp3263ms1msaSjXq/HdoOQO3eyh8xyTojffD6P60JLyKIodO3atUjQ6cAgKfoptNttLRYLHR8fa71eq9/va7vdajwe6/j4WFmWxXlBkr17BP8G7vcAGZTOSLSXahC1Zxxuqgeph+DjnVEVYiDEVdLPtRFGILnVtp+sCeKVZw/wea/PZy7VDhKQWe8iAZn36D9r5OU3kOBOpxOfAQQs99E4z+vA5yydeSy4yFct9WAOCD6eeUF2BSU7TuApD3FhhPeqJUyIPC4UYJhJBwgX2VhLxCkvAWLuGF26IFL1SGA/IFD6OiQkJJyP3/yWj9IvvPQbJfVv9VASniBe8ct/Wi/+gvdpczUFzBMSEhISnh4ujKDQ6XQ0HA4lKZJqSFK/349p0B4BDSFosVhoNBrp8uXL6nQ6ms1mMXMhhBDJNsdDdLrdbiQ7x8fHeuSRR6KBH5FThxMySJUbH0pn3gLMp9VqaTqdajabKc/zkos95LYaIff0a48ME72GCCEGECGXFMl1v9+P5IpxQ4Q9dZy1n81mOjo60mw202AwUKPRUK/XU57nJdJJqUmj0dB9990nSdGccTabRdPAPM81Ho+V53kkbTj8k9Hg0X48JBCRIKKIDb7GnpLPZ9yHAtGFLArEIPcPQCDxOn0va4GEVv0pEIPq9bryPNdsNotZAZB+Sigol6kSVsaPJwP7qdFoRCPRPM/j/pHOzENdUHLDTrJtut2uWq1WNDNkfch6YM29NEZSaW29pENSieCzX1gTiDtiDmIdGTf4eCCKMS7vosHaL5fL68QMF5PcL8MNOatry5iYC+Omk4YLdN6mk3vtJRS3S4eHhIRbiXd9zSv1tld9s3q1JCbcDvjGax+o//zRz9fB6n3aWiZcQkJCQkLCU8WFERQ8AksJwd7eng4ODtTpdKLJIsTQI7B0ISBqyjkhXvP5XEdHRzEK32w2NRgMYheH6XQaWwZ69NKjse7BwGt8FsKMENLr9WKpBe0hEQiksygw4y2KotS+kYwN6SxiiqAQQogGdNW0drITIF0QIgign5dxkC7vwgVtNkkZJypMWQTlBfgb0DrTOzSQsdBsNjWbzSJZG41GkSBC8na7nXq9XvwMogvtIj1yTWYK3SYod5BUKv3YbDbx9apJ5XK5VJZlUYjB9JESCa7vafOsL4Q+y7JYzoFAQnYBQgzk1U04nXQjOJDxgPiE8OSlEZSlkE3iZS98HrHGW31KKpUgMDfWxcspfC95G0fED/dcYB4AQcG7I3iWge9HqWzGyd5EyGNvQfZ5Dv36lKBwPxDm/NwuPlXLLry8hO8JxutlKAkJCY+Noin1ahfbvDRByncr/ef5vn7q9+9J13ctTEhISEhIeMq4EIICEUoI3mg0ipkJpPZ7Czmio4gJRIizLNNisVCz2dR6vdZkMtFkMonRTIiedFYbTmQcwuPp3UR5IS5ELj2CDelwR3vKJbz2ngwBSBvlG5Ii8YV4VqPH1OeT/QDxmk6nsYwA7wS/LtFghBKi3lXX+yqRdCNKask3m43G43EkhT5+zC1rtZquXbumyWSiLMtKRHmz2UQvA+bU7/fV7XZj6QNZJQhKzAey6tkfnAOxg7lAfmmZ6O01GTPrzz6az+eRlHpWCPvB6+oRTDw7wdfQyzow9mSdECkQWtjb3HeMRpkHAoAbIHp0njnTFQXfCS+RYV/5DyLEcDiMe81NPSHTnq3hfgYILdWMEPfgYL6UcTAXnnfm7Bk0noXj4p2k2La0mpWD4OM+FDzDXNP3EveYZ4h1RkxgjqzdIkXwEhJuiNBua9tOHe4uMt6xzrQo6vrSB15x+kq6XwkJCQkJNxcXRlBw0oFAAHk5OjqKQgFZBf3+SXol5BNC5in2iBBO2rw2vSgK5XkeyS/EFALoNdTVNoySShH1EELsGDEcDqNhH+cCkDQn8dJZ1BdiA7HCuLFWq2kymUSSDLFy8kP0mrG5Wz6dDRBRPJrL2rB2To4RM6h/JyuECLWnil+7di2SdV6DfEvS/v5+FAB6vV7s2gDxZg25/+61ICmuD14BEHLI8HQ6jdF77pVnlLiRIKLLfD7XeDxWlmVRQCFrxAkvpHq9XsfsCwgwZqFuRMj9YH9RhuPdLLxFppeTeHtNsjD4HF1OPOOETI7NZqPpdKo8z9Vut9VqteL4KcPgHpNB45kJrJuXkJB1w5wQE7zkwrMw3ITRDUbJvGHPMS72OyIE4gQZHm4a6X4kiD5ZlsV1Yj+5cSkimptOus8E3g2SrhMT3PskISHhelz98x+uH33VN0rq3uqhJJziLcuV3rW+HH//zo/6o9oeHd3CESUkJCQk3Om4EIKCRxMh+hCJPM9jFBFvAIzuPBUdskJkmiguwgQE2FO55/N5jDRLZ278/Ph5Oc7FCSeb7XZbo9EoEmYncESccbb3OngivE6cIU/uNA+Bg/ATzYYsuR+Aky9J6vf70WQOcsd8ILN4T7jQgrjD9ZkrJRKMe7FYRNGHSDNlAZhU7u/vx3MRbSZKjCgDmeU9ylbW63VsBYqRJeUm7B+uhTjkcPFFOit5mM1mUUzIsiwScC9zQERgnEdHR8qyLO4NykDYD8wBQev4+DiaaEJeKW/BvNDbZiKiOal1z4z5fK7lchk9Cthb3IfpdBqfA0poOAaPin6/r3a7fR1JR2xD6GDtvQSBfeDeA54V4ZkNTvz9WXfTSsQE9jXPBmuBuOGdIMieyfO8ZKLIunM/ut1u3Ec8t95BBkGB46tZHXwmISHhfBz+yzfqVR/8t/SOz3rtrR7KXYnxbq5//OgrS6/91296pQ6++432ShITEhISEhKeWVwIQQGSAtGCfEPSEAbwDWi326rX65EEQxjwV4BgEoltNpuaTqeROHS73Xheou7n1Wd72jzk19s/QmxCCLGmn8iu17yThu++CC6GIHZ4ZBViTaq2u+DjEwAJYi54MXANiOdoNIpr5yUSCBFZlsU1lnRdbTyE0Uk2RHKxWCjLMk2n0yisbLcnnSem06mWy2UUECBrXobAeuHd0G63YzYFhC/LslIGA8IO9wGPjKOjoxK5hcziu0A6/HQ6jQaI4/E4RtzJxHCBAyLPfBG3/L6yf7xt5GKx0GQyiQQfUg7hdi8G9pun/LM32u12vN98zgUwRA2yIRaLhQaDgWq1mhaLhcbjsWazWamtpAtb7HcXmchamM1msVVndU9Vn1/uq2fgIDzw4yVFrBn70J895tdoNKLwwV6rZo+wJzDcdANHng/OzTNd9dBAfGFe1fKShISEG2P0TukHZyP9qUGqy3+28Im//imSpHddOdQDn/krpfcO9MbzDklISEhISHjGcCEEBQg0hBWCAXmDeHhbSQg6hAOyBsEitRmBASNGyCqEAjIEISNlvNVqlQQDN2skEsuxrVZLvV4vihyMxdO6GSuEBgEEUu+1+p7mLal03fV6HbM2KH1AkHATSU+hh8BBkBBIKBPxUgYHJNpr3/Fq2G63UUjAy8Fd+CkL4Bg3O2Q9ParMtREbdrtdqfvEer2OnTnYG9yT6XQaMw2c8A4Gg5idsNuddItYrVaR6CNUkI4PkSWiTimNZ2c4POuFrApKE8h+oNsDYG6su5sSsg+dULMvvMzBDR9rtVoUDLx7Q1EUMQsDMarqJ0CGBNkueCrQkYF9QQcGxuLPqK8Vggj7m3G4AODE3TMaPPPFvUhYL9aK4xBZfG8iZLDnWE/EHH4nI4TvBbJNPJMB8SKVPCQkPDYu/Ys36ks/5jP+/+2dW4xsWV3Gv393n67q6uo5c84MkgEmzgxiDBozEjLBaAgPhss8OBBexvjAgwmGSyIPhoAkig88YMRL0GAgENAoxLvogwEMyIPCOOLMMIgjg2A4w4TxZLq6q7qrL3XO8qHrW/3VOruqL9NdtWvO90s6fXrXvvz32rtWzvdf/wve/NqPz9qU5zU//eibcXX9oBPWPb/4KJAS7sKVGVtljDHG1MihABy2z2MOOcPXV1dXR1Y+KZ7ZTaGqFgFbKFJEcmWbYf8sFEhBsre3l4UZhS6vqXUGAORUAQA5KoICbnPzYJVGC+7xGIppOkq0RgDDzbVKPsWMrvhqS0AKLQo1ijENB9dWjlyxX11dzaH9dIBom0YKaBYx5FhoTjq7GTCKgKvB/Jv3wRVkrgLrM2f6ws7OThajms7CKAet4A9gZOz39/dHVuFpL3C4os7zU8hvbGxkBwSfD50kKni5Ws6IEjqxNFXk2rVruR4Ej6Gjhc+A2+kMYLSA1s1g7QYtUqi/S2cGIzsofjl2vHc+WwpnRq8wQkELUnJ86KBhZINGdqiTS4sl8tz87mo7R61nUKY9cCy4XSODGC3Bd4ZRKteuXctOHn5n6AjQuiNMXaBDrMqhQAcao6K0GCadM5raYYwZzws/dwF/eN+deMet35u1Kc8b3vX0K/H3//zK/PeP/f5TuOV/H5mdQcYYY8wYauNQYL0AVs1nDQKmLFA8MwT50qVLAA5TBigaKBxYuI9Cgyuz2ipRw8spEBcXF7G2tpY7G1A8abSBroRyFbXX6+UQcc0J5znKFWiKqXLlWSMaWHCQx1D8cbw0v573QgG0s7MzUpiPDgUW46OYVEGr+eMUpMy7184LLBDJNAfeH0UYxTefT5nrzw4PbBVJ0arXVhHJVWzuwzx51tig+NVODXSIcHz5XpRRFfoMVbzzPvR5lW0TGTKvTic6fehwKes9aK0LHgscpkSoUKZ4Z9FB7WZBsUwnBMUx31s+X0Ym0BlCBxoLSWoxSqY50P6qIov8vuq7zBV+HTOtV8F7ZwSAfud5n4yW0PQlfj/4HDVySc+p19d0Fy02qekdKaXszNLvHCM8tEaKHQrGHM0tf/YVfHrvfvzRXYv42Ns/jFc1F48+yIzwnf0efv7D785/3/74Pn7kH7+S/x5UHWSMMcbUgNo4FBgVwPaPFGtabZ77Xrp0KYtJCkcAI4KVK/MqegDkXPRSKGoFeBZ/pGihgKMzQR0RAHLqAPP8KUoo+FnokI4POgF0pZXh7Rp2z/vhPapApAhk6gIdJHpPFMmsJ0ERxXOpQ0EL0u3u7qLb7aLX62Vxtri4OBKd0Ol0MBgMcmcLjqeKM+AwioDbWcOi3W6j1Wqh1+uN3L86bNSJoEUK1YFE4a6RFfrctYDf3t4eOp0Out3uSK6+Rleoo0k7CjCdQ4W/1j3g9Vk7gTbp+6PFOJl2UEZEaLSKrr4TdSZQWDP6hs+qdAZpzQ9GSPT7/TwOXKVnxAnTMOjI0fHnuTRFgc4IRhfQEVEWYNSIAv3eaSFFvU99p3kOLfKo59T9NDJCj+HfdF5qUU3eY+mMMMYcj9W//CpWAbz7ybdhb3UBX/jg76G90Jy1WbXnvl97Gxb2Exb3El70F/8ya3OMMcaYE1MLhwKAvMIKIAs1Fbi7u7tYWlrCxYsXsbKykmsJqMDmajmP1agGClYKSYp8CjKK3na7jdXV1ZFq8jyvrq4Co0KRYl9rNDBEW8VYuVpbplOUDg6uhFMgcR+NKqCw1NVdVvKnaGI9CRXOHAsK/YhAv9/H1tYW1tfXc+oIBS7rI3AVW1d5KQppX1kHQEU5izTyM72vUujruYDDuhqazgCMinHN86dDg0X9WDtBI0y4+r+9vT3SwUIdIWVBTa29wXeWUSSaRsDxYc4/371SrJYr6Pr+ax0MjqUWJWw0GiP1Blj/gOKddTD4XtGhoJ0laDvfNY0e0PdWnR90WNB5ow4GjokKeq1HwneVziE6oPT8PLbKGaG1GwCMOIP0fPq9Y7QLvwe8B9oFIM8bxpjTsfK3D2EFwBufejvSQhy5/83OpS9+BXAklDHGmDmmFg4FRigAh4JCBRXFKDsBMGqBx1Eksbif1kVQBwJFjQq6ZrOZIyAGg0EWZ1qMUFdOKeC3t7dzzjoFLms00GY6N8pVYjoCKMBpH6MNylXgsrsCx4eOEF3dpehieDvbJVLc0qlCcc2aEVr8bmNjIws6LYTZ7/fzKrau2JdCkiJR6wHQYXTx4kVcvnwZKysrIyvavDcKd55Puw5QBHO86RAg3K5Opf39fXS73XwtpqYMBgOsrKzk9BRNjdDoBl0dV+cB/+bz5vW1PaNGSvD8umqvnQh4LFtG6iq+RrfoD98ZRijQBqaDaF0GOpd6vV6OQOB7R7HNIpN0PvC3RgWwtgedKtqNRTuXqMOD77KmD2iL2KpaBeo4GJd6oF04tEWl1nXg/dF+vlP8bvHcOj+oU8oYczoWv/S1WZtgjDHGmClQC4cCoYCikwA4DLVuNBo57357ezuH43MFmmJGi+ZxBZtFEylwtKME2zDq9bSeANHwb4q21dXVvKLJbhMUXBQ0urKqIdcahk07KH4owvS+SmeCFnSsKtgHIKeEXLp0KQvf/f199Pv9HBLPwo2ss0DBqU4cTc9gh4l2u52dCex0QCHJ89PBQucH0x1YLJMODQpHrh5T3Ol7wPx8tlmkk4KFFmkXr6P58RSULNq4tbWV3xM6Uvb29kZW6NUBRJHJ5893rnQKsO6DilkVxDyG74SulHO1XL8HfJ80hYQwrYfPledn9IXWtND3jw4hrU2haR56XY2i0VV7Rlxw/7LlKffVNBSeR9FIHK1RoSkevN44gU879Dx6Dj2W3TiYBlTWsiiva4wxxhhjjJnMwlE7RMQnIuKZiHhctr0/Ip6KiEeGP/fLZ++NiCcj4omIeN1xjCjznLX6PFcemcOvaQzAYQ95rraqSBsMBlnMqiCnw6Csz8BCjtoSkqKRP7q/5p5zdZ0r6WqbhtBrXjcFLEUwRaWu7pdCigJ2cXExh3lTDFH0MmpCV/l5vY2NDayvr2dBpau86kwYPsssMJnqwK4Be3t7uV2jdjDQonxLS0tYXV3NtTHW1tbQbrcREdjY2MCzzz6bxS1Xu8uIDv69v7+Pzc3NbCMFqIbql20Rtf4E75udFxjFABzWZdCVdxXQmpbBd0NbYmrXBD4zCnJGg9DxouKXz1hrK9DRoB1BGLlABxPfIRXNLCpKJxIdJBpxwO8NbdfoBL0/PruyfSvt1rQUjSSgoKfNtIP3pvsAowVKq9D9q6IH6GjR1B09lzpCGLGhzhBS1qmoK9OYi40xxozH87AxxtzIcSIUPgngDwD8cbH9d1NKv60bIuLlAB4E8OMAXgTgCxHxoymla5gARQpwIAIowLT+AHAg4LnKTLGsK/8ARgQ7hayuhnNFl84BCrRGo5HTKUgpdCi62Q2CNQW2t7dx6623ZqcAoUCksAIOw8G50k6hA2AkzF7z9NUWhrdTtKkzgftpEUoVhYwwKDsNaGvBMnUCQBbDDJVnVAc/bzQaWbxT0DK3n5EEdAjxGW5ubmJjY2MkhJ9jQKeK5vZTDPf7/ZFQef4w2kCFoaYb8N55PKMbmBLC5zgYDEbSEOg84PPmMRGR25YCyC0u6QCjwFXBrVEGdBowooPCn8+Nx5XFQ+kIURt5bjoLVLxrKoRGVTDKQusTaGFHCnEtbkhHTfmOaO2HUtCX0TMa6aFOmzIiiJ9r9EJ5frWD59b3Vo9lpAedM3qeeXAmDPkkznkuNsYYM5FPwvOwMcaMcKRDIaX05Yi465jnewDAZ1JKuwC+ExFPArgPwL9OOoiCiEJZK+sDyLUKmBNOgcewdoUCq9lsotVq5agGFfoUFhQkPDedDRTYWvWdq6BcrV1ZWckh5MDhyq6uknIVuizGx/MxVQLAyOp1uXpKuMJahs5TaHFMaA/HkFEfWuBRbVQBqdelgOYquzohWGOCbT339/ezsyWlw7Z8DMtvt9u45ZZbMBgMsL6+jk6nk8eM9nD1WCvss8hgv98fiVahsKdjowzT13FmegcjR1hPgM9EHS10Yui7oudllMDKykoudEmRSseF1v7gCr2mwfD58LnTYaApPxrxQPQe+dwZxcBr05mgqQ6MTuG56JApvzu6os99+Zy1m4Uex3dKHVq8RulM4HtFR4Oep6oQYin09Z71s9KJUfUZt9GJMu4adWYac7ExxpjxeB42xpgbOTLlYQLvjIjHhuFfl4bbXgzge7LPleG2I6HwZo43gJHVWgoU5pnTCaDV5XW1V8PnKabLGggMt19dXc0OAkYOlKu7GlJNR8P29nZe4WZBRU290M4APIeKSy04OCn0W1erdSW6atVWV2MpALvdLrrd7g3tDIHRHHMKNV3xZV0A2qyCXR0a6gRg6gEFd6PRwMWLF7G6uoput4tOpzNSGJDHUaxz287ODjqdTnYIAIfdQKrqGvDeOeZ0JmxtbY3cgz5TRlVwXDTdROtIpGG9CIp8OhSAg+iEq1evYnNzMwt5vo/8oUBP6aCQZKPRyOfUCIGqqJtyBZ71Gfh8tRhkGdGgESDqiFAnDs+t9R74rvF7yHdKC2JqIUZ9d/hZVd2E8p2b9BnvWyNwdCz0t9pQ3jPRd3hcmsM4u2rOmc7FxhhjToznYWPMTctpHQofAfBSAPcCeBrAh4bbq5b7Kv+HHhFvjYiHI+JhiiquslIoUjwxdYEih2H0AEZEFKMX5BpZwPMYrZuwu7s70qlBHQmtVivvW5XGQMEaEWg2m9kWOi40B53ipspGdTZUiRmGwXM8ytVY3ifR4ohak0LTHKoEVZW44op8Vb48r7W8vIzBYICtra0RAcpnxs4crVYL169fz8Jbx0Nz/hkdwnNubW1lYc+0A45rKWJ1RZ4RCVqEkLZrVwAWaWSECJ0amkLD58pxWF5ezs98e3sb3W53pH4Cx40pFtqBoOzsoI4DpjLwfdB3hN8JLd6pP1qDpBTNVWkIVU4kvqfqOCjfYY3+KItXqoBXZ8JpRHpp93MV/+OcG1XXnTPOdC7ex+65GGmMMc9jPA8bY25qTtXlIaX0A/47Ij4G4B+Gf14BcKfs+hIA3x9zjo8C+CgAXL58OWk6AUUXoxAYPt/tdnOOO/P4WdmeYegMv+dnFD/sNkABTyeBrnju7u7mVAkNvwcO0w0ohAHkkP+lpaWRln90dpQh4qWgoWCrSjng+RneXwo2Ffa8D23bqDZqigT3LVd6K57PDYJRYZcBTR9RYUznTbPZRLvdxsLCAjqdDp599tmRVBJeh8JdRb+2tQRGK/GXhRNLsUuHgop5HbOIwNbWVo5MUKcSx0fbPnIs+U4yjWBrawudTifX1dBnq/UHNNqBDp/S+cV3Qd87PnNt/Vmm1lD8V6UY6HPTMSvTAqr+rnpPND3jqPdH7628Rnndqv2fi0Nikj3PJ856Lr4lLj8/B8oYY84Jz8PGmJudU0UoRMQd8uebALDa7WcBPBgRjYi4G8DLADx0bGOGq/AXLlxAq9XKIqrZbI6Eh2t1/m63i16vl0PNGX2gofPAYdg2c/01Hx84LFpHMcyQcgDZgcGoBO0gwf1Y0I9CmqK2bPc3HL/8uyr8WwXkuHx3PQ/HDjjMaafA1K4APGbcKmx5jUmh6RwzRhVUrXizbeTi4iI6nQ6uXLmS01PYNaLX66HT6WB9fT2nq/T7fWxubuZimcvLyyPtILUoo9YgqLKLK+nlfoPBIKdSaGQDgOzwKNNL+G40m03s7+/nNJKyhoBGoug7qB1HGDGiaQx8x8tWiLz2hQsXcnRCWWeiTGHQ51mmUEx6j3Qbv2dVUQnltdShdZx6CFXb9HzqRDsLTnqueXFAnNdcbIwx5nh4HjbG3OwcGaEQEZ8G8BoAt0fEFQC/AeA1EXEvDkK3vgvglwEgpfSNiPhzAP8JYADgHemY1Wz1P/Baf4COgH6/j16vl1f/ua3T6WBvbw8XL17E0tJSLpKoOf7qONjZ2UGv18vbVByxFgK7NzB9gTn7TB2g4GcUw3CcRuxmCz/aylVl/k0RW7WqTGcCPy9tLZ5PHr9yVbsc16OiEqqYFAKu7QTVScIojWaziWazmesYbG9vY2VlJR9XpmI0m81cm2JrawsLCws5tYAOHHUQ8BnRAaAr/Np1gOKb+9GZRAcSi32yACGPoWOGQl6jI9iqkvU+GD3A94TX5POlc4WpPbxv2k1nV5XwL51LHG+NdKhKmeG+tFk/1/dR9686fpJTi/uVBTafCycV/kelKWjExTwzrbnYGGNMNZ6HjTHmRo7T5eEXKjZ/fML+HwDwgZMYUaYGMMSdbG9vo9PpYH9/P3927do19Ho9bG9vY3l5Ge12O6c6MA2Bgk4r7/d6vSyS6KxgAcd2u50jI1jPgQ4CCmLgoEtAo9HIgjalhFarldsjauV7LZ5HWAugFIG6Ws2UjrJ+wTgBpYJPHQfltknP4DiCi/vpSnVZi4FpKs1mE4uLi7h69Sp6vd6IcGZKQq/Xw+LiIlqtVhb1FORaCFDrOeg+pfhkdAIjQ7jSr3UCKMIZDcN3ROsPaIFNPg+mOrA+Ap+91hkoUx34vDkWGoEAjDqbNCKBdvC6vDfdXlXzoWTcSv8k0a7pKLwut42LNNB757aT8lyOmfT+nva8x/1OTItpzMXGGGPG43nYGGNu5FQ1FM4aFXkppbwaz9B4hsczXDyllAvuLS0t4bbbbsPKygp2dnZyRwGubKvgYmtArlSz2j6AvAJ84cIF7OzsjKw8s9PBYDDINRboOKCTg8ezawCjGzSUXh0GwI2h4fyM9nEMxommKjGvn5XbJjEpv73qeVWFtRNNGaAzATiIQODq/ubmZnYKMMWEDgWinRi09oU+Uy3QqPtQ2Jb3QefE9evXc8tHjQzguGk0idZS0HaUZfQHx0XPxY4fTMfRdqU6lno9UtX1gd8Pji9tr3pGR6XJHIWmcRwlro+zz3lyHtetkzPBGGOMMcaYOlIbhwLTBzR0mivBe3t7OYRe20dev34d7XYba2trWVStra1hbW0NEZGdDlwdVwcAOxFQ0C0sLGB1dTV3F9ACgVqYr9Fo5HQLrnI3Go28As1IBk23AG7sxDAuNFzvX0V7lWg8T8Fz0tVe3i9/00HA+hatVguDwQCbm5u57sX+/j5arRYA5DoMPFZTE7QLQ9kWUSM3GMGgHRLU7rLdJYAR5wPvo+yGoTUL1Dmk46FFH/WZU/yXx/Nzdc6UziGNfKCjgvuwfsRp6gLwulVjVMVxogDOgvIdOs2x5/W5McYYY4wx5kZq4VAADvPEl5eXkVLCxsZG7uqwvLyMtbW1nMagLe1YU4HidG1tDa1WKzsSNjc3s0Mi4rDFI//NMHZem+H0dBZcv34dm5ub6Pf7uUYCQ+RZMFLTMCgcNdddf7SoXlWuvKZIHBWRoNt5T8+Fo6ISJkUx8DejL7a2trC+vo7d3d2cIsLnurGxgZ2dnZHVf20TCmDkOTDNgI6DcuUcOGzZOS5yoir9g/tX3RdRx06VE0htqnIO0FFWdtlQ9G+OSVkbQ9tOVnWsOA7qoDgN5y24y3fpNMce5/Oqd9nOBGOMMcYYY05OLRwKzKHnT7fbzVX6KfTLVoxsH8mV8JRSTmFgODg7LwCjhe0ozLTNH3AQOcAIA+bNdzod7O7uZjt1pZhRDox+YOeAfr+f89yBw9Vmtq5kpEQJbaSIVOE8rqjcScXhJOfDJFE1aX+tFUD7+QwB5Fae7IzAWhQA8lhxPy082O/3R1IXxt2r1i04zr3ocUfdKx0Ok1I8JtWqGHeNcdfku6LtGcc5MU6zin8enMahpfZPOzpgnAPJTgVjjDHGGGNORpyXyDiRERH/B2ALwNVZ23IKboftnia2e/rMq+1nZfcPp5RecAbnqT0R0QXwxKztOAXz+o4C82u77Z4uN7vdN9M87P8TTx/bPV3m1W5gfm0/17m4Fg4FAIiIh1NKr5y1HSfFdk8X2z195tX2ebV7lszrmM2r3cD82m67p4vtvrmY13Gz3dPFdk+febX9vO1eOHoXY4wxxhhjjDHGmFHsUDDGGGOMMcYYY8yJqZND4aOzNuCU2O7pYrunz7zaPq92z5J5HbN5tRuYX9tt93Sx3TcX8zputnu62O7pM6+2n6vdtamhYIwxxhhjjDHGmPmhThEKxhhjjDHGGGOMmRNm7lCIiNdHxBMR8WREvGfW9kwiIr4bEV+PiEci4uHhtssR8fmI+Nbw96VZ2wkAEfGJiHgmIh6XbWNtjYj3Dp/BExHxutlYPdbu90fEU8NxfyQi7pfP6mL3nRHxxYj4ZkR8IyJ+Zbi91mM+we5aj3lENCPioYh4dGj3bw6313q864zn4nOx0/PwFPE8PHW7PQ+fMZ6HzwfPxdPFc/HU7Z79XJxSmtkPgEUA3wZwD4BlAI8CePksbTrC3u8CuL3Y9lsA3jP893sAfHDWdg5teTWAVwB4/ChbAbx8OPYNAHcPn8lijex+P4Bfrdi3TnbfAeAVw3+vAfjvoX21HvMJdtd6zAEEgPbw3xcAfBXAq+o+3nX98Vx8bnZ6Hp6u3Z6Hp2u35+GzHU/Pw+dnq+fi6drtuXi6ds98Lp51hMJ9AJ5MKf1PSmkPwGcAPDBjm07KAwA+Nfz3pwC8cXamHJJS+jKAZ4vN42x9AMBnUkq7KaXvAHgSB89m6oyxexx1svvplNLXhv/uAvgmgBej5mM+we5x1MXulFLqDf+8MPxJqPl41xjPxeeA5+Hp4nl4ungePnM8D58Tnouni+fi6VKHuXjWDoUXA/ie/H0Fkx/crEkAPhcR/x4Rbx1ue2FK6Wng4EUE8EMzs+5oxtk6D8/hnRHx2DD8iyE7tbQ7Iu4C8FM48BDOzZgXdgM1H/OIWIyIRwA8A+DzKaW5Gu+aMW/jM89z8Ty/o7WeExTPw9PB8/CZMm/jM8/zMDDf72mt5wXFc/F0mPVcPGuHQlRsq3PbiZ9JKb0CwBsAvCMiXj1rg86Iuj+HjwB4KYB7ATwN4EPD7bWzOyLaAP4KwLtSSpuTdq3YNjPbK+yu/ZinlK6llO4F8BIA90XET0zYvTZ215R5G5/n41xc92dQ+zmBeB6eHp6Hz5R5G5/n4zwM1P851H5eIJ6Lp8es5+JZOxSuALhT/n4JgO/PyJYjSSl9f/j7GQB/g4PwkB9ExB0AMPz9zOwsPJJxttb6OaSUfjD8olwH8DEchuXUyu6IuICDCehPU0p/Pdxc+zGvsntexhwAUkodAF8C8HrMwXjXlLkanzmfi+fyHZ2XOcHz8GzwPHwmzNX4zPk8DMzpezov84Ln4tkwq7l41g6FfwPwsoi4OyKWATwI4LMztqmSiFiNiDX+G8BrATyOA3vfMtztLQD+bjYWHotxtn4WwIMR0YiIuwG8DMBDM7CvEn4ZhrwJB+MO1MjuiAgAHwfwzZTS78hHtR7zcXbXfcwj4gURcevw3ysAfg7Af6Hm411jPBdPj7l8R+s+JwCeh6dlr9jnefhs8Tw8XebyPa37vAB4Lp6WvWLf7OfiNIPqn/oD4H4cVNH8NoD3zdqeCXbeg4OKmI8C+AZtBXAbgH8C8K3h78uztnVo16dxEJazjwNP1C9NshXA+4bP4AkAb6iZ3X8C4OsAHht+Ce6ood0/i4NwoccAPDL8ub/uYz7B7lqPOYCfBPAfQ/seB/Drw+21Hu86/3guPhdbPQ9P127Pw9O12/Pw2Y+p5+Hzsddz8XTt9lw8XbtnPhfH8KTGGGOMMcYYY4wxx2bWKQ/GGGOMMcYYY4yZQ+xQMMYYY4wxxhhjzImxQ8EYY4wxxhhjjDEnxg4FY4wxxhhjjDHGnBg7FIwxxhhjjDHGGHNi7FAwxhhjjDHGGGPMibFDwRhjjDHGGGOMMSfGDgVjjDHGGGOMMcacmP8HEv80v2gXuRsAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 25200 263726\n", + " Min thresh = 1000\n", + " Sliding\n", + "\n", + "\n", + " Winner = Sliding\n", + "\n", + "\n", + " VFOLD = 10 of 15\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsIAAAGDCAYAAAAh/naNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAB4FklEQVR4nO3dd5gb5fU24OeobF/vuqx777hgMC4YY8D0GiAkAUIg9JBACCkkBkIqCRCS/L4kQAghgZBQQmghYFowHQKYXmyDwQY3cC/bV9L7/TFFM6MZaaSVViPtc1+Xr5VGo5l3tOvR0dGZ84pSCkREREREvU2o2AMgIiIiIioGBsJERERE1CsxECYiIiKiXomBMBERERH1SgyEiYiIiKhXYiBMRERERL0SA2EqKBFRIjK+2OMgIqLsleM5XETeFZEDij0OCgYGwr2IiKwWkTYRabb8u7bY43ISkdP1k++Xij2W7hKR0fqxRIo9FiLqfUTkURH5mcvyY0Xk0+6cm0TkKf38NsOx/H59+QG5bjvH8RjnW+P97TMReVBEDrGup5SaqpR6qifHRsHFQLj3OUYpVWf5d0GxB+TiqwC26j/zjkEpEfUitwA4VUTEsfxUALcppWLd3P77AE4z7ohIfwB7A9jUze12R6NSqg7ADACPA7hPRE4v4ngowBgIEwAzC/u8iPxBRHaIyHIROcjy+FAReUBEtorIShE5x/JYWEQuFZEPRWSXiLwqIiMsmz9YRD4QkW0icp3LCdk6jlEA9gdwLoDDRGSQvvwGEfm1Y91/i8h3LOO7R0Q2icgqEbnQst5PRORuEfmHiOwEcLqIzBGRF0Vku4hsEJFrRaTC8pxDRWSF/lpcLyJPi8jZlsfPFJFl+jE9qo8729c83Ws6R0SWishOPavxW315lX4cW/Sxv2K8RkRELu4H0A/AAmOBiPQFcDSAWzOdC324DcCJIhLW758M4D4AnZb9hURkkf4esUVE7hKRfpbH/6Vnp3eIyDMiMtXy2C36+8ZD+vvLSyIyzs/AlFKfKqV+B+AnAK4WkZC+zdUicrB+2/P9S0Qmi8jj+jl6hZTBt5SUioEwWc0F8BGAAQB+DOBey8nqDgBrAQwF8AUAv7QEyt+BdvI7EkAfAGcCaLVs92gAs6F9Ov8SgMPSjOE0AEuVUvcAWAbgFH357dBOtgKYJ/JDAdypn9z+A+BNAMMAHATgIhGx7udYAHcDaIR24o4D+LZ+rPP053xD3/YAfd1LAPQHsALAPsaGROQ4AJcC+DyAJgDP6q9PttK9pr8D8DulVB8A4wDcpS//KoAGACP0sZ0HoC2HfRNRL6CUaoN2/jjNsvhLAJYrpd5EmnOhT+sBvAftfAx9P7c61rkQwHHQkhxDAWwDcJ3l8YcBTAAwEMBr0M7RVicD+CmAvgBWAvhFFuMDgHv1bU9yecz1/UtEaqFlk2/Xn3sygOutQTqVCaUU//WSfwBWA2gGsN3y7xz9sdOhndDEsv7L0L4+GwHtZFlveexKALfot1cAONZjnwrAvpb7dwFYlGaMHwC4SL99CYA39dsC4BMA++n3zwGwRL89F8Anju1cAuBm/fZPADyT4bW5CMB9+u3TALxoeUwArAFwtn7/YQBnWR4PQQv8R7lsd7T+GkQcyzO9ps9AO/EPcDzvTAAvANi92H9P/Md//Fca/wDsC2AHgGr9/vMAvu2xrnku1O8rAOM91n0KwNkAvgLtg/0kAO/rj60FcIB+exmAgyzPGwKgy3le1B9r1PfZoN+/BcBNlsePhBbEu43H63xbpS+fr99fDeBg/bbr+xeAEwE861j2JwA/Lvbvk//y+48Z4d7nOKVUo+Xfny2PrVP6/3bdx9A+vQ8FsFUptcvx2DD99ggAH6bZ56eW260A6txWEpH5AMYAuFNfdDuA6SKyhz6uO6F9KgeALyOZNRgFYKj+1d52EdkOLWNrLRlY49jXRNEuovhUL5f4JbSMCPTjNdfX973W8vRRAH5n2ddWaMHyMPiX6TU9C8BEAMv18oej9eV/B/AotEz4ehH5lYhEs9gvEfUySqnnoNXsHisiY6F9Q3c7kPFc6Ne9AA4E8E1o5yinUdDqdI1z5jJoiYBBemnCVXppwk5oQSocY/D1HpKGcV7d6vKY1/vXKABzHe8rpwAYnOW+KeAYCJPVMKP0QDcSWpZ4PYB+IlLveGydfnsNtK/vu+ur0ALKN0TkUwAv6cuNr/TuAPAFvR53LoB7LPtf5Qjw65VSR1q2bQ3wAeCPAJYDmKC08oNL9X0DwAYAw40V9ddkuOW5awB8zbG/aqXUC1kca9rXVCn1gVLqZGhfyV0N4G4RqVVKdSmlfqqUmgKtXONo2L/yJCJycyu0c8WpAB5TSn2mL093LvRFKdUK7Zuyr8M9EF4D4AjHObNKKbUOWlLjWAAHQyv7Gq0/J6sxZHA8gI3Qsr9uY3N7/1oD4GnHmOuUUl/P47goABgIk9VAABeKSFREvghgNwCLlVJroH0df6V+sdbu0DKWRkb2JgA/F5EJotldtCuHfRORKmh1a+cC2MPy75sAThGRiFLqdWhZjZsAPKqU2q4//WUAO0XkByJSrWcYponI7DS7rAewE0CziEyGdgI3PAQtE32caB0mzoc9C3ADgEuMWjERadBfr3Qq9deuSj/WdUjzmorIV0SkSSmVgFbCAgBxEVkoItP1C1N2Qvt6MZ5h30REt0ILNs8B8DfL8nTnwmxcCmB/pdRql8duAPALPYkBEWkSkWMt++8AsAVADbSMdF6IyCARuQDaNS+X6OdTJ6/3rwcBTBSRU/X3xKiIzBaR3fI1PgoGBsK9z3/E3kf4PstjL0G7YGEztIsRvqCU2qI/djK0T+rroV0R/GOl1OP6Y7+FVvv7GLQT6l8AVGc5ruOgXfR1q9Ku9P1UKfWpvq0wgMP19e6AdjK/3XiiUioO4BhogfMqffw3QcsuePketEzELgB/BvBPy/Y2A/gigF9BOzlPAbAU2skaSqn7oGVp79S/ynsHwBEZjq9ZPz7j34FI/5oeDuBdEWmGduHcSUqpdmgB+d3QXudlAJ4G8I8M+yaiXk4PUF8AUAvgActDnufCLLe/Xi/BcPM7fZ+PicguAP+D9q0eoAXoH0NLDrynP9Zd20WkBcDb0GqKv6iU+qvHuq7vX3rZ2qEAToJ2jv4U2nm/Mg/jowARe0ko9Vai9Vg8Wym1b7HHEjR6V4q1AE5RSj1Z7PEQERFRfjAjTORCRA4TkUYRqUSyZi4fmQoiIiIKCF+BsIgcrjeTXikii1webxCR/4jIm6LN4X1G/odK1KPmQbuSeDO0sovjlNaPkyjweM4mIvInY2mEflHO+wAOgfb18CsATlZKvWdZ51JoPf9+ICJN0K7MHKyU6nTbJhERFQbP2URE/vnJCM8BsFIp9ZF+krwTWqsTKwWgXm8zVQetV1935y8nIqLs8ZxNROSTn0B4GOyTEaxF6sQB10JrtbUe2lWa3/JoU0JERIXFczYRkU8RH+u4NbV21lMcBuANaC2hxgF4XESeVUrttG1I5FxofWJRW1u71+TJk7MeMBFRELz66qublVJNxR6Hi7I9Z8cSCss27ExZPn1YAzpiCazb1ob+dRX4ZGtr1tsOhwTxhMLwvtXoW1OBt9ftsD1eHQ2jrUtr2V0VDaPduB0JoyuRQDyRfIlH96/F6i0tAICxA2rx0eYWX2OorYigpTOWsmxIQxVWbmq2LZ8+rAFbWzqxbrv90oWhDdVYv6MN/WorsLVFq3QZ1a8GcaWwdlvqZQ7ThzWYxzqkoQqtnXHsaOsyH2+qr8SmXR0AgP61FRjaWI1Ptraa64zqV4OP07ze1dEwouEQdrZ3QQBEwyF0xlM/cw1trEZzewwdsTg6YgkM7lOFpvpKfLCxGe1dcVRFw4gnFLriCfN3tHJjM9q64hjaUIX1O9o9x+A0vqku5fX0Yhzz6s0t2NWh/W6sv/OB9ZVoqq/Eu+vtf5cTB9Xjs53taO+KI5EAuhIJVIRDGNm/Bis3uu97zIBa1FVG0NwRw6rNLQiJIBIS19cLAEb2q4FSwJpt9td/aGM11m/P7pKWsAjqqiLY0daFusoIxgyoxdptbdjW6r9ayvp/xMr6N2aIhkOojobREYtjbFOd6/9rp5qKMDpjCew2pI/vMVl5nbP9BMJroU1BaBgOLYtgdQaAq/SpaFeKyCoAk6FNdGBSSt0I4EYAmDVrllq6dKn/IyAiChAR+bjYY/BQlufs9dvb8M66HTj376+mPLb0qqNwzq1L8fh7n+GYPYfh3tfXuWwhvfrKCHZ1xHDlF3bHl2aNwOhFD9ket76Z7zGiEW+s2Q4AGNZYjXBIbMH3tafNwjm3aq/Vn8+ai6/85SU4DWusTglipwzpg/ccAcGsUX1xyZG74YQ/2ieuXHrVUbj9pU9w6X1v25Zf88UZ+N6/3sSXZg3HXUu1meFHD6rDOQvG4uK730oZxytXHokxlywGAPz4mClYunobHnp7AwBABPjafuNww9PaDMRn7TsGlx89Bd+/+01z2zeeMRun3/xKynYNq686Ct/55xu49/V1aKyJor4qgjVbU4O0K46fhmfe34S31u7Ahh3t+OFRu+HsBWNx7LXP4c21OzBtWB9sbe7E+h3t+PWJM3D8nsPxhT++gKUfbzOP2a9/fGMfHH+9v4lAjWM+9S8v4dkPNgMAdh/egI+3aB8GvnvIRJyz31hMvvwR2/Pu/+7++NUjy7F6cyt2tndhw452jB9YhxtP3QsH/uZp133dfM7emDeuP1Zu3IWDf/sMfnn8dMwe3ReH/N8zrutff9osdMTiuOD2123Lf3/ynvjmHa+7PsdL35oo9hk3AA+9vQGHTx2MG07dC5fe9zZuf+kTz+dceNAE/P6JD8z7/WsrsKUlNXBeetVRKf+fBtZXYtqwBmzc1Y5bz5yLmT9/POV5bsYMqMWT3zvA30E5eJ2z/ZRGvAJggoiMEZEKaM2lH3Cs8wmAg/QdDQIwCcBHOY2UiIi6oyzP2ftctcQ1CDZs3KllBPtUR3PafldCz7p5XD8esuTZq6LJt87mjhhqK+05pZglg9cZd5/48cjpg1OWWTOxyXEp2/asEi4Xu9fpY4lZMtTvf9bsmdnTysQ1kXDI/D6hIhJCRTgEZXlBwvqLUBUNm8sqI8nbXox9VKVZVyAIhwQb9Mxu35qK5Jj0xw0hfXtR/bG6ysxjsHJ73bxE9GO2PsfYLwCEQmKuY6WUQjyhPW6MNxISDGnwnmvK2Mz4gfV4/fJD8OW5IzFhUD1+fuxU1/WjYUEklBrGNda4/x+ojqZ5/UUQ0gdg/J67YumrpZyH7RYEe0koLbtfEQ4hLG5fYrnbnkWG2q+MgbBSKgbgAgCPQpvJ6i6l1Lsicp6InKev9nMA+4jI2wCeAPADfXYuIiLqQb31nP3ZTu3r+1wniTJKGxSU+zYsb9bWQFD72t7+VtplCUI7PYKJsEsA0+7ytXLcUXZhHa/bkdZXRczHsxWxBG11lRGIANaXwnjMGlBV6sdeXxnBwbsNdN2uETBFwmILaJ3rGK9JRTiEg/RtGUGZSDKgNoK/ioj2s6bCz5fbSdm8NEZwGItbA+HkMYgkx+jcR0IpWGJmrRygIozLj56Sdl8A0Le2wvY8N9FwyDYW87k1FS5rA7VpPjAIAGNTxji8SjLM8WYRwDrFEwodsQSi4RDCLsfgpbkj/9f0+vrrUUotBrDYsewGy+310KYiJCKiIuuN5+xP9YxwR4YslpcuPdBRyh78GayxTmUkGZjEEyolo2UNfr3G45ZFjLlEaLG4cl3eGUu4BuxuGWGvbbuNyRhVTUUYbZ1x2z6MIVdaAuEKPUjrV1eBCw+agP8u25iy3bAl0+j1OUUkGYgN71uNRj2YM8ZjfbWM7RkBojMjn4nXh4Sv7D0S//ifvRTA+D19bo+heGnVVnO/xusSErFl1Q1KJf82jM88Ef0AveI+lz8JAMmA3ykaDqHLJVj1ej2qK9Jnzs2MsD4Orw9x5vq5x8FmvXddZSSrjHBXPLcPuulwZjkiIiobblnVbCi4V0d8ZrkYy1oOEFfKlskDHKURXoGwSzTkVgLRFU8gppdtWHfTEYu7BpVGEBR3BAzO+15jMvZRWxFByJERNgJQW0ZYD9ISSnlmCI1AUQsa3fft9tW8ttx5I/m4se/ayjBuPmN2xuMzeH04OWRKarmKcUxfnjMSx8wYCsCeofUK4hJKaa9JKJkFj+oRcdgjw+v1+nlnhMX1Ma/AuSaa/gODcSxGZj7Th0q3DwB+JZT2f6MiHILLlyM9ioEwERGVjfau7nWBU8q9htTalcAaaCiVGgzFLc9/5gP3ihO3AMYtaxtPKPNreWuA2BFLuI7TLI1QuWSEQ8nyg7CW6bzpuVXm48nSiOTYjRreRMK9REB7nv2nG0Ey+2oLhGEE0dZxGhlh7WdtRQTjm+oyHZ6prdP9w1LUZYDJ0gxBrZ5RdZZGuDEDYRFbaYh1/E7ZB8Ih1225lUsAmTPCycy9dr8j5v46PfjNffHypQd5HrvVbWfPBQDMG9vfttzICFdEQq51zoD365Rv2X2fQEREFGBeb95+aTXC6ddxZtyc2V3rV+//edPZsEPjFjS6BatdcWVuTwuUtNvtXe4ZYSNocn7976dmOBJKZmxDklrNe8yMIQDsNdJGsKKU8gyEraURXgF5SMRcz/p6GjGSW2lERSRZGtGSRe1oW5f7uhGXgNN6TM6SDGPcbqylEckPF6GUbVp5basyTWmE25grPALnGr+lEfrPfrWVrutNGdLHdhFgOvPHDwAA/PX02djc3IFQSHDtkg9wz2vr0KnXCHvFu5WREGKODy0Pf2tBxn1mixlhIiIqKekSRfnICLtfhpbkDEycAUHMTxmCy0G4BasJpbDs010A7F9Ve2WEjc0aAecpc0fa7qcdUzhkHksoZC9j+PbBEzF+YD0A+wcBI2hNKO9AztymS3BtEEmuZ72Q0HiGuJRGJGuEw76yk4ZWj4ywW7mKNWiNWPZrvJpef4tKaVnyUCiZNTYyzl7lFF7HkK40wj0j7L6+V8mEIWz5PQHAFcdNw9UnTMfziw4017n+lJlmwOx27H29OlZUhDGiXw2GNWo9oBMJha64QkUk5FpiceFBEzC0MbXDRq49hNNhIExERIG0dlsrfrl4GRKOIC5dJqq92xlh94vlrJwBhTPD5zf76kcsoWy9Wg0dXQn3i/r07cb1uuKI436mMRmjCok9+LSVJoRTA9VEmoywsRmvx7XtWzLCLjXCXhnhSEhQEXYPprx4lUa4/U6sy4zjtpYeOI/poMlat4uEUojrr4mYz0/NeFt5vT5epQ6RUMh1W+kurvOikPwdG+NoqI7ixNkjMcwSkI7sV2Pedvt/mK5FmyEcEsRVsmuEm+8cMjHlg8HYptqM284FA2EiIgqkb935Bm585qOUWbvSBcIdloxwn6ocqv+Uj9KIcIaMsB4I333ePM9teF0w5dThcfFfRyxuZq4vPmxSyliMrLQRvPnLCIs9e2s5LOsFgdZaWuNmwqVW2jmmdL83axsy+8VyYj5uMB4/bOpgfG3/sZA0mWY33p08Un8n1jFbM8LO8RkOnToIgB4IJ4wa4e6VRkQ9AlsR9+DW60NWpoyw28WKKWNJc+x+9gFox6kU0BmLu5Z9/OWrs/Rx2B+789y9M247F6wRJiKiQDK6KMQc2cx0yT9rRrgyGgbas+s7qpB5wgVnIOyMRYzsa7oMnNuFWW68vsZv70qY/XBH909myoxg1MhKJzPCmQPhsK1G2B6YWV9z63H1r6vEPuP644KF4z2v/jcCK2d3DSsRMcduywibP1OzsHuP7Y+99YuwsimN8AqE3TKv2dYIG8Gb9s2Csr2mbsdn5dk+zePvSMR9W9YA9a+nz8LHW1rx0/+8l/FvzuwakebFtGag3dbyEwgbr+PO9pjra37QbtqHCWtN89ShfTCwvirjtnPBQJiIiAIp5BHEpQvprBlhr4uM0tFqhP2Ny+DMJBrZ13RBQbqsm9u2nKzt09zajRnPMx7zkxGOWkoMnFlWW2bUURpw+zlapm7DjtSpk61jSjdvgsArI5xcwbjtGvxlkRP2uqAy08VyttII/eV0DsUI7JReGqHVRduPK1ObOSevv6PqaNhHr19L9j5TIOwjI1xh+xDg8ngWgXCm9a1lFt3o1JYRSyOIiCiQjMyUM4ZL9+ZvzfblFgh7zCxn4XxTdgYYRuCeNiPsozTCKxMI2C+Wc6tZTckI+7iAz5m99KoR9hp7ptIIbfve67jVCCfLKlK3Z5VVRtjjgkq3ANvtYrmQSPJiOY8PRQkFbYplS4mJGchnXSOc+nqfv3Ac+tdVYnjfGhw2dRBu+MpMz20a/3/qKyMY1b/GdT3rsaQLmJ3TS1v1qYrgiGlDPJ9rPs924aP92L6y90jzdqZ2b/nCQJiIiALJKyOcjnWmLevEF35ppREZxuX8OtwRN5gZ4TSBrJ+MsNdFUoA9qxl2CRyTGWH/NcLRULKVlbXbgXW7QJqv9r3ap2VdI2y9GM/46Z6Rdq7nh3dG2F9phP0DgiMQNrpoJBQSCW2KZXEcv9v02trj7uN1y5rOHzfAfOxPp87C9OGNHtsU84NdJBzC0xcvdN8J/JVG2Hso29d76yeHYXjf1E4PKfuxHM721k7bY1ccN928nandW74wECYiokAy3pDdppH1Yu0wURXNrTQiU22EM2DxzAhHvL4CTx8UGqwXSTmD4vauhHmsUZevq82uEWGx3U9H63CQDNqse7QGPW4lBEC6jLB1++6sNcnWl9OZTQU8AnGPDRsXXll5Z4QtM8alKWOwZ6ftj5mlEYDZNcL8cJGmtMNrX9ZtWjmD0HTbNL45yPTZy1dGOJK+NMLP37V1nU27OjzXs5VGZPVRJzsMhImIKJCMuCTTtMmL395g3rZe6JZrRviOVz5JP66UjLD9vtGxIV0JgZ8SYWurKmdbqq54wozXk0GbXtsrwPufNdse81EZgahlimUR+4QJ9tKI7DLCzoyoO7FkXO3LnctcSyOyCJS8WuxZjytqyewajNsiMLOsKRlhszRCywhbSyMydc/wenncvllwvtRegXA4JGYtuZ8gFUifXbeOxe019/NNh3WdHW1dnuuxNIKIiHqVax5djn9aglDjjdvrKn/DN257zbxtnVq4MoeMcGcsgaseXp52nZRsnCMwTNbuen0F7l0ra5gzuh8OnTLIvF9TYb+23ToVtBG0GUGYtcTZCJBiPrLqEcvFclpQbR9zcpseAX6GTGe6Qw5ZSiOsAZYZmMNSv+zaKcF9u27l3l4ZYet2o/oxWv+ejFu28TlrhM2L5ZK9lZPHL7Z10u3fyu3vKDUj7PU7SZb6pPubE2PQSP97cvv2wcpPsG0N2n9+3DTP9VgaQUREvcp1T36IH9zztnnfCAwyBcJW1gqAnC6Wy9gzIjVjltpHWBuEV41wKJT5a+p9Jwyw1ZI6g4J4QpkBjrGeWyBlBsJZTrEcTukakbxd4VHy4cyMJ0siLAs9jtt6sZx1M26lEW6ZSD+5znMWjAGQrn2apRQlkjpVdTKzah23fRvWDyPJrhH2dbPtI+xWI5yyX68svc/SCOtfR7rsuls9utfjXowPD9OG9cG4pjrP9fxMzpEPDISJiCiQwmZG2P9scdbSCD+dGZwyTaYBpAYUXjPLeZUQODsynL3vmJR1BPbMmfNr4oRSgFLaRWZp+tMaE3f4mu0ubM9eWscoPjLCzsXOTGg61uOwLXeZYtntw4rXPqxrzh2j9Rz2vFjOpUOE9e/JvJ3mYjnjT+4rf3kJa7a22bL/6dq/OTbrOa7kus79piuNcC/j6C63zfn5L+fnojwAmD9+QNp95QsDYSIiCiTjzd7rq2w31q+y/U5jbOWcztmN8+vwlIxw3N7DN+X5jhpht9paEftyZ3ZM++pdC5iNADTsEnhnPaGGOcY0pRFpAnwrPzPKWdd1ywgbxyZIn6n0esTaCq9Kfw29MsK20giXDxBmyzSx37aNwyUw9lsjnK6/cOpshvZ10pXhDNM7OVhrzvPB/UJC/xnhTH2N9xzZF5cfPSW3wWWBE2oQEVEgGe/tXhc3ubFmdL3aVKXjp1NbpmxcPKFlaj175oacF6K5Z/wyZYQVHFP4pumD65ydz000FEoGKSK219JXH2HH/pM1vRl3DYh7jXAyI5x83C1r7ydjaHQR8fpgZbzmsYQys/n20giVMj7n7845DGuNcHKqZX8fJKwqIiF0Wuq8nfv1iilDIjhuj2FoqqvC/PFaRrxvTRTbWlMvUvPfpFDftsvv1dfFcmn+Xp2M8iY/39TkihlhIiIKJPNiuSwywla5ZITjPt5xnVt17seoDfVinbgCcA9irIEfkFojnDAywpb13EoWkhfL+cgIhy0ZYY8yB+s2U8ecPiOcrkQiJJLMEFpXsyz682mzcMb80a6ZTT/lF0ZGON0HKyNINYJ9a2mES2WES0Caet9Ykqk0It3fjLPMxrmq1/Ebk5jsO2GAuU7/ukrP/bht23M9t64RPp6caYY9t3ULiRlhIiIKJOMCr2wulrPK9NWrm0yzygEuwY5jP7GESnthkrNrhGsXBDgywlGXjLCytzlz245zprl0oiFr1wjvwMurj7CxP2Nf1lZs2jF5lzAI3ANEaxA9fmAdfnzMVPfne2zYetSZMsKA9hq0I2EpjbBuK/Wis3QfGAD3jLDXNxWSJjXpzML7rfd1+1XNG9sfKzc2+3q+4dGL9sPaba22ZW5D8PN/zljH14V15t9Q5jHmihlhIiIKJKPll9fFTZneSHPKCPupEXZs1pkFi8dVhuyns/OAWwBoDyqcwacxFbTAkhF2rRFObQPmxT75g3emM+2MeS4lH36CmZCI+VyXhHDGrhBej1sP2+grne7iS+M1rK3U1rWO2dqGTFlu28bhGEhIxByc2TUiyxphIDUQ9hsYum3zR8dMwaxRff1tQDdpcD0O2m2QbVmuXSPMi+V8rOsn099dDISJiCiQuuLpM8ID6irSPj+Xr1X91Ah3NyNszRIa951E7IG8c42E0rKd1vZYru3Twv5LI6zt05ybsiYxvWpcnesla4Qtx+F5QVjydbR3q7D/9OInYAqHtAvy0n3DYGRrz9t/HM6cPwZfnTfafMzts4QzqHULhMVyG3C/qNFtW1bOVoD+M8Kp60XDIew9tn/K8mzrcHO9WM6I6a1jG1hfidH9U0te8t3pwk1JBcLrtrdh1eaWYg+DiIh6gDG1stfMcl5tvAy5BcI+aoQzZYQTibSlBdbZxrT7LvuwzLRmPMc5zoQecBtZbNeL5fTn+ekjbL2IL11GOF2mPWwLYu2Bbbrfhlbr7LLcsS3P53ssnzmyMTm2kCAaTh8IG7W4dZUR/OiYKbaLFPebqLXzmjcuGURmqhEOh1JrpLNtn6aNK7dAuJCBpNth+PkWxvxAYBnby5cdjKcuXui5j0KGwyVVI7zonrewqz2G+8+fX+yhEBFRgXTGEljwqyX4bGcHgHQTIKR/e1zx6a6s9+2nfVqmmeViidSL5SIhMTPcoVD62cm0fdgDfWc8k7xYTizt2lIjybDLVMHpeAWeXj2FnUK24N3+M/1+Jdkhwro9H0G0NqbUZS9eciAG9qmybSsaDqG9K+a5HeN36fYhap9xA7DyF0cgEg651gtbx2ved8myZzuhBgBEHZOYuG3iljNmY4TjQkKvfTl3pfQuJID/oNPt78DPh0/jT9FXPTEzwnZ1lRG0dnr/ARMRUenb0tJhBsGAdxDnddGW0VVgaGOV6+Pp+KmlzRT8JPSJLrzWCYu9j7DrRBIijpIC++P3vrYWq7e0QAQY0U/rE/vNA8enbMeYKthP+zRjv9p4neP39XTXLLYtS+zxPK03r8sUv35LI9w6GDgGHQ7Z+/G6zTxovF5ewb7xN+esEX782/vh5jNmu35bkHKxnGeNsOtiAEBDddR2320TB0wamDJTm1cg+fmZwz335btrhMt6fgLXdN9g5DqW7iipQLimIoKWDv/9JImIqPQ4vwbu8qhv9XojbayJ4umLD8BPPufeYSAdfzPLpX79bRWLp2aEbQFiSGzZMPeuEelra9dua8OS5RshAOqrolh91VE4cvqQlO0k+winBufJbafeFrF30PBdk+qSOfbTPs12AZp1uZklzlAa4fKwM+AM6xlhg1sgnC4j7MZYb8KgeiycNND1Q1JKRtirRjjNPq/6/O62+34vIvOqHhozoBZ/O3OOr214bjtDRnjBhAEpjwPJD5tByQiXVGlEXWUYzR3MCBMRlTNnMBr3yGZ6TewgAEb1r81p37nUCDvfrOMuF8s5uymEbMFn6pt9SNJfLGeul6lzhuViOYH7pAlPfe8AfKRff5MsRcj8VXym8Ti7RaTbhPeEEPZtZMMZWIZC9hKDymgYaI85nhNKOx6v8RlSeim7fJjx24fZylnykMsHE6d9xw/AtGF98M66nb625eR2GMZ/yfrKCP582izX5xnf8PjpORySbvwB+FRSGeFalkYQEZU9ZzDqdaGXZ/eCbrxpZmqfNqhPZcaZ5dxqhK1ZQC0AsN5P3Y+zNMJz+t20o02OTSvXcF97VP9aLJw0MO32/GYg3dunGRlh7+dpGejUffmNg1y/pncGwiJm6QPgURoRto85E69JRMzHXR7LxyQRuZSquD128WGTuzEGl28y9GVN9ZXmBCZOsSxKI8xVCji1XMkFwl1xlbYHIBERlTZnIOwVnEa9Jibo1r7TP/7oRfulBCEpM8slUoNOW4AYsmeEvS+WSw0InTIFbObMcgnl63VJtjDLbj8Ga+B15QnTU5Z5EREzW+1aGpGxa4TL1/QuH1is3yJUuJVG+JzswRhrSkbYsZ71b9kYjp9MaCa+u0ZkOA7rw9nGmrkehpERzmbyjUIqrUBYb2PSyjphIqKy5Qx8s80IW9+g97S0z/IjXXeF0f1r0FhTkVMfYXt21x7IeGXWrDNweWdqPYdr2288TY2wn+35L43Qfl544PhkltlWBuKxX1hqkl3Wz7R71xphl4xwZTRkru82MYhxMVyufXrdLpxMPub+nFz4DUIzBd1uf1l+s/+5TnZh1AhnVRpRQCUVCNdUaiXNrBMmIipfzsxULO5eI+zVNcL65nnfN+bj11+c4Xvf6WqEvbKAfvoIW4Mf54QaIqmBjcCenfSeiCJTRlh7jba2dHpedGjfbzIjbF0765pU10DfexuepR8+LrTz2nJKB4eQmBdwKeVeY558zdPuzpSuXzRgn6LZ77H44btUxWdG2JqR9yvXeN74L+Z10aDrPgoYEJfYxXLacFtYJ0xEVFasHQqcwWhrp/u3gFGvi44y3Pci4q99WroLogD3jLCzVtSWJdXDT+ueRZJBTNixvm3fGQ4u3Sxw6beXPsADgCENqe3pnNMqA47uFx6/DWvgbV3Hf0Y4dY3UyS6AhZMG4ronPwSQfG2+f/gkzBzZV1+Wvn2a27jT3c+l84YffoPQzLXVuY8p1+P5/MxheHvddlx86KSC7SMbJZURrjUCYZZGEBGVFWv86SyNWG6ZGOOr80aZt/2URgDeLaRSngd/dZLOvbrVCDuDYyPgOG6PoTht3qiUcgG3GcqMbK5WGuEV9GfKCGcXSPitRX7vZ4fhye8d4DaglPX9dH4IWSJh+4eEzM+1rpeyTes6IrYLuIyM8KFTBplTDkctHz7SMiaFyHCxXDyhzL8p66/i9csPSb/9DPLRNULbTvJ2/1ptyvK+NemnLjfkGqNWRcO48vO7o29t5v30QBxcWhlho0a4haURRERlJWHLCLuvc9a+Y3DMjKH424sfA/AujXAGh5mCRXM9kfSlER7BT0rXiLjy/Er6qN2H4pApg7BsQ7JlVcijNMLYhlZT7D6mTHFutvWoXh0enMdcU+EePhhrue023Ujcgl/beNI81/n85HNTl1k7RRgdIqxZ0UiWXSMy1wi7P1ZX1b3wy3eNcKbSCP1xpRRO32c0+lRHcUKayTZsz3UZhDHxx/zx7j2Es8U+wg7JjDADYSKichJPUxphcAaEntnODF9XexFkbp8GpGaYncFGPKFSpn92fsVvqxGGUQNs7zBgbDcSDqWZDCNTRji3L36dW/XfVzc1uPS3PzFnlrMtN7PJ6bfn9rjbsspIakbYmjU1Xi+/L1umGfgS1qmLxbpe9wK8XNu7pW4neTsSDuFLs0Z0awwD6irxzMULMSSHWR3T7aOQ4XBplUZUGDXCLI0gIion1tjXGghb61C1iShSgxanXN80RdKXRiQDGkdG2Pl1uErtI2zcNYZse1hc6ppFLBlh8Qx83Bafs2BMcmzdyAhbX4tsa2Yzrf7Tz03FPV+fl9xvCFg4eSD61kRx5r7J8fstjfCrKpr8mzGDXpeMsN/XLeV1cdz1qhHubuOIfAWG3akR9nrqyP41npPdZKsHuqeVWCBcydIIIqJyZA1+rVnZwZZAWBwBoTPrmlzPed9nUAPxlxHOcLFculZlRpmGbWY5l20KHB0MPDPCqcsuPXI387bXa+Ql1xIMczzm8SWfoCy1v8bimSP7Yq9R/WzPG1hfhdd/dCh2G9InudzMCOYnIrJmhCv0Weasn6fcgmM3xoeijDXCyr1GuLudI/JVMtCd7fREkJqPDhuZlFggzK4RRETlyBqAWjORQxuqzdvhkD1T5z3FcmpQ6Yv4nGLZcd9ZohGLp7ZPs7Yl035aSiNEUoIKa0Y4LN4Xy6Wb3QvIfkICr8DD73bMzLfL6m7dIMztZwj0uxMPDe+b/BuqzJAR9juznNkCLOPFcpbH8hg55i8Qzv25PRKk5uH3n0lJ1QhXRkIIh4QZYSKiMmNNxBpBcTgk6FOdfJsKOQJGz0A4Jaj0NwZB+pnlrJlNK7eMsFdphBE8OL8mdwYVYtlfKOTdPi3ToeXaNSLnDxM6W0Y4zX687if32/0a0f9csC827uoAYJ9EI+oyeYb1AkU/MlRGQFkywvkMHCVPaczuZYR7IBA2L+Yr4D4Kt+n8ExHUVoTZPo2IqMxYaymfWrEJAHDTabNsdcDW2dYA/6UR2bxhqxzecZ1ZwZhLaYRx18xwWR8Tt+AaiCW0dGK6YDbTsTlrXR+4YD5+fMwUz/Wtwb714jW/r0q6YM/eGcL5QSH977I7MVff2gpMGlwPAK5/P9bSCPMCOp+RsPNDkJ+Z5fIhX0FodzbTI/W7LI1IVVsZYUaYiKjMWEsj/u+/7wPQggzbjGwpNcL5LY0QST+hhtdDzqApYblYzghinZnglK4RzrFAzEmkZo/u57nvTHGCM0jffXgjTt9ntOf6xgeB1Mxm+v2Y49F/utUI27bnCK29DiP5wSH/AZFbRtj5+/LiNcugM1MbT3jXE3dHpiD0F8dPM2fRS7+d3MdUiN9JMZRmIMwaYSKisuJWkhASezY0JPbALv+lEZK2NMLgDOycwUQsocws47M/WIgHLphv2UfqmERSM4siwMA+VVh84QJccfw07zFnODi/bcUMXofvN1OetkbYpQTEkGmK5Ry7wKXl2j4ty4xwphph6+uWz7AxUxB6ytxR+PtZczNup1uBcA/GwYXcV0kGws0sjSAiKitugVZYxDZphrNWNhrxnev1t5bkVhrhnOFOqWSAMaShGrsPb7QEwEZglz5rbaw3ZWgfVEbCrj12gcyZwVy/vhYRW8Dv91Uxfl/W43Mbu/NlzlwDXYiMcGp23uzU4bfTiEttt5W1n65X0HnApKasA718BYbGrymXEtyeKFvoCaUXCFeE0crSCCKisuJWkiAijoywvVQi6tVH2ONCtUwE/ibU8FOD7NVfNnkxmv35bu3T/MiUGcz2Ai2vzwF+Px9U610ZrPs1647TjDVTRrgQMZdZGmFtnxbObn+pE2okF/z0c1PxrYMmmve9tnnLGXOw6sqjMu7r5csOct1Pd3TnAr5CZOmLoeQOQ8sIMxAmIionbvFnOJTaVsxXH+EM971kmmLZi9vX6Cm1o+Zylxph8VHOkWONcLY8SyN85gyro1qfXtdh5TBWtw8O+eI2nfK4pjqMGVCbcUII45sDr+4gAHDk9CGoiIQ8p+bO1sB6a3a5W5vKy3Z6JiNcwHYRupJqnwboGWHOLEdEVFYSLpFwSOxvgwml7Ff4R/zWCGd+wx7VvwZbmzuRSHiv41U24fY1emqAZM802ifUkJQxptSaeoypUL1cxfHa+41Hqiu0QDjbIMmrx65bTXW+VEXDtqmsAeCYGUNxzIyhvreRbkIN49sM88K6PKYeA5ER7ska4QJuu/QCYXaNICIqO26Z2FBIUmac89c1wrGdDO+iN3xlL+w7YQDmXfmEr4xwysVyLsPwzgjr950ZYbivn0m+g5FcaqStqiJGIGzZpuVxr+F6LTenfC5AKHTCzOEY2a8GVdFw5pU9OH/31rgyHPYOkrsr3zXCuW2uF9UIi8jhIrJCRFaKyCKXxy8WkTf0f++ISFxE+rltq7vqWBpBRJRWkM7Zfrl3jbBfsBVPKEfXiOTtf503z7P1VaagYXBDFeoqI1qNcLr2aR7LIy6RsPcYUmtQBem/Yge8A9RCfTvtDDz9hsdVekY4Zpsp0L0lm5V3jbD9Zz411VfiyOlDurUNPxlh48XL64QaedpW0KdYLuREGoaMgbCIhAFcB+AIAFMAnCwitm7cSqlrlFJ7KKX2AHAJgKeVUlsLMF7UVETQEUsgFk/z/RURUS8VtHO2X64ZYcfX80opR6CRfAubPbqfZz1pxgvKjJ/ir32ak1tiOjUjLLbl9hrh1JnjnIGOV0DQU1fu+w1IjIxwe1eyhLFSL2GprYh4d4fwWq7/DGqHgtRAOHnbWTvek6UEfnXnZe3J30khp3P2kxGeA2ClUuojpVQngDsBHJtm/ZMB3JGPwbmprdT+k7WwTpiIyE2gztl+udcIO0ojHDXCzkDDs8NAhvdQa9Yxl9IAt4AgY19ca0ZYXDLCPvfdnQBhn3H9U5Z5TSPtV3WF9gtqs7xHHzJlMC46eAIuO3o3z+d57q8AAdCrPzwYLyw6sFvbMP5K0n2AMT6oFWJCjXwJ+hTLhu6W7KTjp0Z4GIA1lvtrAbh2aRaRGgCHA7jA4/FzAZwLACNHjsxqoIZafaadlo4YGqqjOW2DiKiMBeqc7Ze/0gj7m29qRwnjVnZBpbHNts443lq7w3M9YyzOobp3jXAvdXCtEXbZV0pG2GNMfkKRYY3VWLe9zbZs+c8Pd5262QjaBMnjHTugFvNcgmY3RteINktGOBwSXHTwRNt6KX2EPY6kEFnU/nWV3d6GMf50E294/30GR9An1OiJffjJCLsNw+v/5DEAnvf6ik0pdaNSapZSalZTU5PfMdoYU06yTpiIyFWgztl+uZVGhENiyxTHEwnHG7cz4HXPCPvNmnbEciu5c+8j7L6u2xhFJOWiK79Bk5/1/nXevJRlVdGwbbISJ+v4fnTMFN8zrRkXnrV3ub+WXq+L1+aDPo1vukDS+LtTBagRzpfuTKjREwJRIwwtmzDCcn84gPUe656EAn/FNrBe+yS3cWdHIXdDRFSqAnXO9sttIovU9mn2q/S9Mm5eHRu8+I1PPGd385URtgfAzsy2M+BLvVjOfUx+giu/QayXbLKGZiAccy9fPGZ3rTXZ4IYq2/JMF8sFzYIJAwBk1zchiKUR3QnOeyJIrdDry/vVVhRsH35KI14BMEFExgBYB+3E+WXnSiLSAGB/AF/J6wgdhjZWAwDWbW8t5G6IiEpVoM7Zfrm9qYZCqV0jnBeZ2db3aLWVKQDxG6B4vfG79xG233eukVoj7FzfWRqR2xTL2jr+gx23Y8wmVjIDYY/reM7dbyxOmzfa7DecaR9BLCcAgD+duhfWb2/37H9sZfYRDuCxBHFMVtOHNeBnx041P0AVQsZAWCkVE5ELADwKIAzgr0qpd0XkPP3xG/RVjwfwmFKqpWCjBTCwj5YR3rSLGWEiIqegnbP9cu8aYb9YLqHs7dNS3sQtF73ZFvu8WM6vdEFtcln6DK8toHeZUMPvmPyUDuSSERbb6+z/+ZMG1QMAZoxo9NyuMwh27s/P8mKrqYhg/MC6rJ7jPJT9JjZhD4/Xycv1p8zEI+98mtVz0o8pmK+vQURw2rzRBd2Hrwk1lFKLASx2LLvBcf8WALfka2BeKiNh1FdGsKWls9C7IiIqSUE6Z/vl1r83LGK7WjyeUI7aWvv6ZkY429KILOtQnSN1CyayCjAk97pmP6u5Zay9mN0QLPeyOZTpwxvwzMULMaJftf8nZbmPUuX8nd565pyst3Hk9CHd7n1s1Z2XvVx+Z3mc8K/n9K2twFYGwkREZcOtPZKk1Agrx4xszhIIfbnz7d1xN5oy41d2Y+3vqFd0e77zOjRjqMZh2jPCbr2P7brTR1iyeKdX9khYv5ndCzSyf03WmcZSqxHORRBrhKlEA+FBfSqxanMgvs0jIqI8cG2fFhIcu8cw877zgrqU4NFjRg1nIOe8UMv/xXKaacMacNNps5Lj9NFHWMwcq9FT1r5uuhnK0sl/Rtj9osVC89pFOQSPxoe8oNfjZqsnLpbrCSUZCM8Z0w9vrd3hepUxERGVHrfzeVgEe43qi199YXcAqcGy16xeqQGy/f6QBufX9tlHKHtb+ur66xqh/XTNCLuWRvgbh59AMacaYVjHV/gIzjMjXPA9F17yYrlyOJryU5KBcJ8qbSIN6xSORERUurymWAaAer1/vHHuN3jV1aZceObY7sRB9ouc/MaJ1iHaM7qp62aqU7bVOiM1I+w3ZPITW+XaNSIZtPt+es48+y6XUewYxGMxLlw8YebwrJ87pLEKkwfX53tIPc7XxXJBY/zi2rri5kxzRERUurzapwHAYVMH48fHTMFJs+2z23kFjyldHSyR3LPfXwgA+Mf/Pkk+L4cIxd4HOHNG2IiCklPzivMhx+r2hV5TzPoZey6BbLqLEgvBu32a/rqV8Pfwbt8CBEVVNIz3fnYYqiKpnTwyiYZD+M8398WEyx4uwMh6TklmhI0+hW0efQqJiKi0uE+ooQUOoZDgjPljUnvPeqyfLhvbVF+JEf1qcPPpsz2344d1emL3QNh9DK4XBbpsI2VCDY9x+Bl7bqUR1rEUPoAL+gxy+RDEQBjQWsH56YfsJphHlJ2SDISNucw7PGauISKi0uI6xXKGwMG7a4RzPZfbjovV/EmO0To9sdvTvbbpFtCKSNYt35L7ybxONoGsW6DeEwGc5xTLHuUupSTIE2p0V1CD+2yUdCDc1pnbvPBERBQsrjOaZXiH8lsjbA0rjcyjPePpvv1Mkx18ea5WqhF19kpzGYPzYjnnYykX/jmipu5MsZwLew1z4XkdR8h83Uq3NMJQysG8l3I4pNIMhC01wkREVPrSlUZ48SonSJcRNgKrXLotOGOxXxw3De/97DDX0gPvKZbdSyMyZYS7M8VyNmwXy5n7KGJGuOB77gFl2j4NKI/gviQDYeMCuR1tXUUeCRER5UNupRH2+yGPSNit3tUWHHtEKCmBcMr+BTUV7hdsO4PHHx0zFVOH9sGUIQ0p62qlEelrhL3kOxBJzqeR/mK+fCuHgCqT3nCMpagkA+GxTbUAgA827irySIiIKB/c2sJnihvMmmDnTziDSmtphPHc1GVOkW6k8EKOd9c9RjTioQsXpFzwp40vzeQgOs/SiJxH6G6vUX0BALPH9LOMJc876WVKv6ijvJVk77E+VVEMa6zGik8ZCBMRlQPXjHDGQFTvKiH2n+nKDNySxl6BXi7dFpLb9P/ckCSD+nBIEE+oLC6Wy2+UOn/8ALz5o0PRUBO1zIjGSDgf+CoGU0lmhAFgtyH1eGvtjrIooCci6u3cJ9TIVCOs/TQbQXjUCNtncUtdyat1V3cC4eyemiyNMPaZkhH2emYBoquGmvQTl+TTiH7OWf6IelZJZoQBYJ9xA/DfZRuxcVcHBvWpyvwEIiIKLLfSiEzBpDgzweZy53pu2xbLbfftO0sjskm8ZJNFFWtG2Dym/O8nV4Xcx71fn48PPivvb3eZrwu2kg2EhzRowe/Wlk4GwkREJS7hEgmnKy8Y11SbDBYdnSD8TM4gnneSMl0s56YiEkJnLJFdIIzkmM2MsN8v0nviQrYCbrupvhJN9ZUZ1yuHWJIVJsFUsoFwQ7X21c32VnaOICIqdW6lEV7e+elhiIQEH3zWDCC1JZqfjLD9Arr8lUZU6YFwnyr/b68hy4QazgsADV4vT09khIvZ7aAcOi14tb4rJ8fuMbTYQ8hZ6QbCeg0TW6gREZU+t9IIL3V6C03xCIBTL5ZL3+fXK97NJcg0jqOxpsL3c6wTaoRC7sG853OzGl12ynlGtGIo12mk37/iiG51WCm20g2E9YzwTgbCREQlz600IpPUQNhRK+FYz2uZV9Yxlzf3zrg242nf2miGNS37RzIjHPYs78huQo27vjYPm3Z1+B5D2vEFICtbSnW2935jHzNGAUpr7LmoiJRs3wUAZRAIb2/rLPJIiIiou7IpjTA4L5JLlkjY13OP4zL3EfY7zbFVZ0wLhHPNCHuVY2Q7xfIcSx/g7irhZF9RzBzZ13V5AD5PkIuSDePrKiMIh4SlEUREZSCeQyCcMpGGR2mEW4mDvTTCX0Y4m64RfbMIhIHkmLOtS+6Jr6SD8JV+KQeR5Z4RLnUlGwiLCGorwnjgzfXsJUxEVOJyKY1w1tV6dY1wi6FsmVTPrhG5v0X2rfFfGhGyTLHsFZR7vc1Fe+Br6VIOQokyKdlAGAB2tsewZmsbXvxoS7GHQkRE3RDPpUbY+TOLrhHWRKpXoJeSEc5ibNmWRhh78iyN8Nh7Rbhwb+NG8O0sESmGUs53lfDQe4WSDoRvPXMOAOCddTuKPBIiIuqOeA7RgueEGqlruiyxTqiRv/Zp1315Jk6ZOzKr9mnWCTW8dulVatETFyoVMwwup2x0OR1LOSnpQHi/iU2oCIewtYV1wkREpaw7XSNSe/Bm2TXCY/sTBtVlPaa9RvXFL46fnlWnBbFMseyVff32IRMx0WU8hcwIG3qiV3E5Y/lmsJV0IAwANZVhtHbGij0MIiLqhlwulnO2TfMK2NxrhN1vWx01fQjO3W9slmPKanVz/8bzjHIMZylEVTSMU+eNTnlutAcCYcbB3ZP1bIHUo0o+EK6tiKClI17sYRARUTd0p0bYORtbao1wbqURSgHThjVYFvgYUxZRo70cIn0wn1wD+NyModhnXH8AhS2NMDKZDIS75/pTZuKM+aMxeXB9sYdCLkq2j7ChtjKMlg5mhImISpm1NGLCwDocMW1wxueEnDXCHl0j3LK0foI7BXs22U+onk3QGAmF9Ak4BCHx/9y6qghqKyN44cMtiIb9PemGr8xEZSTsf3AWLI3onlH9a/HjY6YWexjkoeQD4ZqKCFpYGkFEVNKspRGHTxuM7xw6KeNzzAywft+clc2ZEXadYtkyoUaaOC/bGDCboDEcEiCud40Qbfx+M8oxfQa7Sp8Z4cOnDfE9LqcghMFeXTOIuqvkSyM6Ygk8+8FmrNzYXOyhEBFRjqwZ4WwDr+SFZu7Pz3SxnHdphMq6rjObGuFIONntIiRiG0emkmmjlKSgpRH6z2JmhIMQhFN5K/lAeNmGnQCAv7+4urgDISKinMWsNcI+Ay9jWmYjAA55ZIQN1qDR1kfYY/t1VZGsM8LZ1AgbF8aJiHbBnM93ZKWALv314sVyRN1T8oHwrFF9AQAj+tUUeSRERJQra2mE37jLiJ1TaoQ92qdVR601stbSiNQ9vn75IaiMhO01wj46W2QTNBoz12n1wWKWdvgRT2ilET3TR7h4kTALIqjQSj4Q/s2XZgAAqityuwiAiIiKz1Ya4TPuMrsa6PfN7hEe61sDYXtpROq6bh0o/ARl2ZQRRCxttQRaD2G/z+7SZyCJdGMaaN+YEaYyVvKBcEO1Np97ZyxR5JEQEVGu4jmcwp0ZYTOj6gjcjPcHa8LEfrFcuvZqhasRts5cFxLJOJOddZjGxXJ+u0aUqvI+OgqCkg+Eja+FOhgIExGVrIStNMJv+KOMJ2g/PNqnGe8PdZXJRkmZ9iA5vjtmkxE2gti4UmbXCL+MmupcpoH2rYTrEvx20yAq+b8UY3pJZoSJiEpXPIfSiOoKLbDdbXAfAKkTaxgmDarHOQvG4PpTZvreh5kPLmCcaUynHE8ktK4RIcHp80cDAEb0TX/dSyzecxfLBUE2Ew9+//BJeOCCfQs3GCorJd9HOKKfBH77+Pu48KAJRR4NERHlIpeL5YY1VuOOc/bGjBHa7G/mRXOO9UIhwWVHTbEvyxDhum1rwsC6jGPKpUY4llB6CzXgS7NG4EuzRmR8brwHMsLThjXgxY/8T9pREDl8EvnGAeMLMBAqVyUfCBMRUelL5DDFMgDM06caBpJBYT6yuOIotwCAW86Yk/F5WfUR1i90i8UVImHJ4sI3ha5E4WuE/3TaXnj/012oqWCoQOWrrL5TuePlT4o9BCIiykEupRFOyWvlMm8g0z6cGeFZo/qib21Fxu1mkxE+XJ9Guqm+EmftOxZXHDfN93OTGeHCvY33qYpi1uh+Bdu+L9nURBDloKwC4UvufdtXn0ciIgoWW2lEjpFwpgk13NbNJPsJNfyve8HC8Xjt8kMwqE8VJg2ux8LJA30/N9k+jX0ViLqjLALhW86Ybd42Tg5ERFQ6ci2NsMrUR9iqX4bsrlsfYT+yCeJDIck4Dtu2LUcWN0sjyuJt3BuntaMCK4v/QU31lebtjli8iCMhIqJc5COHEcoieq2Kpp+EKVkaEZxATFn6mU3SO2XUV7F+l6g7yuJ/0OA+VeZttlEjIio9ucws52RkY/NRLeDcRNASk1efMB2n7j0KQxuriz2UHsHveqlQyiIj3L+uEqP6az0XObEGEVHpsV0s180sbD6yuMnscrc3lTfW46qpiGDOmCJfyNYDAvTyU5kqi0AYAC46WOshzECYiKj0xPNwoXO2db2/+eIMHDNjaPptdXtU+debrgnvRYdKRVI2gXBlRKv3uv7JlewcQURUYvJRGpHNxXIAcMJew/GHk/d0fcycrjloNRFElFe+AmEROVxEVojIShFZ5LHOASLyhoi8KyJP53eYmRlTLf/r1bXYsKO9p3dPRBQYpXDOdsplZjkno3Qgn7Erw+Di4utPhZbxYjkRCQO4DsAhANYCeEVEHlBKvWdZpxHA9QAOV0p9IiL+myHmyc72LvN2c0esp3dPRBQIpXLOdsrrhBp5jISDlBAO0liIyoWfjPAcACuVUh8ppToB3AngWMc6XwZwr1LqEwBQSm3M7zAzG9eUnAP+y3/+X0/vnogoKErinO2UUN2/WK4QgWKg2qex6o8o7/wEwsMArLHcX6svs5oIoK+IPCUir4rIaW4bEpFzRWSpiCzdtGlTbiP2MGNEI247ey4AYHNzZ163TURUQkrinO2Un4xwAUojghMH92r8EECF4icQdjsNOP8kIwD2AnAUgMMAXC4iE1OepNSNSqlZSqlZTU1NWQ82k4pI2Vz7R0SUq5I5Z1sl8tDwR8yf+Y9eg5AZnjykHgB6Rds0Az+IUKH5mVBjLYARlvvDAax3WWezUqoFQIuIPANgBoD38zJKn6YO7dOTuyMiCqKSOWdbFaN9mq9t5m9T3TZzZF+8fOlBGGiZRKrcMRNMheYnhfoKgAkiMkZEKgCcBOABxzr/BrBARCIiUgNgLoBl+R1qZjUVEZw8ZyQG1FVmXpmIqDyVzDnbyl4akWONsNE1Ii8jMjcaKL0pCCbqCRkzwkqpmIhcAOBRAGEAf1VKvSsi5+mP36CUWiYijwB4C0ACwE1KqXcKOXAv9VURtLBrBBH1UqV2zjYklEJ9VQS72mPYb8KAnLZRmIxwgGfW6AUG6YH/iH69Yypp6nl+SiOglFoMYLFj2Q2O+9cAuCZ/Q8tNTUUYbV1xxBMK4XxMOE9EVGJK6ZzdGUtg3pVPYEtLJw6aPBB/OX12ztsypkXOZz0va1SL6+DdBuLmM2ZjvwmFrVGn3qvsri6rrdBi+7aueJFHQkREmTR3xLClRev0k486YYDBazkRESycNJCJLSqYsguEK6PaId3y/Koij4SIiDLpiCWTFu3dTGAwACaibJVdILytRZth7tePvW+bu56IiIKnoyvZN629q3s91PJVEnHhgePzsh0iCr6yC4T7VCfLnne186I5IqIg64xbA+HuZYSNb8+7W2HxnUMnmbfZvouovJVdIHzq3qNw2NRBAICd7V1FHg0REaVjzQh3xLqZEdYD4UQBoldWXRCVJ19dI0pJJBzCcXsMw6PvfoZmtlEjIgo0a41wW2d3a4S1cDXXMPjBb+6L7a1MoBD1JmUXCANAfVUUAEsjiIiCantrJ376n/dw+LTB5rL2WDcDYf1nrgnhacMaurV/Kq4l390fO/m+T1kqy0C4rko7rDfXbO9Vc7ITEZWKa5esxH2vr8OnO9rNZd2tETYiYZVzTphK2dimumIPgUpQ2dUIA9rscgDwi8VFnTGUiIg8GD2DX/xoi7msu10jjAk1eIEbEflVnoFwZVkmuomIyka8AO0teUEbEWWrLANhozQCyMNXbURElFfbWztx64sfF2z7iilhIvKpLAPh6mjYvG1M3UlERMHw/bvfcl2+58jGbm1X8tRH2Ir1xkTlrSxrCMQyz+bW5k4Ma6wu4miIiMhqc3NHyrLFFy7AqP413dpuqJvt09Lh9M1E5aksM8IA8ONjpgAAfrl4GSfWICIKELfy4LFNtajt5vUdRqxaiAk1iKg8lW0gvP/EJgDaFcm7/+SxIo+GiIgMbmFqZSQPb0fsGkFEWSrL0ggAGFBfWewhEBGRG5dIVfJQe2BOqNHtLWXvye8dYJslj4hKQ9kGwn302eWIiChYCtA5DUCyRrgYKeExA2p7fJ9E1H1lWxrhVIielURElL1C1fAacTBP90TkV68JhHe28YI5IqIgcAaqM7vZNs2QLI1gJExE/vSaQHgHA2EiokBwTnjxqy/snpftFqQygjE1UVnrNYHwdgbCRESBFAnl561ICtlHmBM4E5Wl3hMIt3KGOSKiIOiMJ2z3w6H8BJlFvFaOiEpUWQfC45qSV/Fub2VGmIgoCNo67W3GouE8ZYRh9BFmJExE/pR1IPyv8/bBP86aCwBYsnwjWjtjRR4RERG1OgLhvGeE87I1IuoNyjoQ7ldbgX0nDAAAPPDmevzgnreLPCIiImrvcmaE8xQI6z+ZESYiv8o6EHZaunprsYdARNSrKaXQEStMjXCIUywTUZZ6VSBcX1W2E+kREZUE40K54/YYai7LW40wJ9Qgoiz1ikD4wMkDAQCN1RVFHgkRUe9mZIOnDWswl+UrI2zghBpE5FevCISvP2UmZo5sxMurt+LnD75X7OEQEfVaHV1aIFwZSb79RPJ2sVz+SyMYUhOVt14RCFdFwxhYXwUA+Mtzq4o8GiKi3qsjpl0oVxkJm8uMALa7CjnlRZ6GSEQB0ysCYQBo7mDrNCKiYjNKIyqj+X/7CZk1wszjEpE/vSYQ3tzcUewhEBH1em6lEflSiNIIIipvvSYQ7l+XvFDuobc2FHEkRES9l1tpRL4UonxhaGM1AGDe2P753zgRFV2vCYT/34l7Yo8RjQCA829/DSs3Nhd3QEREvZBZGlGAjLAhn10jxgyoxXM/WIjzF47P2zaJKDh6TSDcVF9p61t53HXPF3E0RES9UyFrhAtVGjG8bw1CeW7xRkTB0GsCYQDoUx01bzd3xPDaJ9uKOBoiot6no6twpRG1Fdo2ays5eRIR+dOrzhYNlkAYAD5//QtYfdVRRRoNEVHvU8jSiGP3GIbNzR04de/Red82EZWnXpsRNrR2sq0aEVFPSQbC+c8Ih0OCc/cbh+qK/G+biMpT7wqEq1ID4fXb24swEiKi3snsGlGAGmEiomz1qjORszQCANo640UYCRFR71TIPsJERNnqVWeivrWpgXB7jIEwEVFPKWRpBBFRtnrVxXJuJ14jO0FERIW3s70L4ZCgIhLCAxfMR2eM52AiKp5eFQi76WBGmIiox3y4sRmj+9cgHBLsPryx2MMhol6uV5VGAMAfTt4TPzt2KhZMGAAAOOtvS4s8IiKi3uODjc2YOKi+2MMgIgLQCwPhY2YMxWnzRuPnx04zl41e9BB2tHYVcVREROWvIxbHx1taMGFgXbGHQkQEwGcgLCKHi8gKEVkpIotcHj9ARHaIyBv6vx/lf6j5VRW11wtv3MU2akRUHoJ6zt7S3ImEAgY3VPfE7oiIMspYIywiYQDXATgEwFoAr4jIA0qp9xyrPquUOroAYyyISNg+b3xbF2uFiaj0BfmcvbWlEwDQv66iJ3dLROTJT0Z4DoCVSqmPlFKdAO4EcGxhh1V4jY6ewp+79nnc8vyqIo2GiChvAnvO3mIEwrUMhIkoGPwEwsMArLHcX6svc5onIm+KyMMiMjUvoyugSDiE1VcdhQe/ua+57IqHlhVxREREeRHYc/aW5g4AQD8GwkQUEH7ap4nLMuW4/xqAUUqpZhE5EsD9ACakbEjkXADnAsDIkSOzG2mB1FUmXwJnuQQRUQkK7DnbLI2orez2toiI8sFPRngtgBGW+8MBrLeuoJTaqZRq1m8vBhAVkQHODSmlblRKzVJKzWpqaurGsPNnWN/kRRvRkPZyjL90MX772IpiDYmIqDsCe87e0tKJSEjQp7rXt7AnooDwEwi/AmCCiIwRkQoAJwF4wLqCiAwWEdFvz9G3uyXfgy2EaDiEE2YOB6BN/bmluQOxhMLvl6ws8siIiHIS2HP29tZONNZEoe+aiKjoMgbCSqkYgAsAPApgGYC7lFLvish5InKevtoXALwjIm8C+D2Ak5RSzq/iAusXx2s9hTvjCex1xX/N5RMvexi3vfRxsYZFRJS1IJ+z2zrjqKlgNpiIgsPXGUn/6myxY9kNltvXArg2v0PrOVXRMI7dYyj+/Ybt20N0xhP46QPv4ZS5o4o0MiKi7AX1nN3elUBVtNfN40REAcYzkm7e2P6uy7sSiR4eCRFReWrriqdMZkREVEwMhHVe7XxKp8CDiCjY2hkIE1HAMBDW+elrGU8ofP765/Hk8o09MCIiovLSHkswECaiQGEgrJs0uB77jk/pHgQA2PfqJdjR2oWdbV147ZPt+PZdb/Ts4IiIykB7ZxxVEb7tEFFw8Iykq6+K4h9nz3V9bO22Nry8eiu64lq9cJitf4iIstYei6O6ghlhIgoOBsI+dcTiaO/SAmG3HpiJhDJnTSIiolTtXXFURRgIE1FwMBD26YLbX8eaba0AgLDLq/bHpz/EzJ8/jvXb23p4ZEREpaGtkxlhIgoWBsIOx+85zPOxB9/S+gy7lUY8sewzAGAgTETkoT2WQCX7CBNRgPCM5PB/J+6BacP6uD4WT2i91EKh1EA4pAfHCbZbIyJKkUgodMYSLI0gokBhIOzC2Tv4q/O0meXuWroWQDLotTIWldDM0kREPaY9FgcAlkYQUaAwEHZhjWW/d+hE/ORzU22PR8Ja1LtWrxkGkhfQMSNMRJTKuNiY7dOIKEh4RnIxrG+1eXvqsIaULhGN1VE8/t5n2PfqJ7FkuVYbbFRLKDASJiJyau/SMsKcUIOIgoSBsItff3GGeXtnW1fK4zUVEbz/2S4AwMurtgFIlkvE4gyEiYicGAgTURAxEHbRUB3F9afMBACMH1iX8vhzKzdj+adaIHzD0x/iuidXIqHXU3TGEj03UCKiEhHT68aM0jIioiCIFHsAQXXk9CF456eHoa7S/SX6z5vrzdvXPLrCvL1qc0vBx0ZEVGqMrjsRl647RETFwoxwGtYg2MgQj22qTfucXyxeVtAxERGVIiMQDof4tkNEwcEzkk8H7zYIJ88ZiVvPnJNx3SeXb8ToRQ/ZukoQEfVmMTMQLvJAiIgseEryqSISwpWfn47hfWsyrnvGLa8AAF7/ZHuBR0VEVBqYESaiIOIZKQfvX3GEeTtdhrilI4a2znhPDImIKNDMQNhlQiIiomJhIJyDCktD+AUTBniut+jet7Hbjx7piSEREQVaLKF11AnzYjkiChAGwjmq0acJFRH86oTdizwaIqJg0+Ngtk8jokBh+7QcPXrRfli2YScA4EuzR+BLs0fghZWb8eWbXkpZNxZPIMIrRIioFzMywiGWRhBRgDA6y9GIfjU4dOpg27K9x/bHgLqKlHW3tnaat1/9eCu+eMML6IixdpiIeg9j0iH2ESaiIGEgnEehkOAay/TMhp1tMfP2onvexiurt+GjTZx4g4h6D2P6edYIE1GQMBDOs5poOGXZwb99Gp/tbMfKjc3mm4CRHSEi6g2S7dMYCBNRcLBGOM+qK1IDYQCY+8snAABThvQBoL0pxOIJLP90F6YNa+ix8RERFUOcpRFEFEDMCOfZ2Ka6tI8b2ZDPXfs8fvP4+zj6D89hxae7emJoRERFY2SEQwyEiShAGAjnWV1lBKuvOgpnzh8DABgzoNb2uEKyJOLNNdsBABt3tQMAnvtgM0YvegjHXvd8zwyWiKiHGIEwM8JEFCQsjSiQy47aDd85dCJqK8IYc8lic/k763aat402Qvr7Ay644zUAyQCZiKhcxIyMMNunEVGAMCNcIOGQoK4yAhHBPV/fx3WdVZu1zhGJhEJ7VxzbW7vMx/79xjo8+Nb6HhkrEVGhmRlhTqhBRAHCQLgH7DWqL/582qyU5eu2twEAWjpjuPGZj2yPfevON3DB7a/3yPiIiAqNXSOIKIgYCPeQPlXeVSgX3P462rvcJ9ho6+TEG0RU+sxAmKURRBQgDIR7SJ/qKACgIhzCkdMHpzx+/VMfuj7vmkdX4MnlG5FIKHy2sx2dsURBx0lEVAjJi+X4tkNEwcEzUg+J6nVxowfU4MjpQwAAA+sr8a2DJqR93l+fX4UzbnkFF9zxGub+8glM/OHDaO+KQ+k9Od9ZtwMX3fk6Nu3qsD0vkVD4/RMf4NMd7QU4GiKi7JgZYdYIE1GAMBDuIWMG1OHkOSNx7ZdnokHPDvevq8S3D5loW8+rfm7x25+atydf/gj++LSWQf7Lc6tw/xvr8dKqLbb1X/tkG377+PvY+8onsLnZHiQTEfW0GEsjiCiAGAj3kHBIcOXnp2PioHpMHFQPAGio1uqGz91vrLne4dNSyybc3P/6OgBAa2cMANDelcC0Hz+Kax5dDgDYaMkQ37V0Tdpt3fTsRzgux97F+1z5BK548L2cnktEvYcxrTwvliOiIGEgXASD+lThdyftgd+dtCcA4NIjdzMfG92/xtc2KiLar+6FD7VM8LaWTjR3xHDdkx9i/fY23Pz8KnPdrlhyEo+nVmzEO+t22LZ1xUPL8EaOvYvX72jHTc+tyrwiEfVqsTgDYSIKHk6oUSTH7jHMdv/2s+fivQ07cdq80bj1hY+xqyOW9vnvrNuJs255BbvatfU+3ZmsBd7nqiW2dbviyQvsTr/5FQDA6quOStlmPKF8v0ktXb0VjTVRX+t2xRO4/skPcfaCMait5J8cUW8UV8aEGkUeCBGRBaOSgNhn/ADsM34AAOCVHx6Mne1dmPOLJ9I+54nlG83bf0mTle1K+Os00dYVR53PQPULN7zoaz0AuO/1dfi//76P5o4uXHbUFNtjSilccMfrOGn2CCyY0OR7m0RUWuKJBCIhgbBGmIgChKURAVQVDWNgfRVWXXmkuezYPYYCAE6eMyLr7VlLI9JpyZCF9uPDTc0pPZGNXshtLr2SYwmFh97agFP/8nK3901EwRVLKISYDiaigGEgHGAigr+fNQf/PHdvnLf/OPSrrcBFB09MWa8+zWQdgL00wqq5I4YPPttl3v/mHa/j9JszB6SjFz3kurwjFsdBv3ka37rTPiOe0epNkPomaLRUIqLylkgoRBgIE1HAsDQi4KzlAq9dfojrOnd9bR6O+N2zntt48K31uPzoKeYFdoYzb34FL6/eat5/edVW51NTpAtcWzu0jO/zK+2t3IxnuL0HxhgIE/UKsYRi6zQiChxmhEvQk987ADefPtu8P2ZAbco6vzx+Oi4+bBIAYFtrF371yHLsaO0yH7/uyZW2INhqc3OH50Qcu9q7XJcDyZrlcEiwcmMz1mxtNfcFwLU2MB5nIEzUGyQSipNpEFHgMBAuQWMG1GLh5IFmhrcqGsacMf0wfmAdAKBPVQRfnjsS5y8cbz7nby+uxoyfPWbev+bRFZ7bn3XFf7H3le4X6u1ocw+EX/14G773rzfNdQ7+7dNY8Ksnsb21E5ubO831lFK48+VPzP7Hfi/kI6LSFmNpBBEFEEsjSth/v70/Pt7aAkArj9i0qwOzf/Ff/NDSmaEqGkJ7VwJdOWReu+IJRMP2z0pegfAJf3zBYxvJ/YZE8MKHW7Do3rfx5toduPLz01kjTNRLxBMKIZZGEFHAMBAuYSP712CkZQKOpvpKfPjLI229gKOhENqRW9b15Bv/h7u/vo9tmVcg7KXTcqHeX59fBaVXDH+m9z32upCPiMpLnBlhIgogX6URInK4iKwQkZUisijNerNFJC4iX8jfECkbzgkxulOTt/Tjbbj+Ka2+tzOWwKrNLVkHws5Wajc/vxpA8iK57maEF7+9AY+/91m3ttEdnbGEr4sMiXpSEM/ZcbZPI6IAyhgIi0gYwHUAjgAwBcDJIjLFY72rATya70FS7iIh+6/4jPmjs3r+rx5ZgXhCYf7VS7Dw10/hgttfz/wki44u94zvM+9vwuufbOt214hv3PYazrl1aVbPWbW5Bas2t3Rrv4brnlyJL/3pRbz6MYNhCoagnrNZI0xEQeQnIzwHwEql1EdKqU4AdwI41mW9bwK4B8BGl8eoSHYf3mC7//UDxmHBhAHm/Xd/epitA8WPj9HeL2eObDSXjbt0MTbt6shp/161wwBwzq1LEfNRu7xuexs+3NSc0/7dLPz1U1j466fysq2N+uvy9todedkeUR4E8pwdV/6ncCci6il+AuFhANZY7q/Vl5lEZBiA4wHckG5DInKuiCwVkaWbNm3KdqyUg9+dtAduP2eueb+mIoIrjpuGkAD3nz8ftZURLJw8ELecMRu3nDEbZ8wfg9VXHYXRLi3ZcuE2m5whnlD45h2vZdzG/KuW4KDfPJ2X8eRb35ooAGBne/dn5SPKk0Ces+NxBsJEFDx+AmG3M5czjff/APxAKeUd9QBQSt2olJqllJrV1NSUblXKk/qqKPYZN8CczKIqEsKo/rX46MqjsMeIRnO9AyYNxAGTBpr3ra3XvNx+djLA3m9iEx69aL+sxtbSGcf7nyUzvf911Pqu2tyCJcv91f/+a+mazCsVgPEfgW/wFCCBPGdrGWF27CSiYPHTNWItgBGW+8MBrHesMwvAnfqECQMAHCkiMaXU/fkYJHXfg99cgCdXbEQk7O+NaFxTHWaMaMSba7anPHbhQRPwxb2GY0S/Gjy/6EBsae7A7sMbAQD3fWMfHH+9dzmEVWfMXj989q1Lsfqqo9DaGcP/PtqCM2+x1/5edt/b+HhLKy49cjcoKEwZ0sd87OK738K21k6cu984X/sGtAv5qqJh3+u70WePxk3PfoQDJw/EbpYxWa3Z2or+dRWoqWCjFiq4QJ6z4wkFn6cfIqIe4+dd+RUAE0RkDIB1AE4C8GXrCkqpMcZtEbkFwIMMgoNlytA+mDLUPUjzcvPps/HOuh047a8v25Z/++AJ5ixxwxqrMayx2nxsz5F9cf7CcdjSrE2k8d9l2XV0OOWm/2FLcyeWf7or5bHbXvoEAHDk77XppJ0Z6F8uXo4PN7Zg9xENOGXuqIz7+vo/XsXNZ8zJanxWSinc8bI2pm2tXTjuuuex4oojXNdd8KsnsduQPnj4Wwuy3k9XPIErHnwP5x84HgPrq3IeL/UagTxnd8UTKRfvEhEVW8azklIqBuACaFcWLwNwl1LqXRE5T0TOK/QAqXj61VZgv4lNmDe2PwDga/uPxQ1f2ct1qmSriw+bjKtO2B3fOmgChvetxkUHTwAADO+bDJjvOGdv1+c+v3KLaxDs5rD/90zKsn8uXYPL7nsHAHD1I8vTlkw8uaJ7NY+PvfeZrZ1cRyyBlz7akrLeO+u0C+mWbdiZ036WLN+Iv734MX76wHsAtEz2jc98iFgBezB3xRNIcLKTkhTUc3ZHLGHOhklEFBS+vqdVSi0GsNixzPUiC6XU6d0fFgXJzWfMxo62Lgzqk102cvrwBjz3gwMBAMfMGIoBtZXmNM8D+1TmfZxWc3/5X3y2U+vo8K+la3HXefN8P7etM47qivQlEys37sLX/v5qyvI/LFmJufoHBwDY1tKJo//wnO99p7OzXQu6r39yJX6/ZCUaqqM4cfZIrN/ehjtf/gTfPmRixg8pfk247GEcvNtA3PTV2ZlXpsAJ4jm7M5ZAfRVLg4goWPjxnDKqioazDoKdxjXVoaEmioZqrcuC9Q1xv4lN+L8TZ3Rr+05GEAwAL6/Wevz+4O638MCb9lJJpexZz2c/2ITdfvRIxr7A1z/1oevyjpj92qO31/lrq/bou59i9KKHsGFHW8pjxrS0z36wGR98tsvMQrd0aPu68I7X8fslK31n0v367zJ2QqT86YwlUMEiYSIKGH48px514uwRuPGZj1AdDeOcBWOwz/gBWDhpIJRS2NrShfrKCLoSCXTFEth3QhOWbdiJb96RnMTjkiMm48qHl2e937bOOP65dA3+6SiVeODN9bjtpU8wdkAtrjphd7z4oVba8MLKLZgxvBEJBdevc50X+pn7sbSLe3d9an11Qp9da/XmFhx3/fMIieD4PYfhk62tAIA3PtmOIdOrbc+xNqR4w+XiRWOf3Z2lL8he/XgbhjRUYWhjdeaVKZA64yyNIKLgYSBMPWrR4ZPx9f3Hob4qisuOSk52JSI4a98xKeuPH1iH7W1duPx+re73a/uPw2c7O/DX51dltd+nVrhnN7915xsAgJdXbcWyDTsxYVA9AGDJio34zePvm+u9sOhAWxDmFQiv3txq3l67LTW7u7m5AwP7VOHOV9Zge6uW2f3Lc6vw+T21Nq9bWjrTHseOti6zD5ZbFURbZxz7XfMkPjdjKC4/OmUyMQBaMC4C7OqI4bePvY8fHD45YylIsZ3wxxcQCQlW/vLIvGxv0T1v4dF3P8WS7x6AvrUVedkmpdfJGmEiCiCelahHhUKSdeBx6t6j8L9LDsJ939gHADBnTF8AwDkLtMD5h0fthv9+Z3/867x5OHzqYNdtfP221Ik7pjq6aLy5dgfufnUtAOD1T7bbHvvBPW/Z7ntNDd3cEUMiofDvN9bhfy4Xzv3x6Q8xetFDuOnZj2zL6/RSkR/e/455cZ2hy3JR3BUPLUvJ/BoB8dF/eA6vrN6KTbs68JfnVmGpXhKyanMLfvvYCiQSCm2dcYy9dDGuXbISNz79EW55YTVue+lj2/aCepFcd6fjNvz1uVW485U12Nbahe87fq9UOCyNIKIg4lmJSsLghirsOVILgA+fNgTPXLwQlx01BauvOgpnLxiL8QPrMHt0P9xw6l7INLfFwbsNwhs/OgT/OGtu+hUB9NeD9mc/2Ix/vvKJudzaLeKRixbg+UUH4rCpgwAAi+59C9+68w3c/PzqlO0Zy5xBXZ+qqHnbeXFdhyP7bEzrfP1TH2JHWxfEMn+CtRTjCze8iLfWbsfCXz+F3y9ZiVc/2YZd+gV3t7yw2gygdzlmxeu0BN6F7ExRLD978D3z9sYcpw6n7HXGE6iM8i2HiIKFZyUqSSP713g+dt835mPvsf1w+j6jceKs5LwCFeEQbj1zDv582l5orKlAY00Ux+0xFDefPhujPLY3eUi9efuBN9fjqN8/i6seXo7XP9lmLh/etwbDGqtxzoKxAIC7lq7N+nje/8x+odtrn2zDbx9/H2fd8gq2OsolHtdn4Nu0qwMzfvqYa4mE4ft3JzOe37rjdTyxXCsR6YonzMlE/vLcKrR2JoNhawZ6/GUP44PPdmF7a/qSDTfrtrdhzdbWzCtmYL2gcUtz7oGrUiolE9+RZgpwyi8tIxzsEhwi6n1YI0xlZ8aIRtx5rtYuLZFQ5gVy150yE/tNTE4TKyL4fyftCQCYNqwBs3/x35RtXfOFGdjnqiUAtB7HAPDueq0f8D7j+qOpvhK1en3trNH9XMfzo6OnYL+JTXhp1RazxzEAzBndz+xo8ZhjeunPW2bnM4JXL2+t9e5M8fGWZCC6fkc7Lrn3bQDAzvaY2Y2iuSOGy+9/F+EQcNmRUxB3dNI45P+eQd+aKF67/BCs3tKKkf1qfE0pPV9/3VZfdVTGddOxZs8vuP113HGuew/qtNuIJzD+sodTlnvVelP+sUaYiIKIZyUqa6GQ4Fcn7I77vrEPDpkyyHO9pvpK3Hb2XHxp1nBz2f8uOQhDG6vx42OmYGS/1Izx+QvH43cn7Wnr3fvIRakzx504e4RZumF11oLUiwPzrS1NxvPqR5LdN+55bS3uWroWf3rmQ9fgcFtrFxa//SkW/vopnHHLK7jLZaKSnz/4Hhb8agmue3KlbfkfnvggJTN81ytrsM2R6X7poy22zHhbZxzPvL/JNp5Vm1s8j8dNRyyOlz7agkffdZ/hsLkj5rqc8kspxa4RRBRIzAhT2fvS7BGZVwIwf/wAzB8/AD8/bhrWbG3F4Aatd/IZ88fgyOlDMPeXT5jrOrtIGCYP7oM5Y/rh5VVbseS7+6OtK47aSu2/2ZgBtbZ1rYHxmAG1+NUXdsfKjc1m1tbNOQvG4Ct7j8K/31iPjzY14/431ruud9vZc/HzB98zewsPrK/0VQ/7/MrN+OPT7j2S312vZZ6feX8Tnnl/E7Y0d+LqR5bjw18eiS3N2gV6AHDNoytw/sLx5vN+8/j7eOjtDXhEnxJ79eYWfP+et7DgrQH4u16n3dIRw4k3/g/9ayvw3A8OxG4/esR8/hnzR5u3t2VZovH9u9/Cvz1eIwBm5w4qLKPuvJKBMBEFDANhIofKSBjjB9bblg3qU4VnLl6IS+97GwsmDEjbz9aYPtpZPhANh7D6qqMwetFDALQprA1Lvrs/RASD9YlLhjVWY912e/u1536wEMP7apnpCw+agIff3uAaCP/0c1Mxf/wAzB7dzwyE7zt/vlmqAACTB9dj7ba2lIzom2nKLJyTiBgZ5SN/9yxWOGqcr3nU3uv5g43NOPFPL+Inn5uKDzY2A9AuQDT6Kq/Xj3VLS2dKvbT1osOOWAKrN7dgtONDxY/+/Q5uffFjXHzYJOw3oQnHXOtvNr9OfSrpkI9SD8qdkdVn1wgiChoGwkQ+jexfg3+cnbnTRKb62cUXLjCD3Gu/vCeWLNtolleM6FeDpy8+AEMaqrG5uQP3vLoWD7/zKaKRkBkEGw6bOhgvXnIg5l25BEMbqvCdQyfh8vvfwZfnjgSQnAjksiN3w7DGajTVV2KTnhW+5Yw5GNxQhWUbduK3j79vXoCXC2cQDADXPWkPmuMJhZdWbcURv3vWtvzXj63AXUvX2spWjr3u+bT7e/XjbRg9oBZKKYgInlj2GW59UWsBd82jK/DCh5uzGv/PHnwPP/nc1KyeQ9kxA2FmhIkoYMQ5xWxPmTVrllq6dGlR9k1UTl74cDPGNdWlTIP96Y52XP3Icvzs2Kmor4qiuSOG8297DT/53NSUMo1fLl6GG5/5CKfuPQorPt2FGSMacOFBE9DaGbeVhKRz5vwxWU90kq2KcAijB9RgxvBG/OvVtZg5shGvOXo+pzNpUL0ZuN9//nycf9tr+PtZczC2qS7rsYjIq0qpWVk/sUR155y9YUcb5l25BFd+fjpOnjMyzyMjIsrM65zNQJiIAMDMsDrNv2oJ1m1vwy1nzMb67e0Y0liFLc2dmDioDg+9tQHThjXgg8924RsLx6MqGsZl972N217Sei6fOGsEHl/2WUoLuHBIXKeEnjy43iznOG//cbjntbVmFnvWqL549ZNtyOaUNXVoH7PLx7/Pn4+pQ/tg0b1v44z5ozF1aIP/DblgIOzfx1tasP81T+E3X5yBE/YanvkJRER55nXOZmkEEQGAaxAMAA9cMB+bmzsxaXB9ymO7D29MWfaL46fjhL2G480123HG/DG4GslewNcuWYlRA2px9PQhCIUEf39xNS7/97sA4BokLTpiMjbsaENCAUMbqvDbx9/HH5asdO4SPz5mChZMGICOWALjB9Zh0g8fwaRB9XjowgX4dEc7WjpjGKdnfX/9xRnZvCyUByyNIKKgYiBMRGn1r6tE/7rKrJ4zc2RfzNRnAgSSQfY3D5pgW+/UeaNx6rzRabc1pCF5YeJ3D52Ew6YOxpm3vIJNzR1QClj6w4MxwDG+py8+ANX6hCFG9w8qng4GwkQUUAyEiaikTBvWgJcvOxhd8QQ6YwmzPZ3VqP61Ls+kYjHapzEQJqKgYSBMRCUpGg4hynZcJcEojajk74uIAoZnJSIiKqi2Tm2Gwyp9OnIioqBgIExERAVlzAjYt6Yiw5pERD2LgTARERXUNn0q67410SKPhIjIjoEwEREV1LaWToQE6FPFQJiIgoWBMBERFdS21k401lQglGH6cSKinsZAmIiICmp7axcaWRZBRAHEQJiIiApqW2sn+vFCOSIKIAbCRERUUFtbtNIIIqKgYSBMREQFtb21ix0jiCiQGAgTEVFBbWvtRN9aZoSJKHgYCBMRUcG0dcbREUtwMg0iCiQGwkREVDBbzVnlWBpBRMHDQJiIiApmW4sWCPNiOSIKIgbCRERUMNv16ZX7sUaYiAKIgTARERXMNpZGEFGAMRAmIqKCae6IAQDqqxgIE1HwMBAmIqKCaeuMAwCqo+Eij4SIKBUDYSIiKpi2Li0Qrqrg2w0RBQ/PTEREVDDtXXGEBKgI8+2GiIKHZyYiIiqYts44qqNhiEixh0JElIKBMBERFUxbVxzVFawPJqJgYiBMREQF09YVRxUvlCOigGIgTEREBdPeFWfHCCIKLAbCRERUMG2dLI0gouBiIExERAXT2snSCCIKLgbCRERUMCyNIKIgYyBMREQF08ZAmIgCjIEwEREVDNunEVGQ+QqEReRwEVkhIitFZJHL48eKyFsi8oaILBWRffM/VCIi8iNI5+y2zgRrhIkosCKZVhCRMIDrABwCYC2AV0TkAaXUe5bVngDwgFJKicjuAO4CMLkQAyYiIm9BO2d3xROoCHNWOSIKJj8Z4TkAViqlPlJKdQK4E8Cx1hWUUs1KKaXfrQWgQERExRCoc3ZCKYRCDISJKJj8BMLDAKyx3F+rL7MRkeNFZDmAhwCc6bYhETlX/xpu6aZNm3IZLxERpReoc7ZSQEgYCBNRMPkJhN3OYCnZA6XUfUqpyQCOA/Bztw0ppW5USs1SSs1qamrKaqBERORLoM7ZCaXAhDARBZWfQHgtgBGW+8MBrPdaWSn1DIBxIjKgm2MjIqLsBeqcrQXCjISJKJj8BMKvAJggImNEpALASQAesK4gIuNFtDOdiMwEUAFgS74HS0REGQXqnJ1QgDAQJqKAytg1QikVE5ELADwKIAzgr0qpd0XkPP3xGwCcAOA0EekC0AbgRMuFGERE1EOCds5WLI0gogDLGAgDgFJqMYDFjmU3WG5fDeDq/A6NiIhyEaRzdoIXyxFRgHFmOSIiKhheLEdEQcZAmIiICkIpBcUaYSIKMAbCRERUEEbVMUsjiCioGAgTEVFBJPRImKURRBRUDISJiKggEkZGmJEwEQUUA2EiIioIIyPMyggiCioGwkREVBCsESaioGMgTEREBcEaYSIKOgbCRERUEMlAmJEwEQUTA2EiIioI42I59hEmoqBiIExERAWhWBpBRAHHQJiIiAoiwYvliCjgGAgTEVFB8GI5Igo6BsJERFQQyT7CjISJKJgYCBMRUUGwjzARBR0DYSIiKgiWRhBR0DEQJiKiguDFckQUdAyEiYioIBJmI+HijoOIyAsDYSIiKgjWCBNR0DEQJiKiglBgjTARBRsDYSIiKgjWCBNR0DEQJiKigkj2ES7yQIiIPDAQJiKiglBm+zRGwkQUTAyEiYioIFgaQURBx0CYiIgKghNqEFHQMRAmIqKCSCS0n8KMMBEFFANhIiIqCGaEiSjoGAgTEVFBcEINIgo6BsJERFQQZkaY7zREFFA8PRERUUEk+wgzI0xEwcRAmIiICoLt04go6BgIExFRQSheLEdEAcdAmIiICoIZYSIKOgbCRERUEMka4SIPhIjIAwNhIiIqiGQfYUbCRBRMDISJiKgg2EeYiIKOgTARERUEZ5YjoqBjIExERAVhXCzHPsJEFFQMhImIqCCYESaioGMgTEREBaF4sRwRBRwDYSIiKohEQvvJQJiIgoqBMBERFQT7CBNR0DEQJiKiguDMckQUdAyEiYioIMwaYb7TEFFA8fREREQFwYwwEQWdr0BYRA4XkRUislJEFrk8foqIvKX/e0FEZuR/qERE5EdQztlsn0ZEQZcxEBaRMIDrABwBYAqAk0VkimO1VQD2V0rtDuDnAG7M90CJiCizIJ2zkxfLMRImomDykxGeA2ClUuojpVQngDsBHGtdQSn1glJqm373fwCG53eYRETkU2DO2YqlEUQUcH4C4WEA1ljur9WXeTkLwMPdGRQREeUsMOdsMyNciI0TEeVBxMc6bucw5bqiyEJoJ9V9PR4/F8C5+t1mEVnhZ5AOAwBszuF5paCcjw0o7+PjsZWuXI9vVL4HkieBO2ePubps/374f6N0lfOxAeV9fHk9Z/sJhNcCGGG5PxzAeudKIrI7gJsAHKGU2uK2IaXUjehmLZqILFVKzerONoKqnI8NKO/j47GVrjI8Pp6ze0g5HxtQ3sdXzscGlPfx5fvY/JRGvAJggoiMEZEKACcBeMAxqJEA7gVwqlLq/XwNjoiIssZzNhGRTxkzwkqpmIhcAOBRAGEAf1VKvSsi5+mP3wDgRwD6A7hevzo4Vq6fRIiIgoznbCIi//yURkAptRjAYseyGyy3zwZwdn6H5qmcW7OV87EB5X18PLbSVXbHx3N2jynnYwPK+/jK+diA8j6+vB6bGFNgEhERERH1JpximYiIiIh6pZIJhDNNGRp0IjJCRJ4UkWUi8q6IfEtf3k9EHheRD/SffS3PuUQ/3hUicljxRu+PiIRF5HUReVC/X07H1igid4vIcv13OK9cjk9Evq3/Tb4jIneISFUpH5uI/FVENorIO5ZlWR+PiOwlIm/rj/1eOD1aVnjODt7/DSees0v6+MrmvF30c7ZSKvD/oF3w8SGAsQAqALwJYEqxx5XlMQwBMFO/XQ/gfWjTn/4KwCJ9+SIAV+u3p+jHWQlgjH784WIfR4Zj/A6A2wE8qN8vp2P7G4Cz9dsVABrL4figTbSwCkC1fv8uAKeX8rEB2A/ATADvWJZlfTwAXgYwD1pf3oehtRkr+vGVwj+es4P5f8PlGHnOLsHjK7fzdrHP2aWSEc44ZWjQKaU2KKVe02/vArAM2h/zsdD+w0L/eZx++1gAdyqlOpRSqwCshPY6BJKIDAdwFLS+pIZyObY+0P6j/gUAlFKdSqntKJPjg3bRbLWIRADUQOs5W7LHppR6BsBWx+KsjkdEhgDoo5R6UWln2Fstz6HMeM4O4P8NK56zS/f4dGVz3i72ObtUAuFspwwNNBEZDWBPAC8BGKSU2gBoJ14AA/XVSu2Y/x+A7wNIWJaVy7GNBbAJwM3614g3iUgtyuD4lFLrAPwawCcANgDYoZR6DGVwbA7ZHs8w/bZzOflTqn8nrnjOLrljK9tzNtBrzts9ds4ulUDY95ShQScidQDuAXCRUmpnulVdlgXymEXkaAAblVKv+n2Ky7JAHpsuAu1rmz8qpfYE0ALtqxovJXN8et3VsdC+YhoKoFZEvpLuKS7LAnlsPnkdT7kdZ08rm9eP52ztKS7LAnlsurI9ZwO9/ryd93N2qQTCvqYMDToRiUI7od6mlLpXX/yZntKH/nOjvryUjnk+gM+JyGpoX4EeKCL/QHkcG6CNd61S6iX9/t3QTrLlcHwHA1illNqklOqCNtvYPiiPY7PK9njW6redy8mfUv07seE5uySPDSjvczbQO87bPXbOLpVAOOOUoUGnX734FwDLlFK/tTz0AICv6re/CuDfluUniUiliIwBMAFaIXjgKKUuUUoNV0qNhva7WaKU+grK4NgAQCn1KYA1IjJJX3QQgPdQHsf3CYC9RaRG/xs9CFotZDkcm1VWx6N/FbdLRPbWX5fTLM+hzHjODvD/DZ6zAZTw8aF3nLd77pydr6v+Cv0PwJHQrtr9EMBlxR5PDuPfF1qa/i0Ab+j/joQ2zekTAD7Qf/azPOcy/XhXoESuWAdwAJJXIJfNsQHYA8BS/fd3P4C+5XJ8AH4KYDmAdwD8HdrVuCV7bADugFY31wUtS3BWLscDYJb+mnwI4FroExDxn+/fA8/ZATgOH8fJc3ZpHl/ZnLeLfc7mzHJERERE1CuVSmkEEREREVFeMRAmIiIiol6JgTARERER9UoMhImIiIioV2IgTERERES9EgNh6rVE5AARebDY4yAiosx4zqZCYCBMRERERL0SA2EKPBH5ioi8LCJviMifRCQsIs0i8hsReU1EnhCRJn3dPUTkfyLylojcp8/JDhEZLyL/FZE39eeM0zdfJyJ3i8hyEblNn5GGiIhyxHM2lRIGwhRoIrIbgBMBzFdK7QEgDuAUALUAXlNKzQTwNIAf60+5FcAPlFK7A3jbsvw2ANcppWZAm5N9g758TwAXAZgCYCyA+QU+JCKissVzNpWaSLEHQJTBQQD2AvCK/sG/GsBGAAkA/9TX+QeAe0WkAUCjUuppffnfAPxLROoBDFNK3QcASql2ANC397JSaq1+/w0AowE8V/CjIiIqTzxnU0lhIExBJwD+ppS6xLZQ5HLHeunmCk/31VmH5XYc/D9BRNQdPGdTSWFpBAXdEwC+ICIDAUBE+onIKGh/u1/Q1/kygOeUUjsAbBORBfryUwE8rZTaCWCtiBynb6NSRGp68iCIiHoJnrOppPCTFAWaUuo9EfkhgMdEJASgC8D5AFoATBWRVwHsgFaTBgBfBXCDftL8CMAZ+vJTAfxJRH6mb+OLPXgYRES9As/ZVGpEqXTfThAFk4g0K6Xqij0OIiLKjOdsCiqWRhARERFRr8SMMBERERH1SswIExEREVGvxECYiIiIiHolBsJERERE1CsxECYiIiKiXomBMBERERH1SgyEiYiIiKhX+v8UWMNhXvCXCAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "210ns_image_603665940081_clean.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADDCAYAAAAya0IYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADJZUlEQVR4nOz9eZhl6Vndia7vRMSZYshBpSpVaSqpKElGYGQBsiSuAV88ALYb48cD2LeNsbuFb7eHbtvdgG0M2I3bBs9NexAXGtztBpvGNBjTxjQNxkYSQgKBJKSSqqRCKtU8ZGbEmSLOOfv+EfHbsfabJ3KqzIgTme96nngy4sQevmnvjLXe9b5fqapKiUQikUgkEolEIpFIJBLXg9ZJNyCRSCQSiUQikUgkEonE6UMKColEIpFIJBKJRCKRSCSuGykoJBKJRCKRSCQSiUQikbhupKCQSCQSiUQikUgkEolE4rqRgkIikUgkEolEIpFIJBKJ60YKColEIpFIJBKJRCKRSCSuGykoJI4dpZQPl1K+9KTbkUgkEolDlFIeLaX8jms8tiqlfNYN3ueGz00kEolEIrFcSEEhceyoquqNVVX93Em342oopfzRUspvlFIGpZT/s5Ry/qTblEgkErczSimdUsr3lVIulVKeLKX8hZNuUyKRSCwbbrYwey3Xy7+LE0chBYVEYgFKKW+U9M8k/eeS7pE0lPSPT7RRiUQicfvj2yQ9KOnVkn67pP++lPLlJ9qiRCKRuMORfxcnroQUFBLHDrfVllK+rZTyw6WU/62Usl1K+WAp5XWllG8upTxdSvl0KeV32blfX0r5yMGxnyilfEO49n9fSnmilPJ4KeW/cMX1IPL1d0opnyqlPFVK+aellN4Rzfxjkv5NVVU/X1XVjqRvkfQHSimbt2ZUEolEYnlQSnlLKeXdpZQLB+/U7y6ltMNhX3nwHn62lPJdpZSWnf8nD97VL5RSfqqU8uprvPUfl/Q3qqp6oaqqj0j6Hkl/4ub0KpFIJJYHpZTfVEr5uYP37IdLKf+Z/e7nSin/hf38J0op/+ng+58/+PhXSyk7pZQ/Ukr50lLKY6WUv3zwTn60lPLHbvR6C5qbfxcnjkQKCollwO+T9L9KOifpVyT9lPbX5ssl/XXtK6LgaUm/V9KWpK+X9PdLKW+WpIMo1l+Q9DskfZakLwn3+duSXifpTQe/f7mkv3ZEm94o6Vf5oaqqRyTtHpyfSCQStztmkv5bSXdJepukL5P0X4VjvlrSF0h6s6SvkvQnJamU8vsl/WVJf0DSSyX9R0k/eLUbllLOSbpP9u49+P6NN96NRCKRWD6UUtYk/RtJ/17S3ZL+rKR/UUp5/dXOrarqiw++/byqqjaqqvqXBz+/TPvv7JdL+jpJ73yR13Pk38WJI5GCQmIZ8B+rqvqpqqqmkn5Y+3+A/q2qqvYk/ZCk+0spZyWpqqp/W1XVI9U+/oP2X8S/7eA6f1jS/1JV1YerqhpK+nZuUEopkv5LSf9tVVXPV1W1LelvSvqaI9q0Ieli+OyipFRiE4nEbY+qqt5fVdV7qqqaVlX1qPaF3ctE2oP36ack/QNJX3vw+TdI+h+rqvrIwXv9b0p60zW4FDYO/vV3b753E4nE7Yi3av+d97eqqtqtqur/kfQTOnyP3ii+paqqycHfyP9W+38b3wzk38WJI5GCQmIZ8JR9P5L0bFVVM/tZOvhDs5TyFaWU95RSni+lXJD0ldpXY6X9yNan7Vr+/Usl9SW9/8BadkHSvzv4fBF2tO+CcGxJ2r7WTiUSicRpxUHq2U8cFEa8pH1R4K5wmL9jf0P772Bpv/7BP7R37fOSivajZlfCzsG//u7N924ikbgdcZ+kT1dVNbfPfkNXf09eCS9UVTUI17vvqIOvE/l3ceJIpKCQODUopXQk/YikvyPpnqqqzkr6Se3/oSpJT0h6hZ3ySvv+We2LE2+squrswdeZqqo2tBgflvR5du/XSupI+tjN6EsikUgsOf6JpI9KerCqqi3tpzCUcIy/Y18l6fGD7z8t6RvsXXu2qqpeVVXvutINq6p6Qfvv8c+zjz9P++/jRCKRuJ3wuKRXeu0Z7b9HP3Pw/UD7gTDwsmu45rlSynq4Hu/lG7meI/8uThyJFBQSpwlt7b+8npE0LaV8haTfZb//V5K+/qDITV9WH+FAAf4e7ddcuFuSSikvL6X87iPu9S8k/b5Sym87eDn/dUn/+iBVIpFIJG53bEq6JGmnlPIGSf/fBcf8d6WUc6WUV0r685LIu/2nkr75oCq4SilnSil/6Brv+88l/dWD675B+6lq3/8i+pFIJBLLiF/UPsn/70spa6WUL9V+TbEfOvj9B7Rf9LB/UFz8T4Xzn5L02gXX/fZSSruU8tu0X3Psh1/k9UD+XZw4EikoJE4NDl5af077wsELkv6opB+33/9fkv6RpJ+V9LCkdx/8anLw7zcefP6eAwvv/y1pYbGaqqo+LOlPa/8F+rT2/7iOBckSiUTidsVf0v47dlv7YuyiIl0/Jun92v9D9d9K+l5JqqrqR7VfBPeHDt61H5L0Fdd432+V9Ij2rbr/QdJ3VVX17264F4lEIrGEqKpqV9J/pv1347Pa34Lxj1dV9dGDQ/6+9osePiXpB7T/96jj2yT9wEFqGXUSntT+38ePHxz/p1/k9by9+Xdx4kiUqqpOug2JxC1BKeU3af8P2c5BYbBEIpFIJBKJROK2woHD4X+rquoVVzk0kbjpSIdC4rZCKeWrD6xe57QfIfs3KSYkEolEIpFIJBKJxM1HCgqJ2w3foP0aC49ofx/1RXm/iUQikUgkEolEIpF4kbhlgkIp5ctLKQ+VUh4upXzTrbpPIuGoqurLD3ZvOF9V1VdXVfXESbcpkTgp5Hs4kUgkTh75Lk7calRV9XOZ7pA4KdySGgqllBXtbyPyOyU9JumXJH1tVVW/ftNvlkgkEonLkO/hRCKROHnkuziRSNzuuFUOhbdIeriqqk8cVDH9IUlfdYvulUgkEonLke/hRCKROHnkuziRSNzWWL1F1325pE/bz49J+q1HHdxut6tut6uqqoRjopRS/57PZ7OZSilaWVlpfD6fz1VVVX0O36+urqrVal12zGw202w2kyStrq5qbW1NKysrWl1dVbfbVbvdru/BsfP5vL7GIlfHfD5vXNeP4Vz61Wq11Gq1GtfztscxiL/jWlzHx4rvvb18Xkqpr+Gf+zW5bmzLUeD+cez9foxNbL+3izb7GPn4eTu8XbF/19puPyeuNcdR11p036Pu4f8yDlc6Z1E7jrpuPJYxv5bzruU+V8OVxu5W4Ljvd4Bnq6p66XHd7Cbiut7DkrSysV699jVzPfWh3i1tWCKRSFwPxhpot5pc+T/O5cV1vYvzPZxIJJYV23ph4d/Et0pQWPTSb/z1X0p5h6R3SFK329UXfMEXaD6fazqdajqdNoSDvb097e7uajwea2VlRZ1OR+12uz6WL2mfZOzt7Wl1dVVbW1va3NxUq9XSxYsXNR6Ptbq6qvl8rueff16j0UgveclLdN999+ncuXM6f/68HnjgAb3yla/U2bNn1ev1NBqN9Nxzz+nSpUu6cOGCRqNRg8jP53OVUjSdTnXhwgXt7Oxob2+vIYIMBoPG52fOnNHGxoam06kmk0nd3na7rdlspu3tbe3t7anb7dZjsLKyotlsptFopPF4LEna2NjQmTNn1Ov16mutrq5qZWVFe3t7mkwm2t3drcdmdXVVpZR6POfzeT0ee3t72tvbkyS12211Oh2VUjQejzWdTus+S9J0OtXq6mp9zXa7Xd9XUn1PyN/u7q6Gw6F2d3fr+yB4tNvtWsDhdysrK+p2u1pdXa3nczKZNMSa2WzWmPuqqmpRiDbOZjO1Wi2tra1JOhSHEKZoe6vVaqy1vb09lVLUbrfr8WJsaNN4PG5cZ21t7TKBgn9pVylFw+Gw7j+/W1lZUavV0nQ6baydxsNTVY05YN0hkLkYw5y6cCOpHgtENsZi0f1c1Fl0D28PY8Lz69eIfbgajhJEuB/rjPm9VlHhaiLOIiHTfvcb13ST5cNV38NSeBerr/s//Ht1/2n9sz2RSNyW+MXqZ066CS8G1/c3cb6HE4nEkuL/rv6PhX8T3ypB4TFJr7SfXyHpcT+gqqp3SnqnJJ05c6Y6+KwWEqIzADIxnU61u7vbuJmTGumQFIxGI62urqrX6zXIWKvVUrvdrokvhFTaJ5Tj8ViTyaR2LvR6PU0mE0nSYDCQtE+6nZy1Wi11u936Wk7UVldX1el0VFWVptOpBoNBfTxOBSftKysrmkwmmkwm6nQ6Ndl08kS7nVjyOWO2tramtbW1WoSYzWYNgWJlZUWlFK2trdWkGKFhNptpdXW1JuiMmyR1Op2a2NF/F4AkaTKZ1MKDtxVS6g4Dd5R4/yJRd1HByfGifrszhTUBqfc284ULgrXEtRAdfB2ura3VogPtp70ITdzDv1h3pZR6nJlvxo9rucOD54Axc4cLc+l9QFyRdJmo4A4Zd+7477kHbaCNUTDgfNbgInLvYoPP+5Wwurq6UCygrbFP14KjxIQrCQm3Aa76Hpaa7+Ktcv7YbB+JRCJxh+C6/ibO93AikThtuFWCwi9JerCU8hpJn5H0NZL+6FEHEw0ej8c10ZEOo7CQxkg4ITqePsD1iGAS/YdEcaxHOsfjcU2WxuOxhsNhTUo7nY5WVlZqccFTJtbW1uroPsSz0+nU9/boNWSeaPfu7m59PO2kXd1ut24PpBPC6ED8IJqPEONEtdVq1SSc6znom4+zEzdILsc6qXY3gLsguAYRd9wE3DumjkDmYmQdcg05dlHBBQF+5+KKk2zmwvvM9V0IYexoh69P1g3X73Q6dd+4Fo4IF1Yg2ggQ/B7S7C4AT9FBgODaMT3GRQGpmaYC/FoOzndx40qpNi4ysMZcQGBcvL+xrYzvUXCBiXP8eE+LuVpax6L+HoUXm3qy5Liu93AikUgkbgnyXZxIJG5r3BJBoaqqaSnlz0j6KUkrkr6vqqoPH3U8UXIn0dKhaHBwzcuix06aPXK6tram8Xisvb29+noQfo4jej+bzepjPbLL57SF89fW1hpEinbOZrP690SwIUQrKytqt9uS9qP7o9GoJtn9fr9u197eXt0n0i0QExA0/L60EzcB4wD5hFQTYYf0QqIRDDxNwp0ViCCMMePA+HmU3NMJ3FniqQlux/f58nWAo4E5d3s9fZxMJpeRbu+7uy7m87l2d3frfnnk3cUar/fgQpaTdsYE1wtwASQSaSfqiAr0lfnh3pzDs+ApBaSe+PX8+t4nH0/u532I147ul0jaOZ57+vqKjoFFaQ7ejmsB63KRcBDrkSzCi3UbXC094rTget/DiUQikbj5yHdxIpG43XGrHAqqquonJf3kNR7byO+X9okD0WiPekKsie56XrVb+iXVdQVKKVpfX69z6SG3/jMpAdFGzzWd1EKm2u12HUWnRsDa2lqdToGg4NZ6Uh9Go1F9fVIi6C/RYxdXIJp80V4iuZBwvo8pDYwj7YK8OmmLhRABx7pDhM85z8UDJ+Z+rKcduLXf14GTWPrHMZ1Op3E/1oqTT+7NXEYXhQtRHpH3lIM4bxzvrpdOp6N+v7+Q6HNuFBi8j4tSDXyufWxdRIupAO5eoW8+7ghHtMF/R50M1rRf250usQ9xTr0AqNcX8b76HMf1ExHdEovcE/Fa8fwrXf96cDU3xLLjet7DiUQikbg1yHdxIpG4nXHLBIXrRXQgEK33yDpF/Dx/n5SCSHgg/BRz7Ha76na7kg4jrhDt6XRauwa8yKAXrYOwkwJBG8jZp/giu0TwmUfwcQt4mgN1EijI6JF8nA6cT3oCpI0ChrgpfCyxsbfbbXW73YZ4Eq35i1IInFgCTxPx4oFedwFy6eTWo/HUZfCIOXBRIjoNaB+CRKxVIR0KH15nwV0AgPZwrK8dFxoWpRggUvV6vbq+BWvHnQ2sDY+mR+t/FE24L21zQYOxjyKF98VTbbyv0WXha9JTgY5KMeDfRaIIwlVcK96Ga6l54C4NP8fnbpHb4kZEg6sJDreDOyGRSCQSiUQikTgOLI2gEO3nTqqkZgE4SQ0xwUkgxB/y7ukQ0cru5HY0Gmk4HKqUon6/X6ccxNQJFzS4J6Qd8QLHBXZyJ8AIHQgOCAseBae9CAiQ1d3d3fq6RN5LaVbg9zQMiL6nS1C/getXVVWnELhrwUn5UdZzT01wsuwRfq7h80ttCoSjWOgvRr6dVOLe8BoGMYoNUScNhXST6F5AxKG9MR0kOgncDUANDNZgbDvH8znEm9QS+ubpIJzj13HS7M+D98fXswsG0YER++MpOVGIiIgODL++16RwMO+xZsaVsMjl4c+s1Ex7iOLA9YoBN9PNkEgkEolEIpFI3GlYGkHhKIuzdGhpl5qF87zYopNqzwmH9EmHogVE3x0R0+lU29vbGo/HWltb0/r6ep277rtKQPJxMFBIks/ZBrLT6ajb7daWeP8dLgbItNeKcAeAF5F0QYX+OXn1VAcnspPJRO12W71er7GtohPpWFTR6014pJh2llLqXS/iLhCLnACOvb29RsFL5toJrTsa6BeuDqLipH5EYukpM1eyynstjbgNYSyG6GPA2vHCmggKfg7j4cITnzG+9NvdDZyPcBGj8d42T2NwN4MXiqTdiwSLeN2j0gmOSlOIDo5FaRt8+Xrz68R2LLqvp1HEay4SOa4nTeG0pzQkEolEIpFIJBIniaUQFDy6CtwyD5mIuwD4sR4JldQgn5BeSKpHTp3w7u3taTgc1mQe4k/6gNv3sd5DRoETHk+NcFs66QkeceUcyPbu7m5NWGmj2+49rSCSePqLYLG7u1tH9hkDSLF06GZwIh/dHRznAkIk63EeY6SfeZFUi0EQ9OhgIGqOAOHt5nxSWOgHQoETb0+foa1O5GmHE3oXFqJYRaqMOzuYWwQOX6OsE7+2CxMe3Y+pDLSL41wYWCQK+Hy4uyPuOuG4mivB234UovDlqRQuBi5yKXDtRW4k75eLC17ThNQbzvP0jtiPK/X7RtMnEolEIpFIJBKJOxlLISiUUtTtdmsruJM2j95CxLwInxeOi1Zo7O2QxkiOuD5t2Nvb03PPPacLFy7ozJkz6vf72tzcrAl5VVV1Gz0qW1WVxuOxJpNJ3R4vjLiyslJH4ym8KDWj6JA+FyEQMrgPJF9SfT/f0tIt/1jrpX0ST/oDY+uuBEgr6REuGvB9dIz4jhmQfz/HI9CLItX0i7mhrRBG39ECAYZtDj2lhH5zP3c9xJSLWAfAt3L0teiE3tdSjKojVvi9EL28noSTakSZaOPnPu6Q4F5OtiPpXVSIkXPinNGm6FzgufL0kzh/keR7O1y445nyfnq9ERcJ/GcXfOJ68+d80bPnbfZn29vvuB5RJZFIJBKJRCKRSByNpRAUILmSGlFbj656xJcvCIkTCicdUrOAnEfBPSIMGZ5MJhoMBnr22Wf1kpe8pK7kv7Kyop2dHZWyb/WPKQdEhD1aSgV9yDuiwdramkajkaRDkse1iHR7pB6y5uTTo+outnhbYn9dvMByv7u723A70AcnwLTTxQov5OdtBU6Wq2p/Zw7agMuAOfdaGYt2xeB4RB13q1C/gGt3Op2Ge4B7UIcC0YJ1QX8Zeye3UZSIkXbGAjHGx8AFGd9RQ9p3UzDGMaLOmqY/PBuILH7v6KbwcfPnx9NWEA1c0HLnQ3QiXIl4u0DnYpI7FRgXXzNem4M2xHXja9rTTWjf3t5e7bZBvInjskiYWOTuiGOaSCQSiUQikUgkrh1LIShE9wE1C9w6z3HSoagQ6xtIhyQPAh8jqR515lyIpbQvKgyHQz333HNqt9s6e/ZsY0cA6iyMx+OaAJKeAFmDZEKYERVoe6fTuSxnn+MAffY6Eb41JKIAbWHHAfrmxM1rPvj96DufxboD9APiztfKykpjVwkfW09T8XoNkEvfmpGdK5h7J+8O38UCl4Y7HDyqP51OG04O2s748eWpMe7miM4EHyva54UgmUfGzoUO6ix41Jx15wQ5OlDc3cB4eB0QPvOtHf0Z4l7+r/fNr7XItbIoLYExjzto+H2iEwOy721zgYF0IX9euJ8LUN4O2kztEi9+elRKxdWQQkIikUgkEolEInFjWApBwSOEq6ur6vV6Go/HjUgqJMjdCBAJv07cNYFj/T5c06PARKwvXbqknZ0dXbp0Sf1+XxsbG/WuAr1eT+vr6w0bdXRQcD23cEN6PEUBQIj9c8gtW1SSk47wsbu7W6cdxCg1/XRC7btCONlH2IDgeoFKjyB7Lj5ftDWOIfCil9FR4sQvpgAcZWlnfriup6HEyLnXyqAN7oRw4YP2eyqAzyv9Zvxc2KEehu/SwFytra3VNR52d3cb235GBw338bZGoQKxgrYyX+6UoY8uMiDcILT4zhasHR8nJ+fAhQquGd1DzI231Z1BXtDThRTWGW30eed+niLhYoOLFe72iVg01hFHORkSiUQikUgkEonE0VgaQQFiQ6SWbQEX5YjHrRndxu0kRjrcNYFoqtvL3drOebPZTDs7OxqNRo3rQqr6/b5KKXV6A3UHcAtwLF+tVqvetnA6nda7IzghJ3cdG7e7E3x3A9wQtImINu2M5BrRAWLLMV6vwMm+jzX/umDjhJB70x/vM3CrfbvdrtMQINz0C7IdUymcbPp8+zzTzxjJdiEjkmyvSeAChqdtMA/0qdvtNlwcEGDa56JCFMi4j6efLNruEtBmCmd6bYUoopHi4cd4u31duIvE28g4kqbDVqm+nvy68TmSDlM54jnxeB97xnmReOX9ceHIUyd83Bfdy59BxiK6HnzNHPVZCguJRCKRSCQSicRiLIWgIB0SDQoYQnSGw2Ej1xxbNmTbaxQ4aSEdotvtNkglBAuiDQni88lkclmdhEheIZc4BYhG7+3t1aSZezkJ94gxZL+UUqdMtFqtentHSGy3221sU+gEkDHY3d2tI+WOSLSkQys67en1eo2CfHEsvR4AQsdoNKrHtNvtNnZB8IKEjFu73a7FkChQuFDE/aJAQKFFr5ng53qaAm1kjbgbAXjU38coboHprgS2H/U0EBelRqNRI+ofU06kw10o3PrvY+3rl744cZYOhShPX+F7CDkpHt4/xon2xRQE/wzni4sk1FtwcYy+RBcN9+Lc6Ojx1AV3WDAGPh64k6Ibhd+5mOLPWUwz8XGIDpEUExKJRCKRSCQSiRvDUggKEKO1tTV1Op3aLr2+vl5b8vnD30mdtB+lJzoK6YE4UCOBaLrb3CGMTqbm87kGg4EuXLigixcv1nUSsIlDtiE4kmoCB9l1J4GnCDhx9XaVUupCjePxuBYsEAu2trZUVVWdArK7u9uwunPPGLn3ehHS4XaNFLLzyDwElLQM7PZSU+hx2zttdfLqxNLdGIwhue8uKvjYSIcpLU7Y+Zy2+m4CLo5wHlF7F158PUCWY/0Bjo3bi9IWiPbq6mot7tA25px7xmKM3MNFDtaUn+OpOnzv5JvPnbhTA4Ix6na7jWuAKK5wLmuf833HBu4ZU4Rc4OOcRfMRXQK+nlx88nbF1ATWuac7+LPk6RCcH4UHb0c8JsLbSRsTiUQikUgkEonE5VgaQQGS4YUMcSBA1PwYiBjHkG4AsSWSymfSIXnli8g3BAWCNBwOdenSJY1GowYJxCVAPQUXDnAKeJG5GI2GpHhxwG63Wxfwg4TTzrW1Na2vr9f9Gw6HWl1dVbfbVVVVdd8l1WkPkCFP1ZCauwXE3HyKLTLG4/G4ITr4F6QeW7yLGW6LB9yLduOGcILsc0UKCJ97mkHM9Xehxa30pAXQB0Sdqqoa4hTz7cKPiySeIoBLAbHEhQ8EJ67nUfM4B1EQo330z9cr5zpB555+L54L3AyIXC5muYjmRJz17UUUPf2DdnnKgPfJCbe31dc9z16sAeEpR/FZ5Xq0w+fB3TZHwZ0Kvpa5RxQXYjs4P26JmkgkEolEIpFIJA6xFIIC8IgkkXqizUSXSYeALEC8vZbCysqK+v1+nS4gHYoJcQcByCHEZzqdajQaaWdnp46mO6EajUZ12yBskE3cEkT42R4QOGHx6Gyn06nFjb29PY3H47pPm5ub2tzc1Gg00qVLl+rq9h45R0ShjZIauyY44feoOgIE48PYks6xqOK/E3oXBnw+oojhRfz6/X7tVOCYuAY4nsr/norgooZ0WL/AHSG4XHybSBwfk8nksl0WfM3Rt7iLgosKXBsHBiKEpzwsqhtA2xfVDIiR/EVWfReFYqqCbyvJuEHsvcBkrJkxm81qAcXrkDjhd8eCp1q4Y8DdDrQVkcrb6MIE119UVNQJfSyy6UIA69jXdmz/InGH76PwEFMnEolEIpFIJBKJxNFYGkHB/6jn506no263W5NLSbXI4ESDegiQ4NlsVtcGAJGkQACpT+A7Skj7RHU4HNa58ZCY2WymyWRS1zrwbQ/b7XZdD8Ej5JzHZxA4vpw4IUQgjKyvr+vs2bM6d+6cLl26pN3dXe3s7NSpDzG67VHV+JmnETAWTvY8d97HzsUW2owAIh06E2J9CCfLEEcKWDI2ngLAvXCDRNHBo9Ped3dLIDC5yMQYeN0Mz/n367uoBfGW1Ng2kzn0ezrpdiLqDhjEJ3cVRMHC+8kX1/VreDqEr23mj/WBAMR1ERqqqtJwOGzMqd/XnQx+P09B8p0zuH50q7g7hHH1+3hqQRRhGFPOd5eBp7EschxwL758dxhfZ96HKxVtTCQSiUQikUgkEpfjhgWFUsorJf1zSS+TNJf0zqqq/mEp5dsk/ZeSnjk49C9XVfWTV7lWbXvHiQAR6HQ69e4HRDJxLTgR6vV6jajx2tqaer1eTUS8Wj6/b7fbtaAgHRJmj3Dv7OxoOBzuD9YRuft8j0thd3e3rkUQyTlEzMkS5LbT6dTEyokeaQ/nzp3Tzs7OZRZzBBKP4vo99/b2GqIHUeO4gwVkmbmI21giAmD99wi/7zbAWNGXmBtPOzwlRDqs8wDRJ9Wl0+nU96ePXKOUUtefAD4GtNWJqadKOLGM8B0VmC9fp+5sgYQznrFOA8f5vPE9baY/7vhAXKENnjrAfHkb3QXg7hMn7y4W+DpAMKDNzKm7EryeCGPktS6i48Sv42MQx95JPJ8hCnmqRBQmWM8+rtGREL9WV1cbaQzuDPHPYxrEsuJmvosTiUQicf3I93AikbiT8WIcClNJf7Gqql8upWxKen8p5acPfvf3q6r6O9dzMUgXDgNIytramjY2NrS7u9uopB8jydQ1gBS5vbuqKg0Gg8u29sMe3+v1amEgFgIcj8fa2dmpyRvpF4PBQK3W/raJnuNPmsVoNGrUSnAyFwk+4oO7GTxiu7Kyos3NTb385S+vBYTnnnuuEWF2kkofIIt8uRsAwh/JrUfAj0pv8N0l2NWi0+nU5Ne38otiwqKdLzzSjsOB8eeafix9hGjiPFiUU48oQnt6vV79M9uPIgb5XNFm74MLCghHLvxEl4rXNGC8nXBHoguJjk4d1qY/K06mff15UVLgBRo5jraORqNGekV8Jlmf9AWXhhNtd70wl+4McfcFzzeCi4skTuYRuOJacbeLCw8IKP58x5oI3i+Hj7ELldznFOCmvosTiUQicd3I93AikbhjccOCQlVVT0h64uD77VLKRyS9/AavVf8hj+UfJwL2+W63e1mxw2iPhuhAoCIpc3hBO4o8uo2f1IadnR1tbW01IslEz0sptSvCdyHw2g9ePV9SbZWX1CBSk8mkLvrogHD1+33ddddd9baWu7u7Gg6Hjcr7kGL65C4CosoeSaamAOTOayZABCkAORwOGyQRh4enZ7D7ATZ05taj5UfVDXA3gxM++gNZ9bmkj6QxuD0/pi+4BZ91JTUdMdKhG8PbUB3UtqBt7mxx8hyj9KwTt9u7c4T5jZF3LzoKWXcnghffREBwlwFOBxeTgAsczJ87PyDS3M/TNNyhwprhGYq1GWKagYtZjKc7cXie9/b2GnPoKQmejuD/4mSIBSVdoGQ8cGvE98EiAeK0pD7czHdxIpFIJK4f+R5OJBJ3Mm5KDYVSyv2SfoukX5T0RZL+TCnlj0t6n/YV2xeudD5kBdt+tGF3u111Op1GsUMXDqRmzjYEjW0fY3TSrfqSGk4GcvdfeOEF9ft9bW9vazQaNSL6ADIN+XM7PjZ9+uDRakgVpMW3XuQYiKhf8+67767J5WQy0YULF+p0DE974JrsxuAV/J3ER5u3CwoQOXc7OOn1HTL4cou6k0kIHn1zp0O3222sA2/fojQEzvWCmIgeiC1OKiNRBqSneJ99BwYXJ1hzLhz0+/16HU4mk4Y7hH993nGI+JpjzJ2wt9vtehzZbcN3GcEtwP1wEDiYN+Z/Pp832sLccJyLJVHc8TnnM+bNxZjoUHBHAp+7OOKOEB8bFw64js+hf+bPo6c1+dpB5KKPUcxC1IhCBc/AaREVwIt9FyeujE9969s16y1/GkwisQx4ya9W2vrB95x0M44d+R5OJBJ3Gl60oFBK2ZD0I5L+m6qqLpVS/omkvyGpOvj370r6kwvOe4ekd0hSr9erI/5ECiFN3W5X7Xa7dgmQ9iAtzqn2SDNEod/vN6r2U6lfUoOwQFIgJxcvXtSlS5caRRjdeTAajTQcDjUejxvR85WVldpa7wTHCRj3gGg5QYPkeLFIHAW9Xq8u0Njv92uHAb+PNQ2wxUfBQlLtfMAhAblzQEZjHQN2hHAiJ0n9fl9VVdUpHz6nfk2H71AQ7fT8HjKMWOKF/iDP7nbwaLmLKYyl13HwefECiJFMIiqwK8eZM2e0srKi4XDYSE/xlAnEBsSSGB2nvbR9NpvVaRW+nSN9dOGEcVskvCC4AFwjnB9FA28/7oJFv0dYYk1EQSamtMxms/rZdncI37sThHn2NcP8IUYwfowV9/dUC2+P119wwYG1yxy4I8Hvf5oEhZvxLu6qf3wNPgW49LVv1TOff/hz1ZpLp2dJJBIniqe/UHrm899a//y6f/qUZo88uv/DKahPcyPI93AikbgT8aIEhVLKmvZfnP+iqqp/LUlVVT1lv/8eST+x6Nyqqt4p6Z2SdO7cuYo8+UXWYyL+8/n+doPb29uN6CbHx6Jv/Atxd3IAQfG8e4i/b/uHW4F0BndGTCYTDQaDOiru+eDk7kPmIUocS469tC+okEJADYhFosLa2prW19e1sbFRf5H+4JF7xg1yG7fFtDmoCZ27ChgLSfW1V1dX1ev1auHCXQQuQkCOIXKQUEi8uyG4rxfW4zPO9Tkbj8eN6DLrhXa4G4J+IyzF9tFG7o1jgnnza/p4QWIZ206no/X19fpzxJZOp1OLHDENxK/vJB5nAmkV9M2JL+OIABR37sAZ4eIWAoWTcEi+9y3WafDPuB4En/6TXgG8hokLK14XxNMyuAfj46KYw91HLgIiFrko5ekaXmzUC2m6+2RRXY9YZ2HZcbPexVvl/O35V/71oBSVdlvDr/g8Pf2FSgEhkbhRFKkyvfuh/+oeSfdIkl73LR9UNZ2qCg6704x8Dy8PyuqqtCDYIum2WnOJxLLgxezyUCR9r6SPVFX19+zzew9yySTpqyV96GrX8og/ZIXPIfJY6judTm3jhkxAKCLB9DQDUgDcjeC5204IpUNxAiKyvb3dKPDH7yaTicbjcV0YDpIIsZMOI+IeNZ7NZnUUH+LjwglR/gsXLmh7e1vj8Vhnz55Vu91Wv9/X5uamzp8/X+9E4bn6tBFS6uKFpzh4JBcCNRgMGnPjOzEwFx45p2/SYf0BJ7BEu6VDCzmCje8ewHU41kWGmLbi68aFChdeINeessA64pruumDdub3ebfjMKwKFp1tQNBSngo+/CwOS6kKQLrzE9cv59JnPIPCewuAE3WtZMB/eN86B9HvKCwKaCxNcA7HPRZaYOhDng7HyPrnLhLXEGvN0Ehfg3Enhjoa4ltx1w/1i2s0i14mnwvhx0cWwzLiZ7+I7Hq0VVb/1c/TwH+6ddEsSidsP9vr92P/wuWrtFj34nQ/Vn1Xjiebhb5DTgnwPnyzK6qpaZ7bqn5/8Q6/XxdcvCE5Mij7rux5qfFYNhprbTmGJROL68WIcCl8k6T+X9MFSygcOPvvLkr62lPIm7du7HpX0DddyMf5wp4aBR1aJiEPcNzY26gi02/QhT9Ih4XAbsxNdSIgTfCK3nu/d7XbVarU0HA7raCeRUkg85MdzxGMhQu5LzQDcFuPxWBcuXKjvQ/HJ+XyunZ0dPf3007rvvvvqavyka0CISTFAOPGUBshXv9+vI8C+SwbEzUmTbwkZ8/+dcLkd3Z0E/M7JJ8QMQuxjwri7PZ3fxwKGPrbUDeC+CB0xyu4/007O4Xh2iPDUAr+GryEfZ37X7Xa1vr7esMlj6ecakGa+d9K+KAWC8fBCl+ykgTASnQjMEf8iKNBXL0TpKQ08dy62udsGUcjFBF9ffh7PHu1zZwbjF2shuGOHe3otFNYt69PnAwHOj+Vcr8PirghPMYkijjs+WDOnADf1XXzHorUiveWNeiTFhETiWDBvV3ror76u/nnr4y3d95OP7f/u6Wc1P6gRdUqQ7+GTQClaffUrtfvql+jjv79jv1j8f/es01xzkvTS90sv+U+PX3bs9NFP3cyWJhK3NV7MLg//SYvNoNe9v67/8e/F78i/dqcCf/ATkd3b29NwOKyj0pAJKv872XaRwkmJX4/8cncN0JZYLd+j9E50/HPP4/fcfepGEPGmD9KhNZ0tK59//nldunRJe3t76vV66vV6Wl9fV7/fV6/Xqwk57YcAUpOAfkLmPHLr+fGeq+5kzImf988j7xx7sDbq63tOPscwJ6RTREEhjhnpH7QPsowThM888u/ih1f252dPEygHqSgIJ1zP1w0pCd1ut/7Zt7P0egJE0lmH0r7zw90YIBa9ZJy8vb4GIdvu4PB+UNTRXRUIGLgl3H3jz4GLYr4rw8rKSqMYpAs1LtC4Q4fnlecp9sWFEMbB+4zIQDsRDynQ6q6NVqul8XhcrydfZ75OEctI93Angl+Ptp2WGgo38118x6IUVW/9HD3yh1JMSCROCpcenOvSn79PknTff7xXGw9frH9XPvYLJ9Wsa0K+h08ApUi/9XP10T/y4mpOPPP50jOff99ln7/uBzakBS7F1jMXNH3iyRd1z0TidsNN2eXhxWI+n2swGDQINaSTGgEe/WRbPazbTi6dBBEhjXnv3AOiQjoExBZS58JAdEF4QTiIppN1dylg/5b2iWK321Wv16uvcfHixbpWQimlJkZsW7mzs6PRaKTd3d1aVCFPv9fr1bUeIEyIFPQNcre2ttaotxDzyD1C72km9Ie++BaTTtijddxdC4AIstvi4zzEvHbuH50PtIN5jY4E3CTuOIhuAP/Ziwe6A4Px63a79Zd0WPgz1o1AXKJ2B+t5Z2enUSySNnhqCPODE8VTFXztdrvdej5c/GEMAef5mHMf3/XDCTbrSFJjJw5PlUG4i/Br4ajxmgpeKNIFDIqL+twxToiMo9GoHn9+j/jjqRFcx4Uyfz9cSUDgPPp2ShwKiReJsrKiZz+nr6OiWolE4njx+G8r0m87W/88/ruL8+ETdy5mX/Jb9Mmvat+y63/s67YWfr718fO664P3Xv6LqlLrP33glrUnkVhmLIWgQL0Aqbn9obRPYobDYR1djVFjyKdHRZ3QcH2vtQDJi1XinRRy3nA4VK/XqwmHpwM4GYToS4d2fq+A77Z3L2jX6/U0mUxqQWE8Htd2fuof8DvPZ+92u+r3+xoOh5pOp7XA4NFbyCOR4ZiCEckt8FoC3W633lqQaLMX2HNBwceT67jIwHxybx9n2oEA4q4Id3u4o4Tref0LyCUEmnQZCLQLQ7SLNYPo4+kYXjiT8YVgE+12h4U7AWKNAwQOxt2LPtKvuMsG4oCv3SgAkBLBmJMGIKkWJjjWxbK9vb3LdrVYJEr4fTy9wNNbWGOe9oPY5k4V+urihadwuHjoxTn39vYaxS1dQHLRi7XpbfD6EF6MNbocXHzwZyhx+6OaTnXPjzykC8EKm0gkEonlw+Qrv1Cf/h0nIzJdenCuSw92Lv9FJb3i7FskSWuDqVZ+9pePuWXLifKFn6vRPYfuv1JV6vzbXzrBFiVuBZZCUCil1BX8nbRBULDHE5GGPEEeIEeQubhlIGST6Kjb+CGNENRY2X88Hms0Gl32uYsITvA8Kg+59Z0optNpnZYA8WH3BPpBfQYEAc+F59oUZ/RINgUCY6pGtNjH3Spoi0d5IV8bGxtqt9t1bYnxeNyw5S+KUjsxY9xjTjpE0u3+3j/pkNi7c4Xr9Xq92k0yGAwau2FA8NlylBoSk8lEo9Go3noUYQJCydadLjpw3c3NzXqnC+olcDyCEOPoRJi5pqAowtmieg7usOh0OjXZp59e08DTCFwsYHxwNbiIxLj6WvUUARcFSO1AyPJ7+Pxzrtf2oB88uy4QxTZzz62tLa2urtbri/75NqIuDMY1LamuhcHY+rPHemc3FRfqFiGFhDsP852B7v2FSk980fKnuSQSicSdisEf/K168m1l+XbgKdJjX3ZQOHrc0UvufavWH9/Vys/dWcLC6svv0/Nf8qr65wuf1dLuOeMKlXT3mbcuOPMQ5//DpzT9zOV1LRLLi6URFKRmhJEovO/CALnxCL7bnb0CP9ciqu+ECmJBBN3zvLkf7UKQ4GfIC8Qc8SKSHo/IQ5Agb95+Iqxueed30+m03unh4sWLtYXcyTD9gKzxs9vTY10B3+0gEjucGIwthJwdEdy+zrUjKXMy5/MY6xIwH761oxNtFxQgi06YvYCfCzCDwaBhc9/Y2KjdH7gVSJNhLbgTAtIc3RgQ506n00iLYN6Gw6EGg0EjzYA+RXdBJMoexec+LsJwDKR9kWAWBS0Xwbw+A4KBk3IXE1hbuF2c5HtBTI/8t9vty67JPccH1ZNZry52uYDS6XTqHVXYFpPzSG/y1AQECJ9r1gnvE5wnUUBy+O4TnMd4p7Bw56CaTHTmfU/oiS+6PJc2kUgkEsuBp9/cUtVa7v+bZ91KT3+htLbd0frr36aXvn9b1ftu7w0+Wuvrevr/85u1t140eKUHG0PgsWh/S+YrYPCy+7U2ePWLbtPqSDr7z9/9oq+TuDqWRlBwS74LCG5t97oKkho7PCAeEEl327IfQ/RaOnQjQDiwi0OWnRBG23273dbe3p7a7XZdsM636XM3g+8EQUTe6zA42SQyPR6P62sOBgNduHChTpdw2z/55MDrR7iDg3GG/NEu0iU8Gi0dRuch/51OpybltM0LY7pIwLi7fZx2ubiCK2BlZaW+r18jOh1op/cXUaHf79d9IlXE+xtrA7BjCCkRXocBa78TendtQLZdaJjNZtre3lZVVbWo4GKLz7F06ECIYwShX2TjZ94h7syHzy3t9fUA3OLv9Rl8rugbkXwn5dxnOBxe5prx2hte26Hf79djynp1ccrJvot0Fy5cqAUgxBfWnBd2ZE3FvnF9BJzZbFb3iXuNx+PGXEWhIZFIJBKJROJGsbdZ6cIbpOHLtnT/3m/S/Fc/ctJNuiV44i++XdWKNLx3rptRi6gpSNw4yrRo9BfffuTvX/EDD2n27HM35V53OpZCUJBUR7EhOJAEJwfSIfGB0EDGqBXgpNtzrbkGTgBJl92P63sk2SPGANLS7XY1Go1qYu73wmkAosBB+xFK/D5eXwCi+uSTT+rixYu655571G636y8vNBeLGTJOHvnmHp43z/j7DhF8jUYj9Xq9ut5Dr9erBQU/PxKyWPwOsuhuBJ93CLHPHcdLhwUWI1wowKnQ7/fr/tJPiCzHjcfjyyL6XgMDMo0gg8DiNQZiLQrEGSL60ZlCEU1SLhhPX9e0BRId0wtcVIAkb29vN9Yt5Nv75e1APHGnDqk4fn/Wlqe2MC+kedA+jnfyz9wwt/R/c3Ozvud4PK5TKjgfgcldKjh5EANcoInz7HPmc4mIg2hCKok7JdxZlALDnYfZY4/rtf/6JfrEH1iQH5tIJBKJE8VTf+7tmnduDtk8TuyenesTf+isHhg9oNnHHjnp5txUfPqvvF2Tu5ZzTqrVSoNXHC1wfPLPvF7FTNYrY+m+73rXMbTs9sPSCApO3gGCAuSNXQ7YCSAWXSN1gR0PnKgCSDxRUarG7+zs1BFRP9eJnrsOPKJMhBpxAEITCTd9Q1DwXSS8jZ4OwPE7Ozu6dOmSJpNJbdH3qLCTWkk1eZZUk3KP8ENMSQ+hPsBoNNJwOKzHkoKY3GN9fV3b29t132K6gJPZWHAQUYYt/mazWaNqP8e6SyBGo5l37kd/6D+CB+MvNdM6Njc36xoIg8HgMuLv+f6IL5B0tveknoI7WXAKxKg/14Mo+3amOAK4h++2wc8utHiaCu4K6kLQB0kNwYZ2eoFJPnOCPp/P6+t42oOLQu6iYfcV0kf4HeuB1CTWJ5/7Thk4DsbjcWPcSilaX1+vRZz4DDM27uRw8cFFBne+eP0GzuXnnZ0dSWq4dxJ3HqrpVKsvjCSloJBIJBLLht0zUnVKtf7peqWqvXb1A08JPvNNb9fuVqVZdznFhGvB7pnQ9kr65N98W/3j3e+fa/1HfvGYW3U6sRSCAiTe8/shPVLTLr62tqb19fWadEIcnTA5GXVizb+e+uCiwN7eXk0MEQwgRm61RwxwlwRt4PoQIbeuA37vKQ/0UzrMcSc3H9KI6MEuA9QWiHnhHk2HiEJ819fX1e/3GztOMAf8C7n27fo6nY42Nja0tramu+66S5LqsfJofayP4EKRF8/z9BCPonPO+vp6fT0nwkcVEfS+ci/mJdr3e72eVlZWtLGxUY8rjhKi5e7mQMwajUa1GMKaZdz4HCLqIkJMt1hdXdX29nZ9fL/fb2zNSNTeUxcYYyf3kGb6g2sAscLTiLg2kXd3FLiIF1NPfP4g37hVcBjQXtqEYOUiG6ICtRLW19e1urpar2/cEbQTIHKA6PTxbVG9FgLbavKMuajEePI94yYdbvnpAk3izsL8Qx/Va37szbd0O7JEIpFI3Hn4+J84q9f/w1do+unHTropLwqP/6W3a3T3fPkKY75YFGnWO/zb+8m3F+mtb2sc8rq/+VHNXnjhuFu29FgaQcH3nfc8bunyiviSams1pARi7nUYpENyAoHwz53Mej0FrwoPwfMdHdyF4NF4j/gPBoOG0MB1iebHNjh54ThJNZEdDocaDoe6dOlSYwcM8tJ7vV4tQuzt7dVj58XsvIghEXcv5geRZkyGw+FlhfUg5xsbG41dDCDekD/qLjCfzHGv16vn02tP0DZvj7su5vN5TbqdtAP/nrlyh4vXe6iqqs7jZ+whopzrQlWr1ardCdvb29rY2NDLXvayegcM1u1gMKjnZHX1cKtN2hS3xByNRo20AZwTpE1AthkLSbVQxRjSNy8iiDji/cFFEdMaXEzgmfN0Fk8B4B4e5Wd8o5jC+DK2KysrdeqM7ySBwEAtA85BMPTilRTU5Lnz83lumDfWuBeUjIhuiul02qir4TuaJO4slNlyF/xKJBKJxOlDtSJpbSmo1/WjFJWVFT31p9+i4X23oZiwAFVLUigA+tC3vP6y4/pPtvTyv/feW96e+VveqEf+4H6q9Gt/bKKVX/jgFY+vjvFv2KVY1S4MYIPudDoL6xZA5nEgEJGGMEKAYu65k3RJjSgzEVPqFXhRvslkUhMoj1jjMKA9kGG3Z1MHIhYu5Dhvm9vuIdpezBBxAzIFUSRavLW1pc3Nzfq+XgCS43E0UL0fsue1CyTVQgBtQJQYDocNyzrE1Qtdxt0ImDufw36/X88Vlnl+724Nz/1fW1urtxb0fH+EEi8GCBFnXtipghQORAoEAanpIOl2u7Vd3tNWxuOxhsNhvY0oNRBcIEF48QKCROgh0f1+X71eTxcuXNDu7m7tOokpJMwR6w4Xje/64GJDJMOMISkrvu583KKg4juH+LqjXf1+vzHe7pbwmhQIQGyVibvBhSPfHcLXPffHQcLzhoOG9vR6vca2omA2m9ViA8+Wr0nuw3ocjUba3d1tuJra7baGw+FV31+J2w9lOldrt2jeTmEhkUgkEjcPH/2zL9Pr//rFUxPlLquravX7uvjln60n3yZdtmvDnYYFQsrw3rk+/l1fcKzN+MTv70i//+h79p5q6VX/+OidRWaXLt3U9iyFoCCpJpm+nR+EeDKZNIoIuu0ZQgXh8PxySIOkRlE6SY1rui2eCC3nIChA7jY3N+t7kn/vBeikw4KEnhPv0XuP0voxToYRIHwnACz31HqQDosd9no9nT9/vnYWeNoF94NA+taTiB5eEBAi6kURpcNUD8hyr9dr7Kbg1njp8loQkuoUDUglkWkv5Ie7AZHJ0wZ6vV7dJq8NsbGx0Yi24zZB/GDeIKkuSiEmMdedTqe+dkwRIAUEkQNC65H0559/vl7HpFN4fZBSSp12MhwOawcENRUQFagHwRgwHwhvzCHX9XUK8fZ0EAg+fWfMY4oOgoKnLiB6IS55cU9EE55bFzy86KkXxpzNZjWBx/HSbrfrvnkNDE+dYG0i7lDU0ou6srZwfCCw8KzTf0RD5tHfBe6YStx5KO/+Vd33krfUe4onEolEInFHobWi1Xvv0fgN9+rR33v71H64UzC6Z66Hvv2zj/z9G/6nJ6XJ4QYC1e6eZs88c8P3WwpBwYkM9mNy6OO2cl74z3cWgNS4QwCCDsny4nakBkynU/V6vToySW44BJkij0SZnfxHchKJXMwj9/5CpIjQc9xkMqmLBXrBx729vbow47lz52rxYm1tTf1+XxsbGzXx7Pf72tnZqbf38yg8/fDie14AUDp0B7ClowsOTiyJLntRPQgmBJXPGHNIMwQTsu1RctwpMU0l2vC9ICPnsFUhYpBvgeh1FbC4Q9yl/Uh6TAmIqTG4KmgrbcAlghDE2HvqjIslROUh6PST+Ylrx10kLlKx5mgzTgZSBvzZYv5jtJ8x5TnzvoKYquPtQkxh3XthTtbQaDRqiHbMt9deYCxZny5G8F7wZzsKejxTcQzoF/1grP0Z4x3AM0V7cP0kEolEIpFI3O5Y+U0PSpKmZ/v66B/unXBrErcKH/2zL2v83H6hpdf88Nn9H56/qNlTT1/X9ZZCUPCoKoSfKKXnREexwNManNgACBeWf4ghlnmPUkKwNjY2alIoqSEgIHggRBD9j9tGuu2fdjqh9EhoVVUaDod1AcbxeFwXouv1eur3+zWxGo1GGgwG9c4Lbh2HVK+vr9fWeJwOXleC6vySGpX8PdedNkKsfH5c/JAOxQfgNSncRcKY426gyj9uC0/nYKwQlRAAPGLs6S58uavCd0ig78wX0WjfUWFjY6Mee6LZHtHv9/t1usvKyooGg0E9tl4fYn19XaPRqHZCMNe0n/GguKikWsRw5wDr3etG+Dpn/Pncx4aUFncu+Drx58PTYhC0IOSsC28zzwRCgKclcS+OkVSLO572wjOO6DKbzWqnB8IFc8nawTESt4/1ten1Mlz8IXWFZ9ZrpdA239HC13Q6FBKJRCKRWA6ceWSuZ7aKqtVMR3uxWH31KzW999xlnz/0h/t3RH2ERBO75+Z66B0vkSSdeeguvfQD+4JD68Of1Hx7+6rnL4WgAEFxVwAEnX+9KrtHTiEaXlhROiRnXhlfUk1aEQGkwyJyTkq4NqkR2LJp72AwqLc7xILtggjkze+/qNAdhCoWeZTUIDy0B4LkRI+oN/n8rVar3jpzPp/XzgXaQ588tcSL/HnxSe7tVnRqSDAvsd2MIeSbtrKLBvNETQci2j53krS1tVXvjrC9vV27RbgHY+zbH0qHhSO5LrUNIM/Mt9fKaLfbOnPmjHZ2drSzs1OPa7/fl7RPjD2NZjQaNfLumV/SKxaNL04XyD21Kkg9YU0sSj9ByPLdF3yN+OesB19rzJELPdHST5t9pwdfo+zMwHm+S4g7GGg3/WfcxuNx3VaeP5wivmY8TYZ1PR6PG2PjxTBZe7wDEHG63a62trZqwWFnZ+eyHSMYf3/G/DmNKTuJOwf9Ry+p+/R5je9OUSmRSCSWAVv/+3v03Oe8TbOlYC+nDysvOa/RF7xWkvTkG9rauT//f0tcjouvr3Tx9fv85+73vlHd562447/7Pxae86IeyVLKo5K2Jc0kTauq+oJSynlJ/1LS/ZIelfSHq6q6YuURJwWekuD5227HrhtvDgBy2hfZsiEG0XrutQ04zh0BEFgICW1EaJjP53U0mDZ4xX1vz8F41df1qDzEBrLkhfDcESEdkiCO98iz28Uh2IyZR5PdteDEyetPYBd3kujwQoz0ySPhvluEW/TZOQIRgN0ifK5oc6/Xq2sftNvtumAmPxOJxlZPO/isqioNBgPt7Ow0djRgHpkDdsXgfhcvXtRwOKzbgvuD8YUcb29v14UiGT/qOXjdC7+Pjxtke9Hz4M4BxjOmWriwEOfH0x8YVwQDzmMt+Xj4GvNoPm3p9/uNn3nuPAWB8WAN01ZECBdPqBHBWohOBsQ8BCAXATnWnx0fD9YQ55H+5OJXdLzQfy8weRpws97FiUPMP/RRbf3mt2p890m3JJFInAbkezhxrXj+K1+vMz/4S9J8dvWDbwJKp6Ptr/otmmwVvfBGgqwpJiSujqffIjXkgn+3+LibEX777VVVvamqKkpNfpOkn6mq6kFJP3Pw8xXhFnonUx75XrQ7AoQMYsm5Tq7cteCkw3c8cHvzIoeAEw0EiMlkUm/nyM+kE3ghPyLsTp4orAi54rq0F8LnW0ZyXUhZJOAeqffihJBcvmiLpIZAQyScr5iLTv/dZh63zeRfLz7oZNzTTby+APehHaREsDvD3XffrbvuukudTqdRoLHf76vf718mbNA3Ukam06kGg0HtEOA42s9crK2taWNjQ5ubm7UwxLXcDo/YcunSJW1vb9fiktfGYDcH1iauF9aIzzlj5YIT9T9wpdAWF6G85oA7S3wdI5T4OHEvr0HhDh8n3TxP7lRgrlwccNHAU1c87QaBzrdj3Nvb02Aw0Pb2dr3OfZtHF6i8poa7B+KYuCjh26r6OlskwLC+vH7FKcOLfhcnEolE4kUh38OJq+KZL5DKcW0f2VrRM3/izXrybTIxIZG4ubgVq/mrJH3pwfc/IOnnJH3jlU7Y29vTY489pnvuuadRDM7TFojMOoF1a7Lnw0PsvEYCZMdz6SEtRK8RAqRD8YFziZZCjiDW7lqgXRBoJ8mRgEOM+B63BfdGOKCY3Wg0qkkdef6IFYgXLiZ43jkk3YUTRBXs5y7W+M4PLhR4RNvHlQi1iwls18dnXvPCBRHcBTHNwsUNUjkuXbpUW9IpbOiiCNd0oUI63NGD+fWou6chIAKcPXu2rpHgqRjutJhOp9re3tbOzo7Onj1b38tFBY+Kk7rD/RAZXKBxMYnPd3d3GztdQMwZ/0VFM1k7kmphSFK9awagX7SXMfLnzlMIptNpve64l6dSeIqEP7+sLY4dDAbq9XoNYWJnZ6eum0HBSl+r7Xa7dgtFAdJTIVxoYO11u11Np9OGy8HFHH8vdDqdOr0C0esU47rfxYkmzv+HT2nwsvs1eGVGchKJxA0h38OJE8WTf+63aufV+X9Y4tbixQoKlaR/X0qpJP2zqqreKemeqqqekKSqqp4opVzVMFodFCaUmpFDj7TGHH4IWavVatQUcECEEBNi3QEIjdvanVBBMLgW9Qc8kkvBPaz8tLfX69UOiOFwWO/cEKO8XNuJvQsEpFfs7OzU0Wq2lvTq9U7AGa/JZFILB05cXSyI7YiV9yHnTpJ9vN2FQft9RwGHpxwwBl4LwS38rAu+fJtK7usCSATXZvcLJ7asAQg7Nn2Kd/b7fW1tbdV1EhAQovDSarV05swZ7e7u1qTVI+q+iwb98bQHJ760DxIPqDsRa1tEAh3dAV4fIqYHsMap4cD4u+DlIge7kdB+f54WiXY4Nkht8booPL/M9draWl0M050TUSjhmZBUFy1lvKkT4uvAr4WYhljg69fFKAQ5391j0XtlSXFT3sWJJqafeVxrg1efdDMSicTpQL6HE0uHnVedmr9jEqcYL1ZQ+KKqqh4/eEH+dCnlo9d6YinlHZLewc+QMNwG/oe+pAYR8Z0IDq7VsO57rri7D4g8YoWOLgHu50TGbf8QKid9ECWIPtHZjY2NWvDA+g7p8S3wnHQSAYYYkabgNnSPCtN33+UAUoRwQRuJWnMtRAOvrA85Q7hw0QZBgR0JGGu+vNo/4469n2vQLsaZ+hDeNo9aj0aj2sFAlLrX69WCEoiFBekH88f2lHG8PQ1F2ieqW1tbdS2F0Wgk6TBNwXd1gMTyO9YEbY1iCXPF9egbJJk58bFlDVcHBR3Z8YE17AIZ16BPvv0l88w6YCw8dYC2IrJQGySmeXg0nzXrO1jQBsg+Qo27XTiHFAMcOLgffIeH+CwzXgh0pHS4cyE6ZlgDXgfDHUUuSnnNkVhsdMlxU97FXfVvVfsSiUTidke+hxPXjE9+y5t1/1999y29x6e+7e3KWgmJ48CLEhSqqnr84N+nSyk/Kuktkp4qpdx7oMTeK2nhRpYHyu07JamUUnlON8SaP+qdxHuU2EmVFwJ0sk2hRK7vBCFao4lKQsaw23tNgGjxlg4j7hCrtbW1unggRfr6/X5NUD1K7v2A2EBu2u12TYBwOjz//PN19frYB4gY7XKHwCJihIhAtNgt9Qg4LtwgVjBWTmS9wCBuBSdqkDwXRfjcU1oiUZ1MJrUAgBjAevDUC8YAUuwRbCf3PjaQ6/F4XEfomT9qOPh6JDrPsWzjyZrwbTwZG9rj0W7WmO8QIanhcIhiFyTd++dj4ITaC5n67hY8S6xNF/GYP8aN6zLnpEuQduBz4mPv53Ie68XrV+Ce8ftKarhvomjigg1r2om/j4U7nXBCICxMp1MNh8NGLRHGH0HDd9Y4DbhZ7+Ktcv5U53jcMlTKbbQSicQVke/h48Frv/X9evhvfv6p3zpy2q+kUqRbmFq5t17l/12JY8ENF2UspayXUjb5XtLvkvQhST8u6esODvs6ST92zY05IGJYtiHokCUIVbfbrYmBV5wnkrkoOryITB60vUGaAcSKfH1qMvi2ie5K4LPt7W1dvHhRly5dqqPz5IV7GsT6+rr6/b7W19cbkdjxeKydnZ2aVFEokO0LiW7ze/rgOzp4nj0iDX1yQk8aidTcutOL17no4SQZC767GyCHXjwv1o6AxEPWcAiwfSBtIc2DsRwMBg1SyjzGn51Ue9FLn1OPSnOsF9iUDsWkWMyPOWc8ED1iMU/GyesSeDoHa5xdENyhwnpyIsx4Q3irqqrvTT+9vgNjwzjgWmAM2UrTnxui/bhCELmig2E8HmswGNSpPMynCxleFNLXg/efdtNPXBmMDePgqS8umnlqCAKUz4O334U5+hfrJHhKiq/XZceteBcnDnHXP3u31j+T24cmEomjke/h40O1t3v1g04DivTId771ll3+0e94m6qV0y26JE4PXoxD4R5JP3pAklYl/e9VVf27UsovSfpXpZQ/JelTkv7QtVzs4Ycf1rlz53TvvfdKOoyeY5mGrDiRcGLo0VtEB+nQlu9RX49wu6AQj+UebsP3CChpC94+ro8w0Ov1JKlRaA6SD7GBVEOiPFVA2idlZ86c0erqqsbjsS5cuKAzZ840trtEROl2u9rY2FCv19POzk6DGLpVXTp0VjAu5LwjEjA+tANEFwREr9vtqpRS98et7k7a4tw5nJC6Q8HXQSSZ3gd3ChChBxBVCPUi4j0ajeo0E49q4y6h//1+X+WguCM7SLiYgovBBQVPC0BQYb2yNhgTJ8KIBe4qcNHEha5I6p3Yu/BDG2azWb37B/fztrAG3M3gY0+KhI85/fW1zvPDMfQdwc/XJr93B4S3HeFDUmPHDE+rWFRY0muluCOJ59OfB0+jOgW4qe/iRCKRSFw38j2cuH6USq1+X/ODOnI3C61uV1VRuhMSx4YbFhSqqvqEpM9b8Plzkr7seq+HdZw/+BEInEw6mXeS6oTMf4ageJ6/R6y5ll/Ho/tOqtkVglQMQHoEJJPrj0ajWlCAgHteONeEGA2Hw4b1ej6fa2dnRxsbG42CdJDe7e3t2rqOaEC/uZe30/tic1V/RlTWSZs7E5y0SYc5/uygwP2ccEIC3UnggoYXx/OaDpIaxJSUBMYGkhxTNeI9vD9E9akD4K4BRKHt7e06v557sGaIbiMEcT3s+3FnjDhutMvHEXcBDgjmwbdApO2IV9ShQGxBqHK3xaIv7sO9dnd3a9s/18SF4yk57gpot9sN9wTHMF/uPKGfOF4YS+DiDs8g6RGt1mGhVV8TLp5xHHUoYqqOO2RcEGGccXxQs8Tri/AeckFjmXGz38WJRCKRuD7kezhxI6hWpEf+2ufpNd90c2sp/MZ/92bNesvvsEzcPliav5bdWu/F/pxMONmSDqOQnA/hcPs/QJRwsUE6tF5DUDwiz72cQHmNhrhDgpOuyWSiZ599VlVV6ezZs5IOiyxCejwK7Y4I+gbpcmI8nU41GAw0Go0u273A3Ra+u8BRgERLqkkg7gb65GPoUWlEDFJRer1ew1FCrr2nsTCmuBKOEiqwp3MPxsu3/INsOkl2B4CPpdd9cCt9KYe7eHB9hC2uA6HvdDq1HZ4xdtGJ75lT1nLc1pLrIkS484H59ecB0cfb5PNBe5ygMw6c5+PihThJr8DFQa0Rv4evA9/pw9vo8xvrOfga9LQjxo8aD1H8Y624ayAWoaRdnvrk8xBTYtx1wHPuzo64I4c7KBKJRCKRSCRuNipJq/e/StNHP3VTrrf6ipdrnn+6JI4ZS7Pk+GPfCxRKahRa9N/F4mtONog+OplYWVlRr9drbNtI4TXImHRI+iA/FI8jhSISpHa7XV/Po6zk5LfbbXU6nUb1egidp3F4zQfa7ukTMQff0x08LYPjINqQTI5zazhOiiha0B6u53nkkFhP9UBAoeaDCy1OOCG4kDjy2SGEuAD6/X4jmkw0n3GAZOM42NjYqNMtPFWBdRK30+R+VVXVu30gNOD8YJ6Ye1wIk8mkIXLxr5NZFzJ8zrkeX9SxiCkPMa+f8YqCGvUHfN0CnAKIPF7M0IslMpc+156u4AKJOz1Yty6A+ec8H3zugh21Nnwe6R/pF54O46kMYNG69BobLsS4kOBpITzj0UHj7oooriTuTGx+aqbR3S3N27keEolEInHzMO9U+sTXvUKv+vabIyh8+o+8Wntb6U5IHC+WRlBYlL7g5D5GI0Hcks8JlEdnJTXSHrxgo1vv3a4PuaMNTpT5DLIKKec4iuBtb2+r3+/Xx3mu9lF99F0UaAuCB31YRGr510UVr2XgpNMj505sqVkAQd/d3a3JvVvOHUSaR6NRfU22jVwEb0ckunyPIIJwQeFG2gBZZFxIu0CUQFBwVwouBmzuviNBHGdEGca50+k06iu4eOBR+RgZdxcF7aNtLirgDnDxBQHCi4Y6kY7pOj6+Lgxxb7f000f/N6ZtuMvAi2/6l9fb8LF2su7jy/1I1WBegQtWLqq5cOH1UEhHiUKjfx/rSiDYMLbx2fE0nau5fBJ3BjZ++Bf1whverkkWX08kEonETcasU6l84eeq+qUPvqjrtH7zG7S3fpMalUhcB5ZGUJjNZvr0pz+tu+++u7YeQwZiKoJ0SPzdwhytzm5Hh5wSMcYyz7mRvMTopLshpGb+PtfwCL+nPkBEIb3dbreOtkPk6RPX9nvFqCrOCE/d8NoEjBXj5QTLaxDgnnAi7OPLuS64QBS5Ny4Iiigyd75Fn8+Lj61/5lb3SOb8/FhDg51AqqrS+vp6fV9SS/i9W9vZ3cAJNr+TDkUqT0dxccHdAi4K+K4FMeKNe8XTUdxe78IXY85Wm8xnJLg+/xB7F39Yb7Q9RvEdXMt32/CdF9w15M9GTB2SDl1FiEFeU4H5ox6FpHqO/BmO6Q2R9CMauiDh4hn3cSePu2TcheHri76kOyGRSCQSicRxYNar9Ojv29Cr2m9S+YUP3NA1Wm/6bP3G7zmr3XPpTkgcP5ZGUJjP53rsscf0wAMP6K677rqMOEFunKi4oODkxa3gnnstHebTQyDd3g+pIBLuReHcfs91PNrLvSA7nU6nLro3Go3qQn5OniG8Hv2FcLoVnbZ44bxIvDwyDKEnpcDFCwo5SqqLQtIm0hDoK6TKd0rg95Hw+84ZrVZLvV5P8/lco9Gong/G2qPsnu+/SBxaBP8c98Lu7m6dlgKJLqXU1n9I/3A4rMcjClSkR9BOLxKIQOM1HDgP1wzpFFEIYXzcWcM6iSKOOyU6nU6D+Pq5FFL037vYg5Dm6Q1eZ4A1g8jhDgjWdBS2+MzHCkGF8WVcY20Kvofo88xR5HQ8Htekn+1L3YngggTru9frNdJA2G1jfX29XqPeX4717VOjowREQSNxZ2P8e9+i6XoKTIlEIpG4NdjbrPSp39XX1me9Tec/dEnV+z98zee23vTZ+tRXntXkrhQTEieDpREUHJBZIsZOwiH1kZg6ISLqT+oANnXpMH/cC+xR1M/hZN6joxBKLxjoUVBIEAQUIknhRyfWnueOgODHREu6V+33aKwfw5i0221tbGzUhQYhn149v9fr1V9Ec70IHWMNEfVq/z4v0v4uFYwbDhAv+Ceptt1LuszGzvU7nY56vV4tqjDuXJcxc0dBXDvxewj/eDyuCxEyblFMYmyoeRHrB/gYu1hAjQeEDF9PzNdgMGi4CCJZ92vH/vn6jmk5CDCQb8YqrkmfT0AfnXy7mMU57qhwIcLbuyhtiJQZ1vhRKRruDmItsN6qqqpFCV9jVbVfA4T1jTDh21i608mLPLp7KdZUiKJLIvHC61c16+QfaolEIpG4ddjbmuu5N0k7rzqjzlvfrnt/6gnNHv7kkcevvubVevwrX67JOWnykvw/KnFyWDpBIUaf9/b21O12G1Fxz892izOFAZ10uRAhHZIRotTSoWtB2ie9Xp2efHsIFNf3VAWIEmSbyDORYSdbniZBmgD9hqjF9nrKh1ei9/oLTuYYE0iZH8+4eKQWcuZj6nMwmUxqB0BMTfD0CshZt9tVr9eriZ0LMi44eMTZ8+4hkggBnrsP+Y2Ciq8bUho4fzqdajweazgc1u4TqRk999QL7uOCjkfMvW4A13GXAmuI3+FSYX1GccxrEfhz4HPqFvxI4rmOr/14HRcpEFSiO2eRGyIiihRc09ei1yGIfYrz5e2F/LtDwtvP+TEVZTgc1mNPMVSv0yAd1gnxnTb82jhLECpxW+QuD4lEIpFIJI4Tk/NzTc5Lk/P3qrV775HHzdv7xyZuQ1TSG777Sc03uvrY15896dZcFUv313KsRbC3t6dLly41tqyLEVhJNQmZTqcaDoc1AV5fX69JuqTLiszFCCRES9onNERznTB5OwFk2OsLuGXehRC3+fsuDE5q/RoIDb1ery6WCFH1MYBUkkrBtRfVaCAS7CTSo8jk0nOcX1s6tIQ72ednb+9wOGykmMTIu48Lc9zr9dTpdLS9va3RaFTPiRNVhB7feWB3d7fehtAdBBBE5hKHBSTU++jjT39cEPJ1wlghzCDS+Jrhewhs3BKTOXT3C4DUcp4LQUe1yYUuxpmou0fpcUq4c2GR4ye6IfxezJ+nsvBs+q4a0W3jz6w7fqJAxzURA/ye3KPX62lnZ6cWjiaTiSaTibrdbt0e7xNjjwPGXUa4dFxk8JSmRCKRSCQSJ4/XfefDeuibH5Bu86zEFAvuTLzhHz2hameo6TPPSKXo9X/zLs0euFcP/5H+STftSCydoOCRaoiQ2+m73W5dkBDC4DnZ8/l+3j5k3ndekA6joEQ4Pdru8Nx5ouRu9+e6EBtIEffgGl77gc+cRDqR9BQP/5f2cX8isyAW94NYQ0i9sF50RxBRh6RB3tixgWKSkhqRbR8vF2Ug1OxsgGMj5tE7yXMHBl8uAsV++pjwL+R9NBrVKRoeTad4XxSrqHNRSmn0NaZjQFQZM4QpryHgO3e4Q8JrWrBmOM/njfsSmfe6C07CqRnhY+jXI83EBQfWqIsK/pyxblxE4r6L6gi4MMbz544Rf7a8roQ/py4wIZ75eLiAhTsIh4enjlD8U1I9Nj7XPn7eviga+Ty42JFIJBKJRGJ5MHvmGUkPnHQzEolbgvmzz2u+vb3/Q1Xtr/dnn9Vr196kT/yBzsk27ggslaAQLdJOIryCPDUPnCRAFCBcnU6nseWj34PruOXbI7dOcvv9vsbjcSPnnkimR3jd+eBpDZCtmMvukXAneX6OR2z39va0s7NTR2URRNwi7iSY3SWw2cdxkFQLD75NpNc4YJy8+B4OAO8DdQOkQ6EC8oyo4vZ8+utkj+t0Oh11Op1G/QJJDWGG+SDXnrWAoMAYuMMDountjbUKer3eZe4Eot6j0ajeGhNXg6fecH1y+RkrBAvGmHmIqS/0wSPozI/PHUIRUXx3zLhQwRdtoT9cyx0mUbhxlw7iSTyG54R2U4SRFB5PhSB1wGs14CjgX/pNIUrfLSO6MXx7y1j7ANcP48b64HmhTofXkQCkw/B+SUEhkUgkEolEInGcKCsL6ndVlVp7l9eOWxYslaAwGo30i7/4i/qSL/mS2rK8t7dXV+aX9gnC+vp6I/roW0sCJ8eeG42V2vPcuQbHQtKoQQChxpLv0U0/3n+m0r0TN88Dl1Qfw04IMQXB74NroN/vq9/vN7aFBE6yvFAg5Czm6nteOZ+RBuBE0iPNiAG0jfGkjxA6dwrgdIBAxvQQFyi4Dv1hLCCEvgOH/96FIcbabfueZjIajRoE1EWkXq+nfr9fiw7j8ViDwUAXL16sBYK4A8N0OtVoNFKv16uvOR6Ptb293bDNr62t1VskujPGa2k4INROfmPtiNhXj/QDH1/WwKJ0HJ/T6IjwteOiB9f3egf+sxd49B1YmEvWCNf09AlPH/G5pp/cm2fBRa24NSQpIzhG4lpzYY+2R9dS4s7Es9/wNg1ensJSIpFIJBKJW4+H/tpv0uu+9cOHLoVTgKUSFKRmzjakIBb1A4uIqEcUIVcexXYC4UUI3Xbv93Ay6wUWvfChR2+dvBK1JarsxIf2RJt3dEgQed/e3tbGxoY6nU4tKGxsbDR2aPB0AizsnvbgbgaINKIN5HIRkYpz4MdAeqljQA0L0iOIknN9ostOZmORP1JM4u4Z3MvFH0QeHBYQ+uheiRFuz5vni2KScQcDRBbEGYjpyspK7Rbw1AjI6Xw+r7dD9DF0MuxEHFeFk2avl0Fkn367QOOOgVgjwNOHSL/wNRc/d4Epph34s8VYsM55Pmm313DwXVlwffhuG9wHIYf1xLi5WOjpFNzXt/v0dRIdDMwddVYWpSq5AyJxZ6PV72u+WqSSayGRSCQSicQxoEgf+/Y36vXf8THNnnteaq1o5dwZTfprVz/3hLB0goJ0mHMNkYPwS4c1ECBQEDBIf7RBc70YtXWCwvUW5e17FNbJbLRzQ+AgZ56rDYmhUCT35PdErp1Ucw8n5hRlvOuuu7S+vq7z589rc3OzttxD/CIhjrsKePTWSTNtlQ4jwZGQx/oOzIcLGhA25qXdbjfGzq3yzJtHl0lNoIaAF4Qk5QBrOttMrq+vSzp0WHAf0j88su5F/rC3k4vvu3Tg8iCVwVMBIMyQWMbcXRGMA/AtO9vtdp2y4dF8znUxzSPunMPnLlRwrq992rhIsPLr8pmLZr4WWDsuGnB9CDgCVrvdvqyIIucgskDmuTcCmNd0iGvOn43oRmJM/DllvqJg4DUxECuiywbBaVH9iMSdgZWtLT39h9+oS5+V7oREIpFIJBLHiCJ97Jter9f/z5/R7K4tPfTHNk66RVfE0gkKi+oAIAgQfYTAukjAZ5AbQBQXZ4CTRa8DwL2diHmbIDOQFb6cdEFGXJzwOgcxeu5WdS9y5+33dgyHw7pGwPr6ura2trS+vl7b5TnW6w14HyFPsTCd56xznu8u4XUGIKL87IUDJdUF8ciLJ72kqqq6UJ47PkjbYG5IFyDdAJLNNfl3ZWVFvV5PGxsbtRDg88c4xvobpCXE8Y+pK+5MgPy6s8RTQtbW1rS+vq5er6d2u621tbX6HJ/3KEBRJyGmfiB6+HqOLgv6x5qkfS5URbjbAMGGPiCkuPsmPiOQdUQY+uNiB8KCP1Oe6uPPJ+3m2eRcd+1E8cKdHJzjgoWLH76OmVPeB4ga7mLyNez3Stw5aHW70uvulyQ9+1vO6YU3pjMhkUgkEonE8aNarfTRP3/fSTfjmnDDgkIp5fWS/qV99FpJf03SWUn/paRnDj7/y1VV/eS1XtdTEJxERXLglmQvaMixkhYSOScikhrX9GgmhMoL2nmUnc88YkrxP67ln0dC6JFnjotF9SKpcQu52/09sh37FWtJxDF1krcopz5u3Ue/uZ8LKaQ0ENFfJGZwT0gsggIEEHLqThTEJcggJJQUhW63W4sXVVXVjg+Pkrda+ztj9Pv9ul2TyaRRoJEx5j7b29saDoeXbR3oJLqUUrskut1uXVDS3TG4R6gV4KkvnU6nsdOEr13Wn4sZTtpjMU7GmLXq8+qR9nhdJ9zuTGA8+Z61F1MmPA3Ii20CUktoT3xWF6171oz/3tvuLhb6QeoL6xj3iBeYRCzgGv776EZYJOIsI27Vu/hOQ1lra/g7f7Me+38jxqWYkEgkrg35Hk4kEncyblhQqKrqIUlvkqRSyoqkz0j6UUlfL+nvV1X1d27wuo3IJATHC8lBljxCiiU9WufZ/tAJEaSmlFKTUd8NAXLk9nknvv4vZM3JHvf3FALg0VqvaXAwjpd9z/mLxAh3JHiKAznl3W63JtUuTjBOCAxead/dCKQr8Ht2V3Diyrh6aoITVr8XkWDOg/R5NB2yTMpLjMJLqvvW7/fr2glOPnFRMHfMExX+fZ0g5DgJxx2xs7Oj8Xhc9yeuN/oV+8f8uzjBuHiNA9rs0XW33rvjBVIdnwl3D/gao52L1qAf4+4IF6+4NuSe67Mm3JHg14trl2t43QsH9/Fxc8cM/XXnEO4P5pl2ITL5c+P9RZTy1BXWlYsYfEUhZllxq97FdxpaWxsmJiQSicS1I9/DiUTiTsbNSnn4MkmPVFX1GzfjD3Cvi0BtAieLkJTRaFQTNSLJECOvnO8EotVq1bnxEAa2C4Q8OmmM0Wna5wXwgAsXkupIvdeAcHu41KxI78TJC8xxXX5GKKE2QLR1e1Tei/PFHR2ckHGs58QzDz4mtNO3isSlEPPmXfhgrCDvXvfCC+l5br10uO2fk/aVlZVaTMCh4SJKu92udwUhck29BfpDNJztLVlT9JVtIhlj2kbePW4Dr4EAvN9u9ffIvI+Trx/6imAR15y7OFyc8JScuMZilB03AGMaa3cwF4gWMX2Ga7pg5A4ibyfH0hYXpPzZQdgB3mZ3GkWHED8zt+zewvz6evJCkC78eSqUtw3nwynDTX0XJxKJROK6ke/hRCJxR+FmCQpfI+kH7ec/U0r545LeJ+kvVlX1wrVeyCO1EA4ns14Aj8JqVOB3IurEyqOZRDzH43HDtcD9iGLGiGp0Jnhk2NMqIIQeneb+HBujwG4b9+hot9ttkEdIsaRaFKFIH22LtnUi22zj6OkILihE239MDYnHMF7Ua4CUcS7izGg0UrvdrnejwCFACoKLCYwV7UYIYA6Gw2EtTvT7/VoM4Fy36DMepEDEYouQRSeQEG3WlbssYprDysqKOp1O3X+/n+f5ewqDi1M+xk7WY7pJ7BPz4IIWY8izEtdSXHNO1r2GRISLFhy3yMkQ3RGeNoPIh4OHcXDHBYJbdFq4sBGfJdZa7AcigzuMXOCJaUT+rLhARnsXCYpLjpv2Lk4kEonEDSHfw4lE4o7Ci/Z3llLakv4zST988NE/kfSA9q1fT0j6u0ec945SyvtKKe9b8LtGpXq3fxPJhER5JX6PggKcCoPBoLawk3/uwoFHVj06SwE62uGkhHuNx+MG2YWYONlywsjvnEC5DZ9IO1FXyPr6+rrW19fV6XQaZMsjqk4mIV6MF32Igg3tgwRjH5f2t7wk2o+gwfVoHwR/c3Oz3sqSwoKDwaAWFyiKuLm5qc3NzbqQoRN9CFy329W5c+d09uxZnTlzpi6+yP35ckLNXDOvvuvGIhcCbfdUA0QQr4Xhc9DpdGqBhLoJiwpwMo/Ryu+CA2uPOfLjfK14moPPOa6duDWqn0eqCrt4INK4u4J1wTmsRxcNuD79cxdMFEBc9ONa7tjwNce88wxzT0/FQFDwVIe1tbV6Dlx0Yvw8dQIRjRoKvl0obfD58DE8TbgZ7+I9TY6jqYlEInFbIt/DiUTiTsTNcCh8haRfrqrqKUniX0kqpXyPpJ9YdFJVVe+U9M6D46pF9u5o9/e0BYhvt9vVfD5vkESi0kTgPbdfUuNabqN2MQBS4cdFsubRZydf7maI1m7OtXGo7+3Rf2oXgJWVFZ09e1Znz55Vv9+vSTjRXq7rue0cAxlGqIjRZbfKc39JtQMCsQZCjRuA65ZSanEBtwjnIdxIahTNc5u5R649Wk3RReau0+nU1+IYUig8zWU8Hmt7e7tOT/BUmbgrBWvHyfdwOKyt8RzjRBanxfr6ujY2NtTpdOov2uNrmPMZG98ykr6sra01ana48MX1PLruKQW4L1iLUVBj/SCc8FncEYU1FFNV3OngTpxYN4R2xQi/j31cezgP2InFRTTGzne6cGcQ1/HnjhSjOAasD3c6+BqIzh76ENNFlhwv+l28Vc5nJcJEIpG4ceR7OJFI3HG4GYLC18qsXaWUe6uqeuLgx6+W9KHruViMZkLeiEZ6XYH19fXGFolsMTmfzxtiQ6wT4CkC4/FYg8Ggjqhio6cmg+dbS4fkw/PFuRckKhYlPBiXmizTJojtohx23z0BktRutxe6FHxrQqK95Mi7MOEknvs6aXMxBIeBX8vt+J7vTzsgd9QacMcIUXja7WMCoWTOo8OCNsZaAaurq+r1evXv9/b2akcE9/cxgqDHOg30gXHk3lHocEGLLSuJkHs9DXcZMMasnZ2dHVVVVadssBadyDMfcYtFt+Az9j5ncR25yyA6GNyJ4P/6fMZaAy4OMf8xhcSdN6wHr1uA6MB4uLiBwOD1QrwOA+vFn2faRSoQ8+eCn7ff59fHyu8T0y5OEW7quziRSCQS1418DycSiTsOL0pQKKX0Jf1OSd9gH39nKeVN2t9z69HwuyPhxMaLvUGAERWIxnuRP6LYnu/c6XTU7XYb+dcePXUiRuE9Ir2eX+81DKSmGwGCBtGHHBOh935537zgIwTKhQYnlzbWNSlnZwonoIzZ3t6ednZ2GnUS3HngAoSPA3UlGLOqOixCSPSYvHe2DXT3hRdmhGAioGC1Z/48guwpAMzPfL5fFHE0GtUCBH2hCKMXI2QefO34fEFW+Zk5IpWj1+up0+k0nC4u5iDIOFFGHCHlgXWJC4F/XViBEO/u7tbz3W63L0uLiekQkup2IO54GoKTZ+7hIgP/uhOFNe7wFAUXxCaTiVqtVi3E8Iy4oyc+sy48ed98Ll3U8C0wfReMKOixLmPfIvzeXi8BkSyuQcbWHS2edrXsuJnv4kQikUhcP/I9nLiluB7fyqmKhSRuB7woQaGqqqGkl4TP/vMXc00nKF7MDWJBgT13BrRarTo67cTEbfGLIo2eVy+pLrQHAYF4OvmJ0V3s/nGLRt/dgUiukxkIotvFPfff0zUgaO6EcLKFMIE7YTweazQa1cQo5q27KOK7UtBn+uUWd4+6uxsBeFTcc+qZLwQJJ/2IGOS2+1jQB2oWeA68iwjc0y3x7kCRDkUEnwOcCqwD5p9UGubPRR2PsvsagnQyf7u7uxoOh/V9fK3RPwQuJ/F+D9av38sj/NzXHRzR6s8ceMqCi0+etuIiylERftrurgJ3M7DemUvWQlx/7oyJa0/aL8jJtWMhRRdnXLjwa7nLwj/z+hZxjH1NxnE+DbgV7+JEIpFIXDvyPZy4FSjT/b8dH/zWX9V8OLzq8U/+N2/X4OWVqpUqhYXEseFm7fLwouHExKOFHrkfj8d1SoJvO4hggAAgSevr65IOCVosrIg4QbRfUsMSLh3WV3DrPfUE3HZNtNaJErtOENGPEXy3jzupp59ueYfYdLtdra+v1zUUfKcH35nAiS/Eici+W7uxinsBPY+CMy9+PIQ+RprpP7UFqEfgzgAcD6PRqB5rahb4jhwQyBdeeKFOX9nd3dXOzo7m87k2NjYadnvGlDllbCTVW4eyFrgHggHXcbHE3QUAQcQt/QgUrDmI8HA4vCztg3n2+WG+WL8ILj7e7oZBXPO5ob1cN9YDYdwRsHy94nBwcSem+fjz4qk1zL9vmzmfH27NGJ0XrJMoyPgaoy87OzuazWYNF04sagkoyBgFGwQBv7a7g45yccRUkNMiKCQSiUQicadgZWvrpJtwLFiZFD34Tz+j6aOf0rVWdHrZP3iXJOnTf/Xtmpyfp6iQOBYsjaAA+EPeiypKqsnKcDhUVVVqt9u1UIBYAGly14F0GM1EHOAeiBL9fr9B1DziOpvNatLtKQTcG9IXiaM7K2L+N1F5j25D9DwNwl0ERPvJ3UcgGI/HWllZqQUMT4tACPFaDZLqeyDCeLQ7FsBj7D3CzRhB3Jgr7uEOBUgabaWaP+Pp2zM6ea2qqhYeVldXa6JJ3QQn9BBE2ubEkJ9d8OF3TqoX5duzlrx4IoJWPI7150IOYwA59vbF/vrvGXPfJpF17GkmzBWihAsK7nygv9zXHQ7+PHgEP45hdFd4/xYVBd3d3b2sqKGLAf68+Li7iOepN4sKSDqi8OX3dPEJEY7+xQKt/mxzvcQdgtlM7Yst7Z7JOU8kEollxse+5Y1Sub1rV64Oih74wec1ffRTN3T+K/+Hd+mxb367xi9NUSFx67F0goJ0mEdN5BaSMB6PGwRwd3e3JqtEzyeTSU3m3TkAgUE4OGrnBUjLovzymK8PmfPdDJyoORGPZBZC6USevhF1d8LDNdvttvr9vnq9niTVwgT36Ha72traqqPmVVVpMBjUUXe2EIR0UR/BBQDfTpO2cqykRt0EhAHgAg+fj8djXbx4sXYY0F4EDcaCL67jc4uTgZQUXBmQVyd+sagnhTtpEySY73GQeFFLxsx/B9Fk+0z6gUjCHHu6ixfBjLUL4vaWCFSewuJr1tMQ3MmBaMTvmc9FtSn48nnzdBn6Qf8QJNz1Aun2dAqvj+AiW3wWouixSMhBRHDnC4KcH++iDMJNdDLQhtlsVjth4jrwd4ELmP5v4vbH7MJFvfafPqJHv/4Bje/OeU8kEonEyaB9saVX/9hFzT780Iu6ziv+x3fp4b/31pvUqkTiaCyNoLAo+oioAOGGPELoIB9ef0A6tIL7lnUuFHjedSQhTpIiIGbcG0Lmuf1OUn0LRY/a018XGxAKvHCcb51IVJ5igESFY9u73W5NxHxccAdAdmkDhAvLfayZ4I4E/vUIMGMqHUaHvar/bDbTaDSq6xVQXJP2QfpjXQqv9B/rVkDivS0QdYQUrh0LT7qzItYtcMLta8R3ufAtTGmLCypHWfNZPy4IREcGAgVzFp02XNuj977m6Ys7Z/w58toH7pxZlF7jJJ5ruRDl88OccQ9fO5D1OL6IGnELSJw5CGyLXBm+Dt015HOKEEnBVUQpf058xxd/nuP2lok7B9Mnn9Kr/s05fexPnT3ppiQSiUTiDsVLPzBV9SsfvinXOvtQ0YU33N5ujsTJY2kEBUckehCeaJ/23QRcUHDy4aTEI+NerwHSMZ/P6+3nFiESXdqBSwGSCfHnWIQIfg+RglRJaggOnmtOu92lsIjsIkpwbqvVqgngZDLRzs5OI0ferepu8fa+egoG/YGAMtZEx+fzeV2Mz63/sZijpEbaAKkrHrlnHLyNq6ur6nQ69RgOh8NGAUsvzOepG14QEycJLg1fLy7ASKrv61Fuh/fJ++rWfIguVnuPenuah48nAgPHezqC98/dA5464+4MF8/8eK7ndSZ8HKMI4ztM4AbwHVH4DGHKrx0Fuyi08DPPjHR56og/vzzDsTCkj427iBD7YvqQixnuJGKdML/RqZS4vbGytaXn33T2pJuRSCQSiTsU3adbWv/kxWuumXA1vPR7f0kXvusLbtLVEonFWEpBAet5VVWNXQsgUhAZz9N2woad3esgSIf2ZU9BiLZyj8wCSB+/g4hAskhTgFzRhk6nU98LQg754lpO4pzsuKjgwoJHuSHFnNPv92tHhJ/rOxbM5/O6xgJRZQg14+GCDn3ytAhIF8KE14dwUYBr8C/1GnBYcG/GyOtJMCe0izZyPOIAxzgB9V09Sin1sb4LBqQR0SGKQXzGPdxZ4AJIFF4QFGgzY+W7ergA5g4Qru0pA+5IYPwpeBgj8i6SMQa0zwl9dFYwdzgZIvFn3HgGPFXAhRHmzrdBpYipz6s7UtwZ4c9sTFmgjy4uuMPDU4a8Xy5E+vPF7/04Fy5d4ErcOSjnz+qZzz/pViQSiUTiTsXGY5Xmv/qRm3a9ajbTfT9f6fEvzr9pErcOSyMoREIECYb8xfoE2N6dfDrh8pQA8ss94impIQo4YfOIJ4CwcJ4TQAiJ3wOi6jtIuCDiFfv9ftFy7qTXI6suhiAM0B8is9RM8LoRHEs/SeFwUSDaxmMKSBQ72F0jknMn1lyHdnkdBukw4s8YIdAw77g5fOzddeLk050p7gJwMg3Jl5pFNPmZcaKehdfziG1ljXmqgtdk4F4ubLkY4ATbBQYfw1hE0PviLpD5fK52u13P0yJhzFNe/J4esXfnTtz+Evj8OqknbchTbHy8nKj72ooE3p8vH4s4Zi4a4njx8+gbDhcfY8bD52nRmk/cGZg/85zu/YV79cQX5R9eiUQikbgNUFXa/JmPSF/82SfdksRtjKURFGJUnMi/F66DpBFFdCGgqqrahu0FED0fG+JBFNpJHYA4eZ45TggIeavValipsbYvIrAgWtOdsECUIgknjaHT6dRfXlDQ8/C5DuRoOBzW0XjguxpwD8QFhBxJjUKC0fa9iHwiEkj7hA5CytzQZ67LsaWUy1JMPBrttQu4NuPoYyo1i2bGtnsbfOwRrNwZ4VFwn2//vQsBLkREK790GP1eVP+AMeFc1iPX9XF3d0x03yC4cRzikq+R6ITwzzwlgbawdiDduFF4xtzBEN0ofA9J99Qe5oVjXPBwN4E7FGhTdL+4YIJo4c4OXDSMmQt37m5AnGQcfR7TpXBnYT4YaPP/+pCq8jl68u0594lEIpFIJBJXw9IICsD/wJd0mWjAMR5xdiLMv25Rl3RZ7rX/zokQxMyjzpHsc66fh1DhzgX/8qh5JE7+Je2TGMhzv99Xv99Xt9vV5uamer3eZXUXsMDv7u5qOBzqwoULeu6557S7u1sXRHSRwqPMEC3uzX0l1Tsr+Lm0OToAIHyQOU8VcNs6/aa2Q0x1cPLuRJB+knIRiw769SHuXMt3CvC+uPiDaOTuENJWuKevg9g+dyX4eLqd3+/pjhgvYjifz2uhxx0ivsMGTg/fDYJ1jduEc33HCb+/iz7+PETbv7sfXFzxyD9Rf/odnS1RwPB5or985gKBP7vRMRTfBy5Esr64BvPqxUQZFxdm4nPooknizsF8MFD/yV1JR9fTSSQSiUQikUjsY+kEBelQVOCPe9/iz4vLOcGT9skUvyPNIR4TyUK0mgO2JHRhw8lPJJJc04mmkzPIGOTII+ZEgiP57na7OnPmjM6fP6+zZ8/Weeue2iGpsU3gcDist2h0UcSJKog59u7ewLJ+lADhkXBqIzAGsbAdVvPoCoEMR6Lq90Q8YbtGfvZoMq6Ldrtd99mdHB7lRsggcu1knbXiNQK8cKWLRXx2JRdETGvwqHusNxGJN7sQuHgmHdr7nRC72OXChe+4gcjiz5eTb08nWuRe8DXu/8bvI9yNwH38Z+bFXT2xqGSEE32vD8LPLgr6mnUxh1QgEJ0JtIu1kUgkEolEIpFIJC7H0gkKRF97vV4tIlDhH3s+BGd1dbUu+kZEGXIBqSDa78ROOiSX3JNrdDqdmkiw1WGsKxDzwAGklmgoBN0L8kFc1tbWLosE+70oXtjtdut/ndS2Wi31+/16bEjB8KKD7hgAHi13WzzEjHthGQfMhaSacHe73Toq79Z/z7+nDdS1iG1xRwFzwdgiFDBfWNhjOoFb4BEJ4vxAwqkr4WkmvhY4D1GKeaUNHrXnsxjppx9+PRcYuAZrluMQoWivCwqe6+/ODC+K6SkRjE10IPBvJO9xvpkfnxdvv8N3PXFHgNd7cELPcb7mvX0+bhF+ns8r64LtVmPNEtruBS/jHMX5O0rQSNwhqCRl1kMisRzIkjaJRCJxfDh4577u+y6o+vgn648fPeLwpRMUWq2Wut2uut1uw7LuudAx1z0CouRuARcZ3P4c7dgQcXcbQKSdgLCXPUTOc9y9ZoBvq+ht4Jjd3V0NBoNGjj2R+LW1NbXb7cvy6WkDgkKr1WoUr1xUXNHJIdF3EIkq4+pb6/lWglyD9AvPt+d8SKvPIfZ+dyE4YXN7P0SQ8eNzxsjrP/iWiQhSOFva7XZjdwdy5efzeS2eQDhdVICcIob4PHgRRye0Tl59PfucRTcGooUT5ehWcBHFxQTSMaTDVB1P92GcvD1H2fgZNxwf9NnvGdOI+J50EF9bCF24QTg37obBuNBOd3osStFx94Wn1riY5H10Ac0LfHJf/9nXqjt2EnceWv/xV/SKM2/RY1+W859InDTKTOp8ZnjSzUgkEok7AmUuveqnplr76fdrfgUXsmOpBAUXCLDU87kXwIMMej0Cr1HgRRy9iJ1Hrj0v3MHnkF+uj8vAd1ugfZAS34UhEmfSAHZ3d9XtdtVut2sBYDgcNiLWTgq9qJ9b46NIADmFBDsBjY4KJ7W0y6v/x6J3saggWz5Gx4iLBtFCHm32Pg8eYWYcEJT4oo0QVb6cmEICEYVYHzg3fPtGyD9pG5Iau2BIaogszJmPHfb63d3den06qcVaz7hxjI+FR+xdkKAfjI+3S1JdrJO0juFweNl4I07RljjHOEtYUy7YuGvEi3guShHyZ8sLNnIObXBnAfcHMT3B64T4+Dk8dSTWs/Dn+WpuBAfPGOOSgkIikUicHFqTos/6jg/p2Wv8ozaRSFyO0u+ddBMSpwBlJrWmRS97z0xr//5913Xu0ggKR5F7iETc2g8S4UQNLIo6+g4PEDkngUTVnYg6ofDcd0gtx0IoaRfHQ+A84uxtin2HfHnkGSIsqdHW6XSqTqfTiNiORiPt7OzU2/VxL67N2HlUn1QHJ+buBol98ugvn3uxO08tifnzXMPrUESySzqIR+ZpH0IA7WO83NlAqspsNqvJ9mAw0Hg8bhBqxpN6EdRdII3Dx5B11u12G32MdRL8uvTV++ljFiPpPm7MFf2gv/RHUi3oLHKu+HpjnLieixjuxPGof6wF4YJeFOSkQ9GLyH7cKcXHxwUXHxf/vQtqnt7izgtPG0HI4z3hThq/Bn2Owk0sPImQdpSbI5FIJBK3Hqs7RQ989yOabW+fdFMSS4SVl770pJtwqlBWV/XRb3zNSTcjseQo06JzH5HOf9+7b+j8q4bfSinfV0p5upTyIfvsfCnlp0spHz/495z97ptLKQ+XUh4qpfzua20IJAML+t7enkajUU0io0hAdNkLFdadMjK7iAzz5dFyrykQI8hEbyGlTmg5FlICOR0OhxqNRo3ib0T3nbCtrq6q3+9rY2NDGxsb6vf7dR0H8v0hu1jQcTq45X48Htc7OtAWb1esmu/E09M7+BwC726ISKA5xsULL5AHGEtSEbw9WO1pf0xFiTUh3Bnia8ELCtKmyWSiwWBQryNPN/F0EuCEmeKNuBqicBBTQuinR+YXiUy0jbHz+cKFQP8QNWLRxChGeMoNzxK/i2khLmxxbiTOi1wI8fMrOXyYS+aNNcG4x2cAIAb4WnOHDPPtAoeLgtQvYQyYU352x4WLH144NY7TMgkKx/UuTiQSiWXAA//bM5o99fRJN6OBfA+fPB7+bz9L1ert61jZW5dWXnL+pJuRuBNQSf0nWuo/0dLZj964mCBdg6Ag6fslfXn47Jsk/UxVVQ9K+pmDn1VK+WxJXyPpjQfn/ONSyuXM4Qi022299rWvVb/fr0kyhI5/pcNicUQzPb/dSYMTDCcHELtohSYyyb1i6oDnubsF28mmR8khU5LqdnptCNrb6XTU6/Xq7SGlw7oGEDFIoTsfnHANBgNdunSpFiAkNcQOFw28CB+RX+oJ4Lig3gBRe7ZOdJLLNpVeBwCCxngiTnhahUe2GS9IP+PCWMYxJKViOBxqZ2dH4/G4nu8YMR+NRhqNRnUaCHAySrsB4xKj+T6eXq+AYpOsHRdxSOXwuXKBwttLxD72wdvuRJtx8y0jXVDgeD6PIgTtj24KrwES17uLB57i4v+6yBSFGCf5UfDzeWHNcC0vnurnMIcIMVHE8d06/BwEG1+v0SnBvMXPTxjfr2N6Fyek7rNjtS9kyksicRLoPdlSGYxOuhmL8P3K93DiFuLi6yvt/LbPOulmJG5D9B9vaevjh19nPl5033e+S/d957v0ku+9cTFBuoaUh6qqfr6Ucn/4+KskfenB9z8g6eckfePB5z9UVdVE0idLKQ9Leouka26lR9whUysrKzXZpVic27XjjgnSoSXc7dHxHtieOQaiFklGLIgX7dSe6881iMa7JdvPcacDkVns90TV6QNFKj3a6n0ajUba3t6uyT1EyXP5IV0Qcoizp35IqtvNOLgos2gMJTVIMETcrfSICNSZ8OPdrQA59OKEnoriZBPHgtvgOcYLYWLhd7Ieay5E2z81F6pqv7Bjp9Opx5l2OlF1Us91EQO4josAXp8guj48zSM6IjgWx4ILDD4PUSCZzfa3P41bmCISAXd7MD/UrXAwpi6CeNpQdKl4iov3J8LXNLuEcCy/84KnuJcQNxA0OId74Jxh/S0adz5zAY5nd1lw3O/iOx2rT11U++KGds+edEsSiTsL64+19MoffVzTxz5z0k25DPkeTiQSS4lKuusD5Yo74tz185/W9Dc+fUtuf6N/Ld9TVdUTklRV1ROllLsPPn+5pPfYcY8dfHbNgOj6zgH8UQ+5dfIiNclDtGJ7hNhzq52gOQEkqrzI4i6pQeQgHp7P7qIGRCvWaXBiWUpRr9erz0dEgcgRZeX72DfcBDFf3VMcIICM32w2uyyVgtoS7rDAueD9ctLvaSLc090EwCP9LnB4G/34SKZ9nvg5zq2PVUwN8DZGcclJsUesGf9ut6u1tbXatcA6pJYGhQ/pJ+Q9Fsik/dxPUoOU+/pn/qOo5U4PrzOxqD/+LPnaZqzc0cPxXouA+/N5LDbpY+/PR3xuYooC88vvfF35nHqdEz/O0z+ieODvBIeLVl7fwZ0dLj7RNnc2LDFu2bv4TsfOG+/RzquXJ+UlkbgTsP7pll7xb57U9BOPnnRTrgf5Hk7cVFx8zao2X3v/aXsOEseIsx8tWn+qmWLe+z/fe8Vzplf87YvDzQ6/Lfrre6FWUkp5h6R3hM8adn7pkBi7EwAxQDpMRYiuAOmQcHvaQKvVqiObTmpxRThxhcj4NWO+vHSYXkE1e46LYgJRfSfYbBHp9RE434vTuYUb0gzp8+3+GEOu41F7b7vvdgB8HJ1sef0KJ25O+PzYSFa5JteH8MfcdW+Lk093LODqiDZ/iD1z7W3w8T5KXFpZWan7TcqG72KBuEU79/b2GsUzAa4EBJuYVhHH09czZNdTJxgHngsn0S6w+PeeshDTVI4C8+ipC8wDbVzkPmBd+pz4M+PPrKde+Nx5/6NQ4cfF9Au/p68bF2EQVPy54lq0z50fiAo8Z0uW8nA9uKF3cVf9W9mmRCKROBL9z7T0ih9/QrOHP3n1g08H8j2cuCHsvGquyavOayUFhUTA5idbuuvXxup89DOaPvnUSTenxo0KCk+VUu49UGLvlUTVnMckvdKOe4WkxxddoKqqd0p6pySVUqqDz2qi6rZsiJ3nPnM8EWCP1EIq3PYO4Zea2wEuciN4RNQFBi+k59FOCEiv12ts8ejRWbe9exTfc9Y9x5zIuEfUydePhQBxcSAoeMoDO1JEFwWCAmPKGEKIFxWdDPPXEHn4DILJGHgKA+114sw4uBDhRfM8Ks3YuEDjwg2pCO12u+6fp4f4F230dAgXH1h7rCOuxfhD0FmX3AchgXn2dI+43nwe/Xh+H10bMb3D12YULCDopDo4wV8E+uv3jNH5GOH3NRzTSVxYQzBgvl0wcNHO10dMpeB3zNmiVBHa7AJFFPD8X1+fLnQgwPnxS4yb+i7eKudPrYKSSCROL3pPtfSq/+MxTR/91Ek35UaQ7+FEInHLsLZddP+PXpIkrTxzQdPHPnNL3QY3ghutOPXjkr7u4Puvk/Rj9vnXlFI6pZTXSHpQ0pX9Fwb+oI82f7dLQxQ8Tz+SRq+DgADggoT/LlbSX0SiPILpXx7RxWkAqXeSG63TnOsV/Z1kra2taX19Xb1eryFKOBn072NuvRNDCJYXD1xESJ30RaLmYwvx8nHxufO+IAxRB8KLF5LW4lszxrQSrsVnHnmP0W4fb7+G38sLe3oKAeTShRiu5XUhILu+SwP3iqko9D+e722O64zjvD/xmDg2kSz7vf14d7y4W8VdNnwW0y1iuoinGDjx9zZ5qgefRXcC93QBJO68EsdzPp/Xc4nwENM2/Hocx5zFdbzIMRFFqiXHLXkXJ6T1X/i4zv360qe8JBKnHp3nW3r1D3zitIoJUr6HE7cAn/nSrlZ+04Mv+jrVdKrX/S8XXnyDEseOMi16w//0pB74nk+r+pUPq/qVDy9lbRnpGhwKpZQf1H6xmbtKKY9J+lZJf0vSvyql/ClJn5L0hySpqqoPl1L+laRf136qxn9dVdVs4YUDWq2W7r77bp05c6YmnpIuExLm8/nCyu2QP7fEewE8j5RGe7WkeveFGD3F/u2CAG4HCJBHj2kr1/AcfBdBnNhB0oiMstOD2/Y9rQAxwEmhEyV3OCBceE0BJ3O4FUiV8Mgy8Px/+ufpIpHweSTZ7elSMxI/nU7ruXKiyhi5o4SxmEwmjbbRZ8+Rj+kwTmyxtDMe7qTwSL73PfaHMfD5cJHG++ipJYhHnm7Btdy5wbpbJNa4eMDai84Cd7V4ioWTZHeTSIeOA7f+cz6/9+eC86LQ4w6PKFpxTxdfaJvXzSB9x8fGnynp0Bnh4kjsPyJCFHFiysaiOVlGHNe7OLGP2Qsv6KX/+69p9vWfp0sPLL1TJZE4lVgdFN3/3R/R9IUXTrop14R8DyeOC7tn5pp32zflWuXRxyWdvSnXStx6vOEfPaFqZyhJmj7zzAm35tpwLbs8fO0Rv/qyI47/Dknfcb0NKaXo7NmzNYmE7MSaBZBjj+C6UABZ8C0K/fdOPqm5gGiA5R9CRCqDk03cCN1uV6PRqCaKnkbgx7ql3gvBudXb++PEyV0MECwnkNPp/taIly5d0oULFzQcDuvfd7vdy3ZhcGeGuzsozhjdAIw193US7rUP+EKYkA7TShivg7XRiBazi8Ta2lrDqUDb+NlrHkSr+9rammazmQaDQWOrTuYj7v6BUOEClLsTOMbrHPg9EQUcLla4yMS4ecrIImEo2vK9DdG54cIR94n1C4ATZLZW9WNI6fDngvmB1OO4iaKWOx8WrW0vQoqQ4GIO4xtdHTyzUaRyAcfFBF9Xvn5cGPS593u5sObPHe1YNofCcb2LE4eYDwZq7S230JRInBRe/0+eUfXYE3r4Wz9P8/b1PSdlLj34Lb8mzeeaHWz/fBqQ7+FEInGr8Lrvvyh9/Dc0HQ5PuinXjaXZE83zzEEkLYu2n/PfA494Q4wlNQo3ci/IWSlF4/G43t3AxYxOp1NfB3eCb68nqSaykBkXHohYe4TWi8IhAKysrNQ5+LG+AGSVAo4ICm4V9ygvZNG/99x+iDVkDRdGp9OpiR99KaWo2+02XCLRmUA/vA5ALKzIub6bBucgKCyaf4jjeDxujBv/jkYjzWaHWyNy/dgOnA6IRG7ld0EjEmfvo9v3pcP0lel0qvF4XO+4Qfuly7cddWGG37voEesLuIuAeYrnx399LXhfY2pNdAJ4CoTPgbfJBQXWlq8/d234Mx3XTnQEcP+jxCNvD21GzIjPv4sRjIHPg4sc3qf4Doo/J+4cTH7PF+qx376iqpWCQuIORyWVSnrp+6Stf/lL9cez+f7/Qa/9pveorK7p4b/15sNTohZ7cA1JevDbPqz5YKj5PIP1icRxYHbpkt7w9x7TR//CK066KQl7F0rSPe+ptPEj75OkU/1OXBpBATgZ8IgnJMLTIWK9g0i03Aoe89i5Lr93AhrJPFFRFxOoyeCpEm5151iixzGVwI/zdAevsu+OB99q0sdjMploOBw2CixGElVKqbeXdOLODgZ+vbgFoqdIeMQZhwfChAs+PvaQbfowHA4X1hRgvLrdbj2vOA64p+9U4DUZ9vb2NBqN6vEnd55zGVu3yDvZ5vr8ns9ccCA9gz7TXyfT9NPHyNejk1eP1FNngvt4UUy+XDSijcBFE69D4EJbHD+/P+uAdQlB97QGF1m8NsiidBNfBz6O/OznuFjm7V7ktHCB0R0NtIu1Fncqic4E7sPadkeMi3zLngKRuLWoSlG1cvXjEonbGtV+VfF7/qd3XeGYStXerh74i/s7JK6+9n597BvubRzyWT94UfMP/LokKWXaROIEMJ2qtVc0X8u/bW4qKqm1d+31ltZ2il75N67wPj2lWBpBIeaRe9766uqqer1eTXw8/x5SE7/cjg/Zj9FmEC3x/nuIk1ugORbyzTUW2dr5HW2KudpE/+kfBBlSNJlMNBgM9Pzzz+uFF17QuXPntLm52YjielQY54IXt/M6APSDvnBPt9UztpHkefoGLgcIsNcH8LFblAZA3wDndDqdur2IH5w3n881HA41nx/u2MF4cj3IvJ/D+Lh4RDuiG8Hn1633LhbwGesOgWZRgUdP8ZD2xTBf375+3Hof1zDbUDpZRxhB4MBlwTiQLuNpDoxpKUX9fr8hNrjAEkU5xg53D2ODWABR9+eLMeEa7pKJhSTdheDpCO4qcNAG7hfnLRaVjDUYYh0H7k87mRd/HyUSicSdhjLf38rximLCAkw/8ahe+42PNj5LESGRuD6sjIvK3mzxPqM3gOkTT+rB7+nr4T95j2bdFBVuBKvDohJMBGuXiu77O7efQHC9WBpBwXchYPcFcuzb7XZNNj0H3wmtW+0hB168cTweN6KlHjV1ggiitdrhhHlRJBOiG8/pdDpqtVqaTCb1ZzEnvNPpqN1u1/Z+yBFOBO9HFCairRtS5e4Gj3rHNpICIR06RSBu0V4P+WUu+v1+PdZ+nUVj7fZyj5JTs2EymWg0GtUElnne3d1tRJSphYAbwQmkF0NkbcXPY5FFSDK7Qbjd390BnU5HnU5H0qEjgHSZmBrhKRpcm3SYGPlnTFnb8bzZbFYX7GS+qTFBG3FpeEFM+kc6Buew+0ms30C/aJu7ChAwpObOHD7P7jDybUlj6ouvCdaUf+YiAJ/FNrk44IVWPY2E6/uuHH4dxiv+ztuWSCQSdxQqaf3TLb3sH+QfyonESeBVPzXR/EMfvanXnH38E3rgB9v65B88p73N/PvmSliZFK1dbDoP7v/+T2j6xJMn1KLlxtIICi9/+cv10pe+tFGwz23Ra2trqqpKo9GojtZKh0X5IL7RsRDt1pFkxailk22IrFuj/RyOJfrr5DASfM8rdzIDXFiAUEOyuf6lS5e0s7Oj8XhcuzUQQ6Ll3aO0XrxvUXTWc9A90u7WfS8EyHh4ekq0wLsVnbGiHoBvlRnbAeFHUGK+6A81EGgTdQvG43E93hD8qqpqkcqFEk+18HXAZ+5GQBygr147gzZvb2/X88L4uGPFa3i482DRGnCyjujgx/m5HqmH7CMcITpFlwjtGx8UwXIhDWHHxYSqqmrBBpGLfjAfnjbibeUYHyvfGhN4nRN3dkQyzzWc8DNGce48zcjXqT+Hcfx9vcY0jEQikbhjUElbj7R09/+cYkIicbth/msf1f2dz9Vv/J5N7Z5J75CjzKSNT+3/fbj1G1P1fqy5y2v+RXg0lkZQoPAhhMht6U5aIgHzgn5uaV9k5/Z0BY+WOonrdDq1SAFBgTA7KZvP55dZyv1+MY8+Wuqd9HBfCh8iGHS73bpmw2y2v5MB5JVItVu0nbAdtWUe48YYjEYjTafT2o4fbd4QMLeTu1jAnAwGgwahd4HHdxjAQh+j205U3eKPeOCE0OskIDLh+nDxgTkFLlgg4EDGIwlGUCD1Q1KjKCdzvru7q+FwqMFg0CjsCGIKzdraWr3GYq0AxgXRwteWk3UXEXxsvEYAAg5rleeKsUb8wOa/aPtFf05Il8Dl4kKZP5+xromvJRernNhTQyLW26Cfvtb8ufbnydedvydi2kOsf+HXcxEwXieRSCTuFJz/UNH570sxIZE4KXSfbqn99I5uVYm+6pc+qFeufp5eeENfl14rTTfubLfCuQ8Vlbm0slvpzL/Id9+NYGkEhUh6IVVEID1KLh2KCZAmznFXA8TX862x6ccIpJMqJ9wQm0WpDZ6n7tf2yCzwYpIuZNBPJ+0Q6ZWVlbr4YFVVGg6HunjxonZ2drS1tVWTYqK7iAmLorQQI3dIuEAQ+xa394skD/EGsjoYDOrr8znpBohFPq8uDvCFkOCijRNFoueIAr77gdvZ3d3A2vJ0B1In4haQUXDyc5mLfr9f74RBm0nPQGTylJi4BrwwpM+3Ozkgvr4dpNe48LmLDgAn0p4CFAkyghPCVbT5XylS7w4UanC4iOLwZ4H16f3juaMNpC/5c75ICOR8+rwozcHdODxfnuriThUXFhA+XGhKJBKJOwF3v1fa+qH3nHQzEok7Fr2nWnrlTzyv2a9/7Jbep7z7V3X+3dKZ3/5mjV+y//fwk2+9c4oRn/9gUefS/t946z/yi1KmuL4oLIWgsLKyon6/X//sUVOK70Ea/Q98iIq7ApzsYIWWFluuParLfWNOuqcLABczpMPaAx7hd/cB/YCQ40CgXgL3hAh7wT4EFdwE1FEYj8d1bQDPl/d0D8aBMXLbfIQTMI+S+5g5sWd8pUPhRVJjtwJ3TyBOQBA98u91Ho5yeMTPvD6B99MdJXw50XQHBvUA4m4KcVy4DsIIKSi4KYjar62t1fMR6wSQLuFOAB83dyR4pJz7M+a+7n17UU/L8DXq/XBAyv25oV/u9lgUpXf3x6K0AuB98GP89/TN3UXMq4tlMZWDtiFARIcQa87Xus+zr6G4dlyASdy52Pj1p7Xx4H3aeVWug8Ttj3t+Ueo+P1X7Z38ta8cklhqv+umJHv097duS+HafbulV/+Y5zT780LHdc+Vnf1nrB9+/+oXPV7Wy/3fT3vqKHv/ia9+94DRg85Mtnf/oflH47i89otkLL5xwi24fLIWg0Gq11O12a+IOucDuL6lBLDknkkRIqddhWFtbq90FHtX16LsTUK9aLx1GqiHaEEbIICST+ziJghRRjBEgIuDAgPxx31gwkUj4zs6OLly4oIsXL+rcuXO12OAFHSFjXuvAo9extkO73a7P4QuCF3PjY80Bt90zLtSAYI4isY/1BWLKiKcHONlblCIBKfZ5A14Pw7GoPxzvYx5dBr5TAf3ztcRceCFQL2DobhR3TNBfL7DotnvmzR0yfObjyO/iOHn/+De6VvwZIrWB5y7Ouc9RrAXh8xXh8+riFeuXY9wNwTPlLgTvA+4YF+8WzavXLuEYd29wDnMSn4XEnYnpJx5V/6mXaedVJ92SROLW4mXvlrb+rw9rvr190yrKJxK3Cis/+8vSV75Nus1Wa+f5ll79I09p9rFHTqwNqz/z/vr7dqejz/rM6xq/f/Jtm9q5/3SJ7O2LLb3qJ7clSatPvKDppx+TpFuWTnKnYin+WoYAQ7Yggmyl6ORKOhQTPPIMuSDKDwmLudoxzSCSXo9Qu9jgOzHEyKekxi4FnldO3r27Jdixwt0FTticUHu/5vO5tre3tb29XZNVvtrtdmMHAI7numzTSFqICzOR9Eb7e7SFI/w4wet2uzX5I0IPCacPnuIgHRZqvFKuOukfPuY4GsbjcX0vz7eHNPoc0/5F64C5dvdK3E6TcSMlw1M7PB8/5uQzPlGkiqkOUXBxhwNt8jQEXysxBYH7+1rCyu9k2T+PtSNies6iWhwOTz2KaQreDl9bTu65v6cY+dz4s+jjyTOyaBxdJIprx1Oj4rj6s7uorkTizsH5/+eTGt79gHZefbr+gEokrgXnP1j00l94RtXjT2m+vX3SzUkk7ki0JkUP/i/PqEx2NX30UyfdnBrVZCK994ONz17x6Zep2to48py9uzf1iT/QudVNuzoq6fX/7FlJUtnd0/STvyEpiyreSiyFoOB51kT72ZrPc82xxEcr+Ww2q4vjkcsOIvGHQED6ozgAeXLCATGOBAOCRY0DjvHIeafTqUkepLTX612W141rwd0WEEWq98fvOW9tbU39fr8m861WSzs7O3WUnOvFtjspdZcGBBmCST459ntJtUBBPQL6Wcr+tp+xYKXPUyzk55FiF4AQN7gnEWu3uiM4OYH1NAVfI/SR63AugpZH/j067dFwd5E4SeXfmPvf6XTq8XORwN0ii8YJgr6olkAUnhDPEK48FcLn0p+BKOBEQcIFMH+WFokEMX1gUcpHdN24CMDY0l/GAxGKOVrkUvG1wvex7oQLC+5M8FQSbzupK4vGKXFnYfrkU1odvfakm5FI3DR0nmvpNd/7CUnSfGegWQoJicSJ4A3/8HFpsitVlaZPPnXSzbkmTJ94Unri6N+vPLKqNzx814u+z6f+2Gs1fPn1//31+u95XuWFS5KU2zseM5ZCUHDEyKJ0aC33vG9IEoX8IM6LiLHn30vNyvR8eZQ02qOdjPg9IJ0cBxGJx0BecDi4eOLugrW1Ne3t7WlnZ6feHpP+UzMh2sUhk9x7bW1No9HospSJ2WxWE2kfw5iewbi4sLHIQeDnRaIXo98+tovs6U6uPaIcUxY8ms64elQ8po44YY0El7FbVGyQeUFw8GOc5Pp9PWruhQaZP2olQGh9zHx8cNjEWg7ReUC/WEcutngNEcYkzp/Xa1g0j4hq/hw5uPYih8mi9J2YZhHXpwsSPo8u+nAd1iRr1sUnd9/4uomuBn/+fR55ljLVIZFI3A54/d/6hKrh6PCD+VzTgyLKiUTi+HD/T+yp/d7DQovT21DMq6bTm0LkX/GPL0kHf6c+/C2fo/naldNbHvjhkVY++AnNdnayuOIJYSn+anZbtn9PpDWSomjHjoSRaCWA/HoU1ncIKKXUxQMdHqX2yDH3gXi4xR5C4kIG16JmAm3B8u+590Rq444Nk8mkEbH3qH2v19NwOLws0osjAoEhRojd3u+kz8nfokJ6TtAoLMlYItx4rQAcAC4cxPn39AQnf5EIR7u+W95jGgeOAtrmOwxUVVULNtwb0s9cOTHmuj5uHg33vvC1urpar2EvKOp9oO1OhInw+zjT10V1CkircTGBNelryQUI38XD20TaD88FjhtfF4CfY5toq6d0uKi3aH7pG9eKYoSLLj6P9J++uJDEfX1dx+fRz3H3Cm1Ih0IikVgK2Ov3wW/8Zam6tnfTbJom30TiWHHwrK4/1tJ9/+i9hx/PZpon2b0mzIfD+vsH/vIvXfX4ajpV/rV2slgKQUE6jHhCEmIUH0LkRREdkB8IvRdmdKu2OwU8+u5b+UmHooOTSog9Wwh2u11tbGyo2+3WVn5PqeC8mMfulfmdYAGIIRX3IYRnzpxppIHQF0g9JJp0ALeEU6ASJwTnQ3YZQydjXJ/zmQ//fcwxh6hh8wdOLhFhiPbTdn7P/LqrhPGSVFf+91QOb5fPKSKLOwMYJ9+ZwkmkCwfR4eLrM6YjeLqAj5n3AZGKOY/Em2M6nU5jrUwmk8ba8jmgny4oxLoAixwEFD11V08UhaJ4g1DFGLlQF9c3ffXP41xFxOc0OggiosDGZzENxefQf+fihIsw/C4FhUSZSWVaVK1U0u1V8DpxClBmkqqi1/+jT9fFxJKSJBJLiEoqs6LVYdGrv/VdfJR4kahSFD0VuKqgUEr5Pkm/V9LTVVV9zsFn3yXp90nalfSIpK+vqupCKeV+SR+RxH4n76mq6k9fwz0aEfxYrM+L2C2yIkO0sH7HaK1X4/daCE74KZRIsUOKDI5Go7qqv5PTtbU1bW5uqtfrXVYUMPaNf/f29uraA5Lq63a73fraHk1GVBiNDu2KtHtRisLu7q4Gg0F9/NraWsPGvbW1pc3NzTpy7wSea8RcdxdGvA0e5fY0DrfCu1PBI8KMJW2M13SS6qkdnu4hNbch9P74PRhHF0S80KAXs3QnAIKEj4E7LhAcYkpAzOmn3+zA4WsirpH4WUyJoGaEz4MLHNGBEeFt9JoLnj6yu7ur8XhcC3R+bfq+6JpO1L0PtDsKMHx5+oePpa8vF3aiq8JTZxY5P6Ig5evYf+dr3AWYReN4UjiOd3Hicrzk//duvUTS4//d2zW8d56iQuKWocyllXFzgd3/YzvSez+YxcSWBPkeXg6sjqS9DS3F+3hlVFQqSZV0/19990k3J5E4EVyLQ+H7JX23pH9un/20pG+uqmpaSvnbkr5Z0jce/O6RqqredD2NICLLl+fv+zEeaYzEBtdBt9ttRC1dmHDy4aSx0+nU5AkXRK/XU6vVqsm52/9XV1e1sbGhXq9XR+Pd0s7xHvklIu6kkgh9tH5Dnr04o+fJ9/t9bW1t1VttlrK/q8MLL7yg4XBYR7MhXuyY4XUaGAdIpZMpP88JWiTtcYwjqWa+ILCQYXePQBqp/8Dc8Bn35rocvygVw9vFsdxrPp/XW3Ry706n0xgTxByPrHvRPu5H4U/az9qKRSRjCoavDR9Tdz644OG/93oBLlJxfy8oyXVcMHPRJ9YJGA6H9bjjbnEXEGsXou8uIX8uYkoB50bXgY+Pt5OfOTY+dy6i+T1czPAxc3Eljg3zG59Zd1vE3y8Bvl+3+F2cOBr3fde7UlRI3FR0nm81QpidC9Ld3/2uE2tP4prw/cr38Inj1X/t3Xr47731RNuwtl3U2i26/599XLNnnjnRtiQSJ42rCgpVVf38gcrqn/17+/E9kv7gi20I5MgJtueWHxUZ5XsnXE5gpMu33XMrPuQKguRkK9qsIbobGxs6f/68tra2GqkQkFEnLE6AY02IyWSiTqdTt5Hr4MhYlGbAjg4bGxtqtVq1mDEejzUcDjUej+t2QpAQTbrdbuNankfvOfSL5sbH1ceWucJ5EdMWONZTAlxQYA5iNNvv4d/7ePq1Y3up68BxnU5HvV6vJscrKyvq9/vqdrsN8sgcMtb0EWLsqQGeguHrJooKvj0ixNyFMV/7XhMkijE+Tr4uJ5PJZa6TWEvBBR5EAfrFmvGdLui7t8ldA15PJKanxGfV05nc8cL3MZXD++GCitdUcAHB3QTeFsQHF/dc+OEavGNcAOLzZRIUjutdnDga933Xu/Tkn3/7/jaSKSokbgCdZ1taPTAdvvyffqCRK5xYfuR7eHmw/lhLg1ce///Ra5daal+UXvHvntXs1z+myytbJRJ3Hm5GDYU/Kelf2s+vKaX8iqRLkv5qVVX/8WoXiIROOiRAEFknExAEt2L7sZAJiJ/nskeC4pFzrkFKRKwBQCrEuXPndP78ebXb7ZrEk77gUWRIk0eQadN4PNbe3l5dpBE3Av1xx4KLAmfPntU999yjM2fOSFIdWed6XvOBvhL9l9RwUzAOkdBx77jDwyLi59F04CTWI+TuGODLLfykbbh1350H7hxwAclJ42w2q7ewpE3tdruuM0H03dNrvHgjcEs+bfJ2unjk13dxw50HnroTXTOk6Syaf0/lYTydsCOQxEKFiBr01Qm/CyVeo8Mj9IhSTrwX1Wvw7+Oc+Tj6tXxN+TGMmSMW8+TL58PXuo9DTI9gi9Xo6ogOCG/DIoFtifGi38WJq+Nl//BdevYb3qYLb1iedJjE8qPzXEu9pyvd87NPavbxg20bT7hNiVuCfA8fE+79B7+op//0b9WlB2/9k7QyKdrcf2z1kg8PVX7hAykkJBKGFyUolFL+iqSppH9x8NETkl5VVdVzpZTPl/R/llLeWFXVpQXnvkPSOyTVNQ92d3drUgaBopggcGLkUWCIBsQCsok9HdIIESRvnvtRRJDINtdyu3cpRevr6+r3+3VxxMlkop2dHe3u7tYR71ZrfytIIr8eAZZUb3PpJAsyTTtifjzpHLgTKBhJhNmj1J6KwHntdrt2QIxGo5pAOdkvBzUkGC9PA4iOEBeAvKgjcGKLcCPpMgGCtAHP43dC7SSWOhd+XcQLHBKR0CIYdTqdOjqPABBTJ2L9CBeuGEsfA9acCwqIFD5GzC3EPzwHjYi5C0vu7FhEbF2YchdBrLNAX7gfn7HeYrqEz3V0rng03/sYU2L8fHfBuAiBYOMOBk+d8K9FQlYUJ2LKhT9b0qGwFMXI2HYXHU+LoHCz3sVd9Y+ryacad33Pe9X+I1940s1InCKc+dhFVe//cJKQ2xj5Hj5mzGe653vfr9U/+mY9/5tvgcBbSXcfbDDQuThV5yevvttAInGn4oYFhVLK12m/MM2XVQcMpKqqiaTJwffvL6U8Iul1kt4Xz6+q6p2S3ilJGxsblVu8KYjof9A7OYOAxoJsACeBV233XO64/aLXbCBCOZlMNJlMNBgM6h0cykGtB0gbxHs6nardbtdiQylFg8GgJisUu0MA4HvfSYLdGSDGcdeB1dVV9Xq9elcJSbUzYTgcajQa1eMAIeT63W63rtmAo8LJOOQcAWV3d7dO4UD8gKyCSCL9vl5Yj+u7HZ3PuAZiiBM6J5JVVTW29Syl1AUnaQufuzjCGPT7+/85cw93oDiZdSu+1KxnwViyThEYEBEi6ff6AtFFEEURH3dPpeAYiLi3l3OiS8fXDvBj3GHg7XHBwGsduEjnYoKPfVwH4TlfOJ7Ml48F80jbvBgr68pTebwtPoeeDuHuAz8XgYcUpNhfFzqWHTfzXbxVzmfY/Vown2nrB99z0q1InCLkg3V7I9/DJ4NqMtFd/+rXtLL3uXrm81/89e5+r9S5ePg3WIoIicS14YYEhVLKl2u/4MyXVFU1tM9fKun5qqpmpZTXSnpQ0ieuq0EHJG1tba0u0OjF4iAd5IBD1v08SKNHOL24IeQCkgqRh/xJh9Fffuc55ZI0Go00nU41Go3qIo2bm5t1BDSmIkDSZ7OZhgc5k7SR341Go3obRCfU7ESAoECaBDtAjEYj7e7uNkg8/YQII47s7Ow0SF5MFxgMBhqPx5dFimOdBQimk1wXC6LIs6jQpqSGgOI5754i4pFt+ofgFPP747aiEGjm1kmjdChG0BbWkq8jijniICC9BeLNdbgm4+JiAuuPfsaUlug28FQU7ouI4TUcYgqFOxIQkdwV4uvK++CigDs1XKzwOY6OoJiq4KTc/13kdHGx0FNMoljhAhN9J50nuhE8/YF5RChEvGOcWTMuUDI3vj6WEbfyXZxIJBKJqyPfwyeL+WCg8z/xEW198jV64fU9Pf+5V9ZjVodFr/7J0cLfrfzaI5pvb9+KZiYStzWuZdvIH5T0pZLuKqU8JulbtV/BtiPppw+ICVvhfLGkv15KmUqaSfrTVVU9fw33aOxiEMkl0XcIA+QCUuA2co9ee6E5z8X2vGoivS5cQOqcXJMaQQrDzs5Ofd12u13v+rC2tlbb1WkDRJWo6Gg0qgUN2r4oH11STXYQSygiOJlMNB6PNRgMdOnSpXqrPyLepI3QntFopIsXL2o0GjVs+bQV0uvbZNIuxsojypBlxsbHk/Yzh56a4TUyPKJMm5lbL9iIeBCj58wZx9Evb3dVVZelbbioJO0LCaPRqG4fEX7Gjz5wHYQJJ8OLUgAgrghJnsaCKOD2e+7v683Xhl/b173b/t0lgRgQ6w248MAYudAQ5yE+Xx7N97bFLwh/LHrobYHwL3Jy+Jryc3lG+L07jfy6iATMN+Pru3n4HLtDhv67W+SkcRzv4kQikUgcjXwPLydmFy6q/MIH9NKHXqK73vvSKx5b9qaaPfTwwt8tdwghkVheXMsuD1+74OPvPeLYH5H0I9fbCP6wJ9ffI81x1wMimJ6THvPtPY3Bt9/j9xAHL4IHYeEcXAPsCOARWcQGHA/UNfC8fLepu6iBEIDLwN0TTpIk1cUFV1dXtb6+rvX19dq1MRgM6vQFCJKnh3Cdqqq0vb2tZ555RhcuXGiMu5MoxpkouY8RY8sYuAPDbfZuoyctxMWf8XhcH8v1IKe+XaILEi4oeJSacSZNxXfrgMTHbUclNYoykt7iYgfklPXoxSw9cu4pEggMFHikLz73McLv7g4nuZPJ5DJRjHXJ3LqAwLUYc87xKD5j5m4Uv5aLAD5OMeWAc2IakgtC3Bcyzn1d7FrUfh8r1p/Pebwnz7KLYz7X/Mw6m06nGg6HDWGRNcOz6K6VWMtjGXAc7+JEIpFIHI18Dy83Zs8+Jz373Ek3I5G443Azdnm4KSACT1QbshAjsk7QIIfksTvJ88isb3fnxFVqRkklNezpTh7dGj6ZTGr7OakIkH+pGVV1YhNJEf3yyvIeGV1bW1Ov15OkhjsBoozoQXsgSpAgyNmlS5e0vb2tnZ2delzdgu7E2gsH0j4XExgrj/q70DIej9VqtdTr9Woy6q4Pt5VDOKWmQ8PHwmtpOMH1iLbb1XGZIGCQDkGtCkl1PQr6vL29XYsziEKIW6QNuE2eNs5mszrlxcWZlZUVjcdjbW9v1wUwY7FHr6/hAlYUBpjHRQ4ExIzoLGAuvK1xfXFdrwnh9/Z5iM4Cv06cLz/WnUDRGeT353sn8BzjY+3X9mc6Oiy8Py5WUAvEi126yOEC0TIKColEIpFIJBKJxLJhqQQFL3hIoTuPlPLH/sWLFyVJGxsbtWWZCLlHGd1G7y4Dr1EAIGGQulg3wEkjRLjdbqvX611WABKStkiIIPpKP+OWfk6MvF+4NnZ3d2t3xHA4rK8J4fJrUYTxwoULdYoG6Q20y23rkFPqGkB8Y5V+r2kh7ZM/t/Z7HQki8IgJTmi98CQOABcAnDBCCj0NgHYy7hyzs7Oj4XBY/77dbteiC2IBhTa9qKULAtwD0QCBwtMSOB7nBXNOfxA0FglZIPadiLmk+jMXFKRDccrXmpNj7uNCGXPpu20sWjP+Gffyn11kcDEuigmAZwdXyiLSH6/pz2hMdYipUd63KOK5sOI7tZBu5NuLujMmipaJRCKRSCQSiURiMZZGUPBUBI/mE/WmAOGzzz6r2WymXq/XqJLPFwQuRhjdoeB2bOkwEu+OBs/r9qgwx7daLW1ubmpra0u9Xq9ByCP5iwTV6xusrq5qNBrV4sB8vr89IvUYuBYkk/oNWPt3dnbqbSnpL9Z7CjEOBoM6ur6yslK7Irx4IWPgW1cCT8/wiK+PK64JFw2I9HqqgBe3hBCStsGcxPQSjoE4UxciRpxxTlAPgd8hdHi/gY+fp0JwTwpzIiQgalRVVQsW7LqBm2EymejChQt1GxhfT2/xe9A+CpFK+0U/fW64vhN4dwjE+hYxsu7nuAPFfx/TEbxORHw2Ily8cLcE6993l2ANMRb+bOCS4Dq00/vnz7s7Wzw9YpELwtvqQhVz5u6XKGYkEolEIpFIJBKJy7E0ggKE1Ik2NnCivdvb240tHKVmekEkETHn3UkOhJbo5SJy6pZpaZ9gQbjJryfX3QWMmKMdI53ubKC9tAEC5mOwurqqTqdT54HTh4sXL2p7e1svvPCCBoNB47zJZKKLFy9qMBg0tsyUDsltjOzSDncDUJcgWu0Ze0m1EOK2drf0R3LLdZl3t+czJ34vJ/KemsKctdvtev3gJuCeXpcB1wtj7tFs7w/zRdFLxBgnsRFOuinmyXz6HMfrIGa4iyGmMixKPXBBwd0j3j5Pn1lEkD1i72vAUx/8OE9tiO1grlw8q6pKvV6vsROGC1IufCxKnfD2+jNOv11UWrTtI/fjfHeLRNHQn910JSQSiUQikUgkEteGpREUIAbSIQnElUB++3A4rKO7kTxITTs2ZMPhpC1a04neQzqJmEMwPNIJsaEWgUf23VXgTgt3GrD9I+4KbwMiBPUSSP/odrt1PQQElRdeeEHPPfectre3G9H3vb292vaPQwEy5WTLyboXvKSftIVt+VyAiMX7iEJznJM0rs+4dzqdRrFDt7/TD0/PgFx3Op267gHuAReBpEMng68D0kxc2HDxxM/3VBJ3JkRBRlIt3iAqkdbClqLcB5KP0BEj6+6cYd15H6Ko4CQccQbxwcfZ55rvfQ0DFw6i+MPvGR8EmeiKWNRO2khf3YniaQWxPWCR4OP9wBHiAoef4+kbPtZeLJTiri6sAd/tIpFIJBKJRCKRSFyOpREUvBggOw1cunRJFy9e1M7Oji5dulSTiLjNm3Q5kXC4I0FSTeSdMDp5l9QgYR455WdyuGezWe2cWF1drXO1uY/bviHRFKCE/LuTAvGA7fYQOfzYixcvajab6YknntAzzzyj8XislZUVra+v12QLMYEtICHN7jRAyIi7ZXQ6nbrdTr4WuQ48Mo+4wvcxUuyFLklvYN44N4oKnMdYQ5qxqNNOF0acpHKMCx6LdvfwGhwIFbgHFln8mV/GB2EoplsgMriA4WTc3R/Rnh+LGUYXjI+/u3M8ZcTv53Po10fMcDePiwX+cxyL+Lm7eaII5TuzLHJNeF9jPQS/T3TWuKjh5wJfY76eSXVwwcCfj5jqlEgkEolEIpFIJJpYKkHBicB0ur81487OjkajUU26IeNORp0QOIn1iLl0mIsNGfEdHSB2TmzdEu5F4CQ1iC2kHDLm7eAavrtCv9+vSZznkbsd27/HITAajeqfh8Ohnn322dq1Qbsp0ui2eyfUTn5LKRqNRg0xh8KYTnRjikQUBzzdYdEYROKIYOA57+zogTPBC+4xj5wbixFC/l3MAHzP3Mb8fSfL7lpx0cR/B6hzgfDBGkXoQLRyd0Z0eESxxteciw6+1n1MvcaAj3PcqYFzvF4Bx3khR59H5j/O5yIS75H86IRxkQjnxqLUC5+HRe4JFy3ievL3RhQhfB3iKJFUPyeL3Ae036+RSCQSiUQikUgkLsdSCAqQAHLKIbjYx50sOtGN0VAnMjHd4Kjq+p67D4FyooylnKi9ux/cMs2/7p7wKKxHXyNRh8C5+4LjfKcDRBbf6tBJIiSJVBEvlOi1HnxMIHm4AJy8R7LlBeyYL3eV0AfEEh93nB9OtAGFIukzbXDCLzXTB6RDkukC0CIByQUB5iyKTn4tHAb0hXv5tZmnqqpqMcG3qWRsWGOQ+Bj1jqJLdAHE6Hv8XlLDFcPv/WcXHPz37tDg/r7mYv+j+8MFF18vUXRg3USRZpHbIcIFBb+2t8NrQHB9X8NRwJnNZnWqTazX4OtoURsTiUQikUgkEonEIZZCUPBILIQYi/hwOKwJ06LCa15FHsLn0VfP13aC7NdwMuIRZa7j28u55Xx3d7e+xyKrtwsNkQRCuiGqbn93UuP9pY4EW0d6PjxuC0mNKLlHmCF1kKTo0EBQ8Ag5gIRh3/eIN2QT54Fb7KXDWgxO3nAiAE89IIrsJBACHCPpODP8XotcJrTHxSLvA6kQCAAuRHhRQeYO8cTrOVCEkb4ijnm020UJFxNc/PDfXSldwceNf33NOPxa/ll8Jnw9xuNcqGFNcM9FTiEXf+Ja97UQUz84f9E6jPeJQoOPj4smzCGuhKOECJ+rFBMSiUQikUgkEokrYykEBUl1jjzE1clfjJw6UYHAkRZA0beY7uACRCRLTiA9us71ITo4JtbW1nTp0iWtr6+r0+k0SIuTdyffADIqNSOy/jnEnPtzffK9fWtHHwvgKQxOpChSGUUQiHu32637Hqv8c08n5LEPCAWMhR/jRRjdHeBCgTtNaJMLNO5k8PQTb48T2EVOlUjcOcbrNURi7+KTryeEL7Z+pLAnxzAW7k5xoutpCQ5EMBfG/DhPQfB/QSTsLpr5XC0SE2I/fT25IBJdCDHtwvsahQO/P8+2p7h4n65G6mMahLsL4jX8OfE0jeh6AIvSIRKJRCKRSCQSicQhlkJQcMLlxIMoNr/zvG4IkO9E4CRlkf3aizJKhwTDiQZOBAgiFunxeFwTk5WVFfX7fY1Go/r3pezv+tButxvtiKSdnRggPJF0RqLmuxy44OKCBdd3ocCj6W7xpu/Y9RlfBBlIcYwWO0GXmnUK3Anix/v8xkgwY+FbKdIH/5f5RUjh3r79o4s/nmriiGQx2tzjOnBnA7/z/tEWd23E+zLei6Ld0ZofRQ7a4sIOa4x+M6exaCLPR+yrE2xqP0SRIYp13ncn4YvcFLQ7ihNeXJQ1zvj5XC8SV/xnF/0cnroR28Xni1ItXACJ93F3QyKRSCQSiUQikViMpRAUpMMoKO4CSQ0y7kTCI+hukafuwmQyqYWBeE1HtF/P54eV/SHyCBWTyaS+X6/XaxR0q6pKnU6nTo2IW9n5vdixgbbt7e3VBNlJIcIJbfGoN2LCzs5O7WbgvlzXrfqLiJGTTK9rEMc6igP0xYtGSmrUVYjHuUOAnxEKfJtHFxA4hvGinxSNRDjgPqyJRSKNzxO7ZSBEcG0XPTjW1wUODxeV6Le7Rfy+Pj4+7r6mF33mawACzvph9w/f3tPv42KWX9vdDX6sz9eiSL47SKJI4cd7yo2LIF47Igp5UbC5FvLO2lyU4kD/4vH+vT/vtMPnOjoeEolEIpFIJBKJxNFYCkGBiCXk0m3jvm1gjGJ6AcHZbKbhcNiI2kNwPHrv8OiodLgtH8TcibQXlpPUiOhPp1P1+/06d96JoKdDsEMFbSOFwfsRo6O+m4KLCRQCXGTLns/njSKMkRyTRgER9qh+t9uthZFFEWsXYRAyYtqCkztEAcaLz1dWVhqRfeaT4/zcKBgsEmtcVHJRJEbmWW+eGuHODSeWjIunmLA2h8NhfT+P0LubgDVwNdu+H8/3i7ZGxTnidSToJ/cCi9IdvOhmdEgcJUAwRrGex1GRfhdT/DxPJWLN+Vo5Kv3ChRDvr++W4c4eH0sf0yhYxJ/9nnFeUlhIJBKJRCKRSCQWY2kEBSK9kCks3ZAPJ4dOWPmDn4gtf/xTcR+yCYmKIoF0uMuAbyfobcNFQEoDxFc6JLAeGfV0BtwKTqo9qu0RfPpE32kX/SJK7jtfcG/PQSftwgk011lUyBAyuLa2pna7rW63e1nqgN+DsYDYlVLU6/W0srJSOzwo8thut7WxsdGoA0C9DMae+WFsQbfbrdMdGFf644QTocnTKdwFgmDgbUAA4f5+fXcIePTd5/WoyL/b91l/HONCmZ/ra9nvz9w4KefaEGK2QoxClIscPs/cNz4LLlz451EkiVF+vrzGiRfgZGwXpRAsElrcVbLo2tybdkV3x6Jx9HVzVN/9uvGaKSgkEolEIpFIJBKL0braAaWU7yulPF1K+ZB99m2llM+UUj5w8PWV9rtvLqU8XEp5qJTyu6+lEU54icizwwNRfMihR0KlfVFgMBg0CDbHOmmGHOMy4B6eJgBpjFsJcj9IDSTJd6TwXG1PzYAQttttlVLqe3KOkyXOob0ubMTdKrxNCBydTqeO6EeCSPHA4XBYt9nbzbVwJ0DKnQy7qEL/IXHuQACtVqtu09bWlra2thpi0d7eXu3ccDHByZ6PC22mL8w37fXdJJhPjuEeLujgYPEovRNZroGLxF0y7mzwe7uAsMg27/PHuEfBwJ0K7vBA5GFdIAB5NN6dKLFIos+pry22FfVr8azEego+Tj4Gvv58PFzwcCIfxYRFYoWLWfF5POoai34+SmBxxHQVv+ey4DjexYlEIpE4GvkeTiQSictxLQ6F75f03ZL+efj871dV9Xf8g1LKZ0v6GklvlHSfpP+7lPK6qqpmugLm87kGg0Ft1Z9OpzXxhbA42fPijJAeou9edwCyB8H3LRw9ymvtb0Q3uY+T3m63W0fwJ5NJTabm83lduwHhwNMWiOTv7e3VfXWRwfPhIT1H7bTgzoZOp6ONjQ2tra3V5JfvuTdjibjBvRBHuM/a2pr6/X69c8VkMmnUb/CUBa9B4OkkThjb7bb6/X4tJFCILwoq7XZbnU5HrVar/h3tcmGAGhlOuJ38QQi9YCV1F9ylwnqJEez4rws3Pg/ME+uLdsS5jqkIUUiI687v42swOhAYW+aPeiFE7X2+vP1ep8OdFS4GOZH3/nof+ZxrxW01Y4QfuPDhooYLhIsEvPgc8LtYVDLCx92FokXHxfFfJDosAb5ft/hdnEgkEokr4vuV7+FEIpFo4KoOhaqqfl7S89d4va+S9ENVVU2qqvqkpIclveUa7tGIzI/HY43H4zoFArIDKfRCjNGWLzVt4pAXrufRaY9AS4ekybftcyt+p9NRt9ttFHyEhOA8wLVAcUgvNonIAIlDKPEigRC/TqdTF4SkbfQXK3m/39f6+rp6vd7CopOIAr7dYwR97na76vV6lzklFuW5uyDB/E0mk1q0YK4QO7y+BOka9KHX62ljY0OdTqduE8IN96L9LizE6DV98fQXxtK3rMTZ4GMcXRCxpoOLLoyFpzhA7hkLFzpc0Io2fp8DJ8wuSCACAL+vb6vJcUftNsH1/Iv+eapGTOWI64k+uIARr7XIKYA44E4DxibWceD3RzkFaOcigSC6J/z3R4kPLiYsas+y4DjexYlEIpE4GvkeTiQSictxVUHhCvgzpZRfO7B/nTv47OWSPm3HPHbw2dUbYlFLCLmnC7iVOpIpiACOBSc9kFBqDxDhj4XtnIx6pBVCuba2pl6vp/X19brSPoSDyLmLFnwfazsQ1e/3+wvdCZDpTqdzWSTZ0z4kXSZw0C+EDP/iGrTBrd9OMJ2Qe30BxiuKEi4mMPalFHW7XW1tbencuXPa3NxsFGGUDoUMJ7hY5EmpGI/H9Zz5uTFq7aSediLa9Hq9eo6YEwg4dSC4no9RFHIWWeK90Gas8eFrNaYi+Jz6tUiz8J0RYlv82j4OPDusL56XKEzw1W631ev16joVfh364JF72u7ztshR4eKTrxXmN6YTRYfI6uqqut1uY26ioMKYuBAY5ymO9SL4eUcJQ3GXjiXFTX0XJxKJROK6ke/hRCJxx+JGBYV/IukBSW+S9ISkv3vw+aKE44V/0ZdS3lFKeV8p5X2+rSPkn9QGSHOv16vJJgTfSUsUIqTD2gwUM3Qy61FQjo0RcO7Tbre1vr6u9fX1y0jHfD6vRQi+HwwGjcKLkCn+hWDP5/M6Yg4B9p0gINFRHKEfkmoSDfnGGYHLwyvqh/FvkFmIG4IEhNZFDez0XkdiPB5rZ2envhe/W1tb0/r6ujY2NmqhwgskemSdazHOrVZL4/FY29vb9djiaGD+fatE2uWpDKRRSPspFjgjSAnBncCXE9LG4q2aO3X4fT2yz7GQUP8sFkVcRFpdUPDUhZia4wJIdI+4s8JTMeivi3GMYxQ74lrx8WCsfP4WOQUi0ffov+9oEtONEDm8kGMUHDytxNdldHJ4m6LwEZ+B6ATxZyY+N0uIm/ou3tPkljQykUgkbmPkeziRSNzRuKFdHqqqeorvSynfI+knDn58TNIr7dBXSHr8iGu8U9I7Janf71erq6s1kYV8dDodra+v19F6Ugac5EKiFokGkI+Y7w9xjmTMc+bX1tZqIQMxw8mQdBj1dkLj6RouSlDXgGuw9SNighMvCJPXh3AnA0CQmM1mGo1G9RjQH0jR6upqfa6nJETChGjh4+qOCCe/1FFAAEJoYCy2tra0ubmpbrdbOyZwfLhY4RFgLPuTyUTD4VC7u7uN1AQnhS4mQcS5jxfPbLVatbDjKSWezuB9jyQ0RuUZGye5Pl6RkHNf3+aQNnsbfbtSFyWOqjPgjohFoocf6+IZbhafW4/mx/O4t3ToMvD+c67Xi2Dc/Dpxlw3O5YvnbXV19bJikP68Oxhn+utijM8Nx8YaFlFUdHfLacHNfhdvlfPLleeRSCQSS458DycSiTsdN/SXcynlXvvxqyVR7fbHJX1NKaVTSnmNpAclvfcartcgDG6Bj/USXEjwiP1sNmtsM+lRVyfRbtWGOESy7rsm+M4JkHsI/3g81qVLlzQajRrEn/thue92u3WkmNoATrKdlFJQkN8jPAyHw1p88DHhGMQEF2T8OKlJDF1MIJXC00E8RSDOjW8LCAFz0t9ut7W5uamNjY26jQgVXvmfcfUI/ng81sWLFzUYDBq1AbDCb2xs1ONJezxizbGxb55KwPj4DgROXL0Gga8FFzW8PoKnm/A7SY16DJEQx3s60Y3C16LUGcbe631wPmvJ6wi4YODpQTHFwoWHmGrkRRljP2JhRu9f3KnCvxgv1gXX4Dx/Xl3M8mv7tp+x7sIigcSfhygqRtfEsuNmv4sTiUQicX3I93AikbjTcVWHQinlByV9qaS7SimPSfpWSV9aSnmT9q1bj0r6BkmqqurDpZR/JenXJU0l/dfVNVSzhcRBCIi0QiicyPN7SBR/9HsqgEcsIbLxWtwrFrHjvqRasPsAEXBy8CH/0QGANZ9ifx7V5ntcDPST/oN2u10TPsQFj1xDhD26HCPkuCM8iu/kzgUFJ6ROkD2XHkDouLfb2Okjjg7aPxgM6i0m2+12o984LFZWVurUBHaD8DbSb6mZOkA6xVGWex8fj+CTo+/k1gttcv1FkXocLJ6mEwtV+vF8H8mqk1mvPUGknpQXUoI8xSAWHnSHCP1mXt01wDmeSuL95Rq+xnzHEi9EyrmLUhgYGxcLYqFPjqdOCjs3cH9/H3idCcaPMfO1G4WNOBeL3Av+jMRxWCa3wnG8ixOJRCJxNPI9nEgkEpfjqoJCVVVfu+Dj773C8d8h6TuupxHxD3nIJxFaJ0DRCs75vmViu91uOAk8R9qFiEhq3Hq9vr5ebw+Jk4BIfMw3d6LlJFNSw9IPYSW1Y3V1tWF1l9TYQYJihE6OPHIbK/lDmP2+3kePOiMK+DVWV1c1Go3qz92NwO+jwwPhBNEFQUGShsNhLRJUVVWPHeOHswLyRsQ81gaIRDna4d0J4GPP+T5/McoN3OXgZNLFKbfEExn3tRfFh0jWY+qIr+9SSu2I6Xa7mk6ntfPFiXqspxDXGsIOa8jHyfsZnTy0GTLv23jyPHqfjiLmXpejqqp6vZVS6i0/abcLEl43wQUHnwdf857q4duo0o4oKCyaA++7z5+7IZYJx/EuTiQSicTRyPdwIpFIXI4bqqFwKwFJcFu2EyCpSRhwHeBE8Ah6tLh7hBa4NRsy1e/31el06p0JuEa73dZkMqnbQcQ8FnGE4EhqWOq9L15133P3IeiIFC6AQEKd8JISMR6PL+uTpEZknpoUkH8fxzieXmPAc+SZIyePjEen06nHbjweazgc1sdhnadwJV8+Z3yPQ4N7+Xy5m8IdJsw51+Hn6Fzxe8VjXCSKfXPiShulw3QZFz6Yg0heAdf2vpHS0ev16nXn487xMX0HIcULO+IM8e0nY7Tdd3XwYpkUs0Tsis+mw9eiF870gpHMu9/DazzQFp/T6AiJdTtiGocjimyL0hbifHBfF0xcnEkkEolEIpFIJBKLsRSCgpNnJ2demFBSbZeHCEPKXXBwhwCRVciCF2j0vGvs9q1WS/1+vxYKPNViZWVF4/G4JltYtBE9IGOevuGFD53Ee6TUrdhck50WfPtGd1lwPa+5gEMCcgZZn81marfb6vf7dd+cBEeyDrElUi4dOiu82KO7FCDZnCepFjg8Hx+i7CQ/Es5I9uiTdEjeOddFEcZ7Op2q3W43ag84qeaa3i+vI+BCSkyvQezxbTq9xoQXg2TdMj6MtbsefO5Js+l0Og23hEfmmeNut9uI1jsBdyHNBQTa5feNdR/YmaPT6TTSaHwu+NfXtffBXSyxhofXYlhE9HkG45jxbLg7xN0iMRXE2+tf7iyK6R7RPbLIwZNIJBKJRCKRSCSaWCpBwXdpcPIvqZHz7sTBCZRHwX1nB0QHFxliRHSR9dqt9LGOgxOlmDfvUeNFxIlccc5lFwus4YgEiAJY0CFC0fHgogCRab+X71ZRVVW9I0QklIgJLqosSqvwvHZPh3DLOWSYFBJPHYCEQ94lNcQkroeIEteJ74LB+CB+eDFJfu9bfbpAgRjEWHA/1hFzSVuZA9rhhBOhIG55SL9jSoSvPa8zQB9I3wExBSW6bVyEYPxomxfC5Dqc46kyiGU+h4xZTJ3xdABPSfDnyIUBXCox5YHfed0MF/tYwy6W0b7oZmCMuY4/236cO5dYy/HZWiRQJBKJRCKRSCQSiSaWRlAYDAaNnyGORDrd0g3ZIXJMfQWPPEICiWZSu8CdDR6hdEt4jNz7/fxYyBIklLbgKoipB04wPcUBskd02lMdfLcJt8HHvro1P1r8NzY2tLm5qdXV1Xo7xlhEsNVqaXNzU5ubmzXxq6qqFiiICMeq+54GIKmOorfbbXW73YaTA/Eiks3RaKSdnZ16lwnazhaTgDZE50qv12sQedIqZrNZw20Qx993tZDU2NUAeOoK1/eUFsaJ9kaxyAWwmGrj/USswPXgx9A2rud1N6LzBnGCcWq1WlpfX1e/35ek+lnh9/P5XO12W71er9EG5ppx4rqxrgCfu+tmUcoIa8ZTNSD2LoQgPvEMxHoh8Xn1tJGYIuHg/i6yRGHJhUGut2x1FBKJRCKRSCQSiWVCiTnIJ9KIUp6RNJD07Em35QZwl7Ldx4ls9/HjtLb9ZrX71VVVvfQmXGfpUUrZlvTQSbfjBnBa16h0etue7T5e3OntvpPew/k38fEj2328OK3tlk5v22/pu3gpBAVJKqW8r6qqLzjpdlwvst3Hi2z38eO0tv20tvskcVrH7LS2Wzq9bc92Hy+y3XcWTuu4ZbuPF9nu48dpbfutbvfybLKeSCQSiUQikUgkEolE4tQgBYVEIpFIJBKJRCKRSCQS141lEhTeedINuEFku48X2e7jx2lt+2lt90nitI7ZaW23dHrbnu0+XmS77yyc1nHLdh8vst3Hj9Pa9lva7qWpoZBIJBKJRCKRSCQSiUTi9GCZHAqJRCKRSCQSiUQikUgkTglOXFAopXx5KeWhUsrDpZRvOun2XAmllEdLKR8spXyglPK+g8/Ol1J+upTy8YN/z510OyWplPJ9pZSnSykfss+ObGsp5ZsP5uChUsrvPplWH9nubyulfOZg3D9QSvlK+92ytPuVpZSfLaV8pJTy4VLKnz/4fKnH/ArtXuoxL6V0SynvLaX86kG7v/3g86Ue72VGvotvSTvzPXyMyPfwsbc738M3GfkevjXId/HxIt/Fx97uk38XV1V1Yl+SViQ9Ium1ktqSflXSZ59km67S3kcl3RU++05J33Tw/TdJ+tsn3c6DtnyxpDdL+tDV2irpsw/GviPpNQdzsrJE7f42SX9pwbHL1O57Jb354PtNSR87aN9Sj/kV2r3UYy6pSNo4+H5N0i9Keuuyj/eyfuW7+Ja1M9/Dx9vufA8fb7vzPXxzxzPfw7eurfkuPt5257v4eNt94u/ik3YovEXSw1VVfaKqql1JPyTpq064TdeLr5L0Awff/4Ck339yTTlEVVU/L+n58PFRbf0qST9UVdWkqqpPSnpY+3Nz7Dii3Udhmdr9RFVVv3zw/bakj0h6uZZ8zK/Q7qOwLO2uqqraOfhx7eCr0pKP9xIj38W3APkePl7ke/h4ke/hm458D98i5Lv4eJHv4uPFMryLT1pQeLmkT9vPj+nKE3fSqCT9+1LK+0sp7zj47J6qqp6Q9heipLtPrHVXx1FtPQ3z8GdKKb92YP/CsrOU7S6l3C/pt2hfITw1Yx7aLS35mJdSVkopH5D0tKSfrqrqVI33kuG0jc9pfhef5jW61O8ER76Hjwf5Hr6pOG3jc5rfw9LpXqdL/V5w5Lv4eHDS7+KTFhTKgs+WeduJL6qq6s2SvkLSf11K+eKTbtBNwrLPwz+R9ICkN0l6QtLfPfh86dpdStmQ9COS/puqqi5d6dAFn51Y2xe0e+nHvKqqWVVVb5L0CklvKaV8zhUOX5p2LylO2/jcju/iZZ+DpX8ngHwPHx/yPXxTcdrG53Z8D0vLPw9L/14A+S4+Ppz0u/ikBYXHJL3Sfn6FpMdPqC1XRVVVjx/8+7SkH9W+PeSpUsq9knTw79Mn18Kr4qi2LvU8VFX11MGDMpf0PTq05SxVu0spa9p/Af2Lqqr+9cHHSz/mi9p9WsZckqqquiDp5yR9uU7BeC8pTtX4nPJ38alco6flnZDv4ZNBvodvCk7V+Jzy97B0StfpaXkv5Lv4ZHBS7+KTFhR+SdKDpZTXlFLakr5G0o+fcJsWopSyXkrZ5HtJv0vSh7Tf3q87OOzrJP3YybTwmnBUW39c0teUUjqllNdIelDSe0+gfQvBw3CAr9b+uEtL1O5SSpH0vZI+UlXV37NfLfWYH9XuZR/zUspLSylnD77vSfodkj6qJR/vJUa+i48Pp3KNLvs7Qcr38HG119qX7+Gbi3wPHy9O5Tpd9veClO/i42qvte/k38XVCVT/9C9JX6n9KpqPSPorJ92eK7TztdqviPmrkj5MWyW9RNLPSPr4wb/nT7qtB+36Qe3bcva0r0T9qSu1VdJfOZiDhyR9xZK1+3+V9EFJv3bwENy7hO3+f2nfLvRrkj5w8PWVyz7mV2j3Uo+5pN8s6VcO2vchSX/t4POlHu9l/sp38S1pa76Hj7fd+R4+3nbne/jmj2m+h29Ne/Nd/P9v345NAABhAAji/kvbOIDfRIS7AUKqFA+Z3dstnt37+S1eZygAAADAtdcvDwAAAMCHBAUAAAAgExQAAACATFAAAAAAMkEBAAAAyAQFAAAAIBMUAAAAgExQAAAAALIN3xuOrt4HydcAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 1009626 4996\n", + " Min thresh = 1000\n", + " Not Sliding\n", + "\n", + "\n", + " Winner = Not Sliding\n", + "\n", + "\n", + "210ns_image_614587120545_clean.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADDCAYAAAAya0IYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADJqUlEQVR4nOz9eZStaVrWCV/Pjj3vGE6ezKw5qawZGbQsoRD8mqYXtgxtS2Mrgr2UD20Lv9YWldYCtAVnVJDuXqzGLhssaFGGpmloQBFUGocqaqKgqqCqyBpJKiszKzPPidhz7L3f74+I3xPX+8SOk+fkGWLHOfe11lkZsfc7PNP7ZlzXfd33k6qqUiAQCAQCgUAgEAgEAoHAjaBx3g0IBAKBQCAQCAQCgUAgcPEQgkIgEAgEAoFAIBAIBAKBG0YICoFAIBAIBAKBQCAQCARuGCEoBAKBQCAQCAQCgUAgELhhhKAQCAQCgUAgEAgEAoFA4IYRgkIgEAgEAoFAIBAIBAKBG0YICoE7jpTS+1JKX3Te7QgEAoHACVJKH00p/d7rPLZKKb3yOd7nOZ8bCAQCgUBgsxCCQuCOo6qqz6yq6hfOux3XQkrphSmln0wpfeL4j9+Hz7tNgUAgcLcjpfRVKaX/mFIap5R+4bzbEwgEApuIWy3MPtv14u/iwLUQgkIgsB4rSf9S0n993g0JBAKBewhPS/qfJH37ObcjEAgEAieIv4sDZyIEhcAdh9tqU0rfllL60ZTSP00pHaSU3pNSenVK6ZtTSk+klH4zpfT77NyvSyn9+vGxH04pfX1x7b+cUnrsWEH9b11xTSl1UkrfkVL6eErp8ZTSP0op9da1saqqx6uq+l8lvf02DkUgEAhsJFJKr08pvSWldOX4nfrdKaV2cdiXH7+HP5VS+gcppYad/yeO39XPpJR+NqX00uu5b1VVP19V1Y9I+sSt7E8gEAhsGlJKvy2l9AvH79n3pZT+gH33Cyml/9Z+//+mlP798c+/ePzxr6SUhimlP5JS+qKU0qMppW85fid/NKX03zzX65Vtjb+LA9dCCAqBTcB/Ken/kHSfpF+W9LM6WpsvlvQ3JP1vduwTkn6/pF1JXyfpu1JKr5OklNKXSvqLkn6vpFdK+k+L+/w9Sa+W9Nrj718s6a/djg4FAoHABcdS0l+Q9ICkz5f0xZL+u+KYr5T0OZJeJ+krJP0JSUop/VeSvkXSH5T0oKR/J+mf34lGBwKBwEVASqkl6f+R9K8kPU/Sfy/pB1NKr3m2c6uq+sLjH39HVVXbVVX98PHvL9DRO/vFkr5W0ptu8nqBwHUhBIXAJuDfVVX1s1VVLST9qI7+AP32qqoOJf2QpIdTSpckqaqqn66q6kPVEf5fHb2I/5Pj63yVpH9SVdX7qqoaS/rr3CCllCT9KUl/oaqqp6uqOpD0dyR99R3qYyAQCFwYVFX1zqqq3lpV1aKqqo/qSNg9JdIev08/rqM0ha85/vzrJf3dqqp+/fi9/nckvfZ6XQqBQCBwD+B3S9rW0d+786qq/o2kn9LJe/S54n+sqmp2/DfyT+vob+NA4LYiBIXAJuBx+3ki6VNVVS3td+nopauU0pellN6aUno6pXRF0pfrSI2VpBdJ+k27lv/8oKS+pHceW8uu6CgX7MFb2ZFAIBC4G3CcevZTKaVPppT2dSQKPFAc5u/Yj+noHSxJL5X0P9u79mlJSUdRs0AgEAgc/81aVdXKPvuYbu49+UxVVaPiei866+BA4FYhBIXAhUFKqSPpxyR9h6TnV1V1SdLP6OgPVUl6TNJL7JSH7OdP6Uic+Myqqi4d/9urqmr79rc8EAgELhy+R9L7Jb2qqqpdHaUwpOIYf8d+mk7qHvympK+3d+2lqqp6VVX9x9ve6kAgELgY+ISkh7z2jI7eo791/PNIR4Ew8ILruOZ9KaVBcT3ey8/leoHAdSEEhcBFQltSR9KTkhYppS+T9Pvs+x+R9HXHRW76svoIxwrwP9ZRzYXnSVJK6cUppS8562Yppe7x/SSpc/x7IBAI3AvYkbQvaZhS+nRJ/781x/yllNJ9KaWHJH2DJPJu/5Gkb04pfaYkpZT2Ukp/+HpumlLaOn7XNiU1Ukrd41zjQCAQuJvwSzoi+X85pdRKKX2RjmqK/dDx9++W9AdTSv3j4uJ/sjj/cUkvX3Pdv55SaqeU/hMd1Rz70Zu8Xkb8XRw4CyEoBC4Mjuse/DkdCQfPSPqjkn7Svv8Xkv4XSf9W0iOS3nL81ez4v288/vytxxben5d0rWI1E0nD45/fr5P0i0AgELjb8T/o6B17oCMxdl2Rrp+Q9E4d/aH605K+V5KqqvpxHRXB/aHjd+17JX3Zdd73j+noXfs9OqqPMzm+fyAQCNw1qKpqLukP6Ojd+ClJ/6ukP15V1fuPD/kuSXMdEf3vl/SDxSW+TdL3H6eWUSfhkzr6+/gTx8f/6Zu8Xon4uziwFqmqqvNuQyBwW5BS+m06+kO2c1wYLBAIBAKBQCAQuKtw7HD4p1VVveRZDg0EbjnCoRC4q5BS+spjq9d9OoqQ/T8hJgQCgUAgEAgEAoHArUcICoG7DV+voxoLH9LRPurr8n4DgUAgEAgEAoFAIHCTuG2CQkrpS1NKH0gpPZJS+qbbdZ9AwFFV1Zce795wuaqqr6yq6rHzblMgcF6I93AgEAicP+JdHLjdqKrqFyLdIXBeuC01FFJKW5I+KOk/l/SopLdL+pqqqn7tlt8sEAgEAqcQ7+FAIBA4f8S7OBAI3O24XQ6F10t6pKqqDx9XMf0hSV9xm+4VCAQCgdOI93AgEAicP+JdHAgE7mo0b9N1XyzpN+33RyV93lkHt9vtqtfrKaWkqqq0XC61Wq1UVZUajUb+fN3vKaXa75Lyf/nOr8vnzWZTzWZTnU5H3W5XrVZLjUZDq9VKi8VCi8Widj2/JsdwvfKYRqNx6nN3gnibVqtV/sfnjUaj1j/6vFwu82fr2nXW596WdThrvLy9647nZ+bqrPt4X9aN11nzSL/BarXK7SnHdN11z+o/83M9a+asfvv368ba52LdmKwD57DGzvpu3TyX9yzXyVljEbgufKqqqgfPuxHPATf0Hpakre1B9fKXrfT4e3u3tWGBQCBwI5hqpHk1S89+5Ebiht7F8R4OBAKbigM9s/Zv4tslKKx76dcYTErpDZLeIEmdTkef93mfp62tLa1WK43HY00mEx0eHqrdbqvf72u1Wmk+n6vdbqvb7Wq5XGoymajRaNQIuCTNZjMtFgs1m031ej11u10tFgsNh0ONx2OtVivt7e3p+c9/vl7+8pfrNa95jV70ohfp8uXLWiwWeuqpp/Txj39cw+FQnU5H7XZbh4eHWi6XSilpPp/rmWee0RNPPKHDw0O1Wi1J0uHhoQ4PD3MfW62WqqrSYrHIBLHRaGhrayuTu8Vioel0mkWMra0t9ft9pZQ0mRxt79put7W1tZXbDpmln5LUbDbV7Xa1tbWl5XKpw8NDpZTyvefzeW7L8fjXhAqusb29rXa7raqqNJ/PdXh4qEajoVarla+9Wq3yOYeHh5rNZppOp9ra2srt4jz6yP2bzWb+fLlc5uvRz5RSHsdut6t2u52Pn81mmSgj6jjRZg3M5/MsCG1tbanZbOa2VlWVx5Mxpx1cx89hzpvNZhZ+lstlbd0dHh7WxA7muNFo5Gv7uEt1ccNFDM7nHEQ0jms0Gmo2m2q1Wnkc5vN5bhPzSbsRyZbLpba2tvJaZdxZr6VodC0Rid/XCRT0gbVylrh1Fsrr3qrjn+24a7WxqqqPXXeDNgvP+h6W6u/irvp6+H2/Xw9f1D/bA4HAXYlfqv71eTfhZnBDfxPHezgQCGwqfr76P9f+TXy7BIVHJT1kv79E0if8gKqq3iTpTZK0t7dXOVFuNps1QpJSUqfTUbPZzL+32+1MnNy9ICmTJsgBBK/dbmuxWGgymWg6nerq1au6evWqhsOhRqORBoNBdi60Wq1MxiGmXKvVaqnb7Wby22g01Ol0MkFzUQEC7eSWfi4WCzUajSyQ+HkppdyGsn+QttVqlQkjDgxIpI8BwgQEGoLs5BZCvVgsMuFGPLE5y8QYcu1EE9K6tbWVxQjGDVJbVVV2gzAuXJs+Qt65d7fbzXPIOnEXCEIG321tbenw8DDPn4snpdAwm81q/fN/pVjF+ms0GlmcaDQatbXorhWfK+aJ+wD6yxj5umFeSseBC0DextVqVVtjLoa4SMHculBSOh3cCeTPph9T/lw6QHz9co9nI/83IiZc6/jrdWDciNhxAfGs72Gp/i7eTZfDuhIIBAK3Fjf0N3G8hwOBwEXD7RIU3i7pVSmll0n6LUlfLemPnnWwk2dIIERrsVhoNpup2Wxmp4CkTOSIzjqZ5DywWq1yesNischuAyezh4eHGo/H6vf7arVa6vV6qqoquyCI/vu9m82mlsulptOper1ebh/uivl8ntMpIGn8gzxCAjudTr6fR/chOvQPwQPiD+n0FAyPZkvK0XgXMwB9cseECwOMDcfRFv/HfTxKz7kQ8Xa7XSPvkGCEkZJst1qtPE+4QLgP/eMeTnz5HgHC1wvEnXYhuvgacPcBRHydq4N7MabrovXrSHqZ5oFrgPt4qg/rxtvEOCNetFqt3Ab6ytxB5rmPpJroVKbmuPjigoKPmcPH3tcQ7V33LN6oW+F6j113Hudeb2rKGe6EG7r3huGG3sOBQCAQuC2Id3EgELircVsEhaqqFimlPyvpZyVtSfq+qqred9bxTv7c+i+dpARgf8fqDmly6zok2+3vHr13ogl56na76vV66nQ62RVBFL/RaGg8Huf7dTqdfO12u53vxTmQ/ZSSptNpJpqkTXh/IaQIGxBIRJLZbHaK4NAHSVlMgAgdHh5qOp1mlwRE1S3oJWlygQNxhPt4tHs2m2k2m+XItosJjLHXn+DaEHjpSCDw9AbaVbbJP6ct60QBH0N3KHAPxtNrYuB8cWLpogxpIk6uPUXDazq4uISjhXnzehjuzPB1R785n388A6Wb5fi5qo0PggGOkrL2CK4E2unuC/rvwgKpG5zjTgZ/pnyu1sHdMp7ec61z1uG5ugau5Z5Yh3J8y88vKm70PRwIBAKBW494FwcCgbsdt8uhoKqqfkbSz1zPsZB86cSW73/cU/+g3W5nYoprgVx16YQQebSW60FAnUC1Wi1tb2/r0qVL2tvbU6/X03Q6zaSQ6x8eHurg4ECr1SqnXnS7Xe3t7eng4CDXQPCcdCd4pETQHu+3pJrDwqPSXAeBYz6fZ3LX7XazXV06icTOZrNaDj19OJ6TGpl0McCFB8+5Jx3DLfWMJWS9dAa4hd5/LwlqGR32Y5zk0/9er1cTD7j+OuLpqQaequG1BzzFgn8uevBd6eJgbGkvYhHXdUdD6V5wp4ffm3XtaQ4c7/PsWNcvPuf6Pt8IFPS9dC/g0qAN3N/b7Ot33ZiXKTD0seyXj+ez4Sz3APNbppmU55bnPFu77ybcyHs4EAgEArcH8S4OBAJ3M26boHAjSClpMBjkKPs6QYHifzs7O9ra2tJ0Os2kF2KFpR4yTy4/6Q4QD5wOEPNLly7p0qVLkpRTKBAGWq2WJpOJhsOhDg8Ptbe3p36/r2azqUuXLmk6nerKlSv5/rgESGEgwu3WeEiZE2l+brVaGgwGud8ePaX9uB8Gg0Hul19ruVzm+gMuFKyDE0Qn/F7vgLkpc+1LUcGLEbpQwe9lyoD/jrgCgfdx8VSYsh+l+ODtW0de/Z4c43UQvK1O6qV6moYTeU+doN/uDECk4Xcfb1IWPJ3B6064K6HsN9f1ApXlWJcCj4+Fw4tQ0nZPIyqFh/Jfed1S3EDwKNMfrkdUuJaY4PUjbvQa13MP70MgEAgEAoFAIBCoYyMEBUkaDAZaLBZ5hwf/I750L0D25vO5Go1GrurvhfKAkz23rjsRabfbGgwGOVWBaxOJxvGwXC5rroher6cHH3xQjUZD+/v7+XhJOersFntP7XAXAdfzKvyNRkOj0eiUAwCxALu+F7B0suypB16g0aPavvtBSajckUAdCAQO39WAY3GBeAoFn3FtyC8Ra0eZisH53NPTSriWH+/pDmcRck+TKS38uE5cOCldDr6enKTTHwQYPoeQr+unpzww79SvYJ06YS/JbZl64df038s0Bf/Z+0XffO37GnC3hdf/KLdOLefS66Hwu7tq+G+ZVrGOxLuw4m1xMe16UB57vcJGIBAIBAKBQCAQqGMjBAWs4/1+X91uV1evXpV0EoWVlIvWuXsB8sPnnMPxXLvcnpC0BWokjMdjSSdkkZ0aINrktuM+gARid9/Z2dFsNtN8Ps+kzI9ZLpcajUa1Ao1OqtrttjqdTq4TgUiwWq3y1pDljg44Nly08K0GgUf/10VyPTJ9rfkhiu9zwc/0UVJtfLwOAe1zQslx7jJwVwCFMHF+cH2PlPOZCwAlQS0LWpYFJiGwnkbihQXLNAscL2xjyTi7AOEiQylyrUs5cDHG0yl8+0lf3+U1/Prl2Ph4l/ctSTopFvS3FCB8rF3o83uWgoKLLSmlnFLEuJRz5vfw63pfy3G41tpdJ5Y5riUm3M3pEIFAIBAIBAKBwM1iIwQFaiK02231+/1cmFA6yf3muMlkkomME2++9yi0b5/n2x9SO6HRaGgymeiTn/yk7rvvPj344IO1mgxl7v98Ps+uCCLaZeQbkcELACJ6eCqEE2kIaq/XU7fbrUX7Z7OZJpNJjhpLykX7vJAgYwVKa73n9oPVapUFCa9X4EUNy1QB6URgYB4ofujE2Y9nDnFWlOS/JMOc0+1283ac9Jtzu93uqb4gPtB/xtkJNSkGZQoCxBvRxN0uXrCSc3z3AubQI/flfPi6Yk04GXYBxlNCytoOTqTdveJryotlukjj5NhdMz7mZT2Fcp78+pzjApmLKS4m+BiUz6PvvrFuLTP2fs9yzZyV8nA9YsI6IeSs4wOBQCAQCAQCgcAJNkJQqKpK0+k0k3TSDyB0kBCs9V4LodxdAFJCbjtFDamJIB05FFqtlvr9viTpU5/6lB5//HFJypFwv68XqIPgD4fDTCSXy6W63W4m4twL0okYQN0H2kZUHtLY7XbV7/cziYEwQqBcZIG4efpGmWoAnNi5qOD3RoCZTCaZlHsEmTGGFPoWnimlWo0KhBSvpSBJ/X5f4/H4lN2/jGgz/hSybDQamk6nWZjhHC+w6SKHE9Ny5wquh9DEXLBGEKFIf3BCzXxQl8MLKUL+S6HI6xuwJmivCwIuPnlknhSRkrTzs9eNWJfyUI5puctFCcbTRaJyHZRpB94evy/9d9KO8wTBguMZS9qAeMSY8twz3l6bxNtUCiZlism68Yl0h0AgEAgEAoFA4LlhIwQFyBo7N1CUsNwtwAk22NraUq/XyxFmJy5eQZ+6BdIJ+ez1emq32xqPx3r66aczWYakOWEiug1BJE3Co7E4DWh7q9XKLgOIvDsKvB4DZA+yBWmlzb41YWlz9zZ6HQb67GQbosY1fDtFxk06IeBe94EUDB8Pnx/65VZ6znPHAO0pUwIglb6rAuTeXSl8Tl/pF/9lnTD/kjSbzbIDg+0+6bdH5d0RUwoFiADcCzeJp9l42oK7OLwmAeKR10vwsWadebqCt8nniWPcXeCigT8vXjDTHQ0uingNDNrtoL3rzvF1QF/8fvTR3Q6+frwWhgtDLhywXrhWo9HI8+B1NHxOSvfCtZwIjKOnuAQCgUAgEAgEAoH12BhBgZQCiD5klHxrz8uX6pZtct/ZkcHt1FK9aJ5HdklBkKQnn3xSs9lM9913nw4PD2vt8OgshMXrJXg9ASdMHqn16L23C5eFFyqkL4xNmX5QWutL8thut7NjgnQST8nwyLjn5kMAcTm4dZ/5gARzHOkSvjVnKca4/d37uS7vHyGIcXTRYnt7O7ertNiX6RPMCcSf8Vm304fXKnASSfqD18Jwl4jXEqBfuB18POlbKXi58wOhAfHLazcw5iV5x2FRzlOZ5uAE2h0XtJv5861G+VfW5PC1Sxtom+80wfeMgTsH1rkFONZFA18nXI/xd1dSq9XK651tU935wRpCKFzXn9J14XMcCAQCgUAgEAgE1mNjBAW3vnvxP0iC55RDmpxYck6r1arZ451schxkHQLEloEHBweaTqc5etzpdNTpdHR4eKjhcJgjp4gRHnXmO649mUwyQUMMWJd7j7UfwsR3kLzJZFKznwPSFZzAl66Cbrebc/UhfQgYXteBa+GAWEf2HD7upDvQdifkvotEWTSTeQEIErTPxQavI+D//H5ugXcHBN8hKlAroty5wLc19FoQgO+rqtLBwYFms1mu90G7WasufFFPo9ls5pQX6j24qICYRg0OF358jlg3PB+l+4D16TuUcL6LY4BnqnRfePqGCxQujNDv0nHiY8bnnjrk9+XaLjSUY4+gxtpjjtzFwTsEt4KLCtzPHTrXWt9lqtW1CpYGAoFAIBAIBAL3MjZCUHD3AUQBcg7B9ci+pFMkqNVq1Yohet0FcrUREyBskMvBYJBJDNb4ZrOpfr+fbfgQHQozlgXxPCIKgfRaCpCzVquVCzOCVqulXq+nTqeTiSnXnM/nmkwmtYg8ggYk1/95RNvTCFzcoD3T6bRGrN2hQBtc4OD+XM+JP+cgAvk13R2CS8Ej4dKJkOLbbboLwC3yfi6ikBdF9Gg2/YYok7LBcawJxsV3DPE1RLv5B0nnPNrgaRCMpTtXqCHhKQdOjiHpHol3Fwn38VQJT3VgjkkRgjg72fc5Yf154c5SpEGUAmVNBkQDXCxO2EshzFNuPN3EhQ5vM4KIuz/KtAYn/C4gupvEUyC87kQJFzfKtgcCgUAgEAgEAoE6NkJQKAUDSBLkyEUDoq8QCrfbIyiwMwCEwu3iXoBQOirCOJlMcp6+W9SrqsrFBp1EQdam02mt7RRghGSWRMev7/dIKeVilL1erxZFh9QjFHhUtqyPAHmWlCPHLnZ4EUJ+pz+eVtBqtbS/v5/H3fPjpSMCOhqNNJ/Pa2TW3SPl/LoY4GNWzoeLLyWx9BQAFyJ8PTQaDQ0GA1VVle3vvvuHR/S9dgJj5i4T4I4UdggZDoe18fH+4GrxtY2DBpeCCyXllpvl8+DWe87hepKySMJ3njaCqFCO5boUhHJ3hnJt0Eb+y3rm2jhVPLWgFDTKfvjc0//yeK/5gEDm/XLxomxXuaUlc++uixJRPyEQCAQCgUAgELg+bIygAIlzwuGkGEGh0Tja6tFB9Nlz8H23BHcNQCT5+fDwUFevXtVisciOBCe1ZcSc681ms+xUwGGA2AGxJ5WCcyBnCARcE1dEp9PR3t5ezgl/5plndOXKFUmn6w1I9a3ySiLMWEHwPWWA/rld38UC2nVwcFCz49MOT92gyCTOCxdfXNTxuS1Jc0pJvV4v39dTAUrnh6eceAQdVwkOFOYE4cfTLhAaylQbzuHetI0inLPZTJ1OJ4sAtIMIvgsSXKN0f5R1Atyl4WuZdiEKlHUSfN5YU55mwXixRst0FHdNMH+saxemXMgpRQe/hgsQkmpCjj/nHOuCA22lMCvHehqF70jiqRTrrulijbsxShGnrOVQiiy0IxAIBAKBQCAQCKzHRgkKHklft0UcBMHty5Czw8PDHL30LSEhKKQTlKkTEO7RaCTpaGtDjoE0djod9Xq9U5H66XRaq8OAg4J/HqH1/yI8OHFutVp64IEHdOnSJe3t7Wl7e1tPPvmknnnmmRoxlU7yyJ3ck97gtnnIFBFsvx/EFyFAqhN+xq9Mt+AfRfDG47Hm83neMcOdAogNTmiZM9wMfk8n3QggkHYfY+bV3Rlel6DdbuedHBgn0h9Wq1W+JvDtMHu9Xi7i57UBms2m9vf3c58QthAqnMz7dqZeuJIUC4QSXCilqOBRf98dxL/j2pJOiXHSSeoIogLCAn1ZV0eANeGiAGu2FDlY32WdBca/3CnF4WPv6Q+sCU878X65S8EdL37NdYU2EUDKbVhd0HBRIlIdAoFAIBAIBAKB68NGCAqSarUKtra2ctS5tJV77rynH0BE2KGh2TzafpKI9jriVtqyZ7NZLQpbVZUmk0nN1UA6RRl9heS0Wq2a1d6L0nnON/fCoZBS0v7+vlJKev7zn6/nPe952t/f18HBQS7o59Zw377RI7FenBKBodPp5D54mgPuCs+59zlARPFtL91dgJDhffXiiJD6w8NDTadTSacjvhC4crtIiLjnyntk3i3rvqMA7ep2u5n40jbaydpiLKWTAp2dTkf9fr9Wk8FrZeBMwXnRarU0Ho9ru0rgkqAoqBeg7Ha7ea26MMS59JHPILru1mAevM/eRv7rdUWazWZtx5TyGUCgYGw9tcbbgrCzLp2C4z0dxdeoryEn7C4c9vv97AhhLXr/fbcTFzRc2PE6Hr5uHD5m/O7tcTEl0h8CgUAgEAgEAoH12AhBwe3UUr3wHzZojzx7TvVZlmXpZMtAJxMc79XiPT2gqqpcB0E6qYvgOeoQeCKgnkoA4Tk8PMykE0u6FzjEVeFCw9WrVzWdTtXr9dTv9/XSl75UTz31lFarla5cuZLb1W63NR6Pazn3Tpo8CusOBAgb5IkaCL6zwnQ6rVnae71eJqNOCKUj1wck1UkYxJS2jMfjLNJwb287c+FiA24EFzo8zcHnGSEHIYO58TQY7tftdrNrBXB/5oJ6FltbWzllwgsDzudzDYfD/L0kDYfDmkgEiacfnU4nj61f1wUzT8vxNALGvEyVcTB/pWBAnz09xK9bCgdlCgHzyhzTRq+vwPi6a4F7uxvAi1X6OuCZQ4zBneLj7s+0P3elA6Ksp+EumBJl+omLHy56uFsiEAgEAoFAIBAInOA5CwoppYck/YCkF0haSXpTVVX/c0rp2yT9KUlPHh/6LVVV/cy1rlVGXyGIEAZIwnw+z1ssQli9+Jzbld1u7aTVyRDRao7xVAvICOSzquoFGsvoKHn0tK/T6ZxKc8Ai70SIqOrW1paGw6GuXLmi2Wym++67Ty94wQv0ile8QtIRUTo4OMhjBPn3PPNSlGF8IPMesSbSXO4I4eRaUo3g+TxBCr1uA+e4sNDr9dTr9WqiDA6HMmoMKWUuut1uLsrp5wN3KDhRdfs94+KFBj3FA9GK9ArIY6/X02Aw0GKxqBWopO24LhBpONeLhDqhdteLR8eJxHt0nf4w3uwcwdopd8dw2767CRyebuFpOgh23AtXic+J18EAzJ87Ajget4mLITgQfLcQF+3crcG6QWgoCysiHvk44ihZJ0CUDiEXosqUCXff0KZNx618FweuD0/8mS847yYEAs8Zg08uNfixXzrvZtxViPdwIBC4l3EzDoWFpG+squpdKaUdSe9MKf3c8XffVVXVd1zvhVarlSaTSSYckA3y1CHes9ksCwmQIYgLAgHXc7s0hEKqk09IG5FQSJakmlhAigKRfCzvECcs9NyDeg1eH0BSPgaSC4Gn8v9sNtNoNNJoNNJisdDe3p5e+MIXajKZaLlc6uMf/7iuXLmShQOInBMk7sW1ETkg04gdjBmEjfHgO8ab2hTlvUpBgfGnPgHCCkTWU01AKQ74PxcuuBZkj7mC8HU6nRyF99QXfm+1WnmMEW8gjIxLaWtvNpva2dnJQtVsNqvt0ODumE6no52dHTWbTU0mkyx+UFODdlB4EvHBBQ2p7oZxh4ek3D/fXpP5dDHCUxEYV8ba01B8PXgNCI/Ocw1PV/B6FaVLwcUS7kstD+bM0y4YF9qAi8HTi2i7CwKsK1J/uJ5vkeo1Smgna3Pd8+Jjzdq+lrthw3DL3sWBOmZf/rn61Ge3Tn0+ef5KinqdgQuK4UMNdV55JIq96BdHSm/5lXNu0V2BeA8HAoF7Fs9ZUKiq6jFJjx3/fJBS+nVJL34u1yIKCrHB9s1uB5BW7POeduA53bgNrI21CKNHZ72wGzZwotvSSQQV8QBxAWLizgLqJpDGsFgsMpGiPZ5Xz+flLgXT6VRXr17VlStX9OCDD6rf7+uBBx7I7oannnqqtl0jAkzZZ2zhwG34TpJwH0BkpSMCSMR9f38/ixnl9oyMEWIF98PKD0lHDMClwPj6OaVt3Ukg/3wnCumkIKZH/alPQPpB2Xcnxe12u7bdotdykE7cFXx35cqVWtS73W7ntUFqCP2nhgbX9roeEHHWNI4MX6MuiDFGfi7rDqLe7XbzdcpUAt/C05090sk2j7Sb8zylxFNJEJ58DTDG/NcdATzLLuIhAiBY4ORh/fkuKaxxru3uAx8/jndh0Z0V9IE1xP1Zw/SV/nsBzIuAW/kuvpexdWlPH/nzn1n7bNGttOpEDY3A3YVVp9LkBUfvvI/+gb62vuTGHDcv/ekDVW9/z+1o2oVFvIcDgcC9jFtSQyGl9LCk3ynplyT9Hkl/NqX0xyW9Q0eK7TPXOh8i7ukNEPJ+v6/t7W0Nh8Narj6igFTPE4f0nGVV9i0m3RpNVBtAokhn8AJ7Xi0eUk80H0LmYgLCweHhodrtdo50SzpFxHEoTKdT9ft99Xo93XfffXr44Yd1cHCgxWKhp556KpNUL05o85F/dks47fBaE/TT0w263W5Oh/DtMUuCyjW4thc/ZNwg6l6d3+HuAI+ql9FjSDwCQb/fr6Wx+K4GpIMgKngxTXcDMIeIJS5SIFBAeJ966qla3QFcF+4YoA1OcLe2tjSdTnNtjG63m8UA3B+ICJBm0hpcaDkrvUBSbgvz486Tbrebx9TbWq7fdS4NX7/uYnF3TDmXCAG4M1zQYdxKlwDHl64ivke48hokPPscz7PL9XgumE+vyYGAUaZZMU6IEetqVWw6bvZdfE9ja0vzvRAPAvcWlt1Ky+6NObE+9Ie3lf7rz8+/v/xb36WqqE10LyPew4FA4F7DTQsKKaVtST8m6c9XVbWfUvoeSX9TUnX83++U9CfWnPcGSW+QjvLVIao4CCA8FMjzPHdIl5NZSI6LBV4oDlIEgeRYoryQQbfxexSdrSCJmELou92uut1uLe2ByDfXg7hDsjz3G8JCrv6nPvUpDYfDGuFtt9va3t7OBJdaDrTR0yicABGx5T6IB2VU1vPxId2tVitvoehCi2/FxzV9nCg46NFhd0WUzgk/1z+jXWXqCOPY6XQ0n8/zMV4zgp9xVjDfFGRcLpcaDAa1HRp8Bw3Og/B3u131+311Op3s2JCUyXFZb8LdBMwHBH+5XOZxZX2Ux3qE3mtcMNZe4JPjIL+dTie7eHhe6FuZxsB62N7e1nw+z5F7X5u+hnwNeFvL9UXbGA+fW09b8dof5TFeKNLTa9yV4o4br+/BeHpdFda0CxtlOhRwd8dFEhRuxbu4q/6da/AGIXU6+uC3vPq8mxEIXAisWnUB4pG/8zuVlkkvf+NbTz68GOlitxzxHj4HpKSt3/YqffBPXL7mYa/4y2+XqmPR+B5dn7cVxd9Lsy//HD36nx39ff/q731Ky/c/cvqcmIe7BjclKKSUWjp6cf5gVVX/lyRVVfW4ff+PJf3UunOrqnqTpDdJ0t7eXgWRgEB4qgAk2ncggCxIJ+S+aBv3qe0UATnxyvWQVAh76Zjgnk5+aAOR7MFgkHPEIX6Qak/bcFu4dLITxXQ61WQy0XA41NNPP62DgwNdunQp9530h/39/ewawBKOYOF5/RB7J5zskuH2fhcXiGxDvtvttnq9Xs15wZhAzJ3wlwTUBZ1yXvx3/6zMXfdIuF+n1Wppe3s7i0FlPyD7bq+HhLIOSGko+z+bzfK/fr+vVqulwWCQUyoQeoiqsw5Yq14HoNfrqd1ua39/v7ZrQb/fz/f0OaMtfEY/vA4Bc1tunek7aSAo+BpwAl+KNP5cOZnnGC9S6KkIvjtGKerwu4tjvvtGWUDR3g35vr5OeG49rcTrZrgAwRoo+8nPzCNrzusnlGv2IuBWvYt30+WL1fFbiOpiZLgEAhuHqiFVjUqPfOfnSZJ6jzf0kv/pndJyqeoCFLa9VYj38J1F6nTUuLSnD7zx5ccfXPv4R77jcyVJ7f2GXvp333n04T22Rm8HUqejRq+rD/y137bmy6P/fOBP3S/p/tpXzUnSy/7Gu677PuGC2mzczC4PSdL3Svr1qqr+oX3+wuNcMkn6SknvfbZrQTx3dnbytobkensE1O5Ry9Vmuz4IlReN8wg+4oJHdD1nnmtXx0X4qIVANBkLv7cFQuWRZvpE+7kmkXu3fBPNJRWCOgqkeEDecCncd999mkwm2c4PAVo3Zp6/7pFiJ8KeGkLbZ7NZjub2er2czsH4kIcOYef6PgaeZ+82dhcQ1lnOy+9dyClTACC6/nspTnQ6nUwYvRgiQsRgMMj3xUWAqDCZTNTr9dTpdNTr9bS9vZ0FHUlZfKKWgrtlXDDa2trSYDDIhHw6ndbGjP860WdsPCWCOfU+IAxRTNOFCKlelBERrRR9vBZGmQZE+5yoMydnPUOeisH5EH4XQXxHjLPcAp5GkVKq7aaBM4Xnw+/ha9GvQX+9Vor3mfeKC5abjlv5Lg4EAoHnjOP//U5esNJvfPvv1H3vTXre//0BSdLq6v5dTdziPXxnsXX/ZX3gr7z6xorjHh873ztan5LuqTV6q7F1aU/a2tIHv/nVqrae5eA187ToV3keng1pKb36735w7Xer4SjEhg3AzTgUfo+kPybpPSmldx9/9i2Svial9Fod2bs+Kunrn+1Cq9XRTgc7Ozu1QnGSalv5leSyJOtltBNSzLZ7XoPB88Yhm9wLsoXl3Qsqes4+pBlyxVZ3tAGiSSRaUo2UScpk0/PSn376aT355JN66KGHsvOB6w8GA/X7/VyIj3u7eCCdVPWnfTgYqEPAWLhl38kY49DpdDIZRjwgOu+FKSVlsuhpFl63wVMnpLrjwIUAFyf8OObeLfceSXcS7rUQiFRDJKfTaW2N7O3tqd1uazgcamtrS7PZTPv7+7p06VJ2MTQaDe3s7Gh3d1fj8Thfw3fA8BoFuCFYg6xXton0sYCIs6boCzZ96ll4n8p1tFwus2uFdcZ1vQgo69zHywtFuvgG3J0iqba9I797GoI7EwBknv9ybx+HsiYDn3nxzmazmUW5+XyehRNvX7n+ytohLnCtqwniLqYLglv2Lg4EAoFbhWc+q9Izn3WUSvTSf7FQ74NP1L5ffPTj59Gs24V4D98hNB96iT7wDS+5JTvtXGuN3mXr85Zg64H7lbaPAnGP/MkXa7F9ZwIv1Zb0gb+6Pi3xRb9YafeXHzv9RVVp8bHfvM0tC4Cb2eXh32v943zD++t6QUAn1hT2ozYBBN7t1dIJofHPIKQeLca6z/kQZ4gPrgTIn1u4IfAuajhR4fd+v1+zZZfbSXoVfi9S6Jb3yWSiK1euaDQa6fLly7kfpGUMBgPt7e3ltnJ/zxv3CDh98fx+Iuvj8VhS3RLuzgD6jiMBIobA4rtbeIQduKWetA/m8ixgV2eHCNrkYgZtcTu9pFrffVcHCCfH+5oi/cFTaQ4PD7NLwQWd7e3tXHOA+SctxF0jXJfo+Wq1ysKWrwnaxLhRRNFJP6SaY31N873n/fsz4OvA52YdWeaZQTBgzLx2Be4d0nncbeBRfu8XvyNQMVeMv4sK/myvK/qIwOLPqrtVXDjw65UpH6C8h6+zMj1nU3Er38X3LFaVtj/e0PDToihjIHA78LEva0pf9qKTDyrp1W+u1wpoPDNUNZ+rev7pXPj0wf9wu5t4U4j38J3B1mteqd/4ugdVbd16Iluu0Vd//7ZETanpoZYf/NAtv+dFwdb9l1W9+Hl67Asva/8V/H9yM1ycn/jCpE984YtOfd44THrlPx2c+jx94kktP/XUnWjaPYVbssvDzcL/gPctIiFpvt0gf+R7JXe3czvRgph6dNZzvrvdbo0kOzlza7jnpnsUlKJ6ZXqD28NJyXBiCKn0VAQfg+VymXd7IP3A24IFv9fr1SK+OC+4Nuc5scQaT/6558V7MUqvpYCY4mQYAcdFESe2Z81zmebgTgqIu9c5cCeIC0bM62w2y7sz0C+voVAW9kOYkZTTG/r9fu4rLgzGhdob9LPf7+vSpUuZ0FIDA+HLXQpOxP1+jDH/pZ3cl10bfIx8FwR3lJS7mXik3h0I/lz5c8TaL+sLlP/1dB76Xt4TQaNMS/E5Z1yazWauKQH8+fGdRxDypJPtV1mjjJ+vjXViSSm8eXqHf35WnYXA3Y3qcK4X/8D7z4yABAKBW4wkffDrLtU+Gjx6Wa2DSld+2+m/Iabf+Wye6sDdjsZrP0Mf+kN7WnbuDJH94Nfu5p9b+w099PMnv7c/8oQWj/7WHWnHeaKxs6PFa1+pZ17R1VO/o5J0cf4mWrWqU+8YSbr8nvt06Tempz5Pq0rpP7z79jfsLsXGCArAI8llbjME2Y/1P/iJPgNqCyAGbG1tZZHCCaYTCe7pBRy9IB5V8/mcaLm7F8r8+fF4nIWRfr+fc/QPDw/zNoJe3O/w8FCTyUT7+/sajUba3t4+JWg0m03t7OxkwsU1IUFOUj0q622myKWnTpQuA8YF6z6CAuQP4rdOTMCW7qKDzx/H+jhDGEtrPP0qc/a5LjZ4d6sgKjg59ig87Z1OpzkfH5HI0zQmk0nN0s9WpjPL2UJsIRXCo+zu9JjP57kPZb0CjkekKAUD2kZaijtvnBTjRPGtUD1NgrFChELk8NQZdyngsmDMPWWEvlKDoYRH/PndnTJeNLMUZMotXtku0lNDXBRwoaBci3zvKUDubHHRhPOl9eJEIBAIBG49Ri+5OGQlcGeRPvez9dH/YkeLwfmskcPdlT78B09Ssnd/46Xa/fiLJUn9f/s+rUajc2nX7UJqNjX50tdpttfQk58jbYob4Vbg6c+u9PRnd059npbSi+97/ZnnDX7pI1o++eTtbNqFxkYICtLJ9oceoS0LKGLpl+rFDj3a6sXWUkqZ/KSUci46ZBpy4qIBIgTpB5zL75C3TqdT2xbSo62elkGkeTKZ1Gz2kDj6izDg9Qim02mOfHuUnf6xe4QTL9pA8T8s9BByr7ngUWefB4i9R9aJkkOaPbWCfriLhM8htIhBkDknd5JySgHj6u4JnwPvIyTdyT8k2os1erS/rD/gVn3msxRlvG+Me6/XU7PZzI4IRB0nuIwLY0rKA6KROw38WpIygWddedtLkQyBpBSzSAmh79Qn6XQ6eZcET/lhLHHkIBj5Fpc4A5hXnjnWtQt6jLHXvqBNXNfFHfrG/CDycN66n7mHzxHt8vkv1znpG+6KYN27IFGeFwgEAoFA4M7iyddta763OYLT/qtW2n/V0d8Hl5/329WcHtdoWkk7P/TWa516TTRf+pCe/j0vPvX5pZ94zx0RLQ7+yO9WtSWttpI+9bq7R0S4HlRb0qNffPbffHsveaU6+6+ofdY4rLT9o790u5t2IbBRgoJb1CE/ECdyt52ceKR0Xc4z5AfSDpFGUGBbRCcmk8lEknK9gnW1GyBNEFnIv2/R59tESieEG3eEdOKoQGCYTqc1NwQk2YUGigzSD3deQHYbjYYODg4y6et0Opk4Mb6QxE6nkwk4tnrvf5kL78TSI7xeF6F0OqzL3WfMnagjEOBScEGBfnc6nUz26IOnRTCW7gzwNAD6wHi4EIDIQptns5k6nU5ui5P1fr+v8Xic+0kaSlnHgD7SX+bHU3Yg9p76ISk7A6bTaRaySjcHjoHJZFJziTB29BNBAVEOsY22IiywNp1ks6YROQaDwSl3hrsh/Dkk/caFHRcQEJrcmYDA4iIiz72nyfAZ8+lFQ128cmcPoC/uKnIXFON3UeooBG4OqdXWY1/z6bpIds5AIBC4F7D8otdpdJpjbwye/myr27SSZnuf/5yvNd9JGr/49P+Hppd/hxqHJ/dpTqRLP/CW53wfx/grP0/j5x397Xf11dXxFsr3lphwPbj6mtNjkpZJ08v1+b7/V8dKb/mVO9WsjcHGCAqSapFOFxWooYA928mOV9sHZX46woKTlHX57pIyUSq3g4Tkki7grgiuRb69VE/HgJBhdfco8Gq1yukPHv33NAwAAet2uxqPxzXC48cTCWdHAeolEB2m3/QJFwOpCfSP72k32xMOBoNaPQDa4RFq5sP7ANnzcWd8Id7srEGEGqcFAgK7XnhEm3oYPt/004/zcXKXxmQyycSVqLiLOV6okznmHkT6cVi4+8TJKO3wGgKIGd5GnAzeDsQmBCSvj+HzTlvdxePpAlVV5VQKUh8cEHAv+ojQwrOztbWlnZ2d7PZhHBCl3E3B8+RiE9+V/faUEv5LP30uJdVEH353MYl5dgHCU0R8rfsWnJ7ew3dlekfgLkUjWaGpQCAQCGwKRi9q63DnYhDcqiFd+fSbaev6c8v/P6VF0uQbv6D22Qv/3YH0tvdc310+/3fok19wVLBw+mB1x+pS3G2otk7P9+hFA7W/4GRuXvK979PyytU73bQ7jo0QFCBes9lMo9EoE1knTPzhD7HlexcgHG57hwy6VR7S5RZ8SI0XUez1eloul7k4IRFjrgvhQ4AAHhXnWC8255FjzoVQQ7Y815zrEcXHPeGR2zJyX7ZBOtlekDEeDI5eKD42TkS3trayi4H+DQaDnObhZK8s1CedkL/S8u6pF54CwTjQFt/lodPpqN/vnypQSHSf3RZSStl14CksbpMn4s69PG0FlwTpF5BvhB+vPYB7wB0kuEy8/b4O+Bzy7H32dBMnuKS/uIDkW1JKR2k19M/XN20t0wq4JvPi0f/SHcL8MG69Xi9vi3p4eJgLJeKk4PeUUm33C69RwFr3mhncBycKIop0spsLbfKxY9zKteUFLv15Z92RcuHiCn30YpCBuxgp6WNv/F0Kd0IgEAgELgKqZqXRS+pE9qNfsa2tL/mCM86oY9mttOjH//NuBw53Vzo8qd+pj3zDZyodD3VaSC/5u//xfBp2m7ExgoJHBEk7YNtAL7gH6YN8eA41xAHS6mSkzO0uHQAlKYeQIi5wHkTFHQqeL8+1zkoRkJRJsOfw85mkbEUvaxxAIN3qT/TcUwwajZOtDD3dgzaTxw8Jd5s89+d4FzGwyeMecSGHtACEHBcKXKDwAo2tVkvb29u1CLOk7AzAjYArhPEkhcOj0QgvOzs72tra0mg00sHBQS0dgD6wXlJK6vV6p9ooKTsFtre31Wq1NJvNNB6Pa6kFuEAg1E68WQc+/z7HrFVcGG6997WP04PdLLivb7XIOHc6nSyuIBaUbhru3Ww2c7FP1puLHO428dQCyDYOEkSMst4AKR3cz10UXn/BayowZl5HgfXqa9efWa5DP91d4cIkzydrlr6xrnz8XfSJlId7A/NL8YdVIBAIBC4uFv1Ki344DTYNtb8vKukjf6eeIvGCX1qq9xNvu8OtuvXYGEEBcjwajWr1DrwGAYQVkt/v9/NWf24Zd2Lv5AGy4AXfSsJABBXiWdrSIZceqfbrQ/jc+g3Zd9JMJNUjyfQT8iidVN73iLRH9D1nn9/J1edaXmfARQwvFDidTmvV82kLEX8XDKqq0vb2diau7kYoI8DY0Bknz8XH/YDIwDj7XHQ6nRxF5jjmiHHDVSEdkch+v5/dC6QBMC+kjLgQ49tl8jMiSq/XU7/fzyTeay6w5lgL7n6gnZ1OJwsgLgL4WvVaGk7mGUPIvjsyWAN8jmMFJ4mTcRcqeNa8GCJj786IMmWAdeNiAt8x9u12OzsTOJ71zTXb7bZGo1GtrfTHHR3Ue2CseQ78WaR/Li4yZn4O66Ys0OrvFeaCuaMt4VC4h1Bp/S7ygUAgEAgEAjeLJC17ddHnE1/YkP4/p+tuvPJb3qnqcH7q803FRggKEC+2Vtzf3892Zd/GTzrZ/cCLt3nhRI90ei731atXTxXHgzyWOexSPT9b0qmCde6C8AKARLCdlBBtxqbPPakN4AXkpKNo9HA4zIUWvdCcp3qUOfNUqHfy5gQecua1KspILOQQokdtAq7vxSZJhfD7Qsr8mltbR9sDMoaMDQR0MBhoa2srOwDclu859qVl3ttBGxApGCPEGcZQOil26OTUx9hTEhBdEGU6nY6Gw6Emk0m+J4KJF8x0Is1YMN6ey888+Xpyoj8YDNRut7OINh6Pa3URiO67rR9SzfxxLdYpbcId0m63c00Oamr4/LGjBWPv9yt/7vf72b1CqgNuBda3iwH+rPGzOwvc6cCcjsfjWoqCOxB8HDzth7lzxxHvENIbXHBEwNve3lbgLkdV6ZV/8a1qvuD5ev8bX3berQkEAoFAIHCPoGpIapx2lvzG33vdmee85N+s1PuX7zr7mubmvVPYCEHBi7ER7cUFALFxAppS0tWrV2sF7CDLnqvvEWfuw70gfl6YTTop8MbxFErEai/Vayd4cT7pJOJJRBtiQhud1KaU8jGci1uAugzcj/9i+yeq7JXtGUMXPihkyOeTyeSUK4MoLlF7CLETLLe9e3TfI9aeq79OpGA8u91uLZrPfHjkm3ZzPwipCx4QQ4QOHy9EKmpguKPBCygy1pBsHAyIQBBsPuM48u4hn74bB/PAmDHGtM1dG3wH2Qelw2VnZ6dWnNTTXBBRuA67ofT7fUnKDh4EH54BUkBoL26TZrOpnZ2d3E9EPel0kU3SZlj/jBnrzdOVXNThmWCcOMbdLr7LCMcvl0sNh0MdHBxoOBzWCkG6aME8uBBCPxAkPI0Gp5OLQmVaVODuRep0QkwIBAKBQCCwGbiGY/LRL25IX/w5a7/bmiW98u+8r/bZajZTZbuz3Q5slKDgkWmiyxC5ssAeBI7oO/UOnFxLJ1F7j2CXOzZAnt2m79ZxCDxRTEk1Mun5904OIUJER31bSYgbkWbP4R6NRnryySc1HA5PbV8JeaS+gN+7jPR6oT1IdllrwfP7GR/pZJtLHzvGA5LnkWP6w709571MCXH3hgsDLhghErBVpBeu9DnjuhB/j8Ivl0vt7OycqtaP4MHxXmfAhQUI6NbWlgaDQS2dgdoJkHXG2+s50F6IKqkL3IdoOePO2nPBh7ZeunQpk92Dg4OaeCadFHMsUxz6/X4tEu9uiUajoe3t7VxTY39/vyY2IBRwn3JbSJ4N5oY172sct4I7CkjR8HoGrCV3D7DFJvdhrbJ2ut2uhsOhhsNhze3A/HU6nZrAyP04z4tOlkKQz3UgEAgEAoFAILDpWHYqfeCvf0bts+e9Xbr8/348/7547HFptSxPvSlsjKAAWYUAUUF/MBjkCPF0OlWn08mRy3IrOLeASyduA8gHZApiBYHAju9536QTUDPB0xL8nhB1TyGgXRDJksy706AcAwjc/v6+RqNRjjZ7SgaiAoSPrfm4tgsM9MnJvnRCnBkDRA9SCHynC9pO3xeLhSaTSc0mzrmtVqsWSfd5caILOfZcfI8K0x7mbbVa5dx7rzNAe9jSkvb4Npf9fr9mnec8t9UTYUdIQAhi/jxVZnt7W/1+X+PxOF+f+eMauBZwmiAUeA0DfvbaFOVz4eNFEcXlclnb0YH5gaTzDECq2Y2B+/oYuLuEdQR4XnzNrEtt6fV6WXAD3KfX6+VzXTjwNAMX8KSTIowISvQFRwOfUV9ja+to60/Wh9dOYIxwFNGvZrOZn3FSNagJwnPtBUQDdzfSp7/8vJsQCAQCgUAgcMvxxOdKT3zup+XfX/nDD2jr6tEGCFpVWn7gkZu+x0YICljPnQB4VNwJOFHV3d3dHPmEVJa2ao8wQnC86rvn5eN4wOY9mUxyEbpWq5VzzImacj3gxeEo8OaFAGkHRQ49Kt1sNvP1IWUHBwd6+umntb+/r/vuuy+TPifa29vbmRSR/iCpRqY8J59jy2i8F6WDwE+nU41Go1Nj6TUXSoLs9SY8zcGdBJ6+QQFFL37n14fsUhDS0wQQDRhPiH2v19PW1lYm8oeHh7l4J+R1PB5nwQSRgDXgBNJ3bfA12ev1tLe3l+cKIYndMdzVQmoKLgDILuPP+VjwXYgpBQWPotN/F5Ak5SKQrD/ffpJ58nokknJ6iaS8kwTtQwhhHDjP6yF4KpB0UquD9iI20TfmBYcKBSLpM9dle0oXFMrn2uHFPznOnz2+87QVwH08lQRXR+Aux+/+7frgV/XPuxWBQCAQWIPBJ+ZqHXR0uBM7GAQCtwKP/JG+pKO/e9Ii6RU/dvTz1v5Uy1/74HO65kYICsvlUqPRKEeSvaieR/T55+ROkiaTSS0a75Fz4BFnyKPnUEunt6Hza3Bdj2p7wTcinpxPRJ68dC+m6AUF/RqcKx2RI7Y+HI/HNWs77oTd3d1c42E4HGYiN5/PM1GXTkQMosBeNwJSh3gDAfTih/yX+zOWOAoQL9aRPCei9M/J7/b2diabRNR9m0juR+qFOx24LmLJ4eGher1eFkUYR4p4uoOB+XcxhHHxrQ29ECRoNpsaDAY1AcILCEJKIdruFmGufZtGJ7cUHfU0FT6nPsHOzk52KXg6CfND3QhcCU6quYZ0IvwwhxTH9FofPo9em8SdK74zBOvFHRfl2kf8owAnzwfnMQfMj683X0ee8tFoNGqCHIKGp0TRPsbBx90FS6/f4vcM3J340B/qx+4OgUAgsKHY+oV3afCaz9eVTz/vlgQCdx+qZnUsMEidp7b1/Id283f9X31Ui8c+eV3Xuam/llNKH5V0IGkpaVFV1eeklC5L+mFJD0v6qKSvqqrqmWtdBzLLH/H88c9363KaPWffCyD6rgeQEaKgHkX3a3Mdr8JPVNxzznECQLidDHmUnWv7zgYUjxyNRppMjmwmRN8hLl5Irt1uazKZ6MqVK9rf368JHxBALx5YpgG4W4IxcaLM/Sl8CLlykkb6AmNTplD4LhKeJuJkn747IYdYt9vtXDgQQQGHAe0/Xmc5Qg3RZN48Wu+7LSBKQGZd1KGIJnn0vq0mKSTsrEB7nWQjCiCI0GfEAOaBMeYaXvcBgu1jhOuGNefpHU7OSX2g6KGDYoZe8NHFIeYtpaTJZJLnHKeB1yjxuh6+VaXXx/CaEQgorBGvaVKKgohzCDAuRjDejJc/a15jheN6vZ6qqtJkMtHVq1fz/cvjfVxZW4D1yLGsp/K4TcWtehcHAoFA4Lkh3sOBQOAiY3b/Sh//0hNpYO/lL1PvqYfrB/3w/7n23FsRfvvPqqr6lP3+TZL+dVVV355S+qbj3994rQuURNjTHCTlrQkdVVVlMg3h990VnAyklGoRe44tc965LsQeUuv537TFo7KkRXj+Ofcgiu0FBX1HCo+Qt1qtTLSIpk+nU43H40y0aSPncm8vKFnWbYAkQdBow2g00qVLl9Tv9/NOEO4goB/Mh0eXGbdOp5MLBVKokHYyNwgfk8mkVhxRUp5DtizsdDq1cWT+IMqIFtKJIMN80X+fN0/DmM/ntfx7nC0ejef6W1tbOjg40KVLl9Tr9fJnPq5OkN1N4Ln6vjsIaTR8x/qAzEOMU0q5dgaRfife/X5fu7u7uY2sJ/4R7ac/3I+17W33FAS3/btAU9Yl4T6efsI8cE3WLoCs0w7ftYE17U4Z0qCYM3fQIBZJynUfKMpZzivuDBeoaDP3dZGHZ4mCmy4SXgDc9Ls4EAgEAjeFeA8HAoG7AldfXelq+eEPrz/2dvh5v0LSFx3//P2SfkHP8vJcLpe6cuVKLRfbhYLhcCipniNN5NJt/UQecQfM5/NT2wm6ZXtd1XqP2JbRftpKFNyJSBm95Xys3W5phxxBcks7On0gfQFi1ev18j38PpAghA6IlJNs4AR7OBxqPB5rMBhkQWEymWg8HtcKVEKmPeefdpCiwNiWBBayDNl7+umns+DjTgMIIa6I6XSa0zlwQdAnxp+IOvd3AcrXiafBuEMDYso686KAk8lETz/9tPb29rS7u5s/xz3BGvFUFJ9z5sbHgkKW1OJIKWk6nea2UlOC67M2S3eD1xaoqkpXrlypOVRol5N/iD7HlLUUsPn3+/0s1Eyn05wWURJrroN44ulIrIVms5lTcbrdbk6p8HSOMmWB54+5ms1m6vf7tWeXNe/PNGseUc7Hz59P5oM+07+yaKg/6xcYN/wuvtfwxH/3BaoaF0o0CgQCFwvxHg4EAnc9blZQqCT9q5RSJel/q6rqTZKeX1XVY5JUVdVjKaXnPetFjsmQF3GDLGEjd9LjEWJIM6SAz8mT94gnZMFFBbenS8rtADgdvDo+UXiPgrMzggsLWLupsu8WdQQTLwzHteiTE6vpdKrt7e1acT4vHodt3omtp4oQEYcgQbo92t/r9TSZTLJV3UUFr5WA8IM4Ip24FbwwJqSONq9Wq1rBQN9ScmtrS/1+X51OJ7sdxuOxptOpqqrKYoNvoQmJ5DvaSXS/jLLTVsYN4QaHhBPnxWKhg4MDXb16VQ888IB2dnZy5N775GIH4+ziRZmmgjhUVVXeHcELBSIsUDfC3RM8C5PJJIs0Ozs7Gg6HWYBhbfrY+jrxlAr6AXH2HRi63a7G43G+r1/HnwVELx8LhAzfPYJ0Jhc6vPgjwhPtJs3CxTTWbSncMdb+DuE5d0HBXT2IIV5zgfNpN4LKBcEteRffS3j8v/8CDR9eRf2EQCBwqxDv4UAgcE/iZgWF31NV1SeOX5A/l1J6//WemFJ6g6Q38DvEF9s7xBCC66KAk1WInNcxgDxAMtzC7WRoHSkhlcIjsJAjj/hDbPyeWLP5GRLlEXPp9NaNkDl3G9BmnBaQZM7zCGyZ2+/1ENaRKukkol5aySGI7nqArCI6eC0KT+uACHN9wFiT/kA7G41Gbcx3dnbUbreze+Hg4CATYOoacI+yTgbfIeDQZuzvkvJ6kJRTCDiPteQ1B3ApPPjgg3rggQdyWguk2rcUZV697gBEnLld53LZ3t7OtRp8PbtrhfbgaBkOh7mWAmLKWYLCOrfNdDrNBJ37eN0Caluw9hB1XChjTLkHggx9Ryjh+jx/XlOCY6lj4YIMrhKvy+EOGYpPsp0sKUiMl3RSdNLFMd4z/X4/X5uxYm24MOGOhQ3HLXkXd3Vv7HaAmFBdjBIZgUDgYiDew4FA4J7ETQkKVVV94vi/T6SUflzS6yU9nlJ64bES+0JJT5xx7pskvUmSjtXcGmmHBI3H41yt3nOuvW6CpCwqQBycfHO8k7w8AEbAywgtUUrIvBNzADHi/n4f/jnhcqLN9SgEWBZm9OuQ584WfKWQ4E4FRA53ZzAW6+zuHvH3YotO3CH+kDHmAkGBe7tLwUkn/5y80wbfOYLIu6c+cF3qSnCsAwcE4gOuDlJKOL5M42AsIMnucFmtVppMJjo4OMhFI93O32w2M6FFCKP/9NHHgDlwh4Rfk3vSF3cU+Nqez+caj8e50OdgMMguHu+f99FdIqyLskApThq20aRPiDwc588V684FgLKoI9+NRiM1m031+/1a2o+7iVjP9BMXgbs1PL1lnXDF8zydTjWdTtXtdmt1U1arVX7GSUPh87J+ijtENhm36l28my5fGAXlZrDoK8SEQCBwSxHv4UAgcK/iOf9JlVIapJR2+FnS75P0Xkk/Kelrjw/7Wkk/cT3Xg1Q6mSMyDzHq9/u6//77tbe3lx0ARFUpVtfr9WrbzJG7vy6K7PBoKWQPpwD3KavDQ4i8gjwpAdj3fZtJCu8hPJT3dxs/40CbuF/pUlh3HcZTUo2olSke1XGtCU8lIepLbQQcANJJYUPmw9vpZM+LZZaF9ra2trS3t6dLly7lCLvb1Dmfz9mRAWHJ3Ry+O4aLAU666Zvnx7ubwt0AiAtcF7HnypUrGo/HNRHAj+EcrkkUnr6TkuPrysWUfr+fx8LXEXMm1QtgMq6si16vl+sTIBT4OvX14Kkd5Q4QvqZTSrlY587OjnZ2dmqpEjxbiIDSyRadXnzUa1a446Bch6X4xc8uePEsuLuB8WYNdbvdPI5eJ4R168UWvZimi38u8Lhgsam41e/iewFppSNzciAQCNwCxHs4EAjcy7gZh8LzJf34McFoSvpnVVX9y5TS2yX9SErpT0r6uKQ/fD0Xe+SRR7S3t6eHHnqo9oe9pyW4Pd3z1L2wG0QUVwGkETIDEfE6CkRzsZ5Tbd+Jn5NRdwTgavDCjRAV2kvahOdxO9EntUFStpsPBoPsUphOpxoOh7p8+XItssz1GBvfCcDbCJkqUy7oO1therSe6xAdJ/LuLg+IrUffvaq+R3k9vcHTVJhfH8+UUibJjAuigheZpF1uTffCg6Q8ePs8xx+XBOe66MD4ILqMRqPsRKCP3M+3DC0dD0Tn+b4snskY0Y6yxgAEn8KEiDm+VSi/sy5Ya17ckzng2YFwl99B2lkDXgjT2+PjiVjCmPv4cRziEGMoKTtgPO2C4xEpSLvAacJ8IGj5+vIdIHyr1PF4nO8vnYgqZSqM18dgbV+Qooy39F18L+BF/+A/6uPf9gWa70VBxkAgcEsQ7+HbiMb8SAgOZ1kgsJl4zoJCVVUflvQ71nz+lKQvvtHrQRyciEondn6vji8pk3T+4Ie0QDA8sut1DyBEni8N+XBbNYR3MBjkCvRS3SVAWyFhTvYhPJBnBApvo0dbvS2ICpJyygXF+AaDQc2VgECBTZ3PvM8Q6zJ67Xn5jAeflyTPXQCeQuBFB91N4cf4/NAXtvGEXGKJRyDqdru6fPlyrY4FtntfI0SjPfWiHB+vWeARdU/78Hmgn8wduz4Mh8PsBJBO0mU4z9NmaGfZJhcU3B3gVnvWDhF+J/c+3rSdOfax8RoPpRjGOkPAcOdKWaCRWgVsx8gcSSdbQTJmRP9xkOCC4Dq4jdi5g/PcjTOdTmupCwgEFDX1dA3+eR0N1h/pKvzuQhHioadlMJZehNFFiE3GrX4X3wvYuv+yqkZYFAKBwK1BvIdvLy7/k7do9o1foNFLQgQOBDYRt2PbyOcEr0/gFmzPY4b4e8TTo+4QRsh1WVzN88AhLS4GSPXCfJAy0gFoA+30SDIkjesSCfftDiGoWPEhMFSTd9JDtJ+ILJFWd2Rgyfa0BI9CQ5iI1JbpEpKye8EL6rl7w1MM3FHg+fnu9JBOdrDgH0KOuwfKIpWQTU9T2d3d1Ww208HBgaqq0nA4zG1jTtmOkDQHF3bI/S/FEc6lbeTauzjk6QySsqDDXHqUnfHw9BvSD7yegq8HF8qYJyffjANrCqEJt427H0hbmU6nko6IMVs/ItR5+gkEfTweZ8LO8+JbmbqQwbxxPfqGQONpDC4S0GZ3NyAo+HGIbS5s4UBxV0LpYsDR4i4N0osYHxcsPLXJ3x+sD9aFpz8F7j48+RWv0aJ33q0IBAKBQCAQuPjYGEHBUwIghV5QD0HAt2x0kuDWcSKVvsUcBJ1rUFm+zM32nHgIi+88QKTUiwp62yDOTt65D0TUt7XDzu0kVjrZllBSTnnwSDpt9UKGPpYQQ6LJ7tpw8UY6TaRK6z81JBjb8jyv/cB3fv0yb34+n2symdRIPC4KiC/km60sEVPciQIp5H60ycfGC3l68UfGqYzI85nX0PB6HrPZLEfDPd2EcYGElvUBuD+k1wUFF3OYH0+j4Dja5kTYdxbhOoeHhzn1Z2trK4sH5fopt2BkPdIWhLlyTBhnT41wkci3b3URRDrZ7YFnmn+sF++fCwXcE5Am5GvXXQu039NTeB7oowtM9J/7lm6TwN2Fy9/3Fg2/7Qs03wvBKBAIBAKBQOBmsDGCgtdKcNLPZ+y4QHE6P57/evSaqvgQHSdrXtSttMdDViFa7nBg1wDPXydCXVbYJ7deOimIB9EBbrH3vnh73NLubaVduBMgv5Azj2B7bQXu423DAg759jQS+ua7UDB+fL5YLHIxx3UuEoiqE0IEH3Zx8HQJKvP3+32tVkc7fYxGIw2HQ0nKBS8hr7TXXQruDPBUDxck+EfbiIIz9k62WUvMlwsAFOHsdrsajUY5zcDnk7XmDhx3BDBHPi+4HOiXp+cwP+4E6HQ6+dlhvmi7uxMQXFyYKuth4I4p6yuU65m5LFNmmF9EHB+PdbU+SncObfHCiN5ungefL557+lWmtnhqA2sG4cbXtM+bP3OBQCAQCAQCgUCgjo0RFFarlT75yU/qwQcfzI4AJzSQIkgKpNCJg5NLov2QHS+MR4FAJ3AQmzJayXcexfVoPjZzvnMrda/Xq6U6eEHBdWJCmdNf3tej27TLifG69nkE2MfFc/qJIE8mkxrpgrD6lotOOhlzIuLrilhC2CD6ODRWq1VNoPEihQgo29vbWaiQlOfMHQiLxULj8VgppXy9MsrtLgWvM8FOFnzuu0j4DgiQ8XUkeLVa5ZoX29vb2QngIhbwGgZe86Cs8eBOGXcSrEtHoV20AWEA8Y2+lS4IF9V87SIYeeoIxL1ck94Xr93gKQM4b3ytIoi4IFGKaj6HLgL5s1kKEZzv7g6vX1HW9ZBUSytiTGlrKQAGAoFAIBAIBAKBOjZKUPjEJz6hhx9+WDs7O7UIJATHq807iIhLJ2TcC9uVTgW3R0P2ISiekiCpdn/glvTpdFojn557DVEmDxwnAFvrOYFFGPF2uoXbRRSvT+BtYhylk+J/XN9JEv2CiPq2f4g2fu0yv93JX0kqPW2F+fAoPBZ4STmSTnTd3Snj8Vi7u7s1QYZ7+laR8/lc+/v7uf2IETgzSDnxWg44S5h/+koKBpZ9J+6M2Vl1PjqdjgaDgfr9fnbXMA7UyPB2e10OFw4YQ+bS58Nre6xLj2GOKcDpIghpQNzLibbPqf/ONdxtUkbsXRBhXH17SRe0vC6FiwRO/svxoO4J4ojfl2fG5wJXR5lm4X10V4OLH/4crXvGAncPJl/xei26IRYFAoFAIBAI3Cw2RlAAHmHnj33PZfY8ZydGXiNgNptlgsp3bnNmq0HqD+AkcBLmjgUnJJ464RFXIp1E7JfLZc5jJxWA4n9uy/cc+lIsccLvEXxPxXB3RklK2QoSYuvnli4HrkFlfHduuLUeMLYUraQvjBeiCt/5+HMdIuns+ABppF7B4eFh7n+5QwaCzGw203A4rJFR6WSHBd/lgyg0tnjvS6vVUrfbzWkc69ZduUZ9LbAbQr/fz/dZ55rALeBFQH3+EH8YH9/BgXVGYUeEDW9Dp9PJqSSc5wUhXQCQTsh1Wb/B6yL41pFeYJHzfKtIxtNFOXer+O4g7lbgOH+muY+neCD8+dp050L5WVn80x1PHMc2sQgf5ToP3H14+tObWnWiWnggEAgEAoHAzWLjBAVPM/DIq7sQIByQPt8aDtu2W9vdqg5h8voDnU4n12UoizmuyyH33G2q/eM+cNcBLgMK+FVVpclkkgvsuX2+JNxO+D2f3okzffB2O9njGG+juxTWVbln9wnpJPINWSZaDIjwe167dJIaQYTZiblHkpkLovtElYnoIwiUuyN4bQjugVBAe1yk8ag8Qg7uDQgqAkw5f7SZdrPeyqKCjJMXgiQlgxQbT4chmk//INAIMbg6yjb4ecz7bDbLa8VTVpzouxugFEe4t69vvwZj6i4Y+lU6NfjeXSzlc+MCYCky+ZjiKmFM/Jnw67kbx4/l+i46uoDCvDcaR9uPMo9+r9INFbg78NIf/Jge+fpP02I7XAqBQCAQCAQCN4ONExQAf+gTHSXq68IC5EA6ITmQS8iBb2XoNmiEAreROyHyFAYnlFLd8l/WXICk0B4v+OYOgnVCB8S53+/XisvxOQTZd7oo3QVO3iFFHMv13Gpfwu3rHO9FLr0Whadh4OZoNpu1avrT6TTPhTs/JGUxx6vxe5qLp4J0u131er08n4wB4+H5+oyVk1TPn2duKMLo4+RpCe56wREBuJ+nNCAo+Rgx/3y2v7+f161vc4jwAYlmRwl3AuBeIE2EYxljdxLQZtajFxtkbpkLd8esqxngaQoudpXPhKcqsP7Kugu0i3vxvNI2d7SwrsrdXdxF5NtrurPE54fjXRjxuhW+vnlH+NoJ3H1YPPpbaixfKinmNxAIBAKBQOBmsFGCgkc7pbqlGes3pK4knxAj3AXj8TjXLpBOLPpElp2QOLrdbiYc60iJk3C3p0NYPO/eo8q036O13Mct2YgoXMvP4Zh140M9ByLK3i63uZe59xwH6fRIu9v+EQtwDpS2f8SVTqejxWKh0WiUiWFKRwUQZ7NZLRoOkSMFBSeEp4JA8tj1AdIIUfXieUT2vW4Cx5BawFizjtze764RF02q6qj45sHBQY6EQ0CpiTEcDvM/ajEwhk7GvbaDR/a5LusKUP9gtVrVHAuMAyKaj0NZvNCdHpzPfyH/ZzkbfBx9zfja4/lkrZfpMb6OSmcCn9FXF+J8Tiky6c+rC2OsJVJ2WHesWYe7fXwO+LeuoGbg7sPD3/4uPfJtv1OrTsx1IBAIbDpe9N3v1Mfe+Ls0vy+cg4HApmGjBAVIeavVqu3YAMGFOLklGrszkU2ItUfBIcmSauSCcykG6MXanGB5Gobbtcv8cSc87P4wHo+1tbVVs/5DgMoILySZawyHw1p+vkfdy5QML2Ln1nInTaWLwseScYa8uqWesep0OqccDE5QfT74jHObzaZ6vV5t3D2n3tMkUko5fQHC78Uj6Y9f1x0ajK+nk9A/n1uvK1Ha7714pTsRKMLpNRL29/c1Go00mUxqtQtoiwsaLsRQQ6KEi1Y+l5BdhAzazxr2deFr3msVlATax57vvKCmJPV6vdouD4w998CB4msCsYx7lmkV/rk/N76uF4tF3h50Npup1Wqp1+udEvZ8rPxc3z2CsS/dQr6OfPxZy5HycPdiNZ0qVToyKUTtzUAgENhoVLPZ0Ts7EAhsHDZKUBiPx3rXu96l17/+9dm6jcAAmcCB4IQGktNqtXIxP4ggRAHSAOl2x4HnxUOyPR/bSTj3g4RB4Nk20Qn4umit2/6Jxk6n00wCvVgj9muirZ4z7m1xggUpZ3wgrU6eIY/Um/DUBY+ccz7EGEEAwcat6WX/uJYXj0S4KeePQoiMJ4TORQTSIxhXaiZ4fYitrS1Np9Navj9zWdYQ8PGaz+d5Hl3s8Uj1bDbLrhcs+qylg4MDjUajXGyT+3MPF2dc6MCxgRvF3SM+nv65rx36h4vB55yxdULskX/66S6AUlzBdTAej2upLAh+1NDw8WI9uLvH2+Ltpm/MY7mVZrvdzmvI6zkwHrTVU53YzYJngza6W4h59fQZX6s8v9SmCNy9eNk3v0Uf+o7frWrr2Y8NBAKBQCAQCJzGxggKTgCdnDgpJxIKCXFSLalGuvy6ZTTfi+VJRwRmMplIUibjRDC5r9dKkE6cC5BLJ9AegS6dB5A4SJAXRiQSe3BwUCswCKEC2OmdoHm02FMxyqgwRJbvKEZHPz3K63PiJNTvAxAFyPGnz6QrILhMJpN8HGIO48B4d7tdbW9v13bfgDB7fyGXXphvnYuCn8tUEAQGF4ZcWPH6BczZ4eFhvgeuiPF4XLPZM2ecW649xAhfR6xfF0Mk5eMR1ajT4AJAt9vNNRVcEPI5QxBwh07pRPB7e+FL3Cll2g+Cnz9HpdOgdBR52gX9LftIH9wZRHtdLGDevN4E7wjWhIuKpOow5u7scaGC9UXbA4FAIBAIBAKBwHpsjKDAH+78gV9aw/nOI5pOgCBHnkfuJBkQKS2Lu0Esncx4HjZCQFlwT6qnTnCu5+wjikByEDDG43G2vENA5/O5RqOR+v2+9vb2csFCHyMXSNzW72PofSyr5EN+iehyDmPo1y5rCrCDwWQyOWU9R1TwQnueWsG13Qni0fH5fK5Wq5W3kXSByIUgyDiReeoPEJnHceAigfcb90Ov18vujclkUivo6NZ4j6a7Nd5FJVJuSMGA8JY7a3CeiwdlXYfVapV3HXFxoFzLkGdvH+vRI+6eysN5XvTQU1e8jfSPMSpdQWXdifIaCER85ykG3iYviOopHjwXLo7RLuZ6MpnoypUrGo1GkpQFMhcwylQId/y4gFk+X17UNXB3ovnQSyLdIRAIBAKBQOAmsDGCgnRCdMbjcY5qr1YrjUaj/N1gMFC73dZgMMhEg0r3kmpOAq9v4LnfLkQQGcUuLykTcE9z4BoQSP/Oo6ylxVw6Kd4IcXGLdpka4K6LkgxR44BIeym4NBpHWx+6W8EdEKWLgXEC3g9vk5Nl6UR8wDng7fSifmVVfR8vJ3heI8DJpjs8Wq2Wut1urYggtSUQEXycPEce0QSxoxxfFw48FcXTa7rdbt5edDAY5K0nU0q5tgLjynkQXxde3EFC5J+2Iqr4WqAt7qhhLl3kYG5wsyCOuGuhLMpYiib+uc8BzoZut1urzeBpCOVa4lnz63uKBc+RP5elaMGz7TU/WH9cczQaaX9/P6cN+bvE60rwX3colOlC5bj4eyNwd+I3/sxDqhrhQgkEAoFAIBB4rnjOgkJK6TWSftg+ermkvybpkqQ/JenJ48+/paqqn7mB654iVOPxuFasz4/zFASPMjoZLW3nJWn3+xEl5txer1cj0BB0cuHdpu3Eysk1KQbkoEN0Pa8fC3+329XOzo729vZqkW7Eh1arlaPo3AvhACHE7d70w63vEF4fB4/OOso6Bx7l9fv7cV43gSiv76rgtnivh4CI1Ol01Gg0cj0E5rvb7WZ7OwSVVArmKKWkXq9XK/LoW27SNs+/p130h75ClgeDQRZqSKvY3d3NToLpdJp3F/DaFF4MEpED4YG1iKDgBSm9nS5sOdH1FAHcOuXzU9bMkJRFBtayp61wfin88CyVqQqS8tyuK4LpqSOlIOK7eDDu3i/ayZh5zQfAumfsXORzFwL9cqeDpFpKEQKGu5No96bjdr2LA4FAIHB9iPdwIBC4l/GcBYWqqj4g6bWSlFLakvRbkn5c0tdJ+q6qqr7jRq8JGdre3s7WZazrs9ksF0ojYgqJgfRAAt3674XiPBLO/SBN5FBDdCBRvmuBb40HSec+XM9t5RRVZBtB2udEE3jEGTs+xfogbU7U3J1AhHs6ndbIvEfdnWhCvMtcf48YQ4whhZB46cSy7znyZWTZaxz4FocuCnFf2tftdrMDhfGSTlJK2u22tre38/j3+/28+wXtko5I8+7ubp4zd2V4XQFEGOYOIk+7qBFQbm3ZbDa1u7ubye/BwYEmk0l2GLhLpSxI6HPOOK+z2vu4eBqG5/2X6Qfr3C4ppVqxyFLMcaHChSVPRaBP61IJ3GnAXPvuCrTRXQJe24J78TufUbMBp1FZa8TFGZw7CHbuCnERwz9zgc2P87oM5VxuKm7HuzgQCAQC1494DwcCgXsZtyrl4Yslfaiqqo/drEV4a2sr1w4YDoc5Iu0uAU85AJA5IuFu76cavxf2w7LudRk6nU6ua+Bki50HIKBlDQYimdj/JWWSTdvYUnA4HGZxACLkhMYJIWQQUlnWOJBOIsSMjUfiPRXBi8z5sbTVo8VeEA8SDbGE5LnTwCPDVVXlVACi+j4ejHWZf++CB31DgBkMBrkdCAir1erUzhoQW5weuBy8z+4MGA6HuT6A2/BdLHGBh/vxe6NxVFyx1+up3+/ne7iI5S4NJ7OAtvMZUfPpdJpFNMYFUcN3AmE9MFfuCHDRqxTTzirE6FH58llmrbm7hzF3ccp3g/A1SF88ZcHb7ekg5Vr1HSoQGmkz66zZbOZtO71f/swwfmV9CUAbygKWFwi37F0cCAQCgeeEeA8HAoF7CrdKUPhqSf/cfv+zKaU/Lukdkr6xqqpnrvdCTuIgR5JypNhz9iXlbRc9muhRRc9dR0iAqFRVle31bvN2Mo3FX9Ip0g28KN86JwT3hwRCCInwQn65J6TJCRXFELkvx5NSAYHlHh5pdscG4gqig+eTe9/cCu+Ejyg75NrdHAgsWPHZfcCj1JA42rHOLeL3wnnBeVyfNjvhRMzAGSEp18ZgfCDlrVZL4/E4n0tkm2swxo1GI9fs6Pf76nQ6NRHIayH0ej0tFot83RKlWOFilbtkfK34DgSMY7vd1mQyyWsJtwLtLlNzmGOO8TnzqD33pWYFAhHto73uMPG0IXfslOk3fM8/LzrprgmuieNgndNgnSDBGsUNU6Y8NRqNXAPCXQnrUj7cceQpFhcEt+xdfC/g5T+6r0f+6I6qxrMfGwgEAteJeA8HAoF7Cjf9Z1RKqS3pD0j60eOPvkfSK3Rk/XpM0neecd4bUkrvSCm9o/zO7dROBCFzXl9hPp9rMploMplkAuPkyFMYPBI9m83yeVjry5xq32bQCUxpU+czIrjYvrHx9/t9bW9vazAY5Mi2dLINXqPR0GAw0N7envr9vqR6DQj64USNe0K4iexKR5H98XicyZVb/j1/3PPUIZfcm7GHXBIFhuC5wEOknn+IFb1eT9vb27V/ly5dyo4DxhryKp1EiBkb8uNdiKFtzCEpB57a4iTT0zkQq7ifrxXWA+KU16WgGCOpKJBRxt3rGUBE3enBPaTTEXna4fUsXKTxVAAn7oeHh9n5MpvNcnFIPkO08VQWHDuIGwgUPFu+VnwdAO8T4+minf/sYp9fo0zNwD3gol55LPcGi8Witr4RXVwI4XlkfBAvEJUYaxdmaKuv8YuCW/EuPtTsTjR1Y1C9833ShdOMAoHApiLew4FA4F7ErXAofJmkd1VV9bgk8V9JSin9Y0k/te6kqqreJOlNx8dV9vmZxROJent1/clkotFopMlkkknA4eGhxuNxJhvSiV3bRQKvzYAVu7ynpBrhhih60Tev4+DEHOJPZPTw8DCTGS/+6Fth+naT7lSgcj/f8V8IEwQSkcF3xvAIs6QsykDC3JLn9wMc62RXOiHjPr70B+Ld6XRq5Ljb7WbLuZNKH2ss516zwu9Lv7k3W3BKUr/fz2MwmUw0HA5zfQN3jeBEaLfbGo1GWi6XeQ25I0VSdhywvnB2uMABuaZ9iFSeBjCfz2u1AUrnAPNQ7k7BZ77rhDsG+Lwca54hxs/reBw/d3kOfS5Ya+5uoJ2+Xso5Y8y47nK5rKUPuejFHHl6DmsNEclrXrgLwh1K3s8yhYF2uUDj9R/cAYTY4KlHnlp0QXDT7+LddPmeo9ev+a6P6/3f+GmxfWQgELgViPdwIBC453ArBIWvkVm7UkovrKrqseNfv1LSe5/LRfnDv9vtSlKNrLkzYTgc5m3jtre3c34+Of+QI4gIFnJIFzn0nLdarXIaxNbWVk4ncNIjnUT4Parq0V9PAZBOqto3m00NBgNJypZuditA1KAgHGSJ63iOvNc/YCx8B4HDw8NM/tyJwFjSR48Oe5E8rl3mogOPvEPYSLWAvELyytQPF2HK++EMGI1GmdhD/EpyLh2RWgSFlFJOO5CUxSZ2CfAil8xn6VjAWUJbEH88Ko+gQH0P1pB0emtCrufOChdGSvu+1zAgLaCqqrwmEAicVCOUcS8n59QMcGGgnEcX0LwYKeKHb3HqZBxnip/jYpPXk/C+ukNnNputFT7KQpIuuDCXLqyxvks3A24FBAx/VkvBztekpz5dINyWd/HdjsVvfUKv+buH+sC3vOK8mxIIBC4+4j0cCATuOdyUoJBS6kv6zyV9vX3891NKr9WRkfSjxXfXBScDTiTKyC52ai8iB0mUdGrbREiX1ymAtEBQpZPopEc4vagbFncvRCfVi9p5pJbvaCNOC+4FXJDo9/u6dOlSToFAFPDxKdMU3II/nU6zSAFhhrA5qfK8fgQXTxOBhJWEy3cRoM9Ey4mUe/+IihPV93b5rhSz2Uyj0UgHBwdaLBYaDAY1dwREDxGIeYKwj8fjnP6yv7+vK1euaLlcqt/v14pI0i+vqeD1BRATcHF4FBzBBjGB1AvGgXXrpNjTB/icezCujD0CCNeBeNNmd0bwz9edp5BwnbLIIFtUskZLUYe1hQjjz2MZ+cclw24U3jbm3IUS7k9qDm4R3CHT6TS7Rqgv4sIUoobvoIJwwjorU5K4p9fy4B3g7x0XPy7KLg/S7XsX3ytY7e+fdxMCgcAFR7yHA4HAvYqbEhSqqhpLur/47I/dzDVLguOEi38enafYGr9DvCC3HjEnKu2EAcKB20A62RbRrdxOsJykeATUiy7iMPCtE0lLgEwjeHAvoqiHh4eZUEN0IcTu1HBCxNjQHohWv9/Px/hWktjkIVikitBWt7A7qXLXQimG+PXKNAvpiNANh8PcjtIyzz29aKXnw5fFEoHP23Q6zW6F8Xis0WiUBRGO4Ry/D2kavq0nKRsQdC/26PULXIBhjXQ6nbzGXIyBSJcpGKyfskimi0Y+1v556fjwcWSsfb34WJP+wnPl68kFN8YI0ckFEtKGOI5nwNvG8f6sIJS4gIMY4dtEei0DF/H8eUH4cBHGHT4uFiBEeT0SruepS+4c2XTcjndxIBAIBK4f8R4OBAL3Km7VLg+3DJBdCg06UW21Wur1ejkCjsW61+udImueD15e3wmWW9n53ndrICLrJNmP5zuu54X83AXhufZE3HFF8DP9howdHh6q3+9rd3dXe3t72WLubaGNkF1IKW2DeBKJ90J9vqUfhJEIr/cZuCvDo/1EqbG9Q9im02neZQHLPv33woSQQiebiDEQWxdMSE+RTsSfbrebjyW6zRag7OiAmOPbTY7H47w9KfUX3ALPlpDuEJGOCl8Oh0ONRqNavQfGyNvCuLBGnbjTf3d5LBYL9fv9mtDE+WdZ+r02xGw2y5+zxnxdQq45x0USF9B8jSCqeNoNYB5pfxnV9+/82ghwFDGlHdSfcGeIuxPYAYL6FwgYpQhQOoQmk0luL+KUi4A+vz4OgUAgEAgEAoFAYD02TlBYLpcaDoc58unFGbGoQ6A9Miwpk3avveDkxG3TXpxNOp0+4NcpI5UuenAfUJI+RAS+cxBpJbWAIpNOfnZ2dnT//ffnbQu5LudJR1HmbrebCxNWVZXJMff3Og24F6QTkcDzys/aeYBreT8gqh7pL6PCCAYICt5/F3ZcvPD5WudIgNR6fj82dsQL3AN+fbZ+5HxSLGazmS5dupQj4R4hd2FoNptlYcALM/rce2qMrwtSDxDKPMXE59PXBeNTpiWU62hd6gttdnjqQZmOU4pItKsULUoRCoGnrO3h7gREFebcx4wxdJGKdBO2HvVtQBlL/jFOvruK98/b5mKKp+m4MOjPu6+7QCAQCAQCgUAgUMfGCQqLxUJXrlzJ5IBdHYgq+n9JI3AiDPEhuk0kGuu3F1hcF8105wHXgnx4EThJp4iwR3A9l7t0QfC59xnyx+e0tdlsam9vTzs7O9kt4ff3XRIgWtKJUEBxvW63m4vsScrX9loREHREGMbPx8P/6+kT8/k8X6/cts8t7tjUSQvwmgiNRiNvX+ikEQHJ7e5euwHRgHlATGA8WSeMFWNAasnBwYEODw+1t7dX29mAOSTXn7XEP8aKdkGicVc46fX2k17jdRM41wk92yIyD14bBEHDnQleU8HXOruHeJpCSikTdVwtHMs6cTGC8WCdeU2JdrudxbDSncAcuZjna5jP3aVAO3znk7KOB+NHqgNCDbUhvJ3rxI5yHnl+XTQJBAKBQCAQCAQC18bGCQqSauTTI53SCRH3XRcgRJ5bXu5v77bs0hrtEfUSJbGAtEBUqLDvDgoi+eSHu4vCr0vhvul0Kqm+EwRt2tra0mAw0AMPPLC2PX49L/7nOxhA0jzy7cXnynx4nASdTqc2H15PwZ0XzIt/hjjBOEHUsahLR1s84rqQTnafoFgjJJccesa7TJEox8XJuW/R6URztVrl7TapAUC/6CuEnV0lcDxg04e8IoAgajEOLvYw9i4wcA7j4WkNLizRXheefM378+G1K2hbt9tVt9vN4g5j5m4M7s96KYtwIgx46oM7EPy5YqxpqztbIP/uKmm321lQoA8IG7TRUxBK4ZBrulPGjy2dQohXXgvC01Q4NxAIBAKBQCAQCFwbGykoeI7+OkJfRtchexBQSA7newV5SA5Eglxqh1v8+d3rJEDiiGhCPCGLHt11yz/3Le37tLeshO9kutvt1oiyVCe/tNPt5B4VdyeCOzrY+pDjXfxwS79b9b2ugRfjI4rNfSCOzIEk7e/vazwe147FPdHtdjUYDHJlf4QbXCrj8Tjv4rBcnuxm4PUrIIekd/ic4oog9YA1w1j7mCLmMHbsPrBarXIkHlED0cDJM2TZUx9wYDCvZc0NRAZ3A7irAvHB1xZRfc6lrcx7r9dTr9fLY+pj5OPj67ys8eAiic87cGHKhUD+lSkZfn3uuy4dqEz9KAUYv38pAJQijKQ8jpzP+vNnal39hUAgEAgEAoFAILAeGycoNBoN9Xo9bW9vSzpdRHGxWOT6AsC32oNkei0Ajz5DAj0q7KkO3HOxWGSy6mICUV+v+A8hd6LotQeIcCNQlKKB39e3rySHHELoYkZJ9In0UhzR0wxcqChdBIwJ4+4CBzUDPM+/dH34FpikPczn8zx21G4gvYHx8nQV7o2ggPjgaRxOJil0yP3dts9OFdjl3a1C6oT3izoZnnrhwg01O+gf9/B6Ck5GfY4YY9Y1JN6j4YwfQpOLRF4/wKPpzAPwOXGRDEHDUx7cOVGKTKAUhuibi3z+TDAW/PPCk76DBGuTtejCAs8sbYP8l24RL3jKmLj45ykyjBfPsq/58rruMOH+pasoEAgEAoFAIBAI1LFxgkJKSf1+Xzs7O5nIOmHyHQXKgoEeqfVCb9jnISIQJidlHgH1mgKgTLXwyDPkBqu+pFqk1+sOcDznerSX63hNBsg45NjTE9i6kH5iayfyjhADwfc0Au7JeBLNhoAS5eY+pFGUO0NIOtV+BJbFYpHdFV77ACEEAaLX62VyjUBA2yF7Hj2HEPqYQzZHo1FuD0SaeeVz0iY8rYP2e2FP3zYS8g3phMy6M8Gt/LTfC4c6sfcouwteCDnMkbtryueEf07AvW5DuXb52fvgIgrtZJ3xPWPHWJAGQr9JG/E1x/rxWhHurKEtLpCUBRdZXy56uWPCU3f8+aStpNyUbgfa7s++u2/K+iuBQCAQCAQCgUBgPTZOUAAQAcgypHo4HOYtAHu9XiY9Ur2omn9W2pexy3tOtVvbpZMorFem92J76+ouePTfrdP0A3jagJNBFxm8MJ3XaKCNLppAbDudTrbUlzUScHDQrzJf3Mlpt9vN+fIurHAe12fsIdGegkD03qPl3AtSRx+8JgLj6Fv54fpgbMr0Cq+lMZ1OcxuZfxeLuDfuBEQUCL4XG2TLyH6/n8llKWxIJwIFtRiIbjM3XnsBsYY2Mj6IN5zDXLoroEzFoY/uNpCU5wHizH29/gXj5qTc0yyYX8S7Xq+X28E4u1NjnYOF391R4EUnAc+3p5+4COBuI/rAeLpziOfI59BTmrw2SwkfE9pQOjcCdy+q+Vyv+JGJPvRVvfNuSiAQCAQCgcCFwsYICmXONkRssVjUdik4ODjIJEc6KbBG5XwIl0c8ITC+Y4Pb2iE7bsd2l4BX8UdgkOq53QgURL6dpENu6FuZr01E3o9fl8M9nU5zFJz/ehpGSkmTySSTX9oOsYR4eu6495EIN0KG2769DoB0kn9OHQYnYn6c11lwSz/kraqOdmGYTCa11ArqJLizoXSJMAdej4DzPTrt7gQn0MwB/xgzxCvWXSlo9Hq9LJiwBkuiSr+5P04Fdoaoqkrtdlv9fr82LqRVuIBEmxEc3GHBunPhh7VA25gfXCG01f/5+HIfdwiVRQ25LtfD2bCu9om7TBhrf77cXcQa9LnzeSpFEQqaukjnn3N9d064GwG4+4R7IJIF7n6kZku/+cUDSafFpkAgEAgEAoHA2dgYQcFR5v8jGBB5lZS3HpSUCbuktUXnyug/x3vtBO7p4BgvQIcwAAmGgHM+2wgCJyVe/8C/w/KPXZtCep7jfnh4qPF4nIWEsqCck77SqYGo4Hn6Ho118cKvAaGDbHMu16Mdo9HoVK0Az5sfj8d5jEo7PGO5v7+vq1evZhGDtAnIPSTRCym6+MQ4QQzH43EtvcN3znDrvJNnBAUXVegr89Pr9WppFoyZW/c9Qs69SO+QlHc0QNgqxQ7WCQKEF/b0vjMXXMvTOMr0AC8MyvpzV4E/e94n+uNrge+8DaS14F5ADORcd6jQHn7nufL6BpPJJF/Tn1POn8/nmkwm2eniNSuYdxcSvb0u6vm6BYyRXyNwl6ORNLs/xIRAIBAIBAKBG8VGCgpSPXIs1Ykaee9EXCEUWKrd8g75IPfbAaHnXC9aVx7r7gHIWVmHASu711fwyKxH+bkXUdkyUu6kDRGCQobuYCgLyvl9IE5OfMvovI+t2+Y9uu7bInqBO0hj6fiAhENgIeeIB4yBJI1GoxxNxjrPuRQllJRTCsjV9/bzM/Pm5JnUAeoz+HaTZcSfdAkIqdfvSCnl1AeELY/ql1F4d394zQVcD14806PqLhIwZ75NZVmLg7FgLlqtllarVa5dwXjhJuD666z87h5x4aV8jjwVgPvxLOG2oa2eNuRFFP3ZYN25WMGzjGOkdEfg1nEnCmPi41PWkvCaEaXrhnFnHSMoBQKBQCAQOF988hu+QLP7QvgNBDYRGyMoOAEnj58/7Kn8DznxHHWPokqqWa+9vsJqtcrV/CXVSDnEw7eYg1Q60eE6EFDO9boLHM8/2lO2EcLsReMg3tIR0X7mmWcy4e71erWq9BA4yDJbGXI9T6vwXRf8Gk7sOLYsCumW+slkktMrXLApQQ0Ft6szbhBf5g2SXVrbpZPceuz6s9msNh8loaeIpYsrjJEXX2T8qQPgTgmP4EvK5w0Gg7zziAtRvuuAi0uAtng6BesElwjneaFHzkHs8poSHuX3mgE+Di5ucN2yzoHPgQsHrI+yoCnXcAcLP7N22bkDsczrO3jdA9qKA6XcVQKhwJ9pxtN3CfFUHh9XFxZLp0+5ZjmetcUacGdEIBAIBAKB80PVlBT/Sw4E7ijSStJ1lBPbGEHBaw74VneQRIgBJAeCDhkguki0ezqd5vQErufk06P/kO7pdForLLhcLjUcDmuk30kkVm6OJZLvRFc6EUloC/Z3LPGAz2j/wcGBDg4OaikSENKyLgRkqXR2QBq9kr9b0UtCCwmX6vUjfI64L+KHuySkIzHk4ODgVA2B/f19jUajvDVmmU8PASQFBCEJQutijbef63vagXRS48Ij+V5s0OsO+HGIDb5zgosYLhL5tbmOR/jdcVHu2rBcLvMa8AKHiGGemuCkn909uCYFE7vdbq2IKP/clcL40D6vz+CCWLm2/Pn0effnzwW40l3gu124oFCKX4wnIhKiC3PAc8o/zi/TjNwtU64BXyOlEOROCJ6BQCAQCAQCgUDgXkBaJDWO/2R+5fc+ruVvfDh/95EzztkYQQE4YYWwQ9Sxcm9vb2dCAaGvqkrT6VTD4TAfR5V8JwxOtqST4oJETz0qSb4+RN+L/+F4kFSzp3tNBogVbfftDLGnE9kl0ootn4i85837FoilXRwCWpJoCLCkmujgu0KsExza7XbeAcEj3p6vjlBCHz3K7AXwSNOggF8pKDgRZY782k5APSXFdyRYrVbZjeCiCn0jmj2ZTDQej7M7wYk2/ae9/X6/VhjSx2c6neYcfheGXPzgOMbf15Cv8dL2z5x5PQ4KbXJd3wGDNVSmBXiKROlG4R6eXkPNBkQCTzdxlw5jwZop0xWYQ39uvXBl6Vwp4e6Xst4CYg9bVfIMukjifeXevouIvzPoK/dl/soaD4G7G1vPe/C8mxAIBAKBQCBwbmgcJjVHSc9/x6E6P/12SdLyWc4BzyoopJS+T9Lvl/REVVWfdfzZZUk/LOlhSR+V9FVVVT1z/N03S/qTx234c1VV/ez1diSllC3mEER2GwDkbPsf/G5T9mKOkrKo4FFQ/kvE1Mm428kh9r4doxfcI4LtQoILChBdL9yIwAFZJNedfH+vmu99Q9goI6h8733g/i6k+C4DVVWtdWxwDd+VwftCn51gezTac/Ddbg+Bd3LtQgnE1dMxJOUovG9vyP0QO7zeAM4KyDY/j8djjcfjWh0BdzMwDqwtfnYxBTCGuA78Oowh8z6dTjUej7NAs729nWsJOOnlHghGrVYrz6mvt0ajkdMyaGO3280OnnX1GIjUe/HBksQjaLgQ5EUYWRcukPkz5M4Cd13QFn/GfHtO3xHCBQp3G5TPOkIbggLpTy5ScR6feaqP75zhQom/H6jzsWnpDnfyXXxPISW9/y+85LxbEQgELgDiPRwIBO42pKXUe6KhwW+ttPeDb3lO17geh8KbJX23pB+wz75J0r+uqurbU0rfdPz7G1NKnyHpqyV9pqQXSfr5lNKrq6p6VoEDK/VDDz2ULd9ejM3/uIesuO3ciwN6pJs8fCc4TtJxAXhRO+7lqQ+NRiNvIeg53ZAWb1cZaaf9RKgl1YhXp9PR4eFhjjSTP07Un8J6kFyPLNMHiKYTUI8Wl7UfPA+e9pAu4pFhaicgQnBdhAkXH9xSzjWpxi+dFF301AXptMgD6YUAeqV//kuRRdqLEOUOBkgkY4VYQ2FE0k8grAg2pNmQnuDOBNru2zu6IINgsVwuc3oHa4douu8oAagbghjC+QhO3W43r1NJWaDY3d3N9/f0HU+ToT2+Ft0dwDqlTx6V950hWHusIa5bPoueXuCCAkTd28AxvmUobfLruHsEcQi4QFSuP0k1Vwxz7G3mGpxTpkFsEN6sO/AuvteQXvcZ592EQCBwcfBmxXs4EAjcDaik3Ucaak4qXf4n//GmLvWsgkJVVb+YUnq4+PgrJH3R8c/fL+kXJL3x+PMfqqpqJukjKaVHJL1e0g3JHZAS7OS4A5wseeG88ncnnJBCj9C6AOFE050HgO0pO52O+v1+bacAJ9AQ32ulB7hNn59JzeA+uBZoB7UUptOp+v1+bYzIpR+NRjWC5dX2fRcJz3V3IuyE2Z0GuChcOGC8/H4UaXQBpbTDk27g21cyJr4dKOTQ7w/5xwVQ5s1TPNKL+kEQXWjyeSPVwiPuzLMXo2SNdDqdmoMFAu+2enYegCDjEvCtKz0S77Ue6IePH2ONu8VFDdwJnvJRijRez4HxYB34WJU1J/jMxTp33HgtBKL7TsDLFAf6wbW9iGLpLqIWic+vOygQpXiWXXhwUcGfPdrh5/C+8O0sS9fIpuE83sX3Ah75mp0o9BUIBK4L8R4OBAJ3A+7/laS0lC79HzcnJIDnWkPh+VVVPSZJVVU9llJ63vHnL5b0Vjvu0ePPbggQB2ohQPQhHZBSJ0tO0iADkBJIn9u6sYVzTSeXEECINFFiHAQekZZO3Ad872QTuCMAIaHb7arf7+dUB480t9vtLGBwLbeCQ5C94j1ihDskaA8RZsg5aQZuS/eK+TgJEDcgrkT0fXeEMprrYgspCRBsT93guqVlv0zroE/Mm48j4oQLEhBTL0DpBJY2eg0D2opwAlF1suvpBFVV1dJvmINSUJBUK/RZpqa4Bd/Xio8p4+cpIdyb58TTEHxOOR/nA2PvRT3LnRxK8u5iXXld75+vz3JXDtaTj68LGS5SlOKArz132fBseCqLX7dMdSrrXCAmuNOC+22ioHAGbuu7OBAIBALPingPBwKBC4EH3pXUOViq/1PvUmV/398sbnVRxnVxnrVVzVJKb5D0hnXfYZGWTrZ0c7u1F46DLLqrQDrZWx4S5xFcHAs4EyBwHq10UoFFviSxpEjQltLuzf2lkx0TIC0ICk7GXBjBETEYDGr1Gzzi76kOkDDEk7IPjIk7PjiWf6RkYH/nd9I8XEwoo9v03SO9zAFtZctBovU+Z+tcFG6Xxy3AMRBj+o7QxJh4JNtrT7iDoUy1IJKNmMBxHrUnd9+dFF5s0reedFIMqfZdH1g3zJFvG+nzRvv8HEl5xwMEMB8zF4nKFAvvH/3iOfJoP6k2y+WyVtsEp4df09edr1F3JjC3TvIRJVy0cCEIMYmxRfCgqCjjihvEi4TSV38WmTMfR/rk4+DPxQXFc3oXd9Vfd8hdjYd/aq6P/IF2uBQCgcCtRryHA4HARuDyrybtfWSm1jt/Q6uDg+vZCfKG8FwFhcdTSi88VmJfKOmJ488flfSQHfcSSZ9Yd4Gqqt4k6U2SlFKq9QsHgnRCvD1KCdnAzo/FHzIDMUA4KC3mx/evRWwhZE56IHYe6eTeEBVPt3CCxO+ID06inFR7DjckablcqtfraXt7O9eRcPu9R8OJrNJH4FFuSGFKKY8l7XQ3h9d4QGhBTCEq7+SacW80TrY9JIrsOeo+RowpxTIh/U6WXXjxVAWv5YDzgrQPyPVwOMy/0wZcJZ6GgoDhdvr5fF5LT2Ceut1uLqiIOOJiAnPh6Thes4DCko1GIx8Pafe+lmuJ/85ms1rqASkE5brx2ggubvGPteD9l+qRfD+W7313Ee7ropnX3/ACjIyprz1/Bn2MEIroo28dy5izM4e7E3i+vd1lsUfu5UKPP3esPUQ2T4vZ0FoKjlv6Lt5Nl++5bS2e+oyupAsrHAUCdyVe+O8rbX94qI9+5a4Odzb+tRTv4UAgsHHof6KhF//8VUlS4zc/qeWnnrptf+08V0HhJyV9raRvP/7vT9jn/yyl9A91VIDmVZLe9lwbBxl0y7sTArf0j8fjWlQSUoEA4NF/z0MvhQV3FCAyeP0AIshOptdZ/t167Tn3Xm2e7yC/rVZL/X5fq9VKvV4vE2FJuTgi0Vgi4WWUHZIGKYbgIWwwJpAwCgVKysUrabfXjZhMJjW3COKDOx1Go1Em9F5jwWtGdDqdnP9Pv0oCx7/SpUCdCdIw6Bc1JNhRwlNRmCfpZBcInx93A3AP5pc52NnZ0fb2di7iSFsRESC6ZY0BTz9gjiHGwOsy+K4RuAgY89L14D+7CIQAwxh6UcXyfp7aUQot/lx4/RLEIwQAT0Mp3QkuZpRFFhl7bzOCDOulLELqtRPor+9A4fBimvyX6yNYuMOlFAm93sOG4468i+9mHLx8Fe6EQGCD8IK3SDv/8r1ajUZ6xadeIrWaevqJw2c/8fwQ7+FAILAxaB0kveLNj0njiRaffFzS9W//+FxxPdtG/nMdFZt5IKX0qKRv1dFL80dSSn9S0scl/WFJqqrqfSmlH5H0a5IWkv5MdZ3VbBuNhl7wghdob28vF/nrdruZwBCJ9i33ICnlVob8F2LjUW93EBz3r/a7kxCPanvuuDsfsGV7TYcyBx54Xr+knFYASfVCe0TEnaAyBuSMu5MDeDS8TH8o89Qhid7H2Wymra0t9fv9XG9BUq1vvr0h4z6ZTPLWkETUfW4hhohAHj3mGI8OO1zM6Pf72tnZUa/Xy+LKwcGBhsPh2lSDMuWDcYAslyKGE3vWYa/XU7fbrVngGQ+PkLMuPO0Aku07XNAuCK0DAQsBjHuVKSbuunEBw4UjT9vwNQixhlQjJHF9yL4LbS5KMBcuHvC7VC90yDgw1uX8+rrk+giJ7rrgc47zsaO+io8ZYh/3dxGNcXDHB+2j3e6W2RTcqXfxvYZX/4MP6wNvfHmICoHABuDBd0q7P/lurY6F98VvPipJqqr5tU67Y4j3cCAQ2EhU0mv+3oelVSWtllo89fQdvf317PLwNWd89cVnHP+3Jf3tG21ISkkPPPCA+v1+Juk4E4gA+7ZypW3b4VFtyI2LAJJqrgMnDW7thgjjLiAqj8ghnexwMJlMTtUT8Kgn5I8CfpAYSbkOg3SyYwEEhzaTIw5xH4/HtR0TsNMT7YWoQZqIoNMuCLyLJJ7rDvGXVCOs7mDwSLQ7E5zULpfLPG5+b09JIcLN8R6RJ51AUq450ev1tLW1lQWW4XCo0WiU21QKElJ9twes9C64MOYIE8zr7u6uHnzwQfX7/Zr4wr3c+eLfeY0GJ/tO1lln9N93JSlTJ7i+R++d0DtZd7eNiyDlenJ3ireXOhuIQAhFrA3+udDhkX93I7io4WKPF73kWMaF5w6UDgq/r6c3rBMNcTF4qg5zwn8Zf38XcM9NEhTu1Lv4XsPy8Sf0mr95qA/8tdecd1MCgXsa970v6dIPvV2rW1go7FYj3sPnhxd99zv1sTf+Ls3vixS1QAC85nueVPXoY5Kk5Xh8bu3YGD+v5/JD+CBW2PvLnHMiv9jOS0u42/EBZNsJGmKBdEI0INtlSoQTKQhus9msFeqD/EDIPaLr9yAtoNPpZAFle3s7R42lE3GCdmOf960iIf9EnrmHkzjy/SXlVIoyXQLC7+kM2PSpS8DYeOQf8ouYwDGMlzsHPBUEu7qLFJC/xWKRxQKIar/f16VLl9RqtTQcDrW/v18ji/SFe9JH7sMYuiDAONFm5ks62UaS+UFEcmLu93fii1jCGCMO+BabuAVwQ6wr0OmCEUIPIpevBxwQjGVZJ6N0MXg/fR0AHyNPNXCyz/iWz6f/7iIAIp27IWgbv/McMGac68+Cp3W48OApSV7skeuUhS7dqeNuElAWrwzcvVid4/+EA4F7GpWUKmn7Yw3d/71viXdu4ExUs5lSLI/APYB0hma294GkB/73etbUcrUZpqeNERRK6zeRUQgHufPdbjeTI/LliaCW5MAjn26b9kivVN8RorRju1Wbnz2HnCgvxRRBSagRG7zYI20lvcPhAgdk0VMQXACgpoDbtj29gV0FaJ8TXyd93NfHxnd18C0K10X56YdHu2ezWc2e3uv1TlnyPSfe53w8Htci42zduVgsao4IxBJPAfCUE9ZHVVV5nHG+eP49c8N/KYyJa8ZFBP+Z1BUXk8qIenkPTz2A6CIo0P7SOYN4VRYEdRLsn5dpEj7mOHRcYPD1yzVY6zgoXJBhfQB/jvz+3o/SEbTONeQilKc8ufjjzp91aSZeo+RaLiYfOxe8qNHh/QsEAoHALUIlNQ6TWsOkh/7mrdkHPRAIBC4a0lJKy3rO5Sv/1nu1Ojg4pxY9N2yMoFCSHkjJbDbLUd3ye8gEhe4gYh5p9tx8SBqR5zIPnGhxp9OpRTspJOjRXy/kBrHnMyeURI3LSDpoNBoaDAa6fPlydhkcHBzklA3f0aFMu6A/niJCfjn99x0FXDwoLd18564E7jeZTHRwcKDRaJTJmgs00hEZ3tnZyfOBe6KMEJO7j93faw+MRqOamwP3iSQNBgP1+0dbKT311FN64okndHBwkMfVCaLb530nBlIbEFm8cKD3nx0Ger1eriVBzYrynxNnCHHpCCi3OXXnSJlC4u4b5sifEXco+DPi9Q1ASd7LOZaUC136PfncawmQBtFqtWrpM2fVCnFwXHm8Oz3cacBuGy7Iratrwrrh+WDt0z+/Ps+a1+konS2Mj78X1j2zgbsTzVHSYhDhr0DgdqI5SkfRtyrppd8aQkIgELhHUEmt4em/mZ//tqW6P1V3HVzEvzw3RlDodDq1avuQQi+cB0lwW/9wONTBwYGm02ktNYGIvRNmT1twQg55wJLN/dxq7bs9QLC8BgERZH72fxxDagJkE/JDJLzb7Wo4HGab/2Kx0Hg8zg6FMp2hJMK00dMH/Hjg0V+i/i7S4GiYzWa5aCRuAdwJkDcnwdRJYAzoA6KKR30RCiCOs9lMV69e1XA4zJFw+ugF9sbjsfb393VwcJBdCcwRYgZOBFwIo9GoRpzLNBB+9/SWXq+nwWCgXq+XBRYcDawnd234OqI9jL2kWt0DTz/xegf0x1MhGGNPEwDr3CdeF8SdHwgQHrnn2og/HuF3UYDtS9lRxZ0drCXWU+k08jb7OuVcdxWtVqssZPD8lmkljC3j68KO98/vXQoE/HPBZJ34gqgXuPtRzWZ6xd9/nz765z5Ls/sv4v/KA4HNRHOU1Byd/H/rpf/o17V85plzbFEgEAjcXrT2G9qa1j9LlfTib797RdSNERRe9rKX6XnPe14t19p3EYBQOOmAaDup4x8EyEHtAI9y+jU9UupRXNqCU8JJihM/STUhwkUFSTWyzTWom7Czs1PbntFTObxOBFH30spN+1wYcFs7fSrTDUqCCsljLEhhKHcGwEHAOJQRdX5GGODaXJ+CmbgOEC1Wq5W63W4tzcDdHtPpVFeuXNFkMqmlrJT94h4QQ4QJxpZ7DofDmniFoNDv99Xv97MocXBwkNtXFvbzApfuGPAIt9fzKKPeLuSUjgnm2mtqIEjgBPEtOhkH0lEg3wgYZwke/Fy6Brrdbt4+0+exbCv98OeQoo6+/jy9hnYwx1yPdcrvntbha01SfjZY76XI5c+f19Xwcfdrev/PSpcI3J1Y7u/rZf/0Ub3/G1503k0JBC40tmZJ/U8cvXcffNdYjX//7vzdZmT7BgIbgkra+ehxEfOONH5RCNqbit4nG2pOru/YF/7iFa3e/Wu3t0Ebho0RFHxXA2zwZwkK5X+dyJBn7vn2kCN3LACPCDthdqcC6QSQJIgppNWFA08tgMi4DR5AXLvdrrrdbt4iDyEDAYGIPqRWOtpGkd0eVqtVjrxDlBFccEN4NByCDwHz3RW8sKLvkOFpBL4loN8TMkY0vdy5woma5/53Op0cZcfqjtDihQhXq5WuXr2aI+S0i/sxX07EuQek9vDwMNfdkOq1FTqdThYBOp2O+v1+7sN4PNZ4PM7Rd6+NABgz+uHjwZpyMu3uAcaPfuGIod8+BwhYCAkevS9rLjAOHMf9EED8vHKNsuYRE9xFwbr09ewimosuCCDu4PF0ibJ4KHAXgzssXMRAVPTUEX/ufCx8vfCzvzd8vtyZsC6lIxAIBAIFKunye47el90rK/V//JfOuUGBuxH3fWClxz83qWpeLLG/98mGek+cbnOqpPvefBS13nr+8/Tkl79i7flXPl1atS9Wny8i0iLpvjN0gOf9/MfzNrbPhntRFtoYQcEj3C4MkHfvVdudIHpBPs/1pmgg1y6LDYIyAurwNAfptMMAguOV70u7uDsiymt4PQS+8xQGJ3EHBwdarY52A8C1wK4FkL/SFu6WdiL0XlSvLLzohJmx8nx55oQx9Xs5QePa5XhB1DxKjsuBOYZIQugoojifz3XlypU8X5Bun7/SPeDt4t6LxaJ2TUl5rVD8k7oJknLhx+FwqOl0miPnZaFAiC73YAzXrXP/eZ0w4XMAyUW4kuoFE3ke3DXDmsXVgVjGmkAkQ3DwQpTMjYtd3HM6ndaErLIfvm68VgHi1Lr0AcbP3UVlbRNPe2C+3U3hQt9ZgqGneJSuBG+/u3T8GQkEAoHAejz/rVJjUWnwY28976YE7nJs/8hb9eRrP1/LjWEv10bnqYYuv3+p3V/7lJa/9sFrHrt8/Ald/idPrP1u8F98rha9hqokffLzkxSxjluG571N2jo8DvYdrtT7ibetPW5zN7PdDGzEI0kdAU8DYOcCJ+7+xz9kriTvkHSvmO8CBcID1yX6X4oKTqy8YNy674mme10BrkVtiLI6vlS3Y9MPF0akEyI3Go1qZItzqb7v9Quk+laV7rYoSReE07eE9GivR9Q9krvuWJ9P+uI7T3i0fR2p4x4U2mPcSAUh5YPxoj1OlpmHMrXAiaKPBYIMRLjb7WpnZyfvJsIWndRhcJHHdwHwtVluRepiUimc+fx44UHmhnXugpU7L1x88rVJ/8vCkS5u+Tr0WiMc57Ur3H3hkX3GlXn31BFPWXCxzFNEuJZvRen9RExAUCgFAelke88yrcTFBEe5NkrRz11SgUAgEFiPF/6HSu39pVo//8vShmxdFgicNxqzpIf+zdHfhp0nxlq9+9duOtWn89NvV+f455de/Zz8+fjBpp78nPXnBNbj0q8n7X30JMDV/re/qupwfo4tujuwEYJCs9nUzs5OJqL+B74TFqluXy4JS1kBnv8iCjiRcqLkFfdXq5Umk4kWi0W2vnvE1KOcEHkq33Nd2g3B4b9nCQpOip3oHB4eajgcZpLMtpmcC3kjvcP7DOFdLBanxAbpJEXByZp0IgaUAgF9gqRBHv1YFxv8WuXnnOMRac/px/rPNplU8SeKzpj52DlhLom7rynGFdHKt5HElo8rZjgcZsEJR4ivm7IWgM+L38+t9h699/a55Z42ujPHi1QiMngNCVCSbkQujuFZIG2Ha7Nmyh0RyjSVsrYA10X4cWKOGDCbzfJuKWUNAxcnWM/uPOEZ91oMjk6nk3efcBGjFOh8nkrnDPf2Nvl6DAQCgcARLv9q0uX3DSVJjfd+SKvx+JxbFLjX8PIf3dcj/82OqtMm0PNFJb3yh0ZKhytVv/w+SbfH+t76V+/IP1/e3dXeb7w0//6JL9zR+MX3ouH+bLSvNvRpP3OyBWPz409o8cnH8++RSHJrsBGCglTPvXayC4HBebBcLjWZTHJROr73iDORVa8V4NFUz+WGzHgNh/l8ni3hTgAl1Ug76RWSarUUuLZHlUsxobSUlzs3UPTO0xD4L/d2Fwc/lykc2M29IB3kzKPd6+DEC3D9s0gsBM7z/72QpUfuPZrt0WTu67Z+yD7j7a6EdXn2jDHiAKTZ6y74NohlxJ3dNeivp36Asu5AKR5BcH1sXGRh3fq8c60yfcQJsz8zXgPDBQQ/zh0MPhfchzaWOyX4uJJahHDGM8Tz5SkH9A0hCCcF/VmX/uMCjAtsJdY5dPydUa4hnwuu6zU9yrE4qzZEIBAI3G24/J6kB//Dkzd20qee1vKppyXdm3nCgfNH9cvvk/7o52uTqOCrfuBAjfFMyw88ckdbtdzfl972nvz7p33ixaoGvfz7B//UA5snvNxmvPrNV5WmJw6END/U4iMfy79H6sLtwUYIClV1smWjR6GlOiFoNpsaDoc5kso/z+/3yDnEguJ6kBs/hsiquxU41wmoVBcTSNNot9u5yn5JHNcJERzH704UfRcEyNtqdVR0sdfraTwe1/rZ7/ezZZ8+QOy63a6m02lNiPHorEeH1xG3kph7X0rHRRmtLkmcW+chon68R6C9TYyR5+V70UoXoDxy7oU1uba3h+uwdjgGsYL1VdYCAE5ky7QbH2MnuB7J9zFzIlym3njagRPfci16eoOPic+lj3c5/6S7uLjm889apH0uALiY520p3RXrUmM8hWbdmPl4l+lPPINlqkYpAJRrsUyTcUeRr6PyuoFAIHC3YPBoQw/9sw9rNRxpeXDw7CcEAhuG1/zDj+j9f+nhc60l8NJ/sVDvPUdF+haffFzLNX9L32ksHv2t2u+v+Y4Dyf7uOnzZ8/WhP9wrT7uQuO/Xkp7/Ux859fnik49LGzAX9xo2QlCQlCOgEE5IjdvQpXqxPQQA7NRlJBxy41FsCCBRcncmlMSjjOLilOA7XAEURyyt2X5d2uFt9Hu4lR1BYTgc1qLos9lM0+lU/X5f7XZbnU7nVDoH5AzxBHiqyFlpCXzvffbCgk7oS3GEc9alMRDVRsjxMfI8+lKgKIk8UW8XAXz8vIYB81oWLfS2u62ez0pHhDstXKhwcu7nu2jh4ymdbOXI2vW0BE9R4f4e9Wc+aK+LZpxfpu7ws/fXCX1JrH0ePc3Id3ZAoHMnggsGUt3ZQEqQpFq7uAbjw7XcLeEpHaw9F8ZKQcFTXbxPpbhFn/05KFMlvC2BQCBw0dGYJ73yb7336JflUotIVQhcYCwe+6Skh8/l3s97m3Tpp96n6jg9epPh1n5JSo8/qVe/p7/22A+/8bO0GGzO3zyvedNTqh795JnfV/O5FrZteuB8sRGCgudrQxQ8Px/S4Fvsua0b4gWRRIyAmEFaSnJKNNZJDIQZIkcqA7sDeJS+FAewxtMmiCNtRYTwCKhHRb0AXbnlIaSu3+/nFId+v1+LcI/HY41Go/xfFyjo+1nF5kpBwnPp6SvflXZ+r33h+fAuEnCNMu0C8omtv7TF017Gp7SzM5cehW+32zXRwV/4zC3j6WvQz+WeXg/B00ZKx4D/zviU0W13RLhA4Ls1rCsI6HUbvPCnu1oQkHyN+3wwTu4S8LGGjNNOT32gfgTjjhjn7gs/1+fUC5oiaLhIw5zQHncI+Vry+5bt9uvQP58Lh4sOLoB4/31Ow6EQCAQuLI5fj6/65l+WlkutNpz8BAI3glf/1V/VB//Wb789LoWCV3efbOihf3BU/b9aLrW6qMGG1VKrM1xJL/u2t5/6rPGKh/WBr3/g9ME3O+Y2fINHG3rR/3J6Z4VlvK8uFDZCUJBOW50hVesikO12W/P5PAsIknLEkygw0XxJWSiQVIu4Iwh49X8isJyHW4DigOPxWP1+PxeDg4BevXo1W8LLaC39g2CVZItif2W++mw2U0onW/+xy0G/39elS5e0tbWVI9PT6VT7+/u6cuVKzl2vqiqTwXVuhbOirx6dx/nhRP7ZorYeJXZnRnkP/uuk0QnhujH0NAPfYQN4kUyPVENQXShygcRrKTghdXt9mbffarXUbrdrc46zgHl1uHjkboRyPFn3iGMuvHBsmfbjjodynEsBoayj4PAUEdpSumsQQzya76kEtIV0IubQhR13sDAH7o5xIcRTPzwVoyT83lfEBh/bcqxcOOMc2uNzFriHUFVKi+O/lFJ1z+WeBi4+0lJSdbSGX/33H9HyySc3KNM8ELh1WI3Hes23/Zo++D9+5nN+X6eVpNVpdvyqb/2VUwVH7/bnqFpD4JcfeESv/IuP1D578k9/vvZf8dzvkyrp5X/5LfV7P/fLBTYEzyoopJS+T9Lvl/REVVWfdfzZP5D0X0qaS/qQpK+rqupKSulhSb8u6QPHp7+1qqo/fT0NgdB7gTcnQuSHSyc52dQK4GevW+AOBY9SeiFAj/RCVKhRgNAwmUwyoWS3BCLZ3W63lsdeWsedVEsnOey9Xq8WkfdIuUercTdQO4HrUJzQySYpEleuXNFkMsl9czHB2+XuB48we8oHY+rgXHcFlMe4jd0JOxF1t6+X7ZKURYLVapXrU3APr8FQEk/Ej5IoO8n0teC5+cw3ooMTUo+40wbfGrLdbteu57sUeP/YntOv6YTYtwr1nTvc0SGdpMcgFrmAsw7r1iAonTLc390BPBNeC6O8l9dO8Hk/ax7Wtc9dL96fdW6Qdf0tr+upNMzvbDZbm17jAod/V67t88Sdehffy1h87Df1ir/0m5Kk+Zd8jh794pZWrfhTJ3D70BwX78OGtOze2JpLi6St413PXvozE6X/8G5Juumt6gKnEe/hzcJyf1+v+Etv0darX6EPfe3zJEmrlvJ7e2uajkSDM3D/r1ba+eG3nPo8vIln48F/9BY9eN6NCGwcrseh8GZJ3y3pB+yzn5P0zVVVLVJKf0/SN0t64/F3H6qq6rU30gjIAgUGnSxLJ9XXIbrrzi9zw6fTaY4uLxYLNZvNXERRqpPLMmeda1AoDwFBOtmdodfrZZK8XB7tPFFVVRYafGcA8uMRG5ykuKWf64xGo+x2aLVamQhJ0n333af7779fu7u7uZjeYrHQwcGBnnrqKe3v7+daFAgTjK3fE9LotnEXFiCRjD9jAvHkZyffHmEuybIX4POx9+uV4+O1KxA4yoi7p5IgFjH22PbdZVBuZenFFct0CtacCx+sA6/r4SktZa0P5od+eppDuZ5JK3F4KgTgefCdJ9aJCZ56UY67Fz4FnibiJJ9+e+qJH+NCx7p1VdbtcGcC13Bho6xJ4WulrG1Q9qG8Lv32dXaW0MG57h7asPzIN+s2v4sDJ2j/7Dv0wu7r9anP3hgjX+AuxKd9+9tqkcGtV75MH/3qF97QNXY/utLeP33rrW5aYD3erHgPbxyWH/yQHv4rH5Ikzb78c/XE646CTy/73g8f11sIBAK3E8/6l1JVVb94rLL6Z//Kfn2rpD90KxpD1N6JmqQaoSqjx54Kcdy2nCIwn8+zUNDtdk9ta1cWHCxJBMSF7zqdjvb29nTfffflWgaTyUQHBwdaLpdqt9tZaCgJFW4DT9GgzgLbXx4eHuYaCAgipDmsVit1Oh3t7u5qZ2dH29vb2t/fl3TkaphMJppMJqd2CoCsMa5Otr1oX1kHgf5DwiC7VPtHTMAx4K4Fvz+EkPFwQutz4USOY5jDs3YJ4L7uBPC1UDpTvCgkc+HuEuYI0YB158SaeyAQeRFRbzcpNyWpJj2FsS8j7451YgIOgdLq71gXuS9rfpTumVLw8LQXF+xKcYD+nuWSYC2sq0VQOi/8v2fNM23kfu5I8XVWpuiscyKsu6enV5TjfN64k+/iwBF6P/E2PfQT592KwN2MUgpePvIRPfS3TlcuD2wG4j28+ej8zNv10M8c/bxRIYFA4C7GrQi9/AlJP2y/vyyl9MuS9iX91aqq/t31XKTT6ajX66nT6dRIZ2k5h0CQBuEF7Ny2LikTA34mgk1kn2u7dd+dBZDpTqejRqOhXq+nnZ0d9fv9nHPv7oNer5eFBo/SksbQaDQ0n8/z+UTT6Qd1EpxA8n2329VgMNB9992nS5cuqdVqaTgcZkECEQKUtnHGh+9KouRCAveF8DmR9ui6kz7fgaAk9S4McS+f39KazpiVRTcl1Ygk/SONgHH3nH7a5SkxtMFrAhDxL6PTHtVutVqaTqe5ToMXAWWcmcPpdKrZbJbJOO2YTCbZbVK2yUk54kY5f2UNAS96WJJ676v3l/54TQaP/vv4cF364uIA47aOdJfOgnIt+rw7yvYzFj4f3u51KQmlu4FxK4URF1N8rFwY82fxAuCWvIsDgUAg8JwR7+FAIHDP4aYEhZTSX9GRAPiDxx89JunTqqp6KqX0uyT93ymlz6yqan/NuW+Q9AbpSEzo9/va3t7OBBGy5sKBE1P/g9/z6qWTqLzbtH33B65VEiJI32w2q5GpRqOhwWCgS5cuaTAY5EKMkEeKNpL3Lik7BXw7vzzox5F9t5C7c4BIqVvaL1++rMFgoMFgoE6nk9s+Ho+zmOBCCoTNC1KuA/0rbepO6umv94djfbcG5sVTETx/vdwVoky3oPgj4grzxvyWJNJFH7frcyy1BpwwOummPbPZTLPZLLsk3JngKRe4MugDc41Agvvg4OBAs9lMy+Wy1lZ3LiCMlakMpSuizPUv+8maLiPyjK87M/z5WUeW3b3gYpzXjwCMbekGYQx9zfmYgtKdwGflXPm/UoRAKFmX9uA7STCO7mC5lgji835RcKvexV2t304qEAgEAtdGvIcDgcC9iucsKKSUvlZHhWm+uDpmBVVVzSTNjn9+Z0rpQ5JeLekd5flVVb1J0pskaW9vr+p2u6cK9Tkp4Y983wlBquedQ1AbjUbe4hECwXcQYo/Wci9IPdfiv4PBQLu7u9rd3VWv18v59UShIZfdbjfXT/CdGrgH16SooosNkD+IHMfTtn6/r729veyAgLju7+9rf39fk8mklouOKwKUtQKO56AWEfbdHGh/VVW5HoM7Mpz8l3n1pc3fxZuS2JauBQQdIvQIL8xjWe3fHSrlLiGeasLPXlNiuVxmMQEXg1viXSThdwSObrdbG1fGB3cCY8e/xWJRS2WBtPscOclG9KJvFBNkTXq6BONfzidrygUZniHSgVhnfo6nnrjDY12En7UNyrSBUnQq3gGnBATWgrtN/BnhOPpWCi4uwvj7w+dhnYvDx9pFjouAW/ku3k2XL1bnA4FAYAMQ7+FAIHAv4zkJCimlL9VRwZn/tKqqsX3+oKSnq6pappReLulVkj58HdfLxAPiBGEqi9tBBMvIqJMjj0a6G2E6nWaiTRqDW709gk7kl1SG7e1tNZvNfD5EtNlsajAY5Gr/7Xa7Rto8X59IsUfPSb/gcxcRIESDwUDb29v5PkTVh8OhDg4ONBqNasUd3brukXAEDtrntQdcXKF/OC8krSWGWPed/LlYUUbOaRMOC69zAfgM8cCvVQpM9IE0GebYRRXmkPnFNUDqC2KCiziIJeuED1wvTkC90KKLLt5nvnORxWt0MI5lqgnr3t0ATu7LcXYBjX5zfU8ZcJHA013oP2NMPxCWXMzxMfJn2Um9j4vfoxQj+Nn74AKip924YMEYl21xkcSftXWug7OEkjLlZBNxq9/FgUAgELgxxHs4EAjc67iebSP/uaQvkvRASulRSd+qowq2HUk/d/yHOFvhfKGkv5FSWuhox6I/XVXV09fTkKqqaukD/DHPH/b87tvtlYKDkzzImW+F5xZ4SC3ElJQBItCcX+4OMR6Pa6SDY3EdeH+c3Pm2e5BpIuZeWM77Qq7+zs6OBoOBcHEQBR8OhxoOh9md4ESM8YEcI6YgcjA2jK0XonNBAfLn9Sy4Btcrt+x0kuv/XBBizL0AoKSayFKKPn4PiKqTV6+D4OLKunx5TyfxtVMSZI/qlzUE/LvpdJoLYyKKeP2EklS74OP39Og5fSrFHz/Wz3HRx0m77zLB9coIvT9n7kxgfoAXsSzHy8URBBHWUlkXpOyLAwGHZ9YFQhch3Bni4oq3qxz7dY4IrnUBxIM78i4OBAKBwHrEezgQCARO43p2efiaNR9/7xnH/pikH7vRRpxlW3YrPgUNiSh79LLcrUE6bZ3HXYDVXFKuQTCZTGoV/t2KjuuANIPVapUjtYgJKSV1Op1ca4Bre1oGIgmEvzpOv0BQKG3xLmbcf//9evDBB7PNfjab5VSH8XicyRJEzMkTZA6y5aKMtw14XYh1+fGIFdS52NraUqfTqQkJth5q8yQpixsIFhBWjiFFpIye+/nL5TLPGY6N+XyeyTzij7eHa5TRehwp3keOPTw8zI4Z5tWvx3ri3j539L2sxeCCAf89qw5AmXLh4klZV0A6IeJOpieTSe2anpbifXIy7S6G5XJ5qvCjOypKUYOfmbfJZFITrvx7FzBKkcYFH3dM+H/53utk+LUZd65VtsHHxEWKsp+bgjvxLg4EAoHA2Yj3cCAQCJzGRmywXUZAW61WjmhLyoSVyDwEiEg2hMeJlG/bt7W1dYog+9aSEBMi+h6dRUyYTCZ66qmn1Ov1arUMuB7CA/fxiGwpKNBuJ0bz+Vyj0Sifzy4Q29vb6vf72tnZ0dbWViatJXl1EuxpA06kOc4JPgKKjxskGvt7SimnWEDkIe6+DSN9Qwhg/nw86LuLQ7goEBhcTKBdzD9CzWQyqc0b68FJJ9cDfOciE330e3kKg+fcrxtHHBs+J14ssnRJlATco+brUjpYXyWppy2+Bj11gfM5pnQ2MB8uAHGOp4e4c8PbWLph6ANzhwMHcausD1I+9y5WlUIWbXPRwmtXuCvDxQmfA09T8WezfE5LUWzTRIVAIBAIBAKBQGCTsBGCgnRCmtw9ICkTa4gcpNdzoiEvnlLgbgQnjBAL37FgXfV5iG2z2dRyudRoNNJsNlNKSbu7u7XIKTndzWYzt43IfWnZhvA44aO/kHkEilarpX6/n3ePWK1WOc3hqaeeytFfSTVy5zUcuJdH+/nc6zlA1HzbSt+NwmtM8D2CC9d1R0hJPIFvAUjkmHPdFeJ1DPi8JPukqDDfpCUgmPCZrx3awjpgbdEmxsEdDL4+cHzggmg2mzn9ZDwe1wSIsghh6QSgLet2YSjt92UqhKfIcF13H3hagv/zehDeN08x8P7SThclynXG8Vy/XN8uanjth7JP/rsXnHTRohy70i3h8+3X8uKtHO9uBV+nZTpIIBAIBAKBQCAQWI+NERQ8Su62fcipW5Ddjo4lG4IHYXaLM2QG0k+Em2i759179N7rDyyXS/V6Pd133325tkC/38/kF+GBY3E2eHV+2ueEEfcE7ZGkfr+vfr+vra2tLCa0Wq0cod/f39fBwUH+3VMcyshxmQKxLiWhtJQzZq1WK7cPN4Tb0BF7Go1GTpNg3D1P3osLumDjkXxs5+6YQDSCKHrk2Z0NjLHX1uC4MmJPm6S6O8MFCCfkPm+MjV+vqqq82wbr0aPsjjLy7SQbIMp4O93h4TUA1tVT8J9dSHDxyB0Ovi7KNJ119RX8uLKfnuJRpj/wHCPu+XyUKEUC/vnv/mz7eaVI4S6bcg58Hvy55LN1wk4gEAgEAoFAIBA4wUYICkSKnQCXlf4hVPzx7xFuLz6IMwFCD4Hxf5JqBMWjuSXpQzyAXEPgcT5QOLDRaGQi2G63NRgMaikMRM/92rSNvkjKO0rQfr/vwcGBJOnxxx/XM888U7s+1/Soc1mtn/GFyFJM0EUFjzYzJ74NoredtpU57y5c+PaBZZ49P7sjxFMsSpLshNWj+U6KaadH2T1dgHlwMYT58RSMUnzxXQa8TZPJRAcHBxqPc2HnPM7uhikdA2UUnOO80KWPUzmmZboA48/8InL5sU70vc6ACwveJv8dUad0q6xzGThcNPGdGbxvXovB56kUP8rx93uc9bmkU3Ulyv6X7fH1GggEAoFAIBAIBM7GRggKkmqESzohmePxOJNEJ45Es6uqUq/XU7fbzeciLkBOITNljrq7IaSTCval1RnBg+0JpZNijSXxazQaeQcJnBC0eV36BSR4Pp+r1Wqt7Uuj0dBwONRHP/pRrVYrjUYjTSaTXE/Co/NllF5SdjJ4KgPnIQh4JJn+En33rTxbrVaNaJVRXHcRrCOPHgV2wcPrTHjVfoQaJ5cuNEF0y0KC3M/FBOCCAm0l/aUUPZh/P5d2UjOB9SOd7DThJLcUJlyw8Hu5s4S0mVLo8pQBn3sn+fQNUcqvzdhz71KYoH0utHjRQk9NKYWHs1De59k+O8sZ4GNVujt8PMo5K+eUteZCjc/FundAIBAIBAKBQCAQOI2NEBSIsEonUfXDw0NNJpNM0CXliLpHare2trS9va1Op5MJmAsTgOvOZrNa7QHIpO8m4Od2u11tb29rMBhod3dXg8FAOzs72tnZUb/fr0U6uW+r1cqpGKUlmzbTB9IE2NFhe3s7E37Onc/ntRSH4XCYxwjyVaZSMK7rnAFc2/PnaSsiCbtijEYjSartYOEWeemEZDMnEPOSlHFfz8efTqf5M9aBR9jLooqlg8RdLe5goJ0+9wgRXquDuhVlQcfS5eCpA7QLwQs3hYtUfp6vSWz/PlfrSC2fl+uY3z0dpIyocx+uUYpNni7ggoP30cUNj+TzmRdWLB0CZSqC98dFQe+/C2Fl6o1fr3R6+L1dACoLevr68/aU7eL3EBQCgUAgEAgEAoFnx8YICr6jAsLBeDzO5A2LPhHG1WqlTqejTqejbrebt3CECHpEt6yvAEl1IgHRK63lvV5Ply5d0s7OjnZ3d/OuC4PBIJNs7gnB81xxiB3pEf1+P/fPi0KS3gDRh/xOp1NJyp9Pp9NabQMnd2zHWBYGLPPGPcJc1jpwQokzoSzMWG7XCQl0AaAkbu5IcMIHMfff3SGxjmhDDPns8PCwtqMHBHtdmoK3ifFnLrxeh1vtIdS0g/Fl1xHSbLw2hJ9Xpg54mobb/t2JUUb/XVxABCt3KHDi7wKN10bwMXGhxQUPFxloh9eWWNc24C6XdevOn02fTxdxfP7piwtg68a2vKavHZ/Lde4QcL2Oi0AgEAgEAoFAIHCEjREUJNXqCUCCyGkHkIrVapULFvquAE54vdAihITrelQbezhkY7FYZNJOQUTIvlQnxLQFMs/3pTOg2Wyq2+2q0+nkegbsTsE5JQkjujqdTnMdBQQGL7ZIWkC5rWaZIuJRZu7pW26us4l77runFOC08BSOde4Id554cTx+9kKZTq5pZ+kYKR0KLprgHijbUpJNH9tyvZSigUfCqfMgnRRPdDJ8lsvABSpfGw53N5QpHX4MzhAXbtaNK32gmKbX7OA8UAp13v/SAbCOdPvaYaz8GMbAa0k41o1H6RLw56ksGFn+c9fQOicI846wUq4Pd12EuBAIBAKBQCAQCJyNjRAUpHp00PPhPUqMVby0gQMniFK9Sr7nmXMMRIsIvOeVe8QXEl9VVU6/cKxWq7xloKc0cE/frYHIuG/PCAFCJPCILO4KvqOdbnl3saEUFFyMaTQaOSrvoojXgmBsPNefPnr0my0lnXCWWw/SNsa03W7XBAZPAfB7IF4gZhCt9ui2iw4ufPiuDRxf7ibghNl3mpDqUXRfP/TB3QHudinTB8qoutvznag6qaXNJVxsKseAcSzFKNYHa8aP49zSLeHr2fvAmPn3Zdv4eV3hStZr6cgo58ThqTx8786PUkTwa3iaxjrhxvu/Tkzwa5bpHIFAIBAIBAKBQOAEGyMolAX8PFLqOfrSCeHxiLsTAa8qz/XWgTQEgFgBWZak0WikxWKhbrdbq5xPO6gzMJlMTrkLIGteBI4aDvP5XFLd7cD1AC4JSLnXiJjNZlnoaDQaWUzw3RHYyrLcChFyRl9INSHizj1dUPBxd2u8E2EXgfycVqulTqdTs7EjjLjFXTpJgaD9g8FAKaXcV+bNawS4wOEuk7LN13I7+L29TV5bAzGIe3pajRNQv7anZ5REm/+6O6GcZ9YHKSd+T75zwa28JuPFevb20F9vi9+3JP0lueb+7hgAZWqDrz3OdSGidBz4mJfnlWNIu/wa61wpDp6BdZ9fq8+BQCAQCAQCgUDgBBshKDgRcGJVkhAcCk5WPCUCYuLV3yFQ2M3dFu/F8Zz8UyW/qiqNRiMtl8v8GfUauPdkMsnHuLXbt4LkPvv7+7k2REluIXge0S8L1EEqESVcxCBNBFHgLHt9aU9vt9s5ZQLxxu9fzg/n0X+fNxcTILqtVks7Ozvqdru1IpJE7xkHClG6u4R6FUTbPR3AiaWTf3cFeMTaC1B6//nHvRk/3Bfed+aTdcL6LAsUAie1ZSpA2TZff17HwdMUvL9e76LcvcR39KDOSEpHW3G6o8N3w/Dx8r64QOdCno9d2Td3PawTIbwPoBSu1okC5a4OPvZc089ZJwR4m0oRZB1CTAgEAoFAIBAIBM7GRggKAIJO3rdvWed72Psf+W455xh3M/A7pF5SLfIsqUbAXHDwPHJSF4iCS8ouASdmtHk0GmWbt29/6SkJ6yLJLqhA+thCcLU6KpQ4Go2yKwJwn9L27k4Er4UAUS3TQtxFwLiWFv2yzYwP4wXhx2HQ7/fzmJYFDD1VAXs+dTH6/b5arVYm+aVgAXzO3LniKQJOIMvIus8F33v/t7a2crFLziuFqDKSzrncizocZT9cOHOC7mt6a2urVn+gdGRI9RQB1pDXBqGdTta9lkb5XHnfy91TPB2iHKt1aQ3r3A7l5+5K8LEp5wOU360Ta9aJAaXDwQWP6xEYAoFAIBAIBAKBwAk2QlAg+ssuBpBy/uAvUw0QGTxi7TsqlLUQXCDgM7f+u42f4/jeiarnsiN+eI46UXSvJQBZcRJJEULvK+QWcl6SIUQKto9kBwapTqq4DvUSuB9pDZBRhJiSrDOWkFrvz3w+X7uThYsJfo/t7W3t7e2p1+vV0gQQYiDopVBUOkG8Lka73c7feUHLcqtDdwBIdYeAO1b8+uWa8zFwNwfzydiUdRDWuUC4Hk4QP457IhDgovA16euBmhxeW4JnyN08ZT2PMvJfkn4H93Y3DscwdqWYUP7un3tfXZwqXSW0C/FinbvhLCdFmfbgOMsp4QhhIRAIBAKBQCAQuDFsjKAAqSsr2K8jCetcCOts4V5skKKJfj13LAAvfkiaQ7PZVKfTqUWDaasLHVzfnRbY570AIgTPiTjHQKIo+OdbCQ6HQw2Hw9y+kthB2HEhgHa7rU6nUxNQPDWDcWi32+r1etre3la73a6lMaxWJ7tSVFWlbrd7SgiABDebTe3s7OjSpUva3t6uRdhpY2mbh3CzVefOzo5arZZms1mt+KE7C5wk0gev4+C1GEo3RgnG0IUS/wwiXq4Broe44OuRdrpLwEULxo52udDlbfK54vouGnk9jtI94IUpyzQE70+ZAuDuCHc2+FiUBVJZu+uex1IcKOfR16Q7DMr0G3dAuOsIuJjk93q2mgqBQCAQCAQCgUDgxrF+uwRDSun7UkpPpJTea599W0rpt1JK7z7+9+X23TenlB5JKX0gpfQlN9KYksCW1nAXADwS7lv5EfnmcyfCXmneybznoUPQnAB3u90cFUdwoPghW0FCvObzuWazWc0i7ykAZZR7sVjkqDuFH104oU0UXXQr+/b2tnq9njqdTi58SOS6LEw5n881Ho9zQUhP94CotlqtfH65g4OLIF7zgLz8RqNRExk6nY76/X7+DGJdikYOtulEAHHHCtcfDAbqdDpaLBZZbPA5LZ0JkFGu6zt6lGDNlIIT7gFSN0rbP+vT3QGtViv3A8KM84DvXMjCYUBfObfVatWEINqD6MT40/dyu0vfjcJdELSzFKR83ZTHusji7aZv8/k8zzP/yjEtxRJPNynFAHcYlUIO93QBYl3KRSlsnJUGcS23xabgTr6LA4FAIHAa8R4OBAKB07geh8KbJX23pB8oPv+uqqq+wz9IKX2GpK+W9JmSXiTp51NKr66q6nQ5dUNVHe1acHBwkHdVcHLo0V/fMQHCQ0QeR4BbwSGeTsaJ7M5ms0ycaYe7GMp8ddqJEABhbrVaGo1GkpQJM+kSkEYnc2VUGqLrpN1J2mg0yqQQtwTEn7FB6OBebscfj8eSlAUPSCu/s6Xl9va2HnjggVqBRIgu/ZZOIv7cfz6f53MkqdvtamdnR71er+aW8NQCB0TVbf7Mp7sxGo1GJujMVelGIIWD8fP6ESml7Pi4EcLo9TtSSlkE8uKPXveCegkQYp8j1hNrhXlxMWLdrgmlpd9dEWVxRZ6JUojg2XGXipNwT/1xAYGxJjXHhRZPoXBnBG0ELgB6/8r6E+XzwfrwcQDeft/RxdNc6ANr6lo4K11ig/Bm3eZ3cSAQCASuiTcr3sOBQCBQw7MKClVV/WJK6eHrvN5XSPqhqqpmkj6SUnpE0uslveVZ7qHDw8NMIN3mDzmez+c5BWEdcSHHHwKBS+Dw8DBH5SEzbhPn/l5lnzZ4uoOkXFwRwuWRfAjXdDrN90IkcGcFxQf5/vDwsBbBRozA8TAej2ufEfV1IcQj6ggos9ksf+dtqKoq11MAjUZD/X5fe3t76na7mXhDztxu3263tbOzo3a7nZ0OZXpAr9fT7u6uut1uJtHMoZNq36LRQR88FcMJPesF8aC063sOvgsKZe0At9aXjgUnuU7IPZ3Bv+d+HplnXZXOA9pS1g1wNwXr3NepCxuMBcJQWU+DZ8edI6wF75+7gCDeCCLucOD587oSYF2RRhc4EDf8GNrCXLKOaIev7XKd+3jhqkEwYN37GF0L69p7PeedB+7EuzgQCAQCZyPew4FAIHAaN1ND4c+mlP64pHdI+saqqp6R9GJJb7VjHj3+7JqoqiqT/slkktMJPKK5zm4NSVsulzmCTuS4jKxDFtwB4PUKPFIKAYZokS4AmSQ9AfIIgZ9MJpl4e+65R37LKv6SsvABOXTLOkICAgKpDeWxkvI4eJrAZDLJkWXu7/Zx3ybTd4LgOvwjvWMwGGQCN5/Pa1sW0uZ+v6/t7W11u93azhYeOabdXiiQsfMtNyG3/pmLTV4XwccNIspYeWFJjvMIexn55nvWCxFwr19Q1nLgfu12O1+nrD9ADY2ygCPtxq1Cn7kO68XXkY+5jy3PlO9KAuF2pwzzSvu9+GnpcCidBf5frrGugGQpDPj65/rlmijn1K9Zugc8HcJTHzzVyMWhEqW4dEFxy97FgUAgEHhOiPdwIBC4Z/GsNRTOwPdIeoWk10p6TNJ3Hn++Lqy39i/1lNIbUkrvSCm9A+I/Ho9zaoKnGkAaPDKNm4HUBaLfkBAIPrZ/J0i+M8NqtcoRUukkvYJ/pBw888wzeuaZZ/T000/n9AYi/V44EJIo1XebuFZRQBc81kWh3dZNdLusCYETYzgc1rao9DSDdJzfTpoGBNG3T2RMJpNJdkeUtSRwDECePa2j2+1qd3dXOzs7WXwoazzwu9cQKGtnIHZQ0NB34CD1g5STbrerXq9Xy/f3+gUuOEk6FWn36LkLDLQFh0FZWLJ0eUDIy/nb2trKY+URcRcIEBE8vcaLcvq1fDcT2uGCkAsDLgSU9Txoh7s5yrHx+S9FPRcJ/D7ernIcPP3EHQyMAyKdi4gu3vh9vVgqc+X38fuXaTZcx8Wn8rtNdCmswa19F2u27pBAIBAInI14DwcCgXsaz8mhUFXV4/ycUvrHkn7q+NdHJT1kh75E0ifOuMabJL1Jkvr9fgUBPjw8rEVpy20f3bovKddD8CiyF/2DiLgzoapOdlWAsEEsIOAQivl8ruFwmG3jnU5HOzs7OQ1iNBpl4u21HiAjJbHxqKuTS6LTfhzCwXQ6zaTULf8QIo7h32w2q9nyIXwUcHSyVEa7EVFwOXiEnjHza3oNA9IdLl26pMuXL+e+9Xq9PPa9Xq+2e0CZT891JWVi6fZ8XArdbjcf4+3ke3cJrKszQD/4uZwbT3Xw/nK8pzQ4+aUvuAboJ5+XxUBphzsE/Dja4M8C67RcX17/w4UH7yeE30U07t3pdGpk38fTRQxPMUGkcteBuyVcOEBM4NqIZKXDonQzeHvWiRjuLHKR6iwHCt8x/mU9iYuEW/0u3k2XL9YABAKBwDkj3sOBQOBex3MSFFJKL6yq6rHjX79SEtVuf1LSP0sp/UMdFaB5laS3Pdv1qqrKpNzJEMQBwuBk3yPW5E1D3vi5JIqQSydyHOvHeWG94/7WihSyg0FVVbWtHJ1sQdCwmvu2fV4cjrb47gPushiPx5rNZtlZQFucXPk4IKZ4jQXOxRmwjrxxLI6M2Wx2qmAeY0ObcUngzmi329rd3dXly5e1s7OTi15CJNklgz6QjgBBdmHD2+QpAsvlMjsSEEDYEpQxbrfbp+ob2NrN1+RefF5GzFmbvi7KnRl8G0V3BLjbg/sdHh6eSjuRTlI4XDjzuhndbrfmEvB2usBQ1kJwuz/ncj/SfBAEfFtUP4Y2ODl3uItktVrlmg/rUpRK546n8riDwNeEpyBxDYQDHB8+Py7SlakOLuS5OLNufVwU3Op3cSAQCARuDPEeDgQC9zqeVVBIKf1zSV8k6YGU0qOSvlXSF6WUXqsj69ZHJX29JFVV9b6U0o9I+jVJC0l/prqOarZlxN0JjBNQj+qSi+6R1tJq3Wg0atHrdQX8IChlrjguCUg410NMkJTrPZS2dEnZil9VlUajUW6jE19INteGxNGn8Xic0ysglV4s0beYZBzXkSvf9hJBw2s7SCdizHQ6zbUgEFGox8BxFGREUGDuSHfY3t7O0W3PkS9rIXQ6nSwMePHM0oXiRNa32HSRiPY6afY59v+CspaDR635DvGHz5gnFxG4RpnW4vPpaQnl+vZ7cr+UjuoxeP+8/ZzjDgUXFLh+KRh5CgfPmxeB5Lh1Lp8ybQCxg3VVpu34WDEunn6D2OTzXLoaXFzgd1IdONeFLt/Boqxh4esBwZDxXYdNcyvciXdxIBAIBM5GvIcDgUDgNK5nl4evWfPx917j+L8t6W/faEMgCh7t5I99z0l354I7D47vXSMY0ol1fD6f1yK3HA95gUD6Lgr8F6IC+UrpZBcJLybo5I7z3I3gufxcq9Fo1Ao60l4cB6QM9Hq9GtEq0ya4PqTaLeG4EyTVChO6OAM5o08lAYRwe/V/z6/v9/u6fPmyLl26pEajodFolHe8gECW0fxGo5FrH5Duwv09ok4/OYd0BvriBNnHw0k69y6dHX48c0uknnHiWl5zo1yXwF0ouDdwJrhbg/a7mOEEFsdAKbB4KkCZIlGScfrn5N63ZPVrlNsuejpCKcDRb9YVhJ/14cIAYiDXZi1RT4PP3LVRui0Yf+qHUGchpZTFKb5zMcX74mNCn0tBzrFpYoJ0597FgUAgEFiPeA8HAoHAadzMLg+3FK1WK0erPXccUuCRVshDmfMOcXRSUdr2Ic4QEQABcht0SqnWFqLskEq3ZbvAURaog6TiLuA67Eixv7+fhQZ3D0hSr9er1WxwouMFDD2S7iSSSK4TSumEGFIskO/dSQGhps1ekLFMA+j3+xoMBmo0Gtrf38+Cg2/vyDVpJ6ktLtzQNk9ZYT4ZM4QaRAii+WW7nKS6QCXV02O8UCDfMa/cX1JN7PF6ALSB+yACcKw7b1yE8PQFH2eEB+YDsu7uHc7nXBfZQOlOKOtJMJ7uXPG17w6C5XKZj+M7RI/ShVCmWPi9/b7MAdfGqeLXc6HDnUPuLinFxVJEcJHFi1Uyp+vm2sfvLAdDIBAIBAKBQCBwr2NjBAUi1R7xl+o57v67VLfCS6oR/ao62g6SfxASou9OMMribBA4Isie701Uk7oNJSHkmtKJ7d7rFpAaQAoDNn/qMzjpbTab+Vjs7/SLe7pTgPGBkLfb7VwEEfs994GI+S4NZb6/X5eIMgTS89vb7bZ2dnbyFpouIPjWnr4NIv92dnbUbDZ1eHh4SlhwQLSZF+7DOHmkGweECwTMhzsd+J5jfd3RTnevuFuANeO1CEoRjPHxehou9qwTkDz9gDZArJ1c+zNQ1hfg81JM8PQfF7VK4czHiL67U8PdL77m/L7ePncw+I4W69w8jIU/l7QJMcJJPilDtMOFIhcSy3vznLnLxoUHdzOFoBAIBAKBQCAQCKzHRggKEBhQ5jx7pBmC4dHYkjRB7ry+gRORUkzA8eA7ARCxxXHQ7XY1GAzU7/drue6r1SpfGxLmhBiy5AX5IHFOsj0PHQLT7XYzUW+1WmtrNTgp8jEkz5zdKUgl8LQIiGsZOYdgQWJxJyAm4LRwUkcaAuJNuZOB17Yg9YOdGugPke+SmFMvwusakMJCXYbFYpGvVwpSLjpxXXcZdDqdWu59KQhANKl3ACllHTGefl8XK7zIKOfTTm+b11igTwhDvva9j7TZnRAlXKjySH+3281ik7fZ1wR99z74mPg5fn8XEVgjLgq626jZbGaxy8fYU2RcKGMNMf++Y4TXtygdClyXufLnCVHKnw0XHgOBQCAQCAQCgcBpbISgALCxlxFBJxTSaTHBi795lNrJOoQGizoRWu5L1N2P4X7sKrC7u6ter5eLF7LjAMTKCThtcyEE0gJRYptHyBNuCs7letyDdtFWagd4DQcnvv1+X/1+PwsOPibeRhcicCaQDuHjzDixrSS58IPBILef6xNNRtCQlCP8iBsc5yKHz3cpLPnWkL6NpRNvdz/4WvH0Bk9v8a04mf91KSROmFkXXucCcD9PeaGfPt6+60eZpuAuAEl5vdAGd314Sk2Z4sF/+edpJogJiBcexfd0IRcEWI+lEOJpGH5/L7hI3xzuumCb0tKN4cIDY79cLmtbrEL8zxKDOKbchtQLPTKe9NXdMIFAIBAIBAKBQGA90iZE4FJKT0oaSfrUebflOeABRbvvJKLddx4Xte23qt0vrarqwVtwnY1HSulA0gfOux3PARd1jUoXt+3R7juLe73d99J7OP4mvvOIdt9ZXNR2Sxe37bf1XbwRgoIkpZTeUVXV55x3O24U0e47i2j3ncdFbftFbfd54qKO2UVtt3Rx2x7tvrOIdt9buKjjFu2+s4h233lc1Lbf7nafTrgOBAKBQCAQCAQCgUAgEHgWhKAQCAQCgUAgEAgEAoFA4IaxSYLCm867Ac8R0e47i2j3ncdFbftFbfd54qKO2UVtt3Rx2x7tvrOIdt9buKjjFu2+s4h233lc1Lbf1nZvTA2FQCAQCAQCgUAgEAgEAhcHm+RQCAQCgUAgEAgEAoFAIHBBcO6CQkrpS1NKH0gpPZJS+qbzbs+1kFL6aErpPSmld6eU3nH82eWU0s+llH7j+L/3nXc7JSml9H0ppSdSSu+1z85sa0rpm4/n4AMppS85n1af2e5vSyn91vG4vzul9OX23aa0+6GU0r9NKf16Sul9KaVvOP58o8f8Gu3e6DFPKXVTSm9LKf3Kcbv/+vHnGz3em4x4F9+WdsZ7+A4i3sN3vN3xHr7FiPfw7UG8i+8s4l18x9t9/u/iqqrO7Z+kLUkfkvRySW1JvyLpM86zTc/S3o9KeqD47O9L+qbjn79J0t8773Yet+ULJb1O0nufra2SPuN47DuSXnY8J1sb1O5vk/Q/rDl2k9r9QkmvO/55R9IHj9u30WN+jXZv9JhLSpK2j39uSfolSb9708d7U//Fu/i2tTPew3e23fEevrPtjvfwrR3PeA/fvrbGu/jOtjvexXe23ef+Lj5vh8LrJT1SVdWHq6qaS/ohSV9xzm26UXyFpO8//vn7Jf1X59eUE1RV9YuSni4+PqutXyHph6qqmlVV9RFJj+hobu44zmj3Wdikdj9WVdW7jn8+kPTrkl6sDR/za7T7LGxKu6uqqobHv7aO/1Xa8PHeYMS7+DYg3sN3FvEevrOI9/AtR7yHbxPiXXxnEe/iO4tNeBeft6DwYkm/ab8/qmtP3HmjkvSvUkrvTCm94fiz51dV9Zh0tBAlPe/cWvfsOKutF2Ee/mxK6VeP7V9Ydjay3SmlhyX9Th0phBdmzIt2Sxs+5imlrZTSuyU9Iennqqq6UOO9Ybho43OR38UXeY1u9DvBEe/hO4N4D99SXLTxucjvYelir9ONfi844l18Z3De7+LzFhTSms82eduJ31NV1eskfZmkP5NS+sLzbtAtwqbPw/dIeoWk10p6TNJ3Hn++ce1OKW1L+jFJf76qqv1rHbrms3Nr+5p2b/yYV1W1rKrqtZJeIun1KaXPusbhG9PuDcVFG5+78V286XOw8e8EEO/hO4d4D99SXLTxuRvfw9Lmz8PGvxdAvIvvHM77XXzegsKjkh6y318i6RPn1JZnRVVVnzj+7xOSflxH9pDHU0ovlKTj/z5xfi18VpzV1o2eh6qqHj9+UFaS/rFObDkb1e6UUktHL6AfrKrq/zr+eOPHfF27L8qYS1JVVVck/YKkL9UFGO8NxYUanwv+Lr6Qa/SivBPiPXw+iPfwLcGFGp8L/h6WLug6vSjvhXgXnw/O61183oLC2yW9KqX0spRSW9JXS/rJc27TWqSUBimlHX6W9PskvVdH7f3a48O+VtJPnE8LrwtntfUnJX11SqmTUnqZpFdJets5tG8teBiO8ZU6Gndpg9qdUkqSvlfSr1dV9Q/tq40e87PaveljnlJ6MKV06fjnnqTfK+n92vDx3mDEu/jO4UKu0U1/J0jxHr5T7bX2xXv4/9/OHZw0EIRRAH62oCevFmAFNpC0YRkBm/FgFdagiXoQsRIPepgJ5LQ4kMxM4PtgCOSwPGaz7/CzmePSw32d5e909l5IdHGvvAf5xnfx74DTPw9XknXKKZrfSTaj8yzkvEk5EXOb5GOfNclVkuckX/XzcnTWmusp5bWcn5RJ1P1S1iSbeg8+k6wmy/2Y5C3Jrj4E1xPmvkt5XWiX5LWu9ex7vpB76j1PcpvkpeZ7T/JQv596v2deuvgkWfVw39x6uG9uPXz8PdXDp8mri/vm1sV9cw/v4ot6UQAAAIB/G/2XBwAAAOAMGSgAAAAAzQwUAAAAgGYGCgAAAEAzAwUAAACgmYECAAAA0MxAAQAAAGhmoAAAAAA0+wOzr3TQMOa2yQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 1109256 0\n", + " Min thresh = 1000\n", + " Not Sliding\n", + "\n", + "\n", + " Winner = Not Sliding\n", + "\n", + "\n", + "208s_iimage_104543812690743_CLEAN.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADDCAYAAAAya0IYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADj/0lEQVR4nOy9ebyk6VnWf71Vdarqre0svU1mJiEJJAFRDIoBARHZDCjIFgQXFJBA2EQRQVwQfygqYPjxQ5awBRQS0AgisgqiYhZIwAiBEJLJMnsvZ6l9f39/nPN9zlVPV8909/TMOd39XJ/PfLpPnbfe99mqpq/rvu77zoqiUEJCQkJCQkJCQkJCQkJCQsKNoHTSA0hISEhISEhISEhISEhISLj9kASFhISEhISEhISEhISEhISEG0YSFBISEhISEhISEhISEhISEm4YSVBISEhISEhISEhISEhISEi4YSRBISEhISEhISEhISEhISEh4YaRBIWEhISEhISEhISEhISEhIQbRhIUEp5xZFn2tizLPvakx5GQkJCQcIwsy96TZdknXOe1RZZlH3CTz7np9yYkJCQkJCScLiRBIeEZR1EUH1wUxa+d9DieCFmW/YUsy349y7L9LMsey7Ls+7Msa5/0uBISEhLuZGRZ9m1Zlv1hlmW9LMvenmXZ55/0mBISEhJOG261MPtk90v/Lk54IiRBISFhPTYlfbOkeyV9kKT7JX3riY4oISEh4c7HQNKn6vA7+G9I+n+zLPvIkx1SQkJCwl2P9O/ihGsiCQoJzzjcVptl2T/Nsuw/ZFn2748iUr+TZdkLsyz7B1mWXcyy7MEsyz7J3vsFWZb9/tG1D2RZ9iXRvf9+lmWPZln2SJZlf8sV1yzLakfRr/dlWfZ4lmXfm2VZvm6MRVH8eFEUv1AUxbAoij1J3y/po56+VUlISEg4Pciy7CVZlr3hKBr1aJZl35VlWTW67FOOvocvZ1n2rVmWlez9X3j0Xb2XZdkvZln2ftfz3KIovrEoircXRbEsiuJNkv6XpD99C6eWkJCQcCqQZdkHZVn2a0ffs2/LsuzT7He/lmXZ37Kf/2aWZb9+9Pf/efTyW7Ms62dZ9pezLPvYLMseyrLsG46+k9+TZdlfvdn7xWNN/y5OeCIkQSHhNOBTJf07SduSflvSL+rwbN4n6Z9J+j679qKkvyipI+kLJL0yy7I/IUlZlr1U0t+V9AmSPkDSn42e868kvVDSi49+f5+kf3KdY/wYSW+7sWklJCQk3LZYSPo7ks7qkNB/vKQvi675DEkfJulPSPpLkr5QkrIs+3RJ3yDpMyWd06Eo8JobHcCR4PunlL57ExIS7jBkWbYh6b9I+iVJ5yV9paQfy7LsRU/23qIoPubor3+8KIpWURQ/cfTzPTr8zr5Phw6vVz3F+z0R0r+LEwKSoJBwGvC/iqL4xaIo5pL+gw7/Afovi6KYSXqtpOdmWbYlSUVR/NeiKN5VHOJ/6PCL+M8c3edzJP1wURRvK4piKOmbeECWZZmkL5b0d4qi2C2KoifpX0j63CcbXJZln6jDL+brFR8SEhISbmsURfGWoijeWBTFvCiK9+hQ2L1KpD36Pn2fpO+Q9HlHr3+JpG8piuL3j77X/4WkF1+vS8HwvZLeqkOROSEhIeFOwkdIaunw37vToih+VdLP6vh79Gbxj4uimBz9G/m/6vDfxrcU6d/FCTEqJz2AhARJj9vfR5IuF0WxsJ+lwy/d/SzLPlnSN+rQaVCS1JD0O0fX3CvpzXavB+3v546ufcuhtiBJyiSVn2hgWZZ9hKQfl/TZRVG84wbmlJCQkHDbIsuyF0r6Nzp0IDR0+O+Ft0SX+Xfse3X4HSxJ76fD2gff7rfUYdTsvdf5/G+V9Ecl/bmiKIobnkBCQkLC6ca9kh4simJpr71Xh9+TN4u9oigG0f3uvdbFN4P07+KEdUgOhYTbBlmW1SS9TtK3SbpQFMWWpJ/T4T9UJelRHRaJAc+2v1/WoTjxwUVRbB39t1kUResJnvehkn5G0hcWRfErt24mCQkJCace3yPp7ZJeUBRFR4cpDFl0jX/HPkfSI0d/f1DSl9h37VZRFHlRFK+/ngdnWfZNkj5Z0icVRdF9SrNISEhIOJ14RNKzvfaMDr9HHz76+0CHYi645zruuZ1lWTO6H9/LN3O/FaR/FydcC0lQSLidUJVUk3RJ0vzIrfBJ9vuflPQFR0VuGjIr1pEC/P06rLlwXpKyLLsvy7I/v+5BWZb9UUm/IOkri6L4L0/LbBISEhJOL9qSupL6WZZ9oKRXrLnma7Ms286y7NmS/rYk8m6/V9I/yLLsgyUpy7LNLMtedj0PzbLsH0j6K5I+sSiKK091EgkJCQmnFG/SIcn/+1mWbWRZ9rE6rCn22qPf/x9Jn5llWeOouPgXRe9/XNLz19z3m7Isq2ZZ9md0WHPsPzzF+0lK/y5OeGIkQSHhtsFR3YOv0qFwsKfDf3T+jP3+5yV9p6T/Lumdkt5w9KvJ0Z9fd/T6G7Ms60r6b5KuVazma3SYJvGDRxVv+1mWpeIzCQkJdwv+ng6/Y3s6FGPXFen6zzpMg/g/OszV/UFJKorip3RYBPe1R9+1v6tDx8H14F/oMKr2h/bd+w1PYR4JCQkJpw5FUUwlfZoOvxsvS/puSZ9fFMXbjy55paSpDon+j0j6segW/1TSjxx1iKBOwmM6/PfxI0fXf+lTvJ8j/bs44ZrIUmpiwp2KLMs+SIf/kK0dFQZLSEhISEhISEhIuKNw5HD490VR3P8klyYk3HIkh0LCHYUsyz7jyOq1rcMI2X9JYkJCQkJCQkJCQkJCQsKtRxIUEu40fIkOayy8S4d91Nfl/SYkJCQkJCQkJCQkJCQ8RTxtgkKWZS/NsuwPsix7Z5ZlX/90PSchwVEUxUuPujfsFEXxGUVRPHrSY0pIOCmk7+GEhISEk0f6Lk54ulEUxa+ldIeEk8LTUkMhy7KypHdI+kRJD0n6TUmfVxTF793yhyUkJCQkXIX0PZyQkJBw8kjfxQkJCXc6ni6HwkskvbMoigeOqpi+VtJfepqelZCQkJBwNdL3cEJCQsLJI30XJyQk3NGoPE33vU/Sg/bzQ5I+/JqDqFSKjY0NlctlZVmmoihUKpVUrVbVbDZVrVa1WCw0HA41m81UKpXCdUfvD/cqlUpaLpeaTqdaLBYqikLlcjm8hz8rlYqq1aqWy6UWi4Wm06lms5kkaWNjI1w3n8+1XC4VOzn4OcsySdJyuQzPr1arKpfLKopC8/lc8/lci8UijIPrsyxTuVzWYrHQfD4P4/P7+/MYx8bGhur1ujY2NlbmzfMWi4VKpdLKWiyXyzBGHyvPA37NYrEI4yyVSiv7w7qwBlmWrdyX1ySpXC6rWq2u3MPXm7WazWbhvovFYuXewPc9/pO/s79+TlgXzhb3jO/h7/E19+f7GNaN8Vrv9fGxpvF1vv9+z/jeMeL58Jrf71puJH9WfJ7jMd2Ioylep9sYl4uiOHfSg7gJ3ND3sCSVW83i+c9b6vHfzZ/WgSUkJCTcCMYaaFpMrv6f4u2BG/ouTt/DCQkJpxU97a39N/HTJSis+9JfYRZZlr1c0sulQwL/3Oc+V51OR81mUxsbG6rVatrZ2dEHfMAH6N5771Wr1dI73vEO/d7v/Z6KolC73Q6kZ2trKxDWer2uSqWi973vfbpy5YoODg7UaDR07733amtrSxsbG8qyTLVaTffcc49KpZIODg70wAMP6NFHH9VkMgnP63Q62t/f197eniRpPp8HQcMFg+VyqfF4LOZy33336XnPe57K5bIODg702GOP6cEHHwy/K5fL2t/fV6/X0/b2tmazmXZ3dyVJ9XpdRVEE8suf1WpVs9lMy+VS7XZbz3ve83T//ferUqloPp8HkeHSpUsaDAaaTqfqdDrKskzve9/71O12deXKFS0Wi0D0qtWqWq1WEB2O9kWSNJlMNBgM1O/3lWWZqtWq6vW6Go2GsizTbDZTt9sNa1AUhcbjscbjsZrNptrtdiDnm5ubuueee9RsNrW9va1Wq6XHH39c7373uzWZTFSr1VStVtXv99Xv93Xp0iU9/PDDKopCrVYr7Nl8ftisgb2WpNlstiJESNJisVCe5zp79mwQm3Z3d7W7uxue12q1AqFnjWezmRaLhRC3JGk8HgdBZj6fq1KpaGNjY62Ys1wuw/smk4nG43HYM+lYpCmVStrY2FCz2VS5XNZwONRkMtFyuVSlUlG9XtdkMgn3RBxBeJrNZivCBGOQVkl/pVJRpVJZEVUQ2MByuQxn2ueN4MP1tVpN8/k8jIv5s3Y8m8+GnyUf71VfFJEw6Pdbdy0imc9z3X1jXOv5/vtr3asoivc+6QNOJ570e1ha/S6uq6Hnvu0v6rm36z/bExIS7ki8qfiVkx7CU8EN/Zs4fQ8nJCScVvy34j+u/Tfx05Xy8JCkZ9vP90t6xC8oiuJVRVF8WFEUH+Zkhcg0RHA4HOrKlSuaTCba2dlRvV5Xv9/Xo48+qul0qul0ql6vt0L8Go2G6vW6qtWqKpVKIJyVSkU7Ozva3t7WxsaGxuOxyuWyNjc3tbOzE4jqbDZbIXgQRqLwEMdaraY8z1WpVFQulzWdTjUYDLS/v6/hcKhyuaw8z7W5ualGoyHpkMBtbGxoc3NTpVJJ/X5fy+VS9XpdpVJJg8EgPLsoihX3RbVaVa1W08bGRiDwi8VCi8UirF2r1dLm5qaq1WpwaUCCy+VycBzUarUgisRRfNwbzLFSqYTxLJdLlUolVSoVNZtN5XmuPM9Vr9dVr9dVLpc1mUw0Go1ULpdVr9c1n8/V7/c1mUzCniFSsG6TyUTValWdTkebm5vK8zyQfenQxcA6uxOiXC4Hgg+Blg4J8XA4DGvE74qiCM/jnNVqtSBqZFkWxpllWZgf5wBRAHLrjhP+Y325HjGC57mQwVwg4ZzTRqMR7oGQwF7xXObEurBGiAiAM8J93HWyjmhzH38/n4XYwRC7R44+29d0VyCCxK4OnrPunu4KiV0x14snExNu9H63CZ70e1ha/S7eUO0ZG1xCQkLCXYIb+jdx+h5OSEi43fB0ORR+U9ILsix7nqSHJX2upL9yzUEcRWUHg0FINyDCDRkjJaBer0s6JF69Xk95nms0Gmk6nQYylee5nv3sZ6tUKmkymajf72s0GgUiCCmHwDQaDW1ubqrT6Wg2m4XUijzPV6K2EA7IIWRWUojyE7k/ODjQzs6OdnZ2JEl7e3u6cuWKptNpeH6j0dD+/n5YA0+R4Fn1el21Wm0lZYGxeFR9Pp+rVCqpVqup2WxqPB5rMBgEMp3nuTqdThAEfNxOcBeLharVaiDpniYAGZYOnRjValWSgkjAuFnDPM+1tbUlScGF0Wg0VvY4yzJdvnxZ4/E4CAych9FopPl8rtFopEajEdwYoFQqKc/zIKZwXviT9yPmMGbmBHEvlUph7DgAcH0gVLBW/B4njKeG+HriskG48LQG9o5oP68hluCwqNVqQTjySL6fxyzLwl66G0LSiiDjUX9PNeE+Loy4eMO6xOksOAR8bTx9Iz6r/ucTgbPobocncy3EiNM+ngx3oJAAbuh7OCEhISHhaUH6Lk5ISLij8bQICkVRzLMs+wpJvyipLOmHiqJ427Wuhwj3+311u10tl0t1Op0QtYek1+t1bW5u6rHHHgskbrFYBAKIWLBcLnXu3Dm1221Np1O95z3vUbfbVa/X05kzZ4J7waO19XpdzWZTg8FAg8Fghcg2Go3gOKjVahqPx4E4QR7H43GI+s9mM125ckUXLlxQu93WmTNnggWe++7s7ARBwW3260hzpVIJkXavCQEBZyzT6TSMZ7lcajKZhLlBjHEQQGCJgMeRZ66FtDYajVBzwklvo9FYsfdD4mezmQaDQdhHyO1wOAxEmTSNarWq/f19TafTQI5brVZYr6MztfbcuA3eRRUcCkTuEUu8nsZ8Pg/iSVybw10TCAdel8IdA4hA3BtS3mg0NJvNNJ1OA8mO6wo4Web9s9lMrVYrkHXG7u+NI/24B/yMeIoOYhCiA9d56gDzZ5w4YdhzCD7z9zVxtwv75ekYnhbxRHUVrlVz4kZwo9fHQo/f43auAXGj38MJCQkJCbce6bs4ISHhTsfT5VBQURQ/J+nnrudaiAyEM8uylZoElUpF0+lU1WpVm5ub2traUr/fX8kHh1T3+33NZjN1Oh11Oh2dP39ejz/+uCaTSXAOlMtlnTlzJkRvIV3Y9nEzIBzU6/VACmu1WhAz5vO5arWa6vW6hsNhmAtkejgchms6nY7a7bb6/X4gq6QiQEC9VoATUNIGZrNZIHqQfaL9i8VCo9FIs9lsxdEwm83CvSHG/X4/ROA9bz07KpYoHaZXNBoNjUajMD7cAJBSSKUXiGTc/X5fw+FQ+/v7QTzxtYGwUUug2+0G0UQ6dq1wDlzwgECzXgg7zJl9xKHBWvtecy/my5zBaDQKzyYVxom1OzcgyXGKDG6a2WwW0nJcvFlns4eY47pg3UejUSC3rIGvCak07h7w+hAIOKR0xHUIEKIQFHwf3PkQPxdniL/OuYhTL9YRd7COwDO+dUQ/vudTQTyeOOXiNhcVrvt7OCEhISHh6UH6Lk5ISLiT8bQJCjcC8vGx/BPxhsB7bYM8z7WzsxPs5BAeSDp/uv2/2WyGKG+/31e1WtX58+dVq9VCugTEfWtrayW/fblcqtlshmdICmQe4gj5HQ6HgWTt7+/rscceCw4FChIiUiCcMH5EAiK+kFYIqFvLIXtE2Lme2g+DwSBEpSn4x1o2Go0VoQEiyTx6vV4QNCh8ieUeh4a0mpePqFGv19XpdFaEml6vF2oy1Ot1ZVmmwWAQ1pH3uViBOwKC73Ub3MbPHjA23B3z+XzFhYKI4DUPIMDU3aB+ghdL9POJSMPZko7JLG4ATz2B9HvqgrtGgEfxmZd0WAySM8y4404gTsIRN3gWRB+3BQISv+dMxHUZ4i4krG38mtc0QHCKCyb6vWOBI0bsbvB5MVevdRALD08V1xIObmcxISEhISEhISEhIeHpxqkQFMrlsi5cuKDHHntM/X5fi8VCBwcHwbJO6gMiQ57ngdxAGiFqy+VSvV5Ps9lMzWZTFy5c0AMPPKDhcBiIM8UKG41GyP8nhaBarardbms+n4eIMjn4w+EwdD2QVgkP98aiv1wutbu7q0ceeUTValU7Ozs6e/ZsKBQ4Go0kKbgOvBAergcIL+IDZN5Jn9vycTdwP49Ie4oBhf+k43oQiC7z+TykfOR5rnPnzqnX64UxQLwhkwgAEH5EnKIoQrcJRBvSD6gLAMltNBo6e/bsinvB3RvScTHDeO29EKILCtJh2sRsNgv76POXFOo9eMFEr4tBZJ654VTheV4w0l0FjBnBB8EMcYM9ZD0AwpafI+ZF2kZcm8CdAdQR4WdvU8re5nkexubpEZwn1taf4YUw4xQEF3h8Ldz14kLDE2Gda8E/Y3FqBoKWvz8WJa4n/WHdc71uREJCQkJCQkJCQkLCepwKQSHLMnU6nZX6BIPBQLu7u0EYoDYBbf+ccJZKpdAGcD6fq9vtajQaqdPp6N5779XZs2e1t7cX6iF4sTmPnvKz56NjO9/e3g4WdgiykySIcZZlIWUCt8BoNAqdHba3t0PRx263G4iuV+f3TgEbGxthrLgRnPBwLwoIQuIRYvI8V7/fl6QwFyL9CALz+VzNZjO06mTcODZqtZp6vd5V3RW452QyWSmmyHqUSiX1ej0VRbGS/tFsNiUdiwK0r2w0Git1LWq12gqp9Ag6tTNI4wBedBEnCYIChRS9kKWTSa8bwb08Ko+bwmsmINR4a0cEARdDqtWq8jwPaRg4MBB2OH84HDhfw+FwxYXiqTA+dp6Fm0Q67tbgnU5IRYjrQsQigQs17ojgd3G6h+8Rbpu4Fsg6scS/A3j2E722TlBx50J8/fXUYHiiNIrbPeUhISEhISEhISEh4enEqRAUpMMIeaPRULfblaQQKad2AYSMbgBgNBqFdAVqKPR6PXW7XbXbbZ07dy6ICOVyWZ1OJxBFJ0VYxD0H3gseYhWHBEL4pGPHAIULq9Wqrly5ouFwqN3d3ZCmge2ffHfvJoBFHwcD6RXc0+sbUI8AsoOgAJmfTqcaj8fa2dkJhBoSDNH3tA1vq0n9gf39ffX7fdXrdTUaDW1vb6vX6wWxRNJKJN9z6bHe53keyONisdB0Og37yx4ijNRqNW1tbalUKung4CDY6L2gYgxIL89gnfz3kkKdCEmhcwf1JkAc5ecsIBrELgavI+HuFkg7whjtH0ndyfNcw+FwRcQC7A3rJSnUO3Chw0UWdwTEnST401MmRqORms2mqtVqcOvwvnXOG173zwJn3lMdQDwWUnbi/64F/128Fjzb6zn4evCedc6G+L4uzPjY4zEkJCQkJCQkJCQkJFwbp0JQWCwWIXrf7XY1HA5DBHo8Hms8HqvZbK5EoyFxdBWAIA0GA/V6PV28eDG0S6QughdCdMJByoR0XB/ByQuRdZ4J4fRoKc/y4ni9Xk+TyUQHBwe6ePGizp8/H8QMcuuHw2Egr144kHoM/jwnOt4C08fhuexY7ZvNZkh7ICqPqID7AKGg3W6r3W6vpCsgVtDNQjqODiNIEPGXFDo+sBYuYLDWzA1SKykQ3XK5rIsXL4bnOIGP4YSeGgisFUJKXGSQ53pdDOou+PnirPg5YF3pJEG9D7pFIPyw1qPRKAgaCC2stRNvnut1LWJbf0zK19UkcPKNE4J5k3LBvnA968NaurAQfxa4v4sQ3h3CXQ98houiWEnF4J5eiwJhJBYL/Pp1NRa8gwTjigWBdQ4EFzaerHZDQkJCQkJCQkJCQsJ6nApBgX/g33///er1esqyTHt7e9rf39elS5dClB6rvncu8BxubOT7+/t66KGHlGWZLly4oOc973l697vfrYsXLwZxAAIEYfP2hOSXu93dazY0Go1AVnkvhEg6jJTXajUNBgNNJpPQ8QAyTkvBVqsVrPiQboo7UsMB54WkQMqIsBdFEYSWjY2NsEYU3+O/brcbRAZIHqSS6yloyXvo8AAhhuh7ykVMzBA5qIVAxwVSQRA1BoOBKpWKOp1OIO7Mj5SF3d1d9Xo9SccdCNxW7wQcQuqFGxFoYuLK76gZQb0NFz5wLjAufz8pKqQhkHIyGAyC1R9xg5SS3d1dtVqt0EKzVqutOByk46g7ggXzoc2n13NwsSG247vjxgsmehoPbhTWmk4epJB46g3rJR27HYDXSeD3cU2F+LU4HYFrfC7+HndmrEs9YHzePSO+LhYHvB1qLMa5mJCQkJCQkJCQkJCQ8MQ4FYKCpJD3f8899wSC2+12gzBQr9d1//33h6g+pK9arQaiDqGEJF28eFEHBwfa3t7WuXPntL+/HwjyxsZGKMZYLpeD04G6BTEJItIKeaVAH/DodLlcVqvVCvUcvGMDBKxer4fijwDBgpaH4/FY/X5/JcrMeEkhINIsHRZz3N7eXrH0dzodnTt3ToPBQFeuXHnCCDC1DkhHgDzOZrNQPJLoM2SYqD1E1slllmXBuUG6CO+jTgPr6u9DhDg4OFgpROhpCZBlilfmeR5EDwQZxstzJYW0D0QXhBm/1h0FpIHgrqAmBmvDOfKzwD5Vq9XgxvBUHZw2rKtb+/m7Czdcz1ojksTW/rjegTsK+B1z8zNFLRKewXrw3HWCQCwuuJDhjgav98B7YqfJtdwALujFcOeEf4a4n48vfh4CYOyKiLt3JCQkJCQkJCQkJCQ8MU6FoABhIJpKNLfb7ery5cuBaBHdlQ5JrreUlA7JXafT0cHBgabTqQaDgfb398PvSqVSKFBI1LxUKqnZbOrg4CCQS6LMkHcnSk5ueS4WeIgqrQVjZ0WcVuF1ISBfEEQ6UfR6vZDaURRFEDskhZaQm5ub2traCvUPSJmgGCHzyfN8hYwzFojjYrHQeDxeES74OyIAwgsdJkhJIHLPz9QTINrtZC227ZMygVuDrg+9Xk/7+/taLBahECdkmuKD1I3A/eCiAoTUXQNeDwFRh/X3gpwe1We9GQPiQFyAMHZqxAQfZw33dkHBHQlex4Povd8rFllicYh95ZzhSljn8olTaWLBIn6mzwuRxWtzeMqB11+Iaxo4YrHB7+MOk3XgvuvSGvysrXum14BY5/ZYd9+EhISEhISEhISEhGOcCkGhKIoQBZYOyRBEuygK9Xo9PfLIIzp//rzuv//+0O6RXHhs6hDCra2tUE1/d3dXV65c0c7Ojsrlssbjscrl8kr7P3Lbp9NpECo8vaAoiuCCIIK7rj0eUV/SByQFocFrDeCugAxjPcdxABEkis3PkB+i3wgAFIys1WpqtVqSpG63q/F4HFpvQrR9nNJxLQpEAdYcEkqRQvaJ1yFpjJF5t1qtMF/G5IX7WDsXGoiQIyq4sNDv90NNAqLmOA48VcLJKPclEu3ReSeniAycJ2pKSMfEmr9LWhGVODuISe6S8ZQE0mtKpZImk0lwLGTZcf2LuG4De8w9PJruBNs/Lz4mFxmcLHvNAc6h19zwOftzXFjz9WV87L+LCuwFYqC3pnTBIa5/sO67wcUTv2ZdXQXwRK/z3LjQZ0p3SEhISEhISEhISLgxnBpBIc9z5XmuixcvarFYqNPphCKAy+VSvV5Pe3t7uueee66KBBMhJuLorf329/fV6/VCXYDHH388pAJsbW2ttAqEvMQkx9MVvK2ht1+UDsUD2ii6zR2RANGAaC9tLCk+CQFvt9vBti8pEDZImtd48LFVKpUgKOzs7Ghvb0+7u7tqt9sroofXU5C00paQ1pxcx895nktSKNToBSQdLkC4bT+OWjvJR1DAVTGbzZTneWhl6VF6hBT2jEKOvq50jCBlgpoWTpLZM0QdXBpO3t2JwTpzJnGhuJsjdiVwJhAYsiwL7hn2y2tD8Gz2QlJwAbB2vOZpBJB1T1dwIcXv4a4F/wwxBwQiT5VgXfzzwfnn2e4I8LQYh39m+I9z6O+PnQXXEgu8GCSvxy4If6+7DWL3QRISEhISEhISEhISEm4cp0JQgKTQOpHIcqvVCs6BbrerRx99VPfcc48ajYakYxIAWffXIDvT6VSPPfaYzp07F8jjeDxWt9vVdDrVmTNntLGxocFgEFr6TSYTbWxsaLFYhEg69RYQCpyQeBQWQYNn45wg3YG50qrRWz1SFK/RaGhzczO8TkcExkRKw3Q6DakIEMONjY1Qv4EOGWAymYRn0raSLg7NZjOkErB+bsvH2QHRjokra9TtdsNr1HdwZ4A7CZx41+t1jcfjUJ+gVCqFDh3j8ViDwUDScatKj+pTuBLiTCrEzs7OSp0HdxwgygAEh5is04KT9YWYu0CCs8HPo3fEQDxwgh/XFeB9cRoCaS6Qbiff/rx1LgBfY5wJXO9nkddiYcERE3DOgAsDnjLic3NXj6dzuIjiIgbjjcfIujMOb1t6I+6Ca9VWiOeY0h0SEhISEhISEhISnhinQlCQFAgrrfuIfHtxu263q/39fbXbbdVqtUBUKDQHsY+jq71eL9QXqFQqGo1G2tvb097ens6fP69Wq6Wtra1AxL1wIATfo9TScWRXOk4F8Ag1xLkoilC0z6P1iBYU6kM4gJxWq1V1Oh0Nh0MNh0NJCq0rl8tluOdyudRoNFqpKbCxsaH5fB7qUCBmIEZgy/d1o9MELTvdtbFYLDQcDkMqCE4Mj1SzDozVuyww9jh672vmrTFpt8jeA4QmnBOQe5wZs9kstMDElUDRRLf5+/Ox6bMWXscCMQLhBhdDXCwQouxkn3GyTwhHrD3zcdGKs+xpCozHz4nn+7sgEO9Z7AbxOgixOOQiDy0mgTsHXJhwx4Skq9aG11288XQX/72nfnCvuL5DLBi4aOGfx3XXOnxvrlWLIiEhISEhISEhISHhyXFqBIX9/f1QdNEjlZA6ouUUAiQyXSqVAvkk4u7Ev1wu69KlS4EMNxqNQHAGg4GGw2GwzeMCcJJFuz63U9frdfX7/UBi6CrhlnyICqSNcUPkJYXxQjq5X61WU7PZDFZ5XBHScZ79aDQKa4RjYTabBbEFcknbQggmkWBcDwgePJvuFR6t5n0IHs1mMzggXChhr5xYU+vCRRbWGhJJW0T2DGeFpymQ1gJZZ5yer+9EkXQT5jifz1cKDHqdCk93IdrN2YPQu6vBUwBYNwQUbyXKWJiDp6jgYoij4tJx+gUCiJNjCL2nHrDWnoLhggvr4kIDaTjcy0UAT6PgDEvHKQWezsA5WVf/wH8fuyp8zu5SiH/v74+f4d0q/PPpDpAnGhPzfyKkVIiEhISEhISEhISEa+NUCAoQT7daQ755DULZ7XY1n8/VaDRCNH8wGATy7KkPpFEMh0M99NBDunDhQuju0O/3tb+/r/39fTUajdAe0IkvhN5z7yWFZ0JoS6WSBoNBED4glU7KiHRLxykS1FuA0ENEB4NBiLA3m80QeR+Px8rzXJ1OR9VqNaRteB45LgbcAbu7u7p8+XKIzCN+jEYj5Xmu+XwexAjIkxeGJKJOQUHcEzhJqCfAHCGjcZFFJ4ROfpfLZSigCYEm/WM8Hq8U/4OkIyiQStLv91ccDpICoYassvZO/FkP5s1++M/xmYKsOgnnDHg6Bmvi4gBrwDpQFJJ7x2vjnw0nyF7IMnZLsGfupvB7cTZZKz+j/n5fS8bOvsYpGz7+2FkQ10JgLfw6TwVxcYS1dceRj/NaZN/TcdxxEqdO4JTwZyQkJCQkJCQkJCQkXD9uWlDIsuzZkn5U0j2SlpJeVRTF/5tl2T+V9MWSLh1d+g1FUfzcE93LI64QbyLw1Wo1pBz0ej1dunRJly5d0mKx0H333adms6lWqxVy8ImSO3lYLBbq9/tqNpsh9WE0Gqnb7eqhhx5SlmU6c+ZMcCggYEDKXFDwwn3unhiNRiGdAKINeYXQUZSRnz21AiKLEwOSTT0Gn9PW1pY6nY5KpZK63e4KicRtgU3+ypUrK0ULAY4J6ZB8d7vdFYeErz0kEjGHTgs4CIjCI1pA1Jgz76c+BuJRs9kM11B8k/vgyKDVoacrsKbMk/XzNBPcBk4YSS9gPYHXA2BP2R/Iv58JRCqfq5NS9tXrF3gKQlzbIHZIcE/G6qkhnmbiDomjz+RKzQHu6ekn7AfuiHX1EtxxgLDEGnmXB382axWTfM4lgpUXUuX3CCRxbRJ3Nji81aOvL3NmLeI/Y6eHFyjlz3gOT+S+OC24ld/FCQkJCQk3jvQ9nJCQcDfjqTgU5pK+piiK38qyrC3pLVmW/fLR715ZFMW3Xe+N3NYO2abTAHnwkPuLFy/qfe97X6iLcObMGZ0/f16XLl1a6YZAzQNSE6TD/PM8z1cISa/X0+XLl0PUVlIgonmer0TIY7t6q9UK7Rkh/pASt+Ezfgir/47xMvb5fB4INSQ2LLgVYPQCk34PWm5C3M6dO6eLFy+qVCrpypUrKzb++Xy+IgwgakCo6ELAvrhzIM9ztdtt7e/vazgcrpCujY2NIEp4lB+XADUgGo3GShFAz+/HSdHpdFaEJgokkkbhaQ5gsViEloy4SDyCzp6QasLZ8L3zlALpmPi7QOT74oIBxBmByW370mpBR08z4H04QVxUiJ0BzN3PpNv44zoHkHYXUrzLhLsAvJBi7HBYJyggOuDKiOfpjhlPu3AXwrqWnX5NLMbwXAh/7JjwdV0HdyK5o4PP122GW/ZdnJCQkJBwU0jfwwkJCXctblpQKIriUUmPHv29l2XZ70u676kMJs/zQGCJqFNXAdIyGo1C1L3f7wd3wYULFwJRgRxMp1NdvnxZ0mEqwHg81ubmpjY2NlY6RRDlz/N8JSqdHdUUIC2A3H7If0xmm81miH47meI50nEkl+KGTsg84oplH+KGsMDalMtldTqdUMsAIupugFKpFDplQBydtEuHpHJra0v9fl/L5VL9fj8UZiyVSmGM9XpdjUZDvV4vEPxYRAEQQrovUGQRIs/vB4NBIMx0nWDszLPf74fUACL/tNRkfAgeLth4ygpuDI+K83ei4pBhT23xfSKyj0OD81OpVIJ7BnLKfsfRddbKrf6F1TNgnbzThXdFcDcABSvjsUO62Wcfi7fE5O9ejBIgIOA84U8+E8zRU2JY/7jmA/eN6y5ICufdO494WoinQ8Tii//ngoCLAQgSfubjNYzbdpZKpfB5Yg9crDqNeDq+ixMSEhISrh/pezghIeFuRunJL3lyZFn2XEkfKulNRy99RZZl/zfLsh/Ksmz7yd5Pfnye53r/939/Pfe5z9X29nb4x73nkA+HQ+3v7+vRRx8NdQuyLFOz2QzuA4gSRLDX6wWyWq/Xled5INwQ+cFgEDoiQEzcJeAOBYpD0oYRAkRUl9QJCJbnz3tNgY2NjZXuE3GUVTomRZ1OR+12O6QgFEWhZrOpCxcuaHt7W8vlUpcuXQp1FbDmt9ttnT9/XufOnVOz2QxrfbRvgZhub2/r/PnzOnv2rOr1ehBv+v1+6CBBagkkfTQaraSDQOi9KCZEDzEGR8V0Og01LGjJ6dH3PM+DIMF8PFWEeTAXL7g4mUyuSknAvUFrUhcg2Ef20okq80IMoI0mDo3Nzc0ghHEvSWFPHU5oXVCAaLtjwAUlj+77Z6ZSqSjPczUajZUaBZxZhBlen8/nK24fPjsQZwi1iwQe5Xe3jLuJPD0CgWhdIUU/18w97vAQn31387iQ4evo7TZd+PDxcC9PbWHNvTgj4hbfD7cbnup3cUJCQkLCU0P6Hk5ISLjb8JT/xZxlWUvS6yR9dVEUXUnfI+n9Jb1Yh2rtt1/jfS/PsuzNWZa9mQggtuetrS3t7OyE6O9gMAgEnjoJdDYgpaFWqynP86ui8ES2nbBAtvh7o9FQnueaTqch+g3xgOR5Z4Z+vx9aWCI6SFohfbgCvJq+E7vhcKjRaBSIP0QXSzgpAuTUQ1C553A4DB0USHF473vfq8cff1zdblfD4XAlPaLVaqnT6awU84MgLxaLQODr9XqowyAdk3dINekMs9lMe3t7oXAi5AvxBdHFU0lcBOAa3B6Qfta/0Whoa2tL0nFKAeTZixnyHLfy8yzaPUKE3cZfrVbVarWu6rjhhRzZq9jVEQsm7XZbrVYrFGVEFEIEgeiSqhETdT+b/MczcEm4a8VFISfa8bn1Lheks/hY4gKmnuZRrVbVbrfV6XSCC4Tn8blyog7pX5di4OkKrLU7GRDvOCvM12uQQPL5PHlNk6IoQgFT0nc8bYUx23ePlsvDdqt8jjjnscvkdhIVbsV38UyTZ2q4CQkJCXcc0vdwQkLC3Yin1OUhy7INHX5x/lhRFP9JkoqieNx+//2Sfnbde4uieJWkV0nS9vZ20e12NRgMArHudDra3d3VYDCQdFy1H3gkmsjrcrkM+fzeTg7bM6kO9Xpdi8VC3W43kA3vBgCRgGw2m83QjnK5XOrKlSs6ODgI9ncIIOICRDW2Xzvo5kBKAgUK6XIAiYfYUTNBUuhSQE2IPM9VqVQ0GAz02GOPhTSJdrsd5oNNn+KVscAym820sbERhIXBYBCEk9lstlJrAZKNKAAJI/fe94dItM8bIsp9vGglggPPIxWA8ZEa4aQPguqFExeLhQ4ODkIaCsIJYhJReC8sKR0TdEgsjoP43ghbdLxoNpshbcTz/x3Mx2tOOPFFuGL/vNaApyZ4AcEsOyyiidjmz0UUcscD5N73P3bHeC2GLMuC+yJ+T5xiQPHFuBglZwNyHzsz/LzQ3pX5cj6v5XRwtw3jYt04d5724O4TF2a4B2kyLprcDrhV38WdbCf1yUxISEi4CaTv4YSEhLsVT6XLQybpByX9flEU/8Zef9ZRLpkkfYak372e+5VKJe3t7YUo9NmzZ3XlyhXt7u4GIkU0m3x8SAikhuglr2VHdREkqd1uh0gyBfsQFIjIe8TcOwZwb9osentA6hlQEwASTUcJCDLigxeExCIPiXFrO1H3xWKhVquldrsdxgbRPTg4CGkTjUZDu7u7euihh7RcLkNbx+l0qslkEpwOdMzwYo6SVlwUs9lsJe0hy7KQ9uBRbcQPOizENSi4Li5wOJlMwlzZV8QI7kVOPe0hIX7VanWl7aEXE4T81et1TSaT4NQg1QPCi9OCFJgsO+xi0O/3w9jifHt3aCCGkIIDYUao8ui510Lg+YzXI+kQXhdqJAURhHQN/x3pOV5jxF0NLpR52o2Taz/vsWvCUx34fHjNC3evAMi/k3nu62ff6zbEBS3jOhO+t1wTC3T8DhHF3SiMg2s2NjZCOpW7Ovy+Lrqcdtzq7+KEhISEhBtD+h5OSEi4m/FUHAofJemvS/qdLMv+z9Fr3yDp87Ise7GkQtJ7JH3Jk90I4jKdTjUYDJRlmRqNhtrttkqlUkhrgAxRNPDBBx/UPffco/vvvz9E+ev1unq93kqbxTzPV7pFEPXf2toKUeZ2ux2egWCBXZy/LxaLYLmvVqsr0WVJwUpOBwPez+9JXSiKQr1eT/1+X71eT5ubm4H8QOwRS6TjfHkvfAfhGQ6HKooipDRMp1M9+uijyvNcvV5PGxsb6vf7gZA3m80QjSeq75FnCD7z9joG0tUE0YkqhM6j6nF0HVLKvNzBQMoLr7HuceoBYg9kmbl5iornyVMrgLXD5YA4hGCBQOL1NmgJ6gVCEWsAIgLny88e42UtWCPvzuC1NWLS7eKKu16cAMdOGCfDuCrcOeE/+xjd9RHXKXCBwIUK1g0RwO8dFxP1tAcfv9cw8LPk6Upc60UUXYSgDgefEz/Xfi3gs+jCnXQsAvm63Aa4Zd/FCQkJCQk3hfQ9nJCQcNfiqXR5+HVJ63qy3XB/Xf+HPoSiUqmo0+mo2WxqMBiskK9+v6/RaKRHH31UDz/8sJ7//OfrOc95jjqdjlqtlt73vvdpMBgEQuoV5KXjFnoUrSPCy/XD4TAQTu/oQFS71Wqp1+sF0uMuBXL6nThDvrHYY8Hf398PLgMn9VxHm8Rut6sLFy4Et8W6iDa1IPr9vmazmQ4ODkJuOHZ/xkHxSjpXIKAArPMUr5QU6hEwPp4JefNoN0TM9xVhII7Cu80chwI1Ekh78OcjADjhhbx6agspIqSPIFRQA4P7OtF0IoprAtcL54H0BhdZnMziSvG0Fd9bF6LYH++AgCODmgJO7r12gKc28N5qtbrSYcSj8zzX78mc48+hi1suiOCicfdGnI4QCwZc4/uFKOGEPz43iDw+fxcpcGOsEx48JcPFCJ+3d8mgk4M/6zYSE27pd3FCQkJCwo0jfQ8nJCTczXhKNRRuFfwf8EQYqaPQbre1v78fiFK5XNZoNJKklS4BnU5Hm5ubunz5sh544AFduXJFy+VSm5ubIapMBJpOD0T0ERYgyB79x1YO8aDAYa1WC2kMvIeIOO+N5+g56tSKmE6n6vV6gRyRloAw0ev1QgcKyCfpChBvL6xIOgZ573GdA+m4sB6tNHu9XqgrANnDFUIhR+pLxG0eqUHgEXWi8ayFpKvWyS39nn7hBfoQSXg27gEXKzzS7nPc2NhQs9kMtSVYL9wOtGaUFObt4glOEy+gGBf6w6lASosTaF+DuDuBd0DAMcB1iFqQXe7HvrqDwQUb3s8c/Lz5fSDyrLV31/B0AiL2/N6dBt55AoHHUxC4P6KAixPAz4I/ywsoItJ5UU/G7a4KT5/g3j5Xr5XA3NhD5uEuCf/MxmuckJCQkJCQkJCQkHCMUyEoSMdEheh8p9NRlmXa2dlRr9dTURQaj8fa2NjQaDTScrnUYDAIgsLGxoZarZYuXLigdrst6TDSTo48+ee9Xk+lUimkSHgqQblc1ubmZojcU/SRughu4XeiBSF0ok0kHDJFnQOuz/Ncm5ubwUkA4SLKjUgAOev3+4H0IYK4sEGUvN1uB0IKOY+dA5JWag+QS86cYsdA/F6IH6SdCL4XyIyJ2Dqy5nn4bpmfz+caj8dqNBphr+r1enAp5Hm+UgPARQV/Vr1eD2JEXMHf3+NiiIsK7AFknntQPNBdK6wTAouklQKFbsH3dAQAOeZ6HBUupHlBQ9wNPhfIN2tPqgxiiK8vz4zTGxiDiydxkUZPhXDHBaKK123g7AFP2+DzjlgU12LwOfm+xjUtWBc/Sy4Q4hxCvCAdxgWeWOxhfElQSEhISEhISEhISLg2ToWgEBdZq1QqgahubW2FTgO9Xm/l+sFgoEceeSQ4GCQFot5sNlfy4qkF4O0MiQaTC14qlUK7QlINxuPxCrmFBHk+vtvrvQOCdyfwSDdkmroN3W43uB2q1aqazaYajUYQPEajUSCQkKFWq7WyZhBr5oOg4B0wIIpxJwlJgRCTCtJoNELqB697G0Qv8gh5nE6nGo1Ga0mgk12IKSIPLhDpmEiyT/yM4OQENybPnB0EFsaKE8RTALwgoP/J2Lw2A60evbCmFz90Uoq4xBlw94G7BZgr8Ig7aRuQZBeu4joSXjPBx+eOAJ8vz/T3+rjiWgNO6te5DCDv8Toyp7h+A3N0ocSdCjGZR6zwM+0dPbgfc/C2pO54cDHM0zxioQQBwueQkJCQkJCQkJCQkLAep0JQIArsVmsIZ7vdVqfT0cHBQSAiREIXi4X29/f1yCOP6OLFiyHyv7Ozo52dnVAPgc4BEBKizxBFSNhoNAr38CrwFClECCCKzb1IN4A88T4nN5AUnlUURZgfogUtFSkgWavVAoHytpkeUacWgKTQjjDP8+DSiIm8R7VdLIDwMYZqtRpqKXjxPE8pYD6IN6PRSIPBIDgo1lnGPUcekYLxsDbUoGA/uAfrTiqEdOhCcWLurgOPOvs1XtOA57PPlUolrP90Ol0Zq4sG8XoyLggyzhHm7G0WPdIe1yDgd5xNry/As92+zz15jqdXcK3vuYs0vN9dBiB2IsTRe+br67nuvYhZ3nUBocfFAy/w6XUSeA/igwsIrEFciJOUqPjceZqGiwrx+YhFloSEOwXv+MEP03337Z70MBLWYLff0LM/OzUASEhISEi4/XAqBAX+kQ9JgDBtbGyEbg87Ozva3T38hxCEWlIoQEjLxo2NDXU6HW1vb6ter2tvby+kSzQajZUcfizxPHs6nWp/f3+lmCN1DDqdzkrE0zsVEP33wo/j8fiqmhBYxPM812g0Cm6C0WgUiB9CQ6PR0GKx0Gg00t7eXiCfAILFfUnPGAwGGo/Hqlar2traknQcLY/rGXgNCGoukO7hpDAmjJBWBAlSLM6cObOSm+/WdCenXoQSUYSUDcgu1feJ1vt92BtEEe+uwD28hgHPc2LtKQDSITkej8fhfV4UkL2F8HrbUMgypBdXAmkuCEWsJ8TZbfaQV861uxp8rVx8iNM8/Ewwr3WFD+PPnRP7ODIfOxXi1xFWOL/u2uD33iLSXRvumvBx+3owfoQ51sSFFq8PwX0QTvw8+Ln1tXFHSuzOSDUUEm5nDD/zw/XH/sFbV1579YXv0LMqrRMaUcITYbic6u/95sdc9fr/+bYXq/0TbzyBESUkJCQkJFwfToWg4BFQTxWo1WqhveNwOFSr1VKz2dT+/n6IQI/HYz366KN65zvfqVqtpvvuu0/b29tqt9taLpchUuxRXOnQ4k+bSYg9rQF3d3cDQURQ6Ha7arfbgZwQycaev1wug2ABGcV5QZ63kzLPmScaPpvNgiuAHPp2u61msxmKPBKxRUBotVrB1UDtBdI1Wq3WSsSaORG9hiR7jYLJZBI6T8RF8rytoRchhJyTrkHtAAg/rgci927LJ+WDSDO1CUhT4L9arRa6U7hbwMmzR7wh/fxM9Jq942xAft0dIx23sOR6bzWJyOHWfRcmvAYB6TAuoEBmXdDwtULoAd65gZ/Z01gocAIduxTcKeFkGZEkbtHpqSVcF7sKuI+LNIA95ewwTy9A6u+n64e7EBAP3Inha8xzPJUIVw/fI74esWjiBRrdScE8XMRLSLhdMP/4P6l//m3fp4+px79JYsJpRaNU1Xffd7Vw8L+/5fV61zedDz8vVdJrPug+KTmoEhISEhJOCU6FoCApCAmQB0hps9lUs9lUnucrhQ25djqd6uLFi3rggQfUbDZ19uxZnT9/XltbW5rP5xoMBoEAYpP3tAcng5AYigJCWOiEAFHlXjgYJK2QF2oDDAaDUGeAFIrhcLgioEDCILSTySTUTCDy32w2Q4tC6ZgQ052BVoPNZjPUh8CtcO7cOW1sbISILfMkeux57RB5aiQ4mfJ0jkqloslkEpwfpB2USqXQVpH2iQcHB0EkYa6sXalUCl0uJK2QQt8P9q/dbq9Y4IG/x1MWXMBxAUTSSi0CXA84QiDUCAkIBwggPANXC/eTFMgpZJm5O2JBycfIniCsVCqV4MLgOo/wx2kUpMd4zQv2NC4C6euA2IM7xMk970eUcYcF93eHja+xCym8FtfYiFOJ3K3An4h23AtnC+fBaypUq9Wrznu8R+5w8PH4uOOaEQkJpx2V++7VP//1n1K79Ot6/40kHtwJ+Kh6SR9Vv7zy2osfeDD8/V88/Ck6+Ogrz/SwEhISEhISAk6NoDAcDrWxsRFqJVDgMCZosQ15sVjo0qVLete73qVGo6HnP//5Onv2rC5cuBDy8b2DAkSCDgaQjFqtplKppK2tLb33ve8NtRGIfCNAuEWaGgfScavIUqmkVqulPM9X2jUSKb548WIQCTqdTiDLzWYzzIvODBDaOJLOf5PJJLR3bDQaqlQqK2kHRIJbrVYg+N6hwOsosK4IFBBKCBv74DUdeB856zg9arWaGo3GSrS7Xq8HMaZarers2bNB6KBNJM9DdPC1pfil132QjusW5HmuPM/D+HBd+D3pqMH7iKB7lwDEpNiC7+kDs9ksuCUg/HF0HoLOfb3oI386Qfa9p41mXEAQuLuD+yAGIUzF6SD8x9mnRoULA3mer02NYG6+FnHxQua07jPq17nrBTcG82S91t3HxQoXGuJ14BzSCYRnIgp5Ss66MbLP61JKEhJOM0qNhn78Ta/TZimXVHvS6xNuX7zYaie95nm/rP5Dk5Xf//mv+zva/PE3Xf3G9J2WkJCQkPA04FQICsvlUqPRSP1+P1iVz507p62trUCUIKl5nocIJIRjMplob29Pe3t7gYxBeiCxnpYgKRDP0Wi0Yu/HDTEajYIroVQqqdfrhYjn9va2Go1GEB0gJpBdujN4fjokzqvUQ5R5LoRvPB4H8gvBbzabYYykJ1DvQDoujggpHAwG4bnUiKBOQlEUgXRB5lkzIrze/QI3Avn8iD1EySHpTvSk49QD5sjP1WpVnU5HZ8+eDeSOlp48B4EFISTLsiBS4J7gNbo6+B7EY0FggHgyDqL2rJETWEg25NlTESDxROjX1Zkol8uhHaK3b/RUEU8vYD6cd++qwTr7XrnLZD6fhwg/ooi3jeQ9/EnqCOcHF4I7VTijXnvDo/teQ4JxeEqN147gdy4KxIUXEWe8AKgLQjFYH4RBFwg8tQS4OAYQlrjO6234XBMSTjuyZvNITEi4m1DOStrMVvf9jd/6vdK3rl73vnlfX/KBnyRJKhYLFZNVESIhISEhIeFmcSoEheFwqCtXrmg0GqnVamk2m2l/fz90KsBK710ZarVaiKKTh3/p0iU99thjuu+++0K0M86RXxeZpDI8pApC5+RqMBiEQo6dTkebm5uBfOBMQHAYj8eq1WrqdDpBFKBtIVFZhAGIU6PRWCn8R2cKfueFASn2h0NhOBxqOBzqnnvuUbPZVK1W0+bmprrdbhBCvIWit1iErLI+FIV0K747MqhJQYFM5oZYQnQcoQVrOp0ziKJj65ekTqcT0jp4Fo4Ed4E0m82QduGvQUR5Puky3J/74kaQFNYfQL69loAX02RvpeNoOdeQ4uJtQ11oYFycJX6GCHvBTNbMW416AU2v2eE1J0iv4YwwJ8447+Oz5Ckh3j2E+Xk6hqfbeGcHr23gBQ55H0JRXAsh/lwitkkKe+ZihK+Lw9cKIQJnD2fNvyNiEcPPt7+GwOh1NxISTjt+7q2/fNJDSDjFeE6lpZ9/5+slSV/0vo/WYy87J0la7h9oeZR2mJCQkJCQcDM4FYKC/+N+MpmE/yBhngvuqQ/+fhwF/X4/WNYbjYYajUaw5EPgIIlefV7SSn97j1g7scJFgZ2+1WqpKAq1Wi2NRqNwDwhRrVZbif5CfLzgXb1eD5Fw3ABxZNgFFaL++/v7gWDT2eHs2bOB+FOfAOs7YyFlAVIKQYcQst7MIxZhIOtcS1qJF3B08ua5+AgA7G29Xtf999+v5XKpBx98MNSYgCxDwHEVQBqd/OFiWCwWYS3iApTL5VLNZjO4LhAO2GfOHHn5i8Ui/J7z4KTf/5SOuwz4eUaEwVGBUDUajYKo4PUPcGdw1uOih9wzjprzHC9QiROFtfYI/nQ6XSlwSTFORBkXDbgn54WzjEDmIkJcpBOxKhYZuIa1988hr3m9g3itXchwJwrXxG0042KSvn/XSs3wIo0JCQkJdxJ+8Dm/Lh1lRDz/P36JXvijg+Nf/p+3q0jfewkJCQkJN4BTIyiQv0/Uvdvtaj6fB4IHyfKovr9/MploMBiE/5y4E2kcDocrBAjikWWHxfUoyAfRIlKJeOBRYohfvV5Xv99fIa7L5TK0sKRAIITSc/8h9s1mc6V1JRF/ItOtVkudTicIIRAqLO4QO7eeU6Rxb28v2O49jQFChq2fuUO4IJpewBG3RZZlyvM8rI/XYvC8f6/3ALmD1EuHAk6j0dA999wT0gMuX74cCl2yfqwLxBNHgBNCt62zJjHJ9wJ/koJA42eQOXtEm7OG48DTOBC4XDCStCJ8cS7cZUJdDheOuJb7My5fV651outOBi9+yT66IMDaOBmvVCrBxSEpjM/TKxhHvV5fKTjJ7328EHEXpjzVwAUB7/gRz9fXxV0E3p7SW1TyPlwq7sBgLz39xMUEniMpuD5I90lISEi4U/HAZ3+f9NnHP3/4171C9f0jUXZWqPoLv3lCI0tISEhIuF1wKgQFSYHwQiKGw6Gm06m2trZUKpVC0b08z4P1nXoL0iE5pbOBk1uPYNJSEXLhZK4oCu3v72s0GmkwGFwVtSf9ArIHocRZkGWZms2mqtVqIOfScVqBkybGRieIdrsd0hpoD7muMJx3L3Brt3TcuaLf76+QyVarpW63G8YQkzLGEhNjj5CPx+MgSkDUPM+f5/t6kgJC5J918mKJCCqVSkVbW1s6c+aMZrOZut3uSlFJxk7KihfcozuIdNwpgbQKSLQLVkVx2JkC4QhRBmJL9J37e6cHCKk7ASC+jMtFB36/zooPIY5TIrwrA2fExRIXDByM0btxuPAVt0WMSb+nlrAG3iLTz3zsPkHMwG3APaTVFAnex3z9M+rCg9es8DXkTPnf4/ag/nlgneLPorteWNMYfH5SDYWEhIS7CW/6V98T/v6uWV9/+Zu/9qprzv/6ZS1+/w+f8D6V5z9Xj3/8s274+TtvGyp7/Vtv+H0JCQkJCSeHUyEoZFkW8uUlhWj1dDpdiaBTLJD/nIxAxvf29jSfz0MU21veDYdD9ft9SQrOB54vHYoSk8kkFDuEdEyn09BFAVIPefF2dxR8zLJMvV5P0+k0RKSJhkNK8zwP9RfG47E6nc4KKaPWAsQGsgipG41GgayRg451fTweq9vtanNzM3RGIDILseQZnnoA8fWUACeETm4h6VjtWSeEB9aB12k3SXoI9xyNRppMJup0OnrOc56jZrOpS5cu6cqVKyuFEBEnSLfAKQF5dvLrlvu4BSTjIrrutQoodCkpnJlqtapWqxWKXuIs8TPAHlBM0B0Cfra8daWn1ZDn768zJt7jhQkh44wT4uuk3V0JiAYIMu72kI7FFNaIdcVpw+eFwqA8l33hHu6+8LQe9pr5ucsGRwhr5Skz/v0Q10K5FtF3l4Y7MdwlwxjctQH8/qxJQkJCwt2I999o6c3f9D1Xvf4hv/F5mv32R6689pxvOqzPUD57Ru/+8hdp8UF9veNjrn7vk+Fz3/1xeusvHd77+f/uEc0feM+NDzwhISEh4RnFU/rXcpZl75HUk7SQNC+K4sOyLNuR9BOSnivpPZI+pyiKvSe6T1EUunjxou67776V1naepw2cWLsDASJycHCg+XweOjH0ej1dvHgxREXpJEBRQMgWzxsMBoFkUG8AgthoNNRut1cq/zMWv99isQj1FCDuPAfBgEj9YDDQ7u6u2u12IKO8V1K41olZnuehcCJiwmQyWSGf4/FYjUZjxY3B+rmdndQAjzx7ygFjoKAf78NdwPvcKcCesjcQx+FwGOotEKWfz+caDAbqdDo6f/58EG5wKkB+nZCTOkJUO8uy4EyBfOJGkI6LCnpHBy8OiCDFvTl/uApcwJCkfr+/QlBZN84KPzMGiC1pOawpZ4yoPfvjIpKnGzjRBzzH3RjuVPA0CtIsEH3iooMIdYhLOG3i57H//nlElFjnVEHI4GfOFZ9vP5dxmom0KniwN3z2vLConzs+0147wgWedbUUWD/+47NxO+BWfRcnJCQkPBn+70teI71k9bXn3fvFUpGp0pnqDz/2u2/63q993q9KX/KrkqQP/ROfq/1HX6IP+vtvlw6eyoifGaTv4YSEhLsVtyL89ueKorhsP3+9pF8piuJfZln29Uc/f90T3aAoCr33ve/Vzs7OiqV/NBqFyLbnQDuRcwIAYVosFup0OiqVStrf3w9kTzokg17RHyeAk0/qJlQqlZB6MRgM1Gw2tbW1FdwFi8UipBSMRqNAZBuNRigUSGqGR1ghLjxjNptpMBgEKzZzqFQqoYAfaQLSISHO8zw8ZzgchrWiw0SlUlG325WkUJQyLhrI3xE8EBZGo9GK7X/dentkWjoWgNy6Tp0Hxo7QQoFE1gKivbW1pa2tLY1GI+3v74dOFggC7BN/Ovl08o0I4ASRsTpRJU3Bo9C4HBBpcGog4EBWcbrw2mKxWLHI46TwPcep4XsAIXfRgNecfAOew15IxySfNfF1QZzwlAZqdPBZcgJNagg1MhBp1p0dT1FgvPF1pC34HiA84JBhHVy4cDHLa1XwJ+kcrIWnvTAvhDhPsfBx+3ohBPrnk2tvIzzl7+KEhISEm8G7P/X7b/k9f/tPvVaS9Kff77M0+/L6k1x9apC+hxMSEu46PB1+3r8k6WOP/v4jkn5N1/HlCYGFxMznc+3v72tvby/8477RaKxE2yEaXuRuMBhoOp2qXq+r0Whoe3s7CACIExA4yDs1AiBPVMCXpDzPdfHiRe3v76tarerZz3622u12iNCT1oAdv1KpBCcDpBSy5eQTF0Ce56EzhaciIIBQzyHPj/tMQ7IajYZarVaom0CNCNIyIK/AK+6TqsBYvG2lpKtcCl6o0MmuFxxkP5gHr1NIkz1aLpchjYBOFIPBQK1WK+xbp9MJYgrpCBA9T02IuyGQWuJEmXPlaRKSggDkqSPu1uD+1IvgdzzDhRMIMcTWi3r6uFlXj4hDirkn9Qu8QKN3hIiLTa6LwPO5YE8QFHjNx87+utji3TMQcLzQYVzLgbPvxD1OW+A6T8twMehaqQ++t0VRhG4tfq91RRzZL9wWPIuzwbWefuJrcpuJCetwU9/FCQkJCacJb/jjr9NLmrsnPYybRfoeTki4Dlz5oj+tF37h26/5+8dHbVU+4X3P4IgSbgRPVVAoJP1SlmWFpO8riuJVki4URfGoJBVF8WiWZeev92aQBggT6QCS1Gq11Gg0AhHmWggPueHY6ilIuLOzo06no+VyqcFgEFoqQqwnk0mIcEK2vII/EVUi5USwj+a3UmneCRttHilKCGEkck5Uvl6vhygvc9/d3VW/39dyuQyiCgScCD3Cx/nz5wMxG4/HOjg40GQy0c7OzlX5317Y0OsJIIx4frkT2pio8ieFJKXjCDPrAXkmok4tC9aNtA1cCJA578BQr9dX6gN4pJ/UiTgtA3cGogwpInTJcFHFx+SOi3r9MBJCAU+KgfIeRAEEKc4B44fke90MSSspD6yz1+GAtHMt7R1ZeyfMLgB4EUh3PgC/1tOEvMihF4dcVyDSnQCIYtyT67ymgr9OK1D2nvmzzoh77KWnjcSOARcQSU9hTTx1xFMkODOseezwcEcIQgV7cRu1jbyl38UJtxc+4q2zkx5CQkJC+h5OSLgufMLv9lTWai2sD2t8jz7mCYxIs2Kh/+93X/CE9/2VT/uQVHflhPBUBYWPKorikaMvyF/Osuza0lKELMteLunl/AyZJRIPaaELApFcj2Q6eeUf/7gN+H2e50GE8Ag+ueSQwLjrQWw7Pzg4COT+nnvuWWn/yFghLU7C45oFRLhpkdhut0MUHAeGt3ocj8fa29vT2bNnwz0pmlipVHT27Nkwn93d3ZBWMBwOQ9cEdxu4s2BjY0Oj0UjdbjcQWRcJWAsXTSChTpRxVeCIaDQagQhy37jF5Hg8DoSRKLxH+LHds78QQIgs82Jv4y4aDp8zBTshyl5LAoJJKgrrwz1Ie+BckIriLgKi5xDeOE3Ei1bGZw5wllkPfsc587QD35P4Pr5nnD0vDApIKXFHAWvmgpe7E7iGM879gadu8LnAXeA1RYC7AdzJ4w4GFy7YN0+/QVSInRE4TNyV4MUbeb7XnvA0kNsEt+S7uK7G0zW+hKcRX73zm1Lau4SEk0b6Hk5IiPDu136IfuAlP7ry2hMJB9fCRlbW39154Amv+ehf+QONi40nvOZm8Y+/6uWq/+xvPC33vhPwlASFoigeOfrzYpZlP6XDMj2PZ1n2rCMl9lmSLl7jva+S9CpJyrKsgKRRlI8Uhf39/VAcDUt8rVYLKQcUBoS4en444oOTTUjdZDIJEWtICBbv8XgcSKt0LBowHmoneLX48Xis4XCo5XKpdru9YuOGnHgbxMViofF4HObjjggvFMn9B4PBSiFKL/K4XC61ubkZ0iOIyCJAOCnyrhfMjTQT6bBdZ6lUUqfTCQKPF5ZkrBQqnM/noVPFYDAIgsnRHq+QOOk4dQIRJ8uy4CrwSDprB6nld8PhcIWcIxC5M4F6FpB9SStpF+w1zhMcI26fZx4uELDuXlsAsspaVCoVTSaTlVQGRIVWq7UivOAqcQLs9Q4YF+vgdQkg28zJSTVgLogIcaqBdFxckz3hsycp1Pfg3HE9Y4/rHrizgX1mHb3bRuwEQvDimZ7mEKcxuJMAd5LXQKEuhq8JIgTCCXNExPJ6Dp4S4a6J045b9V3cyXZSn8zbCB/3OwN9/uZva7vcOumhJCTc9UjfwwkJ0vAzP1w/+R3fHn7eKf+matkz82+pl9Sevuf89Pd8h8bffX1Bppf+m7+ve77j9U/bWE4jblpQyLKsKalUFEXv6O+fJOmfSfoZSX9D0r88+vM/X+89iUh7cTfINN0ZarVaiIDjCnBLvnRoVadIIQUMneS4owFBIW7Vx7MRIxAb9vf31e12Q1FBikd2u13N5/OVtAzP4XbbOrZyhI+tra0QCa7VatrZ2dF4PA7PR3ygVaRHrKVVFwHk1SPfno+Obd+j441GI8x5OByqXq9rc3NzhUhDfqnPsLm5qWq1ql6vFwSVXq8XnoXIw32pNYE7ABILASXKT+0HyGM8Zs+fl47TTHgmBBPRg5x4r7fBz3meh3QP4KkItB7F9UGaBwR0Op2G9SBdxdM6+NNTIJrNZngdwsy1EGzpWDTgjDCneH8ZK3Pns8N9EYFwsfCa1zrwZ1FfgXuyhl53xLsfuGDmKS+eboDA5J0YpEORh/PA5xuhx/eYeTEXxuuFE0nZ8TPrbgXqhiD0sKYIE74enAM+86cdT8d3ccLtgWdt7OlZlSQmJCScNNL3cMLtjGyj+uQXrcEr//DX9AEbtZXXSvotlbM77/9L2+Xrdw791td+l5Zfe7Uu+NB8pFd8wMdd9XqxWEjLxVWv3054Kg6FC5J+6ugf7BVJP14UxS9kWfabkn4yy7IvkvQ+SS+7npthhYdIeJ6/pFC4j2J8cQ45r2GrHo/HgQx4ITeiwxRo5JqtrS2dP39e8/lce3t7wcEAWWw2myEqPRqNQg4/BAtCBlEGTuZxHECW5/O5JpOJRqOR2u22pMPoabPZVLPZDDUfNjY2NJ1OA6mFnHoOebvdXiGrpVIpdI4A7mxAXPFIurRaHJM9oR6BV+SHoEFS6UrBPaTjaDYFCWez2UrePGkPuB5iYlcqldRqtQLpd8s8Thb234kja06tDFwbPgev6O97FRc89I4Ai8UidNTo9XphvIyf67zDhDscIM90FyHlBmIL2SddgvPi0XePnnsNBl+Da8HFLE9B4XPBmEajUejMwVnBrUH7UBfIEBJYS84mgpu7EvzzGjsmXMiIUxf4bCAs8Hla55xgDKSC+PMkhfPudT/YK08JiUWGU4xb+l2ckJCQkHDDSN/DCacG5TM7Uun6217/hf/xdn351oM38aSUnrMO5aykdav/vI2WfuG9V6dNvPDVr9AHvPKdK68tLl16mkb39OCmBYWiKB6Q9MfXvH5F0sff6P16vZ7e9ra3aXNzU1tbWyv52RBHCCHEyvPFPSIM4Y87FfB3bNbkaUuHRR+dcEOupENysr29HUgRIgDRUqz3CAqdTmfFtu5jhOxLx5Z0j/CSAuBknbl6vr+vC/b+RqMRihwul0v1+3212+0VYkY0l04CHv0viiIINq1WS8vlMhBnb93nRfxYHyL3EGOEGidnpG9AlJ2Y4lLwNAicE57OgsDia+j3Ijrv9QcQFTyCjXvF1x4yC9Hneh+7d8JgT3meuyX8WbzO2Wo0Giu1BDzSjhXfUzg4+76HnraAWOG1B3BReCcOzhLiB+PkLDlB53d8Znx9pWNnhJ9PF6Bw/UDqORt8/rzbBGcQhwRjjDsv+OeA58ZzYpxeLyIWqhDMpOM6FrgX+AxSr8HX/bTiVn8XJyQkJCTcGNL3cMIzhfIHv0iSVGSZsmJ9dswX/dTP67Na3WdyWAlPAe/4m98j/c3V1176aX9NpdHxv0Gz0eRUF5x8OtpG3hQgutiVPde92WyqWq2q3++HKGKtVgsRXydD5J0PBgMNBoNwH6LITj7iKC9EJG6h6PUNqHngEW+3ui8WC/V6veCSmE6n4b3rSFyz2QzRVuzt5OUT1YccxlXvvT6BF5TjXlmWhdQEMBgMVCqVQrR5NpuFqDlWdgSZPM9DNJ2oMffv9/shjWFra0vNZlN5nmsymYROE5VKRe12O1xPkc3BYHCVWwGnAi4VBAa6HJAGgQjAmnvU3lMLiExzrhAxmAOCAuTR62Wwt9wTJwnnhKg7RBgHBnPhPPOzt3t0cYtxEbkv7H8MXuDQaydwfjgLuAAQVjhrnhribgzOCaIJe4/I4cUTPaLPeURUWOc28HQLnAyx+Oekn7X1zyT34RpIvacN+XeGCzguPvD9wF57WgvXI1jh0imVSuFzw3reRkUZExISEhISEu5QLP7cn9CiWtJ//+EfOOmhJDwD+IWf+fcrP3/z5Q/Ur/7dj1p7bfV//a4Kq0d2Ejg1goKkFbIMcalWq2q1WsrzfIVAkOPcbDZDJX7I1WAw0N7eXuhYkGWZOp3OSrFEUhTI46ayv3QckUWggMh6lFk6ts0jAnitAe4PuYKk1Ov18B7SLxg34gHzr1Qq6vf76vf7KopCnU4nRE496otV3vPcIYeVSkWdTieMazgcrrRURMyAOHnnBn7vhRZZEwgaJBlS2u/3gyDRaDTU6XTC81iX0WgU1sTFlTzP1Wq1wr197dwVErsbfB2cuDInnu9EdrlcajQaBYLP+3zfPU/f3SVe58NdG+6QkI5TTCD1Ljx5xN87lyCO8F6vTeC1EbwGAGPlXDrh97QQiDPCkzsiXMzw8XMv3ue/j4U5/z0uCRfsYmeHOx5YJ08R8vci+DjB9/oTXrvDHQ7su7sygItw7PtoNArXuXskISEhISEhIeEkMPjsD9d/+Dffnmrm3MX4R2ffrn/0o+sbx/zxf/Vlqu9e379Xz/zCO5+WdIpTKSg4+SJS3Wg0Qvs5t2JjoYYwQEL7/b729/eDe4GIJZFiSYFQ1mo1tdtt5Xmu/f39QHY6nU6wppMW4C0OEQAg7Z6SQKV/CAnv9aJ73ulgXWoEzoTRaKQ8z0M0FXcBXSrcdg8JY60Wi0UQInZ3d3Xx4sUgKiDWMEfpmIw6scqyTHmeq16vr7hImAP56lmWhefyPq9DQboK6SgenfcUCVIocJjEjgwXdbwOghNyRBpPf2CcCCKz2SykFnjKA3/nnjEp9+s83z9Oc4hf52zzd3dVeFT+Wrn7XlfAr4u7HEDCXTzgLLHnROOpL4Hbx4UUF0i8VSjP4v7u3lhXf8L3xkU6rmNuLip4rRFvL4k4w7hYA3d+cA8Xnda5G3ztEVYogMp9bpcuDwkJCQkJCQl3Hna/8E/rB//JK5OYkHBNvPXrvvu6r33+S75EjYde8ITXnP/tqTZ+6c03NIZTJSjwj/nhcBiInluriXo6eVoX5eU6XAIU/6tWq8G2DaHyOgJeyE3SSlQVguRpDvy8sbGhs2fPBuLV7XY1GAzCGCGnpGcQcSZaDwn2Qn0eDffq/tSI8MJ5ECjcC4gXdLSIq/9TgI+xTafT0I4RUojrg+g1Ygi1BFjfUumwTR+/a7fb6nQ6QVhgHog5RNpHo1FIB4lFBdZtne0/BkTRo9XAySzEn71gnWMC7/dg/aXjCLifHye/62omuAjC/Py1dXNyl4E7FeJxMqf4fp5WAxlnn7iWsyIpCArsg58ZnhO3VHRXAWlAfCaoWeBCjn9m/fMa19pgnn4dz2H87GucquKFGv1zGYs2flbiope+rqy1ixkJCQkJCQkJCc8ULn75R+qVf/d79SHV+kkPJeEOwQOf9X1Pes2XPfwR+sVP/oj1v/zq/7j25VP1r2X+kU/OdJ7n4XfT6TREtb2zAlFit64jTHh1f8gkbQXzPA8EwyPfcRE4TyMgMgoxlrRC5CE00+lUg8FgJarrrRElhei4W7nH47F2d3cDeSJSXy6XQx0J6ZAEXrlyJUSbqT9AfYeiKNRsNoNQsLe3p1qtFtbDiZ6nI3gk2tfSbf78Bzl2sskcNzc3NZ1Og6DDvarVahgjKR5EhklrcOu+r7uDccZk0K3rXpcgdhI4WfUiguyftFqXApLs9RA8pz9OpfA0gJjsx5FyrxnCcyn2yRx53WtkkIbjNRJIB/Gov4tZvmdxagd1BzyNwR031I1wh4KnwniagIsQCCFxGoWnc3gak68l1+II8nOACAK8UCfj5Ty5aMF4WN/YIcIY16VIJCQkJCQkJCQ8E3jsqz9S/+Irfkgfm6d/iyQ8s/ju+94o/eU3rv1d+avXv+dUCQrA88OddDiJgFi5VV1SIDiz2SxE2SHWpCJwXRwVhTC6C6HRaKjX62k4HGoymQRyg9gxGo0CGYcQ1WqHPVmx9kOYXRRAlHAiRPFCrNb8yTh87tQpoFWk55xTq4Hx7e7urnSkmEwmGg6HgewTlXaLutdpwO3AvhDl9vXzSHqrdWjLGgwGIT0D4uaih1f+bzQaYV0krYg9uBzcyQE8vcKj2LQ59HQAJ/OIIpBUCDTnIi46CNFFgOB+rJkLGIg0iDP+3HgMEFcXHOgQQrqL17MgjYQ50d7UPxueluG1BVyQ8PQY9ocxkSbkYo0XrfR9ko6dPC7ouDjD9e4ScDFgPB5fVSvChZZY+HNBA4EOsYMzgJPEBRQ+h/45dxeIw50vCQmnEe/4vj+lT2z8uqRkg01ISEi40zD+0339hcb4pIeRkHBdODWCAmQjz/NQfR1y4EQXAuHk9lr2aK9FgEjAfYjIugABCfSq+HQ6cCJSKpW0tbWlWq0WCBmdDfz+kHQi8Xmeh/u5ENJsNjWfzzUej7W/vx+cB/V6feVaUjJoDTkYDNRsNq8iSKwJkXXGBcnz+g0IF4zb1zO20FOXQFLohOEk0YvwIapQGI/IsEeIIfEICt4ikv0gIg7R93G52wAyCTmnNobb4F1YgGyzNy5G0B3A10NSsML7s/06rz8AmXbCyn5DkrHk+9mcTqdqNBrK8zzsJy1JGUMcTecM8rPvH3vHmP2zxPVe08FFKa5zou4pD8wFUcbXw/fD3T18Rt2h4M/yz6zD98HdIwgBXsdjNputFA31M1mpVDQcDoMI6PfkXLqIlQSFhNOKT/4Tv5NyahMSEhLuQDz89R+pn3jJKyXVTnooCQnXhVMjKEgKrgAi2MPhMES0nfhg0acVIXUDnCCMx2P1ej2Vy+UV+73XRPCaAoPBQHmeX2Whj+szSMf2fcSPPM9DS0u6TPBMJ+8UryNazFgQNpbLZRAmiARDavb29lbSNChuSBX7+HlO8ikyRycLj77P53M1m82VlAYneggQbvXnujzPV4gi5NE7SFCbArLsv4/z/dl/6bieAuOaTqdhTryHZ3onBYBLw9MzfN+JhDMW1ofz4o4Tj4hLWnmPOyIQLlwccNcK4o3X6lhXUwEHCC6WcrkcnDWedrLuLLkDwtMWOMcuoLgbIl5bdyJ4CozPNy5Y6GKUp5S4UMFe4d7gs82Zp5ipfwZjISd2UzBed/pwhpkn6+UtXJfL5UodEheB/M+EhNOGd/3Yh+q19/xbSY2THkpCQkJCwi3G6MJSL64lMSHh9sGpERSWy6UGg4He+ta36vz583rWs54VorNEG/v9fkg/mE6ngWSSOuCEdTweB9LjxBU7fr1eV6PR0HK51HA41GAw0M7OTkgxWOd+AE40a7Wazp49q263q36/r+l0GmzqHmmF8MaRWADho9BcXGSQuTE+bN0QTVIgGB9zkI5JOZX8uRYiWS6XQy0G1nk4HIYIujs+AH9vNpvBjdDtdrW/vx8cCeS/1+v1QCxJA0HEwCHiQg/jplXofD5Xr9e7ipx6ZJ05IwZQZ4Cz4bZ+1sjFEU/d4N5E/YF3THDRxp0fPibm4mTaSbGnB8RrTAcF76QRn0mP/nM/yD9j8ToMFFD0+focXDDy9AmvLeKiWtx+Mj7fXjTR3SE8lz9J4eD97g6I3QrrXEY+H0QE//zwuXLRDFdE3A7Ti08mh0LCacWFMwfaLicxISEhISEhIeHkcWoEBUmBOOZ5rnPnzq3Y271zgxd4g5B4xJuWgB4pLooitD2E6EK6p9Opdnd3tbOzo0ajoUajoclkotFoFKK/nvIgHRNfRIpGo6HFYqHBYLBSnwDCBoGl+wOkm7Z7kB0itrS+ZJwuHtRqNdVqteCogOB64T7puEAepNpFC66L0wD4u5Mr5sEcIIVeCd8Jphd2xNKPIDIajQIppUgl6QwugOR5HtwN0+lUe3t7oSYCpFhS2Heeh/iEUAFx9Xk6mY3FIu4ZW/k9gs81rE/sgPDnuoAQu2i497Xgv3PCzPrGEXTfo3Uk31N8XEig3kY8Lk8XQJRhXuyBF0h1hwlrwfqsc7FwD84On1v2GDHQz5ynxSDseTtNFwO8Q0rswHBhgc8GZ+d69iYh4ZnGY3/7I/WGr/0OSVIt+y1JpSe8PiEhISEhISHhmcCpERQgXER6ifZDbNrt9kq0cB2ZkrRSEC/OjZeOc6q94r90HPmEhHh+uNvfabkI+UVsaLfbK4XdGI/b3KfTqfr9fnBPtNvtID54gUIs3oy7VqutdI5gHXifF3okBePg4CC8F2eACymQwfF4rEajEQgWNRlIp5COyaWnlrDOrJnXhPBCk044eQ8Em3V2u7rvDSIDqRNO4t06f73ED6LNuvoaO+KCjG7j97kiKpGa450DiIDHxQxHo1F4Jp0IEErY//hcQ+L9rMapDX5d7KxxB4MXagRc53UKeB0xgftLWklVGI1GK64Cfx4pFYgfcUpNLFrFa85YvXDmtRw+Lhjleb62I4XXBHFxjHv5WVxXfDIh4aQw+OwPP+ozXT3poSQkJCQkJCQkrODUCArSakE2ahHERQM3NjbUarVC28XpdBrSIrxrAQTWq+w7YfDoN3UU+v2+zp07pzzPA+Egou5Ei0KHno9OpJ3uAnFEH/I7Ho/XdpfwivgxQSZdIe4I4N0ocF94igUYj8daLBbq9/vqdDrB+u6pD9SEaDabWiwWOjg4CIKOg1oQvE6qBEUQ8zwPkWT2cTabaTgcBsLtrgQnmcyd+bI2MVkuiiKkY8QRbO9QEJNj30fu44SR58T1CPy9no/PmXRxJU4L8H3wNBicGy4meLFChBJP1/H3+VpxtuIzRCtT3hunG7irgrX0NXJBwp02TvRJPfL1dtLvLUGZB58Lnzdrzpnw4qq+Zz4/r6/gZ95rJTB+d9TwmfG98Ot831LKQ0JCQkJCQkJCQsK1cWoEhZiEQUYnk0kQDFqtls6cOROIjPeZH41Gms/nyvM8dEhwUuK2aJ7jRAqRgNxvt6eTZ51lmcbjcSjiCKkhwl+v11Wv1zUcDq+yvJdKpRCdJwpdrVY1GAwC6ZZWK+C7GwDC7wXqPGLLXL3OAKKDF4ZkjESO4zaIOBEg7E4wWSMq5ONkILJOjQaKETph9Q4NiAn8DmJIgUBSNJzg8p6YYLqQQNFBfsceIOCw57gMYgGG6/ze0mrrSJ7DGYlJPgKT39PTdniunznmD/zM8LPXZIAQuyCzzmXgkXbfQ/YDeHcDzifP9rH7szzNwdONfNyxEOfuED7jcbFP6im4S8U/C7yXe9MJxNtNumPC99CfH3eL4XMTr2VCQkJCQkJCwjOJ+sWS/u90rA+p1k96KAkJ14VTIyhIx4Q2tsvzD30IJ33v444FEI5qtRryxb2YIXnakDmPkvrzGAtkx23o3MddAm69j0keZAeCDLH3zgSICqQcuM3cO0xQAHE4HAZRZTgcqtVqhbQHJ8mSNBgM1trzW61WIKf9fl/dbldFUWhra0ubm5shHQICPBwO1ev1VtwgpVJJo9Eo2Pj5z1M44nQJ1pL7Ul8BscUJsEfDcWHgtnD3hFv54wg7QoWfMa6ns4CTZVwgTpxdeILcxh0U1rksGFssXLE+FA/1qDjr50S8KIqwF/zs579Wq11FmCWFdY9dDLhEOOMuaLmo4s/neczD986dETg32IdYDHBBwc8M9UhigcQdOS608JzYfcF7+Mz5efL7IJ7EtVkQihhncigknAbUL8/0HXvP1Vdvv+ekh5KQkJCQ8DTj/m95vV724pfrD/7Mj570UBISrgs3LShkWfYiST9hLz1f0j+RtCXpiyVdOnr9G4qi+Lnrva/nelM3gHaJm5ub2tjY0JUrV0IxRToFOIEnWu4pEZB0yJwXtoOoIDLwOiRuXV63txD01AOe78XniqII1nBIL+ICOfTT6TRUrHdRYl19AcgwLg3SKDxqLB23hSRdgmt4DaLd7/e1u7ur2Wyms2fPamdnR2fOnAnuBdIVxuPxSt2EPM8lKXS1oMbEcDhcIX/skZM6SRoOhyqXy+r3+8rzPIgNcZS7VDpsUbm1tRVSTabTaUizqFarKwUovUCldFy/wIvuOen0SL7vNecRsuquChdtXNhiHH6/WJDw1J51hQzZx7jugKRwjoHb+538usPA0xx4zesHxPOOa48w1ljAYR/8GXHahIt3/pxrrY+nArmbw2uZ8BlyISBOcSEth+8GT2/x+irr1j1ep9OOp+u7OOH0oPxrv6UfftWn6Ku/7rtPeigJCQlrkL6HExIS7mbctKBQFMUfSHqxJGVZVpb0sKSfkvQFkl5ZFMW3PdXBOemGWHj0GcIFsYSMEE3N81zdble7u7vBxn809pV7QkyIftdqNW1sbGgwGGgwGIR7UZWe7gSlUkmDwSDkwRNFbzabwapNFJpnkB4xHo9X2hASGc7zXHmeh+s3NjZCkUpILASPaDeF8ZgT0WbmB+mGoCFwOCkej8eSDh0NW1tbIWXE54ZLpCgKNZtNNRoNlctljUajIJa44wMLuxNXivlxLaJRq9UKZC4mzETh2ReEjizLwjjjvH9PT/D1cpeBR/chw3GtgfhnJ5iITy5o8J+LAk5k/b24BeJ0HEg4a0GkHULtgoan5Ti59nMSR+UlrdyTuhOcDV7nHqyrdwahlob/jjnyHE978bl5TYY4LcL30B0dno7ggoyfNcQ8d4AwV78v93ahwkUg/5zdDngmvosTEhISEq6N9D2ckJBwN+NWpTx8vKR3FUXx3pgc3AycZEAMvG6AA4LfaDQCYYOAQFr7/b6q1ao2NzfD/d3qjH0eAg4BKZVKwQVAugHvd2v4aDSSdFz9vtE47A8OSSeS6+/lvk5W3VkB+a3Vatrb21Ov11uJWEOWqR8xnU5D+gHrNR6PQ8qG2/6l1UhxvV4PYsPFixe1ubmpM2fOhPd4tw0IPDUNlsuler2epEOxYDabhXQOilSSWlEc1U+o1Woh0oy4MxwOQ0QZ5wBuCN6HqMNaxuklEHzs/G6Pd9HBnSgICZBX9t+j+p5S4fUePO9/XbSb+3nBQXdpuPjicEeACyTMw10O/pmJ/4yJubsHOL+ICfzJZ86dA5xtf325XIZ0DcQJ9hIijzMmnpsLJogv3Dd2ayB0eBoQ4/D6H6yv1x9BNGLeLqh4Rw7/XLpgwbxvM9zS7+KE04Nnvb6nT/z9T9Uvf9B/OemhJCQkPDHS93BCQsJdhVv1r+XPlfQa+/krsiz7fElvlvQ1RVHsXc9NYtsx/5iHLBNB5do4R55oplfOJ/+fiDwkihQHyH6pVApkyNMNIC+NRmMlX5xnUwiRfHVJQaSQjnPFcRtA7iFSTqx9HZg/74e8MV8nw+4OcLcFxRwhT7zHSXJMhofDYRBIvCYBY2IOni6CcMK+IQogKFAwk3s0m01VKpXg3PC0Ecg3nSHYtyw7bEGIoEDOPQTUC/UhDnmBSwgprhEi8+whzg5eh7zjXvBUFU95YZ7cd116g6cfuGOAs8Q4XRhhvRCd4hQGP7++f15rgPvweYjFFa9ZwDzcmcBniNeoYeLz8GfzfNbRi3vG7gzfa97HGvI55QwyPu7F/nNfnuPikp8HrmUfXdQAnrayTqi5jXBLvosTTh+K3/wdlf/+B+vDXvyK8Nq3fcP36WPzVOcjIeGUIX0PJzxlPPt7K/pHL/pj+ubzv3PSQ0lIeFKUnvySJ0aWZVVJnybpPxy99D2S3l+H1q9HJX37Nd738izL3pxl2Zv9dazp5XI5FBv0aKQTNunYVt9ut0OqwXg8DgKEpwEQffYI+HA41Hg81mQy0Wg0ClF9J160qux0OtrY2AjdJbLssOd9o9EI/9GJQdKKWNHpdLS9va1OpxPcDpA1IuKIA4wZIcCdFB61jwvxuSCDgEAhSsh5uVxWo9FQs9kMKRyexuFklmfx7MXisL1ko9EIqRiQVUQB0hCazWbotuFdA7zwJHNzNwriUa/X02AwWLH008Gj0WisCCFO3l3I8JQHnu2k3aP58Vq66BIXCUTs8Sh/TEb9Po64zoXXQPB1ojYGRTD9vcyVdBqEGZ7r58DvwWcId4B/frw2iNdtQPCJxbw4fcSFDObN9X5eeY018PH4PiDOeHFF5uZio9dQcfdCnPLinyMXDHif7wVjvt1wK76LZ5o8E0NNuEkUb3mbzvzgG8J/75vtnPSQEhISDOl7OOFWofzff0tv3n3OSQ8jIeG6cCscCp8s6beKonhckvhTkrIs+35JP7vuTUVRvErSq46uC//C5x/y1BoYDoeSpDzPQ7TdyZ/b06XjNIX9/X3VajWNRqOVSCVkhEgnBQfr9boWi0UQInADuAABwYSgISBsb2+HsZdKJfX7/ZBWQUX9VqsV3AmkDUDwsZszpqM1WSFwRMs9Mu7R4bgLghcpdMIK2fZij6QpeDcK7yIAUfNcdtbKuw/4s4joI/Z4cT5Eg8lkEkQMSaFt52w2C+kTrBtpJ41GIzhJIKDufuDZzWYzOEZwkGDB91SEOFrva8bae9SePeZMefHE2C7PfZ1Qc+YQAGjjWa8ftgaKHSacfa8XgHjjtTLm8/lKWosLQR6JH4/H4XmcJy+GyJhdyHDi7yICa+KpIqwbTiEXBPl8+jNms1kQs9hPF5kQqGIh0dM2XAjjbHp6EJ99ryPhe8P93NkR11W4TfCUv4s72c7tUTgiISEh4XQifQ8nJCTcdbgVgsLnyaxdWZY9qyiKR49+/AxJv3sjN3Oi4Bbser2+UuDPW/a5rR2S7FF5j4DzHy4D6ThKCbmCrHrEO46iO6nl9wgeHt2FtCJIeKqEz9ejrG6xJ6/c7feSrorCxkUTcRdICtF6ahc4IWZO7vjw6DVjlI4JNeSOqK+TbL8/e0LdBMbtjgZPq+B3sb3fnQAIIrVaLeyBF+BDsMEpwhhYR0918GcwTkkraSi+Tn5GAaTbO404YiLMHH2eXMfvcSewrp424XUMPGqPsyZ+Nmcw/mx4m9OYQHsnBU8rcVEpFlniz6KnsngBUBcg1n324nXzjg4IiS7Q+GfN19fPMoICY4uFnviz4OO6zVIebul3cUJCQkLCDSN9DyckJNx1eEqCQpZlDUmfKOlL7OV/nWXZiyUVkt4T/e5J4SSgUqloZ2dHeZ5rZ2cn5M9DpClA2Ol0ViKMEAgioJBFhAQILZFQiBbR1X6/HyLZngoAqUGsoIhivV5Xo9HQcDhcqd8gHRMoxkGaAH+PLfKlUikUmHTS1el0AnlFMKArhIsVpDGMRiMNh0PVajV1Oh3leR6KPUoKtRiI/uN48BoJEHicDf1+P1zLnIhyx7n03g6xUqkEd8B0OtVjjz0W1sAj45Dffr8fhAGKVFarVY3HYzWbzRVHQiwOFUURxAtIo9fZIH0CF4SLJ3F6A8U5cU743NyaT8vPuFuDtNpNgJoIdEeAtHrhRncecJ45h0Tf4w4QrJk7Lrg/64+IwvlE0OA84zDwlIe4oOFkMrmq9kCc6uFiEPNy4s5nzs8+5wARIXZ5eC2TeF3ZD+4Tp5p4ioMLY08E38PbRVB4Or6LExISEhKuH+l7OOFWoyhuj3+DJCQ8JUGhKIqhpDPRa3/9KdwvkPXBYBCs+V5wzQE5gnBWq1W1Wi01m81wryzL1Gg0QorBxYsXNZ1OQ+cH0gQgDrPZTLu7u5IUiPR8Ptf+/v5KxXlPa2i326rVaivW/sFgEFICuG+9Xle73V4hghBS70yBoEBdB+kwBQRbPPdkfSD4TrIgep63jmgAAatUKqH1o0efvShhURShJsJwONRsNlO/39dyudRoNAo1FdibwWAQOjZQeHFjYyNEqefzuYbDoZbLpdrt9lVFISGhg8HgqlaIODkajUaYk9eUcIGoXC6HmgGlUimIUUT7PVee9zrBJ/pNeoqvDy0/IbvUMvDOH2675zm8H+AccYeAk2l3B/j7mCMCAOLXbDYLAlNcCyHucoE44A4InsVZYp3c2cO4JpNJmK/fl/ExBj+r/gwENa73fWMNfO38fHC2cB34unCuAefHhStfW/bdr10nkJ123Orv4oSEhISEG0P6Hk645fj4h/SNb/1gfdO5t530SBISnhCnqifaunQAdwZASEk5gKxAYLxuAMSe6HRMECqVilqtVhAsiHLjPOC+pBDQqQACAsGEMBN19lQF6ZhIDodDbW9vh3oKELnxeKzBYBDG5bUAvJK95/XzHKLLbvfmd0726BTAOrj93qP3zNnHwtpTFBECz3O9leR0Og25/6yr139gLqwZQpDnuEvHbR0RWjyPPa4Fwf4wV17DscKc4ui0k3cnrIhEbvmHHPt+SscOA9aUPV2X68+cEBqc8K9zNXB/z+n3Mfp55p58Rnzv+c+FCU/F8TXxfffxx5H/WNyIx40oEKeYuHshhgsNzClG7DRwMcPTMjxVhp8RyVyk8G4dPi/mfLu4ExISEhISEhLuTCyK2yvAkXB34lQJCtKqqBDn7kPisWxDXImkxtFFz5fmTyKTuBOcwJNKAIGEhBDZ9ki5Cwfj8VjdbjeQxrigHyKIpGDhz7IsEFOIsBNIxuQdGyC73Bd3g9eW4B6eruAiTLVaDekePNsj1ETNIeQ+53q9vpLPDgHzGg7Y51kDb9/J/bLsuDtGnuehQB/XzmazIBgwjpgkSwo1I5z4kcbh68+ZcoLtufdcw7nxa71LhItEnq7hYpdfw/ryXhwUODq8GCFnAcHKRR7u53vBPnjaCe4Nr4vgXRAYn4sirKu/x9OBfA38bF4LRVGEveOz4Z/BdWIE58/brjI/hCvm6u4HBAsXcdxlw7hZU9bBX/PPAGKMX+dCTkLCacNPX/xQjYu36Ys6D6mcpX90JiQkJNxp+LXHXqDh2beoUaqe9FASEq6JUycoQDggDdizSUW4ePGiHn30UfX7fY3HY505c0atVktbW1vBSQBJ9DoD9Ksnou11GNzRMJ1OgxWfa7HwxxFrSM9gMAgEBfIPma9UKmEcnroB0ceS70SQ/H7ugRgBuSLVI8/zQKYg497O0C3vLsAgRJC2MJ1Og1gQR/jJ6ee9XhzSCwzGrghaRnrevuff41DA3eE2f08X8HXzv+NSYB7SauQ+Lq7Hfzg9KH7otRNi90FcF8DnyPNwYVBE0a36nr7g1nt3wLhY5te5I4I/fU6SgquG+hwuuHC9pxbwsxNtvx/XcN5cBODv3j6SOV7L/eHXrCPm8Vh9LDwzFq+Yp7tWXORyUWfdPuL88XHyH64aTyNJSDjNGHzMJb1O5/WyB9+p7XLjpIeTkJCQkHCL0XzpA/qlP9zRpzf7Jz2UhIRr4tQJCk7cISr8w382mwUCDPHDit9qtSQdkoZut7sSESfqvlwuVavVVnrbIwB44TwvSEjNAMgjxF/SCpnv9Xor5KhWq6nVaoVoO8UMIWyIAXExPEmhnWLcwYHIMUSSAowAIgjczu1Rd08dGQwGK4UaJYW5O0kjis+8nbwzVqLT9Xpdm5ubQZBx+3ps3YeMF0Wx0poTV0MsVlA3gr1m77wgZywESKtEvVarrUSonWQ7PGrNeImiI9i4U8VrL8RzdTxRfj5E2q/xGgX83aP3XiPACTLv4TpPD1jXWtGdH+6Gifeb173gIfP1qL//7EUzfU783tOJ/H7rUj0YnwsNfk93NCCQufsB8cAdKtKhuwUxLRZJEhJOMz7+t79Av/VhP3HSw0hISEhISEi4C3HqBAVpNaoIuSda6e3uPD2CKvtOsuK89ul0Gkhro9EI9/fq/KQLeHTd7+WpARRsJCoaR6YrlYqazeZKDrmnP7h4EpNIjzB7rjfCipMtXovv61X648jueDzWaDQKxfWI0A8Gg5XIPQSesY/HYw2Hw5XWfOwLgg1pHXRTiIv6ucMDp0CWZYH4Qc6Hw6HG43FwJHAW+A+XQkxsIcA4AahhgWiBS4N5xikzkO91tQtwJ7jI4cKCCwwuiq0j7rzu++jODEkrbUjj93NG1s2fP9kbFyN8PFznY3BXRCzUrBNJ/DPmqTSsk8MLPiLuMQf/jMWChQsVMVykiAUmd5R4q04Xrvyz72vifyYknGac+7Q/0PN+8G+pks/1hx/76pMeTkJCQkLCLcTf+5m/pj/3l1+pzVJ+0kNJSFiLUycoEPEfjUYrtn/yzD0PPM51hzB7Hni1WtVyudR4PNZisVCj0Qh57FmWqdvtXjUGii1CdGhZyDObzaY6nY6q1ar29/c1HA5VKpWU5/kK2aMzw2w20/7+fpibW9Qht16Iz+34OChqtVqI5HvkmL8zX4+qcy+IEq8xDuzr9Xpdi8VCo9FIly9f1vnz5/XsZz9b9Xo9kNF+v6/BYKBer6der7fSspKUBhd4vBglHS+8FgPuChwXEHRECOaEEIC4IR2nGnjk3us5xBHm2CXhtRQ8Fx8HwrWs++wRgoYLBwgb/kx32vAeRA0XGmLSGkfhfZzrrrlWVJ/3+5lb50bw97lA4U4H1jmuOcGe4QjwYo/8HjdR/DlnjO5i8NQYFxmuBcbr5wchECGK8834XAjiNX9GLKokJNwOeOEXvVmldlsv+vpXaP5+Y73r4374pIeUkJCQkHAL8P5f80Zd/uyFNlOpnIRTilMlKED8JpOJer2eFotFaLOIRdm7AXjkH8cAEWZIAsSWTgoQFIoBOjFkDIPBIHQiyPM8kEWISLPZDHUWiKLTgtEjs81mU5JC5whIt7sS4qgvIgKElPF6VwDgZMwjySAmiTzfCSGOjcFgENJEIGO0Z3RhZjgcqt/va2trS81mM5BJFzFIyZAOnRCIMZLCPkkKIgOFMElpoLbFZDIJbTpxX0DI2V9ECRAX5eT+vl7ulvA8fog7a7euDoAXnPTc+0ajoeFwuNIC1N0vzM0FhXWpA16QNHYU+Dn1sfpYfF4uSkDO3dLvzhzGcC0i76k2fPZcKJEUzg9n110y67o2eEFFfub5uETWiQnsFftB2hDn2ffNa2b4feM9RmBzQczPSULC7YBlr6fn/sM3aPypL5E+7qRHk5CQkJBwq/A5/+Jr9cZ/8l3ayMpPfnFCwjOMUyUoSFohv6PRSMvlMkTCDw4ONB6PQ0Tf/8HvqRFxnjbRSSdgXrQwtlFDjJrNphqNRrgWmz0FBWmX6AQQ0se1uBp4tpO4oijU6/U0Ho9DZXlQr9dDSgWRV7pSUH+h1Wqp2WwGsu0Ci0fLmT+pBYzDRQ1cBL1eT/1+X9VqVdvb2yH1Y3d3NxTIxDVRr9claSUCPZ1Ow/q5FZ51onMDQgykrtFoBDeKF8h0ZwiE3CP2CDXuCnBxgFSXuIjfE0W9uYb7xS4F/nMXAvfz1JO4LgPENk5b8P+k1RoL7J/n+ru7AJHAxxS7FFgnfvbzjojgwgPdFLyWggt5noLigkF8b+7Pe+IaB+wzIoCLMT7WeE6+3wg6/nmO99aFNRc3uC9/upOD56TCjAkJCQkJCQknjbPf9wb9uStfpl//zu876aEkJFyFUycoACcLOA+InkurOdBueeZ3Xk1/NBppPB6vdG+A4KzLhffIpeduQ4gh4+Tw85qTH4/Q1mo15Xm+EmUn+j4YDDQcDkMKgDsSvJWlrwXF43Z2dlSv10MKAk4OngHG43F4trs7cApA5Oi2MB6PQ1FJHAfYwyWFwot0oPCouBM/LyjJ75m7iwmICC5+LBaLQFqzLAt76ESWedJi0Ukp10lSo9EIQgj7hCjEfsW1DOIoPWfPU0WIjHtajbdx5D5xWoN3dPB6GHGahF/v7TjjM8la427xzwG1CvxsxeC8Okn3ugJOvF048/f7Z9L33NMM/DPln5G4JgR/Z//8bHh6BHuE48MFLFJR+PywN5x99tmFhjg15MnSLRISTiua/+Pt+sAfeIXe/re+56SHkpCQkJBwi9D8T2+WvvOkR5GQcDVOnaDgEV8v8AcxmE6nwWoNgYQIx3nhiAPD4XCFTEACJQWrNPcELgSMRqOV1zwamue5Njc3Q5R3XYQYIYLX5/O5hsOher1eqDFA1N/zzp2Ueqs7cv1JD/B8dtrieXQXwjQajQKZpi4DRNnbQ0LmnLwydp7ZaDRCvQPgQkmWHbaOZL0gkwgD7FNRFKH9I4SOaDeiRZZlgRBSgwE3A2RZOiboTqrZ10ajEUQVUji8XWWWZSsRcu8GwPxxaHAWcc9wT++c4GvGPsTR7jhP38WEuK5CfG0sOsTRdMbhTo04tcYdCH5uea+nTEDcOW+SgquGs0d6iqeWeIcJH7MLQ+vmHDse4vEzZ84xZ4yUCe7L9wPnStKKABWvrzsUEhJuVyy6XbUePOlRJCQkJCTcUiwX+uRP/jz9/M+/5qRHkpCwglMnKEiHxKpWq6ndbqvVainPcw0GAw0GgxCRhoB49NFt9di840KGkG5s1m77pzggbgHs/j6umMi5uCEdEzuPkjIWJ6zewYA6D8zbxRLEAQo/FsVhEUXSHTzHm3SC2DIOSHmoVqtqtVoraSO1Wm3Fqk++PCKKrynkjjF7xNe7J0DsqUEBSYTkQYBbrVaI/ENwJQUxAWGItWVNXVCB6PPfulx+d0LEe+iFCGO3BEIW4olH1/01L1iIEyJ2Z3gO/7oODdQA4bVYWMB9E5PvyWSy0p3DnROMx0m1AyKOmBQLCu5M8TPmzot19SyWy+WKs4Lr3BUU16OIUzvcOcJ1sbgSz8X3lXPq1+ImccFIOi466e93kTEh4XbC2R/+Tb3oua/QH3xBcikkJCQk3ClYvvX3k6iQcOpw6v61DFHzAn0epXeyFpMX3u8pCZAhyAKuA8iWpzsQOSfqefbsWVWr1dAJgqgqJAli3ul01O12dXBwoNFopNFotCJwSMft85ygdrvdQMwQM9rttsrlsvr9fmhzWavVrrJ4k4JAVB+si7pCiiCzjUZDm5ubms1mGo1G4Rmz2SzURXDBwx0ckGHqPlDnwdNE+NPJaUz2IeDcezKZaH9/P8yNdAvug/MCwYJxxqkp1WpVm5ubK2tAR4rhcBjOjJ8PP1+eiuEk2aP3fs4QOuI6GjEZhti62LRO3MBNsE5I4Pdx1N7PFIIEZN0Jekz4HfH8Yvjnkc8egounoPhcnMg7ofeOLF67gc+jCxYu4LEGfi68HSY/8wzWyFNyJAWhjDPtdRdYUz4zcU2IhITbBcV8rvI403B5KBTXsorKWXLfJCQkJNzuWL719/WJn/cF+uXXpG4+CacDp0ZQyLJM7XZbL3rRi7S9vR1aLsb2cc+P97zvyWQSaghsbm6uRIK5bjqdhmKCpDJwz/F4HFwA58+f1+bmpnZ2dkK+PATFCTyEBBLIPcbjcRiPExOixETpieBzTa1WC0UG6TRBvQTWQDpOFfCq+tIxufY8dCevuDfyPA91BUjnyPM8jI92jVmWKc/z0EKTdIblchncG7PZLHTkYB0giRRV9IKARMM9p71cLmtvby8IGxS+dKHEo+u+7/wMqDGBWCIddyTw9SBKzn5wBjxK7ZZ+j8YjcrGPPg53JPiesRbsH9ey3ghU3n6SaL6nsHBPdzdApK9Fnv3nuBaBrwu/d9HHa3O4CMCerHMMxE4DXotrEvi+8Xz2JU7bkRTOkQs8vNfFi1gEwJni80Wsc7eHnwfexzMTEm5HPPv/eb0+4/95iSRp/t+eo+95wWv0/pU8CQsJCQkJtzmy6VIPzfu6v9I66aEkJOhU/auiVqtpe3tbW1tbobMD9uRer6der7eS0y4dE4TxeKzRaHRVHjkCAvZ5z9GnrgDkHeJMR4VOp6N6vb7ienBrvBM4RIRrRXqddHoKBikc1IogF30wGKjX64U0AL8PNRh2d3d18eJFjUajEGmFaELYvQsGVnj+ToQd1wPjmM/n6na7wdGRZYdFEbvdbhBMIIiTySTUg+j3+yGvXTok0bRS9DVxUglBHY/H6vf76na7YT88BYP9gmR6VDsWWth3FyhwCyDkcAYQT9ypgJOA/eKauHuFpwkgLvEs6i3Q9YKIO+NmjL5njAvxYTgchtQQrylwLQeDF0T05zixZ15e+4B5rhNPXHzhnqSneEHJOP2A/Y7rLsSknzWPRZT4vFIzg7m5u4h19j2Tjp0IvM/H5i4ZPy/+LHcYJSTc7qh8wvv0le/3Ufrfk3SmExISEm53ZG94q/7aK/6O3jKZnvRQEhKeXFDIsuyHsiy7mGXZ79prO1mW/XKWZX949Oe2/e4fZFn2zizL/iDLsj9/I4PJjgoG1uv10JGh2+3qkUce0cWLF1cKMErHxBQSSITZbdPScSFGJ2QeJYeweRSfSD41DZzUMlavm0C3Bsipt9mTtEKq/XXqJlDkcDwea3d3V/1+X+PxOKzJcnlYXLLf76vf74eaEhBOiJgLJZ4nju2fmhTeNjJOE3GnAWvsxRRxjrCOkDkcD+yB2/whyd6Rw4vySYdpFvv7+9rd3dXBwYG63a729vZ05cqVUD+DefJshACfA/fGou8ilBe4jPeS+hKQSYQRxu97yHPc9cC9nCzHxN8dEO6+iTs/cH7iSLy7B+J6Ab6enAFErtghwN566gX7jwDg6ygpiByccYQAFwR8nOv2Yl16gdc3cSLP771wI+sWF4x0p4cLfd79hWf6ny6geLqEu1pOC57J7+KEhISEhKuRvocTThNq//U39eX/6Kv0C8PaSQ8l4S7H9YQqXi3ppdFrXy/pV4qieIGkXzn6WVmW/RFJnyvpg4/e891ZlpV1nciyTM1mU61WK+TIexqB27edlGDHh/RCcCgs6EUMpUOrdrfb1f7+vg4ODtTv9wMR3tjYUKPRCATfHQVuW5cUSDQkH9s5eeyQLhcvIHVe2R4RpVQqrUT6neBLx+0DqdMwHA4DaYQgebcGd0KUSocdKRBqJIXXsH3HpJj5eSeKRqOhdrsdijj2er1QP+Lg4GBl/aVDsjwYDMIaYTWn4Gar1VKj0VC5XA6CAkLC3t5e2CN3K/i5oNAkJNTdHO5mWOcacdIM8XQhifXEgcCakQqRZYedKCqVylriGRf48xQczjD7BJGOhSjWkLQGdx3EwlpccyAWttYVGERIcwGAsXl9Ec47/zEOn5OPBVAc0t0T7CGfJ+8EEbtxXEDx1Iq4Toe/h/tda8/jveB98XWnEK/WM/RdnJCQkJCwFq9W+h5OOEXY/LE36h/9qy/U6/qdkx5Kwl2MJxUUiqL4n5J2o5f/kqQfOfr7j0j6dHv9tUVRTIqieLekd0p6yXUP5qizQrPZVL1e13Q61eXLl/XYY49pd3c32Ok96gxhR0wgWkkkFXKES4HfISTgasD2jO2fGgHURiClAWJ7tDYhHYOovBfVgwQR3Y4t2evy4rHWS8e5//ye+yBO4Mrg5+FwqG63q263G8QUFzLyPNf29nYQayqViprNpmq1WhAPcEUURaFer6fLly9rf38/FGhElMiyLBB69s4jxZICgUR06Xa7YY88auwpEuPxeEWAoNgg5JA0Cp69ro4C1zAfnsk6Ak/zoK5Eu91Wu91Ws9lcSQdwwcEj5u5k8LoBnAF/b7znHpmHyHsKhUfz3WUQpwj4eXTy7QJWTNS9yGf8O+CvI2a5oODuAh+Lz30deXcXgTtG4jnEaSNc5y1NY9eDp6H4eLyrBHvoY2VMsbskFhpOEs/kd3FCQkJCwtVI38MJpxFnvv8N+trXv+ykh5FwF+NmizJeKIriUUkqiuLRLMvOH71+n6Q32nUPHb12XSD6W6/Xg2UbMksE03vIx0QFgueOhmazuUIOnKQ4QYHQUYitWq2uREEh+V60zQk9EV7ICUTKCz66LT0ej3RM2iSFVAsK9xVFsVIUkWJxOAcgUYyH6DeiAnZyOiBQmI/6El7EkLUk959ilc1mc6UwHpFgXBQ4MhBnIG6kZ+AA4f4uUnhxvNlspr29PZXLZTWbzdCRg3VwYQYCz/5NJpMgajih53zR9hLQCQGHQJ7nYc9Y+1gQgAQ7GY/rCLgg4A4CF8I8zcLTJ2IRgloVsWOAP+Oik74u7tyAWHNe+BwBF13iLgexcODzpoDitdIE4voFnD2vfeHCiT+X13yc7rDBDcTPLiT4OLxLhs/bBSAXE7zWxCnH0/JdnHDn4ot/7BV6yxe8Uq1S/aSHkpBwpyB9DyecOC780ob+7UuerS/fevCkh5JwF+JWd3lY5xNeG+LLsuzlkl4evRaImFvuJ5PJSiTY88AhTJ5/HR5cFMH2TeQ9bpvn0U6IVK1WC4JCXOSw1WqtWLb7/b6Gw+GKJV3SSnE+xAtcAh4xpcWkdEzOEFa8RZ+TdVwc3mEAQHadONFxQlIg56wzXRFwefAeRA9SKnAz4BIg5aIoirBW7BkkmWdRcJH0Ex8rZNIj74gyg8FgJXXC1xGyT3FACDPCAy0UnYTjOuHZpF9wThCsEHjYR8YAyXRCDqGNUxBcgPD6Bd7KkX1iDfjZXQust++hu3QQsbwFJohTIDjPXliSMfpnxsftLUHXdWjgnjzHBZt4LHH3EYQBh4sA1xINWRsvFOnrH4sgjG2dgyIWFlwUvM1xU9/FdTWezjElnAI89x+/Qb2/MVfr1GtlCQm3PdL3cMIzhs6Pv1GvmX6K2t/8On1+5/JJDyfhLsPNCgqPZ1n2rCMl9lmSLh69/pCkZ9t190t6ZN0NiqJ4laRXSVKWZYX/I19ajYhCvtwa73nn0nG6BLn91DqYTCYrHSIQHpxserV9cugh/hCquOgcTgKKIkKsnGgStXeywvsh3aRS8Hu6EsTXe0S70+mo3W6vpGDw3kajEQhyXMAQEoo4Ua/XQ70IF1U8v596DZ437/N0AcfbPHqKgqddQHqpG0FnC/aY9zAWIvPsOWsJcaXWhbf3Y/68nud5WCMcBwgdrKm3B+VMUNfCxR+v44ErAaGA8XNuvTbFutaPpH7ERTC9JWrcLtOxLnXGBTnvguHpEnFaA7VC2HuupT6FuyacaHOW+LzyfubjnUziVA/Wh/vHhR19Lz09Jp77E70Wf+78bLhTgmvXuRdOaS0Fxy39Lu5kO6cnxyPhacNn/f2/p2VZmjUzveWffs9JDych4XZH+h5OOBVo/sc36YcGn6H7vuuH9PH51f+mSkh4unCzgsLPSPobkv7l0Z//2V7/8SzL/o2keyW9QNJv3MiNIVhY+z3qDwmAgNPSEAJaq9WU53loo8i13W53pfYBpMs7DEgK0UxEB+k4ig6plBTaOi4WC41Go0DK/Bm831sQ4gbwe7darTBPSDaOCiLoRM4ZqxeNhKSXy+VQC0CS+v2+yuVyIIWxuECEmI4PEGgI8mg00pUrV8L6ISowF9IEarXaSgoA4DV3FLAnzHtzczNE+OPuHYgfROedkPPcLMs0GAxUqVRCYUeI8Xw+V7VaVaPRUKvVCu9j/DgSnERDXiHFXJvneZgb44DoeycO7sscvCaC1w2A0JIW4u4MhBTOEvvkNRt8vE54/Tz7M/kvrpngNQ4qlcqK+BWncMR1GBzuSPD2l07YuUdcY4T15pmxOMLccdpIWimC6d0c/GfW3YWmuI6G1yjhe4f98etOOZ627+KEOxft1x66sMvnzkn/9GTHkpBwByB9DyecGtR+/jf1r/7aX9OzX/vdeuFG86SHk3CX4EkFhSzLXiPpYyWdzbLsIUnfqMMvzZ/MsuyLJL1P0sskqSiKt2VZ9pOSfk/SXNKXF0VxXRJZs9nUC1/4QrXb7RWLtRMZLwoXR2EhgbGFfjQaaTqdBtLZaDRCVNy7Q0AwSXnw9oleoV5SKHo4m800GAyCAEEhRH520YLuEdjuIVP1el2z2SykFVSrVWVZFqLhXlQP0kRrQxdecFdsbGxoOByu1CqgLkWpVAoFDZfLZRBgEBa8deGVK1dCWkCv1wupDx5FphsC9RHi6D/j59lO9CkGKWmlECVzzPM8CAa+z4g6RMepD+H1KZwM4zaA9LsLQ1Ioysk6u0hC3Q7+dHK6t7cXxszeuEjBM2JS75F/RCJP9VjnQmAOnirhaT/MM+6gAMHnGsbn5zN+1tHneMUN4o4D4CkMLgi4Q+OJovt8TrgXz3V4DQqvi8F8mad/Nr0mSTwvhwtH666Lx3Ia8Ex9FyfcPVhcvqxP+YTPCT+/8/PP6B2fnxwLCQnXQvoeTrgdkL3hrfrqT/x8veZX/702S/lJDyfhLsCTCgpFUXzeNX718de4/p9L+uc3OpB6va77778/kEyPVkJeIAuQCaLFEClv+Uf0uNvtaj6fq9lsht8RgT84ONBgMAjiAN0dvMsD93cyCbkmEkvqBbUEvN0kYkCWZeG+dD6AqOE08DQJ7ygAySWCzH24DjKJyOBOAOnYLdHr9fTggw+qVCppc3MzrAdiC+ve7Xb10EMPqd/vBwcE5AsBg3FVq1X1er2V15yEx04QxhnXh5COI8a4TZbLZRA/eG/sAPAaBkSz2U/cDRR9ZBwuQiGEjMfjldQPH0Oe5ytnbbFYhBQHBAzegyjAXDwdhnFzBnFZcLZ97Tz1hPQOJ/kesQcumKxLH/D1d/LMc54IMfkmJcaj/IzP98XdEdJxaoQLPlwbE38XoRD9+Mx47QTm5CkdjIF7ujDJeY5FGcbnosW6dIuTwjP1XZxwF6EotPi9d4Qfn/+NNT2v83K9+9NfdYKDSkg4vUjfwwm3CxbveJc+78V/UT/3f3/lpIeScBfgVhdlvGlUKhXt7OwEgkYHAUggxffiLguQOI/y4jyg4wGEGTKPA2AwGIQItRNdWkx6xXknXJBaCBXFDev1urIsC7n5pEZMJhPV63W12+1AUnn/bDZTv99fWQsvOlev14PzgKgzgoq3aHSiDFnt9/vq9XqB1B8cHGg0Gun8+fPqdDra3t6WdJzWUalUNB6PNRqNlOe5ptPpVRFwHCIuWnhxRAhmHPnl51qtFloyssdOthFSlsvDLh+sA0UqIZPeDYPXiP7v7e0FIcRrVEA4vUMD84sj9pw7J77s83Q6VbvdVr1eD7UVPCpfLpeDWOC5+hBnnlWtVq9qsen3iWtoePrPtUAqBmfa58SZjtMe4mKLrKfXPvCuE8DFMsD55HVPZYlTDnws61wNpOcgpHFP3sdZ9FQcr+2BcONuJsYtrdZ9oECkf+Y9zSkh4W5AMZnohV/xFr30b79EpV86q5970c+d9JASEhISEm4Si8tX9Cl/5M/qP7/tV7WRnZ4AScKdh1Pzr2W6CLRarZCmMJlMVgrKeb96ScE6Xq/XV6LRs9lMw+FQvV5P8/k8uA3iHPOYjPg1nr/thRtxAQCivU5AIMve4jHPczWbzRC1ns/n6na76na7K5F9CA2ElDoIHtWlngGpCBBYrnOC6N0xKEx57ty5sCYICLRMpKsGz2C+EGCvd0Bqw2g0CkUwEUA8Kg0xXCwWoQ0k8P2NresIFB6BxvbOvoxGo/Aeotj7+/taLBahQGe5XA4uBem4voN0LGIgJuE68FoFrKOLAqwfKRleJ8Lfj9DDOnrEHPFsHan33H53J/jvvJAjY/B2qDzTUxFwWjAv1jwuGhkXU/Qz7+kAccqRFzb0NIW4TaXXJ/C/8/u4uwdjQajjjHiKk6doIML52rg7wgUk/z1ima9dQsJdheVCxXKhg0ldD82Pxe77K60THFRCQkJCws1gsX+gT//wT9MPvP4n9Kz0PZ7wNOHUCAq1Wi1EmyeTSWjH6AQvFhWwnnsEcjAYhPaHOBPyPA+2f6LuFEt0YkUqgUfdIeluE8fS7gXjnKwQKccB4ekLRORHo5H29/c1HA7VbDbVaDQCMXLLtlf6h9y40ALJwnHhJL4oCjWbzeAmuHLlSiBLW1tbqlQqOjg4CMUfPS2A+3qefL1eV6t1+GWEmCApRJAhlIgm2NidgLqg42SYeg28B4JLusdyedhGkhQEzgkpI8x5OBxqf39f0mFdDlwrnU4niB0eIUdwgfj6fN2h4KSfefJs1sFrePjvEWMQffx6717hgpKfcebG+iEAAM4lhNiLi7pA4HUh3BHgThe/p4sEzN2vY7yk77C2nD3u644Nzj7j9TUFfl7iWgbc3392MYG1dgGJNqesu6dpcA+e5ePwz1xCwt2G1ksf0Bfpo8PPX/6H79CnNYcnOKKEhISEhJvB/KGH9YWf+sX65p/+Ef3J2tUtuxMSnipOjaAQF3ZzguAEcD6fBxLWaDS0tbWl8+fPq9FoaLFYqN/vh64OcRTUX4NsQU7osIBAIR2TsFKpFLoxQICdlJDjTfoExA1C4iQdMEcn70RfSVnwLgeekz4ej1Wr1VStVoNrYDwehwg5QEyAUO3v7+vMmTNqNpva2toK9QacRMepCvwHIWSMRHQRTahhAMGEvEH2sMIzbl8H1pC9IQLtUWZPX3GBCRGCP71TAWvpHQCuZfdnHd1ij2jCexBmWCf2lnXxehbAC3vGBNVFKM7ZtYoBlkqHbVH9fTg32Ec+F5xnai/4OBAcfD4xgfe5+NohurBu68g+Y3NxYx3WvY6Q5PvvdS983Rin161gnswb8QPXBvsSt6vkPvGZuNY4ExLuRvzbF32QPu2ht5z0MBISEhISbgLLt/6+vu4Lv1Rf8aqf1Kc3+0/+hoSEG8CpERRolUjhPWoSEHV3gYFCfY1GQ5ubm9re3lan01GpVApRfwrzuVDB+4m6UuNgPB4HC7tb/KmFQO6+kxjuQfoCufpu7Y6jmwgiPh9IthNkyHtsN3fyB5lFMBgMBldFpb0AJC6HarWqzc3NEL3v9/vB8eDP8Eh7rVbTmTNnNBwOdfHixRXCRnoK0WecHcPhYSQLd4Fb/PkZ4un1LyQFZ4IX5YMwk/YwHA5DjQ2EBqLfEGLEEtJP3PVBRN1rKHirRubnnTuYn9dhiK32sSsAMQVSG4sK7kbx3H7OBnvtRR+Logg1JXA9eJvEWBjyQoasqQsCscji6y8p1KIgBcbTUnAJec0JPhOeMuHpFD4GHx/P4BrENhcVwbpii+yjf5bc1cTzfPy+BqyJC30JCQkJCQkJCXcCyv/9t/TKv/tXdOVf/4y+aPOxkx5Owh2EUyEoZFmmVqu10sEhz3Ntbm6GloKehw9parfbarVaajQaarVaKopCu7u7gSB7BBYCSUtIiKKTtbgNntcSgPRSUJBI9GQy0XA4DPZuJ1QuYkgKbgOuY3zcDzIuKTgUGDfXEVVljE6WiehKh0R1e3tbWZbp4OBAy+Vhd4hz587pzJkzajQa2t3dVbfbDSQZ8ExIKy6Qxx9/fKVgpa+XuzW8ECK/p0CeOxYQCVg/1tTt/U7e2Se36NOdgnUgik49BK/FgEDgItM64ugpBHE6C+TdnRGcL8gs68A+kJLiXQr8Od7aMhZ0pOOuBHFNB+/+gFvBa3q40AEQxzjPCCAx2SatAmElTrFAYOH+CA2x2LIO7qzgPawl73F3AvP04qHMm/u5w8A/e6yNj8UdCKTWXKubQxIVEhKOUCz1R9/4V9XOx3rDH3/dSY8mISEhIeEmUP8vv6EfbHy6ev/kF/TV2+856eEk3CE4NYLC+73f+2k+n2s4HAaC1mw2Va/X1e/3VyKVuAiwxNPBwdsbYr/n794GEuJGfQb+c/s5RROJhI/H4xDh9xx6Is9OSpzg8aekEF2HwLtdG8KENRvSTd4/5M8jrrgD3Obu5KnZbK4Qzu3tbV24cEH1ej2kafB+iKzXFYCg1mq1kA5CagjzIBosacXxwDzoxEGaAwQfQcHFjDiS7akuEEmfn4sbEPb5fB7EGNaqUqkE8YK6F5wnfmbf4/3wWgAQ1fF4vJJigfvCyTrzYX4ILHGqDW4A/u4pK6yfC0he18DXKnYCIIJ5p4K4WCZn1Ym5C0P8510q3EnB2BGe3HHiYto6t40/y1NWWP9Y7HmiVJDYTcGcriUG+Pnis+t7x9/j+h8JCXc1ikL3febbVD57Rh/43X9db//of3fSI0pISEhIuAm0f+KN+onyS1X+hz+vr9x+70kPJ+EOwKkQFMBwOFSe5yHi6AUXPTed1zxyDfErikJ5nq+IA5Aer42AzRvbO/fEJbCxsRHs80VRaDAYqCgKtdvtQHicVEPaPL8cAgYxhyBCSCWtCBO8zlggasyfa72mAMQ9z/NAoiGgRH8hlQgv0+lUe3t72tvbC1Fot+RTyJLidnmeB3JVqVRW2m8yj1KpFObAmktaIcPScT67Ez7PbfdIvYs8TuwQAviPApi+Fu44geTiUICMI0x5rQqey/s4DzFZ9lQFxhQXB+Q9iAJe+4HfeWTcrfgIGKyV1+LI8/yq2ge+xi7aONl2N4fXOvD0Aifw7kpwF8I6pwQpJrErx8cXu0+4T7ye/rnkc8Y54jV3Mvi13umEz4oLdbzO2rpQ4mkYjCsVZUxIWMXi8hU9+zufLavXmJCQkJBwm6Hz42/UaxafrMY//emU/pDwlHEqBAWPAhNxbLVaoRBdnucaj8dXRY5pcUgEGDIO4YJgYANHHPAigd4hAIKFoIDoQNcJCG9RFOp2u6FaPcUPIX3T6VTdbnclhQPSPhgMNBwOQwcLTx+Ii0Y6KXfRAsfE/v6+5vO5Wq2WdnZ2VuoAYPGHkCIoVKvV8OyDgwNJCnMkZWBzczOQNJ7JvTzdwwsDAoj6xsZG2CdPZfBING4PyGZ8b9wF1InwuhQQSdIJPM2FNYrJ4Hw+D7UmuBZRajQaaTQahbMBCWVNXBjhGhdFnGS74MW6sU7VanWl6CN7BSF2AYF7xQIEz1kXPff0HMCzGSPXuCC3XC5XOjH4s9kXn2MsHMQ1JdzFwN76eFy84DoXEL1mhbd15dl8Nl0IdOGA80tqDHvlZ4sz4KlCSURISEhISEhIuBvQ/ok36kcHn6Zzr/z3qYtPwlPCqRAUpOMK8US3W61WiJ4iNkDu3D4OMXDbv7cC9IJ35XJ5pT0gDgAnfd7NAFeA2+UbjUZIhxiPx2q322o0GlouD7scuEgAEYLA4U7A6s8zmZd0HKVHNIAIOaHzYogUpmw0GldV7T84OAhE2NMY3JHgKR5eDJMChxRVZIyQRa9j4LZ5d2rwn4shzHtd3j4iihNrj0jzPn8dVwTPRyjBjUHKC64FF44Qm3B8uNgRFxck2h0XyIzJvRfrpP4GZ4O0kXg+vob+uhNgT//gWoi/FxeMHRQxOY7nFrtA3DXg6RXsKc/0mgaeGsJr7kjwvY5TMxzuIuKscMaeqJYBY+FMe3qTCxIuQABPQXHXAufyWrUVEhISEhISEhJud9R/9jf0nf3P1XNf/d36kGr9pIeTcJvi1AgKRO8RBLDmO1GJq+RjYY6j+k6ApNWoo3diIDKJ+6Fer2tnZyeICrVaTZJC60AEBwg5ZIdn8Ezy7AeDger1ujY2NkIbRem4MJ63ViRVA9Lp96/VamEskCfG02w21W63V/LwS6XDYpG9Xm+lRgSpDJ6nTwcFyGOe55IUumW02+0VB8m6PHknv97ekj0hWu+Io9lElRuNRnCeePSfM5JlmZrNZiga2O/3w+teO8BTMzxdxAUFd8XQOcJrOhAx94KL8/k8pFngoKjVait1E7yWBGuAqIK4xbhYCxcoEI+8ngHj9doLLiKQ3uCOA34XiwouwDEOT40ATrwRBzh/vka+pqyJF2lcJyDwc5zK4kUt4+4MLpDwJ66e0Wi04srAWRGLBKwJ54099hoZ7JWvY0JCQkJCQkLCnYjyr/2Wvu4v/k39yM//oM6Xmyc9nITbEKdGUKDQH0QANwHEnFaQOAtKpZI6nU5wMjiZ8BQIcuaJQpfL5ZUCgx6xrFQqarVaoYCgF/Yj/QIXAhF9iC2tLKXj4otcNxqNVlIOIFlY6iku6Q4C1oLIOFFriGye5zp//rzOnTsXHAWkalQqFe3u7urg4EBbW1uhs4XXRoCseWcJCC+CiJNX1sE7HhDV9eg2hBoxpF4/VDu9QweCiVvpvdCluzR4vnRsWyeVZTweq9frabFYqNVqheg/nTdIReG9RLBHo1EQCqg9gQiDuFSr1cK+eHcBzpCLWhS5ZE3dYcFZjWsP8EzOqkf+vX5ILKRB6uMCoC4QeMoBLg53HyBMcB3dTxCD3J0QF08Ey+VyJY3CRTtSXtzpwHtchOI15sBasVfxmeJ9nvbBWaV2B2fAC2l6mpQ7O5ivrzFpKfyOz0ZCQkJCQkJCwp2K5e++XV/wES/Tz/zGz6qclZ78DQl3FV76F/6qyhf3JH3n2t+fCkGBVoyz2Wyl9d3BwYEODg4COYAIUVeB9odOGkkV8Nz32A4OkYIw4Q647777dP78edVqtSAiIGTU6/XQpnI4HAaSDplECPHnQ7i9ajyAfNbrdTUajeBA4HdOUCuVirrd7oo1u91u6/nPf77a7Xaop+DRYOo+nDlzJpB4iK2kkDoymUwCoQO8TsQbcQAxw6PocbE8hBaEH4QTJ5sg7kDAOMnnJ2XFSTApKru7u4FIIpAgCsxms7AvpVJJjUZD5XJZ3W43tNB00gs5H4/H4b2MiUKGjJeoNyJOs9kMDpS4Poevt6Srzp1Hv1lHdw94VN/JOPdg/RFgXHDgPdyHZ3g9CHdCeHqFw+ewzmnC87zuA51BPBXDC1ty31goitMarpXmgKjgqTg+LkSfeD+8jkq8tt7tgd+52JaQkHCM0v9+q/7013yp3vDt33vSQ0lISEhIuEWYP/yIPvWD/5x+7vf+x0kPJeGEsCgO/y3/R7//K/Tcf/lb4fVi/DbNr/UmnRJBAWJEob1KpaK9vb1QdBCihSBAFHEdUZ7P54FoklIAcXCrObUQeF+1WlWz2Vyxs5OGMR6Pde7cOZ07d06dTic4AYhcxyTMc7al1fx6SA5j29nZUafTCUSYe3mEm4g+4202m9re3g7pC9zXayLQfYJ88nK5rE6no62tLWVZpvF4rG63q16vt5K6MZlMgqOC4pY810lXpVJRr9cL6+pkjddI6yCK78SXiDTtPT2i7vCxEUWHRCIyODFk3TlTrHe/39fly5e1u7u70rGg0WgEkYOaAq1WS+VyWbVaLQhWuAUojEhLTvZ3naOCvWEeLmB5ZN9dAf47dyW4C8RFCc5fXNQTeHcUxsp9vLYI42KOWXZcXHNd+gTrhxjlQt26VIm42CF/95QHEKc1sa6IdutSIHxd+Cxwf4pS+v1ZGz7H3NuLerpzJCEhwVAUKs9SS9WEhISEOw3LwUh7i6G2y40nvzjhjsDe4rAg519/12dp9rGPSpKeo9frRpJ+n1RQyLLshyT9RUkXi6L4o0evfaukT5U0lfQuSV9QFMV+lmXPlfT7kv7g6O1vLIriS69nIBQYJO/d7crSKhGq1+tqtVo6e/as7rvvvkAIsLOPRqNQ98DbQtZqNbXbbW1tbalarQZCnGVZSAcYDAYrhQDJTYeMM0YIcqlU0mAwCNHS6XSq/f19zWYzNRqNIGB4hJTxdjodnT9/Xq1WS3t7e6Fgo4NItEeuy+Wy2u12IPxYtSeTiS5evKjBYKDJZKKtra0Vl8Tm5qa2tra0v7+vfr8frvN89rjtI44Dr8PAHtHpwh0idm7CGnrhP8aLGOLkz7sYeDSbOeOWQCzCyRB3BOC+1ERAkLl8+bKGw2FIO+GZjB/HSXzeAGeh3W6rXq+HsbuDRlIQYySFzhGQfye8uFhw5Hjag7RaW8HHxHpI6yP9fs26Og1xSgpz8cKb7lxwESeue8EzcHowP5wQLiS4i8HXls+Ii2KM39MVYqGCcXrdFBdFiqIIqSuxUyZOreDMxuLlacIz9V2ckHA9KM0K/cZkpnvLE91faZ30cBISnhGk7+GEOx3FbKq/+qGfqn/55v+aijTe4XjLZKr3zM7qVS988dErj970va4nSebVkl4avfbLkv5oURQfIukdkv6B/e5dRVG8+Oi/6/ri9Fxrugv0+311u91gOfYIeLPZ1Pnz5/W85z1P29vbKpfLGg6HoW4AUXGs1wgKnU5Hm5ubqtVqK3nndAIg7cA7MiyXSzWbTZ07d0733HOPdnZ21Gq1gpthPB4HAePixYt66KGH9PjjjwfSBdlxYsQzuQ+EknECyJLnfWdZplarFYoljsfjEFmfTCah3oSk0G6TQnPMezKZBHcC6Rnu7CDdgt+RAlGpVHT+/Hk961nPUqfT0fb2tra3t9XpdNRutyUd59ZD9J2cOYFDYGH/sZfzH60gmTPrQlcHOjLwLJwUcZQ9y7JwP7evc5Yg9jhEnDTz+mg0Ck6VjY2NMOc8z68SPnivp4qsq0fg8KKNfv5iQS0mxE7gcY9wL84dZ8vHh4jB2rnDxFMSPIXIhSYX02IHRDxfJ+XXSqtgXL4PXO9CVJwy4QU3YzHA3Rx+zvweXj/B0zYQiU4hXq2n+bs4IeF6kf/n39A/ft6f0sf9+Nee9FASEp5JvFrpezjhDsfi8hV9/Sf+Ff3MILkU7jT89KClVx3cq1cd3Kt/+IKP1Kte+Pxbct8ndSgURfE/j1RWf+2X7Mc3SvrspzIICE69Xg9F9S5evKi9vT2NRqOVAoWNRkPnz5/XmTNndPbs2RBRhtRDjiEazWYztAykxeLGxkYgmKQQbG1tKc/zUFyRcUiHNR6azWYoyghxmc1m6vV6oTvFYDDQYDAIEXgi+dIxYYIoNhoNnT17Vpubm6FCvUdFvWMFRJJoa6PRUJZlgXRDhpz8E3WuVqvqdDo6d+6cNjc31ev19Mgjj+jSpUu6dOlScFM4MURYgWgxJndp7O3thTlCaBlv3MWAThI4HVqtVlgbj2IPh8OwhzgfSPnwuhLr8vCdxNNZA6FiOBxqNBqtROxpkRlb6HlPqVQKHSQYA60fNzY2QlFJ5g4x9fG5kOTPdveDd5Fgn+PuBszTu04wX8gvDgHWw+/BGfL0CFKGEH4QDOLPJeIGgh/rxf187UAsFHnxzXUuDM6uz9XbOfpc2TOe4/85fF9dQGBOsfPE78cerrvvSeKZ+C5OSLhRNB/K9MUPflT4+Vvu/SWdTVXCE+5QpO/hhLsFiz98QN/xis/Tp/3oD570UBJuAV7dPa//ffACPfhlz1XxlrcdvfpEVRFuDLeihsIXSvoJ+/l5WZb9tqSupH9UFMX/erIbkE+PzZ6oaK/XU6/XC2QUgtxoNEJVfwgPjoLhcKj5fB4EAnLgq9WqWq2WWq2WsizT/v6+JpOJqtWqtra2dObMmRC9h+TQDYDUBemYAPEs2iuWSiVdvnxZo9FIkkJuvheMIwqNMLC5uRmcBbgFeA5RYOz8HuFmfSBs1ERwQk6EudFo6P7779eZM2eU57muXLmihx9+WI899pj29vaCgAKJazQaK7Z01jbPc7VaLW1ubqrVaoWUDaLXntrBHHE7uGBB7r1H8uPos7f689/jTiAv3gUFHBXScZtNXAzkwrsYQNHJPM9XcvHdReE2eSz51IBgbhBdhCxeW1dgMI6YS8fEN06xQAjgzHnaDGeCTiacD9w4nubiDgUvXOjpF4hS7gRxsYQ5IaywXt4SNHY2IO7gWHH3BesMEGPc9cA16wqUuvDh9wFxXRUXJK61N3yuXYhxR9Ftgqf8XZyQcKM4/12v1/u+6/jnl7z6q/Tbn/Bd2izlJzeohDsObx9tnfQQrhfpezjhjkHt0lBf9vBH6Lvve+NJDyXhJvGT/U298l2foPIPnFXzdW+S9LYnfc/N4CkJClmW/UMdyhs/dvTSo5KeUxTFlSzL/qSkn86y7IOLouiuee/LJb1cOibPMdy+znXb29s6d+6cLly4EKLaw+EwkE1y1uv1ujqdTiCA3ibSRQgvBOnE1nPF6cQAGR0Ohzo4OFC32w2CAiTfi0tCThmPk0kEFKL3FHhkvB559RxxSUFsYc2w9Xs+OPc6c+aM7rvvvlBP4cqVK7py5Yr29/eDiIHgQrSa9SSyXRSFWq2Wzp07F1oxQmBJN8Ai7tZ8SHeWZaErBoTUbea8j2KYzGk2m6nf7wdyCHmOzpGkYxECF0G1Wg0kH4GFSDl1E2q1WnCvuCDgc0dgoa4H++tdC1j72G7vZNSj4MAFFi9+ibDm60RLRWk1PcCJvLez9PcjzDAG9hpxKm4b6ucs7grB8/lM+c8e4UdQyLIsfL7iWgqMy1M5OB8IcV5XJHZ4xGvLNQgKLiS4SESqCCKROxj8freToHDLvouV7I0JTw0v+Jtv0Yf+f1+tornQu1/6Ayc9nITbGC/57Zfp0uObkqTSO//1CY/myZG+hxPuNCzf+vt651f9cX3utzX02uf96kkPJ+EG8L/HS/21X3u5dt60obPf9wYdlnd5+nDTgkKWZX9Dh4VpPr44+ld3URQTSZOjv78ly7J3SXqhpDfH7y+K4lWSXiVJm5ubBSTHbfAQSHcmPOtZz9LZs2fVaDRCnQWIK+KDiwCSAqHk3qQeSMetAXETeF411ncIKsSTOgUICB4lph4DEd51+fGkRJRKJY1Go9Aak+iuR2t5v9vpSWvgd5PJJNj63W7fbrd177336sKFC6rX67py5Yre85736OGHHw7tMCHIkMnlchkKW1IBXzqO+i+Xhx0TSBnx+giMD8IIUcUp4h0dJpNJcBsgviDyIIZAaBEkmJeTY09NcacLxBayjxBydPZCcU+EHh8zz0Q0wfkAucXl4vvpQorXPuB38X8gdizwXO61LqLOvN31gFjjnwFJQdBBPPDODlmWrYg4nAH/DLpgwVl30YqxsDcUcGTv+UzHjhTmyH/ekpN98FoGXi+BNfUaHQAxD3eEu0fi+/B59rF5jQd3LJxm3Mrv4k62c3soKAmnGi/4yjdJkl70z1+hebPQuz4ntZdMeHJ846UP1mt/9mPCz+//6se1/YeHX1lvOuXibvoeTrhTkb3hrfrdn/lI6W8nQeF2wdumI335d3yNXvidr3/GnnlTgkKWZS+V9HWS/mxRFEN7/Zyk3aIoFlmWPV/SCyQ98GT3o44BrRwpyjgcDlfqK2xtbYUODUVRhEi655KTokB+v1f+h3x7RJmINhFUigNCVOIuDcPhUP1+f6WIH+QGJwHkm7lJCkSL+ZCHTmoFJIa5ICgwvm63G57lkXDEhL29PfX7/TCWZrOpdrutCxcuqNVqqSgK7e3t6dKlSyEtBDLrpJYihNxHOibgrPFoNFK329XBwUFwiOC0oAgk96zX68rzfKVFJOt4cHAgSSH1gyg4+wApZA+8Wj9ry/7GYoS7WyDxXmcB4i4pRODZE+8UwXlhr9rtdojwe3Sbfeb8cHa8YCGk2Wsi4FLhXqw7e+3rH7sbXBxwpwPP8rPJM2kDyXWcdRwkvib2uV5xMxRFcZX4x3XMP06hwMWCgOGCCetN6o7/nrm4KMd+Ilq4q4J9888JAlS8fi4krBsvYsRpxq3+Lk5IuJV47j98g0qNhl7Uf4X+4Au/56SHk3CKsCiW+rBv+YqV1zbfNdNzf/4Nx9c804O6SaTv4YQ7Hc/+xX19zMd9hv7nH/upkx5KwhNgUsz0Ed/yt7XRL3Th1c+cmCBdX9vI10j6WElnsyx7SNI36rCCbU3SLx/9I51WOB8j6Z9lWTbX4f8LvrQoit0ne0a5XNbW1pYqlYoGg0Gwc7sVu1arqV6vh9z45XKpXq8XiIXXMmg2mysdG3it1WqFqHdc+A7CRC0GyKSk4DiYTqfa3d0N5J77Z1mmdrsdiJe7FIjyex445A7SBPH16H6tVtPm5qY6nY6KotBgMAg5/BTTI62g3++r3++HuWIz92jteDzW/v5+qPEAOWOsWPQh8RShhICPRiP1er0Qwe92u6FTxGg0CvPzCv0QNLeYSwoiyGAwWHFHeLQYgcLrCxCJp+2jiwYQR68NwDik4xoLzLFer6+kyHh7TsBcOItFUYQilPwOMsx1CBukX3C+EESc5FJLg/vFpNfHwrlhXghXvO7pLwgtLlL52eQz4+kZ7IGT8/gz6kIJz0NsYU6II8zDRSki/jiB/Pwh0LibgLl5PQmv17BOaPEij6w1847XwEWm+Kz45/W04Jn4Lk5IuNVYDod6/3/9Nn30b3+JJOnRT5/qXR//wyc8qoRnEs/72S/Wfb94dVOx8697Zv/BeyuQvocT7kYs/8/v6eHf+wjpj530SBKeCB//VV9xYt+r19Pl4fPWvLy25GdRFK+T9LobHQSkAmLo5NeFBFosIhxQuf/g4CAIEZ4fDlmA2G9sbAQCTFE+3AzYv+kwQGpBlmWhsONoNNL+/v5KK8ujeQebPQQG4sv9IN2ex01nCCcuOAfa7bbOnTundrut0WikK1euBJHCi+GR/kDeP4UHcQUsFgt1u93gKqAQJQQOu7lHa1ut1kqKAjUbIHVeAJM6DIwF4LBAqEBQKJVKobUnQlGlUgn3xD3gQg//EaWOaxp414J6vb6yzpBwJ9isMY6KxWIR0l4gmohLLpSwrkTTidQjbuF88TQDJ7HY9TkfrVYrpFT4vBFPfA6QYOYurYphXicBAcHrkrhowJ7zGYlJ9jp4KgBnFwHBRR13vuB6wPkByecefH48RSWuz+CfM+nYOYC45iII5zkWBGLRIb7W19nnEws6J41n4rs4IeHpwKLbPSoGJX3gG+/VJ73f31Dpmy/rFz7wv57wyBJuNX5puKFv+/y/svLaH3ngfZo/9vgJjejWIn0PJ9yt+MDveFgf/UGfqV//kP900kNJWIOP+/wvUvO/venEnn8rujw8ZfAPfogr3Qe83Z7bqyH6ntdNtJWIpleM39ra0oULFyQpkEgXFIj07u/vhyg2pJLUAcQCt6cjPEBsIKCIFxBZOkd4xwDaXY7H40DwvbghNSCq1aqGw+FKlJX3kR4yGAxWClHWajW1222VSiXt7e2pXC4HQQGC5+KHR+apGYHggFPj0qVLmk6nwbVADQUIOeOjJoEXFmQ9vIhfURQrYs5gMFCv15MktVqtQFgZk68ZrUQh8BBcikpCqnm+R6HZBxwLXoix2WyGPfD2lxBTHB9+T86C17iYz+dhLOyZr8nm5maYj4sQOCDG4/FKegQ2fnd/MI44qu5OBy/S6J+JWJjw9YpdDd5m01NPXEzwuTM2RBfe6/U2XGBxBwK1KryoYtwKMxYK4mKu7Mm16jwwXx834gRj9SKU1xJYEhISbg7zhx9R9vAjerT7QSc9lIRbiOFyqpf9mZdJ84WyB9+68rvT5fVKSEi4Gczf+6AuHXzISQ8jYQ0+8XP+pjb+92+d6BhOhaDg2N/fX7Hme1s9CLnnpntLyXURYYg26Q67u7saDoehzgFEotfrhbQCJzPklUNCfDzefYJIPuQE67vXPoiJKm4MaTVFgHoS1HaII8ekHSyXy+DMaDQaajabajabofYCNnXPXfcUAiKxTkwRMtx9QcrDcDhUvV4P4gkkjQgzJBNhwR0iCENE48vlss6ePRvqXOBuiNMj/DVJKwKAdxHwKLfn/3tOfEwqvfWjF/JjP5zsunhAYU7aYZIWwhlEkJGOiay3C3VSzRw4d6wbRDfPc9VqtZWCm+xtDNaQvfM9ZG1cqEHsYX1IZ2Ce7pjAjcG4vXCpOxSq1erKvNlvr4fBPAEiIWfH9z0WDXi/F05kb31eLuSwbggRfJb8PZ5CwzP9OQkJCbcW937uu/UFv/Zn9MPPSV307gR89h/781rsvfekh5GQkJBw1+AjvvZLtfNffk+l3lulEw6AnQpBAXs0dQAgb94ZYblcBvLj7e2IfrpNfmNjIzgR5vO5zp49q62tLT322GMrLgEEBarKj0ajEPmVpEajoc3NTdVqtUBGsIwToee960icEyl3HxARJhUCojmdTlWpVK7qigBZ9TZ2pDN4gUF3HzBWnBTT6TTY7OlS4c4G7tFut1daK3ptCe7n9QrcCeJCD6IGf5dWC05euHBBW1tbyrJM/X5fg8EgCDaMP77/ZDJRr9fTcBhqHgXCDSlnfMALWSLmABcfmJMXOmQPXaAql8tBxIlTI9whwxmG/LPHjIkzQXoEnURwAHCWGo1GEIa8mCN7wXP8c8TaeXHLyWQS3letVoP4xf66Y8HrecQpJx7dZ96+5uxDTNT980kqhNcP8SKU7D/j9TQO1pczwZnylAa/DsROA0/x8fPp+7/ufQkJCbcGy/FYB9O2hsupGqXqSQ8n4SYxXE6PxIS9kx5KQkLC04znfu7v6FN+9VP0cy/6uZMeyl2NWbHQS77lK3X+x15/aorXngpBQVKI1uMUgJA40cBOTy79fD7XYDAI7Q89rxris7GxEVoG9no99ft9LZdL5Xke7PZY990enmWZdnZ2dOHChUDUPUoNgUL0GA6HKzn6HrnNsiyIB41GQ41GQ8vlUo899lgg9BC/LMvUbDZDW0knxE5unAQR8fUcfQiY2+Dp9jAYDILYApEFkGLm5TnmpIl4Z4w8z9VsNlWtVjWZTLS7u7tSD4BxcG9IG/UwGN9gMJCklU4D3J/ihhRRRHhxWz33x8HA3FkjT00plY7bBboAIx0KFDgScEHgmPBaDDHZ5lx4GgFzoJAmogjnlX3ywpXcy7t8sCe+LsyLuY3H4+A4YAzMkbF4ZN6j7zEBdweFwwtnrnOCxGvphQ9ZJ+pcUMPCUyVi9wTuAl9rTwFxASJOceD5vN/rlHDGEBb5vRfQjGsuJCQk3HoMPuaSPkMv0Wf9/kW9fPORkx5Owk3gZX/mZcmZkJBwt6AotCzSv49OEgfLkT7iVV+j53zX6Spqe2oEBUglOfkQBggnkVVIVrVaDY4GroOAQkxms5l2dnbUarXU6/W0u7u7UsOgUqmstJCE9PGnuxhwJozHY43H45AyMZ/P1ev1Ql0HSUHsgCRCcpvNpra2tlSv14Nw0mg0QoTYiZUTU+7rKRaSwpghyf1+f8Vaj9uCSC7EDkIorUaUvVo/UWTcAIwDRwARc2pMQNK9XsDGxkaIYnvNhTzPtbOzE/aNNpX1ej24JRifu1E88g0g+RTKRJxZLBahnaU7H9gPRBaP2ns9CbfD+7OGw2Eo0IgrxEkza+pRfVpnIvjgbmBe/ImAJCkILvV6XcPhMOwr4/Mz42TZha7YkcGYcOl4qoWLFH498PvwHC+wuG6vXASIr2XPmK87U/jZU3Nc3FjnePEuDtKxEObPZo7eEcNTJq41z4SEhKcXr/ug85q8bUNfuZ2I6e2EXxpuSPP0HZmQcDfhPZd3dLAcabOUn/RQ7irsLYb61dE9+rqf+VK9/z87XWKCdMoEheFwuNJGjvxr6biyPBFb8uhpMSkdkskzZ84ES3e5XFar1VKlUtGVK1c0Ho8Dudvc3AxRby/khuBQrVa1ubmp+++/X8vlUsPhUKPRSBcvXtRsNlOr1ZL+//a+PUay867yfN1dr1uPruruscfOOHg8mEdCVhMvMaCN2IBQIA/WG7QCB9YJKBB2N2HZXcCEsApBuwYBcUDiEcl5YBzFCZFCtBEgEdgQJQgbx7HH8QuDHZx1O+PpR3W9q6u6q+/+UXW+PnWnu+eR7rq3PL8jtaa76ta9v/vdrz7N+X3nd36A71igpAzYJS2stWfnBhIcJTFK5lnuAOw62rfbbb+DPzc3hyAI/E657qazhp0eBiSUJL2Etv9TMkj5O8luVBnBZAsTNkxskOTyOH1O9Ljg5+fm5vwzie4aa6cMJYFRU0KeW2v3VYXAVpBalgHsJgTUiI9En4kMKk1Ups9x5Ps0XcxkMn4XnaoIJfKpVMqXzORyubHyE55PDQ2ZCMlms15Vo8+W96ClAloGo0oQ/VuJuioLtAxBn3e0jIJQI8NoqUDUJJLgWKjSiNfgc+B1okkFVSHo/es9aKcHnTuaNGOsQRCMxaxzh8eo0oFjbzAYjh5//vIKnv3yIuZmhmv/ifSGJRgSjLvq1+LTt/5b7Dz3ZNyhGAyGCeKbfvRR/M6Zm/G/r3o07lCuGKwN2vieL74DN/z4GZzC/XGHsycSk1AAMGYEB8ArEzKZDCqVCq699lpfLrCzs+NLGIDhju7i4iKKxaIngyqtpwqBcn0luyRKlPSXy2WUy2WcPHkSS0tLqFarqFareO6557CxseFJ7ubmpldJsO0gsEvUqGYYDAYoFove+I8tF1OplJerk7jm83lP1PlerVZDu932bQZJdtSYjt0OWIKgXRposqgtHjk+eo4oIVPSRXUC48tkMud1sKCUn+NARcfW1pb3B1BpvaoHisWiV4ZoYkcJs6o+VJnCpIjuvqsCQOcTkxIsE2FCgQks3o8qLdSckPNFjTU5ruxawXENggCVSsVL/Jl8UtVJNEGQTqf9nNUx0oQQ56t22FDvClUxABgr2VATSiYs1KskCsaqSTw9L8c9CsahCQuNv9frjSUTnHPeR0QTbVGViN4/74tjxbFk1wy+BsCrfjQBFE1q8F55XTXpNBgMR4/H/vXu9+2RV74ayx+p4LeuPhNfQIZ9cc///GHkH4mvRZnBYDC82LEVDvDGf7wFz7xwDKd+4uG4wzkQiUkoqOmhtmsLgsB7GQRB4EldGO669FNNUCqVvHN+JpPxO72aLCDZZokFd5xZz51Op3HNNddgcXER119/PbLZLJaXl7G8vIy1tTVfDqAyfjrgc5eWpKXRaKDX6421yFMyxJr0dDrt21fm83k45zyZabVaqNfrYyUBJJPqMwHA3zPj4E44x7LT6fj7Bc6vMVfDx26361/TXVvtmEE1AJ8DCS5LHbrdrr9/JhO4E852l91uF3NzcygWi2PzgSSWSSUSZN2NJilkwoLKCcbG1o1KvFk2oMkCzj96NGi9P9tR5nI5T6gB+PlC9Qpr8FW1wGdKI8darYZ+v+9f4zPgvTH5UygUfKkIy0iU6LJsgkkIji2h3xEqNGZnZ9Hr9fx8064YTKCoyaMS6Wi7T74W9Y/ge9HyA32eVGJo1wfOLV5Dk1z6b9RHgclB3hsTBNEkAOcf49eWo+rvwLnLY6JdJwwGw+QQPvw4Hvq507jxv5wGAPzSKz9rPgsJwX989jUo/L8OzLLWYLgy8aeffTXefut9eOlcIe5QXrT41i++Bdv9WXzzbQ/jFJbjDueCSERCQYkNWy7yP/qlUgkLCwsolUqeJJO0Obfrjs9jgOEOJr0TcrkcWq2Wd7kn2eZuNEsmWIudzWZx7NgxLC0tYXFxEe12G81mE/V63RPHzc1N1Ot1VKtVNBoN5PN5ALvtDek9oK0EGRdJupLCIAhQLBZ9UkKVE+fOnUO9XkehUPDH0FiS5wTg743n5TFMQIRhiHq97kmtflZLFnhdxsAEAMeb5Sisf2eHBrbIpJfC9va2HwPu0PM5s1UmkxYqdVdPB+2woGacutNOcPeZZJVKASZENKmh3RKU5Oo80F1zJjRIMrPZrC+z4TPl+JN8ZzIZPx91nLRUgvfHe89msz6xQmUHEyHAeIvEKClXcq7H7lWKox0WtOxEuzZo2QeTJWogyXvnuKrBJMdZiTlB/4oo6Z+ZmfHlFCxH4X1wXjApwGQIj1HjUvVq0AQZkzzRzhi8Hx1jHVdLKBgM8WHm787ghr8b/v7ht9yC9Ls/hZ8srcQblAGP3/syXPWl5NXwGgyGyeCG2+/DQ286jpfOteIO5UWHk3/1NsxspHDj7Q8ilP8/Jx2JSCiQCCm5oj8Ad+VJCJQYptNpFAoFv2tOMsva9UqlAufcmFIgSu77/b43HsxmsyiXy1hYWMDCwoIn9GfPnkW9Xve7oM1mEy+88AKazSa2t7cRBMGYiSB3OXWHmISJu6gsh2ACg7GybICqifX1dWxtbaFYLPpxUMLFcaOkm0SUEvxSqeQVFSsrK2g0Gt7TgWOsZIwKDyVnSsBJsNjCsdFooNls+muy1SWJoyoAqB4AcF4Sga+ptwKvz11pJhdUFq+dBUiSmWgicVbvB1Vc8Dpa468dA5jAUBm9PkuOA+eOnp8km8msarWKfr8/ZqjJazNpwXISJmj4PJgY0HFQRHfwOb+17EPPxxIZ9RmI+jloQkFNMqNlDqpG0G4VmiDQpJGqH/gax5QxaZy8lhpMqiJD1R0EEw7qg6FlFrw/Pt+oyaN+lw0GQzJQvuc+3NX7Edx53cyFDzYcKU58cQNWDGYwGAyHg5se/DFsfWERAPDtdz+Fwdr61CnAEvM/ZpXeaweBIAjGSCb/5u47d+1JGqhqmJ+f99Jx7qaznGBnZwe9Xs+3qWw2m76e/vjx4yiXyygUCmi1WlhdXUWz2QSwu5upu6xKOrTsQTs2aI06P0eSVSqVfNtFEi2WU7CcIJfLoVwu+1pxLWlQQkRDQS0toLy+1+uh1WqNkXz1YiARpnpDfSFUZs5Sk1ar5UsoqDQA4HfPAYwlExqNBgB4vwgqHVjeAYzX2XPsKM+nSkBr4jkePJ7xk9xznpCwKzEGds0pdXedn6OSgXMSwBhBj5YEsPUmSxRowFitVrG5uYlGo+HHlp9l/EwU5XI5v0OuJFoNC5WQ85lpAoR/U33C74XuuvP7oOUN0XmwHzQJFDVR5DzRsgzOUX22mqigCat6FmhnBk046HzV8g+NQZMEvB8qE5jU2qubivom8P1oKYnBYIgXxT+9H8ULH2Y4YlgywWAw3PnLP4Hv+r07cY2VPVwyPtmax/t//c3+7+MPVzF4Yqj6mta+OYlIKNAgMSpZzuVy3piPjvy5XG6s5R+VCSRBmUwG8/Pzfid4fX0dKysr3hiRUnF2leAOMj934sQJBEEwljjQXVxtR0g/BRJWEqdut+tVD/wMjRDVMJJmhKy1Z6KD/gLcqb766qtRqVR8IoLkXs0BtUyChpHqQ9DpdHypA2Pi7yRxKlOnukIJNEspnHNYXV3FxsaGPy/JtpJFLSlQcsfz0aCQO/epVMqPNckeybaWUvB9JiRIGDlvaPAI7Po+APCqEL7OEgclj0xeEFpKoEkXJb3cjef4UuXRaDTQarU8gU+lUtjc3PQJsyAIfHtPJljYQlM9DrTkJJrUUN8CbUu5VymD/q0KBiXVUe8DzhGSfZYPRE0P9bvMZ0HFgSa4gN1SCVVbMLmjCbqoCkU9FVRlETX75DW0+4cqD3QMOQ7qv6CKC0soGAwGg8FgMIwj+LN/QOd3445iejAId/Da234GADDX6mP+gd1uDdOaRFAkIqFAIq118TQYBODbNKrpIrBbG81ERDqdRrlcxtLSElKpFGq1GtbW1lCr1VAsFsfIVq/XQ7vdHnP1z+fzvr1fu93GxsaGbzfJmHgsFQ2FQmHMcFHl88AuYaEZXiaT8fes5Rs0MqQ0W0loNpv13hK6g6wtI6kq4Hhsbm6OqTSA3fpwJXcaC9sx0tSSsTKura0t1Ot17OzsoFarodVq+QRH1KyP0Pf4vnYLoBGeJh/0sySjJIfOOQRBMFbSQGXGYDBsuUhlhe5Iq/GkJnl4HTUqJLRjBH+0FIBjx385jvysnoOlBJTdcyc9l8t5HxAAY+Uceh5gN/nDZ8k5QMKtahyO1V6mi9FSEianeJyWH/C89CBRdQDPQegYcXz5/JjUYImIEvboPfO+o20fo60hWYKiSgJ9zpxP2mZS5yiP02eofhvq02AwGAwGg8Fg2MXPvfYn8enPfRwZl7rwwVcgvvv2/4SFh6rDP8IQc09+Od6AjhCJ+N8yOyLs7Ox4mT8wXmPN8gc1UyM5JSnN5/PejHF1dRXr6+uo1WpjNdwkQ1QfcGd/aWkJCwsLmJ+f9+qEer2Oer2OdrvtP09CRBKj5nFqasfXAPhdVErauSvO+yDpVgKktf9sF8luCuolwfHq9XpjxnOqhCBho88Bd+GVqDN+YLj7XywWvdpia2trzOmf7Tqj0nCOR7QcgGPBY9k2kzv1HAsqR1Tmr2UHTBoVi0VfvsJ7ZzIl6pOhUnp+fjAYeOUAWzRqSQTnSy6X80RfEwlMCHBs2bKTCRktMeAPzx0tU+FzZMIoqohRkg7Ak3ImtfSe1aiRY67KEP2X3RHYujRqlKjlFRwTLT0imDzQ76Rel2oGNSTdy+xQ75PXVi8DVUVEEwSqXuAzp2pGj9NypKipp5ZyaDmGwWAwGAwGg+F8DJ56Gm+66Q34y4c/G3coicENn/5ZfNuvPQ0AmK9+CYOdF4P+4MK4YELBOfcRAG8EsBKG4XeMXnsvgJ8BsDo67N1hGP7l6L1fAfA2DBUc/zUMw7+60DW0tz0JMdUC3L1VoqoEQ8kcZfDA7s6wytBZrkCCTXLqnMPS0hKWlpZ8VwTW/a+trXmjR4KqAdbxM3YmCtSpnoSa98F4VM7Nko9Wq4WNjQ2fUGHXCX6u0+l4yXw6nfbmjrrT3uv1fHKB99bpdNBoNHyHB5Jlxs7x19p+Jif0/O1228fR6XT8PeqONcedu8rRHV/uVquR3tzcnO+2wc/xWBLZnZ0d/3y17p7nJ/mjaqNer3tSqcdQDaO1/Spt5+9KKLXUYXt7G8Vi0StTarWaJ/dMWKl5oiYDOL91TtNrgePKBA6hSabo7zoOTKwoIY+qKnS89pLza/JBWyvyeizt2Qt7+S5Ek2RMBOh1Vb3BGNXAlMkHfkYVGGrmGlWERJM5mjDQceVrmsDSxBi/r0nAJNZig8FgMOwPW4cNhnEMVtexFQ6QclfmJsxWOMC7z30nHv2uIU+8cfDgFZNEUFyMQuFuAH8A4J7I678bhuH79AXn3MsA3Arg5QCuBfA3zrlvCcPwwJEdDAZjnQLm5uZQLBZRLpe93J/kS2XpUUM6lel3u12vTuA51ExxdnbW17DPzMygUqkgl8v5koF2u416vY5Go+Gv6wdNduRJ7FU5wV1Y7taqrJxGkP1+H+VyGfl8HoPBAGfPnkWr1fLJBL0WEye8hsrnWXOfzWbHYpifn0c+n0er1cJXv/pV1Go1fx9M1GisuqPMZAkVHCSBfEZs3UljSEJr3DWpwAQFzSFpTBg1xVMSz4QGCa0+r3w+P9aNgmNLUtrr9VCv19HtduGc894bnGs8Tgk3Jf1K1qPPnP+qiabuuOv4UzFARQHvRRNNYRiO+TqoYkYTEqrCIMml2kM7hnBMSZCjz0YTG/xdr8/XSdqZ+CFZp9eFKko02cJEANuFqhqA3xdVpBBMHGkZCedcVPGgRppRREsu1FdDjSG1PeVexpea8IgqMmLG3TjitdhgMBgMB+Ju2DpsMOxiZ4BbXv79uOsrf4G0c7hqNh93REeO5e1hu8wn+hXc+c2nAYQAkrMBFQcumFAIw/ALzrnrL/J8twD4RBiGPQD/4px7GsDNAO476EMsdWi1Wp44Hj9+HJVKxasJNHnA//xrPTp3fUlSSUSpRJidnUWr1UK73R7euBAMtuvjdc6dO4d6vY5z586h0+mMmeGx84DK0knItaQiGu/MzLClY61WQ7fb9eUZ5XIZ6+vrqFar6HQ6PkmhxItkkV0aaCRJM0ntckElQCaTQRiGnlh3u13s7Owgl8uhVCqhUCh4/wHtDqBkUmvbdWec5Jo761EjRSZOSGwpryfBDMNwzDSRu8UqhY/WvpdKpbHyB2CX0OoOuMr0WRqiaodut+t38nmOnZ2huSYTRXzWnD+aXIgaMtKbQ6X9HB96W2j5gxJrJrhUrq9lHxxLKlOUIKvSQ5MQanqpJRrRTg9MIqj3A4m4doDQchPOKc5J+nFwfHmslo2oeob/UnXCv1VtoKUIfB56D3pfmowiNPnAsdKOHwB8ckYVKny2msDgdyEpmMRabDAYDIb9YeuwwXA+BrU63vbSVwM3vwK3f/xeXDvbxLeng7jDOnQ80NtCcyeL951+HXZGHQANQ3wjHgrvdM69BcCDAH4hDMMNAC8BcL8cszx67UBQstzr9RAEAYIgwPz8PDKZjN+NJNHJ54eZL9bGb29vI5PJeHKl0mkeR0JCgkDCXSwWvSqBnR1arRZWVlZ8dwjuxuvuqtZsM34AYzunSny506oqA7aCJPlmRwfufJNk9Xo9X2JAZUOtVkOv10OpVEI2mx1TG3AHOZfLodvt4vnnn0e1WsVgMPDXDILAH8/7JmHlmJIc84dkXxUiWiYxMzPjTSt1d1jLQXg8VQs6VuorwHPOzs5680sqJhg3d6o5b5Qs03CTxJvkW8sCGFs+n/dtH9UjgOaaHEvdEe90Or70QstvNFmgfghKkunZoOU6moDQsg8mCFQtwIQTyTrPwzIYJdpq0qlGhgSTGdEkif7Lz2mJBmNVVQnHgGUxOi9orqrfif2wVzKB6wPLb7TsQtU1msDjPWkygYkEVT9ESzh0/uo8TjgObS02GAwGw2XB1mGD4YFH8dunXoHabd+DH7n9b/CDhcdweqQcn2b8RSeLx7rX4fO3vQo7Z54AYMmEKC63J9oHAJwCcBrAWQB3jl4/X4c81IGcB+fc251zDzrnHlSyFAQBjh07hkql4qX3Wh+vfgLqh6ByaXW2ZykAPQR4nVwuh6WlJSwuLmJ+ft5L4lutFlZXV3Hu3Dnf1pCERcnr6B789bijr870JGzR2ux0Oo1CoYBcLoeVlRUsLy/7GnV2LiCRZIkAkw4kbEyKcIxIfCuVChYWFpDJZLC+vo5Go+HfKxaLY94L3KXNZDLY3t72Cg7W8e9l8EiCpsSQ3ga6y0y1AHf+VXHAazJ5xN1/kmNNOtAYUV38t7a2vBllv99Ht9v1cVDqz2QEEyz0TdCyBJ6fXSMIJeRKOlm2QMUI5wCTAvTUADDWcSHqqaFGh1QYtNttfz98j+aVqk5gpxCOg6oWOD7qacGddioKOHZUrGiZAO9dS3q0tIdlHIxJPRc4P9WzhHOd6gWNNeppwDHn/ekz1++0jjlj4vvaFlWTPcCuWoSmqmpMqoatmkTgdzfhONy1GL0jCdJgMBhexLB12GAQlD96Hz73ijx+/EP/Hf/hmR/Ak/1O3CFdNu5uXIXf/OW34nOvyI+SCYa9cFkKhTAMz/F359wHAfz56M9lANfJoScAfH2fc9wF4C4AKBQK4ezsLMrlMk6ePIljx44hn8+j0+nwWKRSKZTLZe+sr8SeBJUkQXehnXPeB2F2dtaXCARBgEKhgHQ67dszhmHoW0XSfwHY7T6wtbWFZrPpfR64O6o+A7qTraSW3QX4ezabRaPRwOrqKra2tlAsFv3OdavVGhsrElMmUPr9PiqVCgqFgiewWvZBDwi2ddTddCY/BoOBj2MwGGBjY8MrIDiW3NVnAoayeH6e48lxZ9KFiRQ+FyoK1LVfjfJ4XiXBPDcTCuw0QbLNZ6weC1r7nk6nfcw0vOS1OBb5fN77IQBD00ktu2DSQRMKzWbTP1feB0k3CSlLK5iYoc8D1RVK+nkck0QkykxCRMdSEzo6ZmrEyFiZDFIjQ1V/8DN6D0rwmdhJp9NjiSg9l3Z4UANETUwwFr22JohkLTnPH0XLWTiOHHteM9oNgtdSdQM/zySBxgmMt6nkazRyTTIOey0uuYU9/7NrMBgMhr1h67DBsDeuu+Pv0bwD+OHf+QVkTzXwxVd9EJXZ6SmF+MPadfjoHW/A/Kfuv/DBVzguK6HgnLsmDMOzoz/fBOCx0e+fAXCvc+79GBrQ3AjggQudj//JX1hYwNLSkq9LV4k3peJ0xecONXfeC4WCTxDQ3JC716znp1dCNptFoVDw0n9g2IVhc3MT1WoVKysr6HQ6YyRDyTyJGgkHd8i5y03iRLm+tvcLgsAfw44OjMc558+1l+yc5CaXy/nxICHj7jiTLfV63XsyqCRdSXihUPAyde4uZ7NZBEEwpmIgoe52u2OGhpo8YTKBx6h5YVSyrzXz6q2g96jJBF6H8UdNMKkiIEGmPJ/JFs4lNd2jWoA/LFmIKkqiJR7aHUKJON9joosJDyXPOqcBeKUNlRM8p5opaglALpfzNf7qJ8AfJelK4vkv49GuGHxfkyh8XUsOoskDTbzo8cB460XGw9f1nPydSSo1tlSljz5rPlvOIypa+B3T1/hctLsEfRJUARE1aVTFQtJx2GuxwWAwGC4Ntg4bDAfj1C8NbUNe9b7/gcff/PvIuNQFPhE/7qpfi3t+840of8wsTy4GF9M28uMAXgNgyTm3DODXALzGOXcaQ+nWswB+FgDCMHzcOfdJAE8A2Abwjotxs+V/3LVOm+QUGCfQ7DRAAhgEAcrlsjcaZL18q9VCs9n08uwgCLxvwvz8PBYXF70fA+X6a2tr+NrXvoZmszlm2keCTNNB7tACuy0vM1IjRIJIuT/PQ6Kj3Q4ymQzm5+dRLpc9iR+N5XlSdJJT7pqTCPEavV4PtVrNy893dnbGkg4k/dpOcTAYeLNHttHMZrM+EUOCpe76mqCgugOATzZQts4WnDRC5HskiZTDk9jpcyXh5A49d/F15xmATwhogoKKAzUVJOHm2PFzPJeS7Kjkn+PMcVJPBSoAut2uL1sgMeW9ahJG1Q5aJqNJgSgZd86NKSVIkDlGOoZMujChwGtQ5aCEnCUMqlRQRH0V+Cw4Lgol4UrEeW/RZJLeIxMxnMcaiyYUGLvGwwQPgPPiZyycU6pO4bGqPuL3O6rSSAomsRYbDAaDYX/YOmwwXD5O/eL9uKn683j8nX8UdygH4mPNRfzx//p3KN9ryYSLxcV0eXjzHi9/+IDj7wBwx6UGQsJE4kpCS2l/qVTyu7e6G5tKpbwSIJPJoN/vo1qtolared+EVCqF+fl5FItFLC0toVAoeDM+kqler4e1tTWsr6+PyZxJxJh8aDabnmCSbAIYIyhqaBjdmQd2d7oBoFAo+BaPTCZQ+aCdCpTEzczMeBn77Owscrkcer2eVxvQL4DEmiRcVQr0a+B5giDwu+D9fh/tdtuTfnoQsHyCBI4lHNw1Z+u/IAi8J4W2PGTs0URJ1H+C99rpdNButz0hZ2mD+h3w+UXHjbvZqsjI5/Pe6FNLBRTamSCdTo/J7ulFweQW75sdSmgayE4g6oXB83EOk8RGPQ/0nqJJCJ5HVTI8nioP3puaQnIOU8Wi59dOGvTvIPFm7BqjkvFer3deqQTvQz+jZRiqQGCMeyXROMc4HzQJwnFlkorfD51XvAbPS88RTdREk3z0t9A5lSRMai02GAwGw96wddhg+MZw4jf+HjdV/zMees8H4g5lX3y+9m0o3WtlDpeCb6TLw6GCpKBer2MwGPh2hktLS2PGbiRIuqucSqXGujRUq1VsbGz4Vow0KSwUCucZPQJD4lGv17G6uuod/KmUmJub88aBe7X/U7JCAkfjN5IeHk+SreSMxIXEajAY+NIOGt/RY0A7CjSbTX9OmipqC0ISPyYW9LMq+WZigwkF7lrzehx3Ei96IrRaLYRhiFwuN5ZMYDx6T9z95bnoiUFlA8sE1HyTr+v40WSTJQrqGaAEmaUbTASQiO9FfAH4e+ZxmoDhZxgrExrqF0G/Ct5nNptFPp9Ho9EYI+yaGNAOCxq/Jrj4unpXcL5GuxDwM5xD3Jln7Iyf19DEA+dY9D0mSHSsVLXB++W5tQRD4+R3VUE1DucfEx0sSWASi+Omyg4m9Hh9bQlJMBbeP5NrPIcmE3hN9cHQ+zUYDAaDwWAwHA6uvucR4D1xR2E4TCQioTAzM4NSqQRgWKdPskG/AdZCh2HoSQ537nXnlTvr7XZ7rANEKpXyngmU4qv/QbvdRrVaRbPZPK88gISERKvX63kyTqJLksudY8rIqaZQIq7vk3C3223UajV0Oh2fxNDadq1ZJ5nu9/vnmSHqbjAwVAekUinfHrPVasE550sSuNurJQC8ByYhtN0lx4AoFAqYm5vz5Qg8Rskw75XPife1Vx08j6OJJNUWVFQUCgWfrOB8UKM/bdMIYOzz6j+g9f4cOx0/vs+5E5XB89kx0cIuHExuMX6+3+/3/VjpM4p6UBAkzRqHqg9YYsH5CewSdI69qizUqBAYkm2OCwm/qnWY8Ih6OWjHC6pOmHjTZJ+OrybfdBw5h5lI0hIWJrr4Gao9+Jy0w4gqGfQYxsQED9/XsaRyiOfYy2shiUoFg8FgMBgMhmnFTreL7/upn8bf/vGH4g7lPHyyNY/nbzsO4Jm4Q5kqJCahQEKj5nYkkCRVLIMg+SRZUHm5tnDc3NxEOp1GpVLxpQ7ZbNaT0k6n41UMtVptjEDxXDRSJAlzzqFUKvnzs/VgKpXyu8MkIVp3Tqk9SyB0J7TX66HRaKDX6/kkgZYE0NuAO9Q8jkaUlOlrq0ISwHK5jGKxOFYuoYoFdlMgIeU9s6OAEkKV1tOPQJUVJME8Rkmtmh/y3kgqaYDJrhVMvugY8FmnUilffqFlC+pFwPHrdDpeFq9lGiTRWs7AeaVEmMoXTSjxJ9oRABh6fZTLZWQyGd9ZgokUJhR4r4TOAyZFqNBhDJrIIeHnfel81e4mWiKgSgZeTw02GRufifou6Hc0aqKosUfLDaKlD6ooUvWDnlv9MPge54KWSPDc2m5UjTM1GaN+H5xvAHzCgqoh9RZRQ89oSYzBYDAYDAaD4RtAGCJ44oW4o9gTtUEeg3+yZMKlIhEJBSYHqECgGSPlzNwFVTLGXU0eQ5JF+TyJUrFYxPHjx31bRu7YsjRBP8drKvliHX2n0/FtLNnekbGTtKl5HImT1njzvpgAoNqBv9OjgCAhOnbsGGZnZz0JY0lGPp9HLpfzyY5obT2THQB86YGaKlJdoaUJvK468fM17vTqrjG7QxBKKjUOJfSqCOA45nI5T97V+JKxUlXBZ8b7iHpVpNNpnwBi4oY76xwn7qy7UVcNfW48l6pCKJd3zvk5yG4hJOZUfnAek7CqwSPVCmpCyWfG3fDNzU2vVCF0B187QyjJpzqD81vNC7W1ZnQXX701VK3B+1Xw80wo8T40IaLvacKAc2BmZsbPdR7HZ84xoGKFCShNFKrBol4/Gj/VIqos0iQM1QtqYsn7ZdKE6hyDwWAwGAwGg8GwN1wSJL3OuVUAbQBrccdyGViCxT1JWNyTx7TGflhxf1MYhscO4TyJh3OuCeCpuOO4DEzrHAWmN3aLe7K40uO+ktZh+z/x5GFxTxbTGjcwvbEf6VqciIQCADjnHgzD8DvjjuNSYXFPFhb35DGtsU9r3HFiWsdsWuMGpjd2i3uysLivLEzruFnck4XFPXlMa+xHHbdZmBsMBoPBYDAYDAaDwWC4ZFhCwWAwGAwGg8FgMBgMBsMlI0kJhbviDuAyYXFPFhb35DGtsU9r3HFiWsdsWuMGpjd2i3uysLivLEzruFnck4XFPXlMa+xHGndiPBQMBoPBYDAYDAaDwWAwTA+SpFAwGAwGg8FgMBgMBoPBMCWIPaHgnPsh59xTzrmnnXPvijueg+Cce9Y596hz7oxz7sHRawvOub92zv3z6N9K3HECgHPuI865FefcY/LavrE6535l9Ayecs79YDxR7xv3e51zz4/G/Yxz7vXyXlLivs4597fOuSedc487535+9Hqix/yAuBM95s65rHPuAefcI6O4f330eqLHO8mwtfhI4rR1eIKwdXjicds6fMiwdfhoYGvxZGFr8cTjjn8tDsMwth8AswCeAXADgDSARwC8LM6YLhDvswCWIq/9NoB3jX5/F4DfijvOUSzfC+AmAI9dKFYALxuNfQbAydEzmU1Q3O8F8It7HJukuK8BcNPo9yKAfxrFl+gxPyDuRI85AAegMPo9BeAfAHx30sc7qT+2Fh9ZnLYOTzZuW4cnG7etw4c7nrYOH12sthZPNm5biycbd+xrcdwKhZsBPB2G4VfDMOwD+ASAW2KO6VJxC4A/Gf3+JwD+fXyh7CIMwy8AqEZe3i/WWwB8IgzDXhiG/wLgaQyfzcSxT9z7IUlxnw3D8KHR700ATwJ4CRI+5gfEvR+SEncYhmFr9Gdq9BMi4eOdYNhafASwdXiysHV4srB1+NBh6/ARwdbiycLW4skiCWtx3AmFlwB4Tv5exsEPLm6EAD7rnPuyc+7to9euDsPwLDCciACuii26C2O/WKfhObzTOfeVkfyLkp1Exu2cux7AKzHMEE7NmEfiBhI+5s65WefcGQArAP46DMOpGu+EYdrGZ5rX4mmeo4leExS2Dk8Gtg4fKqZtfKZ5HQame54mel1Q2Fo8GcS9FsedUHB7vJbkthP/JgzDmwC8DsA7nHPfG3dAh4SkP4cPADgF4DSAswDuHL2euLidcwUAnwLw38IwbBx06B6vxRb7HnEnfszDMByEYXgawAkANzvnvuOAwxMTd0IxbePzYlyLk/4MEr8mELYOTw62Dh8qpm18XozrMJD855D4dYGwtXhyiHstjjuhsAzgOvn7BICvxxTLBRGG4ddH/64A+DSG8pBzzrlrAGD070p8EV4Q+8Wa6OcQhuG50RdlB8AHsSvLSVTczrkUhgvQx8Iw/LPRy4kf873inpYxB4AwDGsAPg/ghzAF451QTNX4TPlaPJVzdFrWBFuH44Gtw4eCqRqfKV+HgSmdp9OyLthaHA/iWovjTih8CcCNzrmTzrk0gFsBfCbmmPaEcy7vnCvydwCvBfAYhvG+dXTYWwH8n3givCjsF+tnANzqnMs4504CuBHAAzHEtyf4ZRjhTRiOO5CguJ1zDsCHATwZhuH75a1Ej/l+cSd9zJ1zx5xz5dHvOQA/AOAfkfDxTjBsLZ4cpnKOJn1NAGwdnlS8Ep+tw4cLW4cni6mcp0lfFwBbiycVr8QX/1ocxuD+qT8AXo+hi+YzAH417ngOiPMGDB0xHwHwOGMFsAjg/wL459G/C3HHOorr4xjKcrYwzES97aBYAfzq6Bk8BeB1CYv7owAeBfCV0ZfgmgTG/WoM5UJfAXBm9PP6pI/5AXEneswB/CsAD4/iewzAe0avJ3q8k/xja/GRxGrr8GTjtnV4snHbOnz4Y2rr8NHEa2vxZOO2tXiycce+FrvRSQ0Gg8FgMBgMBoPBYDAYLhpxlzwYDAaDwWAwGAwGg8FgmEJYQsFgMBgMBoPBYDAYDAbDJcMSCgaDwWAwGAwGg8FgMBguGZZQMBgMBoPBYDAYDAaDwXDJsISCwWAwGAwGg8FgMBgMhkuGJRQMBoPBYDAYDAaDwWAwXDIsoWAwGAwGg8FgMBgMBoPhkmEJBYPBYDAYDAaDwWAwGAyXjP8PA2nB0TCGhzIAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 0 871493\n", + " Min thresh = 1000\n", + " Sliding\n", + "\n", + "\n", + " Winner = Sliding\n", + "\n", + "\n", + "208s_iimage_104548309385533_CLEAN.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADDCAYAAAAya0IYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADhD0lEQVR4nOy9d5hl6Vndu75z6uRQoXumZ0YzyhIiCDCXYOCCCQYkzBXBRJtsI5Fs4NqXdH0N+BoHHDDYD+gKAyKZbDIGC2GMbSQUSAogCQUkMam7qk6dnPf9o+r31dq7q6e7Z7qnqru/9Tz9TNepffb+0jnTa73vu96QZZkSEhISEhISEhISEhISEhISrgel0x5AQkJCQkJCQkJCQkJCQkLCrYckKCQkJCQkJCQkJCQkJCQkJFw3kqCQkJCQkJCQkJCQkJCQkJBw3UiCQkJCQkJCQkJCQkJCQkJCwnUjCQoJCQkJCQkJCQkJCQkJCQnXjSQoJCQkJCQkJCQkJCQkJCQkXDeSoJDwpCOE8KYQwsed9jgSEhISEo4RQnhXCOGvX+O1WQjh2Y/zOY/7vQkJCQkJCQlnC0lQSHjSkWXZ+2dZ9junPY7HQgjh40MIbwgh9EIIuyGEXwghPOW0x5WQkJBwOyOE8F0hhPeEEPohhL8IIfzfpz2mhISEhLOGGy3MXu1+6d/FCY+FJCgkJJyMN0v6lCzLtiTdJ+ltkr7/VEeUkJCQcPvjByU9L8uyrqSPkvS3QgifdcpjSkhISLjTkf5dnHBFJEEh4UmHp9WGEL49hPCzIYQfDyEMjtTP54YQviWE8OhRpOqT7b1fFkL406Nr3xFCeEnh3t8YQngohPBgCOHvuuIaQqiFEP51COHdIYRHQggvDSE0ThpjlmWPZFn2oL20kpRSdBMSEu4IhBA+PITwqqNo1EMhhP8QQqgWLvvUo+/hSyGEfxVCKNn7v/zou3o/hPCbIYSnXctzsyx7S5ZlI3tprfTdm5CQcBsihPC+IYTfOfqefVMI4UX2u98JIfxd+/lLQwj/8+jvv3v08h+HEIYhhM8LIXxcCOG9IYRvPfpOflcI4W8/3vsVx5r+XZzwWEiCQsJZwP8h6cckbUv6Q0m/qcOz+RRJ/0TS/2fXPirp0yR1JX2ZpO8OIXyIJIUQXiDp/5T013X4JffXCs/5l5KeK+mDj37/FEn/+EqDCiE8NYTQkzSR9A8lfdfjn2JCQkLCLYWVpG+QdF7SR0r6RElfXbjmMyV9qKQPkfTpkr5ckkIInyHpWyV9lqS7JP0PST95rQ8OIXxzCGEo6b2SWpL+0xOYR0JCQsKZQwihIulXJP1XSXdL+nuSfiKE8D5Xe2+WZR979NcPyrKsnWXZTx/9fI8Ov7OfIulLJL3sCd6vOOb07+KEE5EEhYSzgP+RZdlvZlm2lPSzOvwH6L/Ismwh6ackPT2EsCVJWZb9WpZlb88O8d91+EX8MUf3+VxJP5xl2ZuyLBtL+g4eEEIIkr5C0jdkWbaXZdlA0j+T9PlXGlSWZe8+Su06L+kfSfqzGzrrhISEhDOKLMten2XZq7MsW2ZZ9i4dCruXibRH36fvlvTvJH3B0esvkfTPsyz706Pv9X8m6YOvI0vhX0jq6FCo+DFJB094QgkJCQlnC39VUluH/96dZ1n225J+Vcffo48X/0+WZbOjfyP/mg7/bXxDkP5dnHAlJEEh4SzgEfv7RNKlLMtW9rN0+KWrEMILQwivDiHsHamkn6rDLzbpsKbrPXYv//tdkpqSXn+UWtaT9BtHrz8msizbk/Qjkn4phLBxPRNLSEhIuBVxVHr2qyGEh0MIfR2KAucLl/l37F/o8DtYkp4m6Xvsu3ZPUtBh1OyacCQa/6EO/x/wHVe7PiEhIeEWw32S3pNl2dpe+wtdx/fkCdgvlIz59/INQ/p3cUIRSVBIuGUQQqhJ+nlJ/1rShSOV9Nd1+A9VSXpI0v32lgfs75d0+A/T98+ybOvoz2aWZe1rfPyGDlPSuk9gCgkJCQm3Cr5fh9Gn5xwZJH6rjr9rgX/HPlUS9bXvkfQS+67dyrKskWXZ7z2OcWxIetbjeF9CQkLCWcaDkh5w7xkdfo/+5dHfRzoMhIF7ruGe2yGEVuF+fC8/nvs9FtK/ixMikqCQcCuhKqkm6aKkZQjhhZI+2X7/M5K+7MjkpinzRzhSgH9Ah54Ld0tSCOEpIYRPOelBIYTPCiG8TwihFEK4S9K/lfSHR6psQkJCwu2OjqS+pGEI4XmSvuqEa/6vEMJ2COEBSV8nibrbl0r6lhDC+0tSCGEzhPA5V3vg0fftS47uGUIIHy7payS98kZMKCEhIeEM4fd1SPK/MYRQCSF8nA49xX7q6Pd/JOmzQgjNI3Pxv1N4/yOSnnnCfb8jhFANIXyMDj3HfvYJ3k9S+ndxwmMjCQoJtwyOfA/+vg6Fg31Jf0vSL9vv/4uk75X03yT9uaRXHf1qdvTfbzp6/dVHKby/JelKZjVP0WFJxEDSG3ToNP6ZN3A6CQkJCWcZ/1CH37EDHYqxJ5l0/ZKk1+vwH6q/psOWj8qy7Bd0aIL7U0fftW+U9MJrfO5nSnr70XN/XNK/P/qTkJCQcNsgy7K5pBfp8LvxkqTvk/TFWZbhS/DdkuY6JPo/IuknCrf4dkk/clRahk/Cwzr89/GDR9d/5RO8nyP9uzjhighZlp32GBISbgpCCO+rw3/I1o6MwRISEhISEhISEhJuKxxlOPx4lmX3X+XShIQbjpShkHBbIYTwmUepXts6jJD9ShITEhISEhISEhISEhISbjySoJBwu+ElOvRYeLsO+6ifVPebkJCQkJCQkJCQkJCQ8ARx0wSFEMILQghvCSH8eQjhm2/WcxISHFmWveCoe8NOlmWfmWXZQ6c9poSE00L6Hk5ISEg4faTv4oSbjSzLfieVOyScFm6Kh0IIoSzprZI+SdJ7Jb1W0hdkWfbmG/6whISEhITLkL6HExISEk4f6bs4ISHhdsfNylD4cEl/nmXZO45cTH9K0qffpGclJCQkJFyO9D2ckJCQcPpI38UJCQm3NTZu0n2fIuk99vN7JX3ElS4ul8tZqVRSuVzWxsbhkDY2NtRoNFSv11Uul7VerzWbzTSdTrVareI1lUol/n69XkuSsizTer1WlmVarVZar9cqlUrxT5ZlCiGoXC7Hn7l+vV4rhKAQgiRptVpd9vNqtZJndpTL5dwY/P6A18ByuYzzKJVKCiGoVCppY2NDpVIpN25JubkxHp5RLpcVQojXl8tlVSqV+BrPzbJMi8VC8/k897rff7FY5J5VHL+vI9dzHfPwvZAU38c1Pmb2iPkyFtbRn88f3w+e59f6vIqv837uVXydn/nDXhfPQHFefi9/tp8VnlOE7z/z5xnFc8O1/syTnu3XFH/ve3M9KK55cTzcuzjmk57nvz8JV8qcYh+KZ+Nm4ehZl7Isu+umPeTm4bq+hyWp3G5lz3zGWo+8sXFTB5aQkJBwPZhqpHk2e+z/cZxdXN+/idP3cEJCwhnFQPsn/pv4ZgkKJ33p5/7VH0J4saQXS4fCwObmpjqdjs6fP696va5ms6lnPetZev7zn6+dnR1VKhW95z3v0Rve8Abt7e1ptVrp3LlzunDhgjqdjhaLhUajkQaDQU4gGI1GGg6HarfbOnfunCqVSiTWGxsbajabKpVKms1mWi6Xms1mx4uzsaGDgwNJUrPZjPcbDAaaTCZaLBaSFO89Ho+1WCy0XC5Vq9VUq9UicZrP5wohqF6vq1QqaT6fq9fraTweRwGgVqvp/Pnz2tzc1GAwiHNpt9s5QrtYLLRarVQul9XpdLS1taVOp6PBYKCNjQ3V63Xdc8892tzczJHz+Xyu/f19PfTQQ9rd3dV0OlWWZapWqxqPx5rP59rb29N0OpUkVSqV+LzpdKrlcql2ux33p1araTKZaDQaRUGg0WhoNptpNBppNpupXC6rXq9H4Wdra0vnz59Xt9tVtVrVfD7XYDDQpUuXNB6P4xwHg4F6vZ7m87mkQ+KKqJRlWRRf6vW6QgiaTCZaLpc5oWg+n0dSz/XsK/cqihghhLh3tVpNw+FQk8lEklSv1+OY+/2+1uu1ms2myuVybk8qlUoc73A4jCIOYooTYMZVLpfVaDTUbDbjPvh82MNyuaxarRZFJ+61Xq/jM4qiEueSPXAxSzoWSFg31sTP3HK5VJZlcW7+GWL8pVIpnn+EDMSR4pwR24pih1+3XC7j3Pwz6UIg55Nr/V6OoshxrdjY2NBisfiL637j2cBVv4el/HdxXU09/U2fpqffqv9sT0hIuC3x+9krT3sITwTX9W/i9D2ckJBwVvFb2c+d+G/imyUovFfSA/bz/ZIe9AuyLHuZpJdJUqfTycrlsqbTqabTaSRd0+lUo9FIjUYjig7tdluj0SiSoslkomq1qizLoiDg5LHVamm1WkUiUq1WFUKIwkJciCNiBPGWFMncfD7XcrmMRIjMiBCClstl/H2tVovXE4GHxBQJYLPZjEQOsrexsaHpdBqJ/MbGhubzuVarler1ehwfv+MZpVJJtVpNy+UyEmCyO7iXj4NnD4dDHRwcxPWBjM7n80huidJL0ng89v3LEXCI43K5zGU/TKdTzWazSP6bzaY2NjbiWpVKpThnSGa1WlWpVNJoNNJ0OtV6vY776c/mz8bGRnwP+8M58MyLUqkUBZ31ep3LxiDSvlqtcuJPo9HQYrHIXVutVlWv13PZKvxh/mTWsAdc62S6mMXhWSmNRkPz+VyTySSOm/WdTqfa2NjIZQxwdsio4fesK6IGc2LcfI5YU19jv3+lUtF8Po+iRbVajfNibThDxYyPk7JHipkzoJgRVBQCWEPPVvFnXgmPJSY8lthwM7MfngRc9XtYyn8Xd8POLT3hhISEhDOI6/o3cfoeTkhIuNVwswSF10p6TgjhGZL+UtLnS/pbV7qYSPvBwYHG47FKpZLa7XYkKxAertvb24sR29lspvl8nisVWK1WajQaCiFEgUK6PBoaQohElCinEzfpkDwSieV9CAoQ0+VyqdFopFqtFt8D4Se67BFz7rG9va0Qgvr9fi6TodfrqVKpxHsPh8NIRJ2QekQ5hKBGo6HpdKr5fK5Lly5pvV7rrrvuimP3cgUEDAQQCGK9Xo/R+2azqWq1qnK5rGazGSPPkG5Pp5eOswjYK0QASDCR/rvuuksXLlxQrVbLRbml43R/IvGQZBdkPCpPtgLr4mKRR9q573q9jnOSDkUS9gcxgOctl8u4hy4oSIdZKZKi6MH8GRdrytw4p+x9CCF3tjnLZKSQhcCaMw7OEWOGfCPSTCaT3PlFXKtWq5rNZlEcIrODebloVizj4KwdResvm59nIXg5RFE8eKwyiJPKW66EohBTvPf14rHe65kctyCu63s4ISEhIeGmIH0XJyQk3Na4KYJClmXLEMLXSvpNSWVJP5Rl2ZuudH25XI6ZB4vFQuPxOKbMT6dTjcfjGGknFR3CtFqtNJ1OVavVImGEVBKNJgq7WCwi6YcsEg0OIcTo68bGRrxeUk5MKGYIQLAg/xB7T20nSj2fz2NJBcS21WpFMgeRmkwmMf1/vV5H0o+QwZo5affINOM5ODhQqVTS1taWqtWqJEUhwT0elstlLu2+Xq9rPp9rOp3mSgvYC3wTiFAzJwgmxLlarUYiy5yn02nMiiDLg7lIilFwCLWLOMwbOJFEUOJcVCoVLZfLuCesEevMOWDt/X7MaTAYqN1ux/FxXvxMLJfLWP7iQsVisYj7wbnl2Yg75XI5nlmEmvF4HDNyOF8IDdyfaxkzY6pWq1oul/FMMgb2wbMv3MeCv7snA2eP+yPccB3ZDe7/UPRt8Pczx2KmSfHv1+KtwH4h1rAPRRHialkL14JbOUPher+HExISEhJuPNJ3cUJCwu2Om5WhoCzLfl3Sr1/LtaR0E5VHVJhMJpFg9vt9NZtNtVqtmIoPiYBwQaopAajX65IUyTGk38kpxM1LGIgIQ/acxAI3g5QUyRXEVjquyyfVv9PpaDgcxog988b/AAJGhgAE14k/10Bued5isVC9Xle73dZ0Oo0CCWIMZRWst6Q4PwQXMhF2dna0u7vrexnHipcCRL0Yka7VarFMgywDF00g4KPRSJubmzkxASDkuBcGafZOvlljLzHZ2NiIe0y03UktWRK1Wi0KJZStFE0HGTPnwwUF9x1wsYD19ZIM30cXFWq1WpyL7wXZIZRdsG4QejI3mB+lMJzb4vqsVitVq9VYmjKfz6OwxHs8M6FIxN300rMOFotFTmzhfTyTM+A4qbzgSgaLVxMETjJAdaHlSvfgPSeVXBTHeCNEidPE9XwPJyQkJCTcHKTv4oSEhNsZN01QuB5g1re/vx9Js0fDpTw5b7VaKpfLkZxD1Lwuu1KpqNFoxBp90sQ9wlmtVtVoNFSr1VSpVDSdTrW7u5szeCumfXMdaeSSYhq6kxlIPFHxcrmsVquVS62npr1SqcSSAtLnETcgt5DNYjq6Z1xArBuNRizV6Pf7euSRR1SpVGIqfaVSidkE3IusA7prNBqNy8oJms2mFouFJpNJFBEQGZhrvV6P2SKQ1Xa7HUkxe3BwcKDNzc2cAONr7usJnDwjjrC+RKvJmpDyWQseaV8ulxqPx2o2m5Gws57sG5F+UvuJ/rNGXgJRqVSiGOZrBhn1e/tZZh9Go1Ek+YgezAe/Bvdx8IwAzruLFfwOccE9Dmq1mmazWTQhdfGjSLR9/T3bws+fCyf+eUDUOKnc4aTPlqNI4q9E6hE1vKTnpBKFkzwcXHy50jUJCQkJCQkJCQkJCY+NMyMobG9v66GHHorEfz6fazgc5urF+W+n05F0bBLoEXtSu7nv+fPnYycBzAE9Og3B5mcIqqe/Q0wh627aSFkFppLFSDER8Z2dHTWbTTWbzUjeHn744djlwc3/eL472vOzCxJkFjDW8XgcOxEwz+l0Gj0nJpOJtra2YsbEdDqN83GyD5l1M0ueQ1cDIvqtViuKILwfH4ZipoKPeTKZ6NKlS7lSDM8A8Ki818y7lwSk1csaPDuEjAb+SMfp+IhC7lWwXC7jWUBUwsyRDBbKCNw/g3PpkW1+9rG7YaSLD4wXQcD/TumOdJhpg8DmwpLPn/l5iQLeCb527IPfhzExV17nrPu8GHPRF8GNQt3fw+/n77lSqQPvYS5XympgrfzevgZFuDhRXP+reTckJCQkJCQkJCQkJORxJgQFiDn19/yjfzgcRpLu3gH1el1ZlkVBgdpyN+8jw+Gee+5RlmW6dOmShsOhpEOyur29HcsniDhjTMgYiIASGaczAc9GOEBUgNzNZrOc6Z0kDYdDXbhwQZubm1EgGA6H6vV6MfOCtHRECMbDvREUvGQDMtlsNjUYDKJJIN4JtKAcDoeRZJOZ0Wq1NBwONZvN1O/3c50ApGOCSBkD9/UODaVSSd1uN2YqMD4IIcSV9aBMhOwJSlPcJJI9KhI8iC4EXjomkV6G4Xvo5wWhiTFxHhgz9yXrY2NjI7Z9ZL3ds4P3IDD5mngJjpNhslxc5MAY1KP6no3gmRdkgrBWTqyBexiw33gxcHa8U4KvM+vrXU8808D9RBijP89LTDzzxNfA9+5qmQFXyk5wgaKYScHrJ6H4Ovvj/htXKsFISEhISEhISEhISMjjTAgK0mHqPunfEDG8FPBIgARBLNvtttbrdexGgIgwnU41HA5jbXer1YqtJYkwr9dr1Wq1aKDI+5vNZowgS/lyAMhmp9OJJFZSjNRLyhkQQvow+JvNZpFQQugPDg5iCQHkz7MxEFqk4xR01spfa7VaMeuByH6lUokeBiGE2JYTg0fS6ev1ejQWJKOANeLner2u8Xgcf8Y4kHlCEj2bAkJKFN+j/4vFIgpGq9UqjlNSJL9Fcujv97X3dZCOhRZairq3BKITfydTgTljFomARSkJZ5JnsQ6VSiWeT/cT8EwDNyz0iD2ih5cwMF/mM51OY8aJd/7wsg5vS+mGou63wV56aQvP9awHFxjc/4BMIdYJ/wfEFMZcNNLkeQg/bux4UjcJ3l8sXfB7uPDg2SJ+r5NEC/dFOOnZ/Hyr+yYkJCQkJCQkJCQkPFk4E4LCer1Wt9tVu91Wv9+P5IjI+cHBgc6dOxfr24kot1qtmCnQarW0sbGhg4ODKCyUSiX1+31tbm6q3W7H7AXID/colUqazWZqt9va3t6O3g204HNzPcg1woS354P84yngxGs4HGp/f19bW1tRgDh//rz29vY0mUxyZoF0RoAQd7vdXPYGfgYeTS6VSmo2mzE6D1mmhSYtGiHjGDfib0B7TYQPQKYAvgyMk1R8iDOEruhjwV56lB+wtu5TQE08ggkEFkDYnVQXSz9oG9nv96O/Al4JbtyJcISg5BF5RAUvm/BuGN7Zgo4S0jFZheQyRyewjNtLIlywYg35vbfodK8A7i8pCgl+DdkyXobA83keotBJZQJegsJYEA2c3PsZYK5c4x4WvjacXc6Br53Dyf1J2QcIjIgUXv5xJbjI4mM7yU8hISEhISEhISEhIeHKODOCQpZl2t7ejmn7tIzc29vTww8/rJ2dHd17773RWd79BTDZK5VKkTwT/d7f39eznvUs3XfffXrXu94ViZh0TBy8fV61WlWn04kE0R3rIS9EXiFFEFMImpNmxrparXTx4kVtbm7mMgfuuecejcdjDYfD3DOIHBe7CQAivR55brVaarVa8ef9/X2Vy2V1Op0oeBBRZqyQ5Ha7HT0ciIrTxpByD7wRvD6fbAOuJbINMeSafr8fCTprCHFmP7inl3aQWeKdBBBNeA8lGRBEnk+JAm0omS8ZEe5n4IIHP7tZJs8DRN4RH7g35NoNELmXd0JgDRE4yD5gXZibnwP3OeBsMhZItGdHIEYUn8vfEdU8e8fv78ID6+LdMNzbxO8vHZcS+GcN8aaYRcD7EZGyLMuZYPqcimAe3vWkKI5cSSgpZiJcqbQiCQwJCQkJCQkJCQkJJ+NMCAqQgnq9rp2dnUgYl8ulDg4O9OCDD2pra0vnz5+XpFyWAqUKs9lM1Wo1R2SI0q/Xa919992677779PDDD0ciQwtEBAAIC/eAiBUJFCn9EBlMBhuNRhQDGJ/XxEPWe72eOp1OnG+v14tO/2RA4G8AYa/X63GckDv+i6cDHRpCCLHl5ng8jhkAZDB4q0ZII/flDxF7shzwVnAhgLk7AYU8e4tKF15YRwQKjxZvbGyo2WxqMploMBhIUs5ks1jewDp7xB5RgSwShCEn7sDblPo9GaubY5ZKpZgpQLkHe+PnhmfxmgsUXjIgKUfmPZvBiTDrw/nxtWYt3UzxpLPhmQAIBJxrBDo3bPSsA/9c+Jwc/FzMfiiKAVl22OKVz4b7LDBX1pH3+5yLGQq8hz32riX+PVDMQPBsCeZ1UneIhISEhISEhISEhITHxpkQFAB1/61WS1tbW1qvDzsTXLx4Ue9+97u1s7Oju+++OxcZ3t7e1u7ubqy5d7M83g/ZIm2f341Go0jEAdkI1L5DMCEdCBCQFqLQeBMgMkCqKAuAEPZ6vUi0Njc3Y6q/iyCl0mG3CjwiiuUCdFlAWCEFfzQa5TInvPwAE0LaOJJJ4aniWZZFQ0aEES8RgYBBzN13wA3t+DtmlYzfhRmi0BBYMixqtZr6/X6ca7EjgZNXujIwZvaW8o1arRYJ50lGg8yT9fHsAieqZE1QkuFtKtmfYi0/bSDdZNLT8bneTQ7pFOJE27MX/A8EmesQTIoiGHCR4KQIPfcsZg34vrHu7ifB74vXFEWMK13Lz+5LwTyKPgheTsG9OUveFcTLKvy84b1S9Gzwa4rrlZCQkJCQkJCQkJBwZZwZQcH/sY+wQBR4Op3q0Ucf1UMPPaSdnZ2cYOD16ZB99wU4ODjQxYsXdeHChSgoQIg8XV86jmxiCuh15h659vp7jwxzD8hPsUNElmUxE4E0/Gq1GrMvBoNBHANzJDtgPB5ra2srl10B+YVIcx2188X2kxAvMhZYc6/RJ7uAqDjj4XrWy30TQNGUz0sVXBRxMs37WDPKQShjwPgQ48pGo6HNzc14f+8iwZ7PZrNchgRr44JCMdrNdU6G/d4+XtpkshdudOgZCO6r4KKVlzx4OQGeE76ufCb8Hm6u6Nk0WZbFsUHIXWjg9y4IueDDWnirUC8fKIoG0nHWwklE/7G8DBi3Z7q4v4V7YhTLbDxjBDGrOB4XargHnwfPyPH5FTMhEhISEhISEhISEhIeG2dCUMiyQ1PFdrutixcvxpT1ra2taIy4Wq00Go1idBjSgfgAKZYOI+O0g5zP59rb29Ndd92lra0t7e7uxjpwOgFQTgAxKbbn88goJJ/aeEoJ8HHw6O18Ps9FmnkNAePBBx/UhQsX1Gw2tbm5GUsMIOGNRkOTySQaNDabzRh1J30c7wBS56W8U75nZpTLZR0cHESjPkmXiQLScWtOFxCI+EN6mT/PX61WsQbevQS4X5G8QWpDCLEzx3K5jPMgG8BJLyIGpRFOoBFW2NPJZJLzmCCC7W0TIZkQTdLsEQIQZrIsi+JPt9uVpNhy0jMTnJC7jwEEm7mwBm5W6QTb11BSrkzDS0S81ALRxj0LiuULjNW7ZHg3C15jffyZniHA2eI5/l8n8cUIP8/3kgsvtSgSfu7FmvF3F2KK618sh/C9cNHBzVSLY3ysOSQkJCQkJCQkJCQkHOPMCAobGxvqdDpqNpuRrLRarVgLT5vBwWAQU9whFZ7CTUQbEr1YLLS3t6der5czSJQUPRbopkCbSkg0goFHSqVj8gVZpJUkWQlE5ukUISkXvSZiPhgM1Ol0oigBEEkg3YPBIPovSIrmiPzMa07WPKvCSyyyLNPBwUEUVbxG3Wv2EQfm83kk+5B55sHc3PSP7A3W0EsVihkATngp2cC4kTVgf+mkQBYKmSaIPtJxJoBnRHh0vtj6kEwU9rBo/se+IwKVSoedNLrdrubzecxSoasEY2U8eEY4oW80GlFMoBuICy4810UE9+MARQLN+3wfiyn/7jfBvrPeReNJJ9WeLcD9fX2KY/HSD/+937soLBTvT/nCSe/xP8VMiJOyNlxYclGhKIoU55eQkJCQkJCQkJCQ8Ng4M4LCbDaLUWbaJpIdQMr7eDyOLSSJZEM0nAAVo590e/B6ba6H2EE4IY9Ev5fLpRqNRm6ckBRe434QYcoiiLpCqIhyQ4QvXbqkjY0NbW9vR8JXq9Vy7f8ajUb0eyCl383n+K+LG2Q3lEolTSaTWPcfQlC9Xtd4PL7MBNDr5yVFH4cQggaDgXq9XiyVgKCxnpRzOOElq8BNGpm3l6ogBhUN8ng+8DIM6VCggQzzPOnYR8H32NfLBYUigaUkwjMK3HyRdSx2kWB8jBExgDPlZy2EoGazmav997VkLl464eUOZC64SFOMqPMc9pXXXHRjjThP3iLT99DXrfjZKpYG8Dsn9XxWPDvFy4jY82IWxEmlFFxTzFYoCmI8s3gWPDuE/ThJkOBZCQkJCQkJCQkJCQmPjTMhKIQQ1O/31Wq1cmZ/RH5JUZ7NZur3+5HsEWF1kuyp5qQ193o99Xq9mK4u6bKIpRMvT+1HVCArwsUCSTGdHlLmBAdC6oaNLnLMZjPt7e3FaxEl8D/gWrI0AOUdkGl/LteT7fHoo4/GTInFYqFmsxlNJD3q61F7zyyo1+sxEj+dTuMeMR/KLSTFiDtjKqaWM8ZiO0LIpRvxeTYH82KPIOEuTHg6PnvFdXSsoHOIiyCsC8IArTkRl5x8z+dzTSYT1Wq1XJS86KHAfDCNZCysGb9nX1zMIUWfMhxKczjzbtLp+8eZ9gi8ixKsOePjc0KmBYIIvhFcy/2L2QvFsgXGTkYH+wtcVCh2m3CvCc8QcbHLn+niBqVKLsbwPBeOfJyemXAlAcFFttQBIiEhISEhISEhIeFknAlBQTruruCEh4i9dEjIRqOR+v1+JLZEsev1euy24GQE8jadTvXwww/HZ0F6IJhEnSF/3n2Ae3nauZNX6diUz2voeQ5E06/xuu/RaBTbTTIG5s89KOEgOg3R9Qg1EVnWgu4S1WpVk8kkejw4yaKsoNlsajwex7k4YXcS6mSTcZBJAvnkfYyp6B/gEWHWkXaUnlXg5RCsg5dNOMn2CD7mi4gwnu3gqf9kXwyHw5gJQwYG2R2AvecMcr2fJzcDZD3IRICM+7p6NoqLKRBqupXw2fCMG7wSihkBjNEj9lfyLGDM6/U6fm68JMKzALi3z5mfOQtkF500T88E4Y+XevDHMwYQJ7x0gjNTPGNFUcCFJ98fXwe/r7//pPKMhISEhISEhISEhIST8bgFhRDCA5J+VNI9ktaSXpZl2feEEL5d0ldIunh06bdmWfbrV7ufZxZAViuVijqdjjY2NiIp3tvb06VLl5Rlmc6dOxfJo0dAIQZeXz8cDrW/vx9/T/kAokKWZZHYE/HEF2E8HudS2qnFd+LiUUyEAW8d6OnaHnH3jhLeMq9IyHjN16tIstvttjqdTuyUgECDSEAXCVL4Ib5eZsF4aF/opoxFoYGsEem4BMHLEiCvjNeJm4sT7XZb4/E4mkwi6PiziufDs0Ak5dqFIhC50aaLAqwjmSh+FubzeRQ4ELPwsxgOh3F9Cp+FeA/A8/C2wCCTTAdIsws1LipA7hE+ptNpvIYMlqI4hPjEvIuRe8+eQASQjrtZ8EwXDzjnPi6yYBABT8p+4Gy4SAg8k4j7sY9+toulTPxOOs64cCNJLxs5yW+i6AXhWTMudHkGw62QnXCjv4sTEhISEq4P6Xs4ISHhTsYTyVBYSvoHWZb9QQihI+n1IYRXHP3uu7Ms+9fXeiOPqEIsPLrsRn2DwUAPPvigxuOxNjY2IokeDAbR2M9b70EIcP/HY8BJLeIDRLzf72uxWOiuu+6KxIYIrJMozO28HEE6NEj0lPVipoVHQjGC9DEhWtB20g0aWadiJgYCAZ0garVazIrwDhiQ4fl8rkajoXq9Hu+NXwXrRhcH94hg7AgIq9VK4/E4lhEwX+8asF6vYxkCBJp5sOftdjvnZeFnAeLIvFl7STnizZh8vsCJK4JKp9NRq9WK86UsYTwexy4Xfpaq1Wouq4W9bDQacb8Yo4sCmGjOZrP4p1QqqdFoxFIM9zjw7g+MgzahkuIcF4tFLtuFzJT1eh0FOM8okXQiUS9mB7iw4eTayzw82s917jvBWS/6JFDGVCytoKMI+0x2je+9r60/m3mAk7IaeI+XhFwpG8azU1zEO8O4Yd/FCQkJCQmPC+l7OCEh4Y7F4xYUsix7SNJDR38fhBD+VNJTHs+9nLC12+1IqkejkSaTSY4MDgYD7e/vxxIHMgm2t7dzkWbp2HBROiayzWYzEnwIClFnLzeARLdarUjciCpnVnsPOeT1LMui0R3ExDsTeBQUkYP7IkRAqiHYeD9AsF1EgFzP53OdP39e1Wo1+hx4xBwPBFpGlkqHho08i/lC7F0wISJOSjvXOjnkdTImIO1udogoU6vVcnMvElXIpne+YA7FjAU3FOT+o9EoloXwPs/o8DaSEPb1eq3hcBjPTpZlsQMH5wxhhzlDdD3TgLMCqeYcIFZJx50TsiyL/he8FxLN+eLeCDnMgXPFueAZjUYjntXhcHjFzBjgnS287MHX28m3R/PJ2mHO/I4sCem4Tapn9LCORRHCP5M+bhcI/HXP8imWQBRLGhANPCPBS2ZYX88OukXEhBv6XZyQkJCQcP1I38MJCQl3MkpXv+TqCCE8XdJfkfT7Ry99bQjhT0IIPxRC2L7a+yHI9Xpd586d0/nz59XpdGKa/mg0ioRwPB7rve99r9761rfq4sWLsdXg1tZWJFPScZcCiLRHrEnzd9JP5Bnij++Bd2bwiDukFyLoRBey6ZkJjKFarUYSSdR6PB5HEgzJ4h4Qeo/MQzAnk4l6vZ5Go5EGg4EeeughlUol7ezsaGdnR61WS61WS81mU/V6PZJVxAqi2MVoLf4URMnxAeB9zAXiiPCAgWWxKwLP5H61Wk3tdjuXHl/MWuB+7ungXSkcLiowV0+FJ/2eM1Gr1XIGi61WK9celPdAsPk5hJDLPnGTP54PUWataKHp/hh+T+Y7m82iiMCazmYzDYfD3HWMg24bnkmA0ANBZywIHF5W4Fk2vi7cF/LtZQyM2cUiiD17xucIsYfPEs92cYpSED53PN+NLNlf1syzIzx7iWf4+WEPXORxvw/PFCp6JXAWiq+fdTzR7+KEhISEhCeG9D2ckJBwp+EJmzKGENqSfl7S12dZ1g8hfL+k/1dSdvTffyPpy09434slvVhSjMrzj/xGo6GdnZ1IBjDCg5j2ej1NJhO99a1v1T333KNnPvOZOn/+vNbrtXq9XkzBd+IuXV5H7tF6osLUh3MNJn2QfswDIUj87OP3cgpS3qfTqYbDodrttsrlw7aO7tpPqcbGxkZMhYdceXTYI9VOmCCuBwcHuvfee3X//ferVqtpOBzmUtcHg4EuXboUTRg9Ld1LKorp4ZRfMCdS8D1TBC8I7nuS+76ky0hr4VxEQuip+Z66Dzkkosw+uJBAZoRnPUAoJcWOIYg+zWYzCiwQ8dlsFrM9GBf/LUb2PSsBgYU1WS6XcU/JumDcnHfODHPyEhVKSZzgcj68FARhy0t0vJsHn4Ni5oa/Vlxr9q7oP0EmB0KJ+xS44MNek43iZ5E9RIBpNpvx95PJJCcg8fnyNeaselmQpJzAxzX+uUbIQ8DxUh/PVuC9twpuyHexmsVfJyQkJCRcI9L3cEJCwp2IJyQohBAqOvzi/Iksy/6zJGVZ9oj9/gck/epJ782y7GWSXiZJm5ub2WAw0Hg8VqvV0sbGhrrdbsxO8Og8hnZZlqnf76vX62k6neruu+/WcrlUu91Wq9WK5NDFA+8OQQmFk0RPYQd0QRiNRhqNRhoOhzm/BUmaTCZxXOHIS4CouBNqyCdRUm9t5ynibtTHtcU0dQg3kV7mR4vM++67T91uV/fcc08UH9brtfb39zWZTOIfyC7PxpsCPwHbyxy5Yk9sPyXpsjFD1t3wDxLqhK9wrnKCAwIDkWzWEzGCbAbpkMBubm7mruc+iA3sv8+RcgEvEyFzwLNTWH+i4hBPnuXPcZKNySVEnwyQxWIRo+wYU/r8p9Op+v1+fA/j4lku8rAWzJGzXzyDRWIOcfdMAPwgPDPAywx8vv558fdRIuOCBqKgt9j0DBTG4CaUPJtxIGC4gMA8ycxwQcQzHfDFYFzFFpx+Bq+UEXMWcaO+i7th5+xPNiEhIeEMIn0PJyQk3Kl4Il0egqQflPSnWZb9W3v93qNaMkn6TElvvNq9+Id8r9dTvV5Xs9nUzs6ORqNRjIQThfXUb6KybmBHOrqnQEMcMevztHAIHyUOfg1ECRJTqVRiaQLR7na7nXud8XmbQidekCDuTxlCsVbeyx7oFOB14QgdmPBBzB5++GFtbm7q/vvv13333aetrS2Nx+OYfs8zG41GzGyAxJJNUUwV53fuiSAdE2b2j4i5dBx99rVj7JB2N4Ak5R0fDEQbf850OlW1Ws219YTseTmFt1x0QuplCtzbo/rsUdHUj33gnp6Z4F0c3CiS53E954y19EwJ9w+gbMTXy8tnGBvj9IwVL39ANPHSBc+e8e4jtP90McjJtQslCGdkIrgwwH7wOfDz4+OjhIbsBffrYO9qtVrMriCTh2fy2eGssfcIdG7mWNxT9t7LU4qmjcVSh7Pe6eFGfhcnJCQkJFw/0vdwQkLCnYwnkqHw0ZK+SNIbQgh/dPTat0r6ghDCB+swvetdkl5ytRtBiugYIB2KA61WS7VaTaPRKNdxAEI/nU61u7urRx99VNvb28qyLKY1S4pEp9vtxggxBAVyhh8AhJ5nQYSJIFN372nb3AsS41F7Sihms1kk8HRVgOA0Gg01m81Ym++kD3h0FJLnYoR0SOQ7nY52d3c1HA71zne+UxcuXNCFCxe0s7MThYPhcKjJZBLJn0ejvabcMyRIByd93rM4vJWmpHitm1S6gOKeA97Cj2u8jh4yCAn1M8JznQhOJhONRqNosujCDGvHXkG4XURyg0MfOxFtroPou6jiUXvm6nNiLL6miE6sNeMhGwYvBdaC9zMPFw0Qm1zwkBTXyf0uGHvRnPAkIYI/kG8EH64/KWtDUhSpEJtYdy8/8c+KC218xhAUvCSHzx73YU0Yi3fd4JqigaXPg8+se3j42XGz0TOOG/ZdnJCQkJDwuJC+hxMSEu5YPJEuD/9T0kmOZdfdX7dIOomUdzod1Wo1jcfjXDSUSOXe3p4eeeQRvfOd71S73Vaj0YjkfTgcRrLnhAvyUqlUYgtFT9MOIcT3Sscp9FtbWyqXyxqPxzHCOh6Pc50CIDdH65MziPM6b3wXIJDFTABPs3bSxe8gVqwFvgsQ9cFgoEceeUSPPPKI7rrrLp0/fz5mITQaDdVqtZxI4gQQwuUksGhA6OS72WzGyDXkjxaR0rGhI+NkjAhGLm4U94E9478eUXaBwjMJ+v1+9Cvwen+i3rTThLh65kfxTHrmhaQYMfeouRsacl8vYyn6UiCI8YyNjY1cq8p6vR5NONn3crkcvRhcFIDoe5cD1sK9ETiXiAP+mpdA8LOTb+7lApIbaPpZZz4IG976lfvxGcDzg731jJksy+I5JXOieP5cPHEzRhccEbe8BAJxyD1O+BwBf8+t0OnhRn4XJyQkJCRcP9L3cEJCwp2MJ2zKeCMAcXHSV6lUVK/X49/dBA6S3u/3dXBwoF6vp0uXLmlzczMSCYzXMECE/EBqOp1OJJ1ENiERkJh+vy9Jajabsbyg1WpFogE5JtpJ6rVH1z1SDomCoCIySMdGeBBGT6H3kgEnP5DYcrmsra0ttVqtKIb0ej09+uijajabkZTWarUofvCn2WzGTA2PnvM+iBxzoBQC8kvZB6UnXusuKUaPEW+YG6Us1Wo1lm3wmgsQns1Bhwlfw2LaPeaXnB/200sbvD0oa+ok2kthIK+IJJwVj5KzR/V6PZc270aHCDR0u+A+iDXsf61Wi3N1zwI/a8XUf4QaJ9A+l2J3ED9DvgZeasMeuu8CZ5z18rGQBeHlBADBzIUFMiSK3gicIVpmusGiZw64mOFr7WUwvk+cF96P+OPj8FIXz2ZJSEhISEhISEhISDgZZ0JQgDhB3CDwy+UyGiwW2y5CCgaDQa42nftIyhEvTyVfrVYxqgzZhUQul8tciQUO9V5e4J0NIOHeccBT9T1Vnc4BEFqvV4c4ETVF4HAS7ISdbANS2UulkjY3N1WtVmNLxAcffFCNRkPnzp3LpYBD+rgfZN4zDciqgFBC8l3okA7Flk6nEztVjMfjnJcA5JOoe/GeHnkm44Pns56sPWnwvNfBtcWOGRBD7ybg5NYJs59HzoKXw3AfJ8FeHoDowLxcVOF6RA/8EsgGYXxkEXhHBfbbszM8+4a2pozB/UaYP4IPHSPc6JDPDJ4kbojonyeyItwskf2glMGv9ywdSfE6F208c4A15jwUM3YQKbyThP+O3xfLLDyrid/zXtaW5/jnz8uNEhISEhISEhISEhIux5kQFKTjLAVqsbvdbiwnqNVquZR4rl8sFur1elosFtGPgCgvpJ8/m5ubkVR45J9661qtFn+/WCyi/0Gz2Yzp5pJy6fTD4TCOxT0VPH3cxQU3pHMiDclHmPB78R6P+PJMr4uH+JItMJvNtLe3p/Pnz0fhYTabRSIOOXQyjUBDR4vVahVbGpKa7lFwSC9jqVarUYzhvk5W6TSBkaFHu5k3++VZGNwbwz7fQ9YVAonowB66pwNZIk7OeTbZLHhZQDa9vh6wZ0TlIdBkkfA+3yvux1iJ7nPmfO/dWLDoBcE9fN84O8yzVCpFYcjJPXMpCl/sK69xnT8Doo15JMIMoosLAQhg7JNnMbhA5gJBUYzgrBRFHEmXCQy+LsyJM8P6s/+MqSgmuKjjPhFJVEhISEhISEhISEi4Ms6EoADJIAoOIfBSA49UEmnOjowPB4NBJDikXZPeP5lMNB6PtbOzE8k25Io6bciyEx0nFwDCSZ07UfeTUrddGPCIMtFunuPjhiBhBOnXkFnB+pCpISknlGD+eHBwEMkh4sh4PI5ZAJAs7kEpBPuxv78fCSllCW5yR9r+dDqNkWCi3147z30xH3Si6/XskuIcED78+ZTDEIF34jkej6PwgDjjRNZJP89yDwHu5ynyRbLr5StFA0fWrLj/fh9P0ZeOuzf4WrrvA5kPfrYQTXgO40MYK5pQ8l8vHXFByQUC4CJQMYOgKJat1+ucSWVxvJ4J4BkFiGWURniLV98D1onsHr+nj9nFBc8yQEziD9kznE8fpz+PPU9iQkJCQkJCQkJCQsJj40wJCqTGz2azSHYQFTqdjur1unZ3dy9L/Z5MJjGiCfGkvaAT8m63K+m4zrper8d7Ec2EkHurSdKxIWfSsVmeO887AeF+kiLx5n2MsdVqaXd3N/6OtZCOyaM79Xt5RaPRiEQe4cFLJYjme3r7ZDLRwcGBhsNhrGsnkutp84gEEF3EC8+GIMpOijzPZk19rJKiIMF6sI7FKDNkjiwOxokhIqUfbow4Ho+jMEPGCeP0rATm5NkHnCOyYIq+AQARx80nJeW6GfBMj4h7RwnP2mCulCIwruI6uyCFGIBA4utbLDNwYcHHw33YQ8+qACf5ByDCFbuacF/OIl4ZnDn3PDnpOcV98a4YnA/3NznJ5NIFBRcD2RfajLLe7ufB+1h3smMQQfwMJCQkJCQkJCQkJCTkcSYEBY/eUv8/nU5j5LVer6vRaGhra0v7+/s6ODiQdEwehsNhNGUkSo5hYaVS0WQyiWQFggM5ojSC7IO77rpLg8FAFy9e1N7enhaLhQ4ODtTtdmMXCS9tIHWd53qJAjX1CAaQvRCCWq2WpEMPArIs/L5uWOgmd9zfvQy89twNId03gb9jbOgRdIg6xJfyAojgfD6PZSSeRYAIBNmHvPn9pePWimSDQKBBq9WK86arB3OFBE4mk0j0ndAzZqLP7nXA3z0LwrNAPLuCZ18pKs35YGxeyuICSTFLwLs6FL0RmI+n3XtZAmeoXC7HNfXsjGKWAvPzzxOknvOJuFb0LWGdpePSDcQSL7nhzBWFIMbjZRBcx9lk71wk4feMjbPA2iEaAD4LxawRL3fwc4sRJnvu1yLEuRjHOUAsO2meCQkJCQkJCQkJCQmHODOCgpNuSCcGjZDZRqMRWw16uvju7q4effRRbW1taWtrK14rHRL26XQaW8nV63VNp1PNZrNIhL3rAp0cIDiz2Uy7u7sql8va3NzU3XffrUajoU6nE4n1YDDIpZU7MeMPRJ4WmBjktdtt9fv9GDWFRENw8GzwtYFUQQJpP0m0HtNJPCWIRGMA6OnhPMeN7CDPTr4hewgi/LdarUbBhvt428iiX4F34KA8grWnBINsEAgebv9kL0D2uN47IQyHw+j74N4MboBYTOVHfCiWRbAmWZZF0Yl1JerNvCCvUt40kP/6a742zNuFDe8CIR13P/GMBrJGWMPxeBxLQ4rmhV4+4+UKXOOlG57Bwdw5yy5q+Rly8cDLNgBzK3aF4D5eGuJlOH4ueb+XSvhnjfIj38Pi59uf7fNz0YC/++ekaACakJCQkJCQkJCQkHCIMyEoSNJoNNJyudRgMFCz2bysRz2p7F7jTkZDv9/XxYsXtb29HQk/tfbNZjOm+c/n81yWwWKxiIIFkVJMICHliBGj0ShG2KVD4tNqtTQajXIp/0RIx+OxQjjsLlEqlWImAsJJr9fTzs6ONjc34/shLhA+L//w+3sk1lO9JUVyu1qt1O12L0uVb7VauW4JCAHNZjNGyA8ODqIpIAQUcu4ZBk7CyZhg7ZkHY/XUf8aDOABZ9y4fTg59fp4+TwSb97Gnw+Ewl+nhIojfiwi/G/K5d0BxXRkTxN27B/gz3DDS1417UV7ivgKMh31mbmR3+O+LEXn22FursnacLdYCwcE9ORCpnHh7mQHr4Bk5/ppnN/iaAS/hcN8KnkEGhQs59Xo9lmYgMnFO/H3sjZfBsCacVfaEZ3q2EtkUnvnjc0s+CgkJCQkJCQkJCQlXxpkQFNxckcyAdrsd69rp4NBqtaLJH50XeO/e3p56vZ7m87mazWaMdCICYPzmrf3ILCD6ipBAhLvb7caIPx0dWq1WLoJK9Jh7uGu/12JXq9WY+UDEfLVaaXNzM6axQ9Qh+4Daeo/iYgwJUYUUcQ+vQ59MJjmvA8QZWjV6V4laraadnZ1YvgCR83H5M9zIEYJKRJwuDsyvSE4lRZ8EroWgSsplStBqsehtAJE9KTIPeB6kubi2jIOfuRdZI4xnOp1Gk1CPtkNwgfsPsP+QbkpLWCNJGo/HcY3dQNLLDbxshb1jXTk7Li5520QXJ9z/gr1xfw/KMrzMgHV2DxE+e74XnEHvBOL7VfRHcAGlmJnRbrejkaKfNfegcKHEP2usAYJO8dzwOzeZ9IwLP38uaiUkJCQkJCQkJCQk5HEm/rU8Ho/V7/dz5ocHBwfa2trKdVaA8CICEIWcTqfa3d3VI488on6/r83NzRht9XRpj3CSAeFGc9Jx+0WeVa/XI6FZrVYajUaxnp90agwSJcUI/Hw+jzX63Jf0fCeEzG97ezuSzn6/H8sIIFke9YfckfVApgYRZCK9w+FQ/X4/Chq87q0XJ5NJ3AeIXaVSUb1ejySMbA8ixhBUSTGTI4Sgfr+v6XQa16RarcZyCSf4lUrlMq8H6bjEgLICNw0sRr1ZF8ooIKB0/ECEcRNNuno4WSZS72vg3hRSvjMEggN/H4/HcQ8RQxAYip0bIMReUsC13srQDT1dSHATTi8R4bNQzBJgnMUyB+mwHSfnyTNQ2AfGRVaMZ3AwHhcVvPzDSxW8rMRNJ8mwAX5WMAJ1c0jPmEDoYX8RgPjDmSlmhzAv7/7A2hfLGlJmQkJCQkJCQkJCQsLVcSYEBSKqRBRJ9YdIQE4gD15zDcG4dOmSut2uBoNBJNu0niTa3O/3JSnWwFPOkGVZJFhEKyF7EEInibPZ7DLSh6eCZzMQ1ee+kCTc8Hu9XhQt3BPBjfOKz5cU14ZnQqA9as69BoNBzqAwhGOjP0QIIrvuqQAR86hvEU4e2ReyDSBtXhKAcAC5lxSNJ70doWdHUI6AqFMqleJeMU5S3hEjaBtJ5oiXI7AWnU5HlUolGnxKeaPF9XodMxHIbmEfpeNItgssnnnhJQdcUzTpLGYETCaTmCFDJgV/3EfByycQxBAz/HPiggBjZ329NMDXkfNMyQvnkP8yRxc6/DPqwg+veVcJ1tfFBr8H+zoajeK1nnXg686Z8vIHn5uk+Nng94iAXubg2TX+LBd5EhISEhISEhISEhIux5kQFDxNejAYaLFY6OLFi3rKU54SSx/ITJCUI/ySIonf29uLEWMiqERxx+Oxdnd3c9F9yLib1zl5LpfLarVaOeIF8YC4OVEhMuoEjjFAjiA8GDQS0XdihIcAJNS7PpTLZY1Go1yqvwsCTu4kaTAYaDKZqFarqdPpRGLKWnrmAmuJqMHaSMelAF6DD8n3zhe819tEQkJZAyLbtKzsdDrxflmW5QSGos8ARpOUYuBLQUYJ4kbRFJH1QURh/4p7RutAMihYL0piKL84yWSRaDrvYcycgaLY4GUezWYzlwHh4gNn1kUu7sueeWo+60N2jZNs1tjPS/GzyPnmM8n1iGlkpbBuntnCGvt9EGaKXhOsT/G/zMnLPYpZFnwWuW9RkPBzwDnlDHpZDaIL8yreK2UqJCQcYvppHy6lpidnHu03PqLlO//itIeRkJCQkHAH4UwIClK+HrpUKsXSgnPnzmljY0Oj0Sj6J5B1QHo0BobD4VDD4TBmHECsIB+TyUT9fl+1Wk3dbjcX/ScrwFvJQS5oQclzIKW1Wk3D4TCSaNLuMT30bg9kJQAi75RhuKEezyRSD6Hy9n7j8VjtdjuKEdTgkyaOaDAcDiNhopTA/Qs8Ko+ho3dScK+Kdrsd94AOF5RjUBrh61R8jndY8H134sr+Q/qIYHMtLS15PnNkrev1ujqdTmw7ynpCcCGh/I4uGl5TX+xU4CUG1Pp7dwgEr+KcuDfdQiC0iEV0ImDdvfzDPxMuHrlYJB2XLDB+iLKfQ7/vSSICYpivkUfyeT5n1n0GWEcEBd7rggFj5/787KUQnLkrjdXvWcxYKGYxMH8p3zWF/eOz5muJyOeZRC7KJSTcMfirH6jd57cue/l/ffv3qhYqpzCghOvBs//bl2nrd+478Xcbk0ybP/7qJ3lECQkJCQm3O86MoICBItHfyWSi0WgUf0fLSEoEqMemC4J0GM29ePGiZrOZ7r777tiSEbI0Ho918eLFSCSJwrpRoncHcFEBwjubzTQajaJowb0nk0m8Z7PZ1Gw2iySHKK1HQHH6n06nOZLDsyHWPJdsBTeknEwmUcSQjv0MIESSYhQf4ouxJc/leUSVPToPQZSOyxsgn27GyH08gk1byCJBZP50nKCDh9fHIxwsFou41qxHrVZTs9mUpJyvhJfHUPYAIXaSXSSlCA7+Pq6nFSTRbQg95Jcz0Ol0YokC68gcyWrg+ewx98dro2iYKSlHpnmfp/ez517y4eaCkuK4XNThnlzrc6RMxbN7KPVx3wTW29uRQtq9fKnoT4Gg4pkjLgh4WUqx3ID3epYC4+W9Xj7hY2GeXnaBEMR8vcyqmOmTkHC7o/QBz9O7/uaO3ucT3q7XPec3T7giiQm3Av78439Y+viTf/f2xVCf9qxvlCRt/9lanZ9O4kJCQkJCwhPHExIUQgjvkjSQtJK0zLLsQ0MIO5J+WtLTJb1L0udmWbb/WPfJskyXLl3SAw88EIkkJMsd14su8fzDn59ns5kuXryowWCgVqsV6/M93Xt3d1flclnnzp2LRDCEEAUMN5mDQEn5ln1kCVC/zrMhXfV6Pc7DyynIdHBjOO7FdWQFOEmCgEHqPdoLcXdSjSgC+WOsiByQTI9eMwbmsbGxEcUHiK/7GkC+JeXMAT0rgN8RgWYuCCxkPHhZB+9j3/AvYM0ajYba7XaMxmO06P4D3IuyA4Sp4nqynxBH5lc08eOsQbgbjUa8ptlsqtPpxCwTxCnODCIQ5SAQ2WLZgn2m4jjcd4LfecYFZ4rMl2IHC+nYAJN78Vy/jjNMxgAk3AUQMoFYExeLnMAzTvd/KILXXEg4yX/B5+6vcw/G4d8NxfsidvBZxUOEDJZGo5H73PF54h63iqBwo76LE+48bNxzQW/+9qfpKU+/pD/9wO877eEk3EQ8q9LWn77kcI//3f7T9T0f/8l62q9kqv3aa095ZLcH0vdwQkLCnYobkaHw8VmWXbKfv1nSK7Ms+xchhG8++vmbrnaTv/zLv9Tdd98dCcNyudR4PNZwOIy12SelQ0PKIS94BlSr1UhYnWjQUWIymWh7eztG84mmHhwcxPaOHv2s1WqRROMhMJ1OI9EdDodRFKjVamo0GtEQrkjygc+F/xYFBtLzMSaEBAOPppOaDvmFHFLvzj2IdGMK6OaCEHP3F6Cko1iH7p0t3FMCkkkGR6lUiveVpEajoZ2dnWiMSBkG9yCjYmNjIxpnsl5ElbkvWQrsCZkYWZbFTAZfJ84WBLMo3IQQ1Gg0LiOblM+wnjwPQQQSTVmAl0RwvsgiaDQal3V1KIpX7BnPdVNIF2u8nShihHRsBln0H3ChzIU51oX78izP0HEDRe/2wL6VSqXcXhXH7VkLfoZdVOB5nonhZQ0uaPj3AJlCxecgIHi2iRuqesaQdwA5qWzjFsAN+S5OuDMQNjb00M89Rzutsd75/i877eEkPMn4+u136etf9DJ960d8oH7tK95f9/6/JWWvf9NpD+t2QPoeTkhIuONwM0oePl3Sxx39/Uck/Y6u4cuT2vtKpRIJbK/X0/7+fiRrpLATMXfCBIkYDAbRmLHZbMYyiUqlEn0N8Btwog/xG4/HOeIiHZOOWq2mra2tSKIgpZBy3ru9va1Op6PJZBJJJKn01MyTRi7lyS7+CG4k5ynzTg65LwQZwcBd7ikPkY5bWjJvyDljgvRKynWfyLIsZovw7BCCWq1WTnygZITXWFvIN/tE2QImkbSpLJYqcA/8MdwoERGC6/CRIMLs5SiUm7Cn3vaT+ZHFgXcFQoV03CnAI+at1nGNMSJCsVSBPWKtKeegw4WkaMqJn4Jncfhacg6L45AUzxaZJYyJPScDxb0YOHdehsMzuCfn07MBihkB/jnh/LlYJSl3rrjOBUH2FEGC88p598wFFzhcJPGxuDiEIOfXsN6edVEsh2CNfdy3IB7Xd3HCnYGd/97RbzzjJ097GAmnjH924U/0zy78if7RDz5f7xidV+/TS1pd2r1pz7v4y++j55179Jqv733ptlZve8dNG8+TgPQ9nJCQcNvjiQoKmaT/GkLIJP1/WZa9TNKFLMsekqQsyx4KIdx9rTeDCJI2TueGcrmsdrsdyxi89tvrtZfLpYbDoXZ3D/9n2O12I2mFTEAcIccQKDwDMBSEUCBwMD6vGYdIEgkfjUZarVba2tqK6f8YFnrWAOQa4uidICTl2j2GELS5uRnJmUfVMZecTqfRmNCFEsZLZwTmz9i9a4ODKD/Rb9aGNXYPAYQgF048cg2x5V5EsPF6KAoPnqHBe6rVajQt9LFTSsAakjHiRJg1Yw68r9/vx7Vib/0axsgaFjNBKMlA5DjJHwDfC86Jk3zm7oaSw+FQ4/E4l8VCGcN4PI6lDZBg7s09Ocde0oFRpt/TPw/excONDcmaQLzjdc4V68xeQ9LJopEUszcQCdwcEfGEMXrGC/f1DAngWRUuTHAv9o/PAgaq/h7pMEuGcppixg7P5HvlFsEN/S5OuP3xI0//LUm3RklPws3HP737DZKkl/7uUzRY1/VbH9C5off/8x/7K/qav/Lf9eKtH1G7VL/6G47w8l+5W3vLtl7zAbdEi5H0PZyQ8Dgw+Ly/qs/+f/7rZa+/8gXvq+V7//IURpRwvXiigsJHZ1n24NEX5CtCCH92rW8MIbxY0ov9tVKppHa7HVPvKVHwdHsnwkSUIdmY+g2Hwxh1bzab2t7eVr1ejwRiNptFgkb6N8TYI+FEliEpvOYtEdfrdayThwB51NOjpkTq3csAcg55bbVams1m2t/fz5FNzAu91h/BAqLnJRKsW6fT0ebmpiTF9dnY2Ihp/Ywb0uUiAkSYvXFixmsuEjiR5XnsC8Qfokc5gEe+yVIolQ7bh0I2EW0mk0nuOZwJshAQTNzgj7kwXjfa81p71pPnM09PvccnYTweRzLP9RBp9h/PCVonIrZ4OQvZIdybDBY8J9gPSfHs+l4wNp5fTM9n7kXhiDG7lwFCARkRxWsYo2coeHcKz7IpCkpu6Mk8ERgYP/4iXlIjKWYi+fPdo8L/7pk40nELVPaG9WC+/J115Tzx91tITJBu0HdxXc2rXJ1wO+DL3vIXqoQkJiRcjq/cOvzH+0e8Q/qDydP1X95/6wnd713/9CP1A3/r+/X8yu9pu9yUdO1igiR9afdRSY/qP37A8AmN40lC+h5OSLhGbDzlPn3T//h1SdJdpd/T+1YvP/cf9btv01xlDdZ1fe+zn/dkDzHhOvCEBIUsyx48+u+jIYRfkPThkh4JIdx7pMTeK+nE3LYj5fZlknSk5kYjQEkxhX4ymWh/fz9GMTEKJEI+m80igSeFGzEBwgI58ijyaDRSv9+PJMeNEIfDYSyx2NrakpR308ebwaPiLmpQClEsnZAUySIkivcRSfW6eO7FM3gO7R/xf/DSBUhRpVLRYDBQpVLRXXfdpWq1qtlsFrs7QJ4RTCg3gCRC4op+AAgYtJdkzvFAGSFzgg1JL4oUiDWYK0Iox+NxLqKN+AJR9bR2sjDIMKnX61GMgjx6Bgj38Ig7GSDuHXF0TuN8EHJ4nT0k8u0EFzJKdgjPcuLPfrsZIq8hnhUJN+vNOfKWm4zTu3cwZ+7H71kj6VCsYB25N4IX+zWfz6PgE0KIoljx7LrpI/d0Y0Nfcwdr6PPgD/fyTh7sKyj6bLCWwE1U8cdwQ8tSqaTNzc1oBuuf0VsBN+q7uBt2spOuSbi98Nca75HUPu1hJJxhfGxd+tj6u/R5735iRL5TevVRRsITI8ntcPYzFNL3cELC1fFv3/Uq7ZRWKoegu8uUD5/8/fBX6/w7b6oPeff/lCT944c+Re/+iNGJ1yecHh63oBBCaEkqZVk2OPr7J0v6J5J+WdKXSPoXR//9pWu5nxMA/iEPuaVrQ6PRUL1e19bWljY2NnRwcCDp8n713q2g1WpFH4VmsxmFgfF4rPF4HEnsSWZs3mECAkcUFf+AxWIRCTnGg0Rknchi4sj9JMUMgcFgkCvjqFQq6nQ6OXLHs/i717EjKrAWjJ3WkpDIokGe151DPLvdbszSIEvEs0Mg1ZA9Mh7YM0+xd78H3+OieSVzbrVa0ZQR8g25R3zguZBKskwYAyIMpStkt3gLSe804dkDGG+yRpLiPObzefR9YB+LghXrSsZH0e/Cz7p7OHimAKTcxQvKPxCx2FvmyvWIKdybs4ow4105uDf39PUtRuzdT8E9Mfz8SMqtHeeSlqDMg7Ph2RWUziCC+OfZsxJYR88OKmYlsO8uIHGNm48iLCICISDyvePXn3Xc6O/ihISEBHDvRhKergXpezghoYBSWeHo377P/L2Svue+/yVJqoTGY73riuC76Ace+F9a/OUhP3vez3yNnvONfxCvyRbzJzLihCeAJ5KhcEHSLxz9w39D0n/Ksuw3QgivlfQzIYS/I+ndkj7nWm7mJNeJDKRpMBjE9P9ie0InNZCTyWQSzRnvuecenT9/PpY7hBA0nU51cHCgLMtilBevBgibpzwXyxl4ftEQjmvJlpAOCQ3ZFkT2Pa0cggoBIu0dstpoNHKdGopGehA3Sh1Wq1V0rF+tVhqNRrnxEVWGTHmKOT+7YR/rXCwhcMGjVCqp1WqpVCrFrJHsyMzRfQHK5XLMMmk0Gup0Omo0GjEtvVaraXt7W9PpVIPBIGZLsD+0AnWDTi8xwZshyzIdHBzkauTdc8PLZzADbTQal6Xvcw54bXNzMxpn8myyZ5yAco7IKnADSS8Z4Rx5dN49IqR8VP+k6D4oluXwDCfjZKRwH1peLhaLy7qYQLrpxiEptuV0Tw3OhHsp+Bg5w3wOyKTx0o0ieed+LgpwFvi8IvB5JhBiop8JF0m8RMIzlniNEhtKJfwsnGHc0O/ihISEhITrRvoeTrizEYLK58/HH9/yrc/S2z/vpXbBjSuzo2Tv7Z/3Uunzjl//5M/5Um28teC5sF5ptbt3w56dcDIet6CQZdk7JH3QCa/vSvrE673f/v6+/uRP/kQf8REfETMQIH9OhAvPuiyCCGkZjUYajUZqt9vqdDrR56DYUaHf7+cIUpYdtxukBp6Ivddvezo6QgcECKKFeAAp4v5FssRcfPyUYJB2zvh5Hx0rpEPC2Wg0dO7cOT3yyCO59G88G3ysdHvAYNA9B6rVqjqdjsbjcRQ2vFTARRM3yPP1KEaRGSsR/WKXgUajET0S+v2+1ut17JRBG1CyDogiE5Gfz+e5lH0i+YvFImY8kCrvf4jS09XBszC8DIX18XKTVqul+XweSTBE2rs3eBkMgDx7d4Jutxv3EyLMWLy9Ia+x/uy9C0z+WaD8w7snME7PfmBNOdOcL+bsxqLcz40x/QwjrLgghlDCePgcsK5eVuHmnEWyjxjjbU/J+kAQko49F7w8xveUffAzyD2KGRBFD4mzihv9XZyQkJCQcH1I38MJdwI27n+Kss2Ts5YmD3T1337oB+yVVzw5gzL81599+WWvvbT3FP3y5/zvj/m+1ZvecpNGdOfgZrSNfFwgs6AIT+0n8u8RXicCkBfKC8bjcYzuUxIAUXLXeSfg8/k81mC3Wq3YuWE2m0XSUmw152SXiPBsNsuVGxCZZfwQKcbg7fb8Wu7pKfr4RLjXAffEK4GoOhkDEEUiz5Cm4XB4meGfEzruze8QAYh6N5vNWLbAdWSWEIGeTCaxZIQ99P+WSoetFMkM4Wc3nyQbwLNS2HvWgDHhU+A1/J5Fwvj895h58kwEBU/1RxBptVrq9/vxeWRn1Ov1WEbD/jBn9s0j5Ygp7XY7jmE6nebKAIoZFXwmJEWRxoUlsh7Ya+bupSVeHsLc/N78zPmp1+tqNpvRN4G157whVHB/31vvaMJ68z43a2T8nrHBZ43feVYJxB+vFT4bfO48E8HnFcKh+SelTgiJXt7jmUO3QslDQkJCQkJCQsINQQhafOKHnPir5Tdf1Cvf76ef5AE9MXzl1l/qK1/x2GP+uK/4CpVm1xdAqvzW65/IsG47nClBoRjBJzKKIABRkRSN5Yh+Q4hKpZJGo5F2d3e1u7sbyUGz2YzkmvdDtL32nQioR2DdtwASCbmFsBG9xcl/MBhoNBpFkiUpkisvlZCUI8G1Wi1HomiFKR07/kuHkViyGLgOs0bWAPKKYCIdt+QjQntSaYensjtB9LR0L5VgHdxwkrUj3Z+0em85CbHz/YEIt9ttbW5uxsyFer2uXq8XRRQEIRclWGMEHvcCgEgjTAHPFnEzQmrx+Zm9JRqOGSNk2w0lieqTBcJZcQ8B1rpUKkWTT/ft8MwR7sneQHrZB8i6i0CeKeLv56x6pglr5P91uDcDY0cAYsxFs0rWsliig4EmJUCeWeFlJ5xtzxLgGXym3XTRO1mw/14K4YKfd25xo0w+46zfSRlQCQkJCQkJCQm3C+Yv+DCN7zr+99R6Q3rtd37/KY7oycfv/MAPXP2iAj78W75K4TE0iPO/+14t/+I9T2BUtxbOjKAgHRuqee94CFuz2Yy1+ESFSbF28gCx3d/f14MPPhjN/zxFHtJGZwCILd4LuMF7VwNPgcfQkUgwxASiMplMNJlMNJ1OcxHmIpn12m3uTaYC6fOr1Ur9fj8KBpQ+FM0JPSLrJGy9XmswGESiVPR7KGaFQMTdEZ9xQCCZQ7VazUXHea8bDTInSTHTAALnngYuKiAgIDZ4R4J+v5/rlEAZAmPDxLPox0EmBen3nAM3sKTNaLvdjnvFfRAUIOx0O8AolPPjRoFO8Fl/zhd74L4PfgaKJTGsBVkPnprvooV7fXDmPAMBccnnzvg8O8VFJM4Yny/OM54L/rlD4PKOEdJxuY8bYpJh4WUNzNtNLd27o5gVUa/Xc61e6arBHzes9I4T7mXie1XM3kiCQkJCQkJCQsKtjvJdd+ndX/6cy17/2i/5pdguNuHa8Zp//tiiyzNf8eVqvvmB+HPIpPu+6/du9rBODWdOUJjP5xqPx5EsOMlx0uImf7zX06fn87mm06kuXbqkVqsVCQbv9QgpogXP9lR/J03SIUEejUYaDodRbKCLBFFqCJ4bM0qK4gdjxI2edHpMI2u1WkyDn06n6vV6UcRYrVZqtVqRVHkHAY+2kx0AyXeDRSdxvA/i5gQKYigdZy5wH/bH9445IBRA7jHHdE8MJ7QQP4SfYgq8l3MUWxkiVnAfX3fOjhNiCGSlUoklBl5HD9klGu9GiV460Ww2YxcROohwLy9fYS5uqokQRsaDCzS+puwN68X4PWJfNAJ1rwqi8ZBz1snn6+fTRQ7WE6JOxw3WEoLukX7uzTPZbzJwPDuF+fvnFb8P5uWffcaHaMc4KXlAZNzY2MiVz9B5xAUmPsd8Blk/Px+ezZGQkJCQkJCQcNZQ+sDn6a1ftnVN12bn5nrHX/++mzughIh3fNIPSZ90/PMqW+u593517pqdNwTt/NCrnuSR3RycKUEBAuMlDERLi/+wh0Dw++VyGdOpG42GZrOZDg4OcuZ5EBzImRsbUoNNdwQAQRkMBvG1xWIR2xGSxcD7IfPVajUSHcgz3QeYz2g0yrXyw/shhKBmsxlJKL4I/X4/l7HhRnfF2vIQQnTu99IKJ6C+rkTW+ZlOCogxq9UqCjBEpCnvKHZC4HfsJRF374yRZZkmk0k0ymSdiVyPx+NYfuJ+FRBY1oxncFY8jf0kgYkxuNGipLhnCDzeYcF9O4q+A4gM/sfXETg5Jmrebrc1n881HA7j9axbca/42TMXvMTCuxu4FwUZEMyVsh5EJP7rZ573QPwlaTQa5bpASMdtMxl3lmXxM8XnzT0qOAtkSXhZDOs8mUxy5Qu+R6wja86Z97aWnvWBOITJKueX+Rf3hrX2M5GQkJCQkJCQcFZQajb1jh9+tiTpORcu6u3P/alTHlHCtaAcSoWuF9KPvvC8vvNTPjX+/Mx/vtT6j978ZA/thuBMCQqSchFbSZFUEH3lH/weSXRS3el01O12tVwu1e/3I8lCcHBCRoQacYAIOW0cIWJERT2yi/EbJQjtdjvX7YHIqBM1J7ge8UfgcPNJT/WmtMCJM8aREE1IFCQfQkYUWTqOThMF9vX2SD1kt9lsRoKPJwNr7+IFXgMuDDQajTjOyWQS58zc6ILhbSE9NZ09YnxOMoGvGSiaXUqKEXr2GiILcecaiD7jpHMDZ0hSTkjyaDcp9BBnCK6vL2eLcVFuQ6mPd2twc0I38/SzXyxTIBMgy7IYeaccpOiR4IIcZ4N14DrODkLXbDaL2RXuxcC1iBPMH7GjKISQwcMfslN4D/fhdT4TXopB1oTvoZ9xz27xTBUvmSp+Ll08ci+KhISEhISEhITTxvqVD6hVmeotz/7R0x5Kwg3AF3cv6Ys/5ngv//6zPkx/Prgv/rz6+AdPY1iPC2dKUCiXy5GMFmv+3SfgSu91HwOIDXXnCBGeRQBZG4/Hms/narVauWgn94WoQ1xoc+gmefV6XaPRKNbRVyoVtVqtXHmBR7QhoERrnUQ7MUOc8Hpzjz5D7DwijJM+a8HYeS5EzMmllwu4aOAEEyINyfP0d093r9VqsUsDc6fO3d3/veSgSAxZDzcd9O4FRWHG39dsNuNesJ6Qc+bKWBAgnKyflGHAPN33grXzDA0vq5GOvQPIDnABhXKbVqsl6TjtfzqdRsHGjThdPCpmX3jGha/xeDzOtaAsRt9d4GEP+Bx6qQRCCXviPh4A4cu9NlgvN2bkbPtcEJRcKHNjSYfvN2Pj3szJvys4B6wvfhTeTYKxkPHiIk1CQkJCQkJCwmkh/PZT9KE779Y/vftXTnsoCTcR33vfa3M/f9sfv79W2fG/gX/i1R+p537la27Y8z7wD4Jqpfy/qX/ydz5az/76V1/3vc6UoECqf6vV0nQ6jWnWtHyEbEE2KGcgmgvRJzPAO0BQQuCkHtLFdU5wJOWi3E5sSLt3ci8dd15gXKRjF7Mo/Hoi0mQ6eBSVMolOpxPFj2JtP/AsjFarFbMCnPzhEUHLQ7IIPLXco/Tz+TwXLaYMApEFUQLRgRp0v0er1dJ4PI4Rc+84wRwYO6n/8/k8t06QP9bT/RJciCAi7hF8RCbKIyCazNnLSpzMsofuXVEUcdz8kvvzXDe25HraEDIXiDTz4lrEGe824mUJxTIA1pDxcY2vrfsjeAS+aKKJvwhClost/hzG4oKOmx4imlDGwOeWs86zOAP1el3tdjt2OZlMJjlxwj+Xnt3g5oqeteQCg4s7nhGE4FXsfEL2ke9vQkJCQkJCQsKTjfDbT9Evvc8vqhYqV7844bbCd9z1ptzPX/Opr9Lvv+2eG3b/z2gNL3vtKz/rVXrd37jyM37r2Se/fqYEhdFopNe97nU6f/68nvrUp0pSTIvf2NiIKet0e+Af/RBxavCJ/kKKSS3vdDra3t6O6dvT6VT9fl8hBG1vb6vdbks6jthTGgD58O4Q58+f13q9jpF3LwvwcgUpn1Lt0VbILsTdzSCLkVOP9rshIUSLtHuIoLffm81mkegRwR4OhzErA8LtKejr9ToKAZD7ZrMZiTDlIcPh8DJzPv7wPNYfo0Yv5YDQQzg9Jd0zIPhT9DJgPaR8erqXO/jae9cGfs8YvAuBpFjCMJvNtFwu4xw4B16G4KUQ3ibUI+H8TNkAJJ/3+HudSLsBJ695G1XECl53vwlJcfzsh8MzTzwbgeeyltzPjRrdcJHPGs9g/xCy3DeBPzyPDB8+vw5EB/88cW8XKYrZPW5MSbkU43QTTNbFsxI886PYBSUh4XbA3/mQT9ev/PErVA6ppCchISHhrOLg15+t//E+P61KEhMSJN270dZnbFwuAtxI3L/R1v2P4xlnSlCgRSJ1+046IAlFt3jILZ4FkmLZgZc1LBYLNRoNdTqdGPUlNX08Hmt3d1fb29sxcwEyWfRqoJ6f1oKSYor6bDbTaDSKXSrc2X+9XkcjRemYpFGr72aOvO4Rd8g85RSIIhA91qdoFrhcLjWZTCKRRMBwgsU6k7EBXLRx93zWrdlsqtvtxhaXrAdz8H3lHuwRZRO8D/Ln3gQQYSfOnso/mUw0HA6jsOKZHYwJ4o7pJffZ2NhQp9OJ5wHTRtYTAWK1WsWaf85QqVTSwcFBbOXpxLsoGvFsFx+KWQc+N+/GwFnmDEB+uacbNSLQMG/PuvGSGNaW/WF9eBb7Ph6P4z0RRFxMcTGA8zObzXKlO+57wdjJxKF1J6/zGea+rJNnULiXAvA1KIolfib9egQOL50oZtswx8cqs0pIuFWx2utprUyXf2ISEhISEs4EQtBOY6xKSN/UCWcfZ05QqNfrscRhPB5HT4VmsxlJXbEdoxvTYTrYarUiweB6T/f2CLjX1EvHZAnhQlJ8NlF0IvT8zLjxBCimbLv4gU+D170zFum444SPxWvpPQrLMyaTifr9fiRWdItgPXi/t4GEMHkkl+uLUWXWE98HxI4LFy7E6yFrPFdS9EqArEKOKZ9AAPGWiS4Yebq6dLlJJ+N30cFd/H2P3YRQ0mXp/6wpAo+vv5ddsOesUbvdjiUTnn1BVwHELSL8rDf34T2z2UyTySQKHryH7BgXnSgpWa/XsS1ikcwXI/ruseCv+zwRZHyfec19EHhP8bPoPhP83csJiv4clIXwmefzw3gQK/xz63vC+5iHm0t6JgQlN4wLsYr9ZC89Q8I7PiQk3E54+bv+uyqhfdrDSEhISEi4At71U8/XW94nmS8m3Bo4c4ICxJ5abnwUnHgVU/E9ukv9NWUS5XI5RrQhXpJiiQTkDVJODTcZCv4eJ63cA4IDKarX67EEwU36iKwXvQ+KEVeIr2cYuDkdhBm/BsbAmrlBnbfjY74Qeo8ae+Sc+nH2o+iAD0GczWYKIajT6ajVasVxkTnBz+wFc/Q2md1uV61WK/pmkPUxHA51cHCQM21EhGDv6YpQNOyTFNP+ETHYT8bvHhhOgD1DwNPsfcx+TbFEhWi5Zw24mMHf/Q/lMm7s6CIThqCsnXsbuBCCUODZCJ7dguji6+lZIZ5JIR2WH3EWyFDwz6CfV86qZyRA2tn7TqcT3+OeBV5ShPjEWrt44M90oYTzWBSKyFZhrnyHuPCAqIAo4mUbxRKbhISEhISEhISEhITLcaYEBUk5cjebzWL5QKVSUaPR0ObmZjQThEST8i4dR8AhDvV6PXoveHSUyKin2ZN5ANnzFn+QNQQLSByRV8wQ1+u1er1eNPXjGq8351kQSYi+G/x5FoKkGIklMk9E1clnpVKJBJ41dELmbQCdHJPufRJRhqwVuxZAyMgyWK/XGo1GUdBATMBYknvxGs+p1Wpqt9uxs8d8Po/+DpBM9z1APIGke8YAc+Z1F5h4VrPZzAk2tAiFgBOZ52wVDTMRUprNZjTB5DyxVj4/Uuspi2APSqVSFJ0QR/i9CxPe0cGFJRd6/Iy54EVHDswSPfMDIQohqVjC4OaUrDv34BxyZtw80s8x551yBvf6kI5LY1hDyliyLMuV+PBZdTNLF34YK2tOtgcZFm6AyRn2Div+3cN58NKLhISEhISEhIQnCxtPf6oubA1OexgJCdeMMycoFKOfXoqA2SBZA5C1IrmCoEB0nJh5+rV3YnCCTbQX0oGgUa1WY2YAQgdlENTkl8tl9Xq9GAkmnd/9FngPEXTIkpcdIDZ4NwaPxnsKevE5RG2l47p4MhRIxfeSCUgU64944caQdM2AcLppIxFz1pB94f3empF1gTS7ZwEp/9PpNIo77mfAGnoJCWMpGvcVWxeu1+toPukCUrGGnyg93gmQWTernE6nsWsIQsFgMIj7iD8F72OvWSPItXci8cwCBCbWjjEVCbUbKpIR4IICa0ubRF83xl4ul2NGiQsNnuHi/iHcm/v7GLxMw+fmz0JU8P1yE0xKZ5rNZvwO8EwZ9qEosHgGiI/RsypOEs0QU7wUxL0mTsqASUhISEhISEi4Wfizr7tPb3/+S097GAkJ14zHLSiEEN5H0k/bS8+U9I8lbUn6CkkXj17/1izLfv0a75kjptT+Q8a63a6Wy6X29vZiWjyEGTJYKpVyLegg5tSYE02G6DkJgQhCVhA0qPd3k0WEBU+bdjd8r/3mtWK7QzIF+Nnr1/lDZN1JUVEkYZxeay4pR2ilw2yNVqsl6Zi8zedzHRwc5Or2WUv2gPlSEuKdGQaDQW6+GPrRzaFer8e6dNYYAsea4tiPUEOWA2smKXb58OhyqXTYeYI1nc/nkTwjmrAeTur9NdbMvQ2k4xalk8kkZzIJASVDhWwMskUQKkajUa68BVLsoKyHM0e034m9C0wO90GgVKCYqXEl8Bnz80y2hHtPMOfimfNsAM+mYF1cJEAEcFHARRtJUTRiXzl37nXiZSvFNfXSBMp+PEui6LPha8Oz+S8+Lt6p46zjZnwXJyQkJCRcO9L3cEJCwp2Mxy0oZFn2FkkfLEkhhLKkv5T0C5K+TNJ3Z1n2rx/PfZ1EeFTajfvq9XrsXlCsV1+tVqpUKup2u2q323r00UdjNgGEjZRzJ0G0UoTwIEZAVjCFPJqvxuOxJEUzRFLhEQ8gw5A3iC8RekowIHVu4Oi145JyJoiQH56DYR8Ch2cGQM4cTpoh/+VyOZJ+yBRr4GILZI4xLBYL9fv9KAwUo8HebYL0ckpX3HTSBRayRny8zJfyBfdP4FrOiUegiTq7oSVjhGC6kWExEo9gxHyzLIsZA5wNhAyyNzzTgr33shE6hzC28Xgcx4iXgJegIIj5+nkLSLI+ML70jAjP6ECUIAPFu4lwf65n73kmn0UyA8jeYa1YOz8fvOb7W8xKYKyIB3z2/MzxfO6L2MBnxrMjGEPRsNVFEoQpBDRvyck9XTR7LGHmrOBmfRcn3L746F/4h3rH56ToV0LCjUL6Hk64kbjn9zL9y7/+HH3Tubed9lASEq4JN6rk4RMlvT3Lsr94oiZmbobmxBKyJuVFB97jju2Souu+pEgMPWINafesgMlkEs0CER6cUNZqtUj+qH0fDofq9/txHFLeuwDyhXgAgcqyLEdcPAILifYxkq0A6WQd6vV6JKb9fj/nOUA0FoHAuy1AcBEUms2mVqtVbKXIe7x1HyII6878KU1grLQu9PR3notggRDCnInUc43jpOizewAUSyc8U8PFDTfqc8+AogeBk3M/l15mQWo+c6OzBBFzzoCn4CM+MG4nzT4HP0dOzn0MrC8lBN79pJiNwRozRhdRfA8QeRAUGDPj9e4X+Fz42DxrwufMmffSJP8d9wkhqF6vx+wPX3/G5d4WCAvtdvuyz52LIP53vhs42+5J4cIT8/bXbhHcsO/ihNsXz/m6V2vx2avUjiwh4eYgfQ8nPCG0f/b39UOf/ZH6po9JgkLCrYEbJSh8vqSftJ+/NoTwxZJeJ+kfZFm2f7035B/4nnrsadnukyAdRzEhR5ALIvej0SgazDkgNKvVKta2Qzi4p5vOeT04GQeTySSO02u9ETD4uxsYupGiR0GLmRlOmp0kQ6x4JkSY6HulUolRZxcGvIuDl3kQYafkgUg5RHC9Xl/WztIj+Z5dARkldV/SZXvpggIiCO9nvKDYqlFSzl+hXC5HHwf31SArxffQ/QpKpdJlZJrSDq+nR1ySFNdYOibj7uPBniGKFKPlCBF+XjlLHr13rwNKU7xLCPvqggLnnX1FkHLjR84S44Kce6kCa+FnzNeD9XQvDM+MYFx+Xr0UoyiIeCmCC2wIE07ua7WaxuNxLuOBNfSSCsB4XYDku8NFFt8jvhNuQTFBugnfxQm3Jz7y279Wr/uO7z/tYSQk3I5I38MJCQl3FJ6w41gIoSrpRZJ+9uil75f0LB2mfj0k6d9c4X0vDiG8LoTwOl6DWBBJ9hZ0CAMQSkgzJRDFWnxIFkSMcoCjZ8dxzOdz9ft9DQaDGIF3J37pMKK5ubmpbrerZrMZnwehlZQjwZ4BwRiYD++F3FNu4H+K9d5FV3+I43g8jkIJz4J8kaHhGRmeyTAYDGJHCK85x2eh2Wyq0WhEcaFer6vT6eSixIg+EDiIr69HUaSgowP7yjr4eBBC2u12vF5SLsOCMgjWu9FoqNVqRSIPsWQfibojCPn4IKWcGf4g/LgYQckKf8gc4cxwrY+vmAnD/b1swEUlRCHOBiUinGPWwVthSsfdCyD5Pi8XBMgmcEGE3zFf/vC58gwJP+MOv6f7I0DMXRRyMcJLO9g7xuKfQ84ba0I2h3dM4exhsmnfN/FzgZiHhwVdYBArXdS7lbo83Ijv4oVmT8ZQE84Azr/89ac9hISE2w7pezghIeFOxI3IUHihpD/IsuwRSeK/khRC+AFJv3rSm7Ise5mklx1dF9lUMVrokXD+EFkk6u8tFSEXtAqEADoh95RsT/uHuHr2A+TCW1VCdnhPt9uN3ROIFJPWT2TYswe8E8D58+fVaDTinAaDQY6QFeu/PYJKpBZ/Bkg6xnIQJNYN8gR5H41GGo1GufRyyh9w2UeEwJwSvwBKG4pu/NPpNM4fcQQzRUlqtVqx/IJsAPYZErhardRsNtVut6NAdHBwEIWPopgjKfo9IHQwl6PzFQko60wmg5dBsEeeIo/vhnRcOsN9WFeyIzxC7z4Y3rXDyx3cpNPLOFxEYk0Gg0Euqs5ZKnymclk1XprBuYa8sz7uGeGlFogZlBYg+rCn6/U6d7+i0MB8KHHx9eZ81+v1ON+i/wblD4Bxlsvl2J7V9xJxwjM33CPC15bvADKMWC+yI9g/L6G6RfCEv4u7Yefsm0YkJCQknF2k7+GEhIQ7DjdCUPgCWWpXCOHeLMseOvrxMyW98Xpu5sSE6KhHTTGz448TbYgFJGcymUQiyz2Lz+CexSixRyc9Fd1r9DEYbDabkbx5bT8Geh61hUQSEYWwusjh0WRvYceY3XQR3weuLfoDOGEkwj4ej2NUFuIHoeO5HqVGSDlp/ViPIjH1/aPWnXtDMD1N3ok79zlpXk4K/VoXiyTlzA/JIIAwsq9kIHB/Ivl0ivBoP/uCaSTE2O+PbwFr4/vAvSjVQOyaTqc50cgFNe8swTmA5DJXxA2PznP+SqVSztiQMXlHCl8332/uxf7SNWM6nebm7OUTxfGTKYAww2sIN2586CKAC0L+OXTPAwQNno9oyD19PGTNeGaGf+7dy6Fo2uolK7cAbuh3cUJCQkLCdSN9DyckJNxxeEKCQgihKemTJL3EXv6uEMIHS8okvavwu6vCWzcS3azVarnOAI6NjQ21Wq1I8MkIoPsAholOht24EYLldeoQDtKji1FKfobgtdttbWxsxGi7G9Jx3Ww2U7/fz7nbe8cByA3u+k7wPC3euzhwD6LyEEhPK5eUSy9nnkRtIXvT6VT9fj+2htzc3IxRe8/yqNVqOdM/nuFjgyCyZ2QjMO5GoxEzJcbjcSxt8BIXyJ8T3mq1qlarpclkEp/JPF1U4vw48YaYMj7WgGd6NosLK6wftfZ4UbB3vke+rpBRj/x7GYCPi9/5s+v1ukIIGg6HMROArBOINoINogFk2stc2CfPWPBzXPQdYG6+fwg4nLPlcpkj7v659DKG+Xwe5+HtMP1ziCjjogHvP0nA8mfxPjcLZb1dJERg9LPqJpP+OZIUhQXO+a2Am/FdnJCQkJBw7UjfwwkJCXcqnpCgkGXZWNK5wmtf9ETu6SZt1F/XajXV6/VcNwFaJUKKW61WTH8ul8sxCk8ks1qtRrLt5JAUekgfZQu8p1arReNFJ/VFMQByTV02LS0hgYvFQpcuXYrRb4/EMsZaraZutxvJmKRIcoj0ezS7Vqup0+lEl3sIZJZlGo/HcQ7uG+AZHZQmrFarnNFklmVqNBpqt9vq9Xpar9caj8eq1+vRByKEEEsZmAtEvlqtRk+DEIJ2d3dj2US73Va9XtdisdBwOMzdDyLLvgyHw9z6bG1tKcsyHRwcRL8FT5VnLzudThQH1uu1ms1mTjzyjAhP0S92djg6zzlhiD1xUcrNICGjnr7vHhjeVQDRxPcOwQChgxITMick5XwiJMXz7L4QXlZRzCbwkiEX8KTLzRc924GsEbI3vLwA4l00PaVMBdJ+UsSfz3nx94wToY5yGa5hTREQvJsJwiJzcaNW/1x49k3R74TvjFsBN+O7OCEhISHh2pG+hxNuJFbLshZZ6saTcGvgRnV5uGGAfHids5sqQoQgKBBsT4fmPpJiFBISJB2TdMiJd4sg4k103NOiJUWfAFzgMTX01H+IJUQJskyquZvfIY6QjcFr/X4/VxbgEWEIFF4HdAKg1IAofKVSiYIDogkp3Z4pAVlFMHAS6T4WZIFAoMk8oBYeEahIoj3rwLssQEo9PZ85eG0+ogDPpMWkE2PPtmBOCE7egpM99LIJ9+dgPJQ1cLbcF0DKe1tAStmD4nMh3k7ieW6xTETKm4ae1EnCjQqlY7NKFyIg0Z6BcFKpinTcsQNi7VkCHvH3EqSTDE4948KzC7jWszW8zMIzQfyz5uvj42Vt/bncqyhM+N7xHC87KWY9IRaxH7dYyUNCQkJCQkLCbYBn/e0/1P/x2y/Sbzzv1057KAkJV8WZEhSKHgaScsaC/o99d7eXlCNu3MtTvyEnTni8lt7HwL29VSBtFZ3IEu1er9ex24ITQydsPMOJT3FcXpvu9ehOoHyskMXlcqnhcBjr8cmsQGzodruqVCrRb4EsCQz3KGUg2g759NR/J6ju3I/Iwzj4HcKCiwjue8A6c283VfSyBOaCsEPWgq+rrzcZEqTMsx7e5tCJM5kF3h7T/ST8rDA+F4sw8vR7eqkDZwzRarVaaTQaxXM1m81yXSe8dIK1pxsIXTuKIo2vq2efFEtlPK0foow442KT+2Z4+QH7ANFGQOIZ7AVj4/7uv1HsKMFc+N1oNIoZMv45o5zF21x6dkez2Yznms+ozwlBkTXyPWa9XBwBxYyVhITbCT/aP68v7l467WEkJCQkJCQk3MI4U4KCdPwPeMgXRJ7078FgoMFgoNFopMFgoEajEYkD9f2j0SgShnq9rul0qtFopEqlolarlesSMB6PT0wBJ+IL6R6NRvH6RqMRyRkp6Z5mTbtFJ6WUR0D4Wq1WJHqTyUSNRiOSLogSxA5hhPaQTqAhbPv7+1osFup2u1FMIKrcbDYjCSTNm/R5HPwh3x5Vd3O8Wq2m8XgsSbETg3c/8Oj/YrGIxNBLKKTDLg+Mbzwex5IHSlboEkG3hEajEa9ZrVZqtVpRzECUkPJlCIyZtfaMDNYSQsofSTHFHQLPOeFZPI99Q/TgfggDdA5hDxkLWQyQXc6Zt5pkPIzPsxOKWQyencPYTpofZLl4dlx08IyfYlkQ1yMo+GfVSwlchOI9J5U5eBaRj9EzIhCnnOh7Vw5/tpeueJaEz83nzjlgPd1jg+8FL/lISLgdkS3m+qmP+Sv64j9+xWkPJSEhISEhIeEWxpkSFDzd3GuzIUsIA5Q/QIybzabq9bqq1WqurAGSB5mezWba3NzMmbFJir+TjssJnEhA/iCQHkXnvXgebGxsqNPpRA8HUC4ftruj/aRHjfEncP8DSbGUQDquk/cMCv4OCXazOU/Zl5QTDMrl45aA6/U6OvizHh7dd0GD1HrmD0l2HwM8JJgjxI3n4vrv3TGoaef9HsVHQCBC3mg01Gg0NBgMcuTaiThE2LsUcLYQQ9hTnkfmhWe/sF7si0e3Wauir0Uxq8R9DYptH4sdQJy8e+aBn1H2gjPM/hQJvRNkP8esCR1QvPyHa/gsFMm2l+jwDN7r2TvFcTFf1sDPNKIAmR1evsBaeAaGZ10Asli83MYzINyIUlL0WfH14XNTzGDy5yQkJCQkJCQkPFl4x2ueqj995ljvW22e9lASEh4TZ0pQkI5ToaV8FBbSV2yDV6lUVK/X1Wg0YpeHKwEiCDn16DadA9xUsEiKvTzB69CLpMxFEU/LdnIpKaa3k3rPvTCFJIXbDeZ4H2QYMk10GXJOiYMTWLIwWDPGPxqN4nVutuf3QnhAVPFWlxC8crkczRZ5Fs+BXLPG3W43ErhGo5ErV6DEZD6fq91uK4RDc8t6va6dnZ0o1hQzWFg/z7RgvcjOYAxklXAm3NcCcu+lHZR1sC78DCF2Asr5wkiU8eFj4f4R7lfBeZjNZjE6774ALmy4WOalNXxO+Nm9MDwbw6+n3MWFMtaN88x5R/ygCwLwMgz/fPq+uJ+DmzciLLgBqZd2FO/l3w1e0uClC+wle+uiC98n3KfYOcI/88lDISEhISEhIeE08IxvfpV+4gUfoX969xtOeygJCY+JMycoQHIgrW4S6CnfknIEz0lRMU3ZI78QCtLbIcjD4TCSCXed53rIFgQDsk3NNgTUiainmxMBxaEfkz6MGgeDQZyrR3KJ+BOxLqZ/8zPP9nFAUCeTSSTqECzS1711Iu/xCDz7MZlM1O/3I7nnOZDWYkQ6hMNWmV7Tj3DD2rVarUgKnVRSSz+fz7W1tRVNKzGh3NzcjKaVZFdgWsmzXMBgD9yLYW9v78R19Yi0ZwhwdjiLXg5SvJafPbruWROcY+8U4v4MCEqeNcG1/CFjxT8HPEc6TvdnfREsXNCAwCMwefaNn8VitgfzYmxeplTsiuAZCf4a5UmIY56ZUBRnKAdyg1VJ0RDURQXPcvDn8d3gZRUIQqybC33817N8EhISEhISEhISEhLyOFOCAkRnOp1qMBioVqvFNoMQMKKkHl2GLNZqtRjx98go5BefAyL/TsLxSvD6bMQJj1pCVEjb55kbGxvRt8Cj3TxfUiRFTkilPHGhnR3kiEi9kzpIm0d7iX47kWItieaTBQEhlfJ+DYx3NBrlIvDz+Vzj8Th6LSBCIOJ4bb134SDjoWiUR+mCO+2ThcG+QW4Hg0HOlwLy22q1NJ/P4x9KKSjLYC8QRFqtljqdTi7a3+/3c/tPNoL7JJCxwNjJNACeIQCRRahBGPAaf/aM7A1/3QUF9qRer+c6hDhYWxcUimeKM+4k3L0gIPGMqVia4NkVkqLHhT+Hufv7vHMHf3dBZmNjI/pJcL7pdCIpilt8dj1DgecjjHkp0HK5jJ8xF8b47HhJjIs9vmZ8JjxbIyEhISEhISHhycYrv+uj9dnf+Tp98JH3WULCWcSZEhSk4zZ5pLKXSqWY9t7v93Oky1O4PZvBiZe3JvQ2jNJxujPkAiFhNptFkukk3evInehw31arFQkYBNtb7PFML+Mgvb5I5CA2k8lE4/E41+oO8YD3klZP2QbjpoxhMBhcNp7RaBQJOGuUZZl6vZ4efvhh3XvvvZIOCeRwONRwOIykzevevdWkryvkbLFYxOgwc2o2m7kIuxNw1pN9fuihhyLR3NraymU3+Flxv4LJZBJFDvab8gMIvAseLo54BBvDRC/rcHM/B6+TtcF8XBwongHu7UT2SiUHnDs/O4zV15x7ODHmecXPDvcr+kyQHeF+Cf658vPF7zybwUUBziiChIsrzBERqtFo5MSaoojnGT9+3rzsiOwKrue/XtbiXUB4v38ePXuhKOIkJCQkJCQkJDxZ6P6nV+td33FOH1wbXv3ihIRTwpkTFBykshPJHQ6HGo/HOcNDCJun+UNiPBW/VqvloueQn0ajoW63q3a7reFwGFswEl32tHUnI0VfAEg5dfqUVBARZj6QTowciabTfYIsASL20+k0CgWkiXttPffjdZ5JecFwOIylB3SAcK+EyWQSU/83NjbU6/W0u7urXq+nSqWi0Wik8XgcMy0gcZR1OKmFxDppL0Z5uYa9gHS6ez9zIFOFv0P+nfy6uSRz6Ha7OVNKzoILRp4h4EaWktRsNnNZCpwXf47X1iPweLmNCwoIRR4V5zUyY7ietHzONRF3xAcn9Z7C75knjNFT9/kvGQGIK35+/XOUZVmu5SPZDjzfS3+8BSr74mUknkHB74ulGZ7p4PdnXYu+JMX3Qf6LGRXFrAvG4CIa72cPfG+LmR8JCQkJCQkJCU8mXvoFn6EP/c8v1f0b7dMeSkLCiThz/1ou1lEjKEAMMK2bTqcqlUqR9BApl44jupgEekq8lwgQ7a9UKup0OjF1ejgcaj6fR2JK2jatFtfrtabTaYyoV6vVKHBAZqrVaqzvhwBBuEgFx8OhXC6r2WyqVqvFrg+QU8icG0o6oXYU/Se8g4Gn42NIKOkyB/z1eh1bSVLq4CnpjIW0cjoyeESbNXA/Be9k4Fkg7JGTRG+PCWmkZSgiA3vSarUkKf6ObANKRiDKCDTsXaVSUbfbjevSaDRii1HveECWAoSefWC/yQ4hQu9jLv4BHvX2NH7m79kxiCheWuF+FZ6hIB0LAwgiiDcuSLBGrD+R+ZNKVyDzXgLj69poNNTpdLReH5t2sg58VotZHZ75w2eV17kva+JeIS6cMTf2iDVAEOFz7Z1J3M/BvSA8oySZMCYkJCQkJCScJWSve6NmqQIz4QzjTAkKHvWHqLRaLdVqtSgiEF2G3FDbD7Isy7XUI1oPAfaUazeacw8C9z0gHd9Jo5PfopmfE0ev9/baem9/ybO97SVRYTIoIGoQI8i9lwfgIcH9PfJ/kos99eueko44kmWZ+v1+FGzIJACsH8IIPg8IGVtbWzFKTZYF90AcGo1Gca0Yu6excx787wgciEiecl8sSShmRyDQ8FqlUlGj0YikmpIS72DAeeCcsC/F9fCOFghQ7sPBGLknIo6bhSIuuRDDWIrrwjljbi5g8DsnxpxXSfGcNRqNXAtJj/CTIeNlAnh34EMyn89jC08MHdknJ/yMxzMW/Cz6mUcM41rIv5slFudVLEtwXwSyd8huQWTx64rjTZ4JCQkJCQkJCWcNf+/5n6qfe/NvqVmqXv3ihIQnGWdKUJCOSQZRVIgeBEfSZeSkSALcTI5OAJALDAGr1WrOAI97Ex0PIajZbEZS02q11Gw2Yx06kU9JsXODR+SLQoP/njIGiHaz2VS3240eBl46QekFkWY3eJQUSSfeAoy/Wq2q3W6fWPfP2Bg/0dxSqRS9Bsi+cNHEa/rdTwFRoyhekDbv46Udp5PcxWIRyzkQbxqNRi4tfTQaaXd3N44L0u/ZDZg3djqdKNp4/TxjyrIsZ/ZJ1N5JNWuLtwKvQ9xdcEJA6HQ6MYvFywbcUNQzU7w8wEURFw84b2406uJV0eeguEdO5l3ccsLu++UeAkT7XRhxzxL20QUUF5soVeEePNtLXLiXP8tLFIpnz+foYhpjw7PDSyI4m5z3YutZP+Osg69jQsLtitXFi3rhCz5fv/hffky1UDnt4SQkJCQkXAGrfl/DbKGmkqCQcPZwZgSFEIK2t7f1AR/wAdre3r6MNGIOuFwuYyTYXfiHw6EqlUokp06E8BCo1WrRr6BWq8XIupNU7r+5uamdnZ1c+QGRffcBgKxBfhA/ihFPxoO5IaUElGJ49LxUKkUhBb+Eoumkp8hLx+RIUu6ZEDjpOIXff4+/BNF6MgVms5kajYZarVb0lWA9eT6ZAqyjdOg/4I76XMM83XwQYoeIhDiAGOJr7N0F2u32ZSUd7XY7RswhlG6ISVq9Z4Wwvr52rJ+LV26KSLkMa+DiFYaE7nXgKfw8z5/j7SB9/wHZN4hbLqIQeV+v15d5IvBsSnN4nRINFyg4I5wTxDv2zDNfAOuHcSjzKJ5BPgdeRlIsbfDsH8/o4H7sdXGtOBvFEiDPcnDRyj87XMuZRpjgrHm5SULC7Yz1n/yZ/sYXvkQv/5HvTfW5CQkJCWcYX/S0j9Vvvvf1pz2MhITLcKb+tdxoNHTPPfeo2+1qMpnkIsKUPGRZFjMXptNpjE6Ox+NoxFatViNBguBAJBEUJMUOCpBeT8tvNBqR1M5ms0hwILlEX4sRYlAsdTgpbZvuBQgV3hWAe7iZHETWn4XQwN/b7cN/ECKu4Hvg9e/MUVL8OyKN15lDUhFZGB9k1rsIQDy3t7e1tbWljY2NmErP2MiC8NdZE09Fh5h7xBqSx34Dr8NH0GHuiE1c53XzXvrCHCGolDq42SCkuF6vazabxU4GEFZ8MygR8PHxx6P/0jGZ9WwXSK0LPwhq/h4/f6wbAgBnx0sgvHzD5+Rj9E4JXkbBmrng4eKGP8sFBc9a8BaXnEcn8ggxknJGmI1GI55ZSD5jYN8RNngemUDuP+Jnwf0leJ+XthQzNxISbneU/9sf6PO/4R/oP/zr702tyRISEhLOMH5x1NZntFLHh4Szhav+yzmE8EMhhEdDCG+013ZCCK8IIbzt6L/b9rtvCSH8eQjhLSGET7neAUEm6/V6bPU4GAy0u7sbI6EeYZUOCdB4PNZoNMqRIsgMmQ6QENLBvX2eR+0RLJwculmddJxeDbH2tGnKACCoXltPenilUlGr1YpdCvr9vg4ODmI2BaaSkCy8JXDaJ1PCsxCIvPraeDtFSDICAuTV9k5SXgyBYFFScVKpiYsArVZLjUYjN14XLfx9eEIUjSulQwGi1WrF+0nH0Xq8G+g80O12tb29rfPnz6vdbsex1Gq1eI4Yo5fRuHgCWZWU67qxWCw0Go2i54V3UQCcsWJZBevGOniXASflzBdCWxwXZ5VSGxfBWAdfM7I1yKpgbfHqkI67UPjZ5ZkeyecafBOKAg2eCm6cyFnzMgvm7ZkbjN0zVlwwYOyslZfKFEs5EA74/PmZ8nPq42FOLmDwHJ/jWcGT/V2ccGeh9fO/ry986Tec9jASEs400vdwwqlivdLLPux/O+1RJCRchmsJxb1c0gsKr32zpFdmWfYcSa88+lkhhPeT9PmS3v/oPd8XQrimImT+4U6kmwgwBMqJ09Gz4vuI2DpJ4RrMBrk3Uef5fB7bQ0IkNjY2YrcFyDPvxRBwNBpFc7rRaKSDg4NomgggfqTvMxfIKOQWgrtcLtXv99Xr9SJpZl7cB6IJKYXcMT7G5BFwJ6tE0PFmOKlDBETNfQk8a4KILx0gWPdilN7Xu9PpqNPp5GrumddoNNJwOIx+Em74Vy6XtbW1pc3NzZhRQmYE4st4PM61/mw2m2o2m3GPIZy+v2QweNkIYgJzRowol8uazWYaDoc6ODhQv9+PpSpOWBELFotFNAmlPKLVamlraysKHe6DAAFvNBpqNptR5IGQF8UhF74824FIPXvrWQhOlH3P+R1Cm6+Tnx9IPWeaz5VnLAAXEYj+8143qYTA+2e+KGZ4poaXnxRLJ/xMufjg2QqU9Lj5p5dWeKmIeyecwUyFl+tJ+C5OuHPR/Yu1fvDgntMeRkLCWcbLlb6HE04R2WKpz33HJ572MBIScrhqyUOWZb8bQnh64eVPl/RxR3//EUm/I+mbjl7/qSzLZpLeGUL4c0kfLulV1zIYIuwQ8IODg9iScDQaxd9DeLwFISnh1HpDNDxDgfu6JwAGhF7T7xFmngGRHI/HajQakYQieFBmgRDgxntSvhwCMubRWo+QO1GHZHtUm9p5xk6kmpIOz6bAjwHDRUiyt72UjtPAeR/knXmvVoftIfmZFHJKSSB7RW+ERqORM79knbg3rzWbzUggV6tVzIjwun3GhnBSKpVi9oJnhzjBZF7uBcDz/dxh3ikpGkS6Z4afJ7whnMyTJcP85/O5SqXDrhnebtTXDC8HzkPxzHBu/Ox41kjxbLnw4IJD8Y9nALjxoZcAuFcB55BuKew1ZSX1ej13D2856cJGcayQeC8HoWyJEgifh2dtUJ6EX0IxY8GzEuhswfspuSlmAQEEIvbprODJ/C5OuDPR+alX62XVz9TqW35JL9588LSHk5Bw5pC+hxNOG+vRSMMvvVv63dMeSULCMR6vh8KFLMsekqQsyx4KIdx99PpTJL3arnvv0WvXBK+LpkZ8MBjE1Goiy06CiaA7yaVm2lOcPUILIYG0Qmy8VMHb4Hk0frVaxVKFEEKMrvM7iCGZBZAWiAvj8SwKWi5CkvF2YCzuNwDpBqThk2lBmjsE2EsWIMqz2SyWj9CmEPIICSQy3+/3NZ1O414gbvAefy5ijke9XfTxMU8mkygW1Wo1jUajGDluNptxP5ifl5+QhRJCyAka/I4sAU9l96g7pSp+Tzf5g9R6mYxH3iGwnCsXA5xQexkDe1csdeBZ7D9dPbz7g5Ny5sO+cZb4w/g4I0T/OResm4+JuXk5hwtenA3EEdaN+VG24z4gCDkufPgZdqGEfccjgzXzM+MZB545wTNYT/wWeCZCEt8NntlAtop7M3Bmua9nRZ1R3JTv4oQ7F9XBWg/NtyQlQSEh4RqRvocTnlzsH+hZv/1levsn/PBpjyQhQdKNN2UMJ7x2YogvhPBiSS+2n3P14xAcSJ6kHFkm4l6skaa+HmJBNJp0d0gVRKgoKCAGEJFdLpeRoM5mM9VqNZ07dy4aNiIoeKlFv9/XYDDIpax7tHy9Xms+n0eBRDou+Viv17GkwKP1LnA42YFA46dA1JuoL4IG5A/hA0JFajnkGWGGiLvPjTnwXumYCG9sbGg8HufS173rAeOHGHq5BntEC0bWfzQaxbVgvxEy+EN7SNaPUoii4aCXawyHw9hhg3PnGRre0tBbELrow1wAc4KUO4nndfaSM8j7mUuRhPvvXXRibYuEH/8N5iApGhZCmBEwXECSlBMC/DPp5BqPDF7jzPk4ENJc+PB1coGNsgL/DLv4VsxKYI19zYplCUVfEa5F7PLSiGLZD89jPEWvjFsMj+u7uK7mzRxTwi2ABz826NvuevNpDyMh4XZA+h5OuClY7e7pmS99qvQJpz2ShIRDPF5B4ZEQwr1HSuy9kh49ev29kh6w6+7XFcIcWZa9TNLLJCmEkEn5soAiwYMAIA4QzaR0wTsXYM6YZYftGQ8ODrS9vZ3LWCBy6bXSxVKHxWKhyWQS/8znc9XrdbXb7RxR86iupBjRx1OAEgPGybNc+PCoPwSbyDz3hZRD2rkv2QyVSiWWYdBxwMkapQ9eT06WhWc9MD7IF3uD0ONkz+eB8ICoQ/06BJQ/RZILsWXO9Xo97is+F0STGReR9slkon6/H30Ler1efG6z2cx5JIzHYw2Hw+i94Gn1nB+yU0ipr1arcX14jfPnvgPFlH7G64SdrBjOgPs2sC54brAfjI+MHfb/JN8BL/dxQYq9QGCjVMBLGxCnivf3DBfGxvtZCz8vnFFQ9GfA38KzLooCE2KKiy7+s5fYsMZO/F0g4hnz+TwnPLngIB2brno2xRn1USjihn4Xd8PO2anxSEhISLg1kL6HE550VP703XrOj32V3vZF33/aQ0lIuCZTxpPwy5K+5OjvXyLpl+z1zw8h1EIIz5D0HEmvuZYbQnYgT+7Y7lFryDpZBqRH48zvnROm02kkpE44MEMsmvfFRTmKhkvHkdv5fB5JX7E9X7vdjmn7+/v7Gg6HMVWf6PJoNIoiSLPZzHkheLq1mziyFogcxXp6rxWXjl3rGbOTTq/3bzab6na70fAQ4cE7XrhQwLzp3uDrxfi9gwVZE/1+X/1+P0cEfbyerYFBI/t7cHAQTSrdQM87DrDGvB/TRIi7Z0BAyCeTSdwH2nYiLmHIyVp5K0jOjf/s5JRyAIwVKUnAuHM4HOZEJwi2k+l2u62dnZ3LBBjm6CRZOhYtEIo8kwRhyrsYIFSRfcNni+wHLxHxzhQnkW3uf9IfL0Hx8gg/22RxuCjiZRnFMo5iKQbeCPhT8Fox68C9TlgDXvczxGveecQ/P2cYN/y7OCEhISHhupC+hxOedKx29/Sc73qLnv2TX3naQ0lIuHqGQgjhJ3VoNnM+hPBeSd8m6V9I+pkQwt+R9G5JnyNJWZa9KYTwM5LeLGkp6WuyLFudeOMCKpWKnvGMZ1wWccQsjwjsZDKJQoKbukFY3KxtMploMBhotVpFcujEI4QQyet0OlWr1dL999+ve++9V51OJxcphhRBwGezmQaDgUqlks6fP6/NzU3t7u7GFHwyKSDJo9FI3W4318KRqDERWY+Sn+TU7yngR3sTyTBrReSd1oHScZeHRqMRsxeq1aparZYWi4UGg0GujhyzR++AISmKMKTXE+Uu1uUzNk/Dh/Tyuqefu3kmJHg8HueEFNaflHongZ4l4s9nDphPNhqNOEa6KvD++Xyufr8fSz7cy8PJJaUTGDz6PnhKvnTcGtGzJLzMQFKcO4INhNhJtK+PZ4Z4No1H+nkuGR/Mh8+QjxES7WMvlUq50gbPFOJnL+Ph2cUsF57J+vhZcmGkWFbgJSFkVHhWA/NB9ON7wM+d+4FIx74bXO8+DO4nUTxDZwlP1ndxQkJCQsLJSN/DCWcJq909td595gMfCXcArqXLwxdc4Vcn9izJsuw7JX3n9Q6kXq/rgQceiCQBEuPEAxILSYEgQKIbjUYkUnSIGA6HkhS9Erifu/UTvaxUKjFyT9aBRzUhRhgW7u7uKoSg7e3tmI5fTCMvl8s5szyIYaVSiS0OvSsE2RP4NjjRc6LrYgNp6JBkuiYQ3a5Wq+p0OjF9v16v69y5c+p2u9rb28tFdYlYE8XmuYgSkLvJZKJer6fpdKpKpRKjxZgzFrMYEBMQdTwVX1JOEJjP59rf39dsNlO73c61uiTjY7lcXtaOk/cX5zCfz9XtdnX+/PnLIuKs8WAwUK/XkyS12+1IOiGwrDOksxitdx8PSTli76IJa+3ZCawpRoSeleHdOxASnMT7+lHy4On8EG+EKvbD/Rm4lxNwFx3wCnFRxjMsXEjgbPvPLkIwTvdPYPxO6L38BcHM/U/wCfEzWjSvdL8L1szLNHwd+HxiVOodYc4Knqzv4oSEhISEk5G+hxPOGu596ev1rKd/pd7+eS897aEk3MG40aaMjxu1Wi2SR/cakBTNAiH/EG+PVLpb/3w+12AwiOUOjUZDq9VK/X5frVYrEkTu6a78pL63Wq3LnPD5OyUYkFqi/xAazBA9Guuu/SEENRqNSPROajeISOJmf81mM4oF6/Vxm8JSqRTbRULqNzY2tL+/H8s3EC4g1/fcc4/q9boGg4Ek5SLXxZR76VjMYD6IO8U6es/+IHLuJQ8u5Lj/AEIR2SW9Xi8SSu7PGmVZljPvpBuAE8rhcJiL5EuKmRnsB+Mjg8HFK6+f904JCAM+VspSXDxg3pwtN9Pkd3gzcLaYm5eFIBqwpwgqxQ4VxYg8xplehsJ/yVrwbB2IuhPwoocJgod3UXFjxqJ44FlEXt7ifhTABRIXHby1I+Nh7pxZz8Dw0hB/Ls9jXF5ygcCFeEA2TXEvEhJudzz4f32U/uxz/72k8lWvTUhISEg4fWSzmZ79f/6+nrnz5XrHJ/3QaQ8n4Q7FmREU8EFoNBqxo4I7xntbOTCdTmNGA+TN3dy5LwTZI+LFWm2IZL1eV6vVUrPZzKXVb2xsqN1uq16v5zweIPH4CyAEIDRQd+9u9SEEdTqdSIoARLter6vRaMTUeghlt9uN4on7JdRqtZiizpg8JR1iRCnG9vZ2jPx6ZgVEj3IRuhJATr3+HZNJPAekYxJKxgKvFbMPSJ13p/9GoxE7ELhhI/vFXBCApONUdzeh5HmScpFtz/5wY0XEBE+nZ79Go1GuLSWiANe4CONp/8W0eUisG2X6mhTNBhmrZz3g0UAkHfECkk87T4A44GfAx8PfvSTAS0t8HblfsQSgmJXhP7tA45kMnCvKPDA/9SwgPCl8Hv5Mvhfcg4Hx0raUTA7GfZInwknzKYosSVBIuFMQNja0qkuVkMSEhISEhFsKWabnfMkf6IN+8Qv0ug/78fQ9nvCk40wJCpVKJbYLHA6HMYLLP+whEMXWcYgFdDtwN3yIjadTr9eHrRlHo1EUGZwwSnl3esg0kX7uQ7YApMXb4WHM51FuTPtcBCHLQDpO1S+a/TF3N6H0iC3XkdGAdwFZAJPJJIoQi8VC7XZbm5ubce09jR7/Ao+oF432eC7ZHG4i6an00rG4UUxt99INMjy8C4HvAdkYGBz6PShL4f6dTid2sdjY2IgReYQB99FweGYCZB4SDHH3khUXuThjRMfZb0gxGQGIN2Q1kJ1wUmaBp+xzjorklrNLiQlAGGCNmJd/Zvidd6VgfszL3+MdH/wa90bwrh2MC9GK37GmRR+Dok8C83WxwUuHPHOGNfQME9ahiKJJqWcR+RkvCmEJCbc79r/gw/Tmr/q+0x5GQkJCQsLjxD2f8af65Fd8ln7j/X5OtVC5+hsSEm4QzoygALyeG2LhKdlFEkBGwmg0iiaL4/FY0nHaOv4KrVYr55vQ6/W0Xq9Vr9dzKd1OykMIMQOALATIDJ0EXGCglMHrt70MQDqunyetm3lLh0SG8ZPl4JFe5g0ZJXLNvHgeRGwymejixYvRS4IskFarFedXdPun7ATiBgn2aD01+XTUgGCPx+NYWkG2AmsEeWSMEMhWq6Xt7e34PkoYqtVqFJQmk0nsloAo46TeMwVYZ+YzmUxUqVTizwhEvM+NF6Vj0z7mz1woVfEzyhz9uZ7l4B1BuJ/7bHg5DOBcO5k+6XPi8/azxn9duPF0fzfE5F7FkiGyT4pdPcB0Oo1lKpD/otiAUOJGk2SXsBYuVpGx4D4d3obSPwM+R18PwD3csNE/P7y/2BWiuMYpQyEhISEhISHhVkH1k/5CL3rlZ+qXn/cLSVRIeNJwZgQFjwpLxwaIRUBmJeVqyVerVcxscNLCvYngIxQMBgPN5/NImtwkkFZ8vV4vdnYo1lRTLy4pdkogo8JFgMViEUmLm8GRScG1RNIlaTKZRELabDa1Wq1i7bpnW/BehBSe4e76eEdA/u+66y5tbW1FXwkn35BEoumsMyTT/Sv4Xa1WiwSUjAhS5n3dIe3sL3XqPAeDREo5PLovHZY17O/vazQaqdPpSFIsIeAahBpIKGPGbHE0GkUBhLPg2R3tdjt3H89wgXQ3m804T67lDLJnLij4WXETQSfoXk7C+TipGwPrzFkpZo6wnjzXy3IotfAyBxc2vPQHIQBhrZgZw7l2c0VKQciE4X6cUfcoOKlEhkwf1qFosuhrVRQRPGuE193DwTNAeC7vcZGHNSx2s0hISEhISEhIuGXwie/VJ/zG5+l3n/9zKofUBSLh5uPMCArb29s5ItvtdmPbRy8DkPLdDiBvRJJp1wiRkI6Jlqdwe2q6pJiCDvGhPIDn8rN7JXAf2i7izo8jP/X+Hil2Yzr8B9zLAZLV6XQiyfKor3QcqeV1xASIsTv7DwaDuIaNRkMXLlzQhQsX1G63cyKIE0U3toNsQdTd7A+TQ4/We/q917e7WSFrjhBAXTxGmuv1WltbW1F4Wa/X6vf70UDSRQM3BmQ9JpNJzEKZzWY6ODiQJO3v76tcLmtnZyd2wYBgIyJBWNkP9nS5XKrb7ercuXOxMwZCAV0oioIBa+Xzz7Is+jiw5uwb7y96HrDnXpriZNdLRJyIn3TuiyaNjNPPPyKJiw285p0iXNxi/TkLnEme6yUlnF3P7mEcXnrkQgJ7XPSgOMlckTPmYofDP0f8QfABxbVNSEhISEhISLhV0H7BO/T+P/Ml+rP//cdOeygJdwDOhKBQKpX07Gc/OxKbLMuiOaKniwOIxcbGhur1emzzhwDgZm1uOkeUvhhV9UhoqVTSbDaLNfu8PplMcuMrptW7SOHPhXQyZogw5M9LDbz9HlkRxfZ1lDY4mYf4eSRZUvR8oGa90WhoZ2dHjUZDkmKLQr+H+yQQDYfgIWo4WXUfB89oYE3JgnDRwVv+MZ/5fB5NIyGpZH7g67BarVSv1yPhZ6yUw7DPlAuMx+PYRrRUKqnX68VuIozbs04ajYba7XYkxJhjQm7xi/BsFTfhhKAXWy665wOvufEgpS3ujeGCRLVajWvpAo9nIPiZdzLsBoucM/cHoJzICT/nyP0RfGwezS96jvAMBIBiWQZz9s+I74Pvh4sU7gtxkreBix++t6xH0cfDx+5ij2dt+FomJNzu2P6zoV70thfol5/zG6c9lISEhISEG4Cnfe4b9IyXvljvfNHLTnsoCbc5zoSgIB3+I384HEZiCEGFwHlkkkgqpBoDRMQEd3MvGuZxL4+meqZDrVaLJn7T6TSSC1L4nVSR5u9kjmd65NVLBCDPCAaQeiLGXo/OWpBOj3CB2V3RnA6yBpnb2trScDjUdDqNPhCdTkelUilnfOn1+E5WZ7PZZWSV30Egi4KCp+R7dNvBPfGrYA3dDHC5XMbsCrJDEFfYf8bqZpDsEWIC4sJ0Oo2dKYB7R+AZ0Gg04nUYabp4wH14FlkNXOveDIg1zIl5M1YnrowHfwM3+eRa/kuGBnPx7Beu8RIF94lwMcCNDyXFebi5KOD53qHD95M9m81muQwBL1tyck5pBWfZ14A5sgbeicNJv5dvuI+HP8uNNIvtS4tlK0WzV36XkHAnIHvtGzT95g/Sp/3zF+pXn/tfTns4CQkJCQk3AO/ztX+g5/S+Sm/74u8/7aEk3MY4E4JClmXq9Xra2dmJ7Q9pz0h7Q4gPafCQgGq1qna7HaP1bsSIWEAk3UkZ5MMJeaPRiLX8EA+IBiQdw0NS6lerlbrdrjY2NuLPjBNSRBkHYgKCAuII3gReA++GcxAiL8NwbwZq+2u1WiRN7XZb3W5Xg8FA1WpV9Xpdd999t7a3tzWfz3VwcKCHH35Y/X7/svacDvdBmEwmkdixLqvVKkboKfOAVBIV91R9j6Kz/swfMo24QMmBewV4bT/76OZ5kH6yS3yvPcOCsojxeKzJZBKzYnx+nB2eD2H2DBHfL89e4N6cAzIZil0sfC24N+fR/8vZ824JJ5UOFImwZ56QIeDE2b0uIPbsE8/0EhMEGyfglEe40OdlCJztk0oNXBzjZxc+8EJwTxXPWvCSkOJ3iqTcdS4mIZ4UxYVid4fifRMSbmeEV/2xFt/4fH3+d3+CfuoZv33aw0lISEhIeILIlks9+9v/UO83/Gq9+atTJ5+Em4MzIShIisQaYk+NOynbTtAwY/TUbidQRDaJaHs0HxJMFNozGRqNRq6sQVKujr7ZbKrZbGq9Xuvg4EDj8TiWD3jmRLFLhRvAOZGC1DJmsgyI+BbryYn8j0ajKLZAfKvVahQGQggxG6HT6USy3Gw2Y3eGXq+nXq8Xx1D0lFitVmo2m+p2u9HfgucXSzxYX/bQzR7X63X0MoBsdrvdHNn0rAZJkfxNp9NYLgCBZ2wILAgg3HO5XGo0Gmk8HucyK5xAzmYzDYfDmKWB8ARhJ/rv6f4Qc9aKOfs1EGknxp4VAwkv1vXjtcF/i5H9YoQdQs+cGEMxe4a5FkssOHOsrXtHMHY3SOR+fM6K7SQh+F7Ow/N4Dq95eQXz8hIkxk3GDmvB+ynB8RIGB2t8UjYEe+hCDHNBqPPPWkLCHYnXvEF/+N4PlJ5x2gNJSEhISLgRWE+netr3vEHvv/5qvelrk6iQcONxZgQFiFyn04m17BBXJ+BeK+2dApwgOUhFJyWcaDj39oguYgYZD5QLjMfjSIpoZUgHAWr6vU7cI+tEvb1+frVa5er7IXWQOIgiJMu7QvDs9Xod6+shhJhDVqvVmAEhHdfo02rx4OBADz74YGwn6eaVLny0Wi3de++96nQ6ms/najabGo1GyrJMg8Eg7gHix3g8jiTfvRyoqXePBvbK6+5pu0kkX1JcPyfrvjaYcDphdzHHnyUdkulerxfXnmwUyCoZBU56vXPFdDqNpQ6eVYHAUPQxKBJ+vyfnwf0JyM7hWvZttVrlxAHEIUoCnLR7hgefDyftnn2A2IRPA2IdRpOSYnvRYkaAd+NwQ1TOsht5Fs0NPdOhWLrgZQ2+hsB9PpbLZZyfi2KcCfdw8BIdL6/hOublY0xISEhISEhIuNWxHgz01O/5Y71f+av15q9KokLCjcWZERRarZak404FRIun02l0+J/NZrlriFq7QIAJoafHS8ekBDIOqSqKCmRHEAGXjg0RIbyk9dMWz6/hGbxXOq4xJwK7XC41Ho9j1L/ZbF5msOdGiJg5TqdTDYdDzWYzdbtdtVqtaFxJFgAlIpLU6/Viq0TGORgM9Oijj2p/f1/j8ThXi+/Ej7Vst9tqNBqxjt2zQRAEIOH9fl+j0Sgn8nj3CgQTIuQerd7Y2FCn04lCyGg0ilF/zy7getZ4uVzGrAvWBmKLGAGxppME+0VpBtf0+/2cXwKk1FsfskYn+VcUSbGXZFSr1bjHHnFHLPJ0fjJzEHgQw1hvRCREDKL67jPC54Fxuajh7RI586VSSePxON6HdqB4fHA2peOsE86mdOx9gBDh2Sdkr7A2wOfoAhDw9ea8Fe/ha+xj5P2e0cH7XAzxLhwuwrhnSELCnYZnfeV79Dean6qP/i9v17eef8tpDychISEh4QZgPRrpaf/qD/SczlfpbV+YPBUSbhzOhKDQbDZj5B/SDsEZDAYxcuwRbtz6iaw66ZMU0+W9tt7r7al5hzSVSiW1Wi1duHBBnU4nEjjKLPB2IJpOm8F2uy1J8TpPqYaQejcC92OAoK/X6zjeRqOhRqORS8UeDAbq9Xra29uLgkir1dLTnvY0VatVTadTXbp0SbVaLRpZ9vt9Pfroo+r1etra2lKtVosRdswYuZf7Jni2ApHmxWKhg4ODSNDcy4EMBwj9eDyOa0XUmGwK1oVMEy83YexO/FhjNzN0oYk1W6/XGgwGuZp+2mYCSkXK5bJarVb0s3CDSI9Yu8+BC0GM2ctbXGRhffCmoDSBDAgXZZireytQpkDUnfPNfvF5aTabOZGKzBHGROkEwo2XXXi2AeJP8bPhhpXr9Tpmwcxmsyhu+ZzJdPD94nPr4guCBYITQgT3OYnAcw17UexEwvM9+8K7opD1w2vsi5dBkEXDexBvUpZCwp2I1f6+tL+v8bp69YsTEhISEm4ZrKdTPfObX6NnbH2F3vlpP3Daw0m4BbDKru4ndiYEBU+jhvgtl0sdHBxEogdRgniSWu0kw6OlpLMT+cXIkYgv3gKUNfDa5uZmJFS0j1yv15EsQcCJmnsk3iOiRK2JEGP+R1Se6Kyn/EvHZBgyDjkdDoeR3LXbbd1zzz3qdru56K8LGPv7+9rb24u/g5Tu7u7q4OBAo9Eol8ruXgYIG5VKRb1eT1K+swLPIqJLlkPR0BG4qEJZBtkPkOadnZ3cPd3skPHzXMbiBJBItRtVIkJ4XT7dFyC8CC3Mnff6+XKBgfFxbtlj9x/gOZw3MmV4X71ev8wokX2cTCa5MxBC0MHBgYbDYZw/2ReMxX0FPItDOo7g+1p6+UCxNMANFOfzuSaTSSyhoZQH8r25uRmFQC/X8c+rP4szxjO9TIjfIzZQSoK3BmUnvh985tyk0ufsHgzFeXNmKE3yMhkv98AkMyHhTkR/Wb/6RQkJCQkJtxbWKz33xa/V+/3cF+qPP/JHVAkpeJKQx3g91yxb6jNf8nWq/fpr7TfvOPH6q/ZECyH8UAjh0RDCG+21fxVC+LMQwp+EEH4hhLB19PrTQwiTEMIfHf156bUOHFIKGfOsBCKYkKZWqxXNAs+dOxeJF6SP6LOkGDGFLNTrdW1ubkYTP2rpIbhOiCAsPBvCAgluNpsxy8Hrvhk3IkQIIYoTmBJubm7GbIKiLwJky6P+nhLearW0vb2tra2tSEYlxbEMBgPt7e1FQQWi55FnnkXkGXLqkXr8Fnq9XswGIJsAIu5dGNyDwQk8hHqxWERxBFGlXq+r1WrF7gOUivi+eRSb6Lh3zKCEAjLqdfFkDHA9ZQ/9fj8KPOz1fD6PPhBE4olWuxjlYgFlFfgFTCYTjUajXNlF0aPAz5WfLRcYENcYc7Esxclz0dcA3wLKRIolAp4twHu8FSaZOGTS8PlCMGHvEH18DqwlZ8yNMN3skgwhL9GhhAjhwD1AOA/Ssaji7WId7LufRzfCZL3YZ75riqUrZw1P1ndxQgJ4y4cu9B0X3++aohMJCXcC0vdwwu2EBz77jfqSd/310x5GwhnBcD3Va2YLvWa20Ed8z9fr8x/4qIKYcGVcS4bCyyX9B0k/aq+9QtK3ZFm2DCH8S0nfIumbjn739izLPviaR38EJy2QTyc5TjDa7bbOnz+vBx54QJubm5HQE0EdDoeRzLXb7Uj2KpVKFAGcVEHiMMObTCbq9/uRSGOC12w21Wg0ok8AkWY3jYRwNRqNSLwh+dTKQ3ppxSgpRrrpNNHv96PHAQQfEePcuXM6d+5cNAWEQJZKpUi2Dw4OVK1Wtb29HX0QPErtdf4QdkhYp9NRpVLRcDiMEWGi0YyJ6Hyj0YgCikeS3SWfMoVitNy9CDCcXC6XseQDgu+EEXEGM0Ui+WSMcI3XxLPGEHSugYwWMy082k+Em/VlzHTj4J5kmozH45xxI9d51gDgXDImLzfhvPMaHRd8PVkvzpwLQpwxxuYdG3wsCC58hvx88LlotVq5TBhJcd15LmTfO28USxSkyw0TGYPPm/UvtovkOl7zfeN+/qxiRoILQ8zRPVW85GNjYyPX7eWM4OV6Er6LExIcv/dBVX3bH32Q/undbzjtoSQknAW8XOl7OOE2wh8/fJ8OnjbRZqlx2kNJOAWssrV+sH+/JOnfvekT9MBnH2ql9+n3rus+VxUUsiz73RDC0wuv/Vf78dWSPvu6nlqA1+tLhxkGo9EoZwYHAd3a2tLOzo663a7OnTunZrOp/f392CpwNBrFVHbM6yActEEsl8uR/OOdsLOzo0ajoclkEoUEav0h8s1mMxcpJbuAVoJEnp0E0UoRYofI0O12ValU9Mgjj6hUKmlra0vtdlvNZlOTyUSDwSDW/Hvnh3K5HEUHoque0s86zOdzdbtdNRqNGHklhR9SCQGFzENEEUr6/b4kaXNzMxLSommg1/G7oaSTM+nYVd+jxhB4RCSP0nMOEA5IcXdxwksKPLWdkhfaa+LNAdGfTCbxfBTLIXg/qfmIG1xTq9VyJQYQe6L1CD/ScZYF68D6s4YIAt5dgrm7ZwjPJOIvHWdqOIGXjjMY+ONk3Ofoe+lCi3sf8H4yD3i+G0V6JpGbnHJG+Ay4EaoTej6DrDevX6lcAnGEZyEyeNkTz+L+RSNRN8B00YBzyNw4B2cFT8Z3cULCSXjtB5f1xa/6WP3o0373tIeSkHCqSN/DCbcb7v+bb9JH/fzf1e9/xA+qXUplbncKvvYvP0Kz9YZ2Z02NPvaiJOkBvfEq77oyboSHwpdL+mn7+RkhhD+U1Jf0j7Is+x9XuwHEkDR6ItbUUbvZHtdh5OiRUVLZ5/O5zp07p3a7HclDt9uNQgRkGbPFzc1N3XPPPapWq5GQu7s9QgLp0NSNS4pRaWrL3WwQMuxZBAgDTvDJgGg0GsqyLJcFIOXd7SE/kEk6GyyXS41Goyiu8Ay8IchS8Pl5qQV/8Ilg7pBiyLePRcob6SFEcG9PXYfUOXEcj8c5HwK6a/h4PLXfiTPr6KURbgBI6QH7VKvVYicHyhZYHzdHdKGCcUGm8TZwnw/PRkA08TaNkGnOrwsmnkXB2Fnfoq9A0ZOB8gqyXojYUwKDqOH3gyB7lghZEsyP9eO5ZCZA/Ml0YX/4jHIWeCb34VmU3HBPxCz3kiBjwM+6ny8vS2D9gJeCkKnD9e5ZgvDlZ5h7sVb4NiBG3UJ4wt/FCQlXwiMfNdDH/eZn6Hc+4BdPeygJCWcZ6Xs44ZbD/X/zTfqQn3yJ3vCx/1G1ULn6GxJuSXz1X/5V/eGlp0iStj73Ua0HA0mjG3LvJyQohBD+b0lLST9x9NJDkp6aZdluCOF/k/SLIYT3z7Ksf8J7XyzpxZJiGYKTVY/AQhzwOeh2uzHC750LaFsIWW82mzFaTnYCWQUQK9pE4p3gBA9S1Ww2tbW1FU0Qy+WyptOpxuOxer2eDg4Ooj+CR2XJgpCUM2rEWNJJMIQKMu5p6m6amGWZRqORLl26FImZewMcHBxoMploe3s7ZgIgCNTrde3u7sZyChdC3C0fkaTRaKjT6UQC5xFp9oRuD8VSB7IqSqVSJNruns/ciZBTvgCBJTPEOx94ejq+BMVIuXct4L5kvziRp9QAIu3RdYQKMkEg/vhN0BWCubZaLTWbzSgCuW+EeyZ4dJx5c8Y9ou+dBbx1IvPA9wARBA+Co89VzgMAks/ZcX8Ffu8lB+yNCxp0p6jX6znj0aIJJxkIbpJ5UltV3y/puKUr9+Wsu7DkWTDuceKZHKwT73UPCJ8nvg7eWYOxsSbc+yxlKDwWbtR3cV3NJ2vICbcaskyNFz2s5778i/XWj/3Rq1+fkHCHIX0PJ9zKeMYX/LH23j3TvRtJULjd8PUPfah+6Y8/WM992VzdV/+JJOlGOyM9bkEhhPAlkj5N0idmR/8iz7JsJml29PfXhxDeLum5kl5XfH+WZS+T9DJJ2tnZyYj+EtUdDocaDoeRFPL77e3taGhI5N+zGYjiViqVaG7nJQOQGcg+ZBBjQogiZBHBgeg55JhnQ8qJvBOppozAU7HdxE46zGDA7LD4HiLNEE03OJxOp+r3+7m0bkoXJMVxSIrZD61WS+v1WpcuXdKlS5fiekF4vW6fMbVarctMFiFl+A9AnCGTR2dD0jExdnJWrVajdwRiCsIAnTjYQwQhMkrczJH95Pfcy9PxIY6NRiOeLSfCjIlxQjo988U9Cjxqztzr9bq63W7cI+8IgWjhQojDI+BeHuJjAn5+GD/rU61WY+cK9p+zwZwQJhiHl3qwVk6oWVP+SwtOn7vPlZ8RHbwjiPufeImOl2X4vngpBmfLhRHG7N8N7r+AQODnw7OcXNQq+lsw58fqWnLWcCO/i7th50yZRiScLaynUz37q96jZ/yrv6t3fup/PO3hJCScGaTv4YTbAZ/wQ9+oN37Ff1A5nE1z6oRrx2+Ma/q6n/5ySdK9/2up516jueLjxeMSFEIIL9Ch4cxfy7JsbK/fJWkvy7JVCOGZkp6jK/WXKKDVasWMg9lsFp3yQwjRAI7SA0+Z9+g65Qiecu7eBS4aQN69pt/JF0SGSDVkjlRoRIzhcBjbHHrXBq8bh/x6W0c6HvT7/Vwkmyi+kySv6Ybs0NmgmHrO8ygF6HQ6OnfunBqNhnq9ni5evKjhcJgjZk7mnFQXSaZ3zqAcgJILyDyeFcyF9fIsE/wTGK9nAcxms7hXlBt4Bwoi8BBZfu8kkr2ihMRT5Jm3P/Po7Mb5tVqtXMcQbx3IHjSbzZxYg2jAnLjWjR5ZT1/3K3kLAEQMzlAxi8Ij8pxz963w1oxedoJw5aSf57Em7guCQMV7OMu+fm54yF5Ixx4KnrXgwh8ZH078XTDwe5KtwjV8RlwEQvBgzp4J4e0qmbeXZ/jnzMdzVnEzvosTEh4Lq/19PfvlS+lTT3skCQlnA+l7OOF2wVO//fe0/opMqYnkrYuHlkN96nd9o+q7az39J1/1pD33qoJCCOEnJX2cpPMhhPdK+jYdOtjWJL3iiLy8Osuyr5T0sZL+SQhhKWkl6SuzLNu72jPK5XIkZV6/TKQWolCv19VoNCLZcFM7SAUmhEQ4PeUfMgJJ9HRqSByEXzomJhsbG5Gw7+3taW9vT/1+P5Y9bGxsxNaHlCGEEGIEudi6jnGMx+NI7LwW3lP6qdn3Nn5kXJAlgQjjGQTSIfHf3NxUs9lUuVyOggJ1/1KedErHgkK9Xlen04kiDmJKs9mMrf52d3cjWZd0GYlbLBZR9GFOiDpes49nAyaIkMzVaqXxeKzlchnXCkHJvRaK/gC8v9lsxvVgfxFcKFuhZShjpcyBTAD3xuA8un8DvguTySSeR8bFa6vVKq4bxJlxs99OdjmT/vlAiEAM8P3ifLgowWcJ8cG7VXirz6PP+IlZKF6qgbjA54nnYHbJ3vuceN8J3ymX+V9Iygk8rCNzBJ7JwX5yHvxaFxdclPBneKkEr3tpxFkTE56M7+KEhISEs4YP+0dfpbe857tPexiS0vdwwu2Pj/uGr9H/+nepw+mtiI/+upeoPM909y9dX4eGG4Fr6fLwBSe8/INXuPbnJf389Q6Cf9AT+cc40KO9EFy8BzzaTCp80dWeqK10TDDwG3CyVExFx5DR08T39vY0nU7V6/XiOL0FoUelJV3W0369XseWfuVyOQoAEGxIFqUVENBSqaRerxeJIX8whmQdnGgR0d7a2tL999+vjY0NjUYjPfjgg1EIcad7SDGkCsJcr9ejsOHdDNrtdo7IkSGA5wOkU1IUYtrtdszimEwmOfM/9sq9DiDWbiCJ4IBw47X1EGH2DDEH80KEBs4akXhEAkpOQgjRLHKxWOjg4CCXubC1taVz585F8rxYLDQYDHK+HJ4F4+ehUqnEjBlELsblYhRrBsFHUCiaKrqPBXtZLGVgf/lT7J5gn91cNoivr0fwIeD+2fXPG9d4xgNnid971wXOgGdLSPmuINyfdSx+d7Bufn8+i6wve0x2j5txchZcTGA9T1qr08KT8V2ckHAt2PjDt+n53/3VesM3fN9pDyXhFsUqW+uFn/Nl13Ttude8VqXFjTEOe6JI38MJtzs6v/AH0r877VEkXA8+5mteosYjU7V/7/dPbQw3osvDDcFoNNJqtYru/ESFncAUo+kQZUia10878F0gkoxgISmm7kMkPTuC50Ns8TyAJEGCiFpDJkk9577FtHxJsUzBzfZcLOAPY4RM07UBgYJuA1mWRQJLechTn/pUNZtNXbp0SXt7e9rd3Y0kzcnhxsZGjJwTvWVcnU5HtVpNw+Ewtqx0v4Bmsxkj804uvWxEUq7sw0kgz5KO6+Mh8LPZTP1+P5I+shdYZyfPHrX3EgKPSEOqEQsg0XTLGI/HyrIsnoP1eq3hcHhZGQklEZSBuNgzm83inyzLYrkOfhSMSToUydw409uQuldB0fuBdebZiDGMxzM3WAvErWLU3QUDX9MikeZe7lfhPg++D+4VgleCGyH6e3mmt7T0bB7OE8/Ho8Q9GopiRFGE8M+gZyKQteSfT/fhYHwJCQl5rEcj3f/v/0DvV/9qvfmrkqiQ8Nh43n/8Kj3rhx+87PXwzj++pvcnQ4GEhCcP2WKuF7zoC/Ubv/zjpz2UhGvAx3zNS9T8pddJ69PNqj0TggIEHII8GAw0HA41n88v68Dg5ALyBaEjuoo53M7OjkII2t7eVrfb1Xg8Vr/fjxFyou8IDaS5ewmEpBhxxteBdHvgmQy8Tns9J2gQJQgi10I6ucbLGjCQlA5LGBAfnARLx6nvdJCgo8VgMNDu7q4ODg5yWR3SsWhAJB8yyp40Gg1tbW0pyzJdunRJ8/k87pN0LBJ4vbmnmjuR3dzcVKPRUK1WiyUq7hNBZJ6MDPaS2nj+QBbdKNHbX2IeWK1WY0YIQBhYLBbRqwFRx4k4nUXG47Gm02nMFEHMabVaUZAgMyOEEMUthB3P4oCge8aAmxOyTtwTUaXRaMTyDClvNFj0PxgMBnHO7sNBJJ71OqltIuPmGdzThQX3+HDxyD0XXBTwe0HqZ7NZHBedO7gPpTX+LM4p3xHugVAsd2HfXaDwNpOcKcCZ9ewKxls0eExISMhjPZ3qqf/8NfrU7/lYvfX7n6U///gfPu0hJZwhfNpbX6j1iw6zCp4+eb2Wi/kpjyghIeFaUfqLR057CAlXwQf+m6/W/T/wRjUHr5HOwL9Vz4SgIB0SJ0oRPBPByWS1Wo11/eVyOUckvWNBq9VSu92OBo133XWX2u22BoNBLnrrEWsIOW38ICSQyRDCZUaBjBFDydFoFCP3XuMPCaO0gDT52Wymra0tbW9vxwyNYso64/BOFZ6272TRTQJ51nA41P7+fhRoEDe8zAKBgJaWkDSPhI/H4zi+1WoVMyg8GuyCT6vVypHvRqOhzc1NhRDU6/XidQgGXi/PHoSjDgZSvixGOiaD7LmUz0xoNpvq9/tRKCEboGg+CMHlHOExwFkol8va3NxUu91WvV6P3TIODg7ieUXwIkPAvT+8nKZIcF10QCja3d3VcrmMYyXLhXPKWXQTTc+W8ewHL4FxkYzXGSdiHPf2zg1Ffw3Oj2creGmSl1+4+MEfPmuUhDBXRAMXDPw1Ska8VWQRXhoiKSdQFIWOYumG46QyqISEhMuRLZda9ft61hf+kT78Vz9Hr/rgn07u4HcwXj+b61uf9ZGHP2QPn4l/5CYkJDw+jNdzNUvVq1+Y8KRika30AT/8tXr6v/k9nSWnrzMhKPAP+MVikStHID0cwttsNnPvIdUeco3vghNHSFmpVNJ4PI5R/XK5rG63mzNrlBRFCiLY7XY7igNeaw1BIsovKZIkjw5LigQSskw0HjNHn5N0bBwHQfUSDE8tpzade9dqNbVarZh5QevNg4ODSNL7/X6ukwLGg6yVdJzmnWWZRqNRbPHIuMrlsnZ2dmKpiXSc7bBYLKI5JusQQohrjVEmQgLCB88l4wSzRMgmghJklwwBRIRiKUwIIWdUCZF1fwLPBGBcdO5g3zqdjra2ttTtdi8rdeDMsE4HBwcaDAZx/mSisKfU8hfLLri+aMToppWsZTGThWvJLuC5Lga4EFA0NCx2LymaKrKeCEZuFuoeET5HnsPcvcuDZwVwb2+RikhD1hElNpwPzzJwo8Wi9wbfKUXPBYf7d5z0u8cSHRISEgxZpu2/8Tb9zf/+Qn3X0/+zJOm5ldZV3pRwO2G8nutbn/Hh0pn6J25CQsLjweriRX32p3yRfv0VP33aQ0kwDNdTPf+X/76e+4+evO4N14ozIyis12sNBoMYVUZMIHLfaDQkHac5F43dSGPPsiyS5dVqFbMVnPCtVit1Op1I4nhepVKJ6e6QLUgsz3BSXavVoqgwnU61v7+v+XweO1Y0Gg3V6/UYScdAEqNADAa9DAEC5OICxJXr+B2lEl5q4JkMbmjI2L3sguwExsp78RIYjUYx4uuGh6wvpBpiz154mn2lUlG321W329XGxoYuXbqkUqmk7e3tuEeDwSAKB5BbAGGF+Pp9PZUeUlipVNRsNnNZJpB4SivYX49CQ0IRqdj/nZ0dnT9/Xq1WKxo9Xrx4Ufv7+5FghxC0t7cXO37geeGRdI/qQ1TxZSA7gRILzjskGQGM6zizJ6XpuyhRTNn3yDv/dYNQ79TgwgX74HMrGhl6BgLPctHFRapiuQZCBoIP93TfDX8GZTp0XylmXvjfPXODc8J58LIK9svPecpSSEi4Pkz+2iP6e/poSdLf/NNH9eLNy+vmE25P/Mzw/tMeQkJCwo3EYqlXTsr6xEYSCU8bw/VUvzm+W9/4+1+m5371a057OCfiTAgK0iHhwPivWq1GMkLkFfIM4cQoka4QkIFWqxXFh3K5rE6no2q1qkuXLmk4HEZStrW1FdsKQiqI1hM13tnZ0TOe8QwNBgNdunQpliBA7ryTwd7eXiT7HkFGLKFLgj8PwuR15PggQIjoOEGWAyTHo7O87kTIsyYgekSWeTaZALzuLQyXy2UsEUHIcMd+SgMonSANf7FYxCwJjBS3t7ejaSCmfUXS75FxF00A5RjMj/d4eUipVFK73Va73dbBwUGujh4xwUsk6vV6/JlyEF/fTqeju+66S9vb2/H5vV5Ply5dij4cCF+IMC4mUDLh5J33IFi0Wq0oZIzHY41GeSdrL+dAQGGtvIyhaPjp54L3ucDg5QGQbM964Dre720pObO+7ghyLniwv07uPWvCs34YG/fEC8S7tnC+fY1ZHzedRBzi8+GZDYhRCA3sRTFLweefkJBw/fj5971bL34wCQp3Cn7y/R5Qyk5ISLh9sHrr2/WdL/lSfeKPntjEJOFJwng91ye94W+r+8K369n6w9MezhVxJgQF0tMhNpJyruuULVDyQNbC7u5uFBPK5bLa7XaMfEPcINAQRnwV3OFdUiTXi8VCm5ub2tnZ0dOf/nS1Wq3Y4YFSjHa7HQk7gsZ8Po+khmg4ZIksBlrXUSrgngruHdHtduOYvc0ga+W16N7xYL1eq9lsxswIj+YT5UW0YY2JBEPSeMZ8Po/kFsKFENBut2NmAZFt1sKJbZYddjloNBo53wkyM7xsgX3y+ndIPGQV0ispt3bMsdVqaXNzMxr+cZ6Y13Q6jYIRpSy00UTUQVzBL4F1JBNkOBzG81cqlWJZyWg0ypkr4qeBoMV5IfpfrVbjOeL9k8kkzrUo5PA+PwfuccHaO1HnM+BR/mKXBzI4EKzYN19j1sZJvJfl+LwQbhCXOP9upsrZc3HHMyLIVqF0xUU4N7j00ggXoNyzgc+gi32eBeMmqczB1yWVPCQkPH684M/+hn7jeb922sNIuMn4tLe+8NAzISEhISHhhmGRrfSRr/sS3fMZf3raQ7kqzoSgICmSP8jnZDLRfD6PJHZrayv6DTjBJ2OAlHTII8Z8ZDv0er1YAgFJpRSAtG+MAO+55x5tbW3p7rvvjlHc8Xgcx4NRI6QI8khrQCKrTuwqlYomk0kuIlwqlaKIAUlzjwCIrkfvpWODQkgdokatVosZAYg0lUoltpnE34H1hiiyxu5FwNy8pSXzgmQi5DAnIs2Y7pHJUalUondFqVTSzs5OXO/FYhFFBy83YQ99vJA+Nydkrba3t3XhwgWdP39ek8kk+iB4RwGEHze2LHY+cAGLsTOe4XCoXq8Xs0ggpuwr6+ZmjwgUEPaNjQ11u101Go04536/r16vFzuNcB8n0ZBbyK97aXCGnHwj3HBWHf5zqVSKnSS8hSPCFeNgHRkTZN3LZ/js4cfgHRVcTHAhzEtAEF04k4hyXtLiYhjZN6wP8GwMF2W4p8/Dx+LCi3tfJCQkPD6ET9uX/vy0R5FwM/GBr/kCPeXz35kMGBMSEhJuMJ73239Xz/6is5uV4DgzgoK7sDs5bTab6na72tzcjN0LxuPxZWTLvQ5CCGq321GAODg40Hg8Vq1WyxFn6rulY4LSbrd17tw5nT9/Xt1uVwcHB5pMJpGM8n5KEfb399Xr9WIJBKTETfEQH3he0SvAyVK9Xo/kHwNB5sdcIUre8s7LHfBsYB1IP0ck8NKLUqkUMz/cy8HT5PFWKPoOMGYntt6ukXR+Fw/ITqBrhKQ4N7IdyCJhLhhQsmZO/BBF6CghKXa1YPxE8L18wEUR1sFJsp8p/DlovYmJIMIXpRX+X0na2dlRt9uNPgmYYbrAQIbDbDbLeSz4efYMDc4LQpaLMO5f4BkWXm7j17H2GGh61oObjyIY+O892s/f/Uzy2aQUxg0ZgX9GmCPzK5YLIfqwnzyL97l/BGNy74RipgaiQjETqvh+F0USEhKuD9l8rmf88ov1zhe97LSHknAT8KxXfpne5++/S6uj0tSEhITbC/V37emvvPbz9Ycf9lOnPZQ7Cs/45RerPCrp2f/g1ac9lGvGmREUMKPzf+RjWsd/MYUj/Z7IMGUGRCUhbZgm9vt9rdfrnA+Dp7lLiiZ3lDtsbm4qyzLt7u7q0qVL0SyuXC5rPB6r1+tpPB5rf38/Zie4MV6xXhtCS/kC6fNkPPB+TBohTdKxfwCEqhi9xp8AYz8I5/nz56MpJF0w3LeAe5N1APmiBALiiyDSaDRiO0iPKNNBgiiv18Qj3FDXjhEj4oF3FOC9bprnZn7cx80Yl8tlboy7u7vq9Xqxi4YTXek4Uu6Ggrx+UsvD5XIZiftkMolngPnyX9Ycz492u60LF/7/9s4/xrLzLu/PO7/u3Dtz565n19517JXjxDaJoSFNIYI2pRZFBVxVAVQJo6IgNSWBEJVCqjYRahoKVIKSwh+VgkJBoRFKhIBSg1QKREUBxTQkxTZ2g4ldO/V6be/O7zt37vw+/WPu553nnp395czee+7u95GudubOued8z3ve+2qf5/1+n+9pnT59WvV6PXtS8OwRIpaXl/vGR1IWIJhLzFnGE7GJzAT3MUB0ouOHk3b39aB8gsweSnbKrRddVHLzQxdfvAuDl1q4v4OLd8w5H3uyX8pdVNwTgesiFCDg+fPnvGW/CBf6yAgql4Y43BMkEAi8NhS7u3rTB57W33j2fVq/bzeEhZsI9/7eD+rBD/8/7S4vDzuUQCBwg7D37POa+s1vlr5x2JHcOrj/kz+sN/3kE9rvldmPCiohKHidM10H3ERwdnY2CwTU2u/u7qrRaGQCyqter6vZbPal50OgqU13gzYI9vb2tlqtlu666y6dPHlSrVZLy8vLunDhgtrtdh/JpIQCU0hvb+hkjB1lN5eUDg3m3N8Aw0E3poNIct/sWEOEyLiAwHsXiXKtOmUAeE5Ihz4FEHy6GyBgQGIRU1qtViaqlIrgpQAhlZRFnu3tbW1sbGQRwWv+IdE8e8bWa+m9/GF/f1/dbjdncXhJiJsgstvPucslDZ7KzjOQlLMsvO0m91c2GOTaXpsPaW00GpqentaZM2d0zz336MyZM5qcnNTi4mKeL8wFyh0QtrwjhZs5Tk5O5jnhHTuI3cUS5iGZIE7amZO0K+VZu3+AeyNwX56Z4v4dLkwwLp4N4P4gHD89PZ0FDEQ8xMKyeaX7bpS/W2QYeNaEC3L+fF2QcQ8Izls2vPRyoshQCAS+Oux3Onrdz39OE2dO65v+5Ie0+A839eWHPjHssAJfBe793R/Ug//uJe2+8uqwQwkEAoGbAm/47ffqjseS7v/dp7U3YmKCVBFBQVIfuZSUa79nZ2fzLj6p8AgOtVpNs7Ozeac0paR6vZ7TzMfGxrS0tKSlpaVMTiHPkF38D9itPXXqVDbS80wBMiAQE9bX1zMxpBRDOqwtdyNAsi+OMo7jZ3e/dyItKRshQnDGx8ez4ADxJXOCz+3s7OR7W15e1iuvvKKlpaW8c49YU6vV8n268z2kkV3w6elpnTx5UidOnMhlGWRoYFLoO8KICJwX4gcpxtOAWn/v4OC7y4wrnhkzMzN5npQ7PZBBAKklJu9M4LvXvhPODjqEl04Wm5ub2bMDEgsZdkGIeTsxMaH5+Xndd999Onv2bBaB1tbW8nzg3jzTADDvmW+ICQhDLv6QYVFO12de8AzcF6AoilyK4vG4D0G5SwTPwOcuKPs6ODl3Ao/44K1OGS/3Z+A+nNCXRYqy8af/6xlAnoHgpRjMCzeSdEGBsQ0xIRA4Puy+8qpav/6qTv7pWf39N75bkvQNH/2ifvb048MNLHBduPd/vFsPfuRF7b4cJoyBQCBwHLj30ffozT/1vPZevTCyvXIqISj4jr27/bupH7vxTrQpadjZ2cldIG6//XadPHky1+mfP39eKysrajQal3RUIBsCct5sNvvOSX07dfP7+/taXV3VysqKdnd3s0s/5M9fTj7d6V46bPlYTu3mviE6EPCpqanclYJj3QTPd3IhQp1OR0tLS0op6dy5c2q329ra2upLi/fPewYGJJixGh8f19zcnE6fPq1ms5nHv9vtZhLP/XgbSDedrNfr+fd2u53LCHxXHdGlbMBImj/PibEqiqJvXMrzB6Luaf/e2tCfz97enmZnZ3XixIlsmjgxMZEFBTIR3IyS+Yl4wW77bbfdplOnTqnVamUzTzwPMM+UlDNHmOsIReWdfz6P/4W3uERQYS5hnkkZAM+DOU8HC58zgJINxDLO4d4kLljxHuONGOUiD2PFc/byHzdI9N9diEAoYG55aY5nVTAf+Lt7Y0iH7TcRTVyA4bMcVzaUDAQCx4fdr7yoia+8KEl66rvO6uGZB4YcUeB68OYLL2h3YXHYYQQCgQFh/nee0gNf+8P663d9bNih3HR4x5Pfo7kfn9CbX31We4tLww7nq0JlBIXV1dVLiDdEhC4AONFDtnzne2ZmRrOzs9n/YHFxUYuLizp//nwmtJLy+UmR39/fV71e16lTpzQ/P5+9GVJKuc7dSRUkDGIGGXYCSMo66ensyOPjMDU1lVsYuskd/7ppIJ0bILfE7+UIeCM4uWq3231tNinNQEgoE2s3IOTv7inAZyGKGC3yWSeteAawq99oNHLM29vbarfbuQUnaer8zcUIsgq8iwGiCH9HfMBc0He4vbXkzs5O9oaApDP3tra2cncM2kniOeE+CwhQlKE4eSduRIlarabd3V1dvHhR6+vrOn/+vDY2Nvq6KXBfbgJIij5zi24nZNR4xkw5G0BS33yUDs1GGbdGo5HnONfHr4JsCffDAIgd5cwI4uBfjiM7RVJ+vvgSuFDgawDfC/cgcaHNsxG8lMPfRyD0Mgu/lmdGeBaCe1Rwbv9eBgKB48duT1gIBAKBQDWx325rajn+L3Sc+MXl1+sP/t4b1dy6qL12e9jhHAvGrnZASulXU0oXUkpP2XsfSSm9lFJ6vPd62P72oZTSsymlZ1JK334tQbgLPa+JiQnV63W1Wi01m83cXcHrsCFyELBms6kTJ05oamoqE5fNzc1Mor0rAiStXq9rfn5ed9xxh1qtVt7V3dnZyTvp5dIEL7dgV58sAlLl3QiQ0gFKNTy92nd0MZskVknZCNGPYRe13W7nzAPiA/V6XUVRaHV1NbfDnJmZUavVyuIMJLVvQphrf3lXenNzM3e1WFxczKUQ0sGONa0PiW9tba2vIwckE1LMDj/ZH9T2UwKBwOFxuIkeY0fbS8iy+ydAbonB741zNRoNtVotzc7O9qX9++4+JRXs3Pv1IK+UkhADnhX4bZRLC8bGxrJnA2M4Pj6e49jd3e0z0vR78FR95qWbLNI1A08JvjeUZ/gzQFTh/rgXRDMyPLysoLRGXCI6IQogVOFDwXeg3OqR7x0tUJ3UuxGjP0sEDzxKEEI8A8K9GcrfEfdZ4HvlJpfuHVEFDGItDgQCgcDlEetw4FZEKqS9Yv/qBwauiJ1iT7+/UdPvf/0p7S0sav8mEROka8tQ+ISk/yTpv5Te/4WiKH7e30gpPSjpEUlfK+l1kv4opfRAURRXLAnxnUIyEChxgHAiJnj7Oi9XcF+A7e1tLS8v66WXXtLOzk72YYAwkH6+v7+fyWSr1crkSTpI58dsEIGAlHOIKDHT+QARgxc7/FwTsjk5OZkzCtgx57y+K8vf6/V6399999br6ff29nJGw/z8fM5gYNfbU+2dWDnp8lp1iDekix1nyCfHe30+MeGPgMEjn/NsCp4tgAD6uBEHvg0uLuBNQZcLWihSSkD8zBMItZNjvBtmZmYyiYdUEw+EFTGB3XiyCrxen8yD5eVlbWxs6Ny5c1pbW9PW1lYWINrtdvaOwPvC24OS3YC3A+MAaXcxxIkvmSzMTQi2i1iIDN1uN5eMIFy46IE44MS+9x2/xAuE+YofB+Tes2A4tpzpwn0gunHfbtBY7shwFNn3so+y4ODlDXgkeKcTL9twEZDrVwif0A1eiwOBQCBwRXxCsQ4HbjG87uc+pwfufJ+e+95fGnYoI4vnd9b1Q/e8o/fbzVdWe1VBoSiKz6aUXn+N53unpE8XRbEl6fmU0rOS3i7psSt9yHcVpQMicNttt6nVamWxALJgceVdSDwWMBlst9t5t5w0d9LMIeBSv4EdWQ+Tk5NaWFhQp9PR4uJirsOHiEI2IUQQJI/J2wh6FgE+DpQKeGzeapHYEB8oMaC2/aiOEZubm7k8hDR8UuR9R5gMC6/Z9xR5J6yeLQJJLYoiZ24wnsREpgg74IghExMTarfb2VjRTSf9ObLbTsbF9vZ2X3YJGSVjY2PqdDp9xojeQtFNBSG8XktPjTxChZvx+fgyr/wznoECMUXY4Pd2u62LFy/meejdBJwwT09PZ3ECYQnTQjILfAyI3+ewdJgh4GIJPhouuKWU1Ol01O12+8wQuedy9gdzHEGGzAnvgsA4uTDmmTY8Ayf1HMd5/DvA/ZQ7R/j3gnNxHX7mvvm++jOnhMPnmWd6uI8L1+E8VcEg1uJAIBAIXB6xDgduVUysJ728u647J2aHHcrI4bOb0r//mm+VtD3sUG4Yvpr/Lb8/pfQuSV+Q9IGiKJYl3SXpz+yYc733rgjI9/7+vmZmZjQ3N6dWq9VndggxhLBSo09atfsOYBRYbnnnpIFdWDIT6vW6zpw5o93dXZ0/f17r6+taXl7OngJeSy8d1mJ7K0fuAaK9sbGRxQTfeeY8kEf3juB+IWljY2NaXV3ta4nI+dxU0Q3x2PHlvJQPMAZl/4TyOEG2JWWCKUnLy8t593l9fT2XBUjKvgKk77NjTnaC7x6Xd5a5BjHzs5eTQKzJRnBRgDgQjRhDL1WgrIJsg93d3T4fAmJhfjDnuJabF0rKJSyUCRArngiTk5NZ0GGMuSaCT71ez94BPDfpwP8CYu6kF6GHTBEEMbw2xsfHs8kj94iYgHhUPi9zVVKfxwYZA3t7e9ra2spCihtwQr4h/wgTCBLe7tIFBR/ncjkFz8O9JvhsudSD99zc0cUyhB8yMbzziqTsq+LlLZwToapc3lFRHNtaHAgEAoHXhFiHAzc1Xv9vHtNDD7xPz/zdcnJO4Er4pZW79Ojfvk/FzuqwQ7mheK2Cwsck/ZSkovfvRyX9U0lH/e+7OOI9pZTeI+k9kjKxkw7+k3/ixAk1m82+9m+eVYBRH4ICRAty78TAPQC2t7czmcYHgRr2VqulqakpLSws5Jp3dlA99dsJu3RoFgchgqDRFhHyxz06CYNI+r1BiCT1kcK9vT2tr6/37baS1g4htLHNO+dl8igp+z1AuF1w4V+I2/j4eCZe7LjTnpLnADH0zhMTExO5fSeEvEz+vAMA18VwkJ1rnpW7+rvJJeQXwcFN99hFZ+dfOqy35xlA/qXDLgFOlpkDzAOv2+92uzlTwwUcCDzjwn27v4Kk3J2EUgwEDy8RgBiTLcCY+Xl4vmQlIFp5qRDxMXfcO4EsFifhXsbh5pNeluAlOggPXNezAXxuIbBwrIsHCDnSYVYB3wv/frjPh5c1uFjB3z0DwbMXiA9hysVCL0Uql3xUEMe6Fk+rcWOiDAQCgZsXsQ4HbgmkZ2b0xbdv62/Vpq5+8C2On154kx5fvVvd769rb+XmNyB+TYJCURSv8nNK6Zcl/V7v13OSztqhd0s6f5lzfFzSxyVpZmamoP3imTNnskHe3t5ebi9IOr2naEPWy6IBpAxywu9O0CYmJrKxYrPZVL1ez94L3W43Ex4nKJL6ygMgwBB7auMhL5Cver3eZ/gnKWcIlFOsIbTs7EKUPf2cmBAEPKWcmHwnnnFDKEBUgcw5WSU27pXPQrx8bBFTKA2ASGIMyA68x8uLDAb3NfBrkxHCzjtk3v0NXAxws00+A9Gt1Wqq1Wo5swIi74TXBRQn1b4jXq/X1Wg0tL29rZWVlTwW3g6RDBB2t8lCoRxnbGwsdw+ZmJjI8298fFydTqfPfBERAgKOcETsXr6CCWS73VZRFPm5eTaI+x94lwsXJ5iDzCkfn/J3zY/3sh3G0Ock2QbMmb29/tanZeJezgjinPzNhQLedzGxfM/MGb77CHnExbHMwXIXiKriuNfiuTR/5H92A4FAIHA0Yh0O3Cq458OP6Z/oR/Ub7/oFvWVqetjhVBb//Pw36ks/9nUa+5O/GHYoA8NrsjBPKd1pv363JNxuH5X0SEqpllK6V9L9kj5/DefT5OSkTpw40de+EQICMSP1vdPpaG1tLWccQEqlSw0HIcHb29t5txuCh+kjdf4XL17U4uJiJnyUF3ibu7IZH8IBJnykuSNKYPjXbDYzqYQkOlnxHV+8F1ZWVrS8vKz19XVtbGz01ZP7TrpnB3gJgO/ES+oju6C8E8vuLMfz4j4h0JL6sg4gY3RAqNfrfZ4QGDKyQ81xEG6Iofsl8GwbjUZuxch1IYik6WMsCOl2kYT7RYRy0z73EuD5Mka8MAilswhdQIqi0OzsbO5Awk6+Z8AglFFWs7+/r06nk7NNIOOIZJzXhSueBeOL9wL3zv0z910Y4Z4Q0KampvLYlK/lO//+8pILn688C4Su8vW5N+/CwPemXGJTBlkD3Ldfu5z14CVRnqnA/ZX9GTzLhO+Un4tyD/d1qSqOey0OBAKBwPUh1uHArYR7PvyYHvnPP67ndtaHHUol8d5z36yn//VbbikxQbqGDIWU0qckPSTpVErpnKR/K+mhlNJbdZC69YKk90pSURRPp5R+Q9L/0YGF5Y9cq5stO931ej0LBxBijAZxxO90OtkEcG5uLqfWe917OVWdnXnpwI2+1WplMWFqakrdbjeXO0BE3NnfxiPvDkPcO52OVldX+0o3aMcIkSzvTpPS7zvSkjLRo35dUl/sZf8BsgUoYyBGL29wg0KuAZGEELLry+43O9iNxkHqnbdGLHsceJ152YzPx4gWkngtQIzLBooQ6/n5+WzCiMgACSyXWDBuLpBAuhlnSK1nPJRLUbg3z+SA2NdqtT5PBjIMON7H1EsfILkIBy5qSMrdKbrd7iWCmHsM+Pl8J55nyDGerUOcTqK98wOxO8rtFMsZAG48WvYf8N/39/dzVw8XrNzo0L01ynPJvRf8fS+bcWGP43j+Xpbkn/NuL55VwT3yDKrmnzCotTgQCAQCRyPW4UBAOvvTn9P3rP8rfeYD/0GnxmeGHU6l8Ed/+vW67zN/dvUDbzJcS5eH7zvi7V+5wvE/I+lnricIJ8XSARFaW1tTu93W3Nycms2mGo1Gn1GcpLzzyy4wLQfpQrCxsdFncEgXh1qtprm5ub5d/Y2NDa2srGQTxa2tLa2url5iKMcOr6Rs/Le2tqZOp6OZmZlMkOkAMTMzkzMgXOiAtPvOPGTG08Ihv4gHu7u7l4gnvqte3k3mM5wHosfnuQ6fHxsby/fvO+BkIzg5dY8DBCHGmGvs7+/n7g6bm5tZSPDsAMiwl3kgxDD2tDukcwECylGdKyDVjUYjk0L3s+BYHzNKELxrB+Na7uiQUlKz2czXd1LKuWgx6n4HZCZ4ZgfZH+ziQ3J9jnlGBmPhPg+QZy8zOKpMh/R+J8t8lmfvu/WIA/79RPzw7BUXtqTDjAP3lSBrgev43zgf89wzKxCOOG/ZlJFnU856cJ8K5gtri2evMK4ubHCeqgkKg1iLA4FAIHB5xDocCBzgzC9+Tqs/VuhUpbprDxf/+Llv0/2f6hxtlHKTozI90SCnEL+FhQWNj4/nVPdyrbx0mLLOZ/f397WysqKFhQVtbGz0tSNkN5w0dFzrJeVMBLopUPbQ7XbVarUyoSkbwknK3SYg8ZDD3d3dPn8G6bBunXshPkQKT8/HKA8/AE+HdzGBcaCLBMZ/7XY7E0LuHbLOfWxtbeXre8cJRA/eg/QVPbd86vPX1tb6doeJBYLGfSACuFGfizmQdd/p5r45D7v77Xa775nzHLinWq3Wl1XAzj/lJz4PKKNhPF2YIk46J/g9Tk5OqtlsZrGB+3Viyv24+R+CGONIi06EEso1KNEhft9hh4h7hoObF/I3xB/uzbMKGHPO754RiF6IIi5AkCUC/LvoggDn9raS/ty5h6PKCTxbhfH363h5jgtEnvVADByHn8VRWRXeEYKx8XKRQCAQCAQCgUDganjixbv1hj9/fNhhDAWVEBRSSqrX6zklnQ4Jc3NzmcBD0jzVmx1lSODm5mbOFvAdS09p9s4O7J7TkvHixYtaXl7OhntOeqXDEgPpsI6/KArV6/VMumkXiTmhGyJ6eQPHQkw3NjYyqS13qfDrugkf90NJxczMTN6hJSuAun5EBnbTIYjssnv6OGaDCBlkAZDl0Wg0+ghq2cTPRYiVlRWtra1lcYRjarVaJn48V16IFpubm3nXfG1tTUtLS9rZ2ckZHy5eQCrdPBBxZGtrS5L6Mi7IbvHP8zd/eWr8+Pi4Zmdn+3a7nexLuoTw8zsCF21OIbmdTidnxXAPTrbx8mBM8efwa0L4vesG4+PkutyRhM96NgPfM/cPgGx75gRwYcNLM5gHLi7xbPz+3JvEf/esHeamlzqU/UfK8ftnXFTx769/x8rZN35fgUAgEAgEAoF+vP8f/TP9zn//pGpp8uoH3+T4/hce0gMfWlS1nbduHCojKEiHu7Gkxzebzb6df9LIpf5OBF43X94xd1+AqampbI4IWV5fX8/lDexk83kvN3CvAa5PCz6uDcH0EgJJeYfb07C73W4m+5B7SK0bLkqHO8EQZsgjggqfq9VqWltb09ramhYWFrS9va3Z2dncMpFzeho9408qOKn37oXgpJlr4mfgO9guTpAZQOcDJ5ncA60XKWMhPnbu2RHf2ztomdntdvuECy+Z8HR55gxGgXTKgKAyVtPT03278k6sPTPCM1wajYaKosheGBBo3oOI83lEEUQA9zhw0cBFFYQBF3l4NoyH78hL/aaeXh5Di0/mKDF72QLPmGOOEg0o9WB8yWZxwcC/z1zT5xnfzbKHBHPLP09Zz+bmZr6HmZmZvs/5OHr5hMfAHHEhkrnuZT6edcQc83kQCAQCgUAgEDjE/pN/pb2iOLpB6i2Gi91Z6Ss3f3vIy6ESgoJ0SK42NzfV6XTyTvrExESupV9aWtLKykqu+Qa+041pH0Rseno6GzfixVCr1frIGrv5blZYdsp3AlbeGXYSyjVnZ2c1OTmZY4J40gZTUhY3SN2G2HhNuPsVEId7Q0iXEjBekGjEEKm/4wPk1dtdQl65d+6RMgFS1ldXV3PcCAmIG+wSc99e295oNNRqtbJhH0TaSwR83CHRGBZSpoAvhpv2lcUAzkvWA8fMzMzkTiJ0nnDDPp4Fz5ifEQO63a4WFxfVbrc1PT2tVqslSblzg2eWQMYl5RIJiLakbFhJVgDZNWVTQBdweFaMO/MfkYPzbm1t5TIYB2SbsheeOzEz91yk4b4Y87LocNT5Ec48Q8h9F7g/BK/Nzc1c6oJohZDhwoCLYm4Sybx1sQVxqpwVgT8GYhAxu69CuZQiEAgEAoFAIBAI9CNdiRgMLIiULkrqSFoYdiyvAacUcQ8SEffgMaqxH1fc9xRFcfsxnKfySCm1JT0z7DheA0Z1jkqjG3vEPVjc6nHfSutw/J948Ii4B4tRjVsa3dhv6FpcCUFBklJKXyiK4huGHcf1IuIeLCLuwWNUYx/VuIeJUR2zUY1bGt3YI+7BIuK+tTCq4xZxDxYR9+AxqrHf6LjHrn5IIBAIBAKBQCAQCAQCgUA/QlAIBAKBQCAQCAQCgUAgcN2okqDw8WEH8BoRcQ8WEffgMaqxj2rcw8Sojtmoxi2NbuwR92ARcd9aGNVxi7gHi4h78BjV2G9o3JXxUAgEAoFAIBAIBAKBQCAwOqhShkIgEAgEAoFAIBAIBAKBEcHQBYWU0neklJ5JKT2bUvrgsOO5ElJKL6SU/jKl9HhK6Qu99+ZTSn+YUvpy79/bhh2nJKWUfjWldCGl9JS9d9lYU0of6j2DZ1JK3z6cqC8b90dSSi/1xv3xlNLD9reqxH02pfQ/U0pfSik9nVL60d77lR7zK8Rd6TFPKU2nlD6fUnqiF/dP9t6v9HhXGbEW35A4Yx0eIGIdHnjcsQ4fM2IdvjGItXiwiLV44HEPfy0uimJoL0njkp6T9AZJU5KekPTgMGO6SrwvSDpVeu/nJH2w9/MHJf3ssOPsxfItkt4m6amrxSrpwd7Y1yTd23sm4xWK+yOS/uURx1Yp7jslva33c1PSX/fiq/SYXyHuSo+5pCRptvfzpKT/Jembqj7eVX3FWnzD4ox1eLBxxzo82LhjHT7e8Yx1+MbFGmvxYOOOtXiwcQ99LR52hsLbJT1bFMX/LYpiW9KnJb1zyDFdL94p6dd6P/+apO8aXiiHKIris5KWSm9fLtZ3Svp0URRbRVE8L+lZHTybgeMycV8OVYr75aIo/nfv57akL0m6SxUf8yvEfTlUJe6iKIr13q+TvVehio93hRFr8Q1ArMODRazDg0Wsw8eOWIdvEGItHixiLR4sqrAWD1tQuEvSi/b7OV35wQ0bhaQ/SCl9MaX0nt57p4uieFk6mIiS7hhadFfH5WIdhefw/pTSk730L1J2Khl3Sun1kv6mDhTCkRnzUtxSxcc8pTSeUnpc0gVJf1gUxUiNd8UwauMzymvxKM/RSq8JjliHB4NYh48VozY+o7wOS6M9Tyu9LjhiLR4Mhr0WD1tQSEe8V+W2E3+nKIq3SfpOST+SUvqWYQd0TKj6c/iYpDdKequklyV9tPd+5eJOKc1K+i1J/6IoirUrHXrEe0OL/Yi4Kz/mRVHsFUXxVkl3S3p7SunrrnB4ZeKuKEZtfG7Gtbjqz6DyawKIdXhwiHX4WDFq43MzrsNS9Z9D5dcFEGvx4DDstXjYgsI5SWft97slnR9SLFdFURTne/9ekPRfdZAe8mpK6U5J6v17YXgRXhWXi7XSz6Eoild7X5R9Sb+sw7ScSsWdUprUwQL060VR/Hbv7cqP+VFxj8qYS1JRFCuS/ljSd2gExruiGKnxGfG1eCTn6KisCbEODwexDh8LRmp8RnwdlkZ0no7KuhBr8XAwrLV42ILCn0u6P6V0b0ppStIjkh4dckxHIqU0k1Jq8rOkfyDpKR3E+wO9w35A0n8bToTXhMvF+qikR1JKtZTSvZLul/T5IcR3JPgy9PDdOhh3qUJxp5SSpF+R9KWiKP6j/anSY365uKs+5iml21NKJ3o/1yV9m6S/UsXHu8KItXhwGMk5WvU1QYp1eFDxWnyxDh8vYh0eLEZynlZ9XZBiLR5UvBbf8NfiYgjun/6S9LAOXDSfk/QTw47nCnG+QQeOmE9IeppYJZ2U9BlJX+79Oz/sWHtxfUoHaTk7OlCi3n2lWCX9RO8ZPCPpOysW9ycl/aWkJ3tfgjsrGPc7dJAu9KSkx3uvh6s+5leIu9JjLuktkv6iF99Tkj7ce7/S413lV6zFNyTWWIcHG3esw4ONO9bh4x/TWIdvTLyxFg827liLBxv30Nfi1DtpIBAIBAKBQCAQCAQCgcA1Y9glD4FAIBAIBAKBQCAQCARGECEoBAKBQCAQCAQCgUAgELhuhKAQCAQCgUAgEAgEAoFA4LoRgkIgEAgEAoFAIBAIBAKB60YICoFAIBAIBAKBQCAQCASuGyEoBAKBQCAQCAQCgUAgELhuhKAQCAQCgUAgEAgEAoFA4LoRgkIgEAgEAoFAIBAIBAKB68b/B9BYiQGKfbFYAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 0 891107\n", + " Min thresh = 1000\n", + " Sliding\n", + "\n", + "\n", + " Winner = Sliding\n", + "\n", + "\n", + "208s_iimage_104932526155699_CLEAN.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADDCAYAAAAya0IYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADRXklEQVR4nOz9eZyt2VnWjV9rV+1576o6Q3eaDCQBE5CARoPI9GIUDEEZRBAZBAQkiIKgvMigL87+AEUGETT8mGRGeVFAkFFEhDAEEAIBJJCYkKbTw6mqPe9dtZ/3j6rvqutZZ1f3Od2nu+p039fncz5dtffzrGdNe3dd133d90pVVSkQCAQCgUAgEAgEAoFA4HbQuOgOBAKBQCAQCAQCgUAgELj7EIJCIBAIBAKBQCAQCAQCgdtGCAqBQCAQCAQCgUAgEAgEbhshKAQCgUAgEAgEAoFAIBC4bYSgEAgEAoFAIBAIBAKBQOC2EYJCIBAIBAKBQCAQCAQCgdtGCAqBpxwppV9PKb38ovsRCAQCgTOklN6YUvqAW7y2Sin9ocf5nMd9byAQCAQCgcuFEBQCTzmqqnpJVVU/edH9uFWklL4x/gAOBAKBpw4ppasppQdTSj990X0JBAKBy4Y7/Xfp7bQXfxcHSoSgEAg8ClJK7yvpHS+6H4FAIPAMw5dIev1FdyIQCAQCZ4i/iwObEIJC4CmH22pTSv8wpfQfUkrfmlIapZR+LaX04pTSF6SU3pZSenNK6RV27yellF5/eu3vppQ+rWj776aU7k8pvTWl9NdcQU0ptVNK/zKl9H9SSg+klP5tSqn7KP3clvSvJX3GkzMTgUAgcDmRUnqPlNLPppT2T79Tvzql1Cou+3On38MPpZT+RUqpYfd/8ul39Y2U0g+nlJ5/G89+L0nvKukb79BwAoFA4NIhpfSHU0o/efo9++sppQ+1934ypfTX7Pe/imMrpfRTpy//r5TSOKX0l1NKL08pvSWl9IWn38lvTCl93ONt75z+xt/FgY0IQSFwGfAhkr5F0hVJvyzph3WyN58j6R9L+nd27dskfbCkHUmfJOnLU0p/XJJSSq+U9HckfYCkPyTpTxXP+RJJL5b00tP3nyPpix6lX39b0k9VVfWrj39ogUAgcFfiWCffgdclvZek95f0N4prPlzSu0v645I+TNInS1JK6S9I+kJJf1HSPZL+h6TvuJWHppS2JP0bnfzBWj3BMQQCgcClREqpKen7Jf2IpHslfaakb0spvdNj3VtV1fud/vhHq6oaVFX1Xae/36eT7+znSPpESa9+gu2ViL+LAxsRgkLgMuB/VFX1w1VVHUn6Dzr5A/SLq6paSfpOSS9IKe1JUlVV/6WqqjdUJ/jvOvki/r9O2/koSd9YVdWvV1U1lfSPeEBKKUn6VEl/u6qqR6qqGkn655I+elOHUkrPk/RpenTBIRAIBJ6WqKrqtVVVvaaqqqOqqt6oE2H3JpH29Pv0/0j6Ckkfc/r6p0n6/1VV9frT7/V/Lumlt+hS+FuSfq6qqtfekYEEAoHA5cR7Shro5O/dZVVVPyHpB3T2Pfp48f9UVbU4/Rv5v+jkb+MnjPi7OPBo2L7oDgQCkh6wn2eSHqqq6th+l06+dPdTSh8k6R/oxGnQkNST9Gun1zxb0i9aW2+2n+85vfa1J9qCJClJ2jqnT18h6R9XVXVwu4MJBAKBux0ppRdL+lc6cSD0dPL3Qkny/Tv2TTr5Dpak50v6ypTSl3mTOomavelRnvlsnQgKL3tCnQ8EAoHLj2dLenNVVWt77U06+Z58vLhRVdWkaO/Z5118m/gKxd/FgXMQDoXAXYOUUlvS90j6l5KeVVXVnqQf1MkfqpJ0v6Tn2i3Ps58f0ok48ZKqqvZO/+1WVTU453HvL+lfpJT+IKX0B6ev/WxK6WPv0HACgUDgMuNrJf2mpBdVVbWjkxSGVFzj37FvL+mtpz+/WdKn2XftXlVV3aqqfuYxnvkekt5O0m+cfu9+paT3OP0ePk/8DQQCgbsRb5X0PK89o5Pv0d8//XmiEzEX3HcLbV5JKfWL9vhefjztOeLv4sC5CEEhcDehJakt6UFJR6duhVfY+98t6ZNOi9z0ZLasUwX463RSc+FeSUopPSel9IHnPOvFkv6oTuotvPT0tQ+R9L13bDSBQCBweTGUdChpnFJ6Z0mfvuGaz00pXTm1wn6WJPJu/62kL0gpvUSSUkq7KaW/dAvP/CFJL9DZ9+4X6aSuzkvNtRYIBAJPB/ycTkj+300pNVNKL9fJ35nfefr+r0j6iyml3mlx8U8p7n9A0jtsaPcfpZRaKaX/Syc1x/7DE2wPxN/FgXMRgkLgrsFp3YO/pRPh4Iakj5X0ffb+D0n6Kkn/TdLvSPrZ07cWp//9vNPXX5NSOpT0Y5I2FqupquptVVX9Af9OX36oqqrZpusDgUDgaYb/WyffsSOdiLGbinT9Z52kQfyKTnJ1v16Sqqr6Xp0Uwf3O0+/a10n6oMd64Gner3/vHkha2XdwIBAIPC1QVdVS0ofq5LvxIUlfI+kTqqr6zdNLvlzSUidE/5slfVvRxD+U9M2nJ0RQJ+EPdPL38VtPr//rT7A972/8XRw4F6mqoohy4OmJlNIf1skfsu3TwmCBQCAQCAQCgcDTCqcOh2+tquq5j3FpIHDHEQ6FwNMKKaUPP7V6XdFJhOz7Q0wIBAKBQCAQCAQCgTuPEBQCTzd8mk5qLLxBJ+eob8r7DQQCgUAgEAgEAoHAE8STJiiklF6ZUvqtlNLvpJQ+/8l6TiDgqKrqlaenN1ytqurDq6q6/6L7FAhcFOJ7OBAIBC4e8V0ceLJRVdVPRrpD4KLwpNRQOD3e6bcl/VlJb5H0C5I+pqqq37jjDwsEAoHATYjv4UAgELh4xHdxIBB4uuPJcii8h6Tfqarqd0+rmH6npA97kp4VCAQCgZsR38OBQCBw8Yjv4kAg8LTG9pPU7nMkvdl+f4ukP3nexe12u+r3+5KkRuNE4yidE+v1Wuv1WsfHx9re3lZKSdvb29re3tbW1pYk6ejoSKvVSlVVab1e53aOj0+Or97a2sr3ppRUVVV+jr9GG9zTaDTye8fHx7ntlFLuL69xj/ebcfn1knR8fKzj4+Na+/xbr9e1vtFWVVX5elDOFe/xrOPj49wu7/Gz9yellK/d1Cd/VvlM2kspqdlsamtrq9Zvn9+jo6Ob1pr1Lefd58Pb83lttVq1Ma/Xax0dHeV1Z819LCmlWjs8k+uAz/Wm+edn2kop5XZ8POV/fbysA8/2tS2v9fX1deNe3/f+etkH3ivXx/eHr/um5/ral33xNsq96p+fct69/2U/Nz1nUz99T2+6z+dy07jKPq/X64eqqrpn4+AvN27re1iStgb96h1euNYDr+s+qR0LBAKB28FcEy2rxeb/CV1+3NZ3cXwPBwKBy4qRbmz8m/jJEhQ2fenXGGhK6VWSXiVJvV5Pr3jFK7RcLtXpdDIhHQwG2t7e1tHRkcbjsW7cuKEbN26o0Wio3+/r2rVruueee3TlyhVtbW3p4OBA999/v/b393VwcJCJ0ng8VqPR0LOe9SxdvXpV7XZbzWZTy+VS4/FYq9VKnU5Hw+FQkrS/v6/5fK75fK5er6ednR21Wi0tl0sdHh5qNBrp+PhYKSUNBgO1Wi1NJhMtFgtJymNoNBpZgOj1ermfx8fHeUwPPfSQtre31Wq1asT56OhIy+VSs9lM6/Va7XZbi8Uik0vEFEm11yBDzWZTrVZLg8Eg9206nWbBACGj1Wqp0+lkkj+fz3V0dKR2u537Sn8fjdhWVaWtrS31ej0Nh0MNBgP1ej2t12tNJpNMxBuNhkajkebzuZrNZl7fGzduaLlcZqLY6/XUarU0n88lqSZCLJdLrVarLC495znP0d7enhqNRr7ukUce0QMPPCBJ2tvb087OThakZrNZbbwISN1uV+12O89po9GovTafzzWZTNRutzUcDtVoNLS1taVms5nfW6/XGg6H6vf7Wq1WOjw8zMIGc8Z8Hh4eajKZqNlsqtPpqNPp5LlkbReLhY6OjvK6SFK73c57ZL1eq9Vqqd1uq6oqTafTLKzRP0ScUlBgPWiXPcVrzDHPcaK+tbWV/zGvR0dHeS+z9+fzed4bXLtYLLRarfJ6DodDdTqdvDbss+VyqfV6XRMCGVej0VCz2czzSV+Zu3Lc9J17F4uF5vN5FoCY700CxWw2e9OG77O7AY/5PSzVv4s76ukFv/7BesHd+md7IBB4WuLnqh+/6C48EdzW38TxPRwIBC4rfqz6jxv/Jn6yBIW3SHqe/f5cSW/1C6qqerWkV0vStWvXqlarVYvYQ0B2dnYy0Tk6OspEYDabaT6fa7lcaj6fq9Vqqdlsqt/vazweZ6cBJEM6I6WQKUjEcrnU0dGRut2uut1uJvdHR0eZJHc6HS2XSy2XS02n00z8ITytVkvj8TgLDbgUIODHx8e5f+v1Wjdu3MhEczKZZIJVVZU6nU4WPdbrtWazWSZKTgqZJ0larVa1yPhqtcqiBnNXRnq5HwFCUn4W44CsrVarPFaPDHOfdEJ0O51OdgngIoFEQlaBOwS2tra0XC4lSYPBII+DdfPItbsPeJ9xQoZbrZZ6vV5eW0l5PhAkPELO3lsul7mPEE2Ia1VVms/nWiwWarVa+XnMA4R3NBrl/et7jL3Ns8p5gLQvFgstFgttbW3p6Ogo9x9wL20yN/Rne3u75kphr/Aa8+VuENoohYNNbgnmnDGzzuwb/8whfPga+T4u58Ofx3uIAux1vx6hgX3pQgiiAnPkY3aHA235uvOcJ6PGzFOIx/welurfxTvp6l094EAgELiEuK2/ieN7OBAI3G14sgSFX5D0opTSCyX9vqSPlvSx511cVVWOwENkm81m/pmo5/b2tjqdTiYBi8VCk8kkv4ZjYDqdajQa5cgz7XgkFXLphHw6neboarPZzOICz08pZeHCI75E+huNhlarlWazWSaii8UijwHiggPDCR5kmuhqv9/PfVssFloul5k8Qdj9OqK5kCIEgNVqpe3tbbXbbc1ms/wcIrU809tE3OA9SXnesOb7GOgnjgOPcHe7XW1tbWmxWGg2m6nZbNbGzNy6AINDgp+JVtNnjzhLJyLIYrGovQZxRRCZTqd5rjqdjlarVX6+dCY2eQqEpOxAQCBYLBY6ODjIY2EupTMyfHR0pNlslh0HvAexLoUUxpdSUqfT0fb2dnYklPvMhQfWAiGkTJVxQKBpz69rtVr5c8icl2koTsT5HWIPmWe+GVuz2czuDT6DvsfLufa++n/5nJTpKP79gEjh6S583kqRkrlj/7p4xVjYZy783IW4re/hQCAQCDwpiO/iQCDwtMaTIihUVXWUUvoMST8saUvSN1RV9euPcn0t399rGRwdHanX66nf7+eovUeXsYO7pX5vby+7FObzeSZGCBbA8/Ahnd1ut0Y+IMmQoJ2dneyOcCs4IoQ/B5GBvvH61taW2u12ft+dAxDx9XqtTqeTLfej0UjSGeEhJUFSJuVEtbe3tzWbzbLzAWLrtR1KtwBjKPvjlnD6xfx0Op1MsmnT0z0geF5nAHKHoOCkHGFkuVxm8k87uEXKWgOQ8fl8XlsD4AJSu92uiTI+n+wlF2VYt06nk1NeZrOZxuNxbS+504O2mBMXsSC7LthwP32lTe5jb9Nv3iPa7w4YH7enzzDfZXTexQG/j7Y2iQlc48/wMSBweC0OnBa07XPOeEiXoB2uL8fGHva1l85EEdw47ooA7qZg7AhxXteBZ/jn5W7E7X4PBwKBQODOI76LA4HA0x1PlkNBVVX9oKQfvJVrnbxQJ6Df7+vo6CjnmJOOAJFyUu5WfwjgYDCo2bIRAMjdb7VaOSoNGZHqkWqP0kLMqKkwGo2y5RyCT2FJIqRlBNZrIlAnYDKZZFJ0Om9ZlKDvRNSdYOGY8BoNntoAEScK76KN588z58xhp9Op5etDvny+vChmp9PJcwSJg7gjCnmthOVymeebvjuJow1SRCDNvIe444UzSUMhgl8W6Fuv15rP51l4oa/nASLKc0mfwBGCA8ZFpXa7nZ0q7ixAIHBBYbFY1Ei6k975fJ6j915vASLuqR1c4/vWxRB35/j1/PMovL/ue592XHwoiy7658XdBJ7m4u4KF/W4h/4zRsQrT9soUxPK+xEv2GtlygK/8wx3yzAG398urt2tuJ3v4UAgEAg8OYjv4kAg8HTGkyYo3A4oxob9HGcC+e7z+VztdjsXx/N8a+z8RLex+CMqjEajWpoEFngnnggMkmpRS2zo1BBotVr5H6SD9gaDgfb29tRut3MON4USIZPk10+n00x8er1eTSyA7CCm4ATAbcE4iO67lR5nwHq9zu/NZrNMjEoS7XZ5yLs/v+wTRRY9os7rpBAwtyXpxPHB+zyLKDwCCekkrLkLSGVxQ1+v8Xiso6OjWlFPT+tYrVYaj8e5LQhnSRrdpVC6Jyhg2ev1crFIj3CT3sHclSkLXivB0wXc0eHkmmeX1vsyBcLb9rGwvt6Ot+uOilIoYP+608GfzbryXulskFRLn3FHhDsHXExkX3A9z3Axgn4wHhcE3GHjjhufP95jv5fjdrGpdPEEAoFAIBAIBAKBOi6FoFBVJ9Xp9/b2crV3iiSmlHJkH1JCygPEBAfD9vZ2PrWBEw5Wq1UtAu/52RCG4+Pj7HbwPHeIvuf+Uxuh2+1m2ztkhUr9i8VCh4eHNWJPdB6y0u12c/FFXAElkYVotVotDYfDnKNOJX+upX3qO0Dstra2skUflwa1CDyfnai5V8T3a9zWTpqGF7lD0HFLvxcsLAkw68fcE+lvNE5OVZhOp7kGAe0wLkm5D16ckflDnMBRgMNhuVzeVBiSuWMepLPaEx5Jd0KKqEAaCevhJwx4Hv8mEYc5ZZ+VpH4TAS4dBwgmXOME3EUcj8p7ioI7I0onDX2jLgN7YpMzwV0AtO9pGzyrdDKUwgRz5SdElKkI3O81D3xOXDAp544x8TnwzyZr5kIP99/taQ+BQCAQCAQCgcCTiUshKIBms6nd3d2c9iCdkdDpdJqJEQ4ASTnK2+l0MlmYzWa1Qmy0w/WQPaLVWPoHg0E+RhDCDNmGxFM3YDAYqKqqLGBIZ6S00+nk/nqE1SOz9I8jA4fDYS6+SKTeUy44GtBJqheXW69PToMATq7onxcE9EivpBxxh6hC5klbcPs/6Sa05y6G5XKZj4nE+QEx45kc1+dEFpcEToD1eq3xeJznm75CEr0IJnPiKRfMoQsFiFGsiTsyymMDEWlwy7B2jUYji0A+p5yOwfx43QTfyyWR5z1EsFJMctGB+WMsfjyir3vpMPB0AHcDlPUoPF0Ccu17ZZPzhJ/L1AAXL8qxMzcuhPB58NQcFyGkunDiAgJj9Pe8H2WfvVirC43l2pSFPgOBQCAQCAQCgUAdl0JQgBAQ7ZaURQFIabPZzE4BiOR8PtdoNNK9996bI8+TyUSHh4eZdLklnJMhJOWaAxBKIs/SWa4+1ekhuwgMCBgQUbe2NxoNDQaDfPKAkyqvC8C97sbwtA2vKUC1fCKpTsgkZWGCIzU9eovrwufByX0Z6WUuiO4z5tFolMeJoEAtA1wPRHfLyLynlLButAOJK49xxFWwKXWBWggID06qab+qKu3s7ORUC+bNiWi73c41HTxFgTlBnPK6DxByotuMnYg+QhWCROk6cMHCRQsfO2vqhNot/KTZ+Lp5/j/3sxb0uUxpKIl0mTLhn0/Ej1J4KR0HvLfp59IV5GlHfFbZg57Owfy5MOPz6P1hLv163wPurCjTJ0qnR1nvIRAIBAKBQCAQCNRxaQSF6XRay60/OjrSdDrV7u5urUYCZHa9XmfxYDQaaW9vT9JZBJ2ceginkwavQE8UHqJBmgQnOuBAgMj6SQOengCJ9lMYnKx7YT0i+tRbcIt7o9HIEXwEhIODA6WUNBwOa24M5stz/CHAEHAKOrqgQNuMvYzUQhppH0FgPp/r4OAg39vr9SSduRtwYfCPayBpTor9+ErmVTojnZBtBB2u9bUo6wCwJsvlUgcHB1l08CMpnchje/d1ctLJyR+II6wjwgFEH/GJehWkz/BMSTUxqHQs8DspGd1ut1bU0SPxwNMxnAwzB3yG/FoXVPxzwJ50d4C3zevu0ijTDvhv6TwpUxH4zOD88Pn2NfD19HXxVJtSyOAe+sD1tOP73QWFTbUnSndEIBAIBAKBQCAQuBmXRlCgWGGv18t/zB8eHmowGKjb7eaceEm5kB1R7PF4rEceeSRHmimah2XZq+YT7fccdlIKpDPCA5nudDo5lxyhADdAVVWZAJZEDBIDuaF2AHb4wWCQiTkRZ8j0bDbLbgxJuc6A2/+9MKSkTI6pO3Hjxo08F/TNhRUECIoKkkLgDgWOcPR0EOpGLBaLfLQjZJm2Idde9wCRot1uq9vt1uo5SPUii6WVn7YhybhMPAcekg9xXK1W+UQNXmOs7vaYTCa5PkdJZkmRmE6nNUcEa+JjY50RAkpXgefxl1F7J8Cr1Sq7dFgzJ+64IxBXEFvoP+/5nJbP4mf2YlnwsUwnKD+rvp4ueJR1HEqXhaQsuvmc8dlgvOfVQyjTM0r3gI/bRYfS2eACS5le4fNTih2BQCAQCAQCgUCgjkshKGAd39/fz0QbUj8ajXJksd/v55MbJOVILqkPnU4nCwPNZlN7e3uazWaZxPAsiAlFEomEE1kuCZ90EoWHfOzs7EiSHn744SwSEImnDgLRaIiVW9oh2tQ8WC6XGo1G+fnUgnDymlLKaRo+Dq7nuX4axsHBQc35wIkYHkl2EuapBLRBcUmOy7xx40ZOrSBi3el0am4Q+sw8MqeQO9aJQpAIK5BcP/5SqgsK7XZbi8VCo9EouwH8dAuviwHZph6EE1XEAfrEyRserUZQGI/HeZyMDSKMa8GFDHerlBF1yDNr4IUTPS3HyThr5DUzcBgw7+7qcJHCn+H72R0pzJ0TbJ63yUGAcMHaPJpLwPvvqRN+0sYmgcAFpvJz64JN+Qy/39ssP9OIaptSPMo+BAKBQCAQCAQCgc24FIICZMCjz1TSJ3rsRBpiDbF829velqPx3W43kwWi7B6xxL7vpxKs1+ts56eWgRcnlJRTH7zOwM7Ojg4ODiSdEDScFFV1UqxROiPWnnsOEUSMoB9ulyf6TF+pY4CzgAKGRNq5hrnqdDqaTCa1Zy4WC61Wq1qaAWIA1165ckW9Xi87Odwa74Uh6TPCgxcjpPaE1z0Ay+UyCxvUyXCHBAS4TIvwtAP+68UG/R7GRbqCpwPQb8ZHO7TJ3Hg0ezab5bG5S4I5dZLLz7hOyqMHS/LNvnBnw2KxyOvrIoc7DDzdAzEAccnFCcbm4gz70t04uHCYLxccXASgLf9s8Jl1Au7pE/66uxFYO6739A3EgE1uDt8DLoqVbgQXS5hjb4tnbVoX5sD3RyAQCAQCgUAgEKjjUggKnJowm82y+wBbOsf9cfQhooAfz3d0dJQt9p1Op5YXT70B6STa7sTPSRYpB5wsgJjhRQClM8v2lStXcu78dDqtkWEKPOIyICoPgaUd0hicVFLUj2KKTroAzgpInRd3hFhfvXq1Zvv353r0utfraXd3V4888kgWMVJKuV3SL6bTaXYWQC4hjTgEXCyBcEsn7g7qLMzn8+xIoN+0x3pQSwCHAChrRiDK+IkUngIgnQkPOEO8xgNryljoL0IPbVI3geuoSbFJRHBnhTsGEJWcOLMHvW4Iffb8f/Y6BBn4Pmf/IgIhBOEA4NkO74PPl7sCPPWkrFvAOnjbPPc8uEthUxpD+XzW3fuzCe5i2ZSG4YJIuWb+3NLpgFsmEAgEAoFAIBAI3IxLIShAbKnQ32w21e/3tbOzo4cffliLxUKz2SwfBwhh4TrIKzn5FBB0IkAkXlImhW7LlpQJNaQVMWI6nUpSdjJUVZUFgtlslmsLeE0B3AbSmQjR6/VyFHm5XOYjKhEjIK7ULGBu6He73c7ReiLgkKDyNIN2u60rV67Uit8xBtrFycHvjUYjn0wBAb9y5YoajZPTM1arVa0GBfd41JyUC2oVMH7SQBBf+v1+FlKACysesfc0BNbNiWVZS8JFII+I+2kO9N3dMRBwrzXBewgi7KPyCE4nrqWbgPndFBWHCJO+Qn9x5rhY43U2nCS7S4FxkTbE54Jx+WkH9GkTSacdnwuewVxuSgkoRQjfb4wZIu9zRB/4fHkfSgGmBGkzm+6h/z439KsUSGjL2ykFhkAgEAgEAoFAIHCGSyEoSKqlIUCAOp2Oer2eJpNJtpc7MSY6Lp0RFookerE5iAgW7dIa7WkFDz74YCbFnC7hudslOSNq72II/cDa789BFEFUwGnAM46Ojmq1IIi4ElHnOgguzgEnasvlUv1+P4segPnFou7ODE6D8Cg7/W+1Wjo4OMgFA/2kCwdjpIAma+CEDVKK6NFsNnOKBDZ/6Yzgs+a85wIL8wxcFEGkks5IKiQbh4Gn0kjKogcE3VNVcENgoecfzy0Js4sK59nqS4u/pLxepCBUVZXTcFhbBBKe7/UIfF0QJFwIYJ2YA9/LDu+3OzXKuhHuCqA/LniUjgMXfsoiir5nXNiRzlKHPOXB57QUysp9V/aDdUTs8/GXhUQDgUAgEAgEAoHAZlyav5jLKChWdj8KcTqd1o4YLK3ywHPqac8FCAhRmcsNoRmPxxqPxxoOh+r3+7k/5NOTylA6A9x2jvUcks1riBrb29uaTqc58i+dES4/laGMlkPiEAaI+FODYDabqapOCli2Wi11u92cBuBRe9qCzPO+pwV0u90s6nS73VrNg7I2AOtBSgrPYa7c+UAKBCdQeIFDh88FZJk5gdxz2gXP933EXGFb99oIHu2X6vn1ZQSd/eUilfd3UxS7JL9O6P0Yz7LOQFkPAFdIu92upba4awPhg7XBxeMuBZ5XznGZHuDP9mi/1zXwazatHS4Fr12wicyX9Q9YD3ch+Ws+bv/Mu3jBPS6wleNmzT11ZZPYU56AEQgEAoFAIBAIBOq4FIJCmb9MtNWt9xwzKKlG/p2E+7GSRO2n02nNCYCF3IsYSsqWc3/+dDrNzgNqEUyn03w6g5NqbPFEVnmtqqosKHAt5B9xA9LohfakMwILkSO333PaOdqx0+nk69brtcbjsa5du6bBYJBTQlJK6na7NZEFUoVQgxBACgf9RAhhLoGTt/K0AFIgSOPgfeYSQkmKCikcvEdxSRwZ7ipw8giZ9j75f7keoguhJH2Efnm0290DkEsXATyNhGf5P6+XwFoyXq9tUP5zocr7smmu/fPjfWBPIe4wZnefuBBQOkhKcu3E3wWbTX0r4e4FUhDKtAR/hgtoXF+Kg/4ZcbGtdCts+tnvYz+cl54SCAQCgUAgEAgEHh2XQlDAyk1xPSzZFMJrt9s1yzlHS/Iaxw+STuDkHcJANX6i9FjfITGeM93r9XKfiKYjIpDfvlqtck4+ZBgLtdc5IKpPqoC0OQWjtFdDniDviBOMj6KNCBmkVnDfbDbLxw/2er0sKjB+CDqpE4PBoCa4uEBC+glkmHlnDqSzYnwIH56mwFGVkEZSWChKybyQcuD2cz+ekLkoTwZw0uik1Ne0JPuQS9wqXhehdB64q2M8HmexwIUTd0Mwj6UzwG37LmKwZkTiGYMTZSffpYDA3DthJqJfOiD89A2vLQB4/qaaB17DwGsSuNDhRSjL91nH0lXkqRuM28fh6+jCkaeW+NyU7gXaYb59ncr0FB+zixWBQCAQCAQCgUDgZjxuQSGl9DxJ/17SfZLWkl5dVdVXppT+oaRPlfTg6aVfWFXVDz5aW04K3SUwn89rUXMnHn70IKcK+BGBkIbTvuZovrdJWgLRedwF/X4/R9IPDw/zfSmlmsjQ6XQyKUec8NxsxA6cEpArP7LPo+ZeP8LJO2KCF4lzd8RqtdLBwUGtaOV8PtdoNMr596SOcO/29nYu2AgRRGxArODEDRciIK2cboEY4vONGIOo4Ln8pGFMp9MsaiCs+OkLrCME09tmTSGAjMFJN+TUyaiLEraP83/dCQLRhDh7QUecIr6WZZ9K0WDTs7yGAW0xdup60BcnypvSX5gb3ydefLG8z10K/pr/7L97P6S6COCOAxf+2GfuUti0l11YcQHI6yLQnqcwbEpHoM9erNLXwO9zIcS/N/z1uwF38rs4EAgEAreP+B4OBALPZDwRh8KRpM+pquqXUkpDSa9NKf3o6XtfXlXVv7ydxjjFwdMAGo1GjoyTR070FrICWXfiQGQWy7yTF04ccMeAF15cr9fqdrv5mX70IyRtPp9rPB7Xisjxe1nvgAg7LoLRaJRPo+j1erlwIG0R+ad+AePxaDzkH7LmDgraklQ7utFfZy4nk0k+oYL2KWo5Go2ywwERgToQFL1EFBgOh9ra2srjot6EuxucTLugwTzRP8ShqqpyDQ0nlxBW2nAi644OdxDwXK9/wHW07y4Knkc6iYs3KaUsxED8SdugYKKLFqUAUqYX0Fd/DfGFsSEQlWkQPqc+RifmPr++LxGw6CMpJk6qy/1MoUja8jQGT/Px/rFHXTTxcbsggmjhDhTWw1OcSqJfOhLcMeKfK8cmpwRtecrFXSIq3NHv4kAgEAjcNuJ7OBAIPGPxuAWFqqrul3T/6c+jlNLrJT3n8bSFxZ60B0gDJNkLHEIknfCQAkAhOBwDp33LZIkoc1kUD+LjBIJnccoBwkRKSePxWIeHh5l4NJvNWm0BIu30C/s5aRyz2axG9lqtVs0FQJpEs9nUzs6O2u22Dg4OarZyiCeuBGpFOAHaFMVlrBBhPy4RAt7v97VarTQej2vkGkLnBBLBhTb9xAH6i0jkhf6YG0k54s86e/qBpylIZyTcazW4kwMhiuKSzLMTbe73Cv+k0nS73dzWbDarOSk4pYPn4fxgr3DaB/PFc4HvbcQbTw3wNA131/g+dmxKfSiFG35mnpwob3qd/pVpIqVrgTl0wcnv98/SeSkFLkpwHfuwFAd5Dv9cZCqPtiw/x75ffO48RcT7cN49lxV38rs4EAgEAreP+B4OBALPZNyRQ9ZTSi+Q9Mck/dzpS5+RUvrVlNI3pJSuPNb9EIfFYqHRaKTJZFIrYAfB80g2Ve+pZE8UGUIBIYYMSmfRaI9YQhxxQ7j7gZ87nU5OHYAsjkYj7e/vazqdZmJPfYXJZJJPg/AjGqfTaR7HfD7XZDLJ/fficB5dbrVaGg6HOb1jMpnkSDgkH1dBp9NRv9/XcDjMLgtEBSdpECnSPiDDXqwQcu2nWOBakJRrLSDuQNC9oCYkzSPPiC64AhBEmP/BYJBrZHhKBu6UMhrtxJO90mg0tLu7q36/nyPx/g8hAHfHZDKRpCwgsd7sB/YIe4mxuziFMNTtdrMrhQg5/3Wyeh6R9XntdDo1hw3FMak14q4af5aTbcaJSFC6HHxOIdCsn9fxcJHIPvc1Fw5z6Kkom1JM3GWw6Xd3LVRVldNr3H3iTgm/11MdEANKJ4KLGT5OF7zKdJW7BU/0uzgQCAQCTwzxPRwIBJ5peMKCQkppIOl7JH12VVWHkr5W0jtKeqlO1NovO+e+V6WUfjGl9IubiAKkHtJJPrlHaSHjHlGE6C0Wixxh9tMhEApILVgul1osFlosFmq325mEQhCHw2GNYEqqtU2k2iO43kd+d+IKMUTYcAIEKXJ4jQUnSpD4RqOhbrer3d3dnCbQ7XYzmfR/2Od5bqfTyVF3hAqi8Qgw7u7AObC1tZXnxsUdF12coCIMlATbRQFINOsqqRY999/52Z0hnhLCPOMCKJ0NrCmuCIpTIsr0+/2auLFer3MqB2vi+67VamkwGOR7ESNwYrCnPEefdmjDBR/fP6XQxP7BPeMnhHCNix2+7yXV3BwlYa6qs1ojrDXjLsUEJ+m+/12kQIhw4aB0B7H/vX2fF3/WeTUOfE9tErjO67uLC7iHeKaLI3cD7sR38UqLp6q7gUAg8LRDfA8HAoFnIp7QKQ8ppaZOvji/raqq/1eSqqp6wN7/Okk/sOneqqpeLenVktTv9ytPeYBMOEE5vScTHqlemJBIPGRoNpvlqDLklki/E13uheTgFpBOSMpwONRqtdL+/r7m87kODw+1v7+f0wzuu+8+bW1tqdfrZUeCnx7hEWQnQRBmz7nf1AeiyL1eT51OJxNoyI4TLaL8krJo4NFZ5ms6nerg4CD3kZx96awY5t7enobDYXaJ0FdPNYCkptP6ClznNQD81I75fK7t7W31+/1a8UNIK32gXR9rGSl3uzvOCifM8/lcg8EgF5g8Pj7Oa0MKhqfKeOoHa0TRTWpRQFLdzcEaufOC/m8i61tbW/noTlJUIP/UZXDnh0fdaddTVSDPZUqCi1TsJ++PixbuZPG+lqkFAHeL1/ZgD5TuAfpZ1ivxtriftfZrSoeD12LgHtbF56oUHVzE4fdNYC96DYayD5cRd+q7eCddvbssGYFAIHBJEN/DgUDgmYoncspDkvT1kl5fVdW/stff7jSXTJI+XNLrbqkjpxb36XSaUxpO28sRYnLuPUrvdQVSSjnCuFgsalHP+XyuVqulfr8vSTVnAOkWkE2PTBLhhTBDjHAnrNdr7e3t5bQD7sceDwnGqu5iQek2AGW0ttFoqN1u5xQEdzqUefcQXY589KJ6pBn4UZsewcaxcHR0pP39/ewYgOzv7e3V0hBSSur1erkPkP6SvLFOknLhRlwNy+VSk8mkdsIDzhTEIIpUQvKc4LkYhMtBOovCE9FnTWiPPcZ4Pe2m7DckvrTF+zVeKJM2OQWjdNC4pd6PbSQthvVw2z1pGu64cFEFV05ZENJdD74m/OzOjdIZ4Y6Z0k2CgEDajbt0uM6fv1wub0rnAdzre8sFCC9syX+ZB/a3iwheb6F0MjwafE68zcuOO/1dHAgEAoHbQ3wPBwKBZzKeiEPhfSR9vKRfSyn9yulrXyjpY1JKL5VUSXqjpE97rIYgCJAwSBHEjAKHRIwhJES4PapMdBEy7+4AyAq2dj8xQFIm4GWuPhZ8iC1RS4SL5XKZRQcnMx51lk7y2SHgRG6lMzLnEXonZpD+Xq+Xn00k1wsbel8hmCUh8poN5VGX7viYTqe1YpSkPzjx9rlmziB6RLBBOaee648bAaGEdIt2u60bN27ktSQdhbmXzpwpkHC3r0+n01pdCP7hluj3+7VjMn2/+O+IRYzLo+qAdfI6H37MJn11gotIUa6RR9wh9ptcBP75QSgqCy9yUoef6sA9jjKVwPcee2aT0CUpP2Nrayt/Rukrwp0/14UB/9kFFHdf+Ps+j5LyXvfjKB1c6/vvPIGh7FeZfnKJcce+iwOBQCDwuBDfw4FA4BmLJ3LKw09L2hS+e1zn63p6AJZ1SAykn3QF4FZ+P6UBku+k3u3wFDL00yOcLNEuOdWQu+3t7XzUI0cuEvWmgr9Hlz1loywe6f3mX1lDwYkT0XQEEaK6HrWHVHE9Rxl6tJv0CWopeOoCwkGr1cp1IjxazNx4mgFCixNdBAvW1KPG1K7ADeJpERxFCUHedBLFpgg3+8eFKQQWF3rc4YIbxgk9a1bWGiBNAUEBAaRMwSGNgvnBIYEoANn3/pP64gTeya/P7Ww2q4lWZcqLfwbYz8wd9zHPvi6saxnZd0cG6+npOaXb5jzyX46pFGPov8+rp5T43uNZm9beHT/Ax+nim6dllELXrYgPlwl3+rs4EAgEAreH+B4OBALPZDyhGgp3EuSzu+XcLcueT44QANnFyQBxcYs6+e9Y0SHS5PJDRJxgAGomuNuBqL2kWg63F00kSuvF55wEusUbgQBBgb5yPcIIeevS2TGLLgTgliDVgud4bQKvcdDtdvN4u91uPm2B+VytVvlECaz2jIm1cPKdUspODRdTWCeEHY5zdLu+H3/JvEBgy7l2Au1zu+lYSeYRgtrr9bL7g3oXjAexh2d5EUu/BuEI4uvHGiIi+D7ytXfyylh9juh3KeCklGpuHESIsi0KNJbiEi4BF49KJ4M/j/5DxEllYTwuWLh44uvqn18fR5ku4s91Il+KED5PZb/ZQ+wzr7FRpmmwjn4sadkHT/G4G1IeAoFAIBAIBAKBi8KlERTSaf5+r9erEVcvCAhxkM6s7pwCAfGGWEHGud4FBLfJ+8kNkF7qNxDFLk8RIIpfVVXOeYekeDSU/HKPDPNcxBNcAl4IEvHAyVeZTuDChFvjx+NxFmeazWZ2a3g0G3INUfUigwgH1B4ARPUZj4sT1L+YzWZ5jJvcGo1GI48Xksdcsb44EkjXQDzyug3MgwtMXqeAtWDefb1xueBgYG7Lmgj+bEQuUmXW63Uuegl5pd8ubLhIwHy6IFOSbebeRS7G6NF3f90FC9bD72fsi8VCzWazdkQpbTKfXquAeXNC7qkTkPdNopHP43mkvHxt01h5Zpnu4XUh+MywV91h4Z9ZxkRb7qDwteB3d/RsSjMJBAKBQCAQCAQCl0RQcHJAFB5CCEGYz+e1Qo3c54UIicZT54BjIUejkaQzK74TM7dtTyYTLRaLnFLggoJH6CXlooJOlol+U1vASRNkEqKEqDAej2+ynkOAcC4gIkDc5/P5TUSIdik66NHWstaEuxv8xAhJtXoK7XY7P8ePaKSPkDjmr91u5xQRyK6vD6KAE0+vNeCkHhGkrJVQ1peAiAMnwmU6i7s/IN5+pCN9dNLv0Wrax+3SaDSykIWAVUbSncx6HQMn7f47ThWP9NMH1haXQhmxR8AqCbM7ENgT5QkkXn+hnDe/l2d60VMXLkhPcsHD2/TPhLfNnmH+fJ7AplMoeN3FjTJlwZ/j8122v+n6cCgEAoFAIBAIBALn41IICqQUQHaBR0f9D30nbTgKer1erYI/BQwXi4Xe9ra3ZTJf1h/AoUBBSM9jLwWAqqo0m81qJIO2vDgcZKuMSEvKVvlWq6Vut6vt7W0tFotafj8RdFwG0llKiKc2cD1zg0DAEZwewaddT9HAwu/5/V7g0usW0KaTONqh0CROESL61EDwlIBut5trFyBO4HJwm77b553c8kyff6/BUEa2ERxomzb9VAt3FRDNp+2UUhZWmMN2u10bl6eYlO4BTy0o6wKUpN2dLP4ZwMWBOORj8ZQIXzsn/7THnPuc+esOFxW4hn4gCvm4OQXFhQEXCBibj4vnuPhSpob4tT7eMvXC65ww9rKtMgWj7I9/9nwuA4FAIBAIBAKBwGZcCkGhqirN53P1er2azZ4/7CEqbgeHWJCXT+S1jHxDxBaLhRaLRSbxHqXf3t7WYDCo5YlDNiFFvV4vuwNwPhAlhshwWsB4PM5FB3FAdLvdXHTw4OBArVZL9913n5bLpR566KFM3LzmQaPR0GAwkHRC6CDonU5Hi8UiR6UhQoyF1AeuddGAGgucONHv9/P80HdILOJAGfVnDSicORwOa7UsIOUcEQkRhey1Wi1NJhPNZrNco4G5gsT5KRFeO6HcN1zD/S62lG4BxBZSMtxpACmnDkRZf6O0+zMu9pzPjaTatR7BL+sCSPXjJDcRa8QI7mUtgYtfZZQeoclTiBDh3MXAf0syT58Qyfg8IdLgdkBMon3adrdCuYaM2V0vXEOf3alRigGlWMdc+tz6++7IKO/jZ4Qyf24gEAgEAoFAIBDYjEshKKzXa00mE3W73RzZXy6XOZrvlntSDZwAzOfzHOGHuFF5H6JduhzKwnfNZjOTdydJFCiEENE3ai7QX1IEjo6O1Gq1NJvNJKn2nnSSVkEqxXq9Vr/f1/7+vg4PD2suDSfLfoIBhJzCj6WggJByeHiYSb6fGkGfabvdbms4HKrT6eQ553SHxWKhg4ODLK5AoN2aj92cfnoKCa/jhECA6ff7+ZhInBSejuJ1E7zmgh+XyVy5TV9SLfLuUWg/htDJsB+JWBJ+5rfT6dTqTECaIZ+bLPIu8JQuBF9TdxB4MU7Ir4sHrAH9Ytyb6jL4HGxKgYBYQ9xd0GAPehqIOy1YU/YeQpd0UsgUQcHXxd0cm9IOaNtFGh9PiU0pDS6IePFJT3FibXxOQIgIgUAgEAgEAoHA7eFSCAqSakf9SWfWf7fcQ4I98gr5drs5aQG4GrBjQ453dnZyxX+e5eTTI5gQQvrmxxJCSiDpOzs7SilpNptpMplkgsKpClVVqd1uZ4JDNBxCC3FDmJCk8Xic0zKq6qzmA+P1MbgNX5IODw+zCwGBgL7yPEghaSKep+/klfEh3OAmmM/n2t/fr4kGFJz09AHGwPwiYCAcML88090duAS86CFk/vj4WJPJpJbawLx7/YUyrQBCz8+gJLFOiFkzJ8V+LXPK/qHdsqif7zPaYP0QapyMe9QcJ4wT5VI48X5vIuTn1Rfwz5U7GGjXT0hxYcdrbvDZo46I7yN/hqekMBfuSOKZvp/LNIQyPWSToLLJ4eDXu5ixaX4eTdQIBAKBQCAQCASe6bhUgsJisciRfV6DoPnxhPzXI40lqSqjt5xCQLudTkeDwaBWnA5y69Fbahy4fR/4EZakXrRaLV25ckX3339/dgn4EYQUjGw0GppOpxoOh9m94DUE3GmBG8FPT5DORBdqOOAk4BQIdwhwvaSb5mu1WqndbufUDIorcg/RfMYMqZVOTseYTCY5It3tdtVqtdTv9yVJ0+lUs9lMo9EoP0OS+v2+VquVFouFptNprdCkp0k4afSUFOaItAki9psq8pd5/KX1/rzfS8IvnQkKCBi4CjytgDWhLy5YlH0qc/k9bYX2nPC6E4a+Ub+i0WhoNpvVxCVEIyfa5RGbZYSf/nEdbhlENK8TgUMFNw/t4ioC7E/6UNaa8OKgpYOBn12YYK5cqChFlEajoW63m+eAdXBhkjY9PcVdLpH+EAgEAoFAIBAInI9LIyg4OXQi6dZknAIULHRiUuawu8OAwoH7+/uaTqeSTogu0XPahogQpSdtAkK5XC4z8XUSSGG/MvoN2YLgSSdEGscANRAgMbgYpPoxloPBIBdk9NoMbkPnX7PZzMTd61F40TyED8QHUhy63W6+ltoJbn3fRNj9FAl3kbgIROqCu0pIteB4TeoeUDuBMbjzhOchrCBC8QycFsDXqCSFZf6+E3hqQXBiAfd72oUfXbmpvgPzdd57knI7tMt+7Xa7NRFoMpnUovqsse97xlSeJOHiU+kMcLGijNLTXlkTwtedU0cQ63ge4oGnUPhclfPmzg7u4fmlu4R5ddHBf3dXE3vQU1o23VM6KNgL7D93TgUCgUAgEAgEAoEzXApBAas/PxMRh5i0220NBgP1er1a8cBut5tdBtIZAcKBQHoBBLzb7WYy4Xnh0lnk2fPosWDTJyeZHr0lD5/XB4NBrgeBu8HdB5BCjyZTG8LnwHPs2+12FhgYkx+t6VX3G42GdnZ2Mslz8sXYcBl4oT/qFXj+PVX9SxIK4eI+bx/Bgnan02kWTiBpTo4RY7xd5sCL+pEy4pFod7Ewf36MJfvBo9K+V7yehNcy8Bx8npVS0mg0qp1kwDMRfLy2A315NFGBvpQnV/heIZWAuWL9pXoE3Y8ZRSTyk0HKdAjfG17vwYWEsu+sUekW8X3hThivm+D7yMXClM5O+qAdioee118XJUonA+vK/ODeoLCkf+79GaUDgucEAoFAIBAIBAKBzbgUgoKTGoiH27YRFDqdjkajUSanEIUyz7mqKnU6He3s7Gi9XuvBBx/UdDqtpQHM53PNZrNMiCBcVLGXzqLsZW2CMrp6fHysXq+nnZ2dfMQgqQzz+TwTare493q9LAQQZXciByF3suQuCOaFMU2n00zQSF3odruaTCb5RAjSCBATer2eut2uFouFxuNxFjgggJtqDHhkt/wZVwcCC5Z0J+U4CWazWU71oJ4CQFAo56wkxABCTg0FXAa0P5/Pa9F6BAhIuYtIvhe5HhGLuShrHJTOgE2igrsRSpTHSXr7iDqIRew52vW5QNxirV0gYX18Psu0IT/m1N0AzKmnB3lakM9FeQSli2K+drThY+z1evmZ6/U6C1W+NmWKw6ZaCT4fnirEta1WKwtwzKHv+XK/BwKBQCAQCAQCgc24FIKCdFaPwKOf1A+QTkhAt9vVeDy+Ka1BOsuLdmIB0dvb28uF+yCZVXVSpJCoqBeS86MEO51Ora5D6YZwd4DXS2i1WtkhARmCaFPAELu4R2y73a6Gw2EWISRlSznHM5apFYgLCAee4w+x5JjL7e1t9ft9DYdD7ezs5JMt/uAP/iAXWJxOp7kOwtbWVk5F8cg5Tg2P7NJfT5PwCLuvF44ECCg1GQBrgquB93EtlDZ45t3dCm6f934R5XeRyElkSdT92EgXpRxcw4kg5SkULgSVKQCemlFGzn0vu4uDZ7J3SCuhRgd1MNh3vhdKocrn0kUzf4/59dQgBCon5u4AYmxlbQRf/zJ9AUGOI1oRInyd3O3gAo+LYPSzPArWa4GUR2+CR0tjCQQCgUAgEAgEAme4NIICeeGSMkHnaMVms5mj+hw5yOuQf8QAiIUTVaLyTjSlek0AzwPf29vLkft+v58j3F7bwYvJ4UJwYkyROogVZAYrPWSMaCn56I1GQ4PBILsb+DedTjNZ7Pf7NaIFQXaxhbko7eXUTmi327WTFK5cuZLTM6jk3+l01Ol0stOhzLfHTk5KAXPAfRxb6YRRUj4VwElzWZfAaxZwPekLrK3b85lfnucCgc9VWQATEcuPPnTwbMj29vZ2Hqe3z35knJBZ32NlGgV98iKOCCL+fL9uE9wpgOBCSkxZvPHRagfglHAxgXn1VIKylgJz7etMG6wze5DPTnkChn8+Ukrqdrt5nt2xUbqESvcKfSoFExcX/Pncz3eIjy1EhUAgEAgEAoFA4NFxaQQF6eaoNUcCSidFFO+55x4Nh0ONx2MtFoscufZj9SAm5I0T8UeIgGw4WWo0GjkaSt0E2qMeAOQQZwEkxU9wwKJNlJpjGBEeer1ePq7S7fjUd5DOjn/sdDqZwJGOQUFFqX5U4NbWVq4lAZmUlPsOSXJXAQ4K6lT0+/0c1SYVBLEGsYN5YY0YZ7/fzyd0QGKdwNIX5pp5x53BvCFCIBgxdsgu64qzg+i7pJsEIz8pwfcXJBSi6+kImwQTJ9wIWK1WS4eHh7mWgs+Lk2tP9YC0OkHnGp6z6RjIci7L/pWpCdzDEZ48x4UE5tJJeVmPoBy31ySQVBOpXGhgb7FWnkbhtQvKky/cecBzvVYJ67cpbWSTEOTrUNZyKNM6PJ2jLNwYokIgEAgEAoFAIHA+npCgkFJ6o6SRpGNJR1VVvXtK6aqk75L0AklvlPRRVVXdeKy2RqORrl69KqlekV5StuxLyiQYAgYB8Bx8Ipb8azab6vV6mkwmN5ERRAny+o+OjnKKAxH9drutyWRSy4mH6JGqUVVVPsmAvuAGoJjjer1Wp9PJtQtms5n29/ez+OCRVtwYkHna9JQQj9DjKGi1WvlEB05QcCLFCRZOnIj2M7/dbjc/D/GDMSJIrNdrjcfjPEZEifl8flMOutvs3U0AWcPmTmHKlFJ+Pg6P5XJZs8N7OoQXxHRxgHGV9SCcZLPOrOumVAD2IHsFAcqdE8yJ15xg3E78mXN/BiIM15ViBvPA9WVeP9eyvl5TAjHLU05cOHAy7a+xbu7G8Rof9MXb8loF7GWfD0QFF/J4toty7EnqOpR9LtfF59WFAl9fr/8ASpdCmU5xniPkMuJOfhcHAoFA4PYR38OBQOCZiptDe7ePP11V1Uurqnr3098/X9KPV1X1Ikk/fvr7Y2I8HmdS5EctQrA4KcGJhRNtCAAkyC3nkIXS8o3lvdvtqt/v55QCjiPECt/v9zMxk1QrhigpE2qi+9xb5qN7lJvjI0nnoEaE2/5xGOBs4FqP9Hq7FGLkek7G2NnZ0c7OjobDoZrNZs5P95MXAESU8ZX1IRAuEBi4ptFoqN/vazAY5PuZY9JCKBDJ6y5W+Fic/PFfIvl+4oaLIogKbpt3oujvbSq6x7O874D3yug5AogLEew/SD3P3BRFL3P1S5JfCiDen9JJwH3MF6kPCEzluDf15bF+9365wOAk3t0a5fteW8P3tx/NOZlMNB6Pa4IWop6npfj+cMHIhRS/zoUOrsM1U86Lr8Nd5lC4I9/FgUAgEHjciO/hQCDwjMOTkfLwYZJefvrzN0v6SUmfd6s3e7QVELkk/QG7O69Ti0BSPhnAbfmeuw759YKCkHgKQHpleAoKtlqtnGZBfQOIG6QR0cMt+RRmpG4BZH93dzfXWZjNZrWCjoyD6DBOBbfFAyfMEH8iu5xywXWIHsfHxzo8PMwR916vVyOwuCqWy2VNsIFAQ9io70DqAyKDVCd8iBNlBNzrKzCXkDjWtLTYb5oDT6WA7KeUsnjhaRBekNGJMH2gPfrtqQSLxSLb+QeDQe4vNSfoJ6S1FGrKEwo8baE8NpLf2QeAOfQCilzjc+gpOohhCGAlCXcxwEWTch4c5b3+mStrKWwSaBgD/SlTDDx1xp+F48NTLvxz44VK2XeeVnJe31y0og3SNu5iPKHv4kAgEAg8YcT3cCAQeNrjiQoKlaQfSSlVkv5dVVWvlvSsqqrul6Sqqu5PKd17u426rR/SwWtY+L3AHrnabqcmp7/RaOQCi0TKea0kodRjIPLufXDS6rUeqG2Aq8FJzPb2dq6NQJoDUVGi8pxcwevY+Wlza2sr38fRkJ4Xzvu9Xq+WWuD5/oyBYzZHo9FNwgeiCpF3UiNILWi1WrlYJGOcTqdZKIAcQ9gRV073QSZmbvGH4HpFftab9fDCgmWUmXFBMp34usDBnsAFklLSaDSqEVjWnPuazWZNNEK8ajabud5Eq9XKKR5ukfd6Al7jgdQDFxrYy4gn/ruPjVQAvxb4XHgtAPq9KeLuwgTYVPMBd5CTdO+/uzN8jJ7G4OlLrFHp+OC5TvC9XocLNH6/Cx/eRlnbwf95/YjyWaw/93vxzUuOJ+W7OBAIBAK3jPgeDgQCz0g8UUHhfaqqeuvpF+SPppR+81ZvTCm9StKr7PeN15URwjLKS+E+jjiUVIvITqfTWtSUKCQkBcLkheNo++joKNdOoFaAky3aI/UCElKSHc+9h5wNh8NMmj0iWlbN98KBfrqBk+xms6nd3d1afxEBut1uJkq9Xk8pJU2n0yy4TCaTfCoDc0cffE08Gsx1iCBe38GPCPS6ABx5SdqDjwHiyxhBv9/PZJq14tk+z8yjpx14ukEpwEAa3alQ1pHAncIcs58ODw+1Xq9zzQscK4gsLiz48Za+L/nZSayLAn69Cxu85iIb8HoAtOmilM+P96GsN+DPYX4RBphXnuepBPzM6RLAhQs+Xy68cL/XJMGhIp25L9xNskmMcIcDnyW+H1hbF7XKVBfacNHEhZC7AHfku7ij3pPVv0AgEHi6I76HA4HAMxJPSFCoquqtp/99W0rpeyW9h6QHUkpvd6rEvp2kt51z76slvVqSUkoVf7gTHYb04xTAneBHyHn01KO2ZdS1rL0gnV+Aj8J2FEPkNYi9F01sNBoaj8c6Pj7O7gTP0aaIIGkLjUYjt0n6RJmz71FtorOScs43FntIIsSZdAqKS5IuwakUPKvf72s6neZnUYSSXHvcHO12OxN/5tWPcCRST1seAYY0OrmmfYi5E82yOF4pLhH5RliAaDsZbLfbmeQy57wGYffcene0sE+cqJcij+8l5svTZrgeUYTfWb/SaQHRdcEBhwzt8OzlcpldK8w/4pSLLCX59dSH0kXgjpLSPVB+JhgHY/GaGr5u7q5gvhg7bbkgwTNKhwJiBs9wEaLcH5B++u6fF9JMyhNB2IOl8OefX9q6W1Ie7tR38U66Wm26JhAIBAKPjvgeDgQCz1Q8bkEhpdSX1KiqanT68ysk/WNJ3yfpEyV98el///OttAehI5LqRIA/+CE1kHKi+xBfXu/3+7UaC5JqBfSkswgxZNtt1ETX/cQASCyEgyMOG41GPt7So+Vl0b5Wq6XVaqWDgwNJJ6kOg8GgVpCQfhH5r6pKk8lEq9UquwggQxwhCfkhOkz03eeodGfwHOZitVppNptlp4EX3vOo9nQ6zakTEPbd3d1aWoDbx53cU/ASUk7fEHqYL0QXP8WB55MSgTjiBRqlM0fA8fFx7iNFJBnX6d7N68Ee8/mXVCPAPm88D4FEOhPBylQZnonAQP+dQHtNCObD60W4YIDLxd0aPq7yiEW3/CMcOFlGEGGveXFEL/zowoiLebznzywdFswZcAENgdAFNMQm1s2JPfsBocB/d5HGvyPoh6ea0KbPgYsJ/NxsNmunx1xW3Onv4kAgEAjcHuJ7OBAIPJPxRBwKz5L0vafkYFvSt1dV9V9TSr8g6btTSp8i6f9I+ku30pjnj0PUiFAS4cQF4G4CCBu2cGzqEDxSHlarlYbDYSZqkFePFNMHjn/0oxidLHpuOHn0TqQ9UtpsNrOwsFwuc38ODw91zz33ZAJDcUMi/8zBcrnMqQlOmiTlYo1uP6fAIkKEp03gpPC5lc4i74zZ3RxOMpkDSVk06Xa7eV68kCT9RIRYLpe5jgQkGqLvggAuDCLyXlOBeabq//HxsabTaa5fAfHsdDo3CSeeSsEaOZmn38y7iyLu0oDMzufzc0Und0qwXxaLRXZJlA6U8ohHSTl9AvDcTRZ8RAHW1cmxn4jhRNkFASfUAFGHZ5enWdCuixjenv/OOrhA4ZF/dxnwuh8XyXq464b6GsxbKX64+4RneDrEJnHtPMfFXYA7+l0cCDyV2Lp2VWqcfwJN4OJw/OCDF92FuwnxPRwIBJ6xeNyCQlVVvyvpj254/WFJ73+77S0WC731rW/NufZu/ZfOiAJE4/RZtWJsEFCiudjFIerdblez2ax2SgT3cL9HRGezma5fv6777rtPR0dHOjw81COPPJLvwY3ACRCAiLV0VlwQQgZJXSwWmTQ6aYKIOsnzaCrjdRu/pOyQ8DQHzx930k+aiM8rKRj0mf6XNnSvms8JAj7nLs5AFCnS6HUn3I0CnAxDoOkH99JOv9/PpHE+n2s8Huc5IWrt+fDME23j6PAoOuSfcXs9DVDWOmCsZboGZJX2SjHECbyT+pTOinqWBQ9L+z2vcZ+7eTxlwj9DZQHJclz0vfxccT/X+rPY10TzcVJsqvHg+7k8VQFBwYUWTx0pCzy6+OX/fF1cWPE59dSk0pHjYtPdUJTxTn8XBwJ3FI0tbf3hP3Tu2x/xH/+7PmX3D57CDgVuBQfrmT7mA/+qJCnNFjr63TdeaH8uO+J7OBAIPJPxZBwb+bgAIYGoQK4phkhUkdMLPHrsue+QgHa7na+FzDlRLUmDW9zJ9YfwDAYDSWdF9SaTSY1oQNwhV5zKIJ1F/8tihZPJJLsOer1ett8fHx/nkyF8TB49deLsRH+5XNZs8U4sIWk+x+6m8Px4xBeOxyxTArCCQyAheZBD0hHcno6Y4ULGpujvpuKDOCdIm2BtnWSXtQrcOeAigY+lTIHx4o6sUUqpJgD4OnsqAO37GtGO1xzgqFAn0CWpLuemJPsOFzi86CApMQhriCO+Vu6YcNeGz5GPhX0jnYk//nkp++diU0nYXaTCGeLpK+x7v87dNuXecQGndB94jQteY158D/i4+d3FpEAgcHtYfcDLNL/W1M98+b+96K4EbhO7ja5+8Ee/S5L0Tx96Z/3E33kfdX7/UMev/98X3LNAIBAIXDZcGkHB4SSL4/mksz/4iYxDwIk2OyGCmPnJDJJq1eMhxB7VLKO7EEiq7ZfFHHm25/cThfZikrQP2ZtOp7r//vuzPR9BwUUHSZpOp5rP57nfPJMijK1WS8vlUvv7+5rP57kug59g4OKC99XnFBKGZd/t++788DQJTsegT7zvqQTuCJDOItWss9vLGTN9J5rNuuE6cIJcCgtVVeUUEy84yPO8r2799/GyPyjmST9IPfHUDD9SkbGzB9xtwNh4z+sZINowz9TK4HqEB4/Sl7UHnHj7npZUmwcn/O4GKQtE+lr5PvA2mR+AsOVCBcVS3dHga+9OG4RDTzHxdeGfj9P7zOfLRSs+++wxxCnmA5cK+89dEt6PQCBw6xj95ffUcTvp5774ay+6K4E7gL9//Tf19//9b+r9f+NDNf7m99K11zyg4//9uxfdrUAg8BRj/b4v1eELu+e+3z48Vvc///xT2KPAZcGlExScYDrBl87y3KkdMJlMNJvNNt4v1SPbXoAP8kcxR0gcxev6/b6ksygpr0NqeU5JznimF3ujDVIveN5isdDh4WF+jzoATsjJ1adwJK6HlFJOtcB9MJvNarUSlstlJl+cNkEhwclkksUAJ9AQ4MFgoHa7rX6/nws2lhZ8d0bwO4SQuXPXB32BYNIu8Pv43YUJ5pZreK4LOPSt1Wqp1+tl4Ym9g+vEn+ciFUKEp9Z4zYD1ep1TLtgHkN1SvPDaEwhbPJdn4qBx5wh7zfeZp43genBhxvegCxEIH06+j4+Pa+KU2/5d/HCHCP3x9nken4tGo5GdQH4NnxlPzWDOfG1ZR+bMBQ4XBcvPnc+5pwPRPwQGL07qBSoRfkrRz0+TCQQCt4Ybn/hemt6X9F//5pfquduDi+5O4A7jx9/l+6Qvkd75pz9e2699bz3/m9+goz944KK7FQgEnmSkP/FuesufGer9PvKX9DXPec251/3ItKm/886fmn9/9k9NlH72fz0VXQxcMC6VoOARy/KPei9w5/Z0PxYPSzqkDPJBNNWt0OVznKR4gTxIkBMn6ebIPu9Byon28z6vIQxw3OR0Or0pT90dFi5U0B8/6cEt7xB8hIh2u53/lbUhgLsoqIsAEe10Our3+5lsevR2E9FiTp28OwlcrVY18orAg9DBnDOvXtfivGhxVVU1Us86DQYDDYfDWv79fD7PpByHgx8z2Ol08pp5kUNPJ6AwKHvEn0nxTyewnrrje5JnMm7WnTQF7mVPeGpPKSb4enhRQ08V8vQBFxS8vU2fAyffLvqUKS7MCak3nnZSOiDKAo/sTep/sC89FYf72BNc76kcm/YiQoanNvi8Osp0E3fIBAKB83H4se+pt/0J6as+5Bv153tzSSEmPJ3xm+/7LdL7Su/4bp8kPfhCvejzf1mV1ZEKBAJPH6SXvUTVF9/Q6/7wtzzmta/orfS6z/qa/PsHf9AH6fW//J61a170ub+o6i6oTxW4PVwqQQGyAGHADu4k2usmQJqoSA+Rnkwm2tvby4ID0V/PoYc4um2fPgAICCKFVHcieAE5+iLppki2EzUnXxSIxHlAbQAvEgcR9fxy5qHVamlnZye3B0Guqkrj8VjL5bJ2aoG0+Wg/yDbkyU9roB4E0Ws/AcOFHYQSr2nga0XfiZiXdRtwUviaIc54vQtECu5jznxOer2e2u22hsNhnr/lcqnJZJLHScoL4+I6Cmo6GfZaB9PpNItUzB9CBE4S1gOBAVcCc8YaeUSda6gZ4qkNZeTdRTGvK+DCFO+32+18AgZAsPD0CPrMmLygIf9whXhRQ37GheGfXT47kPnSkcB8uEhQpmH467hbPM3IRQFEKxfkEEIQatg7fO7dcbOphsUmJ0ggEDjD4ce+pz727/2QPvPKmy66K4GnGG/4M98oSXrJ23+cnvuRvyEVwm4gELi7sfWSd1LvKx7Qf3zHH3tc9//Ai39IenH9tXd53l/R8fGdP0HrHf/RXMe/8dt3vN3AreFSCQrSWbTSyTOEcD6fSzqLXlND4PDwUJPJRIvFQrPZTNPpVNKZ7XyxWNwUxYVA8AyPeDpp4TUirF5Abr1e5+MNIZVES1erVSap/NeJjkdMPQqMTd9dFwgqkEDEE55Nm04Qea/X69Vyzj3SD4GeTqc5qtxsNvM8evFHXue4RHeGeJQe27t0lv/vaQaIP55CUea6lxF5xuQOAPZKmSLiJBFB5Pr161qv17px44bG43E+FUI6I88ICYgJx8fH6vV6+fm0PZ/Ps6jAHPraIyThPEAQ8zV31wR9YKzUxnBXhaeVOAFmPj2dgPkALk4xp17XgLnFtVC6Cei317tg7suUH45sdVGD670d5tPf5x5Iv6fulGkmLtBwrxfjRFSgfY5uZU1cVPD59/3n+ysQCGzG5CP+pD7p//k+vWr3rRfdlcAF4tff69v0wf/tg/TQtK/dP/c7F92dQCBwB7D9grfXC7/pjfrq5/zcHW33N977W+9oe+BvfPN76o3jZz/qNb//fS/QfV/+M0/K85/puDSCAkKCR+whvJAcIpC4FXq9Xo7uSvWaB9zvPxPplJTbgXhAzJxIe80EqV7MD5LH89wW7+0TecdJwXXtdjsTI6zpPNOL2zk5po+kC4zH40yUPL1gU949hB2SBGnzQnce8faUhe3tbbXb7Rr5QxiQzopknldwD6HC6wpA9t1ezhzTJ69n4dHsssgm5BOxxesRNJtNPetZz7pprAgoZd0DnutpAbS1XC4z2WfsjNvz/514+xGKXMd+dkGINWR9XNziX1ljgXVB5Cn3vJN09qQ/g3nEFQEZ97Qb3/uSap/Nsm6EH+nK88tjF0uHjM+xz6e7Ntwd5HPrY2RfbHJCkPbj/WMN/BkukJWf50AgcDNGz90KMSEg6SQSuahW+ie/8sf1n3/v3fTsD/+Ni+5SIBB4nNi6ckXv/wOv09+5evcUX3202g7gpz5T+pFPfLfHvO67f/OP6YUf/at3olvPGFwaQUFSLWLLzxQHbLfbmVgtl8tcbDGlpIceekj7+/u5MKGTEsjR1taWBoNBJlR+woOTllII4BqIiNuoN9V48KJufpwehMbzxfv9fs0S7jUYECwoiAgZchcB/7y+BMS/0+loMploOp3W8vaJ0lK3wMUG5n69Xms8HmeS1Wq1NBwOJdVPFKCwpR+NSRtOiomAU2eAWgGkiNCuF4mkHdbYSTFjJeUDqz2C0nQ6zULG1taWdnZ2tLOzk6PaKSUdHh7WUgXcMUL/mQsXnprNpvr9fs01wnpSGJJ5Y669HgPpDKQQICb4HPgcQ9x5jnQmyNBH37PuaMHl4JF5HA8u3CAm0HZZS8GLY9IWr/tc8RrY2tq6KbWE1/lMedoQn9Py88YaMS+bakggzLj46J9dF+dYY+4t15w+hKgQCJyPxZ//E/rmz/5ySe2L7krgkqCdmvqn9/6aPvf6z+tPfver9PyP+rWL7lIgEHg82N6+q8SEW8X7daT36zz299LnXPs5/ff/fe+57/+7P/7HtB6N7mTX7npcKkFhPp/rjW98o3Z2dnTt2rVMAsh/dvszf/RDxo6OjrK9XKrnRCNADAYDrddrjUYjHR4eSpJ6vV6ODkP0iD43m00Nh8NaVN+juk6q3fHgDgEXL/xYwq2tLfV6vRr5gTR5O6X1HEu7F4UkIu9ugl6vlyPgANIISYV8e60FSKATPQoReqqHHyXoxJJxQB4h1vSddeNkBuZ1Op1qMplkgkvUnLlB1Fgul9lFwjid+JEKQpSZdI1ut6t+v59rbPj7TiBpwyPpuELcscFYmauSgHvahwsl7jbwOSP1hJQK39esmdfDKFMA2CP0GacCaULu+pjNZrUUG0Qo+unj3lTHwdMrcOyUBQ75/Pk8sp8RdYDvF/ruBRzdMVMKFp7i4YIA17PPNvWtnEtPTSkLaAYCgTqOug29tB1iQuBm7Da6+qX3/nrd/6aTv30+4sv+rp71VWEzDgTuBqRmS//mF79Xz+Tiule2evoL/fG57//R1/2QNv11+AE/8Vl68Se99snr2CXGpRIUIEBEsoFHU8tibkSqITplhBVCAwGFDBLRhfRQCBACenx8rMlkko+mhHhsKmSHoOBFCEkDQOioqko7Ozu1oyERFPb392vRZ6LIjAOxo9/v3+Qu8JMSSJ2AsG9vb9cIpacM8KyyVgGvOyB85P5vst1D3BBjfP6Zd+lEAEHcGQwGeQzUNmBNOfaR/vOsbrer7e1t9Xo9dbtddbvd/D5OifF4nFMleH6/31e3263VqOB9d7IgSNAm+wLhhP+6QFCKQuW8lm1zvafjsMe9+Cjz5fUm3IXgjopNaQS4efjcIEh47QBEHda1FMQY6/HxcU7dYc68foOLEJ4q5Gky50X8Pa0H8DnxQom+Hze5hrx+hu+Z0tXAZ8o/By7QbEqtCAQCZ6je56X68a/8aknNi+5K4JKi12jpHRsnzsJf+Lx/rdXfPdaHfOKna/vHn5l/bAcCdwUaW/qu3/vv2m08c8WEW8ELm5vn53de8XVavOXmEyw+8mUfrOMHHz57Yf30O0HsUgkKTnalsz/8PYIOyoioE0RJtcKOkAWs3U4W+BnC5+1CFr1+A/8gW348n0frIcSTySSTx06nk2spIDBApmezWe1ZZcE7B6IKxN6FFkgYUX6vswAZ5BQH8vgZB24O6cxN4cfyzWYzjcdjrVarfIIC48SFALl1gsfPuC8gei4CSaodEVk6HiCqvV4v18/odrtZfMKlAWFH6PDaD4C5GI1GNcLqe4g6FswV/Wft6T9FKHFxeBoEa4dlf7VaaTQa3ZQ2Ql/pv5+m4AVB+Qw4SactUilciGCvlON3sl/uLW+ffUg9D3d1lCkBzCFrwRow/k6nk9exFN9weSDAUUvF9yXrg7ODuca54WJiWViVVBRPXeEz45/1cp+SphMIBOqo0om9PRC4FTTTlpppSz/+LV+vD/wLHy/9fKRCBAKXDVs7O/r61/1giAlPAFupoV66+e/GH/zlH8k//+SsoS992f9Ve389m9/1R+9eGkEBYuNFAUtrv9vnS0s4UXvytfmHi8AJL9FaIvnY/EejkXq9Xs3STsTYhQRecwEBwuW54K1Wq1YIj77wujsvGLuLIB65ddGD+YLYcW9JHBkrc0MNB67HteFpFEdHRzmiX1VVdg3wPqdt9Ho9pXRS2X8wGGRbubsn6CdEkWj/YDCojc+LD/pRnjyfApA8k9M9EHHoo4sQZRE+P86QtSr7We7FTUURvT4G42W/Qno93cNTKmiDPVMKW6X7xtMN2BeISPzMePhHTQ32OGt7dHSkbrebf6eQo7sV6BuCCfUSPJ2EcfnasLe81oETf/awCynuxPCxLRaL2jPLWgfl/i7rKrjbwIts0h9Pj+Dz6v2jPzw3BIVAIBC4c/jh//QteuWH/hVVv/i6i+5KIBAwfP6v/JTebjvEhCcbL++u9fLf+O+11/7Qt326Xvzv/kCStH7jm1Ud3exyuOy4NIICcLsxRKUEf+zPZjPN5/NcI4EoL2THC8hBJiAbkCvPS3fi6Jb15XKpBx98MOfvTyaTLAg0Go1Mvon20weio7zuEXscBt1uVzs7O5pOp5lkcWSh11twsQBxwyOsHiF2cs29Xn8BlDZ4F3DcBs8/Is9O4kjBIELupNiJ6Ka0Ad5jDZmf0m0CoaY2QnnfdDqtCSU4GSjGiPCwXC41mUwymfYUAiz+tMGY/dhG3BrMG2MkJaaseUGdDV83RB3mzcUL7vHUEnfQ0L+yBgHglAZqPfjnx8k9PzOv7Av2jhegpE0X00qSj/vCTyahfRdMfCyeUsF6SvUjJ1k3d+24ELOpbgNtuchXils8lxNVmH8EDj/SkyNoA4FAIHBn8F+/71v1AR/7ydr6yV+66K4EAgFJ6WUvUT/9vKQIolwEfufjvlb6uJOf/+Tnfbp2fm8mSWr89K9cXKduE5dOUJDO/vAn996JmnSWCkE01k+HIBoMQeB1Isle4wDC5dZq7wMEf7lcajwe5+j8dDrN5MlrOxDllM6K6JUiBYQUctZut7W7u6vZ7GTzHB4ennsUpVfuhzSWNn3EDki9F5tz0kwft7e3s60feEFISLvn05fFJf14Skgx8836lGkc7vAoBQaIHSkLZWFArpFUEzk8hWA4HKrb7eY1mM1mms1m+XrcImWajYsJbt/nvdIp4q/53sEl4GtYHptJ39iriFBY9ZkbJ7i06fZ82vMjTvn8UEiTsXghR/o9m82ywOWpAu4qYD/5XOBuQFzzFASudbdP6QZxAaBcA0lZoHKHTInyM1vWbmAdfH/794XvyU3YJNwEAoFA4Inhh7/t/68/9bc+Xf3vubNn3AcCgdvHK775Z/WydogJlwE/9yVfm39+n8/+69partX9Tz9/gT26NTxuQSGl9E6SvsteegdJXyRpT9KnSnrw9PUvrKrqB2+jXUknVmMK8HlUkZxriBDCAiTLLeaQnDIdwQnTY1ndnRBLN0djuR5S6Pn1ZfQbMlbWFaCo4abK8lznufS8XpLK1WqVTwqgsKHb8CGVHsEuRQbPg8c1wO/UhvDCltJZrQnIOQ4Q0hFo163x1ByQlIm+595L0mAwyM4EXAhVVWk6ndbIptcc6PV6Gg6HuV5Eo9HI68KJFh4F3yQE8I96DLgHnLC6QIQw4UKE7ycXdDyC7+kuTuZ9XyIsIMCU920qXko7mz5X7qDwveH73UUTHB88x9fc96A7czY9rwTPpy0/OtPTUlxMciHHx+vrwd508Yl7vPBp+XwXpcB5NSYuG56s7+JA4Dw0HxzrXV/zcXq/573hls7+DgRKbKWGvv8rvlx/9urn6NrX/exFd+cJI76HA3crxh/1nnqXzjdedDcCG/A/v+Lf6vdWY/3lvc/VlW+63N+Tj1tQqKrqtyS9VJJSSluSfl/S90r6JElfXlXVv3yc7eq0zUwmPAefPHEIsudlezX7nZ0dDYfDTEQRItw+7Zb21WqV8/LL4xadKEGusa9Lyq4ACDinF/jRfbPZTIeHh9kVgN16uVyq1Wqp3+9ruVyq1+tl4sP4yui+pEyc3IWRUtJ8Ps+CAkSQ+VksFtmeD/H0o/YQA8hl96g//4U4sh6SMtFF3PGIOX2ncGW3270pwg+h9doUjJHClY1GI4slnh5RzgP7gRQHUlQQJthP7XY712Zw677PN/1xYQii64USORUEl4HDU268foDXFmCt/QQJL4rJdV4TxAsjbnKA0GaZBuPtcU3pIGBNy5MlPC2C/cXn1EWd0lHiQk35eXLhoEwZ8T3p/ZHORAg/PcQdD16ckf77vvWCkZv64yk9lx1P1ndxIHAejn/rd/Scvyj9z896b+nzQlAIPD5c2erpSz7/1frSr3u3i+7KE0Z8DwfuVjz/s35Lr+zd3QUBn854YXOgr/0HX6m/Nvhs3fvVl/f43TuV8vD+kt5QVdWbnmhEz8kApNB/p4CiF0R0azZkzPP6y/oAAMJJdFyqEzuIP4TRSSbkkf64CIHd3+3XCBs7Ozv5lIHFYpHrAnQ6HfX7ffX7/Zvyyj3tg2g11nIINs/xIpCMmfki0u/uDCe8kERIONeQegBp5pmQ1GazmQkl/0U4AZw6MRgMssjCunmev9dfgOySssKJCtJm679UT1nwYpoQdfYH8+cndrjbw10a7AGe6ac+lK4G9qqnmjC20n3CONzBUKZ/OMr2ylMKXCzwGgnsS6+Z4SS6FBTcmeNCih/9uEn0KOeD4pVlygFr43UjNqUeeMrQJrcA8+Hz4s/2efQ6FL6H3H3C59nn+G4QFArcse/iQCAQeLLxTs0D/d4Xv5de+PmXO/p2m4jv4cBdgT/4rPfW337W1190NwKPgZe1W3r3j/9f+j9ffdE9OR936q/lj5b0Hfb7Z6SUfjWl9A0ppSu32ggECEJMwT2OVSxz/TcVUSN6y+kDg8FJxdLpdJpJP8+AYHuRRc8Bpx2OHoRQ848j/rxgnZ9O4c6Jo6OjXIfBhQ1PQ4BccbwlZAYBgtoE9BFHBe0gYnjeOiQKcQZy5aKCW+0hjDgFPIWBgoJOwElr4B/XO2lHMOl2u/noTK+w3+l08vGTHAXp0XBJuZ4GbXE9a+Migos7Zf0NdwqUBQS9ngFigvfB76ft0jbvQpM/y9fT97u3wX+p1YGjwtMJSuu/P9/3sKfPlGKa1/ygT+x1F09Kh4L338fVarVu+pzwWfAUDb/fx0Q7rC173d/zlCCfP+8Pbgw/fpR1Kefd6224oFK2f17KxiXGHfkuDgQCgacCz90e6FP+/I9ddDfuNOJ7OHB34E/fCHfCXYK/ee9P6I3/9L0uuhvn4gk7FFJKLUkfKukLTl/6Wkn/RFJ1+t8vk/TJG+57laRXbXj9JpIEiGZTPX9T7jf/IOFVVenGjRuaTCaSztIIIMaLxSJHyyG/ECGv43BwcKDxeKzxeJwFCZ67vb2tfr+fhQj6564JSTX3AIIJBAhi0+v1tF6vNR6PMznFJYBYUZI0J2oQLwgVtQpon/lz54Vb/z33fLlc5udQ4I9xdDodrVYrHR4eajQa5TQC5uH4+Dj/zqkLzAtkjr41Gg11u91MCCHC8/lcnU6nVr+A8bko4i4DJ+Mu6khnkXg/spD3PSrvdnn2JP/dRDJ9v5b5+edFJzbZ/+lLWaPDU00Yk7sCvG+eogK8QCHXs0fKz1yZqsJ9Lk64QJFSqp2mwv7wuSnnwOe4THFAxMCNwpozv55OgYPFRSFfW3c3+Pr4MzfB98PdJCjcie/ijnpPSV8DgUDg6Yj4Hg4EAk8GXtpu6+rL3nbR3TgXd8Kh8EGSfqmqqgckqaqqB6qqOq6qai3p6yS9x6abqqp6dVVV715V1bv76yWxcKIPQeVfu92mrVq0sXQIkFM/m80ySYdQO0FxS7xHMKvqpBAgRf3KiLEkdbtd3XfffXre856n++67r3Y6gRNXJ1ge3YcEQZR5309DgIzjYoBEMU9EeTfZzP06rnWRgD6tVitNJpNaLQT6zXO73a76/b56vV4+RcBFGNrtdDq5lgUkjfoTCCn83Gw21e12a8KCkzlEkF6vl/91u10NBgPt7e3l/ZBS0mq10sHBQRY75vN5HnuZX+/zAGl20l3WT/D94hF2J9Wej79h39ci5271Z+0YAw4YT9dwp4wLWqSXuDOEfnQ6HQ0Ggxz1d0KNQEN/SXvBKcDcIO75KRnlZ5a2vPZBeXrKptSMsuhpWafDT2XwWil8RrifPVXWlCg/R3xuSOng81CmAPnvdwme8HdxU+2nsLuBux3P+dbf1Au//1MvuhuBuxx//cqv6i3f85KL7sadQnwPBwKBJwXf9ZJv1u9+6eV0KdyJGgofI7N2pZTerqqq+09//XBJr7udxiAGpXXbBQYvSifpJqIH6cHqzPuz2awmUkAwT/td+7fJDu/WaSfr2LJ3dnbU6XQkKdcccAJFAT+IqqccuMXfo9tOlMqot9u73Yrv9v3yGL1yrO5wYJ48sgt5c5LNtZBoXwfGVqYVsLYO2qQ2hveBNXSBhTQJd4K0222t1+vsjPBjFkmXwelAW1VV1QQcT/fwdS/3h/e5HIOP99Gi2u5yKNfViz2WJ0Ww7xHGuJ49NZlMaikCpNm44ABJp70yLYbneW0GF042pVRwL/ex7/1zS1/Y3150099zV48LgrTh+4e147VNLgxQupkkbRQp2BPs8bIOyF2AO/pdHAg8Fo4ffkTv/H+v9OLdT9Bvv9+/v+juBO5S7Da6erf77teNi+7InUF8DwcCgScFb7890NH11WNfeAF4Qn8tp5R6kv6spE+zl780pfRSndi73li891jtZeeApBqB8T/6+cMfMsbJAdRE4DQDjhcsCTfwgoJEvz3lYbVaaTQa1RwSy+WyJjJ4OsFgMMhFFb0YpJNXiCFkeDab1U5L4EQC5qOqqlyboN1u5/ulM+s4BJhijYzNj2/0YweBF59ECJGkg4MDHR0dqdlsajgcZuGDugIQNk5tIHe+3+/XIr2Q9NVqpfF4nEkiz3LBhHGwVrg3rl69mkUAXxtfA/rCqQMQzf39faWUdPXqVQ0GAy0WC00mE02nU63X65z3n1LSZDLJIhNuFdaMOS1rEZR7yUUu39P0jyKajJv9TR9cPHFhyesvQMhJKeF9hBXGQJ9cYPBUAci7v76pGCP7rBQB+DxxnxehpBiqpxswvvl8rqOjo+w4YV8xL75/mVO+C0rxhnkt55uxcY2vnzt9fN0QIvzzdTeJCXf6uzgQuFWsRyMdzZsX3Y1A4MIR38OBQOCZiif0F3NVVVNJ14rXPv7xtudRTvLtIQiQj+l0miPakMx+v6+tra2c0nB8fKz9/f2azZ5865KEk+NPex6hnM/neuihh2pkV1IWBDx67Rbv4+NjzWYzjcfjTKi9r/1+X8PhUNLJkZPk/C8WC+3v7+cx8N/5fJ7niDEwLkQNhBbGxbN2dnY0nU4lnRSmdDcHZJ75ZXy7u7uaz+f5NT8WEiGH19wW3+v1tFqtcgQd4jadTjUajWruAk+14BmejsHYy2dyygSEmmM2IYisZavV0nK51Gg00iOPPKJ+v19LWaFug5804XZ96azQpaeoUPcBkI7gBSj9dAHElnRaa4D+077veyLpm+DOEdpqNpu5fd53QcHdMY8GdwVteiZr0Wg08vGfpEGwzuw75uCxXA+l62jTeHnf3Q3+LC+oSD8Q3eizC00Icy5IeEFX+upCzN2CO/1dHAjcDl70V1+rl33/R+nn//h3aivdVWlCgcAdQ3wPB+42rI62tKqO1Uw3/x0WCNwOLtVfzG7V9wKCXizRj66jWBvXYrWmoN9oNMoF4iCKkAdIJScOeDqFdCIazOdzHR4eSlI+LcLJFCTMbfPYpEejUT4qknF54cK9vb3cF05gWCwWGo/H+WhHt3TjeHDS6YKAR4xp03Pb3fJNLrxH3J2odbvd/AwvDMkYKLC4Wq1yIUmEBaz33kePFvOadHa8pgsyFNKE6M1msxwhp96E59b7fHidASebvhc8J98j904kvYifp4fQr5JoMj8lwZXqZNrdKd7nTdhE7h+tloD/jrvC64mUKRRliswm+OdROknjQVDwdTyvRoivje9lvwb43CMi+DWeWuGv066PD7HKa5JUp3VTuB7Xh38ufN0l5e+aQCDw2Lj+Ib+tz/yF99bXPOc1F92VQCAQCNwCnveRr9Mn/s8P0Le/8L9ddFcCdzkulaAg1avfO0FysgxhLAmR25c9suoWba6HBEI+SrgV30l1WayNZ7mYIJ0JGIvFIrfHaQ4UNuSakozO53Mtl8taW1T9h2yVlm+PuEKY/PQGgHgBsVqtVjnSvamQo3SWmrBarXJE3MkfqQPkz5NS4Okp/X4/94/58H4htnQ6nXxcIqkPkrRYLDQajTQajfL4XGSh//TVC2d6P7jXTw8AnpoiKRNQXwOv7+HjKMmyE2BJWejCfYPoNZvNag4Jj977HgOkBXnBQ/qACFUKBNRS8H3mc8Xe8hoQLuowxxRqdBJPChCfMy9wWJ5EISm7NLx+g7uQIP+lC8TTNVzQYV69sCqfkfKz4alCDtbOU0tKkSEQCAQCTw5uHE/1q/c/W8/TIxfdlUAgEAg8Dlw6QQEyBkHCQSCdkTeIjTsRIKzD4TCfyACZ393dzXnqi8UiR+ch9Y1GI5NY7wekyIv4ccykdBYdhZDTR4gV5NqJDq4LCDgCg5Ma0hwgj/TdBZFNEWf6w7/JZJLrKDBOf5+aCH4c42q10nQ61Xw+rx2FuVwuNZvN8nWensI4cG9UpwUwWYdms5nbIi1lU4QclwNrUVWVJpOJtra2NJ/P85q6rb8sSumV/DudTu1kA6zvvq4832tiuFMFQQNXCjUuIJq4JUpRwfcMYgFuGYgr+9ddBMfHx7mfvg9LMc2LIkp1Bwt7jTlxYY295GP3Y07ZG+xfXB1lEVTaQFDwNXEBgbExDhwDXreAOXGhw78HPOWGfrrzw/e0Oz64xusmMO/81+fV01to1wuxBgKBQODO49X7f1TP+8ioVRgIXAR+9jffUfc/7/v1dtuDi+5K4C7GpRIUIGFY26WzSvZ+TB7ky8kG0U0s89QmgFg60cfq7FFVCsZxHSSp0+nkYnrY7pfLZY5uNxonxQgHg0Em6R7JhcwRveefF7eD5EnKz6PuAw4ASKiPn3QGJ1MUPKTQXavVUr/fz0SO+5hv5g+Syhh4HTLMWH2dSmcAaRs4I5gzxuSpFzwPIuynQ0hntSIWi0VeG09fgSiyZn7EI3PkBJL7mCeIpKeBlCcguBvFI+teq4I2PIXBiXn5HO+Xuxe8kKDvDcivp414FN1TXKjvgLDDWrnTxNfQ54m5KfsNSjGBvlEvA+cK1+J+QHBhz7GnEAzKOgyeHrLJDYLLB0GFcXuKhKe0+H7Y5EBgLrwP/O4FSAOBQCAQCASebnjxp/yi3vvr/rZ+4ZVfoetb/YvuTuBR8F+nbe38WuuxL7wAXCpBQTqL+EKoPS/b6wn4PwQCSCtR6uVyKUmZ1EvKEXQnMp43X+bmE63mfreBe4oDxQAl1dp3eP0CrnOS6O4FSD2E3iPSLiB0u90swmCphxxCyCHCXA/5g4DSvhNXJ9SezsGxhYg4zAmvz+fzfJICAgACiEezycX3IokIFcw7a844ZrNZjrJ3u908tuVymddVOiGjnDjBmnJNWTuD9AyPYuPCYF2cpG9vb9eIptex4Dp3kADG7y4G2md+eY+5gTCXcFHJRY3FYlEbn7sznNS7O4Bov7s0aA+4+OFCCuvOZ2VT3QM/nYF73MHh81gSe9pAHOFz7YIJ4pW7EdxZwJg9TcLH6s4EF17cwREIBAKBJwdvORrrG77vA/QC/exFdyUQeMbixZ/6C3qPr/wcve4jvkq9xuUkrAHpH/3vD9Z9X/4zF92Njbh0goKkbPmfTqcaDAY3RVWBOxbcOu1H2EFKiXRDHjxaKSm7DzxaK50VYex2u5nkL5fLnJePI8It37znZJD0h8PDw5rjwvuM3Z1/pCvs7u6q0+lk0cCt9JywgHMCMgqB4tQFnkEOv4slbmenPxA35gPXxWg0yv3Y2dnJc8L4OK3Cq+dzOgPzgKMAQYL1ghxS14H+I3JsSi1ABICwS6rVRoC4zmazmluBVA6uQdBBKNlUEJD7JGX3i9cDAJtSEXwstOcW+zLloqwb4rUh+J37XFQg7cHnhTQf77+Lc2UtC4/cu+Dgc+EOH3cW+DhcZCjHyZ7wOgvMyXkoU1RSSvmEFNYcp4zXP/AxIAAhhPjYfc19TgOBwKPjxl99Lz34nsf6nCvfeNFdCdxl+K3Vrl7w90JMCAQuGi/6rNfoZTc+W6/71K+O03ouIb57vKvj77xX0hsuuisbcekEBf7oJ+o+nU5zBFg6i146sfZicJAuyDM1CrBGe1FASAfEcD6f5+sBjoFut1uLfnJ8pUerib5i/UfwQNBYrVZ6+OGHlVLS4eFh7g/ihue+Q/w6nU7tWEy36GPj5vlOvkvhhbF6YTpqOyCgeNTci15KyuLFww8/nOsIbG9vazKZ5PbG4/FNkXjac3fG1tZWvh9xhzlCrMFpgauAFBh3G1RVpV6vp2azmdcX8cPrRXB6hqcUUFcCR4vXwGANcMt4jQOuKU+W8LkC7BPIto/d59rXo5z/TRHyRyO5TvRJh6FWhqQ8To/SexrGptoWTsgRyTwtxgtIsq5ljQL6zHySpiAp72Hm2/eet1HOMXNW7nXadbHFi6sibvkYAeNhX4ZDIRB4bDz08qV+7xVff9HdCNxluHE81ef/s8/R1XAnBAKXAm//D39G7/7gZ0hJml+XXv+qr7noLgUk/eSsoa/8+x+jK999eb8rL52gIJ3ZqikQCOGDDJd/5EOIPIoLifM0CKLKZRRWOoucr1arHLX3HHOIWL/fz5X5PaIK0U0p5cKD9MMJ8cHBgSTp4YcfzmKJkymIDFFyHAdOdD0iTqTVianbvZ2clU4AFzPox3q9zg4JL7bIc73OxXg8VrfbzXNBnQPEi263W/uvpOzcmEwmuRYBjg3vU6fTucn27rUvPOWj2WxqNBpl0uziEvPKvPt8ch21Lrx+AKJBeWxmSWDdfu8pCMwJzohNe9NTXsr9XKZSlPUNNokN1N5wUYl5ZW5Jg/D9jzhTugVIO+JaF8kQfqhx4p8XRAFPJXBhgT3APnUxwlN03A3hohjrSl+azWZ2l7jQgesHt8R8Pr/pNIgy/UlS7XMWRRkDgUfHg5/+Xvqa9/2Gi+5G4C7DcbXWh33mZ+vqf7q8fyAHAs9E3PtvTiz1jX5f7/trn5Zf3/+4sV73nt92Ud16xuK3VxP9o7/52Rr818t9JPOlExSIzkLgyf2GOJc56p7aUJJi6YxEj8djzWazHL126zkE0y3zXnwO0ktuerfbreWBNxqN7EqoqpMTDmazWe67R8r39/e1Wq30pje9Sd1uV9KZCMCpFIzdT5iAGEHuIZVY3AGR35KsMRbIIH3FCeCnIxDZLqPvzD9rQOHH0sZOdNyPZyzJIc+gZoHXyihTUUh1IFWDtS4dFy4KuA0fYlw6WFx4aLfbOVXFU1vOOw3C6y2w/p4KgCDgJD2llItz0nffy1zH85lz1q10JpR5/l74skwxKFMwPN2mbI/9WPbfnTGsO/sHRwdzU4od7hrwzzlwIYf15TPppL5MrfDneWqF/8ze9Hnm/XIOy/e9j4FAoI79T3gv/evP/Td6n07YYwO3h1d+9Keo+z9+/qK7EQgEzsF6MlH/e34u/777i8/TK57zifn3L/yWb9HLu5EW+mTiFX/pr6qxPFbrF37horvymLhUfy17dJ7IMyRGOit86H/8Q2Dn83l2BnCyAaQRhwD2cxchvKK/VLeMQ/g8x54jEAeDk+NVSJPwooP87CTGazOsVivt7+/nMVBwkHsQQyC3i8UiR4KdCG0qKAcxQ5xwYYRTHhAoPM/e89m9CCVkjloNnKaBYMBcuQjQ6XS0s7NTW1NcHR5l91x46Sxi726GyWSS16TX6+V7iXKz3pyUQS0JXzfm1VMvIJncR3seDUdUgHwjCrEOCF/c5yeR+P5kX3l6CXPGHvN1LEWMUkgorf9O0n0d3BnAeyWx9joDntqBOOBtsa9xIbj4w1xJZyc0lO4fdwKQpuLP9X3g/WAOmXdvk/nwuWMP++fXUYpinlLh3wOb3COBQOAM8yspxITAbeOVf/7j1PjlX77obgQCgdvA0ZverPSmN+ff/8XL/5z+xfbp8d07Pf3QD33HRXXtaYP3+IJP1z0/9db8e/q9X9Hdknh7qQQFSZmk9Xq9fAoAJHG9XucjIKUzsur598vlUteuXcs2bCL/kB2PgvMsLzo4mUxqpNejtF4E0KOyEI9NdQpKMQSi48c6UqyR6K+fcMCJCX4yQrfbzacUQKSITGPrxt7udSLcnUDE3utHENmmLXceMB7cBxyd6eQM+/ne3p6uX7+e1wWrPCSNNAFcH2XBQbf8exSa1AQveOkRZD9tgPcQH7DoezoIokhZ48FTJUpBAeJL310kYY84ifU0EcbmQopH0tkvpAwwhpLYOoGG3Psc8F93lvg8u4OAVBzfw6WYwPh8PaqqqhXvdNLurh/2kTtGuIZx8Dw/HtLng7QRL6RZzkf5O6eBcHypdOY8Yr7c0eL7BWcR4wgEAjdj+hf/pH7qc79MUveiuxK4i/DKD/t4Vb/8axfdjUAg8ARx9Oa31H7/c+/8fpKkRz70XfSaL/23F9Gluwp/5Y0v1yOvrAcMr4x/Xkfr43PuuNy4NIKCE61NUUUnJ07WIEueY+4pEH6kYqvVUq/Xy8TBiRbvOfEjncGf74IExBhxgFQISTl/ngg6Qgj3u/Pi4OBA+/v7ajQaGg6HOeqNtZwoKvcjYvgJDRCfss6Cpz9IqkVk/WhCovgQWCfTkDn6gAAzGAzyEZeeSkANhvV6nY+PhFSWBSjpL6cRuGg0n89rx2Fy3aY94TUzGN/h4aGWy6UODw+zm8LTR2gTocKPKoXcUhfC61B42oyLJqVDgOt9jnm+98cFF3c6MCZPB9mUyuDkv7T5ly4D/9nrISAM8Tza4HcEOa+n4K4LgLjAvvNUGt+bPJ92y73KHvA0Csbnzgd/lqSbPr8INGU6jQskwAud+lwGAoGbUTWk3UaICYHHxqJa6biq9CGf8Ona/oXXXnR3AoHAk4Djw0NJ0u63vkYf+O0vq7333J/p6l8/9ydqr93Nx1NO18vHvugUH/mBH6/j1//OzW9UB1J1t/gPHhuXRlCQTgoePuc5z9He3l4u9uekHrcBRfCo1p9S0nQ6zacg+OkLHCvHtVT3h0RBAtvtdrbpQyJ7vZ6kExI+mUxqxz16UTipHr1HrPCikrzX6XTUbrdzSsZsNssFCv0YSK+pQPvuNlgul3ksTnzKSDDFKEmjgNjTD8bnOe5Y20lTQGBwW3u/38/iDPNFkT6cC5A5XBVbW1s5hYE1QWCYzWY6PP0yYuzMXUpJg8Egp2xIZ1FzHBZOEIlqM0+z2UzNZlPT6VTr9TpHut3+704TT32A4DtxRhACpWXe94WTeOz77mpwUkxBQkSVMn3B169MN0B4Yf0RR1hXv8fTfSTl0zEg6wg/fgyq11JwZ4SLEWWqgxN935M+dgdzx3M8Ncbh68O1fB4RxdjT7sbh3lJs4bnuRCrTTAKBQCBwezhYz/TA8Vof9WWfq2d91c9oWyEmBALPCBRR9re851gfrvfIvzd6PX3l63/03Nufu9V8UgSHG8dTPbh+4iT+s971lVqPRrd49W894efdDbg0ggI28r29PQ2Hw0ySsU77kXKQrV6vl10FpcW7tI93u91MdLnGo7lS/UQIrzFwdHSk0WiUT17wApEeOeZ6J22eNkEknZx/iDukp9PpZFs2UXIi/U6iWq2W5vO5hsNhJn5eJ4B6CwgafpoEhfQQFJhXiux5ysN8Ps+CABH5drud+9jv9/PaMd8UN5zNZhqPxxqPxxoMBnlNq6rS4eFhFip4rRQ0EB2ks3x43BC+Zn69px348YQcMymd1YQoax145LoUjbiP6LUTWG+rrEPgdQF8P0H2gTsTptPpTScxgNJh4HUzaOO8CDwCgjscwKZjG8tjQ53s+/3sD671sXlNAxcWtra2cioCqTk4NtgX7v7AdcD+pk1EQ+aOOSmPhaT9si6Du5RcjPDaK3HKQyAQCNweDtYz/dj0WfrcH/k0vegzfk7P0s9cdJcCgcAlwno61Wc+/33Off8P/tMf1he9y3/Z+N6xkrZuo7KAX/8F//HT9cIvvBMny9yqmPDMwWMKCimlb5D0wZLeVlXVu56+dlXSd0l6gaQ3SvqoqqpunL73BZI+RdKxpL9VVdUP30pHvHgc/y3rIJALzR/8WNaJuLtluax14KTiPCuzR4GdbMxmsxzl97oEpDz0er1MWLGqI174aQHUFqDfEG8IL2kE1CKgfdwPEC4/TeB0zrN93AkRYyFt4ujoSM1mUzs7O9ld4Lb0Mp/cU0e4l/b9qMBSUEGggDDSR8QOXAVEjj3fnnSEqjo5LaPdbmeyy7PdreHHQzp5nk6nWagBfmqDr7WLC8yBp0DQBs4GdxZIZxF89p4LSCUpZz7d1eDpAYzNXQz87iIYJN5dGaWgAbHm81CmQ/jekc5EE0m1dfB7WD+vReD7lXnj9fKz5q6P8mhVb98FERdrfD28Ld9nZe0NP3KUcSJG4Nxhj7PXXNS4LHiqvosDgUDg8WBRrfRFb/sT+oHffYme+xG/rhfp5x77prsM8T0cCDz5uO8vvF6v1jvc8XZfqDim9snCrZRn/iZJryxe+3xJP15V1Ysk/fjp70opvYukj5b0ktN7vialdMtVzco/4Cli6EXfKOaHQMA1pAuQMgApwdHgJ0Q4WfLnEbnEOs5zqMNA+gQEv91uazAYqN/v146HdHcC4+JnXAfS2akBKSX1ej31+311Op2bis+RkgFpA6XlGzKHgOCAdJapGmXROS9y6Kc3MB9et4HrmXcEF8QA6if4XHu9A07eODg4uKk4oKcceOTd16w8XQLhKKWkyWSS3Ql+BKKTUZ8P3mP+mEMXBtxRgcDlogPpFewRrsH9wR509wyiEgKIu3FcSCtPDYEA899yjGUBSubKx+0CRunYYE/xfln4EZGCGhCkvVAY1cUkX3tPSeK10jEgqXYkKXvN52M6neY58T3t9UkQGlyYoP8u6Hgf2Qu+BpcI36Sn6Ls4EHgsdB9Y6p8+9M4X3Y3AJcEHvv6D9d6/9HH6lT8mPfcjfv2iu/Nk4psU38OBQCBQw2M6FKqq+qmU0guKlz9M0stPf/5mST8p6fNOX//OqqoWkn4vpfQ7kt5DunVJyO3iWOudjLRarZxPX5J4P9YRIkDkX6rbwD0XnOMpIYUQGwQFj7xSzI8ijtRZgAwCyIinOUAmKdg4mUxyVJbjGOln6RhwounuCCezCB/UD+h2u3kOvMq/k82yeF5ZV4IIuqRM1o+Pj7OAw9g8ZQMyjashpZTTF6hhAOGkL8vl8iZxgHFCXhmnrzVrh1hEUcb5fF4jixRNRBChRgOvkeLBP1wW9NvXDtJMBBzyuikNwR0fiC1u7cdZwv2gdA2wdvSDdamqKosR7B9IOqISawBxd+cG8+sCmBNp9qDvZfaC7yPGjgjhc+/P8mv9ebhVGKPPiaeNuBDh7gp3ydBP9hBpEF4jgs+Dp0B5HQn/fFwWPNXfxYHAo6HxP35Z/+Hr/4z+/uf95kV3JXCB+CM//zGaTdt6h4/7X7pe3boN+W5FfA8HAoHAzXi8NRSeVVXV/ZJUVdX9KaV7T19/jqTX2HVvOX3tMeGRX6+T4H/kOzkpAbHodrva2dnReDyuEVLudYLutRcgyvP5vFZkDlHBI7mtVkv9fl+DwaBWlNCj6qPRKLsPOp2OdnZ2aoUB1+t1LsZIgUOKMeKSQEShb5Jyn/r9fiaQHo2lgOBqtcpz2G63s/MA0QFhxCPVHiFmLMyDzxFEzm30tOe598w/BNbnHnJ+dHSk6XSqqqqyQME1/X4/O1EkaTab5SMEcUVIqh0JSt/dPl9VVU4HYQ4grPSNa9y1UFrsIcDk9TNfzL/vU089oG9lzQV3EzBfnkbBWJhzBJ0yPWM2m+XxStooHPAZcNcFY/I1dJeDk2k/GtTHwL6gr7zmzhde478+JvqL64e59L47yS+LKVbFH7A8w9ceJ5C7a9i7nmLlopuP8ZLjjn8XBwK3intfO9VH/e7767vf4ccvuiuBpxgv+dmP0/xNQ73TP/ktHd+4cdHduWjE93AgEHhG404XZdxUnGDjX+QppVdJepX9niOhWNxxIDhpIaJbVVWtEj6v+ZF0uQNVvVI8EUuPHnsevtcv4NmQS0nZJdHtdrMIMZvN1Ol0MvEhakzxyMFgkF/Hys3Y3LoPGdxU2I5IfbfbVafTqUWdpbMoOpFvrPLdbrdWj2IT+SUCDUlDDHGXCC4CJ2VO8FhH6YzsHR8f5zEjUOBYIIrOPOFwYNyIOd4nd2g4yfU6B+whCLhH+1lHHCg4Gkg9QBxivPSPazztwEUoBBb2qO85n2MXhzyVoExl8eMPPc2Bcfg9Lmb5PZB2RDL2i9fjoN/+2SvnGuHKT8bg36ajW+mruzo8laYUKjx1g+e7OOFr7I4N328+dy4YsN5VdVZQ010K5R7ydKXye+Muw+P6Lu6o92T2KfA0Q+Onf0U3Pv+l+tgv+dP69hf+t4vuTuApwHv9r4/Q+MefpRf8v2/V0e/+uu7OE9OfMsT3cCAQeEbg8QoKD6SU3u5UiX07SW87ff0tkp5n1z1X0ls3NVBV1aslvVqSUkqV/+HuVeY9Mu429PV6rW63q3a7nV/DjeC2dCekZfTd7dyQ72azmQm4R5+diHpOOm3xPEgbRy62Wq18woTb0InIe9QcYub2eYhOu93ORy/6fWV6hs2vRqORVquVBoNBjtpK9cKDPr9OgI+OjtTpdNTr9ZRSykdyunsjpbMjG8viefzOWNwJwPO83gOFIknjYFysGa4Ar23BXCMUeBHOo6MjTSaTnNJAAUrpxOnAUZaQ7fl8rvF4nNNQnIiyBrg/mKeUUh6Dpxs4WfeIvh8D6tc6iXUhwaPynoIAOeaZ7rCAxJcCh6cGlOIDaQQuXJQOGa7lPu7xk0i8TelMOOB3Pof+u7sIEFyAP7ecT95350M5t6VAiUOBOXc3jDtRXLx0seyS4o5+F++kq3etghK4GDR++lf08Of8Ef2Nf/2e+prnvOaxbwjcdfiKGy/Qd/7zk7IBV35tXzu/+jO6PMlglwLxPRwIBJ7ReLyCwvdJ+kRJX3z63/9sr397SulfSXq2pBdJ+vlbaRAC2el0aoTeUx5wAhBl3draUqfT0cHBwU0kz4+Oc/sz90NenLQRSSXlgih/Oi2a6JFNJ/+TySQTUgjyZDLJ6REuTnh0mtoO5L+7U8LrBKzXa+3u7mp3d7eWQuDRYY6BhHQtFguNTs9ILQsxljZviBbpEMzZcDjU7u5uJlzT6TTf53UnfO43ReeJKjth9tx1P9aTZ/tpCljgy/5j91+tVnmuWOv5fF477cLt9e4C4b/sLQr9la4LLyTpkXMKP7pjwoWTMv/f22R/0y//LHikHsGqdAC4C4D5KNt3IcXnzq+jXXeX+Jz5OvIMxB1ENS9k6P2mDy40ueDi/fJ9VP73PNcR+8SvY0yeOkSfPWWKvpSpFC6s+PfIJcUd/y4OBG4br/lV/d6nvLPe//pLJElf+41fpRc3+xfcqcATwfv/lU/JPzcP5tp97YlYdOkl1otBfA8HAoFnNG7l2Mjv0EmxmesppbdI+gc6+dL87pTSp0j6P5L+kiRVVfXrKaXvlvQbko4k/c2qqm7JEdfpdHTvvfdqOBzmooccr0g0WjqL9EKmnVT7sYWeTgBBhSxCNNyBQJQZcktthMVioVarlVMMiMpCaLDJk84AMSdlAlcBNRU8d5soOUUOcVN47QeKHlJccnt7+6Zj8pijZrOpyWSSazgcHBzkYyghlaQxcD1jOTw8zISq1Wppb29PV69eVa/Xy9X1OYGCWgdlH5hjt7+TQuJpC5BN1oW1htwh4EjKAhBtuZXd0zcYE6Tec+Kl+qkR/M4pFJKyqwSHAo4O/rF3EA8A4/FjG318XlOiPMnCBQ/prBaGW+6Bu2w8PYfPhB9nCql2d47XKWDNmCv2hgtvPMfX0ok3bXkqg4/f0yncGeRCCXBHi7uSSteBC0k8r6qq2qkjLiaUBS0RB12sdAeIX8ueOK9my0XgqfouDgQeD9a/+pv5D4rP/rOfoO/4iW/VbqN7oX0K3Dre/Ys+Xff+zMMnv1SVtl//2vxehMvPEN/DgUAgcDNu5ZSHjznnrfc/5/p/Jumf3W5H2u229vb2MkGBpPIehREh6wgJ5LhTQwGHgBe6c6eD25tL8kMBQC8WuL29rb29PfV6vRopIe1iPB5rNptJUo3EQLYgaZAWLwzH8yCrVXVSF8JPfuh0OrnAIqcuSGcE2aPnzWYz1wIgGu73pHRSIBJhwKPq1H/odru69957de3atXyaBschkh7gJNLXB4Lu9nwXGzxq7JFySK9Hmj0FwHPn6TNrMZ1O8/GdnU4nrwWOBUdJkqkTINVrV3j/vV4ATgHEJdIFPHXB3QX+z4shIqScfl5uOmmj7Dfj8Ui9u0nYA+wj4EeUOolnjztZ9hQj5tjnjPlgHPTT0xp8roCnBjHPfr2nYLhLwj//pCz4ntkkPLgrpkxVoB6Efwe4gODihO/Vy+RQeKq+iwOBJ4rj336DPualH3zR3QjcBq7v/4KOL9GpNpcV8T0cCAQCN+NOF2V83IDQO9ltt9uZJCIeeNReUj5+ELLFiQHkmHMtBMHPrgfVaa2Dsk1ICeQUYoOgMJvNNB6Pb4r8NptN9Xq93If5fK79/X0dHR1pMBhIUj52EsGA9I3BYJBrP4DVapXH4P118YVnkfawvb2twWCg4XCYT0uAlHnRScQNhIJ2u61er5dFgjINwWsSQPr8WE5IrkfziQhzL2kpED8v8kh0nHGRKkBaiAtJpClQU8JdE/SJNp0gu1uCflMPoiwM6OTe7fEQfD+ZgD3lhNTH4akJnu7g9RIARBlhyNMpuMfv9bQD1h8nCa4WxlAS/vLZvO4pEGVaAPfN5/OaO6gE6+opG5uuc4GB+7x2Qvka8JMtWEd3O5CaU54kwVy4OMZn24WRUjwLBAK3huOHHr7oLgQCgUAgEHgKcOn+WnbruEcgyZeHqG9vb2eXgOfxU3F/Z2endrSgdBa55FpIg9cUgMASrXYLuZOj6XSq4+PjHBH3vnKkIyRnNptpNBqpqioNh0O1Wi1du3ZN9957by3VAkGA9AdP5/BI7qbIbFnbwVMriFQT8ed17t/a2soFEfv9vq5cuaKrV6/mPiAK8GxIP+TOn4PjopxjFw/8mMsyb5514N6yOCCChL9Hn9xlUB6xyN7yKH2v16v1wYUBFwv42a357DvSWCRlIi8p1/lgnUrCzvh4LnOGe8BTRhCPvA6Huzh4No6LqqqyGMf6IoiVYhrvs49AmW5QRv1dAHJsuo91cceGCxsu3rkTxR0TXsCR1/nceEoMggVCkAsIPg53J/hnm7WivyEoBAKBQCAQCAQC5+PS/rVMVBE3ABFOL9Lo9nKvlUDKgBcOpE1OY/CIJZFvCLcTZs+Jh0CORqNMXBAtqB3QarW0s7Ojra0tHRwcaDwe6+GHH9aDDz6obrerXq+nq1ev6t5771Wv18tCA24Fh1u0KUp4HoGjP91u9yZhgeg9Qggii6dLuECxs7Oj3d3dmpvDCWAZxfeTD5x4Q9xWq1UmZh7JhkQ6WcQ5wHy7tR+nCGkdOAwoVIlwQ1oKEXqIOLUuvKaG9wVByU8b8P1WpkAQoUew8XQZXocgMxeergPZ9pQX1oPX2FN+Qoc7OEobv0fpXWxzp4Lb/2nLhQaEIV/fstCk98EFJYQRXDSbUgykM2LvAh+vP5ZI4WNnDfh8+Px63/x4yjK1pvyZ38saF4FAIBAIBAKBQKCOSyMobMo59wKD1BFIKeXXERkgL56aQISSYoKQaCe0W1tbGg6HGg6HajabOdqMuwDyBfGRTqKp2Lw7nU5OCaB//X5fe3t7Ojo60v7+vhaLRa7rwDGX/X4/F35EJEGYID3Arf64LihSSdSaoo9uPadmgqcyQPhpz0mc59NDVmnbBQXGT4Sca0lrSCnV6lewNswj5J458Ci5E09ILEUSR6ORjo+Ps9hS1ihwEQnCSH/9eEvECU8JkOpHExLhL08IQRRB2PA+snbdbje37ydFuFsE8Yo19poB9KVMXWDPum3fi0bSH8bvzhOOQeV5XmTQU1gQQHDklGKcp26Un9nSRVSKSb4HqqpSs9msuSqc3LtIwfp6DZTSIcH9ZVFFvwZ4zQp3d3gakz/Ta50EAoFAIBAIBAKBzbg0goKkfDygCwVEno+OjrIosL+/n09j4DXy/Xd3d3MF/9lspk6no93d3VoRQsSAZrOp3d1dDQaDTBidbENWFouF+v1+/n29Pjny0WsguFsBMj6dTnXjxg2NRiMdHR2p0+lob28vF3mcz+eaTCZqtVr52EQnYMyFCyqMm1MfcEd4zr+TNgiRuyywdTPPRKEbjYaGw6GuX7+uZrOpGzduaDKZZBGi2WxmkYQ59Ag+bXouvBNvCLOkGmGjr14AEPJLigOE0iP+tOEOCSfNRPYXi4UWi0UuCOlE0VMmSHlwF4AXTHTxhNdSSrXTN9yNQDuIQX5EpLfv9RDoJ8JCv9/Pe9FrCniqCeOFeLvIslgsbiLHLjp4KoOLNV5nYZMA4PDrGZsXQfU59eeyz0ldkM5qM2xK6ynnwVNVPHWhHBdjLus8cJ+Pw4W4TSkdgUAgEAgEAoFA4AyXRlDY2dnJRJk/+ieTSbYzS6q5AfgvJIWo+mAw0HQ61Xw+z1F7iKXb8rkHIuNRbydTUv0EAAooDodD7e3tSTpxQWCxJ9rutnwK6/V6PQ0GAw0GAzUajXwaA2JCo9GoEV9JNRJN5NSJGYTd7e5efJEaDkShIXwQPUg+91HEcTqd6uDgQIeHh9lNgIvj8PBQkrIoAyCxpY2dOQTb29vqdDq5Hx5pBm6Rx0WxWCzUbrdrYolX5cexQISdZ1Dvgmd7NNqdJ8D7RNoCa8CxpohPuFSYT187rzHBfivrF3Cfp1Eg9Hg6SxmJd7HF93C5Z0hX8NoXzB3r4k4K+lHWKNhUA8Lnj+fQFuIJr3kaQglEEPam7x3/HPi+8LocZZFJnzNJtc8D73nfvfYCc+QOhkAgEAgEAoFAILAZl0JQSCnpnd7pnXTPPffUIun8Me/EEfCHv+eMIx5AoL2AnXR2DCBuh36/X6tbAJFAfCDFwklzSkndbjcLA/P5/KZidhBLXAaQP9IRII0UdERMcFJakj8KNhJtJs3BCw0yPrdsr9drHR4e5ig9Fn1PbUAkaTabunLlSq5JgKBDH5hnovUUlAR+RCV9h+BLZwUacVZwL6kSpc2f//JMaiFs2j+eL8+4yroCCFJeUNLTLNhXvu+cxLfbbQ2HQ0lnhQ5pk3QJ+sA4IOWssUfa/b/SmVsBIcCt/u6UcIGprBcAvJYB4/J9WqYI+GeLfvd6vZzWUjoA6LuLJ4gpOGR8LL5OZUFP7ne3BnvN19iFBL+Gz6yn+nitBK+D4KJh2QffG1K9WGQgEAgEAoFAIBC4GZdGULh+/br6/X4uUki0GTJFbQQIi0e5vXgdpxm49V1SLb+f1AAIukdoPVcbkgUZ9JQCxAaP3nrUF4JJdLbX66nX69XqGczn81rRwPV6rel0mgsHUkgRAcBrAnA9jghIpVenRyygdgLz2O12tbu7q1arlQUM6gBAmMfjcXZQOEljbby2hOfie2qJuwzcno6w4BFjP9nAiXL5zwmlH1/pxffYCx7193oDEMrSSeD1D/woS+YYoowwA5FljqWzwpHMDy4Yr1XhzgvEB4QgSLWPrTz1wUUjP4mDveefK0Sqck/6Hsdh4TUESMNBXMMl5PUHaMef4+95KosLG+4q8H576oavdVmjgX54wUmcTX5iBX0rhQMXRjbVXPB745SHQCAQCAQCgUDgfFyav5a9doBH9CH1kI3pdJrfg6BTX4CfIT8QDFwJnmvtZM4j45JyvjtkynP0ESFIxfBq/KQXIBhUVZUJ5u7urvr9fh6PE0PP3y+jwUTWnRxRsLHVatX6Q02GqqqyuOJjo/4CRSEbjUZ2WOzt7WlnZ0fXrl3LQgkkDHJIfQRJ6na7tYiwpExscSp4JLokeogVwEWCsqgiY/YCgVL9hItSjGAMTnr9OaxXuUdYM6/P0Gw283hISWHsPIM9wNhJiXCRycUK3wdOkgGCgaMk41zTbrdrhTXpC/OPc8LnkLXFyYEQ4UUZy8KePhcUcXSBhloc5Zq648MFB9/j7jrgmaWg4OvNPYwfYcWf58930a0UukqhwQWIOOUhEAgEAoFAIBA4H5dCUMC+T54/RMdtz+v1WvP5XNPpVHt7e5n0cR3kC9JLzrQXOvTig9xXWslTSur3+7Wj86SzyC+EdzKZ1FIzqC/gqQbSWWHAbrebXQ1EfL0IJMfeIVK42FDmnUN+B4OB+v2+qqrSdDqtncDgooCnQDBuSBPpDleuXNHVq1dzgUqcIOv1OheYnE6nkk5EFQoR4q7gubznoopb+JlLF358Db3fLighQLhrwKPjHvFm/j2yD0oLu5NI1t9PykAQks6KhnodBgQg1ppn+94piXwpKED+eZ99xjWePiCdkX5Eo06no6Ojo+xu4fk+36X44nvJCb7vlTJ9w0WOktzzXxeOaLfch7QLcG+4aEC/vG4Ia1TW4/BrXFzy+cfBgKDAGLyug68L6xSCQiAQCAQCgUAgcD4uhaAgSQ8//HAu8uc58AgBkGjpLH9dOotCSsrW/q2trXwqQ6/XU1VVuUAi5ANhgBMMsIX3+/0sKKSUMrmH3KSUNJ1Oa6kZnirhIgPCBekZnEixWq00Go00Go0kSf1+Pz9rNptpNpvle+mjVC8c6JFkIt+AOfHX/YSL9XqdBYz1eq0rV67o+vXr2tvby26Hra2tLAwg9Eyn01x7Aqs/hBh4tBei7K/7CRQ+HubG8957vV52biAoINB41Jq59rFTxLGcM8AceNoMqSYelW+321lUoeYFY/f0BPrlYhLiiHRm6S8L/nnqBX11IcUdB4C1YW8xFq5zoa2slcCzve5CmZ7gdRv82FNcO+5M8doHfK48BcbdAJ7KQF+8BgSCkTsWPI3FHR8umiCMuRixSVgoizL6HJTign9mAoFAIBAIBAKBwGZcGkFBOosKQsyItmIzh/BDpjwqulwuMwlvNpva29tTSkmDwSBH8I+Pj2upAB4RhnwgKFCMrswJXywW2t/f13Q6zaTEaypAmCB40gkx8ToMTpIRO3g+4/Rj67w2AYQcUrlcLnPxRE8zgIARQW80Gup2u9ra2qq5DZrNpq5fv64rV65oZ2cnj9Xz0VkDHAgQs1LocfGAfrTb7Rr5Zn395A1fA9wOXIco4nNZ5s9zL3sIx4tH1kmH4VrEA0gv68ne8/HgTGAdyrx7J/s+FncvOBHmOif77lzwSLtf66krLqywnxqNRi6kiNBQAlEDN0VZu8D7yb7EPeSuB6/R4WP0fUM7ZcoCnxlPcyjTUvweF2B8XVxMLN0qfF75r4s5LjK42FEKCy5sBAKBQCAQCAQCgZtxKQQFTlqgEByEdbFYaDQaaTwe16KMpaUdsuUFBiE/FHPkWgrsIVJ45H4wGOjKlSsaDAaSpIODgxydxakwnU7zUYp+RGGv11O325V0UtCQlAiHR9P9FIvZbKbDw8M8BvLCvYAkKROQTQSMw8NDjcfjLI54/r90RrQg6NJZBBcC6ukL2ONxifAa/WJtcIOQvy6duSbcQYC44nPhKQReZJE15fjP7e3tPNer1Srb+z3K7U4SP7ISgYlrGT/7xe38ZZ0Fj6BLyqdpIMpApJ18u7uBdp0YI4Swxp7O47n8m04WcPLL5wRCjqDD80nXwGlStuPFIf10EIQA76efOuHpDvTVi016xN9dIswrc8OzXFzw/5ZiAqJA+TnylAwvdukpHC7WlMd50g573IWtUmwIBAKBQCAQCAQCm3EpBAVIBu4DIszY/4n07u7uajgc1giYkyrpxFqOg4Gig0SXvWI9Uf3d3V31er1c52B3d1eSstWb9AYwm800n89r0Xh3IPAa5JvTEyggCYiWNxoNTafTmj0fgl/a4fkZcg1xLk8P8Kg5hRtJJeF6LON7e3va29vL/ceZgZDC3CEa8Np4PFaz2cxuDkiizwPjI0UAosezWbf1el0TiZgn+kB+fen02GRxd2eLdEIK/chGrvFTNHCNQHhZCwSMkkCTClGSeXeVlPujTKFhrF6TAMHDBR/GwPziLkgp1Wpw8Aye4/PvwkXp6NgkYCAkeLqIC060iwDBGLyPANK+qT6BiwwUE/U0Gd8vLsz4/mUszEP5GWCfeI0Mnxv66CKQCxKbXB6BQCAQCAQCgUDgBI8pKKSUvkHSB0t6W1VV73r62r+Q9CGSlpLeIOmTqqraTym9QNLrJf3W6e2vqarqr99KRwaDQY7wu5Xeq8dDKD0CD+ElCkm6gEfBKQ5I/YPxeKz5fJ6JGaRhOByq1WppNptlonh8fJxrCnhO+vb2du4z/c6TempJh/x1Op2cZiGdEJlOp5NPWvBIsBMyJ2YeyZfOLPUQJopCOumETDvZ9cKDe3t7evazn6177rlHx8fHmkwmmZDjCoC0EhGnFsXx8bF2d3e1t7eX++apKl6EkBM4OJ3C2+coT8/nd9ILwS5FEo+ws75eG8PFA8gvQpM7GXxOnUjzX3cu+KkHkGTmuNvtajAY5BQBr5/hgguncbBPEBLYqx5ht89gTRiQVKvBwOeC/ewpEj5OT5OhhobPlRfj9BMcNu1B1sX3Kf/lM7lcLmtpEnymvcYD97GmjNfHyX9pC3HL94ynwCDq+GebNlyI3FQzoRQQLpOg8FR9FwcCgUBgM+J7OBAIBG5G47Ev0TdJemXx2o9Keteqqv6IpN+W9AX23huqqnrp6b9b+uKE4BIxXiwWOd2B2gdE+/nnlu/zrOe4EabTaSaupAe49Roi4hb/2WyW3Qm4GSCCOzs7uueee3TlypVcoJDnuyjQ6XTySQx+BCAEk3oPCBWkbDgh55+k/LNHwEm3gAzxHukPg8FAw+FQ/X4/zzUpFMPhUDs7O9m5wbGTDzzwgN785jfrbW97m0ajUa5dMRgM8nzh6KB+BGkmvg6MxdcDggbZ5h5SULzugQsqfkoF1n4KJnok3W3q7rCgPS+058ICxN6LBNIe4pHPM/3cNB5PO/HnlutP+5BvF054v3yOp3HgCOn3+7mQI3PMHvL5eTT7vhN32iDVp1xPfva9xOcX14yfyOHih9cvAPTR++y1JHgW81um1Hi7LjT52PyZtO3ika83NTNwI10ifJOe5O/iQCAQCDwqvknxPRwIBAI1PKZDoaqqnzpVWf21H7FfXyPpI59IJ7CQU0uA6vLj8Thbm7HsQ84ajYZms5lSShoOh7XoZ0msIIVE10kZ6Pf7tWMdh8OhqqrSwcGBptNpFhGIHEM6er2eBoNBzlcvo6DSmUuBlAAXAiCCWN4hR1I9iku77XZbvV4v95U0BvL6y8J/EKp+v5+FF6L1/X4/R9Of//zn6/nPf74k6YEHHshjfeCBB3Tjxg0tl8s8ll6vl4l5SummIpQ+1+4+SCllpwPuBK/ZUOa3S2eEryTATrad9Pq9PNvrBHgNBRdj3ImA+4Dot6fRcBSmpDwnToy9poEXOaS/noZQCktO+t3Sz32IHk6oWXP/nX3IfOAi8XoDzI9b/12c8DSIMuWhdEj4mriQVZ7swFy542FTnYnySE1PW/D/uijl6Rplmo105uLwzwfzUaY3lC6Ksq7GZcBT8V0cCAQCgfMR38OBQCBwM+5EDYVPlvRd9vsLU0q/LOlQ0t+vqup/PFYDW1tbmkwmudJ+SVI4dhESK50Ruk6no16vp/l8XktDIJrqRfdms5nG47GkkxQLos6tViv/vF6vc1rE4eGh9vf3aznybi/3AncQQUgMRR53dnYyYfNjI3FhQJIApJSjIr0eA0Qcp8BisajVUPCILTUAWq2W5vN5jawNBgPdc889unbtmrrdbk4Bmc1mGo1GmYzSpuf3Q+ghYETXj46OspsEAonggUukLILJuIlsS6rVKfBc9vLUC0QKd7B4kUWIradP+LGBXOvCAfPlqRYIEaRK+DpJynuS8brTBPHL97MLCrThbgTGSvoCe5jPAQICfYIcE0kva0I4GWeteK7XVCj3oNcQKNuRlPcG4y3H5BH/Eu46cHGIcXEiByJYeR2fMwQu1tWf5+keZf9daPC5YVxlusldhCf8XRwIBAKBJ4T4Hg4EAs84PCFBIaX09yQdSfq205ful/T2VVU9nFJ6maT/lFJ6SVVVhxvufZWkV0knpOzhhx/WcrlUv9/PZLK0LnvRQKKsOzs7unLliqbTqRqNRi4w6HUXiMJCwN2RgI3dyT6WbcicV7fnuD0/+QGSBxlZLpe12gmr1SqnHUDqRqNRJvoedS1z4BEu2u22dnd3s+thPB7X+uknXVBEkX5DIjkhgTQJou6kOiCkQP4RUhg7BAzy7mSW4yshcF5DgQj0en12OkVpmV+tVrXTLKg34GKCp8WQDgORhlz7EZNOwF1cKOtjMHekcPh6uCPCj7R0Ent0dKTJZJL3K+PG7YDA4HuFfeKknvlFTPBouaQsbpSWffYsohaCFvC0gNJN4/0pxTr65q4CdyrQnjtKmIMyzQBS76IAe8gLc/pcs/YuYpSfS587+lm6RNjDtI+Lw1MeXFhwUeRuERTu2Hexek9VlwOBQOBphfgeDgQCz1Q8bkEhpfSJOilM8/7V6V/gVVUtJC1Of35tSukNkl4s6RfL+6uqerWkV0vSYDCoJpNJLZIIqZbOTkTw4yTX63V2I0CQcTJAXDw66RFiyH6/36+d8ICLATIt1a3UTrDG43GOjOMcgFivVqv8mnSWsrC1taWHHnpI0+k0n17hRJAoOu4Dxoy7gaKRUv1kAwir571zndcJQKAgfWR7e1vL5TI7MYj4O1F3Kz0EGEGhtIl7BH9TvrwX1INwe8SeQpUUxhyPxzWrP6LPcrnM/Vwul1kYgai6CORHRXrfIJNeD8D2piRlQYo5XCwWmQQzB+Tac427HXi/FBh4xqYUAtaHe/jn7gCPvrv4VB7z6AKDk/+SMEPaPbrv1+AcQJjxFBd/j9d8Lj2doBQZ/Fle0NHTUDw1grVyscOdJrRTFnL19CEvtOliBe+X4/bP/2XFnfwu3klXb7aUBAKBQOBREd/DgUDgmYzHJSiklF4p6fMk/amqqqb2+j2SHqmq6jil9A6SXiTpdx+rPQgCUXjp5HjGqqpy1Nrt6pKy5RuiRaFG6SxCDKlqtVo5goyYQCE5Py4Rcu6pFhDK0/HlKOZ8Ps+CAteQxtBoNHKhQsSO4XCow8PDXJcBorxcLvOzSxLIeD3FYnt7O6ck8DtOCY66lJQLQU4mk5xa4XMG4cadQN8RJyBbCApl8bsyv502ETY8jx5i5wQ5ndYrKIn61taW5vO59vf3szDikXnm2YUS3xeIT2XdgLJIoBNS9iCEFWJMGwhYrGu3283zh/jitRU8RcRTL0oBwB0TiF2dTqcWiXdRjH6WboOyBgBw8aCsSUHbpVDhKSC+B3Cj4LTg84A45ek23O8uAE834LkleZfO3DRO+D2Fhn5xPetFPxmLi5PltQh3LlaA84pnXlbc6e/iQCAQCNwe4ns4EAg803Erx0Z+h6SXS7qeUnqLpH+gkwq2bUk/evoHPEfhvJ+kf5xSOpJ0LOmvV1X1yGM9Azv+3t6e+v1+jYxSI4ECiNIZOfLfd3Z2lFKq5epDWCeTiWazmWazWRYJIKpe0I5/uBjIg4cAQeyp/u7RW7enc4wg7gUIKESMSHWz2czHMrqtnWsajYb6/X5OnZBUq0fgJJNIOUR9OByq0Wjk9j0HXTrLY+efW/ipK+FE3K35XluB+fMjGx2kSED6cFz4MZKScjrDYrHQwcGBDg4OtF6v1ev18qkJTvol5dck1SLj7npgfiCkjKHT6Wi9Xuvw8DCv/2q1qrUJocR9wbGTfpqFk3+exTP8GEj2B/taOktvYV4o3sjz2Hfu2HGbvu9/ns01vrfpr6ewMF+lm8DdDz5/Hv3nd4Qed164eOT99HQH+usiA8/nWj9xpXQVIDT4nLJ/PHXD+166GFw48L3KXG9yU1w0norv4kAgEAicj/geDgQCgZtxK6c8fMyGl7/+nGu/R9L33G4nnJA66aAQI8crSvVcacjBYDDQlStXNJvN9OCDD0pSTmWAlHCEoBf9k87IsZNELO2tVis/C7Gj3W7r6OgoOxPolxNeiAluCO6Zz+dZgCAiDUnjenL4GTt1E7g/WT0C+gtZkqSrV69qOBxqOBxmogvxk1QjnKvVKhc1pHYBIkiz2dRkMsmnbjjJIorsEW1cE/QJMQaXBmSOOZ3NZpkoUsMChwXpIES+2SPcN5vNJNWjyS6w4A4o7fbMG+QdN0pZW4BxuMvAnSKtViuPFyGhJPL+mjslfK+Vr+E2Qdjwa5jXsj6EX+O1NPykCO71+gflWL2opBcodNLvxTNdVOB3fzZry4kkvO6fWxcGfC+4E8hTO1xAQwTyz6K7FMqUHFwipduj/B5gjjalo1w0norv4kAgEAicj/geDgQCgZtxJ055eMKApGDrJxIJGel2uzkfHQKB9V9SJu0UFsQRAKGYz+e6ceNGLeebXH2IEGTCj4mkbgDPoA6CH2EpndUQmE6n2eGAINBut1VVVa6bAHHipIf5fK5ms5nFCgiOFyj0KDmE1e3yk8lEo9FInU5HV65c0fXr1zUcDrW/v18rVHh0dJSdEzgmPMWDcSJslG4D5gRyenx8rPF4nI/3JCoNEaXNMmpcPpd1ODw81Gg0yuPEJQLRPT4+1mw2y+95fyTVCKGD+WOvUd/C7fUIH57usl6vc7HPdrtdK4hIWyXhpdYD8+6uA1J4PN3EX6uqKqfSlGNx5wDPcSdASeTZG6WTod1uZ3KNyEP73F8WVnQnjnSWUkQbPMvrG3i6EYIY4oFH/p3c+/eB98Ov8/lgHAhP7nZw90xZp8HdE57S4OLSZXQoBAKBQCAQCAQClw2XQlCQlO39rVZL0+lJCho5/x79J4rpKRFbW1uaTqe5RsFgMJAkjUYjPfLII7lGwNbWlvr9fi7m6JFT2vFCh5wKMRwOtbe3p+FwqMlkkvvrhBkxodE4OWni6tWrmfSSpuBWdkk5ik8bEG9SFjjK0ivbe075fD7XeDzONQj6/b52d3e1s7OTx+bk2q38iCAIKKU9nlMbptNpFlHG43EuQMi46NcmEg+BxMWBu8GFIUSjGzduaDQaZWfCYDCoiRrUiXBSKJ25FBAder1e/p15pa/Y87HTuxiBYCDVa2XQJvsFEs3e8HoDOFIoEulrxX72UzN8H+Gg8Hod9B94wUfpTMjy+YcIu7BQpgj5dU7Q3YXiLiCP/LMOwIsduqBBjQ8+V6ydr6mnVpTpFF6Ukc+l38c+8Doq3Oe1PViDci7LmhPuevB++VgDgUAgEAgEAoFAHZdGUCBv34kBJAYChygAoep0OhoOh0op6fDwUOPxWNJJnQGOP+S/njOOA4IotaSc/39wcJAj7rgH7r33Xu3t7Wl7ezu35UQDd4LXWWAsLgY0Go1MGr1PvAex7PV6unbtmobDYY7CHx8f65FHHqnZtKnl4KTW0zwgjIxRkgaDgVarlR555JEsKGBNd8I5Go10eHio6XSaI/eMGfJHv5yU+c8AokgBRkQKBCRJWdjA4YErxY/FJNpP+8yZzyHrASH155f5954W4KKH76Gjo6N8ugbzizDC3HsNBD+5wh0eZVoN5NbTM0g/8ToEviakddAHJ728hvvDaxB4mo0XdCxrJThc0OAaT0HwmgjubvAiiZzKUd7n/wBtlYKKixpevJQ5d4HH72MON4ldnlrFs8u59ucHAoFAIBAIBAKBzbg0goKnLUwmE83n80w2l8ulDg4OJEn33XdfjhRTL8Dt6xTbo/I+RBVr+d7enu655x5du3YtEyXIJFFyIvbz+Vy9Xk/9fr9Wi8FdBp43zrV7e3tqNpv5eEOI0nQ61WQyqdUuQISA/BDRp3ghjgyPDHt1euoT4GzgOTzb78OG//DDD+fTINxe78cHchpFVZ0VfGQs9MtPP3DHgEeqnQAyX8vlUt1utyaMcAoH5BeHhUedy3QGhCHpLPpMbQjmjfe4tixOiQCDaDKbzbIIg0jk5NIdDz5+hBCv93F0dJTrPTCv1Jso6zswL4yzrAng6QsIKzgUEA84GcWP2PSxMhfsCXcHMHcOr5cwnU5rNRs87Yb97fVIfJ+UaQjuDmDsXkOBZ/qa0w7r5ekT7gJBSHBRhs8Sz/UUGi/C6OP2PgcCgUAgEAgEAoHNuBSCAnb91Wqlhx56SKPRKL9ODv1yudTOzo56vV6uZUA02POguWc8HucUiMVioVarpStXrugd3uEddO3aNXU6HU0mk2zL5h5SCbyQG6TG88S9eB249957c6oC+f6LxSITGgQO6YS0QKrdtu2R1bJeATZ+ni8p1xngZ8YLcXXXAP1A0AAc1YiAM5vN9Mgjj+jGjRu1yDJ99XoEHuUFEDyi454+Qg0EikauVitNJpNMplutVnYulFFnfyaEttPp1E544Flcyzo6mXXBw0+34FleG4F2/ChNnCE+71VV1eoseF2Hsk6Bj8FTHZhjr6XhDp3ymEtPoaDuB310Yu5uAy/c6PUimB/WzOsM+HzQB1JHWGd37PBM5t2BeFPWniiFFE//oE3e9/tYy9KtUTob3BFRumocpZgQdRQCgUAgEAgEAoHzcWkEhXa7rcPDw0wugUcfif5SUJE8e4/cEoF/4IEHMrGuqkq7u7t69rOfrevXr+v69eu1+gkcV0g7uBvW63U+8QBhw8kLxL7T6eiee+7Rs571LPX7fUnSww8/rMVikZ0XHPUonUXWKezI8ZZEaCFUTpzpg4sJXveA+zjmkWd1Op1MpPr9fo0E4iYYj8dZ0Ekp6eDgIBdHxK2BvdwFBumsUKNHlEkJkM4KA+7v7+cx7e3tKaWUib+7BdyZAYFlzKwBc8g/xuQigAtNbpf3woG8Rx9cBEDY8SKhuFYmk0ntWEe/x1Mw/DSOTaS53ONu4/faGv4sBIQyt5/UlbJ2AO0yPif/3md+9xNQNvW/nE/WRVLNZUMfS8HACbqLGKx1mWrhYkCZJuHt+HoiBPiz2ZPev/L+0qkg3Sw4BAKBQCAQCAQCgTNcGkEBaz3RU+ms+BrF7u69996cUjAYDPSsZz0rp0lAHkiPILUAQoEAQaFDt1kvFotcbHG9XucINJFyJ2L0jcg2RRjvueeeTNgpPEidgHa7rdFoVMuP73a7mUA2m81aCoRHrXEvSPWj+txCLylX76eORKvVUrfblXRG3EjdgFxiTed50gkJnEwmWdxwYQLXAMca4jrgGfQVhweE0OeOyHZZMBCiXNZnKOHWdv7La572QPTeC/nRpqc+lDZ/r13AWrlFn3XxZzAH7oDwvcz9zD0CjLsIEANom7HgKEgp5TXwNaQ9+uCknDl3AYA9hLBB3QdPTXG3hxNthCjGwjPKYpmlSFOm1Pg68jxERRft3Hm0ifTzLEQYdyn4GOlL6T4ohQgXQPhX1l8IBAKBQCAQCAQCZ7gUgkJVVRqPx9md4BZ2CLeferC7u6vd3d1cMwBHAaQHO/pyuVS73Var1dLVq1f1nOc8J6c73LhxI1v/sck7oet0OrWIvkeGPXraarW0s7Ojvb29nDpweHio2Wyme+65R71eT8fHxzXBgHoHWOSJmkO+PF0AUuzuBSeiEDzIvAsekF0v1kj/yzx20g+m02l2a0j1qHWj0ciOC+oDOMGkDxBxz5GnPY5sTOmkaB8CBK4Kt8m7o8Bt9x41ph6BF6akoCNzgSji+81z+Z00st5ey4FxrVar7ATYlCrhfUZU8RoMnirjxNXvZ93dqVG6DNxtQL0Q/6z4s1w0wE2AsFMWkWRfMC/+uotpzD8pPNT9cDcD13maBG25e4A14xp3UPh9/lyfcz+Zw+sx+PqUKSyISZ4yUjo3AoFAIBAIBAKBwGPj0ggKHO24WCx0fHysfr+vXq+XCWi/388EyE+EoGYARHY+n2s0GmWBoNVqaW9vT/fee692dnZyesN4PNZoNMqnLUjK5JW0heFwmKOfnlvvUdVut6vhcKhOp6PZbKbxeKyHH374pjQEUgf4R6S+zNmHkJa1G/zUAreOuy3cyaDnl9NnijQ68fRoNHUf3D0AOed3xADEB0QBIuiIQbzmxNbFEOaAfiEASfUcdxdA3K4OwUaooV88g7EwLj8W0otF8ruTy/JYUvaAO088Gs4JFIgFFLT0kzMg/16/QDoh7QgP5RGQjNmJM7UmaLMsRghwUiAA+dgk5ToNPgeekgHhLlMbXFDDhcE+dJGANaK9UpTwvnJ8KJ8/SfmkFOa3dA74Z9DnrkyrKB0SrFlVVbUjaX38LoiEuBAIBAKBQCAQCJyPSyEoeH42ZMBrJUBkPf2h1WppuVzmo/0gr9PpNJ9OsLW1pcFgoCtXrqjdbmcBAps4hMiL0HW73Vx3oNPpqNvtZvLthNZJNnUcIOyr1apWtI6IPykGXivA3Qu07wIBAgNpBpAenuNiBO1z0gPtQ9Zms5mOj4+zsOJzD6nHLYAF3W3mzWZT/X5fKZ0UJiR67ykEuAHoC8QWIrlcLjNJ5/3xeFxLk+B6P82gJH48C+EIeF0IdxMgfLDHvC3qWfgJEbTlIoQXCWQfuBDC69SG8NoYpWPABRWAg8QFFU9F4Pn0ydMXPDXG63GwRswfffJaCWVxUfaXp374OPislI6ETZ/jR6t5wLjou6cEdTqd7Apx94m3V9Zn8OeWtS34r6+7p494O+7eCQQCgUAgEAgEAufj0ggKnB6wXC7zyQtEVj0i7HZ2jpisqpMTE/xUBEgL0U9J2R5+dHSkyWSSCbbbtTudjqSzKvruFOB1B+QDZ4WkXOdha2srp3LQLyfgR0dHmfjS9tHRUSaaXgTRCS3jILUDx0Gz2dRoNMrtQeppg7kFEEtqA3AqBVZ/3vOCgO5sgPS5W4B54+QM5ht4RJtUFU9bwMnBHJQnCDAvnGJB4Usn08wNzgHSXnjfBQuEBi+86cSdPpSnepSOCUk5Xcf3kZ8ywbq7S4N94YJJ+dlw8Ypr/brSOUJfcV3QtvfB54JaCewNhDZ/rUzVcBcFY/I5cVdAKT7wHkICaT+S8rrzGmtVOhN4dilYuCBQzg1t+WfQXS2lMIFwEggEAoFAIBAIBDbj0ggKkE/phFSQRuBRa/7gh7hScR9HAUSECHiz2VSn06kVOYRokv9fEhSIpXQmHkCSymPsIFZE9dvttrrdbi7EuFgsNBqNamkE/jzeRxTgOX4kJoUPPQouqXYSBX2nmKEXWOQ5OB+wkY9GI7Xb7VwPYTKZ1JwdkmokGoEHx8L29rYGg0FtLj0Czu9lAT13XiBgAIhsr9e7yd0B/FjN8rhA1og1xiVC6gyClaeddLvd2tGLXu8Bgs88+/jcxcFcsRasnc+DR795zYk/LpLpdJr37vb2tubzeSbFXmvAi2GWqS7shzKNw/cue8PTacpCkC5IlcQekY95RLDxApUuPJQuEncbONGn/bL2hu8dfvc0j7IeBdcipiCa+ByWfeK/LooEAoFAIBAIBAKB83FpBAVITKfT0WAwyDneTmI8CltVVc6R7/V6mfxR08Dzuz266qQSMugk1x0B3EuknlMCsK5DVHA5dLvdbNder9fa39/XaDTKJH82m2WyeXx8rBs3buTUBMZJNB1rvB915y4JSLMfbTidTmsRWK8lwYkTrVYrE0pIk59eQIQYyzsk2lMCECw4nQKXCM+FpJbOAumsZkBZ3JDikbTrpzewPzynn/4RyWYdEGMgulj+IanMBe6Ea9euaXt7W7PZTPv7+7VTC8paDn4igpNWT9Og/5Jq17m9nnlELOBa1qrb7ea9CQH2z4KTey/uSdoI75VgvvgssO5eo8L3tFv/3fnjY0O0o92tra1azQlP43G3QFlc0/cJe7J0VZTOBK914KkO56UueJoF95XPLVMqAoFAIBAIBAKBwPm4FIKCpBzFJ6oMCZTOotsUb+R3SCVkTFJ2K9AeEXcnlZIy8YQYQdAhU9QeIDqLmAB5WS6XtWg90W76fnh4qEceeUT7+/uaTqcaj8dKKWlnZycTHPrPGJ0IeaqHV+eXzqLKpCB0u90seED+3aZPEUsi/4wZ8nhwcJDFhZSSJpNJJvCDwaCWb0/dAyLth4eHunHjhra2tnT9+vVc24J1Wa/X2dkgnZFBiLhHsZm7fr+fSaQLMIg5Togl3WTZ97obLkQhSDCu3d3dnPKAoNFonByv6QU4S4eAizjMCeSVyHuZuuBF/zwNxNug735CAfUfEBSc7DOvuDmkeopFKQA4mfejK/0I1DKVAXi9AoB4RnqHdFbfgXXx9BGez+eS8W+aKxxJOB82pSU4XLBy9wOfG3czbEotcfjeDZdCIBAIBAKBQCBwPm7+y7xASukbUkpvSym9zl77hyml308p/crpvz9n731BSul3Ukq/lVL6wFvpRHm+vVuXpTOyvVqtdOPGDU0mk1ohP49AelE77qM4HYQE4trtdtXtdiUppxWU7ZZ51eTuQ9D6/X4uEkl7pCpw4sR4PNZsNstHSkIK8yKcksPBYKCdnZ2cWw7BK+cGckR9CKzpjA0C7gUJ3T0A0Vsul3rwwQdzqgnz504Nnuv1HlJKOjw81Bve8Abdf//9eR6Yx8VikYlcadXnH04U0lokaTAY6OrVq3lNWCMvKlgWEOR50gmZJLrfbrfV6/XU7Xaz+MDc9Xo9Xb9+PR/riQjj0XbmizYpEJpSyikUFO0cDAYaDocaDofq9Xq1ApBlPj/7nbmhoCfRfPaSp+y4eOHCDkIWrgVOPGGO2Bue/sAas96e/lHWFuAaTyPicyApj510GPrqTiDWkTXxufHUHp5ZngSxScgp6zZsEg396M5SCHEXhxc1ZR2owcEcXxY8Fd/FgUAgEDgf8T0cCAQCN+NW/lr+JklfLenfF69/eVVV/9JfSCm9i6SPlvQSSc+W9GMppRdXVfWolc2wRbulvSwG6DnaEEN+Pn22JOU89KqqNBwOM4FxMu7tQvY5thJi7vUTnExDljudjnq9nvr9vvr9fo2ELRYLPfLIIxqNRjelURBdx0mBCLC7u1srruinGJT57ER1eabXmGB8o9FIkmokzm3kCDSc7sB4cWK4OEGdCMbOKQo3btzI/WXO3EkgKb/nRfdIn6CAJKkgflKBVI+S81yvmeBpBhB8d0jQBmPATYJQ0W63ayclsF8gk4hDnqcPOS7JKA4C1sFPh5BUK4Y4HA7zXHlRRE4wcYcCZJ46GLh4KETJ3PrJC2UqhKSb9h/P6HQ6NxVOJMJf1hlgT/As0kYQbdhPEHncHi4aeE0JFzRKYk8aE+NGMHCxzOHuA//nz/C95N8Z3PdoqRiXBN+kJ/m7OBAIBAKPim9SfA8HAoFADY8pKFRV9VMppRfcYnsfJuk7q6paSPq9lNLvSHoPST/7GM+oVdyXTlIgSgeApJuIRFnskFoFw+FQ165dqxWj85oKHi3mtAAKIEKAIFqj0SgLDhx7uLOzo16vp16vVyNFfoIERwpCOMt8ecYMiSyPEYQokk/vpzVQ78AJFgUWIamQMJ7rBNxPQmg0Gpm4EZH3yDiFFyH1i8VCN27c0Hw+r13rkWFIpdcToI8USPRTEpgL+uvF/aQTkQaxCcIPcfaaG4zfHRwQWcj57u6url27pl6vl2swzOfzmvPABS0npohbfjKIp6aQJsO4/MhCBB8Xv9w1s729rV6vl/eyOyVYG9/zZZ2AdFp/odlsamdnR4PBoFYbxItsIjbQFjUQeC4pIIyV0zRcdBsMBjk9BXjRRO7FHeGfVeYRdwRCFm212+1a7RCfC9pgjj09irF64Uf+62kWwJ0f3MvrniZxGfBUfBcHAoFA4HzE93AgEAjcjCfi5/2MlNInSPpFSZ9TVdUNSc+R9Bq75i2nrz0qIGsQUCLwWJydGHphQkm1P/oXi4X29/clqWZd90irW+Ynk4lu3Lih8XicSTq2c+4fjUY6PDzUaDSqRb09lYB+4ZjgOEq3bEOiSQWg2KE7JyTlCLRbthERsMXPZrPauJ0EEfGXlMkcEVkXFBA7IMNeLwAXAfn+tEm6x3K51GQyyTZ/2kZscDItqSYaEKn28SEcDYfDmihAGymlTI4feeSRmlhCm07qWX/ItVf4dwGHvkGkEQMgzB7dx51AHYoyt95PBfBimZ5OgOgB5vN5rq3hLhrpjPBDxMs9wjqWhS8RRQaDQa6twPV8plJKeQ68Lkiz2cxOFD47OCFI4wEurDD37M9er5f7wzyzB/n8IKQgRPEaY+90Onl/ekqR71V3l7hoxpp5agTv+efO58NdF6yDixCXHHfsuzgQCAQCjwvxPRwIBJ6xeLyCwtdK+ieSqtP/fpmkT5a0qYLZxr/IU0qvkvQq6SwaCSDskEzPKacwo1vqt7a2MjmDhEAU+N0J4Hq91mQy0cHBQXYTQMw8qiopk+fDw8Nc68Cj325195QHr+3gNn5EBUgNwoMTW5wGuBs4FYFUDhwdkDgIM+4Ijh704xCJAPOa55Z7+gTFGxEicGfgTiBFwsUBL65Iu56vD3FzgcOFB4gr9vv5fH6TEASxg6zv7e1lss1RmAgR3W43O0ic6LpYAqFFJIG4+rGSpERIZwS6TBEoSS2vcT9zRIqMOwaocVGmF7RarRz59xMhXDxgzp30bm1tZbcGRJ5reN9dDMwHe4z9RR/cGVQ6bVqtlq5cuZILgLK//OQUhAb7zNdIvNfVYGwIeYg7Pn+dTqd2oofXGnGxzwtg8tlDMKEPjMfThnyflekRlxh39Lu4o96T08tAIBB4+iK+hwOBwDMaj0tQqKrqAX5OKX2dpB84/fUtkp5nlz5X0lvPaePVkl4tSTs7O/kLFsLH8Y9EWolCEyFfLpf5NS+kBtmEZBIlhaCR2jCbzXJbEHmv0M/rjzzyiB588MEctSXFwMUFP23ACZQTFlIxIP+QIcgzqQf9fj9X88fNcHx8XBM9PBrL0X+0AfEkz5+xuO3diSsEDLIFQZROHByINy6QkDoAMfUIr0ebvX6ER9vpB5Fj1rfM1yeS3mg08pGY1DaA2EM4cYdARhFcuMcLNkKSGRdEmXVibSDziEeQWtYHEn36OZB0lpbCGjNuJ+eIEP4sd0bggvB0Bubd3Qk+V4gQFPVEYCKaj5DkhTxdkCB6759BTvjwlBf2CIINfSmLgrq7AwGJvnqhSPaAz5PXQ6AWhJ/GwWfVRUbWmn3nqReloOJOHa/bwrX+mb3suOPfxenqXWHJCAQCgcuC+B4OBALPdDwuQSGl9HZVVd1/+uuHS6La7fdJ+vaU0r/SSQGaF0n6+VtpE0JNtNqr5ZcFDyHuRDHH43EmRMPhUIvFIkemIYvYu0tBwSviSye1G3AjEBmmbUgzgCyRJlFa5U/nSuv1Oherg6wRDV8sFvnZkEicBpy+UNYT8NfcaeCk39MPIEaQLkifR2zpO2Rre3u7NnbahIhSjJJ8e8i5FwrkNensuEl3HLi44TUGIJrubGC8XuPBxQHWHLKJE4I5Id0BEYV95KkuiDeeTuLE1WsY4Awpx+h1FXA9uMjBeP3YT9aF/e9pEcxTmbpAO/TJHSAesefZPiYEBn5nnjwloN/v14pDMrfM/c7OThZc3GnCPuVzwLp5ygb1LLzoJ3sOIWw+n+e+cMKGf0dIZ2kh3gcXLLxmAuMlJYk9gvCES8XdQqVAeBnxZHwXBwKBQODWEd/DgUDgmY7HFBRSSt8h6eWSrqeU3iLpH0h6eUrppTqxbr1R0qdJUlVVv55S+m5JvyHpSNLfvJVqtl4dvySUkDyI1cHBQY54NxoNTSaTTJo4bhACX1WV+v2+9vb21O12NZ1ONZvNNB6Pc5FFzyefTqeaTCaZpONAIIpLdJYUjdlslknq3t5eFicoXAeJdkt4p9PJZO3g4CC/D/EkGu8ReUQABBKvSO8E1avr0w8n8dIZ0fWK+cwvP5OqgOPjdG0zoSRCPRwOc4HJo6Oj3CYknXWCnGFdp31eo/gfboSqqnJRTuZ3Pp/n6P2VK1e0t7eXCWVVVVlUItrMnHtNBcj3fD7PYgK1IdxZ4MUoPd/f1xdBwaPjzCNteWS9tN+X+4M19gKctOOCglvyvW/Hx8e1mhxc4yTd9w4ig9f1YOwIKP7ZZA6vXLmST3bgPXdp4MxgnyEolCkM9A1BwdNxXGwq3SueauMCG84YrqHvpcDgaTlesNNTJXw/uKhy0XgqvosDgUAgcD7iezgQCARuxq2c8vAxG17++ke5/p9J+me30wknSdQwkM6OMCQXe7FYaD6f1wrKLZfLfAwg1ziJuXLliq5evSpJGo/HOjw8zIXnsN1DdqbT6U3V7SFHCAzk7pNrLymTa3dP0LfpdJrdAqRedDqdfFSl279xDJC+4eTPc7w9NcPJs9c2SCllmznPKKO4knKaBG2THkFKiRNciCTpKK1WS4eHh/9fe+cTG9dVhfHveDyNxzNjTzxOUNQ2JEXdVAiVCFVIoK4QtNkEdt11gcQGJFiwCKqEyhIk2CKBQKoQohtAdEmFQOwoBZI0VQhNoRKlVQPGzow9M4n/XBbzvuszL/5TB/u9+5rvJ408eX5+873z7hzlnHvuuTFx4Hfi8DppZy4TYRICAJrNJhYXF3H8+PGJ0n9WQXDXA2CcDGEjyLm5uYlqA1+2vrW1FZMGIYS4GweTVExO+AoU/m2j0YhBOZ+HX2PP6hbuNOHL631jRibGiK/e8Mc4G0778Llxxw/fM8A3FGUygfr8MhraIt8PhMG/H9e+qoLjhj99coRLXNhfg9U5vnKCFQVMVuS/177Cxycv/NIP/t4vQ2KCwev0viN/D365A++fvsFXQ3Bs+gagTHTlqy5SoAhfLIQQYnfkh4UQ4m7+n10eDg3OnLLUmsmB1dXViSCU/9FniT8DsdnZWTSbzRikcra31WrFfgqc9fdlzL6ZIINEAHEWFkDswt9ut9HpdNBqtSaCmHq9jna7jZmZmRicjkaj2ByRFQ9bW1toNptRH8/1W0ay78Pq6iqGwyG2trZiIz8GYPzM/Lp3VluwgsDvNOGXjfgyc1Zr0I4MYKkX2N4SkbbqdDqx4oPNGrnuvVarYTgcTiQYuNyCjQKnp6dx69YtTE1N4cSJE1hYWMDp06dRr9extrY20dmfwb2fLZ6bm0O320Wz2YRlTTeZaGJgyMoD3i97PfhKDF6TCR9WFPiGnoRjhEH0+vo6BoMBgO1eD3y/U2CbL5vnNVgZwM/jFqU+kcGlOTuV3vNefPk+9fCavpcEExi+GoZJJCauSH75BpMC/h7z3yXagH+fvz/q9csfCPub+F4cvmJht2QCz+Vn55cbAYhJAyYovV38chdfhcKx420ihBBCCCGEmCSZhMJoNEKn04nb3jEAADDxn34Gr6woYHWAL5PmenmWxDPwZEDBAIQl38PhEIPBANPT0zh58iTa7TbMDP1+PwYajUYjJgRYFTE9PR0TDWyw2Ov1sLy8HMvtGVT53gKbm5tYW1ubCPDn5uZw7NgxLC8vY2VlBaPRKJaqA9sz0j4Q8o0BuZyAQRGTBH4XAd4HgDg7z8CYpfl+HTzXrXPWlssSGo1GXLsOIPYH8P0k/Kx9rVaLQf3t27exurqKZrOJM2fOoNPpYH5+HoPBIFaX1Go1NJvNmGBhY8h2u41ut4tWqxXHha8W8AkFJj84XqiNmjju2GfC9xfwyQQ/XkIIcVcQjh9fvZDvB8Ex689jAM+KEo4H2ovPwG/16fEJDB9k+4SNr17xPTV4LVZ1hBDQ7/fjNXiP/l54P7QPA3K/rIXX9H/nqxu8TfPn8bn5SoH87/NNKH21AsemT+B4WwHbPSK4ZIjj0/fP4PNiMgvAxNIPIYQQQgghxN0kkVBg4ONLwvMJgKmpqbhTg1+3zV0gONMMbAfDbO64vr6OtbU19Pv9GHwyuGMVwcbGRqyO8FsbjkYjNJtNdLtd1Ov1OPPP8v+FhQVMT0+j1+thaWkpVkEw4OH9sOSbn7WxsRG3JWSjQTOL/R2A7cCU73nftA1txwB8dnY2LpdgbwgGoFyyUa/X4xab7B/gGxnmZ455L760n8me4XAYgy4GgEwusOcDz6G9ef+dTmeismNpaSkG6gzihsMh+v1+1NhqteISCM7cLy8vo9frAUAsYee53W439qTgffi+E8DkzDrL7qk3v4sDq0/YVJC29b0N/HIU2p0JC2rj8/fjkOv4OSNOvUws0KZ85jyf2hn0+0aL/DyfOPEJJX6+T0J42+R7FLBCg99PP8Z5LS6X4fm+B8dOyQEmOvzxnaox/Hj0VQS+msb/PW3v+0/4nS5oQ/6tT6T4ZSL574MQQgghhBBim2QSCsD2NoYM5rgEwc+Mc5bfBzMMBhgYsax7cXERs7Oz2NzcxGAwQK/Xi4EYAwY2HzQzzM7OotVqxVnowWCAqampuBUfeyEwmcA+AsB4aQRfTAiw7N83d+MMr98ej/fAUvrNzc2YIOByD97jnTt30O/3Y/UBkwTcccEnPNgQkSXe3JKSzSnZsJH3zeaHrIJgMocJB18ZwoB+ZmZmYh29bwLoA0i/3Wer1YoNHVkl4Zdo+OCV1240Guh0OqjVauj3+1hZWYlJIq7B9zaZn5+/K/nkx5rvucBmj74vg6+K4f3Tlr7iw5fV52GViK8kYDJmNBpFG/olCxwn+coQ3h/H68bGRmwQyr/xs/p8bgzAWU3A50Lb+gTLTgkEXi8/++/tSHvwurwexzoDe5904TV8rwb+zn92/jPz23Tm9dDmPiGQr7rwFRE8xmfMpBL9SP5zhBBCCCGEENvYXrOBhYkw+zeANQD/KVvLPbAI6S4S6S6eqmo/LN0fDiGcOITrJI+Z9QFcL1vHPVDVMQpUV7t0F8v9rvt+8sP6P3HxSHexVFU3UF3tR+qLk0goAICZvRpC+ETZOg6KdBeLdBdPVbVXVXeZVNVmVdUNVFe7dBeLdN9fVNVu0l0s0l08VdV+1Lqn9j9FCCGEEEIIIYQQYhIlFIQQQgghhBBCCHFgUkoo/KBsAfeIdBeLdBdPVbVXVXeZVNVmVdUNVFe7dBeLdN9fVNVu0l0s0l08VdV+pLqT6aEghBBCCCGEEEKI6pBShYIQQgghhBBCCCEqQukJBTN7ysyum9kNM7tYtp69MLO3zOw1M7tkZq9mxxbM7GUzeyP7ebxsnQBgZj82s5tmdtUd21WrmX0jewbXzexz5ajeVffzZvavzO6XzOy8+10quh82s9+a2TUze93MvpodT9rme+hO2uZmNmNmr5jZ5Uz3t7LjSds7ZeSLj0Sn/HCByA8Xrlt++JCRHz4a5IuLRb64cN3l++IQQmkvADUAbwJ4BMADAC4DeKxMTfvofQvAYu7YdwBczN5fBPDtsnVmWp4EcA7A1f20Angss/0xAGezZ1JLSPfzAL6+w7kp6T4F4Fz2vg3gb5m+pG2+h+6kbQ7AALSy93UAfwDwydTtnepLvvjIdMoPF6tbfrhY3fLDh2tP+eGj0ypfXKxu+eJidZfui8uuUHgCwI0Qwt9DCHcAvAjgQsmaDsoFAC9k718A8PnypGwTQvg9gP/mDu+m9QKAF0MIt0MI/wBwA+NnUzi76N6NlHS/G0L4c/a+D+AagAeRuM330L0bqegOIYTV7J/17BWQuL0TRr74CJAfLhb54WKRHz505IePCPniYpEvLpYUfHHZCYUHAfzT/ftt7P3gyiYA+LWZ/cnMvpQd+1AI4V1gPBABnCxN3f7sprUKz+ErZnYlK/9iyU6Sus3sDICPY5whrIzNc7qBxG1uZjUzuwTgJoCXQwiVsndiVM0+VfbFVR6jSfsEj/xwMcgPHypVs0+V/TBQ7XGatF/wyBcXQ9m+uOyEgu1wLOVtJz4VQjgH4GkAXzazJ8sWdEik/hy+D+AjAB4H8C6A72bHk9NtZi0APwfwtRBCb69TdzhWmvYddCdv8xDCZgjhcQAPAXjCzD66x+nJ6E6Uqtnng+iLU38GyfsEIj9cHPLDh0rV7PNB9MNA+s8heb9A5IuLo2xfXHZC4W0AD7t/PwTgnZK07EsI4Z3s500Av8S4POQ9MzsFANnPm+Up3JfdtCb9HEII72VflC0AP8R2WU5Sus2sjrED+mkI4RfZ4eRtvpPuqtgcAEIIKwB+B+ApVMDeiVIp+1TcF1dyjFbFJ8gPl4P88KFQKftU3A8DFR2nVfEL8sXlUJYvLjuh8EcAj5rZWTN7AMAzAF4qWdOOmFnTzNp8D+CzAK5irPfZ7LRnAfyqHIXvi920vgTgGTM7ZmZnATwK4JUS9O0IvwwZX8DY7kBCus3MAPwIwLUQwvfcr5K2+W66U7e5mZ0ws072vgHgMwD+isTtnTDyxcVRyTGauk8A5IeL0uv0yQ8fLvLDxVLJcZq6XwDki4vS6/SV74tDCd0//QvAeYy7aL4J4Lmy9eyh8xGMO2JeBvA6tQLoAvgNgDeynwtla810/Qzjspx1jDNRX9xLK4DnsmdwHcDTien+CYDXAFzJvgSnEtT9aYzLha4AuJS9zqdu8z10J21zAB8D8JdM31UA38yOJ23vlF/yxUeiVX64WN3yw8Xqlh8+fJvKDx+NXvniYnXLFxeru3RfbNlFhRBCCCGEEEIIId43ZS95EEIIIYQQQgghRAVRQkEIIYQQQgghhBAHRgkFIYQQQgghhBBCHBglFIQQQgghhBBCCHFglFAQQgghhBBCCCHEgVFCQQghhBBCCCGEEAdGCQUhhBBCCCGEEEIcGCUUhBBCCCGEEEIIcWD+B5lKp30juR9tAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 0 198995\n", + " Min thresh = 1000\n", + " Sliding\n", + "\n", + "\n", + " Winner = Sliding\n", + "\n", + "\n", + " VFOLD = 11 of 15\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsIAAAGDCAYAAAAh/naNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAACDDElEQVR4nO2dd5gkVdXG39M9eTbMzuacA0vYSFhyjuqiAgKSVET0Q8wKxs+M8TOAImLCACqIoCCIgCRJS5S0sCwLuyzL5hxmZ+Z+f1RVd4VbVbe6q6fT+3ue3emuunXvqeruqrdOnXuOKKVACCGEEEJIvZEptwGEEEIIIYSUAwphQgghhBBSl1AIE0IIIYSQuoRCmBBCCCGE1CUUwoQQQgghpC6hECaEEEIIIXUJhTApKSKiRGRKue0ghBCSnFo8h4vIsyJyeLntIJUBhXAdISLLRGSHiGx1/bu83Hb5EZHz7JPvaeW2pVhEZIK9Lw3ltoUQUn+IyO0i8hXN8oUisqqYc5OI/Ns+v83yLf+rvfzwQvsu0B7nfOtc394Ukb+LyDHudkqpPZVS/+5L20jlQiFcf7xVKdXP9e+ichuk4VwA6+2/qUNRSgipI34N4GwREd/yswH8XinVXWT/LwI4x3kjIoMBHABgTZH9FkOHUqofgFkA7gBwo4icV0Z7SAVDIUwA5LywD4jIj0Vkk4i8ICJHudaPEpGbRWS9iCwRkfe71mVF5LMi8rKIbBGRx0RkrKv7o0XkJRHZICJXaE7IbjvGAzgMwAUAjhOR4fbyK0Xku762N4nIx1323SAia0TkFRG52NXuf0XkehH5nYhsBnCeiOwnIg+KyEYReUNELheRJtc2x4rIYvtY/ERE7hGR813r3ysiz9v7dLttd9JjHnVM9xORRSKy2fZqfN9e3mLvxzrb9kedY0QIIRr+CqATwCHOAhEZBOAtAK6JOxca8HsA7xKRrP3+DAA3AuhyjZcRkUvsa8Q6EfmTiHS61v/Z9k5vEpF7RWRP17pf29eNW+zry8MiMtnEMKXUKqXUDwH8L4BviUjG7nOZiBxtvw69fonIDBG5wz5HL5YaeEpJglAIEzf7A1gKYAiALwH4i+tkdS2AFQBGATgFwDdcQvnjsE5+JwIYAOC9ALa7+n0LgH1h3Z2fBuC4CBvOAbBIKXUDgOcBvNte/gdYJ1sBcifyYwFcZ5/c/gbgKQCjARwF4KMi4h5nIYDrAXTAOnH3APiYva8L7G0+ZPc9xG57KYDBABYDONDpSEROBvBZAO8AMBTAffbxSUrUMf0hgB8qpQYAmAzgT/bycwEMBDDWtu1CADsKGJsQUgcopXbAOn+c41p8GoAXlFJPIeJcaMhKAM/BOh/DHucaX5uLAZwMy8kxCsAGAFe41v8DwFQAwwA8Dusc7eYMAF8GMAjAEgBfT2AfAPzF7nu6Zp32+iUi7bC8yX+wtz0DwE/cIp3UCEop/quTfwCWAdgKYKPr3/vtdefBOqGJq/0jsB6fjYV1suzvWvdNAL+2Xy8GsDBkTAXgYNf7PwG4JMLGlwB81H59KYCn7NcC4DUAh9rv3w/gLvv1/gBe8/VzKYBf2a//F8C9McfmowButF+fA+BB1zoBsBzA+fb7fwB4n2t9BpbwH6/pd4J9DBp8y+OO6b2wTvxDfNu9F8B/AOxT7u8T//Ef/1XHPwAHA9gEoNV+/wCAj4W0zZ0L7fcKwJSQtv8GcD6As2Dd2E8H8KK9bgWAw+3XzwM4yrXdSAC7/edFe12HPeZA+/2vAVztWn8iLBGvsyfsfNtiLz/Ifr8MwNH2a+31C8C7ANznW/YzAF8q9+fJf+n+o0e4/jhZKdXh+vdz17rXlf1rt3kV1t37KADrlVJbfOtG26/HAng5YsxVrtfbAfTTNRKRgwBMBHCdvegPAPYWkdm2XdfBuisHgDOR9xqMBzDKfrS3UUQ2wvLYukMGlvvGmibWJIpVdrjEN2B5RGDvb669PfYK1+bjAfzQNdZ6WGJ5NMyJO6bvAzANwAt2+MNb7OW/BXA7LE/4ShH5tog0JhiXEFJnKKXuhxWzu1BEJsF6QvcHIPZcaMpfABwJ4MOwzlF+xsOK03XOmc/DcgQMt0MTLrNDEzbDEqnw2WB0DYnAOa+u16wLu36NB7C/77rybgAjEo5NKhwKYeJmtBN6YDMOlpd4JYBOEenvW/e6/Xo5rMf3xXIuLEH5pIisAvCwvdx5pHctgFPseNz9AdzgGv8Vn8Dvr5Q60dW3W+ADwE8BvABgqrLCDz5rjw0AbwAY4zS0j8kY17bLAXzAN16rUuo/CfY18pgqpV5SSp0B65HctwBcLyLtSqndSqkvK6VmwgrXeAu8jzwJIUTHNbDOFWcD+KdS6k17edS50Ail1HZYT8o+CL0QXg7gBN85s0Up9Tosp8ZCAEfDCvuaYG+TyIYY3g5gNSzvr8423fVrOYB7fDb3U0p9MEW7SAVAIUzcDANwsYg0isipAPYAcKtSajmsx/HftCdr7QPLY+l4ZK8G8FURmSoW+4g1c9gYEWmBFbd2AYDZrn8fBvBuEWlQSj0By6txNYDblVIb7c0fAbBZRD4jIq22h2EvEdk3Ysj+ADYD2CoiM2CdwB1ugeWJPlmsDBP/A68X4EoAlzqxYiIy0D5eUTTbx67F3tfXEXFMReQsERmqlOqFFcICAD0icoSI7G1PTNkM6/FiT8zYhBByDSyx+X4Av3EtjzoXJuGzAA5TSi3TrLsSwNdtJwZEZKiILHSNvwvAOgBtsDzSqSAiw0XkIlhzXi61z6d+wq5ffwcwTUTOtq+JjSKyr4jskZZ9pDKgEK4//ibePMI3utY9DGvCwlpYkxFOUUqts9edAetOfSWsGcFfUkrdYa/7PqzY33/COqH+AkBrQrtOhjXp6xplzfRdpZRaZfeVBXC83e5aWCfzPzgbKqV6ALwVlnB+xbb/aljehTA+CcsTsQXAzwH80dXfWgCnAvg2rJPzTACLYJ2soZS6EZaX9jr7Ud4zAE6I2b+t9v45/45E9DE9HsCzIrIV1sS505VSO2EJ8uthHefnAdwD4HcxYxNC6hxboP4HQDuAm12rQs+FCftfaYdg6PihPeY/RWQLgIdgPdUDLIH+KiznwHP2umLZKCLbAPwXVkzxqUqpX4a01V6/7LC1YwGcDuscvQrWeb85BftIBSHekFBSr4iVY/F8pdTB5bal0rCzUqwA8G6l1N3ltocQQggh6UCPMCEaROQ4EekQkWbkY+bS8FQQQgghpEIwEsIicrydTHqJiFyiWT9QRP4mIk+JVcP7PembSkifsgDWTOK1sMIuTlZWPk5CKh6eswkhxIzY0Ah7Us6LAI6B9Xj4UQBnKKWec7X5LKycf58RkaGwZmaOUEp16fokhBBSGnjOJoQQc0w8wvsBWKKUWmqfJK+DlerEjQLQ304z1Q9Wrr5i65cTQghJDs/ZhBBiiIkQHg1vMYIVCBYOuBxWqq2VsGZpfiQkTQkhhJDSwnM2IYQY0mDQRpfU2h9PcRyAJ2GlhJoM4A4RuU8ptdnTkcgFsPLEor29fd6MGTMSG0wIIZXAY489tlYpNbTcdmiomnP2jt09WLJ6KwBgeP8WvLllZ27dlKH9sGSNtW7MoFYMamsCAGzd1Y1X1m4DAPRvbsCWXZYju7Uxix279Sm1pw3vj9c37MC2rrzTe1xnG15bvz33vrkhAxHB2EFteGn1FjRkBNNH9MezKz2HBIPbm7BumxVBkhFBryu8cO/RA/Hf1zdZ+zOgBW9u3glTmhsy2NXdN/ciA1oasbO7B10x4zVmM9jdo2/T0dqI7l6FrbtK/yBBBPBHcU4Z1i/33SmGjrZGbNy+u+h+dEwd1g8tjVm8+OYWz2fbr7nB6Li1NGQxqqMFS+3vuym630L/lgZs2ekdc69RA/HMyk3aPhoygu7e6NDZpN/xOMJ+w4Pbm7BtVw92dlvrBrU1YcygpBlaw8/ZJkJ4BawShA5jYHkR3LwHwGV2KdolIvIKgBmwCh3kUEpdBeAqAJg/f75atGiR+R4QQkgFISKvltuGEKrmnP3U8o1YeMUDAICPHj0VP/jXS7l1f7r4YJz0Iyst7bdPnYV3zrOKOz60dB1Ov8pK4HLE9KG4e/EaAMD+Ezvx8Cu6CrrAXZ87Ghf94XHP+h+fNRcX/u7x3PsZI6wij985ZRbeevn9GNa/GXd+4jDs/b//9PR13oET8Ov/LAMQFFFfPGMOLr72CQDAx46ehv/714vGx2LikPacwC81R80YhmXrtuHlNdHjje5oxesb9XOE3zZrFFZt3olHQo55IZy0z0jc8vQbRm1/c+ECnHLlg0WPecq8Mbj+sRVF96Pjzx85BHuMHIAjv/dvLHUd64OnDMH9S9bGbj9jRH98+W174l1XJUtYNGNEf7ywaotn2TEzh+OO5970LHvo6ydg6uf+oe1j+IBmvLl5V+Q4nzpuOr5zu1Ws7zun7IO54wfhqO/dk8hWN3uOGhC48QSA9xw0AQ8tXY/n37DWvXPuGHzvtFmJ+w87Z5uERjwKYKqITBSRJljJpW/2tXkNwFH2QMMBTAewNLGVhBBCiqVqztk9Ljef3+PXkMlfntyF3zOuN+6K8M2N2dBxBrQ2IJvxOsq91eTz/Xb19NjjC2IcYmjw9emIYMC7byaEeV5LQY9SgeOhIxOhEBSAnrgDlJBO2+tvQpj3HwBO33csJg1tN+onK2lWcvYS1rXpkCIS+J6aoPP06z7uqJ4boj78XJ/5HmaN7cDYQW0m5oWyx8gBGNjaGFguEI+tPb3p/lZi91Qp1Q3gIgC3w6pk9Sel1LMicqGIXGg3+yqAA0XkvwDuBPAZuzoXIYSQPqSaztm9LiHV6xOObqHmvuC6L+jui2NzQ/jlrLkhGxB+GZ/AcNbv2m1dZDMZQVxWJX8fbpIWq0pbVMaNFWW7Q5RIVEqhO2XxbqDNc+zcHT72qfPHYlynmSjLJBk0IRIiNU3FrcBcNLvRhdjoPu8oO0xulPw3qMXeUzRmBZefOSd2rLiQjaSYhEZAKXUrgFt9y650vV4JqxQhIYSQMlMt52y3+PMLQbe31X0RDLt4u4WwLqbULwTc1/nJQ9sxcmALXl23HbtscWfiEY4SC35hH8funr4Twr1KoSFr4hGOEMJI7vWOI4n3M8ojLBLt7XRTQh0cKgxNx0yyH250Txd0n6V/yTXv3Q/nX7MIXd29gacdOtxNspkw2Z8E0f6mRLzHMu2bRlaWI4QQUhbcQsovqrIeIRziEXa9bspmXG2CF9Moj/BXF+6VD43oznuE48RstBCO3DRAd8qPe6Po6VVGIQGRbRSQtslJPIo7uyKEMMxFtYnns1DE99fBxBsPBAWgKV06Iaz1CHvfj+tsw4gBLQAMPcKuPcvGhHFEPbFxowvJGD6g2TNW2h5hCmFCCCFlwS2kev0e4axe/Hov6IIPHT7Zealtr9/O6yFzLuAKKvdYucElhN9z0AScuPcIq41LHEd5zXQiWgT4w/n7a9t3l9AjfMzM4Z73vb1mIQFRYkhBJfZ6x2EqEIE4j7C5dzLJmEkJjRE23R4ljhHWxMk7n3ni0IhM9H6ZCGGR4LijO1rxvoMn0SNMCCGk9nB7Qf1eHo9HGG5R7L1Qfvr4GVh22UmeNjrx4BdtHjnt8rzlPMIiufCKqcP64/i9Rtr96G0MjKe5WAuAA6cM8Sy79AQrJV0hHmGTx9cAMHPkAM/78YPbjDzCUSJMqeIESTYj+NrJe3mWJXHORglhwNyTWkohHCYNzSfLFRYa0eVL1QaY7adI/jMwCZ1xfz+ymegY4ajJrLn+EPxOL5w9KhB2MWmI2URIUyiECSGElIVew6wRHo+w66rljR2Gtn1nu5WJYGeEcHJEglJ5EZF1eYQzLkHiDuFIIzSio82aJV+IR7gxa3YJdx+bb7x9b3xl4V5GHr+o7pUqLkb4tPljcNYB4z3LEnmEY0IjTCWk4SEsiPCsEcEVk4a047oLDvDdACaLm3aErPum0hHCJt1kM5L73ZncKHlihENCI0Z3WPl+TW7adB7hXJf2i/cfMhGff8vM2L6SQCFMCCGkLLhDGf3eRW+McH65J31aSL/uNnd/8nAAwZn0bhGesT3CCsCu7mD6NPeMeOXZLmlohC522boMFxL3GOW1CztmR8wYitamYBYNHZFZI6C0Xm9zdDGr5qIv6sYmSWxtabNGhIypWTG0fzMOmDTYe8wThHjk+/Zu0a/FFsIGPWVEcsfDLEbYtW1I+/0ndub6/ujRU73bazbxf6ed/RHf+zShECaEEFIW3OLXLwS9WSPCQyMc2pqy2jZOXlJH4Dq4R7MeQVvbeCbL2Ta5h3RHMEQJUZ2zVNe6GI9klEe4Mav3qDv7aZZHOCY0ogiPsO5jTKJxImOEjWSfRWljhMXz12RMzxMPJJ8s5//M2nOhEfF9ZST/fTTKI+waK5vbV2+bJjs2OJsRHDBpsGed/0ZLIAHPsfj7LcHHRSFMCCGkLLi9pn7vov8RsUNY1ohPHTddu9zBn3fW7dnNTZZTKieEGzL5GOGM5KVVryc0IvwSajqRLKqP+G3DVUFjyI2EQ9F5hGGWNWKBT/zkbNIsSxQjHBUakcAjXNKCGiHLozI4uO1x36CZ4t+f/q7QiLjPXERy2xfqEfZv5dwsNmaDe+K3xwqN8P4e/PqXHmFCCCE1gyePsGFBDbeoc19a+7c04t37jwu0d3Aepbc0Wpc993AZe1aSFRrRm1ufixHO5IWKJ0Y44pqsm0imu4YXI8QaI8RKg8sjrIulNsoTG+kRjs8a8YN3zcZXFu6p77tAce4QO1nOUEAWExoRt2no/ui84fbCjO8GMOnXwy9gnWwNJl7ybCZhaIRvspx/GZD3LDdmM0HPuE+BCoLfy1xohC9EIk0ohAkhhJQFt1j0e4S93ibX64groXOd1bVxBK4zeajXI4Tz4zk5WLt7lWuyXF5EuLVf1ONjXfisTooUk8e2ITI0IuRGwlmWsGCCH5OsEVEiTh8aYX4somKEk4xdTIhwvIc1ZHlEW3/+7KRC2N/eeW/iJc9IXoiajOtukw0Rqk5/zQ2ZoG2+1iLBgho5+3M20iNMCCGkRojyCId5fr3eYW9/Oa9ahEfYiZn0hEY4/Stg847dOdsc89y2eCbZRV5BzYKEixPCEaERITHCjg3FhgQoxId/6IRcxidsdOtMiK0sF9GX+9gUcxwKFWVR23lCI5AsNEKQ/z61Nmbx8GePQi6HhsT7hEUk4IGNwlP6POS34NysNWnyCOu++8HJco5t3vdpQiFMCCGkLHgqy/m8i2GxwJFCOHfRDF4tHY9we1PQI2wJJ2ubl1ZvBWB5hJU7fZoTGuHaMMojbJpj1zQXsI7GiPEbQjzCDiYCPCoG2AqNiN5e5yOMElpJRJ+/JPXV58z39BPVl6cKYTHKKmZTvzczN6bWGx60J0mss9U+H+Pbv6UBwwe0eDzCcfZak+XMQxDcbcImyzXmYoQzRsfB/5vKh0T4FHGKUAgTQggpC+5wiEDBi5C44CgvbP7xaXBdly80QpcGTQF48c0tAICe3l5P+jSnd7eZSfMI61qXzCMccqB0sahhRBX5UDALjQh6hMPHTXIoun1lhMPS7elweyeL0VVx9oZ5VbWT5ZxsHr4nIYVmjWjwCVoDHYxsJh+aYPJZuPcjL6C9GzrCtiEbDI3wfwdFgr+HsCcKaUIhTAghpCxEeYTdhJVY1sUY+tv4aW+20qx5YoTt8rCvrN2GLTu7AfhjhPUe4cSV5bQesGKEsGn6tKBINBk36jNRSr+PbnR+WY+H0kcS76zfI+z3pDoD672OLgFXhBKO2zZ0bYRHOCAEE04PczbPZr0eWncu7HCzkoVGQIBZYwZ62/s2c27WdH5mk/RpgcwSJZgu15B6j4QQQogBbiHVE/EY3hOL6EmBENY+vK8Wu9SrcsXwuj1vrY1ZzBs/CMs3bM8JYXFNlvOmT4vyCJuFRhTzaD46a4T7mGnGNRA6frHpRiE+j7A75MS9DNALmiSadLffIxwRU+7/LDwxwkUc/zixGLbaNI8wJLkHNJf+zBdSIBIvIt0eWWfcQ6YOwX0vrdXbKoJr3rc/Xlu33W2yByc0QpfHWF9gxi+Erb/O75UeYUIIITVDt0cIhyth97Uv6kIY5c066wArtdrb54wGAOw9eqC2z/GD2zB8QAu6e5Qnj7CD2wkal2fXjyNEbvjggtyy4jzCEaERIXGwziuTQh6RoRFKxYdGaJblP6PwdSb4C7CEhczo+uzfkvcBJslU4ceTNUHzOYYJz6gR3dsIkt0cAAikP3M7auP6ymbE9VsQPP2/x+IX5+4bYatVsGbvMfnfkn8MJzRCny7P158Efw/Bpz6Ru1AQFMKEEELKgjdrRHi7sHjhsMfuOlH0tZP3xrLLTsKxe47AsstOwvjB7Z4+3X01ZMTOGuEOjbBaeDzCEUJUJxIdr9a88Z35PorxCEeo2bCCJM5+mIwbV/Y5PmuEbqKY7iE5QpeF2hblEXY/NPB1uu+EQfjh6XNc2yUY1IcnRlYX9yvev1Hkw3r82ycz0PlcHQHqnkAa1dOizx+NxmzGc6MyoKUxkO0h6tha1noXNrpCNPzNg2Eg4THCzletmBuXMCiECSGElIWoynJuvFkj3MuDF1KrTbKLpf8RfjYrdoxwvj9nrUcIR3mEDasPFyOEo7b156PNvU4wbmyMcFzWCE1cqj8dlned+bHwh22EVyL09vnnCw/E9BH9tdslxfO91KipJD3rvruFTJZzvp972U88PKEREZ0N6dfsGT/ssLgnYUZVyHPI5gS5BMbXVZYTEXzrnXtHtkkbCmFCCCFlwXHqOR7YMEJjhH24JwYlwV+5zrKnN2eTdYG21rvNjAprMC+xXCKPcMwxM5kk1h0ZI2wWGuH3EOZK8RqIqEjbfGEb3qcGrvFi+jTLlxu2PNojHKaEtWEzmhsEnRc1CgGwfP0OAMAxM4f51pmJakfnhvmP3YVaTHa5wR0j7FsX9P5a79+17zgMbG30jOEcs7ovqPHNW5/H5278b7nNIIQQkgKOWMxmJHLilVfY6D1/VjsJtDfBfZF2Hs+68wi7L9gq5clyUbmI42iMeK4fVo0vHz5SvEc4Dr1H2P6MNO1NRU5GNFkjPJua3TgBZjciYX14PM8JYoRnuDzS/r78gj5JKEBne1Pu9fQRAzwdm4rqXIhGTIEMv61hy/KT5cKfDuhw1gWzRqRPVQnhl1ZvxVMrNpbbDEIIIUVy8bVP4Du3LwZgeVajQiM86dNcV63ALPRc+2I8wpY93T2uynIub5px+jTj0Ai3HcYmA4gW0WGFR3T5asOImixnIvT1Yjd8pen+N2YzgawRofsb06fJcQgVwq7Fuu+Cbn8OmNSJ9x40MWIsV/8JkoW1NmZxwwcPzL0f3dFq94HcXxNR7c824cfjEdasD3p9IybLaWKEc699IRr54jZ17hFuacxg5+6IHDuEEEKqgpufWpl7nYn1CBt6+HJepAIMcnnOGrIZ72S5TF4YeEssRwhh3WQ5zS669ycqL7COqNCMsBjh3HqDWWJR6dNMKudpH53nBE68MAqjKZsJhG2EfS/i+kwSLqDZOvdKP1kuKCpnjenQe481x0XEXPi9a9+xGNvZlnvvTHLLe3gNQyMiblQA782XzrbQb4VowmTC7mQ9dvjDJ8IGKJyqEsLNDdlcvXhCCCHVj/PINnKynOt1ZGgEwkVWFJmM1/fWkBF09/bmbMq4niu7naRpxAi7hUXSVGoFxQhLcH0YUWI3SiTnhpKgcMlNltO1j+3RorEho4kR1vdTytAI75MKXWiEhpDhwqwoVvjF6NoAmYgbFcCbsk/XRPm+925PblxohCd1nN8j7FueJlVVUKOlMZOrF08IIaT6achYs8mjPMLhj7313qKkF0v/4+hsRtCr8unDshl91ogokdWrLHvi9LDbM5t04lxUHuGwCWPOcrP0aeHXWyOPMIKZAnKP3iO8xXE0ZkUTI6z3gMftpslxCLtp8IRGGE7+C80tnHuaEe3JD8PZ7voLF6C5IRu0weC76B4zbOQmT8XC4Hr/1yKfizvcZh35Gybfbzx0i8KpKiFMjzAhhNQWjqcoKkNB2GS5QLtcm2Q2uGOAnRhhIF+9zFtQI29nnEdY4H1UrNtDt4BK6hGObh9y82D/NfGaR3uEDZxSEhQuunABB1NPvi422hM7rhkv1ESDMcOauPfBtKBG3Efs3w9TLey0mz+h07s8N64EvLUA8L9vnYk7X1gdsC/MTu/NV7CR8n3Lc9UZNX1FpUbzp3GLEtTFUlVCuKUxi12MESaEkJrB8bZGeau86dPyy/3XxLjHuuH9ex8hOxN8urp78+vtPt16PSrOVil7mxg3nFtAJfcIR02Wc78O9msiuqMKarywakvs9trH4U56Lq2HMLZLAAgUeXDGcgjzhuswmiwX0knYJM68IZpFocMFbxBEzIR6yFB2H3kPr+7TPO+giTjPNXkvX5EubJ+jve3+r7snF7evva6ghv+1M14ufVoJlHBVxQi3NGbQ1dNr9EiGEEJI5ZPNCczgeV0vlsKVcP7xcjIbPBd9kZxI7LK9nu7QCE/6tAiR0tOrjOwoTghHeMc9uxR83G4iKEyLgoTagPAJUiYewjCaNDcA/vAW0z6NPqPQ0AiJbON+yqCzTdfWswzmoQDhXmvX+iShEQYD68Syf4icR1iCOTB0JZYDffvbxJuVmKoSwk7cSxfjhAkhpCbIODHCGgeHIy7CvH1+8hf9AjzCruuuI0h3dedDI5z1yUIjDLyNkhcESXMKN0a094pB93ILE9H9+/P3x9F7DE9kk8eGqBuZMOVnQGODTnT6luVS30VjFhpRmNdYt1WcYPWPa55bObpj00RsYbG5UW09BGKE3WXKfdtHfAedr3Zuv1yCOm2qSgi3NFrmMk6YEEJqgwbb26oTws6F0ps7WMIv1r64QlP8F1fH07rb5RF2cIfGRl3IldKIHo1Hzl161j3OEdOHxtpt7BHWiBqTkICZIwfg8yftEdsu1AYEH4eL768bU9Gny5ZhOqHSj9FkuRClFD9ZzmyZuy//Aw9j3Reqg/O/CRMHf85jb+QRjm9z0j6jcMT0ofjYMdM0WSO8CzxhIS67k46ZlCoTwpZHeGc3hTAhhNQCTn5TnRB2PK6hj9fDRFZBMcL5Ph1x1OX2CNvrVRKPsIEZXo9wfgP/pCcdUenTwuJkc+EjBgJQNF68JIjoJssF7XMwLqihmywXsm2ck90kdXN4+rT8cv1kuSCxHmr3a83xC98uWmAjZLKcH2c/TD4LfWiEd4x+zQ341Xv2wyi7wId/ndZW1/hx4jkNqkwIOx5hhkYQQkgt4HjSdHl386ER3uVxlb6SXirdpYAFeUHqCOFsJt+3t7Jc+CXUPDRC7xE2IUqI6+KCgbxgcm/7rvlj9X0UGZEpuf+CdoVljdh79MDYfnWhEeGT5aL3wSjsIeb7FtZGG/0R47nVrDAiNkbYrBvX78DgRkmzLEpru/v8wGGT8Iljp4X2FzbxtQQO4eoSwk6M8C56hAkhpCawxF9IjHA2xPMbInjdXt0keD2mkhO47vRpThO3YI/yJvaooID3e8ucvp123mpw8XZHZY3wigrXco1H+LR9x0T0U4xLOLi9y0EZbC7AXz50YHCFD50nPCwcIraghlH8r365e0vz9GnR32nvCvMiy2H3RLlsCyKJQiPC9tktdBNVloN31y46YgramhrCG+Q8wuLplx5heoQJIaSmyNje1iiPsN9rFycmkoq3OI+wu7Kc28woj7BSyjhHrWNvUo9wY2SMsN4j7JD1CS59J8WFRuhSZkV57UUkMtzDQZ81wu31Do4XRjGV5TxZI7RlkzXbhIyhOy5JQlPivvMiZllA8rth9t31ExV+4d236JLPodlFSuASri4hbHuEOVmOEEJqg6ztbdXlrM1NlgsIYX1fCa7hmv7yGzmT0HZ1ByfLuQX7gJbwVPymMcIi+hhhEzEflWUizCPskPVMQAy3rRiiNi8qRjgmj7DJ8ig7/BhVljMVwjFPM7zLzD2gcc0E+icSfvyFLEzaujH1CAt0x8Ddt3eMfEGNOvcINzdSCBNCSC2RtSfL9UZOlvOS9xb5BHJI+zj88aX+PMKZTP4RtTvf8ayxHaF99vaa2WGFRlgto0IddERljQgrqOG8dHuzQ72UiazRbC9BeZcPXwn2bpw1QqPSdOEf/uU6dCLXNFOBe7E2a4RO3IY85dD2L+afQXwFPUOPcK6ghsGYmmWmuaetG0AJLMv3rbejBA7h6hLCTmjELuYRJoSQmsDxpOnqJMWGQKR4VXSHVegry1nre12Xn5EDW0L769WERuhEgjvsInGMsPFkueB6r0c4zOMZ/fg6DuvRfrw31cHYI6yNEdZ702NjhDWD+j3tJqERUd7fH5w+O7As7JG/Xwyah0bocb5zpplU4vIIe7zKib8b3s8oKHKDxzNXYtkeN2GqbSOqSgg3MzSCEEJqCic1WXdv0MHheDz9AjIsrrNQgeyvVhfIGuHybDqhEVeeNS9SXCjNZDn92Mg9T856xFxw4pi/v6j4VvcanUgMi6kN66MQtI+/I4SWqVjTh0YExzDpUxs/7Tuuod+3mDbOkhkjBuC8AyfYy6I9nd7PzSxERtefbn2iyXJG391k3xDxfUZR2+dvgn1e4xL4hKtKCOc8wpwsRwghNYEzoUqjg3PC0B8/HJ5HWDx/zW3wCpGsJjTCoVcpjO1sxfF7jYgUCzqPsJtJQ9vtfcjP5veHOswdN8jz3lSg5XbERps1wmVbVHqwYip56SZ7RZXwNR0pyWS52NCIiDAL3bEKG1MfI6xbprcjtK2xRzhG8MNMCScK3TCyzLy9J6Ql490m79lOOKgBVSaEWVCDEEJqCSvfrjf21iEfNuFdl79I+7xFRXiE3ds6HmFP+jRxbDET3D1KadKn5fnjBQtwzXv3s5bb+xcXGuEXZFGpv8KEruiWhYmzov1vwR70n1zQJjc/PmOO570uW4bfqx/Xp4PuGDqfg/M9iHsCEdZGt1V+/8P6dH9W5qERcYLf8ggbFNRI8OMxKcoSuq1IYHuPN1zz5AIo7sYs1JbUeywhLZwsRwghNYUjILR5hO113T1+j7C+r5zISHit9Lf3V5bLuoRyb68KeAx1WNpWfMvy+zG0fzMOnWaVUc55hGOEhV8UTBvRH3PGdWjbekSFVlRHDpXbrhjdkdF4NKNuVsLiP986a5Svnbk72UQg+sn6BLDJsdKXWNbZ4xwAX1toFou51zXsc8rF1kqy9GkmVegSe4R9N1/+7T0eYccbn3Hs8S5Pk+oSwg0MjSCEkFqitTEb6uVxMgX5PcIlySPs8vL606dlMvmLtjvkIUokmqZPc9oCPo+wZh/8XsfJQ/vhxg8dpO3TP+kqvzxoeykeN7vH0tmVNEb4w0dOyb3W3TDE7W8YOk+us8wp5RzWh8frnjA0IkoE5pYh3qMdNRaA3F2WwLCghr0fYW3d96tJvbPiex0WNuN+nStt7thX7x7hhmwG2YwwNIIQQmoE50mfjsvPmIMPHDoJM0cO8CzPhImJkIlIJrg9lf7Kck6KN8AOjTAQ3Gu37DL2Xjk6352toFAvbm57T+YE93Kn/2jR7digr45m/T37gPExNmjETsRnFCVyPnHsdPS38zbrCpmEecALiRHOeYIThEYk9VSGTZbztikua0fUeIW2c6c5LGafRSTy8w57clCKe7bwbOAVSktDhpXlCCGkRmhpzIZefMd2tuHSE/cILE+Skisp7hhhT2U5Gys0Il5wb+vqwbYur9MmzMuW83bFhUYkUB5urajbzjhGOESw9mpioAPbxzz+DvYb3Z+DLo+wV9i7QwJijqlmtRPmEBcaERcjrB/P6+nM96Xx1GvaxfXrx/luiYhRuIO/gIUfdyx/1E2sDo+nHtGiNp+9wrHHGrfuY4QB68AzRpgQQmqD1qb8xVSXDUCHIzpCBVwBF8ucpxQSzBoh+cu2M7kvv7x4nIt8XIxwkolMCPMIS/iyQA8hy8NSWwUtkECbqKwEpqIvq5ks5/UIx4t8XVsHvyfYJDQiqty2d7xou/y5dNPy5Jp+c5zvWNjEOncsf2tCIeyxR4LHVedhDwt/SpOqE8LtzQ3Yuqu73GYQQghJgZaGTO7i1tHWaLRNWNL/vLetcHQeYXdohJUNovhx3DhOtjivYhKB723qFlfBm4jQ9GnQ72MutVUhHuGARW47ovtziJuYFiaKTfvKZYsQCW0T7Ce2SSS6zQu77QlZL2Z5hJ1dDfMIu5cn9gh7br5iCmqEZI2o+xhhABjWvxlvbt5ZbjMIIYSkQGtTNnfRMxXCpQiNcPfpzxrhzjPsiRFO6Zrcq/EI60sQm/fpbqpNsuALJdD2oVOyCD62jrQjxKOnnRwW62G20Of+DfPaRtun287vETZx9hYzccyzIEYsho8fP55Z1ojojhbOzmfwcGo7FIpRjLB/eVEjhthRgj5LyvCBLXhz865ym0EIISQF3DHCHa1NRtvkNEPAo6RfnhSnhG9Xd2/uEa4jdJQna0SygUK9bPZff0ENP6ZxqEC8x9csRliPafUxrdiNtCm6PwddieWwcWNjhDVdZXOfr1kfQLxAi4vPzWct8fZp6gENjRFWTmli037s7TTrnv3ycfjksdNz74vxCAPR8eP+/cmlTytXiWUROV5EFovIEhG5RLP+UyLypP3vGRHpEZHO9M0FOlobsXnH7lJ0TQghNUElnbPjcF9MBxp6hJ0raKgnswh7RNwxwirwWNwqqOFuX8RgNtqsEZp2SR4Lx1WO8+qicA+7Ps2Z8zdGZEp4SQ7dpqZiTV/FzfUa0fse11d+klwSz7eZ7VE3AlHti8W0n1z6NI1wb29u8HxGzZpS15E2RMQE+2101vnTi5elxLKIZAFcAeAEADMBnCEiM91tlFLfUUrNVkrNBnApgHuUUutTtxacLEcIIVFU2jk7jkFtjblLW0erYWiE8zc0RMLsYvmZ42dgdEervU2+73yMcE8gHrinV3kzMqQYsxjnpU3iDYsT6/5JWdo+Qh7Nm2TNcNYHQyOCns+8TWZo8wh7Ygq8NkSh+/z82SJM9HniQg+B46JvYyywTT4MA5J8n4vN4BA9Wc5644QNOZP3yjVZbj8AS5RSS5VSXQCuA7Awov0ZAK5NwzgdrY1Z7OzuNUoDQgghdUhFnbP99PQqbNvVnZtxftYB43MXxH4t6WT0NL1WfvDwyXjgkiPtbfLizp01QjcxTFeyOA1iQyMKFCl6MetqG9WPZlleIEbbo/UmRxhlunuxHuEkoRGRQlhCxzPpx02YYvHHwvo926afeFi7fCEKs37i0qcVQ1QohLU++J0NL6+eHiZCeDSA5a73K+xlAUSkDcDxAG4IWX+BiCwSkUVr1qxJaisAKzi7p1dhdw+FMCGEaKioc7afL970DPb80u1oyAjOXTAejdlMfhJUSt6voibNIR+i0NXdm48X9eVAdUjTI+ytLBek0LF02+mqeCXtL24rnUc4ty7B0nx/1nrdDYOEvC6koEYuJCImfZpnm4Sxq/7vfF4Qe8Wg6UcTG69tKKlL4XEN6zvq+5wT5Pb7cpdY1g0bpkLfCuCBsEdsSqmrlFLzlVLzhw4damqjByeejNXlCCFES0Wds/1c/9gKAMCunt68wHA8jIZXOZ33TN/CHHdfTp7aXmVQOjfFC3NcXtZEBTViYoS9XtPwfvRlgr0e09BtES7AtOEaxh5hTWW5EGEfG26iWdbgC40wu0GLPxY6cmI7xHueVmiE6bF1mpXGIyy+9771mu+k/+l/WWKEYXkTxrrejwGwMqTt6SjxI7acEO6iECaEEA0Vdc7244iM7p5ghVDjx8Bx3q9iPMIinhhUXTxsiXSwRwjrhE2y0Aj9awdveEd4v3rPtPeviQ3BfqO9ulHoY4TDbIjxsus8wv7JciFKKYnnOcwu/2da6Hc39jeRsJ+wghppEvn9cGKEex17LMrlEX4UwFQRmSgiTbBOnDf7G4nIQACHAbgpXRO95IQwyywTQoiOijpn+3EeRXvy8eaMMusjn2qqkAfsYX3m/7ofl8flrE0zNMJdZU9HkqHiRJpJZbkwcsckdsPwPLh6j7CZIfFZI/J499Ps5qLBJ4TD7HJLxaQxwk5zf5XEgoVw2Li5kIJkHZfEI+wzwW+T15Nv2xHoJH27YmcmKKW6ReQiALcDyAL4pVLqWRG50F5/pd307QD+qZTalr6ZeVoZGkEIIaFU2jnbjzcO1is0ksYxJhFZSfrMaoRuWChBmjGVLR6PcHB9oXmEo8IbkvSTW2b/jS9WEeGpNRpdb4u+spwE2lk2BMWV18bwG53cRMkEtsW3c77r3u3CYoRNic8aYdiP3bAU/uAkn3nOI+xkjXDyIZcgiNloiq5S6lYAt/qWXel7/2sAv07LsDCcSiY7GBpBCCFaKumc7ccd3xk1Y74Q0plRLshkBBmxY4R1AiVk4pyOzvYmrN/WZTSyJzRCsz7NPMJxoRN5O8JXxsYIi4R+JsV8VJmMtX2Y19KTR9j13HvqsP7avkLHMYiBdhjQYqX+O2jKYDywZF3kdoArNCKnzov77qYVGuE0LElirjiPsOa1yqVP02+TBlVXWS4fGkEhTAgh1YYuvtPB1OEZlYvWWp78YukXbE7miLjH8HEX5n99/DB84phpRja0xYRGJIqPDAkVyPfl9jwmO15xx989bpLPyNQKgUTGS3vDJPJvfnf+/oG2un7yOWujvaPu5R1tjbjv00fgayfvrW8bKAzhHb/om0DDjBvx/VjExQgXUl45MFnOZ5LudxU4buUIjag0HCG8g0KYEEKqDnfqq8DjYdPQCN92gfWFhEb4ts1mBOiJnywXZ3JnexMmDe1nZIOnZK3ukb1nEl90X3HV1UzzCEetjMtiIRLxWehCLsyVsL1PBm5Lu88DJnWisz1YwjtKIOa+qgbDjBnUhrGdbVixYXu0Of5QiBJPlks6ycxEMD/82aPQ0pCsvLKOKI+w46nPVZYrYfq0KhTC1tHhZDlCCKk+3B5hvwA2j7Msbn3ktvbfhqwAuxFbUMOs/K7Z2HEeYbf3Mi5eOC70wXQfomf2R5qQOBtFkhuhTAZAhD/MP0ksPIwiYhzD0Ih3zBmN4/ca4Rkvzi6HbII45CiKyeChJUL8Dx/QkrAzvQ1RJg3rb43R1uz/TaSvhKtOCDsxVLs4WY4QQqoOz2Q5n7dVAPzh/P3RpUmt5ibMm5ZbX8jF0uepcwS7tqCGq/uWxgw27TDqOpZm1+PmuHCGOCHsXm3iuS2E+Mfxwc+omFhPj8fQODQips8oj7e9LixMwFm678TO2P6Cy33fr1KHRiR82tIXk+WCoRH5BZecMAMzRw3A4dOGeuwpV/q0iiIXGsHJcoQQUnVEVk8TwYFThuDw6cMi+8inTwttUDBO37kyuzHp0646ez5OsL2BoX2aerpjMga4J3Y1xJQyi5vQZ1omWuu5FaePSBMiKcprLxIthBN8AaK8vqblhsXzWt9fWB/+ghrevMcJDlJYaIRy4p0Nu3HEfwlmywXDQMLDQloaszht/tjYbdKgeoUwY4QJIaTq8FQF813TzOMYY9YnM8nexueddmb1a2OE829mje3AsP7Nsb2ngfsmQldm2DNiSChHbpn76h8Z/hAvFEPXR3yguk3NbxjMQzb8MblRXHjYZNx80UG5987xdmvCP15wgMeOqLGjbMsXJfEJvXgz9f2GLHdMT5ourxzp06LW59OnpWZOjqoTwv1bGiACbNi+u9ymEEIISYgnRtg/izzh49uw5oV4jcLiF3OT5XTjG45XSOyz7li4RVNU9g1re/d2wfXFVJbLrSvihqSYUrkiMaERhjb4Gda/GfuM6QjGF7tk4f6TBude50Vm8vE8kzKhP5ZJqrslSfUW3a4ESjOCcZ1trsHjxy5XieWKojGbwfD+LXhjY0xQFiGEkIrDkzUiECNo2IkmbtezuhDDfDbkPHcaoZK4nG5K7dyCO7a4hlvoag6s6JsaERejbdJvcR5hidx/idl3U5viYqvd9rjeJCKfp7o40o4Y6IvKcgBw76ePwDvmji6qj2KpOiEMACM7WrAybnYCIYSQiqMhIkY4PcGYxCJvn/7yzdmMv0V0bKPenmSPpcP6dOuyqDy6/rZ60Rn+OYTZFDWGdtuE8i5JLlzjMJpE4+vfJ8k4ERoj7PPuOu38ZZwLnrgYFxtRbD8pED+hz6CPEthXdVkjAGBURyueW7m53GYQQghJiM6T5wiNpCEEBXuUI/oMxi3rQhQS9p1SS0/6tLgYYbhFY/Q+FDrxrJgbkmImPVmbGtqVYBi/GDX+nGNuOqLM8f8eCj0qJhk8kuDWz585fga27epOblTAiOjBomwsZWW5qhTCozta8a/n3oRSqiQzCAkhhJSGBk2J5fx700fR3r/+5cWQ6zsnhnSeOr94KU6E3POpw9HT6/UZar2NroWxWSNiQjm8leWi7Qv07XgzE8QpJ1kXP360SI2LtY7bLhgj7OWdc8fgpidfD7UtCn8asPSyXxg3jenH6qjX5Qb/4OGT0+k8bmyD/WVohM2ogS3Y1d1rXL+dEEJIZZCNmixn7BEu/hFrcBvfI2p7eW4yk6utX4SZZgoIY/zg9kD1ubhwhtiCGiHb6fqP9PoW49U1FKsmY3m6k+j9lwJFvr9pRpM1AgC+d9osLPnGidrtTD2Wjo3+gi2FOvfCtksy4Q5I52YytO+wzg0G9d+cpElVCuGRHa0AgJUbd5bZEkIIIUnQVZZzLtbplVgu/mKZEyoagZL0Ypw4G0YIbu338WOmRbfVHGdvXx4lnIicaItrp2mRy2urWRefhi7fr7HgzI1r0tjbZyFliROHRvgmfhYeGhG3vojYiJQItSBBaFQphHpVCuERdnm/VZsphAkhpJqIKqiROEY4xawRYeJOJ7gCIR2xnZvaEO4tdy971/yxOHHvkWadhgwfNzHPpL/YPMIJPMI3fuhADO4XLYQLsTms3edO3AN7jx7obWv//cSx0zG6oxVzxg2yl5irwqSCU5eVJIo7Pnaovp+UPKX+m9M0KeZJTu5mmR5hi872JgDAhu0MjSCEkGrCUwjCicF0PEKGfcSKjQKulX4vs/NXHxqRLKTDfL+iiQkL9vblOczBno0ry0WsjM/gFhG+4Hvf1mQ+ZUkkQQhCyN69/9BJ+NuHD9aumzd+EB645EgMaGkEkKyyXNLvXt4jbG8es/2UYf20y1OLEYY+HCSdvmPWRzTIh0akZk6O6hbCjBEmhJCqwl1ZzsT7qsUnVoOrC79a+gWJdrJc4lAC07jR6DGSeP3iSizHCWVdP1F96LeNWOf3qic4pgKDPMqF9Otr6wwRpwlNPNV+YZn7fiVUdiKCjx8zDcftOdy7PKR9UkFbzvwDZpPl6BEGALQ1ZdHUkMF6eoQJIaSq0McIe9/HIb6/gfVFxEbkJ8tZf3OPrl2jBT3ChT/yTWaieU9xeYTd+5AkhMFtRyEFNZKW/NX3K0WHRmjb+j6pXNaIBGoyPkzGe2MVLOEdb/DFR03FzJG+sI5Y73xstx76qqCGKfQI+xARDG5vwvqtFMKEEFJNmHryokgrFCFq27xHODimv/9iHvl6+4nx4pp1ExhTG28cs96E+LK+5qERSfctbux8buoEXvQCvdSm3nW3YfksJeHb+Rdd+/4DImxIRyE6vZQkRjiFkCaWWHYxqK2JMcKEEFJluItCBNOnJYz7LOb5eqBP/Xujghqx1/fkj/H1cb1G3UT2m+8r6JnXbhvVb+zAUTb5P/u4zrwdxh0LR8glOWb+pmF5hIPbRd/AaLfxfYX9N2A6FkweHNg+6bimdpXDI2yyD6UI3ahaIdzZ3sQ8woQQUmXo4inzKbWS9ZFmaERQUzshEUESp09L6eKdZnyk+bHWeCrtv3GT95IJ7ASeWxQ/WU7b1tc0yeTE3DaGMQo54eu/GTQcJ3AvFjJuckFrJv5Lgcn3m0LYRWd7E9YyNIIQQqoK94U5/xjWfp9S3GdRj09DPHRRE9liK8uZDh0RfhGwIa4vt5cyxiNcKPHp07zr3zprVKhNSSe1lWLSVFCUFuLJNxyrSJdu0s0L+Q5WEknitJNStUJ4WP9mrN6ys6QHhxBCSLq4Yw+Ds/TT8bQW5BEO9y/bfbofyyd8rF+oOPKRf1SftFqYLszC1KNaOP5tf3zGnPy6ogSXJCh2kWC8EHFeSpmRf7ohnvdujt9zBD5/0h6+7bwNC/Fe63CKmkwbrk/TVgzphEakr9TNE/dVGMMHtGDn7l5s3tmNga2N5TaHEEKIAR6PcEFxoq72IZfONEIjolK0Je2+EA91sePGeildyxqz4SoqatvYyXKRoRGFhQQ4/ZakspwP0xhhz3ghZvn7CIY2hPd55dnz4scNOYJJb5rmjBuE6y9cgNljOxJtZ0IxT2pK6fKsWo8wcwkTQkj1EXVB6/sI2Pge/H8BjUc4ri9T72XMNrmcxgn3Tx/nnH+dzQiWXXYSDp02NFG/xWSNCHpfk8WHmubfTZQ1wvfeyXAS9+Q5riJg1Bj+WPRCwjG0Hce1j2D+hE40RNwcFYrpTUJkH6lY4qVqhbDjBd60Y3eZLSGEEGKK1yPsLPQvMCPd0Ah/H95H1VEe1jQe+Rr1U6AKiKssV+i2xdibUMcF2m7dmf61PxBukMaThZh2aYV3Vmhob2qUMjyleoVwG4UwIYRUG+4Lf66ca+59MqKjegsjF6sZeO/y+gU8wvoRv/CWmdr2cWOH9VlofKTeI1z4UdJ5yRP3Ucz4ItjdU4o8t8Fxkm4Xt4W/oEjUDVf0mH7RXvlSOI3fK7NGuKBHmBBCqo8o+VKKlFimhHl5dQLF1FP4voMnavs2tcFPopy47sf1unjjFA5hqh7hJPsG4BfnzsenjptuvpFJvz4bWhuzAIABLdHzkLxPCwoLW4maLBc3ZtR2lZRPoJibn1IU+HCoeiG8kUKYEEKqBo9HOGGIgZ80Yg7zfem9vCYiMrXQiJg+0wyN6AsHYtSNTTD9l0GMsOv11OH9PQUm0sBv0yFTh+DzJ+2BLy/c07wPw/WfPm46WhozGNvZqh076Tjhk+VMLSs9YRYkixFOfz+qXghvphAmhJCqwX3RKyZOFNCJ1/QIpLVyrSvVZLlYm1Lcw6JCI3KbRvehW+vcByVOQadpm7Yk0lU6PP+QSfEeYU/YjNlYx+45Ai989QS0NzXYfehtCB0z6c1Y+XVwUTYwRlhDS2MWTQ0ZhkYQQkgVoZssl6ssl1IIgUMqKaA0AbHJr+fGgZ+RFFMuONhX8cooXnxFeISLGTfnrU9X3RU6+dIkNCJUyBXq5Q+Idn27SgqNCMPkEBQ4n9aIqs0jDFhe4U3bKYQJIaRa8HqExbMsTY/nPz92KEYObDFuH/SweT3BUZPl4q7OhUyA0oczmB+ftMI19NuaxnIHUVErTcfvY+9m6E1DAYaEhoRo3NyRMdYJQ0sqwCEcfpOQpI90TPFQtR5hAOhsa8I65hEmhJCqobcPYoQBYNrw/ugf80g7qs+cANakCkscGpFw7DDamrKGPRU/llEfRYxh6tEsZvy0CB3HeZJRTN8phXlUQuhDsUTtw8VHTgEADChBAbWq9giPHtSK1zfuKLcZhBBCTIlw/5SifKopYcJMZ1Hy+MzkHlT/Fj8/Zz7Wbd1l1I/RWKmERsR5wiNCI0I88NH9Rb8vljAbShl/m7/h8r4vtJ9qJiqM4+wFE3D2ggklGbeqPcKjO1rx+obt5TaDEEKIIe40SI7wcC6ASS/mJUmj5n+vEShJCy2Yto8Sg8fMHJ5ozFIKI52Z+04YhB+ePtu8j5TH9+MXVSaP38O6Df1cEijgi4+agkOmDsFbZ42K7ML4psnXLrzSXuUHCZdbxFe1EB7crwmbd3bj5qdWYld3T7nNIYQQEoPO6+OI4zRDI5KSm7jne+8PkfC/ttrExWcWH0uafPvSywv3CD88fQ4Wzh5tvm0RGT90RU7Cx0nQb8GHLH7DkQNb8dv37R+agaLYstnxYSp9LzenD+9v1K7cUr2qhXBnexMA4OJrn8DV971SZmsIIYTE4cka4VtnnjWiDzzBvswEnrCFxKERhdlQTRR7E1MqwZoka0IpnjAYj50wNKLUYSLFcuvFh+BPH1iQaJty7UNVxwi7Syzu6u4toyWEEEJM8IZGeNclTelViuumScxmqQSTJw1XGUSZuQgLtizeo2m+fe6zST1GuG+3A9zebV1fETHWBkuA8qVPmzlqQHkGLoCq9ggfOWNY7vWgtvRnEhJCCEmXXo1HuNCLdZq5U4PpqLwvvFkjQtoa9h3aTlOYYf74QWYbFzimm6SHrSgBWMC2xdwcmGxZzolqyY+9L0a4wjzChVAu0V7VQnjikHb84F2zAQDbuxgjTAghlY63oIYvTrSA7Are7Qs0ChqRlQuJCMajJq2KZizgNM1+8979cPcnDzfbvo/xFpJIvHVoX/Fb1oDqs8kXlSlsu/z7uDh1EkZVC2EAWDh7FLIZwfau7nKbQgghJJZgaERFZY0ITJKDdwGSiz7z2GfXa/tve3MDJg5pTzYgSit89OEiCftI6FXXbVs5oRHpearL6ZUuN4wRLhARQVtTFtt20SNMCCGVThqT5Qptn6SvUEGM5J7scl3gb/voIXhq+Ubj9n15IxLYMpFHuPjxo3vui630HDptKP765Er7nbmbODRMqHiTap6qF8IA0N7UQI8wIYRUAZ4LcyDO0TA0og+EpX7yknedeV/JQz504yYSNSKYMWIAZowo4aQlCXkdRUgMQCGT5dKmnJkXnEmk75g7Bqs278S3b1sc2b6313sc4347lZZVopKoCSHc1pzFNsYIE0JIxaPcJZZ964q9Vs8YYeUt3XdCYRPMPLYEYoTzJI4RNg6NKERZpofzyZyx3zjMGjMwtJ3+5iBh1ogClFnJK8sVul0xdviKygDAwFwZ4fCOe+jqTY2aEMLtTQ3YvoseYUIIqXSirt/JQyO8G8wb34mHLj0KIwa2JLYrrMBDPh41mNHBuO+U2iWKo03Q1s+xew7HEdOHxbZLU4cmO6YSu80EO67aqTdgVFmuQEWbRonlpPg9wklsuPCwydhvYvE3i7VCTQjhtiZ6hAkhpNK54u4l+PfiNbn3+clyuXpuifrTtS5EBHv79IoskxLLsZXlCpksV2xoRAEkn/BW+M1BMWObjPXJY6djwaTBaG3KlsSGctPrCzEJ+w522N7llsb8cbjkhBmlM6wKMcoaISLHi8hiEVkiIpeEtDlcRJ4UkWdF5J50zYymvZkxwoQQ4lCp5+zv3O6Ne/RfvMtZgS0YpqFJF+EsSRgaYWpxmpO/ShkTWoq+k3hjTSbLNTVkcMSMeK+214bwdafvOxY/fffcEHuKPyBJb3J6fEI4E6LmvrxwT/zvW2fiwMmDCzOsD1DlSiBsE+sRFpEsgCsAHANgBYBHReRmpdRzrjYdAH4C4Hil1GsikuzbVyRtTVlsZ9YIQgipinN23g7rr3MZTFxZroRZI/zLi8mZW1jxCLNlJcFQl5QrojkXv512jHBEf5e9c5+IDVMYM6EYDIRGhBjRv6UR5x00EQBw36ePwGvrtye2sdYx8QjvB2CJUmqpUqoLwHUAFvranAngL0qp1wBAKbU6XTOjGdDaiE07dvflkIQQUqlU/DnbodjJciUVX76QiMiCGmZdxQ8Z0zCJVCpl0Qld38Xk0rX6TKdNtVHo59RdQIzw2M42HDRlSEHjlZJivzvFYiKERwNY7nq/wl7mZhqAQSLybxF5TETO0XUkIheIyCIRWbRmzRpdk4IY0q8Z67d3obunN7U+CSGkSqn4c3a+/+j34dulf+EME+Vaj3DAnpi+C8qQUEZxkFIWDB1hYj5ZZTnv37QoVJSmYYf7uJg4h306uCZvEvoKEyGsO77+j6kBwDwAJwE4DsAXRGRaYCOlrlJKzVdKzR86dGhiY8MY2q8JSgFPrdiYWp+EEFKlVPw5O2+oN3VUsVkj0iA4SS44RtAjHDNZLuHYYdukPaGsWOLsjdw28D5BjHCp9q0MajJqX6LWBbNGVK8ULneMsIkQXgFgrOv9GAArNW1uU0ptU0qtBXAvgFnpmBjP7LFWGpCbnvSbRQghdUfFn7Nz5GKElf22nDHCenGrzZlbohjhuP3vM7lgHCOcXtaIJER9NsX1W+B2ZRCh/slylaKDz1kwHpMKKAleTkyE8KMAporIRBFpAnA6gJt9bW4CcIiINIhIG4D9ATyfrqnh7D1mIIb0a8Y1D76KZWu39dWwhBBSiVT8OTuMsmaNCAnT8IdIWK+TZY0o5JF7X6YjSzpmSTRXktCIXNv4jZI4GwvOI1zQVt5tkzpFg5PlKoOvLNwLd33y8ETblNubHSuElVLdAC4CcDusE+WflFLPisiFInKh3eZ5ALcBeBrAIwCuVko9Uzqzg6zdugsAcMPjK/pyWEIIqSiq5ZwN6GJtE3qE0zMl2HcuRML2PnomyxXWV7HtSi0Xkooxb2hEkZPlDDYvtWAqhxzLZ05JmDXCnz6tUlzCBVDu0AijghpKqVsB3OpbdqXv/XcAfCc90wqjISyZHiGE1AnVcs4Oq+aWoIP0bAm8D/f69kWIajkKamgN0a6XYLMK9mCXur9yaFB/boAq1sE5yrUPNacaG7I18G0ghJA6wP9YuKwX85BwB51NmYy/bcxkuTJkwyiqqxjFXVTXKah5XbW/uLZG/RacNaL4z819XEwOkWllORJPzQnhRgphQgipCvwFNRJPlkvXHKtPf6wwgt7PoPc4rk8zS71jBLcp9dXNVDSeOn8MAGDysH6BbR+69KiCxkpyE1DmJ+mp4uy3bpeijkh3r9clXAse4XJ9rkahEdVElqERhBBSFfgv3qWKvTXqK9C3NzOBW6iVKpZZotQ2KqegxjvnjsG79x/vG89ixMCWgvosLDQi3X2sptCIQB7hGhDC5aJmhPDwAc14c/OuxCdSQggh5SEg1lKaVJYGEvIX0OQRjpvkViXXJVOPXNz+/P78/fHCqi2Jxk6rDLUfJ5XXKfPGpNJfmtvFEfVx1FIeYQfGCBfJ9RceCADo6mZ1OUIIqQZyoRFOjHDi0IjSx9RqK8sl1O+mdnq8zkZbRA5aMuJKLB80ZQjed/DEovtMg2EDWrDsspNw2vyxoW0csezPzduXuIc2ORI9FZo+rRqpGSHsPI656t6lZbaEEEJIMuyCGmUMjQjrW+dp8z95TGuynCml2u9i0ryVM/VYsbxjrlWBfNfuAh1pRdhR6D5UakGNYmCMcJE02Gemddu6ymwJIYSQQjC/lpfyqu+dHJf76/HWln5SX5S4NhEMpT9CKfdZUGhEOpZ86PAp2GPkABwxfVhB26eSNcIVCGGiB/3fgWrOI1xuasYj7D5plDs5MyGEkHj8Ys+flix2+zSN8fcdkaMrrApdeGcFjJ98E/ztooNx9B7DC9gyGTqR3idx2yUaI5MRHLXH8MTfvzTIiWiNbImyphZDI8ql5WvGIwwAx+05HLc/+yauf2wFTo2IByKEEFJ+kqYhC2xf0jhY5290PKxZX31zhd97zEAMaLUu6yY2XnzUVAxoSS4DKsYj7Nvm9+fvj9VbdqZjUBF29MW2fiFcE0q4TNSUEF61yfoBfOr6pymECSGkwglMlqukrBGaSXIOfsdh3EPINEQeYKh1EjwQ/fgx08wbu+3Q2lZ+JXbQlCF9Ol459/g9B03ALf99A0P7N2PNll0VcfyrlZoJjQCAkQNby20CIYQQQ5yLt3ItKWT7NAiKWW+ssJuk8ZhpWZksj3DpKEVoRDUKuXwhmPT6MmX+hE4su+wkDO3XDCB5Dm6Sp6Y8wt94x9647dlV5TaDEEKIAYljbQMdpGZKwIYoj3Dy7BbJDS1UGKYxQ0al0ksykhyiiijJ7cL/+X731FkYMcCssIizZbFzm2ohj3C5qCmPcGd7E94+x0qD4k82TQghpLIoNEa4Ly75SWKE40RMWvYm6adUBSqKJUxkm4xdaVovzJxT5o3BwVPNwjSK9qSHz+kkhtSUEAaAqcOt2uddPSysQQghlUw+RtgSR+UKOdD2HeUR9r2Pc7ukFSNsllarcCdQMe4j0328/Iy5OOuAcdhz1MAiRnPGLK/8y4VGpGCG52NL8BlGfU+rhXK7LWtOCLc0ZAEAO3f3lNkSQgghJhQqKEohhPye4HRihAsJjSiOojIZlPAWY8KQdnzt5L2R9QW1FhY+UhmUyo4kh6TcNwXVTM0J4eZGa5d2sdQyIYRUOD4xZFyKuBS2WAREucHEsFgHXkr2mnRTrhjhYsVzNcq4NGwOThgtbPtq1sHlNr3mhDA9woQQUh0UO1kuzQtomBDRe4ST9V2QSCkwNCK/ed96WNOKdTVBFViSO23SCI1gjHD5qTkh7HiE73x+Nb5+y3PoZqwwIYRUJPkZ8wVuX4qsEQZjJC+oUR2UO1Yzjq+dvDcmDWnHiIFWRobKSblWvB3FFsSt5tCIcn/vaip9GgAMamsCAHzl788BAA6dNhSHTB1aTpMIIYRoCJRYNryYl0QAhSgRbdYI/6YxXaeVPs0oNCIFVVGemOb4Hg6bNhR3ffLwIkdKj0qQno4NzCNcODXnET5g0mDP+y7GChNCSEXiz6GafLJcuvbo+tRXlitP+rREoRFFDFpQjHAZPJLldoKmmTVC168R4kzqrF4lXG7La84jnM0I3jprFP721EoAwNZd3WW2iBBCiI7iY4RTvISGDK5b2heCvVBxVVQKtCK2LQfVZq8O5wai2CIm5b4pMOW6Cw7A0P7NnmXlDo2oOY8wAHz31H1yr9dv6yqjJYQQQsLI5RF23pcza0RYaISBRziOvgw1OHXeGADA3HGDCuyhMKpEh6VKOlkjLNxfvyT9VttxP2DSYEwe2k+7rlxe7ZoUws0NWfzyvPkAgG30CBNCSEXiv/BVQmhEcAyDihqxfaRji0l/h04bimWXnYSxnW2J++2LghqpUm0qsAQ4xz3pzRnJU3OhEQ5HzhiOpmwGW3cxjRohhFQD1TLhpy9ER1TMbRoT4qqBjx09DQdM6iy3GVVBLejgYsNDCqVmhTAAtDdn6REmhJBKJfdc2L8gZrNSJI1IMFaf5BEuA8XlEU5/J98xd3SkZ7uaJ4g5FJ1H2PeXJKcmQyMcmhuy+O1Dr2LTjt3lNoUQQogPk5y9kduXpMRyfLU7/7I4D21BMcIRm5RKWM8a2wEAGD6gpTQDaLj5ooPwsaOnadfF7We13GCY4M48kiw7iHj+VjOMES4BqzbvBADM+vI/sYGT5gghpKLIz5i33yfdPlVrQsYw8AjHPdItKGtExLpShUZ8+MipuO2jh2DPUQNLM4CGfcZ04CNHT9WuqwVxF0fUHiYRhtUSVlSJ1LQQdrNs3bZym0AIIcRF0CNcxoIaPhyxqR0pcZq36iCbEcwYMaDcZuSIO27VclxNKPTeJhcaUQc3DaWipoXwx4/JP255feOOMlpCCCHEj//aXYmxt6mkTyukslwZQiOqjVoQf8XuQw0cgrJT00L44qOm4qwDxgEAQyMIIaTCcDy7ucpyZfTxhYUbGJVYjo0RTpd6yRpRTyLP/ZmOH9wOAJg+or/RttV+nI6cMQwAsMfI8jyNqOmsEQDwxbfsid899BonzBFCSIURKKhhekEv4YXfqMRyQtd1YUKlytVNCsTdGNXCEcr/BvJK+LBpQ/H3Dx+MPUfFC0OBVH0O4YWzR+OYmcPR1lQeSVrzQripIYPWxiyFMCGE1Apl9ogGJ8tFk/Yj/CrXPcbUQ9aIsF3Ya7ThhEWpjRuCcolgoA6EMAB0tDVizZZd5TaDEEKIi2LTp/VFiIBexEanTztuz+E4ZuaIIscNX1dtoRH//uTh6O6tMqOriFq4ISgndSGE95vYiTufX43tXd1lvesghBDiIjBZzvCK3ocXft1QcZERPzt7fknGLTd3fuIwvFpABqYJQ9oLGi8+a0QlHqXCKPTmRlAbkwbLSV2owpP2HombnlyJxau2YM64QeU2hxBCCNyT5ez3ZbyeqxAlorOp3MKjkOF/fMYcNDcUNz9+8tB+mDy0X1F9JKIe9J0vl3Yhm9fDYSoldSGEh/RvBgDc9cJq3PHcmzhjv3GRZRsJIYSUHv9EoaQevlI8bA+Ea2jaJC2oUZAdKYvtt84alWp/fUHs96EGFGAau0CHcHHUhRAe1NYEAPjxXUsAABt37MY33r53OU0ihJC6p9AY4b687usEabXP0q8VKuVjSCNmu/DQCKmpEJFyUNN5hB0GtTV63mcr5ddDCCF1jF9kVuKZ2eRyUYrJa5V4LPqaerhUF7uPIiyvXCx1IYQ7bI+wQykeYxFCCElGLjQiFyOcMDSiD9In6EMjqDz6gmopsZzO16Hw73K5Y9arnboIjQCApmwGXT29AICtO7vLbA0hhBDn8p20oEYpLvx+GZJzmLjGasgIuntV2Uo7l4vpw/tj3OC+n1cT9zlXigAsZzo7TpYrnroRwv1aGrDeLrO8kcU1CCGk4qiEC3pUuEZbUxabd3b3iUe4kuI+b//YoeU2oWbxZ04paPvK+apUJXURGgEAe9tVWtqasti4nUKYEELKTbCcceVd0d0mtTc3BJaR0lEPoRET7RzLJuWUw2CoTnHUjUf48jPn4OU12/CL+1/BM69vwhdvegbzJ3TibVWYUoYQQmqDypksF+aRc3tmW5uyIduWIn1a6l1WHdVSYrmYj3/B5MG47aOHYPrw/gVtL1I5x6FaqRsh3L+lEbPHdmBgawNeWbsNr6zdhmsefJVCmBBCykTuAm4LCVPPVt+mT8u/brcrk+7o6vG0qbaSx9VCJYWHlJIZIwr3BgOV4xmvVuomNMKhKZu/ox/HohqEEFI28jpYeReUgTAN7o8RBoBtXZxw3SfE1tOoDAlYbo9sJYYUVRNGQlhEjheRxSKyREQu0aw/XEQ2iciT9r8vpm9qOrjz7U0Z1oelIgkhpI+olnN2YGJawut5mp7Y0NAIl03/c8QUAIV78Drbm+IbacYleirlGJU3a4Qwj3CRxIZGiEgWwBUAjgGwAsCjInKzUuo5X9P7lFJvKYGNqTLIdSLa1d0T0ZIQQqqPajpnm5Qz1m7Xhxd+t9fx0GlDseyykwJtTHTQDR88EGMHtaZoWe1TKUK38uGBKgaTGOH9ACxRSi0FABG5DsBCAP6TalVw/iET0ZTN4I7n3sSiZRvwxqYdGDmQJydCSM1QNefsYgtqpEmomE3JpHnjByVqXymP/csJj0A8At4wFItJaMRoAMtd71fYy/wsEJGnROQfIrJnKtaVgOaGLN5/6CQ8smw9dnX3YsE378KS1VvLbRYhhKRF1Z6zkz7iLUWV0EBKNxM7bDNOnj0Kf3j//qnbVK8w9jUeFtQoHhMhrDvG/rPP4wDGK6VmAfgxgL9qOxK5QEQWiciiNWvWJDK0lDy7cpPn9ZLVW8poDSGEFEXVnLNzxQR87+O36ztMxJgjyMd1tuHAyUNSGjdiPGapAEBPqAPzCBeHiRBeAWCs6/0YACvdDZRSm5VSW+3XtwJoFJHA2UApdZVSar5Sav7QoUOLMDtd1mzZlXt90o/ux9Hfv7eM1hBCSFFU7Tm7Eq/niUyqxB2oYuILavB4MzSieEyE8KMAporIRBFpAnA6gJvdDURkhNi3zSKyn93vurSNTZMFkwbnXq92CWFCCKlyqu6cXWhBilJ6RvNxy6UbI4qocetF+FT6flaCfSK8HSiW2MlySqluEbkIwO0AsgB+qZR6VkQutNdfCeAUAB8UkW4AOwCcrkpRaidFfn/+/nhl3Tac+fOHch7h1Zt3ltkqQggpjmo6Z/tjfE2FRV/GjpZNCFPexB6DcgvRSlE5jKUuDqPKcvajs1t9y650vb4cwOXpmlZaMhnB5KH9MKqjFY+8sh7f/Mfz+Nk9S8ttFiGEFE21nrPLKf7C7gNMbCq3IPrayXvV5aRvyj+GRqRB3ZRYDmNIv2Y88dpGimBCCCkTjo5MnDWiBALUL3xNREZ+sl/xZAToVfpxx9vVUPcY6S3ocdYB41MYufKodIFXCfaJVIYd1UzdC+EtO3eX2wRCCKlLHCGbNI9wpV730xAkIhKq8A+cMgS3XnwI9hjZv/iBaoByhwSU+0mAA8NoisOoxHIts7unQr7JhBBSZ/jPvpV4OTcSWykqIscrHjbqzFEDyi4A+4q43ayPoxCH0CNcJHUvhI+cMSy2zfaubnzt789he1d3H1hECCG1hy4G11n2/kMmAqjMR7xJTErDM0fvXvVQCd9XEeYRLpa6F8IfPGwybrn44MDynt78SftXDyzD1fe/gl89sKwPLSOEkNohymn6uZNmYtllJ5l7Ovvwut/nGsPxCFPbMGuEIfyqFEfdC2Ene4SfKZ+7Ffe9ZFVS2rW7B4BXHBNCCDGnWs6ewRLLJpXl0iM/YZDyJjY0otxKuAKQ3H+kUOpeCANAS2MWX1m4J+76xGGYO64DgHWnd/YvHsGLb26Bo3+TzmgmhBBi0asLjSiyz74Q10lChFOZLEdVk6PSj0Ql6HCRyj9OlU7dZ41wOGfBBADA0rXbPMsXLduAu15YDSB/99nTq/DK2q2YMowzdwkhxIRKeYyclGQxwsWTYWgESQhjhIuDHmEf/vCHbAZ47o3NAPInpsvvWoKjv38vXnxzS1+bRwghVYnOI1wN9LXG4OP+PCbH4rT5Y/CH8/fvA2uCfP+02Xjn3DGYNWZgWcYHgLamBrQ2Zcs2fi1Aj7CPnXY8sIP7Tst5ZPXf1zcBAJau2YZpw+kVJoSQQihWG6dZFTq8K5MY4fTsEN/fSqe5IYNd3b0l6dvkGHz7lFklGduEiUPa8b3Tyjc+AHz6+OnYtqsnviEJhR5hH3/8wAJccOik3PtPXf907vVr67cDAPq3WPcP23YxnRohhJjgeIQ/cOgklwetMAFZyjhap+cklh21x3AAwGHThxY/fi40ojqk8L2fPgJ//3Aw81IaVMkhKCsjB7ZiyrDghH9iDj3CPuaOG4S54wbhqnuDJZevfeQ1bN6xG4PaGwGwKh0hhJjiRJ0N7teEbBXNPDYRY3PHDcKyy05KabzqOTYAMHxAC4YPaClJ39V2LEh1Qo9wCDf9z0Ha5bf89w00ZKzD5hSlu+XpN/DPZ1f1lWmEEFJ1OGEM7nCzokMjitvc11dlxDDHVZYjhKQLhXAIs8Z24EdnzNGu+/V/lgEAunusuKj/+cPjuOC3j/WVaYQQUnW45yEX6+mrZUchvaCE9C0MjYjgbbNGobunFx//01Noacxg527vhICbnlyJzvamMllHCCFVRC4fu/gXVQSVkr+X6dMI6VsohGN4x9wxOGzaUAxqa8KiVzfgtJ89mFv33BubPZPpTHjm9U0YM6gVHW0U0ISQ+sGZLJdqAYAUlXSlhEYwKIKQvoWhEQYM7teMTEbQr7n4+4a3/Ph+nH7VQylYRQgh1YMjM9NI/l9KqVhuT2wuawQFMSF9AoVwApy0aVE88sp63P/SWu26XjtI7oVVLMRBCKkv3B7hAa1W5p2GCsoeUSn1PhgaQUjfwtCIBLQbeISd0AldKp2untIkHSeEkErHEZoigu+eOgs3PLYCs8d2FNdnCcIZyj1ZjZ5gQvoWeoQTMKClAaM7WvHD02fHtn15zdbAMnf1nTueezPVqkiEEFLJOOc7AdDZ3oT3HzqpYNFZSq1a7vNyBTnJCakLKIQT0JDN4IFLjsTC2aNj2/7y/lcCy3Z158sgvv+aRXjw5XWp2kcIIZVKmjHCtUy5PdKE1BsUwgUycUg7xnW2eZbd8+Ka3OtRHa343UOvYsIlt+D3D7+KVZt24rcPvupp30OPMCGkTnDHCKdFmqfQBZMHAwCOmDEsvU4LgDoYOGbm8HKbQOoIxggXyN2fPBwA0NOrMOML/8DuHoVzf/lIbv0Tr23Av55fDQD43I3P4Nuti7Fph7ckc3cPhTAhpD5QuTzCxfdVijjafcZ0eOZ2lMtP4Qjh3jp2lFxx5lxs7+outxmkTqBHuEiyGcFAewa0G0cEO/hFMABs4w+dEFIn5D3C1eXy7GtrHZFfxzoYTQ0Z5tonfQaFcAoUesLa3tUT34gQQmqAXNaINPtMsa9KwfGY1+K+EVKJUAinwI7dhQna7bvoESaE1AdKU2K5UKrMqZwIx2Nez6ERhPQlFMIpMGdcBwBg+vD+ibbbvrsHvb0Kkz97K379QD7LxK7uHqzZsitNEwkhpKykOVluyrB+AIDRHa3Fd1ZhOMen3GncCKkXOFkuBa48ax5eXbcdoztasXLTDuwxYgAmffZWbdsPHDYJP7tnKQBg+64erNiwAz29Cv/3r5dw3kETAQA/+NdL+Om/X8bDnz0Kwwe09Nl+EEJIqUgzfdp7D5qIOeMGYd74QUX3VWlkch7hMhtCSJ1Aj3AK9G9pxF6jB2JQexP2HDUQGde06Kas9xCfsNfI3OvtXT14bf12ANZkullf/icA4OYnVwIAlq7ZBgD46xOv46p7Xy7pPhBCSClJ0yOcyUhNimAgH0NNhzAhfQOFcInYY+QAHDptKD513HTPcndJ0e1d3ejqyccXb9qxG/e9tAaNWetUuNOOPf7oH5/EN259IXSsh5auw/WPrUjRekIISRdVpVkj+hrHI1yK8tGEkCAMjSgR//jIIQCA3l6Fr9/6vLbNdY8ux2HThnqWnf2LfC7i3z/8WmRy90XL1uOUKx/MvT9l3phiTCaEkJLhPOrPUghHkssj3FteOwipF+gRLjGZjOSStL9zblCoXnXf0tBt//X8m9iwrSt0vVsEA8DuHp45CSGVSY+thNMoqFHLCD3ChPQpFMJ9xMvfOBHfPXWfwPInXtsYud0bm3Yaj+HPNPHqum1Y8M07sWLDdjy5PHocQggpJU6McIZKOJK37GPNIxnWnxOlCekLGBrRR2RdJ/+fvnsuunp68a1/vICVMUL3xB/dl3t98bVPQAH48Rlz0K3x/m715SX+wyOv4Y1NO3HM9+/Fjt09uOGDCzBvfGdxO0IIIQXgPOpPI2tELfOhwyfj3AMnoF8zL8+E9AX8pZWBE/a27vgfWLIWf1pkPsnt5qesbBJHTB+KQ6YODazf4atU58TiOQU/VmzYgXnjCzKZEEKKwvEIZ6vmOWR5QhNEhCKYkD6kak5Jtcj8CO9sVGqgO59fjWXrtgWW+0s2Z32PILt7GHNGCCkPPVWaNaLa7CWEJINCuIzMmxAuds89cELoul3dPXhh1ZbA8p2uUs8rNmzHS29u9azf7isFffNTK7Hw8vuhlIJSChdf+wRuevJ1Q+sJIcQcJ30as0YQQioJPn8pI5OH9gtdN3Fwe+i6LTu7cbUm28T2rh4c/4N7MW/8IPz+4dcC63/1wCs4+4B8bMRHrnsCSgEbt+/Gqs07cfNTK3HzUyvRv6UBR84YnnBvCCEknB7GCBNCKhB6hMtMW1MWAPDAJUfmlr3w1eMxcWi4EH74lfV4dd32wPLlG7bjhVVbtCIYsCrV7erOe4UHtzcBsFK4Xfi7x3LL3/vrRTjvV48wHRshJDVy6dN41SGEVBA8JZWZ2z5yKK48ay5Gd7TiC2+Zia+evBdaGrNoa8x62r19zujYvm58PD6s4b2/fhRd3ZbAbW6wxvjpv18OCOt/L16DV9YG45AJIaQQnNAIeoQJIZUEhXCZGTe4DcfvZWWReN/BE3OhC/5cm80N+o+quSGDxz5/NGaNGYjFbwbjhv08sGQdvnTzswDyHpowPv6nJzHhklti2xFCSBw9uawRFMKEkMqBMcJVQFM2EzpzefHXTgAAPLVik3F/1z7yGg6Y1ImumNCHZ17fDADYtGM3Ou0wCkIIKQTnfpoeYUJIJUGPcAXzyGePAgCcs2A85ozryC0/Ynowh3AUe40eEFj2keuexPqI8s1u1m/bFd+oCF5esxUvGnizCSHVSy9LLBNCKhAK4Qpm2IAWPPGFY/DZE/fAqfPG4Og9rEwOP3n3PJy0z0jMGjPQqJ+/XXRw7OPI575yHL701pnadeu2mgnmQjnqe/fg2P+7N7B8d08vzvz5Q3js1Q0lHZ8QUnp6GRpBCKlAKIQrnEHtTchkBCKCq86eh+e+chxam7K44sy5uOmig3PtfnTGHADAO+aOxrLLTsIJe43IrROR3EUojLamhtACH399ciX++OhruPQvT/dpvPCr67bhPy+vwzt/+p8+G5MQUhpyWSMYGkEIqSAohKuITEbQ1qQP637brFFYdtlJ+P5pswEAV5w517M+RgcDADraGrXLr33kNXzmhv/i2keWY8UGb3aJPy9ajkXL1sd37uKSG57GHl+4zaAlL5iE1AqMESaEVCJGQlhEjheRxSKyREQuiWi3r4j0iMgp6ZlICiGTEdzzqcPxs7PnAQBOnj0qtK0TQzy6ozW231/e/0ru9bqtu/Cp65/GKVc+6GmjlMKGiPjj6x5djh2+Knc63NfLXmauIMSYSjxnO0+lqiWPsInzgBBS/cSekkQkC+AKACcAmAngDBEJBJPa7b4F4Pa0jSSFMX5wO47b0wqR+M6ps7DHyPykOWfy3Z8vXICb/scKschkBB8/ZlquzUVHTAn0+ZsHX8WES27BhEtuwbyv/Su3/OkVG/G/Nz+Lnl6F3z/8GuZ89Q68snYb7n1xTS5vsZ8Jl9yCHV3hgtgtfnf3Rme46O7pxd+eWpnLVUpIvVKp5+zeKi2xXF3WEkKSYpI+bT8AS5RSSwFARK4DsBDAc752HwZwA4B9U7WQpEJjNoPfvHdf/OHh13DuggnYvrsHl9/1EmaN6fBMXnEuViftMxKfPG46Lr97iVH/b7v8AQBW+efVW3YCAG54bAUuv3sJ3n/IRHzuJP1EvD2+GB4i4U7v1t2j0Bzxbf3VA8vw9VufR0+vwskGxUcIqWEq8pztxAiHpYIkhJByYPKQajSA5a73K+xlOURkNIC3A7gyqiMRuUBEFonIojVr1iS1lRTJsP4t+OjR0zCovQmjO1rxzXfsgyZfoQ7HCzt1WD8AwNF7DEs0xg2Pr8B9L60FALy23oonvvW/q7B41RY8vWKjp8SzH/9EvO6e/PtX122P9Pa+sckS32u2FJfq7bZnVuGDv3uMnmVSzVTkOZtZIwghlYiJENadtfwq4QcAPqOUigz8VEpdpZSar5SaP3Rosly4pG84bLolfA+dZn0+Fx42ueC+Vm22xOnrG3fguB/ci7dd/gAW2p5jHV/9u+Ww2rxzNzZt3+2plHfij+7DL1zxyX7CnEw7d/fgpQQ5ii/83WP4xzOr8NLqrcbbEFJhVOQ524luog4mhFQSJqERKwCMdb0fA2Clr818ANfZj7yGADhRRLqVUn9Nw0jSd8wbPwjLLjsp937W2A68Y85oPLNyE1qbGvDVhXvi/+54EXcvjvcOPfJKMJvEC6vCRentz67C5p278ZfHX9euf/iV9Tj/kEk45vv3YO8xA3MZMoD8lV/5rvefvfG/+Mvjr+OpLx2Lga36rBjdPb3Y3aPw4NK1uWUrN+7AtOH9Q22tRT7w20VYsnor7vzE4eU2hRRHRZ6znRLL1ZI14ri9RuDOF1Zjiv10jBBSm5gI4UcBTBWRiQBeB3A6gDPdDZRSE53XIvJrAH+nCK4NGrMZfP9dsz3LvnvqrNxEuUc+exR++9Cr+PFdZrHEUazb2hUqggGgtTGL7p5evLR6K15avdUjhB38EQ2P2qndVm7cga7uXizfsB2fu/EZPP/GZvzmvfthcHsTvnDTM3jitY04/+Dc1xibd3aH2vHK2m3Y3tWNPUeZFTSpFm5/9s1ym0DSoSLP2arKQiNOmz8Wb5s1Ci2N2XKbQggpIbFCWCnVLSIXwZpZnAXwS6XUsyJyob0+MsaM1B6D+zXnXg8b0IJ37z8eDy9dj0cS5hP+2NHTMHtcB8795SMAvJPjdLQ3N2C1Kwb4Py+vxb4TOnHrf9/A1XbYxLJ12zzb9GtuBLADJ/zwvkB/Nz3xOv7yRF54X+0Kvdi0Y3eoHUd899/WWC7PuZuHlq7DuM42jApJR7dp+25s7eo2SlfXF9z5/Ju5UBhS/VTqObsnFxpRHUIYAEUwIXWAiUcYSqlbAdzqW6Y9mSqlziveLFJNjBjYgj9duACLlq3Heb96FFt3hXtT3Qzp34TDpg3Fvz5+KO54bjW+ddsLke3/+sTreHjputz7M3/+MD585BTc82I+TOPaR5bjY8dMw7D+LQCA/hGpJtwi2E9UHmSHh5euw/6TBnuWPf/GZpx+1UMY3dGKBy45Urvd0f93D9Zs2RUqpPuSe15cg/f9ZhE+ctTUcptCUqQSz9nVlkeYEFIf8JRECuK4PYfjQ4d7J9LNn9CJ2z92KC44dBL+dtHBePRzR+OrC/cM7WNwexMAYMqw/hg9KN47umN3D5au9Xp8f3zXEjy9YpNn2SHfuhuPv7YB97y4Bpt3hnt2w9hj5ADc+t83co9yr75vKQ77zt2Bdu+66iHc9swb+L87XsTrG3dg5+6enOf59Y07QvuPymyhlMKP7nwJdy9ejesfWxGagzktltuZPf77+qaYloQUR2+VxQgTQuoDI48wIX5+dvZ87fLRHa347Il75N4fNm0YjpqxBk+t2IS1W3fhM8fPwM7dPXhi+UYcO3NErp0jiv10tjdhvYF31s2u7l684yf/SbSNm7fPGYVv3PoCHn9tA+aN78TXbnkeAHDGVQ/h26fs42l74e8eBwD88M6XcPj0fHhBodf6h19Zj+/f8WLu/eJVm0NzMKfB9i7Le3/XC6tLNgYhQD41Y7UV1CCE1Db0CJOSMm5wG35x3r64/sIFeMfc0XjfwRPxsWOm4Zr37oeMa9JMp08IX37mHPzpAwvwpbfqRaB7YpvDDR9coG37xbckE5JjBrUBAN750wex2JXl4sGl6/Dha58I3e7frkwaSgGrNu3E1fctxcbteiHveGPdbPFN0ntk2QYjm3f39GKbJiTl3hfX4L6X9Bk+/rxoOf7xzCqj/h1ue2YVzv/No4m2IQQAnLTg9AgTQioJeoRJnzBhSLs2y4PD4H55IfzPjx2aS13mpGC7/Mw52Lm7FyfsNQLtdtzv1b68wvPGd+Idc0YHYn8PnDIYyy47CU8u34hxnW2Y+9U7POs/dPhk/OTfLwMALj1hhmdW+3E/uNfT9snlGw321uKAb94JAPjaLc/jpa+fgMas977z/N8swu0fO9SzzF/IoztmAqHDB377GO56YXUg7vgceyKiLh75U9c/re3rzc078ebmndh79MBAFbALf/cYAGDFhu1QChjb2WZkHyGOR5gxwoSQSoKnJFIRDOvfgsvesTce+dxRnvy9+03sxKOfOxpv2WcUTpk3JieCAeCrJ++Ve+14jj9zwoxA3+NssTZ7bAc625vw83O8YR2nzR+bC2U498AJOHDyYH8XRXP3C6uxYsN2LFmd9zAv1hT66A0paLd6y06PSFZKeSrxOaEN/jaFsP837sTbLn8AV96zNG9Xr8Jfn3gdjVnrQB38rbtxyLeDcdMAsHrzTlxx9xLt+L29Cn95fEVkhUFSmzBGmBBSiVAIk4rh9P3G5bI9uBnav1nTGjj7gPFosr2s75g7BgAwfEALFn3+aPzh/P1x8ZFTsP/ETrQ1eR98HDNzOP718bwndvzgNtx68SH4+DHT0NKYRf+WRnz6+OmB8fYYOSD3+l3zxwbWu/nAoZM87y/47WM4+Ft34+jvez3Ml9zwNC64ZhH+s8Qq5uEvM/3sys14+08ewH5fvxNX3rM0t/5dP3sIh3777kDYxd+ffiP3+uf3LUUY/3l5beg6B3dIxd//+wY++scnsbvHa9+ES27Biz5B/5HrnsR3bl+sLZ7ylydex8f/9BSu+c+rseMDwLK127B6y06jtqSy6amyPMKEkPqAQphUNbd+5BB8/qQ9PFXjhvRrxoFThuDjx07HHz+gjxueOKQf3nPQBNz5icMgIthj5ABc7EohdvLs0Z72ne1NOPuA8bn38ycMwvdOnYUh/YIi/Wdnz8OccR1G9l/36HL887k3cebVD2P9tq7c5DU3T7y2EQDwrdtewHduX4xVm3bikWXr8frGHZj9lTvw8pp8OegPX/sEfnznSwCAPz66PLf88O/cjQeWrMXarVbGijN//nCsbe6cza/6snW4Ofb/7vWEcDhj9Go8ws+t3AwA+Pqtz+Px1+Ljnw//7r+x39fvjG1HKh/n60CHMCGkkmCMMKlqpgzrV1AJ1GxG8KW3hqd2G9XRiocuPQpPr9iIwf2aMWVoPwxsa8RRewzDTU++jrfaFafeOW8MDrrsLk+6tNEdrdhr9ED8/Jz5+Mczb+DmJ1eiOyzmwcXcr96B4/ccEdnmyntexpX3vOxZdtT37vG8/94dL2LS0H54eU1evC5btx3vvtoSv89++bjc8uP2HB5aUW7J6q249C9PY8ygNjwWI1ofWbYeB04eAiA/4W9HVzD8wR0S8cHfPYaHP3s0Nm7vQkebPmuIw9f+/hw+n3DSI6ksepg1ghBSgdAjTEgIIwa24Ng9R2De+EEY2GZ5nIcPaMEFh072VJx651yv93jPUVYIxTEzh+P7p83Gj8+YkwvhcPPZE4PxzLc9myyLQxj/84fHQ9ft+aXbc68PmzYssp9rH1mO79y+GPe+GMw84S7CcebPH8ZdL7yJ3z/8KlZttkIZHEGslMIzr2/C9q5urHTdMLy5eRf2+tLtmP2VO/DsSm8e4zVbdnnG9E+MdFixYbvxhEJSXnoZGkEIqUAohAkpkg8fNRWPff5oZDOCY2cOD2RaOGHvkbjvM0cAAD51nBV7fNSMYbjg0Mn44emzA/3tO2EQbvzQgdh79EAAwBn7jcUxM4enbvfPzp6HM/Ybi6vtyYOD2hoxa8xAbdtelY/VPv/gibjzE4d5QkkA4L2/XoTP3fhM7v17fv0oZn/ln/jJv1/GW358P2Z+8XbcvdgrqJ0qhCf96P5cqrpd3T04+YoHchkvHNyT755duQk3PrHCjru+Bxdf+wR224K4t1fhrhfehFIKf160XBtjfPcLqzHvq3doQ1FIaXCyRvh/H4QQUk4YGkFIkTRmMxjcrxlLvn5CaJvhA1rw5BePwcDWRpw6bwz6tVg/vYWzR+Pw6cOwYVsXfvPgMvzqgWX45Xn7on9LI/584QJ09yr0szNlHP6du7Fs3XZcceZcjO1sxYwRA/DYqxvwyT8/hdc37sA9nzoc5/9mEd42axQefmU97l+yFu8/ZCJ27u7FQ0vXYb+Jnfj9w6/lbDp06lCICI6eORyPff5oNGQyGNjWiN/8ZxmufeS1wGS3E/YagWsefBUdbY2YPNQsHGXj9t34zu2Ljdoe94N7MXlouyekw80v7n8Fu7p78b6DJ+KkH92fW75s3XYsW7cd5x44AZOHtuOXDyzDj+58CZ85fkaubPev3rMv9hgxAG9u3okf/OtFPPfGZqzb1oUVG3Z4spSQ0tGr6A0mhFQeUmiKpWKZP3++WrRoUVnGJqQS6e7pxbauHs/EPzevrN2GjADjB7d7lm/d1Y0HlqzFcb744mdXbsIeIwbkCpcopTDx0lsBALd99BDMGDEAUSxZvRXfvX0x5ozrwDEzh2Prrm6851eP4kdnzMFBU6x44A3buvDnx5bjG7e+YLyfne1N2LqzG3uNHoCnV2wyip8uFTdfdBD2GdNR0LYi8phSSl9isQYp9pz9rdtewNX3LcVLXz8xRasIIcSMsHM2PcKEVAgN2QwGtoZHK00c0q5d3q+5ISCCAWDPUd4wB+eRdGtjNlYEA9ZExCvPnudZ9tgXjvG8H9TehAsOnYypw/vjiruWYNGrG9CYFbx7//H49X+WBfoc3dGKn541F/uM6YBSCuu3deGO597EETOGYf9v9H12iGsfeQ3jOttiJ+uRwrn/pbU46xcP47T5Y5hDmBBScVAIE1JH3HrxIYFy1mlwxPRhOGL6MKzbugvZjKCjrQnThvfHwVOGYNzgNqzevBO3/vcNnLNgQs5DLSIY3K8Zp+83DgDwyjdPxDUPvoqmhgzufXENzthvHM755SP42dnz0NqYxdjONrztx/djy65utDZmsWN3D8YPbsM9nzoCEy65RWvXR4+eih/866VQu699ZDmashl8eeFeoW1IcVx9v5XPetGrGyiECSEVB4UwIXXEzFHxnuBiGOzKq3zm/uNyr4cNaMF5B02M3FZEcO6BEwAAZ9ji2F8a+t+fOhxdPb0YObAVL6/ZisG2qP/7hw/GW35sxQ3vP7ETrU1ZXHX2fDQ1ZLBq005cZ+dU/tEZc3Dvi2vw9jmjc+nk/ufIKUXsMYnDqQa5ecduxggTQioOCmFCSNXgFtruCXt7jR4YEM0Ol71zH1z2zn1y7982axQA4KfvnothA5q11QxJevR3hPDObjQ3MFERIaSyoBAmhNQlJ+w9stwm1AVO1pOu7l60NWVjWhNCSN/C23NCCCElw118hjHChJBKg0KYEEJIydjdm6/8RyFMCKk0KIQJIYSUjF2780JYU2mcEELKCk9LhBBCSkZXDz3ChJDKhUKYEEJIyejqphAmhFQuFMKEEEJKhkcI84pDCKkweFoihBBSMnZ19+ReZ+kRJoRUGBTChBBCSgZDIwghlQyFMCGEkJLhmSzHEsuEkAqDQpgQQkjJcHuEKYMJIZUGhTAhhJCSsLunF0tWb8297+5VZbSGEEKCUAgTQggpCT+68yVs2L47937n7p6I1oQQ0vdQCBNCCCkJE4e0e97voBAmhFQYFMKEEEJKgl8ID25vKpMlhBCih0KYEEJISfAL4f0mdpbJEkII0dNQbgMIIYTUJh1tlgf4qBnD0NHWhM8cP6PMFhFCiBcKYUIIISVj8deOR2MmwxzChJCKhEKYEEJIyWhuyJbbBEIICYUxwoQQQgghpC6hECaEEEIIIXUJhTAhhBBCCKlLKIQJIYQQQkhdQiFMCCGEEELqEgphQgghhBBSl1AIE0IIIYSQuoRCmBBCCCGE1CUUwoQQQgghpC6hECaEEEIIIXWJkRAWkeNFZLGILBGRSzTrF4rI0yLypIgsEpGD0zeVEEKICTxnE0KIGQ1xDUQkC+AKAMcAWAHgURG5WSn1nKvZnQBuVkopEdkHwJ8AzCiFwYQQQsLhOZsQQswx8QjvB2CJUmqpUqoLwHUAFrobKKW2KqWU/bYdgAIhhJBywHM2IYQYYiKERwNY7nq/wl7mQUTeLiIvALgFwHt1HYnIBfZjuEVr1qwpxF5CCCHR8JxNCCGGmAhh0SwLeA+UUjcqpWYAOBnAV3UdKaWuUkrNV0rNHzp0aCJDCSGEGMFzNiGEGGIihFcAGOt6PwbAyrDGSql7AUwWkSFF2kYIISQ5PGcTQoghJkL4UQBTRWSiiDQBOB3Aze4GIjJFRMR+PRdAE4B1aRtLCCEkFp6zCSHEkNisEUqpbhG5CMDtALIAfqmUelZELrTXXwngnQDOEZHdAHYAeJdrIgYhhJA+gudsQggxR8p17ps/f75atGhRWcYmhJBiEZHHlFLzy21HX8FzNiGkmgk7Z7OyHCGEEEIIqUsohAkhhBBCSF1CIUwIIYQQQuoSCmFCCCGEEFKXUAgTQgghhJC6hEKYEEIIIYTUJRTChBBCCCGkLqEQJoQQQgghdQmFMCGEEEIIqUsohAkhhBBCSF1CIUwIIYQQQuoSCmFCCCGEEFKXUAgTQgghhJC6hEKYEEIIIYTUJRTChBBCCCGkLqEQJoQQQgghdQmFMCGEEEIIqUsohAkhhBBCSF1CIUwIIYQQQuoSCmFCCCGEEFKXUAgTQgghhJC6hEKYEEIIIYTUJRTChBBCCCGkLqEQJoQQQgghdQmFMCGEEEIIqUsohAkhhBBCSF1CIUwIIYQQQuoSCmFCCCGEEFKXUAgTQgghhJC6hEKYEEIIIYTUJRTChBBCCCGkLqEQJoQQQgghdQmFMCGEEEIIqUsohAkhhBBCSF1CIUwIIYQQQuoSCmFCCCGEEFKXUAgTQgghhJC6hEKYEEIIIYTUJRTChBBCCCGkLqEQJoQQQgghdQmFMCGEEEIIqUsohAkhhBBCSF1CIUwIIYQQQuoSCmFCCCGEEFKXUAgTQgghhJC6xEgIi8jxIrJYRJaIyCWa9e8Wkaftf/8RkVnpm0oIIcQEnrMJIcSMWCEsIlkAVwA4AcBMAGeIyExfs1cAHKaU2gfAVwFclbahhBBC4uE5mxBCzDHxCO8HYIlSaqlSqgvAdQAWuhsopf6jlNpgv30IwJh0zSSEEGIIz9mEEGKIiRAeDWC56/0Ke1kY7wPwj2KMIoQQUjA8ZxNCiCENBm1Es0xpG4ocAeukenDI+gsAXGC/3Soii02M9DEEwNoCtqsGannfgNreP+5b9VLo/o1P25CU4Dm776jlfQNqe/9qed+A2t6/VM/ZJkJ4BYCxrvdjAKz0NxKRfQBcDeAEpdQ6XUdKqatQZCyaiCxSSs0vpo9KpZb3Dajt/eO+VS81uH88Z/cRtbxvQG3vXy3vG1Db+5f2vpmERjwKYKqITBSRJgCnA7jZZ9Q4AH8BcLZS6sW0jCOEEJIYnrMJIcSQWI+wUqpbRC4CcDuALIBfKqWeFZEL7fVXAvgigMEAfiIiANBdq3cihBBSyfCcTQgh5piERkApdSuAW33LrnS9Ph/A+emaFkotp/mp5X0Danv/uG/VS83tH8/ZfUYt7xtQ2/tXy/sG1Pb+pbpvopR2DgUhhBBCCCE1DUssE0IIIYSQuqRqhHBcydBKR0TGisjdIvK8iDwrIh+xl3eKyB0i8pL9d5Brm0vt/V0sIseVz3ozRCQrIk+IyN/t97W0bx0icr2IvGB/hgtqZf9E5GP2d/IZEblWRFqqed9E5JcislpEnnEtS7w/IjJPRP5rr/uR2MG0xAyesyvvt+GH5+yq3r+aOW+X/ZytlKr4f7AmfLwMYBKAJgBPAZhZbrsS7sNIAHPt1/0BvAir/Om3AVxiL78EwLfs1zPt/WwGMNHe/2y59yNmHz8O4A8A/m6/r6V9+w2A8+3XTQA6amH/YBVaeAVAq/3+TwDOq+Z9A3AogLkAnnEtS7w/AB4BsABWXt5/wEozVvb9q4Z/PGdX5m9Ds488Z1fh/tXaebvc5+xq8QjHlgytdJRSbyilHrdfbwHwPKwv80JYP1jYf0+2Xy8EcJ1SapdS6hUAS2Adh4pERMYAOAlWXlKHWtm3AbB+qL8AAKVUl1JqI2pk/2BNmm0VkQYAbbByzlbtviml7gWw3rc40f6IyEgAA5RSDyrrDHuNaxsSD8/ZFfjbcMNzdvXun03NnLfLfc6uFiGctGRoRSMiEwDMAfAwgOFKqTcA68QLYJjdrNr2+QcAPg2g17WsVvZtEoA1AH5lP0a8WkTaUQP7p5R6HcB3AbwG4A0Am5RS/0QN7JuPpPsz2n7tX07MqNbviRaes6tu32r2nA3UzXm7z87Z1SKEjUuGVjoi0g/ADQA+qpTaHNVUs6wi91lE3gJgtVLqMdNNNMsqct9sGmA9tvmpUmoOgG2wHtWEUTX7Z8ddLYT1iGkUgHYROStqE82yitw3Q8L2p9b2s6+pmePHc7a1iWZZRe6bTc2es4G6P2+nfs6uFiFsVDK00hGRRlgn1N8rpf5iL37TdunD/rvaXl5N+3wQgLeJyDJYj0CPFJHfoTb2DbDsXaGUeth+fz2sk2wt7N/RAF5RSq1RSu2GVW3sQNTGvrlJuj8r7Nf+5cSMav2eeOA5uyr3DajtczZQH+ftPjtnV4sQji0ZWunYsxd/AeB5pdT3XatuBnCu/fpcADe5lp8uIs0iMhHAVFiB4BWHUupSpdQYpdQEWJ/NXUqps1AD+wYASqlVAJaLyHR70VEAnkNt7N9rAA4QkTb7O3oUrFjIWtg3N4n2x34Ut0VEDrCPyzmubUg8PGdX8G+D52wAVbx/qI/zdt+ds9Oa9VfqfwBOhDVr92UAnyu3PQXYfzAsN/3TAJ60/50Iq8zpnQBesv92urb5nL2/i1ElM9YBHI78DOSa2TcAswEssj+/vwIYVCv7B+DLAF4A8AyA38KajVu1+wbgWlhxc7theQneV8j+AJhvH5OXAVwOuwAR/xl/DjxnV8B+GOwnz9nVuX81c94u9zmbleUIIYQQQkhdUi2hEYQQQgghhKQKhTAhhBBCCKlLKIQJIYQQQkhdQiFMCCGEEELqEgphQgghhBBSl1AIk7pFRA4Xkb+X2w5CCCHx8JxNSgGFMCGEEEIIqUsohEnFIyJnicgjIvKkiPxMRLIislVEvicij4vInSIy1G47W0QeEpGnReRGuyY7RGSKiPxLRJ6yt5lsd99PRK4XkRdE5Pd2RRpCCCEFwnM2qSYohElFIyJ7AHgXgIOUUrMB9AB4N4B2AI8rpeYCuAfAl+xNrgHwGaXUPgD+61r+ewBXKKVmwarJ/oa9fA6AjwKYCWASgINKvEuEEFKz8JxNqo2GchtASAxHAZgH4FH7xr8VwGoAvQD+aLf5HYC/iMhAAB1KqXvs5b8B8GcR6Q9gtFLqRgBQSu0EALu/R5RSK+z3TwKYAOD+ku8VIYTUJjxnk6qCQphUOgLgN0qpSz0LRb7gaxdVKzzq0dku1+se8DdBCCHFwHM2qSoYGkEqnTsBnCIiwwBARDpFZDys7+4pdpszAdyvlNoEYIOIHGIvPxvAPUqpzQBWiMjJdh/NItLWlztBCCF1As/ZpKrgnRSpaJRSz4nI5wH8U0QyAHYD+B8A2wDsKSKPAdgEKyYNAM4FcKV90lwK4D328rMB/ExEvmL3cWof7gYhhNQFPGeTakOUino6QUhlIiJblVL9ym0HIYSQeHjOJpUKQyMIIYQQQkhdQo8wIYQQQgipS+gRJoQQQgghdQmFMCGEEEIIqUsohAkhhBBCSF1CIUwIIYQQQuoSCmFCCCGEEFKXUAgTQgghhJC65P8BExu4T1E5g/AAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "215ns_image_573611404207_CLEAN.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADDCAYAAAAya0IYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADS8ElEQVR4nOz9eZjt6VnWi9/vqjWvVbWH7nTS6XTICEhySGIwIeGg4YcHxQHBEY4K4hCcDip6mDwi6k9FAfHnpeKJRw1OTKIgM4hG8CQBQhhMIKEzp9NJj3vvqjWvWuv7+6Pq89b9ffeq7t3de3etvfdzX1ddu9Za3+GdvmvXfT/387ypqioFAoFAIBAIBAKBQCAQCDwZNM66AYFAIBAIBAKBQCAQCARuPoSgEAgEAoFAIBAIBAKBQOBJIwSFQCAQCAQCgUAgEAgEAk8aISgEAoFAIBAIBAKBQCAQeNIIQSEQCAQCgUAgEAgEAoHAk0YICoFAIBAIBAKBQCAQCASeNEJQCDzjSCm9O6X0hrNuRyAQCAROkFL6UErpt17jsVVK6SVP8T5P+dxAIBAIBALbhRAUAs84qqp6WVVVbznrdjwRUkr/e0rpwymlcUrp+1NKF8+6TYFAIHArI6XUSSn9y5TSfkrpEymlrzrrNgUCgcC24XoLs9dyvfi7OHAaQlAIBDYgpfQySf+3pD8q6dmSJpL+6Zk2KhAIBG59fKOkl0r6JEmfI+mrU0q//UxbFAgEArc54u/iwOMhBIXAMw631aaUvjGl9L0ppX+bUjpIKf3PlNInp5S+LqX0UErpoymlz7Nzvzyl9GvHx34gpfQVxbW/OqX08ZTSAymlP+mK63Hk61tSSh9JKT2YUvpnKaXeKc38w5J+sKqqn66qaiTpr0n6vSml3RszKoFAILA9SCm9JqX0tpTS5ePv1H+cUmoXh/2O4+/hR1JK35xSatj5f/z4u/pSSunHU0qfdI23/lJJf6uqqktVVf2apH8u6Y9dn14FAoHA9iCl9BtSSm85/p59d0rpC+yzt6SU/qS9/mMppf9x/PtPH7/9yymlUUrpD6WU3pBSuj+l9PXH38kfSin94ad6vQ3Njb+LA6ciBIXANuB3S/o3ki5I+kVJP66jtXmPpL+pI0UUPCTpd0nak/Tlkr4tpfQbJek4ivVVkn6rpJdI+i3Fff6epE+W9Mrjz++R9A2ntOllkn6ZF1VVvV/S4vj8QCAQuNWxkvSXJN0p6XWSPlfSny2O+SJJnyHpN0r6PZL+uCSllL5Q0tdL+r2SniXpZyR95xPdMKV0QdJzZd+9x7+/7Kl3IxAIBLYPKaWWpB+U9BOS7pL0f0j6dymlT3mic6uq+s3Hv76iqqphVVXfffz6OTr6zr5H0pdJetPTvJ4j/i4OnIoQFALbgJ+pqurHq6o6lPS9OvoD9JuqqlpK+i5JL0gpnZekqqp+uKqq91dH+O86+iL+7OPr/EFJ/6qqqndXVTWR9De4QUopSfpTkv5SVVWPVVV1IOnvSPriU9o0lHSleO+KpFBiA4HALY+qqn6hqqq3V1V1WFXVh3Qk7F4l0h5/n35E0j+U9CXH73+FpL9bVdWvHX+v/x1Jr7wGl8Lw+F//7o3v3UAgcCviM3X0nfdNVVUtqqr6r5J+SCffo08Vf62qqvnx38g/rKO/ja8H4u/iwKkIQSGwDXjQfp9KeqSqqpW9lo7/0EwpfX5K6e0ppcdSSpcl/Q4dqbHSUWTro3Yt//1ZkvqSfuHYWnZZ0o8dv78JIx25IBx7kg6utVOBQCBws+I49eyHjgsj7utIFLizOMy/Yz+so+9g6aj+wf/Pvmsfk5R0FDV7PIyO//Xv3vjeDQQCtyKeK+mjVVWt7b0P64m/Jx8Pl6qqGhfXe+5pBz9JxN/FgVMRgkLgpkFKqSPp+yR9i6RnV1V1XtKP6OgPVUn6uKTn2Sn32u+P6EiceFlVVeePf85VVTXUZrxb0ivs3i+S1JH069ejL4FAILDl+HZJ75H00qqq9nSUwpCKY/w79vmSHjj+/aOSvsK+a89XVdWrquqtj3fDqqou6eh7/BX29it09H0cCAQCtxIekHSv157R0ffox45/H+soEAaecw3XvJBSGhTX43v5qVzPEX8XB05FCAqBmwltHX15PSzpMKX0+ZI+zz7/Hklfflzkpi+rj3CsAP9zHdVcuEuSUkr3pJR+2yn3+neSfndK6bOPv5z/pqT/eJwqEQgEArc6diXtSxqllD5V0p/ZcMz/mVK6kFK6V9JfkETe7T+T9HXHVcGVUjqXUvoD13jffy3p/zq+7qfqKFXtzU+jH4FAILCN+FkdkfyvTim1Ukpv0FFNse86/vyXdFT0sH9cXPxPFOc/KOlFG677N1JK7ZTSZ+uo5tj3Ps3rgfi7OHAqQlAI3DQ4/tL6Sh0JB5ck/e+S/rN9/qOS/pGk/ybpfZLedvzR/Pjfrzl+/+3HFt7/ImljsZqqqt4t6U/r6Av0IR39cV0WJAsEAoFbFX9FR9+xBzoSYzcV6foBSb+goz9Uf1jSv5Ckqqr+k46K4H7X8XftuyR9/jXe969Ler+OrLr/XdI3V1X1Y0+5F4FAILCFqKpqIekLdPTd+IiOtmD80qqq3nN8yLfpqOjhg5K+Q0d/jzq+UdJ3HKeWUSfhEzr6+/iB4+P/9NO8nrc3/i4OnIpUVdVZtyEQuCFIKf0GHf0h2zkuDBYIBAKBQCAQCNxSOHY4/Nuqqp73BIcGAtcd4VAI3FJIKX3RsdXrgo4iZD8YYkIgEAgEAoFAIBAIXH+EoBC41fAVOqqx8H4d7aO+Ke83EAgEAoFAIBAIBAJPEzdMUEgp/faU0ntTSu9LKX3tjbpPIOCoquq3H+/ecLGqqi+qqurjZ92mQOCsEN/DgUAgcPaI7+LAjUZVVW+JdIfAWeGG1FBIKe3oaBuR/03S/ZJ+XtKXVFX1q9f9ZoFAIBC4CvE9HAgEAmeP+C4OBAK3Om6UQ+E1kt5XVdUHjquYfpek33OD7hUIBAKBqxHfw4FAIHD2iO/iQCBwS6N5g657j6SP2uv7Jb32tIO73W7V7/e1Wq1q71dVJRwUVVVpZ2dHOzs7SilJklarldbrtVJKSinl4zknpaT1eq2qqtRoNLSzs5Nf83l5r5SSGo1G7TOu7a9Xq5WqqtJ6vdZ6vZYkNZvNWts4hnM23U+SGo3GVe9zbHlvjt90LdrBZ/S1bAPnl+NQtomx9nsx5vyUbeG+tIXreFtTSvm9qqp0eHio9XqtnZ2dq8ai/N3nedOY+hhs6mN5jfL6jUYjt6Gqqrwm6Uej0cjvc06z2bzqnNPawfX9uE1rxM8v58s/55qnrX9fS/4s8TnzUK6V8lnYNP6PN55cs7y3zwXn+Fo7bS37Nb3v5TGP911QrpVN7Smvd9yWR6qqepZuPjyp72FJ2hkOqhe9cK0H39W7oQ0LBAKBJ4OZxlpU8/TER24lntR3cXwPBwKBbcWBLm38m/hGCQqbvvRrbCOl9EZJb5SkwWCg3/E7foeuXLmixWLB56qqSsvlMhOTwWCg4XCYxYX9/X2Nx2N1u101m00tl0vNZrMa2Vyv19rf31ej0dDFixfVbDY3EtL5fK7FYqHlcqnd3V2122212201m0dDtFwutVwuJUndbler1UrL5TK3YTab6fz58+p2u9rZ2dHBwYFGo5EWi0W+lxPPxWKh+Xyuqqq0t7enZrOp9XqtxWKh1WqV23V4eKh2u62UkubzuaQjAkufAX1frVaZnNF3v16j0VC/31ev16sJIGA2m2k6narb7erChQsaDAZqNBpqtVqqqkrT6VSHh4eaTCZ6+OGH1Wg01Ov1tLOzk0kyY7ler9Xr9TQYDNRut9VoNDSbzWrvr9drjUYjPfbYY0opqdVqqdlsqtPpqNVqZQJ5eHhYI8e8brVaNZGJcZWkTqejlJIOD482eXBhQ1K+rpNmxrbRaOR+Inbs7u7qjjvuyGtvNptpNpvlsep2u5KkyWSiK1euaDQaZQGB8en3++p2u6qqKq+b9XqdBYpGo5HXMmJGv99Xq9XKr6uq0nw+z/3qdrsaDAY6PDzUeDzO79NHrsnzxHrgmep2u7mvrHHa0mg0rlprrBMXHRh7v7akWpsPDw+vWtvr9VrNZlPnzp1Tv9/P702nU81ms/zccB/a6dfi/imljc8sc1wKVnyv0E/mwI87fsY/rJsTT/g9LNW/i7vq6wXv/l16wc36Z3sgELgl8bPVT511E54OntTfxPE9HAgEthX/pfoPG/8mvlGCwv2S7rXXz5P0gB9QVdWbJL1Jku68886q2Wyq2WxmokIUd2dnJ5NtiNdqtcrk5fDwUIeHh5nUQig90txsNjWdTjWdTjUYDDKxhChDgJbLZS3i7teAZE6n00zaJWk4HEo6IicQsuFwWCMqkB9JmVg3m81Mug8PD9VsNrWzs6N2u63ZbFa7/3q9zkSJ/s5mMzWbzSw2ME6MD24MG+8cgYX0S8rkCVIOuVwsFpksMwY7Ozvq9Xq5DZ1OR6vVSsydzxv9LgWLbrer6XSq+Xye56zb7arX62k6nWZBifGgb4yhz49fmza22+2aqLGzs5PFEB8Ldx4w/+4OaDQaarfbkpT7S+S81+tpOByq3W7ndclabbVaWRRZLpeaz+e5D4gbXL/T6WSizXjRD67BWve1gPDB84BIwBqgzYwR7aav/tlkMsnz1+1283OAIMX6xEHEtTqdTm1dM2cOXze03UUv6YT0z+fzvMYRcBBh3NXC87pYLPKzyD3KtebPAO0uHTj+bPB88drH8ybFE34PS/Xv4r108foX1QkEAoHbG0/qb+L4Hg4EAjcbbtRfyz8v6aUppRdK+pikL5b0v592MKSKVAKs4PxB7yQSMgIpPDw8rBGqbrerxWKRyVmn01G73c7uAycgkjKZ2tnZ0Wq10ng8rhEMIpce9SWKi2jQbre1u7urK1euaD6f5+i6k5zSEo4YMB6PtVgssrMBUu/HMh6QoJLgIlAAiCbRX4ig29nL1AqAM2M0GmWySXsgfB4BvnLlSq1PHmV3l4iT6mazqfl8rtlspk6nk+8xn89r6QL0jet5moX3lblgvXB95hqizJgxBvTX0xDoR5leUzoXIPyHh4cajUZ5/XKtfr+vwWCQ2+DCyGw2U7vdzuOKM4N5dSHL03a4vkfRIfyLxUL9fl/9fl+LxUKj0SiPe5kiwJqSlPvT6XSyawVXBoIB53c6HS0WizwmCDU8Vz5PXJvxpQ/r9ToLFi64zWYz9Xq97PJgDfPcuQjE2sL9w71KQah8fjelADHOtMXHq0zXuQnxpL6HA4FAIHBDEN/FgUDglsYNERSqqjpMKf15ST8uaUfSv6yq6t2Pc3wt0ulR3zK/2q3vkIPDw8Mc4fRIvXSS347IAPFzIu3RYFIsIHa9Xq9GdJ3UQjZwFnQ6HS2XSy0Wi2y3h7RAkDzyXVVVjj6XkW6IDRFqt34jEHjUXjohrSXJciGF8YVkuR2ftkKoIaZ+HES21Wqp0+nUHAxO0Hjtc+yRZkmaTqeqqkrdblfdbjenEJR58qwDj7afto6azWaN7APaX9a14DPa7QIF8+SiiLsdUko5Us+aQXRpt9vZ8YLrwq31h4eH6na7WUhw8cTrgnj6Q1mLArK+WCy0WCzU6/XUarXye7gjpBMnQBmVR4zodrvZ7eLrn+dhsVio1WrVxttJuKcE4SIo6yAwpuX6REScz+dZWGMNumPARYiUkvr9viaTSU208fXHe2WdCPrUarVq7fE2uUvhZsWT/R4OBAKBwPVHfBcHAoFbHTfMz1tV1Y9I+pFrPd4LG3ok0SOpkMnSrSDpqjxpziXiP5/Ps0UaEgNB8qjybDbLkU8IDqSP9pUEHZIIkXIbO21y18B6vc556WUUVlImkoA0EEmZ1LuoANnimggnntZAhN6juO58sHnLLoX5fF4jxRB1+kw0vGw/cCIHaca94TUvXKQohRvuhWOFfpfOCtbGarXK0X8EC59r4GKPv3ZbPOKEpDwOkrLjpWyLE/FWq6Vz585lsu2pMrPZLBN5BBzG0MWnMuXDUyJwn5B2wXy7owIhg/7574hRjJcLGp1OpzZWuIAQf7gf7UUEcDeDzwvt8XXHc0jaDKIIqTwICpJqz5o7XRBz/PlwpwmvmVvmy11QHENb6cemtJqbEU/2ezgQCAQC1x/xXRwIBG5lbE2CMITFo8WSauSjLKom6arXTiw9ythqtfI9nACXRPfw8FD7+/tX5Vp7DQQ+g9SVJG8ymeQ6CCVxxfINGSTKzLFgZ2cnpwNAtCBY7nqAIOGKwDUAAV0ulzmqXpJnxpZrlfeGdHIt7uNEt6wjwJgh/BDl5xj6Tb0MT1XhWAg3Y3taxX/e89QE7PsQ0k1uh5JwItLQBxwpjKcTbOpZ+Nj4ekAkoD/D4TBH7ll/nLdYLGopF4y92/Pp33q91nw+z/3iHBwvEGtPK0EUop+IXaWVv6xP4UIex1GTAtHKHUTMkzuAXEBgLt114denbgiiggtrtIdrlSkkvV4v98HXn59frhdEItaGi5CsET4PBAKBQCAQCAQCp2MrBAWI0WKxyGSFaCt5+QDBwAkREWHqFnhuOS4Ddy14pNsdAq1WK1vvPSce5wGkqYz2shuBkxInTF5gztMNnGTRN9rmxMzb5HUUIHT0w3PHPXrtdn0XI2inuyG88r7XLXCSxfU8xcBTCVw8KMkm/SZFxHdS8HQBnA9lHYqyzU64OYaoOxX+3TngYpNHod2672un3+9n4QcBxHcuKOs6cP+qqvJ6woHgLhtSBNxF4G0ro+fMDX1jbhBtuCaiA+f6+vL7I4yx1qhhwJr0gojuenEhwwk3O3NQEJX3EE4YZ/+XNpFWhKjgx7gjp3QF0c5Op1Nry6YUHJ4PnjEvaskY+U/pkgkEAoFAIBAIBAJXYysEhbLOgKSryDtkyKOpbovmGEjcpUuXajsVQM49r558auzrWPGdHHpePISJSLMTpFarlXdtKF0WTsI8ss22eKX1HgLlhSMREYBbsz06j8jQbrd14cIFPfroo9kt4Q6PTRFZrsE9vciiOz7cGVHOI4KAp6dQfJCxQ1TwgpEuHvC+153w63tOvY8x7ff0GW+niw+srVLwceHFyTdjgNDh22C6sCCdbF1JQVBcJp5+QZ/L9Ug7S7jI4HMkKad4cD0XOFjzLnzQPxcvcAfwXHn/3bGCq8JdBrSbuhrz+TyPm8+9C17SCclHNGPcWDfuhPGaDC4OIEyVaSIu6vBsuuBVfufwPLhQ8Xj1OgKBQCAQCAQCgcCWCAoeRYQIeDTVK8d7ygK1CMgJJzrre9GXtQucWEESiez2ej212231+/2NaQguDDhJlZRt+6QZQO69jgBkzh0UpT3bc+Z9C0XqQDjpdDGF69HXw8Ojrf6m02mNZLoIs2nXA67lNQt8Fwx+n8/nG2snbKobQUS40+loMpnk8yhc6fUy3LVRFlAsi3P6PRGCvICmu0rYUYL3fOxcGIJIQiwZo1arpcFgkNtFP3ntawvBpN/vq9PpZIFnvV7nHR5oF46IMnXH58Kt/2XkHHcMpB9CzjPjYlS5vSRjwRgjcHl6DvOLMEHRzH6/X0ubKdcuYzAcDtVqtXK7pJPUD3e+MF6+3SfCFEIP8+GCHb/7bjD0yYuZUvuhHM9S/CvXciAQCAQCgUAgEDgdWyEo8Ee/FwGEHEhX5zKXaRDlrgiQE7euuy2+vKZHi4loYiEnjQISyesyFx8CRDR6UxE9iCmF6CDlmwg5fYdc0WcnlB6xJ0/fUxR2dnZy4URIHNdi3BEbuJ/XNqAKPsc6iet0OqqqKh/L+wgrRJw91x7i5wX9vNaBj6lv+cf9XYxhLLz2gLsLEGT8GMi0ix0IEKQmuCOG+yM60W/f0YB2UkyQtcOOFYgHCApEyr0dvg0p1ytTCpg3xCpShGhfv9/PWy56ug3PBeTfyT5t5RlwAu47ZeDmYBzoq9f/8DHjetPpNK8FFzTcpePpMdQ6KeugePpHucsG8+t1EFjf/ry4C0VSTtPxdCeet7IfgUAgEAgEAoFAYDO2QlCAhEpHWwlikyeK63/ge3TWi7xBBNnjHqfBbDarEUOO963ppDpxcKLu9nby173Ao0eKQRktLWskQOQgaIggTtghxnzuhN6Lz0H0nBCt12sNBoNcWNBrIdA/xl06sdBzD/qKuOJjU7oGSmdDVVX5no1GQ5PJRIvFQv1+X81mU4PBIBPj0uKPS6Gcb4SAw8PDvC5KYl4WEUS8cZu7z0VJhh3cDzt9uVZ9hwBSNxAQuNdyucwFMinsSH0BF1Ron9eKKEGEHnHHiTDns05Zuz52nv6A+OTpDJ4yw3PS6XTymDO2vkXmeDyu7frB2kHAouYHBJ9x9DQZBCSvV+J1P1xcBOUzwJqjHbSPtVumWvj13NHDenAXBNcPBAKBQCAQCAQCm7E1gsL58+drFmeitkQfncR54UBIOeTGi+IhGkDgR6NRJh5l8Uai1RB+yN6mCCWEH7JWVuwnii2dkEHP1+beRPnL6v2e9iGdiCTc24l86V7gPhS13NnZ0WAwyNsoekFCdyXQVvrmefoQ2Pl8nsfGf7ymAlF3RCKvhYD1HJTuC+ba0yBKUGvBC0m62OL98XoJHOdzuCltxHPnPQpfRsrdlUERSY+IU2ySrStZnymlmnPDCxcijpQoCTF1P1xQGo/HajQaeXw9ZcbrX3g6iQtevtam02luixfO9HoYpAmR+gBKwWw2m2Vy7ykknnrgLgKuwTNPSoiPja9drs04sY5Zb4g9nMf8ekqFp6lwblmfJBAIBAKBQCAQCFyNrRAU3M4undQDcHIJifSie75VHj8edZR0FUEj+uhReggJogJpDW6tL6P5XuAQguV2cY/wcg7t9YhqmUpQVp93azaRf8gspNHTCei310CAlNHukoBLJ5F2zkUscUKFSEGknDYjKrgYwv1brZam02mONm8qpOiCCO+7DZ5rl2kOoDzX61lwHSLhHiH3uhXleiydBCVKlwIikhc2hHT7PdyVwXrxeganuSa8jeWuBjwvrVZLe3t7tXHDKeBkm3N4D/eArz3WMyICc9jtdmviAG4Ar4ng9S5Yu91uVzs7OzkdyNcr8+LuirLOR+kw4RicND52CCllLQwEBF//m2qcuCsoBIVAIBAIBAKBQOB0bIWgIEnnzp3T7u6uHn744ZqtHqIAOYCAQZYkqdfr1QoGzmazHBmGFHj+vReDk+q55n5fCBBuA+mkSB6kjggoxMdzstvtdm27RNwI5O3TN2z8ZZ437SD3XlIt7cILMHquujsuqOuArbyM+pcRaiLuUr3woxdBpN8c42kfTtxJGWA+EIlcxIG4OuGlTwgvzKuTWLe4+24grA36A0mFKHuf+ZzXtINre0qCO0ROK464qSbFeDzO8+2pJxBtJ+Dljhb0D8HBBR8nuswvRJi11Gq1chFFh4tpLsbQPxfKOJaioIgBm8514QpHhtdb2CRkOWknzYHjcDr42nD3ynq9zmJIKTiVYs9oNNJyubyqFonPO2LQphopgUAgEAgEAoFA4GpshaBQVZX6/b729vbU7/c1mUxqREKq55g76YJI9Xq9LDhMp9NalH+xWGTb/3g8rrkYuBbWdo+2ukUaoui7N7iTAVHB88ClE5ItSbu7uzmdgOthK4dou53eCTWvS+eFR5Qhn1Ld8g5J9FoDwAmV999z9F3EcdK2s7OTCxR6fQYnfL4rBKkdvV4vt4v7eS79JpQpKpJq7XJnhs+T11lwUYR2+ni6m8WdFx6t9jWJPd7byPu01wWPdrud7fTuXGFeWDc+1t4Hb5uLQ+7gwBHR7XbV6/U0m83ymuf5cLdEWZPA15QLeNSAoM0UPaWQI2Pj4874UZzS01S8Vkc5v5vIvDsgHIgQZdtxR3Av5p+xdMFBOqmnwPE+B4FAIBAIBAKBQGAztkZQoKDbYDCQdGJbLoUFL3jopNpz8J0Mci2i5W7/hvA5CXHSQ9vc3i7Vtxl0ezzX8KgzP1i9e71eFkHYIQGyCSn0nRDY6pAdMCCe3W63RuoQFahTQGQaV4AX8nMBgYgthB4CibvCx51+Md6MKYKCE18XD4iUO5FmzMsIvY87/7rIgIjk7SrTCRCDPG2DefL55X5lGgXrh2v4dovlmnNHgteD8N0pfD2zLaILML7jg3SSltNqtfJ5uGzoI+uI9rqQQkFIhADWH+3meu5G8DoLpUuCNB5qRXgdC3dZMKeekpNSymlJbKHp7fB5Kx06njqyqQ5EVVVXjaV/X/A8McYIImVtDM51t4qLaoFAIBAIBAKBQGAztkZQgLCxpaJb/SFK6/U6Rzr547+0yiMKuKhAtL7T6WSiDFlyAkR0t7TMQ0qcAIPSsg3hdccBZJH2SycpBJPJJF/Hr+nEihQHKtZzLjtZQNhxalBDAFGB65Q7Ifh9y2i3V9tvNBp5XoBfy+s8ME7r9VFhyG63m+3u9BeiCBmVtPE9v5/vYuDz6hH2TTUWILllhL+00ZdReYr2+bw7mWV+PKpOPQFPKfDUDuoQeAqE7zbhaTzeVhcncOp4vQzWOrsrVFWlXq+Xhad2u10rEur/Igy4u8AFAY5JKanf7+d59tQEH2t3GPi4kPKCO6V0tHj6Ae97TQNPU3AniKfGlKIQAoyngbA2fUtY+uiumrJeQyAQCAQCgUAgELgaWyEoSMp1AHq9XiZq2Pgpdlfms0MoiTSW5MJt8GUVfQiDR6zX66Pt8CCgkEMn8b4LBG0po7VOYjwK7KICkVevbcB5XkOCe3raA2PiEWiIHpFoxqAsyFfu8uCCCX1lXJy0evFAj9z7Voaz2Szf3+/n2y+ydeJwOMxjUhJCHBdO6iCBTuL9/E0WeRcbfJvKEh7dd9HC55j7MDY4AEoHAmvHzynTQ3CzMKZch/Gaz+e5bS6eeEoLYpWLTlxbUk4zQAziM473WhTlGoV0+7pBYMExQ6oDdQ44zoUEdy8gUvgOKpucBexSgSCwWq3U7XazSwfByMUDxA1/Zv3+ntbiAhptY535WgoxIRAIBAKBQCAQeGJsjaAgHdm4z58/r1arpf39/Zz37GTNyZ4TYemEJHU6nWwXd9tyVVV5m7lN+fPNZlPz+VzT6bRWLFFSJqTYv52IeOFA6YQgQbrKXQYgSWyrSF88vYK2QcS4B8SSiDMkCcKOo6Pb7V51DUQHLzzn0dsyBcIBeWS8XeDBzcBccQ/a2e12MxH1Yxgv31EAoQU4CXSnAPDUiZIY+y4hnpLidnuOdSeJrw1s/oyBOxF8u0LGHZJOZJ1Cfz4PHtnnvoC0HE/BKee8LMoJ+e50OnlrUN+pAHcJLhbu64KEp4MgPtAfd6ogUoxGo9rWpKQfuEDnzgPmiHlnLZQOEZ9zf3b4nLZ52/3eLpK5+OTPC21izW5yOzGvUUMhEAgEAoFAIBA4HZv3qLsGpJTuTSn9t5TSr6WU3p1S+gvH739jSuljKaVfOv75HU90Lf5obzab6vf7Oe/ei8J5xB1CuomgQSRLl0KZT40AAHmBIDr5d2s6ZAUS50TDi93RFq6xWCxyxF06ImuTySTXGGA7PVBaxjnf7wWBms/nmSTSr8PDw7yrgkelNwkEZapGmSbi53B9otQeoS8j+lwTAWO9XqvX62k4HKrT6WRrvosz3M8Jto+zCyDeXulku0929gB+LHPn/fIUCebQ6xF4VB0SX+bps5ba7XZtHsv16mvVC21yLPfgPl4MkTXpBTB9jXOsryWKYDKm5bXd7s+64scdFggZ7nRh7GazmSaTSf6ceXWhwFMXcGmUAhfHuruhXKu0ufwOcDcBgoPPL2vGBRJ/XssaCpzH2imLmG4jrud3cSAQCASePOJ7OBAI3M54Og6FQ0l/uaqqd6aUdiX9QkrpJ48/+7aqqr7lyVyszH8mYs5rSAkkyZ0H5JmvVitduXJFvV4vkxCKsZWE1wkpggJRdN9qD/IGGULIgBgRrd5U1G+1WmUy6WSFXHmPChPhhhyTC+/V7/13ryEA2QeQTz/Wx9Lt+6VowLi4YEM9BIgpwgL38mv79Q4PDzUej3OU3GsKuFOCCLynFNBOjnFBwcfRwRqALEKMy5QTxsq3aWQuXDDydYjzgDQQxlc6cWi4s0JSLoZYElxPJaFdLnQhIHCNqqo0Ho/zGkF8cFEipZRFA6870m63a8KJf+6W/01kvnRAOBAcGAd3krjgwppy0o8rwGsalGt70/PEMZ6eUO4O4Y4bX99ePJM6DrSPf/37oHQtbDmu63dxIBAIBJ404ns4EAjctnjKgkJVVR+X9PHj3w9SSr8m6Z6nci237JdFEz1y6pbkkqBjZZ5Op7WIPtcAXgvBc+zJNZdUI+MQ2G63q1arpdFolHPZiax7KgakhS0CiSj7Z7TVz3OC5rsg+HaCkmr/Otkh97/cLaHMOXc7t98X+M4UvrUh93CLvF+PfnB/v/ZsNsuRcRwO9JXCgYg4pVOCa5eOCv511wnzURJyzi1z5F2Icru+X98LFXoNAd6HaLuzxSPj/Fu2ndSBsjZGmXbCmCGksYYRXXy8PU2HCL6vOZ4r32qTcUG4cKGmHAdfI6TUuNsAAu8FIGmzp4f48+339zEq52kT2X88lOuUtrlg4ikZLsptEhm2GdfzuzgQCAQCTx7xPRwIBG5nXJe/llNKL5D0Kkk/e/zWn08p/UpK6V+mlC5cyzWwd+/u7qrf7+fo7nQ6zTZqL8IonVTF9zxoqb6nvFS3rLvbwO3R7lKgBgMOByet/hpS53ndnEM0uLSWk1oBmZVOIvubaijQT66N6OFj4O2hr6Ubg3M2kSTGETHGSa27IUivcJJaOgW4l1/bP2M81uujApjT6TTPP+QS+763wR0npduE8xGjsOHz47s3OHFn7igmWV6TaDrzRGTfd/BANMB94XPr1/OtNb3NLnZwLcYIUQUhA/GBZ4Ex8TXCuvXjGHtfc54C4cKArzXazzPmYC1xHxcfSH0g7cLH0FNqeC2pNi6bXm8SxeiXn+NihNdf8bXq7zlctOKe5THbjuvxXRwIBAKBp474Hg4EArcbnragkFIaSvo+SX+xqqp9Sd8u6cWSXqkjtfZbTznvjSmld6SU3jEej48ac0xkIEVOiNypwGvpJOLpkXjIm92rFqn0fyEZfh/yxiGKHu0ut6dzWzXX4lyPnHtEGLI4n88zuSlTGcoaDRA4FzI8F98L9rFVoI8TJKt8zRjSFh9Lb7fXbSCN4/DwUNPptNYPxoOINe0oif2mtvl7FK10B0VZT4NzOc9t9fyUJN6v50UYqW1BIUXfYYSf+Xye61W4+AMg5pwvnYhZ0snuFS5IeJqIr8OyzoKLBZui5l4AlHQIH1d35DBupfjj7djZ2cnbrFIvgefRi5/i2CjrDbhDw+sX+Fh5n0oyX84bY+A7a/Beme7jdRN83ZVzxjy6COHrvbz/tuN6fBcvNd90SCAQCASuAfE9HAgEbkc8rV0eUkotHX1x/ruqqv6jJFVV9aB9/s8l/dCmc6uqepOkN0nSPffcUxEpxSWAhV+6mmxj2YYQzGazmu3b87CxWiMG8FmZtw3Z8Pck1VwNbou2PuZ2QFA9muvkx8UMBBPSKzh/03m4HTz33ndG8NxyJ1juXgDu9OAzT02QjsjscDjMEX9PzygJl9v8GWfEB0nZUcGY4P5wMk8bfBcKJ8XleAOuAVFuNpu5GCVz5/PKmDM2vrbm83ktuu+RdBdZqAnBuENY+R0XwybSC+F20YB+e/Tc01cAbXcxwseDIqIO5obxZjypM8F1vZ1SfTcKn5vJZFJzP3AOO1N4OlFKqZb64AKdP1/0cRN592fe55z0DdYPa99FAfrrhTlJHWLt4+Tx9CKudzOkOjiu13fxXrp4c6kogUAgsCWI7+FAIHC74ikLCumIyfwLSb9WVdU/sPfvPs4lk6QvkvSuJ7oWNvXd3V2dO3dOOzs7ubBiSeg4/vhekupW59LS3+v1MgkqHQO858STooNuD+e4MooKPNUB8rJcLmvV9Mlr575lLncxtrmdvh0l9/JovAsdnqJRignutJBOyFrZr9FodJUjAOt4VVV5q0B3LNAmCCuv3ebOvEEIpRMrPeNDWgXtZ/w8su2igM8L5HA4HGo0GmXBhTHxyD5CDmvF15GPGf3wyLzPK6BWBuKCp9EgDvCvC0F+z9IxwvVZl7SnrInB+6RueJoI53pbvRCiu31KB0HppEAgQvBBCKPYZhnVR0Qpd10o17gLDN4nFwXL9nm6DUJXmTrCnDPmiBmcR/t9HnzuyrWwzbie38WBQCAQePKI7+FAIHA74+k4FD5L0h+V9D9TSr90/N7XS/qSlNIrJVWSPiTpK57oQuv1WpcvX1a321Wv11O/38859IAIou9s4O4ASNcmOzxRcicMnkIBGfVdG1arlabTaX7PdyVwsudCgnRC8LlXaVF3h4BH5QH3cAcFY8Q9vT1cx6v+u+2b+3u6BNfzKDMkjfbMZjN1u93aPLmNHKLm0XbvgzslPM3BBQ63xLv1nwKEFMKE1JeRf0BkHgeH77rhNnbGEEeFi01lRJo6DpI0mUxqO1GMRqO8Pum/k+lyO1PG1p0ZwNtWpmi4OLBJRNhEsL09pb0fIQRhizUGeJZoN2vb0zh83borhXmAzPv7vpZLUYGfMvWDcfTaDIyNC35PtK2jCw3cx7eEJB2Fz13IYOxvAly37+JAIBAIPCXE93AgELht8XR2efgfkjaF737kKVzrKnIKYSuJHnZn6cjSznGe4kDknG3zPIpP8T2PzvI70fdms6nBYFAjU5B2cuI9yuvOBAhvabeGcHqE3skkn5eWcumEoDq52jSGkEycHYA2cozfXzohm5DQctcDP597OaFEnPAdFYCnMHgEmet6X92JgivCxQjvd5mj7xX6Ic6e3uA2eK/P4cTZdxrgWu78oMYEY8Ecb4qie90BHDf02Qmz98drDZSpNS4sbRIYIPm+ZjY5dyDjiEKe5kO039MQ3KngW3tyD8aQNpeFIH3NlI6YUizxtlLIcVM6g4s3Lhj5mmA90+9NdRxw3fj1/R7lmttWXM/v4kAgEAg8ecT3cCAQuJ3xtGooXC9AviaTSY4KQwrdkiydkDws8UQYISCIEE7cPELqYoCTErdH87tHiCFgVPLnPO7pZNjztyHFTkycCJI64H10UcEJalmJn98hhpvIFvdjHCFzZSG70g1S1lg4LbLO734e4ouD+SKKTbucSFKDACwWi6vEFx87iL3XJ/CUF3dYlGTS28SclbUJnOy60OCiiNdr4BzmwNcE69lTQ0gh8eM9VcNz/n2ts8Wmi2W0D9Lvbg4nylzLj/OIvK8RF5z8NWPCnAHG3ncC4b1yDEswpiXB9/Gkfb6VJ7tdlNd2J4S7Kvw54NnjPdrga+hmEBQCgUAgEAgEAoGzwlYICtJJ5HY8HmdyB1mCEEB8IFaeyw658Ui858B7+gE/kDfun1LSbDbLhQOpcO8WcUiP26HLQnHuAiDiX0bnAdFYL2hXuhi4Dv2kvbwmilwWr/PX7j7wFIhyh4xyzDl3k5jgJM9dCp564e32lIPSrs9xTio5lvn08diUOuH32tnZUbfbrUXNveiek0lPx/B+e5HDUqSirYyDz7m3k3/n8/lGwaJ0NUCSaTeOClImPEXGx3kTnCiXqQab2ukpBKUA4CKV95fnrnQS+bHuVPA2uPBRihPlfUvBzMWbck0zv55aVDogXDRwwcLX9KY+BQKBQCAQCAQCgRNshaBA5N+Luzmx8R0RquqkOjspDh5xnc1m2RXguy5AnIgSlzZv2uGEwgkgZLEkT54fL9XrFzih84goBIgI82KxqO2wwHaJXkSOaLpfu7Ry+33cKl7moZfkd1NaQWn9p29OykryBdFlfpxEekS/rIeA6wPS7zslUOjQr+lkkHtv2rLQCaqnULiwQdu8yB/9dFGnTBvhvpxfOjz4nDGnLgXFRn0+XKzi2PF4nHfb2LTbBf05TVTY5E5wAu/j5+NQig8+pn496aRAptc68HOZK0/9Kdf0JueBP4/lnPraL9MhGHNPB3HBy58RT+so2+I1Fx7PVREIBAKBQCAQCNzu2ApBoaoq9fv9vE2hVN+WriQJTkwgw5AABAWut16vNZ1OJR3t+IA1HQGjzBt3YknbiHhDYLi3OxQ6nU4mvBAfd1l4pNXz8CVdRXDd2u8RdI9me/tLUufWdI+6l0INbadvEHMnjy5QQHp9LtxOXqYV0Hb/zN0YLjp4EUSvAeHOBI+al6IO73v6iRcJ3EQoffzn83kWERgj2upuCO7Hv6VTpHQdAK/74bsurNfrnOYxm82ygMJ9cSgwjp4eMZvNcl2PEh6pd3ELeD9LQcOj/t5O77vDj99EyjmG95kPxDVEPnenlGlBZdoG8K1UaV/p8ClTh7zN5T3KfoVLIRAIBAKBQCAQOB1bISg0Gg3t7u6q2WxqPB7nLfBKC/umXHlIjEeDieY3m80cEcc+7qTG88/dIVHuZlBG64mWe8pEGSnmHp1Op0b66W9J1nmff3d26lvuQZw8yuxFK8uoN+4NJ2eeC+9FFEuxhmudVuuAsSS9wQUSiJvvEODXKoUHnyuvGyCd7JhRkkhfN5uIIG2az+daLpe1+gZlhLsUGoCvA18nLhC5iMPcnxYJl5SdB91ut5bG42ILc16mh2wqKuhCEmKciwOsLZ4B1hBOAIensXCPTUJE2VdPJWGM3DWwiZSXrgzm2kUH5tf76887a8Lfk64WPKqqymKRiwruQHCHgotW4U4IBAKBQCAQCAQeH1sjKAyHwxydpTifkx4q5R8eHmby32q1ahFYhAEXDLyOgNv1pZMtJhEs2DHi0qVLmdhBaqbTqXZ2drS7u6t+v58jxl7R3gkbzgmi3lVV1UQOiCD96HQ6tbbSF+7h22g6mS37yHh6JJg+c3+3tfNeScw9L51ruvuidI3QZsa5HBMnuE7UIP5se8mc+FaeHi0vSSEo14q7PTx6zu8+9/TXUzEQTrx/vguEX5P7lDszOMmlvez84OPuggGvSdeYzWZ5vbF1o/cfN4enw3BP2oqAwDpwcau0/m9KbShTE8rx9zkpUw0Aa5f53DQ2T5Rmw3PqbfH+etv8Ofd5LessuGhZfh4IBAKBQCAQCAQeH1shKPgf+FKdLDkB9ag4pBDxwSPsvV4vE1KEBQo2kh4BIFSQY/+cNrgFfTAYqNfrZQFkNBrVikHSftpClN6v7/ZtLPBsWUmbyLVfLBaaTqdar9c5rUKSJpNJjVC7M4BjyvQCr0dBG0vnB8f63HikfTKZ1MgaYggEnB8q/fs2jaflpTO+kE7m2cUMtmykr95ed1z4uJdR95I0cyz3KEkygoLPm5/nLoZyzP3Ysl5B6TQo21USXmolUIyUnSEYT08lKVNFvCClF+8sUxhKgaYk17gceB5L8cudMd4vhBaf97Kv5T193BCVNokCpUOEdpQ7b9DnTbUVynUgnYhs5fUDgUAgEAgEAoFAHVshKEjKxJkaCF6DwAHBIe+/qqpacTqO990L2u12jYRxHbewQ9h2dnZ0+fLlTJicPPNaOtlhooy2EnHF4VDWZCAS7zUbnAB7WyA/bBPoNm/pRPDg3t7WdrutdrutyWSSPwecX+bn81lJFnFLlFZ4j/R7+gMoo86IMuVWkNQD2FQnwwn/afCdHBAxyr7SXxcM/NhrtbeXBBNy7AUf3UHCuHqEfrlcZpdKWf+ANrlYsVgs8o4Vpc2f393h4OPHNREm3PXBmul0Ohv7WqbL8K+nfJQCgh9z2jVLQcGv544J/w4oRSS/josM/CCisHZ9m0yvSVL2q2x3CAqBQCAQCAQCgcDp2ApBYbVa6fLly1cRZsQACBvF64jUerFBzi0j0C4qUPxNUo6gk8/u7oTz589nK/50Oq3dg60EuVa73c7X4l5ltJN7epqCCwrtdjvv8iBJnU4nCwocz7lEX3EFSPVouY9LSql23CYXA59BND1NwSPUpXODYz0qTd2GsgaAj5WLCrTDj4Xs+daITtQfj+CdRgZJN6ENZd0CnyuvK1EWT6RdpdPCyS+Rcye/3h93S6xWq1xjA2KM04O1IR05EkajUS5aSV+dzDN/ZRSfz1xM4V7MndfqcPhzxT3LdiJ++b3dbcR1NrlCNolcJan3Nejiw2kohQYfK09P2uQI8T67UBgIBAKBQCAQCAQ2YysEhUuXLunDH/6wzp8/nwkKVvp+v58j4NKRkwHS64TKCV8pLBClLIkW51DHADILAfboJ6kV2Pk9D77ZbGo+n+eoKMUAy2gykekSjUZDvV6vJjLQbgQH7unvITogfiB2OPHbRMAYz5KUlq6A0pbvOxRMp9NaCoKPGyjbXNrTmcNNRf3cDeHF/8preKSc6DMCTEmwuV8Z0XdhgPFxFwjjhWOAPvm69LXkKNN4AKS1FB7K8+g7a88dLQhZVVVlB0MpvJR1NLwNm1wfnn5RigOlG8HH3lNn3JXB3CK44NrxFCEfS78uxzIf5bou06QYr9NEh01pMH5/1sFp22AGAoFAIBAIBAKBOrZCUKiqSgcHB3lbR4+IUywRyz2CAuTISaXXTaDeAASedAY/3kkyooITH08/8Mg79mknqqvVStPpNJNoL2rYbrfV6XS0XC5zxXkIMD/uBPDii2W0FrTbbfX7fXW73SxijMfjXFvBo+/uwPD3Sdvw6K2TaY/oUu9BOrHlcwxWemo/ePs9X7+MqEP+uT/z7bUefAtHd2FsEkOYKwoY4miBpNI3d4V48c/Sdu9R6zLiXroh3FngRHdTlNxJLe0tCS3rn/cY43J9+O4Z3iav7eCCCT9Opp2Mu4OCz/15OK3fLq6U9R0k1Yqcdrvd2n18LfBsIZa4M+G0sTnNneRrw+ehFE02CVkhJAQCgUAgEAgEAk+MrRAUJF1F8Kuq0mQyyY6A1Wql2WxWiwD7H/1O5iAdEK/ZbKZms6lut3tVFNJ3XIA8cR1IDpZurg05ciLikWrcDB7dbrfb6na7Go/HtfoOEMVOp5NTHbwGACkPOB4ciC04HCCsbmF3coio4vnl9NHPKe/j1nePLPtn0gn5dKeFpyvQnseDix9eZNB/57iyCCBtcKs/bfQxQxiB5COylKkd9MfrMzDvpGz4dpke2eYa7vjYRNzLYpKbLPuc406OckwXi8VV7hJ3C5RtcGxyaWw6hnXKup3NZjWBwn9IM3HXQelqoI2bdhnxPpSpFGzXWgo+PuacV86XdLUDoUzHiLoJgUAgEAgEAoHAtWErBAXPWfefbreb/7ifTCba399XSqkWYYfA4ESANLgN2yOnADKC8ICLwB0KOBcg67QBwcBt/E6CpROr+nw+z2Sm2WzmAnikJ9AOjuFeXpW/1Wpl4QNSxX0YJ8g7bUPQ8NoOCBAupDAunv9fjpG7KLzPkDXSSZg3zqNewXw+z2S4zOUvd2vwOg+l00E6EY5ob5lq4CS8JKpOrv36uCO8zxxfjoGPQylA4Ihg/miXOz78HObAI/ylm4D2Ohl3ccNFhTJVg2dik5Xf4fdhDZTpBggKLrYw/u6O8NoDp+2sUM6/i0Nln5kbdyWUaRvl69Kt4IKYCxPluWVKVLgUAoFAIBAIBAKBx8dWCAplhNCt6UTgZ7NZJlLkk1OckfOcQECInMSX6QOeztBqtXKtAq6xiYiz48Jyucy1EyBUnU4n/3v58uV8LPdrtVra3d1Vt9vN6RGeV07diJRStuJzHjtV+BhJJw4G38bSbeJOWBEfpJNUBa5J8Uuv81DWDijTASB5jLunMPj4Q64ZTy9s6NtqSspCDfOGAOFOiE1j4GkkgNdlbQGvRUCbXSjxyLb33UWRcvtR7uek1LdadGeH13LgfuXzQBs8wg9cGPFUGSf7Pi4uSJTwyP4mhwR9cmHE+8o1/Hqle4fjaTv1R3yM3dHD8WWNhE33cyHGx6NM3UD44LouYpRChq/pQCAQCAQCgUAgcDqelqCQUvqQpANJK0mHVVV9RkrpoqTvlvQCSR+S9Aerqrr0eNepqkof/vCHddddd+XiiCVRIJrsRBsSDhnmOGoKUBMBMg1ZhkR0Oh3t7u7q3Llz2t3dVb/f12QyyQSHfO5ut5vFB36HoHCc13yAbCE8eF/cgQGxxsVA3z31gGsiikASnbhLymIEuzpA/LHrO+kso+a4MRin2WxWc1b4sbxmPti5YVP6gdvV6Y+kmijBnLl1HpGm2+2q1+tdlVJQ1mQot6rkXxemILIe6fftO92qz+uywCJAgChz88v+eWHIUgw57doloXWi68c44WfeXHRxl8Rp1/FrlGCMiOSXUf+y9oBf2/u66b4udNAXUm7ciVBe369DX1mjZb82uTt8LXofyvG4GR0K1+u7OBAIBAJPDfE9HAgEbldcD4fC51RV9Yi9/lpJP1VV1TellL72+PXXPN4FqqrSBz/4Qb385S/Pr91yLalGkMmhxl3gqQYe6Z5Op0edtEg6BJ9aBYPBQBcuXNDu7m52HNAGdm5ASMClQGrBer3Oux2U0foyAu2Rd0g5gkfZV89/d/KJSMG1iLJCrM6dO6fJZFK7LtfzvHaIPCIEY8S4+PFekd+L6EnKqQ6MF/fyKDOfOflHRPDjiFSn45SWchz7/X5eLzgMILmc6/der9c18YOxc7LL3KaU1O12a/U03CLvKQaMlRf55HjGnP52Oh3N5/Ma+XVsstw3m82rtnF04u0CQFkfwYuOlrVGNgkBjK3PoX/uooL/uDjGcS6ilc6ITe4hH18fv00k/zR3he8wscklQX9LccWP899LMeEmdCo87e/iQCAQCDwtxPdwIBC47XAjUh5+j6Q3HP/+HZLeomv48pxOpzVXgNvg+aMeRwAkjZ0OnLxDMn03BXaJgMhANiXlgonD4VA7Ozva39+vWdpJDeB4otqLxSI7IYh208bZbJav7U4FSDC1GbrdbrZ6l0SPvroLgfNL4gUp7fV6On/+vBaLRY2UQrDI8ec83wWh0+nkAoSMI22GmE+n03xvz0dHhCjJn9vLy8iyuxzoP8JQWZRSUi29xXcvcOFl07X5HRfEfD6/KlrO9ZmXcjtHiDPnUuDT59e3lFyv17VtSl0gYcw8Wu5pMT7HJTF2eG0Q1p0/B5vWh/++KbWgdBr4darqZDcHnh//zOca0cj7Va5FdxnxfJCOwhhxHOuwrIXi9/BaGuU9SpHE8Xj9lo6ed4TJmxBP6bs4EAgEAtcN8T0cCARueTxdQaGS9BMppUrS/11V1ZskPbuqqo9LUlVVH08p3XUtF/Kq7NIJ8SIPnXQFiLykXHwQYgEJcDIGIaYuQG64RV+lesoA5KXRaOR7sCUlEVHaRXsg54eHh1lQoCK+R/xdLGm32zlCTtS9LOzokVvSEpwssuvE4eGhLly4oH6/r+VyqQcffLBWwBBBAaEBUgjR9iKD/X5fzWYz14BAcPE6Du5I8Gr+gDYiUjhpw1VSugY8FYLxYl1A9p1Ee/v9nLJAYVWdFNhkjrzeA21la88ySu5rxl0b7t6YzWZXnee7XSAquHhCW8qxKsewbIsLTMDTa9yxUEbmub8LD068Gbdye85yPlzEKR0HZeFOr1ng9/Cij2XKif/rbgd/jrxWQiks0Hb+9RSV0vFQCmF+/dNSU7YQ1+27+HbFzt6ePvznXn7WzQicIe79sSuqfvHdZ92MwM2L+B4OBAK3JZ6uoPBZVVU9cPwF+ZMppfdc64kppTdKeiOviWx6ZXqPQDv59wgm7gEIvddgSCnlXRNms1mt/gH39PxxahuUToHRaJRJqRc19FoDHi0tHQVlRNyjurgUEAVwXrRardpuDSmlbLNn+0snyKvVSp1OR8PhUCkl9ft9Xb58WZPJJLep1WrlbSu9fy4KeOoAnzebTbVarUzcfNtM347P+wfcDu/OBubRCbQ7G6gFweecw5aPPn/uYCGizfi7M8Kj6P4ZbWN7UK/T4VuHMk+cV9aS8N0sKGDpxJ25KiP0CEzuUPDovj0zmUCXW0gy9oy/O058xw/Oo+Cl75TC9co52hTB30T8XVxwwu6igc+3w1NVNgkACBhlnQsfFx+n0xwJPk6b3Ar+b9nnLcd1+S7uqv8ER28v7v+61+uw/zRSVJJ0OIgtQ29nfOAP7Sn93tdJkl78rb+q1eUrZ9yiwE2G2/57OBAI3J54WoJCVVUPHP/7UErpP0l6jaQHU0p3Hyuxd0t66JRz3yTpTZJ0rOZmcthoNDQYDDIBPjg40Gg0kqScly6duBqwmfODPd4joDgZer0e98/387oMnu5ABJrUBkl51wngKRSlC6Hb7WowGGi1WmkymdTINqkPe3t7Wi6X2dVwPB41IuPbO7rrwknicrlUu93WnXfeqXa7rV6vl0kZBBsySeFJBInxeFwjcrTPya67I3CL0GbcG2X6gZNej3Q7YYWo0z8n9yml7JIg/UM62Q7Sd+mgeONsNtNkMtHOzk4eA/rKPT2Kzfood17wzzmHcfDtLFlniD2sNeaMfvCvpFoKhLsuWI+s3zL6b89ObavG0+DE2h0kJdn3NebnlZH7TSiLU9Jev5YLOC4IuYjh9ytFlMeDu1tKt4Xfv0wh8TQj4PcuRYttx/X6Lt5LF2+qohHgga9+vWbPWks3jf4T2EasOpV0VFZI9339p0mV9KKvfbv0ON+BgQC43b+HA4HA7Yury7tfI1JKg5TSLr9L+jxJ75L0nyV92fFhXybpB57kdXMRPsj/fD7PNRFwGeBomEwmteh+aZ8fDAbq9/s1wufpBk4YJdWIG20h1WJTdNVz+f09J3Ds4NDpdPK/2ML7/b7uuusu3XXXXdrb28vXgiy73XyTg8OB2OD36na7+Xei7eyM4WPBZ5B3j3JDuHd3d3X+/Hnt7e1pMBjkPna7XfX7ffX7/Sy4uMDj0XocILgvDg8PaykQHlV2ssr84CLxdAYcFPSLa/V6vdwm5tJrJRClZy1tSpWgD562QfFGr2VB4U7uzzlejwHBygWV0sEC6d60NSV9oG0lAS9t/JyDaOFpHpueO1+/3q5N0Xxvj7sq/L7lfLKOThMJTju/vOem88tx3oRSUCndGKUrBDfOtuNGfRffTHju33+rmuNQEwLXD+tWpXW70vu/5bX64N99ndS4adKfAmeA+B4OBAK3M56OQ+HZkv7T8R/fTUn/vqqqH0sp/byk70kp/QlJH5H0B67lYkSXKfxGHv96vdZ4PNZ0Os2ElIr80+lU4/G4FsV10g15YYcAt/RLygQTgjudTjWZTPIPufvUNcDSzrVcNNgUVXXrO0UhnSST837nnXeq1WppMploNBrlfHy35+OS8Lx8J1e4FOgXggRiCoUsIdKki/hYeM491yaizOter5fTPrwQpY8l1/RUFci0ix4+T+v1ulZzAtKPoOO7YThR9QKBgOKIHv1HMPC++LwwBj5/CDu0XTpJuSgLBHY6nVqNCbf3c13EBndveHqDj0W5tjytBNGpFCXc+cBx5XVcgEAs8ZQErtftdnOhST5nDLku/3p9BPrkY1M6KlxkAKS5lO+VTgzmjDFATPRz6DNr+bT0ERc46KunVt1EuK7fxYFA4ARVQ1p1K33kG16rF/z9X1K1Wqk6/p4PBAzxPRwIBG5bPGVBoaqqD0h6xYb3H5X0uU/2eleuXNE73/lOnT9/Xs1mU3fffXcmlUS5nfw4oXNi5jssENXnvJI8k5LQ6XS0Xq915coVHRwcaD6f5wg6x0NSp9NpjsIT8cWW71H2klRxfyLP0knKBrsGQPJns1mtSKVHrD1vn8g4JJU2Q8wYK6L3VXW0ywGk2MWRTqeT2851EAk8L963Wez1elftLkD7IP9eaLAkcT42pYACQed4303DxwqxASB6lOKDt8PXEW4H34KQteVzeVrdjbKopDsBiufiqsKFnk7CuJOy4y6Hct2WYhDrYzab1YpuSqqtFS/ayHNTFsx0+FrdVKOA5445KufC3R2l68HBWLl45QKG38edC+Xc+nFlqoKvt03CgosfpbC07bje38U3K9r7SYeDKtIeAjcEi3Nr/frf/nQNP9TQPd/1PlWjsdbj8Vk3K7AliO/hQCBwO+NGbBv5lLBerzWZTGpEqdPpqNfr5W0JnQiW5KS0qUNGiGCWed0QkWazWSvcSNHCsm3VcbG/yWRSS6GAlJEmAEGUpH6/n1MDPJWACDRt3tvb0+7uriaTSY40T6fTWjt6vV5upwskTjZpCz9EXWmPky36Ts5/KdJwD8Yessp53W5Xe3t72U1R1ocgklzmzDvhZlw9+u5k3WtY4FRwIolI4ikviB0uAvl1S2GKtnh7uL5va0l7KE45twiVi0mQe9rGWPrWoj4Hfm8XK3xeEbZKgYS5ApD6x6t74AJceb47a+gDbSmdAn4PfyZ9HWyq/VDCXRPlOvCUE593v6YXYT2tX+X1TysMWY5Pea/AduO53/xWfeDvvU7r9k3nMAncRBi9YK33fu2LdOcvJt3x1k+oeuBBrY+LHwcCgUAgcDtiawQFJ1MU/CM3f29vT48++qiuXLmSbfEeeYdUzOdzLZfL2o4E0+k0k1KvHUBkut1uazAY6PDwUAcHB7Wcac5zcsIuAESRuVYZ4XZCTZQ/pZRrQXhk2oss9no9DYdDzWYzVVWl6XSq5XKpwWCg3d3dHMmuqkrj8Vir1UrtdjuPy2KxyMLMbDbTbDbLpLnc4cL7IJ1O+CCKCApci9QJP9bJMS4QF3/4nb4zLh6R9uMZx02kv4z2u8UdIQSRpexbSVY5j364mAD5d4GE97HWI1RwrotgJbHeVOivJK68dhLMGnPBoqxvwJgipjweIXYBwdeAk2rmxcfMHQ6eFoLIUYpcpajgqTocz3ryOXFhq5y70qWAK8aP8RoT7m54vPFwEchFtsDNgb33S5c/VeFSCNxwPPKqSo+86tl67k/fpcFHRtKv3KdquTjrZgUCgUAg8IxjawQFjyJCHsmrHg6HmbyOx+NMgnkPccAJDGSHdAQnYtRhgCQiKFy+fLlGkKjf4HUAcClQ7JAif5xHxX9ee3E9IttOdDZZ7NmlYb1eazQa5ToMuCJarVZ2MHh+OukIRO19O0onzZBNznHS7ekjEH/piNhPp9Ortuekr5vmkzEvc9i5LvdhLDYRZBcNGEMXHdzSj6DirgT6RuTed3vgfQitOz44nzHzwpIIGIyZE3fmibZ4e8vzvajj4wkOnqbgbgkXD8qdIlwA2pTS4GSc+Sp/GHd3I7jQ47us+L3LdeDX3yQQ+Dg4+fdaCS7g+HVpn9fR8BSbMq3Gzy1f8/vNkuoQuBp3vultan7p6/TIq8KlEHhm8MBvTpJ29byfeqWak5Wa//UXzrpJgUDgFKRmU8vffFVmyhOiOVpIP/c/b0CLAoFbA1slKEgnaQ4QCez1FGkcj8f5dyKaZYFCJwTUI0B86HQ66na7WVBwguY1Cpz0zWazTARJSUBkYLcIz33f29u7KsoJiYLkE72n3gFpExSmdOdCGSWlXU78vf2MHUQMMo2Q4HUmGo2jAnwIHeTZl5FkCNt8Ptfh4aH6/X4mzzgLIOiefkD7nagiilDsktx7+gJ5d1HCiziWpBVxyd0Gh4eHNQu9R/ddcEJQKNNnfFwRFHCmsPsIhTIRFIiSQ4o9us+63CQgSCcigosG3h7Gwwk91/KCncy/1x9gbfi8uGOEvjjRdqHK545z/N6sV8bAr1WKRZvmz9OGaI8/N57CQ588LcHnF1HN19OmFCnuW7bT+7bpnMD24/y/ebtak9fo458Vcxd45nD/5zYkNfTc869VY1mp+4M/d9ZNCgRua6w/+1Wa3dmuv9eUPvH6J/9/Q3Pc1l33vDa/3n3Xw1rd94Gn3cZA4FbB1ggKgIg9uzis10fV/y9cuKDBYKDLly/XCBwRdo+S+w4MkCicBMPh8KoaCPP5PEe/nUSU1m7ec0EB0kNbnHCS3iDVC0FCps+dO6fBYKCUkiaTifb39zUajWoESlKtAj33h/jTVyK6vj0mpGqxWORrkBLBuPZ6vRwJ9gJ4LpAQAe50OpnUQ/o9NcCL8jm5Ztw8mu1igW/5WUbM6SOCAQ6EMsfddx1wkcDFHNqB6wLxg+u5W8QFJI/Ez2Yz9Xq9q449LeLP776ePJLvJN3PYxydYLsbI6WjWhG0yaPyjAvXYR7Ldcu4le2lnT7Wvo5djCjFAu+/H8ezVd7Dx2yxWNQKm3rNCXfYuAgImCOvYQFILwJeW2OTOOVuivLzwE2AqtLw+39B905fpY/+1khZCTyzeOCzk9Iq6eLF16l7ZaXe94ewEAg8E2i+6AV6+LPvzq+vvEQ6HF6f/8MPB9WxG+kI/Rc/R72Hny1JuvMHflWry1euy30CgZsVWycoSPXCitIR+cBZQH0ErxxfRhJLqzro9Xq6ePGiBoOBpCPCP5/PNR6Pc/Tdo6i+XaHXeODay+UyuwwQFLyuw2q10mg0qrkM2KGg2+3qwoULGg6H2R5PezZtYcfvjA3ighNpyJTb3Gkr/UVQIIJN7YVut1vLRScajwOB6C9tkU52ASAq7ds10n/6gWjhqRVOYl2wcfs6bYckOrl3RwbH40QpRSZQihDujvB6Eqwjn3fmnPoenoayqZZB6ZhxYo5IUgphHokvz/M5dVHA0zU2uVl8rnw3BNpYOkjK9BNPfyhTBzyFhjQW2syYcS5j4Vu3SqoJWrgdXFRgrW+q9cF5Lr557QMXhkpnQ+kU8fkp7xO4uVAdHqr7E7+s569eoY/8thAVAs8sqh3p0VdWasx3NLzn9Tr3gaU6P/rzZ92sQOCWQ6Pf1ye+/JWSpOWuNH321TWqbgQm96w1uefo9/nFl6lxXD7lrn/y1mfk/oHAtmFrBAUigxBriIVHand3dzUYDPJODF4AsCTSTgycVLHdodvYERQodsi2ieTAQzS96JwTPyfWXpCR42kr0fGdnR2dP38+uy482o2QAfmnH0SiidpCnCH6Ttgc9NMdBGVOOu2CaFHc0vP9nZjRHvoOqeP6tMnTLDwy7ZZ6xnJTETyv/cDcrVarXKjS8+xdmKBgoTstXJxBSEkp5RobkNaSdHt022tWcK9SZHoyJNSj8OWcIQ64qOHpE4w9Ig/rVtqcxsAzgvjAMe4CcDGAdYJo4G3hfi5GbEoZoY9+n9OEEXeWsG6Wy2Vt69BNqRfl+OM2KsfWa3Aw95vazXXAJlEqcHOgWi7U+W+/oufr00NUCJwJ1p1K+y+pNL6nqfanv16SdO8PP6b1u95zxi0LBG5+fOxrXq+qIc3uemZEhNMwev7x/Stp+TWvV3MqPfsfhbAQuL2wNYIC0Wt+sOlDAM6fP6+DgwM9/PDDGo/HOVWBrRSJFntOu0e3IRhe84D6CmwBCCGD0EF0S8LvZNwt7GXUs7Sz83uZqtDpdDKhPzw81GQyqW0bSXun02mtGKKndCAGjMfjfCzkzWsoIHbQFreQp5Syy8JBO90NUuazl7tcODllrjyqzji768J3xOD6TmRdJEC8IBWD8S7dJAgirC/eQ4got3f0uaNPFN90Uu9iB9f0AoyMoV/b0wY2wQWPMtWhHGfGDmGh1WpdtUWmizmIPJu20kQU8Ha48AO8v6Xzwdvu1y7dCJ4mwWtPX3EnjrskeH5LIaxMo0AkLN0Ufg+uwfPhIoU/62XbAzcfqvlcnYcnknbPuimB2xirXqVp7+g75gNfckGN5ZG48IJv/mWtx+OzbFogcFPio3/t9ZpfWG/Xjj5Jmj5nrbSWqr/4ej3nH4aoELh9sDWCwnq91pUrV/SzP/uzeuihh/T6179ew+Ew/6HfbrezLR9yTKE+3xYR4ugFFz3Ky7GQktlsltMMECOcFENwncBJygX92u22+v3+VZXunQRhb3diTp9pP+SFNAEnPJ7/XvbH6wxU1dE2k5Aq2otwQtsRDbDcs7WmpOzgmBzvq+1Rd08BISLe7XZrx9EWXB20hT5DVJ2olQSR8XWhw8nspnz6UsRx54Tb38tUAo/Qn5bewvkIF06IF4tFdp14qoDX8HB4WoW33ftbugbK+fe0HNqDg8P7LymvbYQIXytlP7km13CBxsfdRQYXCFi/LhaUDgAXlMq0kMd73nw8eH5duPJnaLFY1J432uyimAsH7uLxtesFTAM3J5oveoF+/Q/uSYr0lcB24LBfifX4vr/26TU+1L6UdM/fCxISCJyGj33t67U4X2nV3jIxwVA1pPG9a33wm16nc++VLv6rt511kwKBG46tEhQODw81Go3yVolSPf/ci+RxDkTAyeFsNqulADSbzVquPA4ICKkLEpKyW6CqjooRkv7ghNmJkO9Y4DnduA/a7bZ2d3czuYbgzedzXblyJTsS6Bf3IfJL/0oCRsSW9ymY6BFY2gLRI6IPwSTFAhcDoo2TQSd3bhN3YcDJvXSyEwX98RQJIuqe+lDWPUBYoWYGwGbv4pKk7CBACPHIsxfpZIw4hoKF3NPv5a4UXlNzwsnzppoVJZkGLgaVdQScjPuad3HsNOCk4N7uDMGVwNiXggZz5aJYWXCzrC3AOvDntNFo5HXkqQ7eJt4rBQ7u69cuxYZN1ysdCu6UoHDoaY4QzikFK9oU6Q43P6pG0rodYkJgO7Hu1Nfm9NmV3v8tn5lfP++/rtT50XccvXgS6XSBwC2B4/+X97/4tXr41UdvVY3tFRIcVUNadSo99r9Il77lM0+e5XiOA7cotkZQkI6IzWw2yznyHnXG5g8pIrIPWYU4cXxJBjiOSvIQcQiHiwWQTwiVb4sHsfbtFT0aDzHzSCcFJRuNRnYLEAEdjUZar9cajUZZCOn3+7ndi8Ui7/zA9ZxceZ64uxIgVvP5PN9TUm4H/cehAbkmyg1xRgjAkYHbgDHCXg55k64uQljWFfDUkDLS7EIH2BT5poaCX9OJI9dxwsi93A3CGuAaXu+iJJsejafNrAPf/tMj6z42ntrBGLKOWdvMta9fX5ubXCouELjLodwiEwHA++OpBd5HnxOEmE0k28n8JgHF59DnnRQlhDiesbJ4J31xcct3EOEcH/tS+PP+uQPD14w/U/TdXQyBQCBww5GOCjqCj/7WHem3Hm1V9ynf/pDWH/mYpKNUnkDgVkQ6/ltKL3+J7vvDlqp2E4gIG3H8TPMsv/TfHEi/+r54hgO3HLZKUOAPf4j/bDbLW/sRHd7d3VW/38/keTQaaTqdand3t2bVlk4I4mw2y4X5IMVVVeUtHiG24/FYo9HoqkJy5J6Xuy6wXR9uAidoLkhQtwEi5KSO63quOwQKkgMB9XzzkrwxXli9geeclykfTsDcycDYIcJ4bQV3GmAvZ8cDBBEXYjjexQ4nhNQwQKTxOgS8B9wSDxirckcOL7rH+LnI4AUWOYf3INRlDQFfo9RvcDECIlo6X1gvpehRzhHnbJpfxtUdK55Cw/2ZP9asFwb1e7TbbaWUckoEY+nFC6k14Wki9BWHDO1HrHCi7ykFLsZxLruh0D4fR28zr8t6GqwJF65OczSdtuPHJuFok2shEAgEnnHYV9B7/+xdku6SKulT/s59J5HO5aFW+/tn0rxA4Hpg58IFqZGU2m2956tfcNbNuTE4fpbv+9JdSa/Sp/6jj+vwgx8+0yYFAtcTWyUoOKjyDuHxYoTD4TBH92ezWc0u7sREOiIhi8Uik0Ui7K1WS4PBQLu7uzVCOplMalFet8QT7XeCShHEsnAjpMmjsYPBQMPhMBPSyWSig4OD2q4L7myA0DUajVrKRZmLLtWj0xBmxBhJNTGh3GbQUw8gZoylt6Xb7eb58DSI+XxeI+y0AXLoWxZuImoc524GT6XwKDJz4fNLO8oxAJBXH0Ouzf18pwlvO+PgYpWn3LRarbydqaTaZ56L7/dy0suxTuo9Gu8iRCkelATY0yxc5HKQklCmafhceR0I1hlrBvj1PbXG1yfCROmCcHeQiwQuRu3s7GRhsaqqXKeCXS24p68DBBIXhngO3ZlQAtHJ3TGsk7JAaSAQCJwpkvTev/rS/LL7cEMv+Pf31w5Zf+Ihrcv6Lymp+Un3Pu6lV/c/oKqo+xMI3Cg0736O1Gnr1//MPbddatp7vvJufco/3VFaLHX44Y+edXMCgaeNrRUUpKOo+3Q6zaTFiYdHPTdFfd1Cz7+QbNwOvV5PvV6vFs0mBQAHAyQHcklkGrIC+SBVAAeEW7Fp8+7ubiZmV65cyWJEWexQqpPObrebSbHn7/O527o9SgvhJX2hzBOHDLv44TttYNX37TbpGw4H5sTrJbgbAuJHRJxj/FjpJDXAiXdpR+d3rl2KAz4f3jbu5ZFn35UBlNFt3/2grEeBEwTnhm/dWd6fOhxlfQbvh7/n80dbmHfvK0AgwEHi14Mocx5tYx3jZHBxCfhWmi4yeMSfPuKG2PQslgJNWRPCU0y4pqcouFDhY0Y9EgQrd6C4MOTPBP0qBYbyHNoRgkIgENhmzJ611nv+wnNr793zludo8MG6a6Fq7eg9f+Txdzt50fffoeal6dGLtWJ7y8ANQ/OFn6QP/pF7NL+41u1aNPe9f/YupbX00u8YKC1XWv3afWfdpEDgKeMpCwoppU+R9N321oskfYOk85L+lKSHj9//+qqqfuRar+tkk2KIknIU2CPzHuGUTogCZJ6oOFHL6XSabfkppSwoQJw9RQJy6xFTr1cAAcHOLynnfzvZ4ljIDgLGZDLJ53ldCKL9Tn4RMDya6xZuji+JEikCkF/SOnzsKBoJvMglxJF79Xo9dbtdrddH21K6/d9TOEryx7xRiNJFAye/LtpIqrUL8QhxBys+QhGkeFNUuow8cz1PU3Exxn9KNwP3QyBx50dp63dizDV8XbA2OJbjPXrvpNdFGr9eKYz4tVmTvr4ZdxcJON5TcpyQ+zrjPa7FOJa7lXhKBv1hnXAcaS6lW8LXh6ftlI4VT9FxoYh7lo4XvzfnuQhRuiluhrSHG/VdHAgEbk587A0N6Q3nn/R5H/jCjqTj3YxW0gt/4FXamS5VveNd17eBtyDie/jasfPJL9aHft+zj8WE2xtVQ/r1Lz+v5iTp+T82VOuxiVbvfu9ZNysQeNJ4yoJCVVXvlfRKSUop7Uj6mKT/JOnLJX1bVVXf8lSuW1q3yxoAZcQQMkRaw+HhYa610Ov1NJ/PdfnyZaWUtFgsNJlMMtHwqLtHl+fzeSY6kFonx9JJAbjZbKYrV67owoUL6vV6tYKPvnUh19vd3VWn09HBwUEmLb1eL99jMpnk3Q08Au/9dhJe5r17lX2uwQ4I1KRYr9dZZPDClmXU1nPTIY++3STOik05516Y0okk0XHIn3RSQNFFACf39Jn5RyjyvvpOBjg6PJWE30uhwOe9/Jw55POyUCLn+xwhnpA6g2UfYcZJK9d3ksyad4HB01MYw3I7SsbRybCniDAHCEIufPE553rtBW+7XwcBx9vhYgKv3c3Dj6eHlDtbcE8XIrwdLupJm7ey3ORQ8HHhGD/X2+dum02Oi23DjfouvtnR6Pf12GuffdbNCARuSlQ70gd+b0fNSVfPec5rJEn9D+2Ha+EUxPfwtWHnN7xUH/3dz9LsrhATHIf9Sh/4vR11HunpWS98jQb3PabVe9931s0KBK4Z1yvl4XMlvb+qqg8/nYheSikXMMTeL52QPSLU0gmhLwsAut2eKHaZq05tASex5GxDnufHFVjn83nNug+cYM7nc02n0xwNxnHANn5OvtwVAPHxbSoRPiBeXlfBd1yQlHdl8KgvbgzOcZcBNSDoR7fbVbvdrl3TaxlA6BAOOAeSN5lMalHjTY6R1Wqlbrebx8KdGVwH8ocggJXdrfHcw3e6KElhmULhc+WE04sX+vGMJUIFa9Ij2MwD55akHwGlrD0AiS7Jq8+7twdhghoVtAXhyPsCad4UyXdBgblxgcBFFI/cl2sc+PPmhTb9vj525bV4NvzY8hl1R0SZHlG6BzYJj74GmetyfH3sfS5dzCxFspsE1+W7+GZHarX1yB96hR779NvTShsIXC8c9ivd/7lH36fdhy5q79M/Uxd+7kGt3vfBM27ZViO+hzdg51Neoo/+rmdpcneICadhfuda939uQ/3fcJfu/YFKq19//1k3KRC4JlwvQeGLJX2nvf7zKaUvlfQOSX+5qqpLT+Zibvl28sdn0onduRQLJGk4HOrChQvq9/u6fPlyTieoqipb9dmer7RhSydWeyfk3KNs53q91mw202g0ygUcIUiljXtTHz0a69tAQr6ceDkp5ljcBwghZf0Gdy3gUOD6myLaDgiWt4E5mc/narVa2fHgfXKSjUOCvjC2CC9OGH3OKeCImAEpdxGC+SnH2S3+jcbJFpMe8WbuXEhhLBF/PLLNfXBn8B5j4qQeuKjh6QTeTj/PhQtPsaEP7qJwEcLrMAB3QPh8drvdLOiUTgIXC7hGuWZZE9QMKdMHymKhjCeiCO4RFwtLB0v5TJRpGv4d4PdwscbFAdaYn+ffG56issm5cJPhun4X35RISQ/+qc/Q/kvjj9ZA4Hpidtdas7uk0fPuVvvKc/Ts//g+rR5++IlPvP0Q38MbML/nnCbPje/la8HkuWt95Iuerc7lu/ScH/iADj/x4Fk3KRB4XDxtQSGl1Jb0BZK+7vitb5f0t3RUZeVvSfpWSX98w3lvlPTGTdf0/HsnFO5ScLu7E9CUknZ3d3Xu3Dl1Oh1Np9N8/Gq10mg00nK51P7+vqbTaSZEHnGlXgPXg4ivVqtM2AFEHZIG6fQc//V6rV6vp36/nyPx0km019MwPKUCkut54YyPEzHcDtSIsDHWYrHIOzN4kb3SAVJazyFY/X4/uzq8XgRiBo4I2oVgwFhKRyQSq/1gMNDBwYE6nY4Gg4EajYam02lO86CwIKkRFDMsI9/uiPA6DS6CeA0LqR7N9zEu++zCg1TPuad+A+PhdTs8NcTvzfueVuDtK8muC0W+dku3AASY1BZPPygFhbLeAQ4dd5eUYt2mOh30iWeTMeMZcqEIRw3t8X+971yLtnjKh6cslOBenIP4yDost6TknLLWSTn/pQviZsH1+C7uqv+MtPVG4uNf9TqNnxd/tAYCNwqTu9ea3C3N/8RL1Vi+9IlPkPS8H3rotrBwx/fwZux8ykv0kf+1Iym+m68V0+esNX2ONLv4Yu0sXqzn/uNfUHUcnAkEtg3Xw6Hw+ZLeWVXVg5LEv5KUUvrnkn5o00lVVb1J0puOj8tswQmdV393wtLr9bSzs6PpdJqv51bwdrutXq9XKzgIYYHYkQKwv7+v5XKpg4ODfP12u50JGWSOQo0lCeF+zWZTe3t7NTFiNpvVLOzY/ik2ST9ns1mNQBGRJt3Cx8FJHfUEfLzo43K5VLPZzGkOENhOp5NTEJxgE+1nrBaLRS7oyLh6RB7BxHcWoO1er6DVaqnX62lvby+PyWQyUb/f1+7urtbrdd7+czAYZAEFFwRFEOkz4oeTaUl5nhgvdy44UYbUV1WlTqdTc1ggYjjp9YKY7BDC/RiT0snBNT3NoHQoSCe7cPCZj2t5f8QV1ijXdVcHz4CT+DKaz/wi8FDrgXVPn/i3TEegb5xTFl7kOtTsQBBygcbbwu+eVlQ6XXznCvoFvA4IAo+7O1zI8PQWnhV33pS4GeonFHja38V76eJNnyMQEbBA4JnB9NnX/qx94A8/S43lXZKkT/rmd169reWtg/ge3oD1sKPFhfhufiqg3sSHv+bVSmvp3v/vW8+4RYHA1bgegsKXyKxdKaW7q6r6+PHLL5J0zeWBPUKcG1gUQoScQFSlegRZUi266KTSjyFKOx6Pc2TfXRFuQSetwfPNS1LU7/e1t7enfr+fI9jsLAHx9WJ0TgwRKiDD7srwMXGii4jhRevK+gV+jqcCsM1hGdl1olbWKUAo8Lny43ivjO66fR8ih7jSbrdrVn53XbiTYFOOfRnFZrx9/st2lVHy0jHg7oLSueA7BriQATqdjqrqaGcSxA0XE5z004bSYs840Z8yFcRTBbgGfWMs+PH1JZ24MbgOZBrC78+Z38NrWHiKkRP5MkWA56hcy5JqzxeiBu+7awKxjOfOHR0udPhzRQ0O7s+xnprha4J2sO44d9M6v0lw3b6Lb1Z8+G+8XlWKP1oDgW3DcrcS2wO+/xtepVRJL/irbzvbRt0Y3Pbfw4Ebg8WFtVRJH/w7r5Mk9R5Oes63hbgQ2A48LUEhpdSX9L9J+gp7+++nlF6po/85PlR8ds2AdJeEBuLdaDQ0GAyyxZ8oJlZrSAzF9vw4jpnNZpnUciz39fQDQLTUI8fSEZm844479LznPS+nNezv72symeTzPDUB9wEkyaPK9I3ilBB/Fwfa7baGw6Gkk90t/HNvr5NK7kG6AePr1/c0j1arpW63e1UEHmLp0WkIObnyXAvhp9M52opqd3dXy+VS/X5f7XY7b+O5Kecdl4SLIPSZscJlwHukpJTWeY/au+BAugBuCN9KsgQpKO6M8S01JeX5dacNJNXFA/8MsWNnZ6dWyNOPg/R7PQ/WLfB++3ukg7iQ0mq1cn9ZP95P/qUtjKU/k17/ohRHygKpgN9xyOAKceHD3TguUrkLgxQZnhVvE/3meESTssYFbfF0Gv/9ZsKN/C6+mbDqVtJNpQEFArcfVr1KqqT3f/Pr1BolPf9v3BqkKL6HAzcc6fj5kTS6t9L7v/l1uvhu6cKbb0lxLnAT4WkJClVVTSTdUbz3R5/mNfMf9BAmovHL5TLn2xNRbDab+T1EgOq4+CLX8MivF9SbTqfq9XqZlPDZaDTKUU0nu5AudnWgNkKn09Fzn/tcPf/5z8/bUEIqIViIIZButrdEfPDCgZDaTqejXq+X+1Tasnu9ntrtdq7/QHtJQ3D793q9zmNCNBpSWTo8mAfajkXeLey0iXQJyB/bXqbjWhKMLULLwcGBdnd3dccdd+T52t3dzf2D9LlA5PZ+d6k4aaQvPoalI8HdCO5cKYm+uzlIP/GodafT0Xw+z8UG6YfXpeBatN/nhvdIrSlrFZDuQft8xweuw9iX9RlKuDvC6wtAzBFTfK36uDP/rDFIuI+RO1iYn9INxHm+Vrrdbk4n4jiu7euwvJ+LM15nxZ0wCHHebm+Tu0UYVx8zF19uBtyI7+JAIBC4YUhS1ay0OFfpff/gMzX8cEN3/5OfU7WupPXVqaU3A+J7eDN2XvJCvfcP7551M249HD9Dj3669Og/+Ew9/ydWav/4O6SbMCgSuPlxvXZ5uG6ANDgBcHJXRtUl5ZoBAEEBF0Kj0VCv16sRSS/457sNcM5qtcoOBa+A7zUQDg8P1ev1NBgMdP78eZ0/f179fl/j8Ti3FXJdVZXG43F2J4zH49xeCA3kEdK3u7ubI9aeb+87E3S73XwfiC+kdLVa5V0JGEf+LdNByrGBxFITwu3ijLHXXNgUGXcnh1+/2+1qOBzm8/f29vJ8MCfSSRpBWQ/BCadb8D3lo2yPCwXeHies5fm+xhBOdneP/lOczWa1uSUa3+v1ak6NcpcF1pSLFSVoK/96jQDOYU1uEoPKa/Hj68CLhkLGy/l1eMqBz4X3EYGCNAPWsc9bWUuhfE5Yt96GUuDxeS/XhReK9HH0sSprZJSpMpvSYwLbj8bubrgTAoGbDcfP7OgFa933zZ+hu35OuvDDv6r1ZKLK0uUCNzniu/nG4XhsP/LbdvSi6SvV+JlfuWlFucDNi60TFB7vD3ivF1CSVyeZvqPBpog0ZBObO+efVqDNiSA7Prilm+i0Ex4ixzgVlsulRqNRFiK4rxcY9H5SPLHf72fSSTt57W31lAVep5RyhHa5XGa3Bm3zcyCCCBpurS+3OpTq9Sx8zhhfzmWXicViUYsukyLQaBzVn0AA8nQGv/+m+gUevec83y7To86IMWU6gefn4yCgfoETUhdXEI0cpLRUVaV+v58dI05SJWXXhqdZOFln/nu9ntbrdV4HrVarVp/BifuTIb3MIYTb63rQTq/J4GvLnQBec4L5ov84cHC2IH4w3qxf5g6XwmmCDeIHQiMimj83nipDv5hvSdnJU4oom4o/+hj4cxnYXuw8+y69/ytfrHUrBKBA4GbGQ6+RHnrNp+mTfvRQvXc/IEk6fODjlF8IBAKPgw98YUcvXr5c6e3vClEh8IxiqwQFSBKE3be8w96/s3O0u0NVHVXp73Q66vf72cIM6RmPx9kiDwnznR+c0EFEuK9HQ50EQzzYEhGyw64JLkoQcV8ulznH++DgIBPn+XyunZ2dnEYAiaVPXBMyCcEpI6dOkJwIQ4C9vZArxlg6IYKAcccWv2nrPeA1CPiByEHelsulZrOZxuOxUjra2nI4HGowGOS6COPxuLbDAuMgKRflc1HBc/O9vgJ9RagpUxBcBOI8BB5IL9fxAoRe14KaEi48cF1s9uTtu+jAuPi2jQgtZWSe2gaMP2vWdyeoqirPIWu2nBvWh4tOnqbgtQsQkXDDbCps6UUhvZ4I41mmFXC+bzHpQDgjJcHTfVywcpeF72qCoEa/eO7Ke5U7SPg6cCcLv5epHIHtRvOT7tUH/ti9OuxHMcZA4FbBhz+/KX3+8yVJL/23F5Te9TNn3KJA4ObA+/9ATy/Wy9W8NDl5c7XW6tfff3aNCtzy2CpBQTohu04M3K7eaDRyBBSSWToUpBP7MnZqyBrkE0ICUfS0AcgzJLncSpD2UIne0zFwELgzAhJz+fLlXHuB9yGVvqsD4gnodrtX1QGgTbQXUcG3vux2u3nbSEQFSfl3ail4cUDEEyduLlJ4ukBpYWd8PW2BWhXumGDcIO+DwUCTySRvYXh4eKhut1vLcWdsfOwpWunCB+SRNtBuruOOBGzwXvQPocG3i+Tep+2EwDVwqjCvpM/4/RAkcFR4pJzxdUGL4pWsB+6D2Objvyn1wcUej+ID5p01SV9LF9BptQR8LSAulVu1IhxIymIgY9Fut/P2qIwvzyTzR1s89Yixc+cDc1eKI7TFt30tn2lvb5kuE9hOND/pXh3efUEf+pyhFudjvgKBWxX3/ZFdzb516/5cDQS2Fu//Az1Jvfx6Z570wu8f5NfNT1zW4Yc+cgYtC9yq2LpvaLdwuyUbkkIkl8iuiwmnWe/9fd/FgeM8uul51hAZCDyflfUHpCOSPp1Oc42E9XqtdrutXq+XSQ9CiacKeAV6+ozg4VFgLzLoAoCLJaRx8Huz2cwpB6Q7QHIh7eT9Mza0HcLvLo9+v6/1+mQLTcaiFGskZSLN1pkQNE9FgACy5Sa1AXCXSPX6FS6AdDqdTN4lZfcJ7ZrNZrnYH4KMW9kh5US5fb3gYPGIPvOJEwXBxotvsqOFjxnzS6FAJ8qsH197rAF2QSBlgHa46MFnjKuvBYfPFYSb+fDihIwB6TGsiVLooM3cz2tu0DZ/Rjx9gvu4EMe5vn58e0nGx4k/z4ILDNQZcUcC8+tpMf59UaZOufgU2F40X/hJuv8L7tHoBWtJMVeBQCCwjWj0+7r8Gc8+62bc9lh1Kr3vD/Xz6+FHhrr4q3fl1923vlfrg4OzaFrgFsHWCQrSCTkirQEyxnu+LSQpDhAIj3RCBN1SDQHylAEXDJxskPcPgfFzS0Fhf39fDz/8cN5tYL1ea29vT71eL0fmfUtF+gGBd0JF9Xt2tXBS5O1bLpc5IjwcDjUej7NYQLqBv8cWmbQHgkbBSq+I72RVUo4mk98/nU4zQSsjyO4WKR0epZADoaReBHMinUSgEQQQW1zs4JqQ1jIVhDXi9RJoqxe5dALpOxGQxuJbSjabTQ0Gg7wbQ0n4mUdIM+j3+zV3Am333QlwVDgJL+sDcEyn06mlIUwmEy0Wixp5d9Ls4kNp9fftMhmTcvcJxAV+qqrK6So+PxSm9DXmtTa8hgOfeT0DT6HwdI7SMeHzQxt9Tn23Ee9/mb7DGnVhyVNQAtuF5ifda2JCIBAIBLYVaXeoB1971q0IlBg9f63R80/+xr/j7perNTkJvjaWlfr/6WfPommBmxRbJyiURf96vV4ms+zYAPmFmBMJ9ggmZKvMpS4t5RBvL3jHz2KxUL/fV7fb1Wg0uopkSSfCw2OPPaZer5fTFZrNpvb29jLhGY1GeYtBb7Pv7gAR9e0cIZwloXXCTN2Fg4MDXblyJacVQF69CJ6k3E93fTD2iDfuWkDYoe2IPIvFIhep9NQCruEiwqatEd1B0m63NRgMstjh5Bgi6AS7LMjn96LugBfkY0xxavT7/Zr4gzjAOuH6XjTRI96DwUDtdju7LyDEnoLBGqRNw+Ewi2UupuC2YPyYF0gx88YYeO0Iov2eplLW22BOGCd3ujBmPr6SsgPI6wxA8hFjEKd8TuiT11oon21/XaZ6eF9O28GCuWFdeJ/ou9+b8US8czHD1ybXLJ03ge1B857n6qO/716N7w0xIRAIBAKB64FHX1GveppWSecvvk69S2v1/2MIC4EnxtYKChBqt0QTbS0dCk48XDAgiosA4VFxJx2ezgAR48ej9CXxQkw4ODjQeDzOjgZs126/JvJLRHc0GuW+IoCUEWeEB6LDPkZeBA+C7rZzdwvQZ0QCxBra5AS/0+mo1+up1WrllAHEDukk5aTdbmfS7zsEQMA9x78UPyB4pIlMJhN1Op287SbjNJlMavZ4RAxcJT5X3k/Gwu8J2UekoNglJNNrKUCIPQLuRNVFFS/IyLplTmmHdJKSgahE+xE7yu0lfa37v9IJQfZ1wfwyNr6Vaul48OcEIILRV1I7OIc0F67Dj6coeIqDizD+XLsbw9vitU24Hn3x+hHedq6Pu8DFNuaFtespTL7eGVeu59tIRi2F7cLOnXfow3/kBZo+J+YkEAgEAoEbhWpHuvTySlfmDT07vVaD7wtRIfD42DpBgT/2IadeWG0TiDovl8va7ghOCJ10QtwhLpzrtnzg6Q7SSQSTyDFCBIUPOcbv5cQackPU2V0WLpqQyuC56m7XdyHAc+FJl0gpaTgcZoFgMBjk37mfE1H66eODaOPpCBAt3BL8C2FzguoET6pHjhEZSOmYTqd5t45ut6vJZFITC2ijb/1Xkr4yvcHdAkTAPU2A+hE+vj7uTo69UCBzwFogNYTUljKqzhggKHg0HBKP6MA6cAcO13QxgLb4/RqNhnZ3d/PYzmYzTafTfC7rndcuUPlc+b3d+u9FPWkr4+21B4CTfhcQyqKQZRvcRUO/fKcRr2shqbb+fctQT6XB3eTOpFJk8HQid8K40BM4OzQGA33oz3yK5hdDTAgEAoFA4JnAulPpwd/U0N2r16j3/T931s0JbDG28q9lt5sTaS0t3Lz2rR4heKRJSMpkyIsk8hlpB144TzpxLUAw2F6SyDu/e2qEk1CPcksn5MsJTLPZ1HQ6VbvdrqVS0BcnlJxLJLYk7z4mENzBYKD1ep3FAUlXneuk0dMIuD9ijhN2SLXXDxgMBrnt7NRAQcFer5dJP3UcGPvpdJpTQSRld8KlS5dqNRGcVHqtCz4rd/HAVeB1ELz99LMshomroySRjKu7Wvh9MBio3++r3+/XSLoLHoyxOxrok8+ziyBeAPQ02z9tYE6okcHz4qkBzIELU4ynpCxE0TZSQlJKOa2jTAFotVp5LPwejBHPC4IC655z/f4+Ru4y4lh2g/B6I74jCUIRhUi5F+kki8Uii3Y8rz73/uy6K8aFnMDZIDWb+sDXfboOByEmBAKBQCDwTGLdqTTf3bE9IwKBq7GVggJkxF0KTrggCERgJV2Viw5JQJDwQnkQNrZThIB5ygHkRjohhx515V+PoiNwpJQysYdguatAUiZtOzs7Go1GtUJ9ZbQcGzZEyEkv79M+6hAMBgMtFgv1er1a9J7r8uN2eBdFIFxu9/f2Q+zZ+aDdbue0D2pfIN64KITocOnSJU0mE81ms1pBPCf5ntJBZJ3fvX1lUb5Wq1UrZsn4O/H169A33z6UNUXU3l0ujDuOjm63e1XRTOYIVwgEGAGLeyOarddrDYfDLDqQYuCOF4/4e2FFfqdGw87OTl6HrPuUUhbGHKvVKrefe7BbBWuMdeeCm29P6k4Ud2h4oU7GcTabXVWAEXBvv5c/h6V45+PNs+3FT8uaEnzOmvRnmu8Fb5PXtQicLQ4H1RMfFAgEAoFAIBB4xrF1goITSi8e51Znr7Mg1Yu7+XmQQ0gE5Ac4oev3+7pw4YIefvjhWnE8IqsezdzZ2cnbA/Z6PZ07d06dTidvd9jtdnPqBX3iXAhMp9PRcDhUSkmPPPJIrqkASXfxg2v4rgqIJ54WgthCG1arlabTac3CXdY3KHPpPcWjLK7X7/fzGBIRpxYBkWwfW8bK3R/UnfACmGWqiV+DXH5EFuoClMX+6Avto56F3xexAWJKuoyLK6wb5sudMS62ePoGhLncZhNnA/3AEcN5Xl8A94ynpdAmhA3WD9F9xBjEFhdLGCNPZeBepbulJNKkVCBYMI+eSsRxnO8CB21nffi1HAhCjFVZS4I5Y6tN5tTHnzXK+2V9FZ4hRBLmnnn2ehT+rG9yAAUCgUAgELh2pHD53Tpo7OjD3/Vp+p+f9eba21/wqW9QNZvXj63Wqoodta4VqdmU0pNfN9Vy8cQHBW4YtkpQuHDhgl796lfr3nvvVb/fz3/cL5fLTNbcgQBJ8UKGEFWisZCLMsrrtv+Uks6fP6+Ukh544AFdvnxZh4eH2tnZ0Ww202QyyTndkCLa4dsPspXi3t6e7rjjjlpO92q1ykUAuWe3283thJCVUW/6NJ/Pa8TPbfdu3/aIK8ID6Q9Erbmup2RwDfriY8Q4OkFHTIFw40ogbcGt7pxLuxeLhfb39/MOETs7O9ltAul3gotTxfPqaS/zi9iBDb9cF6R7QDhxUtDX+XxeK3TpgLQzNl5HwdeUzzX1JSDIvnsAY+8RcObcUxw8JcXHhL7wHusspVSr5cFnTvgRqxBSaIv3mx03EHBcmPC15mPA61I8o8Cn9wfBgWt7fQMHc+jimKcx+H0ZcxcT/PlgbnGmuJjDegWsN08NCQQCgUAgcO1o9Pt6z1e/4KybEbgOWHWkX/8nr9YH/9c3Sar/rfaj7/2Zq45/9S/8QT37j186/XoPP7zx/cZgoEvfe7fe/sr/8KTb+Jv/7Bs1/H8/+KTPu56oZjOtDw7OtA1nha0SFLrdrp773OfqzjvvzNFGqe5AIGLJD2QHMjaZTNRutzOxlU4izX5NUhz6/b6Gw2HOgYewgcVikW3UkLDShYDFHJQRTo84S8oRewrelbUhSCPwaLeTfhdD3Pa/WCyy8MK/2Lu9BgREn/oKBwcH2RZPqoak2r29XVVVqd/v5z571N2Pg/Q58aPdXmiS+XGyzPWAiwBOUD2VhPt7ioZH9BmHso6AixTuypBOXDCsQ8gmBNvH2XcI8HXphJ01jBuF7S29dgLjynmsFe7l68aJ/ng8rrXVHTaeNuQ7IXAstUFK+7+nFPgcMi4+R7Sb3UToA8dzfU9vYUxwMzD/9MtTlPxZ8XVT1oRwscZFOE9H8XQe+uy1OE5zzQQCgUAgEAjcTrjjSz6qd/yGH7rm43/h1d8j/fLpn3/+532x0oa/s+77qz3d98o3P4UWSj/9T9/0lM67nviN7/hDes6fuqTUaqk6Nzz1uCqljf2/nqhSUmM00eGHPnJD7wOeUFBIKf1LSb9L0kNVVb38+L2Lkr5b0gskfUjSH6yq6tLxZ18n6U9IWkn6yqqqfvxaGgJZm8/nORLpVmYn6NRL8Fx0t1p75Jnz3aHg93Qi6oTH2+RiAEQNMQHCCNklCk+bfEcIj5A70aE/XNsr/XuuugsJJTn2HSdWq5X29vZyHjzXIeKL+wP7P9szQjbZXlE6ET88Au9j6cTQx8rTCXBHMHeQRj+WsfXIsPeX2gPSCbl10kdUnfoakrJ7hKKFpFocmg3LybsLV4wxgpKPOYIKFn3SFRijw8PDq2px+DrzNAzEGyfejAWE2h0ZfEb/EBxoF64Cxpk16IIC53IPimr63DIvLsABF3J8nSPIuJPB+8r93MngRRC9/z4nTv4ZT57r0llA37y93jd/7t014ukOftw21VB4pr6Ltw2NF7/grJsQCAQCkm7f7+FA4HriR3/iu866CTcE7/yM79Yn/8Mv073PuqSf+rTvPuvm6Cvuf53u+/pXb/ys/ZZffsppKZtwLQ6FN0v6x5L+tb33tZJ+qqqqb0opfe3x669JKX2apC+W9DJJz5X0X1JKn1xV1UrXCP+Dntf+PsQFUgDh9mg0pMZTBojA+jU9Px1SVBaKo+AgxIWUBK8qT+V4rxVQpl24uIC9HkK0t7enfr+fxQWEFSdIpRW/LEwIkSxt6VLdio6rgzZNp9PcDtIFPLVBOrHnI1o4uUOQgHx75Jh7+7acEHsntMPhULu7u7WaEMwP8+U582XE2rcHbDabms1meV4QUA4PDzUajWoCgq+tMsJdRrA9FYHIvxNTdwL4GLrjodVqqd/v19Zfp9PRbDar5f7jWHBXDSKFi0f0w8faUx1wmGyqN8H8+baVfgxj4U4EFzu8NoOPkQspLtBxLOKbk3Yv2ujjx3pkW9bSeeLPMr+7KOQijbtSXKxzdwr/0k9cNluEN+sZ/C7eBqRXvUzv/aO7Z92MQCAQAG/WbfY9HAgErh2//lu+46ybkPF/P+9t0r9+28bPfuPf/DNqnRib1dlfqfcDT31r0CcUFKqq+umU0guKt3+PpDcc//4dkt4i6WuO3/+uqqrmkj6YUnqfpNdI2tybDSijsdJJVXkIOWSIqvxee2A4HNas0/P5XJPJJBMsCrt5rj6RXeoUQGQhqoPBIJNm2ujCBvndvlUl1exdIPFaCf7ai+7xvkfwibI7wfMIuo8dcIcAIgbkWlImscvlUuPxuFb4zh0KpHZA7spUgcVicVVxQC9U6CTb59K3T0SgQSAqUx78ON9ukPb4Fn9+bSenkvJxrBXmnHFmzriHp3tAYEkL8fQOXCoQVMipjxUEvNvtXhVtZztEd0LQZncYcD1PdyjH1Leh9BQBF80Yb9ZWGYUvRT0EFHd3MB+sM1/btKtMM/C16SKHi3B+b8Qn+uiChR9XCoBSvaCoC3qML2ujdET4tdzNtA14pr+Lzxrrz36VPvh7OtJ2TUMgELiNcbt9DwcCgVsT7/yGb6+9/olJS1/1qX+q9t69P/yY1u96zzVd76nWUHh2VVUfl6Sqqj6eUrrr+P17JL3djrv/+L1rAqQMUgvJnc/nObLphJNUAUgS5Ndt/tPptHaOW/iJdnMsRQu5L7UAqGfgdnwnahAfRIqqqjSdTmvF7KiHABGEjFNp3gUQxgI46XOLORZ+t4F7ZBeyB+FDhGEMXARw0YP0AhczfJyO512LxaJWVJKUCi+eyfyVOfc4S2gTzoLxeJwdHC4ukaYhKYsAvGbcKaJJYULWkOfle80D2kPfWQPsOsB4M047OzvZSQKhRTzxNey1L3iPtAuu6fZ/Txsp1wj3xn3CGmadMhfu6nARg2OYW8QUroX44GvZXQAc72uZefP0jVardVX6iBNyhBzIvI+X1+xweM0N3EeNRqNWr8TdBfSd9rmDx9NyKJjJ9w1ABPPn3O+1pbgh38XbgA9/flfVTtSyCAQCW49b9ns4EJCkDzx4p77/+UN94WB01k0J3CB8Xn+pd/2Ff1p77zN/y+/Xw+/9zPqBf3FzwczrXZRxUyxp41+EKaU3Snpj8V6OGrt13+sFeBTTiYNb4T36CLl0Mgn58MKBHL+zc7R7ASS20+nkSvWevuDRUu7DeYeHh9rf38+7HlAfwYnMfD7XeDyukfDSUu5RcfpAWz3twyOrg8Egj91yudRsNss7KEAuPV2AccT67rnkjAVRX7Y95P4emYaIUlPAyZ87Dbzwnc87wgO7P3hb1ut1Li6JG8Ij6FzDo/IIIb6tYLPZ1GKxqL32bTC9JoeTf9/lAVeMW+Ul1caMNey1HOijE3jWou8GwbVJcUDEcccJc1muA99xhGt49B83DAKZpxBJys4MF688tYFzeB8g6vGsuXiAg4g2eKqM10JgnNyZ43Prog3rjjXCXDJXLkSx1tzh4ek9jPkmYcKdNTchntJ3cVf9G9mmQCAQuJ0Q38OBWwLrB7v6gUdfpS8cXL2jQ+DWxdtf+R+kV9bf2/mLm499qoLCgymlu4+V2LslPXT8/v2S7rXjnifpgU0XqKrqTZLeJEkpper4vRwhlk4IDqQJkuHpCdJJNN+Lw0GmIWbY9iFT3W43E34K7C2XS3W73Zx3juCAU8Gt5kS/uVdpNUdg4L5cE9JCGkJZ74FxyBNUWLydFDkxbDQauT8QIncaSHWiN5/P89hArGkH1+t2uxoOh2o2m7n9bm33/HjIK9fx6DVEEQcI8+C2/cViofF4XBM/PGUCgs5YOzl3gYK24VjxrR59fBGHPH/f0xYcXjzT7fweBXfC7WPPGqH/3Icf3BwIJlwfoYOxYd68RgDHIEzwXDBXjDdjyNhv2s7UHTjeb1/7vOf1C/gdMYbnFUcR57irx0UAL8boRN5FBHc7uNuIa/tWsu688DbjGpFO6qLgIuFczmceNq2FLcR1/S7eSxe3xhLw4u+6pGpnR/f90d1IewgEAtuMW/Z7OBAIBK4FjSc+ZCP+s6QvO/79yyT9gL3/xSmlTkrphZJeKumaKzxQ7wASvMmqDGmCOEmqESTPJ18ul2q32xoOh5nUl8TeC/pBckpiArkmncJJnKSaRX69Xms0Gmm1WqnX62lvby9bxkknmE6nmWw5wfRIvdvTU0rZ0TAejzPhKYkUdQggtG6D9/byOYQT4cSj2ZBP30IQh4FvY4kY0e12szBDtN/nx6PyiDmDwSBv7zmZTLJINBgMNBgMavMB4SXKzrm0nXmnP4w7pB+CjSCBQMH8QzLd1eAkk88ht/TZiT/zWdY9YN1Custcfe9nq9XS7u5u/kFUYb1DipvNpnq9nobDofb29vJ44Chxh48TeV/XJXl3twNpMYyH16koBRrmmHvT3uq4voU7j3CbsFWrX7+sWeCCi69dFydKh46najD2jLkXbPVrlsIkQgdC5JbjhnwXbwPWv/IeVb/47rNuRiAQCDwRbtnv4UAAvOVXPlVvuvLcs25GYEtxLdtGfqeOis3cmVK6X9Jfl/RNkr4npfQnJH1E0h+QpKqq3p1S+h5JvyrpUNKfq66xmm273dY999yjvb29WhE4dwQQ5fUoJWTI88hdVIB4QbYlXUVAnNB50UPIllQnfX6NsqgbbWw0Gjp37pz6/X62aLPzAySPKL3b5olse2oGRB4y6SKCt5MoNkUiXZSAiHsePnUidnd385g7aUcc8Ii0W+kRDEilIKVgNptpuVxmQWW9XmfnhBeq9LoPXJe0EBwEPnaew0+RTd73XHi2y/QxRESA1DKOOCG8dgHrjug1ogOi1Gq10u7ubq6v4cS9tOwjYHm6DmPpOw0A2tTtdvN1qQMiKYskbJPJa+YEQQBnwWQyqaXVMLZer4H28Dw4wUZcAFyfuiYuAvA8uFPIHQjMOeTe3Tpl/YRNQpu7IDzFxt09nsbg/STFaZNowbhzLm1mXWwLnqnv4m3CR//a6yVtvUskEAjcJrgdv4cDAUlqjHf08cV5nWKyCdzmuJZdHr7klI8+95Tj/7akv/1kG9JqtXTXXXflivnH18qRUkk1gg8g+ZBboqEQv16vp4sXL9YIM8TEiwd63rmnL7iFH/EBogfZODw8zHUGIGQe9cdxUVbd93x/r/kwn88zgS13V0CI8O3sGK/pdFoTKyhWOZvNcgFIil56AUqEAy/m54X1PJqNW2OxWGSy6mLNdDq9aqtCSL3nuvtYca67AJhD5oFIse/yQBS53JqRuXaxYjwe17aNRGjiXEg3IgaElDHCiTCdTvNuGcyRrf0sdvT7/ey4YG1JqgkqLoi4GwBBhONdtIIYU9vDHR4uZHjqDX3wcfddSrz+gwsKpZAEaHOZDuBri+fWnRjlevX6CX4f2sY9/JkshQ/WCmNUbq3J9Tytx59vf+1ODhcOtwXP1HfxNmGxV0W6QyAQ2Brcjt/DTwmNHb3vG16hU0pGBG5SfMdPf7Ze8nkP6g/vPnrWTQlsGa53UcanjNICTrTTiaFHYAE2d4DdXjqKnPf7fZ0/fz4TNCLUiANEPhuNRibzTuBKa7d04iRwS7uTL8/h9zQNSTWXA7tQuA3fXQjeZyfiFF50xwCCAdtm4gwYj8eZLEJU3cbf6/Vq44lo4PBoOuNRFr/kPcbFhRfSHHBKeNqAb5mJMAFBRGxBoBkOh1osFtrf368JQqwJF0EcXtBQOiGjT0R4+b10diAw4MzAkUK0nJ/9/f0sYCCKIVhAxr0mgq8dxo6tLBlDRCbIsffVo/K0h/EpC1B6XQN2GmH8ERmYA9wi3INzEMroA+9x3dL9QH99Xfm/pWPDUxvK11wHcZA1yNi5EMH4I/B52g6fuYDgYkYgEAgEAoEnj3UnxIRbDekwabZuPfGBgdsOWyMoAOzeRGa9eB1kyAvtQT4hc5BzCBV52uSiIzYAFwXYRcBrIpS1Azw664TFC+bt7u7qwoULNfICUcJdsFqt9Nhjj+nSpUs50k6U3FM0uD/HEMmuqqq2faJHhd11gPDgfYEEOpktrehOCBE+mB9JOjg40Gw2y8dBvpg7xh+xpd/v5/lyF0ev11O73c7k1QmnF8vzuhaMFdF6bPNObqWT3SMgub1er+YeYR68r9yHMfU8flJRGFuPbHvqDOvCdxJg7DfZ8+kngoCPA33vdDq1XUcQgjj+4OAgE3zmkXQbdx+4oOPCljsKShHNi2CyziDyntrhNR7ol3TiPPC14gUcvVior00fW8arLLRIio2vt01iQCk0bUrjkOpCWSAQCAQCgUDgBH/nx75QL/6CN+kNvfg7aduxqtaaVke8t5NaaqWdJzjjqWPrBAUnkR5F9HoCvOc2fM/nhlA5oRkMBplUSqpt/8f12GIRkkNxOyLcvgUd5I0ItG+hOBwOdf78eTUaDU0mEx0cHGgymdSizLPZTJPJRJPJJAsATuxLYs02gYyDEzLpxIZOccTz58/r4OAgiwoQacbH00qcmJMiAWEmTYB6AiXZ4hx3TDhphah6oUNJ2SHhtQI2OVOIspNawPx4EUUHdn4XXNjOEIeGr43S7l4SU+bb60XQZu5H/xB86LOnyvhOGYyfbyNK39zhwfXb7XYuYulbUCJ4TCYTjcfjvKuJux8QCJyUSyepI15LpKyf4CkDpaDAv5xfpqj4Gi6dBhzLHHKMi3Jl6gVzwvPA3CHCeK0R1jX35fli7EshiGeqTNUJBAKBQCAQCNTxkeVFrboPaSdtT1po4AQfXI4kSd955dX6Fz/1OZKk3/nZv6C/9Kz/lo95YWt4Xe+5dYLCpoixdELqvEgf5Mtz+CEXXjV/MBjo4sWLqqpKo9Eok2zQbDYzwT88PMy7FUBO3Yng0ekyctput7W3t6c77rhDu7u7klQ710kWBRqxtLM9I+QJYgrBnc/nNTeB7wQB0aLqP9eCUEGgB4NBTr3w9jBGEDW3rbs93MkpxI/Ciy5ajMfjTM6I1EOGZ7OZVqtVToHwYnj0lYKDkGmPYHvbOdYJr3R17Q1qSnCO2+axyDNPrB3mDqLqx7so4aIBc+vFIL1OAMUSGV8XL1hnnl7A+PkWmJ4eQb2C0Wik/f39vHMFc8X9vL4Iwg1tdKHM1ybPICICLp5SUPJaBTgDvEYC4+9pJGVNBk/boY++ZSztdHeRC26lGMI9/Hzmk/vRt1K8cGxK/wkEAoFAIBC4nfE3fvT36zN/77fqk1uDs25KoMAPT7r6yh/801e//zOv1g/r1fn1P/rdb9b5xkQ7qvSZ3afvXNgaQcEJK+RZOonOY2/GVg35InrtxfE8vxxSikOhJBKeM46N2/PHvf6BEySPvkvKxNyr77PVnxM62j4ajfKuA8PhsBZFBZ777vUHIHUeeSZVgq0DERrW65MdGzw3nn5IJ4UMIaGMLe0nykuqBcUuW62WOp2Odnd3a+M/n881nU7zuCFwQISdsEImmUtIOveCsDuBxhWBIMF8ukOiTIFwgQfHiTszcGVAXjudTk3AoC0QaE9x4HMXwspaH8wRDgLSW4iMs7sH10cwk5TTQrwtvv3oaDTK225yjq/LMtrvhB3nCK4XF8sQN3xM3YUgnRRKZZ5Yl4h5Ul1I83XptRIQbzxdh/FFBPJ0DL+H1z1w8J4LRKwLF7F8fMo59BSVQCAQCAQCgYD0Awefrq+6cF+4FLYE3zM6p9m6pb/xo7//mo7/yh/8Y5Kkqlnp73ze9+T3X9R+SK/pPPk6GVsjKJw7dy6nIaR0VLmdPPC9vT1JyiTKK/ATLWYLRggORAjiS3R+NpvVosOQEN+ukes1Go0aiYXwekQcoaPVamlvb0/nz5/X3t5ejgZ7FJ3rrVarXFjQ24+rwCv/A89795QCSblWxN7eXq6/IB0Re8QEL0oJ8SwLP5ZpBhR6hOixc4TXISB6jqUfwkjkGyGD+fBtPxkjt+hLym4Kxi2lpNlslutbIAQwF57LL53sNsC1iNS7Hd7rcnj/Ia2IRW6PXy6XuZaEW+XdhVK6VpxMu+DhxNjXtaSaC6ckyV4wlDQH1tRyuczpHb62vU2MhQt2tNHFFn+efLx8rL0GhLtIPJ2G+7vg5MUeeb5w+LCWGH93EJRjwec8v8Dby/19jjxVqny23PFTFr0MPPO4+C7p0VcodnoIBAKBQGCL8M9+8n/Tn/z9/1MXdvpn3ZTbGv/iynP04PKc/p+3vEFp9eT/WEqHSX/1R/5Qft26Z6wv/dSfqx3z5y7+ks41eo97na0QFFJKuueee/LWdpBmBIVer5cJP3nxXqwR0uF2fMhOWYOhjH4iXkynU61Wq7wdIFFRtuPznRU8fxxCRqoBx0EIqZuAAwJSjGAyGAxqhSM9B77MCXfyC4GXlF0C3Bvhgur99JOik7Sh1+tl0uUEmMg5dQ4QGLi2E0bmzAka/ayqKm8D6oSXufLot6esSCepJbxHFJ9x8Gg68+uWfYQHHCru7ICsev0GJ/AQWs6BJC+XSx0cHGSy7eJJSaR539cIEX7a22w2s5jAuKSUskAgqTY/nnoynU41Go1yQULO87ojzDvj5c+bw9e01wlBOOO54dq0ZbFYZAcBgpWLRIyJ/3g/PLXG54px8RonXisFgcfXtTtE3JXh3yf09bTaK/59EdgO9B8+1KMKl0ggEAgEAtuGr/rYb9P/c+9/D5fCM4zvG+3pJy6/TJL0E7/4cjUmO9ct7rL82ED/4mOfU3vvnZ9xr+7ojI9fvW/jeVshKEjKVevdvkyefbPZ1P7+vg4ODmrEzSOKEA2IsFu3nYCWUX8nOF74EELpOwRANCFZ3HO1WuVIPakJEEfIOCT/8uXL2SVBnQCi8Z4rDgGaTqc5uuvFD8uK/m6/X6/Xmk6nuX4C71MngnO9WCLRacYFIoy44Md5KgB9dTJM1NwJIFFoHA9eVFDSVS4B5tS33aR9XjwP0cbrMVCnwcmj70DgJBgSjlC1qTAm23l6SgyEG0HABZ/lcqnxeJwLbnJN5tWj7W79x+3gu4mwziXVBJjlcplrfpAO4SkenkbAnPKZiw6ch8iECOQEnTXMcev1Oo8J4+gCkItgvEc7SlGANrNGWc+sIcA888xynj+DPo6AeSyFAua4hO+yEeLC2eP+z2lKKeYhEAgEAoFtw0+/7WVa3/uWkP2fIfz0TPr7H/l8vfeBZ2v9YFeS9ExIOb/4jpfYq3+z8ZitERQgJhAO7PTr9VqTyUSPPfaYrly5IkmZ+EsnOy7gaKByvKc/EMV0AuvnQ2woYMd7kDai+e6cgJCs1+ucDgCpGo/HtRx56ilQjd8LP0L6sZN7igWiSKPRUL/fz7UIaNemlAPaS7HHXq+XrzMej3OqBePk1e3d8SGpRvDLSD6vIZhgNBrl+gnk/qeUMgGFeDMfXt/B892ZO9+O0CPj7gZANFmv15nIk/YBSrJJm6bTaR4zHCLuZqCd/M4xCBBeWNN3ojg4ONB8Pq+5HBAkfA16UUTWHG3wHH6vNVFVVXbUeOSftSadiA8uSviaR/DyoqMu1rlTBoHCRZTRaJRFMSfnrBHEmE31EzjOCTvPFW3yGhI8Cy50+faQXuthUyoL96MNXHNTOxx8bwQCgUAgEAgErsZn/dIX6+de9b1n3YxbEstqpc/6pS/Ory8f9LT6+HammGyFoFAWH+RHOsoTX61Wunz5skajUSYRkFK3OEMsXZhwJ4EXioO0ee57mXIwn89r4oDnVLvwQQ0DSN98Pq9FYp2kcS+34UvKRJLILGkTtKvb7Wo4HGpnZ0fj8TiLEAgZXjcAMubEn6gybcNazvuMFWINAgCAWGNF554HBwc5vaHZbGo8HmdxZjAY5AKRwMWJsnaC/+4pEG6RH41GWZDhc6+JQepAub0i5NyFEYg/9SQYc0gqP7gjcDBQA8MdER5hn06nGo/HNeeHt8PnnjoaXp+A+zgZL4mzb7HIWiuv6+sL+PsIZ76zhI+7p3VIJ3VGEFG88KkLDk7S3TnweOAe9I+Ck359xKNNtUzK1IlNaR0uKvg5ZVqEn4vwEggEAoFAIBCo49H77pBeddatuLXwqp//Yk3nLVVV0uED2ykglNgKQUE6qXFAVNvTFCBQTvZ5TzoiAF77gOglFeMl1dISiHxD9iGgTrAhNZJySoLvKCDVLea4IsqoK2QIsk9NgW63m+9DBHw6nWo6neZoM1Z2L6zoxfSIimPdXywWtdQJ6gh4kUT6SZ/G47Hm83mt/gJODSepXN+r5M9ms5yG4vUL6B9bHZLu4ZF6T1Ng3jxtBSJPisZkMtFoNNJ4PM7zTRtwYHAeu1aUOzC4FX46neqRRx6piTaSshDDOQhEzF2/31dVVdktg8PD6xTQVwQq1oK7ICCznrrCenIHTFlM0x01rN1SQPF0Ap4PHwOvleBigh9bujQk1ZwiiGjsTIJw4mkEnkLDvzwL5bE+3ggxPD9eQ4Fj/fnjGeF7xOFjUO4uAcrr8p7XvAgEAoFAIBAIFKikl/y3L9f7PudfnXVLbjq84V1fqN5X1wWD93753lGm502W7bk1ggKEHTIFucDG/olPfCKTL4/SQiC73a56vaMKlF7hHwJ/eHio4XCofr+vnZ2dbHfHau2pEUSkfUcIJyZe7K2qKvV6vVwUEceAdLLLgufuQ7C9SKETfwiVk2QIo6dZSMopD5Cl2WyW6yxMp9McEfdiiBcvXqxV5D84OMjuB3eGeJ2Iw8PD2jaQjcbRNotXrlzReDzW7u5u3hUDQWNnZ0fD4VDdbveqNBLcD7u7u1c5SfihDU5A+YFk4zLwooDMEe0sixwy9pPJRNPptLazhXTixCij3u4GYe0R3Z/P57m2BeuEeWLN+jpCDED0YZ68ngDPAfPnfWBcfF3STtrEemNNeX0RF9TcmeB1Lcr6EghmtMnnGpHISX9Z08CFqLK+COsBccZFAm8/fecZYX64VumU8LXkqSflPLhAyL+bhIdAIBAIBAKBQB3VQx29+L9+ud7//wlR4TT8ztd/gbSsp9H2J1e0uvSh/PqhP/d6NQ7Xqm7CGpdbISgMBgPt7u7miHaz2cwR2fF4rIODg1yAznPxIQdE8In4kute2sYRGCBeFNMrayZMJpPsVHCXhEd+vRDccDjUnXfeqQsXLtS2M/RCgk40JV2Vs+5kErLkhRI9sowI0uv1MmGnnRAyhApqBfC7OzG8wCLErUwfkY6Ekf39/Vq/Z7OZptOp+v2+zp8/n0UUyBniRFkE0O+LQODF+TxNASHEU0E4fzwe13YacAJO+yH/nOfOFwinOz882s8c7ewcbWGJeCNJk8kkr11Ir+fvM4dsz8lxODW8lsemIoBekwAxxosU4rLxdcUzw7ix1ugrx7hLwJ8f3veUECfstIv+kqLEXPl6djKOqAG4B3MzmUyyy4Q15GlCLrh4AUaKNNJ+F61cuMBh4+6mcgcNFxK8v148MxAIBAKBwLUhNWKv39sOD3f00rf8Md33hjefdUvOHKtqrc/8v/6c7vzOX8zvrWcfeeLzuropxQRpSwQF6WiXh3Pnzqnb7eYcdEg0UdCyACCAwHmxPEgh1ncs2v1+P0doPccdQkSFfqkeZXWCDYGHfDUaDe3u7uZtGD2aTuE+cvWJWEOI2u12TXRANICEDwYDXbx4UavVKtdzgOiWxfA8Cou4gPACWXLhhaKBToQBtQCuXLmi2WyW6ywwTqPRKF/P6w8gIrhzgii376bgTg93XjAXpH+wzSVuEqLniA1eAHBTrQber6oqrynGP6WURRknol7MD8dHt3tUTRVhC/GLOfY5oN+eksN8MQ4c79F66Yhwc0/pSMwZjUY1QQiU6Q6sVxeOXLRirhAAcPdI2ki4GW/mkoh/WWOAdc3YlUIEAhZ9LkW10k1AHylg6s4HF0vKVBGv9+Bz7ykfvj743vD+u6jnaysQCAQCgcC14X1/7zPOugmBM8D6wa5e/N1/Wnf/hof0U//Ld6upndqWkvPq2tJIy/OeCKP1TMvq+rlKW6mhYaN76ueXVpNTP3vNd/5lveir36aLepuebIvSSkepDlv0p+dRm564QU8oKKSU/qWk3yXpoaqqXn783jdL+t2SFpLeL+nLq6q6nFJ6gaRfk/Te49PfXlXVn76WBkMoiKw7afb8fC+c1mg0NBgMcj49rgas6Z7Dz2vIEVXquSaklboJkBWPtnoEHSLU6XR08eJFnTt3rpYuQGQVQYF+saNAq9XSxYsXJR2RVKK2KaVcN4BrAS/wR8ScQoTSST7/dDrV/v6+FotFrYaEpxB4ccV+v18roAixpnaBE2DcCuPxWOfPn9dgMJCkbPvv9Xq5XYhACAOQW4gfO040Gg3t7e3le3u9DLf7OwGm/V5oEWJJcU/Gr0wV8B0XXNhA5GGu7RnI806KBS4BSDTjT+oHBQW9HoKTdnfTsM4YP/rIcfSdnTnK9AqvccBzhLDjtSNoi++2ARiXUlRizMrdPhgXTw9wx4uPoY8x48Sa8e1FvY2ls6ck9i5euAPCxwUR0B0JpMB4bQieD+lEnCzbug14pr6LA4FAILAZ8T0cCDwxPv5rd+nTfu3/0G/9rF/WNz7nJ/P7r/+Rr1Jj+sRCwVf9th/WZ/Xep5e1m2qlo7/Dfm5+uhjxl77mL2r4PW9/+g0/xuK3/yb9vW//p6d+/tc//bdpfXCw8bMX6W1P+b7P+Ydv1QP/5+s1uXt9w0SFnVlSehJKx4vf/KBW930gv/7gKcddi0PhzZL+saR/be/9pKSvq6rqMKX09yR9naSvOf7s/VVVvfLam3oSwSXyTFoDBfCkE2s4x0GMKC64WCxyJL20r3c6HfV6PfV6vavyyt3GD9GGDJaEy4UCCuTt7e3p3LlzuYCiA7IFcXErORFSCDCfsY0hBJP+I0pAoBAPECmwoSOKTKfTGuEri/DRpm63m10S0+k0EzrcCbSFWhCPPfZYFl0g7VjWmQuvH4DDwCPNPqdul3eS7Q4P+k96A+kqq9Uqt9934MDiDlqtVr6upFpNAc+nd3j9BEl5zufzue64447s9KBffi1Jed35daib4HUV+Je2Q2ghvYhSFIR0Nw7EFxFpuVzWHCLltSXlOfHaFSUQeTgPd0RZGJV5wbXB8+bpLZKysOHPxaYx92eRe7P2yhQRb6e7Iphbnkeu533jWcGF4M8U4+GpKFuEN+sGfxcHAoFA4HHxZsX3cCBwTfgv/+8r9F/0ivz6Wj0H/+DHf6d+8N8e6CX/7H369OFHNVm39aMvO3/q8UNdPzFBkto/9vP6ay/8TY9zxGYx4Xrgud98JCqsOjfm+i/8jo/o8KP3X/Pxqyc+RNI1CApVVf30scrq7/2EvXy7pN9/zS3bAKznOzs7Ojg4yEUKO51OtrZTj4CUBdIaut1uzun3iuwIAkQpISWQwslkkkUByDRCBiSMa0CmEB2cCEMcnbi45dtTGLCz4wpwQYHrQ6rcko3d3/PavW1uGffoe5l+wVhCaEkDabfb2eWAg+Py5cu6fPlydgHQDogsbS+j7vy+XC51cHCQ3QwQ5H6/Xyto6K6TyWSiK1eu5HF1QcZFGd8lQVKtBgD3dleBE1XpxN7OvLkDw0UE1hGpNIg0EFGvceHnO7FmrE8jz2UtBBfCcITwGkHM6wV4OyDE7tqg2Ck1PS5fvpydK5vSAPw14gfPYymI8Qz4rhalawH4GtkkTrCOPbWGlBZPS2A8GSdEG9aSu3JwIyDKuJizafcTL6bKetsmh8Iz8V0cCAQCgdMR38OBwDOD+/7Irhqf19d9l+4666Y843juN7/1hl378IkPeUq4HjUU/rik77bXL0wp/aKkfUn/V1VVP/NEF6DAoOdAX7hwQbu7uzlKDvn3qu2QJ6+vAMnudDrZxo84IR3lZbPHPZXsvehfdVwXwLcc9J0VnNBT5BFSc3BwUCP73W63tmsAkVffIpHX5NZ7Dr9HiJ2QrVYrtdvtWnE+ijMimEDs2JmB63gNA9ImIFYc46SV+fAtI7HU02d3jBBVH4/HeScF5s7TRbh2SikXyoS0404hUo87gWvQNo++4yxhLDaNozsCvB5GmcpCIT/IM6SUFBHeQwByJ4vPr9cvkE5qBpRChDsrXMziPUi+E3UvhsgOHhTH9NoaiB/L5VL7+/u1Nco8byLNkO9SSCsLXELIEWjopzuKaDs/CDQ+f56ugRCDoEANBtYVx+HsIWWpTIcqxSdPk+HezJ87E5gjT7e6SfC0v4sDgUAg8LQQ38OBQOC2w9MSFFJKf1VHYse/O37r45KeX1XVoymlV0v6/pTSy6qq2t9w7hslvVGShsNhjYCRA59Syjs9ELkk4irVc7EhDjgRKGZIhX5SHUajUbbxU4wPMcEr8pfF5coIuXRU8BHiS8FECDLpGr6TBESWdvPanQeeT84xs9msJnAQwSfKzO8QORcp3D7u9n7EGNwdLhY44aINkDHqI+CqoGYFAgdzQYoGYlDZb8a53W7nflBrgblBTKAffn6Z/w7p57qbcu4ZP//Xr0OfvSaBb+3JtV3gcWGLeaBYo7svfA2Un3n+Pveh/b57gosekGvGmqKRwNMCSF+5dOmSrly5UksRccGC8zyi76koLuq5wFaua3dMsOZc2OK1CwguauEs4BifY4h+2d4y9cRFF3cUuRjibgsv+ugFJm+WXR6u13dxV/3y4zPFXe+o9OBrtVUFigKBQGATbtXv4UDgLHDxfyZVxynWge3HUxYUUkpfpqPCNJ9bHTOSqqrmkubHv/9CSun9kj5Z0jvK86uqepOkN0nSXXfdVRENhLD2er1cAPDg4CBHrb1woFQvNghZazQaGg6HedcIru0El7oKkFgi6kTuIdu+CwREhWgqkejZbJbdCkT9IdxOIIv+ZzcARJbfvVo/fYRMch1qJ1RVlV0YHsWnzS4KlPnv6/W65iCQTnL/IZtOEhF0sOMTQeZangZBHQfG+9y5c7l/s9lMu7u76vf72WXhEXHGGKGHfrBNoTtEKErpxSohwNTCQIRiTl1UgDx7YUTGGpGCsYFcMg+essA4+PaQpUDjxTA9JYYfF7TcGXD8vOV7+s4Kfi2Oo28Q6StXruiRRx7R/v5+rfAi7d+UooBw5a4Zv5dH/xHsSCmi7YgMXN8dCr5uvO289l09uI8TfdanFyqVTkRGHBW0GZEI8YDnoRR6XJzEvbPtuJ7fxXvpYlV+fpZorLas3HEgEAhswK38PfxkMf59r72WovCBwKm4851Jd/zAu7U6TscObD+ekqCQUvrtOio481uqqprY+8+S9FhVVauU0oskvVTSB065jF8vF1EbDAa12gFEp6k74HneTvQgq0TPIfUQfEkajUY5HWB3d1edTkez2UyPPfaYLl26pNlspuFwmAUFSVcRCogH0XUi6+12W+fPn9dwOMyV+r1QJAQYosd1yeNnHLiH59g7aYVcE831iCzpAuv1OosEXoTSSZWkbJf36zghJW0D8uVF62azmQ4ODjLRpW8QOZwFEGLaTTsQULwOg+f0byoeyZiSckHOO33w2gO4LhAdvO4B98GB4KQWQQpRxGsT+Dx47j1gHTIOjCt9JEq+aatIiC1rA1eEp69Q/JJxdWdDmbbAnCHK7e/v5x0qaKcLNKXDg37yuUfzWR/00VNeXEjhPK7lfXTBjOPL9IRSwClBaoOnsCBKeEoIrz21wddauY0lfdokBG4brvd38bbhE69tSOmm/ts6EAjc4rjVv4efLB58TXxvB548dj/Q0F3vPHp8mu/+oFb7Vxl5AluMa9k28jslvUHSnSml+yX9dR1VsO1I+sljUsBWOL9Z0t9MKR3qqDDkn66q6rFraQi5607m2XKQ6DikF9KCU4BzIES+dSFWfEk5/aDT6eR0BwgX0X63gjuR9MgmJBNr+2Qy0Z133qnz58+r3++r1WpdZfmX6tvwETV1slZGiiGuCBdO+iCpuAmIWHM+u114JBlS5/cjyk272fYQkuZEzwURIrmeTuFR9MViUYsyIzA4gWdsGHfuwxyPx+MsNnnk33cooD2sjZ2dHc1mM41Go6MFfpxG4EX+XNQpHQg+XqVoA5youpDlO1BMJpNadN6LjeKiAD7nXhMEUcjdLk6uEeFw1TBvjP9sNtOlS5d0cHBQq1mAGOZFOxE6EGV8jfDat4105wjvlYUWGWcXFhDJEHiA74DhKAtFgrLOBGPNvWgfz5jvDlOmzPC8IOKUwtm24Jn6Lg4EAoHAZsT3cCDw1PCi/zhX89LpKQyNRy/r8OOfkHTtOwsEtgfXssvDl2x4+1+ccuz3Sfq+p9IQyA6Ei4r00+lUOzs7OZrKFomQguFwqE6nk6O2ECJIoO9IACmGKI9Go1z0kYJ7LkBAkI/7VovAQuwgqa1WS91uN6dkTCaTLCgQKXdy7tf0PG7qEHBdHAxOxr0Wguee0z63//O7W/09ug25GwwGNacHIg738ug09/JdE7g3pNMFBCd/krL75PLly3ku+v2jnMEyD5/xhGhDiDlmUwoH485xCEmQVRdvvHaEC0YeradII6SbNUmthqqq8r3G47HG43E+H2Lrwkm5+wbiTKfTUb/fz+0vdzhwFwf3cyeLdOKooQbBwcFBzUngohHryotLumPE59/TBphD1g/tQPDwKH8pENBGdw0giHkaSXldwGe+Ll1swamAKIMgw/vulCjbVO6OwnW2Bc/Ud3EgEAgENiO+hwOBx0f/Yw09/3s/etX7q499XOvH+ZtqfeongZsB12OXh6cNyAOOgp2dHV26dEn7+/uqqkqDwUAppUwWSwJEtNNJMsIApM/z04l0HxwcZMIPqSU9guu4ldzrDCA2QPzYwpK868Viof39/RwZRshwFwFbXjpZh6BCJiHCbiUn9cOdB/TJCwgiTCBmEOl2cko7vK/Y+d0B4ITbI+q+cwSkbT6fazQa1UhzmTbgqQu+UwDCD0IEThO3sLuQ4K4CL7TnP2VhPvrKNSCpzCnXYD1KJwIH1yrTYiDnPuaHh4caj8f5vG63q3a7nVMpqBHhKRA7OzuaTCY1JwpzQLs9tcNrC3g6AXVBSJNgbnq9ntrtdp4zLzbKGvdUANZVOeaMjxN/1p+kmjuG58NTaso0E16XaUwcj2DFevVijV640ustlGIA64t14AKaFzAtUzECgUAgEAgEApvRWCS99JveI0mqDg91eHBwxi0KPNPYGkGh3W5rOByq3W5nMr6/v59JJQTLbepecBFCRQS20+lkEuv50pKy02E0Gmk6nebUibJ6vEcyIUe+Xz3kybe8g4BNJpNMDD2FwiP1kEKistwf4u/2ciflnrfPmJAi4Nvnzefz2jaCTtx4XdrJ3f4OocMG3u1287ghcJR555JqEWPmFzs7fWYefZcIovVefI+K/KPR6KoovUfvvZ7A1KrCrtfrvAMHbWFePbLvRJP+lGvLdxlA+IKM4kphXNrtdq7ZwVol1YHaDQhFzGm73c5CAIKLz7en/UjK258uFotMshE8ptNpnifmlIKbrFnvv48r9yL6z64ofjzPBMfSJ+7jO7AwL4h/3M/FIUQ17oPwx/y6oOHPCoIMa7lMaeAa7j5xBwb94DPSO/y+gUAgEAgEAoGrkdbSi7/hnVrZbl6B2w9bJShAOqrjAnRumYc08F5VVVmA8Ahuv9/X3t5ejlbyfmmPxxKN5R2HgW8X6ZFZCP1wONRyucw58efPn78qhx3SAsnh+m7T7vV6kk4IF04KL47ohI32QTxxa/C5W789ci0pnyepttsBpMrdHF5/APJJRJ4xdXs6faNdTthcwHDxAdJGlHw+n2dhB5EB0u6El/livbgrANHG28Z5/PjuAHzGa9rGuZBiBAVv73A4zJ8hdHAeqTPMtTtPGBucCfRzb28vp3YgcnGOiwmMo69pT1/BjYGgxTPkdQRarVbNteH2fneJlMUNPVKPsMD8syMHwoOvdZwA9Ie1SntPI+2sPfro25bSBpwwfEf4s4D4Ujooynt5PQ3aROrUJsEtEAgEAoFA4HZGWks6/vPoJV/7DlURfLntsRWCglQnG+PxWA899JAmk0ktaulR6JSSBoNBrp9QVUfFFu+44468M4ETOgirF1sr0xWonQDB8Cg8ZMxFg032bIiOF/bjc1wWLgB41BaC5pF5aihA9Lx9/JSkGJJH9B+3hufLQ9I8fcMj3BBNSG2n08kuiOl0mokpRF06KbJIlF2q73IAEfV8dpwKBwcHuQinJPX7/SwwVFWVHR+QxXLrQ+Dij4sZuEdwCSCSuAhDegDjxT08rcPH2tMWuC5Els8RihgvxsdTcBCRvKaBFwd1V4XXxMCBgBg3nU5zGg/CBASadcZrryXg8+4pNPQBEagUFRg35pb7sMY9BYl/ub4LT6xt+u0uA5+fsigk48g65bny9QB4Jr2wJ04c1kPpwiidTYFAIBAIBAK3MxqLpE/+9o/p8EMfkZR1hcBtjq0QFCAf4/FYo9FIjz76qB577DFNJpNsLXdSRdpBmcONg4Cic+SsU+ARstBoNDSbzXKue7fbzXUJIM2QFOkkQg/RcTIIYSe6X1VVTj3waCjF/Hw7PI/eehTXLeMeBZ7P51c5ASBaRLy5J/+SnlEKLJ7SAdEles5x8/k8b4GZUtKjjz6q2WyWx94JtOfMEwkuo8QppSzcTCZ5Z6VMjEl3IFpPv92dQJ+8sKELB9zHX7Nm+HHSWaZAMBdeT8Jt9Qgz9BES7NZ+LwjKPRCXPKWj3+9nl410RHoR0byPbPfIXEGocUcgRrC7BGMJWWbNIGq5E8EFKCfQZf0DxrFcl17DgFQFnhkXYcpUB9IjONYdEcyxt8XXKs4calFwHOvBt5D0NBzu7ykW5bU9/aisoRIIBAKBQCBwO6GxTGqOTwI1L/wPj2YxIRAAWyEoSMrkYzqdZjs/kV+3STebTfX7fbXb7SwCrFYrtdtt7e7uajgcajgc6q677tK5c+e0Xq/18MMP69KlS7kg3Xp9tBsA+e0eFYXsSapFZKUT27TnxO/t7enOO+/UcrnUI488UsuRd5LigFRVVaV+v58JngsUXlsBkg/x4frSCXkuawQ4ifPCe+yggTOAzyHEToydSDJeHqV3MgcBpW24CCCYXkeirCuBG4Qx4Zps6Un7Dg8Pc/qGV+Uvbe2bCv8hEpT1E2gvhNq3qEQEgqSXhQa5hgtHpUDhbXAHBmkmbHN5eHiYay6U6QTc10k/W3Iyz7Rzf39fy+Uyb4MKUS/rWiB4lEUNuZ7Pg6cLIX4g4DEetNsLVfr65By/n7fHiT5t5pl00cjTibz//qy5m8nXpj9/fl9vm7uN6F8gEAgEAoFrQ+/BpPHzKulqs2DgJkNjkfSsd1ba/e635fdiS8fAJmyFoLBer3VwcKA77rijRn6Ak5Ner6fd3V11u10Nh8Nsx97d3dVgMFCr1dJwONT58+e1u7urhx9+WI8++miusg9B8cr6kmpRfog4BSK9naRaQP5JsRiPx5nclCTKySVpASmlWhFKzzunr+4mKMUVT3cox4h/IWRepFBSbdcIrg+ZL3PecRzgHiHS7cUxSd3g2J2dHfV6vexcYKzdAeBRYM7D8dBsNnV4eKj9/f2c5kBEmbZ5H04rtMiYsFOEix60wcUZxA9cJAhMPs5eALIkne5OcFEgpVTbCpRjuD4/CD2ScgSfWhGsAe61XC5rLh3ECsQJ0nQYd995glQa+sIax9mDmMK5zHVZg4K5456e9sOa8NQRrx9RFlr09eHruBTkGBcXGMu0C4SBMtWmdClwz/K+m4SRQCAQCAQCT4y7/8Fb9f5v/UxVISjctEgrafcDDfUeXWv3u99+1s0J3ATYGkFBUo60Hhwc5Eh5WZyw1WppMBhkwgpBckt7v9+XJI3HY12+fFkHBwdXRdUhwx6F9/x1r6YPiMrikGi1Wnnrx4ODg1qevkdUvT4BqRYQIXZlQEzw4z1SzGv6gGPAo/MejZZObOMuUkDGKGyI6MBOCF6Akeg5EW/agO18Op3W8vw9ys9WlNLJNpS0iUKQPr8QUki910zw8YeEe00Mrw1QpsG4S8PFJK/jwPjzGhGB4z1qj0uDtvu6YB1Bpp3oegqCF7hkfF2gcWGEf/ncUwdoA1F7XByIFggAvk2i7wZBf0Fp8fcaCl4IklQC1s1oNMp1SJzs0waviUAKiZN67iUpO39Yu2XdCBd0qDPidRbKcfMdUdzJwDVcTGDN+1pgnAKBQCAQCARuRZz/taSmxR4bh5X2vvOtZ9egwE2HrREUsL4Tla6qKkdMIQcQ+MFgkAkpRKLdbmswGOjOO+/UnXfeqfF4rP39fT366KOSlEUGCCMEz6PrkIeSBEknKQDUSyD/fTAY5Mgz0XuOIT0B8uLpFE44S9u+ixr0zcUCCDUksSRCXMvz2XmPKDdjS/ScfvpOFF50zwvnIYQsFota0UheI1QwP2WUGQHCiR1tWa/XuaaC2+JdZHFHQ2lL98i2197wrRpL672vQ+4LuSeaT+0Et+VDzF3oYQ49so+7ALhd39dI6TyhrymlfD7X9j7QJo7xFCEXqVyco62eusG6Z3zdMeH35lh253CniztraIc7WXyt+XURQXD+NJvNLLZxbim2uRjo6SX+XCAauujEOnFRw50ljMlpO1AEAoFA4JlFK7a1v6lw9/+o9MBvDovCtuP8e5IGD640fMt7tbp85aybE7iJsRWCQlVVGgwGtWJtRBc9Up9SymSdQnhE6QeDgS5cuKC7775bvV5PjzzyiB555BGt1+ucGuERYYjeJtLMD7ZxXA9ElpvNpnq9XraN7+/v5+i6R28hQNJJkTqEEXancCLpxJu+r9drdTqdTPy5jhOd0vLtlvQy2u19ckHDCW5JiCGEHqFm/NxW7kUYIbBO4iXVRAEIOrtaQByZI3L8IdwukEAaPffer+959MwD1nyi37hgELOWy2XenYK14Tt/eO0EhAxPr9hkzfcimaX1nmv4fJZbgbq4U6ZSOPEFZUqCiwnlXPn68TQdHytPTfG1dXh4mHdJYT272OCCiLtDfBx83ZPegcOkfF4ZBy9Y6cJJiTL9qFwnZVFTLyzqz0DUUAgEAoGzwd3/b6XuI0eBnkcvj8+4NYEng/5/+ll90vgz9OHP3wqaEThG57GGnvszs5PX7/mYDj/xYNRFCDxtbMWTDkmfTCaazWaaz+eZlBAd9jx3SBXHnj9/XufPn9cdd9yh3d1dLRYLTSYTLZfLfD6V+rGzQxQgNUSmsepDGhEOOp2OJGWSxe8QqnPnzl0V5ZSUd2QgRQDy4hFlrgVhlpQt5CmlnN7ALhEedXVbuI8nBNJJkbswTqu9ICnXa/BIvbsKON4jvz6eFEb0rSqJOnvf3TnhUWii47zv9ywJsUfYnfSWrgCu7TUY5vN5Xk+r1SrvzkG/EF489YTx5n5uuceC7+4HdxCUtSA8HcGJNWPkgkrZNyfjnsICGWadlBF27udzwTplfH03Epw5XMfrOVD7A8GLdelilbsMaI+7XVzw8PQEzsVJRP+4fulwAb4OaK/f39uPq8iFGtaUF4IMBAKBwI3H8EMN3f3TJ1HS9Osf0nocQsLNis7/+FXp8z/9rJtxe6OSXvpvTuw9jfFMq19/f34dHszA9cLWCAopJY3HYx0cHGRyjRNBOim01m63syWbVAPfHcELKbbb7UzoIUBlgUAn3oDfd3Z21Ol0NBgMMrmDZEDyd3Z2tLe3VyMyEFPSMrxQHqkQELdOp5O3t4SIkVLR7/czsaJmAP1qtVo1S70XcITMlwUcS0u+uwbK1ATPn/cINv96MUsnd0TYKSbo0XjO4f3RaCRJ2t3dvWqcJF1FiCGjLsoAFwGWy6VGo1Emqu4qwNJPLYTSjVG6RLzuBFs+drtd9Xo9NRoNjUajvJUmAhDHev+dpEJiSQfY5GIoI+Vc1+fV2+r1D1xUcAHJxSi/hxdNZL0hrpWfMc6sJXcvcG/uyXj5mnNRwdeTF+ikDeyuQd8QQXjN2vfr+84T/ry5w8OfXW+D16MIQWE78Cnf/nG9588/J6qFBwK3AF70fTO1H7h86ufVeKLVgw+dvH4G2hS4cVhPp3rpvz3QfX9k96ybctvg3p9cafCeh2vvHX7gQ/n3cCIEbhS2QlCA5F2+fLnmSpBOyKdHE50ks33k3t6e7rjjDrVaLV25ckVVVWUyhG1/Op3WKtWX0UwnpSmlXCeh1+vVSJCTXj6DlHrEvtfrqdls1ortuaDBzhO9Xk+DwUCSaoS13+9rsVjo8uXLmZi1Wq3aOEj1LREhn71eL0fAS7u5gwg9aQm0zwUK5ohjndCWtnJ+ZxzIjWdsfS4g/PSNFAgXeLzaPnPgkWyuT1vn87lGo5Emk0leR16DwVMFSgLr4hRtJtWEH/rmtRFoM3OwqZgfqSpOxlnbXIs17cU0y/oEABGpFHrK67qjhvkCCA+M33K5rKUReZqMix6MAXNawutfeP99HiVdJU5wfW8/KUJl0cvSneDjwZpn7hlH2rpJhOPZZAx8TgNnh6M/hJ5z1s0IBALXiNZ+Qy/6x/dt/Gx96VLUpbmdUFWqfvE9eqk+NUSFG4TB/Q0971+fPG/r/X0dHv+tGgg8k9gKQaHRaOSofklOPReelADIX6PRUK/X03A4VL/fz9e5fPly3laPaDTEr4yoSieRb1wRe3t7mUA3Go0c6fVq/ERLpXo+Ntdhi8rpdFoj4uzyUFVVrgfB55Af3w5wtVppNBppuVzmOg6IFDs7O7lqf1VVmk6n2RLe7XYzqS3zx8tUCO7NLhS+QwCAYFJvQDoh+xRoXC6XGgwGuX0QM0QXCDnpG4gDTr7pM3PlFnUIppNtF1ggor6dJPMjnYg4btd3gozzw1NXyvGjPgZrhtSAbrerqqo0Go2yWOI7TrBG2HKTH67jpNfHHvED8s1cedqFzyPwe3AeIoD/QYeTxLdy9DXizpZSPNj0LLEWvP/eP9ruY+wpTC4Y0mbmoKwd4d8fLiq5ywCXAt8N9NH7x1rxFBJSTzYJJoFAIBCQPuXbH1Z1/8frb67XWs1mm08I3H5Yr1S981f1yb/W0+yzP00f+e1bQTtuSnzK375P1aS+DXy1WmkVAkJgC/CET3ZK6V9K+l2SHqqq6uXH732jpD8lCV/N11dV9SPHn32dpD+hI2fNV1ZV9ePXcI+rChRCHtwJ0Ov1apHD4XCo3d1dDYfDXOMAsQGi4nnsnufv+foQjJSSdnd38w4IZQE5Pxf4FoOScoHBdrutyWRSew8nhlvq3UVRVUc7OmCnXy6X2t/f12w202Aw0HA4VEop99EJXan6e/0Dr9aPiEFbGJfpdJrbyjXddQFhd5s59nHEIFI3OI+8d0QZxsnz4n0uvFgkc+xk3kmmR5j9c+pweDFFFxQ43msfAMQdd36whmgv88UcrFYr9Xq9vPOGR7fdOcI4e00FCku6eOFpIf6vH+fuEH+GEDhc4GI+m81mTv/x1BEXmrzuAwTdyTrYJGD4s+FOFZ9fXtNPnwOcBY5Nog7t9NQX1ou7EzaNIaIg48HxzDFikZ9X1mg4SzwT38XbiJf8lZ9XaiTt3HO33vMX7znr5gQCtx4qKRX5Bekw6UVf93OPe9pqvT3fj88Ubtfv4aeFqtJ6MlH7x9+hl/zkyd8TD/yV12r67HpqYXU7a/jFc/iCH1po57//cn59Oz5vgZsH1yIVvlnSP5b0r4v3v62qqm/xN1JKnybpiyW9TNJzJf2XlNInV1X1uE8BhNbJJqICVd0hqx457Pf72Z4O+fTtIKkQD8FAdJBOtkf0KCbRdUk5Ig4RAxCu0j5P+gW1HJyEuR2e2gll3QREDcQIT+twN4RbvT06TWQeAk9RShcNvG1lVJbrUDwRNwXRcWz4Xo/g8PBQ4/E41wsAOB1IvYCQe069W9J5z4UbF0p8xwSItc8Hc0Wk3SPjTkSZdxcKGIeSrHuUG5IOAXdRwEUKXnMsTgmuw1wyhhy/accFd5Cwrhhb3zUDEYa1j6DBHHnfvZ6Ek3Paj7jGse4gwNngzggXS/wa7rIoCT5CgKd1eIFNF7S4HueUu3cwn37tsv4BY0ktBt85pqyR4M8cY1iKJmeMN+sGfxdvI1Ij6b6//xln3YxA4JZBWh8JBuDF33ug6h3vOsMW3VR4s27D7+HrBiPFz/37b619lDodvf9v/kYpSevWrV9Bo7Go/33R/0TSc77traccHQhsN55QUKiq6qdTSi+4xuv9HknfVVXVXNIHU0rvk/QaSW97vJMo5jcajTQajXK0kIixpx9AQLrdrgaDgXZ3d7O9HxKIpd0jtKRLlJF8iBGRe0m5oN9yucwFAz1X3YmldFSE8eLFi4xXzdotneSbL5dLTSYTzefz7LjwSv4uGnB9xA4IPP2D9EASIXLr9TqnVfj9GUOKObq9nd0siOq32+28fSIiBAQcssw9pZPihb1eL8+lR3yZW/ropNSJXdkmznWbursSXFihHWWhvjLizL3oh68D3B9cywtx0mZECLZ63NnZqaWxQIpdmODeToj5HLHK54r20S7G0dc4x25yz/jn7mTwte/3o0+0sawdQJqLzw3HlfUP+JxtXXGVuPjghR7dAeTOAda5u4cYR+7PeLpg4a83iRCeGuHX9bQQxodztwXPxHfx1mKrdJ1A4OZCc5Rqkc/hR6U7/vnJV8H2fMttP27r7+EbjGo+14u+5m1qPu8e3fdnn69V7+ZemekwqTk9/fMX/K1fULVcnH5AIHAT4ekkM/35lNKXSnqHpL9cVdUlSfdIersdc//xe4+Lw8NDPfLII1lMkE5IcKPRyGQfUrW3t6fhcKhz587l2gkUvOMH4uD1BjzKnAfgOPo/GAw0GAw0n881mUxqRJ42OnErc7BdROCHnSiIGo/H45xfTwoEEWzcBdzL871xMZCfPhqNaqTPXRacw3j49pMIAzgFuAY/pUXcUzUopOjFFSne1+/38/v0GXJIMUIIt0ev6a9H3P3+LgaUKQHuYCnJH06A8lqeKkC6iaeqeP+9QB8iBcIUu26sVit1u90sdpUCh0fJvZaAb93oBLZca4yRO0ncLeEpQR7NZ5w8zWCTC4J7+fr1+fHrk+JBezw9oHRbEOVn3Mq0D3d5+Pz6emZbT8bcP4f8u4vD++oiwaY1VKJMTfF2bpOg8Di4bt/FgUDg5kVznNQcX/0997xvept0c3yX3cyI7+HrhMP7P6aX/KuOPvz7n6PDfqXD4ZNbu81RUnNybSr0qldpuXsdn41K6j589PfW4OOVLrz5dO0onsjArYSnKih8u6S/paPn4W9J+lZJf1yb40gbn5mU0hslvVGSBoNBLc3BiS5bQUrKUe5ut6t+v5/t/ZyH8ABJKvP3UzrZOo/oJ9FUiBJku6qqXGjPLfe+S4MTSFwRXunfC9S5hd7GQKvVSuPxuFaYkai8iw/Sid0d8gnpwVbu7ZxOp+r1etl14RXwvRaB29olZSK4Xq/zjgc+BpzHGFEk0omk3282m2k8Hmeyyr1olxPPTTn5ELqyhgBtTCllZ4U7CSCcfjxtd1u9k3+3u0uqzbeLAqR4ePqF71zA+vDrI475Vo6MXWnPdzHLXR64IiTltent9WfHx9KFC9aMr1NQ1nPwz5bLZRZicDV4fRLG2PtOyhDX8vQS7s1a5DjfbpN0G+5Zpii4COL9L8WTTYKCOxRcgPD++2dbjOv6XdxV/8a0MhAIXHc0lkmD+08e9We9c6LG//ils2vQ7Yv4Hr7OWN33AT3v735A1eteoYd+00DTuyodDjZT8MYiafCxk6F+9s+NpLf/yjXdJ73qZfrEZ5+TJE2fXemw/9Rp/vBDDTUOpbv+SaQtBG4/PCVBoaqqB/k9pfTPJf3Q8cv7Jd1rhz5P0gOnXONNkt4kSRcvXqw8F9/dBRCJyWSiy5cv56r+RIalkwgsboN2u629vT31er28n73nVpcWbwgIUWmPGrMzgVvYuQ654Ju2loP8QwIpXOgOCog/7gQv0Mh4kKpAtBwCh+MCweJ4TLOI4WTfI8lu/XYiBugf5/Me12Wcj+c+j7db77mvpGx773a7WSTi/qQKLBaLLKgw75Br7sO/uC8gr54ywNy6oED/cC1sEgFYY76ThzsaGCucGrg/6DsEm2u5yLVJJGk0GrlWBuTaRRnGnjoDiAn02VNjIN9lJJ6xcLcOc8va8RSNMo3AUwcYU9ZSmTLDtRFz3AnC+b5uOZ7njzkqnQHulODaLhawVnycy1QG+rLpPZ8vT2Mq0yq2Gdf7u3gvXYygSSCwzaiki+9KUiW1JpV2vzvc82eN+B6+cUhv+2U9+23S8vM+Qwf3tDYe0x6tNfzen31K169+8d169i8e/T7//N+k8XOauvyp0rp97VNw7r1JO3Pp4nf8bK1GRCBwO+EpCQoppburqmKvoC+SRDWf/yzp36eU/oGOCtC8VNLjlwnWEbnY39/P0Wa32vM5xJuIJYT1uD2ZkENkhsNhdj5AfCH5HkmXlHPi3f7uaQsuMECMEBKI9ELcsJqPx2ONRqPsNmDHh16vdxXB8xxzCutBtElTcCu2R4mlejV8XgM/bxMJ9Ojwacd4MUXecxGH9xg7+oerwdMqOGY2m+ng4CALNqQNOKl0BwjuCgo+SifpKh7Z534ukvi8+tgzNuVYlTsSeNSfdAPmwLdh3CQsQYQ5j9STMnIvqUa6EThwh9Cucq5ZQ7TZi4o6Yff58S09Pf3D0yBcIGAM3KnCevAx9Xlw8QCUqR8u/LAW/X5lPQNPdeAY/3eTgOMpMe68KFNs/DlxYWXbBYXr/V0cCAS2E3f8UlJ7fPR/0uA/vP0Jjg48k4jv4RuP1k+8Qxdv8D06P/rz6kga/M7fpMNeQ594XTp114ndDzY0fODo76rdH3+31gcHN7h1gcB241q2jfxOSW+QdGdK6X5Jf13SG1JKr9SRdetDkr5CkqqqendK6Xsk/aqkQ0l/rrqGarZEncnF90gylniKGe7t7WWiQgQdIuI7EHBdyA3EmN0fiN5CVEsiUkZ5pfqWkTglIH9U4meHhslkkndaoK4AbfPCcESruQ7bN7rdW6oTYMhtSdiIwuN+wG3BtV0sgDzhDIDUeSpIVVW57avVqlbY0gmhE8TSDu8FNSG1h4eHunz5sg6Ov4D7/f5VaRe4IiTlcxE2nFg7YYbM0n+POFODYzab1RwQfj3GnfHFEUGBUIB4VTo8PH2C910EcmHDSXA5N9QE4VqcV0bzOQ/BwXdiYBx83GmjCxCIYJ6G4EUwuS/nIXJ4vQVH2Ucn7+5Y+P+3dz4xklVVGP9OdVdX1/R0M8wfzcyA8ifEhBCDaIiJhpVRYIMuTHDFgsSNJrpwgSExuGChRrcaDSbEGEmMGIluRKPBBXEEHYbBoZlBUEcILcxMd/3rtqv6uqj3vT79pqpnGrrfu7f7+yWVqnn1uup75746mXPuuef6RBbvU947PrDnOPggv5iQoE1G9TvwCaBiJYdPHo0a+9gSCmX4YiFEdUx2DMefWR35XuPZeQUtESA/vPtp/GaYWPjApY8CtdHLHpuvLKD/+r8AAGsjzxBib3E1uzx8YcThxzY5/1EAj25FhA/I+Jpl861WK29mCAz7LfC9qampDQGQr05gM0aW1Xc6HVy6dCkPjhk8MBDznec5M8ughWXhDGyKa7pZnu7L/Hu93oZnBotMDDCQ4Ww1j1EPP6/RaGBtbS1fAsGkASsk/BIKH7D72XUf6PtAtFar5dtIUiMDRmryATeTDMXAzVcWMDnE72eCwy8/YPXGysrKhgQSx5I27/V6+TVyLP2sup915vf2+/287wPH2i8x8VUZvF4G377fAa/FXwPHppgQ8Nfm7+Pizgg8h9fIaysmYJjYKX4eberH0FcLTE9PX7b1Y3EphP8eP/5+OQ/txOv0vwe/hKD4Ph9+pwafEPEJgFHJGG/LYtKs2BfBV0CMSjLwt+QTjH7phLdn8Rw+F6tBqqYMXyyEKI+bnlxBbWW9IrC2vIq1Uy+PPFdBSxzID+8d6r97fux7/bHvCLE3eS+7PGwrPnCo1+vYt2/fhhlz/gef783MzGBycjJPFjDIZLNG9ifodrvodDq4ePFi3kvBB46sLGDQyllQBkZ+NwA/kwqsz8YyKAOQL3dotVpYWlpCt9vNdbCHgp+t9js4+GC30WhgenoatVoNrVYL7XY7DxzZN8CXZzOI9rP47DXhGy36ig0/A+zL/f1MsA+IfQNAPzvNhIXv88D3/aw0KwLYXNOX2xcTOcvLyxuSGz5hxGRC8fPZBJBBOu1VXE7Bhw/4aQM/tqxs8MGmT9Dwe3mut6kP0H3yifcRlz6wEqNYJVFMBPA4n3l9vgqE48X7yN+j/t++UsZX87DhZ7H8n8kYX1XAe6CYXPLBuu834isZiskp2syPBY8V+yh4exd7SRBfwVG8/3yyxy/dIeN6NYjqCP0+PvSDt9E/NINXP9+sWo4Q75kbfr2KxvlFDM6+tmHNtZIGQgghUiSKhIIPBhgcsReBnzGdmprC4cOHcejQITSbTbTbbVy4cAHLy8t5AM5Gd6xMYJDLHRP8sgFgOKvbaDTyngXsj8CggiXhDHa4jpyaucxhdnY2D7qZAGi1WnmFAtf/MyCbmBhuVTkYDPJkgw9gZ2Zm0Gw2N8xCc2mFn3n2SyMYVLPvw8GDB2FmeTKFgRSv3zej85UT3GaT/R78to9+lpdwjNg80Mw2BPG8BiY8fKLAL6MA1rf55NaMTA5xyQU/mzZkIMp7hcmWTqeD1dXV/FxWIlAvl1CQ4lIQztAz2cSx5+y772vg4T3DYJ8VDfwO3oc8Ttt52/pqE14n/94nF3gOd+NgBYcfG5+4Ij5g99frExbFfg39fj8f0+Jv198/fM3kke9f4JME/ntGVQPwd+grCfxSDZ8g8UkAJluKx8YlVvjb8X/n+y6MWkYhymcwfw5Wm8DNuE1JBZEsx/4UMPfsPzF4+wIG2n9eCCHELiGKhEKxGdvU1BTq9Tra7Ta63S7a7TZqtRqOHTuGubk5AMDS0hJ6vd5lgSCDsV6vl5fWM2hjB39gmEi45ppr0Gw28ySBnyFlYMr18sVglAGuD+r8NpEMsLvdbr5VIIMybnvJAJPBOr/bzx4zWAaQbwPJJRBmwyaWrHhg34Z+v48DBw6g0Wjky0V8CTuDJwZO/DzuSuGXdgCXl6cTBuu9Xi9P3ADruzQwiCO+OgBA3jiTevxafgbs/Ixms3nZTDRn+/3yBCZfVlZW0Gw283uJSwiKgajXwyUNDKaZ2PJl/rSZv184btTPKhG/7t9XHfhlIH58izPo3vbFpoL+XikuK+EY0B68P7iEhQG878/hNfjP98kVfy2kmBDxf1Os9PH9HPy1+4QDP8sni/xv3G/j6fs4FCttmFBggoYPf88U+zIUkxX+vhIRsDbA5MUuACUURFpc+3fDkSdOIyyvoK9EghBCiF1GFAkFMjExgf3792N2dhaTk5N5+XwIAXNzc5idncVgMNwRgokDBlUM0uv1Onq9HhYXF/HOO+9gbW0tryJgQz7fo8AHLSGEfDtKVgv4wIfBCQMWBr0MgBlUUzeXOvg+D0xQsDKB5e8MHH0ZP4Mc9gUAht37mYTgkg0mUBYXF/MAqNFo5Oey8SNweYd7Xgd30VhdXc13lvDNDf35ADZUAnQ6nQ19KXyJ+qjZYT+e3PHBLyXh3/BYcUcFXyHiqyCA9aUPwPq2o34rSAbXxWUG/hr5vT6I5/f5ZR3ejryPfHLKL22h7TnGfpmLD76np6dHBrHF0nwAeTWLmW3oW+EDf/83fgbeJ8p8VYGvaPC2YXVIMYni9flkjU+0+R1bfNKB3+WXbFA37z2f5CO+koLv8TfJPiPeDn5JhU8S+MSX37K2WHUi4mFw5ixu/vk+VSmIJJheqOH675xAWAtY03ZyQgghdikWQ0mvmf0XQAfA21VreRcchnSXiXSXT6rat0v3B0MIR7bhc6LHzFoA5qvW8S5I9R4F0tUu3eWy13XvJT+s/xOXj3SXS6q6gXS176gvjiKhAABm9lwI4WNV69gq0l0u0l0+qWpPVXeVpGqzVHUD6WqX7nKR7r1FqnaT7nKR7vJJVftO61YrcyGEEEIIIYQQQmwZJRSEEEIIIYQQQgixZWJKKPywagHvEukuF+kun1S1p6q7SlK1Waq6gXS1S3e5SPfeIlW7SXe5SHf5pKp9R3VH00NBCCGEEEIIIYQQ6RBThYIQQgghhBBCCCESofKEgpndbWbzZnbOzB6qWs9mmNnrZvaimZ00s+eyYwfN7GkzO5s9X1u1TgAwsx+b2YKZnXbHxmo1s69nYzBvZp+pRvVY3Y+Y2X8yu580s3vde7Hovt7M/mBmZ8zsJTP7SnY8aptvojtqm5vZtJmdMLMXMt3fzI5Hbe+YkS/eEZ3ywyUiP1y6bvnhbUZ+eGeQLy4X+eLSdVfvi0MIlT0ATAB4FcBNAKYAvADg1io1XUHv6wAOF459G8BD2euHAHyrap2ZlrsA3AHg9JW0Arg1s30DwI3ZmExEpPsRAF8bcW5Muo8CuCN7PQvglUxf1DbfRHfUNgdgAPZnr+sA/gzg47HbO9aHfPGO6ZQfLle3/HC5uuWHt9ee8sM7p1W+uFzd8sXl6q7cF1ddoXAngHMhhH+EEP4H4AkA91WsaavcB+Dx7PXjAD5bnZR1QgjPALhQODxO630AngghrIQQXgNwDsOxKZ0xuscRk+43Qwh/zV63AJwBcByR23wT3eOIRXcIIbSzf9azR0Dk9o4Y+eIdQH64XOSHy0V+eNuRH94h5IvLRb64XGLwxVUnFI4D+Lf793lsPnBVEwD81syeN7MvZsfeH0J4ExjeiADeV5m6KzNOawrj8GUzO5WVf7FkJ0rdZnYDgI9gmCFMxuYF3UDkNjezCTM7CWABwNMhhKTsHRmp2SdlX5zyPRq1T/DID5eD/PC2kpp9UvbDQNr3adR+wSNfXA5V++KqEwo24ljM2058IoRwB4B7AHzJzO6qWtA2Efs4fB/AzQBuB/AmgO9mx6PTbWb7AfwCwFdDCEubnTriWGXaR+iO3uYhhEEI4XYA1wG408xu2+T0aHRHSmr22Y2+OPYxiN4nEPnh8pAf3lZSs89u9MNA/OMQvV8g8sXlUbUvrjqhcB7A9e7f1wF4oyItVySE8Eb2vADglxiWh7xlZkcBIHteqE7hFRmnNepxCCG8lf1Q1gD8COtlOVHpNrM6hg7opyGEJ7PD0dt8lO5UbA4AIYRLAP4I4G4kYO9ISco+ifviJO/RVHyC/HA1yA9vC0nZJ3E/DCR6n6biF+SLq6EqX1x1QuEvAG4xsxvNbArA/QCeqljTSMxsxsxm+RrApwGcxlDvA9lpDwD4VTUKr4pxWp8CcL+ZNczsRgC3ADhRgb6R8MeQ8TkM7Q5EpNvMDMBjAM6EEL7n3ora5uN0x25zMztiZgey100AnwLwMiK3d8TIF5dHkvdo7D4BkB8uS6/TJz+8vcgPl0uS92nsfgGQLy5Lr9NXvS8OFXT/9A8A92LYRfNVAA9XrWcTnTdh2BHzBQAvUSuAQwB+D+Bs9nywaq2Zrp9hWJazimEm6sHNtAJ4OBuDeQD3RKb7JwBeBHAq+xEcjVD3JzEsFzoF4GT2uDd2m2+iO2qbA/gwgL9l+k4D+EZ2PGp7x/yQL94RrfLD5eqWHy5Xt/zw9ttUfnhn9MoXl6tbvrhc3ZX7Yss+VAghhBBCCCGEEOKqqXrJgxBCCCGEEEIIIRJECQUhhBBCCCGEEEJsGSUUhBBCCCGEEEIIsWWUUBBCCCGEEEIIIcSWUUJBCCGEEEIIIYQQW0YJBSGEEEIIIYQQQmwZJRSEEEIIIYQQQgixZZRQEEIIIYQQQgghxJb5P8M2tvLleePUAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 781285 172590\n", + " Min thresh = 1000\n", + " Not Sliding\n", + "\n", + "\n", + " Winner = Not Sliding\n", + "\n", + "\n", + " FN ROI = 215ns_image_610066411380_CLEAN.nii.gz\n", + "215ns_image_610066411380_CLEAN.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADDCAYAAAAya0IYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADPi0lEQVR4nOz9e5yl61nWiV/vWrXOq1ZV9z7vnYRkJwRIBKNCBGZAHRgFURlmhlHGQUWc4AFnPA6B+Y2D+pNBBdEZBIwjIiOKMAqC4AkUEUlCEkFMzIGcs3f2qXd3Hdb59M4fVd+nrvfpVbsPu3tXdfd9fT796a613sPzPO+zVtd13dd930VZlgoEAoFAIBAIBAKBQCAQuBHUznoAgUAgEAgEAoFAIBAIBO48hKAQCAQCgUAgEAgEAoFA4IYRgkIgEAgEAoFAIBAIBAKBG0YICoFAIBAIBAKBQCAQCARuGCEoBAKBQCAQCAQCgUAgELhhhKAQCAQCgUAgEAgEAoFA4IYRgkLgJUdRFO8piuI3nvU4AoFAIHCCoig+WhTFF1/nsWVRFK+5yfvc9LmBQCAQCATOF0JQCLzkKMvy9WVZ/sxZj+OFUBTFI0VR/FhRFJ88/uX3lWc9pkAgELjbURTFf1cUxc8XRTEuiuJnzno8gUAgcB5xq4XZa10vfi8OvBBCUAgENmMt6Z9J+m/OeiCBQCBwD+GypL8q6VvPeByBQCAQOEH8Xhw4FSEoBF5yuK22KIpvLorih4ui+LtFURwWRfEfi6J4bVEU31gUxbNFUXyiKIrfbOd+TVEU7z0+9sNFUXxddu3/pSiKp44V1D/gimtRFK2iKL6tKIqPF0XxTFEU31MURWfTGMuyfKYsy++S9I7buBSBQCBwLlEUxRuLonhrURR7x9+p31kURTM77Lcefw9fKoriLxdFUbPzf//xd/WVoij+eVEUn3I99y3L8qfKsvwhSZ+8lfMJBAKB84aiKD6jKIqfOf6efU9RFL/D3vuZoij+gP38+4qi+Lnjf//s8cv/oSiKYVEUv7Moit9YFMUTRVF80/F38keLovjdN3u9fKzxe3HghRCCQuA84LdL+n8kXZD0i5L+uY725mOS/pykv2HHPivpt0kaSPoaSd9RFMWvlaSiKL5E0p+Q9MWSXiPpN2T3+YuSXivpDcfvPybpz9yOCQUCgcAdjpWkPy7pfkmfJ+mLJP3h7JivkPTZkn6tpC+X9PslqSiK/0rSN0n6ryU9IOnfSvr7L8WgA4FA4E5AURQNST8u6V9IelDSH5X0A0VRfNq1zi3L8guP//mry7Lsl2X5D45/flhH39mPSfq9kt7yIq8XCFwXQlAInAf827Is/3lZlktJP6yjX0C/tSzLhaQflPTKoih2Jaksy58oy/JD5RH+jY6+iL/g+Dr/naS/XZble8qyHEv6s9ygKIpC0v8o6Y+XZXm5LMtDSd8i6Xe9RHMMBAKBOwZlWb6rLMu3lWW5LMvyozoSdq8SaY+/Tz+uozSFrzp+/esk/R9lWb73+Hv9WyS94XpdCoFAIHAP4HMl9XX0++68LMt/Jemf6OR79Gbxv5VlOTv+HfkndPS7cSBwWxGCQuA84Bn790TSpbIsV/azdPSlq6IovrQoircVRXG5KIo9Sb9VR2qsJD0q6RN2Lf/3A5K6kt51bC3b01Eu2AO3ciKBQCBwN+A49eyfFEXxdFEUBzoSBe7PDvPv2I/p6DtYkj5F0l+z79rLkgodRc0CgUAgcPw7a1mWa3vtY3px35NXyrIcZdd79LSDA4FbhRAUAncMiqJoSfqHkr5N0kNlWe5K+kkd/aIqSU9Jepmd8nL79yUdiROvL8ty9/jPTlmW/ds/8kAgELjj8N2S3ifpU8uyHOgohaHIjvHv2FfopO7BJyR9nX3X7pZl2SnL8udv+6gDgUDgzsAnJb3ca8/o6Hv0yeN/j3QUCAMPX8c1LxRF0cuux/fyzVwvELguhKAQuJPQlNSS9JykZVEUXyrpN9v7PyTpa46L3HRl9RGOFeC/qaOaCw9KUlEUjxVF8VtOu1lRFO3j+0lS6/jnQCAQuBewLelA0rAoik+X9Ic2HPOni6K4UBTFyyX9z5LIu/0eSd9YFMXrJakoip2iKL7yem5aFEX9+Lt2S1KtKIr2ca5xIBAI3E14u45I/v9SFEWjKIrfqKOaYj94/P4vSfqvi6LoHhcX/9rs/GckPb7hun+2KIpmURRfoKOaYz/8Iq+XEL8XB05DCAqBOwbHdQ/+Jx0JB1ck/feSfsze/6eS/k9J/1rSByW99fit2fHf33D8+tuOLbw/JemFitVMJA2P//0+naRfBAKBwN2OP6Wj79hDHYmxm4p0/WNJ79LRL6o/IelvSVJZlj+ioyK4P3j8XftuSV96nff9ah191363jurjTI7vHwgEAncNyrKcS/odOvpuvCTpuyT9nrIs33d8yHdImuuI6P8dST+QXeKbJf2d49Qy6iQ8raPfjz95fPwffJHXyxG/Fwc2oijL8qzHEAjcFhRF8Rk6+kW2dVwYLBAIBAKBQCAQuKtw7HD4u2VZvuwahwYCtxzhUAjcVSiK4iuOrV4XdBQh+/EQEwKBQCAQCAQCgUDg1iMEhcDdhq/TUY2FD+moj/qmvN9AIBAIBAKBQCAQCLxI3DZBoSiKLymK4v1FUXywKIo33677BAKOsiy/5Lh7w8WyLL+iLMunznpMgcBZIb6HA4FA4OwR38WB242yLH8m0h0CZ4XbUkOhKIq6pA9I+i8lPSHpHZK+qizL/3TLbxYIBAKBqxDfw4FAIHD2iO/iQCBwt+N2ORTeKOmDZVl++LiK6Q9K+vLbdK9AIBAIXI34Hg4EAoGzR3wXBwKBuxpbt+m6j0n6hP38hKRff+ogtrbKdruter2uer0uXBO1Wk1bW0dDLIpCi8VCy+VSRVGoKIp0fr1elySt1+vKz6vVSpJUlqXW67VWq5XKskznF0WhWq2mWu1EV1mtVlqv1yrLUrVaTWVZarlcpvPq9brW63V6jbH5eIqiSPfkHrzGGLgvr/u/uT/X93n5eP04xsd88/Ewt9VqVRkv9+VaOfxejIN7cK5fL1+ToijSnI+ftbrdrmq1mhaLRRoT186v5WPaNCdfB4e/z8/MoSgKNRqNyrx9DX0/5M9i07r4s9t0nXxtNs3L1439u2nf1mo11ev1yjl+7dOekb9/2lxeaK3z+fn4/Ph8LvlezZ+J39vHvmn8fJ43jSt/za+Rfz5Om6uPOzvmUlmWD+jOww19D0tSvd8rH3/VWs+8u3NbBxYIBAI3gqlGmpez4tpHnkvc0HdxfA8HAoHzikNd2fg78e0SFDZ96VfYRFEUb5L0JklqNBr6zM/8TA0GA3W73SQsdLtddTqdRKQnk4meffbZ9As/pH4wGKjZbGo2m2m1WmlnZ0ftdltlWWo8Hmu1WmmxWOjpp5/WaDRSrVZTq9VSp9NRp9PR1taWyrJUvV7XwcGBnn/+ea1WK3U6HXW7Xe3t7Wk4HKpWq6nX66koCg2HQ02nU41Go0RQGWev11NZltrf39d0OlWz2dRgMFBRFNrb29N0OpUkDQYDNRoNLZdLtVotNZtN1Wo1DYdDjUYjrddrNRoNrddrTSYTtVotbW1tpXFPp1NNJpO0DogvELH5fK7lcql2u61arabxeKzDw0Ox5vV6Xb1eT51OR8vlUuv1Oq0XaDabaQzT6VSz2Uzr9VpbW1tpfDwjxJfVaqV6vZ7WlnWQpE6no8cff1yvfOUrNR6PdXBwoKefflrD4TDNod1uq9FoaLFYaDabpbEgpiyXR00b6vW6tra2tFwuNR6P0xxYS4hkrVZTs9nUZDLRcDhUvV7XxYsXNRgMtFwuNZ1OtVwuk8DBGNhTo9FIy+VStVotCSCtVivtyVqtlvYbYyiKIl0DsA8Xi0VlbJ1OR81mMwkePK/1eq3hcKi9vb00rlarpX6/r3a7ncQGBBnEG8B8eNY8Qyf3rHmr1UoCC6IdY2TPLRYLzefzRO5ZM66H0MH86vW6Wq1W2j8uxLGHEJiKotBkMklzWS6XWi6Xqtfr6fzZbJauXRRF+rwwZ74Xtra20vr5tTjGPysuirGWuZCxXC4/dp3fe+cN1/welqrfxW119cr3/Da98k79tT0QCNyVeHv502c9hBeDG/qdOL6HA4HAecVPlf/vxt+Jb5eg8ISkl9vPL5P0ST+gLMu3SHqLJHW73RJiAjGCnIDFYpFEhtVqlSLco9FI0+lUvV7vqqh3vV5PxKvZbKrb7WoymVSinUR8iY5CciAii8VCjUZDjUYjXXd7ezsdW6vVNJvNtLW1VXEjNBoNtVqtRETLslSr1UrkaTweaz6fJyIzn891vBaJyC4WCxVFkcbkkX4InUewIa/uwvC5Mkfmxrp2Oh31er20HoeHh4koQura7bba7XY6xyPB7vbg/u60QLApy1KLxULD4TARccgux0P+Go1GIn3uBmHO7nhgrbe2tjSdTjWfzysklmMbjYba7XYSKng27XY7rT+kGgEE0YJ1489kMqlEsllbn/dsNkvimBN/J8XunHBHDs+i3W6r1+slss36uDMAkcWj8IhmCE7+nFzMcOLszgfuxb8RWdxxwlhZOx+TPy+ENr8/ny32UrfbVbfb1Xw+T9dnDDwH9ncuyPgeYQ38eeROBt87gO8c7ouT5w7HNb+Hpep38aC4eOuL6gQCgcC9jRv6nTi+hwOBwJ2G2yUovEPSpxZF8SpJT0r6XZL++9MOLstSo9EokUsncG5ZLstS3W5Xs9nsKvJApHM+nyengnSS/kDEWFIiMhBaTyOApNTr9UR6nchz33a7nYg+pGcymUhScikASOBqtUqRaI++r9fr5CZoNpsV8ra1tVU5BzLm0WQnVsxVUiLVTpCI/CPKzOdzLRYLkXLSbre1Wq10cHBwVdoFUeytra0UqfY1Yd0g1S40uHBy+fJlXbx4UTs7O0kQ2Nra0mQySfOEhPI+68O9POrc6/XUbDa1XC7TcRBV6UR8IarNPabTaXIDeOqJp4FATFnfra2tJBSwFuwp1oM9w3jYg6xjLgwxTkQRf47sUca8Xq81Go0kKe1n5usinAsUrJWvByD1w9Mq/BjmPZvN0nNCwNiU1pI7AXBlILi5WMi+xOXT6/W0vb2d5ugpSzwbF9ZYHwQ7BBvERM71lJr8PB/rppSLOxw39D0cCAQCgduC+C4OBAJ3NW6LoFCW5bIoiq+X9M8l1SV9b1mW73mhc5bLpSaTiZrNpur1uubzecUt4MTWI+MIEFtbW+r1ehoMBjo4OEiEpNlspsjmgw8+qOFwqP39/VSPgT+tVisJE4gMq9VK4/G4Mk7ECI5xsthqtRJBbDabKoriKkt9p9NJVvjhcFixyCMQMB/mR+rAcDhMhHk6nVZEBEkVkjQej1NEfjqdJnLGtSDA7laAIBPxx/HBukuqpDZwnhM8Ism8x7hcaBiNRrp8+XJya3DP6XSq6XSaxtbpdBK593QHJ8SMA+LtwgJriGCDUwICOZ1O01q7OISY4fN2ssx93WHBa26X9+fE9bk2+69er1eu63uPtcX2zzURQyRV3DQc63UYvL5InhIBcOggMgF+rtfrWiwWGo/HlVQBTzVwcu7EHnjqCUJIURSazWaaz+caDodpPhyHeMDz8n3ggmGj0aiIiy6EcW/+Zm3448f4H3/udypu5ns4EAgEArcW8V0cCATudtwuh4LKsvxJST95vcdDiiB+RDXJz/dIu5MXcrQhG9QvGI/Hmk6nlSh/q9XSy1/+cnW73VQnASIGceA66/Va/X4/1SmQlMjfaDTSYDCoED1cBZ4O0Gw21e/3JUnD4TDdp9FopHoRBwcHms/nSczIRQKs6J1OJzkaIGyQK3cDQPgajUYas69fq9VSq9XSfD5PQgck3sUAyHVeeBHCS8ScNXQnCGTQiR3kHtI9nU5TPQOPpuOgGI/HyZECEXcxwIUlLPl5qowLNUT3eZ2/WXufp6fdALfRu2Di0XOcBO52YH8tl0t1u90k8rAWrD/kmZoK/vy9UCj7E4eNp2G4AMCY3VHg6+epD+yTTU4cjnVni6dZ+DnS1UU+PXWCzwv7FtGK+gjsB8SXTqdTcZf4nnc3COvOerrThOfBOZ7G4NfyNBTmn9fsuBNxo9/DgUAgELj1iO/iQCBwN+O2CQo3AojParXSdDpNpJC6BV7sbbFYJCLS6XRSnQKcCPzM36vVKtVN6Pf72t7eTlFiHALck0inp1z0er1KeoI7CSAf3K/b7abceYg1NnG340tKAgTFEhFQqPlABFs6SqWAVEMaIdGsGxFbFyUQVBAX1ut1Eg2IrOPkYH4IOJ6u4A4DCB91BnISls/Di/AhmpDicvny5UoxQo90kx7BvXCZuIjAdSn+xz7iHMbE37mFPncQ5Ln+Xo/ACbYXMPQ97EUivVAi96K2Q6vVSvuG+gOs3XA4rIhLeT0BFwPcreGRdRcKPNoPIfeUH0/r8LXy+hMIPXlKg+87zmOvsIfymggIO6w568jzJvVpe3s7jdvrW/B8XdBAWMTZxHeGi2J8bvy5cs3c0eB7P3eQBAKBQCAQCAQCgROcC0FBUoXEO5np9XqJQHjEVDqKFG9vb2uxWKjb7arX6yWHAt0Y6EyAEEGdgMFgoPV6nQoQ5hXlKfBHBXwnUhAxd0tApCFfniKAKHHlypWU4gBR92KSnuMP0fUcc+CRcMgbpAui5mkink9OoT+IZr1eTzUnyJP3SL27H/xZdTodlWVZKU7InCk26Tn3EErmiKhAPQIn4W5fd2cB1/HoN+RxtVqlVJJms6n5fF55NrnwwfmsEfsD4cJJMff32hF058gj5ggTrKmniMzn8ySC5YIE12DcHCOpQsTZg56+wNzymgZe1JM1J30Bt0Fe34H19SKSLkJ5/Q3G4iIGx7O/vBMEY2Efcj6pQhS7nE6nycnB9wL39Ofuz5B9RiFKT2/wNWZ9GKvXTtl0XO4YCgQCgUAgEAgEAic4N4KCExeKBc5mM+3t7UmS+v1+Ig2QVaKQHkXPCSxklQJ8WOjpWkB9Aa9fgC2bqD22aogkr0lK0XFJFQLH+CFXtHmkJoGnaiA4rNfrRMLX66OWgZA/d0RwPmsBafLic4ggObGCKLv1HPs9DhHqP7CGbmP3iLCkVCBzU50D2m5660lILefnUW4n7zhU3NXh5JRxU1jSSaqnPxD9z7td8MwgwwhTXgvDaymw/nkqgVvqvaCkp1/kKQQ8H85nn5Lu4WIF2BRZ59q+/tJJbQmeOWSbNaTLyGKxqHQHQfxA+HJxi72JgOPn+Dzzz4enU/A82b/Mpd1ua7lcploKs9ksjReBiPnkAgZ7g2eWu0vcneEdXRCsuI5/xjwFKhAIBAKBQCAQCGzGuRAUPDoonbS8Wy6X2tvb03Q61YULF9Tv9xPJ8KgpLQDJh/eia1wbskLUk3Z8EBgInI8HJwL2fY96u0V/MBhoOp0mgsLxkDbIca/XSykGbiN3kuYFEZvNpqbTabrOeDxOogOCiueWe4HFbrerfr+v8XhcsbYjDkgn6RHYxDmGa3htCifjEDKiyLmokFv0mR+uD8bhHQ5yocGLF/ozIfruUWSKFFIjwsk2hFJSEiPyyDzv+b04B1u+j8HrU3hhQielTmLL8qjApKdA8BzZK8yHlBkcJ16g04kyUX7WjX0PuBcCB39arZba7bY6nU4SZPzc/LPoThHmxWv+vF3IYJ1JWXDRBucEz8ZTODzdhzQjPquSUgtMr4/gqSVeTNOfvztVEA29voK7XvxcdzAEAoFAIBAIBAKBq3EuBAWIDUSWegTYlymMSGtDt3BDDrCYQ1AgawgJns8vnbgOer1eui+v5dX8e71esnu7y8At4Ts7O+kc0grG47EODw+TeLC9vZ0IPA4FCLYX0kNokI5I6/b2tqbTqZ588knN53NNJpMkqLgAQM44ogaWcydhkGF/rdlspsKTvO7kHrJWlqWGw2FlDhB2FxQciCfuFvDieVyfdXMC784Iz6OXqi4DrunChx/D2OfzebqOF//zgn6ka5AO4vuFe9Otg/F4xNsdHE5auSfjhZyTaoNLgPsj0uSpNjwLJ8AOfy+P5LsgQVeTPDKfuy88jQXBK0+v8Ov688mJvl+L9Br2CPu+0+kkkZA0FGqTbOqiQZqE71P2gXf2cDcDIozXluDaLnDk+ywQCAQCgUAgEAhUcS4EBc+33t/fr+RDe1s5Wh5yDr/0k/sOOYBUQFAvXryYIqxOrrD+051BOqkPAGgb2W63kztib2+vQhQhKJAt7OvUX4CgkwJAKgQgYu759hAb0g9wSkgnkfZutytJOjw8TPUeIEcHBwcaDAZpbnm1fElpjBSzxOEBOSd1w+cKaUZgYc2cwHpEnDnxxyPI7mDw60M0XaCgRgVCAMJBnoLCnqAYZ1EU6na7lf3gkWjvSDEej1MtCdaLPccz9HvwnN0Fkac2MDZ3bnjk27tyeCqKp2lQ08Ov6xZ/4OktEO68NoCvQ7/fV6PRSKk1/hx87bmPj537eCFLfkYM4Tp87txFQzoRz5w5IrS5Y8bvw8+ME+HA74+zx+tO+HjcQcNr1JbwzwfHBQKBQCAQCAQCgc04F4JCvV5Xt9tN5BUBgSg7RA6xAScC5JI2fDlpgPDiDiBaTjSYQn5OMCGOuAzolEBth1arpcVikUQF6USE2N7erkR9nRBybcjc1tZWivZzL+zus9msEuFtNBpqNpu6cuWKpCPrN8SK87iPV8YfDofa2dlJRNFrUECU3AKe11lwV0Cegw/yKv+kI1AzAXIJKUVg8MKKLmzktQeIQiMQ8Ky5t6cnMAaINIRxuVxW2nt6NJrjSDVxUYW1YEwQfkQH5pnXSmC9fI4+ZqL/0omtHlEJh8xpQgnXdIGBPb5YLNIz8/XweeIMcEGD8bjgw9zzlAAXNdibXpeA8ecClotufDb8s8264Ioh3WUymaRn12q1Un0JxAfSnZgXopPvHfYWAkPuOuEzSAoLc476CYFAIBAIBAKBwAvjXAgK/ks9pDVv5wjpoisD50Eutre3E/GhbaMDsgCB4hr9fl/NZjPldnvUcnt7W1tbW4ngS1fn5Hs1f29dNxwO1Ww21ev1kiixWq1SkUJJiZT6OiAqQH7W67X6/b663a7uv/9+TafTVC/AuzJ4lFg6IdaIJp7q4OsBAWXdJ5NJKpTolnei9f1+PxF5rycBPCffW2bmDgGPpnMvL/yHIEH02f+9Ka89t9rTjYE9wb09597P88i+R6rZL96FxFsh5mvvY/N/e9FIr9fhbRBdXOAZeb0AF1cg49T1cEeP125gzDxrzsnFM4/M5+vqrRs3OU1c/MrTBXwNXFQjvYTUJU958toMeScNBBpfe8TDsiyTwEEtDf9M52DcCDSIDi6YhagQCAQCgUAgEAicjnMhKEAii+Kk2vt0Oq1U0Jeq0XCi8RAaii1SuV46KaroKQ6bSF+3200RWo8qk6ZAMUHIaLfb1WAw0GQySSKCdEJKPWKOiwDSDFmnxeUmwuM2da9bAFl6+OGHdeXKldS5AjJEuoBHgYfDYXrfayywnuSgM89Op6ODg4NEqj3C7O4OX2OIrkewOd/rEHhtAa9bgdjikXTO7Xa76nQ6Wq1W2t/fTwIS13Nymae0eOQZYuw59l6g0aPVnr6AsMM8cCgAr1/hKQPuhOA+jIc94OT7tKKIfD54L6+JwRh9XbgnYg3HFkWRRBkXLUgTcCcFnxt/RrzunysXnFhjL2Lqe8TTYVhXdzG4S4K5+hj8ubJ/eXY4S7xDCdfy7xHWxP+wHny+PFVk0/MIBAKBQCAQCAQCRzg3gsLOzo6uXLmSiJmTckmaTqeJNEgnhQ+dkEIcXTzwIoNuS4eUQCAhQ96xAJIBoRsOhykvHyEBq7x0YkfneB+vVG3rKJ3UZUCEKMujwoF+zdlsllwJzNedEJPJpFJcEMJP94XDw8N0LWpDuIvAyb13z/B2eh7px8kgHRH6yWSi4XCYbOf5OZA2f67UyxiNRomgeutCHACkQHi6hkfnERPYQ5Bit797FJ7rbyrU5x0zckGH9XKbP2CskOC8roZH1qlT4A4b35dFUVRqC3gKidfm8Og+5BwBx6/LeT5+3yu+F3mP+24i+HnaBefxmteM8LQB1gv3EPuR6/MZc8eMp0JQHySvF+EdNngPxwYCwmldIJiDj99TIfz9EBUCgUAgEAgEAoHNOBeCAp0MaAvHa91uV71eT7PZTFeuXNFkMtF4PE7OAOmoPSJkJC+0RuTSOz6QogDR9Ch1s9nU4eFhiuK22+1E+tfrdaXQm1v6eY9Ui16vp3a7rStXrqS2fW53n8/nqcCiR05xGPC3p1FgZaeeQ6fTqczHWwviAphOp6ngHmOFuC+Xy5QKQeFLSKnb0JmvW+J9XFzL6xXk7gDpJNLrwgJkeDabJaeFX4v15Fp0yeh0OulcJ41ec4J0hbygn18PAQThAWLrZBlhCVLrc3CCjfuE9SFtg/G5+2JTygXwyLqLMtyT8zc5NYi2e/oE+4I1Ys08yo/4sYmwO+l2Zw/rnQsZtHp0V4OvJefmKRPc39fKj0Hg8uv4ODiOPeuOFf7wzPz7In+GjDtSHQKBQCAQCAQCgWvjXAgKkirdDNyF0O/3df/991e6CozH49Tq8OGHH65YnolyupUcMpG31IM0QFboFjGZTFSWRx0A2u22ut1uysfe29urEEcnLRDgVquVIvnT6VSSEsmFLHvdBQg/JM4FC2/d6NZwUikgYU7oIdHUb0BU4T3uj/gBOec6rVZL/X4/FcWDoOWkudPppJQJTwPwIoZO5HmPSv7z+TyltvCMSFuB8PFspJM6D81mM62N133AmQChd7eKOydc3HFBqdFopI4QfizX9kg1z75er2s8Hle6YTihZ87+el5U1IsYStXc/pzk8753vWDfUMDQBQOvpcBxy+Wy0hYzFw7Yb56ugcjE/f2zmtdJ8HoRjMXHlLsBvJ6Df5587dgPrD3XckHOnUXuLNhUcyMvaumfiTwNJxAIBAKBQCAQCGzGuRAUIJNEyyF6EEtJKSoPwRmPxzo4ONB8Pk/tE4mye/0F0hiIXHu+vxMq6YhkdLvdRFAhuESu+QN5hAhRGJFINtF2r5EA8YLkQgY5l7xzrglZlY6INITKc9e9LgJjhqCxXr1eL9WkoFYCKQeS0rp4brnb0CVVCLJHlLe3t1N3Dndq+Bw4n2t4JwlPafCijNSDmM/n2t/fT0QPl4VX8ifNgXGTpoLI5G4Dj0Ln88FJwrPx9BRPWXAxAmJLGoOnUeTpAV4/wYUMH7tH1T3dwGsb8Le7R7iHt/FEoOKPp2K4YAe8NoGna/h+y1MJ/Pr+WeZvFyj82v6Z8zX2FBFPx8jdRIyFPcA+kFTZBz535sJcXbhw8YG1DodCIBAIBAKBQCBwbZwLQUGqEi8i+9QAIFINsSb6TNFBiKkTbidqpAY0m80KWXViAoEnxQKS7G0DIbuIBJC+TqejWq2WCN50OlWv10stG2l1B6Ell3xnZycRIe4DGXayRo0B3A7cu9VqJSFCUhIVsPs3m031+/1EyrHtQ8LLskwdKNxVwHjc3YFAw3oigtRqtTSP5XKp8XicIv4eQXdCS0TeOxyMx+NKNJxzx+NxmjP3xOrvaRV5Jw5JlXtuyp33FqTk7nNvJ81+Htf1DhrsR39mHlF3QcHrZbCvvXYD/+ZcRDCP8jNPUnOApwbwmUBU8RoJXlfgtBoBPlcIvne68IKTXCcfS+422HR9xsNzQ2DzGh759Vm7XATZJDxscnm4OAJ8nvkeCpdCIBAIBAKBQCCwGTctKBRF8XJJ3y/pYUlrSW8py/KvFUXxzZL+R0nPHR/6TWVZ/uQLXYtf7p3gE/HGak6tAKzupEiMRqMUuYbo4xbwAovekx4gMjgJ6Xa7KssyEVlvt0jkvtVqVYgx6RKQEQQMrP3tdlvj8Vij0SgR7mazqZ2dnatqDDAWzzd3t8Lx2qdzINkIE8PhUNIR2ex0Omq326lDBfUbIG4U8/OCgu6iwM0wn88r6+HpBMyj0WgkcYd7uJvAO2HkUWZqPhweHmoymUhSIurUzfDaGk6qvU4A+8WjzKTAeJ0Ej6K7owDXAY4Nru8RdebAM0Dk8e4Rfmy+x0l94X4uCngE3YUMjs+dAP6aF1pkztwL94WLGS6Q5AVN/fkwBhcY8hQCT/VAQPI19vPzeXjqBGKC14rIazzw7L2QqIsKvofz19zpkY9h07/z484rbuV3cSAQCARuHPE9HAgE7mW8GIfCUtKfLMvy3xdFsS3pXUVR/Mvj976jLMtvu94LYZ/3nHcn2rnV2SO7/Hs+nydyRk0ASDART7fAc73lcpmIDJXzESsg27gOIGmAc8hndyIICXLCQwSfsUH+icb6nDnXq94jhkDqmQc1BdrttubzeRI/IIrtdjuJLdQZkJQi9B6Jz23qiDF+b5wJpFj0ej01Gg2NRqPUvcFdCuTsMzcnhhD47e3t1M1iMploZ2dHg8EgjdcLH7KmbotnzzB/ovk8I5wWdEqA3ANIrbes9Cg1RJl7eZ593jaTZw055l64H9wV4ef6muNUwU2DaMX9vdYG4oSvCevPnHC05G07ec+vx+fN581+cndIXkDR0zJyR4rvr9wF4MIBgo938djkUsgdIb63GA/38efq8M/raWkQd4KgoFv4XRwIBAKBm0J8DwcCgXsWNy0olGX5lKSnjv99WBTFeyU9djPXKopC9913n/r9vvb29hKRgehAxkhTcAIC4XXS6BHN8XisXq+nTqdzlaDgJIM0AIQKTzuQlAQJSer3+yn67uNot9sVkuPCgP8NQT48PEyWdieECBQc58Xo+JtUB0htrVZLbgSPgENouTZtCb0NH/f3GgdeKJGuCjwL1pZzcHncd999ko6I4nQ6Te4DSRWi22631el0kpCD64P6FU5eu92u6vW6RqNRciu4KJFb13E1HO/Lyjrktvg82p4/uzwazr0oYImwwT2cKHPdXBzjWXok3QsydrvdlK4AuF8uPHCM7w+EG/YR9+JnBIVc/MKt4nUMvJYHwhPEG2dInhbCfN11kTsccpLu6UN+7dwFxN5zZwmfV3epsD5egNQdF+5UYEx+P9+vd0LKw638Lg4EAoHAjSO+hwOBwL2MW1JDoSiKV0r6NZLeLuk/k/T1RVH8Hknv1JFie+WFzi/LUru7u3rggQcqbd/yvH5IFCkPTl7I4fdc9V6vl3LzIdtY1J2ESCe2bUQDjsHB4NFUt+lTNwHSmhd/k5TqFrRaLQ0Gg0Q+SUWASHlBOc5nDE4OKQzJtYk4NxoN7ezsqN1uJ/eDR4dzYujkESIlHRWBXC6XGg6HKfWAOdBqErGG63gKBOcDxCDWD3Lna9rpdHTx4kUVRaHDw8O0ru12OwkoLpZwnv8NEGkgg+4uYA19L0lKboGcMLOngP+bvcCz87x+3A8eVcfWvyla7kIGBTHZj8wZBw57xNeeceIgQCTw+3gtEa83wnV8XhB2kNeDwEngwoy7CNhXXM+dHy4K5uvpAoUXgWT8XpfD91K+lqx93uHD5+DOi/zZ3ql4sd/FgUAgEHhxiO/hQCBwr+FF/wZdFEVf0j+U9MfKsjyQ9N2SXi3pDTpSa7/9lPPeVBTFO4uieOfBwUEi+HlxQqKXEFtvzYgtHhs+1nt+hpQ5MXJy7cX/pJNWcqRPDIdD7e/vJ2JLm8Ktra0UZd/e3q7UZXBA6rCbdzqddH6/39f29nYlkiydkD5SKRi7t3V0MuWEkGMZH9fjD2ssnZBGukFgYed8rsd6QOaPn52m02lK2xiNRhoOhym1gT/UdmDd8uixR7JxeFy8eFHb29uSlDp4bG9vq9/vq9frqVaraTabpW4gPCsEgZxYM2cn2rkzwcfEnkBAYR14FhDQ+Xyu2WyWnp1HzXFteJqHO2P8fpvECtbGxTHmkh/v14Gg425h70Py3S3gKQl5zQHfZ3n6An+8Noa3e3RwP+bktToYT17g0/e1O3xyR0HuLOFv9oB/dtzJ4nNx+L7InSp3Cm7Fd/FCs5dquIFAIHDXIb6HA4HAvYgX5VAoiqKhoy/OHyjL8h9JUlmWz9j7f1PSP9l0blmWb5H0Fkl62cteVo5Go2R7r9VqybZ+fGz6txPkbrer3d1dDYdDTSaTFDHu9XqJXLRarUQiut2uDg8PjyZudnW/frvdThHnoigSaex0Ool01Ov1ZMVvNBopOo1lXDohjtJJpHVra6siSkhKLS7zfHjaX0KunSw7OcvWNBExyBnHe3oDY3Kyipji1vLpdJrWC2dEboMnPYMUFe9mQVoA7T5rtVqqIeFrBbnkvsPhsNISUZJ2dnZS+8s85YU0BEmJzDPGvL4Fz9at8oyhLI+Kf3a73SQoIGq5YMDcWEfEg1zw8QKQ7Akn8zwz76gBUXbnSV7oMXfBcB9EKH/eFMjclKLgBJr5584E1tdrGnj6hTsUPPWD6+W1Jbgmc8ddwbPYlCLBtfK0nPx6kq4apzsiXKTM6zjwfDaN704QFW7Vd/GguHj+JxsIBALnEPE9HAgE7lW8mC4PhaS/Jem9ZVn+FXv9keNcMkn6Cknvvta1yrJM9nnqE1AQEbIBSVyv1zo4OKiQhEajoclkUiF6OBguX76sw8NDLZdLDQaDREZzUsI5XjhvNpslAkuLRk8h2Nra0u7ursqy1MHBgUaj0cYUDeZIccTZbFYpSujXQ8SgneNkMkmRbhcuSAXw6CuuAXcaeNSbcThBgoh3u91UAJB6DKvVKnVYgJByX4QUUkp83m5pR8DwQpDcFwGB83A0QPgg79y71+ulMTphPd53KXLO2rI3eBaICd7pALCOXsTQSa1HrHkOXpeCdfRimXmdCo/s+7PYFDV3wu5jR0Dg+PX6pEUoz8FFHyfM3MeLKc7n88o5iBp+DJ8JXDK+n5xwc55/vjwdhGN47v55xd3i7gVfH08b8dSKXMDLxRKEDkQQ4Gvt489xh4gJt+y7OBAIBAI3jvgeDgQC9zJejEPhP5P01ZL+Y1EUv3T82jdJ+qqiKN4gqZT0UUlfd60LQYZJD6B9HznsHtFeLpd6+umn1Wg09OCDD+q1r32tLly4oMlkkmzwkDnaNiJMSCeEj8iwk1qEC8jZaDRKHRhcaJhOpxWyR1FB4PUDiJBLR8UcSXtAAHHSy/0bjYZms9lVhBdCh8uBto7Mj7Hmtn/ILNFbiJg7Ivxe8/k8pZhAypbLpQ4PD7VarTQYDFKtBu8WkKdikDbSarVSOgFiCXPxVA0XVpgve4H9gIPFUw/8Ol77wNcuj7TnUWj/Q+tJ3Bpcw0UG4FF9Tz2AwPqzZU28u4STWU+v8LoUuRUfUs35kPG8KwhryTpyjLtbnLxzTdYrd0F4zQpfQ3fClMdpPl4nA+HFUxN8XtzTRR530vg68dx5nWu488JfdzfPaSlCp+G09IhziFv2XRwIBAKBm0J8DwcCgXsWL6bLw89JKja8dcP9dSEcEGJIIXZoirH1ej1J0uHhodbrtZ544gmNRiO94hWvSJH5vb09TadTXbx4Ue12W4PBQMPhsEKgjsdfSSGAmGO9rtVqlQKKkP1utytJycFAvnpOrr0VH1FkhIl6va7ZbKbJZKJGo5GuSaQZaz8F+RifR7sRTTxPPydweccGxoMLgbQNxg0J8zX3NoGQwtFopE6nkwSbPPrLtSHnLioA1g9y5+kMENjRaJSIbV57AFLKfHLBCCLNOW6nZyyj0egqEgrRZDw+N6LtTnzzCLqkihiQE+FNVnvWnTEitjjp5j3ft1yXv5mzOxcQULinuxs2Wfr9fi6MsKYc6wJBXtfB0wy4Zu7ycEGAv3PXSC6eeNqKz8FTd3Jhgde9Tok7F/J0D3+Odwpu5XdxIBAIBG4c8T0cCATuZdySLg8vFvyCTz0ByJQXEPQ/HPfcc8/p4OBA3W5XFy9e1Hg81jPPPJPSBdrttu67777UilI6IUWTyaRCtJyAIyx4McH5fJ7EALoYQLiI/jtJgZRLJ84DIukQF7eH41RAoICUTafTSk0AHydrBIH1bhRepM8jytjciSD3+/2rHByQaVIQcqcChFs66uAAAc6FBQoDFsVJt4I8Uk00nn+zBoguLmwwF7e6SycdGlh3npWTQ+/YwPP17hM8Qyem3mY0t+BzjlRNJ8n/9nX3PeO1C/xz4CIa1/Zn7PUc3CHg6R5eq4Hz3IXg0XnvbMGYXdSTlESKPKrvXS3ywoeetuLuEHcKeJoF82AMeR0FX1cfJ+f5d0X+DHiueW0FF2B8/f06+X0DgUAgEAgEAoHACc6FoODWZ+zm0kllePLUPTd/sVhoOBxqOBxWCuNhlZeUov+9Xi9FvylgB2GUTgrr0dIvJ3A4ESBfHF+WZbLvz2azRKCJ2kNgIeAUAnQnwGQyUafTSed6qkaj0dBisdB4PK6sU946zyPEHhl2t8JsdlQ1eLlcproHZVmm1IacSLI+RH9xJFD4j/VyESavmdBqtdLzQlDguXoU36P+0+lUrVarkv6SW/Klk7QI3BvegrNWq6nT6VRIpD8L1pnuFr5mXJvnDiGFlLurxYkyLguPsjNu75iRR8+9XgPCkqeg8Dr7rV6vp33rkXV3svg1/XlyPKIY5yCccB0+f94pwutkuADne827PSDE+WcmFy1cbPB9sUl4ykUP3++IM+5eYR6INz42v2aejpG7X0JMCAQCgUAgEAgETse5EBQgPUSpPYILWZ5MJppMJqlg4HK51HA41KVLlzSdThMZIQUAAl+v19VutzUcDhNBlqoWdIgwUfHxeJxaVM5mM41GIy2Xy0RSaQGJhXw0GiVS5lFh6cRFwD3zonLT6VS1Wk2tViuRG1IGIFaj0ajiMiC6yjwZv5PivE2kpNQ5go4YZVlqe3s7FVqUVLHdI4Ag1mxvbyeRxWssOMif99aFjK1Wq6WCigARgfXxdfJjvJiiCxcQXIggrgYXqfJaDJ5f72IK48yJ9CaHBCk5eZqJCwHsY3823iljUy4/r7l1n33l3Sr8Pu6E8M8S48Id42vCMe5qcLeGu4QajUba3+6OkZRqWOQuBN53x0wuKPh4gDsKcjLvtR02uRVcQGHN2cPeJUNScinkaUGBQCAQCAQCgUDg+nEuBAUKDUIOEQOkE7EBh0Gz2VSn00nE6vLly7p06VIixRTtg0TQirIoitRJgj9EUHEtQIiGw2EaF/Z/iDI2+dVqlcQL7uWtCLk2hDSvEyEpEb3ZbJaItkfeW61WIshcGwLUaDSSrZ9rlGWpVqtVSbkgdUOqRoYZL10k8px2F1nAzs6OLly4UKnFgGOB+y0Wi5SCADlHMIEEs35eF4D1ZQyQeI/qOylFeMJR4ukpfrx0UtPC55eLFpBv4AUW+Zl1RCjgeOaJoyQnvH7PvKOCR+SZCyIA4gXj8NSGvLYD48iJPPfz9piMhc9Br9erdFVBpEJg8HomLlS4i8dbLrqjI69P4KKA1zJwF4of6+KEv8ZzAJtECheK+NmfvbtPfN97qkWIDIFAIBAIBAKBwOk4F4ICEe9er5e6KNCuUDqpccBx5PbP53NNp1MdHBwkUgz5gTRDXIh4EplstVqpFgPpChw7HA4TQd+Uq06k38kT0XEnjdwfUYM6EZBOSLALKJBTSclxgS09t5R7xX7Wqt1up7QPiiH6sS5e4JDwLhWeouDF/3B7bG9vJ1v9cDjU3t5eKojJWo5GI0lKbSZJ6XCHwCYngVTNjfdCiuwBdz5Mp1NNp9NUnJLXx+OxptOpdnZ2EvnO6xIglOQ5907KWWsXV0jHYB7erpD7S6rUXyANhjkBhJO8oKCnUbD/XQDhHEQ2BIjcDeEOCt+//rny9B4n9C5+baoR4SkaCFoc7y4LTynIBQ/2ICJFnqqTp/RsckFwLv/mOW0SHtwZkwsFuXvCP/eBQCAQCAQCgUBgM86FoEA+drvdToSf6Dm1E5yIbG9vJxFgtVppNBrp4sWLkk6ix37t/F7SSVV8IuzT6VSz2UztdjuR4sVioW63m1IdnLQhRgwGg/Q6hJBoL0TK2wRC6Jlzq9VKKQheSwDHBU4I2k+6gEDKBdeCXFGDAQcBTgYi+Z4yQE0F6SQSPZlMUpoFZJJ16vf7unDhQiLMdNDw9BSuzVojVkD8qAeAoICg4e0aEQ+8aKA7KXgO3A/hhJ893x/nAMIN48KqD+Fkvk7+PY2i2WxWBBoXHBCC8vWCHOMo8TVlH0JecY0wz7y2gxdk9DoawAsT5uIA40Bsw/EiKRXCZF095cGFjJxg8+z8mrgs/HnnghHgGbHOiFinuRPcScCc8o4XLlx4PYVcQNjkcvCfXWAJBAKBQCAQCAQCm3EuBAUA0fIIP4IChJX3Op2OyrLU3t6e9vf39eijj2q9XiehARIHsWi325XODp4+gGXbo7GIDHmRRIC1H6cB48KKj62f+VC4kUg5xKvRaCRng9vDIbakWVAYkvFRdwDhgWi1pIoo490biEhDiiGOHpX1teDPdDrVM888owcffFDdblcPPfSQhsOhnn/+eRVFoU6nkwrgYYHHBbFardRut5OogLAB2eY1F2skXUVkvdYF+4DaDl6kkJQPQPTeRY5NJNGFCo/ag7xdpDtK3D4Pic5bcXI9Fxk8Io8bYzweq9Vqqd1uS1KlgGYu3ECYGRfknON5HggGCBLuDGD8/nngc+R7MgdjdyeFC2U8w/wefK5dIHDxwMeQ11dwFwHr5+LMJgEkFyZcwMldE45IdQgEAoFAIBAIBK6NcyEo8As+dv3xeKzJZHJVBBhANiBoBwcHOjw8TJX+pZN0gUajod3dXR0cHFRIIQTV2wNOJhN1u121Wq2UEoHDIG/J6LZ0r9ngRAQXAwTTOxYQISaq7RFkiBBRbb8fYE0gqnRgQIgglWEymVTILqQT9wPrD9xp4cQTt4N0JE70+/1Um4Lz3EHAvBBhuIe7EriHt6akywGEHDAWnhn39M4arVYrrZ0/Y8Y7n8+TMMM5CDunRaQbjYba7XZyNngKjacFMGbmQuHQnNz69UlnccIPeK7etcHrLXAeIhZj55nUajWNRqMkpnl9BPYD5NprQuDayT+fm5wO7h5gPKS7sG64QtxpwnPxe+bP12uN+H0ceW0J3ysu1rBHvJtFfl3G4A6WQCAQCAQCgUAg8MI4F4ICUX6IQbfb1YULF5L7wAv4jUajRKARDUh7wB3g9v9Op6Otra1k4Sfy6qTV7eiQKdIREBOc9OQRYOmkqwREyQkXAgLk2s/pdruprkJZlsk9gFjRarVSbQmP/Lrd3cWGXBxgnPzMPCQl4uZwq7inTsxmMz333HPa29vTbDbThQsX9Oijj+pjH/vYVa0iIcEuYDAv5uodObindx4YjUYbCw8ybvZEPh9Iuh/rbg/Og4xjs3f7fU4oIfvj8bgiqmDtpyVnLmbhLPGouI/NxQREiHq9rslkkp5Xu91OwhaiQP6MXYTxTiAurDA3XDIuUq3X69RBhT/tdrvijEAc8T3tz8HFNRcpfM+7YOPOI3fWME8vcOl70z9/rKHve0QPxuz7i9d9/XKHh7tmTkuLCATOBWp1FbVIyTkN5WolhdMoEAgEAoHbjnMhKDz//PP65Cc/qUcffVTj8TgJAffff7+m06n29vYS+Z1Op6n9Y6vV0oMPPphs7xRppPVjs9lUr9fTYDDQ9vZ2EhXcbg/JQUwgyg8Z9I4G0gmpyVsmuqhB3QVJlVoQ3W43EdnZbFYhOrgrIHOIHPV6XTs7Oyka6/UPKF5JVBzCDhFqNBrqdrtpjhBjjw57NNfPc8s/RPbSpUt68skntbOzo4ceekiveMUr9PGPfzyJDAhD1LiAGOIckE4KLSJYQCA91x6i7a8hhjSbTY1GI41GoyRU8J4T28lkUkmf4Ho+DuboOf+eVsNatdvtNF4EAuAuGsQZSDTdSNziz17h3k78GScFDl2g8HQHLy7pBBvBjDXzopaILXw+XPTy1AAXPrwmhgs6p9UW8OKOrAmfA3co+POl2CprikDE5zBPUfA5u7CQCxY8R47HQcMabUp18GfEz4HAeULRaql2nD72ia/7VRo/Gm6a0/Cyn16r97Pvq7y2Ojg4o9EEAoFAIHD34lwICtKJhd8JDiQRggaRIiJclqWazaYuXryobrdbIf4Qzk6nowceeED33XefJpNJItxeiM+JihMqT4+AlLk7wlsbeo0E8t9xXdBpQDqJqDIvyPt4PE7X8ToAnlrhtnnmgLgC8aJ2A8TXu1/ktnXcAE5eXSRhvd2GPhwOtb+/r8lkoscee0yvfvWrdfnyZR0cHGh/f1+NRkM7OztpPVysoHAhc3DCiyjCM8HFkLd79DQRrstYc1cFrzE/j1pLSi4CjvF6GNKRGETBSu7rhQe9XgLigwsD7BXP9fdUG9aGc5fLpTqdjtrttobDYXIS+D7jPK9JwH5ijX0Pe60A/zy5MMYYvC2kf+58rbmnp2+4wIIg4qKViyaeXsDnKa+Vwb/z8eW1VEhhIFUhTyvJU0xcQGHc+Tzc6eBzDwTOGrVuV/u//bP0zOfySogJL4QnvqgmfdHrKq99+l99UlqupNVKy6efOaORBQKBQCBwd+FcCAoQOkmpI4FbpiFLEDnPhS6Ko9oLg8EgFUr09AO6Kuzu7mo4HOrSpUuJfBCxzMkmhMoL7y0Wi/Qz40JUyNMG6KxA/rq3snSrOf/Gsj4ejzWbzdTv99NcuJ8XFnTi5fnuHhn2XH+6VBCdzVMgvFCkE0oKK/LawcGBPvCBD2g6ner+++/XK17xCr3uda/T008/reeffz4JHDyv4XCYrPQunlC8j/vkxfe8MCLzAp7ikNdZcELPuS4c+drRTcFdClzPUzFoX+opET5+xCMXFRC8XDzJ6wC4K8ELTnoKRF5Uk7QNSZU9xxp6zQbpJG3HBQzf8+7WcPHMiTXCWp4OANH3MXK8f3493SI/znFa3QOvucEa8x5CHWJJvod8XzE3nxP35c8m50kgcNYoWi3VHn+FDl530cSEwM3gfX/sMUlSfVroNd8/SK8XVw5CYAgEAoFA4CZxLgQFCAgRc+mIAHQ6HXU6Hc3ncw2Hw0QqcCJQPwEnApFpbN3L5VKz2Uyz2SxVzodgObnPI60QSidZpBzQ4pHothfF8wKEpFVAEHPS7C6JvKbDdDpNefRe6DGvrA95JZrP8U42OdZTGLz+Q072KCxIS07s+a1WS+PxWM8++6zW67Xe97736dM//dP16le/Wm94wxv0/PPPJ6KHC6TZbGpvby+tn7cn5D7unnABh7HzHmtEjQZJlZoZEHLWAit9TpLdAUNaCeuC4OLPzIsZttvtlDbg60tBTMaEUwRBJ7fhe4qH1zlAjNne3q7UU8jHz1gh4bnbwz9XPHvfx7QhzWsx+LG+T08j3Z425LUQ/PPD58DTKriPp99wPmLfYDBIe86FPp+jOxLy8bnbyNeM13Cm5KKBXydEhcB5QP2Rh/S+N9131sO4q7Bql3q/renggw/owXc9lH6u/fIHtT52pwUCgUAgEHhhnAtBwYk7RM4jm61WK5FHSARRRqLqkOD1eq3hcKi9vb1K28V+v59qKXihOq7hxeM8z3s8Hmu1WlWi68vlMnU5YPwuhlDsr9lsJhFjE+EjJWA0GiVyJSnVcuAcT2ngD10SWBcvbDedTlMdCCfWXpTRI79U4/fjeA1HA6R1NpvpypUr+uAHP6gPfOADeuyxx/Too4+q3+/r0qVLad0hhvP5PBVYhPy32+20ptRYWK+PWiZCQHEoMAfgaTFO/HnO0tVRc9bF0z0QHxA1IJvM2a31ZVmmugO9Xi8V0vQOEUTLvcAf92Nf5WkKzFM6SdmYTCYp7QHBjNaRvve9loKkiljj6+UghQJ4TQdP+/E19LQFF55c3HDBx9M9XHDg3/4MWDtPO/CWpdRAoZCnp2/weWNs/py9jgPzdPHGU364n9e58DUKQSFwVpj/ls+WJA13zsV/03c1Dl6z1sFruunnh1/+mWoe3Hgx1tZP/5LK7P+eQCAQCATudryo31SKoviopENJK0nLsiw/uyiKi5L+gaRXSvqopP+uLMsrL3Sdsiz1wQ9+UC972cvU6/UqOeeSUgV8ovZe1wCyR0S43W5rNpvp0qVLKXLd7XYTQe92u4m4L5dLjUajCjny4nFESLm2dNKqjpQEiCS2eMgK5yAqcG3er9WOCjFOp9MkKHBfik8ickhKbgS3yRNlh3whhBw/mzTm2WyWCKFb0p1oeceC9XqtbrdbqSHQarXU6XQ0nU41HA5VFIXe+9736jM/8zP1mte8Ru12W4899pguXbpUSTnodDpJlICod7vdJAAhKLA+kpLLwNfco+zSibU+J6ScT9pBXriP67GmEE+vTeH1J3i+iDS9Xu+qWg+QeZ65r6ffMyexROrZ4wg97Ct3EyD4kA6BUwLBiPvlBDgXY3JRIV8jxuSpM4zV96NH791BwVqyNxEZ/FnlYhfvI0T5/nZBabFYVIQbzvPXuIendXjdBs7z7xfG4CISzyoXps4rbtV3ceCcoCj08d+yJUVd0DPB059f6GZ+PXrw4merdoM6RP+H3x7dKO4SxPdwIBC4V3ErQh+/qSzLS/bzmyX9dFmW31oUxZuPf/6GF7pAWZb6wAc+oM/7vM/TYDBI0WOi53mbQeoZEOlGUCjLMnUUGA6HiWTt7u5qPB4nYo/rodvt6vDwUNPptCIUYIVvt9spj54IMXnxkH6i8O6u8G4AedE3L1Lo0VHppIgcpNIr9pNKgCMBgo9zgjoJkGBSCqQTMcKdBg7Wo16vJ0LnefNej4EuG88//7yefPJJPfPMM3r5y1+eBIXLly9ruVzq4OAguQZ6vV7lGdHtgj90QyDlwQtYer67p5d4lwSORQRi/TyFwgUIroXDg2eHDZ7znYBDWsfjcXpG7EUXMxgza+91ARB9/Jn7eQhR8/k8PU/ECvabu15Ik2Ac+Zo4Ic5TStw94H+z1xBwPJ3BBaxN8FQBBCyp6oxwcYcaFjwDvy+CAN8B7AuevY+b8zaNi/1OqpOvCZ95nyvneHrGHYQX/V0cCARuHs++8cbPuTD4XKmUtmaldv7u2279oAIvNeJ7OBAI3HO4HV7KL5f0G4///Xck/Yyu48vT6xQsl8tKHj75/ERrIdaNRiNF+Ynwk16wXC41HA5TpJ02jV4pPrdMr9drTSaTROK4L+QUpwR/Q3BJg4AkQk5dZJBOov84JyBN0kmROs5D5Oj3+yl1AzI0HA7Ttd023mg01Ov1VJZlOsbHhU0cMloURZoP64fDA6JGy0SIpKcMICq88pWv1O7urgaDgR588EFduXIliULeypHxe5cEd064k2M8HidCzTqxBpDuVquV3A2MdzAYpDm4iLJJSOFeHpl26z3vszd5Log4CAMuOvhzYV29XgdiA44W7uORdZ4ZY+E9L67o64cQ5q4UhAx3dbg45XP1CH1ee8LrDzAnnr+TcK7r/847W+S1EvgcIcrxefd9wmeR1rD5PCH91NqgpoiLTi5MsrYvlA7hboU7HDf1XRwIBF46XHn98XfRSprc9/mSpJ2PLdX50V84y2EFbh3iezgQCNz1eLGCQinpXxRFUUr6G2VZvkXSQ2VZPiVJZVk+VRTFg9d7MbeiQwzIW6e1ItFjL7hI9NvrBOBiGI1GKQIKwYQ0EbH1tnzT6VS9Xq+SmsD5jLHdbqc8cQiuOxZarZZ6vV7Kz/ecfSdzkJpGo5FqO0AOERQ8ss24iUojtnjkG0s+oowLJk7uESJwCWDXp+AgwopbziFZWN8PDg703HPP6dlnn9VisdD999+vRx55RJPJJDklRqORpKr1HjKNmMFz57qMO8/R9wizuxZ8bkVRqN/vpzQF78LhBN2j73nk2tMHnPB7HQgvXuhpDm7Vd3LvqSoe9cZlwL29oCRgbpBh7/7BsybFw+forSZzFwVwwcBFBfYqbgwId7fbTf9G2PF7+jNjrRBDXHzw+hxO6P1ziHjj4gn7PE9z8U4qjNfnhnMIAWoymVy1j9yJ4YUf7xDc0u/iQCDw0qKsS8NXHn3vTB6pq/EZR+LCy//ZvspffM9ZDi1w/Yjv4UAgcE/ixQoK/1lZlp88/oL8l0VRvO96TyyK4k2S3pS9lsiMpxG49dgj1QgPk8lE8/m8Ei12Mnx4eKiDgwO1222NRqNEVohkOhGaTqe6cuVKiox7/jXkyImaR2ohYVjTSY+QqvZzUgG2trZSbj7pG7RZlFQRTVqtVnodAuqtFSHjdMao1+u6dOlS6nbBPJ3wIiyQdkDU2FsW8rNHrInOl2Wpvb09XblyRUVRaGdnR91uVw888EAiZPv7+zo4OKiQU3dyME+eP9Hk3NnAc8CN4i0eGRtpCUS+KWroKSUQR54J92RvMQ7+3tT5ADGJZ8F6emtP9qB3oGCcLj7wnj8j9ogXEORZuTjBGJm3E3jm42kK7jLwFpPs59PqBTAmd5NwPa+D4OuaE3IfL2PzZ+jdPBgTNTx4n88T69XpdNLPfq4/W3cceH0RH1N+rM/hDkp5uCXfxW11r3F04KXAx77586Ric3HVwN2PVavU6sGj76IP/86Biv/68yRJr/72/6TV3v5ZDi3wwojv4UAgcE/iRQkKZVl+8vjvZ4ui+BFJb5T0TFEUjxwrsY9IevaUc98i6S2SVBRFSW0AkBdlhBx6wTvpKI2AvH5cABABL3Q3m80S8cIBQEFEzoGcXrp0lP5GUTmvTeCkBrLuhFhSiowzH3cYOFFpNBopssx8XYCAsM1msyRQ0DbRU0M4bzqdJiI9GAy0Xq9TUUki9i4SQJa9+KHb9XFf2DNLx5VlqdFopOeee07PPfec1uu1BoOBHnjggVSfAnGDFASPSjNnbxkJqev1ekkk4jl4egitQSUloQWhYjgcqt/vq91u68KFC2q32xoOh6mgJ/fleUgnQgL7y9MBPK3EST/j9poMvjY+Xk+XII2E+9PiNC+emHcd8AKFm0QBnwf7i3n4+F1UcYcF4geCntv93f3BHvB2m8wPF4fv3xwuTnhRSn+Pdc33n4sjvhe5b54igmiGyIfQ5ukqHO/XcxHrThEUbtV38aC4GNXhzhgf/fOfp2UvxITAEVatUjoyVulXvul1UikVpfSqN7/1bAcWuArxPRwIBO5V3LSgUBRFT1KtLMvD43//Zkl/TtKPSfq9kr71+O9/fF0D2dpSp9Op5GlLSpFXIua0Y6QVZFmWOjg40NNPP62yLLW/v6/1eq3t7W11u92KhZqidzggSKuAZHsOuXRi0282m+laHjGWlK5FMUiuMZlMEsnJiw0yDoQSyK4TbU+58AKDm/K982iv55Uzbk+54L71+lEbzOFwWBFVmBspJsAdCrgFnn76aT311FOaz+fa3t5ONSwGg4Hm87kefPDBtPaTyUSz2Sy1h8SJ4EQYMliv11MhPebtnQ8guZBM7w4AaUdQYM6IFDgYmD9r6ATYyXKn06kUQETE8JQJd7Egnvjz8v1EvQp3KOTRdYQXaofQxpNr0uWBvY1ABdH3GgQQad8nfi93irCvvL7DaXDBg73v0X4vbOjRfz+efe0ODEnpmSI0rlYrdTqdSs0MFxa9aGRet8JTIfJUmXw+/rnbJIicR9zq7+LAS49n//Dn6/DVx6llRRndHQIbsW4c/z9RSh/69s+VJHWerunRb3+7VK6jW8QZIr6HA4HAvYwX41B4SNKPHBOvLUl/ryzLf1YUxTsk/VBRFF8r6eOSvvJ6Lua50bmYABkmcorlfGdnR9vb27p06VKqXbC3t5eIH90P1ut1Is37+/uaz+c6PDysXJf7ITR4ETmu5ZF9ov7khkPCPB0jr8DvBAWnQbPZ1Hg81uHhYVoH7sc8GT8kqt/vJ8IkneThQ9gbjYZ2d3fV6XQSaWNOo9EoCQrUhyC67/UB3Dngc8wL8w2HQz377LNarVba2dnRhQsX9OCDD6rT6UiSLl26pO3t7eTaIE2C1BNEJMg1877//vsTYfQx9nq9SgFDhBx3f/A8KfI4Ho8rHTN8LszRo/V57j1rRUcCd8kgciF0sVa8RoScc7ywoOfsOxAocBrkefxci04SjMU7WTjB53j2NMd6Oki3201pDzwr1sC7rOQpGS7E+Fg9xcGFCU+98OeWw0UHh6d4uJjh1/d93Ww2Ky6WTekRjJ1nzDX5jN8BuKXfxYEzQCGVd3wN0MBLhkIqj7/2xo+u9cFv/xxd/OVC9/+D/6ByPld5h7S7vcsQ38OBQOCexU0LCmVZfljSr97w+vOSvuhGr/fJT35SP/qjP6ov+7IvS0TQo+8QSshRUZy0nVutVrp8+XJq6yedtJbE+YB4MB6Pk80cMjmZTFLEnPt4cTfs9d1uV4PBoEIYKQjpEU3G7JZqUiW8+r5UjZS6hR5SCIlFcJBOCKTn8pPeQHcE0h5YK5wStJz0Tg957jqCASkSXj/B3SMICoeHh2q1WinaDylrt9vqdDopwg5JxqEwmUySE2FnZ6dSi4KIdL/f13w+12g0SoLD9vZ2KiQJ+aYjB06Efr+f3BnsBfYDpBmbv68hz4pnnEfaPRffn5+fy5q548TrIeRFLukYwjrzHLxtpEfdPeWBZ71er9N683nxPUhRQtIruNammhZcm/PcMcO4mR+fUQQ9T3XgOpvqG7hbwF0RgPQePguewsGa8l6tVqsQf9wNXm+FzyX327T3WVs+q6zPecet/i4OBAJ3Hi5/VqnLn/VZevlPrdR958e0fv5yCAsvIeJ7OBAI3Mu4HW0jbwrr9Vqj0Ujdblf9fl/PPvtsstw7uet2uylKfeHChRSNHA6HlWgohAJBAYcCBIrrunhAmkJOInAbeCR9MpkkcWK1WlXaL24qkOcuCHLnSQ+AxHBtL45Yq9VSnQgipx5FzYvdQc7G43GqYwA5peMC83HHxKbaBv1+X9JJFB7SyLioW/H0009rOp3q0UcfTRF8RIter6ednZ3knuh0Oqm+AwUoSU/h+fGsGZd05DKACHrhRqL9iACcQ8vQra0t9Xq9VDPDBar1ep06euDwyImm5+JTA4JnybojgCHeMAcnubghED7Yc56Cwnq6qwGizXn+eeE92qlKR86Xfr9fKcbpbgJJFfLudUUg1BB5nBteV8JFBT4/nvKRH+N/+799jRFqGBt70MUMT3Fh/qwfTgcvBMmaMLe8WKW7GvhMkQbDWFywCwQCgTsBn/jiuvTFj+vxf/io6m97d4gKgUAgELjtODeCAoAgEe3MI6zd7lH1W3ce7O/vazgcVvLsIRO9Xk8XLlzQfD7XlStXKqkORKpns1mFcDgRor6C56U7OYOwbCI2bin3QoAIJHt7e+p2u5ViedyHmgBEWzlGOiJ6kB3IEdFpijAidgwGA3U6nWS/x8KOaAJpzq3srHG3200pFV7QUVJKBZhOp9rf39dHP/pRPf7443rkkUfUarXUaDTU7/c1GAwqYgbigteOoBUnnTuIEi8WCzWbTY1Go0pxzXa7neoHOHFmDtS2wKbvHQpwtXi+P6Qdl4UTXy+EyXhxuPCMqOvgZB1HDaIB+wjQwYNnh8OGZ+Lo9XrJYcAc2e/sKT4vzKXdbqf0AqL4zJn9gzuCa7r7wet2MCev3eF7JhcNWHNPC+IzAjw9YrVaVQpDktrE/Wlv6vf0dIv8/l7Pgdf4DOZtJT1NxK/BngkEAoE7DR/+b9p61dZnaetwpvJd0XYyEAgEArcP5+a35Tya6RF4SDPWebeP51FRnASQOO+M4EUFIfUIChAW6cRO7UXjILfj8bhC9hAJvBo9pNWLyuGu4B7j8ViTyaRSlBDbO6QKF4EXmJNOCK0TIKzz6/U6kU5P1Wi329rb26vYuBEI2u12ilATwW+1WskFQAR/OBxWnhk5/Igqo9FIh4eHqW0m60qqSKvV0pUrV5JY4qkIzAEix7UREHh+tNDsdrvp+E3Rd7pa5MKBuzw8ou0uAK8Z4XsSQYJnzL1JS3BHQa/XS8/Pax54BNxrblAfA6cF+4T7I+6wB1308b3v3S+oYwFR5xifHwJdnobhhQy9XoN3liBdhXXP0wQYl5N1/+x4EU5/HRLv9TVYG66BawZh57SCmn5v1oC0FD+eMeQCjT+HQCAQuJPwkS9vSmrqlbu/Tls//a6zHk4gENiAWrutT/zPv7by2sO/MFX9X//7MxpRIHDjOFeCAo6B+XxeibB6oTvs/5IqRRqJpPOe1yDA8eARRwiq1yZwooeAQFTUyTzH4KLAuQCRhwhRgA+S3m63NRgMUkoCaQ9Y5L11JPfLc+dPQ6121I2AcTMuIu4IMswbULgOuzdpJpBfCDJdHTZ1LyDie3h4qCtXrmhvb68ibDzwwAPq9XopPQJnxd7eXqqlgFBAagDri3CCwJFH/dkjOXmv1+tJUPCCn8wpL3jo6Q2kdzBHTyfwlBMnnQgBLioMBoNU0wNXAE4G9i9ijJPr9XpdER9YA4+wM0Yv+Mhe8W4eiAHuZnGBiv3tQkGeXgAg2xBuRKzTOkJwPcQIryHhDhAX+Fx8YT/k1/ZimXzGXBzib//jqRQINC6suKDwQsUbA4FA4E7DR7+soUcHv1716Vqtf/qOsx5OIBCQ9OG/9HlaN0qt22t95Mu/q/Le13z8C/Szb/3cF32PT/3T74y0p8BLgnMjKACIDXZ5COZoNKoQK46FVFKDAEFCUsp7hzzSopGIZ7vdTiTVi77lZMoJpJM1T2OgkwBkj/MhUNiz3T7uJA4BALhlnLaULih4/jlEiCKGpBVcuXJF0+m0kkNOFJ6oLvdst9sp2gyhYqyeb++1BbywJNcaj8cp/YT77u7uand3NxG/vb29JBBISt0nut1uSqPAjt/v91Wr1TQYDDQcDpMww7hwVbhbwVMLvJ0kpD+32EMyc9GB6D+ChafguCOB5+LElxQdLw7IGFjnra2tJLrk53uXDy8q6M/Q6xbk6QOsA+4crpOLE77XEeO8wCR7EQLPeni7Rxck8jajLuKx1r6/+BxR3NQ/b7gnON4/My4ecZ4/C09Dyh0LLh7lNRIYH/fKRZVA4Hbg4Z+7oukDFzTfuTNalQbuMBTSJ7+wUG2+pQsPfp66zy5DWAgEzhAf+Jufo/d86V9Tt9bc+P7ffsW/lV7xb1/0fV738v9Bq1VN82FTr/3ad77o6wUCp+HcCQrAI6sQFogNBHEymSTru3Rid3fHwOHhYcrfd8s7EeDt7W3V6/UKKYFkNJvNZBsnAk7BxHa7XYkOkxbgIBrtRNE7P3hOP2TM7fk5GL8TW49Et9ttbW9vq1araW9vT/v7+6kYoadzcG1vO+jWbqLqvOZE3cfi5JF6BsPhUAcHB2kOvV4vjUtSqnkBsSVaPJlMNBqNKrnriCSS1O/31e/3tVwuU4oB5yMIEIVn7AgY7tDg2ggKOFcQhlhPjm80GqnFJe4N1gzCnqe38J53MfC0GM7h/b29vYqzBgEKUYEOGpBkT/lxYQPxySPrLrx4Mcs8bYdn43BRgXMQZfKUCxwppCBwvgsj3NPH73tYOmkRSncQ/1yxxtzDuzEgEnirVR9H7lRgj/AcvEirr0k4FAIvBYaPD7Rqx14L3F6sm6Wef4O0N9lS7/HP1/3vnqj2b37xrIcVCNxT+ODf/TX697/hr6lb6972e/2nz/+7kqT99URf9a//G0nSr7z9U/T4m9962+8duLdwrgQFr5+Qt2+bTqcV0sfxEHy3MiMoUJgPMSAnOp1OJ0XCR6NREh6Ad1/gD9f2wncQImzb1HHgXl4fgvd6vV7qKjEYDJJFn9dcbIAEe2R+f39fi8VCnU4nRaGJ+jcajVTsjyi413JAqIFwc33WBYLtNQPW63Ul2g3x86j0crnUaDTSlStXKgLEer1O7oOyLHV4eKjJZHJVZBshg+4MktKcL1y4kJwXLrxISqkYkEbO4VhJSYRgfrhIXJzw9BJSLrwrA6QewcD3qBdslKp1OFgD1p/r8vp0Ok37k8g/P3MfyLQTYxcVSEdgvyFEIJ6Q7tDtdiv70V03nl7E/s/rlXCeiwUucrHPWAPG62KUXzfv4oAg4oIF42HP+T0ajYY6nU5FDELg4Lm4SyJvJQkQRFhbRL5NqRyBwK3G8NG6Vq1wJwReGqw6pQ5eU2r8cFuNz/18vfwnLmv97ved9bACgbseH/qBX6O3f+F36kK995Led6fW0U9+2k9Kkt77qrF+4Et+fXrv5//UG9X4qdtXY+UD3/NG/e7PvT4B48f/9hfo4b/287dtLIHbh3MjKGDvh6RMJpNkDXdyQFE5LzK3Xq8TiSSiLaliwZdOqupLSmSr3++na2G7hty4kMA4/GcIEyS91WqlvHInatIRMSYKzc9OML0Sv4sXXlQQ8WCxWGhvby8VPXQSjcjRaDTU6/VSdwLIHuNkfYqiqKwp10HAYfycw7wpbIcgISlFryHepCdAZonok2qSF/pzQoeQQ5ScGgzsDS9eiTOC+UFycats6kDgRDfvguCCCnuBOgnT6TQRXqLikF6P3vM+ayOpci32ymKxqKRGeEQ+L1qYtyL1eg0+XsQcF0o43t0Y0hHBphYB12WNcpcDYO1ykQ4hK0/dcGHKi13y3KmRwTPOSTz34/PvaSy4YBiLixmeFuTj9xoiuXDhc2YvBwKBwN2IZb/Usl/qw191QbXF5+tV3/1BrZ559qyHFQjclfjA93623vGFf033v8RiQo7PaHb1/3/wP6af3/aWX9LTq52Nx/71j/8m1b7oE6de60vfs6dXNi+94P1+fevn9MhW/7rG9rv/+Nv1/q9/UJL0PV/1X6l857uv67zA2ePcCAqLxUKf+MQn9GM/9mN6/PHH9brXva5C5EgfcNsy0XfPg4aMup2ZCPZ4PE4uhEajocFgoO3tbe3u7qosSz333HOVgmxEpf2+1EigpgMEudlsqtfraTqdJvIHCSLSjNWdCKo7AhAlvLieVLVcu3jRaDS0v7+fCBVrQgFIijw6kYM0EW2GcOcELrfsQ7hxGDA2Wl5CWOmscHh4WHEQeJFIIsp0akCYIEWFZ8WaOznf3t5OAoKvHYQVZ4fn/ns6BIQxj05zDReL3AmA8DGdTq8q5OhRbBfAuAZr57U/GCNtKj0qLim1MUUwQZzx8bvQ4FH+vJYCQlJZlqn4JvvYayF46oD/7I6gTYDU+95xBwnj5BqIAu4GYZ3cbcC9vX6Efy48LYlimWVZajKZpJojXtSVtXT3gTsn/HPAc3BBLRAIBO5WLLulpFK/8sdfrdf8hYnWVqw6EAjcGgwujs5cTNiEz23XJQ03vveln/6P9MTHZhvfk6RXN65HKLg+MUE6Ejs+o3k0ls/+R9+j2fGv64frhr7hVb/+Bc68Pnzsz36+fuL3/aUXfR1J+sOv/AIp0mITzo2gIB0Rz0uXLml3dzdFz52Y+i/3+S/6Tv6IlkLKZrOZhsOhZrNZIiSQLCzvvV4vRb8RAyjw2O/3E6mUlIrbEb2ELEL0ETG4D5Fz7rFerzUajVIXCRccGD+EfrVaqdVqVYgUEfvLly+nQpCQSo/eQrQpfuhiCdd6oZoN0klU2wsa+npzf15bLpc6ODioFK+E5EHuIXv87NX6Z7NZpesD680YEBSm02kiocxrPp+r3W6r0+lotVqlfcT9vUOEi1LuUmDfSSdpBx619n2QFyHk2fAMWD/+zlMGXAzwe+Aw8XQTj+Yj7HhhTQQVBCycLp6ewnwRC3C3kHLh95OU3D5egNGLUiIS4dpgfogBPBcEIgQ6368Qfj5LLnr5M/BaGC5wMQ/G5kUufT7uYGDf5evuLoZAIBC417BulfqVb369XvPmf69yEe6sQOCWoShUK+488tkqGnr1GbXPflnmaviRJ37hRV+zUbxLjeL6BY4Xwo984u3p39/0zOfrvZ9jz7dc33Niw7kRFDySSSqCR1edPEE+PL0ht4JDEPy8TbnTfm/+DRAO/D6QIKLVAJs9UXWIkeeld7vdVLdhNpulooMQIQgvKRNEkLkn4odH90ejkfb39zUej7W7u6uDgwPNZjONx2M1Gg3t7Ozo4sWLKY3h8PBQzz//vMbjsebzuSaTiSSl6y0Wi5Q+ICmJJJ1OpxIp9+J3kEVPeYCsjcdjTSYTTSaTROJ4Vvkz53UnesCj+pB6xubpLx4V55l49BnxJi9iiKvB0wogqR7lpu0mf2j9ybh4fTQaVcYwm80qJDl3QrA2PAd3jbC2OFi8TojXF5hMJunzgjvG61hQf4C1RKRxEu5OCk8r4HiejddM8DQiL+7ptQ5O+9zxGfWuG3wOQP4MEJoQmHy/sUdz4Sh/zZ0r7C/u7a+HyBAIBO4llDXpV/7ir9Vr/sTbznoogcBdgw989+foI5/zlrMexh2N0zpinBV8PH/1kXdKT5y89/rv/MP6lO96jyRptX9wT4gL50ZQ8Kg6kXqIoBd7Gw6HicyTagBR8KJ8nU4nFUykSr+nQTSbTS0Wi0S8qUdAdXkq93uXBoiVR6AhILRIZC4ehYbAEpl3Iu3EyYvdQar6/SMlLW+D5wXxfByIEBDYZrOp3d3dir2edA3SJZrNpgaDQXJoeI2CTqeTOjVAWKnCjxDiFfr39/dT8T+ut7+/r8PDw0obPq/j4KIF6zAejytRbIhkt9vVAw88kKLiPE8vnugFNll3SSk6Lp10sHBbu9cQ8GfixyF4IGrxzLzegZPkvLAlTgkEBY7nONYC1wBz3/TMuT91RLyoqKdHsC9ID0KwYoybnBM+Rubv6+NpPd4GMxcj/D6SKsUO+Qy4SwA3Q96Jws91AcrdGPzbxY5cyNjkctp0n0h1CAQC9zLq913U6vnLZz2MQCAQuOPwnq//Lunrj/79X/y+P6D2h5/X6oMfOdtB3WacG0EB5HnhkAUnEG59JkqJjZr3If/L5VLD4VCr1Uq93lHukhd5HA6HiWRDoJ0YEhn2tAFPLaANYt6+UjqxwEMSt7e3U5vK0WiUiha6cyKvSF+r1RJ59xoMkE/ED494u1iB44GOD6PRKJ2H2AFRp5vApnoDeXE9ovG87kKId7nw2hWeGsL9vQ4C4hGkkFx4T3lptVoV1wnjb7VaFaeH388FD+mEEG9qochx7Dk6hXi034tr+rxxErD+PD/GwJ5BlPFCmN5SEmcMYI0QxEgtcbLOvvS6BJBv1g9XA2N1McoFDv/c5TUV/PPjqS6MkX3n4/BaBaw/IojXl/A0Co7hPH+OeQqUp914tw8XGPLn7LVAfJ1dSIg0iEAgcE+ikD7w5k/Tp/2fn9DyE09c+/hAIBAIbMS/+r7/W5L0xb/796s2W6n4+f9wxiO6PTg3goLnrTsRwsoM+fXCc05+coIA2cLm7VFYjp1Op8n5QMFArPwQwrIsE/GEXGHx96hrnjfvgkS73U7uhN3d3dT5AFu8F2h0QsNaeAcLSBUOjPl8noQTajJISgKEiy+Q5F6vl9a22+0mQYK5OnF0a72nI+AIyIUUcup5fzgc6vDwMHXa2N7erggYkHUIMM/C94O7DDzyzb5xm763hkQYwKlBEU+QF0zkGpBT3B65oEAdA0+L8PSD3ObvBNeFAK5DcUtJycFC/Q5SAdj3jAG3BQLOJgKfE2i/p4sOzFFSSifxmg/uImDt87oM3q6RYxABvM4En2P2FXuS+7gQhUjoggpz4JmRAuX3cEHOU1X4mX3s9Rl8D/NzLjQFAoHAvYJyq9QH/+DL9cr/NQSFQCAQeLH4qR/4Xl1ajfTlf/JPqnmwUvOfveOsh3RLcdOCQlEUnybpH9hLj0v6M5J2Jf2Pkp47fv2byrL8yeu8ZiUqnkcZ2+22+v1+Ig9edBE7t7fhQywgMo2V3/P9KdjnRMut5lj3SXXwgnYQRC8ux7ic2HG+pGTt39nZUb/f13A4rLgLvB6AR72JwiNseM0IXACz2SyNF/EBUQCBod1uJxGh0Wio3++rKAqNx+M0FwQGjwrnUXnpiLghDEAyiSzTgWK9XqvT6ajb7WowGOhVr3qV+v2+ptOpms2mptNpWjdItJN+nsnFixevsvD7v1m7vDYDcDs/z9fXz9NTvFDgbDZL+8jt84hMufjgwoLXL2CsiBwINLhfuIcTene6eCcHTzlwt4G32swFAd+PzFFSSuvxzx1gL7Kf3bXA+ewRJ/HuakFk8muTfpN3emD8pJTgQOHzg0vIx+ZCF8iFDb+2p1bx7DeBz92dkPpwO76LA4FAYF2Xis/+VdG67ToQ38OBQOBauL/e07/7q9+jnxi39S3f9PvU/6G7p1bNTQsKZVm+X9IbJKkoirqkJyX9iKSvkfQdZVl+281cl2gvEeH5fK7hcKjxeKyiKNTv9zUajRKh8TZ0EHxaEEJYPYfc6yFISqQRQYHjyvKoGwF5/V7g0VMDpGoKBcSy3+9XigwyVgox3nfffdrZ2dFwOEw1HV7IlUHkHZHFSRydDA4PD1NhPCL6dLjY2tpKtRQYVx75dgs9ggLj9/oUvMf5iALMnVoB4JlnntHOzo6m06kee+wxdTqdJHi4M2EymWg4HFZaXhJhZk9AbPnZX3dRwwWX4/1aSYOBpNP5w0Uruk7g+vCijp6+Uq/XKwIIc4fAuuOBa5AuA2FF4GF/IC7QyYFrsxfcicG1/Fk4Sc9Tg9zh42vDWjEudwkhenhdApB3vHBXj6QKkR+Px+k1F34cPAcfg4+P5+gOFsaXg3P5zOY1IbzbhTsSXODg2Z133K7v4kAgcG9j3Sr1ka/Y1qe03qDi3/3SWQ/nXCO+hwOBwPXiy7pTPf/n/l/99dZXavf/eetZD+eW4FalPHyRpA+VZfmxWxnRW6/XiShPp1MVx8X+IHxOPCB/RFwhgl7dPb82yK3dkDKKQ7oIkUdDORcxQjopoAh5cyHCSRqk34vMOYl3UuqF/Yhk93q9VCiRDg4XL17U1taW2u22ZrOZDg8Ptbe3p3q9roceeig5GNyBgNsit/wThffUAKLEjN8j85BJBICyPGqfSStQukowt+3t7VTjArGHgpLUTkA0wL3A+vo9EYQkVQoNMh8i+RBRajggZrB3yNmHfHvqB2ILNQ9eKLfeLfl5GgvCE3Px9cQFgmBEugP70EmvOyqYUy7QgLz+gKdvbBKSWC9fT69P4mIXz9mLO7rjxouaunPBxSyvC5E7HLgOe8Y7R3AMbTa9noSPywUD3Dc8W3fx5Ckc/lm4g3BbvosDgcC9iWW31NO/vqtH/t1Zj+SOQnwPBwKBF8TvGVzSX/qKA+3+P2c9kluDW5Uk/Lsk/X37+euLovjloii+tyiKCzc0IKs9QAvD0WiU0hW8g4MXdwO4E0ajkQ4ODhK5h0QSYfZoNmQFcuNkRzqxcTuRyvOr3UHg84Dg+Ric3DkxRWjgGI/MesFC5kvBRyK03sGg3++nThasH04IFyp8XN4Kkuvk0WTWh/QJd274/T19hOd4cHCg0WiUaj0MBgPt7OwkkcMLP3okW1ISIxBQIPnT6TRddzqdajKZpA4Jkq4imQhMLpJw/el0mvL2t7a2Km0avRimt/XM2wz6s2dfNZtN9fv91FHD01C2to5apA4GA/V6vYpToFY76vJB5xFvywhhxgWAs8JFKU+T4H2Ek/l8XnFUMF9PpWDdvF4C5J66IHxOrvVLkwtmpDC4a4I9zriZLy6V0z57Lqz4WPwYr9fgr3G+pFRTJRcQ8sKNdwBu2XdxIBAISNL0/lKz3/o5Zz2MOwnxPRyo4FO/f6av/fh/ftbDCJwzfMtn/oie+aOff9bDuCV40YJCURRNSb9D0g8fv/Tdkl6tI+vXU5K+/ZTz3lQUxTuLonhn9noiFJKSMDAej5O9e3t7Wzs7O6lmApFjt33v7e3p0qVLldoA3W5X/X4/FRLMi/tBHshrxzY+n8/13HPP6bnnntNkMpGklA7h7f6IJEP6vDAkdnYiwpPJJBWC7PV6iXA6iSJdAUFgPB5rPB6n1plEsL1mApHYTqeTctFHo5EODw81m82SILOJ4DEH0jIgt9SO6Ha7qVMF5JQaFDgLIIU8C69zgBthOByqXq9rZ2dHu7u72t7eVq/XS8+Vwo2Mg5QA5jEajdI9uS+kdzqdJmKYF3D0PZbXt3BSm+8pP4a/eT55/Ya8vgME2Um9Ox+kE5GGPY97BPGCPcG4Wcs84o+gIJ2IGuzNTqeT9hWCgjsC/HjWIe8KIamy3zcVLWRMm+oa5Ck8eZFVfzaIJ+648HoJ+b1d1HAHENfwYox89l0A9JoL+ZjvFNyK7+KFZpsOCQQC9zBWnVKHLzs3NbzPNeJ7OLAJxc//B73z6Zef9TAC5wy/ozfW/mfccU7YjbgV/0N8qaR/X5blM5LE35JUFMXflPRPNp1UluVbJL3l+Lhy0zEeyYXokXOeV5mHhNTr9UqkemtrK0Xne72eOp1OIg159wK3art7ACJMXQUn/7VaTePxOEWUvb4CBM1t46RATKfTVKuh3W6r1+ulzgSkMNBakutAemazWSUFAuIJId/Z2dFgMNDh4aEWi4UODw9Vrx+1qnzwwQfV6XTStSHPkP9ms6mdnZ20pqwxIstgMFCj0dDBwYEODg4qtQa82wZEjij6fD7XeDzWU089pU984hN6+OGHk2iBo6LRaKQ6EMPhsOIgIILsKSTH+yg9T15nTjxHd55wHvft9XopvYX94CkUtBHlPfZY3v2Cbg3sBcAxuDqcSJOS4kUypSMyjwBAWglFOtkb/OyCldv23bkinaQ9QNBZS9bWCT97lhQRxBau4w4AFwM4B+TCSf6zuxNy14G3gXSnh9fHyGstMAbm4elQXJfP0SbkQk0+9zsAL/q7eFBc3PhdHAgE7m0cPC71f/sb1f7xXzjroZx3xPdwIBC453Arflv+Kpm1qyiKR8qyfOr4x6+QdEPlgSHfnseNDRsyQX69pETUIWMeZaXCPCQPck4tAKLbfg+6ITiJ9xoL7qCglgNpF05EPKLKuDx9AUHE0yF8DNjRPUrshNlJnef2d7vdJJy402E2m6UaATgpIFzck/lB3rw+AXMjSi+dFCFk/XJy6akiRLmpiXHx4sW0jt1uV+v1Ogkguc2e6yGmMA7ppBggzwX3B2vu9SlYM488cx1EApwPHu3O70W6DM4NnCGebpDXKmBfsFcp6DgajZKzwGtn4ITwApHsF99nHmVHNPAaA75+zDePxpOC4jU1/PrMz1M7ctGNZ+N72dMRnNS7oJCPz+fjny0cMe744DouPgCeL+O4VkqGi1Q4f+5AQeGWfhcHAoEAWLdKzfs1ta996L2O+B4OBALXjbf/9u/QF33kT+vRv/zzZz2UF4UX9dtyURRdSf+lpK+zl/9SURRvkFRK+mj23guCX+rp7FCv15MbIa92L510MOh0OokAeKSVCC31F6bTaYWQEPHk3hA2Cj8C0gSIvHu0FGIOiXXLd71eV6/Xq8yNFAzGlJ8jnRQBhCBBYN36zfgRH3BoICh0u121220VRaHJZKJGo5Hm7/OBRDNfiideunRJe3t7ySoO8YcsQqiLolCv10vdH4go+7oizMxmMz3zzDP66Ec/qoceekgXLhylEkJm9/f3NRqNtLW1pV6vl7p7MO/5fJ7WHNLsrQylam0BJ8S+rqx1TjR5L49gI3BwLCkW8/k8uQ6YI+IJ6SYUoaQ+gufqc01ab5Kqslgs0msQdu+agejjIhpCkx/n4NngaMnnjNjE9bweQe5W8eKiCB+ILfP5vCLYeI0GTwHiNdaEa/Ncfa1ZK1KGNh3vz83FhNx95O/7MV57gTG6CHjecau/iwOBQCBwY4jv4cAL4ZGv/JB+z89+ob7/U372rIcSOEd4sN7T6i5Qal+UoFCW5VjSfdlrX/0irpdy4HEeACLwu7u7qesDaQNeGA+iu729ncgCKQ95hNrz0T3STMQYgtbtdrW7u5vqIOTRa0QPxo14UKvVEsnnnNFolAoIujuB9AlcCrgosON3u92rCgvyPqSbdIXBYFCpj3BwcKDDw0NdunRJ8/k8pVi4+4FK+YgzEF+eA4IChI71o1vCcrlMLSQREbxLAS6I559/PtWiuO+++1LhQ69x0Wq1NB6PU30GxunODNYTkgyZhzi6eIBzgb/d6g+8DgLPVjoitJPJJHWecOcEQoinu7Tb7URyia77/byIKM+adBf2u9fiQLxx5wNEnrl5SsYmS7/XseC+7hTw9XO3A/fiGblryDs0uIDj6wnYM56egaDg6Rb5GHL3jAtswFuG5h0iEN68AKl/dv0z7KkXrA0pSXcCbvV3cSAQCARuDPE9HHghlIu5luveWQ8jcM4wKxcq7oIyCufWz+v28ZyckyMvKdmggRMQosfD4TBFjXltvV4nK/ZisUgF3LxDAQSmXq+r0+kkcu3kD+JPC0iu5y4IxAJSDyArkGivZA+JgsRDEh0QI+pBzOfzVFcBckS6BXPy6DhdMsbjcbom9QSKotB4PE5zYi4U9oPY4RZgrYmQU2jS2z76ei2XS+3v72tvb08ve9nLEjGlBgAE3NM2ILxY83F/uKOFtfAUAdYqXzf+sK/YNxBaRBL2EmuJ4LWpQwAiD4R0k4DhqRLSCZklzeKF4PPw+7g7wmuAODaRYo7PXTEc77UhPA1iUzrFC8HvnQsXPOvT0mZ4LYevP+vGmp9WH8Gv5583RBM+v1yfY66VKhEIvFjU2m2Vp3ehDQQCgUAgcJfi0//xH9Fr/487O91BOseCgkcTPapI1B2i68dBXCEZHrX26G5ezR4y7l0YIDvcw232/r6nTnitALd9Y2XH1k+UlnmsVqtU9JF5Qe5JpeC+/O3ElyJ9vO7R3O3tbc3n8yQUTCaT5ALAlYDY4jZ01skJsjsSNtUV8GiwR4shp1jih8Oh9vf307mQbCeWEFmeLSkZiCTtdjsJB05Sfc0RhoiM42YBEGVILdfjNeblqRCIN6wTew2hA+KNyMA9uR5OFkmp/eRsNtN4PFa/3688X67hApqvubsIfN/7cS4OsBb5cRxDugRpEV7HwT9nLrQwFxcmcoHPPxdetwOwz7x+gjsHvKAp85ZO3Cl+f79W7n7wFAuHP7e8fscdVkMhcIehtr2tZ7/qV+nwVXdce9JAIBAIBAIBSedMUIAseJV5iAdRbyL6rVZL999/vw4PDxPBgQRhU5eOiOh0Ok3ndTqdRE739/dTZJyIP6TLI/yQHEgHY/U0CbePY4WHkEpKxx0eHiZS5bUFPPcdMgwB9Y4C0pElvtfrqdFoqDzuIIDrgpoKHDcYDFKLysVikWo45NZ5XAe4ETyHnufSarUSAeYanpvPGnENJ3W+puPxWPv7+6m2AyLDdDpNbhEcEd1uNz0D1oiCmMzd01TYI94Jw1tLum3fa2i4EOJChu9JnjPrDrEn3SOPkPNM/NqsDXUQqLUwGo3S+iEAef0E9qkLL9760wsSAt9njI8aB8Cv52Mn5SJ3CTl8Ld3h4J8PFxHcocBnO3cl8Dnx8btwx7X98+cuEMQESVc9D97n2tzfU1Y8hUbSxnUNBG4Vhl/8Ou19xp2RVhMIBAKBF4e3vu/VeurlP65HtvpnPZTAOcDbpiv1PnauqPhN49zNwqPGRK4pGEcxQezokB4i50T8nTRgUccyT6pBXvmf7gde8M1z5CGNdICA1BDBJLLtwgaEC1Lnf5jn1tZWcg5AuHFKMC8n+6RyQPq98r2kynpR9wBCj7Ue0swYuL50UuDPUxDcrUAUn799Ldz9wT2ZPykBrNVwOEwFGCeTiYbDYaVbRq1WS+05GZuTP0gkBB3XBZ0BnAg6kYXMcg+u64X5HC7uuPPDx+RpE5BYz8uXquTWHSA4TBBoSOnxqLzvI66TF/LkHtKJCIKzwQUnd2TkDoZcRGGcuBD8fjh7Nu0BruF1KHDQ5K4PwOcrf2aIR+6w8LEgArizhn3iLhmu4Q4Jdy0xZl+bfH0DgVuNztNTNfd6mu+GQyEQCATudrz2a9+pv//uz9KfuPjhsx5K4BzgD/zS79Fjf/HOT3eQzqGg4L/gQ4A90kqOvJMAjwA7nBjws7fI84KAXpAP0tNsNlOtAY+O5yTEnQOSKoTJ/w3JzNMoECacJEN2KPKXpyVISlFeJ5qeo8+xbukn+r21tZU6ChweHmoymaRCkZD90WiUxAnGx/1cQABuWXdbvue81+t1jcdj7e3taW9vL7X1nEwmSYihjsVgMFC/39d4PE5dPnieLoz0+31tb28nsoxIwp5g7XC+kKrAWnBdCKo/UxedgKdAeM0NxAqOcVEBl4GTXPYeYhJz4zoucDBez/1/oVoJeZFCf0ZeHwQwd/7tLgzWGkJelqVGo1GlvoSTdSf+Lk75nF3A8fn6eZLSZ9Sv5WP2VAd3RXjBUT/Or82Y3GnEnDnmRmtGBAI3guKt/0Hbr/08Pf+Gsx5JIBAIBAKBlwo/MW6r8a92znoYtwznTlDwQnuj0ShFQfnF3qOKCANezE9SIpZcC1JC/rvnhjebzeRa8AgtToBut5uisV6czqPBkpLdHrLq0XCIi9+v0Wio2+0mIt3pdCQpESvINQ4FosTM3YkTc5/P5xqPx6nGQB6xlqrEGVcHBBEXA2kREDiII90OEEGcGEJSPeqPy2Q2m6U1bbfbWiwWGg6HOjg4SHn4RNJdTHHbvdcTcLcE4gn7YzKZXFWo06+JeyDvxsE65TnzeYeAPALP39Qm8PoDOeEHnmJAO0zEEdbQyS57nK4b3jLTSXQe+feIO2uVPyMn/z73er2enB5014Bo81ouKIHcCQI4HlHN0y28PgNiSH5N/4w7XAjJRRn/2f+d71lfi1wQDAQCgUAgEAgEbgV+ZlLTn/nLX6MH/8bd4U6QzqGgQA2A8XicnAEehffIONFsiJLbuCEepA9AQCeTSWr1CGFvtVqVrgTk43e7XbVaLU0mkwpBdQInXV37wcmdW689HYCxQzwhRX5NXvN6DHl02knWarXSdDqtFBUkYk8RyFx0abfbqtfrOjw81GKxSN0ScDBw/nw+18HBQZqPR9/zwoWSEvGHMEMk+fd4PNbzzz+ful7wPBgb53qRvLxtJlb66XSq0WikWq2mK1euaDabpWeYr6nXdeA5eQ0OdyjkohHzc1IPESWK70TUI+4c52tGigciTbPZTDUkvNYALgacDFzbWzg62XdBinvhXMnHzXr43nbwXl6g01/Pj8udC55S4aKcuyTY48wDFxKkn33uz8K/D7xGwyY3Ap8PFx18Li5AuCPCa5sEAoHAvYruJ2u6+PZPKqrKBAIvDj/0rb9Zv+0vfLte24gWkvci3jsf681/5k/o/h9461kP5ZbiXAkKkC+IseddQyQ8gogYQAHGTfnRdDIgGpqTQY+YQmjo+IBrwC3Zy+UyFYfzqKkXhYMQMhdSDVwYkZTIOmkUTm4h0xBcJ0KQJndpuKjgJF466X7h9R88sjybzXTlyhWNx2N1u10NBgO1223t7u5qOp0m8np4eFiZJ0TVo/aMj3FMp1PNZrPUrpNzF4uFnnzySXW7XfX7fbXb7VTvwSP3eUtFt+GzpjgeJOnw8DC5HXwcLvj48/d0Gl7jWWwir/k4vJ6EiztOZH2feOoIEfx8D3qdAgjteDxOKSnuDODfrANiT07+fazUAsk/e9PpNAlFnk7jnz0fn9cb8Tohp6UNuMjF9dif3jXD3QmsEaKEiydS1VVxmothU3oHYp6f6+NxISMQuJ144Kc/rsmDn6Lxo7HXAucXzf1Syw9/9KyHEQjc8dj5u2/T03+up9c2rn1s4O7CpdVIf+iP/DHt/MTbznootxznRlDgF3os99PpVLVarVLZ3aOz0lHNAiz7Xhkfyz/RULdpe24/aQe1Wk3dbje9h5jQarUqLQ0RA5xwIUKQ4083ivF4nEgeXScQGhASAMUV8+J7Tn69+r27HCiKl0d+IdvkunMNOgt47jrjI60Ct4ATfF9j5syz8JoOnocuVTsB+HyXy2VyRdRqNa1Wq+QUoevDeDxOQgh2fx+3W/8nk0n6uyiOOnY4kfZODJv2E+KIVO0ukKeweFSfVJg86g8ZdbHF9yHXAX4e682+Ix3EU1AYc54ewbNgPwD2FmPiGfC5Y878jcjha5W7NkjDcLGA60L68zoG+efdkdc5yGtW8DxYPxeJGo1G2h+e1nDa/XCD+DgRhfhc+V4JBG4nlk88qa3xp5z1MAKBU9F5uqaH/tH7FRVlAoFA4OawKtf63V/5h9R62zvOeii3BedGUJBObOD8oYYBJM6j1xB7rPsQVzobICjQRQBCRqFF0gC63W46zgl1p9NJRQudsHE/J0qz2Ux7e3va3d1NYsRyudRoNEokzl0KTsLzaDvdIiBUkFIXINx+7sXtPHJMZH9/fz9F7RkfIs1yudRkMkm1KubzudrttqSTyLfXSuD5cA+eBWtNccLDw8O0lggTEFTEHIpBLhaLJDAgKCwWi9T5wfPsGYPPNx9Tnj7iNSB8H3nNDI7lmeaWfZ6L1+LwKLyTcr9m/iw5hrl4SoS/z1io+YGAwx706+TI94LPJx+Lu1kg457y4c4Y1sHdMP45YB6b5uuOGvY06R4+F8bhc3EnDc+BzzIuA/aPf079uW4SBvIxss/883RaDYxAIBC4l1BbSKtLz5/1MAKBQOCOxJd82e9WfW8ofeSXz3ootw3nRlDwX+AhDhBRnAqdTkfNZlP7+/uaTqeVYn50Q5BOqraTDiAppUggJgCilNJJKgH2+7ywnpM5JymeEsH1IbOeGpCTY0mpywER1kajoV6vp1arVcm/94KFEG93NGB19/aRk8lEh4eHGo/HyeFAYUiOOTw81P7+vsqyTI4P5sScWU+vCwGpbjQaFTfHdDpNrgKOR0DAhQDW66O2ntQ9YK5eV8DTFtxdgjPD7e/+jPLn44ICYtIL2dndFZCnEvh7kFrGTwFDxAf29Ww2SwVGnbTmOf6IIxwLSfbzfG7sWa+d4Ovi3RVYAxfJWF8XEzwdQ1L63E0mk0pKEfvIxSPWzgUQd9d4rRNfa1pnAhd8vE6DCwpeVJHx+vcI+8SdG6yzI3dPME7WLRC43Xjob/yCFn/qjZo8FGkPgXOEUmpdqenR/+udCr9WIHDr8H/86i/Qp77nn+qRrf5ZDyVwm/ElX/7VKn/xP9719WfO1W/LEFei2ZsKLXreO0QT8kEuOaTCK7hLR+Sm1Wqp0+kkW3iz2UzEFgdDnufNeUTgV6tVEgEoWFiv19Xv9yt1F6RqhBgiR+rAfD5PLRtxIrTbbV24cCGlYOzv72symSQxBEGhXq9XbN7UfYA0jcdjXbp0SVeuXKmkZnhRQopUuqWflJO81gAFA52A5vn/PAsv9IewM5vNriL1kOc8bWU6nWo8Huvg4CClMiBe1Ov1VJzQnQTeXtCFGyeZjNUJuUfyEQNywumYTqepcKKk5HApyzJ1x2B+PkavjQH8fcQSRIUXqkHgnwXOcReAO1W4hkf63eXDuRBoxB/mkYsYvMdz9ZaiiBV+3zzVw99jz/E59XoXiBMuLLgThHPZu77f/HuAtfDr5Ck67EmvbcF6IZoEArcT5XKpYGyBc4VS2hoVevmf//nYmoHALcb68PCshxC4TViUKy3Klf6LN/9P2vl775DW//Gsh/SS4NwICkVRaGdnR69//ev14IMPqt1up0j4fD5Xr9dTs9lMRf4gXltbW9rZ2VG329V0OtVwOKyQU4iEd0zwyLEXuGu1Wur1ehUrvRebk5RyrcfjcRIBtra2tLu7q36/r1arpdFotNGJQOqF58CT076zs6OtrS0NBgMNBoPkQMCJwTgoRElU1i38wAsGUosCAkk7TjotIEo48aKugke8cYFISq0uidB3u90ktmxvb2u9XqfaDZ42AGl25wIYj8d67rnnUiQc4pqTQggotRIgtaRdINiwpxBpJKXnntcJYL0goQ6Iso+bc31sDk8RgagzHwgrLgYXbsqy1Gw2qxTTbLVaab/7OHJi7i4bXBUeXYeoew0S1sIFAtpF8tlijHwWmQ/rznWBF1HkmuzffI18TXORA0eRiwkurDj5z9MkNsFdC5vcKS7U+HPf1BYzEAgE7mqU0ta40Cv/t7urCnkgEAjcLozXcz2xWui3/b0/pVd941u1o7uv8OIL4VwJCq1WS/fff792d3crRfJyEr23t6f9/X3t7+8nK7pH4EkRoGghRNHbL3rUFHHBizjO53N1Op1K1LcsS00mkwrBk46EiO3t7RRV9Vx+dzu4DdyjyM1mU7u7u8k90e12U+SZ65CSQEoFc6VeAxF6xnZ4eKjLly9rsVgkZwOCwmw2S+kc3qLRyS6iBkIBtnVIJu0enQziFOCaRJSdqCFO4DRhDYbDoQ4PD9XtdhNhX61WGg6HiTDiaoCg8ryYO8+92WymmgxcHyFpU7oKc2etvWuDt/pk/SC73NOdMp6mk9vvGQOpOszJxQfEHrpiQGxPEzskJYLsQgmClbt7QC5ASUqijKQkpHnkflNrVnebgPF4XLkH9+WaXmvDnS5eH0E6Eiba7bb6/X7FgeSuBk+R4Hnk18prT7h4kwsRLja56BIIBAL3Epr7Nb3iz949/dEDgfOI//fw9fqjFz521sMIvEiM13P9k/ED+t9+8cv1yt/5y3qV7k0h9urwaoaiKL63KIpni6J4t712sSiKf1kUxa8c/33B3vvGoig+WBTF+4ui+C03Mhi33B8cHOjw2BIESYV4zWazCinzyve5YODugpzk5XUCcgLl7QqlI2I6mUw0mUxS6gFdHWi1iNW90+mo1+slck1UHSLmNQ22t7eTM4EWil4cz0URHyNz8qr0EO7Dw0ONRqOUQrG7u1uJ/iN6IFI4+SMdg04VeXeIfD09/YTzXTTBTTKbzZJ7I4/8QgLX63UaE2vu0erRaJRSTdrtdqXTB2NiHSDBiCTcxwmxpyL4GNxhwjOWTmzy3FtSst1j/+d5ICB4G0dPv/E9CMFlz/me3ERqXRTx/ck65/UavOOCCxAQfMbMdfgbt8poNKoUUnQnCHU0fGwc57VDfO/nggBr7WvBs/B973uUefmz8z++Jxgvjh93N/i+ze//QukvLzVeyu/iQCBw76H9bE3dp2p6xZ9/+1kP5dwivocDtwr/5PUXtCjPz+8YgRvDNz3zWfqGZ96gL3vvV+pvvfZVeuXvvHsLLl4Prseh8H2SvlPS99trb5b002VZfmtRFG8+/vkbiqJ4naTfJen1kh6V9FNFUby2LK/9iYGEQIY8Ku2E2UkiJMEJgOeXe4SXrg0QWQgJf3BBULsAIu3WaI/Oco12u63BYJDcEE5mIGjFcVE+joeArdfrRMRIG8A5QLtJitV5ZBvS6TUOcDTk9n0KJkK6nWh2u91UAJLzESvW67V6vZ62t7cr6QT8Tc2GWq2m4XBYST/wtBIvDkiKCEUOee6QYJ4368C/iZb7euCeYF7utGCe7AO31fPv3F7PWHKi7vuJezA2ru1pAwguiCKsgadw8OzZsy5meS0AF8fYRz6mfKzulICc+/NESEAAyfe0iynuOvHrAy/KeVrhQtaFY/PPUZ4u4c+HNXeRkM804/dn5yJXXvSR55SnOvh98nHnKRHnBN+nl+C7OHA2GHxsrdl9hdaNyFgPvPToPVHTy773vVpduXLWQznv+D7F93AgcM/iv/3QF+tw3pa++EmpLNVUuEyk6xAUyrL82aIoXpm9/OWSfuPxv/+OpJ+R9A3Hr/9gWZYzSR8piuKDkt4oXZ//gwgtOdxEoXd3dzUYDJKVnyg1bRmPx1khlhAkLOCQ42azWYl0OiGBAEJUvDUk50CSIB3UNcjFDsiK117gfrzOGDxC7FHmyWSi8Xic6kFAxDflf0tKggOkcXt7W4888kgiZESLPQ+eFpnuQqDwIC4BhxdAxDXg4o+vC/n4PBt3BEhK82EtTrPlO7F2Kz7X8Ofu4gn1I1xooK7EdDqtkEm38PtYGTuElLSI04oFen2EvM6Ci0weVfcOBE68fb/l6wD8eTNfH0+eSrBYLDQejyvrTS0ExB5PFdiUMsF+xj3Ae7m7gtQR/zxIJ+4GdyggOHkRydw14+vjYqALET7XvOvJJlcHc/RrX09NhrPAS/ldHHjpsf2Db9OVT/98zXdCUAi8tNj+SE2P/dCHtAwx4ZqI7+FA4N7El7zvy/Shpx/Qp/5Pn5AuPXHWwzl3uNkaCg+VZfmUJJVl+VRRFA8ev/6YVKlC8cTxa9eF9XqdOgwsFgsNBgPt7u7q4YcfVrvd1sHBgUajkYbDoYbDYeoAIKliN5eUiB0WesimEzfIAsQIQo2Q4KkF3jbRLdJErBFCsIgvFouUKw7B8tQMyE9RFMmdQGQdMQFijxhxcHAg6SQ9oN1uV7pKeCV9Ser1eur3+0l4gVhLJ64Grw8AyZ3NZmm+TgI97YLx5gR3Op1qPp9XIu4urHAtRCO3+k8mk9QSk+fJfNfrdbKqI2J4Skqn06mkWuREmLWGeNOZAyeAOxCc6Lpgsilqnd8HYu6klPOoA5KnHbh7guM9ZSCP5Pt9fT94dwInz/7scL4gjHhLRmpTcO88FcDvzRq5u4Hj8zaP7gBwx4pfh2uwHxGseM/vwedoU0FM9hPX8a4mPhd3peR/5+6Gc47b8l0cOBs8/Na5PvHFDZVbISoEbj96n6hp98NLbb/zE1o+/cxZD+dORnwPB24Kn/5Df0Qf+p3fc9bDCJyCP/bUZ+vH/81nS5Je+717evzdv6SwF23GrS7KuCmct/E3o6Io3iTpTfnrkKPFYpFEACLoRJ3Jj4dUkuNOuoBbrJ3MQiYlJTcABAXy6rZ6iCmkh7oJHgUlKk9kF8JGFwJcD/yBxNLBwck5569WK00mk0r7QO4hnXSaIOKNcOIpD6QLTKdT7e3tabFYqN/vJ9HFySvXY+0lpeKQXhXfCbt3VIBIIhIwbyLeTrohaO6UYN6cz/h55j42nknehtJz3pmbk1kvtsl8XVAAeRtCf9b+GvACju5uabfbFfcAghV7PAdrxX1ccOB9d1p4ekaezuEpEjnRd5eFu264rztAIOd5EUc/Pq9dAHyv5C4Nr4+Qp1R4ygzvuVDmdRzy9CUflzuAcjHB4Wvma8jxd4CgcBpu6ru4re7tHFPgGmj+83fqVaM36CNf0VZ5x269wHlH61JNj/67qZpPXNHqgx+56/ujnyHiezjwgvjU/+XfS7/zrEcRcPy76Vp/8Lu+XpJ0/7sXes0/O9IEz2Ui7DnCzQoKzxRF8cixEvuIpGePX39C0svtuJdJ+uSmC5Rl+RZJb5GkoihKt8VD8kh56PV6iXS6K+H43HQMhIl8fNwDdGug0GBZlqlWglutaal4cHBQIdBeoZ4oM/eWVIma8rOnS3j1eYDwkBPn0WiUakg4UWs0GpVUAUQPhAMvgEg0vigKDYdDXblyJbURdAEC+z8tMBFo6FrR7XYrOemQvJzMuuCQk0QXCbiGp4dAwr0dqAswzNXTPfy5sUcmk0lFeMnt+L6mklIEPF8PF2tcdAH1ej05UHgWkpLzgDk5UfU0l7xYoHcCYfx+PtfL6zX4/mOMvO9rx/mIWGVZJvGNzwsOGBcOWMfVaqVms5n2mKcHICggXLgLBiHhtEKPLpp4rQT+uOMG8Dnz55o7FfL75GKG/82/c4eFj+G0NIlzhFv6XTwoLp77Cd/tqP3cL+k1o9frV756ezMdCQRuEvVJocd/+EC14USrX/lwRNpuHeJ7OHBTKJcL/bpv/kN61zd/91kP5Z7H5/7pPyhJag7XevQfR5ebG8XNCgo/Jun3SvrW47//sb3+94qi+Cs6KkDzqZJ+4XovSi58q9XSer1OEfXFYpHSHIggu0WawoOSKmSaYozdbrdisfZaDR7VhqQ6uZaURAgK7WGnlk5y0r0rAufnZKTZbGq1Wmk8HleKCzqm06kODg4q0W3GgQMD8QPSSESZloeMARLqRRAlVQj5dDpNtRoga71eT/fff38i6qvVKkX4vfgl98UJAKmERPKzuyfcMeKkm/oPnU5HzWYziQI4RnB8SKpEriGlZVmmNXFyCPy5SCdtHBFEOJ/13pSrz/P2dAO36XvtAUnpWbibxQULnhnj89ocuGzcocJxnuaDCMCxXhiSeUCO3Z2AW4IinZvSGtzx4mvBs/NnyOeHPe1OB09TcUGBdeQ4b7vqqQvMKa/FwJjyvcTPzIu0BxcbNhUyRYxxuOvinOK2fBcHzhblL75Hnzb9VL3/Tfed9VACdwE+7bueVbFaS6uVlh/7RAgJtx7xPRy4OZSlHvqRD0rffNYDuTfxOf/rH9LgY3MVZamdf/22a58QOBXXFBSKovj7Oio2c39RFE9I+t919KX5Q0VRfK2kj0v6Skkqy/I9RVH8kKT/JGkp6Y+U11nNttPp6GUve5m63W4lNWAymejSpUsaDocph146sTtDDHOSQSV+BAXIZk4enLytVivt7+8nskfE2tMkAMcPh8PkHoBAOtn0QnUIAIgQvD8ej9VutyuWeidAHg3OCxU6wYc0Q85Ho1GFxEOanXhfvnxZe3t7aezNZjMVamw2m8ntwdgRT/wZeESZ60DaiMLzjLzwJKIHQglOE2pSMHdJiZR6brxUFUcgp5BuamIQWecZrddHdTWcgHorUuYnnbSNRAzy1BbOzaP3gOsVRZHqAfgzdbLLM3finz/zTfCofV4Xw//4vvU0FubjHU18nVjrvDZDTvr9dS9Mybg2EfOcxPO3px5scorkokJeQJO9hpjmIqQ/I3/N6zJwrs/3POCl+i4OnA+sP/xxSSEoBG4en/Y9l6TL+1o999xZD+WuQXwPB241Vpcu6Te86U36N295y1kP5a7Hq//V1+jTvmWUfr7vV96lcjF/gTMC14vr6fLwVae89UWnHP8XJP2FGx1Iu93WQw89lIiNW/ipSeBF58iTBuPxWMPhMKUz4G7o9/va3t7WeDxOtQM8V53od1mWmkwmOjg4SC0JERPKslSv16t0gXARwp0DDo+eSyft6xiDpwJAfr2Wg5/vc5dO2mm6XZ9relQccgSp29/fV6/XU6fTSXP2WgMcN5vNKgUbSdEYDoeaz+epvgIiAWvhRQ4RhXA3uKPBnQFOBD39g+i5R5a9tSbdGniP9pe4ALxtZ173AhKck1Uns8zD63M46c32fUX0QIDhHJ6JCzSbbP3sG0+78LQTvy/zYZ8gfHhrT8QudzXQgtRdOD4vr1fhY0JsyZ0ofg7HekHO3I3gbiL2nK8J65mnreSijT8jF5TyVJB83fxeLjDmyAWIs8ZL9V0cOB8oZzN9+rd9XO/7U68466EE7iB8yj9dqvVz/0mStBqPz3g0dx/iezhwy1GWav/EO/QFf+Tr9G//+t94SW/9md/xh/Xyv/3+F32dYrCtn/i5H33xA7oN+KtXXql/8RteLUl67fj98b14m3CrizK+KFCcEHJEvvpsNksdHvb39xNpbjQa2tnZUa1W08HBgYbDoba2tjQYDNRutys1D/jZCTIRdVpUOvkHHkmGhOY5/JAk76LglvnJZJLaOEJuSZGQjojVYDBI3Q2IuDoJc8JLG0wIvxdxhKQRZUd44FxqRLCG8/m8EmH3iK1Hzd2d4BFiJ8meQsB4PULOGuapAWVZpnnzvPf29pKggJvB8+Gd7BdFkdZuOp3q8PAwkV4fZ57GIJ1E+D0lw4mtE08XQDbtEebq7gJ3IUC0eRbudOAa7s7w6+dzcKKcu3Y8JQWyTboHYsNsNkvne2FKXmNPII7kghXX2lS41Medj9eFJne4uOtEuro4prfgvF7XgDt4AM/Gn4MLSI7850DgpUZ5LJgGAqeilIpSuu+XCu3+wC9I61UUDwsE7jSUpbo/8na9cfCH9NZv+euqFzdWlXdVrrXeUO/zy1//X2g9mpx63qPLt2p1K5yYl57Xl3zKGysvfejP/zr9p6/+zmue2ijq1zzmNJw279/x2i9UOT/+Xbpcq1w+f9P3CFwfzo2gALmFNPR6vZT+ACkgIg1ZunDhgjqdjsbjcSK77XY7kSGPVuYWaaLD3pYPm7YXcSvLMnUsIDefIoFYxonWE7GF/EpHTgPaKELm1uu1hsOhDg4O1Gg01O12K+QJEusuCCLGRKCJmOPg2NvbS4SUsbvTg2O9sCVrwFpBfCeTiQ4PDyvRW2o7TKfTq/LwXUjg+bDOnsfOOPLOChBS/+NrzHme7oDIUJZlcpR4LQHG5a6QnPS7td/FBDo0uJiDaMJ7LpKwf5vNZsUVwBrkhSw97z+v9eBCBEAc8mu6oOApFf7snaBzTl4fwttz+niZW+5c4E9ewJFrARcd2GfA94L/7XUUXBDK01xw79AFxtNafJ1ZB3+Wkipj8hoqnrpx3twJgXsU61K1RaF14/yk3gTOCUqptijUfbrQw98RBcQCgbsBF/7OW/Vr7vt6/eQf+0u6WGuqW2tuPG5VrvXU6iTS/hv+0Z/Sa/7YphoA+7dppFcjTx14/M1v1W978697wXOKX/N6/d//+OZdGb/p7/1pPf7mt254Z7ThtcDtxLkRFIiiUvSw2+2q1+tVosNe7NCJBu87OcN5gMBAugIEhOMhXkTyIWlExr3NopNr7sU4sXG79bxWq2k0GqXOCV4wkihyu91Wu91O5NZbXkonxeUgg+T0S7oqagxhRrBg/rTdRKCZTCaJ+JPy4GLIaDRKY5J0Ffmm4B91B3LifloE2QmuiwxgOp3q0qVLlRQXb3Hpa+GdN5rNZlqf2WyWSHJetR/iyjn+HB2bunIA3zM8CyfbXmSR8xmnd7XwtBncOJ5qgvPF636w7/M0Dea4ycni4HqeSuKik1/P6ya40ONihAsb/nxzMp6vI+IDQpALJT5mT5lAkMhFMhdngH9WORcXDKKZO2k8tcLXNxA4a6yuXNFr/8+P61f+8Cu06sS+DEhbw0JFKdVmhV7+F0JICATuNjzyV35eX/tX/nN94C2fo//7i7534zE/O3y93varG+nn1+jOLChY/uJ79LWv+M9v+vzHtUlMCJwFzo2gIFUjne12OxVTXK1WKY+diLwktVotrVYrjUYjDYfDComAcEKOd3Z21Gq1EvGnVaKTJAojEsWt1+sp8us52p7aAPmDqEhKZCmvkwD5hhh6isF0OtV6vU7dFjxK7wQSocOj+kRs6YixXC41Ho+vsq7nNSScgDMuHAi8nhNVt9/jSJCujmxzH8QL7s04cVhAFLe2tlInD1JXSCMhAk9KR55O4ZZ8UmFYH9bAix8yf4+aO1HNRREi8j5eUmi2traSCAC59VaSPGsXhTydJHdNMK7cJeCFBz2lhGMg4r7fmNcmMQLhI08L8HQETwXZVIPA0wZ4jb2SE33/Oa8b4eIgggvX9lQXH2eeZpSnK+WCRy52eVoPn+v8uZ9WWyEQeCmxfOJJveZvt/Th/+FhLQaxH+9FNK/UVDt27778294ZRcQCgXsAr33TO/SX9JlnPYxA4LpwbgQFiEG73dZgMNDOzk6KXuZ56O5a8Kg5Od3UNpCUiDquAYgsdQ0gg5KSe2F/fz9Z2Hu9XhIGnBx5JX1SDWazWSWaPJ/PU8HHoih0cHCgbrebWmM6gbp8+XIiRk448/x4SJ5btZ1MUWRyuVwmIi2dkO/5fJ4EGa6Fe0M6Inw4BIjAIyywpu4K2RQ9h/TRcWI2m6VUjdVqpU6nc1VOPPf19AKECcbtHSSc6PF8SJFot9vpubvQwfnMyyPSkE/P0XcbvaeIMDYXEXzuee0BF7pw4nAv1tQdDcwfwQJ3A/D5e82C/D2P1PsYgZP0XMRgrHlHD99rTvz9mlzH5+5CgAs3vO8uF58HqULu1Mj3We6ecGeHv5d3JeE55D97l4hA4Dxg9Ssf1qv+YVMf+/KLml0MUeFux9aoUOfZk7S3x378SS0/8jFJ2pAtHAgEAoHA2eLcCAoQbQgsf0PcFouFDg8PNZ1OE5Hwivl0dcC1AFmDrDYaDbXbbUm6imBt6orgNm2PJktKBNQJu0fJp9Np6hDhhMwj/bgaIFhO6pzk5bn83N/FBsgo18PSz99O5nFmMB/IvTsecIG02+1U9FBSJV0EJ4S7LFg3HBMQUp4TBJF5IgY1Gg3N53ONRqNKLQ3SAFjTw8PDSrRaOiKPiEM8902EEJGE9APmnOfYu1DhxNiLbdIOkfc4F9GB5yudOAZwmiBicQwCmD9z9pO7FjzCntv73UEBPFXAU4T8Z/YOrzF3RJtNxTD9vi6UeK2IvJAlQg5r6m4Vxs718qKkuIpqtVraV1zHPzc8Rx/npnSGPK3B15f3crdDIHAesP7l9+mBV7xRT3zRjRXrCtw5qM8K7bxf2n5yoca/eGd6/eqmu4FAIBAInB+cC0GhVqvpscce0+7u7lUtGJ245SSdqDnE2W3a3W43FVOUlAgu5AXiLSmRY9IMKPBIusBwOEwRf8hVo9FQp9OpROtxJJBu4CJBHlF2q790QhgZAySW44jguwgBQXWbO+TObfCeO++RcLeMQ/zdvu8OhU12fSfxTpapTbBarRKJ9xoTTjIZ73g8rkSveWYIAaPRKLlEGA9zww1SlqU6nY5ms1mlA8d8Ptfh4WGamxfhc0Ekz/V3EcH34yYxguN4n8KRuC42CRbsA2oaeNFAd6RA7jfZ9qUTJ8cmQcHrDHgKgxdbdLEMsH9JN4K8+/nuUGHP+Jp53RN3dvh4uHeeqkQhU6/L4HPzQqC+B3MBxlNK8iKT+Tp4Goe7MAKBQOB2olhLD7+11NZopdY/fcdZDycQCAQCgRvCuRAUJGl7e1udTieRC6zyTtqc5DhxgIARrV6v1+r3++r3+5JO8vOXy6V6vV6lqjwiAYX46HCwWCySYDAajSqFGSnySE0HCNBkMkntG7mHE2Su4aKBVCWutMfMWwdC4D2K69fJI9fu9iBdwG3jiAUQsTw63ul01Ov11Ol0JCk9j+FwmIhYTo4RNzwqP51O0/OhDoKvD/fzubEm4/FYw+EwiTw5uXaxCUJIXQcI5Hq9TiIPz5zre7oC8PSGTZF54Okpm6z76/VRPYzRaJQEFa8tgRjmtR9YJxcBvN4FY3JBhTHnrgXm5akBXMcdDfybPeZzy6P4CAP+s6+Zr63D9x3PwMUAXkOAQUgi1YG5e/pT7h5xYSB/Zgg8vtd97MzT6zj4OgYCgcBtQym94p8u1Pipd531SAKBQCAQuCmcG0Gh1Woliz2EyXveSyfk3KPAkDjcCOv1Wr1eT/fff78Gg0Elyg2x81oAOBtIlaA1JcUenchISt0SnPhCUNwiTooBY4bAI4ocHBxcFb1dLpcpGp9HjKWTqCpdGaiXABF3+zf1H7a2tnTp0iUtFotKCgmtLikeSetNahB0Op00T4jzcDhMxDwvOOikmjoBOD96vV6llSfz89QBrskzzN0inlaA+OCCDmR1sVikeho4LhgzQoykiiDBudzXaxiQLkLaDQSUf89ms0rOvhcDxE1TlmXa1+wVBKzcXo/Q4I4VT8GBZOe1C3ISzD3YX+5ScecCe8fXME+7YF2pEZLvTZ+z10HgmbozwtMbcgfPfD5PwpGLfHxOeM3FBO9wIumqdXHxAjGEcfqcve2rr4+3wgwEzhr9X3xCr3n2Pn3yC7c1fixqKdwNePUPT1S89T+c9TACgUAgELhpnJvflhEUqJ7vxeq8qFqtVtNgMEjdFxAUpJPK74PBQBcuXNBgMNDBwUEiKd6iDiLBvXAjeIqB54/TZpE2kZBsyK10QsSIjjtBdleBn4ddfzQaJXfEaHTSP7Xb7arValWcGggXOBkgPl53gXl5TQdcC7SRhOTjBhiPx8lJ0O/3k0jDva5cuaLJZJJIL/NzwQeC71F30k+8C4V0UkPACbIXdBwOhykdAEBs3Q7vqQu0Hl0ul7p06VKlKKcTZCeXnvLA+EGekw8xpuME65oX6eQZSVWLfl6UkHv42DzC78JCnjKR14nwdBS/losSuEdczMldQF4TIXew+Pg9vcZFBR+/u4oYD2Pw4zzlRlJyxlBgFAHK0xZYf69/kKcsuDsir6fg8Hl5SsxpDpVA4CywfPKT0pOf1Cs++Zg++tWfoumDISrcqXj1D020dXmk1fs/eNZDCQQCgUDgReFcCApOBDblNnuedqfTUafTSWQZsgk57vf7unjxYkqh2N/fT6S03+9rNptVouo4FjqdTopuU7zx4sWL6vV62t/f13A4rIwHwkx01J0UiBNE1zmP3H4fN1Hf/f39ZJGnngCRY8YDOfa2h+4S8IgrYO4QOLpdsIbj8Vh7e3upvWOn00kOhWazmSL2BwcH2tvbS+Sc6PemvHWIHsc6KYWIMzcngl4TYrFYaG9vr5KqQBtKSen+WO1dFGCNxuNxss6zPyD/EGzW32sruMjh7Qu9VsJkMqlE7Flb5uApLbmY5GTWa1+UZZlcLC/0WXFHhI/Jaxzk652LAiAnzIyF7hJ+HmviqRRe78GFJMQGxDMn/V5E0UWd/DgXeVhDd3V4zQ/G5fUgPDXD1y3/3kGQ87Hk9SoCgfOE5RNPqj7/lLMeRuAm8eofmqh4+7u1WkeNlkAgEAjc+TgXgoKkJBB4hLcsSx0eHurKlSuJZHe73UQOIUeQVumIvG1vbydXAaTSLetOOCAaEMqtrS31+30VRaHBYKBGo6HRaJQIhxd1BJBnrtntdiUpRbLJA3cxwQkhZN47J+TWcYAowfW5L+dD9suyTCkRODcAZAzid/nyZQ2Hw3S+CwQQfFwOnnsPqSSSS+tM6h6QUuLj5hqsDSIRkWtJKfUEciqdCDKQWI6bz+fp2TDu2Wym0WiU7un2dRcInPzyTHk2zNG7M3hahQs4Xj9AqhZapNaGdBJtdxHCi2riGshdB9KJi8GLDOa1CvK6B17Yk9dzCz/PY5PrgPkxV99DvmaQcm+v6qKDE3pPf0AkIBWD+XCuu0X8mbC23q2EPcC+dUGSY1x0cHDtXEgIMSEQCNxqPP6jMxVvf7cUYkIgEAgE7hKcC0HBC/9JSpHt8XisZ599NrUTrNVqarfb6Zd98sGbzWZyF+zs7OjixYuq1WoV0uxWaYiCF/KD1G1vb6d0gW63m9IlICxE+BEgKMRIhJrIuXc74FjIlRNRjpGOyF6v16tY2z3qTrHI2WxWKfJHK0hqInhOOikMTpKI9HvRQkQD3BWkJ4xGI+3v72t/f1/L5bJSP4JaEJ4aMRwOrypKSZTc11xSEgM8n95TQqSTbgVY4nETcC0XGCDFtJF0cYT75oX5XLBwGz73gCAjaLAX2Hub0mSohcEzdTeFiw8eDed8J//M39MpcFh49J7PDsSfaxPBh7xD5Hl2HOeRe3c/+PXzzw1jY8w8Iy8Q6oKXE3ZPN/H0EO/MwXu+NqyXp/Z4qoivaT7OfI6ecsSzz59LXo8hEAgEbgrHX+mv+Bcr1X72l6QQKwOBQCBwF+FcCAplWaaodr1eTxHd0Wik0WiUXieCC9mEUEonHRuw8gNIWKvVquSsO2Fym3mz2ay0r3z++edTx4dms1kh7BD95XKp8Xis3d3dChlzCzq59kTFIVD7+/spiu9F4Ij8YyOnsKS7OFg7r/cAILy0u/TieoggCBKXL1/WwcFBZb2Gw6GGw2Gq6eAiAXOHYHt+v1fk9/E7OfNClIw1b7XJWCm65w4Md0X4c/aaFP6sGa+31+R6TtQZm5NexsGcWHP2k6dw8NzczeDiiXf1QIhwEcX3CwKYCwisvbfnBNTQgIjnpBthIo/OO+lnfnzO3E3AvR18RmazWUVMyJ+LuyJysYTX3FlxWn0MxDdPl/AUDH/dBYxrCQPuhnARg89oIBAI3BRKqVgVuvhu6cLfeetZjyYQCAQCgduCawoKRVF8r6TfJunZsix/1fFrf1nSb5c0l/QhSV9TluVeURSvlPReSe8/Pv1tZVn+wWvdA7IgSbu7u8mazi/6ED+PXAMIXKPRUL/f187OTuqAAMnGUeCkxaOTRMrz4nqeEw6xYWykE+zv7+vKlSsVAuRF6jxKDgkk8i+pEo3NazEwToQEJ2tOAiE+7XY73evg4CBZ7rvdborK0sVCUnJU8DMpCn4sY/ZUC28LOZvN0hzH43HFlcGaTafTSpoKtSCYC900PELM305ovRgfTgGeGWuO+CGp0i2EtUK0IP0AgYj75TU7PILNvd1FsFwukxhBS0wXuRCCSC1gv/PcqPHQbrevamnJHnIiz3g85cKPyWtpbIrgk2rg9Rs2kfFc+PHip5B+Pn9en8ELH3raCs/PUx2YE+fi6MjrIORujvx9fy8XPniO/r4LgiAfu4st5wEvxXdx4M5BfSoVa6mMuqHnD6W0NSnUfq7Qw3/15896NIFbiPgeDgQCgatxPQ6F75P0nZK+3177l5K+sSzLZVEUf1HSN0r6huP3PlSW5RtudCAUtHNCAXF0cp9X0h+Px+r3+2o0GtrZ2Un1EyBp1FIgXQLy5+QUgpZXeR8Oh9rf369YsaUjezk5+k4ucUI0m01NJpNU8BES7W3u3HLuud1Y+530QX4hmp7GwLhpb4ggQTcGP4b7UknfyRjr3mq1kohAm0gKRTIH7pM/D0gfY0Eg8Tx2CHce1adOBWvsOfyQ5mazWUlLyIkyzzHvMgB4HQdBLiq54ODn8ax4Ht7y0YsxehFGyLaLJ6SRMA4vdOgFB+fzeRLBcFt4u0g+C1zb19pdGIDnnK9LTpa5Pu+7UwCBAfcChUIRRRC8ms1mGjvj9LQKFz+87kX+c15HAUHA0xfydBGQiw75ey4kuMiTX+sc1lD4Pr0E38WBOwMP/vWfV/lHP1/DV65DVDgnaF2uSaVUW0qPfWsICXcpvk/xPRwIBAIVXFNQKMvyZ49VVn/tX9iPb5P0376YQVA0kIKItBiE4GLnLssydWNATCBC3u/3UztErkmbRLe1OxnxVoWQu3a7nfLfx+NxInOkPBCNhYByL+mEEJG64LnuLiTk3RE8HWE0GqXIOQQcUonwgOsCwiYpkVKv6A/Bg0CR6pCTRVp2IsLs7+9rMpkkEcFbT3rxRMYOOYXMepE/3BM8F45zIun1ElzoQQjxopkIEi5gePqKd9AA3Nu7Y7jQMZ1OK2KG1zrgPjxr9mNes8Cj2VzHnzX7wQs6ekFJ7us1NTxSXhRFKoqIWOH359rejSIvwOgOF0+PYOz+TPK58ewQwPyZsy/q9XpFbEEcQ3TJ3RLMz+fA55M5ej0GPlcvRPj9WL8Pzz8Xknw8+TX83POAl+K7OHBn4aH/6+c1/pbP06pz7sSvewbt52qqH2efPfrX36XyWLAP3J2I7+FAIBC4GreihsLvl/QP7OdXFUXxi5IOJP3/yrL8t9e6AIKAk9xaraZer5dIrXRSvT2vFN9ut7W7u6udnZ1Uj8Aj3S4yQBacmBCV3traSgXiPA3DhQkvtphHqbmW53PnNQucMDlBg2jiyGCcHkU+jdCt1+s0byLgPjcEEmpSNJvNJCAgogwGg1QX4ODgIJFBUiRYE4imrysCAdFy/hC9lpTEgTyvX1JKXeA44G4DhAsKDRIpx3EBsWU9PMeeveP1Crim1zXw58drrDX7wwk557rw4e4ET7lBIPL9BhBEvIhiTox9LqTbkEaBsEQBUSfq3m7R60N48Unec3HB/3gNAsblaS/MJU8V2CTuuKjgxJ338r3ux5Da4q6FTSkJnOPiodfjyJ0Q3I9zfQ9sEhzOMV70d3HgzsPuB6RV83gfbxU6+NTzk6Zzt6E+LbT9keprD//UJ7X88EclpdqLgXsb8T0cCATuObwoQaEoiv9V0lLSDxy/9JSkV5Rl+XxRFL9O0o8WRfH6siwPNpz7JklvkqRer5fSE6TN1e6lEwKIOwEyvLOzowsXLmh3d1f1ej1F+aUTouACg5MJyB1/ZhZdoLDh7u6utre3tVgs9Nxzz2kymaTc/bIs1Wg0UqcKiKETXE9LYEykDXhtCI/wU98AAsa4vDbBeDzWcDhUURSV+zv5JQK/Wq00HA431g1w0jkej7W3tydJlXWBnBHlpdsF42CN3Q3gbf1y4gfp83sgzrgrgPkjIpFmAoHHdTAejyvtO/NigBB83BUuyjCePOXBc+9Xq5Xa7bba7XYSWSh46c/XXS8IPYhX7lBx0Ydxe0HH6XSaSDECzXQ6raTGOPn3QpSsK2vnDg4XhXJHAp8J/3x4ioGnCuSdS9ydw3GIW/5e7izxz7aLaP4cfF65w2CTk8Cvk9d54P64HTx1wu9zDtMdXhC36ru4re5LNeTALcKF7zsp9lcfDHTwZ193hqO5e3D/LxaqLarfA+0rSzX/2Tsqr1Ul08C9jPgeDgQC9ypuWlAoiuL36qgwzReVx799l2U5kzQ7/ve7iqL4kKTXSnpnfn5Zlm+R9BZJuv/++0sIipNMJ+UU4fNe961WS51OR4PBQL1eT51OJzkMIA155XmvwM89qLFALj9jgaxub2+r2+3q8PCwIjpAULrd7lWEfjweazKZJDJPFJ5reu0Bos2MDQcB9RewjXsqCKIKHSg41q8tKYkrm4QG5tFsNpMowHr4WuFGQACp1+spvQTiCwHzooCsu7slnACyLpyX11aQdFVKAH8jDJDS4cUQ8+KHnMde8uKTLnR45wXb55WWoayLR9/dWcM6e6FL32vUG9jkPPEUCf7Oie0m94KLAZyLa8Sj9L5+/mwYM8f7H8bn42TdPX3D6xUgJHhqj4/Vn4mPy8m+p5n43F2M8LXZtE6M+TQnA8Id93qhVIrzjFv5XTwoLt5Zkw9UsJ5M9fJ/ubr2gYFrov3TvxzpC4HrRnwPBwKBexk3JSgURfElOio48xvKshzb6w9IulyW5aooisclfaqkD1/PNfmFHiJE/QCi/Z7qAIFqNBrq9XoVh0NO9iC8vE+EG0JNcUUXBDxK3Ol0Kq4Gr1FA7QfqK0Bqx+NxqkNwvC6piKITKC+g5wQKF4KTUUi9OxrW67U6nU6qOzEcDhOBa7fbSdTwOgvUAPD7lcfpHV5PgHWGfCOGIIwgYOTE0VMabF9UnADeEYPXnGwjmhDdh+xCgnEXuBjk3ThyAYJ7uGDBPf141iR3tTDnra0tTSaT1EnCI+AUKXSngdv/2XccgxMlF2C4Xi445KksTvoRAjyqz5q5QOP1LlgTnjNEnrVwxwD3dCHC64i46MJnwNNOGIenCTlp5948I8aWI3c25GP2Z80cXKQ4zXnBObmg4Hv1vOJ2fBcH7lyUi7laP/mOax8YuCaC0QWuF/E9HAgE7nVcT9vIvy/pN0q6vyiKJyT97zqqYNuS9C+PfyGnFc4XSvpzRVEsJa0k/cGyLC9f6x5OMiA8p0UOIfEQ2UajoXa7nV6jxaGLD71eTzs7O5rNZjo8PEykxwv8eZV9yNt8PtdgMKjUToAskvLQ6XS0u7ur2Wym4XCoxWKhvb09DYdD1q9SkNDJ3Hg8TgSKY6gJ4QSN1/Pc+3a7rV6vl9bKhQOIkOesux2fMSDU4KRgbhDeTqdTEQqo4s98PNLtpCy3yvv9pCphxUXB82i1Wtre3pakSmeJTXZ3Chu6qFGWZapFUBTVzgWIEZ5CsqmIop/HeHGwkArDnFgD76SxaY3ziDrPzNeN8eXYRKbZM06K+cwgBiGyeC0AnCab5sD1IOKb6gmwvqyD359758IH90KwcTeECy++Rp4+wfPw1Anfa/7zJjEiP4bPL5/1/N7n0aXwUnwXBwKBQOB0xPdwIBAIXI3r6fLwVRte/lunHPsPJf3DmxkIUXgIhtv0qVlA1Fo6IeqtVks7Ozuq1WqVmgVeuwAHgUdvSTGQqv3nidbzfr1e13Q61eXLl3VwcKDhcFgRMbrdrlqtVuqe4G4DJ6S0fmTsnq/vx7XbbXU6nUQ2SUXIiSaOBaLtFOSjKCCRY+olQBi5r9cYIK3C6xiUxykljDGPVDMWj/oi4kA8PXruBNO7dmCR9xacnubg3TG8AKG7AzwCzTG0zfTaFe4QgZD7+BAC2IeekoEbYjgcJpGHOXM8pJT9JVXbVuYdCmi76eMgncWLRPJ+Tu5z8SO3+eek2IUNd8N4kUr+cIynI3AswlNe4DCvl+CiCn/cucB7/nc+3vyY/LX8+Px1F5nceeLiWi72nHats8ZL9V0cCAQCgc2I7+FAIBC4Greiy8OLBgUD+/1++llSItSHh4fa3t7W9vZ2hezgEPAINOdCNGu1WkoJyEmmE0H+jdNgOp2q3W6r2Wzq4OBAe3t7Go/HyT1B+gHEibQM3AF5+zy3ubsFHVEAMA4IrIsgECLOqdfryTmB+OGuBsg5RN3rDmDjJ9rsOft57nqe3+8Rb49Ic4zXJ8jrJviaMyfSVFgTdzUMh8N0TYpAst6eAgJJdLGI+UFs3d7vXSq8foOkVCuB99yZQmoI5+Yk18kp8/KUl9lsVhGfmJePJRcDGC/ICbqPFTGC85kT+5JnkKdfsJ88/SMvuMge4lnxvDje9y/POx+jCw7MxfeIk36/t98nT3HgOr42fn3GwWvMk+fq+9PH6a0+A4FAIBAIBAKBwNU4F4ICpNuJNVFkj4ZLqlRt5+fpdKpLly6lyClEaLFYpNoJEFSPfmM3J+LtaRJE6KUjUntwcKDpdKper1ex/HvBSArVIRTgdOBYSSnXnrHkQBAYj8cpJcK7HHAtXvfOBhBxUgQ87cBJKsXoaBPpKQ+svRemdPIFie92u6rX65U2m4yJ58K1PCXA8+y9u4E/Y1wi/ro7IJwcIqRwPy+8mBNRxJeiOCqkKZ0QbuaJE8RFDQqBeuHHnLS6EJBH7BmXuz08XcTTAnzOvJ+nBORE3VN8PEXAn4l3rMiBCOAOFMQQRCn2ugsyngLhyEWETcjTNxA1aAfK54a9uiklAjBvFz78ON8z7mDxvXWa8+G8uRQCgUAgEAgEAoHzhHMjKNTrdTUajUquNxF93ARY88m5h9SOx+NEeijiWKvVUps/FyZyEg+RBKQYNBoN9ft9jcdjPfXUUzo8PEx51+TSQ/QpdAjpdEKYR8Mhv8vlMkWnve2idJQe4W0QW61WhfAwP9aIeSEwIHBgk/f0CpwJFFp0ez11Any8edcBJ66QbuoVuD1fUkpXqdfr6Vm52EO3Difi7pJwQs4+mM1mV6UJFEWRUiZ43SPuLkL5GL0oZL5muYOCmhp+HPf3QqFOzN2VIqmSysMeIyUFwo6w40SWdfH1YL38GefOEs7xOiEIGnl9CI73sef1SzxNwttuuljH66eJF/n48tQZdyC8kJPBx56LPJtcCWBTnQZ/z9cjEAgEAoFAIBAIvDDOhaAgqUJUPYWBIoW1Wi1Z+w8PDzWbzdRqtVLrRIgVpA+BAiICqfbCbqQpABwFdDEoikJXrlxJryFeQASLotiYB99oNLRarZJQ4ITcc92bzWZqL8h8J5NJIumexpDXHfBaBR7ZZa7z+Tw5LJgvXR5arVZKH8jXRDpxF3iePMdAutbrtUajkcbj8VV2clwfuEXy/H6Pfvt9pROrO9eCGOKGyNNHnFT7NfyaRPq9/gYODCfFnh4hqSIo5ITWSb6n2UhKohcdK3zNcvs/r/vfrLvPxTuX5FF43+f+vjsVfC18jpvAvLiei0m5kOXHuTiUg/nwfu5u4PPjgod/D+RrB05zQvhYXBTZdNymFApcI4FAIBAIBAKBQOB0nAtBoSiK1Pqx2+0m8UA6sWMTMR6PxyqKIqUOuBBB60GPHBNRRmyguj+RTSdDy+UytaKkBoIXMSzLo44EdBWAyNFS0WsBeOFACK8TSM/BBx5Rzgvl8b6TaRwdXiMA0su6OSnKc8RJO/A18doHjJ9aEqQ3FEVRaUfJ2PLihl4zAleCdweALLOOEHeIK2vmBQhPWxcIqRdw9LQL7gP4N8+JNWH9ciHBWyH62NyNwbP1TiMuIvk+ZjysC8QX0SxPqXDBwEUX1tz3Rv78eJ+UhdzJsGl/bPo536s+NhezNtVQ8Htyjn+28/X3Z+v7ehP53zTuTcflcCdDfq0Xul8gEAgEAoFAIBA4wrkRFLDhQ5BwHjhZ8toJkMf5fK7Dw0NJSuSYloNuy/dzec9dAJAHItcQGcivCxqkODCOWq2myWSSrP8U8vN0ijzdIo+sevHFvLI+pMft/NjLef20av1S1S7OeJh7brHPUxBwZvhrpFbwfCDvjMvrUPAz64jDgOMZJ2PwqLq7Gnh+XoDR0ws8XQFnwCZSDtl0IYA9kKcOMH/fh14fQaq6A5gfqRyMPSfI7jJhXXiN5++1E1zMyFMefH3ysbvTxIsP+vm5AOBj9M8nf/vYOdaPYy1yQSAXs3y/eYFPH5/XUfFx5MhFAcdpr2+6Xl5H4YXODQQCgUAgEAgEAudIUPCWkR6N9eJ9k8lEo9Eo1R6QjsgUXRnKstRgMEgdHabTaaXjgtvlOZe/ITa4GRArvMgjkXycAWVZajKZpHMhqhB1iG3uUCASDQGcTCY6PDxMogPzc+s+EV0IOiSM4nWsn3eQ8HaQnFOWZcUl4KQtt+YjVEiqkFXu63UDXPzwwoDuBPF0AX/27sxw0s+8nGgjUrAmCCwgFyLyCL47Bjy1gDnzvIuiSGktTvi9ywjj43gcGLlwxTrUarVK6oILNS5K+BqxLu6IcOGF8eQpAf56LhD42HydfA3zWgY8403pEozLHRlcNxcyHO64yIUD1vh6SX0uBgQCgUAgEAgEAoHbj3MjKPR6vUTU3SGAoOBR/3a7rVarlWorQJBpvwdZnM1mKcI8mUy0t7eXouhEuSF1EC8nfF7Zn9e8zSNEbz6fq16vJxGA1pMOb2sI0Yf80NEA5OkKeT69W+e9O8HW1laqm+DtDnkPoubOCY86e/SZopadTkfr9TqlknhrQs5nHVlLr1fBOuYE1UUF1jB3dOAaYB02kdlms1npVsFz9EKEm7pkuMOC1zxVI68F4cTcia7XX2DvbLLL+35mLRAbuC7nu5DkKRi5yyGvHUFRSp6Fixu5GMF1eM+fD/dlz3ndhNPAtTh+kyCQi0V+Lx9D7mA4DZtEhE0ODn/9WuPPxxoCRSAQCAQCgUAgcDrOhaBQr9fV7/dT4T0EgrydIFbyVquVCid6tXly/WezWeqS4F0Z8lZ0nOcRYhcPcgu8F4qDWEOg3AXhAgFEkG4TtC6k0KMTKUQJCixCLnEL+Hi91oITeeBk0h0VrKuLDP6HtXCBxO/lpFdScgjkbSIhy4gPkHuHpx1wjLsPfD5O7jyKT8oBY2N8ufCDgJPXiABeM8Ej/3QNcceGk/LcSXNaVN1FK3+N/bXJJeJr5D/7cfzsdSJwsfhYXEw4bXz+79x1c5rLYdPzzAswupB02j1vFE74r5Xu8EJiQggGgUAgEAgEAoHAzeNcCAq1Wk29Xi8R17y1YF5boNVqqdPpqNPpJGEA0k4nBieBEDecCW7RRqRYr9caj8dar9epYJ9b7SWlLgl0Z1gsFomse0tEouOQOq5HG0VIvUfQ2+12pYYD98+j4Z6rzzHuIPAaCczZizdyPQQL0hS8m4B0UpOASD7neSR6Uz0Hjss7LfBvL8LnqSWs+6a2gx6hd2LMGHGjsGd4Vqw/ZJ/XvfYC4FlLJwUb3VHgY8FJ4WPJCfwmOMHlD3vbnQ4eyT9N8MlFDVJB+PzkRDt3IGwi2Xmk3/fT9QgKm8Z1LWwSTK5XwDjtWpvGdaPIHTyBQCAQCAQCgUDgapwLQYHIKkQZQWA6nV6VV047SNwC/OLPa95aECeCR92JWiNW4CbAGdHv99Mxh4eHiaB6RwJvs8ix8/k8dT5wss85tVpNw+FQ4/H4qg4ITnL9PU8dgKxD8Ckk6CkiUrXVIkIBa8W1WU8XA5yEsk7MBYEgJ7peWFE6SQHxZ4ODgvXLLfouFuT2eo/auyDh+2a9PuqqQE0KxgXxd1EoFzN8/7gQwlw9hcHdFAgxHHctZ0KevuDCSC5anHYNd1a44OTr6YJEfq1NaQHXgrtKrkccYAwcfzME/3pTDfyY651Pfv0bOS8QCAQCgUAgEAhcjXMjKEhKqQpeld4JHtF2/lCYcbFYJJI2nU41Ho9TccN2u51aTUonZMbTKhATuM6m1omQbyLiRXHUunJrayuJBETy804GpDZARpkbbSpz94BHeknlIE0CAgogpRA41smLNxKtd+K7qbI/1yG9AuECYQay6N0Z8toCXlPBxQufD9fgfggrLm4wn03Pw4UHd7R47QLmwb3djYFoguAhnaSmeKFExuAdPbzThFQl8S6abHIIAI7DUbFJjHBXyqaaAptIN8/ghT5jN4PTrrkJN0ryryXC3Gp3QO488HHejEARCAQCgUAgEAjcyzgXggKE+vLlyykCT2qAOw1arVaFfDpJp1sCaQUPPvigHnzwQdVqNR0eHqYcf7epAycXEHyPBEOSuT+1E7a2tlIBRrpMOJF0RwSCRZ7OQOoDOf55mkNZHtWM8G4Xkip1Fqhp4O4NJ84UFfQuCj73PPKNmOCF+SSliL+LBbkwQeSesbu133/2a7lLw6/l5/n18vXL1wty7/UuuK9H3PPOEl4Hgvv7eZ6WsEnE8fu7IJHPg3XNayGchpxUn1aT4HpwvRF6d27kgsLNRvdzkcCv4+LUS4V8DiEkBAKBQCAQCAQCN4ZzISjU63U9++yz2t/fT2QN94CkFOGnq4MXAeT44XCYSHm/39fFixfVbrdTfr27Adx6TppEWZapBoO7F/IWld7tgWj2dDqtdG1A/Gg2myk67gTdI/jT6bTitnBhAfAaxLjZbKrRaKQ0C0npfCfSHsV30s0a4vzA/eD1IqjJ4F0zTrO9ewqER8n5exNp5zxPyYC8etcEF39y94OTeieDHOPOFk91wB3AtT09xMefp2Dk6Q/sPxdwfE8iuPCz1+/guJycX0tguNHUhTzqfj1iBOdscibkos6Nphs4NrkD8n8HyQ8EAoFAIBAIBM4vatc6oCiK7y2K4tmiKN5tr31zURRPFkXxS8d/fqu9941FUXywKIr3F0XxW65nEJBaSKsXZyRloN/vazAYaGdnJ7WHXCwWyR0wGo20v7+v6XRaaQvpaQtFUaQaC0Vx1KoSkUI6sfJz76Io1Ol0EgnmWhy3WCy0t7en0WiU0jQgnYyRuUCOvbMCIoFHZjdFTT2dIq+p4Oc5uYYsI44wZ8QZ6YgwHhwcVMQbXs9TFXgN98KmgoWskXeDyAtBOpl3p4m36OQ+uZMEIcTn6KQXkcjbj3phT0QBUj9yB4bflzVFgGJsvJ6LEbyWp6v4c/L147l4GoiPJxdJcpFp02fI//b9c6Ok/HqcC9c67nqRiwf5n+s993qPu541PK94Kb6LA4FAIHA64ns4EAgErsb1OBS+T9J3Svr+7PXvKMvy2/yFoiheJ+l3SXq9pEcl/VRRFK8ty/KaSdgQSqla+K7Vaqnf76eijZIqVnbpiAhQ5b/ZbKrX66nVaiUyWavVUgtErkGLydFoJOmErDqJ3draUrfbTYUZvWuCt38EkMt2u61+v5+cDx519yKKHsXudDqpzsEmQuXEmjEyL8bm5BSxBZcBDgCvQeAtCx0uxDhRzgke1/KIdV4/gJ8RMrzOgrd1xMXAdRxcf1NLRJ4r4/BCnL4m3uKT5+CpCHmLSl9rn09u298kbHhdhdwZ4oIKyNtpniYuvRDceXC9aQ1+/O1CPoZNKTc3e63rPfd6z7kD3BDfp5fguzgQCAQCp+L7FN/DgUAgUME1HQplWf6spMvXeb0vl/SDZVnOyrL8iKQPSnrjddxDs9lM0om1HIdAq9VSt9tNBRA9P3+5XCZ3wmg00nq9VqvVUqPR0Gg00t7enhaLhba3t1Nku9FoqNfrqdvtbiz4SAR7sVio2+2q2+0mR4ALE3SIkJRcDsVxOgJj9Yg4NRRwCxDxbrVaarVa6di8boPb9yE8XiwQUoy7g3tMJpOKwACc8OeRW08D8XoGeWcFJ6GID15I04UBSOCmegGMxZ0MuDHyFAsEID8+dwe4I8GvhfDkdSTywoi5K8LX6DShg9fcUZM7KzalNPi68PxywcjPPe1Pfrw/I/87H+8LCRbXckLcKFyAudY6Xu+1bgTn3XVwI3gpvosDgUAgcDriezgQCASuxoupofD1RVH8HknvlPQny7K8IukxSW+zY544fu0FAaGngKCTwDz6jVNhsVhoPB5rNBppOBxW0gkQGkiZ4HW3zDebzUQ8cRXgPHAy7yTfrfHuRgD1el3NZlPb29uq1WqpnSEpBTlBbLVayRXhJJl7A0QPt8bjtnBy78Td0wzcbu95/dJR7QXP7+c6nj7hkXzGQztIUjk8Ku+CBNhUq4BUBHcc8Ky5j3fK8Pe85WNOwH1MeZ0FT4nwIpc+Tq7rDhgXCPK9669tKiyYP6fTBICbwYs5dxPZvlVpDLkrYNO63Yjb4HrcFptwo+fc7H3OGLfsuzgQCAQCN4X4Hg4EAvcsrulQOAXfLenVkt4g6SlJ3378+qbfxDeGCIuieFPx/7V3PiGSXVUY/86kurtqekZ6YkYZkqCjZBNEYpAgKCEL0SSbmF1cZSHoIoIuXEQCGhdZKOhWSIgQRBIEFYMrgyjujKNOkolxTKIBx4SMg4hTVa+7q8frot735tTt9+pPT9V7901/Pyj61auq+766r+Yw59xzzjU7Y2ZnBoPBvhVhv4o8Go2KHgsAilX/LMuKwIFfJaYTzwyCTqdTrHD7nRDo6HW73SITwTu+Pm3fr6azESI/xy0qt7a2cOLECfR6vUJL/l0nnH5mOhw9ehQbGxuF88tABx32siAEcLVZoG8SyUaNe3t7RW0+MNkDgY62DzBwfAYB6KjH2RE+M6TMieZrZTp57LdqZONNZmrE4zIDg/fKfw9/PZ+Z4Hs7MIgTa/PbPcbbdPr77YMRcdChKqhQlflR9lkfvJmWUeDHr3ptnnOeVTvM8fjLCFzU5eS3MJiwVFs8ws5KRAohxHWM7LAQ4lBzoAyFEMK7PDazpwD8In96AcCt7q23AHi7YownATwJACdPngx02hgI2NnZwfr6OkajUbESTueS5QO+7p6O4vb2Ni5duoRut1uUEoQwruEfDof7nGRuBcnMBpY7+LICrur7rQGZ6cCAxsbGBjY3N4ueBnRmWfNPR4VONbMTtre3J/oa+JXzsmACnX065gCKBpAAJrINfGYFgxp0zBmc8cEJwu/OuaGD7e5daeq9/w4l97t0nLLx6Pj7zAyfLeA/x9KYqgAH58zr8qUJ/nNVzuS8Tqa/Xpw9Eb9edq4qELBM57uqzGGR82WvT3tv1XerOxugpdkHU1m2LX6P3Xj91IgIIUQNyA4LIQ47B8pQMLNT7umDANjt9nkAD5nZhpmdBnAbgBdnjedT/rMsQ5ZlhSO5s7ODwWCA7e3tidVlBhS8gw2MmxFevny5yGjwuyP4popMpee2kGZWXMvvejAajdDpdNDr9Yoafu8w0jFnBgQAZFmGwWBQOLJxEIPBCJ81EDvifrXbN4lkc0N/XfaNAFBkYLCUwjcs5MNnKHD+fB+E/B7v66fAz3Fclg74YEfZd/DZI/7a7vc0cewbNlJXWV8Ffx1q9RrjIIXvz1HWjLKKsqDOPMw7ftn3qZODBlLKShbm0V41j3V/72mkpGUay7bFQgghFkN2WAhx2JmZoWBmzwK4B8BNZnYBwDcB3GNmd2CcuvUWgC8BQAjhVTP7MYA/A9gD8EiYo5utd/R8qUM+ZpERwK0a6Viy7wLfw3IBBiiYbcC0+tFoNOGw0gmlY+9LKDgu+zCsr68XQQnflDHLsqJpJB3n4XBYXIv4Joccl9/PO+58TqjNlyUA41V2Bid8qQbnjrtPMMjha/vjlXue4/dm3wm/habPLODcM3uD49CZjwMXfmU4bsxYduzvYTxGvCruSxkYaImzDqaVa5QR64m/X0x8vXhFfpZjPi0zoU7Hdhkr+FWZDlWvXSvzaI6DgG2lDlsshBCiGtlhIYTYz8yAQgjh8yWnn57y/icAPLGICL9LAVe96QTQce10OhNBAmYbMEuBTj8bKzKtfXt7GyGMd5Hgqr13Uv31fTDBj80+CX5by36/jyzLsLa2Vuzy4LV5B5qOfrwVo++REGcRcEWdYwAoyjKID6DEuyhQgx8nLnuIS0jKAg0cN3YKGQThMb+Pz3rIfw/F39g5rnLU2dvAf1c/lj/mvY8zH6rmMr5+GWUBCb9V6bTMAx9QmNeBjd+3yGr/tVJWprEK5hn7INeft+TiIOOmViJRhy0WQghRjeywEELs51p2eVgadPhD3uvAbLy9I7dUJL5ZHnC1Zp9NFzc3NwsHlQ4mgwS7u7s4evTovgaL3hH1mRBXrlxBv98vtpz0Ww4ycDAajdDr9dDtdieCF3TUh8NhoZXX8YEDZjt459s7Mn43Bt9EME7vZ4NDn91Ax56lEd6xp0Mc93sAJoMOzLjwOx9QF/s2+Nf8dXgcO6x87rMyfKCFz2c5037cqswBn/VRpi/OAKhyIGOndVYGwjxj1skiznYKeg/CKjS3cR6EEEIIIYSokyQCCr5Zn19lpnPP3RoAFBkEflW/2+1ia2sLnU4H/X6/WJ2nQ8ugwtraWpFlwPIJn87f6XSwsbFROOc+zZ+p/9xFgsEAZjJkWbYvQMDMh3jrQpYk7O3tFdtOxk489XinnHro6LCcg8GGtbW1iX4R3PbSByqokU0h45IEamGJiM+u4LF/cPXfb1MZl29UlSCUOWy8Thyo8JTpjefHB1x8wMhriIMQVen6voFj2Xz596ZYorCIYzztvasONpSVtSz62VW9LoQQQgghhNhPEgEFQsfvyJEjOHbsGI4fP47hcIh+v48QQpGtwBIDOoS9Xg+9Xm9ipZoZBcwmAFA43H7LwtiR4LHPguA2hDs7O8iyrNjVgaUQ3JWCgQQ62f76XNVng0bfL8KXLDDIQaecZQ4+MOD7O/gMAt8jgHPJnRo8LNPodDoYDAZFPwa/8s45YwNJn0Hgd2DgPBLfhDIuLeHr/Btnk5QFCeZ18nzwh/e/rMRi2ph+vv1n4kBBVUZCrPlandRZn1+20z2LVTvcs+7PPJ+d5/WyeVAwQQghhBBCiMVJIqDAVXs65MA4SMAdG7hlJJ09Bh34We5wwF0aABQ7RHhnNXb0vRMbl0H44MBwOCx2jfDZDLwux2RGBTBZRsDGiZubm0XJxO7u7oRD7QMKzCLw0EGPd1GgbmZteKfWZw3wuj6DgGUb3gH2JRPUHuvgbhdZlpU2QeRYVZkJfM659pkFZQ78LLyDGDv3Hu80xtkJfqvNslKIsjHLeh2UBacOyrKd3FX1BVg0+MPPLCvwsihVASEFFYQQQgghhFgMqzNFu1KE2b8ADABcalrLAbgJ0l0n0l0/bdW+LN0fCCGcXMI4yWNmlwGcb1rHAWjrbxRor3bprpfDrvsw2WH9n7h+pLte2qobaK/2ldriJAIKAGBmZ0IIH29ax6JId71Id/20VXtbdTdJW+esrbqB9mqX7nqR7sNFW+dNuutFuuunrdpXrfvI7LcIIYQQQgghhBBCTKKAghBCCCGEEEIIIRYmpYDCk00LOCDSXS/SXT9t1d5W3U3S1jlrq26gvdqlu16k+3DR1nmT7nqR7vppq/aV6k6mh4IQQgghhBBCCCHaQ0oZCkIIIYQQQgghhGgJjQcUzOxeMztvZm+Y2aNN65mGmb1lZq+Y2VkzO5Ofu9HMXjCz1/O/J5rWCQBm9gMzu2hm59y5Sq1m9vX8Hpw3s882o7pS9+Nm9s983s+a2f3utVR032pmvzaz18zsVTP7Sn4+6TmfojvpOTezrpm9aGYv5bq/lZ9Per5TRrZ4JTplh2tEdrh23bLDS0Z2eDXIFteLbHHtupu3xSGExh4AbgDwJoAPAVgH8BKA25vUNEPvWwBuis59B8Cj+fGjAL7dtM5cy90A7gRwbpZWALfnc78B4HR+T25ISPfjAL5W8t6UdJ8CcGd+fBzAX3N9Sc/5FN1JzzkAA3AsP14D8DsAn0h9vlN9yBavTKfscL26ZYfr1S07vNz5lB1enVbZ4np1yxbXq7txW9x0hsJdAN4IIfwthLAL4DkADzSsaVEeAPBMfvwMgM81J+UqIYTfAvh3dLpK6wMAngsh7IQQ/g7gDYzvTe1U6K4iJd3vhBD+mB9fBvAagJuR+JxP0V1FKrpDCKGfP13LHwGJz3fCyBavANnhepEdrhfZ4aUjO7wiZIvrRba4XlKwxU0HFG4G8A/3/AKm37imCQB+aWZ/MLMv5ufeH0J4Bxj/EAG8rzF1s6nS2ob78GUzezlP/2LKTpK6zeyDAD6GcYSwNXMe6QYSn3Mzu8HMzgK4COCFEEKr5jsx2jY/bbbFbf6NJm0TPLLD9SA7vFTaNj9ttsNAu3+nSdsFj2xxPTRti5sOKFjJuZS3nfhkCOFOAPcBeMTM7m5a0JJI/T58H8CHAdwB4B0A383PJ6fbzI4B+AmAr4YQ/jvtrSXnGtNeojv5OQ8hXAkh3AHgFgB3mdlHprw9Gd2J0rb5uR5tcer3IHmbQGSH60N2eKm0bX6uRzsMpH8fkrcLRLa4Ppq2xU0HFC4AuNU9vwXA2w1pmUkI4e3870UAP8M4PeRdMzsFAPnfi80pnEmV1qTvQwjh3fwfyv8APIWraTlJ6TazNYwN0I9CCD/NTyc/52W62zLnABBC+A+A3wC4Fy2Y70Rp1fy03Ba38jfaFpsgO9wMssNLoVXz03I7DLT0d9oWuyBb3AxN2eKmAwq/B3CbmZ02s3UADwF4vmFNpZjZppkd5zGAzwA4h7Heh/O3PQzg580onIsqrc8DeMjMNszsNIDbALzYgL5S+I8h50GM5x1ISLeZGYCnAbwWQvieeynpOa/Snfqcm9lJM9vKj3sAPg3gL0h8vhNGtrg+WvkbTd0mALLDdel1+mSHl4vscL208neaul0AZIvr0uv0NW+LQwPdP/0DwP0Yd9F8E8BjTeuZovNDGHfEfAnAq9QK4L0AfgXg9fzvjU1rzXU9i3FazgjjSNQXpmkF8Fh+D84DuC8x3T8E8AqAl/N/BKcS1P0pjNOFXgZwNn/cn/qcT9Gd9JwD+CiAP+X6zgH4Rn4+6flO+SFbvBKtssP16pYdrle37PDy51R2eDV6ZYvr1S1bXK/uxm2x5YMKIYQQQgghhBBCzE3TJQ9CCCGEEEIIIYRoIQooCCGEEEIIIYQQYmEUUBBCCCGEEEIIIcTCKKAghBBCCCGEEEKIhVFAQQghhBBCCCGEEAujgIIQQgghhBBCCCEWRgEFIYQQQgghhBBCLIwCCkIIIYQQQgghhFiY/wMSx5FZwYVzZgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 0 355811\n", + " Min thresh = 1000\n", + " Sliding\n", + "\n", + "\n", + " Winner = Sliding\n", + " FN Patient = 215ns_image_610066411380_CLEAN.nii.gz\n", + "\n", + "\n", + "211s_iimage_3925135436261_clean.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADDCAYAAAAya0IYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADgrUlEQVR4nOz9d5hl2V3dja9dN55zQ4XuCYoMCIkgjAW2sUAEiSjACAMGE4xAgEUwYDCvkeHnAMYmGDDYBgnEK8BgQBY2GEw00QIjYSQkvcpZCKTRzHR3Vd0c6t7z+6Pqs2ud09XT3TPdU9Uzez1PP1N1wzn77LPvnVrru75rh6IolJCQkJCQkJCQkJCQkJCQkHA92DjtASQkJCQkJCQkJCQkJCQkJNx6SIJCQkJCQkJCQkJCQkJCQkLCdSMJCgkJCQkJCQkJCQkJCQkJCdeNJCgkJCQkJCQkJCQkJCQkJCRcN5KgkJCQkJCQkJCQkJCQkJCQcN1IgkJCQkJCQkJCQkJCQkJCQsJ1IwkKCQ85QgivDyE8/bTHkZCQkJBwjBDCu0IIn3yNry1CCB/4AM/zgN+bkJCQkJCQcLaQBIWEhxxFUTy5KIo/PO1x3B9CCJ8ZQvjjEMJeCOF9IYSfCCH0TntcCQkJCQ9nhBB+IITw1hDCMITwphDCs097TAkJCQlnDTdamL3a8dLfxQn3hyQoJCScjE1J/0bSoyV9iKTHSvr+Ux1RQkJCwsMfY0mfpcPv4C+T9B9CCB9zukNKSEhIeMQj/V2ccEUkQSHhIYfbakMI3xFC+MUQwn85qki9NoTwpBDCt4UQ7g0h/GUI4VPtvc8JIbzx6LXvCCF8deXY3xpCuDuE8N4Qwle54hpCaB1Vv94dQrgnhPBjIYTspDEWRfHzRVH8VlEUk6IodiX9hKSn3bxZSUhISDg7CCF8VAjhZUfVqLtDCD8SQmhWXvYZR9/DF0II3x9C2LD3f8XRd/VuCOG3Qwjvdy3nLYriXxVF8aaiKNZFUfyppD+S9NE38NISEhISzgRCCB8SQvjDo+/Z14cQnmXP/WEI4avs9y8PIfzx0c8vPXr4NSGEUQjh74cQnh5C+KsQwrcffSe/K4TwJQ/0eNWxpr+LE+4PSVBIOAv4LEk/K2lb0qsk/bYO1+ZjJP1rST9ur71X0t+R1Jf0HEk/FEL4SEkKITxT0j+R9MmSPlDSJ1TO832SniTpKUfPP0bSv7zGMX68pNdf32UlJCQk3LJYSfpmSed1SOg/SdLXVV7zOZL+pqSPlPTZkr5CkkIIf1fSt0v6XEm36VAU+IXrHcCR4Pu3lL57ExISHmYIITQk/U9J/0vS7ZK+QdLPhRA+6GrvLYri449+/OtFUXSLovivR7/fqcPv7Mfo0OH1wgd5vPtD+rs4ISIJCglnAX9UFMVvF0VxIOkXdfgH6PcWRbGU9GJJd4UQtiSpKIpfL4ri7cUh/rcOv4g/7ug4XyDpp4qieH1RFBNJ38kJQghB0j+U9M1FUVwqimIo6bslfeHVBhdC+BQdfjFfq/iQkJCQcEujKIpXFkXx8qIoDoqieJcOhd3LRNqj79N3S/phSV909PhXS/qeoijeePS9/t2SnnKtLgXDj0l6jQ5F5oSEhISHE54qqavDv3cXRVH8vqRf0/H36APFvyiKYn70N/Kv6/Bv4xuK9HdxQhX10x5AQoKke+znqaQLRVGs7Hfp8Et3L4Tw6ZL+lQ6dBhuSckmvPXrNoyW9wo71l/bzbUevfeWhtiBJCpJq9zewEMJTJf28pL9XFMVbruOaEhISEm5ZhBCeJOnf69CBkOvw74VXVl7m37F/ocPvYEl6Px1mH/ygH1KHVbO/uMbzf7+kD5P0jKIoiuu+gISEhISzjUdL+suiKNb22F/o8HvygWK3KIpx5XiPvtKLHwjS38UJJyE5FBJuGYQQWpL+u6QfkHRHURRbkn5Dh3+oStLdOgyJAY+zny/oUJx4clEUW0f/Noui6N7P+T5C0q9K+oqiKH7vxl1JQkJCwpnHCyS9SdITi6Lo67CFIVRe49+xj5f03qOf/1LSV9t37VZRFFlRFH9yLScOIXynpE+X9KlFUQwe1FUkJCQknE28V9LjPHtGh9+j7zn6eaxDMRfceQ3H3A4hdCrH43v5gRyvhPR3ccKVkASFhFsJTUktSfdJOjhyK3yqPf8SSc85CrnJZVasIwX4J3SYuXC7JIUQHhNC+LSTThRC+DBJvyXpG4qi+J835WoSEhISzi56kgaSRiGED5b0tSe85p+GELZDCI+T9I8l0Xf7Y5K+LYTwZEkKIWyGED7/Wk4aQvg2SV8s6VOKorj4YC8iISEh4YziT3VI8r81hNAIITxdh5liLz56/tWSPjeEkB+Fi39l5f33SPqAE477nSGEZgjh43SYOfaLD/J4ktLfxQn3jyQoJNwyOMo9+EYdCge7Ovyj81ft+d+U9B8l/YGkt0l62dFT86P/Pu/o8ZeHEAaSflfSlcJqvkWHbRIvOkq8HYUQUvhMQkLCIwX/jw6/Y4c6FGNPCun6FR22Qbxah726L5Kkoih+WYchuC8++q59nQ4dB9eC79ZhVe2t9t377Q/iOhISEhLOHIqiWEh6lg6/Gy9Ier6kZxdF8aajl/yQpIUOif5/lvRzlUN8h6T/fLRDBDkJ79Ph38fvPXr91zzI4znS38UJV0RIrYkJD1eEED5Eh3/Ito6CwRISEhISEhISEhIeVjhyOPyXoigee5WXJiTccCSHQsLDCiGEzzmyem3rsEL2P5OYkJCQkJCQkJCQkJCQcOORBIWEhxu+WocZC2/X4T7qJ/X9JiQkJCQkJCQkJCQkJDxI3DRBIYTwzBDCm0MIbwsh/LObdZ6EBEdRFM882r1hpyiKzymK4u7THlNCwmkhfQ8nJCQknD7Sd3HCzUZRFH+Y2h0STgs3JUMhhFCT9BZJnyLpryT9maQvKoriDTf8ZAkJCQkJlyF9DyckJCScPtJ3cUJCwsMdN8uh8FGS3lYUxTuOUkxfLOmzb9K5EhISEhIuR/oeTkhISDh9pO/ihISEhzXqN+m4j5H0l/b7X0n621d6cbPZLPr9vur1uprNpiTp4OBAy+VSklSr1eJzIQSt12utVisdHBxotVqpKArhtAghSJLW67UklZ47CavVKh4jhKA8z9VutxVCUFEUWq1WWq/X8Ti8VpI2NjZK56iOg7H4uPwYGxsbqtfr8fErHWtjY0O1Wq30vB+/eu3+mpPAuFerVZzfEIIODg5K1+rnr85jURRxjjmPn8+fr9fr2tjYiPeO49RqNTWbTdVqNa1WKy2XS63X63ht1euTFN9/pWvz62fefCw+B+v1ujSek+aTa/fnOBbrkGup1WrxOhmDzyfHA/e3Rqr3meOyHqvX6e89ODhQURTxvvrxff35dTF2nq/OpYPxcC3VufU59ftVXUfVz5GvJ/5V1+KV5o1jV4/Bebim6rj98er8c5zlcnmhKIrbdOvhur6HJanW7RQf8P5r3fO67KYOLCEhIeF6MNNYi2J+5f/xn21c13dx+h5OSEg4qxhq98S/iW+WoHDSl36JlYQQnivpuZLUarX0jGc8Q3fccYfuuusu3Xnnnbr77rv1zne+U7PZTLfddpvOnTun22+/XVmWaTabaTqdajQa6dKlS9rb29NyudTBwYFCCKrX6/H3oig0m820Xq/VaDRKxLlWq2k8Hmt3dzc+/6QnPUnv//7vr+3tbUnSfD7XeDzWZDLRdDqNP0vS1taWNjY2tFgstFwuNZ/PS0QNwlKr1dRqtSJxHo1GkqRGo6FOpxOPISmOdz6fK4SgRqOhdrsdifd8PtdyuVSz2dS5c+fUaDQiEd/Y2NByudR0Oo3XjBgDWeKcRVFoOp1qPp+r3W6r3W7r4OBAg8FAw+EwCjrL5TKSZX7nPIvF4jLRoF6va71e6+DgQLPZTJLU6XTUbre1sbGhZrMZ56rdbuuuu+7Szs6OFouF3vve92owGCiEEMftxyuKQvP5PF7bxsaGWq2WDg4OdHBwoHq9rlarBQnUer1WlmVqNpuaz+eaz+eSFO9HCCHe14ODA9ZlvHeS4ry7ODGfz+N4xuOxBoOBms2m+v2++v1+FKQODg7iveD47XZb9XpdRVGoXq8rz3OFELRYLCK5LYpCi8VCBwcH2tjYUJ7n6vf7ajQaGo1GGg6HcYzz+VzT6VSNRkPb29tar9e6cOGCxuNxfJ8kLZfLuAZms5kWi4UWi0Wc43a7rV6vp0ajofF4rP39/biW/fMC0W6328rzXJI0nU7jOmeNMtf8HEJQlh3+ccT9WiwWUfjI8zzOLfeN189msziHLqBsbGyo0WioXq8ryzK1Wq34WtYQr1ssFtrb21Oj0dDm5qY2NjY0m800Ho/jPLTb7fh54vPYbDZ19913/8W1fvGdMVz1e1gqfxe3leuu1/8d3XWr/tmekJDwsMSfFr932kN4MLiuv4nT93BCQsJZxe8W/+3Ev4lvlqDwV5IeZ78/VtJ7/QVFUbxQ0gslKc/zYnd3V3meazqdKs9z9Xo9tVotSdLm5qZ6vV4kuVRYu91uJOjD4VCLxUIbGxvKsiySJ8gQBLPRaEhSqTLJ7xBlSCvEsF6vq9FoaLFYXFbFzPM8Et5Go1GqklIZhYhDYtvtts9DrJRDyqieQ4ba7bY6nU4UCzh3vV5Xt9stEWiIEL8zV4gp0mFl1t0ezGsIQc1mU91uV6PRKBJayCSiw3w+V7PZ1MbGRiSLHBcRBPInKVbWEXlarZbq9XqJ5FE5htBNp1Mtl8tI9DY2Nkoix8HBQXRtrFarSAqLoogul/V6rel0GucBxwvj5jXMOXPL41x7s9mM98gdBtwDF1hYg1w3xJZ1OJvNIvGWVBo3okJRFPEaAWunXq9H0g4ODg7i/WLN8prRaBTHz7V7NZ5zQPBrtVr8jLCGuG7OjyAwm820sbFRurf1ej26h1zQ4viIW9xzXycITpPJRIvFQs1mMwpqOB1waLB2ubfukkH84tqYa0QEjun3CPHHhT2EnlsYV/0elsrfxf2wc+NDdRISEhIe2biuv4nT93BCQsKthpslKPyZpCeGEN5f0nskfaGkL77Si4ui0MWLF9VsNrWzs6P1eq1ut6tOp6P1el2q5EIKQwixGjwcDuM/iA+EAaHASY5X7JvNZqxy87rxeBxbESA/EJfpdBortZCRdrsdBQoIJuSXKjKkC0LH8efzeTw+19ZoNEqkHKLVbre1WCw0mUzUbDbV6/W0vb0dnQ+LxSK6HyB8ECtIF+JCq9VSs9mMxN6dCMyHW/u5NkSFoijUarWiSwHBgvO4c4D3uuOBa8aRkGVZaayIAZB15mO5XMZqNdfN9fI8ghL3vtoGw31BEIDwUiFnznkvz/k9lo5bcdrtdhy7t+r4+mb9sA5ZI6vVKgpROEYgxYxxOp2q0+nEijvrz1tEJGk0GsX5ZdwuSvDak4g5r/XXM//ePuAODhec/LqYU0QP5sdbfXzuq+0/iBIIeMxztT3JnR3MMeIT8+ttLfzj811tHam2V1RbPW5BXNf3cEJCQkLCTUH6Lk5ISHhY46YICkVRHIQQvl7Sb0uqSfrJoihef3/vWSwWuvvuu9XpdLS/v6/bbrtNOzs70Z7tBJaqIULD4x//eI3HY128eDFapiH2UrlHm7YIiAouCK/o41DwHv9ms1mq4OIm8EwFSZFMO8GmOstYqv34EF9EBRcx3EGxs7OjWq2m3d1drVar6CagbQLiub+/H63r0+lUg8EgEn+IeKPRULPZjMSNuUD4oGpv91RFUUSRx23sk8kkzgfX1Gg0lOe5ZrNZJLAQUQQC3AhU17GgQ8i9tQHXgZNyd2rwekg6IgHEXDquxjPfVMypyHtrhZ+Tx2lDIM8D4urk38ktY8W9wPl5H88zvsViEUk4jgQEgPF4HNsDOLaLIo1GI84XpNrHxXXwX0g5LQ18nnAhcO+5Xq7JSbqvT86HsOLr1rMaqrkbvJeWIBwmk8mk1PbD+Lg/PM48INoh0Ljw4XOA0DCdTuN1cW2eVeE5FLcqHsj3cEJCQkLCjUX6Lk5ISHi442Y5FFQUxW9I+o1reS0VSEkaDAba3d2NgsK9996r8Xis0WikLMtKdnLs6L1eT71eT7VaTYPBQLPZLFbgQavVir3vkkqV0W63q9lspv39/dj3Lx33hkN2IBtuocbO7gGSVIghZt7GAPFmLJDbPM9j1RSi5kF/kKjHPvax2tnZ0WAwULvdjtfJHPp5ms1m7EMfDAbR0o2LodvtxvYCxuwuAW8TQBzJ81ybm5u6dOlSyW3g1vAqsfVKsKRSmCZOBIQixIUqcXYy64Tcq9XNZrNE/D2P4iTbv9viPRwT8cOFHV7nWRmIUZB6Fx68lYTrrWY9eM6Hk3jv32esuCd83IzJ8xgg1zhRINfeHuC5CMzHarWKLQwucjE+DzDkWiSV2lX4fPjnTCoHpLqQUA0/9HYkPp8IgLwGpwIgH6Ma0OqfQZ97X3Pccwdj9LajWxnX8z2ckJCQkHBzkL6LExISHs64aYLC9SCEoO3t7Vhl3Nvb03Q6jYR5f39fg8FAvV4v2vQhGxB+gv8gxZBk6ZDQUPGdTqfxMYhJlmW67bbbYoWY3n1C+zgH5OekZH8s3U4yqbZSlfcKNQR9PB5H8QDBBEJNWCKvh2gSUunkmvdR7UVkoEXBgxLH43GJoPM4RNpzJ7hWCCl5DpPJJM4NzzshpvpfbWXgfiNGuGgBGceRwhxD7r1tBALO6yCHiAqQSUSFqjtAUhwD1ntvf+Cfh/+502E+n5fyBhCacLgwVhwz3gbDODkW14ewxPohl4O1WBUmWGPevsN1keXA+z0PwXM7HMxRp9OJc1Hd8YFcBHeKsOZxdXjrCC4IzxZh/r31gvwHdwJ5qw6fZdxCvM/bITgH69YDSavtO+50qLY2ePDjrS4oJCQkJCQkJCQkJNxMnAlBQZJ2dnYiUYKs9no95Xmuixcvam9vL2YGUA2GvFGdJsRtNptpMpmUevp53i3bEKJarabNzc3Y00+bRafT0Xg8LlU2nRjxX8QGJzIcn+BExAOIHcGEIYQYFMdjVEazLFOe5yXbNePlmN4vjxjiLgeq1p7R4NkOnszPOCCLVUs+10BLB1VcyKek+PNkMtFwOIxVckIHIWiMgWtywg8BZv6o1EPQgVekXdDwn1kPtLBAsCXFij9j9jYP1gZkFnGmmjfgzgJQzVPgOrwtAvGHdYPDAMEDdwzH8TWGA8Kr+x5qyfgh3N5OwHwz11J5y1IcOrRReO4B70XoY368pcLf58+7O4Lxupg0n8+j6Odk3t9fdQgxLubGhRZew+sZE/fDxYorCQcPB4dCQkJCQkJCQkJCws3EmREUWq1WDB3EYUAbAOnsFy5cUJZl2traknTc2w5hyPNcrVZLk8kkEiNIa6fTiYIC1m766MfjcaltwsMf2+12FCgYC0S6ut1ctRIuHZKefr8fq8cXL16UpEhe6/W6ptOpptOpms2m8jyPZB03AGQQIuwZBZAn5m1/f/8yK32n04nX4EQWwoSLwnMhIF9OqLCKj0ajUnAgooH3oeP2mE6ncV45L/PndnYXQXBXECpJVZr7x/z5VqF+r91+77sMLJfLKEBAvBEVuAYnzggJ7jZhPdDWwTVXww49BNSzMfz4Tv5ns1k8PgTZxRMED4QgJ87V0MROp6ODg8OdH+bzufI8j0GVbNuJOOFtDVwD7gZaM9ylwPX4eE5qkfDATJ8fF4CYO8YyHo9jmKpnLVSdFO4g8Ov3eXGxwNuHWGMnhS8ieLBWET0SEhISEhISEhISEk7GmRAU+OO/1+tFkjiZTNTpdCQpVtCHw6H29/fV7XaVZVms3ELONjc3tbu7G0MI2Y8ekkQlGkLrPfaz2Uw7Ozvq9XpRJJAUyTZ9+RC31WpVap/AHSGpVCGFtG1ubkaCPR6PIwHzfv7JZCJJyvM8igvdbjfuIuGkdbVaqdPpxMchw8vlUoPBIBIo3w7S+909UJLnfY5wPUjHPfYQQTIqQFEUpSBAKsXj8Viz2Szu0MG8+5aJHuoHyUQ8QNjxcXE/Go2GarVabLtw4QOyy9g8BNN77Tn3bDZTvV7X1tZWdEP467nfkOw8z0tOEMbv1fQqPBTQHQ0ejMh8cO8894F5IeiSthW/Nn5uNBpRdJtOp2q1Wur1evEzww4M8/k8zqk7ChB7fE1DrHnvYrGIzgfG57kMLh5wDF5XfV5S/Mx7QCnk390YvlUo84crAlHPd5Rw0dHXmQsr1bYMxnxSO0RCQkJCQkJCQkJCwjHOhKAASYXQQdap+LtNfjQaaX9/X7fffnvc5QArfrfb1dbWlvb39y8jI1SAIWwQCGz0BAPeeeed2t7eVr/fjzslLBaL2BsuHZIqiAtgb/v1eh23pfNx93o9dTqdKICQBYHgwDVT4c6yLJKaRqMRXQZkKdB6ICk6C3g9RAkhhko3JJyqP/kKtI0wZrZo9O0x/V65ywEC6G6Aer2uzc3Ny8bi8PYE34mBx1zUWa1WmkwmscfeQ/uYQ4gyx/O2E0klcujuEtpiqu4S1gxzxvXhpKGlxtsr3CnAXPgYqiGE/Ne3/WR9uc3fxZFGo6FutxuFKd8mEhLN2sFNMR6PlWWZsiwriTK09vha5X4jMJBP4NfpoY6sY9wJrDWEJV8/vgsI98EJvbsbEBQ8eNLbT3jMnTXcH3cYAdaKh0nyWThpLIhWrVZLw+FQCQkJCQkJCQkJCQmX48wICpcuXVK/39f29rZWq5VGo1Hs/5eOq+SXLl2KldlHP/rRarfbsWefzIF+vx9D4RxkBkCaPbWe5yeTiRaLhRqNRqzoungAcaFSy/Z2W1tbpcovBAVytFwulee5Op2Olstl3OpRkiaTSbxOxAvfPrJWq8UsBaqvtGBAWiVFW351xwEnxJ4V4DtQ0CbC1pSQRCeDJ7UqQKr9mtvttrrdbnQpeOUaocLDHKsk1+cZEupZDhyn2WzGnIsqIWTNeIsE5+OeO0FeLpel7TIh0n6dEOwQgvI8j1V6Dy90ccGDDb0i766Saj4GY2bcntHA2Gu1WnSn+HxJik6XLMtim81kMtHe3l58bLFYxPBHzolgxr1y54ALA8wPwZPuEGAdeJgnx+Qeu9PH5wQxxl0XLnL4/Ho+grs9XFirump8nC7ccF+9xcJ3/EhISEhISEhISEhIuDLOhKBQFIVGo5FGo5E2NzfVaDQ0nU61u7tbsqBLirboer2u7e1tPepRj1Kv19NisdClS5c0GAzU6XQ0GAwiyfVqNe9FrIDgYJmGkE0mE21ubpaqt5AUyC1uAd9Vgsr2arUqkfvpdBqJW7fbVbfbjcdutVqxXcG323NAIslBQFTAlVAl6AgOVL4hr1mWlUhctT1guVyq2WzGSjwuCK/ge6VdUrxWCGUIQe12W/1+P2ZEQDTpdYc4U/mGmEuKBBRy2G63NZ1OS8F8tLEwNydV/vmvk2HGz/1sNpsxU8MJsu/2AKknV4J58f5932nDW2sQh9zK7+f3bR0hwIyR+XHRyNtCWq1WdK3gKqFthnXO/I9GI81ms9LOITgYuB9U9wl99DBJRABcIkVRxPvqLQ0eakkWhmceVFsortRW4Dt4uDjGnHnLjjsoXHRhDn3NIHywhj2XxHeUcDEqISEhISEhISEhIeFknAlBYb1eazQaaTgcxnBCHvOwNQg4eQqQnGazqSzL1Ol0dO7cOU0mEw0GA0mKRN0T3glRJPhvNBqV2hmo6PZ6PW1ubkaxAtLhBBERwnvt+TnLMvV6vWjB9nR/BAxvbaAFgTkhBwJS1+v1tLGxEbea9FYEhBAs591uNxIn3BWcE1LlW+qRCeAEkBYO6ZD4eSYFx4YYMp8ILJyHVg1EEKr/bmn3rRG57qpgQBsAcOeBtxr4c5BFFxO8TQFy7M4LSDj31Z0RVObX68PtMzkmwYW4JoC7QBCg/L5x3Ha7HecfEs+YcW0gcHjVnnlz50n1Pdyr+Xwew0e5V7h7cOAglLAeHN6S0O12S+GSnlHAHFd3ZHDhCNGiKkz5uTxz46QwR8SxxWJR2u3F3TjsLsIa5blms1kSG1k/rA1v0WENJiQkJCQkJCQkJCRcjjMhKEiH4XGDwUB7e3va2tpSCCFW/Z20eEgiaftUQ6lmb29v68KFC6VWBfrhpePt4CC93sPvuz/QX97v96NrAbLFLhRZlkk6rtp76J7brIuiiG0FbsFutVoxgBBiSiXfcxUkxZDGLMsigXXy5aGDiAGII+z2AIHDFs55AXPI+SG4Tu6YK9oEIHBZlsX2ifF4HHfp4Lyz2awUeOcOEcg81XPpmKwiwLjo420BVVLqvfdVx4JvywkRz/M8ugF8dwcXJFgbLoTwe7XdASLvzhpfW/5arttFCXcPcH2+84Jve+itKe6sQFSgNYG1gBuBtg0ySHz3E+aQCr6vhclkojzPY1AoAaO+I0X1M8Z1ct1kY7CNqBN5dw64m4P74JkJfO45jn9PVJ0G1V02eD3H8nvLP7/3CQkJCQkJCQkJCQmX40wIChAWBAW2TvT2AvrbfVcHbOi+dSRW+36/r729vZibAHHFnQBRcpLmOQCM59y5c2q32+r1epEA898syyIBZltGr0pLKhFo2hWK4nBLwCzLYmsB+QfkJOAiYFxsAUhV2Qk5cGv3crksheVBqBAEaMeA8DEnTrx85we3i0vH1nuuhb58iCZhlxBzAgHZGQMBopppwD323IFq/zwiAG4Ibw2oEkMn8G6JZ91x/yXFe4tIw7WwBt09wrkYA8eo5i/wONfMvYaoYuXH2cC1EOKJKABh59jcpyrxhqB7sCHXPBqNdPHiRd12223x80LAIwGNfKZ8/vhc+XyzRWtVSADMF9V+1rW7QDzUE0Gsen+8JcIFAQ/7ZB2zzquCEUID3xsnzQ/3k+8Ab5VISEhISEhISEhISDgZZ0JQkI6rj+y24H3SEAXIpm+t5zsdcBy2yWu326XUedwBtA5Ix8QYq/90Oo1EBkGi3+9ra2ur1EMvKQY/5nkeSTwEqZo2n2VZDIvc3d2NyftUR4E7B5xIIyogKHj/OESYa6eX3gMER6ORptNpdDFgOZcU+/FrtZpGo1HJ/u4tHB6SyO+QRKrKHIegRCeVODEgbRBaJ3xVd4CTb+B5Bd4aIR1vGen2d9aI9+RD/DkP1n+OjzXe3TBO3HEgsEa572x5yTxzf7mf3F/GIR2LCIC5yLIsVtIh0AhttDT4Dg8+T27j9+OyhmhbaLVa2t7e1t7eXmxp4T2cx9tUJMWtPBE0GD/k34m4jwuhwu8pv+OK4VjuLvB8CZ87b3ni/fv7+3E94FqqCmGMz/8hcFTDMxMSEhISEhISEhISrowzISjwxzsVyqpdXToORPSsAcgGBAdi12w2tbW1pc3NTU2n01KqPAQZYgdJoXLJccbjsabTqfb29tTtdrW5uRlfT2AkWQ2bm5uRyLuAAfFny0qOQZidiwrVSjZzsVqt4muwpROsKCn2x3umQ6fTiSGIWMxp4cDxQC7FwcFBFF98DiSV7OreYsG98RYFxgdJz/M8ngvnBjtbOEHEyVGv12MFHBs6IkW1BQJizhaStVotXg+hl+5IOEmQYPze++/bCrIuIdO1Wi2uJa4VsupEmLlhfeFeQERBdHHC6udkDIQdQvpZ49xzSSWRwcfsWyH6to88NxqNSjt9dDqdksjkooe3Vvg2o6xTwDzzj3lDWGFefI5OanPwYzHvJzlVEAIRenApIB4wblqKmC++B1zUcPGJ9X+ldpqEhISEhISEhISEhGOcCUFBUqz+88c8RBG4FRsr+mg0iqScKu58Po8Oha2tLV26dCmGLjrJRJyA/FBBn81mGg6H0c5+7733ant7W51OR71eT9PpVJPJRFtbW5pMJtrd3VUIIYoKkB4cFZJiS0CWZep2uzH5H6GBcEYXNhAJOB6igs+H95ovFosYMohzg+pyt9tVCCEm/UuKZAxST3WdsTNeiCWEXSpXvxmv72gBSS2KQp1OR9JxvzwBhGwn6aTOiTnChAcOsvsHhJDHmBcXlLgXkEt3AHA+5pv59J0bmCPWDSLAaDQq3RfP35DKzgXmx4nxwcFBdNlwnZzLnSq4CQhJrI6Ja6huO8l4/F75Nbm7AbKNCONbpiIqQNhdDPG5drGJeeScOFKYfw9W9FYGh2d1ICp4G4/PASIIax9RgfFwXm9DYp25o4n/ep5KcigkJCQkJCQkJCQkXB1nQlDwCiT2cqqiwKuy/PE/Ho916dIlZVlW2skBckyfNxVlSdFG7cQJIkIQnp9rMBhoPB6rKAq1Wq0YxNjr9Uq7RLBbgFeLnUjRQtBoNNTv9yOZl6ROp1OqtpP54M6NPM+jk4DXIopAopwwebo+74FEM1cIF4PBoJQvQDWe8/KcBwNKxyRMOtypoNPplELzECgQf7wlg/uMqAAR9RwIv/ee2o/Tol6vR0JM9R7SSyglPfVOyqvuBXcquHvCXRlV14WLFFfKZUDcIPSR68XJ4ZkBPq8esOlCA8JPlejy+urxfP1VXzuZTCJpJ9uh2+2WdhXxOYDM+y4WnI/jI+B4m0c1n4I593BExuSODXcQeAYHgiPndsHIP4MIELPZrJSX4IIHc+Zzw31AKEkZCgkJCQkJCQkJCQlXxgMWFEIIj5P0M5LulLSW9MKiKP5DCOE7JP1DSfcdvfTbi6L4jasdj2o6Vejlcqk8zyUp9ts7wW6327Elga0XIdkEHu7s7KjX62k4HGowGJRaC2azWdz6D1EBZwPuBAj3/v6+JpNJFBH412g0Yt85ZAjy6dsOQg49XwHStlqt1Ol0oq0dkuPvlw7bD3q9XhQTvM+fVgLEBIg0Aot06HCg5WI8Hsdj7u/vR+Ll43fng2cNVMP/vMJf7UOHUPb7/ZhHAMnGZSIdE1FJURyA3Pn1EJSHw8MDA7lOJ8iQW0mlHAJJsZXCHQWIDN6CgMXfifBkMonrkjmBIHOvmTPGijAjla333mbgIZq+dSZzwT/GxfO4RHyXCFAVFFg7RVHEe856xZHC54xx+j0IIcSdTTy8EFHG5451UR3LSSTeAxSrDhA+axzLhR4XI+fzeZxD1i/bSbro4oGNvjbcDcP9qTpbziJu9HdxQkJCQsL1IX0PJyQkPJLxYBwKB5K+pSiKPw8h9CS9MoTwO0fP/VBRFD9wPQeDGFHJpaIJQfDUf6zzg8FAu7u76nQ60VoPgZOkXq+nRz/60ZrNZjFgEdI4Ho8j6fAgQLZkdPI3Go00Go2ik4C2Aqrw1aR5D1r0cUOouS7Ik6Ro7ea6ERQgX7VaTefOnVOz2dT+/r5Go1EpiNFFDbbLpNed47ArBdV8nBD888qyp+ZLx9Zwzw6QjndekBTn1xP1EWp4fDgcxsovcykd52hw/cyJBxdyTEIxqTjT4sDaqLYy4MrwKrivK+4Hooc7ApgrAjgRKgDiE4SU31kfjIeWENaDzyljc6HJnQCej+EWfdpiuG6ECD+fV+Y5r78eEu4CUNUd4vkjk8kkOnWqeQh+Te4C8eutCk4uKLggwefId8vwnTU4p1+jj4Fz4YDxcflnigBN3zXD2yNuBUFBN/i7OCEhISHhupG+hxMSEh6xeMCCQlEUd0u6++jnYQjhjZIe8yCOV+rHhui3Wq241SCkez6fx2r7aDTS3Xffre3t7csS9uv1ujY3N3X+/Hndd999parnZDKJ2zPyevIXcAEACLfnMEA8IB+0M7ig4TZ+fvbjQm7cGl4URSTmHuooSa1WS1mWabFYaDKZxEorxAhHgYf3IUywhSNEHqLkOQnV7RnpoacNxKvNVIwhd1Xyxbg9o8HbASDICDKr1UrT6bQkIDAORAYIM64O38UB0g2B9B0pfHtMhB0XRXjM7ynzwD/Gh5hVdQK4PR7nAMfw+12tlCOEQNghzqxfSSVCXV1PPk8e5un3sSoqOHlGwHMy7RkGPnbEF/I1PK+A1/iWme5awVFSFRSqGQ/uEGDcVUeDiy1+fVXBhM8A4oK3WXhrBq1LvIa1cX/bYp4l3Ojv4oSEhISE60P6Hk5ISHgk44ZkKIQQ7pL0EZL+VNLTJH19COHZkl6hQ8V29/7eDwmi33lzc1NFUajZbMbARaz3EAgPFxyPx9rY2ChlDFC9ZdeDLMtKVn9s/pAvCKm3KzCu4XCovb093XHHHbFPG1KC9brVasW0/OFwWLJPOzE8KfTPA+wgP5BNxIBLly7FHR+4dsQBiDQEnbnzloDxeKzBYFDKUvBK7En5BYyXHAKOiQUdEQVbuSfvS8c7XdCu4C0StDYwvkajoeFweFmlm/sVwvEWnJ4tgAhCXoYH9CGcsPsDFniIO+QZ0onQ4MTcRQIXHlwUqQY/ukuDOfKMB99mEVJevR5fOx6wiBuFe4EjgWMxdo7hny+EG+aBQFDm1F0FrE3G5FV+donY3NyMIgfj81YS5gLBpyoMeEaKCya4Yxyee+AZCwhiBwcHMffDhRsXPHyt4xbiHvouLcyvfxZuFTzY7+KEhISEhAeH9D2ckJDwSMODFhRCCF1J/13SNxVFMQghvEDSd0kqjv77g5K+4oT3PVfSc+33aHmfTCYaj8cKIajX68VtHMlGwMLuxICwNojYYrGI5ODcuXPqdruxTcBFCQgMDgTv9Ydw0PYwn89L2yviiHBiIh0GFOJ24DGvlmdZFgk1JJnXZVkW7fVeWd/b29NoNNJtt92mra0tDQYDXbp0qbQ9JaS/0+loa2urVJVdLBaRcEHcyBpgfDgBCExkbiCVnAuS2Ol0otUfQrxer6N1nwDLyWRSclmQJ4DA4yKFuxkcLk5wb3yHA97fbrfj8Rk/ggi5DZPJJM6rV7Y9UNJFIwQDt9/767e3t2NIqIsxrL8sy2K1G3KLEOBrwV0g1dYDFxV4zttFqNzneR7FN3dHAHcJ+GfPnTK0EXDPPDiT38fjcSTiCBUcE9eFfybb7XbJqcD6Y80wNu5l1U3grh/gwhD3mVYJFzb4bCMyMWcc10URxofrKISgS5cuXTaPZxE34ru4rfyhG3DCg8NGTZ/zuvfp2f13nvZIEh4EPu9DPknr8WEuj9ZpZ5lbHel7OCEh4ZGIByUohBAaOvzi/LmiKH5JkoqiuMee/wlJv3bSe4uieKGkF0pSrVYraG3AWj4cDjWdTkskADs/IoPnHHiKPFssemDc5uamhsNhFCrczg7xwAmR53kkoZAkRAuvwmKN5lxevV4ul5HcVsPtINu+NeTGxkYkvPSns6sAQsj73vc+nTt3LjoxiuIwrb/ZbEbCCSHK8zw6Nwi39BwBd0dAnFqtlobD4WUBhl6tpvrv1eT1eq3JZBJJJaIGW2lK0mAwiPeu1+vFa9vb24vkjvNgM8/zPM6lO1am02kpKwBhodVqxbwGRA1voanecyentAxAbmmFOVqrcd7ceQJxb7fbURDzarik6LrBDcBOD96y4K0moOpqwfEAQa8KLh5GiBuCY/qxuCY+M9VjOdHnGpgXCLy3p/T7/bi1pTsHfNyMA+GB8ZKxwWN8Hnx+AGIOLUnuLPL1y/lx6zAf1aBPXxesW0Q/7pG3A5113Kjv4n7YubUsGY9gPOFPG/qarfdIal71tQlnF7/55j+SJL1yvtC/+IhPkSQVi6XWR+G/CbcO0vdwQkLCIxUPZpeHIOlFkt5YFMW/t8cfddRLJkmfI+l1VzsWldparabxeKzd3V1tbm5qMBhEgt1sNjWbzTSfzzUcDuPWgIBKOvkDrVZL3W43igAQOreEQxIJ2pvNZppMJrFFwiuVBwcHGo1GOnfuXKzMQpzYLcKJGGQpyzJ1u91Suj67HGDtpnKd53kMlyTzAPI0mUy0t7en/f39eG0hhLj9H+0bWZbFini3241zw/VXQxYRCRj/crmMWQHuUHCbPs4MiDX3gbwFRBeq78vlUt1uV5PJJBJJvzZEHsblAo9XzhFcaE2otlB0u91or+f+Vqvg7jChpcS3UAQQTUg84LEsy0rZBOwAMplMSq0SZBRwvZ7PwPVC6r2q7lV2BJaqswB4Kwb33x0C3tLCubmnk8lE7Xa75FzwXUQQIxDUEJZoxWGbSb8m1gXrmJ09qveY1yHOeI6KuzUY13Q61cHBQbyH3AuOf1L7he/KwrziUpJU2kmFcXHv5/N5aRvYs4ob+V2ckJBwOvgbraZ+4w3/W5L0zDd9pmrPvUOSVNxzQevh8DSHlnANSN/DCQkJj2Q8GIfC0yR9qaTXhhBeffTYt0v6ohDCU3Ro73qXpK++loNBuCAWs9lMo9FIBwcHuu222yKxw7bf7/ejNZvKq/eBZ1kWg/sQIDqdTqw+Ssd2asgmlmzyCIqiKPX4U8ns9/va2tqKRMp3MoCUIChA5AkThBw5ARqPx/EcOABGo1EMjuS4o9FIFy9eVLvdjufzIEZ3aTAH1ZBCD2z0vnQIGBVg6VjooaI7n8+1XC5LZJrjQvaXy2Vpi0e2utzY2NBgMIjzUhRFbE3AkUKPezUngrExLnIiqhV9d05wfVyjiyGQTsZCldwr6JBVnCqSotvCj0V7SL/fV6fTKWU9SIpbTHLfPVODa+GY3E+EEh83Y2NcPOdrlPYDz3vwdhRINPZ/tmf187uI5MIAnzXyKEIIsT3J3QSeMcI5cUMAbwvhvwhB7hioZhh4ywXjm8/nUcSpZpvw2ePY7uJhXv2cnINrZQ5vAdzQ7+KEhITTxW998K9LLz38+Yk/87W669emqr/qrVoftQkmnEmk7+GEhIRHLB7MLg9/LCmc8NR176/r4YAQnd3dXd13331xNwPaB9hSktYE6bAKOp/Po40ea73v+jAcDmOOApVvSdG+TYV2Pp/HVgtIXbXajJOAyrwTIG8DAFSNp9NpyfLebrdjhXQymUQ3Q6/Xi4F7EL56va7ZbBYdCuw04ALCwcFBdHX4FoRe2YaIQxQRcLCEE2qJMJPnebSuQ7B8pwqs6P1+P1ZzJ5NJrI7XajV1Op0ofHjAn5N9z5KAZHsYJO0l3CevXntrih+bx9y6j5ADuM+z2SyGeCJOMb+QdtaSCxbeVgF59Yq9uyycHDMW3wLTr8PdLu6q4Zr9HnBenAbMM8KW727CuVin7gTxz6F0LKBAxF1E8oBURC/gLUV+fo5BtgStIlyDz5u3AzEHfv0uGOG0oPXC23p4jV+/pFKeyEluGD7DPvazihv5XZyQkHC28NZnv0B6tvTXfvjr1H/XWt3/9mcpa+EMIn0PJyQkPJJxQ3Z5uBHwqiEOhQsXLujixYt61KMeFfvl3ZLspJ0QRidk/X4/EqXRaKTpdKrxeKzZbBarszwPUSKAkGqyV3Xn87l2d3cVQlCe5zp//ryGw2EUBLyfntd7rz/jhjy3223NZjONx2Pt7++rXq9re3s7kkzCDN2Ov7t7GA6c53m0e0Mol8tlDK/0UD4XUCCFVOar20J2Op2YS+Dj3NzclKQo6EDePHPA++8h5N5asLm5qdFoVCK41WBLBI1Go6H9/f04LtwTkE7uDWTe2wKYK18nToJdCOK8/MyxXYDxdgRJcb14DoNnevjWhwgVTsAdVWLu43eHQjXPgzmWFIWJ6s4VHJ9sAcQYgKOBMbLzibcIcQzAOLhvCFKczwMWEb0g7YyBlonZbFZyVdRqtZibgTDiu7X4dpF+PD4HzB+Cguc3OFxA4lolxfXu4sqtICgkJCQ8/PHab3q+JOmvvd/XqTaT7vhPf3LKI0pISEhISDjEmRIUnJgsl0sNBgPt7u5Gl4J0bL3GruzEcjweazqdqtPpRNIFSaGHv9PpaHd3N7ZPuL2cc9AfTtWZ8xGAmGWZ+v2+br/9do1GI126dEnD4TASUwgKldOiKGKIIq0DEKtms6nRaKTZbKa9vT0Nh0OdP39eeZ5rZ2cnEjz61XEhsOUiJL7b7Za21YMIefUfouZzIym6CUajkdrtdin7YLFYqNPpxDwGyCBE3Qkm5+N1nIM5wyLv5BiiyLy12211u93YfkL+gLeP8D6ILnOEgMHYq0GK3u7AXHl7AtcEOffqerX/30kq6xZbv1832R+4HHB7IH5Rxae9wjMVeB7xx4UhxlC16p+UDeBrGJLt5/Y2DXfb4AhxUacoiujyYVcJ1rS7AhCWGBP3hnuG24d5QeRyVxGvY31mWRZf68KYB4i6IAiYK2874diS4vr0IFfus+dqJCQkJJw2XvvNz9eyWOnJj/l6NfaDHvs9SVhISEhISDhdnAlBgRBDkuP5w342m2kwGMTdCiCX2N+ruydQdaRaSXVWkrrdbnQo5HleIpNYnyFc6/U6tkHQn8443Tbf6XR02223ab1ex20dvTqMaAFJhezPZjMtl8tIoCHpk8kkuhIgzxAyXARO/hAkCCTMskyr1Ur7+/tRyHCixbUgaHgIIK0fVNNxQHh+ANc/Go2iiwQxwVsrlstlfL1v47herzUcDiOZxr3A7+12O5L5ZrOpXq9Xco4w99wL5g4QENjpdFQUhfb39yPZ5Jh+ve5K8PFDVOm9Z+w+n+5e8WN4XgHr1FsKCAB1QQbyTqsC5/ccAtYx99KDFX17Rhc+/FiIblWCzLxwDObHXRm8D8cB4YjMEUSfzwzH3djYiO4UJ/kIE56tQO4BzyN08DjHQFDy89B2wtzz3qozgfP4fBN+yjX454zvhoSEhISzhEao6S3PfoHevhzpUz7oHyt/Y0uP+b4kLCQkJCQknA7OjKDAVom0PkCWLl68qHvvvVdZlsWAO3Z9gBgjQEyn09i/P5vNIqGp1Wra3NzUeDxWlmWRiCJSzOdzdbvd6H4gh8Grs16xhERlWabNzc2Y6TAcDkthgh70xzXipOD8HiLINUDsfaeHTqcTWyggs1SCIWCEGRJoCVmjDcOr9F7x9x0FIFDekw85zvM8zietFZByAjC5boQRWk+o9rtNngBGrj3P8xhOiaAwn88vs9EjwCAUZFkW1xJhj5JKOwb4/YPI87yTbAg6Yo1v1ygdOzA4HiKDZyt4lZ41RXYAAgtk1kWbqtAgHWdUVCvoUrkVgXXhrQC8HlHB4WIFaxphiON7HgVzl+d5SThjbAhBJ2VZML98DnAJVEUcRAeELxfMWE/ensLnB4dLNW+B6zvJtcBnBiFFOg7I5DPsAlJCQkLCWcMTGl2941NfpJd+vPTtz/hcTX/5Dp3/8Zed9rASEhISEh5hOBOCQgghBvdBpiErBBG6e8D78iGpq9Uq5hH4cajOQpjIB+DnahWenRI8UR8CTvUS8QNCS0sFj3EMCCbkt9lsRkJOJZXQQU//57qouEPusfJDVqm0upuBqrikOF4EAf7L+/lHOB8kD9JKSGS321We5yUbfKvV0mg0isICIZlsQYnjgrBMHBqtViveG2/XIEgyy7IosuR5rl6vp/FRsjXzTbr/crksuVUg7z7PEFonoB626GJRNX/AQwUhwswVr/VWBQ+KRJSSDlsOmAtaVRBSEC8YF79Lik4bd0wgtHlGgmcwuFvipLYOwBpxscBDGz340MMMccP4DiesiRBCvOaqUONtIsyrVN6xgc+dZ1hw3Yg/fLb4XLK7hbeLeLsN18d3iosE3koyGo2iEMX4q60tCQkJCWcRH9+W/vjDf0m//oFt/fpXPUWS9I6v/UAVr0g7FCYkJCQk3HycCUGhKIpo13dCJyn2m0Oi6MPvdrtxq0JIHu9FWJhMJnG3B4ixp/xXgxKpbuM48HA3KpwQNEQNSFS/34+tCZwbUs4xqL47IYTIIwh4XzwEc71eq9PpxDnxlg6v/np1mtYIXA6EKHq6v9vz3SXBeSWp0+mo1+uVAgJ7vV7p9R6MuLGxoW63G+37ly5d0mg00ubmZmzLQPQ5ODiIc7her9VoNNTpdGIgX6vVKu0ygchDjz15DLRUAI7V6/Xi2Jy4IzCQkUFLC60ozD0k3Xv/PeOATAtIPyKGk1oPhPRMCNop2GKz6pjwPAwXvCDiTqpxCPg9lxTP69kL0jG55zq4twhtHtAoKW4dyjgg3i5UeBYE69ozIMhc4LUu1vlnkflg5wgPR3Whw50hfi3Ve+XCiDtNvHXFrxeXBdfqYkpCQkLCWcZn5jN9Zv5ySdKvv/jVunhwmH308x92l4qj7z7He573MfrW57zkfo/5P+79CI0//r4bP9iEhISEhIcNzoygULVKe2AgYYGQELIGer2elstlJOSQytlspslkEkMaqaJSzeXY9Xo9ZiuwbSPklBYDdiWgcgpJwWpNhZWqs6QogEDwJpOJhsNhiVC5tVxS3MEAIunkCZLorgZJkXgtFgtdvHixlHbPXK7Xaw0Gg0gWqegizuCcQCgZj8fxZ+YKQWEymZT63N2pgZDDtbBbxGQy0b333huvbWdnJ+Y7uB0euKiyWq2UZVmsUDMPLgp43z6EERGg3W6r1+vFdeRbQXJuRAycDYvF4rKqvZNa7kGr1VKr1YoBmZKiY8LXGe4CnCEuBtEmgBDmu1Ywz41GI64nBAI+C1wzosLGxoam02l0b3Be1oKkkuDBmmOd8jliPSBS8RxAEOEz620LCGCSogvDHQgOzynwsEZEBc9LQIBBMHBHgwdnumDIuvDPi7eScG9wFU2n05izwec8ISEh4VbEZ+YzSYf/T/7wt77nxNfcUftjParevd/j/P3eb+iN7zz83vzcX/tGPfEb/vSGjjMhISEh4dbHmREUvMIuHVuxV6uVBoOB8jxXnueR9M5mM91xxx2R0EKqqMhTcfT2CSdQvAcSRZtEr9crBbth6/fQRkSGzc1N1et1TadTSbosFR5yiCjA6yCdECTImOc7SIrEbr1ex50uXJTwlgrpeEvHqv17uVzGMfd6PT3+8Y9XrVaLffyQ6Wazqel0Gh0atBbwfDUjQFIMtMPSj4OBnSpCCBqPx7p48WIk7pBTz4JgLph7d2rQ0gEZX61WarfbpZwGzwjgdaT342LA3QLxZzcL/ourAlGBe067iLdNeOAiToXqzgasK8aLm2U6nZbOXyXtkHJvR3H3gu92wf2urmfPI3ABizlFEDspW4H55PPjx3FhrSoGMXcIBL6lpAsS7vxxMQJHAoIKn0HWu+eHcE+4fq4LkYbPF48Db2lyBwQuCtYGn6/qNSYknBW842ML/cxrzuvZ/QunPZSEM46nWKhvGVd63F4RGnrK0cve/LnP1+RzFnr6d3+Lbn/By6QkuiYknE1c7W+X9NlNuME4E4ICgBhB/CFR9J7Thw8hwboNkW21Wup2u3HXAAgzuyZAHvM8V6fT0Wg0isSDc9C7TxV2MBhER4QHwC2Xy2jPHwwGko4roFS93aWARR3ixNaI2PapyrpFG7JHnsJyuSzlBjAPCAjeXw7Rko5t27PZLLoTvPeeHRYQH0jwX6/Xunjxou644w7leR5JIlV7392Ba4T0su0l4ZnD4TDeO8+v8MwJRAvPd5COk/m97QGBid/dVQCxzfM8tj5IiqR7NBqVKvics91ux9aSqusE8sn8M1+cH+HF2x28vcSr3rQkSMcZCKyr6s4RtM14tog7VbxSj3ji88dxuD5Jl21v6fkZHN+3tkSg8GPxD/LPtTFHkHq/Tl+zODDcpcN4/Jp4TFLcgpNsFD++tzSQl+LtUtx/fy1zRdsNa43chuRQSDjLKOZz/cJHPkkf/vr33A9hTEi4cWiEmjZDplf98+dL/1z65C/5CjX+9E1aHwVmJyQkPIQIQRsWSg6e8L9X+pHH3L+T6AN+5yv0QV/7pvs//nqt9ZHzOCHhajgTggIk2hPpIWXsnrC1taWtrS31er1Y+cT+Tr+17+ogKZJj6ThkDRcA5HVjYyPmLCBA0CMOeQ4hlHZYgCCv12v1er1SWN58Pi/tzuCkC/INOSe1fj6fx6o15NpJqaRIOH23AQjofD6PVVUcDL5VYZUwjUYjdTqdSFC98o1ow9wvl0vt7e2p2+3Giq07FDyDwXc78PA+b8Vw4cTnhh57SCJtBbQq1GqHu2TgwmDHCd7rbgZI7Ww2U6/Xi9VsMi4gtwhHzDUOF9Yjwgfzxjggmt7+4K0qPje+0wAiEXMEEB54riiOt+T0OfZWDYg364LPRKvViruIMI8eQOkhhnz2XKTj+N4eAHxNeK5FtV2Jz5u39XhbA/PgQZcIBIhU1e8H3sd9cEGBNoXq6wFrxEMYGSOvZxcNBCO+H5KokHCWUOv3FTb78fcv+70/SmJCwqnhd3/uJyVJn/HJX6DVG95yyqNJSHhkoP64x0qSBn/zMfqjH/3xB3SMd3zKT0pvu//X/Oo4149/4ieWHltf2tX6KCg9IcFxJgQFUA1ag0R5gB6VQyrGkDMIKqQphKDhcKjBYBB3EYBEEfY3Ho9LTgfPJ5AUibKkaK1vNBqaTqd63/vep4sXL+rxj3+8tra2ou3fCTc7FkDE1uu12u12rBBzzZJKLgnID0ST5zudTsxMoCKOeIKYQBX60qVLJSLV7XajRZysAzIJcEggtkD+ECve9773qd1ua3t7Owo5kFhIpVf7IW5uTWc+aVXAGYLFHbHBLehY+7knXJt0LPb0+/2S7R17/3g8ju4EBBUXlDwjgvvAeBGocDh4cGd1G0vukxNad5e4dZ458ryCajYB7ge38UO6WVdeyWfOXWDy47kw50KVu1O4LlwIrMXZbFa6n/w8Go3iuHCESLqMsPu8MGc+fhwU/AypR2SrBoe6A4KWHHd48J1QDXY9CbggWH/S8baRfGYRTRISzgre9u1P1lue/YLTHkZCQgm/8bsv0TM/+0sVliutX/2G0x5OQsLDDhsf/sEqmnUVG0G//j9+9iE557M6Ez3rT3+t9NgT/8vX6gkvGR7+8pq3qFguTnhnwiMRZ0JQgHwT1ocl3IkHxAJbt3ScMu9J9ZBBiM1wONTu7m4ksuwS0Ol0NB6PNRwOL6s8I1h45ZdjQ0LG47H29/cjSXYS4tZxKsjD4TBuL1kUhabTaST8viMAZAngcoB4uR3cxRRaCWjDoArt9vZOp1PKi3AST28/c+m98pPJRPv7+5HojkajSKzdmu5k1cUYD99DzMFB4ATQ0/1xEPiOG1xX1dHgQgBrwwP7fCztdlv9fr8kmlCdZxy4E9gVBKHHMy84NkIE48OpAvn39hUcF9XWAc7ta963RfWWDq6NOXEBgZ0sqnkUbv2vBp76rh4IQ9JxVZ/zcTxIO4SfNentCe5K8J89z4DPaBW0V9DGVM0lqQoUHIO59HYnF4v43PpniM8cY0PMqYY+JiScBdTf73EqHj897WEkJJyI3/qVn9W7D0b68q/4x2q/8h0af+wTr/qesCrU+o0/ewhGl5Bwa6L46L+u+fmWvvs//Jie1j79bazf+g9eIP2Dw5//xnd8rbp3H4Vip8/yIx5nQlCQFK3YEEjIDe0BnroPSWL3BwhYrVaLoYL0UU+nU+3u7pa2MoSssoUh7gcIt1ROhodQQmZos9jb24u5BATscd7hcKjpdBqr6tPpNIoIbt1m9wYqrIROrlYr7ezsqNPpxDlhTIgU7GTAdpTeD+9BhtKhw4HdF+bzeQy25JgIBJ1Op0ReaSGYzWYaDAYxIBLRhwpvnuelDAQcBpB+CG2n04lOC7evQ56ZH+YEOzxtJL6tH2KBhxRCEJkzD6lE/EFQ4DxeqeeeQCqZW6r1kE/mDtIOfNcE7jNz5IGgrMVutxuFFOlYfKmGPgJvGeH1iE6IQwgdjG21Wmk8Hsd2HM8H8F01fI15lR8BytsA+OdrAJGASr+3fiCyMB+eK3FSu4w7U+5PUGDNcy8RGFxwYA7c8eNZDuv1OgoYrFlcHanlIeGs4K/+7uP01qc//7SHkZBwRTy+3tV3v/CFevZLvv6anDS7q4k+5V9/iyQpv3el7Ff+780eYkLCrYGnfrgu/rWOPvPrX6rvvO31kk5fTKjild9x/BlPn+WEMyEoeEV4uVxqf38/ElCEAq/ESocEGccBVmknR9KhSHFwcKD9/f2S04BWAU/3p2Lt1mlPovc+dAjwhQsXdPHixbitogf7Xbp0Sbu7u6rX67GPf7FYRCv+bDaLQkWz2YwBg1TtIYUQ2vV6rfvuu68UCshOBlTSpeO2EUQO6bjHnMBIhBvyBDxd33ck8OMVRRHDDD39n/8ipHhVmRaMLMtKTgjfQUE6JrXu0GBbUODjYc0gPhDiSeUex4l03NZB9TzLMm1vb8c1xHmpivMeBKR2u10iwQgOuDl8JwLG6TszuGWedektCggu1fwFXBUIG7hJuHbGjlDCPeT6OR6EGlFmNBqVnCO4PrhHTsQh1cwFx3PweUNQQNyDwPMaqbzDggsAvM5FF5w+3HMXqvw91Z0YGGe1LYX5QYBCQHJnCudPSEhISHhgeGq7ds1tOdu1XK/4zsPXvmj/Tv3AUz5Xd7xiqdavp0pnwiMTGx/2wXrX5+3ogz7x7XrFE3/7tIdzzTjpswzu+pW91Ar1CMCD+us5hPAuSUNJK0kHRVH8zRDCjqT/KukuSe+S9AVFUeze33Eg85ubm5pOpyULuvfpe1r7dDrVYDCIZJ62CYL7SJonUJF8A0iXdFy9lBTJKaRYKgcOQkwgHLPZTKPRSHt7e+r3+5G0ebV8MBhEwtvtdrVerzUcDtVoNGK7xXK5VOsoVIvqMw4FwhazLIuV1Ol0GgUYiFrVao8Lg/YHtmv09goqsV4JZ14IpcOOz/2hkoutnHnjv51OJwog0vGWkvP5PAoR46MwF3r0ERjIOYDMQ8bpY+e6PLzTq//VdhC39Q8Ggyj2dLtd5XkenRbcW1o5qnZ3J+ysAciuzydz5S0j3E9ej2BBiwAige+A4GsccYL59LFWgzsRKbyqz7i9tYI15S0+tGO02+0o5LFGmGsXFezzX2rz8baX6nNcE6KRC0GOav6Cv5exEtzoGSGSSmPz371Vg2O02+0o6lXdFtUwyVsBN+q7OCEhIeE08JWb79NXfvXz9S3P+kj90md9lJ74swuF//Pq0x7WdSF9Dyc8UNTvvENv+I7302PuuqA3fvit7UTjswye8bGfrXe9/aMue11tvKEnfMvLH8qhJdxE3Ihy3DOKovCNsP+ZpN8riuJ7Qwj/7Oj3593fAah8YtF2CzQBhJAHxIbJZKLBYBDDCqnmb25uRucCDgdyAID3uHuSfxWQHpwOVPepyo7HY+3t7emOO+4oESjICOIAroKiKDQYDLRcLmPbAG0LOBgGg0F0TGB157zr9Tpa7xEwmCu3xkMwvSpPICNEFsIoHYfRQfZxHIQQorW/ekzPceAeUtGHsDJOQjHX63V0i9AC4i0fkkrig5NF5pT7SrWf+1ING/RtDhEO+v2+tre3o8hRbTfx1hWOjTjhoYuOKpn1ajlzwmNemXcHhVfqmU9vsUEQoMIeQogZAb5zgrdg+Hs4BtkHrCfmiNdnWRbXHaTbPwscC8eMCz0c390D3Lfq3BHk6JkNVWcGYkYVfCa9JanaBsGc+04nuDx8jqrCCtfi2RFXC3c8Y3jQ38UJCQkJp4kffNSf6wef9ef6hx/xNP3l1z1ZxStff9pDul6k7+GE60Kt39fkZ9t655NfeNpDuSn4gyf/ivTkyx/fXU309Cd85Q05x+0/1NbG/37VDTlWwgPDzfD3frakpx/9/J8l/aGu8uV5cHCgwWCg22+/XVmWXRbkRjWbcECqnDyGFRxBYX9/P7YPeMWcY3pF0nu+qYZTNV+tVrEVoSiKSDZ5z3w+12Aw0Gg0igSQsUP4ISUQvslkot3d3ViZZicIzy3AbUD/P0FxkC3IGEQYAoQQAVlqNBpRtCCLAiKPZb7VasUec7INEEDIq8CqjvhB4KWLPIyv1+spy7LSXNEOwXyMRiMNh0MNh4dJsQgeUpkYe8uJt3S4oLCxsRHzFcgGYI4g0F7lxuHhbQKsg06no83NzZJ7gu08udbpdBq3+/RMB0isry/G4vZ8HmO+3F2BCEBLjO8+4OGOHBtnA04NJ+WsDd++kblFxOCz561FEHwyNzzfgmtG9PPMBQ+srLanuOvD8xVcYPFMCD4P3oYCPPATUYNz8H3hbRHVthPg96DqSHBB4RbHdX8XJyQkJJwF/MTj/o/++YsG+vPPf6JWb33HaQ/nwSB9DydcEaFe16P+11ovevyvnPZQHnJs13K95qN+4YYc6/t+5Il6zeCxpccuzXMVn/ieG3L8hKvjwQoKhaT/FUIoJP14URQvlHRHURR3S1JRFHeHEG6/6kEstM63h5NU6qun/3u5XGowGFy23SBug3PnzunixYuaTCZRoHBiDwGEZFHhdiu6Ez9aDpx0kWFw8eJF3XPPPSeGxVHhRdxoNptRCMGVwZi9D91bGzzfgfF45RpBAeKNnRxxwEk5ZIzcCLeCQ7KZ7+l0GsUG330BsYB7gjiR57k6nY62tra0ubmpTqdT6odnrJ51MJ1O41y6mOJVf67fK9GMl9fjBKFq71V+xk5Ly2Qyia9lrngON4VvqzkcDmPPPbkThDaSEYHAUw1FhPB76wiPQ6YhxR4syBrwHTr8v74WcBrwOeBx307Sq/SQZdY+VXvee5IY4DtheJsQ9+UkkY61yBaZfm5vc/D8CM/FQLjwFgTe746RyWRSaoFhXLwGYcLbpght5Xp93v3a3UlyC+CGfBcnJCQknBX8m9tfq5/+n/foJZ/wFOl9pz2aa0L6Hk64ZjzlVdKjmhf0TdvvOu2h3PJ43rm3SufeWnpsWaz0n153+W4zP/uCZ+r2H/2Th2pojxg8WEHhaUVRvPfoC/J3QghvutY3hhCeK+m59nuJ3PpjHpxHqwDbBrrFXlIkhbQO7O3tlbILsiyLlmrfqcD70yFokBqCD337QarIo9FIg8Eg2vrdVu2WcY7LTg/ScVhite/cyfpwOFS/34/XD7he3z4SHBwcaGdnJ1bAR6NRDBFEFPAWCN9FoipQ9Hq9SJoRQTqdjiRFkYRgSTIsdnZ2on2eCjxiBZZ1xAquhech6m5R57+IHhByv27CFyWVdjE4ODiILTD1el37+/txS8a9vb14fyGhrVZLvV4vvo/75W0xnm/ghNN3anCXiFQWmmhdkY5DDRGanOR6lgifDW8fYK58lwh3K7g4x7xXgxCBZ0YgfK3X6yiieUaDhy/iVIDU42BxoYRcEq/4+3aPLihwfbhhEGMQGnxuESPG43FJTPB2CvJJeN4DNmllosXD348wcwuFNN6Q7+K28ps1voQHgdlnfZR+8Z98v6TOaQ8lIeEhxZf379UHv+w39ekfEK7+4tNH+h5OuCZ84mvH+n923qxaOHu7Nzxc0Ag1/ZOdy91Nn/2t/07v+ZauvuO5X6nG777yFEb28MSD+mu5KIr3Hv333hDCL0v6KEn3hBAedaTEPkrSvVd47wslvVCSjtTckp356DWl4D3+8HfC4HvNs0MBFW+yCqbTqSaTScluzfs82M1D6DgHr6U1wXv0IZ2XLl2KpBsSBZGBvEyn00jW3VoO4YJA06JAe8RwOIzZBhB/J7dOuN3tUBSF8jxXv9+PbSEQckjfxsZG3E4Q14Qn9COCMDc4ADY3N5XneRzfaDSSdCiQ9Ho9bW1txddTGaayT88+oY+IDN7OUa/XSxkCbuWHoPtcsz7Ip8At4WuIez0cDpVlWWlM3FfcLH5/vKIvHYoV3EuHhzR6Cwv3CrKc53kpS8Mr+WQR4C7gGE6uIfDegoDA5o4UCLi7BvI8j8IRzhPWsgt3ZAz4rieSSqKFh1QiWHiLkrtl3DHgc+RzzLl4HecgL8FdQ+568TDOamgka9zFE9aYH98FE3eScL9vBdyo7+J+2Lk1UigfYThoBz2pkcSEhEcmntqu6a4PG5z2MK6K9D2ccDXU/uDRetETXqLba3kSE04JT2h09YSG9JKf+o9aHv2t9xUf/KlaW9ZewvXjAQsKIYSOpI2iKIZHP3+qpH8t6VclfZmk7z367zU3BlFFre5376IC9nVS89nRwW3PvHcymcT30kvvIYzeL12alEr/NVVRKrLuoKD9Ynt7u2TF7nQ6ajQakVQRNohTgOchjVSP3eZO3sB4PFae51EEcUs8x+RaGPd0OlWn01G321W9XtdkMokiQ7fbjdc6HA41nU6jKACpZa6c2HrugIfaVYUBn2Oq8dPptLTrQafTiS4Mt5t7CON4PI4kVTpuI/EKv1fxfY1wHRBI6Tgkc29vr5QNwPs9kLFWqynP89KOFozLSS6tIE7MEYjcaQAZZitPBBMEAY4FaccBwM/8YwwID74jhY+B+XDHArt6eEgoGRSIFpB6ckRY+8yz5ykgDNRqtdLuHMw14oG3FflnDIcAbSB+fxE+qtfMmBEJXPRwkdDXIt8pg8HxH6T+GXanCeIMgseVAlvPEm7Gd3HC2cH6Y5+il/7wC3QW9yFPSHio0Ahnu/0sfQ8n3C82anrfLz1Jr/mgX5DUverLE24+zteORfpffesfaXc907M/4BmSpGK5OK1h3bJ4MA6FOyT98tEf9nVJP18UxW+FEP5M0ktCCF8p6d2SPv9aDvaa17wmkg6Iq4e2NRoNtdvtUiURQj+dTiMBArQXAKrRkrS9vR1Jku9FzzEgfbPZLFbuqWh6Kr1X0CGOTqzdeg+xnc1mkZBS1Z5MJmq32+p0OlH44PiQYA8hpA/cK7a4ByDaeZ5HooVwUbVyQyR9y0hJ8T74/Hj7B/PLa6iYO5HDSdJoNGKbyng81mg0ii4DD9JzK7p0XAWXylv5cU63pvMa5oL3ezsC7yHI08UhyC/XxDUwd4yPuWm1WpE4O7nmnkHMJZXaEXyN+HVD9hGGqq0TPiauhed99wbIua9lfy3j9ftMSwGvRaTwTAjGyLkRhRgfx3dRB4HP7yViAU4YXD04GHAXAT8v3wceuuj3xd0rBFV6dgeihaR47w8ODuI5+UyyRhE3b5EMhRv6XZxw9pAqWQkJZx7pezjhRGy023rTC56sd37Ui057KAlXQCPUdHuto9/6i/+rnxmc14s/+q9ptZt2d70ePGBBoSiKd0j66yc8flHSJ13v8SaTiS5evKg8v7x3rNFo6I477tDjH/94XbhwQaPRKJIuBIXJZFIKPoTgQkqcmEF0vTJeDWSDTHgV2okvxJxqLoSItgWIjm876IQQZ4X32buQIh1v5+hbNzLmk/rKV6vDrSyn06na7XZs03DizrXyHreAO6HHLs5jtARA1nAPQMS94isdb7kIQcal4FkNkECq/T7H1faXyhorbe/HWBEyvBIOQWauFouFhsNhqUqP0wNhhGt1V4hvWeotMe4ecMt9tV2DNcO4vQXFgz+5R6xvvx+0s7io5hZ/Xsf7IdHcbw8urDotqveFx8h1wIXiWQV+bzwgkvnGlTKfz+NaZJ3i5CDDgzWCEMbjUrmtx4UL5sbFnKrg5dkqeZ7HnA4XP6oiICITn/Gzjhv9XZyQkJCQcH1I38MJJ6HW7+tN3/Wheuen/dhpDyXhGvHs/gW9/vd39bq/+zgd/MVfnvZwbhmcmb+WQzhM4Hdi6ISh0Whoc3NTtVpNg8Eg9sLTbz8ejzUej0uBcljsIVVUZL2S3Ol0ojXae7XJGYDALJdLjcfj0pZ7kFWO3263NZ/PI3HG4UB4JMGFHsS3Wq00HA5L4XEuEkCuqF57PgQ7EHQ6nRIJI7xyNpup2+2WbP8eyEdfPVtjuijgDglyHjqdTqwg7+3tRRIIOa+m4lfJrqRoqfc2Aog6YonvlsBYvBrvW1Y6IYQAIoSwdrz9gJBK8jYg6tzjyVEPVfWaXMRwUQGCzHxyHJ9nPzd5FpzHxYhOp1PKQJAU2wYIhmR+OQ+5FBwH8efg4CC2a7C2PFjT1yxE2++Xu0xw9riYwNy6M4Tjeu6A74Dhr3HXgLf6kGnhbQ2eM1EVmBi3tztVd6Kotqx42w4i0Hw+j606CH4uOCYkJCQkJCQkXCtq29t62/M+WO/4/Bec9lASrhPfd8er9YU/v6PBVz1Rqze+9epvSDg7goJXiulfp+/fCSf96RAvt6WTqUBFXzreepCqc6vVisQvyzJtbW1pMpmUWhLc5g+B9fC/TqcTbdMQVsQCshv29vbiWCCMkHHEBsY/m800HA4jEWTsCBHFUZI92QNkCJAR0e121el0Yvgj4Y20F/g2jB6QR2W81+tJUhRgEDII7oP4kTFA+wLnkqR+v69+vx/bPLhGCCdEmGtCjHCXA/eH6rYHIjJm7hO99FwXa6ja5iApkkufg9FoFK8V2zvrbDweazabxXXj5BYhQVJpBwJ+h+jjvkDg8RYX7h3n5r0IO54NUg0QhAR7m4YLL5JKP/t4vW0HUu1tRbh9qPITUupuH+5nVTxyERBxo9/vS1JsqUFMQKSjLcPbTvh8cl5/HjGP8/pz1ewIhEPECG+hQShw1wXbnyI64rZISEhISEhISLhejD/2iXrLs5OYcKvixe//+/qk//QsNb/lQ7R+zRtPezhnHmdKUPB+af6wd7cBBIRsAIgc1nUcDrPZLFagqdR6iJz3ltPX7b3rkGEn1IgNnC/P80juqGrW63X1ej3t7+/Hqixkh5YI3AkQGirXg8EgjrHaPsCxpOOwvvF4HIP93L5OhRbRARJGCCHH4PoRVRAzptNprGL7+HgfAY/0mjOHWZaVgiapwjupZ7tKwh657x74xzagEHrmDjLq2zB61oEHGuI48NyFKvy66vV6dHJQBXexwkUYHvcATs9CYF36jgjVHRi4Ns8nQPRh/lwYcuEM4YM58+wLR1U08KwBnqu6ITjWcrmMwl29Xo/5IzgVuEcQfxeNWPN8jvkMes4E953jIRDhxOEeM4esjfl8Xsrx8J0jPIuCefd7VHXLeJgo3y2e1cGYTnLZJCQkJCQkJCRcCbXbbtO7/07arONWx+996K/qg77ga3XXa057JGcfZ0pQ2N/fL+0cAAGBlHpgHzZl/uDHyk6fPFZvr5R7cr5Xjd1STwXcAwshJxBDXAds5QdZX6/XMVWecQKe29jYiI4IJ0SQKc5ZDSuUjskgZA9yxe/0feMiYI4InYMsewUb14N07FA4SYBxSzzzQ6gdbgZe6yGX4/E4jpWdLJzge/Ae5JkdABgPYk115wRJpQwKHC5ui0e8QKjh/Kwtr+QjCCEQeXuBByN6IKHfv2oPvwslzIkT+Oo99vXgIYO4EBC0fDvOaj6Iu1sQWjzAUyrnXHg7APfMxRpEtZOyLPyzy3t81xSEEubf59uFBz8f1+uCB/eVcbhYVB2Hh2UyBwgrzB/hrt7WgcDh5/bxJiQkJCQkJCRcC9bvd4fe+Vk/cdrDSEh4yHCmBIXRaKR+vx+JugfdUaH0UDYIDCR/OByWSBb5Ct67TXWWwDjIChV5D/U7iUz4DguQZIjMeDwuOQ+kYzcARAcCTiYCr3Ey6IA4cT2tVktZlqnb7cYAO4iTn4fzUvGl/97zIryqC7F1Ao7zgePSV859ILiQAEvaLJxIT6fTeH2cBwKKpRzixnsQTajWQ7A9fI81E0KIAo5vIcr8ew6FO0UQJSDN3sbQ7XZL4/OwRF7jIoPvPuC7OywWi0hSpePWDez07iDgd47P6/M8VwhB4/E4Hos1T9uHb5vobgTaB3AycE9d7OAeO8FnbvnnbRInrVFvW8F14K0P1c+TixseOolwhEiEAMO9cPEDeAaGCxouAHmGhbuafJzeRsX987EnJCQkJCQkJCQkJFyOMyMoSMfb6kkqWe6ptNN3zvOQOYgbffHsO49FnLwDzsGxpeP2BogMxAxSg+UbIkU7gRNKjkP/OWKDZyJMJhMtFouYQwDhd5Lsuy448fY5YZxcl1d+1+t13GKy3++r0WhoPp/HgEEXanxeIVpFUcRgQFol3BGwWCzinHS7h/vo4sigkr23txfbJpg3RB7aSjw0kmO68MJrnHhCVglSdFeIdOxUoE2COaVS7eTW++cZO4IV4gjbanKfEZE4jnTsQEGYko4Fo9lsFoNCmSd3WPj4cAU4uH7u22q10mg0Ks1ptXWBteKiGmsAMcgr/Lym2uLhQsmVWj48S4H7gADg61W6fAcVd5dwr6XjFgZEF2818rXgQOzgejwgE0HEd+rw7ImTXBtchws9CQkJCQkJCQkJCQkn40wJCk5C+aMeIgvxh+xnWVbaDYAKLCTBq+9UhCGrnpaPsyCEEPvovWcfIuztBN1uV71eTyGEKEaEcLxLBe0WVVI0m820s7OjXq8Xe9IRQFqtVgzow3ouqURo3ILteQuQOM9NQFCArNLaQAWdcU6n0ziOEELsefe2BSfO7Dawubmp+XweK/qbm5ux0j8cDiOxlxTJ+Wg0KqX5V3v7nZQ6yWQe2MIQJ4WTPkgoOxuQqXFwcBC3Iq3ed6rz7XZbg8Gg5ErgPnhLRjUvAEcAcw6hhTCf5DqptlmwLnltlmWxmu4Ch7s1PGODNYgIhMPDAzZp/eF83PtqG4cLAL62uC5/3tuPXJDicXcC+BwgZvkuLu6scVQdDpzbnUu0qgAECn8PwomPl+8Lrh+XA20RyZ2QkJCQkJCQkJCQcHWcKUHBiYWTRcjheDxWp9NRnufa2tqKOym4kAAppnLZarWU57lGo1Ekm57NwHmqafDesgAJwS7PVnseisfxnJAQlEglnp0LEBSk4959XBWQG0ii73ZQPSdVfQQBrrk6h7PZrLTDhVfI2eZSOnZAQNYQBVar1WXv9flhjqlWr1aHOyWQh8D1sGViCOGywEXPC0BUIkuBFH7mVjquTONcoFWDOfKATdozPN9guVzGLTw9r8BFBQ9adJHK22MQBDywENKM+4E1xfquthZ4JZzrIuBwOByW5twdA7hwEAtYz4yHYFEXP7g+Dy2E8DMXzKWPy8eMkwdBj+vw1gIXoXjeWzn4L/PiTgUXMmjpoXXG3UXeauI7eZzUuuGuFOaKc7j7wsfm218mJCQkJCQkJCQkJFyOMyUoVLMPeExS3IFgtTrcvaHX62kymWgwGEQi4lskQkRwAEBGnSR59ZkgQq9iQwS9D9tt157v4JVcSCG9+x4st1wuo8OB7AfaHditgvfzeo7poYPY9SFjuAWo3DN+yDiWewich0mOx+MoGHBd3hLBfYGUM4dY65vNZnREHBwcaH9/XxcuXIiOjV6vV8pVwKLOPaP67n31XtXmnAhCEGRILCKL70oBMYTAe4ifj99bMrhmxBwnq27x94wH6bj9xltOyGnAHQA8BwD3AIGiuHBo0aFqjlPB22gYBwQbcQanAJkXjNHFCHde0Mrha4J5wkWAcMCYuF8uAFZbiTyLgOtmPjmP51wQRsm4/X5Vwz6r2Rbcd+bE3+OOBtaMtxG5M8edGVzHSbkNCQkJCQkJCQkJD2884fefoyd916uU9vu6Os6MoOAVb69We3AdVXOIFYRjPB5H0gPZgyBAup1w07vtYXFUdT1pn/FADiG5iAhe4UUI4LhFUcRqNeNGIGg0Gup2u5rP55EI+zZ2kDOq9T4ntCjUajVlWRbnpupQ8Eq1JHU6nWifl1RyanjV2u30/Ndt4bgavLpL8GGe53GuQwjxniD0NBqN6DSgck0WBPcbAueWe78PEEWECFwckEDGWM1tWCwWkYD7tSL2QHa9dcDJJMIOglM1vNOJNPcUgupCE2tjvV6r0Wio0+lEYYkMEHaaaLfbGo/HcfePqjOEOeh2uxoMBnHtMUYEDs8G8Tl2oYDrgKwjHtBaxPww7qqbyAUODzfk88L69HBNXCisd4QfnELcZxcKWCeeG+GhjYyFNeRZCR7MivDmn2m/X1fb2SIhISEhISEhIeHhiae++u/pA5/9/2m9Tlla14IzIyhIh0Rhb29P7/d+7xfD5KiG1mo1TadTDYfDSAYgi+QTSIrWe/IIqOhDRr2HuxpGVyUXnMMrtVRQR6OR8jyPVf7JZBJJpQNSBJlbLBbRUk6+Q5W4eCUZQBIhvBBxAh9dePBqPuR4PB7H8UqKeRKENkJAcRBQPZcOdwvY3NyMuwG4PZ8KOrkG9Xpdk8kkEkREEe4LW1r6MSDKvMfzCHBwNJtN9Xq9KNow14gFCAoexofzw0MDnTDjRED4YS2Q2eHklpaXg4MDZVlWWlvNZrOUUcA/J6ick/vL76xHchwIcWS3E5w5nAtS7+QYFw7HpWrvYpeHSTJ2F29YY+7g8aBL1j6tM4gyHsKIcMR2oqwz3/rT8yC8tcFFA8+qcMeJi0rVXSncbeS5Ct7OwXrwYFIEB+4fn2/p0LXkQkZCQkJCQkJCQsLDF6tirc9/+6dp8zPedtpDuaVwZv5arlqLvdcZQKarVVpIple+fds534oQ8tRqtdTr9SKB8OwDt1i7XR6XwGKx0GAwiOSG83NuquMOCB7Eygkn74FcecYB5Njt8zznrQBuY4cQQpYODg7iLhM+JxB7zl0NQvQdHQh09Gov/2VecE10Oh212+1I5ieTSRwL48Y9ALmUjnf2gFC6ENDtdrW1tRXbYVgHzD35CbVaTaPRKLoJIKSeq+DrCGJMSwHwVhsPfnSHgXTsXHA3BQ4XdzFwPaztatCguy2KolC32y2tbdoe3A3ga9TnCheBBxf6+nVLv7cLeAAn4ojveuECiGeQcO+8BcOf8/XvAZA+t75+vfXFd+3w4yPwVL8fqvfCRcNarRYDOh3+Hl9brJ2EhISEhNPFMHmOExISbjJ+b1rTiy88TeOPv++0h3LL4cwICg7fZQDy473fkmKVFJEAourbKXqlGPHBk+NJ+Odxb5uAXDuhlxSt/JPJRNPpVJ1OJ5JB78/mvBzHw/qkY/LsgYWEC0L8qHx7ZgI7JngriAPiyC4SENnhcBgzELg+34kBAumJ9xA5n1Pmg6o3rRTMDf/N8zy6EaTjam+1pQGyB9n2EEzmH7GGe8gagFxDsLmPXrnnXH695CR4C4KLOxBbFxCYC8bGWpzNZqUqPfB8gHa7HUUr1hJ5E94e4q6MyWQSyW81r8DdGS688DqukWuhwl/9DLEGWZf+XLWVBnGG+eecvIY5B3w2+TyEEKLYhCuH8dISNJlMorADmXdC7/eWdVvd0pVr5pg+X7RtsF54H+fB9eBzR5BnQkJCQsLp4Id379Ldr7902sNISEh4mOL7Lz1Bu8uOXvkRG5LGpz2cWxJnRlCoViXZGYHMBH6mqt3tdtVutzWdTrW3tydJsYXAbeYQsSzLIhnxFgR2XJhMJhqNRpKObfiQJUiV26qpZLo1u0p+vbJdFS4g/hBfKtNZlsVKu/eaO2nzloyqpRvSRYAlQgdtGi4ASIdCB1vo4TDI8zzmO+DsgPRyH1arlTqdjjY3N0vOAUlxa0mOA0nzKj8iEYTNK+ncN4I1vZWAijMiAfZ2hBIEEXeWeG4CqAbzQUxdQPJdCXw9+XaluDz8NdJxtZxrgIAjsHBefvcASHIqeE01OwHXAtfoVXyujbXru4n42L39x3eAwAngbQDMYTXo0oUMDzRkzXl7Cc/7PwQiPqMnuQq8faXaOuLhozyOuMe94XPjLQ7VPBTO7e0eCQkJCQmnj697z1P1rk/vSMUrT3soCQnXjI3BVN9+z4fru+/4/057KAlXwPPueYrePjovSRp98lCF/X2ecP14wIJCCOGDJP1Xe+gDJP1LSVuS/qEk/CLfXhTFb1zPsb3K6hZ9SBH9/c1mU91uN5JOJzXScW+4k1FIPMTbq6bD4bBEOpfLZexf910Q3L1wNBfKsixu1ecWbchmp9OJtnEqsQgNq9VKo9FIs9lM3W43ugK8WgzhoeItHYZRepsH5LrVasVtMr11ZDqdajAYaGNjQ3meq9FoqNfrXTY/TsiZe0gnZI/KNlt4sgVjdZwQZA8mxIXg5M0FAu4/95lx4MzwdVEVFNzeTyXd75M7ElxQqAoWvjuCb6PoRBnCKh1XwblfLgI5IPhO5Lmmer2uPM+jSOBZEd6uU3VKeFWd51kPtPLwPKIPApvnkEynU21sbCjLslKriMPDMqsk3EUhBDb/nPh6dldI9ZisrWqribcgsC4dvvsHbSKeweHfB74GOSaiSbXV6qzjZn4XJyQkJJwWnvXWZ2r1ZU2tLrz7tIdyVaTv4QTH6i1v1//5l0+VfjwJCmcFLx5u69+8/jPi74/9Lql41etPcUQPLzxgQaEoijdLeookhRBqkt4j6ZclPUfSDxVF8QPXebzSz15tl46rrt5r3Wq11Ol04u4CkAbEB69qQtAQFKioQ3who5BBqvGejUD7RVWMqAoNkkqkCPII2eE6qkGA0+k0ihDuLnD7N+P3bAS/LgIpsdS7w2KxWGg8HsfxdDqd0vaVR/eyRAhpnXAghmRZpm63q/Pnz8cdHGizQNhAKPC2FOaeMEmcG07QeT8uFIIluRfe0uIhf5yL4D5v02BNsXa8ms799bYHsggg9e5E8bXquQEezkivv4cMMhYEEtYM42RN+NaJ1V0luC8ekOlrxls+eI0TcW8d4DHWOXODiOKtFO6Yqc6Bw8USrps58ewLbxG60veB3zPPOVgsFvFaqq/37xBfT1wrv3sOCI/hIEJ4caHmrOJGfxcnJCQknDY+/rWfo+43N7R611tOeyjXhPQ9nFBF5x37evrr/q7+8MP+x2kP5RGJ0Xqmv/ar3xh/33l1TY954cvi77dO2ejWwI1qefgkSW8viuIvqmGE1wuIAVZ4KvC0Bcxms2jHz/NcvV5PvV4v9jtDvrHrS4p96fT2Q1Yhv1VSgl3ahQRECizsnU5Ht99+u+68807NZjNduHAh5h1Q5acKWm1P8DaJLMuUZVmJuHI+D4er1WqaTCZRAPF+eMgVlfpWqxVJIWS83W7HOWX+aBuhxx+xAyLI7wgvbn1frVbK8zwely0s3UniuQTVijT3hvuLy6RqUWccy+VSo9EoikYe5sjxmTNvbZlOp6VdBtwS7zsYVMcoqVQt9+q2Cw8uFrmNnv+yjjwLwFtpuL8cl7mn+g/hRYjxLAXEAu6NCxdcj5P1quPFHSzVrTO99aGaDcJ1u/DkjpNqiwhz5dkfLgIxDt4LfL1U5w1Xhot0rB13aHAcBEPmjHwKD3p0d85kMrmsReUWwQ37Lk5ISEg4DXz0az5PW/+sqdUb3njaQ3mgSN/DCVq9/s3KvvVD9bHf+7n64w//pdMeziMCT3jx16i1e/T3+YH0pO/5k1Me0SMHN0pQ+EJJv2C/f30I4dmSXiHpW4qi2L3aAapfuh4YN5lMdHBwoNFopL29vVi53traUqPRUJ7npZwEiIBb3YfDoSSViARVcUiPh8G5oMBjXqXNskxbW1va3t7W3t5eJGVY5CGvPD6bzUoiA8el558wRsgeFV4n2OPxOP4slYkrLgUq5DgWuA6EA7Yi9MBKRALcCL4NomcKQFwBwYs8hzDhY8NCTsW3GnbINomEbOKmgNgSegiBRDCQVNp1g7l38aRqvfetE3mu2oKxXq9jaKBXwCH+/g94Fd9dEggFnrXB/WUeIcSIYKyzahuDj8FbIhivPw+p9jYgzsf1ensKpNm3mnQ3jueJeM4Cc88ceI4DlX7/bDMXHNNJPsdxpw3wdhgfh8NbP1gHnB9BBgGHsbAuOB+fQ+ZmOp3qFsSD/i5OSEhIOA08590fp9f+xIfptlfsaf2aW1ZMkNL3cMIR1q9+g3rP+xA94wc+W3/w5F857eE87PC3/vwLVPzyufj7k17yOq2P+F7CQ4sHLSiEEJqSniXp244eeoGk79Khm+S7JP2gpK844X3PlfTcKxyztD0dZGI+n0eXQrWq3Gg04j+EArevTyYTScchd+5ewHlAbgEtANU2AK8od7tdbW5uqtvtajwelyrKfl7OCWGs1Wrq9XpRMHCiTzV9f38/5iRAelqtVuwHp6rqhA1S5GSUHnJJMS8hy7JI3qbTaYkw01bAvEB8mVfPEnBCSNsC1nnmjvEResj8IVTgNuF3f84JL4Sc6yqKIu6awXF8lwS3szspdqKKGOH3zEUJyL8LBx5cKKk035zbK/j+OumYuLqohIgEAXayXN2lApLPc4zdXSysGdopaE9hPdLusF6vNRwOSztPsMPCer2O4hU7fHD91VaEagYCghfrBkcAr/N77G0QrFNaiNwBwjWd5Nrg88paZf7decJYCQtFrHLR0QVMFy9uJdyI7+K2Lt9WMyEhIeFqmBdLfdpzv06SdPFDG3rtNz//mt/7c8Nz+ol/8rlqv3eic696mc5+o9mVkb6HE6pYv+aNyr7pg/S5L/gU/dIH/s5pD+eWhH+/OG57265Wbz5uY7iVvztuddwIh8KnS/rzoijukST+K0khhJ+Q9GsnvakoihdKeuHR6wq3ZkM6pGNbt/eeS8ctER7m5u8nSBHSRwXfK7Y4EpwkuS0aVAUCyIwTKkglokQ1rA+CgxAAwT6ai5LA4RV1nw8IEi0NEEGv2PPzZDLReDyOFWx2b2BXC9oeINack7GRcZDneXRdeC4DIZVkVgwGgyhI4MjwdgMEiul0Gt0PBFhC3rin3h5SrUa766Qa0Mh5RqNRKW8iy7KYaYC4wLl8hwffNQHnCK8hoJP38jruK8TcBSvfaYL3EcJ5Ely4qjo82HbTt0D097mg4LsbdDqd0vr0dpOThCmOzfmqgYaLxSLOC2NAIJlOp/EaaSHwrANae/wa/fOLCORiTDU7wdd/o9GI682dEy5GeRsTLRysRXY34X4CX08etnkL4EF/F/fDTmorTEhIuC58yhd8ueqjhVqv/jNJ0mP/INen/84Xx+d3v3uhlz/lv5Xe88zP/lKF5ZEAP1+q9cY/e7j0NKfv4YTLsHr9mzV/9uP16VtfrL//4t/Vl/fvPe0hPeR42j/+avXf+sDdA3y/OG6tss/DGzdCUPgimbUrhPCooijuPvr1cyS97noOhn1eOiTFkCOq1LVaLRJkbNXT6VTT6TTuNOCE1Lfic/s2hBGxAQIC0YEUOdmi99sr4E5gpWOrN4QM8kMGQK1W0+7ubnwNjgAP2fOxQwCp2s/ncw0Gg0j02+12tOdDwpbLpS5duhS3wez1ejHvgJYPdpXo9/slQYW5o2JOb70n+bMbAAR9sVjEijhz6XPK8amcV1sDqjkFTkJd8AGey+AVasjndDqN95B59HYBr26zXWc1d4C1xppAgPHKO+IIVXOuFTEB4u5ChodzsvaYV2/H8LYIJ9QIABBoBAevrrvA5sd1cs268t1EpOOtLGnR4XPnOQoIAcy7P49Ix7XiBuBnb/FwQaHa8uT3nBwPn5NqToNnK+BGOEmIdPeLb5fqQgPr3u/hLYIb+l2ckJCQcDV82uc+Wxsvf3WpMrieTKRXvyH+vvMl2/rM/DNK7yve89qHi4BQRfoeTjgRB+863K3kJZ/wFP2i/W2xPtfXb/7Wix/wcT/qVZ+v2547ftDj+xd/9D/11PaViyjv/6vP1Yd+11894ON3736F1uskATxc8aD+Wg4h5JI+RdJX28P/LoTwFB3au95Vee5ajhlJJKS22sfPP5wITmghPfECj0iTt0O4ndn7wyEukDPEAUgiBA7iTQsGOy0URREr1hBnWgXa7XbcypF2jMlkEiu52Oy9Al0lghBVnAWQcAgRY5zP5xoOh5EQ0erAeyBYHurn2QY4DUajUWwVQUihKt/pdGKuBYIDlWtJpftQbSuAwHIPfIvJ6XQajwdp9rA/+tyl8naP3nYAyWXuOFbVks8xWW8uVCA+0E5BuGVVRPH54boho1jscbOw6wRtDiGE0o4FzEm1Wu7XivPD8wr8c1N9n18//xAhfE7daeOCjgcxIhrQplJ9nWccuHununWouxL4VxUUfHx8/rlOH4uLE94ShGjC87PZrCRoMAaumTHT7oFLpypmnVXcjO/ihISEhCthVaz1aV/yVaq9/M+v/trdXWn34R8bkL6HE64Fq3sq7oT3vFef/gFPfcDH21n9hQ6Wiwc5Kuk7P/Rp9/v8Bx38eckNnpDgeFCCQlEUE0nnKo996YMa0fFxIgHyfn3pODOgWr12CzqEDWKDo8GJqgsM3lawXq+V53mJkOCMoGI5nU6jA4AdJJyAQfo4r/eOUxnFws0HNMsySce7A0jloDxImVvpnWwxftwORVFEMYOx+3UiWjQajeiiqDo2VqtVdIrQykCrwnK5jMIFQZnSsYMAouZj5HkEDQg6pJt76sSXc3ENvpWoV7qrrSH01Hs4nxN2xuSCjrfEcK84PuNCTEBsIMTRr9H7+v0++TphzfouEMyZ50p4BgLzz5rkcf/MuCDiQgXXSGYI1+Xrk8+Qi0G8z50P1TYjzutz4KKAhyziHODY7lThGKzNavsBogQOID7HjA/hgPXDGprNZup0OqVxeYtHcZTFgWuFOfZxn2XczO/ihISEBDBZL/S07/4m3f78P1FNVxcTHklI38MJDxTroxypR/oYEm5dnBk/b7VCCagcswsAj0nH6foEFq7X60h+nYxRIcVNwGshz/P5PLYP4IrAGg9BdTIL8bp06ZImk0nczlBSbGMgZG4+n0ci1Ol04jVgyyckbmNjIxLy8XgcSZZvQekBftXt+9wWPxwONR6Po0OCOYMgMweQR9+CcTwex+chjPv7+7rnnntKmQfz+Vy7u7vxXpw/f760zeBisYiiC4SU8SJUUFEmCFBSabtM5ppjMv9edfY5cDHJK/OELXqbAWTad+ZgnjgeY/EAUJwGiArz+TzOMe9D0MHRAVmvOmMYC+vRhQF3W1RbGXw87OTh7R+4FZjjaj4H5Jnfq1tS4uTAEYMLw+esOk7/XPKzt4m4gOZuCo5ZDRVlbLg43JHBfea+cX04SRD/uC+s5eo65B54ewNz4y1QCQkJCQnSvauxnv5j/1SPe37aii0hISEh4RhnRlCQjknvSeQKN4FXsZ10UH3mnxNID3Dz1givNhdFoSzLTkzW53e2I2w0GprNZjGIEFIJgZSO8w+Wy6Umk0kk91RJITB5nqvVakVxBKLsJNorsBBm76FnnhAJRqORptNpHAPXwrU7YfO+8dlspvF4HMMUPR1/MBhEQt1oNGKbB+PY3t6Ox6MVgHHwPrenV50CvPf+AguZNx+399J7BoS7CqTj9oqqFb7qZOH5k9YY5BkhptrX79fibSW8n+e5nqqd3ncp4LUQfEIFGTvH8Hlxhw1jrwpO3grC2P2xaquBuyfASSTbxQW2W8TdgTDEeHB0VB0WCC8ntUXwmfIx0nri5/d74PPq42SduVDDffd7UG0jSUg4DdRmB/qtSUvPzOenPZSERyjuXY31P0ZP1Pf/6mfrA/5tEhMSEhISEso4M4KCkxqILwTEQ/S8RxoS5bkDkFdJ0VJPwCLH8hwFCDDkipBDKtHuBnCRgIorVVDvGSeAzneN4DW0NdAmkWWZ2u12iez51oDVarG3EHhgJM4IXAEE5HmAHi0ae3t7sZJL9XcwGGhvb0+TySSSNOYcYjyZTNRut9XtdkstEVmW6c4774xzOp1Otbe3p93dXc1ms3gPIGhV0ouzwqvTkEcHlWknm9wzDzBk/BBPPxdtCswNa6LaUuO99d6GwT9cKN5mQLUbEYF7iMsGwu0tAC4KSeV2EeCBgr71pLcqEKboWQAIHpB6juFjRAjjczeZTEpiG/MGPFwSkctdHd4SgYOEz5xnWJy0e8KVQhb5HvD8A3dGOFyUdCGIdUCbRXXMngVx0n1JSDgtFK94nb7/uf9A//173qRnbr9Wn9cdnPaQEh4hGK1n+ub3fJJ+700fpCd+2Z/rA/Syq78pISEhIeERhzMjKPgf/RBYBAEs/xDTdrsdrd6z2Sxaq53gQLC8NzvLMvX7/dK2d5Cr5XIZ8wa8v9z79KvtBhA8CKykUrI91U5Iabvd1tbWVqnHnetzezzzsVqtYughRIc5cUFEUgyIZMcJ+stdFIFgstUeW08yf4yVhH+u33vL2V3ChQcPC2TeZ7NZbD/x3Qs8G4EquItDnrAvHYcdSooE1e8b84XLg3YMzy/w+cTqz/xLiveHEMUsy0pjqc7lxsZGFCYQc1i73jIDaLnx6rvnWfjacfHCQze5bm/PgGT7fLBOfX5YO+5mgUDz2WD9IH5wPdVWDRw/zBtr1o/lOQ8IGd5y4G6LK4kpk8kk3hc+U4wJkcAzIjyjpJpbURV7POTT20B8vO58SUg4bdR//5V699+Wvvc5X6Lx835Rz+5fOO0hJTzM8dGv+TztDnO93xe8Vk9MWQkJCQkJCfeDMyMoSOX+dQgCGQKQDVLz6/W6BoOBhsOhhsOhJpNJJMFumabNoSgKdTodbW5uKsuyWKl0Z0CVfNFm4fC+e//nLQgIChzTe/YhiOQ1VMPypMOKbqfTicR4Op3Gtg/OUxUJyCyoOi0guYgGi8VC+/v7URxwcgjp9dYEzxzgNYQYIjxwLV7RZl65HyeRQ3ea0KdPH7wTWK5vMpnEe8v5PIOC15IfwZz5ekI4cYs8IsDBwYE6nU4kpH7dhFMC1hSVd+4dwZUc38c3mUw0mUxK98dbP1wgYAzNZrPkSkF08AwAWl24LtZEtYKPy6XqTsBVwg4n7q5hXNwLCLuLdpJKLhGyJRC8PB+Dz5BnH1TFFtYyY0RQ9EBVqRwYyZi8fYX16+sYuLji7qhqy0lCwlnCzk+9TP9x4/P1r5621E99wk/q6dn66m9KSLgOfOAffrlW07qe9JWvUP+0B5OQkJCQcEvgTAkK0vEODm759r5ptn/EoTAYDLS/vx/7tdnukDA4DxHsdDrqdrtqNBrR3h1CUJ7nseLuPfa4Flar460VITFYt71SipjQaDRKpNUrxxAyxAF3UvB7CEHdblf1el3D4TAS9V6vFyvBEDACAD2dn8wIz5SA+DE/4/E4VuRdqHCSCBHncUjdeDyO+RHdbldbW1vRlSAduyV8i0jfYtB3y2A+CQ9ky0oq1LgoptOpxuNxJIWQbO4Rx+PcXBu98sDfX6/X4zgJ5uQ9vIYxM7/MC04FPybzxM/eBsPrIO0ch3tOdb/qbpAOnQvcE64HocTdHdU8Bel4xxDEOW8lYhy+c4e7E9zpUs18YE35WuE+495gHhHmPMditVqVdh5h3IQw0hLENVbbK5hPrpvPV7PZLOVfOPz1vM6/X1xY5PEkKiScNZx70ct07kXSN/+jr9Hk0Wl9JtxYPPF7X6f1cHjaw0hISEhIuIVwZgSFk6zZ0rGNnPYCiJR0bI1mVwQI4mAwiNVzggZrtZryPNfW1paazab29/c1m81iUOJsNovZA4BKslfVq0GNXh3FgcAWjLwGYkM1+6TwQHq5Ia1ZlsXWAt/isVrNlY53H4AMO0nlnAgbLpxMJhPt7e0py7LYWuAheG5l51rW67VGo5EGg4E2NjbU6XSi7X9/f1+r1UqXLl3S/v5+nHdv3+A62U7TdzmgGj8ajbS/v6/lchnbDxAsGJtXvWmB8R0WmK9qW0H158ViocFgoMVioXa7HYUDxgaZ5XHu+cHBQSTo3qbi8FYF1rG7DSDWCFFVYuuvq7ZLcFxcLL6+AC4CPxePkxnB/fadI/w9kkrnQ0zhPbzG3+9tEp6J4c4CxuutTlV3jH9OXGhhDbmQ43PGf3mP3wd3yvg6qGZdVN0ZCQlnDbf/aArHS7jxSJ6XhISEhITrxZkRFLw66H/EY+nG/g3JwGFAdVlSqXovHRPG+Xyura0tdbvduMsCpAjHA+f3rRQJTKTNwu3lvV4vjg+CA3HyoDsEBsQAqvZO3CHq5A5wToSCatuFV14ho5Ak8hFwQXBsWgaoVkOKcXO0222t1+sYyuc95J7fQJV9Op2WWkwQbhaLhS5evBiDHwk8lI776JmrZrMZx0VIpKR4nEuXLkWhw7fy5N76ubmHvoUiFXTEBp8zyChbZHrlm/XEvfKQQEmRjHMu1i3ncFcCjg/Iv4tHiAHcJxwmHM+DCSHZvB7xyLMKvI0Hku3hld6W4zkK1VwCb/PwlhgXK3wNV9s+vO0FwaWaScD8I/y4QOAtH94WghDCa8jn8GvwMEzuj7sWfFvNavgpn1cXdThfQkJCQkJCQkJCQsLlODN/LVcri1TRIRPtdrvUDw+phbiwE0Se57GfG+KAC4FjePsB8Mo+JMndBpAWr8BC+LHlQ+KdrLgYQH+/E89ms6lWq1WqYkOAEScghJJKY/eke0QL3Bq0jrDFI6ICc0l7AU6F6XSq6XSq/f390q4Y1UwKD9djjg4ODrS3t6fRaKTJZKL3ve99Gg6H8b6wTaBUtp17uwNba4YQYtDmSRkATjRxdNDiwT1izL6Fp+8UwnGreQeQR6/ASyqdy4UDiLOHAPq8QPi5934usiI8N4Ox+3o5KeeD9gzP8+DeuCjh1+o5H066/T0+bnd5MCfuEuDYPh8uKLjbgutiDJ6HQA4G64uxMpZq+KI/RlsR5/HMEL4XuE53O/hrqzkW/tnmeyEhISEhISEhISEh4WScGUEBVC3TiAIQQsiuVy3picZRQIWf8EPpuI9bOs5pIKvBq7JudaZX3cUEiB9uBWz5POctCVRPIWj+OK6Hzc1NbWxsaH9/P7Y3dDqdWFXN81zScd85lWWvchdFEecFG7737SPQIIx47zq7M7DlpAsjzANzU90FQFIUdgaDgQ4ODjQYDHTp0qU4LsSf6taeVNYhuOQEOPGWykTbhR7pkPxNp9P4c57nkSRDKN1VgNCEu8B3RkAI4vy8r91uR3GCefXWAUmlqna1PcazF8iEYN4QBrinEGHmzQmwtx+4OOQk3NsaOF/VfcBniu1LmQNvBagSam/L8fYDFytO+vxW4Zkeft/9/uIYQoRyZ4V/RqsBoIwdQZJ77wGW/lrGjfjhIl1CQkJCQkJCQkJCwrXhzAkK0nGV0B0GeZ6r0+mo1+up2+3GIEMnB2QkbG1tqdPpRGLXarViej8V0larFQkwuwc0Go1YUUagcDu3B0ZCWjgW2wtCajgPY/RgPBL+ETV4PQSNnSAQHtxh4ASZAMOiOE7s9+ouxJBdHhAzvBXDq84QLFomECmcZHsLBkLJfD7X7u6uJpOJdnd3NZ1OI+knbBHC5lVxKvseZOm2etwNkGy/BietLnZ4dd0r+1wD94PrhGB6iwLXyhrxf7zO16aLFAhFkF8PpvTrR0yoZlwwx4yFe+W7O5y0JSTv5Tz84zNQzYRgfhA8nLz7Z8+dPP558/YJF5hc6HPXho+L9/O776jBtXseiAuMLi5w3awh30ITUcrzP7xtBsHORUl3LCUkJCQkJCQkJCQkXB1nRlDwiqyTMKrukFJ2JSCvwAkpIkCv14stAJAFeuydaEE2PKugmnLPY5B2SbFaDdFBJIDMOkkDXsEmcJFrxuIfQlCr1VKv11O/348Bh27JlhSJIJkIIQQNh8PYHnFwcKD9/f1S0CICDITLd5mA1LXb7Uh6mRe39zP2ZrMZCfx8Po87UbDDAqSt2sPvxJPHm82mJJXILL9zjxBsPIAQ8QBijBODYEeCPHktwgqPeUsKhN0DKxFzEBd4rwcp4n7herzVhPN6cKG7RpyQuzOi6nrgZ2/1cWGn2irBZ8iPW7X1+xpi/qpBoT5HjNNbXKqtDt6KAMlHMPFWimrrDmPx6/Z14vD58N8RCHz3E3d6eDYDY3Lnggse3q7k15iQkJCQkJCQkJCQcDnOjKAgHVd9vWJNldrJgqSSkFANfIMMUv31sDWvyFPRr1YmeR3Vdcbk4W8QstlspuFwGCvEo9FIFy9e1HA41Llz57S5uRkt3LQmEC5JsBztAa1WKzoHms1mJLFUv1ut1mUZAd6TLh0TSirYEE7ml/N65bfdbsewyul0Gh0RzCWCjlvV3Q3A9fu80sLg1+DwIDzuJ06QahAeIgLXzfu8Gs5YIMbVyrj33Ps64f2eD4HQ4a0lXDs/u7uC+WYc3BfcGwhYHNNbBTg3Dha2wHRngu+U4W0NzDPz5gJK9do91wCSTAaJC2xO8iXFz5cf00m4CyOcj/vpogiCFO/1+191LkjH7hdvh/C5BNwDD/70VofqsZnT6nr0a+Jzk9ofEhISEhISEhISEu4fZ0pQcPhuCZCAPM+V57nq9Xrcp95zCzwDAeu5k8HVaqXpdBr75ckScDJW7Tn3LStrtVqpd5sgQ0gLO0+Mx2PNZrNSJRsHg2cysF0i5A0hgdDEar83vfjSMZGSFJ0IPnbPS4DwQZKo5kPy8jxXlmWq1+u6cOFCadcMjs31eN+6uwUg0dXqeDVQsGqTrwYfOqEE7EDhghBkEREBMlwN73NXAXPtzgDGT6tLNYSvmm0AqGLj/HALPoLMdDqNjgLulQsniAGQ56qQwjl8ThgH4gDv5xisa9Y+Qkq1qu8uICff7hTy1gLmgvFzH9zFAiD4Ljpw7R5I6u/zc/u4q8fwLAjmyLNKXKzx9Vu9B57P4uIa46qKlAkJCQkJCQkJCQkJl+Oqft4Qwk+GEO4NIbzOHtsJIfxOCOGtR//dtue+LYTwthDCm0MIn3Y9g/FKJ2SYqj1BgZBxiCjvkxQr+bQbQCgg407wIEJV0uCkhJR+KqOeiQDxoaI/Ho81Go3iloe0QpD70O/31e/3oyACgSa/oVarqdfraWtrS41GI5J+z1qAFLdarcsCKJkbhA8cGj4HVJq9Eu8kmXmmSu4tIT4/VVt5NWxPUpxnd0P4TgEIJ+4ocEs9rQb+M44Oxu7CgrsgvJru4okLCN4u4f98vv3Yfs85hotVzDEtIMPhMDoA3BnC+AFOGHd4+LrmvLTR+HzSBuL3ktYcnAV+HO5x9fgIMnyGqq0u7kjh88V8+VpAcPAWJT7L3vrAZ+ik9gZfn36tfv98vbHDhztQGIPnigDWddVp42vcxcWqwHSaeCi/ixMSEhISLkf6Hk5ISEi4HNfSIPzTkp5ZeeyfSfq9oiieKOn3jn5XCOFDJX2hpCcfvef5IYSarhEbGxvqdrsxQK3aqw3Ro1e/GuS2WCw0Ho81mUwkHe/s4FXN+XwenQFOqFyUcMIznU7jdoguFFDRXywWGg6HMRwRx0S73Y6kHycEJIcWCML7cAmQ/YAwAiFFIIA8tdvtGE4JaWq32+p2u8qyTFmWlYSYVqulPM9LTg6IlxMqdxQgKjjR9i0wJUUBgzE7EatWtmezWXQ5MF7GyL1wsYicAKrK1cyBk8Sg6laDtJO4fZ8wPsbl7gWvUrug4PkB3EfWDmP0uYQMc+8g1yeFDPoadnHFgaDgbg5aKyaTSYnY8zny9gLPo2BNIDQ56XZngs+Vk/nq+mF8CDec3wk+73UiD1w08dYG7pu3tbjjxO+3iw60lrB+OT73ivdUd2+pXqPvjnKG8NN6iL6LExISEhJOxE8rfQ8nJCQklHDVloeiKF4aQrir8vBnS3r60c//WdIfSnre0eMvLopiLumdIYS3SfooSS+7lsHwh70n1kN8Wq2W2u12tJQPBoPSTgHY1vf399XpdLRarZTneaycjsdjhRA0mUxilgEEwq3P1WA2RAQyECBn/l8XGSBCzWZTvV4vjhmiC5nGEp9lWXQxZFmm1Wql0WgUd3AgaJBgQknRlQDh8S0RnXRi4+90OprNZnFbSqrYvB4iRqijuwVms1l0fPh1I0BArt1qXrX1U4VfrVaR6LFLBYCcUp2WjgUAb6+AlLp1ntwFHC3j8TiS02rbiIsRTib555kZ3mLhLS/SsfDEPFK1h5AzVsbpwgXj9vwCRCfPK3DBBNJczVOouhBcPGMMrFuv4DsZr+Yf+Lmr2Qwu/vg68HvmBN8zFbgX3r7gc89zPqbqea8kKvE+1pafo7oVZlXQ8LFwr3w8ZwUP5XdxQkJCQsLlSN/DCQkJCZfjgWYo3FEUxd2SVBTF3SGE248ef4ykl9vr/urosWuCW5qdHFBFZSs5Wheq5IkQPK+EQ9SqAXtV6zdVYO/HhyTRUiAptgQgIvD6LMuiY0BSJLe0TVBxpw1iuVyWdnTI81ySSrsZMB5IeLXi69ZudkuAAEGGNzY21O/3S9cUQohziejAeaiqIxQwl054Ib3uIMCO77sO8Fp2L/AAPSdw7pxwwcNt+35tjM+3CcS50W634xpgjJyjSrrdKeD2/Kq4UbXcu60eou5beladHH4uxsSxvEWFeQUeIFgdH2vYx8t7vB3Dr93P32w2SwKC/5f75vfRAxvdNeM5Du4g4Fz+X7/vVSHAxZOq+6Tq2qg6U6qikAsHnIs5c+eICxQ+x7zX/3uGcVO+ixMSEhISrhnpezghIeERjRsdynhSitmJf5GHEJ4r6bknPQdxrPaxQ07ZKrFKYAhchEQ0Gg11u90Ykuehf04OIZUEt7VaLUmK1X/I9ElVbOmY4EKMaIdYLpcajUaaz+cn7gwAIc3zPPbfV50ECClcD0IB1+ykyKuqWOS90u6uAUgwwgzCgrtEvKqMS0RSqdLt1WDcDcwtIgfCQwghHsMzA7wdxfMO/PkqqYTQLhaL0taPnIt74yKMt2T4zhEcH2GGa8Lh4G4AjoXQVavVNJ1OL9u9wbM2nJxWK+t+HCfgiBKeTeGtDFWBpCq84GLwueRnBLLq58E/Uz4WPy+Ok5Ne746d6rkh9FUxoJrVUPmOuOrPHNvX3UlhjjyOSOifq5PG4se9RfGAvovbym/mmBISEhIeSUjfwwkJCY8IPFBB4Z4QwqOOlNhHSbr36PG/kvQ4e91jJb33pAMURfFCSS+UpBBC4dVSt3xD3iCnuBOq9mRITL1eV57nsS2AnRW8uu22cQ+ZkxRbK3AJtNvtUjUcZ0G73Y6kj20tIfoQcXIVvELtlVB3YNAWgCOA66JyvVgslGVZyU3hrSGcE3JLhX61Wmk4HMadGxBGmEfIF9V4CD1gTr3KC3mGBHMeFyK8Ck81n3tIhoW3CQAnpNXtIj18kJYVxsRz1ev0Y7uV30UGX2deyfbtKZkHiLyvIXfJcGx+Z348I8HnxsWWqnjgxN4FE3cecA6uj/FLxxkRLshwDczrSZV41ml1RwwEMRdaXDCoOk/8M8xxqwSeY7sIUG1tqIpLfv98nqvz7U4U5tavr3rtPk5vszjjuKHfxf2wc8sqKAkJCQmnhPQ9nJCQ8IjGtYQynoRflfRlRz9/maRfsce/MITQCiG8v6QnSvq/13twJ3GSop3diUdRHGYmQNpbrZY6nY7Onz+vxzzmMdra2opEfDqdqtlsqtvtRqFBUmwrcDdA1RXhwgUEvNFoKM/zGCrYbrdLJB3CQv4A10NLhuccsK0jeQi0RnilHNHDSTDkGUI+nU61t7enS5cuaW9vLx5HUnQ8QISdzFOxdts318q8IBSwGwHv4364wOPBetyfg4ODKML4fRuNRlEA8eBAn2+/Rxwf8cIFA8Y3nU5L7RYuFvg/Wira7XZpO9KiKOLYuX4XSBC3vCXAnSInVdKdjFe3Q60S7qqw5iKVCzjexiAdbyMK4ccVUyXPHNcfdzdGlUxznaxP31mCxxgPIgj3x1tT+FxX2xDcXcDvDr+PjN//VUMw+Zn3MkdV18JJrSEOP98Zx039Lk5ISEhIuCrS93BCQsIjGld1KIQQfkGHYTPnQwh/JelfSfpeSS8JIXylpHdL+nxJKori9SGEl0h6g6QDSf+oKIpr3ncNgs4f+tjZu91ubAuANEwmE917772az+ex/7/b7er8+fN61KMepWazqclkotFopMViEQUAqrxSeTcCJ7RUp716CnmCGGdZFklTs9nU/v6+hsNhJOxcD7ZqSNh0OtVsNisRSietGxsbpZ0efEtD8hnG47Fms1kcs3ScvVANkaRtw6veLta02+1SO4fbwp1MueW/ut2kBx9WH+d9EHjIum8NSJUeYQSXg6fsIzBAeBFIWCdFUWgymcR14kQUwsp9h5j7dobeFuLw6jxigM8j8+TZEd4K4O0IHMMFLW+n4Diei+DE30MdvfrOsZkn2kn8+rk3LpK4MFGtyPt68fMwpmoOCWP2bUG9/cjFAz+ez6NnV1QFEj+/bwVZdWD4OuR++z2tiiR+D3mf38OzhIfyuzghISEh4XKk7+GEhISEy3Etuzx80RWe+qQrvP7fSvq31zuQEEIMAnTSUa/X1e/31e/3L6v+U42G5J87d06PecxjdOedd6pWq2k2m2k0GsVQQchzlbS5TRoSDjmBzPCv0+nEbekg1t6CgOU+z/NSmCIV3UajoclkoizLoj29aouXFFsoINUhhJgfwXaSiBUuEFBp530QS5wQODbYicIJp/e6c/3eZw6R9IrvSfb+k8iZW9BBte+/uk2fByKeFJrHnDup9MA9J65Vgsic4HzBTeLjZVwQfW/bQNDgGnwuIM/cFyfgbP2JaHVShkG1lx+C7fPuVX9/n7dfMG4XIxCEnORzv3ET+LFZu75G+Py4UOPzwPNVt4YLCi5uSIrig98fb/FwZ0bVDeHXjMDG+KvbdnJMX6ueL+Hr8iTHxGniofouTkhISEg4Gel7OCEhIeFy3OhQxgcNT9yXjqv8XpWWFMk+7Q6bm5s6f/68Hv3oR2tra0uTyUQXL17UbDZTq9VSnufRal7dPcCJ12QyiXZxzsFrschXLeOQ4CpRgZjN53PN5/NYgR+NRlqv1/H1zWYzjm9jYyNubcmYwHQ6je6EEEIUSAgGZPvIer0et55kHH493kpSr9fj2HBGQDpxFThZRuRwmzi7aDAP7sqgRcTP7VsW8h7vy4e0ulvCyTTCCOslhMMgTK6d41Qr8VVyWG03QDwghNNzBBCRvIrOMVx88Oo5cwaZ5r9+P3hf1S3A4z7WasuAOxaazWbpuByPHBEXZnwuXAxy4cSFDCf1CH/+PHPDWve8iel0WnILcA4XEzgHnw/W4kmin7eJ8K/qmHBxAweRi1nuavE59/EAvwcJCQkJCQkJCQkJCWWcKUEBIgvZYDvGVqsVgwYhfJAJKo6+bWC9Xo8OBl5HTzwE0+EihVeVJcWdErIsU5ZlqtVqcYwQEd+mcrlcan9/X0VRKMuykpWe63Or+3q9Lm2LSeYA8MA+3woRIpdlWSkQkUrvYDAoCR4QTsgXJBCSKR0HBHpLQNWOzvshk4ggEEzfStKr354h4DkJ3ruPEwO7PC0vHgBZbWVgjgjiLIoitk3gEHGCzj9vF3EBAhEFQQERwMUEJ8jcH66D47rg5C0i1ewFX38ngfXOa70twSvz1W0QJZV2G/GdGfxe8nlgPdB2hGBTvWdcM+ta0mVryXd78PvmYojfQ47v65DxMQc+b/75YF5dPHDxwt0qtAxVMyV8LQEfb0JCQkJCQkJCQkLCyThzgkK1H5p/2LEhKbweMuLbBS4Wi7iTACRiMpmo0Wio0+nE6qcLCVSTp9OpJpNJPCfkG5KJEDCfz6OYMJ/PI7kn94B2C1ovyDxot9tRkJAOyWyv14skjnYErqXdbktSdCA4yffQOxdLnKy6EMH1UoVutVqxRcOrwU6gmWPG6rsfQDZxDNA774TaK9kIQbzX2xRwAkCCi6KI+RhelYbMI5zQuoGTxZ0TTu79Marp9Of7Lh887nPB+HhftbXCwe/eKsP1Vlt6aOlgfp3sMwbuN2Pw80CY3ebv987XrB+PawCsbw9Q9Gvxx/xe8DPz7+6RqsOBNiUEklarVcqsQNDxa2EMvkNGFVxndTtNzotjBZGDLBMEwOpc+HXfn9CTkJCQkJCQkJCQkHCGBAWv/gLv9672iVdbC/jvfD7X3t5e3GaxVqtpPB7r4sWL2tra0m233RYJiludfZcAyAZCBSTZ+7YJCZxMJpHEeQaDpBgESZsCgYHeHuDCCcetVt5Xq5Umk0mpvx1BA9KEsMG1UDH3MMlarRar+G5jd6GC370dgXnyzAh3EkCKvToNeAzhgdd5hgBOjXa7rW63K0nRbeHbUHLPfBtPXAXuICCnwIk67RN+rU7UuecuQOBGcReHr0/vua+SUm9PYGwuJvB+X9e4VE4SHfwfa4BjOjF2kcHbTHhfNcfAnSMIJiftesC5/HfWEeuAdh1vZ6i6D5hXD2DFPeHZC+524B/jreYqMB7/DvF2CHeIeBuLOxP4ueriOEsZCgkJCQkJCQkJCQlnDWdGUKDC6XZk/uuVWXYv8D5174VGGPDwNd9toNp/zRZ7iAOLxUIbGxvRQg+qeQSID/P5XJubm+p2u5pMJqVqux/TSY23DEiH4sBkMonuBCc3EPaNjQ1lWaZms6n5fB5bI7yfnmDB8XgcSSRzRxUZIua7AVDF9jESeIj7oeoWcXeCV/25hxBIJ6vNZjOOiX+8hznv9/tarVYajUaXWe2pRnN+7pWLGAgd3trg8+QZB17JhhQ7afbWAier3Dv+udgAGWddVcMcq3Pj8+pCAOvChYmqEOFj9/YS39qSNeEimQsMjK+a68B5qp81F/VYC97i4AGhnlfiooE7J6rHdbHAd+Dw++FgLgDX5euQ+8U98WBJ7gOfS19nvvYSEhISEhISEhISEi7HmREUfIu3k6q9nrbvpA6yBmEbDofRDcBjTmKkYxLCNo7D4VB7e3ux1aHb7arT6cTAQgLcqDZDyLxajuvASSsuhiqJp+0BkjMYDEoVeyepkFauk2wBzx+AOBLaiHhCywb5Em4HRwzxDAQPtoPkUSWHpCJwYPmvknDPRJCOgyyzLIsCjlfecRggKLB7Btfr6wGHhffYu2iAuIDNnXvEcRgPx6rVaqWdMLIsi9cAua1WwP2cVet/td2BcxO4SWChX49X7l14cGeEE113Ffj1SscBlS6weAinf544PwGUfK7cLeFjQOiqkmx3AtBKwHUzLkQCPofVrTdZdy4C8rnlulgr1XYE5t7n1e+DHx+4iMI8IsghNrDOUihjQkJCQkJCQkJCwpVxZgQF4AQO8kLvNaSAij+7N3S73RiAuL+/L0m6/fbb1e/3Va/X1el0Itl3N8NisdBoNNJkMomV3H6/H4mtV/0RDabTqRqNhrIsU6fTieOdTCY6ODgo7QLh5AjS5cKJhzVKKuUPeOWd7AVaJpgnRIz1eq3hcKj9/f34XlocEEHa7XZsIeAfIgmVW68IU+VljM1mM+ZPuHvBQwydvHpvv2dWuNiAswFhht56juU5BJLi+V1woeJMWwfXzjwwNkQYzz3w9gZIcHXszAf3Q9Jl5LVaIeeYEHXv53enC68H1Qq9fx783ngLCGvGXRi8/qQdJrxNANeKXxfj8M+fz12VmLvTwHcLabVapc81QodvpepCAa/x13vLAq/1Ng9vY+D1jIm58s87P3vGBOuP7xgfp+eVJCQkJCQkJCQkJCRcjjMhKGxsbJRIv3RMQKRDotNut0u98EVRqNPpqNvtxmriYrGIx9jZ2Yl28DzPo/sAgueZCWxtl+e5Op1OJFLL5VKTyUSSYrV/PB4ry7IoPCwWCw2HQ0mHxJn3e1UfIkeFH7I8mUwiGaKdwSvoXC9VU0iaE97xeKzFYqHBYBDFDgSEalWZijAEEbgIAAmDhOMk6PV6ca4Jm8R9gJOD9g5IHcGJ1b547gvX7tZ7yGCe5/HciB2tViuerxqO6b323C/PBai6BiDNhGNyfv8Zp4I7EVgHviUm8PBFr7L7uHx3EJ97r7SDKsHlecSF6nquEnMXMrh2H+NJWRNVku6fUW+ZYD0itHkbhYscCCwhhBicWc02cLHDHQU4gxDNPLOBuahuF+l5Gtwfjs/ce0sGwiEijrdenNRikZBwVvDu7/gYze+an/YwHvH4wB8/UHjZa057GKeGt/6nvy31Dq7+wgeLL//9m3+OhISEhIQHhDMhKFChpsIJIH04EYqi0HA4jOQJsaDb7arVakWBADKMjZ2qZK1Wi7/PZjONx+NIDGu1mjqdTokwcgwIHLsObG9v67GPfaxarZbuvvvuGMyYZZna7baazWaseHpLAURzuVxqPB5rNBppY2ND3W63FEjH+XxXBdo6cEvgFOA6CFDEru3EiHNKuoyw8h5IJbZv3AkIKiGEOD+0SpAz0Wg0NB6PYyCfix+c08mftxb4ffbQQJwP1UBBqt/MC7tquFPCcwkgppIiGaX9AwIJsUYcgJhOp9MTdxhwogkJ9pYc38nDBQHWHetNUsnNANE+ichzf6qZEVTqq9Z8FxVc4OBxxCBEAeBbaLr7ApHFXQAeBulChbcluRsF4a/a3lPNkmAefH54je/mURUTeJ77WW2RmM1mcT16UKiLG9xv7lG1/Soh4SzgXf/2o/Vfv/iH9JSKEyjhocc3ftjf0p9f+ICbeo78u/oK/+fVN/Uc14u3/dBT9agPuVevfPIPabuW3/TzbT6xcfUXJSQkJCScCs6EoCAdBxUCSGmWZep2u+p2u1qtVtrf3487F0ACsyxTlmWaTqeazWaRxHuwGiScXn7Eh4ODg0g0u91uaXcDKvzS8d71jUZDW1tbuuOOOyL5Wi6XkUA7mXJrtve0j8dj7e/vR7eD9/0zFgSM2WwWWymwzEMG1+u1ptNpHK+LH95OQR8+hNAzEBAwGLMTPUibkzQnlAgKnU4nhkVSVaYCHkKIuQ6SLrPYc81OlL2P3eeN19De4tfInEBoqYwzfxyT9YLoxLUwvz5GBAHuv4sGTurdecExuD4q5nmexy06fVtQ5p+1elK+AXPCmnISzr1mjC4C8Dyvh/g7MfdwQubSszl8TVWdD+54cHirDJ8JzlUNmOS9jJPrczHCRSIXAXCmuBDBZ5zHOT5jR/BC/GM81YBGhKIkKCScNbz7Oz4miQlnCP/x0X8mPfrPbuo5fviFd+ktkztLj713sqnpJ9xzU897Jbz9B5+q3/zcH9STGh1JN19MkKQPau89JOdJSEhISLh+nAlBoSgKjcfjuGWjh9nRCgBB8Kr9arVSs9mM7QdsMYiYQKX+4OBAWZZpc3MzEv/ZbBbzESRFAuw2e0QL72tvNBra2dnR9va2Ll26FAlr1QovldPjIejs/ICrgPG4/Rsi6C0HXkXO87zU3857vT+dx7H8V8MFvepetXb7DhQQL3cLSId5Btvb21FUaDabMeByOp3Gewjh5d54TgSEvhoMCRFENIGIIjK12+2SE8IDI2mfKYpCk8kkZluwJthJAlJK1dwzCfL88A+k0WhUWqPe4gCh5l75cbzizfW12+3opvDchjzPL8tOcCGAEEze6+T9JEu+V+VxdPharDqAnHR71kC1xYB1TPuRi0IucPiuKo6Tjl0l/Pxz0cHn2Hcq8ayK6nxVtxFlfIh/CAr1+uF2q56zwOtdGEpIOCt4z/M+Rr/ynO8/InIJjxR80/a7pO13lR5bFiv9wpvuuKb3//yH3aXi4MG3Jbzvmz5G3/I1L9HHZT+g9290H/TxEhISEhIeHjgTfzUXRRGt4NJxfkI1YG00GkXhARKws7Oj8+fPa2NjQ7u7uyXy4ZVSrO5OZrH3O+Ggt59zVF0O58+f1x133KFer6cLFy7E3AbECK7H+81xVNDGAMGmUi0dhjryPog1ZJg2Dcgb4YQuHLjQIh1vdQhp80q0k2Feyzl9FwOfs6IoYsuHdChqbG1taXNzU+12W4PBQHt7ezF7IM9z7ezslMgoWREhhFit97aQ2WwW8xK8Es24O51OFJhoFeG9VPkRFxBi3N7O+7vdwz+EyJKo3jfupdvg3Z2BGONZEMwZ14rQgdjCDgieV9Fut6MQ4YJBteXF38c4OZ8LCBBsd0qwthkXwg3wdcrr/Vi8hs+MP+6iCevMxT7HlQQNroc1WhVEeJyWn42NjVI7Ei4YvxaEBRcUuAfcB9omqp9VDxr1sSQknDYufPVH63f+0b/To+qJyCVIjVDTs/sXrum1H/7W91z22Of98dfoA7/0Vdf0/vmn/y398PN/ROdrf6zH1ruS0hpMSEhISDjGmRAUpGNSAelxcoDg4LsxLJfLSHipWEOwqfpCxCDlkNHpdFo6FsSh2+1GYus2aOlY5PAtEHEZeJAd46huUwjpd/IGcfEtJyFukB+3xkPKq+8jlJGKf1EUkagiWvhcQq4klQimb+nnff8QZs8UaLVa2tzc1OMe9zjlea777rtPu7u76nQ6Wq/X6na76vf7cb69fYRx4RDIsqwUGOkBgtwD7jM7OUAavcoNkeY6qYS3221tbm6q3+9ra2srhmmS5TCbzaIAgZuA+4dA5SGE0rFzAzGANcRcuSDGtXkLAI6Y6laVXm1nviC+1aBA3sP5ms1maVcPPlf+fs9o8K0dmT/m3V1C9Xo9XuNJr3PXhLdJ+C4LTu59Xn38tJnwWeI4zH2r1SoFPXowpQuDvj48gwIXC+flM+fbirrrJbU7JJwlHLRDEhMSHhBOao950yf+v5r81aFD85P/5T/Rzk+9/LLX1B/7GP38y35RNb1c3Y22pNRmk5CQkJBwOc6MoFDt+65aoLF9E8gIoYW07u/va39/v1S5hnBLihkACAaTySS2WFBRpZLpuwA4ycuyTLfffrt2dnZim4YLIPTsYwunelqtznp/POQe0k8QIlkQvV4vugOYF0QKSBZtHS5AeHK/98M74avukoCggJNga2tLkuIOGRBEQjJp/WDnB1oK6vW6br/9dp07dy7ayj03wAm8V9OdLLuzgPlCTJCOwyfdRVAVW7jWTqcT18rOzo4ajYb29vbiOXk9u0uwBiD9HqLoFWxIO2uIsfE443SHAVtaMn7aOlinXq33rUW9al/N9aDNAILvbhRIMUQc9wNjq4Yf+vNZlinP8yiG8XmcTqeaz+elLT55r+9qslodbrvqYoKfp/qZdyB2MBdkX4zH4yj85HleaunwteHrBucKu5Mg/LHuPZ/DX4/DJSHhVBGCBl/0t/Wa5z3/tEeS8DBCI9S0GQ4F7T/7Ny+Q/s1Jr3qVpOyhHFZCQkJCwi2IqwoKIYSflPR3JN1bFMWHHT32/ZI+S9JC0tslPacoir0Qwl2S3ijpzUdvf3lRFF9zDeeIVUcIkqQYUjcYDOLrPMSu2+2q0znsJXWSQ3YCFUgI9MHBgS5duqT77rtPly5dinkHEFKvSvrPkKB2u61er6cQQiT9rVZL29vbpddDIBknIgNCA5Vtb7VA1MA9AaF24u+iA0IBDgUIuldVnZh6BkS1nx+CRhge80FwX6PRKFn2a7Wazp07pyc84Qm6/fbbVRSF3ve+98W2gs3NTZ0/fz6GXDabTW1ubsb2B+m43cDHCXmFcBOy5zsI+NqQytkQnoUgHTsP2u12bI3p9/txBw7uhedZ0CrjGQ4eNJllWezRZ02xTqtBhd4KAZHt9Xql3AHWtcNdA9VdDrhuz7Pw97mYwHH9M4XgAPH33UFYU5Jia4jvWMJa9YBLHBpco+cPsG64DhdDvL3BX+M7fFTbb2hPIbOETAVfS3zmaDXxa221WnGLV79mxurhkVxDdY5PEw/Fd3HC2UL9cY/V4G8+Ri/7gR877aEkJCQofQ8nJCQknIRrcSj8tKQfkfQz9tjvSPq2oigOQgjfJ+nbJD3v6Lm3F0XxlOsdSLXyKilaoJ2cu20bi/d0OtXe3p7m87nOnz+v7e3tUngepGQ2m2l/fz9u9ej901S/Id+QDSdckN6NjQ3t7+9Hyz793JCdxWKhbrcbAwvH43F0D0CUIKBUlxE/JEULNmKCt25A0jY2NjQej7W3t6fd3d3otlgul7FlA4s+eQVVl4ITWcQar8pCkCHPtCO0Wq3YPtDr9aIAUqvV4nVvb28ryzLNZjN1Op3oHOHe+vVzD3ynDa4ZoeMkC7t0vBOHW+O9It7r9bS9va3t7W1tbW3F3SiYH0h0dQtF7jVzIx0LSogsVOt5jYsZrGN321BNPykPwYk665BxSSqFB/oxfHcCFylOOr5vFenijKS4HSjCFdfIemSu+edil4smnmtA8KlnEbCe3BnB8XxnFFwjvg45J9fAuvJ58O1Dq24dF6p8S89qXgbukbMkJhzhp/UQfBcnnA2snv6R+u2f/8nTHkZCQkIZP630PZyQkJBQwlUFhaIoXnqksvpj/8t+fbmkv/dgBlHtw4acQaDoNZ/NZqXUeUj8/v6+7rnnHjWbTe3s7FxGBur1wy0Cx+Nx7PWHHENSOp2OGo2GptNptENDMiDfHrA3Ho9jawAtCbgFqMp7BgHjgIhCgBAw2FEChwVCxmg0iqQbkoezYjqdajAYlMZJawhWfrIYpGM7u5M2hACIK8dwVwQ7aAAcCHmex3wLMi22t7fV6/VikCSkNc9zbW5uxrmFEDs5pV3CQyvJBKiOXTrOFnB3AlkT1XubZZl6vV5pdwAXkWgp8So77Q7eDsO8cW+xy0NGWbeMj/vgDhauj3n2rTohvAgQXsGHHLug5m0L7myogrGxLqn4u7iEUOVhkghd7nxgLXKtfH75rLoAgXjAvfHPOeIEQot/Xn3rVN7LfDFGF46Y5yzLomDiwgLOh2p+iK9Rvnu4x77mzwIeiu/ihDOCEPTB3//60x5FQkJCBel7OCEhIeFy3IgMha+Q9F/t9/cPIbxK0kDSPy+K4o+u9UBUPL2a2W631el01G63S7syQFR2d3d14cIFzWYz3Xnnner3+yVXgqS4heB0Oo092PRRS8dkF7s7JM/JjBM4dm3ASj6bzWLLBZVgPxYtBRAbdypQxYVsURWGPGHnxmHhLo75fK7hcHhZnzpEb7lcRueCV8fr9XoMA0QIgAR6lX48HivLsrgNI+eA+DP+6XQaRRRej4iDgNDr9bSzsxMJG/eZrAjmx639bnn3AEaq2QgTkF3ezzqBGHe7XXW7XbVarThWXCk+Z97K4JV0iCdkn10CWBeQUm8bgfRzr110YN25mCAdb13K2ve14HZ8wjfdJcD1e9sC70VIYCxetee8OBmqOQusJdYr18RaZm2zblww4HPK58TnEsHOH2MeWI+Mxdc018J1SCrdf3e0eE7DxsZG3G51Op2WPku4gVj/tCSdNUHhGnDDvosTThlFoXd8Slt6w2kPJCEh4TqRvocTEhIecXhQgkII4f8n6UDSzx09dLekxxdFcTGE8Dck/Y8QwpOLohic8N7nSnru0c+lFgZJsR+fivdisYh9/xCa+Xyu0Wik2Wymdrutc+fOxZYE+r0htQQ6QgypgEMsIRFVQK48BA4iu1wuNRqNNBgMonsCN0Wj0SjtAOGVf4gihNL72/28kC22huQ9tIEging7ANeBI2MymcTxuKUcUgdZZatE7zsnCBHHB2JIr9eLxzs4ONBwONRyuSyFTS4WCw2HQw0GA63Xa+V5rl6vp42Nw23/2GFDOg7MZL4gqZyTMVdbAiCgXiHnurjP7HgA4cURgnjgOQ6QVA8lxL0B2cYVwZr19+Z5Hu+Pr+NqPoVvVyiVgxg9iJD7i7DmBLr6X66VOWF+GGt1+1N3JlTFH38tLhzaf2h5qbYD8XpaGJgXgjOrj/u9czcSuRYu5vA63zGCzxBrl3nj/lddB7TpjMfjUg7Hen24ewlz3Ov1Srt83J/r4yzhRn0Xt5U/VENOuAqK2VxPeumz9ZaP/5mrvzghIeHUkb6HExISHql4wH8thxC+TIfBNJ9UHP2FXhTFXNL86OdXhhDeLulJkl5RfX9RFC+U9EJJqtVqBaQdkgaZ5Y/+8XiswWAQreKQLbIQer1edBlAeHAN+C4OEDUe91yGOClmkcYWz3EhhrgURqORxuOxms1mtPpjl/bqKw4AyI6n8lcf53d/3LMWvI3BMw4g9Fz7aDSSpFKAIKSNNg3PA/BWDQ+yY854vNPpRDv6fD6P20Iyv0VRRAFoPp8ryzJtbm5qa2tLi8Ui5i4MBoNI+J1AQg65zy4Y+Fg9sPAkMklmAMd3xwfiAU4JJ/Scw8n1eDwuXad0LAg5qfV8BNa0ZxswbgQAyDaOByfzZHNUWya4Zo7lO2BQWXfXgwsVPkccwzM8EMT8WpgfyD9ikosxANHKXR9ci+cm+D1C4GO9cb/cacHnjmO6mILY4p9hhCkXlGjrqI4F0ajX66nf75dyHaqZFGcRN/K7uB920l6ZZwTr2Uwf+M+H0ktPeyQJCQlXQ/oeTkhIeCTjAQkKIYRn6jBw5hOKopjY47dJulQUxSqE8AGSnijpHddyTP6op3ra6XSiJT6EoP39fQ0GA83n80g8nZy5VR/bN8Sb6jlki10XTuq7h4C4Rbvdbqvf78eQPradvHTpki5cuKDFYqF+v69erxdfA5mH7NC7TYUaIuM7KMxms5iYD6FFeGA8bk3n+O12OxI4+t4ho2z9xzU66SSYsF6vx9aLVqulbrdbql5DPjudjvI8V6fT0WKxiALPaDQqhSO6c2S9XivLshiMOJlMohMC8kwFHPjWj04qIfvcY7fDY/d3Wz4Ci5Nad6k4afUwPum4NYTzLBaLWMlmzeByQWjh/L6mvd2B++eOGEId3bbP+byFgGBNFwI8O8FdOVXHA9fBmFhPvsZ8y1Gv0HNO3+aT93FuJ964ONy1wON+PEmR5EsqiV2eqUBLB6IHr6Hthfl1pwOCIfPpWRMuvnnLCJ8T8kuq+RRnFTfjuzghISEh4dqRvocTEhIe6biWbSN/QdLTJZ0PIfyVpH+lwwTblqTfOSIEbIXz8ZL+dQjhQNJK0tcURXHpGs6hbrcbSRaVWic7/MP+XyVwHvgGqeIfFen1eq3JZKLRaHRZMBuihFcmqV6zhR5EazKZaDweazgcajgcRtLiYXcezui99xA5D/CrJudDdnBhcA2SIgnHcUB12ucMm3yn01Gn0ym5IyCpjMOzGObzufr9fqz+QvrJYOj3++p0OnGrvul0Gv/La0IIsaWBa+r3+/HfxsZG3AaU622326VtLxEOEF4QCOiB97YXxum9+l5dx2nBHGJtZ46ZByrzXuF3twTrkvnGKs91I4D4NVBpl1Sy0OOccPLtogBwQYHPQRUIQqx7F0jcaSIpClfcd9Y4ZJ6cCcbFcajYI97RQsT1MD++44MLDN6q4GKPX1s1A8HPT04J2RWIAr4GOC6fpdVqpTzPozjlrUrcM0Q+xogwx2fM5/Ms4KH4Lk5ISEhIuDLS93BCQkLC5biWXR6+6ISHX3SF1/53Sf/9egdRrUx6jzfE2okCBMArpxyHx5x0U7XEZk+lE9JFdbLVamk0GpWq5QgNm5ubarVa0Z3Arg6ekQD5YtcDdxbgAPA+9qM5i64Lqvy+nSGVaq9G+zm9Ak1l2y31LmhQYWYHBz+vW9494d7f59sN8p7RaKTRaBTndDabaTweRyLWbDbV7/e1ubmpdrsdz+ktKNwzzzfwxyB41WBJhAMXB1zYIIjPK83uuPC1t16vozOFsUPWEWKYO3bYcCJczb9gTbkLwucXJwfHrVrrXcRAVEGU4toQJjyfAxGrmiuAOOXtBh4KiWCEK8g/h9wz6VAgYN2z5jiWv8bJuDuJqmuW+T4pLBKRyEVDRAdEBZ8r2maqbSd8FggwRWxjxxSuBfHHxZbxeHzyl9Yp4KH4Lk5ISEhIuDLS93DCA8VbXvBR+oaP+92H/Lz7q0wv/+uNh/y8CY8snInEMQiS27lxBkBCqVB6GB8E3AkHTgaq8/Tz0y5B5Vw63p6O7eaq7QSSYmZAt9tVs9nUYDDQfffdp4sXL2oymUQiArmldUE6DhvEscDWkF5RZptKdyBwbd7+IB2TI94LwcSuDslHhDjJ2u1jnM1mpV5zXkfIZZZlpeR9+vQhlavVSoPBILZ34FYgn4I52NraUr/fj0JBVYxhfniPV4WZ/36/r2azWVoL3sOPaIDLxB/3tH9EJj9PdRtSFymokPM8axQBxtsdvMe/3+/H+WMciEyIFByrmqOB2MKahizzGu4Xx/XPAGTbhQbcDZ6JgPiEgOPBne5k8QwL7pO7SHzcJ4Uocn7PPvD2BN+S0x1GvMaFIP6Lq8XdCQgM3s7kIgWfkxBCFHoQztwxURRFaXvWWyFDISEhISEhIeFs4r3f+jH60a95vj608X90vtY5lTG89Boabb7vGZ+lg7/4y5s/mISHJc6EoCApbn3o4XaQOqqKTrwgHQgMECme8+ouZNWJCuShXq9ra2tLrVYrig7Y1T2IELI1Ho9jur2kaMWHjHrFFfs2WytS9YfI4GQAEERJJVLs1XSq9O7SgNxCnshRAFTsIYQepMj4yUegrYTWB6/COzkkH+HixYsaDofRPo6g4VV9Kum8bzKZxHvC/WI8fn95f6/XU6/Xi+0ZvBci2W63S84JdwJQiXZBBTcF18NYAffN1xDv9dYaXAIersiYCHasZg4AXw9cc/XnahginwHWhDsb/LEsy6LFn91NuF++PSfuDP5xfMi6i1N8jpbLZSmXAvDZ5P04HXAmsM587VZbKdwN4mvWWylarVYUmPicsE4cHvbpQiPhqY1G4zInBnPvbhB3OyQkPNRYvf1desZzvkp/8FP/72kPJSEhISHhOnHpKz5aL/vGf6/uRlvS6YgJkvTx7au/5oP/+MVaFTc3D/SrPvoLdPCe997UcyScDs6MoADBgEi22+1oV+ePfF4nHfd200ZARZ2dC8gymEwmMXMB0jGfzyPxY5s4SC0iA33lrVYr9mKzFSJkEOLV7XZj5ZwKLBV9iBiVVg+FhOhAuCGhbv1HYIAoetuA5zL4rgy4G+g5x14/Ho+jxRvhAbEgz3N1u12Nx2O12211u91IhKleU+VFPOAfRJ8qOJX3ZrOpbrernZ2dKPYQ1ojbxHfMIAfCia3v1OA7dkiH2zpmWaZerxfnDTEIkujBhAgViFfVyr632UjHWy9CrFmb3A/pOJTQd+3wSjvjYGy0Hvhc4Yrx7UQRB1zUqAYbehUfgcTdBrS1eF6Iu3I4t4cZuojBZ438Ea4RN4tvecrx/dj+2UXYYQ0xpmoQpqSYZ0FOhXTc7pBlmba2tmLuhuef+BaqWZZFMWGxWMTviX6/H7NQuGYcCrwfMYR1mpBwWqg94S797k++UFJyyiQkJCTcSph8zt/Wy7/rR1UL18DmzwBufwjcE7/6f39Na9080eJZn/EPVLzh7Zc/UaxVnKFMrAeMEBTql7ev/NM3vVIf316c8IYynvbtX6+dn3+lJKlYXv3114MzISh4WJoTDSz23msNWcUxALFnlwWq80VRaH9/P27pCImokisIGUGLECGvPlMtJYiRY3gyPCF12O45LkSMa/NMBa4FCzZjh4h6oCDXIB0TXeYNoun2fOaQecINwfkgnS6iSMfbdSLIeLUY0o/wg9uBTAOIIuQcst/pdFSv12M7hAsDTrB9m07cIXmeR2EJIaWw3Sk8+JDr4Nq4hxDb6XQad5nAteD3GkHBRQ6v8nswpHS8LSX3iHUlKVb2GZcLAh4w6u+rOhk8Y4LrdqeO74YBMUbk8vd4hZ/5cMcDwgZrDrHAW4n8c+FOAt7rjhHEAJwivI/X8R7GC4FHAPO16c4EzzKpto349bJTCUKhOytwHrF2T/rc4ODx9qiEhNNCLSQxISEhIeGWQQg6+MSP1B/96I8ricFl1MKGald/2QPGb/7mL5z4+HPe/XG657MuF3ZWFy9J69MtHG3kuULn2sSc93zJE/Wab33+FZ69+sz+3+95gfQ9hz9/xjP+nnRpX6v77rvGkd4/zoSgIB2TrI2NDW1ubirLMnU6nUg4nJRh+6cVYnNzMzoNXHyYTCaXCROQC88jIKxxOBzG10EkcBRsbGxoNBpFUgcpc7JEhRYiSRXaiaRb54uiiKSUKru3b/gWd61WK1bXIVoeBCgpHhty59c3m83icZlXSbE1AiIKqWd+cX5ArKVjl4jvKAC5kxQr0t1uN+4y4cGA0+k0igsurvB6QiM9yd93X2Cs9Xo93neuozhK6/defdpOsOAjmHj4p5NrBAV3ULhjQDquxud5HlswcLUQKOmotiawHjxAs9piwnXQDoKDw4/FNUPQEbJohXEHAvcWt4iHPLq7wluCuM+My1sRGAPCCOuLlh5EG0mlYFXmqRrOiCsFZ4+3o7AOcQt5WCPzTUYCwgGOD8QtrhsHj287ibAWQojbnjLnCQmnhXCw0u9Na/qkLDllEhISEm4F1B/7GP32z56Y05lwSvipx/+R9JrLH/+4r/9q9d68d/zAeq3VG9968wYSgmof+iQVISgc/Y39xm/Y1Duf9cJrPMDv3LCh/MYf/Dcti5We9WlforA80OrNb3tQxzszgsJisdBkMokVf3r6nQQgBnjAXbvd1tbWVqxiQ3QgCByrXq9rd3c3kgTI2MHBQaxcLxYL5Xken3dbPwTYg+0gaF4Fh5h6CB7n8JA3rzh3Oh31ej0tFotSfztECmI2GAziOKnKe9VYUsn1kGVZnDdaF9jNgjkipA5iBSHc29vTcrnUzs6OarVaaVcDxlnNE4B84UzY2trS9vZ2rBSPx+N4HFwOEPdqa4KkSGCrLgC3tGdZVmpn8HvDHDIvkF63/btIsFwuo4PBdzKgsl/NWWBc3oaBgASZRYxAwOB5F5Y8OJB7yv10wcVDDSHTtGMwXx7UCXFnTXpWAISdufFx8Hnz+8Q95rq8PYP1iHjkQhnjcCcKIgrtLb5NJ5+nwWBQcl549oOLAv5Zoh0nz/PoVvJ8BheKEFoQD31Hiv39fY1Go5J4k5BwGjh417v1vV/2pfqkl/z0aQ8lISEhIeFqCEG7H/PY0x5FwjXij37kx0u/v3Ex0T/6qm848bXtV73z0NFwPXjqh2vZPW5ROOjU9NIXXKt4cPPRCDX95v96sV45X+jbvvgfKrzsBNXlGnEmBAUsyBDBfr+v7e1t9fv9+Mc/1UqIA73+m5ub2trailV0yB2ZA1Sw3WrvFmkIEVsf4nKAZFCt9FYKnBIbGxtx9wdaFaRjtwU5CJDCg4OD6A7wnAQs3H4MSJkHPo7H47itJf+oSnNebONc42g00mq1inMKcfXqNcQKwjscDrW3txfnAvs35NrnDsIGyaU1gxyGra2tGFo4nU5jhoL3sBMOCBllbC7YsA4QW3xrREml+04QJIQQ4ulZFb6dIO4Jtgj0LAHuBQTedz7gOdwPuBI818CPQyUewYIxUXGvhjFKiiGgVOhZJ7hUEA84p+c+eI6B78DgYhbgd8bH9XDdtBF4q4GLDRB+3xWEbThns1l0cXBuxB5vyWANsA5xsDipJ6+Df35NHIOcBNwUPLdcLktZH3y+/f7OZrPS1qZVp0lCwkOJjTzXXz4jP+1hJCQkJCRcAzayTH/yQz922sNIeID4kGau3/+Zk90lT/wvX6ud117f8b7xn79EX9K7eANGdnPxN1pNffV//mX9u+/6EvXfPdPG/37VdR/jzAgK3sOdZZn6/X4MCYTce+I7Fvl+vx/7qp3khXC87WSz2dTe3l4MY8SmTZV1Op1qPB5H4k8107elhOz7FpC4API8j+SEXQg8QR7y7D3/iCeQRA//YxcCKsLe8w0ZA05IyTIg/2B/f1/T6TTOJcTcybk7IjY2NnThwgXt7u6qKArleR7bLMhxAJ6Az+McM89zbW1taWtrS71eTxsbG9rf39fu7m4UblwgQiCA/EMUcatwT6VjRwaiAa0Q3pePe8FzAjz/gPd724M7DKTL8wtYW8yTV8WdMHNsBBpvqyDHwQUOF3+caHswoHSc10HbDmvVg0wZvzs8fPcFCLzvSOFzJKl0PRBx1m2WZaWMCdwvtBUhVrmTwZ1F3iLD54rxeJgkohLHdqHEhYBqfggCY5ZlpXYkzo9AwudpOp2WRCjmFBEBB0lCwmkhPPoOveFrr9QvmZCQkJCQkPBQ4K3/4AWnPYSbis/rDvR53/cCfdPdf1O/+5KP0aNfOr4ux8KZEBQAoW79fl/nz5/X5uZm/KOflgivlJM9QACb2++pkEJy6K920gOxRwTAmUAF2TMJvDfet+CDCHEM6ZhEQdR4LaQHKzbjkI5dGh7c6MGOVfeCW7m5Ju+jZ64ODg4iwWJcHrbnQX3L5VKXLl3S/v7+/7+9c4uRbD3L8/v3oarrNDU90+NofFCwLRthiGUMsoBEFheRT0EyKFJkX6EoAi5AAkQujIgcc2EJEDhcIBlMICZRYidKgmJZQpyUyJGCMBvYNttsNmywgY3H0+Purq5jd890Ly66nr/fWtMzvWfSU7XK871Sq2uqq9b6/sP6Ne93eD+12+1M1l1gEHjNOw4V6awbRbvdVqfT0dramsbjsXq9nnq9Xu6Q4SKFZBsURaHxeKzDw8McDXdC52QbEHlmLkmPd0cB2R7unHGizecYq2cXuIigl3VAZrm/E1vWpNxNYTKZ5HvjSPBSFexhrj01H8LuJJy96t1A3CFSXjMcIdzH54D7kUnC5ymJIVvFM1PYq8wt92fMXNO7OpT1H5h/5gtHCt1ZymNgrVknF/PkHDjPSUIpC3ahRcL+o/QCO71MJBAIBAKBQOAivPDT/0jS/1u0GYHAY+Pnbz4j/fAz+q53v1vP//G36et/8asvS1+hMg4FCNDa2pq2trZ08+ZNtVqtHK0cjUYaj8eZOBJBv3r1qrrdbhbzg0hCMhAThMR567tarTaj/I84GwSSex8cHKjRaOTWkijGQ6RceA5SWu4mQXQXIuXZFrz2TgxeyuDZGV7XL52103Oyi80uQMj73gaPOYEADodD7e/v6/DwUN1uN5dauHCfp8+7iB5zSplDp9NRo9FQSilnJ5Ax4ZFfb/OIUwZnUblLAvBItdfSE0XnO65T4Gn07AfIMBoRvV5Pg8EgZ0h4i0Pm3Em1a2V4twhKK1qtVnZY4Yhyx4RnoPi6eFYE3Q0g7O7EgCDjnHDnCfdgvzD+spCjO7TQt/B2kIwF7Qx3svnculaD2+j6Ej5unnfvQEH2Bd1WEKos6z54xhLrvrm5qW63O5ORwvPLM+vZSew1bJCU14k5Y+yBwCKw0mzqKx+pXfzBQCAQCFQCf/XPf+niDwUCS4BPv/E3pDdK73zzd+lLX33z2R/+xX8/9/OVcSiAer2uGzdu6MqVK5J0nzNBOiNDdIJotVpqNBq5GwNib5AOIp1OwikLGAwGORqKo8I/58SJGuzV1dUZIcNyKQQRaydPOAggZk5cXHSSiDREF2JMBoBnFEiayVCgPaSTLS+ncGIOWYWMjsdjDYfD7CzxqK2n+XvU2FPded1qtXKJBWRtb29Pt27dUq/XyySOSDuOH8QEiXB7WYfrDpRr2pkfxBtdh8Ftv3fvXm4jylqTUr++vq7xeKzd3V0Nh8M8NuksE4FsCdaJ9SArxUUey9oP7pRwx4A7l1zTgLXyjIuyiCI/OMbcceBRdcbvDiwXuGRdXazQnRk8S8wn1/DsifI9sJe1cYcDv5kvL9FwPQrG4c8N+9jLdthv3W43d9zg+Tg+Ps4ZLzjX3Bnieig8v8wxjgwv8wkE5olUW9cffet/XbQZgUAgEAgEnlL85jd8eubfD8rbrZRDYW1tTTdv3tSNGzfUbDazCCHCdF7T7S0Q6Vrgre0okfB2gpA0oo6j0SiTXE8H91R7z1RAtM/bFkIySWfH6eB17ajXQ8Q8OkqpAWOEZLsuAZFySho8fZ9rQLZwqrgugaepO5H371LbT60+IpflzgBEoBkTcw9JpNSB90ejkfb29rS3t5fJHhFwCLbXxbtNRJqZTz7HdyGK7mDhPYghzop+v6/9/X2Nx+M8j65VgZ2TyWQmhV9SjpTjYPGyEcbEZ1wQkj3JHnAHlKfkl0tbXLcAZ4hnALAm6I1wTdd9cE0SL9uRzsoi2AOuiQDpd8cW8wkJx7HAWrHW5zl7cBawZ7DbtSMA2g0uLOr7zx0ezGe329W1a9fU6XTyPHt2ibeexMbRaDSThYQzgUwX5tn3VSAwV6Sk7/jM7UVbEQgEAoFAIHAhKvO/5Xq9rps3b+qVr3ylrl69miOMEF0nHtTpX7lyJRPcg4ODTKrq9boODw81GAxyFBdSDeHq9/va3t7WYDDIpIGWlN4+D4fBcDjUZDLR2tpartUm1b+cmeCRWchhrVbTaDTK7fBWVla0tbWlTqeTI64QGE9xhwyenJzkqK635iNDwMmY6wyUiZMT9UajoZOTkxzFlaRutzsTleW1Z3AQhSaLAV0AMhSotx8MBtrZ2dH29nYm+lwTolwWiSQi7hkK9+7dm4k0k/ngThaPMHM9SjkODg60t7eXsxPIhuA3+8fr7NkrZD2Q0VDuWCApi39K95dnAIi/lz74upRf48DgnmhV1Gq13NWBZ8JLD3DASJoR63S4cKLrhnhphKSZjB3u5zoD7Ndy6QLRfXeSsO50AKHEpawJAfn38fCMUYrCc4BuQrvdzuVKZKVg63nOBM92KuuTgHJpUSAwV6QV/ZutP1u0FYFAIBAIBAIXohIOhZSSNjc39YpXvEI3btyYUZPHoQBhqdVq6na7M59zgTjIBJkNRFhdq+Du3bu517yXOOCMIEKJQJzXydOGEmcBdfmQEkoOnBSRMeEZBN1uNzsmBoOBJGXi4yUBHm2HXEHo6/V6LqEYDodZG4CoM3aQQg7ho1RkfX092464HWPD7vX19UwInVwRbSdzo91uq9FoZK2JnZ2drJvgmQGSZsYFOa3X63ktXZuCGni0DSCTkE/W+/DwMJeujMfjLO55cHCg3d3d7Mhx9X/aiJJ14Nko5XR7bwXKHmJN2DPuGPFuCi4Syf7AMXKec4MyGNp1Hh0d5bVwkVF/flw/wstG2EfcC8JNxwtIuHQmTuhkm+t7JgmfpTSG58D1IVhfd3KR0cJ3IP3le/GsuYYI2UatVis/N7VaLQt/8nyxF9wxwvPf7/dzForrPHgmBGuPM4HxBgLzwo+++LzesL4jqb1oUwKBQCAQCAQuxIXht5TSr6aUtlNKz9l7H0op/V1K6dnpz3vsbz+eUnoxpfRCSumdL8uIlRVdvXpV169fV6vVUrPZ1MnJiXq9nvb39zP5QDeBemlIv7em82gnZNGj80SIXeFdUv4cZBeyMxgMMhmt1WpZOwHCQlT76OhIg8FgRnhvOh+ZYEF6vIYcIkWqNk4C6YwIuTOEz2LD4eFhbnmJEKDrKxBZ9rr3jY2NnKXR7/c1Ho8zyYJAQwDdoeEOhZOTEw2Hw1wy4uKOh4eH2tvby+tHdgGkHCfEcDjM5NE7ZkAWJWVHQa/Xk6TcWtDnA8I5HA41HA4zKafsBSFIMk+YEy+ncTLM+ngrRGr7XQzRu3Yw5zh0XLzR0/7d0eDlA2QlYNtkMslZMZQAML9ki7gjzHU4uJc7wtxR4M4o19pwp4iXteCoYDw4BrxUg33M2NkH7B0yWlhn5pVrktngQpqMx9tYeoYD92L9ef6YW5+Xg4OD7JQik8j1FPzfXhJUJczjLA4sFv/yhb/Wu5qHev16OBMCgSoizuHAg5CiRDLwFOPl7P6PS/oFSf+x9P6/K4riZ/2NlNKbJL1P0jdKeqWk30kpvbEoimM9BCkldTqdnKGwtramyWSinZ0dDQaDTJJSSmq329ra2tL169d17do11ev1HOUkMk8UmEg0JBZy0u/374vievs+UtpxDqANQCtD4C0sITGQUciM97cnxdv1F6Sz+nIXaHQRutFoNJNm7tFU6sRd/NEF/viNg8XLDSDJPr/Ut1O/jzYETgjmmXlKKc04AVJK6vV62t3dzc4YSD4E+PDwUJPJREVR5MwGd2RArHGW3L59W0dHR1mbwQk9JNQdFnTzQJfBtRmk0wi+zylOBLIAPDuDrALIsZPtRqOR9QNcvNGdVETncWq57ThrcCZ4S1LGJWmGQGML+9KdMdJZJw/Wyp0JlErUarWcncBzQvaCl0twffYKJT/NZjM/V2RggPIaYwNOBHdceOaNt8TEGcLzyPy4rgRjvHfvngaDgfb39/MeIeOAzBYcCaPRKD+zrBlwZ4J3oaiYKOPH9YTP4sDisNLpqLM6WbQZgUDg4fi44hwOnINPfPEzkpqLNiMQWAgudCgURfGZlNLXvczrvVfSJ4uiOJT0xZTSi5LeJun3HvYlavo9Gtrr9XTnzh0NBgNNJpMslodgYLPZnInoEtn0lGeIpdfXHxwcZDIJ+YF8eUo4pIeODqRZ8zd0CyA7w+Ewdw2o1Wo6ODiQpKx34HX11IFzD6LZECoXGBwMBvelXePAQFQQUispk2uIkd8f24jcYyPkuNFoZMLHd8q15QAy2Wg0cuvO9fV1jUajTFQh1NJZtwmiyaju8z1PzWcckEXvkMAauc6Aj53vO7H2tpnU4kOOIeNe5uKZCjihXEiR7zEu9pCvK+UKlJK4YCdz62NeXV3N2S7oabCuzWYzdyiA8OMU8Geo3LnAs0xYLxxKro8gnWV5cG2eM8p++Jtn5+CMwFnB/cno8LIQ1snvx7PWbrfzfvfMAr7LaxwcXNdLIcbjcXaCUKLCs44trKPvN9cF4W/uIDlPD2NRmMdZHFgcvuX/9vTPmgeLNiMQCDwEcQ4HAoHA/fj/URz7oZTS56fpX5vT914l6W/tMy9N33soUkq5NrpWq6nf7+v27dva29vTcDjMxJcafwgSpGQ4HGowGGhvb087Ozsz7SM9/R8SDkF1EgZJIuoO+SYKTfo7xIjafiL8nhUB4XSVftcKgCiShk0du9tCjT8/RVFkIUhINbXzrVYrp5PzN7IWIJTMAZF/HAou6EfkWTpzsnhWgrckdE0J2na6CCCEvpzB4a0x0cDgM9iPI8NLU65cuZL1Gcop/5Bo1pO18awIMj0Gg0HWm+Bv7hzxucQ55eUwdD5gPiGkRVHMaE6Qgu86IDigsJNxlLt0eBcHtCW87MI7RnA9bPAf5sg7NLiIojuzyJ5xbQTGzz4hU6eYCl0CF9uUlB1KzBX3xx4cKyml7CzxTAT2OBkJjUYjZwiR7YPTZDweZwcVzx1zhU6KO5fYa5w72F8uPXKdjSXApZ3FgUAgEHgsxDkcCASeWjyuQ+Gjkl4v6S2Sbkn6uen76ZzPFue8p5TS96eUnkkpPXNycqJms6lm8zRVaDQaaX9/X71eLyuyQ46dSEmaIZKDwSAL8xHhhXBLmiHR/JDmzHVIdeY1hMbFGiXNiOt5ajvkDtuohUdYb3NzU+12O2dLEGGF1HLfw8ND9Xo9TSaTTPgh3AgpMj7XVIA4r66uqt1uZ3sRsINwQbIQ6EN7Adu5FyDjA0IKudza2tK1a9dylwOPVjMe1gy7JWWyKCkTTr7v4ohE+Mk28U4PZKeUMxtwdpAt4A4UUu3L2Q0e7S87CrgmpBMC6uUkjBPCSzcBdCr6/f6MkCLrjc0e0W82m9lxxr4iGg+Z9r1vz9SMroJnhSA26KU0jM+FHzc2NmaeMZxTZDuwx1gvnj3uybOEQ4Tv41ByLQP2AM8NnUcovSELyXVNuJdrI5BZsLGxkecSRx372bOWyvomzCXvMU9cq+K41LP4rpbCgRIIBAJVQpzDgUDgqcZjKYgURZEbZKeUflnSp6f/fEnSa+yjr5b05Qdc42OSPiZJrVaraDQaqtVqOj4+zmJ//X4/RzLr9Xp2OLhCvnRKfhHlg/hsbGzMtIPc3d29r02hOw6oFUd0keg6DgXXN5CUCZl0RiiJ9rpwH4TOWzwScXY7eA8S6NFoJ8+QbFfAJxoNUSTSTOq3O1Y8W6KciSGddbqgNIJ5QFcBMt1oNLJzBF0DotmQY2yXlDUIjo+PcwtE5hwRPGxyh4xnRSCgiD2eOeCOCNeA8PsSfXbSDDyC7SUo5VIU1tf1NyTlNZxMJur3+zMOJ/7O+NxRgAOGlqVkCLB3vJuGO8MODw9nxBVdCJL7MC72J2TanT7uzMJh5GUJ7HM0MiDZrg3BM8T3WEu0S8geoOyI7BCeUc9M4H5oeZQdL+5YY4/gBKDUBO0OF3d0hx/73ucHp5Q7GdwhUVVc9ll8JV2r9oADgUCgYohzOBAIPO14LIdCSulmURS3pv/8Hkmo3X5K0n9JKX1EpwI0b5D02Yuut7q6qk6no6IoNB6Ptbe3p6985StZzM+F+iBG3hXAU8aJPCMeV0wV8yG8tKD0CDW/uQekC5Lk5AXy6mQXkkuKuIsi8jkEBUkv9xaDnpYOSfXMDGwkIgtRRw+AyCvRYMou+B7Ch15/7lkeHtWmdMFJNaUjHt3FSUH0HGcL6f5+H94/OjrKkWTv4sAe4H5cz6PRkFHGx2e8NAPiinMKsuw6DoyBa3jdPoBoe9YA+4Dr0frQI/+MHduYQ6L4rK0TZHeE4OiQTsksmSdFUcyISOLUglx720r2Jo4IF310fQ0cI2SMQO7LjrFyqQLveTkR8+MlKMwhcy0pd/Uge8EdA14u4/vbO3DwOZwejBknDPfo9/t5XR4ktlgeI88qa+OaGFXGZZ/FgcVg5/u+XW9v//tFmxEIBB4DcQ4HAoGnHRc6FFJKn5D0nZK2UkovSfq3kr4zpfQWnaZufUnSD0hSURRfSCn9N0l/KumepB8sXoaaLfX0EOlbt25pd3c3R3k9Qg4ZJXOg0Whk4gHRwQGxsrKSWw6SAg35h8DgfCDaCrF1EgMhdPLn6eX+GUift9qD5GIPY6I+3uvrPYLs0VF3OkB8IGyQHlLTIfo4LJg3xjBdq0y0gBNaT/dmvsneYJ5woEhnUWnGwrhPTk5mhBrplAF5ZC6IRLuooI+VfzMP7gjwsXqqv2cd4CiCxDLHOGggvd79gnG4Y8lLH1gj9i6lA5ByLwdwx5O3BfVngLWH5JN9QGkMc8r8l9tgulOKOcB5BYGmywFr5/YxTvZ1ucyD7BYyWHi//Cx4qQRwR17ZmcBv9oBrW+AMwYFI5g37gLG6Q4c1ZQ+XM124PmNyBxDzW3bwVAHzOIsDi8HW+/9G72jevfiDgUBgoYhzOBAIBO7Hy+ny8P5z3v6Vh3z+w5I+/ChGuOp8v9/XnTt3tL+/f1+Ku4sjelQSATw6B0DeDw4OtLu7q/39/RmRPieW5fR6iBfkHLIKGXfihO1l0kHkGNIM4fPWkc1mM0e50ViQzog5BBHS6F0liNj758tjkJTJH2QMQuh17ZKyHkK9XtdwOMy6DbRgxHHTbDZn2h2S+o+tg8Eg616wNnfv3s1OFG+n6WNkHj1CzN/d8eAOB09/l86i9t5+UDrTFYAsusOGzBVvpYnegpNh12cg+g9p9usRTXfCWx4T1yrbx3tcy0URvYMIDglKAlwnAQFJ1tx1LNjrPn/MYTkTh/n07ATuISlnsbh+Ad/3kh+IOtklzD/PsJeYsMZevsHa4kjAWUjpBQ4l9pqXaLD3fJ9wbUpTytkirA0OTvZ6VTCPszgQCAQCD0acw4EH4R0f/DH9wYc/umgzAoGF4LFKHi4bRNmPjo7U7/ezI4HoKiJ1pGV7VHY8HmtnZ0fj8ThH5yHqo9EoCxtCLiAqrVZLKaVMiiBOEBsnGF7m4BF0bzcI4fEuD+WU+bJgoHeWQBeB+3jkmPR8SfcRQz4DoXOCBpn0tomj0Uij0Uj37t3TxsaGOp2ONjc31el0ckeC8XicySrieK1WS81mM0e9qYPvdDra2NjQaDRSv9/Xzs5O1oyg24JHgLGd+fAIOL8Zi6fmu1PBdScgu5B7yKRnnPDao9aIYVIaQ6tP2gy6doW3fYTQHhwczDhqyKbx0g3mHyLt+4ffHjX3+cBhUS4dwC6yFyD6Tto9Q6PssHANB4h6udyD+SQjgnUhM6Fer890v/Dvsz98zRhfo9HIz6dn/+B8SSllZ4WXqbDW/uwzHs4OyjnIhGAMnoFUzr7w+eb6ZONwzSo5FAJfm/jiT327fv11H5HUWLQpgUAgEHhMXPsPvxeuo8BTi0o5FEgzp3wBQgQhgIh5VsFwONRoNFJRFDN1/cPhUNvb2+r1ejnq7iKILjDo5NzTtT2tW5pNzfaa7JWVFV25ciWn0LsQoZcNkF4NWfHIrEfjy2J/np6ODXy2nDbuGQwQxpRSdiR4Wn69Xtf169e1ubmp1dXV7BRAFA+yzU+9Xs/klTG3Wi2trKxod3dX29vbGo/HObLsegiI7nndvZM1J55OgEnTh+DicHCS6PPnJQ4u2OfihwgFSrpPz+H4+DhrEridXj6SUsrzu76+rtFolLUs/POQdhdL9DVjjKwf48Wh4qU8ZCfwrJS7WrjWhY/d94drT3imAI4YHGkIRHI9nGI49VgTHCi+77xUx8sIIOo48thjaHDgqGm323lNfT/QEcLHgMMDLQWyf3hGT05OznVeeKkD4/dMKG89iWMjEHgS+JsPfod+4/0/o9evtxdtSiAQCAQCgcBjoRIOBems3SBR4uFwOENspNmUcEk50kya99WrV9VqtXRycqLBYJAzHZxIcr2NjY2Z1Gh3FpA2TZq0RzXLRApSs7a2pvF4nMcDGSxHyElVdxIkzbawA5B61xI4r+QCokW9uCvl1+v1nHXAfEjKLR83N0/bJe/t7enOnTuZKHP/druta9euqdvtKqWUa9Q3NjZ05coVbWxsaDwe5+uTnUBKOkTRf7tmgq8/JBgi7hFniKprBzBvAOJKhorX8XvqPXNNZgJrwfz6e65pgPPBu4mwD71rA+Mion98fJznzW1n/ciC4LueaQEJ9rR/9iWk2MfuApBehuCOGjIBvOuDZzmw9+mUce/ePbVardxalA4K2I+9zDflMEVRZEcUpTM4WlxY8e7du9nZQHaFi0OSVeSlKYyZeeDsYC08gwhwfqC/QTYE2S04Lch8Kjt/AoHLxtHmSTgTAoFAIBAILDUq4VBI03ZvvV5P+/v7M/XXrmkAiYEITCYTTSaTTFbpZEDqPg4JTyf3sghS2D07ATX9Vqs1U9IAkYF4cl3IHYTR2ztKmklBZ6yMjdRw/3t5Xojmcj0nOLVaTd1uN7eDdG0DSNjq6qr29/ezI4TvtVotdTodra6uajKZ5EwPSZkst1otdbtdXb16NWd9oK9ApJ51GwwG2ZHh6f5OiGmHiDimw7M3vOQBZ5DPn3fo4H5kIuCwYL2ZF0ocnLDj4HDNDJw4fM+j82TRTCaT3LFjMpnkFo6u34Cjh7ExXhxUvhdxTBBRl5T1KRgj+5t5p6QAx4O3eyzvE9eR4JpehoFDgR8i9RsbG3lNeBa8faXvN0l5P/OslnVP/Bkmk8gdD81mM1/btR5wNlAW5cDJ51lI7uwoZ/Dwd9aTuZSU7WSMLtYZCAQCgUAgEAgE7kdylf+FGZHSHUkjSV9dtC2PgS2F3fNE2D1/LKvtl2X3PyyK4sYlXKfySCkNJL2waDseA8u6R6XltT3sni+edrufpnM4/k88f4Td88Wy2i0tr+1P9CyuhENBklJKzxRF8a2LtuNREXbPF2H3/LGsti+r3YvEss7ZstotLa/tYfd8EXY/XVjWeQu754uwe/5YVtuftN0rF38kEAgEAoFAIBAIBAKBQGAW4VAIBAKBQCAQCAQCgUAg8MiokkPhY4s24DERds8XYff8say2L6vdi8Syztmy2i0tr+1h93wRdj9dWNZ5C7vni7B7/lhW25+o3ZXRUAgEAoFAIBAIBAKBQCCwPKhShkIgEAgEAoFAIBAIBAKBJcHCHQoppXellF5IKb2YUvrAou15GFJKX0op/UlK6dmU0jPT966llH47pfQX09+bi7ZTklJKv5pS2k4pPWfvPdDWlNKPT9fghZTSOxdj9QPt/lBK6e+m8/5sSuk99req2P2alNL/Tik9n1L6Qkrph6fvV3rOH2J3pec8pbSRUvpsSulzU7t/cvp+pee7yoiz+InYGefwHBHn8NztjnP4khHn8JNBnMXzRZzFc7d78WdxURQL+5G0KukvJb1OUk3S5yS9aZE2XWDvlyRtld77GUkfmL7+gKSfXrSdU1veLumtkp67yFZJb5rOfV3Sa6drslohuz8k6V+f89kq2X1T0lunrzuS/nxqX6Xn/CF2V3rOJSVJ7enrdUm/L+nbqj7fVf2Js/iJ2Rnn8HztjnN4vnbHOXy58xnn8JOzNc7i+dodZ/F87V74WbzoDIW3SXqxKIq/KoriSNInJb13wTY9Kt4r6demr39N0ncvzpQzFEXxGUm7pbcfZOt7JX2yKIrDoii+KOlFna7N3PEAux+EKtl9qyiKP5q+Hkh6XtKrVPE5f4jdD0JV7C6KohhO/7k+/SlU8fmuMOIsfgKIc3i+iHN4vohz+NIR5/ATQpzF80WcxfNFFc7iRTsUXiXpb+3fL+nhC7doFJJ+K6X0hyml75++9w+KorglnW5ESa9YmHUX40G2LsM6/FBK6fPT9C9Sdippd0rp6yR9s049hEsz5yW7pYrPeUppNaX0rKRtSb9dFMVSzXfFsGzzs8xn8TLv0UqfCY44h+eDOIcvFcs2P8t8DkvLvU8rfS444iyeDxZ9Fi/aoZDOea/KbSf+cVEUb5X0bkk/mFJ6+6INuiRUfR0+Kun1kt4i6Zakn5u+Xzm7U0ptSf9D0o8URdF/2EfPeW9htp9jd+XnvCiK46Io3iLp1ZLellL6pod8vDJ2VxTLNj9fi2dx1deg8mcCiHN4fohz+FKxbPPztXgOS9Vfh8qfCyDO4vlh0Wfxoh0KL0l6jf371ZK+vCBbLkRRFF+e/t6W9Os6TQ+5nVK6KUnT39uLs/BCPMjWSq9DURS3pw/KiaRf1llaTqXsTimt6/QA+s9FUfzP6duVn/Pz7F6WOZekoih6kv6PpHdpCea7oliq+Vnys3gp9+iynAlxDi8GcQ5fCpZqfpb8HJaWdJ8uy7kQZ/FisKizeNEOhT+Q9IaU0mtTSjVJ75P0qQXbdC5SSq2UUofXkt4h6Tmd2vu90499r6T/tRgLXxYeZOunJL0vpVRPKb1W0hskfXYB9p0LHoYpvken8y5VyO6UUpL0K5KeL4riI/anSs/5g+yu+pynlG6klK5OXzck/VNJf6aKz3eFEWfx/LCUe7TqZ4IU5/C87DX74hy+XMQ5PF8s5T6t+rkgxVk8L3vNvsWfxcUC1D/9R9J7dKqi+ZeSfmLR9jzEztfpVBHzc5K+gK2Srkv6XUl/Mf19bdG2Tu36hE7Tcu7q1BP1rx5mq6SfmK7BC5LeXTG7/5OkP5H0+elDcLOCdv8TnaYLfV7Ss9Of91R9zh9id6XnXNKbJf3x1L7nJH1w+n6l57vKP3EWPxFb4xyer91xDs/X7jiHL39O4xx+MvbGWTxfu+Msnq/dCz+L0/SigUAgEAgEAoFAIBAIBAIvG4sueQgEAoFAIBAIBAKBQCCwhAiHQiAQCAQCgUAgEAgEAoFHRjgUAoFAIBAIBAKBQCAQCDwywqEQCAQCgUAgEAgEAoFA4JERDoVAIBAIBAKBQCAQCAQCj4xwKAQCgUAgEAgEAoFAIBB4ZIRDIRAIBAKBQCAQCAQCgcAjIxwKgUAgEAgEAoFAIBAIBB4Zfw/Hi68YIDuKPwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 0 527948\n", + " Min thresh = 1000\n", + " Sliding\n", + "\n", + "\n", + " Winner = Sliding\n", + "\n", + "\n", + "211s_iimage_3929217595322_clean.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADDCAYAAAAya0IYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADo/klEQVR4nOz9d5il2V3di699cj5V1WlaM8pCAkQQMggJm+AfwYAxIBlswDaYJAHGCZOMry/Gvpdgk2xjCeQfWMIkwwVsGREMmHiRQIAkkBAISUgazYx6urvq5HzOe/+o+uxa5+2a3DNVPbPX8/QzVSe87373u8+ZWuu7vmuHLMuUkJCQkJCQkJCQkJCQkJCQ8FBQOO0BJCQkJCQkJCQkJCQkJCQk3HpIgkJCQkJCQkJCQkJCQkJCQsJDRhIUEhISEhISEhISEhISEhISHjKSoJCQkJCQkJCQkJCQkJCQkPCQkQSFhISEhISEhISEhISEhISEh4wkKCQkJCQkJCQkJCQkJCQkJDxkJEEh4TFHCOGtIYRPOO1xJCQkJCQcI4Tw7hDCJz3I12YhhGc9zPM87PcmJCQkJCQknC0kQSHhMUeWZc/NsuzXT3sc94cQwl8NIfxxCKEXQrgeQvjZEMLtpz2uhISEhMczQgj/NoRwZwhhEEJ4TwjhX5z2mBISEhLOGm62MPtAx0t/FyfcH5KgkJBwMv5E0l/LsmxH0pMk/bmkV5zqiBISEhIe//hBSR+YZVlH0sdI+oIQwktOeUwJCQkJT3Skv4sT7hNJUEh4zOG22hDCvwoh/FQI4UdCCMMj9fPZIYR/HkK496hS9Sn23i8OIbzt6LXvCiG8LHfsrw8h3BNCuDuE8GWuuIYQqiGE7wwhvDeEcCWE8P0hhPpJY8yy7EqWZXfbQ2tJyaKbkJDwhEAI4QUhhNcdVaPuCSF8XwihknvZpx99D18LIfy7EELB3v8lR9/VByGEXwohPPXBnDfLsj/LsmxsD22UvnsTEhIehwghfFAI4dePvmffGkL4THvu10MIX2a///0Qwm8f/fybRw+/OYQwCiH87RDCJ4QQ3hdC+Kaj7+R3hxD+zsM9Xn6s6e/ihPtDEhQSzgL+hqT/KmlX0hsl/ZIO1+btkv61pB+w194r6TMkdSR9saTvCSE8X5JCCJ8q6WskfZIOv+Q+Pnee75D0bEnPO3r+dkn/530NKoTwlBBCT9JU0tdK+rcP/xITEhISbimsJf1TSeclvUjSJ0r6qtxrXizpIyU9X9JnSfoSSQohfLakb5L0EkkXJP2WpB9/sCcOIXxjCGEk6X2SmpJ+7BFcR0JCQsKZQwihLOl/Svpfki5K+oeSfjSE8JwHem+WZR939OOHZ1nWyrLsvx39fpsOv7Nvl/RFkl75CI+XH3P6uzjhRCRBIeEs4LeyLPulLMtWkn5Kh3+AfnuWZUtJPyHpaSGEHUnKsuy1WZa9MzvEb+jwi/hjj47ztyT9lyzL3ppl2UTSt3CCEEKQ9OWS/mmWZftZlg0lfaukz7uvQWVZ9t4ja9d5Sf+HpD+9qVedkJCQcEaRZdkfZFn2+izLVlmWvVuHwu4NIu3R9+l7JX2vpM8/evxlkr4ty7K3HX2vf6uk5z0El8K3S2rrUKj4r5L6j/iCEhISEs4WXiippcO/dxdZlv1vST+n4+/Rh4t/mWXZ/Ohv5Nfq8G/jm4L0d3HCfSEJCglnAVfs56mka1mWre136fBLVyGETwshvD6EsH+kkn66Dr/YpMOerjvtWP7zBUkNSX9wZC3rSfrFo8fvF1mW7Ut6taT/EUIoPZQLS0hISLgVcdR69nMhhPeHEAY6FAXO517m37Hv0eF3sCQ9VdK/t+/afUlBh1WzB4Uj0fiNOvx/wLc80OsTEhISbjE8SdKdWZZt7LH36CF8T56Ag1zLmH8v3zSkv4sT8kiCQsItgxBCVdJPS/pOSZeOVNKf1+EfqpJ0j6Q77C1Ptp+v6fAP0+dmWbZz9K+bZVnrQZ6+pENLWucRXEJCQkLCrYJX6LD69AFHAYnfpOPvWuDfsU+RRH/tnZJeZt+1O1mW1bMs+52HMY6SpGc+jPclJCQknGXcLenJnj2jw+/Ru45+HuuwEAZuexDH3A0hNHPH43v54Rzv/pD+Lk6ISIJCwq2EiqSqpKuSViGET5P0Kfb8T0r64qOQm4YsH+FIAf7POsxcuChJIYTbQwh/7aQThRBeEkJ4TgihEEK4IOm7Jb3xSJVNSEhIeLyjLWkgaRRC+EBJX3nCa74uhLAbQniypH8sib7b75f0z0MIz5WkEEI3hPC5D3TCo+/blx0dM4QQXiDpH0j61ZtxQQkJCQlnCL+rQ5L/9SGEcgjhE3SYKfYTR8+/SdJLQgiNo3DxL829/4qkZ5xw3G8JIVRCCB+rw8yxn3qEx5OU/i5OuH8kQSHhlsFR7sE/0qFwcCDpCyS9xp7/BUn/QdKvSXqHpNcdPTU/+u83HD3++iML769Iuq+wmtt12BIxlPTHOkwaf/FNvJyEhISEs4yv1eF37FCHYuxJIV3/Q9If6PAP1dfqcMtHZVn2szoMwf2Jo+/at0j6tAd53hdLeufReX9E0n88+peQkJDwuEGWZQtJn6nD78Zrkl4u6QuzLCOX4HskLXRI9F8t6Udzh/hXkl591FpGTsL7dfj38d1Hr/+KR3g8R/q7OOE+EbIsO+0xJCQ8KgghfJAO/5CtHgWDJSQkJCQkJCQkJDyucORw+JEsy+54gJcmJNx0JIdCwuMKIYQXH1m9dnVYIfufSUxISEhISEhISEhISEi4+UiCQsLjDS/TYcbCO3W4j/pJfb8JCQkJCQkJCQkJCQkJjxCPmqAQQvjUEMKfhRDeEUL4xkfrPAkJjizLPvVo94a9LMtenGXZPac9poSE00L6Hk5ISEg4faTv4oRHG1mW/Xpqd0g4LTwqGQohhKKkt0v6ZEnvk/QGSZ+fZdmf3PSTJSQkJCTcgPQ9nJCQkHD6SN/FCQkJj3c8Wg6FF0h6R5Zl7zpKMf0JSZ/1KJ0rISEhIeFGpO/hhISEhNNH+i5OSEh4XKP0KB33dkl32u/vk/TR9/XiSqWSNZtNVatVNZtNZVmm2WymxWKhSqWiarUqSSoWi5Kk9XqtLMuUZZmWy6WWy6U2m41wWxQKBZVKh5e22Wy0Xq+12WxueI2jUCioWCyqVCophKAsy7TZbCRJIYR47tVqpdVqpSzLVCqVth4PISiEEH9fr9cKIahUKqlUKqlQKMTx+D+Ok2VZvLYQggqFQjzeZrPZOo47SzgO4L2AsfA+zsHxORbXyePr9Tpeq8PHxJxy7TzHe3y+i8ViPD7j89dvNpt4DJ8rPw/HYdx+To7DvPu1+FytVocZjX7/OIcfh3Pmz8vrfd78cX/M1xGP81h+/vNjDSFos9nEe8DzPi6/3xyL1/s98Xk+ady+Lvx+s875XPh48sfw/+aPkz83P+fXus+Vv+++HjvpXD4X+c98/vUnzUsey+XyWpZlF0588mzjIX0PS1Kx1cye8fSNrryl/qgOLCEhIeGhYKaxFtk8PPArzyQe0ndx+h5OSEg4qxjq4MS/iR8tQeGkL/2tv9ZDCC+V9FJJqlar+oiP+Ag95SlP0Yd+6IfqWc96lu666y792Z/9mTqdjp7znOeoVqvxPk0mE2VZpnK5rGvXrum9732vrl+/ruVyqcVioWKxqEuXLqlarWoymWgwGKjX60UiC3nPskzj8ViLxUK1Wk3nz5/X5cuXValUtFwuNZ1OtVwuVS6XVavVVCwWNRwOdXBwoNVqpXPnzqnb7Wq9XuvatWtar9eqVCqqVCparVYaj8eSpEajoWazqUqlIklaLBYajUbq9XpxXK1WS5vNRpPJJJLNWq2mZrOpEIKWy6Xq9bouXryovb29KKZAIPf393Xt2jVtNhsVi0V1Oh21Wi1J0mAw0GAwiKIEc5JlmSqVSpyTQqGgarWqRqOharWq5XKpa9euaTabRSLGHIYQtFgsNJ/PtVgs4phLpVIknQg03KtaraZut6tqtaparRbnqlAoaLlcajAYaD6fq1ar6cKFCyqXyxoOh+r3+/FfpVLR3t5enK8QQrw3q9VKy+VSw+FQktRsNtVut1WtVuNzo9FI+/v72mw2On/+vPb29qLQMhwONZvNtNlstFgs4nvm83m8R61WS6VSSavVKt4r6VicmE6nms1mqlarcYzD4VDL5TKKS+v1WuPxWOv1WuVyWdVqVYVCQfV6PR5fOiTAs9lMBwcH2t/fV7lcVqPRiOthtVppPp/HNdbpdLRcLrW/v6/xeBznv1QqqVwuq1wuR+FgsVgoyzI1Go0oqoxGIw2Hw/gZgmxXq1V1u101Gg1lWaZ+v6/JZKL1eh3PgUDEWpJuJOnr9Vqz2UzL5TIKYL7WK5WK1ut1/Bwj/Liow3vyAhCPcy9qtZoKhYIWi4XG47GWy6UqlYoajYYkaTab3bBeEVQQIVhf73//+9/zAN93ZxUP+D0sbX8X19TQ0976GXrarfpne0JCwuMSv5v96mkP4ZHgIf1NnL6HExISzip+Jft/Tvyb+NESFN4n6cn2+x2S7vYXZFn2SkmvlKROp5Mtl0uNx2MNh0OFENTpdNTpdCLRrdVqkbhSFa3X6+p2u2q325G8U62fTqdbhAoyUqlUImGD+PT7fY3HY9VqtUjIIeuQFCcZnGc+n8fHV6uVZrNZrN4Wi0XV64fqMiLIYrGI5K7T6URSBCmUtEXMIH8QZn8tAstyuVSpVFKz2dRsNtP169c1mUzitdbrdTUajUiUy+VyHP9gMIgukBCCKpVKJNaQSkgo140Yw9zWarVIxL3SjJOD45bL5ShCUJXmuNVqNf4O4axUKrp8+bLOnz8fCfB0OtVisdBkMlG1Wo1jYazMJ/dvNBptLUrcDpLicZrNpprNZnRwgM1mE+dMkiaTiebzuVarldrtdrwmBJXZbBaFhvl8ruVyGecL4cVdJIybNQMBlqR6vR7JPEID63S5XEZRAfI+nU7jdTPP7iRgHblIUCgUopjWarVULpdvcEzwOVmtVhqNRlosFiqXyyoWi6pUKlosFtENwvkKhYIqlUq8F9VqdUs8yBN4XCt5t4U7LVgvXKPfI59PdwfNZjPVarX4eUOAWa1WqlQqqtVqWy4Jzu0OIT4rtzAe8HtYyn0Xh72bH6qTkJCQ8MTGQ/ubOH0PJyQk3GJ4tASFN0j6gBDC0yXdJenzJH3BfQ6iVFKr1dJ8Po/EhWo55KDT6ahSqWg2m0lSFBaoQvd6vVh15D3lclmlUkn1el3NZjOKDhCPYrGodrutTqejq1ev6tq1a3ryk5+sixcvxsrttWvXYnWZYzsZ9lYHWi9Wq1UUMtrttgqFgubzuabTqQqFgprNpsrlsvb29iQdEkWIGKTbreSlUkmVSkWTyUSz2Uyz2Sy6HubzuebzuTqdTiSAg8FAq9VKw+EwzuPu7q5ms1kUOhAKEB+k41aR8Xis6XQaK+JUynkN114ul7XZbFSv16PYw7xCEt0VQnUe8o5AMpvNoquD45RKJe3u7qrZbKpWq6larapcLkcSPplMorvBK+reaiJJ8/l869ySVC6X4xrhOrm2crkc21AkxSo5jhUXTVgHEOvZbBbFLJwN3W43Oh6YHz8mRBcCznri/uBqqFQqGo/H0WmCyAAQNOr1enwfhByijzDHWp3P55FM1+t1FYtF1Wq16CBgzpfLZWxBqlarcW64fubYW5VYBz4+3Aisj3yrTv5ndyG408HXlrfDuKjA8+VyOa6t+XyuyWQSBRzGh5DAz8wb4sktjIf0PZyQkJCQ8KggfRcnJCQ8rvGoCApZlq1CCF8t6ZckFSX9UJZlb72v1xeLRXW7XU2nUw0GA41GIzUaDdXrdfX7fQ0GA+3s7EQLOUSU/m4IsqRIyiCMbvmmCgzJkg5t8ZcvX45VZYgPBGs0Gmk6ncaqK2TLyS+VYXdC4LRAtKCNAju3pEjYqWBTjaaqzWsqlUqsoiM4SFK73Y4tBVmWqdvtqlwuazQaRafCer3W3t5edHoUi8VosYeAUU3nfKVSSaPRSMvlcsuKPp1OI9nOW8SZe47hJI1rgERyb/LVYLe6M/f5TAQq3MwXQgH3AmcJThSq61x/nrSORqO4RiD2rA1ECojwcrnUwcFBFIU8swDnBdeGc0FSPK+TVcbB/ZvP5/FciAh+T6rVqur1ukajURR3eA33wEUf3BPuDsDdwjW6mLFaraKbwEU55sbnmDwF4DkF7gJgbFw3ghaOlFKptCW08H4XExBCfL35eYGLfMyjC3O4jxArEf3yeQsuHPrn4lbEQ/0eTkhISEi4+UjfxQkJCY93PFoOBWVZ9vOSfv7BvDaEoG63G/+QR1CoVqvabDY6ODhQo9GIPfcQBarkVBIhak6eEBMg/l7VhDB0Oh3dfvvtunbtWqxi1ut1tdttXbhwQVeuXNnqF3cb/Hg8VqvVUr1e3woxhEDRSuEBgRA0CBv2a8galnccD41GQzs7OyoWizFngFYFCP9kMol2eKzed955p/r9vhqNhhqNRiT62NshWPTzO5kNIUQnQKvVipV4RAYINkT46J7HPAraLJbLZbTI8xpJsX0BMopoAQkulUoaDAZbORFUnZk76bj1Y7FYRKdAPozRWwIgkbRFzGazuN64Pq9WO8kvl8uazWbq9/vqdDqqVqvxmqfTqSTFdQWxHg6HqlarcT0yD275d6s+/7gujlkoFNRoNKJ4wdr11hhIsIsvToz5GdGL+aZ1ByeDi3KssWKxGMU27g9zw9zmWy1YZ5yP87sDBOGJOXehwwM8EV7ybSPuSvBQR87p1+ufXz573A+yGzzE8qRA0lsND+V7OCEhISHh0UH6Lk5ISHg841ETFB4qIMyE8zWbTUmKldFr166pVCrpjjvuUK1Wi1VkevTp/4eMUGmE4Lgd30kYFVkEC0h0p9NRvV7X5cuXtdls1O/3IwGBZBCsSIZBpVKJlX23dnulE9s5VWms+41GY0sEcXJGMOSlS5cikafCj5ODsWRZFqvZm81Gd955p6bT6RZ5YhyNRiOObTqdxnNBBhEMsN8zbwgu0nHWQK1W2+o55xohaYgZtCi4G0Q6FGdoraCyPxwOo9AxnU5jewbkGTGCFgYyDmgdAYgUOFpolSAE050SEF4IJgSaeZEO7fv7+/va2dmJc8b73LGBqCQpzkX+/m42m637ApHnHiEgQIqZVxdOGKNnH0CeGRfn4zpxi3i4J20+zDniHuPFOeO7nDBersNbWfhsglKpFDMjXASEvHs7jTsNmE+cBHmXiQeF+jFP2sHDwzu5z/mdTVxI8nMlJCQkJCQkJCQkJGzjTAgKkJlKpaLBYKDpdKrxeBz/yJ/NZrp27Zqq1apuv/12dTqdLVs6lnBPsffeZ6+8+vaJkGHs+J4AD/krl8va2dmJhAQrPWF4w+EwVmcJQKR9AiLmvf2Q4Xa7reVyqV6vF+3mAJs5YyRn4LbbbtPOzo7uvffe+Hiz2Yy7A0CoC4WCdnZ2JB1WaGl/KJVK8Twcm556hAJaSRBEVqtVzH7AaUBGgIsei8UiuiAgdVwHIo+HXkJOIe3Ae/sJ5aQlZDqdxnE72YYIu4DhQX/cT8QGqt/cYyrdWP4h1IzPWzEgp6PRKI6Be+vCFWsT8kpl3Fss3NbvbTjSocDCGvb2Hhw5CG0ezoiA4cGjTsJdLPBwRoQUhAXmmN0oEOwQEDzgk3F4mKiLRnkRS1Ik7X4u1gTz4YIQ488LBX4cP4eHLXrQpq8LRCLWBG0YCB4uuiQkJCQkJCQkJCQknIwzIShAIlqt1la/te9ksFgsdOedd+r8+fN66lOfqmazGQkIRLnZbGowGGxtaQf5cDLjRIbdJRAFxuOxqtWqLl26FCuXEHas2hC48Xis/f19DQaDKABQqcfGzxghuvTXt1ottdvt2BYB6USUgMhwTnaI2NvbU7VaVb/f3xI0mIN+v6/VaqVmsxnbBg4ODrZ6yhkTzoVmsxn77gmuPGnOCHgkZJI2A45dqVTUbrfj9UuKxH08Hsfr4NoI8fM2ELf941qAzCNuSNpqoWAnDIg9DhF3AkAUncR7Vd9t9u5Q8LwMwh9xl7D1Jg4IxAO31ruDQ1IMdqQthec96BHwGm9l8PYZ34kD4HJhvSDocH84p1f6XYiTtCVSLBYLHRwcxLwO5pNcCifoiB6A7TO9rYD7AvIZGaw7X0P8l/uGoOeBoqxPb2nyXT2k7cwJjicp5ingomH3i3xWREJCQkJCQkJCQkLCNs6EoECbw2233aZ6vR53bKAH24P87rzzTnU6HXW73dgmQTV7Z2dH/X5fw+EwHhuiRhUUkuHVSyrYWZZFgg7xg+iwbSX2/Xa7rb29vdg/D/n1/nXPKvCK52g0UrVajTs1TCaT2PpAij6ZAqvVKrY1TKdTtVotnTt3TsViUe9///s1nU5Vq9VUr9e3+sZXq5W63a729vZ09913R5JNJRrCxfXgzmB7S28ZyVd86/V67L33HRUgvuwM4ZV7hABvNeEfY4A8S4dkbzwen1hhR5zAYs85eB8CBGGdTo6ppvM+J+DMn1+zW/oh5hBN3CAuVHjYIuf0xxEqpOP8B3cmIGqQ18D2mD7H0vFOJeywQJtHfncExsG9h5Cz3n3uIdrcewSJ4XCoXq8XA0O5nnzOAcf0EEffapL778IJ72fevb0hT+a9bYOdYRAP8593jpcH1+lhjLTLSMcBmPkAyISEhISEhISEhISEG3EmBIX1eq3r16/rwoULsaLd7/clHZMCCMrVq1f1nve8R8961rN08eJFdTodLRYLXblyRY1GQ91uV8PhULPZ7IbkeYgXBN9t5uPxOLoFisWier2e1uu16vX6VlgbxywUCmq327GiP5vNNBwOlWWZ6vV6rCTzHtwKhUJB+/v7unLlirrdbgxVHI/HcZtHMhUgw4gTEGDEFNolqPJTaR2NRprP59rd3dW5c+fUaDS0v78fidZ4PN5qp9hsNnFbzk6nE3cSyLeN8LtXcyGIboff29tTs9mM1nhEDILwIOYuRmRZtuW0cGcAhN3JItfqrQnkOrAbBY4RdysgevBaXBO+owHEloq2Z274mvVMAdaq9//jCCAXAuKNq8EDOX0XAyz3krbEBJAXOjgOO5nQouKZCt56kt+6EWEGEQW4G8d3eOC9tNggGLhgx/vZpvGkbUFZQwgQnp+QFxq4D/n5xeGRbzXxNiPpeDtInvd7ihjCZxzRLN+GkpCQkJCQkJCQkJCwjTMhKGw2hzs57O/vq9PpRIt8nsBJUr/f13vf+161Wi0985nPjDsgQLBbrZaazWYkCFjD9/f31W63Y/WX0EFIMC6F9XqtXq+n8XisyWSiixcvxlYCrOnScYW4Wq1Gcuc9/BA8SBDvabfbGg6H0ZUgHRO+6XQa8wmwqHN8wv18VwRcDLQOQPpxM7DDhFvOIcmeqk/FlpYLyDvjcVHH0++ZC0gmuy8sl8vYcrFer7eyD7zlAfGEa4Jo+px5uwMEHXLKuX1XBRcOhsOhVquVdnZ2thwQLlAg9HjbCfPCa7DgIza424TXeRsH18nxCZv0tcM4OLY7MJzIMrdOhj2LA0LPGnIBgmwEyDfv9fuVzwZxh4dnFvix3LmDWARB9wwLHAW4CNwZwu+IUu6QIJcDgcl3eHBxhesql8tRRPL35QUS5tWdRD6HCDk+j95OkpCQkJCQkJCQkJCwjTMhKEiHif733ntvdCIgKEAeva+a/nqIwM7Oji5cuKDRaKTFYqHJZBK3JaQKOhwONZ1OVSwWtbOzs7XTwmw2i7scQOiuXr2qq1ev6lnPelYMbKO6CgliTPzzMDsPIsQWD0FrtVqxYj+bzdRsNmNlmRYKqqS+24V0nCdBiwfVXNwGZFHQMkA7RK1Wi20ktIlQMSbIT9JWmGK5XI7tD5BgwhEhbZKiKMD7cYe0Wi2tViv1er0tS7m0basH9yUsePCjB10Wi8UYMomgQstIoVDQZDKJ4YEQak/w92o3LS3kMVQqla1dIxgrr8FFgejg94jjLxYL1ev1OCZ2r2C8EGSuATLO2mE+mSvcFZBf5pxcDnJEENE8AwAyT3U+H0LIPHFOxppvv2G+uG/uHnDhYb1eb31eCb2ExHNPfS24W8XPxXF93Q6Hw3hPOb87iPxe+Bzy+fTx+2v9mk5yhyQkJCQkJCQkJCQkHONMCAqQUKrqbif3gMWdnZ2tYDXvV6/VaqrVarp48aIkaX9/X/v7+5F0QOCn06m63a4qlUokcNJxpZ4sgfl8rv39/bgjA/3ukNQQghqNhhqNRswHoGJKFdadCd5XjhOAYEMqvP5YrVZTtVrV7u6uVqtVrKAjtkB6mQ/IowdHcr2QKYhipVKJlm7meH9/P4oXXjX25H3CGAEWeyf+HnjpVntEEh6DuFNdpi0AkUjSVjXbcwqoSvNfRBLfUcG3jvS2BB8Ddnnmi3Xg4Yyem1CtVrcINGsIZ4TnKbBGIdK4RiRt5VnQlkGrCgSZceD2cJHChRfuF2s2v0OHV9s5tud85IMPWavu5qBVyNsoWHO4EvhMICKwrpkXz7nwzz3/9fwEd394uKe/jywN3BmMjc+AA9HAXRM4JKrVasy0YI0jXiE0JSQkJCQkJCQkJCScjDMhKEiK1Xqq2/zDRl+v17d6zl0IoErP8xcuXFCn09GVK1c0Go3U6XQkSb1eT9VqVd1uN7oEpOOqPCSY1gjI/cWLF3Xx4sW4pSVkiQR7CDAVVCdnTrLIQBiNRmo0GqrValHogJBJilsLFotFtVot7ezsaDqdxushbwDRAXs9wolXtCHo7XZb6/U6hi6ySwZEjZaKUqkURYNisbi1DSZzjGgBefUWBFoxptNpFC4gZTghvJ+91WptVd953Xw+17lz5yRpa9tFz0OAGLuYsNls4lohFJCMCe6TtxNIx4GMVM0JyPTnfScAd3F4ewPAUeOPcT4PQRwMBpG4djqdeH98NwXuYaPRiNV5b59gXIxzNpup0WhEcu55Bu5YQCjg3hCyeV9tFwgKXK90LM54u0O9Xo+Ohs1mE0UYPjN5QYK2IBwGuDYYJ58Zn3tEJs7prhvgbgOEId+FAsHCW2g4N2ucfJGEhISEhISEhISEhJNReOCXPPrIskzT6VT33nuver1eFAhoVyBTYTweR8JK9ZLQPyqOtVottkBAbAeDQaymL5dLzefzaDWHUHNcqrGc4+DgQKvVSp1OR+fPn1ej0VAIQfP5XP1+P5JBqsjScYCk9/8XCgU1m01Vq9UY/liv17W7uxst704SERkg5N1uV7u7u6pUKlosFhqNRrF9QlJs7+BYbun3EDtJWyGBjUZjq90Bkg4BrFQq0UYvKW5riZiBQIDYwI4U8/lck8kkuj44B6TXcyecfLvFnKoyz0OKEU+8tYS1gBjhoX4e7ufBjOVyeWurUubAibzvEsL1M456va69vT21Wq2t1g13zHh7DudBhIFsO7mHnPuWozhWyKXwHAiuy9sInPC7M8V3eeAeu+MEUo0DgvmAiNO+IWlr3r09hXmE5LPGCBn1+8BYEG+YQ89pQBDwe4JwlHdXeHsF8M8AAqG3qXAcD2nl+4c2p4SEhISEhISEhISEk3FmHApUBCeTSSTn3vvM8/TrU+knBBBRgaro7u6uut2uBoOBrl+/HgkZYoCTEk+Wh2yRH3D16lVdvnxZu7u72tnZ0cHBQRQ3ECcg8pAViA+Et9lsRqJNpfnatWsqlUrqdDpb/dy+swDCQbvdVr1e1/nz51WtVreCGyGNEB9cCk7EEFsQT8hAQAyg0s773d0gHZLoxWKhXq8XhZlWqxUzKKgYcwzmAjdFpVJRt9uVdOwOwNnBWLkXebs6As5oNNoKUiyXy5EgQgJpnXFy6jkNTkLn87kajUa0vLNbhwsanA8HBJkNkHR+d4LMtXBegi0lRTHAr3+1OtxSs1qtxnWEW4TjUV1HXGIXD8QOXs9ank6nW+0oXIvb+AmidHLt4ZYQd4Q3F1F4HTkJnIc8EubG8w1qtVqcf5wo+Z0scAwgvngmgre1ANYwa5b7wL3g3O62oAWF7xEXZzznhHyU5FBISEhISEhISEhIuG+cGUGBwD/6wPPBeW4tr1arGo/HunLlis6dOxcriRBb2h4uXbqka9euabFYxN0PIBAQMsiPh7V5D3mv19O1a9fiThJ7e3saDocaDodbgoKn6DN+yDa/l0oltVot1et1Xb16VXfddddW6J8H55H8PxgM1Gq1VCwWY3jjaDRSv9/XdDq9wZYvHVdsOTe/Q0CZY9+2T1IM5vMdG8hcQGiBkDEmSP1sNtNkMtF8Po+VbO5nuVxWp9OJQYmEGuIYoY3Ew/HcldBoNKJQwhqo1WoKIcTj+Ty7qMBxmGPEA64NUQGRSTpuD/CdBXxngGKxGM+LSOQCTD7fgHFDpt1dgI0f4YmsBdo0IN24RVqtlobDYTwez/G6k0IEIeaQfReRIO98Bvgssp74HCJ2FAqF2D5DkCnho4gNuGu8DYH7yPwgSPh6dVcJ99PXsOdveKsD65g1jEjCf905xPGq1Wq8bx7K6vcl7fKQkJCQkJCQkJCQcP84M4ICJAEy4k4Er6BDbgqFgnq9XtwOEjJAq0Gz2dSTnvQkXbt2bYtQ+5Z4wIkPlWIe6/f7unLlii5evKhWq6Vut6udnR0Nh0MNBoPojsCy7oGEkLHJZLIVGkef+XQ61XA41O7ubiSWkmIAILZ0XApU0+nBn0wm8TWIJFSBnUhB7CGSkFx2faAa69cBsSOEknFBPgkSdAILEZ3P55Hwe7uHW9c5J8GGED3GDYmnCo0zw4EggTvDLfVcCxZ9evAhiuRh+K4HjIu1wjVBjn39sTYJlqxUKnHtOhEmlNK3TXQi79kB5F3gCOF8tNDgKGEuWC/uQnFHRh6MmWOwPv2z4C0PiDzuQiiXy+p2u1vtRt5CgrPnJLcJrSCbzeEOJJ5dwXzn2x4QOsjRoNWGc9br9fga1o9nZbhgwpjyQiCujvzWn/4ZSkhISEhISEhISEi4EWdCUPA/9NlOj6q097ITNkfI4GQy0Z133qnd3d0t2/xisYjhi7fddlusnvt5yDCQjndnYCwQSFotxuOx+v2+ms2mms2m9vb2tL+/r36/HwUMSdFVQEUVaznV7vF4HAlft9vd2nYQ23e+Ks5ryDIYDodb9n7GLB0LI2QIQOrJFsAVABF3cp/PCmDryeFwqF6vFyvBnA+XQL6tQtJW/oJXxBuNRiTHEPV2ux2JLnOOG4G58G05aX1hS1HINa6Her2uyWQS1xahgxyX65eOsyRwXzB/TswRoTxbwbelJMQTGz0ZFxBRDxLld64dQYb7zE4Ynh2B+IXrgrnwHBEXJjivnw9Bg8dp33BXg7cX+GOMi7VDZgcCFk4djs314tbguFwv84MQhjCSF6cA14WLA5eCb+uJ4OjbQfr3Ci4kPlfScc6JO5KYe3f1JCQkJCQkJCQkJCTcNx52KGMI4ckhhF8LIbwthPDWEMI/Pnr8X4UQ7gohvOno36c/0LEgrpPJJFbtPewQu7UTM8SFa9eu6a677tJwOIyEEjs1boJutxsJMccYjUZbVUkIJxVTr5ZDfCBFjUYjZgJMp1ONRqNIgCG5VEW73a4uXryovb29ODYs+BB+iC7BdYgCbPkIgSKLAYJJBdlDETk/FW8XSxBjWq2W2u12DPnj+sk+wEJPmCK98RBHxAiqwbgcIGIuGkBKaUXxgD4yJ1qtlnZ3d9VoNGJLCDsF+D0ql8uxLUDS1rah/LfRaKjT6UQnQqFQUKvVinNNhkC3243k3neOYA2USqUoIOEMQFBghw9JMXDRxQrmG5EFAYDWEars+bBJHDaeyeA7VngeA/cZkcHvfb7VwFtavIWCa0dM8RBErh9xgPVGiGO9Xle9Xo9uDdpe+AxwjYzHxSrmiXG5YygfhikpfnY5D2vBxRmem06nsX3F26COvpvi54T7420uPg+SbhlR4WZ+FyckJCQkPHSk7+GEhIQnMh6JQ2El6Z9lWfaHIYS2pD8IIfzy0XPfk2XZdz7YA7HLg3T4h/3BwUFsW3Dy6GQIAgYxkqRms6l2u63BYBBJ0e233y5J0U0Awcbu77Zoz0Jw5wC99/P5PJI4ghIPDg4i6acSSvsABHdnZycKDpy30WjEzAEIablcjjtAePUWIkooX7/f1/Xr17fIMPNCKKVXWZvN5lbbA7sSlEqlKKyQqUA/OUIBogJzRKWYrTyxjHv7glfnCf9jpwK/nwgVjUYjOhU8YZ++dtwL3s9Oewf3jVYBSLXDWzog+b4tJESS6jlzTSsN7hIP94Mwsy5Yqzg2XGDysEZILVkW7LyAKOOtDrS+EO4IYec5D4zkOnwbSObSWwq4VvIvvJ0l326CwwYXAttp+s4otB/wOfaxScdhighNvr0rwhnzwmfa8yc4LmNCJOA4jAvByNs0EAVxJ3g7BWIO8NwMd3rcIrhp38UJCQkJCQ8L6Xs4ISHhCYuHLShkWXaPpHuOfh6GEN4m6faHe7zVaqXxeKxisRhbFAiAg/xAPjxUkd8hn5Aqb5PY2dlRvV5Xr9fbCrIbDAaxgg4ZwhEhHVeYIRqe+F6pVNTpdPT+979fBwcHsXru2xxCBnFTQCAhQ4x/Npup1WqpWq2q3W5rOp1qMpmo3+/H0EnGUCqVtLu7q16vp8FgEMkhZNlFk8VioclkEt0dODeoHDM+rPXSsUWeMEh2x2DcYDQaqVQqaWdnR81mkzURW04ghmwhyT3FoQARp20g3y7gO0DMZrN4H3AA+A4JiBg8B0Gl+ux2e1wwiAaTyWTrniDIcN2e3eE7idBuQv89Y3IrPud114ykrXnEgcG18VnA5YDYgOPEt4TEOYHgBdF24QUhzgmyt/Mw37yPdeYiB9dDXgjvcTEHIs7YfHcFb1vw3UhwHXAcFxnIo3AxBPcE94Rz0F7D+sEdwz31z7OkG+aD8fp4biVB4WZ/FyckJCQkPDSk7+GEhIQnMh52y4MjhPA0SR8h6XePHvrqEMIfhRB+KISw+yDeH4nBcDjUwcGBrl+/rul0qlarpU6ns0Wa86n+kGKe915zgvnYfpAdDrxqCiBMlUolOhB8pwDGKmkrrE7S1u4Dbm+HyHY6nTgGSDTEst/vx20R2WKRtH/CA6vVqvr9vvb391WtVnXp0iXdfvvt6na7kXBCpiBjzMlkMom7EUjHhBIS3mq1tjIkuB7cFLSetNvt6G7ApUCFnRwBXBQ+nwgXkNFqtRrbLRAVuCcQVwinBxlyTRB+KuT1ej22Snj1HHeFE3nEE88RyIf+IQ5g+6c9BKs+xNe3GyT7g2sjxNBzBTg2bgh+ZqcLSfE+4WxwRwQWf+l4N4NwFLDIP98lhDXuFX7APHqAIffA2xO8hYcWAdwz4/F4K8uC6/FsBuYJkYI15tu2+u4trB/PEvHvCQ/+RDBiRxKEGMbPddMy5Y87fH3QKnOr5ig80u/ihISEhIRHhvQ9nJCQ8ETDIxYUQggtST8t6Z9kWTaQ9ApJz5T0PB2qtd91H+97aQjh90MIv+95Bev1Wv1+X3fffbf29/dVq9V06dIltdvtG9LoqVZ6WruTHNwGVIn53YUIt7tzfkgv5Fk67u2GHEIW2+22dnZ2IjGDGDmxkrT1PsgnBBNL/XA4jIGUtADs7++r1+tpNBpFZ8ZisVC73daFCxe0t7envb09dTodZVmmwWAQt8qEHGG/d6LH+IvFolqtlvb29uKOBZ5XgejA9op5EkrmAjs5NJtNdbvdKAJBCtlmUlIUTmhNoHpPGwTjZatP30oQwUFSvG+4HhBxPLgQUk67ANdNO4DfSwil2/pxufAaBBjILfOJMOLrERcA957sCESqWq2m3d3d2CqBEOQiGc4Wr7gz7/m8CwQw5kbSDTtMuNMGZ4KLa95Cg7uAdbFarTSZTGKegpN2jo8o5AICjgGeZw34jhguaCDEufBFS47ng/hODBwPAY9r4jXkj7hbwXMW/NyM71YTFW7Gd/FS88dquAkJCQmPO6Tv4YSEhCciHtEuDyGEsg6/OH80y7KfkaQsy67Y8/9Z0s+d9N4sy14p6ZWSVC6Xs6PXR1LZ6/V0991364477ojVZ0L6qLRDvqgwUi2GeEAs2VWh3W7HfnCIMtvYQVTdQl+pVDQejzUajVSv16PNHXIIQad/G4HDRQp3MHhlGqIDQYQkQtovXryoYrGoa9eu6b3vfa8uXbqk5z//+bG6WywW1Ww2t0gnQYeTySS6EkI43CIR8YPr5H1U5iHvkHnpuOWj0WhENwHkFUKJC4FjuN1e0paY0Wq1YhYAggvHYaw4GQj/Wy6XkdAzJggxpLXVasWKPLkQ3CucF54dABl1uz4tBKxDr6azVmazWSTh1Wo1CgAQYCe+bJPJ+TqdzpYgwtphNxKu13fA8JYYxscYEaVo02AMrCPmydt0pOPtMFnznMddG6VSKX4Osf+XSiXNZjPN5/Mo3PjuHlwP50P04TGyMjgeZJ0Wi+VyqdFoFHeRYC25E4Tx+44QrCPEGxdkOBfXhSjGdXgGC8fIOzluldaHm/Vd3Al7t46CkpCQkHCGkL6HExISnqh42IJCOPxL+wclvS3Lsu+2xy8f9ZJJ0oslveXBHtOrmpPJRPfee6/6/b729vZiiCFVWYgIFXDIoXRMmnAp9Pv92PbQarUiqfOKJrkFXiGvVquaTCYajUaSDsMNz58/Hy32viUfLgivcnrq/mw202g0isn9EB96ynFPIBbQdjGZTDQcDnXlypXoooDE1+v12HPOzhP1el3D4TASU1wKHuBIPgWkEKs4xB0nhrsPEBRwf+BgoO2Be+ctCvmWEoQKD+9rtVpxDiHMkGJvL4E4+i4YEHPcJ6wJnANOML09xQMaPUSwWq3G+fDKNVV6xCdJccvM1WoVbfrMHSTdsxNoTfAtHBkLwYYEYrK7B9V8r5J7lgRzzTzRIoL939+L0MUxvB3Cwxy5XncCIKBBwBE4PHfDcwfy26EibMxmsyhG4E7hvkuHjghyQfx6cboQckmbiN9brpHrdGeDC2fe+uCtQbzmVsSj8V2ccOsilCsqPDW1bt+KCMuVVu+587SHkfAwkL6HExISnsh4JA6Fvyzp70n64xDCm44e+yZJnx9CeJ6kTNK7Jb3sgQ5ERVE63jt+sVhoNBppOBzqtttuU6fT0WAwiNZyt7N7UBx2ekLWJMXtI0ejUWwZuOeee7Rer2N+AOTI7dy4FNgakqyDZrMZRQ4yEWq1miaTSSR1+a0gvSqKNZ3xUPXvdrsxu4Awyfl8rsFgoF6vJ0mxyk9VFdJE+CP9+7gWIMxUk2u1Wmyf8K0Kqaz7DgilUknj8TjO6Waz0WAw0HK51Llz57bcAOQteEWce+nhiOwcIB2S8na7HccDaceh4IIEpFM6tvMjxpB1UCwW424SXK/nAnBtnMOFB2/lgISyu4QHFZ6USQABJ/QRBwbix3q91ng8VrvdvsFSz9wyZrYn9aBIXDZkUfj2hl5NZ4zeLpGvsEO23U2CMMP7GCPH9MBHD0ZEKPF8C281wBnA+xCeELkYv7t4+Bx7mKS7kDwnAtHFrxEhzfMcODfiA3OKaMR1uvjCY7cIbtp3ccItjBC0+csfrv4z6/q9b3vFaY8m4WHgv49b+k9f/Dnx98p7rml15/tOcUQJDwHpezghIeEJi0eyy8NvSzrJD/zzD/VYVOTd3jyfz9Xv92MooaQYMui7JUiKdunpdKp6vb5FjLHy4yrodrsaDofKsky9Xk/NZlOdTicSQsjfaDSKY5IOhYaDgwPt7+/HgEV2ZqDaCSmEQEFgaBHAXUC/O8eleg3B85T6er2u0Wik8XisXq+nnZ2dLWcEhJWQyFarpWazudXjL2krkM4t/8zpcrncypegjcBdExBaQvRwe8xmM+3v76vZbEbChwVd0lalXzreTpLeduYBIgjh574zL4gciEXMM4IKQhLVaEi1dEzgWUdHa3jrOcQXjotTwcmmO1LcjQG5RTxyGz2E1ttcILP8Q3jC1UBLA69nfeRdC+4M4HHPScDJgFDF5w0RRDrOsPB7g1CFS8FzETi+t1S4K8XHwjEJX/SgRRci3OHhO2TkWxp8JwsXrxiXj5u5cTcQjgiuh7Xpc+fvuxVEhZv5XZxwa2L8OR+tVTXo9f/u+097KAmPAJ/dHOmzf/JV8fdn/8YX6cLP3hF/77zmTdocfY8nnC2k7+GEhIQnMh5RhsLNAj3qVC8huMPhUPv7++r3+1skGMszNn6ICS0LrVYrkkzyEzqdjnq9XrT2U6mnjQLbfLVa1WKxUL/fjxV1bxvo9/u6fv16HHO321Wv14stE4QpSseVbtwKCBbeXsAOB7Qz8D5EE8gkAgjOAknR9UBVXFIMk+QxRAPEDMgqx6ElI1+tJazRcwUkbbkSPLRyNpvFyq/vcuHhe1SauW8efuitChDG6XS6RegQGziOtzD43OX7+iGl7lg4qV/eLfO8lzlDIHCxQTpuQQC0MDDHvH42m2k8Hsc1xnrmvhH4SGsGWyCyjr2lh4wD5tUdCz427i/zRsaC5zf4+JxQ4zTwdePP+5pgvvmZeaFVIe8i8J0qcECQb+Bhk1wD158PYszfcwQPF848q4HPMN8v/h3i64XffawJCWcV1172Iv3Wv/z3ahQqD/zihFsKb//4V0sff/z7Bz/nq1QeSGEjXfqPv3N6A0tISEhISDCcKUHBq6Sz2UyTyWSLwK/X65jWnmVZDB6kAktGwc7OzhZRwKGA3RlHBASLoDkC8gikkxSf472r1UrT6VT9fl/lclnnzp3TbDbT3XffHa3/2O8lxco0eQ7e+47Fn550xBTG5C6HzWYTW0AgTp4DAAnDpeBbOjJfHJfKO64KSBgtBLw2hBCzHXCN4AIYj8ex0ss/SKBvkchYubd58QNC7ttK8hgkUlKcHyr5EF5yIiCm3APe45V8DxGk9cK3YvTKvrszvEUE8YJ7BimXjq3yCBYe0sn9QjSDPDN3jNfnAwGNOef4OFq4l95ukN8BAfGKtYTzgXFVKpUYiElbgJN2xkMbEpV/FzHyDglvn+A4HMNdIfxjrSOmTKfTODe+DaznIfi5T3ITuDOF7xTWI/fBHT7cN86F0ML3QELCWcUPfuP3qlGonvYwEh4D/MlXvlyStMzWeu7tX61yP+iOb0vCQkJCQkLC6eJMCAqQfrILqPhCgGgLgEiwGwE7NjQaDa1Wqxie2O/3t47l+9tDRLGXu+XfnRK4IMhH6HQ6cbxOHOv1us6dOxfFD4j2zs6OJEWSDFlihwoIcrPZjITVrdeMCaI4n881nU7V6/XUbrdvyAQYDAaaTCZxjthdYLVaxeR8D6HzaizPIdDw3tFoFNs7mE/mYjabqdfrRWGHHSq4LgQiqsOIHwgKXCshebgwPCyzVqtFwcADBRFmJGk8Hm/Z4rkur8TzPneMIPp4hd7t+2RSEKY5nU6jWFOr1bbCQX3bUm9tyJNzLPtkcyAmIYyQweFBmIgRtAOwdj1TgjXCHHL9fj2sFW9DQVzhHni+g7cTuAPE2yM8ODIfiOnODV5zUnsBx2Iu/ZguOriwgSDGWuPeMz/810MZfccXRDsX0LgvzDntIB4QmZCQkHAWUA5Fvf0LX6F3Lkf65Of8YzXeVtXt35GEhYSEhISE08GZEBS84gmZd4syIYy8FhKEjdtfi4OA4EJEhGazGUkkxAaLOURWOraB+84P2LabzWZ8HePBebC3t6flcqnxeKzr16/HKj2VaggUdndJkXhTffadGKjQ1uv1SAQPDg7U6/W2qrXkGozHYx0cHMQ2CObEHQpuoed6IMc8D5H33AAPeoSoQbRxNjjRZP4gsdPpNIYzQua4Xt8KkfvL/EB0veUEsr2zs6NisagrV67EsbI14Gw203A4jC0HCBLcCwg+j/t2jtwrBAmcFtJ2FgT3jfki5A/XAMf3Xn6Owb1xd4Cf/6TPBoTdt3JkHMw9Thjf0tLvGYQZp4a7eFgTjNGt/lT3Oe54PJZ07EbwnU2YX46JM8IDG4G7Fdj2NA8XFFhbnrXg7RYICN72gkDDGue+uQvBnRSMl2v2tZmQcBbxFf/yH+t/f/t/SC0PT0A8s9zSuz7lB/WbHyd90199iaY/e0nnf+B1pz2shISEhIQnGM6EoCBtp6xLx0QKsg+phGA4GYP0QSwWi0WshDcajS0bs+9hT9AdBEs6JsOQRCfCg8Eg7r4AUXVy3ul0YqYBqf4+Znc+cE4nSFRp2+12JKZO0IbDoQaDQRQZlsulqtWqOp2OFouF9vf31ev1YtXbnRlkDmD3RoxAPKCdgueZM3IimF+IYr/fj84EyKyD+9JsNmPQIDtsTKfT6AjxpH4q/H6/HJ7/gNODbTURX9iSs1gsxl1BfLtASTHAEjfGeDyOc8S1MF7uM6LPer1WvV7Xzs5OFJfc1cF/JW31+iMIsBZ81wIyLMiM8Co9c+5ZE3mRQDrOI0DggECTbUFl3oMp86GKCFXMNW0efG689YeWGgi4pOjq8OBF7is/+7gREJgLzler1eIWpS58eP4F7TAuwHiLBq/le4MwVz47tDz5trP+WWVOkqCQcNbR/ZHXa/5tKzWU1uoTFR9Xk377w35Gr31WTa/9sufpT775Q1X9+Tec9rASEhISEp4gOBOCgpNRqrT8oe/VZ69g0m4A2aBSz3vn83mspiJAEMbIa303ACrfiBKQUnZjWCwWOjg4UKlU0oULFyRJ58+fj5V9XttsNqOgMR6P464Lbu/2bSqxXUOWcVKwW8B0Ot0KFRyPx+r3+5EgI3ywcwSkENKNoBLC4daUvhMBrpCdnR0tFgsNBoO4w0Wn04lCDVZ/rOS0dIzH42j9Z169zaBYLKrdbkehBdI8GAxuCBJ0uzn2dA+q5J7RmhFCULvd1s7OTpxrBIydnZ1Y9Z5Op5rP5zF7o1AoxDltNpsqlUqq1+vxOSeyw+EwZiwwXsbI9SLM4DJAhAJcl7cTcHxvj+BYnufgghUiQ71e33JUuKsA9wJCEISbjAJ3BHB/OJd03P7i4hrX4C0RCHmSYsaAuyj8mMyLf8a9ZQLC7ufCZUKbjQuN3qaBk4exe5Ajx0Q0G4/HcT2wO0u1Wt3KhMi3Y3APEhLOMp73RqlTqJ32MBLOAP56Y6a/3ni9fvU/vkF3ffeufuIzPlbrd/zFaQ8rISEhIeFxjjMhKEjHRMvt2LgCIHS0L7iVnUo+1VEXCDxFnkp7u92OZATy5lXefPI/4XlUzw8ODnT16lVNJhPdfvvtmk6ncbcCyAskCbdCp9NRq9WKZAhrPGQcgikdV889FA5i6CQKdwPuCSq7kFe2vdzZ2YlihAdS4i7gGnd3dzUcDqNToVQqaXd3N1Zyq9Wq9vb2FELQwcFBJNSDwWBrKz8q31T3qebX6/VI1mezmQaDgSTFlgOO4ZZ05hKHiodH9vt9tdvtrWBL5gIXCesJ+z/H5J4ixEiK1nh2CuG/Hsrn68IzArwKz3xyLz0bw10OTloh68xRlmWRtOdFF28fAMyhuzvY3SG/I4WkLSLuYoULXU7w3WGAy4XjesuD30sXz7yNJQ+f09VqFcfdarWikwWhz4MkydDwHTjchcG98bYU7iuv9c82Doh8y0lCwlnH5+/8roohhTImHOMT62upfk1/6Vd+TMusoIUK+pdP/6jTHlZCQkJCwuMUZ0JQyPd2Q4Cp/lP5rdfrW8F92NshWzgQIO04BCA9VNoRHqTjaiTExLe4810nqCBPp1Ndv35d99xzj572tKep2+2q1Wrp6tWrW73nVJcRIiRFB0GhUIhVdcQFCCEEDEJJ6KHby32eyEzwijbkiGuiv3+z2cTt+TztHqHi4OBAIYQtIk0yPvNLK0C9Xo8tFb5VoOcSsPWlpCh2LBYLtdvtWIFmrN7jXiqVokuDcYYQNJlMYjbGcDiM78XiT5AkhLPZbGo6nUZCvFqtYh7EcDiM6wJ3B+cYj8eqVqsaj8c37KLAtbmbhfnxtgHWMKKW2+i9RcTFBtofJpNJFIYg9txjHvPdIYrFYgz23Gw20XnBcbkHvusFQg3XlncteBuDuys4Do97C0O+zcF32/Br9fUCfM3iHuFY+SBI/97guNwTXEp8BgFrD6Gr0WjE/BM+f4wjH+aZkJCQcCviuZV6/Pkn3/fwshV+sPdc/dKHdo8fMMdYQkLCKcL+VnnYSJ/nhJuEMyEoSNpKtJeOty4kxK9YLEbbPY97D7b3lRN8iL2+Wq1GYtloNGJlmwwCiJGH4hUKhZhFwHGp+I7HY917771xB4VWqxVdCt7/DrlmJ4KdnZ2tnuzpdKrxeBzP48n7EEy268PNsFwuYyWbEEV6vdktA9LKeyqVytbPtVptyzFAvgIknrkjNBGRgfvUaDTU7XbVaDTU7/cj2XZiye95C3yr1dK5c+c0n8+jgOEiCcIRpBj3CdVrXs+OEdIhsWw2mzdkJNDyAdFkveQFFa6L49frdY1Goy2hA0GG1zIuSVu7OyA4MAe+Lmnd8V0MeByBzJ0YuBYQe1wYINNA0g0iGMGR0nF4aJ74I0Z46CFOnmazGcUUJ9S+EwLiFePx0ETfTnSxWNwQuuk7LbB+mVvaNrg+jsP4OZ/nJSC24KbhuhgP94x54HPOOWh1YTz+Wc5ngyQkJCTciugW6g/8ohPwNXvv0tfcdfz7B/zwV+pZ//rNkqTNdJoISULCY4jCkatWz3iKfuF//cQjPt6H/7uv0pN+4E03PL45+vs6IeHB4kwICr6zAzZ+SBY7NlCdhWCwRaQjTwDon+eYkBWqk5ASzxmQjgkprQOe2s9rrl+/roODg5hL4CLAbDaLIgdEbTQaqd1ua29vL5JMchPYLYExQa5poSiXy7r33nujBZy5IauBseJG8O3xSOQfDodb2QNsvemWb9wWg8FgS8hBUHByDPFnu0+s6pDBVqu1VdF3cYYdAxBtpONKOltT7uzsbIX/hRC2HAO+u4QHGeb735vNZiSavqOD71rB9btzhfGwZgishKB6hoGHOQLI7nK5jEGS7pTJjwenRa1WUwhBi8ViK38BocfzBJzE7+3taTQaReHIRRRINNfmOQ15uz9r350pnMsFIkQCd4D4GqTyj6jggiHnzbdi4NLx7AJEPAQtxCvEG+55viXEx4xggdjGtXI/fEcKF8c8oDEhISEhQfrzL3yF9IWHP3/8y16q1pvu1urO953uoBISHsco3XZJOvqb6Kde9zNHO/rcnG1i3/x1L5e+bvuxyWahz33RS+Lv2XSq9bXrN+V8CY9fnBlBgao0wWmQjfV6rdFoFEk3r4dgOOkqlUqxPQBb+MHBQazYYp0ul8vRdu+EKe+SIB3e39NoNOIY3/Oe96jb7caqLESKNgRyAXA1DAaDrddDTiHNkB13ObALw2Qy0WQy0f7+vhqNRiR9kiLZh7TiQmAusHqPx2OVy2WdO3duK4+CQMN2u60nPelJms1m8d9wOFSz2dwKq5QUr7Xb7cbKtgs1XsWG4E8mkygIsJMFTg9P5EdcgQxDYhGdfK4QRJhP30GBbRVxreDUoDpNcOFsNotjZbcHJ+OS1Gg0NJlMInlF5GCXkJPAvXDXAA4Uro/H3Anj7S6cz1sMOBZkGzGLXAGehxj7toi+3vPtGIwDEcZJP06CfDsArROA6+V+kpXBmNxlkm+h4F5IioITQHhxlwXjZU2wRnz7VReImHPPD/F15XOEmOAZGgkJCQkJx/iNH3ilJOmTP/+LVfiNN57yaBISHj8o3f4krS/vSZI++dW/rX+y++6jZx793XwahYpe+7s/F3//u+/+BF37Rx8Sfy+8406te/1HfRwJtxbOhKDgyfQQEiqIuBF6vV4kxB7aWCqV4o4Em80mkgUIzGKx0PXr12NQHgQBQgvJ9T54SVsEDxIIQYSE33PPPXrGM54Rt5/0bRZxFOCQWK/XcXcGxACS5mkx8FA5t5HX63W1220NBgNdv35d3W5XOzs7kfBSAWfc1Wo1VtuLxWLMK0Ag6PV66na70TmwWCxi/kSr1dKTnvQk9fv9WJknnBHyCYnrdDqaTqdxe85ut7u10wTijFePPZOAc06n0zi3VKapQCOoUOVGIJCOiSj3m/vkBJ61RXZEuVzWeDyOa6dYLEbxB/s7ZNLdAJ6jgaDgLQisY6/A48ZAzOI6cB/QEsM4vZXHWye4ry52AXcpIChAllnD7r7hOJKiwOJgDAgSOIJccDtJDPBWHXfa4FBwd4u3QDA+zodowhpxVwVClX9GET58twt3KPB+7iH3gy1Faevhu8dbdRDVEhISEhLuG7/84/9FH/dVL1Vhnqn6C2m7yoSEh4vS5ds0+sin6OoXTfQnH/Mjpz0cSdKPPO3Xpdcc//7sV3+lLv/OdoB17X/+3mM7qIQzhzMhKEAMWq1WDMvzKj1bBU6n0ygS9Ho9SVK3241bLTYaDU2nU/V6vVglxa7vVmm3aHtoHfvTQ0olbRE7QvcqlUrcvnEymaher8eKP6SI3u7JZKJms6lisajpdKpr167FbSTJhKhUKhoOhzFPgR0JnAgiEEynU125ckWFQiHu4ABhlxTnDfKbD6ybz+fa39+PVXvcE+v1OgozFy5ciDtBjEYjDQaDuDuCtJ1ZUa1WY4YELRoe/se8UXGmDQNBYr1e6/r16/EeIRhNJpN4LAhenqxCTt094TkYEGbcE81mc2u7TuaK97D9p6ToZvGdBWg74PWsJXcCcEwXNXxXEc8vkI7zHCRF4eG+7PyIVnwmXOhCPGCs7jqA6Dup5zHP/SBEcz6fb21/SXsJoZE8xhxA9BE8+AwwLrZs9LwKb59g7fI44hetM6w7d1rwWfbdTRgn3x8ugLC2OBfbyvJZZ85Zp3xukqCQkJCQ8MD4zZe/UvesRnrJN36tOj/2+tMeTkLCLYNQreraFz5fknT9+Wv9xWe98pRHdP94+xe9Qvqi49/X2UYffds/2HpN5y8WKv/KHzzGI0s4TZwJQQHyQ08+RBdyslwu1e/3YwDgfD7XaDSKVW63MzebTQ2Hw0jaKpVKJEpubfaKL+TPiRAV7Gq1ukWGvA98MBjo3nvvjSGPHsKHk4FtJV1gmEwm8TGuGScB1XMs4xA3Mg7okx+Px9rd3Y22fcbnGQpcGySVuUJEgBzTorHZbLSzsxMFELbl7Pf76na78b6QCUFwIS0RkGBIPv9oH3DCjGiyu7ur1Wqlfr+/tRvDZDJRu92OBBoS2Wg0ouDAvDQajUhcqYhLim6Per0eBSvuIU4W2i2YJ0g0c+pBn55tgKjgIYueteGiAm0MzB1tF9JxyKW35eDG8Oo6a85zAXzLRM9y4PXScU6CV/B9a0Te6+0Z+XYLh4tyOBAQTRB7eB2uCUQH5trPzWeU4+FQmE6nWiwWmk6n8f75HLuDx79H8tkMfj53NyAO+Tg848IDTBMSEhISHhiXSy39wLd+r/5+95/qwitu3FXi3q/6GM0u3Pf7d/90o/Z/S2JEwhMH7/3mj9G6nuntX/iK0x7Kw0YxFPT737I9/m+68mH62f/+V7Yee/r3v0PrK/c+lkNLeAzxiASFEMK7JQ0lrSWtsiz7yBDCnqT/Julpkt4t6W9lWXbwII4VySdkXDpOaceVABlkaz1IJVtC7u3txTYGJ05ucYdUS8dEzW3qvoUkpIKeearjtArcfffdunz5cqySsuUi1VAq3xDAfr+v8XisTqcTMxna7bZ6vV4ch+8YQNWVkEav0kLK3aYPEUVkcUs7lXrpOAAPEWU+n2s4HMaUf1oNqNBCuMmPGI1GmkwmW6F2EDKcBS4y8BrmezqdSlK8frfG07vuQYLcK89RYI34Dg+0FJB7QfYF42K+fB0xRt7H3DCHvJf7T4Aijgau3V0tiDGM00WvSqUSnSh5NwcCEjsO4G7gvH6PWSce7Mj5cTc4aYZs54MdqeZ7W4Q7EBhn/vPinxPGhbDhgqC3wCBeeFgi5/V8DhwE/M7ny6/PP98IN75rhN8v/45xoSO/BWi+XQJ3xFnHzfwuTkhISHi4+LBKTd/7da/QP6x9lW77nt/R6G+9UHf//w6/23/kU75Pf7l231vxfu/B0/Tv/+qn6Kn/M1P1tbde60T6Hk54sHjnd75Q69ZGf/GZLz/toTwq+NZLf6RvfdkfbT327A/6Qi17T9t6rHK9qKf9i4e3pW3C2cLNcCj81SzLrtnv3yjpV7Ms+/YQwjce/f4N93eAzWajarUayW/ePk6lnm0gx+NxrFx6z3OtVtO5c+ci2e33D0NDyDxYr9ex+u4E0AkPpNm3qgwhRAHDiRl2/cFgoPPnz8f3u8NA0pZLIMuyuENFoVCIIgitGhAlt9VT1YbgEMBHiJ1bvGu1WtyZgGvDvo4jAqEAMkUVdrlcajqdRhJLboJ0vI3nZDKJO0ZATqlMYxlnjn23Ae4DbRIIJezqQAI/848Qw9jz5DsfuIf7AiLq4gAiD/kECESz2SyKRlw/c+9tMOVyOdr9WQNuu2fNIn65W4TjIRD51pAeCponvZBd8iE8DBKxinXLuvK2EM8/YO5xZOQr95zX7zefRV7rbSV5QYK14WPjXNyrfKsFjgV+5tgck/V90k4L3sownU7j58vXBU4GH6t/r3gop2dmeKuIix23CB7xd3FCQkLCI8XH1aR/9w/+s77u4z9Hf/dZv6yv23vn0TP3LSZI0j/Zfbf+yWe+Ut/00R+m188/6la1TKfv4YT7xdtf8QK94TO+S+eLzdMeymOKt3/cD9/w2F8sR/rs5375o3K+2bysp/3tP3rgFybcFDwaLQ+fJekTjn5+taRf1wN8ea5WKw0Gg7jVoBNID+fzqvJisYiVZ4AtvdlsajKZaDweR+LCtn8QGg93hKiXy2UdHByo1+vFiuvu7m4kgF4h5eflchnFBojyer2OVXpIiQfssXNFdrQ9Xrvd1rlz5yI5l7QlYNA6QY4C2wvS984uBxBJRAdEBO/TZ/yQd0guGQ+z2UyDwWDLYu6uCUQMD7/DPcEYCFukPYB5wcbOGAjRZEtJdwEgbng7AnPuVXNvSeAaBoNBdABwLII9IeL5nRq4lxzbxSbmApHIq9js0OHzy5x5bgfiAGIL65C2CN7nbSKsfcQNBBICJBEx3OLP2vb8EEiyZz4gHiBYeNaApK37zzwx3078HbgxnIRzzhDCVqAmIiLnQsTzzyNCxUmZDz5/uF1YO75DhDs7vKXCW3JY156/4aLhLYyH/F2ckJCQcDPwKY2lPuUFP/6w3vutl/5I3/29I/3il3+swuvefJNH9pgjfQ8nSJLe9e0v0kd97J/qt5783TpfbJ32cM4Enl5u6c0P83vigTDPlvri//dTJEmve8uz9OyX3Xqup1sJj1RQyCT9rxBCJukHsix7paRLWZbdI0lZlt0TQrj4QAeBbLZarRtS3D30rVqtxkr+aDSKrgaIAL3qrVZL73//+3VwcOgqg1ASwsYuCG6/hhBjx1+tVmo2D9VDdmKQtJXNADkZDAYxrZ7rYbzeR+8Bb+v1WuPxWKPRSOfPn9fe3l600CMUsEOEpBhI6bZ9RIHhcBhD5FqtVmxZODg40HK5VKvVilV5t3d7uCEkjR0jmBvpsOrb7/djiwl5DIREEuQnSa1WS+12W/V6PRJ0xJv5fB4FBQgeW1oiSrjLYz6fbxFb5pKqMoDIVioVnT9/XsPhcOu4i8VCo9Foa3cN5tdD/BCKvCrubhYEIOaN+ff2BVoNIP7cP+bSd0xg7NIhOWcdIxgg5HC97lxBCKH1wdeZtxmw1lzEcCs/5/X7zXW7aOGOkHyYIu0IfHbckYAYhNDB+70Fhs8S4om3WKxWqyiQeBsGx/B17LkUgO8O1gLCFQ4bxuCOlvxc3CK4Kd/FCQkJCWcBX7P3Lj3pVQf64c/+JK3f9uenPZwHi/Q9nHAi3vOvX6TXfv536tnlpqQkJjwWqIayfuzpvyZJet+T/6d+8i0fJkn6r6/4VF38T79zmkN7XOKRCgp/Ocuyu4++IH85hPCnD/aNIYSXSnopv3vAnFu+qRRCNiEoBLZBaCH62NPX63UUHiAMEMfd3V01Gg11Op1YXfYt/JyIHY11y7YP6eExqsAQPMZBlR4CSFihb1eH7b7dbkdxBMs27QeQcXINpG1SRysCJJCdF6rVqsbjcWwJwIYOSXTXAe0HEHcqu4gL7jpAlKES3O/3IxHDbVEul7ecB7QRHBwcxDmBCHuFHfEGAUjSVoYF+QpeaWfczD//5TyEYXr1fTabxYBLr9B7sCT3EZcDOx3U6/Ut4u+tDwgSXBeOERcIeJ0TV9Yd6xCii1iBtZ/7AqHmv4zHAwYBz3nwqJPxfGsAyH8eeK0fl8e9LQlxidYZXscaQexAhPMtV7lnLkJwHA+i5N4gdHgLjQsFzLU7DRBUvN2Bezafz6MgkheuzjhuyndxTY1Ha3wJCQkJDwmf1z7QM37+x/QtL/oM6Z7THs2DQvoeTrgBd3/9x+hX/v6/1R2lJCScFu4otfQ1e++SJH3W1/9b3fXPDu/Ft33m52nzlgf9MU24HzwiQSHLsruP/ntvCOFnJb1A0pUQwuUjJfaypBMjPY+U21dKUggh6/V6arfbkrQVKAdpqNVq6nQ6sXWBrSQhnl6l9tBCSB3HGw6HcYvJRqOhfr+/lehfLBaj0CBJ4/E4khps8k5QPRmfvew5v7dVeK+4ExWIKrtbSIoEkdwEzl8ul9VoNFSv1yN5QuxYr9fa39/XarXSuXPn1Ol0dPHiRb373e+Oc8oY8n3lCDeQLg/QQwiYTqexqlssFqMoU6lUbsh4aDQacczSIYEbjUax8kxV3Ek4ZB5BCfcDO2xQ8Wb+ptNprIz7XJF7ARFnneAakBR3XOC6uQ+sE+YF8k1gIzt28DjkH9GB17rtP+8O8DXp4F4y7078XYhwgkvbiRN9D9v0++zk3dtjPEvEx+ROAMbjx+G63G1AC4W7SWhLcsED8Y0xI7rwHLuY+Pn4rLkjBMcN98udCTzGvJOXQGAq94Q1iYDEZ8/vy62Am/Vd3Al7NypLCQkJCaeEF1TL+i9v+Bk95yn3n79wFpC+hxPy2P+SF+l1/+i71SokMeGs4Jnllp55aJjVB/7CD2qdZfqSD/wUbSaT0x3YLY6H/Q0dQmiGENr8LOlTJL1F0mt0vEPpF0n6Hw/meGwNORqNbtjWjv3od3d3VSwWY6vAbDZTr9fT1atXde3aNQ0GA83n80giZrOZrl27FrMUqIyyAwA7DJAqj1WeXINKpaLpdBpFDK/mE/zntv1OpxPbNiDZ7p6oVqsxWwGs1+uYIyDdSPwhdt7mABlDmHDSOxwONRwOo/3/9ttvj4GHiB0IKBBRxBWeRxiAeOLwwOVRqVTUbDbVbDajcwTCyXtdtPHXuFgynU5j/gMtKDgPEJLyrQJesWa+siyLIg/CQr1ej+0huBoIlGR7SbI53OUxmUyi64XrgXSzvSYBj54lwFzxerfsM3bmizmAFHNO1glrhTnEdYJgxefFRTQPJ4W859s2mEvcJawbfx6nAAIWvzOX3n7EeCDo3hqBsEKbkYspLqjxeq6xXq9H0czFD9Y/45KOW4vIE2F9cX4+X5Li+5lvjoVY4SKkIy/8nEXc7O/ihISEhLOEi8WmnvUhw9Mexv0ifQ8n5DH7Gy/Q6//Nf1KrkLafPqu4WGzqcqml1/z5bylUqwrlymkP6ZbFI3EoXJL0s0ckpSTpx7Is+8UQwhsk/WQI4UslvVfS5z6Yg917771bwW1OUCAKEB3fbYEMA3ZbYFtEiMd6vdadd96p3d1d3XbbbVGUcCLroX3j8VitVis6D2hxwHLPLgKQROl4BwQCDnkv7RRUa30bQA/gm0wmW+QU63s+70DSVpWZKr0n8XMtFy5cULvd1mw2U7/fvyE40EPpEA2yo90fIMStVkuNRkODwSAGSUL6ILyEY04mE9XrdUnaqvrmSbfb/Bmz7yLgWxHiCsm3JFQqlXiPEEsg/BwXAoygADGkeg6x59hupyfLAvLuPfq+uwVwEgop53Gq6aw5zxGQjncAceHEd5IoFAqq1+tx3PyXXUtwadAOQzuNuw4g3owt3+7gAZBOxvNZBQ4PDM2LFSEc7/JA24vveOLrw9cE14ujAcHOs0m8ZYL2ID5P9xeg6GOcz+dxnLzX76MLO7dIlsJN/S5OSEhIOGsIOvPfxel7OOEYhaIW7YKK4ew7axKkcijqF//id/Wm+Vzf9ILPkFYrrQ/S7q4PBQ9bUMiy7F2SPvyEx69L+sSHejwqwk4uvMqYZZmazab29vbU6XR0cHAQq4oQvV6vFwUFKp4QKg9ThOhCxNhxgXN6PzVOBCqtWNOpHJfL5Uji2+22dnZ21O12NRgMtsL0cEU40fY2A7926diZwfW5AMD8UJGnck+IJWIGVWScG04g8wIDZJLMBumYNJI5gAhCKwPj9PYGDzrkeqii12o1NZtNjcfjreo514SIhJ2+2WxuZVZ4GwLCDIIBa4T3uqVd0pbN3edns9nECnehUIgOGQ8EpeUCSz/3xCvi5EF4aws5Etwj3DCMk7l0Ao0DwneemM1m8ZpZi+yCsFwu4zr0HQq8ZSH/eeK+8Y914O0WPJcXDJg/1lG+wu/HcFGB9e/im7cDuXjGWKrVamxrcNHGPyesvWq1quFwGAUVXufv8eBLF7O41z4GX59nHTf7uzghISEh4aEhfQ8nOMLzP0iv+87vP+1hJDxEPK9a1c+/+Zf1DVeep7d89pO1es+dpz2kWwaPxraRDwtetXbCAPmjl35vb0+7u7vq9/uRSBGwdu3a4da/kFuCBCFtkDJeD6mj4l+v1yNJ8uBAxASIIMKGEy2IIxkCuB2wfnvmglc9IacE/Lkw4OGUVG8hnpBbCKULFd4qgd2fVhAIIJVZLO0eiAgBxsXhTgOq4/v7+7FyDwlbLBaaTCZboYnuQEDg8KwE7pW3YUBOvQqed4FAuGnHgJjmd1bwYD7cL7SpeOsIx0KkcHHJcxVYB07SfVtOz2qgms4xyMoAHlIYQojblbpggKDCPPJ63+LQK/usJ3fQ+PlwMfhnDAeAk+mTMjcQAbxdwd/juQg8TpuIO424LtYZDgmfW9aGt4cwBq6FdUHLBOPwlgr/fLGmcV14zkT+mhA4ExISEhISEhISnjj4jktv0ou+/5nqfNppj+TWwZkRFPjDntYGghYh9LQk+JaGVBSxLw8GA5VKJTUaDYUQIvGEyCIwFIvFGNaHbZoUfgjRdDqNWxxCXqhYl8vluKWkpChAsKNEo9GIGQ5OwiD/nIOqd74lwrcP5PyQSarV/j7IkXS8KwHjoeoNgXZyzzHp/UfUgMw7weN1EPJer7f1GkkxTA+bO/dnvV7HOfYtBpk7J3+87qQwPMQUxu5z6IKHzwnzz/FdlJEOd5DgORcJvHrvOwGwRl1kKJfLUaCCsLJW/H67LZ81xfUi7AyHw9i+4XkIHjiICOahn/6ZgKz7DhROnBHoEGW4j/5ab4vw+1MsFmM+CC0X7upxp4Jvz8j6zruAaC/Jt4D4Of0+nyQ8+veArx3EBW+F4bPq3zusGY7F/fTzJyScRUxe8tHqFn5bUvUBX5uQkJCQ8OijUKvpvZ/cOe1hJDxCfMT5u/SOF324wuvefNpDuSVwpgQFqrFeyaTC3u/3dfXqVbVardg64JXgLMvU6/W0Xq/jLgeEAuIU4ByQWFoGvCruxIrdAjzkDuLX7Xa3rPPkD+AWgMi6Xd+DDiFSOBjcLeHklAorpFNSHJOTWsC55/N5JGxkA0AwmV+q5U6+ySRwMu67WGDvn81munr1qtrtdrw25jW/NaK3K/hccz+8VcHzA7wtw9s5vK+eYEJ3cnAs8jEgtcvlcsuV4KGQ3AeOx+vcceDkFdcAGQzsdsH9ZizNZnNLwEAQ8nlygcBdGR7w6K/3e894nIDzfubTPysuUiDKuCDF8Xnc599f69fI+kekQHxBmPCtMHHG5ENOaYnw3xER/PWMhTmn7YPvhGazqRBCdMm4+6Rer8c16PkmfN48y8O/kxISziIOvuhF+g/f/H16ejmlhyckJCScFRQunNdb/+HLT3sYCY8QL7/99Xr6l3+Inv260x7JrYEzJSj0+/1IOvxxKrbj8XhrlwSIJGSTnQO8x5u0fwikk57lcqnxeLxVJeeYhUJBnU5Hs9ks7vKQJ14OjoGzgTFCMj23oNFoRMIHOZOOK/QuKrglHnLI9ndUfd0pAHGbTCZb9nMnrBA1zxnwnADeQ3Wa+WR3h+VyqYODg+jIaDabkaz53OazH/I5EORUSNradtJbC7Dfu7jgrSbABQoIJqGb3FPEKqz0BBtuNhs1Go24hnw7Qp8XP68LCggn3qbDNSDaYP3nvrr4QCgn4orb+iHKjJ/XMbd+772C7/cYnOT68Pf4+/Lz6m0QrCOIvws9nuPAayVtCQocE7GLzx3n9fXNsbwFiHEBn2/Owz13ZxCfUwQXXuO7pfhxPSwzIeGs4SO/+o16Ye3sZ3wkJCQkJCTcinjJh/+h/uCvf5Sqr33DaQ/lzONMCQps1+dVbemQvA0GAx0cHMQqebvdjlb+yWQSA/bc3i0pEkvfrcHJqbcyQHCxT/PeEEKsLBP66JZtT5sfj8eRbNLf79tLbjYbdbvdeF1esXdbPc4MdlWAJEHa3TLvLQSeZ+D95VjQETZ4LZV5FxUgWRA/ro+tNjebjYbDYcyNYJs/WhHm87lGo9HWThWQUQ++QwAgN8C3IGQMq9UqZjt4gB/3i3vHWmHeXFCCoHo7BK+FKHM+HApexc+H9rkQA6l2VwfvcfHC14yvUdwezIE7NYBfnwte/s9bU6Tt4EJ+5rwIE/ncB28dYZ685YPrwB2AGMBa9NYLCPpJQZDAW0nIWfDf8+D6XHzwTAzuiYsF3F8XtzxE0wUK1pW7TG6FUMaEhISEhISEhISbi++6/Id6zsd8tJ722tMeydnHmdrPJF8tdfv2fD7XwcGBBoOBisWidnd34+4D/X4/hh76Pyz87XZbjUYjVku9V94D/EB+W0DOT0UVMoY9G/IDCYTo5wk2pJYxEUjIuWezWXRYSMfb9nnln2wId2o4CZzP5xqPx3E3AAQSJ/e0XXh7AeTLXRAIHjxPXgAiC9cvHQs3ED4yMHifiyYuGvDPe+ddNEAw4dieO+EVbois29g5VqPRiMTeybFv78icM4/uBIBcs2b8WqXjnS3yY/eMipPCOJkP8jyYS66Z8UnHrQ3+fs7DfUEE4x7mcyHyrSwuLHilnnvm94c5ymdUcBx3Xrgw5vcLou+vc/cFz+E0mkwmUWxhDtw144+x9ll3LhZwfj+Oh5Yy59yjfCZHQsJZxJ/8nx+qX50mwSshISEhISHhdHGmHAqFQiFW0SVtETSqlrQs1Gq1GMDW7/e1WCy0s7OjZrO51V8NAXRbvpNV327Pq73ev80/r4p7i0Sv19NkMlGn04lEnfMS+rdcLjWdTjWbzXTp0iU1m031+30NBoOtIEPe78SOf2yFyXVD6vNV/XwPusOvz8MeXVCoVCrRacGuFU7auDbPTUAM8kq/Z0pwj73vniBIKvJUz7GnS9oi8bzeyT5jZo4hvRynVqvF4EDu10khjZLitU4mE0na2h3AHRCS4jHz22+69R6Rw9ectx24qECFHaeNnw+BinnCYcLng3V+kjjG73y+ODbBinwO3M2AkOFr39eji1O+2wL3lvYaF6a4Hy5C+Hx5XgGCVJZlW/kL3vLAPePx6XS6JVj4sbl+Fwr8XrIDCGMGyZ2QcJZR/YU36K7lrlS/dtpDSUhISEhISHgC48wIChCaUqmkZrN5w24BXhGH2EuKVV1IV7fbjb3ztB5Q8e12u2o2m1sE0W3dwG3tkB/62d06zmvZUYG2iGq1GoUPtqmEwEHIu91uDHLs9/tRABiNRtFOns9K8N0HvJ0Cgg4xxQnh6fmSIgHnutyqTzsB21bilCAHgNdRSaaFIl+l9nPlE/u92u2tG4glhOl5UKUTRye65BHwnOcOQPJxDTQajdgywnW5Zd5JJGKGJ/+fdG6fE1+Pvo5Afg27i8HJLtfBPXeXgGducF3+mcH54Vs55nMVvOVivV5rOp1uiRG+pSfv5/y0IuVzGfy+es6Et4p4qwUig5N51hX3g7XE8fL5Fd6q4SIW643PJXPEWNjpxMH3A64Tb/3Jr42EhLOE0S8+Q5/T+j1JlQd8bUJCQkJCQkLCo4UzIyg4eaNKTtUa0pEPWgM8TugiuyI4+S6Xy6rX66rX65Hc1Gq1mJuAvR+iA2nyoD/EAcbWbDZVKpU0Go00HA7V6/XUbre3LNlUP2mLQPhotVpRQPAAQwiv27WdUDo5Z/s/3Bo+l4Djck15q70kNRoNNZvNKEbQJoDtvF6vRyFmOp1KUqz+c02EQDYajehKgNyT58DYXMDxe854IcwuKOBEcGcGSf7uFkEw8XUAyS6Xy7G1IN8+ANlE5OA8kE3PKcg7I7gexu42eQgubRGsM+bIz+fiBOse8cFbbZgP5ov7kXcbcG2Mw4UKny9cLtVqdStHBDLvIZAuVkDGPbcAZ5BnXjAO3z3DP2ve9iAp/jcfwpmfB1wRzJev9bwTxEUzwHx7Dgn3EuEk7/ZISDgr+PBzd6tRSGJCQkJCQkLCo4Fn/u8v1rP/zRt1Y6kwIY8zIyhIx9VC/oj3/zqBgHxB6Lz6O51OY+XV7f20O3gFk6pkvjWAyrMn0ufPS1WXXQTm87l6vZ5Go1HclQKyg2sBEr9er1Wr1ZRlWSTq9JRDpnmPJA0Gg3gs/nm12clwrVaL7SGeF+C2f3cUeJYAbgEHY2m32yoWizo4ONB8PtfOzk4UFGjlCCHEFgOcDu5oYB55PVX1+wrYIwcCAo5rBIFnMpnEqjTvRciA6HrPP+IA2Qte9ZaOtx/1nQn8n69D38Yw3zrh1W3OD0n2zAfs/C5WuPuCrAzuDWvTW3Ok41aPfHuLu1DyYZAIW3mCTiXfWz08U8SFtny7Ql7k8O1Dmed8mw3HdmEiH4boopKfh3Mg1HBN/p3AmL2lxkM189kUCQm3Ct71opV++C3n9YWd1PKQkJCQkJBws7GZFbU5Kr4m3D/OlKAwm830tre9TZcvX97aR54//KfTadw6stFoRCKOgABhH4/HkQg7+Yc8UHF2kkXrhKSt/m/IjlvJpePKP26KzWaj/f39SBKl4359t11TOccF0Gw24y4G3pOOKwDyhBCRr/q63T5vy6fK6r3vWMrzGQu0TTCPtHCQRwGxhaiRSwE5n0wmWy0I3h5CWwYknGq9W9kZI6KDtL1doNv/AWR3Zh92J6IQWXezcL/cNeEiBsflOPlWGM7hFXXWlrTdZsC1chy/PrbJJBeCNeWZBXm4e4bzeVtJ3mXDeDz3w9tSfJ362FgfCAa+jSZj9hYFF6p8Drh3vM7bXRDdNptN3I4UwY+16I4k1pkLOZwrvy7cpeD5Gy4m5uc1H8TqLo6EhLOIUK+rGLIHfmFCQkJCQkLCQ8KL3vw39ewv+/3THsYtgzMlKEiKrQsEuUEUIDDj8Vjnzp1Tt9tVrVaLNn1IhVvmITFeXeZ1WM7ZiQFCifW7VqtpOp3G6j7Cwmw202AwiNXQRqOhVqsVSfx4PFaWZapWq/GcVEghdrQ1QG5xSnD9WMcZT76nnPc50aayjljhPfbY2KnSMl+QbbaFLBaLajabyrJMV69e1WQyUbPZ3Oovz4sriCo4EwhbpFLM1pKFQkGTySRW35mLSqWyJZQ4qSOEE1LoFvt8a4q3WLgQIR3v2gGBhRAzl8wvJP+kXn3WlosAnI81w7x7FT5v/ee9+ZwCJ67lcjnu+AGpR+DiGO4A4f66kAEg+f5efq7X61GUYY68lYSxsj4g9i6+ecsA14ngwhrIOwWYY3fK4EDxHAMyNWjBcJHPj8s5caL42vTfuUeMlc+KC3EuCOWzVRISzgpKt13Sh/zCFf2d9vXTHkpCQkJCQsLjCv3NVNcO2uqc9kBuIZwZQYFKNQQnn54vKRIobMs4Ffr9fnwMorJarWIYn78XQuF5AogKkAuIFNXSVqulUqmkxWKh8XgcyefOzk50Skyn01j1dpu9V2+9Oj2dTrWzs7PVow8Znc/nCiHE42P9hyjjcoA00+rAcdyN4H3nzCmEkZ8hbPV6PRI6tqlENEGsQADwLIEQgjqdThQVEAYgltPpNJJR0vg9iZ/58Uq6CyV50QPxgEq32/ARkxzY4qfT6dZWjt5Gg2Dl7SS0XeRDIBEAJpNJzNZwRwMtHr5uuQcIR95O4K4VBCwn+Pe124C3i+DSgPj7uf2z5UGOtMEgErhjhXvMfWas3iKSb71gbvNjyLdJ+Ni43zyXd4bwOUTc4/V5UYv17u0UPs/gpNBKHw/rifXneRgJCWcFvVc19R2X3nTaw0hISEhISHjcYJ4t9b37H6xX/ekL9YwveNNpD+eWwpkRFLwaLB1XvvkZcu4OhFqtpmazGbf6g1BDQCVtVcohFu12W/V6PZIwFxdcUPCt60qlksbjsYbDYQwgLJfLarVakXxXKpWt8/i4GQtEEYLqfegQGA+nKxaLcdcIXktrB4ICooQLCv5fJ4meneDW/U6no2q1GnfJuPvuu6PI0G63VavVNJvNtkgsvetkVNCm4XkGENbxeBxzJrh/XAtzAxnHKeCZEbPZ7IZdCDysL5/94KQR1wLrwm34Pt9+TbgRONZsNouCAmGYvJbnEV1OyqbwnAIP0GSM+fYAxgbB9VYQ31aVSjoOhXyF39sj8rtiVKvVuLaLxWJ0zjCG/BjzWRX5XUe8ql8oFGJQJO/nMcC9x23jzha/h7PZLK5b3uP5BwgMjMfXg7eE5F09XI8LZPl5S6GMCWcN4SM/RB+y987THkZCwmOKdy3apz2EhISExzE+552fpLtGXXU+7Z16iv74tIdzy+FhCwohhOdI+m/20DMk/Z+SdiR9uaSrR49/U5ZlP/8gjhcJCWTdibZXqufzuWazmbrdbhQHsNU7WfCtByFTVDIrlcpWKwGvxY49m83i7g9kCCyXS/X7/bg9ZLvd1h133KHFYqHhcBjD7LwSzLVACiG3BBO6kAKpQWyArNKagQDicwHBd8EFAutb5HmVvFQqqV6vq1QqxfwJxt1oNFQsFtVut+PcIohwLe608JYSF4HG4/GWFZ5MhryQwn8RN3AESMdkEEcF80CVmXFAVD0TgDXgGQYuHNBGwX3gHhH2CDl314w7IDieB3Ay/9wfxCXGgcsCIp9vTXE7PtkQPhdOfN3B4VkQ3orhwaIO7hfOFO4pc8X8umBFi49nK3hWAeBnX/8uEvq4cRO4w4PX+PpgrdFqAdnPOzfc4eBj8LXENfn6ZZ26+8FblM46bvZ3ccLZxvtf1NFX7b75tIeRkPCY4QVv/Fyt/uwHTnsY94v0PZyQcGviBW/8XE3mFd3+kreqoxRy/HDxsAWFLMv+TNLzJCmEUJR0l6SflfTFkr4ny7LvfBjHjD9TcZcULf+QGgSFEI53FRiPx5FAQEy9NQAyTh5CvV7XarWKlXMqzoDfqfx6nzWEmHN7xRhC4vbpoznaCoZ00uuVVs8HgLDmdxhwksV5fQ6pMrv1Wzpuu6jVatrd3Y35Acynp+23Wi21Wq2toEbaTEIIUUBxYueCwmQykaS4reZkMonnyFd+8xVuzxWAiPv4XbCB4Pp6wdHBXLqw5O0M5CpQmae6D+HFgcD8c53cFwDZhYi7AAExnc/nmkwmcW34zhF+PQg/nJv75/c1nyXg7QGIIh6ayBy4C4LWmWKxuCUaeYXe72t+rhEq/NgOz3PwVgcn9vn7nt+BxTMQ/LPi22l6mwzwY/p4EIG8pUlS/IxznPwuE2cdj8Z3ccLZRfPKRu+Y3yY133XaQ0lIuF/8X9c+UHfPd/Ty21//sI/xAb/+9/UBX/EuvT072wGk6Xs4AWTDoZ79G1+kt3/8q097KAn3gY/74xfrzndekCR90Df+qdaDwSmP6NbHzWp5+ERJ78yy7D2P1CIcjkLenFBIx1Z0KspUkd3yz+/+ekAIHxb9Wq2m9Xqt69ev31A5n81mMUwQ4uXJ9oDzMm4q0zyXt9Rj94Zg4miAvLmlHcI7n89VLpe3SBhbHzJmnAZcE4QTwugOBEkxc6FWq+ng4ECj0Ujj8XgrDBOiSUAglXUEBkgzx3drPfMNYePYVMTzffROpj1wD9K3Xq+3ds9wYSX/Pr8nuB18RwvuBwRyOp1qMplos9mo3W7fYN3HJUKAobS9KwD3nPtYqVTivef6OdZsNotrGgHEe/UhyMyV77bgr8NdwfV46wOvcYLNPUXgyAdF5p0sfAYh2C4U+fr0uXCBTDoWIZgnro1171s8OpkniJK1x1rIj43PB+IL73dXBm0QjNMdMN6S4e0PwFtxbjHctO/ihLOJez59qa/ZS2JCwtnHq9/yQj35VSX9o29d6z886Q0P+f1P/4Uv0wd943tuxT/20/fwExjrXl/P+K619PGnPZIE8IP92/RdP/aS+PtTX3OgZ7/59yRJKSnr5uBm/bX8eZJ+3H7/6hDCF0r6fUn/LMuygwd7ICcMTorui8xBJjwYziuXlUpF1WpVvV4vvh9Sxg4GXtGdz+cxRJBxYIP3irxb7p0EQ0y8ggzZgtwQEEhlHMJGlZuK8WaziVVtHBq+zaR0nA0xGo1ifgG7CywWi1h1l7RVGYeUVqtVrdfrLRcBc4qoQwWeDAPfvcCD+Jh3SBoBjL1eL+ZOeOCdh94xZ+6ugNzTcuI7DXAtjUZjK0AT4cEdHw6v9CMueEil44FC+Vzw8Iq32/bddcHzzCfiDPeKefdWBxdp/JyIEZzbz8n7vGXIAyVZ77yWQE9/Xz5sEXiGBdeVd0pwn/3z4Y6TxWIR1x/vc0fISdfNcX2XEeaOzxpzg3Di94LPoLdGeZ7DSU4Rv9ZbCDftuzghISHh4eKbrnyYnvrKgoq//vv6k+Xz9ZHP+Eh97df/hD6vff9fQR/3xy/W5CdvkyR98C++R6urV+/39WcU6Xv4CY7CO+/Ss370K/WOv/OK0x7KEwLP+JmXae+NN/7dCJpX1nryz/1O/P3sN7PeenjEgkIIoSLpMyX986OHXiHp30jKjv77XZK+5IT3vVTSS/nd+6whDfSmS7qhAglRJsHfCZKkG5wIWM2l45A8rNsQGm+VYAwIDgTDsc1jsViMlXes81S6vW+e1xPYB8GaTqc6ODjYyoiQFJ0AkMXhcBjbG2q1mqTj/n8CD6fTqYbDoXZ2dlStVuM14jjgtRB5rodKLkLAaDTS/v6+VquVhsNhDIKk8g4pQ1xx1wLz6LkBk8lE4/FYo9Foa7cC7injoGLvLgwq48wd2Q7u+EDMyGdO+HrKw10sJz3ngok7BNwlAXHmNe4QYG157oCfDxLsItZJu3j4Z8HvkZNod4Wwnpk7SVuE3UU4F2AQMnyMLih4ZgLP5VtTfP3yvDtuPMySz1Gj0VC9Xt9a/7g93NnhuRSsez7LOIv8O4K1x3hZl7h2WDchHO/uwnx5Foi3ZNwquBnfxTU1HpOxJjx8POe7x/rC53ycfvipv3naQ0lIOBH/qfdk/cHLPlzF3/tDSVLx1/5Q535N+sG3f7a+v3PkTCsE/cYPvFKS9KPDc/rPX3NYPWz9RV/1P3mdJGl1wrHPOtL3cIIkrQ8O9OzveLuepSQqnIRP+PIvv6nH+6A/eLdW779yU4+Z8NBwMxwKnybpD7MsuyJJ/FeSQgj/WdLPnfSmLMteKemVR6/Ljv4bK4cQAK+CUzHHygwBoUWhWq3GqjJEo1KpxH8QCghd3g4taYu88B6vHnv/ttv4IUouQkDcCAxkXJwHJwQVZt+6koqtk2XpuH+fgEKezwcRTiaTLZeEE7zhcBgJKnOEMHHt2jWtViv1+/3ooGg0GlFs8dBCb0+RDokx93A6ncZdMai4cw+9co9zgWwLt8IzJ543kLfhh6NwQdo7uBfcT++1Zz44Fq0fTogRLGhHcZeCZ2Mw31TDPS/AXRoIXXmSjZBCiw19/JyzXq9HcYgxONnmZxwSfGZ4v7fMsEZ81wUn+wgK7qRwou1iXrFY3Aqh9Iq+f4a9vYTPjos0vJZ7xLh9e07uledoQPB5jHuab4twF5G3ZfBZAJ5/wu/5NpRbCI/4u7gT9s52o3KCNn/0p7r+BU/VN//35+pbLrz1tIeTkLCFX5xU9doXf7T0ZzempBd+642q2u+fducXSJLCfKnq2w5bIh4H9uP0PZwgSVpfu65nf+uf6hm1l+ldf/Nsh4reTHz1XR+td375M+/3NdU3PfQWqPvDrSg+Pt5wMwSFz5dZu0IIl7Msu+fo1xdLesuDOQiEwFsevDLMrgQQOE+M54//2Wym8XisarUae6UhsbVaLeYRSIokiuq/E51yuaxmsxl3dvB2i0ajEUkx/ffSIUFrtVrxGpx0emr/YrGIuQQQMwggBJLrwqlAcOBisVC/31e1Wo3CAztcZFmm8XisWq0WSeZ4PI5BihBCjgd5Y9tN3AX7+/vxOeYU9wDklOe8DYHWgSzL4g4aCDEEYkraEoTy9x4C6pXhPGH1DAZfI06488KME1tJMeegUChE1wfHwzngeRl5S7+3N+QDAiG4rMt8C4yLWMwL5+L13DPu5UktGfzuhJrxuxDCXDHnTpB9bB6s6MfN5yL4Z4bHeJ73ugvG2zf8HKwDroO142Nj/TI+z1xwZwOfH29bcBeG5ywwfnd25OfEXQ23GG7Kd3HC2cfqL96jq2kbvYQzhncuR/qPf+Wvaf3+dzyo12/e9CeP8ohOBel7OCFifXCg53zjW/SMzpfoXZ/8Q6c9nIeND3n939FT/+GD69TJ5nNtrj0uP9sJ94NHJCiEEBqSPlnSy+zhfxtCeJ4O7V3vzj33YI97Q0UaMpQPlPM2h8ViofF4rEajsUVOnJxBOLDHQ77ctVCtVre2IaRSTjUeQuqiAOfx8Dm3+HuF38c7nU5VKBTUaDRilR6XBOeBhM1mMw2Hw2gXR4RgDhAWaDFwG3mWZVFYkRTdEfTPbzYbDQYDvf/979+6F8wdJJE5rNVqqtfrW3PhKfx5+z9zLh1b8bnPvr0khNqdIbSseC6Crw1fB5BMrhVi62F8VNoh+LTF9Pv9G7YnzGd3IJBQoc9nR0jHAoTfS0ScfMtEvjLO/CCgsWZwf7DLBqQ/PxcIO8yhuz1o2aBdaDweb43VhRAXdSDX+XNw/zg+a8GzKRijZ1nkswm8jYO58MwHBDI+C8y1Z2qwzmhjYE7G4/FW6wr3i88KnwE+p5yHdYfId9bxaH0XJ5xdvOuvZPrhN5/X32nfq2K45cSvhMcZRpuZvvo5n6TN7IlrO07fwwknYTMe69lf+kf6tNILde5/1/Tqp/7vh3yMz/jrf1f609ML471j/edaLRcP/MKEJywekaCQZdlE0rncY3/vYR5L0vEOCE4iIUhsiQf5hzTTVw1phEBzTJ7nPJAZWgOo/q9WK7VarS1yT889rgBEBYjhaDSKZKZSqcTxVyqVSJQgk76VH2R7NBrF62SMLihQZScvYTAYqFwuq9Pp3LBTANsyEmJIroOkGEJZr9fjORBPsP/P53P1er2tc0MQEU3yuzR4m8FqtVKjcdz75xkIkqJzhPuLmOIuCdwRHMcDFH19sNMFZBfBaLPZxLFDYhFPvOJO+wHzwDVwTObGRazpdCpJW+dxN4z38nNcbyHwdc5xIK20r5DJ4NkN7qyA2Pv9YF48fwHRgawAXusZE06s88IJn5s8PMeBz6i3UvC5coHAMyUYm7cVMH+sJ8+5cFcE1ygpilAuFHkbjgsg7jzye+Kvp3XG8yYY+62Am/ldnHBrIJvP9aMfeId+VHfo5e/5be0VCtotpt7rhMceB+uJPu+pHyttZg/84scx0vdwwn0hW62UrVa6+jEzfbqe/zCOkCr+CWcbZ2ZPNAjQZnO4O4BvT+iVXrdzQya8Z9qr3l5txZ7vlVR2dCArgPyGVqsVWwggQ761I06G9XqtyWQSq76SYkuAdFxphcxCkqg2S8eWcUiy5yfwM/kM+Z51t4vnbemAqnqpVNoi+xBBqtXe2w8ZJLOCPATmGKLdbDZj/gKuiHa7vUXUfGcIqr5U3ZfLper1uprNpprNZtwy0HvpcVg40eYxjtdsNtVqtbayGlg3+S1GEaiYG8aGQ4PrxCGAO6PX60ViLym2vnA8xBwP9XOHCbs65EUHSVuuAarpiAueHYBzBocEgo2kuKWqv95Jv2cFePihCxysK3cKcCwAsfcMBh+HH4Pje1uI77owHo+3nCiStj6neScSnzcEJBdC+B5AEDgpZJL1nxcw+Hwg/vm1s1YSEs4yvuqpf0WFRkPf8tbfOO2hJDwB8c0f9tekzfC0h5GQkJCQcEo4M4ICgOxAFBAWINlepaTHn/7rfG8+pDufUk+VcrFYaDKZbPX+U82F6Hggn9uveY7WCSr5Xl3Ob6lIBZydEGq1mlqtVhQYXACRDivrxWIxBhf6DhNOvIfD4db7cHJMJhMdHBz2PLVarWjvh5z59oqQQq94Q+qwr8/n8ygQMA5ED59zXAjejgDBZ/45vre3+D1jbiGNLiY4YeX9EHJ3CrBFoe+awD2h6s295VrJ1vB1JynOtRNnr4K7oMN85ndhcKGD++TzwFx524Afl/vizpn8axGCaDvhcZwouBKm06lms1kcE58br+Dnzw08YNIdD1wn8+rX459F6XjrTMQWXEh8hj0jAiAUeAuFCxf+nK8932qS43Kdfh5vufH5Tki4FbCZTPQvn/5Rpz2MhCckkpiQkJCQ8ETGmRMUID1U9iG5VG6xokuHVVl2EsiHBHqy/Gg02soqgCxC8LH8+/aHEFMn3S5mQPAhS/wjDA4C45kLkFLPhaB/m/d6oKBXrCWp2Wyq3W6r3W6rWCxGdwUVa66pXC5rPB5rMBhoOp2q1Wppd3dXe3t7cecKxj0ej+Oc03/u5MqJ23Q6VaPRUKPR0IULF27YphC3BMn8VJ0hkp5hAGGD0HreAnPPtfs9YZ6obuMM4Z54NoC3skDyfRtHzsF7EU4kxQwGiLb34dPOgnNkNBrFe8d1+PuYH89acLGCufM1x9x5oCFr2IM8uXceroiDBMHM3QoIW2QL0KbjzgkPxuR++fy6oAScmHOvGCNzzb3z9c61cVwIPffNwyQRGly04L/5lg3mNi9YAY7lYZqsT64z396TkJCQkJCQkJCQkLCNMyUoUMmWtvvUIaj8Xq/X1Wg0NJ/P1e/3NRwOI2nntZDs6XSqwWAQswpqtZoqlYomk4kGg0EMZcNG7ds7UsGtVCoxb4HqJgFw2NgJ/4PEepsEx+cYVMEbjUYkxE7AaH3AZYCVn+tGUHHSzX8592g00mQyiUJLu92O4/B5xgVAtd8BwYKYeh97s9mMgoJXp7k2xBrpmDx6jgHOElpQ6GH3XRDyln/IPi4PXClcP+Qd67+HSHrl2kmuk9V8EKFvp+hhmhB0tg1lXC4qQd5diPJ+f0Qy5pmx8lpv9eE4+TEwDm8x8dYaiHKeGPvckEPg65D3+D1z94s7GvLrhf8iIDB2rpH5pKWFYyFmSYqfPb9WhCBe4wKJ7xbhIpaLEH5PvC2Ff9xr5iHvhEhISEhISEhISEhIuBFnRlCAfPDHPiSX0DhIa7Va3RIFIPAID3kL9mq1iqS81WpFx8NoNNJwOFSWZbEfGzEBYWC5XEYi7hVUxAd2SKDS76n2ED5ICePxbAfv5ef6qYy7BZ8xdTqdSOwgiz5ubOTFYlHD4TCKC+12W81mc2uHAQ+mnE6nGo1GkaRznRAwbw3hGhuNhkqlUiTx3COq9pBtKud5AWAwGEQS1+/347UCBJqTQgA906Fer8e8Aa6l3+/HsfMPQsmWlpB1nAkQZdwH7l6AkObbZZgPFx480JBsDNYEQgoW/Lx1310drGEn5U6KcRZA0glfdEGE9eYZJAgTLrRwfxFj3EXhu3Pk3Si+znkMZ5CvMW/J8J0auBY+06w1MjZcQJC0Ff6IwOivQfhhbNwrXAy+Xai3qbjQ5K0ieREnISEhISEhISEhIWEbZ0ZQkI6t8ZA7xAAPh+t0Omq1WnGrQg+vc9JHq4GHKbrdGvKGa8GzEYbDYbTNV6vVSFoZA1kGEBACAn2XBa8IQ7IgxABbPuSHsbAlJNZzBAXIEdcMKYQEQ4K8VYJdKaTjgDneIx2GMPb7/UjqOSZzAaHkuLRM4KCAxLo7wIMXi8VitNgznzhHuB7IuRPO8Xis8Xgs6TgTgrGxawYtLogY4/E4hjDizPDWEc9n8AA/RBTpOEgz71SAXFNpz8933gHhrgBvH6Hy7m0EnMdFFV8/+cq/b7GJSEO7DmPks8R68zYWrofnEK0QqXydevuCjxuBwvMx7it3gTnjuk5qJeB8Hq7q3wu811s7gLeQ5B0FjJPjePtRPn8BVxFz4RkWCQkJCQkJCQkJCQk34kwJCsBJC6S/XC6rXq9rd3dX3W5XWZZF50E+ZK7RaKjZbEbnAUQr37MOsc7v+kDmAk4Ituvz93gPdr1ejwTbrer5Cq2kreOR2E/VGlJYr9ejywCxIi8UQNi9SutOCxwCuCdGo1GsAnuOwHQ61XA4jLs0eC89AkS9Xt8ilhBOz62AoHMfuN5SqbQlDrjw4PeFrSSZKxwiblnPiyj08S+XSw2HQw0Gg9geAqn3ME+uy8kn84gABWn1yjfzzZx51Roi7WsLkYVxutgAuUY0y69LzuMOF88DYM6kY5GA1g2/r95CwTi5Dkiynx+hw0UCbyNA7PFgRD+GiyHuWPAx+PHzO0gwJ6wZ3xGD+8Z/fR1wzLyYwPznsyn8fLgcXLzwuUZgSUhISEhISEhISEg4GWdSUHAyAAmjz/rChQva29vTYDBQv9/XaDSKNv/FYqF2ux0FBarTtVotZg9gN282m1uVc4iH7/pAWn6e4EFUISP1ej1uNYnAwZhxB3AOroP3kTfgvepkJEB4fZtFFyrui0SVy2U1Go04jslkEi3tVGk5F1sl4hqAQHkrg9vyJcUtLZkPCCCOC0IK6c8nABDRhlaGfLUb8cS3YeR8i8VC/X5fm81GrVZrKzCRnIzBYLDVu8/9mEwmUeyhRcVzF5h/5hwRCqGDAEjaGDiW9/MztxB+zxwol8tbW4U6oec1iBQICrTZ5AMl80TcMwCc3OeFKH8tRN2t/7yG8wBItbcI5MfAvUMYK5fLURzCwePtBXym8tfI9blbgetyp4Vvk4qjgHEgGvjruQ7/3deYZ2jw+XSHRkJCQkJCQkJCQkLCyTgzgoJbv8fjcSS3/MFP60Gn01GtVlOv14vEFBIISSHsEIJVKpVifgJkplqtqtlsxsq4V485lgsHXkV22za5B81mM5IoqutU0Z1g4WiAEC+XS9VqtVjV5zweMggJhPhCfugz9wq+X1+lUolkXFLMMmBeN5tNdCZwLe5+8OA/6dganxdgKpWKOp2O1uu1+v1+dB9wP52wr1YrjcfjSOLcuUCVm/lDWCHTYjgcqlQqqdFoxGPzPirOuA0guVyrB0O6i4QWFW/bkBRbNSaTSRyj71Tg2QRe7a7VaqpWq9FZw/3AZk8LjpNkjo0wwGtdNOAYiFFcF0QZsQNHAcIW9zkvKnj4JcIT85BH/hisfcZFG47vkMH8e3sI8+atB779KsfOuzNY16wfjptvZeLzzrG5Po7L+33e3D0iHbsjfCvRhISEhISEhISEhISTcWYEBe9zhhjyGDst8I/qONXfPOFqNBqR1FBt9rYFqvN+brdX+w4Is9ks2p8djIl0ek/up92AsdKKQCUWcYTwQ2/dGI1G0UHg1n1vuYCQUuGFhEOWvX8eYuWtEh7g6NZxr65D/E5yQyCarNdrTSaTmEEhKbaLSIq7QHjIH20liDtkKbizIx+E52GQkmKbiG+PmH8/BJIKN3MtKQoubu/nuDyPsMVa5DF3zjCvCBfelz+bzaLY5JkK3lLBGL01BgJ9X/DzQ6aZY9wEiFMuHDlhJj8DYYJ7QIuPj83PCXAE4b5BgMK5wjjYtYN1iPDCumZtIqZ40KjnOTCniDg87kKgpK3PI2ID881n1NtrXERD7HNHAoJVQkJCQkJCQkJCQsLJODOCgoM/8LEwE1bIzgLSIclpNpvqdDqxcs02jm6Hh3x76r9XMiHvEBW2olyv12o0Gtrb24tBgNjRsc4jFECoINoQNMhbq9VSoVCIu1JwTR4eCYFHkGD87CaBbR8hwyvpHBsRhso0cEu8t05AoAkvZD48lBCRhCqyCwTuKnDhxR0O3A/pkLAjOCBojMfjrVA9J7LuauCaIMAQx2q1ukWgvbcfMgpp9PE7+eccZHCQFeD3FZIqaauS72Sd331LRDImPDQUYszuJKwFzkc+hc+Fb8Hpc8+8ce/zzgSfW9YbgpGLIfmQRMBOCS5iSIqCENfsrRH+z4Mi3SniuRMepspngGvIu4fy7hIPe/SxeF4C8DWCmMDPvN4dT+5+SEhISEhISEhISEi4EWdOUIDo8od8vV5Xt9uNxAziQfXX2xj853wgnlf7IRA4CLxS6vZ5SbF1gTFB8BE3PBSy3+9HtwEtFxBIdz3gqpjP5xqNRluVXEgV1+bXWKlU1Gw2Va1WowOCXAJEF0ilE8r1eq3hcBjJIW0Ik8kktkZ4+4Zv7edbP+IEyYfyuZtCOt6K0smfdEiKB4NBfH1e+EB88KBDHBdUnL0HHss8u324aOAk14lhXizATeG2f66X3SL4nXuJ6JK300u6Qahgzj3TwPv+85V66XgXEtYEghBk10UeSDpOCt9m1QUafkbMgLh7Lgfzwpg9XJLx8T4+C9wr5gNhwwURdxp4LgdjXCwW8VwIO8wt64P3+PVwX/mMIIgx1nw7hK8P7rM7FViv5I3w2oSEhISEhISEhISEk3FmBAW31nslFyFBOrainxTqh/0aAaFcLqtarUaS5AQYUuxb1LkA4fbxfr+v2WwWd1ygh7/RaGxVXtmGcjgcajabqV6vR8dEpVKJZGY0GkXhYD6fazAYxMwBD3B0cg65w0nAuKny45xgpwlIGNfolV5vW/BKshNTD9BzK7+TOQgc5JYKOm0Qi8VCjUZjywHgpN9t7rg5vI2D6/CsAt9tgHN6mCTkEVeKpC23RN6dgKjCHLiY4BkWvouFiyR+bdwz1ifrl+ujbYM165kBbs930cfPzRrmOj3EkPnCqcH1cwwPHeRzw3yybslg8FwCnAzeauMOAFwvzIs7djy0Mt/ChAiBO4UxuhOCLAkXgjg/94d58M8EQOTwe8P69N1F8rkQrCdem5CQkJCQkJCQkJBw3zgzggKgnaBQONxWEUHBrej0tmNDh/A4+eQ43tMOyWd3hXK5rOl0Giv9TuipdkIEscN7zz2V0UKhEN0GvpuAtzI4QYMcDgYDTSYThRCiSOGOBM9FqNfrcacKyBO7XMzn8yg2QJKZM0/y94ouAgoBlpvNRv1+X9evX49bUC6Xyzg+r6J7qKCTaBcoPNARwg/xJcDQBQAXOubzuSaTSRRtEA/c9eDWeIQGCKuHUErH2RA8hqiDeOKVb8bEfEF0eZ2343ilHXjuhIf6uaOB87hjJu944Bj56/VcBF7rrgHew7rnc+NBhVwbYou7WRhb3tHBcT0E1MUhF6/Y7cFfyxz7fYbo+3kROVy84tw+dy4U8NlFnEBocvHF59iP5XkRvN4zKRBFEhISEhISEhISEhJuxI2R7jmEEH4ohHBvCOEt9theCOGXQwh/fvTfXXvun4cQ3hFC+LMQwl97WIMqFNRsNnXu3LmYPwCRh6DmK41OYKkQk49AKwLCA89R2YQce6UTQYHWBCc/CAxUR8kIgJwRDIkYAuErFovqdDqSpHvvvVfXr1+P5L/VaqnVaqnb7Wpvb0+dTideT6PRULfbja0XVPuHw2G8Noi8E/Z8vz4VbH8OIsb2iL5tpr8GK7kTRElbpNor/e12W/V6Xev1WqPRKI6RuYP0u0CDWMRWlr4DwGAwiA4Hrsd3AnHy6DZ8SbGS79s8MhesG4QeMjCosnuLB+IFLRZeJcch4GIW5yKk0++Riwt+b1j/3tN/XztVAOaU4+YzKchOcFHIt5SEtHtOBHPElp8870TfXRS4cfiMeLuNizMu3PA4roj82vNr9PMxXheu+J0dQXBe+Jrx7ATWHgIe18wa4H6dpZaH0/guTkhISEg4RvoeTkhISLgRDygoSHqVpE/NPfaNkn41y7IPkPSrR78rhPDBkj5P0nOP3vPyEMKDKvHlg+NoFfA96amaQzr4Y79arcZcAggF5AOiMhqNIhkvFApbOQi+S4Ok6Ixg9wLIZaVS0XK51MHBga5du6blchmDIRE3fCcKt5lDynwrxPF4HJ0TrVZLnU5ny6VwNKfxONPpVAcHB9GhAWli/jiPByJi43cLv8+xh+Yh1MTFYYKC3xPaLUajURQL8pkAvBaC6lV1wDGpbCMCLBYLTSaT+A/yDgHkPjuBl47bXXA4MDcIIr4rAWJEuVxWq9WKlXhvd8gLCi5YSMdbGHqlnjXg2w56Nd3ba3yXDwQUd35gv4cU5+8Lr3GHBm0C+RBIXCDMDZ8RX/tcr5N3J+P5AEdvofExcY35DAceP6nVBgGDDAjPD/FWCxcF3SHkYppnNvAePkueEcL3Sj680a/L3SdnAK/SY/BdnJCQkJBwn3iV0vdwQkJCwhYesOUhy7LfDCE8LffwZ0n6hKOfXy3p1yV9w9HjP5Fl2VzSX4QQ3iHpBZJe92AGwx/8eSKHAFCr1SIR5zlIUQghOhMkRat3CGGLsFG1ZltJPw/VVrafg1xxPFoo5vN5JLZUv91W7/CMAa6DrfU2m43q9Xr8B8n03nsEBd8aslarbbVQcEzO4+JFqVRSv9+PjyMweBWb66vVagoh3JD74EGWgPsAIH6e38D9rNVqseIrHe+S4NsJelgkxJI2EwQkDymczWaq1Wpx+0dpOxCRyjf309sUEC24Zy4YeMAkc+RzihU+v26YH8QEF5IQJ2htQcAhvNLDEL11wN0cXo1nzE7Ofc7d2u95Ep47AZn3zwvzyr1ytwJilN8HdwbwueVz7O02wMfq4N57ngbj5jPoLRJ+TS6IMU/umnFBDJcNQo+7YzhWvo3lLAkKj+V3cUJCQkLCjUjfwwkJCQk34uFmKFzKsuweScqy7J4QwsWjx2+X9Hp73fuOHntQgGRCtnzLyFqtFjMNIIOe1g/Bhxg7iTipR5/K5tE1SFJM+adi7eGM9Xo9ugRWq5WazeYWacufA+HCq5+4BiBEtVpNzWZT9Xp9q90CUlMqldRsNuN8sM0gY6ZVolarxWq1dBxgx+u8cpuvtnvrSL1eV7PZjOOAyEOI8zZ8BIW8VZ7HECgQUDgX4+I9Tuq9dQFBgblDiPDdAqRtIYGfvWXDnQKMg2tHZDopKBLSieDhBNRJfb61wseEuyK/I4mvLSr/Tp4lbYkrrB2EML92rtVJPfcE0cEdLd42wbpFkOMe5l0I7gy4L/cJLgEn4+4O8Pt20vHdNZAn8u5gYv4YD98DODwQgng+n7FwksPCv3/yItEZx6PyXZyQkJCQ8KCRvocTEhKe0LjZoYwnNRyfWOILIbxU0ktvePERofJEfCz0EAn62Xu9XmxlgMzt7e3p/PnzMcCQVoLBYCBJmk6nGgwGajabkWC4bR0xAmLpZE/SVrU4Xymmqi4pEnjv3aaiDjluNBra2dlRvV6XdEwOIb/lclm7u7sxVwBxxcP+aM+ArHF8XsP2l/lQQElbc8kcQHypsOOw4Hyen8CYpUPy6+Tare8OJ7kQZxcX+N3Xgodv5t/n98iJqp+X13luAGsJtwuk3ImtCxQIAT4mD/NzUQTbvu+Y4X37rCMPp3RS7f+4h3wGTiLMLlp5u4A7LPhvXgRDUOBcXDv33++1h6O6g4M58XvB6zlXvl3E75U7EHjMwy/zzgj/rDB/J4U8ehaFrwdfPzhPmC9fs7iSblE8rO/imhqP5pgSEhISnkhI38MJCQlPCDxcQeFKCOHykRJ7WdK9R4+/T9KT7XV3SLr7pANkWfZKSa+UpBBCdvRYJCUQj3a7rfPnz2tnZyeSZGzk5AlAJtvtti5fvqwnP/nJ2tnZia0LrVZLzWZTkm7oHyc7gNBAcho8II+qJdvrNZtN7ezsRBLCMaiSunWcsDwq9VSp2XGi3W5vJelDIGmPICyQ33EQUKGFFCIGSFK9XtdyuVS/399yLTA2J4r87kGXbr1HXOH68zsAQFadfLuLwXfhOLrXvga2LOvcc6znTpS9qsw64Z65m4D7lRcdOLbPG2P07AwnsfndBPIWfuab9QpB9eq6h37SvsF78u0K+fwBHzvX6PeH93EtnBf3jWd3cO0+lyeJEZ5zwLXQxuHrwsUXb33w9eECFWvD76ffE66RzxTChM9PvgWD1wMXOvL5Ef7d4nPAeRFaPHchn61wRnFTv4s7Ye/s9HgkJCQk3BpI38MJCQlPaDzcv5hfI+mLjn7+Ikn/wx7/vBBCNYTwdEkfIOn3HuxBvRpJan6pVFK73Va1Wt0irdPpNLoTpMO8gE6nowsXLujSpUuq1+vxePV6Xe12O7ZMeM8+4gG7MLgTolKpqF6vxz5/FxRoU4DYjsfjSBBPsrND1uiz393dVbfbVaPRiI6M8Xisfr+v4XAYt4LE5h9CULvdVq1Wu8FKDgGqVqva2dlRt9tVoVCIokapVIrbQzopJpuBcEgcFi44sGNFuVzeCjOUtqvu+fwC7h/bWBKICSnMV50hfd73nm+J4Jq5Px7ayONkNtBa4gGFgON5Lz7zwj3KsizOnzsomBuEIQ8OdYcBx+Q1TvDzuzkwx7Q0eCYHpB9BwcMfObZ/Xpg/d5a4K8CzBfz+eU6GC3f+OWBeEQNcPMg7UdzB43kmvNZFE7+vJ7kfGDNzQJuKt0+cJFgxP9KhgMM694wM/wz5d8NJgswZxaPyXZyQkJCQ8KCRvocTEhKe0HhAh0II4cd1GDZzPoTwPknfLOnbJf1kCOFLJb1X0udKUpZlbw0h/KSkP5G0kvQPsixbn3jgG89zQ+80rQEQet8iEHeCdFiR73Q6arfbarfbcdcFbOXkIuT7u3EUQIqodiIG0GJANblareq2227TuXPnokOh1+vFlgQCDCF3/X4/kp1qtRoJa6VSiaIEgYXuZiDLABGF9yCsjEajrS0VGSs7TDB3HmLoVnJJkRiORqM49s1mo2azGUksZLder6vX60XRwXcx8N50/nkFGyFms9nEQEiv/Hr7iGc6uMjgYZrVajXOFwKG52xwXeyOwPsgnk7UOQ+klZ9BfqcHt+XjfuGYVMS5JubbdxXwdgLeJx1X1j2M0F/jglReiPEtJd11wtr27U/dSeE5Cu4KOCkzAacK9/QkIcDzBu6rFcOv2YMtXRzjuPlrl7SVgcHrEQc4zn213bg4wBj8nCc5E/IZC6eNx+q7OCEhISHhZKTv4YSEhIQb8WB2efj8+3jqE+/j9f+3pP/74QzGK5NOsAhbgxRRSafiDeltNptqtVrRiTCZTLbItnScOUBbArs/HI09VtVLpZK63a6KxaImk4kkqdls6sKFCzGjQZLG47H29/ej9R8CQuWf8xUKhbgd4nq9ju0O5XI5EnW3cRO+x5aB7ohga0y3fjebzS0Rolwuq16vb2UOUNlmvrIsU6/Xu4H002LhQYDScTuG99JDhnFouL3fbe3cX5wA3rcvacvOjtuCXTW8lYL75L36+b5+f51XrL2SLWlLtGBtcJ9Go1EURzxXA/eEixH5bSJ9RwTaVnAPeOAj5+S8Toxpx5nNZltCgecEeHtCXkxgDIhykrYCTTk+14Rw4I4A5szH5i0nZEn4nPt8niQ8nNTG4ufy++btHKwNF2Uc7kbhM8QacvECh5CPwfMd8i05ZwmP5XdxQkJCQsKNSN/DCQkJCTfiZocyPmL4H/FUKKfTaSRR2NwhCbVaTe12W41GQ7VaLe7GMBqNNBqNtizR7JrgNnFIMETObeNul5YUd42A8GO3n81msWLtpE863lUi3y9OroP36kNeyUlwq75nQCAYuH3eWzioTHMM2hgg+G71pkXA+84JMKSyDUmldSGEEC367oCg8ss2mIg2VK8h4/cVEOlbcvouHFxnrVaLr3eSCyHnPThTmDvfwpCx5tsoGo1GJNoIK34OdwmwDpgzBCPaTHBOcGw/P8di/l384LW+SwgkmawM7iuihDsUpGNBhnsJseazw/aUnsPBWFjv+awDbwtxJwmfE3cS5Hc74XpxnnCPvDXIwzJ9hwl3PrgrwcVG393DsxC8xYi58V1fcL34HPr9cOEkISEhISEhISEhIeFknBlBAYKfr2rPZjMNBgPV63UVCoVYZYW0uyvAbeiTyUSj0ShW1530Qyi83UFSJONUyCuVyg0tB81mM1ad5/O5er1e3Eay0Wio3+9rPB6rWq2q2WxGpwHCCO6E3d3d+DjXAlHy9g5EBnrHIaxO5CBCEHi3dntLARVar0CTCYFt31PxGZPnIdBCImmrt9/dDMwPxJz7gyDAeSDOXCsiABVz33nAj+u7E7hjAOKKgOIV+Gq1Gu+xiyvFYjHmZDBWd16wNvM7FZwUWsicMy8eJChpS0QhIwJi7TkDiCK4ZxAxqtXqVsYHx3TSzf2GuHsLgLsaHgiMPb92EN1cjGAuPAiTf5PJZGvbUenYUYLY5tfD+1knrMG8SMDYWCe8jzXHWvGsBMbK2kDQ4FrcIZF3KyQkJCQkJCQkJCQk3IgzIyhIN9qYPSgNZ0G+LcL7qCG60+k07roAKV0sFrGiDkn2EDbpOFeh2Wyq0+lEcQLSTVUa0Hrg28tRBW00GrEFgfaE8XisyWSinZ2dSGSGw6FKpZJ2dna2rtlRq9U0nU41HA61Xq/V7Xa37OuMCaKXr8zjyPDnIVSIGCEEzefzSKwgf5PJZEvsyfeXIwhQ+eVYeUIG8cetwTnYOhExRzoOe0TIQNCBJCMQcEwcAlw364JrzZNKbzlASKClgeBJJ8x+XFwCPse8H2GAufHzuuXe2wS8bz/fduAOlGq1GjMiEA6YfxcTWIO0tDg5Zi27M4P5wHmAMISQ4eIKnw+EGtYI4hzrwt0fLnLk2wpc2PJ2CB+bH8vdJT52P46/jzWEcOjigzsk8m0kjOcs5SckJCQkJCQkJCQknEWcGUEB8uJVTg9LdOIGyfHeauzX0+lU4/F4azvJ8Xis6XSqVqsVya5XKmlbwA4OScV6D5nzqjWBf3kCTvsALQFkEoxGI02n02jdX6/XunbtWhRLqtWqlsvlDW0FiB+MlXN5zgJj4hq89186zgaAvHs7BXM5m83icfLtAe5mgNBDABlXq9WKAZYehgjh9RYC3Au0nEA63RZPa4S3Dni1vFKpaLlcxvFzPNaOk0HmDZcF4+HeeU7DfD7XdDrdmgdJW/ee6/Z5Aif147O2nbS6CJDPgGBMjNtbQPJCgHRc8WcstP5wPe7IkLQ155zPWwo8VNPdIr5tKOKHi0feNuOiAeC8uBJ87nBVcB9OakFAmHCh5CQhwXeqQADJi0IuxvhuH+5SYH4SEhISEhISEhISEk7GmREU3DbuJAQCUKvV1Gg01Gq1dHBwIEmxGg4pQDwgaLDVakWCCtGmIglBGgwG0VpOhZ5zQWiohlPZ9uwF2hG8RcGD59xFgVAQQohb2IUQYjijOwe84s+WktjraW2QFMdGwORgMIhiBESWQEecEp4V4b34kmI2A6+l+h/CYZgjY/BgO88akI7bCiBqLkBw3/IZB5JilZv7yRhZE/P5PL7Wd0bgeW+D4XHuFTtD5FsU/PjeluLHzLsuILZ+vawPRIs80XUBxjMO8jtf+Pric1Gv17fcNU7EmWOEiWKxqEajoUajsXUc6TinQjrOTGA+T7L4u/PFXQIuguTfn8+p8M8DnzkXULgedyJwXt6bFz/y4gLvZa15GKMHVPpnimvxz6e3qXiOxC2wdWRCQkJCQkJCQkLCqeDMCAoQV//j3avRtCGMRqNIMorFoprNptrttkqlkg4ODjSdTjWbzbSzs6NWqxWJWP64kBvcDIgNhCJCrD1V3vvyJcVKJwTSK+ve/+/VZoIbe72e5vN53KaRDAGEgpMEFkj8YDDQaDSK2yUWCoXobPCq/3K5VKfT2eqB57og58wDlW3698lq8CBBCB1tAuQSYI/3NhIfM24PqtBkRHj44WKxiNsXMte+zSHV5HwLAQJLfrcIXCYQShc5mDevYPMaMjS8R59jupDgxB6h5b6EJSfdkGOcFR7uyJzgJMGNg6CQF6pctHD3h6+dvODFfcF144TdW3+cvNPuwnOcj91CEMbyWy8iuLmghmjXaDS2gjeZJxcIfAtNn0vPHuGziUCB2MWcuohYLpe3hELuqYshLk6e1EqRkJCQkJCQkJCQkHCMMyMo5AkLRKJarWpnZ0c7OzsxPJDnm82mzp07p06no1KppOvXr8fq8t7enjqdTuw7H4/HkfATyjidTmOlHNJRq9VUq9XidpHYvN1ST2W22WxqOBxGQku4H1VuJ/ar1SpWTiHKED0IPWQcYug7KEC+ptOpJpOJptOpdnd31Wg0brDZOyml7QEyzLVDeBFgIKy4IRBJnKi75b/VaqndbqtSqWg0GsVWAbIrIHb8gxx6SGGhUIg7WrBVJQTfx+zXBtmD+OF2cOcB95i5JuvCq/V5ouhE37MgGKfnO/CP1gjIq48j79rgnKwVv8esEXdsFIvFKIbRbuOfERc0EHB4rc+xk2Ofd5wPZGewJvkcMP/+2cy/HweQi2wu/uTFF/+scy8h9y5Y+XN83twh4qGNiAncs7ybyMeMAOL3wjMmcKN4u1USFBISEhISEhISEhLuG2dCUIAUeEAiRKNer2tvb0/nz5/fstpT/WSLwizL1Ov1osuACjU7NfA6CCy7R3gAH2GKBCwOh8NYVaWaXiqV1G63Y4V4Op1uVZg9AFLSDa0DVMMlxRT80WgUsxbYItBJo7dW8F7vm2fe8pb4PLGC3CJQ4K5A7MiyTMPhUJPJJFZr8xV3CPPu7q729vbi/Po2h5LivXKrPuN2azq7dyACDIfDKCp4WCH3k1BCdyxwPN/q0+3tCEnlcnkrmNIzItg5A/KOcCVpizAzDuaNcXMMXAVOzBGUEA5cTECsIIiTdYMQxPi9FQDxhxYN5oC8D8bs9wUwl75jhAcUco9cDHExyYU+RC5/rYsC9/VZR9jy8xD8mc9JcBcDa9rFPcQH8lVwROA0YW14LopnT3D/mQPfBSWJCQm3MjYf/xF65xcXHviFCfeLbB307C/9/dMexi2D0uXb9LZvu/0RH+eZP7hR4bfeeBNGlJCQkJDwaOPMCAoQCogYBL/dbqvVakXiCSCL9Xo92pg95A7ShKW7XC6r1Wqp0WhIOgxVpLIOQarX65HITSaT2EYACaWNYmdnJybeOymhSr9ardRut2NPvSS1Wq2t0D+/ZtwAvo0logCEsN1uR1s+uzZIim0G7mLwyjItDf44P/suAogb5E946CXCDeOq1+s6d+6cdnd3t/IcPPgOMYFqPWDcvksD1eMQwlawZL4vHoGIeWfuPWCSeUA4Yn7czu9rjPuA44QKv5NYD7NEMABUx70VxKv+kFN2QsiyLF47x/H2D0QgiDEE2qv+nl3gOR887yGeeTs/rztpe0tvDcgHd/o2l6wJ3AkuEDAu7p2vZcaCuMN1uGPHW164PndnME53quSDU10I4Bycz0U6js3a5Xfm7aRciYSEs47is56uwfcFvejim/TLtyVC9kixzjb6+F/8HEnSXe8+r2d/xe+d8ojOJkKppNHPPUXn62O96wN+8BEf75996PP1u1efoe5XbbR617sf+QATEhISEh41nAlBQdKW7RoxodPpqNvtqtFoxC0G2UGAajAtCl79JwcB1wNVYa9Sj0YjjUYjbTYbNRoNdTqdaOFeLBaxrQAiCCFD3IBoSdoib9Pp9AYChpjBzhME8kmKgYr0mXtmAQQPssvrIEyz2WyLrEmKDgnPQxgMBlFYQfBYr9dxS0gC7GhZcEGiVqttCTHML3PZaDR04cIF1Wq1KEqQK0AYJPcLcYPrhtx5/7+TZp7HmeA7bXjl3YlrsViMbhSq195Hz/y44wLBCUEJks55uFfkTkDCIaleRafajVDj1X/fVcPFEenYko9zxK+fMfgceTuGk3hJW1s75vMF8iSZ5yHQzB9rivuDCOLtGswDrgjCRL1NxlsL3EXh99FbbLgOd3t4awSCgjtn3AnD5zcfWun3CXGGY3umhQtpnrWQkHAWsf9zz9ZHXXrv1mMXKm/Xt1x46ymN6PGHYijotz/sZyRJ7/3gkb79DZ8Un/uD//AR2vmvrzutoZ0JrH7lKXpO914VlOn7bv+Zm3bc77r8h9LlP9Q3/+xzdXXR1u9+VBJ3ExISEs4qzoygAMnxIMZWqxWDFdfrtfr9vkaj0dY2cBCgQqGg8Xgc3QYQA28jcKs4ggJbHrbb7RiYCOl0qzpVcsg1ZJ4KOGGRnIcWAnaoqFQqWzsI4BrgZ8iah8IhsDSbTXW73RgayHXjeGDeyIWgxQMRYjAYRNEAQYbrgxhz3RDs5XKpcrmsTqejvb29mEdApkWr1YqiTavVUrlc1mg0itfdbre32kvyrRf8I8OiXC7HNolarRZJKG0oiBi+Vjx3QDomtLgiPBuDKjdEM79DAefIr0PO6XODIOT9+lS4OQdkHkDwIcAQXMQXCC5j55iIWghUTnA9Z8NFiPxOEl7lz+/ywHgRj1i7rG/mjjF7joa3muRbY5g/RCTEHa6b9cqaxp3gu4e4COFrhpYizoGoyPUhKDB21paPHcGN4/k2oowfZ0NCwlnDn7/6+fpXH/0avaT1erUKtdMezhMGTym19PLbXx9/f/23/L96+7+4JEn6ic/4WK3f8RcP+9ily7fpb//acWvFv3nN5+oZX392xYq7fua5+voP/iX97fYbVA2P3vck4tgvPXf+qJ0jISEhIeGR4UwICk4+vL+ZCiWkfjQaxZ0MsIVfvnw5Vv8hEiT/E5rnNuj1eq3BYKDBYKDJZBLbJpyUjEajLQLEMamQS4piAiTdcxMgJC4oIAA48SuVSnG3Bir+kEOEAsSISqUS0/Zpuej3+1vtDLRpFAqFGJjIjg3eQuHkr9VqqVgsRmcCFWBaK3BuIGQg9HQ6HXU6na1j0uJQLpfVbrfV6XQiOZ7NZlsp/hA1d39Quad9BFHDiS8tKZK2BAqIObtmeCimiwqch39U0L3dwFs3uNfcLwQJiC8CFdcAqUWM4jEEHdY799XDDHmONgAEIw+LZCySIhl3l4cfy10U3tLgpNnzDqj0u3OEefHz5wMW+Vy5yJcXN5zc81nw3T48u4L1x2cIJ4SvAz6HCHjuUmF985lyZwvrnvd72wT3ipYkf11CwlnAe7/5Y/Tjf/979PTy69Qt1CUlMeE08cJaUS+sXZMk/aVf+TEts8Pv4PeudvWfPuDZJ77nzv/nQ/Rjf+nGloBCyPRhleP7+emf/5163+fevO+f+xvTQ8E7vvuF+ukX/3s9q4yY9diIrucKqwd+UUJCQkLCqeBM/LWc71OmB77ZbMa+euk4aA6ygbXdLfuQVggpafbL5VKTyUTD4VD33HOPDg4OIpHEFdBsNiUpng8SRNuCExrcAOPxOFrhvU87X413AaLRaMR2jMlkEq+zXC5HBwFjl46t4/TfNxqNLbv5ZrPR9evXt4SPdrsdq77Mj1fR3QoParWaxuNxdHRwnGq1Gp0EjUYjbuF5+fJl1ev1uPOE3zMEBQ+spH0Et8d0Or0hoLBarcY2FdotIPpOVH0bUCe+krZaSorFohqNRpx/79+XjoWBer0ed5twwowokQ8pZM16OwJrg/vsrRMeEIgTAAHJz+M7NEC4pe0WEYQ3d2cwDx646aGH3irjggJiHfebufVWGOYW8u/iFBV+nwecOu5GoBXCHSCIFMwF46W1x90OnjnhzgxCFhFvvL3C55o1yDz6/WPOXHRxESkh4Szg3q/+GL3ppf9e1VA97aEknIDnVurx5+dVJ/r4953sLmiEP1D5QdzD88Wmzhcf8GUPGj6mv/fOF2v+CVekBxs8G4Kuf+kL9av/6rtVC29IazAhISEhYQtn7q9lyAckQ9KWHRpiWigU1Gg0VCgcbt939epVzedzdbvdGILHa+bzedytYTqd6uDg4IZwQ0mxd9yFA7eiS4pkd7VaxWMWCgV1u92tireTGsQHrP+QRrezc62z2UzD4TCSPUjd/v6+1uu1Ll26pHq9vkXgqKhKioQf0QDC5QF46/U6ugmk4/R85hwh4clPfrK63W50YND6UavVtLOzo0uXLsU5kbRFDrvdrlqtVrynCA+j0SiGPnIPnHhC1hFGuMeINm5NB7QscAy3rHsOAWPEReG7Cri13UUgBB7mSToOn3QRALHBK/UOd2a4y4XnPJCUKj0/s648NyK/A0FeHIIcOzxPAJdAXgg4aQcFxAR2tsi3NLgjwv/LjiusZdouuJa8E4T7504VFxO453we3V3AnBJQKimKiTglgLsqfM356xAQ3RGTkHCa2BT1qFrLE24uDh0kZwuM6TUf8IvSXdLTX/NSfeDXvEWb2Vza3Pj/LUnK/vLz9L9+6lWS3ijp7F1TQkJCQsLp4wEFhRDCD0n6DEn3Zln2IUeP/TtJf0PSQtI7JX1xlmW9EMLTJL1N0p8dvf31WZZ9xUMZUL6q64F5HrDYbrdVLBZ19erVGKAIufDUfFoFJpPJlrDgie7S4S4MFy9e1HK5jCGGEH+s5RAQwhchm5APSBxVXg+R4xhYqofDocbjcRQt5vO5rl+/HsUOnAjT6TSSX0kxcHI+n6tWq0WhQlLsE8+LKBBm3yEBAsrOAxBDSB1ZEWQ/+Pl3d3f1pCc9SXfccYfm87mGw2Gs5rJTgrsV6MmnggyR53632+3oqKAFpFQqxRwG5s1JpbsI6vV6JMneOgFB5D65UOFrDELLuoHg87x0vDsEAgSE3C35/noILqSbeWV+8mF/nJfzeDgl1+2k3wUFrslFBBddmCvGAHxrTkQLdxuQXYAgQAsGnwtvJfK2CoQWBCsXUBg/bR/SsUDDcRET3NGQbyNizDgLfEz8azab0fHin1McRB4a6fPEtXvY5lnAY/1dnJCQ8PjGX3zmK6XPlD7sO79KT/6pw3DP1fvukrJMpSffofVtu/qln3rV6Q7yjCF9DyckJCTciAfjUHiVpO+T9MP22C9L+udZlq1CCN8h6Z9L+oaj596ZZdnzHsogIDKQRkLqIHWtViuSX6rr7XY7knBIjO/sAOHAcs8Wkf4c/6US3mw24y4FVJr5WVKs3kOcFotFzDrgOYi326tptYC8ewp/rVbTer1Wr9eLwgiEC2cAYohXcLmO9Xqt8Xis9XodCXypVIpiwmq1uiGQrtlsboU0TiaTOB624Tx37pxuu+22WC0no4B/hDKytabv7OD/IIfD4TCST5wKvAdbOiJQvV7f2r7Q7fCIK9yTvNMCN0Sz2YytL6wtzxSQjkk3Fn7ORWUcRwE7g7ig4NZ9ttX0XRUYjwsnvA7xCQECoczJvaQYTum7EHBcrp12jzy8TUFSJN/S8a4kPO8tBC6OcD2+c4XvXsGx8g6b2WwWj+HZBdKxi0VSXJ8u2vixcBl5eKYfh+tEoPH5Y025gOJOEnex+GedINC82+KM4FV6lL+LExISnnj4o699ufS1hz//1S/+MlWvz/Ta1/zI6Q7q7OJVSt/DCQkJCVt4QEEhy7LfPFJZ/bH/Zb++XtLnPJJBeM8yVUEIY95lwK4OBAlSnazX62q321vbGfK+g4ODSHqd6EAaIbHVajVa8j2vAbJJuBskz3dKgNj57gscn9d5/znkqVKpaDAYbL0eTKfTGB65WCx07ty5OFer1SoSc1opvN+bsUOyfHs8bOAEXDI3VHUbjUbcuYFQx8VioXa7rZ2dHV24cEHdbler1So6LahIIzSQf9BqteI5PF8CIabT6US3iQfvQeYLhUKsZDNvHr6JcAHZxF1Rq9XiPWSNQGY5F6IVx/MWEWnbGu+OAN+m0Z0w7v7gHrhQgWvD+/hdvHI4kSZbAtIM6XVHg7sNEBh83Hy2fPcHPl95x4W7V5h3b39AnHEC7+4R5p258rWHOESIKmPjvzgdOC/n5npcpOFauafkc7BmPPSS7Sq9tcV3myDAlTUQQthy0pwFPBbfxQlnF80rG/30qKO/2Rqc9lASHsf4tf/y/z/tIZxppO/hhISEhBtxMzIUvkTSf7Pfnx5CeKOkgaT/I8uy33owBwkhRBHAw9ogCr1eT+PxOAasrddrTSaT+B4EAazyVIypUPvOBpLido8Q7J2dHVWr1eg6oHLPrgmNRiMKFhzXw/ectBIaKSm2HrgVnWvESt7v92NlHULtxyJwkhaIcBRU2ev11Ov1tsgQpBuiimghKZJbzgGplw7JGeQcQs4cj8fjKIA0Gg11Oh1J0mAw0P7+fnQb+LaPzWZT7XZbrVYrtm1A1CCJ7CLh20S6qADR5Rpms1m81kajEdslCNOUFO8nc8u8IE7gaED8GQwGsUrP2oCI87sLBaxLRAj6+an2Q4rzOyHgqqnX63G+fZcDHvPWCQ9/ZO4QSFg/+ZwH3uvzzHX7GF1o8CBICDqtMu648PYQnuN5RD5JMW+B93imCGIh4/U2DNwv5I74jhZ85t1xgZvJ5xtBgTYYD+IkDJXz8rkYj8fRGQTy4sUtgpvyXZxwNrHzR/v6v9726fqbH/UTpz2UhISE+0b6Hk5ISHjC4REJCiGEfyFpJelHjx66R9JTsiy7HkL4S5L+ewjhuVmW3VBSCSG8VNJLj35Wu91Wt9uNVV/s8pvNRr1eT8PhMJJ3CIdXSCF1kNlCobC1lSTWcumQIPb7fQ2HQ3W73a33eL4Br280Grp06ZLOnz+vEILG43FsQ/DEfVwB8/k8ElbcCYyVnRpqtdpWWCOEl0oqJIlzrNdrzWYzjcfjLXcCdn4qrRBU327QSabvLgCp5Hy++wDnm8/nccw7Ozva3d1Vs9nUarXSeDzW9evXY2AkwYiEOnY6HTWbzTiPVNQRJ7xizL2liu7Bf4Qo4uKAeOJM6XQ68ThU2ieTSRR2sNhTIWeLULIwqESzG4RvZel2fAQeh7dkSMeigDtNarVadGLg0OCeOtGGzAO39zuR999p6QF8fvz3fEaEBxHyXwQhvxbezznyDhI+i/kMB2/7Ye2Rh4CgkG9vkBR/5/U+N4yRMXkLh18vY+E5xojIgIDB+mEdA0SXfOjlWcfN+i6uqfFYDTnhIaD4nGfprm8t6s0f9eOnPZSEhIT7QPoeTkhIeKLiYQsKIYQv0mEwzSdmR399Z1k2lzQ/+vkPQgjvlPRsSb+ff3+WZa+U9EpJKpfL2e7urur1eiQbVA/po4bksVMDCfJUayEYjUZDjUZDy+UyEgWq/BAc3AfT6VQ7OztbmQL7+/saDAZxB4ZqtaoLFy7o8uXL6nQ6ms/n0RkwmUy2qsG0B1BZhZRDpiDxjJn8AUIYj+Y1Eu3hcBj70dfrtQaDgbIsU7vdjlswQr65PsiQV2alY8IOufT8B5wJnJfsAYgdz+3s7KjT6cQtHweDQRQ1IPeQUt+Ok/O6oAJxhaxCit06z++MuVQqbZF+z79AfJKkfr8fRQLWBQIGY6pUKhqPx7HNgzHSwuLtJ4g9pVIpujWk7Yr6faFSqWhnZ0c7Ozuq1WrRTUAmgYtkXKu7TOzzIunYZcLPTn7zYoJvG8nnyomy50nwet+O0VsyeK+3JfhOCOQVEMCJkyAvDiB6+TX7uGiHwdXj4gZjZNz558ip8LXFei4Wi7EVh3NnWRa/IzxU0s/ha/Gs4mZ+F3fC3q2lpDwBUHrG03T1u4Pe/BFJTEhIOKtI38MJCQlPZDwsQSGE8Kk6DJz5+CzLJvb4BUn7WZatQwjPkPQBkt71QMejeoil23vMHcvlUqPRSNPpNBI5J6XkHFBJhtQ6OUOQ8Cp0o9GImQxXr15Vr9eLZL1Wq+nixYu6cOGCSqVStPkTsph3KEBeyCigAg6ZooLL+Waz2RZ55Xp8nLQfXL9+feucLmZgn/fEfK/EQ8AlRaGDXAMqt7QCQPAhed6+wPPD4TCKL8vlMmYnuM0eIYBxYlH3qjquDoi8k0G2l4TUYmNHtKH9ABLJ3I7H42jZd4GDNgkXYXxMHjro1+CZHrTcEATobRL87iJBs9mM84Zg4evA76OHLnq7Bv9caHARyUUCn/e8ZZ91ymeFe89z3obDY4wlL3x4u4G3+yAu+dwgoLhY4i0kCAzs8sF98M+/Z1wgvpHbkd/dgrEjHLEOaOVh7hDUXKhiNxL/bjnLuNnfxQlnD4sn7ej3PuJVpz2MhISE+0D6Hk5ISHii48FsG/njkj5B0vkQwvskfbMOE2yrkn756A9utsL5OEn/OoSwkrSW9BVZlu0/0DkgQF6tz1uvl8ulhsNh3JGg3W5H+zWEqtFoqF6vx1YCyJL3qUPCPPAtyzINBgNdu3ZNBwcHUUwol8s6f/68Ll68qG63G1+HOwFHgKfmQ2TyOQuQFarr2PJXq9VWVRXS5YQfsjubzdRqtbZC8QCEDhII0a7VanF7Sq/MQhoJT/T59r58CDFZBZDi4XAY7wc7b0DsfH5pvcA94iGPzIMTO98BwW3uxWJRnU4nEk/m2VsNIOmckxYCquj5HTpcvCAgELjd3ucF4o1LhDmHtOIOYf65X37fEWtccPHrhfhL2hI7WEes2XyQo5Nob90ACDMct91ub23diMDB+vUsDl9jXJuHjDI2b+9hnLRWAN+xgrlgbviMeLsOYhHrmq1hESJ8nXjGgrdD5VtjyEnhNcwn68CdMWcFj8V3ccLZQ/mt79Fzfugr9Wdf8orTHkpCwhMe6Xs4ISEh4UY8mF0ePv+Eh3/wPl7705J++qEOAos9QW4QOU/LZ3tEnAcQRNohSqWSOp2OSqWS9vf3I9HLB7l5JZZzc9y77rpL/X5fkmIVt9PpqNVqqVgsxoBCr7ZCfHz3B8YMKXc7P89RpcaOD7mFELN9pe9EQP8/ffgIH35cHzu7OfA6772nClutVtVoNFStVrfS+Zmbcrkcd9BgNwbEgMFgECvz9KJPJpNYxfdqL0GOzJHvpEEqP8F+3BtIsbe1eB89RJLjLZfL6AiBiOK6QFxAEKElhBaYk+CCAuPlXnFfvTrvwpJX0yGxXqln7BBijuFtC5Baxoww49tB8n7uA58bFwGA77zQbDbj54VqPWKAz78Te8bJuuJ53w3CwypDCJpOpzesT6/6uwuCdcocsTaZW36XtCWWIDb4Md1l4K0ZOCJc9LivdeDOobOAx+K7OOHsYX1woAtvuqXCQRMSHrdI38MJCQkJN+Jm7PJwUwDZylcGERsgipK2qu+StsgGFnJICNXqVqu1VRn2pPzJZKLBYKB77rlnyzpNTzbOBAhUPgwO0uIEx50T3r5RrVYj8cJyT6U4T4xpL2DMZB247R+iPJ1OY+4BVWQnz9jbOQ8EvdlsqtvtSlJswXBhodVqqdvtiowLSVFMQIjx3vjRaBQrzQgVvq0g94PrR0zwrR49MBIyigOCfA3f2cGJrbdDOFn3MEPWkZPifDUaYo6IwRwiKHB/yuWy2u32VpWde8QY3EkCgfX1iSiEWOD3HPGAdcf9y7fyeLYBbg3PglitVpFUIxD5fUGw8F0VmH8XOLx1g9eQBZIn8pvNJu6S4mGVjMdFAXcMcS2sd84D8fdQS3duuEiWb4nyVhAH6wPx0YUJb0NJSDhNtH/uzfrgD/oq/clXvvy0h5KQkJCQ8BDxzu98oX7oJd//qB3/S3/qK/WMb3jdo3b8hIQHwpn4aznLMg2HQ2VZFiuQVC0hOuxm4EFzEIV6va7bbrtNOzs7Ojg4iCSOlgK3XztRg7zdc8896vf76vV6Md+AqiZEkQBG77+XdEO2AKTWq5/Ssc27WCzGbRal4yo4VWau263vkCV3ZCyXS9Vqta2MgRBCDLOkMg3RIzCvXq/HKrp0HCw4Go3i9nmIHxA6gi6xno/H47iDBm0ZtDFMJpNIgovFotrttqRjxwb31sM3G42Gut1urPB7fgME1Hc54N4wvxBUgvwQnHiNdLyDgFv0WXuefeBri/njXiBiMce4HNiiFGHAyau3SzAOzjefzyPhdUHFsz94r+/CMZ/P4/2Wjsm/z5e3VAA+K+12O1b+uQ6EDeYEMu2CC44L2jpwNLgwwTorFAoaDodbrTQ4RxiXr0PWPc95K85isYhCBiKMuyL8+rhH3lYBECyYO89l4DieM3HSMRISTgOb2UzlG3LhExISEhL+v/bOPkaytDrvz1tV3dVVt766Z3p2emdZWDAkJk4gawKbEDk4sWIbO2CkWIag2FGsEDtGSRyHgG0pBtmWYmwgUWJhY2FhbGISKYmzsRExRjg4sjAsZBcWMF42LNnZ3Zn+ru+u7q6++aPr9/apuz2fzNTH7nmk1vRUV986973vvernOec8Z5ax/Q//qu5/+y+qnvu0yrnF2/Y5D73x36n5hv0r/vxPBuf13hd+0237fIdjJv5aHg6H6nQ6seJAOhmPB9Gz1Qu2tSCXy8U+f/rlkyTRcDiM0yBsWwCkHzKLcWK3243ZeWtAR6aVDHU+n9fe3p52dnaUpqkqlUocJ2kFCciebbOgH94SasgwGXiIGi0DNktOdlbSmFhhs/1kshcWFtTr9aJ4QcbWtnpwnCyxlBSPQwUDhoYIGoywhNwuLCzEzL/NppfL5XhM62XB9WXEJNfCXlt7vYkVMm976PGEYJ9YEmsFA7uX7DERBGivwPQPkYDWj2KxqEqlEq+pbb+xhNwSeWs8KGlsb0DSLQmnUmFxcTGuM2IG+4eYOD8rVlAtkvUtkBTjtxNUEN5s+wb3BvcL6443A/eJ9b5ATGDt7fmyfzmmrT6x9yXXA9NLJjRwDbPryv2wuLgY9xCTRqy3BvExMcbGQIxZE1G8KOxYS4fD4XA4HI7rQe91r9CnfvaXlQ+V2/5Z5dziVQWL7yt09D1PfPa6jtVL9/UD9/yNG44hPbiyoOF45mMmBAUIIYQWAgOxkk5IiyXjZO4rlUrs64ZM0BO+uLgYf9f2a0McQwiRtEmKWVJMBO34Q0q9m82m9vb2YnY9SZJIhk8jrJa8SycZ+m63q2KxqDvuuCOaLPJZtBJAMK3RIZMput2ums2mOp3OWO+8zQBzrtZvAA8EyNLW1pba7XbsLYdAJ0kSia49FypK2u32GMm35eoQcLvulkjbnnxEA86RChHIJt4a2RYSW93Bz8hkZycWZKtaqKLgWhOfJcBcA9Z7aWkpTrIgPkQw9psF626rIey/lPXbqhmqHux1tH4iGJeyh6xnAcfk+AgoliDb6grrW2ArErIVIny+FVjsWiPksca29YSqGtbGTqWwv8M+5XxpaSFGzEtt+0R20gT3ot1T9r5GoLO+JHZvcM15jlC943DMAvL7qTaHXZ3NJ9d+s8PhcDimgxB0+Dfv1R/98q9Kmh1z54WQv/abJNVDSR/9+qdv6NgXDzt607e+7mbCmhqOdnaUGt+4WUB+eVn6BitjhxsbtyiaG8PMCAqQI0zsyPxWq1V1u90xx/mjo6MoPEDy+MPfGulBaKUTF3tK9SHu1lyPKgAmGmQzqggfkBxM3qzrPGQP7wXr+yAp+iNg2GhbIcgGE5slSLbfvl6vR5JGmT8kiuoECB3nDvG0PhB2pCSfTZa5UqmoVqvF8nHOjcqJXq+nXq8XWyEQLPCEoFydOPFnsOTZEmFIo3Xnp+qBa0qskGGAGGCnbJyWiZZOKiMg14gMtHrYDDv7gTg5T45N7FZMsBlta+hnS/OJIwsrQtm9hCiWbQmxHh4IcMRkRQXAPrUCnp3CwDXk96zZI9fe3lcYLtrWGzv5BHGGtbITHSDtXDOuhW0bgfQjMllfDIQE6ViYaDQacXQpAhN7SlKsZmFvsedtjNaEMkmSsYoph2PaOP/hP9VfecmP62uved+0Q3E4HA7HaQhBh99+rz7+m6f6dD5jcVehoo889LFph3FDeNnP/KjO/fEpQ1f2DzR85DZNdw1B+Re/SGkIChl+Ikn3fuhL+rlzX7jpw/eO9vV3v/PvSweHGv7Zo99IpDeMmRAUpBOyLikaLJ49e1aVSkX9fj+OWRwMBpG0WfJryWE2w02GmMw8WVZr4GeJDqTcihFkM8nMQ3R4P2aD0rj/A5lXSsVpE7DnyvlDIMm84l+Qy+UiibfGdK1WK05S4Hyt+aBtb4CMkpVPkiQKD1QAUGpOj71154dg7+/va3t7W1tbW3GtMZoMIahcLkcDR5sJ7vf7sQUl64tAJhnSSHWDFWNsb7utBLCCgSXk/J/sM/sLE0XINOcE4bRZcAi1nRphRSKqIGgBkE4MOvlMS/xt5t8aIEKA7VhIvrfVCaylneaB4ECFjl1Tux72XIjDthJA7ImXc5AUPQswZbQeDQiAdmoHRB3BgFisSJJtd7BVDtxn3PdcF+4FWi2oIiiXy1EEXFpaelo1kn22sO9spYQVQiTFz7ItQg7HtPHED36zvvYaN2V0OByOWUWuVNLHf+vZJSbMKx54x+mjmO/vlvVvf/S0YS7HWPyjh5VeYTqcJOW/6R7tPW/l1J8dJnl98r23LylQzi3qIx/7T/p4P693vvGN0qc+f9s+K4uZERTsH+65XE6VSkXLy8uRYJCh571UB9CSYIUEyBDCA9lOSCsEaDAYRPIOacTUzU5d6Pf7UVCgwsGWyNuy9mwGmKoLjgNRgggyktIKFFZUsCP7IGFMU8D8Ef8FWw5uBRXaG2zLBGX1kHmIFsTOknL65VmHVqulg4OD2GpC5UipVNLZs2fVaDTGstatVku7u7vRJNO2TvA5trIEMcdeszRN46SPrIhgj8E6keW3lQqcHwINIhDvwyeCdbLTIFhfrivHtVl0KmswTqR9gSw4FSX2OltDRV6zUwesd4H117D3DbFZ8m4Jtd0XtvKC2Gw7j20DwV/BVm8wEtR6U3B/Zn0TbIsJgh3CBB4JCG72nqOtw06aqNVqSpLkaSNUERE4B9YL8YQKHkwWadexAmCaplHkI5ZsdZLDMU0U7rqg1l/0/lSHw+GYZWy84SWS/njaYTi+Abwm6ek1H7yyKPSSX/gnWtq+8t+GB9+/rc+9bLqi0t8qDfX4Bz6qD77572jhD67PO+MbxcwICpBLCAjZeUgOf/BDbCArkDjM2LKj4iCItizckglr3menO0DADw4O1G63x/wWaGlg+gEkS1LMkNIaQBl/v99Xp9OJBni0VqysrESyRTwcy/Z2Ey8kCd8EMsSWNEL0LDnOtgBAAG0GnM/PehVA8lqtViTUNsPc7/dVLBZVrVZ15swZ1Wq1aJLX6XSioMB5Qyz5PMirraggEw+5hUxzzbOVClZEWVpaGjO9lE4ECzt1w5bTQ2ataSe/z/oSE+SUa4GIZA0dOTc7sYHfgVRzHQDrw+eynyWNVbxY00omWthpEjbbzmvZvcC+tZ/NubHnbEUPQlM+n4+VJrZC4+joxPiT9bBVMnY9OI41W0XE4nOtzwStP8ViMYpo3H/WvDGEEFttmMpiz4s91Ov1xqpXEBcxF2U9rUjicEwTzfvu0tde/avTDsPhcDgcV8EDP3t61tvxzMFDb52PSsF/UFvX5fd8Uh/5qW/X0v+4MU+Mm8HMCAoQ3oWFBdVqNa2urqrRaGhzczN6DkiKWUlLnG25f7bkH2LJe6xBI+8ng0m2F9JjjdsgLPgvJEmis2fPqlarxUwrRC2Xy0XCLykSGaobIPFMpqCkHCJs3ehtmX+2UgD/AruGEDhbfp414+N8WBfOFQLGpArWh5YFssbEDylP01S1Wi32sVMufnh4GKsyWA8I6MHBgUqlUqxksL4IfE9vPdcLo8xCoRCrJKwIhc8BAgREGnM96wfBeVIpwvQOfB6yfha2YsKKAZbgEwsVAghTvG5FB4is3fuW+NvKAfaEHWtpxS87DcO25yBOEJsVoKiMYQ3YM8SeJdlUweAfwjH5HcY85nK5sUoUK4ZxTvaaso+4Hnwm15MJDtwbPAOYemEFN4QGrqVt8eB7qhH4bNaLdhgECq6HFXwcjmmg8Ly71Xxje9phOBwOh+MqePSX7pP04LTDcDgi3nrmEfV+blGfyL9Spd+5vaLCTAgKtnWgVCppdXVV58+fV71e19bW1li2GkJke8ltubztI7cZRvu9zYRDOCwhgahDtixplBSnP9TrdRWLxdjGAHnlMyBn1oSRc4QUkXkGkCo7tg+iy2SIvb29mDW3Jf+sES0UlOYTky3Xty0UkLu9vb1IFi0ZZq0po7el7lSEVCoV1et1VavVWHrf7/e1s7Oj3d3dWKY+GAzU7XZj5plyfoibzVxbIg6pXVpaGvMB4D1UGdixjJDhJEnGPos1pk2B6hMy18RhBQWEE4g8BJ8qh6WlpehjQKtDtgefknzOEdGCvZhtI2BdaM+ABJdKpTEjT1vJAmnO+iLwfn6/UqlE4s/esKaZxGSFDStS8XP8D/AwQAxDCLE+EVb0Y405TyoKsqIe64oQwN7E64JYuI5UK7C+fNnYB4PB01qpQgjRVwTRyT5jHI5pYf+uFX3hFR+YdhgOh8PhuAo+8wPvllSedhgOxxjesfpF6R3SHx6+Uku/e/tEhZkQFCRFQ79Go6EzZ86oXq/HXmjINBlqyAEE5DQHfdtvbrPikAprFAfRtmXmEBFrJmfN4SjrDyGMZcsxYESEODw8VLfb1eHhYWyRsB4QED47ycGa5kHiqXBATLAeCDaLLmlsakOtVhvLWgOOQbzZnnUImqQoNNgRhLVaLa4V4kCpVBoz/+t2u+r1epEg2tYOxAHOj+OSibb+BvgSWMJuDfUQHCDarEuSJJE8k2FHnIH4kulGTLD+EpT12/J46wlg2x8ov7eiDsSUPWkz8tn2As7fZuwtCUYgoBWI6gJL1K0oY003JcXMOwITQhGimTUKteaRVlSSxkd3sl54aVBpwnXhfYhCwLZx2NYKyDx72Y6NHQwGUVAgDkQG9jKmjlZsssagnK/1O2EflEql+PnsSW95cEwbhbXzuuvdX5l2GA6Hw+FwOOYU71j9on7x3+zpEz/x55T+eENHD37pln/GzAgKZDlXV1e1urqqM2fOaDgcqtVqqdPpxBJySZEEZLPJEAAylGR2pZPMP+MOs5l95txDCm1WHkJOZrRWq6ler6tcLmswGOjJJ5+MIxTt1ABID+eXJIlqtZoGg8GYz4P1FbBl8PacbCsEveoQawhQllxS4t/r9SKJtr4ErAvEjp78er2uM2fOqFQqaTAYjJnkES9VFpBh2waAEEDGG48LhBVIM6IOlR0IFHt7e2Mk1Jpt0n4BAYd4MqoyhPERkNb5H+EEgQqBh+sNKbWCDMTSZu4RmFh/qh9YS1oBEH8gtYgPtIqwNy35tUaavV5PksZGaWYNQxGTOI6kOKnD3iPEwb5iYgp7zlbJnCYGWD8KK6ywvrbSxQokNj5bRWTFCyoG7AhV6wtixZUs6eezEPqsXwXVCvv7+9HngYoSSXF/4rvA71rR0eGYFnLVql71sUf0lpXJjn5yOBwOh8PxzMJbVh7VW1Ye1a/8xwu6uL+iz71qRcPd5i07/kwICpQbnzlzRisrKzp79qyWlpa0ubmpVqsVTeBsn7gdPUcmHeJsiQbk4PDwMPbyQx7xOhgOj8fckQGHzPE5GLnRe16r1bS8vCxJ2tjYUKvVkqRIfmwPOSSxWCyqUqnE84W8WjEEgmonVdjybdsmYEULS9Q4F8gYRM/2gtuSdsg01RnValXLy8sx1na7rV6vF70jrKCB2WR2BB//InBYMz2bgSbDDWG2mXPWidYLBJRmsxmz0lznUqkU209sCwm/y/lCLK0vgG1JITYIKWSb/9Mic3R0FPcRQgj7zfpQWPNGCDTvtZUxvM5nI+Ig/EDkERMkxThsu4P1GKDixY4StdMcENesoaQt9bcCBCKQJeh4QeBpYSt+rKkk58s1sGJI1t/BmjMiTthqJNvKISlWVdBqQ4UM68a9iIBoJ7Dw/KCyxpqR2utF3A7HpBHyORcTHA6Hw+Fw3DL8SOMJSU/o9x5YUveoqPe/6J5bctyZERTofyabLSlORSB7bzOGjUYjEgHpJGtsy5QtgW232+p2u2O+ApBASIh0TCaYSEC1QqvVikTduur3+/1IqCnVh0xCqOyIPsgY5IzSdsq5IW5UQiAGQMpplYC82fWwhMv6ClDVYX0TaCGAhEJac7lc7IWnDN76N5AhX1xcjMQTd3+Okc3Cs6bW8M/GbjPTmFuyFlRB1Go15XI5NZvNsTVi2kStVotE27YbcO3xQEA4QDxKkiSORbQVCLZ1BPPIQqEQM/qIOYgA9pqyBuwXBIZsFQdVH2Tjrc9Fdvwi4kvW5FPSWNVO1uQx26aBWMN1teTfThdBDIKUsybWABNxjVYWri1eE3ZCBfssO9mC/cj9hPhjRRiERO6nJEnitej3+1peXo6TRRAwGP9IVQ/nyN7C0HRlZWWsJYjrZp81XqXgcDgcDofD4Xgm4XvKe5L29K1f/9/xtTc98vdU+I7/d1PHu6agEEL4dUnfK2k9TdNvGb32dkn/SNLG6G0/labpR0Y/+0lJPyxpKOmfpmn6P6/jM6JhXaVSUaFQ0Pr6uh599FE98cQTsVpAOindrtVq0TyRMYqWvFkDPOtvALHHNNCOvFtcXFSz2dTu7m50rIeAUVbPhAmyn5BJSxJtKbo1dBwMBjo4OIgEmckJtt0AEkl22J6zzWID+70VLlhTyByErFKpaGVlJY7WIyMMQYaQ2TaKbJsD7vqQPY5LfGTBe72e2u32mC+Erdrg/fbcEH0oY6e3fX9/P15jyvkxP8yaTlL5wN7CzLLX60VfiWq1OjYW0ZonQuCtCSBVKxBSqkhYX6o2IKOQb34fogwRtnsy27JjJ2BI4wT84OBgTMSCfCOmWQ8PCDtrwfsQLazwZD8fcYQ1YLIKxp1WWLKtKQgtXFtbjXFalQd7mfuFWDkOooYVFPDB6HQ6WlhYiIICQgOf2e12tbu7G0UWK/axdqurqyoUCup0OmNVI3w/axMeJvEsdjgcDseV4c9hh8PxTMILFirx+9//5t/R4OLVvcOqF05//XoqFD4g6T9I+mDm9fekafpL9oUQwoslvV7SX5B0p6Q/CCG8KE3Tq/5lnsvl1Gg0dP78eV24cEH7+/tqNpva3t6OmVTG+5XLZVUqFTUajUh+IWl2soIt9WayAqSr2+2q1Wqp3W7HrD+kj/YKm91PkkRra2u6cOGCisViPAaeBouLi+p0OmPjFm3fuB2vSOa02+1KUmxxSJIkZkcxkYOcUSLOOUG0+HwyydYTwman+ZxcLhdbNjg2P4MA0hYgaSxjnMsdj8SsVquRbEqK4wKt8EDZ/s7OjtbX18cIu3Xwz1YEQAIHg0FsEaEvnqx9kiSxgsKSZaooKMdnHSCslL1zrXmPNTJk31BBYacJWGM/DCCPjo4iwUaQstUx9ot4BoOBOp1O/EzrlQHhp1UDcQAibkUrhJRCoRBFGKZWWCBYcL0gzRhSAjL0GD8y5UQ68XBgbyIoWcNCPCOssam9bnYfIi5RkWK9I7JeIdYnA/LfbB73fGHgWi6Xx0ZxtlotbWxsqNvtRuHC3hsLCwu68847VS6XYxUUwmLWOyFrZjplfEC3+VnscDgcjqviA/LnsOMUPD7MaTk/7SgcjptHPuRUDos39bvXbBBO0/STkrav83ivlfThNE0HaZp+TdJXJb38Wr8UQoiGjIVCQe12W9vb23EcI6SjVCpF8z1IJdlEyuTtRIYkSbS8vKxz587FioOjoyO1223t7u5GIgZhgmidO3dOtVotfuba2prW1tZUrVY1GAzUarXG2ifsVAcmFUD4arVaJOAQI8bkUWqfJEnMrFoDxL29PfV6vbHsujXGq1QqqlarkQwjqCCqSOOl8AgyWaKKiIBhIeIHLSgQ5lKpFDPnkG9EBsQXPrPZbI4ROloyWGvrpC8dEz0y92TAETTogy8UCrFKBOLMOlEZkJ2OgF8A5ntkstljjCu062cNKPFYwMDPtrzYkZHWq8FeIwjy3t5eNBi13gdZzwXrPWDbQYbDofr9fvQ9sH4PVCJQWUAMrCMiiR0LurCwEH/GOiIyUPEhKU5wsMaPxGtJOJUbkuJ+QSyx4hzVKtw3tjqBvWOrU2zlAsKhpHhfLy8vq1qtSlK8ty9duqTt7e0oLiF2saepaNjf39fu7u6YXwrxWv+VWcEknsWO2cHRPXdNOwSHw5GBP4cdV8JbnnfftENwOKaGb8RD4c0hhB+U9ICkn0jTdEfSBUmfMu+5OHrtqsjlcnr+85+vlZUVHR0daWtrS81mM7YUSBpzuLeZVQgHJJ3sZr1ej731kMZer6ednZ1IEBnlSMZ6YWFBjUYjZkYp98bwjZLvfr8/NjKR7DDeBNYoESJqzQy73a7a7XYk48ViUd1ud8wwkt+TpGazGQUAS1oZQWlNESHUZIchcPhUYLzHF2Q3l8vFUY126gJZ7yRJtLq6qnK5rH6/H88P0YEMcrYs31Y5FIvFeD0Rb/gMCDU+BJTS93o9tVot9Xq9eB04B4Qcjk3me29vL5JY1osYDw4O1G63ozeGnTSBZ0an04kihF0/S/IpnbetILY1gXMEVvTKZush6FQ+4JdB7AhEnB+Cg6QxIYLKAq69rSywmfdCoaAkSeLvIzRY7w6qdLjfEICscIZIxzQVKnAg5MRvTRQR4WxLjRWcuFZM5mCf0aKE/8G5c+e0tramer0e12h/f1/r6+u6fPmydnd3YxsP1TysW5IksZKBtghaWLhWWY+SGcctexY7ZgS5vD76ex+adhQOh+P64c9hh8PxrMXNWpi/V9ILJL1U0lOS3jV6PZzy3vSU1xRCeFMI4YEQwgNHR0exLx73+b29vdhWgJgA0YJ44DIPCYIc8zuNRkPlclm5XE7tdltbW1vx2GTtIWAQUDL4EElr8Nfv99VqtWIFhKSYeSYeO+LPZpCprCAWSH+lUhnzY6BioNlsanNzM5ZuW2IlKWZwrQmkdNLHbjPBABJqKx8QVrLZfCteUGnBeD1bMt9oNFSr1VQqlbS4uKjhcKh2ux2nMWQ9Hmz5uR3jSKYaX4wwGm1INQjZZcQErgUmi5B9iLMdL2iFhq2tLT355JN66qmn4hpQCdNut7WzsxMni2RHalqyzbkhRlEBgIjA57Ine71eJNNUQliSjzBj2wUApp3WbwOhhmPQ+sI1sJ4F7AfWuFarKUmSp1W84InA/qpUKrH6wooJtq2BPYdowbkjGFijSpvxZ33GHhSjmBEMEV9oZej3+yoWi7rzzjt199136/z58/He2dnZ0cbGhjY3N7W7uzv23GDPIVSUy2U1m01tbW3FKiEbt73us1ShcAXc0mfxgQa3JUiHw+F4BsOfww6H41mNm6pQSNP0Mt+HEH5N0u+O/ntR0nPMW++S9OQVjvE+Se+TpEajkeItQKZxd3c3CgAQA4gJ2U9aIOr1emwh6PV6sfe+Wq1Gwn/58mV1Op0xgzjaEshOMl0C0UFSzMJDIslmhhA0GAxizz/ZcztNgXYDysulY58AMqf1el2FQkG7u7tqtVqR4NG2AXknDkq4IXsQVXrfIY82MyudZOfJ4kOkGZXI+VtyaXvxmbTA70vHpfDnz5/XyspKbIXAH6DZbMYKC84J4cZWdPBZALIO8bRElSqUw8ND9Xq96FmByMF59fv9WHWCYAEZpV0Fc0dJUVhCnLFxQ0Qh9+xN4qcNhD2DaGDbOeyXFVIQBhBuWHMrJPA+RCIqA2wVAp4f1hRSOhaBisViJMecZ7lcjqKZrQzg/9YAFJHBkmyEJN5vDSFtC4c1BbXnwutcYwRCOz3CjrxkXzWbTQ2HQ91xxx268847Va/Xo/lip9NRq9XS4eGhdnd31e/3x6ZiIJZZsaLdbsd7nOvAfrETSajkmFXc6mdxLayc+seuY7K4/OZXSPrstMNwOBzXAX8OOxyOZztuqkIhhLBm/vs6SQ+Pvr9f0utDCMUQwj2SXijp09c6njXII4v8+OOP6/Lly2PkACEA8pQkSWxR2N/fjxl3Mt35fF6dTkcbGxtqtVqRLBYKBVUqlTiZAMJfLBZ1eHiobrcbM9Rk1SHrthKg2+1Gc0U7/YBsOD4LZJPtqEWM5A4PD9VutyPhg3RzLEnxd3GnxzeBqQOIBWS+iYf2g1KppEajEUv+sz4JlNlzrqxdtsQeEpvL5XT27Fmtra1pdXU1+ll0Op0oAkHYs+MhJY2RyayfAtl0xBJbuSFJ/X4/kkbOk7L7TqcTCW8IQf1+PwocW1tb2t7ejhUPvV5PzWYzTqHodDpxr1mDSdo4EDhYc/wjCoVCFK1sRYYVLKyAYk0RbVUCRNr6OPB5tNnQEmJ9OFqt1thn4emAdwfraSdWWCNIBCJINR4RxGr9OMjwW8NIqlq4R+37uactSbfijK14GD1X4s94L1UY+Xw+GrciJjSbTa2vr+upp56K14+2Ia6BFaWoWkH4ybYB0bphP9+2V80ibvWz2DF9fP0df02feeu/n3YYDofjOuHPYQe45/43TTsEh2MquJ6xkb8t6VWSzoYQLkr6GUmvCiG8VMelW49J+seSlKbpF0MI/1nSlyQdSvqx63GztVnqg4MD7ezsRNI4GAwiYWU8YaVSiVMAKpVKHClI+TttEK1WSxcvXtRjjz0WM5iQRDLyZGPJcrfbbfV6vRgXRJosMYQIQornQa1Wi9UFVkyw4x+zkwpof0CUsJMpJMWKBIgRGds0TbWxsaHt7e14PGKEqNoRhrQksL4IBWSkESOGw+GY6SI9/2T7IaaFQkHLy8taXl4eE3Pa7XYkdNbLITuWkHNlzcnqk/Fmre3IzkqlEjPtrC1tFggCkGnEEFuRAJG3YgrEk9issWJ2OoMt12dfQEQRPdhTWT8L/AxsNt6OXQTWTwExi9dYSwwT2+22Wq1WrOqx1QPValXlcjkaJdKKQcuGbddhj1n/BGLhXslOrqDqJHvtEIesN4QVFOy9gGhDNY+9/62xKedXrVbVaDRUrVbjMVutljY3N7W3t6disTh2PhwL4YDz5j3cJ4gg7DULRJZZwSSexY7p4qvvuU+f+/53aSGUph2Kw+E4Bf4cdlwNf/5fPCy9ZtpROByTxzX/Wk7T9A2nvPz+q7z/5yX9/I0GAvnAQ4Fxbpbs0NMN6aZMmYzz0tKSVlZWtLa2plwup/X1dT322GOx0gEyZw0EIaVWyBgOhzFLTxk+sJlMyu7r9brK5bKOjo5i+wICAL4QkC3rE3BwcBCJsDXjg8DxHmtgCEne2NiIRoXZXviFhYVIavFuYI1pF+H8IXW8xhQEYpMUDQep2qDVhAoLBJ12ux1FDDsCEVJte9KpiGANyXojYkDy8vm8kiTR0tJS9DmAQGKAiShjx2r2+/1YsUKrih3LmW25QPiwpJnKCd5rpylAtO0oSSoHIMFcO46PgFUoFKJQZQk4UwzYO7SY2CkdGAwikNnPXFhYiC0N7DsqMvhc9gpCAyIMYgLVNZKiCGXNCVkjPhPhA3LOulkvCbvfECK4D60ww/ulE3GNVgVGxbJneEZQlYKIx+/aShArmLGWVizhXGz8/J4VO6eNST2LHdPDu773t1TPuZjgcMwq/DnscDgcT8dMpN8scbMZatoTSqVSbBEgQ8sf/91uV5cuXdLh4aGWl5e1urqqRqOhfr+vS5cuRYM269RvHeQRKNrtttbX13V0dBS9DaSTsm+yxZAYSskZZShJGxsbunTpkrrdrorFopIkiUKJJX62xePw8DB6EFCibvvR+cKzodfraXNzU9vb21GckDRGViVFQzxK31kDxBhEDgAhxtSv0+lob29vrPxdUiT4kHnrXWFbExAvqHSg6oMWC2uiaUvh7ejPdDSmsVKpxBYPRlEuLS3FNguED0ZKShoTJk4rqZcUKwSsSMCasCc5Z0s+mdRBeXy5XI7km2oAW9HAsW3LCMe3a4QwAtml8oA9Uq1WY4uFrahAbCKrb6eedDqd+F4rBtgWCN6P2DIYDOJ+tBUGttXBtu/wXog4a86+tYIB9y73L14ddr25VtZ8lVGhtOy02+3YKmS9N2zLiD1v2n8A77efwZ7NmrE6HA6Hw+FwXAtH/b7u+1c/ok+981emHYrDMVHMzF/L5XI5kjCIFplJSvAhoGQOKcHv9Xqx2oDs7ObmpjY3N8daGCAmVCRANvb29qJD/MrKSjSiy/aYUw3BpAeqJlZWVtRqtbS9vR1NGovFYiR1jGC0VQQQQ0ljozAh0xB2xIx8Pq+trS3t7OyMkXPOgfezfpwrx7VEmYwypIvzw3MCwmp9DhiJubi4qEajoRCCdnd3owcBv0N22o4NZEwnI/sYz0j5OSQwa0rJ1A3MBWlrsdUAtMWQYWdfMLbSmh4CWj1YV9smIikSZQw78bCwXgpUvFjPAVtNYis/uN5WOLPrg4hmDTstcUf4si0AtIzY0Z3cF4gATMfg2iLa2IkPltBT9s/e5nwQzrgv2u12vF68bg0Yga2cYQ9mK3AQIhAR7b0G2ed9VJbYCTBZLwhbIYHIZg0yAYICewAhzbZMZEUOh8PhcDgcjisiTXXmf12cdhQOx8QxE4IChBUiackaFQmQrnw+H6cpQHggNWT4m82mms3m0wgzlQCSYv88xJa59ZCyXq83VhaPCdzm5qYGg4FCCKrX61pdXY3kent7O2b+ceCnKoLsNF4QZKkt6cKI0BJs/AuGw+HYCEVGYpZKpdjSYKdKkDXmWGSUrREiJGtxcVGlUimWktv++Vqtprvvvjv2rjPZgDYHO1kCQQEix7pRhWDHf/L5ZL6tmADpTpIkXmsmDXAciDPmjNZYstvtjmWn7UhD9oLNqNsKgsFgENsnqGTJih20qSRJEqsnsh4LEHGEiuzYROvnwbkRW7FYjD4QrCWvITDZLyo+7JhFhC0rbEgnZohMUbAx25YAxBpaGhDE+F32DXtZOhGrbCWOFRpo8eAcEAqI2xp5UjEB4UdgsG0rVDgg8HBc7vtsqwMtRxyLKh57DvycezLrq+BwOBwOh8PhcDhOMBOCAiXJe3t7sWRcUiQEOPhDcG27gyU20knJOYRDOiZLSZLE6Qi2NP/o6ChWHEDQWq2Wms2m8vm81tbW4nFtmTtkN4Qw5rZvxzXasXgQIUiNdCIAUCUBEeLn9J1bElSr1aKpY7Va1crKipIkiZULw+EwZustiSVjD+mmLByB4PDwUDs7O5JOqkWWlpa0tram5z73ucrn89rd3R0rp7fTLMjqQza5poPBIJI71h+RgbXkvClLt54EnAfnQpUDa0blA+SV6gi7d2y/PPHbvcd647nA61wjpmHYCQWFQkH1el2Li4uxAsNOF6Biw1amQFQ5H2Lhy7adWCB4IG5Yso5Aw/6yFQBUJ1BJYPeldDIy066zHUnJvVSpVOJxuWasG7FD/G2VjJ1akRUGEE7selizUO5HvEwQqobDYbymVKnQ3oKYgODHNbfHtRUTGJDyeUx94Bzxx3A4HA6Hw+FwOBynI9gRb1MLIoQNSV1Jm9OO5SZwVh73JOFxTx7zGvutivu5aZqu3oLjzDxCCG1JX5l2HDeBed2j0vzG7nFPFs/2uJ9Nz2H/m3jy8Lgni3mNW5rf2G/rs3gmBAVJCiE8kKbpy6Ydx43C454sPO7JY15jn9e4p4l5XbN5jVua39g97snC4352YV7XzeOeLDzuyWNeY7/dcc/OTDSHw+FwOBwOh8PhcDgccwMXFBwOh8PhcDgcDofD4XDcMGZJUHjftAO4SXjck4XHPXnMa+zzGvc0Ma9rNq9xS/Mbu8c9WXjczy7M67p53JOFxz15zGvstzXumfFQcDgcDofD4XA4HA6HwzE/mKUKBYfD4XA4HA6Hw+FwOBxzgqkLCiGE7wohfCWE8NUQwtumHc/VEEJ4LITwhRDCgyGEB0avrYQQPhZCeGT07/K045SkEMKvhxDWQwgPm9euGGsI4SdH1+ArIYTvnE7UV4z77SGEJ0br/mAI4dXmZ7MS93NCCJ8IIXw5hPDFEMI/G70+02t+lbhnes1DCEshhE+HEB4axf2O0eszvd6zDH8W35Y4/Tk8QfhzeOJx+3P4FsOfw7cH/iyeLPxZPPG4p/8sTtN0al+S8pIelfR8SYuSHpL04mnGdI14H5N0NvPaOyW9bfT92yT9wrTjHMXybZLulfTwtWKV9OLR2hcl3TO6JvkZivvtkv7lKe+dpbjXJN07+r4q6c9G8c30ml8l7plec0lBUmX0/YKkP5F036yv96x++bP4tsXpz+HJxu3P4cnG7c/hW7ue/hy+fbH6s3iycfuzeLJxT/1ZPO0KhZdL+mqapv83TdN9SR+W9Nopx3SjeK2k3xh9/xuSvm96oZwgTdNPStrOvHylWF8r6cNpmg7SNP2apK/q+NpMHFeI+0qYpbifStP0c6Pv25K+LOmCZnzNrxL3lTArcadpmnZG/10YfaWa8fWeYfiz+DbAn8OThT+HJwt/Dt9y+HP4NsGfxZOFP4sni1l4Fk9bULgg6XHz/4u6+oWbNlJJvx9C+GwI4U2j1+5I0/Qp6XgjSjo3teiujSvFOg/X4c0hhM+Pyr8o2ZnJuEMIz5P0l3WsEM7NmmfilmZ8zUMI+RDCg5LWJX0sTdO5Wu8Zw7ytzzw/i+d5j870M8HCn8OTgT+HbynmbX3m+Tkszfc+nenngoU/iyeDaT+Lpy0ohFNem+WxE69M0/ReSd8t6cdCCN827YBuEWb9OrxX0gskvVTSU5LeNXp95uIOIVQk/RdJ/zxN09bV3nrKa1OL/ZS4Z37N0zQdpmn6Ukl3SXp5COFbrvL2mYl7RjFv6/NMfBbP+jWY+WcC8Ofw5ODP4VuKeVufZ+JzWJr96zDzzwXgz+LJYdrP4mkLChclPcf8/y5JT04plmsiTdMnR/+uS/pvOi4PuRxCWJOk0b/r04vwmrhSrDN9HdI0vTy6UY4k/ZpOynJmKu4QwoKOH0AfStP0v45envk1Py3ueVlzSUrTdFfSH0r6Ls3Bes8o5mp95vxZPJd7dF6eCf4cng78OXxLMFfrM+fPYWlO9+m8PBf8WTwdTOtZPG1B4TOSXhhCuCeEsCjp9ZLun3JMpyKEkIQQqnwv6W9LeljH8f7Q6G0/JOm/TyfC68KVYr1f0utDCMUQwj2SXijp01OI71RwM4zwOh2vuzRDcYcQgqT3S/pymqbvNj+a6TW/UtyzvuYhhNUQQmP0fUnSd0j6U834es8w/Fk8OczlHp31Z4Lkz+FJxWvi8+fwrYU/hyeLudyns/5ckPxZPKl4TXzTfxanU3D/tF+SXq1jF81HJf30tOO5SpzP17Ej5kOSvkisks5I+rikR0b/rkw71lFcv63jspwDHStRP3y1WCX99OgafEXSd89Y3L8p6QuSPj+6CdZmMO6/ruNyoc9LenD09epZX/OrxD3Tay7pL0n6P6P4Hpb0r0evz/R6z/KXP4tvS6z+HJ5s3P4cnmzc/hy+9Wvqz+HbE68/iycbtz+LJxv31J/FYXRQh8PhcDgcDofD4XA4HI7rxrRbHhwOh8PhcDgcDofD4XDMIVxQcDgcDofD4XA4HA6Hw3HDcEHB4XA4HA6Hw+FwOBwOxw3DBQWHw+FwOBwOh8PhcDgcNwwXFBwOh8PhcDgcDofD4XDcMFxQcDgcDofD4XA4HA6Hw3HDcEHB4XA4HA6Hw+FwOBwOxw3DBQWHw+FwOBwOh8PhcDgcN4z/DyLU/c4YbtubAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 0 508190\n", + " Min thresh = 1000\n", + " Sliding\n", + "\n", + "\n", + " Winner = Sliding\n", + "\n", + "\n", + " VFOLD = 12 of 15\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsIAAAGDCAYAAAAh/naNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAACVR0lEQVR4nO2dd7wcVfnGn3fLrSk3vTdICISSQELovYMKKvADEURBxIZdsaBgReyIitgbomIBpEjvJRAIJQkJSQgkhJDeb909vz+m7JQzbcvd3Xuf7+eTz92dOXPmzOxm9pl3nvO+opQCIYQQQggh/Y1UtQdACCGEEEJINaAQJoQQQggh/RIKYUIIIYQQ0i+hECaEEEIIIf0SCmFCCCGEENIvoRAmhBBCCCH9EgphUlFERInI1GqPgxBCSHL64jVcRBaKyNHVHgepDSiE+xEislJE2kVkh+PfddUelxcRudC8+J5d7bGUiohMNo8lU+2xEEL6HyLyPxH5umb56SKytpRrk4g8aF7fZnqW/8dcfnSxfRc5Hut6a/2+vSUi/xWRE5ztlFJ7K6Ue7M2xkdqFQrj/8Xal1ADHv49Ve0Aa3gdgk/m37FCUEkL6Eb8HcL6IiGf5+QD+opTqKbH/pQAusN6IyDAABwNYX2K/pdCmlBoAYCaAewD8W0QurOJ4SA1DIUwA2FHYx0TkpyKyVUReFpHjHOvHisitIrJJRJaJyAcd69Ii8iURWS4i20VkvohMcHR/vIi8IiKbReRnmguycxyTABwF4BIAJ4nIKHP59SLyfU/bW0Tk047x/VNE1ovIqyJymaPdlSJys4j8WUS2AbhQROaKyBMiskVE3hSR60SkwbHNiSKyxDwXPxeRh0TkYsf6D4jIYvOY/meOO+k5Dzunc0XkGRHZZkY1fmgubzKPY6M59qetc0QIIRr+A2AogCOsBSIyBMDbAPwx6loYg78A+D8RSZvvzwXwbwBdjv2lRORy8zdio4j8XUSGOtb/w4xObxWRh0Vkb8e635u/G7ebvy9PicjucQamlFqrlPoJgCsBfFdEUmafK0XkePN14O+XiOwpIveY1+gl0geeUhI/FMLEyUEAVgAYDuBrAP7luFj9FcBqAGMBnAng2w6h/GkYF79TAQwC8AEAuxz9vg3AgTDuzs8GcFLIGC4A8IxS6p8AFgM4z1x+I4yLrQD2hfxEADeZF7fbADwPYByA4wB8UkSc+zkdwM0A2mBcuHMAPmUe6yHmNh8x+x5utv0igGEAlgA41OpIRM4A8CUA7wIwAsAj5vlJStg5/QmAnyilBgHYHcDfzeXvAzAYwARzbJcCaC9i34SQfoBSqh3G9eMCx+KzAbyslHoeIdfCmKwBsAjG9Rjmfv7oaXMZgDNgBDnGAtgM4GeO9XcCmAZgJIBnYVyjnZwL4CoAQwAsA/CtBOMDgH+ZfU/XrNP+folIK4xo8o3mtucC+LlTpJM+glKK//rJPwArAewAsMXx74PmugthXNDE0X4ejMdnE2BcLAc61n0HwO/N10sAnB6wTwXgcMf7vwO4PGSMrwD4pPn6iwCeN18LgNcBHGm+/yCA+83XBwF43dPPFwH8znx9JYCHI87NJwH823x9AYAnHOsEwCoAF5vv7wRwkWN9Cobwn6Tpd7J5DjKe5VHn9GEYF/7hnu0+AOBxAPtV+/vEf/zHf/XxD8DhALYCaDbfPwbgUwFt7Wuh+V4BmBrQ9kEAFwN4L4wb++kAlprrVgM42ny9GMBxju3GAOj2XhfNdW3mPgeb738P4NeO9afCEPG68QRdb5vM5YeZ71cCON58rf39AvB/AB7xLPslgK9V+/Pkv/L+Y0S4/3GGUqrN8e9XjnVvKPN/u8lrMO7exwLYpJTa7lk3znw9AcDykH2udbzeBWCArpGIHAZgCoCbzEU3AthXRGaZ47oJxl05ALwHhajBJABjzUd7W0RkC4yIrdMysMqzrz3EmESx1rRLfBtGRATm8drtzX2vdmw+CcBPHPvaBEMsj0N8os7pRQD2APCyaX94m7n8TwD+ByMSvkZErhGRbIL9EkL6GUqpR2F4dk8Xkd1gPKG7EYi8FsblXwCOBfBxGNcoL5Ng+HSta+ZiGIGAUaY14WrTmrANhkiFZwyxfkNCsK6rmzTrgn6/JgE4yPO7ch6A0Qn3TWocCmHiZJxlPTCZCCNKvAbAUBEZ6Fn3hvl6FYzH96XyPhiCcoGIrAXwlLnceqT3VwBnmn7cgwD807H/Vz0Cf6BS6lRH306BDwC/APAygGnKsB98ydw3ALwJYLzV0Dwn4x3brgLwIc/+mpVSjyc41tBzqpR6RSl1LoxHct8FcLOItCqlupVSVymlZsCwa7wN7keehBCi448wrhXnA7hbKfWWuTzsWhgLpdQuGE/KPgy9EF4F4BTPNbNJKfUGjKDG6QCOh2H7mmxuk2gMEbwTwDoY0V/d2HS/X6sAPOQZ8wCl1IfLOC5SA1AIEycjAVwmIlkROQvAXgDuUEqtgvE4/jvmZK39YEQsrYjsrwF8Q0SmicF+Yswcjo2INMHwrV0CYJbj38cBnCciGaXUczCiGr8G8D+l1BZz83kAtonIF0Sk2Yww7CMiB4bsciCAbQB2iMieMC7gFrfDiESfIUaGiY/CHQW4HsAXLa+YiAw2z1cYjea5azKP9Q2EnFMRea+IjFBK5WFYWAAgJyLHiMi+5sSUbTAeL+Yi9k0IIX+EITY/COAPjuVh18IkfAnAUUqplZp11wP4lhnEgIiMEJHTHfvvBLARQAuMiHRZEJFRIvIxGHNevmheT70E/X79F8AeInK++ZuYFZEDRWSvco2P1AYUwv2P28SdR/jfjnVPwZiwsAHGZIQzlVIbzXXnwrhTXwNjRvDXlFL3mOt+CMP7ezeMC+pvADQnHNcZMCZ9/VEZM33XKqXWmn2lAZxstvsrjIv5jdaGSqkcgLfDEM6vmuP/NYzoQhCfhRGJ2A7gVwD+5uhvA4CzAFwD4+I8A8AzMC7WUEr9G0aU9ibzUd5LAE6JOL4d5vFZ/45F+Dk9GcBCEdkBY+LcOUqpDhiC/GYY53kxgIcA/Dli34SQfo4pUB8H0ArgVseqwGthwv7XmBYMHT8x93m3iGwH8CSMp3qAIdBfgxEcWGSuK5UtIrITwIswPMVnKaV+G9BW+/tl2tZOBHAOjGv0WhjX/cYyjI/UEOK2hJL+ihg5Fi9WSh1e7bHUGmZWitUAzlNKPVDt8RBCCCGkPDAiTIgGETlJRNpEpBEFz1w5IhWEEEIIqRFiCWEROdlMJr1MRC7XrB8sIreJyPNi1PB+f/mHSkivcgiMmcQbYNguzlBGPk5Cah5eswkhJB6R1ghzUs5SACfAeDz8NIBzlVKLHG2+BCPn3xdEZASMmZmjlVJduj4JIYRUBl6zCSEkPnEiwnMBLFNKrTAvkjfBSHXiRAEYaKaZGgAjV1+p9csJIYQkh9dsQgiJSRwhPA7uYgSr4S8ccB2MVFtrYMzS/ERAmhJCCCGVhddsQgiJSSZGG11Sa6+f4iQAC2CkhNodwD0i8ohSapurI5FLYOSJRWtr6+w999wz8YAJIaQWmD9//gal1Ihqj0MDr9m9iFIApLzVH3qbF9/YCgDYd5yRcTKnFBat2eZaFrYdAGRSgr3GDNK229HZg1c37IQA2Mfsz7ktAOwzdjAk4CR6x+ddvteYQcikChsvfWs7OnuM+7pJw1owoDGDhZrj8Y5Bx+RhLRjYVCjeaW0zbeQAbOvowciBwdnUunN5vLy2UDx0SEsDNu/qwrDWBmxr70F3Po89Rw9ENm3EJHd15bB8/Q67/bDWBoxta/b0qfDyWvexBJ0f57opw1sxoNEv+XryCj25PJqyad+6Fet3YGdXDrsNb0WrZtu4WGNozKTQ2ZPHtJED0ZTt/VwNQdfsOEe2GkYJQovxMKIITt4P4GqzFO0yEXkVwJ4wCh3YKKVuAHADAMyZM0c988wz8Y+AEEJqCBF5rdpjCIDX7F5k8uW346g9RuAPH5hb7aEUzeTLbwcAPPXtU5FOCV7buBNHfe9BAMAzV58WuR0AjBzYiHlfPl7b7vFlG/CeXz+FdErwzLdP9W0LAI9942RbjL28dht2Gz4ADZmUq+3T3zkVzuKn1vK7v3wcRg5sspef+KOHsPQtQ1D+4n1zMHfKUOx75d2+4/GOQcevL5qLI6YVtJO1TS6bRqo7Z58zHeu2d2Dut+6z3581ezz+MX81LjhkEu56aS3Wbe/EnZcfa4vdJ1dsxDk3FJITve+QSfjk8Xvg8eUbcdp+YwAAb25txyHfuR8A8MS3TkE2nbLHpPusrHU3fGAujtzDf98+6+t3Y8eubryk2fas6x/H0ys34w8fOgRzpwwNOUvhWGOYPmoglry1HTd/8gjsOVp/01RJgq7ZcST50wCmicgUEWmAkVz6Vk+b1wEcZ+5oFIDpAFYUP1xCCCFFwmt2L/PQ0vWx23767wtw8R+eruBoiqfLjKL25MtTX+C1jTvxpX+/aPeXC+nXmrf/1rYOnPzjR/DVW14KbOMl7zH1pBxiWcT/OCQJPTn91l05Y6dhx5TyhLidLa3NnMs6uv1FQi/983x89MZn8da2Dtd2AOyodxzy5sm7ZcEbdl8AsGVXd+S2UUkV7n/5Lezx5TuxozN8moF1OsLOWTWIjAgrpXrMEoX/g1Hh67dKqYUicqm5/noA3wDwexF5EcYToi+Y1bkIIYT0Irxm1zb/evaNag8hkK6ePJob0sgXKVRWbdqFpmwawwc04KrbFuFvT69Ce3cOYwY1RW6rTEm4vcMQZvNWbvK1ySuFlMaEkg8RagIJFNBxCLopSIsgBxUq6rzjst4KCuLSKTK9wlZEsGrTLtc4nO1zASI9aCwd3Tl84qYF2H1EK+751FG486W1MbcNX//je19BVy6P5et2YOaEtsB2VuS81uq4xTJ9KKXuAHCHZ9n1jtdrYJQiJIQQUmV4za4ed7z4Jq697xXccdkRSAU8Mu8Nlqzdjs27unDwbsNib9OZywHIIheiVFZu2IkHlqzD+w+b4louAhxxjVF4c96XjsPvH19pr4uje6xdWlFUnRi3Fq3evAtHXlMo8ukVo65IrMQcQAA9OX3UNZUCkAMefmU9PvSn+fjvxw+3/c82yvu2sCBvC+HCel1E2PosrK+Ss32PNxTuwXkO8/nCeVq5cRf+8tRruOKWhaHb2+OOUK6WxzlqPPZnW2NKmJXlCCGEkDLxqb8twMtrt9uPzovh2dc3Y/Llt2Plhp1F93HSjx92+U3DyKYNgWJbI0IijWf/8glcddsi7OoKfgzemHFPvIrzKNwSR1bUUCfGrTb3LnrLFaX0CquUQ9kYOrh44dUdMfa7zKjqU6/qItieBVZEWEQbZfVHhAt9CPzR1LAbFgDodgjTvFIui8pb2zpDt3US9fFZExW7esIbWjeGtWaNoBAmhBBCyoQl5Erx2f7nOcM+kcR7XAoNZkTPEsJOYemNBu7qMqKWSY4vKqIIFIKnhYgwMPsb9+ATNz3n6Ado78r59u0ditsj7LZGXP/QciilYts/cgFRTmuxdcOjC/57BbjbI+yPCHd6IsICscdpiV7nZxMlKJ03NHnPMQfdHKzZ4i+gGiW4M2nrOx8VEbbGEtqs16EQJoQQQspEWkqPemVS1qNmo4/7X34L+175P7R3+R+dl4OsmZ1BNwHMq4Esoe8VkuLw7oYJwCBs/6xjQtXGnV24ZUEh4UleKez11bvwzdsXu7b1nmvxvHauvfrOl3HatY9i6pddzqFAugOi45bo63ZEcX9w9xK86ojie78C7hsM8y8UHn1lA3J5hR2dHiEshW2s8+3scsna7aGZL9xC2H3zotO2d720FodefT8eXLIucNw67O9rhGeZ1ghCCCGkj5MKEIpJsCNspjD97p1LsL2jB69tKt4qEUbWExF2CkunaNm8swtb243JbGERYa/OiSV8LGGogrcJ6se7XLxZIzzrF725LXZUMkjcWdtb52H15nb89P5luPRP8+023v3qzusDL6/De3/zFH758HLs6PRncMg57AzO7QDgvsVuwerdn9caEfU5PL96CwDYOZeD+vWSTcd7CpIO8X976ezJ4a6X3oz1NKFUis+QTAghhBAXmTJYI7x92HaLBFkCkuC1RrgiwgA27ezC5/7xPB5wRAqTRLzjNM0rhTN/8ThWb26338ftxz9ZrvBaICWlTwuyRlh0mzcr7ZqJbkE3BM5I71vbDa/uq+t3ornB7a0WRx+WPcHZpzfynldA2nHszu9LLq/cEWHPWMPEaZTdvRARDm8oCawRv3hwOX587yv4zfvm4Li9RkVvUAKMCBNCCCEmr23cifsWv1X09uWYEJQxhaklstJl6NN6jD7/tc2+dd7Jck5PaF4p/P6xV3Hfy+tcAqYrJIdtEpHl3OaZ1zZjrZnjVnesQdHBsIiwgiopXZdljdiwoxM/ve8VzXrjPFgZH5pMMZvLK1x3/zJXW+uYBIXJctZI8wrY0eGegCji8AZr0qeJJ5WcLyLsEKZKuT8H7znR+YCt/qMiyZa1xjmx8MXVW7F5Z5ernW2rifGBbDfPxbJ1OyJalg4jwoQQQoiJVVFtZUhFtTAK0dzis0ZkPMI3LJNCXB5aakRz73rpTcyeNMS1zrJGdAZ4hHVp4LxZMZzRSa8giyN8wmwEhX702/oLahRen/+befjbJQdH7j+IR5dtQF4pPLZsAx5Y4p+8aAnlzm5jEM1m6eC7F67F355Z5WrrPq/KHKvY77d1+DNxWOfOjgg71nlLUntPjzMC7MwaoUN74wG/+PayaM02W2A7/dJvv+5R7DaiFfd/5mh7WRKPsFW6ev32+NktioVCmBBCCCkTqZiT5ZRSrsilE8sjbImsckSE7QikZp9WKeMgj3Bas40l/Cycutg7ygQW4dBtggSZ9wbBe4x/e9otSJNw/8vrcP/L6wJLDPd4rBHNZpnojh6/VaLwGbhfG+uUzyMsIrbI13mEvXhXOa0KubzyWF6ibzwK6wqvn1m5CROHtmDkoCZs3tmFU699pLA/zx3JivVuT3uSynKDm7MAgHW9IIRpjSCEEEKKQCfM4qZPC8pGAABZj+cySgjv7OzBzKvu9s32d4/V+KvT3t7Jck6xlQ+ICHd6hJ5TBPm9sYHDcrTxCLMEHmFfHuEK1DEJ6rLL/Byt8sItDUZ8UadXdZPlLNGeUwU7gHOfhawRcP3V4T0Pzu+YUhFiN0RgO/s98/oncNpPHwXgz3sc9p0GklWWs8bTGxFhCmFCCCGkCHQ/6HGjt90hE4synln4XquElxXrd2Jreze+f/eSwD4tMZPSRYQ9QtibfzatFcIeERTiGY7zKHyXJ3VYIo9wSCq3chEQvLdvVqwCI94Jb0506dPEsc4rhOHwCBesEU6PcDg9nqwRrnPqvVnRnO8gj7AlTr1R5ajJctZ3b0t7F8654Qm84chZfMz3H8TbflqILltjXb+DQpgQQgipKp09OWzd5U9tpZNllmaMyvAQtt7rM46KMsepnGaJSJ14ymbMyXI5TUGNfGE8TryT5XY6chz7sxlEj89Ky1YYr79N7KwRvahsrBuanZ1ua4QOnb3BEthKKTuq7MTOGmFPlgsei3edM0Kb8whhb/Q23CNcGKMT73c46imIJYRvXbAGT67Y5Jp8+OqGnXjpjULaNqtveoQJIYSQKuD08J7/63mYt3KTbwKdTuDFjQiHlWC2skb05BR+fO9SPPLKBmN/EX2GRUKtoeoiwv48woV1eaW023gjwu6d6fcdhlcIh5VY9uJtqxtvqQQdgyUod5oiNp0SvO+387BwzVZfW52YtaOuefiEsPPz1FWi8wrPsAhtXrnPU1fOE4FXKvDbY437VU/Jb+93OKqsuHU/lU65C7josG4Ct7Z3I59XWntOuWBEmBBCCPHg1BjzVm4KaKMTwlZVOP+P/P0vF9KyhVojUoXJcj++txA1KyU3sXdylhNfHmFnRBh6z63XI+zEO8o42S62eIWwNmtEQETcszhoEmIpBJ37QkTYELG5vMJDS9djw44uX1vb76uJCPusC3B/Vrposjcq7x2iu5KccuVE7u7xRO3z/s/NaY3Yuqsbx/7gIXf/nohwWEo9oHCD4vx+e7H+jzjHvmmX/1yWEwphQgghxEOcme16j7DxVyecPvD7Z+zXcTzC3mIOzvcbdnTipnmvR47RHivck7Oc+Essu72lWo9wd/D4vefF+Ug9KKr91IqNgf0F9WsRVmIZiFfiOYog/6v1OVvWkDgpypxiNuUQwr58yI7XuhLLvhR2IXmE83nlivR7t9XdrDitEVva/WLU+x2OFMLm/w3r+6TzlVv/R3IOkfzmlo7QfkuFQpgQQgjxEC/3rX+ZHRGO8AiHCWErEucVVVfeusgWG5f88Rlc/q8X8caW9ljWA6srXXTXitAFWSN0hFkjvNs49XxQdPgvT0WL+jBrRE8uj189vAId3bmKZI0IyojgFXPPagqWWFhdOD9WsXPr6iLbzm39Itr7HVIAnli+EQtWbQHgqSyn3E8pvEI4nw+xRiiFxW9u8y1PKoStY03ZEeHg9s7iHBt3VtYnTI8wIYQQ4iFWRFgTa7RK3EZ6hHuC11v9esX02m0d+O8La/CuA8bj9U27ALgnsoU5AgqT5YIbWULJW4FMJwK7QqwR3nE7xVsurxAynyyUoFOqlMI/5q/Gt+5YjO2dPRXxCAd9nt2eqP2St7YH9lGoDqdZF3E3o/MXe4WnUsC5v3oSgFEQxp3STrluSLwCXnd81nflhdVb8VfN0wfvjVqYsAVg56O2/o+EeYS9TyUqCSPChBBCiIc4vladNkp7Mj4EESYarF3r+rD632U+indqvjD5V5gsF7I/U8B6K5LpRFJYRNhfda7ALx9agRdX+yeSxSEwIpwveHRvf2FN+ES+IvEKXnt5ROTfSUHMOq0R5vdF04/zcAuT5QoLvcfpt0a4P8ewiLDLF+7p582t7dDhiwib753bP/t6IUJuffe8x+z9ft08fzV+9sDywtjK/3G6oBAmhBBCPERlaABKyxrhFRE7O3uwwcyZWhDC/j4a0il09uRsIZzPA/99YU3ssYYFS+9d/BZWrN/hEkV5pR9H2GNw3yQux/Y/uncp3n7do5Hj1RFYWc7R//L1O/Hosg2xtktC0I1Lkmp/YZPldDc9OVck3fjr3JvPGuGbLOesLBduq/CW1f7qLS9hkWmHsCZTevHeBFjC3DmOd/38cfu1XU7aM4azf/mEq58f3bPUM7bKKmEKYUIIIcRD8ZPl4lWW80bkTv7Jw5jzzXuNfs1luihhQyaFy/76nP3+jhffxK8eeTV6rOZf3WQ5a93y9Ttx7A8ecglXY5KVX4iERV29Iqtcj7aDuqn0o3Mg2vMdh8JkucIyb+U4J87Dsrd1bOy94Tjymgdc730RYcd7b9YI5/d9W0c3/vjEa3Y6tyCriXcCoS2Eta0L3z3r+2H9ne/xVXsnZzIiTAghhPQyljBYZXpxdegijZZoiBLSPTmF255fg8mX346tu7qxalPh8bPVry4K2ZBJ4Z5FhTRsm52ppXQi1xOF1GkaX6GEGB7hsPRpvolYns0HNBY3PSluieVKkMQCEYRuwts1dxnVALURYU1JZuc58N6MbPfkIXYKX+XJStEZEhH25uwN+qy938/2ruDvBOAvNtMVcE699p0om1GpUAgTQgghHizRcoQnyuYk3CMcbY341SMrAAArN7oLFVhb6sR0QzqFoa2NoX27+lLuv7ronncveY8AS+oR9k7E8grVgU3FCuFoa0SlKIcYC5ssp9OE7d0FYWl9n5wTNKMmp3mtEc7vpO4zKlS5c/fToUmV153L+24OLJ92kBXFawMJGr/v+6gU3vOrJ103gOWkroTwQ0vXV+xEEEIIIRbxrBH+CUZpOyJs/Mjf9dJabUQtNNWU2W23ZgwigmGtDYX3EWP0TrJKCbBs3Q58738vF8bv2Y23oEZij3CENaLcQjgqIlwOmVwOa0SPbY3w96XLU3yjI6WcTkRHpSvzWiOc32nfZLm8Ciyl3KH5/rZ353w3B5ZvPdAaAXchjbi+666ePB5fvhEf+tMz2valUldC+DePvorrHlhW7WEQQgjp48QJADp/r60f75SjatYTyzfi0j/Px3fvXOLb1is2nRTSp/kHkVcKQx1COHT2m2OMdmU5CN7766fwsweWY+POLtf+vMdi7S+pR9gr0LwicmBTNnTMQQR6hCvsIQWiywfHQecR9q6L2jaJEHZ+f5RHCIf5uONEhDu6cj6f8a4uKyKsH4/1VbXG8drGXbju/ld87XxCOGfZeipTZrmuhHA2JYHVXQghhJAwHnllPU679pHIR8pAvPRpTgFpRfsyjqwRln9Xl35KqeBorjedmZO8Uhg6oMG3HND3V4gIm22k4PkMLKDgKc2b1CPsbe+NgEZ5SYP4yF+e1S6P81mVSjnsF2ER4UghrPEXB3lsvdtYr3Mh1ohc3lnu2d2P7rPuzitfSrlCRDjaFmTx/buX+tZ7n0BYgr8yMrjOhHAmLWV5PEEIIaT/8YWbX8DCNdvw1rZCydbXNu7UCrOkWSOsH2+nR9iOEmsiWWGP8601Ol+qUsDQluTWiMJkOfFlkPAOxR0R1p8LXTTy4N2GGuty7vPp3X6RpkpZHF4PmLgYJ9VdqZRDCOvyCNvrIsR83vw+ffk/L9rLwoqaGPtxbO/5HHXWiEJb91h05bRzOeXTY7YQjogIR/nnddYI5/blps6EcCowqTUhhBAShlcA5vMKR33vQXzkL/N9beNkInBVTMu5hXAul7fXe2fh+8bl2Zf1Vmc/yCuFTDq+IrA0hdMjnPcIMu+hOo/LKMSgMGJgIz5+7FR7uW5s2bS+vHSl41dRGrUXAsaxsJ5oayfLBRyE9dXJKYUFqza7sotE2TWsPjMpMSwuzmhyyIRGn0e42y+4e/J535MVyxoRjFVII964LeI8wSmFuhLC2ZT0yuxQQgghfQ9vdTUrsPLwKxt8bZNHhI2+rMly63d0Ylt7NwDgtufX+OwReaUCQ1zWo+X12zu1+3Tu11VZTtOdbY0w31912yJs6zAEy6rN7XhrW4fvUbarslzeEC6ZlLs4s04cZQKKiVQ6Ytsb1ohyUPAI+8cb9LS7IWPItHzeH4GN8ghb+8mkxY4oW3jtK8513oit7rPO5f2Wme6cihiT0u5b17e7X8saUZmQcHFTN6tEOpWiNYIQQkhR2PYAz+x1bwJ/IJ4QdgoaSzxY0V9niVgAuPC3T7veh2m3qIiwkyhxoPL67QDgjJ89BgA4ccYo9z406dPSKXEpbd0EqowZEfYK00rnge0Na4ST5mzaldosLgWfr2ZdwDE0pFPo6M4jl1c+gRp12Nb6TCoVyxphrfaOpUPzPezJK21kt70rZ4t3L1a/Ud+HIGtEpUzC9RURTkvFQ+SEEEL6JtbPayGxvzuK66Roj3BAlHeTs/AF3CLGu6ewPRsR4UKLKN/kzK/fjT8+sTKRPcBbbrcnr5BNp0qICMffdzH09pPiJNYUJ2Ee4SDfbGM2bWyrgDc2+yddhpHPK1j3L970ad5zZghhY9mWXd3acXuX6fTYzq6ewMlyVjdRAU3vjVQnJ8sVyKQl0mRNCCGEAEZ06nePverzxFq/qFZUTCfgYmWNcDSxPcIBIsnbnVIq+Ic9ZN955ZYZccTBV29ZGBo99K5yVZZDISLsFN263LKZAI9wxSPCFcojHBTZtLzQSSlkjfCvCzqGBnNfT67YiM//84VY+xk/pNnuM50SpMRvjfDy4htbbSvOXQvX+tZnPd/rXF5p81zv6sqFpLkzrREJI8KVDoDWlTUik0oxIkwIISQW37lzMf74xGuYMKQFx3se/wMOa0TaskoUfl/iPG53TTBCYTKaDt+EuJB+w9blVbBOjjBJBK8JnSxnnBfDIxxujcgGRIQrP1lOaTNzlEpbcxbrND5tnZUmDtZpjVtQAwAaTTG+OEGmDeu7m1MKIoJ0SpBX4dkafnKfP5+vk2w6he6cu9KdbszbO7oxenCTflzmcecSeoSZNcJBlunTCCGExGTNFiNNmhXdtfWH+dfKpZrRlEWOZY1wvlbuv168EeagMrRhfQDAH59Y6bIluCfLBSuF8CCc22rhL6hhZKpwRYR11oi0vrx0xSfL5SuTGcJVuMRBtkghbJHII2wK4STi2/l9T4sYmUKUKulz8EbH12/vwJqtHb52qza3B363LfmmiyQ3hETZuzhZrkA6lWLWCEIIIbGwCgE0mT5LbwYFKwJsRROdkaqcUpq0ZsolNt0RYWDVpl14euUm7Vi8v13Ort2vVeij/kc8GS7i/iSG5i12rMp4sjM9tWIT7nt5HSYPa3HJEF1u2XQqpd1XpX+3jdRgwevDbjrCOHHGKBw4eSj+9ORrruVB9pe4JPIIFyOErQmStkc4OiIchdcOcumf/cVNRIAV63fg6OkjtH1YQlwXSW7MpLTp4NIpYUTYSTYtzCNMCCEkFlahjExKMO/VTdhsTgKydIj1w2uJDOfvSz4fLl6N9+7I6RHXPIClb+3QjsUbjcurwg/7NXe9bC/P5VXRE9vCCGvlFEhpjxD+4T1GeeiVG3e5hIhOtFg+Uu+T2zg5mUshyv9aLNl0Cl8/fW+fCM2mSpNOSSrL2RHhBCrQ+l7mTMuIlTs6rxRE/H7fODSkU/j7hw7BHqMGaNdn04Kxg5vx6oadwU9FbCGsiQgH+LHTUvkkCXUlhDOpFJTq/RmihBBC6g9rQld3Lo+zf/mEvVx58pna1eA8EWFvvlPvL09QVFeHzxrh6O2pVwtR5LxKNrnLKarC5E2YGHUWQkiLuMbqFMlh1gvA+I0GgJwnYFXpSe7e8sFeit27mNHU1oa0a7n1fRkb4IWNQhfPCzpHViQ2bkS4IZ1yWSNSKUFaxC6MkklJUZP9GjIpzJ0yFFe/ez/teqWAiUNbsDoks4X1HdQFNIPGlE6JXUqaWSNQ8B9xwhwhhJAw2rtyeOkNY4KRT9Cab3tyXo9w4bcll8/7igMopfDtOxbjlw8ZOYLd2iVcbnl/+4N0W15jyQgjdmAopNmOzoLfN50SV/Q6STA3WyWPcF6TY9dJsdYIS/i3NrpdpJYobWnM4Mq3z0jcb1B6MR3plPii9GFk00bbvz39On7/+EqkBFiztQP/mL8aC17fgpQUKYTNbTIBglwBGNiUwc7OnsDvmiWEdRHhxmyIEDZvaKNuxIqlroRw0H8yQgghxMnVdy62X3uDJ9YviPV43yqC4UqHlvc//lcAbnh4Bb5zp2FlcJelDR+PLx1bQPq0pJotblW1sIjwjs5C3thsOhX4GxulQ6xglT9rRGV/s7ty4RPBin2KbB2vVwhbQlIAXHjYlER9Dm1tCPV1e89xxozo6oqr6GjIpJDPK3zhny8CgCubxhMrNiKTEuw3fnCiMVv9AuGR6dbGTLw8wgkmy6XEkTUiyYATUGdC2Bhud8wvBCGEkP7J+h2FtFc+IWw9ojUjU1aUyykWc3nlF8J+LVt4HTEerxANEkPGJL2IzpztY2ZSChNfOzoc1oiUFO3ptSbLeYVOpe2MnT250ACZ9TEm9cZaWQqCrBHFBCjTKQmNUHvTwGXSKaRS/nLKnzhumnb7rMMaARRu8pzvT581Lumw7XOXCfFHtzamsbMzOI9w2PdAF6U+bs+RyKRThSc6nCxnlDUE9Im8CSGEEIs9Rg20X3tFhFU5ywqqFLIdFNrklfIFXbyRLqdg3N7hrsblJWyinbfPJI/OnaInTJiF9bjTY43QCZbTZ42NTF8VlEe40taIrp68z5fsxDrXSdNvpQIiwlb0spjcxVkzp28Q3klxVkTYe1M2d8pQff/plMuG49TBGdNmUdRkOTsirF+vlEJrg2GNCDq8sBss72S5cW3N+M2FByIl4vv/W27qSwibd2XWTGBCCCFER2tDQbx4PcJv++mjWPzmNjtSbP24eyPC/khy8P7e/YsngldqMLJG+AWJSpgTN67IDBMhzslLKRF4p+FceOhk/OSc/WNYI4wT+fvHV7qWV9rO2NmT94150rAW+3Wx1gzreFsaPNaIjP5ExBGY6XR4xN0bcE2nBKmUXwxaKQG9NGTcEWGnsM6ZYrWYgiCFSXvuAVpdKRg3DJ09+cBKgnGEsJW72bqZSqeceYQrQ10JYeuDb9ck8iaEEEIsnFFV3QTrxW9uK6RPE8sjXNgmr1SkL7OUtGBBW+ZUknhwApEX0iwqWm1FPr1CxDtxKkgIVjp9mi4i7PZ7F/do3YogD2h0i07LHuC9kfnPRw+L7DOTSoXevHgjwtl0ypVL16KlQS+ErclyFs4xKgW0tWQTpWKzsPIZez9z6+ZHqcKYnE8YnIRlv7X6t578WzdPmVTKkUeYk+VsIayraEMIIYRYOLWGTgh35/L27PW07REurI8TES4l0BlqjUjiEY751DiuGG3IpHya2dIfvolcHuEbFGm0RE2x6cai6OzJhd4QqOJ0cCEiHDJZzsneYwdjxphBoX1mUhIaIffaLdIB1ohgIeyJ2HpU3uDmbFGCMiiNm1MYWxYSy3Pu/TqEfUaW3cR68m9FlVOOiPDW9m7845lVicceRV0JYetOob2Lk+UIIaQ/s3LDTry6YWfgeuUSwv4f4K5cQehmNBXRDCHsSbvmkYjFpuXyjs9JUo9wOawRALD32EHYbXgrmrJpu/CChSVovB5b78SpoNRaVoTyPx87LNDbWgpGRDg6a0RS/WcJxgE+IVzaZLmwsXqr1mVMa4SXoBRo3uXez6ytJVuUNaIhKCKsE8KdhhD27ifs/0uDJyJsTQL1FtT43M0vJB57FPUphBkRJoSQfs3R338Qx3z/wcD1TuGnjQj35AslllPA129bhO//b6m9Ppf3lzouZ0Q4H5A+LZ/QI5zziPcgovpsyqYxbdQAKDMi7RQ4tjUiIiKcCRBnllhPOlktLl05vxB23kxY56jYyXLNHj+udZzFCOFMOjwi7LUtWBFhL0H79k46895UDW5uCJzwFkZQRPjwacPt1622NUIvhJ9fvTWwf68Q7rE9wpws56K5wRgurRGEEELiEmSN6LLTp6Xw28dexb2L37LX55RGCHv6KCkiHLA8qZ/WKQDDhHmUaBdYE+WM43aKmKBH6WHRQdcYk+SZK4LO7nyouJxnVu5LHBE2/3q9z3ZEuAhhn06lQm9YvOc6m05pbRBBGSt0+Xj/cvFB9uu2lmxR2S50eYSf+OKxOO+gSfZ7KyK806xU6H1iECZog6wRFMIeOFmOEEJIGEop/O6xV7F+u5FHOJPy+ysB4PVNu/CN/y4C4M+1ChhRzKhJZKVouiDBW0pluTARHZZeDDBEYsrMIayUOzJpWyN8qb3cEiLocb21a5FkVdXi0pXL+ywiulOR3CNsbOH9fmRTJUSEo6wRmqwRwwc2+scWsL1XtCsFHDZ1OJrMym1tzUVaIzQR4TGDm12i2srUsr1DHxEOI2sK7ZYGd0Q4JeER9HIQSwiLyMkiskRElonI5Zr1nxORBea/l0QkJyJlNwI1c7IcIYREUivX7N7AKndssWpTO666bZGdwqshk0J3j/+H9C9PvW6/1kUyddYIb2nYUvLjKqUXUpWyRnR0R0fVUiJQyhCrKZ01wtPeK3SCJ8tVNv1VVETYIukkMetwfJkcMvrzYewjvM9IIazJIzxSJ4SDIsIZvayzhGyxWSMKHmF3/87P3Dov3Z7S5XHwZo2wSzoXkfM4KZFCWETSAH4G4BQAMwCcKyKu4tpKqe8ppWYppWYB+CKAh5RSm8o9WDsizDzChBCipZau2b2BVe7YwjszvTGT0lojnOh+r3PKbycIKtVcDOEFNeLjFOOWwPrqLS/52nVGFKISCFJiWkLyboFTiAi7twmyDPjGaGVtMIV2uenK5SP93EARQtw8YH+mhOIfpmfSEvp99EafM2nBCFMIO1cFaVlvVN46D42mfhrcnNU+AdHhtGRYn633XHgLdgDwZWOJgy2004IvnLynnYquGNGelDif5lwAy5RSK5RSXQBuAnB6SPtzAfy1HIPzQmsEIYREUjPX7N6ixyEsvIGShhhCWBegy2siwl6LRUl5hMOyRiRKn1ZobG33xyde87WLjJiKITqsrBXOaJ7EjgiHS4rKRYRzvmh9OQZgNfd6aoOirkCciHC4R9ifPi2FkQONtHPOzVIi+M679sWcSUPcYwuwp1jLjcly8U7Ede/ZH0dPH2FunzbH7xHCmicHVoGWqIjwHqMGADDOmdU2JYIPH7079jLT0MUV7aUQRwiPA+BM3LbaXOZDRFoAnAzgnwHrLxGRZ0TkmfXr1ycdK9IpQUMmFesRDyGE9FNq5prdW2za2WW/dgZKRIwImc4j7EQnaHMOr+4Zs8YCcKdhe3LFRvzyoRVFj1lBP9kqcfo0pzUiREFHTTgSGII3nzcEV1pnjdBM5HISlY2gUsE9XdYI7f4T9msdt1eLJXnk7yUqj7AuT6/WGgHg3LkTccb+7v/aQT7txmzBGhF3spyI2Mdq2R68wtTZlxUpt1KfRYnYz5+0pz1m6/+Cd2gbdnTGGmspxBHCuiMJ+hTfDuCxoEdsSqkblFJzlFJzRowYEXeMLpqzaXqECSEkmJq6ZvcG67YXfiydvw8CIxKmyyPsRKdLbpr3Op59bQuAwg+6M7J82/Nr8NDS4m8OgifLJUvL5hRVYZ7lqIiwiCH4rMl6+sly7m28oq1S6dGi6OzJF11GOQzreL3HaYnNYvYYlUfYe46VAgY1Z33tUgG2DW/5Z+tmzuURjinkxdF/UKTZ+T2xciAXqsKF78dqn01J4ITMVZvafduVkq1FRxwhvBrABMf78QDWBLQ9BxV+xNacTdMjTAghwdTUNbs3WO+IGu1y/D6kRJBNp9AdVSpZI0xWbtyF6x5YZvcDuKOqpZYNDrNGxPFGWHrBKarCxGBPRFRcIEg7s0Y4/L7WjYBX1njzBkcFGgVStK/62D1HBq7r1BTU0ImlYifL+bJGlDCBqyGTCvVre8XjlvYufRU5a2w+37Y3j7CBNRmtrbkhtu/WiAinXNv72xReW/06U5+FYWXfyKRTgfYbHVGlz5MSRwg/DWCaiEwRkQYYF85bvY1EZDCAowDcUtYRemhuSNMjTAghwdTUNbs3WO+ICPusERmxf5iDiBK11g+8MyIc51F8GEFRrVw+njHCGpNVvAAIP46oqDhgWiOU0Y9TLNkvvdaIkMfk+h0UH837xhn7YLAmMgoYNyhxPMJJHQ1WhNsrHC1hXMyhDG7Ohn4W1jm00p1t3tllz49yt3O3twjyLzdm0mhIp9CUTfluWC48dDKmjRyg3YclZoMsF06xa70uRITDJWahbwks461jV5mDoZFCWCnVA+BjAP4HYDGAvyulForIpSJyqaPpOwHcrZQKrnlZBhozKQphQggJoNau2b3Bjo6CGOzocgphMT3CUdaI8PUFa4QzQ0MxIy2gAG34K2ZA2B7Ts69vsZcZqdf0G0dNGLStEaYQLyZ9WpQQLsUjnElJ6PYdniirLvqbNCKMALEZdpxR9pAhLQ2h662+h7UavuDNu7pDC2r4hHBA1oiGTAqDW7IQEd/n9vaZY3DPp4/y7UNQ8AgHRXfdHmFTCMfMGmFF1rPpVKIiH86bv3KQiW4CKKXuAHCHZ9n1nve/B/D7cg0siOYGeoQJISSMWrpm9wZOkecMlKTESPK/vaM7dPuo4K6lLZz7KdUaEVpQI0ZMWPd4O5dXgRMD4whhyxqRV94Sy4U2TrxRwhgB4aKtEVFCaVu7+zPWWiOK3KfXGlGKE7qtRR/VtrDE46RhLXhjSzvGDWn2lXgGov3LXpqyaQwx9+0XqPojsoqsAMHfV+fubI+wlUc4wkJijSOTlkTR+vmvbcaEoS3xN4igrirLAZwsRwgh/YmeXB63LHgj9JG607vrskZAMGxAA55zRE29NKRTkYUxLNHZVVZrhH7586u24GcPLI8UBrpo29ptHfjgH+dr20dZB4w8woY1QinlEp72jH6PYPJNlosSwiWEhIMmXu0+ohUAsHx99IONYksse7WldW50NyxR+xjUFC6ELeG5x6iBuPGDB+GK02aER4QjhLA1xo8dOxVffdverm11Y3ZGlJ1pzYLuo5yfacEjHDcibOwrm0ol+m7c6CiGUw7qUgjTGkEIIf2Dnz2wHJ+4aQHufGltYJuugDzCIoVHzEE0ZFLxrREOwV1qloK80sfhrrhlob0+DK9uOH4vYzLZwwGZLJzn6Kg9/BlARIx/VmlpZzQvrn8zyePtpASl4po9aYgt3s47aCKuOXM/AKUVOyns0/wbIhwB4IhpwzFz/GAAwO4j/F5bJ4Oawx/EW6c9JYJDdx+O5oY0mnST5awx+qL07gXW13TWhDYcPm24sY+ACPe8Lx2HeV8+zrG8YKMIKtHtyhrhsUZEZo1w+I+DvjpjBze53n/smKn440VzQ/tNSt0J4aYGZo0ghJD+wsqNRqQvbIKMU+Q5nxgqBQwbEO7JNIRw+BgKk+XipSqLQxz7Q5iuTFrtzJk+7ZwDJ2jbWAU1vJPlgjzCXtEV6RFGcRPMgGBR1ZxNY/Jw4zH5mMFNEbaFZELdioD7hbAZETaP5U8XHYRbPnY4AODb79wXf/hAsFCLjAhrchfrrBF2+rQExT4sfJP/zPcjBzWhzeFhTjkiwkHp97QeYbNt1PfB+v4Y1gh9W693ebcRrdrJg6VQd0KY6dMIIaT/sKvLmBijTSFlEmSNAIBhreFCOJsWn+3iZ+85APuMG2S/t0RnV67Qd6WsEU7ChIRXzKQj/JjO8QZFV1MpyxoRr8SyN9oeZecQKT5Sm07pp6GJCAY0GlHW0YObC7YFXYnlpNaIAB9uWDfNDWltxN1ClxPYifXZOD8jne+3EKWPskbo9qHvy78PQXODcW6DjtnZlzd6HO0RdqRPC2jT2uiOoCcp2xyXuhPCg5uz2NoePvGBEEJI36DdrCS6rb0b817dhKtuW+hr4xLCjkBJnKhrNp3y2RwmDWvBh47c3X5fsEY4IsIl5xFWMawGIeu85Y0TqDxddFXEyMqQMyPCzghzIY+we7uhnmh7nDzCxRIkgESAAWaUdUBjJnQMzlXv3H8cPnPCHqH7FDs6642gRo83iKiIsPU5xrWheMfizxrh/57GLYQiYniLLzp8Cs6ZOzF0HEZ7Y9Jbt+0RDpeY1vewISQiHDX2clB3QnhoawN2duU4YY4QQvoBVjq0y//1Is7+5RP43WMrfW2cGRG8yfZ3i/BsNmRS8NofU54UU5WYLBdn87AJRF7hm6Tsr7MQhh3tNftUZkENp4axx+GLCHuFcIQxoQQNEyT0BYKLDp8CANh3/ODYE9nGtTXj0KnDQvdpNfdPCiz+QFobwx/rW/uKurGx1voiwkVYI4J2lRLj5uKKt81w2RGuf+8BuPnSQ1zjtcikUoWsETE9wplUsEfYSynlrYOoOyE83LwD3eioLU8IIaRvsqvbnzPUG+UKq/g2d8pQHD09+FF1Q9o/Wc7KqWuhK7Eco35DKPGsEcHrvAIkSaRMN8HJOGbTGgFPRFivgzF8gNcaUX6RYvcdEhE+ao8RWHn1aRjX1hwREfaujCfc/VkjjL/FPBSI8nLb1oiYNxXeVt7/G7oxBp1LzV60S0/eZwzmTB7qGkeh7/h5hJ3p0+LeXERFmYuh7oSwVVlm6y7aIwghpK+jmyTnjaY6I7U6bbLb8OCosC5rRErcj2p1leVKnSwXx1oRZiXw6oFEQjigWEZKjEh3XgUU1PCIld3M1GWFdjF2XqKlxItP2ibwCMe1H/hEWgmCP8rLHeTH9mKXJPa0izOHKm5EOM5hegV7JpVyVJaLOlZjvVFQI3pfcfoshroTwo0ZIzwflDScEEJI36FD88PutSV0Oby7Ok9k2KSdbNqfNSIl7h/4QkENZ2W50gTd8vU7Isseh3qEvb7VRNYIf0TY2YeRNcI/DmvRgMYM/nHpIdhvfFvomLyUMlnO2N7ff5JiF8niwQ5rhFc4RmwXRpTlIVB8Q3+z423mvXHUTpYLyBoR1U6Hb9JmqlDSPG5EOJuO7x6nRxhGiWUA6KRHmBBC+jy6vPHeaGqXK1JbWG41C/vx1Fsj3B5hS5S4rRGlCeFHXtmA+a9tDm2TKGtEgiilzv8sjih4Lq+0x2/toiGTwoHmo/EklDJZLrhPz3vLtgDYOYUL6wqtFVQMT7Pp1w0oJV3MNyDqyb54/lq8cOWJeP5rJ2rau1t6K9fpbgxjZ40IG6jVl0YId8fMI2ytzqQLBTV03xHnkwdGhFHIkceIMCGE9H301ghvRDg8U0TYj2c2k/I9Rk+JWxwU0kKVL49wHMJ0mjcSmkQfuHIE2xkhCn305JTePhHTShCESNmdET615hzD2XP0+ZJjdy3+Pp3LiyHKIxzU96CmrJ0mzr2B++079x9nW0iDSJI1IgqdRcf6fxL1lMJan01J6L7+/ZHD7O8mI8IoWCM6uymECSGkr+PNAgH4bQmuQheOVdbL8Iiw+PoLyhrhskaUXdH5CRMS/kfS8X/OdSJfpBABzeWDJstFCZuI/cYeYXx8IjVs/46VEiM+ba33fgyFyXLJvwNxdVxcse1slk4Zk85O3Xe0vSyONSI4a0T0IPweYYntEba+w7o8yU4GN2cxZbgRFY7KTVwM9SeEs6Y1QnNxJIQQ0vfxpjtzZo3QeoTDhHCMyXIpOyJcvslycQgTIr48wgl+zZ0SsLCPgvjvySuX4ChfRLg3rBGmbSFWerrw9Xb1tpgR1DhEnwNx7TsJhZsahwVEcx6SFAiJu0/neyt9WtTNWSFrRPSXt3BTy6wRBY9wDz3ChBDSH/FGY93p0/ztw348G9J+a4SVSsze3nzZ6xHhEIXiT+kVX864I8KFZdb+cvm8K+JcTHQyDu+YOTZRe13/SRI6+NpqevzKaXvZnlTbGuHLIxw10tKJuwtddpMov3g5s0Z42zitEfGzRkTvyPrvRo8wHNYIRoQJIaRf4rdGhEeEwwJOGc1kuVRKXCJU5xHunWkq8a0RSbJGBPVjCZOevHsiWWGyXGkRXwFw1pzx9vtyiBqvmC0IQ80kMd9kOX9/Fx+xGyYObTH6tnypPuEYPe7veSbqxSWpyNbZXJynVT9ZLt7xFJs1ojsXnDVCN94o3zRQOA56hOGYLEchTAghfZZcXmFbhz5fvPfHvbOEiHAmpfMI69OK9fTyZLmw33yveEmSNUJn+xDH8nxeuQuK2B7hqH7D14sA5x88CaftO8a1byeWCI2Lt4tQj3Cingsi2581Inrbs4qcqGcbVQL2ceXbZ2DP0QMd7Z03Mta2TsEff5++5TGOM6lH2PXdM19mM9E7ylcwIqyZgljbtDQYEeHtARdIQggh9c8nbnoO/33hTe06nzUiF1BZLsaPZyolmjzC7kpXlsjsKWP6tDiEpk/zirMEAiFospydNSKvPIKlvB7hoEgrAPzvk0eisyeHWV+/J6Iv83G5LzJu/NUX1HBEuRGeqQAoZCBJYr8oF0FR2gsPm4ILD5uiHYvltU3qLw7aVxwvtD97iRQqy2ksD2kR5OzzKhjSkvWV6tZhfRbFPvkIo+4iwk3ZNNpasnhrW2e1h0IIIaRCBIlgINwaoSPscWpK/BFmCYgI22mhpPoR4VLyCLuEsCN/q/M4nW1iZ40whU30/s1H+BoF0tyQRltLQ2TUNWtu7G0WdyKbLs1eEOWcLFdJLAHsGm6cSYOB/SUfQ8aRhUX7nfQsuuMTR+CCQyZHTm6kR9jDqIFN+NOTrxWVuoQQQkhtEyUyw7JGOCPCltgJjQiLBGSNKLy306fZQlh6JSIc6kX1rCo6a4QrIlywgOg9wlHjBR67/NjAdV7CblB0x673w3r9rsbfeJaAiAi2ZY1w7GP+V44v7KMCXwGr7+LSpxl/k0ZNS5ks5yWdStmV5fTWCPf7MYOb0ZRNR/ZrnetismlEUZdCeOaEwQCA1ZvbqzwSQggh5WZLe7j1zStCO7pzdmDEK5KBqIiwPo+wu8SyFSl1WCOKiAjPnjQkUfuwOUTeIyrGGjFiYKN2spyzjXN51B5E4k180u3P11fEtlZ6N79tIX6fQU19BVYc53bYgMaKpIGzxwRx/Y2xgY117p3Di/MtDfocijnOtBS89DpvfrFC1vr/XYlTX5dC+MzZhgl9xYadVR4JIYSQcrOzsyd0vTeCm1dAh1lkSVtZLiQ9U0pEW1lON6HMSp+WV6ooa8Sxe47Ey984OXb7MDHkS1uVaLIc8OBnj8Y9nzrSExF2t/G+1u1i+qiBjnbBvlvRvC5F01jRRt8NgR2t1ZmEPW8jlb3Vp9cHa+6jqCLL8Yj7cbq/p/5lpTw5T/L5TBpmTHLMpFK2R1j3/y7OzZQO6ygYETaxygfu6Ai/WBJCCKk/OrrD88TrROgOUzwnzRqREmC7R3iL6CvLWVHgvCpuslxKJNZjYOfYgghOGxYHweThrWhraSjkEXZ4hL39OYtuePn3Rw91tQsahdtq4V/mbx9+BPbEsAT+XfG0ixt19aVPq6BHWGzxHbO947U1zqQ22mBrRLyObvnoYfj3Rw4zxuBIn6b7TkZ9T4P+W+UZEXbT2mhcSKKiBoQQQuqPXV3hQjinFNrMSVnfOH1vAMClf56PPwfMHYnKGuFb5omOWj++Pa48wsmFcBIfrzGO+EJRdxzvPXgibr/s8NBtbZHniYKLpr1uOC0NGTRlC4/kgzMQ6F8HESU2gz7TMKEUJ4+wsc6zna94idmugjbxuGLbGXXV+aZjeaUDTkRcQT1zQhuGmpkf0imx0xnqPqNihSw9wh5aG4ysbzu7KIQJIaSvESmE8wppEZx30ESMGtQEAJj/2mZ85T8vucSJ9Tp8UpZ/WUpEKyydHmFnlbm4JE9rFX+drunQlgbsPXawf1vnmFx5hJ39+yPCcR5rB0eE/ctCz4d2VWFhsEfY+Kv7dOKcM916X9aIygWEE/e9/4QhOH2WUaEvboll3z4Dlyc/0BXrd9iv9QU1wvsMWn3Nmfth77GDYqVaS0p9CuFGUwgzIkwIIX2O9u4Ij3DeEDopEQxocqfD9/qHgfCIsE4oeCfLWa96HOK3p4jScnGqYg11/NCHTybT+1bdjYKipn7bh9cOop0sF9CfM1oX7BFOFh10rhrX1uxbb08M8/QbJt6mjx4UvEMN1qddTGW5YrEny8XcRSol+MwJ043XZbdGJOsHADbs7LJfh3nzgwgS7kdPH4nbLzvCtsSUk7oUwg2ZFBrSKezoDI8aEEIIqT+iIsJ5pZBXxqPtAY1eIVx4bQsZjTL43fsPxHffvS92aZ4sirjFj84a0VOENSIqIjxyYCN+9H+zYrWPky0hONLnGJPTCx3oEQ7vz7lNHJFop2MLbWP8vemSg7Up2TIpvegLsy185oQ9cOQeI3z7iDte+328zUoiidi2mlrC02sBiSI4a0TsIdg4Uxnq+q3FtLd1KYQBoKUxrb2AEUIIqW/aY3iElTIEiVMIp1Oi/dnXCeFjpo/E/x04Ee1d/siu4XV1LQFQBiEcEaqbM3kIBjQWJtMlESK6roO2d6WGc4hSZ+oznU0iekZ/yABF+zKkuV/UOXFWxHNtF3LSMmnBgWYKO6P/iMf0nn3F2Ue5SLIHazhFT5YL7Le049Q9iYn6X9MLp9ZH3Qrh1oaMPUuYEEJI36E9RtYIpYyiD04hPKSlQRtxCntcrstQkQqwCbhKLBczWS7KHwl3RDU8q0K0OAs6btdkOYegzKb1+w6bLBdnf8a6oDcB7SP2mU3rrRGhmTbiTpbzfIe8n1shfVoFKEIIFir1+S0sYwb7bSVx91mqJo1jBaoF6lYID2jM0CNMCCF9kDiT5SwR4vQID2tt0HqEw36PdU8WgzzCxYhfJ5H2RtFbEgKaut8niAg7cU6Wi/QIm3sNerwtYQVAioxSBm0WNVkurM+g9772tsCMv49SsY87wT6spgW7SGHjv37w4Bjb63dWaoYGrUe49pwR9SuEDWsEPcKEENLXiJM+Dcr4oW525OUdOagRSmmKKoQKYV1E2C1+LEHktUOctu8YvPfgiaFjdRI5Y94z1ETp00I8wpefsid+9/4DtdtaWkVE7Cirsa1GkAcNJ0Zqq6QZCKLsGFm7ipo+Mq59MpDARuHEX8Y5/IagHBRjjfBOljtln9EYPbgp9vZxl4dxzoET7Ne6/N01qIPrVwgPaKQ1ghBC+iLtEfM/lII9WU5E8PPzDkBDOoWmbBp55S/zawmEIWbuYSc6a4QEZo1w+4l3HzkAHzpy9ziHBCCGNcKz3yQRYV1bK9p76VG745jpI137KWxXeO2eLAdf+yhdFG5LcLyOIfMKkVF923RKP6awng3rSby2un0l3a4YCjcA8fdifYbWOK2/cXV64GS52CMocOU79rZfh2Vr8VLNSXR1LYS3s7IcIYT0KdZv78SrG3aFtrGsEdbP7Kn7jsG0UQOglOEd9j3KDukryI8clTXC2yYOUZ5JgUcwJvEIJ5AtrvLJDkHp9Ahrs0YEpU8z43zhEWHHaytiH2OsSa0R1hiC8ggn0VtW1/4Sy8H7KJVSrBG6PMJB/O+TR/q29/VbREhY5z93wqwRZWTkwEYsW7cDS9Zur/ZQCCGElIkDv3Uv7l38VmgbO2uEx8eaV4bQsSLCdjaDVLBwCbJhpHRC2FNEI52KzgTh6jNKCEvveISdotlZWc75KFvvEe49CpPl9HvV+WGd22n7DNiHF69W682CGvY+imhcqCxnvA9LnTZ99MDC5mW0Rjg/jyRZI3ojE0cQdSuEx5oJtk/68cNVHgkhhJDeJJ9XUFA+0WjlF/b+/lpvdcGor75thnYfLo+wJn2a0SaZ8zVKM4t3vyV7hAMeebsiwoW2TuGirSwXNf5Qa4RufNHtdaWuAdiFFXy+X9gqUNNpQFsA5x00EV85bS/tWPy5ihOEtBNiH08CYWgdRyF9WjJRGfg9SdSLf5skN4m0RhTBpGEt1R4CIYSQCpENqUqVyyujcIbHRpA3vcNJ8r6euPdo7OmIjlm4xIRtjXB7hNMSXElNRxwrhXaSWkBL17siHqU79ycCz2Q5f99BgqkwJzGmNSL+UAP7zAR5hD0L/vvxwwP7crY9c/Z4XHzEbto+qlFQI0nmMattyhsRjqstA/ZVTNaIoIjwJ46bVspQKkrdCuFj9hwZ3YgQQkhdMrDJP7HNIm9mjXAKG8P/aTwM9s5W92WRiIErlZj5N+exRqREknlzI60Rop2kpm/r6VvTNvDRuCbKKgirLBceEf7QUYaADJ0cFRDZDWwu7r9eChHh8BuCfcYNdq0LtgEUVkR+TWJ+5H+5+CCcOXt8vMa+XSSICJtjt28OkkaEy2iNCPIIH7nHcADR57YaceG6FcKNmTQ+fcIeAIDuImq+E0IIqV0GNmUC1+WVvyBCSgTK9ggbK6wf3YaM8VM3qFkvrrW2Ao0g1VojyhgRFrhFTJSuXPDVExxj9LcJEh06kQt4C2o42vvy6Lp39rmT9sTKq08LFfq6KHSY6Ik6rQXR514eOlkO7nPi/v5o2pcYKT1s6nBccMikWG3tfSZq7d6mEBFO1ktw1ojkownKSGKnnKvBBGp1K4SBQmnNHcweQQghdc267R2uVGZhQjiXL5RYtnB6hL3WiBljBuErp+2Fn5yzv7Y/nQ5wZY0w//qtEcmES2SlLfFkdIiICLc0ZBzvE0QQHa8LGSGC06eVY7Jc8ihluKgb1JRBYyaFYa2Nnu3ij8FVPS9JBDZ2y+RiMip/sn4b46+3xHKJzojQAilJ+417ONWwRgRfaeoA60K5o7MHQ1obqjwaQgghSenqyaO9O4e537oP+09ss5c3ZtKB2+RNC4Q34pQ3s0noPMIXH7EbXt+oT8umE1varBHe9GmpZEo4crIZvHmE3RscMLENz76+xdHWOd4k4/BH6gSeghq6yHSZVUpYd/Yuxb8MAAY3Z/H45cdiSIv7t9+OCGtLbcezAURFLcOykIT1++QXj4uxhbmPIj7PoEwa0dsHLE/Ui65f/3eZ1ogyY3nItnV0V3kkhBBCiuHbdyzGzKvuBgA8Z4o8INxvakyW81ojYE+WC9o2iRfS+Zi/UFrY3yZJxC8yj7B4LRnu9f/6yGE4bb8xjrbhEc3AUsiefVp/g0osO8VysYQdV1j7wLYiGDag0WfHCBXXnpW68+BeH2QZKI5YVd4i9q3dxmya8thF4lriK1Vi2WtdAmqzslxdR4StL9WqTe3Ye+zgiNaEEEJqhdc37sL7fz8P2wKsbZmIrBF+a4Qgl88bJZaThNNiEKQHyp01QqD3VTpxTlyLiggHCSGdQBEplC12LrfG5d0uKTrRGS4Mw8V30EcsIYIrLGuEc53uvP303P3t7CJJSiwnPmdFnGNrk6LTpyW4QUzUbxF9VcMaUdcR4T1GDQAALF+/o8ojIYQQkoTnVm3G8vU7saszQAh7Z2g5sPWHx75gFNRQgYKz2EfAQetTKUkkOuII9KgJXLanF6K1OMRBn6JNXDcf3psM77KkuMdnvG7KprHy6tMC2nvH51kfFK2N8Fu4Jst5so6E8faZYzFt1MBYbd27LPKsFWGNSJufX8h/nYRDKJ8stc9ZwL3DfhPaAACH7D68bPuMS11HhFsaMmhpSGPzzq5qD4UQQkgC1m/vBADsDKjsFppH2FQzXrGmlJFfOMiCUHT1qrCIcIJu4ojmMI+wa5n3MX8S4eQQSs59RKdPK8EaUWT7IEtFVEYHXbDWZ41I2LdvH+HNYvUVuF0Rbf0R4XhGhMCsEaVGhLXWCP2YDpg4BC9eeWJo2sRKUdcRYQAY1JSlR5gQQuqMdaYQDiLMT9tjpsz0T5bTF9SwKNYxESR3GzKpULGw33i3ZS8d4xc3qsRygA4OyCOsR/fIWsRTUEMjDEuyRiTcttA+oTUirE/POHRRbwAYPsDIRNHcoP/AEonUpOfMKk6S5EmDFRGugTzCnh4S9VUNEQz0BSHcnMG2dqZPI4SQemLdto7Q9WHWCCt7g9dGEBkRDpIwUd7dgNVN2XTo4+OvnOYu3xwnIqybpObEivqVUu1MnzXCW87YIcgDqrgViz2ZK6wNrOhmUB9BAjk48hhaoMTx+ptn7INr3r0fDpg4JHwfMQKuSe0FQ80MWFZ62DhYh2V975NWlgsaYanWCG1EuAZny8USwiJysogsEZFlInJ5QJujRWSBiCwUkYfKO8xgBjVlsbWdEWFCCLGo5Wu2RVRE+KjpIwLX5fJ6a4SxOHnWiCicmzktG03ZVCJ1GJlHGHE8wnpRqrtvCJws5+qvsF9vyjSvT7f0CKFn/+YAr3jbjOC2Sf3eIWP0rQqwQwxsyuLsAyck3nepbQHgsydNx7feuQ9O2ntUsg3hFMJJI8LlfYJi96vpqwZ1cLQQFpE0gJ8BOAXADADnisgMT5s2AD8H8A6l1N4Azir/UPWMbWvGEys24qGl63trl4QQUrPU+jXb4q2QiPCvLpiDs+dMCFyviwgLrIIaYRFhPVG/906h4LQPNGXTiYROlEAxMkE4orWakVmC1+931VkjAtKnaSJ1vowKKJyXwpiKV0ZBFd0A4KLDp/jaFyYF6imu6llwH8X4n+NsomsyZXhrYPumbBrnHTQp2eRH+4bFExGOu31gv6VGhJ3bl+t5QvmJExGeC2CZUmqFUqoLwE0ATve0eQ+AfymlXgcApdS68g4zmDmTjUcX7/vtvN7aJSGE1DI1fc22CIsIj3Gk1Tp139G+9XZE2POIX0V4hIuewO/YzhltbsqkKztZTvML7bQyuJZr+kpaYtnVJlXISlEOj3DSSKCuwpo+24Ubu9iFbrJcaPq0+CSyRmg6vvnSQ3DTJQe7ls2dPDTBCPTjSds3Sdb44p31wOh60SPyb1+wa9ReTDiOEB4HYJXj/WpzmZM9AAwRkQdFZL6IXKDrSEQuEZFnROSZ9evLE8F99wHj7dfWBApCCOnH1PQ1GwA6unPYHpA/GACaG4yqcou/fjKu1ZRF7snpPcJBleUsivU8OrdqyDgjwqnQqJn3Rz/KGqFUsE/XomBTEM/y8vk5rf69EeFS9uA8F9NGGmnIxg9pidwuaUaDsDH6I8LOdckjsDFb+5YMG9CIAz3C9/cfOBCPfuGYJB379pA275yi8lX7tu/VrBG1Rxw3tvZGU9PPbADHAWgG8ISIPKmUWuraSKkbANwAAHPmzCnL+WhtzOD0WWNxy4I12LCjK1blFkII6cPU9DX770+vwuSQR8MA0Jw1hLAliL3k8kbQwx0hjI4IF+0RdkWEPdaIBP3EyRrhPSZfH0Ee4SRZI7TWCO84/I/ck0Yag8ZywSGTsM+4QZg9qfgoaBDJUpsVjjqJeIxKBebeR8Byz3sjHWxxGW1TIhjYlMHQFiPrgvUVLfU/bKnWCHdfhdc3nD+75Bu3chLnrK8G4DRrjQewRtNmg1JqJ4CdIvIwgJkAlqIXOG3fMbhlwRqs295BIUwI6e/U7DV7y64ufP6fL0S2s4RwENqsESlHRDgowhXQX5LfZKfIbsymQn/QfZkd4mSNcOX4DenTF8HVdBZYYtlvMbD6tUpVp8QqH60i/bpxyOcLYxGRSBFsZ5YInPCX/GZHxJhXBADj2lrcj+4T5NBKNFmuDH1EkUoJ7v7UkXbGiXIWwigF3U2dUsCJe/vtTtUkzkf/NIBpIjJFRBoAnAPgVk+bWwAcISIZEWkBcBCAxeUdajAjBxnid9228FnIhBDSD6jZa/aGHfGu0UGRYAtd1ggjj7AyKssF5hEuViAUtnNWX2uOmCzns0Yk9Qg7Xn/h5D1dy8L8rlG4byDcGxZy0Tq9wX6/blKSRieTRF2d2GMM8Ai/c/9x+MMH5uLcue7JmHEyehTGZu4ilkc4SLAXli/46gmx9x3EmMHNaMy4/99U247r8mDXhjbXEimElVI9AD4G4H8wLpR/V0otFJFLReRSs81iAHcBeAHAPAC/Vkq9VLlhuxk50Eh+/e8Fb/TWLgkhpCap5Wv2+u3uKqCTh+k9oo2Z8J+mXEDWCMMa4RarToqdFOTczimYmiIi117iiK2URjycPWc8Pnz07q71YRkQLGIV1PDsy5l5oLAseB+xiSHKdhtRsMzoIsJxhFXYGA1xLzhqjxGGB9r5uSZSagn8xDHatLU0JNh3mXbay5TTZlFuYhlSlFJ3ALjDs+x6z/vvAfhe+YYWH2uGMUstE0JI7V6zN+40IsIXHDIJ7z5gPH5wz1Ks3LgLV71jb5y49ygc8p37AUT/aFrWCG/0VMGwRwROsIpQCO89eKI2bZtzK2fWiGw6hbzSl4jW4Y2+attoIsKuR8wBxS10XcfJGhE06U5EfN7gSkaEX7rqJG3+5+SRZGs7TUEN3/vg8xBrH0VmjegveCez1ip1X1kOML7Ax0wfgR2drDBHCCG1ygYzZdonjpuGmRPacMTU4QCAjTs67bK2cejJ+zME2VkjEBJ5DVps/mJPGT4A+41vC1wPFGbmF7qM/wufdDZ/WiNAUwGiNI7IttAJFOs4Mg6hbbsMyvCMPaqPAY0ZV4S92H2HVo8LSRuRxBqRKMNEFcOz1c7QEDXxs1boE0IYAAY0ZfHm1g4ccc39mP/a5moPhxBCiIeNO7uQksKj4PMPmYQPHjEF5x8yObAanA5dHuFUDI9w1G9x4MQmx2vvOEM9wp73UYeo4M0jrBPC1pg84wjv2t1WF3W2bBCO6mR2lgh7uwQ78VBsHuGkhJ1jX0S4SGtEsnOdoHGZqBXJ6bUu1Sp9Rgi3ZNNYv70Tqza144f3LKn2cAghhHjYtLMLbS0NtlBtyqbx5dNmYMTAxkTCx84j7FgmIsjnDY9w4qwRdh8B6x3LBzS6HYVJfuDjWSMKrwvp1oKFa2GMOltBtPz0ZoSwKueJADdcMBvH7zUKA8y0XqVEN/NJI7vm3+AUcMntLyEB4URZI2o5uumk2sUr3J7u2j1nxSWtq0GeeW2T/bpevqSEENKf6OjOR6ZGi0NO6QtqKDMiHDxZLvy3IVgoF9bsPXYQnlixMVaf3jVJs0borRHwLXMudxJLB3n2YU1UTIng0N2H49Ddh3ubFkViTWb7cJV3ke+1azMrh64ua0RIOrtk1ojYTasTEa5BDUSPcC9w9bv3s18necRGCCGkd+jO5ZENEKlJsCLC7klfRjQ4H1JZLtA6bIvLaEtFYzaFloZ0Ic1YyDh91ogYv026KJo38g3Nnku1EljC0fp8dN31pjXivIMmAQBGDNTXBig2A0gQlQqg1aIo7S0Eggc/ezQe/OzRNX0e+kxE+MDJQ5FNC7pzwTOGCSGEVA9DCJcef9GlT7M8wkCYNSL8tyFODCUlgqe/fLy2qEf0ttFtdFFKXfq2WBHhWGNy+4AL1gh/h0mtEc9ecQLuWbQWX/jni4mV8EWHT8FFh09JthGSTmQrkEQ3JIoIx2/a5xCBXUVyy67azerVZ4QwAMyeNARPrtiErpx/RjEhhJDqUi4h3GOXWC4gTiEcYPiMFDCeBifvPRrDBzb4orStDp9wEuGV5PG7s722EpynrTaPcAzx6Y8Ip1zLXftIqOoEhfOTtDBGnL51FNKnxehDc4ORhDge3H49Wc75uoYDlH1KCF977v6Y+6377LzChBBCaoeunEI2pFjGuXMnYspwfZENJ1ZE2KkyUlLIL1ys1vb+VF9//mwAwKI121z7icvg5qzrfdKnlbqJcUE5fYvVGV6BYn0+OmGddBcizjRoRQyuCJJErXU3GLG2q5f0aTVUWa6WHat9SgiPHNiEqSMHYGt7d7WHQgghxEN3Tx4NIR7h77xr31j96Eosp0SQs7zDCdOnWWIlTtaIOGJ2+IBG/Oj/ZmKvMYNcy6Oijl7hYgl63SN8r8DSjStOFNbazGrbWNaIcKEoR9KsEdr+XJ7w8M84abS2mIhl0qhzb1E7wdfoz6sW6DOT5SzGD2nG6s3t1R4GIYQQD925PBoiyifHQVdZTqSQTSJownRUdC5ofdLIVmMmhSOmjdD0b/CxY6ZGdwJ3lTfv/mNFhGNZI0zrgmWNyITdFCT3Rlguld4KTvaG3kqyi2rKv3LbUZJSLxHhPieEp44YgIVrtmHW1+/GqT95BPMdadUIIYRUj7J5hHP6yXK5fGke4aiIsdGmuF/06987Gxnz2D970nTc8tHDIrfRRXmDslXoI8LRFDzCRuuGsMlySXWw+IV2uQgai3fyXzF9lJNqREKt72u1rRFOajmJQZ8TwhceNhkAsGVXNxa9uQ0/uHtpdQdECCEEgOkRLmfWCMcykcLypAU1rBVB65NaI3SctPeowD6DsESvK5euJkpsjKuoYQVmjdBZC4rZRW8LwVqTW/3ZGlEjw4ikzwnh8UNa8N6DJ9rvJwyJnnhBCCGk8nTn8nbEsRTsrBHeiLBljQjwIUeJ2Di5aYsVnH7hGt2RJYTzDk0alQu5VKzJcl05jRBOuBNB5R6JB3WbJALdGxPZqmqNqPpkOaelp3ZlcZ8TwgBwmKMSTmO2Tx4iIYTUHeUqqFGICLu9s9YPf9CktCihG8cjXEyarbhj8ecG9k80CxIU2hLLMZSQVzhaNyrdPf40pEmPXER6XQBZuzts6rDYbYslltiuijWiNI7fa2TZx1HLHuE+lTXCwnmhen3TriqOhBBCiEVXT7nyCOs9whaB1ohIk3D0inIJmzjRSOtU6SLCQaI5KYW8u8ZOrBsVXT7+YvIIV0wAhXzG9376KIxti06jWuzQ6qWgRrGT5X51wZyyRJNLzcrRW/TJcGmP46rx4JL1uPrOl5HP15BrnBBC+iHduXxoHuG4FCrLOX9pCy/jlDLWERxtdbYpqmv/vmKchsJ4HBFhTZEN472fWAU1bB+y8d7K6tGtE8IJZZ1IdQTQ1JED0NIQHecrdWxJ0tP1KiXuU0SK/j/kHob7iU2t0ieF8PF7jcLZc8bb769/aDlWbWZkmBBCqklXT2ke4T9fdBB2G95aiAg71rkjwsX1HzhZLmA/paDN8qD0bfJ5/7I4EeFYmRM8ba2IfZfOGiHutnGolDWiHL0W24clsg912DCD91GFG4ERAwAAZ86e0Ov7dlIvEeE+aY1oyKRwzZkzMWxAI37x4HIAwK6uXJVHRQgh/ZvunCrJI3z4tOEY2JTBto4eAMGR2sSTugLsBrr+4kS2YhVziDGuwmQ5p0dYv32pleV8HmHNZLnEfUNqOhJY7Dkb3JzFfZ85CuOHNMfYSXH7KIWRg5qw8urTen/HdUqfjAhbHD61cLe2eVdXFUdCCCGkHHmERcTOGpFyCVS/WP3k8dMS9h2w3LP/chCnn5Qma0SSEsvxJnPZrQFEWCOSeoSlvBFhd4SxbN0Wxe4jBqAxk45sV+1xkmj6ZETY4rCpw3H9e2fj0j/Px/rtndUeDiGE9FvyeYWevCq5slw6VSilHPToVUQSRcTsEsuxKsuVyxoR3SZtR2v9WSOs4/3WO/dBOiA7QywPq6f4woGThwIA9hs/2N+2iGMvx+TIStEbj+v7sw7Wnd5afELQp4UwABy1xwi0tWRx3+J1OH3WuGoPhxBC+iUPv7IeQOnCKC3imhBtkSpDtDBOZbly/ZDHighrPLnW6bO2Pu+gSQCAN7e2+7aPNVnO2ofZ9sg9RuDZK07A0NYG/5iju3O3F6C5ITpqWgxJvLeZlP470xvUsje20niP/Rtn7IODpgyt0miC6fNCuLkhjdkTh2DJ2u3VHgohhPRbLvzd0wBQckGNVEqfNcItVovzCMdZH6fvJKWNQ9toPcJ6k3CxkerCBLjCPnQi2Nk2dt8QtFRICCfhgc8ejRUbdlZl3/1XBvuP/fyDJ1VlHFH0eSEMABOHteDJFRurPQxCCOn3BFV9i0vaEd1zZ3PQv05CnOhdHDFYrqpmljVC6xH2pk/zdDdhaDPed+jk6IGYVKoSWy0I4QlDWzBhaHWqzPbjgHDdHHu/EMLDBzRiZ1cOHd05NGWr/5+SEEL6K6Vm8EmJ2BFh1wQ5h/otOmtEzP2XA+3kNk8sOTRrhHeynGf0j3z+2HjjsDzCcdoWMVmuuUK/ufUisqqRPq1WqJdjr10XexkZZj7meX7VluoOhBBC+jnrtnWUtH3KkTUiKItAsT+/wenTHPsv069mnIIFhWIXmsly3rZFHzTMfcRumqjrSnmE64V6EeyVoF6OvV8I4WmjBgIA/u+GJzH9K3fa0QRCCCG9S6mX33SqEBF2WyOK9whHbSdl6NvXZ6zxGH+dIjWooEaxk7ISbZU4IiyxKrwVQ51orH5NvXxG/UIIz540xH7d2ZPHC6u3VG8whBDSD5k20qh29dkTp5fUT0rELvYQFAUuNmob9MNdiTzCYYL6HTPH4nMnTbc9ws7gTaGghnv7Un3RSVKtxe4bBXtHf6VeoqL9mX7hEfbCeDAhhPQuOaVw2n5jMLglW1I/7qQT+khtcsGmj7La68swEc9LWD/Xnrs/AOB/C9cCcEfRKxURTlZ8o/rU0ljCqBefbEWok0PvFxFhwMhfZ7G9oydWCUxCCCHloSenkC2DitRVkAPKVXUswBqRMDVbnOhqHJGgLajhySNsd1d0RBi+fQS2LbLvcuF+AlAfKqteBHslqJfPqN8I4fMPnoTbPnY4AOB9v52Hb/x3cZVHRAgh/YdSyiv/5JxZ+MFZMwEEZ4coxSNsZ43o1Yhw/FRtzqwREjDY0vMIx2mb9LxWUAjVh8aql2FWhHq5Ceg3QhgAxrQ12a9/+9irVRwJIYT0L7pzCpkihfDps8bh3bPHAyhESYHgPMLFToiuukdY6du4KsuVOWtEkqhdneiamqJfV5ar9gBi0q+E8PABjdUeAiGE9Et68nlkSyymAbgnX7nTmhXeFJurOFC0uCLCvZc1ohAR9u8/Ko9wUurNLVgvIqtexlkJ6uUmoN9Nljt579G4y5yAQAghpHfo7ineGuHENSkuIGvErq6eovoOjgjrfcmlEEdQ2xFhXUGNiMpycUlijSiWL5+6F7rN3M+lMHxAI1Ztai/DiHqPOtGCFaFeDr1fRYQBoLXRrf1fXL0VG3d0Vmk0hBDSP+jOq5LLKwPeCXJ6v3DxEeHo5Ukjwu87ZJJd1MndafS21r50HmF/1ohEw/L1l69gSPiDR+6Gjxw9teR+fnn+bPt1vUQb62WclaBeDr0fCmF3lZu3X/co3nHdY1UaDSGE9A96cnlky1WWzcTt3S283pkwIhwkLqP2E4RTU151+j6Yf8UJvjZOQX/S3qMCxmX8dQZTCxFhb3+lpU+rB0YObMK79h9X7WGQPka/E8LH71W44KzatAsA8MaW+nrUQggh9UQur5BXKIs1wumXdUbbnMvzxU6W68XKcs5+Tpgx2tyRd7/GX2c6Nssj7R1GyeOKccpqyUZcTwK+v1Iv6dP6nUf4yD1G2D7hI655oNrDIYSQPk93zghplsMa4bIJOJb35Aph048fN62ovuNkjShXpbQ4urVgjXBuJ66/9vISxxEr93GJ+yoHtSTGS+Un58zC2Lbmag+jctSHDu5/QhgApo4cACys9igIIaR/0GMquXJkjXCmRnNqwR6z7PJFh0/BoKbiqtcFiazyFOtwU+pkOS/Fjquwj+K2rxb14j8N4/RZ1bV5HLfnyIo+Ea+Xz6hfCuHJw1urPQRCCOk3dPcY0dpyWCNyLlFY+KW1shIUE3WO2iJpZblY+9R148sjbPwtV4nlv1x8EDZ4JodbWyWZLFdNzcyqsOXjNxceWNH+60QH9z+PMACcPmts2VLgEEIICacgUsvgEc4HWSPMqHMpE/ICQ8KFl+XLI6wvDOJqYwthv/jX+S+/dOqeofs8bOpwXxQyyeHU0s9mvUQb+zP1kjGjXwrhbDqFL56yV7WHQQgh/YKCSC2vNcKpzHpi+pAbMimcMWusa1nU73XSEstxYpZx+hGNbcHS+boxX3Lk7jH2rCdOoHVwcxaHTR2G6849oOj9lArjwfVDfcjgfmqNACqbM5EQQkgBa7JcebJGOCPChZ9ay4eciVCYS795SuC6oAlj7vRp5c8aEdVGaSPCwSSb0GfuI0bLVErwl4sPTtB3+Zk5vg23LFiDiUNpcSTlod8K4c6e0qvcEEIIiabbjAiXI2tE4GQ5SwgXIbYjPcKu9GmJuw/oM7pNEo+wxV2fPAJDWjQFPCLGUS+xofcfNhlHTBuOaaMGVnsoiThln9HVHkKvUyfOiP4rhC86fAp+9cgKbO8orhQnIYSQePTkyzlZTr/cTtFWglINEoPOHss3WS5+RDgfo8SyxZ6jByUbh/2qPpSwiNSdCF541UlozPQ/J2q95BHuf5+MSWtjBu8/bIr9fmcnBTEhhFSC7h4rfVp5J8s5X9s+5GIiwhGitJQSy+VAn0e4PH3rfMikvLQ2ZsoyUbTeqJeIcKxPRkROFpElIrJMRC7XrD9aRLaKyALz31fLP9Ty47xDm//aZjyxfKN7IgYhhNQhtXbNLiW1mRfnNbrbKYTLuA8vrgwPCUssJ8G7mc4jXK6CHhZWb/31l+8bZ+yDf3740GoPg1SRSGuEiKQB/AzACQBWA3haRG5VSi3yNH1EKfW2CoyxYowe1GS//tUjK/DIKxvwqeP3wCeOL64qESGEVJtavGaXJbWZidMm4KwmN6y1EQAwNIE/Ni6VjggHdWmdLlfWCMsaUeZ8xv01P+/5B0+q9hD6LPUSEY7jEZ4LYJlSagUAiMhNAE4H4L2o1h3vOmAcFIDP/uN5PPLKBgDAsvU7qjsoQggpjZq7ZleqxHK3wzD88eOmYsrwVpxcwqSkOFqwDFo+NnqPcHTWiCQUSiwTUl76kkd4HIBVjverzWVeDhGR50XkThHZuyyjqzAigjNnj3ct6693xYSQPkPNXbM7e3IAgKZsuuS+nNYI5+vGTBrvnj2+qEhpdNaIwuve9AgPbjZKRe8/sc03lrJ5hEGPMKkM9RIRjiOEYxSCxLMAJimlZgL4KYD/aDsSuUREnhGRZ9avX59ooL3Ff194E08s34g7X3yz2kMhhJBiqLlrdnuXERFuLrMQtnzB5SK4sFx4+rSl3zwF17+3/EUmRg1qwh2XHYGvn76PY//ljQiDEWHSz4kjhFcDmOB4Px7AGmcDpdQ2pdQO8/UdALIiMtzbkVLqBqXUHKXUnBEjRpQw7PIyYWiz6/25v3oSH/7Ls/jb06/jr/Ner9KoCCGkKGrumt3RbUWEy+ERLrzuCcqllpCoyJUzJZsu4tyQSSFdpGdi1oS20PUzxg5yRdKtyXJl8wibf/k0lJSbOgkIxxLCTwOYJiJTRKQBwDkAbnU2EJHRYv6vFJG5Zr8byz3YSvHI54/VLv/CP1/EF//1Yi+PhhBCSqLmrtkdFbJGlDsiHEQq5YwIx/l5jycqH7v8WNz4wYMSjaXs1oh6eX5N6o56+W5FCmGlVA+AjwH4H4DFAP6ulFooIpeKyKVmszMBvCQizwO4FsA5qs5uL8udkoYQQqpBLV6z27vKJ4QvOXI3+/XR00eW3J+TOKegnD8V49qa0dJQmLMeZ/9tzQ2YO3ko9h47uCxj4C8fqRT18t2KVVnOfHR2h2fZ9Y7X1wG4rrxD612as2nsCCiqoZSqmzsbQgiptWu2VdK+HNaIM/YfhzP21839K4X41/egiHApvxBJfl4aMin8/dJDStibnvoKXZF6oF5kU/8rdRLA6bPGBq677KYFvTcQQgjpY7R35ZASoKHGq2vF0YJBP+5j25r1K2ocu2gHp8uRMlMvAcTavir1Ile9Y2+856CJ2nW3Pb9Gu5wQQkg0Hd05NGXTNfvDmGRYQRHhGWMH4a8fPLio/VczGmsdTi/ZrQmpOSiETTLpFI6c5ps0TQghpETau3NlSZ1WC4RNlps6ckBJfVfjRqFQYpkRYdI/oRB2UO6JF4QQQoCO7nxZJsrVAnEmy9WT33b04CYAwNzJQ6s8EkKqA4Wwg6ZsGg989mi8bb8x1R4KIYT0GQxrRO3/3MQRsGFR2xp1foSy24gBeOCzR+MTx+9R7aEQUhVq/8rUy0wZ3orr3uOvEJTP19EtPiGE1BCWR7hWSaJf+2KmzSnDW5lClPRbKIQDaMi4T832gNRqhBBCwqkfj3B0wKOSgrHO0u8TouWAiW3VHkIiKIQDeOhzR+P4vQqe4TtffLOKoyGEkPql5iPCCbRtJSa01aOlgpAg/njRQbj300dVexixoRAOYMzgZhy82zD7/eX/ehGPvLIeky+/HcvW7ajiyAghpL4wJsvV/s9NnIBsrMlypQ+FkLplQGOm5AwqvUntX5mqiDdNzvt+Ow8AcPwPH8LGHZ3VGBIhhNQdnT05NGZqOCIcwyVsCeCw9GlDWxpw1uzx+O2FB5ZraISQCkMhHEIm7b7gOefLzXt1Uy+PhhBC6pPOnjwaM7X7c/OBw6cAAGZPHhLYxjtvREcqJfjeWTMxa0JbuYZWl9z76SPx+/fzZoDUB7V7ZaoBwu78d3DyHCGExKKrJx9LSFaLuVOGYuXVp2HkwKbANh84zBDL2RovE10LTB05kHn5Sd2QqfYAapmw2cEUwoQQEo+uXG0L4Th87qTp+MyJ05lmjJA+Rn1fmSrMoKZs4LpHXtmA6+5/pRdHQwgh9Ulnd21bI+IgIhUXwZxkR0jvU99Xpgpzyj6j8fXT98b1753tW3f/y+vw/buX2oU2zv/NUzj5xw9j3faO3h4mIYTUNH0hIlxJ4kzWI4RUBl6ZQkilBBccMhlj24J9Y9s6urFlVxceeWUDXl67HZ/+2/O9OEJCCKltenJ55PIKDenazRpBCOm/0CMcg2kjBwaue2NLO7p68vb77R3dvTEkQgipC7pyxvWREWFCSC1CIRyD5oY0bvzgQRja2oCUCO5Z9Ba+978lAIDTrn0UJ+892m5LjxchhBSwAgX17hEmhPRNKIRjcujuw+3Xe4waaAthALhr4Vr79Qurt+KVt7ZjzdYOHLXHiF4dIyGE1BqWEGZEmBBSi/DKVCQ/OGtm4LoTfvSwXYWOEEL6M50UwpFY0fKWBsamCOlteGUqknfPHh+rXUd3DspTwP5H9yzFwd++rxLDIoSQmqKT1ohITtx7ND530nR86dQ9qz0UQvodvDKVwLi25tD1079yJ/a84i7cOO911/Kf3PcK1m7rQE8uH7AlIYT0DegRjiadEnz0mKkYGJK7nhBSGXhlKoEr3jYjdL0VCfnTE6/hjJ89hpUbdrrWr9/RWbGxEUJILcCsEYSQWoZXpl7g5bXbsWDVFvz0/mUAgGzaSJ6+cUdXNYdFCCEVp7M7BwBozDCPMCGk9qAQLoGjpyfLCvHPZ1e77BBvv+5RuzIdIYT0RRgRJoTUMrwylUBTNo3/fPQw+/2lR+0euc2jyzbAmjunFNBuRkssOnty2NXVU9ZxEkJItbDTp6X5c0MIqT2Yq6VEZk1ow5Vvn4HunIrl+V2ydjtyjiwS3Z4Jc6f85BGsWL8TK68+Dds7urGrK4dv/HcRlr61HXd/6ig8s3ITxrQ1R07UI4SQWsDOGpGlECaE1B4UwmXgwsOmAACeXrkJNzy8IrTtd+582fV+3qub8Mq6HfjoMVMBACvWFybUnXrtI1i1qd1+f/P81fjsP54HAKy8+rSyjJ0QQioJI8KEkFqGQriMHDh5aOJtLvnTfADAoKYMzj9ksr181aZdLhEMwBbBhBBSL7CyHCGkluGVqcz89sI5+Pl5B6A5a8yQvuuTR8Ta7opbFuI9v3rSfv+Jm56ryPgIIaQ36cxZeYSZNYIQUnswIlxmjt1zFABg8rBWPLh0XaIE6Y8v32i/7mKxDUJIH8BKn8aIMCGkFqEQrhAzxg7CjLGDsKHIohkvvbGtzCMihJDepyvHynKEkNqFV6YK47z4jxrUWLZ+F62hUCaE1D6cLEcIqWV4Zaowli/ugIlteOTzx+KEGaPK0u+p1z5Sln4IIaSSdPbkkU0LUimp9lAIIcQHrREVpiGTws2XHoJpowaiIZPCx4+dis07u/DMa5srts98XuG2F9bg1H3HIMsoDCGkinT15BkNJoTULLw69QJzJg/F4GZj0tx+49vw54sPKvs+Vm3ahVfe2g4AuOX5N/CJmxbg4zc+h6XmMkIIqQZdPXlOlCOE1Cy8OlWBpmwad37iCDz/tRPxwSOm2MtP3Xd0Uf3l8wpHfe8BnPCjh/GnJ1bitY27AAB3LVyLE3/0cFnGTAghxdDZk2PqNEJIzUIhXCX2GjMIg5uzdqnk9xw0ET8994Ci+nrq1U3Im1Wbr7hlIX732Epfm47uHC7903z8+pHwyneEEFJOGBEmhNQyvDpVmaOnj0RjJoX3HzoZ6ZTg8cuPxaG7D7PXH7xbcLW6Y77/IJa+tR3nOgpxAMDoQU2u97c+vwYX/GYe7lq4Ft+8fTFe3bAThBDSG3TlKIQJIbULr05VZvLwViz55imYNmogAGBsWzNmTWgDAMwcPxg3XXIIVl59Gu64zF+h7tUNO7XWB/FMzr7sr89h3spN9vuP3fhs+Q4ggBN/9BDe/7t5Fd8PIaS26ezOM4cwIaRm4dWpBnnHrLEAgB+fs7+9bMbYQfjh2TNjbd/ZE16VbuGabVBKFTW2vz+zCrcseCOy3dK3duCBJetjtSWE9F0YESaE1DK8OtUge44ehJVXn4Ypw1tdy+NOOOkwS5qG8bvHViKfL4jhdds7cPsLb0Zu9/mbX8AnbloQ2qbHUR46qi0hpG/TyfRphJAahlenOuLkfUbjMyfsEdnuza0dkW2+/t9F+P3jK7GzswcPLV2PC34zDx+98Vns7OyJPZ4bn3odf3xipW/5jK/9L3YfhJC+TVdPHo1ZZo0ghNQmFMJ1RDol+Phx0/Cfjx7mWv6ni+Ziv/GDXcviPIp8dcNOXPGfl/C+387Dy2uNfMPdjmju48s24IEl6/DfF9Zot//Sv1/EV29Z6FqmlLJLqhJCCCPChJBahpXl6pBZE9rwvTP3w2sbd+HcgyZiXFszjpg2Ap/5+/P457OrAQBxqpmKAHcvesu17OW123Hg5KH40T1Lcd0Dy+zlu48YgPFDmu33TsHsZFtH/IgyIaTv09WT42Q5QkjNQiFcp5w1Z4Jv2YWHTraFcEe3X6juN34wXli91X7/xyde87U554Yn8ZNzZrlEMACc8pNHcODkIfb79gAf8pZdXfEOgBDSL+jKMWsEIaR2iXV1EpGTRWSJiCwTkctD2h0oIjkRObN8QyRxmTy8xX6dTftDwjGCxACCJ7g9vXKz/XrTjoLgdU66+/OTfnFdbIYKQkhx1NI1u7ObWSMIIbVL5NVJRNIAfgbgFAAzAJwrIjMC2n0XAGdKVYmBTVmsvPo03HD+bPzhA3N968spR+9/eZ39ertph9jW0Y1fPfKqr21XgI0iDne++CYefWVD0dsT0t+otWt2dy6PLD3ChJAaJY41Yi6AZUqpFQAgIjcBOB3AIk+7jwP4J4ADyzpCkpgT9x4NAPj1BXNwyO7DsGlnF9Zt70BjJo3v3vUyPnn8NLy2cRc+/ffni97H1/9b+Phnfv1uXP2ufXH5v17Utr3luTU4a854LH5zO1ob05g0rFXbTseH/2IU/1h59WlFjzWMlRt2YuSgRrQ00CVE+gw1dc3O5RXScSYtEEJIFYhzmz4OwCrH+9XmMhsRGQfgnQCuD+tIRC4RkWdE5Jn169cnHStJyPEzRqG1MYMJQ1swe9JQ7DNuMP500UGYPWkodhsxIFYfZ88Z73o/YmCjtp1TBB8wsc217vP/fAEPLV2PU699BEd970EsW7fdZad45a3tWLlhJ75zx2J05/JYG5D+rTuXx2sbjfLQH73xWezx5TtdOYuL4ejvP4iLfv9MSX0QUmPU1DWbxihCSC0TRwjrbuW917YfA/iCUiq0koNS6gal1Byl1JwRI0bEHCKpBAMaCxHQU/YZje+duZ+23ZdPdT9R/fixUyP7Pnr6SN+yH92z1H59/A8fxq8eWQEA2LijEyf86GEc/f0H8cuHV+DkHz+Mg79zH7bs6vJ5iy/6wzO2kL79hTfRlcvj2vteiRxPEFbmiydWbCy6j96iJ5fHu37+GG0iJA61dc1W/rLvhBBSK8R5HrwagDNFwXgA3sSycwDcJMbVbjiAU0WkRyn1n3IMkpSflgYjwf3R00fgF++djQWrtgAAvvvufSEi2G/8YGxr78Hgliw+eMQU2/u72/DoSPL7D5uMiUNbcOLeozDjq4b98HlHtgoA+MVDy/GegyZi9jfvdS1fvt6I+M76+j2u5Zt3duHhpUZE6vgfPmwvf2z5Rnw67kF7cFbge/b1zdhz9MCatUi8tb0Tz76+BZ+7+Xk88cXjqj0cUtvU1DVbAZDYU3UJIaR3ifOr/zSAaSIyBcAbAM4B8B5nA6XUFOu1iPwewH8pgmubsW3NuOH82Thot2EAjNzET33pOIwa1ORrK45wzrRRbiF84aGT8fLabXhyxSYAwLF7jsTApizO2N/1JNbHll3d2PfKu2OPd/9v3KNdPv+1zVi1aRcmDG3Rrg+j01H4410/fxyHTx2OP198kK/duu0duOrWRfj2u/bF4OZs4v2Esa2jG5t3duHx5RsxY8wgzJzQpm2XyxkBPXotSQxq6pqtlIqV15wQQqpBpBBWSvWIyMdgzCxOA/itUmqhiFxqrg/1mJHaxZpUZ6ETwQBw6VG744aHV+BzJ03H8AFuj/C7DxiP+15+yxbCJ3v67A3WbuvAhKEtaO/KQUHFjup2eHIhP7psA557fTP2n2jkS1ZK4bePrcQ3zImBt7/4Jp7+8vGBPuliePfPH8cr63bY74MmBXbljLFmqChIBLV2zc7TGkEIqWFiKQal1B0A7vAs015MlVIXlj4sUksMbW3QCrQJQ5ux7/jBmDZqAH58r+HVHdPmFtNPf/l4LF+/AzfPX42b56/W9v/ho3fHLx5cXvT4Hl66Hpt2duFz/3geSgEvXnVS5Da3LHhDmy/5n8+uxv4Th0AphZueXmWLYIsDv3UvPn/ydJx74EQMaW1AZ08Oz6zcjMOmDseDS9bhhdVbcdlx01zbPL58A/YdNxgDm7JYtWkXRgxsRFPWsKY4RXAYi940SmCnKIRJDGrpmq2gXE+VCCGklmByR5KYez99FADg48cagq8pm8ZxexoT5MYMbna1HTGwEQfvNgxXvmPvwP6O2qO0iZM/vX8ZPvSn+djW0YPtnUZO49OufQSX/mk+Jl9+O8654Qm8sHoLTvjhQ1i9eRcA4JcPrdD2ZSWhuHfxOnwxIB3cNXctsa0av3xoBc779VN4fNkGXPi7p/FDx6RAwPA2v+dXT+Hjf30OPbk8jrjmAVz21+ewtb0bOzrjl6O+7K/PAYgfEd7V1YPHl2/AwjVbsfjNbdo2Hd05dPWUlnWDkCiUil/MhxBCehsKYZKYqSMHYOXVp+FsR5nnH5w9E98/ayamjtRPphvQmMHyb5+qXTeurRm3X3a4/f7JLx6HCw+dbL9/8coT8ewVJ+DSo3aPNb7zf/MUFq7ZhrsWrjX6W7EJ77juMbyybgcO/+4DWL15FxYFiMNbF7wBpRR+fO9S7Xonb25tx5ot7QCAl9Zs1baxfMgvrt5qC9+7F72FmVfdjX2+5q9j0N6Vw4f/PB+vbtip7a8nFy8Z1Wf/8Tze86uncNq1j+KUnzwCAPjPc2/gT47Kf3tecRfe/tNHY/VHSLEogEqYEFKzUAiTstDW0oAzZ48PbZNOCc6dWxDPN37wIDzw2aMxYWgL9h47GDecPxvH7zUSowc34Yun7mm3G9iUxdDWBsyZZHh3D5w8xCWUvTwSkWLs/b97OnDdzq4cHliyDgvX6IWyk8/f/AI27zJKTW9wlJzOOXIkWz7k7lzersAXxl5fvQt3vrQWX/jnC9r17Q5f88f/+hwmX367a/2zr2/G0d97AA8t8ed8/eTfFuCK/7wEAPjXs4ZNZclb2yPHVE0WrdmGvz+9KrohqV0Us0YQQmqX2swVRfos33nXfrjsuGn40T1LccDEIbZXFjAm71kT+BozaUwZ3uqKjB6310j87sIDceQeI6CUwkFTjMIgJ/34Yd9+wojy5f7sgXh+5Ude2WBPnLvh4YLV4t/PvYF37T8OqZTYwnVbRw9+FCPKbLGtvRuAMWFvW3sPDpw8BE+v3Ix9xg3Gll1daGtpwG3Pr7HbWB7Mb/53EVZu3BXa963Pr8EfHl8ZeyzV5NRrjWj2GfuPQ0PGuG9/6Q3D7nHWnAlhm5IawfAIV3sUhBCihxFh0uuMGdyMa86c6RLBOm77+OF4+svH2+9FBMfsORLplCCTTuGUfcdg+uiB+N8njyzb2M6eMx7zX9vsWvbSVSe5CpA4Wb+907fss/94Hn94YiUAdwT3X8++EXsc29q7sXDNVvzioeWY+fW7scLMr3zPord8OZavvHUhACMS/ezrW7T9OSPHl/31OeR7qdzX48s24C9PvRbdUMN9i9+yX+/xlTuxaacRdX/bTx/F527WR8xJ7UGPMCGklqEQJjXLgMZMrFRl00cPxBVvm4HPnrgHfnru/rH7//DRu+ORzx+DZd86BfO/cjz+cvFBOHfuRHv9MdNH4KHPHY0BjRmcd/BE17ZOL/SHjtzN1/edL67F5p1dOP/XT8Uej5M1Wztw2rWP4pq7lgAANu7scq2f882CGP7DE69hR2cP7nzpzdj9OyfJbfb0rSOXV9jW0W2/X7+9E0opdPbkcOHv5mFhgEf6Pb9+Cl/+90t2H6dd+wi+dfsibVsv196/zPX+a7cuRHtXaCE0UoMoACmGhAkhNQqFMOkTXHT4FHzs2Gl4+8yx+M9HDwMA/OqCOfb6BV89AXd98gjXNp87cTomDG1BJp3CsAGNOGzqcDuHMACMHtyEScNaAQBfOGlPLPr6SXjxyhNx9pzx+Oelh9rtPnPidN945q3chP2/cQ92xhBuowc14e0zx+L4vUbFPl6nJxkwvLQd3fEzQDgzVsz51r348b1L8bppqcjlFbbu6safn3wNV966EEopfO3Wl7DflXejO5fHivU7cOC37sUfHl+JhWu24cEl6+0MG06x7GTjjk789P5XsHDNNrtK4frtnbhp3uuBY8x6MmTc9vwaXHHLS/b7T/99gT1ZsRgeWrrel0ualJ+8ojWCEFK70CNM+hyzJrTZeY+f/9qJgAIGt2TR1tKAb71zH/zusZX4wwfmBubk/drbZ+Cq2xa57BCplNiFOq45cyYA4KkvGaWOGzIpvHjlifjZA8txy4I38ObWjljjPGLacHznXftiXFszRATtXTm859dP4rkAe0MY/3hmFQ6dOizxdoAhfH987yu4/YU3cdac8fj2HS+71s+cMBh/ftIQrNs7enD/y+sAGF7jWeaNwwurt9r2i5+cMwtDWxtwxLRCWrzZ37wX+09ss9+v296Bj934HOa9ugmHTxuO8UP8lQF1VfSeWbnJfv2vZ9/Av559A3d/6kg0Z9OJqgu+9MZWvO+383D+wZPwjTP2ib0dSQ6tEYSQWoYRYdKnGdycxeCWQlnk8w6ahHs/fRTGtTUHbnPhoZNx9bv2xadP8Ed6nYwa1GRX4xvYlMXlp+yJJ754nCsSDQBN2RSONfMsz508FABw2n5j8KeLDsL4IS32RLfmhjT+/ZHDsNBTEMTK2wwAnz9ZP6b1OzqR9wSEf3j2zMCxv2FGUn/tGOsr63b4RDBgiFyLA75xD755+2IAwOZd3ViumXj4iZsW4PzfzPNle1i9uRC9/fiNz2GpmbHiO3f69wkA2bRxeWpryaIpa7zWTQQ88UcP44hrHrDfd3TnsG5b+M3Ill1G5HpZzIImpEQYEiaE1CiMCBPiQURwztyJ0Q0DOGFGweKw9JunoCGTQldPHl/5z4v4yNFTMXxgIxozwfegrY0ZPHvFCdiwoxObd3Zh6sgBOGb6CBwxbQQ+cPgUnDFrHF7ftAvn3PAkAENU3/7Cm3jQkTJt4VUnoaUhje0dPfiaOZnOt5+GNA6cMjTyeP7xjL4i4KsbduIz/3g+cLvPe1LAOScWPvVqIbJ7+wtv4kNHbsGU4a0Y0JixbwweXWakwRvW2oC/XnIw5n7rvtBxPvLKekwfNRBzv220W3n1aTjzF4+jrSWLDxw+BfNXbsYlR+1m53YGjIwGpHIoZZxfymBCSK1CIUxIBfjN++bg3sXr7JRfDZmUbamIw9DWBgxtbbDf/+79c+3XY9uaXesuO3Yabn+hMFHugc8ejVbT1vG+QydDKSObxK1mujWLnV05DG7O4saLD8J7Aib1XXLkbq7UcMUwfkizKxqs49nXNuMd1z0GAHjii8fin45y3F86dS+MHNiEoa0NduYIHef/Zp7r/ZMrNuIZMwPIvYsNO8cPzMp/rQ3hGUtIeTB1MAPChJCahdYIQirAcXuNwnfetW/F+m/KpvH+wybjF+cdgOmjB+Khzx2NOz9xBP71kUMxZXirq+2Fh03Btefuj2e+cjzOO2giBjZl8O4DxuOG82cDAA6dOlxbDOWUfUbj4N2iI8YW75g5Vrv81o8djl+cd4D9XmfZuPK2QiaJQ75zP75/dyHn8nHmJMJLj/Jn5wjDipjrsCYxstBDZbHi7TzPhJBahUKYkDrla2/fG6fsOwYAMGlYK/YaMwgHOLJeeBk+oBHfeue+ePHKk/CDs2faxUsA4PtnzbQn//3ivAPwyrdOwc/ecwB2H2GkiTt91lis+Papdplr3QSzjxyzOy47dqpr2edOmo6hrQ04Zd8xaGlI49y5E/GuA8Zj33GDAQB3f+pIHLXHCF9fOj54RDIh7GW34a2219ji9U27XJUASXmxrRHUwYSQGoXWCEIIAGPyn5Vtw2LSsFYs+OoJGNychYjgo8fsjpP3GY2Z4wejvasHJ+09Gm0tDRjcbExI3HP0IFx23DSs2tyO9q4cpo8eaPe18KqTbP/vz887AC+9sRV7jBqIAycPwUNLC/7mvccOwsl7j8bQAQ3Y6EgTJw41ddQeI3DxEVNwxLQRWLVpFwY1GZMiD7v6fnsioMWXT90LZ80Zbx/DZX99Drc+vwYDGzN4Y0s7fnD3Enz+5D1Byk8hIkwIIbUJhTAhJJS2loIfeWBTFrMmtAEALjlyd237TDrls2cAbiE7YWiLne7s9FnjbCvED86aiXdrbBoWv75gDjbt6sLZjvLKzrRpj11+LNq7cnh90y5cfedinDl7Ak7bb4yrj2vO3A/TRg7AB4/cDbc+vwaHTx0euD9SGnkzIhyUqpAQQqoNhTAhpKpMGNqC5d8+FcvX78AeowaGtj1+RnTRkeaGNKaPHuiaYOikKZvGx4+bBgAuQU3Kj6LrhBBS49AjTAipOumURIpgUr/QI0wIqVUohAkhhFQEO30aXcKEkBqFQpgQQkhFsAqWMCJMCKlVKIQJIYRUhEJEmBBCahMKYUIIIRXBTp9GJUwIqVEohAkhhFQEu6AGY8KEkBqFQpgQQkhFsIr2MSJMCKlVKIQJIYRUBlsIUwkTQmoTCmFCCCEVwc4aUeVxEEJIEBTChBBCKoKiNYIQUuNQCBNCCKkIdtaIqo6CEEKCoRAmhBBSEeysEQwJE0JqFAphQgghFYF5hAkhtQ6FMCGEkIrAynKEkFqHQpgQQkhFsLNGMCRMCKlRKIQJIYRUBGaNIITUOhTChBBCKkLBGkElTAipTSiECSGEVISCNaLKAyGEkAAohAkhhFQETpYjhNQ6FMKEEEIqAtOnEUJqHQphQgghFcEuqMGYMCGkRqEQJoQQUhEUaywTQmocCmFCCCEVJUVvBCGkRqEQJoQQUhHytjWCEEJqEwphQgghFYEFNQghtQ6FMCGEkIrArBGEkFqHQpgQQkhFYNYIQkitQyFMCCGkIjAiTAipdSiECSGEVAQ7fRohhNQosYSwiJwsIktEZJmIXK5Zf7qIvCAiC0TkGRE5vPxDJYQQEofauWYra3+V6Z4QQkokE9VARNIAfgbgBACrATwtIrcqpRY5mt0H4FallBKR/QD8HcCelRgwIYSQYGrpmm1FhFPUwYSQGiVORHgugGVKqRVKqS4ANwE43dlAKbVDKfshWCsK1jBCCCG9S81cs/NW+jROliOE1ChxhPA4AKsc71eby1yIyDtF5GUAtwP4gK4jEbnEfAz3zPr164sZLyGEkHBq5pqtbGtE4k0JIaRXiCOEdZcwX/RAKfVvpdSeAM4A8A1dR0qpG5RSc5RSc0aMGJFooIQQQmJRM9dsu6BG4i0JIaR3iCOEVwOY4Hg/HsCaoMZKqYcB7C4iw0scGyGEkOTUzDWbleUIIbVOHCH8NIBpIjJFRBoAnAPgVmcDEZkq5rRgETkAQAOAjeUeLCGEkEhq5pqtCpmEy901IYSUhcisEUqpHhH5GID/AUgD+K1SaqGIXGquvx7AuwFcICLdANoB/J9jIgYhhJBeopau2YwIE0JqnUghDABKqTsA3OFZdr3j9XcBfLe8QyOEEFIMtXbNpg4mhNQqrCxHCCGkIhTyCFMKE0JqEwphQgghFSGvmD6NEFLbUAgTQgipCPZUOQphQkiNQiFMCCGkIljz71hZjhBSq1AIE0IIqQh2GgrqYEJIjUIhTAghpCKwshwhpNahECaEEFIhrMlylMKEkNqEQpgQQkhFYESYEFLrUAgTQgipCJZHmHmECSG1CoUwIYSQipDPM48wIaS2oRAmhBBSEew8wlUdBSGEBEMhTAghpCIoKmFCSI1DIUwIIaQiKLCgBiGktqEQJoQQUhmsrBHUwYSQGoVCmBBCSEWgM4IQUutQCBNCCKkIdh5hhoQJITUKhTAhhJCKYHmEU9TBhJAahUKYEEJIRcjTI0wIqXEohAkhhFQExfxphJAah0KYEEJIRbBlMHUwIaRGoRAmhBBSGSxrRHVHQQghgVAIE0IIqQh2QQ2GhAkhNQqFMCGEkIqgGBEmhNQ4FMKEEEIqgmLWCEJIjUMhTAghpCJYk+VSVMKEkBqFQpgQQkhFyNvp0wghpDahECaEEFIRaI0ghNQ6FMKEEEIqhJk1gtPlCCE1CoUwIYSQisCIMCGk1qEQJoQQUhFYWY4QUutQCBNCCKkIhTzCVMKEkNqEQpgQQkhFKFSWq/JACCEkAAphQgghFcGKCKcohAkhNQqFMCGEkIpQyCNMJUwIqU0ohAkhhFQUWiMIIbUKhTAhhJCKUJgsRwghtQmFMCGEkIpQmCxHKUwIqU0ohAkhhFQERoQJIbUOhTAhhJCKwMpyhJBah0KYEEJIRSjkjKASJoTUJhTChBBCKoJSLKhBCKltKIQJIYRUBFojCCG1DoUwIYSQisCsEYSQWodCmBBCSEVg1ghCSK1DIUwIIaQi2JPlqIQJITVKLCEsIieLyBIRWSYil2vWnyciL5j/HheRmeUfKiGEkDjUyjW7EBGmEiaE1CaRQlhE0gB+BuAUADMAnCsiMzzNXgVwlFJqPwDfAHBDuQdKCCEkmlq6Zhc8wpXonRBCSidORHgugGVKqRVKqS4ANwE43dlAKfW4Umqz+fZJAOPLO0xCCCExqZlrNj3ChJBaJ44QHgdgleP9anNZEBcBuLOUQRFCCCmamrlmWx5hKmFCSK2SidFGdwlTmmUQkWNgXFQPD1h/CYBLzLc7RGRJnEF6GA5gQxHb1QN9+diAvn18PLb6pdjjm1TugZSJmrtmj/pun/3+8P9G/dKXjw3o28dX1mt2HCG8GsAEx/vxANZ4G4nIfgB+DeAUpdRGXUdKqRtQohdNRJ5RSs0ppY9apS8fG9C3j4/HVr/0wePjNbuX6MvHBvTt4+vLxwb07eMr97HFsUY8DWCaiEwRkQYA5wC41TOoiQD+BeB8pdTScg2OEEJIYnjNJoSQmERGhJVSPSLyMQD/A5AG8Ful1EIRudRcfz2ArwIYBuDnZgWhnr56J0IIIbUMr9mEEBKfONYIKKXuAHCHZ9n1jtcXA7i4vEMLpC+nZuvLxwb07ePjsdUvfe74eM3uNfrysQF9+/j68rEBffv4ynpsopR2DgUhhBBCCCF9GpZYJoQQQggh/ZK6EcJRJUNrHRGZICIPiMhiEVkoIp8wlw8VkXtE5BXz7xDHNl80j3eJiJxUvdHHQ0TSIvKciPzXfN+Xjq1NRG4WkZfNz/CQvnJ8IvIp8zv5koj8VUSa6vnYROS3IrJORF5yLEt8PCIyW0ReNNddK8L6aEngNbv2/m944TW7ro+vz1y3q37NVkrV/D8YEz6WA9gNQAOA5wHMqPa4Eh7DGAAHmK8HAlgKo/zpNQAuN5dfDuC75usZ5nE2AphiHn+62scRcYyfBnAjgP+a7/vSsf0BwMXm6wYAbX3h+GAUWngVQLP5/u8ALqznYwNwJIADALzkWJb4eADMA3AIjLy8d8JIM1b146uHf7xm1+b/Dc0x8ppdh8fX167b1b5m10tEOLJkaK2jlHpTKfWs+Xo7gMUwvsynw/gPC/PvGebr0wHcpJTqVEq9CmAZjPNQk4jIeACnwchLatFXjm0QjP+ovwEApVSXUmoL+sjxwZg02ywiGQAtMHLO1u2xKaUeBrDJszjR8YjIGACDlFJPKOMK+0fHNiQaXrNr8P+GE16z6/f4TPrMdbva1+x6EcJJS4bWNCIyGcD+AJ4CMEop9SZgXHgBjDSb1dsx/xjA5wHkHcv6yrHtBmA9gN+ZjxF/LSKt6APHp5R6A8D3AbwO4E0AW5VSd6MPHJuHpMczznztXU7iUa/fEy28ZtfdsfXZazbQb67bvXbNrhchHLtkaK0jIgMA/BPAJ5VS28KaapbV5DGLyNsArFNKzY+7iWZZTR6bSQbGY5tfKKX2B7ATxqOaIOrm+Ezf1ekwHjGNBdAqIu8N20SzrCaPLSZBx9PXjrO36TPnj9dsYxPNspo8NpM+e80G+v11u+zX7HoRwrFKhtY6IpKFcUH9i1LqX+bit8yQPsy/68zl9XTMhwF4h4ishPEI9FgR+TP6xrEBxnhXK6WeMt/fDOMi2xeO73gAryql1iulumFUGzsUfePYnCQ9ntXma+9yEo96/Z644DW7Lo8N6NvXbKB/XLd77ZpdL0I4smRorWPOXvwNgMVKqR86Vt0K4H3m6/cBuMWx/BwRaRSRKQCmwTCC1xxKqS8qpcYrpSbD+GzuV0q9F33g2ABAKbUWwCoRmW4uOg7AIvSN43sdwMEi0mJ+R4+D4YXsC8fmJNHxmI/itovIweZ5ucCxDYmG1+wa/r/BazaAOj4+9I/rdu9ds8s166/S/wCcCmPW7nIAX672eIoY/+EwwvQvAFhg/jsVRpnT+wC8Yv4d6tjmy+bxLkGdzFgHcDQKM5D7zLEBmAXgGfPz+w+AIX3l+ABcBeBlAC8B+BOM2bh1e2wA/grDN9cNI0pwUTHHA2COeU6WA7gOZgEi/ov9OfCaXQPHEeM4ec2uz+PrM9ftal+zWVmOEEIIIYT0S+rFGkEIIYQQQkhZoRAmhBBCCCH9EgphQgghhBDSL6EQJoQQQggh/RIKYUIIIYQQ0i+hECb9FhE5WkT+W+1xEEIIiYbXbFIJKIQJIYQQQki/hEKY1Dwi8l4RmSciC0TklyKSFpEdIvIDEXlWRO4TkRFm21ki8qSIvCAi/zZrskNEporIvSLyvLnN7mb3A0TkZhF5WUT+YlakIYQQUiS8ZpN6gkKY1DQisheA/wNwmFJqFoAcgPMAtAJ4Vil1AICHAHzN3OSPAL6glNoPwIuO5X8B8DOl1EwYNdnfNJfvD+CTAGYA2A3AYRU+JEII6bPwmk3qjUy1B0BIBMcBmA3gafPGvxnAOgB5AH8z2/wZwL9EZDCANqXUQ+byPwD4h4gMBDBOKfVvAFBKdQCA2d88pdRq8/0CAJMBPFrxoyKEkL4Jr9mkrqAQJrWOAPiDUuqLroUiV3jahdUKD3t01ul4nQP/TxBCSCnwmk3qClojSK1zH4AzRWQkAIjIUBGZBOO7e6bZ5j0AHlVKbQWwWUSOMJefD+AhpdQ2AKtF5Ayzj0YRaenNgyCEkH4Cr9mkruCdFKlplFKLROQrAO4WkRSAbgAfBbATwN4iMh/AVhieNAB4H4DrzYvmCgDvN5efD+CXIvJ1s4+zevEwCCGkX8BrNqk3RKmwpxOE1CYiskMpNaDa4yCEEBINr9mkVqE1ghBCCCGE9EsYESaEEEIIIf0SRoQJIYQQQki/hEKYEEIIIYT0SyiECSGEEEJIv4RCmBBCCCGE9EsohAkhhBBCSL+EQpgQQgghhPRL/h9ZBOVMgdiJtAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "218ns_image_6056976176281_CLEAN.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADDCAYAAAAya0IYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADhFUlEQVR4nOz9eZxla17WiT7vjj2uPUZk5jl1xpqrsAoEpQSqFKUvimCriC0KehVxKLhXrt02IoMKiK2NikN7bYfyAw12q4BXEQcUlRYniqmYT1EFNdepM2ZmROx5XvePiO8bz1oZ52SenCIy830+n/icjL3XXutd7/uufeJ5fr/f8wt5nishISEhISEhISEhISEhISHhlaBy1gNISEhISEhISEhISEhISEi495AEhYSEhISEhISEhISEhISEhFeMJCgkJCQkJCQkJCQkJCQkJCS8YiRBISEhISEhISEhISEhISEh4RUjCQoJCQkJCQkJCQkJCQkJCQmvGElQSEhISEhISEhISEhISEhIeMVIgkLCXUcI4akQwuec9TgSEhISEk4QQvhICOE33uCxeQjhDTd5nZv+bEJCQkJCQsL5QhIUEu468jx/a57nP3zW47geQgi/N4Tw0RDCJITwz0MIe2c9poSEhIT7GSGERgjhO0IIwxDCcyGE//msx5SQkJBw3nC7hdkbOV/6uzjhpZAEhYSEUxBCeKukvyfp90t6WNJU0t8+00ElJCQk3P/4ZklvlPRqSf+dpD8VQvj8Mx1RQkJCwgOO9HdxwsshCQoJdx2eVhtC+OYQwj8JIfxfIYRRCOHnQwhvCiF8fQjhhRDCx0MIn2ef/fIQwi8eH/uhEMJXlM79p0IIz4YQngkh/BFXXI8jX98WQvhYCOH5EMLfDSG0XmKYv0/Sv8zz/D/neT6W9Gcl/c4QQvfOzEpCQkLC+UEI4TNCCO8OIRwcf6f+rRBCvXTYbzn+Hr4cQvgrIYSKff4PHX9X74cQfjCE8OobvPQfkPTn8zzfz/P8FyX9fUl/8PbcVUJCQsL5QQjhV4QQfvj4e/apEMJvt/d+OITwR+z3PxhC+K/H//7Pxy//bAhhHEL4PSGEzwkhPB1C+Ibj7+SPhBB+382e75Thpr+LE14SSVBIOA/4bZL+T0m7kn5a0g/qaG8+JulbdKSIghck/VZJPUlfLumvhxB+tSQdR7H+Z0m/UdIbJP2G0nX+kqQ3Sfq04/cfk/SNLzGmt0r6WX7J8/yDkpbHn09ISEi437GR9CckXZT0dkmfK+n/XTrmiyS9TdKvlvSFkv6QJIUQfoekb5D0OyVdkvRfJP3j610whLAr6VHZd+/xv99687eRkJCQcP4QQqhJ+peS/p2khyT9fyT9wxDCm6/32TzPf/3xPz81z/NOnuffc/z7q3T0nf2YpC+T9K5bPJ8j/V2c8JJIgkLCecB/yfP8B/M8X0v6Jzr6A/Rb8zxfSfpuSa8JIQwkKc/zf53n+QfzI/wnHX0Rf/bxeX63pP8jz/On8jyfSvpzXCCEECT9UUl/Is/zq3mejyT9RUlf8hJj6kg6LL12KCkpsQkJCfc98jx/T57nP5rn+TrP84/oSNi9RqQ9/j79mKS/IelLj1//Ckn/a57nv3j8vf4XJX3aDWQpdI7/69+96Xs3ISHhfsRn6eg771vzPF/mef5/S/pXOvkevVn82TzPF8d/I/9rHf1tfDuQ/i5OeEkkQSHhPOB5+/dM0uU8zzf2u3T8h2YI4QtCCD8aQrgaQjiQ9Ft0pMZKR5Gtj9u5/N+XJGWS3nOcWnYg6d8ev34axjrKgnD0JI1u9KYSEhIS7lUcl579q2NjxKGORIGLpcP8O/ajOvoOlo78D/43+669KinoKGr2chgf/9e/e9P3bkJCwv2IRyV9PM/zrb32UV3/e/LlsJ/n+aR0vkdf6uBXiPR3ccJLIgkKCfcMQggNSf9U0rdJejjP84GkH9DRH6qS9Kykx+0jT9i/L+tInHhrnueD459+nucdnY6nJH2qXft1khqSful23EtCQkLCOcffkfQ+SW/M87ynoxKGUDrGv2OflPTM8b8/Lukr7Lt2kOd5K8/zH3m5C+Z5vq+j7/FPtZc/VUffxwkJCQn3E56R9IR7z+joe/QTx/+e6CgQBl51A+fcDSG0S+fje/lmzudIfxcnvCSSoJBwL6Guoy+vFyWtQwhfIOnz7P3vlfTlxyY3mcwf4VgB/vs68lx4SJJCCI+FEH7zS1zrH0r6bSGEzz7+cv4WSf/suFQiISEh4X5HV9JQ0jiE8EmS/l+nHPM1IYTdEMITkv5HSdTd/l1JX3/sCq4QQj+E8MU3eN1/IOnPHJ/3k3RUqvadt3AfCQkJCecRP6Yjkv+nQgi1EMLn6MhT7LuP3/8ZHZkeZsfm4n+49PnnJb3ulPP+uRBCPYTw2TryHPsnt3g+kP4uTnhJJEEh4Z7B8ZfWH9eRcLAv6fdK+hf2/r+R9Dcl/UdJH5D07uO3Fsf//drj13/0OIX3P0g61awmz/OnJH2ljr5AX9DRH9dlQ7KEhISE+xV/UkffsSMdibGnmXR9v6T36OgP1X8t6dslKc/z79ORCe53H3/X/oKkL7jB636TpA/qKFX3P0n6K3me/9ubvouEhISEc4g8z5eSfruOvhsv66gF4x/I8/x9x4f8dR2ZHj4v6bt09Peo45slfddxaRk+Cc/p6O/jZ46P/8pbPJ+PN/1dnPCSCHmen/UYEhLuCEIIv0JHf8g2jo3BEhISEhISEhISEu4rHGc4/F95nj9+nUMTEm47UoZCwn2FEMIXHad67eooQvYvk5iQkJCQkJCQkJCQkJBw+5EEhYT7DV+hI4+FD+qoj/ppdb8JCQkJCQkJCQkJCQkJt4g7JiiEED4/hPD+EMIHQghfd6euk5DgyPP884+7N+zlef5FeZ4/e9ZjSkg4K6Tv4YSEhISzR/ouTrjTyPP8h1O5Q8JZ4Y54KIQQdnTURuQ3SXpa0k9I+tI8z9972y+WkJCQkHAN0vdwQkJCwtkjfRcnJCTc77hTGQqfIekDeZ5/6NjF9LslfeEdulZCQkJCwrVI38MJCQkJZ4/0XZyQkHBfo3qHzvuYpI/b709L+syXOrjb7eb9fl95niuEoDzPtV6vtV6vtVqttN1uFUJ42Z/tdiuyLUIIqlSOtJI8z+PPZrPRdruVJFUqlWs+55/d2dmJr1UqFVUqFa3Xa83n8zienZ2deJ3tdqtKpaJ6va4QglarldbrdXzvtGv4GHmde99sNnGM/jn+W/4397Wzs6NqtRo/62Px++ea1Wo13sd2u9VqtVKe5/G1zWYT14U54Tx5nsfr+DkkqVarxeO53/L6bLdbrdfreD0/B+vl9806+vl8fH6M3yvzs9ls4lg5xs/lx/u1fP79/L43fJ85fK24Lz/P9Y71+2d8p+0Bv/fTzvlSe93B2Pz48vNy2meYi/JYOP60cZWvf9q4y/DnhfOWr/Fyc1B+nd+vd+08zy/neX7pmgGdf7yi72FJ2um089e9dqvnf6F1RweWkJCQ8Eow10TLfHHt/xjuDbyi7+L0PZyQkHBeMdL+qX8T3ylB4bQv/cJf7SGEd0p6pyTt7e3pq7/6qzUcDpXnuZrNpobDoZ577jk9++yzGg6HqlQqqtVqajabajQakYDW63U1m00tl0sdHh4qhKBms6l6va6dnR1tt1stFgstFgvNZjNNp1OFEFSr1VSr1bTZbDSdTiMRqVQqajabGgwGqtVqms/nyrJMu7u7mkwmeu9736vnn39e1WpVFy9eVK/XU57n2t/fV6PR0EMPPaRut6vDw0MdHh5quVxqOp1qPp9rvV5rZ2dHrVZL9Xpd7XZbjUZD8/lcy+Uy3tdwONTBwYG2263q9bqq1eo1Aka9Xi8QrMlkou12q729PV24cEEXL15Uq9VSCEEHBwd64YUX9Pzzz2s8Hkeho1qtqtPpqN1uq9lsKs9zPfPMM5rNZmo2m2q1Wtput5pOp2o2m9rd3VWz2dR0OtX+/r7m87mq1apqtZoefvhhtdvtOJ5Go6FmsxmvkWWZ8jzXbDZTrVZTlmXabrd67rnntFgslGWZ9vb21Ol0tN1uNZ/PNZ1ONZlMtNlsVK/X41qyxpVKRfP5XFevXtVms4nzd3h4qPl8rsViEedwu93Ge+/3+6pWq7py5Yq226263a4kaTabRQKNoMU9ILRUq1VtNhsdHh5qtVqpVqup0WhIklarlebzeRQqQgiqVqtRZNpsNprP5wUhhvnabDZarVZxb0qKYgl73QUtXkNAqtfr8fyLxSIKHYwDcWi9Xsfrch1JUXDhHpvNpkIIWiwWmkwm2tnZUafTic8Vn0GEmkwmWi6X8fnkfmq1WhS1EG0Q5Mr3ad8Np4oriF+812g0CsfN5/MoQLpwxnz7vFerVeV5rtVqVRDIpBORyObkozf2tXfucN3vYan4XdxUptc89Vv1mnv1z/aEhIT7Ej+W/9BZD+FW8Ir+Jk7fwwkJCecV/yH//536N/GdEhSelvSE/f64pGf8gDzP3yXpXZL05JNP5pCF9XqtSqWiRqOhTqejVqtVIMH1ej0SE6KOiA2SImlywu2Rcv7NZyA8kDEi+ZvN5hrCU6/XlWWZqtVqzJ4gk0BSJF98DiJXrR5NMyS1VqtFQgM5hgQ1Gg212+14LidfOzs72mw2qlarcRzz+TyOe71e6+DgQHmeK8uyAonKskxZlsW59AyM1WoViRhjnc1mkXiRncH7nU4nEmcnvZB81skzFrhfSLGkOCbOw3zu7OzEtWk2m5pMJppMJlEwYK0Y62az0XA4VKvVUrvd1nw+1+HhYZyr0r7TfD5Xp9NRs9nUbDaL5/YoNntstVrFuVoulwUyzzGQdEip709IKXsCEsv+g+Ayh8xDo9GIn+H4RqOhPM+jUOKZFawNItJyuYz7y7MzWBPWqVKpxLXn3tfrtRaLRZzvWq2m1Wql0WikZrOpTqcT9yP36VkwLryw//gdlLMATsvEcZGB57parRb2JOOTjgQS1oJ/+3pwHp8Dz5xhHtmnp2U13GO47vewVPwu7oW9e/qGExISEs4hXtHfxOl7OCEh4V7DnRIUfkLSG0MIr5X0CUlfIun3vtTBq9VKs9kskj+If7VajZHu2WwmSZFINpvNmGGwWq0i2SfbwKPEkCdJhQgnJA5RodPp6ODgQMvlUvP5XLVaLZILoq1E80ejkRaLhdbrtRqNRiT30+k0RnF3dnYiGSRKDgFdrVaaTqfxXlqtViQx3W433gMkjWyMEELMyuh2uzFCP51OI8mazWYaj8cx6wDixdgRIEIIhbIM5qzVasVoL2QaIsy5yDjgHigTgShDbD0yDZHzNbx48aLa7bZGo5GWy2UksqwR67NcLuNchxA0m82i6MFaTqdTSYrXmc1mMcOD16Uj4WdnZ0eNRiOuBa85mfVyGxe82EdecsF+ZZyQauaY310AKJe9eFTdrwNhrlQqarVa8R5YL35vNBpxr/nYuB5jlBTJPePwEhGeSc+O4HxkP9Tr9bjPuV6e51oul1qtVmo2mzFzyAm7zx3XLpc+lEtYuHeedRdKms1mXDcXWPx3z1LgvIhYfN+UMyK8jOgexiv6Hk5ISEhIuCNI38UJCQn3Ne6IoJDn+TqE8FWSflDSjqTvyPP8qZc6fr1eazweq1qtFiLACAqtVisSAEoUKB3YbDZaLpdRUCCK7KnVkBKPygOvqZcUSSGp+RAZCGe/39eFCxciSVwsFpEoesRaOsmCIGMCgu3HTKfTeB1S1yHjRM8lFQgoJBQhg1R7Iv/L5VLD4VBZlqlWq2k2m2m1WklSIYWfrAPOz71Q9gGJhJgtl8s416S181nmkvFBKBEvttttzDqQTrI+KLmo1+s6ODjQcDiM6+6CD3vD9wdrTcbGbDaLQlC9XtdsNovr5GRyu93G+yA7BKGELAH3cWCt+PxqtSqIXy5aITwwby5K+Xk4L2TY55A9jZCEUMO1IPCc7/iZK0TwpRPRwUU0XyfPIOAczA/PGvfjwtJ0Oo37B2EPEYm5RPzhOpzX56rs6VCGv+diAYICYhDz7l4niGEuhvi9+zXKgkNZXLlX8Uq/hxMSEhISbj/Sd3FCQsL9jjuVoaA8z39A0g/cyLGbzUaj0ShGXz0dHKINOYXsOJFYr9daLpeRTC0WC0nXmr4RRSf67O9BIJrNptbrtUajkdbrtXZ3d2O6NgSr3+/H8gIi9LxPRgHX9tTyVqulRqMRiTkiRafTuYY0NptNZVkWsyD4abfbBZGj0WgoyzJ1Op14/e12q8lkosPDQ3U6HR0eHhZSuElV9/IQrj+fzwtZGxB27oOSFDIearVaTMGH7EMqERbILiFtP8uyeD0yUOr1utbrta5evRo9Jer1ehQTyAqZzWYxFR/xh4wJ5gXSzd6ATHLvTjwhp04yJRWI/nK5LOxF5s7NObk/9iDnpfQDbwPfE4ypbHboJSYQaK4BSSZTw/0HiN4TtWesnLMsKnhWCq/xnLg/Ap93n4ay6SUiEBkK7p8gnYhOLtwhSvgcknXk5/bnt5yBwBqyT3kWWXcXo9yHhPtnnl10RKy4nuBxL+CVfA8nJCQkJNwZpO/ihISE+xl3TFB4JSDqCSEFTuKI3ktHxIkILqSR9HbghMSjjhBNopKSYkQZYz/IO2n/rVarQM7q9bq63a4mk0kkv5AaouZ+fsYIMSeCzD0QTXVho1KpFLwUXCxoNpuSpMlkEol7lmVxzETqx+NxLBegHICotdeK53keyR9CBwaBmC46gYVgNxqNghjh9zGdTqNY4ASZzAfmBfGo1+vFTAvKH3iPa1BS4mUm3hGDyD3jKGeOOIEmcwTfBvYBewbPDC8J8dIJNzF0s0wHWSWsl0fUPWvA90TZf8GzXbwcwI0FuRZrCokuP0un+RaUfQL8NeYV349y6cdyuSyUFrBX3AsCAYSxMSdlHwqfE89qKAsSnlnBWP258+uVPRy8fOLlQKlK2VsiISEhISEhISEhIaGIcyMoOAGYzWaFGmdIAkQQQgfZgkhDLol6Qkg9VZ3oLtFtSTGqCdnBzwByDXmGlJDe7R0aPLLpJQ581t3lITyeau4kFfGh0Wio2+1G3wE/NoQQu1dQHkB6PVFkSH2j0dB0OtVsNos1/k7wmAMI9Gg00mQyUZ7narVacQ4hqB71xxySe4GEzudzHRwcqNPpFNL9KcOQVFhLSiIGg4F2dnZiNF86EZbIUpnNZpHwV6tVTafTuJbMO/umnC3CvnJCDhn2bBLgRoMeBSd671kOfNaJLnNNeQUChpeH8INg46UXXibhHg9e9+9iCSIR54S0l8UDL3Xg85yX/eBr45kSCDlci8whMkcajUbca+12u+DVwXhdxOJ35sAzCMoZHOWyBM8Y8b3inSg8s4Q58PkrZ23wGqKTl5YkJCQkJCQkJCQkJJzgXAgKkiJRgSx4eUOZTPGHPiUDRK/dANBr/4n+8j5RVKmYyYCPAOSVqPtisYitDiVFMkW3A69d9yg052Ts3hHCo9qMGaLtZQXU+PO6d4pwwurp3ggDZBP0+/2CSAIR9LER1R4MBpEk8kM5gafJbzab6DOB2OKEjPOTaeClHNwz8++t++r1uvr9fhRzPFLuZQyz2axgWIhfAp0hPPKPeMA80roRrwp+PELuRpOUl2CwyVgQrpyUIgSxXpTiMPYywfc0/DIZZi95WQBzzP7yMo9yiQbz46KKE+8yWWdNuBZz5sagZCF4hw+eKxd5mDd/Xj2TB6LvGUGMp2xwyXNSzspwwfG08hCOcS8I4H4MnIPXy94NCQkJCQkJCQkJCQmn41wICh6hdJLtrQQheZ5mjqAA+T84OJB0QjAg10TwIa1ETum8AGnZbreRJBNRxoBOUkzXp4YcQWEymUSi4yUBkgrjhVhD0Nyo0KPUkqJIga8EbfvKYgmkyk0fKZfw9pTdbjeex8UaNySkZCDLsljzj7iDAR/kz1PWvZWfdEJIKdfodDrRxBEyzNoyDgQEiCvmkYga3i1DUiGDApLLcQCS6C1EyXJg7zhhZNxl807WzA01fSyeQeOZIvxO9oSkmK3CeT0N3/c/e3CxWETxxL0eEG4Aewf/gvK1/Drl0gnfqy5wsKaLxSLuAS/V8HIE5ob5RiiAzLMX3csDAUlS9F5AoGIv+tyV18izHvy+/DnyDA7EJ9bQDRl5Rv13Pp+QkJCQkJCQkJCQcDrOjaCwWCzUbrcLhAXC7O3/IBik/EPsIAt0KuD96XSqbrdbMB1EUCCK6sZ8tF/0SDOEl24C+D3Q7hHjRAQPxAnIkpc3AIi5+wRIJ10CSPknuu1kiNp1SFk5wi0pdr2gG0K1WlW73Y7ZCZJiBBgBhPIB/k2HiMViEU0SPSJer9fV6XSimME4PGUfQYB0eMaLsIHIQCYIc4XQAtGkewMGjRD8EIIajYba7baWy6UODw8LJQhlHwF8HRBV3I+AvUdkn/sgS8C7Ffh8ewkF5/N2lR5J9wg7YM8gALgXAPvYTQVZe+baSwPq9XqcyxCOWoCWvQqAj4/zlDMWeL7I1uHZc/LtokX5GJ5tni8fC+KC+y4gWrBOnu3CD/Psfgruf+FigpcSeYYLQqVnO7gowX5J/gkJCQkJCQkJCQkJL41zIShsNhsdHBxEzwBJkThCAPAl8Dp42veRak1EV1IkVpj8Ua4gHaXHU/tPBNNNCefzuTqdjqQjkjQajbS/v6/d3V3t7e2p1+tFUk+rSkwPyWKAaDUajULkHRLHPUFEXVBwp3o32PPsBY8sQ3gpPYCQISjs7+/HiLxHiyF70+lUBwcHcW7n83khQk0bzU6nU6j9Z40Gg0EUOqQjnwQvw4A0Mj7GzdrQbtBNIjebjVqtViSyjMnLMyhFWC6XsSSFeeMc/Jd7Z25cmGJMnm5P+04yBLgfz5aBxOKhUfZCYK3Zty62cL+MEVLMHmTMPBOIWO4JAFwsgABzDsQJ90lw3wzWk7IFqWg6yXjL/g1eusE8+NyTdcP1nPQzXkog3DeBZ4V14Xr+3JfLIPivCxVe0sT8emaNf47jyIJhDthrdClJSEhISEhISEhISCji3AgKV65cUZZlyvM8Ek8yACA8Hv13cr1YLJRlmS5evBhJJpFrSAvkSDohD9IJeSLDgFTq8XgcI+XL5VL7+/saDofa29uLbQ49Gu3mfdK17fHc3R/SOpvNCkaPHh3fbDaxuwPkBlJUFhgow/B0eT8XngPtdrsw73x+Op1qOp1G0cUzLCBpi8VC4/H4GnJMJgfki3n3EhYIYLfbjUIPkX86UbgHhZdBeAQZLwuu6/sCkGoPIYXgsgasKXvNyzUQW5rNptrtdiGTwWvunXjyu/sY+Dndx8Mj5mSJQPaZd+aXTBHG4yIDY0UswE/Dy3q4jkfYy9F297RwY0svzfHMFDc2pPOGrzPmocw5+4Jrs0f43U0SeS4oF6GEwsUGRAX2j2c98FxzPn8O3VSzbP54WmkD53DRLiEhISEhISEhISHhWpwLQYFa6fl8XkjRr9Vq2t3djR0DiMRDqCHjy+VSWZap3+9rZ2dHly9fjlkHtF6ERHiat0ekIaXezWG9Xsdou7cs5Pq0r4SkEEGltKLZbKrZbBa8IDAahDw5qYEkce/b7VaTyST6KHhNOuOo1WoxuoyvAKTb6+Q9Ig9RdIHm4OBAeX5kNAlJ4xpEt8nCgASTObBer9XtdtVoNArp+pKuacuI+ALBnkwmqlQq6vV6BZGAteba3sLPxQK/BvfCtVhbJ7kuhHjEmv2Bd0an01G73Y7GjVevXr2GqJMZ45kDPscQdi8zabfbcUwQ4HJJBM8AQgzZJmTfeKYL+5jxuD+AdyfwSLx7JkiKc+L35uUJZV8KLy/gfLxGuQ7PM2IEY/Nj3UPCy1SYE89q4LMIJu5X4aUafp9lQcXnyYUc6aT8w+fKx5eQkJCQkJCQkJCQcC3OjaCAoR4O/GQo7OzsqNPpRJ8CfiDT0onJGnX6pNJLisSdkgJ3qAduTsexbpgIqR6Pxzo4OFCv14tmgE78PGUdAYIIM4QfUcCjw0TkuR8IHETaI7d0YJAUMw4goRyPWSFotVra39/X4eGharVabDfp4kie5zFbIMuyGJ0fj8dxjZxAkrXgZoV4PbRarUJWCOu4XC7V6/UKJREY/lES4WUcw+EwknPppPsFogXHeftB5sNJPqUzy+WykGZPlgkCDOvdarXUarWUZZk6nU7MMplMJoVjEZR2dnZilwn3sZCOBCoMIxHMEBUQdcgi8Wi/l+9QWkP5CffoJQocR8mKZ0OUswg4fr1eR9NML+9YrVYxCwfBjufFxQbPPuC8PIOMtZyx46SfveeZJuXyDBcKWCt/j7InzzpgL5R/L4sXnokAyoJHylBISEhISEhISEhIeGmcG0EBUYBo/sHBger1ugaDQfQpWC6XGo1GUTzwtGtIT7/fl3RSCgGJgvBClCFf3s+ejAUEBUint73b398vEDg3l3Mi62aSbvJH5N2JLhkQ0kmJhHdggGzW6/UoYHjbR7IWIFiejUA0lqg4ogbncV+F5XKpg4MD7ezsaDAYFO7b6+Ehj3SeaLfb6vf7MS2eqDQdMyChiCGIRYx/uVzG7ApEE/dHKNe5e7o8YgJZJogxHslGKGCuFotFodWle1643wNrR7YCPhTdbje24ZxOp3GPkMHipLRararb7caOIPg91Ot1zWazKKAhZiFg4SvhAgOmmeVovGfGcE0XZtgLXqLgJozebtOzQbgGZSQISJ5JgXDENbg+zxDPt5cq+TPppRTMv3RiiIjIwOtcm3P7OpPV4CKAzxXzhHDnzwjjTEhISEhISEhISEi4cZwLQUFSJM0QQ8ocms1mjPJC4J0kEWGE8OR5Hgmc+yQQ6ScKTtQbQoKoAJmE6G02m9iWkiwFb+cISYUAQUghz5BfovSIH5JOfY3IN6KEpEiqvfOEp/9DOinxwEQQch5CiKn7dFZA2ODemF+yEphDSTo8PCwY+kECfa2YPyLOZCbg1M+4x+NxNIuE5Pt1K5VKFBLwUfBzSoolEWVzvXa7HQkvrSG9kwBGi5yPTIqyWSFjJw0+yzINBoNozler1aJBJQKAmwqS+eEZNd1uV81mU4eHhwXxgPUFEOJ2ux3nBTGMOWRO2P+ebcPaOEn2Eg1e4z58L7mfAuScPUcJDM+LGzZybi8jcm8HxuUoC3oIT+5D4sdyT8yPG7TyLPOM0v3Dy5x8rsolF57B4J4lPq8JCQl3DpVf+UnKazvXP/ABQGW80Ob9HzjrYSQkJCQkJNwwzoWggFeAR4AxiVsul9HcDXLkLd8gZpVKRZPJRM1mU1mWqdvtxnR6Uus5vwsK/BsiWhYrIFEQbs7jhMNTyyF6fJ7rA2rSITEQc7IUPCJbTtGmzIJxQZaZQ6Lp3u4SYuXXwUmf+6RGH/KHKWW73Va3243miZ590Wq1YuSaOfL6etam3W5H0i0dkdU8z6M/gXRiIsl73i3AU93xaJhOp3GuvNuCCyecA5FJOio/YA4lRXGBrA4XcVqtlnq9XiS9vV5P0+k0tiVF6EIweSm44MH1EZjK4pGvlZd/sLaUIICyjwJA3CKa76UVHtHn8xBorhlCiKIUxzKvdJtw4u1+BC5isS6MFYHBSy/YjzzHPB+MUyp6RpAB4iaX/rx5Rg/7kR9akHqpBmvjzzB7uSzWJCQk3B7svPF1WjyxG3//+OfVtWmkDCFJalzt69XfX9X259531kNJSEhISEi4IZwLQUGSRqORDg4OdPHiRV28eFHtdlvD4VDD4bDgJQAggZDC9Xqt0WgUiUG1WtVgMNBoNNJsNtNkMomv46fg7ekQHyBLkJnVahVLJyB1TmLLZnJuPAfB8TKEcrSY8SA+LBaLSN68Rp4IcrvdjlkBPk5S6TudjprNZqGrAWNzE0cnXZ5qn+d5rKWfTqe6cOGC2u12zCCgfWe55MAj0ZBwxgxR9FIJjDcpLdhsNpGwszZOiuv1utrtdoxQ41NBKYin23P8YrHQdrsteADQvUFSbB0Keaa0Y7VaqV6v69KlS1HAIFtiOBwWRCNvV+nrC6F2TwX2DxknjUZD7XY7eocAxBjuicwIN5T0+XbByjuVILggmnEc98p6+95AnGOPsQfJ2qDMw6/vXgOe8eFE34/1zADPCmD8CHd+nHtA8Iy6qMAYuV/WnHvzMg83BWWc5ZIeXk9lEAkJtw/VJx7X8G2P6fB1O5o8vrV30nMGFntbfey37mnv9Z+p7nuvpGyFhISEhIRzj3MjKBAVH41Geuyxx9Tv97XdbmN3B4gBafjj8ViTyUSSYgbDarWKNeaDwUCdTidGQCESpI67OaO3DYSoS4rEH6KJWSGfhzBKJyZ5HlWnHAICSWmGu8vjpcAcICogenBu6STKzWvU5CMOSEfR/m63GwkT13NiyL37vEJEW61WwXCQyDZjQCRhjLxO9Jdxu8cDgoEbObq5JinslJp4CQlgbIyf8zi5ZGwICkTE3Tiz0+loMBjEe2Yud3Z29OKLL2o+n2s2m2mz2cQ2l8PhsJARslgsopcDY6flpptUsjdJz/duEowzy7KC6aRnSTCXHv33ThnsiXImAPeOqOSZMIhBrK1n2fCDz4ibKnKder1eKIlgX5dFBH5HTGL8vp6SCs8aghPrxv504u8eIy7q8V+eS4wyfT65Py8DAT6PnpnxctknCQkJN47qI6/S07/zSY1fs5W0ve7xDzLml7Z65lJQ9saH9MT3bbX55Q+d9ZASEhISEhJeEjdtYR5CeCKE8B9DCL8YQngqhPA/Hr/+zSGET4QQfub457fcwLkkHYkE+/v7MSMAAjmZTGLrP1r6ISw4OYUk8wNhw1Xfa7QhXeUUbdztISKQUXfX58e9CzxS66n/UrGLhaRC9gIiR5Zl0VugTObwfoD44k3gLfmWy2XMKqCNJq0YPUWd8SIGeESW+3PvA8QKz6ioVCqFNprMK2UD3Bu/NxqNmDmBMaaXX/i8IIR4iYaLMJwLY0T2AOfyNp5+PqLbCAu7u7va29tTt9tVr9fTYDCILT4nk4kmk4lCCNE/YXd3V4PBQP1+P2Y/jEYjjcfja0ov2NOIDcy1R+XJEiGrhG4Skgpz6aUOkFzpJDOB8o5yFoB7NAAEDZ4LzCbJIuE91t+zJDyLgXvxbJtyZoLvpzJRP82E0jMcfJ/xmpc/lMsR3MDRM2+8TMIFGMZSLnnwUiO/5nnH7fwuTki4U8gH3WMxIeFGMX1kq4/+rlep+ponz3ooCddB+h5OSEh4kHErGQprSV+d5/lPhRC6kt4TQvj3x+/99TzPv+1GTwRxnc1mGo/HGo/H2t3dVa/X03g8jt4HEEz+6Cf9H9BCEGFhu92q2+2qVqtpf3+/YChHJLMcFXajPK+rJyoKAXJi12g04rHe0pJoL/4IXn8P+Z3P5zH7YbvdajQaFVobSorRckwQPZrKvECklstlFGTojjEej+N8QOS4Rzo/4FFAVBbS74IN12O98L1Yr9fq9XrRXwIxwgl8o9GIEWTPTKCdoqe+e6Tc55X1IVuBSDpjILXfW2ZCkiGiZBA0m011u90ofHir0TzPozhDlkKWZZpOp5rNZjFLgTnHTwICi1jg4ki5zSJ7ir3SarVieY37abDmeHx46r9nyJSj8OVrcl1JBaLNGF0coOODZ+vwnLJ/3RSzLCyU4dkyfkxZMCh7hngGgpc9uaDAHLgAyB5mLrxVa1k08LIfFykYyz0iKty27+KEhITzhflDW3349z+uyvJxPfG3f17b4/9PJZw7pO/hhISEBxY3LSjkef6spGeP/z0KIfyipMdu4XyR3EEiMcbD2LDVammxWESRweujpRNfhXa7Hc+TZZlarZY6nU5BICBajqDgLvTUinvWg6QCKfGoObX4EHePwAJvu0eJA2RYOjEInE6nGo1Gmk6nsfwA0uQkj2gv14FwEw3HOBHyx/tlgoTg4OaCTkY9mg6J5b68bAEfAEwxO51OHNdqtVKr1Yrrx3riX0A2gKfRe6cI9xeQFAlvq9WKc8i881kXfPw1MhkWi4Ve/epXq1KpxM4Lu7u7UdTAkwOTS7JEvCsF5NUzSLz0Jc/zwlziGUF5CGUjZCGwH9l3PBMIKpB96SRSTxYEe5t7hnS7iOHvO4H3vc9ckaXgzwDnQyzjvsqZAWWDQ87rHSHKogHPlz9XvoZkIbgA4MadjIVxcs+eYQHwUuA6PEc+V+VSofOM2/1dnJCQcL6w2Dv6rvrwn/wUveZ/+Unlq+V1PpFwt5G+hxMSEh5k3HTJgyOE8BpJv0rSjx2/9FUhhJ8LIXxHCGH3pT95PIjj2vYQgvb39/Xiiy/GSDAlC61WK6Znk+oPcOonBZ3yBO/k4D4ETnSkIvGAkECoMKfz2n43gYPcYgwIwfJUf1LLId5E0SG4mCe2Wq1C2QNmfNVqVe12O14Dku6CBB4EZBaQUQEJxnDSI7Zkc8xmsyhiuEu+k0U3WiRlnowRyCyR/u12G9fNWx0SzSednvKHPM81Go00mUwKnSu4d+bIDTP5bK/XU5Zl0UiQzAnWi/G6OSXj6Xa72tvbi/dC1kKv11Or1YoGhMwNwhL7x7NMfOzlFHwv6XAfBcQa7hOxgEg7QgnE1s00ff/jjQBhp/yFbAfggp2vqZep8DommKwfIgx71X1EuBeH/44Q4JkTXI/nszwvHF/ONvDnlfkq+zyUX2NufDynlVwwj+xPhJN7Cbf6XZyQkHB+sept9aE//+lnPYyE6yB9DyckJDxouOW/lkMIHUn/VNL/lOf5UNLfkfR6SZ+mI7X2r77E594ZQvjJEMJPupnacrnUCy+8oOeee06VSkX9fj/Wy7vBnaRINBEHqGun/SBlFNvtNpKDMtFzciUdCQp8BqIBMfWuClKxLSNEXro2Ggw5I60akru7u1sg/61WS4PBIJY/eHcCd7cn9b6cOt9ut6N3AnPpxM7TuSlr6Ha7kdCPRqMonkwmE81msyiwOOFFGNjd3Y2ZCJBMMkiI+F+8eLFgtkh6v5tO+lqV2xVC9BB2WC8n6c1ms1CK4WS87AGAVwUtL31NWadOpxNFBsY2mUx0cHAQhYPVahW9FiDpCFlemuAp/sx5lmUFfwKIs2cqIOb43vPSG4BI5F0avNzES1W8ywElIsw/84D/SAghtg2l1aaXnnA/5ZIKXnPvBK5T9u9gT5a7Mfia+P2Ur+cCBONx74yyl4lfj8+XfxAq+K4p+1CcZ9yO7+KVFndruAkJCTeBTSPXB7/ts/Thv/h2KZnGnjuk7+GEhIQHEbckKIQQajr64vyHeZ7/M0nK8/z5PM83eZ5vJf19SZ9x2mfzPH9Xnudvy/P8bW5smOe5JpNJbPdYr9ejD4ITBUgEkXqIGy0PIV4QYo+kUn6AoED0GdICkfdafogFRLZsIudp7x75dSFAOiKAdBGABDrpbTab0fxvNptpOBzGdooQWaLP/L5YLGI9OZkVkMdKpRI7XngqN/fQ7/ej5wBiAhHu8XgchQDMMJmHarVaIJv4GiCGkB3R6XSiOSSCBaQZsuwkF2JejuZ7hwhIL8cSWWY92APcv2eUMCbaNUIgGUej0YjlGZ6tsN0etY9kr/iehYizb8h2wNzTSXi9Xo9ZGpBd9+dAzPA97p4WLoaxzxAHWAc3CSU6j2BBNk85m8LLBBBa2Pvsa28p6QaL7Dv2gu9n77rA8+siAXuF8VA24mUUXkLxUqJCuWsJ1/LsFMSGstGnlzu4IHIvCQq367u4psbdG3TCg4VtrrBOBPh2IN+RNq1cH/umtyvU6tf/QMJdQfoeTkhIeFBx0x4K4egv8G+X9It5nv81e/2R41oySfoiSb9wI+eD0FC7fnh4qMlkokceeUS9Xu+aem8nEvP5vNBOkFIATAk9M8DTrMvp6WVvACclRCwhZmQekOJ/fO+SVCCKpxnjQQR7vV78HKQQIttut7W/vx/FFRcJKO/wKC9kirERgc/zXI1GI5ZM0AITcga5pUwAouqZF5SceAQZAWNvb0/r9TqWVmBCORqN4r1kWRYJos8tc+TCCyn7lJK4X8F4PI4CE0LKYrG4xncBEckzIqQTMt/v99XpdKIXhqNsTumdDdx/IYRQyLxwEIGvVCqF9ozsYU+n94wX7h+PjfF4HI934YrPuBgjqbA+/qxwbn4/jSS7FwHjciNMF9rKGThO8r3sxwUC9yxwM0kXAvmd8YJyqYN7IJxmsujPdbnzhpc8lbN/+IyX/Pize15xu7+LExLuBDbv/4De8I8a+tDv6WnTOP/eJPcClv2tPv4n36Yn/1YyazxrpO/hhISEBxm30uXh10r6/ZJ+PoTwM8evfYOkLw0hfJqkXNJHJH3F9U5UTtFeLpeaTCaaTqeSpMFgEA0LSfX3FHtIAJFNshYgCogMXIvrSSdRS0mxTKBs0oig0Gw2I+mAKE8mk0JaOueRTggfRBFyulqtNJ1O1ev1VKvVtN1uNZlMYpQXIt5qtXR4eKjxeBxTxSkPQUzgHvzeEDuou4ckt9vt2H4TwkS2gLf2c9d8T5uHBHspBeRXUiGrg/KTarWqwWAQ7/OFF14oGFM6cePaniqPqIHQgZEh9+yE3qPnrJOkKGh4rT5rQUcFxB9MPKvVqqbTafS+YF0RsDi+3W7Haztxhty7V4JnBTj5Rwzy9H3WjHOBcnkCe6yc6u8iB+vh5SPltH/2D/9G4HL/kXKZBPvFvQsg+L5HWQsvKyj7Jfie5JlzEYa5Ym+7MSrCBeMrZ3dwTs+C8Ln27AcEqdNKLM4xbtt3cULCnUT+00/psYfepo99/q386ZHgmD+01TN/5FP02D94nzZXrp71cB5kpO/hhISEBxa30uXhv0o67a/tH7iZ87mj+nq91ng81uHhoVarlTqdTkyRJ1oKGSYLAcEAskCWQr1eL9Sd81knXU6+qdF3ouUdFIjot9tt9ft9HRwcFMoqIIEIFpAihACc82lTuLu7qzzPozEiEXVvRUgN//7+fsxUqNfrMapraxLnIMuyeF7IEtdHLIDwkU6/3W51cHAQSddpgoJ0YoLpa0PJAYaJq9VKV69e1WKxKGRd7OzsaDabxTlmbJj/lcUc1hiDRNY6y7I4bgQOL5NgrWu1Wvw8a4HgxH5iXREvKDlYLpcaDodqNBqxzIH5X6/XkfQjbpHZ4FkwTqZDCLFkhj3IGpZFKFLuEYBIv3cCfpppYdlDwQUOP87LHMr7B0HJx8G+ciHDBQAvG+DY00oJ/HiIv3db8I4YjOm0ThDsFxcJfN9wHRcKyuNlXSQVMnyY39M8GM4jbvd3cULCncLOoK/ZpSQm3G6Mn9zq2S/5JD36Tz+o9XPPn/VwHkik7+GEhIQHGefi/+xkEUBgMCq8evWqRqORLly4EIkwpoOk1PN5ukJ4O8jJZBJJdJncUNsNvD3fcrmM9e/SCYHe2dlRv9/Xww8/rFarpdFopCzLdPXq1UhWPQXb08cRL7Isi14FfJ4uDBBrOjbgOA9Z8paUTkAhsO4b4F4G7jMBQfQoOkTOo9cYF5ZTz1kbWh8iIEDwPKqM58F0OlWn04mtMckCcWNG6UTY8TmHAPMegsBqtYq+DnhmMH+MwaP2dLTgvIvFQpPJRJ1OJ3oe5Hmuer0eX6MDxmKx0HA41HA4jP4XnibPnqvVarEswPeQ77fZbBbNG5lTzyTxLAtINf/mHjz7wEsMeB3iLymWuCAolMt6OD/nciGNcZZbrCLGscddBHITSPanP0dO6Lkfz4zwOWENPKuAkpOyb4aX/wAX81xI8fN5mYN3GHF/iISEhFvHzqCv/d/yK/RialJwRzB8w1bhd7xOj3x/0PrZ5856OAkJCQkJDxDOhaBA3TzkAZIyHo81mUwi0eMPf+rpMe+rVCrxdUmRaJAJgEhBuQGkCKEBeI0/JIQ6fki0pNiNYT6fR5+Dw8PDa/wBSNFGYHDCRheH5XIZ0/8nk4nq9Xos8aBMASJGdJh7hsAiHLihIXX8pNoTxfeadi9hcEDYIdpucuep5k4wKUPwrhNE6+mG4JFoxuM+AN6xgdR+WmdCArnX+XweWxcyD9ybpEJZBnsKEgoB90g/2QXMGx4UmHYeHBxEg8yyZ0K5PIbMg3JtP/fuJqJ8lvsq+22wjxBg8DJAQPNSFTfDRCzyzAwi7l4iwPz4OLwkyEswEEi81KgsOCF8LRaLuK/ZJ97BwrMAAOPy54c58v3Es8j5XMQ4TVgoZ154VodnSfh/+Vw5iyMhIeEm8chDeuHXnPUg7m8cvjlX+O2v1au+P0+ZCgkJCQkJdw3nQlCQTgiRp6xPp9PoUQDRIyWd1oOQkOVyqYODA0knkVDIqHSUGdBut5XnucbjcYxyElmvVqvxeAhutVpVv9+PBIgyCjIl9vb2Yir/lStXNJ1OC6nWRMTLZA1yROtB7g2yCcn17Aonhx7dd/M8CBC+BaTMl70DEGycpJM1QcR2Pp/HrgOQU8+4KJcmOBnz9HYEC1p5uvhBGYhUJM2sH8JBmQR6CYsTZe7NfQvwXaAkgUwBLxfwchA/BgLrnUM8su97F2EHUcLFFhepuLZ3C2HO3YOCe2PeERu8daqXsvi8ekaOR/kBBqbMD3PH/bG27kPh4pr7azAGnhfPnnFRguMRfXw8fhxjZjy+t7jP0+61XPrAXmFPInT5dVwQ4Rzcu89HQkJCwr2Cg0/Ktd15vR753rU2l6+c9XASEhISEh4AnAtBoWwMJ52k8o/H4+g1wB/69Xpd7XY7prdjpkekHX8AouOSCpHn2Wym2WwWz1Wuv3b/AwgbhITWgZIKXQzW67Vms1khA4GU/UajURAYiKpLR6aClGZst9voseC+Avx3Op1G0o/pHYTbybSk2Gozy7JYkkAGgRtIOvnGV4CMEaLsXs/urfjKawWIIjNOWl1yPUg10fRmsxnFGrIbXCziHv3+yB7AM4D1I7PD6/whkuXWo27MmOd59K5g75TLYMrE3N9jz7AulFD4nLsnAcTYy3DIPnHTQH82uD7riRdFu91WpVKJJS9E/l0wKXeHwOdCUmHvIGiRvcJa8uyQfeGilBscIu549gXrxbkcnqlRNmVkjzG/7AHWF6NJ1sK9NADjYV68rKGcscAc84zyDCckJNwadi7s6ROff0nS9rrHJtw6hm/cavv/fLMe+45f0GY4POvhJCQkJCTc5zgXggLeB/5Hvbd0I1IIwYBUYExIpLvVammxWBTS3YlQkxKPQODkxo3bymTI67MlRXPEg4ODgnmik0TKDiAvXk8uqWDOKClmB4QQojACqQkhRK8IyCvCCh4HbuznZnOYBrZarUiQJBVKA5hrIr7eicDTv0kz95Z9bmLpxJJIO8R6Pp8X/BIajUYk6JVKRe12W9vtVoeHh1EUIiJNtJ9SFeDp+vx4rb5H6ZkTxsr8e8q8d2EgOs2+8W4C5Zp65oIxeYS7HCF3skxJhWda5PlR+0Q8LBAfEBUQJhAU3FOD0hQyaCDfvifcUJE5ADxTlAm5aScCAgIM1+YY9rrfI9clu6IsKLAH/Vl1wYhjyuuNAIgXxnK5LHyGcfH8uo+GZ064EIEIgZBUzpKgfWdCQsLNITSbGj+ZxIS7ifGrt/r4V36yHvvf3qO8ZOCckJCQkJBwO3HuBAVSzN13oFxr7yZ1EAtJ10SWvRafEgk+R+u/cqtHJ6gIEESFJUUzv8PDw5h90G631Wq11G63o1cAZLZcBlCpVNTpdFSpVGKJBqRVOirNIEW/3IEAQzoIGNF9T4lHGKC7QqVSUavVikaWlGVUq9VCfb+TdTemI62dSL/7GGC4OJlMYmSfqDbnDCFoPB4XMhPKIgumi2SCMB/e0tIzASDGiAxkNzA2BB7KKDifd/DgGMSlEIJGo1G898ViEX06MFKEQHOf3qLSo+CIVnRlYH8xH36/8/m8kP3AvLlJpnSS+YCg0Ov1YmmK7wVIuhN7L+vw0hSyEDyThufHSxcQvBBCEBVcUOA5Q4Bjj2GmSqmR+4ogevm8lM0ZyyJOOZuJvcbv5T3Na6xHs9ksCB++910UQ4whkyghISHhXsP0ka0++rWfrif//Lulm/SD2Xn4IX3knW942WOe/NafVL5avuwxCQkJCQn3L86FoCApmuKRxr3dbjWZTCKBxsXfCVez2YxlAO4J4On3fAaSRfRYOom8SicRVYiZRy09bXyz2cQsBchQtVpVt9uN53PRw30NGHer1dJ2u41tEN0hfzabRSNKzA6JUjvJdGKaZVmcHwg5hNuJHT4GHt1HGGC85S4CPpdeAsE801oxhBANJCXFbAauMZ1OC1Ffvz/3VnBhBPNCyB/ZC0TyXewgsk9GBvupUqloPp9rPB5H4iydZAl49Jpx0o2BvTWZTOIeg9CzdtKJCSgCEnuRDBPujzl2AntaJoyX2rD3IcTMIXvas2kQKTCO5HysAyIIghMtPxk3zxR7gs96tgX3TPYEa1Y2M5QUnyeuOx6PC8e454Tvafc1cFHFcZqI40JZ2fvAn5eXMmB00c9LfRISEm4elW5Xv/xVr5aUDE7PAsvdrRQqUn7t9+jyN79Nn/gN1xFNg7Rpvnx2yYf+3Enrjvph0GN/6UduaqwJCQkJCfcmzs1fzJ4mDgHBCE9SbDdYTqsut38kSgr5ctIJCaLGHGLrxIGyCcg48GjlZDLRiy++GI9ZrVaF1okQbUjuZrMpGOfVajX1ej3t7+9H80O8AkixzvNc3W43OvYzRw6IHO9BDCeTiWazmdrtdqGrRZZlUazwlHWOgQA6efY2mkSvm82mLly4EM0WZ7OZsiyL89RsNq+Zv9PaHXrtvIsCRLWn02kk005qIbyUJXA/tJKk3SakEGK/Xq9j+QdjoTQiz/MCmV6v1xqNRhoOh4V9x/4sG0e6uaQfyxrSfhL/Dcitr2m5rSLjwVuB4xG3yBRwjwvu2U00yfrxCL0LMHRtwMODPeyk330vEEYoZ/GyDdaWuSivgaR4H14i4sakXrZRRlkocC8N7/JApgbX4Lr81Go1TSYTjUajwnfEaQJQQkLCzSFUq/rlb/xk5dUkJpwlPviXPuP0Nyq58sqtr82mdXKOWTPXB//K29X7oHTp7777ls+dkJCQkHD+cS7+Wi6b6kFcvBUkggNkl9cgI6Rgcz5SsyHpZUNBSJVHaflsr9eLZo5SMS1aUox4e+QcB/tarRaj51KxbMCFj1arpX6/H70Tyr4GfN5rzSHTEG2irW46SJbHdDqN4/CSinKdOuTZyR8+Dr4OkEDMG92MkrKD2WwWI9Lcu9f2cz8Q1HI6O3PF2jI+N7r0qLKkgnDh5S6k07M3iFy32+1C+Uqv14sR8k6nUzDtQ6ggU8GzBhgTc++ZJpDiPM/V6XSiIOICk3emYM6YC/5NNoSXcXDvEHqfQ8/AYc+TAYCIxufcM8LFEa7JnmMe6LSCEMd1ttttzP5wvwj2DiUZCCJkCrEGvO/7n/n0e+L5RZjzZwpRjzGVs5RcdGDdyGBhv/jYmTeum5CQcHMI9XoSE84B7uoahKPrHb5JOvxrn6VH/2uu7Pt+/KZLLhISEhISzj/OhaDgBM3TjvM813A4jF0eIA5OSiBE/EBUIJOkaTtJ91prPA1In4aYeHo3Y5ROyB6p/m4eSYaAG9d5pJex0Q2i2Wyq3W7HcSGCQKzcld9rxb0swN9n7pbLpZ5++mlJilkEZeHCfRKka030PKp7WoZEtVpVu91WtVqN50fAQNhwE0jIt4tHED0vvUCw8LUj+txoNDSZTArO+55JgeACWPd2ux3baGZZphCCptOphsfu1+12O/p4cA/MFYSV9UUMgKR7NNv3ou9nL6twbwXPmilnn7jPABF15sTNHJkX9yJgftjLngHAM0M5Ccd4ZN5LfDgXa4PnhBuDlg0y3R9jOp1Ggcezj7ykYLlcKsuy6AfinhkuMng2UaVSKXhFsO/KwqFnS/jz6+vLepXFKs9uSEhIeGXY6fX0/m9+y1kPI+GscBy3eOazg56cvk2tH3m/NuOJtL229CIhISEh4d7GuRAU3GzRU51JIx8Oh5pMJjFyPp1OY7QU/wDIknRS351lWST/0kk5BKTDTQIhdER9PfXdyxWcoFCfj2kfxzM2yBdChRvYQZa63a6m02khso6Y4iaCEG13y8eIkIgsRHxnZ0eHh4caDAaF412s8fpzjw5z7xBGug143b8TeFpiQioZL3PE+SG++DtgRsha8DnEAyfozJ/Pvc/VaZ4QZKbw+u7urrIsU6vVinNLuj5lFu6rwNy2Wi3NZrN4bfd/ICuGLgCIRO51UBaHOL9H2REZPDru94vvBhkhk8mkIA551wfP6CAC72IRRNszenifcboI4lk+iGKeVcI8uPmo+154SQjrzL27hwb7gGwNL6Xwe5FOPCu8nIO1Yd1c0OKZK5c1sI48b94FgjlIGQoJCTeHX/qzb5VCen4SpI/95h3pN79Fb/jHE+kn35tEhYSEhIT7DOdCUHAzNUmFiG+e57GrAunVEAgXAzw66gZrtVpN/X5fh4eHGg6HBad6Ir9lEzYn/vP5PB5PSrS3TuQ1J+5OZKhPx3ARwkmKfKvVihFzTA+JmnoZRgghejtIJ2UYtVpN3W63QPQRIK5cuRIJHSKMnw+4mOAO/xBWauWp/+eczWYz3g/EEHGE9fGMDeaH6PN8Pi+0FYSQU4LAewgp3u6T391QERLuggJEFY8HCDUtISlPYH0RJbiGdFJ77+vtWTHSSckDhJsSBQw+OXer1YolB5PJpCDecNxyuYw/EF32G9comwkiYHFfiDMIFRB5nhe8MsjSIePCS4xc3HIPDDp6QNoRPLxMAuBtwTm96wT3TSYJGRDlDhcAIaLZbMbyFM9KIaOF+ynDS2L82fJyK8Qc9n1CQsIrx86bXp/EhIRr8IEvbesNlbdKP/bzqQQiISEh4T7CuRAUJMVIt3RSs41xIFkJIQRNJpNoLJhlWSGtGXIE2fEuB9Rvj8fjSKjK0duywzzZDUSoIX0uXHgphGcyMB4XSSBM3N92u1W73Y73Tt09JI3Ub4QPzxRwfwC/dwjgdrstGAFi7MdnORck1csSfA4g0xBcSTEVfj6fX1O37uUdEFrmu16vx7abpO0zPxBijnVCD9FlvG506SSV+eUY/jsej9VqtdTtdgtp9U5e8YHwvYDo4Wt+WvSbefWWl07ovdbf2zsyh1LRK6DZbMbzeJmLw0sxXOSAiHsGB+eH3HtmDnvHwTx7ZwnvqsHaIgyUfRjcm4H9xJ5g7dyDAeKOoHaaEMK6eHkQv3M9xsicIipwf25OiZDHvJe9E/y9hISEV4YP/MGHlO8kwphwLT7wezK96eda2h4HKBISEhIS7n2cG0EBAuF/wEOMiO57hgIRZwhPOeJOpJpztlqtSJhJcYekubDA+5Bp2gbi+O7kEpK9Xq9jqjYeD8BrsBFJymnXnU5Hq9VKo9EonhPCS8TePSMoIyBS62noLop4JkA5vZ7xMt+emu+RbDey87R2MgWm02ksi/C5oSY+y7JYugLB95aWdF2QFMkuZNFNNiGDrA8kEv8BT5f3dedcnB9C6p0Yms1mFJi8bh9RhjWG7LIv2J+ITcwPx3uJAa1CXYDwOn8XB8qklve8owVA+HCzR54lrodAQ7lJucSB+fKsCPa/Cyl+vHuCuKjGvgbcC8KYezX4Ocmu8ZIZXzfWjGyNSqUS95aLhVevXi1kMCFEeCYRz6CLUYyDveRlHQkJCQkJtw/T/8cnq/mvfvysh5GQkJCQcJtwS4JCCOEjkkaSNpLWeZ6/LYSwJ+l7JL1G0kck/e48z/df7jwelS+XMUDyZrNZPA7iQTTWSxQgkh69lBQj5JAXSMh8Po8RzVqtFskuLfWq1WqhzMIj76Stb7db9Xq9WHuPP4CTEictEFOP3LbbbTWbTY1GI02n00h0L168qHq9rvF4rHa7rfF4HE0d2+22ut1uwQuAaLgLDPzXRQKIvNfZQ/Yh1U6sGA9E0D+3WCwKnRR2do5aR/Z6vVgSARF2o8lqtap+v18QYyDnlUpFw+Ewvka0G8LMGrkJIOtOVkGWZep0OrE1YrlkhRp+vAKq1apms1nBLJJxO9F1UuznAZRp+L6izMEzLFxsIkPFPS08+yOEUCgNkE6EM89SYB08qwRRCFHCnxfmkXKB2WwW5xIRpVz+UM4u4dz8cA95nsd594wOnknGwZyUzUdZVx8H88s+Yy8z7slkUvAkcfGknEXhoo0/K/eioHC7vosTEhIS7jSe/tyKXpV9ljrf+6NnPZTbivQ9nJCQ8KDidmQo/Hd5nl+2379O0g/lef6tIYSvO/79a1/uBO6g70ZxkiIx87p1yCwRakhh2XGfNG//PO9R3z6bzWKqu/sgkFLvLfRInWccjA0iyzmr1Wqsj8fYT1KBULtbvUeEiYpDcHd3d2NKOOnykNdGo6FutxvNDkejUSRSmPg1Gg0dHh4WRAKIFJ4EzLdH/yGGXgLQbrdjvbwfj2hApgH3BjlkbSHEvgb9fl+dTif6SHjkmgwIiDMiDASWuWMPuRmgdETksyxTt9uNewuyKymekz3F3LihI6TVMwd4nbF6eQHXXy6Xmkwm0SgTE0Qn/57+7xkYiF9lTwnP0KBEwyPsXm6Cd8NoNCpk/niHETcHZW58TKy7G6YippAt4WKFl/LM53NVq9XYNtPXydeNeaELCeUHgHVhn3IdnrtutxvXcL1eazgcFsbr53HxifG52SjPY7lDxD2EW/4uTkhISLgbeP4zpc73nvUo7gjS93BCQsIDhztR8vCFkj7n+N/fJemHdQOCwsHBgSRFosIf9RD5wWCgarWqwWBQaD9INJa0f4hH2bsAYiopEn13lF8sFjELwr0PSFWH7I5GI0mKZNyjqaTYN5tNHR4eRvLaaDTUarUiySSyjjDgAgZRcvwPms1mzEJoNBrKsiy+R527dFIWAGmXFOfs4OBABwcHMRIPKaSm39v3+Zp4zT3Etd1uq9VqxTIU5hKTRMjdfD4veDFAXiGEpOJ3Oh11u11NJpNC5gCR98lkEteBsTqx9cwPqVhGgPjR7/c1nU7jDwKHH8dctFqtKBSRyeL/deNOSDdzxz15qcl8Po/dRiizceHLjSPd44LuJVyL/bZYLArZO2SJuDeHf8bLDdhrkHFfE0AGhBsbUjJTzqjAs6LZbEYhgHVxUs8e5XnwTh/sGS93YH3Yd6y5iwp4JdC61DMzMJjkfsqlJHzPeJYF+7QsJpS9K+4xvOLv4oSEhIS7gTxIL/yxd+ih//1HznoodxrpezghIeG+x60KCrmkfxdCyCX9vTzP3yXp4TzPn5WkPM+fDSE8dN2THEc8EQS8Fp9UbIhXlmXq9/tRVHCfAe8C4EQTggPc6A2C4QZ5jAkynWWZQggxcj2dTjUajaJPAJ/Hm6DT6ejq1asaj8fK81x7e3u6ePGixuNxYRxEdiHfZDl42v1isVCn04nklc4KkH3IrvtIQMLa7bY6nY729vY0nU6viWa7LwPO9oyLOfM2fFyb63vHBeaKdaCdJutISYWb8fG6p9RLJ9FkSCp7AyM9Iuyees89eCo898FnKFHhHr1bgqSYPs+6IbDgseCZBZyXuWFeEbYQEyg7gJwjuFB6wv5mzGTFtNvtuMYYF+LdwPgR3Nwo0b0BeA2BgHXjMy6Q+D244MHz4qaentXiY/FSBM7DjwsDrMVsNiu01iwbXDK/PF9uhIrYwvkoa/EuLoDvAPY0YlX5fX8mffz3CG7Ld3FCQkLCXUGQxk/mus++lNL3cEJCwgOJWxUUfm2e588cf0H++xDC+270gyGEd0p6J79DOMpGdW7iB1lCOICgemQcYkPknGilp+F7y0Kiyk5eiRxjfOhGd05kPOPBo6DusQD56nQ6GgwG6nQ6Ojw8LIyV7Acn3NJRevrzzz+vLMvivUsnRpTchxsiIhBAqsgoYPweQQ4hRFGEzAbvtiEpRpEhxMvlMhI3OhW4iONZBBhpunjgnQ+I5g+Hw+iX4D4YzLN7bCBMENEnYs91KMHgtbIRIxF9ylB8rZkfxAhJkQxT5kFk24UAhA7OzVoQ/YfAEq1vNBpRoGGPU6pQq9Vi1gYdKtwo1NP/Gd9pXgD82z0WyFpgn7uHAefh/MwLXUR43ijF8C4sfBYCztwB9hpjw9CUMgcMVhmvo5yhwHryjDPHLka4EFEue2BvM5/8cF7/nrjHcFu+i5vKrnN0QsL18Ya//F790p9+i/LqPSPIJSTcDqTv4YSEhAcStyQo5Hn+zPF/XwghfJ+kz5D0fAjhkWMl9hFJL7zEZ98l6V2SFELIw7Hjf6/Xi1FZSC5tI8fjccwI8EgiokCr1SoQHY/UOlGXjszbIHaIEURviQJDTvE2wKjPo78QIEQPT4knUk+EvdfrSVKMEHPN8Xhc6C4gKab7X7lyJd6jpHj/jOfg4CC2Y3QjRS8R8Eg1c8P9ubO9p5/zPin7kDFKAfb29jQYDOI9ugkeY6hUKtGkEsLHuI7XPRLC2WxWEBQ80o6gwO+e/s5e4HpkFbio4+vG3BPBhpjOZrNC6QNj9K4IHvX2eUSUwUwTQkvaPoIVY2N+MIxEePEME0ptmAsvjSibOpKBwT5lzsiSIFvEM1AQRnzPMTZEOO7PfQ1cUJBOfDIQuY6f7UJmCvNVLg/yFo+eKcH+Zs3xe3AxwT1PXGDyrBfGx3xwfi9jQFDwcgqeo7IPw3nG7fou7oW9xAATbhkf+hNvVb5zbzw7CWeHbS3Xx77xHXryW+6Psof0PZyQkPCg4qabrIcQ2iGELv+W9HmSfkHSv5D0ZceHfZmk77+R8/GHfKvVKpgYQpxms5kmk0n0FXCjN8gj2Q18ljIESgIwxyPKDfkql0w4WfXobWHijgkmKe8QmjKh3Ww20Teh3+/rySef1MWLF+M4/D743bse7O/v67nnntPh4WEcL/e0Xq91eHiog4MDLRaLmKHQarViZoWTSMo1PGLsdfzSETlut9vXdEbwlnsICIzVhRWOpRSF7AlJMTV/d3dXvV5P1WpV0+lUh4eHOjw8jPPkBoSS4voBRCNPyWdeEEa8vIP7Z158jrl/5s89L5hD78wAUe52uwVfBVpksq7uicDvZI9IR2aEg8FAe3t7saWpd0pAXMPUcDqdajgcFjp6uJHi8XNYuH9fO+7RyxnY6/4aBJ7sk+VyGcUKxuglJZ5JggeCm6uSuYCA4ZkUADGKzBkXChgT3wteJuLH0YWF9QXeJaO8H/i+4P4Qa1xUKAsu5xG3+7s4IeFWsa3l0j3naZpw1xF032SxpO/hhISEBxm38tfyw5K+7/iP9Kqkf5Tn+b8NIfyEpO8NIfxhSR+T9MU3crLnn3++QPydxJE1MBqNtLe3F4mARxCJUpfJCmTBxQWEinJk00mGEwkvAShHLZ2wQLY86k+kmxR/Whnim9BsNtVutzUcDjWdTgvXmEwmqlarWiwW0bOB8SF+ENl3EtRsNmOKPnX8Hu12MQQy5u7+rAMEEaLn7ROpy0f8gZBzXsY6Ho8L5FpSnBOi8hBj4CSZz1Iewdy4gaSXfGRZFjtceKmGpALRp+SAjAK8D7gnzP4gzhBN0v5brVbBN8K9ExDG3AcCAYP79EwX1oH9CvlF7MLXgbWEBHuJkHt+eKYAz045O8LbSpZ9Nfx9ygAoi2EeyVhx7wHWAcHOSw8kRaEJocrvxX0LyuIUHgn4jeC/gODk4yh/B7jvQzkzgXVgnGXjSRdMzjlu63dxQkJCQsIrRvoeTkhIeGBx04JCnucfkvSpp7x+RdLnvtLzEQ2FEDUajehnQGr/crmMEV2vxXcCBqEl6u7RV1LQPcINESTyCdlxjwOiwpzDsxj4HBkOkDuOg1QSwa3X6+p2u5pOp5GwEf11wkzkfDweR+Ehy7KC+R2lIADzwHa7HYn0dDotZHqQWUDphN8XQgjkDKJ8WrmEz5+TS8g/91T2dnBTRcoPgHseICR57b+b8h3vtYLBHuSP9WQNPQXeCbePG9LK3kH8IaPDuxDw02w2C6UKbnTIWnlUH58FPuOlOpTFOAFnvjBp9PIHrg9h9gwDfi8bCnqpCHPi3h1eQkH2BaS91WoV/EgYv5csuLADymU87vmAsIU3BT4c7v/Ac8T5EXL8u4FyDjJnpJNSDJ8DL33wjAqfa87JXN4LgsLt/i5OSEhISHhlSN/DCQkJDzLOTT4v5M5d9CUVIujr9VpXr17Vww8/rF6vV0i19/96NFw6SfcnKs15l8tljGJDHuioANFy0km6fwghEk1It5NeyCftHd08jogzEdf8uHPFdDrVYrGIBo1ufEd2BdkbjOGl6rwhhNvtNgoK0okjvkfuSUeHzENUyd6gfh0vBOaQaLETQ/98u92Oggo19mUhx7sCIMZwL250KZ0IAXwGYYM5dyBosCfc2d9JLNdz0QPSyRzhc8G43fDQBQ0yOMolAlyffY2QxD2WO0ZQagIxXiwWWq/XyrIszokLaOG4uwXi1GazUbvdLrzPGiGuIbYhhrkY4ZkSrBnj83IOxl/OCPKsBF8Xz87gHIzBS4V41hATFouFxuNxPLeXN9GFhGeM/wIv5WGv8LqXerCmiI3MJWJUQkJCQkJCQkJCQsLpODeCAn/cQ9ydGHiaOCSm1WoVnNwhA+XPIToQeSQSDLl14ki6Ox0UIImIGZAXSbG1o5cgOAF1QcBJj3cScOKCvwMZCaSm85mdnZ3YJWI8HkcjQYgU2Qnu6SCpQDadOHrEn+OYS+mkhZ97ILjLP8TPzS8x0ZQUTQUplyC6TZcNzuOlE7PZLAov5X2wWCwKHhfu0i/pmv+Syl+pVDSfz6N4wDx1Op1oCsnasw6sD0IHUXD2DqQeIsreoISASDp7gDEjrnjrRkQCzw7wDBeuW6/X1e/3VavVdOXKlUIJA9d3PwFKTlw88kwUxAbPKuA13wPcgwse7AXg5otkIJDZwpqUo/0c7yVGPAsuJJWzEMrZKH7vvl94n1IcLxNB3KAEg2N5dryrTFkwSUhIeHnsvPXNys9/Yk9CQkJCQkLCbcK5ERQAhM3Tn4kAe402UWgImkdqnYx6RFMqtpGDsLknA0TeyyYkRbII6aW7gdfBQ8jckJB7wW3f/RsgahByv67/m3HQWSHLMi2XSw2Hw0JnAKLbZBGU07s9osx1pZM2lF6W4eTS6+T5r0fJPZLrLSTJdKAso9FoaDQaFTpsuMgBmXZSy/iXy2WMVDtxLIskpL4zhwgDbpCIRwKCDXPANVlPzokpot8ba1ypVGK6PsIN9+EZF1zbM1hYB8QYzo9vhpe1rNfr2BWi0WjEjAlfH/YKrT29LMMzE5g373zg/y0LCuUMGD+Wf3vWBvvB9xX7BrHEDQ957ryDC/fM/PIZBCp/hhF6vDSFcZVLnsgo8lIh7pX78Hs77d4TEhJOR3jbJ+uDv6OrbeP+MNpLSEhISEhIuD7OjaCQ57kmk0k0+fNOBEQ6ncDSXQACSrTb08mJhhOZ9Og65yOLgEg15BSC4eUFkCsILsaKRKM9ugrBdwM7zOQoH/BUfBcOPAWezgyLxUKDwUCvetWrNBwONZvNdHBwEMkzc+CdMojiSyeiAhF1/u2mdERuuX8vLfAoc/mHz0KMGS+lD2QLMA+IM2QceLQbQorAAOmkxaCfRzrxcsC3oJz5QaTexZ5+v69+vy/phOSzByjHcJ+AVqsV23+SEk+bzhBCFBRYd+bYyyxcLOF9r9/nGI/Iu18GZo/MEQSZvc4crddrjUajeGyj0Yhj5lpO/h1u3MlzR2kOe9Qj+qx5WRRCLECYYp69mwOvMSbpJFuBzBGEATcF9YwP9gp7yo/x0hREAS8dIiOC582/R077bEJCwvXxzG/oad1Oz0xCQkJCQsKDhHMjKEjSZDLRhQsXIjF340MnxmUDOieXpJzznpsjEvXnvB4x5XxlAsH71NhLJ1F4J+YePcWoDkJGGv1yudRkMomElM9CVj367eSKTAraFVYqFQ2HQw0GgwJ5htxDogH3Bakkws39Q6wQbphD5o/7KM8/BoSQVnwUFouFZrOZ+v2+ms2mms1mIeOk7AVQzkZwYkoWCnMmFWvzPUOCKPdkMomEnHWnY0Kz2YxtK6fTaXzdyxY8S8bX11P2OR6yz1ywDmSguFEn+8Z9InyfSYrrPZ/PowBGxsJkMpGkmO1CKYyT4O32qMUqpTteSsFecCHAMxZ45rbbbcwgqdfrhXIKfCzcXNKNExmvd09xcYz79swcF+HKokRZAPH9xzPGfbIWZfNMF0Tm83kU+lww8/3vQltZdElISHhpPPrDh/rwF/W0bqfnJiEhISEh4UHBuRIUPG1dOhEDpBNCBGFdrVaxNR+AcEB2vI6ajIFyNBRASIjQch73H/Aae8gKx3oWAsSXGnZIJcKAn1M6iSzzGYcb7xE9X6/Xajabqtfr0eTRo9yQf4QKv0fPhvCsDu4B/whKBoj+I6Y4KWS8GCySXl+pVKKfAgaUrGGj0Sh0zfA1YA09+gzxe7ladm/dCCmE0JNJ4mS/3W4XOjh4pBuRYDqdFubPsz0A5NXP7xF7hJny3nChiOvTWpKMADesdDNK1su9JrzDCHsF34iyRwOEHyC4eLkAAg5iDusCMPEslwacZtLoa4go4VkBZcHDSxrY+wgT3DOf8Uwgjp9MJvEefM0Zn7eqZK3YK+x1xEEXfBISEq6P/D1Paee3vCMJCgkJCQkJCQ8Qzo2gAGGBhJ+Wlo3A4KUBkH7Iar1eL7Qj9IimkzQAeYFo+2cgjE7GuIa3ZvQIO670+CuQho+J4mg0imaREEIv7SD93lP/Ge9sNovjAG6mB7mnbKScvcB8eeo5bTHxTmCskClq4clqoMyj3W4XUuMhtmRYsHaIMKwtmQaUL7jIUTbV9HIH7pkotvs6eCTc092dsHIPHtFHQIBEkkESQtDVq1c1Go00Ho8LdfzcH3OHuOVr4tkI/uOlHhB/9wPw+SabhDVmv3jWDusLAea+KJM5zVeAzAF/rhB2yp4KrAnZJcxTuZuCl/qUBYHyfZWFAxfneN3LRxBA2FPsVZ4bvCxqtVrcV+5n4V4NZJJQCsO9l7NuXMR7OSErISEhIeHmUVkFvf7bn9b6+ocmJCQkJJxjnBtBARCRhSBIKtS2u8s/RBTylWWZ5vN5of6aaLl0RMJIBff0fic5EBwnPBA2j9STIeCEw30bKHvIsiy2ARyNRpJUMD1kjBAnSiO8FpzMDTeNBMwB5GswGOjixYuxDIF5owzCiTtRZs7h9wdpdA8I5sjNBz3VnrWDyM7n8yhuQOi95IT793aSGCUS4XeDQM4lqWBcCVH1rhqMq16vq9vtam9vT91uV+12O16T63uXAAjr4eFh9Ltgv61Wqzg/zCH70T0XEGw828W7fXDv3JsbEnIuMi64FvuUrg2QXboY0LlCOimJICumDPcPAL6P3WDTyxM84u9iEBkiZbGAUgQXvLysyMfWarWiGAjcy8RLHxij70v2h3cLcdGJ7xPPYGKs7DfPinEfhYSEhBvD5a94u5b95KGQcIPIpfVHP37Wo0hISEhIuEWcG0HBCYOb1ZUjnhAAjwBDEMokjM/w/mQyUbVa1d7eni5cuKA8zzUajSIpg1RLKkR0+Z3WfRBASBRkmHFBJP2eiGaTAVD2Dyh3o3DSAzGjjMBFCyLk0kn7zHa7HdsjkiFAW0ovgeC9LMsiQWs0GgWSBRlmXiFpnk3gkW0iwqvVSvv7+wohxJIM3t9ut5pOp9put5FIl6P9TvK83t6v5yUBnn3h56lUKur1erp06VJsuwmp5LN8HtPM2WwWBSHAGhOF98wOz4BBWEAAohTB0+7JzmDOEEQQAugQArFl3csRezI32JvValWdTqeQkeCZFRBmN3R0MQvxw4Uh9qI/m94RxNfd7/O055vzeTaAZzq41wj36xkGzD0CARkm7jdBBhHz73uO0pGyBwtj4rlF0EkeCgkJrwyrTlC+k56ZhISEhISEBwnnRlAoO6175NlbGHotNAQAccEJPJ9xg0eP+kP8iPYSgZZUyEjw87nhXNko0gm2ZzVw7dlsFklrq9UqkCUnlQgCRJEREBaLhZ555hm9+OKL0XgPQcXryiGEeBc0m81oRNdsNgueANTtZ1lWIHfcM+f01HyfA091Lxv8kZEByaTrBGOl9IO5YEyQY+mEyCIweLmBiwmesUF2CXsJEejixYva29uL7TQxTCyLVp4RUu5owP0h6HgGhYPxkIniZJVMAwgwx1erR+0uR6ORlsuldnd3Y5nAcDiMAgxeAp45gOjjWQSe5eGZAMyxE3/2IMTbM08Yn5tPMi9+7rKRYtl/wEUEL1Xy65E9xPq414SkWC6T53kUqTzzA/EQoczvk+uw3vhbsAdYIy9/KGdFJCQkvDwe+Wvv1sf/zNu12EtZCgkvj7CVXvd1P3rWw0hISEhIuA04N4KCdEQY3ve+9+lVr3pVjBJCkjzK6tFhT3t34gYRIM1+PB5LOiGpzWazcE6pmP4MoYBMbbfbeC7pRLBw9/uygSMEUDoh2dVqVZPJJJJFj5oiYtASk4g1mQWz2UyHh4eF2nju14kvKejdblf9fl+j0SgSQWrgnVB5pgXiAZ0ZOD9eA/1+X9vtNmY1UDpSBsaGkmLGBPPgpQLeCYH3PQuFtSF7hGt6Gj3zzb0jxkBwMa/MsqzQNYLXETg8Qp1lWZwLF1vYCy7iuPhQFhjKApdnfHhmiJsEumkl1yVzAmGDfeuGjT4PXMeFHvY/c+P3wzx5iYILM+6rQPmKiwrcg+8H9yBwIcF9PPgs+5tj8cWQTrJXZrNZfC45jtIaL2vwsolyJkRZdOT7hb3oz+pLZVskJCScjlCtKU8aXMKNImWAJSQkJNwXOFeCAvAouEdLIZ2Yzk2n02h66JFIUK1WYwTcDQUhYt4eEHLqngx81omVd4pgLE7+iJS6UEE2gLcSxHjOzwG89KGcZn9wcBAzDbz1ZLPZVKfTKUTdiehLJyUcnsaO1wA+D8wTJBphwj/Ha4gEeB5ALIksI/hAhCHuk8kkZoKQsSGpsL6e2eEGlqTBY8LntfgII97Nw1sXsh8QVLxEBiLOWkPEEQpYh9NS5Vkb5sZ9Kvy9sufHcrmMEXngog5eIKw7hpGsDRknWZZpuVxqNpvFPeTlQC4wsAe4RxcjiOp7uZH/l/O6VwSfZX7c88Pv3dfV79XfW6/XGo/HUSxjrdgDXtrEfHJd707BvvN79d/9u8XH46aWjvLvCQkJL41n/vjbtNxNIlzC9VEdp+/WhISEhPsF50ZQcBLs0Wavm4bEuJs75IqacqK7RFzxO6jVajEC6qnPECHIFGnYnvrOa27mKJ1kNEDsSTUvExMXBSC4lC3MZjNNJpNC9PXixYvq9XoKIWg2m6larWowGMQsCAghJKnZbKrX62l3dzd2n3DvBElRJPGOCKSmk6nhHRDcbM9T6CUVBAVPUffsDM8UcdLH+CF20olfhGdsTCaTmEXhZNe9FLz0BfHAy1EoH/FWkoD0fekk5X+5XGo8HhdMHT37oFzzzx5g7sjCQAxg3huNRrzvsoiFoIGIgUiDaFav1wtjZS65Z99rs9msIPxwDMTcBTcXCnjNhTBv9Qh8T/NvSoXcSNK9TjwDwks1+GE/rtdrTafTuCdc8OMaPvdcs1zSVC5DcQPSssBUFjp4z7N9kqCQkJCQcHvRfLGix//Xd5/1MBISEhISbhPOjaDg0UyIGRFHIq3tdjumhEOoiVoTsYa0QDQghe12OxrtEb2VVIjQegq9VCQYTsY4FkI7m80KEfGy6IDQwfW4D28p6KID3SgQAyCekLJyXXetVlOn09FgMNDu7m70ROAevIsC54MAOnF0LweOYS3wXkBkwJTSo+5eT+/lKJLimjEPmOd5iUm9XtdisdB0Oo3nYy4QLyD2pLZDzJvNZhQpIIxkbXS73fh5MhQwK/QMhPl8rslkUhAo3KfB6/3LtfacG3K7XC4LxJo5cg8C6aTjAvfL2GezWfwd3wDPNiHLgWwbRByu634K3AfPjL/mZo2snXuAMDeM1UUWf4a4Vz8HpSX+PPDssOe4NmvqZoz+DJXLOTxriGM9C8ifkbKAUfYI4XjWmTVOhowJCa8MnU9sNXs4aFtLz07CS+PJv/Ez2qbv14SEhIT7BjctKIQQ3izpe+yl10n6RkkDSX9U0ovHr39Dnuc/8ArOe030mki1EwMIiZMBSYXopBMCJyOYu51GTiCengbvRBHTQAQFSKh0kilQzk6AwBBhzbJMknT58uX4WSd0mCrSEWK1WkUzQervITzcb7PZVLvdjpkDpMBD2rhP7ok6eMaIb4LPs8+pR8MrlUqhdt1TylkzTzmXFIUCSkJ8fhgnwgmig4+DTAOuSxYAmQ3Mr2eIeObGYDAoOPdTk4/J43Q6jZki0okQwz5wcQfBhLGVSzW8NGK73UZBgG4iRPLd9JO9xF7A1wGBzFuDumEiYpvPZ6VSiSUsniXCtdljXAtxifvzfcV6ercKyksQJ8rr6OuL6IMgw15yct9sNuNx8/n8VFHOn2Gux3j9/t0jwb9H+J33vATCBUQ/nvOdd9yp7+KEhFeK/vuGuvLJfW1Pt9ZJSNDgfUH56tp2xvc60vdwQkLCg4ybFhTyPH+/pE+TpBDCjqRPSPo+SV8u6a/nef5tN3tujxYiHECgPQXdSxw8fZo6di+jgKRArkiv9rpz0tazLIsEvJwaXjbo81TtLMsKUXTg0eBGo6FGoxEzBhBL/Ec6IT8QNU+Lh9Q1Go1o1EcZQrvdVqPRiFF+9yjgx0UFiK6kaHZI1Jx7RkRxQ8ODg4NCeQHE3gk1x+JdMZlMChF1r8X3Lg7MFySUdfDuDx7NdjND5rvVaml3d1cXL17UpUuX1O/3JUmTyUTT6TSm0E+n0/hfL0tw0UpSoSTGM1zItMD/oGw4yL2xb/B4wNTQu4+wDj7PCB1cyzMwyODh2r7fmEfuzwUiL1dgXtkLjJV74fmi7ajvIfYE42YNXByj9KOcceBAKHFxpSxqAJ4t3z++304rYygLizxT7Ctfc7477iUzxjv5XZyQ8Erwic8daN2+d56dhLuLCz8bdOGf/Jy2q+X1D77HkL6HExISHmTcrpKHz5X0wTzPP3orET3+uHcCwB//XgdNhJPOA1437YS4TC486knkl88QXW232xoMBpHguWO8pIKYwL2694O3rfO0drwNut1u9ApoNpsaDofxnGUzRn7wUfCygmazqb29vUI6OsTQxw458swPiC4EnHntdDqxIwZZAJQ8cE+sB0IGpQ9+v55ST/SfOWeu3G/BI8ruoUFmCPfSarXifBP1dxEGYtvr9dTr9XTx4kVduHBBg8FA/X5f6/Vaw+FQo9EoHgvhRvRg/3hpxHw+V5Zl12R+EKknG4C59HtBqHJTSQQF6cRvAXLvAhL36veLKAYxph2pm25CjCHNZFNAnJlXf54omfDnjvOxvxApOCempxghujmplxX4dYALLN6BgXG4qaWXlnBeL2HwzBTum33vWSB+Xz63fm3WYLlc3qv+Cbfluzgh4WbwyH8Z6SNf2NE6S+nsCUVc/KmgC9//lDbHAvl9jvQ9nJCQ8EDhdgkKXyLpH9vvXxVC+AOSflLSV+d5vn+9Ezg5hwhTRw6op2+329rZ2YlkajqdFtq+eUkCpA4DRyLqRIWJ9mOsKCmWF0BmPX0dQgL5hMBBtiCQHj0lqyLLMrXb7UhcvD2kt95jDiCay+VSw+FQ7XY7mje2Wi1dvHgxkk0ne5R0EEn3DA6PwpIxwDh2d3fVaDS0v7+vF154IQoB+BMQSfbMAU+ZZx5Xq1XsHJHneSThXrOe53kUIZhXnzf8FYj4T6fTODespafCkxGws7OjLMvU7/fV6XTUbrfVarViG0iPcNM5gbn2MgafS6L/iCv4FLBv3WvDI/eMy4UW/CcgvoglGDJ6iUjZLJD96b4PTp59jdwLw4UCnjNEBEQszsUxjLnRaMT9hnDiIlaWZZrNZhqPx1Es8pIK3yfNZjMSds8CYN3KmTsIWP68AXwuyt8hXJtSHzejdIHAx3daFpILQ/cYbvm7OCHhZjF5ItP23DgzJZwH7L436MLPjrXzy09rMxye9XDuFtL3cEJCwgOFW/5ffwihLum3S/r645f+jqQ/Lyk//u9flfSHTvncOyW9k98hT54mj6DgGQt4BVQqlUh4p9NpJJqSCsQDQBQ81R+C6V0DJMUov6QoNHCMCxwQLAwUPXrqaf0QVNpQeleDRqMRo+PebhAiu1gsolFglmU6PDxUv99Xu93W3t6eJMXyA88cYN44JwQZEsmxRGIbjUY87wsvvKB6va79/f0YmWZcED8EDEosEGrwpmi1Wur3+1qtVnr++edjNon7AXhKfNlngtec8I5GoygweB2+k1bmlMwJT78nSk79v2cguPDCfvFUehcOuIa32PQIPmPa2dkpdNfwTgghBM3n8yhYsZ8g3F7Kw+tO+H2uEMg8+u6E2DMSXKRw0QORBjNGL2dhvjHxlE5acIYQ1Gq1ovjFZ0/L3uE54HlyjwMXh/h82VwRwcczi3xtypEgL+Hwc3tZlGc+Mfe+/8qixXnG7fgubiq7K2NNuD/R/8lndPlXPqFtPWUoPOhoP13R4//qBenKvjaXr2hz/Y/cF0jfwwkJCQ8ibsdfy18g6afyPH9ekvivJIUQ/r6kf3Xah/I8f5ekdx0fF//6gNyUo+sQgXq9rk6nE837SFf3VPlym0BPhXZzxjJ5cGLideYe3SQSToSdiDMp5Rzrx3uqdpksMrYycUFMYGzr9Vqz2UzD4VD7+/u6cOGCLl68GM/ZaDRixJu0cQiVR2GpmYecebS53W6r0+koy7I4h9wTIgjEkjF3Op04Zx5NJpvESXa1Wo3knbkla0Q6IoheAsBrpLUTzedcvuasHWICc+CknSg53hO8j7jgrUglFTICOB/zlmVZ/KyTZm9hSvkLewEvCki7l3h4GQPPANdqNptqNpsF0cC9PFhf921AKPISB0oDMD5sNpvRT2S9XsduGIwbTxAXcZyQ80x1Op1CtxN+POuBOfXnzjtpOPHnWShnDvizxX342riRq4sI/ny7yMfrnh0DfO7uIdzyd3Ev7CUmmHDTeP7zHk8eCg84asOKXv93P6R8vtBm/4EMxKfv4YSEhAcOt+Ov5S+VpXaFEB7J8/zZ41+/SNIv3MhJTosuQgIoFyCFngj4YDDQeDyOUeBarRYJEUSa8+AP4KnyEDz3OnCjPAhsnudqtVqRfEH2Wq2Wer1ejER7ZBdy5+0AOffh4WGBjEJyGQuCA6TQfQwmk4kuX76sV73qVXrsscfU7XY1n88juZtMJteYAjoJhVQhhEgnJSKQNaLwPufuecA8YRLoLQa96wHH4hfgIk3ZfR/SWxZl3A8AcaCcEeJlFxB25tqNEb00wUWj6XQaf7w8hnGy53xPcF9uXsnxfAZjUIQCqdhJgOwLzsFalct8KIXwEgb8L3xeXbTiXF6i4PO/WCzied04kWMYJ3uZUhHPVEGcQvBAJOMZYz44lvlAUCr7N/g4vdTA960LY+zJMvH3c/Ged+1gHl2A8IwKxoAYdg/htnwXJyTcDPb/4Nt18OZc+T31yCTcboSttH72ubMexlkifQ8nJCQ8cLglQSGEkEn6TZK+wl7+yyGET9NRetdHSu/dEJxMEnl2sgOhwRAOQFCI5EKsEA6ozfZoKddzQk1NvfsqIGxAZNwED9Lmx0LaVqtVwdixVqtpOp3GCDmCAlkBpIQjRkgnHQa8VIH2i/gDeIQackSGBwKIZ2wQzccc0jslMKbd3d3YKcCN8SqVSsxkYF0gdogV3W5X3W5Xs9msYFrIMQgHXmYSQoh+EO7C7/4ETkDLngQYJxIthyy7qaen+pMZQUtLT7EnW4HIPPsI4YGsFI/G43vQarXi64wBUcbT7slAYf/NZrNYvrPdbqPhI8IFQg/lML7fAOu4Wq1iFoeLJ5T7eKYAc8/zU/ZjYJ0QCTie7AD2L/PH/md9uLa3avVyB8bN+RkLooy3ePRsC39mOYZ79uwHxjGdTuP3Bc8b50QEYc/53N0LuFPfxQkJN4LRl3yWrn5KrvyesxxJSLh9SN/DCQkJDypuSVDI83wq6ULptd9/C+crpM77H/hEiA8PD3V4eKherxfT2yeTSYx+Qg4QBLymn7aD0omngteUu4gBuSGt2o9x8Bq+AJB6j24iLPA6vwNIWbvdlqRY3kB6f7ldIOTWxwzJIhJLNB9xxU0fSfEno4LzlyPztC+ETELCncR7hB1DxEajocFgEP0hIKdlU0GyAVarVcwuwJ9AOhFEvHWjd48gbd8JJPuGuSBjgc8gmozH43hf7oXgZn0uEiHwIAZx/+wfj7y3Wq1YTsC5EQ+81CHP8+ifgeCFmMRxiGkuRkDWX47s+t7mXlywYt/xbLB+jMGfBcbPM1Nupcm5XPjjeXDfBfbXaeMulxwBF51YR65JBo9nZnAc9+OCFMeUBUvu0bMTXKy4F3C7v4sTEm4Ui//+1+j5z5B0b2hvCXcYy/5Wz3zNO/Tot71b4QYzvHLLyruXkb6HExISHlScuwJhjxRCECAMpJt7tN0jm9KRsV2WZTHSG0IoOPjTVYGosZs1hmMDvCw7MsQhmooLP4SOsgoAmdpsNpEUk5IPyeS/5RaX/BfhIIQQBRK/T+mEDBFZdZNJSZEwlomp18AToc6Pu0Pw+RCCRqNRjJRLiqSYcXlpiJcVLBaLKDJAwnq9XlzPer0eCbV3H1itVhqNRnHeut1unMfVahXv07tkILYcHh7GcTAWiCMtJpvNZix1YSzr9Vrz+Vyj0aiQ7s+cUIZAdgqEdjqdXtPekb1ZFjK4z1arFbtIYADKD0KGZ6FwDjJByhkCnllCVgnikZNo5ot9x35wHxLvrADpJ/vB54P58kygnZ0drVaraIrq3VE8qr/ZbOL53ROEjAHPpuDZYs/6OLg3z4ZBgEKUcePUcjkN4k0ZXvLgwhXfBXx3JCQkvDTyEJKYkHCCIOU7Uv6OT9UHflfzuodXx0Gv/ytPxd+3i4Xy4/9XJCQkJCTcGzg3gkL5D35Pb4bUuFu9dzFwEUJSJM5el08KOMSB3yHhHvWFqHQ6nUial8tlNNyj9hzSJp2YHZKmDvFxs0CPoHJtCEvZfFJSgYgSWW+325GUc34i5Yxts9no4OCgIF54Jkaj0Si0lYTYOkFEQCDSD/ly40VIorfKLJNWB3MBgYOk4uWAgAAB9PIE95Iom2lS0uBiSznjhP3k2SfeErK8XqwN+8f9NJgXxujXYXy+HqPRKAokrAV7EGB4iSizWCwK9+XlBL4ekPByVwffQ+X5h+gjuHiGS1nE87IZF5TYJ5TIuHEpe4qsCJ47f7bZK6e1d3QBhOeTTA5/hhCq3DiVe2cP+z727ATW27NIECB9rPeYh0JCwl1FJcu0at8bWTwJdw+zh7f64A2ICZK07uR6/597S/z94k8HXfyhj2p75aq2JmQnJCQkJJxfnBtBAUB6iGwjBoxGo9jJwKPu5baSkHpKBjiGFH/PSIBgAvcJIOLuEX1IHSniXrstKZYPIDjgk+BkluO8RhtSA3mHEEsnUW9KOspO927I12g0Ci38IEoQYSfWlCNAqonCuxmkpEL5Btka+DisVquCuSRlKKTvc17myucZL4JKpRLbgHrnBu/KwPpiEAlR53j3m8BHgQyRcl28R/0x2PT59hIHBAo8NUjjZx8y/+wbxgk5JlMAAQhS6yUwXJvxZVkWSwZYfwg2z0UIIc6Lizp+Lv+spMJ+IiOGMhvKcEajUdyf0kl2g3eXaDabsf2pe2Fwbr92WWhx+L5lXlyscnFQOinz8der1WpcdxcKyv4bviYc654j/h5j8j2YkJBwOtaf/mY9/1lnPYqE+wmXf1Wuy7/qST32w4+r/e9/QdvjQEdCQkLC/YRKu63w5KPXP3Cz1eaXPnjnB3SLOHeCgnQiKtB+D2EAckYU1yOhEAiOwQgQwkA0HAKEWAApkk7c7zEGhBy7sR/EvVarFSKbkE86NkDy6NjgHQgwHfRuDpA6yB6RXTIwIE4eJXeyBiHFwA8i6PNTnmPP6uB83q6Qe/QadMQExk3kuNVqxfR0iC+ZD16zzxyPx2PNZrNoKMnccA03IXRRwomf1+ZTprFer6ORIdfzzyNA8DnILNkDiEQeqXfy6z4Gbm7o5pyz2UyVylHbRQQIxBBvVYlo5hkVjMHhJom+fpIKpprci0fYy3OF8MBnyajxz7F+CEt4WkgnpRysBffkHhSeXeTw+yt/trw3XYRwscmPdYENgcHXm+cb+GcRgxiDiwec67S1SEhISEi48/jE51T0mD5Z7R/8uZSpkJCQ8LLYefMbtNnNrnk9LDbKf/qpUz5xRghB+sxPkSSNH23pmc++fr3gziLotf+8HX+vPneg9Uc+dseGeLM4l4KCdFJnDXGFtLXbbXW7XdXrdQ2Hw4LRGwTUuwIAShwAPgfSSWYCZHk+n0dSgyeCmy1C4qST+ms3LyxHPt1NH+NFaush3ESavcYeUs/n5/N5rEcnkwLi5V4DeZ5rPB5rNBppMplIOvFp8BIOyCViB+dxQuWRdCd1/NfJNyUKiDAYQ0LwIM+TyUT7+/uR/Lt5Iucre1QggCDucC4ECjeObLfbGgwGsewCccfXCLCvvKaf63u5gBv18Tv37GSfSL+vkZe8INCwtqy3+w54JJ0xItQ4EUfgosMC3T+8W4WTesbjAghr6tknLgix15l/z7rgM/y4Z4KX+Lg4U84IcuNIn2f3veDZKXdx4b/cA6IKz46XA7kY42aSfM7HSKZPWcBKSEg4wc7FC7rypqaOzOsTEm4/PvE5FT1S/VR1/sVPS8nOJiEhoYSdN71es9fu6oVPr2t+6dq/13YWQY899DbV9xfSj//8GYzwBKvPe5u2taCP/8ZXVkq7aeT6wO85EUs6H+to770PSZJa7/mwNpev3NZx3izOpaDgBMu9EDqdjgaDgbrdbsxSIMoOKSSrwcshIEecD/IKQeUYSMZ8Po8ko9FoxNT47XarbrcbMwE8xRtBABLqLSfdTK/dbsdyAYz+SPuGwEH6ITeY0A2Hw3gNBBCu734Di8VCh4eH2t/fj4KLd4vAZG8+n6vT6RTKA+r1eizpIMOA+n/GUiZhCD2dTqfw2el0GrspcG3eI2PE11rSNefHOwOxgeg+ZG8ymUSBod1uq9lsqt/v68KFCzHDgntlb3B+J9cIK1x/sVgUzAj9fj2zgPXiB0FkNpsVDDM5HhJNyQbz4x4VHi1nPJ4hwrp4WQUZO9xfWTxxMu+CCnPgHUEg5i6gISC5CMK5EF+8s0M5S8GfFb82pN8NL8uZKsw/zwnXdKHK9w/Hu2jAeb17iWf6ADKI3AclISHhWuSvuqT9T05iQsKdxbO/Luihxq+W/uG/OeuhJCQknBNUH39MB+94QqMnKpo8vpV0+t9qm0auj31+VfXDup7Y+VSFd//sXR3n8je/Tcv+0d+0z3+mbktr5fGTW42fPDrn7pNvUuMwV+9f/MyZZ3KdG0HBU/elE+8ACFo5O6Gc5kyEXlJsGemZC/Sgr9VqGgwGBe8CCLuLF14HDwl3jwUivEQ+5/N5JO/NZjMSUo+YEr0lO8FLBCBqRJ7de8EJtEd0R6NRLOvwNoaUbUDSyt0iyIiALK3Xa43HY0nS3t6e2u129FSAgPnckLlBdLhWq+nixYu6ePGisiyLkfLxeBzPC+lzY0EIpPsQeMQeMYB5k04M/3ydd3Z21Ov1NBgM1Ol01Ov19NBDD6lWq2k0GkXCjLkf8+HXgoQz525W6STZvR28Nah0klXDmtHVoFqtRp8ISDedQkajURSVEFA8S4H/eskE+5aMAebQzTDdb+A0v5ByBwnPJHG/EM/2YYz+fHiJAUTfTVJ9zKeJCv4Mud8F8+kig4sXfm9l0u/iiWe6ZFkWM2joAuPr7YaXfJecVj6SkJCQkHD38MKvkdY/2L7+gQkJCfc9qq96WE9/8as1fvKlhYQylv2tPv55bbXf8nZd+skDbX/2F+/sICUtvuDX6JnPrmrTunPC+/5bjs493/1VuvTtP3GmLXjPjaBQRjktv9VqqdvtqtPpRBItqRAxpd5+Op1qNpsVauOHw2Ekp91ut+AfIBW7IEA61ut1jNg70YewOSDwi8UikkW8BrzcwH0K3CTQSTOEyUmsf55jDg4OYqYGhM2JOanrjHuxWMToL5HtnZ2dmLK+s7OjCxcuqNVqRRIO6YJoOXmDeDWbTQ0GAw0Ggyi+MBfU4TtprVarGgwG2mw2sTWlCzAQ89lsFks22u12jFB7m7/JZKJ2u61Go6F+v6/d3d344wLLZrPRZDKJYg4kt+ziDznnc6vVKgoqRLwx7GQuOT9z1Gq1tFgsIuFmnl388vVkL1FC4L8zRoh22WiR11yk4b7dcJJMCsBzgfDh5QOc2zMv+CErxDMo3KDRswq8jKDs7UC2y2lGiaeZIfreRkzxeWT/l8tH3LSx1WpFPwh/rtjLnsXAc5raRiYkJCScPTatsx5BQkLCWSI0Gnr2Kz9d24Y0feSVZ48uB1stB9L0kV3VPucdevyffUzrjz99+wequyMmOA4+Kdf6qz5Dr/obP3JXrncazpWg4NF3yBXlB/V6PUYYIRWICJClarUaiSkp4aTzQ7Igkp5iThYBUUqi8hDmWq2mLMsi6YKQOnjdI7iLxeJUkpLneSwBgIhBOhEb/LxkBSCo4PA/Ho+joWOj0dBwOIyEqdvtajab6fDwMM4XcwnpZX58zJ6J4ZkMnkHiXSdqtZq63a4uXLgQRQLppOUl9+ARf0oTyOZgDNPptHC/zCn17O5VAFlcLBZqtVpxjbIsiwIDmRSIGfP5XFevXtVwOIylEt5i0dPpfR0QfBibd5jwsgj8IBC2iOJ71N0zYBAD2Cvck+8tFxCYSzIkXPxgrGRHeFlHuasI67her2PmDqaWZXLunhF8llaRZN1wXtZ5MpkUTC4Zd9mck894WQb369kg/hwgjpWNSU/zaeBZ5zXKndz3w7tGcIx0UpYzP+MUsoSEhISEhISEBxlPf/07lFekxcVbL0NdXNhqcUH60Jc/qcrqST35N39W2+Pg5e3A6jd+up759VVtmne3JHD85PbI9DE/m1LEcyUoSMX6bkiERyelE3d+N1mEXG02m9hBIIQQI/iIDwgFvEbU2CORHEeGQ5Zlsd7duxNA3sbjccxm8NRszoV4gKBRr9fV6/WuKUuAIM/n80IJh6QoArRarYKrP5kYdDqATHa73ZipwZwul8vYmtAJaaVSifcP8T+tQ0TZ0Z8Wgru7u7GVIISPEhA+R9YFXg74DXj0G98JX3NPXYc8S8X6ep+jdrtdMO5jjqbTqYbDoZ577jm9+OKLGo/H17QGZR9MJhMNh8MoJLTb7WiGSbZJnucxg2K1WkWTTlAuE4BAu7mkE2hEBUg0hL0sfHFuF0HK8+AihqfvuwDBtdlvdNXw4zi/e5W4N4h7LbCvl8tlFCeazaaazWbcD8wxz4ILBH4N9o3D94VnypSzI4B7SCCilcs+yv92M1LEhPLcJiQkJCQkJCQk3Hk8/fXv0DrLtW5vpes3RHhFWO4e/R35oa//lVIuvebPvvuWzlf5lZ+kD33xrrY1ads4G1L/0W9+u179TWeTpXBuBIW8pKhANjzl26OekB5P0fY6dKKkEH/MAvmMu/MTCZdOSGm73dZqtVKj0YiEB5JM9NrbBOK2X6/XY4YEgob7G+zs7ESfAYiTm0AiLDBOaucxJywbODJmvwci826c5+UaRNJbrVYs39jZ2dFisdB0OtVkMimIAB5RlhQ/02q1NBgMtLu7q+12q4ODA81mMx0cHGg0GkWBg88zPrIs+B2jSwQViCFiD9kLRK1Z5xBCLIUhS4EINK0buY/hcKirV6/GcXkpCmLAfD6PEXtKUhBxIM3sGyLYh4eHUaTxKL4LMW5WiOEjpBtizH0zzwhRfN4zEPBNQHzwLiMu5tChASHAyyz4nLc29bIOz54A3oHDu1r4mvl7jNX9FPz5dbjYwjx75oFnSvCs+Gv+HeJ+GIhCrVYrZmWQoeTdILxVa7k7S0JCQkJCQkLC/YTJ//CZev4ziuWlr//Gn1J+7P91lnjhj71D4ydzbWu3X0goY93OpVz60F96+zXvPfSeXJ3v/dHrnqP6utfo/b9/V3n1DI2Kg7TqbvWRP//2WxZHbgbnRlAAkBiyA8hGcLLg9d9urOZRZkiSpFjn72Zv0okIAcEiQlyr1dRqtWIEGy8Bj14S7XfCQ5SeNGnPiOA6bujoNfhe8w4x9HRt7nexWGgymWg0GkV/h1arVTCcA5RuQGLptuC15xB5BBzIdwihYH7nZSZes59lmTqdTjQYhCw70YRUMg+NRqNQFuAlAYglvEZnhslkEufLs0uazaYeeuihaCbZbDZj20/WeTgc6sqVKxqNRjFS3mw2Y+YIBNTLD/I8j9kgiDXL5TIKTHTRmM/n2t3djT4LTpwh1uwDSlowa3SB7DRPBSLmLu44uEc+Q9SfrBfv/uCZD76erJPPCevAc1gu5eEc3u7U9wSCHYKQCw4u5JXLL8gs8e+CciaSw0WFchYN89doNOJ9lTMiuEfEBBdwmL+UoZCQkJCQkJBwX6Cyo/wzP1kf+l0t5UFSKP5d+YG/+KuODlsGvfZP/3jxs/n2zqTTV47+Vl5+3q/Wx3/TsUl3uPNCQgFB2tavvbfnPksKn/lZ17z+xj/7c9rOj43XH76k933Vq66ZyzNBOBJIPvaN79CT33J3MxXOnaAgnbSYgzhCbLz1o5NkN6SD9EAUPHVfOhETpBOzOCd5DoQFLxso/xdDQS8hkBQj3xBnMiwg+B6xp2zBI6curECyITde9x5CUKfTiYTIXe+5LmOEfHqkGLLlRPa0e0UIcOKbZZl6vZ56vZ7G47EODg40nU61v7+vyWQSo/oQbYQUxuPdDdyMkGMh3LyPwONR+U6no0uXLmkwGMRMEM6FeIIZI3OA6MK4IOtuuOllAT73biCJRwY+ENwb+5PsDHw4POLuxN9FMvYG//bIvaRI1l10cwGK130vIr5AzCmLkU5S+8km4JhyVoFfw59T9iZiE8IW52GvMlZEDt+DiA9uwsrz4GUOjJk9XW61yb+93ANBwVtT+vxS/lRuM1n2rkhISEhISEhIuFex84bX6v1/7OGXPYa2hptmrg/81V9TeO+R/5ar+wM/H3/fTqc3PZZKlkmSwqMPX3dMZ4qgI+GlhF/6C7/y7o/lRhEkVaRKs3lXW0meG0HBSVO5tploJm0f2+22ptNpjH4SCV6tVppOp1EcWC6XGo/Hms/nhTaHEBBMAj3FXbq2lz1mjxAxMgEgSHQg8DpvB6QU8liv1yO5JcOCsUJ+PCoOoYXoet06c4T4Adkkrd9ryREFIJek4SNseGvGbrcrSfG+vb0lZLXVakXPgslkosuXL2s8Hms6nRba8HnKP6TNia+bN7rRH0IO98vcMaeS1O/39fjjj+uxxx6LpSoQUMofptOpRqNRjHa32+24vtwvc0aWStlE0LNKWGOIM/8tdwzgGogF5bR/3+PcF9dwY0ju3TMOXKBhX5zWDpM95x4X3CNgP+AX4a05vXSgLDL4c+qCnbfOZJ291MiP9xKRcqmBGycyB4gCjNm9JVxwYE7Z7whBlFA5fGwuFCYkJJyCELTz0CWtBs3rH5uQkJCQcObY6fVumbg/+2uDnv21J0T6ze+6Il09PDlgs9Hm8pXTr7+7K9VPfOHe/7Wvu7sZCA8Ylv2tnv7jv1qP/uW7l6VwXUEhhPAdkn6rpBfyPP/k49f2JH2PpNdI+oik353n+f7xe18v6Q9L2kj643me/+CNDAQSgOGgG/JB/r39HanpRFfxOHAH+u12q/F4HFOZIbSQVCcg/BcC2u12CynxXkPvkVav6Yb4kgKOkED5Bcc1Go1oougk1b0TJMUIuBNLIsnuxg9xL5N1orHuF8D5vZQCkgWhckNIzolwQlo6pJ37nc1m0fzQswmWy2V8zVtcsr6eRcIaQZIp7/BOExBt6ciLodfraW9vT7u7uzEaTTYIQhDzx5h9LlgbbyXJnHkni1qtVkixR1jhmoybe3ATRs7J+57lwWvuuYEPiHsW+Fp5Sr90UibCHDG24+cxlvywx4i+cz+IDewLjuOczKV37kDko0Uq8+timr9Oxg772UsbENTo8uFiC/fA+fidOUQM8xIKnhMXQhD0mDsXQNhvjNWzZcriw1nibn0XJyS8JEJQ+LS36P1/oHvWI0lIOBOk7+GEexH5ax+77ed8/zsvSLoQf69Og17/fzx36rEf/eJHNH8oBWruZ9xIhsJ3Svpbkv6BvfZ1kn4oz/NvDSF83fHvXxtCeIukL5H0VkmPSvoPIYQ35Xm+0Q2gVqvp8ccfL7SG85RnCCmEhMgzIsRsNivUmhNJJ5rprvuQTI/EQmIhThAhCKeXXGCWCAHyFPayQAE5JDIOuZtOp4WMhHLWAQaNHi33iHi9Xlen09FgMIik0NPEvQOAG1F6bb5H4T2inWWZ1uu1rl69KumoJWKv14skDgJ29erV2BWB+ZcUzTCn06mm02lBEHEvCfdRoM59uVxGvwMvPyiTUUSOTqejbrdbEHlYZz8H60KLTvaZdy5g3VgD/5FOxALaiJKpAvH0VHkXvij9YN08vR6RptlsKssy5Xmu4XAY24JynbJ5KBksZOUgdpV9LhqNhhqNRvwsc0FWAkIE+8G7fCAuuc+EezdwHvwGfP8zB17CwpxQ2iAdCSKURrDXfH68owXzxRyWhSJKnfg8z4N7qvieB74P2d+eUXFO8J26S9/FCQmnIdTr+uUkJiQ82PhOpe/hhHsJn/Ep+qUvbd/xy6yz/GWyIJKYcL+jcr0D8jz/z5Kull7+Qknfdfzv75L0O+z1787zfJHn+YclfUDSZ7ySAZEa77XNzWZT7XY7dhOAbFLHTncAr9eWFFO9Mevz+nBIDSnikCOP6kPMPWLrLfvwMaB0gmi4iwLu6QDR4p4w/fP0eH54jeg/1+YeQgjq9Xp66KGH9KpXvUr9fj8SUwgRHRucwLu4UvYHcPd9SCPrgWjDOCXFjg7D4bCQFUEHCQgf10cccZNCF3Uoazk4ONDh4WE8tpySTgZCu90umFG2Wq0o9CwWC43HYy0WiyhGeUcQxobBpmfEQFoRAMplAsyJl49IJ5kCzCkdFzDRhDBzbhciWB/2RVkc4VyIHxBg3/Nu4sm4ym1LWWeMMRFEELUYv3ecYP65ZzIy/Bktk283FfWMkHIWA/fongleFnFaxoWX7LjYxOsuALnJJ89yOdPBvw+Y39NKU84ad/u7OCEhISGhiPQ9nHCv4QNfcufFhISEm/VQeDjP82clKc/zZ0MIDx2//pgk76/x9PFrrwiQDEkxwjoYDGI3AW+5yPGSorgAaPvnRIZzeyTVr1cmVWQJeEeJzWajyWSiw8PDaKjoJRRcG0HBI6jeCrNMwryU4nhuC8KHd7fYbDYaDAZ68skn9fDDD6tSqUTSinM/JQiIJhBHL42gZSURZDIuGCdjouOGCwfMh2cAQIopN8jzXO12u3B8s9mMUely+v50OtVwONR0Oi1Etctp77SsJOuDddzZ2SlE7on8t1qtgpeEpDhXZeECoo+vgXcoIALuZNr9PyCwzLEbfpb9NTz7wdsWMo9OohmnZxW4z4KXUbhQUS7z8Xnyz3g5BMf5HvSSCF73+eQaXp7k4y/7LZQJu2cVcAz7ojwnfk++ni64+Xh43T1OfB38Pv298pjOKe7od3FCQkJCwnWRvocTziVmX5j0q4S7g9ttyniaxcapfTRCCO+U9M7Sa4UOBRBvUsEhhUSUIQrN5pE5FE7+TkYajYbq9XohSimpEBElEgoZIWrt6d+eEr9erzUej+P14o2auzwkCGGCNpSVSiVGQWezWYwu8x6RYuajTFgRAbbbrfr9vi5evKhut6v5fF7IlJhMJtekkRNZZqzcG7XwRILd6A9ymud5TMHfbrcxMwDiRnYGRBVijaizWq00mUxiJgH3IRWj1KTvs/5ExhmTdET0siyLPhecw6/N/jjNwd/LHZgbShk8m6Fs+udtBt0DoZzhwjw4EI8g3NwHe4ZMAc5TzoYo1/W7kMN9s67sI/aMtyNl/VxY8kwRFzhYW7w9XPBwwY05Qsxzbw/3fvBSHNasnAHB6y7+ATcF9e8I7hvhzuHr7+ar5XOUDSHLIsg9iJv6Lm4qu5NjSkhISHiQkL6HE84Uz/y6nfPRzjDhvsfNCgrPhxAeOVZiH5H0wvHrT0t6wo57XNIzp50gz/N3SXqXJIVwstshTZDKTqejRx55RI8++qg6nU6hLEFSJMJ0a4A04Dbv0UknCJCVsmM+pBY/BIiTkw2v//Z6ea8zd6d6siwoGyB7gA4UEFkn725Oh6jgWRkhBA0GA/V6PTUaDY1Go5iZAFkvz0WWZQViNZvNtF6vI5llvoiIE+1GMODc7gVA2v1wONRyuYwZIcwrYhDXRBxArEAMajQaMfOEbA/WmTX0Nb906ZL29vYKRpKQbJ9z73TBnDpp9nafkGDPFIGMl4mxl4T4OSVFM0NIeKfTKZheQsDpPMAaQ9adfCNQ+X5jL3PffN4JNgKN73vW0OcLIYXrsgfdfJMsHZ8nBAjPSmB9yyUNviYcz7m4J/Y/4oqPqewt4uvAv8tCRVmQOe359ywLf2Ydp712znBbv4t7YS/95ZGQkJDwypC+hxPOHa78kbdLlbSVEu4Objaf919I+rLjf3+ZpO+3178khNAIIbxW0hsl/fiNnBCCtFwuo7nfdnvUEWF3d1eXLl1Su90upOtLiinulB8gBEDmvP6eyD1Rynq9HrMinFx5/TtRfsiKp2pDwClHILIN4SpnSmRZpmazqdVqpeFwqOFwqNFoVCiJcN+FEEI01KOEYDQaxS4K/X5f2XEvVwQKbxfJOMup7WRGlKPekC8fP2TRXf89K2E6nerw8DCWFzBHiAkXLlxQt9u9pmUg99xqtdTtdpVlWRQRGHe53ME9NTgvpBxCS4aKrzvRc4g095plmTqdTsxy8NIG7hsi7N4WLvYggPj6cS68CvDwcNGCcXkHEM9OcP8B92nwcgEvlXipaDr34f4e7G9EEM+a8EyOcjkEXhCIV8wnAgkihWceeNmPl8rwO6Qe4cQ9HXwuEUu87MbLkID/mzH4mrtwyJ72PSepIK7dA7jt38UJCS+FfLnUm75reNbDSEg4b0jfwwnnDsPXSfk98WdMwv2AG2kb+Y8lfY6kiyGEpyV9k6RvlfS9IYQ/LOljkr5YkvI8fyqE8L2S3itpLemP5TfoZkvaPSQL0tZsNjUYDNTv9wup8kSO1+u1JpOJDg4OYjTe69klnUrGylFfyI87wZe7PXBMs9lUt9stRLDb7bZqtVo0anRXfwgjooNnEHB+PxayRDS/0WgU0tIREvr9vur1uiaTSTyftz4sR34RP9zUj/v36La34nNhwskhBJ3WnRBSN2bMskyDwSCOi4wPsh8g3BBp70jhggLnJXug0+mo0+kohKDZbBbJMt4JXN+v6eabLtZALpkPShoYk5cSeL2+n9fbeCI0QZA7nY4qlUr0s+D9Wq1W8EVAiCoLVzwbnuFQ9grwqD3HsofdgwORzssDfF9x35yfzB6EGp4P3nPSLynub0oXfFyeVcEYPQPB17dWqxWEBy+FYn/wWcQ2f+6Bl4Iwp4go3n3F78UNH89bycPd+i5OSCjj6W94h7ZHj7XySq6XyNpOSLjvkb6HExISzjtqw4qe+Pu/qLv5ZXNdQSHP8y99ibc+9yWO/wuS/sIrHUie5zFF3bsBENmHXBOhhAhQm0/quEcVnWBAxCANEAaPPEsn9embzUb7+/u6cuWKDg8PNZ/Pled57MzgZoW0EcTUcD6fXzOO04zeEB/cFNB9HSDGvA/JIrJPR4PVaqXDw0MdHBxEEQSDSiewkgptDBkXn8F4sVznD+mXTjJJJpNJPM4J+3K5jES63++r2Wzq8uXLcQ5ZI1oDQnYRBDzK7e0dPYXd7x1wDu+ogbjA2MhmQOyQFO+dMhdfLyLbbijpe4d59H1Elgup+xgoMvdksUBqPco/Ho+jiAbx9Xl3c0KIMmPhmuwdF43Kogr3weeYA88gYd9Iimvnwhzj4XfOh0jjz5SLRT5G1s1LfJzE85qXOPHsePmLZ0mwVzzbg3Ihsk149vie8Xlk/l1MOS+4W9/FCQmOp7/hHZpf3J5eDZ6QcJfQfGZ21kOQlL6HExISzj/CVtrs79/Va95uU8abhtdm84d/s9lUp9OJZB1i4O0bPXrp7vsQUj5DijbkD6LBtSEqkF1P86YbgUcv/XiIrxMtxlLuec99IUqUU9ohyeXxeTs82iQyZ5Dx6XQaBQPIu4sJnFc6IXbMOd0emH8MFZvNZoG8Q1A9fd3FGR8j80iJBS0cnfx7ZgHZAcw1ZRCIOaTEN5vNeN9ch7kja2QymUhSoSMIIgCkESK6Wq1iVkl5zsmYkRTHQwZCue0opS2Mn3XyThtO2tkPkuL9ezYJwkae53G9y+UQiFiIE9wPRBz4c0VKP9dFyJFOCD7ZAmT98Dx4Jo+XwLjA4M+mm2yeFvV3fwtvp8mcA3/++JyLPF7CwFh8zN4KEpQzP8oeC2WDx4SEBwoh6JmveXsSExLOBfLz72eTkJCQcLbIpZ150JPf8u67fulz8xezm6JBsiqVilqtViGaTOp1t9uVdEQYvVbavREg4RAfSdcQdyLwHtWEWCAoTCaTU3vce4o00X1JMYuB63rHAIh6p9NRt9uNZNN9D4h0I45AGHkPQkjGxnQ61XQ61WQyUZ7nkcQhXmRZFq/tkV6v83fyhMjhwgljIbLLOSDV5VKSxWKhg4MDbTYbHRwcaDQaabPZaG9vT/V6PWYLIH5Mp9NC9N1FFNYHYk12g6QYTXbjTPcNwFeD+/KxIsKMRqOYoeGlC8wRe2Oz2VzTspB58JR7fC8QNzwTgblhXOwL9jVCR5l404nC59/LMaSTkh5vW8n7CDIIRDxTCD3MbbkcgnGUDU6n02mB4EuKApGLNYgJnmngHhLu0cCY3V+B+WWd8ULxfcy1ECd8TC7MMV+e7eFeD5yPvVEWGRISHhTsf9nbdeVT86MwR0JCQkJCQsK5R9hKr/2Guy8mSOdIUJBUiHJSc+3eAhAJJ/DlyKN3H4CQemo6Nd4QdI/GektFovaQdF73MgHEAjd3lBQzD/A1yLKsYNaISIKp4MHBgabTqaQTs0fGGkLQ4eGhrl69Gv0T+v2+9vb2YokBGQD4PmA86cIMwgq/Q7QQE/hptVpRjPCUf+6TCDBkmQwAylNarVaMmiOWENXHqLFarRbGS7cJBB2yEIjWhxAKZTBkXDQajSgCOFmVFA04J5NJoWWoC0LL5VKj0Shev9VqRZPPcrq9iye+52q1mrIsU6PRiKUukH+It2dYUBIDYXUBhNKScuo+a+HZJQg3nhnDeH2f4nOxXq9jGQpeB07uAevLHDuph9B7uUC5tIGx80OGgxN/SQUByEUeSYXXuVcvfwHcO+vi75W9EDxjiefWnw035HQvi5SlkPCgodJsaltTykpISEhISEi4V5BLtfHZuXCem7+Wibw78YaESSc18hAbDBq9RtwjtR4px6fAo79ufgfRLEdbncAxBq5Jqr5nEdBajwg8hoGkytMVodfr6cKFC/FexuNxwbjRo/Pe/lE6ihRjSkj9O9H9arUa076944LX2TO3jL3ZbBYEjp2dHU0mk0jW+ClnkOR5Hse23W7V7XbV6/XU6/UkKa4HBLvf76vdbuvSpUvabrcajUbx85wDEut7gbFzP15O0mq11Ov1orCCx8V2u9VkMtGLL74YST5klGi3JB0cHOjFF1+MUfUsywp7CQ8G9zPwKDiZCHSxQBSgJMO7jnBfiFSSCuUKrC1r6CUSzAH7ywUgJ8CQbs+gYO1qtZq63a4Gg0HcY9PptCD2cO9eIsO+8nINL/Uow4UCF7CcwLsvgbeELMMzjtwngX1AtgTPNHNRLk3iuPLz7CUjfAe43wPfJQkJDxLGX/Cp2n9rMl1MSEhISEi4l/Dknzub7ATpHAkK3loPQkLqv6QYyfaI8HA4jOTZa/Kp1Sc1HPLs5Kycqk/U1rsY8DnpJBV6vV5rNBoVShkoBdhsNjFqTms9yg5cKIEkIUIQkYfgSCdp37SX5J46nY729vY0GAziWNzMbzQa6fDwUIvFIl6Xc5IZUHa3R6S4ePGipGKbPk9Fh2jVarU4P6xTq9WKfheIGJyn3W6r1Wppd3dX9Xo9rhvRc6LikgprxPp7uQfzwpizLCsQXDIAxuNxNOuEaEuKWQB0BhmPxwWfCUhruUyG/eNC1+7urnq9njqdTqz5h8Qi7LjhJSTbvRI8il82RcQbwsUgzuN7j+wO9weh9AFRx+eLtUGYYY4h65614BkdjI3XEb08gwd4xgB70AUBF6o4H2Mue4t41lKZ7Lu4wxg8E8JFF/fS4LXTsj+89InvkISEhISEhISEhITziM5HK1J+dsGAcyMoOMnmj3nS3on2E92HdJaNExET5vN5zGAgUotXAqIF2QMhBGVZpl6vpyzL4usQItLUpZNSiHJ6NiTRSRYme/V6PabSc84sy6KvwZUrV2Jk3MkQXSYQE4i+7+7u6tKlS+r1epHoUQZAFsRkMlEIQa1WS+12u9ApYblcajgcqlqtqtvtxlIFPB3m8/k1afaenQDxJo2/Xq/H7AbKHRAriA632+1YBjCZTKIBIiRvu91GIcaNHcsp7XQQkI6i+d1uV41GQ5PJJJbE5Hmu0WgUxQQi99wH1xwOh9rf39disYjjJuPDTSIRexBVWGtfBwQtCD8kfzqdxuwYPo8YglBGdgbEl/3k98/asSYudlDmwBx56Q3jQGxCTOF9b9Ppa+yZB56VwfiZf+6hLERwLjwnuK530Tit3MGfK/YA6+/Gk56J5PNCRhLHu8jgJSQumJx27+5bkjIUEhISEhISEhISzjMe+bvvOdOGzudGUHCneAgQbQchi5Aj2gbiwD8ajWKHA0+fhnB4BwLI9XK5jK3warVaPCeeAJ7qDjFjbBAUjw5DPiExkCcMGqUTvwZS291TQVKM1iOSDIfDaDrZaDTU6/U0GAxiir2LBgcHB4UWmo1GQ+12O5rv0f3BDRWZ72azGQWB6XRaKD+AbHkGAUSQtUAw8EgybTy9rGK9Xuvw8DCWeDAOsk5IvedaXAdy3+l0YjYBZR9uFDkcDuM1POsBksg5R6NRFBMQYyDqCAasRbnbAgJFr9fTpUuX1Gg09Pzzz8cMFY73c3B+4CUoUjEq7uaNkGD2WFlg8G4TeHDwmt87/iA8R6wrmSrshbKg4NeH+HvWgZsoch/sAe9awZzwPJafzzJp9/O6PwKCQtko0T0aGDf/5QcRi/nxefdrlrMhkqCQkJCQkJCQkJBwXvHQT0j56mzbnJ8LQQEiQqQRcrm3t6dmsxm7AazX69hKEsLrvgaQpXI01iOYZeM6Sh08sgogY05+XQiAbEGYnCgSmSdDwDMYuNZisYiRVLIrVquV5vN5NGokU0M6alvIWMfjcZwfSjXo9LDdbqNxI2UOCCjuQ8H9dTqdKGogYOBFUI6OQ+Cr1WpMn3ezQcoF3CCRiO94PNbh4WGhJSACC9kHPk+sKZkHeBZQXlGv12NJAZ0i8C1ABHHiKx1lBAyHwyjAkDlBZoCXKbC38C6QjsSALMvU7/djO81yJwPKc+jogdjiBoV+PvaXly5AgvGGYI1ZR/YQ18crAm8Jzsc13AySbA0MR8ngcNEFIo8w4GUUrCldRtwjgmfByy2YWy8f8NfcrJNn2v0fEDL8+XR/Db+u7yvW29uish9czHEDSBcv3LwxISEhISEhISEh4Tzhkf+Wq/Mvf0b59nQ/sruFc/HXsjvUUzuOI32ZtDjxKBN7IqLU7EOSIMhZlkXy5O0XEQ08owEiBHHiv61WK7ZqlE7IGtdhPKTvUwJA1oCLDh5x3Ww20agQ8URSFCbIUliv19rf39f+/r5e/epXq91uazabSVKhCwZCA/OC0Z+3y5NOUtdJ88erIcuyAnl0DwD8GRBtIGUQVo+oU5+/Wq2it8Np8yspjpPX1uu1xuOxZrNZXCdKEOiAwXgw34RAlg0kOfd4PI4ZLYyPufAWnNwDJJhMFvYX80EJB+RzvV7H17zjA+TciawbJ1JqAjFGJHAfD7w9vCOGd9qgbMRFMBcB3LiUbAXajzJn7peBeMFzwV7iM06+/Xli77IvEHw4P+eidIOuEmT8kCXi9+ymiZ5h4PvHPRJ4Fjkfe59reOYD68D6+bNHWUdCQkJCQkJCwr2C1/2ToT7w+7rKd65/bMK9icf+01btf/cL2h4H1M8S50JQkE7qnCFgg8FAg8EgEiIiw+12O5JiIvxeiw0JaDabkbAgBBCJ9o4KkFIIHWQGYuWReUitkw4ivq1Wq1A77tkQh4eHUWRwXwII3mQyKbQvdKJNuYCb/e3v78dOAR6BJ8qKcOJigqefSyftKVutlqrVqiaTicbjsdbrdSTMRPjdGJNUe/eVkI4IKIQeguhR7sViodFoVOgicJovAOP0ecnzPK67Z1dA3lkLFzwgnswZGQzT6TS+T5Qb4D+BiABxJYrfbrd14cKFWHIym800Go0K2RgIGxBv7sU7b7AGTnwRUmiRirDEGnsWAWNGoHDRw30NELKYF+7FOxnQJpP3PSvFhS3f86wfrzHX5f3FfJC54vPpHTTo6EEGBs8K2TVeclNGuTymbJTKM0Z2AuNmD3gmhQtR5UyShISEhISzwRv/wUhXUuORhIRXhPynn5J+79ulM62sT7hTePQ/50diwnGA+6xxbgQFT4/vdrt66KGHYrkD/gWY8HkHB/7whzQ0m81IiInSenYCnyPCiu8ApAJy5R0QIHKQNSfRfMYjme69QASZ1yHqns4N4YW41mq1SLARFBBQJpNJIdrrad4QUq7jJoPuaA95xZBxs9lEzwZKQCizQLxBKKCFX6PRiCSO7Ar3DEAgIivAO0t4arlUdPyHMENoN5tN9GmAEDK/Hqn2WnyIKsevVquY6cD6l8tcEESYdxd+OH5vb08PP/ywsiyLBBgSSjYDHhae/TAcDjUajbRer9XtdmMU3/cRkXR8Loiqe4YMa8w9OaHHMwNRDJGMEhYXgBg3JRsuKLjfgfsr8Mz4nPr8UNrhnSooNWC/efmDl7aw19g/CCg+R57FVAbPj6RC61mO5TU+73PHfXlZjO+pxTlQfRMSEhIeZIQPfOysh5CQcE/izX/tw3rf17xGSrGR+wqv+pFcnX/zs9paCflZ49wICt7rHq8AIoiYqUEuICfetUFSoYShVqvFWn9c/Mup1hAi0vB3dnZilwfaWDabzXhtUsMhenwGkiydGO55SjgE0/0Z6MhAJBoyjRjCMY1GIxIxIvqMy/0g3GTR2+S5OWSlUom+DBhRYmKISIHvA8IB4sZyuYzz6uniEMTxeBzH7GSMKLGLMh6BZ04RZZhLSLF7LEAwuT83QSSyDbl3su9eBD6nkgrCBeSRvUKkvNvt6uGHH9YTTzyhwWAQz+8CBJ8nI4B9OJ1OC9F4bz8pnUTrp9NpnFMEFxecIPJE8Sm5gWhD5r1dpd8z3hnMCxkakuK12VvSiWDgXTvY3+5lUN7TkuL6lrNtXACC5CNEuAkm5UKIDohwUtEXghIFUC6fIWPBu4cwPwgKrImLVcAFjYSEhISEu483/+/PazManfUwEhLuSayffU5v/gtLvf/PvOmsh5Jwm3Dxp4K6//yntF2dr7bm50JQ8LRzTz/GZBDTNj+m/DmpSGaJTpLRQAo95MlbyeHTUE6Xh3wSjXfjPswSIf8uJHDNxWKh4XAYSzkQSprNpi5fvlxoKwhZx5fAxRGED8gRNexEcyHRToYgk5g+uhjCufI812w2i//G7BDxwVPwmWtPmS93JfAMCear7EshKYpEHs2WFIndfD7XeDzWcrks+CU4eXQS76aT7jHA+7QUlU4MO2u1WsHToewFwP1R6rC3t6fd3d1YSuP+B2QmIDD4unlGCb4eGGeyTvywF31fQ7Ih0N6hhP3JvkIs8AyHstki8PIb3vM15nMeuSdjxzuueDmQZ9uwDi4muBBRLl3hmUY8Yo+5kIJAgZAoqWCe6OU/7uOA2FYWt3zP+n36nKSSh4SEhIQzQC69+dv3tfnAh896JAkJ9zQ2V67qzf/LL+n9f/pNKVPhrHBabCq8zHunoP10RY/+zR9Xbu3WzxPOhaAgnZDJer2udrutSqUSo5ZudiidmMt5mQQlB5B4vAEGg4H6/b729/ej2V45dRoCCsHiem7kBnGEFEH68Xwg4ur/dsGCtpQIEPgKEBUnPZ5yASdWHj3OsqzgC0DU1bsheIRbktrtdoyoM9cIEhjz4U9x8eLFeLynv0vFlpGQQM+cIIsAAYTMENo5Qh5JOydbwck5GSTuC+Bkr9PpKMuy6J/gHRukE6NOwLlo98i8esSb++F6vE7JycMPP6xHHnlE3W43eiQgVsxms+j1gCBBRgD3yVx6hJy5HI/HUVhysYLPutBACYFnO+AX4maDiF7l8gDmEcHISyEQUnzN3UDS9zZ71jN0dnZ24nzgxcGe9TVxgYF9wlqw1uxvjsPzgD3Ds+3lUKeZJ5ZFAq7FeT2jwcuU2A/+fkJCQkLC3UHYSG/4nok2T73/rIeSkHBfYHPlqj7pr35M7/+fXi2FPBk13gWEjaT86O/bN37Tzxa8DqqvfkLv/6rHJUmPvHur7J/92A2d8/zJCCe4rqAQQvgOSb9V0gt5nn/y8Wt/RdJvk7SU9EFJX57n+UEI4TWSflES/xf40TzPv/KGBnJMCoiQe7tD6YQEQbQgPqRIczxlDnRHwH+g7Bx/fB+RdHAMEcsy6fF6d9LuITdEtPkMKdYQQ7om9Pt9dbtdjcdjHRwcFNo4eh23k19MB6vVqvr9fhQLaE1YrVYj8YQcu9DSbrfV6XSiuaGk6CdBiv3Ozo663a663W5sc8mYECtYI2/LyP1BvvAGYC5Oi24jGvC+l09wT95O0z0nuJd2ux27Rly5ciV2bHBHf8oYyrXykGZIN6UDkGVKVchO6Pf7unDhQvTzODw81GQy0WaziSaPGGrmea4sywotH8lkIXpPFw0yS9ysUTrJWPBsAW8JSSmBd1WAsLsnhXc8YP8gInjGAgSb/SKd+DO4KOXPhH03xHthrvEyIGvC1wK4iADc58CzC8pmn5RIeBtJzzI4zaOBe/Xn3jMXGJObhfL+eWobebe+ixMSEhLOCpVl0Kv/7UL5T/z8WQ/lVKTv4YR7FetPPKPXf80zCp/+Vn34d/Zu+HP5jrRpnGcqe/5QWQS94R/ta/tz75MkbUvvrz/6cb3+az5+9wd2B3Ejfy1/p6S/Jekf2Gv/XtLX53m+DiH8JUlfL+lrj9/7YJ7nn/ZKBgGpaTab0UUfsobJH6RnPp/HMgQIQ7nlXKVSicJEq9WKEWpPJy+XWTAOiDRktpwWDmEn0k35gXSSKdFsNgs15LTBJLpOtgPR5rLvARFp95BgPJg8Ep2F0GIG6MaECCru54DpIoQegkaWAnONzwAeAF5/zxw5id3Z2SmkunuaO3NEVJl183MirrjXBOKJdFS6cvHiRe3t7alWq2k2m+mFF17Qs88+G98nig0B9RR/B+IFxNXLYtxjo91uazAYaG9vT3me6+DgQE8//XQhM4SI/Gq1igSae6EkIYSg6XSq8Xgcy1tIwae0gwi7l0d4+Q7jRSigRMYzRhDbmEeEE8Cacg2O8RIf9iYikmfIMHeIaV4SwX5GvGAvkbnhogbn9RIPzueZFYgJlAXR4tSFBp67ssEmYiNj9uwdf4/rePtXL+M5zQTyDPGdusPfxQkJCQkgbKX6/rEAXc+16t45UlFZBtVGQQ+9Z6Wd//hTd+w6twHfqfQ9nHAPI3/PU3rNe278+J23vlkf+aIL17y+HGxTpkMJO4ug6jjoif8wjmLCg4LrCgp5nv/nY5XVX/t39uuPSvpdtzIIIv69Xk/9fj+SVU+T9lp1SIVHW71FHlkCnU5H1WpVw+FQ0rXE0Uk7JMJ9Cki9lhR/R0zArJHrEzGG+I/H44LLPN0aIFne2YEoqRvTeUlCo9FQr9eLYyfaCsn0lpMQSgwOG41GbJmIQSXnhthDsjwy32q1IjleLpexnIH7hzzi4wCRn06nBY8G1tYFHNbOSwIoD/FoOwSy3W5rd3dXjzzyiC5duhTLKMbjsSaTSSSDCDjMI9d1MYlrMn48GiihkE66RGBQWalUNB6Pdfny5SjecC1EBdaQeXBRAB8HxDD3CPF2kQgr5U4YXjKAEaWLXZ6V4WvEeBCSECa8PIS9S+kKJRwIXS7KcG0HApO3W3WRjbn2sgQyFnjWKO1xMcH9GFg/F1HYI+12W41GI46PZwJxgDlF0OCZJ7OD/eclMJ6N9FKi1FngbnwXJyQkJLQ/fvx3zVx66G//yNG/3/pmffh/uKDl7u39TgzroOzZoM4zW3W/+9239dx3Aul7OOFBw+ap9+uJp659/fI7365V53RThnUmLS6cn7+f7gZ2ZkGP/te1Gj/wE2c9lDPB7cjn/UOSvsd+f20I4aclDSX9mTzP/8uNnKRWq6nX66nX60VxwEkA7QezLCtEYb3m3bsOQLogJUQ4MVj08wJIEKnPi8UikhiIlGcnUCvvYoIbIELuPEOh0Wjo8uXLUQAgO4PjITeUFdTr9Si0QNwg2tTeX758OZo/Qshox9doNGIKPSUl7g9BtNcNKSHZRM+5b8bmrQMROJykQ3SJgENWgYsG5dR191Bot9vKskzdble7u7uxbehqtdJwOIzEl2t7RwOEETIl+MG0kM4JrDliCMfRfhRBZjQa6erVq1HE2N/fL5RIeMYG+xaRgGyb5XIZRQaux15kbOv1ulDGwB7hB+GLfyOMcV/4PngHBC9lKPtTMGesIVlBjMdLf4ja+1wC9h3HYPiJuMLrvg/cfwHhiteYH8ZASYqkeJ8If26q6aap7inh88nz688LQgJigpf03EO4Ld/FCQ82Ws/NVT9oazl4sP4YTDhC/5eCLv29H5O2xe++zVPv16vrb9XH/vv+7SEKuTR4X1B1Jg3+zx+59fOdH6Tv4YQHAhff9dIC4M5b3qTnf921WQ2vFMM3SNva+S63qCyDeh+Uup94cMUE6RYFhRDCn5a0lvQPj196VtKTeZ5fCSF8uqR/HkJ4a57nw1M++05J75QUI+fdbjdG8GezWSQvbphHNNeFBIg4BJZsAEmRAJJVANGC+EuKEWaIXZmUEu2XFMfkIkCj0VC3240ZCNJR6jpkqtFoaDAYaDAYqNFoRBM/J2iSCmQGUYTuAlmWxXp/xo4Xw2g0isScOciyLB6HCNHv91Wv1zU6bsEEUfTIOEIMUWvuFYJV9npALKDLAdkMnsJ+Wvq5iwyMgesjAtGykR8vHxiNRvE8jIN7Yq8QKed99gkRe+5/sVjENfHMhHa7rfV6ratXr8ZIOd4J4/E4en1AOjFrDCHETBDOjbcAkffJZFJoB4kowh5DVHPhx/efe1dA4Nk//O4eGaTvk6GAqOGiD8aeLohwHk//9wwB379+bUQUPCO8PILnDjGBa3Nd7o9MF/dXYAw8k+VSlXJpAxkIjNtFDbJW3AzUM4B8P5133K7v4qayuzXkhHOK8O6fVfdNb9eVTzvrkSTcTey+N6g2ztX/Zz+lfHu6kJr/9FN6svJWHb6pq/1PqmjVe+XCwoWfCdpZ5gq57omMhFeC9D2ckHCEzXt/SRffe+vnyX7nZ2rduP7fYQdvqpyJCB7WQY/8yEat7//xu37t84abFhRCCF+mI2Oaz82P//rO83whaXH87/eEED4o6U2SfrL8+TzP3yXpXZKUZVlOKvhyuYxEhD/+SVEmYg0ZdNM9hISdnR0NBoPoYzAcDjWdTiMBcTIjKUa4y6RHOiJHrVZLWXb05e5O8YwV0sP58zzXYrGIEW3piPxcvHhRu7u7yvM8ihwQJa/5huQez0sk05DTdrutbrerSqWi/f19Xb16tZBxgKDh45aOuiN0u92C0z1k2yPWkgqeC15W4uTRU9MhvxBgoszch0fgafPox0BM+Z15JeuDsYcQNB6Ptb+/X2i9CPlzY03mwdPgPQLuBJtMD/ZJrVaL3TQoXWHvUBrhnSE8O0ZS7LogSZPJJHoskDGDoFAWVCC80kl3CvfTQOzyayLyHD+ThWwDL6dgTdlrXlLhXhY+l5yzXHLBfz2zhH3D2Fnn8l5DuGOv+r5wuBBS9l7gs3iKICwhSgC/V+7Hx8n9l7NlAGM/77id38W9sHe+QwEJCQm3HXs/H3Tp+9+vzZWr13URz9/zlHrvkbpv/1Qtd+v6xK+vavsyhm3dD1c0+MCJl0/rh58quJ3fL0jfwwkJtx832v2g9xmfosXF5skLQfr45+7cuTaZufTED20U1rnqP3jN4/xA4qYEhRDC5+vIcOY35Hk+tdcvSbqa5/kmhPA6SW+U9KEbOF8kgESfIfmSYseG3d3dGPn1lGZIBvXbnU4nms+VfQm4HgR9sVhEQp3neYzqk4pOpB+RY7lcxjpuyCmZD6R5D4dDXb58WVevXo3ZEo888ogGg4FefPHFgsmcdOKq7xFYsgza7bbq9Xq8j0ajoVarpfV6rcPDw0LZBEStWq3GbI/VaqUsy2K5BZkfzKN0kqFBNNojtRDYMpkF+Cy4wWGn04mZEZJie0gvi4AUetcI98Xw9aLEAxPDF198MbYm9JR91pv14Jqk8bvZpHdYYFysCaIVr4UQYqtK923wCPhpwtR8Po9mmZBp9pqT2fJcu9Ei+9KJvr/nRB0vgvLct1ot1ev1+Fq5K0LZJ8Cv50A08fIfF+A84wWSzzoz7nIbUMwVOda7PLhIxxxRXuR+GJiuIigwf5JiuRJzhIjH2vkP9wDK2RfnEbf7uzghIeHBwt7PBV36l7+kzZWrr+hz4d0/q4ak113+FOW1lxZea09f0fqjJ27m92MhTfoeTkg4Y/z4z6tReun1B592zWFX39LS/ltuXq974j9sVD84/nvxv/3MTZ/nfsSNtI38x5I+R9LFEMLTkr5JRw62DUn//vgPblrh/HpJ3xJCWEvaSPrKPM+v+3+pSqUSze8wEMSgjZaGvV4vlhQQ8YZIuOEb9f+r1Uqj0UgHBweSFGutnfwRLXaDRloTSiclFhAOSL1H8j3lnOPG47GGw6Fms5l6vZ4ef/xxvfrVr1a1WtUHPvABTafTAtEh3Rry4s733g4xhKDBYBC9H7zGHfINOaTNJpFxN7ODUIbjTgNkAriJXbVaLXTaIOruZI1sDCLRrVYrCh4cB8nFhwBC7QISIodUNP4jmk3myZUrV3T58uWYoUAmg5cu4HuBwIAZohtEImDQzYByDbJgKJfB54K1Yl3n87mazRMl1Es/WAcyH3ycrKULM5Bnsl885Z/zeeaBR+F5jWfitOcKLwjPDGg2mzFbwluwulBUFgu8TID/lsl3ufyEZ8g9GNg33D/3xHPM2ng5A2UM5TInSdF7gflnDN6ZgvGQfcJ3B8+zn89LelzUOg+4G9/FCQmSdOmHPqbZQ6/W9NH7kf4lSEeZA4/831cVnntRm8tXbv5EP/7zLxsEXL/Me/ci0vdwQsK9gdMI/0O/dEmX3n3z3g75L39YeSmjNuEIN9Ll4UtPefnbX+LYfyrpn77SQYRjo0PIHoQAUkCUnzR0SZHIQj5weod0QIYxYeN1CBm18NTGQ3KyLNOFCxcKGRBODlerVSScnnpN3f90OtWVK1diKUK/39ejjz6qTqejK1eu6MqVKzH1XlKBAHl3AaKwCCur1UqXLl1Su92+hmQRSWVOEE+ICkOgiPISbR8Oh9put4X2khBt5mc0GsUIs4/VSS5GgHSzIFODqLvX5lPKwPy6iWQZEDpM+w4ODnT16lUdHh7GCDhEcDabRcHCMz/o3MCcICJJJ51BmBvEEC/5YA739/d1cHCgw8PDQmbB8b4vZBNQFoEYwxwhdrj/hgsi5W4DPBuIXZBgF5Lc26PscYB4QHZCODabJGPBfRhcDHGBgvN6yYV7fpSzKhAUKOHhPD5X/JvsFkpguG9EErKIGCNCiwtJZLywP/nhOhznnhqIg6y9lxz5dxJjPC+4G9/FCQmStH76E3riO5f66B99o+aXkqhwvyH7REWP/qP335qQ8IAifQ8nJNy72Lz4ovTii2c9jPsSt6PLwy2DSKqk+Ae+dNKSrtfraXd3t5ACTSq7p/wTiXSBAENEouburE+KvBMJygMgcKPRSOPxWFeuXNHBwUEsQ8iyLBIVCC8t98hOaLfbes1rXqNHH300pvdDSJ2g0wkAA0dKN7zGvVqtxvuAjBNFhrQjeJBN4G34yCJAfCGbot1uR7NGj46TUTCdTgsGlk7Yyl0lOA4TQo9m44/AmCHebgIJAfQIMeINnhSHh4fX+CcsFgsdHh5Gs0mi7mQHUMIAGWW/kPnB3Pj+8qwDxCJaVfLZ8nxwbTpuuJhAJLzb7Rb8Cpgj/k2phptgst5k1SAWlUslnFQz72USzv5lvJ5BgOBABwTKAKQTYQOBoWzY6ddl/sh4QbDgPvwYv4aXVDAP5U4VZR8I5ti7SLjAIClmziBQICi4AOLdK1yMKJeDJCQ8KNi8+KKe/P/OFapV/fLXftLL1skn3BuoToJe/1ffp3y91ub4/5cJCQkJCQm3inMjKPR6PS2XS81ms/gaZJPIopu7jcdjTafTl4wgQsp3dnaUZVkk/V4rDVHkuGazqV6vF1srQuKm02lMdYd8u1GedFILPp1OY5nFpUuX9NrXvlaDwUCHh4f6xCc+EVsxenTeBRAnbkRqEVv4L+Ucm80mljbMZjMtFgs1Go1oxkgUFjJWNqKkTKHT6cQMEKL7dJAgw4PIsY9POkknd1EAAktZg6eNQ9w8gu3p8y7SZFkWhR/WirmDwLqRJ5kHHMe9N5tNhRCimSIlEeVoN+sIIaUkAJGA/eZmihzHvUBUuW/2EKUTjB8RAzFos9kUIujlrABPy/e58nKb+Xwenxv3I6D8g/n3zBXvUkF5BGKMX8uv51kqEHrO6XABobz+iFbSUfZI2ZyT+fX75jXWHaGG83rJBWKMt30l24GsJH8GXZwre4ckJDyo2B6Tztd/009JkiqNht7/zW85yyEl3ARCLr3hG35a2ubarJbX/0BCQkJCQsIrwLkRFOr1ekwR54977z9PnT9RRggkhMnPBfEmNbzZbEZCynlXq5UODw9jPTzCRbvdVrPZjFHwxWKhq1evRnJN5J8x1+v1SCpx76dN48WLF/Xoo4+qXq9rPB7r8PAwmvpBIKWT6D4CQqPRULvdjiUfkHWIEaUaHhXmnBgSUv5A2z5vvQch63Q6MdPCI7y0UIR4UV7BengZA+ciug4JJsKLqAB5LZM17gsgrPi1KHeA1GOwyBrzGsST9SFbgywDSk0gwpR2cE0IKffFHqN0wtfdSyLYZ05S8QAgc4V9WW7N6FF4jCDxfKD1JvPh5QbMH6IB84CZJ/uSc7HP6SrCvTDn/jkEDffKcD8BN4Z03wLfR2W/BEQCLzHwe0SU8X3gz7ULWnzWhRrW2L1X6vW6Go1GwXuBvewZJN5xwj1CvFtHQsKDDGpGN4uF3vDVN+a6nXC+cJrRbkJCQkJCwu3AuREUQgjRp4CafEkxaguphuSTVg+pWC6XajabunDhgvr9vobDodbrdRQI3AywWq3GdHhJhc4InvI+n8/14osv6sqVKxqPx9EUksgp2QFeB4/osLe3p4ceekj9fl/b7VaXL1/WCy+8oCtXrmgymUSy7P4R6/U61vFnWVboTOAEmrRtsjkgWb1eLxrwkdY9nU7VbrcjOSP6z3xKR9kI0hGB8k4GGFB6OQI/iBVE/LMsU5ZlBcLm9fvl9fYSFaLSzN/Ozk70kZhMJtrf349ml6T8SycRbCefEGvEF3w5aN1IhwzEAoiwpAJJZZ+R7cBeYZ9Sk1/2U3CDQKLhCEWbzUaj0aiwv4nSU2ZQFiSYf9oquhjjHhKUzECMPWOAveDlFNwP52IPUtrhmS1ulMnviBIurHAfPBPMR6PRKGRZcD73k+AciFqejeJZIZ5tQHcS5oTvg3q9Hr0iEFDwWiCrwcs2ThMyXABJSEgwJGKakJCQkJCQYDg3gsJ2u9Xh4aEODg60u7urRqMRyZKnxVNacHh4qNlsViAKtCzEoJFzeys6avIxZIN8dDoddbvdgnEfqfTuu1COvEonadgQuEajoUuXLumxxx7TYDDQbDbTCy+8EDMdIFlurIeoQtvLdrsdySZ17pgdMja6MSCSeEkI5SMQfLIwPPK/s7MTiTZlAQgFfr8IDU4IKRVANIC80V4TsuZ16pBG9wqAADOPiDOMkQ4MTgClk7aL7hPB5xE6ms1mLI9x7wHmUFK8H+4f/wPWGPLNuCDTCCCe3QDBd6EEgYlrYX6ISEOGh6RC15JGoxEj7JIKGRjeHWSxWBRaR/LD3Hh3krK448+FpCjose8cbqTJD/fvfhAuckgn/hneLSWEEM/H+KSTEgkXQ5gjPodAQDvOLMsKc8ExCA88K15SROmJCyV+HUQz76iRkJCQkJCQkJCQkHAtzoWgAJHb39+PZQnVajX+ce9maXgUzGazSLJms1n0GoA0+WchW5BqhAgioggR/X4/klDEhOFwqOVyqWq1Gs3dPBWaqCikVzoiX/1+P7afnE6nunr1qi5fvqzpdFogVBAuiGe/31ev1yu0hoSgQp4xJtzZ2VGn01G9Xo8ES1IkXLQ5HAwGMaLu7v1u6gdBns1mMfILqYWwAuYWYuyp9AgArKsbT7pPAO/5cRzT7/e1t7enzWYTjTedvDuhPc1boEziWZt6vR7/7dkWkgplIpyP+y4b85E5ACH3MgQXl7gOWQt81jsnsNd9LdgTrJWLJm6O6feO8OMZNuxjRCWfQ+mkgwHPFiVAfu+SYoYB1+Uc7CGfJ8pKWGPKehDA8jyPWQw8G96Zg3O4QML+8XM50ec+N5tNIUPChSiExbKhpWe3MGcumKU04YSEhISEhISEhISXxrkQFLbbrZ555hnt7+9LUvQ4oFOCE06iqN6mEQNA2kpSU+/p+V6rT9SSWutWqxXNFkm1JpsAgtXpdLS7u6tOpxPLHrylI5kMq9VKjUYjlh+s12vt7+/rueee09WrVzUejzUYDArZCUR2afNXrVajoAEJ+v+3dyYxkmXndT63MjIyxozIoTKrqovophpUA7Rh0IRBGLAhaGFo4IbWjl5pYUBaSIC00IKCAJteaGHDsjcGBFCQQNkwRBiwBRFaSRYkaGOYpqUm1RTVVksi0N0cmlWVQ0w5dT0vMr6bJ15F1tCoinjB/g+QqMzIFy/+d+/Nizrn/v/5pasT5NFopIuLC928eTOLFggxiAIHBwc6OjrS+fm59vb21Gq11Gg0coo5ZMqzEzi9do8AT5Pn1BdvBeIlm2Q4HOrg4ECTySQTW0+NR7xh/DzjwE35XPjhlJjr/MSdOXCy7maGPB/39dIGSCrCiccJvJQBMGeQ/XKpAvcrp/hzrV/PWuf5ERf4KndocNNAvB7IlvDsGcbEswlYV55J4cIO/gPupVEURc6WcANGxtvFPsaLGN2vw8sX3HAUvwgn+mVvA8bRvSsmk0l+7nK3C64nThdpytkbniHDOPsaKJdDBAKBQCAQCAQCgVlURlCAvHua+mQyySn60iVpprvDZDLJLR05Jee9EHsnUJyMeykAJLnZbM6kvA8Gg5wFgFkcZRGdTueR+vqTkxMdHR3ldPlut6u9vT31+/0sKODD4GSMOnJIEeSNU3V/hqIoNBqNcslEp9NRv99Xq9XKJRlervHgwQNNJpNM+L0m3NP9nYhhokh6untJSMrtJiF43oGDMhQ8MMrmh2SIYMLndfeAe5bT/LkfZNJ9CjzDAgFDmk2f52f3OyibBXra/rz3Qpox4vT3ATfR9HvyOZSFlMs3IObeqcC7MSB+ARc/XIhgft2PApEI4cpLJ/h8LwtwEi9deRYgjJQ9K4gbko5w4c+P8OOdV+hKwWd6CYiXkRAHWUFkkLhJpGeclLNDJGURw9ezl1AQj6833hddHgKBQCAQCAQCgetRGUFhPB5LuiRs+BuklNTtdrNT/3g81mAwyB0IhsOhTk9PZ67h1BNShrGhlyhgOsfnNZvNfPrJ7930cX19Xf1+X7u7u2q1Wln8GI1GOSV/MBhkY8h+v69er5eJ9v3793VwcJBrvP30n3puBAZqt3kGJ1l83tramvr9vnZ2dvIzrq+vZ1KEEFKr1dTpdLIBIKfa4/E437dcegFxh6xCfMluICPETfUwGzw6Opo5pYZISsqZCVwPefP0eYShMsHzVPR5PgVe3uDdFiQ9cnLvggjp8Yyvk9RyeYCkLBZAmJ34InKQLcCzQaLb7bZardZMuj5rgc9FEEFYY00Si/sVuBcDAgbCT7vdzqUWlHp4KQRxYxjJa+VWk5TJ8Ixch7jh/iS8HwHCM3gQTBArEDBYf/4eN4Lk7wK/EcQpBMJ5z0SciEBe6sDY8rfPXDGurDGejfsFAoFAIBAIBAKB+aiEoEC6PP/55+Rye3tbm5ubuU89gsJoNNKDBw/yiSgn9ZAor392wkb2gp+Meho6GQ/4EUD66/W6dnZ21O12c2tIFzUgqrVaTf1+X3t7e+p0OrmOm2s95Zv7UoIAaZeURRAECX6mFn59fV3dbletVkvSpdHkYDDIggGEqdVqqdPpzHSIoI0hZIsT92azqWazmcsJvEwAEo2I4i0IpUuDy8FgoIuLi5xxUSbqeFtcXFw8UnJCJgOihqfgu7gEAWdeiatc11/u3iEpewnwuWQLSFekEULtGQF+Qs2csJa8owWfzfy5ZwTGn7RGhWAzJ36ij/8EbUQlZQGGeNyrw0k6Y+KlDt5u1I0OMTHkni4OsFbJJuEZXdhAhCqXjpQJOuPiJSsQd+bbfQ3cTNLn0DML+PuhLMYzNXwe+LtnLbIGfFx8vlykcmEpEAgEAoFAIBAIzEclBAXIGSTq4cOH2tzc1P7+vra3t7W+vp5PwO/fv6979+7p8PBQtVpNvV5PvV5PzWYzE1MnU9JV6vLJyYkGg0HOhsB3Ac8CyBTkVrokdu12W1tbW1pbW9Ph4WHOFJhMJhoOh/lEtNPpaHd3Vzs7O7kzAiUUnOrzBYmEXPE6IgYmgaStU6KxsbGhbrebsyogW8fHx/nk2gkTxJnsDbIXvNMD5ou0aaSundKDlJJOT09zuYmn2eP1gKDCZ/lzeVYGJSKQfk7APaWfNUC85SwTMgwgo3yep/mTbUGMfC7ZHO5z4OUHCB6Qc+Ip+xf4OnFTS0kz3QEQFLzdKOPiWSDuiYDQRDwIF14i4S0lGSMEhrIPAUIb8z1P0HExgfmflzHDeiBmPsfFjbLZI+DZvdwHsu/eBp4hQQYNQplnLDDXXpriZQrugYCYMG9Nui9E+R4hKAQCgUAgEAgEAtejEoKCE7qTkxP1+3299NJLeu2113Tr1q2Zk/7Dw0ONx+N8ykyXAz+pJQMBXwVSx0ejUe7awMk7hHY4HEq6PJ1sNptZdGg0Gtra2soGi5Rc+Enq2dmZtre3devWLd29e1e3b9/OggJZFaSX++mqpCwUUCNe9jTg2Xmvd7PgufFJ2NjYmDnhbrfb2RsC8gWRdwNAN3NEmNjc3FS3281GkOPxOGdjIFZ4Crl32ECc4fQdAsopMRkk3oqQ9odOmhEUeM2zE1x8gsDyjJ5VwWk5afl0HmD8PbPBT+cZE0QAb0WKiOJryE/9KUdwc0XWOQS17BXgYgJrgfu5T4N05QmA+OHZHYwDz8SYu2CFoAN5Rjjw+yG4cL0bYzIm3M9LQVin/q8/r4/3PMNDPoN7kp1UHlfiZUx5Ds8oIX4fX//bItuBaxEgykahgUAgEAgEAoFAYD4qIShANMbjce6QcPfuXd28eTO3RBwOh3rw4EEmN95JAQLm5J2afQjz+fm5jo6O8umupCw4QKQwX3QyKV11DxgOh5lUS9JkMsmeBu12W3t7e7p9+7Z6vV4myggcZUJEvN5mD8EAsi5dCg6IBGQbQLT8+TCvdPPAVqs1k7buBof+JV11Tzg5OVGr1crjB6knPZ7SCEpTEAIoOfFMATfLY555Rkk5o2Q8Huv09DRnmbiBopNAJ7LuL8Dpvp+6+2m5XwdRZX7LBoCckK+vr+f7slYo58A3g/ko1/J7SYsTavchcLILuWYcm81mzirw8hzIrZsOlk0ZXThB9EK8cY8E1jWx8V73fvBxBWWTSNadr2EXH8p/416G4BkEzAXZPp4h4WuJNU5mRNnnQnrUV8PXKR1VPP5ybD4WkaEQCAQCgUAgEAhcj8oICqenpznNfnt7W9vb2/kUejgc5tIBWuBJVySPdpFHR0c6OTmZOYWu1+u6uLjQvXv3ZtpLcspdFEXOWuh0Opkoc4qLuOCv+ann2dmZWq2WWq2Wut2uut2uNjY2cktLsiLG43Em9/ghcALN57o5Iieox8fHWSCRLskShN+JKKQO8tnpdPLzzTt95V7SpZgwHA41GAyyOIKfAtkRCB1ra2vqdrszGRfdbncmVZ0TfEmZAEKwnchJymSP035inJcq73F79gAtRokH0giZLrcCJIuB67zlJrFKV9kjTk4pY6EzCGUHXobhMRIDzwRh5nvIt/ti1Ov1bDiKGOCmjd51gnuR9eFdUfjbIs2fa7xjA/PKPSg1oDTCx82NDaWrzhHuC+LP52QcccB/5xkMxOP+EDwHawFBBKHExZny+uYz8ATxLJfyGuRa1oQboWKwGQgEAoFAIBAIBB7FE5usp5R+K6X0XkrpDXvt8ymld1NKr0+/Pm2/++WU0lsppTdTSj/+NEH46Xm9Xtfu7q42NzezsztGjE7aIN5kKHBy7EaDN27cyKSYuvper5czG+goQTvHhw8fzvgj+Emrnz5LyuaMEI9+v6+bN29qb29PrVYriwX4J0BU/SSZlGs3Jdzc3MziAd4EfiJNmYOnuPtptZ9Gc6o/nZcZMzwECcgZbS+JE5GHz+Q97XZb6+vrObZWq5U7TEBA+d5FAQgiZSpkNIxGo5nPoOwBso9oUCZ1/rp7MpTJP194UzBe5fc6kfZyE38GBB5ELR9DxtjT5RGhEJ54VifO81L1uRahhbmc13kAwcQJtmeI+Cm7jxlzy/vdNBThB88BFy0Qwnw+XBTwLAye1TtruJji5pW0c/X1ioDBZ2EC6aJeeU3w/GTceMYFz+qeGMwvz414w88uziwbi9iLA4FAIHA9Yh8OBAKBR/E0GQpflPSfJP3n0uv/sSiKf+8vpJQ+Lumzkv6epDuS/mdK6YeLonhsIbITt0ajkU/5ERTG43FOM+fE8PT0dOYUk1NYTlu97pqf+/1+JtmULXidPwQMY8KLiwt1Op0sBOBTcHR0pMPDwywCNJtN7e3taX9/P4sBkEJq7b3bwmQyyf4BXmOPyOGlG++//35upUh9PSQewcQJpaQZTwk/cfUSDjfqg7RByi8uLnRwcJAFg7W1tUykPbtC0iM/Q9p4NuaE7yFx3o3CSRxflINAOv39nGy7YICXBPdmTUBqeS5fZ15y4GQSQYTPIgOB+ajX6zl7xjtK+NrCK4ISlTLp5r4QXASii4vLTg904nCjS+L3a7merByEGP8s5sU9Ipzgu9DkJQA8P/chLowRvXREuspC4H7lDALpStTget5bLqPg3uUODggULjzwfPxbLl9xUbC874B52TsV9FD4ol7wXhwIBAKBx+KLin04EAgEZvBEQaEoij9NKb3ylPf7jKQvFUVxKunvUkpvSfqUpP/1hM+YIWrUkUP6jo+PNRqNJF2dQJdPkyFI7qZPxgJp+dyvnHpdbgXoxo2cqtMtQNIMIWu1Wtre3la3282n9xAvTv055UXcgOg70VlfX1e73daNGzc0HA51cHCQ/QzAxsZGFhQwW6TOnpIFd9wnVsSTtbW1LE6Qio+RI8IHIgUlKP1+f0aISCllU8pGo6GzszMdHh5mous+CcxR+WT95ORER0dHucTCa+bxuyBrQJpt3cj3kOPxeJwzVdbX13PcfqruHgA+9hBVvDT8fS6YQN4RSpiT4XCYM0LccBJTStYrYhSgy4Tfk3joREK2DsIaWTZeVoF44aLYPPNEJ/VkBPBeN0bkda51su7vc5Gl7O/grT4ZZ8ac5/XuEogDfHl2CvdibfF583wTfB9xv4ry3x7g73een4gLcFUqd1jEXhwIBAKB6xH7cCAQCDyKJ5Y8PAY/n1L6+jT9a2v62kuS3rZr3pm+9kRAbmkDCfE9OzvLRojzDN2cPPmpuHRlICddnv6vra3lE1qv4/ZsCFrwcRqPmFA2eqPLRK/X087Ojm7dupVNBd33Aa8BT7339GrpUii4efOmOp3OzAm1dJltQOYCLSO3tra0ubmZn88NCZ0gUgYyHA5nzP2cvEHcKGkgrf/hw4czHTIgsqPRKKfun52d6ejoKMfKXNCJwgklZA7RhpPusss+/guk6jOnGEH6syE4NJvNmawNyCQE1lPs+SzmHv8LsjrIKCivNcBrZM2MRiNNJhMdHh7qwYMHuXzGzTPdLJPXvSUlYzMajbIPiJsSQsLL2Rm+TinxQczwE3sfL8ob3NTQf8e4kwVElo+Te7paMD8uWCCszDNMZE681KJ8D8ZkMpnkjBA+vyw0lbtEELc/VzmDwdcP4gVijHcoYSxWBM91Lw4EAoHAMyP24UAg8KHFBxUUfl3Sq5I+Iek7kn5t+nqac+3c48SU0s+klL6aUvoq2Qntdlv9fl/tdjsTXzorcIoPwZeUSbATlWTmfpAwTp+dbEF+PCWcn90EDqIEwaM0gOyFRqORY4YkIkwMBoPcwcCJFNchMtA5wdPKIZWklkN++/1+Lp84PT3N9y8TIU678YOgDIBnRCAgQwNDSQghaedOWouiyNkMEP/Dw8Ms+FxHIKfzLenyVP/o6Cj7A7ip38nJSc4O4V6eQeAtLiGa9Xo9mxnyfC4AkdKPsMQpNO8tG1xCUstZFg6IK/4LdMIYj8d5fonZO21IV51FiMlPwieTSR57BBDmEA8IsiGc/LJ+MafkWZ3kQ8jLngTME2LBPK8BBBn/vfsyeEYAYkW5bIL1zj14rSza+P29XMmzDTzLxAUrX3/zBASHe7FImskscUFmBfBc9+Jznb6QIAOBQOAHGLEPBwKBDzU+UJeHoii+x/cppd+Q9PvTH9+R9BG79K6kb19zjy9I+oIk1Wq1otVqZVNDTnQnk0nu7MAJvWcqcFLKCa638OM0Gk8Gr60G3IdUcCdJADLjadie6r21taX9/f3c6g/SPRgMsqBALBBCTkMx9+t2u6rX61lMgMx56QLCSLfbVafTkaR8Qs7n+OkyhJQSAJ4Fwsvz0F2g0+lkU7xmsznjEcB8jMfjTPQwG+QEm8/F94CsB+JHvMBg8+HDhzkzxOfGhQxJM4S/bAbopL1MKBlnSbnzB7GQQs+9y3NPRgZf5c4DiFMIAm4m2Ol08vywbnxNkdkxHo8z+fYOCE6Q3eyRtcBYl7NSXDRxIcw7IzA3Xlrg5R2INTwXIg4+He5R4tkSnnHAe/mbQgzzjBMXaHj20t6QBaOyBwPiw7wyBsaKOSxnaXAPFyS4zo0kV0hMeO578WbaXp2HDwQCgQog9uFAIPBhxwfKUEgp3bYff0oSbrdflvTZlNJGSumjkj4m6StPcT9tbW3p9u3b6vV6uY4fc0QyEbx2HOIJkaG23TMYqF3nxPfk5CQTdknZxM5d9708AZd7CAdeBZRN1Ot17e/v6+WXX1a73ZakXAMPcYb4cXJOPT5EidKHyWSSnxeSjgAByWk0Gur1ejkrYzKZaDgc5owGzxIop8mXT9ohf3hAMGacrkvKbTPxbIColv0rymnpZdM8yCWxeraAZxEwJxBnTDA9m4TPojXm1tZWbg1KXTyZIzwvhNx/9qwQHxPG0MsIIKCUL9RqtZkTf4gt/h/ELF35DzDnXkrgJRjMkZeHsB5Zy8yJm43y5f4HiEVeAuMx+LpyTxGECl/3LsIhQABvwYhniWc18Gzu5cAzcZ2TfPewcLHAM4SYBy9DKQsLnjVRHl++WHOMi79nlUSF570XBwKBQODZEPtwIBD4sOOJGQoppd+R9KOSdlNK70j615J+NKX0CV2mbn1L0s9KUlEU30gp/TdJfynpQtLPFU/hZoug0Ov18uk05Q4XFxeZoGFYCBmhdACS5KfNN27cULvdzrX1EHy8BBAenHz5yS+14gA/Amrca7Wa9vf39eqrr+rOnTva2NjILSjxFXCyCqGBqECMyLqAKI5Go5kTchdMOp2O2u22Uko6Pj7W8fFxLgnxMgH3avBTajfFQ6BgfBhXxtS7ZjAOiB+tVivHWyZylKa4PwKfe3h4mEsvEIQo3ZCUBQQn2v5+DAcZO8oJIOfEXK/XZ3wGeA4yJjqdjjY3NyUprzVPd+d6J62eneB+GO6NgB+DPzfwsSeTwzstuNjjp/+eXeLj4J8PCa/VanmuEBecoLsQx/0pOfEOEAgqknJWA38D3n7TSyvIiClnEyA4lFubejcJFyG8zMHXgJdKzCu5cKNIz07gHl56QTyM0apgEXtxIBAIBK5H7MOBQCDwKJ6my8O/mPPybz7m+l+V9KvPEgSn4KTZY9g3Go3yKb40a7qGSR+kALIOocBvAf8Ez05AUOCE3I3qEBwgWpxmUt8/HA4lSb1eT6+88opeffVV7e/v58yE4+Pj7NLvdeJkQ0AeiYvTburxva6esaB9I+00Me9DSOBEudx9QrrMmNjY2Mj3hZRjDIhRJWSSceQUm3Egfr4nPu7FSTQnwNIVoSaDgk4dzLnXwZdbgJZJI6UaEEvEDUQgxpsx5/POz89zdgtZD3T8GI1GeczIOPBsDj/ldrPPshcH80nnDb+fzyXk3N/vrRp9brzkQdKMSaAbWRKXx+JjXM5c8NN+L+lAECAmNyp0ks/vff55v2cYeKmCZyYAXveuFFxzXSmDiyNurMqzefcS3iPNGlN6Vg1//x5XOb4qCQ6L2IsDgUAgcD1iHw4EAoFH8YE8FJ43yCaA+HNiDdlw0n1+fp5Pgzkt5j/+nr5Maz4IlosF3tlBUvYE4JQfAsrpfVEUM+38Wq2Wdnd3defOHW1vb2tjYyNnLzx48CC3ioTwIG5A0D0dX5IGg8GMsaG3p8Skb2trK5smDodD3b9/P3suIKJAWMligFR7RgHtHhuNhtbX1/OYUY8vXZWKQBARJJwAE6sLAZJyNgnzguEfJozePUG6InmksdMBgjVAiQhEGyAQkJ3g/gFkivCaZxuQFUJcTv5Zix5bOcvAu1AgPjAGtE90L4xy5oFnwPg4QPwRF/waP3Evt+a8jvCWyTx/R/zLWvRyCYi1CwP+O/dGIBY3sURcQBBwzwrPmPDxdZLvpQf+XE7syYLxMfGuGTwf1/Jej4917iUXZQFjVUoeAoFAIBAIBAKBZaJygoLXMENyccCnnSFtAsu12U5mPGUb00JOXp00OhE/Pz/P9fd0FyCNmlP2Wq2mO3fu6LXXXtPt27fzqfRoNMplCBgxlssGGo1GzoyA1Hipg/sfEFtKSf1+Xzs7O1pbW9Pbb7+t9957L3cU4D5+2ttoNHR6eqrBYJAJLp0CWq3WzGk7wkC57ABPhF6vp2azOePRwGciytRqtWx8iABDLJ5mTlkIrzNGflLMa9JVFwKEC+Ji/tzHgHT7GzduaDQaZf8Hsg2IAyNPRAE8DRB+vJMEY+JmhcyXZ2r4uqLTwng8zifn5XXtNf3+3BBcz0bwrAnEFS8RYD4Qfsgw8RIAhAQXQcpCBgKAl0QQByTcn8UNRr2swcUf94TwzAjPYiD+sqgBfMz4DPcGwV+FeL1zhaSZ6/yePibzMhQCgUAgEAgEAoHAk1EJQQHi9fDhw3zSCzGHxHHqKykTODfRk2bN2UjBp7UirSm73W7+XE+fhsBhSgix4qT/4OBAk8lE29vbevnll3Xr1q1MziGo3//+93V4eJjLBxBKOp1O9myo1Wq5/GB9fV1nZ2fZvNFN7zh1bTabM6UOg8Fgxp/BvQqKoshZFTxzo9HIJL3RaOSWnJwW+/ghfPA8krIAglcDxnuNRkP1ej23TeRU2QkjBJg5c7NGiKR3OXAijdHiyclJfj/iDSKQd7NAvKF8wwUhnpc5RXA4PT3NGTFcI11lImC86fdFwKKrB0S7bPQH6Xey7J4LCE1lYYB17P4G3N89B5xgQ+79fqwl5qRM6hEbvKSB171khUwA/hbK5TAuAnk3DO9OwnXMu5dPAPdCIF4XBXhWL3Hgs1jLZZHAyy4844LxnydglDM+PMsjEAgEAoFAIBAIzKISgsLa2pqazab6/b729/ezgEDmAKTPT1spUXj//fezn4KTEUk5rR0y3e12c0q8O+W7QZ53A+BfSgdSStrd3dXOzo62trbUarUyMXv33Xf13e9+V/fu3dNgMMgn5Pg4QEz4XIgLggKCh3TV6aBWq6nRaOQUfcoiOCkutwkslyN0Oh01Gg0Nh0M1Gg3t7Oxoc3MzZ0CU2wbW6/VMmk9PT7W7u5uzEwaDgU5OTnKWA3Pg/g2UUjhJ4zTcT7LJ+IBYOil1Y0jmF5LLc5J94T4VlFogJvBF+QfP6+0WvbwG8CwQdS+lka7MNZlPhIt6vT4jdEiaIbDS1Wk5/g9lrwneUzbz9FN35pZyH8pFPJuG+7g/AS05WYuIbb4evROIl4GwrsolES6eMEaUrrjw4H4SZVHEM1jcU8OFQcg/ohH3dcGB9V9uN0nsN27cmPHaQBjic3zvCAEhEAgEAoFAIBB4OqQq/Oc5pfR9SSNJ95YdywfAriLuRSLiXjxWNfbnFffLRVHcfA73qTxSSgNJby47jg+AVV2j0urGHnEvFh/2uD9M+3D8n3jxiLgXi1WNW1rd2F/oXlwJQUGSUkpfLYriHy07jmdFxL1YRNyLx6rGvqpxLxOrOmarGre0urFH3ItFxP3hwqqOW8S9WETci8eqxv6i477x5EsCgUAgEAgEAoFAIBAIBGYRgkIgEAgEAoFAIBAIBAKBZ0aVBIUvLDuAD4iIe7GIuBePVY19VeNeJlZ1zFY1bml1Y4+4F4uI+8OFVR23iHuxiLgXj1WN/YXGXRkPhUAgEAgEAoFAIBAIBAKrgyplKAQCgUAgEAgEAoFAIBBYESxdUEgp/URK6c2U0lsppc8tO57HIaX0rZTSX6SUXk8pfXX62nZK6Q9TSn89/Xdr2XFKUkrpt1JK76WU3rDXro01pfTL0zl4M6X048uJ+tq4P59Senc67q+nlD5tv6tK3B9JKf1xSumbKaVvpJR+Yfp6pcf8MXFXesxTSo2U0ldSSl+bxv1vpq9XeryrjNiLX0icsQ8vELEPLzzu2IefM2IffjGIvXixiL144XEvfy8uimJpX5LWJP2NpB+SVJf0NUkfX2ZMT4j3W5J2S6/9O0mfm37/OUn/dtlxTmP5EUmflPTGk2KV9PHp2G9I+uh0TtYqFPfnJf3SnGurFPdtSZ+cft+V9P+m8VV6zB8Td6XHXFKS1Jl+vy7pf0v6x1Uf76p+xV78wuKMfXixccc+vNi4Yx9+vuMZ+/CLizX24sXGHXvxYuNe+l687AyFT0l6qyiKvy2K4kzSlyR9ZskxPSs+I+m3p9//tqR/vrxQrlAUxZ9KelB6+bpYPyPpS0VRnBZF8XeS3tLl3Cwc18R9HaoU93eKoviz6fcDSd+U9JIqPuaPifs6VCXuoiiK4fTH9elXoYqPd4URe/ELQOzDi0Xsw4tF7MPPHbEPvyDEXrxYxF68WFRhL162oPCSpLft53f0+IlbNgpJf5BS+r8ppZ+ZvrZfFMV3pMuFKGlvadE9GdfFugrz8PMppa9P079I2alk3CmlVyT9Q10qhCsz5qW4pYqPeUppLaX0uqT3JP1hURQrNd4Vw6qNzyrvxau8Riu9JzhiH14MYh9+rli18VnlfVha7XVa6X3BEXvxYrDsvXjZgkKa81qV2078k6IoPinpJyX9XErpR5Yd0HNC1efh1yW9KukTkr4j6demr1cu7pRSR9J/l/SLRVEcP+7SOa8tLfY5cVd+zIuieL8oik9IuivpUymlv/+YyysTd0WxauPzg7gXV30OKr8ngNiHF4fYh58rVm18fhD3Yan681D5fQHEXrw4LHsvXrag8I6kj9jPdyV9e0mxPBFFUXx7+u97kn5Xl+kh30sp3Zak6b/vLS/CJ+K6WCs9D0VRfG/6h/JQ0m/oKi2nUnGnlNZ1uQH916Io/sf05cqP+by4V2XMJakoikNJfyLpJ7QC411RrNT4rPhevJJrdFX2hNiHl4PYh58LVmp8VnwfllZ0na7KvhB78XKwrL142YLC/5H0sZTSR1NKdUmflfTlJcc0Fymldkqpy/eSfkzSG7qM96enl/20pN9bToRPheti/bKkz6aUNlJKH5X0MUlfWUJ8c8EfwxQ/pctxlyoUd0opSfpNSd8siuI/2K8qPebXxV31MU8p3Uwp9affNyX9M0l/pYqPd4URe/HisJJrtOp7ghT78KLitfhiH36+iH14sVjJdVr1fUGKvXhR8Vp8y9+LiyW4f/qXpE/r0kXzbyT9yrLjeUycP6RLR8yvSfoGsUrakfRHkv56+u/2smOdxvU7ukzLOdelEvUvHxerpF+ZzsGbkn6yYnH/F0l/Ienr0z+C2xWM+5/qMl3o65Jen359uupj/pi4Kz3mkv6BpD+fxveGpH81fb3S413lr9iLX0issQ8vNu7Yhxcbd+zDz39MYx9+MfHGXrzYuGMvXmzcS9+L0/SmgUAgEAgEAoFAIBAIBAJPjWWXPAQCgUAgEAgEAoFAIBBYQYSgEAgEAoFAIBAIBAKBQOCZEYJCIBAIBAKBQCAQCAQCgWdGCAqBQCAQCAQCgUAgEAgEnhkhKAQCgUAgEAgEAoFAIBB4ZoSgEAgEAoFAIBAIBAKBQOCZEYJCIBAIBAKBQCAQCAQCgWdGCAqBQCAQCAQCgUAgEAgEnhn/H4AIVjSz2FytAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 253690 0\n", + " Min thresh = 1000\n", + " Not Sliding\n", + "\n", + "\n", + " Winner = Not Sliding\n", + "\n", + "\n", + "218ns_image_6370410622099_CLEAN.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADDCAYAAAAya0IYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADa4klEQVR4nOz9e5xlaV7WiT7vjn1d+xKRkVlV3V3dTd9okEYFRKDbG3NEjxdGjhcc8Yw6IjbO6HjG0SOX44yIIwcc0OOMH9H2owOOFy4iisoRhTmMOnQjl0FppJu+0Jfqrq7KyoyIfb9E7HX+iPi+8ayVkVVZVZmVkZm/5/PJT1bu2Hutd73rXbvieX7P73lTWZYKBAKBQCAQCAQCgUAgEHgxaNzvAQQCgUAgEAgEAoFAIBB48BCCQiAQCAQCgUAgEAgEAoEXjRAUAoFAIBAIBAKBQCAQCLxohKAQCAQCgUAgEAgEAoFA4EUjBIVAIBAIBAKBQCAQCAQCLxohKAQCgUAgEAgEAoFAIBB40QhBIfCKI6X0cymlL77f4wgEAoHAOVJKH0kpfckdvrdMKb3lJZ7nJX82EAgEAoHA5UIICoFXHGVZvq0syx+93+N4PqSUXp1S+oGU0ifPfvl9w/0eUyAQCDzsSCn97pTSj6WU5imlH73f4wkEAoHLiLstzL7Q8eL34sDzIQSFQOBibCX9C0m/834PJBAIBB4h3JT0/5H0zfd5HIFAIBA4R/xeHLgtQlAIvOJwW21K6RtSSt+bUvq7KaVJSulnU0pvTSl9XUrp2ZTSx1NKv9E++wdTSj9/9t4Pp5S+unbsP51SevpMQf0qV1xTSp2U0remlD6WUnompfTXU0q9i8ZYluUzZVn+NUk/cQ+nIhAIBC4lUkpfkFJ6d0rp8Ow79a+mlNq1t/2Ws+/h51JK/2NKqWGf/8qz7+qDlNIPpZQ+7U7OW5blD5dl+T2SPnk3rycQCAQuG1JKvySl9KNn37M/l1L6bfazH00pfZX9+79IKf3bs//+12cv//uU0jSl9J+llL44pfRUSunrz76TP5JS+r+/1OPVxxq/FweeDyEoBC4D/lNJ/6ukK5L+T0k/pNO1+aSkb5T0N+y9z0r6UkkjSX9Q0l9OKX2eJKWUfpOk/1bSl0h6i6RfVzvPt0h6q6TPOfv5k5L++3txQYFAIPCA40TSn5B0TdLbJf16Sf9V7T2/XdLnS/o8SV8m6SslKaX0f5P09ZJ+h6THJP0bSf/glRh0IBAIPAhIKbUk/VNJ/1LS45L+a0l/L6X0GS/02bIsf+3Zf/7ysiwHZVl+99m/X6XT7+wnJf0BSe96mccLBO4IISgELgP+TVmWP1SW5bGk79XpL6DfXJblRtJ3SXpDSmlPksqy/OdlWX6oPMX/rtMv4l9zdpzfLel/Kcvy58qynEv6c5wgpZQk/WFJf6Isy5tlWU4kfZOk3/MKXWMgEAg8MCjL8qfKsnxPWZbHZVl+RKfC7i0i7dn36cd02qbwFWevf7Wk/3dZlj9/9r3+TZI+505dCoFAIPAI4IskDXT6++66LMv/TdI/0/n36EvFf1eW5ersd+R/rtPfjQOBe4oQFAKXAc/Yfy8kPVeW5Yn9Wzr90lVK6TenlN6TUrqZUjqU9Ft0qsZK0mskfdyO5f/9mKRC0k+dWcsOddoL9tjdvJBAIBB4GHDWevbPUkqfSimNdSoKXKu9zb9jP6rT72BJ+jRJf8W+a29KSjqtmgUCgUDg7HfWsiy39tpH9fK+Jw/KspzVjvea2705ELhbCEEh8MAgpdSR9H2SvlXSE2VZ7kn6QZ3+oipJT0t6rX3kdfbfz+lUnHhbWZZ7Z392y7Ic3PuRBwKBwAOHb5f0PkmfXpblSKctDKn2Hv+Ofb3Ocw8+Lumr7bt2ryzLXlmWP3bPRx0IBAIPBj4p6XWePaPT79FPnP33TKeFMPCqOzjmlZRSv3Y8vpdfyvECgTtCCAqBBwltSR1J1yUdp5R+s6TfaD//Hkl/8CzkppDlI5wpwH9Tp5kLj0tSSunJlNL/9XYnSyl1z84nSZ2zfwcCgcCjgKGksaRpSukzJf2XF7zn/5lSupJSep2k/4ck+m7/uqSvSym9TZJSSrsppS+/k5OmlHbOvmubkhoppe5Zr3EgEAg8TPhxnZL8P51SaqWUvlinmWLfdfbzn5H0O1JKxVm4+B+qff4ZSW+64Lh/LqXUTin9Gp1mjn3vyzxeRvxeHLgdQlAIPDA4yz344zoVDg4k/V5JP2A///9K+p8k/f8kfVDSu89+tDr7+2vOXn/PmYX3hyU9X1jNQtL07L/fp/P2i0AgEHjY8ad0+h070akYe1FI1z+R9FM6/UX1n0v6W5JUluX36zQE97vOvmvfK+k33+F5f59Ov2u/Xaf5OIuz8wcCgcBDg7Is15J+m06/G5+T9Nck/f6yLN939pa/LGmtU6L/nZL+Xu0Q3yDpO89ay8hJ+JROfz/+5Nn7/8jLPF4d8Xtx4EKksizv9xgCgXuClNIv0ekvsp2zYLBAIBAIBAKBQOChwpnD4e+WZfnaF3hrIHDXEQ6FwEOFlNJvP7N6XdFpheyfhpgQCAQCgUAgEAgEAncfISgEHjZ8tU4zFj6k033UL+r7DQQCgUAgEAgEAoHAy8Q9ExRSSr8ppfT+lNIHU0pfe6/OEwg4yrL8TWe7N+yXZfnby7J8+n6PKRC4X4jv4UAgELj/iO/iwL1GWZY/Gu0OgfuFe5KhkFLakfQLkn6DpKck/YSkryjL8j/e9ZMFAoFA4BbE93AgEAjcf8R3cSAQeNhxrxwKXyDpg2VZfvgsxfS7JH3ZPTpXIBAIBG5FfA8HAoHA/Ud8FwcCgYcazXt03Cclfdz+/ZSkL7zdmzudTlkUhVJKajQaajROdQ7+nVKSJJVlqe12q5OTE5VlqePjY6WU1Gw2VZalTk5OdHx8rOPjY22328oxWq2WdnZ28jm3261wZ3A+js9nG42GdnZ28jF4D58/OTnRdrtVSkk7OztqNBr5GLz/+PhYJycn+bxlWcpdIVwvr6eUbrnesizzWPz8/Nyvwf+b93BczpVSqnyWc/J+f2+r1VKj0ahcL/PPGFNK6na7lfFxDu4H1+DXVv/D2HmPj9fn0sfo97fZbFZe8/Mw7vpc+bl9Tur396I1w3q6aL1x/bzXx+Hv87Xu7+Vaed3HcNH8+7zWx8Ga5jWO7/Pon73dffL1ddG94zP+3/65uhuK81/0mv+pn/92r9VRf45uN0a/Tv+ZzflzZVk+dssJLj9e1PewJO0M+uWb3rjVM+/t3dOBBQKBwIvBUjOty9WtX/QPBl7Ud3F8DwcCgcuKiQ4u/J34XgkKF33pV9hESumdkt4pSb1eT7/6V/9q9Xo99ft99Xq9TGS73a6azWYmbZvNRvP5XIvFQgcHB1qv12o2m+r1ejo5OdFyudT169f17LPParFYqNPpqN1u6/Wvf7329vYywVqtVlqtVvkcOzs72m63ms1mWq/XOj4+Vq/XU7vdVq/XU7fblXRK6CDON2/e1MHBgSTp2rVrGgwGeQzr9Vrdbler1UrXr1/XbDY7nYQz4QMRhLFD8lqtVj7Xer3WfD7XZrNRs9nUlStXtLOzo+VyqeVyma9hu92q2Wyq2WxqZ2cnj3ez2ejo6EjT6emWsZ1OR/v7+9rb29NyudR0OtVms1Gr1VKn09Hx8bGOjo7yNQ+HQ127dk39fl/b7VaLxUJHR0eaTCZaLpeVm/ua17xGb3rTm9Tr9bRer7Ver1WWpSaTiT760Y9qsVio1WppOBxqZ2dH6/Vas9lMs9ksCxaS1G631W63VZalRqORiqLIxH0ymejo6EiHh4fabrfa3d3Na2Z/f19Xr17VYDBQr9fTaDRSs9nM5Hs+n+vGjRuaz+fqdrt5XS2Xy3xvUko6OTnJa+z69etaLpf5niwWCy2XyyxkdTodtVqtfC0IFt1uV0VRSFL+PILTYrHIY+p0Onmtc++azaZSSjo8PNR8Ps+kdrPZZJJ7eHio8Xic12K73Vaj0cgigYs83W433zvWV7PZ1HQ61WQyUVmWarfbajabWq1W+T1XrlxRr9fT8fFxXmubzUaNRkOIf/P5XMvlMo+t2Wzm55ZxuJjkAg3CCKKJfw5BbmdnR51OR81mU+v1Op+H9XJ8fKzNZpPnoNls5mfMj+HPuyS1Wq2K2ICwg4hzcnJSEdPm8/lHX+T332XBC34PS9Xv4q4KveHnvlRveFB/bQ8EAg8lfrz8kfs9hJeDF/U7cXwPBwKBy4ofLv/hhb8T3ytB4SlJr7N/v1bSJ/0NZVm+S9K7JGlvb6+sV7IhA/yCj6DglfNms5lFhu12q263q06noytXrmi5XFaqzJvNRsfHx5lg7OzsqNVq5ddbrVblAngfAsDJyUkWEhhHp9NRt9vNJBMy32g0MtFqtVr52FSKIUBexXZyBSFsNpvqdruZmC0WiyycQF7dGQHRlZTnh8+t12utVqs8LwgQzJ1XvZfLpRqNhvr9fh43P4PcQ+RarVYm7MvlUnt7e2q1WvmeIZjM53Ot12udnJyo2+2q1Wplgsd4pPPKPyScnyG+FEWRxZDVaqVer6eUktbrtRaLRZ6/Xq+noiiyaLDZbNTv97NYdHJyolarlcULhCnWAueDGCO6cF2TyaTiPoGkuisDos99Y824k4Y5cDeB3393u2w2G0nKQtV8Pq+sRQQUyD/PEveaZ2i73WYC7o6MnZ0dHR8fZ0Go3+9noWm9XiullP+70+lUroVnbGdnJ7t6OL+kLBqcPfv5niGIuTsC8QFxp9FoqN1u53HyHt7H88N5OQ7v9+PWXTh8P9TXN+dmXT6geMHvYan6XTxK+3c/VCcQCAQebbyo34njezgQCDxouFe/Lf+EpE9PKb1R0ick/R5Jv/f5PrBarTKhoYpZtzFD0prNZq40N5tNTSYTrddrScqvObGRTskY5KTeSgBp9EqtEy2II4ICxAnS1+l0smuACjvX1G63M0mBtEFS+JvjLpfLfHwEBwg5VWKIDuIBbgaqtW7tR5Bot9uZOE2nU/X7/UwWcVO4pR7SiMDD607ONpuNlstldkNAsh977LF8zZB2BISTk5NMRnu9nnZ3d/N1OXHb2dnRcDjMYor/abVaGgwGeb6Xy6UGg0EmqIhEq9VKKSX1er18TYgrs9lMi8WiYu3nfiIClGWZiTvXjPjAHC8WCy0WC0nKn8XlsF6vK0IJQkWn08miw2azqQgcRVFUSDKfc+Bu6ff7WQgBkH8X4XDp1FtmcBqsVqtbBIyLRBfELsaN4OL3lXmut6MwX4gbkHueFQQvvw/uQsBF1G6381p1sYc54hmVqm0OdZGD++VtQ976wZpw4e4BxYv+Hg4EAoHAXUd8FwcCgYca90RQKMvyOKX0xyT9kKQdSX+7LMufe77PbDYbzWYzdbtdDYfDC3u3verJL//tdluj0UhHR0eZiLt9XDp3GyBIOAGSVCEnkCSqwRApiAWEC4LSarWyCIIQAXHCzg8pq4sAdTfBarXKVXwImffa44TANcH1Y2ufz+dZOMAdwM+5ZuYZ5wTjgjiTB+HEuNfr5WtnPrhed4dAYJl7LOqICpBDjsPYuEdeXW61Wtrb25Ok7H5ApGg0GllkgYhSMQc4LtrtdhY/XPxBlJGU1wLXzryNRqMsrrjjot1ua3d3N59vMpnk+9put/MaQcDCHYCo4JZ7J/6S1O/3byG2LuzwDNAO4AIHApILHjwvdQcOY08p5XtPuwXP42q1ymuTdUL7gQsmCGjMp+dOIGTwjLB+mGfmgp+zDtwdVG9rcHcOn/f3s3b9mXXxA+EB4YjP+9rnWPXchwcJL+V7OBAIBAJ3F/FdHAgEHnbcMz9vWZY/KOkH7+S9Tiggxe4i8D/kHrRaLc3nc0nKhJmecEgOVm9JuRecaqWkTE6xa/PZbrdbISn88fPO5/Ocz+Cf53XOC6n00EDGRXUYYt1sNnVwcFCpDrsNn/N4q4e7Edrtdm5p8BYRyDzzTMuAtzTwcyd75EHQSuKhloyB7IC9vb3bhktyzRyb45LV4G0kLhYNBoNcXUfAgEzT6gBRR7iAeOI04L3kEeCOcILP+mBNQGzJQuC6qNwjHPgcIaxwjyXlyjvroR5+yD1F0GF+EFkk5fVFZoWLEcwtVXrOMRgM8trDWQJhdoLMHHH9zBcuCVw93EtvwSBvgdc9g4Dz1dtXECHceYCrg3Yc6dyx4w4ChBfmiO8Nzu/5FwiFrG2+TxBhEIjqgau+tt2x48d70PBivocDgUAgcG8Q38WBQOBhxqVoEMbifnR0lIPvut3uLWnykGEIOpVg7NuQGogKRKbVamUSvbOzk98LIfWANgiKpBws6NkHVDqn06lOTk7U6/UqxIT3O3ElgK9OinZ2djKRhLSnlDSZTLTZbDKZ9jYIQOgioX/kBVAN9rmC2EGUIMfeq067Be0JkiqWea5nuVxqPp/neYVEzmazSkWe/n5JFdJGBgTHRqiB0HNfEHuGw2EmjsvlMocaQry51roNnxwEb7uA0EI8qeqnlCrkmTWE2AOBpuXEq+WDwUCLxULT6bRCcLluX+PuSnCRCrcA90BSvpeIFN6iw9quW/Kpznc6HRVFkdcAqFfgORbuF9Y468LbL7g/kHKeKc7JfCC6AG8nQhhy5wXrBQeEt0d40KSkWwQbhz/P9XWHy6QoivyM8WzX7xnz4vNQDyANBAKBQCAQCAQCp7gUgkJKSXt7e7knfTqdVpLy6w6F7XabK9sk8o9Go4pFvd/vazababVa5eo6gXWQCq/EAiqZVPYhnhA6ghgJ+0M88KqpkyTIqgfLSedVeyeynU5Hw+EwW8q9J9xbKbz6i6jAGCCLVGohb/VKLGIMP0MY8N53zkWrRVEUKooiW/xxBSAAzGaz/D7IrFf8JeU2C88fYD6oXHNdjGc0Giml090NuG7pPCOi0WhoPp/n+0mmArb/4XCooihu6YcntwNHAFkcEFIPNeR4nvkACeV6PQgRMYB5Yk4J6pTO8xBwokwmkywwcQ3cD5wqzFW9hcHDG7mufr+fP1d3f7jYQeYFggZilwcZMh88e+yAwq4o3Ft3LzAu5oEWDdw/ZEh45gmCAK/x3PMac+nOhXobA4KNZ2TwXu63u4r8et3x4+s/EAgEAoFAIBAI3IpLIShIp5XrwWCgg4MDTSaTSriiJ+lDNtkGD7u4b8HXaDTy9pOk4XumAgS+HjiIrZ7xtNttFUVRCWisVy8hKd4OANGGQFENlap2bo7D1oVU0jlnPYHe+8Qh2xzPLe/eQ07VnnO7hRvyjtixWCwqbR7SOdFHFPGsAsbi5Jp8id3dXU2nU02n01y1hiAjtHDv/LogjicnJ5pOpxoOhxoOhxoMBtrd3dVsNquk9DM+xIv1eq3d3d18jayVVquVWzxYCxyLynVZljo6OrqFbDKvnU4nZy94cGc9z8Ar6Z4NUA8o5F5xz1NKeStP7qeLEZ4NgkuBMfkao6qPWIF45Ou3vmsK98/zFFjL9aBDWkUGg4F2dnZ0eHhYcQb5c8Bccp3umEFs88/W22okVZ4Dz5JwMeGi9Y+LhvvAPXUHC6+x1rlOXyeBQCAQCAQCgUDgYlyK35b55b/f72uxWGg+n2s2m+WMAunc0kwbgfdjLxYLHR0d5R0HIHhsH0nWAoTFw+F8DGxJSHXV8xQQNRALSPyvuw/qFdZ6+J73Y1OZXq/Xms/n6vV66nQ66vf7mQRCniVVPsuccA4n7E6E6O93cuoVXD8OZA9hw0mlV3i9JYIsBOaKcQ6HQ129elWr1UoHBwfZBeIZDdwr2kf8WhCCFouFiqJQt9vV3t6eptNpdooQuAihxpUxmUxyoCOuAO4/9wonAPcPQQshw3cFoVLtApFXrt2VgDCCAOG7lnhLjm+hSMsP8zidTivrx+cVtwLOEFofWOeQYdozBoNBJV+D9eTijbc+MP8u5iFO0KLjBB7RjpYXxuZCF1kSCG8ekiipEqzJ/PEM+jzVWxlarVZ28iAQuquD9xK66sIL23j62nZ3UiAQCAQCgUAgEHhhXApBAVEAOzIEhX8T3ge58l0aIA6QT4gW77169WpuTfCKtlubJWXCQYDfer3W0dFR7pOHsEA63LZOWCDXcnJykgk5pMWr13zOq784FEajkVqtVt5ZAXJDi4U7I7h+r/jzXs91YKs9BAzIEw4P4L31iBteAYYwku3AGHAgeBgm5By3yXQ6zaIHLSe4GyRlocD76yeTiY6OjvL5hsOh9vf3Mynv9XqV0E3p1JFw/fp1tdttDQaDnMHA3HsQYX0nD0i97xbh84hI4K0y3BNELI5JVgfnrjsqfL1Ip5kY165d097enq5fv55dH55PASEnw8GdA+52cTcEYgCtD5B5AkB9rTKXtKLwGiIb2Qncb7bpxFFzUbWfsSwWi9zGgkuAuWSOOCfihzs5aKPwUEruhzsYXKzhWWSuyrLM18La8+wGF4PcDREIBB4tfOq/eYeWV+P5fyG85W98TMdPfeJ+DyMQCAQC9xmXQlBgdwTIQD19HjJIG8NgMNDx8bGuX79e6Q+HKDj5L4pCTzzxhA4PD3NlHDJE5dJJfqfT0WAw0Hg81nq91nQ6zUQKqzgEG7Jdb5+ArBBAOJ/Pc6UWJwSEz/vavX2j2WzmoEUIlaRMLJk3hBEIE/CAOg8nRMTgc/XxuzgwGo00mUzytXIenCBeYR6Px9kJ0uv1NBwOdXx8rN3dXV25ckXz+VzT6bRSDef6EVHG43EeP6LRZDJRURR5J4zhcKjZbKblcpnPc/Pmzbz7B86B+XyuyWSixx57LFfREUQgkb7dJm0JiDnkIjDP7g7hnnAf2JISG70TW3Iy/P1cn9/HRqOh/f19FUWRAw+9Eg+J7nQ6FbeIV9MhwrgvJOX/xtFBqwbrk9wLF0tYx9xfXC7ce54D1lVKSUVRVHYdYa0wRgQ7z/hwN423NSGIuRDoLTzeMkR2CO91J45v3YkwhAvido4ezzTx3R4CgcDDi82X/Ap9/Dect2ttW1spHv0XxC/88ddL5eslSamU3vi1777PIwoEAoHA/cClEBSkcyLulXsq2d63TlXaq9y8F+LhgXVUcyEq9dYEKupU2rvdrrrdrsqyzLstID5IqoyRCi5tEQ7IFOdlrJvNRoeHh7mC7sfiWiXlyjKJ/Z7vwDgQOdxZUN+pwl0V9Wq+z727GagGI2wcHBzka2LemVPf9g+iD/GkfWB/f1/T6VSScqCf7waAo4GKP+darVa6ceNGriq/9rWv1e7urpbLpZ5++um8HvzeM5/z+VwHBwc6ODhQURTq9Xo5I4IeesILaYugOu1Wfogzogrz6w4ByCxzwmfcReHtJcw3IgXtHd1uV08++aSm06k+/vGPZ6ECsQhSj3gmKd8PzxDhftUDCX2dNZvNnCnBWHx7S99NhTUE0Ub08GwRbzlwsYHjsVb9GULAY2tMPsezg6MAdwrrn7XKM+Bj5vOsCVo06qB1hTlinrkfuB7q4ZeBQODhQPPJ1+j9/+0pGS6TThlx4EVh27I5K6UPfdsX5X8OP9TQ43/9x2sfuPW7OBAIBAIPPi6NoACpl6oVYd8xABs0xIdKqaTcjy+d9+lDJLw6DGGs90lDFtmycm9vT+12W9PpNOcEMDYquogVEElIDu0BiBOIFr6tHgTIg+ogXd5CgahwUQWfKqu3CfAZzkkoIe0cdWEE4aLb7arX62k8Huf5huRCKj334MqVKzn7AKI7n881n8+zzRwrPVV/quUIDjhFGo3TbT/n83ll60TGuVgsdPPmTe3t7Wl3d1fD4VDz+TxnJuzt7Wmz2VQEAAQYdx84qe92u/lcviYgxwgw3pfvO0CwzWez2cwBoZ5LQeAlbSwQZhwy/LekLKRsNhuNRiPt7u5qs9no2WefzU4K2gZoF0Bg8xyFlJJGo1Fl1xJf86wN1jHrwdcbuQ+8B9GIrVIv2pkBQcaDOXHlMEfupqHNAQGMNc5acQGOfAXfvtOzFNg2FYHHwycRA1gnnI/P+vcMzxL3B7EpQhkDgYcTZa+jMuJS7h7SmTBzhvGnbzX+tl9Zectn/M2bKj/ylCRpe+ZoDAQCgcCDj0vz27ITGSr1q9Uqp/zzGgRgMBhob28vCw0Ot6dD7NjFYLVaZQICWSEoDov0crnUaDTScDjMRBDiwvEhcB5iyHtXq1V2O1ANR1zgWFSEJWVSjZ0csQCCSxYA5BhyNR6PK2GGoC5GpJS0WCzUaJzufuG2dn8vAgQixHg8zrtdMD+IBYPBQEVR5NwK6ZT8j8djzWazXOUfDAZ5Zwjm2fv6uQfe+oH44ztvHB0d6fDwMG+FCKnebDYaDodZ4KBVgPHOZjPNZjMNh8OK4MQa4FgIRE72EU/4Q64DlWuEHl4n8I/qfX1LQ9YhWQNeFT8+Ps4Oj6tXr+qJJ56QpNxK4uPj/iPAeLYIgZhcJ89G3YHAmuv3+1kUYl4Gg0Fuz0GMYK4mk0k+D0INrhMcIJByXB+ESjImzxXh3x6+ynpmfhADcOrgWmCte9aC72Dh4oRvuVkX4rgevit2dnbycxCCQiDw8GFnNNL7/+gT93sYjxze/4f3Je1Lkj7zL35E5fGJTq5fv7+DCgQCgcDLxqX5bZktGtnlAbJ0fHyswWCgK1euZIsypAUrO3Z0KuW8B2LgifDYpiHBuAIgfRB+BICiKCr5BU5E3LVQD9Gbz+eZhPn7uUYPRSRfwW3oHJfKd7vd1v7+fp4XshkgjJAn7w3nnJ1OJ187xMtdDZBaJ2z8jKo7eRLkGNCKQWAgQgE7bmw2mwppp8o9n891dHSk3d1dSef2cuaJ++d2fSrg4/FYRVFoMBjk4L7lcql+v6/d3V0dHR1l4YTPzudzjcfjLABwLweDQeVaaC9AEOD6ve0EtwChhczlcDjMDgIq6KxHJ6WEjBLkyf1hDS4WC00mk5wVwk4VvlUjf+OQQHBwcoxw4fkZPDPs+sB9pl2C90iq7CKBmwOBZTAY6PDwMLsyuHeIRgSadrvdiluANiLfAQMnBYJCfetJdvPwLTyZP55rFxZ4zpl/xLd+v5/FHubH2yAQ7jgObTzcv0Ag8HChfOOT93sIjzze96ffoMYm6a1/rafjj3zsfg8nEAgEAi8Dl0ZQcDKAhfvo6ChbwAkC9P5/AhQhZ7gDIC1Ylun7Xq1WWi6XmXRCYDkf1XAnlU5iqLrWq6tYs9neEKs9fe1utcaJALHx/nRIrQcWQtKbzaauXbumw8PDSrighzFCiJlLiBjnw/XBtbk9n3ltt9u5qr5cLjWbzTLBG4/Hle34ILW+g8VkMtFzzz2nw8NDXblyJVeZIXbXr1/XeDzOpA43R1EU+X55QKL3wM9msxyu6WPHpfDkk09qu91qOp1m+/tsNtPR0VFuG1iv17nCTeglbRWQTo7PWHq9nvr9vpbLZSbNWPqZd9wl3tLgu5BAZsnboFLu4ZvL5VI3btxQu93WaDRSr9fLnxuPx/neekAjW60icrAuPWCRn3krh5Nqgh5xJeAomM1meW1Rued56nQ6FWGFdU4LiHTernJ8fJzFPzI2fF4g/lJ11wvur7+XufZ2CQQoHyP3krEjsDBez7BwIcsFLZ75QCDwEOELfql+4Sv6L/y+wD3HtlXqA+98Um/6vqEak6VOfuFD+WfNN71BJ1fsPv3H/+M+jDAQCAQCd4JLISh4aj3OAAgxhIRqJASkLEv1+/1MxL1iCoGQzu3zJNw7SeBnkFcIBj3ghLtREV6v15U+esaEEAFZJy9gsVhUtg30SjFVXemcVJEp4NVlKqWLxSK3eeCAkJTbFBiTh8hBbqnOeysJpIpAxcVikVsxuLbj42NNp1Pt7u5ml8BkMsnnwSJPTz0uiIODg7x1o6f3U91erVY6PDystC0g4lBN9tYOWj1ow/CtHbnn2+1WRVFof38/t6OwhmazmabTaf43O1e85jWvya0YRVHo5s2bmQwzFknZoYCbALLOcbhXLj6RT+H3m4o7uRq+VSaCymQyya4O1iUtCF4tdzEDoc23ZWTNI44glCFiQP59TXp1H8HK3ScuDg0Gg7wVKKSe++VtJJ6bgDvCn7/lcqn1el0RAjabTR477g7EEQ8ERTjkdW9B4l77fPg1MYeINC4k8G8yVQKBwMODg18ykBQBjJcFJ71SH/jPh+o8t6s3/OOm0nyp5Ruv6RO/sqPFq87bV1fftvM8RwkEAoHA/cSlEBTY6m44HFbyBiD2s9ksEzqvKna7XfX7/UxCISOSslsA0k/VF2KKA8D3tKdqDZmGTEAW2+12rrK6DVs6rQK3220Nh0P1+/3sYqA9AdLltnJP8JfOg+fctQBRPDo6ymSUijIiBon1EFHpvFUAkouDgON6Mj/29+l0mkkmRNAr3vyb66cFxQP/yrLU0dGRPvWpT1WcHfx8OBzm3TOYd+5Ju93W3t5e3i7St/mj/YXtJxmLpDxPOzs7ectPrp0q+XQ6rRDRw8PDLNCklHJWBMGDkiouFfIHaBPAPTCbzfKWlFyPt2/gLmH+mC/WGOIJa8kDSLnPHKueG4CYQjWfsSOoEBhaDyjknrPWmLuiKPJ4+Df3mqwMjufz4WMkjJP1yO4fZDi464T7R6sIrRW+/SvPJc+K7+TANXnQogeuugBY35nFz+Hhkh7W6k6NQCDwcGD/7/2EbnzO59/vYQRqWF3b6qO/7aqac2n6hq2k7Qt+JhAIBAKXA5dGUHC7ORXGlJKm06kmk4kGg0GusFPNbrVa2t3dzaIDxM4roF41hTB5LzWkEwKNJX0+n+fx+BZ39HRDwPkMmQaQLlwKdVeC7xIhnVeYeQ/97LQDcE3j8TgHC+K+oF2AOST7gX50KsVUnn0HBCeBHkrJz7CaMy/9fr/S74/TgXlGNJFOxYzDw0PdvHkzOyg4Du0XzK+Pjd0jmPejo6NMjJkTwgvdrQIxZ4591wzII9kce3t76na7mkwmunnzpiRpNBplEYdWD0l57jgvgs16vc6EWlIOU4REExxZFEW+bs+1oEUAsYj77DtqcH98S1B3FHi4J44Nz+TwZ8vHjei2Xq/zM+XtGLSF4PDAiUHQZr/fz2N0FwjXiLMAAZBdPxAwPEvj+Pg4CzMIF8wrzyfXwPPhO7u4MMO8sgYYj3TuRKhvM+ninoc68jNvfQoEAoHAvcXy8RARAoHAnSN9/mfr5tuGd/Te0UdX2vnRn763A3qE8ZIFhZTS6yT9HUmv0qmU/K6yLP9KSukbJP1hSUT3fn1Zlj/4Qscj/wDSDrFYrVaaTCYaDoe5px1RgErp7u6uDg8PdXh4WNnhwav0Xq1ntwIIDls5EvQG2ZNUCXnknHUHA6QcRwX2boIDaX2AbDE22hEQCPxYvssDRNV3MOBvfx/ZCm7f9uo4hJL5gDBCKhkX8+FVbIgpAXve1+75EPyhMg1hJODO0/s5Jp9ttVqZiJZlmSvujBeRg+P5PCJaeMCfpEykZ7OZut2urly5oitXrmT3wOHhYZ5fhBKyAwaDQb4egh19rAgEh4eHWSQhjNLn2AMPsfFDxBFc5vN5DmPkPax3v5d1gYbrxL3iYhliFJ/lniF+OIEHHkjorRDeNtHr9SqhmXWHDZV9HCk4ENhGEkGC9hKEF/7wc3fJ4Gjw/APPC6lnHSAu8B4PQWWN4B7ie4S17ILEgxDKeLe/iwOBhxnlyYne/L0LfejLe/d7KIGHCPE9HAi8ctj59Dfp6d/4Kq32pdX+nQmR4zd31HvbO/K/X/MDH9Pxx5+6V0N85PByHArHkv5kWZY/nVIaSvqplNK/OvvZXy7L8lvv9EBs60bldGdnR8PhMPfjz2azTOioaEN6+/2+iqLIwXaIAlQdOTYJ/YTYTafTip3aK/cIGr43PSTWiTTAOk11G+s9xNtJnafZS8qkknNQycap4OT76Ogo71zA2BAofEyMEbB1I+IG48Ht4H3qOAW8jQAXBNkLLvhA5HBEQMwh+r6tZb2SjOuDDADuJeLRwcGBDg4OKnkEALGDczPvuEMQdhAUlsulxuOxdnd3deXKFfV6PX384x/XzZs3dePGDe3s7ORMDjIbqMCns+0XaUNABOJnw+Ewr1PcK8wP7g3vzedvjuNhob6LAXPHOTmOXzvPgudynJyc5C07b9y4odlslluEIPsEh3obA2uH+++uHdadt8x4e0Wv18siCc8pYh9hj4hKtDaw5n2bRs7vAgLrErLPuuP9ZDV4SwhrlufOd34g+NV37OAZYM3z/eG7QVxi3LXv4kDgYUfa2dFTv66vsNQH7jLiezgQeAXQfN1r9eGveJXWV17cd/hmWGozPOduqz/wejU2r8//TifSa771x+7aOB81vGRBoSzLpyU9ffbfk5TSz0t6WXsxuTW60+nk6iZhf/P5PFdhIfCIDwgK9bR2qpvs7EBfOaTDtwaEpEAGvTosnSfQe0XeiRHtGJIyKYZks7OAixi+I4Afh+tDSMC1gD1+PB7nrSd9RwIqyVRtXTTAij+ZTPLx6/kHkrLYAZGCgHHt4/FYzWYztyZIyiTX8y1wnCBYsCUl5BcXBuSOLTURFSDq9MxL0mQyqZBBQJ4E4grHc2Hl5ORE0+lUN2/e1N7enq5du6bhcKjDw0M999xz2m63GgwG6vV6lXUBQea/cUzgdkE86vf7ue3G76G3j5DT4Lke7ArC2uMeL5fLLI5Aznk+EGz82pbLpXq9XmXdsvYILPWgy52dHU2nU02nU+3t7eV8EgQ5SVngo43GRTXP+PBrxF3AmkNcINRztVrd4gBA7PDMCtaQE3rcC2RL+Dnrz6c/u2Rx4Nrg2WVOPfwR4YE1VhfnLiPuxXdxIPCwojw+1hu+6xN63x9/9f0eSuAhQnwPBwL3HjvXruqD73ydjgcvXxBeXa0do5Q+9g3vqLz02M8cq/eP/93LPtejgLuSoZBSeoOkz5X045J+laQ/llL6/ZJ+UqeK7cELfD6TfkildNpv3+v1MnmoEwyIJu/zPeu9IikpV47dru5tDU5yIb3eBkDFFBJERRQxAns546P66wJHs9nM13MRPBCuHto3HA7VaDR048aNfF1uW3eRwkULSC1z5D3hXpXm/Qg6kGjmmTlbr9caj8e5394t71wXIY+r1Sq7RyTlLAIXSVarVaU/HiJXlqX29vZyTsDOzo6ee+65vCUkhBURgWwFyGmv16uMCQFpMpnkLS3ZfnCz2Wg6neZgSF8TtEpQVYeUe9Bfv9/XtWvXsouEuYVM+84gXCfzjgPByS/ziiOALVPJzOBYrEkn+lj3Ie6sT97DvKWUKoGF3Ee/n5zDxTjWr4+D5xIXyGazyQJSebazBWGMtO248CGp0vaDE4Fr8+v1Fh4EHHfBuGjnQHigjQonAkIJ99w/5wGPDwpe7ndxIPAooLxxICkEhcC9QXwPBwJ3H42i0Af+1Fu17dyjXXqStN6t8rNP/qodNb7o7Re/fyu98evffeGPxr/3i3Tjl92+INW9nvTqb3u43BAvW1BIKQ0kfZ+k/6Ysy3FK6dsl/Xmd7sv05yV9m6SvvOBz75T0Tkk5dI9wutFolEkXNnSIsYfcQWogbpBASMhqtcrkxZPvIUcIFRAH2hGcYOBwgAy7aAAJ9yqzdEp82N4QMs37sbh7v7aHEvJvjrNarTSdTnXlyhXt7+/nTAkP2vM58XFBsvi5Cw7+N0KJdJ5l4cKLt154IKATaxducJRMJpPKNomdTidvd9lqtXIQH/DrQIhgB49G43QHjtlspqOjo8oOHggfJycnms1mFZLO8RiXJO3u7uq5556rEFA+i6sC0uotChyLeWAHh263q8FgkNcjbgnP7LB1n9cVJBdi6zt+eG4Ea9LzHbxFh3vIWvAWC1933q7g+SG4EnjGWAce0InbgDwCPs9YaWmYTqdaLpeaz+d51xauj/vgQhWouwwQV2hJYB2vVivt7u5qOBwqpaSDgwMtl8ssNPh6uKgdh/XKvfK2HQ/g9Ll9UHA3vou7Kuo/DgQCgcAdIr6HA4G7j9Rs6gN//pepbLyyW/6WzVInt/s1sJQ+9K1fdPGPGpLS7cc6e7K87WdfCI//pDT87h9/8R8s7+3cvazfllNKLZ1+cf69siz/kSSVZfmM/fxvSvpnF322LMt3SXqXJBVFUUIaIV/8ck91Ews/RMrJi1urvf8aknN2vkpGA20I9N57VgJCBMeCYJxdUyZk7gbAHUHFfTKZqNvtqiiKfC2+zaL3f3u/NlVUqrsECo7HY73uda/TaDSSdNoDPxgMKrs3+NZ39bYJcgEgunkBnBEmxAyCEJvNpgaDga5cuVJpZ2g2m/lY7gSRzp0cbDNIbgO2eW8fYWwERUqqzDOCBmNlS0kyDmh/KIqisksF70UAod1iuVxqNpvlPAU+T0sFjgDpPDOAXTUgsycnJ7nC7+4RRC3Og6PDcxSWy6WKosghlZBYvycekNnpdPK9RsRCyMF94IGY3pLBmq+7Vfwe1a3+CA32fFZai9itAeKPE6TZbGZhhePQMiKdtv4wFsbobTS4FJhbnjkPppzP55W8EMJMaZNwYarf7+fP+vOI6FDPg/AdKXyt0PrzoAgKd+u7eJT2X9n/WwcC9wmNddK2Hcs9cPcQ38OBwN1H6nT0wW/63FOSfpmQpHLnhd92tz/7zBdIz3zBF77oz33aD27U/jfvvf0btqXKzfr2P38BvJxdHpKkvyXp58uy/Ev2+qvPeskk6bdLep7Rn6K0beNSStrb29Pu7m5lC0knH96asFwutbu7mz/jZMBzFPjbq5FecXeS7WnwhOWRUE8VFHLsPdfYqSHkCBuQynp+ACKKV4c9tM53Szg8PFSj0dDu7q4ef/zx3L7Rbrd18+bNLJggICBG1FsXGDduC4IqqSAfHh6qLEtNJhM1m009/vjj2QnhFX0XYTygzx0KuDaomENG+bdUbZNwtwXkjwyA9Xqd3QqsA+aQPAWueT6f58/jdqC6j0CzWCy03W41m80qBBVRgxYZWi64P4hNZG74jhjMj4smLg7huKCNACcDlX92eGBO6q4FzzZwdwtEmGufzWa5zcV3o5CU38Mc4+Rwoc5bIBA7eK4QSlwM811RIPHcR95fFEUWotwN5A4Vb2/g+eT6eZ44B/PFmkC4Yj34feAZ9wBU5sIFPJwM9eu57Lib38WBwKOAk/FYb/2fPqr3/anXv/CbA4E7QHwPBwL3Bh/6xs97xZ0JlxovMdrro7+1Jf3Wz73tzzvPNfSGv/6+W17fHo1V1nZSuwgvp/z2qyT9Pkk/m1L6mbPXvl7SV6SUPken9q6PSPrqOzkYldVms5mr+95T7lVvwvBciJBUqWh7hoCTekhLp9NRv9/PFXkPX/Nt5larVU6ph7illDSZTDSdTrPQQaXTtyuEELldfL1eZzLqTgcqqpyf1ghJue0BAeDq1as6OjrKOzas1+vs1uCzhON5G4bvssCcUzkn1HF3dzcTQv4gOJAfkFKq9KG7YMF56JeH6FEpdhu9uzZcIOAYbqtHSKA3ny07ERFc5GCXBUQAhBQEHwgoAgF9/QgPzOl4PM4i0nA4zNuVSsoBiBwPIcnbI8qyzOIQwkG/38/XRe6AdO5U4HpZ1wg+0+m04nxAwPB2EoSV8Xict8IkS4L7zhpjpxDPLqhv00hOCKSb58BzNnyXEMIYCUvkNRcRfBcW/o1w4S0XtCdxfO4X94Z7wbpl3fBz8jE8bHI2m+XnmHVI6Cb/zRonx6O+HeUlxV39Lg4EAoHAi0Z8DwcCdxnN1732JRPowIvD6tpW7/8zb73l9Tf9o5XaH78hSTr+yMdu+/mXs8vDv9XFt/kl7a/rgYuE/kGQICdUgz24jzC+nZ0d9Xq9XKmFfEmqbL/n9n362yEj3tsOqfLKMz9zgYDKOinyVIUhapCe4XCo6XSq2Wwm6dyO7hV3bwmAKEGy5vO5nn76ae3t7anX6+mxxx7TZDLJWw1S8fbxAa653haBSLNcLtXv99XtdjUajbK7IKWk+Xxese57cB2CgucvuDCAuwOLPp/DuUE1HlI/GAwyQYcYuqDkog7X5VZ4rp01cXJykl0HuDck5d0esMtT1R6NRjo+Ps7ijFf8cZUgMDEn9PXXWwYYP20T/jMPn6RVhnWAA4bdPJxUs66c7LNWeE+j0cjjd9s+zxZkmZ97yKSvQ1pwEAMY53K5zI4crhlByndhYI25owMhjTFzPzgHY0RQ4ngQfp5RSXmdMJ9kIaxWq9xW4teCYEfrg4dZImTS7uTP74MQyni3v4sDgUAg8OIQ38OBwN3HB9/5Om1b4U64n/jw7+hIeo0k6dP/zlD66X944fsuRYMw9mTCDG/cuKHBYJADFCFKLgb4NnreM84f+tAJb+TnhOl50KBXUaXzNHmyCQjo4zUqwp1OJ4scVKap5nqwn6QsNniVm2siBNFBiwAJ/Skl3bx5U88995yeeOKJLLgQCDifz7MQMJ/PM8H0UEYn4BA+SBjXiuV7d3c3iw3z+TyTeEQFUvsdtDJ4/gPEnHN69gLXCSHf29vLVWbuk+/aMZvN8pwgBt0uMLGeFeDXvdlsNJlM1Gg0chBjs9nU3t5ettIfHh7mcZHTQYbBbDbLc8T8+ZaOOFW4171eL18Hf7vbgPvGfSiKIrtvODfnQnxwwswfRLPBYJAdDbTZSOetAogZXKNvN0rgYt1p4cGOOEt4JlgXrGkECtacb83KPPGculMHcc4zD/z5YW0hJiIEetZBPVuCtY9TA7HCHRKsFa5/tVrlZ8uFuUAg8PCgnC80/HBDkze9/O3HAoFAIBB42PGB3z+Ufvrin10KQQHyTLW3Xl2FzEFyILQQkPl8nreahMhDJCEq0rlwARmRzgkRx4dw0D5R7+XebDYVl4T3Z2Or93YLJ7VUUiGqTnqo9nM8rtVdGpPJRE8//XQmvQguzB9EzgmVpEz8IYatVquSZE+1F6LK+CFTkGbfgQBXAsTPsxqY17IstVgsNB6Ps9jAfLigwPwhajAuAgipVjM3XLeTTEiw32PECcQV2kgQBggbhFD2ej2NRiN1u938WVwwvlXncrnU0dFR3oWAlglIPX8QIwgWJV8A0oxYhcPEtxrF8cJ1uCAinWdPMIceEOmZBfP5vNIK4rkIOAjcDcPcsVa5Z96Cwny5wEHeg2eLMC7Wjz8zvisLOzn4fcfJQK4E95b15zuyMC7f3cPXP+Pq9Xq5xYQ1SiuOfz8gUvq2pIFA4OHCycGBXvPD1/X+d16930MJBAKBQOCBxqUQFBqNRq46esWQFoXFYpHJbZ20kB8gVbecc9IrVVPrPfHe7f8Qekic5zhAEL1izdgl3dJbDqlxmzhEjfd7f7YTRAQAbPUQu+12qxs3bqjZbGp/f/8WkoUoA0n3UDq3f3tgHdXm6XRaESioKLsVnPviVen5fJ7J12AwyKTVBQdCEm+3a4akiqjAvCJ20O4ASeSz3FOO58KGizW0NPg2mDgIaKtg3kajUd6dYjab5Tmj1YA1wk4RPi5+hrhDS4s7ULgequSeQ0D45na71RNPPKFWq5UJta8hd3h4mCJzg1PCBQOEAFoQuMfr9TqHjvIZF5X8GnA4+LUdHx9rsVhkxwXrC8GA8fG3i3RO4Mn/4H4iKngYqjuVOAcuBeaSbIt6m4nncXirDqICqK8R/w4JBAKBQCAQCAQCVVwKQYF2AHcA0Nfc7XYzkXeCDInzKqX/W1IlvR6iAoGDXNCTT6XaBQXpPOjRq+ukwzMWBAffoaBO9NwaDzwEz/vI/ThUYiXlQMTxeJzzArwP3eeH+UIIcaHD++XJZ4Dc4e7wwDuujaBASBfjhhyTrg9wizAuJ2dUvD1IEwIpKTsQnBxCBH0nAgisOwqYJ+4ZDoL6GuEcXAfuhXa7rdFopMPDw0plHgJOmwRzwDpxNwztAfP5XNPpNM8N54JA00ri9yKl051OIMhFUWRBx7NG3NXD2HmeOCbr1Z0NCCOsYY59kb0f0r2zs5NFBc8QwUWCAOe7VrB+PODTn3nWJ2IK4+Nv3AR8H/T7/bxePBDUwxUJqaSdh+tHzOD9F4U+uujhrUKBQODhRPnUp/Sqd1/Vp95+v0cSCAQCgcCDi0shKGDZh4BgC8eGPhgMcpXULfPtdjuTBWzTkE3pnNhDtBAUOI9nBkA+PJdhvV5rMBjk9gqOUXcycA2Scs86LgGOB5GD9ELU6pVmJzLD4TCHyVFJp1JO9dyDHCHITiK9BcAJr8/9ZrPReDzO/elUgjudTq74Yu33lg/mmOt0ks4OA8PhMFeX+ZsKNPfOt/HjHl+UR8F2iE4SnTx6SF9dCFosFnlumN9Op6N2u53J5Gw203Q6VVEU2TXjuxL0er08Hy7YeNsJ91JS/jdiFfeTVhDG67tOsDZdrGAOuI9u8z85Ock7juCyIBRROheXuHaO6Y4ChDw+zzn8XAQqIlzgnKGNhPBN5tTXI5/154Ex+HPgrRa4ThB/WBej0agicuG8qO/G4GJF3dHCvEjK64dn01utAoHAw43tZKLBx+bS24v7PZRAIBAIBB5YXIrfmhuNhnZ3dyWpUm2lQknVEdJDpZQt9dgVwG3hkipknn9DhtxRQCXYw/U8IK7ePuEWbggu7RH05TOmXq+Xw/68og9p4fMAIQKSUxRFHjdhcZLylpUeuOgWbZwRkjJBrtu3ESj47Hw+z9eCs8AzJLC5c06EA3eA+D1tt9t59wjugSfos3Uhws5qtdJkMsmhkt7S4WGbHuDnjoR6XobnLCBCUI2HJOOskKSbN29Kkq5cuZLPwxrD3cH4p9NpJdOAOfKWDkgpYkG73dZwOMwiBu4JWgc4TlEUGgwGlYBJdyvMZrPKGmJteesFc8Iz4+uaz/luDLSueNuDpMoxCRlFTHH3AoIB7SWsLXZpILeD9gqeR88W8fsiKb/P2yJwevj95ToYA/ecNcjneT7cBVEXHrgXISgEAg8/dt7yRn3ot/Z1uqNfIBAIBAKBl4JL8VtzWZZ5Kzuq0VSMsVjT1061np0HnMh7FVQ6dw14r733rnsFmJBDqqGQwvl8ns8BIJHuEIDgeK4DAsX+/r729vYkKRN3r6ZDRCE3vA/CA4mlNaHX6+WxScoiC1s81nMJpPN2CdLsGTPng0gxx4gZHK8epkjfurdl+LxDBj0gkGNKp4II2zuC5XKpGzdu6Nq1a7ma7/Z9SB5zQt4GggQVbndWuF1/Op3eEuKI5Z1rPzw8lKR8fCruLij0+33N5/M8V8PhsLKWPWTT7+VyuczuiaIoKtkFzCO2/Ve/+tXa29vLwY8nJyf5c91uN68FrhUXBES+KIrs4FmtVrcEOrKOPKNjOp1Wcg2436wZ5gDhgPkjxJLnFdSzD9wtwDg8W8RdA+4C8TYdRA/+IBJ4foMLJx6U6evXn2V38vB5vmdCWAgEHmK0mjoehJgQCAQCgcDLwaX4bRlC6BZqSTk7odfrqdvtVrbCg0z3er1c/ZR0C2HwtHeveHtIIy4EiJ2kLDywS4G3SLjF3Z0OvI59GkJCFZ3Qwslkks/vAZE4Ijg3u1dQ4aXvHuEDMuU96svlUr1eL5Mj35bPhQ/G5YJI3ZbueRQQZY4FuG8IEr5bA8DFgOOE7RJxPEjn4gxtB7PZLIsRtHd0u91KngRzwA4UuALojYdwQ9S3260ODw8rNn7ml+tbLpc584C2AB+fOxdwHvhWkBzDMzEYJ+4ORA/mpNPp6MqVK/k4uBH6/X7lc97qgMOBvAXuP9eO66IsS43HY0nn2Qr+jLCGWX/cUxeHODaiG+KLz4VnQ/DftOlwbp9LnCLeHuKuBn8ePL9is9losVjk/BDWsAeh+nqVVHk+3bVSfyb8epn3eitFIBB4eHDy8x/Qm7+30Ie+vHe/hxIIBAKBi1BKinzsS49LIyhI5xVNrOwQl6IoMiHxiqUTBem8EuzwjAEHFVtIMkKBb1EHQYG8QeDcNu394lS6IfqQWizrbB/oQYNO6p0M0cLhFVlJeWtBBABJOfuAf7tQwrzg9Ki3bkDgeA9zyTjZFcAdHrRE+M4SLsR42wFCQK/Xy20a0mkby3A41NHRUf48ZG42m2mxWKjf72s4HGbXAPfTMzQ8zJBj+7XiKOBnR0dH2R0hqdLyQCaBW/m5Lqr0rAOIPduc7uzs5CyE2WyW2xJ8zFJ1C0/p1Bmys7Oj0WikoihytT6llNtdJOUgSBwNRVHka2PLVAQFHzekmDlG7PIwShw6rDcEIOaPtcWzwXwBRJt2u51dCr5mWa+0YjDviG6sLdYt7glfWwhFi8VCi8Uiuxd4vnxcOBT8jz/3zL+Li942wtwgsAQCgUAgEAgEXlm84b97tz78LW/Xth1OssuOSyEoOLHml3x63o+Ojm4Ju/NqaFEUmSRDmCDokAeIIPC+cCrKnN9JBK8xHogLhA/ycdEWlZBS33EAe/pwOMxbATrp9HHhEKAlIKWk4XBY2TVisVhUbO6DwSATM0QQnA6eQeBzwPkgVE60uTf8Xd+Kb7vdZoJMFdkD9JzYQiYhkXymKIpcyebPYrHQfD5Xr9fTaDTSeDzW0dFRvk+QehwG9eyMentLURT5b8Sp5XKZCTRuiU6nk90OvgUh5Nd77CG0tBXMZrP8PvII2JmAdgHCGGlR8ZYcRALmgrYcyHw9A4Jsh36/r2azmefBAykRGDqdTnb0eMAn7QieI8Ba4/zkGfBcMU+IMggy7NRSFEXOd+Ce+3akCFU+Vo7tgaqeu+DfDeRx8Bwwfu65h3T6M0WQKGIB14l4iOjh3xu+pgKBwMOHnV/y6Xp/uBMCgUAgEHhZuDSCAv3t7gyAQM1ms4oTwKvSVGS9bcGJD+KDh9JRkeQPBNyFAEk5YM5JiAfh4TyoOyA4PuQJAsR1ubWbaivjwA7PdaxWq0xqh8NhFj0QI1wAoFLNjgxuKcfC7dfu6fcuFDAHjUYjE2knxU7iGDvuC64VEuwkjdwAzzBALPKK+Xq9zu0ig8FA+/v7Ojw8zK0iHr7X6XRyD7+n8zvphHj7+9nuELGlKIpKuGRKSYPBIN8LXAeEKC4Wiwr5pA0HoYudSiDMXrHHUs96QoRgrW23W43HY83ncw2Hw0qrgGc/jEYj7e7uZhGmLgj4ffdcDRd8vKWB+ec8CCu0NPAHYo4oAIlnXfhzyq4h/lzyb9/+s9ls5gwHxskYfNeW+laUnMczKzg/c+H5H/XWJt7n3xe+BWi4FAKBQCAQCAQCgdvjUggKVLWl8xYFqr6E0EmqVD4hjOQKQN4k5RA6/n18fKzxeJxfW6/XFRIEqWMvew988951FzucKFOZh+BIqlRu6wn19eOx5aW7HsgIoDLtFny3Y9NnPhgM1Ov1MnGjai9VXQZO6niNeXVnh1dxJeXqMHOz2Wyy3Z9r7Xa7WVSAnPO3B2DiZnCSTW8+u3xwP4ui0P7+vg4ODvTss8/me4stH1EHUcHFDhwBvmsE7Rez2SwHG5I5wL2jig/JbDROd0FYLBaaTCbabrfZacAOJN7zz7wiPEDIuX7P72C9jsfj7Lggu+Po6KjS2iKdb0WJ84Bxc9/m83lFeOj3+5V1wHpmfn1nCg8tRLRDQPIdJ3gGIeAeeoirgNfqbTZSdRcKzk2rhedSuDuItcS5WWc8T6xHxAnWLH+zZvmMh4lyzQgWfIb5CQQCDyfSYqXOcw2trm1f+M2BQCAQCAQuxKURFDzIjxaF2Wymfr+v0WiUq9JUENlJwe3QbruXzm37kEzaBOqvs4uCV/DJQ3BHgaRKP7r/gZhDjLCD87nVapWr3ZAjxgs4H4SLymo9l8CrvX5eetex60O2GKNXtzkfTgdvG2HcvN/bF7hWdzRQBWdXiH6/n7f2nE6n6vV6lT71nZ2dnMPg4ZTcI65JUm4T6ff72WovKYtMTm6Ze9aUi07r9Tq3MCAq0L6AIwLCXd/e0Cv5uGaYu3pIJfObUsq7eXDdiGb1iv12u9VkMskiQVEUWi6XOjg4yPOMgwaijtCAwAKhZg1h/5fOhSocAawXjkPrCoKC547M53OVZZnXo69Td/9wPRwbVwQiW9094G0G7oxAkGCuvJ3IhSJe8/FyP+tZJT7PCHHu0mHNcVxvl2EOA4HAw4fjj3xMr/uRPX3wPyvu91ACgUAgcAF2f0E6eJsimPGS41IICl4V9VA6iInnH0BQvErvJJi+b7dJ10MbIQm8n15+6bzi7yGQHpwoqUKC66F9kJbValVxAmAPp4LqmQx1ou5uAY4NifO+bqrSiAm4BXzszAHXCQGD4JGeD+H33RHcceCkn5535oJMAK4Rt4JvJ4gIwzkQPTi+jxPHiOcJEPzH/UAccHLr5BOhgPXFeyCyVPa5XzhdPAfBxRBIJmSX+0pIpm9byJaNrCfuFeKNhxiS27BYLHJLxWg0yuuBIEsyH8qyrOyQwQ4OtLlwL6TTVo9er5dJvm+7yrF4jnjN2x1YV4gWwIUv1gBiAO1DPEe9Xq+ydaS7KXgu/R6w7r1NyR0t3APaWfz5pA2KXAyEBT8f5/KWCFp06n84XyAQeDixc3Vfz31mX6cx4oFAIBC4bLj6t96tw2/7IpUhKFxqvCxBIaX0EUkTSSeSjsuy/PyU0r6k75b0BkkfkfS7y7I8eKFjeRijpErVlRYFfg4Jms/nuRLr9muqz145llQJQPTWhU6no8FgoEajoZs3b1Z2afBUfHcXePsAx/ax+7kJfvTASCf8CACc110LwCupkC0/HkQXEQCyh9uh0+ncUuF1kueEzQMBIfzsMuDVYar9XPd6vc4OheFwmI/vohAhf2Q+9Hq97GZg3GRHsI0i8+NiA5kMm81Gs9ksiw/cIxwBkEivqHv7hu8MAfmFdB8dHWWxaT6f5yq+Czq4GfxeQmaPj491cHCQW1bcQcAaQMjy9dVut/X444/nrUL5M51Oc5tFv9/PIsHx8bHm83nOcGBtzGaz7O5ZLpc5r4M1jVCC88JFMf7UyTtzReAj94T732g0tFwu87PJs+vOCu6nb/1InoW3Q7hzAdHNt2StZ1Jwj71dgrXmz6rvCoIoxfWzTjnOgxLKeDe/iwOBRwaPX9WNX/5gPOOBy4/4Hg4E7g1e+7+d6ONfEi2olxl3w6Hwn5Rl+Zz9+2sl/UhZlt+cUvras39/zfMdAHIinVbyHZAh0t3rtvTVaqXRaFQJv6P67K0CVG69RYKeb4Lj6E8naBByiyXcd5vwFgTPCnBS4vkEkirb/nmYpG/Jx2frwX0eFghx8lDGk5MTTafTCsn3zAmv0Hq7gmc+UJ2HnFFtx8VANZxj+c4RkFHG2Ov11Ov1cmWe/nYECz4PsWfO624SD52kUg2xRxigKs3n+QzH4PzMI2S+TkjZPQEBaDabZYcCLRDuzvBARt/SFJJNDoaHbq7X60xUW61WDn5EyKC1ZDQaVbb0JI+B+1NvTcBlgKvg+PhY0+k0r1sEuHoLAuScfAHWFeuXtc99pbUAYs/2lfW2D9a7t/r4vONQQQhEPHQHg8OP72u/njHB/WSO6/eK47u7ya/RW57qwuADgJf9XRwIBAKBl4X4Hg4E7jI6//wn9Mb55+kXf1u0od5PvOkfr/SR2/zsXrQ8fJmkLz777++U9KN6gS/P4+NjHR4ean9/XycnJ9m+vdls8raHVDSpUDuh8DBEKrgQFSdHEDHvjXbCimV7Npvl6jEVTCrm9RwCBAev6NLLTXWz2+3mVgEPjPQ2B99Cj0ovQgOVcK+ecmwIEOcmY4D31NsTfC4YO8SJbR2pfLMlJ+KH79xAAKQH3nkvOpV6rsO3dlytVrkK3e/3NZ1O87h5PwRTUr73bp13l4XvbiApV9S5//P5PO8QIZ07Qpg7rpldPYqiqLRyUHXnuHWyi8iFuMIac8GCsSJWeHuEhxkiwiCWNBqNvMUka56fu5OG++DkGhGI+8jYcHswV/VcAa/O8xk/rrsbEEY8DJPnC1EGUYN59zUzGAzy+DkPIh/PDM+dB34iitFagVDga+H4+Di32yBqkG/CPec+e4gpAqOvrQcUL/q7OBB4lFB+7JN6zb/e1yd/bXhpA/cM8T0cCNwF7Pzv/15vXv9Sfeh3de/3UB45vOkfrdQ8WGj73vfd9j0v97flUtK/TCmVkv5GWZbvkvREWZZPS1JZlk+nlB5/wYOcVW4RB6bTaSXMDrLqeQVevSe4D8ImnfaPY51327JX+KXz/nqqovRU8zNIoTsJqNhju8YtAQGtV7Lpewc+fh8DpMwr2o56UB2kTToPoIS8+/t87hgbZNTbQGgXYc6pyntlmW0fqZ57roITQ2zxuCN2dnays8BbMzgG88CxEHFwDSAo9Hq9bGmHfLJLA8Qc4YL1sFgsdHh4qLIsM1H1KrgHASKEdLvdyr30TAbPTyC3gnW4s7OTwxpZi/XgyMViURFl3Onhc8oY6+GdPCeswX6/nwMx/XPkGaSUspOAMbmjgmN5eKG3drgzyN0NjBuhx9steB+En1YOHzv3izlAZCBA00UUhA13u/CsLJfLitPIXT4u9HHvETw4BuIIIgVrh+M9ILgr38WBwKOE7WymwQ/9rF7V/KX61DtCVAi8bMT3cCBwr7A9UXr3z+rN5WfrQ1/eu9+juW/Y/9mkx3/kqVf0nCefeFrbF8gUe7m/Lf+qsiw/efYF+a9SSreXLmpIKb1T0jtrr2m73WZrN9VM38oNol4XCbCNQw7YRhHbt1dFfWs5KqCQI3YPcDLowMng1WdyHiAl7iSoEzgCGyHdLhxAHjkWr9EaQaXak+vZrs+JD+f1sDpIKpVYiJ7nU3S7Xe3t7WkymWg8HmuxWOjg4CCHDO7u7uYdCTxQEkcChJjqP3ON9R1iR698v9/PQgGZA4x9sVjk7TRpY0E4IFCQ+YaQussCgtztdrVerzWZTLIDgPMB1tl4PM6Bfq1Wq5I3QI4BY3CSDQGFzHIdCAs+V76DgK9db7thbJ53wU4X5FQgBCwWi9xy4a0k/NwdAl5xd4cLeRQIZpLycYG38RAq6SGavk45JveMPIV+v5+fL4QBxACeNQ8sZW0h1hG2Sogo69m38OQ54/lBuGCdeP6HCyatViuLj7yOWPKA4K58F3cVafeBRwvb+VzDH/gZnbQ/V9c//36PJvCAI76HA4F7ie2J0nveqzft/DJ9+Hc8ML+fvSR8xjd9SLqAxJeLhY5r8QCXAS9LUCjL8pNnfz+bUvp+SV8g6ZmU0qvPlNhXS3r2Np99l6R3SVJKqfS2BchGr3eqQGG5P3svn89/e085BNarvXzOg9ogMZBczk+rA66IengfpJ8dCiDO9d0o7DorOzpAVJ2Meq6DuwpcOMCWLSm7MSA8vh0htnUqxS7GuADgWRTeXnHt2rVM+g4PD7N40O/3NRgMcho/wgiEC8s5ZFNSDiN0YQNxx23wvV4vhw7iCpCUiWKv19Pe3p6Gw6H6/X4OYfTshmazmVtlPN+h2Wzmlgpvy2C+IN/87YGbkrKwxetsj8k5PLgTuCODewPJZgyeB+Fj8b597qGPl+eBsEvOw/w7uOe4ShBwqPS7IFPPlfAWG8Qe37EC8Yax1M/N8RDIPDOj0WhoPp/r6Ogou3c8c4Jrr29FWXdMMM+sexcKPQ+CNcu8u0jobVAc46JchsuOu/VdPEr7kVAXeOSw/jWfrec+936PIvCgI76HA4FXANsTNf7tz+jT/11b0y/9HD39q27jLrtsprMLnuorP5d07e/+9IVvPznjBw8KXrKgkFLqS2qUZTk5++/fKOkbJf2ApD8g6ZvP/v4nd3I8iBYkwUm4Bx9C4CA/WMght57aTzUZYlKv7NO6UBcUIFBUqPmMpMpuA1TDIX6QxmazmavonJNj8Hns2nWhA5HALecQcnc+OAl0skdV2K3itCfwXlpMsPl7Yv/jjz+u/f19ScqigVvA1+u1ZrNZZbcC3/GC+XN7u7d/HB8fZ7eAhz6y2wPbJ0rK/e+4I4bDYRYwuL/SOYGXzvMKEGqolOMygFyvVisVRZH/MHZEFs/rwNUB4XdXiLcoMGfcR0QbF49cVHAnA64FKvSem3BR64S/bzKZaLFY5PlgjUCUaY3geZCUd1VwQQHhjnXl7ouUUhZ4CFTs9Xr5M8wNQg/3ZXd3V61WS4vFIgswngFBNgnPAfPIc89rrFdIv8MFDc/Y4F5wDxAY3E3B2uUaHO4kucy429/FgcCjhtYP/5SeuPKF+tTb0+X7JTTwQCC+hwOBVxBlqXK1Uv/7flxv+UcXfGmnhj70F3/lCx+moXv2nZ+2qogIb/nan1RZLzyX5UOzafHL+W35CUnff/aLfFPS3y/L8l+klH5C0veklP6QpI9J+vI7Odj73//+XPV34l2vHHv1GXKCtdurpZvNJosJ3W4329Sl87wAJ96+1RzkiNcZh1eMCc3zoDmvakJevD3D+88l5bYH73uHzNFvDzH2XRj4b66HueF1+slJ9ZeUX6Pn3y3fy+VS/X5fkvI2hnt7e7p582ZlBwUcI7PZTNPptCLOeCAjxJUARs7PfeE1nB2EIzImCHedaHtOAC0U3F+O79Z8MhOKosj/Zs5oUyGjgWo6TgPGw+4K5DVwHs+9YL3grEHs4P0IM7QrePsBDhmEHc+24N4zt5yTtYfwwXx4SwziBediLTvh9t0y6rkSXL8/cxB7niHmmf/21xjbcDhUr9fLuRFkTeCUmM1mOjo6yuGUwLMOGLOLDf4+D0jlGvw6uF4ECR+rnwuhBpeMC3WXHHf1uzgQeBQx+N4f17Xe23XwWc//vjJJ2/bD8itg4C4ivocDgfuB8oLv4/JEb/5T73nBj37ia96h9ZXq50tJ286L+45PW6mxqSoTb/4Hh9r++5+vHPdhxksWFMqy/LCkX37B6zck/foXezwnXDgEvOeblH0IJaQBguU7KEAeICgQDUijdL7VHxVPyCYESjolvNPpVP1+P5MrbOaICfSIHx4eVuz0tDZwfsQCP4e3APjWe95v74n20nnQoverO7zSfnY/8vE6nY76/b76/X4m7FSdEUMg16PRSMPhMFe+nYh1Op0sVkDGuAfMO1V8d0kQtIcDwXfykFQ5DlX1sizzrgvuDnGnBTZ6J9LSuWADMe31elkY4PoRTLhub12AjDqZ9+BABAm/Z7S+UMknqBGnw2AwqOyOwZx6sGer1dJwOKysa1/LkHtcMjhiIMxu/yejwtsFnEx71gPvQTRx0Sml0x056g4LbxPgenC1dDodjUajLEhxPz0IlefM553XuE7uOWvZBQzWG+/lHrkLifWCm8idHHVhAecTuQ8PAu72d3Eg8Khi7++8W3sv8J7GZ3+mPvI791+J4QQM6ZJ/Hcf3cCDw4OHJb/mxW15rvuoJffir3/yijtN7ttRj3/7uymvb27z3YcWl8fNCNCDEXpX0nnIqnFQ8PWitTlCo8FNB9nwEAHGHHLuLgV7zelgjFUwECtowIFhu/4bocU1OqiRVRAjpnMR6Lzs96C44eIJ+/Y+kCql2Isb89Xq9yhgYR6/XU7fb1WAw0HA41HQ6zddTP4+H13l7wHw+z1Z4rybT2kDfP/PjdnMnjOv1Ojs4Wq1WzgCAXCI8QPycCHubDFXm+o4CjHUymeTPsn7q1nrcD8y5B0h6vz8iAPMzGAyyGwC7/WAwyLkLvvYQq/zcODb4PONgXbCeeB9rw8mzzy/PmBN17j8hmIh65IzUWy68rQEBBSJfz33wHAR31Phz71tX+nE5J9e72Wzy+nTRxMVA5oh7xjUwNs7v88HfLg7hoAgEAgHH9r3v0+vfe79H8ejh6XJ2v4cQCAQeARx/6hm9/s89c7+H8cDh0ggKkjLxKYoi961j5aaiCbGFvNXJOE4CshU8dDGdpf5TyYZoQ4adIEKeSKKvV+ERLLBJe6UTksaxvPq/WCwqlVRJOUjQyTekz3cF4G/PI6i3gUDgXLRApMHVgQjCuHyc9Oh3Oh0VRZG3kZTOxQmq4p7G78R0MplkF4fnR+Bu8ByCw8PD3E7BnHhbiM+ztwq46IDgwhoi3I/7Ww9iJAOAe0u7DCSTeXGBiXs/n8/zOJ2MIlxxbu5JURT5ullfkFVcEu4mqQcP8t9kSzSbzeyqYDeO2WyWc0QQJLgXrHfWeP1Zc5LNPHoLAOvTRQvfvhTRDQEAwQVBh7ljDAgiPM/MCefwuSLUk7XpLR2sI+a7nktRDzytZ7MA3otQwhrDrfKguBQCgUAgEAgEAoH7gUslKEDkIbwQvslkIkk5wI/34FLwEDgCDY+Pj3OoH6St3i7g1WyIEITDg+mACxi817MDpHPCyucgOQgaVEwhnVw35Il/386u7ZkSTpQ5FuPwcSMOuGPA++Y5P9Z35pEcAAL8nGzSu+/98vT1IwTh7OA87pbodDp5a0eIItdfdxkg9jAnzIG3RmBjh0AioDQajUy2WSOQRnIeJGk+n2eXAmSW1hk+RwaE51A4UYYMM24IL2GW8/lc8/lcg8EgV9Yh456VwHaQHBMyPZ/P82vtdluz2SznWdA+AnmH1CNCSMpryF0wvnaZT45Ptd+dMJzLPzOdTvPnfItGro/dUPg3zwX3iueK89UzTLg2z9tgjC7OuBPF8xZc2Kg7bGgn4f2sRUS4QCAQCAQCgUAgcHtcGkHh5OREzz77bE6FJxywLMtMrjyw0fvIQT2pnQyEyWSizWZTaY+AFHvvOxVJqpYIF358xkSWA0TGyRGkCCLFWLDvQx79OjivCxVSlQTV379cLrO7wck94+fz3n7A8T3vwP+4a4PPuUDAGMg1gLBB7PwayT1AFGGenNB7CJ6LIhzbyWH9HjuphXxCbPv9fs5c4L0u1HAtuDIg7YzN55K5QwShXcGFC67Z7fJOajnGZDJRs9lUv9+vBDEydiruN2/e1HQ6zTskLBaLLCjghphOpzo6Osr9/u6sgdwfHBzka2V9InS4k8VbLDyLpNFoVDIWcCiw3nACeZ4EzxfuBdY+6/X4+DhncLhI57tKeI4JDiVcFohbzCnv9WfIvxckVYQ3F+4IzKw/4zg0ou0hEAgEAoFAIBC4PS6NoFCWpa5fv67Xve51Gg6HFYIjnZMFqdpnD0GkMlwPnPPWB3/dd2fwcMaL8gz8D5+l8g7Zg0BCtGivgLwuFovsXHDbOESVcUPey7LMW0BCwnq9noqiUKvV0nw+z5VhAgWl8yBCqt31/nm32rN7Aed2q7iPjW0epfO8BM7HZxEfPDMCsu3j4p5xbCrtEHu/b7zX2xH4OaKMOzao4kuqhHfSc4/YAGn2HSjc0cL7HRyHa+U8HvTprTicBzcD88RcUqnnM7QckCkxHo+13W6zOHF0dKTpdJrbELbb0x0S5vN5zj7gflBxh8Qz5sFgUKno4ybwLRn5m7YKBD2ulfdynzmHt4Bwv1gPzCWZFfUdPLin9RYcz5lg7XFO5r8oinwtnknhmRYc33MdOB/Hk853HfGMBZ6FQCAQCAQCgUAgcCsujaDgzgGs6L5LAH+8JUFShZhCSL1HG2s55EGqJsh7pVM6D2zDBeBhbpASJ8oQErdie0895/eWgbqVHkHDbd6k/UPOnNTxPlwV7lzg+tjC0IUQyCPElcoy18bc+vVCyrlHLtj49fd6vZwzwHW5I4T74u0k3n5COwf31N0GXmFnbiCQZCu4A4PPQlhdVEBIIDuB9eP3k/FDQPk51z8YDNTtdrPrBZLubSbMH4QeJwbn9nYdXAkecAihh/weHBzkLSlxvhBsyfFdKEAcQMAg64NWBkQwb3fBXeFtNh4KyhryHR48OJP30cZB3gSOAY7FsTkWhJ5r9+eO43sAo68NX4cuJvA8IIC5WOjhlvxx1w8uBtZ/IBAIBAKBQCAQuBiXRlAABPRBKiACEB1IaaPRyA4A31YOQFAJFoSMQUi8lcE/524ESI07Dzg3OzusVquKO8F746VzocSr4S4quL2f43vLA6QbwlO3yHvuA4Qc0gbB9RYHBAVcErgYnBzibqiHOjLPXtmG/He73ZzAj5jgJJQ55vyICswDdn8XQOquFA/GhJjjziCnAFK+XC41Ho91fHyswWCQ5xey69kcKaXs/OBcLjJ5XgICBltnOrw/38kra4EsD3cE8B4PesSG7/cBFwfOF0QMX7u0bSCUSKfZEAgPRVHkdQvcacC9ciEIcYp776+zrhEUXHxaLpeVMToxr88T7TR+HbyP++mCm695BBbPy+AeMh7fpcRbX7i3/IzrkM5bH+pOlUAgEAgEAoFAIHCOSyUo4Bhge0HvrYdMQj4QFLyH2gmw71hQFIUODg60WCzU7XYzGfHwOOBBiL51nSf+AyftAHJCxdTdA5yzHgzpeQnupPBQP9oTptOpJFW2zfRdEZgvJ3FsjbjdbrNF3rchZIySNJ1O1e/3K9sR+nncUQCphBR6awKfdUs9oArMvWCuF4tFFiUQi1xYocIuKbc30IbQ7Xa1u7urnZ2dTL4PDw+zkEPryGKxqGwpythxgyAWuDPFAzKZU3I+qKojNOGimM1mFcEFAQhHCmIQbgR2auDfngNAFghzsVgssgCSUqrkaCC0uFhRb3XhvrlAhbjkbST+M54jrp91CxH3YFRv4XDXgAdYes6Hjwfwc0Qub91xJw2iEmPz8FJ3WiA6uFuJsXiWhl833weBQCAQCAQCgUDgYlyq35YhJZDH+jZ+Ozs7laR6t6F7BdQzASTlyrOTqVarlQUCD2P040DMXXDwcDryEyDH3vePKwCCWhRFJjjed49FHCIHSXMig9BCmB1uAt/ikXmCSPIzjo/9nO0HsbxD3Hu9nprNpiaTiTqdTr427OYewuc5C8wfpJzsAlpQPKXfwyERJLgHEH+IINV0RATfocOJIRXsZrOZd09IKeXdCBAePFsCQuprgLYAd1kQIsh7vZ3FhZjlclnZncDXkYtQLiaxPml1IKBRUh4vjo3VaqXFYlEh4Nw7tjtEvODZqLev8DlvNUAwY83hZLgoU4OAQpweLohAwln/rEfaIHgO6q1KOA6YP3++XKjhNW9rQOiqu134bH3+aY/hnJJuyeZA7GFOXJgJBAKBQCAQCAQCt+LSCQpUSiVVKoZefayHB3rLwEX2at/yj2opBIigRE+I939DFOsJ9FQ+2aoPezfkk171sizV6/W0v79fsdy7JZvrhvzVSSjn9S0GIXleyeeYjMf73CeTicqy1HQ61Ww2u2UbRWz0iANuuZfObfneFgBJdPu5VCWUfJbrg0zjlGAueI1Mg6Io1O/3s9BR36GAcXiInmdW1FsBPJwQcspx3OXhooULCN4+wjwwLpwBCBu+li4Su7gWX+e4GqjKs5YI/2RNek7EcrlUp9PJbgjmhmvE8cB5PfDTnyNIOs+Ef4a1hwDhbQh+TxDZqPTjZMFZw1p1p48Ldt7awzzXsw5cXPBr8NwDxuKOBtwh3s6EmAI8g6Te4hQIBAKBQCAQCAQuxqURFCAG73vf+7S3t6d+vy/pvIeZ/mavvHrvuVe9eQ9uAAQECDIk2sPhPL8AwlmvfHIu6TwLwFsyIDMuRECuILueAcGxCexzMcRJnnTe043g0mg01O/3c5WV64VQUomFWNJLP51OK+0OOADa7baGw6FSStnFQKhju93OIXteIfZMA+bOBQ2vxjvZ5HW/Pt+Jwu3miCSQW5/rupuE19kFgHYIxoaDgvnt9Xq6du1abjPw47darUyucSlwHZK0t7dXaV3xOYW4+24DToa9daIeJApcqOL6vKWCOWet4kxwYo77gfd7VgKf8dYFDwRlzdIm40IKaxUSjnvDMzoYt2+XSosS5/I2kfV6need++OOG18rddcC949xMC4XJDmOiwUe+lnP7uBc4VAIBAKBQCAQCARuj0sjKABIte864D/z6rPb9iHz9c9I55VyJzJUhCEcHkgIPJiPiqZXs93mDbGvJ+/zx7e15DO8xy3m9bE68fO+9F6vl50FVOghRU64vU2BFgCInGcDEF6JiwESSRUfyz2EtN5bzr3ASeHCDefgGL1eT/1+X5vNRuPxWJLU6/VyBRxiLlVDMrnv9TwD5tjFjboAxLEIF/R/M1eLxaLiUECAgGgjGuDkqO9EQOuK52D4lpIuDvk6hdTWBQfuN/e0/lx4VgaEHmu/71IAqXfRi7l2wuzuAA9ZJN9COnWfsAYQoryy73kmt3Nm4HhAMPDwUxdOPNDThSaeFf5GBPCsFV87zWYzP9vuoEAA4bwXtdEgcAQCgUAgEAgEAoFbcSkFBQhB3bpetyI7AXEi4/ZoSLC/D5LhAoOTNMgM53TSRmYBFm/EAyeHXnX3c3oV123zPn62zayHQgIfK//2ufDxQprm83kmu94P74IJ5M93eYCQc+2IGbzm48YN4vfIyVur1dJyuczHZKvPg4ODShK/OyO85cLJKfPk43f7vrfGUOVnrGQ8QDKpXtO+wW4WOFgQFXB28H4CMhEayFugks4aQFzx++tiEYSayr3Pu6RKpkHdkeEihf/biXun08ki13q9zgTZRa16e4YTeY7lrgtfb+6GcNHgopYPb5mhDYXX/LzeunNR24nPBcfjPf7z+rPnc+Xr1v+NmLCzs5PbiQKBQCAQCAQCgcDFuDS/LTuJ9zR3r5ayZR9ki9wCLP7eugAgQtI5+fDdAjykjwq7J/x7yCEkzckohM+31qvb16VzwlsXOy7aKaJuwa4TKcZSD47zPnhvufDWDsg7x6wTN85PFdqdAHWi6cfBLdHv9yvBiZ6rwH0oikK7u7vabrfq9Xr5PawB8g7IWHCyyJh8G0sq+V5Nhxh6pgXriH8Tfujz4q0UvJfqPsS30Whk4WU2m1VEGOYf0Yj58WwDCD7rjWtzJwTwth7WRafTycKGu1OYR+4/ThKcMxftouAOAMg8oodvB+nzDBCKqOz7M+YOh7pI6MKFv8Z/89xxbHdu1Ncg3wf+HHvbkItcfny/RheAXIgKh0IgEAgEAoFAIPD8eMmCQkrpMyR9t730Jkn/vaQ9SX9Y0vWz17++LMsffBHHlaSKxVw6JWRY5dlRAWJBpZ8Kuoe+1cmekyaECe/HrtvFvS/dK+KSsqAgVbdx9LE5cYIwOuGB+NZt+HzOq+0pJfV6PUnKtvHlcpkJpTsI3MrvlVpIOLZ3J6rY2BF05vO55vO5JFUyHlysIJug3+9rNBppOBzmNgyyGCBotH0URaGiKFSWp4GVhArWxRXvyWcOGAMhf2VZajabaTKZ5FYEnAJcM2sHV8B2u1VRFJKUq+SQ9nrmAWsypfOdKzynwXcOqec9EEbJusH1sFqtKtsbMv8uhNUdKLQ+INyQD+FuEsbteSGsFW/T8dYGrs9JOyIKn3eBiHP6/UFEY134+P2ZBi6u8ay7OOSBmX4f3OnBPWP+6i0RPneMgXvCs+GCHffQBYX6835Zca++iwOBQCBwZ4jv4UAg8CjjJQsKZVm+X9LnSFJKaUfSJyR9v6Q/KOkvl2X5rS9nYJAowtogpP1+X51Op0IaqWR6in29qurBc1KVZHmOAaQW4g+Bd2u3V1QZqzscOA6V77od39sRcAI4+UcQgHQxfkmVrRel810OaKeAEDmR5XySsljhFXy2jYTo0xawXC41m80yCWYeGo3TbTJpY2g0GhoMBtrf39fu7m52I7DdYUpJ/X5fRVHkdgbGUd8hAAFAOneXLBYLFUVRERxarVbOXZjNZjo8PFSv18tzRnXZWyPYClI637bQRSUXLeoVfG8n8fviYoK3HXjeBEQWku4uBK+Ye/8/P0cImUwmOf8C0YvPX+Ry4XUP33QRyVtlmCf+Xc8jcYLtxNx3FkGMQtiqt6r4vPhz5Pfed2Xg3uBCcoeBt1N4m0i9TYlxck3+vrow6C0X/nkXRi4r7vV3cSAQCASeH/E9HAgEHmXcrZaHXy/pQ2VZfrRejXwpQARYLpeaz+cqiiITtl6vl6uzEAFP5Ie0QNg5llu6vR0BQkn4Hq6I5XKZdz6oCw6Aaj5VTwilJ9tz3uVyma34YL1eZ+KPUFC3cruNHaLc6/XU6XSyvZ8x1TMgvIfdrfzunIAIDodDjUajPNeeI+C983WnBuej3aHX61XO74SMFgnPtai/z0MTUzrdjnE2m6nf71ecGr4Tw3K51HQ6rZyLdeLuC19fLjqxbiDbzKe3pNSzORAIIL+AtbNYLCqtHN564+003BNvw+H4XKe7b7yyXxevHIgHLjixNp1Y13eH8HBCxCbWEO/BOcC5+ZmTca/0I/i5UOCuAxeBfN69XcHFDObURTRaQ3yN150j3hrk64Hnqy4ScswHDHf1uzgQCAQCLxrxPRwIBB4p3C1B4fdI+gf27z+WUvr9kn5S0p8sy/LgxRzMAxY9iR3yLp27Ci6yJTuxcRLmlWa3OVMVh5xC0t3m7QQMRwH2c/ITGF+dsKzXa02nUy0Wi5yWzxi8gupVVF7zZP6Tk5Nsd2eXB8QKyL67ESTlYzAvTo69X73T6agoigpZrG+5ybipZnN/IMNFUVQS/BE4LmoVwdngTg5P++feseUlAYg+r35v3LHS6/VyuCXj8d04vAUE0cbzKBCs6uSbc7nQ4PfQ7zUZClyvt5ZwX5hf/rCmPQiwnptQHw+CA8KMt2wgKjgJ98+7s4Xzc2+5Vtafi1PMmwtBtD3wOc7j26W688cdCoBjI2IxXtYiwlb9O4K14uGW7tpgDIwZ4cjzWeruBcb6IDgUarir38WBQCAQeNGI7+FAIPBI4WU3CKeU2pJ+m6TvPXvp2yW9WafWr6clfdttPvfOlNJPppR+0l7LxKxODry6WLdAe/XxIus61X3IGtkK9LJL5+QZQPj8mHVSRbgf/d6Q/aIo1G63c2bAbDbTzZs3dXR0lC33Xvn16/LqN+dzIso8+ZaUnlLv1X12U+h0Ovkci8VCk8kkiyaQVc8PcCLmgZe85jsF4OjAZcF8cV/IL/DWBoQVn4tWq6WiKDQYDDLZW61WOjo60tHRkSaTSWWnCq7VhZzZbKbFYpFJIfPDOpFOBQW2GfW2B0QJxsV1uU0fR4pXHDwTgXvnZBbxBMeCV9JZI8yxV+DrQgPvY+49J4H1yM/9mn1MLja5aFAnz/7scF89IJH15euMdeNCFZ+tb2PqzxF/XCDBGbNcLivbW/ozwL3z8bqLCPcIf/g566q+fepFomQ9IPOy4258F2/04FxvIBAIXDbE93AgEHgUcTccCr9Z0k+XZfmMJPG3JKWU/qakf3bRh8qyfJekd529rzz7OxMcSJQTiXp12Puu3T5ORZhjSqoQ8HrfvBN3J8xkCXi7hAsZnNfJKxVyt6F7iJ2PrV61Zjy81yu4Tnj82jivE20nZ+yMUZ7lKvjOCVw3hBZrvQdFUv2uE11IOz+r78zhhBixxokcAgxZCIQ7uqBycnKi+XyuyWSiwWBQCTP0HAbmC1I8mUxy6wQhkcyHp/b79UP2F4tFhah6SCCtKOksX8JbTVgv3W43V8BTSlosFpW14xV3rt1t/z5Od+AggkBwPQ8EQYfnhbUAWa7nSiD4+DW6AAKZ5np7vV7FXePzzjnqDg7/mT/X3sKAE8D/8DPcFdwfPz4CCn8Qxurhky48+nNbb9/heO6c2G632SXxAOFlfxeP0v4D1+MRCAQClwjxPRwIBB453A1B4Stk1q6U0qvLsnz67J+/XdJ77/RAbs3udrsaDAaazWaZuDqh9Oo4BMf7/p24UCn1ajvH4xgpJW02m/wejoUFHELGDgZUPjkWmQuQNrIECKljNwFHt9vNlvN6Qj1hhpAuCA+VW+C96JAknBP+37gTuFa3yLfbbfX7/TzPXJsTQL9HEDkngO7u8MyCeqaDCwY4OlarlZbLZWU3hMFgkN0dzz33XN7mkZ0VJGUyTstHp9PJx5/P5zkbYjAY5PlgHti60SvszCOE3Em2pOzAYB58Xsi2AHUySksIY3fBpV6553heOWctdLvd7ALwYERvk2BNcP993bkrw0MjEVSc3CPK1J00/O2k3M/hYaCsFdwOfi3edoBAyLyRZeFODI7hn+c+uEjh5/RxeCsG8+TvvyiH4gHLULhr38WBQCAQeEmI7+FAIPDI4WUJCimlQtJvkPTV9vJfTCl9jqRS0kdqP7sjtFqtXO1la0CyFGhRgARRSYT8szuCVO3rdpINEfOqPsKBv68e6OdWbQ/r87G43R0bulu6XTjAYQBx4Wde+a8H7m02m5wnAMGlSuvODs5bb0WoE0LGOBgMdO3aNU2nU61WK83n8zx/zPtFbox2u63d3d0sSPicQIrdkeECQ0opuxO4p2VZ5q1Bd3Z2dHBwoKeeeip/BkEBwcfvL/ODy4LK/dWrV7NLYTweazweVyz+3FPIN/cBAupz7VVsv6ZOp3OLiOQ7PfR6Pe3t7Wk+n2chg3viGRcICIgTVOpZo4wBAQD3BETbWy4g4N7S4ltU8izxWW/dqLf8sM78+WMsdUGmLib5OnCRyneWQOAryzK3WHBMD6T0FgUXxTxrhLHX26dYky5wsQ7rTgp/Fh8E3Kvv4kAgEAjcGeJ7OBAIPKp4WYJCWZZzSVdrr/2+l3KsuoUaUlwURaUq7dZwLOA4GtzqXe/n9wouogLH22w2maAS5Hd2LZV2CK+wOtGnSj6dTlUURSbuTqY9wJBz1tsv+Jmfo9464UTW8xPcTs/1sxsEbgAIl/fC7+zsqN/vq9/vazAYaD6fZ7IKAfTwPT4P6YOwX7t2TZ1OR0dHRxXnB9dWJ2ZeBec6CBDEpSBJ0+lUR0dHebcN37UAksi9ZteHw8PDPLfsPlEURSam9bA95hV3i68Txs8988wE3uM2exdLPCCy1+tlkcCr/Z5VwPFoS/C17q0lzWazkifhOQSM0e+ZV/WZl3pbgv83cwHh51rr77mopcDXo2/b6dfA+11MQwji/rvwwVxwnfWWjXrbQrPZrAR4esYCa4V14PfL8aC5E+7md3EgEAgEXjziezgQCDyquFu7PLxs1IkuhMTt2U4kOp2OBoNBJuFUpakm08tO1Z7POjF2csT7qFZ6RoPbxOtp9sAJsQsBniEAIarnIbiDQVLuwQfe/+0E0qu1vnWmpMr2mrQQkEPgW1dCyPb29vTqV79a4/E4Bwky7xDxRqOh1WqVWwlwkLzmNa/Ra1/7WkmnRO3g4CBX4nEV+E4E7tbgHiG44BLx6ji7b+BI8N751WqlZrOpfr+vdrudRZ1Wq6Xd3V3t7u7m1hInp9K5K4X7ceXKlTw/nvp/cnKSQyHLsqy0jnBvVquVJpOJpOoWnzhGCJwk72K5XFaEHg+YRARibmjT2G63+Z5CuustL7QCsaZcnPEWAIc7H9xdwPG9DYE1zb30fAaEOj+Ht2O4m8fPy7g5Jse4yEUg3ZqPUEddUGQdS8ohpbTFsBb8WeTcnCcQCAQCgUAgEAhcjEslKEjnOxFAAqXz7fsgCpAXLOakwfuuAfSaY0dfLpdaLpeVyiikhLYKyA7iwHq9ruzWUK+yQ7Q5p4fHOTmGiEmqVIMhpOQyeMUZog9xdqKJSOHb/CF8UEmn355qd6/XU7/fz9tXOnH3nQ/q+RCQY8YHsVuv13lHi8FgoNFopLIsdePGjUzG/HP1LQURgeif93XgJLXdblcCCFkHjIF2F8Inu91uJuq+Daa3zazX6zyfbpmndQACSoBk3S3ieRV+v9lhgmq6pDwuD7JkTbPeJeV2i7qDgPcgcnjughNsSL+3Brjw5K4axuAE2gk86xmRyndZwZmCu4JrrYczSrpQuOAZc3HDxQrWnAtPtO2wVvzZdbGBa3OHSF1A4njMkQtDPg/eGuECXCAQCAQCgUAgEDjHpREUpPMKqZNYr/ZCfjudjk5OTtTtdnMlkmA+fi6dZx5AzBEAvK0Bgsa5qKpDXOqhdN5WgAjR7Xbz1oicc7lcZmKMvRqi4zs7uGWe89Rt84wV236n08kEmOMgmkjnJNX7/d3u7mSX/nqukzlg3iHgzB2EFccDGQqPPfaYNpuNPvWpT2UnA6SZLROlc0eEE0sPpcRJsFqtsghSFEV2BrjQwRwjDtAqw1wNBgO1Wq1MCAl/dJdDt9utOB6Ya67fAxpZY5Ky08DnGQeDh/y5y4F5XC6Xms/n2Tni5Bd4eKXnfdCKgniyWq1ypoa3A/j6Zb368f1n/LveCoMYw3jIJYBsuzBQb2vwtedOn7owVc+x4BiIH6xZxAiuy89VdxK46OPPkbsP6m0T9evw5zAEhUAgEAgEAoFA4GJcKkFBqoYt1nuucRtgWaZy6sF4RVFUtuLD8u1b7LEzBCTDK72+fR2fpXrsAgOkytsJpPNQQOzUF1XovfIOqXOiWq8m+04ALgz45+kPZ94QAJyceRWWc3kAXlmWmXQjAJCFUA+hnM1mlUo/xBw3BwSaOUHsQATiPe5kQGhga0QEAgQKti6kZYD3EYjo96bb7d6y7afvFuC7dkBk/Rq5V8wTa4m59vXKHLtwU8+3wPVRDwQlC8HzF1xM8HXB3zh1GA9Bmn4+r+QzLj8HY3chgGurt+W4qMaxndj7fLgwwBpgTXvIqQsV9XXpuQx+DS4CPB9cUGBdsUbJV2CnD+DbzzIf9R0yAoFAIBAIBAKBQBWXRlBwUoIY4PZ3SK9vDQfxhkyzXSNbDDo59M9hofadDpzgSOfEjVYAnAsAUrezs6OiKLJNHuKEiwJS4gF7XIdnNXhFloBJyKaPmWtwcujVaH42nU7z+J0oe385zop+v69Op5PJPJX0RqNRaTdhfnz7TsYLUfR7SOsFY5SUHSRub6fSjUhCKwRjTSnlnSfm83klg4CsCJwJHMcDBX2emH8II20qHHM2m2UXA+vGWxYQWrD9E74JXARhHeFm8BYZb0/xzAwq8fP5XIvFomLXr4tJ9XYBwkW90u+BhhDyekAp4+HcUrXNok72XQTyZ9fFLxdvXCDg3uCCcVHDxQ/PPfE1XndWeG5I/br5g5sDoZF7zHeHr13OcZFYEggEAoFAIBAIBKq4NIICgJC32+3K9n1e2YXk+PZuWN4hx5Be3AjuDHBiDlH3UDiIkvfU1+3ZLl4QlEeIXkopJ/o3m81c5YccFkVR2TJvNpvl4EIIMqTe58UD9qj6I4bUw/Km06lOTk5yWKFflwdNtlotFUWRcxzm87lms1nOakDQQJjwlhCEHLIsfIcB7g2kl7mkSsxc+T3lPkuqzDvhi3wGm7+kvItC3TnCvHAdEMO6uwOyf3Jyovl8nnMT/D6TRSEpC1VcC2O76B75+5gbrg3XDMTdSfV2u9ViscgtFBBx/mb+PdugLtzUgwV9xw7cFl6VRwTDjeHCjq9/F97cteG5Bry37nrw55v1zRxz/zgGooxvGelig6S8vvwcLgxwLlxGCIOsIxc7vBWDf4c7IRAIBAKBQCAQeH5cOkEBogsxBJAZyDmOACe2kFs+C+mCQPAeKuTSecich7dJ56GKXgWukxeOhRvBg/d4P2QXsuo/41juCECg8B5wSZVKtTseIEJcC3PlpGlvby8TKkmV+YUAQ9ypHDMenyOq855VQUimiz7eysD5uC+IOwQqOmnzTIJ6Pz1OCUgn7geIM0IHwpFvV8gx6yn+bqN3osn7Ia64N7gmdrpw0ctFHeYSx0mv16vkEXA/PbPB2xwQG7z146KcC8B98TYSb09wB4E/U/6suTsAh4FnH9yual933/BeJ/7uWKi7GnwsjB/3CCKhZ3CwXr1NxdcQr/uuKlwD7Twu7NTXAs/U7cYZCAQCgUAgEAgEznHpBIW6XZkqIm4ArO9U/iFt3gZRJ45uz6fyuVgsJJ27ELw6Lp0Td7YllM5Jile3PagO54MHu1F9nU6nms/neVxe8aUK6zsNMBdODr36y/HrlWb+xrZPFRuSTQXaCZd0nv3gBBtSTnXb+8oZp9vF6yGUiAsuPnieAJV537nA1wFEEpLnvfZu299sNppMJnlXjsceeyy7JpgnqtdOXBkfIYmIRFwL64DMDkiuXxPCFmPySjsCA6ILYo10LiAwjy4QMT9cO4IObR3sWMKz4WS+Tu7528M/IdDcP+Aizu3aCLxFwp+5estQo9FQr9fLaxgBxNsWcHL4f3OfEWLq99nXiq9nb1Xw1iiugfXGDifu+PDMjHqYZQgKgUAgEAgEAoHA7XHpBAWw2Wyy9b7b7WowGKgoihyoRsWcirRb/yGe3jvvhJ02A0hJfZs+D+6jB/+i6q73ltM774TLcw+wk9cdCt4K4YF6HuIIAUJ8AC5g+PsgRHXhAVIKWcSZsFqtdHh4WKlkMw/1nSFwNkBuF4uFjo6OtL+/n8e1Wq0qtnknZ94OwThoAaCKDwFk/n1MXBvEHxJNSCREmZYTRBLm1O+Zzy92d/IgcE94doH/t8+Riw+eVcC1cS/qJB6nDcfxOXFRQVLesYL5QQBzgu73iXVy0bqr5yogYnjoZj1TwIUCb4PwYzKHvjMDzgTcHy5u+Bx58CVrla1RfW58LfF8udDhc+HPkbsTEPp87HyX+Oc5TyAQCAQCgUAgELgYl0ZQ8H5myBJkEGLhIYaNRqPSQw4RwjJeFwhwKHAO/7n3lLM1IKQWe7tX4z3MDcKEUOGWb+m8+kqVWjonmVwjhIqgSLff163kTp6oqHO9zIf3tjsJxiXgYXt8djKZVAiepEr+hGdOuE1+Pp/r6OgoOz4gu76jgVv9ncy6w6LdbqsoikwUl8tlJpn1Knmz2VRRFPk+4PDAVcHrrCnfYcHbEiCULlwAJ80+7noLiosJfK5+LG/bcFLNfXVXh+c/8Dlv3UBM4b54aKI7SdyFwHrz4/iuJx686a4OF154zZ0yZIcwD/5cIFR4C4a7Avxc3W63QuR9zI3GeX6HH5d/u0CGCMix6+N3QcfbZXwOXSwKBAKBQCAQCAQCz49LIyhI1YR1eshxFqzX65zSTsL/yclJbimQTqu6vHc+n2dxAILbaDTy52hl4FyNRkNFUeSchnpfNmQIkkyF1R0Dvs0cJKVOlLwSytg8+2A+n2fyCwHyHnCEEem8wk07iJNWiBNtGU4q6+RpPp9X7kNRFJpOp3lrPc8jcEJYlqfbHo7HY928eTO7FuoVdF5zYcFJIMSQz3Nf2dKROUYQ4HogrB6oSQvDYrHIRLWe7UDrBlkH7oKoO1Hqa9OdDghP2PUBY+QctCi4UwbCy1rcbDbqdDpZ4KnnELiwBMmmOu/we51SqgSAugsBku9tAh4U6i0x3jLibS/MA3PLc8j6Q7jCgeIZFz7XZEbw38yDtxPRquTBoH690qkLgdwJ5oVz+XODe4U5cZEE109dCAsEAoFAIBAIBAK34lIJCtJ5NdcJCr3nq9Uqk0AIjqRKRRGSwi4IVF8hNnVi59VpnARepYXceDsCrgKIymQyUbfbVVEUmZBwDIQFzyLwPnHOy+uTySRbsxEDOp2OUkqZ+HvlvU6wpXNCTh86YkQ93A6yhXjj1VrPlfDtBCGHnH82m+no6Ejz+bxSAXeyX0/Qv+ieeZAi98sr4JBhxsAYea/34Tux5BoYA8GYRVGo0+lkAYcWmvl8fmHFG+LPHDK/vIcx8DnWDMKDt7ZwDd6O48GVbGHJWDk/99dbBnxbSs8d4WfsUIGo4s4FF7+4r972wP10p4Y7MeptIHUwJ91uN4s7TuxZixybucbN4+vFwxXr2SruNCBwFcHE1xTinIewMqee8+EtOb6mA4FAIBAIBAKBQBWXUlDwyj0iwGKxUKfTyb3kvhVkPZiuXo11sgeRgARBOKVTYj8YDHL4W6/Xy+eDeCNsQGi9wu3EFvJCXz5jxp5f72lHMGC7QEkVAkT1FGIKQSR88KLefT6LCLJcLiuOCm/h4L8hat6SwLW5uwFBYTqd6uDgQOPxOJ+TrSGd4NZzBupknf9GwGFOIKDuvPCsBye/9X5+rt3DIjmGB0TWtyeldYL1V8+WYH4RiCDnHhrpLTCIWN6SQDX+5OREnU5HvV5Pe3t7kqTpdJrXtt8r1hdk2av5PCPcK87R7XbV6/XytbsDgX9zrbTDeFsLopqTe2+BoeWg7ggg6LLRaKjf72s4HFa2VeUe+WdAp9NRv99XSimLgswpQlO9vUFSFqBwfHhoqosxnoniQZou3rCmcA8FAoFAIBAIBAKBW3HpBAWpSohoM4AwtdttDQaDSkYBhNlt3G6NvojEFkWhfr9fERS8TQCyVO+hd7ICSXTBgfFCftrt9i1tD/WQOyfV2PedwDF+t8P77g3SKYkiB8GdDYzzouo610tln/nZ2TkNmITM+Wf4m+sklHE2m2k0GuX3OLgXXCfzCqnF3VAURbboM0dOfplHd5B4roS7Vvxe4fiAkF+9elXXrl3TYrGotLCwlSUOD3erAIShvb29/BnGz710u7znE3ANHJ972263NRqNspjlgaEIM36vWfusvV6vd4sDBmdJURT5uMwD650AShdB/HlABHJBwddIfT34McfjcSXoErJPiwFCRt1dUpZlbuHhOnz7Sg+YRCTye+PiANvIOtxx4FkNLkrxbDG3gUAgEAgEAoFA4GK8oKCQUvrbkr5U0rNlWX722Wv7kr5b0hskfUTS7y7L8uDsZ18n6Q9JOpH0x8uy/KE7GQjiARZmr7aXZZkdCs1mMwsBCAhU33mvk3XID4TGw/CazWYmkLzG5/nj292RFO/ZDTs7OxoOh9kVsVgsMtGh6tvv93PooFfavcVAOg+2wybu6Ha7mSTX++k9J4D3Yp9vNpuaz+eaTCa5ZcLdEfypz50LM5JyxgG9+95GQDWa9guvWkP8FotFvr9U5BuNRs5qODk5UVEUGo1G2aLP572NxMUb4C0tkjLJ5ziz2SzP+Wg00u7urnZ3dytzz7aCy+UyCypFUeSxk8dBa8v+/n4eA3MGKWYd8HPWmrfy0BaBzZ77xVaoEHapuhuE51/gBqF9gy0tcV0gVpA/wNwhJuGc4ZiQ53qwpgtErHPe126385pAbMG10+1285z1+321Wq2KiMOc7OzsaDAYqN/vZ6Gh0+lUnEAu7NASQZ6KZ2J464+3WtTbqHwuuRbfhhJnzEWtHPcLr9R3cSAQCAQuRnwPBwKBwK24k9+Wv0PSX5X0d+y1r5X0I2VZfnNK6WvP/v01KaXPkvR7JL1N0msk/XBK6a1lWZ7oDtDtdvWmN71Jo9GoIgp4dgHOgTrZx40AAXKy4H3/XsF0y7uHt3n/tLcX0GMP4cIODpE7PDzM76WyjjDiFmsq9ozdSZD3kLtI4OGTEGGquPWwRhcJINSTyUSr1arSfuE7PzC/vrsAJMwdD4wDQYeKM0QR8ufiiAsmOCioqk+n0xy+6XkGnjlAlR+BxqvIOCXW63UmvuPxWJvNRv1+P9vv+Tf2+8FgoMViUQk9xNGAO6EoCs3n8yw0lGWpTqej0Wik4XBYaSGp5z9wXyD9OAfIqmB9MP++1hCscAbQguEiFusGkcdbf3B2eC6ApMqOIO12W/v7+9kNklLSYDDIa49wSwQOv4++QwTiV1EUeRyz2awSqMh6Y/w4QTyvg/d5GCX3grWMIMDaPTk5ycKbP+uMgzG58OPCgodXcj/8+8LDSC8JvkOv0HdxIBAIBC7Edyi+hwOBQKCCFxQUyrL81ymlN9Re/jJJX3z2398p6Uclfc3Z699VluVK0i+mlD4o6QskvftOBlOWpbrdrjqdTm5hkKrVcgia9727lZsKM4BYeZXbQ+Hc8u5b0knKAgbVa/5Q8fVec8blDgW3n3NsxswfXudaqapCmiGHnuFAFder65zf7eBUkieTidbr9S2947Qe4ARx4uahgC5Q+L3yHQO4XxwLuOOBeYKs4WiA8GL3v8hlwn9zbh8v953r5fNcI+QThwME3t0PZGN4kCBjZI1Qxd/b28vuBXcXsGZ8pw4cGd4OgzDh8+9rhXVAlgTikbtWPBCRNeNiFUKBt0FAxrvdrobDoa5du6adnZ18n3d3d1UURT4vO6UwZtYB80seSLfb1WAwyA4HjscYXVRwVw1j4tjehuP5Ct7i4uue+8mzhPjFbi3+XcLa8NyIugPB2ym8/emy4JX8Lg4EAoHArYjv4UAgELgVL/W35SfKsnxaksqyfDql9PjZ609Keo+976mz1+4IWOJ7vV4mAdi/aSHwPnknw5Da2Wx2iyXe+8QlZZLu1WREA0gXhNZFBggUVVxs1l5tZmtLDzHkWtwBAEmuB0h6Nd97xiH5EFuIMtVU7OVY1an6c3xIqfeLI4x4ZoWknJvgbgkEHci/hwsyB07sOT6kj2v17AufN0QYF2S4PnIlEIpcrHE7e70/HrLr47hIIPG0//o1S8qiAYKCOwIumkevgvd6vUxwmXvG54KFr0VILD9jTLgLPDcBUQOxIaWk0WiUAxYRkVgjCE/7+/va3d2VpNyOMhqNcnsOYg+7X/izxJzRAuT5Br6ThecreE4C4yRwFfcHa7m+/j1zwUUY5tzn0AUH5hhBxJ/JiwQF/67gvJdJULgN7sl3cSAQCATuGPE9HAgEHmnc7d+W0wWvlRe8ppTSOyW9M7/JyKkTKg9VpAIPMefnfBZCimVeOs9MqDsEnHxSbZ1OpyqKolKh9J5xJ32+owDH5LhUavk81njIpFd83QYP6fSqNGQY4uWBeLQgUO3mGPTw047gZNTnBVeGt1/wb4gqZJi+csQYiCM7YdD2sFgscoW81+vlCrJXupmDi+7RdDrNxBsngTsSqPz7Dh4+d1wT40MMWC6XWUwAq9VKs9ms0sdPKCDricr9YDDQdruthEZyjxm/Ow14nfBPv3ZJmXxD5utrSFIOIvWqOddUFEVeK17FbzQaeftSHBedTqcyz6PRSFeuXFG329VqtcpCHS4DBAWEJc7tTgHPEeEZ8DVEOxCkHUHHj+PrytsPOIa3vbi45qKii30eCOrCDMemtUc63yLWRR0XEzxr4QHFS/ou7qq4l2MKBAKBRwnxPRwIBF4UZr/zC7UeXPw76PCptZo/8lOv8IjuDC9VUHgmpfTqMyX21ZKePXv9KUmvs/e9VtInLzpAWZbvkvQuSUoplWd/V3rEIbpUhXd3d9VsNjOxhlRQ4SSl3iv5TvacaELoIRFumaeXHCu8V1aXy2UlDZ/j4zKQzkPjJOU2BSdAOC8gem6pl86r5L61ISn92OWx2dd7vT0IEUeBV6KXy2Xelg/bPtv71Y/hmQ/1Fg3PQqB6v1qt8ue5tmazqel0mq/B54PsB6rLtGlA6BhHPc/CxRjIq5NdRBru3Wg0yoIM7+U9jBknA4KCtwxAshGyuBb+7dkRrC1EHgQhCDbXQzYChN3nHXcFuRLe6kAV350iCC/e1oD9H/FBUt6KkRwJxuVuEW/H4XqceLvbBwfEYrHIz6uHjiIAImghhPFe3sPrjMPnmLn1dgQfG84kHAu175j838wF64cxuTjGPWDMlyw/4Xa4q9/Fo7R/4S+7gcCjjNTp6Jmv+hX3exiPNI6/+z0v/Kb7h/geDgQCL4jUauuZd37+875n+vpS2/bFXwFHb2mr+Mx33PH5hp84Vu8f/7tbXj/4L96uTf8ivfMcT7znSOVP/dwdn+ulCgo/IOkPSPrms7//ib3+91NKf0mnATSfLunWK7kNqI7zB7II+d3b28skH8v1bDbLRHEwGEhSpWfa+/EhkdK5tblumSbw0Vsf3K7tlc96u8VqtdJ6vc7bH1I5xSmAOEBYH9V7rsd794fDoRqNRhYBptNprsK62ODVaUgf/4Z4UnGGKLFFYbvdzsQNYgecsG2320obANdDuj/z6KKIuysmk0nehQNiT+gef7yFwgMI6y0ivnMCcFs888v89Pv9vHMErSKQeVwLCAjecuBEkx0fGo1GzhXgnrtw5cIArQVumadSzvgRZbyvn58T/sk1Mxbuv5+Lvz3ngPu/v7+fdyFBhECgq2/hKCmLPcfHx5VMCa/2e2ghApE/d94u4eSdeUUo9K1IWXOeWYGwwXX7zij1thUXinz98t/+edwVrEHuA+B+eiDkJcY9+S4OBALS03/yHdo2pbIhLR/fvvAHAvcMJ90Xfs99RHwPBwKBW3DzK9+uxWP2e2SSFk+89P+XHA9Kjd9y53rj7HU7an/GrQLE8lqpsvn841g8vqvml7xDn/bdT+n4Ix97wXPdybaR/0CnYTPXUkpPSfqzOv3S/J6U0h+S9DFJXy5JZVn+XErpeyT9R0nHkv7onabZNhoNPf7449mqXd8aEULrlWG2Qjw5OdFgMMhhjVTyJeUwPJL2Ia5evYSEOKHzFHiqwBBOKs1Oulerlebzee7bxzJPldXbMpw4O3FCuIDwQTQh4T4fXi12u3u+sWeEttfrZREA4tTv9zUYDPIOEFSnPZmfczipxjJO5d+FBEIPvX+df0PiqGovl8vcm48QUw9apMoO6WWu3JqOAIMwwrogmJMtO2lloL3AMzaonEvKFXd3tXj2BiSb+8L5cDcgIG23W/X7fV25ckWdTievAb9/XCtjwQ3BHHufv+dIcG8Ym99f6dxpwbU9/vjjGgwGWQRx0We9Xle2t0TcYDzuAvI5d/cKggD3ivnA0cGYEBVcgMDZ4gKgi2sIDYgYuFS4N3UghNRbSADjxBnBPfVdIxAWOe9lan14pb6LA4FHHc/81+/Q6qq0Hm0vNq0HHlnE93AgELgdynf8cn38N/bzvzf9Fybu9xInnVKLV700w9NmtNVmJH3wq57Um//npU6eefZ5338nuzx8xW1+9Otv8/6/IOkvvOBIa0gpaW9v75YtFJ0QUKH3fAMIhOcIOAlyi76TZMgSBJBgO47vpMgJBrkFdbKxXC41m80kne8ewXmlc9FCUs49IGiRY3NuHA7j8Vjz+Vyz2Uyr1Sq/h+o4AXqSKiT3+PhYnU4niyyz2Syfn+uEyNJiACF0YQBCSC88VXsqvNK5Y8BDLd2STpXbHQAIEOQ8cIx6CJ5nZHhQ5EWVaMhgPeASp8R0Oq3Y+b3yDqFdrVa5qo7bwYMsucee8wHxZbcEPrO7u6tr166p2WxqPB5n142va3dDuFvDxSXEkIsIPiIblv9Wq6Xd3d3KFp+sJT6DoLBarTQej7VYLPLP/F64OOI5Fe6C8JYTnitvawCsa9YPx0UkILODP7Q5uKhXbz/wZ5JWBn/GAM8o42HOEKFYQ76e6y0+lwWv1HdxIPAo49n/6h2avmGr8vJoiYFLhPgeDgQCkqTGjn7xm76g8lLZkLaty/N7493Acb/UB/7Em/WWv7DQdjK57fsuVYS5V1/5t3S+mwOE1beG431UzN0e70TM/3hFl2qo94V7hRjSxLERG0j25xiQMbeOQ1Q5V906zmd4nd522hG8Yuoknar9aDTK5I2gOkhdv99Xv9/PY4T4cS4I8snJSRZiIFNcs7cAUF2mok2FF9K1WCw0Ho/VbDZzWwk/Z279HIyJe8Kc+H2v5yn4vZLOxZHNZpNbQniPE1/mhfsIAebnCDuIKYg8Lpbwhwp8URT52Ds7O1osFjo4ONBqtdJgMNCrXvUqPfbYY9nVwDkh9d4Kw/omhJHX2DqSyjznYw4Hg0GlXWA0GmVRDlJO247ff+aD63FhjPkgswNXjZN8xjCfz7VYLCrCmYd94gjwjAa/j+4KqG/7CfGviwmeQcJacWeMP5P1HBXOSYvLyclJxT0xm83yLjHMRSAQeHRw8yvfrvFbwpUQCAQCDxzu9u9sX/hL9aHf9fwBqeXOoxF3su2U+sA3vE1v+dqfltYXv+dSCQqSKqTDt/2jgkr7glcmqaBL1Z0Y6m0NkEqOnc52QKCVwnvVIRO8/6JcAidf9NaPRiNJyoF/EHS3bHuKvgsKVJb92E60nFx73zvkzR0ERVFUbN18nnYMz6ngGF6d5TWv3iKS4CSAWHK9kEbmkIo+10wrymKxyKTXLe6SKg4Qz55gbbjtnmterVbZ7YBA4vkD7D7B+9iacjwe6/DwsOIKkJSPhSDFuCHYrBmcHpI0m800nU4lSVevXtVjjz2m3d1dHR0dZbcBrR24TmiNwGXCmmg2m9rd3c1tFJB3qvyIGNJ5uCi7bZD14K4B6dZcERcc6kIe56hnK6xWq+yMYM3jumCdexuOuyr8mIyBtcrOIP7suRDAvWHcuHA8jNTfx3PsLUyeUYLrg3HjQuG83GPajgKBwMOP6e/+It387DLEhEAgEHiAkJpNaWdHT/2JX6HF3c66if8fZJQN6QPf8nnSn/j7F/780ggKEMA68ajnJ0jnVnhvQSjPdg1wwujHdTu/79pACCPErd7LDemHONP37YGBLhrU+9NpVXBiXE+x73a7udefbSs5bj1bwHdvgEz5zyBSbNnoO0zQ8y6dCx4+3/UtNp1wck3MAcdgLmazmRaLRWWrR0QLryDXiZ50Ti79WurwOfcWFYQHzuXZFr6NKMcgY4H14qn/kFXWEOQS8s/xmQ+Ei4ODA924cUPj8ViDwUCDwUD9fj9Xz/mMt1eQ/UFmBgLFer1Wp9PR7u6uer2eNpuNxuNxpW2EeWJdIiZ0u12VZZkFtvl8ns8zn8/z/YZAI8j4s8ez5I6O7fZ8a9OL1re7Djx8keeKe8H959+TySQLFdwLSVlg8TwL/6yvG3+mPHfB22j8Z8w1LpT61pcIlghytIQEAoFHAPHLYyAQCDwwaHS7uv6ff64O3lZKerhaDS4lnuf/kZdGUKAyD5H2MECIG64Cr4x7JsByucx97G53pm9bOifVkBXvK5eULeKQR6lKeN3h4JkF3kuPXRwS5tVQ/ubnXCNBjFixEUe4Hq4bEgURwvmA4OIElr5+wvwYnxM9bzOAVHPNkE+3zXu6P8f1FhIXcJhzxsPOFzgxJOXxcc/ruzkARA8XALgvEFKq+zgz5vO5xuNxfi8uF4IoIelc+2Qy0Xq9zu0TiE0IRwhSnr+AODCfz/P5fdtQ5rAoijxPCCz1XSQY42Aw0BNPPJHFikajkXMQvA3D13C9hYV1zxaqPDsuevV6vTwGD0H19cL9g/DT+sJ94BkgO4L54lmpCwo8m37fXdCri2QuDrmriOdwuVxeGKrKNRCKiZCFM8YFS0CbSb/fV6/Xq+S5BAKBQCAQCAQuBxrDoQ6+7G1nYkLgfuPSCApvfOMb9cQTT9wiANDa4Fu+QUogF17FrAe91UkUBNl7vt25gHtgMpnkSqmTP6q98/k8n9PHyns82M2t1FjAOR4EGBIjqWLh91YNSB67N3CtvV4vV5GptnIuxuH5DbQ6eAsF18nnaGvABYDFnDFMp1NtNhvt7u5WLO4A0kYFHMGFPwgn9d0bcIl4cKHPPeQQkQChiWun6r5erys9/p6X4DtHDIfDfKzDw8NMwCHxOFK8fYXrbrVa+RzeluI7XACIMe4R3AKIK0VRZMcCThUXg+ouEcQXxBPGwHg99JJniPn0PAUXqnyt82zRUuI5IP5HUt7dRFJF/PIWC7IhEOCYy3qGhs+bj4vnBkfSdrvN52Vte7goDibuu4dF8ky4GwYnVKPRUL/fz0IE1xAIBAKBQCAQuP/YGY10+Fs+S9d/xf0eSQBcGkEB1EMVIdOQZ2+HgFxI56nvVOHrKfrY9yHIuAM8G0E67fufz+eZdOGO8PwFgg/dgg85c0Bm6tVW7+emek3v+3w+13Q6zbZ7yBfiALs3DIfDirMBG7+3LiBM1MMJmQvcFPXAPggXwgVEzcUYr0IjUHB9OAZwNEAMy7OdCJhrCLRXmblehAYq34ga5BhQXYdMMjYItQcpQna5X/y73+/nscxms/z+lJKKotCVK1c0Go0ygfX76KGZ7lDBaeNZAn5exogDBvLaaDTyZ4fDoZrNpmazWZ4LrpfjuBjBvPHMILpg1+c9vrUma9rH6OGXHgRafwYh5p6fwL1BzPMgRuaJ9yKS0GLCsVmjLmq5qOBtI4zTwxvd6eDz7q0S7jhhjByXc/X7/Sx+RMtDIPDwo/naJzV/rKGwzAYCgcDlRmM41OFv+Sw984X3eyQBx6URFPjF36vcEBGqrE7OpfMt4HzLQrc9Y3l2UcHdCk4QvYLtmQkE0HkLhYcWUk33Sj8ElNcYEwRquVzmXR1o2ZBOq8+z2Sxb71erVf5bUmX3BnrmCa2ksi6dV5kZn6RMACHx7qZARKCfHSFgNBppOBzma0SMQbyQzrcXrG/l6bsC1LdChGQ6OXVBgfdSoUeEWCwWWi6XlfwKyOloNMoCDQGGiBmbzSaHaXoQJH3yEFCEgk6no9FopCtXrmg4HOYqPc6KoijUbrez4MM6wV1A8KW3xSCy0MLjYpK7ZLinnueBK8SfDez55Cz4MzOdTrVcLjWdTvP2pMwtbgPmlTYbzz3wvBEENCr+PGPcr+Vymdcea441TWuCO2LcsePOAncU+XplPfOcepgjQpLngLCFZt255KGTrHdfjx7kyXfKZDLReDx+3u+tQCDw4KPs93T8/GHegUAgELgESE9cCzHhEuJSCAqQIyejnm4/Ho8rRNirpdK5vV5Shbh69ZJwQCdlvJ8xUK33nmwnODgWnPzWQx4RHSBPvAZBohJONbrf7+dzs/Ui7QQQO4gW54IEOiGTlAkdY4bIetI/1nepKoggWkDYO52OhsNhDnakkusWcidyCCiQVq8KXxSmBzH0e8c5uM9ezYbwXbSTAJkBCA2tVktFUajVamm9XmsymeStOFNKWYBi60fG4KF9w+EwizeIH+12Owcg+v3lXgwGA+3t7WW3CS4TdgAhgNNbdfz+s1aojrsDw3c3cFcGbTkQeirqHojJa8vlUpPJJDtwHnvsscozwFwgGCEG+TagvIfjE8bJelqtVtl1wTlxLrBOXVTw+8o8ezioOxRYZwhN3HdedyGLZ9+FPQ9wdIdNvS2JXIzpdFppbQoEAg8nTt7/QY0+ek3z19zvkQQCgUDgdmgMh3r2P3mVpMhNuGy4FIIC/cvuDoAgzGazHEDo7gPvtXbi4VsHerbAYrHIlWEnLJBwxuEVVggJRM5bLKgg0zPvPe04DgDE3d0GkGTf+hBy5hVfb92geg4xg6RxfN8VgmujyutWbx+Tiw1cQ6vVqmQ6UPVFGHGhhLmAiHEPmUs/B+9HLFmtVrndAWGkbqf3XSb8vAgIVPWZr+VymQUF3BSz2SwLFU48EXGWy2UWWzh2r9fLogRk1Em853kgiO3t7eVMicVioclkkqvc8/m8EjDouwmwbllPrDfPD/BdEMi24N5zn1mjvMfn8uTkRLPZTOPxOB+HuYB0c699NxWCHt3twTOBOMbzWXcyIE7Q6uHOEhePttttFiV4zl1kYCzefoG4w33k/nMvEG74LPPu29L6z90FtVqtsrBXDwcNBAKBQCAQCLzySEVPB58VYsJlxKUQFKTzFH8nEBA/36FBUu6rl5RJBK+TGcC2fZBFSI1nLkDSqIpC8iArWJ/ruQMQJ8gTx8M67QQXsrJYLPJ1EMI3Go20s7OTK9js/OAJ+hAk+uWpENfFA0iVk0iOyzUhfiwWC81msywU4AbwXnlv0+CecO56UB2kyxP6PVjP7zEknAq3pEzSvaXERZQ6ufRAQIQOxoGow32aTqd5zj3/AdcK93e73eYsA++r57iQYMaC84C5IFiz0TjdQhMRazKZZMdJv9/P94vPDIfDSmsPghOOCRwfbHPo7QJleb71pYdgIir4vLkAgEOC+Viv1zkngzYOBALcClw/64NtKHFmsMsE7QaNRiOLEdxH7j/H4n0eiooYQJuEuw8Yh+dNeA4D3xGs8/r3iodkukuG8EruP21H/j0TCAQeXpRv/+W68dlJUfUKBAKBQODF49IICh566GF6EFvIvJMHqp2QaPrDISbeV91sNrW7u6tut5uPvVgsdHJyosFgkKuqEE+v/kqqVE09a4CqqaTc097pdCpkFQJN2F9RFOr3+3kbRcg1pMkFCz7jY4J8cv31oEjp1Go+Ho+ztZ9WDa4b8g35lM6JMz32EFEIOMTWwwL9Pjhp8/51t5j7/ca2XhRFJSwRcuxEFEJdJ4sOz2JgLXi/PaKSbyfIPaRyXQ/Q9DwNjj+bzVSWZZ5HLPYpJU0mk3zO7XarGzdu6OjoKAtCzClrDfLs2zz6WsJ+X2/zQQzya+ffkO1Op6PVapWFD5wG7XY7Zz34ffHtL8kO4f4h/tR3Rqi7OKTz3BEEBw/VdEeQrw/GjfiFc6UuKvrxEHb8Z3WxiXPyvcAz7LkUtPkwfzhKEEcCgcDDi8bnfJY+/KWFjosQEwKBQCAQeCm4NIIC1UFJlYorFXocBJKywCCpYluGqBF26NvK0QIB2SEcEdeCb8GI1R9iTQUdCz2VV0gIBAUi51kDVJgJwaP6D8H0sUDKPEiwbm2fz+f5XF5llc5Fj7Isc6+8k2ivgjN+yNZFyf7ersD5nWD7rhCSskBB+4oLE1ybt5dQTW82m7nS7nkLiEku3vj8usMCIsk9klQhjDgVBoNBXmvMA6QYsYX7iePAcyzI9aDiT5sBbQ6z2SwLMCklzefzLFr1+31NJhMdHx/n3TkkVUQx1gtVf9Yl1XzmmVYC3zaU6j0OG99hYbVa5cyG4XCoa9euVTITNptN3uEEAabb7arRaFyYYcI1shY9mNNFA28jwMGAGwKhj/fxLCIkcBwXEVkXZHswD6yLOlxg8CBSb1Vyh42fj9aZQCDwcGLnrW/WB37PrradEBMCgUAgEHg+fMb/8Av6yG1+dikEBQiTdFp5nU6nmZhBMjxQEZGhXiH3HQEgBhDUoiiyE0FSJss4Cm6XYo8AQIWfVgLptIrsPd3+ecYLUaadgrFzTndiUMXlmiRV2hzo8/adCpxE8pnlcqnDw0ONx+NKjz7tH+4k8JYR79Gv28O9TQHbvM8lc4CrgPMgCrll3Xv3sfBDnD03ApLPfHBfPBiQzzJ+b8fw81FxbrVaGg6Hlc8juDipTinlrTm95YHj+c4V3nePQOFzwO4PrVYruxuGw2F20dTbfNw1QvuFixpcm3QqkIxGoywU1VtEXAAaDofa39/XlStXtLu7q81mo+l0WmnjWCwWeT4QFGazWXYjdLtdzWazCpFn7L6uWIvu6vEsA8+eqD//PM8IPAhJvqOK50Z4e4q7OJg71hLi0na7za0V7IjB/fdMCc/vCAQCDxeaT75G73/nYyp3QkwIBAKBQOC2KKXP+PPv18nBwW3fcil+W3Z7uW9DV9/m0XvP67sM0AcNSaNafHJykomU7zUP6qGGJPQ7IeJchEQul8tM+iBrWPc9td6DEl0AQXSouwX4GUQI0uPhilTmvWqPA0NSJsWLxaISpAixxLHhgoG3kEC2IFNUrxES3EUByWYeIP3cAydniAoQT0i0iwHMAyIEc+HZCQgnXD9Vfub7dpVy1gavk4HAjg3NZjPvssFOBd7Dz3s4Bved8L/lcqmjoyPt7OyoKIrsIsAV0Ol0cm4FBJp16+Ok+s5c+Rz789JoNHKoI24ExBzmEtGEwMPd3V09/vjjunLlijqdjqbTaRaCEIt8TeFqwT3Q7/fVarV0eHh4i0Dkbor6/fCAyPr9576y00V9rbm7xtt6XNhjrJIqAo23MXjQZ7PZzC4kz8FApON58l1eAoHAw4dy54XfEwgEAoHAo4p0In3Gt31Ex88jJkh3ICiklP62pC+V9GxZlp999tr/KOk/lbSW9CFJf7Asy8OU0hsk/byk9599/D1lWf6ROziHJOW93/kFn7YBCI4H6nllmsq7k4e6KEHbgu96gCtgu91WtsrzarALFxCesixzwB7E0ivtkNC6nZq/cVzMZrNMiiBUvJ+dJhAnqAZ7i4f3/kMop9Np7gGHyOGSYF5xIDBfLnR48KB0bq9nfmllqLcvMB5ILe/jGE7wfbcGyCGVaEic7xRA1R4RBrGiXj2+KP8Awoxdn3YFrPe0NSwWi7xNoN9L1hMVazIdmCfmHxcKuxlwjXt7exoMBmo0GppOp2o0GjnLAwKPCEQLCFkh3gJCdZ7r6HQ6Go1Gunr1anZcIBbR6rLdbnOmg+/cgeOB9xOEyfz7bibezuMhlVwvgg+tQbQiQPg7nU5uNyKjwVtkGAPHxUEgKZN+BDUP4OQ9iBrehuMZCdwLrg3Bp91u6+joKIuO7gpBoKgLb/cbr8R3cSDwqKDs9+73EAIPIOJ7OBAIPAporJIaJ9Kbv+MZHT/9qRd8/504FL5D0l+V9HfstX8l6evKsjxOKX2LpK+T9DVnP/tQWZaf86IGfUY22aoNKzpEBoIDIYWEeZq9dE4ucBE40UYYcGJL5fO5557T8fGx+v1+hdRCvCAWECgC7xaLRbaZ1wHpgpjUw+zY+cGD76j60rbBcSGHtEpI58KEZ0e4MwOixq4BjMHHAoHFDg6B59hUdRFnOIc7Klzk8fvFedjhwMcAmeeeMo+QXeaZ8ztBRKiBBFMZJ28CcugtL2whybwjFhFMiJBFcCbnwpXC3ENEIcUch2snUBAXyWazyW0Cfpz67gQ4LhAM6sGkkGXP4CAnodfraTAYSDptF/DtDnFASFK/388OAxwuiAJ8lueF+Wdd+voE3CeeDe49aw7nBePsdDo5n8GPz9rlvrrTgXvhO7UwR6xTf+65X4zXxQDEBbJLlsulDg4ONJlM8vldUCTDxJ0UlwDfoXv8XRwIPArYGY30/v/ysfs9jMCDie9QfA8HAoGHCOlEah9WC2hP/uhcjX/7M7rT34JfUFAoy/Jfn6ms/tq/tH++R9LvusPzXQivKEM+6a/u9XqZ3EmqEFlIpXRaxaR9QFIO4YP8A94HkYFEQyiotEOoAZVcWho4DpVjCA2klWtAtKCK6q4Kr8YSWkeIYq/XU6PRyK9B/jk/1nuIFgSVrSKpJvs2mp7HQOUeJ4Tb+xnjarXSZDLRbDa7ZdcDdxBAvrDfc8/cDeLkjso+ZJF8A0gp93c6neYwQQgtJJt7j1uCgEvEBuYNtwn3i/vIlo0EWE6nU+3s7Gg0Gqkoisp2jtK5q8Pvu4cX+s4irCOulUBF/m42mxUxAfHAs0J8C1FJmQgzjx7Y6SIRAZTcx/V6nZ0DPBeslXpbC+f3fA93C3FfeB5caEM48O1Ae72ednd3c16DrxueB55X1qUfn/mifQeBwYUt1hef8/9G+HIBjfk9ODjQ0dFRft74LOKOdN4+dFnwSnwXBwKBQOD2iO/hQOA+Yr1R75mGFk9sX/i9gYz2UUOt8e1/3pyXeuyv/9jLOsfdyFD4Sknfbf9+Y0rp/5Q0lvRnyrL8N3d6IE93p/I6Go3yL/zkHUCWCMzjs05mcAd4mKOTNycjkrJI4P3yTp6poEJO2DIQEUE636bOSS4WdMhsWZaZNC8WiwoxZvcIqtguckAoERJoK0CUgAh56wcEzfMY6sGFXg2migtxns1mOjw81Gw2q/So82exWOTX+/1+JrgeTgkRvGjrQCzu9byMlFLlPtVzFhiHi0K8h5YESbnSDDnnehmb79qx2WyyoNHv97Wzs5OJLE4RxjObzfK9a7fb2tvby6/7lqJuy6cvvx5WSA8/95h1iGsD8cWzRPy/PSTy5s2bun79uubzeV4n0jk5Zy74w44XCHHuYHHC720R3sKDk4NnE4Gp0WhkV0Kv17slv6AegMg1AsRC3w2CNeLPNM+fuyoQGphHfz7BfD7Xs88+m90JnvvA3FymVocXgbv2XRwIPLRISevPe8v9HkXg4UV8DwcC9wgnBwd6/T98Wu//o0/c76FcPpTS3vsuzv269h+m0nv+wz09/csSFFJK/y9Jx5L+3tlLT0t6fVmWN1JKv0LSP04pva0sy1t0kZTSOyW9UzrfLcF7s9vttq5du6bRaFQhUhAc7N/1cDi330M+vEoNOYGAOBHyvAaO7dv58VnOw88RCCDzJNj3+/1cgXe7OFVPt29DsAjbc2s94gnXXA8rhEQxfx7m1263s92d+YPUgnrrACIIAYX19zpx476wXaR0nu/A+7imVquVMwrqc8i94v5BBrk/TtDdZeFE1+35Ph8ITb71IudCTMBtMBgMNBwOc/4Ac4JQgJME0kzbBBV/xuThg54dQbsC7Qi+a4aLLKwRhA8XQrgG3BK0ljz99NM6ODjI46pvj0hbB+vKXQguRElVJwrtN95GgmCGsOVZG7gnmG9aLDiWP7dch5/bXQbHx8d5DSJKuZuHY3pwI5+vu1kQKGaz2S3bezJOb7nyNqXLjrv2XazYJjPwcCPt7OgXv+zWNsVA4OUivocDgVcAR1Pt/sKrdPTW2KFHkvZ/Nqm5KJVKafhd775v43jJgkJK6Q/oNJjm15dnv/2XZbmStDr7759KKX1I0lsl/WT982VZvkvSuyRpd3e3pLoundu5sc7Xq6TeT++VbLdhQ1wkVci6p+lzHA/do+LuVmzIoZ/PBQmcE5AychCoPDuJh9xSsW61WlosFhURwIPncA74DgVUszk+1+mVf+l8q0w+C0lzEg4hxQGBO4A2AMQARBdJlfE58Sc7wIUJchE85M7JM/fCXQBUvd09wbxK560xkFpaEDietxxAVn1rQeYJAuzbXg6HQxVFkck37QneWkI2AK4MhCpEDw9UJCuDtbO7u5vvOeeG+LO2CGikys811N0whFnOZrPsTthut3r88cc1GAyysySllB013HNcKmRckLuBCMD691YOxiud72rSbDazMwOCzs4b3E/uDcKE5yh4KwXrgvu3Wq00m820Wq0qu4ewi4lnlLiYxmfdlUILDi1BvlZYE96GhJB4yTIULsTd/C4epf34P3QgEAi8SMT3cCDwyuDk+nW9+vsbSl/2Jh1+5qP5qIw+2NDuL57+Pl782/frZPw8/QyvEF6SoJBS+k06DZz5dWVZzu31xyTdLMvyJKX0JkmfLunDL3Q8SIITKYiwg0qob+MIeZOULeNO8iEXCAr8TXhePVDOd2mQqmF0Xt324EYXDSCv3oLh4XccjzR/r8ZybMg/QgfX4y0Zbu2mAu3zQaYB22B6P7mn/BMqSZ99WZYV0tVut3P114MpgbeISKpUd3FI+Hvrbo+6Xb22zvJxIawQ89VqlXfBIHiQ+XJy6RV2SDv3kvuDGNBut1UURRZGGC/rh/YHxKrhcKher1ch1JB834qQMEIEK8QMWiN8fhgPIZAQYQ+j9PdScR+Pxzo+PtZoNNJoNMrr090V7tyA6Hs2hbsnEK0QGPi8z2dRFLc4g8htIOASUYU2JgIpvV2iLia4cwKnBnPHa6wff/7roh5jYv1zb1hnPKspJa1Wq9x+gqjGey4z7vZ3cSAQCAReHOJ7OBB4ZXH8qWe094HX6vAzW/d7KK8ImtOkT/sXi/zv1kev6/ipT0jSHYcm3mvcybaR/0DSF0u6llJ6StKf1WmCbUfSvzojl2yF82slfWNK6Vin1/hHyrK8+ULn2G63Ojw81GazyWJCr9fLlXS3jUNgJVXICv3sEAi2iIR0eftCPYyRz9Wr5pBXiJRXzDkG45CqfeW0OhwdHeVKt7saEAFuR1icFPM5CL6HVDIewvhI1x8Oh+r3+1k8kJRDHSVdSKS73W4er6SKGMA43S2AQwB7u99Pb0WB3HmF2IMrvV8d8oeAwT3zHQ+o+CNkUFWG0PJ5v27WkodHQiKXy2Vu22g0Gnk7T+aerSoJnERYYHcFdyM4wZVUCTxEIOO8ngHgApik7NDh+E5wfXeP4+NjzWazvMaGw2EOVWR+uM9+L+tZGmyhiSDgz4k7ZRAJfBcQhCGeOcQonlO2ZO33+znjgmfU17tnm/Dcrlar/H7G7X9YQ/594GKgC131XSY8P8FzNvgsa+qy4JX4Lg4EAoHA7RHfw4HA5UDn3/+i9j/tM3Tzl13uws9Lwaf//ZnS4vx39LTe6OQXPpT/fXzRh+4z7mSXh6+44OW/dZv3fp+k73spA3Fi68QXogG5p03A2xcgPm6rd3s9pMC3IOTYEC8q1m7hh1R4RR4ihUVaOiVjV69e1XA4zDsmsMf9bDaTpNy+4b3ZtAfwb7e+Q448JK+eDQFZp+9+PB5n0sR7IF6IC7wG6UZIYF59+0Dp3LLugZT0w/d6vVxJh7S7MMM5uHfr9Tpb6yHSPreerUDFnHlBlGAtUE13AYHrg8R7BRpRiowEBCXe67tWzOfznAXA+dmxABKNewABx6vlXhUnb4HdNPz4rB1EKG8b8HvMHLFeuWbuDeuEewFhZktMd8K4QIdrg/VObgcOCZ4Bxun3yMeA2NBsNvPnmYflcqnZbFYJVEQcdLLuIhTv4Xnk57Rq4FDwteMikreI8N/udsCR5Fuzsl44F2vsMgkKr9R3cSAQCAQuRnwPBwKXAyc3buqx7/+P2rY/68FofSilz/wrn7ijtx5/7KlL75Ct427s8nBXAKlhyz76+dfrtSaTSa7M0usvnf/iD+n3/nJJmagRfOg90R4A6ZkCnjbv7RUQK3rAqcRKp9VkdqSARFE5xprPVpCS8me9XQHCBwnFZk/LAm4A3zrQSfbR0ZHm83m24kMmqfAWRZGvzQUK7Pucm9wDXBaTyUTL5TJX2CGLuCwgZ+7cgKh6EKYH6XFv3OmA+4N7U89LcNs/DgGcJW7ddzGDdeGtMn5t3D8IMX334/FYJycneZ01Gg0VRZEJN2SdVh2urb7FIhV2yDnrmfd6pZx7yvx4dgf3yttnPGsAdLvdLB5QffftJn0OyYBA5PLnyfMaPLjQgxpZxy7GuMjB2CD//X4/f+ainUg8A4O14Y4hnmHfstMzT1wsYU5YU4g4rG/OwX1hXlzAYX3590EgEAgEAoFA4HLg5PBIj/+v/14nX/U5mrzxldtK8jO/5RdVrtYv+nPHBwf3YDSXA5dCUKCSPBwOtbu7m4mRdN5OAHHFxeBOgcViofl8nivKkAb/t4ewQWYgclTNIapkBkjKBA2y6gQGIjIYDC7MbYBgFkWhvb09Scpb9LkLwIkQAoGTaq4fYQKS7v34XANV15RS7u13wu+Em7lgC0SuDaIGWaZaf7uQOq/kIlJ42B7XxRxe1CpS360BiztkHUB43a4uqfI5J+mQeqr40um2gZ5zwLm5N7gj3BaPnR8hgONwbEgupNtFEHfIcM2QddwkXIOkSr6GX3ddBPO2F67X1zbkGMGE4+OW2N3drZz7+vXrWiwWOTDUXSqQbc/w8DBUxBKuj3XFdqlkJ3j4IeNhPXtbEtfKNfBeng22pMSRUl/TzIsLSi6idTqdyg4i/rwhxPg6DgQCgcArCCvOfcY3fUA3npvf/r2BQOCRxXY+16v+2r/T8Z/6Ai0eP/u9+aJf3e6w4N85aOj1f/Gnnvc9x7Ud8AKXTFDgF/x6UB/tEN1uV1evXlVRnG6pQ0V5NptVbP6QBulcNIAwQB6wiHMMPuMtBhBNr5RK55VnCPxwOMxBeBAjT8MnD8KD8NzWzrG8ZQASBqmBYEKo/DXvY8fZcXR0lM/vAo2kiqiwXC5zy4NfI2GC7qTwijqiCUKDz3W9qosQAeFknnmvtxuwFqTTHQhcTGDuuTfkGxCm5+GQPs+SKvPFPWcHBtwxzGG/38+kGmcMTgj+zTHozedntFEghHD/GZO3qnAttDvgihgMBvk1hBLPPUBIYn36nPN+z2Pw1g1eo9XFAwtpa8FNw5p1YcSdFrS+0DbgbRqQfJ5dXuN+ufjAmsT14tcBofdAyZ2dnSyuuZjguSR8lyAQMc/+TCFazOfzvH49jJLrDAQCgcArgFJKZ3zgzd8zk37ivZKkk7KUHjD7byAQeOVQHh/ryW/+MSkl/eJf+CJt27d+X+y/N+nKd77nDg5W3qn2EDBcGkGBiiFkYTAYZBIBOcKuLp2T+ul0mgm5uxi8VxsC7dVKSA6fpZ2gTobrlXVPrk/pdEeKvb29CklZLpeVLAZEA+zfkB7ew/v93G7n5nohN7gOIOGz2SyH3nlCPef2eYREQ2DZgs/t8gQfQrTq1fBms5nnjSA//jipZP78PlxUXYeQco/IkcABQEXZMxEQAOiNd4s/Y/OMDY7PXNMCsFgsKgKHdFrB910/WBesm1arpdlspslkkttK/DxcFxkTLozV//ZqP60UhDc6WfbsAHecsGbqjgyfbyfXCEIEaSKweHjk3t6e+v1+FjQQ3Lx1grYF7jvXxPpCCHIRh7Xrwlp9LbB+PVyRe+diAdfEe32t07Igneem8Hxz//iZh2i6u8XFoUAgEAjcA5TSzvq8lLj/3lK7f/cOfuEPBAKBi1CWeuPXv/t+j+KRxKUQFCRVyDNkB2v0arXKW84hBPALP9VOSIZb96mAeu80pMF3P/DX3KHAZ6lk1kMCET+c3E+n0zwmyGiz2cz2b2+94DxUXd1dARGF1PnWhM1mM1eQIZ1cH++nP9wr2/xB1HAbPcSdForpdJqFC58PiDxtEHWBgPNBLl3EcDcE5/agPg8grAdBUonnuryn3i3qtKKwJuiDZ1zesjIej7XdbnXlyhWNRqO8AwRuE3Z/6PV6lV0Wlsuljo6OspDhxJ5r4Fic31t43AkAeXUrvmd2eKig74LAunXRxNtwIM2cB+HGXRusBZ4zRDuyQNjtgvvOPZvNZpVKvgc0elaGrwvGz1r0Z9LH5OvGr68e3olDgnBGhAueIdYUz4a7H1iP7pKoBzBeJGoEAoFA4M7Q2CQ1Z8/fMtbYSK/9ph97hUYUCAQCgXuFSyEoeMgcZBqSgkW+3+/nUEBJWRCAeECa3J7ufdOEKVKFrafXe9q+V7d960mvdHtyv1c8qSRDqDiXiwlSdes+xAmIT7fbzRViT8znfZ1OJ4csuo2dKi7Em+NTrcXlwHEAlVjaJ2azWW51cGLKuCHXHoyIE4FWAMQVSGR9K0HIKSSXcTFfHn4oqdIKQ9AefzxvAWLJvSFvw/MF2BpROt+ekfXT7/c1HA7z3LAuuCZcAm6Th8BCaGkZQBzwkEbukV+T33vWRb0NARGN96xWqyxWuXCG2INQw3s4LtcNEUcAWCwWee1JysIYzhkfF2vKt+PEUTIej7NjwAUeX2v1bAiuXVIW3viZf0e468iDN5kDF9xYi4wfhwbPoLcPuQjpItuDlrAbCAQC9xvpOKl3PWn40a2G3x2VwkAgEHgUcCkEBcgSwkGn08liAtu70dfuZIygPe+N9vBArwJ7LoITE0IOIRUQOYg+1VuvMlP5diGDqud0Os3Bdr4VH9ZpPge5Q/SAPBEMSaaB98NvNpu8g0O3260QJOC7LkB+yZxgHMwtx1ytVhW3hIs27jiA+EMoB4NBbkXwCjrzzHs9DBCHA+d0h0S9ncIzJTwQk3M4OWQ3C5wmuFy4Ds+g4HjkCHD/BoOBer2eGo1GPp6k7ISZTCaVdgqO68cuy1K9Xi/vVML4ttttrop71Zy/mev1ep3XR921wbFwhyD2MEb+SOftAwhqZVlqMpnkbUx93bImuDe4L1gHnsfA2N0FsFqtdHh4qOvXr2s6nd7ikPDWInfi+D3mWVssFpV8CBfyPFOC4/q8MXcufiBAcT6/DhcNvA2F5+OiPJBAIBAIXIBSGn2wodas1JXvDNdBIBAIPEq4NIJCs9nUYDDI28tB/IbDoYqiqBBsdwpIyr3RiApUJj2pvU5OvPpOdRYi6dvecU5ICQSF40IG5/O5Dg8PMxnzPe49rb7eGgAJcsdE3X4tKZM0KurMkaQsini1FQLnJN639OOYHjzplnrG4AKEpOwkoHWB15hzyC7bKjrJpU2jHirp7+FYUnWHDc84cJcEBJLx0RIB0eQ4WPYRLvy9OA9YL6vVKjsQIPA3b97UZDLJxJN8hLrowu4JiBWe84B444Tbd2fwijnH81BR2hlow5CUK/N1kQUyzHWv12uNx+Ps/EC08jVO+wPz5sGR3pbiuyMsFgvdvHlTzz77rG7evCnpNPARkdDbKlyIcKcG4YoILv58uwvJ3Qn+DLs7wdcz69gdKvWgTu4x4iT31+cvEAgEArfH1Z9JapyU2v27ISQEAoHAo4hL8dsyJAUiBgnxSjN9016p9uqrh6lBenEQkGEA4fAqOkTYyZMHJEJe3MLt1nsyHQ4ODnR0dJQJEdVrJ/CMWVJ+HRKI2ODhj46Tk5NM4r3Hvt1uZ6Ja7x2nPaLRaFS28PPKa31HDU/m94wGdymwcwHuhPl8nretbDQaucrvY+Fe1rMsLqoU83Pmn3viOylwL926jsAhKVfXvW/eQx9xFnhIJ+tsuVxqPp/n8yIWuYuCjIRWq5V3iuh0OpWtT7lPCBnz+fyWIEKfd9Yd69KvkSBNPkdLAwGa3k6BMLLdbnV0dJQdAhwD9whrmc8heuAWYt78fB78yLw8++yzun79upbLpQaDQZ43z1VA3OJ63QWDmLBYLCrtP4gojMdbR/jOYI3UgxW9PQjRgfEjAuFGcAGCe+LOkUAgEAhcjFe9Wxr8w38nbW/dUjoQCAQCjwYuxW/LKSVdu3Yt7+xAur/vFe/EElIDSYDceyXeSQHvd2Lv4W1O5r3y7e0VEBOC4CCwjUZDR0dHunHjRm518Ioo46wTZiqhEEbfAUFSZawILLu7u5VwP8IZIYOQKncutNvtnItAZd0T8CH6VLIhajgMPOuByjqtHIg8tARAZjk+xPH4+DgHFHqbAvPtPfZuPfc5q1vSuS/1uaLSzs+paLtI5XkbkM3RaKROp1MJkKSyTqaEi1eIB6xN6dQpMxqNcnsObovxeKyjoyONx+OcuUG1nTlCTEAIYO4RE3CKICohhkDscSkgBEnSbDbTYrHIgoETce6fh2wS/MkuG8w7z4ILIS60XL9+XZPJpLKjCPfEs0NcQOIecn+4Bn9+6hkZLtC4KOZijLcIsbMD7/GdSHg26w4kxuktToFA4OFBeXKiN/6TtTbDpp76vzRe+AOBC/HEe6TimbWa/8d7VYaYEAgEAo80LoWg0Gw2cxAeOwxAnqiMSudk08kIxMW3kTs+Ps6kxAP8vBJPpR6xADIBKaaKC8mj4oygQNZBWZ7uFgBZdWs+RA1SxfWQpwA5x3lRh3+e92Pp5pql8yq897p7zgNkjZBCwi0RJeqtGZBWzyXwirpvy0kFmrkCXmGm0otTxLda9LYPz0jwa3GS6DZ57q+/z4MMfftFd0pAvCGqrVZLu7u7uVXEt9ScTCaVrQNZD8PhUP1+P7s5EHfIlYDkHh0d6eDgQPP5PAd5ei8/c1GWpUajUXa1+O4O0+k0r2nOxfUgKLgzgWs+PDzUeDzO95nx+1pDSKItoz7nEHUEFX6Go2AymWTnBXkUddGIe8uziViCyMF1IKohdLCO3JHD3zyTvu0j8+VtST6fLhL4f/v3ga9f/64JBAIPCcpSOz/602p2Onrd9pfp418SwuGLwdWfSdr/D2OlD35M28kk9msPBAKBwOUQFNziD4nzKinEG5JW3xbSyQFVZQgsxJDjUPXl/TgVIB6+zZ5X6+nznk6nms1mWRyAVGPn99A3yJ73j3s+gvffA3dLeNJ/v99XURRZYHHyTpWXoEPffYFjpJTU6/VyOwI2fK/6lmWpoijU6/UqAYbuXvDEfA+35NqoCnM/uTcQTc8R8DF7mKZnZXg7BHNNpZzrlE6r8QgT5EwgFHkgoIsSuF329/f16le/Ou8EUhRFbhdAPPJ5IpCy1+vlzAjWFy0Ts9lM4/FYN2/ezEGFuEW86j6bzTSdTtVsNnN4Ju4I5sgdHN7+wc4Ki8Ui54iwS8l0Os0hjNxvbxVysYesDM/zYJ5cpPHPzmazLCRxbWRkuACEU2BnZ6eyg4NUDVlE8OMciAoeIHqRO8GdFDzXLrxwnZ4FwbPIPPpz6c4Qnq1AIPDwoVyt1PuRn9Vn/vyrLvz5B77q1TrpBV0Gg4809Np/+kmVNw90cngUQkIgEAgEMi6FoCBVq8tY9r1KLZ3nGfg2k56dAImCQPv2cbzP7eVULhE0nKxyPqrKEMyjoyM1Gg0NBoNMtCEvXAOOCHrxqYx7RoJXyNmisQ7vicc14KGN2PO9DaO+qwUZEYQIeuYC9nYn8GxH6cn/kiotJi5A+H1ptVrqdDpZgIFkS8oEmGp7PeSP8QJ3YgAIKASQYEGuHXLINpC0ZLBOOJ6/PhgMtL+/n9sUECi8jYD7JJ0GDl65ckVFUWRS6pXt9XqtxWKhGzdu6PDwUM8991xeI5Ky26Hb7Wqz2eiZZ57RYrHQ3t5e/hm5BxzPWxYkVQShw8PDLBaxvmmv4Bp8S0veQ8sOogiii4tuvpY9YJM15SQeQaMuRnAvmBeebXe4+DOO+OQtSIhBfM4dRO4+Yhze1sO2mO48qq9nb3dgTdadOYFA4OHDdrnU9sMfufBnb/lLEyk19P6ve7P0CH8NtA8aeuO3f0BarXQ8Ht/v4QQCgUDgEuJSCAqevg7R8Oo3ZBTiwC/7fFZSzl6AZCAQEPjG7hFOXuqChBNyPgdRc3Gg3+9nwiIpuxP4ufe2U5ElCNDJqV+7X5OkfC3SafAi22lC8Lk2tstzUuU94t624XkU9bBIsgW2222+VirYkipztFqtcjUfMupBjBBz8gHo44eg+71rtVq5su3BeTgVEA/qgYp83jMYuMa9vb28rSb3G5KI0LDZbLIAMhqNcmgg4+DeuV1/Z2cnt43UWy0gvdPpVM8884xu3rypxWKh+XyeiSxBj+Dw8FBPP/10bpeYTqd53Xml34M8IeAQ5cPDQ/X7/ZxDsFwudXBwkB0EnsuAIMFuCghLXDPgvNwz5pi1URfecIrU58OPg5DHPXUnBOuLbApf44iBPPfuHvI1zLpHTCCvgfnk+eKz7rrg2L5e+D4Kh0Ig8Gji5LkbkqS3/tmlfuEb33afR/MKo5Te+mf+w+l/b7c6sba/QCAQCATqeEFBIaX0tyV9qaRny7L87LPXvuH/397ZxFialXX8/9zquvV1+1Z1D7TpASID4gKNGSdmYqIhLIwCm5HduJEFERcQNcEFSKK4YKER3ZiQQDCgMRATNRJjomg0bFQYZYAZx5FBSBzpUDTd1XXrVldVV81xUfd36n/frqr+sPre99LPL6l01f183nPOe2b+z3k+JP2SpO+OXvYbpZS/GT33QUnvlnQg6VdKKX97t8YgUBC9w+HwtpNPPw32DgmIh52dnbFwaMSsiwZORl1EEYYvHYoJQujPnz8/JjAJ7UbkciKOfZyGItoQwUQwNCMu3A5EEc4CxBSn/v4+hD0pHkQTEBGAI4YTdMSWFxH00HDvGuAh94g7Toy5JgoYkj/veOFD3kOdCXd4UL+CwnleK4P5xSZP4eDaCOdH4NJ5AVHqhQ8l1dNyHuv3+7p06VIVmKwbdx7hKFhYWFCv19OFCxdu67Tha+jq1ataX1+vRTJxXrBWcCoNBgN973vf087OTnUIULzR00y8leVwOKxj2ul0qgNiYWGhtrm8fv26NjY2tLe3Vx0kjI+3zsQeH2+cZMwZjir+3d3dHesm4mLenUReE4EaIXRZ8ZaTrHucRD6udK6Qjmpq4Azgh+ewwdNcuAbWsncc8WgL9huPlMDB4rUu2sAk9+IkSQ55ZTDQD73/S9M2Y+K8koUWjyX34SRJktu5mwiFT0n6Q0l/3Hj8D0opv+cPRMSbJT0t6UckPSrp7yPih0spd/wvE8LJc8cRJt5b3os0evV9RMHIjjFRz2N+4uo51YgsxMPOzo5u3LhRX8NJMN0KEIDUNuh2u7UAHhEJLpYWFxfHCtYhZIhkaBaW9MKUVL1HbOEk8RoEiN5mpwquG2eCOyU49fWICYQuOf/Ly8vq9Xq1roVHUZAy4GkNhNVzzQhDRB2pH4yDi0AXqohu5hEHBOK0ebosqRZEXFlZ0eLi4thJOJEWOBpwUCwvL9eTbjovbG9v69q1a7VrAWkidHXA+cE8s55wriDmcdLgTGC9cNpPOgI1KyKipuvg9OHaeA/X3KxfsLKyUseZ6ASv1cE8eYSBpxh5yD8RHNjMPcE14gjyaBp3zLGmWYM4nJh7rs2dGjg7JI2NU9Np4/erp2Jwj/D57vziGtwxxffgmPE0B3cueKpFS/iUJrAXJ0nSIMV1csSnlPtwkiTJGHd0KJRSvhARr7/Lz3tK0mdLKbuSvhkRL0l6UtI/n/YmhJ8LW+8BT268C2zEkJ9Y+8k4dQnIFUeANNsUSqqnpQiRjY0NbW9v69y5c7UII6fhXtjO6ys0880pRkcUgLfBQ4C54EHQERbvp+6cNONQ4PM9hJwUA6IwcLx0Oh2trKzUvH+cEZ7736w3gfjjRJ8uAnwetjMXFBOUxqMTvOo+17CwsFCFIU4OF304FFxMNusr+Mky34eDoNfr1TXD+sAZgXDHkUFRxG63q8XFxeo42tjYqGuOFId+v1/Fv9e9YC6pD7G3t1evCycBxR1ZAzs7OyqljBVS9CgGxoR1xrpBLBNBwTwzN3ReoGgkzhTmzZ0JzI+n5LgTx6N9+HycQX7dXiTSHRHMMVE2vn5JtyCFhDXBuubaff7d0eT3EePFOErjXUKajiffM6jXwPdyXR7Z4hFR02YSe3GSJElyMrkPJ0mS3M7/p4bC+yLiFyU9I+n9pZTrkl4j6V/sNS+PHjsVBCNimdB8qsO78PWWhggKD2VG8Hv4skcsIMQIc5c01tbwxo0bGgwG9TTT6yC4c4C/OTXf3NzUcDiUdOQgoXAgr/H2gwg2CtcRPeAV6YlsOH/+fH0ecY745/uaIeSc6i8vL+vSpUu6ePGiOp2ONjY2NBwOx4R+s7YCUQeIYsbJUxO4NuwiKgHHgXR4ko5jhjoFkmpEAI4IxLSnXvCZnmvv9TVcjM/NzdXriIiaCuDOFdo5Mjd0HfDOD9euXdP6+rqGw2E9+V9bW6vOBF7raw3bBoOBrl+/roODA/X7/VqzY2trq9rLGJ87d65GtvDdOBy4Lq6ViAx3rnn0BfcItQIYa1oqei0AT23odDpjdRZc8LM2mx08vK6JOwCajh/vzkCkhTtTmEPmzp9v1kfhHuM1XD/PswaofcLjXnOFseI7+H5PpWo6HNx5OAOc2V6cJEmS3Be5DydJ8tByv8dvH5P0RkmPS7oi6aOjx4+rhXxsd6GIeE9EPBMRz3j4PKftnDy7wCSPnVB6TjupN8CJokc7IAAJR+d9m5ubGgwGVeQjFgnP572IJezhVB7hTHSEp0zweZyK41DAYcIJtzs0vHo+IsjbE3otAxdPksbqHiAyaZ24srKiXq+nbrermzdv1jQRTqsljdU7IK3E60QgTPl+BDytM7EVBwjREh7pgCOIqAvsk45C5hlbcBFIzYSDgwMtLi6q1+up3+/Xz6YwJqkH7gjiu7CR9o2E5h8cHFSHwGAwqO/r9/u6fPmyHn30Ua2trdW6EThkvLaAtwf1woKdzmHnjLW1tZoyQftO7/Th9SS8toEXLWSsvMMFc4RzqtfrqdfrHVs00scCR5yv7YODAw2Hw3pfeNFSTyVAlBMp4D9uu0eeSEctHvlOT53ASUXKhdvljjyPHPBio26b32vchzh/cDK408ZrdvDZRGO0LOXhOM50L76l3eNekiRJkpxM7sNJkjzU3NcRXCnlO/weEZ+Q9NejP1+W9Dp76WslffuEz/i4pI9L0sWLF4t0JCAJQ/Y8/4jQ8vJyPUVFwBNp4CeeOBM4qSQkm3B/CtXR1QFxQx46J/SII77fw/nBnRqeukA4d7fb1WAwGGtbh6ifm5ur10RkArb4j18H4+OnuAhuhBfXRBTA3NycNjY2tL6+rqtXr2o4HI4JJ89flzQmwLa2tqoTxgUcJ+nYgF3YhqjzrgrkpHs0A+JdOioKiB2S6gk9J+fuzOCEGfsphDgcDut34aTAbiITBoNBFfvUqyA1QTp0sqyuruqRRx5Rv98fcwBRA4Ioj62tLW1tbenWrVvVycLadUfKzs5OLQrZjLzAPkljEQBec8PnhugLSfV6cbSwLr3TQqfTqZEuzYiI5eXlsfSe3d3dsegaT2Voptxwr3G92N9sy+gRNM16B17LAwcdtnkUA/e5rzm/J7nPcZbhUPCUBl/vXkfFC7byfV78sa2c9V7cj4vtvuAkSZKWkftwkiQPO/cVoRARl+3Pd0p6bvT75yQ9HRELEfGYpDdJ+uKdPo//cUewejtCF7ndbreeQHM6jAhAHPB6FwWc4BLF4Cev3hmBQnnN3O1mOoF0FBq9t7en9fX1WlQQEK+098PBQF65FyT0AnDuyOB7t7e3xwr2IX5cePr18DlEJ2xvb+vKlSu6evVqTedwBwBCkYgCTvt3d3d17dq1mgKAgwM8rYTxkg4LFiLS/TlO1Kl34KfxiFdC5rvd7liHAY9i8M8kOqGUos3Nzdqu0fPofY1xCk+9A6JXeA85+Wtra7p48aLW1tZqdIKkGv2BU4sCi8yNp+iQtuJtRhHYOLgYI4/qQMSybulU0hT5kmqUyeLiolZXV+u4IapxxuBYcUFOO1JqNgyHwzGbEN/Mg88F/7L2WEvN9Bu/D5uOE3d4eKSPF4r0Nef1GnAkce+yhrnPvVAkn+8OL5wMHsnka6yZztFWznovTpIkSe6N3IeTJHnYuZu2kZ+R9FZJr4qIlyX9lqS3RsTjOgzd+pakX5akUsrzEfFnkv5D0r6k995NNVv+px6hSOoBp/qIBk7xqYXgIfGeL+/CBqHCqbynDHh1ea/G7yeTCBXvPIAY5Hl+d6FHSDnpAl4scm5uTr1er9YfwHHS7XbH8rrpPoEtKysrdWwQ+d5WkLE7ODio7S07ncPODZubm/UU3cUi40noPvOBUKZKvwt+voMoBndyIPYQrDhQPCfdv/uVV16p0QYIPT9V9rn14n6cyC8tLWlvb09bW1saDAZVPHt9A4QqdlIosOkAIqyeFAVqITCv3tGDefUCjb5WWc84pVjPrBlEL6kPzLWkWkSUSBbpsIsF9wfrEwcEkSjz8/P1MS9KSIoJ30PYv3ei8FQPHBw4QZqn/j5ujCPv8YgKxtOjEFijrGnmlTHxbh/cR0Qn4MDBRjqf4PDgPnIngTsrvdin28n68mvDuYQdbWASe3GSJElyMrkPJ0mS3M7ddHn4hWMe/uQpr/+IpI/cqyGIXIQ9dRWkozaQiDIcC4SPS7fniXuLRm+t6E4ERC+f3Sw2h/j0lnd7e3u1FoF0JA4Jz/aTTWoVILgQO0QAIDS9zSCChjHAVsLGqQ2wu7tbHSPeOhNwYHh9BRdNjAMn9C7euTZOqxHKiDEvYIdtOFqGw2E9laemgaRac4KTbcab6yZk3a/fT4c9pcXTRyguuLm5ObZmvNjhcDis9uFoIkqCH0m1hsH8/HyNHuEacALhmOL6/UQdO108s3a9XSmpNVx3KaVGx7CGeL2ndOCA8YKHCGt3jCH8GTOiOBhX7hPEOF1McA65Y2R3d1c3b94ca/Po6Ug4eUjrcKeIrxmPJPLIFk/NcLsc7jGcOF4/wp0dXl+B+5t6CYyzFwY9rtOJOz2kQ0eTp+VMk0ntxUmSJMnx5D6cJElyO60pY+5h0c1ibX4ijoAgdBqxJqme8jfDmr0dH0LRWw8SheB2uLAlDF9SrSngp/nSeHSCpCo0scmry0uqYpfid80ceoS7F7rjO73lHnUDvB4C0RF8P3AS6x0HcEZgP4UKGTuEm+fs+0k5AtHnCYHpTpHl5eWxPHxPEfBCf3yu5657dIKnBdy6dUs3btyorTaxy1sKco08x7XPz8+r3+9rbW2tOhlok+kh/9ixuLg4ljJz7ty5mirRLJ7o65eUFQo5ItBZFziV6Djh14tjzE/UsdWjANyxhOMIW4g0YE14CpF0WH+BiAuiUPhOUiC8WKivddIIcB7gsMImdzp4Cgpz4/PsTpBmKgJOEi/yyffhnGEN8xnYidMJ5yDrCyeGO9iYN/Ya3p8kSZIkSZIkyfG0wqHgRdm8eJ4X6UNoIMaouM/7ESAe7o5wlVQdCYRJu9PA86sdTkQRRQhkhJtXmEfwIua85gLvdWGIwEIcI7ZccCM4sYsigD42nM4Ssg+cgHvBwu3t7SqUXZgSMYGIJIqCvH6EaFO0e70K0iQ43ea0mvQLajIMBgOVUmrHDknViYFtjA0ikutGKDLORDl49AlRCi7OPW2F0/qFhQX1+/26Vvz9+/v79TnGilNyXkuqA1EzCOmmQ8tD9bGZoofz8/N1Xvb392txxIio6SpbW1t13hD6rHV3QrFm/PrdwcV1efoKnU4odsh3EDlANIxHXFCfwx1pOPpI/eFe9vupWaiR1/CcOwL892ZUg88H19xc01yLvxYHlt/X2Oq1S3xN+3UmSZIkSZIkSXI7rXAoSKqhydJRPjvi3zszIIgWFxfr6TAnnUtLS7VFIiLNC9JRFBEhgpB2AYgjwAUQopNoAD+V51TT0w2ko5Nq6SjKwYWydCRsEIo4P/yEmtaKhL77CTiCVjoqakjtg36/r+XlZR0cHFRR6hEcXmuBonyIy5WVlZoG4O0XmRfez3W6QwWRy7wgKr1tpzsduAaPyEAA0oqxee2MqaeiIGqlo3B7txFwZqyurmp+fr4KfhfrFCv0OhdEwvCdRBt4NESzoOb+/r42Nzdru0uPpqEbBF0VSE/A8UUkDN/ngteLFrJuvF6HR0i4E8treTDfOAG8mCT1HIieYW1Jqnbg5MEG7+LB/YwNXpvExb7fE9zDHomCow34bNaj1x3htV64kqgExnFpaalGO/B5x9VRYbyZsyRJkiRJkiRJjqcVDgXEM1EHhJQTnu5h0Z1OR0tLSyql1HB3hAQOBUQOwsPzozlp9o4IiB9OeBGMvK9ZO0DSbfaRLiAdRUlIR7UAqLbv0RQ4SPyEn++hLSMn/V7lH7HszoT5+fka3r+/v6/V1dVaI2Fra6tGdSwtLdWwbq6PHP4bN25ocXFR/X5f3W63RmK4EJU0VhjPRSOdEJrCUTpMFUGgEiXQ6XSqU8ivFZF/3Jh7BX6PwCCKBUdUMwWBH8aAQpYIXU7wu92uLly4oNXV1dpyExFK3j0Oj5s3b+rmzZvqdI5aMnq3Bo8aYMwl1faOpG1IR90j+E6uiSKR1O/wufDaINKR84DIFh4jUgSHGmsCR4bPGeuIcXHnRDM6gHvDI4Ga6SrMJdfOmiPKxNMimC+PTiBVg3XOXPG3F45kfik+STQRz3ltlua97U5CbCPyJEmSJEmSJEmS44k2/A9zRHxX0lDS1Wnbch+8Smn3JEm7J8+s2n5Wdv9gKeXVZ/A5rSciBpJenLYd98GsrlFpdm1PuyfLw273w7QP5/8TT560e7LMqt3S7Nr+QPfiVjgUJCkiniml/MS07bhX0u7JknZPnlm1fVbtniazOmazarc0u7an3ZMl7X64mNVxS7snS9o9eWbV9gdtd+fOL0mSJEmSJEmSJEmSJBknHQpJkiRJkiRJkiRJktwzbXIofHzaBtwnafdkSbsnz6zaPqt2T5NZHbNZtVuaXdvT7smSdj9czOq4pd2TJe2ePLNq+wO1uzU1FJIkSZIkSZIkSZIkmR3aFKGQJEmSJEmSJEmSJMmMMHWHQkS8LSJejIiXIuID07bnNCLiWxHxtYh4NiKeGT12MSI+HxFfH/17Ydp2SlJE/FFErEfEc/bYibZGxAdHc/BiRPzcdKw+0e4PR8T/jsb92Yh4hz3XFrtfFxH/GBEvRMTzEfGro8dbPean2N3qMY+IxYj4YkR8ZWT3b48eb/V4t5ncix+InbkPT5Dchydud+7DZ0zuww+G3IsnS+7FE7d7+ntxKWVqP5LmJH1D0hskdSV9RdKbp2nTHez9lqRXNR77XUkfGP3+AUm/M207R7a8RdITkp67k62S3jwa+wVJj43mZK5Fdn9Y0q8f89o22X1Z0hOj389L+q+Rfa0e81PsbvWYSwpJvdHv85L+VdJPtn282/qTe/EDszP34cnanfvwZO3OffhsxzP34Qdna+7Fk7U79+LJ2j31vXjaEQpPSnqplPLfpZQ9SZ+V9NSUbbpXnpL06dHvn5b089Mz5YhSyhckXWs8fJKtT0n6bCllt5TyTUkv6XBuJs4Jdp9Em+y+Ukr599HvA0kvSHqNWj7mp9h9Em2xu5RStkZ/zo9+ilo+3i0m9+IHQO7DkyX34cmS+/CZk/vwAyL34smSe/FkacNePG2Hwmsk/Y/9/bJOn7hpUyT9XUT8W0S8Z/TYD5RSrkiHC1HSpalZd2dOsnUW5uF9EfHVUfgXITuttDsiXi/px3XoIZyZMW/YLbV8zCNiLiKelbQu6fOllJka75Yxa+Mzy3vxLK/RVu8JTu7DkyH34TNl1sZnlvdhabbXaav3BSf34skw7b142g6FOOaxNred+KlSyhOS3i7pvRHxlmkbdEa0fR4+JumNkh6XdEXSR0ePt87uiOhJ+nNJv1ZK2Tztpcc8NjXbj7G79WNeSjkopTwu6bWSnoyIHz3l5a2xu6XM2vh8P+7FbZ+D1u8JkPvw5Mh9+EyZtfH5ftyHpfbPQ+v3Bci9eHJMey+etkPhZUmvs79fK+nbU7LljpRSvj36d13SX+owPOQ7EXFZkkb/rk/Pwjtykq2tnodSyndGN8orkj6ho7CcVtkdEfM63ID+tJTyF6OHWz/mx9k9K2MuSaWUDUn/JOltmoHxbikzNT4zvhfP5BqdlT0h9+HpkPvwmTBT4zPj+7A0o+t0VvaF3Iunw7T24mk7FL4k6U0R8VhEdCU9LelzU7bpWCJiJSLO87ukn5X0nA7tfdfoZe+S9FfTsfCuOMnWz0l6OiIWIuIxSW+S9MUp2Hcs3Awj3qnDcZdaZHdEhKRPSnqhlPL79lSrx/wku9s+5hHx6ohYG/2+JOlnJP2nWj7eLSb34skxk2u07XuClPvwpOw1+3IfPltyH54sM7lO274vSLkXT8pes2/6e3GZQvVP/5H0Dh1W0fyGpA9N255T7HyDDitifkXS89gq6RFJ/yDp66N/L07b1pFdn9FhWM4tHXqi3n2arZI+NJqDFyW9vWV2/4mkr0n66ugmuNxCu39ah+FCX5X07OjnHW0f81PsbvWYS/oxSV8e2fecpN8cPd7q8W7zT+7FD8TW3Icna3fuw5O1O/fhsx/T3IcfjL25F0/W7tyLJ2v31PfiGH1okiRJkiRJkiRJkiTJXTPtlIckSZIkSZIkSZIkSWaQdCgkSZIkSZIkSZIkSXLPpEMhSZIkSZIkSZIkSZJ7Jh0KSZIkSZIkSZIkSZLcM+lQSJIkSZIkSZIkSZLknkmHQpIkSZIkSZIkSZIk90w6FJIkSZIkSZIkSZIkuWfSoZAkSZIkSZIkSZIkyT3zf+Bn1VVeAqfZAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 313554 0\n", + " Min thresh = 1000\n", + " Not Sliding\n", + "\n", + "\n", + " Winner = Not Sliding\n", + "\n", + "\n", + " FP ROI = 212s_iimage_128683942015128_CLEAN.nii.gz\n", + "212s_iimage_128683942015128_CLEAN.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADDCAYAAAAya0IYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADpVklEQVR4nOz9eZhlWV7Wi7/rnDjzGBGZWVNXUd10N0M32GDTTIJwWxAVQRz4iQNeEJpJFEVEuL97EX+KIuNVGWwuCCqIIJPKPNxWoLuRZhK6oRu6mu4asroyIyPOPMbZvz8iPivevTNqyKrMisjK9T5PPpl54py911577fPE+37f77tClmVKSEhISEhISEhISEhISEhIuBGUznoACQkJCQkJCQkJCQkJCQkJtx+SoJCQkJCQkJCQkJCQkJCQkHDDSIJCQkJCQkJCQkJCQkJCQkLCDSMJCgkJCQkJCQkJCQkJCQkJCTeMJCgkJCQkJCQkJCQkJCQkJCTcMJKgkJCQkJCQkJCQkJCQkJCQcMNIgkLC844QwltDCB931uNISEhISDhBCOEPQwh/4hm+NwshvPRZnudZfzYhISEhISHhfCEJCgnPO7Ise0WWZW8463E8FUIIfyaE8EshhIMQwuMhhO8IIXTOelwJCQkJL2SEEL4+hPD7IYRRCOH3QgifedZjSkhISDhvuNnC7NMdL/1enPBUSIJCQsLp6En6J5LulfQBkl4k6evOdEQJCQkJL3xMJP1ZHX0H/w1J/3cI4aPOdkgJCQkJdzzS78UJT4okKCQ873BbbQjhH4UQfjCE8B+OK1K/HUJ4eQjhK0IIT4QQHg4hfKJ99rNCCL97/N6HQgifVzj2PwghXA4hPBZC+BxXXEMItePq13tCCO8NIXx7CKFx2hizLPu+LMt+KsuyaZZl+5K+Q9JH37pZSUhISDg/CCG8JoTwpuNq1OUQwr8OIVQLb/vTx9/DV0MIXxdCKNnnP/v4u3o/hPDTIYT3eSbnzbLsq7Is+70syzZZlv2KpF+U9JE38dISEhISzgVCCB8QQnjD8ffsW0MIn2I/e0MI4XPs//97COGXjv/9P45f/q0QwjiE8P8JIXxcCOGREMJXHn8n/2EI4a8+2+MVx5p+L054KiRBIeE84M9K+veStiX9hqSf1tHavE/SP5b0b+y9T0j6ZEldSZ8l6ZtCCB8qSSGET5L09yT9CUkvlfTHC+f5Wkkvl/Sq45/fJ+n/eoZj/FhJb72xy0pISEi4bXEo6e9KuqAjQv9aSV9YeM+nSXq1pA+V9KmSPluSQgh/TtJXSvrzki7qSBT4jzc6gGPB98OUvnsTEhJeYAghVCT9V0k/I+mSpC+W9L0hhPd7us9mWfaxx//8I1mWtbMs+0/H/79bR9/Z9+nI4fX653i8p0L6vTghIgkKCecBv5hl2U9nWbaW9IM6+gX0n2dZtpL0/ZIeDCH0JSnLsh/Psuyd2RH+u46+iD/m+DifLunfZln21izLppK+mhOEEIKkz5X0d7Msu5Zl2UjS10j6y083uBDCJ+joi/mZig8JCQkJtzWyLPu1LMvenGXZOsuyP9SRsHudSHv8ffoeSd8s6TOOX/88Sf8sy7LfPf5e/xpJr3qmLgXDt0v6LR2JzAkJCQkvJHyEpLaOft9dZln2C5L+m06+R58t/s8syxbHvyP/uI5+N76pSL8XJxSxddYDSEiQ9F7790zS1SzLDu3/0tGX7kEI4U9J+iodOQ1KkpqSfvv4PfdKeosd62H798Xj9/7akbYgSQqSyk81sBDCR0j6Pkl/Mcuyd9zANSUkJCTctgghvFzSN+rIgdDU0e8Lv1Z4m3/HvltH38GS9D46yj74Bj+kjqpm736G5/86Sa+U9PFZlmU3fAEJCQkJ5xv3Sno4y7KNvfZuHX1PPlvsZ1k2KRzv3id787NB+r044TQkh0LCbYMQQk3SD0n6ekl3ZVnWl/QTOvpFVZIu6ygkBtxv/76qI3HiFVmW9Y//9LIsaz/F+T5E0n+R9NlZlv38zbuShISEhHOPb5P0e5JelmVZV0ctDKHwHv+OfUDSY8f/fljS59l3bT/LskaWZW98JicOIXy1pD8l6ROzLBs+p6tISEhIOJ94TNL9nj2jo+/RR4//PdGRmAvufgbH3A4htArH43v52Rwvh/R7ccKTIQkKCbcTqpJqkq5IWh+7FT7Rfv4Dkj7rOOSmKbNiHSvA36GjzIVLkhRCuC+E8CdPO1EI4ZWSfkrSF2dZ9l9vydUkJCQknF90JA0ljUMI7y/pC055z5eFELZDCPdL+juS6Lv9dklfEUJ4hSSFEHohhL/0TE4aQvgKSX9F0idkWbb3XC8iISEh4ZziV3RE8v9BCKESQvg4HWWKff/xz39T0p8PITSPw8X/ZuHz75X0klOO+9UhhGoI4WN0lDn2g8/xeJLS78UJT40kKCTcNjjOPfjbOhIO9nX0S+d/sZ//pKR/Ken/lfQHkt50/KPF8d9ffvz6m0MIQ0k/J+nJwmq+VEdtEt95nHg7DiGk8JmEhIQ7BX9fR9+xIx2JsaeFdP2YjtogflNHvbrfKUlZlv2IjkJwv//4u/Z3dOQ4eCb4Gh1V1X7fvnu/8jlcR0JCQsK5Q5ZlS0mfoqPvxquSvlXSZ2ZZ9nvHb/kmSUsdEf3vkfS9hUP8I0nfc7xDBDkJj+vo9+PHjt//+c/xeI70e3HCkyKk1sSEFypCCB+go19ka8fBYAkJCQkJCQkJCQkvKBw7HP5DlmUvepq3JiTcdCSHQsILCiGETzu2em3rqEL2X5OYkJCQkJCQkJCQkJCQcPORBIWEFxo+T0cZC+/U0T7qp/X9JiQkJCQkJCQkJCQkJDxH3DJBIYTwSSGEt4cQ/iCE8A9v1XkSEhxZln3S8e4NO1mWfVqWZZfPekwJCWeF9D2ckJCQcPZI38UJtxpZlr0htTsknBVuSYZCCKEs6R2SPkHSI5J+VdJnZFn2tpt+soSEhISE65C+hxMSEhLOHum7OCEh4YWOW+VQeI2kP8iy7KHjFNPvl/Spt+hcCQkJCQnXI30PJyQkJJw90ndxQkLCCxpbt+i490l62P7/iKQPf7I3l0qlrFQqKcsyFR0Txf+HEOLrW1tbqtVqajQa2traUrlc1tbWlkqlkg4PD7VcLnV4eBj/XSqVVK/XtbW1pfV6rc1moyzLtNlsdHh4qCzL1Ol01Gw2VSqVtFqttFqtVC6XVSqVFEJQCEGbzUbL5VLL5VKLxUKHh4cqlUoql8sKIejw8FCStLW1pRBC7rpKpSMNZ7PZaLPZ5K6tXC5Lkg4PDxVCiP9njBw/hKBSqaTNZhOvg9d4T5Zl8RjMAcfi3xx/vV7H669UKiqXy/F9HIcxF6/D/8+5eR+f474xHn8PfzgXfzabTTwm5+IYPgfc01qtFo+7Xq+VZVn87OHhodbrdW6umGfmmv/zOeaQe8QYuGbWA2uH9xTXMfPg951rYQ349ZdKJVWrVXU6HdXr9XifZ7NZXGu+bnkOGO/h4aFWq1Ucj98D/u/X5feheF+ZK54prsXP7e/19cW1VCqV3Fyd9ll/VorjKo7Jx+pjKZVKqtVqarVaKpfL2mw2Wq1WWi6XuTXla5P75c+Ar2V+PhwOr2ZZdlG3H27oe1iSyu1W9pIXb/Te32nc0oEl3OZoN/Tyl+yd9SgS7iD84cMrXb12GJ7+necSN/RdnL6HE541QlD9/aUHKpOzHsmZIlOm3/9frbMexgsSI+2f+jvxrRIUTvvSzykDIYTXSXqddPQLfL/fjyRgvV5HIgQRPP6MSqWStra2dHh4qFqtprvvvlsPPvigXvrSl+r+++/X3Xffrd3dXQ0GAz366KO6cuWKhsOh3v3ud2s8Huuee+7RAw88oM1mo+l0KklaLBa6cuWKJpOJXvWqV+k1r3mNXvziF2symeitb32r1uu1Op2OdnZ21Ol0tFwu9cgjj+iRRx7Ru971Lj366KOSpAsXLqjZbMZjV6tVdbtdHR4eajKZqFQqqdFoKMsyzedzjcdjbTabKGBAjLjmbrcbBQFJ6nQ6OdK5Xq917dq1eGwIVavVUrVaVbPZVLPZ1Hw+13A41HA41Gw20/7+vg4PD9Vut9VoNDSdTrW3t6f1eq3d3d143vl8rr29PZXLZTWbTa1WK41GIy2XS1UqFdXr9XifKpWKarVaFCkQcKrVqubzuVarlWq1mra3t9VoNOI1Zlmm1Wql8Xisg4ODKM5wb+r1ehR5yuWyarWaqtWqKpWKWq2WGo2G7r33Xr34xS9Wu93WZrPRe97zHi2XS21vb6vZbMbrOzg40HA41Hq9VqlU0mQy0Xw+j4RztVppPp+rXC6rXq/HtVEUWtbrtba2tuI9GAwGms/nqlQqajabqtfr2mw2UQDY2trKCVncw8VioeFwqPl8rs1mo/F4rMPDQ3W7Xb32ta/Vq171Kt1zzz0KIeg973mPHnroIT322GM6ODiIc7parRRCUL1eV7lc1ng81qOPPqr5fK52u61OpxPXFkKMdCSezOfzKLYtFgttNhvV63U1Gg1tNhtNJhMtl0t1u11tb2/nhJz5fK75fB7vI+PZ2trSfD7XZDLRarXShQsXtLOzE9f9YrHQbDbTer3OCXL9fl+tVkshBI3HY83n87iGarWaKpVKFItcDJQU5+DixYv6kA/5ED3wwAMqlUq6cuWKHn/8cY1GI63Xa+3v7+eOzfPZarW0Wq10cHAQ7wFCZa/X0xvf+MZ334TvxLPA034PS/nv4rqaevCtn6wHb9df2xOeF2w+5FX62R/47rMeRsIdhNf8yYef/k3nFzf0O3H6Hk54thj/1Ev0yx/8w5J2znooZ4pVdqhPvu+PnvUwXpD4uew/n/o78a0SFB6RdL/9/0WSHvM3ZFn2ekmvl6Stra3Mq6dUOanGHr9fknJuAojylStX1O/3de+990byC5GdzWaR7K3Xaz3xxBNqtVpqt9s5slepVLRarXTlyhXt7e3pgQceiFXivb091Wo1HY9VIQR1u101m01tb2/r4OBAk8kkCgTVajXnIJCOhJHFYqHFYhHJEe+RjtwCECUqo5PJRJVKJRJoCC2kdrVa5RwH6/Vas9lMWZbp0qVLajab6na76nQ6ubnb2trScrnUYDCI5LbVamk2m0WiRsW/VqvF8zSbzVgBXywW0SHCeLlfXlHGlTAejzWdTnV4eKhGoxGP7fOKmBJCULvd1nK5jCRfUhRrpBNxqVKpKMsyzWazSISd5FYqFV9z2mw2kcAvl8vrKta8nzXmbgfEEubSRRGvinM/Eb6Wy6XW67Xq9brq9Xp0tzAm1gjvn0wmeuc736mdnR31ej3t7u7qwoULkQgjBDBeiDlV9Xa7HZ+Xcrkc5winhrsIIOPMPWJRt9tVvV6PAtLBwUEUWba2tuJzs1gsck4I7p0kTafTuE4bjUZ0D0gnQo2kOB/NZlOVSkXtdjveI46LWDWdTq9zSbiTZ29vT71eTxcuXFCv19NsNpMkTSaT+Fxyf5fLpcbjcVz/Ozs7qlarGo1GcY55tm5TPO33sJT/Lu6GnZsfqpOQkJBwZ+OGfidO38MJzwZb73O/7mqOznoYCXcobpWg8KuSXhZCeLGkRyX9ZUl/5cneDLGpVCqnWv2lE3uzpJyDYTQaqV6va39/P0eI+/2+xuNxrB63Wi1du3YtOhcefPDB2EZQqVSi4PDOd75TFy5c0H333aeXvvSlunjxYqxiuyW+0WhEF8ClS5d0+fJlrdfrOB6IMmQR0stYEAm4LpwXENKtra0c6YUIUenFAs9nDw8PI6mFoHFtIQT1+/1IBLF+e6W2Wq3mLOmSYqUe4kxV3kk3QPiAqLkAVKlUtLW1pdlspuFwqNVqFVtKEGggqMwxY8KpwBpgbJBDxJnJZBIJ9Xq91nQ6jT/nHN4u4M4XxumtIwhM3EOOzd/eWsEfX6OMl3niugBEm+uB+FarVUnS3t6e3v3ud8fKPdXy3d3dWEXnmZlOp5H4cw3VajWKGggBTsZ97nACbG1tRRfBer1Wu91WrVaLLhjEh62trbj+a7VanB9JcUzdbjeKYDzTrEXWDaJfpVLRYrGI94x1xz1h/mgFwZlBSwPPC26eyWSiVqsVx8H5cPJIii0czDvrpF6vR5fU4eGhxuPxk3xr3Ra4oe/hhISEhIRbgvRdnHDL8btffUkPvfQ7z3oYCXcobomgkGXZOoTwtyT9tKSypO/KsuytT/UZful30s4v/1TIvR+c/y+XS127dk37+/sxMwGSfOnSpWhzbzabqtVqGgwG2t/fV7fbVaPRiNbmfr+vvb097e3t6R3veIcefPBB3X333br77rujrR0yRmWeqjqOCGzjEMxmsxnFD8YO6Wu1WjlnxGKxiNd/eHiY659HzHBxhaqzk11ILsTK+8shkJ1OR/P5PHe+5XIZq+fY1Z0AutVfUhybCz/r9TqSMq90c58QMxAIECU4N+ODoGZZFt0VzAHCD60UXnGmGg4hXK1Wms1mqtfrsaXEMyOczEN63UqPQMKckqWxtbWlSqWiyWSSE3r838B79CHqknLOBb8/TuzH47He9a53RRfHfffdF1ta2u12rLizBlerlfb39+M5uLcQfO4l64d/I2BAzLl+XBWNRiOuY94jKTpUEJg2m018vnDpANY5c+e5FeVyWbPZLM7/crmM18xzgdsEAQ+XBy0Xi8UiCkEhhLiG+/2+2u12vK+tVkvD4TA6dPyZmUwmuXXobTm3K57N93BCQkJCws1F+i5OuNUIr36lPvDB6wyIdyxKCrr2WR+pnX/7prMeyh2DW+VQUJZlPyHpJ57JeyGcVC+LJPxpzhNJhdvUS6WStre3dfHiRe3t7cVsAcjRdDqNZLfdbqvdbqvX6+mxxx7T5cuX9ba3vU133XWX3u/93k87OztRSKC6CwF3cus/RwTwMEcq8NPpNFbuO51O7Ov2PnGqtIgDTtL5A5mUjoih2+ghS1R2aWGgGoybA+IoHdnKZ7OZRqNRzFjgPX6vuC5s6PT/L5dLtVonISiQY0mRBI5GIw2HQ7Xb7ejIgJQ6ucU94sSuXq/HuSZbgf56qsnY/yHWi8UiCg+IGltbW1H8kU7CKd1Kv9lsYmsGc4+oUK1Wo5jFZ7wdwls9XOyR8q4OrotsDc8HKJfLGo1Ges973qNOp6N2ux1zK5rNphqNRiT17XZbq9UqtpTgXIEou5DA9SJ6Me+4WnBlcB+q1WouU8EdN9wThCMcDJPJJLbWSIrjxl3jzg7mCBHIj1Ov13POIBe+uA7uzXK5jK4d3A6tVisKhohL29vbMeOEthtJ8bpdCOHZvp1xI9/DCQkJCQm3Bum7OOFW4qG/2NE7Xv4fznoY5wblUNKPfPXX6W/+2z921kO5Y3DLBIUbARZtr+J7FbNoJQfeAkGGAZ9bLpfRLo5gsLOzo/l8rtFoFElXlmUajUZqt9tqtVoqlUoaj8d67LHH9Mgjj+hlL3uZ+v1+rhee6ia279lslqsAY/X2/nTIfKVSyQXDQZp91wdIvLdFSIpkkXDCdrsdK7jNZvO63nPIGpXhZrMZ+8Yh1ggWvLdcLsf5l45aLCTFXnnIoxN+qsIQWoQOCJtb1svlsiaTo/RZhBl66/lTrVZzOxVwPISEWq0WCSrBkAgJOAcIRRyPxwohaLFYxNYVrtv7+JkjPjefz6PIxdr0HAJcBd4G4I4ESfFacAp4RoiPgYDJUqmk0Wik2WwWHRVPPPFEdNBcunTpOhGAsZNR4Dt20Nbi94s/3oaBM4Sq/2azia0xCG/lclmtVisnkvEMkm1By0Cj0chlZnDvWq1WrjXEW5eYe+YKZwXr0UMcEdOko6BSghwJ9/T7duHChbheEDa63a4ODg6iGwIB0NccIhDPZEJCQkJCQkLCecPhx3+oPubjfvush5Fwh+NcCQpUcwlEkxRJrG/rVgR901evXtV0Oo0V2M1mo3a7HZ0E9XpdvV4vtg/MZrOY6M7Pms2mFouFBoOBnnjiCc1mM/V6vZglQDo+xIwKJ2Ol+opdnnPhUmC3hOl0GiuqhOgtl8vocnDxwCvrnthPcOFoNIo2barvkCIq57R3ELDHHEEmPUNAUqxsQ9qp/EImIaQQ406nE8PsqC5D9j2MDzfBwcFBbJOADEPGfWtJb+lAXMCpgBiBqAIR9TYRKtGLxSKm/SN0zGYzzWaz2MIC6fQwSHaVwCbv4oBvP4pjA3LqwgFVbsQI5pn2DT7f6/VyVXfPN2B3EVwjrDfEIBwb5FPQJkBbwHQ6ze3EQcsJzxrtBDx/OEGo/PMc8gfBjPXtu1iwu8hgMNC1a9eicIHjBtcHog2iBU6S1WoV3RCcj3vMGuS5w6FC3gb309d2UZjDGUR7BuKE7xzh9zYhISEhISEh4TziygfX9XMP/NJZDyPhDse5EBSkk7YH7Pr+OlV+Dwx0ZMc7PpCjAEGA3PR6vfhebM84FWazWSQv7NpAtXMwGOjKlSsxL4Et8QgoLLZlQPCWy2V0L3iwoqSYYk8lfDabaWdnJ7on1ut1JLuEziG4eGZAlmVqNBoxdA4i5DtIeCXc2zT6/b46nU7cEYLWA7b+41ogm2w96ZZ4BA/65d2JgBCChZ97kGWZer1ezKQYj8fXtSNAxP06EZKciENgnaBSyWa9cD+m02nO0g+hhjTSLkOuRQghrg1J8f5Litfs4X5cJ6IY69bh4/QxQtoXi4X6/X4Uv65evRrvRwhBDz/8sDabjXZ3d6P4hOCCqOABjKwJ/ubc3ubTbDbjcwJ5Z5xcd6VS0Ww203Q6jYIVjghEAbZIZb2XSqWYUbJYLOJ2o2QyMBbGSVaCt7jgrnCnCw4Kng3WASIJa5ZMhf39/XitCAqIfDh2XDTgb3fYJEEhISEhISEh4Tzi8OM/VJ/zuh8/62EkJJwPQcGJj78GIO7FUEZ+Jh0RvUcffVRPPPFEJI2QrUajESufkmIFFdIxnU5jiBt9+RCd4XAYQwo5r+cWkE3g43LLNtV/qrDSkVuAHvnpdKr5fK5+vy9JsWIaQtBgMNBoNIoVYIiwW86xmOMgYJyHh4eReHk7CWSw0+loOBxGYuohgZAzggQhbqTf+3W6qwFngodpTqfTGKTXarVyAgi2eBwC/X5fjUYjbhPp5NZFAmzrHrbInHB/EB6kkxBGiKv37rdarbiDAfeU9TQajeK6q9VqUdDyXQ34OcKRb9PobQEIQ7zGDhcIAQgp1WpVvV4vhkzStvHYY49puVxqOBzmiDv3mvsFYed6mcdi+CdzyO4bOG88HJV1V6/X43gQYWh1kPJuFuabdbazs6O9vb1c8CHhkr7NKEIBjhbfbtXbd1iTCFy4FdjRgXYOSdGN41tS0spB24q7E/z7hl0mPOQyISEhISEhIeE8IPzRV+gL/s1/1l9oD896KAkJ50NQkE4Ilu+SUNyODwJ1WvL6er3W/v6+fvM3f1MvfvGLdf/998d8A4LZqCY7+cAWTvsBBGg8Hmtvb09XrlzRhQsX4hZ3kCXG4+4FWgOm06n29/ejFb3Yo93pdGJAI4n0EFlIJVkDjK3ZbKrT6cQqMtdMBbZYtYY80rLhDg+I3nK51NWrVzWZTOI8Q8a9wg+x5LhY/7GiI5DwOQg19xNruWcu1Ov1aImnbYOwQQQO352CijIhkJxLUszNoBVDUk5oQAg5TbiibQV3haRokedzkFnOtVgsYmAg64B7yfziFPHqtwcecq8htDwDiDedTkeSctkAXDtEnvn0Ngx3SfBvz0+g1UeSut2udnZ2NB6Po7iDSEQbkXTkVOh2u5GEsz2qpLguxuNxzoHA/XF3C1swdrvdKAyxhskWQWDAseROC54x7h9BkbS/IM5wH2l1wdnQaDTUaDTijhguXPl5aHEhnyEhISEhISEh4TzhsFFJYkLCucG5EBSwQFOtBhBgJ6e+TZ+7FCDUe3t7ete73qWP+IiP0Pb2ttbrtXq9nu666y5dvnxZ165d03q9joGN1WpV165d03A41Hw+V71e1+7ubiTjBwcHunLlSkyHh7hhofasAPrlfas7xAP6u7kmeruptmLv5hohlpC82WwWgxoJ+oNMQfiw6UN66X9HgPFdDWg9wJ1BBRoHBOQK54K7RFzYoRLuLSveZsF9GY1GarVasUWimAkBKWfXAsQRF5PYcQBSy2u4P/i/hxIW15HvviEpikK8lwwCQCsFgo/PJZVzPwdzgZiA0ODuDs/EYA3zNwIOIoekSNYRZtxlsbu7Gyv33jIDuS6KQghOiAjNZlOtVivOMy0K7rQhs4K1g/tnMpnEMFOOya4auGNwIyBkQNB5Llj3jUZDk8kkPiO4HQhlxGlDiwyuBoTETqcTx+g7byDM0QpFOCS5LLSqkO3Ba6xj37UkISEhISEhIeGssfWSB/U9//FbJKXfURLOB86NoACxxGJM1bBI2qiEL5fL61okcAY8/vjjGo1GeslLXpLbBaHf7+vxxx9XlmXRtbC3t6fHH39cV69eVavV0t133x3dAFimqQ4zDgg2Wyvu7u7qscce08HBQRQDIE4eUsdWjV5RphJOjzrWeZwKuAB85wEq9oeHhxoOh2q1Wup0OrkQSOz+xaBC5pAWhE6no4ODgyha4LhoNBpxe0vPpXCixv1ilwwXg3wbUIg2xJCWFAgb5Jz3IUa4PZ3Kf7vdzmUmeIilZ0f4DgKQZM9iYMvDUqmkxWIRWxq8BYTjQLA5Hk4EquJcL59lvl1cIOeA68dB4S4HyD/z7K6V8XgchRR2d4Ao33vvvdGpMBqNIpHnPvOM0fpAm85wOIw7SHQ6nfg84YzhGnDFcCxEJ+5pv99Xr9fTbDbTeDyO69PdLn5cxo1TgfYJhAh2a3HnCAKFZ4GQgzKfz+O18L3BeucYHLfb7UbRcDqdxrYfDwSVFB04HrqakJBwhJBJi2ylWqic9VASEhIS7jhktYoulJOYkHB+cC4EBSkfYlfsi4cIEboHGYVY8fnNZqO9vT29/e1v18MPP6xXvepVuvvuu/XYY4+p0+mo2+2q2+1qOBzG43Q6HTWbTY3HY127di328bPF3WQy0XA4jFsuerWaKjRhdRBHrPkeogiBh2z6dUon1X6v7DcaDW1vb+vatWvKskzD4TDayAlSxCbe6/V04cIFlUolDYfDXK8+lVcnWlT6p9OpRqORxuOxZrOZ5vO5Wq1WrKAXt76k+kuFF0cE7gaEBM8/wJXgVXtaR6iaUz32z5DeX9wZQToSCYbDYc51gbDg1WfEA/8Dqaf33rcodQGE8SJKebsJYoYT51qtlhNvfM49a8HdFMW1VNzNhDlxUYJ7w/1lTSLgkAnBnCIUQMa574QllsvlmHPh42O9s8bdTeIuFXaBYJcJHCPz+VwXLlyIY3XBhXnpdDrxWel2u9HNQlAqggACB84d5g9BiuvB2YCI0Ol0Yigr9x3BrN/v575TXKji2hBREhISThB++Tf1CV/0RfpP//Ibdc9W+6yHk5CQkHDHoNzv6Sd+/gfPehjnHm9bbp/1EO4onBtBAaIGufQMBQiZ91Q7uXWsVis98sgjeuihhzQajXTvvffqrrvu0hNPPKGLFy9qMBhEazckEYs9hKPRaERHAW0B2LXJWoDcQvLcRh1CiBVXSFitVlOv19NisYikG5HEA+GcuFcqFfX7fZXL5RjOd+3atdiyIClazb1S7FsZsgUmJJ/+e8gZzo3RaKThcKjBYJCzy1NtdjIsKUcSJ5NJrNjTyuGODq7L7eu0RXA8F2AII9za2lKz2YxVYs6POwLyiUjA2oDUcy7f4cHXlO/WQQsFYo6vN9o+vFXBcyRoeYEk88fbDbyNgmNCZBm3txkwPxBdWjmomnN/JpNJdC8gGIzH41w7EPPF3CFiTCaTuH3nzs5OTlTAIYKAw7F5xiDdCBjcN4Qjdk9pt9vRvQLJn06nGgwGGgwG2t3d1fb2dnRAtNvt+NwxT94OMp1O1Wq1Ysgi8+7Pr4sdy+UyrkvP0sAd0+v14hpyoQbho/j9kpCQcITGj/5PfdL7/AP91pd/61kPJSEhIeGOwfoDHpT03896GOcaq+xQ3/DSV531MO4onAtBAQINGYAsSYrk0In4k/2ST1V4PB7roYce0jve8Q5dvHgxtjfQL85OAvSkIx5AlOjvxpXAzwicc2s+dnraJGjZgBB6SKCH/bnlnbA6zxTgGjudjra2tjSdTjUej2NugvffQ6wvXLigVqsVgyHJUhgOh3EO3EYPiWs0Gur1ehqPxxoMBtECDpHFTu+tD55DwNilk20V2bnBRQXpRBQgwK9Wq0Xih0WdHn3pqELfbDajU4LqOYIA94eMCSfyjJndC4piFOfkWH4dngnBH0lRbCEXATEB4u1bDfI5PzYuCcQefk5wIk4E5hcXA+PFSeFiw2q1iuui+GxwfVyjB2fWarXYSjMajeK6Qjjw1hbcDtx77iXbjXJvfL17LgrnHI/HMfsAV8xsNtOlS5ckKYoK7j7hO4G5Gg6HsSWEOUTkWS6XMRtls9loPB5HUcW3+GRt1Wq12IrBMXEbLRaLGEyZkJBwPRpXN/ry975Kn9b7NX1Evfz0H0hISEhIePYolfUzP/Q9Zz2KhITrcG4EBd+OjmorhNst3E+Xug7pePTRR/Xwww/r8ccf14te9CL1er1YkRwMBpHIeNUWYre1tRXt1+PxWPv7++r1epFsEORHtR/LPJVQyCBkmuuBCAMXTxgHrgUqriEEXbp0KRK3q1evajweR+LHeSA/7XY7JuvzZ39/P1ZfIVEQWIg/ggj3AWLuVnTS+hFGuAZJ0X6+XC6jm4JWB67b2wnc2eEOBLe1445ot9uRDBcJsjsQIKrMm3TSSuK5CO4+YOcFhA7WGdcEfAcS4C0K3Afup+cu+A4bjAOXi3TSloLzQFJ0AHhLBy4Fz8mo1WpaLpeaTqc5gYTP+k4YPB8ecOqCBE4CdulwIYVxIQx41oQLIxB37vlsNou7K9Rqtbj9KJkduAZKpZLa7SPrNNugutOD8+NyGQwGcU2zlhB3XGzB7cKuG+5gQUCo1+vRFeHXiQCRkJBwOnrf+2b95vdKP/7lX6z7PvE9+sb3/UG9oto462ElJCQkvCBx8NdeI+nXznoY5x5/+vf+nEp6+KyHcUfhXAgK5XJZ29vbGg6HsR8bgkaKP2TJbfKg+P/1eq33vve9ete73qVXvvKVunTpkjqdTkykp896MplEyzSkBbLTarXUarU0mUxijkKv14skvtVqqdvtxr76wWAQibYH7fE3n+P4TiDdXu2Enp0aINUXLlzQcrnUcDiMVVonVYPBIJIryDhBg76bBCSf+YRENhoN1ev1uFsE7gS2VqxUKrEyD0GEoPEeXBmQdQ8eRHgplUoxJG97eztmQrhgwfkQF2q1WqwisyUm/e/Ml6Q4b7gQimsE8uqhlbTUIGghOLjgg7gA0XWi7m0K0on4wPXyf89R8PuEo8Jt98wFY4IsM04yBXyHE5wC3saBqOXnhUwzZ2yvOBwO431k7nwO3R1BWCjz6o4RF18QOzhus9mMJJ81eXh4GF0RzDMCH+flmFwb+SH1ej2uf74zWNPu+EDw8J0dXDTb2tqKa8rFlqLDJiEh4Xrc97VvlL5W+rSv+XvKHpzlflZvLPXbH/59ZzSyhISEhBcGHv+7H6W3/P1/JSn9XvJ0KH/Se5UaVp9fnAtBIYSgfr+fs557nzi7HxRJkKfi+7GyLNNgMNDb3/52vd/7vZ86nY52dna0s7OjwWCgK1euRAs5tnjI32w202g0ypE/KqI7Ozuxik8eAQLFcDjUwcGBtra2ci0S2NAhLqTrQ7bdir1cLmOgI69h5e92u7pw4YKm02kkYhBnqrYHBwexZ7zYgy8pJ1JAwiTl+vTr9XrcQlNSJGNUgD2LgHtEhgJVc1pKIP/e04644lb7Wq0Wd2/gemu1WhQVIIj09/suCu7kgAgTFMkcsC4gl9JJpR7bPIDAHx4exiwIDyFkvZC/4bkHzKGTXr/PkqJ4w3pzsszxERUg3RBlD6SczWbRxeFjkKRmsxnXj19vsR3D8x5oJSCo1Nc+LR2sIw955DXmiHvjbSez2Sy6KbyNg+DH+Xyu8Xgc218I45QUhUSuhfnj+4CdT1jDrBfPXXFxCTeLZ0ywtSX3H8HPdy1JSEh4erz4K9903Wvlblfv+48+/wxGk/BCwmPXvvmsh5CQcKb44S/5F6qEFIL7dHjJj3yeXnb4lrMexh2Hc/Mbc7VaVbvdjrZ1dgyAuFJl9+qhW8l9Wz/piHRduXJFv/d7v6d+v69ms6lut6vt7W3t7Oyo3W7r4OAg7mwAGavVajF/APdClmUxSG53dze6DRAMcFjs7++r3W5H0s6OD1SfvVXAq8mASr5XRmkf2N7ezoUnQvgRXTwJHzJM1Za5JJuALSoRHnACIBp4MB/EFJLHcXFO4C6A/Nbr9SiiOPGkMoyzYbPZxDR/SB9Be74ThlfVnUh6z/50OpWk2DuPhd23SYSQOsn2nSHcjbBYLKLzwHcckRTnmTG4m4R73Ov1ItHnPtMKw731LAdft5yTCr07WnzHB7II2JGDueIP/+daeMZcvODecJ/IG5COsgy4z6wF1gDPCmOnvYGqvwdncg2sV18TCCs4GRCmaEVgbLg1ilvFViqV2KrAuvVcCV83fn95TrwtqdlsxhYN3xnl6VqsEhISnhqHw6Fe+vfefNbDSLjNsZelPJuEOxfv+PbX6K5y+h59Orz8u79AL//qX1e2OXz6NyfcVDxrQSGEcL+kfyfpbkkbSa/Psuz/DiH8I0mfK+nK8Vu/Msuyn3iqY2Hhlk7s4lRp+bfvoOBp/NL1LQ/SUSXy6tWrunr1qq5cuaLRaKROp6NOp6Pt7e3YrgDpmU6nsZWB1gACE7FrQ2qcoLVarUhout2udnd3Y27BdDpVp9OJ4Xer1SpXQZ1MJnEMEEVPt3cr9mKxiA4Jz2KAQPnOARAiyCQihtvQIbmIBFSg2d4SV4Bvaygp3gevyrfbbZXLZc3n81g5bzQaUUSAkEOoyU2A3OFUYA59PTAn8/k8EsPj9ReFJc5Dcr/nWNA+4cTcyS2ijjs5EBP4GyKPe8YFDwQA5pvtKFutVrxPvsUkmQHuTnEBwHecoKWE++aWfndoODEGnhfgDgx/Plhffs0ElbpLwUURWlp8S0xfi/zc20QQNqQTVwN/ey4KQkUxv8GdSWRLeAgm7h6yOLytZrPZxEBWRAxvGfFdM5rNZi5E0897nnEzv4sTEhISEm4c6Xs44Vbim177fWqX0jbWT4UP+PYv1Pt+029rc8rvvAm3Hs/FobCW9KVZlv16CKEj6ddCCD97/LNvyrLs65/pgTabTWwXkBT75ql0Q2y93YFKL8SmKCpQAX/HO96hZrOpF73oRTFs8eLFi+r3+9Fp4H3l8eKO2w3m83nMchiNRjo4OIj/Z2zeEkD2wv7+fnQqUPH3/e45B5Z4qqsIA4yJ13ApdLvd3DaFHmgpKbetIeIHrg+I4Gaz0XQ61Waz0aVLl9Tr9TSdTuO1Qdyp9kNeIdJ+/Ol0qm63Gwk0RK3RaEThx0MQuW+0PdBigBjR7XbjVoP8jL85N2sAMBfj8Ti6KZg35lBSFFecwPPH8yi4t5B1z4IoWvuXy2Vu60d23JBOAgSp8vf7/ZwDw50oCGQu+FBV90o5bhKux3eaQGzx6/XsCNon+DzX5wLdfD7PZZggnrH9aDGUkjXg4wL8nzWHa8SfAXfp+E4c3Bff6hHxhWcJkYNrmc/ncS78NeYfNw3OBtqGyHDwnAvcE7dJKONN+y5OSEhISHhWSN/DCbcEl3/0A/TxjTdJSoG3T4V7f2mhzfHv3wnPP561oJBl2WVJl4//PQoh/K6k+57t8SBe0gkpxobML/2QG68WQ+4hDfwcMjCZTHTlyhU9/PDD0UHQbrd16dIl3XvvvRoMBtrf389VnF0AcDJEkCBbGUImCQ3EEu7Wfd7DzgteefXMiFKpFKuo5AKwewPXgbWfVgVIMI4CqukQfuZSOnGBQFIhvogrs9lM+/v7sWJLHgBBjLSFuMBDGwohlk66PVzQU/qd+DJnkLj5fK7pdBqFGa9YM36vgrMecIAU2z6YOyrrtEl4j7/b6N0F4C0OZDJAaBEleB8CANfGrgI4IyaTSdz2FMcKYoevacbn2ROQXNaLdCIquPOg6Ojhnvv68jBIxklLkd831jsOBXcasJ4h+VmWRXLearVyGRfME3Pp7So4YHiG/Zn21h8EBXcmcW0Ij9xT35ITuBCGA4e5ctEA8c0FKA+GPM+42d/FCQkJCQk3hvQ9nHCr8CkP/o56pSQmPBU++Ou/UPe98dd1/j2lL1yUnv4tT48QwoOSPkTSrxy/9LdCCP8rhPBdIYTtZzQQywHwJH62QYR8SsoR8iI54VgIEWynuLe3p4ODg0i6W62W2u22Go1GtLx7EjzEjH5/xAR2fBgOh7HK7y0QVPiplNLrzo4JXEcx5A/ixTHo7ceyvr+/r2vXrmk4HMbx02fOsTudTpwriLFvL8mc4VaA6EqKAZMQfK9SkwcwGo109erVGN6HYEDlularxV0h/L5AENk2EPeJZ0pARKfTaXQa1Ot1NZvN6N7gPZPJJIY3ElIJ+aQXn2tDDIEsek8/mRzMNWGLrCHWEeekVcJDLyHNiB/M82w203A4zLkM2O2ANcf99ZwIF1yKOxD4s+HtCggEjMkJtaQoAPmOIlwbYgBCAzkDiAm+gwXkfTQaaTqd5rbnXCwWmk6nOQLuzxMCga93J/bu2sHZg8jB5/wzLkDQ0sA4ECGOv5vi9wr3PMuy3K4mCCSsC+YYsfB2ws34Lk5ISEhIePZI38MJCc8vmk9stDn+HT3hbPCcBYUQQlvSD0n6kizLhpK+TdL7SnqVjtTab3iSz70uhPCWEMJbPGgR4kWmgff5Q6ABVWq36UMOERQGg4EODg50+fJlPfzww7p69aokqdfrRfJNZdhJjQfRUTEeDoe6fPmyrly5ov39fQ0GA+3t7cWWB0g0hI8wR5wJkDrGSjXURQau00PtSPWn+l6r1dTpdCIZL5fLcUtMyBYkHpIJEfPE/NVqpf39fS2XyyiwcH6IJXNL1Zb7IymSrfF4rMViEYM1vWqMU2A8HufyMCDlLl4Q3kgAJlVuHCC0EPj2fp53ICmKCp4pgcAA0UQgGI/H8bOsPSzyxd1DGBfCAa+RCeHCiecLeEYDpBarPq4Mev2L8yGdZA7QCsFce6UeEk27QPEYrBFvLWDsLly5kObCBONm7dEa4eGG5I0Ugwy5pzhuXPjzte6iHg4dF/VcnPC1gpjk64PPcw6EFObO3Q3slOHH4z2ScuM977gZ38Urpd7DhISEhGeL9D2ccDOx/rkH9E8u/fZZD+Pc4jDb6IO++QvV+95fefo3J9xSPCdBIYRQ0dEX5/dmWfbDkpRl2XuzLDvMsmwj6Tskvea0z2ZZ9vosy16dZdmrqX4SfsfWjaPRKFquIdvezuBWZQiQ96VDEGlX4JiHh4fa3t7W/fffr36/n0u+h2xCaLDfu0V+NBppMBjENgTaAZwoU3V1gushgW5LR7iAwFE99d0ZIGnNZjNWuKkie/sHAogTS8ZC/zm95QgupOvjZOAz3qbQaDTieankehggbQH834n/dDrVbDbTwcGBsiyLAoGTcEipE1n/Gc4H7jsiC2NBcPFtJAngOzg40GQyicKBCzWQaF8rtE9wv/xeQpiZZ0gv6wNS79ke7k5xMs8xncByXBwHrBfei1MCIo+LANcO1+dtJ7RIIAx5gKO7KzwM0R0afi1F185sNovngZR7m4YHOBbdH4wXQYAx8h3ADg7eMsOYAfec9c59dcGD8XGPvV0DQc/FBcaNKHQ74GZ9F1dUe/4GnZCQkPACQvoeTrjZqJTSbgVPhulmqff/91+ke//FG6VTwvkTnl88l10egqTvlPS7WZZ9o71+z3EvmSR9mqTfeQbHUqlUUr1e13g8jnb8wWAQK/XF3vZi/oCTWyf/w+FQBwcHkfhTKXeS5z3q3pfebDbV6/VyOylQAR2PxxoOhxqPx7HFwEkcWK1Wse0BgtpqtdRsNjUcDk+tKHsll90SpCPC12w2VS6Xo4vDgwUlRfIGsXZXB2TPwxnH47EuX76sS5cuRUECwlypVHLV+nq9rk6nE4k8OxogUiwWi0iaB4NBzBaAsDK/6/U6J6x4JZ+tKMmhcOLnleTTMgh8TMw1xJe58lBBDyp0goswwrpAYIH8c7+8Ql4MIOR+FJ0GRYKOO4D5IYsCV4sLTb4OnGTTqoFAc3h4mHOYsKZOe+5Yo5wfccIFJdpI+v2+SqWSut1uXF84DzyQ0dtIPJ/ChQZ/H2NBrID44+Youln4TKlUis81bhmuBQHB55B1yjz5WPgMuRc8Q8X2kfOIm/ldnJBwuyJUqiq9T2pZf6EivKd61kN4SqTv4YSEW4vDbKM3zE9+1/ycn/1bevk/fNMZjijB8Vz8vB8t6a9L+u0Qwm8ev/aVkj4jhPAqSZmkP5T0ec/0gBAQyAeVYiqI7JgA6ZMUSSUhghAKCOd8Ptejjz6qy5cv67777osVzVarFXv0PfWeNgQq1IT6YdtmXOPxWNeuXdNdd90VtwmUpMFgEMlRtVqNPf6MHcLWbDZVrVZjxbRYCYVoYzN3e3+tVssR+dVqFXdVwH0A+WRunFBxHCq7lUolElmCIKUTuzjvI1SQAEgn4y64UEmfTCZxZwvmmPnH7UCWgGdP0IrSaDQUQsiNE0LpO0RAELmHTjqL22oWX8diz2vujoBwQuDr9Xpcd4gcxfyDokPEhQaELj7vbSGSIpF1l4dnYdAawXwjdJAFgagAaS46PUAxGJF5xAHiAkWtVoutAghJtMfMZrPo/EB8YBysCw9LdZEFMYHXlstldFC4OIBg4eIO65jng/lj7fJ8cQy+G7gPxZBX1rkLad42dRvgpn8XJyTcdvjgl+mPf/f/POtRJNwi/M6nz856CE+H9D2ckHCL8LV7L9O757t654ed5CS8XOn7/jzhuezy8EuSwik/uuH9db1y633oVLg9PwHiQkCedCJEUJmGDLjFfzgcam9vT9euXdN0OlWr1VKj0dCFCxfU7/e1v78f2wAg1lRK2b1BUu6Y4/FYo9FI7XY7ih5U+LFSUyUnmJEt60II6vV6sZLrooILK4eHh3H3h/l8rr29PXW73TgX8/lck8kkWrb9ePxbUhQBcFjwx3cwoP3DA+/a7bYkRdLt7QeIE7Ro8D5ex7UgKX4GZwekH5HA3R0ETJKy7yn9jI97ARGWTnZ7gAgiEHjIJZ/19hDmiNYbSblMAbfGM7esEeYUcQIh6fgZye0u4MfzKjvEmz+09rBuuA6uz/v7WWseOslxEVog3zxDXK8LLLQGSMqte5wenrPA9TSbTa1WK81ms5xgwfH8PrnLopg1wX1lHXreBxkcvvOCP/ccE1GD43M+Ahm5H56N4W1TCDAIih7Set5xM7+LExJuV2S/9lb9wge1znoYCbcIw+x6l915QvoeTrjp+IgP1it6d4ah5c3zQ339o3/ySX8++tg9KUuhi+cZ5yJxDPIE+fTKbQghbh85HA4jcaCVAOJCddGJrlfpJ5OJDg4O9MQTT+jKlSvqdDqSjojuvffeq9nsSP3e29uLlnyqv1SCT+s9p+IO6Ud8YDwQJWzZtBlA8LrdrgaDQcwAwFpP/7e3g5BDQCUbInrt2jVVq9WYWM8cUp2FJEnKhURCWCHIBOS1Wq1Yecb5wHV6ZoDnCkDkILVUqREn3GHhu0RIJ+F8VIc9N8BJH8dzUYH145kDTpilPPFGHCDLQTpxBnANZEn4NTFechnYKeE0FwCE1FsIvP2g6ExwoYwWCsg+2zSypiC97gRwVwRil3QksLBWafngPMVWBK7FWw48nJHnkwBInxOEFW/1AAhH/rpfP/PoIgP32Mfo99QFIg+F5L0uEnjYprtS+K7xrAR3dSQkJCQkJCQknBX+8O9KP33Pr5/1MG4JVtmhPuRXPjP+f/PrPd3/T954hiNKeK44F4KCpFz4YHHrO8gyVd5SqRS3TUR0gChShcXaLJ1UYiHqbPmIq+HChQsaDoeazWa6du1ajtRsNhtNJpNIeCEdpVIpHm8ymcRqbqVSidkAvrUix/AebSrikHe2FSRUzokp8zEejzWdTuP5wvHWlAcHB+r1elEUAOv1WrPZTN1uN86N94YfHh5G6/p4PFapVFKn08nlOrTb7di2AcmG6EqKcyqd9OqznaKkOM/0ws/nc41Go0jOEV9odThtG09cAJJyYkIx3M/dDlwf9wFxBTLqhNizD7j3Uj4AkGNzTt9ZAUCUWcuszSfLD2CsOAfcUeA5CwhIHpTIdTNv3B/fiYL7gbDB/Dpp93YCxCu28GRsOAN8G053FyAqFB0S3g7joZje8rBer6O7p7i7hmcssJ75N/Pk88wzy/tcxEE4Y3x+b3mdeWfuk8CQkJCQkJCQkHBj+JLLr9aP/cqHnvqzsA562d9OOzO8kHCuBIVGoxGr+U46JMX+ekgOAgJEAjIDYaLHH9Lg5GI0GunatWuxCt5ut9XtdtVsNmOfvBOb6XSq5XKpdrsdWxqcGC0WiygqeCicV+in02l0KFCZpRrfbDY1Ho+jcwFBRDqxbHvWw2g0igQMm/dkMtFisVCz2VS73Y47ZFCNpfINiabdABLHGD2fASLYaDTUarVyCfnXrl2LhHqz2Wg0GsVsCtoDJMU2FO5ftVqNGRS0hEhHhK7f72tnZye3mwRzDbgGRAh+5gIB8+/3o+hi4b5QlS+KUzgKuF4+zx+uMYSQmxdJkbgWg0Il5dbjaY6GonMAeC4B64N7tNls4lrytg6364cQcnkAHr5ZDCd0l4J04iCRFAMuuRbuLWvIBSDG5LkMLrB4tgKtHg7PSnGByO8Dc8A99bYN7qO3bPj2lcX5R4zA8cD6S0hISEhISEh4PnHxBxr65lc+qC/Z/sOzHspT4gP+zRcqnLIh1qW3rPTyn0w5B3cKzoWgwC/2BKlh//et/Xy7O/5uNBrxffTst1qtSIqpgHvluVQqabFYaG9vT81mM2YI1Ot19ft9dbtdSYqtCtJJij6BkJ42TyuAV5choNi4ITJ8HkDo2u221uu1RqNRDFh0+/doNNLW1la8NqrN2M6xvFPF7/f7GgwGOTs3uQ1cG9VcMgAghpA0iBgVcnanoCoMicTq7rtBIMx4+wGfR2Bga05eq1Qq6nQ6unjxoqrVao6AekWdsbNVp7sFaFXxvAffRYI/jGE6ncYMCO4p64zzIZo4eJ+7YViDCBu+XhGWmPtiawAigWdpcB/4DOvNAySpxHN/EIKK+QW8H/eCW/s9ONIzPBg7Y2LeyUxgzhH2fFcQJ+QISae1iSC64JrBoeMuJVqYvIXBhQxvS/F8DBwIfr5ihoXvEOLuFv646JOQkJCQkJCQ8Hyh9UO/op/6oleca0HhQ77mC/XAt7wpbduYcD4EBUmR4LZarbh1pHQS8ufb0nm7gLcMzGazKCYU+7+L5Gw8HkcXAySr0+nkghLJOxiPx/F8/X4/EmDaFKhketq/A1fCbDaLlW3v6+92u5GU88eD4RaLRXQlsN2lE27CGMlGaLVauvvuu1WpVGKV2Ymeky1vL0GYKLo9qAqTLbDZbNTr9SIJ9ADD2WwWQxqpiuMSQKRAKGIMOCDa7XYMhsRaT+UYkYVWCgIScRxAsF3cOK0Xn397mwH98/zhXrqVvxhg6OsJJ4S3g0iKggPzDmn1jARvZXCxwf/P3EGGPQ/iNHFCOnFycH1+DAQDz87wKj6f5/0+L1mWaTKZ5EQa2oFwNkgn5B0HCLuPePuOCzfT6TQ+v6xLxA5v8WDO+Rxz784PrpW5Pq2VxdcC3ym0EfFMFN0xCQkJCQkJCQl3Gl77tk/R4Tfddd3rd/30/0yFlwRJ50RQYKs4bPJUwn1XAuzT3tMM2cT2T6YBFVWqptjSfavBxWIRybBvk9hqtTSbzXJb8fEeHBRY8ufzua5evap6va577703iiBU2yeTSa7SiQjg2x8eHh5ti0mrwnA4zPXNIwRwPt/iElCVn06nmkwm2t3d1YULF2KQJS4K75cvVtGLBIvKt8+3V3Hr9bparVas4nuLAiSflgzmeTQaqdFoRAKK2NFsNtVoNFSv19VoNNRoNFSpVHRwcJBbGx4MCdnj3PyRFCveVMedwHuYoXT9tqPuJihuI8mxmQscIogk3GN3hhR79V1UYFzMmQc+Am9JcEGBNUHrBkIOwhzn4m/INGuUwEhEKRwOOGNceEFYYT54zgiwdCLuTgzOzbPL/WMeEZi4XzyjnlXizzYCCHPADircH/83Y2B+fItRXiu21LhY446WhISEhISEhITnG6XXVfXNP3Z2bQ9fd+199Qt/7cNV3x9p/e5fve7nSUpIAOdCUMCGDiGAXNFrPxqNcmKCVys9gI88g9lsliNBkKTJZBJJCcn3e3t7MbSw0+lod3dXg8HgulR8tliUFAkuWyBeu3YtZgIgZPR6Pc3nc02nU02nUw2HQ00mk0jcm81mtHHzOXr5If8QX6+mMxbs497yMJ1Otb+/r93dXV28eFH33nuvarWannjiidz2kN6OwflwW3hbhdvDERictOFCkE4s9YyXe4gAQujlbDbT9va2yuVyzJWo1+vq9Xoxk8Bt+JBAWlXox3fXgaS4wwNZD2zrudls4o4eXql2x0HRweBZEy66FNsZvM/eAw49u4PXfC6999+BjZ9xusuGuffPuZgmKecEgRTj2CgGRyKksJ5Ye+5G4BzusMCZgyiHawQx0M/j7QvsUoFYxnkQTHwdSifbQxZ316AFw3c0KYoGHv7o18L8uyiHmEi2AmINjo1iu0tCQkJCQkJCwvOBwz94l66uOmdy7v8yaer//fiXaHPlbTolIiEhIYdzEWGOoMAv8E4C2B6SX/ypkJKzALHGNi9Jk8kklwsACWKnAj/2ZDKJuz5Uq1VduHAhVxWlDaPRaETC0W631ev1Ym84ggHVcwIGd3d31W63484L7BhBGwBkCtJEK4V0sp2dOwcg1O6aYJtHCBjW8UajoXa7HSv/TtC5fgQGKtOz2SwX1kg1nz/SiWgjKbY2FKvoPvaipX4+nyuEENtLPFwyhBDnkHkECBXu9GAefFcE8gSoxnu1nevH2u/CFOsQ8uxtB07OOU9xxwff8tLFL3c5cM+o7rtt3wUj5sOv3a343lpDC40LHB5GiFjla6rYsiHpOkLOz9zJwc99xw5/3eeY8xXzDTi+71LBfLnI4M4Qz8/A8YFI4uKJZx6cZsHD8eP33cfPWBGnfBwJCQkJCQkJCc833vLhTf3opP28nvN3l1N96ys/SIdXrjyv5024fXEuHAqQTgLY3AoN+VgsFpE0+2tUZZ3IQf4gNCEETadTjcfjWKmHwOKAaDabyrJM7XZbly5d0mQy0f7+fi6Uz0lPq9WKx1yv13riiSfiWOr1enQ7jEYjjUajXMuF747gu0G43d5773EIYBfnM9PpVI1GI7YMHBwcxB0XVqtVzFtgdwkn0ZAvFxRwPhAUCfnykD5J8XNU+h0IN+QtSCctIhDfw8NDdTqd2ELiOy9Ain2HASeJLqYUyTH99JBSfu75EaeFFXItxVwF5tq3M+Qe8JoTW0QMzuX30QMP/efFuaOXH7GKLALIu4eUOslmrXO/fEwIMd7u4FkHW1tbcRcQ2kh4nfHz/uVymROBuC7WtFf12QLV14nPvwcq+vVzXoQqz2NwsYr15XkTvNfXuN/b4s9Pg4sKyaGQkJCQkJCQcFbIFgt928teqnvf9at6Ta3y9B94Dtg/nGqUbfQlD/4xSYunfX9CAjgXggJkwYUAD/CjR5w8BbZBdBu/dBL6Vwyqk46I0/7+vkajURQnICij0Ui1Wk2TyUT33HOP7rvvPo3HY83nc+3v7+fS4iH+kL5WqxUr68PhMGfz7nQ62t7e1pUrV+KOFL57Ba0ZbLXo1VCqo1wLTgwqzvV6PTo0aD+AaC+XSx0cHKjf78efFfvUvRefuUOooToL+fI8AuzkEFrGBfGmUo4g4IIPVW3aHLgHuCE4LveYe+v5GKe5C7wtxHvt3RIvnVSt3brP9UiK7SPcT47N+IqCBK9xTP9zWssErRiIJC4quDuC+1yr1TSbzWLOAQ4IDw1ljHyWtcW4CbT0wE0XKFhjLiIwt8wH50EAwI3B7iQuLrjYxGdYo36dzCEZIsyVt3V4ECutJVwDwot/f7irgT8uCDSbzdwWlsW2Ex+XdCQmtdvPb1UgISEhISEhIaGI//PFH6aveOf/0sc1bn4DwluXM02yLX3VB/9JbUajm378hBc+zo2gAKH2MEBIEKQWsuNVfk+6h8w4uYAsQban06nm87k6nU58HySVFPper6ednR3t7e1pOBzGaqVX3aWTEMf5fJ5rm8BGXqvV1O/3deHChbhNopNWvw63uHMu2hA8OLLZbKrT6cTdELwdwVsfDg4OoiggKUdwJeV2QcDCPplM4hgg6ARUcm6yLSB0tVpNi8Uiuhxoc8CNgMU/hBDdEvTrM5/Y1p1UIozQzuBbiHqfPGOghx8y6O0a5XJZjUYjClHSiVDg5LfoGihmRvjOD4gXXo2X8sGVxWti7rxPn7HwWf6u1+vXXQfXipOkKFr4ui8GNTJX3rrhu0Dw/BTzE7i/fn2+TSXZCFwTx3Ry7+4EHyNzwVrjWO5WAe7cQfDBLeGuA3drcN0uBHmAZlEU8vn2cyUkJCQkJCQknDX+2cs+RO9462W1Sgv91c7ecz7eG2YlvWN5t374r3y8st94q6QkJiQ8O5wbQQGit16vNRqNclXezWYTK95Fqzpkheq6ExuIDpXILMu0v7+vK1euqNfr5fquF4tFJNS0LPR6PQ0Gg0iAGAuExcmdE7PJZKIQglqtlg4PD9Xr9WILAVVVr6qD08IBEQ280loul9VutzWfz2PQJMF6OBGGw2Gu6o9YA8Hm3771olu9pRPyCMGimoxIAMGG1CGSVKtVtdvtOB9kBpD3wDXS5uJVaz8neRNs3TidTq8LPETUwT3BLgG4H5hTxAPEGcborSRU6BkTQlNxJwF3CzBWFzIg677+fM1yncVdBCCwrEnfNQGnB7teeBYEIoC3ODAub5lwZwtV/eKa810fOIfvBOIBky4a8QwwhuLzjesCMu8Ohvl8HgUFP5fv6uAhkp774C4Lvi+eLDfDczF8l5Si+OT30Ft9EhISEhISEhLODJtD/dAHXNLWi+7TG37oQC9vPa4v23nnDR/mZ6YV/eDea/S2b/ggtX/gzZLeevPHmnBH4dwICrPZLFeJlk6q5C44YLl2+zNkyi3ZnkngBGY+n2s8Hmu5XMZKOtZ9tjdkx4dutxt3MoCIuPUesi4pWv+lk/T4UqmkZrMZQx1px+Dc/IzEeu/nd+s8ZBmHAGRze3tbIZxsicmcSYpEHHLI2CH8IYQYwsg5/H74nOHwmEwm0WHBHNTrdbXb7Vh5nkwm2traUqfTUbVaVbPZ1Hvf+17NZjOVSqW4iwTEFRHEXQLccwSERqMh6aQn3smit1BATKU88XayCUH1nQaK+QI+D77bRbH33ts+cAx4uB+k2FsZGo1GTqAozrevJ2/dYSzSifDAc+HrBsHDnQr8aTabuTl4suvynR58PlijZEe48IBjwLMjvPrPdbGbA+fxNhuELJ4RFzNclPHXPCuiKIgV528+n+dcIZz/NOGsKHwkJCQkJCQkJJwHrB95VO/5cOndH/0x+uH/76tu+PPTn7lLd3/TG9XWm2/+4BLuSJwLQYHKsqRcj7RXmT2IDZLihNCrkG5ldvsyJGcymcQgxkajEZ0GHtjYbDbVbDajCMDnESTYuo5+cloTICn8v1arRTHBt75jfN7eUCRyHhZIXgO2+fl8rlarFSvsuABcAOFvrO8INpAuryZzHg+28yr5crmM2zxSSYaMdTqdKP5ANHEj1Gq1uJ0lgoY7RnwHDO4962A2m8WtNnkf5BlSTGXbrfruvOB88/k81+fPevItCYviFMfhOp2MUo138g6KbQpObFlPrM3iOmVuqMgjLBTbMhAyis9PcRcDjo3Qxhrj/YD7zHz4WvR8Bc+D8PlhDXp1n7H5s1qpVKKgxns4NucjR8PbeYrCBOdeLBZxXDhGit8Bxd1SWD/Mt8817/eWmoSEhISEhISE84bwy7+p7p+68c91deOuhoSEp8JzEhRCCH+oo4abQ0nrLMteHULYkfSfJD0o6Q8lfXqWZftPdRyvEDs5Wa/XkSA7SfDQNA8u9Mo+RASS4FsTsu0kBKdSqeR2gaBiiqjgFWTcFGzNyE4K0+k0kunNZqPhcKjxeKydnZ34PggoLQeEI9L/T2ghVWMIP+QLEkQWBDslkN8gnVj72f1BOiGZnB9nAe4A5r2YP8DxqCojZHgAoIfyISiMx2NNp1O12211Oh1dvHgxzrlb9733nnHR2gLBo30EgaDRaMT5gSg7QSza46mg+3E9O8NzCzwTgdYICD2CEASTVhe33XOPWANe5XbRgXnybAzGwNpFICKvgnVTJOzcB99lgWfDHQLu1EGUIpeEn+PYoZXBXUDuZPAWJNoEmAvWGdfpLiKcOMy9z5fPgbdf8HxzHv/OYK5cZGGuec3dBrRDMAfMEXOHw8LzGm4X3Kzv4oSEhISEZ4f0PZyQkHCn4mb8xvzxWZa9KsuyVx///x9K+vksy14m6eeP//+UgABiWab67D3gxaBFdx5IJ4TIt5+cTCY56zSVbKrfkGEqzxB132Wi2WxGgkUV1Vs03HJPFoEkTSYTDQYDzWaz2N5AuwIE0ckTPea+NWapVIotBc1mM5Le8Xis/f39mMkA0fSKNrtM9Ho91Wq1WH3mvbQb8DPCDyGkPqZGoxF75REFIOm0j1QqFbVaLfX7/dh+wFw2m031er3YuiCdiEFOeBEQ+BzEmtaHEILa7XZuVwyq1E4s3aoPceR9CBqQUXdMYLWfTqe562RtsdNFs9mMbhXWmK9BSDr3FqLrpB6RxLfm9Oo6Ag7Cg7dS8H7uJ+IU7/fn4rRtD4vtH35PPOSS9S4pOmFYJ37/Ef/8vDynjPk0EdAdGsAdAv5a0Q3hIo5/hwAXqnzOfNtJP747Fbz9xd93G+A5fxcnJCQkJDwnpO/hhISEOw63ouXhUyV93PG/v0fSGyR9+VN9YL1eazweRzLa6/UkndiR3S4OKXPLOe+l4klvuW+r6JVHJ6GVSiVuJzefz3Xt2jVduHBBkqJ7gHwBMgA8FM9bBzxkcblcajQaxd0kyFEYDAaxSspYIMOMkZ50dnPg/KPRSLPZTMPhUIeHh7H6X6yMe78+Sf3uQEBs8dYFyB0EFRGGzzp5Z07X63V0diC6EGhJWCTHbLfb8ZgepglRz7IsZlhAOL2FgblhN4nJZBKv6bTQSt/dwDMM3E6PU4PXGZe3LCBkQba5357FAKn1thrWJCKDV8xd3PH2hqIQUcyy8KBFP6fb+rle/jj55mdFMi6dtLy4aFd0OLiQV6z8MxZQFECkIwcO5/HWH99BgvXv81m8Tp8XBEKfb38G3GnB+9wR5d8xRddKqVS6rjXkNsMNfxcnJCQkJNxUpO/hhISEFzyeq6CQSfqZEEIm6d9kWfZ6SXdlWXZZkrIsuxxCuPRMDgShguRRbV+tVpEUOamDHLmbATLgtncPc4MweLWVloVarRYrrrQPIBiw1Vy5fLT9YKfTyYUJelUYInN4eKjRaKSDg4P4/lqtFnvqIUqQK8IePYxva2tL29vb6vV6kTCOx2OtVisNBgNduXIlig04FXwMlUoluhvIIsBGL50QPO/nx4FBlRxBBZs8nyOHwV0LVOKxtuO2ALRZQOLdVRJCiPPlif+0cEDqed234Szea99u1IUaCLakaMN3wu4ZEsAr3bzf3SS0JDhJRaRx8su643XujzslmIeiQMK5vQqPVd+Jvs+Tk3xv6/CshMPDw+hE4P578CPP02ktJafNrwsWp2U5kJ3gIYrFdgffpYH1yFz584Iox/XQcuFZE+4s4TWuyVszeNZdnPTn6DbBTfsuTkhISEh4VkjfwwkJCXcknqug8NFZlj12/AX5syGE33umHwwhvE7S6/g/JAPiTv8/VWspn8DvPfiVSiXXz16srkqKPfzVajXa6CeTier1unZ2dnTx4sXYw09OAOTeCS6VZQ+Rw3IOefGdFkajUaxqY/0fDocxw4Exrlar6ECA3NTrde3u7qrZbMafM471eq3BYKBut3tdYCHzg9tjb29PIYRIfg8PDzWdTqPtHlEEJwF2difoiAEQWA/BY+45N0GTfM63enQ7PQQUm/1wOIy2/WazeZ0d31P5OS7XA5mEFHplGhfB1tZWzLMYjUZRCEC04lo9/4C5hRCzVp1EF9car0HQi+GiEH/Wiq9biPxyucyFZkLOPewQgYc8A97vJJ18A+aQZwUyTwApohLPCeejTci3gnR3gQtj/Iw/CD6epeDXifiAeMBr7pxwIbF4Hq4ZcD8RXlzk8KBNXneRyD/jrozTWkbOKW7Kd3FdzVs1voSEhIQXOtL3cEJCwh2J5yQoZFn22PHfT4QQfkTSayS9N4Rwz7ESe4+kJ57ks6+X9HpJCiFkVH2dtHloGmnuXvUEEP7jYz2poDCfzyOxJFgRstnpdGIewOOPPx7PLSlW1H1c9XpdjUYjV0116zwk1PvaIc5UXSGF7hyYzWbxvWwreffdd0cRYH9/X+12W6PRSJvNJvbw054hnWyl2Gq14k4VbrE/nv9I8jwkDwKN6DIej+N4W61WJHgIOcVefMgj7RI+H769IoJD8T6ST4G4w2em06mazWYkst5qwBpB2IFAc53eeoDjITvO0ZBOgkDdqYDYg/OD4L5iGw4oig1FV4K3SEBy/f0QVye4Lma5oIDrACGC62Ts3lbBvXIXilv/N5tNvI9sBYp7h/G3Wq0ooHAMb70gMLOYcQJ5dxGMuYCse2sE98mFIeCCxmlwEcjnk+ssZif47jC8x/NavI3idsDN+i7uhp3bKjQiISEh4bwgfQ8nJCTcqXjWgkIIoSWplGXZ6PjfnyjpH0v6L5L+hqR/fvz3j93AMSMxcUIF8XTbNz8jqb4Y9iadVC8hFLPZLNrVPfCOc0LWeJ33MgaqywDLOmSJ97E1oDsesLOXy2Vtb29Hcka4o5M+SdFSX6vV1Gw2tVgs1Gg0YnuGb2nJjgB8zsdYrVbVarXU6XTiHJIfQeV8Op1qs9nk2hGoJg8Gg+gY2NnZidfpVWSuzUmxp+Y7+Yf0dzqdOH6EnPl8HkWV8XgcSf9sNotBjezyUNxhgftOmKGkSOJpDWB9MSeITIgQ3J9ijoCHOnIOWi1cnECAcPeCu1zczYD7od1uS1J0hPi2ju6yYDySYi4GY/E2Ad47nU5zzhXuTbENw589rt1bPFij3spAO4OLJu5W4NlzUcDdGUU8Vfih5ygUxRN/D9kYHirqgoWfi2fc7/VpTpPTznUecSu+ixMSEhISnjnS93BCQsKdjOfiULhL0o8ck4YtSd+XZdlPhRB+VdIPhBD+pqT3SPpLz+RgDz30UNymEWLNL/zei+9iAZV1t5V7YBuEDPs1PyMvARJbJI44GajcIiZ4NdeJHqSNKipkEzJLvgDA3cBWk4gakBpJOXLvbRS4KXyLQ+z4EMxKpRKJss8XY8Ql0Wg0VCqVYmW6mL0AeVytVup0Orrrrrvi/ECgPQvAiS/XXa/XI+FEuPFz8V52VyDHguo24ZpcF7tdsLMAx9va2opBmLQLVKvV6G4plY52zGCu2aEBQce3EWWrScQaKb+dKUIT88m1z+fzmPPgVXoEjmIQoIscTvRxdxS3ROReME7yM3guiqGJvqOFpFzrEGvDd4zwsXAMng8XVABknHVXdG6w5hB2eK792WRNFzMiiu/3a/KQTtaRtx8VAxxdJCmKjP5zf8Zvo+wE6SZ/FyckJCQk3DDS93BCQsIdi2ctKGRZ9pCkP3LK63uSXnujx5vNZloul+r1ejEAEDJB+4FXcb267iQPEuPW8SLRhaB6+KD303OMzWajdrutXq8XyS1BjlREfcvC4raVTnr4t1vdIVG0AXjVH1IE0fbMAYIkIfVsGQiRnc1munr1qh544IF4bEmR2CIASIpz6Vso4jhgy0tINUQWQsqYsLxLiuINRJVWgizLopjh44TEhRC0v7+vwWCg8XgciSXCyXK5jIGUXDNEGJLNvcURgSAyn89VqVTi2CqVSm5bUe4hQtPxOo5tDKwTxuGij7erQEoJpfS59ko574PIIhyRXcC8Mt+83237CDkuOpxWlffqPiIT8+rPRJFA+3l9G0/GzVpkHXlLhrcL+bamvBchxUU4cjz8/76OeFa8zcMzElhbXBPfHfyMDAXgjgTGUpzfp3JOnCfc7O/ihISEhIQbQ/oeTkhIuJNxK7aNfE4o9jR7SwG/7FerVfX7/bjVI2Sp2HftlWBIllcmi++DKEPCcQYgVBSt/hD5ovhBfzbbUmKv5tqKWxLyXgQQiDDH5W+qp/V6Pf4cwg0xgsz5z7l+dzVABiG/fm5ILuII7/VgRAg3YgzX4eSb97lY4q6R2WyWE4kgkBwXcgnBnk6nkdxyD8vlskajkaSTrQwRl3ANzGYzVSqV6ArhWrziDZH3fntvr2GdSNe33ri7gPGy3aY7Fop9/V5ph9B7/gEEGNHGd4ngHkKEfa7K5XLcqcTfg+jh4gGCFZV6zkPeB84eP7cTdc7h18U6YB2Rz8C1ABdT/Bn087nzxe+Fhzoy94yJdefz5AKMH8NFhaI4kpCQkJCQkJCQkJDw1DhXggK/7Htom5M5Ks/sFACBgMBQdcVuf1qgmvd9Q3ZdxHCCy84GrVYrWs7d6u/EGdLCNpOQIm/L8NYHxtBoNCJx8qo8O0FMp1MNh8N4fex+sdkcBTISXEiLSK/Xi0QNsoUosF6vNZ1Oc5kQnlPh/fG+vZ8n/WPF5x5hw5dOWj1wCTCPVKn5G0FhsVjo4OBA5XJZrVYrijJOtn0+CbDks2QWePXe7fQ+926l93XDumP8EG8n/9w3zyPg+IyHteb3mso/f3xHB3cdAAQdd+BIJ24VroO/ac/AteFiBO0dXKO3Dfj1r1YrTSYTLRaLKMK47Z/7zvPEMTkPbpbiMyGduF/8336PuEbmhTXK3HkmB2NnPhgjz1mx9YHPMVZJ0V0SjoMiEcW4d9xbrtXbMhISEhISEhISEhISrse5ERT45R53APZz75Xnl3x+7hX+YguDW8GL54F8eFaDE2T69dmSkSBEqv1Orop98U4GaXuAWEJmIF2QUu9ll44I7mQy0Wg00ng8jlv9Yddvt9sxtM9bIba2tuLODvT4c60QP7ZwZAtI3BNUaMkWqNfrkTRyPAQYAg2ZO4DwQO99sVdeOiF57u5gzvx+UXX34zM3iBUesEcwJWTaA/yKIYsIIAgckGvvw+de4fjwLIBie4C3tHgmR9El4O0FzLdnKSDGsDbdAQDB920ZXWxx8YB58bH5Gnei744QXBocA8GGrVa9hYc58ntHm8xprQIurAB/H9fBtbC+3L1RbJtwMaGYx+D3iXvqeRF+X93J5M/naesvISEhISEhISEhIeEE50ZQODw81N7eXgxmhMhMp9PczgJUYiHJTiC8b9/bAKSTKqdbsql0Q54h/fTrTyaT2BaAXd5bJrxPHTKIXRzCMp1OI7n3vACv2EPWyC+QpMlkosFgoGvXrsVrYlcArttdA1jKS6WS+v2+arVaFCIgmIQxUpEnsNB3uZjNZhqNRpHQ+daQCB69Xk/T6TRa6Pk8hIwqv7cVMO/1ej06QXAZSCfE1tsGIMwQTObIdxbgsy7s8Ddk010sfoxmsxnXlIsjboP37SOBhx36+vIKN38zT6wx31nA22g84NDXOwRXUhwfWRHejsMzhHjgz5WLI+4e8M/56z5/0hHZx/Hgz5KvZV5n3XvuAefx93Gd/N+fZY7rjgfO6QGL3sLE8V1IQvDwMXt7SPE7gX/78307ZCgkJCQkJCQkJCQknBXOjaCQZZn29/d14cKFWPF0suUhak72fPeE08j+k8H7xZ1ASvldCnBD1Ov12F5A9d3/0E6wWCwiQaJiPR6Po2sBgcKJzcHBQY4gcq7JZKLhcBiJlbscsIYXMwpwFDQajdz7sIg3Go0ceSYM0yvR165di0LCaQSTrRtHo1FObMBhAqGG4EH4fetNtod0MkjmA26L4haO3ktPRZ05Oe3fHlLIvebeM5/kcxSdBxBldz0wDtYa//eAQneNSEc5G5PJ5FR3A2sYkow44ES2GB7o4pU/FwBxgPnz3R8YH6IZ4hVjJjfDhRoXA7h/7uwoPsPML/8n7NLnnJ/jLOEzBFjSJuMiIa+748WdBFy7P9eMh3XkIZasC9aqC2IuViQkJCQkJCQkJCQkPDnOjaAgnVQKi8FzVIedQEEkij3OxYC1JzsPosFsNsu1MXh1F2IFkaG1wivzXmH33v5qtRrHTaUap0Or1VKWZbGNgmC8RqMRQxfZPnM2m0VXgjsr2N3CAxudeHlV3gknZI0WBnZVqNfr2tnZ0Waz0Xg8lqRcfgTHCiHkAgeZGwQCdirgfmHTZ95xIXANLjjgisB9IikXPAkJ9CA+dmLgfkEmi333vkWo5xNAjHG1QD49EwFRCbcELgzWjLdfeDsBrR3cY8boxNVt9d6uAYGH9DJv3LfDw8MYMFncdpJ14CGDEHtv6/GWAO6lXzvknNYj7jlrwl02CDy01LgY5e0bzLm3b7BNqz9v7kTgGMXvAHed8JqHSPqa4D57AKmvJb5L+OPukYSEhISEhISEhISE03GuBAW3ZXuPvm+j52n33gsP6XIbNoQBuGBRFAA4nleNvbLrZASC63Zz8gkg+ZBiyN5sNosOBASCUqkUSTWfgaTRJuE5BqVSKbZVOEkvBu+5VZyKbLGXnt0dDg4OooDAe72H3a/RBQRvt6DFgXN6mJ8Tx+VyqVqtlmtH4P2QXIi92+Ldju5r5TSLvaQcWfTMAf9TJM6ISi6GOLH0AELul5NWv2a2L4To4vYotjN4dgXXxHF4D4Se7R4RBby9hLXnzwNz6/kI7LjgeQI+j9wr3DKIGwhvklSv19Vut3NhpsXsAxcU3LnBfUYYcsEJpwIE3sUEzuHOi1KplBMPGAPCk7dreFsUc1Z0O7kjinvhzp+EhISEhISEhISEhOtxbgQFJzbSUYYAVVSIHLZzSCTZA/Tle5geVWJEBicObrOniuwkBzJEur2nzXvlG8HDk/pxMHB8kuh5T61WU7fbjeTKq6NY0dmtAfKEe4D2Cdoq2u226vV6JLfeioAgAeHiOiBUUr4fHSLmJNv77Gu1mprNZm6bP+arWq1GQQTXBcf2Cj5zxj125wMOAoglIhGCj5NnFzQQmXBGYMl3scFbKFx44h5xXxk3JBLiShuC2/HdGeGiCeD47XZbrVZLtVottsRIR8QcB4u3JTAvLpTQSoII5bZ/P7e3VPA8IJIUMz9Yw5yPMXMPEB+kk6wNF/YQkvwe0w7k4o4TebI2PHCRNYCY12w2Y2YD18EcFTNLuAb+7c8qn/U2CP8MY3LhEUGnUqnE+5TaHhISEhISEhISEhKeHOdGUCiSHUmRbDuxo9q7WCxyffT+Ho7jve3FHnzS6CuVStyeEbLb7/cjCfWsgnq9rm63q8PDQ41Go5xbwIkHBJTr8j7vUqmkdrutzeZo20dJcRvMYq970RYPOdtsNrHfHcJJVVlSFEgQM4BnHbCTA7kKpVJJo9Eoku12u612ux1FhWazqX6/r3a7LUkxT6LYFw9Bw8buPf4QOa9seysD8+8tHJBVr1x79RrhCIHGxQMniexA4T37jJ02E89+8Aq75w5wT5nz4hzgrOBnbPPpPfwIF54tgGjgokIxb6H4rPA672Pt+JaITvB91wQXEdzVw9rlNW8/YF5Yr8WtWVmfLqwgQrgg464Zf9b9M4iE7jQpCgqci3Xmzx3H85YJF5F49smMKIp7iBBP1TqVkJCQkJCQkJCQcKfj3AgK0vVk0e3mTiwhqVjBndT5Z71N4rQwPd4nKYoT9Mo3Gg1Vq1Utl0uNRqPYpgAJJ8DQQwizLNN4PNZgMIjEe7PZxKBF7OqQMggqIYo4Ljim9/pDcKjYc8zNZqPhcBgJEsQbMuRCg8+L95tLyvX5l0qlKFi4kEOFmeviDyTZg/v8frjThHmiMn1wcJCrTnufP8IC7SKMx7MrqPJnWRbHiEjh4+a++vu5VhejyFhgHEVBASLLPZKO3AYIW8w7VX0Ivu8SgaiDeOG5IZBxjuc7h9BK4W4az5FwVwmCjLfxcN+5JtpQ3MUhnThxcJ14zgNzgqgwn881m82uaxFxBxGiD+0HLmw5yuVyFH54bry1B7j44GNi3op5C358vweIKKxLb53B+VEcY0JCQkJCQkJCQkLCCc6NoAD5fdvb3qaXvOQlufYGKpxYsSFS/MJPRV7K72df7N8uEjYXGfiMdELMCOsjABHLf71ej0TDMxMg6cvlMmfN90ovx2dLRFo5fMtC4BV2Pzafb7Va8XhOLH2+JpNJJMcQccikuwOweBMM6TkOXAekmvNBqr2yznaVVKR5rZj54KSN/vxqtapmsxnXAnMCGUewcNLsJJ7PT6fT+H7OiRiE5Z4xQ9a9BYX30X5C6CTknhBCD/TjXkKUaUPxTAIPKuT+IpKxRhFasiyL6269Xsfjs+6LuRk8K8V1xPHdkVAU27iX3oaAqOPtH4gpvh48NNLXLvfMK/8806w9z3JAZEBsqlarufe5W4E1z7gQjhBQinkaxZBF3BrFuffWEHfVJCQkJCQkJCQkJCScjnMjKAAqr9j1i0Fr/KIPYfO+bbeVe54ClXsXHjabjabTqSaTiebzebSHU02ml3s+n2tvb0/dbjfXV36aZXu1Wmk8Hms8HscMBIiXh7z5VpgezueWbR9nsTe9Xq+r0+nEOaKqy/VBDH0ngCKpckIHiaNaC1njXI1GI25DKeVdHWQX4CgoBvH5fEHGqb5LJ4IRFWKvkjMHiAwIHf4+gjWlkzwE5tCPzbWxDrgnHproWQkc29cb+RXeDuFtOB6E6OTaQytdrGJemFPPECGMkV1IOBf3y0MFOWZx9wrWgb/H7zfXP5vNtFgsVKvVcmNDoHIHjrsjGLcHpfq5vN3AWyF8Xl2o4J6cFpDoa6gouvl65TUfC+Ldk2VIIFRxrd4uwXdAQkJCQkJCQkJCQsL1OHeCgqRIkr2H3IkYRMPD7FarVSR5HmjnWQTFXAXPR/AdADyBfj6fa39/Xzs7O+p2u3F8nK/VasXKKMLEcDjUpUuXIplxsQK7uAdLQnS9bYHchdlspqtXr+Yqqmw9KSmOgyDC8XiszWajZrMZyTa9/FRx3fLO9eK8oIrM/Hj7g6RYoebeOEmDBEPevLIM8fZ7LCk6IWgfcEKHswAHAVsmslsETgbpJJyvWNHmZ1w3x8U50Ov14vwzhzg2RqNRvH5yJ1arVRScWIvcT66fNgOEHt8dxDM/uF7GjgBTDAxkzB6cyf8RcXzte/BoMdvDBRvuqe8mwZiZZ54RiDvHLgZYMp+0PzAnrLHFYpFzgrgA5a6i4m4PHrzpwoW7jvisCx7FzBT/Oeuv+H/m3B1O/h2UkJCQkJCQkJCQkJDHuRMUnKBCuiXF6nSv14s2eQgkgORAlDzgDrIGqcGWT3UbkaAYNIdQ4HkJECK3Z9P6QM+/k3G23WPXiEajEY+9XC6v61FnnBDf6XQaiT6gHcGdC5Au2gXcrUArA9Vyr9gzb/V6XZcuXdJ6vdZ4PNZwOIzEmeq4B0QyXs9VgCi66MD53EUB6atUKup0OpEkOul2dwdzQguAuztcEOKeQoTdsUBPf1E8Yt0xf7Q3TCaT3HVAYMmwcHcCFXmuEwHDCb735EPGmS93eXgehLeXSCdV9WLVnj9+b3wuWWde0UdAgaQ7MfeWIubbz0c7BM+APytkEvguHjxfiEA8d3wWIc1FPo5NYKmP3fMQ5vN5JP/FHAe/tz5/3jrh4gPz7VkTCQkJCQkJCQkJCQmn41kLCiGE95P0n+yll0j6vyT1JX2upCvHr39llmU/8WzPwy/2EM/t7W1Np1ONRiMfi6R8NdaJDFV1SCuf8fBAJz2QKCrt3nqBmOBEiy0Op9NprOxiIff+bJL8JUVnA++jEu9EyrMXQghxK81yuax77rknzgWkm/Hzed+lQNJ15Nir0cwTwgKkb7FYaDabxfccHh7mHAUuzEDYCSUkvBLizzwVt1yUFEk4TgxIIXPklWLIMzsBeLUfcsw9oBIfQohz5S0X3EuILuGS/JsxYZtHNPE+fRdZcFxwDu4d50VY8kwAd7cggkGwqfL7esVx42vd7w9CBaTdXReHh4dxrbkY59V5Fxi4R0V3BPfJiTfrywk6Y+U+SoprijXh4YmIIt4iwbrhOr2lhZ07yKlA6CnuzsBYOSbX5q0ZxUDX4nfKecXz9V2ckJCQkHA60vdwQkLCnYxnLShkWfZ2Sa+SpBBCWdKjkn5E0mdJ+qYsy77+Bo8X/11MbYestNttNRqNSEyoFjtR9vYGDxSE3HkFkj8QLsYA+Secz7fTK+7qAIHyLSQ94E5SJNbSSUhdpVJRq9XSaDSKrQYE0RVD+iDM9PHzPrZxhARDkhAd2A6x2IvuZAqiTFjhbDZTo9GIpPjw8DCXkzCbzaILglYJWkO8N92r7bgLqtWqptNpdERwfYgTrAO/bs4NoeT+FF0Kxe0Jqcpzfzz8kVYK3CTM9Ww2i8TU+/hZI3ymeN+ZUw+RdJIKOWbd+K4lxTwKBAE/LnPKtXt+BAKBt6hwrxgTY2UuEUP8OfN2C29xQFRjfTCW+XyeE7J85xLPR/CdKXhueT42m03MpHDHin8HIKg4uE53h/A8+jp3uJBWFB7d0cA8F3MWzjNu9ndxQkJCQsKNIX0PJyQk3Mm4WS0Pr5X0zizL3n3aL/M3Aie9/JFOyAnVTrbl8+3fnChAuvicuxA4voc3Fh0NEC/65ZvNZi6ADrIMuZpOp5HsbTYbTSaTSNSr1aq63W4kPbQpUM1uNBrq9/uxUg0Bh0h5Pzu9/NPpNFf597nzSrbnBrjtfrPZRAdFs9mMn8H5QVYDlX0IK3MO0WJXh9lsFh0aVN0h/VTEfetCqvkQbq9AIz64OONzzjhCCLnWA64d8caDHXEWeFAmIgOi1HQ6zfX6M7fu8HChgGsZj8fx3ntLjYf7sWY5BmKHb8XpwYcuKECC3RlwWtgkOQYIPMUcAObNxRKOzbWy1vhsrVbL7Y5SzEzgNUQaBCIn6qwX2kCYQxd8mE8EIXdMMA/ummA+cPF4q4bfH38GPEPC21eKLgTuiX9f3Ea4ad/FCQkJCQnPCul7OCEh4Y7CzRIU/rKk/2j//1shhM+U9BZJX5pl2f6NHAzyCompVquRuGKXXiwWsYXAK/AQD0/vh9x5mJxb2yXF/AMnfMvlMroivALuJIRjulVfUhwbldtGoxErv4yd4LpGo6F2u63JZBIJUrVajbsKSCcCCWObTqeazWaRBPIZD/mDNFNJJ9QQIk37AmPDAbHZbNTtdiOpp7LvORPSSa5FvV5Xu92Oogf5A7Ro1Ov13L1ABKB67USZa5ROSCtEtCjkQHwhlv5ZHA5+f2jnIOyS1gvIOGBtIAh59duDARn/fD7XeDyWpLi1KO9lPTHe4g4KXon3zAgXk1wQ4HWIOcSbnyOgcI+Kzh3mjvvtLQfefsJ5ioScZ4y1UAx/dHHEnwd3PCDusJY8gNHFEwfPrz9/fK4o4PjnvVWGuUJMYT5ZX+7c2draijkptxlu6ndxQkJCQsINI30PJyQk3FF4zhHmIYSqpE+R9IPHL32bpPfVkfXrsqRveJLPvS6E8JYQwlsKr0s6yUCQFEkrhJm0fa9gu7PAw/Y4lhNL3xEAgQLy4FX+1WqlarUat5D03vVSqaROp6OLFy/q4sWLkXyTJUALhJMbbOdXr17VcDiMVXaqwwgMXrVmHtjeEsFhuVxqb29Pe3t7sSpdzGsgA4GxlMvl2ALBPOIigCgOh0Ndu3ZNw+Ewzgt/fDcLdo9gTuv1ura3t9XpdHLnGI/HMaOAa61Wq3ErSoQid39wf5hHDy50uz73n7G4KIGFH1HBWwA8jNDbVIoOD1+PXHdx/bAWPAvBx1x0v0jKrRNEJg92dJeOt3P4enDyzH0uttx41d5dCMVdHNwxgGvARQwPgnSXBvMynU6jwOXXXZwDRK9WqxXDPrle3A3+7Llo6C00PM9cM8+EizdcL6+5CwJhg+eNc/p9Z53y89sBN+O7eKXF8zHUhISEhBck0vdwQkLCnYib8dvyn5L061mWvVeS+FuSQgjfIem/nfahLMteL+n1x+/LijkGgEp2r9dTp9OJJLhYhefzHhzIa9iw3S4OyfGKvqfVQ3AhKxAxyBaEo9lsKoT8LgpUn50kukNiMploOBzGnILj+ZB04gLwfAfv8abKnmWZrl27Fnc+oHUBx4XnIUAgaSXA1UAiv4Ot/yCcngfAZ8Nx6CIOgs1mo0ajoXq9nhMuCNPzKjWVc6+qQxSLwXlulfc2gaJYxGf83rh93lsBeB2CigDjFXzaF1gDTq5pFeG4nvnAffbQSVwKXtX39Tcej1UqlSI55v2eocG69FYSPu/uCX/Ne/+ZIyr5vJ9rZd7cpVF02khSvV6PbTDMJcTez+3n9d1Ptra2YuYGrhjm2kWKohNlNpvlXDE8R07+nyyw0r9X3E2BWOBBk96a4gLIbYTn/F3cDTu3nSUjISEh4RwhfQ8nJCTccbgZgsJnyKxdIYR7siy7fPzfT5P0OzdyMEgOFUT65Gu1WiQjECKIV7FiCzGiaumVTq/Gez95o9FQq9WKPeNFYkElnbGMRqOYg9But9Vut3NZBlThsbFDGCXp4OAgEkavzENGIV/r9Toev1wux5aIer2uWq0WyT8EjLwIBBQq3Fj3aQNpt9saj8exJcEJMceaTCYxdBFS6/3n9M27eILowr2r1+vX7SQAueR1nA8QWykvqkiKuQ04H4r3mM+7u8PDGCGUy+VS8/k85mFwLnIXXJDwEE9J8Ti0eeAM4LwIEN5z7wIW43XxCxLvLQBU1p0Ys969fUfKZ2Ug0LgjgnvF8+FiEmPgM5wHAYXjIZAVK/ruCuB54b74Z/3eeyAqoaS8B9HI3UR8zsMnPRizKKS4C6bo9PDvF3cwkFXibQ9+37xl4jbATf0uTkhISEi4YaTv4YSEhDsOz0lQCCE0JX2CpM+zl/9FCOFVkjJJf1j42Q3Be6SLpEFSrLx7uKKNTZJyP+eYkFLIDBX1RqMRCYuTJN+RwEP6XMjAmu5Ezgmgj3+1Wmk0Gml/f1+tViva1LHLe3I/FnGqu4wHUYS2A9oKIH20cEAOvYcf8YTPsfMAYslyudS1a9c0GAxihkSr1YqChaf3Sye5AsxDu92O8w7xhDRDxBE7ZrOZJpNJjtRzTZBDzx2gQo0TA+EFsg/J9ftC9obnQSBauWDgLQCnCQp8hjXCffNgzCLZp60FYYp16i063EevkiPkuAPH+/+LYgDHZkyeMcBzUFyv7NTB+/i3i0Mc010EkO1arabZbJbLLeE4jNezGGj1YPy+hhg3a4l5c9HFn19fc0XHCvfNHUhFRwzPF8fydgiu53ZyKNzq7+KEhISEhKdG+h5OSEi4U/GcBIUsy6aSdguv/fVnezyvmkrKVffp0/ZqrduW6SPH2u2J7tLJ1o1uf4bEQtjL5bK63a7q9XokTZB8778v9pFjoWYLR9ogICcewshuAh7QRxvE3t6eBoNBbneIRqOhXq+nXq+n0Wik8XgcbeDeH+6hd/V6PbcLQqPRyFWauQ7GyZ9KpaJOp6PFYqHJZKLZbBYJbL1ez90feuAhghA+31Hj4OAgZ9eXTqz0ED2yHiCYxYBEF4Cw7FO9doIMXDziHtFagv3eHQOgeBwPIiw6R9wR4Lkbxc+50wXBBoKMWMVnvY0A8aFer1+Xa1Bsf2B+/DXECh+LtyhAohk/99RDGSXlBDVvHXFHBuP2tchxvZ2ANestFt5CVGzXYFzMT7GNpSgKOvzaPT/CBRG2VvVWF//DPSm2YJ1X3Ozv4oSEhISEG0P6Hk5ISLhTcS4Tx9yyLZ2QOg+IcxLtYWy0IUCcOZ4TZyrDxRR3qpKdTifXNkDgXKvVisdz4oHggNjAeSHN/Jxqp1dhqYaOx2MNBoPcrggcr1arqdPpaHt7O1bjIWbetw9Jq9fruUo8182OEWQ/QEB93prNprrdrqbTaXQKUPGm512SWq2WqtVq3FKSeYGwFgkjhBwXAO8pOk6KDhGyKXBgcC8RCbyK7cKGO0QQVJxwe/XZWw4A5/NWDBdDGLu3g7idHvcHDhBJOSLMccmkYLy+BSMtHr5W/JkoEl5IOec67b0uZDAn3ibCODzElHXoYg0OCu6lCyHuRvGQUBfR3O3CdTNu3DrMBWIX65m1g1vFHQYujvh3g7uF+B5BXCp+77hAUxSeEhISEhISEhISEhJOcG4EBYgApIcQPcQBdlpARJCUI0HSEVHGdUB7gFerqS7TLw0Z5z0cx9PwyU7ALk8/v1di/RhOjrxvv1QqxV0CcBIU7fkc10UJMhO63W4MxOM8jUZDWZbFLATeDwHFAcA2htPpVIvFIn6WqnEx3R53RlEg8ev1VHwPGfRgPE/Zh8Q5cef4vk2hZxhAtmu1mqrVanQyIJpALjkm1+YVeO65hywyxuJuB8D/7W0R3CPup1fCfX6o5HO/neh664GHLvq69tBFxAa/Hs9q8Cq9k2kPdmRdcN5i6wLtJcyVC26n5Q8g3nBMd5FwvGIOBp/33BJaKXi+JUUXCWPmve5WcuFFOhF4fB5dWHEnBc8yQpofy90RvoVlQkJCQkJCQkJCQsLpODeCAsiyTNPpNAoIBCF6jzqEy23NEODTKrfe5gDJ4v+QSkk5kYGfsXuBpFzmAER5uVxqOp3GqjcihFfecRW41d53T4DIuEBSrPqHcLSTRLPZ1Gq1Ur1eV6fT0eHhoUajUdzVgRBKrOlYu7e2tjSZTLRYLCJBd7KJcMM4CKdkPhaLRRzzZrOJeQsQS/6NkFEqHe1G0e/3Y7+6byMIscdp4KIGc4hVHYcDnyWngfeHEDSbzTSfz+O1OTGGHLK1p99fqu7z+TznCECs8Ao4xJnqu7sTIPk4QWjRwfnhoZbccwIzabFBuIFQTyaTnGDBOmKMvu0kQhDzfprg4S4F5tndEn6e+Xwe3Sftdju+13M7XBRhrXq4p7ekeJYHZJ7xFNsR3FHEs+mkvzhefx+hky7GeAsITgWugc/794S/VmyFSUhISEhISEhISEg4wbkSFJy8NpvNGAZI9gG7GnirgFdWvW/dK8NY0CGFTo4gG/66V2zb7bY6nU60S0NCsIWPx2MNh0NJilkMEEiIC1VwFwogkd52ALGC+LiDYrVaRfLJ+ev1euyjlxQt6vxNFbhYJYeMeY98rVaLYkWlUonj8yqztz1AXHFQENpYnNN2ux3FiSzL1G63YwuIpOtS+xFccHAUiaOkHAGVlNumEXGkeH+d0Hs7QzHMEys+4/eKtecnYJdnHB6WWAztLOYsuAWfP0Xr/XA4jGIIQgbj9Xvs5/EWINYJQkwxl6BI4D2LwIMx6/V6FFrIQGC9Mi8Oz3hAWOJ1nhl/dr1dyQUTdz34vXc3xmltHZ5L4q4ZBDHAGFyodPGj6DxJSEhISEhISEhISLge50pQABCNer0et/ijBxtLNETdE92BkxUp71CQTgLznMh6NRxrPhbpVqsVCTbEB6K2Xq81nU5zOx8UWzK8nQBb9uHhoabTaXQNUBGHQHrlezabaTweR7KMqFHchcKvn/OHEDQYDCI5Jp+Ba5SkTqejfr+vZrMZzwMx9Z0aPFAQsQEhAXeIpHivPP8BQWRra0uDwUCj0SgKE+12W9JJSwbCCQS0eN+cFPuuBJDfYjtHo9GI94G/cXEUgwjd6YKYw+4SLkr47gwQfz5HCCOEt0h8cRDgvPEsB+YW4YztN10AKO5a4p/jPrEW3ZHhopKLMy588BpzXBTaaIPw1hb/rBN7fsYx/R7480CbxOHhYc5h4jtf+Bi5HkQHF6X8O4TPMAeLxSLnWPB5KI6/KFgkJCQkJCQkJCQkJFyPcyUo8Eu8E0QIONspjsdjzWaz3HZ9VDglnWpTd+cChAJiCiBp3sOPyEB7AbszTKdTDYdDzefzWO3u9/txy0WvLHtbAdfFWBAUILZkIkDoIYWTyUSDwSBH8JgTrzrTxpBlmer1evz/aDSKLROQa9+6sdVqqd/vx8o+10AFmq0onczys06nEwMwy+WyGo2GJMW2AEQFnw92teAe8pnZbBZ3ooBkEw4JgXS3hDs+uE/1ej22X8xmsygQMH6yF3z3heJ9QohCTEA0YJ45PhkJLja4w8QzIhBjuC/uvnDxgh1BcAiwHk+D508Uc0B8XlxwKpLkYisCn5HyeSD8HEGB6/Q2IRwmHrjJ+xEHWDfMJQIBz5E/z0XnCs+rCwqeceKhrZ5ZAfhZ8bvB59O/H7jGhISEhISEhISEhITTca4EBekkhNAJMcSCvm7IBcTTrdIQVhcnEA+KlVS3/rN9IcTcyTutF2xNOR6PY4/8er1Wr9eLfeYQKvIfvO8bqz9EBdKbZVm02dM/DymFuB4cHMSMg3K5rNVqpYODA4VwtLWlpGhN55ohqLgM2DGBa8etwFzT/z+ZTGIuRKPRiNsdes4B88TxCMuj4u4VddwekH7fEYFsA88QYO7JZIBseiUf9wj3lXXjooOknEDDfWk2m1Gg4nzsJMHaoUrvhNbbHNglAFEC5wJrqlarqd1u57Z8dAGBsXGNWXYSrunihecAABdBGAv/pjXHXRWIKBzDCTNz7WTd3QlcO6KK76zBGuV6PFeBY7AOfX7cOeTtGqxHWkpcpPDn2Vs4OD/ijgdqutjm52QMXIcfm9wRzvFkYk5CQkJCQkJCQkJCwjkVFLB5+y4I3r8vSY1GQ91uV5VKJRI9iIdvg1gkhhwL4gUx3Gw2sdJOloB0RN6azaZarZbG47FWq5VGo5H29vaUZVkMbaTyTxiiuwUgVVTgIU7SyTZ4uBMgMv43PfWQd4IBaWVAUIBAMm7f+YD5QRQolUrqdrtxVwzGuVwuNZlMYsBjq9XKVdA9VFJSvEYCET0AkZ8Nh8Nc0KMLPIgBCBFUtNlNYTQaablcxkwNhBjpZBcNz1CQFKv7jJU5xBGB84OtNRkrpBTrPW6SoqCA28AJL/dAUk7g8EwBiLfb8D3PgJ0hEDoIJOVeQvqLOxNwH3xHDm/ZcRGE+UAg4nVvnyna/73y72IGggKtMS6CeLsH72V8/nOuwV1DxbwJ/naXDONDiHNxxa+32P6DuMCadwcDOC1rIiEhISEhISEhISHhepwbQcF/2Wd/el73kDjIECGCLjpgoS6SCLeGQzjYiYE2Bq+k+84P9PNDOt36TaCekyyOyzVApCDBkF//uaTcvyGpvm0f11+tViMxn81mUWRgtwTvrXdyvLW1pcVioeFwGAWSTqej5XKp2WymyWQSd4yAxLtTA/cE14FbAKcEbgavYOOUmEwmyrJMnU4njslbP9y+Pp/P43307RcrlYra7XaOMJOp4TkG0ok9H7A2irsbcC4nt54ZQT8/ZJcWBEg3wgmWfwQJzuGuBNYPmRtOwJlfFzSYP3cAIMBAiGkr4Xye4+Bkudgy4I4HX2cehMicuSDnIpITdM7hzzD30HMOEPE894O5Lc5/cZy0N7l4xDUX2yeK2Sn8m+8TxlfMlvD55TlODoWEhISEhISEhISEJ8e5ERQcTlK8cu493sXtJIs98NiWPSTOq69OhoqBbi5mQCwggiTdQ+wRKoqBcB5U6M6B8Xis+XyuVqt1HVmq1+vx+JBOFzNcMPAdJyC1kF6v6vp4ptOppBM7/u7ubsykmE6ncRcNiK23LkC4nAhLilkIuCCYB0jbfD7XeDyOn3eC7SGXHmLoQXxgs9nEe+GhhS66sA6KOw/g1PDgyxCCms1mnB/IL20U/JsKP60ofg3FjIGi5b44DkQU3s+1uhOlGBjouw84GUescScCBJv7xFrwFgFf80XRyok2AoLvzECbDGvedwBBREKA82vCsUPrBeNyMY1jeNgqopjnqXibDKIc5+Hv0xwLnm/hook7l1gHfl+L9zAhISEhISEhISEh4QTn6rdlFxAgMRCf6XSqLMvU6/UikaFiT6uC99Yvl8scEXJ4jgHEwdsTyDQg4E/K2+ix6HsrAAQRguWEEeJD0jzk1CupkE3e55VqKuWEGXJduDQIpcMu784MFyAWi0Wsvm5vb2t3dzeSL89OkE6qv1wL1yOdiDG0Jcxms+hOYG4bjUZsxyB00tsbOp2O6vV6FAW80u6uEua51WrlzuFODL+/kE0q4p5JgEjAOZg3rqnRaMRMDu+th5D6/XKRyu87/y4KL95iwDl8fTPO4roA3FfIL+vbCTauEW+/8BwND1CE2LtLgvO6cAHJ9ntSrVY1mUxya4G5QIBBdHCnhbcveTYErgDPU/DMDheJXHDwa+G5xQ3ha9cFyGL2RFG44lxFUS4hISEhISEhISEh4XqcK0FBUrSOz+fzmCswHA6jvZ/dFthhgSC+IjFw27yTAsgIcFs1ogH97+12W51OJ0cmpZMdBTg+Wz8WK9DFsDdve3CrNSRta2tL8/lck8lEo9EoJyB0u90YBontu9/vx/HQArFarSJpbrfb0QnhYYONRkPNZjNmOXionpPvYuq9/wyXAFV5dpxgviGguB08kBBRo1QqxV0zaGuB/HFPGUe73Y6OkHq9rlarFUk4Qgk/K5Jr36mhSCgho9VqVb1eL7ZoFB0NbPXI677OvNqOI4A1wP3xDIrNZhMJN2uyGErJtTP/Lm64oIBgRcXe1xfPE/MO2fe2FO6nbw15eHgY/+/PFPPKefnjBNyDUllr3ibC8YprTFKuJYmx+3W4W8OfZ3dJcF0uchTFH3fRuOjjaw53jt/rhISEhISEhISEhIQ8zpWgUOz5hsBSea/VaqrVapFQeaAbn/PqpXTiRgDFiqOTQYgxFn52RYB0Q0L9fMvlMhJ6SXEnB4gKJNkJpJTfrk/KkxnOQwgkJHmxWMSWhBCC2u12nANcG066aAchfBDhAsGBeXaS5q0aPi8QacgkYY9exfZKOKF3Pr/uAOH6N5tNDG0k3JLjIiQg4CA01Ov1eJ3j8TiSZVpDiu4Gr5j7OpNOSL+3xPB53wmA6jYhnkX3gq8/3ufnKe5UwBootoA4wfXjMlesaci2Bx5yv/mb93MtEH/WqP+cNeftFhzD2yw8i4J1xDPCvfex+uc4lrfIuPvAhYqiCMR4fe2wXv36+JkHNnp7k89ZMX/B3VEc2+9hQkJCQkJCQkJCQkIe50pQkJSrHENQnCBj/aeaj5sAQgEZ8HR8SHOxUlrMPYDILBaLaJWGgAMPfPTebZwNtAF4i4C3RyAwUMXlWqj0km9A+wFjdnIPMV4sFhoMBhqPx3FrRebg8PAwZgTM5/M4Px4WiKthNpvFz2DJRxRwG7xvC+jBgWQMeKXYSa90IpgU3SKEK+KYgIx7hRsRgeo4wojb/SXFFhWq5AgUZFPgbEEUgpzSo+8Vbqr9VPMhnpBo3CZOTHnN201csGDsfKaYucBnOa7/vVgscjZ/1qcHIDJnXEfRIcM4ySNAWGBdMy983l0Mfs9ctDvNvcPxcE+4y8IJvf/x3TBcRPT2GkIxuf/c96KA5M+5Cxysc9aVX4+7PjybJQkKCQkJCQkJCQkJCU+O0tO9IYTwXSGEJ0IIv2Ov7YQQfjaE8PvHf2/bz74ihPAHIYS3hxD+5DMdSLEvHdLg1dpicr47FaheA0giJNWr5E58gYcIeuo9xAUSTVuEV3i95329XmswGOjq1au6evWqDg4ONBqN4laM7HBQKh1tUzgcDuPP2c1gd3dXu7u76nQ66na72t7eVrvdjlVgt4FPp1ONRqMYXgfJ8gR7dxJwTZvNRpPJRMPhMCeAuP3erezMNa0TEHy/J14tl3Sd+4E5990E3H3SbDZzrSvNZlO9Xk+9Xk/1el3SCVElE2K9XqtWq6nT6ajVasV73mq14k4W7AbC5xARIKHFHAYIpedIMDesRdYXxyYg0TMsmDfWCHNVdBpAfBkDxy9a9skB8HvJ+L2lwoUG7pG7HSTlnjEEBubFW05YCzxHRZGINhBcG9xXnkmuwx0VlUoltkIwlmq1Gncf4byMn6BMHwvtG74m3PVQbLHwlhRJ1+1s4ffMvxOK6/cs8Xx9FyckJCQknI70PZyQkJBwPZ5WUJD03ZI+qfDaP5T081mWvUzSzx//XyGED5T0lyW94vgz3xpCeMb7rpXLZe3s7EQSD0FwMaFIHorWb6+gFkUEFy185wXeg7sAtwFjKJfLUUgALihAdheLRdzFAWcEFfjpdBp7/amGz+fzKAhMJpOY2N9qtdTr9SIZpsruFWpJ0X5P5RZXhpNL32bP+9Ynk4kef/xxXb16VbPZLF5P0c5ftItDWCHv5CEgugDaR7h+/kiKY+TnlUpFzWYzzjetLe4QoZ+dHn+Ela2tLXW7XXW7XbVarVyeQKfTUa/XU7PZjI6SEEIUG8jIaLVasUXDXQvce0QAb3VhnEWhq9irH8LRTiEEPvKeYiXfj38auZWUEwe4Rog5c1PcZeK058DhgYkIUsx5kZT7OvJnoNgm4U4HPz5z22w2ozCCCMcxuLcu6PlnWRsIZx5m6c+mC3/A574YnOlCF9fBejhH+G49T9/FCQkJCQmn4ruVvocTEhIScnjalocsy/5HCOHBwsufKunjjv/9PZLeIOnLj1///izLFpLeFUL4A0mvkfSmZzogCBgEc7lc5vrbx+NxrEpPp9McqXECgHUe0l0MSfT8Au/td0LJzgKSooMAsgfp8aA6BAKCEbFNQ3qoBlcqlbi7wWQyieOBJDUajRioKClXHWa8Ur6S7VtHejtDpVLJVZUJjjw4ONCVK1c0Ho9zAkWRsDuYZ6rt/n/fuUBSjvxLJ5kREHeu3dP3JanVasV/s7OHW/ilk3YWD7cEiBbcP9YQrgN3UCAEeSgnRNadBLzHQykh9LhGfHeDEEK851tbW7lxsJ45H60qnM/dB6fNvwd4Mg84NZwIsz4g48X8iOK1ScqJN+5w8c9xXH92PAuBtef3HHGB62PdssY8uwSnB3PgAlrRnYRrBnAuz2Dxe+lzwbV55gLPCv9nbOcFz/d3cUJCQkJCHul7OCEhIeF6PNsMhbuyLLssSVmWXQ4hXDp+/T5Jb7b3PXL82g0Bksm2fy4AsCUev/R7Fd57/F1QOK3S6AIEBAhCzg4J3W43bpG3v78ft1RE2CiXy+p0OqrVaprNZrF9Yb1ex95/SbntAOv1upbLpUajUbT7ew6DW7Eh/+x6gXMCsuW98YyLPn/mhWtkTJVKRfP5PLZlQIYdXvFGoChWc5kn4MIOZLSYq0B1muOSHyEdiQeNRiM6VLjm+Xyeu//hOIySjALGOZvNNB6PNZvNIunudrtqNBpaLBaxPcFzORCLILFcB3Pg1wWZ5fqpsHNttA1UKpXoZNlsTrb29CwC/k3rCWuD+YVIe3Cm3xsq6e7ccKeEhyMWwyi5P77zBs+NZwcgULhwwDgRCNyR4uPi2MWfA66RdVLcvtIFlScLieTe+9aUfi0e/ukuCj+fO5q4Hr+u0zIuziFu6XdxQkJCQsLTIn0PJyQk3NG42aGMp23afqpnOITwOkmvs/9LUo64QX4gGKvVKgYMegK7VzYhEvwfdwJ92pAFr/46ceF8rVZL/X5f5XJZw+FQw+EwF4Y4Go3UbrejcDCZTDSZTOJ7vGoOwW232yqVSjo4ONB0Oo15Cq1WKwb9zefzXCikbx0JefJ2DcgT/0fEgMxDOL0thPFPJpM4Pua40+nE7SfJTKA9QVIuc8ADICGpVJQRA3iv3yu2kvSAx+l0qp2dnejgwL5Pldm3d0QY4f6uVistFgtNp1NNp9PYKtLr9dTtdjWbzdRqtWI7CuP03RYYm+cb+HqEsEPiWWPcQzIVyuVybCHBoo8Tgjnm3976gAiEaOTPgK/VYm6FH8vzM5xkF9e3i0PFkEVvt3DnjrcKcFwEBxfsGAsihwtKvguHE3cPA+VnrHdvBym2hRTzJ1ykKAqInK84Vv+3uyF8i8/bFM/qu7iu5q0cU0JCQsKdhPQ9nJCQcEfg2QoK7w0h3HOsxN4j6Ynj1x+RdL+970WSHjvtAFmWvV7S6yUphJB59VbK5wNAoIoVaycAEFCIkm91SGsCx/dMBaq4XqGmelyv12PrAMTWe8wbjUasVGNxz46T7SGZm80mZgTUarVIfAeDQS5E0kktbgTPdTies0ic+JmTQK/8ckwnxLRFsOMBLQdU1+v1ehRRcFqQ/UD+A/MFsZ9Op5rNZppMJtpsNnFLRz7DXHgV2O30XB+VdYSDg4ODHPl3K3qRkK5Wq7iDA4S82Wxqe3tb/X5f4/FYnU5Ho9Eo51rxUEDulbezOAne2tqKWRaSYmsLGRLdbjdeu7dLeDAowomTbcScWq0W20C4Vsbi94/7xFpFwELsADhVWDu85v9214d04vopihnMj7cteIYBwhFz6cId81AUovxnzCHPEp/FrYPQwnz7GN2J4cGb7vjg/cy3iw7uUAD8nDVwznFTv4u7YedchUYkvLAw/+TXqPWlj5z1MBKeI0b/8n41f+RXznoY5wnpezghIeGOxrMVFP6LpL8h6Z8f//1j9vr3hRC+UdK9kl4m6X8+04N6Dzp5BNnxjgJSPoANcgBJd8s0FW3fjcG3kTzN5uzVSgjIer3W/v6+Dg4OYmsAuxtAFL3fXDrKPyAgME7yMdlhm8fZbKYsy+KuD51OJwYrQjqxZlOFd1Lp1VOvvPruDxA8iGl2nLrPZ90FAaGlJYMWAsQNSGmj0YgiCuR2sznajm+xWMTsh8ViIelklwfI+Gm7P3B9kPHJZKLVaqWDg4OcfV1SzKpwsQUSzjkRfTqdTnSQcK/YRhMHhOdK4LbwtgCEKwStZrOpdrsd1yfnazQa6nQ68RqkE7eDB4xy7QgVvBeRANK7WCyi+OMCmLskJOWELv5wPNYlAlkxPNKJOw4XQhndpVEMxcyyLGZCcHwX+Dg/ggNtQi7ecJ3FTAXmwLfk5LxSPhuiVqvlXDEuVDAn3oJTFEWK3zkuxJHN4M/ROcYt+S5OSHgu2P3lbb2kdfW611/Z+EH95c7+GYwo4Wbih762q9/4qve57vVH53099hGjMxjRmSN9DyckJNzReFpBIYTwH3UUNnMhhPCIpK/S0ZfmD4QQ/qak90j6S5KUZdlbQwg/IOltktaSvijLssNTD1xAuVzWhQsXYn88RJHwu8ViESvrtVpN7XY7ViQh48Xt7sgRgDRAaiCNToL4G9s1Ve/RaKThcBjJFcSUfAWqzVRZS6WSOp1O/BlEBwFhOBzGbAOIC7sdeGAggohb1XFsQHYgYV5Vl/Lb6EFmvXXAnQ6SojV/a2tLzWZTy+VS9Xo9ugW49larFXed4FpXq1UMdvRwRu6LpLi1IiKNV3793kynU125ciXeZ8YN+a/X6zHQkT76yWSiwWCQE0jq9fp1O08gajAnbOOJIIDYhHjjYZGIFV7txoHSaDRieKeTbAQc1pRnK7hQwHjc/SEpujq49xyPYEnuC9cMWfaWBZ9rHAsQcRw/y+Uy3jd3UjBWhAieKd/OkrXPdp9F8u4EvehqKK4Xjsk1ee4Iz5c7EXx+fJ2znnEoeIsD1+HPCnPnQkaxfeO84Pn6Lk5IeC64980dvf7+n1Mlhdm/YPEX2kP9hfZvX/f6YbbRf/39rr7lPR+v0msfPoOR3Xqk7+GEhISE6/FMdnn4jCf50Wuf5P3/VNI/vdGB0CoAKVssFtFKjTBQTGZHeJBOiA+AFHnPd7EVgPN6H7m7EBaLhQ4ODuLWhl4J9WqnV5ydoLi1mi0lV6uVarVavBavtnufuDssAG0dEDt2gqCNwhPvIXGSYrV7vV7H0EKO5/PllWuq1by/2WxGog6ZwzGC4NBsNnPZBtyzXq8X3QzeZsG9gPzNZrO4EwKkbjKZxFaFfr+fC5ncbDa5rAdJkXRDov2aWq2WQgixfQPBAVEGcWc2m8X3I1LR4sD9KpfLUVzhuj0c08MM3QXj94cxMP9cM9fH+BuNRhSE/Prc7u/XyvH9eJJywgNCCU4dnBT8zB0/3krBOfy5Yy2xhjiXP9uM08UC34WiCJ6RYrApz57nObAu+a6QdJ24wmvu5CjmLyAAIo545sV5wPP1XZyQ8Gzw2I98oH70Q1+vB7YaSUy4Q1EOJf251lh/6v1/WI+8e6E/8Qt/Ry//rF8762HdVKTv4YSEhITrcX7KbzrJTXCySaUbW7ZX3N1i7dtCIkB4RRWngnTiRvB+eunEvs4OD5AjHwtb3C0Wi1xPOQTHLepU+J0o014gKVbV6R93csW/IU3epoALotVqxWp1sRrNWDkW48iyTO12OxJTfsZ4PccAIWG1WkXizNjZshNS6nZ5SL6fH1EFsu6A1NFqgRthtVppMBhob28vHgtCzy4b9Xpd8/lcw+EwiiyIH04wGXelUok5BhBl/xvBaGtrK84vAZe4FxCLarVadCc4kfZ/e8sJa89dEwgtvk0nIlKz2YzXUKvVcjkZHJ/jFXfqOA24FDwskblBlPD3MUbWiAsWgGO5Q0G6XtAjL4NcE2+ZWSwWUaTi/S6McA9dQPGxeBuI78zg4p/njhTzOBivZ2v4HCckJDw13vFdr9YfvOb1Kof2WQ8l4RygFip630pFf/CJ36HFI2t9+Dd/ie79+jee9bASEhISEm4RzpWgABl167L3PFer1SguYEPnfd5rz98IE4gSkAtaEAgO9OwEiKTnBLDzAEKCb3vI6xB6KveSIoH3rfs4JoSf6mqj0cgROirD2PDdTcDYvErP2BmD5wHghBgOh6rX67FS7yQUwQMb/Gm7VXAO7PI+534fPNvBCSnv9d0HvE8dlwXtCQgM8/k83i8cEOzcwLEQeJgfD+jbbDZqt9vq9XrRNUG/ftGq73kE7hhhHfl1uDjgbQy4F5yMMqe8x9tVWC+Q7s1mE10y3mrglv/i/SiCn3mlH3LOunBXB04J/k9Lg7sEfD5YP8VtMvmDyOVtNd7Gw3Vwb33rS880mM1m8b5yne5WIB8DF4cLcryHOcI543kU/Kx4T3lmb4NtIxMSzhShVlO5dqhyuP57KOHORjmU1AxV/fbf+1a9+uALdOk/v02Hg6F0iistISHhzkM4LvY9GTLjegnnG+dGUIBEe3+4hw1SIfXARQ9ho+rsffIQEAi/VyzZQhACTsWz0Wio3+9rd3dXOzs7kqT9/X0dHh5qNBrF/n4yD9hZwCvoEESIPiSzaEnHbk8mAZ/zdg7EgHK5rHa7nbPDz+fzSIhxBxTDKH3rPUC7hVu/uQY+i2MAQcNDAhF02KHBLev0nTvZc/LOcdz6zmtZlmk6ncZef2/5QJRga06ECL8Gz8ZA3JBO77GHFLul3oMDvartgX7+ftwqBDR6nkalUonr2N0JBEv6LiCIPrzHMwdchCmKHe6sYF0gAHhripP2YughWRick3F49sBp26qSH+F5CpyL19wJ4WsGwcIFr+L1MX/MK+dlTXMOrtXFRgQLPy5rlWeKXA/cTN6W4WvHBbWEhITr8dBXf6j+4OO/7ayHkXDO8ZZ//G3SP5b+t//9c1T52V9LokJCwh2CUqulUL9eOAjtln7vS+57ys++/7+8rGz41EGvm/EkCQ/nAOdGUCj+Mu9Vckm5X/A9dM6t9N7iAIH0bRf5HBVU/i6G5NVqtRzRh9yz1SJOBSeuEE+Ik5MZt5RTJYVYOTyPgeo1AgXzw5i5LirZkiJxdMcFIoF0Yu1fLBaR8DOP7KoBWSzOPeTOgxU9JwGy7mSTa+cYCBu0S0gntv5ild0zAZhHb++gqo5whP0fIUA6yYggn8Pt+b5TBu9BqKFlguo7xNtDQL2txLMIGo1GFB/8uosijjsLPL8Ah0ar1YrtHG71h3AjHPAzF2i4T15tZ07dDcHr3kbkrT2IeEUXircRuIvI14i3UDC/PDPMZdG1I+XFLr9H3g7B/HkLyJMJFP59gkDlQghjk06+g7hvXEtCQkJCws3BL3z3/6OP+5zPVWW4UthkCm/8rbMeUkJCgiR9xAdrs1VSyKTwy7/5nA9X7nYVdvp69FNepNGLN0//gVPwe3/7Hkn3POV77v0fmbq/cfkZHS8bjHS4n3YauhU4N4LCXXfdpe3tbYUQos0dUEGEQLRarVxOgqfGU/2GHCA0QDz4ufdLuzUeJ8Bdd92lnZ0dDYdDDYdDjcfjKCggdnBeFzCKjgfEAcQND+uTFLMNqMiyIwBbHM7n81xFezQaRSEF0tRsNqMoAMH33AKcGB5+SFVXUmypwKGBgOLOA+bIQxF5rUjqvIpdLpcjkeNnuCG4l5BzFzmKoYOModiy4ESTnAdJcctLJ4t+PMQCrtvdDKVSKVawnaD6lorSyfaC4/E4ChzMH8QYYu4hi551wTl9vhC0XNDg/Ago/F9SztXDtTqceBeFB9wk3lrkx+La3VlDPgWf8Z1HGCMuBMbmzgUPLfUxcC0c050/Pj7EFq7VBQ3mz0UqhAnuvYtDHNvXSLE1JyEh4cnR/kPpx6d1/Znm/Gnfm5AgSW/4f75DknT1cKJP/dIvVXV4qOpP/eoZjyoh4c5D9lF/RJMXNSRJ3/YvvlkfXK1rka30v/3dL5Yk1Q7WqvzMW274uOXtbV39lPfX3qsySc9OTHimeOxjgx772Huf0Xu33xZ08VeOBYV3PqzNZHILR3Zn4dz8xtxsNtVut3PBfADCWS6X1el0FELQdDrNVeQ9mA6yC6HzEDYPHnSbPMS0Xq/r4sWL6nQ6MYSQ40DOiwF1jM2rz5Af70/3JHzv3V8sFnH3A8gNnxmNRpFoOkmi6u7Wba7JSXyxD90r6ogYhA1CBr1qL52EJvpcQc4ZM0SXHAbPNPAsCY7t7QHAgx2L8OBDCDUtEswX92qxWGg4HMZWEVwcXC8E21trEHtcGKCtxKv30lFGg4sbEFkPx5ROwigRFVifPr+ewVAul2ObA9ka3C/m2p0H3obiO1C4ewIhw4UD5t/vOeTdAwk9U8Jfd4EHIcuP56GJxQBI1pGLgEUxgfnwcEXPx2g0Gmo0GrmgVR9/sW2De4KQhOCAs8bXFcKXt9IkJCQ8OS5++5v0f1Q+W4d/+7v1Ka3pWQ8n4TbChXJLv/zN364fn9b1lf/qsyVJF39rrvIbfj33vquf95Fa/fCbz2CECQkvULzmg/T4R3b0x//6r+pf3ouYd1SoqYWKfvmbv12S9APjnv7pt/xV7bx99YxFv/L2tvY+GTHhfGH/AzPtf2BfknTvL/ZUv7J86g/cACrXpjp869tv2vFuN5wbQcEzBiBEED6qsYgOEEkIc7HSCIHbbDaxOk+/enFnB+mENGRZFnv+PYjOSTKVTsgT54Xw0bsOyfJAOCf5xf56J2+gmGlQDMXDZeDVWydUnJ8wQ4Iki20jXEun05EkjcfjeA6/PubD3RFUiJvNZhRsptNpJMHew4+DwDMdfCxOQP3vVqsVQyi97YN7W9z+cjqdam9vL7o37r333liVHo/HOeLs94D7igBxWuCki0cQUf+/CwwuILA2CAXkPjlx9j5+BAV3FPhnOCciAQQZkDXg8+oCB24C7P++gwif8T8elsjzw9x7Rd9dI8wH4gE/I1CV43k2h+cm+Npn/bVaLXU6nXgtfFe4oOBOGtaxhzD6XHsLj9/rYutDQkLCk+Ouf/VGfe2f+SR9ygf/8FkPJeE2xJ9pzvVnvvxbJUmf9Z6P0S+/4SNzP//vf+Xr9KlvTDblhISbgfDqVyr7Z/v6rQ/490/73k9vD/TpX/6t+rLHP0S/Wv4w1X78qUWFcrdrzoTzjcc+Jkh66lDIG0HtakMXX/ya+P/2W96t9ePvvWnHP+84F4LC1taWdnZ2VKlUIml3m3K1Wo0p/Y1GI249CLkqWr0RIxAWvM0BQi6dWMWlk97/drsdBQU/DhVgSbHa7U4AKtBORrHhI0pAxPibczqJg1yT2eAiBuNwUcPt4di9PdOA+aBNg+o3OQFY6hm7V929J91FHiq93voAMeY8EDmOA7mnXYXKuWcCcB+w/DPXrAGcK1yztw64bX88Hmu5XEYRgbkia0M6qnTjNmHtEFDopJMxedWbNVWtVuO1Fa/VQwERxLgm1ry3wRB+6ddPjgZtQMwz6zyEEI/p1X5fY5B8PueZDoh0fp0uCpxWpXfxDTGB+8NacKcAa5M54/nz3Ajuqe/SwHPnwh35B7hY3J2AUOP3iPteq9WuEx49e8JbHvyecY0JCQkJCc8P/u0Dvyh95i8WXm1LSoJCQsJzRemPfIDKX7+n//byn7yhz33d3b+hL/v/Sb+6+TDVfvJ0UaHUbOqJT3+F9l9x/sWEW4HFhY0eee1J7lb3gfdV/eDFz+mYYSN1vv/2cGedC0GhXC6r3+9HIgq5oCJdr9fVbrfVarVULpdjhROSK530oTsR9sqj29EhDg7OQ986VXVyCbwCiuXaxQas8ZCrRuOoJ6larUZhAOJUzHyAIEOecFbMZrNcRZtedUIVIVI+V5JyNnfInFfy2ToSUu3nYO4RSXAfEK4IQZOUs5w7ieW6sPRDAplfz7hwyzlVfarzWZap3W7HczBOb09A/PHq+mQy0XQ6jW4WquKj0UiLxSLnImEskiLx5H66aFFsa3GS7euwXC7HYEbuE+PExYEYhVAgnWy56HkNXJuLRu5QcHGB43oWCGup2MLiYtbW1lYMamSsxSBGb3Xx9cSa8R0tPMyR5w6Xg7smeFaezAHAGGmh8CBKF0U4B8+Bi4u+DhHKGJeLRkWHirehpByFhISEhISEhNsd5Ze+WPf8m4f1nQ/80rP6/Nfd/Rv6oFd8pO59Ei0iNOp3rJhwGoYv22j4HI8RNtKi95FP/0ZJF7/zV5Wd4Vbn5+K3ZYQAD/rzNHkPgZNOyJfbwSFWkA5/r3QSKoj9nCosn63X69re3o6CAtVwBAUIiRM+2hrYQtKdA5BTQhedDJPkz/gQGFarVexnl5TbzaBSqcT3ISBQ0eY1yBdW+9lslstPoGLdbrfV7XZVrVa1v7+v1WoVsxDcds6ccn4C7RqNRk4gcWLo4Y21Wk39fj8SNAgv9xwxwcMF+T/3n/BF2htcTGg0Gup0OnEOfScHz4OYTCYxV0GS2u12nC9P8Uesmk6nGo/HsZLNMf3fp1WuGTvjcJGIOaSSzz1jFwdvLyGUk9wI36XEWy2oskO8WRfcM8bgjp/TWgBYZy5oIVw4uUYs4NpxdXAdnlXCWLl/0pHQw/3HAUCWR9Ht4nPKukFU4Fw8d6wJrsuvETHBt8pE3PAcE747fHz+LCUkJCQkJCQk3I4o33VJH/ZD79BXX3zrczrOl33OD+i73vZpqv1E3qUQKlU9/DffX7c6gPFOQ1aSDt7/mYk0yy95jYK9tXElU//fvekWjex6nAtBQTrZ7QC7OuQNW7m3LwCvLnofNTZwr957xd0rj27H73Q6ud0DIP9e4afKCYkib4DqOwQFMs7uEBC9dUE9guggdiBgcP24ASD0XO96vY55AF7d9u0yORcV8clxminz6iGVjAGBxD8HuaLKXi6XNRgMogDi4giOjRCOtlD0HTmYO7erQxiLwZXuTuHe4RjwcD12dcA9wlgQWubzuUajURQL2u22ms2mlsul2u12FEaYO7bCRGTxPn+Oy5wwT9wTFxNAvV6P4grtMEUC7tV0FyVonYEEe5uLrwnGxbr2gEi3+XOvi7sYuHiHCFFsD+DZYq35rhMISLxeq9XiumW9eNsPQpKvT3cqFFtMcLowbziUgO+2wrPr7gvWFHPqYgTn9efAxRYXnBISEk7HO7/+I/QLH/j1OrKmJyQkJCScJ4Rq9TmLCZL0md2ruu9ffZe+dv+vKbzJtnwtBU3vSWLCWWJ6X37+p3cHjf7Pj4r/v/9nx9Kb/9ctO/+5ERQgf1Tdi9vO8ZqkU3MWIPxerfXXHC5EeBW6Uqlod3dX7XY7t3MChHg6ncYtFzn2crmMLgrcDRBECJDb6qla82+IjV8rpI8xSCf93R5gt1qt4ns2m42azWYkecPhMLYkQES5ZtwIXs2u1WrxGiFnTnbdou67SXh1nTFlWaZms6lLly6p1+vpypUrkUzSs+/klBYRyD2EkPsynU5zpJG2gmazmdtlAgJIPoDb7Kmm8zmO4QGNCEi+BSK7PeAwKboW/F75fUXQKLoJ2J2AYFHWtlf1W61WvJenZRQwP+RLeCYI68FzMDyQ0cUazwkIIcQdVCaTSU5A4fn09gkPaeTeS4quEdZ/MWjUW2o2m41qtZo6nU4U5ph31ibtDKwt2nkQaBCZuH6+J1zIYhzF7SqZ99OuDRS/OxISEq7H5sJKD2wlMSEhISHhvKHUbOqf/eJ/Frs4PFe8tnGor2lsnR8CmXAqsq1Mi50Ty8JDf66l8ClH7RMv/cZ36PDq3k0937lYD6VSSbPZTJPJJBJs6ST3gH5yev6dKEDIqEJ6Jd9tz97nzjmlk50d2u22tre3tbu7G9sBOKZbqovEn4osrgiq1iEcbTk4n88jmS1WVosEhvNB1rMsiy0LxXYB5qBox8dFgL2frASEgnq9HvMdEDcgpb4zhWdTQJYhdtJJGwQEHEEGV0O/39fdd9+tSqWivb29OG7uw3w+j2SNTAPuOUIJ98eFCt9RwUMiuacuRDA3CBHtdlv9fj9WqSHqCBxcv1f6GS9Vckg/uQEIEr7lpc8h42FuONd0On3SrU/5U6yU89lyuZwLD2WNNBoNlctljUaj6HThWKxZxCF3qCA64KYgANJdA8wh/2a8vA9Bp9Vq5Z5H5pEMCCfvCHEedFmv1+M1I7iRj8L7arWa2u12FPCKY8QlgvDo7TUuQvo1evYCz8RpWSsJCQkJCQkJCbcTPrh6c8QE8GP/7lv06Z/w13X4u79/U4+bcOuwqZ1w4Hf8w5dJ2csVMukl/+DmtEWcC0EBEuN2fwg/AYjY5yEJLg54vkG73Y7Cg7/OeYBXlyF0VFe73a5qtZomk0mu7cHJLXkD1WpVu7u76vV68XgIB1RZCQVk7G6j9hYFCA5E6+DgQIeHh2o0GrnWDE/Nl/LbVjYajUjKqIh7ToPnRyCmQKY9jNL/UG2fzWaxv7/ZbGqxWEQSjsAwn8+jmNDpdHI7KdC6wHy4cLRYLHLbBEKefXcNFw74HIINQYhOxl0A8pYWxsL8Q/C9pQXXBnPqbQLcL3Yp8J0dIOrFHRkgqARpIjYtl8v4M9wTXIvvFuLtJB5wCVkuZhVAxrmOEEIUGJiX6XQa54J2DIQC1pWTbsa/XC5zO1CUSqX4f0JD3QVRKp1sm8r69xBRz+1gDhHmGB9jQvzz++huGXePIJTUarUomnm7COPgM/69wzpNgkJCwtPj5Z/72/q4H/9zesMrf/Ssh5KQkJCQcIvRLtWl9PvRbYusLEmZMkl/8I0fEV9vv7uke77lf+bf+wyDHp9WUAghfJekT5b0RJZlrzx+7esk/VlJS0nvlPRZWZYdhBAelPS7kt5+/PE3Z1n2+c9kIJB2CBaOBLY3xAIO0ZROiChWdKrvVPPdju99+17thDQ0m83oUMDmTq4DpNlbGSByCB3A0/F5D335kiIRwtoOUecc2PipoEJoIbXT6TTXxw9RQlBotVrRMs8OCbg5IFeQKd9lYjgc5jIWEBMQATygEcGFsEkq/cwPOQW4KHy8kqJwgCuhGEoJsfMwTK4PcYGwvfl8HlsTuD5ILnNTqVTU6/WiFR/RBPFhf39fk8lEs9ksl3/h7Q0IOcwX7/FsDrZ69DadUqkUdyhZr9fa39/XaDTSbDaL18I6wYkCAfZzeKgo840jgn8jZBwcHEQC72KAZ5Jg9fdnAOcLzw4CBvPkOQieV4GzAleO54RwPIIlcR74Obiu4laZrE8EHMbfbDbjaz4OD1rE0cIz4s8hrgeEB9a1tz/wLJ+nDIXn67s4IeFG8Y7v+CA99MrvPOthJCTccqTv4YSEIywvtVX+3SBlaWeH2xqmC40f3Oj3v+7VuR+/7N+NVHrnwycvDE4/zDP5bfm7JX1S4bWflfTKLMs+WNI7JH2F/eydWZa96vjPM/7iHI/HOat2uVzWzs6OdnZ2IkmUTpwFRbuyty5AxosVR28ZKNrM2+12PBeEcLlcajabRdcE1V7O6fZqSJDvUMC/yV6A+ELq+SziBgTGtwSELDoBggwjoPCebrcbHRoQX6rC0kmVnGNRAZ9MJjE8cjweazweazabReEE9wHuB0QVt/t7JZ6MgslkosFgkMsp8FYNLPo4BAgv9PFTfYZo+hqYTqeaTCba2tpSt9uNZJ7rnkwmMaQTku67FHAfEKYQNqST3QCKcw3prtfr6nQ6sY3Bt7t0gluv19Xr9aK4g3hU7OMnF4D7yTFwvbCNqHRSXS/+Yd3gguA6ioGNhBOu1+soohTdCKcJcYwFB8hms4mCEvOAkMG6WK1WMQPDq/3eulIqleK18+y6mMaaaDQa6na7UXTz6/P2EL9/3qbCdfn8SifbZfoOGh5eeY7w3XoevosTEm4EW/fcrXZ/etbDSEh4vvDdSt/DCQn6ue/7LpV3d856GAm3GL//mR29/as/MP55MjytQyHLsv9xrLL6az9j/32zpL/4bAcqKRJALOcQh1arlSOrnvDu7QuQTsQA7/XHacC/3Z3g2QNO8CFCkDgEjk6no0ajEXdtgOxIyu0gAbmTFAkWPe7sJMB53VYNyYdUeS6BpBxRJMxOUhQruH4q97QRIIjgXvA0f+z3zKE7BXCIIBAAqr8Q/mIPPCSdjADfzcDbTCB7VKndYeB5BswBYhP3nDG3Wq04twhBCB4eSOhtMJDKvb29SKpZi9yb00InuS9sPYmY5KF/fu7t7W31+/24g8loNMrtJiCd9O0X8xIQP3yHC9Zx8flBgCm+l+NIyglL5F948KavVeA5AtwLxk0OBk4Jz3JAYCC7QzoJA6X1gueHteDOGM7tYh0iFOfjGD4H7pZhLTN2nksPKC22OvBzz484L3g+vosTEm4Uv/93Xqx3vObbznoYCQnPC9L3cELCKdhkaj5W0vTe8/e7U8Lzg5vh5/1sST9p/39xCOE3Qgj/PYTwMc/0IFiRpaMgQezP/BtyAqF28u4Bdp4X4MGLTijcPu4OBdoqSqWjbfJGo1F0TbgF27MFaMGAtPluDJCs2WwWxQEXMIqVUm8LkPKBiKvVSoPBQIPBkdek0+nEKjPEkIR/HBG+awJkndYASXFsWZZFlwOVeloXIMRU571VBKeA7xZBBdkFBwjrZrOJYYSck6q0CwfcI5+XYkAe4ku73Vaj0YjEn/vPfWMO1+t1bGuQlNsxBALuJBNHg1f4mUfyGHhPcetM5oK2k81mo4ODA+3v70e3hq9f/njeAWSYuWbN+64KvpUj/+b14q4GHkbYbDZz10f7gLcP+dz7nLuDx8k6x280GjEw0VsqWPP8TatQ8dllPTMfzDvPLsIfLgv+zXEISOW58ee2Wq3GHI2iiFcMwHRB8DbCTfkuTkhISEh41kjfwwl3BP702/+0ssVxkW+11P3f9XtnPKKEs8RzCmUMIfwfktaSvvf4pcuSHsiybC+E8Ecl/WgI4RVZlg1P+ezrJL1OUiQ0kmLoHzZ77M3Y24sVaogZJGw8HueI9PG5YqXTd2yA1FOJb7VacXcHquuczyvHbgGnFx7Lu/e5sw2jp91LeeEAQojDwqu01WpVkmKWw8HBgRaLRcwDyLIsNyeICaPRKBeMByGDCFer1VgxX6/XkfwRoIj7odPpxDkh/JCcBsikV8IJB4TUIwRBdlerlcbjsVarVQwfbDabcc6oLPu9c1EIkaJUKkUh4jTSzLaMrCHOS2Ucwru/v6/xeBwzGtxJ4USaf7MGqJJ7NR9S76GQVOqHw6GuXbumwWCgxWIRiTLnxC3jQZi+fSgk34muu0RYQ4Rdct99PnkPwhFCD+P37U6Zd3dpFCv2nkHBPUIo8GwEd3AwFjJR3InhAhTHYl6LO3nwXEiKIZA8zwQ2zufzXNiiXwdtIS7Q8Px44CstHLcDbtZ3cV3N52vICQkJCS8opO/hhDsKX9TWZvTYWY8i4ZzgWQsKIYS/oaNgmtdmx7+BZ1m2kLQ4/vevhRDeKenlkt5S/HyWZa+X9HpJajQaGVViSClVR/ri1+u1hsNh7MfmF38XFrBse9K8BxYenzdHHBESms1mDBucz+cajUYaDocaj8eRkEN+IGKLxSJWvMlucALsW1lCIt22zu4KHjgHyaTnnBaO8Xis+XweK7vValXXrl3T/v6+JMXPSIpCAeeElFJdx/HAaz5vBBh6iKH3znc6HV24cCHODTsJeDWYNgSqxzgm+Dsch2B63oWTUw8SZB6ZawQPqszMN8STKjvzKSnu1sFuBNjxPR8DO34xzJP1yBojOJNzci8hwzgTEIiWy6UGg4GGw6FGo1Ek8i52IA5Axplzb1vhPKxD8gsgyIyB9cSa49nhvAhMiA4IeUXHDfPA/OJKKD4/HI/75W4JFwWK64PWHAQ+d/bgKEEI4drcxULbiucw4Fgpl8tR3HEhhHPQ4uNuI54B7rkLIecdN/O7uBt2UrpSQkJCwg0ifQ8nJCTcyXhWgkII4ZMkfbmkP55l2dRevyjpWpZlhyGEl0h6maSHnskxIRVY8rHPt1qtuMUegYH834MWJUXihOAAOYEwSiekBws0QkKv11O/349VfwQFr/5DOCAqTnIRJ7wXnFYAtuSjmszPi4GJkBiqqxCm4i4NtVotujEQGZxMMkZEFuai3++r2+1GwigpEk5aJFqtlnq9XmxxcJdGr9fThQsX1O/3dXh4GLeF5LqYT0lxjBDIxWKR20WiuOMDZBmSi7hAlgWtEn5MzwxgHIgzLhIAn2NcH+4emUwmkTBDXnF1IA4dr/OcgMN7EXt8p4LRaKTxeKzJZBJ3pGAOfPxcO2IJxBy3je8a4WscMcbbELgeMiVcGPBQU88nQMghiNSdOC5YsGZ8LhFTeCY4NsTeRT/GxLUxLhc/+JyvU1AMJ2XsvtMHQoQ/7/49UzwmoZfMZTE34jzjVnwXJyQkJCQ8c6Tv4YTzjM18oVf8qy/UW7/4W2/aMV/6vV+glz/2tvj/sLWlx//S+0lKWtidimeybeR/lPRxki6EEB6R9FU6SrCtSfrZ41+42QrnYyX94xDCWtKhpM/Psuza053Drdj0RrdaLe3u7qrZbMYdCMhQgOQWSQ+VSwCpojrqTgMqtlTdt7e3Y7/7dDrVYDDQ1atXcy0BVEU9RJI8AEifE2Hs3R5SB2HiM4wdksOuCxzH+/rpDZcUSbZ0RN4hyIgovIbIUK/X1e121Wg0NJlMIklcr9caj8caDocxELPdbkexYDgcar1eq9PpxJ0wut2u5vN5HCP/ZpcJrotWA79WQiypwE+n00gI3Z5er9fjjgjcbyegzD8ODu4txNrnAZKOQEPgI+vAgywRXxC3CKUkj4H2jMViEfM82F3Ed3lA5GA7zslkEndE8GtAGPCdOprNZtzKsig4sQaKW3IiFEiKzhTWFSSZeXSnAEIb7g6EGUQvPo/g4LkjrGlEIc8RKQpaHo5JawHj8qBH7qdfN/eTEEfPj8B1IikGNLrYwvNFi4p/jjXnDgrftvS84fn4Lk5ISEhIeHKk7+GE2w6bQz34H94jffHNO+T7/ORShwcn+wde/uLXaPxACmS8k/FMdnn4jFNePnXD6SzLfkjSD93oIKgMUn2sVCra2dnRxYsXI5GEXEFC2XpQOgmrg6BA9LCdIyZ4JdYrqe12O1blV6uV3vve9+ry5cvRoi4pChiVSiWSuWKF2IMg3cYO4fHdDUqlUtwpYDqdxjEyLir9kJzNZhPHxzwQ9ggpog8eOz2hkI1GQ3fddZd2d3clneyWgeuC/9P3j+OBgEa29aNdwAmldCR2XLx4Uffff7+kkxYDPk/VvFarxYo7QhAtEx74xxwiMEgnlXXfnQK3AveIOV6tVnG7xosXL6rVasV1xXvm83m8R95e4G4JhALmg/tKLgbuBlwM3OfVahUzKmh1wMXCz52cM7Z2u61+v6+tra0opHg2A7kTOBTIDmCdcF/YOYE5ZI4Q5Lh3kH4EH45Hi4e7G1y48HvvuQcIEbQrIRwwd1yzhy5y72nzYD1KyrW/IPoRHIooQPuPt+/QJuICh+ds+LlduCu6ORjzecHz8V2ckHAjOPjMj9S//fRv0c3Jd05IOP9I38MJdzpe8a+/UA/8ym9pI+mxv/9R2lSl+cXz87tSwtng3PwWgBiwtbWlbrer7e1t1et1TadTXblyJZIM33YQMo1Y4AF1ECuq8N677on8VH1brZZCCDo4ONBgMIiihe9MAOFYr9c58ukp8xA8dx844cJJ0e/3Y/XctzqkrxwCTxo/1wwBokXB7f5U00MIms1mGgwGMQBxd3c3hitSNfe5lE4cHdjScWR0u131+/0ocjAPXLOn50PGsJ2zBSXtAJ6PwJy4QMFcYjv3LQ+5h6vVSsPhMApH3kLBHDUaDe3u7mp7ezs6RLxnnrFNJhPt7e1pf38/7jTCdRO+yJw7MWVcW1tbMXOCezkajbS/v6/BYKDRaBRdLL6tJ6GAuHJ8q9TlchlbJLjGfr+vfr8fhSLGz7EQqtzF4MfnnjCHRXgwKG0ZrFffapEAU8QTPsf8FAMtmSPECBeCvM3DhToX5nAv0a7D84wwwHhxbSBi+bpCiHGhivvru0TwrPEMI4AkJCScjvl20EfXz82vEQkJCQkJp2D96GV93Od+7k05Vuc9G20mEz32Dz5K03s3SUxIkPQcd3m4WcCeDrnAPr5cLnVwcBDJLzbozWYTxQJyDagw8h6v1Hol2HdOoLrKNnpZlung4EDXrl3TbDaLJIr+asQE3AGSIumnigtpgfBhnQfY+SFdEFwyECTF/AIqywQaQpBoJRiPx9FRQDVdOtoOktBESdrd3dXOzo5CCBoMBnrsscdiACPkG+LmPfWQRp8f7oXnT2w2G/V6vVgFJ4vAgx+3trbiDhwuvHD+drsdxw+xpAXBHSXMmZNfzxZg/ra3t9VqteLcQ7pdqCAroxgOyDrB/g5omSBsEecAoZ4IFISH4oJgnSBOrVarXOhouVxWv9/XpUuXVK1WY3sEY0awoa1lNBrp2rVruV0l3L7vaw0ximt0co+rh7WOqMazwXs8oJHrxQmCsLfZbHItOax/b2fg2Sw6T7x1CTHAiX2v19POzo6q1Wq8XwgCHt7oLSwcm9DVYp4Ju8e4yIRQ5s/A7RDKmJBwFpj++Q/X//iyb5DUeNr3JiQkJCScITaHqv3EW/TRX/L5+uVv/vZnfZhX/OsvVLUrPfS1H6lNZSOd75iphOcR56a04O0O9Xpdh4eHunLliq5cuaLpdBqJJYFxkFJPa/fwOncheGI/okAIQb1eT3fffbf6/X4kUm5RJx9gOBxGcrtYLDQajTSZTFStVnNVeQicBzL6NoKIGti+PQDQgxGLxJc2AUgobQ9Yv3ERNBoNTadTvfe979XBwUHcuvH+++9Xq9XS3t6eHnroIT3xxBNaLpdxe0i26ZROdsGg0k07SLPZvG4sEEiueTQa6eDgIO6eQMaBdEQUr127FvMWIMCey8DczOfzXH4AhJFqO1Vy/1OseDMu5hBnCOuCa5nNZvFctC/0+311Op14z1hP9Xo9zpe7J2iXOTw8jAGM3BvuswcYsi4QZPr9vnZ3d1Wv17W3t6cnnnhCBwcHUWBinmn38a1CWePcP89HkE7aL+bzuWq1mrrdbhQHmB/fHpJ2EFw+ODTc3eNiA+eBpPNziD5j8tYOfw9uD9aOC1DMEdt88hlEOp4FBD7EG8RH33GDtejbw3rrhguWrDFEi4SEhOvR/OFf0cd+/Zee9TASEhISEp4JskztH3izXv1VX6BVdvj07z/GKjvUy//739Af+9ufp/mFjYYv3WhTzZKYkJDDuXAo0Cder9djVZx0/MFgEPvJ3SkAGfIebkgBJMmFBirPENxGoxGJMmSxGEy3Xq+j9Zweb9ofJEUxwauqXvWksku128fqOQBu2ZcUhRHmhbBHSBUiCmTr3nvv1d13360QQrR8E77X6XQi2R0Oh7p8+bLG43F0BGxtbWkwGGg8Hues5p7kD2n09ghEE1pU1uu19vf3NRwOI3mnasyWn6PRKHeNfPaee+7R7u6uptOpHnvssRjCyRxArDudjjqdTk6k8SBHF2i86ozA4O0oLtawZhBQIKEObwcZDoeRlPd6PbVarTgn3urhx2VeqX5zPO7DxYsXVSqVrmuvQUQh2JEcBMaEa4Bz4wrx8SBqIEyw7pg31pu33jBGD3d094MLdd7CwBphbfgWjO4g8mMV17i3JSEKsA6KjiLWLs4fng/aISRFgQc3D/cOR42HcXJ+byFJSEh4EqRA74SEhITbCrvf8Sa96sIX60c+/+skSS8qV9QsVXPv2T884jk/O7tHX/HjR7Ehlz/6+R1nwu2Fc/PbsocV0kM+nU41Go2idbxI3F08cGJUJDBOlKmws+tBv99Xq9VSpVLRYrHQwcGB9vf3I/GCYEGUIGPs3gAZovpZr9fjbgTeZvH/b+/cYyTNyvP+nK6qrntVV/VtdnpY7wXWsCbLsraR49gWkqOYi5Q1KEI4FzsxCZYCOIljyViWYhJErESxEyFjBxAWYIiJkxgDjnwDGfyHE3MHL3cW2LDe2Zmeqa57VXd115c/un9n3qqd6zJTl933kVrTU1391fudc74z8z7neZ8Xl3mb6E6XYpAMcbpP4oh3AbFzCl8oFFSr1VStVmNSyX3RlWB7e1vj8ViPPfaYHnnkEbVax66sdNKwpMd0vTiJpE04SeQZF8oVGCtJkXwhWbdGmiS1xWJRGxsbuueee3T69Glls1k9+uij0cOCxBOCB0n+5uamcrlcPP23EnXGwLb6I9G0bRpJwqffU6lUVC6X43qcJiBoSUiyXavVVK/Xlc1mJ9QY1ozQmvyxXlF3oIao1+uq1+tRLYFKBYIjk8lEEsuqbfgi8ef0HvNLS8JBTEAucF+sM0g0Sw7YsZUUlTXcBwSCjcuOMWSKLe+ZVubY36XEBFLOdqiAKOFZQhHT7XZ1cHCgfD4fP8d+LvfGa5TIcO88a5bgoVsMz4XD4XgiVopF7a87o+BwOBzLhjO/8hd63a8cMwSP//5z9K7nvVPZcNKhTSt62ft/bp7hOZYQC0MokMCQtGCQ2O12Y7s7kunpZBDTPJJ96ZIpIokIyQ/J/vr6ura3t2OpgKR4CszvklRYY0RJsa1ioVBQp9OJ5nck27jlTzvw83dIBevMTwJqpeIklSgP6AYBCVEul1WtVuO4kVTZdnn5fF7tdjt2HeCaeD/0er2YhFrDPuKHSLBml3gaSMeqAZJhrj0ejye8L3DetzX02WxWa2truu2227S9vR1Px5vNZrzPw8NDdTqdaCy5ubmpWq2mbDYb78WOs11HlsgpFouRDGLNcEJNgs98kmAXCoWJjh0kwsyN9X2wJ/jD4VDdbnfixBuSDAKEU3BIDAxIW62WBoPBBGHFfFiPDuaKZ4HE2SbSjL01I6WcgZaNzAtElSW4uB+Se+bftpK0pAuvW1UG92i7sbB+WHOYqnJPzCf3Z4kuEnyUHJR+WBUQ/hSsXfYSyoXs9e09Y8yKVwVlFV7y4HBcHvt/89n6d6/8b/MOw+FwOBxPAqmNdWmtop2fH+on/v6/0kHNzRUdTx4LQyggT7ZO8NaUzyYCJDb2JBVMJ5gk65LitZBRk/BkMhn1er1Ya25b3ZEA8dmcZqNq4Bpch+QLF39beiFdIhOsPJ7EBud6ZPxW7t3r9WKyZFs52mSN99rkL4Sg3d3deH+ZTEaVSkWlUikSERgjMk4khFYlAdEjKZouFotFVavVaCRITJQsYFxpZejcU61W06lTp6J5ImaF1jdhMBhEVQRtRKvVqiTFsgCIHMZdUjz9t20urQknCgrKTSAG+EzpUmcCq4wBqVRK9XpdpVIpljtglIkSA7UAqobpdZxKpSb8GjBsxHSQ9WXXMkk+cw6ZhgEmRBeeAqhUMJO8XMtOS17ZZ4q1y3rjs6fNKm0phO0KQTKOIgAVBR4mzJM1VgW8h/uH2MMg8uDgQIPBIJJYtvuG3Sd4BlF6MBe2lAhiA0IOggZFDCVYDodjEpkPf0pvess/0Ct+4TfmHYrD4XA4bgCp7S2d+/G71Xw2KjMnExzfGRaCUODU1ioURqNRTDQ4xSSJsZJpWwduzdxIzC05wGkk5QJ0ARiNRmo0GhP11BAcVvpNLCRuEADWj8B2JLD15ygl7EkuiactrYCcwPBuZWVFo9FoQvI+XX+O3J6TcJJ92iuS6NJhoVKpqFAoxM9lDEmCOVW2iR7mfpjd0cawWCzG7g3SMWnTbDZ18eJFSYqtFEkiOQ2u1WpaW1uL8nXb1YFuCYPBII735uamNjY2VCqVokkmvhu2wwPGipgqMl62bIXkf39/P8rcU6lUJDU4XUfR0u/3J8aFpBPzvvF4rG63G8eaMgM+C08Bq0ihMwQdPQ4ODtTpdGJMNrGXLvlqWENF/hwMBvE+crmcGo1GJKAYX2s6aFt22u8ZQz4D4oBWnJSqMJ48k5Q5WFWDLcngmnaOICtYG/Z9mC3yrLPu+QzKFbgXyCTGl3GnDAlig9chqqZbyDIWqE8sGelwOBwOh8Ox7Ehtb+n837VkgmMW2PhMkBLpaFXae+5Tb+wXglCwEulUKqXhcBj/s099OierVqVgW8tZUgLVAEkiiT+/k8/noxkjxovIv3kPp5nAdhpYW1tTqVRSo9GIyaX9PE5GLUFilQq2rptrQxLYJOzo6ChKu/v9/oRMnVNjTvA5TUfqTocKuj2QTHNvJPDD4TAmq5Jilw1JT0gYiS+VSsVWlAcHB9HQkdpziBl+l89gPovFYiw1seaIxGQ7HKCCoAsCrSs5nbb3jrS/XC5H2TsEDyUHtjXoeDxWsViM64B5m5bVj0YjlcvluN4oK2E9drtdNRoNNRqNSFTYk2/Wp6TYkYMSC5LnZrMZuxzY7hmcykOG2TIIrh1CULFYjKoT1ostxYBUsH4ijB0Enn0eeZZ4H61Jaf/J2oA4seoHEnjG0X6+JSLsGmOMeI4g4SAGbbnJtNqEGBgTfm47OqysrESPiuFwGBUsrAlLdqBUSJIktl51OByTWLnv2aq99LF5h+FwOByO60Rqc1PnHrxbzec89RLaRcX2X0qn/vnD+ly4W0qkcXasFz7wJUnSQxduU+Nr9TlHeHOwEIQC8m+SAZJvXN+tXNqeQgLryE5SQuJF0kXiQSs6ktButztx8mlb/HGqbUsTyuWyKpXKRHLJafO0IkKaTH4kRWWCdOnU1srvrYEg9e34COATQfJmuwQcHR3p4sWL8TQdLweSZEu8cKKeJEn0p+CUGA8E1AgQIqlUSuVyOX4eJSP9fj8qItLpdIyB2nUrvZeOPReKxeIEMcSJNwaOfPE5a2trqlQq0TgTJQMEBSfqmUwmliHYk2ubyKIEoI0iSgzGNJ/PT6gO8Jiw7TGZT+Zpb29Pe3t78b6lSy1K7Rofj8cql8uxzCGbzcbOIXt7e7Gkxba9ZA1BhNlEnPmjneXKykpUSUCMoTqxJ/2WKKC8gBIH+8yxVihTseQeyTxtGyG48DdhXq1RJ2vXKnesjwFEnyW4IBatGSSlMZBpfB6fBUEJsYGCCR8Rfp5OpyeUHLSKhMDodDq6cOHCd7q9ORxPOaTuuVsrb27po/f84bxDcTgcDsd1ILVW1dlXPEvtZ3p5wyyw9XEp84/Pae+OvP7krg+p9MwnltB+/tRQ73/GA/ofDz9fg0fKc4jy5mEhCAVUBZxKS4ryZH5+JYNDKyOXNNHrnhNrkiZOf0k4+TwrdyaxshJ8JNYYCeZyuZiISJqQTpNwcS3beQKTOOmSVJuSBXuCz73wXlsCQgLGqXSlUolj12w2dXh4qGKxGBMom4RB0tg4rL8BiVS3243JJPexvr6ura2t6BthDe4o0xiNRtrd3Y0qCpt8Yl7I2Nu5Ixm0Nf3MJWQNpQ0kk9S4Q0RRelKtVqM6gTGzXhb9fj+WTDAnkBTcE+uFMg5e5376/X4kMvr9vhqNRrwma4kk3rZTxL+COZOO/SharZba7baSJFE+n48qFU7lMRW0nSqmPSPS6bQGg4GazaZGo1F8Dvgc26kCcAoPpp8tnj27Hvv9/gRxwLxZEs22q0QBEEKI44MBoyXaILPw47AEG/EzjswDzzY+F5BMEFHMEbGgmoGY2d/fj54ZtjSCeblw4YIajYYcDsclpG87pTPveUxvPfN/5h2Kw+FwOK4ToVh0MmFG2Pq49PgLj/ThZ/+27s6UJF3ej+u+1Zzu2/yiXlz5nL54747e+ImXSheysw32JmEhCIXp02pJsSsASbv1MLAGiRjTkaBzMmz9FDiZTKVS0f/AnoqPx2NVq9WYBNpyABQEo9Eoei5IignMysqKKpWKisViTOamje5syQVlEySAJNzc23SJwXQJgZXO06lhNBqp0+mo3W5Hj4her6dOpzNhSEniTzLK51GLj5zdSs8PDw9VrVa1ubmp06dPR3KDxDOXy2l9fV2Hh4dqNBpqtVrR34COBST72Ww2+hUwp4wJp/uceNPq0BIYjCnJZLVajZ0ZQgiq1Woql8sxKbQJLIklqgNO/el8AKGAyoR5wY+BsRgMBtGLAvUI/ht0ueDeIIkkRQm+7XrA/VImY70FQggTXhyse4gg66mA0qHT6ajX68W1BBFCws9c8z2qCevXYD06eKb4LEvyoaDB24PSDeulgBqH66GWsGuc69p7Ziyt+gCyA5KC+yMmiAsUKhAylDHR3SWfzz+h64c1aZUUn6derzdBrjgcDikp5vXWM3807zAcDofD4Vg4bHw66PEfPtIfv+i/nJAJ18YLshm9IHte9//Qf1VznNc/+eN/qpX9lWv/4gJhoQgF/vNuWyjaGnQr96ZWm6TYnmzb000SsCRJVK/XderUKZXL5VhnTs20dfXHJd+SAxg54k3QarU0Ho+1sbGharWqJEkiQWDj4ETVEiKWlLClE7Z2nGSKkoEkSVQulyfMHUmw6BDAfUNCEA+JIiewR0dHyuVyqtfrsWMDRArJmqQos9/Z2dHOzo7y+XwsF6hWq/HkfGVlRY1GQ4PBYIIYYO4KhUI0goQEsFJ0JPMoCmxyjd8ACgVKF+r1umq1WhxLiCUSSWuICHmzv78fW2jyfhJOO3YQDrSTLJVKkUxotVoxMW42m9rb24udGWyyzCk+Cfq0+sSWblg5v10HkGysJbwg+DtxsE6st4QlIKw6wV5zWp0A+UXpByU5jBFJPXPG+qJs5ODgILZYhaCw7TKtSSZEgjWsRH3S6/Umyo6slwf3DDnD2EuXzBRtFw+7X1hVjV0bkDwQHPiCHB0dxS4eDofD4XA4HMuIlXJZD//Md0ly74RbjcJPPqaPffd7dXv6+sgEi/uzWUljffilv6YjBTWOcnrjj75cX/7Z225+oDcZC0Eo2PpuSROnmlaOv7q6Gk9taelGUk0CaFUL1sRwbW1NW1tbUZ1gkyROOnlvu92OCQ9EBjFgMkgNPsqGvb29CfND6ZKBoXTpdNa+Zv+0CSS/PxwO1el0tLKyEmvuSXqmO0Vw0kzJQrvdnuiSUalUVK1Wo7cBXgiQHfv7+7pw4UJs14d3wH333ae77rpLGxsbUfFA0m99BNrtdvRPYAzsCTpdIUi0bSvDXq+nbrcbSRzpknkhcRaLxXifEBPlcjkm6Mw5CS9jiM8AigkSRUoIULfwu8PhUP1+PxIujDsdGCA/MplMfC+KiVwuFwkJkmW7FugcQizEzXpnLeJNga9DOp1Wv9+PBqPSJdIsnU7HOFqtlvr9/gTxhgqHjgV8oWyBwIII47qSIhlmCR7WpTXFtKQD5o25XG5ifaKMseaKrGFLJtiSCmKFdBsOh9rf34/XZ65RHqDUsB1FrLklBJYlvGxrVlQrfA7PncPhcDgcDseyIoSgUdnJhFuN2597Vn907/9UNtw4mWARlQ0Z6dc/+l6trazodd9+ic79wp36xssXsyTimnqKEMJvhRDOhxAeMq+9IYTw1yGEz558vcT87BdDCF8PIXwlhPBj1xPE9EmsLUWQJhMDTnHtqaJNnK25HAmKdGwGyEk3v4O0f3V1NUrPm83mRGcIkrPpDg2SYms5EhTrt8DvWENESxZwXRI14pAuKTToBIFXAvJzex1rYEc9uU08SVApDaD0o1qtxhNr6ThJbLfb6nQ6sRZ/OByqXq+rUqlMtIOEWMhkMlGqbjsLUC4BmVAul7W5ual6vR7LNCqVSjzZ7vV6cdxJUrPZrDY3N7W5uRkNGVE/WH+A1dXV2OHAJpS2bAF/CYwTV1dXtbW1pVKpFNUEnGpDEODfgHql3+/r3LlzarVakQBBMYBXB8k1J+LWCJRSisFgoHa7rXa7HUkDiAN+D2IDxUev11O73Vaz2YyvWTNNfCEGg8FE9w+7Diw5YEsS+BnrE2CQSWJdLBajNwckFIk9WF1djYSCJHW73RgPn2UVAig0WH90VLB+JIwJ8Vii0RJWkHL2mtNeFNM+JDz/+Cnw3EK62RKnRcAs9mKH42pIrVX1/o/97rzDcDjmBt+HHcuGkE7rq79877zDeMqjeveePnzv+5UNmZt63TszJdVSBb3njo/qD973Nn35FW/Rl1/xFpW/uaLS/1uRgq78NUNcj0LhnZJ+XdK7p17/z0mS/Cf7QgjhXkmvlPQ9kk5L+nAI4Z4kSY50FdgWdFZ2z+k3yR6nlTbB7na78QSUa5HM2tp0zPBIvkhEODm1J8LIsqdPmanvpkMCyaY9BbftFUkkSe4AnRToHkFiAyEiXaqvz2QyqtfryufzunDhQkx8SGDt51nXfFosptNplctlpdNpNRoNHRwcXJa8QF2B8d7R0ZHW19d15swZra+vR5O6vb29+LvU4ZPshRBUKBSid0I6nVa9XtfOzo7W19cnOh0Qe7fbVafTiaUU9tR4e3tbOzs7MeHD2NCWZKBc4Np4b9jymW63O6GAQB3R6/UmVAAk6XTPKBaLE34UzDFJ/3QZjk1KJU10LCHZXV1djeNtvREkTbQrpPOEdFzO0Ol0JrqRcP90rWi1WvG5IaG2Kg0AoWAJD5JrrmnLEsbjcSTO8J9gTeVyOQ2HQzUajah64JoQBtwDzySqAtulwfqisK4g7SDR8DVB1WPbPVqVku0II022kWTcITgsEQFBBkFHq0zGckHwTt3ivdjhuBrCWvWm/2fJ4VgyvFO+DzuWDMlyleMvHbLP6OrT3/ffdR3n9N/Z55h/fz/7+t+46ns/OljRT//hPzv+y1FQuMV+nNckFJIk+fMQwh3Xeb0HJb0vSZJ9Sd8MIXxd0gskXdMO2rZnlC51Tph2j0c6bhMn66pPck6SKymWO0iKp/C2teB0ImhVCbbWG1f4Xq8XW09KivXjNtGzp9a9Xi8mubZkgd+xZAKJFUl5rVaLsVqTShIzklbbNs+2LCR55lQbY0Ta4tnTbgwsqYVHUdDv97W7u6tms6mDg4N4Ck13iVarFevurVeELRvI5/PxftbW1mLJQK/XU6PRiGNE20SrTLASe0nRaLFSqaher0cSpNfrRb8J7p+Tb8gEfm80Guns2bPa3d2NSTMx0z2CjgPnz59Xs9mcMDAsFAoxFqsQseoEa7BIIksiDGFFmYMlmCgDgaDie8gG2/EgSZJIjIQQItlDAg2BYIkPm8BbtQslAdbPgXkmoZcUCSqrguB+p1t/8tncK8QKxFEul4utIlnb9jki5unXiBuVBrAlRVbtZP0hLClkO6FQLsSzgDfJomBWe7HDcVmspPS//+KD847C4ZgrfB92OBwW4+qhvviD75l3GE/AC/NjfePlb5Uk/exj368Pfeb+J7xn9fG0DkuXL4UZZ8dS5vrLZL4TD4XXhhB+UtInJf3rJEn2JO1I+r/mPY+evHZN8B97Tuw5LbTGbbjBZ7PZmIDhrcDpJ10ckMdzip0kifb29nT+/PnoITBdQoAqwkrAp5NTkirk0DZZR90AuUHM1o+BpA2lgz3F5jM5Zed1m0gyBpx0A6t2YOyQbZO4S8fkSrFYjE721PJDwrTbbUlSvV7X6dOnIyGC6aItE6GzAESFPQHO5/Oq1Wqq1WqqVCqRUMjlciqVShPjye9QxrC2tqY777xTlUolelowJpLiPNMeEHWB9ZawEnjIBEpnGH/abGLwyBzRQhBlwvnz52MCzEk2tfaQOMQFmcO8YfTJ77Mu9vf3J0ohUCxgwsm1UUVYg0fboQEyixKEQqEQZf8QEqxJq0LAj4TrTT9vrLNCoaAkSdRut2OHEow9WVc8Z/v7+/FZI25JUQlEO1ZbboBKgETfkmTEzHMEaSEpknG2NSmkAD+zZT9WiYBqyY5RNpuNa4zP5J6XADd1L3Y4HA7HDcP3YYfj6YYgVeq9eUdxTbz59Cf05tOfeMLrP/oPX6VHXnV56cLrnvcx/Vz9G094PXWFz3iyhMJvSnqjju1C3yjpVyX9tC5fsXFZeiOE8GpJr5YUfQhIkFdXV2PdtDWhw3wNSTWn+5wCS4ony5wsFgoFra2taX9/X+fOnYvqAk5nbdIDLCEgXVIs8H0ul1O1Wo1dJDqdTpSREweeCiRAxWIxyqghDUaj0cRpqnWZPzw8jI711JyTvNrTZkkTygU+HxXH0dFRlPVjZDgajaIfAqqAo6OjqDSoVCq6/fbbValUJkwoSeQ3Nzdji8mLFy9qOBzGz8K8kJN+vpjTUqkUk9nBYBA7BXAavrm5qfX1da2vr8eSFUgc7rdcLmtnZ0fb29sxSbXeALZcxRI2JKiUWYzHY9XrdW1vb8e5JNk+OjrS3t5eNNtkbnO5nCqVipIkiaQVa5ZEf39/Pxo9ssaYM0p6IFdYK3RCQJHQ7Xaf0PbSds5gzbCGstlsLMGxBoMk2pzIsz5s8szv2FIJOnysrq5Gso/PYU1ASLDuIAFsS1XUHqhXLJkAMYWCA8NVCA7blQGiZppIYb55biESKOXh/rgvS/TwXDAHdv1M+58sMG7qXpxT4dZE6XA4HE9d+D7sWFz8je+edwRPWdSf2dAnHlheX6GPvOcdN+1aT4pQSJLkHN+HEN4u6Q9O/vqopGeYt56R9NgVrvE2SW+TpFwul9iTQHuayGkj7v4kPysrK/G01NbUk9jiFYB0/uzZs9FMEOkzp8325JhTY3sibtsB2o4JGBVSnkASS9u5EMJEm0QSJfwGSBQ5leazTsYnqi4ODg6i7N2WRfBekiJ+D2DQOBqNVKlUohFht9vV+fPn1e12tba2FtvvQcJUq1Wtr69H93sSx2q1qs3NTZ0+fVpHR0e6ePFiTMLxQ+j1ehqPx9HnYm1tLdbgZzKZ6Hlgv4g5k8moVCppa2tLq6urunDhwkTXAeZ0a2tLa2trMbllrGyiCaZVLMyPHZONjY1Y0sIcWq8MDC1Ho9GEeoHPITlGtWBP2O392VIWTubxSrAdDmyJB4oce91pksB2VmBt8QxRfmM9BVCSECMEnR0zm3QzDjb5554oE8nn86pUKtG7BPKFbiyUx7DGrVeDpJjc8wzjbWLNWS2siaukOBbMEyQE+wP3xzxhAMqzBAHCM8V6sc/WIuJm78WVUHcbaIfD4bgB+D7sWGR87R95t6pbgdufe1Z/9j0fmHcYC4Mn5R4RQrANMV8mCbfbD0p6ZQghG0K4U9KzJH38WtezMnXrj8BpLjXOuVwudgDAn4CEgeSB0/wQQmw7eHh4GOvrrVTa1oojQyfZsR4MnJRadUI+n1e/39fe3l5MuO3p8v7+fkyM8BDIZrMxUUMGns1mowcAMnGSNys3b7VaMUGUJlUKxGZPZQ8ODrS7u6vd3V0lSRLbNq6srKjdbms4HMbyg3DSkm84HKpYLOrUqVPa2tpSrVaLSZqkWMaQy+XiqTVJKW0Lu91uJBRqtZpKpVJM5K1JJfNLAghZcOrUqWieORgMJroCZDIZnTp1SqdPn54YN9QqXMcSO8wf400CnU6ntb6+rlqtFudm2hg0lUqpXC5HdQkJ8rRawJ6mT5M71riSObZGgngQQGgwDza5RrliDQdtUs6zYFs82jUraaIcBL8FWmVatQLPo3Sp8wfqCX7fmlJmMhnVajVtbW2pUqnE8YCUqlarqlQq0STUlgQxb6xbnhcIOAgFa3aKsogY+N4qGCBhUFhAXLF+UXIw39IlMjKTyahQKERDTqtOWkTc7L3Y4XA4HDcG34cdjqcXnve9DzuZMIVrKhRCCL8j6YWSNkIIj0r6ZUkvDCHcr2Pp1rck/YwkJUnyhRDC70r6oqRDSa+5Xjdb/jM/7c5uJdCSYlJqE2l+hwTh8PAwljqEEGJ3gmnpPCoHadL9nlPZ0WgUOzIgP8eDgPeR6EFYDAaDSCZwT1a6jfcBSSRmgiTUJK62NODg4CCeWFtlBveeTqcnfAJGo5FarZaazaaOjo60vb2tarWqUqmkXq8XT75J9GgReXh4qM3NTW1vb8c2jyS6KysrUW3AqS4KgU6nE80uDw4OYllErVab8B1g3jghpwbfmmdimNhoNGKSSfK5vb2t9fX1WJ6AIoHSCT7HmmQyD3xB2FC6QKmLNUSEIIJooJ2h7eqBFN5K6BlDyDGrFsFzgLWKGoJ1wb1Ml6+gpuHzuLY1+LRdDqRLKhdLnKFSsKoGS0Lx7KHK4XmATMBjgWtAOhQKhdiCdDgcKpPJxA4Q1qATksR6ljBuKCKkS34LzDmEIoqcaZNWxoLnGYILIsYajqKUYV+xHR0gm6yR5mAwiOqYRcCs9mKH43L46jvul/SpeYfhcMwVvg87lgmdV/7AvEN4SuLdd31IUu6a73s64Xq6PPzEZV6+YtFFkiRvkvSmGw2ERIIkhpNQElHbxWG6wwMJDokFyS7y62azGU/ObX02STvO7vScHwwGarfb8bqoFUj0eR9kAj4KSMM5MSVRgehIp9MqFosaj8eRAGi325G4QE5fLpejcSGlDtTKY24HmcBJLgkxJAWdE7LZbCw/4F6pj6dTASfn6XRad9xxh575zGfqzJkzKpfL2t3djT8rl8uRIKBkA+PCRqOhfr8fiQc6RJBUk2DSApFWjr1eL3aIIDFtNpvq9Xoql8txnFdXV7W+vq5sNhvHg+TUtnOEhKFdIWNl15CkCXULyTyECPM6Ho9jjLzfnoZzHdoc2jIIYrbKAK5rzUctocVnk7jb7gasawgIynoYB1QKXEtSXCPWcJR1yTjyTLDWGR+rCoCg4Ht+lk6nozEmygtMOJlrCLF+vx/VGDyDJPF4VNjOKLyf61qvERJ/Oz62BMOaq0IYQCawNixRk06nVSgU4vhR6gHxtCiY1V7scEzj8d9/jr7+/W/XrW6J5XAsOnwfdiwTzn9vkIJX0NxM3PmBAw3/3pFK8w5kwbAQx2/pdFrVanXiRBXZP4mbNUiEUCAhJFFDAk0C1+v1YptHkicIgVKppGKxGE8xqWuXFCXhqVQqyu7xTkAyzakn78dc0JZfkKRwD9SS2/Z6/X5/gkzgT5IaxgL1AkZ/tqMAp/3TpRcQFbYjBUkbSWS/31e73dZ4PFa5XNZtt92mnZ0d1ev1ePrPdSATOIkmmYcASKVS2tzc1NbWVlQKSMcn+/wdQ0RKFUgQaduIYoO55jSZNp0QBySTqAroosD8k2Tbrgu2NSHxc3+9Xi+aUtoyBRQvVj3CZ5OwQ4LZrgpWOQMRALkELAGAugFSxBIJtjQHvw/KMoiDUiGrVGA8uKYtl2E8IFSsmSXgM6c9KIinUqlM+Eug+sjn85Gko7SF+WYcGE9LtlDKRJcI5saSKDyLEES2HIR5Y92gzCgUCiqXyzEOnlX2GGsOCbHCuC6SQsHhmBd+7/lvVyr4f58cDodjWXD+NT+oJHV5B3/Hk8epf/8NVVcW57BpUbAQ/1u27vg2ibbtGkkQAcnVtAyaMgSS7v39/WjARuJOko/BHKeYJBJcn6SDRHJtbU3VanUiWR4Oh2o0Gjo4OIhGe7QexESSa5DgDodDdTodtVotHR4eRqk/p7OY95FAlUqliQSMGLkPEloScRJ9iJp6va56vR47OtAicjweRz8FlAXb29uxVGRvb0+tVkv7+/uq1WoTXgu4/zcaDZ07dy6SCRsbG6pWq7G0gdjH47GazWZsP8mcIb8vFAqxjMSWDJAskmQzvhBPtguIpPja6upqPJXmdZJUTshJhPf399VqtSbG3HYtYN6oy4fAoF6f+5A0oQawihkSc8gQfmZbRNq6fsgjSjTwF5A0QbqhesnlcvF1lA9W3k93FNt2crqzAT9j/RMDSgLbntHOGWTCxsaGSqVSNBnl+nhDoBTAn4CfWS8OiANLkJHUs35RCPEMsE7YD1CMrKysqFwuq1AoxO4eGF/yWZAN3B/PkyUnHA6Hw+FwOJYJvZ3k8n1GHE8az3p3R6998CPKhCs1T3z6YiEIBRJ7a0rI6Sgkg5U9UwpBMsFp8NHRkQaDgfr9fjRAtOaLtre9JHU6nehNYFtIonro9/vRD2B9fV1bW1sqFosTv8NpO4mObYtHsmlLIJIkUbfbVavVikkkSQ9EgO1qgSkgqgiIEGu4xwk3yReEQy6X0/r6ura3t6M5ZbPZnCBThsOhUqmU6vV67AKRJEm8L06JMRVk7A8PD3XhwgWdO3dOg8FAuVxOp0+fVq1Wi4lxqVSKbSrPnz+vvb29WIbBybhVTEAGkGzjRcG4cn+MK4oAq2qwnReYb5QWlJdQToI3BOoEOiTYOny+x+iPrhyoJmzXCsgj7s8m8Jzy28QdlQEeEiSxrHUSZU71KVPAP4Kxy+VyE34BJPsQMPbUHrUCJ/GMFwSC9RexhArqDu4PPwnWMKafqFCYD9QHxA/BZNuZ2uT98PAwEhKDwSDGQlzcL6QBxAEqDWuYubq6GpU5kAlcg3U/3c3BxkKJkcPxdMYPf36oO9Lexs7hcDgcT2+kGm0dyMmEy2EhCIXxeKyLFy9OtJUjMaYGW1Ks+ZcUT2BJCjn554tEyrba40/pkgkfJ9x0BqDMAZM/Tvfr9brK5fKEnNr6JmDgR/LEqbxtJ4k8Hzk4XQQ46T04OND+/v5EqYA1iZtODpHsoyKwjv65XE61Wk3lclk7OzuqVqt6/PHH4+9JikkwXhLETKnI3t6eOp1O/DzGUjr2dkCdMBqNdNddd+nMmTPK5/MxkUX+3mw2tbe3p93d3VjegHqEU3uk7XZN2PaPkqLEnt+1RoUkpyGE2JWBsoVer6d2u63BYBBr/kl0rccBRoyVSmVC+QKpQUlGp9NRkiSqVCrKZDJqNptxfWGYKSkSBtYEkTWOUsG2dsS8k9eJEfKMazIPrDOUI5ZwofMG4wApBNFmx5f3WPULa5eYrFEkp/uUA1Wr1dhBBG8MYoR8ou1oqVSKygSIFe6XUgfKIxhT3g9Btbq6GkkVnn3KFnjW8vl8VDI0m81Y1oOpKEoOCAj2FMg6Syw5HE9nPDf/qFLBlToOh8PhePrinne2dPjIt+cdxsIi2JrpuQURwq6knqQL847lSWBDHvcs4XHPHssa+82K+7uSJNm8CddZeIQQOpK+Mu84ngSWdY1Kyxu7xz1bPN3jfjrtw/5/4tnD454tljVuaXljv6V78UIQCpIUQvhkkiTfN+84bhQe92zhcc8eyxr7ssY9TyzrmC1r3NLyxu5xzxYe99MLyzpuHvds4XHPHssa+62O23WMDofD4XA4HA6Hw+FwOG4YTig4HA6Hw+FwOBwOh8PhuGEsEqHwtnkH8CThcc8WHvfssayxL2vc88Syjtmyxi0tb+we92zhcT+9sKzj5nHPFh737LGssd/SuBfGQ8HhcDgcDofD4XA4HA7H8mCRFAoOh8PhcDgcDofD4XA4lgRzJxRCCC8KIXwlhPD1EMLr5x3P1RBC+FYI4a9CCJ8NIXzy5LV6COFPQwhfO/mzNu84JSmE8FshhPMhhIfMa1eMNYTwiydz8JUQwo/NJ+orxv2GEMJfn4z7Z0MILzE/W5S4nxFC+LMQwpdCCF8IIfyLk9cXesyvEvdCj3kIIRdC+HgI4XMncf/bk9cXerwXGb4X35I4fR+eIXwfnnncvg/fZPg+fGvge/Fs4XvxzOOe/16cJMncviSlJD0s6S5Jq5I+J+neecZ0jXi/JWlj6rX/KOn1J9+/XtJ/mHecJ7H8iKQHJD10rVgl3Xsy9llJd57MSWqB4n6DpJ+/zHsXKe7bJD1w8n1Z0ldP4lvoMb9K3As95pKCpNLJ9xlJfynpBxZ9vBf1y/fiWxan78Ozjdv34dnG7fvwzR1P34dvXay+F882bt+LZxv33PfieSsUXiDp60mSfCNJkgNJ75P04JxjulE8KOldJ9+/S9KPzy+US0iS5M8lNaZevlKsD0p6X5Ik+0mSfFPS13U8NzPHFeK+EhYp7rNJknz65PuOpC9J2tGCj/lV4r4SFiXuJEmS7slfMydfiRZ8vBcYvhffAvg+PFv4Pjxb+D580+H78C2C78Wzhe/Fs8Ui7MXzJhR2JH3b/P1RXX3i5o1E0p+EED4VQnj1yWvbSZKclY4XoqStuUV3bVwp1mWYh9eGED5/Iv9CsrOQcYcQ7pD0fB0zhEsz5lNxSws+5iGEVAjhs5LOS/rTJEmWarwXDMs2Psu8Fy/zGl3oPcHC9+HZwPfhm4plG59l3oel5V6nC70vWPhePBvMey+eN6EQLvPaIred+FtJkjwg6cWSXhNC+JF5B3STsOjz8JuS7pZ0v6Szkn715PWFizuEUJL0vyT9yyRJ2ld762Vem1vsl4l74cc8SZKjJEnul3RG0gtCCM+9ytsXJu4FxbKNz1NxL170OVj4PQH4Pjw7+D58U7Fs4/NU3IelxZ+Hhd8XgO/Fs8O89+J5EwqPSnqG+fsZSY/NKZZrIkmSx07+PC/p/TqWh5wLIdwmSSd/np9fhNfElWJd6HlIkuTcyYMylvR2XZLlLFTcIYSMjjeg9yZJ8nsnLy/8mF8u7mUZc0lKkqQp6aOSXqQlGO8FxVKNz5LvxUu5RpdlT/B9eD7wffimYKnGZ8n3YWlJ1+my7Au+F88H89qL500ofELSs0IId4YQViW9UtIH5xzTZRFCKIYQynwv6e9IekjH8f7Uydt+StIH5hPhdeFKsX5Q0itDCNkQwp2SniXp43OI77LgYTjBy3Q87tICxR1CCJLeIelLSZL8mvnRQo/5leJe9DEPIWyGENZOvs9L+tuSvqwFH+8Fhu/Fs8NSrtFF3xMk34dnFa+Jz/fhmwvfh2eLpVyni74vSL4XzypeE9/89+JkDu6f9kvSS3TsovmwpF+adzxXifMuHTtifk7SF4hV0rqkj0j62smf9XnHehLX7+hYljPSMRP1qqvFKumXTubgK5JevGBx/7akv5L0+ZOH4LYFjPuHdCwX+rykz558vWTRx/wqcS/0mEu6T9JnTuJ7SNK/OXl9ocd7kb98L74lsfo+PNu4fR+ebdy+D9/8MfV9+NbE63vxbOP2vXi2cc99Lw4nF3U4HA6Hw+FwOBwOh8PhuG7Mu+TB4XA4HA6Hw+FwOBwOxxLCCQWHw+FwOBwOh8PhcDgcNwwnFBwOh8PhcDgcDofD4XDcMJxQcDgcDofD4XA4HA6Hw3HDcELB4XA4HA6Hw+FwOBwOxw3DCQWHw+FwOBwOh8PhcDgcNwwnFBwOh8PhcDgcDofD4XDcMJxQcDgcDofD4XA4HA6Hw3HD+P+dYB5sPZtrpAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 360670 203613\n", + " Min thresh = 1000\n", + " Not Sliding\n", + "\n", + "\n", + " Winner = Not Sliding\n", + " FP Patient = 212s_iimage_128683942015128_CLEAN.nii.gz\n", + "\n", + "\n", + " FP ROI = 212s_iimage_128688523296793_CLEAN.nii.gz\n", + "212s_iimage_128688523296793_CLEAN.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADDCAYAAAAya0IYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADsz0lEQVR4nOz9ebxu2V3VC4/59P1uTpeqSoWqhARCMAldTIJiBIGACIT3iqCXHgJBUBEURK6K14tcmgCiJISXTunz0gooIgIi6SAEDAGSVNrqT7Obp+/X+8fe37nHWmefqjqnTtXZp84cn8/51DnPfp615pprrqf2GL/xGzNkWaaEhISEhISEhISEhISEhISEq0HpRg8gISEhISEhISEhISEhISHh5kMSFBISEhISEhISEhISEhISEq4aSVBISEhISEhISEhISEhISEi4aiRBISEhISEhISEhISEhISEh4aqRBIWEhISEhISEhISEhISEhISrRhIUEhISEhISEhISEhISEhISrhpJUEh40hFCeEcI4WU3ehwJCQkJCUcIIbw/hPA3HuN7sxDCh17jea75swkJCQkJCQknC0lQSHjSkWXZ87Is+50bPY5HQgjhr4cQ3h5C2AshXAoh/GII4Y4bPa6EhISEpzJCCN8RQrg3hNAPIXwghPDPb/SYEhISEk4arrcw+2jHS78XJzwSkqCQkHA8/kzSp2ZZtinpdknvlvSaGzqihISEhKc+fljSh2dZ1pP0Ukl/N4TwOTd4TAkJCQm3OtLvxQlXRBIUEp50uK02hPCvQgivDyH8RAhhcKh+PieE8M9CCOcPK1WfYp/9khDCnx++970hhK8sHPufhhAeDCE8EEL4cldcQwj1EMJ3hRA+GEJ4OITw2hBC87gxZln2cJZlD9hLK0nJopuQkHBLIITwohDCGw+rUQ+GEP59CKFWeNunH34PXwwhfGcIoWSf/9LD7+rdEMJvhBA+5LGcN8uyd2ZZNrKX1krfvQkJCU9BhBCeG0L4ncPv2XeEED7TfvY7IYQvt39/cQjhfx3+/X8evvwnIYRhCOHvhBBeFkK4L4TwzYffye8PIfy9az1ecazp9+KER0ISFBJOAv6WpP8kaUvS2yT9hg7W5h2S/rWkH7T3npf0GZJ6kr5E0veEED5akkIIL5f0jyX9DR18yf21wnn+X0nPkfTCw5/fIelfXGlQIYRnhBD2JE0kfYOk77j2S0xISEi4qbCS9HWSTkt6iaRPkvTVhfe8QtLHSvpoSZ8l6UslKYTw2ZK+WdLnSDoj6fck/fRjPXEI4ZtCCENJ90lqS/qpx3EdCQkJCScOIYSqpP8s6b9JOivpayX9ZAjhwx7ts1mWfcLhX1+QZVkny7KfPfz303TwnX2HpC+S9LrHebzimNPvxQnHIgkKCScBv5dl2W9kWbaU9Hod/AL67VmWLST9jKS7QgibkpRl2a9lWfae7AC/q4Mv4r96eJzPlfSjWZa9I8uysaRv5QQhhCDpKyR9XZZlO1mWDSR9m6TPu9Kgsiz74KG167Skb5H0F9f1qhMSEhJOKLIse2uWZW/KsmyZZdn7dSDsXibSHn6fflDS90r6/MPXv1LSv82y7M8Pv9e/TdILr8Kl8O2SujoQKv6TpP3HfUEJCQkJJwsvltTRwe+78yzL/oekX9XR9+i14v/Ksmx2+Dvyr+ngd+PrgvR7ccKVkASFhJOAh+3vE0kXsyxb2b+lgy9dhRA+LYTwphDCzqFK+uk6+GKTDnq67rVj+d/PSGpJeuuhtWxP0n89fP0RkWXZjqQfl/TLIYTK1VxYQkJCws2Iw9azXw0hPBRC6OtAFDhdeJt/x35AB9/BkvQhkr7Pvmt3JAUdVM0eEw5F47fp4P8B3/po709ISEi4yXC7pHuzLFvbax/QVXxPHoPdQsuYfy9fN6TfixOKSIJCwk2DEEJd0s9L+i5J5w5V0l/XwS+qkvSgpKfbR+60v1/UwS+mz8uybPPwz0aWZZ3HePqKDixpvcdxCQkJCQk3C16jg+rTsw8DEr9ZR9+1wL9jnyGJ/tp7JX2lfdduZlnWzLLsDdcwjoqkZ13D5xISEhJOMh6QdKdnz+jge/T+w7+PdFAIA097DMfcCiG0C8fje/lajvdISL8XJ0QkQSHhZkJNUl3SBUnLEMKnSfoU+/nPSfqSw5Cbliwf4VAB/iEdZC6claQQwh0hhE897kQhhM8JIXxYCKEUQjgj6dWS3naoyiYkJCQ81dGV1Jc0DCF8uKRXHfOefxJC2Aoh3CnpH0qi7/a1kv5ZCOF5khRC2Agh/O1HO+Hh9+1XHh4zhBBeJOnvS/qt63FBCQkJCScIb9YByf+nIYRqCOFlOsgU+5nDn/+xpM8JIbQOw8W/rPD5hyU985jjfmsIoRZC+Ks6yBx7/eM8nqT0e3HCIyMJCgk3DQ5zD/6BDoSDXUl/V9Kv2M//i6R/J+m3Jd0j6Y2HP5od/vcbD19/06GF979LulJYzR06aIkYSHq7DpLGX3EdLychISHhJOMbdPAdO9CBGHtcSNcvS3qrDn5R/TUdbPmoLMt+UQchuD9z+F37p5I+7TGe9xWS3nN43p+Q9P2HfxISEhKeMsiybC7pM3Xw3XhR0g9I+sIsy8gl+B5Jcx0Q/R+X9JOFQ/wrST9+2FpGTsJDOvj9+IHD93/V4zyeI/1enHBFhCzLbvQYEhKeEIQQnquDX2Trh8FgCQkJCQkJCQkJCU8pHDocfiLLsqc/ylsTEq47kkMh4SmFEMIrDq1eWzqokP3nJCYkJCQkJCQkJCQkJCRcfyRBIeGphq/UQcbCe3Swj/pxfb8JCQkJCQkJCQkJCQkJjxNPmKAQQnh5COGdIYR7Qgjf9ESdJyHBkWXZyw93b9jOsuwVWZY9eKPHlJBwo5C+hxMSEhJuPNJ3ccITjSzLfie1OyTcKDwhGQohhLKkd0n6ZEn3SfoDSZ+fZdmfXfeTJSQkJCRchvQ9nJCQkHDjkb6LExISnup4ohwKL5J0T5Zl7z1MMf0ZSZ/1BJ0rISEhIeFypO/hhISEhBuP9F2ckJDwlEblCTruHZLutX/fJ+kvX+nNpVIpCyHEf4cQxL+zLNNqtYqvl0olZVmmLMtULpdVr9fVbrdVrVZVq9VUr9dVKpU0Ho81GAw0n8+VZZlKpZKq1aoqlYpWq5UWi4XK5bKq1apCCFqv15Kker2uSuVgWtbrde7vq9VK8/lcy+Uyjm2xWGi1WqlUKqlUKnE98f1ZlqlSqahSqcTr4jPr9Vo4RCqVisrlchxHtVpVuVzWarWK1+9zk2VZfC/n9teq1aqq1Woc02q10nK5jD/nmvzfvFa8B8wP11MqlVQul+PP/L8ck+viOOVyOf7d7zX3ongtjLt4HL/+UqmkSqWier0ex7Ner+P9qVQqKpVKcQ4ZF8f0cfK6z62/xvgL61YhhHh8fy/jL55juVzmzs/nyuWyarVaXAetVkvVajWuucVikftccZ4dfo0+5uJ41+t1fM2fM67V54HjMOe+xn1dcTw+7zhurXAfiz/j58eN26+T8fL8NxoNSdJyudRisYhriznxNe9rsbg2fByz2exilmVnLpvok4+r+h6WpHKnnT3z7rUe/tPmEzqwhJsTz3n++EYPIeEWxfvvXejizio8+jtPJK7quzh9DyecRMzubOsvbV240cO4It75vtMKg/T/qCcaA+0e+zvxEyUoHPeln2MXIYRXSnqldEAYOp2OlstlJAeQrPl8rul0GolHo9FQqVTSbDZTqVTS6dOn9YIXvEAf8zEfo7vvvlvPeMYztL29rXvuuUdvectb9Bd/8Rfq9/uSpF6vp7Nnz0qSzp8/r3q9rttuu00bGxsaj8eaTqd65jOfqWc+85kKIWg8HqtWq0WBYjKZ6L777tMDDzyg2WymarWqnZ0dXbx4USEE1ev1SNIajYZms5nm87na7bY2NzfjtY9GI41GI81mM00mE00mE1UqFfV6PZXLZU2nU21sbMRx7O/vazQaqVKp5Aj9dDrVarVSvV5Xr9dTtVrV/v6+5vO57rjjDt11111qNpuqVCqaTqd6+OGHdf78eU2nU5VKJc3nc+3u7irLMtVqNUmKxLVcLqvRaORI33A41GAwULlcVq/XU71ej9dUrVa1Xq81n8/jXJXL5Sj2IM70ej1xz6vVqqbTqS5duqTd3V1Np1M1Gg1tbGyo3W4rhKD5fB7P02g0omC0Wq3iOJ7+9Kdre3tb5XJZi8VCly5d0mKxUK/XU6vVys35eDyOZHqxWFwmDkE4V6uVptOpZrOZVquVarWaWq1WjvxWq9V4z4fDocbjsZbLpRqNhjqdjmq1Wvw8Y7506ZKGw6EkaT6fa29vT7PZTJJ0+vRpnTt3Tr1eTx/90R+tu+++W41GQ/fee6/e9773aT6fq1QqaTKZaDAYxGMjyiwWiyhkIFwgboQQVK1W1Wg0lGWZ9vf3tbOzoyzL1Gq1FELQ7u6uJpOJqtWqut2uarWa5vO5JpOJlsulKpWKarWatre3tbW1JUna29vTww8/rH6/r+VyqU6nE0U46UgoCyHEv9dqNZXLZc1mMw0GAy0WC21sbEQxgPmfTCaaz+dqNptqtVpaLBa6ePGiJpNJTrzpdDo6e/as7rzzTj33uc9Vt9vVZDLR/fffrwceeED7+/vxWZxMJhqPx5rP53F83JvZbKbpdBq/h7jP99xzzwce9RvvZOJRv4el/HdxQy3d9Y7P0F0366/tCU8cSmX9xm+89UaPIuEWxYs+9d5Hf9PJxVX9Tpy+hxNOIu75+hfrLX/ntTd6GFfEJ/2fX6bK/0j/j3qi8d+z/9+xvxM/UYLCfZLutH8/XdID/oYsy14n6XWSVKlUMqqGVAmzLNN8Po9kDGK7XC5j5X0+n2swGOjBBx/UxYsXdffdd8cKdavV0pkzZ7S3t6fJZBIJV7/fjy4FHA/SATnEOVAul9XtdiUdkD5Egmq1qjNnzmgymajf7yuEoI2NDY1GI02n00hIeS/iCEQXwu2uAAjpcrmMwsJyudT+/r729/d16tQpNRoNrVarOG6qr5BGSHAIQZ1OJxKu5XKper0ex9DtdrW/v6/pdCrpyA2Ai4P5gHzimJjP56rVatrY2IgiQNEtwvGko+rufD6P94pKO/NeqVTUarWi0MD8c10hBNVqtXhsyDvHZm4Zw3K51HK5jA6SLMs0nU6jUwN3Ck4Gd28AhCoq181mU7VaLY5pOp2qVqvF8SNK1Go11Wq1WD1nzqiq+zV0Oh1JiqJCo9FQCCHeU9bV/fffr42NDZ07d06bm5tqtVqaTCa5+Vsulzm3COuo6DbgnnANOGa4Bsa2ubkZxQDWQa1Wy63XUqkUx9pqteJ6QwDgveVyOXceiDv3GsK+WCwkKefmQYDya0LQaDQauXngProrotFoqNFoaDqdajQaaT6fazabab1eRydD0ZnDnDKvPA8ujtyEeNTvYSn/XdwL29c/VCchISHh1sZV/U6cvocTThrKZ84oOzW/0cNIOMF4on5b/gNJzw4h3C3pfkmfJ+nvXunNkCK3crsN263eVOUhltPpVOfPn9e9996r5z73uZIORIl6va7NzU11u91IpCE9fA7i4q0CVH07nY4ajYbe//73x/aIWq2mdrut7e3tSBpXq5U2Nzd14cKFWN2H9EtHbRqlUknT6TSSUkgVZB6hAfKEqIAjo0jMIL4QeirVtIEwV4vFQvV6PTpAdnd3tb+/n6vMz2az2DrgRA1nANfJe7hniD1uPecYkPvZbBaJ4nq9jtV4CD8Vbci+t5U0Go34GkINLg3GAJlkPIvFIgozPj+QUdYPos9yucxdB+IVY8K9wee88u/joPJ/3P2HgPsccxz+S/WfNdjv93Xp0qXo1tjY2NBgMMiRdp6barUa7xFrB0HB50g6ci6USqUoljC/iBs4HXDdsOYQVmazmUajUXQ8bG5uqlwuazgcajabRRcJrRvMNeNB4KHFYzgcxrXiIh/zhdAkHQgfzWZT4/E4rgkXrGazWRQ7er2eNjY2ojthNBrFa+PeFltCWJuIDze5oHBV38MJCQkJCU8I0ndxwk2ND37ps/Xev/EDN3oYj4jzH1PX09/U0nqc2h5uBJ6Q35azLFuGEL5G0m9IKkv6kSzL3nGl94cQInmE0Hsft5NfSTnCs16vtbu7G63Ni8UiVlYREyCX0lHP/ng8jqSWdoTVaqXxeKzd3V097WlPU7PZVLVa1Wg0Uq1WU7PZjKQUQgNRLZfL0fIOWYO0IJBIipVWJzSIKFwnroG9vT2VSiVtbm5GAsZ8ccz5fJ6rUJdKJTWbzSg64Mgol8tqNptxPmgZgegPh8OcNR9Bgc8iEJTL5Wijd7LK2BEVIObYyGezWRRlILzL5TKOlco0BA4C2Wg0oj3dXRTMA/etOA8IRtjoXdhxso0wwPxzLziWXxNzgHjj64pjQ75Zvy4SrVaruIYgyeQkuPOCFpvz58+r1+vpjjvu0NbWlkajkZbLpcaHX5ach1YQFymKGQvuSHCBxqv7XCfk350VrVZLs9ksHns6nWoymajX66nZbMb3IXiUSiXV63V1u93YdoN4wfPpz3+/349rknNzH5g77qELIdxv2odGo5Emk0nMVtnc3IwtOBcuXMiNz4UZ/7uPq+hiuZlwtd/DCQmPiGytl/3pZ+t3PvKXbvRIEhJuKqTv4oSEJx5v/7of0Kf/2udKf/auGz2UWxJPWPkty7Jfl/Trj/X9VOIhD8cFBnp4IoQOgri3t6ednZ1I8mu1mjqdjs6cOaPNzU3t7u5GoQIyC9mFIM5ms9gTjqDQbDa1u7ur2WymTqejTqcT++sJy2s0Gmq1WtFeTWsCDgiyAbBn05KBvRqS5mNDEIAc0WMOIaR6W6/XlWVZJIG0hCAa7O3tRTdEpVKJ18Q5IP9eBXa7N8Taq+y8BkmVlGvlcIGg3W7r0qVL2tnZiWKEt37M5/PLCDH3d71eR3s6QpCk2GJAoOZ0Oo1iBcSTdgSvwLOGyEuASEK85/N5bFXwIEUXIyDlHuLHOV2E8JaQ4vwxL06KuXZEBtofLl68qK2tLfV6PZ06dUqTySSuWeZJUiTQLhYgziG20AqAKOHtIR5G6KGS5Akw7ul0Gq99Op1GgUQ6akPBqYMIt7W1pVqtFnNKAGsQQYLWJO4nawzhzDMuWNMcBwfC3t5eFAIR0Hq9nsbjsdrtdnRD+DXzPeICi7ulbmZc7fdwQsKVcO+3vETLP8ykj7zRI0lIuPmQvosTEhKeyjgxfl6IjFfuvT/cCYCnx/P63t6ePvCBD2hvb0933HFHJBQbGxs6ffq03vOe98QK6Hq9jmGI2MgRMubzuS5duqSHHnpI586d08bGhi5duhSJEISs2+1qd3dX4/FY5XJZGxsbkUhh64eYLZdLjUajHOGUFMPpvGecY/A5LNwIDhAenBFFi/pisdBsNothkovFQqPRKAYFNhqN+DNcC51OJzoU3BGCyCMdVYFph0AcoWLsuwJQ8aayvVgsYjAexyRfwPMSEFdcEHCyx+u+M0KlUomuAeaTtUNmgLczMDYCDn0XAOaOe+d2eIQT3xlAUhyzOx1wyRR7+wk8ZG3SAuMiGeNqNBo5l8Jdd92lzc1NDQYD9fv96JDxnIZWqxXnlHWFa2Y6ncb2AwIXeX58BwnGwTUzjwgKtIkggi2Xy+jGmUwm8bh+n9brter1uhqNRnQQICgx99w7Qj392eZnzBf3x9tO1uu1RqNRFK5Wq5XOnj2rSqUShcBWq6V2ux3f6w4h8jkQyXBjINQlJNzq+MOv/F61SrVHf2NCQkJCwg3Dfd/8Uo2fsbzs9dqlsu7652+8ASN68vCub2np2V+e2h5uBE6MoOB9075NZFFI8IBG/zMajfT+979f73rXu3THHXeo0+moXq/r9OnTOnPmTKyQUr2FrPf7fQ2Hw2g9H41Gevjhh9Xr9XT77bdra2tL3W43kj7CBLvdbswTwKVw6tQpVatV7e3tRULqFXmqrfSiQ+q9F54dLiBtpNJ3u93L7NduUYfESgc9+LPZLO5wwDHa7XautYAe+Y2NjXg+iBQE2EUQxuVbJCIoMG63tfPfbrerjY0N7ezs5Oz9EGicCMWqO9V2yJ63KBAUSXAjxyGjAEILQff7xz3BXQBJ5TPeclOcb9ab2/ARdDguooivaYSy/f19lUqluEsGYgduCyr0ZG30+3099NBDMUuh2+2q1WppOBxGxwb3jjEwdoQebP44Ctrtds7twjV5KwB/yP5gtw12XMAVwLzSuuKtIDg+EMUIffRWJgQYd1CwW4k7ZbgWDxAtiiDeJsQ93NraisJWo9GI7hyuqdgSwh936yQkJCQkJCQknFTsfeFLNP2cPUnSj77g+/Si+uXFkPcthvrs532F5n+0pWf86zc8ySN8cnDPy35Mn976JCkJCk86Toyg4JVtdyV44joEDdLjFe35fK6HH35Y9957rx588EHdcccdqtVq2tra0t13363bbrtN/X4/Wuzb7XYMlxsOh9EuPh6PNR6Ptbm5qYceekjb29vq9XoxzNF71n0nhFqtliOJxYwFD3+kvx93AGIGxJn3DofDaJUnpR7C6KSVqjHWdkg246J1AuJGtZ2qvrdxkIfgDgJvZeA1b81gTngPgLixvSMOEa8sQ6BrtVrczQLXgAcI0q6BIwGSChFHhOC8/IytD7H3dzqdy7IUXATwHTlcVPD1ydzhoMCOj2jgY5EUx04LihN/byPw4MrxeBzJN204Z86cyWV2sFYQTYo7V0CkESqozLOjQ7fbjYICOyf4HDImXDfMEW0ErEt2EyFA0cUBdlmpVqtxG09vYUGEYq3y/NCOxLPfaDSic4BMDUm5+8NcDAaDXCtJq9WKx2bOEbAIDcXB4WIb40xISEhISEhIOIkYfu6L9Q/++c/p73UvHb5yvLPy7mpHf/Kin9abnr/Sly2/Vk//tscmKsxf/nH6mi/65es02oSnKk6EoFDczQFS5JZpRAS3IDv5DiFof39fDz/8sC5cuBCDFglm297ejjbzEII2NzdjdXR3dzcSV8jT/v5+bAPwPvHscFu6TqcTrdhO3rGUe883ryMADIdD7e7uRjLsTgUq7BCu+Xyu4XAYLfAIH5Bkji0pOh/op/ddGsgT8F5x39EBMUQ6qtT7rguSIrn03RsgafzMLekQWNoceK+f23MG2u22Qgg5MunEm954FxFoUcDmT/Uc4ukZD1wHuRPAW05wMPg1e9giFnx2NOBztNEgSkBEqf6zZSTBgZJioCGhlbgKEHe4T8PhUPfdd18MEPWwR0m5XAKeC+aXCj+vIZrRgsDuH7hhXDBZr9cx6wPXC9V7XA7VajUKIM1mM4qBCGS+fSNtP/V6Pdfuw24kXDMiF8dhHryFhrnn2eMecO9LpZL29/cVQlCv14vjclGSa2VNe04G52aOExISEhISEhJOEuYv/zj9X9/2o3p5a/aYP/PiRlk/+RXfoy+cfp1ue/WjiwrjMxV91eb9j2eYCbcAToSgIClHCtyO7oTBwwi9B9urkx/4wAf03ve+V894xjPUbrcj6d3e3o7hjFR5aXEg+BDhYLlcajgc6oEHHtCHfuiH5toN2OJvY2NDrVYrV5HGtYDTwKv4VGxrtZr29/e1v78fWyOc5NM+4OF/Ht4oHe18MBqNYvWb+WEsW1tbUQRBTFgsFpHI8X6qzt4f71v4Ac868NC6xWIR7e7cJ4g8xHowGMQqPCS0XC5rMpnkcgfa7Xa8Bx7gx+utVis6MHCBMCcQQt/pgfYLBIT1eh3DCLHMI3wgFjCf3o6BWOL3pF6vx9BD7pmTfFp3PAxSUhQQ2H2j1+vF0EBcJMw3ff6+dSFiCnPI+XAYsAY9nJH5QIybTqfa2dnR7bffHlsAEHGYc+7nfD6Pa4O1NBwOoyOHthoEGN+dhXXfbrdjKxGtON7iUyqVouDjGRO0MnEv2LaV62XXCxdBPNB1NBrFue52u3HeEFgQD3CvIJjw/UA2R0JCQkJCQkLCicKLn6/ve+336/m1xlV/9IX1un75H36H/vb+P9GpH75yrsL6r32UfuT/frWk5uMYaMKtgBMjKDjJgxB4rz72aCqunq7vOwNAXEajkba3t6PN/ZnPfKYeeuihSPoQFGh7gBQ2m81cy4Fvu4hrgGp4u92OuxBIipVo33aPQDvIK4QakYCqLYR0tVqp0WhElwPnxOJPhdxT850E7e3tRRLUbrdz1Xb+WwzApCLO2CGJHlDn7RaeZUF7AZVn6UgUAmyz6eGIiAKQc+as0WhoY2Mj7mQAYaTdgXYO5tZ3PMAlgBPCAw8RGiDNzBe5Ek7auXb67Gl38N0F+IOLhHvK+vW1iVNFklqtVgweRDzodDq59eXZG8PhMBJrrmd7e1vtdlvT6TSXaVHMGnEy7G6P6XSqwWCgwWCg7e3tOA9cL64PrpXQxb29PWVZFtsxcF202+0owrE23eGAq2A6nWp3dze2o3A/2+12LoyxXC7HNhzPO5AUd4XwdhCeMXcd8AzzrBZ3rmB8LgCFEDQej3PBpd5ekZCQkJCQkJBwo1F55l368de/RqfL7Ws+xt3Vjn7rW1+tz9j5R2r94puPfc+qWtLzajeXmPDDf/TL+pJnfaKyRfr97cnEiREU6Jf3LRQhSVSeIRheWcYSzWcHg4EeeughXbp0SXfccUckGJ1OR0972tO0u7sbiY8kjUYjjcdj9ft91Wo1nTt3LkcMeS8EkTyCZrOpU6dOaWtrSw899JB2d3fjeYq97AgXiBZnz56NtvnFYhF3iqBXXFK0ixO4iKjAtW9sbMQ5YYtKxADEBwhbs9mM1XoPXYT4M+dU23FpkJCP+OGkDjGg2H5BRsFgMIjkmPsGgab9Aft8sQWjXq+r1+tF98hwOIzElZYQFxec9BVJJPOLuwDy7aSZsVCdhyhDZj0rgnP7eqXSXWwxKVroWdNU2d0lQWAg98dBlR63BISaXRN8jRGk6a04CHE8C5x3f39f7XY7Cmlelef+86dUKmlzczMKOBD5EELcQYHWBar/CE3Mw3w+j/eTcEmuo9lsxvDQZrMZnwVvx8Bh4zuUDIfDKLTg2GDsrDXuNefqdrvxvrrrhHsEiiJTQsKtjM+5+6/oF973v9JODwkJCQk3GFm9+rjEBLBRaup3/v1r9PKdL1Ppd9+W+1n4qOfpN3/8hySVjv/wCcVtlc6NHsItiRPzG7P3eEOcvMoKuYAAu5UbsgTRef/736977rlHz3nOc7S9vR1dDezO4KSa89AH3mg0dObMmUhS9vf3Y6W2VCrFgDns6mfPntW9996r+++/X+v1OhJwLPHS0a4FBBRCaugfpyo8Go3i9bG7BNVtCBDtBJAjyDNEnDkhQ4B2BOko14B5hIRxnavVSr1eL76fSjlVZ89h4DwEQSKKQEw9ewEhhvvrFWUqw25blxSvxbd/lI4qyYDxcR2MkXsOwfRMA8aN+2BjYyMGe7L+IPp+ndJBywLEGIFEUi7PouiuIY/C59SP7SGXvI54wTUNBoPoami32zp37pw6nU4UXXg/GSE+t4xnuVyq2WzGa9jd3Y1rEYcJawqUSqVcq4kHIyLCkZ1QqVTU7/c1nU5jcCTOIxc8WJ+nTp2KolC1WtXGxob29vZiiwJCA88IbiOIPuLKcDiMLS+IVIyH54f1gIBUr9dj0CpiAoKfry+Ex4SEWx3ZYq7/4yM/Wb/+Z797o4eSkJCQcMuivLmhX/+t11+/44WSfvOnf1Qv/8z/U6UPPHzw4ulN/fqv/aRuNjEh4cbhxAgK9JxjwadaLR2RMCf+VBY9w4CK8cWLF3XPPffo/PnzOnfuXKzek04/GAxyoW4QT1oKer1erP56VgEkWDrYmrHb7Wpzc1O33Xab3vOe90SnQ6/Xi20S3h4A6azX69rc3NTe3p4k5XYtgFxDprDIs/3f7u5uJHZOxr3NApeDCyduBz9uF4JyuRyvk6R9iKkTO47nQDxgZ4tms6lut6vRaKTZbBZbLzzI0LMhCAMknwEyf+bMmSiWuDsFUQDiCwnk3zgQWEesJc/bwL2AyOM7SOzv7+dCMhEOXMxi3TFPkHmcE4RK+nh9vlgTrDkXPTgm14SwhrA0GAyiQ6XT6eScHzwjCAw+Po5FkOJwONSDDz6oxWIRd0Jot9uRgCN+sWZpVRgMBrH1YWdnJ4p1jJl1QusJpJz5Ho1G8RlEVOBcW1tbmkwmUSRhPnE8EFDqa7fRaMScDlw9wOcY5xD3m9cZL6KDuxT8viUk3OpYPvcuSUlQSEhISLhReKK+h//rr/zEdT9mwq2DEyMoeEURAuRtA1QfIa/FqjOAIDzwwAP6kz/5Ez3jGc+IFXPIdqPR0GQyiaQT4u/tFvR9k4hfr9fjz6SjPuxut6vbbrtNW1tbuv/++3X+/PlI9ovbO0JufGcFSbFqyzgIyNve3o7XzJxAxnzrRRdcsOSvVisNh0NVKpXYmw7RYjyQzXq9rk6nEzMZPNwQwYXqLo4BdzrgYOBnOBAgkl6V7/f78X7yGYQb+uOZg06nE8P0mG9v3cAB0mg0cvkBnivgDhYpTxAhvxwXAsw8IKz4NpysOd8uknlxVwaiAwIJ6+A4gYE5g+DSwuI7eOBeyLJM/X5fe3t7udYJxkSLDMdhjGRzsGVkr9fTzs5ObOlx4cgBYXdxAJGGPAraHyTFHSs8yNJ3MWGuCcdcLBba3NxUtVrNiWG4Bwg4ZR4mk0kU5vjOQFRxAc3FFMaFaMFxCXdl7fFeBCruW0JCgrT4lI/V//ix/++NHkZCQkLCLYv0PZxwUnEiBAUnuG5px0HgwgLwqrNblCF9g8FA999/v9773veq2+1GwukVeHc3QHxI2yeYcDgcxm0mG41GJGveX91qtbS1taULFy5oPp9rZ2cntw2jb+tINZRqvJTftpBrmM1majabUVQYDAY6f/583EbSd2uA9HrYIpVsKtbz+VxZlqnZbMbPQlBDCGq1Wup0OlFQgMgVe/DdMeDb7rVaLbXb7UheIcCEVlIxh/BC/CDOiCgbGxvxtXa7HecRF4O3NXh+BMGd/rrfc9aJ53LwxwM/mU/aGrDBV6vVHDmnas+xOAduEt9q0ncu8VYKD2FEJIPAevZAUdzBrcL7/FnxbSv9z3K5jG0piGqtVkvD4VAXLlzQarXSuXPnYtBoqVTKtU+wXrjG0WiUE7lwP3iLCa8hoBG+yfX6Ti3dbjcKIsw1u3i4M4UQzNlsFsMkybyQFEUugBiGAALIGKnX69FNwvmZe+Y0ISFB+tUf+QFJqQUoISEh4UYhfQ8nnFScGEGBIDZIIxXbYoK9iwdeBZaOrPxYwy9duqSLFy/GLRDZTaFer8ddEhAgXGTwavF4PI6VUwQCKd+Lj82/1+tpf38/EhoIp+9rPxqNoiDANUHguU7v997c3IzHGA6HscfcHQ7kGmA7B549gBAB+WKM2NcJQmQ8EL/jMivcxg6hx0aO3R9Bgcqzh/z51pSQW89KqFar0WrP/aLvH1LJdbLdH2SXNYIo4O4NJ4cupnBdvm2g7+DA/WCMhGMW1yDncVKLAMNcuQjjdnxvWyhmMHA93m7CXHirC59h7F5dJ7wSkenUqVNRfJpMJjGgkYwFX4u+hn2crA/Gwmvu9iGokWfHW4dms5kGg4EkxXvubU6IDovFImZWuFiFo4UgUe4X4Y3MFSIFoY/MlQuWvLeYb5FaHhISEhISEhJuNB76upeqGt56o4eRkHAsToSgICkSSKqSEKDhcBgJPqTWxYXjtoqDHO7t7emDH/yg7r33Xm1tbcXe/vF4rAsXLsTPukWf8zrBJQgR4uIWf6zd5B1Q1ZUUXQN+HqzeEH1C47xFwol4s9lUvV6P1WQXQZgPjscxIESQVazxhOIhHqzXa43H40iucCgwpnq9HivEtEawMwVWeBcaIHi0NrjYgEOg0WjEijHCArtTZFkWx9dsNqNTAbFJUmzpgKhn2cH2nu7W8DXhAX0IA5LifYN0Q+45BvcCso+rw6+Xtcg53B3Az3ifuxRc+PAgUl5jbKx5XvMAR47Jv/njcFGCY5IR4c/Qer3WaDTS3t6eWq1WFHmc0CMqeQ5F8fqYV28BwTVCeCetFTxXq9VK4/FYo9Eot/Umf8hMIX8DcC2eo4HbgGfBnU04MjhvUXDxsRbFtISEhISEhISEG4UPfOtL9cYv/S5VQ+tGDyUh4VicGEFBOiLgZAq4FZxKMa97dRFi6aD6+f73v19Pe9rT9MIXvjDubT8ej3NbO0IcPEsBogbpwS2AZbzdbkfSQ9W/1+tFwYAqv++YgMuBHR3IjICgO5GhihpCUK/XU7Va1c7Ojvb29uKWjIgcCCjT6TSKIvxZrVaRJO7u7sb2h06no1OnTmkwGGhvby+S12q1Gufbw/AggpxnvV7HNgeuESJHtZn3gVKpFN0RnMNDI6m2U9GGCEMymUdeq9Vq8V4h5CD6uGCA68FbaxBsfMtJ6Uis8h0CEHC4n9wj1g6VeG874TgQUhcNIOLcH6+We16A/4zr9hwJD2vkfJyDqjtiCA4YRIKLFy/G+QOj0UiXLl1SuVyOuyz4tqaNRiPnHuI6EMRYrzgCPPsDJw9iDcGiOBlYVziFOD6igudseCgj95hdKgicJDeEa0RY63Q6MWuBP8wfOQy+a0gSFBISEhISEhJuJL797/5HbZWTmJBwcnHN+4GEEO4MIfx2COHPQwjvCCH8w8PX/1UI4f4Qwh8f/vn0RzsWpKBUKqndbsf96YsECyLFZw7Pl0vFR1yYTqfa3d3VpUuXdP78+Uis2u22ut1uPAfOAarwLmL47gUIBRArUvGpyvd6vbgVpKRIoCRFQoOzAds81nnfbcKr91RmJcWAwna7ncsEIFyOHnF2i4C8MYfdbldbW1txN4f1eq3NzU1tbm5KUnQ/QPi8ncNbONi2D4JXrVajqMA8QvqYCxduaNXY2NiIAYC+HaVvvehOAz8GpNXFA36GWwDHCIGNzDdzU+y197XI+VhLZF8gPrizwber5Oe4FXgd14cDkcIFC291cIGFNY+gQduMu0ncwUFbiud8cDx/bTQaxa0oEXjIVBiNRjmhiF0UFouFRqNRbGvx+eB6yZiA+LOmCNMsBq5yDoJScf44GB9uHObJAy3X63UU7ZbLZRTLdnd3NRgM4s9ZF6wh3AyIH4gZNwuu53dxQkJCQsLVI30PJzxReNePfoxe2nj4Rg8jIeER8XgcCktJX59l2R+FELqS3hpC+M3Dn31PlmXf9VgP5GFrtVpNnU4n9oF7Hznv5TUnnVSevdrY7/f10EMP6Z577tHzn//8WMHETbC7uxuP4ySTSijHI8l+b28vVqKx4bv9v9VqqdVqRWLUaDRy/ey1Wk2tVkuDwUD9fj/2qkNq4sQebqU4HA61v7+vXq+nXq8XK81Uf7133dsXiuF/kHzaPfb29uJWf9vb29rd3dVDDz2k4XCoTqeTS/pH/JCU61f3rTdxI0AGuX+IJ8wv2QdUy1erlSaTSY4Ye4bBcTgu4LCYkTAajWI7BrsSII5wz7g26Uis8NYZ/s25mAOcDZB/3850sVhEouotFy40IJi4g8QDJCG1xdYN6aidgFBE6ahVyN/LnLsogXsDsYFr4DisP3IWENyq1WoU1MjawE3AdRXDJ3EasLuKZ164S8NFBZwk5ItA9t1BUsxsIFTRgxS5P4hy3Lf5fJ4TEcktQWh0J4O7SYrCxgnFdfsuTkhISEi4JqTv4YTrjnf9yMfqDZ/0vTpb7tzooSQkPCKu+bflLMselPTg4d8HIYQ/l3THtR4PAsD+9djmPTyvSEAgRZ5A79ZviNfOzo76/b5uv/32SJLY1YAqKqn+h9eTC3Rbr9eaTCYaDAaxoouIABkm96Ddbqvf72t/fz+KF5BKkuzL5XLMM4DYsy0fVXzGv7u7G6vNECYEBeaAFgyqsMyPH8ezB2gHGQ6Hajab2tzc1MWLF7W3t6dSqaSNjY1ob9/f39dkMon29UajoU6no729vSh6sAMGW/pB0rwVBYLrApD3uXsGgFeoESnINMDN4On//Jxz4dbA4k+7gFeeiyIH53PHCPfURQWcFHwWMQhni8MdB545AFkuVtpdBHLXAdfkAol/FscGc1sMSeTzZHH4OKn4M6dshzkYDHJuEQ/VdLcB5J/3uJjhY4Cku6vB3UEuMIQQdOrUqZwDxe8fgmGWZbktUb2tpVarxbXCvA8GgyjAAJ4tnimeHbIUriRsnSRc7+/ihISEhISrQ/oeTrjeeNdrX6Q3f/L3JDEh4abANbc8OEIId0n6KElvPnzpa0II/zuE8CMhhK3HPBhL0a9UKjGQ0N0DxW30vGccYufVYQLfsPmTYs9OD94vjY2blgLInySNx2Pt7+9Hm/hqtYpb1kFSaYegitzv9zUej6NlHMJfDH3julw04LrH47EuXbqkD37wg7ndKrhWxBTaOVyEgcThSoAAr1YrXbp0SQ8//LDW63XsLS+Xy1EQ8AR9CBzOC0gbu1aMx+MoivBe7gE2esIkfdcDWiNardZlgpCfgx0hIHoeRFgMCMSBwH331gYn6A7PKWBdMT5Ibbvdjq0lnp+A28FbXajgkynhW3Dy2eOIKiKRhysWRQEq85zf2yncqYMzwNuFcMmwm0Or1dLGxkYUs7ytZDqd5tp8IOEeUIpgwr8RfZgD2hsYS7FlAWGF93DO4XCYE4Jo1UA0wAmEkwZxjrlwIcNbojxklTEiBtIqwfv8Pt9MuF7fxQkJCQkJ14b0PZxwPVDbmupsuX2jh5GQ8JjwuAWFEEJH0s9L+kdZlvUlvUbSsyS9UAdq7Xdf4XOvDCH8YQjhDyGakCEIMBbrIml3suDVXylPwKhgPvjggxoMBpFcOkH0CiuEhGN7IBvp+Pfdd58eeugh7e3tqVwua2trK7ocIIIIEljFITIQXEimbxHI5xAIqKRSce73+9Ep4Fv4QcyazWZsVyDszvMCIHEQena6GI/H2tjY0OnTp9Vut6MNnnFD+jxXYblcRrGB9oxSqRTDI327xSzLcoJOuVyO4gP3iVYOdzQ4IKHMIa0nLgJxvyHOvB/S6FsuFtZhnCPuO0KBk3/mmLXC/YbM4gIh2A+S7NcrHVW/fQeM49ZuUfzwtiDey2uIPd4qAfg3n+Ue0JLQbDajEMXPJEVnz2AwyIkGzAHPjo8PAYB1MhwOY0uFCy6sLYQKBA3/+Wg00mQyyYkgkH7cS7S1ENqIEOFZGTxXLj7wXCKQeZgkogg/K2ZfnGRcj+/ihWbHvSUhISEh4TEgfQ8nXA+857tfrD/7Kz92o4dx0+Jn3/e7N3oItxweV4NwCKGqgy/On8yy7BckKcuyh+3nPyTpV4/7bJZlr5P0Okmq1WpZcf93D70jbd6JFxZo6cgOTsXeq9Y4HnZ3d7VeryOxazab2tjYiMGEHuTY7Xa1sbERCT7Wb8jIzs6OLl68qNtvvz2GIiIAeCDeYDDIVUchL7Q+DIfDWE11kQQSSgAir2Hvdiv+dDrNiSzYw5kXwh2ZPyz68/lc58+f19mzZ3MVa3IRyLOoVCqxpcF7zLkPkqJ7gB51CDZjhxi6s4R5Ze49rA+Rh3OUSqUcUYR0TiaT6LpgLJ7aj3hj6/EyUYEQTHd/FJ0EiAyScsIAwg3hmsdt3cj4fVcQP76HcBaBW4X7wRxBfKmik/nBWLHvMxZfL+RLQPwh0+78Ye3QAtRut6NTA+dMq9WKxHw6nUZxjGvyFhDOwTUh2NA2xHPDtUwmk9zziltGUhTG/LguJDHf3krh88kc4iJhLTJmXDYIVVdytZw0XK/v4l7YvnnSKBMSEhJOENL3cML1QKjWtG5kKofrYiK/JdEKtUd/U8J1xTULCuHgN+0flvTnWZa92l6/7bCXTJJeIelPH+PxJCnnNpAOCFyz2YykVVKs4jvB9f7zImmcTqcxCwCiihDAzgVUekmGr9Vq6vV6kWRSGSW1nzyFc+fOaWNjQxcvXsyRNA/rkxQrpqPRKO40Ua1WNZlMrpgPQVW8GGgHEWO8kFR3V4QQ4naJtVpNs9ksEk7+S8bEYrFQt9vV5uZm3FXCWxc808CDDLleWgx4nblstVpR6PCdJ1w48XtFfgYOEg8URHSgJWMymUShgvspHYkokHeOCfnnfFjzfScMJ75OJD1IENJJYCDVdneBtFqtuE4RUnzXBRcUeB/jY+34XLlAgDDk7T1FsQgBwZ0Qfgx2cIB4F/MWmB9+5hV+Mj8IXuQeIGR5iwluI18/LhCxjmn18Z0iRqORQgjREYFLRlLcZYJ59S1AWfPFbTp9HU2n03idrBHPYkF8cZfDScb1/i5OSEhISLg6pO/hhOuF+/7xx+q9r/iBGz2MhISrwuNxKHy8pC+Q9PYQwh8fvvbNkj4/hPBCSZmk90v6ysdyMG8z8NR7dicolUoaDAaSjoidJ8sXQ+wcq9VKDz30kC5cuKAP+ZAPiTZryCt9/KvVSv1+X4PBQL1eT51OJ9q7vcd6MBjo4sWL2tnZiS0PbOnI+SCCkDquCQs4Dgiu0QPgIOibm5uRwCI4TCaT3LXiKJCUq6hSzR+Px5Eg7e/vRxdAvV7XaDRSv9/XaDSKLRMQVAhmcW4hmvS0Yw2fz+dxuz7fBpJr8xYODyFEOKFST64FdnqqzlTkcaV4pZt/Q8xxDLBWnNBCEhEeEFcguZ5x4UGNwPMTgu2c4G02uDs8U8DFEd7HH+/z9xBE6Ug8Yz5o45COnABU9ufzeczwQJij0t5sNnNtKy4+cT2++wRj4DXfWhV3D+0eo9Eo5+bx0Mf1eq3ZbJbbspLngmMiGrizgLYDck8Q9FyUWS6Xse2Ba3ZRCDB+xBqukfP58RBGigLUCcd1/S5OSEhISLhqpO/hhISEWxaPZ5eH/yXpOAb/69c0ENt6DtJH1dUzCjwwjQq5b00IifXKIiR5b29P/X5f29vbOQJH0Nt6vVa/39fe3l5sASha3530Y3f3LevYig7rvqRIsBjHdDrNtVQUWzlwD8xms+jOaDab8drcNu92eYgmYyTortfrxQp/CCEG2jUaDc1ms7gjBa0PuEE6nU50gDDHvg0gxNDJsQsK4/E412fvxJvjYGuHEJLNUKlUIjnn2IfrTuFwtwmvIHtgZ5G0MyceVghZnE6nUTxwgQrByUUMH7uHJ/ruHE6IfYtJnCgeMsq4gbcc8Bw4yWU+PPPB1zu5HQRpMg7uEeGXfh3AnScuUIQQNJvN1Ol04usIXH6fGGdxjXINxTXg21R6m46PgfXsghs7q5B3Qh6Jt44gHPg5mQv/TnDXDeus2CZzM+B6fxcnJCQkJFwd0vdwwvVA5el3aPSc+aO/MSHhhOHE/OZctIRDDNimUFIuh6CYeO8Vb99qkuNOp1Pt7OxoZ2dHjUYjvs+r6FjZIYBsM+eAjPmuB/RdS0eBjJCdcrmc25mALRvZmhFyxHix3tNyAKnybTU9iBKHAoQKMcOr/k7ksYpDxFarlQaDQeyTb7Va0ca+Xq9jCj+hg34OziMpih4eWAipduILwXXCikCAtR3xhOR+RAnf3s8t8v4+DyV8pMBOwNwwh74WPauA++lk3K39XKeTeBcCqOJzDL8v/IGIuzsEcQa3TKPR0HA4jK0MnJ9cDO6TiwysuyJx9zmATAOuo5hb4Vt9MmYn6+12O4oQrOPjqvyeG0LrCcf2rAvmEQHFWxO85YnPF8/n9xsBivvEvBeFSQQzF34SEhISEm4c3jHavtFDSEh4wnHxrz9D7/u019zoYdz0+Oi3fIFu15/d6GHcUjgxggLkE3Lm2wX2ej31ej3VajXt7+/HKqyH+EHA3UYuHVUi6efe3d2NFXu3u0MgCZujj5sxScoRtNVqFUPpqNy6XX48HqvT6UTRYDweR9I2mUw0HA5j/zjXX8wTgOghXkB26NWH8EnK7RyxWCwi2SRrgIwB2gE8m4JUfQScXq8XiRQknXNChCF+XsXnGMWMAOawVqvF/nVIN3NQq9XU7XZj7gI/Z5s/7g+Weg8TdJLP/UZscjEFgQlHAXDHC0IMFW5cD15ph5D6sb21A0FmOp3G7AHWDzsmsBa8HUNS7rx+LpwwvMdbORAiJOVCM11QceJdPBdzwDX6GFivo9Eozh3HcEcNTg/aFxAT3C3i4/T7wbPu40KAQ3xBAHAhhvfxGe6VZydwPhcKuF4XC/isz1/R1ZCQcCvjI3/5a/XeV/zgjR5Gwi2Iu//rl6v63v/3Rg8jISHhJsEdn3uPboqG1acQToygQAVVOqpeusXbK8BSPjmeijIkxrfPI/itWq1qPp9rb28v7p5QJFgQSkg5AYqMCULj2wWyowGEiLwFSCAECxIJ+RoOh7kcBa8uS0dVY66R89ATz3V63gS95qPRSPV6Xa1WK1ctlo4Ip7cNLJdLjUajKLI0m80oSrDjQqPRyBFNSDf2cuaLqq6TOQ8pXK1W2tvbi8dBROh0Ojp9+rS63a7W63VM+adCj3uCtgKuGyJPVgX36bj8A/7ueQYuALEGfAtLJ6QQ2eOcDlwPORL8QXwptk8Ux8XxfetQxoP933MimE/eV3QXeBAkPys6Norrnwo+IgVjZscHnkmcDnzet3wkx4Fx8z7mECLP5zg/7TnuXPAWGq7JnUn8DJHGvz+8FYZ77SISbQ787GZrc0hIeLLx7K95iz5s51V655el6lnCk4dnvv6r9OHf/Ha9MbGDhISEhBOLE/FbtFcNnVBIB0R6Z2cnEkrv5R+NRrmeZwhT0Ubu9v9+v6+dnZ1YRXX7NO8joI+tCalcQmwgJrQvsKUjJKzX68UQSYgPxAkCS6sDoXJUtD0QD1cAveq7u7vxmjlXMSeAFg1aOEIIunjxYnQGMA7EE64JFwDkD3GCeURYwOngzg1Ip88Nafm4D1yocWJeKpWiK2JjY0MbGxuRXHrgIMckhwJRoRjI5ztseN6FZywwDwg2nk/AOqD1xXcXgfSzZrxNxXcS4HjMCSGTHg7IPWD+GL+36rglH2HNQxyd2HuApt+D44iyh1D6ONxNgNjSaDSikMY2kqwD5pp7iwCESwAHi+c5eGtFMfOCdc21FYUp5qJSqcRWCBfhXEhA0OCzy+XBbh9+vqJo5yJR0TmSkHDLI8t097f+gf5S/6v19q9LCeQJecyyhT7+X/wDTc4GveNrH//6uPtXXqlTf1DWh//8n2l1GGadkJCQ8Gj4qG/7ap1dvvFGD+OWw4n4jdmT5LHYS0cVzfF4rOFwGHvaqSKXy+WYIeDVR09xd3JGJsF4PI7heJAiT6mHsIzHY+3t7cVKvpSv6nrlmO0DK5WKut1ubhcFRApP6ycA0gUUyCYp/LPZLIYqMobhcBiT8dl5wl0K7C4AyfTr8Sot1+y99hBCSfHYfs2IFW559/n2TAHCNLlPnMv73ZvNptrt9mU7bqxWK3U6nXjfGBfOAoQDzgWpdms81XG32uPAcGeFh3966GSReEKwZ7OZZrNZnFeun/d5q0VxjXurA8eTFO+3CwrMlYserA/PGvCfuSvC8wako5Yar8a7qMDrxVYh5orMBm+zYU13Op3YnuStBGRwSIpCGHCHAOfwueYZn06nOZGA+++CkrficAx3ZXA9vI9nzh0PHlDJ+32ryoSEBClbLvX07/8jvWDx1fqTf5pEhYQjfOorv1qnfu2NKrVaetn//gpJ0gf+VtD7PvN1V3Wc57/l87X9Qx19xB/fp+X9D2j16B9JSEhIkCR97L94lc792FuOze5KeGJxIgQFyBWklj75YogfZJeqqBNMr0ZKylUefRcIjuWkxMPt2u12zEaAJGHppxILkSZ7gHYKkudrtZrOnTsXK+0eAEe1nnHxM66D6jttEZBytrrk2tzmTfWa1pB2ux0zF8hL8OND/iGMTsS8/7wYEonbgEwFH0vxXhKmWa/XY+WfbSO5FlodyH6A8NGL7+LScrmMW2B61RqSzlg4l4sXXDvigrcOTCaTKC4QKklLC0IExNxFH0lRhPD15eKDr0Xmrph7gYvDd2/w3SIYs8Ov17NHWMO+s4ZX3YsOC5/bYqsIRLr4eZw6XGOlUlGr1coR/+PEFAQOBD7EOHeUeCZD0V2CQOAiTPF/GC6kOHCQFEMWEW6K7/dxJyQk5LGeTnX7a/9IL1ASFRKkl335V6j5wEj1P/4DSdJ6PFb91w7+/tw3n9Knvfbvxvd+6k++Qf9o6/2XHeN1+7frFz//ZZKkOy/saXn/nyul1yQkJFwNPu6fv0qnf+KtylL21Q3BiREUGo1GJAneow+BGY/HarVaMYyxuM1d0Rrt8J0QOCZWerZSpKJeKpU0Go20t7cXq6guOGBfx74PKaLXn50Ltra2NJvNtLe3F68LQtPpdOIxEFIA1waBpjWi0+nENgRJ0a3RbrdjkCSOhlarFUUFdmRoNpuRtHqwHcfh+opbH3r1u2gn59jHWcVbrZZ6vZ7q9br6/X6cA7IYcCR0Oh11u93oTMCJgpjBffb+fulom0ivovO6B1q6bb3YDiApri9s/N6bj4DFdTEmzydwAYbjuxOg2Kbg4X/8QYAZj8c50YfrwJHg5Jef83mvuPtz4e023AN3+uBe8UwSd/Zwbp9TFyAYe7fbjSGazG+RkCNmeJCji1W8x50XBHniKnLhxNtYXPjx9cGxJOXmgnXsYpCP0ceSkJCQx3o61W2veav+5us/Pff6R/znB/WdT3vbDRpVwpOJj/uWV+nsb3xA9Qf+UOsrVANXFy9JFy/Ff/+3lz1bv1n7iMvely2XWj98kMh+vLybkJCQcGV81L/5ap37T29JYsINxIkSFKQjKzQuAg8fhOB6lZSqb/GXfyd4fJaMASd6boXHCbCzsxNbFiAgTiKpsM/ncw2HwzgGjhVC0ObmZqyWD4fDy0gi9n4IHUSec2VZFh0K3W437hjhves4Naj4uuvCt+/jGiDzCA8ERjabzVx7BKGJzGPRgQCm02muok1lnHnm+Dg8eN0dJr6VIgIN4+E98/k87jKA2CAdVcKZE+4pVnrfscDh7gZ2YYB4eh6ACz3cIwI3pXxQJ+fB3cDx3QUAIS7a7yXFuXO3CShW0LkfHoboggXX4605fM7bUvjvcXkFHg7pLhYPVeQ8iGz1ej1uMwmKLgsPdcyyLPf+YmYBzySCoosY/LwYqHhcwCLOGAQPX7MeiloUIfh3QkLC5chmMy3vfyD32ttfUtenhRffoBElPJnYnr1Jy6u0Fa8uXHiCRpOQkPBUxSpbqxxKuX9L0nN/74v1rC9+lyTp7OyNqc3hBuPECArtdlu1Wk3D4VCXLl3SYDCI9n8IGJVyt8Z71RcS4MSIz9EC0Gg0VKvVNBgMNBwOIxnEFt1ut3Xq1Cnt7OxEEuu5B751IAKBZxZAOLMsU6/X02g0ypEmryB7RZytBvkZFdzRaBTt5AQ+QujYwYLwxP39fQ2Hw7glJOIH1nxEFtoByALg5+VyWd1uV7VaLbYCEMa3Wq1yWRLebgLJYxyAFhJP4y/mVSAa+FahpP37/WcNzOfzSMy5Fs7N5xBkuE/FPAKcD8wzrQ4ebkkbAtfDdpu0YngQIoTbxS4EL28d8C87b5HgGjwo05+NYpCht6GwnjxA09topKMtG5kLHwfz6HPC64wJgcSBGOLZD7yfNh+Ow72GtDMvxe0lnby7iMIYCEj13BB3IPA5dzgUHSqSLpvL4vkcvp1lQkLCIyObzdJWXQkJCQnXiM3/9EZ95O1frT/9h7dGO9kqW6u/nj7ie/7eX/o0/djbf11VBb1++KH6+eeelSTdrf+dHE0nCCdCUMAhgLXaCRNbBUJ6vVebzxYrlE62IEqQelwIs9ksOhCoUktSp9PR7bffrsFgEAkqBMWt35wL2z9Epl6vR3fAYDDIVdQRThgbLQAQKQg0xBUiyW4TtGXQHuC2/kajEQMbESdwBEynU83n80i0Pa/AgwrJXwghxAwLJ8dO1mm/4LjMq1fqR4fJzGwJipDgZJVARb/W8XgciXm73Y42et/Vg10TXIwAuD4g+94W4/cCYsm8Iri4RZ41RjgoopPnYPhahCwjfHkWgIdzcv+8lcFzBPi3H19SrmrOOkTsYJzudPHch2LQJOfjjwtOxXaB455ZD7H063FBx9tkEBWKbUT8nXXMfEHmPTSTNgmO7W0n7qJwd8hxLgMXv3hOePZ8rpPinZCQkJCQkPBkoTKRHlwOdVulc6OH8oTgrbO5Vjr4/esnLr1U7/zYxaN8Yl9fcOfHP/EDS3hcOBGCAv343tcN6apUKjFzgNwD74N3dwB/PLQOkuO7EIQQNBwO1e/31Wq11Gq1cuSpVqtpa2tLOzs7kcwCyHmv14sEZzQaqVarRVdAs9nMkWgnT04o3Wnhc+EtIOv1WpPJRKPRSL1eT7fffrskaWdnJ+fY4DNUh71C7g4LiB0tGN7Hz3gh68PhMBJA5s/f3+v1LtuOstgjj7DBffHWiuOyBBAH9vf3Y7sEOz7QQrJYLNRsNtVsNtXpdOJncAhgcWddcX8J2KSNwreTLFa9Aa8heIxGI63Xa505cybOKWsNIu/bb7LeJEUxxNsgCFUsimK+ZpxYH0fwuUcu5vh5i2SfYwFfl4wf5wrXWLT/I5TxM+4N53X3DuNmC0rWrIs3RQHAMyIYK68jdh0nzAAXh4rPmM8N7/W2jGJ4Y0JCQkJCQkLCk4Fz/+4N+it3f4Pe83dee6OHcl3wW5Oy3jM/F//9ix/1DK0jt3o0MSHhZsGJEBQgCZAqWgEgSZCb+Xweq8RuT/ft3ziedNQXT7WcnRs6nY7W63UMXuz1erm+7mq1qo2NDZ09e1YPPfRQzoWAiABhd3s3pGlra0ubm5uxrYJMgvV6HavhkG7IS3HrO7eJ47DATdHr9TQej7VYLDSZTCLxZotGiBHHLJJI31HDd0nwUEZJ0WbumQSz2UzL5VLb29va3t6OmRdesaYtgJ8VAwobjYZarVYuZA9B4LgdMJrNpsrlcgznWywWMaNha2sr3hMXkzi/X6+7NujNpxUGuNDDPXNAnoshgd5ug0DBGnFBgXnnNd6PCME4cXvwc9wKvu7573q9js+Fb/3IeD10kWeM9VQM1fSMAw87LJJ2hBvmClGD9cT8cRzg83GcAOBzznGKjgwfU7GVp+hGYE79s8wDYg33xd0hxQDHhISEhISEhIQnA+17S/qfU+kTGjd6JNeGN01X+uELnyBJeue/fZ6av/QW++kjtzgk3Jw4EYIChJCqPL/w+3ZykuKuDB6gRtUTMulig78OCRyPxzp16lSssHqSPpX0er2uzc1NjUaj6ATAQUH2wHw+v2wbwNVqFYPp6vW6ut2uRqOR2u22dnd3o/hAJd63YBwMBtG67uGAknKktVar6cyZM1oulzp//nwMWIRI0noA2eNzjE9S3HoRB4OTPN7DvE6n0yha0IYBIcaVIUmDwUDj8Tj3M1wBkGL+i6hSr9dzOzoUiSZCBp/1sDzuG8Qd8YCfQRjd1u67FwDe6wRVyotSTvo5FkJEs9mMbSvY9P3eFivduCIAhBdhwCv73FPPCnHRzEUwjr1cLqMAA1zscdLu8+QCAtV/z7FALKDNh/uC44O59Oviv0V3AM9o8b4jfrj4BIr3x+cL0cxdGC5iIU4BXq9UKqrX6/H6vCXEry8hISEhISEh4cnCba9+g15V/2r9hy9/rV7WPPlJAS/5k/9P7t/7v39Od/6bN0iSmnrLcR9JeIrhxAgKTjylowozxJTecHr6Ia4QK8iAW6ldjJhOp7p06ZJ2dnZ0++23x+0KnYxCSiDE7K6ArR8xYTAYqN1uq9Pp5Ej5crnUzs6OGo2Gbr/9dnW7XY3H47hDgzsZIMZUz6nwSkdOAX7mVWBJcdz9fl+j0ShW7Gnf6HQ6kfwWWw6YK0hssd+dqnq73db29rYGg4H29va0Wq3isT0UstPpROKMA2S1WkUbP2Ov1+s5yz7nZv688g3Bo0XBK9GedTCdTmNrCUJKs9nU3t5enFu33LM+OK5Xup10F+EtCNwfWkYkRVGFLQ7n87na7baazabG43G8B34vi2GBZFlwz5xk+64eTrJdgPGdRlz88HvrRN7PzdzX6/Wc4ICzgbXP8ygdiT0IJ96y4Md2YQAnThF+j9yF4c4E5uFKmQ4878DFFs+VIJsDhwZrB6cCjojj3BsJCQkJCQkJCU8Gnv5v36CvXX2Vfuirvl8vbtzY4sard56p73/LJx7/w7X0nC//w9xLPb3nSRhVwknC4xIUQgjvlzSQtJK0zLLsY0MI25J+VtJdkt4v6XOzLNt9tGMRFIj7gF/0qYpSZURUgIBQRfTWB6/og/l8rv39fV24cEGXLl1SpVJRt9vV/v5+LpcBxwFZCFSgi9VddiOgSs5uBsvlMgbHNRoNdTod9Xo9dbtdSUfbA7LDgnQUEAeZonIPWSOUcXd3V5VKRb1eT7VaTa1WS/1+X9PpNLZqMHf83av70lErhVe7IdrMf6VSUavVUrlc1sWLF3Xx4sU4NvIMPBSS7RQhtdwf32aRa/LxOInn7/P5XJPJJLfDA6/jwCiVSprNZlHc2djYiHkKq9VKw+FQk8lEkuIuGqwP7g/rCtLorgGvgvs6c0cLa8pdCpDs+Xwe58MDIxEMnLAyh+QCSEekl7/TXlB0HTiKRJ/7ythddPPdKDwQEnGHthYfA/PC84bg4/PjORo8Sy7WeOsF83CcS8HbM7xNBGHF3TuIW4hwLlh4W4jPSdGt4btr4JDgz83S9nA9v4sTEhISEq4e6Xs44Xrj9u94g75y9rX6ma/7Lj231npSzrnIVvrIH/ua3Gun/nem5/zsm56U8yfcnLgeDoW/nmXZRfv3N0n6rSzLvj2E8E2H//7GRzoAlWfvZ5aOiACk6ricBCfFUp6kOGmWpPF4rIcfflj33Xefzpw5o0ajEXdE8KA4SAr99o1GI/c6ZHg6ncb3bGxsxPYD3gvJ7Xa72tzcjKSnUqloMpmo3+9H4aTb7WoymWg2m8WKeK/Xi1Xj0WikS5cuRVLbbDbVbrej2IEowBziHMiyLJJryJ3vruAZBuv1QQAk7Qhce6PR0Gw2i+9n3kj4Z9vGXq+XC87z/vl6va5Wq3WZS2I4HMZ2EoSC6XSaC3vEEcBc0SaBeNBoNGLuRbVajTt0uCuBXAOyGCDTiDneg+/99Kwtxuxhji5w+TaYXtl3Z4E7Jfxc7qwp5it4UKS7JPyecXzmATEGhwbXQdiik39fA/48IhYcF3rqOy5Mp9M4rwgAvKcYPurPtrdzHPd94AKYP58e3OoOE79P/syzrtj547jzIaRwfz0z5CZreXjc38UJCQkJCY8L6Xs44briad/3Bn1h/+u1bAe95Z99v6rh+v9e8pwff5Xa9x/+frSW7vqBN1z3cyQ8tfFEtDx8lqSXHf79xyX9jh7lyxNiiXXcK5+QG4iybzNYJBRe+fWKNARxsVhoZ2dHFy9ejOQTEgTJlBRJEgSGar1v6eiEBpIN4YNQE05IqwBVewIn+/2+Qgi67bbboqAAuWGnCa+GT6dTXbhwQePxOIoNOAA4N6ICJH+1WmkymVxm6fdquaT4eSrJkCnG7lV677fHPi5JrdaBeuohk75zBFkDBDKyFaO7KrCmMy4/l+cT+DgRWJrNZmzXYC6dVNMWsVqtouDQbDZzOwYUcyUgoLTeeECizxf3n/vr4kClUolzxLyztgHiDGvc17k7OFxcYE0i9rB7hj8/xWwEFyX8nrpQJimKIn7/fOcJ34nFd7dwgc/XZLHVgrkotjWwFjgWzy/rqdjSURQqODfPobdjeCuF57N424e3SCA63cS46u/ihISEhITrivQ9nPC4sf2jb5QkfeIDX61FK+hN33HtO0B82Qf/it75nc/Lvfahv/VnWu3tP64xJtzaeLyCQibpv4UQMkk/mGXZ6ySdy7LsQUnKsuzBEMLZRz3IIVlstVq5tHu3TkP4y+VybC8obmfohBlyxechEL7zQLPZVLVajRZ7rPrL5VKTySSX5+B5AO12WxsbG7FKC5lpNpsxmI8qdrVajaQcguJEip57CDftFlwnQZWz2UwXL17UaDSK4Y6nTp2KrRntdjuKJqPRKIoZXCvkj0wHFz+cKDP3EPB6va5O52AvXLeA49pw63wIIWYscGxJ0aZeq9WiUwFRwPvcF4tFbrcCPs9YEFqKW3FCRJnbVquldrudEyrcjs+8eICfpNxWmhBRbPSQc/IhnMT6FqGeleHbPbpLwde9/x0Syz31UE1vGfD2BD7H+7gmxsTrLpRwrXwO1wI/cyGl2HrE8blexuUkv5iV4MGJOFOkfAuFzxf3qZi3UBQMvQUGsc9FEe4Z7id+Xszu8LYQ3xGE75SbBNfluzghISEh4ZqRvocTnlC0fuHNUqmsT3nvF13zMSqXRmq/88251y5Pt0pIuDo8XkHh47Mse+DwC/I3Qwh/8Vg/GEJ4paRX+muEy0GgfAs8erYhuVQcIXtFkkK1OISQ60+ngu9ZBfv7+5GEUzn3bQN9i0c+1263c9VjCBMuC0guQYEIClSqu91urhrqwZSIC91uVxsbG5rP59rd3dVgMIjiCu9zlwShgFTMqdSz6wPiCZVnr9RTYcfyTcVbUtxWU1KcU+9vd1JLbkLRqo/A0e121ev1VC6XNRqNYshiCCFuUYm7AoLp7QaIA15td1EJws8YigF7EEx3UHiWQTHY0LMeim027h7xHSBqtVok7LgUIM0ufhVbABi/9+/jmmHtOtFF7GCNFoUB5sLHzFxzfxAHPIME8Do7frhoVwyz5PnFNVF41uPPiy02jB0URRfuE9dVFJQ8c4G58lYX7qWvgaJTwp8hWiO4BtqFbgJcl+/ihp6cHs2EhISEpyDS93DCE4/1SuENf3LNH0/iQcITgcclKGRZ9sDhf8+HEH5R0oskPRxCuO1Qib1N0vkrfPZ1kl4nSSGEjN5riFGx7xqyB8Hhv04aIMLlcjmKBe50IOGf90Eg2KGA5PfxeHwZsYNIe788W85BOrzVgsqtBywSWgjR8yDH2WwWe7w5drfb1fb2diRH/X4/ti8w5qLY4SS10+lof38/Z1knM4LzsAuBp/Uz96PRKJJKtoz0AEze6ztvOElFvEFMoK+eMXt/OsGLbN9H9Vs6Cs3D1YDQ4FkKo9Eo5lpIB26R2Wx2GQEGTipdnIJQc1+8Co/IwnXx3tFoFNcXgFizHt067wGjbrc/fC5yLoliboKf50rXVFwHvObri+OwdtzRwzpADOGPOw+81cHbBaj2I+IVWwZcUHDBhev1zAUXXVwY8IBJFxGK7Rd83ucFFwpiDed2V4O3YRyXuXAScb2+i3thOzvuPQkJCQkJj4z0PZyQkHCr4pobhEMI7RBCl79L+hRJfyrpVyThxfkiSb/8mAZS6OWWlCN5HvoGCXYBAhJQtEU7oYFcQuYgFlT6nRhDnjyZnuo4P2dM2WHwoWckeEq+CxOQXrIDIDa0JnhrAJV6tiCE1PnYnaDhgOA9iBa0RGxtbaler8dxeSAhwsvGxoY2NjZyAo101LZQtO67gELOAy4MJ2lOWGlpCCFoOp3mgjEhfDhFuCeM19s6cGPMZjONx2ONx+P4mleicXXwhzwOr0TzPtYb5xgMBhqNRvHY/BeyznryNhdvvXGCWiTYvI/P8n5vcSjeZ/7ruSJ81gMIOb6PqShkcM3cZ0QeX6/+fuYRJwn3m90uXCTg/TyfPF/ensH4uP/F55Mx+no77lqKoqP/IeTTW0qYNw97ZG5Zp8X5Psm43t/FCQkJCQlXh/Q9nJCQcCvj8TgUzkn6xUPSVpH0U1mW/dcQwh9I+rkQwpdJ+qCkv/1YDvbggw/GbRaxjFOldAs6r7mlHlLbaDRyxMyr4QgQ3h8tHRFltiH09Hm3eUP2ISmDwUDtdvuykEjpiChOp9NYvXaBw6vdVFkhjx4e6NVRQgdpBeB6If6Mk3NTsWf7wvV6HXvhIVQ4LZxk4+6o1+uRtHNerg0nB+SrVqvFHSqYe0QeiKqUT/b3ajY9+JBO3CPcS4ioiyeMjcwCPrdYLHIBgu4u8O1GERcajUasZvMexsV9hXQyvzgkEJe8LaHovvDwQogrghPXQhaAk3k/pwszzKW7Ozx/AiGqUqnErA2OLR2JdMylrzuIP0Id76Wlg2tHCHPhhPnwcEl3FKzX6ygceDYKYqELAjyvEHsPEOWcxcwPro21hRvJhZOiKOGOBm8l8fYYb8c4wbiu38UJCQkJCVeN9D2ckJBwy+Kaf1vOsuy9kl5wzOuXJH3S1R6PjARS9yFOxaBFr35T1YdEOcGDaHg/eXFnAtLxpSPLtDsinOggPFDN7ff7MTDRXREuJjhRK7oJqKR7TgSEh/wHrhHSSdggBNx72HEYNBqNKGT4NVNVZxcAdtVgXJ4DQYsD8+1Vcidg6/U6BltCvObzeWxFAU7OaBnwYEHOv14fhFwyDmzzEHgI7Xg81mg0iuNxJ8N8Plen04nvRQDyYE7fncBzCSCjnMsr4ZxrsVjEufS8D0QIdzwguviWhNw3RAN3rnAPGR/nKZfLueBD5oT3SoprmblDaPFrY+0h+ND6wBz5lpzcn/V6rfF4HEM4ec3XM/PjIZFO+p2YF0UIb1lysYbP0Lbk4hrXyHpD8HA3gQtUnnXiQsRx7Ruc06/zpON6fxcnJCQkJFwd0vdwQkLCrYwTVX5zggecSBQrt1QfIebAq+hOHIuBdEW7tDsfEBG8jxxRAaI5GAwiQZaO7P9ZlsVMhPV6rW63G6+Fz5K70Gw2o4uA8yKuTCYT1ev12OKxubkZr3s0Gmk2m8XrabVaMTxvtTrYzYHx0ZIBWfdcAFoqPGSPUMhGoxGryuw8wDVR/Z7NZrnMCuzw7kygjaPoUCgKPtwP3+ayXq9rMploMpnENpGdnR3t7e3F3Qyko/54KuiIOJ6PgWvBwwx9q0bvnadHvxgS6FkXkE/PHqB9AdLrYhLrlePiGHFRCCB+sF48WNRzFpg/t/ITouk5CLgfOD9iB2PxPAOeM0g79xqnS7HFiGPi1vH8CQ999JwDD6/0+fXMC543dj9xFwHCA/ebdiO+R5hPb9twVwfn8u8L/u5CRkJCQkJCQkJCQkLClXFiBAWIgve2F4PSvLpIC4KLC14FhehybKzUfMZFBY7P+YsVTMAOAfV6XcPhUKPRKJe74FV4xu5uC67Fq7gQIQgWhGs6nWpvby9W36fTqTY3NyUpVq5dgGm1WtHZwM+Gw6F6vV60fyNiUJlGUKANwl0dTkAhbbQHeOWae4WoQDUdgka1nK0qPTeAz3ONw+FQg8FA4/FYIYRYFaedgnvU7/c1Go2ieOOBmb5TRJHEUjX3fn4Ip68VBAP/vN87xjKbzeKWoLzu64216MTV23T4O+/x93lmiGd5IAgVWxe4Ro7neQrewuPrjzYWz93gnnEfgT9jzDfr29ssOIaLcjwPo9Eo18LBsXh+vD2C+XahkB0YPKuBOffnzI/hrSy4KFzEcheKizT+nZCQkJCQkJCQkJCQcDxOjKAgKZdv4G0A/HJfr9dzlUcql/wbwgrpmE6nuV54XsMm7cIFLRNufZaOqtmQHdoAJpNJjiBBPCCyiB5kIkDOvLoMIZpMJmo2m7mq9Hg81u7ubmzryLJMm5ub6na76nQ6Gg6H6vf7key7oEE+A+IMRJstIn3XC/54KwM/8155SdEB4XZ6CK9vTekEzq381WpVw+Ewihe0nRAwiKDAOKWjCri/7qITx5UUhZfFYhHFFSeXuBWointQX7F67c4EJ++MC9HCtzD0z/qOFQgjTpRZr1xPUbzynAFfO7SguHjmeSCc28/DM+Brk3tcbAPwNhSOUbw2RA3uj4sKnnXh10zAKPfN22C8VYPn0O+/5yjw3BG2yLE4H04T7ru3o3jLiLsyfJyMxY+ZkJCQkJCQkJCQkHA8TpSgMBgMchZp6ag3HKIDOaPPH/sz7gMIFRZwrzryM8h4q9WK4gNigRNSdkiQFLeqhAhWKhX1+31JikQKgsLYISMeyMjrblVn+0f67UulkiaTSdxpgJwCrtnDGCeTSa61oNPpqNFoqNvtRpIIaceRIB0RVarKkPrZbBYzELxqLB2Qy16vF6vNBD96HgJZAZB2bxuRDoh4v9/PuSs8wHI4HGo6neYq4ZDuwWCQCwxEgGJsiEm0aUCiPReAXQoYK4IS73dCCXl2kgyZx0Xi9nwq7X5vEVY4Po4BCK6fR9JlYg9riM+xrovbhXrLBq0wZCU4KS66cfw1zuuhmUVBhPO54FJ0QZDT4eKePzfeZoLw5QGNLiy4SODtPLTd+PPGWDgXQow7NXz3Cr473JXgc+Dzn5CQkJCQkJCQkJBwOU6MoEBVnqDAer0eK7L0j0PssOk3Go3YNy4pigoIA5AGSTnyNp1Oo6DA56mwIigwpkqlolarpVarFQlOsdJJ1XcymUSyK+VzATgWFnAID1VzxoZ4QJVZUhQBPJvASaELHd1uNwZVMhafo+K2lr4DwXq91u7ubi5vglaFRqMR8xU8N6C4NSeCkPfCczzpKADQST/tDlwf5NrzG7yKX8xd8CBF3uOVetwTCBez2Sy2fSC40ELhrQV+j5hPbxlwUYR75LkLPj4IdrPZjHPn64P76JVx1j5CBCQbV4q7Z8hE4Dli/IhPCD8udjFfnlniAgtzx9rz54lxuoOBn3mgaTGjws/PNfuOGMwN/3X3j68zf648F4WtUF20cReGh0e6C6q4jn0dJCQkJCQkJCQkJCQcjxMjKEh5m7mkHCGg7x5iRZChuxm8HYJKqFdUIRqr1cG2g+PxOBLMUqmkZrOpEEKs6Lfbbd1+++1qt9vR1k6lHwInKbZaEPxHpRXSTsW4UqlE18N4PJZ0RGid1OO8QCRot9sql8s5kYRrpALPXPB3CDCECLJUq9XUarVy4ZbePnLp0iUNh8OYycCWkVyrpJy93ckzxy/eR+loJ4DBYKD9/f2YP8E949rcCeDBlJJyu264qICjAdGGa/J1xTqiqk87gqQYAsk99jFArBGy3DnDz93V4kSYz0HaF4tFJPjSUYuGk9YiYffrJQyxmEOAQ4F7wpryTIEigeaeeS6DuyOYb38OHT5m1gEk3IMdcb14iwOOE89k8OBGb8thjotjQJDgfjLPxZ1TvOXJcx3cacJrCDY8s54hkZCQkJCQkJCQkJBwOU6UoAConDpB9upoMbHedw1wIudihPdShxBiu8B0OtVwOFQIQd1uN1fRxxoPkYQcEQTXaDRyVeDhcBjPxXknk0kuX2B7ezva7qfTaSSjtG1QsYXAtttt9Xq9XGWf97JtJaIC8+HVWBcmfOcBsiAQU6huDwaDWFXe3NxUvV5Xq9WKIgLnkJTbfYB5p+3EQxmzLIvBivv7+xoMBrEPnvlC2HGyC8Hkev080lGAIlkZHrDJZ5kDSCWiBIJCseXAr421Apn3XTQQjPivE3jWMMcj+4NjQvARIyDb3rtfFGQ4Fk4LrofPcTwXDlhXADcK95d1ylphHUGk/Xq81cTnqJjfwJwX21K8xQHhA0GB59ufZa7JnT0+Xp4Vzz6QjoQe2oeYS/8OKK5jdy64SyUJCgkJCQkJCQkJCQmPjBMjKBTJmJMvKtTYuxEU6NP3Pn9IB8TZ0/a97YFz8F/ItVeQIcz0abuF34MIfWvGIomljx5i2W63tbm5qd3d3SiYMB7GJikSvFarpV6vF7MHIN6SYsUaIoSAwXxCmL36imDiPeqSIrHzEEPpaJeGVqsV5xjChbugWCmm594J93A4lCQNh0MNh8PYzuABjYgOHgLJtpFub2eOPBfDRRgPGMRqX7TNU8mnlUM6qtxj1Wed4Ybxij3v93nmuO5qQIiASNM+s16vY17EcrlUp9OJ6xzC7+0MkFvukT8PzI3nJbiY5u0LLjT5c+fPxpWeT9oJEBJor8CdgcsDEZBjHRfQyXpj55BilgVjdIHF1xz31kMeAe/z+fSdO/xcxUwIP8dxTpuEhISEhISEhISEhCOcGEFBOqquFx0H3htPhRHHAOIBFVK3iHu11LMGPP+ACqhb1SEqkDW3dHuAnR8LIuI7BnhVHeGjVqup0+loc3MzCgPT6TSSsXa7HQkn14S4IB2R+VKpFDMgOA9tIZArCKD3rnsrge/GgBBw9uzZXPVbUgyD5HjSkdhCv/7W1tZl4XwIF1mWqd/vR2Lsf9x2738gzhDT+Xwe58nn3vMEnHx7377vJMBnAdVvhAwnrPyccUj5FgRIKW6RWq0WCTavIXLwc9Y3wEXAmmbN+RaMnnnh4YTFrAZagnyrRlwgHrRJaCbnK7YYeGAjwkO73Y6OGM+/cPHMXSIIUcw798nbDphbRCCEIa6neC+KBN/FAXDc2HEc+Taz3mLkrVA854hjKZQxISEhISEhISEh4co4MYKCk24n+xAgt25DADzh3Xu4j8ticHu0EwjIG2F59NO7xZ9zu/3ax+dp8LPZ7DK7t1fAIeebm5sxpZ7KMlVgSDiEfzKZ5PrjIakc1yuuToy9sk6fepYd7NDg203yPukotJEKMPNUKpXUbrcjYacSzfzzd893YN5Xq5X6/b729/e1v7+f6633QMnpdCrpKOjRK9vMOe0G3ubhYg332+31HqboP4fMcg85v++YwDW4s4F158GEvAeS66KBpHgfjguWRFRotVqSlBsH+RW4PGazmer1ely7rB2vsrNGeW5Y435dLoz5fUaM4Vo9ONFFFb9PxbYanEPuaJnP5zmHBE4NXCg4HyDzntGAgMM1+3aRxVaIouBCtgk/9y1D+bu3WRQdJsX7mJCQkJCQkJCQkJBwhBMjKEgH5Gp3d1d33nlnJCeQX8LWJMVKqFvfqYJ6ECPvhTDxc+mILHmllu3uisnunoJfhPetF8kHxy3mO+BE2NraUghBe3t7keB7hV9SFBRoC6AVhK0QpaNtApkDrivLshjoiJgAaRqPx5GUQcw9JI/XqXRjIW80GppOp2o0Gmq323H+qV4jvkDkcW0MBgM9/PDDcb69VQIBxR0JHp5YtOh7hoZXtBFZPIvCg/6kI1EH4cZ3JPCdMByQXcI3cUR0u914b7zaj1tCUgyMRCxCcHBBx1stfF15DgQigYdp8sxwzZ4NwDnZYpH3e8W/mB3A88HnmS+yGzwUsiiusSbJHkGA8vvj2RHcg1arFa/LBRmfe8bNevC2GNaY5ze4uOLXzvr3tiTGgtuJ9ycxISEhISEhISEhIeHRcaIEBeDb/C2Xy7j7gle+Pcnd+94hBhACJ0wQQ0gPBKPdbkeLPQTeMxq8H79IUCAl2OohtoDAQUmxAi0p7qBAOCRE0cPvlsulBoNBLjOCSjEEHrIMsYMQMnYcBJBmyJfvmuHZFFxPvV7PET6ODSn2bAvpaOcHwiazLIuhlWQFsLNDrVaLY/QEf6/4S4pp+0423RUhHbUDULlGBPE2D+lIWPLdGLgufk4gIe0ntJEwX9xz5pNxIg7wHsi4pLjzB2IJa9IDH91R48IGawGiLin3M0mxPYT2CgQuzxRBjCNc8ziXBMdm14l2ux3n1ltEINueI+HwMEN/hl2k81DJ4rUjGLig4vPi+R2ICIzDBbziM+vunuL3QzFLoehoSUhISEhISEhISEg4HidOUOCXfAhdo9GIhJ1KqZNFyAKVeYhDtVqNJBcSCpHwbfW8CukOBicsiA20C+CC8PwEjgl58+A8whoRA/gMOQL9fj9ntXYb+3Q61YMPPhgJeqvVUrfbjf3pPm9YwalUE3LY6/ViNd1t3rQJYMev1WpR3AghqNVqxS0o1+uDHSB8znxuGD/3wefad3CANCKYeE6ApBzJl46cJLR5OEH0nAzuAWIHZJI2EL/P3vIyHA7jOqnVavHeIl5wbubNMzUQCvya3XpPtZ3dQtyB4QKS5xjweelIsPLxeA6E2/qZQxc/XJxy4cvbR1jrRTLPnLDGPdeEP8ytdLS7B2ue3Iti9b+YS8LYIfX+M3ccsIa8rQkXi39vFFtVeB3xyu8va8Dn1AUr33UjISEhISEhISEhIeFynBhBwQkLOQQICh5Q1263c5Zy+sSdKHMsCLMTOcLfRqORVquV6vW6lstlJPW+VRxEo16vq9lsarFYaDgcRvLjlebZbKbxeBxJNm0D7GIAGe52u/HzvtsC53Mi5Y4Bqv4bGxvq9Xpqt9u5bRcRKKhIe/BdqVRSp9OJooOUzx2AOEqKBHA8Hscxt1otTSYT7ezsRJcC/fwIJAgtHL/T6USHAaSzXq/HQEhJOVLdbDZzrRdOmF1Q8t53RABJ0b0BiUYsOC54D+LIWBaLhdrtds7qzh+v9COKFFtlio4Dd7FwX30LR0QG36XEP4+QsVgs4ppitwnunR+XdhTun7d9NBqNXFuHixOQfnc/IHKx44nnR/hacwGp2GZwnOvCWxD889z/2WwWn2N/vvgvx/Fr9FaiotDlbia/L76mOKa3gUjKnS+5FBISEhISEhISEhKujGsWFEIIHybpZ+2lZ0r6F5I2JX2FpAuHr39zlmW//liPC3Hz4D3s3C4wUEmF/EA2nIR4X3sxXK8YakcV28PnID2eRO+EFtLi4/C2Cif6EGDaHnh/kdB71ZTARAgQVdpKpaKtra3oivDQSBclvIKL/RxiifBBMB7CBTkBEDauw8WUZrMZq8V+z8bjcbT4u3NkPB5LUiS93F/IM8KHh13SfgCZ9iq5dNTbz+eYPw/SnE6nOaGBuSALIssyjcfjKOzQzuGtId4WgIDDGNwNUtw5hM97KCQiB8ILQotb+7k25hWBhkBMciJWq1Vs4WD+GYs7HFjLjJe1Ugxz5OfuPmDtMxbe704GnjV3PBSvp7jLhgsKCAhsJ+oBrB4g6e0MRXGg+Kz7n2J4Jv8tOiTcKeLnvRnwRH0XJyQkJCQ8NqTv4YSEhFsZ1ywoZFn2TkkvlKQQQlnS/ZJ+UdKXSPqeLMu+62qPyS/wEB8nnPzd95Z3mzmfLwoIXi11ggGpkXRZrz2p8xBtiL9Xuv180lG7hBNS7NlUiPlMq9XSdDrVcDjMbZ/nbgXIeqvVite+u7urwWCg5XKpTqejSqWivb09DYfD2IIB8UWocIs5JMwrvY1GI17nZDLRxsaGOp1O7CVHEBiNRtrd3Y1hhBBdiK1b5hFdJOWEB7+PuAs8E8AJIeICgg3z4/CQQAQnhBPpqB2m2IuPewNbP/fpcF3nttLks4gAtFowZ7wXYYO59a0rIbseMuqtHKwBr5qzFmmZ4V7hLEBMYe55bhg3ZBlBAKLO/S+6Cvg8c4FTwXdywE3gYg1wgu9BjO6S4ZqXy6UajUbOzYGDg/Xi4Y+eg4Jw4TkJ3u5QzFDwtgdfBy68AXc9eLvFSccT8V2ckJCQkPDYkb6HExISbmVcr5aHT5L0nizLPvB4q3p83vvVndyVy+UcuYNEenXVq5beRiEpl2gP4Ws2m7ECTMAdbQ6SYoXdCQYECBIPgYRwsYvCen20LeR4PNZ0OtXm5mbMJ4D4k4kASYYUUa2n5WJ/f1/9fl+S1Gw21Ww24/VAoIfDYXRyZFkWAyhxEThxheAT0sj2hZDt9Xqt0Wik4XCo8XgcMxXK5bJarVYk+rPZLJd94ZkD3rNeKpXUbDajM2I6nUZxwu8/9xzCT9uKdLTNIdV/tt9krp3E+3GkI7GKnI1Wq5XbCYExc3zOByHGXUG4YdEy74SV/7qIw/l9a0UcMJ4fwDk5Pu6X4u4LvssBIpyLE4gdCD7kGbgQ4evaiTRbPbrYxTrx8E3WEvPmIptvV0mLg881n/N2CObTn1vWkDtHfPzMiTtriq0Qx7k1PIvFr6OY5XET4bp9FyckJCQkXBPS93BCQsItheslKHyepJ+2f39NCOELJf2hpK/Psmz3sR4ohBB79z0xHlKCxduJBe0IBApCSCCVvvtDsZ+bimqr1YrEulwuq9PpREGBz0PwIFsIAZASRABaMCC4kKnpdBoDGj0wEtIFeaNSD4H1lovxeKz9/X2NRiP1er1InqWj1gMyClqtlkqlUkzuh1BCNhkzZJEWAAgz9vrJZBLnFkKLiwMHCcIAIgQkn7YShAEyMDY3N1WtVmMuA/NL9gQtIV4Fd8LIXHkwJu8la4CWAOYP4YX3EkZJeCLVecQAKvRup+f8jI81wfk8O4FjTKfTKGy4U4QqOdcxm800nU5ju48TcebUhRmvpLNWOJ7nLriTgfew9nxufTcUF/R4lnhfURTxYE3/fLH9xv9IR2ILLhfPyUAA8e+FYogl94J/u/uCNYEAxL3m3MVr9fXlYsRNKCpct+/ihISEhIRrQvoeTkhIuKVQevS3PDJCCDVJnynp9YcvvUbSs3Rg/XpQ0ndf4XOvDCH8YQjhD3MDOiSVWLshiVQh3b5fDGRz+zaf4XUs3L5dHVZreuHZIhGruGcBeAXVz9doNLS1tRXt6OVyORJhMgogtv1+X4PBIJcNIB31pzNmrwgXbd9kGQwGg1jZh8itViuNx2ONx+Oca8J7zSGpnMuDKLMs02AwiG0UHkLInHg/vAs6rVZLnU5H7XZb9Xo9d73S0baS7XY7hkryGgICbgyq9VTAOS9berooQqV6Pp9rMBjEeeF6XbDxcyEwIRZw31kn3HNvSXDHC9kLCClU7HGKeNAiZN+3By3ed6/Wu6OB4/AzMjMQrTy7wbM8ptNpzo3COdh1w3crcZeFOxR4vvz5c8dF8TkiY4L74qJC8Rl3wYI1jDOIe+Hzyn3xZwERgfvJz3m2cOW4S8ZzGNzFwrg4N/Ps83fScT2+ixeaPRlDTUhISHhKIn0PJyQk3Iq4Hg6FT5P0R1mWPSxJ/FeSQgg/JOlXj/tQlmWvk/S6w/dl3s9cJC9Y+7EsQ6S8mghpKGYqeBWT6rQTHBcMimFyjMXbJ/x4ENZms6lGo6HRaBTJGT3vtGM4qfTedAhx0RrvuQu+FSXjnM1mMcRO0rHiBP9m/IyVHS+ozI9GI4UQNJlMopDA/LXb7Vil5vwQds9PgBByvv39/cu2+PMWBElx3hmni0fFnArcGcwFbhLcIhB7RAnWhAdxckzEB7e1hxAi0cZZ4vkdjJdzuHOByjpz7zsYIAxB8otBkz4fuEjcCeJr1Am+7+DAvfNjezYBxJr5RVTAueGiB+PmuhApis6LYvsF7/PcAs7PPPp8s4643xwfUcNFK38OvBWFc3A+f3b9uUIUYM2468nf58+5t57cRHjc38W9sH3TWTISEhISThDS93BCQsIth+vx2/Lny6xdIYTbsix78PCfr5D0p4/1QF5BpXpOxsH29rbK5fKxAYQQIq9auwV6vV5HG/xkMrls33mq2LQn+Bjo+d/Y2NByebC9ZLlcjrkLVFUh6RDeRqMRHQ9UrWkf2NnZUbvdjmSZNgaEBoIFndRC6lutllqtllarVXQSOBFnHjzEj+uk8s9/IXKDwSBeM0RqOBxGAQGiBlH3vnYPq4ScSvmt/Rxu3eecEDfEAQgiJJR8CarufvwQgsbjcaxkc32ScmS2uM7YkpExSYqE2tZyLswRklsMkmQOeF+xtUY66tknV8CDHJ3U+nPg7gVe47wct1araTqdxrGyjhEG2Laz6Mjw0ESeH9+yEdLuLQ4+jy4Scb0uCiEsIZL4lqAuvNDq4m0U7oBg/n0XFZ7totPA56Y4/4gF7lDydhnPaPF7WRRSTjiu23dxQkJCQsI1IX0PJyQk3HJ4XIJCCKEl6ZMlfaW9/B0hhBdKyiS9v/CzRzpWrlpNlRpy3m63Y2WeX/KpNjrBcLgl2yvJTjLIQcB+T1sBxI/e62azmbOqe8XVCQjkpOiy4JxUxwEZD1jQIf7r9Tq2ElQqlVy2AQn5OAogZU6K+FOr1SLpImiy2WxqPB7n2jgYA58bDocajUbq9/tRUGm327l71Gw2c4GM7XY7Bi7u7OxEYcR793GJQB5pz0DcYAxcP6LIZDLRaDTSeDxWpVKJ171er7W/vx+3tERsgaA66aRaz3rBmcF98N55J9qsJa6ba2i32zHEk9ddeOAcHoKJAyGEoGazGUWY4/IBik6FYt5AUShB3OAzuA4g76xzFy+4P4yd43DNuD84J9tdej4JY/dwT47lGRj+vBQzNmhvuJJLx8fseSise0Qy7rGLBi5ueS6JZyhwD3wnDL6XbgZcz+/ihISEhISrR/oeTkhIuFXxuASFLMvGkk4VXvuCazxW/DuERjqowPZ6PW1sbEQyhX2byrgTCAAB8YqxW8Y5DxkIvV4vkldCDMfjcRQcEBSKSfFYzSeTSRwPhMm3nfRAR0gxx/KwRK/CQxBxOngVmj7+4XCoyWRyWUiipFwYHwQJAoz9vpiQD7GCBOMMIKiy0WjEa/E8BukgJ6HT6eTaPRAO3FoPseM83pKCDd4t/WRZ+BaGo9EoOiVod+D+eAWcqrSkSDYRD6hOc/2cAyfGaDTK3UPf5pE59owDKb9LiecLeAuHr0fO6RZ7nDIcH/cG65p7y7F4r7dn+Lkh/BwbgcvbM7wtgHXG5z0osujEYFysBXd5eOaBt79w33FDeAYCwhNrn/GwNl30cKHA55jdLjwfw78TXFAsfjcgxrjweDPgen4XJyQkJCRcPdL3cEJCwq2KE9cg7P3zXoX0areHpXmV1skCJMHJi6QcseO47GgAAYE4ecAbBI4KMMceDoc5qz7joRdfUtz9oN1uxz59xAtvUYDEsBNEr9fT5uamer2exuNxTOznGqbTqfr9fs7yzrioEvuuEZDXZrMZt7Z0Qsh43Da/XC5zQY9sdenCCa0akuJuFN1uN+4yAWHmvvhOCoggVIy5v4Rasia4L61WK1474gOiDnPDWCGVCFHHZTh4VgD3li0hCYBsNps5osxYPTyQ62KN4EIotovginAhwLcc9e1KueYQQszKKAoa3s7gIZC0NzAnOFRqtVpOWPEtWFmT7iThXLQY4fzgWXRnBfOIYMT9dXHFn1XPSEDc8EwLD190AcOJPgKFCzyIYjzfCDSEWbLG/TvCvxtYIzeToJCQkJCQkJCQkJBwI3DiBAXpiExATKhkFlPzPbAN4gI5kPICg5MDju9tDpJyafBOLjwd3oPcqIx6Pz694rQQuNOB43S73fjZ1WoVK/uQIMZerVbV6XRifkS73Y7noJI6n881mUxyWw/OZrO4CwFCCaJAs9lUt9uN80Qyv18jQgoOA78PbsP3qjyVZkQM2hWYQ+ZXUi6QknF44CT3y1syGBOEl+P5LhYQeN+V4krkkPvrQoakSECdaEN2GbtX+4u5FRBVdw0gskDiXfTyHUt8XBzb8yS8JcLXuQsK7ixhDhgXc1ZsyymSeM+K4N67u4e1y3X6FpfurEAQ4r54tkHxXrlIwrV4C5ELJhzTRQrf1pW1AniPXwfv8e8WXBje2nQz7fKQkJCQkJCQkJCQ8GTjxAkKIYRIRNn2jiqsV6ep2Hpl34mZuxv4t9v6IY5OtLz66dVl/5xXpjkHLRgQKg+Sw8ZPpRuS6lX64haRPhcQ0larpWazGXMW2u22xuOxarWahsOhhsOhQggajUYaDoeqVqsaj8darw8C9pgvjuUknLEwVsQWyCUV9PF4nKtGc721Wi0KGbgxWq2Wzp07FwUP3ARkUhTnyUkv97iYQwF55Tq8196zMHxLRQIaXbiAoDK/kMhiWwwtKL5GOAbnooVFOnIU4HwolUrqdDpqtVox88LdCxwTcuviBNkZuAg836FI6AHXzPW6GIbo4y0TRTLtn+U9tBVA2AHPBDkdxeO5uAD8GeMeuEPG3RV+TfzXWxVYg9765CKCizasdRefXJAp5o4UhbKEhISEhISEhISEhONxYgSFYliik36vJEJuqAgXbdLF3mfvpXYbNkQ9hBC3c4QUcWyvmDoR8dA26cgJATFuNpvRIo6Dgd0eEEcIoMuyTPV6XZVKRZPJJP7bXRK4E8gHgNASsFipVOKcYOnmXAgdxUBJdrcgBBLxo5gz4ZVq3Ayr1cFWnp1OR+12O5JDrjHLMtVqNW1ubkYijdDBHHNtbjeHJCKwuIWevATWBnPgx6PnvkiInZT6fyHREFRaF4pwkuxjPy6wz9cw98qdDAg1knLCg2ciQHxxbXAP3D3j8yUd5UMUhTDmC/JOiwLnLwoPLsQxN8V2BBfn/H3+We4h5yg+m4yrKFAhYLjA444Jn9fidp3u4uAzvm782WXsvpsF64F5LH4vJSQkJCQkJCQkJCTkcWIEBeCkpNFoxCBAetW9oivlCelxbQ1e9S72cUtH2xiyJR2EpShS8BqkxHeX4DweQEgl3sULCPB0OtVgMIiOA44H+WGnBAg6oXgQHshfvV5Xu91Wp9NRv9+PQghV7dFopEuXLsX8CTINfA4ajYYajUZMyEekIdiO10qlUhReaJHw/AMnjLgh2PVhMpnEbTT39vZi5sF6vc6FPELyOp1OnHN3PtAGIl0eODmfz2MQJPeOUEfpyAngolLR2cJce6XfyS7zy7rx6r5nCjjx5roQIlqtlsbjcc5hwDF8nE6o2VrTBSYXnbxC75V+J/N+nQgaxXVedPF4noK7B4rOCBe/OBbrFZHKxQPIu7sn/OesO9/G0t0jjBlBzJ91z85wscHvic+5Cxj+PeH3HXdNQkJCQkJCQkJCQkIeJ05QkBT79DudjjY3N3MBgeyY4EQAAuRE2W3XVB2dPEmKlW8IL9V6J8Vu+2Y3BwihExgq44yz2WzmdluA+PsWkIwXwowYQVuCpNguQMWXarf3/CNWUIWFgE4mE124cEGNRkO9Xi+KHG5Nr1QqarVaWq/XmkwmkpQjsIvFIoobtACsViv1er0ocHhQJJ8h5BDyyzzgoPAWEcQKbPU4U0ajUZwXiCmCAn/n/FSvfRwQRif7iD5kWnCfOUeWZZpOp1GYoIrN+vLgSEQvfi4pF1jIOmIrTNYJYyra9Itr1904kHDmx9tkjvu8u3ecWEO+Wf/F54Gxc02+FSPbRRZ3TwFO7Hkfa82zShDh3K1RdAG44wGy7/kM3PdGo5HbNhVhhPeybvzaPVSTtgnEF3djHNe2kZCQkJCQkJCQkJBwhBMtKLiFnW0ZIY5O8iTlyISTSeCJ8gCygjsA8iwpOhCoBGOf9mo5x5AURQ9e97aCLMsioYKUs30j5BTS1Ww2YwsEFfrRaBTnAZLDLg04KxAiEDkGg4Fms5n29vbU6XS0sbERf85nfC6oxiJIeMgggoyTLgggW14iArhNndYOji8pklRcDvV6PeceYCcJJ4oQXRcIuEesFwQjFyuK7RvM/XK5VLvdjuIHIocHGvJ3r+Y7eeYcXml3VwDXiiAA+fW2BHe/+Od8bfpaghAX59pbOHxNFnMRWIe0+vBMeTYD96L43HDc4xwDtGdwzqKLg3F7uwY/d3eGOzr8+Mc5h5hfb1ngtWILiQsSvqZ9nL4LiQs4/owkJCQkJCQkJCQkJORxogSFYrXWw+SoYEuKoY2+T30xaM+t3xBPJ9GQNKqkTswgPRB82hkgYN5uAdGFpNAigACAoOA2bumowk7wJJ9pNpu5vvXZbKbBYBCDFREhRqOR9vf3L/t8uVzWcDiMLRAQ/uPs9RwTgQHi5SGICCzr9TrufODZEAgGVMzdto4AA5l2gYSAQrIgEI34vFeGsfIXSSDtIjgqyHhAdGKXC97PfPBvSfH6pbzo4fPFOmJN0lLiwoOP1Qmwtwl41gDCgDs6WIPeplNs23FXhx+fY/u1uYgFQSZM8rhcA287YW58bbnTwcUP3o+ThzWEs6EYeuiuAMbuWRj8jGMi2LAuGQf3ANfII7klmA8XNDwX5TgRg/MmJCQkJCQkJCQkJByPEyUoAA+D81/0IRwk/Fer1VzPPPD+ZydFXhXGAQFZm06nGo/HMZFfypMZrPK8znncJu4W8Gq1qvV6HVsU6MX2/AGukQovlWdJkfhCgqmke/tHv9/XcDiMlWefK+z5vr0krRMupIzHY02n00iacQDM5/OY4A/hJpdhvV5rOBxqb28vzgPk1VtLEBQQV5zI4QBxocCdJT6vHB/RgrYC5gUBQTqq7HueQZFoM6/uSpCkXq+XI+lcm8PH5yGHReLv5/OWAsbO/WY+igSdtYYAxM4VLrbQpoE4wbFwO0CgWRf+HncxuEjjuQbMAyKEi06MzV8rZkd4W4q3hfAZhC6cM1ynryEPtSR3gs9ybbh5WAu87m1CPHc+Pr83niERQsjtRpKQkJCQkJCQkJCQcDxOpKAAXChwu7NX2iEnXl2FxEAQiiFy/h63nLsYAMmhhQC7vFdFG41GbCuQFCvknhiPmyLLMg2HQ41Go5ivwHERRryCDaEkJBDyjLBAr79XaCHwkCyOSfV/NBqp0Wio3W7HzIWLFy/GHn9EDOYbwYPrxhIvSaPRKI610Wio2+3mBIP5fK7hcKjxeKxqtRqzL5hf73VnnrkfkFe/H7QLMAfT6TQX0lnMzGD+EVokxWMzPt/Rg60uyXNw1wLXxZphfjwrwkUTd9o4SWftsAZZoxyTcbI2is4DdxIgENGm40IU68LHyr3kuv0ZwnXj7orj2gRcDHMizjn4uz9LnvdwXBsJ99kFBNwmfB7xi3lBSMFFVMxPYJ24K6J4T7z1hM96yxRiV2p5SEhISEhISEhISLgyTqyg4CSHf3u1XToKTPS96CEgXmHl8wgPEE2q/b6tI20HLjhQQfaqeKVSiU4JSDftBR6G51sbUmWW8v38Pg7G4NkOnJMxDAaDXHAk45hMJpfNjYf7IXi0Wq24kwLnonXAK+5erfcqPKRvMplEsjkYDCLJ85aI5XIZx1utVtXr9dRsNi9znkC8uX+IMiGEmCtB1gFk1+8/pJIdNqiOQ14Zd7Fqz/iZK8ilu0hc7PBquLfSOMEuBiK6C8DHjrDF/fMdHrhWxujOE+4jbgeEHo7p4gA5FQga3CMXXLwlQlJOwOD8wEUPz2Pw/AUn6cwrzxdihjtWWPs+fp9L33GD8RbhQgDv9RYnxCsEBxezaO9xZ5LnYyQkJCQkJCQkJCQkHI8TJyg4iWu325FAOEmSFIkJZNCJTDGQzYPZnJhhFy/2tyME0OMO4UIEkBR3VuAYTtipfHv/OFVi7/9GYGCXBRcZ6CWH5PJeXqcKS8ZDv9/XYDBQqVSKgYN+PdKR26HVakV3BdZut627fR/yBnks9tJDvBkrn/GAQhcYms1mzFOYTCYxDNNFGlwE/LtWq8WdJrhvtGRA3nEfOAFl20jPLIBAsqODt0FwTRDXohOmWNF3IsrPfK35XBbdNU78CRb0vA9QJL2S4nz5DidFuH2f4+O8KJfLcd0UP19s5/HnzYMd/Y+7D4rOBW9nYW5whTQajTgHtD9wfm8TcWGG7wNvh3HBCzHJ2ybcoeLX5M+I51K4W6HYTpWQkJCQkJCQkJCQcIQTIyj4L+6lUikSekmR/En5nm8IZ6lU0mg00nw+j9VkKd8mISlHQiDvTniWy6V2dna0XC61vb0dt3ks7lDAuTk+4Yq4FBqNhobDYc6C78QU8YGxe3aCE0ecBZB+giERU3BWeD4D46Xqzbi9yn1cBZjr8rYRquXFyn8IQb1eL7ZzQK7H43HOCUJFv91u57bG5Hrn87n29/fj/e50OlEUoBUEOz9tIt5iICnnaPCWBCfwXEORrIYQ4rwdR879fd4e4zsfcA7WpgsKkqIThnXsxJVr9M8zdq6juC0n95TrKVb7fUzFav1xJLs4X3690lH7AuJLlmVx3Xp2A+NiDfo1Mk5fU5zbHUD+GRcGfW0i0iFKHXfNHNOvqygicH6fe5/b4nwnJCQkJCQkJCQkJFyOEyMoOJyES4q5ABBJfsmvVCpqtVq5wEQnb9jeISUeNjccDrVYLCKRXS6XGo1GkQCdPXtW3W43VkURHopVdwi476gwnU41mUyipZwxQ274uRNjSBzhhk66CEb03nRI02QyiUKGkyXmASLorR2QdrIIPPuBlg+OTQsGooZvp0nmgDsmINTeb9/pdOLc+T2WjgQURAYnkFSwcUcgQiAi+O4D3prA9fj2k8WARsi75xq4mFPsu/eKuQstBAY66Uc44J7iBODYLkz4nHjQo9v8XRzxNefz5e4KBBZvEfJAUc5fnAu/N94u5KCtyFsC3FmA0CDlQymPc2bwHq6HNe3tLjiD3KGECOPZKe4yYBz+PncjeKuLt7AwJ/yM1xMSEhISEhISEhISjsejRpiHEH4khHA+hPCn9tp2COE3QwjvPvzvlv3sn4UQ7gkhvDOE8KlXMxiIKr/8Y4vf29vTpUuXNB6PI7H3NHYP9fMQRUlxW0IXBbwqytaHw+FQw+FQg8EgChiQ6263G7cf9CovPemQFESMxWIRAxgRGYotEZPJRJPJJNrXET+63W5s9ajX62o2m7FFwQMSGct0OtVoNIqp/tJROwguD3rynTDP5/O4feOVtjZ0kga580C7oujjKfzT6VT7+/txq03fWcLFB6rN7XY7uipo76jX62q323FOuNfValWdTkdbW1vqdrvqdDoxaJL7y2c5rmcoIJDQwuFtEtLlVekiGS4SUubBW20kxTFxr5wke9sN4ZWIUtwnr9gXK+2Mi2cBMuzXyFhpP8G5wjW7yOXOFX8e+Yy7O4oCCtcnHVX9GTvzxGsIQ07u/VnjHhbB5/mMCwuMy3MwPAPF12tRKCper9/j4u4bNxpP5ndxQkJCQsLlSN/DCQkJCZfjsTgUfkzSv5f0H+21b5L0W1mWfXsI4ZsO//2NIYSPkPR5kp4n6XZJ/z2E8Jwsyx7Tb+XValW33XZbJGGQy/F4HNsZpLy12QmdtwpIimQG4QESxzEgY07It7e348/q9bq63a6azWYkfB5g6Kn5EDfODynGYeCtADgDqIJ6gr6LAj7OYj+/pNiqACGDkEOCIGZeoa5Wq5rP5xqPx9rZ2YkCCses1+taLpcaj8cxaZ95QmDwkD/+jMfjXHXcd6AYjUaSpMlkEo9X7Md3SzrkkNchjswpuz5424l0IGoQFNlut9Xr9eJYGYs7KFhH1Wo1ZmNwbuace+AE2rdkdKECcEyO46SU64MYI/RwLYDr8nniuWCsjA33CETdnwGEm2IFPxzmXjiJhngXW4W83YN/IxgwVn+2/P76dfuY/Rysm0ajEYM8/bjuWPJMBb8/LhS62ONOGW9tclHH23x87jn2CcKP6Un6Lk5IeCJQeeZduvjxt93oYSQcYusvhsr+4O03ehg3G35M6Xs4ISEhIYdHFRSyLPufIYS7Ci9/lqSXHf79xyX9jqRvPHz9Z7Ism0l6XwjhHkkvkvTGxzogrxBOp1MNBgP1+/2YTYCV23ueJeUI1XGVdcQIbyUg4I2WgWq1qjNnzqjRaKjVaqndbqvT6UQCxI4LviOCH8+zEryH28P/IGe4FrCXU82FqCJYONH29ggPG+TaaY3AeQEpnkwm0bFQrVY1mUzU7/c1Ho+jyMFxvRVBUs5WD0Emz4BcBN9ikGum2i4dbbE4Ho91+vTp3P2CvE2n0zhGD3wsklmEBM+cwClCW0itVovOhlarFbeOnEwm0a3hbgy337vzwkmzC1guHkFEPV+C97vrwT/PuYotD1eCtxngPuHcrDvmintRFGjcZcE9cuHJ3+ef950xGANuneOCTo87d/HvjN1JO6II68zzPlxMYz24i8lJvzshKpVKrmXBhTE+xzW424FgVM55UvBkfxcnJDxePPBPX6rMDEGzF4z17pe95sYNKCGHz3z3yzX9phcovPFPbvRQbhqk7+GEhISEy3GtGQrnsix7UJKyLHswhHD28PU7JL3J3nff4WtXBfr9p9Op+v1+zDugsugWZkgKle7DMcW+aUiJp7dj4w4hxJ0G3FbO9oabm5uqVCoaDofa3d3V/v5+bGOgr5vKMaQSQgNRKW5ziCjCON3mTpXWcxSoIruTwUllsUoMaeK4kDQEklKppL29Pe3v7+dCAvmMiyS+5SCih+8KwdzxXsYJ4WZe3WXiJL9UKkVhBcLa7XZjO0ZRoAiHeQwu2iBaOMFvNpvq9Xra2NiIrRI4EhBAFotFJMqITl75Lvb0A0g888B6YvtN7jH327dJBEXyzfG4D/5ezsHaduGKNedk3VsPmDcnxcflIvAa7+VYEHgn/gg6zFXRyYCI5WGm/kx6lglz7e/1c/Ee3udCIeuc++8tIf4sMs7j5p3/+hh4bhDtTphD4Tg8od/FCQnXgvd920u0amV6z+f+wI0eSsIj4Fee/V/1Gf/20/Tnb3uxPuy1F7V65z03ekg3K9L3cEJCwi2N6x3KeFxz8rH7roUQXinplYXXIgmYTqexki8dkRsn6JA4iIYnv3tGQpHIOCH1UD4nM51OR6dPn465CpcuXdJgMNB0OtV4PNZ4PFa73dbm5mYM/+P8TrIYr4/fSWi5XM5VRIshdW7z53huBfeQQBdNECIkxV0SEDOGw2HMToAAk//AOAiS9DYM32aTufM2D+mIRHs7BC4Jdy044V0ul3F89Xo9Hpf7hDPEd/WQlMsH4HobjUbMVeh2u7HtwUUYdprwbSa9TYbr4TV3YECiIZvFthuq99JB+whj536RuQFh9RwGr5y7W8KzAKrVatwW1LMbuC7cOMU2G66Dc3P++JCakMF1ebYEa9LHwjgZuzsIis+jZzXQMuJz6O0HCBO8n3XPuiEfgXvqAp0LBDhrGCdbtbrIwPPhYiCuhqKr4ibDNX0XN9R6IseUcAvg3f/+L+utn/Xd2iqntXQz4Fef81+k50if+vzPUOVL79TyA/fe6CE9lZC+hxMSEm4JXKug8HAI4bZDJfY2SecPX79P0p32vqdLeuC4A2RZ9jpJr5OkEEJ2+N9IEPjFX1LcvrHT6UTyLR0QAUgUFW7A65BNiAVkGQLlIYNUZ2u1mjY3N7W1taXRaKT9/X3t7OzEMUEKCT3EHYFV2yvKLii47dxJEyJBMQSOcXM8hBHPMqA1ZDabHRtEV6vVdPr06bj94mQy0WAwiASf1oPMghKLoshxpMrfxx+vbtNawHV7BZk55HpqtZparZYqlUrMd+Aeu3DBXHNfyUwYjUbx+lutljqdTvzvqVOnNBqNYmAku3Bw/4rE01saaBsptgYw/7yGEMK8cL8IIByPx7GNhXngWtwRwVrgnvuaKRLqYh5I8RpYL17p572+u4ELdC5QFdt33Mnha8LbAorVfM/4QEhypwFCBD9nrI1GI56TdhaOQztLpVLReDyO6wE3CXAhg+eqeK3FNhCuy0Wm4xwdJwzX9bu4F7ZP/AUnnFy86wc/Tm/4tO/WVrlzo4eScJX4jef+qr7kZ/+qHv6b21pd2rnRw7nZkL6HExISbmlcq6DwK5K+SNK3H/73l+31nwohvFoHATTPlvSWx3pQJ2oQgVKpFHc9oNIN2WAbQ+monUA6IGW+570fF/JO+0CxukkVHGs+W0yyWwHHAE4IITfsRgCB8bYEvy5vheD8VPQ9Y8E/6+eEeLkQ4PNYr9fjH3IPINS+zSbHJefASa07OiDJkHAyKDxfoVarxUwKztFsNi/rd6dyH0KI7gREAtoSIMmQUebBd8kgC0JSbBmByCMqMIZmsxnHXyqVtLGxEceD6MM8eMWc1xGNpCPyDPmkGu/z6pVvjss6RoTCAeCBgS4esN4QVAi9xPVAW4u3TVwpu8CzFqrVarxOFy84N7tBsDYRAHC5uMjgrgR3VyCi+PVc6Xpxy/Ds+HcAApKvw1qtFj/jpB/hoOhUcvEQ+LNffHZclDvheEK+ixMSrhbveu2L9Huf9mrdVkliws2KH33G7+nbfvvDNF7X9AcvPDn5MTcB0vdwQkLCLY1HFRRCCD+tg7CZ0yGE+yT9Sx18af5cCOHLJH1Q0t+WpCzL3hFC+DlJfyZpKenvZ48xzbZcLuvcuXPqdrsajUa53nJ65c+fP6/VaqVms6nt7e1ctZi2Aw+KOxx/tFE7cXBnwuHYI+FlG0PO7S4It5pD0iE7kDAXMyTl+vy9FQGCB6nH+j2dTmOSv1eovQJbKpXUarWis8BJN/OJkODzSO4BxBcSLikGQXp7COTNdxKgss6/IYyQSuaXTAGqzswdDo/FYhG39JSkvb29KA7QCkLLB3OG8DAejzUajbS7u6vJZKJGoxHXAePGQQJZ9rR/J6/eRuJ/dzGIefKWHO4h88w1kTXhln/GBMFGqGC9MN+EU3orgDsP6vV6jjQ7SfatID3U0qvyiEKcizXfbDZzrTLMHednrljvxxFtzzbwf/sx3fFRHD/XDBAS3PXjDhxvC/FWERc8inCXBceYzWa5thMXJE4Snqzv4oSEq8U93/NiveHTvyuJCU8BfPPpd0qSfuXdLb1tfJfe8ILao3zi1kL6Hk5ISEi4HI9ll4fPv8KPPukK7/9/JP0/1zKY06dPq9lsxl/wpQOSMZvNYn4BOzB4/zeEly0RPVwQogE5k47EBCdu3gJBHkI4zHAIIajdbkcSCVkvBsm57R1iCcnz6jvE1smnE0HeT5uHb2vI+KvVqprNpiTFKj6uB0/H98ozbQieG+Hv43p9i0kcDpBp3u+VYw+D5PMc0yvKWMg5Pts7Ikrs7+9rNpvF9ozRaKTRaHSZOETI42g0io4KCLH38her3dxzBAwIKnPJ2IsBnb6LBusN4QSST05DcdcF3DLcR4QS3AqsZdYn4/VdCtxlg6jlLQ8OJ/zFtglcG5B8Fwv887VaTb1eLzpaWHMIaUUUxYJiJgKBo54X4fkbxZYD2hdcCCHIE1cD7gzuAa6eK8HXue9qUZzD43bJOCl4Mr+LExKuBtnWIokJTzF8Znusv9n6U73/A+P42t/4tX+s53z1rV1gT9/DCQkJCZfjeocyXjM8oA3CjjsAYjmfz9VutyN5JDyRKvR0OtVwONRwOMy1RXAsSZcF6vGapEiMqc5CziGNnnkgKVfV9IqoV5Ah0rQwzOfzXFUfcsO5PLCuGMjn4ZKQMBcNilZ0rhGi5Vst0s/f6/Xi+Z1I+7V5BXs2m+W2psR6j4uEv0PcGCutIB7kR2WesDyINhXnvb09jUajeI9Wq1V0obiY4BV6t6ojHLjtvV6vq9frRVHG54/zMH+IVPzXw/0QSlh/OCO4X/wdgcCDNFknHMPbd4o/kxQdL8UKPvff10Oxkg8QDpg/byVBDPLwUNYggghwoQxyz732QEuAKOZz7OOiTagYNAqywyBK8i7W67Umk0luXXsrBAKBH5dj+q4lxTaIohPEMyYSEhKujPd920v07k/+D5JO/I4oCVeJcijpWdUjoeiez3qtZp95+Xfi//GCl2u1u59/cZ0K8QkJCQm3Ck6MoCDlE+BJyCe/gBA/+rjr9bparYMkXGz0vN+dBEULtVepvQIKEfFAttlsphBCrEBDiL2KWcxigPCMRqNIypzkOnmnQuoVXULnmAuq3pA+CB4k1AkPW20uFosoomRZFok3xJj3QphosfBwSBdbGDev4bYoEjLPP8CtAQl2yzyEDdfDYDDQ3t6ehsNhrHJXq1UNh8PYAgHRY+y0QkhHW4ZCHLkvHshZqVTU7Xbjucmx8Eq5uzuczPvWmdx7tvekOu55GIhPnJe1jMjDffA8CocTbHcZFAGJ96BG5s7FB45De4mLR9yXYiCot4YwP+zawc+Lzw6ve54CxNzJeTEPxAUY3ltscyALYzwex61KeV7IleD7objLBcdlXNwzb/EAPmYXqxISEo5HaSlNsrk6oXGjh5LwBKMcSmqFy1sgfv3t/yP373954Xn6g792Ov57PZooW1zZQZaQkJCQcHPjxAgKkAh+wa9UKpE0uv0cAgTR57M4E0ajkabTaY5guv3aiVzR7gyxn0wm2t/fj9vzFSukHMuzGXz7RDIXAAIAvfcQfUgOYol04CLY3t7WYrHQpUuXNB6PYwsA1wopxaLPsTxskfdC/n27SogooomkXAgkJJL5J6uB68QB4vOHQwGi5tv6eYYBZA4iSusC4Yo4Orj/bvfH5j4ej6PTg/wHd3Nw3QgPkmLeBe9j7shz8KwM3kMuBhZ9d0Jwbgivt1mwht3t4ffF56hIZiHXzLVvkerrCDcA52SOi8GHvA9Rx+8bPydokbliHbvIwJxOJpOcMOXv95YDb49g7XkeAuMpZkAU8wtYN8fBW3X4t8/BarXKXTPHdZHEnxX/vK+HhISEK+ND/sUb9fzNf6i3vOLVOl1u3+jhJJwAfOuZdxykBhziw374VXrWjz+k9b0PKLP/zyQkJCQ4Sq2WQvPg9/rV7n5yOt1EODGCghNmKonAsw48nI5q/2QyiYIClXcInGcjSHmSdaXkdz8PQgLkheBFb6Eo5h9wbOmI8EmK204Wtwb0NoFGo6Fer6fJZKKHHnpI0+k0kuGiiEGLQTEjgmr6cDiMAYaQo2J+QJZl2tnZ0Wg0itfHDgyQbYitV6Od6Dqh81YLzuWWeCeHkH7CASHYVNAl5a7LxQJEFb9n0oEwQkDiYDCI9vxOpxMFDMg8O0WwRrgG7/VnTNyz43I2uC+1Wk3NZjO+zyv1ODhotYBUcy2cm3G68OSkmuNy7cU5LQZPeiuHZ2xIBy6LZrMZBSPWMWISbRjebsM4uWbPJfE14OdmPQJ+7i4FX1Pe9lDMjPD7zhrz6yo6EIrOC1+jfm7/OWPxzyUkJFwZz/4Hb9ZnPecL9PvP/4UbPZSEE4h3ftlrpC+TPvr/fpVOvX2i0hvenohCQkKCQqWi8tNvj/++8LI7dOkFB7//fehPj1Q5v3+lj14Tsv2BVru71/WYCQc4MYLC7bffrs3NzZzV3wkVpIx2hW63q0ajocFgoMViEdsM3CkA+XLC6MF+nrgPyYBoE2DnAXxuV6da67ZoPwaf810fIGGQtmI7BsdvNBpRLCg6JCBT2M85F9VlyKcTWP7ruQ5U9nFkrFYrtVotlUoljUajON/e5sB5/XVJUTjwCrvPK8GWkG6Ow1xwfS4MsA58XiXF0E0IPcTPK+ack177zc3NXEsA4gX9/5zTswO8yk/eAAILzgXOicjj7SQeGIhAQLsKgpS7cRBzaPnwn7s930lz0d3gZNqzN7ytwJ0M3DsyPYoCwJUCPqUjMY655Hhcs2eD8DnW4XHtG8XrAB7+6cf26ypuPeltCx5A6QKhOyFcEOOcvn4TEhIeHQ//6Vn9+YeP9dxa60YPJeGE4o/+r9dIkl70za9SdbRW5/VvvsEjSkhIuBEoPf/DJUnLrabe/dl1+8lRgfeez29Lur6ut60/Czrz5qsTFMKDl7S6cOG6juOpiBMjKJCSP51O4y/8kEd3EDhxokqPmACJ835/D1zzPAPv94fUNRoNbWxsqN1ux5wG6WgXBar00hHpcFs6ZAfbvhNPrzg7SaI67KF5BPx5QCShcxDO+XyuTqejdrudayfg2nEZQEoh2fP5PF5blmWaTCaSLieWLijQxkHLgc8Bn/VqtjswJMVWDPrgaf2QDloR2EWCFgdvAyna4XF5eMAjVWpAaCPX0mw21Ww2cwKTk0mEHA/r9Iq9V+39nrpQ5CTdRSiuH/GJHAdCMZkjdprwMFJvbygGbhadNu4K8GtwUcDbflwI4D20ILgDAbHEXQ9cp5P8YgsE8KBGrtUdB0VwfNYPY+Ea3VnDtbOu/Xh+//jeaLVacR0U4UKGt2Zcqd0iISEhj2d9w5v0t7Kv129+7nfq7mra8SHhynjLt71Gq2ytj779ayRJjZ1Mm//pjTd4VAkJtx6mn/Ei7T0rTwWf9n1veMLOl73kBcoqJd3zirp0A+o1ux+RafcjNq/qM1t/tqWtv3i6JKnyR+/S+jAsPiGPEyMoAMg/IYtO5CHsECbs/P1+P1bZjxMS+OMkz19zIt5oNLS5uant7e1cG4bb87Ho01qBuMB2exDCSqUSt+mjOu4k31/3MEo/Hu9zMWM+n0fhotPpxMp3q9XKkSHmAVLEeCHATliZz+l0Gi31zPVqtYo5DOy04A4SiB5CDUF41WpVs9lMk8kkukqYe87LPaWazLXyPklxLMV8DEk5cu1BiwgPnIc2A6+ecwwIu7sVfOtFz6JwJ4E7MnxHC99SlEBRD4v083r1H2FluVzm8kFY17T5uKNGunynD+lI8CpmXfhcsI65X9xrfxYZsz+DCE+M38UVb1twAY8WJB8j6xMXA/e1mMPBfcTxwFhZz+7m8TlzMQoxwVtUXOBwEc1dUSlDISHhseNZ/+SN+r2/dZfurl680UNJOOEoh5L+5Bt/QJL0P6fSlz/vVZe950N/+GGt3v3eJ3toCQlPeSw/6WN07yfX9IWf/tv6ltN/kfvZs297lSrToGf8q+srLCw/8WP0wU+taV27uX6vOhAhDn4nP3fHX1J1eNg2/Ku39ha6RZwIQaFSqWhraysSGg/Mo2LabrdjBR+CDFllFwNvkZCOCDRktVi5lfJZAlmWqdVqaXt7W5ubm/E4blvHCYGgMB6PI+mo1+tqNptRTPDARoQI3xqR8TAOtiD0SjwkyqvlXmn2aq5Xjr2K68n+Tk55bbFYqFQqRbdHlmVqt9vRRYATZLFYqNFoqNVqRaEHQk11m8BGch/YRaHZbMY2C3d0FK3yxev1LABv82BcEL9iewRz59tXsia89UE6atVwm77PM/PEOmIN8VnOwfG4L3wON4KPwyvfXAPbT67X6+gg8a0dEZiK2R9cs7e1FFts2OoSQcXhrRLuonGizxiK4ZCeY+AtGcX5ZO48C6GYfQDclcR1HZeDgvBYFCg4nudyMB6ESm/lcCGCcXmLVUJCwqPjwa9/qYZ/aaYXN39f19ummvDUxic0pHd94Wsue/3jX/g5evChj5Ekzf5lcjAkJDxelF7wXL3z61r6pOf+hX7rzt8/9j3v/sLXaH890Ufd9TWq3lfTXd/y+J+9+cs/Tve/rHLTiQlFPPyXJakkZdLZ3otVWmSpdesQJ0ZQOHXqlPb396OgADEih4Ce+WazGUnRfD7X/v5+dCd4OwGk0gkM5Ir3YPP37RdbrZa2trYkKR6Xz9IHz5g85A+7OsfySjcVfg87xJHglntyBAiYxIngW0x6uj9Veaq/Ts6dbNJOAqmlEo7AwdaMCCXsXgCp9Mp8t9tVp9OJ23NSsaatA7BFIdtnsvUmY3MLvfe8QxDdkl+sfku6jKS67d/HxPHJvJhOp/E+MEesEW8hwMGCKMU9ckcFn/Fz8D5EodFopMVikWuD8EBO6UgsgMRKRyIQYgDbpLq4464HbzUpugRcDHHxA1HABQ2OU8xM8LaQolOAf3t7BWIEa9RdFS58+eve3gA4vosl3OvjWm74DH88SBLxrJh7wrPq4ol//yQkJDwyHviGl+p7X/WD+qTmSklMSLhe+P3n/4L0/IO/v+i7k+slIeHxoPyhd+u2H7xX/+UZ/+tR37tRauq9n/LDesd8os+u/GM985uuXVSYffrH6YG/UtGqfnOLCTkE6fzHSWEVNN1+iRo7KRPmRAgKbs+HEPFLf6PRUKfTiSS30+lE63K/39dgMMhtL+kVUicLEJLpdBqJi9vf2TnizJkz6na7kQxCkiCjWZZF6znHhLxgnfc2BkQMMht85wSu2SuliClcEyTWK/bY6heLRST23mMOKSoSOCrfzKe7JqQDQaHVaqnRaMTrcUt8r9fTxsZGDIGEyOE88GC8VusgmKtWq6nb7cbxuqWcsTKf3uIiKdfa4PZ15lk6Iorz+TwKCe12O7YdYO2XpPF4rPF4rMlkcllbCAIP98YdMn4fpHw7gbeTkOeAa4T7wnV4NgPr1J0HvMZ8cn04F7ytg7EXBQ4nwt4ug4Dma82JvJPqos3f597f5++n9YdrZC0wp8AzErg+F5S8BcJbEnwt+33g357VUBQt+OxkMrls1wrWIeuFNic+m5CQ8Mh4+Gtfqu9/1Wv1sublmSgJCQkJCScD6822fvgZv3hVn3leralf+rxX6xXrf6y7v/nqRYX5yw/FhOZTSEwwZGVp78MzlWYlDZ7xUknSuT+cqPS7b7vBI3vycSIEBUmRwEO6qVC32+3Y7iAdEZnVahVJPqTf3Qm+88B6fbDTgae98zMnV71eT71eT+VyWdPpNJJ1qvhU6tldwEnparWKggN5A96G4bsEcG5JcQcEyN58Po9VdO//9yo35x2NRur3+3HXg2azGa+nuEOAp9zzPp9zSBlOEK7F+/s7nU5sdxgdhpIQYIkDY7lcxtcgc4QYMgcuInCPK5WK9vf3c7kJknLzyGec9Lq9HzK+sbGRs8QPBoO4xiC5OFykI8KM2wNRxwUht9lLipVu3AiIIGwlyX2kXYedO6bTaY78Skc7j0hH1XYyCtyy7y4APu/tCZ7P4Zkj3trB57xNgjGwVtzN48Sf9xbFLRelnMh7SwxtMZ5hwBj9GXL3gDtuEJ9cLEDk8RYYQkMRUlxo8Z0duGYECQQFFyuYy4SEhCtjfEeWxISEhISEE4zKbU/TV/z0L13TZ59Xa+q//L3v1O9/zl36vlf/bZ1+3WMTFpaf+DG6/2VPMWfCFbCuZxo9/eA6P3CqoconvDT+7K4f+AutLu3cqKE9aThRggLigGcCQKKpJno4Yr/f13A4zNm3vRqKzZ6+aSeO3hIBkWg0Gtra2lKlUonV7MFgoN3d3UhKcS9AFiEci8VC4/E4Vl+p2EIOi6n+kM5SqRS3wJSUq2w7eWZ8uBcgxy4UYPOXFEUJT+6vVCqxZWQ2m2k8Hscxsk1mr9fLuS98brwtgTYAiB7HKpVKMS9hNBpFcYMe/hBCJJvellCv12NPPffaAzpxZbidvkiIIcO0ePC50WgU2wK8hYL75fcQ0u9hgJ6d4GGB8/k8zu98Po/j4/5LB60f3irhrgfWrOck1Ot11Wq1KFjwGZ9fwHkrlcpl23l6KwYugaJTgLEzB567wPFZAw5vWSkel+cLgcXzDFwYQWhiXj30U7o8vJF7y/lZs4hVrEfPP2AOi7kZHMfvjQtvLiIVrz0hISEhISEh4aZCpaLPbg+v+ePPqnb0rOpFvexbvlOfv/cN6vzcmx7x/dlLXnBTBjBeD6yaWc6Rcc83fJjvhilJal4Ietr3XF3oZfk5z9I9X3z2stef/QMf1PK++69prNcTJ+K35VKppPF4HLMDsizTxsaGzpw5o3q9HgkeVvzVaqV+vx/70/nlXzqyVDv5K24T54SOamaz2dSdd96p7e3tWNVdLBa6cOGCzp8/r9FoFO3nTrQgL/xBWAghRNu/h/K5y4BqPcdlbBA2yCbbPHpv/ng8jgGF3l5ADgMZBmQyeB4FogXuCCdYuDNoPfC+eUlxZw1IPUIG19dqtWJFnmq8E1RJGg6HkQxKukwEAePxOFa+aXmR8r3uHJOMAXIGmF8ILJV/b4PxXTRwUPi99Io8n0UgcsGD+eNcEFnPh4CYcn6O6S4IBJ9qtRp3h2BMrCGeAW8f4do8XBGi7UTexaxizoi7BLhmzuHXwvPKukHcYhwu8vj9wRnCazgfXMw5zg0B3FXEfeCe+L3i+4FtOhE3WEccG7GR+XYHgzteUoZCQkJCQkJCws2KUquln3rj6yU1H/exnlHp6Ddf/e+0ePVKn/8pX6TVn79byi4XDbJK6ZYUE47DqnH5PAzvzPSe73zJ1R0oZMrKlx/rnf/oTil7xsFb1tIzv/HAQVL+0Lv1rq98Wu69H/pTfWVve8fVnfcx4kQIClmW5doX+EUf8uR91dJBWCJWfQiRdFThhfx4sJznAQB3QpTLZXW7XW1ubqper8fxTCaTGM6IICApVqCpekLeJpOJpDy590wFJz60OXj4nW9XyHnb7XZsE+C6IfUuHtTrdfV6vRhAyNxC0jkHBBWiLSmOBfJFdZ9jSMqFZfrxPL+Be8DnIMQQOFo0PDCPlpTJZJLLw2D+fccDXAG4NSTFnTlarVbMd2BteHAhYg5EGLjFn397HgEuDCrhIRyEcBLEOZvNcmIN1+GkFILOeNzNgADAfWYOcYKwiwlZCt6KAKlG6CpmK0hH1n6eI9/qlPtUdHq4y4B1WQx1xClExgQClrsMWGuMyeecc0P8ncAXnQHHfZa1R7sHIg3j5TpZt35sslm4p1yPzwFrMyEh4coIS2mWLVQP1Rs9lISEhISEAkK7rY3S4xcTQKt0wIN+/b//nCTp05/315XNZlofBrxLUlhnCquDjIGEYxCkrHJ9BJeDOT44VpZJ97z6xXae/Dne/QVd6QterCuh84GSbvsP+e0ws8eYJ/aogkII4UckfYak81mWfeTha98p6W9Jmkt6j6QvybJsL4Rwl6Q/l/TOw4+/Kcuyr3q0c2RZpvF4HAkjRA0SwS//zebBAzEcDrW7u6vhcJhLdr/StnjFPuiiRbtcLmtzc1N33XWXzp07F/vC9/f3NRgMcg4DJ/+Scsn+/joVYu9FHwwGWi6XsZJerIZ6+B1Bd07iqOI6qXcy6Ls34MwYjUaR8HW73bjzAu4B34ZTym/pCOFlDnFy0J7hrgrmntYFd1FwPK/o0+own881HA5zbSGLxUKj0ShW5KUDAQeSzvUg8LTb7Whf5/OeSdBoNLS5uZnLqaANo7jdJASTucU1gAuEn3mYIvcfNw1bb3oegqRIvn2HDq4F+z/H9a0YsyyLLSnNZjOX7+Dulna7nQvGZB0VAw5xFXAt/hwUcwS4v94qwGusR89rQFySjgIzESPc8cF651p8m1UPZXTXBaKBw10ULih4CwPXwZrh76xB1hbjcJwkQeHJ+C5OSLha3PUtb9Rzt75Gb/us772uv7QmJJxEpO/hhJsNv/4nv/nEHv8dv60Hl0N9+cd/nrRYaPnQwwq//8e6s/Oxuu+TqlpXk1PhScOjxX49ys+Hd6317u/82Nxrz/6PA5Xec+/RC/vHf/ax+Hl/TNLLC6/9pqSPzLLs+ZLeJemf2c/ek2XZCw//POYvzn6/r/F4HEmc28K73a56vV4k4QQmFsWEItnnNSlfdSxmGVQqFW1ubsYWC4L8aMPwcDkq3fV6Pdrq1+t1tPoXnRFsTYkNmwp7t9uNJNWBAOEhg94SMBqNLqtOe3aBZwIQukgwYNFd0Wg0osjgQYI4CnCIMC4IF20OXtl3MWGxWORaUiCLpVJJrVZLm5ub6na7KpfLGo1G0YmBFd+3E0TAQByhDQLS3mw249rA7u5tMNVqNQZ74gCQjpwlEFKIvO/60Wq1tLGxoc3NTfV6vShYIDIwz1wTgheuBgIuEVNwhXjrBesFBwTz6i0IuFS63W6u39+t/2RDuLCFuOIiBvefOYJwsyZ8NwsPN3Qhi/wIF1f8HrsbxIMnQXF8CA68j/vGc4ZY5GMrtqQgzAGOwzx5aw7PC+ueOWDcnOO4fIgbjB/Tk/BdnJBwtXj233+zPuq/f43Or0Y3eigJCU80fkzpezghIYfbKh392pt/VZ/1229X+TnPkiTVfuMPddvvr1SapXDrmxnv/sKu3vmtHxH/XAmPKihkWfY/Je0UXvtvWZbhgXiTpKc/nsHSl+9bvEE6qMwW7dTSEeGBfBy3dRxVWo7ptnY+h2W+1+tpMpnErSghr5BTcgxwT9B64JV73sN5qfKzS0QIQZ1OJ+5sAFzwoOp86tQpnTlzJtr7qaRCWCFaAPIHYcR632q1IoHH/o1N3okarSc4IyDOiA7Y8nEN0FrAmCBnvEb1mrmAuCOSeGXY1lacA98ulNYNRAXpyH3gQoDvLgAg61wjORSIEhBJPu/jpI0C8YF58+o6LRi4ChAxEBkIhkSs8d0FjtseUToi/ZKii8SdAi4mIcC4mMazUgw65Gd+Xp8j5um47Rg5Jvka/pz5NVwJXu13Z41/nmP4s804+Lc/xz5ez7nAIcT9QgDknP59wbPDGD2Y8ZGu58nGk/FdnJBwrXj2F79VL/mdr9HFJCokPIWRvocTbiZMP+NFT+r5XrnxgD76596l8LEfKUlq/vJb9LS3rFVOosJTHtcjcexLJf0X+/fdIYS3hRB+N4TwVx/LAaj0S0ciQZE8LZfL6BaQjqqiVNJdPHDC5Ns7OuFyx8Hm5qae/vSna2trS9PpVIPBIAoLw+Ew1yPvOylgV2+1WjEjAFHBRZHJZKJ+vx/DJun390ooY6H6zPaOkGkfl3Rk2fZAQHYDIPfBWxuOC7CDiCIo+DaUlUpF3W5Xt912m86cOZMj93zWiaxXrn3Onahxfz1NH0EDdwKfRcyATEN2IXie8u89/b5toDtXGAeEmHGyDhAsIPGIFbRlID7QrsKaxIHBOHA2sMUm7hRvw3DhALBui7sTsO4824K582t2IYnz+P0oCmru6PGxcB+LlXle9xwIJ/jFfBJ/ztxVwLh5HaGKNchc+n32VhB3MuDgIUwUIMghNrkwgvum2KLk7iVfq8X2qROOx/1dnJDwePChX/A2vei3/oH215MbPZSEhBuF9D2ccGLwS6/53if9nP/m7Nt1x79/v7KXvkCS1PqFN6txIQkKT3U8rlDGEMI/l7SU9JOHLz0o6RlZll0KIXyMpF8KITwvy7L+MZ99paRXHv4910ogHaW+hxBitZ1sAAgNJMmJOMeDfPpuBscROYjz9vZ27E+nxxyLuqR4nnq9nkvx39zc1Pb2di59HoLKuRgD21I2Go1IwI4jNZ5j4L3m8/k81xLi5Hu5XGpnZyfXEuLuAd/pAOLslnVEC3r/2+22NjY21Ov1oovACbbvTlEUA0I42OGCewfJ9x0HuD7ftQCCz1rAfQFJ5/oRb7genBXMBfPFfWM98V+q6973zxrjvnJ8D/xzgspWpB4AKh1lZ5DrQI6Ei2PS5XZ6hB7ui7d9eJaFh2d6loK7MhBsEBM8K4BnytuDGEd2GHzJ/eSeIZT4dRafo2KoI+AzrA0XVfyY3r6BuONtFIiEfh7WCOuWtULrD/Pnu0rQbkTGSPEZ9MyQothyknG9vosburwNKyHhavDsL36r3ve+kl5Yv9EjSUh4cpG+hxMSDvDDz/hf+rzvrOnSN32USr/3Np3607mmp6vH7niQ8NTANTsUQghfpINgmr+XHf42n2XZLMuyS4d/f6sOwmmec9znsyx7XZZlH5tl2cceF0THL/aSYm8/leXZbHbFSvjh2CIRgUC6fdor181mU2fOnNHW1lbcOhAi7rsjYKOmH36xWMQWACelTs4g6bPZTOVyORL0xWIRMyC8H146qvwX7d1chwsMXm1erVYaDAba29vLbTkIacINQKuFEzvyHdhRYWtrK+YG8P5ms6l2ux2ru95GQWsDmQHtdjvmGngFG1INUSy2M0Daqewzfx7kSECiuzu4V1T1V6tVbpcF6WALyr29vUhU2aWB8/v8UgnnWLSYkJWAuEGbjgeCMk8c13cY4F5fqR0BFwICDudHSHFRjPVBGwvPB/fUBSjPTkB04b4c12ZRdAH5f11cOOY7IV4Lx/a/u4uBMXhmBeuh6J5wscDXjjsTEKFwCOGkYQxc9+bmpjqdTlw3Ph5JuftxE4kJ1+27uKrEAhMeH973bS/R7ZXHlgqdkPBUQfoeTkjI42fu/h+6/2UH2WK13/hDVcY3x+9UCdeGa3IohBBeLukbJf21LMvG9voZSTtZlq1CCM+U9GxJ730Mx4vBexAgwvaoElPphihBNL3/2lPzpbx921sppCORoNVq6bbbbtP29rZqtVrMOvBtKZ3MSUdb6FGx9uq3b4EHcVytVrksAieNkiLBZ3u9er2uVqsVCRa5BpwfYu5Vf0ixk1Unx/V6XZubmyqVShoMBpGUQozZVWFzc1Nnz57NBRhCpjc2NiJZW6/XGo1Gms1mqlar6nQ6UTTo9Xox98FbDbhWyCK7AGAzZ6wQXwIbXazAIs88IBzgSkGQYQvNXq8Xj7VcLiMRxelQrVaji4D5IjNBUi6jAzeGiwner0+eAmuGteQWfw+yZN2TS+HiAffT1znndweOuxecgBd3T8AdwP1AhPKWCki3iwGsE54hFwccxbDI4m4T3Gvmgfe7AwJBz1s0nOC704KWlPl8Hu9BCCEn+rmboVQ6CCbd2tpSqVRSv9+PmSaMievnM0X3wknE9f4uTkh4vPiWz3m9zpbbN3oYCQlPGtL3cELCI2Py2S/Sop3cCU9lPJZtI39a0ssknQ4h3CfpX+ogwbYu6TcPSS5b4XyCpH8dQlhKWkn6qizLdo49cP4cqtfr8Rf8RqOhjY0NnTp1SvV6PWftXi6XsQJfJNZOuiXFJHpIC8TIz9vpdHT69Gl1u924dSHVeqq+bk+HqHgiPLtCOBFjBwcq4t1uV41GI0cSpaPKqr8X5wNBcogSbkWnB9wr/1TOmQds3ZVKRb1eT1tbW1EA8Mr9/v5+bCc5ffq0NjY2LqsM12q12K6xt7envb09jcfjSKI3NzclHYgtnU7nMiLJPWAuGftsNsu1CSDOcA8Wi0XcocLHxJywZoq7CrigQBuLZylw/70Szf30XREg1AhXk8kk5mrg+CBDgzVKuwyhmBB5iDjXT+YG1+dtMByHgEyq6h4MCXFHkGK+EZSko51A/F66swUxgZ8h1vhnecaYK8QCPuPZFohQnMM/x5wzl6wJrpfnbblc5lo7OC7XXMzHcDeC5zVwDcxRp9OJoiHfC7wHlxTX5gGxJwVPxndxQkJCQsKVkb6HExKuHnvPqmhdPznbcCdcfzyqoJBl2ecf8/IPX+G9Py/p5691MBACrOW9Xi+XlxBC0Gg0iu0C/jpE2ok2pMFJfq1W03A4jJXNU6dOaXt7OzoHxuOxBoOB9vf3NRwOYwUd0uF73ksHrgTej0BB+wStGU6GPEHet+fDWeBEyXvqXcggQ8AD+iCojInzLxYL9Xo9nT17Vr1eTzs7O9FWTtAj2zs2Gg31ej01m81IhmlF6XQ62tjYiOOlpQKidu7cuegiodLM/cRG75V/F2nYGnA+n8d7wxxzrU6MEXmYE88fYP2cPn1ap06dUq1WU7/fj1kC0lEwI5/j74wLgctbF8hYGI/HGo/H0UWytbUVQzg97JJdJGhDwD3BfcdtUSTkkuKc0XJDm4mLW74bAaTX3SDuSAghREeMizmQc9wsVPc9R0A6cvrwrLlroBh46cGMrFV30bigV3Q04E4ArHtaGcgeYV3xjLA++GzR6cG1uKPFg1+ZOz+mt1ydFDyZ38UJCdeKn/r8T9XH/eIP6bm11Aee8NRD+h5OSLg6DD7vxZqcTe6EpzoeVyjj9QS//FerVW1sbKjb7arVauW22pMOAg4JS3TbtJNtkvU9gK7dbqvdbkeiJylW1pvNZswg2N/fj6IFhJyKPlkDjElSTL6fTCaxwo19nZA/4C0ZVIq9dQBBAhcGDgOvCGP1htjR3+9WfcjreDxWlmXq9XqX9Y3Trz+dTmOrBPMJqZcOiFgxO4D3UfnFsu996BA3T/b3rAFEFIg5bQgewImVHWeDOzW8x545gpwjRnU6nRzhpVWD0ErO4/eIVpZut6terxfvwd7eXhStsM+zYwfBkjhoXJhivlxU4XolXSZksM5wq/Be1hOiGcKKtwcA5hyyjviD24Fnh/XrTgF3vHiOA/fQx+xOGY7v7UW0NpBh4g4SyDv/dqHBMx9wK7DucbCwhnCUICb4Dhk+ZubLXRfAsykcjD8hIeGxI3vbOzTLbqrdURISEhISniDMNoLWtSQoPNVxYn5bprpMKB+Wf8QDqpi+G4Dbvt1C3mg0YnWYyjsBgVSq5/N5DPgLIUTXw2Qy0d7eni5cuBB3TXCCQ++8dFQJheTUajU1m81YFR+Px5cRSoIFOV6/38+5GLhmD5BkXJBZ8g4kRbJFZRUiB8lqt9vqdDqq1+sajUZRvPAqtu/MgJBADgEiDXkLq9UqWsdp5djc3IyEDUeF71bg5ylW1J24I0I4yfW2CdaIB2xKys1Fs9nU5uZmbM/IskzNZjMKTrPZTOPxWMPhUP1+P4pLEF8EmWazGQUJXChO3H1nEAQcXAU4NQiKlBTntd1uxywLiD6ZCB4EST4DOxZw/72dwYm+E2IXFLwFQ7p8K0RvG3JBgfn3HAKHn89zOwjWhLhD3l1A8Gvl/LyvmM3Ac+2ZHpzfRQE+6+IbY8LpwPcGO7UgTPlYWW/elpGQkPDY8YlvH+mF9RQql5CQkHAr4+5f/Qqde+9aFz/6Ro8k4cnAiRAUIEVUmKnKhhA0Ho8jmeKPEx0PcqTXv1qtajQaRRJX3I++Wq1qa2tLT3va02LrgCfbY78upuZDmiVFcYK2hu3tbZ07d07b29u5tP6iPR0BQFIMHZxOp6rX6/H40+k0igCE+pEjMZ1OI+EhqM6t/NJRS8JqtYpCysMPP6wLFy5EMaLRaKjT6ej8+fNx7huNhqSjnSaoPkOYuW4s6J4fMJ1OY+sETgKuG6JJ9Z4dMk6dOhXdBOVyWYPBIBewiLWdz9VqNfV6vVz7iLs+uM/s4MC988BPSbHNwXfxkBRFhG63q06no1arFckyDhB3t7RaLbVaLa3Xaw0Gg+h68C1HvUUjhBC3k8SNgQuh0WhoNptpOBzGeXQS7oGGuHncseHbRjLX5XI5t/uFE3A+z7F93eMo8AwJnyecL9wjWjyWy2XMg8Dh4E4J36GBPAp3ELiQxL3z7wOeOXdTsO7daeJih++kISkX4uotRwBhxR0TCQkJj45QqeiZb6zoG0/98Y0eSkJCQkKCpM/7kL+q37jvrU/qOVfZWs9/0xfozl8Luv+vSUqbO9wSOBGCggff+fZvtANAzqkqujXc7dfsRADRXywWkfB6yF6pVIqVdcgyn9/d3Y3bEOII8O33QghqNptaLBZREIBIbW5uqtFoaHd3N44V4ka1eWNjQ5VKRYPBQP1+PwoEHJtr4jUIPSTNCQ9Bcv//9s48ONb0Ku/P2y2p1fsi6Uq6dzx3vI3jiZkYBzszNhgnIcYe4hgKBwy4gCKJE7ZKYpJiS4CErUiwExLwGBtvBMquJIYwQIW1cBwIwTFeYIbxMjOe5c7cRWqp91Zr6S9/SL9Xp3vuOtyrbvmep0o1V61W9+n3e7939JzznOfY9gnb/406YW9vT5ubm7pw4YJ2d3dVq9Vib3upVIrtGigBpEOCJ40mGDCQnJ+fj74MIQRtbGyo3W5HwkaVHmJtHfoHg0H0a0ChIB1K3a2BJi0KxMr7QRQhi9bskfXhWrNWtuXDEnRaAHK5nAqFQvQ3GPcmYD0ymYxqtZpWVlY0Nzener2uVqsVJ0lYtQKJDyrjVu1BiwufybZhEJPdh0wUsb3/F4NVqpAkGE8oWJ8RHrdtC3aCiVVmoDqxngN2zCnTFlBE0GZC61A2m42JMq7duPqB9yL5QPsTXhDcU9ZjhEkwtoVivJXFKiOsCsGaVPIzlEUOh+PKSBWL2v7Vqt5+6r5Jh+JwOBwOMNy78nOuI3aSPd3z6a/Wytvn9ejfnR5Ta8eNx9T8xUzFl8o8SQESCtYIEdBqQPsDM+hpSxivjlItRt5PywOkNp1O66mnnoqtAVSJ7fvYsXnWSDGfz2txcTEmPyCsPI/4stmsut2u2u229vb2YszWfwAyiWohk8nExACKCGnU1M62hDCxgSRHs9nUuXPntLGxEWX82Ww2+g6QxEmlUvF3qaDbCq8l8ChB8vn8iCs+cXQ6HXU6nZgwYVpHu91WoVDQysqKbr/9dt16662anZ1Vu92OrSmYMtqEEbJ31gHSzQQE9o1VL6C8wFviYlV6a2hZqVSiP4GkSMghq7xepVLR0tKSstmsBoOB6vW61tbW4j5krey+kxSTFJBdXiubzcb2GPaubfMgZqtI4HUwjWSv87lsgmo86WJNLPmcVvVD640dv8q9Q9y09vC6VjVj9wwknxGtTD9hJCuwiTQ+L8oTkoL8nNhZL84HO9mCmEiCcZ+RTLIKC+4lSTF5CKZpyoPDMY1ILy3psXec0AN3/PKkQ3E4HA7HGD7UKelrC60b/j6DZEff8PA90g8v6NGvnb3yLzi+oDAVCQWqt5BCDAWp2EJkkFbb6iHkyxo0UtG2VX5eg98tl8uqVqsqlUqxLQDyMJ68gMBZsmMroJVKRadOnVIul1Ov14sVYiuzR7o9NzenRqPxtGQCcVtSZNs4IEUQwvHJDxBpKr+YHaZSKW1sbKjRaKjdbkcCKh2a6tn+dIip9T2wPfWQXFvxpSWABEu321W9Xtfm5qa2traeJnFfWlrS8vKyVlZWtLCwEJUDEFuuGRV/kjULCwuanZ0dmYBg++9JckCmqXDb3nqrbmGtSfTgrWFJJEqUbrcb/SOWlpZULpfjCEKSAdYbA+8G4mXNpMPWFCZnWA8C9vK4UoU9yecieWNJOAkQfn98z9IeY6dcsGZWjUHbCNfWToiQDqdycL/xXlZVRBKNfWTHO9rPMv69HReJOiGfz0e1BoaX/X5/JNFjPTbG9zdrQ5IMjxI7nWPchHLca8LhcDwdM6dO6sGfXNEjd79n0qE4HA6H4yL4hTvv0IMfbehfLX76hr3HXjLUW+svUuf7T+mRN8zfsPdxTC+mJqFQLpcj4R4MBrEdALJBzzskiMSDlbkPh8NYsUylUpH0jJMiqvdMk4CIDYfDSFQhpnZMI7FKh073mADSS29JIRJyXgOCz+cqFAojJMv6OEDmbEvH7OxsbLHgcdQG9OVDsvgdS+6tD4X1rbBVfYgWknVIGD/DI4DXt20ZJHzwUxgMBlHFgKKgWq3q9OnTuu2221Sr1ZTP52NCwo6GJM7Z2VkVi0VVq1UVi0VJh2aYKDlI1uB7wGMYGrJv+My9Xi8mK5hgkc/nY8z4AJDYarfb2t3dVTabVa1WU7FYjGM5m82mGo3GyChCJjEUCoVIULm27GVabObm5uL7krSxCQ3Ivm1boAJPqxAJJ+s/wVpC1LlPiIUEBy0KkPD5+fl4X6DmwcOCeEiUSIctEJlMJq4J9xgxkWyQFPcBpB2lAdMcIP78Dp4TMzMz0X+Da2eTXfa+Ick0Pz8/ckZwn9k1Q+lh/ThsIsEVCg7H05FeqKl+zwt04ct39Pmv+IVJh+NwOByOS2C4taX/87dO6U33reiXbvvwDXmPtzeerXf//t+U3nBDXt5xGRQeTyk1OPgmSK3nTcZMfCoSCtYFnvF4tq+aMYrb29txkgNTCyAvtAdAOiBi1jUfkoFk/cSJE3FMY6fTiQTSEhNLTPFFIHFAD/zS0lIcaYfawqoIkIjbaQ8kKSBVkBqmVEAi7bQKkiWsWSqVUqFQUK1WU6VSiYkKlAxU8qnoWvIFKYdsQTwxPbRTAiDAeCNYNYE1sIMst9ttdbtdSYqeEahGKpVKTCTQbmEJHUkJWkKq1apqtZoWFhaUy+ViOwnrTzWd0ZWoDaiwj6ssaKPp9XoxEZHP56OvgaS4l1qtlhqNhnq9nubm5qLvBsmbfr+vTqczMhGBFgWMFklmca3xoqDlZnt7W61WK+4/1jOfz4+015AosJV2Egy0J4wT/3GliU28WTWApNgCQAsQagOSVJJiIg5fBPaQpJgQsgaZfF4UFSRNpMPEHIkj1AS2XYHraZUSKJRsMolWDpIWAFWMVdCQJORzkDDAq4JrOe7r4HA49pEulfTpH7pdj/z9eycdisPhcDiuAnvrdW1+4636O+9+nX73hb9+3V73x9b/iraGs/rAH7ziur2m49KYa6S0m030nJc+ER97tPMszXYO/mYN0vPuPKPOzpzOPXjiSGObioQChEA6JLoQJwgmpAODNkmx3592B6rjVCGtkz1Ef3Z2VktLS1pZWVGtVlMIQd1uN5JN6xcgaaQlQTqcoMCoR5QV/I6tsFsFACqITqczIoe31WtrWkclvd/vx4o6oy1JeORyuWhUiLIDsBYQ42azGRUbfAaqxQCihbKBZIJVTFAZhsxR9Zb0tGQLpJrWAsgqvffSflUZ34ler6dGo6H19XV1Oh2Vy+WYgCiVSiOTIux6sWbEOT8/P7J/ULcw/rHVakV1AmoDWhcYV7q3t6dGoxENK1Em2AkGW1tb6nQ6cY9ZT4JsNhsnN9g+fYgzJoPtdluNRiPuQUt4GVk5GAxGjCZtQoVWAtvGMd5ewPNQI3D9rNkk60GCheSRHVfKPpYOJ0mgxrCEHUPHra2t+N5WmUGyot/vx0QXSQzOA16He4H9TNIOJQ2fj2SITVBw3fEhQdlkPUOsJwP71HpWOByOQ4RMRg++9QX6/Fe9Y9KhOBwOh+MqETIZtb54Va1fT+uuwRt0It/Rfc//rWf8es/78LfqjlPndP+nTivseQHmRmOYHepVL35Qn948oeVcR//j+b99+MMXPv3563td/cvKa/S5xpLOHlFiYWoSCiQF+B5yRCsApIHK82AwiKSDyi0VTFuZpsprWwMKhcIIcYbk2+QDkmwIiO2tp0KazWajB4OkWLW1JAziLe2T/H6/PzIOUFIkRhgMQrIhz91uV61WK7YQQIxsxZz3tV4RrB9tEpAqiOK42oH2D8i3NGouSPIDyXg6nVY+n4/EHYKIQoTnWM8F1pDrube3p06nE8cubmxsaGNjI7aElEollctlZTIZNZvN2AqDQSOk0/bNQ2BJVLAWJABQupRKJc3MzKjb7arRaERSKin6IjBes1qtam5uLpJMYm02m9HAU1LcY5Bs9g1qDqr3vE+r1YotFSTH7NhL6dB81I6KBLzuzs6OOp1O3CNcO5usQkUjHY5PpP0B9Q7tHqgver3e057P+tr2Bj4jSSs7FpO9gwoik8nE/Wenh9BWhP8CSZdxdQ5qn1QqFRUinAu0hqDuQblgk1kkEdgvJEdItKB04po4HA5JIejMB56nz9/1rklH4nA4HI6rQPNNd2mYDhrOSJsvSiQNtf0nJ1TPLulv7/w9fe9t/1Ovzu1c9ev9xPoL9PsXXqDcn+b04OPPVsj4iO0bjWQu0Vu+7Lf13dXHpFuv7ncW03m999b/rYdXO/ql1Zfp1x77IjUfrt7QOKfmr2WIP8QQAjhOzO0f+5Ki5D2EEMkP1XReV9ofoUg/dj6fj9VMeuAlxWqo9TPA/I42AggzpnHjhoaQdYgXsQNINAQG1US/34/Ens9uJfoQJxQRqVQqfiYSI0zEsIaN9IXjQ8CUCd7fjs3EzwBlBCZ+lUpF6XRavV4velNA6IvFolKplNrtdiShKCWsQSbqAVsth3DjU9BoNNRqtbS9vR1fn6RBKpVSv99Xu91WkiSqVCoqFApxXe31shNCqGDTirG1tTVSreY1u92uqtWqZmZm4udn8gOJFgj6cDhUo9HQ5uamOp3O0/wiIMgkZ9gr7Bf8NlqtljY2NmILCaMruabW14PraVUgVvlCzJD48ckUkHXit+0stOBg0Mg0DtowIO92DCrE3f7MGqWyD2xLC9eeexglEm1MtIgkSRL9JSTF5AOqoGw2G9ePdhSrSEHVNBwO46STUqkUzUHtWhIve5TXIMliR086HDc1fu+U7n+hT3JwOByOaUfjm+/WdjGo/ZyhktQo6d+u7BdUHv3zk/qO829SsdAf+fknXvrBke9/pzer733ga/dfd62gVHtGumUyffo3G/71a39F82FHbyxuPqPff+5sQT+89Bf6mvLH9fHbb9VPfOK12juXvfIvPgNMRUJh/A97CBPeAVS3mW9vjdYgvZa0UHWk2osiwfbX40aP3JwKJ4TcGrnZKmuz2YwkEVKKod94VZdYINMQaRIOTCGARCFB7/f78fm28l8sFiP5CiHEtonBYKBGo6FmsxnJHuaJduxksViM5Noa5Q0Gg1gNJsHS7XbjutVqtUj8+b1yuaxyuaxSqRQTIPV6Xe12OyaBMNojKYMxJeuWTqfVaDS0sbGher2ujY2NSL4Z6Yn3gKQRh348CGzCiYQFihNIJUkG9o6ddoCfAskXvBvS6fSIaac1yBwMBtrc3IzrxPXGFBLFBFNKqOKjpEGVUa/X1ev1RsYwFgqF6IdAYgSFCWqRcTNSVCyQX3wNSCrYaRzsXZIdtkUCbwTbFoKqxJoT2rGa/BelUL/fj0TftjHZ8ZckCLhmVm3CZ0ChQSLBKgaYlNLpdOI9RdsCr40aolQqqVKpxIQgZ4zdU4zq5Azi3zbp4HDc7PjVF/yKpLkrPs/hcDgck8Pmt9ytjRdJycyVSX9yIaPWhczIY8/vfuvI97uDtFKN/cKp21QfHX7ude/Va3KDKz/xKnDn3LzunLugl9z98/rqj3yHQv36/798KhIKVEptqwOVbSu3lxTl69KhERwEDEI53qtOXzwkdGZmJprt9Xq9kbGDrVYrysLpOZcUK8EQ9eFwqEKhoMXFRc3Pz0cpfa/Xi0Sefni++J6ESblcjgkB5PW8B9J4XPCpzlojPRIOW1tbarVakXgSx9bWViRcJAy2t7ejweD8/Lzq9XpUSezu7qrVaqnVasV2kuXlZdVqNa2vr2tvby9K1pGRZ7PZ2IqAuSBVY64N5DeTyWhhYUEnTpxQpVJRKpVSo9HQ+fPnVa/XY7KgWCzG+EhqSIptKFxP1oExhqwHVXeIKERyfPoH1x+yy8+JAR8DaxrZ6/W0tramJ598MraYsEeplLNH6fu3SZWdnR3V6/URs0eUAVTppf2WilarFRMW+IzgEcCe5XGreiFhwFrQEsEXiQlgX6vX68W9NH4/WZNHCDn3DZ+Rca87OzsjEyRIhKB6QIVgkynsGWIioch62ukpXFcSUzxGQlBSbAkimUDLBMoh9gg+FXZ9WD/3UXA4pNc+0FAu5ckEh8PhmGY033TXQTLhmbciDM+PGlx7EuHo8d7Xv0OvvAHTN++cm9eHX/WftJUEveY33qKwff2KZlOTUKDCCHlAmWCnCViCIR2O1IPoQHJoJcC0sFwuq1arxSoxSgNk21SWUQVQKZYOxzna8ZNUfTGxkxTJjK2kUvlFFWHl01ZCbqu3qBX4vPgnkDChfx2gXiCRsb29Hckq5BlyDpEsFouq1WqR6KHI4P1oheB5EDI7JQKVAaaWeBuQdODnJEwkRdINoe92u1pfX9djjz2mM2fOqN/vR4l6Pp/X0tKSSqWSqtVqJOYkMiC7jHJkkgRKBCr7dkyiVSew7nZCBdcZbwzGaULat7a21Gg09MQTT0RCKyn6Wdg4rPLBJsbq9bouXLigTqcTPw/KBdZza2tLGxsb6na7MVEgKU5KoCWE/c+eJDlCMoq9C5G20064xySNeDqgtLFJh/GKPsSe/3I9t7e3R1peuLd5DRIJqAfYJ5g4oiyyE0pYZ2s0SeIH/w6rTCARae8/lC1MoMBHBLNTrhXrjPKC/eBw3Ox4XeF+SYUrPs/hcDgck0Hn6+7S+oulJO2+BscV//ae/6Z7ck+oms7dsPe4dWb//+WfeP1/1Bd/6J8rXKfulSv+tRxCeE8I4UII4X7z2I+EEJ4MIXzy4Ose87PvDyE8FEL4TAjhK68mCEiblRtDRqns8jM79tBOgbCkSzo0oSNZYB3qIZvWNM4+joTbknf8AGxFG2KLIV6j0YgGe9YMkoQHyRArBbfO9cj0IcH0548THYggBJdJA1S/8SFgrCK96FbKXyqVoi8BqgsILFV6W2GGEEJS+QysGWSepA3rzWeBfOL7kCSJzp8/r0ceeURnz56NCgh+XqvVtLy8rMXFxZgAyGQyWlxcjCMkmbKBuaL1v2CtIaUXa2XhM3B9Ic6QXQh7kiTqdrt66qmn9NnPflaPP/54VJHkcrk4thMzQ1o4UBhwjVqtltbW1mKLhDWuZH12dnai0oPkAYQaYiwpJjtIhODjgDqDFg1+h/1ulQnWywKPDFo+2GcQcRIQtmXAekUMh8MRzwXuX2k/SUEbBaoZ2jC4R/r9vtbX16MvhZ3qYFsd7BQH9qdVJxBboVBQuVyWpJHxq9yXjOtEpWL3L8kN/j0tOIqz2OG4GL7zua9Sb7g96TAcjonDz2HHNGLwVS/VubukJD3pSBzPBM/6nT2tvPCCvqlYv6HJBItyKqvPvOHn9LE3vE2CGvwlclFXo1B4n6SflfSLY4//hyRJfto+EEK4Q9IbJf1VSScl/V4I4fYkSa5KN4zygLF9AIIIIbbJBPslKVbxSShA+nK53IhR38zMTHR9t69JJRn3f5IK1kCPKr/1JBgn/1YGTgsE7vMQxPHxf3xmSKL1kOCzkCSgB55pCfgE2BGZti0Bgz76yjOZTPQ7IC4IKAkVDBdRjbAullBCFnkMg0wq+iSE7GQKRgpeuHBBZ8+ejd4JjIksl8uxNYIJGEx9qFarcaxhOp2ORL7b7Y54BzQajUiwWSMI7MFejXJ+qu2WIEuKFfV+v6/z58/rqaee0oULF5QkSVxDpn1kMpmYcGJCBEkKvDloTSBRYT0i2Ed4ELAPSWhZs0/r08C4TeuxgH+FnVxgq+78DMJM2wDqFDuVwd6DJDPYV9Y0kWo/CSU+N0oDu2fsFArbtjMYDOLP8U5AVWATRlbdYxNBtClgfkkbC4mJUqkU/VPa7XZUdqAgsYkwPictGFOC9+mIzmKHwyJVyE86BIdjWvA++TnsmCak0hrOhkNS6DgeCPutKV/61x/UL379RyYSwmxIq5rO6eGve4fetvEc/dabv0wPfeN+r0XYDgqJlFylUPeKCYUkST4SQrjtKmN7vaQPJkkykPT5EMJDkl4m6Y+v9IuoDPiDnj/kbfWRZIFtbbAj3yCJ1lGfSQGQZaqu5XI5ys0vlryA4ODIzyQASDmGiPgX0DcuKTrOU72XNNKzbSvAEEyk2xBJnPutsz297JCrnZ2d6AlxcK3i58E7Av8BKvYkWjCltDFDvHg/aw5IbNYXQlLsubdeApBwWhIwxKRqjKnhuXPntLm5Gcc4ZrNZzc/Pq1araWlpKX4WKsjFYlEnTpwYGRuazWbjuFASCnwOS2SJ3XohUOXGANDK87k2tB889thjWltb0+7u7oixJy0yqAWIxaoEeB6GlpgIkgjiuiLDb7fb8bm2x5+pCZB5WnCsrwjKEtbIKi74jFxTklRcZ+4/1ok1s/fX3NxcnJYyOzs7MtKUvcH0BvYC+5UEBokG4mXShk2GcM24d1ApWYNH4rIqAlQwJDV4Pu+1u7urZrM5MhGGa2OvK3FOU0LhqM5ih2Mc//lTv6lcylseHA4/hx3ThuEr7tSTX+7tmccCiTTTD9o+sauVWzb0x3/tQ5OOKOIttUf0lv/+SPz+eb/87ZqvB3Wfu/839Nz5mcu2R/xlPBS+K4TwzZI+Jul7kiTZlHRK0v81zzlz8NgVgev7uNkbpNz2Rdu+dkgQZMSSJMizdDiGkqQA0xfo2UbS3W63I5G3XgbI+iXFKv/u7q663W6cUEDvOATFtmGQMID82SQGlVgmRxCvpPg9pJM+c0gViQrk2rRh5PP5aCzY6XS0tbWlbDarEydOaH5+Po55JHnAZxwOh1HRQZIBU0geJ2FjzR/tqEwSJ7lcTouLi1peXlYul4teDoPBQM1mU91uNyaAUB/gmVAsFiOZJslRq9VUKpVG9g2fn3YG2k9oTUFNgjmkbduAHKMOoF2F/cRrbW5uxlYA1tXK9a26gDWkes4eQvXBfsQ3gT2IeoZJHcRrDRfZ3xBjOxWF1yRhwfvatgaINSQ5k8lEpYvd2yhcbIXfmmGSTNjb2xuZ2IBPh/2stp2H6R3jxod2nSyJt6aTNqnC57DTM9gHvAYJGlQmKBZovUAlRFKJhIKduoJB6jHAdT2LHQ6L8NIvUib84aTDcDimHX4OOxyOS2NpoGQ3pcXfnNEf/cy7Jh3NFfHQN9078v0rv/3NytS39blLPP+ZJhTulfSj2u+2+FFJb5X0bbq44OaiHRkhhDdLerN0OEEBR33pkEhbKTsEY9wUTjokF5lMJvZvQ46sf4GtpJMsAJAVSAzkD1JNkqNarapcLitJEjWbTa2trY245/OekHM8A3DdH/eBIIli45IOJdfEbPvf+T3IO/FBrkqlkgqFQmw9GA6HqtVqyuVy6vf7ajQaI8aX9JMzKhFFRKfTiWMYS6VSHMOHGaCdRkBCgc+Xz+d14sQJLS4uKpvNqlqtxvYEVASQ03K5HE0YqVqTJGKPzM/Pj1S7SQzZNbCTDpIkiaZ/KDKozDPuc25uLu4P2k9Qy7Tb7WiOKEm1Wi2qLVhr9uy4P8a4xJ9pFeMjFO30kmazGZM8JMC4dqgceD9IOr9PcqJcLsdEkFWasI/t65AI4YuEAUkG7gWrHmG/MBECZQHXBvKOSoBEE/t5OBzGUZqokbjf7P637QxW+YHXgaSoDpEUzw8e517hfebm5uL1pE0FZRBx2Ckd3PPHYMrDdT2L53U0vXuO44Htr/wS/eS9P69bZlyd4HBcBn4OOyaCVLGozsr0eD05no78Eynt3N3W/S9/v9IhJb160hE9M3zk3ndKktKrF//5M0ooJElynn+HEN4l6TcOvj0j6VnmqbdIeuoSr/FOSe+UpEwmk1hyBClut9vqdDqSFJUHlnxYw0HIe6FQGPFPgIwgP9/b21Mmsz9z1VY7JY1Iu5FMkwSQFMlOpVJRoVDQzs6ONjc342QHWg4gu/Pz81pYWFA+n4+j/6xfAZ9VUiRqtsec97ckzj6X1gLIMD+jLz5JkmiUV61Wtbq6qpmZGa2vr8c+/UKhoPX19VhZz+fzcTLG7Oys2u222u228vm8yuVyTA4wHrDZbKrRaGg4HI6MbszlclpYWNDy8rIqlUqcuAGxZwJCLpeLCRBUEb1eT/1+P3oTsE58LpInXA+uKyoTkgkkIViHVqsVVRaFQkHZbFZJkqjRaETDwEwmE00qeUxS/D1itJM2UDfglUFsKEbYj7bdADJvfRBIXIQQYuWfxAGP215/6y1SKBSib4ZtpbGVeRI+1tyTvYvviDXwJAFRrVaVy+VGzDkHg0H04LD3INMu8NJAWWFHdQ4Gg6hW4PqibOF6Quhpj7CGkCRkiHdcvUS7QpIk8T2SJInjMCU9bfQor0WSEc8Lm8SbRlzvs7gUam4P7Yh4xU/9ie6an562H4djGuHnsGNiOH1K514+3X+n3MwoPZRSkpL+113vUDp8YXsRPaOmmxCCzU98jSTcbu+T9MYQQiaE8GxJz5f00at9XTsmkoot/fX5fH7EPBGzRfrRMbmDwEEoxg0RJUUpN4SRaQAY1dlRlFZFMDc3F/v7qfRjiGeTBJC+YrEYvRqANbezvf0QUB4bd8En2YDk3Rrv2SSLbfNoNpva3NxUKpVStVrV7OxsnEZBlVbaN9VD6l+r1bSysqJarabZ2Vk1Gg01m81Y/WacZqPR0NramtbW1tTv9+NnJaGyuLiokydPxso1fffWE0Hal92Xy2VVq9Uoh4fgkwSSFBUntgoNIUQdQOsF7Q6QZJIDmP4tLCzExAg/6/f7cT/RymLHj9I+Ys02bSsLewTJfTabjeMvuR4QY9uWQfKENWH6wObmZjT5pG3AjiqF+FpfjHw+HydF0FKAl0Kv11MIIZp0ktAgaYD3AsoTPAa4buxdyD6tQXakZDqdVq1W08LCgsrlcmy/of2B1yXZhr8JSRoSJDZ5YCd2cC9IowqQmZmZkftkXNVCQomWFtsGQmLDfk7uZZIT04wbdRY7HPV/dLdeWfj0pMNwOKYefg47HA6L0sMprf5RokFN+sD3/LROpL+wkwnSVSgUQggfkPQqSYshhDOSfljSq0IIL9a+dOtRSf9YkpIkeSCE8F8l/YWkXUnfeTVutrYX2hrxUbHFhI4qupWQW8JJ77u0Tzh6vV4kuCQMIB1UZnlf5PW0CEDmkEVL++RqZWVFi4uLkg6NJOkBh9RQPcVvgKQEFWoSIkxmGE9iSIdtIJIiSWWyBEkM5OvIwiFIECgmHTBmkSkEKAgymYw2NjbU7/eVSqVULpe1urqqlZUV5XI51et1NZtNSVK5XI5j+EhUMCZTkorFYkzaZDKZWKWGDCO973a70dPBGkDSFoIPQaVSia+HMgEFBIRwdnY2kmKmbEDWrQSfkYr4MBSLxfjZNzc34z6pVCpx79l+fFppSFYh9+d6IY3n+lsSzTW3kwlQxuCVMD6tBBUDlXXab4rFYhyjubm5GdtCUCYg17eTQfb29qJpJgTfTgMhkUCyB2+L7e3t+J6zs7OR5FvTUj4X+71SqWhhYUGlUim2A7HXJcXESzabjYkEkod2HKV9H9aVvY3Rpr3XUDUQB8k5rhX7w/qSkFDgGvMZSTzZFohpwVGcxQ4HWPyGx/Xq3M6Vn+hw3ETwc9gxLUgv1HTuS6v6S836c1x3lB5O6eSvPa7HvulWve/bfkYvnLs5WpiuZsrDN1zk4Xdf5vk/LunHryUIa4jGiD2qxhAEiBbPLZVKsRoL2YBgQNQhVnZKgTXcI6EgKVZnkfFbokwbAVX3UqmkZrMZjeKQrvNaSLCt0zxVU/r0pcP+eZtssIkVYsaMDwNBuxaQVNQM9Jl3Oh31+33Nz89H5QAVcdzskZPjK7C4uKjbb79dq6ursS1hMBhocXFR1WpVMzMzarfbajab6nQ6kaRXq1Xt7e3F9hSuD/4GlvwzZtL28+N7wWQNPi8kk+QRYxppKaD6TvKE/npaT+xYwxBCbOWAaG9sbESDPirUtopNoodKOGNCaTPhOtrpFpBZ1BMkTiCwJHTsVAgItFXRcH1IOlSrVZ04cULlcjlOFOF1bIsMa4CagmQC9waTIew4xlwuF2PtdDoxmUBbCAoeu74kvlifUqmkkydPamFhQcPh/phV2ixQQ9CGUSqVouIINQifm+Qeyg1rEppOp+P1sdNbrNcB96r1jRhPJlp1AvfecDiM9z7rx7pOC47iLHY4JOnMD7xc99729kmH4XBMHfwcdkwLQrGg5gs8mTBtKJ7Z1e4TZ3TLqxO9LDNdf0feSExF+Y0qK33htpJOBZPebaqbkAbr8m5d4m0Vlgq+7T236gc7CQJpNJVxiFehUNDq6qpWV1fjVAVaBejphuBa2TWEXTocc0nVlCQAlWh63K1pHgmVQqEQq7e0cdDLb1sztre3o5xe2lcWlEqlSGYlRYk4VX1pX32xurqq5eVlZbNZra2tqdPpaHZ2Npoltttt1ev16GEgKVbiO51O/JyQPa4pbSmoD6yqA1k6CQ/aBSTFsZ20G0iK15TEim0PoDqfzWajqoXEBW0zIYSokuj1etFro1Qqxcq7pNhewb7DjHJ7e1v1ej0ma+wYTyvJR7ovacQYUlK83nbkqW1bYd1QxhSLRS0vL6tWqymdTsdklnQ4sQFFzu7ubvS7QPFBiwGJNn6Pdgz2rZ38QSsAqgf2GGtPMiWdTqtSqejkyZNaXV1VOp2OU08g57SicL/ZCSLWeBK1BAkWJjDwfK7vzMxMjI3Xt/4r7DmSIIPBICZ9rIIE80umu6DWQb1jTWIdjpsFZ7/n5XrnP/xZvWLex5A5HA7HNCJdKumxN94i6TJz/BxHjvJngwp/+LBuRhnS1CQUIIg49kOYdnd3R4hmuVyOBm840lOxlw7nyiO15rm8j7RP9iCAKAAGg4Hq9brW19djtRSSPzs7q8XFRZ06dUqlUklnzpzRhQsXRir1VM+twR2fifegmmqTCcjKURrYnnQIKlLyJElidZ9qK9VZSBlqjMFgECcrQC4lxTgwVUTuv7i4GAnhxsZGJM3ValULCwuS9lsdSJjYnnWq29Y7gEkRVnWysbERpw9Q/UUtwVqzViQ/INd8NkkjUwbW19djVR3ii+JBUkzSQP4hmZY4Q0B5HVQsqEbm5uaisSTXnBYUSWq321FuT1y0tjBRYnZ2VltbW/H9iIPrgsqENeP98XyoVCoxQYJCwSYTIMZJksTWjE6nE4k694QdP0oyyCY2SLygCOCeRBFjPRmGw6FKpZJWV1fjvbGxsaGNjQ01Gg31ej2lUqnoEZFOp2NCQdKIdwQ/Y09bnwPUOuxV7utxdQJmjBebfkISJxyMEUVBwpnQbDbV6/Vicolr4HDcTFj7J3frl777bbpzbv7KT3Y4HA7HZDA7o/6yJxOmCYXHUlr5wAPaazT1uZ/9G/qj571V0s0zIWkqEgq2z3x7ezuOmsOIDVKGXB1ZM2SW36USTMIAImdN82xl3FaXMR/c2tqKhAuisrKyojvuuEOnT59Wo9HQ+fPn4zhB/AdQLEAikYxDDDHc29nZUbfbjdJr4pIOx0jiZM9rYbbX7/cj2aLaKimOdrQjECGMS0tLqlarUW0A8ez3+9rc3IzO/KgT2u22zp07p7W1NW1tbUUi2+121e12R3rWrSQc0m6nO9hpApubm9rc3BxpM4FAs36YW6JiwDiREYpUjlnDXq830vMOQaQdRlLcB6gNrCcDpBKTTq4liheq4YzgtH4E1Wo1KhYYnYhCBJUDVX47+pPRkVTg+b0kSaKvAGsmKZpdWsNA68khKSYv8OPgOo+P3mQN8AewIyJthZ/ncS+wn/AYIRGVy+VULpe1vLysXC6n3d1dbWxsxCkidl35LIwFpfUFPwlGcpIA4tpwj9h9b30NWAur9rGTIVD5sP7VajW27/B7XDN8ILhvOZscjpsB7a+/S/f9wL/3EZEOh8PhcFwDsudTOvmOj2sPlfNSX6s32f9LpyqhYGXbkCRIF5VbiDhkyPZyQ6j7/f7TZtRD4iTFJAXtAoxG3NraiokKetTL5bJOnz6tW2+9VcViUU8++WR0uCdW5NvdbjdKyRcWFlQoFKLsnN51jANpY6CP25rcUTGWDkdokiiQFNdhd3dX6+vrWltbi4QPZDIZLS4uRsd9SCFrQbzZbFZLS0sql8vq9XpxwoKtbOMTgR8CFWXej3GTJFEWFxejySLElrYEZOp2ZJ9Vo9AWYds+eB5JAxIUZ8+eVafTiVMkBoOBpNE2AGJkL6EeyeVy8fl7e3tqt9uxum9HL+Kdkc1mdf78+ZFqeiaTidMgJMV2E1QNkFZIKcoMXoPWHDvyFMk/z+UxFA3dbjf+Du/L3oBskwzgMT4z5NneB7TQsD9oi0AtYlsyUL/0+33NzMxoYWFBp0+fVrVajb4J9Xo9thjYBB4eFKlUSt1uV61WK5pf4rkxNzcXFQW2RcEmB0kGcq/zvW3HwJiTRBN7q1qtanl5eeTe39raUrPZ1MzMjCqVisrl8sieYY84HF/o2JsLnkxwOBwOh+MaEYbS8CCZcLMiTEMFLoSwJqkraX3SsTwDLMrjPkp43EeP4xr79Yr7dJIkS9fhdaYeIYS2pM9MOo5ngOO6R6XjG7vHfbS42eO+mc5h/5v46OFxHy2Oa9zS8Y39hp7FU5FQkKQQwseSJPmSScdxrfC4jxYe99HjuMZ+XOOeJI7rmh3XuKXjG7vHfbTwuG8uHNd187iPFh730eO4xn6j43YbZ4fD4XA4HA6Hw+FwOBzXDE8oOBwOh8PhcDgcDofD4bhmTFNC4Z2TDuAZwuM+WnjcR4/jGvtxjXuSOK5rdlzjlo5v7B730cLjvrlwXNfN4z5aeNxHj+Ma+w2Ne2o8FBwOh8PhcDgcDofD4XAcH0yTQsHhcDgcDofD4XA4HA7HMcHEEwohhNeEED4TQngohPB9k47ncgghPBpC+PMQwidDCB87eKwWQvjdEMLnDv5bnXSckhRCeE8I4UII4X7z2CVjDSF8/8E1+EwI4SsnE/Ul4/6REMKTB+v+yRDCPeZn0xL3s0IIfxBCeDCE8EAI4Z8ePD7Va36ZuKd6zUMI8yGEj4YQPnUQ9785eHyq13ua4WfxDYnTz+EjhJ/DRx63n8PXGX4O3xj4WXy08LP4yOOe/FmcJMnEviSlJT0s6TmS5iR9StIdk4zpCvE+Kmlx7LF/J+n7Dv79fZJ+atJxHsTySkkvkXT/lWKVdMfB2mckPfvgmqSnKO4fkfQvLvLcaYp7VdJLDv5dlPTZg/imes0vE/dUr7mkIKlw8O9ZSX8i6a5pX+9p/fKz+IbF6efw0cbt5/DRxu3n8PVdTz+Hb1ysfhYfbdx+Fh9t3BM/iyetUHiZpIeSJHkkSZJtSR+U9PoJx3SteL2k9x/8+/2SvnpyoRwiSZKPSNoYe/hSsb5e0geTJBkkSfJ5SQ9p/9ocOS4R96UwTXGfTZLk4wf/bkt6UNIpTfmaXybuS2Fa4k6SJOkcfDt78JVoytd7iuFn8Q2An8NHCz+HjxZ+Dl93+Dl8g+Bn8dHCz+KjxTScxZNOKJyS9IT5/owuf+EmjUTS74QQ/jSE8OaDx5aTJDkr7W9ESScmFt2VcalYj8N1+K4Qwp8dyL+Q7Exl3CGE2yR9sfYzhMdmzcfilqZ8zUMI6RDCJyVdkPS7SZIcq/WeMhy39TnOZ/Fx3qNTfSZY+Dl8NPBz+LriuK3PcT6HpeO9T6f6XLDws/hoMOmzeNIJhXCRx6Z57MQrkiR5iaTXSvrOEMIrJx3QdcK0X4d7JT1X0oslnZX01oPHpy7uEEJB0ock/bMkSVqXe+pFHptY7BeJe+rXPEmSvSRJXizpFkkvCyG86DJPn5q4pxTHbX2+EM/iab8GU38mAD+Hjw5+Dl9XHLf1+UI8h6Xpvw5Tfy4AP4uPDpM+iyedUDgj6Vnm+1skPTWhWK6IJEmeOvjvBUm/qn15yPkQwqokHfz3wuQivCIuFetUX4ckSc4f3ChDSe/SoSxnquIOIcxq/wD65SRJfuXg4alf84vFfVzWXJKSJGlI+rCk1+gYrPeU4litzzE/i4/lHj0uZ4Kfw5OBn8PXBcdqfY75OSwd0316XM4FP4sng0mdxZNOKPw/Sc8PITw7hDAn6Y2S7ptwTBdFCCEfQijyb0mvlnS/9uP9loOnfYukX5tMhFeFS8V6n6Q3hhAyIYRnS3q+pI9OIL6LgpvhAF+j/XWXpijuEEKQ9G5JDyZJ8jbzo6le80vFPe1rHkJYCiFUDv6dlfQVkj6tKV/vKYafxUeHY7lHp/1MkPwcPqp4TXx+Dl9f+Dl8tDiW+3TazwXJz+KjitfEN/mzOJmA+6f9knSP9l00H5b0g5OO5zJxPkf7jpifkvQAsUpakPT7kj538N/apGM9iOsD2pfl7Gg/E/UPLherpB88uAafkfTaKYv7v0j6c0l/dnATrE5h3F+qfbnQn0n65MHXPdO+5peJe6rXXNKdkj5xEN/9kn7o4PGpXu9p/vKz+IbE6ufw0cbt5/DRxu3n8PVfUz+Hb0y8fhYfbdx+Fh9t3BM/i8PBizocDofD4XA4HA6Hw+FwXDUm3fLgcDgcDofD4XA4HA6H4xjCEwoOh8PhcDgcDofD4XA4rhmeUHA4HA6Hw+FwOBwOh8NxzfCEgsPhcDgcDofD4XA4HI5rhicUHA6Hw+FwOBwOh8PhcFwzPKHgcDgcDofD4XA4HA6H45rhCQWHw+FwOBwOh8PhcDgc1wxPKDgcDofD4XA4HA6Hw+G4Zvx/dXoSFjqu1dYAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 341592 242242\n", + " Min thresh = 1000\n", + " Not Sliding\n", + "\n", + "\n", + " Winner = Not Sliding\n", + " FP Patient = 212s_iimage_128688523296793_CLEAN.nii.gz\n", + "\n", + "\n", + "212s_iimage_128692595484031_CLEAN.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADDCAYAAAAya0IYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADsA0lEQVR4nOz9eZzlW13eiz9rz/OuobvPBHIOcEAcEAQRnOJPEnGKRqNRYuIsKDE3Gok45Go0gxrH3HiF4FVMjHHW6HVAvVHUCIiggCDTgQOcuYfqqj3v2sP390fVe9Wzv119uvt096nqc9bzetXrdO3h+13f9V17n3qez/N5VsiyTAkJCQkJCQkJCQkJCQkJCQlXgsJRDyAhISEhISEhISEhISEhIeHGQxIUEhISEhISEhISEhISEhISrhhJUEhISEhISEhISEhISEhISLhiJEEhISEhISEhISEhISEhISHhipEEhYSEhISEhISEhISEhISEhCtGEhQSEhISEhISEhISEhISEhKuGElQSHjUEUJ4Zwjh0496HAkJCQkJBwghfDCE8Hcv87VZCOGpj/A8j/i9CQkJCQkJCccLSVBIeNSRZdlHZ1n2uqMex+UihPCa9AdwQkJCwqOHEMJGCOFMCOF/H/VYEhISEo4brvXfpVdyvPR3cUIeSVBISHgYhBA+RdJTjnocCQkJCY8z/KCkdx31IBISEhISDpD+Lk44DElQSHjU4bbaEMK/CSH8Sgjhv4cQ+iGEvwkhPC2E8B0hhNMhhHtCCJ9p7/3qEMK79l/7gRDCS3PH/rYQwgMhhPtDCF/nCmoIoRpC+OEQwodDCA+FEF4VQqg/zDhLkv6zpG+6PjORkJCQcDwRQnheCOENIYTt/e/UnwghVHIv+5z97+GzIYQfCiEU7P1fs/9dfT6E8PshhCddwblfIOljJL3mGl1OQkJCwrFDCOEZIYTX7X/PvjOE8Pn23OtCCF9nv38Vjq0Qwp/uP/y2EMIghPClIYRPDyHcG0L4zv3v5A+GEL78kR7vIuNNfxcnHIokKCQcB/x9ST8naV3SX0v6fe2tzdskfZ+k/2KvPS3p8yR1JH21pB8LIXy8JIUQPkvSv5T0dyU9VdLfyZ3nByU9TdKz9p+/TdJ3P8y4vkXSn2ZZ9vZHfmkJCQkJNyQW2vsOPCHpBZJeKOlludd8oaTnSvp4SV8g6WskKYTwDyR9p6QvknRS0p9J+oXLOWkIoSjp/9beH6zZVV5DQkJCwrFECKEs6f+V9AeSTkn655J+PoTw9Eu9N8uyT9v/58dlWdbKsuyX9n+/WXvf2bdJ+kpJr77K4+WR/i5OOBRJUEg4DvizLMt+P8uyuaRf0d4foD+QZdlM0i9Kuj2EsCZJWZb9TpZl78/28Cfa+yL+1P3j/CNJr8my7J1Zlo0kfS8nCCEESV8v6VuyLNvKsqwv6T9I+rLDBhRCeKKkl+rhBYeEhISExySyLHtLlmVvzLJsnmXZB7Un7F4g0u5/n35Y0o9LevH+4y+V9P1Zlr1r/3v9P0h61mW6FP4PSX+RZdlbrsmFJCQkJBxPPF9SS3t/7+5mWfZHkn5bB9+jjxT/Z5Zl0/2/kX9He38bXzXS38UJD4fSUQ8gIUHSQ/bvsaSzWZYt7Hdp70t3O4Tw2ZK+R3tOg4KkhqS/2X/NrZLebMe6x/59cv+1b9nTFiRJQVLxImP6cUnfl2XZzpVeTEJCQsKNjhDC0yT9qPYcCA3t/b2QJ/n+Hfsh7X0HS9KTJP2nEMKP+CG1VzX70MOc81btCQrPuarBJyQkJBx/3CrpnizLlvbYh7T3PflIcT7LsmHueLde7MVXiB9X+rs44SJIDoWEGwYhhKqkX5P0w5JuyrJsTdLvau8PVUl6QNIT7C1PtH+f1Z448dFZlq3t/3SzLGtd5HQvlPRDIYQHQwgP7j/2hhDCP75Gl5OQkJBwnPFKSe+WdGeWZR3ttTCE3Gv8O/YjJN2//+97JL3UvmvXsiyrZ1n2+kuc83mSbpH0t/vfu/9J0vP2v4cvJv4mJCQk3Ii4X9ITPXtGe9+j9+3/e6g9MRfcfBnHXA8hNHPH43v5kRzPkf4uTrgokqCQcCOhIqkq6Yyk+b5b4TPt+V+W9NX7ITcNmS1rXwH+Ke1lLpySpBDCbSGEF13kXE+T9HHay1t41v5jf1/Sb1yzq0lISEg4vmhL6kkahBA+UtI3HvKafxVCWN+3wv4LSfTdvkrSd4QQPlqSQgjdEMKXXMY5f0/S7Tr43v1u7eXqPMtcawkJCQmPBfyF9kj+t4UQyiGET9fe35m/uP/8WyV9UQihsR8u/rW59z8k6cmHHPd7QwiVEMKnai9z7Feu8ngg/V2ccFEkQSHhhsF+7sH/oT3h4Lykfyzpt+z535P0f0n6Y0l3SXrD/lPT/f++Yv/xN4YQepL+P0mHhtVkWXY6y7IH+dl/+GyWZePDXp+QkJDwGMPLtfcd29eeGHtYSNdvaq8N4q3a69X9aUnKsuw3tBeC+4v737XvkPTZlzrhft+vf+/uSJrZd3BCQkLCYwJZlu1K+nztfTeelfSTkr4iy7J377/kxyTtao/o/1dJP587xL+R9F/3d4ggJ+FB7f19fP/+67/hKo/n401/FydcFCHLUohywmMTIYRnaO8P2ep+MFhCQkJCQkJCQkLCYwr7Dof/nmXZEy7x0oSEa47kUEh4TCGE8IX7Vq917VXI/t8kJiQkJCQkJCQkJCQkJFx7JEEh4bGGl2ovY+H92ttH/bC+34SEhISEhISEhISEhISrxHUTFEIInxVCeE8I4a4Qwrdfr/MkJDiyLPus/d0bNrIs+8Isyx446jElJBwV0vdwQkJCwtEjfRcnXG9kWfa61O6QcFS4LhkK+9s7vVfS35N0r6S/lPTiLMv+9pqfLCEhISHhAqTv4YSEhISjR/ouTkhIeKzjejkUnifprizLPrCfYvqLkr7gOp0rISEhIeFCpO/hhISEhKNH+i5OSEh4TKN0nY57m6R77Pd7JX3ixV4cQsgKhYJCCJIkXBNZlinvoAghqFgsKoSgQqGgWq2mVqulSqWicrmsEIKWy6Wm06lGo5F2d3eVZZkKhYJKpb3Lnc/nWi6XKpVKKhQKK8dtt9sqFotaLpdaLpcKIcRxzOdzjcdjzefzeJ7lchnfnx87Y+QYxWJRxWIxHmuxWKxcV5Zl8ZylUim+1o/p5+O5QqEQ52SxWCjLMpXL5ZXr83NynPl8vnJsSSoWi/E9jMWf9+d8Xn38XHv+mD5nIYSV9/hjy+VSi8Ui/s45C4VCPA7H5Acwz6yF+Xyu3d1dzWYzLZfLlfsB/D46uI5D1usFj2dZFsdcLBYPvV9+vdx7v4/FYlGVSkWlUkmtVkulUklZlmk6ncZ153PLOs6PhWs87J7k15mf33987RYKhZXn+Bwxb35s/ywc9vk4bFzMla8xX7f+vB+bOatWq6rVaqpUKnFeZrPZyn33++Tj9fXMD58nnhsOh2ezLDt5wUI4/rii72FJKraa2ZPvWOqhd9Sv68ASbnwsNpp6xhPOHPUwEh4n+OA9M53dWlz4P+QbA1f0XZy+hxMuF8v1pj7yiVf+Pfw3vROqfmgkHWZSD0FP+9jh1Q/uUcZ77j6h0B8d9TAec6g+I+hJ5YP18Ja3Tw/9m/h6CQqHfemvLNsQwkskvWT/32o0GpEALxYLzWYzzefzQ0lvo9FQu91WuVzWxsaGPuZjPkaf+qmfqqc//emqVqsajUa699579Y53vEPvfve7de7cuSg81Ot1jcdjzWYztdttdbvdSDo7nY5e9KIX6Y477lCv19NwONRyuYxj2dnZ0d/8zd/o3nvvVaFQ0O7urgaDgQqFgsrlsiRpNptpNptpsVhEolMsFjWfz1UqldRoNNRqtTQcDtXv97W7uxuJaKVS0c7Ojnq9ntrttp785CerUqnE8RYKBQ0GA+3u7qpSqahQKERi1el04nEnk4k2Nzf1ER/xEWq326rX61osFjp37pzuv/9+nTt3TqPRSL1eT7u7uyoWi1osFprP52q1WpHMLpdLTSaTSNwgZoxjsVio2Wyq3W6r1WppsVhoOp1yf+O1FYvFSPgWi0UUearVqkII8ZoQJ5bLpc6dO6csy9RoNNRsNiPZrlQqqtVq8XobjUYkvJDNer2um266SRsbGxqPx3rve9+re+65R71eT5VKRc1mMxJ11tXu7q6Gw70PDEIOpL9YLGo2m8VrLxQKqlQqK6SUa59MJioWi2o2m6pUKur3+xqPx1oul2q1WioUChqNRhoMBprNZvF6R6ORarWabr31Vt100036+I//eD35yU9WqVTS6dOn9ba3vU0PPPCAxuNxvPdbW1va2dnReDyOc14oFFStVqOgJEmLxSLeR4QWfg8hRPLN522xWKhUKqlarapararb7apUKsXPSbFYjL8Ph8P4GGII518ul7rvvvs0n89Vq9VUr9dXBB0+J3xuJpOJRqNRFFT4TEl7hH88Hmt3dzfes+l0qkqloptvvllPe9rT9PSnP12bm5saDAZ68MEHdffdd+sDH/iAzp8/r+VyGdf5ZDLRfD5Xo9FQrVZToVDQfD7XZDKJc1mv1+N30pve9KYPXekX4DHBJb+HpdXv4poauv2dn6fbb9Q/2xMeHTz/mfrPv/RKPa38xKMeScLjBM970T2XftHxxRX9TZy+hxMuB6FU0tkv/gS96fte+Yje//TX/Evd/l1vuPC45Ype+/tvutrhPep44T/5WpX+6C1HPYzHFIonNvXR/2NLP3TzXx88dstdh/5NfL1aHu6V5H9pPEHS/f6CLMtenWXZc7Mse+5h7gTIJZV3J4yQD0maTqc6ffq0HnzwQc3n80j26vW6Op1OFB4gfIPBQPP5PL6mWq2qUqlEcQBid+rUqUjEqeZWKhWdPHlSJ06ciGQY4D5weBW1UChoMploa2tL/X4/jrNcLkfiBMleLpfa2dnRcDhUq9WKhG6xWMTX4rCAXCK8rK2taX19XVmWaTwex/M3Gg1tbm6q1WpFssyYqeiXy+WV6jaVWoSEarUqSZpMJpFYQ0J9Dri2RqOhYrGoyWSi7e3tKHbMZjNNp1Pt7u4qhKBarRZdDoyl0WisXEO5XI5E1Z0JvM/J8HA4VK/X02g0UrlcVrfbjQSfa6nX61E4qFarWltbU6vVivfUCbJXsVkPVL9xCTCWQqGg2WwW3TGsL9YtopIT2cViEf89Go00Go10+vRpnT59OhLfbrcb1xz3DkGM9e0EHYLMvWFsfL64ly7Y5d0U/HC+ZrOpTqcTr4c5Ys6476VSSeVyWe12WxsbG6pWq9HZ0Gw21Wg0VC6X471GhGg2m6rVatFlICmKR51OR81mc+U7gTGPRiOdPXtWg8FAjUZDt9xyi+644w498YlP1E033aS1tbV4XZVKJY6He8R1IHogACKy3MC45PewtPpdXFb1URtcwg2MN75dX/Ot//KoR5GQcKPgiv4mTt/DCZeDxfM/Rm9+hGLCYxE7d1QUypWjHsZjBqUnPVG1Xy+siAkPh+slKPylpDtDCHeEECqSvkzSb13sxd7GIF1of3b7sSTt7u5GMjAcDnX27Fk99NBDGo/HK1VayItX8/O2f8iEJD344IP6wAc+oMFgoG63qxMnTkQLPqR8bW1Na2trajabkdzu7u5G8oaIgLOBajyVaOzrOA4gOBCpQqEQq+7D4VCj0UjValWNRiMScZ8LJ0iMgesdj8cajUZaLBaq1+va2NhQp9OJr8UVkCfrIQSVy2XVarX4mDs1IFlUnLkmiDHCQn5siAq4OPr9fhSGEAYWi0UUTrgviEmlUkn1ej2Scf+hgj0ej9Xv97W1taWtrS1NJpMopmxubkbyHUKIBBXBAqeFCwmsSe4fpB1RBtKZFxUgujgbJMV/45Ko1+txfXGu8Xis4XCora2tSJILhYJarVYcL5+LZrOpzc1NdTodlcvllXuDeLC7uxur+vkWmIu1JpRKpRW3EMdgnAhxOBV8bXMe1tRtt92mjY2NuL6LxaLq9brq9fqKmMDnlHnBwTCbzRRCUL1eV6vVii4DSZH4TyYT9ft9nT59Wru7u3Gt33zzzbrlllviHHF9nHt3dzeuQa4DAYh5Zu5uUFzR93BCQkJCwnVB+i5OuKYo1Gp66HmNqzrG/EkTlZ50octs+HnPvqrjHhXe/G9fqcKdtx/1MB4zeNf3ntKvP/UPL/v116XlIcuyeQjhmyT9vqSipJ/JsuydD/ce78GGuEmKFUlJsTrseQCz2UxnzpzRhz/8YZ07d04nTpxQuVxWvV7X+vq61tbW9OCDD0o66P/n2FRn3SVw5swZ3XvvvTpx4oSazaaq1WokSq1WS6dOnYo27+FwuCJUQDKpZEM0Ieecu9/vRwLnrgb6vakeD4dDbW9vx2o/TgonfVR5cWBkWRYrvYvFQv1+X/V6PbY+tNvtWA2ngs4xmGMIvVe+ERP4N0ID5B5ALqkG07KB+wMyyvXPZrNITAGEH3KHk6BUKkU3g88bghMkFPeAj6ler6vb7cZ5om2kVqvFa2Nuer3eBZkCrFF3Y3jPPeuLlgLm0d/PnCPUVKvVSNQRrRBGBoNBbNU5depUbPPp9/saDAaaTqdxfrgu3B+ec0ALBp8vv8+MjWuiLYc557OIKEXrAj+0RLBW5/N5bEPgmnBWnD17Vtvb25rNZvH9OD18Ppk31pq051LAadTr9TQej1cyOWiVOHv2rM6ePRsdKSdPntTOzo6m0+mK44D7jgAzHo9VrVbjnHGfPWfjRsQj+R5OSEhISLi2SN/FCdca4Qm36O0v/8mrOsb7P+M1evbff5lO/cRqO9Ef/cRPam+ZJiRcPq5XhoKyLPtdSb97Oa91MQFi6OGCEErs5B68ViwWNR6Po0X89ttvj5VmqpRnzpzRmTNnGFckLVT0q9VqrLbfd999uuuuu3TTTTfp5ptvXrF0VyoVra2t6cSJEzEDAWLt1WEqsX4eJ824Fji2txlAUKnO9/v9SKggoDgLvO3CK+i7u7uxX393dzc6FWq1mprNptbW1nTu3LkLnBKSolgC8avX65GQ8eOtHPV6PToiPCxwPp/H7ATEFCe9iCKz2Sy+n7YO5pAKNiSd9zQajbhuvPWDzAaILS4HshsqlYrW19c1GAxirkG1Wo3ryivskGscCR58iWDi2Qm+ViHjkFi/JtpFEBQQkRCKmKfRaKTz58/H1hzW3nA4jD/kgLTbbS0Wiyja+D3ieKw/qu+Q9XxIpIeCcg2ISHz2EJsg5ogHOEQQeBBO2u22SqVSXLuTySQ6YriPzK0LCVwDc4RQuLOzEz/7fPb6/b7Onj2ru+++W5VKRbfddptqtVrMVMDFsL29rcViEd0O5JhMJpP4GUCwygen3oi4ku/hhITLRekJt+mBf3BDu3cSEh5VpO/ihGuFUK3qvd940zU51uLvnlfxD5+qxXvukiTd812fpIL+6pocO+HxhesmKFwJ6KPPZw5AjCAbVLYhHJCX+XyuBx98UO973/v0lKc8RY1GQ9VqVRsbGzpx4oRuuummlQBCQgWLxaI6nU7saa9UKtre3tb999+v+++/X91uN5IiSZEgr6+va2trK5JVyKzvVuABgxBpiCSEG+LqeRE4AgBECGJN9Zd0e+ZJUmw/QBBw6zjkEpJ17ty5SKQgU7RVMF4n+pBdt/d71dsdGGRc4CiA9EKcva+f85bL5UgcXTygEg55JzAQguqBhC5KYYU/f/58vH9O5Gn54L7PZjMNBoM47wgIrDOvVuNI4JwIGIhEkHHmD+GKIEHCJllT+R0NFouFxuOxer1eHPOpU6fUarW0tram7e3tmBGxWCxiRZ7sDIQMxA+Oyboku4P1ivjjAgokn/e7M4P74a0IiAWz2UzD4TA+xzrsdrtaX1/Xzs5OXOO+UwjHZeycC8Fjd3d3peWFdcjnAVHhnnvuiZ+ljY2NmPvQ7/fV6XTiOBHDJEXBLL+bCAJRQkLCKnZvP6n3f8ZrjnoYCQkJCY87FOo13fXiV12TY739eb+g5/3ol+jMPc+TJL3z835cxZByCBKuHMdCUJAUAxCdDEkHQXH8se+J+xDiLMu0s7Oj9773vbrzzjvV6XS0vr6udrut2267Tffff38k8pCF6XSqxWIR2yJqtZo2NjZ0//33695779WHP/xh3XTTTTHfwAME19bW4msRGRqNRiSx3rPuY6fSnb82/k3mQJ6Ejsfj6C6AuEM+ES2o1HtwoMO3bqRqTGr+ZDKJmRDNZlPD4TCKCswz54Nk+naCCBwIP7gkCMGkp52wSUgrffcQe8bvZN5bJyCiWZbFnnxCNmlPcXLsVXPmhx0sqtWqer3eyryxljwHgpyDyWSi5XKpWq22st0g9w5HTR44KvKBjj5/ACJPRgj3jP+ySwkZG5PJJO4mUq/Xtba2FncjwQXibh/WFsdDxEHY8Xai3d3dKDpA7CXFe0e2Aueu1+vq9/srwtN4PI5kHYHPWyim02mcf0SAvCOFzw9josWDeXT30nw+19mzZ2N+ByIFO4U0Go0o5LCWadlgjhCIENK8FSchISEhISEh4cgQgs7892vjTgBvevavSDE2IYkJCY8M1yuU8YrBH/eQUrfQS4oVakgHz1EVnUwmOn36tO69916dOXMmuhdOnjyppz71qTp58mQMmmMrx/F4HHddCCFoc3NTtVpN29vbOn36tLa2tiLRJ7wPgsuWcjgq2u221tbWImGBVEuKlXbaKiCj8/k8Xiv2foSDer2+EoTIsSDX9OnTL8/v0mq13lsvnPTXarVY2ZYUib3vSgApHA6HsUrvdnjPiXBSnSf0k8kkOhW63W608HNeWi8gk97qwD2rVCox48DXAaICeRYQRH9+MpnEFhVIOOuHdhCufzKZRBLMfNNf7+PzOZYUCS67NLAFIdZ82lMQYNzp4XkF3GuyEiaTScxT2N7eXtmhpFQqaTKZqNfrxRYPdtbwzxD3hs+KC0BelWeNMm+0H3BPPWvEd1zxecoHNTK+4XCoer2uzc3N2AIhHYiCzIVvteohiaxHSVEgYJyO2Wymra0t3X///Tpz5kxc07iQcPkwfpwYHiTp7qiEhIQLUX7nh/T0n/nGox5GQkJCwuMLoaC//PhfPupRJDwO8LT/PNHX3/PJl/36YyMoOBn1yqx00NctaYXQeur+YrHQ9va2HnjgAZ05cyZWQYvFojY3N7W2tha3hKtUKup0OiqVSjp37pwefPDB6AKgTeChhx7S1taWptNpHBMEA9Lv1U2q2W7fh5jSrsEWkB7k6IQNothsNtVsNldaGPihmkxgoqSV9gNIP+SSMXoWAHPn5A+iWy6X444CEC96ybkOSCVCDk4Gqs/099MKQJsDzgh2yaCK7G6IRqMRbe1Urenbb7VaMWySHAnGgejhxNZ3DaEi3uv1orCACIMIkA+gdBdI3pHgO0z4407c87tf4AJw4Se/owLiDESc3Uz6/b7OnDkTRQUq6JI0Go00GAyicwMCztpgjllvOE54redw0GLieRDcewi+i1Vct2/DimMBZwZizmKxiJ8xHyfzLykGPXJtvlsIY3VXEIKJt8tIUq/Xi7tk0IqSd3z4GuFctO9w3UlUSEi4EIvz53XyremzkZCQkJCQ8FhE9pZ36r6vuEXfe+ajLuv1x8LPS2+5kxWIMZXSfJI+pMifH4/Huu+++/Tggw/qyU9+ciQ6zWYzhhr6loHD4TASj5MnT+rkyZO65ZZbNJ/PNRqN9OEPf1inTp3S+vr6Sj81AXnY50md73Q6CiFoNBppa2sr5iS4kwCrPRV/hArIKSSuXC5rZ2dHg8FA/X5fkrS2tqYQQhQKfJtIBAbIM9VeiCSVdxdkIOrehgHJgvTW6/XYGiHpgtf7bgaQ4vF4HAl5oVDQaDSK80eVmB+CEBEdIJqlUmlFzMEy7+IGRBHSSpXZiT5CiQcHYp13Gz/H9d0nmC/WnbcQcB7gO00wL5JiloQ7JhAuIMvNZjOSYtYEIgltGggijIu5pfXBg0PJl8BNw3h4PS6Idrsdz5UPnkT08rWA8MFc+fEIuERsgpjTAoOggJjAmMgTYe4rlUrMZOBzzeeB60Kcqtfr8VrybSe7u7va3t6ObSLuNJIOAh+5Bt6PS4F7hysiISEhISEhIeEo8S3vfcdRDyHhcYTFe+7Smz7rI/TLf3Kf/lFr52FfeywEBUmxsus2bMid94H7LgiQUV47n881GAx05syZWJnEOXDy5EmdPXtW0gGBxJZN1Xo6narT6ejkyZMajUbq9Xra3t5eIeHT6XRlz3rEDazf3W5X4/FYDzzwQOwhZ+tJSFa1Wo19/VjlfUtM5qDb7UYCNZvNNB6Po3PBtwCUtEJa6Z8nGA/Bw4P1OAYkeDqdajQaxXYL7ol0ICJ4y4dX2jkfVWrs/h6o6cGITsTdTYAIgfDgJBnxo9lsajqdxt0ieH40Gqnf70ey6RVm1pE7WlgXzIP30PNarPiMzQktLRqsT+abOXWizZphrIwBIk0FnnEwPoIit7a2VnITRqNRbKegQs9ngZYHzocIADHnPaw5HAGj0WilfYaxFovFuE2lC0fMqe9O4muDOXTxYDQaxd1DuMfcIwQUWnoIXnQHAa4Mdibxa/PMAz4LiAqcA4eM74bi3zGIPHxGCE1NSEhISEhISDhqfFqtr5RzkPBoYv7Ag3rNc56pn41/j9916OuOhaDg1W4nZ4gHCApss4ft2YmNdNCP77Z2CE2z2VS321W/319xLmxvb2s0Gunee+/ViRMndMcdd6jdbms+n2s4HMZQQUg1ZFCSTp06pY2NDZ0/f17D4VCj0UjtdjtavunXx0YPsVlfX1cIIfaW44ioVqtRNIFUucuA3nzGA9EFvhuF7xwhHYQ4SloJvvOefqrJHJ9+c+mAjAOIP/+GKGJ5pxWCuaLKzDkhlIhIHAvyTc6DtOoO8P7+fA4BLReQQYQLfw8tGKw1xBOuI589gDPDK/LkMrjwQrggwElDO0e+d1/SiijBe6bTqQqFQjz27u5uzFLwCjstMAg7HghKNZ/Pls8Hx2BctO+Mx2MNBoOVlgDPpGCt+TrGGVMul1fCLF0wYv4lRYFtNpvF9hXW7UMPPRRFomq1qk6nEx0CzIG3wSCO5AUF7h+C0mg0ikKHtwL52uT6+BxwnBTImJBwcTR/7U165pNeprd/69XthZ6QkJCQcGn8+Adfr0ahcekXJiRcYyz3nfIPh2PzFzOEEIJI5d+ri5CFfG+zJ8ufPn1a99xzj06fPq2nPOUp0d4O0W00GjEoUFIkiIPBQNvb26pWq7r55pujY4JtBzudTiSYELZut6tTp07p/vvv1/b29kro48bGRqw2ezAeVdt2ux3t61RLR6NRtP37azgvpIodGaSDLAR3HfiWf27pdlGBXnZEmO3tbe3u7mpnZyfmQHA8gvIg9HkhZzabxR0TuEeMEULulW0n7pC/ZrO5ssMA4gTX6LtMuJjhrg7Gwj1ycouggRuCe45QkN9xw50K+W0hC4VCDBOkok4F38flIhT30Yk+oaIIA1wjr/OMh62treiq8GvIhweyPam/RtJK9d4FhcPyStjdgcwOMg1whvDZmU6nsYUFYco/j9wH1pE7M3CbIBJsbm5qe3s7budKOxFtJ6z/tbW1uJtHPhQT8LmjZcbXBXPBNrXs7MExcHpwTYft3JGQkCAN/+HzkpiQkJCQ8CiguLmhWki5NZfCfL2hcOmXJVwHHBtBAeLnFW3IoxMjryTyfJ4QPPjgg/rQhz6kZzzjGTEYrlDY23av3W5HazzHgLD0+33NZjNtbGxoPB7r9OnTcevDxWIRgxjH43GslLLt5JkzZ9Tr9VZ2TyBQD3JGdZydFYbDYbxmrskFE8a+u7sbk/z7/b46nc4FJA6iyxwhVvhWkrPZLAozuBQIt6PPnUo1dnfEiUqlEoMQEWFoQ4CgQgZLpZLW1ta0WCw0HA5XtveDJHtIIXPgFXx68l0kgXxDGBEfIOvAd5aglcB/gBNOxBLOzfHcPUFwoJP5UqkUWyd8y1Dmj50YeJzdQRCCuAbWI3BXA608vrUj6+8wS/50Oo2tD8wV1+gCE+IA4pNfP/+dTCYxwNSFgtlsFrMxPDvC25IQlHA3sP5Zh7glcGSwXvr9/so8IUCwNhEhfH484wNHk7QXzohA5XNNG02hUIifQ0mx7Qb3QxIUEhIOR2m81Fumu3pONdlvExISEq4nXvLGN+mOcuuoh3Hs8Qe/8rP6nGe+UIuz5456KI87HBtBwZPvIUxUSiG1EIB85dUT+amyP/TQQ3rwwQd16tSpFfJA9d/dBhD3nZ2dlW3+KpVKtGETvigpVp1LpZKazaZuvfXWuM3k1tZWrFp3Oh1Np9NY2R0Oh6pWq+p2u7HaXC6XY8WXY0N8O51ObAuQpO3tbfX7fW1vb8f3QhrzAY/z+Vz9fn8lpJG2CreFV6tVra2tSTrIlmBnAulg5wIIcK1Wi8eCLHprhecCMMbhcLjSq45wQgCfV4W9d54qNvMdQoiOjuFwqOl0GgknxNrH620fHA83AQSZIETWkgs6njPB9XEPvc3Ce/5xKjB/ZBTgBHHbvjsjGD/zw7ERbhDBdnd34+4G3mqQ340AUcS39nRBoVQqxXvIXHh7C59FWikIAg0hxIwMBBauk/Hndx9x4Q8Rg/VBVgb3mrYK8jwYKzunEMbK1qPuQHGHi4e7+m4qrK383Pi8IRTlWzcSEhIOUP2dv9TXPPWb9bZXJJdCQkJCwnXD85+pjeJbj3oUCQkPi2MjKADPT4CEeP+9EwC3dUMCaVXY2trS6dOntb29rVqtFoUB7PVUNqlW8m+C+Ki8Q568Bz5v3W+32+p0OtrZ2Yn29PX19ZgwP51OY1ZDv9/X+vr6CtF3twD2clof1tfXValUdP78eUmKW2IOBoO4BWW+BcSJFYSXCnT+fJAt2kG8Lz9P1jk2ZBihA9JcLBZjFdrbAXAWUL32+1Wv1yNJnc1majab8T7XarVYHaflgGO448O3DETMgFBTaWZdQeZZCx6e6CKC99ezFiqVSnQ/NBqNOB+0tRAOOR6PI6HlntZqtfgcx/SASt+eEfFC0sq42ErSc0YQZlxUcDHI8ybc/cMcYflH3GHtOQmHyOPWwMngOQTehpNvLyD0k/uUZVmcRz7XfOZw9vR6vbjrAp8THA8+hzgbyGcYDodRYGOt+m4wHEtSPBafeUlxHhG9kqiQkHA4Sk+4Tb2P3T3qYSQkJCQ8pvEJr/prfVrtqEdxY+DL7v4MaXd26RcmXHMcG0EBNwJ//EN8nUhCPLxvHpJMtZoq6Llz5/TAAw/EdoV8ewAEiGo1xIPKN+fEak5IHqTUx0iIXLfb1Wg0Wkm8pyJaq9U0Ho/V7/c1HA5VKBSiEwCCT86DV3Y7nU4kgIPBIBJpAiCxhfv1uRtgd3c3hj1C8mlz8JYPyJn3ufuuA8wHzwEnjxBbSCg7W3B+jo0jAEeEV+uxv7NDBfNLlR+yh+jhx2NNcC99Hvgv/fNcC9fPWDzkz4MYIe6IJW71xz3hLSAQcqrdrFOq5x5iyOu55x6K6JjNZiutEO5MwWXAPWOu88IQ88JWlawR1pxfFwSc4yFgcC5EK4SQdrsdx82uJAgB3C/WJ2uYtgcXTkqlknq9nkajUVwDnrtB3gj5DWwLyb3her1NCdHKd4ZxocHn0cM+k6CQkHA4dp7/BN39Of/lqIeRkJCQ8JhF78XP1/Oa/+2oh3HDoPf1J7Tovfeoh/G4xLERFCD1VDIhIlRuITTSQVsExN2rqhC88+fP60Mf+pDuu+8+bWxsRCKNg4FwQ3rIOc5gMIhp98vlMm47R0gihNQJ52QyUavVUqvVWknB92R9T9L3bANJF/STQyohPxsbGyqXyzp37px6vZ6kA9GAajsEyqvbEDDS9LGSVyqVKCh4/zjuCCr7iAfcE+bcMxB4zMWa5XIZd6RALCFnAVcEP+PxODo/ILeNRkPNZlPtdju2CCAKUI1mTbhwAHGHxDNPPjelUim6C2g1ob3gMOTDBjkHO174jgq0hbDLRb6yT+YBY8d5wzEJIOSesQYJGHT7vu9CQXuO7+4RQohbS7qggvjjbgyOyXh4LffIW058JwVJcfcR3ChspcoaGgwG8ZiIE8zXaDRSqVRSq9VacR/xGR6NRivCAQQfAYiWHdw2CC60ciAgVavVuO2m56f4PWeeuAayP5KgkJCQkJCQkPBo4/xXvkAv+45f0+c3R5d+cYIk6V0v7+gjv6mh5SjN2aONYyEoQPogjzs7O7FiC3mjKu7hehAUr+i6S+H8+fP68Ic/rJtuukkbGxvqdruRiDUajVj9nM/nkZhQdYUsY4mu1+s6efJkdCvgGKCS3mw21Wg01Ov1Ijnx0DzcB+QplEqlWK3GFu9tENLB1oDNZlOdTicSba+meor9dDqNrggnwbQjsJUmAsja2ppGo1HcutK3yoNkSgdEkH9LivZ0Ku0EHDrB88BMqu/0/TMPkD/EIxdZGo2GWq29EBoqz4e5MLheyKOHF3ItvBe3h7fIcO0uGHBOFzJwBLBmIPmQXEkXhDSStUEVnx/PSmDc4/E4jtXnyttEEMRwYTD+/G4VHtro+SQeyOjuFgQkz4vgc+dBlnkHEW0P5HPwGuDr3Z0tCAjj8TiuG59n3wZ0Op3GdeVj4XPGezmPCzmsRT5DxWIxrjvf6QVxxnfCyLf7JCQkJCQkJCQ8Gtj5nKG+qnP6qIdxQ+Huz/p/9DmNF0pJUHjU8YjLbyGEJ4YQ/jiE8K4QwjtDCP9i//F/E0K4L4Tw1v2fz7nUsdx27FVyHAiIAJAe6aCq7IGMTl4RFM6dO6czZ85IktrtttbX19VoNKIjQDogJggK7PYAOdne3tbW1pam02mszBPMt1zu7UbQbDajvZq0esY7Go00m82icEAuA8cjawECSDbAeDyO1u9yubyyFaK3e+TJJrkCzAUhdu12W1mWqdfraT6fq9PpxB0ncEM0Go0YlHdYWwHES1Ks9mM555oQSXAeeEBgqVRSu93W2tparCrzPifvzCvzwlx7dgXX7sIALgjurbfKMK+sH9+xQlKcV9wsOCPyOxRQyeZ+uVOGn/x2hS4U4NrgNYgtjNkFHH+O95D1wVgI/kQAgOTjouF1XB+PT6fT+PlhBxHWpGcJcAxaDZhD5pd1h6MAZ4SkKBrQesT6QajAxTAYDFY+33xWfE3TssA2nPyO24L3IDywJnhdqVRSp9NRq9WK69ydD7w2yzLVarXo/jnuuJbfxQkJl4vuG+7RHb/z9Uc9jISEY4H0PZxwLXH6mz5J/+k5v3TUw0hIuGxcjUNhLulbsyz7qxBCW9JbQgh/uP/cj2VZ9sNXcjBIhlvIPewOMuJkkio6pEA6IJDz+Vy9Xk8f+tCHtLa2pqc85Sk6efKk6vV6PE+ewEI86VOXFK3oDz30kO677z7dfvvtkSzT1y8pVmxrtZr6/X4MNySHAaJJcB9OAcgnO09AxsL+jgaDwSBmClBJhpi6ZZ7dBfI94Z4PgOvi3LlzkVx1u924laakFUINofI5h1xKWiHeEFwCLJ3Uc18YE1kNuDKwp2Pz9zYXxgPZ9KwD39IRgsw94DHWEM9D0Knk+/W5i8IJJsR6MplEJw1zSQWenAfpwAngpJy15cGG/LgzBYHDAzVZa5Ji1ZxqOtfpW3oiCngmCedmHXHtPsbhcBiDGf2+AdYYc5PfmcLH5BkEfB593j3XxLMmmH9vYyCnweeF+0XbBOIa99BdKVwbjhcXStyVgHCB2MjOEjcArul3cULC5WD80bfqh/9O+oM3IWEf6Xs44Zpg62teoB/7llfp0+uHt+ImJBxHPGJBIcuyByQ9sP/vfgjhXZJuu5rBOEmhkgrZO2xbQkkX5CsAeu23tra0vb2t2WwWK+adTkftdnsl8A1iAgnxoMHlcqnBYKCtrS3t7OzEFgjvlZcUQ+2KxeJKhsDu7q6Gw6HW1tbitoVe5eV9Tq6c9PV6vRWCmO95Z9tLv3YnlRyT651Op+r1ehoOh9G5QJp+pVJZyXTYv79RhHHRhX970CEEEGcBc+n30bcu5D5yLN+FYrFYrGypKUnj8Tj2t0MsEZOoXDN/rCcIIwSRvn53wSBQ4DTg/BzHd2hgXrgWz81gzXK9rFnPHPBgQMSFfCigtzGQW+BEn2tEIEDs8PBKnvO8Ea7Z54kfQkNpp2AseYeIBywihkiKbS/ejsFruMeSVu6dt0m4A4gMjWKxqO3t7fgeWntcsKDNJB/CiTuI1+Ew8Z01qtVqdD/wHuaR9qHjjuvxXZyQcCnsdor6h63eUQ8jIeFYIH0PJ1wrjE+GJCZcBf7ZG/9c//kjP0bZDfD322MJ1yRxLIRwu6RnS/qL/Ye+KYTw9hDCz4QQ1i85iEIh9vlDuHAmuM0/b2P3YDpP7Afepw/ZaTQaMYugXq9HJwKkwquuHny4u7urnZ0dbW9vx9DGRqOxYm+XDnrXJ5OJdnZ2YlV3OBxqMplEwkQOg9v2IVmEJnLttF3QBgCBRLCgYu5VbwgjlvNerxcDKGezmba2tnTmzJlInjifW8Y9AwFAehFssMn7PECG85Z5d4JQgV5bW1On01nJr6CaTgXZiS/Wena8kLTiUFksFur1ehoMBivEHDEDx4ZvF8jaOizV3/MRvBLvpFg6CLykvYUWA+kgI2T/sxKP4fkGfl7fZaHf78cgQW9byLtyaJFBbBmPxxqPx/E97irwyr3/vru7G9sP+DzhkPCQSLIe/Pw4OFw8cjcE/2WeWZe0UCCSDYfDOIc4d3CcIKgxVsa7s7OjnZ2d6N5BFPCQRtpCvM2D++H5F+7wQVi7kXC138UJCQkJCVeH9D2c8EjRe/Hz9bpv+qGjHsYNjc9tTKSQArUfbVz1jIcQWpJ+TdI3Z1nWk/RKSU+R9CztqbU/cpH3vSSE8OYQwpu9t1zaC1cbDocqFosr275BRiSt2J4hrF6lh2SdPXtWd999d9yqEfv42tqaWq1WzAuYTCba2tqKhAjy6Zbtra0tvf/979c999yjnZ0dVSoVdTqdlWq+pJVAR2/j8LDGarWqzc1NnTx58oIdCSRF23ceXtXHHZEXWyBLkC0nblSQx+Oxzp8/r9lsFgMlvd2BLAvmmLlg/hB+RqNRDNHk9dPpNAookGbPEHCy6aQRohn2gy7L5XIUECCMXB9iA1V8zxfAHcKa8HVB2waCAo/5fxE+fC3tr9mVKjlZBVwT98/HhSh22BaQkFtEBZBvu/CQTSfVXolnPKw5bw9B7HGxLe804LHhcKjt7e245SfrrdlsqtVqRceOi0P8MFbWsM8nawDxkHWCMMY4EBpw/RCoyHn5bLDed3d3tb29rX6/H3f/yAsKvV5P58+fj9koPOdtSb4+yNtA3LtRcC2+i2eaHvaShISEhITLQPoeTrgaLEtBJ4rNox5GQsIV46p2eQghlLX3xfnzWZb9uiRlWfaQPf9Tkn77sPdmWfZqSa+WpEqlkrlF3K3VJOBDDj353ompE8D940tSrJxSrZUUgwFvueUWnT17VmfOnImhcKdPn46hbfvXsJL6PhqNYhvF5uamarWa6vW61tbWdPbsWW1vb8fxDIfDOD7vq0cogNwT8Ejln6oy157vD+f9tC5gz2fOeK9fswdPZlmm4XCoBx54QOvr62q1WtHi7VV63zEACzwuDyfUXC/nJfvBtzKUDuzkCAJhP7xR2iOO4/E4klXmwEmwh0FikScg0cdBOwZCDyQT8shjCABU4SGzzBkWeYQQF3g4pocrelsDmQbe0uGBkF5pP8x9g0ODcbAOfG07mH//HPjxfevQfHsQbQ2MiZYc5oX70Gq1YjYJrhTfFcTbPnz9UPXn2r0VhB9cKwhvw+FQ5XI5OnnIPsnvtME1bm9vr1wj94x7NRwOo2vDsxlc2GHNkbng9/a441p9F3fCxoWLKyEhISHhkkjfwwlXhUJR8/pRDyIh4ZHhEQsKYY8V/LSkd2VZ9qP2+C37vWSS9IWS3nGZx4tkAeLm5JuWBIgHJMRt1Xm4NZoKfbPZjD3yVMY9YJH2gFarpWazGcmdh+5hb6eKy3EggbyH80IqeT0kyS3s+VYNyHI+iBIXAbkOWZap1WpFFwIiRL7lYHd3N/bucz4q/1wbeQ9Yvam+cw+4R4VCIQZFemCe78CB/d93sACQceaK+8HYCXRkvskp4If7Dfn1rQ7zYhNzT8sF1+NuA7bvdJcBTgZIK+f089A+4eeHULvI45kL3uLgoY9kOnAMiD/vYb3758XB8fLik7sYcD349pT+2YGkk/lBO43vutHtdvXQQw/FzxWuFA8IdUeFHx+xCNcGc8/98RYfWhUQ3RqNRnS0IAL4MZlLrtnFQ15HS4bPKUKHCxvc+8FgELctPc641t/FCQkJCQlXhvQ9nHC1mH3Gs/SWf/PKox5GQsIjwtU4FD5Z0j+V9DchhLfuP/adkl4cQniWpEzSByW99FIHglRCSr1KXigUYmjg1tZWDMaDFFxMTAAQg7Nnz2o4HKrT6cTzYad2Qi0pWvapzjJGQgZxPFD9hTzliTOVWQg8FXDs/Hk3Am0fw+EwkhknR8wLBJZx0n4wHo9jtoOTbsbijoJCoaDRaKTt7W01Go0o1LDFHpkWXLdfD6Ss2WyuZFy4y4S5H4/HUSSAHCJuYDknv4FtKGlD8ZBCWlGoJtN2ASn13vy8WwUSiriSd314bgaChLtGIOoIOS6esDa4XheJfFcMWljyAYUQYtYR5B3RAxBECHzLUG8Xyl+3dOBOcbeIk2nG43kCs9lM/X4/zhfrtVgsqt1uR4GOx2hlqFarUZTx+aQFiWtAdOGeIAa4uMduK3wOueeMHwHMvz/y9581h0iBCMe6YT0xB/55Zt3dALhm38UJCZeDQrOp7afcGO6dhMcGHlxUj3oIl0L6Hk5ISHjc4mp2efjfksIhT/3uIzme95jnq9lYttnyjd53D1c7ZHwrvw8GA50/f15ra2vxsXK5rFarpbW1tVj9DiFElwJ9/ZAp6aAdQ1IkOjxXq9XUaDR09uzZFcJElRpSuLu7GxPsIUTMARVWKsBUwXE05AP1qKpyXCrkVPk9W8Jfw24T29vbsUceUu8tCbgHPCWf6/XtDBEAxuPxBdszzmazKCgwdh7neshSwBkC6YcM+nV7IKKHcnqrDEKBW99d4OH4HkjIc1TdvcUBUYA1yb3IC0juUOF9btPnXkNeEUV8Pbuoxuv8HNxj/8lnaCwWi9iSgFDheRvkTXhrkH8WEWA8CBRXAEKcCzjMRb1eX7ku37aT88xms7hLCk4Z1gzrirVLGwzPkb/gDhzWNyKjrwGfa9/JxcUe5t/nizWV32XkOOJafxcnJFwK82ffqXf8i5886mEkPE7w1R/+VPX+9jePehgPi/Q9nJCQ8HjGVWUoXEv4tnT0szshYScCgv4utT881VYI+mAwUK/X02g0WrHwl0oldTqdWMEk2I18Am+xkFYD8CBYWKm9f1w6sFv7WIbDYXRKeBAhZMarpFS7ITb8l6ouRBWy22g0NBgMYpsFggWvg2hCJBE5tre3tVgsVK/XY7sELgTuhWcbcE+c9LpbxPMvvBVAOtjaMU8IcQD48bC8e7871+G7WPg9BwgPiCF+3NlsFlsq3PXgTgXfKpGchryN350InDsvxrhYwVho08nnVbgI5uJRfl0jqpFx4MIH88l/OQf33XcDYV5Zf5Ki6MOxaKlhXeBCoXUIZwxtCGRxcE2IIw5voeBaCfH0rTtZL76jBPD2I3cYMBeeB+FtL71eT8vlcqWVwdtQ+HERLiEhISHh6HD6H7alS7hRExISEhKODsdGUMgH++UzABAUIC9OIiBiecs9hM+3cRwMBqrVarH6T2UcxwCCwXg8VrFYVKvVilV6xAms/NinR6NR3D7RA+cgRggKbMso7YkQtBV4374TXx4jDNIJoPf8LxYLNRqNeLzRaBSP46GEHBchhJwEcgi8/QBXgFvN/R5xjcyx9697ZZj745VwF4Ow7iMoMF6uU1LcHnA4HEbyhwCEmOKEEwJNZoWHYPIcFfV8FdvvdT6ngPn2c7GGvArP9eJ44B5KB1tceviiH8tFKOmA0PI7bRNeWaclgXO704HwRG/RwIVBbkPeAeFAPGu1WnGNuAjkbgREGW+/4DWsQc5B6COOBlpgEM7IL2G8rHPuL9ft228ikrkDgzXHXLKlZqVSuaDNw4Uwd0kkJCQcoLi+rvd+bWp3SHh0cOfrvkp39j9w1MNISEhISHgYHBtBwRPiL9bGALnFri+tEqB8aB0EkT74Xq+nnZ2dFes/r/WtGIfDYezZJxeBH6z09GND8CBM3vePs8LdBs1mM5IdiLxb9t1C7rsMkDzvVVzA8ev1emwtwE7uRI75wg5eq9VWQu12d3fjlpEewEgrBCKFE9880XOClq/a818ED6zzbEnIzhq8FoJKuOVoNFrpy2defCtKsjEkrVTNXazxtgLpwEkCkYRMeqWetekkFxKNAOFBjH69tJGwpvK7fHBNjIf8BHdkeKaIj83nwMfA/CEkMa+EIvp5ECgcLozh3CHbwu8puRe0J3gLglf8OT/H9hBFQk253zhEfJ250wXRAgcN84rA5WGSvoMD4xqPxxeEfnJs2kK8zSkhIWEPhVpNd7/6Cbr7k3/6qIeS8DjAHb/3dXrGt39Ii17vqIeSkJBwg+Dpr/lG3T5/41EP43GHYyMo+E4GTsqoxBK8V6/XY1WSqmY+6I7jSQekZnd3Vzs7O9rZ2YmtAO5ygEgOh0Mtl3s7KFA5hQB5ZZhAN3qsOQ+tB4gKiAxODL36WSgUNJlMYqXX8wVoXaCaSvI9wYte+YUQsoOEJ+o76c63I7j44dZ4KvvMEa/nWhAdyHpwMsfrsONTFfZtMRlDt9vVxsaGut1uDJpERICgepuJh/0BxkwuAiSUOaUaDkF10YYfD7uUDkQa35GCtcI99F0K6vV6vHbe6+0PkHjmGjiZBbze1wT3gPvs4oa3mzgJ53xcH0KSX4sTds+cQGiAwE+n0xVRzYUZ7jOfHb833srDziU8z7onMwPHCeuZ6+P9vlb9uv2e0grinw8P0WSeGQtCGc+xvvLZFAkJCVKoVfWuT/65ox5GwmMcT/+zr1D7D5r6qNd+SPMzZ456OAkJCTcQnvJj79UitUg96jgWfy3nq9q0HkCefM97CDt2dohE3tXg6fLSHrHq9/va2dlRvV5faZuAVFQqFfX7/Vh93t7eVrPZjFVQb3mYTCZRYICsOJH2rRvzuQhUZF0wcTcBJHo8HkeLPOdmJwcqwwgGHItsBhwUjMsr0V5B9jmHdC8Wi5iuz9zxvF8TlXbmwF0ZkExEAtwYTuwbjYZOnjyptbU11Wq1eM+oiJNnwXm4h4zdH3erPYLNfD6PoX6+xeFhIYeIKwgKTrqd7PO8k9rxeKwsy2KuANVy6WAbSZ8/hKS8yyT/mWBLUu4boZ7cT47rLS2+nrk+h+dfuNsCIYS14O9H4CKTgnOw7iTFQE3uh8+zZ0+48CTpULGHMbu4kx+zzzGvRXDx9YBQ4lkS3k7kzhaO6eGT+eyGhISEhISHx/+9/UT9yr/6LEnSQ181uWwR6vPf91nq/ccn6qnvOqP5B96u+aXfkpCQkBDx3O/+Rp3Y/sujHsbjEsdGUMDGTXUQMuH92V5Jlg5IpZNkhye+0zJw7ty5lSo+54fsNpvN2C6ACwEi4kRuMpnooYceimPz3RAajYY2NzdVqVRiTzjjodWg0WhoNBrFx/Jb2SEe0L7g2zhSdScsbzqdrhB6f9wryW77zrcn8Jjb0yG1TuiYb97vj3nbB9s/4krY2dmJveu0VXS7Xa2tranT6cQ5ns1mkQTi/vBWEOa7Uqmo1Wqp1Wqp3+9HgYd5cnLJcy6g8G/EI553kcR3vMBRgcDguR2E/yEaeDuIr3FaTFwYcHj+BPNIK4BnJkCkOZ+/n/PmQwU9aJDx5OGfKyfSuF24D34M1kapVFKz2YwikAsGrDPWDMfAgZHfScFdEPnrwRnDed1l5CLHZDKJop0LHwhz3HNpNceDufbPU0JCwh4WOz19+td/vV73Uz911ENJOKZ47aiq3/nCT1T1PXt/1D/5r27WZ9/0jyVJL/r51+ub1z+48vo3Thb63i/6p5KkwvZA1Q/+ZRISEhISrhif8F3fqBP//S3K5ukb5ChwbAQFchHyve1OtqfTqWq1WrQ0OyF30uPEKd9HTj8+ZMZfWygU1Ol0tLa2pl6vp8FgsJJUT2+25y1A/nk/lfl2uy1JKxV6r9SSdTAcDldaHTzED3Fhd3dX9XpdzWZzJUugUCjEx/v9fhRNut2ums2mNjY2NJ/Pde7cuUjUeR/VWyfGuAa8epuHtwk48rtBlEoltdttlUqleB0ct91uq9FoaG1tTSdOnFCz2dRisYiOCoQJFxKcbPtuBc1mU9PpNN6rQqEQxYDDCDnrCSAgQFD9v9xTBBNfJ55XQB4HcwwhzucqSIo7S3gwpH8OuBeQWba49O0nmSMPLPX30oLCGuJxv5+8Px+k6WPJt8nk80pcfEJQ4/zMtX/GXPBAhMu3E7nI586eyWQSz8Hnz1tb+MHRwfX5uiWbgfnlujy4EyGK8aeWh4QEQ5ap+nt/pU/7xpfoT1/56qMeTcIxxHBZ1eI9d8Xf5w88KD3woCTpDz79Tv1h5aNW37BYaPng30qS0p46CY9nVP7kb/Tsf/8y/fV3pS15rxTP/ncv000/96YkJhwhjs1fy16R9D5mt19TBYYsesuDk0knu/Tfczy3NUM0PXG/3W6r1WrFrAYnSlSEG41GrGxT/XaLPJV9b0dwksjryuVyJNMIB7QJDAaDSLBxVFD19xYE0vCn06mGw2FsFWi1WrG1QlIUISqVitrtdhQ0IHaHhd9RfYeUHrZFovfIu1tkuVxGcaVarcZxMy+4LvjZ3d1dqaIzX94O4i4DCH6tVtOJEyc0mUxipdsD/xiXk3rfeYM1ViwWNR6P4z1wgcBFLdYf4lHeCeCtNJ45wfqoVCrKsmxFPPMQyLwLgOMSoOhANHB7P64Kr7JzDAJG/biIbU6cPYCSuWf7ReYTR4nnPBDeyes5FvfK1z732B06iG4cB8cA3wcIevl2DRe5PK+EzwnXhuuDcTHPLghyTNbbxQJiExIet1guVP+tv9QLGt+gN/zIq456NAnHCO/aHemnPvYTJU0PfX6R8hASEi6KbLarSu+x9zfHIrt+UuGdv/oyPf0Vb9Wp6RvS32tHjGMjKEA6KpXKShWePAIqpaPRaMWiDIGBFLnFX9ojC6PRSMPhcIVcDgaDSMK9/75Wq2l9fV3nzp1bIXZe1SQwj/55zx3odDrxnPkebaqokCxS87FmQ4jr9XoMhiSMcDKZqNPp6NSpUyttB9j8W61WdAJsb2+r2+1GB0OtVtNwOIyEWNKKiCBphXi5sONWcarrTn6d3HFMKryz2Szu4oCAw44L9XpdrVYrihTMKXPjbTDSgYOAuXJ7frPZ1KlTp3T+/PlI6Fk7EHiq3N72wTl8R4zJZBJdFlTFmRuEFdpasPMzBx7iyJidzLKOEDGcWDNOz+TwFh+u24MDHS6iOUFGdOOH8fqP50L4cV2g8HuAuOHtGzzvO6J4ICkCg7cN+Xi5py4ouQjI+hkOhysZEfnPJtftc+tOHH+e8zJWnnORIv0PKiHhEGSZOr/wRj1782X682//cTUKlUu/J+Exi/OLkfrZUt98+6foYmJCQkLCpRGWmUbL3Rv+O3WWLTRYTvUpr3y5nvAfXn/dznOn3picTccEx0JQoKIJYYQATCYT1ev1WLWfTCbRTu1ET7rQgg0ZoEoLma7X68qyTL1eT6PRKJIziH+z2dTJkyejOwCbPvZxSBnBjsPhUPV6PVZocQSc2VfiIcyE9jWbTUlSr9fTYrFY2YoPYOX3XRZ4HAEBYsy4cWxMp9MoyOAMaLVaGg6HK0Sc1ztB9WNQqfe59J0bsPpDqt2lgBDAtppOrNmakRwFSSsCgrtIfKcJSCDkF0GJzAhcCd7+MpvN4hwAMi2m0+mKA6FWq8XWBW9JYCtNSLKLRL5LhsPdHZJiQKcLV1yn35M8oZcOiLWf6zBXAeflv4wxvx0jY/CcBHcOMAaEM1oIvPXBr71arV5wbO4/xJzPEW4gbwvh85r/DPt4SqVSvF98BnEN5a/fRRhv58g7PPIBkP6cCwwpQyEh4eI49ROv13M2vll/8vU/pFPF5lEPJ+Eq8K7dkfpZWc+pFFUMlw6jfe9sqO3lHun5nme+SMv9wOSEhIRHju7Pv1GftPnN+r2X/0fdUmod9XCuGNNsprftSl/2Zy/VnV/xV3qCrp+YkHC8cCwEBd+9AKJZLpdjRdlD2iBvWJKxX2O1h+hA4Dw0DxdBoVCILQUepghZrNfrWltbU7/fV7/fj+fyAD+cFL1eT/1+P7YXUGnnmFwfxLFWq0VrPcRKOiAuWL7b7bYmk4l2dnbiNddqNa2trSmEoDNnzmgwGEQbOu+DgHHdEMNms7nSMuDVZoi0E0scBi444Mog88KvzavT9Xo9Vvh3dnZiOCOCTbvdVrvdVr1eXyGQbnOfTCYrAYtOTiH4rVYr7nSxtram+Xyus2fPxnstKYoKnmfA9fiWl37tTlQh4y6k5Lcg9B0C3P3g15UXu/hxGz7z6ZkGbuVnDlwU4rOBgJKvxOP+4J56O4YLA3mXAOsnLxqwHpy00zrjc8P5D8ulYLx5QSTfCoGAwxgRFHFF8DoXF7wFKn9sFwpYU55LwbndyZSQkPDw+Ijve70+qf1yfdvn/ab+Qet9SVi4AfG/xkV9/9d9k4p//Ff6mLcU9PTGg5d8zy98y+eq8lrS1JOYkJBwrXDT//V6vbD7bfqfX/dDelr5eH6f/s9hS6fnnQse/6X7nqvS3/2w7tRfHcGoEo4Sx0JQkBSrmmwj50Tfq7jezuDvkw4qnVSvnbQNBoMYXFiv1zUajbS1taVWq6WTJ09GISCEoEajoW63q16vp93d3bgtoPekQ1DYuaBSqURC1263deLECQ2Hw2i1393dvSAXAkLlvdpOpjqdTvy3V/ZbrZYGg4G2t7fjGHFxeMAcCGFvK0cnWp4H4ISMloVCoRCJOTtdIMyUSiVtbm6qXq/HwEms+ogmhUJBw+Ewtn6QN0DrRL5K7lV4yCeZFrhTmF/WBbtlFIvFFaeEBxG6+4S1gTC1WCw0Go2iACIduAtcYHISzzxxvZ7Z4SGS/l7uoRNYxAHG6KSW9XWYIMX95Hjca3cQ+HG4fheZ+Kx424OLCJ6LwLF5DCcRQhWtGuPxWJPJZKWtAlLua90DGV04Ye3lX+POFISLwWAQXSfcK0QT3n+YqODXyjGZexeHfO7y7pOEhIQL8ZR/9Qb92r86pR/8uRfpM5723kNf89TGab1i832P8sgSLgev+P6XaPOP3yBJesdzlnqHTl3yPRWlrdkSEq4XnvhvX6/Pq79cv/qPf0zPrNQu/YbrjD+dSD935pPj7/e87HZlb3nnBa8r6cOP5rASjhGOhaCQt5yTp0AVMf9aD1LkMSdF9PlThaZ9gkwCKtyQY6rdkO5KpaJOp6PNzU31+32Nx+MY7DiZTDQejy8I3pOk4XC4sgtFu92O7RlefSUDgWDCvPUaF0C3243kFzKFINLtduN2iYy5Wq2q2WyuJN1zTEQFt7QvFotICvN9/+QKjEajeF+8Er9YLGLIH24NghD9mN5q4bkHiAdOxiHp3sriFWPIpb+fbAG/F1wfmQTubuCYPE97B2vKwxvzr2cuGS+CC6SWkE5fuxwzb53PZy8wL75OPE/AsxX8WhGnDuv5d0EC4SPvlqB1xV/L2qDdg/fkd7Tg/uNYQXw6rEWF8fj99uv16+L4LjBxHp5zocQ/g5Ki8OFr2t0Jvq48t8MdFwgoCQkJl4+n/tO/vuifkx9+3vP1P7/3mY/qeBIuD+17Zpd+UUJCwqOKO77zDfriwrfoN7/sR/SMSuNRPfdgOdHf+5svj7/3X3eTbvtBb1+4UExIeHzjWAgK0kEQoaT4hzz9+NJqtRXSDRnwSqa3QkBY5/O5xuOxzp8/r3PnzsWgQnrb3V4NoarVanE3BLfiT6dT9ft9tdttLZdL1ev1KAyMx2NtbW3Fvv7NzU3NZrNItrk2t39Xq9UYWCcdEFaIubS3QwPkfrlcqlqtqt1uq9lsant7e4XEUrlHTGHuOKbb2z0bwavQhCaySwXHcvcB42w0GvE+kE8wn8/VbDbVaDRWiB3OE+mg0u/Oj93d3QtcDm6Z5/7yO/ca0QXS7OIS4oeTbcg364ygP87lln5e7/eNc3sVPy9o8cPa4nV+fMAadMElLw74Noien+CiA3DHA3PDWsDlIik6S3xHDBcb8q0n3HMPeUQ8otUFpwL3pV6vxzFxb1wcYIz+vJ8fMc2FHO47n33Wiucm4FpBTHABkvXg7Q5+Xw9zDiUkJFwl3vQ36nz2UQ8iISEh4cbBHd/+Bv2D2bfqtV/xQ7qj/OhkKtzx2q+TJgU97WVvio919P5H5dwJNy6uSlAIIXxQe81zC0nzLMueG0LYkPRLkm6X9EFJ/yjLsvMPdxx3FXiS/v45Voghf+AfRsK8UgtB9BT74XCo8+fPq9VqxSo8eQYQD7dsY8+nCs42kvP5fIXcN5vNGPY4HA7V6/XUbre1tramyWSifr+vXq8XrweBYzKZqNvtRtHC5jWSMUg+9vzJZBJzA2gdyFfAIWCj0UjSKumkouvbMXpLAO0TkDSCFX0XDh8v1nZaLqj2S4pbQkIU2eHBHQLcx9lsFgmudGHuAPfaK/j00/tx3caPyODCgP+w7hBkGo3GBRV7zs9jeQEm7w5gLvMBh7yX4+Xt/nmCK2lFrOB9eVLO3Pg95jFIe15IcUcBghFEOi9QMC7WJeuNgEREHN/qsVAoxHvjLRnMF6/xtgSu0VtGOI+va98mE3HGRQeO79fFujlsvv33GxnX6rs4ISEhIeGRIX0PJ1wP3P5/vkF/f/htmrUzveOrfkLlULz0m64Qd/zO16tyeu/v+qd91xuu+fETHvu4Fg6F/1+WZWft92+X9L+yLPuBEMK37//+ioc7gBMyiD1EBPIL0XDS5TblfD8+BAkXAn34W1tbajabWltbU7fbjTs1UDXGWk4lHwINyaHKDpHx3AWEBtosWq1WDHekTQKSubu7q3PnzqlarUbrONcPcWs2mzGbgTwCKspsuQixgtDz/k6nEwUTdrOAUHlgJHMKUfT+fYQCnApOGr2Ng2N6qwVEznd58OwE6UAocHeBiwKETHrbAPeTcY9GI5XL5VhFhyR6AKN0QGi9cs8Y/N7wHie+TthZqx4YiHjB43mrP8TX3+MknXEwPncKcD4XSXi9tErE81V+J9zukPB7M51O47iAiwmeI+D3nWPyeWk2mytrxp9nbfo5XBjKfxcgGNDexOu9RcHbEVyE8ABXP76/F2EivxZcZGKe8i0ZxxxX/V2ckJCQkHBVSN/DCdcct/3AXrvB8+7759L+n1KDJ2R631e88hEf8+Pf/KXK/mBTkvSMX3qfFvu70yUkPBJcj5aHL5D06fv//q+SXqdLfHnmw/EgFPT8TyaTaKcHbinPW8idfEBIIeyDwUCj0Uibm5sx3HAymajX66lara5sS8c4IO+EALbb7fg858fNQOsG7RDtdludTkeDwUDj8TgS7BCCtre3VavVdPLkyRUyKx1sHUmvPqGEjJ+2AoQAnAdUhrvdrsrlss6dO6czZ85ER4Kk2EqB8OGg355r8l51yKJXoiFm5GBIio/zGnd6QDzd9eEtCU6G+Z1rJDySOaQSjnuA90LmmU9fC3my726J8Xi80r/vPx4aCsn1NScpPu4Wfbf2568n/1q32LO+WL9e3c+Da3CS7MQ7HxTpwhMCjbuA8nCXA+9nDmnX8TBQ5hlSjqDgoZTccxdL/Fp8x4q8aOhjdPcIYt+l2hR8vvNzj8jl4uYNjCv+Lk5ISEhIuKZI38MJ1wynfvIgx+CW9XV9yl++dOX5Z3zbO/RTT/zzQ9/72lFV/+4VXxV/v/lvt7R4197x0p5WCVeLqxUUMkl/EELIJP2XLMteLemmLMsekKQsyx4IIVw6Lngf1Wp1JUgx37fNVov5/muIi9vla7VarHA6saKnn97vSqUSgxYh7VjgORfChosEa2trcacFxkv7A2n3WZapXq+r1Wqp1WpFggIhz7JMo9FIo9FopXcb4khFn+0XySlwF4NbxiHYw+Ewbs84mUzirhYIE2tra5HUeouJ5xR4qwDtCtVqNc6ZCyBOTt1ZgrWeynW9Xlej0bjApeCtAIQk+nV5UF61WpW02sYxHo9X1gSiB8fOuyny7QHMN+uI63G3DCIGa8mt+Dg+eNwr5C6K+TwDnwfmlHVNq4mLOowbuNvBWync5cDxnLRzDIQod4kgYnjl3oNB84LMZDJZWdM+z/n7CGHPw8UW396S686LBC4UeeYFa9N/DgOimoswzKGPz+/zMcc1/S5OSEhISLhipO/hhEcNi/Pn1fy1v1h57L53PFWfufmVh76+MJ6r+dcHr08iQsK1xNUKCp+cZdn9+1+QfxhCePflvjGE8BJJL7HfV2zu/GHv6f5OIpw8FgqF2H8PgXTSC3GEqEB0vSViMBioXq9fEFooaYUsIVYgEAwGg5XdF+r1euwvp5perVZjfz4p+Jzb+/zJLSBwsd1uq1Qqqd/vRwIkKQoLo9FoxaLt11kul9VoNNRoNNRsNjUejzWbzSJphOgOh8NY4W232wohRJcGRMut+hBQbwFwUsfzHnZJ60en01Gr1YrEFuGF4+zu7kY3im836Vsk5om3dOC04DnEAYivOx8YG88zD+VyOQoZeTeD5zL49QFe7/cI0QSBpVKpxHE6oee4+XuIEMNa99aDPEn2Y/h73ZnAj3+2XDRAQMkLADyH+OSvdwcQeQn5to38Z8jvFffD8wv47BLsyP3zVg7/HPi/3VHjrgd/TX4+ODbXlG+RuIF2ergm38U1PbpJ0gkJCQmPIaTv4YQjxeI9d+lijZopYjrheuKqBIUsy+7f/+/pEMJvSHqepIdCCLfsK7G3SDp9kfe+WtKrJWlfzY0kjNYD+rM9nM7/6N9/7wV95JA+SKHbqCH77lKgyj2ZTGJegPfDY/eHeEA8CSdEqIC4QsB4jWcHQGJ4LW0KkFq2nKzValFggGRBKqma0v8OKfMWDMg8xyRPgXF6ToWTfwIOaZ1gnjxYME9oIWoIGb5loqR4LTgcuH4cJNw/r0wzz4gvjNEr+LxvPB7HcE3miuNy/53EQ5Q9L4JxMQ/5XT+cbOct8xzPj+FjzLcf+GvywYDcP9aEk2pew2fBj+PA7QKB9zwIWgbYMpV5Zq6ZE4fne7hDwd0NiFwINIg63qLBmHDZuFuDtcN7Efq4HneMME95McLbpTjOYQ4DFydcOPSWEN5/2PweR1yr7+JO2Eh/cyQkJCQ8AqTv4YSEhMcrCpd+yeEIITRDCG3+LekzJb1D0m9Jwm/zlZJ+83KO58GLkOA8sXXCwLaGkAN3MkgHFVYPWqPKilCBPZ3KMuTDe8YBBJwKvm+N5wKBiw7j8Tha6l28GI1G2tnZiVvtcZ2z2SxemxNym3NJq1suQoAQB2jroJUBYkQQJdtbsuUfxI8f3BfuVOD6IYfea+/bLTKn5F1A1nBpcJxarRbzEKbTqabTaRR03NlBtkav14vODsgwawKSOxwO43XlCaMLLb5bhWdBcI8QP1gTXJNv/cnadEcBx3fif9gawjnDPHLffRcTyDn30cl+PhfBHQDMcd794G4LnCDeVuJClQsKeceCt4QwX81mM+7kQesQawZBzMfCcZ2oswbdYeTfAdl+rgdCINfqn23/HmGtMOdcn7sRuO6L5S24G+W441p/FyckJCQkXBnS93BCQsLjGVfjULhJ0m/sk4+SpP+RZdlrQwh/KemXQwhfK+nDkr7kcg724IMPqlQqqdPprITqeeUd8uZ98R7Y5pXVfAq+V0L9eFTrnajxeg+Rkw6C8sbjsQaDQQxnzFdBIUzj8TiKA06OsPXTRjGbzTQejyXtkTDGge0fEeXkyZMqFAo6f/58JH/ABYj5fK7BYBCr9G7JZ7eL4XC44khgriDZEHpcEGRSIMp4YCF2fq7Jj+OvYZ5dfIAkkjOAUAPxpRItrQb28f5arRYFBirkiBV5ws39XywWqtVqK4IT1+9CAWsCME/kQXA87oW7aaQ9UckzH1hrzA9E190wCFA+dtajE33WN+ILYpekKMyw5hA8EL88SJQ17oKWCyU8f1gWgd9nPlPuEvGWA64lvwsDz3kOAu93Mci3InX3A8IZc+HXyby5kJB3N3EPXVhifDeKoKBr/F2ckJCQkHDFSN/DCQkJj1s8YkEhy7IPSPq4Qx4/J+mFV3o8T/r3352UQBTdZu791W7h393djb97f7qkWBGHnHr11XeMcFLlJHs0Gun8+fPx/R5sCGGiUjqdTlf6zSXF9wwGg7hzRLFYjDkQjH8wGETbdaVSUbvdjtXy6XSqwWAQj9Fut9XtdlcEAw+xpBpO8KRfn4ckQrwRAHjMtwvkGnA5IBhIe+0HzJW3E1BRhjzn2zMWi0UUFKiSM3eQQgi3B20iyDiZdyEKK723lyDYMHZ3BviPtyiwdjzbwO+3u1P89U5gWVu+awSCAqIRYG1JBzkDvI/jM77FYhF3/KhUKnHnBeYxn1nAPOavzVs1OD7rFuEpP1YEgHyuhSQ1m82Va/EsDBdL/JrzIsrF7g/wz/9hGRMuKCA2cL+8NeowRwl5K8cd1/q7OCEhISHhypC+hxMSEh7PuB7bRj4ieEUR0uguA8iUEwJptae8Xq+vtCRIB8TXe/GpKkPqOF6+/z3fYpBvK+j1evF5XBO+IwSkn+q+Zwe4lZ4sBkj/cDhUvV7XYDCQpEiy19fXVSgUNBgMNBwO4/MQf0hfsViMx/Zqv2/R6LtmsJWj95CTdzAcDlfyFSCitDV4bkWWZbHVo1KpRFGBlgcXAGiNQERBQBmNRnH+ub+81m36nI/7jc2d40MwPTeBe+p5DLSqcC5EiHxVG3LtZDYvKvAc72cMLlDhHEBgcQeMvxZ4fkB+XvIimW/P6JV7d5qwRsgy4H57SwtrhJYgFw98nlyI81YPF53yuRKMOX+dwK/LHUjMT96R4HkhiFoupHhbBOd1R4o7IRwXa4VISEhISEhISEhISDjAsREUIAAe0Afh5XkIKq+DXGET94qjV28hFuPxWMViMRJXCB+EyqusTnggN1TyqaRj8ec8hUIhigOHESOIvYfOefAg/fWIChxjNpupWq3qxIkTWi6XsW99MBisWMnr9Xp8rlqtxvYBD/qTtBKcCFl18YT3OGHF5u+V3vF4HOe2XC6rVqtFscMr+QgK3JfxeBwzCfjvdDrVcDhc2bLTxZDhcBjFBlowuPeIJVT0ERTy18Dr3aHBuvJ1NxwOYyuBuxF4D5VrKuOHiQA+9nx13VtBWHPu3nCngn8+IL2+Qwg/HnTo65Zz+Fyxjlm33Ct3kXCsvFPCnSN8TlgPvkMK42q325IUhSPW2mGtCFw/cwTcQZN3KbjI42uT6/UsD29v4npYn+4iymctJCQkJCQkJCQkJCQcjmMjKEgH7oQ8Cc8TAs9QGI1GK1Zy7wunUuyV6clkosFgEK35kG4qtxAhDxGELFEB9ZYCAAHxrAC/FggopJCdCKQ9MkVQISS01+utkDSIKVkIjMWvG1dAuVxWs9lcab2AcGNfbzQakZRKB0SbSjdzR0BhtVpVq9WSpJX35OenVCrFPANaRBgnz43H4ygQ7OzsxCC/8Xgc7fpOOhEpcFwgJmCj576yPhAUcEJwX5lfiC3vJxgzXw3n/nOtCFnsnAABPsyOzxrFqeL3HhErL1JA4r2iDrzFh/nx7StZN06wvcJPm4l/Vphfsh7y4aTeGuHj4HokrRB/d4H4jhG0KuVzP1wIyOc2eN4Ec8njeaGIMfjx8lkYnjnh5/H8EG8PcSEzISEhISEhISEhIeFwHBtBYblcqt/vR1JK+BotC24jJwFe0goBy9vh83Z3WhX6/b52dnYUQtBwOIzV2XK5HDMGOG6j0YjWaK/mczzIWn7Lw3yPej4UDsLilXRcC6Tll0olra+vx90scDNA4HFHcJxqtap2u60sy9RsNlUul2M7AG4C3AvSwTabjAHHgG/Zx5aTuAyoYnNcJ6aIBp4D4ZkF0l5QIfPf7/e1vb0dd8OgXYL5gRTiYPCdNXg+L95A4Am1hGQjpng7jWcHcB/zuxHwX593J9ncX8SLfBuIr4d81R9BIk+0OW6+vYL5y5Ndf22+FYJ7grjjwYfuJGB3Eb9+b41YLBZRGPC1wzV464SPic9rlmVREHL4Z8bbOfLtDghw7ubgPfkMC5+Dw8QZ1kveXeKCAq9PrQ8JCQkJCQkJCQkJF8exERSyLFO/34+2fWzY3jtP0GKtVouk11sf3KrtCf6QXUgH+QeQpWKxqFarFcnLZDJRoVBQp9OJlVvyEyDJDsgZLRWMgzYDCC6EfzAYRGs/x2QckN7xeBx70KvV6srWisvlMm7ZR2tElmWqVCox4NEFF4h6tVqNc0suAQKOtGdL397eVqVSWXFS4Hool8tqt9taLpc6d+7cCilz0cDD+7g2HAu0FPT7ffX7/ej2cDLu98GdEy5KMO8u9EgH+Ra0zDCHODwg/u4a8fwLhAOvXkNi3S7v18ra43HIdghBjUZjJeQw31bjZN/FqsPcDvnrZ57zY5MuJOdsHcq1sWZxUfj7+OE5b5vwij3km8+gV/297SA/n4zdr9mdFD6f3lrhn2kfDz+4MPx6LiYI0ArBmPL327NUEhISEhISEhISEhIOx7ERFJxEua0b0kWVWVIkt26Pd1ILMfHKLQIFFXP6/CE0k8kkigoQejISqtVqJCvj8TiSUw+LdEEBokLVnfc3m03N5/No8+d6ERdwQngVudFoqNFoKMsyjcfj+D7IvbslEF5oBwE+p5VKJW5N6a4FyFS/348E2FsjCPxjfN7Tj7jjOwlAoCH2ZFYMBgPt7Oxoe3s7uhO8Wu/b9zF/2N89mwLSzri4TqrPCAesD8QEdxfgQlkul7F1BpCf4KSeOSWzANKdFxekPVLKvHmYJ0BcQCCT9oSCvOuA8zIHfhwPGc2vHdYPx6JlwLdCdEGBx/LwjAHujQsMeXdE3uHBuvQdKBg/c4MjwF0i3iLibh4PNz0M/j4PYMzDWyH8O8ZDO5M7ISEhISEhISEhIeHhcWwEBbcmQyS9fxrigdVfUrTCQwjyNmyvlEL0IQw4Dbwv3omVB915y4Q7FGq1WnRLLJdL7ezsRHLoFVp69XEPQK57vZ4Gg0Gs4juZhmwhAIxGoxXSjkPBLeC0BUhaIUgILrwfcuguCIjiZDKJZJcWh3q9Hl/jlnfmx/ve3U7P9Q+HQ+3s7KhYLOrs2bM6d+7cSquDB+Ihhni12lsNEB8YR75VgFBLju2k2qvZThazLItuCA9qJHOB8ELOhwPCMz6ckDMX0gEh5zi07nBM1jOOEt7jFXfPb/B17p8VhAJIPc4TPw/XxLj9s+RBkVwPZJvPEq9lfvKfOf6bD2x00u55B2SBsJZ43LNUPJ+CY+ZbiNytgGDEPfa15UGtvoa4Z/kASwSphISEhISEhISEhITDcWwEBeDhiR5K6ESPvnPILz3+3tMPIWMrSRwMnCPfFy8dWNulgy3+EBogb26FhiB54J2/3y32xWIx7pRAmwJg+0fO40GIEDps+7RjQLyn06mm02nsUT9//nwUNVqtVnw/W1eyPaNX8J04ss0f11KpVNRqteKYeD3XhiMEt0eemHkLR5Zl6vV66vf7cQzSauWZdgTPy4C8e497vvJPWGWpVFKv14vXxHphPNwzt+pDMn3XA89myLc5QHD9HuZDE524c1+5b+6w8B0UmEPyMJg/CDTiEqJEPheAeXC3As+xTaoLHzyPk8LFBQ8yZF55Pr/OfZcTF1K81YNr9HtRLpdj0Of29nb8zHu2g88px3WxwcUWhBsf22FuCm+Fyn+OeV1yKSQkJCQkJCQkJCRcGsdGUPAqaD4szSvEPO7tDl7J5nm3+Lt1HWIP+XGRwu3S+WM5uaJPn0q0kyavgDt54XFaFTwFH7EDEQHHQ76XHkeFpBXyx/EhZNPpVJVKRZ1OJ5KlWq0W54FdFQDuCElqNBqq1+sx0wFS1mw2VavVVq5VWu03950CyC+gis2Wj7gi+PF8CgIxva/fXQUuWHBdLhQR5Omhglz3YVVr1gGiBa4G5hUinm9VcELqazI/H8C3osznC7AFo29d6eva1563GyB0ONH3cEKCFp10u1DgAgvzKR04PtyRwPohXNG3IwX5++Jr01tx8sfl/iOWuROEucsLJzzHXHurhYs8PM68+OeH5xk3IpKHez5ca0VCQkJCQkJCQkJCwjESFCA59MU7UfRKoYfoeYXZK69Yy6liIxa4/Zm+flwAtVot7lDg7RcemOiAtEFUJa389zDyCMFpNBor4+E8iB28hx0pFouF+v3+SoYEBAjngaRI9CqVSiTHxWJxJVhyPp+r1+vFlhLPh5CkZrN5QXaAtCeksIMEWRHeVlKv1+N1MEau13eQOH/+vLa3t2PbR6PRiK0btFDw4y4Kxghx5L5B+L067W0uXAtkkrVDSwcBlS7w8Dz5D05M3dafPw8E2nfPgHiT34B7xIWow7ZyhPgj6Lj4VSqVYhYIJN5zEiTFzw+ZBd7uAnCduPPjMPcF7RKVSiVmQ3ANLvi4I8THg6CE+4VjIp7R+kD4qJN5d4h4C0XepZBvA2H+/ZrzDqN8pgSf6/wuIAkJCQkJCQkJCQkJh+PYCArSnhBw7tw5tdvtSH6p3JOVICmSSgiK29adiEIE3dJM5dx3WZAOMge8T19SPLYH8kE4JMV+et/ejoq7dEBQEABKpZLa7fZK/72TKEgj5Hw4HEZiKB0E2dECgSBAlZ2dGxqNhnZ2duK/aRuQtGK1b7VaajQacRySYjU6hBBdCRBw5oMMB2z4kE1vI/Hk/NFopMFgEB0KThSpDLs7AHjbAGCOIX2HCUce5AlxZyxuua/X63F3B9oyvC3C1wHjoQWAeXSBw4UYFzf4L0IURB/CjXvASTFwgctdDIfBz4MYlm/V8N0YmL8sy+Ja9uOwZnH6eC6DZwwwLt8yk/tKTgiiHe0bZHMQTMln/rB5gNy7W8kFFj6znoPh8+ZwIYTfudcINXnRKCEhISEhISEhISHhQhwrQQFQPcQmLUmdTif2t1PdhKhA2j3vQFrdws+rv5BH+r59m7/5fK5+vy9JMZvA2x8gg5AiSSu2eEQMzgNxJMCx2WxG4gOZcgs7pA1RZDAYrIQA1ut1tVqtlQwBXAFcB1tVsg0n8+V2coh/njDTNlGv11Wv19VoNFbOwTwiJDAOXAa81t0Tg8EgBlDSKoKjgHHnq8JeaXenR6PRiEIS5+NckF2uV1rt8fdcBW+ZcPLoPfX5aj3H9vlkrXqYZqlUWmkLcJHJq+se5si9c5eAg/BFhAtvC3IXB3NG0CFCnG+p6OIY95574ISd47kw5CQeAcmdIcvlcmVt5vMQgLsDuFZ3NPhnzj/TLqx4u5OLCYyT17jIhNDDPPmOF74W/bsnISEhISEhISEhIeFwHMu/mL03HYJNBZyKsvfKQ7YgY/zXe+Y9EA5C7S6ByWQSK6SQIPr5m81mzBVgpwcIi4f3QewgLfm+cAj6dDqNNnLs9fmsBdoyIPLL5VIbGxtaX1/X2tqaSqVSbIPgfC5s9Pt9FQoFdbvd6Cbo9/vRoQGZhaA5yZ/NZnGOERQIVmRrTe6P71DA3NC6ICk6J6j8SqvhfPlQPydybqWn3x0hA4eJuyG8pcHbBpg/7qc7DMht4DkXGjzLwXcGYBz05fs2jswL8+GtN4dldPi2kePxOLpEfA5caHDnQj5c0LMW8lkiTrA9t8Pf46IC73fhwMm4j8HH6W05HkDJHLtAxBpgzbgDw0UkFxRcbMlnpyDw8Ln0zzfHQ6zjdT5XnkvhwmBCQkJCQkJCQkJCwuE4NoKCW5S9D9+t5FTosahLB8F23ubgVUwnRt5/zlZ7WL0Hg0Ekbh6siJ29Xq+vkDkIESLEeDyOuQSQHnIaJMVgw1artSIcQK6xhx8GFysajYY2NzdjlX4wGKy4MKjwOqH2QD3vL4d0eZo+FXR2yCDPYjabaWtrKx4zT6J7vV4MNsSVQUWfefFz5EUFiL7PO+4NH5c7G3iNdOAm4b0IUBBW5lFSFEwg7x4G6RkAvi79XuA6cOGA13p7Tb4P33MMPEyTOYZUO9l2l4SLYFyrBxI64feWE6/ke7sAY8cRgDjmOSX+Gu4fY/EcBz8/okT+8wRYe3zWJ5NJvAfuFsqPmfe6uOBOBq7L1zZjWi6XUSTjmhgX1+tihYdWJiQkJCQkJCQkJCQcjkf813II4emSfskeerKk75a0JunrJZ3Zf/w7syz73cs97nK5jFsjQrQIFiQ8kW0jIbduE3d3g5MKCBIVc+8nhwhz/mazGQk6hAii6a4JbNvL5VKj0Ujz+d4WlpKi62E6ncaqPiSdlgCILxkEEF/glfbZbBbPUavVtLa2pul0qq2tLY1GoxXy6AF/dr9W/k1yP9Vx3ykBeGAgbR6Q/LxFfzQaxXlkfnFPMBYXFTzU0UUAaTVMEWGGf5NXAenM7yJBLoKLSV6l9mvz3SakPbEm7ySAUHI+3ss1cEwXhdwl41kefu2eAeHPLxaLeN95jrXrGQ1cF895NR8wPtapt+L4/HA9zD/XmhcucCDQToHDwduC/DOVFxMIz2S83IPBYBDdNn4d7p7gnrtzwNefC0D811selstlbIvxefJr87YJHDE3Aq7Xd3FCQkJCwuUhfQ8nJCQ8nvGIBYUsy94j6VmSFEIoSrpP0m9I+mpJP5Zl2Q8/kuN6HgLVf4gP1nFIEaQg3z8trW4P6STUrdR+TkgQhBTCPZvN1O/3V3YtyPd2O+l1Ion138mg9/tDtHFiMD4IECS7UChoNBppNBppPB6rUCio2WzGUER3N3B+v34fl1dgETMYv7QnKPCYtBemGEKILhB3EbjN3SvW7mLY3d2N4XsQVs7tpFpa3QKTajmkEYIP+WdXAAQo2lA4BnPh4/JARekg4M9zEHg9xJ57l9+BI58N4NV0F6s8/4LnmQOuZzwexzl3wu/3CyGNa2TucG3kK+mHVe3d7YDAgjiXbxPKv9aDGKfTaWzlcXcGa4O1jzOGe4mQJim6E+bzuQaDwcoOJRzDHQi0NHAuz1Rwx4pna/h7fd0j/vj3hX9GDjv2ccb1+i5OSEhISLg8pO/hhISExzOulZ/3hZLen2XZh65FKjr94MPh8AJrN1b26XR6wZZ++WP49n/eW4/DIF+thPy3Wq1I+nd3d7WzsxPfA5mBDDnRg1wTioi1P4SgyWSi4XAY8xMgTt7bXa1Wo2DiY65UKvH9/X4/5gdAlhAUvBcdsguZZTzu5MhX2XEg4LJYLpcaDodxvhuNhmq1WhxzvV6PYgO96U5c3T3C/WG8kE12sfB7xtgg8AhCHt7o2xgiQrAFoaSVsEDew1wy9z4eCKvvdCAdiFjAq/r8uKPCt6DkPkCkET889BFiDuH2qjzj97UN2fUwwnyFPt/i4ffYSTKCE9eed3E4EA8QE1j/XCP3ztsvvN0GJ4mLbLgHWOuHfQd4pshh8Ov2dewiQ771Ie+64Dj+mAsrNxiu6XdxQkJCQsIVI30PJyQkPK5wrQSFL5P0C/b7N4UQvkLSmyV9a5Zl5y/3QGQWYImmQg7B4Ccfhuf26zy8/5t/u9OA9gqq/b6DARXZ8XgcHRPe683rIbwIIeyWAEEej8exEuvZBE5cvJIMKUREqVarOnfunPr9vnq9XiRmnIPqMWLDeDyO45IUxRfpQvIFscPGztxwreRDVCqVaFvnPkEMfYcNxsKxvb0BV0Wr1Ypz5bkCfp+9Eu3/U+Y6PJQPsQDyj3AkKbZrMBbyJ7g3TvaZA8YMCeVcPkbuAe04POY7GnAvC4WDAMf5fB5bXBARmLd8uwGCmTsFaMnIuw24nt3d3ZWsCrf9c3xfA066WcNu93dHh2eVeHuBHzPfJoIbxwMfPcPEMyNcSPG16NkRh8EFDb9W3sv3iTtM8mLBYWvtYuc7xrhm38UJCQkJCY8I6Xs4ISHhcYWH39T+MhBCqEj6fEm/sv/QKyU9RXvWrwck/chF3veSEMKbQwhvtsdWgu0gpl6pl7RCpPJ/8PvvVB3zVVhIE2TNk/85PiRIOrzVAkLV6XTU6XTUaDRilX5nZ0eS1G631Wq1JO21Dmxvb6vX68Vj4m6YTCbq9/tRiCDMEOIuKYos9Jzv7OxoNBqt9IYjKPhODpA4J/WesYCbAjK9s7Ojra0tDQaDC1oZcEAQush9aTabMY+Ba/LWC8ZXLpfVarW0trYW58sJI/ffnR6QdndiuO2eMD+33ENMEYmokLtzw/v++a8LRawDrsO3XEQ8Go/H0WHAeLwFAnLrc8gY3GGDCMBjEHbAMXxODhMi+Ax5KwZr2rdV9RYPDys9rJLPteTzBPJzl19bLlDkP99cb74VpVKpXHDui5H+vPPA76evJ17roghzlxcVfD74PriYY+M44lp8F880fTSGmpCQkPCYRPoeTkhIeDziWjgUPlvSX2VZ9pAk8V9JCiH8lKTfPuxNWZa9WtKr91+XOSHyqj1ko9vtqlarxeqrdLBdpKRDq5dYvqnUY/v3Sq+TCHISOAfVazIOsMI7YSX7IB96B8mGVE4mE41Go2jxR7BYLpfRvSAd7GzhGQtcW7VajWQWQQFCBuHzqq5Xpp3sO9FiJ4p+v6/FYqFerxet6hB033ZvOp3GH3dnEOZIm4gfh3PSlkBF30MfeY2TPCfG+eyK6XS64qLAdQD59uyDSqWy4jTBVeDuA59Dt9hzTMQG1gpkmDmTtCKkOLgGdx0wzjwJxplxGJHNO3N4HYIR65055RqYR98tgXnzHUB83QPWtM+/z4+LCvnPsJ/b3TqeL8Fn3QULd6wc9p3gj3EszuXr28eTD7rMA+eJ/9yA7Q5X/V3cCRs3nCUjISEh4RghfQ8nJCQ87nAtBIUXy6xdIYRbsix7YP/XL5T0jss5iBMGJ5H1el2bm5s6ceKEJMWtCyWtZA040eA5t6rTrgDJcCK6vr6uzc1NhRC0tbWl3d3dGMTYarXU7Xa1ubmpfr+v06dPS1rdhhKiwrFLpZIajYYajUYkvwgNvV5POzs7MXk/hLDyWLVajQSp3W6r3W5H8t5qteLz/X4/uhqo7Dox9xBEd3hQsfd5cEeDtysQUgkp99BCSKLPO8dmvLR9AI7NnFHd93vGGLj/jNEt8bgDnNQjdhBW6CTXw/bcFQBR9jFCzLlmhAm/bm+vyVvzeb1vlcm1Oal3Sz7CjQeNcv1+DHfmeO4D8+qvdWs/Y8ad4ET8Ym1C/hnyfzNvfp+chCO6IZb5bg8IdhyHz4WkQ0Wmi7UesNb9O4OcDZ7nv/m2Gf+sumDoIkj+mm4gXJPv4oSEhISER4z0PZyQkPC4w1UJCiGEhqS/J+ml9vB/DCE8S1Im6YO55y51PElaIYS1Wk2NRkPNZjOSFa+0Sloh8/nH/dhuk8YiXalUIvnn9ZPJJDoPQtgLH2S7R8boyfX56u9hFXfIzHA4VK/XU6vVihVYCD1kmG0zq9WqOp1ObDOo1WrRpUBY5Gg0UqvVimMlQ8BdCnmRwfMeDhur5xqQJ7G5uRmJl2/9Nx6PFUKI94nrfOihh6LrYXd3NwohHqg5HA7jbh4Qc65VurB3n7FD+r1tgNcwrna7HYUTJ5hkQhCOiLMCVwgtFp4VASDlLuAgVDF3vp2oOxOcwHs1Pn+PDiO1iBmercE8OEl2ccddPL4+XVDw9hp/fT7DYzqdRsKfzyjwYwIXW/w6ve2EcSFeISLQztFqtVYyQDiPv9ZdBcxzvmXDWyF8LMyhuy7ybRI+j8cd1/q7OCEhISHhypC+hxMSEh6vuCpBIcuykaTN3GP/9CqPuWJxrlararVacecB6UIXAn/8e0uCW6vz4W/e603lvlarxUo49ngINYICJJTz7+7uant7W6PRKBIkyDHhiPT4U31ltwZ2SIAoUimFcDGubrerRqMRyTNbMHIOtpH0fnKfR4QRyHa9Xr+gTcNJrVeHF4uFBoOB5vO51tbWYjXdj4mgUi6XYy7CaDSKbgV3MRSLxZVdI5gjJ4Rcp1fgD2s18TwBgEBCawz3wtsQPPDRialnajAOd6FAUhlnPmPAyTNz6e4IH4cLYDzODh++4wFWfUQZzwrw13C/85+hfCaCk/68yMH69DXkLRbMQ61WU7/f13g8jhV+1pFnkOQFBw9qZF64fz5Wb+cA3BMPXeQ7grn3EM28kJB3OhzWusGx/HGOcSPgenwXJyQkJCRcPtL3cEJCwuMV12qXh2sGiLV0UOmU9kgF2xYOh8NIvHxP+Txhc8LkhIoqOyQJa7u7DIbDYSQxTpgIbMM+v7W1FauqBC1KB0ICVXieDyGo2+1Gu/98Ple9Xtfa2loMXoTwVqtVra+vR2J//vz52PrAa8bjcSSEHpg4HA510003aX19Xdvb2xoOh9GJQVAkc1GtVlWr1WJlGkKFC6JWq+nEiROqVquq1+vRITAajVYCGnF7cC62dYQ8TqfTmPvAvXWHhP/O/eOe5RP/WRMe5Ie7gPsmHbgc8mQa0QZHCK4I1qD3+HNfILMcI9+aIa0SVsbNfSYMkHWUb5tA8OE17nJgpwqvzPs9dPLr4kfePeAinDsomCfG6luRDofD+FnhGFwXzgWEJq7ZRRMfl7cdOen3nAoe43j+ev6L0OStQ6VSKeakXKplIb/7hQtMh+UwJCQkJCQkJCQkJCRciGMjKOTbE/L2ZemAHObbDJzgO7zqD3khNFDSSlUUIuJkVTrox/aWAu/tn06nUeAgb8B77gljJFeAqjvvlxQDH6mmQpBoI8iyLIY8skvCcrmMdvvRaCRJGgwGcXcGWhHczYAgUK/Xo2BCzkKtVovCCGQKFwFky3MpvI/e++txENBOwDX6DgpuJ/d59hwIiCLE3nfX4P5AuiGqVPF9+0x3tgDPOsBpwWPY7On99/yG/HaT+XBEr+wjDLlgwH1HUEC0Yc49iJPMCv98eOuMtwWxpvg385AXYPxzQDWe47A280IF9248HkfRyVsfeC/XxD2mlYF55lrJTeCHa+YHYYfxuXjB/Xf3Qz64kXnj2KytvKiCGJl39fCTd/wkJCQkJCQkJCQkJFyIYyMoOCBAEAKIbaPRkKTYOsBr+OPfk+6dmEL0PcDPcwN8S728gMC/ncQ4eZzNZitbM0qK53JbPpVw7/l3Esi5yTnwNgYqwBA3wh59FwbOQ7uGb6s4Ho81Go1ixgEtHuQSILrwesgbWQPsakC7gs8H2QMQf8SQzc1NFQqF2A4CkeQ6vC3FxQCq9NjXR6PRBVVir4jT6uK7PrBmmFOvdHPfPIuCAMVutxvnfjqdxnYPD7RkjNxf7rvfL3c7II4hvrjYwjWyNsjIQJRhrfs2jBBsFxPy1n1J0T3AHHnYobf8eItLXihBPMNpw/aczL9/zvz8Tsz9MT4r7kTx3In8teUFBD8mOKzNwX/yrRf5z7Y/lhcwH87hkJCQkJCQkJCQkJBwDAUFr4LTs01107edg/TkQ9scCAdO3jwvAEJFpkG+Iuyp8d777btQSAe95rgKarVaJFAQJCdas9ksugogVry2XC6rXq+vBBIiHOSr8mz55+TI7fCj0SgGNzo547wQ20qlEnMLuHYIMPeAXRsQHMiWcBcCx1gsFup0OqpWqzEzApcG5J2xICRIisQSAWgymawQSCev3ruP0MG9Rkxw4Yl/O4F2UeNSxNHXma9TRCHukTsxuCbOx/i5Phe0vArv6xBwX/MVc9Ym158n9+7GcJEt/zlgXbHuea27cbIsi0IHIpLPm+8m4STeMwvcAcA9cMeKOyd8RwzuJ/eKOS+VSlGk8JYIRAM/jq9vro9zMYd59wTXm5CQkJCQkJCQkJBwIY6loEBVuFarqdlsxnA9dkPIB7RBNCC20oGYQEU4T6ggr/P5XDs7O6rX62q326pUKitV1LxrAfHAHRGe4+DBeQCRgOo3JBvCQ7XbySkiA6Ta+7udeOIwAG733tnZia0cCCb08UMWyaXIW9GlPdLY7XZjICO7NkjS2traiiDhrobFYqFms6m1tTVNp9MY4jcajTQYDC4QEfz6fKtGjoVQwrm8Ms+c8R7uN+4CSVFIYJ3gZPAcBEkr1fH8VpCsFXeY8IPAk1/HvNft9zg6INlU+nmPb7uYdwtIBy04+co6z3lgoRN3F9Qg0ozJRQa2y2QteXuLCyU+L/45ZA65bm9p8fd6iCLXlL8/XKcLES4m4ebw+cufi7Ef9r3AtXF88HCOiISEhISEhISEhISEAxw7QUE6IBzkBkiK9neyCDwALl+J9H50r4561RViMZ/PNR6PNR6P1Wq1YsWdY3gvte9OgKiBm8K3PvRWBknRxk+P+WAwiHkM2PVxYHhY3HQ61Xg8jjkJ7magrYHzQwR9t4rRaBS3laSNAEEGMkU4JXPpPyEEbWxsxMyG7e3t2LbAnDJPPEabB9VdyCu7GJCHIB1s24cVnvtKJoDvgOEiEPNNZZ859nGQb8HxEVEgj+zY4YSRa/Z/e5UagQc3Cmsib9P3++59/C58sM5ddGDe8yKHW/mdKLuIwXgQu1zQ8pYMbwXwz4cfx1t3GJuLCrwvv5UkFX7cGi6w5QUB374U1wtz4q0KPh5/Pj92Fw685SHvcMnPQ75Nwl0KLkwkJCQkJCQkJCQkJFyIYycouAXaq5ieRcBOCxAPJwYQBohy3iaeFxUkHZrAj2BAywXEZzQaxcBDSEetVlOlUokkH1cFPejupiDToFarxVR6yG2z2YztB7gKcDL0er14HZPJRL1eT/1+P24HSX+/Zx1AzLMsi2PkukIImk6nsS+eoEuI+Gw2i4TR3RKS4u+IHWztyTxBjj1sUFJ0QXigIMfDecA947W0kRBCCcllLmkdISvARQ7fJcR3TeBaWQ8uOkkHlW4nri4m+U4YPMfr826YfHuGk+O8IODbVyIgebuEj893yXByfDFi7sTZPwvuGnB4+0QIITp33EXg7gQXALwtB/HNW0t4rws6LsLlBQGu08foYl8+r8Gvk88f5/bWkbwAkf933vWUkJCQkJCQkJCQkLCKYykoeHYBgMh4UJwDMoptvtlsRmLgCfHeT03QnleIqYKTEdBsNlUqleLWgozPx+kEBOLEcX1XCCq8kGVJsb2CHRikvS0rp9OpqtVq3LXh7NmzajQaMcCv1+tpMBhIUrwOr3A7+eQxdqJoNBqxfQSCPBwOV17HXPAY52WeB4NBFCokxfn2nIh+vx+vzbMjEFBc/PGwR7fJQ2adoGdZFlsoZrNZ3LmCcbtgQGsK92M8Hq9Y7J3oQ5C9lQHy6eGbrCHaFyCezLm7EHx9+jXxb3YcYd3h8MBVQQsHrS5U0TmG5wK4C8LFMkQeFzbc6eA5Cd7ukyfxLlgwX1wHjzNe1s7DtQ64+we4UOPvczHGx5fPPWCNeC4Dc+ZODR+zH9uFmfzYEhISEhISEhISEhJWcWwEBa8oAm8BgFjkg+e8Sgvc+o/wQPX8MOIDMUF0gHh4PoFv70cV3ckkFn1A64QTHqrpXCfj88o2LRhUwweDgUajkba3tyVJ4/FYktTv9zWfz2MIJON3W7oLJf1+P7Y+tNttjcdj9fv9uAsD7gNeD4lmHE4mZ7OZtre3NRgM1Ol0lGVZdGVwj3A5zOdzNZtNFYvFOD8cG2cFhI/tG73C764FSCYCCLspcJ8OE2zcscC6wTGRr2x7u4m3ICBg+WtZn+VyOWY9OFGH3Htl3te0h2S6Q0NabXPw/AUXFljDHItxISgAzz1wtwRr2ltKvDXEiTefE5wsfjzWHNfr987XkbsSmB+En3wuhH+W/T7lnQR+f33eXfDLvzd/bD6L7hzJuyYSEhISEhISEhISEg7HsREUHFRmnUS6fd3hlVbpQChwy3feQeBVXAif77IQQtB4PF5xQ/T7fQ0Gg0i4aCEgf8Er1Jy7VCqp1WrFDIThcLgyXgSHZrOp3d3dld0Y6PPf2trSaDRSr9dTpVKJrgRaDRgj5BDBwwP1sixTv99XCEHr6+tqtVoqFAqq1WoaDocaDocrNn6vzEL0yTeAFEJUyXkYDAax7YD8B7IhyL1wiznjcoIpHZB0XAzFYjEGSiLIeNUa4QdCCClmDTiZZT3R+uFtMl759xwMhKS8WyIfcHhYz72TbeBVfY7hbQAIGKxPFwfc/u87Rfi9dgHORQkPawTeduKfH3cfOCDpLrrlBYu8E8iJf/7aPYw0H2zq4kz+s54/br69AxGE5w8TEQ67NhcpLyZuJCQkJCQkJCQkJCQc4NgJCpAiCCzhe9jt2UlgMpmoWq1GouQEzUke/3UrOcQXQgyxRRSoVquq1WpqtVqxD5zsA4IQK5VKdCGQWQDJd6s4Vnuq/FS6fdcBjuMBg9IemcdFgKhAlgLtC/Tdu83frfr8dzKZxNDJZrMZWxEkXbBlIXNAlsR4PF7ZZQHRhflDrGBefdcNF0qazaZarZakPacFpBexyEWLEPayE8hnIMMi7xRAPIFYVqvVlYBOabV1ht+dtPNafw+v8wq6pChIsGZ4zivkDs8cYC0w14gz7k45LNPAnSfSqksH8usOB3eplMvlOMe4Anid/5dx8x4n0nkhjnE6gffQTJ8PFy3yc+viGZki7vjJiwU+Ds7h6wZxws+bF40kRVdQvtXGt850kSMhISEhISEhISEh4XAcO0FB2iMD9MWHECKJlw6qh9jl+d37/r3q7cSIPnj2rmfHAa9mQv78/JB1753Pb+Pn4ZDeHiCtWqoRA6h6+3HYgcFJoO+6MB6PtbOzs9LHLim6JCD1kD7O7VVvz3ao1WorhJxqfrPZXMkyYP59XqlUI44QJOlj4xoQZLiv1Wo1BmziAIBUkrfgORa0r+TdKpBCfpxs+r3leZ8H6SDrgBYN3yoSFwPrwqvWPOaBhG71z8OP40TXx8Dc5d0XLhI4yfY1y+/5TALuma9N3Cb+Hs6b35kjv90irx+NRhc4D/L5DC6A5F0WeXcB95i2GHci+PX741wnc+ItK75zCQIU5/QxcQzWsbdPXa6zISEhISEhISEhIeHxjGMjKHhF04MSIZ2j0Wilmispth1QBea9WMedYDpBoFLrRHE+n8ecgkKhoLW1tRiSmA+6gwhB8iBM5DUMh8P4O1V93su1sLUi11kul+P5fE68lQJBQdIF+Q64Jhirk2TmAecFOQQIBV7dd7cCc+Vz6JkU3sufZZmGw2FsVWCbSs8ucOJaLBY1mUwi6XcBB7GhVqvFrUMRgrwKLh1U63Fr4HAYDAYaj8eRsLIm8lsQujPAWyX8OebBnQ0urvh7JK2IOd624Pcyb9GntYTXIy7lbf4+B7yH3UG81QDRIB8syGuo6vtuGAgiOFPc2eBCXr4dwdsu8sGW0kF4JQ4T5saFiEajsTJ+dxflMxA4v7sjXFhx5w5jZ75oZXEh7zDB57CWi4SEhISEhISEhISEVRwbQQE4sZEOXAU4ENbW1iIJYTtBsgmowGObhiBALpwMDQYDTadTNRoNSXukvNfrKcsydTqduBuCE3IneFR7IUCEAXIsgFvAE+9dUHCiWqvVolDh1fTd3d2V/nIIIDtPcCyEGAjTcrmMoYvNZlPtdjvu8HDu3Dltb29HEiutVqEJ6XMy6tfuggLXTksI45AU8yaYf0Qct9vjWvBqOsdwe3+tVlvZhtCD/hi3bx+JpZ055X5AJhm7k0oXUHAqcE8JrpQUH+caXehyUcar81TTXdTwOWRu3eHiY0F88nM50edaOD5rxt01Hmjq40dk8DlhTSDSeailuzlcUPDrZSzugvHPpLs6fEyIEvkASO4br+XeuljI59udPe4cyrdN5OeC8fiaSUhISEhISEhISEg4HJeMMA8h/EwI4XQI4R322EYI4Q9DCO/b/++6PfcdIYS7QgjvCSG86EoGA3mRFPvzJ5OJ+v3+SnCg2/ephkKIfJtGSCiv5d/ekw0ZHo1GUWSA8NC/32q14nshJRBMz0SAAE2n01ghp7UCQYQWDrZPRBQgiDJPiBuNRmwFwEnhNn3yGzzUzoEoQLU/hKDt7W2dP39ew+FwZfvN/M4Q+UBBryADxA+ug3YO5oZgyvX1dTUajZW5RxTih/aSLNvbNaJer6+0NGDHpxUif68h67VaTe12W2tra+p2u3FNsW44n5N1BI3D2hryGQCsDdwTVMRrtZrq9Xp0pLiN/mJz6Ft35rMsQL5dxa/Zx5x3a7gLwgU3b2vIW/65n4yBTBA+k1y/C1d+zQ4f92EhkuSQ+A4dXAdCgQsm7s7wjBXGxuuZY3c7cF6/D3nXkjsxONZxwqP5XZyQkJCQcCHS93BCQkLChbicPdF+VtJn5R77dkn/K8uyOyX9r/3fFUL4KElfJumj99/zkyGEy041K5fLOnXqVCTLBCFCxh0ewOiVTwQC7O2QE69k+2NsqXj27FmdO3cuhtZhw26323FLRCzmbFuIAOE7C1C9pVrPcxBFBIXhcKh+vx8FCSeM3h8vHRB9yCLkzYMYve+ddgZva2g0Gup2u8qyTDs7O+r1ehqNRtH9wfzT1pAntx5w56GRvHYwGMTgSQ/OxF0B8fa2B1ow/Hp5nFYR7hXXSFhmq9VSo9G4gOxy7Ha7rc3NTa2trcU2CK+I1+v12CqQb6U4zJWRXzeIGo1GI74fgow4cRghdeIK8eUxn1sPLcxnXzgxZo3kgwwh/FxL/jNw2JaTXK+7P5zc59s+fD26g4b5QrjxrUH9PudbR3wtu5uAzyLbnnLvWq3WiqDgmSMuknDOfG4EuR/59gpe74LDMcHP6lH6Lk5ISEhIOBQ/q/Q9nJCQkLCCS7Y8ZFn2pyGE23MPf4GkT9//93+V9DpJr9h//BezLJtKujuEcJek50l6w+UM5jByRGuBE9t8+J8Trbx93fuo3Z5NFRe3gHRAqKnms70ipHs8Hms0GkVXxHA4jC4JWgwYg2c0MB5P4uechDB6zzbzABl35waiiRN/J/ie5j8cDjUajbSxsREdDsPhUL1eL+5uwTzTbuBBdRAqyB5zzXaZXBP3zFtD8hkWCC1cIyQzn2kAQXTyx7WVy2W12+14/Vy3V+MlRfdAuVyOuQ44KICLP3592OgZl5Nf1qJXsamUk4PBMZhPCHne6SFduBOC7yqAEMVaYKz53Q98/IfZ+H0O85V/xuKfq/y1XWzsvJ73ugOHecgLG/kgTd++00NKER9cvEAUop2IueJz5mvf2zOYD+aM9c1aIF/B58Pn7zi5FB7N7+KEhISEhAuRvocTEhISLsQjzVC4KcuyByQpy7IHQgin9h+/TdIb7XX37j92WeCPd7ddS4p//OfJDX/4Q0wg7N4GAXH2cDcqq34uP2ar1dKJEye0ubmpXq+nfr+vXq8XXQUuHFQqldhOIa2KGE5o6Mf39HncEE7c2cqR1gmuhxwCshPc+UC7RblcjltjOrGCvLMbxM7OzsoWmRA6r/DmswcgzJBRzwhgPhkf944ASifJuAMgmoyj0WhEoQKnA6+hJYQWlPF4vCKqeAtBlmXa2NjQiRMn4rh6vV4UnTz4kEBPzy9w8u2hk4zf14qTZJAXrTyvwbMROAdCFHOJcOEVcs9PmEwm8X0eJumCirsxXKjyTIG8Y8Or+r5m8/Dr91YC5gAxJR966MGPODmY43xWgn9+XGhBpJG0Iibl20N4bf7zx7+5jrz7gvH63B8nQeEiuC7fxQkJCQkJl430PZyQkPC4xrUOZTzMH3zoX+QhhJdIeon9vvI8VVf+Sy83NnsILqSe/AFJsaXAtyR0SzcEw8MSvSpbr9e1sbGhU6dO6fz589re3lav14sEmd0DsNzjdoCYS7qgWu3WbgghBJ1xQo7cmUEF3K9dOiBUnJPHaRVpt9vxfQRPDgaDOC/SQQsBhA8i7xV6J6yQQrejL5fLeD8gjxyfaxgOh/Ec5AwwN9PpNPbh4ygYj8crQYcQzEajEW36+bYLbzsgs4HHzp49G9s7GDdrii0pqWi7/R0hy7cnlQ5Ia56A81/P8vDtJ91FgEjg95HrcWEg79Lgcc6fJ8qsR29dYL64By5UeMsQx8l/VnjcybULe1wLYoN/ll1QQMhxEs9n3AUAb3Xw6/fASZ+f/HwgaLhA48flOL6bDCKafz/kBcwbDI/ou7imxvUcU0JCQsLjCel7OCEh4XGBRyooPBRCuGVfib1F0un9x++V9ER73RMk3X/YAbIse7WkV0tSCCF+wTp54I95yHehUFghhpAkhAS2XQz7OQVUr10woAIJUfbKqYftbWxsqNvtRkLMzgxePaVf3q5ppdIs7ZFIBA9IOf3leds6IgcWbCdgWMJxEVSrVdXr9ZiTMJlMVogc/ev1el3tdluFQiGGW1KlrtVqajQasUqcbxlhLg/Ln8i7FCCw5Dp4i4BfI/kYfs04PDygsFwux4BMbOlOvufz+YpLgwDBZrOpbrerTqcTd6poNBpqNpvxunwHBQ/3zPfzu71fOsgF8B0esPC7/b9er6+4O5gjd0O4m4bjs4MF53JhAbgYle/353lEIs8RyBPkixFld0S4SMH4PbPCRQJpr9VkOp2uiFF8BlwYg/z7vXMHjs+rO1lcAPGAx0qlstLu4K4fPnM+HubIt5j1fAefp7zQeQxxTb+LO2Hj2FsyEhISEo4Z0vdwQkLC4xqPVFD4LUlfKekH9v/7m/b4/wgh/KikWyXdKelNl3tQiIL3knsvO3/4u23ciReOBYgJpGo2m60k7yNIeIVZOtgmsNFoaG1tLW4bSeXeCT4VTg+2QzRwAugVUYgq1+LVVYiLW/hpA3DHxXK5jGJBqVSK+QAQVQ/MowIPwSULgl0hIMhU+A+zjuP8qFarajQakRQ6+cZJ4ddMe4C3NTD/BEWGENTpdCIhRCyC1Pl9dhGIsE7mw0l2u92OP5I0HA6jqMK1+M4W3HP/73K5jMIGa9AzEjzzgjWBMAGZ5x4zB3nrPGvFARH2nn6IvVfsycOQDtwTzLvnUHiLhq/L/JaPIL8LA5+tfBYCx3ahiR8XGBCqeMxdHS7Y8F53tyC4Maa80MV8uIDgIkjedcTjjI0wTb925skFmhsA1+W7OCEhISHhspG+hxMSEh7XuKSgEEL4Be2FzZwIIdwr6Xu096X5yyGEr5X0YUlfIklZlr0zhPDLkv5W0lzSP8uy7LI2cy8Wizp58qS63e7K1o1Y4yHOEIlms3mofZz+eoQHdyC4Xd8JSr7FALIOwYEgkpcgKfaBOwGu1+tR0OAaIFFUn70v36vHbvdmzOwWgPUed0KWZXGrvsFgEHMKcAV4sCBEibYIshuozHL9HszH+HBWsHVlfptGxAHcDvtrIM67CwMQP+bGMx7m87l2dnY0Go3isRaLhQaDQXQnQNT9tYvFIpL4RqOhTqcTRQ/Ox/M4RSTFNeJrh9eG/VyGfEWf+XQijrUeB4LvnED2g69vsi6cGOd3L8n3/rvo5ITdiTIEPS8oMF8cl7G5SOBZEQ4PTXRniLs7/DnOUavV4jF914Zqtbri/GAMPv+IbP65zrdWuBDopJ+1BvgM5J9zcYZx+py6Q8LFyuOAR+u7OCEhISHhcKTv4YSEhIQLcTm7PLz4Ik+98CKv//eS/v0jGcza2loMyoNYYKOHXJLe733lVBQhzHnSke/plvbIj6foIzRUKhU1m001Go2YbSAdtF3kSaWkmH+Qt7U7afHQQ9LpIbne552vpHo7hucF0N5RLpfjbhQukngoJOfG/j2dTld66pknJ3yMC4dDnnBxLq4VwQFhhsr0crmMO0LgrOA6XWyhhYHzcM8RGGj7mEwm2tnZieGEPkYEGNYN2Q64ThCamA/GgdDgzgoPEEQ08Oo9DhXpoCUiv6Uj61M62NUCosu/3cWAQ8IJsBNuzstaddGDe5M/v2cC+Pr3ijzH9JYA7gMCBedh/IeJA35cgHODEMnDhBwn7vwXFwaOmnwrlK9v/3wclvPg15JvM2Eu3cHBvfF2ieOAR/O7OCEhISHhQqTv4YSEhIQLca1DGa8K+b56nAmj0ShmBGBVxnrebDYjgWVbR4ij70mPQ2A+n8febOnA4kz11d0MiAm0HUBwyBuA5Lmt23MWAL/7DgruDvDcAdocmA+v0Dshkw7IYr79wF+3WCw0HA4lKWYKeFDedDqNc+dkz23pXCfn9DaLvJUeJwTbPPo5cS5AMkulUhyv5xtkWabBYKBerxePzXvJs8BNwtzg2KA6z71DwIHQQ4aZV0hpuVyOc+DXzVpDnPCWnDyJzrcpSIrtFS4IuJgBoQUeOpm38kP88xkQ3Pf8MfPXyNhYKw4fsztbXNgI+7kGXBf3FEHNj+VtMX7NflycQCGEC9Yf8+DX40IGj3sbhYspF3NAeF6DO35ceMy3giQkJFwhCsVLvybh8YXl8RFnExISEhKuLY6NoOCJ9FRq2bJxMBis9OlToV9fX5ekaPtnO0UnhZASz16gXQFSRXUWgiKtWtFrtVoUDWazmUajUTxOpVKJYgU/4/E47mjggXgcF3GEqirEzPvwcUfM5/OYgYCI4tZ97Nu4M7yFYrlcajQaaWtrS4VCQZ1OR5LieBBNvJ2EcTKPHnTJHLKNo5Nurs13nKANgBYHSL734/f7/bgTR7lcjq0NZCRQIefc7i5gXMyJixTD4VDT6VSj0Sjeb1wPbn8nsJL2BF8zOB7yAhD3ATLM/WPtQqD5nTXmWyp6u4i37HBed3x4IKHvVJFv3eE8+cf9er1Nwj8TntHgLRPMLwIK95H7wHXmWxB8XXAsHmPte4uJOzX888K4/ViITj7PLiDkXRrumuA5gkFxPxzmLsn/npCQ8PAotNsKxYJ+4K2/r2dWakc9nIRjhOd+9zfq1K/+rRY7PSlLmYMJCQkJjyUcG0EhHw4nHfRM50lSqVRSq9WKVXsq14PBQMvlUtPpNJJYz07gmP7jIWz87n3wVL0hipKiPZ/nq9XqShBkngBBniDUEFSvLmPN73a7qtfrOnv2rKbTaUyj9xC8crkcxYa8M4LrZetFBAz+nQ/1Q4iRFMWMyWQSyS67I/B6XCOz2Sxu9Qghh6RBLhEIuD5vL4GMIhxIiu0QXoXmdwh4PiyRVhSCI11c4bW1Wi1eM69fLpdx7B5ASHXeSbITYe63ZwW4I8DXqpNq5pgwRncu5D8DXJeHM+ZbdzgXc+FuCV+/LibkMwI84yKfAxHCwc4c3kbAffC150CUYHx8VpbLvTDRwz7nni1xMRKPoMNazOcnIFIxv34P+J338Znzz52LXHkhJiEh4eFRPHlS6rb0sb9yt37wprdKSmJCwire/H2vlL5P+oyv+jrVPnBOi7vuPuohJSQkJCRcIxwbQYGKr5My6YB8ehWWHQfK5bJms5nG43EkppAs/g1h8qqmCxV5d4ITLSd2/M7zvuUdBM6JGaDi7LZuiJRfI+QT8ss5IXleESdLgWN7joRnNvR6vUieEFrcal4sFtXr9TQajWIWA1VwqulcA/cBMSFfxZcOiGF+60vEFMZVLpdj24K0Siwnk8mK3Z97wHwhICH0eIYA4+j3+xqPx1H0aDabqtVqGo/HajQaqtfrK4IHBD+fjcG9kQ5aApgLz5TgNQhF3q/P/XAXAhV5rp97jhjk1Xuv2kPwud/Mr4s43C/+62P2dgnggoGLD379LuZxf5kTb8Nwt4P/8FoyRiD6rGN3rrAe8q0gwIk/nzfWSX6teKCq3wuu0bMv3MXg502iQkLCpfHuH/oIfeAzf/qoh5FwA+CPfvb/kST93S//GhWmC4XXv+2IR5SQ8PhC8eRJzZ5+28O+JiwyhTekz2bC5ePYCAq33nqrOp3OSmXTbcnuGOh0OjGcEYu9tzl4hkA+G8FbDyBi0sH2gZC7er2+Uu31/n/e79VhD7ujAk7FFMu+5wRAPiFAklYqxACHggcpUl3tdDqx99/bH2hjgFBBXCHYtJQwP4wbgietVn0RCHjehZRqtRqvj3vmIgz30lsG2AZzPp+r1WrF9hMP5mPuEEIkxdYMF3EQArz9gOtHePD76+0uPOYCSb7izhwhtLgwwFhZD4RKMi9c/3Q6XcnByAtPvmaYo7xQ4K0GrBXWg1v3fbw+fhcFmFvG7a9zNwLX544EdxIgctECA/g3r/OsBMbPuHkvQk7+/Nw75gbRkWtG5HNHCKKiZ17wGp8fFxiZI/9O8M9HQkLChSg9+XZtP/dmPem2B456KAk3GP6/n/8ZnV0M9QXf+q2q9BaqvPYvj3pICQmPaRQ7He181kfpgU/J9IEv/i8P+9p75wN96ctfLklqPDRV4U/++tEY4hWhuLmh7LZTF31++fZ3P4qjSTg2ggIEBzICQYNsUOXHZk9v+3g8jgGB/iNpxfrsfduFwsGOARAldndoNpuRqOcDG/MVU0gN4y4UCmo0Glou90IgIbAuSkBYRqNRDGB0MsR5Ja2ECUpaGTctHwgITi6x+0O83LnAcRmzV7YJaIQEQnIhZ7y/Wq2uVOlpCWE7SizkIQSNRqMYlAm5J9uAY7GjxnQ6XalMUz2nKj4YDCQpuhO4PkIlmUfPGWDeeE+z2VS1Wo2Vf6/m057hrTL5/nyvbHNsJ620QyDcsL0lIgtz6fkEniXAZ4H7COGlkk8ug7fCYN0HTu69ks91IGB4qCHvcycG8CBSd1Cwdj0kEnjbEk4Sxs86lVaDRb01wXdsyB/3sMwT6cC94M4E3yEDkQbh0YMoETrcbZI/d0JCwgFKdzxJ7/13a3rfp7/qqIeScIPiRLGpP//xV+l3RjV953/+Gq3fNVP1d5KwkJBwrVFoNHTXt3+03vtVr7ys1z+h1NKf//jed/u/O/uR+pWf/gxJ0q1/sq3lW//2uo3zclBotzV/1lN1/ik1nfu4ixR9MunJv/HsQ5+q3H1a83vvu44jfHzi2AgKTgwgnFTdm81mJFYQXaqdg8EgWtzzCf2QNIiH7+7g1m166IvFohqNRuyPp61AUrTre+UTiz55DbVaTZ1OJ9r7G41G3K4QguhbKnJsnAqIJtPpNJJJF0UYB5Z3xuxhe4gWXtnPJ/i7ZRwCRQaCpHj92NIJNmT+PY/BK/YcC7JJgCOVe9pUvEUj/+PXiPjCvdrd3Y2Ckt8T1guChgs/kGnmdzgcxjUA0UWwgnjmd8nw9gvWhOcruOOjVqvFNcQcuDAiaWV9uk1fWt3GEWRZtiIcNBqNKHpx33BPMGb/LHmLgueB+I4knA+i7m0bOAkYq7tc3P3D2FmXHM9FAG814h5w/X4cP67DBSd/LeCzwnkPExS8tQMhzrMlfB78eykhIeEAy25TT77p7FEPI+ExgM9tTPS5r/hJfe+Zj9LPf+rfkSQ9+Vf7yt78jiMeWULCjY9QKuk9P/Cx+sAXX56YkMe/PvFu/etX7FX7P+Wzv0jtVzxDy7e961oO8bJRaDR0/vM/WmeeK0kP4yAN0ge+qHroU533PUmdDz98y0f1/K7Cn7/1EY/z8YhjISiUSiWtr6+rXC5HW/twOIz2dir5bp8mCHAymWg8Hq/sPEB10kmZ99znrftU1EulkrrdrlqtVmwl8PA733mgUqkoy7Jo3Ycws0uBiwWQXift7NzAeev1egwlREyBiEGsnfxBityu7+0LvA9yB/mCWM/n8zjHHGM8HktSJNdup8+yTO12W+12W6VSKYYMcmwPtCMLgrmRFKv20kGuBPMI8eN6mC/pQFxgZwzI52g0iufl3lQqlTiv0gEp5JrJTyD3gTWVz0dgHpnrfFgjz0GwPWyQ31lruA289YQ5cBeAOxXcrQAJpoUF8aPVasXxeguD33dff6wDDyB0QYnry4dE5j9HniPCa3AucF/JqECY8dwRz4Bwgc9f50GRfD8gbPgWo6wP4I4S1hTv9fXg27Eydr8Wbz1xsSchIeEAWTGoXZkc9TASHkP4npN/q+/5ir3q5+c9/7P1tx98Tnxu+j1vOKphJSTc0Hjfaz5WH3jhw7c4XC7+9zN/XS/60c9T8WVP1eI9d12TY14uQrmis1/6cdp65tW1ovbuXKp358O7T8v9utaf9HxJ0trbt7V8x5W3T9z37Z+k0UdOD32u9GBFd3z7Y+s77dgICu12O7YvDAaDlao/eQnSQVUZ0jUajSL59Go+r4FQeE87lmgnHRBMxITRaKSdnZ1IgBAtIMtZlsUAQSqziAyQcHZKoMLrdnqQr/CPx+OVbTLdYp9vi6Blg6o5tnqEGb8uqrSVSkWNRiNuq8g8I1hwDhcUZrNZJLHNZjPOM/Z3dwwsFgtVq9W4nabfMyd/EM9Wq7Wy3SPE1KvkTtYREKbTaZxvF4doX/GqPLkJiBfMgQsKHMMDJb1yzb3wMEaOxfizLIvCRbFYjDkOCFisIdYe99Tvjd9rJ8i+DaVvcYig4OGIiBN5gc3JNddKDgFOAeYw7xpx1wHv9RYIxkHLhztgHi4bgaBGb304DC5a+Ri5z1yXf778en19ejuDjy3fAuNZGQkJCasY3NHSa5/y80c9jITHKH77ab8nPe3g9+f9SHLDJCRcKc7/zp16/7Nfc02P+fvP+G39k9d8uj7Ye7LaX3JGy37/mh7/UISgh77+uerdeWFY9/XArJ3p9Cfs/bv3pA3VPvkFuvm192r+oXsu+d4z3/ACNf7BQ/rJp/2kPu0iGx69fzbQVz7rK7T15zfrif/29ddw5EeHY/PXMvZ1KtQQo2azGSvbEBBJcReD0Wi0QtAgMhAQqrdUSD0nAIJJYB4V+EKhoF6vp16vFyu8g8EgVnoRE6bTqRqNxgoR8dBEKqLehsBrIGAQHLIKqMZ73z4kEgGELIKdnZ14LVR76atHzPDdImjJqFarOnfunLa3tzUej2NWAnPhJIrsBYQdt5gzb1ThGTc9/rPZLOYjcF0Q03K5rEajoXa7HcfMnHLd0kHVmPEzZ769oe+4weOQaEIjvb3BXSReOefaXZTyFgB+3HLv+QmIGbVabcUFw9wMh8OVXATOx73DSVEoFKKoxLkQber1eiThrE3Ir29Fma/y+y4q7nQhQBKRzK9V2hMsXKDh+l0ccmdB3q3iO1K4IwKyjiiAk8TbPfKtF3k3CXDHAu/hnvCYpJXPIPfNRYa8iJDyExISEhISEhJuVPz+M/+rpMY1P+5/v/11kqRvfd3Ha7ys6ey0qZ1POXfNzwMe+Jcv0PAJj46YkMfk1FKTU9Jk84m6/Wd2NX/woYu+9vxXvkD/9uWv0ec2Ht6995RyS//7mb+uNz19pq+e/ws94ftvfFHh2AgKk8lEvV4vkq5CoaB6va5Go7FC8nx3heFwGDMNvO8asgCZrFQqcScEgv8gbhCIarWqTqejRmPvg7e7u6vRaKThcLjigqAtgZ7y/JaHkC+vzrILhXRAQj0c0rfP8z7vvJMBS3yhUIjjCiFobW1NrVYrjh3ySh4AVWS2T1wsFhoOh3FrRc8CIKzPSRqtBFzLeDxWCCHmBNB+kr9vtFXkRRyII0GYjMnPCWmWFIk6pNp3UZAOqtLev4+YgAgBoa1UKup2uytkMn/efHCgC1kEUuZbA7xn39cP14644G4Wz8Ggut9oNBRCiAGUzBk5G41GQ1mWaTAYxHXDGuQz4G0IrNf8ThrMY7FYVLPZjGvRHQXMKy0iviOEZ3L4czh0uG7fSpL3+T3ythIXkXzd+/tpefIWEq7LBTsXg6SDLA13a7jQkYe7VBISEhISEhISbiQ866+lTuEiJfJrhB+55a8kSYtsqZ9/98GOC9/zui/S077hTdfsPKNbj/5vscnJpT7wDU/RHT861qLXO/Q1o5vDJcUEx/OqZf3yS39Eb/nKJ+pV/+aL1f7FN16r4T7qOBaCQpbt7XqARZyqKDsZEMqXJ2vb29saDAbxD3+vUrsVvVKpqN/vH9pyAIGiet9sNjWbzdTv9zUcDrW1taUzZ86ot7946vV6bJvAUg2R5r9u1Yf4HNZO4KIEVXWuwx0XiAK+Y8TW1pbG47E6nU4k3DgICoWCms1mnEts/JDh8XgczwHBIkyQLAWv+kN4vSrOveD4kMdKpaJ2u61msxlzDhBYCGSUDjIVEIy4RtwdXDuEs1qtxnGQg8DcIHh4awdCAu4LF1bIH8AR4Y4QCPlyuVxxXLirADeNV/m9H5/wTg8WdCeCt7hAyGkBye9AwesQdKrVvZAZ2kmkg50U3BUhHbR7eNuMr3tJK+4E34WB+ZcOgiIh2S5g5J0CfMbyAtlh99HdCQSSOtz1w/3BxcFY/Vp8zH4dLpAwL7hqEBoe7twJCQkJCQkJCTcSXrz2FyqGw4MJrzWKoaCv6By0Jf39z/1xfejuvb8VX/rd36y1n3vkeQEf+t5PUhaOx99iu92l7vqOj9aTv/styma7K8/1v/T5eu0/+4+SWld0zI+u1PXRlbP61B/8YX3t1jer/AdvvoYjfvRwLDy9VNKp5FI17XQ6KhQKMcEfIrZcLjUcDqMt3B0A1Wo1VlwRCySt/NfD2SBvrVZLd9xxh7rdbiS2o9FI999/v7a2tjSbzSKZgaix44G3NjAer+pLB6F7bvP2LAeIlldvvYLujgVCCCGPTlwhvZ1OR+vr61EA4bgQZUlRsPG2Akkr90JSJJu+PSfjYu5DCGo2m+p2uyuuEsit2/q9154wStpInCjTBiGt9sPTfuHtDPmMBHITPKAS4QRXBFkHLp646yHfW+87Mvi1E0RJO0J+1wmeI5/DwxT9njlR93YX5opdMvjM+M4k7XZbrVYrOjdcZEJoOayVhB8n1F7Zz7/WQzi9fYL5InPD/8scMYeMO+9M4J4TDnqYYyY/Xh+rCyecx1/HuRBZfOyHgXWVkJCQkJCQkJBweVgvNvSsalXPqlb1x9//n/TL975Bv3zvG1R6wm1SCHs/l4lFLZMu/+XXHYtaprv+w3MuuIZFJegJpSsTExx3lFv6rZ/5CRWe9VEHc3QF83TUOBYOBUgu5MOD9Lznudvtxgoujga3xXsgnlupvQLtdnYn4vV6XRsbG2o2m7GKz3aUbtevVqsrGQXe7w0h9pYK/i1J4/E4kk+v0Hqll3FS3XXLOEGHHtooKRJ/zkNLCMIIRNj76nGAZFkWgwK9P96ru34Ob9fgNbgPGo2GNjc31Wg0YrAm7ghcA/mMBIi8507wOO0pALeDrxvEJ1o+nMA7EeXfZDFQGedcjIO1wXxw3/nBeeAWf9pJms3myrpCoOE+sZ49p8CJurtZOCZriNwMxuc7MiBUcS53ALjg5WIC9wwnB3Byngevg+SzzvLvx33DWsaB4mKAOxc4n2cdIBTx+fD7cFguia+JvEDiu03gBHEx6GLX6jkMCQkJq2j+6l/o2Te/TH/0ih9Wo1BWNaQdURISEhKOA1787vv1rGNSEGkUKvHfv/Om35EknV0M9U+f/vek5VLLyY23W1BWyvT+H/pEPfXb36zMeMnVolWo6fd+93/E35mn5Wh0zc5xvXBJh0II4WdCCKdDCO+wx34ohPDuEMLbQwi/EUJY23/89hDCOITw1v2fV13uQLBIQyY8MHFzc1M333xztPT7Tgje605v/v5YIqGKF2tkxvuuC4WCNjc3deutt6parWo4HMYfSBNiAseArHsFHXu6E0WvxmKFp72C64ZE+haOTn6ptLN1oFvaIXDlcln1ej3OAaLLYrFQs9m8oLWAY/vWffmdBNxV4a4MjiUdVPJxWWBH9y0pIXLexuFtCLhBqExD5rgW5qbf78c2BQgq7QIQTSe5XEPeHZIn2owp36rgY0FEofJeLBZVr9djmwIuApwZ+V0marVazJzg3x6C6QIN96Zer0dSy3xwHhc5fBcLjo/zI59H4AGV3oaRD4h0kcCvP0/W+azl/+2ZFnxevBXInQtctz+GE4Pf2ZnDA0Pz5/L55hrcjUS7i7fecH2scRdd8gGlR41H67s4IeFyceonXq8ve+In6Rn/85u0sxwf9XASEq470vdwwo2Ago5Hi8DFcKLY1O/d9Xr9k7e9T8WbTl36DccQWVH6wL/7hOt6jhPFpr7/nX+s0i03P+zrCu22ip1O/Cm029d1XIfhcv5a/llJPyHpv9ljfyjpO7Ism4cQflDSd0h6xf5z78+y7FlXOhACGb3nHOu+W7O9QpxvaXB7s2cZQGodkA2IYbvdVrfb1XK5VL/f12AwiKRYUiSBvBdSxFghf35cxkzPvbsXyuXySpUUME4PLJT2iNXOzo5Go1GsWIdwsHUmBBYySzZAlmVqNBoxsJF5c8EDMjsYDGIlFwKJQACZrVarK84Bxs44i8VidHfgOHBiSUYB4+N8ED7IHpVjz8cYjUZRHAj7+QJsO8ma2N3djTZ/yDjbjjJfzAFz5dt8cj+YG4gszhTmGdGF1hbaEXxuPBvDSbuvP28f4JrIfYD0ersAYpjvZuBiCW4a1h3Xl9/9APGBsTBeaTUQ87DWB3/e2yC4Hl//+VYjR94Fk79mxJtyuRzbc6QDRwnXkQ+a5HrcPcRa9pwS2pe4P4Rf5ttdjhF+Vo/Cd3FCwpXizn/2F/qcp3y5/vyZv37UQ0lIuN74WaXv4YSEa4Ivb5/TO1/7oN76JU/R4q67j3o4V4xMUunmmx5254erxbOqVX3BH71dv/aMUyrUaipsblzwmrte9iTNGwd/Y5f7QU/5Lx+Kvy97/eu+veclBYUsy/40hHB77rE/sF/fKOmLr2YQ7JAAQYfYYMumWklLAVZ3r3hCgJ1seP81VWcnNRCNVqul9fV11Wq1eI58pgMEVTogUZAqqtT5aiznIvPA3Qnlcjlueck14IDguJ1OR7VaTb1eT+fPn4/J/ggSzB0kaTqdajqdajgcxi0h6/W6ms1mHG+exHEtEOrlcrnSs1+tVuOuDggPXJ//m/n0cE3fjpHfOSfvgezmSS/ElXuHAMG6wGWB4DQYDDQej+N7XBCAoDNH7L4wGo1iKwfjZ91A/GkLwH4vaeW4PM+ccU99XqQD8kz4YJ5c58UB5jrfjpFfh16RlxQJNk4e5tWdOp5j4J8j7kteUOBe58k1Io23ErGOy+Vy3DWC8bsrwNtRvO2C8+PGIZCSz5iHTiIs4UxBjGG9Iab4fePa3E2EI8KDRv275bjg0fguTkhISEi4ONL3cMJxx/JTn61TpXcd9TAuG//hprfrK35uTWde+pFavv3dRz2cK8Kymumuf/ZkPfVnru9uGpJUaDQ0/MyP0X1/57BC1yqnmLUzvfvlHxF/33xb0Im/OAjNXL7v7mvaqiFdmwyFr5H0S/b7HSGEv5bUk/Svsyz7s0sdANu7/yEvHfTXF4vFuC0h8G0Zfe94hADv8/dqev7f5XJZJ0+e1JOe9CR1u90VIoIF37efhDTx40GNkHxcFNjq2X6Sinqr1VohaE7wJEWiCjlmVwvGy/kg7rwGR0WeSHqVGGJHtZ3z0lLQarViiwTCh5PBi4UVck943ttLcAYwJ1jy6/V6FJM8td/t5pyXe+9j4Ti4SobDoVqtVnwdjgrWF3kaiB6IPDgUuJ9e9fatHH3bR+6DtyF4SwfX4ZkUiCsuViCiSQeuFObKwy+9bQOi7XPlQpYTY88CcNeA3x8+Jy4MeFuNu39wk/i5mBtej9DA6xAPXHhyJxLCn7fRIOp5+wf5KXxmcFiwNrh/ni3ir/fvFr/HnMPdDYgth20peYxx1d/FCQkJCQlXhfQ9nHCkuPNH36XPakyPehhXhP/2pD/VHd/8dXra1xz1SK4c81amD3/JbWo8kF36xY8Qm8XBw4gJl8a5j8t07uM24++3/3ZHpT9+q7S8dn/jXpWfN4TwXZLmkn5+/6EHJH1ElmXPlvQvJf2PEELnIu99SQjhzSGENzs5gpR7CKCkSK74t1vT3Tbuuw54FV46qIp6Kj1hjDfddJNqtVrMNMCd4FXrfEYDAW/ee80YfKxU/huNhtbW1uJxvH8dMgfx9cor43DRAdIHQZ/P59re3lav11tpgfBtHtvtdgxGJF+B8yLY4Exot9tqNBrx+vIk2nMAGCcCB4GPtB5k+4GVu7u7cRcOtpZ0MuqBgoel+nsbCfet1WppsVhoOByu7NSQr1Z7gCTBlp5JQStKu91Wp9NRo9G4YGcFxkNmgQtKkFuO5aScNcG2or6lKfeSNhZaJFjD/rnAFeFBji6k5R0APlbWmpNqjs3rPW9AOnBi5IUGn0/Pusg7Hfwnfz7Gxty6MJXP5UBQYM7K5XIUvSTFz1c+Z8FDV73tJt+K4Y4TP4aHbx53XKvv4plurD9CEhISEo4L0vdwQsIjx2d81Ls1/4znHPUwHhHmDWlRkb7s7s+4Lsd/SvnMIxYTDsMHP6+syedc27l+xKMLIXylpM+T9OXZviKQZdk0y7Jz+/9+i6T3S3raYe/PsuzVWZY9N8uy5zrxwZoPOeQPe8gBlfjxeLwSnoe12vuh88Rmf9x+DarX67r11lu1ubmn3CBUICpIFya+E27nqfNUvCHzvBaBo1AoqNFoqFKpRMHBSbKTeukgYNKru5707/byarWqxWKh8Xi8Uu2HyEpSu93W+vp6JGHetoGjoVKpRKKPjR/3B1tCtlqtSLjzzgRet7GxoW63G0mgh0wiKHQ6nZh/wI87M2j9yGcLQK4RPMJ+bsB8Po8CTz5YkPN6mwgBjMw5c0mvvmcneIsBu1lwf/KBjYwlf29ZHwhD+bA/PgNe2WfNeVgihNhbFliv3qZw2HadLrJ4GxAChrtzCoVCnAf/vPjnjDXk7RTSQWtSvrrvrSyH7TDBtbGLBS4W1iJrhHvpYhHjdTcMn39vL/F8Dsbi+Ra0t7iwctxxLb+LyzoeqdAJCQkJNxLS93BCwtXhpz/if+veF1Yu/cJjiN3uUotq0Dt+6yOPeiiXjXtfWFD/S5+v4T/8xGtyvEfU8hBC+CztBc78nSzLRvb4SUlbWZYtQghPlnSnpA9cxvFib7Pb2ckQgIhlWRYzAtiCUVL849+JN+QTMgFh4LUQ042NDT3xiU9UvV6PJJNtIafTaRxfvlcc8htCiDsP8DyCBq0FXI+7LyByECoq2FTFIa1e2c7PWX5bOxdP3DFx4sQJPeEJT1ChUNB0Oo0iCESXLTBrtZra7bbq9Xp0fFC539jY0Pr6umazmfr9vs6fPx+vGYJfLBa1sbGhdrutnZ0dbW1trWQBQASp/kOqsbJD4LgPfu+o3kP6COhj54d6va5ut6vNzc04fsgugZm0sHi2xXQ61e7ubqyGEwrJfCAWIARQJecY3pePoOOBgQRyIoBBqt3Sj8vEdxFx54a7Y1yIYk4Qv9xl4KTZ16Xb+P1z41t2Iq4QUsjnk+MgtCEMuJPHdy3hWjw7g+MgjrATiLsGWLvcQxwKtLG4A4g2IIQHDyP1cEr/POT/7edD0OBcxx3X+rs4ISEhIeHKkL6HExKuD3a+/PnKStevleBaYnxzpua90qf9zRfqTz/2N456OJeFh54vhUXQ2toLVh7f+NuRwhvedkXHupxtI39B0hskPT2EcG8I4Wu1l3DblvSHYXUrnE+T9PYQwtsk/aqkb8iybOtyBgLJ9Upxu92Of9RTGWVXA7cz8xxVXd8S0AUASD2ksFqtqtvtqtPpaDabaWdnR/1+X+PxOOYReB+4k3fPeej3+7GH34kURA+LNv3v3lYhHfSMEzqIndvJmJ+T9zAvkF9IF4RNUhQDut1utMvTqkCrwGQyUQhhJUl/NBpFor2+vq6TJ09qbW1NtVotCjvL5TK2Hpw4cUJra2vqdrsxBNLnn/GzIwL3DWKMQwXSy3slRbJPrkOr1VKhUIi7SSyXS3U6nejA8DUBsfeqPNt9IqZIB8IAhJl2GKrerAHvz+d98/k87griWQ84QAiBdDGBLUlxJuBegWh7Swvz4oDMFwqFFUcKa4LfmX+vxgPyKwg69WN7KxHjw3GCiIRQw3kh4y7uMQ/+X4QZd7h4zgTH4jzuSHDBzIUf1pwLOn4M7i3Xx3n9s+QuJhcljwsere/ihIQrxT3/+pP0Y0//pUu/MCHhBkf6Hk44zrjrR5+vbz71v456GNcE57/yBTr7rKDsWG22dXHM2plKY6n5rVV93ns/+5oe+72zU/qI378+mV5ZUTr/MdnKzz0vaip8wsde0XEuZ5eHFx/y8E9f5LW/JunXrmgE+0AQoP8e6z3PQVIgbpBxJ45uT3dBgeoydniqxe12W7fcckvcyQByPRgMYhYBff+SVgiP28wHg0Hc2g7ihY1cUiQzXkHO97tDYp0MO6F2McG3tvPWC4gaFv5isai1tTWdPHkyihke4sg2lLu7uzE3oVgsxso9wkaz2YztCdwPKt6bm5va3NyMc9FoNFbul7s0aDHx9gCINOIJ4oZ0EPqIs4NqNS4C3BLNZlNra2tqt9tRmHKBifmdTqcaj8exNYVtMn13DqrfzIcLAqwjRCMPSfSqOaSXeZ5MJlE48XwO1mq1WtX6+rparZZGo1FcXzwHiffHcS2QuZEn0f4ZYC7zxN4DHxFc/LX8zucGBxG5CQgaTsh9W1KeB95mwPsQIFzoYG0hFOBmyYc8LpfL6FZh1xTGh2DGcXGVcK/9XHn3jzsvjlPbw6P1XZyQcCW4/+WfpF/8uh/VMyvXP+U6IeGokb6HE44zbv6o03pauXnUw7gmGN4alJWWl37hMcPyHe/WBx565kWamx4ZXtR4UN//jX098VVt3fOZxUu/4Sqx213q7s9v6cnTy99541rs8nBNABmrVqvqdDpqt9tqt9ux4ggBpQoM6YBoQKCd6GBnJ5Aw3wPebrfV7Xaj9XowGGgwGKjf72swGKy0PEgHvfeMB3v1bDaL5221WiqXy+r1eiu7VED6PNixWq3GgMT866bT6crOEfmKM33mLpTkE+69D308Huv8+fMaDocrc4k9nLmjag8RazQaWl9fj8fgmmhdWF9fV7fbVX9/f9PlcqnxeBwJuLctEGSIpRy3hKTohuAe5SvD3GvIda/Xi2sBVwTuBMg8BJZrQkjIV+Slg+o6BBtxqN/vXxD0Cclkvnmee0TFfbFYaDAYSFJ0hQyHwzg27l+r1dLa2lqssDM+D38kmwEXizsxOKeLadwLxplv53DxgLlm3l3w4l57tgm7UTQajSiE5XeS8M8h88brIPC+swfn8uwGHzev950vaKMplUqx7YL8A3crMRec24VG7oGLCi7eHCdBISHhuOHsS16g3/rn/1F3lFtHPZSEhISEhMcIzr7kBZpu3nhiwvVCt1DXnz3nZ/WenyzoJx/6DL3uDR9z3c85b2V6/4vX9dTRHVrcdfclX38sjCRY6IvFYswPYEcCD4+jmulbEOZD67BnhxA0nU61WCwiQfG+80qlEi3bw+EwkvrpdKqdnR2dO3dOo9FopZ+dwEPGjHWeCiu5B1mWxao2lXQnd5VKJbYOUMH2HQcgMVSRIVFOFCG+JNIjSDjJLRaLsZ0DAs54vS+earBXz6WD7fTIApAUHQuENLL1I4SabRkhf1w3810qlWIluVarReKOs8CzHfLhhN57j6OEKjTkm6A/xi4puhFo0+DauI/MtZNsyDDCETZ4CKm3sUgHohPrdXd3V/1+P4Zd0prgc0vLzebmpjqdjubzufr9vkaj0QoBnk6n0ZmDoIAo4JkFh23t6bkIjNG3eCS7wd/vggItKFwXQgc7eADIN84NPmf5jA/G4+vZgXDkO6Dweer1elG8YwweCMk9OixXJP/5kPacF81mc6WlxEUhz/VISEi4EPN6SGJCQkJCQsI1w/mvfIF2np4pu/6F+BsKrUJNz6lW9Kon/ok+9uMvTfCvBRa1TCpe3o04Ng4F7MietL67u6vBYBBJ02AwiMF6klaq0dKBJb5er8dKNJVSSBOV8G63q1tuuSVWbSFChUJBOzs72tnZ0WQyUavVirZ3hAUneggM6+vrsX3i9OnTsfLvJNXt2WQuUN2G7HA9kClIGBV/v14nbp7p4FXsSqWi+++/Xw888IB6vd6K8FKr1dTv96NFnfNBpmnV6PV6yrIskvVisahWq6X19fUYkscuBpBcCCq7L7Rae390bm1txep2t9tVrVaLFXkP9mP+fGcHxCbpwKpOiKXnDxCox9w5weY+I7ggbLTb7SiwcB4nwD4fjMfvz2QyUa/Xi4IA14LVnrXn2zg2m02dOHFC3W5X8/lc58+fj6027N4xn89XXDl8VqjI87gT9fzWlS52OElGUOP1+R9pVbjgnjQaDbVarZXzAncl+GfbXSfuMOB+eJAozgKOhdDFZ8CzF7zVBKcC40UY4tpd4OAc/jljrOz8gRsjISEhISEhISHh+uHJf/C1uvntmR76REnHJ77qylEoqlC4fkGS5VDU/7zz97V46lLPetM/0eiDh+5Ee00QrsAkcmwEBQiuV6wJYPQKvpMdJ05sWdjp7E0srRKE6gHIe6vVihXOUqmkTqejYrGohx56aMUaT5XaxQD6ySXFjIV2ux3FB69qMlZaOeiTd5Lo/erSqs2c90OMqKSTN5EP4INksfNCrVaLFfrRaKT19XVtbGyo2WxqNptpe3t7ZZxOPv14EG3I29ramtbW1qIThJYCtq/0tgdIGUR7c3NTN910k9bX16MzApA7wL3DIYEDpFKpxEyCer0e8y08sI+KMyJAuVxeyQMgzBHCyDxx7YguCFlu1UcU6HQ6ca3h/sCZgUDD/UF4yrJMnc7/v71zD3I0vcr780qt1l0t9WV67p5de81mbYzxZXHFmJsNXhzixSFxTCBQwYWB4hIqIYWBKmKKS5mbIYmxwY7BNsF2HCAFxaUcm0tMAWax8YVdO7O77C722jPb09NSSy2p1T2tL3+0fm8fae67PS1p5jxVXdMrffp0vvd7v3f7PO9znlPR3NxcLFUpFovxvNarAdKBsWHek3SjzsAvgx12/ntU2s97o+UalIRAlFgVAveDtqK8Z1tVWu8G3rOqAVv+wecseURbUfuMWiWBNckkbsbV+nRAjFiSkftv7x/jN9pKlLisSuhS/goOh2MXITOrC4VxR+FwOByOacd2sqOvvevT+lD9S8YdylPCTlZ68Feer0df/LYb/l3pkNLff9l79EVb36at87uK7FRv//5mTWYSnfyDHWltXemlpb03Vi59/EQQCqlUSqVSKZoxItlnV5dEa9SJfrSnPIkkZALntjumVg6fzWajod/8/HxMKlAPkOxYST+74NSUk/wXi0Xl83mtrq7GJJAExXZhwDyOpNjWnJPEcS2UZrArT7tMdtftji519p1ORxcuXFClUlE+n1eSJDp79qzOnj2rdDqtxcVF5fP5IRNLkkwr8ybJZVc6n8/HdpoQMJA+kmLC2e12oxcFcn8S43a7rVKppKWlJZ08eVLLy8tD6g+Sbyv5h0igzILEsVAoqN/vq1AoqFqtxpaLVn3B9VuH/1wuF0sLUqmUarWaFhYWNDs7q42NjaHklvlgvRNstwRiWV9f17lz5+JcQVmRz+fjbvf29naU6VOKAVGC1wLKEnbsrV8GSTNzhIQcHw5rfpnL5aIPB9cNKWQ9BSwgH5jb1riRc9nyIVQZzG+eQfuv7dzAvOLcqDwYa8YJIsFep1X5oMphTKxHQyqVivNf2iMfiCGbzQ6VZnCNeFOMGrmyzjgcjj2EmRmFO5+hM189rwe+/y3jDsfhcDgcA5xdnVN9p6NaenrY3l6yrR9feaE+9JfTTSaktoNSr1rVo1/6vw70e0+/5N3x99s+8FqpH5RqXv1v137lwhWVIN/5gr/Qj37T6YteTx+59PET8ddyGLQsrFarmp2dVa/Xizuwtr0f5QW2ln1055Ya/tHa8a2trWgCl8vlYu16tVodcrG3ho+2xSTfSQJIYp/JZHTixInYSYHkhYS81+vF5Dafz0eSBA8EEhvMJXH5h7ggwbLO+Py3pFgKgKEfigCSUlpabm5uRmNAaS8hhVzAqNGWXZCkkjgTN4kxCRpxUefOT7/fj3L+RqOhbrerSqWiEydOaGFhQaVSSe12O14b40qSms1mtbCwoPn5eZVKpZjYSorKBFQjo7BdFWz7QFQZrVYrqiyQ70t76hDmDHPBltVks9nYQnF9fT0aXdpkHHKLeCWpVCrFHXMIB+aTVavYXX6rdIDIoITiUs+ALSvgHnMs57MJsy2jYE7a7g2QPJYMkBR38hlb5gvfAUFkFUWj94dx5rlDCYQviCULbfkJcUMccAykh7SrRGG8rQKGuK3XCMoa6x3BdTih4HAYpNJq/OsX6CM//6tXP9bhcDgcB4pnfOvH9WN/+zV6y7GPjDuUa0Knv6WfWX2+fvvPXzTuUJ4yZutBq4/NS186vhgeffk7tN7v6oV/8d1XPfaTL/k1lVL7151pIv5aTqVSqlarcWcVObp13sccj4TZqhgkReM2azqIQSKmeuxMUjNfq9VULpfjbisdG9LpdNwNx+iP75AUE98QgiqVihYXF6PnA8mwbYsn7cno+Q5eszvGyOuJlQSaZB9ChXPRjYAOFpubm0NSdTpXrKysaGNjI46v3fUlmbemdcQy2gmA5NyWFFjvBoggSBGUBfg0zMzM6MiRIzp69OhQuYPt1gFRs7Ozo2KxGEs0stlsNCZEBZDL5aISg8SP+WITWqvA2NjY0NraWmxxWalUolEkZBNECWNvW1BCJNBlgXIP6wHA77ZcpFQqxbIKxgJjTtt5gvtgZf12F557y72xXTH4LEoTyAo+w/PE9RCvnQ+YZ0KoMA8oq8hms3EeMjc4v712XrNkiTVatL4FVtUB+WaJOUuuoPqxLSSZm5YssEoQrteqIJh7zCdbXsR1UMrkcDh2ka6UnExwOByOCcYff+w5enz5Qzo+M9mGub1kWz917gX6n3/+T8cdylNGejOoc2pbj/7zt487FM2l8nrwK991DUfub6vniSgQJlnhj3rUCFaCTyI+Ozs75LOA4SKKALurTJJpd9pJIpeWlqL8v9frqdFoaG1tTb1ebyjxQeIt7dWxQz4UCgUtLi7q8OHDkSyQFHdXbbtBSgvYDSVxIsm0tfqSYktK/AiQ40MkkNxSrsF5UFRAKOCfYOX6kDPWaZ/WmpQyEAfJnzX4syoG22mA81oVA8RPCEHVajW2oLS16ShRUDZQDjI3N6fFxcWoIrF+DZLiGNoElmR3VJUCQUAbSJssMkaUphAz5JQ1gERpksvl4n0h+bRjYskg3qdbhiUYuG7aSULS2PtsPTWYh7YUwqpcmPOcY9TPwHbfoJyBhD+Xy8VE3Jp/2vPba2R+WDWDVUigPBht82oNEC1xAAGFUSprgC074futSSP3XtKQn4l9DpmfqVRKxeJuj+Zutxuf2VHDRpQSkBIOh0N67PufNe4QHA6Hw3EFPPO779Ofdk6NO4yrYm2nd1OQCZKUpKSQ37n6gTcxJoJQsE76dheWhJCdUpQDJKq2qwNJvzVFHN3RzGQykUw4evSoqtVqrKev1+taX18fkodLGkrIcJzHo6FYLOrQoUOxnp/dYJI067uA+R0Sf2K2dec4+5OMojBoNBpqNBpxZ5vkhzIR5P+Mpa17Z1cfMiWTyajdbmtjYyOa3Vmihc4CljywJQX2d3bQUVzYnW+OgwjK5XKq1WoqlUoxMbQkS7PZ1Pr6elQ3oCIplUpx1x3jx62trWjCiVLAJq4QNIwhsvZ6va5GoxHJinw+r62tLa2tranRaMRShiRJIpHDznm5XI6tEhmj1dVVra2tDSkhuO/4T0gaSqQxBK1UKkqSJHYU4bohySg7kIZbPo6WEIzK8rlvVkViiQjOxzNmPTMgEzjeqh5GCbpLtX20Ch4SfsgkyodsLMxViBx8SGy5Cee0/9pWqzyjEDD5fH6oDSnkJOtHuVxWoVCIigbbVca2rCQe+/w7HLcyHn7Ti/Tp73HPBIfD4Zh0vPF/vForO+1xh3FZ7CR9ff8/fuO4w9gX9HN9/Zt7PqxHXvbr4w5lrJiIkgdpzzMAMgAJODveJKq25nxUQUCyKQ23lGSXmF3HSqWiYrEYJfCUKZAQ2qSNpI4d4k6nEz0aSHpnZ2fjbiqJLDu0NmZ2rG2LQ2nPBwC1RZIkkbgg0WZcUHGQHCEPRzZvlR2dTkerq6u6cOGC8vm85ubmJO3uyOPcjxQdU0w8AbgnlBOgGiCptMSBTWhtxwqbVNOKEUKEcpR2ux0TerpqZLPZWI5ilSfsKGPGOKpOIPlFnYHE/8KFC2o2mzp37pw6nU5UG0AaNJvN6DvR7/e1vr4ePSAgEEjQ8dNotVo6d+6cNjY24v0lttH2hSg6kiQZ8gpBkdHtdqNXAgmtpKGyE+YK5AJqAOt3YdsnWj8AS0ZYssCSb5Qz2LII+32QWFwT98mOPz/MX0smcCyxQnZwbqs24bpHyZJRvwXIHtsBhfNZAoo5XiwWo18G98kaQHIOa5BqPTAcjlsVD73reXroZW/RhOxBOBwOh+MKOPFTf6WXN/6T/vL1v6xCavLaX7/s06/SZ++/jLvftCHb108sPTDuKMaOiSAUbGJEsmB3+0me2J2EaCCpxLCPhM6ekwScZLBYLGpubk7pdFqtVkvNZjOSE7ZunaRJGnaLr9frsWa+WCwOEQp2B93K5JHDcy5A8kLyZ80JaZmJoSLXgxoCtUYqlYqKg06nEz8LsYF3wsLCgrLZbDyW8SW5z+fzcUz4jO0wgdcBpAKJNsmalcHbHWwSalr0MZZ4TnAPNjY24rEk3ZRnMDfa7fbQfbc78DY5ZGcaYqjb7arRaGhjY0OSYtznz5+PZQ3sjG9sbGh9fT2aWBaLxaH5yc/a2pparVbc/bY7/cw/yCzizGazce7V63Wtra2p3W5HuT/zhG4Fo3PfeiRADoyqREY9DUbLJCy5YP+16iCIJsYPNRDz1JIk9n5zvlFyA9LJdqvgdcaW58SqiSAxrEcE58ZQFPNRrsF6X3S73Xi/R00aefZse1Y7xtKegaPDcavjg1/1X5UOk12P63A4HI49HHrzX+ml539AO9mg+37mreMOJ+L5H3u1Gg/PjzuMfUGSSfQLX/7+cYcxEZgIQkFSTIIx5WNH3Dq5cxzJDskwiYit47Z16NKe7LxUKkXfBBQASZLEXWNr4kfyiFEdKgCSayT5EAqoF9rtdiQBSMxJVLgmHO2z2WzcobYdJC5cuKB2ux2TVZL+XC6nra2tmEjZpByJ/tbWltbX19VoNLSzs6NSqaRisThkQkfyip9DOp1Wu92OHgbValWVSkWFQiFeC8knZEY+n48Jvy0vsGoKrh2FAmUKIYSoTlhfX49jgMmkbaGZTqejdB3vCO4nY8i9Jukkoe71emo2m1FVQrkC6glKV7jORqOhTqcTyQRKUDgnpSuNRiOSCVbRQpLKZyASbELbarW0urqqVqs1pHKBgLEmnKPzefQY63XBPIfIYAdf0pC5o53bNk7btSGdTg/5kVjFgy1tGDUeHe0iYX0crLmjfd2agVovhNGyCGDJABRJ1rfCmrVybyEfIFZ4fkaVH4A4+NfhuFUR/vSYTs7kxx2Gw+FwOK4Tlfd+RApBL25/l/7yv/zauMPRsz/yLer+401idh2k33zFW/XinCv3pAkhFGxSglwfefPoH/TWKA6JuKQhAz4SGxJNSapUKlpeXo5GfGtra1GdUCqV4i6qrQuHAOActGBkh5aWg5KiP0Kn0xnq4kDdOEnT7OxsdJUnqb+UmZ2Vh5NYWXNIiId+v69Wq6VutxuTKZQJJOmUDrDDPzc3p9nZ2VhCAAmB34L1J8hmszFp5pqoU2e8KEdgZ5idXogYVAcLCwuxI0av19P6+rpWV1e1vr6ura2tIVUEYzY/P6/t7W01m03NzMyoVqvFcUcmz/HMD9sCsF6vx7IWMNrlgnmEOoPdb2vIR+INEdHpdC7qAGGNRZmPyOyJt9lsamVlRc1mM7YvtXOo1+tF4oq5wNjzO4oE65eAOaIlrEZNInluGCcMLm23B4w9efb4rCUfeB5QFEFcWB8T5gqlPZAVqBKI1XppjBo7cm5LBEBSMe6oEPgOFCfMPe6j7fhgFSfMs1FPCO6pKxQctzq++8T/VSa4l4jD4XBMJZJEpd/5qF7xwKv1xJcv6GNvGI9a4a6/+lb1Hr95lG5/8I1v0j+ZLYw7jInBRBAKtv2btFcPTxLB7izJT7FYHGp7hzpgtC7a7gwfOXJE1Wp1qL0j3gns0JOwUcttkynbaaLf78e6+hDCRQmgtGeuh9TfGj3aXV8SQ9tJgWTQlg5gvGg7R7CDbV37u91ulPKjyCgWizFpL5fLKpfLSqfTsUSE2DudjkIIWlhY0OHDh7W8vKxsNqtWqxWvyybPjJFt5ygpkjnsDM/NzWl+fl61Wi2qMDqdjs6fPx8NJ7mvmUxGc3NzKhaLOn78uAqFQixB4J5yDSTjxGG9G6whpSUTIB4YQ3bLKanY2dmJxn02kWXs7Xmt/wAeDKNdSorFoiqVSlRZ4BeBaiOXyw15MFCSAilgTT0hNCBvSP5JyjnGEnGjz5ZV+EBG8IxZ0sF2YKAkiGfOtmCU9sp4QggxNgglknJrdspctZ4Xo54jjLVVLlgSgm4rfMZ2vsAPgh/isKQdZAWqDUtYWONTrtHhuNWw/kfP0G896506NVOQeyc4HA7HFKO/o51PP6ilB2f0it99qR7+oWfqwW87OGLhOfd98y6ZkFz92GnAn33TL+jkhLflPGhclVAIIfy6pG+QtJIkybMHr71B0ndKOjc47EeTJPmjwXs/Ium1knYk/UCSJB+4hu8YSnqs8Z9VCEiKu9Ek1pj+kQyTeJNk1Wo1VSqV2A0BqTi7qjj3k8Ah55f2DNlIoGyylM/nVS6Xo3Qft352/HGKZ2d01BeCRL7X6w0luZAcSOuJwcrOSbAgBFBzoLrAkJA2kBgbQhYsLS3FRJtyBko1KpVKLDsoFosx2ea7rfqAcoJmsxkTXGmPUIDM4adcLkclwOOPP67Tp0/rc5/7nLa3t2Nync1mVSwWdeTIkdgJgZ10/C8WFxdjdw1pL0kmoURJAhHCLjmeFpA4zC9bsjEzMxPLM+wONUQC5BXGm7bFoO0ogsdGoVCI9fyjHTeIH2UNXT1QkjDONlHn/NwHkmk7f5hrJO25XC7OAUs2QBJYo0d7n1FaWLNIknHuM0QGCb7tjAHRYA0eicmSAsxpaxppfRpsCQXXzHNJ7JRMzc7ORkLIdqcYJRMoe4DM4V6iHMpkMpEwmhQcxFrscCgEPfqe5+gzX/Ib7pvgcIzA12HHVGDwN88jb3yRkvTFWXySSvQV3/M6tb6jqY+/8H03LIxXPnSP7v/EKYWboXo0SO9+5Vt0dzZRxv/feBGuRaHwTklvlvTukdd/KUmSX7AvhBDukvQaSc+SdFTSh0IIz0yS5Kq6YRI0STHBR55MMnEpJ3iSqH6/H5UGuMtDJMzPz0evAsocqtWqyuVyJCBI1nCll3YTPRLFRqOher2uCxcuqFQqaXl5WYVCIUrUMdGT9nasbccBTALZBbU7rDYpwmUfQmFnZycm2db93yZQvEZSxK54qVRSoVCIUv75+fnYGrDZbEaVhh3PUqmk+fn5uKtuFRokpiSWkCz4E1iXfQwrSZxJPimzWFlZ0dmzZ7W5uRmJnbm5OVWrVS0tLWlhYUGZTCaOuyRVq9WoXrDmlv1+f6hjA2aHVtnBbj67/NxrrhGZPCQMO/eWNME4stfrxUQVFcjs7Kw6nc4QWZXL5SLhZMkbWwpDMgvpYAkB5hJjzbkh2KxJIUm+9RLgmeGejaoyeK54fi5n2DjyjMcE3xIKloRgrHnmOLe9Jgg8q7hhLlvDUKsU4vstKWC7irB2UALCGFkzzXa7rW63O6TqsD4tECcoeCaMVHinDmAtdtzaePhNX6Z/+MpflasSHI5L4p3yddgxoQgzM1I6rX/84edrq9qXwuUlAZ//ypT0SFXv/KJD+rfls0qH/Vnze8m21vtb+uHP36MH/u6UwtU/MrFIUpLSiX7gqz+gH6w9Jv//4uVxVUIhSZIPhxBOXeP57pX0viRJepIeDSE8LOluSX99le+ISgMSIJJy+sVvb28PqQlIFEisSZokxd355eVlHT58WMViUe12O8rJpT3zPL6bXWoSTqsM6HQ6ajQasZ0ikvsQgprNpur1urrdbkx67LlRIJAEkqCTTF7KOwH5O7u0yOmtWoCkE0IF4oEkaWlpKY5lo9FQJpPR/Py8FhcXY5LLmGOCSRKcz+fjuUig2bnNZrORuOn1emq1WlEdQoLJcValQWvM8+fP64knntBjjz2mc+fOKZVKDREFlEZkMhltbm7GTgrMB4wS2aWmzGNzczN6MthuDraLBm01URpgDmk7cqDK4HwQCagC7K43hA5EhTWj5Lx4MpCcW/k+MVG+ggeF/S6SbsxKLVF1KY8ByJ+dnZ2h5BrCATm/HT+IAEgN4rGJup2nzF/rkWBbkM7OzkYyxRpkWtNDSA8+B4HDeygzLOFgyR9ICkuCUEYCMQEhZMmkTqejjY2NIULHeikwt+z3TgoOYi12OBwOx+Xh67BjUpEqFHT23z1XzWf0JV2DJGDw581P/vG/UOGfvVeH0i29JHfhKREL28mOXvXgveq+8ag+e89EVNVfN5KUlBR287mXPPu03v20D485ounAU7nb3xdC+DZJH5X0H5MkqUs6Jukj5pjHB69dESTe7MbaJHptbS0mvuw6kkjYHU/bUSCdTqtSqUSvAJIyEmfM/3CyZ3e/1WrFJJD6bUlqt9vxPVz5y+WyNjc3df78+dhKEoJgVEbNzr1NOtm5ZTeUZNCWd3BNc3NzQ8kvyQ6JJuQH6g1iJOlNkkSLi4s6efKkarWazp07p3a7HWOl1MMa+0EarK6uanNzU8ViUdVqdajzQbPZ1Pr6elSEQHaQ+NMFA2NGxhbfhH6/r0KhEA0LMTCcmZmJpQXb29vRjwESZ9Qvga4LrVZLvV4vytnxJ0DpISmqCEgec7lcHFPIB0wuG41GVJYwx2wHEEgCW4oweq9tcs3nuAbiINGlhMWaSkp7fg+WqLKJsFUXQLTZjiKjz4klE/CXgPRgLvCa/RzHj5or8i9JO/fTekmQ5DMGEB82VtYCnmNrPkknFWA9GSBfrEmrVW1wj5vNptrt9tBzxjXa0hVatkL2TAH2bS12OBwOx5OCr8OOsSFdqWjl1c8akAnXjx/5w2/WM9/R0B+++7R+/vDHn9Q5tpMd/Wrjdp3+xEnpnid1irEjHOqpWmnrY8/3VpDXiydLKLxV0k9q117jJyX9oqTvkC6pbLmk3iaE8DpJr5N0kcs6iSDlArRNnJ2djcmfrYEnSSI5t3XQJF82wWBXFYKB+nnbgo7dXUoa2CWv1Wqx3KHT6Wh9fT2WO5BQSntu8uVyWfl8Pu6Kk+CRhHM8CRk7s1wPSe9oIi1pqG0hn6ejQqlUin4C2WxWhw8fVq1Wi8QJrSPZiSaxK5VKsRyk1+tFVQYdH7g3jNnGxoY6nU68BtQIkACY4qGWQCkSQlCpVNKhQ4dULpdj3KlUKpICJK8kiiSafBdjgpkhJA0qAlsiguLD+gpY6T8klZ0P7NbTclDa88KguwDnR3Vgy0f4HtprMmet2R/eBswxW4Zik2yuxZIJtsUjsM8Dc4RnB3NQS2hAhFkiIj64xqeB4yHBzHMcFQBWncD1XkrlAJlAvJZA5H2rtKBECHNIvtOSAfbarfqB+4vfCoQlRIw1goT02tzcjF4oluCbUOzrWpyTOxbfykjfcbuKt62POwyHY9rg67BjbEjXalp95Z2qP+upOR4++Nqqku+8S//ylxf020//0HV99n2tmr6wXdOvfPDrnlIM40L+aS1l0js31E/iZseT+ms5SZIn+D2E8HZJfzD4z8clnTCHHpf0hcuc422S3iZJ2Ww2kfa6O/BHfKPRUKfTiYksBAGJIW7uJE+0iURJYHdUR5Nx5N38WHkzO8HpdFqtVivuamYyGVUqFVUqFWUymWjCSOwcQ2JWqVS0sLAQk3jisVJ1HPxtzbdNmklQiWvUHM92j+A9dnPZkV1cXFStVpMkraysqNFoxASO9of4DaBCgIzY2NhQPp+P6gEk9I1GQ6urq3FsSPRsEg25wI41ZoOSoq8C5o/seHc6nUgIkMBCJtiuCNxf2+WCH6soQMEAMcVONEoLpPS0sqTd5vb29kUGjYyTrfFHjUDyzfdjSokpJwkuc8WSYhAoVn1CwmsTer4ftYJN/lGbWN8Dzs+8gUyQdBGZYLsnjLbDtNc1qgwaLQOpVCoKIUTliv0s4Dnk2pi3zGur0rDGjjxf1qDUGlRaTwqrvEDpgCLEGqVCKBAnRBKEmx3jScR+r8WVMH+TeDA7rhfpZz5dj/50QZ+5+zfHHYrDMVXwddgxLqRrNZ3/hjt1/rn7M2Ue+paybvvxrN70327Xf5h/5Jo+87Pn79DbPvTSffn+ceDQnef04ee839sjP0U8qUKZEMIR85+vknT/4Pffl/SaEEI2hHCbpDsk3Xct5yQppQYaV3zqq+1uM4kZCRsJDbujJAwk7yQVqAxSqVRUF7RarUgKsMtKTblNbGZmZmILxGKxGJMWEjDbXo6Yq9WqSqXSkIM+9f7s6pKw8D2XIj5IrK1aAUCwkISyw1+v11Wv17W1tRVNKRuNhtbW1pQkSRxnzp/NZmMHiFwup3q9rieeeELdbjd2a+C7O52Ozp49q5WVFfV6vahIoNSCc5OsU4phOyDk83lVKpXYWjKTyWh7ezsaGKIS6PV6sewDk0mMJW2HARJGW2ZizfwkxVhqtVpsIWpNCiEeIBPoTFEoFIZ2qknCIW+YU7ZchM/aOn2SamK1O+GSYjcL6xFgCaPBsxeVKzYWCBS+hx927a06YGtrS+12O17naEcGW65jVQP2uSAu7nGhUNDi4qKq1erQWFnzSpucWyLB+hlAtnFfrB8Fz7n1UrAKHa7fqlAow0AVw9xEtWLLS1C6SIqfnXTciLXYceth5vZT+uwbc/rMi51McDiuF74OO8aBdKWi1VfeqdXn7SP/FKRHXzmrN//Z1+pHn3jOVQ//wTMv0Nv+ZDrJhGN3PaEX3v2gPvjFv+Vkwj7gWtpGvlfSV0laDCE8Luk/S/qqEMJztSvdekzSd0lSkiQPhBDeL+nTki5I+t5rdbNFIo9cGgk7yTzKAxLnbDarUmm3bYc1bbP12L1eLyZe1ONb6b20V5pAYsOuPOdhp7NQKGh+fl4LCwuxFMK2rqS9HskQ3gAkXla+zo44ybD1T7DJsP0h8WaHn+SKxJtk/8KFC7EFJNcbQohkws7Ojmq12lCnh1QqpVKppGPHjl3kDbG4uKiFhQWVy2X1+/1oanfmzBm1Wq2he0O7yGw2G6/LOubTxcBK5NlxHm2Zub6+ro2NDZXLZc3NzenQoUNxDDnnqKElEnd2lm0ST5y1Wi2SPMw7u7NNIo3CgOuxXTo4H6QJxBfXb0sLmA+DZynOAQgoSwIxj6wCwZajWNLCls/YhJzk2nYUYdxQQPA9zHnGkLnOnIUsYZ5DcliTUOY6JA0mp8QBuYCvCOe33iKYRlrlg30GUCPxfbwOgcR7GF1CWPF8QFKxvtj7yD2yJpSooVhDJgUHtRY7bj10b1/Q/S96x7jDcDgmHr4OOyYFYb66b8qEi859Iei9f/0iNV+Y15uP/c1F73/f579Mj7Xn9elPnbxSI4mJxakv/oJ+45nv0cmZkqTcuMO5KXAtXR6++RIvX/YvjyRJflrST19PENZrYHZ2Njrrd7vdoZIGlAnZbFZzc3Nxp5GkQNLQruQgnpgs2Tp81AuSVKlUYp17o9FQt9uNCS9127VaTYcPH9b8/HystccUEYUDoO5fUpR9870kUCQxdtfWlnxYlUK1WlWtVhvyF+CabbtNSBOSTTwKkiTR6uqq6vV6HGfaUmLYeMcdd+iOO+5QJpPR2bNnde7cOfX7fS0uLmp5eVnZbFb1ej0aMTJGjC8kCQksCSWlCbReJOm3JoIQCpAtmCzSAWJpaSmqQjgGcgnPAWrj7W67LX+YnZ2NSgvG15IC7HTbe4gqhXnA65AguVxu6HVKPawRqN35h1xA1cIYMY9sW8disRgJIkgP679guxBYBcyoLwdJNvcJFQTjwvdfyksBMgAyASLA+knkcrlY2mO9QvgOS2hYvwLrgWCVJTwnxGuNFTmW8YPEsx4XkFgQkxhsZjKZeC/xv2Ae2JIdylwogZkkHMRa7HA4HI7Lw9dhxyQgVSzq8XuP65q6OTzZ7+il9Icf/RLdt3LyovfOfbam1GZq6lpCzp0Oqj/vgv77HZAJjv3CRDiOhRBiMobhHYkJCgO7Az03N6e5ubmhnWkSIJKBbrc7RERYIz6kzSTd+Xw+Svl5nVrxEILm5+e1vLyso0ePqlKpqNlsxnOw22sJAEkxUSPBIzmztfCpVEr5fD5+1pZXcK2zs7OqVCrK5XJDJRwcA5Bvkxiys7+8vBxN/9jNTZJEGxsbWl9fVzab1fHjx3XnnXfq+PHjOnPmTCQMKpVKVDPQ6QJTRcaa67TlB4x1tVpVoVBQu92O5yQptQaZkuIY2o4Nt99+e2z7SUINer2ems2mWq1WTNzZWbbKDgw9URxY8z2UBCgTrFw+lUpFVQj3xyb1hUIhJr3MX9uhws4J1CzW+JF7x3EQT5Tx0EnDloxg9kgCjiLClhSgMrAeA7ZbBO9z7SgWeIZsCYjd8R/txMB9ptUnqg9IOeYjBAVEDOeyJT7MH9uC0yoRbPkKn+EZ4jOQTNYAlG4tmI1CMnBOroH7whpULBbjeNnyIofjZsTM7af0Nb/kbbEcDodjWhByWW2cunFkAkhtpnT+wYWLX7/h37y/KJxJ6cTvreixf3VIv/HSd+i2jJMJ+42JIRTszi2tEEkibDs+Sgmy2WxMhEgMbD22tJesUt7Af7O7S0KWSqXUaDS0srIypDbo9/uq1Wqan5/XkSNHdOTIEW1vb6vZbKper8eEhYSUc/L9JLpcn90JZneXRNy2lCSJYRe8WCwqlUoNtdkjeUN9QWJGElssFnXs2DEtLCzozJkzMfmSpFarFUsKSqWSjh8/ruXlZc3MzKjRaKjdbmtnZ0eVSkWlUknb29tRMUKNP4oEYmYMstlsJDNIMjG+ZLzZZaacgDZ9jM/6+nosTyChR0FA0kx3CevGb3fCrXoDYgDSyZZksAtOTJAJmECyU23LEDALtOUw1OZDNOEt0e121el0YuzcQ8D9gzzAA4QkulgsqlAoxLnOPLFGiCgmSMB5lhhPSC1Ik9ESolFjQ4g4FB6j5o/MwXK5rFqtFtUU3W5Xa2trscRgtBzBPufSHunBeNoyCKvokPZUDLZsBAWJNWmEgMSfYnZ2VqVSSbVaLa4tjIcliiAi8L1AgTRKFDocNxuSfFY/vPDQuMNwOBwOh2NfMdMOesavPKpka0vnXvlFes9rf0nPHfyd6NhfTAShwI4n3gm0NSTxgCywHQPYkeR9a6i4sbGhEEJMLkgW2QHHk4CkmF1x3mN3M0kSHT16VE9/+tN12223aWZmRo888ohWV1djwkHt9+bmZvQiwKCQnXXbYpGuCPl8PsbAGNiEiw4Ic3Nzcbea5N12gsDIkOSY3ehCoaClpSXVajWtra1FYqPf76vdbqvZbGp7e1vValWHDh3SzMyM6vV67EaBOiJJEq2trcXOByT+7PDaH+4PnTBCCPG7IINIoLmf3BNUFBsbG0qlUjp8+HBsfWk7GvB51CHEQqLPnMD00Br5sfuez+cl7SWdXJOkmNRDJtjWhdwH7gHJNsSIJY0kRck912tVFtxrm1AzZyC+isVijJXPWHWAbdUIYWDLaSCaSJ4hRWz5gC11sHExJy2BxflJ3Ofm5lQo7La36nQ6ajabOn/+fDQ6TZIkqja4JtshA9hyGRQMlCXwmm35yTFcP/4MkCQbGxuRGGQ+zszMRJUO48f12vWFsUIN5ISCw+FwOBwOx2Rh/lNBi799/5UP6vd1od1W99679Ts/8fNe5nADMRGEgpWCNxqN+Ic8f+wjBWd3mZpymxyRVCIvRwrNzi4JBsmDTWharZZ6vV5MJprNprrdrsrlsk6dOqUTJ05oaWlJ9Xo9trK0jvzSXj15qVTS8vJyNBFEUg6h0Ol0ojQfwsG2kbQSa7tbTHKHNLvf76vVaqler1+0K53JZDQ3NxfLFUg6cbtHaTA7O6tyuRzb/FE+QLLa7/dVr9fj73bH2+5uS7uJ28LCgubn56NKZHNzM5Y6cO8wkOTebW1taW1tLRIcIYTYIUHaS0AZA0wnKb8YbRlp2y/u7OxEY0XmUjabjdfD+di15z1UArxnTT+t/N7W/BNXs9mMSTzqBOYaMfD9lgBCjUIpAoQOpS2MOcdbqb/13MA4E/UGZIpN1lF52A4JjDX+Bswlnk3IGJ6fcrmsSqWibDYbScDz589rbW0tEj3WdJOkf9TrwZYC2ViY/xCHED5WYYF3AmsEqh1pry0p99KqIUY7Z1hCqtfrDfmr2I4VDsfNhvTSkt7/gXfJTakcDofDMQ0onEnp2JvuU9JP1O9fm8dpPxOcTLjBCLYufWxBhHBOUlvS6rhjeRJYlMd9kPC4Dx7TGvt+xf20JEmW9uE8E48QQkvS6XHH8SQwrXNUmt7YPe6Dxa0e9620DvvfxAcPj/tgMa1xS9Mb+w1diyeCUJCkEMJHkyR5wbjjuF543AcLj/vgMa2xT2vc48S0jtm0xi1Nb+we98HC4761MK3j5nEfLDzug8e0xn6j4542o06Hw+FwOBwOh8PhcDgcEwAnFBwOh8PhcDgcDofD4XBcNyaJUHjbuAN4kvC4DxYe98FjWmOf1rjHiWkds2mNW5re2D3ug4XHfWthWsfN4z5YeNwHj2mN/YbGPTEeCg6Hw+FwOBwOh8PhcDimB5OkUHA4HA6Hw+FwOBwOh8MxJRg7oRBCuCeEcDqE8HAI4fXjjudKCCE8FkL4+xDCJ0IIHx28Nh9C+GAI4aHBv7VxxylJIYRfDyGshBDuN69dNtYQwo8M7sHpEMLLxxP1ZeN+Qwjh84Nx/0QI4RXmvUmJ+0QI4c9CCJ8JITwQQvj3g9cnesyvEPdEj3kIIRdCuC+E8MlB3D8xeH2ix3uS4WvxDYnT1+EDhK/DBx63r8P7DF+Hbwx8LT5Y+Fp84HGPfy1OkmRsP5LSkv5B0u2SZiV9UtJd44zpKvE+Jmlx5LWfk/T6we+vl/Sz445zEMtXSHqepPuvFqukuwZjn5V02+CepCco7jdI+qFLHDtJcR+R9LzB72VJDw7im+gxv0LcEz3mkoKk0uD3jKS/kfSiSR/vSf3xtfiGxenr8MHG7evwwcbt6/D+jqevwzcuVl+LDzZuX4sPNu6xr8XjVijcLenhJEkeSZJkS9L7JN075piuF/dKetfg93dJ+sbxhbKHJEk+LGlt5OXLxXqvpPclSdJLkuRRSQ9r994cOC4T9+UwSXGfSZLk7wa/tyR9RtIxTfiYXyHuy2FS4k6SJNkY/Gdm8JNowsd7guFr8Q2Ar8MHC1+HDxa+Du87fB2+QfC1+GDha/HBYhLW4nETCsckfc789+O68o0bNxJJ/yeE8LEQwusGry0nSXJG2p2Ikg6NLbqr43KxTsN9+L4QwqcG8i8kOxMZdwjhlKQv1S5DODVjPhK3NOFjHkJIhxA+IWlF0geTJJmq8Z4wTNv4TPNaPM1zdKLXBAtfhw8Gvg7vK6ZtfKZ5HZame55O9Lpg4WvxwWDca/G4CYVwidcmue3Ei5MkeZ6kr5f0vSGErxh3QPuESb8Pb5X0dEnPlXRG0i8OXp+4uEMIJUm/I+kHkyRpXunQS7w2ttgvEffEj3mSJDtJkjxX0nFJd4cQnn2Fwycm7gnFtI3PzbgWT/o9mPg1Afg6fHDwdXhfMW3jczOuw9Lk34eJXxeAr8UHh3GvxeMmFB6XdML893FJXxhTLFdFkiRfGPy7Iul/a1ce8kQI4YgkDf5dGV+EV8XlYp3o+5AkyRODB6Uv6e3ak+VMVNwhhIx2F6DfSpLkdwcvT/yYXyruaRlzSUqSpCHpzyXdoykY7wnFVI3PlK/FUzlHp2VN8HV4PPB1eF8wVeMz5euwNKXzdFrWBV+Lx4NxrcXjJhT+VtIdIYTbQgizkl4j6ffHHNMlEUIohhDK/C7p6yTdr914v31w2LdL+r3xRHhNuFysvy/pNSGEbAjhNkl3SLpvDPFdEjwMA7xKu+MuTVDcIYQg6R2SPpMkyZvMWxM95peLe9LHPISwFEKoDn7PS3qZpP+nCR/vCYavxQeHqZyjk74mSL4OH1S8Jj5fh/cXvg4fLKZynk76uiD5WnxQ8Zr4xr8WJ2Nw/7Q/kl6hXRfNf5D0Y+OO5wpx3q5dR8xPSnqAWCUtSPoTSQ8N/p0fd6yDuN6rXVnOtnaZqNdeKVZJPza4B6clff2Exf2bkv5e0qcGD8GRCYz7y7UrF/qUpE8Mfl4x6WN+hbgneswlPUfSxwfx3S/pxwevT/R4T/KPr8U3JFZfhw82bl+HDzZuX4f3f0x9Hb4x8fpafLBx+1p8sHGPfS0Og5M6HA6Hw+FwOBwOh8PhcFwzxl3y4HA4HA6Hw+FwOBwOh2MK4YSCw+FwOBwOh8PhcDgcjuuGEwoOh8PhcDgcDofD4XA4rhtOKDgcDofD4XA4HA6Hw+G4bjih4HA4HA6Hw+FwOBwOh+O64YSCw+FwOBwOh8PhcDgcjuuGEwoOh8PhcDgcDofD4XA4rhtOKDgcDofD4XA4HA6Hw+G4bvx/anhVo/+TzAkAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 270499 361408\n", + " Min thresh = 1000\n", + " Sliding\n", + "\n", + "\n", + " Winner = Sliding\n", + "\n", + "\n", + " VFOLD = 13 of 15\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsIAAAGDCAYAAAAh/naNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAACawElEQVR4nO2dd7wcZdn+r3v31Jz0XkkCgYQeTCih96oGFRWUpiKCgu19VRALYgFF/cErKiIioAiC0qSr9BYSOoEE0kiBhPR6csru8/tjZnanPDPzzOyec/bsXt988jk7M0+b2dmZa+65n/sWpRQIIYQQQgipNTI9PQBCCCGEEEJ6AgphQgghhBBSk1AIE0IIIYSQmoRCmBBCCCGE1CQUwoQQQgghpCahECaEEEIIITUJhTDpUkREiciknh4HIYSQ5FTjNVxE5orI4T09DlIZUAjXECKyRERaRWSL6/81PT0uPyJytn3x/VRPj6VURGSCvS91PT0WQkjtISIPi8hlmvUzRWRlKdcmEXncvr7t7Vt/t73+8LRtpxyPc7117m+rROQ+ETnGXU4ptbtS6vHuHBupXCiEa4+PKKX6uv5f0NMD0nAWgHX237JDUUoIqSFuBHCGiIhv/RkAblFKdZbY/tsAznQWRGQIgAMArC6x3VIYqJTqC2BvAP8GcJeInN2D4yEVDIUwAVCwwj4jIr8RkY0iMk9EjnJtHy0i94rIOhFZICJfdG3Lish3RWShiGwWkRdFZJyr+aNF5B0RWS8iv9VckN3jGA/gMADnAjhOREbY668VkV/6yt4jIt90je+fIrJaRBaLyFdd5S4VkX+IyF9FZBOAs0VkPxF5TkQ2iMj7InKNiDS46hwrIvPtY/E7EXlCRM5xbf+8iLxl79PD9riTHvOoY7qfiMwRkU22VePX9vomez/W2mOf7RwjQgjRcDeAwQAOcVaIyCAAHwZwc9y10IBbAHxaRLL28mkA7gLQ7uovIyIX2feItSJyu4gMdm2/w7ZObxSRJ0Vkd9e2G+37xv32/WWWiOxkMjCl1Eql1NUALgXwcxHJ2G0uEZGj7c+h9y8RmSIi/7av0fOlCt5SkiAUwsTN/gAWARgK4IcA7nRdrG4FsBzAaACnAPiZSyh/E9bF70QA/QF8HsA2V7sfBrAvrKfzTwE4LmIMZwKYo5T6J4C3AHzWXv83WBdbAQoX8mMB3GZf3P4F4FUAYwAcBeDrIuLuZyaAfwAYCOvCnQPwDXtfZ9h1vmy3PdQuezGAIQDmAzjQaUhETgbwXQAfBzAMwFP28UlK1DG9GsDVSqn+AHYCcLu9/iwAAwCMs8d2HoDWFH0TQmoApVQrrOvHma7VnwIwTyn1KiKuhYa8B+BNWNdj2P3c7CvzVQAnwzJyjAawHsBvXdsfBLAzgOEAXoJ1jXZzGoAfARgEYAGAnyYYHwDcabc9WbNNe/8SkRZY1uS/2XVPA/A7t0gnVYJSiv9r5D+AJQC2ANjg+v9Fe9vZsC5o4ir/AqzXZ+NgXSz7ubZdDuBG+/N8ADND+lQADnYt3w7googxvgPg6/bniwG8an8WAEsBHGovfxHAo/bn/QEs9bVzMYA/258vBfBkzLH5OoC77M9nAnjOtU0ALANwjr38IIAvuLZnYAn/8Zp2J9jHoM63Pu6YPgnrwj/UV+/zAJ4FsFdPn0/8z//83zv+AzgYwEYAzfbyMwC+EVK2cC20lxWASSFlHwdwDoDTYT3YTwbwtr1tOYDD7c9vATjKVW8UgA7/ddHeNtDuc4C9fCOA613bT4Ql4nXjCbveNtnrD7KXlwA42v6svX8B+DSAp3zr/gDghz39ffJ/ef/TIlx7nKyUGuj6/0fXthXK/rXbvAvr6X00gHVKqc2+bWPsz+MALIzoc6Xr8zYAfXWFROQgABMB3Gav+huAPUVkqj2u22A9lQPAZ1C0GowHMNp+tbdBRDbAsti6XQaW+fraRaxJFCttd4mfwbKIwN7fQnm77+Wu6uMBXO3qax0ssTwG5sQd0y8A2AXAPNv94cP2+r8AeBiWJfw9EfmFiNQn6JcQUmMopZ6G5bM7U0R2hPWG7m9A7LXQlDsBHAngQljXKD/jYfnpOtfMt2AZAkbYrglX2K4Jm2CJVPjGYHQPicC5rq7TbAu7f40HsL/vvvJZACMT9k0qHAph4maM43pgswMsK/F7AAaLSD/fthX252WwXt+XylmwBOUrIrISwCx7vfNK71YAp9j+uPsD+Ker/8U+gd9PKXWiq223wAeA3wOYB2BnZbkffNfuGwDeBzDWKWgfk7GuussAfMnXX7NS6tkE+xp5TJVS7yilToP1Su7nAP4hIi1KqQ6l1I+UUrvBctf4MLyvPAkhRMfNsK4VZwB4RCm1yl4fdS00Qim1DdabsvOhF8LLAJzgu2Y2KaVWwDJqzARwNCy3rwl2nURjiOFjAD6AZf3VjU13/1oG4AnfmPsqpc4v47hIBUAhTNwMB/BVEakXkU8C2BXAA0qpZbBex19uT9baC5bF0rHIXg/gxyKys1jsJdbMYWNEpAmW39q5AKa6/l8I4LMiUqeUehmWVeN6AA8rpTbY1V8AsElEviMizbaFYQ8R2Teiy34ANgHYIiJTYF3AHe6HZYk+WawIE1+B1wpwLYCLHV8xERlgH68oGu1j12Tv6wpEHFMROV1Ehiml8rBcWAAgJyJHiMie9sSUTbBeL+Zi+iaEkJthic0vArjJtT7qWpiE7wI4TCm1RLPtWgA/tY0YEJFhIjLT1X8bgLUA+sCySJcFERkhIhfAmvNysX099RN2/7oPwC4icoZ9T6wXkX1FZNdyjY9UBhTCtce/xBtH+C7XtlmwJiysgTUZ4RSl1Fp722mwntTfgzUj+IdKqX/b234Ny/f3EVgX1D8BaE44rpNhTfq6WVkzfVcqpVbabWUBHG+XuxXWxfxvTkWlVA7AR2AJ58X2+K+HZV0I439hWSI2A/gjgL+72lsD4JMAfgHr4rwbgDmwLtZQSt0Fy0p7m/0q7w0AJ8Ts3xZ7/5z/RyL6mB4PYK6IbIE1ce5UpdR2WIL8H7CO81sAngDw15i+CSE1ji1QnwXQAuBe16bQa2HC9t+zXTB0XG33+YiIbAbwPKy3eoAl0N+FZRx4095WKhtEZCuA12H5FH9SKXVDSFnt/ct2WzsWwKmwrtErYV33G8swPlJBiNcllNQqYsVYPEcpdXBPj6XSsKNSLAfwWaXUYz09HkIIIYSUB1qECdEgIseJyEARaUTRZ64clgpCCCGEVAhGQlhEjreDSS8QkYs02weIyL9E5FWxcnh/rvxDJaRbmQFrJvEaWG4XJysrHichFQ+v2YQQYkasa4Q9KedtAMfAej08G8BpSqk3XWW+Cyvm33dEZBismZkjlVLtujYJIYR0DbxmE0KIOSYW4f0ALFBKLbIvkrfBCnXiRgHoZ4eZ6gsrVl+p+csJIYQkh9dsQggxxEQIj4E3GcFyBBMHXAMr1NZ7sGZpfi0kTAkhhJCuhddsQggxpM6gjC6otd+f4jgAr8AKCbUTgH+LyFNKqU2ehkTOhRUnFi0tLdOmTJmSeMCEEFIJvPjii2uUUsN6ehwaquaavWFbO5atb0X/pnqMH9KnsP71FRsBAHuOGeBZ3mV4PzTWm80Bd+pMHtkPDdkMVm9uw8pN2zGsbyP6NGSxfH0rdh3VH2+8t9FTr6WhDlvbOzF6YDOGtDR42nKz66j+qMsUv4q3V21GW2ceu4zoh8a6TGAfHHJKYcv2Tgxorve0PXZQMwb1adDuy6pN2/HB5jYMbmnAmIHRkSvD+i0Hr6/YiGxGsNuo/qH97j56ADKi31aOMXXk8pi3cjMyIth9dP/Q9nXfmUPUODZs68Cy9dswsLke4wb3CS1XCuu3tWP5+lYM6tOAsYOSRiINRwF4Y8VG9G2sw8ShLfoyCpBypjJJgPOd1Gcz6MjlMXpgM97b0Ipxg5oxMOTcT0LYNdtECC+HlYLQYSwsK4KbzwG4wk5Fu0BEFgOYAivRQQGl1HUArgOA6dOnqzlz5pjvASGEVBAi8m5PjyGEqrlm//X5d/G9u9/AtPGD8M/zDyysn3DR/QCAWT87EZfc9TrWzLYM4Hd8/RBMGRkUYTqcNu771hHYYUgf/P7xhfj5Q/PwpcN2xBPzV6N95Wbc8JWDMPO3z3jqTR8/CHPeXY+ffGwPfHb/8Z623Pzne0djaN9iyNnDr3wMS9Zuwz3/cxh2HNa3UOf5n56AumxRvJ978xw88uYq/P1/DsNOrnI5ALfbdR2UUli0ZitueX4pbnhmMT41fSx+ccreRvs954qTjI5TEqLadrY9fdlx6NNgSY+r/vM2Xnx3Pda8s6ZsY1q2bhsO+cVj6NdUhzmXHhc6Lt135hA1jrteXo5v/P1VzJw6Glefuk/J49XxjxeX43/veBUf/9AY/PpTU8vW7vaOHKZ8/yEA+n188d11+MTvn8NvTtsHH95rFCShIn7ojZXIK4UT9xwV2Pbehla89f4mHLXriND6zncydlAzlq9vxekHjMdfnn8XXzh0R1x8Yul5TMKu2SaPzrMB7CwiE0WkAVZw6Xt9ZZYCOMruaASAyQAWpR8uIYSQlFTdNTtsUvfC1Vtw2+yiF0hnzltu50sewPl/fTGy7WXrt6Ej5/UK2XGYZS1754MtgfI5eyyZGJHgH3Jn3lrh3xP/8tJ12wAAbR1BT5Vt7d4kkjc9uwRH/eoJPLfIynvk3/+eZsmarbj4ztfQ6Tq+7uNy1X/ewVO2CE7Kuq3tWLGhtfD5llnvIp9Xhfa7yqjptB/3/ZeCYzHP50v/Ph+b9wEWrrbO47zr4OvanrdyMwDgwltfxj2v+J+dw7n75RVYuHoLzvvri/jyLS9py3z0mqfxhZuSPUg7v5mkgjwpsRZhpVSnnaLwYVgZvm5QSs0VkfPs7dcC+DGAG0XkdVjn33fs7FyEEEK6kWq6Zju36jA94L895nwFO3IKD76xMlDPLcw+e/0sfPdEr8vHqAHW6+h573s8RayxODfniHEDgPJJXKeeX9T7BbMjVrJ+/wFYwuBbd7yK5xatxdPfORJPL7C+snfXbgUAdCQQTkqpLhcY37j9Fby8dANOmVZ8QWEywrbOHLZs78SQvsEkbh9s2o7mhiz2/el/kMsrLLniJBx0xaNo7chhvwmDC9b1UvdtY2sH6jKClkavTMprhHYur3DHnGX4yN6jA+XT4Hz3ZdDB+NyNswEAS644yXOubWnvxOzF63D45OGF/txvMJbZD2RhtLbn0NyQBQB8/e+vxI5jzZZgQJrnFq7F1HEDC+04OF+d8zvV/BTKipEzlVLqAaXULkqpnZRSP7XXXWtfUJ3UiscqpfZUSu2hlGLKV0II6SGq5pqtglZUt5D0a51ciOX49Otn4fqnFuHwK63EkHv96BHP9vc3bvcIV+cGvG5b8OZtahH2Kz6nnn+IAcFcsDgGm8zl87jjxeVYvt6yhG7abgX6cFwNOnPh8x07cnn8/vGFxX594/jT04uxeM3W0PppcHyk3eOaG+Gb63D+X1/CtJ/8R7ttv5/9Fyf939Oeh57WDstS3p7LF9aXqvH3/tEjmHH5fwPrnfPPLbT/8twSXHTn6563E6XgtJ0vc+Zfd3tfuHE2vnDTHLy0dH1hnfuNQnNDFi8sXqdt57F5H2DXHzzkqWs8Bvv7WbZuG0774/O46M7XQss6FuGutL4DzCxHCCGkwnG/xvVafb03SL9F2OHpBWvwk/vfwpK1lpXL72Lg1xttnZZw29bmLWf1oe06OGa/ELbr3fvqe7jthaWhfecjXgd3+FwfNttCuLkho93u5u+zl+HnD81zjc8lJNtz+PF9b+LTf3gutP7GbR2h28JwLI3u7+XT1z0fcEXx8+i8DyK3Lw2xVubzLqEK6/OcJXox59CnIYv9Jg7Wbtu0vRNv+d4KFFwvXF/P3bYbwaA+9ZF9mVJwjSizEHa3NnuJJWK3tBWjJrq/l5/c/xY+9YfntA9XzpuIuGOroyNvtbe13erXf3wBQOwfV3slWYQJIYSQ7qboGuGy1ka8L07rI+sIX/+yc7N2kze0UvktvTlbAPzm0QW46M7XQ+vlCxbn4Db//m3e7hWnnflwgbnNty/uw+iIk1b7AWHtljZP2SfeXo29L3sEzywI957R+XHX224KfpeNM//0Aua+F28ZNunDTU6pguVdRPDw3JU45dpwcQ9Y32OU0Drh6qe8Y0Dw+3lt+QYAeneWNGQdi3CZAxrqAiS6fdHbNaJX93ury1rji3rwCsN5KKrTPCQ5OD+tDvt3mOliJUwhTAghpCJxdI/7Xum+cQZcI1I6VbZ1Fi2/Aiks+y3HQFFsxt2b/ZotbGxBH2Hr73sbtmPpWq/l0y90HYuwszrqQcDfvefhwq6XzQqefHs1pv3kP3h03qrC9ln2ZLyXI16F60RR0SLsHfdzi9bipP97OrStMLZrJhC6yeVV4Tiv29qO8/6qn7jlRpDs1XvRR1jsMeUK68IsuP94cTkWfLA5tM1bX1iKS++dWxyTPZ4wV580TLjofsx5N2jBdZ/7Oku9TgjXZyzpmObB02kva7cR9ZvtKFiEi9+P24JdLiiECSGEVDQqxCIcmCxnIBx0N947X1qBe14uzpJ3rGQ6IVz04Y2zCOvrBcv5fYSt5dP/NAuH2j7NDmEWYadOnMuBp19XU87r77pMpuD3+crSDYXtBb/oCPWvsybWJRRMqze3RW7f3BbtnpFXKvBg4UZnURZJ5k9ciBphqycnIgMQbsH93ztexXFXPaXfCODiO1/Hjc8uKSw7h9k93iffXo1nF5Y2n1XncuK2CHd0aoSw5nsNe8AxwTkXCv7jOouwU7Ygmq01t89ehj1++LDnmJcDCmFCCCEViSME3JY2r0XY7yMcf2MOsyjNX1W02BV8hDWuEaaTsZRSWLVpu2WJW7Iu1G0hzEdYh180OIvOmDrzCl+8eQ7++GQwEl7AQq15uKjPStHiae/g4Vc+hj88YbVXFyWENSIqSuzo2Pen3glyfuG6ZXu0NdBtEdbx+oqN+GDTds86EYl9qPn3m6tw6nXP4Ym3V2PeSsen1arjFu9RD2JJ3lZkCpPliuvOvOEFfOaPs4zb0KEbwXaPRThYQreu3nGNMNgnpRSeeHt1Ydn/O4g6Ls455Xw9j7xpvaVYoAlrWAoUwoQQQiqSoo9wcZ37RuqXL505he0dORz1q8dD/Vn9frU6nNfFW7WT5cIns7lRCvjPW9aN+/Y5ywrWwoY6723X1HIMhPsAO3U6c3n8+81V+OkDbwXHE2J5Bor7lM1IQTE7u7fE5Z7hF4xKKfzxyUXYtL1DL4SzyYSwH3815yEmTI/n8ypSjH70mmdwxC8fTzyOXz0yH88vWoezbngBNz/3rmcM7u50Fuc4v+Yoyj5ZTtOcxyKsOb9055wToi4qSonDrMXWcXPwC98oIRyMGlGcCFlOKIQJIYRUJM6NW4VahL3lc3mF9zdux8LVW3FxyIS0zTFWRSDaIuwkcYiNI6yAlRst6+OoAc0FQdGQ9QlhFS5Q/YS5GKiCa0R43UDYNpeG6Si4RkhBLotmD/2TwZ5ZsBY/feAtfP/uNyItwkvXpgvLFmYRdq/1RBRRKlZ4bg1EDFGxFmEnXJ0bp4onSYWm6zTPALoHwDQEj0WwwQ2t7fjKLS9hzpJ16OgMbtedc873Gna+LVu3Dfe/9j6A4BsOpz1naM7v+aPXFH3GnYdM57x0Jg8WI3aUVwqXHvmZEEII6UI8FuEIsZdTCs31VnD+DZoYwIChELatZE582jQoWKIcAEYOaAq4MRTLeYm2COs3OlbQqKgRfvJK4Su3vIQBfepx1owJACxLXzFzWlDE+IWwIwLXbGlDey54rBzL4S8fedt4XN72vcubbYuwx7/ZVai9M++ZdGZK3MRHnTtNxifOgOB3u2JDK1ZuDIroMFZsaMXdL6/ATnYa7VKsybrx6Jq79olFyOUV+jXVeRJqOOj8zp1oIGHW3Jm/fQbrtrbjpL1OCpwzxQyLyrP82vJiFBGnhiO0Hd2rfNvLBS3ChBBCKpKiZUxvEdZFZnBusJtCBG+ca4RI0TUicuJVZCtW3VW2P6ojzoGgxTdgqY20CIe4RuRNLMJBy/P9r7+Pv81a6rEIO+MTCU6A81tOG203j/bOvDaiQ5RPsQn+Y6XzEXafD3PeXY+Fq5NZn0UklYXRqeEeo1IKi9dsxSV3vY6OXB4HXfEoPvF7b/i2fF7h0nvnYpFmwtc5N83BlQ/PL2QKTBsFxcHvJqI7tZw+hvdrREcuX/hOHXQPX1mX77fufF23td3uTwXqr9vahssffKtwzmn30Qmf5osaoZRXGJcLWoQJIYRUHK3tuUKa1zALoF8odeZU7OtkEyuvP66wjjhrnULRNcJNwPUhYhKbn7DJSc7qrRGhpcLCtAHFY1qXdblGiHj8R4GgRbjBJYQd0ewWKY6PcFr8Y3b7CBf8ol1WcP94zfpQqRI2OOLZ46ahLH/i+157HwdPGqqt99j8D3Djs0vwzII1+Pc3D/Nsa7VdcZzvo1QfYf8LAr+fuJu2nPUdNtRl0OmadKizCDutdObykQ+LubwK1P/VI2/j2YVrC+I26i1GwTUi4z3W5RbCtAgTQgipOM79y5xCSCm31chjEfbVyeVVZNQFf/0w2jrzaGnIxpaLIq9UIfyaW4D4uw9MYotMGBI2Wc6qEymE/cueOMJWu6s2tWFTq2Uxd1vGHbKiF8JtnfmCj3C9ywfaCZ+WFv+xcYSwW5C7v8/tnelcWfwWYROXhMLret/biolDWwBYESr8vPjuenzhpjmF+kopTwQE8Vk+S02oEff2wU1bRx4duTwashnP8dW5Ijnn6B0vLserdjIRHZ15FXhL8exCKyb1ettqHDlZzq7rn5io818vBQphQgghFcdT7xSjPnjjCOdd6711TOIIm8S0bevIoX9zdLpcd1fZjOCCIyZ5IkIoVbRoucvGu0aE9+kWDXmNZdw/ESyqXU9mOfuYrN7chltmWemfMyIBy7g/jrAjdNtdQrjBI4RLdY3wLjv+3e63Au7PfovwyP5NOHzysNh+/KM0McTqQpzllcKI/k0AgLnvBVMH//rf8z31b5m1FEf/+olAuagEHXEPem4CrhERZdtzeXR0KtRnM54HHp3F1n0e/m3W0sB2d7mwh7eN9gNXVBxh5/fzz5dW4MwbXiiOnxZhQgghtURYZjn/rb0zr2JfJ5sE42/P5dGvKdpz0GvlVRDxT7oq+kd6Q2z52/ESJeY9E8NcAsNEG0WFT9O9/hYELcJ+Yeu06bYIux8GsiW6RgR8hO2EGu7Vf33+3cJnv0V45IAmDIh5oAGCvs8mD1SFgF6+79ZZ1E3WfGbB2mJ9EbyybIO2Tecc153LbZ15KIPoGEBQNEdVWb6+FX+fswzZjHi+Z+ch6dF5q/DbxxZ4xgcAg1oaAm05h7Mzp7SJVgBg0/bgd1ms740a8cqyDXjy7dWFfU6SCdAECmFCCCEVjScdsMcS6i2Xy+VjReHvHl8Y3Zf9Ordvo/kUGqXsSVcuU5VSxUxdUUNKFj6tKCqmfP8hz5hNxugm57GqBsVKRiQwAc5vEXbabHP5CK/b2o5P/cGaIFZfqmuE30dYM1nuqv+8U/jc5vP/bq7PGokmfxGTtwbOsfBM5FSqMOi4VMCukM2ugVh/iolkgvW2tHVi4sUP4Mf3BWNF+wlGKAnfryftpBcrNrR6vmfnWHz+RmsiH+B9UBjYJ/igkXX5/4Ydy02t4cfHHzWiMH7l3V4uepUQ/uLNc/DpPzwXX5AQQkjVoLMI64RE2Cz2JDh+vYP6BC1dbvwxjgVei7CCPu1wHFGaNiwqhMmkqqCPcHS7lo+wb7JcwJfW+tvemfPEEX5h8Tp05PKByXUmuK3Tsxat9URXiBOX/omQzQ16Iew/R/xldIklwnC3lFdFqalLxuLvM+xcdYfa8/t9O9n3bnhmcezYTCzbOjwW4RjXiIHNwd+Jczx1k+UcNhkktvH/fpyjW9OT5fJ5FftDIIQQUl14J3ZZn+syGe3r/lKTEGy1Z+4P0Fi6vGPy/s34wnDllXL5CIcPKihQo1wjojPLudm8vQOTv/cgHp//QUidYqXtIZE0ApPlfIrBOf7tuXwgocYfn1oU2q6DTtC465z7lxdx5K+KPrRxMaC3tAUtwv4xA8BJ//e0ZzmNRdj5ntzfl8sgHDlxEXAiX3j78Ydke33FRuz+w4dj27r8wbcw6bsPBNYHThfD34bpZDlA7wdecI3Iq9BIJ86kzCj851RXTZbrVeHTGusz2uw1hBBCqhf3rbRgEc6UxyI853tH4yO/ebqQ/GJbm6FFGJbF0rHMiXgFlVJFgeofUUtDtjCxLWoSm58kqYrnr9yMts48/u+/72Dxmq2BlNNuEaYTmNrJciEW4bbOfEA0/+Kh+YijIZsJ9BEV3i7OEOYXjE31Wa1V+s33vRPZ/FEjTFIH6ya0uQXiFk1WQn+fYd+m/2v+16vvRbb1hycWadcnmSznxhuVQ5d22esfH1Y/arKcO863/zdbbotvHL1KCOt+NIQQQqobnT9rViRwE87lorwgg5xz8EQM7dvoSXjhWIQHxkaNUDjnpjmFbGcZ8QpFz9B8g2pprCsKYd/GqHBSOQNLpUOHy3L+o3+9Gdju7kYvhIM+t2H+tkqZxV7201AXvKdf/sC80PJJhXB9Vox8hP1aOcyK6SavFD78m6c87iLuFM9xz2NaH2EbvzDUpXg2IThZzuz8yWomy3nadbWzdmtwUmAxRnC4a4T7PPf3EWbxLbyFSfQrj6dXCeHGumzgqZMQQkh1o8ssl8mI1iKcJAlBYVKQ677riCndJCA3CkB9XQZos5sQ8VqEI27WfZvq8MHmtmJDhiSxCDvHKSyphfJYhIOvqUVjEY7qPY0/dGNdBpt96+56eUVoed1kOTd+IZzJxAthhaDAN7EIKwW8scJrWc4r868zo3mQcyzT/vW6c9rEahqXzrtvY5324cLt7hAXPs2ZQKcbW2cuH5nt0MEvlsP2zflNler+5KdXCeGGOrpGEEJIzeG68TliUPfKO69UoiQE4vsLFCfLDYxxjQC8gkEiLMJ+UTxuUB905hSWrtuWyLYVZl3T4QiYOp2TLLyvzcMtwn4fTf0sfiDoz2lCY12ypCWb4yzC7cEEICYT9vwlTMSbTpxaYc1iqwJwJsvpx+EXenkFNNVntGms/f37/dS9273lWxqzWiHsjhpx50srMLRvo2d73CQ8dwpmk3PW9Lx2ui01456fXjVZrlHzGoUQQkh1k9NYhOsyQYtaZ14lem3qiAa3eCgK4Zj4s8qbRU18L3SjYgeLAOcdtpN2WxQmk7j8ZcOSWry2vJj5TGcRhkjsG1j3sU4jhN0xh02IE0x+C6jfXSWMgI+wwdOUToy15/LYFuMb7PDysvW4//X3tdsCllyl0NJQh1OmjS2s0+2Vv15ACPvK60IE1vniCD/1zhqc8acXvP3EnIeOu4jlIxx/zpq+TXD2p9TIMH56lRCmRZgQQmoPXRxhnUUtlze3yFltBNc5QiZ+spxCo0vIZcQrqDwZ8Hx1Ba4UvQmEe5RrhNvP2d1/mBD+9j9eK3zepLEIWwk19K4R29o78cDr75dsEW4IsVaHkVT/iEggaoTucKSJGqH7Kv7wxCL88pG3jcYWFrIOCAq9Pzy5CGu3tnseHPziHfBl2evMYfVmr/+uv12dEH70fw5HNib+c5xFWAx8hN2YWOABV6KRMsvAXiWEG+uy6Mwro1zxhBBCqgNvHGF7slwmOOu+M5fMR9jREm5J4cR/jctIpvwWYV9muShhaCXfKLZjim4Gv0OLT9Q44qLeQGzqQlnpokY4Y/3BPXPx5VtewmvLNxS2pfERTmIRTmMFzEjQR1gnH/zi2MQXu9xWSTdh3dfHuHm4x33lQ/Nx2h+f92y/7zWvBbqvJntic4M+5JxnfDHHxxlmLm/mI7xui1ew60Q+ADhN1bRrhPOjoVWYEEJqB10cYV1CgnwCH02nDcBrEXTCd5lNlitWzPgmy7lFpM4XtGgRNicqmkFLo9ci7FjiwibLudmgEcJ6LWL1v3z9NgBen92udo1Io30yEsyGpy+XInxaF8qQMKHn3heta4RLdC5aszW2n5aGoBAWQckW4ULUiJwycjP5yDVPx5YBigK83LbQXiWEnddQjBxBCCG1gy6zXDYjgRtiZz6f0CJsC2GfrGjIZrQiwY3fIgx4BZVHCPvkrkixzySWxSjfzD6+8TqC3mSy2IZtuhBYuvBb4W2kmyyXQAgnbt0Sjv5seDr8RUysmGmztkWOwz4nbpm1VLvdfX7pdsstOkcPbIrtT2cRFoS70wDW+Wr6Vt7UNULXR1h7UdvT0ruEcD0twoQQUmvofIStm7X3hpjLJ8ssV4ga4bvvD25pQMY3aUiHWwj7X8O7DTbB+7YUOt/U2onLH3jLyMAT9cq+pcFrEW61J/3Vx1j3AGDDNn34NH9vgWXXCtOJ7O5jncQinOZ1uBhahNNMlusKF804zR63K+7zw+Rw6XyERaIfHpSK33dPZrkEEzzjoEUYRcd6Ro4ghJDawbmpL127rZCCVxtHOJcss1xYRIEjpgwHEO1fq6A8k738TUX7CBdF+GX3zcUfnlyE/76lT4XsJspHuI9P1DjHKWvgGqET2ILw8Fs6a7axEAZw1ozxABJahFO5RphZhAM+wgbiLUlM53LhdY0I7tfG1g7c9OwSK4ybQXv+twhWu9FvEfJKIZePFuXOJstHOB94SIsj7Lt2rPDl9hHuVXGEG+1ZsRTChBBSW6zd0oZDr3yssFynmSyXyyfLOVXIp+ETS/uMGwjAykymcZ8FYN2s3f63GRG4ja/tnXFRI6y6c9+zkjIMaYmPWxylz/yi0ok5GzfBKgzRROXwH133dp17RVi7P/jI7jh295F4bflGPDx3lVG9NNnEMhJvRQWCovJzN86OreN/KBFJJ9aT4Hlw0+zX9+5+Ay8sXocf3jsXB08aGtteg+YhKSMS6VeeU9aE1LpMJnSCpHMYOnNW+LSRA5pww9n74rArH48dExAudIsW4Rp2jShahOkjTAghtYR/QldGJODDurmtM3ZGuxtd1Aj3+oaIhA8KwagRbkHlMdgEMogV+3SSWZj48kbtW0aAF793NH48c3cAbh/hdLf5jMT75bq3z3l3vXHb2YzgoElDjbKjFfpKaRGOdY1QZmLZj/+Vf5wbTTmI6+L9jcVUzE8vWBNa7rKZu+OT08ZiwtCW4MaY2MuOa4TJ+ZrLK7Tn8qjPZjBuUJ/Y8u56OpwJgOV+4OhVQtjxEaZFmBBCagv/zdEfPi0jwPqt7cl8hENu+M56ncXM4cUl6/DvN4vWTBHxCBWPj7C/fUhABJoMO8p3VSAY0rcRzfbr7kfeXAnAsmqnwbJwRk+WSyNI3KNJoh1Tu0ak8BE2wR9ZwqSfUsfhmSyn2R6Xec5h4tAWXPnJvbWZ/USiRX3ODmEbZTV2tnTmFTptIWziq+0Q53ZS0xbhxiwnyxFCSC3i99vM+nyEh/RtxLpt7YleoTtCL0x/RE3muvuV9zzLAl/UiBhR4u/TxJIdNUnJMfw6wnfZOss6aBI+Tcc3/v4q3lm1xbPO6T1NMhAH79t987GlET+mPsIpdHBArNWltLwnwS2UdWN2/MLjcM5TnQu8mY+wio4sYf/N5RU68yrxw5j7PNf9Bmt6shwtwoQQUpvo0ue6hdiQlgas39qeyHJYmPzlu087iybJKIrjEY+Zzu0/qUux7BeBJjf3KEuZ055fkJUi0B6au9Kz7Dw4lMsgl8g1IkX7VrY/k3KSeDy6NxRdTZyoTzJhEdC7QEiMFT2ft/yEo1xunNodOWuynHMOXnnKXkbjc7/50I2kpi3CDVnLjE+LMCGE1Bb+uK0KXkE2tG8jNrZ2pJrNH2aZTBLeS3y+lW6h5HcxEI1AM7GuRoatstvza/c439VSBFw61wi3VdOs73fXbsXLS819kB0yGUPXCPuvifXYwf+Gohw+wnEtxHVhqo2c4542akQ+xsrrtO+EM3Q0s+m55j62OrFe7jjCvSxqBCfLEUJILeKfpa8UfK4RDcgr8+gFQPBVP3zLSURixmsQ9lh4dT7CgbGYWIQjwkYUrZretuO0XZ/6rCdDXBRrt7Rj/srNRdeIEp2ETY+uSbSB+qwEJrBZWdLie3H8VzMZMX7v7vfXLodFOK7nuPBppjjf30GThuB7J+2Kja0d+M2jCwrb4oRwZ4yPsHNedOatcIYiGU+/cbgfZnVDqW3XCPvp3NQhnBBCSHXgF4EKfteIRgDAmi0JhHAhLq6XND6jAm9CjcjXtxIUrCave6MswmGvu+OaTeJDfNl9b+K4q54stm1cU085vQl0LiD+JCdhOEWSjMf/XZTDIhz3YOHxry6hO/dD0zmH7Ij+TcV04oJoK7o7fFocubyV8jypd04uH20RrmnXiGY7jrCpQzghhJDqQCcC3ffDvo3W/aG13cy6CbiEdFj0CPPhBdwdvK4R8e2a+QiHG4EyIWIurtm6BH7QfkqNGpEmWkMYOkGfMbQIO9bVRK4Rfp/1LvARXvizE7HTsGKIMxNRb0LYGxDnc3SKZfPwaZ15SzQ7x9fUiu3xEaZF2EsjhTAhhNQkAd9f2zLl4EzeCYnxH0nAIuysSSA8RMQj7NxjC7hGSFASKKVi3ToiJ8vZfSe1CDeUIITdZDOCA3caElvOPbxyakfdxMaML6RdGE6ZJO4NcT7CSfzLo8bl7sUt1Es5dP7d9D+QRFqE8/FRI4pl81Bwxes2HLTzEPmt4yZrHzDK7SPcq4RwE6NGEEJITaKdLOdadnSQv1wUYUXDEm1EIfAKDHfbgclyCIoCpYDFdsKAMDpzKlTYhYmNuNfIacKrOX242+5Tn03uJ1tGi7CubzF0jSiGEzMfz/xVmyP7b0zxgBGMLhLu712aNV1Cl/yTPv0UwqcZnDcdOWuyXNKxduYVPrv/DvjKEZP0b0/KbBLuVUK4IZuBCC3ChBBSzegsPjm/j7BPCTuWoyTWorDJcohZryOTQaiPsFn4NIUla6OFcC6vQkWK017AIhwz7iQh4vzoLN1xeKJGpO45iC6VdNbUNSKFRdiP32c2jUU4LnJI6HefcNhBi7Drc4yPsFH4NFfUCKjwh7cwlCp+F3of4WTtxdGrhLCIoKkuSyFMCCFVjM4f2O8WoOx/Dln3zTchYffpZBZhb7Y4j4+wRuDoLMLvrt0W2UdnPh8rhgLbYx4MWhrC00jHYeL7HEW5fF4BIGtbKPccMwAj+zdZ7ZuGTwuJuJEE/yv8NA8Ycc9wGY9gda9PNu6ApdmzLd4inI9LqOGKGpFXxfaTHN+wKCjOGMpJrxLCgOUewagRhBBSveh8YXUC1z13zBE8iYRwIbNc6YLMmizntggHuimWRVA05pVCa3u0kaczr0Ktf2GT5aIOx+1fmoFxg/tE9hlFmsxybsqogwsW2ZbGLEYNbLLbl9jvViFdHGE/ft1bDh9hP5kQJZzU4uov7w3LZuAaoaInyzm/X8tHuPgWI8kwnTq6bsqsg3ujEM6ilRZhQgipWnRiNuAjrPw+wsmFcME1wrc+jYXQPwHO7cfoH5Il0Lzrnl24NvbelsvFu0b4xxzlM73fxMGR/cWicfmIo1yT5fxCzLFQCoqptzNiJm7TZJYLjMdXOWlaYRPivntT/OX91uUoY3ZeKXTmoi3Czm+wM6+Qz6c7rsUHu663CPeqhBqAJYTpGkEIIdWLLkOWPqGGO2qEdcNM4z8YCCfl+2tCRrzCzn2z9t+4dfaxG59dEttHZz7c39Jx2fRv//3jCyPbTGMNd4RUMFGISd1gO2nIZsTz0ON8/yLFccWJOhTKBceWFP9xdFwjxg/pE+vy4hCbUCMkakTSrzBQ3t2uBN08BjTXY6+xA/DUO2uQV9b5HBV2z7EIFx9Wkz9oFH2Eg9tq2kcYcIQwXSMIIaRa2dDaEVinS6jhviE6IiGJtaiYUKP0SUjBhBrufoK+EWmsZFE+wo7YSBrPNo34K8UlwiMYy2qBdWUvs493JsbfNXJsCfEfdsc1Yu+xAzF13ECjNrTnruccL352jzW5j7Bv2bNNAsd25tTR+Mx+OwAwC5/mPKDk7cxyxQeNBD7ChQcb+ggHaKrPMMUyIYRUMes18XT9Lg/KFzaiLsI1YuLQlsA6wJ1Qw7tefDfuoX0bYsec8YnbyKgRKW2haXyE4yjFHSAQFi5hY6VMlvO7RrijDBSjgZhNlisHYa4a/ljApZDxWW51n5O2o6sf2I6iMM0rhY6cinT9cBJiKFjnfimuEbq6NR1HGACjRhBCSJWzfqtGCGtufu5Vzo1aX05/44y9n0b4KQaKin+yXJSPcLhojEpw4feL9rdp/e16i7Aj4wP7lbC/UiRqYMKXpjHTFMuF8ZQwoDDXiERiX/flGgjepMOOE77+twrueMxKAZ25PBrqwqONOG/t80p5J8slGGhxspzOImzejlFfJoVE5HgRmS8iC0TkIs32b4nIK/b/N0QkJyIleuHrYdQIQgiJppKu2WlYpxPCuhTLrs/O69w0wfYDLpO+NWZC2Fsr55ksp0moEdJOY0y0gbD9C4sjHEcp7gCe3TJtxlUuIhRtLH4LrDvclnuyXCL3lhKEsF+IF8KnlaiDva4Reh/hpN+5zuLrRjfB0Nm/XF6hPaeMMhIqBTuhhr6fKJwoIHof4W62CItIFsBvAZwAYDcAp4nIbu4ySqkrlVJTlVJTAVwM4Aml1LqyjtSGk+UIISScSrtmp2HDtqCPcIcmoYY3xXK4a4R/zcf2GeNZH/CZ9N24Td6uC7wCIzKzXIRAa6yPvi2HpVlO7RqRrLgHv69w4klbJU2W8x4nndjKmIRPc303pYwnzKpa1ljJ7jBnIW4SJkQl1LD6CW73ukbkjcLD5ZXlI5zmYcvJXFcpFuH9ACxQSi1SSrUDuA3AzIjypwG4tRyD09FUn8V2+ggTQkgYFXXNTsKWtk5c9Z+38cHm7YFtnTlf1AgorWuE7ibpNyBNGt7Xsz5uspzJBLSMiMfC6fER9reLYPg0h8aIV87+dj1tRrxKjqQkH+HkdTyuEQEBZj6YoFhz++Tak+UM2ytGmYgvu9uo/iHj8fksp3gwifN9DXWNCNmw19gB+M1p++hq+JZiXCNcE0EdIRz35sIpqzwJNWKrFHBHAfHTEz7CYwAscy0vt9cFEJE+AI4H8M+Q7eeKyBwRmbN69eqkYwVA1whCCImhoq7ZSfjRvXNx1X/ewV0vrwhs84dU8/vL1rksVnGEWYALy4W/5uJSxCsoolwj3G37iRMYYRbhoo9w3EhLx+kjKEjMXEh0n4FkQtif0rgotryuEaWM55vH7BIoP33CoNh2AJeQS/Ckoftm3evc56FJvGyBPp5x4LjE+AyLuFyPFBJYhK3xF9tL8v0WXV2C7Xa/ENaNPGwUHwHwTNgrNqXUdUqp6Uqp6cOGDTMdo4dGTpYjhJAoKuqanYQXlljD6NMQDHHfpokt7BZizs1WJxTDwn0568MtbU7b4WN29++NGqH/XGg3pM04gRGmAVL7CJdgEtbuV6K+vZgkvyha6b3rddnLMhK/d17XCH+bmv5D2glO3pPiOA2FW3yKZb0QDrOQuie5+deHtQsEvwfL7afYb1zUiOK4LNGa5iHNHXXDT0+4RiwHMM61PBbAeyFlT0UXv2JrbqAQJoSQCCrqmp0EJ/GAztrlD5vphGZyyCaxCDtyJsQ1wn/jNnrFLn4f4YjwaRIxWa4+2jUijKhMXFGUYkGOylrn5qtH7aztLyDADF1QgKBYc4SxCDwW4UT7F3hTkMBVI8winKCNuPjM7sPj/EZyeRUqDEX0xzTgI+zfHogaUVznvJlpyMafp8p2jUjjJ50NibrRWJfpEYvwbAA7i8hEEWmAdeG8119IRAYAOAzAPWUdoY+muiw6cipZPnlCCKkdKuqabcqKDa2Fz535oPXXbxFWdmgmB8dnVBdVQSdEo5b90sA0Ta+7mFskBgVO+CSuJoNXzjqSWK+9I4lm3OBmzPne0dptgUmABn14PvsqmAlh+6/Gj9X55I4jnMTibVIy7HsLWFkLrhFljCOcEVx96lQA1vn18tL12Om7D2BLW6d+TNA/xIU9+Dn4jb1uy/K7a7cCiH9zAQC3zV6Gpeu2pcrUGOYakXG5vpSL2D1RSnUCuADAwwDeAnC7UmquiJwnIue5in4MwCNKqa3lHaKXJntGLa3ChBASpNKu2aY8u2BN4bM/ixwAtHX4J8v54gjbN0xt1IiQeLfxYYTN3Q383g7uYWzY6o2CEWURNhEY2v5FLxzi68Vsj5CS/ueVOBeTYNteSrEIux8EHIHufziJw3/sktT1D90ZXzmjRmREMHPqGHz58J2Qzys8t2htbHndQ1zcg6D/e3C7Rnz/nrkAkp2nac7NMNeIjKQLkRjZl0khpdQDAB7wrbvWt3wjgBvLNbAwmuzXRts7cmhpNBo+IYTUFJV0zTbFbfHtyAUtwu3+dcorcJ3JU0kmy4X7Vur/RuEXPO6b9d/nLPNsk4g246JGhJHeIhxdQSRcwJi+ovZmRNN/9pcLwxFpAbFWEFvu9oyGFzq5LpE1OURMZiIeesLGEUc2I+jMKyxYtSV2TLqHi+DkUP2xdBUIWJYbDHyEw/ozISx8WkakZxJqVBIFi7Bm4gQhhJDex3VPLsT37n6jsKyb8KZ7C+gWYo6PaBq3uYAl0LfdxFLpv9lHicQoYdAUE0c4tM3UCTWit0dNOMv5JpqFhqEz7LvO4Dg7Fs5gQg2nL3GtS3gsYlwGwtYBwQlcngQfhv3rThmvr3nR0g0Ad2qiq3jGCv1kubgUy0GLcLCdel/8um8eswsum7m7dhzF78YcJ060znrdEz7CFYXbIkwIIaT387MH5nmWdRbhgI8w/OHTrNuZxqtC48sq9npnWU+S2LyJhHCEw0Fa14ikk+VMNWKU9dq9ixLhhhC2Ps1kOaeKXzSLb7vzOYn48o+zlBjAWdfkvTB2HNpi3oGLwNuREIwtwnFRIyS4zi+Ep44biOH9GvXjQNBaH0d9mI9wRnokjnBFMaC5HoA+Fz0hhJDeh/8G6c8iB2iiRvgCCYdNlouy6oVnlrNvwvayWdAIr+UvyjBtuRvot5XqGmEqNooWy/h2w0S7qWXO4w7hXu8rZ+Qj7LgchKRYdk+myiRUwsE3AxoRGXosvMtF14jwAZy23w6e5TiB52z9YFNbZDkHSwgH18elWA5ORAyeJ/W+B7aMCML0eZpU2tlQH+Hyu0b0OifbUQOaAQDvbwxmHiKEEFKd+BMpWRbhYBxhv2tERvNq2u9nGqeVzDLLeZfjJvSEtZjWNaIYtzZ+rMP7NeIHH3GybkeXlwgx6T/WJhbhsM9AQteIsNf7UjwvspnSokYksWCu9GkSd1zj0NjPvvbj9J3Tji7zorb9ENeIuP3UpWD2t+P3ERYBjtt9ROhIdP1EEe4jTNcIjOzfBABYtYlCmBBCaoUX313vWbaC9ReXi64RfiEcFCKn7bcDzj5wAi44chKAcB/h4gQ0k1f24ol2ERVjV9yd+EgdNcL+a2K9fuBrh+DDe4226sVZhCPKBKNx6AtKiB04IHKMXCP0gt9vxbfWxTbneaAysVyKANee/qHA+rdWbvIsZ0Ms10DxYSdJJr3iaM31TyYT5hoRbfnW+Qj71/ldIwRAXTaDbx03OTgO521FgocSx0c4KMo5WQ79muogAmxq7YgvTAghpOJJKgcAS7x4fVStv0HXCJ0QyeLSj+6O/k312v4Lbgb2slkcYWBbezGea7RrRLilMq1rhDNo01Bvus8RzWoxjxphMBAUj/OeYwaEtuXor3AfYa9rxKgBTUZjtNrQi2t/P8fvMSqw3n8o3K4nAcuv8pYJayOsj++dtFt0wcJYwzLL+cfqXw5ae/1l6vw+F/Z2nVXfba03JdRHWOJdSJLS64RwJiPo11iHTdv1AaQJIYT0LpLGvnVwu0YUhLDOIhzz0jn8lb75K10RoNXlvhF3sw5rsz6xldCiYHUzqO4NZxZfPqxIQAgndI0Imyw3LGTSFRAVNcJ5ECi6GGREMGFoC/7zzcNC2xPoLZWDWxoSPaD947wZ2G/i4OI4C2434QkgUp72OHSXYdh7bPjDgrt9fWa5ELcSG20c4YBFWG9VNunPhDC3JctHuMaFMAD0b66nRZgQQmoY5Ysj7NyI/fPs0mSiCliEDV/Zt3oswtHh08JazCaIz+ppM0H4NI8QjpF7SoU/qPgnR4UbfkVbxl/e8QuNGpGECGH3d1YMM2at22Fwn9D2PK4RriYf/vqhWkt22OGdPmEwTtuvmNk8bLKXp63AWDTJYEI+m56TWteImDWBc0iCluWGrH+yXEhdV+tJzmzGEY6hf1M9Nm2nECaEkGoglWuE8lpdM76oEclil+pLJfIRBrCtvRjZIirClSA8xbLJhDEdicKnhVhoDYoDKD6AmL6iNplEB3hj74YRFo1BV9f5XJ8V7DV2QEC8RQ1oWL9GX1vRVQGv4HdHsTDpDzB3jQA0rgna8ej7j7MIBxOLxIdPC3tAcW9L8uan4CPs98AQTpYDAPRvrsOmVrpGEEJItWJi8XJuhz/66O5Fi3BBCBeFSGwq5cCN3yeyDFP/trri20dFjdD5jbrbSUNRtOu3n33gBFcf5u0qBMfqCBG/IAkTOmGCMsw1IuoQhD7guC3C/rIiuPeCg3H8HiPDG9a0qRtrlJhzb3KnCPZbegth+3z1Y6NGuEqYPDCFuUb4O/aX0Fnb/bsdFMLWX91vJc0pXRfxwFNmHdw7hXA/WoQJIaRq0N0o4270ShUny31k79EBH2H3ZKW4G2eYqHI+GMURFqDVZRGOTqgRbqlOaxGOs7rtNrp/oKwzlti2DWPnhtfXtxUmwKIOQZggLQgmlxIOTEaLG2eEQEyaHS1TVOHhZUqwCBvFXBbRTvTURWLwbNdllvOnWK7zl7HQnb/uUHKmFNxkNJPlaBGG5RqxmZPlCCGkavFbnHQ4N0S3sCxYhAuZvcwsZ1HrTf1u3amhY32EQ5rMGux3WJvWOMLHV/zsrpf++Lj3McrvOW4yooMj2txj/fg+YzCif6Orjr5NnWtI8hTLgQG6tpkcJ80xTpRq21zgGVmEoQ8JpxOXbkwyy9Vl9BZhnfAWXxkT6kIeiugjbGO5RtAiTAgh1YBOZNTFTBpTcKVIdglLv0XYupHGJbfQW7ecv25BNW5wc2RbhfHFhE8Lk40modq0bcZMlguzysah8wN2VgVdI/RthEWp0MzJCqz/9aen4opP7OUqo7cuur+zsIyBYYSFM/McM/9JoUF3jKPOvKTftHeynIGPcMhkOV3CDDfaqBG+Mv7McmHxnXXtm+AI7cD3TIuwRf+memxu6wxktSGEEFIdxFmE3RmW3ZPPnNuCW8TGukbEWoSL6+678JDoxmyiEmpE9dlVk+XCBGgakeL4quYjJgSG9g39Z8D9Cl1vKXbXCVqEJbA+acKKsDZN2/L6FFt/ox+IvMu6su51/ZqKyYBNfYSNJssF4idr2okNn2YRldI5WUIN/YOd9XumEEb/ZisI+ha6RxBCSO9Hc3+Mi6drJdSwXSMyxSY683nfq3+D7gM3fu+N27kZtzRkMcC+/wTG47s3Rxlqwu3BabKN2W2GuAz4twc+x4VPi2jTL/bDWgpbH8wOFxwf4D0moe4qTl2IK3yat0yUdVs7bo2AjzpeHv9n1xuKQB+FNxnm3/WXDt0Rh+8yrLBsEmbPsuSa/AC8i0HXiPjwaQWLsK6/mHNTR7iPsBg/gJnSO4Ww/VTECXOEEFKduMNDPfXtIwLb3XGEBcUbZj7vvXmKxEeN8OO/XztCLKqdvFKYOLTFM76oDsJEUFohHBeuK8x3NlacqKD4CwufZuZvHLTu+scVOhEOxbGEWW8zmWDUCFPCUm17xxZVP9hWEteItVvbQ8uevM8Yz/hMLMKZUNeI8P0E9Oeg/8FOl2I5rG4pCTV0bhx0jUDRIryRfsKEENLr0d0m3T7CA/uEWGFtmWGlLLbIK+W5eZqkZA2z8sVZWd3klcLdXzkI9114cGE5qr9yW4QdjCJcJGwz8Arf/mvsnRjqruEXvPZ6XzkTC79bKqsUFlddv57qCY+rUzfeVzyaYrIPb1lTVw3t5LWQh4jCssZS73eF8PvwO01oUyz7/ur47olTPMv1ThxhnUWYk+VQyA9PIUwIIdVJvWsykO6m75ksh+KNOJdXljB2WUhjb5waq5P3b7zoyCtgQHM9xtlZzNJGjUjvIxxtEfZGNAi3yvpRujJhk+UMxukdk39ZbwXUZ0fTW41F9JnionCnZA7rwyQEmM7lJOohLMnx8vve1htMlgP0USPiE2oEj8PAPg343km7hvYfNVnTE9ouBH8UCsf1wz/+TMY8kYspvVIITxreFwDw2vKNPTwSQgghpaLTbm6Lk+7m6p4sl3H5MAYtwhKZ3ALQWAKd1+/wCrOo+68/rW90ZrkoK3Q6IRzrI6wpG1U+akyFyXL+42HQ1qEuP9fgcbeIslBKiKjSrS45jrBr2cxS7x5neJ8FoW6gwIquID6LsGEqbpMUy1GTE62+rb/Txg8qrAvz79ZnltP3E4XzQOiPjmE92FIIY1i/Rgzt24il67b29FAIIYR0AW4fYb0IUcU4wq7NubwKuB7E3ThDxWe8IcvVh7etSEtghEU49WS5Qtv6+l6/YP3nuLb9xD1g+Dl0l2G4bObu2jFZY9F3qIuBHBBzLot4WDi0MMJK6fyZTZ9Tig9P0S4ycYS5Rpi8OVBKfwyiBD8QFOjO5qhz02lDHz4t+Tnt9OXfT+kC14i6+CKVyZCWBqzdEu5YTgghpHegEwTuqBE6P0f3ZDnA6xrhsQhn4n1Zg6LKu94R5YfuMjS0DXdyDyA6fFqUAErrIhyXBtrEUqwjURzhMCu3/XfsoGbPJKsw14jI8Gn2xzGDvPGcdRZxU/0V7hoRHFsUOteIvAp/k5BEH5q4i+jQW2jD91NXJ8raW2zDtuDqhLevHW193zbH9cIvhG/+/H6pfyNh9EqLMAAMbmnAuogZloQQQnoHsa4RBiLPHUc4I1K4+2ZEUsf0dWioy+Dx/z0cV5+6T2gZv3U6yloa1V+aGfZAvKAN3W7QXdhkOX8kgaRDD06E8v4trHcpFUdwDe/XhD+dNT1QVxCfqjiMKEupyet9r3C2/pbrLb6/X1NfcpMELWEZ/vx9+/14vW3YdcuUYtn5zfsn5Q1orke/Jv3k2bT0XiHcl0KYEEKqldiEGoAnXqxzu8wr5bnjCuIn1wQsws5f1w18wtAWNNVnQ9sY2Nxgl7XqREYLQLhojBP9oW3GCJ5wi3B0PRXRtsciH9lKsHzUWPzd6eIIC4Bm1/cR5kvrHUBw1a8/tXf4eNxvFjQW52B5CXxWEZ7JRlEjQqqbZJZTUEbnU5hl3r896idp4iOchijxXS56rRAe0tIQGXOPEEJI7yU+s5zyZJFzrE6Wa0RR3qUKt+RzjYiif1Md/nbO/thtdH+rjuOikTJkW9rXvnFiI0x0xdXTZztzJssZJtQIE+Ehll9dyCx/HxnxdugWqkrjO67j6F2H44Q9R2n7sfoqLhtZVjWfo7LFlfKKP0l0kTg3ijjXiOL68N+kc+yiUjpHCf+wLaWGEzSh1wrhwS0N2NjagY6oqbmEEEIqHt2tLu4G6AmfJhLqIywSneXNqa9f7/2ro6EugwMnFX2HC64RMSnLQi3CKc1ncfXKKSdeWroBgHcfJWKfiniPSZjwDAhkjY+CFTs6aIHVrYvjk9PGYnBLAz4xbax3PJ5u41/v61wp3G8jbjv3ALx+6bHFMhGtPfT1QwJtukkiEONEfKxrhDiuEfFCVj85T/+9muCPX9wV9FohPKRvIwBgzZa2Hh4JIYSQUtAJFn8KVz9W+LTiBDW3a4Q7jnCaqAjF8GneZRPck6Si+iu3EI6rFSr2Y+pFvdo39X8NcxeJi17g4BZ9bj9irQ+vxIdJ23PMAM/yuMF98NL3j8EOdgzoYptBl4wovK4UjmtEcTx9G+s8/q1RbU4Z2T+yLxOBWLA8xyi9uO+hIHJNokZoipgcu11G9tOuN3EBKZVeK4Sn2AdtxuWP9vBICCGElBv/JBkdRYswCndra7JcsUzC8K/e1SlEqelkuW53jUhZLwq/+0dchj4/YS4QfsGstWiKtzf3hCx3ohU3cYk2gg9EmrHaf+/88oE4+8AJvvJB4ey1mkf3p6MUH+FC2ZgvOe6cc6pHu2OEP3j6Hyx1HLjTUFx3xrTAerfgL+VcjaLXCmF3TndCCCHVRaxrhFIuX1D9a3LAzMLqF3Cmlkp9WxaxKZbDxGEXTZYL001JrN1+Sk1s4O85VKC6Lb+usnFxfsN9k80Eu3aynL38oR0G4dKP7u6rEPyo9RGOGYfJ2JL4CMefUzHnv/3XKI6wpojJREPAmpDqx93nhUdMim4gJb1WCPdtLIZAbu+knzAhhPRWdPfHOCuW88pZdwN210wa/9Vd3//XhGKGu+j+wtr0C3f3vS6KeKmTzFrrEKV1875bb9K24qIVfNL22fVGjXCsi+KLF20tZEQi3Tn87Xn69wvChP7GuvMuaiQmOvh7J+2GQX3qMbx/o2e9iY+w03fsZDnf5mCiE2s56jcZleLbVO/rijmC/0uH7YhvHjvZrKGE9NqEGu4wNtvaO9FQ19CDoyGEEJKUV5dtQHsur70Dxlpy7UQFRUug1wocZaHyE1okhbHUb5HUCUlBuDjwj9dURMQeL0N3gCQEokYk7CMqscM7Pz2hILx0PsL+/sT14fKP74nLH5iHoX294tHfRhKfZZ3F2Y/Opzg6s1w8x+8xEsfvMTKw3sR1yCF2spx/OeQ4RKV1juqheG7GCfLgdieZTZmzKnv76Lqmu48tbZ0Y2IdCmBBCehMzf/sMAKBfU/BWFOcCaVmElTZYv9dHOIVF2BeBINkrbO/ret392yqibzMqu1l0vzHbU1aMEiClipOgACuucYfP84ZP89hdA3UFgiOnjMCRU0aE9ms6ITGj7yoUb3HbIhz5ZiD9Y0iSqBHxCWnCLeHWskVk1AgD94fYc1Sz3ekzLvJLKfRa1wg329pzPT0EQgghZSX+Rp9X+hvw1vackQUvdgQGddMInahQY8H0tqaiLbm1rVSCsZKT9RF8Ba8vVxfi96LzB47azWL83rDvJbAm8Ckys5znAazYZ5hVuJRvxMRH2Ok26WS5QPEIt4dCEYSXMc0sF1WXQjiEs2aMBwC8vHR9D4+EEEJIWnQ3yLj7vDVZTm+13djaUWy7hMlyaYWKiVtGuLuAd9nU8Be3m6aREpLgFnhiMAa/727YvgaiRrgjB7jra+qaHC9jH2HNm4VIi2dc1IiCldiOXlGCAjOLGqHssnGuEd7tQ/s24pCdXbGx7b9pLcJJfYTd5Z2xlzoxM4peLYQ/ve8OAIDv/PP1Hh4JIYSQchJn4XRcI8JuwFKwYsX3FTZZLmx7HEULWJRwMHONSBtXONBfyslyUZha6cJ9h8321S3A3N+31w0l/pjHjsd3Lolmm2m7BdHr2h54ECjhMWRbe6dx2aQuCdmM4C9f2B97jxvo2W7ijhFpEY61TFvbG+tcbjF0jYhm5ICmnh4CIYSQEmntCLq3Rd1zM+K8co633ppIjVhhlFCwSOBDsN2wFv1i44gpw436jHeNCFlfUvg0f1vJiJqc5sYTNULjrgCYh+iyypg9FOiFthnFyXLAATsOAWBlxPUWMmxMQ2fOXBi6j9/fvrh/4r5MfOUdwaorYfqGxSnXWFcMhuC4ddAiHMKgPsUMLZu3d0SUJIQQUql0aG7qkTddsUJkKaW0N+njdx9ZuOmaWVTDXCPSKZV4cR6VYrn4+cbP7YuT9hyVqM/Q7SnrRUU9MI0aUWwruu9iyDFvwTqXG4D72GpTLxv0H+4m4jsPIsaqr+8uX3SDuOSkXfHo/xyGUQOaQ8sn5bMH7IDrz5weWUbnIzzVtvJ6xpHQYqwtUygbLJzUP91tEXbmTNIiHIKI4Ben7AUA2LCNQpgQQqoFk9nnYRbhM+z5I0C6qBEoiOv4sWjb89XX9RfuqlBc36ehzrNjUeNIO1kubtei5EfSFMt+gm4g+vqhIdM8rgialaHjCVnvO5fcbrjFlN1mDTsfFawIGDsO61vY5hy2UtxeGuuy5m8LQizqhe1x545BH04T4wY3B1NV+8qE4TxYNda7H3wc1wiDQaSkVwthABjQbFmFf3DPGz08EkIIIeUicoa6iOUa4SrnCbFlKB4LZUL7id4e12BodIKIcWVD9iOqPVeX4dsjRHlaAhbhpC4kvuJjB1kCatLwvr5y0UJO11Z0v47l2bc+sKx3wwht11XKEdGRcYRLMQnDfCJl1DkVOY5C5kZvn+cdtlOwDXvfG+uyePLbR2CvsQNcdcRTJoztHZbabepm14heH0e4wbabPzZ/dQ+PhBBCSLmIi7igYN0cddYmt2BMF0fY3VNy/Ol44/rz1nWP3fe6PaLPuNfP4WOJrhelP/yvq2NdIwJj8lY4eNJQ/PP8Gdhn3KDQNmIfcgwEU+yDj+YJKLDN5tvHT8aYgc2B8Zywxyg89fYaXHTClIhxlKaEY787+29GM9kwyTjc/Sy6/KSQMlH1I5sv0GC7REwe2a+wrjuiRvR6IbzDkD7xhQghhPQq4nyEc3krfJruHu7OLFeq1S1NG3GTi6J8hL3r/a4DziNA8jF2RRxhY21i4PIAWPswbfzg6KZCrMO6KA1+HN/j8GMhoUthVb58+CRt+ab6LH796akRowlv87//c1hkvaSM7N+It963+9R8GWn9y03biHONcDIAThzaghvOnl6YXAh0T9SIXi+EdxrWF1NG9sOQvswsRwgh1UK01RTodESNprwrKZmZRThEAIVZAWPbK8Ei7E8n7OnbQGyEkSARmQf/xDU3/oQaaV1I0lQRSf+QE/cQUuwj3iXDW99sQM5h05UeM7AZOw3rq9mSnt99dhp2/cFDVp9ai3A0aWJxu0+NqN/g7z/7IezlmsDnzwhI1whDGusyeGbBWuTzKjaVICGEkMpAJNyqaOIj/PfZy7QRHqwbt2OVNRuHv30glU7z1ot8Xazf6PV1DksoHF1P31+y9SYEo0aEWcAt/N91msliYS4widowXO9eNgnPlvjNQRdY6d04/snNDUWfW12Pad1qvG3EN6Arc0JMVBRGjTDk1eUb7b8benYghBBCjInKVBXpIyxAZ16htSOHbe25QHm/mIwjznIb1YLu9mwipMO2ufejuT7r2xb1cBDRWUSPpfipuoVttEB03BZKtCC76vjdS5JNlgtb73140oVnMxlbKeOImlxXDvThzeLqGLQbsa2U6BjFFMupm4jvo+ua7n7KlYGHEEJI1xOVqSpKoOmu9e4bfEbcYiZ+HH5x4BZbnhWGFPoOS+UrEXGEXXUmDm0xFntxb0PTWoRNdNl+Ewbjms98KL6gj3QWYbe7QpCo8RbjCIdZ4/19uT4X/pbyMOIrr1nXtTJY/3uId42Ib9f/G3I/9JgcuzCc74oJNWK49vRpAIDtmuxEhBBCKpNsxB02LrOcH+9rbNF+TkpqH1TNmPzbTWLrNtRlQrf5iTqWUXXjdtFEftz4+X09E5xM8Y/JRCiFxhRO0G/oQ4HBZLnow5zshBERPPGtw3HdGdMK68qp96LeVsSt82xP+L0EtmWcfmKbCZDthslyRkJYRI4XkfkiskBELgopc7iIvCIic0XkifIOM5ph/awZh7o0nYQQUmtU+jXbIereFnVzjnu9KxIvRsPqapcTChxHwEal8g21CAvQpyGLaeMHBfqOGkWUdT2qblmiapj6Y/szy6UyxUnI5yQt2K4acZnxEgrtpMcyI8D4IS2YMLSlsK4rLZ9hhA5bDL9XxFjKS3C/yVRC+DQRyQL4LYBjACwHMFtE7lVKvekqMxDA7wAcr5RaKiJm6U7KhONH5QRjJoSQWqU3XLMdoqw8SZNHuEWnWxSmmfFeEHaFNmKb8ODEt4+2COvJZARvXHqc3hIbaSVP5xoRh4n+0E1Y9GwPqVeSO2PEw4RJ3ejN4vkLuJNCpG42WF7jedP9MrhMbqURTZhZ0/U4bzp62iK8H4AFSqlFSql2ALcBmOkr8xkAdyqllgKAUuqD8g4zmiY7HV9bJy3ChJCap+Kv2Q6d+XDjhcnkqzD8SSnSknZWf9EiHNFuqEVYkMlIQcybRknwW4T9ExEFgn0nDEJ9Nrk7QleR5ruJOx5R4d7iUhtHvRlI4ydrUCPQdjknyxmnwI57MDB5mPQVcfddDBeX/AvPdEPUCJPwaWMALHMtLwewv6/MLgDqReRxAP0AXK2UutnfkIicC+BcANhhhx3SjFeLExpkU2tH2dokhJBeSsVfswEgn1eRrhFJfYTDtpeWWc5ejm3BS2MhRWyEa0Soj3B431G74o6d/MaPjoMA2P2HD3vq3nHegdqxlIvYiXe+5VST5Vx/TY9NWBuBTHc+E60n+oiB+0dqi7Cr0R7wjIjFyC2ki/rujjjCJhZh3f75R1QHYBqAkwAcB+D7IrJLoJJS1ymlpiulpg8bNizxYMPo22jp+VtfWBZTkhBCqp6Kv2YDwWQMfuIyy8XVLUZuiB9LnP9sYtcI2yIcJtglos2ofTPd1rexDi2NXjtXesFrkLJY84rfpO80Y/KGxkteP3I8BuXKaUHXuVv0hA4uR/g0/7npsQgXMvolHZnlQw0AJ8bEGy4FE4vwcgDjXMtjAbynKbNGKbUVwFYReRLA3gDeLssoY+jXVI8DdhyMN1ZswsZtHRjQp747uiWEkEqk4q/ZANCZi77lR4u+6LYTxxEOFUZd4xoBCW85sN+i/RggfrJcmHW6dGGX9jgFokYYuR+Uv19/226rcxLShk/zWoR7YLJcGaJGmE2oS87IAU2Y9+Pj0VjXdUHOTFqeDWBnEZkoIg0ATgVwr6/MPQAOEZE6EekD6zXcW+UdajRfO2oXbGnrxH/nrerObgkhpNLoFdfsKP9gIC6hRpyPcHDCWxSBOMIBLZrsFu7ctKNjzpq5RkSNy1svzkoesj6yVsLJcnGuEb7GSs0sp6tuEkfYOHyaziIc6RqRbH+6erKcaVtxD5alRo0olab6bFke2MKIFcJKqU4AFwB4GNaF8nal1FwROU9EzrPLvAXgIQCvAXgBwPVKqTe6bNQa9ps4GA11Gcxbubk7uyWEkIqit1yz/ZNf9hjTH/d85aDCcin3vaRxhLvKNSJKfIY16bfsBlNHm9XzYzpBzI+JmNJZNk36SDVZrgyW7fA2vH+NzfG++knH4f5uesJHOE7Emj1MlqdMT2DiGgGl1AMAHvCtu9a3fCWAK8s3tGRkM4L+TXXYvL2zp4ZACCEVQW+4Znf6hPBBOw3FqAFNhWW/cPvrF/bH6X+aZW2LMeFkMi4fYaO7uH/R3Jqse5VdtAiHdCdRfrMRVuSIccS6RnShCElrrUtVryBWw7PzhffnXfZ/dSY+wuVE96DVI3GEy2AR9uPei+IuVaYSrorMcg6NdVm8+O66nh4GIYSQGPwW4Yzlz1DAL5IO3nmoaxJavGtEWDs6wl6Jx00CC6PBjhoRaiG1/5lgGsIr1jUi4XqHJD6r3SFz3H3ow6eFU0yxHN24zlJrNLYShTmAsvpGmH536d+ZuEpUu0W4t7BiQysAYNWm7RjRvymmNCGEkJ7CbxF2+/U6ywEKQqa48epTpwaKZVyT0Uq5+YrOZGdAIaFGqNUXHm2RzUhonFTxfE7vGpHGAm2KzpNARzk0njNeQfrv1thH2L1Q8C+OstgnFM52eW+EhR6gDBbhYNQI5fqcZlDdR1VZhB2ufHg+3llFX2FCCKlUcrngxClvRIBw3Nuc8Eqe7a4CpcQRTisRG+sNfIRd21774bFG7UbtSjbOIpzSR9iE2FfrZbQVxz0YGE3uM/QR1odPi2g3pUU47xGN3a8a075N6IoyPUFVCuF/vLgcX7hpTk8PgxBCSAhO1IjixDLvbTITGT7BVU5TLCvisRzGEVcmsWtENjpqhHi9QAIxf71l3Vby8JHE+U2ndo2I2Q64rbSlSR0zy6O+fBIRahpBw7M/XfDq3ynv8adN1kSBkjIoxqw3C0EYXkYZlOlJqkoIf/XISYXPFXq8CSGEoOgjPKSlAYDjGlHENKGGThwmjhrhtwgbhNGKojE2aoSUXRTEu0ZE+Wl0LQXBF6PyhvZtNGirON7kI3cSO4Q9oHgfnro6fJpzbrotwmkny5VyPsXHETZoI3XvPU9V+QhPnzC48Lk+W1UanxBCqgrHR3h4v0a8v3E7WttzPutneN0kCTXMMsuFCN+Ud/ewqBEithgU86Y9bh4R+xLrGpFwvUOcLktilY1q6t4LDjISwt7OkxUvVDO0CJer3dDy9t9y+NOWMvbYNyIlWsOd/XMX+ef5M7ByY1t8w91AVQnhpvps4fNBOw3pwZEQQgiJwrEID+/fBGAj1mxpN54YFmfxFY9gTG4RDmxPKDMcd4/ghEBBTqlErRkfk66KI9xNPqv9mpJlhBUJixphkBI6ok3rr/XB074zWS5Fu6HlCz7CgW4SY43VW9v0qytH+LSkGRynjR8cXrCbqSqzqTsFX3tM+k5CCCE9h9siDABrt7b5JrkF6+hEjs5K6k2xHD+WoG+obzmhwnGEcEfOmz0vm3BcfuoixG78ZLnk/Zlg0uwhOw/DiP6NOO+wHUtqB/AKc9OHhNC2AmOId4mJjBqReAhWBbePeNoHj7JERwnbnubY9nQkjARUlRBucAvhzuj0nYQQQnqOnD1Zbng/K9Tluq3tnu2RE8M8fqI6H+GEgymzSmy04wh3+AwybotjmjjCdVlvnYMnDS18jrMIh7YfM444EWNiCRzc0oBZ3z0au48eENFObDOp+nYTl2LZfyhEwrcZNRBX2i4+ZmAzrvnMPgBKcI0oSQjHFYjefO3p08z6qVBP4qoSwu7JAv4ncUIIIZVDpy0SxwxqBgAM7NPguVFG3ZzdVmCd/vOHYktKcPJcMgoWYZ9BxhHwounDBP/cl+vPml74nD6OcPJxeOqXVt3VTvKW0vYdFz4tqlzkZLmEA3I/0O1nz3EqzTXCi4mbCGDgIxyz/djdRgTW7T66f7CdytTB1SWEdxnRD384YxomDOmD9dvaMeGi+3HHnGU9PSxCCCE+HB/hcYOace3pH8JVn57queOaJi7QlfNajOPRyB3vUsIbuCNY23N+IZymvWLhOp8QdrcT5xoR6iOcZCi6+mUSN2lCj2nrRGi/C4/aGcP6NWL6hEFdMqakuJt3LPppXSOc7/ff3zgUfzxzekxp3zhi3WqSP2T97ON7YsehdozvCveNqCohDADH7T4S/Zrq8cJiK9XydU8u6uEREUII8eP4CGczguP3GIXBLQ2xPsK6bXqLcDIRExXmLA7dPd7x5fWHwipYhBOOz6Het7OeTHxxcYTTWoTjokZ08+tu93BM3yA4TB03ELMvORoDmqMn5onvr7vjqG5K8chxzo20mtFpq6WxDs2uwAFGdUvdrjn4TfVZTBtv9sDR01SdEAas11Jt9iuppLnCCSGEdD05WyS6fVs9FjLDd9BxFmET4iZJJfVFdXx5/VmTCz7CCPoI7z1W7z8b5SOcxCIc6g5QoX6bfs6cMd6zLBBfdJDS8Rtjtd975GS59Oed8zMoNXya+9w3bSs2s1yJp4gqxG8urZ2uoqrCpzm4n4Yq9cATQkgtk3cswinCesVZhEWSCbxy3ycci3DOHz4tE24RvuO8AwvZ9jxjc332+wi7t6X1EY47TLFaqptcIy6buQcum7kHHpv/Ae555T3ss8PArpPwdsNxxzSkmnl593lcSmo4V33325CyhU9LeaRLfaDsLqpSCI+1J18QQgipTByN6BYbEmPpdW7ssXGEE1vmopeTkg3xU5CQz4D1JrMh5iVtQAjHHC83aS2NcT6r5ZI2pt/ZEZOHY8kVJwEAtrR1BraX4o7qnIvjBvUBAOwwuE+gTKRrRAo/Z4dS314X6neB1izZIlzhPsJVKYRHDaAQJoSQSsaxlrpvsl7XiPC67m3lSQbgX452lYgjLN5v0UfYPMWyu5y/3RKNiFb7pdZ3NVCK4EkzDt2DRZLJZv6yfRvrcO3p0wqT6bIZwR/OmIa5KzbieXveUfR4Ej6AuQ5enGtLfN/pxmCNI3p92pEFXI5SttPVVK2PsMO8lZsx4aL7sXl7Rw+OiBBCiBtnIpnXIlzcHmUhi4saEVY2tEyZX9n6fXkdwvyhTYmyCKclro3j9hgZXb8H5U3a3Y/a5+P3GOlJ9Xzc7iPxzWMnG/WZ2CJcQt2ovgsPBcbh02J9I0rCGUWFekZUp0VY9zS+dkt74hSOhBBCuoacxkdYN3lIh0l0iZLiCPuWk1o6w3xLC+HTYD4+d7EwgW1CmCiKavGRbxyKiU4IrBA8AqyUY56ibm+Z6BdGOV0jSiHuzUK5fIQrlaq0COsuFkmd3gkhhHQdeV3UCM9lOsIibCAgJg3rCwBoqk9+myu8Ek5526gL8RF2RL81WS55436LcDmIGsbwfo2J+izNNaK0V/pdLroK4dPMzksT3OduT2qUNHGCTZix0xAAwJSR/ax2KvTBpTotwpofrn/2LiGEkJ6jIIRD7rLRPsLxLgZXnToVL767HgtXb40dS7lFVJiocQRH2ogW9SVYhE3aT1W/PMNImWI5uK6rJ2ZFu0Yk9BF2fS6nDt5puPUQ+IkPjU08jjTbw5g5dQwOnjQUQ2xXk0q1EFelEO7XGNwtplwmhJDKwbkkh00SinpV7BHCIeX6NdXj8MnDsWj14tixBCf1lHbHDhOsjqE4UbIPd2a5uKwZKYi0cHajf3W6yXJ6t5ouwaD5xCPwWLTLN/4R/ZsKkTWMhhHnGlHC2Ia4/K0rlap0jfjwXqMC6475f09iyZp4ywAhhJCup+gaUVznjasarKObdFOWyAndZBEuRI1I2W5SH+GBfYrzYsIspZH73hXir4wN9YSFMfJwJZ4sV74d+OFHdsfAPvWe79x4HF2cUKPQTnmaKTtVKYTrshn864KDA+tnL4kPf0IIIaTrcRJqeN0czCx87ht3ObJi+YskufHrBGaY5dadYtkUd9mGhD7CD37tEMycOhoAMLilIVFdf9/hhRI3WzYqTVglFbb+56VdRvTFzz+xZ6q+P7L3aLzyg2O7xo+84hoqL1XpGgEAe44dgMkj+mH+qs09PRRCCCE+cjHh07TZbX1/w8rp6kSW6TYf4dLaTWoRHjWgGVefug+uPnWfVP11pw5ON1kuWKfLXISdyXKRPsLJmvSP/5FvHJZwUN1D+SzClamEq1YIA0BjitnChBBCuh6dRdiNbr0qbCuuK0ss3ZAbdNqWw3yEnbVpJ3Q5luYLjpiE8w/fKV0j/jFVyAymdOHTSqufhmif6qRt9RZ6z0jTUNVKcWCf5K+CCCGEdD3aFMuu7aaT5WJjoKZQSKWKqjgf4bRWS0dg55VCi2ZSeBqifV4rfLJcyq5TVesCLVghzyDdRqXub1UL4SEpfKIIIYR0PbmCRbi4zi2qTMNUlSMRQblv0KFxhDNFIWuKN3ya1W45oyBFHucS6ycbR3rXiGH9ujEyQYmTCz3FK1UZBiiPw0ml7m1VC+E0kwMIIYR0PdqEGq7tURrBK56j+0kXn7a0W3ZcHOEkrhGe8GkFIVw+T9i0CSKOnDLcrh/OsH6N+NZxkyNKlM5vTtsHd335wMJyV8cRjiKpD2yl6+AKH17ZqGofYb8QZkoNQgipDLQplj1h0TQ+wrbKSZKa1syq6S2VRAAojfKqi0mxXKprRGe+uyzC4RsnDe+LR+d9EPnQMPuSo83HYVzSy0f2tqJi7D/RymLmCHQT0ojm8oZPqy0q1QJe1UK4uT7rWc4zuxwhhFQEzuU4yWQ5B0+YtTLcW+Oa0IndKMKiOxR8hFO6RkweYaWq3XPMgETj6Qocq7d7T1UJ5qZSv8c9xw7A4stPNPRrLq2v0HaTlq9QYdhVVOreVrUQ3trW6VlmdjlCCKkM9Ak1ogWuiABKeerE+ginEEbOclqdEh5HOF17DvvvOASP/e/hmDCkT2kNuUhr4awvZ05glCe0VpcKy0L4tChXkoSuEaWMh5SNqvYRPnmfMRgzsLmw/N7G7T04GkIIIQ461wg3Op1VdI3Q+xXrMHKNMCiThCQ+wmfOGB/Zlv/wTBzaUlbBl7aprC323TbgksRsL1GFZZwrV5aJnqZ8+fCd8PF9xnRbfzoq1QBe1RbhcYP74JmLjsSEi+4HAPz+8YU477CdsH5rOyYMbenh0RFCSO2S1yTUcBMl9rzh08pvSSzVOhnvI2zt+5IrTiqpn/KQbrKc4/7R6XrTWoprRE+QaLwGp0TyhBrJypfCt4+f0n2dhVCpCTWq2iLs8PDXD8WI/lZ4lb1/9AgO/+XjPTsgQgipYa5/ahHmLFkPIFzwRvsIuz6XIWpEmGuECToplYmLI5wyakRXkN79wwkF17PjSNVXCcc07eRCgoq1+teEEJ48sh/+51hvCJf2TvoLE0JIT/CT+9/C0wvWhFqDAf09M01muUoSJ6mEcBcPP/pVf/hWJ5SbO4JFSQIzdc0KooItwiScmhDCANDPl4Vn8/aOHhoJIYQQINw/GIixCJdZQfhb8y+XKzatM+wkCTW6mujJX+HrHYtwzmUSLi1qRIWrwsJkufAiSXehO32EK4FK3d2q9hGOYvP2Tgzp243ZaAghhHh8SkOCKwAIiRoBS48kuaEalQ34Rjh/ynvnTpNiOW4Ex+8+EtmQcG2lth+1reAjXCbfiArVSAEiE5AkbqtyaGnI4rMHRE/cLJVK2l83NSOE/SkY39+4HaMGNqGxLhtSgxBCSLlpdwvhlBbhJJa0nogaEUZB+JfRIHztGdPK15iPKCutYxGuION212Lka54wfFoFmUjnXnZ8Tw+hx6gZ14jpEwZ7lk/74/OY/L2Hemg0hBBSm7R1FIVwpGuE5u7kaK5yy4egQbhrBIoj4JO4RnS5j3CK9gXhsZK7cxw9QfRkuYRtlTSS7iPsdN19dP9E7VSS8HdTMxbhMJ5ZsAYHTRra08MghJCaoM09UTnlDPxEFmETS143SZI0rhFdTRphJyKh2fNSj6PXyMJwKjl8WhrihOudXz4QHbkED3WlDqiLqBmLMACcf/hOaGnwukK8u3ZbD42GEEJqj7bOXOHz5u2doeWiEpclMUaaCKxSwqcloRBHOJES7uLwaWnjCFeBRTjR99AFTy+VaiE1pbEui76Nvd+eWlNC+DvHT8E/v3ygZ91T76xGvlyBEAkhhETSZhi6MlokdHPUiDL1U7QIV45rRKRVPqLzqNB3lU4pxzQyykbF2jwrg0rV/b1fyiekIevV/g++sRIPzV2JE/cc1UMjIoSQ2sHtIxxFpEU4yQ21JNGjX//S94/B6s1tOO6qJxO2V3kTzNIcHgFQX2bXiIonRWKW7uC+Cw/GxtbeEQ62Uh8Uak8I1wWN4EyuQQgh3YPbNSKKNPFttWWN+jLvGwAGtzRETvQLo5hi2ZwuNwinVG9RFuGGugwmj+iXcByphtHtVNow9xgzoKeH0OuhEAawtT3cT40QQkj5MHWN0Oksx5IaNlnu9UuPTSXsUlmqnCohqvaZi45EU10G037yn8K6wrgrySSckvpsuGflN47eBecfvlOi9rrTWjhyQBMAYL+Jg2NKJqO3iPmeolKPj5GPsIgcLyLzRWSBiFyk2X64iGwUkVfs/z8o/1DLQ2M2GDf4krve6IGREEJI11DJ12xTi3CaOML9muoDk3eMhLE+n0Z0lZhCYwY2B5I2OfPLkkxL6eoJValcIyRaCKcaRzeKpJ2G9cUT3zocXz1y58R1o6NsmO3EfRcejItPmJK4b9I1xFqERSQL4LcAjgGwHMBsEblXKfWmr+hTSqkPd8EYy4rOIkwIIdVCpV+zTX2Ey5nKNravLm6/2K7jI1w5IafS7qvWR7gEQ3d3GwvHD2kpe5umx3KPMQNq0qWhN1uE9wOwQCm1SCnVDuA2ADO7dlhdh1sIu0OpPb9oLZ5dsKYnhkQIIeWkoq/Z5YgaUfbMcjHtlcuToSLjCKeUoOU2KlV8KDH7SytnimVSGZicyWMALHMtL7fX+ZkhIq+KyIMisntZRtcFZDOCoX0b8d0Tp3hSCp563fP4zPWzenBkhBBSFir2mr29I5fANSJ8W6KgEck9Iwpip9zCJk0c4UrMLAcEIzBZjZU2lt5A9JuKGjgAJdCbo0boRu7/Gb8EYLxSaouInAjgbgAB5xsRORfAuQCwww47JBtpGZnzvaMLn4f1a8TqzW09NhZCCCkzFXnNXrh6C4761RPYb4LZBKUoq2/ZXSO66f5cmRZhL184eCL+9PTimDqi9xHuRa4RiUnxQEW8VOpzgolFeDmAca7lsQDecxdQSm1SSm2xPz8AoF5EAnmLlVLXKaWmK6WmDxs2rIRhl4/ZlxyNA3Ys78xRQgjpQSrymj1r0ToAwAtL1hmVj7ppljvFcrBSijoGjBvUDMAywJgPpXvVw6f3HRdfCEB92V0jytpclxGZ5qWX7IMpMYFRqgYTi/BsADuLyEQAKwCcCuAz7gIiMhLAKqWUEpH9YAnsteUebFcxekBzTw+BEELKRUVes5O+eYtO/ZvER7hrUiw31VlzTEyFIwB87qCJ2HPsQBy963DjOt2N0ZGV8rtGVINbQTXsg5v/9+mpuPaJhfjQDoPK0l6lHp1YIayU6hSRCwA8DCAL4Aal1FwROc/efi2AUwCcLyKdAFoBnKqSTIvtYUYNbOrpIRBCSFmo1Gv26i3bC5+H9m3Emi3RwrhsmeUMSGN1bajLYN6Pj9cLwhAyGcExu41I1E93aytTn2rtfveau34KnMlylarmuoBxg/vgpx/bs2ztVeqDglFCDfvV2QO+dde6Pl8D4JryDq37GN7PK4SfW7gWa7e2YXtHHp/40JiK/fIIIURHJV6z3RbhD+81Cjc+uySyfLl8hI2EXUwcYRWi8Jrqg3HpSx1Lz2M2yPq67vPhriyqeudqkprLLKdj3OCia0RHLo/T/vh8YXnL9g58sLkN/3PsZMxfuRnvfLAZM6fqJmATQggJo9UVP9jJ7BVFpBDuYjFSMH6UWdFVk4Qqd0KNiqeavrweolIPIYUwgCMmD8dZM8bjpufexbtrt3m2XfovKwb9/jsOwVk3vAAAFMKEEJKQvCud2sDm+vgK3eka0U0mzFTpnyvQNQIA6sr9JfQSqtva3bVU6rGrsUc6PSKCM2ZMAAC8sFg/o7kzV7RmvLNqM55f1GvmAhJCSI+Tcwnh/gZCODKOcKKoEQaT5WKWy0WF6gAPYWN8+jtH4ObP72eVkcr19yQkKbQI24wZaLlHLPhgi3a7Ozf8Mf/vSQDAkitO6vJxEUJINZBzzcVraYy/9XRnZrkk7XU33S04w/obO6hPt46j4ihkliNpqdSHJ1qEbZobshjQXI8Fq/VCuBcFwSCEkIrD7RrRpyF+klnULbOxvry3rqzP/NxV9+sK1QHGdIWQuerTU7HPDgPL3m5XUalijqSHFmEXI/s3YcGqzdpteY0QzuVV4AJKCCEkiNsi3GwQbSFKb5hYlE3acQgIYZ8ML5cdJM0kv+6+w0QmjCj8Ld+oTt5nDE7epxfMu+GtvmqhRdjFyAFNeG/jdu22znzwSriptaOrh0QIIVVBUotwFC0J6puItrAACOXWPmmMiZU0WS5uLLXw3pR6uPqgEHYxOiKxRntnPrBu03YKYUIIMcFtEe7TYOAjHCE5TOonIZvx3gr59ltPd6d7JqQ7oBB2MWFIS+i2V5ZtCKzb1p7rwtEQQkj10JlzuUaY+AhHukYksAibuEZ0W/i0FHW6WXxGp7b2/g3WrX74kFR9UAi7mDS8b+i2m597N7BuW3tnVw6HEEKqhrwKukYkSU/sJpGPsEGZ7prr0RssqqYplnXUgmsEqT44Wc7FQZOGFj4/8o1DMfe9jfjG318NLb+1TW8RzucVrnhoHj6692is3dqOw3YZVvaxEkJIb8IdR7g+m8Gs7x6Fxrp0QrhUH2M/lRw1osstkEnSVXfdKHoNJt/HaIPMiaRyoBB20VSfxdWnTsWNzy7BLiP6YZcR/XD3y+/hibdXa8uHuUYsWrMF1z25CNc9uQgA8Nj/Ho6JQ8PdLgghpNrxzzce0T9aLEQJjiSuDGmiRvgpl6Wz1wvJmB3o9ftnQJxV/+6vHISxg5q7aTSkHNA1wsfMqWNw15cPKizf+Ll9Q8t+9daX8cWb53jW/fHJRZi9ZL1n3fYO+hITQmobxyJ85JThRuVNfFXLRVj4tHL3kyrFcnmHEMSn8iOjRhSOi74QXSOAqeMGYmjfxp4eBkkALcIxiAh+PHN3fP+euYFt7bk8/v3mqsJyZy6Pnz7wVqBcreZkJ4QQh1xe4eMfGoNff2qqUflozZjkmhpftqKv0d0ePs38AeSLh0zEhm3B6EkVfDRLp6p3rjahRdiAD+81uvD5XxccjBP3HOnZvq29E63tOXTk9M/DzERDCKl18kp1W3QGNyZd+lMsd8Uw9xo7AJWstx1MEmo4XHLSbrjyk3sHytEyTHoTFMIGuEP9DGqpx+8+O82zfbcfPIwP/fjf2ljDgD4rHSGE1BJJM3FGCrIyC8q6rN81ovzce8HBKV0jKkc9O+OvnBF1I/ZtvCb3vcqhEDbAPbPZSQ160QlTPGVaO3LY3qn3Be4MsRQTQkitkFcKmSRCOOoVPSxfzH12GBjfjkFffotwTeHb9Wgf4VRNVhV8w1t90EfYABHB1adOxcA+DRhiO8EP7xd0hr/h6cXa+jlNemZCCKklOvPJXCOiLcKCu79yUEQJb9k4guHTfHV68K1et6dY7sZJir2KWt73KocWYUNmTh3jiQc8sE99oMzy9a3aune/sgL3vLIitO2tbZ049brn8Pj8D0ofKCGEVCBJXSOiKLcm8U+Wk8Lf2lM/JlEjahkegeqDQjglM3YcGlgXdgH509OL8bXbXgFghVJ7aakVXu36pxZhzpJ1WLGhFc8vWoez/zy7q4ZLCCE9Sj6pj3CUICtzEogkLhvdTXeHTzOicg8XIYmhEE5Jc0M24Ccc52e2bms7pnz/IXz8d89i6dpt+Mn9b+GUa59DR04/yY4QQqqFnEoqhMtkPTZoJmARriCh190+qaX0pqp5YrgzWa6Czg1SHiiES2DSsL6e5ecWrY0s/6Ef/7vwefmGbYXPnExHCKl28vnyTUor9yv6mp4s5yfiUChbDdby0aJ7SPVBIVwCB04a4llevbnNuK47CHln3twi/PfZS/Hy0vXxBQkhpIKwLMLlaSuRa0Qqi3DliJ3uHomJ0As7PpV03MpOFe9arUMhXAJ9GsKDbvzhjGmh2wBgU2tRCLsTcXywaXtkve/883V87HfPGo6QEEIqg1zCqBHlwkTYxfkIV/U7uzJ+JVXtGmFTzVq/VqEQLpFvHTdZu37PMQNw4+f2Da230SWE3a4RZ3HCHCGkysjbISTLNSmt7Ak1QsZVCaKn28OnVcA+E9KdMI5wiXzliEnYY8wAPPj6+7ht9rLC+iF9GzBqe3NovU3bXRZhl2vE8vXbdMUB1MbTNiGk+sjZ165yWYQTvYI3KFqusG7VQNSRiLsFVbVrhE3172HtQYtwGThsl2H4ycl7FJZf/eGxaKzLRl5cN7V2Fj67LcKbt3fqigMA2kJSOBNCSCWTK7NFOAmlZJarBNtDl0/OSrCPjfWWZDjINz+m0FQlHDBCEkKLcJmoc80C6ddoHdZ8xEXhL8+/W/jsD5/28NyVOG73kYE6re36FM6EEFLJOEI4zAUhKV2dUKOi6HbXiPAO+zTU4b//cxjGDAx/22m1Ue5RVRDVvG81Ci3CZeTUfccBKFo9BjYHs8/peHSeN6Pcl/7yIi5/4K2Am0RrB4UwIaT3UXCN6AEfYZPX9WGW6nIIuiMmD4svVEHE7fJOw/qiqT4bWaaaDcMMn1Z9UAiXkcs/vieWXHFSYXl4/ya8edlxOG2/cYV1jlh2s2TN1sC6Pzy5CAf//DH87vEFhXUUwoSQ3khhslwPxBHuadlyw9n7YuHPTkxdv8utq772q1jDEqKFQriM6CwPfRrqMGMnKx3zDz+yGy7/+J6BMnPeDY8L/IuH5qMjl8f8lZux3UAIPzpvFSZcdD8Wrd6SYOSEENJ1OK4RPWERLgelWDhFpOYm41Wza0Q171utQiHcDXx079G47dwDcMYB4yEieO7iIxPV//F9b+K4q57EO6uK4ratUy+K733lPQDAK8s2pB4vIYSUE8c1omzh05KULaHLStA8lTCGpFSzawSpPiiEu4kDdhxSmFA3akAzFl9u/qrs5uesiXVun+EtEdElTHh47kpMuOh+rNwYncCDEEJKxYkQWbaEGt2kDitBz3V3SLLeKLy7hUo4GUiXQCHcQ6S5uM1bubnw+TN/nIWbnl2Suv8bn7HqLqQLBSGkiylOluv+vjm5KRr/w0k59B7dB0hvgkK4Apj7o+Pw6g+OjS1332vvFz7PX7UZP7x3bmjZuAvRljbLotynIXr2LyGElEqPTpaja0Qk+04YjPMP36mLe6kCKuFkIF0C4wj3IA9+7RCs3tyGlsbSv4a1W9pQX5cxfpp3hDAhhHQ1aSfLNdZlcN5hQZFGi2P5yGQE3zl+Cm59YSk2bOug3iM1B4VwD7LrqP7YdVRx+VvHTcaVD89P1da0n/wHowc0Yd+JgwEELSbHX/Uk+jfV4/bzZgAAtrVbQrgjR8cnQkjX0plSCM//yQna9YkmyyXqUY/qQQdRin5Cuha6RlQQXzliEr5+9M6J6z31zmoAwHuuiW9vrNgIAFi2bht++9gCzFu5GS8sWVfY7lhoOnNM20wI6VryZU+okSSjRin9pK9bi1R1tIhq3rcah0K4wvj60btgx6EtheWZU0dHlu/I5XHb7GWF5Xvs8GnXP70YG7d14Iw/zfJYmR1fPcdCM2vxOhBCSFdScI0om49w91AJwo6T/QjpWiiEK5Apo/oVPv+/T00tfL7jvBl44ZKjPGV3vuRBrN3Spm3n4J8/iiVrvWmaH3jDmnCXs10irv7vO57t2ztyePD192kpJoSUDUcIlyuOcBJ6u5DsTVbp3jTWxFTzvtU4FMIVyAl7WI7Dt39phufGse+EwRjerylQ/vlFeqvuZs2EuE2tnfhg83btNgD40b/m4vxbXsKLEdnuCCEkCQXXiHJZhJN4RpTQ5YydhgAADrKzg1YzTXWlRxCqBAs6IUnhZLkK5CN7j8b+EwdjeH9L9F5y4q6FSXCl8vqKDRjcUh+6/W07e936bR0AgPc3tmJAcz36NBRPlbteXo73N27Hlw+fFKivlMKDb6zE0buOQEMdn7MIIV2QYrmbzHPTJwzG2z85oSauZX/74v544PX3MailoaeHQki3Uv2/7l6KI4IB4IuH7oip4wYGylz6kd1wyM6WpeJA23IBWGHZ/Djxgm99YRneWLHJs22vSx/Gw3NXAgCc+9Tm7ZYQnnH5ozjuqic94da+8fdX8YuH9NEt/vbCUnz5lpdwx4vLtNsJIbVHvswplpPo4FJ7rAURDAA7DuuLC45MPlnbTVW7RpCqpTZ+4VXG1adOxYwdh+Dsgybi2N1GAAB2GNynsH38kD6BOtPGD8Kwfo0AgGseW+DZtml7J770lxfxswfewuwllkvE/z36Dn72wFsAgGXrWnHIzx8NtLl2SxvudyX5AIDZ9uS7elcKqSVrtuLdtVsT7ychpDrIlTnFcjLXiN6tznrT8OkaQXojFMK9kJlTx+DWcw8AAEwabk2s22vswMJ2na/XV46YhPM1gendXPfkosLnZetaPcuOq4SbL9/yEr7yt5cw4aL7C+taO3IAvFaYw3/5OA678nGs2NAa2nc+rzD3vY2R4yOE9E6Kk+XK014p2nCnYS3a9cyuVj56+wRFUltQCPdyZuw0BA9//VCctt+4wjr368clV5yEJVechAN2HILPHTTBU3eHwX2w55gBxn1tt0Wugy702vYOy/TTrok6ccSVjwfWbdzWgXNvnoMdv/sATvq/p/H6cophQqoNRwjXlUsJJ8BtUf3bOfvj71+aoS33neOndNOIktEbRWVPJiAhJClGVyUROV5E5ovIAhG5KKLcviKSE5FTyjdEEsfkkf0gIhg7qLmw7sczd8c9XznIU05E0K+pOOntlnP2x7eOm2zcz5TvP4SfPzRPuy2fV1BK4Ym3reQev3tsYSFmsYNOHP/u8QV45M1VheVVm7YHyhBCklFp1+ytdiZLZ65CqSRxd3CXPHDSUAzt21iWMXQXvck1gpDeSKwQFpEsgN8COAHAbgBOE5HdQsr9HMDD5R4kMePR/zkc839yPADgjBkTsLdmgt1/vnlY4XNjfQYj+gfDsR08KTxU0O8fX6hd/7173sDEix8oLK/Y0Ir5qzYHyt3w9GK8rVnv8L//eBXv2Nu3tnXijjnLoOh4RogxlXjN3mpPtm1pLE+gImrDyqY3WrFJ7WJiEd4PwAKl1CKlVDuA2wDM1JS7EMA/AXxQxvGRBDTUZdAYEwtyRP+mgkWkLpPB5JH9cO8FB+FT08cWynzpsB0T9/23WUsD6257YWnAKnzZfW9i5jXPFJb9s8g3bOvAMf/vSQDAT+5/E9/6x2t4ftE6/PCeN7DbDx4CAGza3oGL73zdE8mCEFKg4q7ZRSFcLotw15StRHrj8OkaQXoTJkJ4DAB3LKzl9roCIjIGwMcAXBvVkIicKyJzRGTO6tWrk46VlIm/nrMfvnDwRAzqY8UT3mvswEJEiZOnjkZzfXluVjc99y5+/nDQlaK1I1ew8taFhFPK5xXWbGkHAKze0oabnnsX29otH+Ubnl6MW19YipueXVKWcRJSZVTcNXtLm/Xb7Vs2i3ASedgbpWTPsvPwvj09BEK6DRMhrLuK+B/3rgLwHaVUTlO2WEmp65RS05VS04cNG2Y4RFJupozsj+9/eDePn93UcYMAAEP6NhYiP5ji9jv2c9sL+njCf3p6MVZt2o7fPLpAu33N1rZC/M6v3vqyZ9umVsu6tJUWYUJ0VNw1e2tbJzKCsj1k93YrbxJ6Ivzbw18/FAt/dmLievvsYN1HdhtlPgmbkJ7G5PF8OYBxruWxAN7zlZkO4Db7BzsUwIki0qmUurscgyRdzzG7jcC9FxyE8UNaIAJMGNIH5x22E9ZubceVD+uTZwDALz+5N06ZNhbXPrEQVzw4D6MHNOG9jcUJbxtbg2HXAOCB19/HU++s8azbZ4eBeHnpBgDAfj/9r7be6s1tuOGZxQCA9s7g5DtCSOVds7e0daKloa5HRF0tieZykTbxyUl7jcI+OxyJ0QOb4wsTUiGYCOHZAHYWkYkAVgA4FcBn3AWUUhOdzyJyI4D7KIJ7H+5YxI9/6wgAlthctHorDps8zGOZdUTrKdMs3+LT9tsBVzw4D5d+dHcM69eIj/3u2ci+Vm9pg899GLuO6l8QwqH1NrcVPs9ftRlKqcDN9b9vrUImI6jLCM740wsArAgZB0VMAkzDvJWbcM8r7+Hbx03u9UH7SVVRcdfsrW2dZZsoV2v0tisLRTCJ46BJQ+ILdSOxVyalVKeIXABrZnEWwA1Kqbkicp69PdLHjPRuGuoy+NWn9oZSChu2teMH98zFrqP645Zz9vdYewc012PJFScZt7tsXSuWrfMm2Nh1ZL/Yepu2F/t86p01uObRBbjwqJ2xdO02NDVk0FSfxRdumhOo99nrZ2Hx5SdCRPC3WUvxxnsbMbxfI07bbwdt5AwTzv/rS1i8Zivmr9yMP545HdlypY9NyZ0vLccBOw7hjajGqcRr9tb2zrJNlAOSWXkzvfwhtZcPnxAPSXRCd2H0iK6UegDAA7512oupUurs0odFKg0RwZkzJuDMGRMK6/o0hJ8+Pz55D3z/7jeM21/w0xOQUwrPL1qH+19/P7TcZ/74vGf5+qcX48KjdsahVz6GbEbwz/MPDK27ZO02TBzagu/e9Xph3dz3NuG6M6bh6v++g6v+8w4uPHIS/ufYyVBKYdWmNowc0IQFH2zGWTfMxj/On4FRA4ois8n2d3x03gd48u3VOGLKcOP9LTfbO3L45u2vYsKQPgVrPqldKu2avaUtV7aJckCyyXJhE3IJSQQDYVQtzCxHuoQzDhiPG86eXljeZUT0LORsRtBYl8WFR03Sbj9pz1EAEHCn2NjaUQijlssrXPC3l0L7+NG/5uK2F7xh3t7b0IrVm9tw1X/eAQD85tEFeHftVtw+ZxkOuPy/eHbBGvz5mSVYsaEV97/2Pt56fxMmXHQ/7n55Bd56f1Ohnc/dODty/7oaZ+Lgu+u29eg4CNFRbteIJFbSumzvFsJ0uyKka6EQJl3GkVNG4IVLjsLrlx6Lh79+KC45cdfCtvsuPBh//ty+hWXnYj9hSEugnae+fQQO2yV8xvpj84phUJevt9wtrj19WmHd1adOBQA8Pn81LrrzdU/due9twod/87Rn3WFXPo7v/NMq95nrZ+HZhWsBAK3tOTz4xkoAwNf//kpgHDN/+wze39gaWN+VvLNqM9o6c4XQcsw9QiqRsgvhBGV7Iq0zqUL4PFK18ApBupTh/ZrQr6keIoIvHrojRg1ostc34ojJwwuxjB2a6rMeSzIAjBvcBwdGONdf6AuvBgBD+zYUPh8Z47LwgWsCno7Fa7YCAJ5asAYdmjTRDq8u24A/PLGosLy9I+dJKLK1rRPL12/D68s34virnozMsOfm0XmrcM8rKwLr125pwzH/70l87643CkLYzfsbW7Fxmz5qRxQLV2/BNY++w4x+pGxsaessr2tEAitpfS+3CBNCuhZO4yXdyi3n7I/b5ywvJPB48GuH4t21Wz1ljpwyAu/89ASc9H9P4e1VWwAAYwf18ZRprs+Gxjv+8cl7eFwomsoUu3TF+lbsNcYbH3P8kD54d23RHcER4Pm8wpTvP4SzZozHd06Ygt1+EMxi+5tHF+D0/XdATikcuFN4RIvP32hN/hvc0oBDdi5axjdvt9whnl+8FruMKE40fPHddZg2fjBmXP4ohvdrxAuXHB3adltnDg3ZTEFYLFu3DSdc9RTac3l8at9xGN4v3URCQtxYFuHyTZZLQl2W9h5CSDi8QpBuZcdhfXHRCVMKwmvkgCbsv2PQ2lufzeDeCw7Ga5ceG9g2+5KjcdzuIzzr3BEbPrr3aOyzw8DCcl1GMG6wN5LCoD71eOuy4wu+xyas2NCK659e7FmnFHCwKyxbmx3beIMdUeOm597VimAA+Ner7+HT1z2Pz/xxFvb84cN4bP4H+NUj83Hxna8BAB6f/4EndbUTCu6lpevR3plH3rbYCgQ/feCtQrnz/lr0k/Zbu9s6c4XIG+2deUz+3kP41SNvAwCWrt2GQ37xGNptq3dYLGdCkrK1LddjrhH1nCxHCImAQphULE31WfRvKrpOzL7kaMy+5GgM69eIKz6xF/58tuVjPKC5HrO+exQAyx94QHM96l1WIBHBnecfVFieOm4gbvzcfmhuyOIq2384jpEhIdbySnkm4/zm0QX4/I2z8ZtH3zHeTwDY3NaJz/15Nn7z6ALc+sIy5PIKZ/95tifCBQBc/9QifPx3z+LyB98qiG4/m1o78MqyDYXlCRfdj1ft5c/+cRb2uvQRbNregQUfWNb2O160sv+t3hJ0Ebll1ruFz3OWrMO9r1p5Gb7591cw9bJHsGrTdixcvSXRvup46/1NWLe13bj80rXbMOGi+/H8orUl9026lvbOPNpzefSNiDKTlGST5XibI4SEwysE6TUM69dYcKloqs/ikJ2HYu9xA3HVp6diaN9GLLniJMycOqZQ/hen7IWjdx1RqPvEtw7Hlw7dEf88/0DsPW4gAMvy/KezLJ/kmVNH44lvHY4ZPgv1N4/ZBfdeeBB0DGiux2Uf3QNnHzihsO7ReR/gz88sKWlf75ijT039k/sty+8Li9dhu+0astQXKaKtM4+Tf/uMZ93tc5ZBKYU5764HAFzwt5fx9ILVAIBJw/tia1unVlReclcxBN4p1z6Hr976Mpas2Yo7X16BDds6sP/P/oujfvWE8X5ta+/EcwvXBnyeT7j6qcCYHdo781jm28dZi62x3j5bf5xI5eBENClv1IgE4dPoI0wIiYA+wqTXUpfN4J6v6AUqAHxq+jh8anox0+z4IS242BW5wuGoXUd4gnzfeu4BaO/MY0tbJzZv78B4O5LFwZOG4ukF3rTQx+w2AjsM6YNLP7o7+jXV4TePLtCOZe9xAwtWWQDo21hXCPv21aN2BpTC/7nq+qNb+Jn73qbY7H1ubpm11JOS+sm3V+PJty0h/Nqyjdj9h3r3DQA48eqn8KXDdiwsn39LeIg6AFBK4fdPLMSnpo/D0L7Wg8uKDa048eqnPElYnIeWTtsVY+m6bXjqndU4eNJQbO/Io6ne8l3+/t1v4O9zluGNHx2Hvo11WL25rWApb4uYvEgqA+c8N50s9+xFRyLnj5NYAvWMGkEIiYBCmBANDXUZDK5rwOCWYvSJP545HUvXbcOwfo2ozwr+/MwSnHtoUSB+5YhJuH3OMqzZ0h64kf/prOm466UVuPKR+WjvzOOXn9yr4Mt73O4jsPvoAXhv43b848XlqceczUikgLgjpO3NtlBxc/jkYXh8viWU33x/E7522yuFbe74yQ7zVm7ClJH9AQATL7byOPziofno05DFyz84Bne+uNwjggHgP2+uwtG7jShM+gMsP+idhrVg4eqt+Pbxk7H76AH4u20d/9YdrxbC1zm0dUQL4WcXrsE/5izHCXuOwtC+DZgysj+2d+QwyPW9kq5la3syi3C5MyPSIkwIiYKPyoQY0tyQxeSR/TC4pQH9murx1aN29kSkaKrPYtZ3j8bCn52IJVechL98YT8AwKn7WpbRLx66I75/kmWRPmjSUPzwI7sBQCFb3XdP3DWQeKR/Ux2u+PiesWO7+IQp2HvsgNhypkzbYVCi8sdf9RQ2bGvH7T6Xjm3tOdw6a6k2wsc5N89Ba3sOv3h4nmf9wtVWFJFfPDQf3/7Hq4X1fhEMABu2WX7F2zty+OeLy3HkLx8vhKxb8MEWnHPTHNz58gp88eY5+NjvnsWxVz2BfX7870T7Rkqj6BrRQ1EjOFmOEBIBLcKEdBGH7DwskFf9jBkTcPoB4yEiOPtA67MzsW9wSwMe+tqhWLlpOxrrMpi/ajPGD2nBmIHNOGa3EZi3cjM+e/0sDO3bgF9/airOvOGFQrtnHzQBp0wbi5eWbsA+OwzEW+9vwtRxA9GRU4V4wzqe+vYROOQXjwXWf/mISWhuyBZ8kh0GNNfjm8fsgm3tOfz8Ia+AnXqZXmBe+q83Pcv/PH8GPvH75wAAX7hpdiFhiY5Vm6JjPM95dz1mL1mHT177XGHdkb96HNd85kOBRCkAsGydlfDkvQ2tZbc8kiCvLNuAb91hRUEpZxzhJDAzGyEkClqECelmnBuziHiiWwBAJiMYPbAZQ/o24sCdhmKMLdaG9G3EQZOG4i9f2A/3XHAwDtl5KK4+dSr+/Y1D8cxFR6KxLoshfRtxzG4jMLRvIw7ZeRj6NdVjcEsDdh7RD29edlyhj68dtXPh87jBfQIJTADLzeL0A8Z71p05Yzxe/eGxOOvACTj9gB1S7fugPvWYNn5wIcmJWwQ/8NVDcNu5ByRu0y2CAWDJ2m34xcPzI+sceMWj+OXD87GoDBEvSDivLF2PRXZCmnJMljt56uiS2yCEEDcUwoT0Ig7ZeRjGDGyGiGDm1DHYeUS/gliOok9DHb565CQAwBcP3REnTx2N35y2DwArgcmCn56Acw6eiGtPn4Z/f+NQAJarx+W2W8aRU4bjspl7FNrr12SFrPv9Zz8U06/1Onzm1NGY872j8dL3jwEA3HB2Mb32xKEtOHPGeOw6qh8O2HFI5P401ZtdspyJgFFc89gCHPmrJ/D0O2tiy5J0nDljAqaNt9xsnIgvpfDLT+6NuT86Lr4gIYQYQtcIQmqEbxyzC849bCf0bazDVafu49lWl83gex/eLVDnlGlj8dryjbjQFtFuRvRvwgl7jsIFR0zCNY8VI1586dAdMaxfI35y/1v48cw9cPjkYRjSNyiCPnfQBCxZsxV//tx+nvUPfPUQbGztQFNDBvNXbsbI/laa7v7NdWisyyKvFL70lxcxfcIgfPnwSZh5zdN4dflG7T7vMLgP9p84GIdPHo4rHnqr4Brh5s33N+LgncMz+5H0ZDKCf5w3A+u3dXgmnqalLpup2bjAR8WkiieEpINCmJAaQUQS+2nWZzMFq3AYFxw5CZ/Zfwf888Xl2HPsABw+eTg6cnmMHNCEE/cYhUzIZKUffmR37foBfeoxoI+VSEWX4jkL8ViU/9+np+K22cvwqenj8IN73sBH9x6Ni+58HX0asnjy20cUyh23+wiICF5Ztr7go3zfhQdjZ98ERVJeRKQsIriWeen7x/SYjzUh1Q5/WYSQkmiqz2L0wGZc6PI9rs9m8OG9usefc8dhffFdOz70375o+Rgfu/tIdOa9odUcS+K08YPx2P8ejmH9GikuSK+ADxKEdB28CxBCqo444TBxaEs3jYQQQkglU5vOVoQQQgghpOahECaEEEIIITUJhTAhhBBCCKlJKIQJIYQQQkhNQiFMCCGEEEJqEgphQgghhBBSk1AIE0IIIYSQmoRCmBBCCCGE1CQUwoQQQgghpCahECaEEFLVNGR5qyOE6GGKZUIIIVXNrO8ehdaOXE8PgxBSgVAIE0IIqWoGtTRgUE8PgvRqGuustwrSw+Mg5YdCmBBCCCEkgl9+cm/8+Zkl2HfC4J4eCikzFMKEEEIIIRGM6N+Ei06Y0tPDIF0AZxAQQgghhJCahEKYEEIIIYTUJBTChBBCCCGkJqEQJoQQQgghNQmFMCGEEEIIqUkohAkhhBBCSE1CIUwIIYQQQmoSCmFCCCGEEFKTUAgTQgghhJCahJnlCCGEEAC3fvEArN3a1tPDIIR0IxTChBBCCIAZOw3p6SEQQroZukYQQgghhJCahEKYEEIIIYTUJBTChBBCCCGkJjESwiJyvIjMF5EFInKRZvtMEXlNRF4RkTkicnD5h0oIIcQEXrMJIcSM2MlyIpIF8FsAxwBYDmC2iNyrlHrTVey/AO5VSikR2QvA7QCmdMWACSGEhMNrNiGEmGNiEd4PwAKl1CKlVDuA2wDMdBdQSm1RSil7sQWAAiGEkJ6A12xCCDHERAiPAbDMtbzcXudBRD4mIvMA3A/g87qGRORc+zXcnNWrV6cZLyGEkGh4zSaEEENMhLBo1gWsB0qpu5RSUwCcDODHuoaUUtcppaYrpaYPGzYs0UAJIYQYwWs2IYQYYiKElwMY51oeC+C9sMJKqScB7CQiQ0scGyGEkOTwmk0IIYaYCOHZAHYWkYki0gDgVAD3uguIyCQREfvzhwA0AFhb7sESQgiJhddsQggxJDZqhFKqU0QuAPAwgCyAG5RSc0XkPHv7tQA+AeBMEekA0Arg066JGIQQQroJXrMJIcQc6alr3/Tp09WcOXN6pG9CCCkVEXlRKTW9p8fRXfCaTQjpzYRds5lZjhBCCCGE1CQUwoQQQgghpCahECaEEEIIITUJhTAhhBBCCKlJKIQJIYQQQkhNQiFMCCGEEEJqEgphQgghhBBSk1AIE0IIIYSQmoRCmBBCCCGE1CQUwoQQQgghpCahECaEEEIIITUJhTAhhBBCCKlJKIQJIYQQQkhNQiFMCCGEEEJqEgphQgghhBBSk1AIE0IIIYSQmoRCmBBCCCGE1CQUwoQQQgghpCahECaEEEIIITUJhTAhhBBCCKlJKIQJIYQQQkhNQiFMCCGEEEJqEgphQgghhBBSk1AIE0IIIYSQmoRCmBBCCCGE1CQUwoQQQgghpCahECaEEEIIITUJhTAhhBBCCKlJKIQJIYQQQkhNQiFMCCGEEEJqEgphQgghhBBSk1AIE0IIIYSQmoRCmBBCCCGE1CQUwoQQQgghpCahECaEEEIIITUJhTAhhBBCCKlJKIQJIYQQQkhNQiFMCCGEEEJqEgphQgghhBBSk1AIE0IIIYSQmoRCmBBCCCGE1CQUwoQQQgghpCahECaEEEIIITUJhTAhhBBCCKlJKIQJIYQQQkhNYiSEReR4EZkvIgtE5CLN9s+KyGv2/2dFZO/yD5UQQogJvGYTQogZsUJYRLIAfgvgBAC7AThNRHbzFVsM4DCl1F4AfgzgunIPlBBCSDy8ZhNCiDkmFuH9ACxQSi1SSrUDuA3ATHcBpdSzSqn19uLzAMaWd5iEEEIM4TWbEEIMMRHCYwAscy0vt9eF8QUAD5YyKEIIIanhNZsQQgypMygjmnVKW1DkCFgX1YNDtp8L4Fx7cYuIzDcZpI+hANakqNcbqOZ9A6p7/7hvvZe0+ze+3AMpE7xmdx/VvG9Ade9fNe8bUN37V9ZrtokQXg5gnGt5LID3/IVEZC8A1wM4QSm1VteQUuo6lOiLJiJzlFLTS2mjUqnmfQOqe/+4b72XKtw/XrO7iWreN6C696+a9w2o7v0r976ZuEbMBrCziEwUkQYApwK41zeoHQDcCeAMpdTb5RocIYSQxPCaTQghhsRahJVSnSJyAYCHAWQB3KCUmisi59nbrwXwAwBDAPxORACgs1qfRAghpJLhNZsQQswxcY2AUuoBAA/41l3r+nwOgHPKO7RQqjnMTzXvG1Dd+8d9671U3f7xmt1tVPO+AdW9f9W8b0B1719Z902U0s6hIIQQQgghpKphimVCCCGEEFKT9BohHJcytNIRkXEi8piIvCUic0Xka/b6wSLybxF5x/47yFXnYnt/54vIcT03ejNEJCsiL4vIffZyNe3bQBH5h4jMs7/DGdWyfyLyDfucfENEbhWRpt68byJyg4h8ICJvuNYl3h8RmSYir9vb/k9sZ1piBq/Zlffb8MNrdq/ev6q5bvf4NVspVfH/YU34WAhgRwANAF4FsFtPjyvhPowC8CH7cz8Ab8NKf/oLABfZ6y8C8HP78272fjYCmGjvf7an9yNmH78J4G8A7rOXq2nfbgJwjv25AcDAatg/WIkWFgNotpdvB3B2b943AIcC+BCAN1zrEu8PgBcAzIAVl/dBWGHGenz/esN/XrMr87eh2Udes3vh/lXbdbunr9m9xSIcmzK00lFKva+Uesn+vBnAW7BO5pmwfrCw/55sf54J4DalVJtSajGABbCOQ0UiImMBnAQrLqlDtexbf1g/1D8BgFKqXSm1AVWyf7AmzTaLSB2APrBizvbafVNKPQlgnW91ov0RkVEA+iulnlPWFfZmVx0SD6/ZFfjbcMNrdu/dP5uquW739DW7twjhpClDKxoRmQBgHwCzAIxQSr0PWBdeAMPtYr1tn68C8G0Aede6atm3HQGsBvBn+zXi9SLSgirYP6XUCgC/BLAUwPsANiqlHkEV7JuPpPszxv7sX0/M6K3niRZes3vdvlXtNRuomet2t12ze4sQNk4ZWumISF8A/wTwdaXUpqiimnUVuc8i8mEAHyilXjStollXkftmUwfrtc3vlVL7ANgK61VNGL1m/2y/q5mwXjGNBtAiIqdHVdGsq8h9MyRsf6ptP7ubqjl+vGZbVTTrKnLfbKr2mg3U/HW77Nfs3iKEjVKGVjoiUg/rgnqLUupOe/Uq26QP++8H9vretM8HAfioiCyB9Qr0SBH5K6pj3wBrvMuVUrPs5X/AushWw/4dDWCxUmq1UqoDVraxA1Ed++Ym6f4stz/71xMzeut54oHX7F65b0B1X7OB2rhud9s1u7cI4diUoZWOPXvxTwDeUkr92rXpXgBn2Z/PAnCPa/2pItIoIhMB7AzLEbziUEpdrJQaq5SaAOu7eVQpdTqqYN8AQCm1EsAyEZlsrzoKwJuojv1bCuAAEeljn6NHwfKFrIZ9c5Nof+xXcZtF5AD7uJzpqkPi4TW7gn8bvGYD6MX7h9q4bnffNbtcs/66+j+AE2HN2l0I4JKeHk+K8R8My0z/GoBX7P8nwkpz+l8A79h/B7vqXGLv73z0khnrAA5HcQZy1ewbgKkA5tjf390ABlXL/gH4EYB5AN4A8BdYs3F77b4BuBWW31wHLCvBF9LsD4Dp9jFZCOAa2AmI+N/4e+A1uwL2w2A/ec3unftXNdftnr5mM7McIYQQQgipSXqLawQhhBBCCCFlhUKYEEIIIYTUJBTChBBCCCGkJqEQJoQQQgghNQmFMCGEEEIIqUkohEnNIiKHi8h9PT0OQggh8fCaTboCCmFCCCGEEFKTUAiTikdETheRF0TkFRH5g4hkRWSLiPxKRF4Skf+KyDC77FQReV5EXhORu+yc7BCRSSLyHxF51a6zk918XxH5h4jME5Fb7Iw0hBBCUsJrNulNUAiTikZEdgXwaQAHKaWmAsgB+CyAFgAvKaU+BOAJAD+0q9wM4DtKqb0AvO5afwuA3yql9oaVk/19e/0+AL4OYDcAOwI4qIt3iRBCqhZes0lvo66nB0BIDEcBmAZgtv3g3wzgAwB5AH+3y/wVwJ0iMgDAQKXUE/b6mwDcISL9AIxRSt0FAEqp7QBgt/eCUmq5vfwKgAkAnu7yvSKEkOqE12zSq6AQJpWOALhJKXWxZ6XI933lonKFR706a3N9zoG/CUIIKQVes0mvgq4RpNL5L4BTRGQ4AIjIYBEZD+vcPcUu8xkATyulNgJYLyKH2OvPAPCEUmoTgOUicrLdRqOI9OnOnSCEkBqB12zSq+CTFKlolFJvisj3ADwiIhkAHQC+AmArgN1F5EUAG2H5pAHAWQCutS+aiwB8zl5/BoA/iMhldhuf7MbdIISQmoDXbNLbEKWi3k4QUpmIyBalVN+eHgchhJB4eM0mlQpdIwghhBBCSE1CizAhhBBCCKlJaBEmhBBCCCE1CYUwIYQQQgipSSiECSGEEEJITUIhTAghhBBCahIKYUIIIYQQUpNQCBNCCCGEkJrk/wMNdNrJSBrV5gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "219ns_image_1884162273498_clean.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADDCAYAAAAya0IYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADj1klEQVR4nOz9e5hlWXrWB77r3M8+t4jIrKx7qbt1aVCD1UhCNwaQLYEljADxACPBABbgFjMDxhgbIQaMAGODATPD8BjTDIywjRESN4EQN2FkYHRFskBqpEbdrb7VJasyMs5tn/s5e/6I+K3znp1RVVlVWZWRmet9nngy4sQ5e6+91to7432/9/u+UBSFEhISEhISEhISEhISEhISEt4IKvd7AAkJCQkJCQkJCQkJCQkJCQ8ekqCQkJCQkJCQkJCQkJCQkJDwhpEEhYSEhISEhISEhISEhISEhDeMJCgkJCQkJCQkJCQkJCQkJCS8YSRBISEhISEhISEhISEhISEh4Q0jCQoJCQkJCQkJCQkJCQkJCQlvGElQSHjHEUL4UAjhy+/3OBISEhIS9gghfDyE8JV3+d4ihPBZb/I8b/qzCQkJCQkJCVcLSVBIeMdRFMX7iqL43vs9jtdDCOHXhxA+EULIQwh/J4Rwcr/HlJCQkPAwI4TQDCH85RDCOITwUgjhP7/fY0pISEi4arjXwuzdHC/9XZzwakiCQkLCJQghvE/SX5D0GyU9Lmkm6X+4r4NKSEhIePjxLZI+W9JnSPr3Jf3eEMJX3dcRJSQkJDziSH8XJ7wWkqCQ8I7DbbUhhG8JIXxHCOF/CSFMQgg/HkL4nBDCN4cQXg4hfCqE8Evts98QQvjJi/d+LITwjaVj/94QwoshhBdCCL/NFdeLyNefCiF8MoRwM4TwP4YQ2q8yzN8g6e8VRfHPi6KYSvqDkn51CKH39sxKQkJCwtVBCOGLQgjfH0IYXjxT/1wIoVF62y+7eA7fCiH8yRBCxT7/Wy6e1WchhH8UQviMuzz1b5L0R4uiOCuK4icl/UVJ//G9uaqEhISEq4MQws8OIXzvxXP2QyGEX2G/+94Qwm+zn//jEMK/vPj+n1+8/K9DCNMQwv85hPDlIYRPhxB+/8Uz+eMhhN/wZo93yXDT38UJr4okKCRcBXyNpP9Z0rGk/0PSP9L53nxa0h/RuSIKXpb0yyX1JX2DpD8TQvh8SbqIYv3nkr5S0mdJ+sWl8/wJSZ8j6f0Xv39a0n/1KmN6n6R/zQ9FUXxU0uri8wkJCQkPO7aSfrek65K+VNJXSPq/ld7ztZK+UNLnS/qVkn6LJIUQfpWk3y/pV0t6TNK/kPTXXu+EIYRjSU/Jnr0X37/vzV9GQkJCwtVDCKEu6e9J+seSbkj6nZL+agjhva/32aIoftHFt59XFEW3KIq/fvHzEzp/Zj8t6TdL+uBbPJ4j/V2c8KpIgkLCVcC/KIriHxVFsZH0HTr/A/SPF0WxlvRtkt4VQjiSpKIo/n5RFB8tzvG/6/xB/AsvjvPrJP1/i6L4UFEUM0l/mBOEEIKk/0TS7y6K4nZRFBNJ/42kr3uVMXUljUqvjSQlJTYhIeGhR1EUP1IUxQ8URbEpiuLjOhd27xBpL56nn5T0/5T09Revf6Ok/7Yoip+8eK7/N5Lefxcuhe7Fv/7sTc/dhISEhxFfovNn3h8vimJVFMX/Jum7tH+Ovln8waIolhd/I/99nf9tfC+Q/i5OeFUkQSHhKuCmfT+XdKsoiq39LF38oRlC+OoQwg+EEG6HEIaSfpnO1VjpPLL1KTuWf/+YpEzSj1xYy4aS/uHF65dhqnMXhKMvaXK3F5WQkJDwoOIi9ey7LgojjnUuClwvvc2fsZ/Q+TNYOq9/8P+yZ+1tSUHnUbPXwvTiX3/2puduQkLCw4inJH2qKIqdvfYJvf5z8rVwVhRFXjreU6/25jeI9HdxwqsiCQoJDwxCCE1Jf1PSn5L0eFEUR5K+W+d/qErSi5KesY88a9/f0rk48b6iKI4uvgZFUXR1OT4k6fPs3O+R1JT07+7FtSQkJCRccfx5ST8l6bOLoujrPIUhlN7jz9jnJL1w8f2nJH2jPWuPiqJoF0Xxfa91wqIoznT+HP88e/nzdP48TkhISHiY8IKkZ732jM6fo89ffJ/rPBAGnriLYx6HEDql4/FcfjPHc6S/ixNeFUlQSHiQ0ND5w+sVSZsQwldL+qX2+2+X9A0XRW4yWX2ECwX4L+q85sINSQohPB1C+A9f5Vx/VdLXhBB+4cXD+Y9I+lsXqRIJCQkJDzt6ksaSpiGEnyXp/3rJe/7LEMJxCOFZSb9LEnm3/6Okb76oCq4QwiCE8Gvv8rz/k6Q/cHHcn6XzVLVvfQvXkZCQkHAV8YM6J/m/N4RQDyF8uc5rin3bxe9/TOdFD7OL4uK/tfT5m5Lec8lx/3AIoRFC+IU6rzn2HW/xeCD9XZzwqkiCQsIDg4uH1n+qc+HgTNKvl/R37ff/QNKflfTPJH1E0vdf/Gp58e83Xbz+AxcW3u+RdGmxmqIoPiTpt+v8Afqyzv+4LhckS0hISHhY8V/o/Bk70bkYe1mRru+U9CM6/0P170v6S5JUFMXf1nkR3G+7eNb+hKSvvsvz/iFJH9W5Vfd/l/Qni6L4h2/6KhISEhKuIIqiWEn6FTp/Nt7SeQvG31QUxU9dvOXP6Lzo4U1Jf0Xnf486vkXSX7lILaNOwks6//v4hYv3//a3eDwfb/q7OOFVEYqiuN9jSEh4WxBC+Nk6/0O2eVEYLCEhISEhISEhIeGhwoXD4X8piuKZ13lrQsI9R3IoJDxUCCF87YXV61jnEbK/l8SEhISEhISEhISEhISEe48kKCQ8bPhGnddY+KjO+6hflvebkJCQkJCQkJCQkJCQ8BbxtgkKIYSvCiF8OITwkRDC73u7zpOQ4CiK4qsuujecFEXxtUVRvHi/x5SQcL+QnsMJCQkJ9x/pWZzwdqMoiu9N6Q4J9wtvSw2FEEJV521EfomkT0v6YUlfXxTFv73nJ0tISEhIuAPpOZyQkJBw/5GexQkJCQ873i6HwhdJ+khRFB+7qGL6bZJ+5dt0roSEhISEO5GewwkJCQn3H+lZnJCQ8FCj9jYd92lJn7KfPy3pi1/tze12u+j1etrtdtpsNtputwohSJJ2u51wUVQqlfi6JIUQtN1utd1uVavV1Gq1VKlUVBSFKpWKGo1GfO9ms9F6vY7HbrfbqtVqB+csiiKei3/X67WKolAIQSEEVSoVVSqVeP4Qgoqi0G63UwhB1WpVlUpF2+02jrkoinj8SqUSz8nvd7tdfD/X0Wg0VBSF1uu1VquVNptNnAvGEEKIr/m4d7vdwXt8jLyvVqupVqvFOWYs1Wo1XmetVovzzb/M92az0WazUVEUqlarajQaqtfrkhTH62P0eeS9jUZDIQSt1+t4LJ975oXP+fqXz1+r1Q6uFzD3rA/XXavV4twy94A58P3ne4B54LVqtRo/s9vt4rk4P+NkTn3PcfwQglqtlrIsU6PRiHuXuWacjIVj7HY7NZtNNZtNVatVbbdbLZfnXTLZQ8vlUqvV6o559Ovxe8n3NnuHeQRcp6N8f/ie49wO1pnzMG/lNeQ95fuIe8u/fC/72Mv3S/na/B7ye+di/W4VRfGYHjy8oeewJFW7neI9797p5k+039aBJbyz2FzvaJuW9NFAIbVOtyrmi/s9knuKhXKtimV4/XdeSbyhZ3F6DickJFxVTHR26d/Eb5egcNlD/yC3IoTwAUkfkKR+v6+v+7qv02w203Q61XA4lHROWmazmZbLpTabjVqtlrrdbiRl1WpVi8VCeZ6rVqvpPe95jwaDgRaLhdrtth5//HEdHR1pt9spz3O98sorOj091WKx0LPPPqv3vOc9CiHo9PRUw+Ewki6Iy2az0csvv6zbt2+rKAplWaajoyN1Op1IeCDFo9FI6/VaR0dHGgwGWi6XWiwWajabqlQqmk6nWq1WkfienZ1pPp+r2WwqhKDZbKb5fK5er6dnnnlGTz75pPr9vkajkV544QW98MILGo/HWiwWqtfrOjo6itc2mUw0m8203W61WCy0Wq1UqVQi0URomc1mGo/H2mw2unbtmm7cuKFarabFYqH1eq1araYnn3xSrVZLu90uElxEgGazqfV6rclkolu3bunWrVtaLpeqVqu6ceOGnnjiCfV6PZ2dneljH/uYWNvNZqPRaKTJZKKiKPT444/rmWee0bve9S5dv35di8VCp6enun37tubzeSTbw+FQeZ5HgtzpdOK1TCYTjUYjTadThRDU6/XU6XTU6/XU7/fV7XZVrVY1mUz00ksvabFYaLPZqNFo6Mknn9TJyYm2261efvllvfLKK5EsQ2qbzaZqtVoUR4qiUK1Wi6LJfD5XnueSzglou91Wq9WKwkK9Xo+ixXQ61WKx0Ha71fHxsdbrtW7fvq3T01NNJhNtNhuFEPTcc8/pve99r97znvfove99r2q1Wrwfnn/++bhHN5uNptOpbt++rel0qmeeeUbPPfecbty4ocVioY985COazWa6ceOGut2uXnjhBf3Mz/yMbt26pWq1quPjY7VaLdXr9bj/KpWK8jzXcDjUYnH+hyjCFpjNZlqtVgohaLlcKs9zrdfrAzGj2Wyq0WioVqupKArN53PN53PtdjvV6/VI5KvVahTMOP96vdZ6vY5jQ2xDsPLnQa1WU7VajcIKgkie59rtdmo0Gmq1WpLORRnWyO/VTqejer2u2WymPM8PRMBut6t6va6iKHTr1q1PvLXH4X3D6z6HpcNncUuZ3vWhX653Pah/tidcitNf9aU6+zmpRfSjgHd/50rV53/08rv/AcYPFv/0fg/hreAN/U2cnsMJCQlXFd9T/I1L/yZ+uwSFT0t61n5+RtIL/oaiKD4o6YOS9PTTTxdEeWu1mhqNRoxwQ3gvPhPJCFFmiAmRWKK2k8kkkjpITq/Xi8R9NBrp9PRUg8Hg4JycR9IBqZ7NZjEqDkEhGpplWSRPEE+LbsZIKuSn0+mo0+lou92qWq1GkkzUdzqd6vT0NJKwk5OTKFAwRlwWuAq4/na7rdVqpel0Gol4tVpVs9m8g+TWajV1u12FELTZbDSfz9Xv9+McQF4513q9jmNk3BC5xWKhs7OzuL61Wk3z+Vyz2exgY8xmM926dUvtdlvXr19Xv9+P42u1WnEeZ7NZvF7mebVaSZLq9bqq1ara7ba2263W67UWi8XBmOv1unq9nrIsi+QWUeWTn/ykptOpHnvssSgIMa9gsVjEz3Fe5gIXSVEUyvNc8/lcy+VSzWZTWZap1WrFvYkAwXuXy6UqlUokzJKiU4E92el0dHJyoizLonBBZH69Xsd9jhvh9PRUWZbFNW61WhqPxxqNRpHcM57VahVFjEajEUUt9myr1YrnYP7ZX+5KYA5w/lSrVUnScrnUbrc7uDf5HOvCvc71L5fLKCYg5GVZFkUG3sc96ffoZrOJ+9ydEdyrjAOXB8LYcrnUdDpVs9mM95OfY7FYHJz3AcXrPoelw2dxP5wk1pmQ8ICiOg+qLlKX5CuIN/Q3cXoOJyQkPGh4uwSFH5b02SGEd0t6XtLXSfr1r/WBRqMRo921Wi0SPMiQRzZdfIDsQiCIzk8mkxgpPj4+VpZl6vf7WiwWkcDkeX4QoXXnw2q10nq9VqPRUJZl0Q6OPZ/3EA0lfWCxWGgymajb7UpSJDVuLSfi3263Va1W1ev1IrGBoJ2enmq73UbBA6cDBKnZbKrT6UQSSeTW52M6nR7Y5D2NgWuZTqeSzknUarXSSy+9FOerKArNZjNVKpVIziVF4gcpJHK8Wq20WCxiBBsiXqvVYvQX4SLPc00mE83n8xi5rtfrkZziEiEtwecO0abb7arRaGg8Hmu5XMbrx7WC4IFrgDXA+SApziukHtGAsXgqAO9j7RqNhhaLhWazmYqiiE4ERBn2lu9VCLxfT71ej/Nyenqq4+NjnZ6earVaxTllHRkn1v31eq2XXnopCiidTicKFsvlUrPZLIovtVotvubpCRBnxCmuHXGG64DsMwcQ8/l8Hs+5Wq20XC6jy4BUF/YYAht7h3ude4nrms/nMWVjs9losVhEFwQpTp6y4ClEgPQmxA7Gwmf5meeJp3Cw98qpFw8Y3vBzOOHhRHZrq/Giqm0r8ZSHGU/80Fb6gX9zv4eRcCfSszghIeGhxtsiKBRFsQkh/A5J/0hSVdJfLoriQ6/1GYiMuw8g7hBOiKG/l+g/eflO/G7fvh3JN7/PskztdjsSwSzL4vGpPQDBAFinidiuVivV63XN5/OYKlCv1w+IGG4KSBjXKO0j7UT5O51OtHRDcpbLpW7duqXNZqNut3tQe4FjEyWuVquaTqcaj8eazWbqdDrKsixGbiGPF2sTx+ORbgSCPM/je7ger/HA+N2twOcRaqrVaoza47JA8CH6m+d5TAPZbrdxLql9wWc8FWG5XKooihj1d3HJsV6vNR6P4/wwry6oTKdTjUYjtVotLRaL6IJZLpfabrfRubFer31fx3nCvUJaQJ7n8RqlfRoEhJRzTyaTg9Qa9jDrO5lM9PLLL0d3Anshz/P4OeaRayedp9/v6+TkJN432+1Ws9kszkOz2dR8Po+OEpwxfjyvScG8+2vMD4QfsQghifHxvnJ9kXLdD+43ae/UYA2lczcKrh1SELxOBHvPayfwTGD/sObs23a7rWazeUd9DXcSsWeYhwcRb+Y5nPBwov2dP6QnwhfppS+pattMosLDiMawovZLs9d/Y8I7jvQsTkhIeNjxtv21XBTFd0v67rt5b9l54DnWEB2IKyTcnQwQqHb7vIAN5GI2m+mFF15QpVKJ9RdIYYBEQADdIu0gcoqNHYfDxTVqOp2qUqno+PhY3W5XeZ5HYlUu4Md1EPnkXBQohKi5G8KPV61WozsA4QEC5Tnr1HvodDoHrg8njdi/IYQQuPV6HesYUP8AIgvRRziAFFJXQTp3mkBSPV0BEoiYAqEfjUZqt9vRteCWdogqkWpcEEThfY6JgrN/iPizH7gGah0sFgvdvn1b7XY7CitcazndZrvdRreDH9drBiBKsBdxMXB+ruuyaDuiF+OcTCYx5YW5ZM6dqLOHqFFx69atOG7fQ77HfL7cOcC18TmO7QVSSadA/EG8Y19SI4S0Gl97hBPEA/ZGuYAmY/JUE8bG3PIsYF7Lgpe7FNifnJPrpTYIe71c6JHrfsAdCm/oOZzwcKP9d35IT61/vpb96uu/OeGBQ+/jeXInXGGkZ3FCQsLDjCsTfoOIuEPACZ5Xn6eYHJXYEQKIOpIfXqlUtFgs9OKLL+rGjRvKsiwKEkTOpX0lfe8awLGdOJGiALHlc7PZLIoVHjElPQFyhYCANZ/z73Y7tdvtmFpBFJVrQgTodruaTqeRQPn8MG5Ikke+mbt6vX5AqL3zAQQPEkdKAIUvcSx0u91IijkuYgGvOwnzKDXuhKIoNBwOdevWLV2/fj2mKZCi4Y4RHA8Qa47vnTbcSk+NCubBbfrT6TSmsVCwEbu+rz+uAI6N+8CL/PFav99Xs9mMwgQOD/YowgF7YLVaxTQSBJZqtRprPex2Ow2Hw5jGwp4luu7HYk35/enpaawV4g4Sd1Z4igEReJw0HrHne66Xe5JUBtIxcOewB9iH/jnvvuBwEcDFhLLIwHr7tZfJPp8F/mzwuiOsLZ00iqKIRUkZI8dmThISHhY0//4Pq3m/B5GQkJCQkJDwUOFKCAqQkCzLYiqCCwIUiIMM8X4K23l0WtqLDkTTsYt7SgMWcMgsEVZ3A3gEF+LXbDYPnATSeSoExBSxwlvPQdIYM2KEF0nEOg9pJScekYLODLVaTWdnZ5EEc11Yu8lrdwK3Wq00n88jGex0OnfMPWIHx53NZtGZASmjQ4Rfg6RYVwIxgjljvviZcfG+V155RY8//ngcI4TfhR5SFbC7k5qAI4P5R1Rg3bC4I5QgZqzXa3W73Vj3gWNB/CG2Tiapa7Hdbg+KPDIWSD0pBfP5PBb8Q+Ti9e12G8k8X1wfa+9dMRqNhvr9/gE59ui8r9l4PI5OGk/XKItx1DkgHQIhgzlEFEOkIR3H63C4C4F9jYuinNLg7T49BaKcYuCign/GBSQXPhBu+Cz7jM8jsLlIwjFx8vA+3yeeSnWZEJKQkJCQkJCQkJCQcI4rIShIisQly7KYRtBoNCKxxWbe7XaVZVksCgeRc6u0tM+vh4hgbfaWdk5GPELN+7C6E9UsikK9Xu8gv5xz0s6RVnReDA6iwjVJiu32EE1IKXBHAvUVNpuN8jyPxM0t7V4oUlIkk/wLScRRQEeLchSa+Wo2m7FQI0QaMjsajbRaraJIAHBwQGzdZl6ugYBTY7s9bwt58+ZNSeekcTKZxBQHL8yY53l0hzAu1pO5dKcGY/TikcwH+4k1ZK+12+0Dxwhzx5zQzaFcwI+Wpcwre3Y0GklSFCDoKuBOBXcRIEixN2nJKJ2n7hwdHcV5hfR7KgJOmOl0Gjs+MC9OmllrHBxeZ4K94vuJaD1ryxi5d3iPpz64YMBnPI2AfcHPlzkO3IHiKQzsM19b4AIAQhn3k6fpsGco0OguBBdC2AvupEhISEhISEhISEhI2OPKCAqQf9ruQYTI+ybiioOBiK53EHBLNPnyRGPn83nMXYcQQiApsggBInIMcYKQY5WWdOB24GcIrQsKbtX26C6RaggNLR87nU4sljcYDHT9+nVtt1vdunVLp6enccyz2ezgenF4QNDcCu91GYjS0nIRIk6rvn6/HwsCugghKUbkIeSMBZKHWAPZZyxOyHCesEa3b9+OdS0g3TgtuDbG4a4V5p/oursREHcQFxgfDoLpdHrQTpE9wrqxl5hHb/3IdUk6OB/HYj6ofzGZTGKLUPYR72EuXZByV8t6vdZsNjvoSMGasebSnnQvl0sNh8PYOQRnhAsoLip4a0Qn2ogdnkaDgOARe8g3YgqEnjlinrxGgwsPns7i6TkIZ1ybiwq4OXwfcK8xNndauPjB+vlaugDhXSNcJEmCQkJCQkJCQkJCQsLluBKCgtcTcOs3qQntdjuSKqK5tVotdjOAVELYIHgUaoQwU9le2pMhBAYitZ7+QC0DIs+QbIhPCOGgZSSRc4o0Qkr4vdu9y/ndCBbVajWSejpQkPYwHA612+107do1tdttTSaTSHZqtVqMTCOKVCqV2K0AEgpJp8AigFx5dwIi4ogotEXEJQLh9q4c3rLQC0ZCklkDXBLz+TwWdPTcfq6BNafuAJ9zMQbyzb+3bt2Kwg65/ggskFlSN9g7ENayQMT4XWxCZGIc1A9gXXEDcG0uenFcF6Qguy6++B7BeeDOCV5nbiH+y+VSZ2dncd08FcXrArA2pPIwDsQVRAEI/mKxuKMNprTvxsB+8laL5cg/BSWpuYCo0G63DwoiepqEp1q4+4gimRRI9a4gfAYxyVMn+PL5vmy83Lv1ej2KQAkJCQkJCQkJCQkJh7gyggKklTx4op6dTicWApxMJgfCAY6Asl16tVopz/NY0K7b7UpSdDdAsBEDPPrpxyN1gPQHSBBkigholmUxogt5LYoi5tBT2M/t51yvE2JEjmazqW63GyPyzWYziicQVOYEAkdHAQjx7du3Y00InBzM13w+j2kBiC4QL69XAPFmHtzSLu1t4whC3uoTgttsNg/aE7K2XuByOBxGIg0BdicDewRA2D3a7G6N4XCoZrMZySBkuNlsRiGEYyIosM6sO9FvRKdGoxEdMtTfyPP8oN4AhB9QCNLdKh7J99QAjuPXw7zO53MNh8ODlB3mwAk19waOlG63G9cSMi/tU3UQTNgnXo/DU4jokIFLhNch/IhHLtiU4Sk2XBvzMJ/PD+qhlIshsge9tgnzxr8uzpTHXX6fP3d8vdyhwJ5INRQSEhISEhISEhISXh1XRlCAUBD1drtyq9U6KA4onRMUyBoE34kteexE+SErdIRAlCCq77nckg6OSS72aDQ6sKa7y4E8eYjMeDyORRohge6g8GgrFnnOR+0EJzPtdlvtdjsKItRWmEwmkQhJim0Md7udXnnlFe12Ow0GA0mKtn4IJsUgPQLvjg2EFE9BwBVB1JtrwWLPNXhLzF6vF+eL6+/3+zHtgsKZEEIn507+vS4FJP4ybDYbvfLKK8qy7EAYcXGElAHPu+eavc4BIgCtIbl2T+9wosu8uADjKRHsA8/n5/og0qwfexH3Co4MhBrpsG6Ak2qEhm63e9Alw8UMzoegQAqCzzvnIPrv6UEINrQaxf3j+9Gvj3NzHo7taTXlWiic18fCfc5a+b3kKSmsPdfDPue+LReA9NfYX16jISEhISEhISEhISHhEFdCUHBbs9cZoKZCv9+PROL09DTapKVzkgxRhmQMBgMtFgsNh0PN53MdHx8fRB69SB2E0cmlR0CxyvMvzggEDqzuvNet8ETGIehejd4j315oDkfC0dFRrP0AoWo0GjGyX6/XozOCc0L8aA3ZarU0n8+jA8QL1En7Vp1eUwHizlwStablpNcC4F9vKejH9a4EtFakO4C7EiTFVBJILyTT6ySwhnTDgMwiEpA6ATmFKHuRSkkHUWrAnLgLg3VEUKAGA0KG2/z5LPC6AtR38KKapCN4bQ1SADgf6HQ6mkwmsVUlc0HNB8/7d0EA54CnmHA+TyFw0s38eFFEXme9mBPOh/uBVCRcOWUHkYtBnMe7a/j33KflIon83t0xfi3uavF7ns+6I8Gv1d/HZ12cSEhISEhISEhISEi4E1dGUMjzPKYmeKE27PGQivF4rNPTU4UQdO3aNUnnZHS1WqnX60VrO2RuvV7r9PRUnU5H7XY7Fn2s1+uRoEG+PdfaC8UhFtBNYjabRaeDk07EAEkHhfwQDiCNEGVqGSAMUEOBaCrk1utHcCzGw5gQSOiKwBjyPI/jgpQtFotIRMtku5zb720EWRuIH4LBZVFkyK5b+5vNZhQanPB6CoUfC1HBc/y9dgUdODw9YLfbxZQEPxYkHYHE0yU4lxcs9LaIOAyoDeEFNRFRfM29ngLzCtHnHE5kKWxIjQnSdIicI+7wM84JSQfCjdcaYI3YU+6SQZQp1yi4jOjzfn6mowfndjGMayXFhb3G9ZVrF7i7x4/pgo7Pl9cd4fflz3P/+l70vV12HZTTVBx+/oSEhISEhISEhISEO3FlBIXpdBoj2Z1O58AxQNSTgoGj0SgWCOx0OpHQLJfLSFqdtJOnfXZ2plqtpn6/r5OTkwNyi9AAGXeiDeFqt9sxd56uCKvVSrPZLJImyBQuAYikF99jfESsERX4PcT65OREkqLbAaKF0NJqtWLqAq9DeCHcWZbdEemlyCMRWOaa+SJXn7FBTInE+3V6+z4/lrQnc97mkPFwLgi+286lfbTff/aihQg6zWYzzj+pKd5xwVNZcGh44UdP0/BOES5GcC6vXeBpEuwDSQfCFPPobSv9GvyaWVO6cnQ6nQOBi/kl7cHbckLynRzzfjpFcG/hrEFkYB8gKHhdBwQtdw34ub3LB/exCxS4N3z+pb2ryOFiA+cGXniU9WM/47gop4nw+XJqCe/xveapDr4fEKsSEhISEhISEhISEi7HlRAUJEXislqtYoRZ2kflIUgnJydRTBiNRgdky6Oe3n2gVqtpNBrFyPFgMNAzzzyjEIKGw2FMmeh2uzo7OzuIMBM5RtjIskyz2SwSFcg6P1P47+TkJBJYCLekKETQnQJrOxFwyPtkMtFTTz2lZrOp5XKp2WwWnRiIAtI+0u3dAXBQuKAAEZXOiWCn0zloDwjZdUt8lmWSFMkyHQ1IkSBFwaP1IYQoarjN3S3pjIeIf57nUdTxbhEQey/K53n/fiy6LyAkcJ1O4nGEUH+CPScpugNwAngagef9sx9cZHCyjZBD7QQI9WVpIOwxronuGovFQnmeRweGCwteHwBBxAmxC2He9cDnywsc8sUe9DakzB/zxO85Ju9jXcvRfu4Prpl6HcAFHeDpCtzXntbBuDwFBncE6+9zgRDl6QzlQouX1Xt4td8lJCQkJCQkJCQkJOxxZQQFLPC0aKNWgIsJlUpFnU5HN27c0K1btzQej1UURaxmzzHKNQ1ITZjP5xqPx5pMJqrX67p27Zqm06lGo1FsD9lutyMRJHUC90MIQf1+P9Y2kPaFDiF/kKRWq6XBYKCiKDSdTmNEeDabxZoEvV5P7XZb4/E4kjNSGCBJ/X5fs9lM0+lUt27dim0QIVcQQEietI+u4giADHpUHUJPm0AILq4Db+8IIPpEhImoS/t6ApwbV4WkSAIZG2Ogc4WkKEp41wFadTLXHi0u2+GpceHvgcgSQaewYafTiR0YAOSUFAHIONFyiDq1OyCaTpDZIz5veZ5H0YYCodI+7YQimaw/zgR3g3j3A68DAdl2guyR93JtBlo2EulnHi9zTLgTxt0rnKs8/8yRz43XdeDewFXCfHvNDC8eyfldMHN3AeIO6+SiAmIKzw7ul8tSG9jzfu9cNpcJCQkJCQkJCQkJCXfiSggKEFRa3nkRQa9FUHYAICpI0mAwULVajVX3vUWh1zrI8zxawDudTiT56/U6pj1A6IiqVqvVmJIB6YN4k2Pf6/XiebBzt1qtWB9C0kHNA8hPp9OJFvDdbqd2ux3J2nK51PXr13Xjxg0tl0vdvn07OhVI34AQeuQYsYAvrPfSoShQqVRiMURIL6SR11kHt8B7wTxs7ZBUz/kvp2g0Gg31er2D8R4dHalarWo8HkfSLukg7x+hYD6fH9jtneDyXo9cO9FkLTabTSwQ6W0TPUWCNIJy1N9rZLhQARGXzkUPHDaecoC40ul04r7nuF4vAEFhMpkc2PU90n8Z6XVRoBzNpxsFDhNcGBzPxQvpMHWBe49j+7WWx0H3B69ZQIoPc7PZbKL4g9Dg+4H3uVjCfuZ3ZXHBiy/6OBg7ggTigT9PGHtZMEliQkJCQkJCQkJCQsLr40oIChA+CM9kMlGn01G32z0gOZCkTqejoig0HA4j0Q/hvEgjZJjoqUeuIc7T6VTT6VS9Xi8KBvP5PBJoiLMXk+Oz0j5PnnORotDv92PEGeJH8TsXI/xaIM64BDz/n4J2nU5Hx8fHOjk5iV0f8jzXdDo96FQhKaYsQOqpuO9FAYnCu7BA/QDSLrwQI1FfSJ3PsZM01hKhpFarxai9pNi9gvGzJp1OJwo4jB2yDZGH/Ho3Bo8suwXfCa2LLO6okA5bgyKOeNcCT6lwp4x3ygD83t0sXAP7b7VaHRBprzWA4IUAwP3APvZUi3JtBa9vgVjg5JrUm/F4rMViER0yiBleB8PJt4skzKe/7ukSjIfzu8DBPYRw4GNHCED4QZBAYHHRBqHAC2oioDAujuE1KxAt3Mnh6+Auj3I6REJCQkJCQkJCQkLCq+PO/nl3iRDCsyGEfxZC+MkQwodCCL/r4vVvCSE8H0L4sYuvX3Y3xyNtoFaraTabRcIpKVrRy/ndFAacz+eaTCaxa4C7GSCJF2OLxI46A0Sri6KIufy9Xu8gT9sLPPJzs9lUt9uNlv3pdBqLA5LmgDMB8kJRPEQMxoQDAPs3qRCkaEhSlmXqdrvqdDoH718sFvG8ThL9vDgVEC8gjp7/TrrH0dGR+v1+jJR7AT/AMTxCDWGDzLXbbXW7XR0fH8eUFNbk5OREx8fHUZihKCUpJt7G01MLut1uXHMXMiCfWPu5dgQVSQckdD6fa7lcxrUkRYHPdDqduBdxG7CXcFp4vQaPakOavRgh8w/RRijgi+sj1cWj8hyTeeUa7D6MTojFYhFTKZgj1pUuJ16b4jKXgBdh9Ai+d3zw7g7uTGEvee0ST5FBXKMQpxe6hNR7qgNAcPAWoexhhAn2MmPnfdxzLuzxHn6P+OBz+iDhXj+LExISEhLeGNJzOCEh4VHGW3EobCT9nqIofjSE0JP0IyGEf3Lxuz9TFMWfeiMHg/y0Wq0oDpAG4MUCIfoeASW6S94/RIMoPYUDpXMyRk0CCB/knegtJERSLOTn9RT82JVKJQog3jlgsVhoOp1GsgKhb7fbB9ZwHAgQwnBR92C9Xmu1WmkymSjLskh0+d67JcxmM0mKY0Zg8EKERMkhbhBEnAYcCyIN8VutVvGcOEjoGICDQtrb2V2sIA0B0osDgnQAIvKVSiXWJoBQsu6QbxceuF6uERu/2+ERKxCLINm4MTgPQgHnQTBA2HK3B3MIGeb8tHpkTRErELcgvAgPTth97t3JcFkaA6IMAoNH4yUdOGhcOGg0Gup2u3FPca1cP/NRBuIdAgr3owtR7moop4i4YCHtHSE4QMr1UfjXi196uoULinwOEdFTR8o1JJhzXEfle4N7gvnzZ9IDkvZwT5/FCQkJCQlvGOk5nJCQ8MjiTQsKRVG8KOnFi+8nIYSflPT0mzzWgcXdrdhuHfcCbmV45BfCSkSclAYij4vFQqenpxoOh5HQEiHHEUBtAMiip0IQeWWsx8fHUXTAPTCdTnV6ehpFCC8cCPEH9Xpd7XY7tgyko8Bms9F4PFa73Y6uCdIJIJXSIfHzqO1isTgoLAj5kxRJr5M0j9pCzubz+UE9i/l8Hq8Bck/3CUQXJ4V0LsBBAEkn1cEdExBb3BAIGL723l3C2xnyPkj6YrGI68EcedoGtTZIt6Ed6WaziRF9igN6PQr2D+f3CL8TW4i8iwUUq/Q6A8vlMp7HxRiOX66ZgEDmEX2i/7h4KCjKHHoahafrcH+QhgOh93oDZdJPLQtp3y6S93HPId4hHrE+3LfevcHPI+0dF9QS4VzuLvDaKi4iMB7WwkUjapvgCmHNEHx8PI4HQVS4l8/ihISEhIQ3jvQcTkhIeJTxplMeHCGEd0n6eZJ+8OKl3xFC+DchhL8cQjh+vc97Ebksy9Tr9STte8i7xRny4FFWopm0k3SbuUdL3fpPpwa3WEPCPOo5Ho9jFwYvEAkBhlRCSokOL5dLDYdDvfzyy5pMJpEIHR8f6+joSN1uNxIgOg80m01tt9sYgScqS6eDdrut4+PjaF8fDAY6Pj5Wv9+PhAwS7zUDaI2J0ID4kud5JFmIAkShmTdIHeRTUuxUAUFlTrwNoEfsy+0bWbtqtaput6ter6dutxvFF0gwaS2tVis6U/zYHJ+ver0e3RROdlkb9oG3e2TfYYtHDKCNqHcJ4Hhcz8Xej24LrgkxzAuDuqOFdWq1Wur1erHehLQvLomzw2st4J7w9As/HuIYDgqEGda43W6r3+9HFwqFGklJ4BiIcPzMeVqtVnTJsBcYH3uL60BAQiyjOKin0JTnhvQSzuf1T7yeCe1OXYjwApIIMS6SMG8IYaSJIJ5w/Z5q8SDirT6LExISEhLeGtJzOCEh4VHDW/7rOYTQlfQ3Jf1nRVGMJf15SZ8p6f06V2v/9Kt87gMhhH8VQvhXEGhILITHq9JDKrF/e4E3or/T6VRnZ2exoj4ks9frRXLO65D0y4rcQUgkxdQFnAlESqVz0kTHCIgvpCWEoMViEc9DjQUIf6/X02AwOHBS0AEAoiftRQW30TtB9voDEEdSCCCeEHnIlVvfPZ+dVA3Pb0esQZDAdi8pWul7vd5BdJ26FJBGCLs7RPw8CAcUhKTQpXQe5T45OdH169dj20XvbiEdClKICjhFGCc/0zqRFIty7QcXIrD6e/V/xpRlWSTPTqIlxX3A3nQhAzGCdTw6OtLR0VFce68Rwvy5wENNBIQT5oPfYeEPF7U5cIewnzqdjgaDwUHXC8bJHHiXBODOIO/SUI7oM28hhFinxO9pF0d8zzD37qLx1B5Pt2HNcKWU97ikKBYgYux2u+g8cUHE60IgZvh1XXV3guNePIvXWl72loSEhISEu0B6DickJDyKeEtdHkIIdZ0/OP9qURR/S5KKorhpv/+Lkr7rss8WRfFBSR+UpKeffrrwAoIQivV6HUkVZNOdAk7gcByQInB0dBTJGxHIi/Nqt9tpOp3qk5/8pEIIseXkbreLXQhGo1GMfkKKJEX7PefGYu7kcLvdxor60+lUWZbF2g0IExB1r86fZZlWq5Wm0+nBuDhPnueRGDJexkb6wnK5jASOeaIeBW4CLPVOXt1CTheIfr+vLMui8wNhAHHEI7+4Fji+uzmYuyzLIjkfj8eR1CEQsO60rESUID1is9nEwpm4QDwajciSZVkUQYjAQ1RxvXiNB64b0QOBAqGEaLYLAp4+wXsg3F5fgWsiit9ut+Pa+X5n/RDDILjsPxcOfO/jDPFxQPgR03BPkDICeR8Oh5GoMwcIF7gCGJvXq/DaE6y5u0UQDGgDi/BBGpELATg5/BigWt13RZlMJnEO/T52Z4R3oaAjyGUCAaKXF39E8GBfsR5ex+Eq4149i/vh5OpfbEJCQsIVRHoOJyQkPKp404JCOP8L/S9J+smiKP57e/3Ji1wySfpaST9xN8criiKSfnchuG3co5eQLWlPPLDun52dxa4AHBNCRl0ByOlqtYrRfEguRRJXq1X8vOfIE9nHxu9F5rIsiyQfez9EFnGBiHSZHFKDAJcB5AjS6N0JJB1E8l1UcNLGMfkdc8H8EbXHYQEpgyhC6IbDoRaLRYyCM9deS4J5Ktc2QNDxdoS4Ibh2SdGJwlz5+rKe7BXECa+nUS7eyXjcZs97XEzwdAbG5kX7Op2O8jyPqR+IABBid25A/iHmwItFehFDb2/aaDSU57lms1kUN3DFeG0K3x/u0mCucCbggmD/cTzGReoA42Mv+jqwL0l94X2sIyTcHRyQfNac62Ef+t50kcAFAd7HvsS1w+/LIqOLEVy7i2Pcx7yH/ePtKpkrL5aJY+Yq414/ixMSEhIS3hjSczghIeFRxltxKPwCSb9R0o+HEH7s4rXfL+nrQwjvl1RI+rikb3y9AxFpJ3oIieJ1crchqyEEdbtdtdvtSGqJnlNfYT6fR1K0Xq/V6/WU5/lBuz5qBpRztZfLZexqIO1JiBPVxWIRv1+v1xoOh+p2u7p+/XokO15XAGJy8+ZNPf744+r3+2o2m8qyTKPRKBIfiBAkByGAiCsiCASOf7GZk4Yxm80iuURscXGGiKzbx3e7nbIsizUmeB2iNRwONRgMlGWZhsOh8jw/cG7QlWE2m0XSjXBDPQI6XUiKThAn8K1WKwoNq9UqfoY9gQOh7PDwLgFcZ6vV0maz0WQyUQghXptH3/1zXpwSIQjxhYKH0+k0prWwzuxRSbHbCAIAQg9CkKfueBFBd01QkNGJubfSLHctYe6c1ONskfbdP9hLCCD9fj+6O3DGuJCGIOB7HxGCtWB++Bxj5t/ZbHbgqvH6FzhcmFtEEYQSd5fQrcPHw/kR1fisF8F0V0lZvLrsGnlm+PxfdUFB9/BZnJCQkJDwppCewwkJCY8s3kqXh38p6bKG7d/9Ro9F9JNoOgTfC/RBaLBZL5fLSGQkRcJYqVQioe52u1GEoAAgkX7s5Vj1EQI4br/fP2hZeHHNB0UgsYJLiukWN2/eVL/fj5Fbj0DPZjONRiONRiPduHEj5sOPRiOtVqt4XCeUXlWf1paQ03L+ukef6WoBSfaorxM05gHS1+v1YnR8u90qz/MD+zfz4ySZ+Yf0416ABLubwdt6zufz6HyAQHr9BsQT5hkbPYSYyLVH6YkqIxQRxZ7P55FcSorzQKTc0xAg7YyL8UAuaS1KxB0BqtFoaDwexz1FOghjKxd3dPcJ1w2h9RaT7nbwfeffQ35dMMMlwtgZq3dtQGxAAGNNEaOYS8i/izh8DqHAhUHGzD2HOEW6BGPiGOx59pILiqybF8PkGnCauNvFHQk8N9ibLlywrj5f1KJYLBax28pVx718FickJCQkvHGk53BCQsKjjLdUQ+FeoSgKvfjii1qv13riiSdifjbRbkmR5EIkiPRCyqR9GgS583RGcLs/pM2L/9Fq8vj4WLdu3ZJ0bonudrsajUaS9u3pKpXzFpN81q3iEP5yW0iIT6PR0Hw+161bt/TYY48ddGOAvFIHAeIqKaZYQOp5L9cDYZP2Fn9y49frdUyvQCRw4kakGJGGdADI42QyiQIM8whpd8JHtB1y6fUuIPTlwpWTyUSTySSKGZBKj95TG4NUAkQDnBdFUejs7CxGqd3ZAZluNpuRbEJ0SV3AZYDQwTy6Dd9FIVwP7BmfV8gokXWIMHOCoOCOBGlfeBOhxAtBOgFmTrx2APCov4sizAGfRfBB8OB8zAnjBDgKvKMK4oELN6ztdDqN70WwYS+xRvyOexmByl03XKN3eKBWihfM9NQd9i8iAuOlgOVisYj72VutuiDBvLpLJyEhISEhISEhISHhclwZQYFca5wKzWZTeZ5rvV5rNBpFQQCrPm4EPuvt7ugi4IQfoi7t7fnL5TIWT4T4QOawzI/H40iOGStFAiHtXiCP35OHjjBA2oakaMM/OjqKLewgrnSGqFarOj4+jmkdw+Ew2uwhO4yZyDTiCGSS6y0uukiQagChZP4Y72aziY4BaidAsp0Au8Xe6yM4mYN0Em3nPEdHR3fUASAVBaHC209ix+dfxASuyWsxIJaQ+sL4EQE8DQOxA4EDcgmxpw4BaTEuKpSLCyIUcQ2kZJD2wGvtdjseC/Lq7hdfC4Qij7y7I8WdIdI+xcHTQxCWnCTzPl87iDffU2vChYVyKo47Xvz+KRct9WNzb3ktB9bFxRHSRvzZwGd833nBxbKDQ9JBC8paraZ+vx/P4YIcYosXFvXijgkJCQkJCQkJCQkJl+NKCAoQHkh/t9uNpBCCMJlMDqLJkB/A78JFJX3I1Gw2O4iQrlarGCHHCQAZ7PV6MVJLcTqil14wDmIGUZXOSTpkFNGj2+3Ga/Jxkzc+mUwk7SOyXlUetwPE1mtFeCcMHBij0SjatCGwED+v5O8Cgc8fpC7Pc00mE+V5fuAKIVLtXRG86CIRfs7pRSLdQXHt2jV1u91YWJG0D6LBuDGYc1IUvEMDooKkKNRAvFkDnAJ8j4VfUnR4ZFkWWwhClBEVPNffRQ+Ox97pdDrq9XqSztNMEDCcQEOeIcCkFZAawHncUdBut6MgQjoM6+/3jbsW+J794V1KEGncCeCdEdx94NfHfHqdibKwQQcQP4bXRCnXOEEA9OP6HHkRUHeNsO7uAOGa3cHggoaLSNQ4QSjkOniW7Ha7KCp4AdiEhIcZlV5Pw6953/0eRkLCa2L7D37gfg8hISEhIeFVcCUEBWlf5d4L4QEi+Ov1+iB3HaLo9nQIGe+hOGGlUokECXKPvfuVV17R7du3Y2QZEs6xIc4e4YWg4izASk29g2vXrkUiM5vNIkHvdDoHkXXIlxfVwzlA0UMnyB7lJRoNYUOQwB2BS2A6nWq5XB5EeSGx3gUB8kVNhU6nE4UCxBWiyoBxe/oJFnp3dZCyMZvN1Ol0YivNdrsdxROEBGpbcM1E/hEUEBVY93q9HsUb6hZ4xNrTEJyEQ3KdpJOi4YSf/QgZ93oFCBOMhXl2Msp42T+cw3P+mVsn0N4tAsHF63hwb3jai0f/EbOctEPiieJLiqIB52T9mD9Pa2EsLkhxHr8O9rG3L3XhwEUJL6LpLhr2l9fQ8PF7OgfX7e1hPbWH+zTLMp2cnKhWqx0INd41hHuY9fKaEQkJDw1C0K0PfIm2jaDJe1JqT8LVxuaf3+8RJCQkJCS8Gq6UoED7Ri+iBiF0Cz0ExNssem2BoijU7XZjxJsUAidBntc+HA71yiuvxLaEtVpNs9nsoN3gYrE4yFuH3FLsETHh9u3beuyxx/TEE0/EWgIvvfRSTJ1oNptRMICIedE6HBa4FLDfO5FzMgiRarfbse4En2EOIOmeww/pk3TQjo9xQMa8HaZHkMlH5z1eN8It8W6hp34Ex+p2u3riiSdUqVTi78bjcRRGJpOJptOphsNhHJuTWQQRyCiOB/YLaRgQai+wyOeZB+/owblcQPC6Bn483Az9fl/1ev2gCwepIW7N55ytViumU7AvEHQ4j6cvQOzLln+OzXhCCAepNV7LokzWId9eJwBhjzlBmECI41w+D/yM8OPFE+lk4ikrXluCtcZVwOcHg8GBM8TrXPg+9z3p37MPOZ+n6bTbbT322GPRscT+oWgjwiV4ALo8JCS8Ibz0u75MRU3Kn9npvPh8QkJCQkJCQsKbw5UQFCgQR6oDRMGJCRZ60hEgqu4S4FjSeVFFPk+kHys6HQba7XYUJMbjscbjcSQg3o7QXQCIAQgCu91O3W5Xs9lM0+lUzz//vJrNpp599lkdHR3FlpLD4fCgSwOk34USah5AzhEBeB/XB1mnuwAk0LserNfrO2zyEF3SORAqPKdf2lfQxwJOlBmXgjsLcBWQ5gEh9yJ8RJ6Z55s3b0YS3e/31el0NJlMIiGGqE4mE7388svRYeBpIr53IIQ4Cdrt9oGjwWtBcJ2Mlb23WCwOih96VwLcCPwOh4HXP6hWq+p0OjFtZD6fR1cB6+cpFxwD1Go19Xo9NZvNO4puukvBXQ1e5JIUBUnxnkA8864GCBlel8BdEVwjHR4AKSVcv7sl/D71FAR3WjSbTU0mkzuKKuJemEwmcRzValVHR0dR7Cnfv7h+EBFardaBO+my9B6uk7nodrtRCERw4V7EPYQwNh6PL3tsJSQ8sJg9VWjXSEJCQkJCQkJCwlvHlREUpH1veEgcEWeIAmRrOp1K2hMk2ksS7ZQUuwBsNhtNp9NYjwCyBakfDAZqNpvRXUDxvCzLYt0Gt1VDOhg3JAtx4vbt23rxxRc1mUx07do1HR8f6/r165pMJhoOhxqNRjHCulqt1O12I0FDBOB8q9VKeZ5H0uvnJy0DFwNEmQ4U6/VaeZ5HEcAj3+7c8Px9hAYviod4geWfL9I3ODfpAZB0HztkutVqaTgc6sUXX1Se59put3rmmWf0+OOPq9/vq9vt6vT0VLPZLEb+q9VqTCfheES63W2C4OHCB64VotlOnNlr7vjwVpJEzV3cQmTy9SLyDUGnHgOCiotdXp+DOYXcU2iUlBiEIa/j4DUKHFw360gk31tuSvvUC8QdxuRpLFw/45N04Izg3pL2qRKMyQszIpAhYnnE32uKeLoBhUQRV6i1wVowdtaA+4W2ky46ekqFuxfYry7IUHeEvSopCkKLxUI3b958E0+1hISriU///i/Trp5SHBISEhISEhLuDa6EoODRzTJ5d7IDucIGTYQb8uZt3yAoTpAoHghJJeoNqLcA2fRxkUqB8wEC7k4HrOLT6VRnZ2d66qmnYnQeS7vXW4AUQfDW6/WBbZ9oLoQO5wIEDpcEdQb4ghQRdYewuosDiz/Xw5xxbI/Q44bwOgKIHO56oK0jZBuRp9PpxC+KYE4mE43H49hmsN/vR9I3HA613W6jw4PuH6+88kpMj/A0AK+j4SkgFP9DPHI3CETUia4XDnQHCoSYdItOpxPX0utEcAwIPs4G1gNCHEKIe63f70fHQqPRiOtPyouLIC4sIZw5WZYUu6QgxI3H43gcukbg5vDaGQhHfr94y0YEit1uF4UPT1XAEeFjoY0jwku73Y4/L5fLuPdwHXAP8x5ExW63G/cJc4Bwg9DCvcRr7sBBePLaIsyfux7YP6Q3paKMCQ8jNu1CCq//voSEhISEq4OP/7Ev1bZx9+//nD/6IW2TwzLhHcKVEBQgBJJiUTQ6L/B7yEqz2YxFDiFvECQnitvtVnmeazAY6MaNGzo7O4tkg8gwKQgeuYdIZFmm6XR60DqPfHfGAjFfLBY6OjrS0dGRzs7OojuAiP/R0ZGOj481m82idZwuFE5aiM5SfFHSwbgggXxP9wqug7oPTrAYI4IKhJ+0CGpUNJvNGDnv9/sKIWg4HEaxwImjW+hxfBChx/1BNJ+5gBgOBgNtt9tYu+Kll16KrSSzLNNgMIhjRyjpdDrR0UDaA6kj3n6RKDVRcgQCxuKpHGXy3Gq1ogAh7fPmEbfa7baq1Wq02ne73eiAgJQzDxybehlE4omAUyMDoYPxdjqdWP+h3+/Hfep7EBcKxTPZR+6iwOHTbrdjHQ1eYz8gTjFWxDDSEHBreHoMggKiAQISoo/PP0A46Xa76nQ6sXgmIgkuFPa9tHdEkP6EEOHFJD3twl0kXsgSUcdTabxzC2vkqTq12r69pLscEhIeFlS2QSqSqJCQkJBw5VGp6vn/8os1f/yi3s0beG5/+Fs+9+Dn5u2KnvvjP3TwWrHdnv9/kJDwFnElBAUiwrR5lBRFA3LtvQMDtQKwsku6oz0dpAV7tVvhPVVivV5rMplEIndychLJEy0EvQAgRdykPeHwlo7SOYn2VpMUxOv1eqpUKjHSTVFIJ+lEkRlrs9nUdDqNxM0r5HvhQS9uV7amU2QSYuVjhWRxbawHQg0uB6LKOBaYRyLukHZIn0d8IcXkqlM0cLvd6tatW3r++edVq9X01FNPxToapG0ggBA1DiHo1q1bevnll6Mg4zZ3dwiQPuMOEy/YiOXd61JAMHe789aF7MderxevFceCuyo4Tp7nB9F1BBui4AgHtVot1oNwdwKE2EWh6XR6QG5xIFALBGHCUy2azaZ6vZ4ef/zxWPyQMVLYlL3EXkTwQFTBaYBogVBAQU3fg41G46CuAcUh8zyPXycnJ3FfedcUrp2xsf9ZT7poeBoO/7qA4y4hzoPTYrFYxLQSxCCEr8FgEO91HEN+LyQkPEx47lu+Tx/7E1+aaigkJCQkXGFUWi29+IHP1/yJN5miVhIfltd2+uk/+YUHr73ru9Zq/vBPv+Zhis1Gu4u/hd9uhGZTFXMOvxaK1Uq7VDT7TaN6ETx7NezmCxXr1Wu+x3ElBAWi4BCsEEKMPnu0V9q3a8yyTHmex5QFIv2QVog45KrT6Ry0HORnLPh5nkeSRGE/jzoDosGSYt97isy122212+2Ye43LAqs7NR3Iu/f6Bt4KEUu/F4GkACNiAO8n4uyE3ueV4zebTeV5HqOwHiFmbrG1I2R0u92D7gHlKLG7QbguiB3HQuignkC3242kdb1eaz6f6/T0NAov1LmAvLP+CEk4HEiX8NaFpJ40m00NBoM4x4gnEF+OTXqB1xXg/KRwsA+ZD/YKaSStViuuMd/neS5J8dwQdK+54KIWRJgCi074EXt4neNmWSZpL0BtNhv1er1Y/8FFhdVqpclkEotDuvvCazR420evmYAA4KkNrD/7BxGJz7GW7hZaLpexGwepE7g4qI/izhzEwHIqCvcjQgdjYR2ZW0/LYM3cMYJLqdfrxX2AWEadk3K9ioSEhISEhISEtxOVXk8vf/3P0eTdb2+9m4//8rr0yz/3Nd/T/URFz3zHx9/WcYBXvvIzdPr+uxO7j/9t0OPf/YlX/f3m+Rfu1bAeGlSvnShcOJT/3e/8DO2arz7XT/2LQv0f/NSdv/j05e+/EoJCURTK8zwS+CzLImF2kkNEn6i6t1z0Y0l7EsQXx/boPkXfxuNxtL1LikSk0+no7OzsIPpNhBoS1Ol04vmxmEPyhsOhjo+PY5pFr9eL4gnOB67Libq3GOR7d29AugCpFF5bAZIIiZb2KRsIIkVRHFjciXRL+1oERNa9haKkg3oN7swIIajb7cYIPCkh5XafHHOxWOiVV17RdrvV9evX9fTTT8d6D5A8zonTgwKOODcQHShMyLxmWRa7T+CykBRTL3idOecYiB29Xi9+RtJB/QKi8Z6PjxDCPm00GrHIoiSNRqOY1tLtdmPqA2IJ7gxcM1yPpCi2ca0INxRAJK2FPUzknr0MUYZwI8SxX1hz9g4En3lHvGJueT/3BWkyTvCzLFO/39d8Po/OAxwgzBfkHlGONad1LGNjDpfLZbx+F9NcOMQhwloi7iGs9Hq96BLh+ZFlWXTVICT43ktIeJjQeT5oVwvKn03FGRMSEhKuGqZf+bka/uyr4SKbfsZOP/VfPPcOne3ur/nscwudfe6rjKuQ3vsXO6/+4edvPvD1JWpPP6Wi/xrXeAk+9R89ptnT/L//2nP9wi8MeuEXXjK//9mrjOcNjeRtAhFnIszSntAS9SZSDnnCCj2ZTKI13lsrQuyIygMIhBOG1Wqll156SbvdTp//+Z+vo6MjVSqVWHfBc9AdnjsPAR4MBvEc0+lUeZ7HQnBerI+UDK7TC0B6VNtdBp6W4FF3J2u0TPTOABBEWgYSxSc6Drlyp0E5NcK7KninCO8+4AUgsZHTxYAClrgeIIUQ4UqlEgk3LgavaeEF/7rdrq5duxYJr3fHYD0pAkiqjO8phAkvxkf0HqdEv9/XtWvXDjqHsMdwoXD9zBFj6/V6Gg6HB0IUQgrCCmKO16AgHcKLZhJRd2HC90l5H3BMhA/uH14jiu/3CudnL0uKbov5fH5QqLNarcaUHXe5sMekvQDBPmAvIqT5/cf6IA5yHb1eL7oEvNgq103hStwgPld+7az1YrHQeDzWYrHQZDKJ52XP0j1C2nehSEUZEx5WPP5nv08KQa/89i/R6HOuxh+tCQkJCQlS9fEbmj1W0Rsh1wklBOnDH7j2qr9+/AeuqfeJdyaNwxG2hYof/vE3/fnq9WvaftbTkqRPfVn3TQQF3r4gwpURFCDEXvwPAuiEe7lcajabxZQEJ0a8h6gmufqei+/V8bGfQ+DG43G0ukMMsyyLZIc6ANK+vR6EkGjtYDCI45hOpxqPx5HcECGu1+uxkCKWdqLfXmjOUwuIoOICIHKOmEGrRY/s8n5pn1PuJJO59Q4Us9ksklmcFZ5bT6E+ClZCqhEBIOheXBBnBDnqjI8cdqLWnNvrHriY43N17dq1uC6z2SySSYr7IeTw5akqnnOPU8SFnWq1qk6nEwUF6ki4gAGZZ10hn1mW6eTkRJJiHQ3OAUlnzUiRwWHCteHuoG4E6RYcxwt6IpBI+wKSXoyQ9eA9rDvj9bQUiiyS4sHP7EGEiVu3bkVhxN0jnJuaEHyOdWMu/J4l/YiuFPP5PKaq4K4gXQIXA8f3/YnTgXmgawRjoi4HaQ2kkbAvESFZ5+VyGUWjhISHEkWhG/+fH1HtN3yBTj8v/eGakJCQcBWwfN+zV8ad8LDi5pdIN78ke8fPGzZBz5584eu/8VWQP1m3/6+vlsPwLQkKIYSPS5pI2kraFEXxhSGEE0l/XdK7JH1c0q8riuLstY7jecsQgYvjx6gxhI/Xt9tttLQTPYWgeB96iBRigL/PbfheuE9SjOJ3u90YJcW6DRFxezikiQg2ZH4ymURCDplz4jYej2PVfiLI/CvtnQGe4w0ZR3zAubBare6IvHonASLkdMiAyPuYKESI48Jz1zkGa+buA87LWjAXWZbFCDGE0sc8m83ies7n81g80tt2svaMvygKdbtd9fv92E4Qwk6U3etFdDqdaNlnzhCGSF+QFPP5XVSg8CJj53q9hoWnl9RqNR0dHSmEoNFoFNNf2FPdbvegVSkuDr5IW6BWBOPqdruREHskH5GK/eEdC9jTiAouJPi8utCGwwN3BykR7hSq1+uaTqeR+LNPmdvyOBDHfF9wTy4WC/X7fR0fH6tSqRwIKZ1OJ36W/e6CBbUVKJIZQojdVVhf5oi6K55yw97n+KRCLBaLO7prXHXcq2dxwqOFYr3StW//18pefp9mN2pJWEhIeAtIz+GEhITXQlEr9MmveivU++r+H30vPL3/flEU7y+KAsnl90n6p0VRfLakf3rx82uCCGOZuDkZgfy0Wq1YVI+fEQ3K7gbILRFyFw74Pk7EBQlCCOCcWKaxxDNeSZE8QXIg/7gEdrudZrNZjLwjQnh7O6Lp3oWBc+AKIMoLccTJgAMCsWQ+n2s0Gh10RGBeiMjiUuAzzBP1H8ix53fMNykREGiK67FuTuJYQwof0iGBY0g6EEEQBHA+QPYgs8wFa+31K/r9vjqdzkFdCT6HiMG8eZ0Fb4E5m800n88P3Cte1wAi6u0zGbe7U7gmUl+uX78eaxpAUhGVuC4ELD4L+afFIhF5ovguNOGyQNBiLVyIAexlfu97wN1AnmrTarWiS4d7gJQK5oP9wDjK9yv3CXPEHuE+pKBkp9PR0dFRLNgImS/vS9wG3h2CfcG4/ByAfcy9xx4FrA/pLkdHR3rsscei2+QBwVt+Fic8etjNZmp+9w/r+t/7sK79WKoZkpDwFpGewwkJCY8c3o6Uh18p6csvvv8rkr5X0je91gdWq5U+/elP693vfnfMm3brPkS2Xq/HIodYviGWZ2dn8X2QMkmRpCI+cEy3hnvxx+VyqfF4HKOY7XY7kq9y2zrvzgBZLjsM5vN5FBkgkRBobOnz+TyKFRAinBA4HyBkCBFE8yHNRKKn02kklzg+AHnn1JYoikL9fj8W1ENwuCzNwQv/Edklel8uVintSTk1ARgzKRe4Htz2Xq/XNZlMNBwOY2FHzonLggKSuB9wkCBEbDabmObAWnsNCpwirBEk2dNlnCQzN54+QqE/nAreBYPigHSQkM4LKuZ5frBWODx8vmazmabTqTqdTqybwLxSQJR14zjsvXI9DoQCxoBYwvkQFXiN4+C+4T0QfFIPSB2p1+vK8zzW+OB+mc1mWi6X0bHCvPs5ykUV6WBSr9c1GAxiSgXpEf1+X7vdTuOLAjouHpWFIhcUuLdZZ9JXfN3coZDnudrtdhRSLqub8oDhDT+LEx5dbE9v6/p3fVhF5b26/e9d3ShIQsIDhvQcTkhIeOjxVgWFQtI/DiEUkv5CURQflPR4URQvSlJRFC+GEG687kGKQpPJJOZxE6GGhENCKeIGmcnzPFra2+12rFdAVXfSGqbT6YGF263X7iwIIURigauBiCgFDyFbRF/JQSdq6tZ6hAMnaJAorqfRaESiKSmmGBCtLo/RiS3XigCBs2I6nWowGMQWiByDa6B+A5F5r3vQ6/Wi60HaOzeYS/L4cQZ4UUDEB0gtYgvRYU938CJ7LhasViudnZ3p6OgoRpS9SwEpAljXqeq/2Ww0HA61Wq3U6XRiZJ25cVs/ewvRhHahjMXTYtrtdiT7CD/u/JAUo964IpgfIuiMz0UZXBTuhlksFhqNRtF6jxjjnTnW67Vms1kUFRDa2F9lUYA95nuKa6TmBiID61IusIlYwDxwbE93gNjj+CBNo9FoaD6fS9JBOg5rD5kvikJZluno6EidTieKF5yHYp6Mw4sucl6urVKpxLQSxkVqiHcnIW3Ei4au1+vYkhP3yAOCe/IsTni0sT29rdZwpzsamCckJNwN0nM4ISHhkcRbFRR+QVEUL1w8IP9JCOGn7vaDIYQPSPoAP3te+8XvD6rDE8XE8o/lmlSAbrer09PTSOQhf5AVyB/R9vl8HgmrF0AkwgoJxSGAWyDLsoNaC4zdI+GSophQziuXFKPwEH63W+Oy4Ge6NpAq4ecrF6GU9tX+IY+c20WF4+NjzWYznZ6eajKZxA4bg8EgRvfzPI8Rd64L8lepVNTtdg/IHEU1seW7Jd/HPZlM4vx6pwIKT1IocTabRRLp6SCeMlCv15VlWSxuSQtFCC8uF2okIBLwxX4gDcSFgqIoohhDXj3FGWu1WvxZ2qcf+NpR2NALX7KXXRxxt8F8Po/pL5yXtfSCmJPJJKZdcA24aDiX308INhQaxNHg6SQ+DsQWr+mACDGZTCI5Z02d3Hs6BdfJeNgLuClcyEBEJPVhuVzGOR4MBnG/TafTuA4urvm6sd/Kbgh3IbGnWRPqjeR5HsUg7rMHBPfkWdzSO1+kKOHqYPd/er9e+uJUXTwh4U0iPYcTEhIeSbwlQaEoihcu/n05hPC3JX2RpJshhCcvlNgnJb38Kp/9oKQPSlIIoYBkevTSidp0Oo3dBBANIEUQfSLSFMJzkufw1pNEZDnnZrPRzZs3D+oDQLK9rR4kxN0Ndm2R3ADORVSa8yNYkFKBhZz58HZ2zIcX3eN8pFUgXCCaMGZ/T6fT0fHxcaxhgB2/3+8f1BtgrIgyCAdFUej4+DjWB+BczCURa/L+EWQg//P5/GA8zBeiB/PBtXrah7sB3PEBGff1RzAircHFnot9F9emDE+zocZEp9OJRS57vV4UWCDKCBCQU9aRGhpeaBB4YU1JkfSTukFrS+Z0MBjo9PT0QFTCtcP1Qb7zPI/uAFwZiFfsG+bhMvLsTh46VPR6vSgSME+QcnerIAgwTxRHhKhzTaQK0d2h1Wqp3+9rNBpFVwx1KTwNivsFQcGvARGnXN+Euh7cS7xeFIXm83lc2+vXr8f2rw9KYcZ79Szuh5PEJB9hVL7vx/X4E1+oF39BcigkJLxRpOdwQkLCo4o3XZQxhNAJIfT4XtIvlfQTkv6upN988bbfLOk77+Z4m80mphqUyTmFFafTaawCDxmmIwCF2yDC4/FYZ2dnWiwWB7ncfEHYvRgdBBUyCUGB+BPthNhcXPtBoTzEB0kHEWuIEZF5yKd3ieBY5SKPRFgRKSCSkHQvVgcJlc7TMUajkcbjcZwzSHKWZRoMBqrX65rNZrp165ZGo5EkxfFgnfeCkuWimTgSXLjxbgBcF4SbtAui5KPRSGdnZzFdAacBhNTnh+O54OGpDxRQ5PoZb61Wi21AcaggRNHZwTsncI3k21cqFfV6PV27di2mUpDGQaqLX587Bpg3T9ug9kOv1ztYZ18zrp35KBfCdGIMCfcUIVw7EHbaoRK99wKULjh5W0m6cLAner1enON2ux3TEzgHKRKsLQ4O1o97xutIsFcg9OxN5tVdCF5wkrXl9+7GoUsGdTn8/nawDhQV5RlDnQp3FV1l3OtnccKji+0v+jy99KVJTEhIeKNIz+GEe4VQFApXqyNgQsLr4q38tfy4pL998Ud6TdL/WhTFPwwh/LCkbw8h/FZJn5T0a+/mYB/96Ec1GAx0fHx8UOQPENUkT1raEwwIP++TFNvMeX71crmMUVQICYICJMo7H0D0fBxOmiRFolsucgeplBRTMHgP43U7vEf0y1H4VqsVCSciCGTHx+5z4fUcEBOYP8bdbrdjagPkkboInBMCTiQcFwXHdqFkuVwetPGU9gUMqX9BxHexWERSOZvNNB6PY5S67CxhPyAeeTcPxAAcBAgm1L3A8cDvJMVCgDdu3Ig/cxwi2YyD8+P08Ei37xPfg94FxFM7uF4EFgi1E90yYfY97SSXz7nARb0H9jSuGuqBtFotnZycaDabRTcH43V3Ca8hTvj1uRDmNTD4DOd1kc1TZphbF8ZwoMzn8yjcUMiyLAL4/HrNC+aO93uaDaJUuCjmiviAKEdtCPbFcrk8KPr6AOCePosTHl3U/uW/0eOPfYFe+rIkKiQkvEGk53DCPUH1n/2onjz6Yr3wi9JzOOHBwZsWFIqi+Jikz7vk9VNJX/FGj0eKgrdnhEhBRiCSTqiIjHqONNFmyDMRdIitpPg5SXcQKUiapxZ4CgBjg9D1+31Je6IK8WT8WPA5XqfTOfi9n8eJpNcCIGLM2Pgi/x/i52NDbJjNZjo7OzuIrCOWEE1GeEAMyLLs4NqxrHM+xufEnvlDNHHyTLSdFAIK34UQYj2HV155RTdu3IjRdgQKXASsO+STzxOBLv/LuaR9rQTy5D16TloJDhTcBQCinGWZms1mFFCYL66dveaCiNd+8MKQrDkE2OtylN003sWDtWJfUKfBxa9y6hDXgGuE93hBTsSHcktLrlPat3D063NhgTEhKCC6sfbcg9wLnmriAl+z2dRgMIgOBN/TvpYIcRRT5JzlWhsuzNEtAzcKYyYVg24Wi8XiYP9cZdzrZ3HCo4v1L/q8JCYkJLwJpOdwQkLCo4wr4+d1og+5cPIkKaY+QIoh8Hmex+gy5AVbvv+MoOBWagieF6XzaveQO8SLPM9jbQVJB3UQGCMRUCfaRITpQFCr1WItAUSUcrRUOuwkAKmELHU6nThnRH49qk30dr1ex4iv1yrwgnmSDgpf8nvGQ3477+W4HIMIML8jxx2ixhpzndJ5rn+r1dJwONTt27f14osv6qmnntKNGzfUbrdjjQKEkUajod1ud0Aky5X+PZUBcsla83uIMt05mFvfG054+d6Fn1arpel0GtfXO3X4GiBusVfKtQpc+PE6EeGiDSUigqdkkMbTbrfvKPbInlmv1wcuGI4TQogdN0jp8FQe9hNj8boTtCP1Io3u5IG0I0a4KMf1l8UX9jaiUXFRBLLX68U2lJ4KRBFT9hGtRanzwWu4dFw4pMjpbreL90I5TaMsPj4IgkJCQkJCQkLCw4PmcK3arKlNlsppJDwYuDKCAtFByILbqT3PG3LBv7gWqCrvkXdPjYBk5XkeiQvRVEiPEzdpX6wPAi8pEn1EAI+6EyWVdCBIeBFJBA63f3McrodK9tI56aZYIiQecoWNXVJsA+mCgbR3DEBQuW7IIe31PBed60UocdLIuJ3skz7h9QJWq5XG43EksAgVtDxk/q5fvx7FjpdeekkvvPCCnnrqKT355JMHQgFz6uTe59lTANzVwN5yoYe0hfF4fCB2kO4BSfUWhbyPeXVnAPUefBzeUcKvgf3ltn3Wi7ET4Wdf86+3OWTeEYQQntjrTogRScrnA8whKRvsA0i2ixXUaxiPx7GTBXucfYYw5vegrx9rwnj4nYtwWZbF9qa8r+w64TWcCOxLdxz586VSqUShylNa/J504ZD7LyHhUUD1aKDRk/XXf2NCQkJCwtuK6j/7UQ2e+1Kdvv9+jyQh4e5wZQQFSbFaP3/gE8l2wQAC5SIAn6PoIATHo8oQLa9FkOd5JNaQZiK3q9UqRsJdYNhut7FQHUXf3PbtJEVSrEgPSfJcd6rUeycCSQctCafTqebzeSy2SGvAMjHc7XYxDUBSJIdO4LwQHlHZLMtUqZy3ZsQGT/TXo8bSnkRTQJP58/aX5faLOEogfpBAiG6n04nkcTQa6ebNmxoOh9psNnF+WUeII+vh14pA4ddWrsHhxQep7M+eoJCfF+Fj/Igi3uUD0cK7OCD2lOsrSDoYs6c+eJFMae/aQATguETrPb8fgl22/HM+T7fwDgxeg8NTRHCA+JqX565Wq2kwGBy0/kRUYQ/5/YAjg3ngXD6OEEJ0x1BYtdvtxutnz3vhUepYkLLCHHA+vw72DHuo2WzGzzM3pKSUnUrlvZaQ8LBi95nP6JUvvN+jSEhISEhISHjQcGUEhe12q+effz62hex0OjH67kXcPK+aiDDRci8YCPl367OLFAgRWKohrggGkGWcA5Ji4UQis4zbo53ltAki/4gc1CFAAPCaDa1WK9q3aTM4Ho+jQ4H2gJBm3AXu5vAq/RAlrsFrNPBe6gJI0nA41Gw2O2iz5/nyHGu9Xms0GkVbvQs3njogKQoYEDbEokajoeVyGYktxRZv3bqlF198UaPRSM8991y09COG+PsRU5hTd0m4o4X5ZU2IhlOAT9IByWavkbZBq0wINy4OUgoQnXyMnBcBrFKpxBQDRArm2FMsvBMDopN3PsGp4MIM+9D3ltcI8PocnMuFFHfgMAbEIdKMlsulms2mWq2Wjo+PYzFNjk83D1w0Lha4qOWih4P2pYgr3qZzNpsdCArUAOG4WZbF9zEGFx1dhOKZ4SKVi1Y8W5hT5jAh4WFG9dqJXv55fUnJXpuQkJBwFXDyE2NNnxtoeZJaPiRcfVwZQWG32+nll1/Wk08+Ga3nk8lEWZZFcWEymRyQBe+24FZyiJ9b5f1fJ++QBicZuBcoQufkkNzuer0eySH55diuiapCnhgXFnrOX6/XYwqFF65zQWKxWGg0GkWS5YRIUhQrEEtc3JD2ZNst7V5rwds+knqAc0I6J2seKXeHx3q91mw2OyDaXjwP0tvpdNRutyMxRphxwskxaGF5+/btKMCUux1Uq9VYQ4O1w2HA9TGviC3eqpI0At97bvMHjI/UFE9x4NqIqkuK18ca1ev1WLBzMplEBw1jq9VqcR7pVMF1Mp8IZYg+EGTO4yIO94OTYMbJ3HEuCiMiKECmcSx43QXIPk6Uo6OjeH/SQQKRqCgKTafT6GZA8ON+9E4j/Iy4w7rQBjbLsujgYa4lxX3O/kUUGI/HcY78XkMUQwjyNAx3XngqirQvOpqQ8NDjeKCz9yUxISEhIeGqoPiRD6n5JV+m5cn9HklCwuvjyggK0j6SSjQfq/9gMDjI04YA0MHAI/Oe6uDkAFKMnbper2s6nR4QHLenz2YzTSYTHR8fR+s/xBUCV3YjuEvBq+xDWLHGQ4hxAnDtTsAgPxD9fr+v4+PjA5t2OXfeOzBAVHE6eP65V75nHrGSTyaTSDqJ7HpBQIQUF04oiMdYXFBgvikESCS92WzGeSNyTYrJYrHQ2dmZZrNZJOTMI1+1Wi3a4nFK0BpyNBpF5wGFAUkr8fx4hBbGz16S9s4KnBNcF8eDQCOE4IDgs1wPhTOLotBisYipOVwTohK2ftbNXTnsGcbghNjnBdFrNpsd1CHxeXPyztpzbPYcQgpCAIJCo9FQlmWxqGi9XtdoNDpwKuDg2W63MUXGrwnRgHvU0xEWi4Wm06nq9bqeeOKJKCwixHBvso5FUajdbsd7iVQGhKmyUIjbgrlgbiQdFAvFTcO6JSQkJCQkJCQkJCRcjisjKEAuHJAGou8UHoRU4SDwHvIQZaKZHBNCzHuIvE8mkxiZ9Bxqctbn83mMTJfz0TkH+e6eboEtu1qtRvv4bDbTeDyOpBpyWs4198gtJJZINeeUDjtKUJsBx4R3migXNYQs+XU5WYZoEcVmHnF0UOcCAYeIPfBItAsK0+n04PdlNwOWesg96R7MoxNpxB3GudlslGVZFBSwybOvqNeAXX86narVasXPjMdjDYfDWOiSc3pqi3cE6HQ6BwIB64lwICl2YfA9zLEQAEjr8X3qrSK9XeRl5NZTWUjFIU2EqD4igTtPmBOEpnKrTM7FfbFYLJTnuZbLpZ544gm12+0oAiAolNt14nYod1KhroYLGd5dgXVAsGFsCA/UbyiKIq4V+xbHhHRef4Q6C/V6XbPZLI5V0h1tRV1IcGEzISEhISEhIeGdxlN/62Na/pb3aHk9/S2ScLVxZQQFCIwTGUgkhCHLskjqyP/u9XoxvcDJMGSK6C9RU76IPpedDIyBon2LxSJGmR1eENFt3aRceHQYUkUEFls30WFII5Fw0jEQSXa7nabTaSxMCbmSzokPRLDVaqnT6WgymRyICd4dAJGmHOmW9qIOToTd7ry9nlvgcSZAniGyHun2gnukBFA0kfGHEGJRROYKok73ieFwGGs89Ho9NZvNA+GGc7DWLsq4GIU7JISgo6MjPfHEEwdkE7EHIkvNCtIkmBO/ThcUptPpQccNTzlxB4aLDhBWBIB6va48zw9qKriYQ+Td6y0wB+wv39s+LxwHYo6AwO/dbYOI5PtLUqxRwO9xX4xGo7h//XOk2NRqtSj48LVer2M9EBwT7k7hPIgTXkATV4IXovRimTg+aGnKenBs7gs6jyCi+Zq4a6HcLSIhISEhISEh4Z3A5sWXVNm8534PIyHhdXFlBAWHiwseOSUX3qOKzWYzug0gK8vl8sBSDRGH/GKFbrfbMU3Aq8FD3LbbbYx4eiQdBwQ570R/cT84mYOkSYcuCaLV0t5pQKs/Ok/4WD06zbggQIyB3HKILlH28nwiGHDtFKEk2g4RJx0Amzm56bgBSDHwQoSSogDB2Dy6zjUxLxBgyChrISmSdQggqSdux/fik8wdc8T5cQ1UKhUdHR1pMBio1WrFjhas72QyicIDEXRSPLziP2u3Wq1iIctKpRI7VjB2j8i7kORpE8wr6waxR5zyOgbSPu3C55Y54XpIEeILwk1KgKfu+N72lAB3s/AzaUPch15stDzOcnFQ9h7rghDCZz2lCBcCzhvGjhOIf71WBCIHLgOEIPYrKT20pcUNg4vC00J8Xvw+TUhISEhISEhISEg4xJURFCA1bu8mMjufz2NUttwOkfoEkJFms3lg3Zb2UVbvPOCkieNhxXZiO51O1e12I1mBpDlhCiHEnG2i2P1+P+Z/0/LRK+ZDBBkbBIlccH9dOmwD6GkOdEvw+hMupjipk/a1FbB703KzLCh4gT7aaCKQrNfr2K6Pcfv6eVqIF8skyrzZbA4i+4yR6LQ7MajpgPuCeWTtnegjACCGeFFMrh0HidfLIFrP7/14zCmuCp9nxIFqtar5fK7lcqksy6IY5KkzeZ5ru91GwcGLZ0L6WVuvf8E4yrUymEd/D44W5pR97nVHcL8w3y6muYjAvmb9XMRwEacsHHmhTI7jaRwIKTgPEMfY97SE5F5irr2zBaks7CMXLTyNxvcIIlmv14vfM35/LpQ/n5CQkJCQkJBwvxAKnTfgSX+aJFxhXBk/L9bnj33sY5rNZjFKTRT47OwsWvmJLCImYH+u1+sHkexyBN+JNfCWedJhBP2y/HVIlxfeI8IJIeF8kBWIkNvHiVhzTI/gEoXGFg558vN73QOi7NjBu93uQQ0AzxVnviCiiDa4GlzIgYR6brm7N6S9G4G58zEiIsxms0h0acPolnXmxcfGvHNOakP4erE+FO1zQuhFDLHTMybSZ6jX4CTe8/Wd8HvEG6LM9UNOfR+W2136eRFG/BqYT3fFOAlnv+FeYY97JwI/n68V64tThtoEzIen2rDnWE/Ww+8tP64LJ+W0Iq/jgSjlAgEC0nw+j+N2wYnP+zMCgYCWr3QlYRzu8PDr864rFOP0dAcXuXCKsI4JCQkJCQkJCfcDT/1336fG+MrQtYSES3FlHAqgXE+AaD5R6l6vFyOckg7IDESLfGmIhbQnvhBOCFqv14sF4BaLhSaTyQGRlPYE2SPJnJvjeZ0CxsYxsizTYDCIRQkhx27/hsR7fjxk3qP8ThYh/ER73cVBdwKPtoYQDlo9ttvt6ARgTF6zArcF4/MvCJy7PJxke97+7du3lee5xuNxXEtEBlIvyJsnwk39CqzvpD6Uaz9AXr1WBnZ6Xzci35BU5lfat1LE4eCpEsxbufuBFwZEUIBkU5ATAiwprpELDaS/MAa/JpwakFsXkEjxWa/XcU7ZB95pJISg1Wql8Xgc0zKcSHMuL6AoSZ1OJxZgxCXSbrfjvcd4GR/zTuFQ3BfcB5fVIWD+2Nccz8UVxAGvieG/x/3hxScRD1hThAvcD54u5QITY+e93E8uNiYkJCQkJCQkvNOo5dKqr+RSeAgQdlJ1EbTJHq4uYlfmr+VyCgNEApLhrfTcZu0RZqzskAUXJnARcK5yhwG+IHmej3+ZG0Daix8QEMbqdnNpX+sBV8B6vVae55EISorEDPLK2LCyE4XFnUHuOuSYuWCc3saQyC2pCljTIVGkGHBuJ88QculQCCFVAuHCCyN6yoN0Xk9gMploPp9LUiSfpFFQbNMdHpBlRA8EAbfm836Ip6+3O1OISkM4J5NJvP48zyN5RnjwlAiOwZx6RBtSzJ6bz+eaz+fKsiwSdwirt9sELky404D9wfeeHsO5XBDhdXeGMJ8IFwgp/Ms+4DjespQ5Zq25JxAf2Ou4T6g9gRDkQgDvx+WCmMK+wwnQ7XbjOT3dx4s94t6YTqcHDgZEO+bbi5nyHlKPuC/4crdLnudRPBkMBqkoY0JCQkJCQsJ9x1N/8vv04u/5MuVP75Ko8ICgMayosrrz9XouPf03P66P/6Z3xdfWvULb9oMtMFwZQUHSAVmDvJQryDu5cgLq6QJOejz3Os/zSLz4PKTbjzOZTLRcLiPJccLlBQGJxCI8YO2G7EPGOAYRW7dUYz2HcPl1uBsAx0WtVotpDJA8CCCWdo9EQ7AgcRSnkxSPizsAcuwuBcQB1oFxQO4gvBBuz69nTom2Mw4XiOr1ujqdTqy6T8R+NBrppZdeUqVS0WOPPaZut3vgCvDUC7e6ewSbNUG8gKxCgL3to6QYpfdr9xobEEzWBDECIQCBgA4FgPVYrVbRacEeQYRgn0K+OSYRd9bMiwWStuGtTQHzyxc1E7zmAvPInuLcZXHJO3pAwCH2kHBSeDxlx1MPXODiOkajkdbrtTqdjvr9/kHqhde4YB7Yf6SWIGwx93TscOGLVBYKUlYqlXgshD9fZ/af75mEhISEhISEhPuJJ//09+nm7/wyTd6dRIU3g9o0qP3KOzdxT/2Dl7T96Y9d+ruNpGf+2xfiz+uv/ALd/tzzFNv8mUK7+oMnLrxpQSGE8F5Jf91eeo+k/0rSkaT/RNIrF6///qIovvtujumkHlID8fKoq9u6iVAiDrgt3Uk/JNALNHrkFgKIHX+73erk5CQWmPNcf8g5Y8KG3mq1NBwO43l5L6ID50C0KIpC/X5f/X7/juKBzAekiRQDb8fngggE20UFiJIXsOt0OrHlHy0Vp9OpRqORpH0Hg3K6CK/xsxNYrwFB0T2cC3yOiLbnxEO0e72earWasizTeDyO7TVv3rwZW0YyL3TwKLsTgEe/aXUJyfe8fxwFrA+pMn5t5XoVbpP3NopeK8DdJGXXBakbm80muhiw7VN7wcUud70wX9K+8KWDz/B5iDS/w+GBcMS94I4Ud3lwX3ktCoSx3W6n2Wym6XQa54B9x3UihOBY8PVhrBQD3W63GgwGB7U/cImwDznW2dlZTKFhrLhvEOcQUxgLQg5dNTxFhrX3cTM23nPV8XY8ixMSEhIS7h7pOZzwTuDx//f3qfbbvlRn73vwCOc7gaOfCpe6AiSp/4mVav/bj7xjY9m+/lsi6t/zI3r8e86/n/66L9Gqc9E2viKd/Zw3ttZhKx1/aC+cLK4FzZ7evcYn7kTr5Yqyly4/78df5TNvWlAoiuLDkt4vSSGEqqTnJf1tSd8g6c8URfGn3sQxD74nsumt5ZykuQ27nL7g5Apy6KKECw9e/wAitFgsFMK+e0O73Y6Ejwg9ve4hr9jlGQdExwskuu0by3+n0zkYixPUsmsBQuddFJgP3BFcG0IADgPIHy0zKSi5XC5j+gLHvFjXeM1EqnEh0HLTz+9V+TudTsxlx7kxnU7j8VhXigwyvx793+126nQ6euKJJyLx9WKNDi/KCBF0IQUCSgpJt9uNc8P+8boLLkqxxzgHx/SCk+4oIK+fdfK1dbHDi1kiAJT3L+KJC1K8zx0F7EXmAts/3TgqlUrcy6QIeLFNwP7z+iBltwp1Fcbj8YFIxD3mx0E44xq32228D9z1wj5xNxDXwr2yWCw0Go10dnYWa2tA+NnX7hZy0Ym6IewBxsJ80sHE01lw9Fx1vB3P4oSEhISEu0d6Die8U7j+rT+s1q/6Aq06FZ2+/+7JZnUedONHLyeWr/y8yn3J6b/bMYWd9MT3v/74ev/gx7W7SBl+UNH99h/Y/1CpqvWrv/ANfb6yKdT+Oz8Uf65+9ns0/rzH3tAxej99pt2//sk39Jl7lfLwFZI+WhTFJ7xg3puFR1/LnQqcLGJ99mJ6ngNerkWAICEdFlqEsJSr4ler1Wjn7nQ6B5F63rPdbmMxyCzLIlF1Sz7EjxoDEC9vD0gBPcZBlN/rEXhE2cmb136gwKRHu5k7iLCnjfA7d2B4lwGP3HtaRpZlarfbByIMRLmcNuEkvEzcvdXjbreLRQtxAGRZpvl8rmq1GoUX1pDjuyDkBf6YK9I6/PdU+vd0E6LbkFsi4KStQNy9aKKvGaKBp6J4yoikmPbhwhbrSS0LoujelpK2pYyHNfe95kU0WRevCeG/I32Gcbh45dfDveOuGPY+c0AKBveGpxEhtrBHXBTjPvT70VOD3FECwcdNw7V6R5hqtRqdH15XhOuRFNNruF+85SzOEhfgHsCijPf0WZyQkJCQ8IaRnsMJbxuKzUadv/GD6vV66r743rv+XHW2UeVf/tilv8tefL82nXf+7527HtOuUP17Xt9d8Mbi8A8Adlt1/sYPvqVDbH/6Y+q8SurFq572TZznXu2er5P01+zn3xFC+E2S/pWk31MUxdnrHQBSAMmFdHhxNwQFopNEhyUdpBN4hwRPi/DOB7yGEOEkD1Cojei2R60hj0SDId7dbvfAhk3+Ntcm7VsZQgiJ7FOMjyKH/X4/jtvJefk/KEjidDrVcrmM3TCI+FM3gWKEHokNIUSHAMeFkLMuXpwO8u+CAu/lX4ppQuK9U8VisVCj0Ygkr5zr7w6U2Wym4XCoyWQShRuPSnuKwWw2iy0Ix+OxJpPJgf3fc+I3m436/X602LvzAIKZZVncLxRIhNgul8tYZLKcx88xEALKqTvlmh/sQU9t8doQkHlv1+jHYB64J5yMs3buCvHuKJB4rtn3NP+WnT7ufvAaJeWaB3wPSfd54frY91wfrgmEQepluKCQ53l0WjQaDc1msygWcC9TfNHP66kL3Ed0dSmKInbOWCwW8V6gyOQDhrf8LE5ISEhIeEtIz+GEtx27yUT1f/yv7smxwv/vx1R//be9o7iKY0p4dbxlQSGE0JD0KyR988VLf17SH5VUXPz7pyX9lks+9wFJHyi/TjSW6KlbrYl48kc+DgWIkncB4DUXJZrN5kE3B0mxJoG3mfPIMaSC9ASIfbl9njscvLAb3QP4nF9nu92WtI/EUj+AFIGiKNRut9Xtdg+i+C6+4F4g73s6ncZ8dqLwkDWOSYQZ0oUAwZgZn7cXBBTMgzDzexwBXniS6DGpB4yRdcOKjhuEVpHMPyIJ76FeBUKRk0xEBAoFYnFnznAOsJbdbjcWhQQQ5RBCJLcIFoyPlAbOR5QbsI9oU8ieZK4v9n5cd1JlWHPWF1cEe5RrRqwqp2Cwd3EeeHHKchFN3BAO9q+n8zBeb+eIWwRBgdaeLiQwJvYoIoRH/70QJi1M3S3jjhsEnMlkEtfWxQIcG34veZ0HhB+vC4JzZTqdRiGP+6rdbsf7ytf2quNePItbyt6RsSZcLRSfflHPfs91feorq6//5oSEhFdFeg4nJCQ8irgXDoWvlvSjRVHclCT+laQQwl+U9F2Xfagoig9K+uDF+wr7TCQZHk2nOjskRtId+d+eX1+tViOxggwhKuB+IIKLg4Bjeg65V4r3mgREd/0zRDgRERAUiEBDXiE/pEAgSvhn6QDg0XKiuhwD8kW02fP0x+NxFEHIS0ekIYWDGghEwYnKYhlnrnyusaR7cctyjj3rhJjgpA/BAIJH20HIKkQTi78X+HOrPykRiAjj8VjD4VDj8Vinp6exnoS0r9g/n891+/btuNadTuegHSSCDoUfOS9OC/bmrVu39OlPf1rT6TTOv6culAUAT89BjPKaG6SvsF71ej1G9nkf+wQxrSwmeJoGc44AJ0l5nuull15SnudRfMPFwr3jzgEcIwg2rVbrwJWQ53ksxojY4y4GaV/Y09MsuJ+82ORl+xjxB/FjOp3q7OxMw+EwClV8AcQHBJfpdKrJZHLwXOCeDxddUVhfrrfRaOjo6CjeAw+SoKB78Czuh5NU6ekRxG6xUOulmaTe/R5KQsKDjvQcTkhIeORwLwSFr5dZu0IITxZF8eLFj18r6Sfe6AFJHYB4IDBAXCF6noZAdwYvWOjdH1arVbRDk3stSd1uN77fi+aRxuDOAs+1lvYF47DFj0YjjUajWGNA2hfpow6EpCgaUPBtPp9rOBzGTgtZlkWRg/eSIkEKgddWgLh3Op1I0nEqtNvtWP+Bwnynp6dqNpvqdrsHLSMhWq1WK/5brt/gbRMRIrwwIyTe2wUSeec1J4/MOXUTWNN6vR7TSCDIRKhXq5XyPI9CAm4BoteIM8PhMM4P58edwTp6sUl+B7FEuGANuN7xeKxbt27Fdo6+N5kjIvGIBVwna9lut6O1nhQd3BRcL6kvzWYzXhPFKl1kg6RT1BCC78IC7R0Xi0UU1Dz9wWt+uFCHiMF9gajgLSMpzOidGXBKeD0UBDcX+FwcYg64XxEUSE2g3aeLVaRHeQFGT68p17eoVCqxzaa7i9xh5G4GFyweANzzZ3FCQkJCwhtCeg4nJCQ8cnhLgkIIIZP0SyR9o73834UQ3q9ze9fHS797rWPF7yHbrVYrRmSJVkuKxd28sBsiw263i0SYz2CP9/72HINjS/uIqheDcwLseeduy0fcgHDtdjtlWXZQkwDCB4mi4CLHhriSotButw+iv5DA8jx5kUJqG2D3dncEQoBX6PfK/z5GouLdbjeSXDoD4Ppgrr1gpuf4Q1g90o9IwZx77Qh3IHjdgHa7Hc95dnYWc9+n06mGw6GGw6Fu374dre2kWpCeQI6+k0oECVJacqsIi7BCzQbWBdLeaDTi/EGuB4OBJB1Y9qV920+ufzweq9VqaTAYRGHLi0l6hD/P8+hmoBbGZDLRcDiM5+31ejGNZDabHRR/RPCBlEP82WPMqaf6ePoGKT2Qd9aIWhWQe0QKxAQ+wzgQp3gdB0wIIXafYG3X67U6nU5MR+B68jyP7SJJUeDeYz+5YMS8c71+fvamXz+ChaQoyrHPHhTcy2dxwiOMQqm/eULCm0R6DickJDyqeEuCQlEUM0nXSq/9xjd7PMg6xNOL0UEWJB0QV0gyNn9aPLZarUjmiKZK544EFyOAR2YhHV6kEfs3EVKPxBPRhMDyRdoFx/D6BdjqvVOCF9Ejsr9YLGIOOBZxaV95310YCA5E1+v1eqzT4FFojtlqtQ6is5BARA2cIhAwCCCiCYIGRBpyyjp51w13N3ieP/MCCc2yLJ6D3HonlqwBFnhSHKbTaTwe5J/Cjl5oEDcA1+rpBj4WRCrmChLf7XajcOGCFnPAXEv7bhnL5TIW9yS9AiHIo+C4PTw6j7uAGhvj8TiKZpB176zgaTjMhTsVnPR7VJ/rJHrvnT9cGOFaRqNRTKshNQPnCi4EF6hIO0C8wIXD+2azWRR//Fw4U1hrF/18vjmuO5ZcjON9FK9kThDevMAqronL2mpeVdzrZ3HCo4fiRz6kd/c+Xx//moaKyv0eTULCg4f0HE5ISHhUcaV6ojmRh1zwh3+5iBykw6OJXuuACCvEnvd4DjrkiuOTLoF1nUiqF5UbjUYHxBACguDBeSGJkGHIDAST64IUQu681oGLGS6mQAwRDBAFcBtQr6HRaMQIrpN8yNpsNlOe5wd1GyDluA9OTk7uaF9JHQSOV6/XY4oHtR/cceBuEOYzz/MYYaZ4Jm4QyCxOCS+QSGoD/1KQcTweS1K0/CN6SIo59xBk1g4HCtfB3mMvkIKBM+Ds7EydTie6AtijXKfXkWAvuqNiPB6r0WhosVio1+tFsuytD72GAWs1nU5j7Ys8z6PgAgn3Oh+k6SBuIVS524bzkBbgaQyz2Uz1ev2gU4Kk6LAoiiLWqvD9w1wjKHDO8XgcxQZEGObKi1Oyh5lzL07K3ONOKHd+YD/hakDA8EKL3jkCcY09Sv0IT5lAFCkXJU1IeJhR/d4f1TPZz9eLv6CmbUMqag9Uyk9CQkJCQkLCfcCVEhSkfRR/tVpFi72TYSfanhvvFfQ9TYHPeVoDBN+jyhTTg0xBZiFdkJnRaBQJuBNhJ4GcxwWKco4656UoJOeCmENocCswDx4NdtGDSvjeVQAhgAiz10eAnHMtHmEmek3rSlwO7uJwhwFzJe07JSCekGbi7g9fB+bA7foQ9aIoDmoUkBPvKRqeLuEpDe6CgLCT+gCBxOVRrkfBOCgOyFrgjuC97XY7kl7WlPWA5CMWef0Gb33qxQkRm5z8cxyKFHrtA+4L727CeiIo+M8IHl5A1LtXQNL5l+KbjJ3zv/zyyxoOh9EBwHVwHgQFxC/2f/k+5n7zDhHcSzgH8jzX7du3NRqNYt0TF13oOEHxxXIxVu5Td1rweS/W6KIeaTDcQwkJjxKa3/3Detd3S8Pf+KWafEayKiRcDYTN678nISEhIeH+4MoJCkQ1R6NRJLpEDyHrvC6dE4HpdBqLN7ZarRil5b3lzg5le7i0b19HmgUkHwIG+YZU4SKApBKFh1B62z1JkeiSkkB9AASDZrN5YM/GpYGYIClGcSFHnpaBfRsSu9lson0cso4IgYsAUksXCeoZQPpbrZZu3LihZrMZc/ApTNlqtSLBCyGo3+/H1xgHhA6yJunAAeJE2Nv+4VAgSs58UCvA2xg6WZf29SqkvTiAG6LZbEbSjQOh1+up0+nE1BrGCYn3LgoQZYQOUh0o9Md6lYtl4hrxgpm0iqTIIiIPYggih6fzrFarWFyT97qrw8UJhCfGU3ZAUFfB3Qu+p7w4pqck1Go1DYdDTafTSMa9xaILe4wDQYH59aKenhbkhJ8Cq14klZoGCBjltaLoJXsGEcmdPu648EKkCCeISHmex24cCQmPIo7+5+/X0f0eRELCBV4o8td/U0JCQkLCfcGV+2sZsnv79u1YpM2JJVb8drsdo6Hk29Nq0MUDot1EGiFkfAFILmkEzWZTWZbFKPTZ2VnMa3cHQ5ZlsdaBR+EhVx6hJaLa7/fV7/fjtVGvgLQOCHK9Xlev1zsongghImLsaQ4QK9ImOKenh0CeaCfoxSGdPO12+xZ6kmJrRyeBnmefZVl0bEDEIIdE7CGojUYjFt9jPagZsVqtDjoDEM2mXaDPEevmRFRSvDaKGbJPGL9b2ynOiLOFa3BngqQoOPAan2c8zCuCjnd88CKFOF7yPNdms4kiDZF2RB6IMESaY3AOd7qQGiTt2z8iKPDl84CwBGmXFO8xBASuiTnkvMwHotZlYgCfBawzn3dxARHO3RGkX3D91FLwIomkaSAsuMDCeBHWXPBAxGIOXODi9cViodFopE6no263+/oPrYSEhISEhISEhIRHFFdOUJAUiR4R+263q1arFUmRCwpFURwUbnQy6tFbIsoICxAez7H2YooUJKRIICSO6DxFCklVcDJOZF7apwl4XQZqDlAbgHGWP+PEi/NLio4ICuNBciHKkqK4wmd4D10DEBi4XsgXc9NsNtXpdDQYDGJEn2hz+cujwswLXSogmpBU5g8CzfV4LjvH5Rqw5BMVJ40CAsjceU68E0SvgcH6E9GXFN0Z1FaA/HLNtNiEQLsbgoKJ7CEINnuNNABPf1kulzo7O4tkmPaR7G/ez3tdtPB58LG7jZ9rZR5wUTgpR3BCcGP/so6sC5/3biJcqxfx5Hx+3zGn3gGCNcFRxPk8nYV0GfY0QoXfBwgQrL93ymB8rB+/n8/nB51EXPTwGh84kXjmJCQkJCQkJCQkJCRcjisrKFCd/+joKFb7J8KMewDi5TnbkMdyXjZ1ACAaCA8U4JN0QHwglp5a0Ww2o7WfDg2tViuSNG8DSfQTosTvIclZlkXCwns9z9vzuT0fHfI9m800Go1iuofn3TuphwgyJ5BHrPAQb8gZdv52u61utxuFG4o+ulsE5weEExKMA4HP4ZJw0ocLBBLpbgAIuQs2s9lMZ2dnqlQqOjo6OuheAahBwOdJVXCiyXxD3l0s4hgA4umkuFwLwscMSUco8NQbSbFjBde7WCzuSNFhzP6ztHdbEIlnT3ldEb9e5nw6nardbscOEu5ywAnBGKjZgfjFe7146asRbC9sWBYnSANiftgXuGPKx8FJwH5BsPFOImWByO9Z7zriQhjzhivmMncL9xxil69fQkJCQkJCQkJCQsIhrqSggOWcfH9IMlFFiKznrDtB8JQDSbHrg+fXQw4Xi0VMX/Bid573zvsbjYb6/X48F8TJCb+PudVqRYKEi8Ht9d4VAGIHWeJa6AjhlvaiKGKHA2ziFOvzyL5buDkORNMJNp0viPYinLTb7Ui4vPI+IgV1JojaQzgRTmq1WnQ3IGpABEl5kBTrLkAQGQPOFElRPCENxNMWJB1cm9c2YG4gkayB129gTXBSQKJZX9bUxQkn9J4iQEoD5J06Ft7C09Mp3Nni18T4OYeTX4+sey0JFyNwDZDqwd7iM9K+bghryB7187lgw9h4jX3BMfn+shQa7kPGy/EYuwsoiF/sHb4YmztTOB/zx/3k3VW8cCpreNm6+x7ymhMJCQkJCQkJCQkJCZfjygoK/GEv7YmCRwv9Nc8nL3dVIMIs7ckXhBPCRUSdSCpR9WazqePj4xhZhXy53Rsy4m0tIf2QSMQNSHbZal2r1WJRRtpf+rV5VJ0IPMUhed3FCQgh40N0aDabkhQj6F6ED6GGVIyjo6PY2pB5wzYOQe50One0z+RYiDhE4r32w2q1UqfTieSQOgEeYSblotPpxLaJTgS9owBiiqcsIDRRU0JSTH1BcEJ8aTabqtfrkcgyr7hgqDnhbhavj0ENAwg/oglzzPsg/V48kTmA7Lrjwcm0O2cQoBCxOBeknrngHvDUBK4TQu51Fmi5isDmxTTLhTOBu2N8bfxeZA4h/j6HCHuMBbGGPcMXc8z4fAy87oUVvcCmp3F4Cg7r7KKDF5rkdwkJCQkJCQkJCQkJl+NKCQplkutWfRwCvA758ZxzSBSkQVIUFCAQbuOGCHtBRrd3Q/68zoJ3HeAcq9UqFvfjs0Snsexj8eYalstlJG3UVmg2mwdRcDpMkOpBq0euEdcFhLUsuECQvDNFpVI5IPgcn+saDAbq9/vqdruqVqsaj8caj8cxqs61kXbQ7Xa1Wq00n8+V53mcK8irF/MjCs46QNhcEGEecIy4o4PXIZ15nsdikU5ipX2KitdnQOBxMk8XjXKOf/l45TQDr0WA68EFA66TsbhIxrVSjJM1LAsRfA6bPvsJoQRnBPZ8L46IcOWRek/fkRRTLXCvcI+5IOVuBq87wDpzrcwj/7qrxmuDuKjnNRLcIUR7zrKg4mk63Pv+e08Z8rn2Wiou/LjoANw9hICWkJCQkJCQkJCQkHA5rpSgUIa7FCAU7gRwAQJA1umSALmBzEBA/Phes8DdA5Bh7zzgRfeoK0AbPXcvIFS02+0Yyfdofp7nyrIsEiu3WUOAPPUDAkWnCQgphBlCBbkiCu+tJpkLUiCI8pdz0b1LxHw+jy0mPXqLe4Dc++VyqclkEqPFXAupEE4uWQu+h/xDaL1lJ+4M5o9xkiaBkAOZhaA7kWQ8lxFKxlUuglkmoV7kkOPleR5FE1IzuEZPC2CeJcW5ppZFmaCz/swLQgPr2mw2D6LsuAP8XC6q+DkYO2PMskzSvmAnhJ1rYk/iimE9AIIAjgmO7akPnjLAHHodB0QR7gXcCbTT5LoWi0V02HgtB/a/d+/weUOIYTyeFuXf87Ovh3eVSEhISEhISEhISEi4E1dSUPDoNkBQgCjzM5FXFwIkxcKNRHknk4kmk0kkhW4vpzgcBKPZbB5EdxeLher1eiRYEA8s93meR8s+n4UwQ4SdmJY7GpAu4G4IL85YqVTU6XQikfJikJAuouTSPg3DHQ5eYHKxWGg+nx/YxBeLRbSr07KQtpSkHNTr9ehcaLVacd5wT7jwst1uled5bGsJsUfwyfP8oHihOxvcGYAt3a+Pz1O1X9pH0D1K7cUWiboj0hDVZ66d6LLvvDMD8HQLhAvW0tMHpD2hB+5YoBAixBe3BmvlThiEMEQXrxnA9ZXTE/zciGuMlflqtVqaz+dx71LXwsUKRBbmkloX0l444Jq99SnrRJFGr8ngBTGZF0SvzWYTa4O4aOCfdVcOv2c9GQvno70q96/XYCgX2MQdg1DH/Z2QkJCQkJCQkJCQcDmunKBAtPf4+PiguBq/k/YEo/w6gFxSBG8+n8fIJ/C8cmobcGyP+vJehAVqKfA6qQBOTjxiLB1GRiXFiP5sNlOtVovtH/26qDQfQlCWZTFVwvPIIWaSIjnN8zwSoXq9rvl8Hus5QOghwJBn5hhS5sUFpXNbO+0eaXVZqVSiKMF1e10LiKpX6Pe5RNiBcHY6nYP3+TGBiyMc2/P+y4UtvbCepzkgFHBMHACIMKwX14I7IMuySPTd5eDpN57PXxbE+NeLc3oXDyfjgP1IaoKfv7yXEQAQcDzFxvfkZrNRq9WKe4w6E7RrdJHKaxogJuDG4Lhei4G0DXcNuXDmKR3uDGIdVqtVrFfhaR/uLHKxzgsvss8R0vwz/j5p3zWj7AxysWa9Xms6nd6xJgkJCQkJCQkJCQkJ57gygoITJEh++feQkTKcAGGV99oJ5GMTpXaRAos95M6dA5AoSQedEzxCCwnzaKkTWXc18DsnUeRpQ/wh85CrTqcTiSxEirFAkiCvkHcnSu4OcMeCk0Cu24tN+nzvdju1221du3ZN3W5Xi8UiCiCIF0VRxIKOkEJqNzBeF2t8PlgHSCDzQ5qF17Vg3hEsvKCep7j4XuF7xIFyqoMTcd7nEX1/3cfhrSSJsDOH7D8v9OeFQyHzvncQcEgfoJ4Gc+HdJ7yuCETf5wEHgu8TJ/OQe0SMcoqMJHW73Ritn81msSBneV4Rn1wAYj5xRyCEsBdcdMCZwLmZb+YcMQ6BjXO7awMHRbmGgr/mKRqc12sweJoL63yZyJOQkJCQkJCQkJCQcI4rIygAIrz+R78XaPQ87M1mcyAWeIV6agBst/v2hhRKhMzV63X1+321Wq2DCLXXK+CzFNArCwNuY8dO7QRF0gHph1iRrgEZ85aMTnohOJ7XXxYdIKBeWJC5gtB5IcpqtXrgHihHuD2lYzKZaL1e67HHHtNgMIjdGcbjcSTReZ5HoYOaCpA3z2HHkcE1EXWXFEnmZrOJHS9YD+bpsoJ+EGFvB+piyGX58ewVvkcUwdXh0XVIJSIB0XMcC+UUC+YTMu95+l6ckGN6VwfGw168bB8hXrgTwD/rRQXZl7gUIOBE50llYc+v12vlea71eh3vCcaKE8fnj3sTYcTX2+9TLxjqopwXTUR88jodvh+5fvYyYhPdLi6rgeHuGcbHtbqA5PcVwgvrlFIeEhISEhISEhISEl4dldd7QwjhL4cQXg4h/IS9dhJC+CchhJ+++PfYfvfNIYSPhBA+HEL4D9/IYKhBAIn3yu9ELolEQmRms9kB0fH8e3+t2+2q3+8f1GbwFAoKOdJCEtKFxfv69esxDaNss2bsniZBC8ZydXwKGpKi4K4Ijw5LiikGzIFHrrluj8xyLR7F9Si/p0vwe+zsCCHMrXROpofDoYbDYSxwB+Hm/BRHhOyVix4yz4yLdaVTAgUfqYnAdSwWC02n05gOMhwONR6Po5tjNptFIuuCgJNft847Llt/31McZz6fazKZKM/zuMZ8ptPpqNvtKsuyuE88zaNM9gG1KfI8j18URWSdEIQo7InrwusPuKAASfbODgg2zL3vU98bXqsAAYr1h1x7hw8XabxA5Xw+13Q6PRCyPH3BhQvG5IUnWVfe52KdiyruWOAexA2C+OTtS128KtddYE96mgvjZk95rY37jXfyWZyQkJCQcCfSczghISHhTryuoCDpWyV9Vem13yfpnxZF8dmS/unFzwohfK6kr5P0vovP/A8hhKruAhCnp556Sr1eL5JXt43zRTQYUusuAbfTO6ltNBoH/ei9YwDCBLUCOp1OdDnUajV1u131ej11Op1IxiGg1HxA/IDAIIy42wJC40UgOZakWC2fayAdwwvJUbQOh4C0FwaIkEOkvLNDeZ553ck34Fh5nuv27ds6PT09IPMUuOT3t2/fPkiPcBs/5Bjix7XT6QIyDYkjKnx2dha/bt++rbOzM41GI52dnWk4HMa1h7S6wOIRey/oyPyVW3P6mHmvO0dINyC6T60G9ghwh4gX3/R9iAjgKRmstTtjKGZZFEWsheDi0nq9jtdL6gNk3VM/OBfHY5+5Q8DH4yIEQpenfUC+vbMGwpincDix5xpBWYxzF4nXMvH9wvy6sMK8umjja8/zg/vSxS4/H/Pl+5UUD+bsiuBb9Q48ixMSEhISXhXfqvQcTkhISDjA66Y8FEXxz0MI7yq9/CslffnF939F0vdK+qaL17+tKIqlpJ8JIXxE0hdJ+v67OE/8A7/dbqvdbh9EbCE4EKniogAhln8n6GUyBFGCLGy3W7Xb7YPca0g8tRsgHp7ugEhAVJcicBSp89aBTmKwhjvxITIKUSUajZ2bXHhED67Jc989RcKJD9eKiFKO6Pp1QsiLooiF+s7OzqLYcHZ2Fu3xOBVOT091dnYWyScW8d1uF8kw4/OuAswhHSBGo1E8Bsfxa4Qob7dbTSYTTadT7Xa7SALdnUGnAhdtykIKIpATUa+lQQqDE2on7K1WK5Jm3ud1Bdz5wT5FEJL2whHHZ88gYiyXy4Pikawd10MUnuvxwo/lWgC+h3GRePcDt/n7a+4OQPzwOWJM5XuXefUClcyLi4E+VhdUysU4XRjh/OXPemoPr3FPIXp4eoXvBf+e8zA+73JxlfBOPYsTEhISEi5Heg4nJCQk3Ik3W0Ph8aIoXpSkoiheDCHcuHj9aUk/YO/79MVrdwWIbpZlkWQDJzZeZM0jx95qkNxvr6Jfjk573juE0Ts+IDx4mgRkFvLrhSCJ1hJd9boFjMvt9ZAm8tXDRSV8/713GphMJvH3FK6EVEOoIKe0NPRCi7gRSOMIISjP8wNiPZvN9NJLL2k4HMZ8/Uajodu3b+v5559Xq9WK6QfMl8/7bDbTZDK5o/OFzxOtKGezWaxt4ekZRLyZU0gxZB4S7uQf4s8a+XwDzoNo4bUAKEAIAWVtIdBeA4PfkbYhKYoOHgUvCwjMgwsBrDHnZG86GAfOCVwx7H+uleP5niMtBQeKzwkCGGKcR/E95QCnQDl9oOwQ8FoXXouDPeAijrsTvKYF76EtKUKQ3zsuRHg3COo3+PX42JgbF/ZcfODavf6DCx1XFG/LszghISEh4a6RnsMJCQmPNO51UcZwyWt3tmWQFEL4gKQP2M8xUgl5kfZ/8HsklT/6cQgQ+W40GpGMIhZQZK4c/fX8cMgMZNxbHEK8IYj8HnGibAH3QntcjxMVaV/NnzSJTqdzEBV1m7xHiofDYYx6Hx0dHRR29Cg5kdmy3ZzUAAQF7wTg6RROBjnHcDhUu92OXQV87j09gFQIhBpPMyEKTO0Exu3tKVm7zWZzcB24SFgbcvfJe4eUOgFEoCBi7nMJAfW0FAisdz+Q9u0qWT+EDoc7ChgrwgeiiM+ZR9m9ACWf4XUn8e5MQQBjL7K/GQfn8A4env6CKMG9cJlrgHmW9oTcfy6vi1+Pf9Y7fJSFFs7FPnPiz3n8nmV8HJN1wmXgLV05H3NTXjcXb1x4YM7KTowHDG/qWdxS9naOKSEhIeFRQnoOJyQkPBJ4s4LCzRDCkxdK7JOSXr54/dOSnrX3PSPphcsOUBTFByV9UJJCCMXFa3cUnoP4eh0C6ZDgQAix00uKedDT6TQSVgidnwtS7TnoWMwlRTKY57k6nY76/X5sm8hrOCtIV4BYMT53VJTz5iGGjBUSDDHdbDbR+QDh7vV6arfbkfxyfRDJSqUSnQdcK0QdQkpqCbUAfN6c6Hlk3dtX1uv1g44Bq9Uqug5I33CBx90KTgz5XdnyTjTeBQAi6oxF0kEhPy/653sEMu5EN4SgLMvU6/Wi4MPn3JVQdjlIOmgrSFcK3Bq73XknBepwMI98hvX2goWQc7qO1Ov1SIKZC+aF9SH9hhQcBCiEIC98yD3iaSA4KnifE3Pmkr3BPLJvnHSX9zlry77w73HHML7ynDqB51p9vHzv7gNP33Cxw0Ugn0eEi7Ijg/nzfYKYc8VxT5/F/XBy6R+7CQkJCQmvivQcTkhIeKTxZgWFvyvpN0v64xf/fqe9/r+GEP57SU9J+mxJP3S3B4WQkKYA+XDHgJMmiBJR/na7Ha32s9ksFv3ziDG1ARaLharV6kGhO695AHnZbreRtB4fH8eIOlH47XYbc8vLkV6vASEdFk+E0Er7KD4dF7ywHVFqIti4BKghgOugTPClPfEiTQJ460Y+45ZxUjx2u10kvdVqVePxOJK2xx57LFrOqW9QJvekKuAggADy5WsqKX7Oc9k9hQQhAFLO+ACRbupjdLvdKLiQpsB+aTQaOjo6UrvdviM9hrlgbRCevKWkt6rsdrtRUGA/MEavQwBJd8cC+4XuH71eL56LuUc4ohMJexnhgjXld+6iwYXha8r9BIlnDJ7qg2PD9xPX6/UWEBLKbhLOy1x6rQPSEnwOfM9C7DmPp04geHidDSf+CFTu9JEUXUw+T15bpFzPoeyiuMJ4W57FCQkJCQl3jfQcTkhIeKTxuoJCCOGv6bzYzPUQwqcl/SGdPzS/PYTwWyV9UtKvlaSiKD4UQvh2Sf9W0kbS/70oiu2lB77zPDo6OlKj0YjRUqKfHmFeLpfRTeCfhSTyWQgBJA/yQfE7z+uH4PnnnCB5/jnuBApDQnoYr1fPx34OYYMEQdRWq5U6nU50Q9AqEEGjnC+eZVkkrBAjyJOLIRA/iDWCAlFcLxpIWofb6EnBgIhL5+kDw+EwzvVgMIhdH4bDYZwjoufegpBCfS4kMJ8e/XcyDNzG79HqdrutojhvNwjpIwKdZZmyLIv74fT09GCOEB36/X4cK6kTkGNIJgJGt9tVo9GInSVcpMiyTN1uNxJRPsPeozWmpJim4KQWoYNxe40Crw3BHvNIvqcQ+PyxF7rdbjy+p/q4yOWpCxB6TzVykceLfyIoMC72GevqtS483cg7WrCH/f5zos95WFtcFV4LheOxZ32OWHPEMk+X8vvssnSOq+ZQeKeexQkJCQkJlyM9hxMSEhLuxN10efj6V/nVV7zK+/+YpD/2RgcSQlC3240RUYgMkdWiKKIrwAsB8lnIDyQMYuJ53BA+orGdTieKCTgfPNfaSTX55pAgaW+dJ/LqzgS34Jc7M2AD9zZ+CBiSDlIePAUCIrVcLmNLO67Rr38+n0f3BWTZ59SdBy4EcG6i4cvlMo5rvV5rPp9HokZ6BgUaESOIPiNYeL0F5oXjeZSZ9/g8QIRZLy9KWK6xwfcQ88FgoJOTk5gOQOtHSDatQJkL5hkSyz4kut/v91UURZw30kyazaba7XbcS6wVLgWucb1eRyeNdE7MW61W3C+edsNx5vN5JMAuvHAdCCCIaL4P2Fs4GYDXlKCgodcHcSLvqQmsKeKcuz0u7vu4pp524fUpuJdxCnl6k7scPA2BcTCGy4TETqejarUa79Vy3RUvxujOB3/dr4VrKJ/vfuOdehYnJCQkJFyO9BxOSEhIuBNX5q9lj1xDLiEMuAqm06mkvX15NptJUqxfAOldLBYxii3tI//YoPkMIgFtGiEcLkJ43jaEnVQBJyjlCvRu36dgIWkLXuAPwoyI4S33IPY+FhwMEGSIkOfCc55y3rm0Fw4QNyCPzM1kMol1ECqVSiTAzCtkdzKZaLvdajqdxvPhQICkE80vE1qiw74ens/udRP4LIQWEaU8LoSCo6MjPfnkkzo+Pla73dZyudTt27djPQN/X6vVimuDCMCeQ4jpdDrqdDrqdrtRHCl3gej1ehoMBgcCghN5TzGRdCB2UTyR/eJrxr3gghIRea7da2ywzi54uQOnTNDL9165HoG7C7wNJHBHA3PrqSmeSsBYPH3B1xUBwet3+DX5l6dCME7fN16Y1B0uPu8cx1N/GIu7U66SQyEhISEhISEhISHhquHKCAqSDgiIkycKz202G2VZFsmhpAOSRv0FrxfgeepeuR8SDgF3YsKX1z/wInfku5PTTp4+JIdorLTvXMC/Lip41JkoqRdx9CKKpCXwu9VqpV6vp06no81mo/l8rvF4HK8dws3cuKUbwgnB4vw4MrCPQ3B5Lz/vdjuNx+ODdAufH6LrtLlkLiCkvJ/5h1AjzmDz924fvjeoMSDto+i4CG7cuKFr167FVBIEAshsu93WycmJer1enAs+n2VZHAtr2Wq11O/3VavVoniCCALRbrVaGgwGajabMb2BqDzHx+nAtfjeZS68noE7YdwZIe0FNez9zANj8j3uKQnuBvHzAheovKgkrhhPJ2C8zIF3RuCrnIqDwOYpQWV3DoTfnTW+P72GCqkr1JvAUeK1ILz7ic854oOnUyDY4ZbwrhgJCQkJCQkJCQkJCXfiyggKXlytTHL8e2/7xs8QYMQEBAFvS+i26larpV6vF6OvEI5KpaLZbBaJJ/ZsWksiTtAhYbPZaDabRcLvpElSFDGm06mm02ksbghZRiSgkCRRXCes0l4QwOUgSVmWReLr7So90l+eW7eOl+HuDO+qwfy4Ldwj4p4eglUcUQCSyRq4xdyFAo7jgoS0bw0JSd9sNup2u1EQwKHCOvX7fT322GPq9/uS9gX+PAWBOgW4ENgjHKNSqcQx4GIhbQVCz1gROTqdjgaDgdrtdhRGnCh7XQV3aLBfyjUQmEOv5QBIsaAzhxdGZL9QD4Pz+R7zTg+APUSU3lNjvF4EohEOAIQPxDIECa8BQSqJv99FIN7LON2h4GkKzBH3O21icSZxfk/58Nalnprhbgjmic+wT70WRUJCwquj0mopdFKbu3ccu0Lbs7P7PYqEhISEhISrIyhA9rBzU7zQ/6Bvt9sxRcD7xFNcEAIEYVuv15pMJpFM0WbPC+NByrzon6SDSCXjcvs5woBHZRmbpIMaCKPRSKPRSIvFQo1GQ08++WSMaNOlAZeER305vrfqKxeiwyVBQTzEAF7z8XoRSdJEFotFrCFAtJ3xSzpod0mkn2ivp2YwVgj1bDaLc7NarTQej7VcLuN5y/n5zBcigFvWcYBQHLHb7cb15ZxZlunGjRu6ceNGJNvsB+pztFqtGNFGUGDsnU4nzjE1KNgvrCOCgkffIfQcG0cG1+h1Liik6VFziK7X+GBNnMhL+5oSrVbr4F5hfyOq+dwyB8yDOyBYQ46NIFJ2x7jjx8k2NTgQDSD50t5VwfoA7iHECdYaV4K7XpgvUiJcbPA96B06uIcQMHCZ4GJg/tlr3F/sY3cY+fokJCQcotJqqfLEDd3+0qf08hfd79E8eqgsgz7nz31Sm08/f7+HkpCQkJDwiOPKCApPPfWUnnzySbVarZirTqRZUrSkhxA0mUyi5Vk6zyWH7JHDLu1tzZARCCKkiTaHWZbFKC8R6jzP1Wg0YrE9js37ypFLIrOeIw4RzvP8wMmAGAHBgTjyOY/WQpAg7NK+ZgSEya/bLeKIC+WosRemk/bpIu46KDsNIFnemtIj/E6Iy+QbQjufz2NbRMgmY6WOBfNLMUUvEIkToNVqxRSP1Wqldruta9euRZcAEfTZbBbTD/r9fhSovFZDURSxswWiDHvLa3OQqkJEu9frKYQQuzL4ukGgGTdr5sITZJZaFZzHCb+LJa1WS3meR7JM2gPwehjsG08T8LoACBOcg73m+8NTJ9xB4CTb02GoB+F7xwUbT2soF0n0Wgwu8CES8Bnm1R04CB/cu4g5LpSQ7kIhU64X0cHnnXuYObpKRRkTEq4KKq2W5l/xc/Wpr0w1Ru4Xds1CH/nG5/Se7+ipMplr8zOfuN9DSkhISEh4RHFl/lom6lqr1WJ7QgQFiFC9Xo/EHNLkxEtSrL4P2eF9rVbroIsEpLec303kFZLjueK0rHSCJR0WuYPkOzmTFMfK8VxEwGEhKRJySFq5hgBOinKtBy+2CElsNBpqt9uRzDq5LKcXMEbPG/fxS4pCCM4IJ6x+jYwfQWOxWMT2jgg7tJz0CDxr6HUiGAfdGxqNRnRAUCTy+vXrB84E1gcCmWVZLNDJ2LxbAe0ImT+35Hu3AYSQWq2mo6Ojg8KezLvXNfCOES5EIcrgToFEex0Q5qXZbOro6Oggel92ceBY4XuvGYK4QmFT2oR6ag1ryvkRe5gbF19coGK+cHw4Ccdp4a4Fv6ckxdoLpMx4IUTW0IWCcltHd1x44UrmWlJMD/EWq1wzn3fhwgVBH2tCQsI5Qr2h2S/59/Tp/yDdG/cbm26hf/cNR2rfPNFzf6um7b/76P0eUkJCQkLCI4grIygASAYRcciGF36DeHh033vMu5jgufMQG4rM7Xa7g0J5noMNPLILKfeuEZ5SIO0JiacXQFghLYge3goRUuTkhvNDsDwX3Ftjei66j53vXYRgXoCnT3gUmHP7fHpUGHeCk2/EGK6PiDUdKTjmfD7XbDbTfD6P1+dRZcYN2cRVQkR+Npspz3Ptdjv1ej1dv35dWZZpvV5rOBxG0osgAYFn/zDH2PSZH9aaz0NMiZhzTRwTkUJS7HqB4MA8OqFnXigmyLU6cXZRRZIGg4GuXbsWO2YwZ5424CkApLF4ek7ZIeD3ktcQcKEFQYj3U/+DlACEp3LaEGuE4MTxyy6A8r3lIiFrh5BDzQTvgFKG36P87G4KRAjv+sBe5txl10+5FklCQoJU6XeTmHDFMH98p0/9ysf17N8N2n74I/d7OAkJCQkJjxiuhKAAWXTbP7ZuSAvRVU8r8HZ22J4h2N59QNoX+FutVsrzPEZWOc58Po9Eyav9S/toJuSfmgdu9Yd8uKDAdRHFhuRB+DxyzdggcmUi444Fd0ggQnCNkGGIr6R4PMilE7rNZhPFAP8dvyfKXq7mD1lnDknhwG1Rjt4zvlqtdjB/wCvzM8/l6DTpE6SKkHrQaDQOCgBCEBE8ILmM210jzBd7CLcL4g3ndLGDmgsIJpIi4feOAkT5EUs8mt9oNKLAwPm63W5sPTmfzxVC0NHRkTqdTkzNYCzsBxeJ+Ln8uq8rn8Nt404fin66QOGOCcbqRT4RESD97XY7inykSNRqtVgXwscHefe97eN0QYH1d5cD88o+4biIF9QeIfUEIYn3uxDo5+RcXugyISFBCrWabn3NeyUloe2qYfbUTp/6FTf07HcWyamQkJCQkPCO4koICpBGTyHwdpBuvSca769RgLBWq6nT6ajdbms+n8cuCmC9XivP81iDwaOeFKDLsiwW4isTDyKYwC3tjMnt7p6LzWur1eqgAj8iCjUdNptNjF5DyrxaPeKF535DgnF1eBV75tNrHSC4SHsiz3GdqPn84zSAbPE96RSIMrzuBTQh0LgEpH0EmXOW7e6QcUg/BK9cLLPT6Rx0VqD+BYIN44CIE63fbrfRuVIUhSaTSUyjoANHr9eL85zneVxf5hrBhPn16D1ODbflu5PD3RBZlqnf72swGKherx90ZEAw8TQDTzsod4ggpQHBxosoMo/MuRcozfM8ihjsTd/j7Fl3LfC7VqsV02uq1WqsTcI95gU0OaaPi3lxBxB7u+w6QMRwEcvvT0/B8cKSZUGI5447enzMiC1JUEhIMFSrOv28JCZcVcye2umTX/u4PuM7ttp87OP3ezgJCQkJCY8IroSgIOmA8EiK5B0CKe0r0RdFcWDrJmILMWm1WiqKfbtBopKkSKxWq2ij51iLxSK2FPQIOWTFRQPgAojXTPDXXfhwQcKJGYSLlpWMjUgvhQXpUADJdWKKdR+BxME8YnFvtVoxv93z8J1wsiY+x4vFIgo9RIARTZhrUij8s51OJ5LOW7duxbkgDcS7NfgcQeo8vx3BAzs7DgjEjUqlops3b6ooCh0fH8f9wjy32+3YDYG6HRDY+XwehY52u63BYBCvm0g31+22fye0OG1wa/D6er1Wu92OpBuyjNMBJwIuEI7FmrI+FGPsdDpx/7D/2P9ebNHXiblj7NRSQDRyAQJiHsJ5C1V3G3inCo6J84LUAsQS5t4FDk8DciAMIjp5+ofXcODL94WnqHCfejtJvy5PSSp3GEGEosbEZekVCQkJCVcV8yd2+pmvf0rv/taVNs+/cL+Hk5CQkJDwCOBKCAqQFpwBbhknYgwZo4hh+fMuSHgOO0Qf27Pb76Vzq/poNIpReC9YCBkhqsy5iIzOZjNJUrfbjVb82WwWXQiQ43JtAI4H8fK6DJA8SXd0gHCRpUyAvJgi10CUn6KIRL09Z99z7x0QP87pBQM9L99z0SGrpBiQNoIV3gv3dbvdOP/l4o/SvkYBZBxyzTmdCO52u/he5g3BAWGGPcb+qVQq0WGAoCQpzj/iEp+FcNfrdfX7/YMoOfPe6XTUbDZjoUXSWyDvnp7BfHU6HWVZpl6vd9C+kPVzR0wI510lBoNB3HOcwzsUQKS9PgVClYsfzC0im9cDwVnhQgH3E50r/Djcf07ivTuKpxu4ywOQbuGiFPeG/4tg6O4ErsvTlLh/2X8uhPgzw9tCIiR1u92YFpIcCgkJCQ8altd3UrPx+m9MSEhISEi4B7gSgoKkSLYgYBBZIrv9fl/NZlN5nh9EPCEmkBgvpAbh8wisdEjoIQ18YX2npoJHNj0f3bs+kK4wn881mUwOxA0i1V7DgEi61wPwQoZOfrxQH24NIvoemYVMexFFr3VAKgKRdoQb0gW8u4G0L7xYLuRIpNrngnmFvHFt7pxgznBJYNuHROIkqVarkXwjMLFeiBm4CHa7nabTaWwnybE8JYDx8xqkk9+zPtSS8CKKLkyxb3q9no6Pjw/2GfsQlwRCk3eIaLVaunbtWiS6uB0qlYq63a7a7Xbc1/P5PN4H7m7B3XB0dBRdJl7s0OuN0FWDNS27AUhhITUDgapcZJO1xOHCeLIsi24I/yz7EuIvKY4RsH7dbjeuwWg00nw+j+vv6QYIYKwB+4J5caeBrx9fCArca3yO60OooE0sbSb9XkpISEh4kPDTH3hSn/WnJtreOr3fQ0lISEhIeMhxJQQFz82GUNTrdY3HY+12O127di1GtIncLpfLSHo8N96JL5Z7SZE0IFRAvvI8j+eB7EuKBLOcw439Gos/75XOuw/w/XK51Hg81nw+jxXyPaXAay14MUCs3F59HlcBhKvcBYLrQbRoNBrK8/ygHaV3gIB0e70FRAUEDY8MS/tuBJ7HD+nz4pQc08k264BAAjFGSGCtuGYixRBSIvU4M3gP4grf8ztEACLYXuzTo+PValVnZ2eRfCNweL0ERBX2TpZlkXB6VJ1aBMwPxLbVaqnZbEYhgnVhzyJasR/pgOHrxXshuycnJ2q1WprP53EtpL2jBVHs6Ogo7jkKnHqdCxcIEM0Yuzs+WMfpdKqiKNTr9ZRlWTwn8+oCHfuBc3gBUs7BvvbaI2W3kXdg8NQKzsl6u3jgwgi1H6R9rRavdYFDh+eQ11RgnyUkJJyjWC713j/+MX34973nfg8l4XWwbRaSCeIJCQkJCQlvF67MX8uQylqtpl6vF6O1RH0bjUaMYnuHA0l3kD5ysb0LAikBlxVt88JtXgiRgn1eo4HaDN6+bzwex3NCZBaLhcbjsRaLRSQxDsbhdn8vLLdarSIB8vd4/re3weNL2hMtrgWyDDmiuKGkKB5QlK/X68X18JoBEGTPrff1cKs518L1IQTgjCi36mTdGD91HprNZhQ/JMUOHc1mMzoBVquV+v1+HAfHIRUA0YF9AVlGEEB0oO3keDxWs9mM1n0XKbymgc/jbrc7sNVjtae4ZrPZ1NHRkRqNhiaTSfyMXzOCDgSdNB9qT+D2ID2iXOzQ01JwnzBP7vjhvmJNXDyAzLfb7UjCSXEgfUZSdFQgqHEd7p5BdPG545xek4T7zx1A3KteONTbv3KPsDcQcxgL8LV2t4GLSv7c4fe4a1xwSUhIuMBqrbAJKmqpOONVx4e/6T36nD8w1e7CNZeQkJBw5VGpKlTC67/vEhTpb7b7htcVFEIIf1nSL5f0clEUP+fitT8p6WskrSR9VNI3FEUxDCG8S9JPSvrwxcd/oCiK3343A4FQkPtONJMcc+/E4IXrqFtAgUFJ8fdYnImQclyEgLJVmnN7GoSnF3iaBMLBfD6PY5H2HR8Wi8VBt4HytUo6ECsAYobXTSiTJMgR4gLX5w4K6iXQAhP3xXa7PajLwDV5QTwXDiBl7mZg7NvtNs69F+QjWuxwp4bDI871el2dTkfdbjeSRAjtcrnUdDplT2q1WmkymUQSy3jZJ0S9vVsAx2f85OufnJwohKDT01PN5/N4LcwH88jcIMKQMkC0mwKf2+1W/X7/IFWG4pB5nms2mx3UH/A9AXlGPGg2mwdR/SzLIqH3mhKj0eggbcDvIRezWDfvZgFJZx2cXLuYxTojZkj7dpWcyws1IvThNGE+cRGUU3e4V9yZ4V1Cyqk9dLQgRYK94fcze97vMxct3D2Do4Lj47S4KninnsUJCa+F7XCoz/nW2/rwbzu+30NJeD28ub/JE14D6TmckHCPUamq2u3EH29+/fs0/FlvTrD+WX/2RRWnZ6/7vt1slsSHe4y7cSh8q6Q/J+l/stf+iaRvLopiE0L4E5K+WdI3Xfzuo0VRvP+NDIJoMSQSonP9+nUdHx/HNniQgs1mo9lsdkfBOifeHvGF9JVt3RBmCAuF8bCSe4cFoqJe4FDap2Bg4yeaPJ1OtVgsIjlm7F480es+cA2eYw9xg/gQ9fcCkYgFbj3HWUAeu+eNexqIF9SDbHtBTESITqcThQ7Ox89OLMmlb7fb0RLPHHrkWtq36PMuBl54kzFzTXyea/UWj/wsSdPpVOPx+EAsIlLvaTA4NHq9nlqtVpwzF3eIrBPlDyFE5wSpC8vlMnZqYM9B/Ov1uqbT6UGLR1waTuDdtu8FSCHDfFGoEgcB18H7qDFBpxLfa+Xin5vN5qD7hhN176jAz6QJ4LpwwckdBZB1d8Cw73ifu1nYf96pAqcHnyclir1J3QsXXzgeoobXU/B0Cvaqp9BIOlgLnEYc9wrhW/U2P4sTEl4LtaefUtHvJDEh4VHGtyo9hxMS3jpCUO2pJ7V+1w19+Ne07Bdv3v32U//pk5KefN33fcY/2Kj9oRe0efGmtEvdvO4FXldQKIrin1+orP7aP7Yff0DSr3krg3DHAESr1+tFyzeEcbVaaTabaTweazabHeRUE6V0lwKCAuTCiSROAohDt9vV0dGRarWaJpOJJEXyik0fN4RXrIe4e/48pLHVasVIMkSpXMiQ1z09ABLnbQlxCCAqMG+QMkkH1fohtZ5PznnJLffIbjnyDHkeDAaxJoOLMZBAF1qwn/OFgONRaB83n2deIPcQPbpXlIvpIVIwRxTD9MKYXuHfc+N3u13cS8fHxzo+Po6pCBRb9BoBAOJM9wfcEljxSYVBNEEYcafAbDY7KBoJufY8/9VqddAdgb3M/Pleq1TOO1VMp9O4d8p7250G3F/MI0IaxJn7BccLdS64TvaLC1IuDnB87wbiNQh87F5kkf3mx3VRwFNu3J3EPmNt3WHgQoc7V5gjxsd73VXB9boj5yrgnXgWJyS8KkLQT/2e51LUO+GRRnoOJyS8dVR/9mdrlzX0U/+X3n05/ye+uiZ99XP6zO94TLWzmbY/+dP3ZRwPE+5FDYXfIumv28/vDiH8H5LGkv5AURT/4m4O4lFECBEkaz6fazQaabfbaTKZRGs31m9pT26IWEP2ndQgSPA+LNV0kRgMBtEGj+Vc2kfrIVxedb7sMCDPv1I5r95PK0EXTUC51Z7nwHuhOsbgAoO0r0HgdR08fx6y72KHdN5xAIKG+AHxlvZtF2l3yLn4QjhgvMw1xJiIMl0AOD9R7HINjGazGcmh11wgKo54wGdwe/D9bDbTK6+8Ekk74ke73db169fjfuI6cFFcu3ZN/X4/1osYDAZRnCqnqeAY6Ha7cZ4YLyKP1z+AnHId5ZaILgh0Op1YKwMijdME54HX8/DUH3e1kDJAyoZ3qSgXNiwLPJzPO5L43i93XimnanAPIyC5k8Y7lriw5XPMeLx2AgKEixZO+D0FgnMzHt//zL0XP/XUHMQSv17Wz50yDwDuybM4IeFSfPHPvd8jSEh4EJCewwkJr4Uv+rn68Nd1roQ4/dFf25bU1md+R6bwff/6fg/ngcZbEhRCCP8PSRtJf/XipRclPVcUxWkI4Qsk/Z0QwvuKohhf8tkPSPqAtI8GekQVgYDq8tPpNFapp8UikWBIAGTKiTiWddIqFotFLBBH9BVCC3mFyDSbzQPLt9u6yxFgaW/Nhyz1+/0YZYcM4TKo1+vxvZ5aAUH09I5yHrfb2DkmosRlRe1IWYBseTs/ourloovebo/jeMcHzsFatNttdTqdeM3emtG7a5SL3DGXZRLuhf4u+xzRaIovjsfj2H0DOzyk0oUQSPxgMIjFDfM8V7Va1eOPP34wj6wvqQaQWEkxug9xh5SX3QZcC/PK/kQswQ1RFlo4nosndHHI8/xgnzNmXCXucPFuDuX18y4p7EEvginta3YglrmAJO1TJFjLy7o8eGFQ37d8zoU/r3vB7/wYrAlj5z3cKzhTeN3bcHr9j3IqEWvJ2nn9lAcB9+pZ3FJW/nVCgiTpo78muxJ/ACYkXFWk53BCwmtj8x98gT7xy+pX7v+Sj/6atj7r++73KB5svGlBIYTwm3VemOYrigtmUxTFUtLy4vsfCSF8VNLnSPpX5c8XRfFBSR+UpF6vV+BMILoKiSDNAPK/2+1iBBlCSH42ZA7yAakhJ9uj2kQsSXlwO3e1WlWWZTEXnI4LXv2esUDqnGQhGHBct3PzupNEXAWe810WBrhGt4Vj3/Z0Ee/mgLDhHRcYL2kEtLpkTsvjKV8jYoanbFQq5+0Uj46OYtFDd1m4s4D5QYjhHJB1d3sgfJA24HZ25tA7QCyXyyiQ4LjgcwhLRKNbrZZ2u/NWnBQOpKsE9Tl8/7jLgnnlGI1G46AuAuSb9fE18u4JFBzd7Xaxy4ansTgJx12DkEARUlwZ3pqU9UJIc4GKY7JfWCfvwOBrgIuAQp7uethsNrF1JvPjdRV4j68ZTgiP/vMeF48Q8LgWju81N9x1wnFYG1wh0+lUeZ5HkcjTMhA+EHoQNUgdwl1y1XEvn8X9cJJK9yfcgdmv/uIr9wdgQsJVQnoOJyS8Npb/0c/X87+4pqJ6Nbd3/mu+WJ2/8YP3exgPLN6UoBBC+CqdF5z5xUVRzOz1xyTdLopiG0J4j6TPlvSxuzmm52PjEiBi6tHVer2uwWCgbrcbawRANCDFdGHwYm/uDJAOCRJ1DiBXWPYlHRRIhORC3CD1EGdSAaQ9AXIRgEgoxGY2m8Wq/FTQ9+4LpHOUI74Xcx0ju34eJ5Vee8Ejx4gJRLsRNyBabocv2+mJrHNsxn10dBQFHo8GSzoQJIjsexFHzk3Rv263G0UdSCvEz0m2tLe+M0bGRf0NSCrpGxBsr/uAkMVcsl4Qb+bHo+aNRkPdbvcgRcFdHt5dwnP82UcUwaRV5Xg8vqNIIEIFqQjs7eKiXSV7djQa3VH3ADHLuxb4XvH9hAjDvgMIPOwd7lOuF0FsuVwekPyy24Q5czEKpw8/+7HLdQu4v7yTBO931wGveV0PxARfA47DPCF2VKvVg7SIBwFvx7M4IaGMm19UUVG5mn8EJrw6nvuHG+0Wy/s9jIce6TmckPD6ePnz69rVd6//xvuBIL30xRV95t+43wN5cHE3bSP/mqQvl3Q9hPBpSX9I5xVsm5L+ycUf6rTC+UWS/kgIYSNpK+m3F0Vx+y7OoX6/r263e1AIEeLrxeQgTZBDtyyXW8FBBvkZ8uh53kQ86QaBE4HaBtQlwO6N+ICTgmM7kfJibhBRor8UmZxMJppOp9Ed4M4HbPaNRiO+x/PRPR0C8cNzvSGOzIu7Mcook0Ui+BB9J8aIB7yHgn5Y91kDBA1EGxwPblNn/iVFso8gBMmrVCoxHQGngX+GVITtdqv5fB6FEOaZgo6eH0+kf7fb6ejoKK51u92OUWtSJSDF7EnILMKIE1NECz7Dz9Khe8WFk2q1qslkorOzs1i7gG4VXBukWFIUK8bjcUzd4NpZb9YKx4WLOewr1rC4aGO5WCwO0ljcyYL4wrwitLGu5ZoinhaCs8ZTkHjd97QXk3SRjN/7571WhTsYEEOYa9KbGAPvQXgcjUZarVZRePJaIV40k3W7CngnnsUJCQkPD9o/+gltUwXze4r0HE5IeOMYf/2XaN274qJ0pdCtb/xSXf8L33+/R/JA4m66PHz9JS//pVd579+U9Dff6CAqlcpBy8LL0ggkxT/+vXaBW/0hXO5qgNBDpiA4kGyvcO/pFC46MA6KFzK+er0eiTpEBeI7m83iucrdEXAmQFZdFCAyn2VZfB8ki2sjz5zPliP0EF0Irqcx8HvIINZz0ju8EKXXHmBtiHwjrFBUkFoREEHGyLUjmFQqldhSU1Ikc4gUiAn1ej06HbyeghedZC8QnWcdvc2j2+jn87nyPI/ks9/vH+xBFyQ8FaBcN4C159o4v6d3MF5e45yIUu12O6ZXsIfpVEGxUdpOrtfr+Jn1eh2LfrK/2VvSueDEmrAvEALKaTdnZ2ex9gRCg7sEPNXIC0l69J5j4sTA6eH3DvcrbhP2MPsQsY17B2dROe3Bz8neYu9QMNXvZXdl4CrhfkdMRMjkWcKasoevUg2Fd+JZnJBwGT77z31SH/7dz6qovP57E64GPvPb59qeJu56r5GewwkJbxz5U5Wr6064QFGRps9J1+/3QB5Q3IsuD28ZHt2HfBHNhlRABrwfPYTNSQ4EGaJCFB/7OwQJctPr9Q4q5fM+yBq/m8/nsUq/pxc4ySLK6bUAGIenEeR5HiPnRKK9xgEpBYgekqI9n/oPm81G3W73IDWD/HFId6PROKjy77nxzIHby91ZADH240C23d7OGrmDoixueHoDOfdOdP2LfQA8DYA1QoDCRULKC7nv5c4UCDHz+Vyz2SySSgBxZE/MZrN4LlwrCAaezsH4eY1jeIcDCLHXWHBC7p0OvLBiCEGTyUTD4VDValVHR0dRYJhOp1E04v7Y7XZx3I899pgGg0G077Mv2PsIG34s7/xBusBwOIz7zNfcUx28XomLOIhViEOVSiUKOozH62r4urNX3VHjgoynvjBmxAt3IzBW5olzcB9nWRbTityBwnndDZGQ8Chj8+nn9Tn/9Uyh2dBPfdO77/dwEu4C9ZsjbZI7ISEhISHhHcCVEBQkxfoBy+UyttGr1+sxQi/t2yxCbiC+3o++XCVf2pMLSB3EnKimkwmPsHMcSAWE3x0LHrX2nG7e7233iMBynl6vF4tBQs4YK6RMOhcosiyLpHixWKjRaOjo6EitViu6JLwYnrsTIGNcG5F3nAlOBvM8v0NMcEDeZrNZFD2INkuKVnPPeZf29nfIt9e8gJi7MwDC6wXyIKmsrbcjbDQamkwmcb09b36z2RzUiqATBYSTYy+XS02n07jnJpNJ7AqSZVlMgVkul+p2u+p2u3HPIUawRyDFpE84sabYqCSdnJwciBi4CygouF6vdXx8rHa7HdeePeJdQljTZrOpwWAQ3QyQb09j4NrG47G2262yLIvnlRTPQxqJk3XOSaoE64zQx95AKCC1g1QNBD4XBxClym4HxspedOGP87HHvBOEw7uyMA/r9VqNRkNZlqlarcY9xvl4Nszn84PCmgkJjzK2Z2eSpJ/1J5REhauMQvqsb8u1+ZlP3O+RJCQkJOj0t36pZk9dbXdCwlvHlRAUsEhTQI3oMwRmt9vFXH2Kp5E6AIlwsgZxdIGAiv7uXHDRAEBAeB8F8QDHBxAUIp1OjDxv3sktNSOcUEOs/JpDCMqyLBYZxLHAfLTb7Th3ku6oU4CVnDoDuARcrCBCjkDjx0cAoSCgdJjHv9vtdO3aNXW73Rh9ns/n0WngxLAoimjpx4ECPPLtHQeWy2VcS8QjT9lASBkMBpEsI2y4CAWBp5AhkWpIc6fTUVEUOjs7iykRy+VSp6enkTCvVistFotY02IwGMSinBQPpeYHdvp2ux33IF/hogOEJGVZpk6nE6+XThk4EShOivjhzgjmh2PhjiDVwV0CEGSEpdlsptu3b8dUB1KJELJwNvB+r2ci7TtOzGazGOmH3E8mkzgmdx3keR5TQ3A8UDzVRQDv3OCtJctFEj2VxWtr+DHY7y6ouVCGkIejx90sdOlIgkJCwiGK5Nq5sgg76V1/byX90I/f76EkJCQkSJKKmh6MdLlCUtI93jSuhKDAH/ZnZ2fabrc6Pj6WpAPi76SgXHgRkkj01K3L5PuTJuDkw90A/OwEGHLo0WWPkvN6nucHOfblivOeQ050lKi3W+khb4wTMukpFEVx3m6w1+tJUoxuU3vBbeIQ0izLoiMBYkyEnOungJ1b0FkDRBc/9ng8PmjHeXp6qlu3bqlSqcQuDVj9N5tNFBMkHYgeHlleLBYxak40GpGC8UJ8y4KI2+ARTyRFAYpUC6z9ZdLMXEqHqR+Q8zzPI1n2QpC0bGR+vJsA5yKNBRfFdrtVt9vVYDA4IMoQe+9mgFPH01O87SmpI7g+cKZ4PQCvSTKfzzUcDjWdTg+KmyIcEZn3uWYNmStSdjabTRxzo9GItUNWq1Ws7YEY5Hux2WweCABe2JT7ajqdHhSodPcR97i3OfXjuUOJf3HicB24GrhHff97OkdCQkIJu0LVZVARpF3jihfZeoQQNkHPfO9G1e/90fs9lISEhIQHDmEb9K4/mAoyvllcCUFB2kdYiehKezLrFeghbJBjIvBObvkMNRekPWnBUVCr1WKkFAu1E13e67UCSH/wsfgx3YIu6SBlAIJXFEUkYDgtiNhDHL3bBK0DiVi32+1oUV+tVhoOh1oulxoMBjEvHRJHJ4Bms6nZbBajxF5wkbmEcHNeT5nwood8nvx4WhNOp1NJe7fJdDo9WCtSISCHzAkEXVLM299ut/E18vmXy6WyLNPx8XGshcHaMMbyOpEKQUFGT78YjUYKIajb7caxSVKv11OlUjkYB4IEZJR1IjVA2osk7L1Op6NOp3PglGGvNBoNnZyc6OjoSJPJJKaNeCoAe5L0H69d4OdF/EB8QlTyPcjeo6Ajc+HpDF4XgT0q6SBKj/jFHkWQwM1C2gbjQujwAqH86+4HFxTcXcH95wUaub9wz0D8cRowHy4mUPSUc/E8cQEGp0m5GOuD0j4yIeGdwvbsTO/+fd+v6ns/Sz/zdTfu93ASLnDtJ7Zq/v0fvt/DSEhISHjwUEiN0Z2d8BLuHldCULgsf3q328VoerkmgrQnOv1+X/1+X81mM+a+u0MAAsRrEJ5+vx8dD5zXUyAQJpwk+nEhLpAtyI5Xm0ck4HVIrwsjCAZOhrGiQ5o4JmkfWZZpt9vp1q1bmkwmMQrPONw27pF0Is+AyDudBsotG1kDosbSXlBoNpvRiQB5hcySJuKukjKZhDT6NS8WC00mkwOXhI8BRwcCh7dp9MKNu91O3W5XrVYrRtQhwJvN5qDtYpZl8TNEz4nAMx+sH2PyGhyQWE+FabVa6na7ajabcWyIQu12W48//rieffZZhRD08ssvH6TuMO+SDupekJ7B/QC5Z60Rd4jaM4eMc7lcxrVmPzPvXB/X4PU+2EeMx9tHsgcajUZ0yiDksL84BtcG3EXCHLKHGSPOI/akr68X0URc9DFzf3n6jTsbSPVgLREE3aWDIJWQkHAnth/+iJ77wx+538NISEhISEh4y3j2v/6++z2EBxpXRlBwRwGRdlIOIB8eYcZ+7pXaPdIKEfWuCZAtaV/XoEziOI+/z7sreIE4IroQJX52wlutVmN+PcdjjJAoyKoTbyLrkKWiKOJ1YtEeDoexqwHHDSHEnHtI4ng8jsUWm81mPOZ8Po91JSiS6CTWAXEnwjsYDGLbRXL36/V6LMjn7QIhoE6+ibRTv4C8fAr9uQXe62SwX7hmhCU/hncMYe4Rh9xN4WkXdAHYbrfRNeBdD1gjPuNiFwIJNQEQPtiTCCy73U7PPfecnnnmGfX7fd26dUvD4TAWjOTa/v/tnVuMpNd1ndfpS3Xdq7p7pqeHMwORHso0REOgpYCIlMDwQxDZelH8YEB5iR4COA82kAAJYgkGEuXBMGL4AiQGBMiwI8dIJCROnAhGHiIbdgxINhlKoXiJzJiKZJDWkE1Od92r78cPXd+pXT+7Z6ZH3VV/kXsBjemprq7a//lPHfRae++1WW8y5Fb4sR4frAuE214PmXbEhG63q16vN2EaaUUe9j73ygp7VBhA6qlMsAKPHQdpJ5xw32zLAvdYGrcnsFbEzDnA55TrsealvBZrYl/Pmo1aM1TiplLGvqatYmLfuqDgcDgcDofD8e5F/dvzYPKQb+RiBbNZVjsW0pbYUwY9GAx09+5dFQoFXblyRcViMWUtDw4OUh83RnJkXckuW78DCDQk27YunBanfT6l45Db4XA4YabHeEJeFxJlYyJ2m6HmPSj3h/CC/f199Xq9lJUl00q7wurqahqHaUUPiBTEm0w8P6PiwJpIcl+ycdOqgfBSqVTSOkAgWV87FlJSIrjWUBCTP5sdtpnncrmc9gniB4ICvf8YD7LueDIg5kBCmZZBKwaVLeytTqeTvC6ouIC0IlZYgo/gABFmigReAYPBILVsbG5uqtls6vj4OJF8JlKwzoDs+v7+vtrttobDYdojvC+iDQKAFREQjbgmWhJsdQzXg3hBewD3xbZ5SGORgLYb1plrsOKE/dyxlrayQxqPZrTeIQgdtv0oK+BkvR0Q+RCO2CMIAogMTITBI4N7Y0UNBBdbGeFwOBwOh8PheHdh7YWgjc89M+sw5h65+WsZQkNmnyoBsuy0DOAbMBwOtbGxoWq1OkEu6Ie3RnBkVKVxpp3spzTu8YcMQ9DIbNJvTUk5JBEjRfwMeF+IWQhhYiSdHY9nRwpm2zQg09mecIQQXpO+eSoLCoWCGo2Gms1mig+CRq87kwoQXSSlVgpL5CBzWfNE7g3EfGFhQZVKJY1VxHiPsnXWjAyxJbusP6X8TFCwxoqLi4tpcgH3xxJZRCObcacqxJoSsg8Qncj6I1YsLS1N7B0qFiSlyg6exz47OjrSyspK8igoFApaX1/X1atXkzdHq9VSjFHValWbm5uq1Wra399PYxuprrCVMogqtDUwvpJ7jEmlFXWsGSmfBe4zpBmCTxULrTLWa4Drsb4arIGt+MHMEXHATlSx4DHbxmQrAWyrha1MsWKCFRWt9wP7g88a+8AKTqeZt+J/kRUO7R7iM+FwOBwOh8PhePdh41mp8btfVzx+ZxLZcT7kQlAgQw85wB2ezDAgW4wXQLPZTFlgxr31er1EFmz5s/UAkJSIJ5UGlLiTwUQ44PdstpPMJuXttCCQAYbkk/E+PDxM1RFcR7FYVKVSmSBuxGaN56xBnTTOoCJGQAwhvLVaTeVyOZHew8PD1M8Pabal84glXJetPgDWRR+yjylgo9FI5pYxRtXrdfV6vYkpAqy7HQnJ+w6HQ7Xb7XQfII79fj+1wECCC4VCMqq0gokVLqwXBsIBBJXqE7Lpu7u7SWihYoBpFNxvXoO13d3dTeNN2VcQ9I2NDd2+fVurq6vpuhYXF9VoNLS6uqpr164pxqher5cqDiC6VBhQUcKa7e3tpYoJKi9oLbCtN9a3gHVhP7L23A98OPicIe7werRo2MoM22JhK03Yp8RvDRft59buJ2sSiZDI3rdmjtkqIe6r9TOhosL6llihzvprUCHBuvI4e96eF7aiwuFwOBwOh8Nxfmx8dUfDjTXtreVrctb1r0bV/seLOj7w8eAXgdwICrYqwP7hLyn5JIQQ1Ol0NBwOtby8nMr6IR/ZbKykCaIEmYS0kO1n7CMxYKYHUYVgQDzJqtqMJySFvm1J6vV66vf7E4aLu7u7qT2ALDl9/rYM3PpF2GqISqWiUqmUBBcEBcQQfmYnORATrRJ2valMIPubHVEpKWWVs8TPlr5bF3969SF2GELatUeA6PV6iQBTem7vE5lwSUlcsGZ8EEDEB2JmX0A0MSXkOlh/1gBhB68J4qOapVqtJj8ECD+CwsrKiur1uh5//HE99thjWl5e1tbWltrtdjKHrFQqCiFoe3s7VbPYXn0I+N7eXjLJxP+i1WolkYd7gYBiJ0SwJ+xoU+5puVxWoVBIJorZqgFbGcM9sZUxCAfsC/ZkdpKJfU72y5L704xT2VOIaAhnVJxkr4lWn+xkFWuYyntbE0r+z/tZc0+ERH7/tNYnh8PhcDgcDsf9cfzSn2vpYx/V3tqsI5lE/cW7OhqNJ3d8/8iFoACZhySEEBJhqVarqa2BlgdJqZLAlseTfYcQYDZYKpVSBYM0JjF4G9AS0Gg0tL6+njwGpJMxgrQUWDd/srHHx8epKsKWxu/v7yexAJ8ES5RDCOr3+xOEmrWw5fbEMhgMVK/XJ/rq7aSDxcXFROAxFYQkQqYsqScDC/Gm5YOpBran35a0Q+qq1WoSE3hvsvyDwSD5Ddh2FdoCILR2QoZdH8glIoPtZ0eUYc0gy5jsMWqRFgqMFmkT4V7bNhDeFz8D9iDPR9CiosC2ViwtLWltbU2PPvqonnjiCa2trSXTxxijGo1GWgd8L9iftpqC53CvWXcEDvYQnhLLy8vJtwFibat6IMzWOwRDQl7binjsNfaINVHkHlHlgCAiaWL0I6ah1uSQz6GdgML7UfnAZ9CKOAcHBxN+BwgnCEKIOdbzgGvhs041A/ciayxp74M1dUTQsCKKw+FwOBwOh2P+cesrRzr+7muzDuNdhVz8tUwLgJ0XT7a/UqmoUCio3+8nMkufPpUEu7u7evvtt3Xnzh0Nh8OUjYfUFgoFdTqdd/TokwUtFouq1+u6evXqxJhB67Ngy6KlsXs//f9ky8kA93o9dbvdlGW1ngCQYsbsWeJjJyNAiiHPlMbblggeo7IAI0Iy83ZSAY9RVUHVButiqxsQKmwPum17sK0pVEEwGhEPAv7f7/cnYmFdEXwQaaSxSR+v1+12Jwh0v99P5pdcC/4ICwsLqtfrKhaLE2Z9eHHYqhX2hTSe2ICpI7FJUrVaVb1eT9dOCwfvXSqVdP36dd26dUvNZjMRbkg5sVA5Ywks7Q2snx05mt2f9p4hEFAhYFsQaN2pVCops081A6KPbbWgugHxgn2AWGFNOq0/A+to2wKs4Gb3i23rsUIclT2IG3ym9vf3UxsPn2W8N2xlgRU87GeVe21jplWDe8772tGVdqoK4hdr63A4HA6Hw+GYb9z4X8cq/uELiqMks+NikBtBAYIqKWW0yVDacYxLS0uq1+taW1tLBLrf76fMuK0SWFxcVLPZ1P7+vt58882J9gOIBK0T6+vrKbM9HA4TcSFbbkupyZzz3pBRyttjjGq1WhoMBsmwETEBEaTVaiXySMUChFPSREYXcsP6sBZ2XCDEaTAYaGdnJ7UcQEz7/X4i9hBSa4pne+NZI9oLMFuEyFlfAwgkr9/tdhNBhhza6gsLqgTo+0cAoH0DTwUqTLrdbiKn0omZJP4QNgPPupGNp2LC9vlTbXFaJptKAsSJYrGYyDvPwxejWq3q2rVrWl1dTR4VmC3aCQrW0wIhp9Vq6ejoSOVyOcVN6wP3mhYcXoOqCqoYqE7AB+To6EiNRiNVVNhpIpLS3mYPQMqJrVQqJRLP+1MFIClNvwCIHgg03W43CQq8DiaIiIG2MoO9Yo1Vre8Je8OObEU44LPJPV1aWkprwGeC36Mih/e0Pgq8t50Ks7i4mNbW4XA4HA6Hw/FweOTXv66//LkPa391tj4K156Ryr//DUX3x7pw3HdsZAjht0IIWyGEl8xjnw0h/FUI4fnR18fNzz4TQng1hPBKCOFjDxIEf+hDmvr9vhYXF5NHgjVnXFlZmRAaWq2Wtra2tLOzk8quyURCKMmSQ0DIPFLpwO9Yog95tEIAWWJK5K0xYKlUSgaF/X4/jSuE0FtilyVJtG5YI0FpbCCJq74drSeNPQUgTm+99ZZee+21iey9NG6bsG0N9MEPh8N0fdZZ3/4egogVE8jwQgwZT8gaQ1JpWbBkHCBGQBRrtZqazWbyheBaea1Op6NOp5PElHq9ntphEBRofYAQ0gaCvwRtGohRtt0EgcWuL0IK+6lYLKparWp9fV0bGxu6du1aMgeNMarT6Wh7ezutq712iDlGi4PBIMWJ4EHLBuIU/0qauHess63ooZqhWq1KUhKQaPFAtKFagXjI/lN5wv8RWnh9xjZm7x+xcb+oRJCUPicIEbaqBQEJYcy27lCZxOtZ/wXOCq4fccRO/JD0DkELICYMh8MkPnG93K9yuZyqZ/KCaZzFDofD4Tgbfg47HOdH3NtTiPd/3uUGIS0cRhcTLgkPUqHwBUm/LunfZx7/tRjjL9sHQggfkPRJSU9KekTSH4QQfjDGeE9nM1tWD4FdWVlJJfjS2AAPMrS4uJjGR+7s7Ojw8FCNRmOC4IQQ1Ov1UgsA4gFE25rhWXJpCVdWTOB57XZb/X4/vR9TAKxhIGXtVFYgDECKbQw220+5NtnbSqWS1orsPBnsrJN9p9PR8fFx6mc/PDxM4gZraH/HuvJToWDN/ew1Wod9a7IHUUUcIcuPmEAcdr25TqYIVKvVlMmmkoAqCgQF6y9RLpfTdAkMKyGmhUJBGxsbWlpa0nA4TF4WvL+tGjg8PEyGidYrAj8PzAzZo5D6hYUF1Wo1bW5upmqKTqejt99+O/kekBW3VSySJrw78OiwZpGsD74JrAfCBK+DCIZYtrS0pEajkYwxmYbCtUpK7Q/SmHBj1GlHsNrJCAhEiBG2rSH7GFU3tpKDKgvW2P6+HSvJ71DFQFsQ5or2ObyHbXOw+9CKHRiq4sHCRBFEPuvDYD+T1nclJ/iCLvksdjgcDsc98QX5OexwnBvhUFKUFO73zMvB2otBld/9s9m8+XsA9xUUYox/EkJ49AFf7xOSvhRj3JP0nRDCq5KelvSn93mPlJ2XlIzwVlZWUlbdmqnxxz4GdpSC43pPv/rx8XEqw7dtELZ0GqM7yAeZVDK/lUpFjUYjlZUTqx3FZ53uyaJDWnu9npaXl1Wv15Pxnu0Dp4/dEmyIK5ULVESctl6Uz9sRimR9JU0YWTLOktYQSRMijW1xIFtvHfLte0tKJoKMeCTTjq8ErRrcNwibNO73l5T6/amssKMr6dGHMBeLRdVqteRVYcchcn3sD+51qVRK1QoIINwH9g2VIdbLwo4KtYQeYWZtbS1VA9AqA7knnm63q1arNdG6sbe3lzLr+BpkKyWIh7J7RAqECeJH+OH+rqysqNfrpWkS+CHQosG+5v5C2FlzjBmtMWeW/NtqIu4tVQ22OoHXsC0Odg8hztCesLCwoEqlklolsuNf+ZxQwcO+xFuDa7TtE/Z+8TnJmkMSi62UQvgY5MgBeBpnscPhcDjOhp/DDsfD4eYvfk2vf+aj2r16PHVRIRwGLe3OukTi3Y3vx0PhZ0MI/0DSc5L+aYxxR9INSVb+eX302D1h3eClk2w/WWPphLBYwkeZNj32lLAPBgN1u92JaQ9kaXktm/GVJgn3wsJCqmCA/EJQ7ag/CA1EBXECH4HhcDiRmecaEBnspAFL0Cxhsr3iPA9iiGFkoVBI7SB8ZacHWCJuM/pcA34CrI0dtZclV5A069nQ6XRS2f7S0tLE6E7IKCIH65BtA5HGxn2YBWY9D7gXdroH97VWq6X2h3K5POFVEEJIlSsLCwtJxCBrTobaTu5AoLDVAtJkC0S2QmJvb0+tVkutVivtjRhj8n2gOqXX6yXBB7GEShvbJsD7Qa4hwtbzAiItKV2L9bOwgg4x8foIbwhyiEm06UDEaYGwlQGITlTQSEqxSZrw+2CEaHacpK2KYb/aFg6EDvZlduKE9UKx1R+njZ2kOsEKXdYzJGvgSIUO8c4BLuwsdjgcDsdDwc9hh+M+uPmLX9P3/vlHNdicnqiwcBC09qJU/6JXJ1wm7uuhcAY+J+m2pKck3ZH0K6PHT9sep/5FHkL46RDCcyGE5yCS1rFdGjuvW4IrKXkQkGW0JoMQB8q5+TntB9YBXpoclQfJgNAiAtDzDtGD0PG+dsIBhn6Y1EH8yZBaHweEEkQOiAzmddYIEUJGFQJECjIFWRqtbXourQC0bfC4bQ1hTSH6ZHCtcZ5txwCUy5NxPz4+VrvdVqfTSa9tXwPxwvbEU2HRbrcnssGQUNYRAk8VBJUhxWJRzWZT169f1+bmZmoP4V5i1Mi1E78dAwoZtplv7pkdd2nbZeyYx36/r8FgkO69dFKx8MYbb6jdbqf2CQg/Ygdiwt27d5OpaL/fTxUNPL/Vaqnb7aY2m93dXXW73TSdw67rYDBQu91Ooor1g6BiB+8AS8Tt/kTU4XrxprA+CawxxqV8htln9t7zmWH/UD1CSwhiAv+3+4/ftffMGoJmRQLbOmRFAwQrvCZoCaL6hwoL6xeC6JFzXOhZfKBctXg4HA7HPMDPYYfjAfHIL31N1b98WPp5PoTDEzGh+TteFHTZeKgKhRjjm3wfQvgNSb8/+u/rkm6Zp96U9L0zXuPzkj4vSevr69GW4NNrnf2iRBoyZjP8lG9TpXB0dKRqtfqOCoDRe78jS2777yUlUh9jTCTMZu0t0SAr3G63E6mCsEDObAbUjnhkvCXl65Rt0/+fJf4IDJA762VA+wI+CVYgQZCw1RuIGtm1yVZLQA7tGEGbxWWkI6MyMU204gHXwGPEF2NMYyC5p2Sw6/X6RHUCbSPcL8SGarWazBw7nY5CCMlAcW9vL2XJLYGmesEaZ0IgqeaAnNqpFhBdTAqPjo5UKpU0GAySGSPeB7x2oVBIZLbb7aYYBoOB3njjDe3s7KQ9QjVApVJJFQOMPGWvcO8RmhCZuC5MEBFfiJ91RuCh2iErdiCW2akftqWBe279CxBh+Hyyf9grdl/ZWIndti8wHpLrZG9zvXxPpQXvY/0fqEChssf6VlizUvai9efIjjLNMy76LK6HtbkoyXA4HI68wM9hh+N82Py3z2j7U0/rqCi1f/Bytns4kq5+I3plwpTwUIJCCOF6jPHO6L8/KQm32y9L+o8hhF/ViQHN+yU9+wCvN1HinnWJt94AViCQlLwEyO6SMYcY8HzrQYAAcHBwkKZJkB2FDBGTJY7WS4B2AwjSYDCYyOxCKm0Lgs2AW9+DarWaqg1od7C+CVZAKZVKiaDbsn6y9baMn8clJcNLW1FAlt3GBOlizShrJ3b8FvgdfAbImvf7/UTMeE9aNKTxyEtEDyZi7O7uJuJbq9XUaDRSKwuEkfeCfCMoISxwDZBGxghKSu0BtB8w9cBWwJD9Xl1dVa1WmyCxlNHTzsK9xzxxZ2dHW1tbE+Mqs6Qf0YS1s1MrFhcX0x5gugmVG+12e2Jyh53+QZtJNhPPe7BOx8fHqYLGtrkgAvC5kE7aJ+w0DyoQ7CQJxAr8KGgRsSNZbWuRbTUiHusbkfVJoa3CjoukJcKKiNb/AHHNtgzZ17G/f5aYwDUgVOS95eGiz2KHw+FwnA9+Djsc58Txkdb+3Z9qsV7Xwk89qZ0fvuC/taJ0/atR5d975mJf13Em7isohBC+KOnHJF0JIbwu6V9K+rEQwlM6Kd36rqR/JEkxxpdDCP9J0v+VdCjpZx7EzTaEkAzrIBqQSFsijhs+JcrS2AOBEYjZbDhkyfZV21YKxlDyXmTkIbyQQDLz9vVx2bfmclQJUN1gnw9xId69vb2UyYfg2FJuiBlZfAz6uG4IGPHa3nWb1SVDy+hISCQ/Y03s6Dz8F6wQwlpBNm21AlMFqLCQxuSWe0FmHMNFRAhIfr1e1/r6um7evKmbN28mQSKbFbcZbwQRWw3B67N2ZPqtGSPPY//FGFUoFNRsNnXt2jXV6/UJ4QYTQ16DlhveY3t7W9vb25KkZrOZjB5ZB36Xygr8JxC1LOmtVCo6OjpKkyOojiHuMJqsgNDBnqPdhzXh2thP3W43iW18cW9sBYwl/Xy++LJVArYdxJohAjs5xFYUcd+y7QX83IqAtlWGL+4p1SO2ncJ6bmQ9QKwvCWKbFSDsNBd7FuQF0ziLHQ6Hw3E2/Bx2OC4OR52ONv7bK1o4fEJ3n7o4USFEuZgwZTzIlIe/f8rDv3mP5/+CpF84TxD8cU9ZOsTEEgNIjG1VgHRQ1k5WEZDVpoLAEg9rVkgm++joKGX4KVnf3d2dqIyQJkkXJIgJExARS3psVl1S6vtG0KCE3goq1igPElsulyfK2yHEiAmIGNm+dcY/YuDXbDaT2R5Z5mw7gHXW5z2oEEBIIIuOWWS2osJO4ICQI0jwnqx5sVjU5uamnnjiCb3vfe/T2tqa9vb2tLOzo263myoIrPCBGGLbZLh+yCgkm9GRVBfYySDEfOXKFd28eVPNZjON27SGmPwelR54eHS7XW1vb+vg4CAZNbKHqZqBUNdqtQnyD3HHP6LRaKhUKqVqiKwIYgUEyDKiGaIB9xVCzDoOh8OJFhjWlH3EfkH0ojoBTxI71YQ9e3BwkNocaInhs8Jz7fQW6+9Bq4T1REDcsZUz/A6/byescI+593zO7IQJPldWfKIKYnRmpc94VqxYXl5O1SGzxjTOYofD4XCcDT+HHY6LxdHdba2+0tfdp8oX9pq3/3N+JnS9V/D9THm4MNDLDvGCSENebfsDf/BbImwJMSSYqgHbY05vtjQu9SaTbJ3sIfXMtbfZV0gYZIVsMeSYKgNICIICIoUVD5aWllQulxMxw6fAus5jFAcJte0ftgXDEjBgBQVEikqlksYnQpIx6bPtDbwP61gulye8BCBolvDa6gPr+i8pZd8hn6zv0tJS8kC4ffu2PvKRj+jWrVuKMerOnTspI4+IBDlFfELcoF2DuGjrQHCylRgQecj93t6eyuWyNjc3tbGxoUKhkMY9Skqvw2t1Oh11u11JJ+R0e3s7TW9AoCDGra0tDYfDlAG3xqJWFNvd3VWz2UztEozVZC9YYek0Uefg4EDdbnei4oP7iABiSTK/ixhhKzj4PevRwWcOIWM4HL5DEMGPgb1r96Vdm2wrga0+yLZGSErChK1uYK9TNWQra3g/W83C6xKHNW20ohRx8ZmdA1NGh8PhcDgcjrnFwsvf0cazT2rr6Qt6wWdfvqAXcjwociEoHB8fa3t7O5FsSxggXBAASr8lpVJ2CAVZTzL/9KK32+2JsnFpnHG3ZfXVajVldMmul8vlCWJiy/whZAsLC6lCglilsWgBieZnkOtarZb6tW11g211sFlUqjfs9VMyn/VLgBzhL8HEC2tqaasLpDGxsyaY5XI5eULw+lQH2OkIxWIxkX9JicTbnnrIMq0XkpKYcP36dX3wgx/U448/rkqlom63m66JbDKkUdJE1QYtA/T52zWBKOM/wX1tNpuqVCpJ1KhUKmo2m6ni4O7du7p7924ymGR8Iz4Eth2i0+lof39fpVJpQtja3d1Vu91OIkAIQcPhcMKTgjW0bTIIDdwT9iMEns8IJJ8qgl6vl4Qt1gxDR7we2K/SeCwlYh4CjR2Pas0V2c9UTxCfbXWxZp3SWDywHglWTODzBFhXPv/WaBTBzVY/sAY8l+oMO3KT52f9IoiDqgqqGayxqRXFHA6Hw+FwOBwXi+NuV8XtQ10ELf2hf3NHh8feWTRt5EZQoBzb9m8jFvBHPj+HLEO8bEkzokO5XNbS0tIEwQthPAbOkilbCs77WmJi+70hHrbtwPa323JsTN7wKiCW/f19VSqVdxgVSuMpC5YkZUkWhB+Bgh52CBIE3parWzM9K1RI42yuNCa4kOBSqTRRxs814slAyb0dKQnZZa25f4gVVGMw1rFer+uRRx7RjRs3EinHC4D1Zo2th0QIJ5Mg7ASDXq+XPDkQnPDf4N6USqXUVkDVRqPRUAgnExLeeustbW1tpQoFrou2EduiwzpQJSGNRxHaMYzERrUL4OfWd4Lf415YvwbuP+tLdUC/30971Hp14M2BmSakHHHh8PAwtYNkK154H0wXqYxAoCHTb0eMIiYgvlkjUu4ley+b/bcVNXZv8rm3EyGocrGmjOwJO22CzweCEnucvYCIhhCGUHF0dJSmxjgcDofD4XA48o/jN9+adQjvSeRGUIBUVavVCUJF37st06bdgcy+NXyDuEB2+v1+ykqT5SRbSgZbGhsOtlot7ezspGkD1nMBwgIht737ZI9t24QlJ5T48zzEBioFrF8BJCk7EtD2tEPKrBs/GWDrbI/fQKVSScJAv99P12KN8Oh3572r1WoiYYg2iALD4TB5CBQKhUSEuX47MlBSIpxWdGGiwpNPPqkPf/jDunHjhvb399XtdpMppRWCbMVKCEGNRkOrq6uKMarb7aZMvDX1oyKA1gamW5D5t6/farW0tbWl7e1ttVqtNAJSUrp3IZyMpOR6mZoAwaXVhetkvYnLVqAAqj+s0MO963a7yUgTcYvnUfVg23zsHkTA4prZE5VKJU0zaLfbyfgREQ5Rwk75sNNDEKfstRFT1hiR57NP+TxlzVbZ99bHAZGP9bTVNGdV1SCcEKsdmco9QcSxLTjsV6pdsiavDofD4XA4HA6H450Itvx4ZkGE8JakvqS3Zx3LQ+CKPO5pwuOePuY19ouK+30xxqsX8Dq5RwihK+mVWcfxEJjXPSrNb+we93TxXo/7vXQO+9/E04fHPV3Ma9zS/MZ+qWdxLgQFSQohPBdj/BuzjuO88LinC497+pjX2Oc17lliXtdsXuOW5jd2j3u68LjfW5jXdfO4pwuPe/qY19gvO+78DFl3OBwOh8PhcDgcDofDMTdwQcHhcDgcDofD4XA4HA7HuZEnQeHzsw7gIeFxTxce9/Qxr7HPa9yzxLyu2bzGLc1v7B73dOFxv7cwr+vmcU8XHvf0Ma+xX2rcufFQcDgcDofD4XA4HA6HwzE/yFOFgsPhcDgcDofD4XA4HI45wcwFhRDCj4cQXgkhvBpC+PSs47kXQgjfDSG8GEJ4PoTw3OixtRDCV0IIfzH6d3XWcUpSCOG3QghbIYSXzGNnxhpC+MzoHrwSQvjYbKI+M+7PhhD+arTuz4cQPm5+lpe4b4UQ/iiE8K0QwsshhH88ejzXa36PuHO95iGEYgjh2RDCN0dx/6vR47le7zzDz+JLidPP4SnCz+Gpx+3n8AXDz+HLgZ/F04WfxVOPe/ZncYxxZl+SFiV9W9IPSCpI+qakD8wypvvE+11JVzKP/ZKkT4++/7Skfz3rOEex/KikD0l66X6xSvrAaO1XJD02uieLOYr7s5L+2SnPzVPc1yV9aPR9TdL/G8WX6zW/R9y5XnNJQVJ19P2ypGck/c28r3dev/wsvrQ4/Ryebtx+Dk83bj+HL3Y9/Ry+vFj9LJ5u3H4WTzfumZ/Fs65QeFrSqzHG/x9j3Jf0JUmfmHFM58UnJP326PvflvT3ZhfKGDHGP5G0nXn4rFg/IelLMca9GON3JL2qk3szdZwR91nIU9x3YozfGH3flfQtSTeU8zW/R9xnIS9xxxhjb/Tf5dFXVM7XO8fws/gS4OfwdOHn8HTh5/CFw8/hS4KfxdOFn8XTRR7O4lkLCjckvWb+/7rufeNmjSjpf4YQvh5C+OnRY9dijHekk40oaWNm0d0fZ8U6D/fhZ0MIL4zKvyjZyWXcIYRHJf2IThTCuVnzTNxSztc8hLAYQnhe0pakr8QY52q9c4Z5W595PovneY/m+kyw8HN4OvBz+EIxb+szz+ewNN/7NNfngoWfxdPBrM/iWQsK4ZTH8jx24m/FGD8k6Sck/UwI4UdnHdAFIe/34XOSbkt6StIdSb8yejx3cYcQqpL+i6R/EmPs3Ouppzw2s9hPiTv3ax5jPIoxPiXppqSnQwg/fI+n5ybunGLe1ufdeBbn/R7k/kwAfg5PD34OXyjmbX3ejeewlP/7kPtzAfhZPD3M+iyetaDwuqRb5v83JX1vRrHcFzHG743+3ZL0ezopD3kzhHBdkkb/bs0uwvvirFhzfR9ijG+OPijHkn5D47KcXMUdQljWyQH0H2KM/3X0cO7X/LS452XNJSnG2JL0x5J+XHOw3jnFXK3PnJ/Fc7lH5+VM8HN4NvBz+EIwV+sz5+ewNKf7dF7OBT+LZ4NZncWzFhT+t6T3hxAeCyEUJH1S0pdnHNOpCCFUQgg1vpf0dyW9pJN4PzV62qck/ffZRPhAOCvWL0v6ZAhhJYTwmKT3S3p2BvGdCj4MI/ykTtZdylHcIYQg6TclfSvG+KvmR7le87PizvuahxCuhhCao+9Lkv6OpD9Xztc7x/CzeHqYyz2a9zNB8nN4WvGa+Pwcvlj4OTxdzOU+zfu5IPlZPK14TXyzP4vjDNw/7Zekj+vERfPbkn5+1vHcI84f0Ikj5jclvUysktYl/aGkvxj9uzbrWEdxfVEnZTkHOlGi/uG9YpX086N78Iqkn8hZ3L8j6UVJL4w+BNdzGPff1km50AuSnh99fTzva36PuHO95pI+KOn/jOJ7SdK/GD2e6/XO85efxZcSq5/D043bz+Hpxu3n8MWvqZ/DlxOvn8XTjdvP4unGPfOzOIxe1OFwOBwOh8PhcDgcDofjgTHrlgeHw+FwOBwOh8PhcDgccwgXFBwOh8PhcDgcDofD4XCcGy4oOBwOh8PhcDgcDofD4Tg3XFBwOBwOh8PhcDgcDofDcW64oOBwOBwOh8PhcDgcDofj3HBBweFwOBwOh8PhcDgcDse54YKCw+FwOBwOh8PhcDgcjnPDBQWHw+FwOBwOh8PhcDgc58ZfAyL4lF086HJBAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 310068 55442\n", + " Min thresh = 1000\n", + " Not Sliding\n", + "\n", + "\n", + " Winner = Not Sliding\n", + "\n", + "\n", + "219ns_image_1895283541879_clean.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADDCAYAAAAya0IYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADm4ElEQVR4nOz9eZRl2Vndi851+j4isqnMVDUq9QIhkEAIBMbGyOaCbNprc8F+Np0Rvtf9c0PjDuPr5j4bd4NhbPnZBttcGtuXxpjO4CdsjIQaBJYEkihJVVJ12UWeOH2/3x8RvxVz74yqzKrMrIzMXHOMHJVx4py911577VM55ze/uUKWZUpISEhISEhISEhISEhISEh4Lijd7gEkJCQkJCQkJCQkJCQkJCTceUiCQkJCQkJCQkJCQkJCQkJCwnNGEhQSEhISEhISEhISEhISEhKeM5KgkJCQkJCQkJCQkJCQkJCQ8JyRBIWEhISEhISEhISEhISEhITnjCQoJCQkJCQkJCQkJCQkJCQkPGckQSHhBUcI4YMhhC+83eNISEhISDhECOHREMLvuc73ZiGElz/P8zzvzyYkJCQkJCQcLyRBIeEFR5Zlr8my7O23exzPhhDCuRDCT4YQnjz4x+/Dt3tMCQkJCXc7QghfE0L4lRDCJITw9ts9noSEhITjiJstzF7reOnfxQnPhiQoJCQcjY2kn5X0v97ugSQkJCTcQ9iV9I8k/d3bPI6EhISEhEOkfxcnPCOSoJDwgsNttSGE7woh/PsQwr8LIQxDCO8PIbwyhPAdIYQLIYRPhhC+2D77jSGE3zp478dCCN9aOPZfCiE8daCg/jFXXEMI9RDC3w8hfCKEcD6E8M9CCM2jxphl2fksy/6ppHffwqlISEhIOJYIIbwxhPCOEEL/4Dv1e0MItcLb3nLwPXwphPD3Qggl+/w3HXxXXwkh/FwI4cXXc94sy34hy7IflfTkzbyehISEhOOGEMKnhBDefvA9+8EQwpfb794eQvhj9vM3hBB++eDv/+3g5d8IIYxCCP9bCOELQwiPhxC+8+A7+dEQwh9+vscrjjX9uzjh2ZAEhYTjgC+T9G8l7Uh6n6Sf0/7avF/Sd0v65/beC5J+v6SepG+U9A9DCJ8pSSGEL5H0/5b0eyS9XNLvKpzn/5L0SkmvO/j9/ZL+2q24oISEhIQ7HGtJf07SKUlvkvRmSf9H4T1fJekNkj5T0ldI+iZJCiF8paTvlPTVkk5L+u+SfuiFGHRCQkLCnYAQQlXSf5L085Luk/SnJP1gCOFV1/pslmW/8+Cvn5FlWSfLsh85+Pms9r+z75f09ZLedoPHS0i4LiRBIeE44L9nWfZzWZatJP177f8D9O9mWbaU9MOSHg4hbEtSlmX/Ocuyj2b7+CXtfxF/wcFxvkbSv86y7INZlk0k/Q1OEEIIkr5F0p/Lsmw3y7KhpL8t6WtfoGtMSEhIuGOQZdl7syx7Z5ZlqyzLHtW+sHuVSHvwffoJ7bcpfN3B698q6e9kWfZbB9/rf1vS667XpZCQkJBwD+BzJXW0/+/dRZZl/1XST+nwe/T54q9mWTY/+Dfyf9b+v40TEm4pkqCQcBxw3v4+lXQpy7K1/Sztf+kqhPClIYR3hhB2Qwh9SW/RvhorSS+S9Ek7lv/9tKSWpPceWMv62u8FO30zLyQhISHhbsBB69lPhRCeDiEMtC8KnCq8zb9jH9P+d7AkvVjSP7bv2l1JQftVs4SEhISEg3+zZlm2sdce0419T17JsmxcON6LnunNCQk3C0lQSLhjEEKoS/qPkv6+pDNZlm1L+mnt/0NVkp6S9IB95EH7+yXtixOvybJs++DPVpZlnVs/8oSEhIQ7Dt8n6UOSXpFlWU/7LQyh8B7/jn1Ih7kHn5T0rfZdu51lWTPLsl+55aNOSEhIuDPwpKQHPXtG+9+jTxz8faz9Qhg4ex3H3AkhtAvH43v5+RwvIeG6kASFhDsJNUl1SRclrUIIXyrpi+33PyrpGw9CblqyfIQDBfhfaD9z4T5JCiHcH0L4X57pZCGExsH5JKl+8HNCQkLCvYCupIGkUQjh1ZL+9yPe8xdDCDshhAcl/RlJ9N3+M0nfEUJ4jSSFELZCCH/wek4aQigffNdWJJVCCI2DXuOEhISEuwm/qn2S/5dCCNUQwhdqP1Pshw9+/+uSvjqE0DoIF//mwufPS3rpEcf9GyGEWgjhC7SfOfbvb/B4EenfxQnPhCQoJNwxOMg9+NPaFw6uSPpDkn7Sfv8zkv6JpP+fpEckvePgV/OD/37bwevvPLDw/oKkZwurmUoaHfz9Qzpsv0hISEi42/EXtP8dO9S+GHtUSNdPSHqv9v+h+p8l/UtJyrLsx7QfgvvDB9+1H5D0pdd53j+i/e/a79N+Ps704PwJCQkJdw2yLFtI+nLtfzdekvRPJf3RLMs+dPCWfyhpoX2i/wOSfrBwiO+S9AMHrWXkJDyt/X8fP3nw/j9+g8crIv27OOFIhCzLbvcYEhJuCUIIn6L9f8jWD4LBEhISEhISEhISEu4qHDgc/l2WZQ9c460JCTcdyaGQcFchhPBVB1avHe1XyP5TEhMSEhISEhISEhISEhJuPpKgkHC34Vu1n7HwUe3vo35U329CQkJCQkJCQkJCQkLCDeKWCQohhC8JIXw4hPBICOHbb9V5EhIcWZZ9ycHuDSeyLPuqLMueut1jSki4XUjfwwkJCQm3H+m7OOFWI8uyt6d2h4TbhVuSoRBCKEv6iKTfK+lxSe+W9HVZlv3mTT9ZQkJCQsJVSN/DCQkJCbcf6bs4ISHhbsetcii8UdIjWZZ97CDF9IclfcUtOldCQkJCwtVI38MJCQkJtx/puzghIeGuRuUWHfd+SZ+0nx+X9DnP9OZGo5F1Oh2FELTZbLRarbTZbIR7IoSgcrmsUqmk9Xodf1+tVlWpVFQulxVCkCSt12tlWaZqtaparRaPmWWZsizTZrORpPj3EIIqlf1p4H0+hs1mo1KppEqlolKpFI8TQlAIQaXSoSZTrVZVre5vl71YLLRcLuP7JcVx+rWVSiWVy+X4Po7n4yuVSgohaD6fa7lc5saz2Wy0Xq/jexkb17RcLrVareL8cD21Wk2VSiXOp4+T93KNfK54T/y+hBDiOBhDqVSKv2OcXKPfLx+7j4N54Fg+Z3zef+a15XIZj+n3qPh57jPjYk74HWvF53O9Xsdr5XM+Zl8bzBuvl0olVatVlcvleKzVahXH5Ne8Xq/j69xnjuXj9zEWz1m8j77+ff75mePyvuL9Bqzj4prxOfD/+t99nPzd18dR8HMfdV7/vZ+vuJZ8HfjrR32e9x2c71KWZaePfNPxxnP6HpakcqedvfQlG53/QPOWDiwhISHhuWCmsRbZ/Ogv6+OP5/RdnL6HExISjiuGunLkv4lvlaBw1Jd+rrcihPBWSW+VpE6no7e85S1qNBqqVCq6cuWKzp8/r8FgoCzL1Gq1tL29rW63q9VqpcFgoPPnz+vUqVM6ceKEGo2Gms2mqtWq5vO5+v2+dnZ29OCDD6rb7UaiMp/Ptbe3F0nhcDjUZrPR1taWKpVKJOvL5VIXL17U3t6eJpOJQgja2dnR9vZ2FBog9YxZkra2tnT//fdra2tLTz75pD760Y+q3+9HgaNer6tWq0VhhOO0222FELRardRoNNRutyVJw+EwktAQgp544gmdP39eWZap2+1qa2tLy+VSg8FA0+k0Hi+EoF6vp0ajoUuXLumJJ57QZrNRs9mM13j27FmdOXNGm81Gly5dUr/f13Q6VblcjqS3UqnE8c5mMw2HQy0Wi3gPK5WK2u22Wq2WGo2GlsulFouFJpOJFouFyuVyvJ71eq3xeKzJZKJ2u61Go6EQgkajkabTaSR1zO9qtdJqtdJisdBms1Gj0VCtVpOkeFzEklarpa2tLXW7XZVKJT311FO6cuVKHGOz2VS9XpckzWYz1Wo1tVotTadTXb58WZPJRJPJRKdOndLp06fVaDS0WCw0Go20Wq1UqVS0tbWlVqulvb29KMDMZrN4rYyF+4rYhQiUZZkajYZ6vZ46nY5KpZImk4n6/b42m00UM1arVZxH7hnzN5vNNJvN4rpbLBaaz+eRHHOM2WwW15wLFVJeQJD2hS/OVavVVK1WtV6vNZ/P43VtNpucGNZqtdRsNpVlWTw/5/J16OJbUWzy+1iv13PXVxQpEGN45hBc1ut1fM3XD+dAFGFNsaaLoqULX5yX8UpSlmWPXde33vHDNb+Hpfx3cUMtPfzB36+H79R/tickJNyV+NXsF2/3EG4Ez+nfxOl7OCEh4bjiF7L/cOS/iW+VoPC4pAft5wckPelvyLLsbZLeJkn33Xdfxj/0K5WKdnZ2NBwONRwONZ/PVSqVNJ/P1Wq1VKlU1Gq1dN9990Xiu1wuJeWrrIPBQJcuXYpEHkIKsS2Xy9ra2tJgMNBoNFK5XFa5XFar1VK1WtXOzk4kg6vVSrPZTPP5PDoQDq4hEmcq9ZAZiPbe3l4kM5LiWN3NsFqtoksBQlSv17WzsxMr7dK+8DIejyOpRxipVquRFEKkIHo4IDhurVaL1wO55vf8jIgB0fKKOOS4Wq3GzxRdFu7yWC6XWi6XKpfL8bV+v69ms6lutxvJIMQdUg25laTRaKTxeBzXB/MM8YVklstl1Wo19Xq9SLYlxXG7UIGoU6vVtFwuo6A0nU7j/eX4q9UqJ7IwBwguEE9I6Gaz0WKxyFXcuSfD4VDL5VL1el2LxSI6FHx8jJvr4hpZ4y60sA5DCDlXDGA+WSvlcjlHlrl3jK9Y8Wfd+s/L5TIei/Pj1ii+l+vjGWEduvuH9cV73EXhLhAXAHgP9xbhhDn3sRTH6e4ad1O4Q8jn7Q7GNb+Hpfx3cS+cuPmhOgkJCQn3Np7Tv4nT93BCQsKdhlslKLxb0itCCC+R9ISkr5X0h57pzaVSSa1WS5PJRKvVSp1OJ4oKkK75fK75fK6trS3V6/VY1USIWC6XsXobQtBsNtNgMNDJkyfVbre1tbUVK6JPP/20ZrOZqtWqGo2GxuNxjmh2Oh11Oh1tb29ruVxGcg5xgcRLipVVqv/z+VybzUbtdlu9Xk+7u7uaTqexzYDKtqRIUr0VQFIksFTVIUKNRkMnT57UfD7XbDaLpApXgZMs/71Xb+v1ek5AqFQqsZoO2YO8Otnn53K5HAWNUqkUjwPZd6u8twVw7YxjMplIUhwPQgsEkzaNWq2mWq2WE0AkxXaW9XqtyWQSBR8EJ1wAkNb1eh3XCK0G9Xo9N4er1Uqj0SgnAPFZPkebCEBkcOIN2aeC7r9jvpwgM08ueDgJRihDYHAhAhSr6/5s4bpBdOG9CBesaYQKHDEcj7F429FisYjrA4HHxS/uta9L1pALL97qwHx5awZwscxbJTjPUUKCOyRYm8UWGndScB7mg/VTFEruIDyn7+GEhISEhFuC9F2ckJBwV+OWCApZlq1CCH9S0s9JKkv6V1mWffCZ3g+Jx4Zcq9V07ty56A5wwr9er6MwQDW5UqlosVjEFgFI22Aw0GAwUK/Xi6KFJA0GAw2Hw3gcCKOkWNnmd81mMxIgFxQcXn2n0txut3XmzBnt7e1FIudkaTababVaqd1uR+EA8ud2bgg0P+NsoFIuHVrd6/V6FDQgi+VyWc1mM84t59lsNppMJtGhQDsGVvdGoxHJLvOOKODZDqBoK0dIoGo+n89zAgnVcBwRkEXmCSLH2HA6QEK5ZoSQvb29SHyr1arI5OA8EGrWlBNat+UvFovowGDeIe9O4hFdvGLOtSOGFAk8DhTIr2cR+Prxzzu5dzGLsTNv0r44g5uH+4UQwfPDcZzUs+64Rs7j7QU+T4gviArNZjOX5eFiiTtK3EHkYgKuAcboQgHzJuUdC/4MusvARQ3PmED0caGiKEz42Pk93y13Ip7r93BCQkJCws1H+i5OSEi423GrHArKsuynJf309bw3hBDJO20GzWZTDz74oCaTSbSdQ4AhwRBzqtybzSb2vUMaz58/r06no5MnT6pSqajX68WMg+VyqUajEUUFCN98Po9kzEPxIFuSokXfyRVZA4vFQq1WS61WSydOnNBsNsu1ZTBuaZ/c0ZLB7xgHv8dW32g04tgqlYoGg0EUObD7e9gebSLtdlubzSb2tzNfbgF3cn5w/3JEz10U9Xo9R2wdXkGGrDp59PYA7jVWdwQDALn2nniOUavV1Gw245jn87nG43HMpEAQcoLIPaAdgeN4BZv7DHEuVvwZp7epFIMNuWZ+5jge0ll0GECs+cN4uAdO5o9ak06eGaPPJ+JA4RnNkWcXvHC9IGSxBhD0iq0JCCyeTcAceFuIu3uYO56dQm5BXP8eyOljdveA5y244ODOA3dbFNtFitd/lGh2J+K5fA8nJCQkJNwapO/ihISEuxm3TFB4LiiVStEJABkiz2BnZ0e7u7uxetvv91Wr1dTtdlUul7W3t6f5fB4zC7DGQ/IGg4GefvppnTlzRtvb2+p0Ojp16pSazaYuX74cCXuj0YjECVIBGYSwUe2WDi3yEC+IZ7VajQGBtVpNW1tbGo1GMWDSk+ZDCJpMJup0OvE43nNOdZwqb6PR0HA4VAhBrVYr16fv42o2m/HYCAi4BJhjCKYT+nq9nssy8DYIJ3sQZLfyO6n0ajT3lzn1KrZbzaXDijKf4z56bgXHo4UBZwZuiOFwKEnR2eHzgrPDWyr4He/l3JDqouuA3+Fi4b4/024MzCPrxefCd9cozgnHWS6XuXu22WyuyrfgmEfdO9panHxzbU7CfW59Ltxd4J91gYJ1zTmLlX6Os1gsosCAQISD5ag8A352d09RWHABqyiYFNedu0VcvHNRwd0KRSdSQkJCQkJCQkJCQkIex0JQCCFEElwqlWLwYLlcVrfbVa/Xi0SRnRqazWYk3eQh7OzsqNVq6cqVK5GMjUYjDYdDjcdjzWYzdbtddbtdnThxQv1+X5PJJEf66H93QUHK99LTeuA2eUgPgYM7OztqNptqNptqtVoaj8fRAs8OBZJylXGOC0GVDivX/A7hpVaraXt7O5IyD3VkVwIcEwg2i8VC0+k0jkNSbuydTic6Hth2E/LtcJt8sT/ft6L07IWic6FI4iTlXBmch3nyqjjktTh+jjEcDtVsNnPhjQhHuDs2m8OAR1+HHNtbW7zVgzF6CCHEGRGD17zKXqyIF0UEzn+ULd9FGO5zsZ3BCbqvI0SnItn2kETG5f8FnifA8+etHIzfQx85Dq9xPu6PO2oQgo4aI9fOumLe3e3g881r7jgA7iRx0cTn2ls/XNhJSEhISEhISEhISDgax0JQkA6t/1TNaR3w1H5I1Xw+15UrV9TpdCJRLibv8/7ZbKZLly7p0UcfjdsH7uzs6MyZMzp//ryuXLmi6XSqer2e+6ykWLVvNBqSFNsvyDEgc4Aqcqm0vxXgpUuXdO7cuRi6WK/X404MkuLxEEJoQXCiKSlXTYeAkZMQQlC321WWZVFsgdzTyrG9vR13FXAHghMu7PuIKogfk8kkhlZ6/oJ0SOqcsC2Xy+gAgFhCdiG3nMcr9Z5LAWH3TAgXIhqNxpHOEVoEmDu2QvSwRCrj/Cm2s7jwAFF3kop4xbooBlAyL4DPFsUYFw/42avkzN8zkXaOzRajXKMTcr8ORKbibgvejuDV/qPIumc3MA4fH2PiNcQ3BAHf2YTn150ULhy5CONz5Nfk11gUqvyzxcwGFwn898UQy6Jz4w7f6SEhISEhISEhISHhluFYCArem031vigSYHuvVqva29vTlStXoghBjzbEEuLMscfjsZ5++mm1Wq3oeDh37px2d3c1mUxiVReCBPGRDnu+2SoPwkoPv+82wM4Tw+FQo9FIW1tb8X1cFxZ+t3g3Go24XSW96pvNJrZx4Nio1+tqtVq5bQA5LkR7MpnENoper6darabLly9rOp2qWq3G8yBqEEIZwv5Wl+12W9J+JXoymajb7WpraytmAHi7gXTYSkA+g6QcuccJ4Ft8Um2WDnMNIIueU+GhmZBPJ5yQaTI2aAcg98F/dvs8rTHeWuGtLhxfurpP3wMLnYTzvmJLC+uQ9entIO7+cDLO2vDz+S4GHpTZ6/XiuuX9tAchHjB21oxnEnhbCuuONerCgDtWJpNJvCdF14nPz3q91nQ6jeTfCbxnQ3AcnncXbooZBpzD75XPVVGw8XkptmK4IMI9Yr26qMAaTUhISEhISEhISEjI41gICpvNRsPhMJIjAhqHw2EuDwGi0m63tbe3p+l0Gt8PEcLazg4QkLq9vT2dP39eW1tb2tnZ0X333adz587p4sWLunDhQqySFqvWECGyCXgfTgWS9RuNhmq1msbjsYbDoZ5++unYWoGoAHmXFMUHzol4sNnshydS8fesiBCCOp2OJEUXgZOper2uZrMZnRQIBKPRKPb8dzqd6ACQFAMjERW2t7dVLpd18eLFuLsGTojRaJSznkuKYg7W9dlspna7nasM875SqZQTHvw4TgS9mo5934P8HLgFEFXW63Ws3HtrBZX6YnVeOtzKEWfDZrOJ88Tv3R3gWQm+XiC/7XY7ihy+xov2eg8yhNg6gcahgphVdDXMZrPoPHFB4CiS79fNeRDS3AmD6EFWAvc1y7IooLGTiOd7cD5vJUEsKGYd4FLhGUW84HzeDsJnIP/Mdwghbp+JGOmtDD5XwEWGYnaEiz2IJ6nlISEhISEhISEhIeHZcWwEhd3dXW02G+3s7ESSCLn0YDocCbPZTJPJJFeddULADgQQweFwqAsXLsSWh9OnT2trayvuCODVW+959756XAPS4Q4EHpKH6CBJ/X5fly5diuQKsl+tVjWbzbTZbHIuAXIRyFwotkOs1+u4BSUOisFgkKukI2x0u91ILnFsNBqNuB1kq9XK7ZLh2zFuNvshjp1OJ5dl0el04u8RR3AesOMEQgjXBkmjlURS3M0CUurhk5Ji9oHvPoFAIB3uIuCEnjlyAk+bha8xrP/u8GCdMA/sPkFrBOuq6C7x1hjGCfgM9wa3DYKGCy2M0/+4kOK7Ovh69NYg7qVX9p00+3PBcV0w4Pe1Wu2qnTYkxa1EvaXF2xDcBVAMVCzmGbhIwM/L5VK1Wi2Oi2Ozfrke/s6zxjOJY8KFBz+3i0GS4jVwDt/5ASHP3UoJCQkJCQkJCQkJCUfjWAgKIQTNZjP1+/1o68eq7nZlyE61WlW73dbFixe1WCxi5XQ8HqvRaOS2vCv2oA8GA124cEHD4VCdTkenT5/WxYsX424RrVYrns8JKNVQyDGtF7PZLEeOID3j8VgXL15Uq9WKwoHb9CXF65QOnQK9Xk+tVitmIWRZFkUCSLu073CQFMMeJUUCXK/XNZlMoo2/0+lEst1oNHTixAlJ0nQ6VafTyYXnQRDZovLKlSvqdrva3t6OdnfPQOD+eNAk10lwJkS0VqvFOfQcALeu4zBhvnkdkkd7AvD0fid/tBD4umG8kqIg4q4X5sR3R3BbPwKXX5O3SBwV8EiVu+iyYRyIUJVKJbe9KPeS+XCC7W0Km80mul7cvu+tAR5k6BkRLooxFu67Cw3SvpDDDiueJ1HMWnCHAccutnj4vUF0ImuDNg3PTOHYjM/FRg8AdUeRzwPjd8GBtijWmbsV3LmRkHCrsP7dn6lHf3/t2m9MuO0oLYJe8pfftf9DtpEKTrmEhISEhIR7GcfiX8yQfizzrVYrElAq3bPZLJL+RqMRq9JUqiGBxfA5t7pTlZxOpxoOh9E1wHaM3nvueQnAreC4ByD9kCd+N5vNdPnyZYUQYkCjhxQyzm63G88BQep2u9E2D0Hj814Z7nQ6yrIskmAq9hAmjgmJ9e0GcXowR4wJUkjewnQ61Xg81s7OjtrtdiSSnU4ntgm0Wq34Xp8H3BYuGCAg4MJAvEAQ8hYQ3xmDyrqkOF9OWoELNpyzGFjIPLFeEKHcMeJrgWM6UXZi746J4vk5vof9QWw9GJKxSflcA67fc0FwSHirxzO1CDA+ny/WATkHzJG3j3h4oV+rP0vMb9FxUBwP8NYL6bDVoTgG1qevaRdGGJNvfUpWA/Pju424iFN0ZHiugn8PsVZ9546EhJuGUlnrWklZ6dpvTbj9WDcyPfI9ny1J6n20pLP/6teves9mMnmBR5WQkJCQkHA8cGwEBXZBmM1mkdBCQLrdrmazmUajUdzmUVKs5FOppapMpRKiCOmGYIzHY126dCna63u9nmazma5cuZIjnF5hPioTwCvNxUA63gsh39raikTT+9SL5I4KNX3xTm7p7R6Px3FeIHfD4TDXIw8Rclu35x+4E6Hb7cY2BCfDzOV0OtV0OlWv14stC8wJx+90OlosFtrb24uEHxLaarUiWdtsNtGp4MGUtLFQmfbdC5xg41yBtNLq4KGZTt5ZU771plfd/b8QWfItELKosFer1ZwbAIcC7+VYLhQwn4gKXLcLCowVsu2k3NcWawTBwAMNyX/gnO7uYU5dZOPner0e54cdNlqtVq5dxI/HtRdzCHznB9ZFsb3D8yw87wSXBZ/xufHWCe4na5mcA+4fghbv555yj1wcYg4bjUbuGSc4FKHCBZGEhJuF0qe+Qk9/bk21/u0eScJzxeyk9OhffN1Vr7/kez+k9eXdF35ACQkJCQkJtxnHRlBwy/lkMonVwdlsJkna3t7WbDbTxYsXIxGBrEGSJpNJriWASm6z2YzbO2JzHg6HunTpkkqlUhQslstlrh/biSyEEtJBPz2ESFJu+0X6wbFjl0olNZvNSIAYC1s8cuzpdKrRaBTJDoQMkgPByrIsZiNAVLl2zxfwHRD4HbtosNsDOQvT6TQSN8ITfdcND6b0IECI7fb2drynzKFXlCHLEE93angPv1vnHS6KeJAh98PdA1wHxy66C3CL8Mer8HwGx4iHLuJiYC69t7/YGsM8EEjp6xkgFIQQYk4D1wTYVQTxgblFiGOs3prBXPF7Qjf9uXHBw7dthNC76MX7+S8tOYwBQcIzFXwduIvHcxZYO4hpjJ0xeNsE1zmbzeJ8VKtVNZvNXOsDa9yzWHwtuUsCEclFFu6Fh3EmJNxMbD7wIT30gds9ioSbifRNkZCQkJBwr+LYCAq+68F8Ple9Xs9ZshuNhra2tvTUU09pb28vknMnghBUyAuEAHGCLSL54+SSnSUISEREoJ8fQkLrgXRY2ZYOyRYEk8ovwXkIALgvxuNxJKoevrharXTp0iWtViudOXMmRzapNEPWuHZEAbfge+/4dDqNggBbPDLnEEzCKX07RSrC3qsPeUYAgQTXajV1Oh21Wi31+/2c8AEBxPHA77wi7w4CrxQjBLF1J7/nMxzHBQJ3NXAvmBdJuc9BRL0K7/kHCBWM07cw9RYFhAFEhWL+gO8Iwlg4rwsS3r7hGQO4NjzI0ttVOBeknHHi0uF3Pu++U4eLMhB6rtHnxNeduwBYI6xnFzkYp4cjFsMbua+Qf4JHcVhwHsQC1infE7he/J5xPPIofHcKf159/UiKx/Qcj4SEhISEhISEhISEq3FsBAWq8diW+Yc8BAKnQaVSUb/fj78nUA9SBNkvBqrV6/UoFszn87gjAYQdwsduCE6s/Ji4CajQQk7YWQIC6IR+MplEMlypVDSdTiOBgWQhbMxms0jct7e31W63c6F2Xr314Erv83fy5pVyt+Z7u0Kr1YotEogf3uLB34vBdhzH20BwKbBLxXq9js4RWky4rxB0iCjkD3LuwlCxHcOJo187v3O7urdJeF8+AYSIB06cXbhhvMzZUfkJvIYzpQjEK7bUpNLO/YD8Oyn2yrqfR1IMLuReIVYVHQqIRr4uPYQTcFwXGnw3BG/j4P5UKpU4f4ha3hLCfLFOEC24ry4kuYjlzgW/dndDkB1RzLfg2ljrLuYgkPn2sMyfry3WIQJlv9+/6n4mJCQkJCQkJCQkJBwjQYEdAbzvHVJCOKHbr11wKBIfD9iDPCBI0GZQTL6XDsUJJ/tONpxoAHYL4Piz2SzmNXi7AkSLoEnvXYeschzeTwCl9/BLh1sNUtWl+u+7DnjgIBkG0+k0kk7mADGCY0C6PaegSAa9f96JHFkK1WpVw+FQ0qHLYTQaablcRmcJ987n38k6Y2q327H9gkq1h3FyDsZVbD+gPYP1QE4DAhA7Yvg68mo8pNeFGbIGgFf63WnixJzP8TNrCgGH8yMqIBh45d9FGF736+52uzGLhGeElhq2/cQ14/kN3jri+Q2QeEQsnxvWhN8Hsjgg+z5G7rM7blhnfg28391DLtD5mnGnDuuKdeJj4POeucB6pcUD1w3rn3amarWaBIWEhISEhISEhISEZ8CxEBSkQ9u6bxnoVf/BYJBrJyhWyqk8F8PnIC31ej1WHAl4XCwWOnHiRGwDkA6rsrwPeCXTib2TKsSIzWajwWAQr4sqPX3djUYjOiEgmk5y3Tp/VLI/pMmr0e5UKAbh4eCAyEnKEVx+5lguckB8ndBCuqgULxaL2KPfarW0tbUVg/1ms5kmk0nOpcH98RBKdypwvnK5HLfxxK7ulXacGrwfoosbhfwI7hnEk/fhFsBW74IEfy9W0RF7mBsP/VutVtER4KKU756A04J77TkOxXYH5p5rdSHHx+fjpXWFY04mk0jkyRpgXRXdN74euM/8jmM4cAzQllKv19XtdjWdTuNrnrOBGEKWBPfU3QcuaLjwwVgR5ngNgYMsEc9bOCoPgucAd4fvAMLxirtJJCTcaaicO6uLX/yS2z2MhDsUIZO2/807jv7l5366rryq/byOe+qnH9H64sUbGFlCQkJCwnHE8/7XcgjhQUn/RtJZSRtJb8uy7B+HEL5L0rdI4v8a35ll2U9f41hXVUsh8FThIRiSIqH3gDl6/KmCd7tdNRqNWN0uksLRaKTZbBZT/QlqpA2C9orRaJQj526rxm1AQj1kebVaaW9vL5LJzWYTwxa3trZi9ZO+b8QDxBLGiMvAyavPGeM6ikCRQUA1HWGGqj3k1vMGuEavWJNtwThc7JAO++cnk4lCCOp0Otra2tKJEye0XC41HA7jeUajUe4zCBO+BjwzgOvzNeAE1AUA1oYTbQIzuR5aa3AB4CaQpMlkEkURb3U5qn2kWOUv5h94iCFOG9ouEFk4rrehuOOD8UKAuQYXzfw9PlacOKyf0WikTqeTy5PwKn6r1YpzQisC64C1wb3nvO7AyLIstulsbW2p0WhoNBppNBrFOS3mJfCaCwTeLsLxvX2juEPHYrFQs9mMa5UcD352Mcd37PC8DebUd8jwdeYhnMcVN/O7OOHOR/nkCX3iD79Uk/uvbr1KSLguZNKi+3mSpNog06m3f1JPfvlDkvZ3uVjsPL+1NTv1CpVnr5Ak3fdP3yEVgpfvZKTv4YSEhHsZN1J+W0n681mW/VoIoSvpvSGE/3Lwu3+YZdnff04DOQhBQ0iA9NIOARH2Sqlv3UjFk7A2ggZLpVIulBCyPh6PYytFu91Wr9fTpUuXtLe3J2l/q0OIqrcvOOnEMs97VquV2u12tK97FRRBYTgcqtfrxUqutxfgYJD2Sc5wOFSz2VSn04nWfHcGsE2m9/D71nteBa5Wq3FrR9/xAmt9sUIOcIyQPUG1lzYBCC9V/uFwqNOnT6vX60W3AFtncgzuH+0QkMViG4WLCtx3dzW4bR+yiVjD2KXDIE0q2VwTv/P2BhcFIJeQXt95oOjieKZMAnbnYDy4JhAAvK3EhQOO4a4LSLE/A9xvfu9tAJI0Go1iMCfzwHlozcE5wFooBlG64ARxdwGP9YpwRPtSpVLRYDCI64vrdSGI9cT99EBHxsLc8bxLhwIQzyPOBym/HajnPSCo0VrC8V3E5Hz+vN8BuKnfxQl3Lkrtth771ldrdjqJCQk3gCANXn4gbK+Chi9+SPOTN76mxg8cHmP5l94kSaqOpfu+91du+NjHAOl7OCEh4Z7F8xYUsix7StJTB38fhhB+S9L9z/NYVwWjFR0JrVYrEhiEAEk5soAQ4aGK7DM/GAwiQVqv19rb29Ply5e1XC6jPX9rayu+Ru89u0MUx+RtF5C50WikVqulVqulbrcbSRFCwWg00ng8VrvdVr1eV6vViqKDBwlCkJbLpfb29rRardTpdKJggEBSDJUkLNLDE6nEQsiYIydg2P0hfcwrBDQ72KkBcox4MJvNYsWfqu94PI75CVtbW6rX6xoOh/G9WPC5X75VoI+JcxRD+oo7Frj7gAwDHAIcm8wKronrYpyMXzoMk0QwarVakhRbYhgnrRzMq7edQJwRCSDoLlJAdt2mjzuF+WEdQIo9P4T3Q+J5Trx9B+eNt6Qwfq7XCbNvv+jPmKMoWHg4KZ8juLTb7Wqz2cTdVZgDBApaH3D3+HPFszebzXKiEuIKx/VtRrmvuAp8VxTWh3S4lSeinwtU7pThuo47buZ3ccKdjVAuJzEh4aYiq2San7z5ToLp2YO8p400+67PU/uTmU7+y2dos7gDkL6HExIS7mXclAbhEMLDkl4v6Vclfb6kPxlC+KOS3qN9xfbKs33eyT9kCIItKRJNKuIQgYNzR1JfTIWXFImhkyOv5kuKdu9utxvbHKjoQmapSlMlRlzgGPSrz2azuH0iOQ3L5VKDwUDtdlutVku9Xk/b29sajUZqNBq54DrfwhBSTaXUe73JlaDtAicH7Qde0b906ZK2t7fV6/UimeQP5yq2P8zncy0WC7Xb7ShULBYLTafTHCmeTCaRyCLWePBhqVRSt9uN22T61p58FgLpgpJnEzi4n77lI/eUtdDtdmOexWg0isIAgoq3WbBeqtVq/Iy7ZGgTcKcB64d1yhgJf3SnA9fkx/OdD9jWEYGBcEGECR8fQEiCQLPGWq2WKpVKdL5wfEk5RwVBnogPuCa4Nh8jlfriffCg08lkkhsr+SdkYLjzheMzf75LCs+wizE8ZxyDlg3WKm0d7JLR6/WiCMRYvD2EefV5xz3jmSTcO75n7hTc6HdxQkJCwguJrCQttjZadqXB332TzvzqRq0f+9XbPawbQvoeTkhIuNdww4JCCKEj6T9K+rNZlg1CCN8n6W9Kyg7++z2SvumIz71V0lslqdfrxSo+hJOeZq/ukmAPiYJQIiRAKjwBHlLTbDZzpJBcA3czUPmknYBqKQTRq+MuMCAIUK3dbDZqNpvR7k/lFmJLtf7BBx9Uo9HQ+fPnc9sZkkbPuakw41qAQLqFm7G4cEI7wmQy0WAwUKVSyRHro1whVNuxlEM8j+rj5zV2EsBGf+XKFT399NNxd4GTJ0+qUqnoiSeeiDZ7xk/2AuPwPnlaNzyoEaeCdLiLgYdFMm/t9mFoFAQSso544qSdyjckthhCebBmJR26NzwDwXcLQLQotpB464DPvbdseBAjcAECQs0ax1VAOwrrDgGDcfpYXFQotmv4s0NVvxiGyfj4Ha1F3CPPKkAkILPkqDE4mfd7LSkXtujtErgNPEzSr9nbRZhXhBMEo0ajkXNkuNPH2zJwKB133Izv4oZaL9yAExISEg6QlaR1PdOTXxAUPv9z9bIfHUvv/sAdl7OQvocTEhLuRdyQoBBCqGr/i/MHsyz7fyQpy7Lz9vt/IemnjvpslmVvk/Q2STp79mzW7/d16tSpSCA9ABHLfqVSiZV9qqJHJcFTraaKGQ52HyCDQNonaePxWLu7uzGhngrzlStXoqjgSfCQGmzkHAdbPUGQ5BUglJDXMBqNdOnSJZ0+fVpnz57ViRMntFqtdOXKlSigFMcPqaHtAHeEOyeKFV2fM3IgsJ2fPHlSzWYzug68Grter6P9n5aGyWSiTqcTe+c5hxNiJ21UfQeDgfr9vkII6vV60a3w+OOPazKZxPMVK+BkIOAUKG7/56GZtIyQE1B0ohCY6W4W7ieZGgdrMc6FX5OfH6HCd2fgmJBU1lu3243iEvkeTsR9vlyo4rwIEsXAR7f2u1uF8XANbu3n+L6bA+vM20D8elw8wj2yXC41nU6jyMDaI6vE7ydtObg+ENKK88Rad/eFi0X8jNOgmKchHYpMiGy1Wk07OztqNpuxLYI5ZW0xtzy3zBXrD0GCLUsvX7581FfYscLN+i7uhRN31r/eExIS7i4EKStLj3xtW/raz9Gr/8mTWj91Xppd+6O3G+l7OCEh4V7FjezyECT9S0m/lWXZP7DXzx30kknSV0n6wLWOlWWZptNp3FYQ9wCEB/IMkeh0OtFd4HkBvrWit0xAWCAwWPURBiCKiApkLCyXS3W73VwV13MaJOX6xtk5gKowgYqIFsvlUleuXFG/39dgMNADDzwQK6WIFfSi0+4wmUxidd2T+6mE83On08mJKJ5S3+12I7HFeeFVXubI7eVeoS3eKwgnFWaEBqr06/Va/X4/WvC73a5Onz6tbrer0WgUBQ9vc2Hums1mFGVc1OH4vo1mp9OJjg3uj7dB4E7xHQK82s4xvd2Ea4eEY3snABM7falUiiGgfNZJKWIA5yKroOi+wIWD84LfE77ooZee04CAUsxX4Hrq9XpOECGPAoEA0sxncRiwnhAoWMc4XWjpKbaEsPYk5dYxzhyEBzITmENEEhcHvTWFeUFM4HsAgcDdI6wXvjt8zljv/r3AdwI5IAgy3pbR7Xav9fV123Ezv4sTEhISjgUOjHMf+jMvkvQihb/w87d1ONdC+h5OSEi4l3EjDoXPl/RHJL0/hPDrB699p6SvCyG8Tvv2rkclfev1HhBCCumHrHgFU1IkopB07NeQA4gi5Mj3lYeMYMEm2I38BMg2fdVuUwdHCQrD4VCLxUK1Wk3tdjuSIz8mggAhhVmWaWtrSzs7O1Ec8XMMBgNNJpOYfUC7BNV1SDfnYss8dyR4m8NgMMi93xP/IfiICsyriylOmv2euTuCz6xWqxh6ePLkydj6cOHChejWaLfbOceIV8ax92OJ5/55dgUW/xMnTsRWCs9IoI0FwozLBMGAajnXz/WwThByEGNwRrDjBq8RWMlxqXrThkCeBCKPb2fIOZ08I3B4kCEiC+TbXRN+LHc/MAfMKcINr/MsOPH24E8P6eSaEF2Krgo/H3Nc3IKScbmgg6DBHLKuJeVcOkXxi7GwGws/s02m30sfJ8+ir2PmDxcIc8nv7gDc9O/ihISEhOOE2bn67R7CtZC+hxMSEu5Z3MguD7+sqCHn8Lz213VCA6khFJDed0m5KiZ90VQ9IY8ci2OwdSJOBM5By8NgMIikt91uq91uR8EBIkfYnifEu419OBxGe/XW1pYWi4X29vZUKpXU6/Vy48R54Ds+UOWVDvvCCXPs9/taLBZ64IEH4haaIYToSvDcBj7L7hDuBAghROHDe/a5Fnrd+Zx0SFAZGwSxGMLH/LiwsFgs4hyzBeapU6e0WCzidSDYeJCkpHhMHAGICF5lZn10u92rdjxwCz/zgiPF++dpiXBRyueFSjcEm2DNZrOp4XAYXQxUvZ1YM68QZ0kaj8dxPiHKiBIINh5eydgIEWTOvQ2H9wN3QTA+PsvzwL1lzqnSu0hCixDiHk4azufhnN4qgfvBBQUEHKr/LojwGmuG++OuB4Qiz1ThWXGxCHGGwE/grTD+XQM8i4H3P5OgeNxws7+LExISEhKeG9L3cEJCwr2Mm7LLw40Ccgwp9Yo+/6jnz3w+z4XZUfUlB8FJlAca0k4BcaKCOh6PNRgMYn4A5L5arcashl6vd1WvNWQP4otAMBqNrkrlr9VqMUeAMMnRaKTRaKQzZ85oe3tbw+EwEizC7nAakBsAcYZQQrin02kkp/V6PboD9vb2cmF8BCxSIWeuPGDQMyK4Bn5HlRh3BcemzQCiCRnjdea42+1qZ2dHkuLc0pJw6dKl3LaCHLvZbEpSbns/rn8ymahSqajX68XQzfF4HO+PE0ffHcQzFfgd64PKffG6O51OJKnMO+/FpeEZG6whzgERlxTdFOQhcN7xeBzfRxgh75UOBQCunz+cw1sjXCzw3yOgEEJIngY5B6zzRqOhWq0Wnx0EBXe8cH24WbzFiPuIW4D59rXnzgXuGc8VuR3s+uLCAfONcMEzA7zlwoUwXmcujxJefMeVYshpQkJCQkJCQsKtROXcWS1efu5Z31NarqV3/s8XaEQJCdfGsREUvF8fwuHp9OQjNJvNWKX2TATIlVu+IXD0VhcrkJLU7/d14cIFTafT6IZoNptqt9ux4r1araL1nWMQDklFlWr85cuXYw83ifySItHGhg+5pcecDAYIrhNQMh3IH5hMJtGR4En2/L3VauX61b0a7FZ0d0ZAriCrkEPEAcaDoDGdTmM12Ekt982J9nQ6Vb/f14kTJ2KeQ7VajfeStpHJZBLHQ5WZ+fAKtFfbR6OR6vW6Op1OFEcguD4nkGuCHIuZAjgWsNxDPsnHIHgQYi0puizIUfD2CcZSFEggyrTUIAxBsCeTScwt8HVSXNfFTAhvH3D3jLtycFxMp9OYQcJz5UGJtHqw5jkPLSaIPOEg1NDzGmazWXTE4GggSNRFBH/ucSywy4jvmsG95xwIcmSeAOaQdidv2WD8CBoINO5IQVTCCeOCZEJCQkJCQkLCrUR5Z0fjz3+Fhg+UtfeqZy9mlOdB50698arXO+97XKsnnrxVQ0xIeEYcG0EB8ly0Qhe30avVapHQQXCpRkIgILlU2Is7GtA2US6XNZvNdPnyZfX7/dh+QEV6tVqp3+/Hcztxb7VaMZSuVqtFojMcDjUcDnXixIlIeNzGXqvV1Gq1IiF0O7mn+UO0IJCLxULT6VSbzSa6IKiSQ/6p4iJatNvtSEYh+pJyc+UhdNwLxrVeryMBLlrrIdt+LEiz96BDysiDuO+++2LbwGg0UqlUiu0LOCpwcnhopu9mQEWfz43H4yjKQBIZo1ebJcV5kQ7bLHBJeDYDIoCvlXa7HVtgfKcN1pW7UljPfNbbRDxQ0wMZae+gJQFBYTqdRpHNMwYQDhCYeGZ8+1MXForOBQQqXAi+nhEOmLdiSwPP2Xw+jwIcx6JVqNvtqtfrxVDKorgCcXfXje8U4dfImFlvnqnhwYw4O6rVqqbTaa7dydc2n2G9cJ/YErbY2pOQkJCQkJCQcCtQ6nZ14Q+8Wlc+NdN+3MazY13P9Pibr27J7D38sBq7Dx35mep4o+ZPvOtGh5qQcCSOjaAgKf5j3gMBISGQFcg3lWav6GPTr1QqkSR5VblY2aWF4sknn9QnPvGJSDQh/u4ycDJOvz399fyeHIXhcBi3Z6T6CjGVDok/VXCEEWz9HmBHOwK5CxAvXAKQVd/Kkf96H787Hjz9v7jNoKSYR8D9cBKIyMG2nQRNei4DpDOEEMc9Go3U7/clKbZu0BdP6whuBid3ThZ9e0McEG6TZ744NvMmKZehgVg0m82iwMP802KAsICYgsUf2z/jYHze3oAoxfv8OLRQcH+cHLtbBLs+999FLRcr2AWC6/QcCg+h9D++6wXiha8v32oS8Y7juRvCXSTNZjPu4sF6QPQ6KozS13Glsr9zC24Gn1vWt3TYmoCDxvNS/D7gsKjVarFlyAUKjs3acQeMtwglJNxp2EwmevHPrPTYlx6L/7UnJCQkJFwDoV7XU9/wWg1feuP//hi8bKPBy47+XWleVu/sm656/ezPPq7VY5+84XMnPHdMv/KN2vzxS7f0HFd+6awe+Du/ckvPIR0jQQEhwUPy/B/3bj+nWswuApAK+sIhHbzf+9khJb5Lw+7urh599NFox+f9zWYz18O+2WxixZMcBt9ejjFPp9N4HMhK8XqwZkNoXBjxJH6vhkP4qNi6yEGuAbtfMF7p0N1Rr9dj5oJvDYhNnc81m80YeMnY1ut1rDyzvSNkDVKMUAGpQ0iZTqfa29vT7u6uZrOZdnZ2VK/XY/Uap4FveYkFnXvqWyx6ACJuFsQj7PGtVisGb3pYIy4G7hME3dsOfMcIr+hDYHEUsGUm88caq9frUTRhNwg+4337kmLrCGuCHJHd3d3YDoHDhrUBEWcdInJ4Wws/4yLxnAAPTiR40TMQGI+Led7O4S0CvhsKogvzt1gstLOzE9cWOSG+I4WkOLeIEAABg/XOZ/z7ophRgUDmLTiscQIn2aq0KEr5OnaXSkLCnYJstVLzg09KX3p0hSohISEh4RghBD3xpz9Lkxfd+n9rbOqZ+q+++vXZyQdVnj8oSXrRP3mPsmVq9byVqDxwv178Y5clSW/s/ri+oXfhlp7vf7xyox/86s/Te//J67X9b99xy85zLAQFyIGk2NsNgeIf9JBOD62DlEuHW+95UJ63EDgBx+IPuZMUQwy73W7O4u95Bp4vAKGkAk3oohNkdzEUxRHe42P26/Ct+QjvG41Gms/nsTXDBQOIvRNb5o/5qFar2t7ejvPogoT3rZfLZW1tbeWuF0EE8ui7Dng6P9fmVn+EmH6/r+FwqO3t7dw2n+QFtNvtKKBIh+GPtK9gq4fEQpKp+Ps4qZrTLuJhgLhO+v1+XHeQUHcDcB3uTPBsCAQn2jKYd4g7u5NwHwhB9NwD7rd0WIFn7eMeQFSQDivrHHMymURhw9uGGLuve9YGwoOHKvqOF7zmn0GYyLIsCkuNRiOGi4YQ4jPg2SWsu263q9lslhN3WHusaZwjrH3mh7nidRc53JnCax522el0YltMv9+PY+fcRWeCrzfmKiHhTkGp29XHvuVhSUkIS0hISDju+ORffpPmJ2/v9/Xs9OH5H/uONyjYP3uaFzKd+ue3joTeUyiV9XW/+Um1Sh/X13T2XrDTfn6jpM+//51659/4H/qLo/9DrR/71VtynmMhKLDrAdX1IuGgAg8hgYBCaNwSTTVbUrRWO/GFOFBBpwrsW+I1Gg11Oh1JUrvdjtVMqpcEI25tbUWiw5iomrL7w87OjnZ3d2M/N9dE2CMZCowLMugEGGJOZZqxYhfHOj8ajWLbBsF4TpB5f7PZjHPpVWvIMP3vHHc4HGo8HkcrO+0jzWZT8/lc8/k858IgqBCiD9mdz+d66qmn1Ol0dOLEiSjsbG1tRUGElgC32xPq5yGBEGJaHEIIcXwINU7U+TuiSavVUrfbjbtCIAAhiEC2qah7dgL3CqeMh/4hNrgrBBLO2mQ9SodCBtfD2NjCkV0OENC4h8w1wgFtOLSFsNbcVYEwApg/WnVms1muhYdniJ0ghsOhZrNZ3AKUNb+3t5fbQrPb7UZBZDabxR1cyGQ4SqBjPGSi4ArBeeQtH7yOuOWCic+9O0wkxeMwH7gdii4Ef83nKyHhuCOEoMVWEhMSEhIS7gQsdo7X93VxPIstafi3D9skHv7PU4X/8esv8KjuDvy1R96tz2/cvq3IP7dR1r/5R9+jt176Uyr99/fd9OMfC0FBUm47SCfRTuBI0w8haGdnR51OR/1+P4YVsvUdJKrYYuAVT4gZJK/VamlnZ0e9Xi8SSqrfVJHdks4xIESIEuQu+Dmo2lL5dcLrFVBIuff+IxAgMPA7SD3zJSkSefr4u91ubB+h6l0qlSKBp7Wg3W7niDAVXwgiZBtRZL1eR6JJ2wNzzNz7jhVkSYQQNBgMYgAm9wThZTQaaTweR3JMCCKknyq9Ozo8D8DzGObzeZxz6ZBcMhdsN+nhjsUgTD7r98hzKjzwEXeItyMgVuEqoB2CdhLWPCIA88G8MTYPW/QdEiDV7ipA+PB8BO4Jx/TtMNmxgdYU1otnMZTLZW1vb8e1OR6Ptbu7q52dnSgCzOfzKDQgrHkYo6ToqsEhQyjqdDqN7ga2qvR5dnGCY/HcsqaZW1wyrG0CN2nT8HYkWkl8NxnmF7HGgzYTEhISEhISEm4GPv533qQsHG8XZFaW1s3DMX7sqxrSV75Jr/q+p7T62KO3b2B3GP72x9+lz6rXrv3GW4yXVDv6sR/6Pn3NF/9RrX/zIzf12MdCUKCCS8W01WrFkENPwSdskWozpEBSJB6eOwDRg9ghKIQQtLe3lyPpkGFs9YTDQSwg+JB37+1eLBYxz6HT6UQyB+llnKT6YxPneM1m86ot7orWbcYKWYYYeZ/9dDrVeDyOpBWRw68HcsqWh9jsvX0EUQRyRuAeczCfz+MOBBB1iBhCBPdjNptpe3tbOzs7Wq1WunTpkrrdrrrdbs5SzlgRBbjfZGUgGCHw4GiQDrcfZJ48pLCYecDvIIu0RUB+ud8IBKwtJ+TMF6KQh0G6OwBxhnvAvWJ+mHNaRrw9B7LPGi5mU7A23KUgKTpepENSzNz63HHvfa2Mx+OrtknkPiDArNdrXbp0SYPBIIo+W1tbGg6HUURgvRNyCZlnDj0nxO8lawfRjnkmEwXiz7y66IBjhmcEocvbo9ypxHy54FQMNOUeJyTcSQiroKxyvP+RmpCQkHCvIytJCtd827FCVpakTB/6k2f16r830/riJWXp30nPilKjoe3SQtLtFxQkqVNq6Kd/4Uf1lk9/s9aXLl/9hhAUzEnteLZ7fSwEBSq6WJIRBiBBhBuGEDQej6N93sP6/A8k0q3+ng+AqwDS3+/3dfnyZQ2HQ507d069Xi8GF2I553h+Hq9Qs4c9JHMymcTPQdyoso5GIw0Gg9z2gMvlMooMiAqc03v/ESVwa5DfAAnz6q6HFpZKpdg6gHMCgglovfBefO4FIg/nx4FA2wOBd9juIWoIOlSFR6ORhsNhnF8Xeba2trS9va1Lly7p8uXLKpVKsbfeU/xbrZbm87kmk8lVLgLaAbzdgfvGnFCVbrfbMbdhMplEoYEqPcTft05E1PBdDtxyD6H1LAm291ytVup2uzEYs9/vx3XswYs4KJhPr8L734vPEGuSP9x3b7WAmHtQJKKVV+wdjIe1ShDl5cuXtdls4tairHkcLLVa7aq1ivPBW0SYR9aji1suRhAgyevupPGdXHBr4FxCjPK1gsMDl4NfM64ZBKqEhDsF68FAr/qej+m3/8xLtW4kUSEhISEh4RYgSB/6Sw9Leliv+u4Pa33lyu0e0bHFt77/A3pZtXO7h3EVshedllxQCEHlblezN75Cj/2+o925r/o/PyI9w6YUx0JQgABBeBEJvEfe8xG82k5vthNTSTFhHzs4x+BPpVKJ4gR94aPRKJJk3x0CMorg4RZ772n3yi9ChFecIer9fl+1Wk0XLlzQuXPn9OCDD+ayHrDdO0mkgk1VmkoyWz76loOScoStSEiLW/95QCDiCAR+MplEF0WtVtN4PI7zyvuZG98CUTqs/noLAnkYhDNigw8hqN1u68yZM1qv13ryyScl7QsIOzs7UXxhfhBQPKHfW0g4F/fLcwc8yNND/6R8dgCfg5RSRWcdQm65555vAYkmMLFSqWg2m0VCLu0HkNLSwDkZDy0OhCX6OL01iHYJn3cn40V4xZ8wRdwi3v5Q3NlhNBrF+Wy323F+eb7IGmDtkG+Aa4Fr9/YCb11xVwjHJuPDvwc8kFLadwTxvPizKim2YazXa/V6vXjt7gTinvv8ueMkCQoJdxpWFy7p4Z86p4/+gZT/kZCQkJBwa/GRv/IqvervP6rVU0/f7qEkPAf8zM/+sL7kxW/c39WjVFb4zE/Rh//wswsfH/4rr5T+7NG/OxaCgqSr+ttbrVYkzfRDb21tqd1u68qVK7H6SBW52PrgQWyj0Sj2U7v7YTweazqdxlC6vb09LZdLdbtdNZvN2MPvlmuqvr6jgXTYCoEoQrI8FWZIF6To/PnzOnnypB5++GFJikF8w+EwR4o8rLHY541IAKlnKz/fvcFT9SHFnqcAwfK8CsgdQoa0T9x6vZ663a4Gg4GeeOIJjUajOC+eY1EMg5zNZhoMBpGoudABcBH0ej3NZjP1+32dP38+Bh9SoR6Px/E4uA1wOzAnPm8cGyLqO2vgKsGWz+eZf9+xAAHLgxn9niDEeDAi97zX68XcC8Qs306UsXvWAj9z7zzTwAM7abnxnn/WmwtM7lRgjP1+Pz47PB+sZb+++XyeI/y1Wi1mKnBcBDPWBAKgzz3wZ8iFrmIYJmIEgiDOCN8JgpYGb7/h3OwsQgYH4g5jcLcKx2U8CDrFwMaEhOOOyrkz+lASExISEhISXgBkJekjf+4lesW/aGn92x97Qc9dPn1aOrX9rO8J8+X15z2Uyiq/6qXX9db1b/32td/zhZ+p0+Vfk3T7whivB+WdrWuKCdfCsRAUvNItKVb0qeoSNAgh397e1mq10ng8zpE83zrOdz/wLe+oZEOkRqNRFBN2d3c1Go20tbWlZrMZSb7DiQtkxMdbDJ1zlwGfL5fLGgwGevTRR3Xu3Dl91md9lra3t2M/v/dte9+4t3Awfuzd3ruOi4PgP7IBfMxOZBkfZNbFEu+ppxpcqVR0+fLlWLWmBSLLMk2nU7VardgqsNlsYj97vV7XyZMn1el01Gq1IrnjmqR9R8LW1pZOnjypS5cuxTwFyKSTeOaAa+J6IJhcEy4Azz3wbSI5rgcaeisNrgocCuRPeNsH5N9FMOYKMowjRNon7bRyTKfTnPjCsREG3C3h982fFa7Ngx5ZP74tqLshuDeVSkXb29tqtVq5th5Jcf3MZrNI+FutVtzhxMfiIYr87DuY+PoF3Bfmj9wExBUXpjieu1VYrwgs/mzgSppOp1EI4XnmWBzPcycQJJjfhISEhISEhISEo7GpZnrkm87oZT9U0+Z/fuiWn6+8s6P1qx7U+U9vq/8pz97eV9sr6aGf7cWfK49dyLkpwhs+TVnlYIezRkWPfMV1ZB1k0sv+fUsBV/Rooc0Hrr7uz/1Ht3dnh+tCCJp/xktu+DDHQlCgh5oKrocrkjkAqWDHAN+FAEHBAxOp7GIZx13glWRP3IfIzWYzTSaTmF0A6YBkkuswm800Ho9z+QwQIYggZMRJHUGDuCMuXrwY7f/uhpCUq9w62eecVK29zQPSiGuAwEgnuNJh1d7FF6+GuygBUWSrTvIOxuNxvDacF3zGWxIg2Ryj2+3G7ALulbskqtVqbIfo9/uxbUE6bOUAHJNzeasBpJT2DK+We3sCIZer1Sq3S4hX0NmOEoHAiWnx/N62wI4VHMd3yqjX63F3A9oafHcGfmaN+w4HvM7ak/ZFAkQgzxJwR4NvU8mzx04L7LzhBJ3jOjgO22zO5/M4x4zPXUOeiVAUNrhO7hVrkWcPkYZ7Udz6cj6f5+bX5w0BgbwUXvPxIVTisPH77a6QhISEhISEhISEo7FuZPr4H9jRixuvld71/lt2nvL2li5/2at16fWZpGtnBS22Nnrkf2vFn7c/9BL1Hn0g/vz4F1W1qT3HzKEgffRrmvHH2l5HZ+9/gxpPjI4UFo4zQq2mR7/sxnc0u6F/LYcQHpU0lLSWtMqy7A0hhBOSfkTSw5IelfQ1WZY9a1oH1nq3dBMYJykSVyfFrVYrVk0JfzsYUwwnlBSr2w63Nnt1lHORrVAkcoQTenghQsUzBbx5xRaLfavVijb4ixcv6tKlS7rvvvtyvd8exsgccTwXLuxe5NokIMUIKpA1RAvmeTqdxtedrLsLg/MzJ6T7t1qtOJelUknj8TgSWkgb5JrP0zpBGwNBiDgB6HnfbDYxG4OwSq7JCSr3pdlsarlcRreBuze4flwUjIt7SK88a9BbTjg+a5T2GcQv2kzAaDTSYrGIO1ggaLCGsPITMMg2iwhd7MDRarU0GAxy5NfdMTwLzL/PDy0KTsi5DifsnoMwm81ihoJnCrjDQlJsl/D2FYSpo7ZfZOysA54/f2b8GfTdTXhmPKuhXq/HdijmEocHQiPn9ZDQ6XSq9Xqdy8XA3eEigz8bOI3uBNys7+KEhISEhOeH9D2ccK9j2c30ibd09WD5MxTe8Rs3/fildlsXv/pTtfva5x863H91pv6rnf7eeIDxYmujT3xJRY0LJ/RQ6dXRpfGf/vUX6A//uV/Vp9Ra1zjCnY+b4cP43VmWvS7Lsjcc/Pztkn4xy7JXSPrFg5+fFdjS3RLtVmccDITYSYoJ/QQoUql3Gzvkvdvt5sg2VX/p0KYNiVwsFtGiLymX6g9BcVIFOfE2Cs4FAep0OtFFQZr9qVOnoqhw/vx5Xbp0KRdkR4ihuxKc3FBZhyhDfiC7ODAI3PPQRRwOzBNuCYgh1+02cLd+c120Jtx33306e/asdnZ2csn4zC2VYUQIRBon/AgL4/E4tp5wrvF4rMFgEKvIEF2IvqRIfKnSF3Mi/A+7BkBo6/V6JNM4EVzAYttFSVEMKApYPqfFlpfxeKzhcJjbIWMymUTxwVsr+Jm5Yqw8B05yizs6IHBwHaxJAhg9pNRbKHg/Ige7m3Cdvq45B9kNxW0meZZdRPJWpuLz7e0VRTcOW2fiNsHZ4e0NOCwmk0lsj+K7BLGI59eDQ/ks42IMrBfW1h22beQNfxcnJCQkJNwQ0vdwwnXhJT8+uRlc9thhsbXRJ7+4rexNn3HTjx067RsSE241Zvdt9Infd0Ll17xKknT2H/+KPry87zaP6oXBrfDzfoWkLzz4+w9Ierukb3u2D6xWKz311FNRJKBiSZUesoVdHJIB0cOy7GSBqjek2J0CkEDvlUaMgNRCCCGgEFWvjBeT8SGg7iaAkE6n0ygWsHUg1e3Lly/rwoULkZA3Gg0NBoN4LZBDiCOVWezxxVYDxsBWj41GI84NRA4nARV9CBzkjfmXlCPM/I4MAPIDIHKQZjITEBQg7QhAxcBDKsyNRiOGL7qwA6FkjIzT74m3bpAN4NsMIjohCHFc7mWtVotzUqlUYtYD7R+++8FisYiZAwgdrAPmGicEFXR3F3A8tjpEeEBIarfbOnHihPb29jSZTOLr0uEuBEVXgLc/FNsHaGuYzWZRTCB/AkcPQgOuFnIjfG49CNQDQD1IEmHK25DcocBzwLERQVw0437x/HpWB/eRcbI2ybjg3nJswlhZn8DzEjwk0tfNHSYoFPGcv4sT7nysL13WQz93vz7xvxy9j3RCQsILivQ9nHAkwjt+Q+EPfK6yqzfkuuOx2N5ocn9D7Zt4zFCv6/H/18slHW/n6Oy+jRan27rX/g98ow6FTNLPhxDeG0J468FrZ7Ise0qSDv57TWmGYDpPbud1/oFPpZXqM4nz9LPTx75YLCIZ8raHonjgFWrp0OIMafYwQ8bE+anCNhoNnTp1SidOnIjVfq/+esBfu92OlV0s+ewkMR6PdfnyZQ0GA63X60iWcWRQvae9AmHAreZkJfT7/VxludFoRIcG7yuGNUqHVdpilV9SrFoXwyFpPWH3B3bhcHIMYeW9EHTvpecelMtldbtddbvd2OqAMAQJpYruPfi+iwBzPp1OY1WeSj3iEFuNehsCc+BtK6wvhC5vIxmNRpGgT6dTDQaD2JrjThDGNxqNNBwO4z3jPkDAcWr4um21Wmo2m/GcvK+4a4ILP8W/83wgHjCO9XodQ0cRqVhnvr58C1HPKfD3uFjirh3WEGuYZ6m4OwdCkgsBPPscj+dvOp3G9gXyG8jAmE6nUYjCjSEpilk8V3yWueaZ4/l0IdJbX445bsp3ccKdj2w+V/Ox/u0eRkLCvYj0PZzwnPCq733qdg/hluHi60vKPv91N+14oVzW+IHjLSaAx7+orvKnvlKS9M++7iv1+Gp0m0d0NX73N33L/paRNwk36lD4/CzLngwh3Cfpv4QQrjuJ4uDLli/cSFp8twfIiAsAB5+VdFi1xIbtJMa34vPAPAgKFXJcCZDxxWIRzwWRDiHEaj8EZLVaqdFoqNPpxPwA74P3ii7EGSLrZBXyc/ny5dimwLgh5TgIGLO3H3jwI4GAbFEo7RNL+vSpiuNs4P1UyZl32jMgxk5ovS3C0/SxlA+Hw2iFhzhyHN/dwQP/yMBgTtbrdRRXGE8IIdrap9NpvN+QYKrMR+ViQA5pu+B6WUNU8BETuF8cjzBOAv5YS4T3uXPB8zMgvJVKRZPJJN5DxoZoFEKIoaB8nucBy74LFX7/XUQorgl3mbDjCXPHvLJVJK0v8/k8ujU8PNHbK3gmXLxgfSCm+TOK88AdFsz1ZrOJu5NwbD+vr0l+h8vAj+1rktdZ976umHd3IHh7BH/nuHdKhoJu0ndxQ3d/n9+9gPWHP6ZXffcljX7nK/TEFx7zhOmEhLsH6Xs44Tlh9djjks7d7mHcEqxamVbtim487u/Ow7KbaVM/KFq+5wOaH8MujeZ7Pqb1td923bihf2lkWfbkwX8vSPoxSW+UdD6EcE6SDv574Rk++7Ysy95AnxkkDZKLOEBIIlVu73Wm8ulhb9jDC+fKiQwQVAgeZGVvb0+j0ShazhuNRiQgnuzP7glU/7vdriRFsQFC5BVtKu2eSE/AHMccDofRes7nnGj6cWlt8P72xWKhwWCgfr+vy5cvR4GESjWtG5A1HA+QeuYEMu3hfdJhW4dXpBuNRgxYZFzsWjAajeL4qU4jPnglGPGG/n7fXUPK5yMg6pCpgchANZqwRLexswaYc46Fa4LMCXcqcE9YTx4SyutXrlyJrgMcBqyvLMs0HA41HA6jYwSBgTlEjChW1CH/XkFnXJDdYk4FZNwr+8U2A88XmUwm8Z54noK37niApws17mzhNc5N7gFbjPrzyvv9/nreB+S/CP8M97LY3oSI5W4aPovoxdzxPcD8eF4K4oa0nysxnU6v/vI6hrhZ38VV1V+oISfcSmzWWl+5ovLsjhHEEhLueKTv4YTnhWNINm8WPvF7qwpv+LTbPYzbjj/12rdosrl5boCbiWw+16v/r4/f8HGet6AQQmiHELr8XdIXS/qApJ+U9PUHb/t6ST9xPcebzWbq9/sxqA4CuFgsNB6Pcz3hkB/+we9EwqvSnth+VL85RAJXAOF5pPKTjwCBxiEAKYFwO9mRDrMTPNzNK8W+9WC32821ZHiV23eoYAyQNI7PuFy8mEwm6vf72t3d1eXLl3NbKTqBpgWBij1zkh2k7OMk8D54rgNS5gQQtwMuDEg/94Uef995wMUKiDvX45V3sg+8tYWxukAiKZc7wfGxxSOu4EqgIk8WhLeD7O3t6eLFi3r66afj1qXcJ7IWuD6u3yvx0+lUV65cieuX9UpuxXq91t7envr9frxHjIX5I0fCq+WIE149L4oKOABwpeByYX44DsILc85xcP2wNtz1MBqNNBqNcvPr7Q+NRiO3rkDR3cLxCVflOYDUM0e++4OHYCJ88Nwwx9w/zuXCCgKCu37cjeRtFr6mjjNu9ndxQkJCQsJzQ/oeTnhe2Kz1yr9667ZYvN3IKpmy0l0YEvEcsR4M9NUv+R23exjPiGy+ULjBf+7eSMvDGUk/dkBSKpL+7yzLfjaE8G5JPxpC+GZJn5D0B6/nYI899pja7bY6nU4uz0BSrCh77gEkwO3mVMwhNk5IIWxUsKXD7Sm9IvnEE0/o7NmzOn36dCTUHAeS4+TXnRPFajhkzQnRer2OLRdUTalsu5WbseJoKAoKBAh6VZ1zMi9Y6SG57jyASLk7wfMY3LpOmB1OA8in7xgBkWM+S6WSJpNJvH8QOeaGc3EOdjcgCNBFoqLA4euD/nffbQOyz/3odDo5EcK3U8S1wD3xHRw804CsAa/0e/4Br3trAHNGkKikSGRpzfH14e05VP59HoqCFnPH+TzA0ueZNSkdCkCcl/nlNf7uu6C4OEboJqIE23VyP5hb6bA1ifMzRn7veRac01theEaLbQfMgT/fLlS4EMExmQ8XZrhnhDByP/yZv0NaHm7qd3FCQkJCwnNG+h5OeH7I7mKLQkJEdowLVOsrV/Sqf/y4fvtPPKgsSJva0WuyPH9mceh5CwpZln1M0lV7gmRZdlnSm5/r8SBRkErISbvdjqGC/OF9fI6KI8R4s9nEMD5PvXdLOIQKYi3tE6DhcBhbLOr1eiR/VMid0EFSvVrP2KiiQoj4uxM5T5aXDi3tVHI5H+NHcEBU4Nqn06m2t7ej04L3U6HGtk311//rJNmD7yD5jBty7NVryL8n8EvKJe3ze6rz8/lc7XY713MPUabFxdsf3E5PsCUkH2EF54LfF+af+XK7P9eFY8EdHuRhsB6r1apms5l6vV7coWK9Xms8HueEGRemILvcG3b28JYXr6AjAiH++Jakvh68Ol8MFWXN+mueccD68l1TfAeDohuEe7dYLOKYEZ+4j9wfSXFOK5VKFIeKuQvsMIEoVKz+Q+wReVyEYlw8f5KiIMU5GLcLe5ybjA7GVxRYuF5J8blnF5bjjpv9XZyQkJCQ8NyQvocTEhKuhR8fd/SV7eMX0ChJq08+rpd8++MKn/1aPfaW7pHvefHfepc++gyfvxXbRt4QIIWQAxL2pcMKJkQPMlGsdkN0lsulms1mTP13mzjkHQIGGZzNZhoMBppOp7l2BCeYXhF3i3uRQCEmQCzn87kWi0Uc92q1yrkgcAZAHCFWknJ967yHKjckmfFJ+0QJe707BzwXAceF72TBtdCTTpW8XC5rMBjEbAm24pMOW0q49nK5rGazqfF4nNspguunzcDHwn3ifZLiDgdeOYZ0QmhrtZo6nU50pnjLAvOMAMJ8jcfjuOvBcrmM4YSIE+EgtBLwXlpVcIdIh+Sba8EdAREmu4P70+12o0jhWRS0W7hrwoUXQj/9fLgq2A0DwaqYk4GwxjW6wIVjwkMIuY/uYPAsDZ5Tfx4RB3wrUhfP2N7UBSxfO378YhuP756C2ONCoYsszCXz7qKFP/MOvgOYwzvElZCQcE1Uh0tVRlWtOqkClpCQkJCQ8EKg1i+pNJnnQw83a73tsz9LX/mbv3S7hnVdyN79fj307mf43bN87tgICljER6NR7P+GNLXb7Ui4vfWByraknAXfq7QQduzs0+lU7XZbrVYrnlNSrHBL0t7envb29rSzs5OzT3u/ebPZjOSECjnkBnLtooJbqrGFu/3aiRxEcbVaxZwD3AYIAxx7sVjEPntJUZyAWBUt+vy3WOnl+jxjAtA6sbe3p263G3ve2+123BoSxwVEkMo2bQ8Q5tFopFqtFkk6wkmr1Yqfg0D2ej1NJhPt7e3l5p/KvTtWIJMcB1eJizO1Wi0Gd7JzwnQ6zVXuEYukQ/cL84z1n/vN/UTgceeL9/s7oZb2hRLWCeGITtYROarVqtrtdhRhOG6xfYX75TuUHGXvR4Qj2NJzBTgGZNyzEXDyeNuNt7ggrrkrBMcQx/XcA3cT+Pk8bJJnms/7jivFLI/inDAXs9ksF0SK0MXcF4MifdtK5uwO2jYyIeEqhF/5DT1Ufb0++eaGlt0kKiQkJCQcN2TrtTqPljR6OBUzng130jzd/0szrT/8yFWvZ8uVvuZjb9aPvvQXb8OoDvG1H/8iaXFzHbjHSlDAFk2/OhV0iAJkwIm893hTTYewQAjo04bQQU4hWJArt0SzQ4GPzYkHFXXf3WA4HEYbvY/Rq79O2BEIIEmLxSKm3ZOvwDm4Vg8bpFJOpoNXbjkvFXfp0P2xWu1veemVakiWizEAkjyZTDQYDGKlm10vIO8EJjKXTnYhudPpVOPxOAowCEdco6RIpE+cOBGr9tPpNNf+4BkV3FPun68JFxd8JwOvlLPTAsJAq9XSarXSaDSKFXZcAsvlUo1GI1fFd7KOGAZBrtVqms/n0WEwGAzifZYOgwpxvnC/EBW4z/V6Pddew1ovCmj+vLiI5evAWye8zcbDM4v5Du4aYk0UXQ2eZcIfBA7WmQc/sjZcIGBO3DmDAMX3A0Gs/lw6+ae1hetutVo5EZL7y5i5HoQkvnd4PSHhTkbpl96nB8JnavhgXVc+VVo3krCQkJCQcFyQzee6/4cf0Ye//aW3eyjHGnfKPDWfLqn21ODILRk347FG33Cf9N9e8GHlMPiWU1oPPnJTj3lsBIXNZqPLly9re3tbvV4vZ7nGWu2kzSvU/MEi7YRT2q/a43LgNRcdqP5DkjebTdyu0omGV4ipZkJ2IDxs8YiI4TsleCVcOqyuQgiz7HCXBMi6pEiGi84GquWQS1wBEDGEiSzLYuaAkzQIo6Rcr75b5t2Sn2WZxuOxdnd31W63tb29HUP5vGXCCa5b7hGEPFCR1gRIcwghuj9ms5larZZ2dnaiuwBHxmw2i+0Hfm9CCLH9gbVCL77/DLnlvZPJJJcpgYPFHQrS4ZaROGJcoGANtlqt2L4BOcZ9QVVfOnTV0AJy+vTpuI1o0bKPGOLPC9kYiClHtV+4gMX7fM2xJv19PmbOxXpzJ4a3HXjbj4dpch4yO/wZRVggS8NbD44SBpkHd37wbHDNCIuS4ja0tKoUnSiIHMy1izE+1wkJdzrKb/81bUsafcfnJUEhISEhIeEFQe+jJVWe3NXq2m+9LmSjsU69L+jS64/n/8eaT5f00H+6dKQ7IeLKnl72X79RH/2if/3CDczw8rd/g1558YmbftxjIyhI+60GEDffcWA4HKparcZeeQg+xB4SLO0TfEiedBiUiBgBihVKSBGkDILu5LuYN8AYnHTjOuAzVLMZN/319Mr7VnW0XbjDwcdVqVQ0mUxyeQlU+slSoBoMOceqTnAlRJvfQ5wg5hzfq8YeJkj1dzqdqtPp5KziTiCxsnOtkuJ2gF715viE8HGPuA+NRkPb29uq1Wrq9/vxeNPpNBJkrpHWDq9q41Agc8G3HMW9QksCLgjEG2/p8DmZTqe5DA/yFiqVSrzP7q7BDeBBhL47BbtJME98FvfJM7lSWCu4G5gHCLZnP0DIuW5Isz9DrDMXFXhfUYij7YRxcv3+Ps9e8HvD81YMTGXeWK8IVd6G4hkRrDUEKebAvz9ouUEkclGBZ8V3rii2ZiQkJCQkJCQk3EpkewOd++VMT/2Ou2uLxZ2PLLR6/OaR1814rJM//kGVVp+qC5990w57w6j1S7r/l2b7zoRnExMkrS/v6tV/saaXfPe36OO/71+8QCPcx0t+7pv1qX/lKa0uXrzpxz5WgoJb2D0jYDweRwLT6XQikYMYe9sAJMrt9gQaYreG2OMm8Mo/mE6nGgwG2traiscuWr+9P9/H7uGJkLlWqxVJ0Ww2y1VUqYJDpiAykFCINwRoOp3mRA3GQbtFuVyO7gpILZXYYm+9B+J5MCXE190evr0mIZO4CY6yrRMICWFlTgg9pFqP6NNoNGK1GBAA2ev1olAxHo9z80B4o/fwe9UacgoR5roRACDTfm4nzSGEGHzIZ3Gh0MaBiIQwwxqhSs5nvUVDUly/hIbiKmCdjsfjmJEBkfagTOaca+Hecf1sidloNHItDDhSuG/P1M7AGuB5wuHhbRU8Z9wvgDjjYYn+eQQzbx3h2fY5w7XDGBF8vA2Jz7pwOBqNNB6PFUJQu93OuZqYF0QV7hNz4SJdQkJCQkJCQsKtwmY2U+83Luip33Hmdg/lpmH7t4Ia73vsSOv/jWA9GGjnp39L0qfcsKjwkp9cqNI/DGHfNCv66B9sXvuDmfSKfzuMP5Ymc60//Mh1X+vqqaf1qd9V0ue+/Y9r8FUj/ebn/bvnOPLnjpf87B/Tp/71p7V64slbcvxjIyi4vRkrOf/Il5QLKpQUCW673c5VRb2f3UUAJzfYwUejkbIsU7vdjgTFHQuTyUTN5v7CYlyQYA+cg6x2Op1Y/aaKzHs7nU6swg+Hw1hhxuJOSGCxKuoCBgILAYHFrRnn83muEs0cMB9Ukp0wuhBwlKDjFW9v/0Bw8TYPdwmMRqNIkpfLpYbDoQaDQRR2CERkzIhF3jpBeCYVe+Z/MpnEOWScHkLZbDZzFW13fvCat8pQ2WaN8F53qDB/CDOIQRB8sh4k5RwA7PDBsVgzuEWazWZcF1TLXSTxY9M2wHrxFhOeB193XA+tIYyVtcS6LWYJHNWy4sKZP2ueX4JTgDXgWSU4ViTFtgeEFObV5xRXCdfhLU+IMKxTz2Fg/M1mM4qGtJpwfYyBZ9idGMwFn+GeJiTcDXj4331Cv/2/P6h1M7lvEhISEhJuDXqPlHTmP35I68u7t+T46/6edn7qN7WpvOY5tz+cfYe0/Z6n94/ziceVWREzlMp69dMPXtdxVh979HA8z2kEB59/4klt/eCTOvkrL9abX/LNkqQ3/6Nf1nee+vDzONqz4+Vv/wZ96l998paJCdIxEhQckGgID73u3hcOmaFCDmGBgDiJgUzQp+8p9ZD6crkcyQmADHqV3tsGvNrN8bFVYxtfLBbqdDpqNptqNpu5LQO9osqWkRAx70XnZ6zxEDWuC+LqAX8QebbObLVaMeiPyrpXijkHLSMeVOnky1tCCBr0CjPHoi2CMbFLBGQcBwOW9Eqlovvuu0+9Xk+lUkmLxSKKRbgRaPFotVrqdDpxhwReh0wjEDA/VKSlfMgexJlrZK2xZnAFsG4mk0kkmxBnevM5N+4A3A3essCx+BnbP2uyVCpFEu3imvf1M9+0a7B2INMIL4QS8txA1N1l444OnxN34Ej5rVwR3li/PIdci5N0D4wslUpxRw1EFF97zAdrl/nn/rFu/Bxcp7crNBqN3L32YxeDFjm/7xzjwhOiS0LC3YLVJx/Xy//BVAolffg7XibdXe7ahISEhDsWm0c/qZf8xI4+/hW12z2UG0L78ZLO/pv3az0cXvvNN4D1YKAT/+E3dPJn2nriD73iGXd/qF8q6eG3/Xb8ORsOtXom9+lmnRMKXgisPv6YKh9/TJL0P778VXpL6zMOh1Ov6mf/8w8+72N/7ce/SINvOaVXXnzilrQ5OI6NoABhgoRI+4SeHQGcbPl76Cv3YDrfrWA2m0VXA1VReusrlYqm06lms1kumNHT6z1R3t8DyYZ0QCSdkLut38UMSZEgY+WGfLo9H8LkQXZUUb3iKx1ucUjF38WXRqOhdrutyWQSxwgJZj6KrSFUZyHNEFLI5GKx0N7eXmw7gFBig4foUd3nXtIewHWORqN4TnZQ8C04OaeLH94Hzx8Pv0SMYk359qK0t3iLi4sKjGM6ncZzURFfrVZxlwY+53kJvjaLY6XKDpFH7JhMJrFNwB0qHI+xuXvGz80xETTK5bKGw2EUMCDwnj1A1R5Hg6RcdgF5DS4euJMFgi4dhpIiohQDTF0cKO44wfPj7Rf8js95G4TnN/jWlsypB5NyP/2Z83YTrsXDLJl36TBc0uc8IeFuwPrSZUlSyF6mLAkKCQkJCccC2Wql8n/7DT1Uf70+8SXHhp49JzQulvSi732vNvP5td98E7CZTKTJROf+2UChfPQ239l6rfULNJ4bxerRT1z12ls+/c3P/4CL5U3fzeGZcGxWrIsEANs1Vd5iYr1vL0c11ivTbmEu2rDZSYH+dESL0Wik0WiknZ2dHEmERGHPJsnfMw4gVJA2HAUQZrIA6vW6+v2+RqNRDCqUDiui2N7n87mGw2HMYPBtFiHJnJsWDQQAt7i3Wi212+1Ikp3ku+0dYQQi7HkLToZ5jblg/F4R9vYIiG2W7e8SwTxSqV8sFrp8+bIGg4EqlYq63W5cD1j+aa9wIkj13fv7IbfMjYcZsn4gipBZH6v31rsQVa/X1Wg0ooDi6w4RyXMHOGZREPD1gWDl1XmEKkQRD49k7Nw3dqbwQEcXJBaLRdzlYLPZqNPp5HZo4L8IF91uV9PpVMPhMHcd/lx6zoOHnLJ+i88xr7lTgHnGpeBrnjG5o8DdQYyXliFED8Q1dr7AcYJ4xmfc3eCuGubMz1mr1eLxEhISEhISEhJuKTZr1X7uPXpR63P05BeEO8NFlkkhkyqjkh74O++4LYHW2Xyuu7WRjyLAccexERRCCJrNZnrkkUdUqVR08uTJaHmfTqeRXM3n82i/pvKJVd17/TkmFmnfyg57uPeo07M+n881Go2iKFGsXrKTApV0d04UE/NdiHASV0zd950cptNpJMQE00FEnUx7RZg8gtFoFKvTDz74oNrtdsxSoE2AsVG9hfB5C4KLHJA5iLHb7r19oIh2u62dnZ2rsgOYA4IdIdremoJ4wnnY0YF75yn9fmxCEf29PmfcE+4lxJxr5fo8/NOzBbwvn3M68S3+7PfK14LPOa0lkOperxdbY1w8ckGMzy4Wi1zmCOvKnQXkV7CG6vV6LuBROgyorNVqOYFJUk6ggfx7rkcRHlzJ+5lrBDqENrZo5fe4KtxpggDC/LrQwfOIC8mDRblvLmZ5zgeCi4+V8fvOEbRPJCTcbQjLoKx+t/4TLCEhIeHORevHflWnW5+ry59+UPCoZtcUF8IqKBzt+r+lCJn0km9/xwt/4oRjhWMjKAAnfNib2XoR0gVZok8fSzriAT3XUn5rSemwYurhjZC8RqOh+Xyuvb09Xbx4UefOnYvnph0AEgo5g/h7yCF99t5bjzWcYD0IoldFi8F3EB+yIRAD+B3XWnRDQCAZnxNT7zdnDIQjQtyZNw919ABAfg+ZZ14hofV6XadOnYq7FGCv5/yTyUR7e3u6cuVK7toQGCDHkqKA5C4UthJFgFiv1xqPxzmnCQKCO1l83O64gER7FgHzVWyLcDGIczu5d2u/i0rel19sqWENIoZ464Wkq7I6EC4Q2RAEtra2VKvVYosDAsRyudRgMJC0L9bgmGHHBQ8PZV685YQWFElXBZy6SCMpknTuFyIKn+O/CGnFte+tLe5MwF2Dq6HY6oHYwJpYLBZqtVpqNpu5fBHWL61E3lpSzKxgrhIS7ka89DvfpUf/xhu16iRRISEhIeG4YesH36mtg/b5J//i52nZffbv6gd/cabSL73vBRhZQsLVODaCAoTCf86yLBJECA0EAlJCnz/iADZ4XAMejucEC3Ls1VyvwnugIaIBFUuIy3A4jCF7xVA8qq38zPW5SwHiIilHgv0z3vPvCfuSopOgXC7HVgJcDffdd59arZbq9XqcC0mRLCLYeLYBGQa+g4BXvhkn5/TrcUGlVqup2+3m7PkAQo2AQbWb0D6EArIlvL2F+4UTgR1AqPIjuEDAuT5vG/FQRGnfIk8bA4SdefPxO3H1lhBcJePxOPbxc72+fSlrls8Wx0HLg+cY+LPg7QCQbG/dYN0Tusm8eOsGAaPcIwQeXBdU92mHYUy0CRRDS72diLWJACTt5yuwkwrPB88Pa9wJu4c/cvzVahXbDrIsiwGjPPPuNKD9A8HPd0LhPnKfPW/Br81DV/26EhLuOmzWeunfep8e+/OfqfmpJJwlJCQkHFe86O/9yu0eQkLCs+LYCApFsux2dcgPIXIQpdFoFKvL9L67KLDZbHJZAhBQCN9ms4nuBieJVJyxUUPccSU4GecP9m22NCQkEis/7QUQK6/0e7ge44b0uWOD12ljwKUA0UZ4GY/HkZj7Nn7AnRZYxiHLzWZT3W43ki7vycdhIR2SeMaOg0NSFHbcjcG10Z/P56koV6tVTadT7e7uamdnR9vb25L2SfBkMokuCubP2y24FirnvI+xQ3Jns5m63W78jIdHAtYOfxA5ihkA7kCQFK8F4YnrLeZRcK98NxBJudwLzwTwe+/5BS62+Ng5NvfY8yNw9TBezwVhTfnWlFyrtySwJlyocAcL7ymOm4o/YoAfy6/T4fkL/N7dI6w9z23gurgfCDcEpHrgKe/FgeRCmzsrEhLuVmxmMz38/31EH/72l97uoSQkJCQkJCTcoXjegkII4VWSfsReeqmkvyZpW9K3SGJ/iu/Msuynr/e4EGyq4NJh/zsEDHs5xMt3BXDiJSkey6u+vBebOed0+/pisYghhwQ41mo1dTqdWNmdz+eaTCbRio/IMRgMNJ/PYy7EZDLJORkgQlR3IXFYu6mcdrvdSJy5ZkikE0knZbyfqjkCiFvbnXwR3EcVvNg/Lx0G/FWrVbXbbZXLZfX7/atcE9wPPlccG8GRThLdubFarbS7uxtJf6lUigLNeDzWYDCIY/FefUQB3BierYBoMBqNYgtHo9GIjhXIplfLe72etra24o4JtAsU7f1UvF0EczcJrxcFJMgw73dy7BkDR1n6fa4RqMhY8Io6x6PaDlwAYQ4AbQUOxoiLgfvFcwjJZ258DlyY8+0eIezj8ViS4o4iDs888VYJb3fgWC6s+LyzFlw8IqRyMpnEcyIwuLjA3N4J20bequ/ihHsE05l6j5Q0eHlyKSQkPF+k7+GEhIR7Gc9bUMiy7MOSXidJIYSypCck/Zikb5T0D7Ms+/vP57ghhBgg6K4AyIiUt5K7gBBC0GQy0WQy0Ww2i64FiCbkxqvHtVotFw5HUB7H8RBDwh1xHnhOg1dnIYGlUknD4VDD4VCtViuXkcD7IZ8IDKPRSJLU7Xa1tbWVC070vnWEA+/Hd7v/ZDLRYDCI56XXHkEDRwDX6Q6H+XyuSqUSwwFdjGi32+r1epGccf24HSTFirifD2KHSONODRwNIQQNBgNduHAhXgshmYPBQLu7u3F+2fVBkgaDQW7LSebXMyNwjzDPCBNcP2SYuaJiP5lMNB6PYw4FAhTX464TnBd8lnvka9XFBN/u1LfllKTxeBwDP11AkfJtPw7PxvB15uvCwwlZE54rwP1wZwprYjwexx0neJZ8W0bIOA4RJ/PeNsIzjFtgNBppsVio0WjEefTtK32s3Fd/hlx88C0mGaO3S+EgGY/H0VXj4hPXyrXz9+OMW/VdnHBvYD0Y6NyPfFilr36l+p+S8hQSEp4P0vdwQkLCvYyb1fLwZkkfzbLssRvtOUZQ2NnZifZmHAK0LVAth2xQicQhUAzoc3u8h+1Bngg2pIqJNZqfi0FwuCcgSAgebrd2otPr9bSzs3PV9oYeZMh1DIdDSYeknHYLRBT64/l9catHJ7vD4TA6K7y3nPYRHBFkQUiHpJSQv1arpeFwqNFoFAUYrOvj8TjXzz+fz+O8QMYgjVTbIY7u8mg0Gmq1WlHkuHjxYq6/fTqdqt/v6+LFizF3YTKZSNoXM0ajURQ4WBcIMBBoJ+HMK/NNjz5iAxVqHCb8nu0hWYtSvvee+USkgmhD6D3I0sMAnZBDvBG+fHcT1iviDVV5nAjMP06HYiaJZ2H4MbhuWiJc2OC+eagp14toxrPCfUFQ8NYPnl3EAD8mDhngWSCeGcF99PvleQzF1hL+MNeIbPV6XcPhMK4hngmcFYztDm15uGnfxQn3DtaXLuvMT3xUYfMyXXlNEhUSEm4Q6Xs4ISHhnsLNEhS+VtIP2c9/MoTwRyW9R9Kfz7LsyrUOUAx7I3gPEktLAqTLA+ogrZIimYXU+bZ6TugRACBG2Mw9eX6z2Wg8Hl9l4aciTaZAs9mMpBBBAZINyYIgex844/GKMdfG55kDPgPx9oq45wdAoLGU06aA8FAklKPRSKPRKF4DYker1dKJEyfUarUiyXZHASKKW+Jns1kkyMwn9wviB3nj84gTnJ+wxtFoFIUH5pAARc7HmmHeikGYzL/fG9ZRs9mMFWucFc1mM7crRAgh9ta7g4P7y31xB4cHPCL+8D53LXjoIXPoLhfGxLUwty5E+fW6a6PZbMZjevYGeQoQ8eKx+K+HbEKoCcPkepx8szY8q4B14ts2IgbwXoST9Xqdc7Usl8vY+oMAwRrCVYBAwry58FAUGLj22Wym4XAYnTIICrhj/LnlvntLyB2CG/4uTrg3sT5/Qff9J+nk/zyjp9/U1ejh1AKRkPA8kb6HExIS7incsKAQQqhJ+nJJ33Hw0vdJ+puSsoP/fo+kbzric2+V9Nbi657a7ttBHnwmF/BHov10Or2qIuttEh4g6Hb4crkcK95OShEUFouFxuNxDIWEYHJuyJmPD/IE+WOsnAfxwz/nlXX+C4mGDDMmQiKlQ/GCa4PASooEbjAY5Eh9CCH2rg8GgyjAVCoVtdtt3X///Tp58qTq9bq2t7dzOwdQmacSTkimh/t5CB7iCSTRhSCuBfdJkWQi9FDN3tvby+Vi1Gq13DkQHjgPpNAT/51wMh84UjgG8GBBxuqigrs9GC/tMBBqPuNtCJ41gQvB7fqM26vsTvg9IwG7Pp/z7UtxS7A2HKwbhDXm3MWy4jUiRnCv3amA+OFiC3OHsODz6o4KchlcUHCHgI+ZeeC+8nx5BonnSLgQRPvIaDS6KtwSEYXvAATGOw0347u4odYLMtaE44n1+QvS+Qt64JNnlfU6t3s4CQkRuxfvDLdY+h5OSEi4F3EzHApfKunXsiw7L0n8V5JCCP9C0k8d9aEsy94m6W0H74v2BAgKFcb1eh173/0Ptn0nK5AhJ+ur1SqSeciFV5YRDbxnm2MhbkCCIOaeQ8D5eJ1zO4nFOu9Wdq4V4sZnfCs8qqSM1UP4fOu7op39YE5z22pKiseAMBKs2Gq11O12dfr0aT388MM6c+ZMrFLTy4+FH7cCAoZXcSG/2PSdtHnbA4JGvV5Xq9WKZJDPcQ88+JKcBBwr3Ecn75BG6TDoz3dE8Eo24/AcAVwtvttC8frc4eHVfYQN5gxyiuCA+wWxgM+6MwcBguwGD2xkPhA93LXC/LHWWYveEsHxOQ4kns+6K8GDLz0D46jnjFYdjs9c+3U5/Bz8zDH5rM+FOw5wEXBfELn8vnqeBccs5q0g/CBIcB5ft95GdAfhhr+Le+FE8rsnaPXU09JTt3sUCQmHyLI7RuRN38MJCQn3HG6GoPB1MmtXCOFclmX8U+SrJH3geg8EiRuPxxqNRmq1WtGaj6Og3W6rXq+r3W7n0u4hA5JyogD2cUiT9/xjgR4MBrECW6lU4mf6/b76/X6sokuHFnRJ0QHh9mqcC1SGIYQQMq+gQryK7oLBYKDZbKZms6mtra1o+YbcQ37G43HseYdYMR6q1u6IkBQzAajWNptNNZtNnTp1SltbWzp58qROnjyp1Wql0WiUCx30Fo1yuax6va7pdJpr43DS520BkFfEFZwOXDcCCW4J5tDbEjzA0MMiqbS7aINwQ+sM8+2ZBbyPc0qH/fSQZd8FwoMKEZwQfBCrqtVqDDAkq8HXDQGQHs7oZN2FGkIPEaxchKB674IW88jvODY7YLjI5mSbsXNdHJcMEs7pYgrkHUGL9UBoqDs2XFxgrRTFEMaOc6QYPOqf92fQ7xWODVpOfO363DB+PuuZDu6Q8d057hDctO/ihISEhITnhfQ9nJCQcM/hhgSFEEJL0u+V9K328v8nhPA67du7Hi387lkBKRiPx9rb28v1gvvuBrVaLW6HCIlwwueWZ3q6ITlOiiEwVClrtVquj56e/aIDwO3sbv2GUBJYCPzcTmj5DJkEhOLxp9frRaLouQBU7nFWQKi9590rzVS9vR8c8t5sNrWzs6P77rtPr3zlK/Wa17xGzWZT58+fj4KC50XQ/oFrgnFAvtwN4aTUAyMh1uv1WtPpNJJwxJFer5dzHXg1HLLn2RJcH0TdLfGNRkPNZlOSIllFcIFMck9arZba7XZ0QLA2vKKOpb9YuWYMOAg8wwDxAzEFoaDZbMYcCkg+BJ65Y5cOMiMg8eQveIaChyMipjAWd48wfs7NH9ZTcecJf64QL1iHRVcB4gxzhoMEsc7BHPI5xC7mjvMVw0vdNcK1co1FlwTPpgs3XF9x+8miO8nFiOOOm/1dnJCQkJDw3JC+hxMSEu5V3JCgkGXZRNLJwmt/5PkcCxKw2Ww0Go301FP7gm6v11Oj0YgVUHqmm81mdCVARopOBKqR5B5IhyQ+y7JImOv1uur1eqwMM5bJZBJbJah0Q8LYUlFSjshJir3mRVu3b8dHVZhjFyv7iAMQHoLkIDlUhiGVXBNzwbm8Wsw8S4eCCm6PkydP6qGHHtLOzk5OeHCihvBBkKATdgi/7wbAdXqV190ckHXcB27p5/j1ej3uDMHODLwXwg75ZR65Tmzt3A+//5JiOwKCEY4KxsD88z5aX7xy7a0Cfm8hq7yXMXCPJOVEErfie0We15gr35aRLRs93BDyXZx3rt1bQPgvzxYtNvwOdwUiCPPiogr30cUBdxcgDPAen//iOvDn1PMjXCBkvPye9YR4wGu0a7BWiy0YLlIwN3wegdEFsuOOm/ldnJCQkJDw3JG+hxMSEu5V3KxdHm4qsNv3+/1YpcXST7WaZHYp3y9ftCp7BdWJBQSs0WjEqrS0v0VhvV6PhMNJKdsbSoriBmQdy7TnJ3iwn4+L39dqNbXb7ZhpMBqNooghHbYBeGUfxwI98DgGqD5D/D1kzy36kC/mi/DFBx54QK961avUbDZ14cKFSCKn06kGg0EUDnq9niqVisbjcTw+jpEQQgy9m8/najabMXiR+yQd2vppgxiPxzHp37evRDTpdDqRkI9Go0i6nUh7TgXCh5N6rhnngreZ0I/f6XTimNltAvIM8fftLBkn94djF90i3HN2s+D+MW4PH+S9DrZQdNeDOzhcuEJEcleKk21/v7treKa479zr2WyWa9NAqPFnjOuQlHM++Hi80u/rsCgWMAfuNPBjF4UGnxMXMbg2FxxYe57j4PeX14q7uiQkJCQkJCQkJCQkHI1jKSh4r7aTZKz2Dq9+Qv49dX+1WkWCx3shvFTocUB42j2kC4IISe10OrFvHoKJXd/t5GyD6NV+iIvvnOC7OhAI504A8hIkRdHAt16kDcFFC6q9jB9ixX8JJGSeu92uTpw4oXa7ncsy8Io4DgE/HtVzyKuk6BSBSE6n0zgXkECEFHcIQErdaeCVfAQIbxdxwcQJKS0LwLMS+Iy3UXguA24P2jKABzB6+CVj4b8+J27N59rZKaMoUkiKv4MA+9xwDifn/juOD9nHJcH8IIQwr77G/ZjMi++I4gIXIg2ulPV6HXd58CwJ1odX/T3fwbdwLToIGA8OI7++onuEcXt7hG8h6r/3a2Z++R5gjKxPb5vw9qWEhISEhISEhISEhEMcK0Gh2BMPPDeB3xcJCATOSShwYuVb2znxcsLhxAdyA7lvNBrR+g55Zk97J1yQGQQRCIx0WKGnlx/RoNhi4bsfIIjQ7oEQUezxP6oKzXWST9Hv97VarSKp73Q66vV66nQ6mkwmcacA3j8YDKKLo1wuazgcajgcxswDCCjtC/TNc496vZ5arZYqlYpms5kajYZ2dnZUKpXicRBuyLGoVCq5/nvuI8d1AcEJPdfrLgIXFJgjeuhxePiag4APBoMoSEGwvS2Fe+nr0ck/5/bKO44U3BeLxSLuYoJTgjFwHq4Jku1iCefzkEInx772yIRg3fp2qJKicOWiANfC74oCkrcgFPNBPHSRY/n43SHh95fPIygWwxVdOGEM/LeYpeJtC8UsDOaEMbG+eX5csEhISEhISEhISEhIuBrHRlBwG3ORlFCFp6cbglSs+HvifrVazRFxHAheJUdUgIxRmWc8xSp5q9VSrVaLRAdyzo4QIQR1Op1cOJ+7D2ixoAKK2CDlK/t+bsgmuQg4E7g+CFeRpBWr6BA7BBB68KXDpPzVahUFBVwXBBxyLRA9RIdiSr/vgMHcsmMFpNBbNZywsg0gBN630/TMBI5J5gJjcCJfFJGKgosTReaUNUBrBdVrxsy9dFLs2RlcrwcLemsMaxNHDPeOufM2CdZMUbjwrApvmXCHgrtVuGZ3rUwmk5iXgBDk7/OgRxdtWIMe1sg5QVEw4Hl1UcHXEveG+8g6dGHPcx+4LubS2xvcfeDfE6w7F9889wTRyLeSLIpiCQkJCQkJCQkJCQlX49gICsU+b+mQ4Fer1dw2e15x9Uoo4kOr1VIIIVb8nZgRWOftCJCXyWQSSSzkwqv9Xu1k28XJZBKFALfauzBAJRqnQ7PZjETMe/v5nKS4g4KkKIY0Go3clom0WzBWQiohSIDgRYQEyBJkbLXa30Lz8uXLGo/HMZOC3TEgxVwDQgNzz3id/PIZaZ/AMudcAy4MCCL5A4hHnpfh8z0YDHJVe6/I8xlaCJhfxgqp9Ko8a4s5nU6ncTtR1peLFU7U+RkRAIEEEus5EThjWFtcG/eKe8FahegiGhDAyFwXq+fuivH7wc9+HbTnHJVB4ELJbDbLBR5yXcWQ0+LxeT/jhPC7Y4B76Ls5uJDIs1l0GBAOyeu+RWSxBaI4D97G4C4Gb6fy63XBLyEhISEhISEhISHhahwrQQFgRYeMSYoE1PeLh0B7RZJcAUiJb6dHsB1uB8i8dLhTg4cDEvxYrKpCOPf29jQYDCQpVte9TcFD87wCjXvBxQkPLPSwR7BarXTq1CnV6/VI9tjWkuMhAjAPVFoh8u7Q8C0HcVg8/fTTms1m2tvb03g81mKx0NbWVgxkHI1GWiwW0R3g7QdOlqkoO0Ecj8fxHgLviYdgO3n0Yw+HQ/X7fV25ciVW0cmgoN0FokmVnOMVdweQDltBvIWGIEZEIs4DyXRySkikk/7iPS7u4OEkG/LL/cStwP0jT4PMDNpjHMXsA+CCi7s2uG7fSYTnxueFZ8JdJpB3nDXejlJ04XB+z07ATcL99laeo9oXiuunKD7wvYCoxPt8nLgW3E1RdG/4c+hj5j4WnT4JCQkJCQkJCQkJCYc4NoKCo1qtqtvt5si12/ghZ5CuItGDPBPQttlsdPny5Zxl27eTK1qlJeXe479fLpcajUYajUYxEZ+dEnAJeBYCNnVIqVfeIWu0FziB5Zo9lA7yu1wuY+sCpMf7wX0HA2z7DoggO2dwvL29vfjf6XSqUqmkEydORFLuoZWINk7MPMuCnyFotGd0u904l0UrvIsx3GdaKwaDQRRwsixTq9WKbQrelsJcsI6Yb3dQQIYRXRgHIgrCkxN21hwOE+mwPQIxxdsEaNvw+UFQ8FyBYt4DggLEHyLtoZbF4FDuKefyHIBiK4i3xDhh9xYE5h9hhueC55E54t7SbuR5B1wv4+X+Mm4fl7sCWKvcS9YT53NRAvHPnxdfd8V172sNoYFzuejjzx3vSUhISEhISEhISEi4GsdOUICUttvt+I98tu+DOGALp1IqHZIievPd6k3VdTKZRCLtpFdSDHyEkBcr5Rxjb29Ply5d0nA4jJXcSqWibrebczNASiFA3mvv17pYLKLTwMml27K5Bn4mnR7CByFz4sjWfVS3GY8HO7bbbbXb7UhWV6v9bSL39va0Wq3UarXU7XZVq9U0HA41Go0kHYbi+Q4VXnGWDkktrgG2dHSBg8wG35YQcSPLspjnMJlMtLu7q9FoFJ0fXtX27Rk9U4HqvhNOdgeQDnfAQNAZjUa5tg1vA4CEOgl3F4m7H1yY8pwJxl4UBDw0050QHjKI0OBuCcSqYpWfvxd3tzjqOSu2Krh4hpjBHHibDmTbP++7WrhDxINKEXxc9PEdVphDJ/suvjEOvw5ve/DrcodGUcDiHO4i8fniHiRBISEhISEhISEhIeGZcWwEBa8UOwmAcPsWem4LhzRSoaV/n+0XISzuDCgG2UF8nZg7oadiiSgBuXbrtVv3i1Z0SBAEx3/m2PP5PFepLlZy3c1AxsFyuYxCiKRIhiBmPhc4BHAntFottVqtmGnAmK5cuaLz589rvV7r9OnT8ThuXWfeqA5zL3wXC+aPOUIAQVDgugeDQRQqPCsDAYf2EgSczWaT2wmCeXILPNfs4wVOJvkvYgLtI2Q7IB64EMS4cBBIyoX58VqWZXE7xaLYUmxncWHB4RVzF8DcsVJcb7ynuG2kiwpO8nm/PxO85o4BFw98/nyNeq6Bn5+x+hx5W4jPgeeOuJjjz4y/5tfDdSOmeUZIsfXDvy8Ylwd/+vOfkJCQkJCQkJCQkHA0jo2gALxCS6XRAxghZ06yID2E+jm5hJjQq84OCU6WIBRFazxZC+QMjEajuM0hOQ9eyYSAsCOE96YzTt+ZgGotrRNUSv3afFcBHBFO3r3X28UEdhioVquRmLP7QLPZVKPRiJZ/D3jEIbBcLjUcDjWZTGIWAy0mngPh1VwngZBuQjJxI3imhaQ4r8vlMrfzg9/zyWSi8Xicq4RD+Lg2332AewaR9Mq4W97X63VsHRmPx1qv17ENBFGhmCeQZZnG43FudwsXXbw1wR007iRBXHGBgUBRF7yACwZ+XZB8zzHYbDZRJHLRDNGI90DQi1teehtDkVB764M/K6xp2iEQWHAecEz/nF8T6+GoLS/9vMVwRm8hYZ58HSBAuejEOVzEcWeH31cXDBMSEhISEhISEhISrsaxEhScfHtvtqScndqr7V557Ha7MWyRLAM+02q1IqGBXEL2pMPtHfl7vV6Px5MUiSe2dYhJcetExu3k3qvEkC8IjpNA7+l3u7tXk6U8qfTqMwTc7em1Wi22FHi13sczmUz01FNP6dKlS5G4LxYLDYdDXbhwQe12O+5+ANGHBLKNpnQozMznc00mE1Wr1biNZrPZjO8dDodqNpvabDa6cOGCBoNBvNfcU0QN7OyQfASJ+Xye23bS54zrdneHk0y/fgguogxVcxeweL+TaF9LPkbfMcAFCYirhxciiHA8HCWl0v5OGlwDn/fr9Mo/FXm2+2Qc3BPf1cKdDJBlnzffLYWxOjwXw8fB/HIeRBxfk+6ccDGQuXeRzR0RrC/m2QUlXwPuQPKATBeWcKAUhRUEj+JzkloeEhISEhISEhISEp4Zx0ZQ8Opnt9vV9va2yuVytI17DgCkwlsUIIPVajVW0yHS0mGmgPd/e+81x6xUKmq1Wur1etFWzy4DZAuQPzCdTmNlm89Kh7b0os3aiS2fYUtDJ7LsosDOEcVKMXMhKReSR7CjdJjhAOlEBFgsFnELQsZBVoHbvjnPaDTKzbnnJSwWi5y9HDLoZMyJZKVSyTkCyEkgMwGSiluCMUiHCf68x9sZcDZAMH2eSqVSrj3CcwPYqrJararX6x2ZYcHaYvwIAE40XaSBmEJ0CSosZgwwPrfkk4uAuOJtOu5c8HwBBALaYZgTF7hczPBcAd861cH1+nwf9XvWFWNk/XsrUaVSiSGYHojq7gR3JHiQKmJe0enj14erwq+7uFZ5nfG4qOjuBr5D+GwSExISEhISEhISEhKeHcdGUADlclmdTifa5PlHvqRoyff+fEnRxt9sNmOlFjeBB7l5BdVJoFvQt7e3dfr0aW1vb6vT6aher2s+n8fcBAhoq9XKVdH9mL7rglu3PaEe0jKbza6yw0OmvdLu6fdu03Zxgp85PmQL67lb1BEaNpuNRqORJpOJJMWQRierXBtzXq/X444IELvFYqHxeBzH0Ww2Va/XryLo5CZAvgeDQST2kGIEEq/cMyaINY4O1ku5XI7iDsQWwQhyD6lFjOE9CA5SPowREcIFEW+VAezowFz4dYcQonMAcYxj+RrIskydTieeq9VqqVwux906uFesN4QUzoN7xFtQ3KkAINhexWdnCgQXxATeRxsJAkQx34B74uvYWwWK2RA4eoo5EDwz3s7iWSA4HlyY8TYW7oULTi7s+X1ExHPRgLnyfJPi2BMSEhISEhISEhISDnHsBAXpsF/dnQSSopXeLfYQMyz19PmPx+NIkqmMY5On6k8/vPfnt9vtuCUh510sFhqNRlosFrkqp1eB5/N5LiQQUuxVb4CbgPNCyLy6WiQyTtgAAgVEkAovwsR4PM59niBF5pd5QYCBqNKD79seep87oghZDwQQIqA4oZcOcxa8DYC5LPbKO2Hnej3sr1arxf82Gg3t7Oxoa2srOiQg3V4tZ3xemeY8tK80Go3oumD+3cnBtRQFm0ajkVt7LuJ44CBOFF7n75JyAoWTcye8OBz8Ne6Tu1W4J4vFIv7eRSRv9UDQKO4+AjxjpN1ux+O4OOdiGnkO5CcctZY9H8RbebwlA+EJIYPnnO8DBCJECQ+SREhgvfKe4jNUFBZ93eJE8bWZkJBwNEqtlkK3c7uHcU9gfeGilMJiExISEhKOGa4pKIQQ/pWk3y/pQpZln3bw2glJPyLpYUmPSvqaLMuuHPzuOyR9s6S1pD+dZdnPXe9gqDxDGKgu04c/nU41Go20Wq3UaDQiuaQv2i37kApIJoTXybB0mNoPPF+B6jACxXK5VKvViq95Bd0Js3RYCS6SsGq1qtlspr29vWj7J8TQcxc4rqRY2eZ43iYRb6RlBCC8OHmFcCMSOKFk60bcGFSm2cZxs9kPRlytVlFwgXRBAJ0EMx+QTe9hR+zw+8Y9winC79zWzr3B+XDq1Cndd9992tnZUaPRiPcnyzJduXIlziPBmR60yPuAbzUJyWUtOSCvzBu7ZWxvb6vRaESnB2JNo9FQCCGGRrKOuafeXlLs2fc1wPotEnjuoztUnAAzDsQPbxNhnjl/cbcFb/nAcYEQQ/Ai42QN4JqgVcHH4XkGReeOOwy4z1yf77rhYoBnK/iuIv6cuDuB++rv49zuqHBHTLFl6XbjhfwuTki4FkqtlsKLzmj3c87o4htu92juDbzyB05p8xu/lUSF24j0PZyQkJBwNa7HofD9kr5X0r+x175d0i9mWfZ3QwjffvDzt4UQPlXS10p6jaQXSfqFEMIrsyy7ulH7CFSrVZ0+fTpa9En+hzBA2HzbQOmQXHn/Na9DorCE0xaBkMAuAcBbISC/o9FIe3t7qlQqarfbWq1WcRtDSDoEzSupxZBJb2ugmu3uBK9aQ6ogg7yPNg7G6HPnBL5YHaYK77tBIM7glPAtJl0cgAgyBu6PdFhRZjcHrhVBwq+N43hPe6PRiPPBvEGEcQvQxuBhmadOndJDDz2kU6dOKYT97S7JUNjb24uOEeaFyrkT7Hq9rnq9rmazGfMAGD+tJ4gbrAsIMULXiRMndPLkSUmH2RbMEX9YN6zT6XQa3y8d7prAemZtukjFvfRWAjIVqMZzXs808BYbb53xXSZqtZra7XZ8ThiD30Nfi/xxJ4a3WriwxzryXA6yNxzeosE5vdUB8crXs7dvHOUkQDxgnMUMDheWvMXHBa1j5lD4fr1A38UJCc+GUqOh8e/9ND3xhcfq+bjr8ZGv7+nlP/Ja6Z3/M/d6eXtLm5c9cORnsvd9SNqkx/4m4vuVvocTEhIScrimoJBl2X8LITxcePkrJH3hwd9/QNLbJX3bwes/nGXZXNLHQwiPSHqjpHdcz2C8sgjx5B/6tB1IUqfTUbfbjZVbSbG6DRmm5x7BYDQaXWXzdkJOqKKfnyBDyCXV0eVyqel0miOgwEmJ9/5DrDmupLi94XQ6jWKCbx0pHVZvcUt44r1X2yHLvMet5bQ4MH5EDY7lQYseAjgajWKgHsSbXRqkQyIs7e+iAVmEcHNeXmfOfNtMSDYkj2o4987bKpifdrutnZ0dnTlzRufOnYstDpDXT37yk3EOyIRwi/56vY7Habfb8XysvxBCFFm4dirz3ItOp6PTp0/rzJkzOnXqlKbTqYbDYc5Z4FVvrPuz2SyuWcYLaUY44x66IITDA4HAWxg4JwSYthTPduC9wN9P+4iLEz4+7iGf95YjH18x18BbQhArfIcLB88Qz3u9Xo8uJJ4NnyMXALxlxgMnGUtxrfK6/47nk+MVBY/jgBfyuzgh4ZkQ6nWN3vIZevILUmjp7cAjX9PSw63Pyr22d676jC6Rh069XqVlptJ6o9Ivve8FGOHdjfQ9nJCQkHA1nm+Gwpksy56SpCzLngoh3Hfw+v2S3mnve/zgteuCW5m9n7lUKuUcBtjuJ5PJVdvaeSsCpNv7rSHPTib442F6ECDPbMDO7dVeMgk8vZ5qP9cEWYXIUzX16jz98fTtO3mjGgzpRjyYTqexcrtareJn6/V6rs0CQu47Pfi1Q+bc1YBY0+/3Va/XtbOzo2azmRurE3UyCNx+zxhwQUyn01zQndvqEUUI19xsNlG4QEzxiv7W1pbOnj2rc+fO5Sr+9L4jEOHM8PVEuN/W1pba7XYcC9t24nJhThFLOE+lUtHOzo5Onz6t06dPq91uxx02uLfMN6SaNXv58uV43zyTw1tcvFXmKNs9FXnPBPDrYz06CXfni2eD+Pm91YPX3KFQzLtw4Y577nkM5XJZ7XY7CoLuajnqetzVQSClCx9+7hBCFCqKbQwcqyj0ebAmz4S/5q0YhDveAbgl38UJCUeiVNbgK1+v8597uwdyDyNIj35Z9drvO8AnvuQgbHYtnTvxOaoNVqr84ntv1ejuVaTv4YSEhHsaNzuU8aiSxZH/Kg8hvFXSW/01J/3Y/D2Uj+392u22yuVyTM4ndI/KL73rkB3PNijayZ1wsnMApIpgQwgWggLZDBBp39EAMsu4vZIKkWT8Xsn1Hnrs1lT7/XdOCL0VwQMifWcFPw59+4wNscar6lTAqVQzvy5E+BgQOZy0Mjaq+svlUuPxOOfyYFzuRqEyTZYDrS3NZjMGR3J+XCrtdlshBLVaLTWbzSjqsBtFp9NRo9GIawMXRpZlOnPmTNxNhIyCUqmUE3kajUZ8D+JApVLR9va2Tpw4oV6vd9W6QhTzto6trS11Oh1NJhM1Go1IsBFSWCeseyfp7p7gmE6Y2RUEeKCmuyRwjPCs+fs5twsUODO8vYHfQ7pd/ELU8PN5wKoLH6wdvxbPZeBZY60wRnejIAxxrxAI3OHijiGeUUQn1r0/s+66kK4WP+4gPK/v4oZat3JMCXc4dr/+jdr99DtCaEsoICtLT/7OoPK0phfVPlv1n3n37R7SvYD0PZyQkHBP4PkKCudDCOcOlNhzki4cvP64pAftfQ9IevKoA2RZ9jZJb5OkEEL8gvWWBAgTPejlclm9Xi8GxEHQIafkHJw+fZpzRLJSJDKQJ4SEYsaAdFjBdQLN5yCy7k7w4DcHpKgoengFGqJd3P6Raqz/YRy+WwGZAew44K0GnJdjeQXbxQ+v3rv1HYcBZE1SbPvwyrH32rtt3ltRfDs/xi4pF9DIcXq9nnq9Xq79AnLpwpLfI+az2WxG0QHBZ7lcajKZROGg1+up2+3GLAx3gvB+t/sjeNAi0G631Ww2NRgMNBwOo/jUarWiMFMul9VqtWK+BC4MxoDrwd0G/jPr33MzPIw0HIQ+cn89M4D3cAzO66GSbu/HeePOg6KY4MIahN+3w8QlQ3sKWRg8S7R3eF6GXzNAnOO4vIdxc47pdBqPg3un0WhEEaOYzeCODdaNz5mLcdyvY46b+l3cCycSW0w4GiFo97VpedzpWDczPfkFFb1ISVS4iUjfwwkJCfc0nq+g8JOSvl7S3z3470/Y6/93COEfaD+A5hWS3nW9B4VgssUfoCccwuLknMrxaDTSeDyO1W0pn+De7XYj2UGsgIhAZiEiEHEIB6THd1jwCq6LAJ4H4K4BQuA8f4H3IS7gBKCS7zkPELn5fB7FBO9Zh9wTPuhEGPIOwazX63F+eY87KTy8Drv6YDCI8wiJdBcJWRBkJThRZq6o/GNX93YQiB62c2k/l2FraytXrccNQTYCu1q4eBJCULvdVq/Xiw4HRKhSqaTRaJRrr+D+eGaDt5hwTz0Po9VqRbfCZDLR3t5edJ8w5mLoImu50+nElhjuMWvcRRnWmZR3FOBiwZbvbhhf196y4McGrAe2UWWd+NrgGoringsO3DsEBhwS5B8Ut1DlvkmKIoO7Bli7HgRadNVw7QgPtMn4M8f94fllfMyHB7C6O8Z3iHEh8pjilnwXJyQU8eRfeJMUjtfOJwnPD4gKD6zfoOrPv+d2D+duQPoeTkhIuKdxPdtG/pD2w2ZOhRAel/TXtf+l+aMhhG+W9AlJf1CSsiz7YAjhRyX9pqSVpD9xvWm2pVJJOzs76nQ60YLuRMmrrf1+X8PhMBfI6GFvZB5QeaxUKup2u7mdE7wy7zZuSdFGjSOC99FH733ensfAaxBTbxGYTCaRuNOiwRg7nU7c6tF3juD3ThRxO3hege8wAQFEuEBc8ZYGKtwQp+l0GgmZpDiXvhUn74OIQebc6YBQgijiWREuPEBa2ZaS6+Sek39Qr9ejEwR424uk2ArhuQSQ506nEwUWzsUWjlTqPU8C8otY43kIxV1FcLWUSqXclppnz57V2bNnVS6XNR6PozAFOW82mzFvIssyTSaTKCohLOG68bUFCfa55HW2r0SEKFbhiyGGXFur1YouBQQijsl1FlFcmy5cuPuA9xTbEdz1wLNZbHtBMGRefAcTdx74upYOhTWukd97loQLZe4OckGH/Apfd8cBL9R3cULCUZieSWLC3YR1M9PjX1TVi6evV+m/p7DG60X6Hk5ISEi4Gtezy8PXPcOv3vwM7/9bkv7W8xkM/e6IAtiipcPq/2w203g8jin8kiLB8G0B3cIPMaIHezKZxF52r9a7PZ+KqdvgV6tV7O1314ITJu8Fd1IIcaVSjiBAnzlEe7FY5IgZ43ISB9HlZyfvfBY7PQII5LcY/sfYiqn2vJf/Ml7PB3Ay2O/3o6DAjhuSckICQgUtAQglLlj4uSGCTuxpISAcE9LuVX3mwDM4POSQObty5Up8P2sEhwVCAGuEXS5wZzAG7hHXdOrUKe3s7EhSblcH5o+sB0m5+UP4GI/HuX5+F7zYkcJzRWjP4NrdycC6Zs34XFar1Thm7if3zdce42QMTrJ5ztxBhLjkzwVzURS9uEbPgOAa3Kniz5qLPohViCyTyUSj0SjXFuJOE2+FKP7Xc0l8B43jFMz4Qn4XJyQk3P1Y1zM9+mUNvWz6acre84HbPZw7Aul7OCEhIeFqHBs/r5NISVel83sOAb3q3h/u7QkQCsSJEIKGw2F0ALB9HUSbcxbT6iHh3uvvafqAKnsxS4D2DarTXBN5AJxD2q+0DwaDXIgcpMpJnLs2sH27aAIhhvhCEBkPoXYhhKu2CPRKejGYD2EC0cPD+BBa3HXBH87lFX9JcT64HkiiW/yZE9wLbvX3thTGgvjTbrdjawTj4JhgPp+r3+/H++uOBXb22N7e1vb2dhQouNfeSiDtiwk7Ozuq1Wox48OvlfUmKZc9QFgjbQOMdTab5VompMNMCG+z8ZYeb6vgfnqLDoGVtIj4Gkbg8gBGXxOQa+aa97lziPsMvPXAwz95jhFGKpVKFMS8hYfz+Jrnd8yl51R45gTvYy2yFvh9MdiSdc/5EERYtwkJCQl3KzbVTFnl1obP9v/om3TZwjxf8dffr814fEvPmZCQkJDwwuHYCArF8LR6vR53O4D4LhYL7e7uxgBCiCQEmxYA7O7dbjeXtQDxxVLuQXce3kjlFLcD5/dkfe9xpzVgOp1GkgZB5HyQ82JmAFsS8j76/akSL5fLSJwg+9jc/b/0qK9Wqxg86FkRkEInqpBSdlPAiQAJ8wA8qtBH2cF5zavfjJcKv2dNMKeSIrkmhd9JLOSeuep0Otre3o67JCAyULWm3WFnZydeh4daepXdd/HgHnq7A8GPCAW0S8zn8+gEgfR2Op14L5hDroewROnQIdNsNqPjwHMyuKZSqaRmsxmdOi76uJvC76m7SVy04e+ESSJiMR/ubGBdeEuKP1PessA6921WiwKE5yn4M4MDgzXuQg+uAMJSvT3Hn12cDohkZH34fPo2kL7+iucECBXeKnUHZCgkJCQk3BAe+ZqWXnXl5Vp/+JGbe+BSWeOvfoMuvS7L7Xfwkb/5Wr3yryZRISEhIeFuwbH51zJkxJPipcPt+BaLhUajUawQQ0SzLItk16uMWMippHo/OiSo2AvOazgjEACooEI8CfaTFEmwEzK3TEOAcE9AvCBKtVpNw+FQg8EgR/TH43Gs+OOc8HA7FzwQLiBj3ioBgXbrNmOlElwMcvTr4FqorPsxnMB5HoU7RYp984Bx0nJA0B/XG0LQfD7XcDiMW3PWajV1u13N53NdvHhRq9UqZgdQdScXYDgcxjlxFwoEtFar5TIf+B3nbzab2tnZ0fb2tiRpMBhoPp/H9ceckafg64kWEgQvvy++gwnChLsNPCSz2L4AweXeMe/SoYOHa5EU1+3W1pZOnjyp9XqtyWSSywt5Jkt/sVXEn0fmyIk+1+/PgretsK7diVIMF/VcBQRFd5/4ezkfTpYsy+L3A9eEUMW1TqfTeP/5PMIbbR/A25YSEhIS7mrcoriY1Re+Tk99/hEHD9Jvf/dr9bI//85bc+KEhISEhBcUx0ZQ8H/4Q5DX67Xa7XYMsYOIOGGVFHujyVgol8vqdDrqdDpRUOC45XI5vl9S3FGBajN5BnyGCrMn2UP6/NiEKmJ3JyyQqrn3lkNKO51OzhUAkaZS6lZ4PgOh8nYPb2fgOiGfHkQJ4WMuV6uVGo2GOp1OrJpLisIC78Oi7lkPiA1eIXeHgVf6qf47yXT7uY+X1yaTSXSW1Ov12Cdfq9U0Ho918eLFeC5EAdohhsOhVquVRqNRHDfikoc0Iu4gSDAu+vK9TWA2m8XwRc+XYM7dpQI5peWF62NOIdVkNeCkmM/nkZzjimA+uNeVSiVmMuCKKApZ3hZQr9fV6/W0tbWl0WgU3SYIFh566u027rZwIYT7x7rzgFN3TgAEJs+vKGYiuIOE8yPmsc68pcbXCtfJfPrxPEODVhLG4e9xkYdnkNd5vhMSEhLuZizv66r80Yqyg8JLQkJCQkLC9eLYCAqnTp1Sr9fLbacn7ROG4XAYSQZE2okMlUZIq5NBR7Gfm2NgA4e4ea7BbDaLWwxCxiBY4/E47nwASSJwbzQaaTabRfICwYTQ0AogKVbRG41GrMxDgqjC0ubh4gdk3skgVV3psKoNkcfVwbjcWeB5A7gJINvS4baVHlrJXNPm4CF2Tla9baVS2d920B0D5Cl4iwntDlmWaXt7O4YxbjYbDYfDOB4PvnRxZTQaxXYJz6GAhONS6XQ6uXH4GqCVZDQaxfspKRfK6U6B9Xod1wShjZKiCIXIwtyNRqOY5eGZF8y3t9UgrEmKrRcu4HjAJSJGtVrV1taWOp1OXNNOtP0e+drynUBon+FaabuoVqs5ZwWuGSfnknLik7+X588dD/zXWyd4D+dmjHwH+JzxHhcGvH2GdeLrvTgmMiHcuZCQkJBwt+NjX13Xqx85pdVTT9+0Y1avzFS7UtdiJzm9EhISEu5mHBtBwUmMV73pXe/1etre3laWZXELRidDVJvb7bba7XYkz9JhFbxarcbtBiEp3iIgHVq5CdKD3EuHtnIICMfgT5Zl8fjsegCZ9f5xt3UvFotc+jxVag9dREyo1WpxZwG3aDMXZE9Iyu1GgfuBczDeYu+6pLhLA0IBZB9C6uf2EE0IXPG4uCtoM6B1wQmjV7Y9Xd+t+awR2g5wFfT7/ZzDoZg7IB1mRdAuwty2Wq2YYYGQg0DBvfCdJLy9gJ8RGaR9os92powdRwQOh/V6HYWq4XCYC64s2u4lRYKPmMBnyWlgPC4GuTuBnVN8nbgYwty7w6TZbMZ11Gg0cuvW23UYb7VaVafTyblhuJ8u1LBGqf67yOC7RHAergNw79ztw1rx9VLM9ygKH0XRjMyEYlsJQkRCQkJCwnNH9r4P6sWV1+oTX9LV/ET+/207Hzxe2/ImJCQkJDx/HBtBQToktV4phXQ0Gg11u924XSREwiuhVLEJ0qNtwrMT6FmXlCNX0uFuDb7dnAf7ScoRZsjTZrPReDzOVYkZJ8IGBAVSg3BCD369Xo9igrdSeGUf4on9GxEFUoc7wj/jAXnel+9OAhwBXIcTQq/eFq3nxZBKxu+uEcgkhNWr+9xrF2q4JgIrydNwMQRSm2WZ+v2+VquV2u22Op1OLh+D87EFqNv7G42G2u22ms1mbDuYzWaaTqfRsULeAD367m6ZTCa51z2A08mzi104WZhzSK07F/z+VCoVdbvdKEp4jkYxL4NrZt5x9CAMOal2kcdzLyD7tJdIiusSQcFbIRDbaBGRlHO/4LLw62HNuZuFY3imCWvS7yXv9YwSF5xcYCuKWqw1BAT/vAsJbA3qgY8JCQkJCc8P2bvfrwfDvqiAU+HMr0rdH0n5CQkJCQl3C46FoIAQQBUdIgZ5a7VakSwOh0NJ+VA/nARkJ3S73dyuD5AbCItX2H3rOUiPW8DdMg9pdjGDqi4iAOSSKrhbzZ28QaIhU5JyVVcEDfrt+T2Entch9BAynwsPc4TIcxzvu4c04QZxYoog4K4AjicpkmDEBHIZcFJA2jz4EQeKh0X6TgYcm9wIfg/xbzQaarVa0SkA8SfYsdlsqtvtarFYxHHgssCl0G63tbW1FXeMyLJMu7u7sQ+/0WjkgiRxlXANBB76jgoILQRY+g4BZGYUHSd8FuGGXRwQJCDwzIGHDrpzgPe3Wq04BnIdGCtiBMfxliHGyH+LrgdeR5Si1cBdB97WUcxXQBRwUYRjeiYFohWCh8+hOw9YK56TICmuQX7vIoXPG2u8eI9ccCw6ZBIS7mU89PMrPfYllVsW4JdwF+Nd79eL16/R4uR+0aP2X3/9GQOBExISEhLuPBwLQQGbddEmDlnZ2tpSs9nMEVv60J3o3nfffWq327ntJr0671VoSTEXAeu3CwKSIhn19gbI53w+z1nRvSrs4W+ScqTae9idOHrVFYJYbMuA6Hj1tOiCQGiArELq+NldFR5Myft8+0bfdYI5o9rP5zieV5RxS3Bcqt8+t5IiOeU6vaJfzHFgi0ivknvLiVvfERxYQ5wft8Fms4kiFa8TuOhuD1pRaLGhRQIRi/kvZkTQ1oFohEiGa4Y5ROShfcHdCwhCCFK+Wwg7j7igIB3uXsI9oG2AMeK+8Dlz8aqYN8G9lw7JNqJVMSQVUcnFBD6HeFIul+OOLeR6OKH3dhzWFmsUwY6x8Tzh9PCQR2/tKLpomKeioODig7tsii0oCQn3Kqo//x69vP9ardtVffzLa9f+QMIdhQf+60br3Su37PjZez8oUq2SlJCQcI+jVNalb3njLTn06X/1XmXL1K76QuNYCAqSckQBYlmpVGJCPRXkfr8fK5iQSMguLQ2Scn3b3qM+mUw0Ho8jYazX6zH8D3HAtxvkOJBmFyvc4SApt3uAk2V3YLgLwhPkXUiAXHqPu78PQLyx/3uIHOOAUHq2gFvAqUDzO0g44gDCgu9GUKyYe6uKh0s6SePzXvnmPVTdue9F8oygIO07MfjZ2wz4DMSX9o9i3z42/1arFUUs32WDXS9OnDihXq8Xcw8IRux2uyqVSrpw4UIkvb7WCHx0a76Tbr8njMtdMpLiOX3tUul3VwTH83WDaAPBnk6nkZRzXsaL2OH30NuAeA6k/BaLCAfe2uJtBt7S8Ey7Qvi6ZnzFsRXhLRIe7MgxEHo85JO55bPMN6Il94XzIaIVAyATEhIkvev9qlQqeunqtfrYV9ev/f6EOwbtj+xqfbDLUEJCQsKtwIU/8XlaN6QsSJP7b03BZvFn36CwkUpL6cw/+ZVbco6Eq3Gs/rXMP+IhOtjSCbW7cOGC+v1+bocASbFK7ztE8DsI7Hw+13A41GQyiYGFCABOft2FgKjBz5JyIgAkGFJPBZdQPt5D+wOkluMW7dQQW2/38L5/78OHrLr4gDMCx4L3iVPJhqg7ifLwPN/toSh8eH5BkfxVKhU1Go3cDgp+7OL99Sq4t1/QwsDxsiyL229yD2q1mkajkTabTXQWMBcQRsQCxkibCO0MOBjcXYGo1G634+8ZFxkNzWYz1woB3AHiO1sUxRcq6pKi+OL3gmvx7ApfB+4uQAjy9hx3BxAoWcwZYF0Ut5vkeWBNu1PgKLCOXXDjPjv5Zy16ngmv4Z5hTMXPcU2sY593BBeu66hWBXcBIX7gmPCg0aJzg88mJCTkka1WKr/j/Xr1I6c0fv2D+uTvTVurJiQkJCQ8O87/6c/T6MUbZbe4k3TyogOhIpM2f/7zdO57kqjwQuBYCAqQV9/lQTp0HCwWC+3u7mowGERC5n3qTtCx2DtpQiSYTqe5BHwqyU7Gdnd3NZlM1O12Yx89dnscE+PxOBIeJ9Qcw23j9MVDfFwgoFpONZv3AzIavB2Cc/BeJ6xexfbKsqR4LuaZnQKclHkV2nv8pUPHh5Ncxui97B4EKR2SNean2I/vWQS0a5TL5bjt59wqJlSgERNWq5Umk0kk/y68cB6uE5HJySVbQg6Hw7gjR6vVygkZ0+lUtVot7pbAOL2i3Wg0ck4Vz4bgfhBiSHWf3yE88NpyuYytCS7uIDYxR74VI+IJ53a4cOBhg+5+YH3hsEBoQXzj2E7ecR1w3VxDUczztgIXfRAgaF3h98W1jyOIXTUQMFyUQpjgOXVBodgS4gGMLtBwb3zduhskISHhENlqpdVTT6v68nOSkqBwp+OlPz7X+rc/fruHkZCQcBfiyje8Sf1XSpv6rRcTcgj74sLH//ab1H1MOvXP3/ECnvzew7EQFLCaQ6AWi4VarVYkXJ6e78QVEikpV210okS/93g8jk4Cz2nwvuvxeKzRaBSJT71ejyKGZyxAqqm6ImQABA+3fUNMvOot5QlgrVaLIYFeJeXY2Pgh8KTxI3qsVqvo0vB2D9/aEEDocBXgzuB4Pi7Iu7sSilVo7iPz7rZ0J/u4SbxNw1sfIMjtdjvOK7sVcO+xtUPGWSsQWs9agBhTPWfniNlsptlspn6/r0uXLmlvby86QBANcBRQtWdtIlIwL7gJuF5vdeE4uEe4Zq4NsYt59owP316RtUa7D2uJuS2KGC44IE4QSuntCu4yYX17mKe/7iKZt2wUW2mYQ19nRecB11UU5HiPO458pwWfc+AuGBw8Ll4xl34Mngm+G1yQ8+c5tTwkJDwzSr/863pg+7P1+Bel8NI7FplUmq6kzfra701ISEh4Dhh+7edq97XZCyskGLKStG5m6r9KKn/9m7TzA0lUuFU4Nv9ahmRi44aweUW10+nEHQzolYe4UMmXlKtq7u3taXd3N1rdEQQgHtjd3brt1XfpMBDOSQnkcbFYqFwuR1u+W6u9WuoE6CiShhPDAxu5Bq+UUrGmjYL3bDabXBAgYyyKHRzDgxndCu67NJTL5ShUFMkWQgTHkw5bTZzo0l6AwELgIHPnuQqeQ8A9hMgz/4gnBBtyH/0+QUQRc7xVwoMQ5/O5BoNBzCzw3QoQHLIsU7fbjceZTqdxThACPBeCeXcyz3gl5cIXIdu+DSf3jvdDuiH5zAkiiocReogh8+XnxaUjKboqGKevT+4jx2fd8zxC/hFsEFhwtUD4vaXCn50iPC/BQzQRHlyw8bXrgqI/o+4WKbbTAHZzcLHSnTUJCQnXgSxLCXt3MMJGeuhnltK73n+7h5KQkHA3IQRNv/yzdf6NOh47AwVpU5FUKifx9BbhmoJCCOFfSfr9ki5kWfZpB6/9PUlfJmkh6aOSvjHLsn4I4WFJvyXpwwcff2eWZX/8Os5xVSq9o1qtqt1ux/cW++SpgEKQCVqE+HlLBTZqEvwh6pDH2WymVquVq966eOGWbg+2QwiB/EpXb4lXBASIan0IIVagPQkfQNI81NArvT4uzu95CVSqIV/FJHsnjy4SQMS4jmazqU6nkyPLEDJvzeCPhyRybGz9CBme+u/3BnGAVo/5fK7RaKTFYhGFD8h+0fXBsblW1hBilYsD9XpdnU4nZmbwOm04fg+pcLPFppP+4n32rANCP/1+IJ75uL0VBkcB7oIsy2KgqIccFnMqiqKRpNyWnx5e6qQbccVbDPzzkq5ytXjuh7djePsRoqC3EnBvim0FxZYhF064Xm8j8jYaBD3PY3CRknXmrh13HBXzE4pi3O3EC/FdnJDwXBAqFW1qx+FfiwnPFWEV9KJfXqv6C++93UO5o5C+hxMSro3N73idnvjC4+Vcu/JpmRpf/Qa1/8Ov3u6h3JW4nrv9/ZK+pPDaf5H0aVmWfbqkj0j6DvvdR7Mse93Bn+v64vSqopMASLVv+0e7AiQcQARIcMfqDtlttVra3t5Wr9eL9nknXd5jD3mBqHiAG+PpdDqx2u3jcNs9FVSvXDvhhIhRLXZCX7Smc40QfOZGUqzqe38553Oy62SfNgLmwIUNRAK3jDMOyGyj0VC3243zIClXrfZKOoGG29vb2t7eVrVaja0AjJ9z+DghohD/2Wym0WgU7yvjI8jR8zK4bx7O5/kWPk/NZlO9Xi+uG7a7lBTvD3PLOTge5/McBHcKQJwhwC7YeLuN9+4jTDBOyDCCULvdjveK37HGiseDZPtaZz25GMSaI0vAnQH8zl0btLYsl8vo+MFFMR6Pj3wfIg2knufK58XXAwIT99HdOHzO5xixkbXEufmcb49aFCB5Bl0EPIb4ft3i7+KEhOeE171aFz7reP2jMeHaKC2Czrxro+ZPvOt2D+VOxPcrfQ8nJDwjQr2uZe9Y/htKy1ZJpYPiYsLNxTXveJZl/+1AZfXXft5+fKekP3Ajg/BKaLHC673fWZZFEuI2c0QAyB8tCOwAICn25WO192ozJMuJP8QDog8JXq1WajabqtVq2tvb02QyybVD+O4LXvHkGBAwv26ux/MZJEUS6gTPq9Ich1YHCJVfD39HcKDNwCu+TuogzFTP3X6O6NDtduNWnggQUt7N0Gq1otBBNkStVsvZzoE7UjyAUMpX1XEnzOfzOCZyBRBZyCqg8u0OCMboLg9Ej62tLU0mEw0Gg3g9EM2iOwWhg3tJq0axdYB1QgAkjgMnq7gfXDhg/SCq4VzBncAa5rqLwg/CDITcz9vpdOL1TKfT2AJBECOCEM8V68nvbafTiWNzdwoOB9qSEOHcKeF/d+JOuxPX4m4Pb+tAcOE9iGG8z8Fz5M8g8JYOd7j4c+sCxXHAC/FdnJDwXJC95wM6e/aNevzNSVS4U1BaBJ1+X6bOv09VuueD9D2ckPDsCK94iT75e47Pv50cl16fqf30p6j68++53UO563AzJKRvkvQj9vNLQgjvkzSQ9FeyLPvv1zUQs7rPZrOr0ukhahAl6bC/XNonC5DW7CChH2JYrVZjq8NReQRezeRYknJb2nGuEIKazWYkk5BWxsfxIGLYxFutVi4oDjJD+BwEB4cFLQIcF2LowYheTWUMEKxSqRQr+RBLb0nwinW73Y6kezqd5twenJsxI57gbmDHC8bqJI65gFR7UCV/INp81t0i8/k8bsEJiaY67T32o9Eotrns7u6q0+mo2+3m5hjy66IA95L8jr29vSjecA5EHa+Oc92DwSDu/OBhgewK0ev14hrkHjC/CF1U36fTaWx38etFCMD14hkSOEEAx/XtO/kMrSqQchfcvG2DOfK2BM8XOSpLAsLPawgiRVeH32dvpXAHgs+Lg3YXFxB4NjwAlNc5p8+9g3mmpcWFLhcajpOgcB24Kd/FCQkJdydKy6DTv5ap+yPvvN1DuZuRvocTEhLuOdyQoBBC+MuSVpJ+8OClpyQ9lGXZ5RDCZ0n68RDCa7IsGxzx2bdKequkGNzX6/U0mUw0Ho81Ho/V7XZz/djem+9VZkhcu91WtVqN/fkQhizLYi4CJKgY+HYwJkmHrgVJMaMBcYGxQpy8N1w63OqyUqloPB5ruVxG0cAFAYiukzWIWKPRiGIEVVMXUXxnBAQIT9YPIWg4HGo+n2s6nUZyzbkZN735zAVCDnkCjIP3eg4FWz7OZrNYPfe8As7B/fFdBzzdH9JHi4hnC4zHY2VZFne+KJVK6nQ6OWJK28RisdBwOIyEE8GDcRW3W+R1b0dgm0gCLt0CTzsArQ3j8TjuRuJbOrLmdnZ2dOrUKV26dCk6PajQI2AQiihJ4/FYk8lEIQS12+3ogJAOd0rwdeZkmvdIim0pxR0SuDdcA60j/A5Xiuc6sLYciA+4QRC2aIdYr9fR2cF9QYhxx0gRq9UqChI4DxBDuG8807gIuKc+D/6MsBYQ93wtei4G7/dtVJmvO0VQuGnfxWq9UENOSEh4ARHW0tl3bNT6seRMuFVI38MJCQn3Kp63oBBC+HrtB9O8OTtgN1mWzSXND/7+3hDCRyW9UtJV3pIsy94m6W2SdOLEiQwrNpVXiMh8Ps8l13tPvFckqepTfYUYY69GhCiG4Hm6O7+DeFGppFruOxb4toEQG3dCeEgjFXrfhcJDC48KqnN7ONVyJ7XMA4QYlwHXsbu7q9FoFMULSNpRW+5BBAk67PV6ajab8XjFnQOYN7Y4xJbfarXiMf0czCntGx6Q544NyCHuCUgtJNAFGNYIn53NZtrb29NqtVK329V4PL6qDaVYxaaFg7l1gspxndSSAzAej7XZbGIoqLs0ut2utre3tbW1FcfuaxPHBTkWrBPWUrPZjMIKohFw0Yk14i4dwi8bjUbuuL6biHSYOYH7wZ8RiLqHGgLW8Ww2i+4Xqvs8tzwDiFTcZxd3PB+CP/P5PApwhKZ6W5PnHrgbxzMg3OXAs1e8dv7uYol/L7h7ovjZ44qb+V3cCydSZn/CdaPy0ofVf0VFUtod5Vgjkx78hbVqP/vu2z2SuxbpezghIeFexvMSFEIIXyLp2yT9rizLJvb6aUm7WZatQwgvlfQKSR+71vGo1vuOBBBc38XAiQjVSrfVO5H3ijc97E58IEucz7eqpE2A/ARcDb47hAfZzWazuBMFJBPCxjiocvs1U7H1qjmkyXMSvH+/mJ8g7RN93Bk4PLDaezAhQGQokuXNZqNerxe3JPR2Dm/pkKTpdKrLly9rOBzG0EtcAVjT/RyICjgaiiTfHQ0eHuh5GZBeFyRYA9yHSqWivb29mLvQbDajWMM2m553wHlxobjTAvHEK/L8wb3BGnCRoNVq5TI3IK+IEO5QYK1JiuuL9UrbC+4R5hSBqeh2Ie8BwYBrYX58+0fEGNYmc8T6Q0xzQs37uIesJY7JevPsBH92PQwUVwSCAGGQvPeoZ4Ex4F7wrTQB14YLgTG6iBgOdg/hnniwJq1TXPtxdyjc7O/ihITngsX9Oxo9lMSE44yX/ORCpcVG4X/8+u0eyl2L9D2ckHBnoPfbJTU/+KSOz/5ddw+uZ9vIH5L0hZJOhRAel/TXtZ9gW5f0Xw4IB1vh/E5J3x1CWElaS/rjWZbtXusc7JrgQoJbuiEJXq2k1UDar9LT0gCZcGt1uVzWeDyOhKWYdi8dBiRCVPkvNnjaHZzQYtNeLBYxeV867GWX9gPsIOhFYg6B41xuyXdyxfGw+NN+wfzgipAU2xwg+VyXtxkwBo7tlWxJ0boPmWYsnH+xWMQMAa8oQ3I5FrZ7PssOAKPRKJI3xuJuBV5z4uzkvehOcCK8XC6joIArAEdIMYuDeWdszJWHGTIeKujT6TTXhkF7BESZ3SKm02kUlXAdZFkW1zmE3dtauI+QWirlw+FQs9ksilOIVvP5PLZIkAXAWsc1wvxLiuKK7x5C3gLPGM+ZV/DdAcB6oAXGxTXe424Yz9Jw0UNSzDk5qqWJtc38F9fqUbuBcAwXq/w1HB+IMr4Di++i4eLVccIL8V2ckJBwd+Dhn1qqdn6szQc/LGWp4H2zkL6HExLuXLQvrLV64snbPYy7Etezy8PXHfHyv3yG9/5HSf/xuQ6CnncS5qXDkEYnJ5Jy76HHnTYESCP2+uKuBRwDwtxqtSIpwUKOq4C/Qxppd4CsUFX1lHzpcLtHWiYgkxAbSJJnKGAfh9TwX6+eAg8VZO4492KxiOF+zA3EyQkjn4MgIr7U63WtVquY0s/cM9+QOnZDGI1GcRtDnxsPYaQiLO2LBuyi4C0efs0QeSfD3qrh99fHFkKIVvxerxcdBfP5PLZwIN44UXWBBQHDRQVED0IM/f3MPZkTbJEZDnZQGI1Gsa2imEfhIgWtA4gOkmKGBfcDp4k7cXxbRa/G8xnPRvBtVn0HCHdEIBx5dgTrivvvgZbeEuHtGe428R1McAXQUkT7i7cmcJziPfLWJN/BQ1IUOFzYcLHORQ1yQxgjO2UU2zu8Dem44IX4Lk5IeC6o/NpHdOb+1+r859zukSRI0un3SCd/+QlJ0vrJ89osr95VKeHGkL6HExKeHdlvf1wP/NfP0ONfdLx2/+n9dkm9X/ig1td+a8LzwLHYKJQqO8SgVCrpxIkTOn36tOr1euyNp6o8m80iafU8AumQgFDJ9iowv5cOe6gh/hybHnWq89L+Dg0e6igdBuW5ZR0Cg0ui0WjEbf7cos/5qdSORiONx+MoIvBezsM5/DohhRBFrPjhYOcCRAQASaNCS/XWBQX64Yt9+07oCWAcj8eqVCra2dnR9vZ2JMvSYcimbzk4Go2iFZ9zcE7GwVpwxwHz7ZkRHJN7BzmkxQAhCYLc7XZjNkAxIJF7gTDFnOEUYFcFrls6JJvValXdbje2ieBU4B4iKLXb7SjWsNMD93UymeRyLrin3EMP4GTnBl/DPAPuioF083dv62GOXUxgDt2544IcQpjfY/+MCzO+dtxB5NkbZKNwPhdJOD/3lPPxfPnOG5Jyu2ZwPs7l98qdC+FgBw1JcccMdw5xPHcUJSQkXI3NeKzej71Pq/pn6vLr0rNyO9A8X9JD//y3JEnZdKrVwf8zExISEm4Hsvlctf5S+6ad44PKNNO6v3e7h3HX4lgICpCQ3d1dXblyRdVqVdvb29re3s5t/wYxR4CAHDQaDXU6nauCF6nMelUZctjpdHJkVDokLOQmEDToZJvzQ3aoPjuBgbRCJJfLpabT6VXhhhBz+uOZC6/QekCeEyOIL+THd39wMuwODbepe3WfAEZ3Rni12cMSvfK+tbWls2fPRtEH4oktn3FCnhFOII2M0bfwQxiAZBd3r4BsMjce0si9QdSh6s/5p9NpbmcLFwjc+cB8I1BMJpMoTuAq6PV66vV66na72tnZiWTf557MBNYmAslgMIhukfF4LGlftJpMJrF9xPMe3O2B6wBXT6vVim4MX0Nct4dMsmZor+Ce8nnENK7FszV8TfouKxzX1wzn4R7zuu+8wPt5tph3Pu9rhz8IK35+/uvuJJw0rCXm0duofDcLz/Lw4NfitpwJCQlXI5vPdeIH360TP7wvYj72bZ+lxU56bm4JMulV3/Wb2hxk2EiSNpnWyYmQkJBwjFD65V/X/Sc+W0/8rpJ0O42eBzp35xMlnfy371KSvW8djoWgQMVwNBrF3RS2trbUarV05cqVXE+/ExFINpVaqtKDwSAStf9/e2cXI2l6nuX77b/6r+rZnpmdtXeX3SAnkomQscAKBkU5QJBYSCZn5oRIRJiDRBABBw5BwQF8kIgEDpAsOUpwQGALCVAshEQCAuXADsYE27ExThxiOZv1zvR0V9d/V//Ux0HX9dZdNT0zO8tM/XifW2ptdXXV973f+73fu3Pfz/Pcj3/WI6JEej0y7qQJYgyxI6IKCaf+G+GAbAcXPBAaKNPgnBBuSblrAESSiLVHRz1CvGhCB+ElJZ7SA47jEVrmApO/8/PzXFZC9gWkFZJOa0BIFinirVZLrVYreydA6DwtH7I6Go00GAzU6XQyoXePBmnWQQCBAUGA0pDFFHuEEu4PWR27u7uZ/NPtAIGC+0U0nHtB1BxyyTpinoiC8znOyxywVkul0gP1+Z56T0YCWRqck2j73t6eqtVqzqhgDJSRMB98ngwDyiYgxpgKsnbclNDn0n0I/NlAcHKjwsWsFeaJdSnNsjpYc6wtMmh83bKmFrstuKcF/3XBx9eJlz9xXxf9NBirZ7iklLK/hYssgKwFnpVAIPBoFBcXEsL/pa7+Ebc+1ULfMfiej/2OLrsPdBwMBAKB9UJRqPKrn9ft6vfp3p/Sav5/UEh73S29/DOfk4oixIRnjLUQFIqi0P3793VycpJT1BuNhqRZlBCfADfXg0DSMvHo6Eivvfaa3njjDfX7/VyD7hH8yWSSU6YhetIsS8JFi0ajkcUEIr5OVqQrEliv1/N1QF5IG4eE+jl4v91u61vf+pakq3aDlUolp9YTheXz7gfBGIi+IlA0m81sFMl4POrLtWE0Cfn0eXLfBAi2CzZcN54BEFCi6ES/vTxlOByq3+9nkoho4VkdXB9EmxaWHnXH4JDrojzgutR4yPzl5aWOj4/zuTBFRLDwjhHumcFnMN2UZkS6Xq/r4OBABwcHajab2t/fV71ez6QfMQUxAn8Cb7HJ8RcFAgQa5pm1xj3guiDjjOvs7Cyva9aJrz/uoxsWupDingwcE0LuxpiLJoc+Fjdx9C4ZiFCsZc8UQKwYDodz/iA84/ywvrw7BPeKOfTOGp7Vs+i9gOjnIiKvvXzDn/NAIPDm8NLHPqtv/fT7dbY/CVHhKWJrnKTLqP4NBAKbg+anflMX5T+tzvdIk91CxRJsFbbHU6+6M+nlj3722Z8wIGlNBIXJZKJ+v6/JZKJarZad8t0voVKpZEJK9BZX/Xq9rrOzMx0dHandbqvf72cSAiCrknKmgBMtSJyLFNVqVd1ud+4zbnrHsbyswiPppLePx+McGYZAYVA4Go1Ur9fnOgGkNGtx6EIHhItIMGTbnfMp6XCvBMbKMZhH7w7hmRocR1Im7ZCrlFI2DIQskqKPmSNjc08IaVbzz5whEixmXDA+J/aLhn94HpABIl2JBVwj97fX6+UuCmQvsH4YswtOHMvr8MH29rYqlYparZYajUZef88//7z29/dzNP78/Fy9Xi+TXm+JyLX7eSD+LsqQVcHYuZesCc4FAaf8wUkx99HFAC8NIGsHcQBRxzMFiPq7F4OvY/dJ4P55tH8xo4Y15r4jZPsgYPEMONF3scOzDxDFvLTFvUr8HrpIwe9u7rgowHmpVCAQePN4+R98Vn/w996vYkc6a0X5w9PAd3/8NV1E/W8gENgwPPfPP6fnJL3xE+/XWevZn++Vn/0tTcJLZulYG0FhOBxmcoBvATXvXlPuNc/lclmNRkP1el33799Xp9NRr9fTaDTKkVoAYUIYGI/H6vV6Oj8/V6PRmBMCFjtMuC/BeDzOEfetra0cmT49PZ2r7+aaaO0HiLB2u13du3dP4/FYL7zwgiqVytznF+vRee0EC3JZq9W0u7s714nAU/sXa9GZu1arlYUbor2SspBDRJja/6IoVKvVdOPGjVxO4JkfRKoRiE5OTuZEGydvwM0VF0mvE3y6JHANXp/vv0MYPZJ+fn6eS1B4T1I2SuScXqaAuMM9xWARQYA1cnBwoNu3b+cWlcPhUIPBQHfv3s0imTTz50AY6/f72X8DgcnJPvfbTRAZk2epkKHiGQxO/rkeFxDcl8K9C4ju874bLy56JlDa4n4I3o3EybmkueeCNcjrRU+Q6zwYmHNEA8928XXkfg/XrTUyGbj3i9fl2S7r1OEhENg0vPSPPqu0s6M//FvvW/VQvjMwDp+EQCCwubjzT5eTLRAS9mqwNoLCxcWFKpVKbsF3dnaWswO8a4GbsCEmQNB6vZ4Gg4FGo5HK5XImU9Kslz1p2f1+X6PRKJO8nZ2dHAl3vwBJmUhCcL3VH9kOkCA3UxwMBhqPx6rVavm429vbGgwGOjw81Onp6VzJgRvreTq6EylpVgLhqeZnZ2c6OTnRYDDIRNVLCFxMqFQqea69dZ6b1XntOkJKqVSaExQkzZF/RAk6TnhmghNFJ6qj0SiLBsDH4SUkl5eXGgwGOUPBMzog1JLmTCQXU9Y9g8O7WpDlQeYDxN87C5ABgPfE7du39dJLL+ng4CB7gFDGcnh4mIUMfriP+EKwfhgr93YxSr/YBpX1xloj24M5dYEIYcmzbxAafJ7cH8JbZnrJCSUkbmLIs+Lj4hp53tyUkcyHRTGK154ZATyrh4wSzy4g68TXK8+Qiyo862Q0kL3B8Vh7bswYokIg8NZRXFzoHT8XKadPA+HmEggEAoF1xdoICpAY2iySJk4auHcrgGDSRWEwGKjdbufWi4uZCYuvIfunp6e5JaRHRSGaEDKyFXD4h+hTZjAej3MEHyLU7XZzFkO1Ws3Hlmamb6TMU/tNHTnkUJp1hPDxeSSav52cnKjT6VxLvpzIE+nFe2A0GuXafiLjXoYAqSStvl6va39/P983DDV7vZ6Gw2EmvcPhMM8H0Wi6X5Cq754QpKm7B4CkHH1HiEFMaLVaeV24ESLzgSjhhJfrcgGDzABpVr6CP8TZ2Zn29vZyeQjZHJPJRM1mUzdv3lSr1crlK8fHx7p7967u37+vwWCQv1cqlbIJJ+/h5cD8emSc+4qIRTcRFxukmQjh1zgYDDQYDLLvAm0sT09P8/pjbXgpBAIQ98BFgOui/fzNBTAyDfye+DPuooN7G7h/BeUQrAnmwn0uXGzhPe4j8+xeCogfiFDuGeLfRbjxtRElD4FAIBAIBAKBwMOxFoKCNHP5hzzghI/hIaQdskIngYuLCw0GA/X7/RyNlzR3rNFoNFfbfXp6mtPRIaykgjuxo9wCwk/kHULmwsNkMsnkcTAY5PID6vylWT05xJpoqaScFeCdGbxuHhLMPHmNfK/Xy9kUtNN0oiRpzpvBTQEREzw1H2LpWQREePGWgLBTAtLpdHKpCdcK4eO+eITc08rdbNDN9jB9xPMA0Yb3uV+QQX6cyEozUYbsgsUUdyfStVpNtVpNlUpF1Wr12myB3d1d3bx5U88995y2trZ0dHSkw8NDtdvt7NlApBwxwSPi3HsXB8j0YC4QS8iwcBPRRRNKshzG47H6/b6Gw+Gc9wXkmc9B3hEzELhccOJz+Gawjha7RyxmAbF+WT8cl3NyDEw5F80XWROe0eKdJPidc7oohZDGuvTMA+4bgtVoNJrrykKmD8dgnhf9HwKBQCAQCAQCgcAMayEoONHFpI0Ir0fNPQ1/Z2dH5+fn6na72TeB6LHX8nMsJ9ce7XdjQm85KM1SrSFyRLw9CwJitbu7m4k2AgBkRdIcOSHrgbp+OgJAmp3gSpoTSRAg8GyAMJKS70733haQKDck3+fSr4NSAKK1iA6UZmAuyb2ZTCYajUa53AQBhvlDhAHMI5F6aRZph+iRGcD1E3HnvjebzVwywBwwrxBzT3UnA8bT2iGWnHt3d1eNRkM3b97MpqBOrEejUSb6e3t72t/f19bWlo6Pj/X666/r5OQkz3Gz2ZSkfF8QngaDwdz6RLBBfGDOIeBeYuBeBkTWuRbPCnHfkZSSer2e+v1+/uzD7rukPFbWI+djjlk/W1tb+XnzrhbuOeGlMAgNLlr4fWc9IZS5+aOkTPyZNzd0JFvIOzh4lwdfq1wbZTbexcQzQFyYjJKHQCAQCAQCgUDg4VgbQQESQYRwMplkUuTRdtK4U0rZxLDf7891JXAiCOHgbxBsfAbK5XKubXcDPMgupJmxQQ5JsSdii0EdaedkP/j4vUyBbIZyuZyzHyingFQOh8MHOk/wPinskE/IIKIENfsQI67D09QZBxFZsjQgVzs7O5lYEvHmerg3niGymCLOWJh73oNoIyBBAJ0oY1aIoDGZXLUTrVarudwBLw1PoXfhhvsKaec8pL67+LC3t6dGo6FWq5XbkCJKcc3b29uq1Wqq1+tqNBoaDoe53SklBhg/Il5xD7rdbk7p57rJNGBteYYAmSwQaS8noA2lpOyPQDcJN6iky8jFxUUuu4Hg+7rm+snU4TOsCYQsxCyeNxdYfJ593jnPeDzOgos0X67hnSkWM0Lc50GadSPh84ttXxEJOJZ3fGAc/I29xzOImEdpJrAEAoFAIBAIBAKB67EWggJRQa+rdoIDAXIzQowYicxC4HFvh4hDIj1SLCkbDG5vb2cyj2eDkzqis96pAMK26EYPcXQvA87vbQgRRhAhEBQgzqSqQ8IgdJBHF0g4LlFcUtsZP4SQ42FI6BF4yhqkGcHz62bui6LI3QnIEKG84/z8PN8zz0zgfTwbnMh5uj1lDSkllcvluVp4xlCtVnXz5k3duHFjTvDBr4FSFMQnJ+aeFl8qlbI4BMGtVquq1+vZl8NbNXKsUqmkVqulZrOp8/NzHR0d6eTkJK+NarWa5+T8/FyVSkWnp6e5/MU9DFg7CF4+z5JyxgdCBsTfS29cOFgUJqQr4n9xcZG7pHhpgRsuUnrjRpisHY65t7eXxSdKUtzIEuGJ52mxxIXsBM+MYI35fJBN4MaNXI+Pn79xLQhTvr4W/Q8eJiRIM6GL+eZ6A4FAIBAIBAKBwMOxFoIChMMJt7vMe0TZU6l7vd6cUaMb/kmaI1eQy6Io8vEoUfB2ixAkvuvEhHRropxuznhxcaHhcKijo6NMShA0IGSQJK6B6/PzeyQf8s95iVRTLkB2BSUWnmLvXgjlcnmuJITsAy+3YLxOsiC5LmYgXJAl0el0NBgM5uriPYKOySGk00slaE+JSz9z3Gw2Va1WdXp6qnq9nr9/cHCgO3fu5JKHy8vLTKbdV2Bvb0+1Wu2Brgdussh1MYd+Hk+TJ2qNQFCr1bS3t6fDw8M5Hw4vz2BdlstlHR8fq9vtSpq1qXQDTDI4EKvI6rh37556vV6+D2RSeIYC2RM8D16ygohCNw/OxT32TBXatCLCSZqbT9YK36McgzXoJQQIZJ4FcZ1vhZfjuBDAM+eZOZ5dw3PDfPh69efVsxzcyNTNHBExvEMJzwtCCHMUCAQCgUAgEAgEHsRaCApkKFCL7YZ7TrI9vZlaaCfoi2Z//E76vNdVk6otKRMisgYYk5vYQTDJKlgcF3X2RPohMt7JYdF1Hix2phiNRrnu3Qk5EWC6TrjHAmP0sgjEGC8r8Kg742Q8zL97UQCIKBForhdRgDmjBaULN4ttIyGQTia5J7VaTY1GI2cpFEWRU+1v3LihZrOZPQ4gmByHNPzbt2+rXC7n1qBcE+ccj8e55IUSBsocFgkv5J255P5gvogQMJlMcjvQXq+n3d1dDQYDnZyczBl4klXjhJXSE65hMBio0+lknwyeA7IMyAAgs8RLUfy+eRmFm2RyL1jPCFtkiDi5Z2zMx3A4VEppzlAUccnFPNa+Z9Swjjg31+/zyGcWy2wQUBCuyIBg7TBmvDGAl0AB99JA8PBju+ASgkIgEAgEAoFAIPBwPFZQSCn9sqS/KOleURTfO33vo5L+mqTD6cf+blEU/3H6t5+U9KOSLiX9jaIo/tPjzgEZcOLh0XX3DYDkpJRyxJX6cCK/kAjIipMMiCsEhuwAz1iA5OFP4JFSSBmZA965gYgwRBQxACLo9eBkFZCyLimnnbvhHeMgWs5ccQ53z+c815E4IsYIB143TpQdYcIzQiDiRPMh15yn1+vNtdh0Ecij45QiLKarQ065J3Rw4HwIS+VyWTdu3FC1WlWpVFKj0Zi7pxBQPBa2t7fnzAgRUFgjlUpF9XpdrVZL1Wo1l06klNRoNOYEKUQiSbk9pqQHOpAMh0MdHh5qOBxqb29PnU5HvV4vZ2b4enSSXC6X87wdHR2p0+nk6DsCjXcDcdNAiH5KKZcV8FnEL3/OiMbjf+CCjEf2ybrgeaLUwbsikHVCuZCXRnA/KUlwcYpniCwW96tg7SJkcG7vfuLCIZk7jBMRwL0yvGSCdU/pC8KMt8skCwRRcF2wjL04EAgEAg9H7MOBQCDwIN7Mv5Y/KemfSfoXC+//k6Io/rG/kVJ6t6QPSfpjkt4h6T+nlL67KIpLPQaQJOrQJWVCARk7OztTrVZTSkmj0Sh3FfDUZI8Yk54PmZaUiZq32ru8vFSj0VClUslEDUJNNNh9BLa2ttRsNueM4TzSTuQXQsN5ODcdLCA7EDwnndIsugpR8w4Ukubq2Tkf32ecfkzOQQTea8qBXwPXR5YFafGnp6fZE4H5WexI4WSWe7vYHWN3d1f1el3lclnVajWPt1KpqNFo6Pbt21m0kZSJMqKQl3V4TX+1WtXh4WE2ufRSGM8IqNfruSMDhJgMDyL2nU5H4/FYlUolZ8RA8JmL0Wikw8NDHR8f5+N41gqlEQhTEHDacTYajeyX0G63c7YM6xyRR1LODgGUIJCBQKaFi1deZuLlJbwmY8HFKl/HCBHud8FY6KDCOuc7lEiwzvkb2QScGzHAPRt4bnj2ERR4JhfXs5su8ox5WQTnorxlMeOJ/cHbTrpIsUb4pJawFwcCgUDgofikYh8OBAKBOTz2X8tFUfxGSumVN3m8D0r6dFEUY0m/n1L6hqT3Sfrc475ItJJyBkz4IHLdbjcTO8gehERS7lAgKaefk+7uYgLkCKJNpBaxwFOyGdfp6WkmvN4hwdPHPaUfE0LS/Tkn33WvAhcjIG1ER70GnHO78ICYQHcBrpH58LaKZFW4ESNzzfecSDG2lFL2F+C8kua8EjgX0XQEF6LmpJRzf/l+pVLRiy++qBs3bkhSNlesVqtqNBrZIJHvQd5rtVo2bUQcGo1GWUwYDofq9/v5eFwnc1CtVrOIsbu7m1uLMl9kriAQIDqRDeORbcoT7t27p5OTE0mz7hIYNLLeEEAw7xyPx7l8hWwPxsw9QnRgnbiPAPcVwQYviEU/Au6lt0pEZMEg1O+P+45QBoIZJISdtUqWDQISZQqck3O4yaX7FfA9FzoYM/Pl696zW9wzwn1YFjMiPPOCZ4n59X3H59Y7uKwLlrUXBwKBQOB6xD4cCAQCD+L/J/z24ymlvyLpC5L+dlEUbUnvlPSb9pnXpu89EkVRaDAYzJniQUwgW5AH9wOAYBAVr9VqufsDRNdrxD26LM0EBggEpIkyCyLw+AEQoZdmqfOkjWNM6FkVZAIQrfbabggLY6c2nvIH/g4BIvLN9ZOWDSH01HYIF+PGIJDPDAaDOQHFPQ2ol0csaTabunnzZibwbpoHCeRYGCxyH4bDYRZPIIkQyUqlkk0WDw4ONJlM1G63dX5+nn0S9vf3czkEBpCTyUTValW1Wi0TVsZKVP3o6EiHh4dzngAppdztgLIKSdlgEp+Di4sLHR8fq9PpqN/v5+O7sd/l5aXu3buXPRqOjo50fHycST3GnWSUsAYRbciuoUwD0owvAOTefSu8U4j7gTgppszAvQmI0lMyxPcuLy/zWuW+ICiRVcDaHo/HGg6HeXx4GPAsYOrI+pA0Jy4ttghFgGJeyHrALwFxzsUEPusGnO654KUanIdnQJp1ROHaEWFcUPPxL3qIrDme2l4cCAQCgbeE2IcDgcDbFm9VUPi4pH8oqZj+9+cl/VVJ6ZrPFte8p5TShyV9WJqlsnv00OuXvQ2g1+BLygZ7fM8jsZBtCBAEkwwCCN/29rZGo1EmGJ7yLikbBXI+9ziAAEkzEsL5JGWhgkgz18k1Io6cnZ1l0oZ3gDQjOJ6avlgnzrEgg5CtSqWSo7UINAgWHNM7YhBJJk18Z2cnZwMgZnAOyCX3ifGfn5+rXC7n83BubwFIF4Y7d+7o1VdfVb1e12g0yuILf79x40aOuI9GoyyMYNpYTM08PSp9enqqdrudx8L9d9LrJR1kH0hXItH9+/ezH4LX7TcajXwdZCTQMrPb7WY/D4gspo31ej3fM0g4a8Nr9j0azzryqDqEmHW5eN/w9CBrgc8h/Pha55oouYGA+9xA7sm0YIyscz67u7ubxSbG7hlE9Xo9r2XmhnXG/NOdxNvEuvjgGQc8B8C9DhAgXWzguwgNCHEIOp6Rw17jGUqLJUFriKe7F6v6bEYZCAQC37mIfTgQCLyt8ZYEhaIo7vI6pfSLkv7D9NfXJL1kH31R0usPOcYnJH1CkprNZgFh8oj2YqtHyBniggsApL33+331er1cT45YwXEx+4N4E+WGBEFUB4NBrmVvNBra29vLRooIE07gvWYdYYCuEd5qj+9Bhjlvv9/PEWRIkAsVnIMIN9kXjB3yLM3KGSCsCBS7u7tzRJ/v2b2ci5BTSuHklnFBjJl/BBuOe3p6OpeC7y0rm82m7ty5o3e84x26c+fOXAo6RLder+vOnTsqlUo6OjpSv9/X9va2bt++rVarNWcSyPycn5/r5ORER0dHeQ1sbW2p0Wjk7BfGOR6Pc1YJZJnOCqPRKGdrIEBBdjudTs5I4F54SQQiw+XlpSqVytz73s2AeSVT4rquAqwDfvBkQOxxIYG152sFjwN8JlivEHa+zzkh1y7QMSb3VYBse3YMYpELJ2S7eIYQIgT3z0uIXCz09e/lP4slLP68sN7JVmG8i50bvK2llwXxd8QUzrfOeOp7cXpuvS84EAgE1gyxDwcCgbc73pKgkFJ6oSiKb09//WFJX5m+/oykf51S+gVdGdC8S9LnH3c8T3cmTdrJD6ROmkVHvZsAokGv18umdrS1K5VK2UuhVCrl1H8npGQiEB0nHZr0ezIjPPsBgYGUedLdibg6cfKoMynj7mjvYoKnoHsNPO+RSk5mBPXoGNlBJGu1Wv4e3gLeem/R2d9T6KVZ2z+PekuzKLSbVTo5xKzx4uIilxYwP4gbt2/f1quvvqqXX345k+5SqZTv7f7+vg4ODnRwcKDT01N1u131+33VajUdHByoVCpl3wPEFfwM7t+/n8k73QbwYnDSjk8C99aFARdr3Fiz0+no9ddfV6fTyfOE+EC0nXsJ4Sfzhc4QrVYriwmsfdYV5/fyFIAAQiaHC3BetsNnEdbw2OD58nIA90jgnns7VebYDU9dvHBDxMWuKBwLMWGxpMDvg4sq7oviApw/+5TxsHYpq6hUKnN+JggK7Bee8UA2gwuLiIsuJqy7oPC09+JAIBAIPBliHw4EAm93vJm2kZ+S9AOSbqaUXpP09yX9QErpPbpK3fqmpL8uSUVRfDWl9G8k/W9JF5J+rHgTbrZe+7zYxcAd/iFt03PN1cUPBgOdnJxkgue+Ak5wvOuCp3K7JwMRZo8OQ6I5/mQy0Wg00mg0mvv8YDCQpNyK0OGp1JCYXq+nfr8/F5km9R2hBNLp5BGiBnHncx719Sitzx2p+35OMiWI2kLkPELtIoib2SG+LJrfeStA6ub39/f10ksv6ZVXXsneCRBL7uXBwUHu8NBut9XpdHR2dqZbt26p0WioKIrsX4DAMh6P1W63dXR0NNepo1KpzPlj8DfmmfOfnJzMdajg2iDRmC+22+0sHnnknntExgdZMAgMpPWzDomYY/qJUOVlPtxTxsqxF40zuaes0ZOTEw2HQ00mk9xFw0UkjoGIw9r37gqU9gyHw0zAFz0afI1xfsSDSqUyJ1ZwThcWyChwrwJENPc38dKcxY4d3GOMNl0AYY7IjvAMGMQON3l08cAzddYFy9iLA4FAIPBwxD4cCAQCD+LNdHn4y9e8/UuP+PzHJH3sSQaxSCA8tZ7IPdF+aSY0QIDOzs50dHSUyTwtFKV540VAZN/rr8kEgLhhuEiKOgaNkAyyGKid5/tEfomOk3XBNeBHgGlhv9/PZJzjQhhLpdJcZNVb2nnkl89D9L3TA9kfXkfPdzmnm1xyDQgIuPgjHHAtnmkBIfboLtFzTDLPz89VrVZ1584dvfLKK7mzA1F5xtlqtdRqtVQqldTtdnX37l31+33t7u7m7IR+v59LUs7OzrIo0+v1cu0+kXZEHu63twJkTiHOEFSPeiPqdDodHR8fZ9LPfLN2vRSGVH8XnBBM8C3gfvDDvPoadDGI++Pf51lgbbMeO51Ozq7xjBxKXCDVkGk3SeSeMi6yNVwI8ZIChAFJua0mn2c9ME5/3vnheVzMRmBtOtFHAECkkq6EGy9twtsDUcx9Kdw/BS+J6wQFxD6/tnXAMvbiQCAQCDwcsQ8HAoHAg1iLfy27ERy/kz7NP+wdkPhqtZpr309OTh5w4/fjQxrIUHDiwXlJfSdFvFKpzJViEEmXlOvZvYRA0lyU19PDiXZXKhWllNTtdnNk3SOulC/QLnHRpM5Jmqeze9q2pLnfIUUurHh01j0T/HeEDIQUoujeAQDCzPseFaZLAr4N5XJZt27dUqvV0tbWVi4H4LparVYWDc7OznR8fKyjoyOdnp7mNpL4W9Apodfr6fj4OGd5OBGkLKXf72ehhnsNiMSPRqMsLLF23FPCjTjdF8Pr8t3kj+wDylPcTwPhY7ETAXPlZpeQc67JSbBH9/EP4ZyVSiUbSXqpB8Sa54usDD+WZ6J42Qfr3LsqsLbI3uEZ8DXE531+vRMFAo2XGXg3Cs+g4D2eJ8pZ0rQbBc8E69tbVHId3B+yfjzzh/vgmQyBQCAQCAQCgUDgeqyNoNBqtXL0k3RkotelUimnlHu7N/cgcEd/FxMmk6uWecPhULVabS712w0LITekuHuNNX/zCDIu/l5GQXbFYq97DOAajYYqlUomxBBxyOh1td+A60YEcYM7TwN3Y7p+v58j5j42rt+zMfhet9udy3ogXR8Dwu3tbZXL5ZwWD6mH/LpJJfeIdP+DgwM1m01NJhN1u925c9VqNdXrdVUqlSzWtNtt9Xq9XCqxs7Ojfr+fuzgMBgMdHR2p3W7PiT3ezvP09FS9Xi9ntEizriFkVnCN+E64caZ/xtP0e71ezojBR2Mx6wN/B8wLt7a2dHJyMic+Mc+Xl5dzmQqs5cXSE/cj4HroWsB1YCRaqVRyWQhrAsFq0WuA4/q6cCGM58pFCXwT6IqBaOBlC6xtF9e4Vp5BRECIPedAWHDRjiyDnZ2dLPhJyhkV/hwyT27M6OaRPNOcy/cjnuvF5zAQCAQCgUAgEAjMsBaCAqTC07fb7XbuulAul+ciihAVr0MnWkk0GWJDKrqkuVZ4CAcQBsgo7zv59G4CpFEjYPgxPJJMFLTf7+dadog9JnwcdzHlGrLmJQheogEBcuIrzYg0ngGLJNtJGhHlra0tVSoVVSqVHK12kkV2AUT0xo0bajabGo1G6vV66na7eT4Zi2cdICbcunVLzWZTl5eXmVR7a03EkfF4rOPjY92/f19vvPGG+v1+LoO4uLhQu91Wu93WYDBQt9vV8fGxhsPhXFQaM0jMEL1VJkaSbqToUW2PkCNoIRYwl71eb04YQLBijfn1u99Bt9vNGRSUvpBB4IafRVFkU1HWPoIS8+WZIL1eL5ec7Ozs5K4WbkLoRodu5uniEc/WYlYBYgLZE0TvGbt3+2Dds2YQchAFObY/L9cZILqfimdOkGXgrVXdD8SfcYQ8P74LDV5m4edjvF4KFQgEAoFAIBAIBB7EWggKRA4lzbVtPD8/V6VSyWSGEoFer5fJAYSJ7ANa6pG+TxZArVbT3t7enAu9+yN4KzyP+EPynIDyu2cHLBrLcQ3D4TC3HZRm/g2j0WiO1DMWxA+Os9hez1PWpflWgUTCSVl3M0rPhBgOhzl6Xq1Wc1o3ZBESRpkAmQ0ID1tbW3P+D+7UD7nkOi8vL/X8889nggzBx+SP64QI0pax0+loMBhkX4W9vb3sqXB8fKxut5uJNH4JiEyMA9HDo/HAf3chgXvL3LsRJ5Ft92pAtIDsQtRdHCJbhN8RPCRlIYH7wfe8ewnXIs38QVxMw7cA4QARAiEFks81ulfAdf4ETvhdWHM/Eo6JyEBGj0f+ERMg/5Tj8IxxHtbY4p7AjwtmTvZ9rO6/4pkXzIsLDAhKnIf1gIDCdxDeAoFAIBAIBAKBwPVIHhVc2SBSOpQ0kHR/1WN5C7ipGPcyEeNePjZ17E9r3H+kKIpbT+E4a4+UUk/S11c9jreATV2j0uaOPca9XLzdx/122ofj38TLR4x7udjUcUubO/ZnuhevhaAgSSmlLxRF8SdXPY4nRYx7uYhxLx+bOvZNHfcqsalztqnjljZ37DHu5SLG/fbCps5bjHu5iHEvH5s69mc97q3HfyQQCAQCgUAgEAgEAoFAYB4hKAQCgUAgEAgEAoFAIBB4YqyToPCJVQ/gLSLGvVzEuJePTR37po57ldjUOdvUcUubO/YY93IR4357YVPnLca9XMS4l49NHfszHffaeCgEAoFAIBAIBAKBQCAQ2BysU4ZCIBAIBAKBQCAQCAQCgQ3BygWFlNIPppS+nlL6RkrpI6sez6OQUvpmSum3U0pfTCl9YfrecymlX08p/e70vzdWPU5JSin9ckrpXkrpK/beQ8eaUvrJ6T34ekrpL6xm1A8d90dTSn84nfcvppQ+YH9bl3G/lFL6rymlr6WUvppS+pvT99d6zh8x7rWe85RSOaX0+ZTSl6bj/pnp+2s93+uM2IufyThjH14iYh9e+rhjH37KiH342SD24uUi9uKlj3v1e3FRFCv7kbQt6fckfZekPUlfkvTuVY7pMeP9pqSbC+/9nKSPTF9/RNLPrnqc07F8v6T3SvrK48Yq6d3TuS9JenV6T7bXaNwflfR3rvnsOo37BUnvnb5uSPqd6fjWes4fMe61nnNJSVJ9+npX0n+X9H3rPt/r+hN78TMbZ+zDyx137MPLHXfsw093PmMffnZjjb14ueOOvXi54175XrzqDIX3SfpGURT/tyiKM0mflvTBFY/pSfFBSb8yff0rkv7S6oYyQ1EUvyHpeOHth431g5I+XRTFuCiK35f0DV3dm6XjIeN+GNZp3N8uiuK3pq97kr4m6Z1a8zl/xLgfhnUZd1EURX/66+70p9Caz/caI/biZ4DYh5eL2IeXi9iHnzpiH35GiL14uYi9eLlYh7141YLCOyX9gf3+mh5941aNQtKvpZT+Z0rpw9P3ni+K4tvS1UKUdHtlo3s8HjbWTbgPP55S+vI0/YuUnbUcd0rpFUl/QlcK4cbM+cK4pTWf85TSdkrpi5LuSfr1oig2ar7XDJs2P5u8F2/yGl3rPcER+/ByEPvwU8Wmzc8m78PSZq/Ttd4XHLEXLwer3otXLSika95b57YTf6YoivdK+iFJP5ZS+v5VD+gpYd3vw8cl/VFJ75H0bUk/P31/7cadUqpL+reSfqIoiu6jPnrNeysb+zXjXvs5L4risiiK90h6UdL7Ukrf+4iPr8241xSbNj/fiXvxut+Dtd8TQOzDy0Psw08VmzY/34n7sLT+92Ht9wUQe/HysOq9eNWCwmuSXrLfX5T0+orG8lgURfH69L/3JP17XaWH3E0pvSBJ0//eW90IH4uHjXWt70NRFHenD8pE0i9qlpazVuNOKe3qagP6V0VR/Lvp22s/59eNe1PmXJKKojiR9N8k/aA2YL7XFBs1Pxu+F2/kGt2UPSH24dUg9uGngo2anw3fh6UNXaebsi/EXrwarGovXrWg8D8kvSul9GpKaU/ShyR9ZsVjuhYppVpKqcFrSX9e0ld0Nd4fmX7sRyT96mpG+KbwsLF+RtKHUkqllNKrkt4l6fMrGN+14GGY4od1Ne/SGo07pZQk/ZKkrxVF8Qv2p7We84eNe93nPKV0K6W0P31dkfTnJP0frfl8rzFiL14eNnKNrvueIMU+vKzx2vhiH366iH14udjIdbru+4IUe/GyxmvjW/1eXKzA/dN/JH1AVy6avyfpp1Y9nkeM87t05Yj5JUlfZaySDiT9F0m/O/3vc6se63Rcn9JVWs65rpSoH33UWCX91PQefF3SD63ZuP+lpN+W9OXpQ/DCGo77z+oqXejLkr44/fnAus/5I8a91nMu6Y9L+l/T8X1F0k9P31/r+V7nn9iLn8lYYx9e7rhjH17uuGMffvpzGvvwsxlv7MXLHXfsxcsd98r34jQ9aCAQCAQCgUAgEAgEAoHAm8aqSx4CgUAgEAgEAoFAIBAIbCBCUAgEAoFAIBAIBAKBQCDwxAhBIRAIBAKBQCAQCAQCgcATIwSFQCAQCAQCgUAgEAgEAk+MEBQCgUAgEAgEAoFAIBAIPDFCUAgEAoFAIBAIBAKBQCDwxAhBIRAIBAKBQCAQCAQCgcATIwSFQCAQCAQCgUAgEAgEAk+M/wc2741yS2pHjQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 204273 59994\n", + " Min thresh = 1000\n", + " Not Sliding\n", + "\n", + "\n", + " Winner = Not Sliding\n", + "\n", + "\n", + "224s_iimage_3308406916756_clean.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADDCAYAAAAya0IYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADix0lEQVR4nOz9eZhl613Wjd+rdu15qKoezpSEJJCBmTCI0fxEMAJhDHiBAioQhoDRKOirDK8/FF4VlTAovhCCEVAgKCiDhEGmyJQEEiAmISGQ+eQMfXqo2vO83j+qPs++1+o653Sf7j5dffp7X1dfp3vX3ms961nP2qfu+3t/7yfL81yBQCAQCAQCgUAgEAgEAleDrZs9gEAgEAgEAoFAIBAIBAK3HkJQCAQCgUAgEAgEAoFAIHDVCEEhEAgEAoFAIBAIBAKBwFUjBIVAIBAIBAKBQCAQCAQCV40QFAKBQCAQCAQCgUAgEAhcNUJQCAQCgUAgEAgEAoFAIHDVCEEh8Lgjy7K3Zln2yTd7HIFAIBDYIMuy92RZ9lev8L15lmXPeIznecyfDQQCgUAgcLIQgkLgcUee5x+R5/lrbvY4HglZln1WlmW/nWXZfpZlD2RZ9oNZlnVv9rgCgUDgiYwsy16WZdmfZlk2yLLs7VmWfenNHlMgEAicNFxvYfbRjhe/FwceCSEoBALHY0fSv5B0j6QPk/RkSd9xU0cUCAQCT3yMJH2ODr+Dv0zSv8uy7C/e3CEFAoHAbY/4vTjwsAhBIfC4w221WZb98yzLfjLLsh89qki9OcuyZ2VZ9k1Zlp3Lsuz9WZZ9mn32RVmWve3ove/KsuxrSsf+J1mW3Z9l2X1Zln2VK65ZltWPql/vy7LswSzLXp5lWfO4MeZ5/uN5nv9SnufjPM8vSfpBSc+7cbMSCAQCJwdZln1ilmWvPapG3Z9l2X/IsqxWettnHn0Pn8+y7DuyLNuyz3/F0Xf1pSzLfjnLsqdeyXnzPP9neZ6/Pc/zdZ7nr5f0W5L+wnW8tEAgEDgRyLLsw7Ise83R9+xbsyz7XPvZa7Is+yr795dnWfbbR3//zaOX35Rl2TDLsr+RZdknZ1l2b5Zl33z0nfyeLMv+5mM9Xnms8Xtx4JEQgkLgJOBzJP0XSXuS/lDSL+twbT5J0rdJ+gF77zlJny2pJ+lFkr47y7KPk6Qsy14g6R9K+quSniHpL5fO828kPUvSc45+/iRJ33KFY/wkSW+9ussKBAKBWxYrSV8v6YwOCf3zJb2k9J7Pl/QJkj5O0gslfYUkZVn2eZK+WdJfk3RWh6LAq652AEeC759TfPcGAoEnGLIsq0r6n5L+l6Q7JL1U0o9lWfbsR/tsnuefdPTXj8nzvJPn+X89+vddOvzOfpIOHV6vuMbjPRLi9+JAQggKgZOA38rz/JfzPF9K+kkd/gL6r/M8X0j6CUlPy7JsV5LyPH91nufvzA/xv3X4RfyXjo7z1yX9UJ7nb83zfCzpWzlBlmWZpK+W9PV5nl/M83wg6V9J+qJHG1yWZZ+qwy/mKxUfAoFA4JZGnudvzPP8dXmeL/M8f48Ohd3LRNqj79P3SfoeSV989PrXSPr2PM/fdvS9/q8kPedKXQqGl0t6kw5F5kAgEHgi4bmSOjr8fXee5/mvS/p5bb5HHyv+/3mez45+R361Dn83vq6I34sDZWzf7AEEApIetL9PJJ3P83xl/5YOv3T3syz7DEn/TIdOgy1JLUlvPnrPPZLeYMd6v/397NF733ioLUiSMkmVRxpYlmXPlfTjkr4gz/N3XMU1BQKBwC2LLMueJem7dOhAaOnw94U3lt7m37Hv1eF3sCQ9VYfZB9/ph9Rh1ey9V3j+75D0kZI+Jc/z/KovIBAIBE427pH0/jzP1/bae3X4PflYcSnP81HpePc83JsfC+L34sBxCIdC4JZBlmV1Sf9d0ssk3Znn+a6kX9DhL6qSdL8OQ2LAU+zv53UoTnxEnue7R3928jzvPML5PlbSz0n6ijzPf+36XUkgEAiceHy/pLdLemae5z0dtjBkpff4d+wHSbrv6O/vl/Q19l27m+d5M8/z372SE2dZ9q2SPkPSp+V53r+mqwgEAoGTifskPcWzZ3T4PfqBo7+PdCjmgruu4Jh7WZa1S8fje/mxHK+A+L048HAIQSFwK6EmqS7pIUnLI7fCp9nP/5ukFx2F3LRkVqwjBfgHdZi5cIckZVn2pCzLPv24E2VZ9pGSfknSS/M8/5835GoCgUDg5KIrqS9pmGXZh0r6O8e85x9nWbaXZdlTJP0DSfTdvlzSN2VZ9hGSlGXZTpZlX3glJ82y7JskfYmkT83z/MK1XkQgEAicULxehyT/n2RZVs2y7JN1mCn2E0c//yNJfy3LstZRuPhXlj7/oKQPPua435plWS3Lsr+kw8yxn7zG40mK34sDj4wQFAK3DI5yD/6+DoWDSzr8pfPn7Oe/KOnfS/oNSX8m6bVHP5od/fcbjl5/XZZlfUm/Kunhwmr+kQ7bJF55lHg7zLIswmcCgcDtgv9Lh9+xAx2KsceFdP2sDtsg/kiHvbqvlKQ8z39ahyG4P3H0XfsWHToOrgT/SodVtT+1795vvobrCAQCgROHPM/nkj5Xh9+N5yV9n6QvzfP87Udv+W5Jcx0S/R+R9GOlQ/xzST9ytEMEOQkP6PD34/uO3v+113g8R/xeHHhYZNGaGHiiIsuyD9PhL7L1o2CwQCAQCAQCgUDgCYUjh8OP5nn+5Ed5ayBw3REOhcATClmWff6R1WtPhxWy/xliQiAQCAQCgUAgEAhcf4SgEHii4Wt0mLHwTh3uo35c328gEAgEAoFAIBAIBK4RN0xQyLLsBVmW/UmWZX+WZdk33qjzBAKOPM9fcLR7w6k8zz8/z/P7b/aYAoGbhfgeDgQCgZuP+C4O3Gjkef6aaHcI3CzckAyFLMsqkt4h6VMl3Svp9yV9cZ7nf3zdTxYIBAKByxDfw4FAIHDzEd/FgUDgiY4b5VD4REl/luf5u45STH9C0gtv0LkCgUAgcDniezgQCARuPuK7OBAIPKGxfYOO+yRJ77d/3yvpzz/cmyuVSl6v15XnefqTZZmyLEt/39raSn/yPNd6vdZqtZKk9PN6va5Go6FaraYsy7RardLxVqtV+neWZapUKul4WZZJkubzuebzuZbLpbIsS8fjZ6vVSltbW6pUKpKk9Xqt5XKp5XKpPM8LP+N86/W6cI71eq31ep3GtbW1lV7n39vb29ra2tJ6vdZisSiMmeviuP7e9XotScrzXMvlMs0P1+lwZ4rPtc+R3Z/CNfj7/f5wXL9G3u/n9WvhNT7n42LczKkf38/rx+Hffi1+LMa5Wq20WCwuu3f8OW6+/PjlOfR/Mz9ZlhXmwsfA+mBsrOfy+vc59/vFf/1zvq79vT6GSqWS1ox/frFYpPVTvrbyffSx+X33cftr3LOtrS1Vq1Vtb2+rUqkcu1Y4/nFrojwfXKt/H/gYuEZ/xrjO7e3tNA7mf7lcarFYaD6fF9bXeDw+n+f5Wd16uKrvYUmqdNr5Bz99rQff0ryhAwsEAoGrwVQjzfNZ9ujvPJG4ut+J43s4cAvhGR890pZO5qPZX0sPvKV1s4fxhMJAl479nfhGCQrHrawC+8qy7MWSXiwdEtanPvWp2t7e1nw+13q9Vr1eL5DwLMvUbDbVbrcTiZhOp1osFlqtVmo0Gtrb29PTnvY0ffRHf7TuvPNOjUYj7e/vazgcaj6fazAYaD6fq1KpqNfrqdPppD9bW1s6f/683v/+9+t973ufxuOx7rzzTj372c/WmTNnNBgMdP/99yvPczUaDW1tbWk6nWp/f1/7+/saj8dar9dqNptCHOn3+5pMJqpUKmo2m9ra2tJwONRwOEwkLs9zbW9va71eazqdqlKpaG9vTzs7O1qtVrp06ZL29/fTmLvdrpbLpc6dO6fFYqFTp07p9OnTWq/XGo/HiSTPZjNduHBBs9lMklSr1dRsNlWpVJLYAJnb3t5Wo9HQcrnUeDzWZDKRpET+arWa2u12ImHValXValVbW1uJoNXrddVqNeV5rtlspvF4rNlsdpmAwPiq1ao6nY6azWZ6fTKZaLFYpHuaZZlOnTql3d1dVavVNHeLxULb29tqNpuq1Wqq1+uqVCqJFM7nc21tbWm5XGoymaRrbLVaajQaajQa6f7cf//9Gg6HkqR2u61ms6lms6ler6der6dWq6VqtarFYpHuG6TcxSdEHNZHu91WrVbTarXSeDxO4261Wur1epKkixcvajwep3U+m800GAzEM1GpVFSr1VStVpOoUhZUtre309iWy6Xa7bZarVYi7BxjsVikNdput3Xq1Ck1m4e/rOzv7+vSpUsaDAbpetbrdbq+5XKZxsQa2N7eTs9krVaTpEToGTtrejabaTqdar1eq9Vq6e6779bZs2dVq9W0XC7Te1w84BiLxUL9fl/T6TSt00qlkp79ZrOpbrcrSWn9LpfLJDDWajVVKhW1Wi2t12sNBgNduHBB8/lc3W5XZ86c0enTpxEOdOHCBd177726ePGi5vO52u223vrWt773mr4Nbx4e9XtYKn4XN9TS09762XrayfzdIBAI3KZ4ff5rN3sI14Kr+p04vocDtxJ++hd/T62t2s0exrH4josfol/9yO7NHsYTCr+a/9SxvxPfKEHhXklPsX8/WdJ9/oY8z18h6RWSVK/X0xcrVfdqtap6va7ValVwAVDZ3draSsQe4jOdTtXv93Xfffep1Wppd3dXkhLR9molbgQITK1W097enubzuS5duqTxeKzBYKBLly5pZ2cnEfzJZFJwQFQqlTTW6XSaBJFKpaJ6vZ4qp9VqNZHy+Xyu8Xh8bAUfYt1oNFStVhOhnE6nmk6narVaqtfr2tnZ0f7+fnodYufkr91uJ4KPgMH5vOo/n88lKZFtSLmkRGY5rleJq9VqqmovFos0F5Dw2Wym2WyWPru9vV24Rl5D6IAoZlmm6XSq5XKp4XCYnCKtVkuz2SxVkal4Q2y3t7c1mUzSe1hHs9ks3RcEC4Sfvb29dH2IJMzZbDZTvV5PQkStVtN4PNZ0Oi24SxaLRfo74sLRuk5ugNlsptFolN7b6/XUbrc1Go00HA4TAZdUuIcICAgyeZ6n61+v10lQ6XQ6iZhvbW0V1sJqtVKz2VSn09F4PNZoNNJqtdLu7m66rkajkeaO+7K9vZ3IOc9dlmWqVqvpuZxOp2o0GkkwQ8xqNptpHYDJZKLBYJCu6dSpU+lZcnHLxUSECwS82WyWRILZbKb9/X2NRqPkJOL+ca5KpaJGo6HpdKpqtZoEn8VikZ6f4XConZ2dJEIg0F28eFGj0Ui3MB71e1gqfhf3slPXP1QnEAgEbm9c1e/E8T0cuJXwyoNn6qV7J6/ucu9yGGLC44gbJSj8vqRnZln2dEkfkPRFkr7kkT4AmXIrPOR0MploOp1KUiI4y+VS9Xpd9Xo9/Vs6FA8uXryog4MD9Xo97e7uJvEA0gvJH4/HyYLearW0t7enLMvU7/dTpf78+fPqdrt68pOfnCrlTpI4tqQCES3b2yGSjAdiC0HHCcDnZ7NZmgfI/3Q6TWNuNBrqdDqJ6LmA4IQWcg0BdFEF8sX8LZfLNA7OS1XYRQ8n0og8EL6tra1EJqlM42JYLpdar9dqNBqJmPf7/UT6cBog0OBwGI1GSRxot9vJ0QBRh+RWq9V0HNwoHGsymSThyckrZHo2myX7O84M5oy1yH3AUcJnuPeVSqXQhsO14HoYDocaj8fa39+XpIJIApGn9QIbPnOA0MZ9WK1WBbGm3W6nNYLYkOe55vN5EgoQoyRpOBxqOp2q3W6r3W4n4YRjuluA54VnZ71ep2dgPp8nBxCOBwSP5XKpRqOhXq+Xnt/pdKrRaKQHH3xQq9VKp06dSufApYCAhFjorRGIg/V6PTlHeA1RyR1MiFIIKn5PEHMQD7vdrmq1WhIX1+t1ule3KK76ezgQCAQC1x3xXRx4wuLnP+qMXnrvyRMUAo8vboigkOf5MsuyvyfplyVVJP2nPM/f+gjvL+QK8O/lcplILfZnaVPpXi6XycqP0EAV+uDgQHt7e7rrrrt05syZVMl3YuRW8e3tbd1xxx06deqUnvKUp2g8Hut973ufhsOhLly4oL29PXU6HbXb7dQP3uv1kq2eijhCgRN7iOZsNlOj0dDp06eV57keeOCBZOX2avp0Ok2tEt7bj6WbFop2u63JZJIIJ1XasouD3nDmVVLqL6cKvlgsUrUZYg9JpnJPmwSVam8zQFjg/RB5yD4CwGq1Uq1W09bWVhKKBoOBsixLrgzmgpYBxB/GxRgRasbjcbom5gWii+VfUnIIcG8goLRqIAbgLuFzi8UiVdL5L+OFkNKW4xkLHEdSciNMJhNNJpNEfKnue5uHizeSkkAAyfa1tVgs0rqiHQAHAoIWohcWfsaIqDCfz9VoNJJbBDGA+eBcjI9nledwMpmkc9I+xHHb7ba63a5arZZqtVpqW5lMJnrooYfSZ7hu7iWOG86H22e9XmsymSTnCq4DnkOEDp4JnnHEBW/RwC2E8wGnA+4VxI5bFVf7PRwIBAKB64/4Lg4EHn985h98te7W2272MG4b3CiHgvI8/wVJv3A1n4HASEp2amlTEUcEgHDRj7+zs6NGo6HVapUqsoPBQIPBQGfOnFGv19Ndd92lyWSiCxcuFCzqELn7779fknT33XfrjjvuSNVL/uzv7ycLN1V3SYk4u+Wd64CIU1GH4NJHP51Odf78+ULf+XK5TOfG2u3hcvP5PDkgIO4QLZwBHAeRA1KLIABJcxcFZB+BA2JGZR7iRgV7tVolIcTbTqSNywTLv7d2cA8RBxB6OBbknrnz8E3uFdV6WiWoMM/nc+3u7hZCB3EptFqHoSyICqBWqyVizLXhqODa5/N5GhvuBEkplwGxqOxIQWDhPbQbIEJwDc1mU7PZLOU9MI9u/ef+eZijr7fFYpFEGEg3jhSIM1kECA9ZlmkymWi1WqnX66X2iaPnN90frs0zTZgTbymg3YF5mk6nOjg40Gw2097enlqtlrrdbsorWCwWunTpklarlVqtVhJ1uJ/e/kTbEO/jGXRHCWNDOPNgTAQP1h7PFiIgLhHuabvdVqPRSPkMtyoey/dwIBAIBK4v4rs48IRFvtaH/NqL9M7n/9DNHknCIl/p7s8LMeHxxA0TFK4WuBEgLW5Nz7Lssl0LEBywgdMLT/Bau91OYXgENkJCLly4kPrSJSUr9fnz59Vut9Xr9XTmzBmdPXs2Efj9/f1kD/egOsLxyB2gWs97fGcGfiYdkm763qlA04cOYcKqTaUbggjpZfyQxV6vp7Nnz6rZbKa584BLdqpgzN5mgj2eeUdEcJs9VXmujePjokDggcT7jgM4FXwnAUQE5sD74z2tn8q8B/hBZMkL4PMHBwdqNBrpGgiI7Ha7yfI+Ho9TZdp3eCC8cDKZJKLKmoKQIoT42Hxt8hnEF5wFiD3NZjOtw9FolI7DuRE7EF4g1cDbDnwnAs9aYK0gUHAtk8kktfMwFx4IyvERRrg/khLZ5vx+X92JwdiZU+afdeQ7pyAqHBwcaLFYpNeXy2XKWsDx4Ds/uCuB58DniPWJG4VnhCwN3BysNXe78Cz62g4EAoFAIBAIHIM817Nf+i7pj2/2QDb4iB/5e3q6Xnuzh3Fb4UQIClRRIUiQAMipt0NAnghIhKCSbg+RunDhgs6cOaO9vb1UaYRUYoEub3M3m810/vz51FJw5swZHRwcqN/vq9/vp1BFt/9LmywCshEgI75FHYDsUEnvdrsaDoepIoz1fDAYpKqpV9G9DcK3QCS9fmdnJ2VBeP+9OxwQAzgec0BrAgIIgoKn+lN1L7emMA/SpkrMvXXXBsF3vpUi5Jv5o4Lu979s6acCz9zgbJAOLfieFUFbBISe+01/PiKA70xAoB/3hDFCoP1+kPdADgIVdVwH3FOuwa32kGyOS/sN1X6Oh8OC62INSptMB9/u0IUAjsG4aAehZcCfNdpOIOQIC6x3wjCZK87Hfef5kDbbl+Z5XthJg7FxXAQWQjClQ7EBkk82A6KcO0y4v6zbcrglgaR83tcGLhsEHY7FNXpbRyAQCAQCgUDgcqxHE334971Ef/yS77vZQ9FHffdL9PSXhZjweONE/LYMaYGISyqQPirrvA/iBMEYDoc6ODgo7EjQ7/f14IMP6vTp0+r1eun4WJnpe/cKvHRIwPr9fqqk7u7uJiv8cDhMLgXOAwEkuJAxMVaCFKVNuCKk3Ku1VFoJhatWqxoMBgVRgs9DKBEVtre3U9ZDu93W7u5uclcwn24BlzY7CUCmGDPv8XYDD6HEKVAmb+588Op2eXcCjgFZd6LqFWREB4gmWw5Cgmu1mkajUfoM4Yq4IHwLR+6T5zDgBoFASse3qLiQ4SKRb4fJPGLXJ5uBSvv29nYKPvT7iPjln2fc7nJAKPFqOfPr4+daIeqSktDlTgxAJgL3lHtJC4/fS9YozyhrwJ9VBCY+w/3GKcC6Rdjw1g0EGQQXf75ms1lyJTBPo9GoIEAyd+5y8rXPnCIklHM/XNT0QEd3XgQCgUAgEAgEisgXcz31ZX+gj5q/RG/+upsjKnzE975Ee+9Y6Uk/+3vp9+bA44cTIShsb2+nLe0gKk5WnDRQ9fR0fSz/9XpdvV4vkYaLFy/q/PnzOnPmjCSlEEBIg+cgcC6EB35GqByEh10JPIk/z/O048R8Pk9EjDGOx+MkSkBesHR7CBxzQQW8Wq2q3++nz0G+yzsBIKSMRiOdP39eu7u7espTnqLTp0+r3++nVgQeMIgfFVoIMOTdU/XJYXARwJ0MkFiuUSpWu+v1eoFMuvDAPDWbzVSpZlcKsim436PRSMvlUr1eL22TiJODajZ5BbRf+LpBlPL8DCetrAsPk2SN+ByXyau0yf5gpwLWDbtQDAaDQs++r2lEBcQGadNewHokTJTjslUmVfWyvd/bA3ift5qwBt1RwnFwfiDaQKpdwPC141/atH4g2LALSb/fT64IhCFJBUcFrTzD4bAgcrHFKgJcvV5PIZb9fl+SCmGs5fvu7iYPqvRdPhAtfItK1kTZDREIBAKBQCAQKGI9nerJ/++b9FH5S/Tmr398RIUP+bUX6UO+//B32A9605u0Ho0UUsLNwYkQFGq1ms6ePav777+/YEP33nYC4rAhU1GHtEpKuwVga4egEIaI9Z1zUMHnPFSc2V2ArQapelMZrVQq6na7BWGhVqultHrfzg9yipUewQQy6WTV3Rn0eHsIJKTRdyGA/EPyL126pA984APqdDppK8zhcJiq/MyfuxKq1ap6vZ7W63VqB2HnCklJUChXmBkLgkS/308kDtcB94fPemWb4EK28XPxgNYIb+2AnEtKAX+Qa4Izq9WqdnZ20jaKzJlb8T3/otxaISmNh0o8VX8fI84IjgOxJm8hz/PkZMGhgiMF4YB1QBuKE3xEBuCiAtfi4ZAufnAMzuFhjbgSpI1TBLKN4AK59tBNv6eeIcL5Aesmz/PUYoTgwTUgUnl7k7fPINjgKJKKDph6vZ528uCYjMmdGS4ilK8T4YNnjJ0pJCXRjGyPQCAQCAQCgcAjYz0a6cnf+wf6rJ96od72j+7Su/7aD1z3c/yL8x+q177w2ZKkZ++/R6tLlw7Pfd3PFLganAhBoV6v65577tHW1pY+8IEPaH9/v2DRxn5NJVva9KkDyA7bQEJGL126pHPnzqVQQgQGRAXPUpCKJIuKM1VnRAkECogypNYFEMgRlVAnuID38/lyJgFknWslMJAKrm+lx9aZ7BzRaDR05513Sjok31SendAzb7gX6FXn/OVdHxAkGC8iBeOkwu1V4Ol0mvr33anAtUPYcGZMp9MUkkmbBgIPO3gg/ODuoEWh3+/r4OBArVZLjUZDrVYrrQevyHNdnsEAGfWdMRgj80qwIsQcZwTzyTxBoKmWr9dr9fv91N7SbreTaAO5xRXgtv7xeFwISPS2m+3t7bQu3fXg664cgNlqtZJg4A4f5oT7zn1zUcF34WBnDkQMSLu7QVjLtAMhFCG20UrCevNsCF5jrPyM8zabTTUaDe3s7KR2Hxw8jL/c6oNoMJlM0jFZl7S04Cgp538EAoFAIBAIBB4d6+lU63e/V8/6+vv1md/8SZKkZ/3GWN9z9xuu6bjvWIz0dR/1GcpXK61H770eQw1cR5wIQSHLMj31qU9NSfdun/et4zyQjX9DIrCTIwYsFotEfi5evKhOp1PYZtErodjXO51OciwgSHBOSCwBiIvFIgU9kslQzg9wYu6ksEz4PLMA0k7rBOS23B9OpRurN+ICxO2+++5LoodX36UNiZQ2goKHP3ruAcSWa/JdKrDc46jwoEffgpCtCr3NAQcGjojt7W31er20BeFsNktOBa/EszsCQDjY29tL137hwgXVarUU0onDI8/zlFEhKYU7cg0QW0IYPSQTwYo56nQ6ms/nunjxYhJNarWa2u12IWfAQw0Hg0Ei3H4vuQ+sef7t/f04P8qiEGvMcw6cWHsGBwIMQg6kn/+yNjgmc8bPuKeQftw+rA3EJQQJznvczg6QenfwuBji18z3ANeDsMQxyVXxZwxHA202uIg4LuIR5/N8Fv9eCQQCgUAgEAhcHfLFXKvFYdHwbZ+Q6dOzjz/2fZPP+Xj90v/7Hwqvfdo/eKnaP10SIPK1lPdvyFgD144TISjkeV6oNo7HY507d65A4HACSJtebfrUId9uXyYQr1KpaGdnJ22VB+mDcFD1lJSIKcIB5Aqy4lXuPM81mUwS6aQqjgXb7ete4fded0mXVaDdvk4gpffvQ94IJ/TdACDqkKJz584l1wHZBGU3BpVlJ7DMM+MlvBB3Aq0WbNdIVb/VaiWrubcxlDMHGANtBfyb9ggq7sw9Y+DYvv3l7u5uIsq9Xk/7+/uaTqfq9/upol6tVlPbB/cZountKQhIVLwRFpgLtnnkdXdVTKfTtNMIThpaZnA6IIYg8EDC+TnXBJzklwM1qazjtEAA4Zp4XnB3jEYjVatVdbvdwq4JkHlvqWGueY/v0EGYJWsaweK4+8tz6IIcYg7ZCJIKwpgHRfI+b7nBXULAJm4FsiaYTwQgv3/squI7S7DDCteFMBeCQiAQCAQCgcB1QJ5L+fG/VzV/9vf0+T/7iYXX2nr94zGqwHXEiRAUIFLdbldPfvKTNR6PNZ1OE7GDULi9HLIPYYQ8drtd5Xmufr+fyEKn09GZM2dShZLPQDg8awFSgkOByil5CdJm60as9hDCdrud2im8ogzBbrVaWq1WGg6H6vf7Wq/XqeoLiaZqKimJJWQkQLIhfTgusMpD8qUNScPiDYEiTM/DErkuUvY9U8LDMf1eUEVGCKFKDyFj/FTDfQ7Z0cEJL3MEOaSqDwnnOhAgaHFYLpfa29tLIYAcezQape1Cm82mBoNBIv4Qx1arpVqtloi/u0poC6BVBWGEsSAQcY04HQgOhDzT1uCtMYgAvAdS72IV1+8Bjh6e6GuE1zx7wHc1AAhUuEN4r7sl3HHg1w0JR+STlNadt63wM3cc+Np0xwZuJF7nfJ6tgHODZ6W844SkFNDJ/XPxDpeIi2YIb1z/aDTSarVKjgcXrwKBQCAQCAQCgcDD40QICvQznzp1Suv1WpcuXUr71rODAv3Px+0UQJWy3W6r0+mkivp4PE7bKZ4+fToRDyr4EC8IGsTSe6ghW277xj7NsWazWbJ11+v1RFCwtzPORqOhTqejPM81Go3SNVLdr9frhbA/b3/APSBtbO0QIxwSEEbgJA0yVbZ4u+XctwWEHPJZxiCpEHCHqODbEfoOCYgQfB7rvYdQ8ndaNKRNXz1V6P39/fQ6VW/uGWKMZzlw/xGbOp1OcmlMp9O05jqdTpp3KvteDedYnqfg4D4wR2wbSSChdBhU6FkTCGY4UlxMIqTS2198G0SuebFYqNVqFcQ2Pg+J5t5Awv3+I254SwTijreYSBvhwFuEWFdlcYPnwu/tbDZLzgnfgtSDJBE/mEuuG5GAc/nOGv6s0Hrk4Yy4QtyJwTPMc+TOHcbLGva5CAQCgUAgEAgEApfjxAgKzWZTtVpNOzs7uuuuu1Ilmf56CB3ED1FAUiKptVotVdgRGbBHs+1gu91OBNWJBK0DWL9pM4BUQVI4NuMdj8cp8HBra0utVitt1ehb2EF0IPBsHYk1v9PpaHd3V81msxAEiTjCsZwcgnq9npwZXjHGAUCAn1d9fe4924GxITZA9glhhKjleV6oHJOhgHDggoC7IHApeGgfx4JEelCi5xjUarV0TtwGCCGz2Szdk2q1qtlslpwEvV5PnU4nuR0g39ImFwCi64GRtBBMp9P0b+bCgxlpa8ARMhqNkkDENqa01bAbCOvNW0T8PjAWhCnunbcCeNgga4J1yrxwXP8sf8cp4C0ftNFIOlZY41mA5HvuAcf0+81xWXPuMuLfHIPdXPh5ue0AocGFB+5plmUprJJnwsUnv7eMiXHivGBnDYQRxJtAIBAIBAKBQCBwPE6EoMAv/vTcnz59OgkAg8GgYN8ejUYaDAaJjEL6PEiN1gcquVQzqZh3u131+/1EFnzrQIi7V3297YBdBXAVQEQZL6IIKf4c33d3YGtD6XCry8FgoIsXL6Y+bgixX5eTK6rPkF0IX7fbTTsKQOwhy2QFlCve7tJw0YJqurQhfev14e4LiDfb29sFMQUBgvkmjLHRaKR5Ym6dIEOkvYLs+QA4O2gBobJNpZ/j8lmyHCCJiEu7u7up5YJros2D9gbmiW05OTbX6K4Pvxe8NpvN0vaV7iBhLSGY8Brj8EBP1owHRfo1ukDlwY3eLlDOrmA8iCGMw3dQ8C0WWRcu/PDHBSXELsaCE8dzEFxAKIsUvMZ6Lr//OFGB9yCIsHtLnufpXiIGMp++i4S39HgYKudjnlwUCQQCgUAgEAgEApfjRAgK0+lUDzzwgO688061Wi3t7u5qMpmkaiStDtJhv/RgMCjsgoDFGoLTarVSOJ7vFOBtAmzHCHHACeA7Akib7SgRBOr1egqDxJGAGMHuAwQEQrbcEu+7VOzs7KhSqWg0GunSpUtqtVrqdruFYESCI12Q8Co/5Fo6dGrs7u5KUhJiqH73er1U0ZdUII6QNlwRtG84CZU2NvPRaFToL/eQTFwknMuDNSFuVLM5Ntti8sd3EyCbodPpqNlsFghiu91OopELJVSnuSfs7NDr9dLOEowRgcKzI1wsQFSQNq4AF0Sc2LJeptOpHnroIS0Wi5Tdwbx43oDb6jkOx3dS7YGgLj74NTMWd1YwB4BWCoQo3AtkB/g6Q1BgfNPpNM1jOQdBUiH7gzXnwpWLIu6U8Pn27ITjRBQEFj8OggcBiwhQLtB4uKW3SjHniBDuDPEw1UAgEAgEAoFAIHA8ToSgMJ/P9Y53vEN33XWX7r77bjWbTe3u7iYrOySIym6z2UzVf0+jhySSlUAl3XvPPZQOMQKCg6DAlnblLQOp+OMuoPebCjpjYAvK5XKZkuylQ6ILacOJ0Ov1Ui/7wcFBIoWQH64Pl4a3C1BJ5/orlYparVYSSAgEhBg1m83UKuLbJ0IG+eM7BED4/b24A3BxcA+zLFOr1dJisUhEn3njWOVtDnF+0M6wWCxSVb9WqyUHB+0TkE5aMprNZhIGvG0DUQIBhB0YEIO4L5PJRNPpNM2vzzn3ggwB39EAtwdgDSGOTKdT7e/vp7UAgYWEQ3ZxRPguGxBdyCykHQGovK2h76ogKe2+wXpExEEc8CwMDwXlHvPzcmYCx+F9uFIg/ayj0WiU2k9wREDqETHKbomya4Z5cCcBKLtFPOuCuSEclPOUHREuxvC8eLsH4lLs9hAIBAKBQCAQCDw8HrOgkGXZUyT9Z0l3SVpLekWe5/8uy7J/LumrJT109NZvzvP8Fx7pWIvFQm95y1t09913q9frJRKH04A0fwiX99h7YCFVRu+Pb7VamkwmmkwmOjg4SJkFEIYyMRmNRhqPx4mU4GQYj8epX3swGKQQOCfykBGquVwLYX+S0o4A2PlxUuBEGA6HaQcK70unXcNJpuc9QO7X67W63W6a23ICf5ZlyTUAkfTxuKvABQycHdnRLgUEQLpVHCLINZEFAVnnfbyX4zlhpCrOcfb39zUej5MY4XZ+siwIwhyPx4WwSG9ZwB2AIOVtI8wnDg1ps82g75qxtbWVCDpk2FtTWHO8dz6f68KFC2kHAUQJ3Bucw7MSnMA6mUZEYZ1xThecXFhgS0fyF1wIQcxhvKwFF9n82IyPZw3xiOeHVhfWBEIG10D7iX+m7BryFg/uGevdXSIIZO564HwuzjAX/J3r575wHFwh5XXIGsC9cZJxPb+LA4FAIHD1iO/hQCBwO+NaHApLSf8oz/M/yLKsK+mNWZb9ytHPvjvP85dd6YHyPNf999+vd73rXTp16pTOnj2bSCjW9/F4XCAg/OKP3VnaBBhKSg6DbrebRAYC8zqdTiLrfI6q7mQySVs/cgxvP8BGP5lM0s4KjInUfd5LUKGHyTUajUReCQiEMLL9omc3uN0dcYFzIJT4Vo4ILuw4AanESVGv15OAQNUewk2QYblK77tqQDzZpQLyTsggBLXT6aTgxPF4rFarlebDd39A5EBkgHRDJBGEmCuqxh40yNaZ7CbBOsFdIR22c/hWnVxLu91WtVpNzhSvUPs9YLxOsvm7766xXq/TmuUYPk+8B/eIZxl42w6ig5N/aRPqyE4htHv4+8oBjhwXF4dnBCDKeb4G7g/uP64P1r/v4OBrDVEApwDH4hkoh6iW3RZ+DceNhzH4emSteuYJx/QtLH2nB3IgECxc5PAWEg9lPeG4bt/FgUAgEHhMiO/hQCBw2+Ix/7ac5/n9ku4/+vsgy7K3SXrSYzkWVcP3vOc9OnPmTCJZECZCDQeDQSJBbpn2QEFCChEIqL5CQNyuTxXex7FcLrW/v6/9/f1Eqmh9wPI+mUzU7/fT65PJJPX0Y/nH0UAFFweAtNl9AQED1wCkx7eq9IoygkKr1ZKktHsFhBeyzXk9nDDLDnfS2NnZSdfgAYTdbrewgwPHc5u9B/y1221Jumz3CYSaVqulXq+X+u9ns1lh204P+uM4/HGreqvV0nA4LGRbQBCpRne73UJgIOvDq/1c63w+V6vVSmQbIswc0grBPfCcgLINn/YGxASvhPuactGLueAzjINKubQRKNwp4vkStEP4Zzg3f/edFxgDLhhfS+5IwDHD3COgeBAi1+BCAMfa2tpKrQ5cJ+IQws5yuUwBiowfBw/r39t9vLWHteLj8jYM3AQ8O7zXnwvaGvyelp0K5fk56bie38WBQCAQuHrE93AgELidcV1+W86y7GmSPlbS6yU9T9Lfy7LsSyW9QYeK7aVH+jy/vF+6dEn33nuvdnd3U4V7PB4n+/R6vdZwOEw7C3hvO+F6w+FQi8UiERCs8U6WIdySLiPOfKbf7yfbuP8ccePg4CDlKUAQ8zzX3t5eqlCXq7leiaWSjysA8sV1+XaAkCwItwcXTqfTlDFACwZkzVPznextbW3p0qVLiZRzLn4GsWKHCCres9msQGZbrVa6NxBG75XHHcLWinmeq9vtJoeGE03G6hkTVKVxUeR5ngg2pJbwScQfdw54LgFuAZwUbqf38L5ms1m4B4g9CCe0Lvh9cYu9B10yXmmzkwnH8iBNr+b7Dhesfd9ZoRzEyDi8pcS37nTiLm1aStzNAsiSoBWFc9VqtfQ5SYUtW5lzd1N4m055a1F/VpvNZiL08/k83RfO7Q4ihDUn/b7eeJ9njHCN3H9EEL8Wz5fwOWINs65uFVzrd3EgEAgErg3xPRwIBG43XLOgkGVZR9J/l/R1eZ73syz7fkn/j6T86L/fKekrjvnciyW9WNpYp9frtQ4ODnTu3LlUkR2NRomQ+NaD9DdjF6cCDblnG0APo6MaDeGA9K5Wq9RSwXk4P+GPOzs7BWs4FnqIKNb2Xq+XqrVY/iHpEBVaOSD6tBvQ7kBuA+SUz5DhgAUcwj+fzxOxpp8couz2d0QWyLR/hjnByUC113MUvCUD0gnZhNB6q0ij0VCr1UrErpzFQNWYijNkEueGZzJAOsm16HQ6Go/HGo/HSWTyUD3GDYF3cgqh5zOdTieJKvzc8xMQRFhnktKuEE5QnbgjQPiuFt7+4i0eklJQJhkW3ibgbTzcew9Y9Oo8zgTfVrKcv+E7K7ijAgGAnRI8GwIgPLm4xfhc8KDFxts3Wq1WukaEBsQ3xs6OLu6scIcEbiN3n/iWo+X2GZwkCFDeHsJ699YQP5YLP7cCrsd3cUOtx2/AgUAg8ARDfA8HAoHbEdckKGRZVtXhF+eP5Xn+PyQpz/MH7ec/KOnnj/tsnuevkPQKSarX6zlVxMFgoPvuuy/Z1tmisNFo6NSpU4nYEvxHhbfVamkwGCQSL0mnTp1Sp9NRv99Puw5AJrCcN5vN1AqBeAHhRzjw9ggXFchbgGjO53P1+321Wq2UNQBBc0HB7dTr9TptNwmZJN8AUC2vVquazWZpezx2EMCVMRgMkvOB+eOc7ChA/zpiC2TTd7rwbSOdYEHkEG6oMJcrxh4USa88jgpEEg/lk5QEIMQR7jvCCvfaQzkRTYbDoQaDQaGlhEo25/M8Ckgta2W5XKrb7RYcGoD5cmeB9+D7vLHGWDuMx3fiKO+o4dVx1i3jov0DR4hnLCBmOElm/IytfF88NwTRy1syOBbHZe58DfEZHDdO7skD8bWO4OWOFFp2yJFAMHLxwNsZeGa8XcOFEHeEuBBDHsjRd1FhFxOeDUQFF+8QJDyg8aTjen0X97JT+XHvCQQCgcAjI76HA4HA7Ypr2eUhk/RKSW/L8/y77PW7j3rJJOnzJb3l0Y7lxMar5r71W7PZTPkE3oMvKSX3YxE/ODjQdDpVvV7X2bNndfbsWV24cEHnz58vVHAhvNjwISheSXdC6sIApJp2g/F4nKrJp0+flqRCZR/iIm2IWaVSUbfbTe0Mnt7vrRZcIxVgKslsg5hlmfr9ftpxQFKBYGH3pmoMKcfd4TsYIJK02+2UEQERpuLOsSGJ7pbgeun/h8AjKBBk6UIFY2YbTRwjLua424H3InogKh0cHKTqOnkNktKaoVqNU2Nra0v9fr+wBaZnUVBFJ/jRxSFcIMzpcDhMwZFePYcokyvgLR3kPXjmA+dFJKLlw4UOD4BkXXF/j57BQnAha5r3+PtwVSCW8BnWP/eHsXigI06ecnYDx2ZNEARKPgXrirYInCKIQD5/rIXyriacz8/vO1O4cOPOJl5DfPGcEhcbEaBuBVzP7+JAIBAIXD3iezgQCNzOuBaHwvMk/W1Jb86y7I+OXvtmSV+cZdlzdGjveo+kr3m0AxHiR3X+0qVLmk6n6vV6iTRife90OprNZmmLQO89J4RwPB6nivXu7m5hS8mDg4OUWQD56HQ6qfXBCTlkCMJO+wL5CAgAVHin02ki5Gzd6DZ2D+9LN2B7W91uN1WCx+NxoRfdbdtUnbm2cisIhNaJltv9cVNAwKVN+wgEECdDv99PRB5SX257kJS2kISAQqC9EozggCjkYYZlSzlrwav5ENharVbICKjVamq32ylskLBM7gtig+8A4W0O5CWw6wVj9TBA5g+RCWcD5BXXRbPZTGsC8g08DwMhhnsvqSBYec4C94i2G1pRvD2GOfNtRnndBSXPHvCdRWg14f56XgTrl2P5lozlPAd3mwBaYxAGEawYM59DuOG5YK59S03EDu67Z0rwGX7uzzFz6i4E39KSf/v98hwMD209wbhu38WBQCAQeEyI7+FAIHDb4lp2efhtSdkxP7rq/XWpAFNxpTd+tVolKzqCAhVhiA9EB0ILsSCL4Z577tFdd92V0uVHo1EK88NqDtH1FgdIDP36EHUs27RIME4IyHA41MHBgXq9nnq9XiLPkB0C6Zw01Wo1dbtdzefzgnsBEggx9IoxpEhSIcjPQ+ro6/eqO7tCMAbEBMghW00Oh0NVKhXt7u4m0gyhL5NqHBNswUgOAddD3z8BfB4ACZF0ws3fIcm4E5xgQrxxPezu7l62HiCJEFpJaezufOA1z9HgPJBdhBfG5YIJc9NqtZJThXMhmHj4H/PGnPM6P2O9eL7CYrEouDykQ4HICb5X4MutKoB77Q4GFxt8LKwPMj3cfYJQQduHiwysPW974PlmBxQPWOR85eO4g4LPuljF8T3IkTEzVndm4LDwbAg+h4PFj+sZKicZ1/O7OBAIBAJXj/geDgQCtzNOxJ5okAdIGRVbtpdrNptJMNjd3VW73U6E1nu/ITfsznBwcKDBYKB77rlHOzs72t3d1cWLF1O7AiIDx6R9QCr2ZUMYEQdwLXgvPpV8qvsE1u3s7BQqxG4L9y3r2MmAHSk4F8LBfD5PTgTvAcfSTWYDIglBh4ggHkhJ3gP9+ZIKVV0cDOPxOFnuu91u2iUCF4L3z+MuoSLt2zfirvA+dRdNnNyWRY75fK7xeKxWq5UcEARUIv5wL2h1YK5wG3A/ySlA1JlOp4UtI1erVRJl3EWBswSU+/d9W1JvY/AMAGz1no3g4omvD2878J/7/cR1wY4nTqYRw9zBUM4N8ABCckO82o9zw4/hmREuPPg2p2XXAE6KcmYDa4Nr41gch/n1FgsXRrj/eZ4nocXH4HPmzzHPBtdw3LPOfBwXShkIBAKBQCAQCAQ2ODGCAiQAF8JgMEjVTMgGlW7IJW4DJ2AQ9DzPkwWe6jk2d6roVFsRF9x9APkp70AAIXHSTPWVwDzI9Wg0SkQfocKr8hA/CDftHRAoeunH43EKKcSC7n3+kHWS+V1QgPDh8mC+J5NJcnkgEDipg3Q5qWTuuW7v4ZeU2iFwXRDaSL89hJTqNu9jXGVCShAfAgjVfg+GROBhTqhou6DgJJosg3LbAeP3ewNB5U+5P5/7TYuAuwx8frxHH7Lu239Ctl1E4Foc3CN/D+d1gu65Ag53Pvj1uKDg1Xn/4zuqeC6Dn8f/zvXwXLhLwMdSbsVwQc9zL8ouC46POCPpsvf5dwtrzp0w3trCPWfOeebLxwsEAoFAIBAIBAIbnBhBAXJNr32e5xoMBoUt9GgNoFJNFb1so+ff/HwymWhvb0/tdjv1oXvbxGAwULvdVrfbTYSiWq2myieVVqnYK+7joVUDy/rBwYHyPE+BfxBEyKdXpCGXVPMRFhAD8jzXaDTScDhM4/KAvjzP0zUjKnANEHn+zd/JDSA80UMBIVbMBdeO+wAngI8bUWI6nSrPc7XbbfV6vRSOyP1ArIEEukOA63FBx0UQJ3eIQZBBiCIEEyeDu0Mg397iQR4D5ziuWs7PPDQTwYBQQXc5+LpmzUwmk8scDJ6D4T38zMtxjgBIts8dz89xeQl81u38PpcuevjnvO2HPziFeI87SqTLd0fwNiZ+Vs5gQABysu8tQjgcXPBwNwhrCdGC+87PaQM5zrngYpGvfcbiwlogEAgEAoFAIBC4HCfit2WvUNIXDwl1OzJhdJDo+Xyu0WikSqWinZ2dQnq8Hw+CjKBAuCOCw2g00v7+vqTDgEbG5GGA5C7MZrO0/WKtVks5Cev1WufPn0/ny7Is2dGn06mazWayZUO6IVIQc2zsbFXIzyHiuApojfAdGNgVArijolz5RpSQVNja0F+DGNZqtRQ4eenSpdR20mq1UqUfQll2NSC40PO/Wh0m9rvDgUqwp/xzPggdRJ3z4Grg2hk/hJTzuzjF8aVNjgJVfQg1/3bRB7h13tckWxMyVtwvuBFcvECAgBSzTiCv3nZSvpfe4uJtJN7z786PsuugTKi5JneY+Lrh/NwnnrkysUfM8Wv1XU281cJbIVzEcXcG8FwSF8wkFUQVFzj4DK6GcpsFYgHXVnZy+Px63kcgEAgEAoFAIBA4HidCUJBUCP3z/m9p0wM+m800Go1SXoG0IQV5nie3gFeah8Nhqg7jQmCbSdwPkH8ImpOOarWqZrOZtglkHLyHwEAcBaPRSIPBIAUojsfjFE7Y6XQS8UVUoELqogLzATHsdDqpUguJr9Vqqfo/nU41HA4L2yx6NkLZps6cIl5A2o9rBfFKP7tnIMzs7OwklwDOCgg5Akyv19Pe3p4qlYomk0n6GU4ExudkDweJ72SAOMTcPFL442AwSFs0Uv2HeNIKUSbvx4kLAELr7gJJBQGE60DEgPC7cIALgGvl2D4HHnbodnxvb6DVA+KPsFQOH+T4PB8uKkDk3QHh1+otFYgJ3DtvXeCz7hjAJUI7Da0Inp/hn2Uuyy0GnongRN/zFcprmmPSjuJbRrq7iPeVnRl+PNZGIBAIBAKBQCAQOB4nRlCgeg+R9cqkpAKprVar6na7qaruvfzsNAD5GQ6HyTmws7Oj06dP64EHHtDFixfTdn8QiPl8rsFgULBS83eIomc68Hq3203hhWy/BwmEvELg6feHzBACCFHzSrmT4Ha7XbBmL5dL1et1dTqd5KDAyUB1FmLptnbO7VkQOBY4P2IIgYgICC4EIM7keZ52G/Bxsq0nW3QSOlm20XvLghNI2k2wsrMzw2w2S+KNizEEMUJgcbOQ48C6klRYM8y/zzfkGTcB43ZxxUP8OB+v+XablUql0C7j4gDrywMAcZpwb8okWFJBPEBAgvQ78fbqPc6ZcuuIE3p3MyDwudAhbQQQP7Y7H3BPuMujnOdQbr8ouwT8Pd4i4a0K7nIoH9t/7m0gzJ0LOsyBB0TyvhATAoFAIBAIBAKBR8aJERRoIRgOh4UtCT1kj+r5wcFBstq32+1EoqiUswUj7gB2ezhz5ow6nU4KFnQii92fTIZGo1HYwg+CV6/XU1UTQYHXpA0hgaRACp0cQTi51rLtHTILWSYToNlsSlIi194mAal2cYVxMZeICoyDucURwPVLG2JH+CChfFtbW4m80tLgY/EsC6rEbFXpBBCRQFK6d1w/r5HX4G0uvqMCBBOC7RZ85nE+n6exIAZxL6rVqpbLpfr9fnI5kBPhThnPZPD8AM6PO4MMDW/bKecyeDUdMWJ7ezuJHf4eWmlwK7COyoGYPB+sV7f9e5AirQvAWyV87XqbDPPNsctwccLbeHAG+PHL53ShzV/zsfi6KZ/L/w1cGDpujID15gKFP6PeqhIIBAKBQCAQCASOx4kSFKiaQ0ogUk4IIFMEsPke95PJRKPRSHt7e4kUzmYzXbx4MZFGyLOTmHKLAGRNUiKHEGi2dfQ+bWkTgIiTAbs+lX/IEmIApMd74mmHYHcKjjMajZJ9HGcG1X2cChB+yJeTSvInyBuQVBAcvM2DeeM90qa33LdudPLIVp9+nzhvnucF0cR3YihnGVAlZqyQdW/1gPghXlDpdgGgUqmkNhTIMe0vbBVJBgV/GAfiAe4IhCvIpqTkCHAHA5/xXT5wKXgIIwTayay0aXHh+hEvWNs+337NCFk8C8yBOyF8e9Ljggd9HJ4RgeDBNq1cc7nloZypwHw8moOAdcq5yyKJt1Ewd7zGs1N2W3Bd7njx9hZfZy7yuJPCBQWEnkAgEAgEAoFAIHA5ToSgADmB0GE19mA4D+CDuEDwIWjz+TyRxt3dXXW73WTjv3TpUspf6PV6yQrvifLY7L0iWg4IbDabiWx4zzcW72azqW63m3aXoBLOOJygeJXbiSYtA4gb2PVxX9RqtZT54NVsdq7g2G7rns/nKczO7fBc49bWlprNptrtdqEq7IF5zIHb9CUVCLcTNO7fbDZLLhDIPNtijkajY8PxxuNxIuwIEccFUJZ7+SG9TlS5DtYS4gHBl+V1yN8RjLim5XKpZrOZWia4L7wXUcqJKLuRLBaLJBRwPU6qfQtNb+FwEYHPIlhwjZ7xQHsHc+piDeJMeU68LaZMrGn1wMFSfkZ9DftxPfOhfB/cCcB5/Ln2a/bMCRdKOHfZteAtDggirH13Yrhg6a6Q8rGOE0UCgUAgEAgEAoHAIU6EoCBtgtSw3GM9z7JMs9ks7Zjg1VqA5b/f72u9XmtnZyf1/UuHJGYwGGg0GiUnAGKEE2Xs+m5/9mptmZR5MCACR6/XK4yXKjLbOUIuJRXs55AdghidBPn2jIwFUg45QgzB+g45I7NhNpulY0pKBJ92AH7e6/XUbreVZVnKRmBuINiNRiMJJNPptOB88N0lnKQxR7SIIM4Mh8NCICXzyWec0EEAEQQYF/ePz0ibMMrxeJxcFfV6Pa0vBCAn9mVS7KILDgB3IyAQ8DnfHtMzK5hbbz3hWIRNIiixBannapQzERAO/BlgrbjbhrXLcXA7cK1O3H3O+KwHFtbr9UTkEXvcTeRrGFJf3hHC59hdFn5e34GBcwPPXPB75/fN3TWeMcEceZgl1+75Eg7EtkAgEAgEAoFAIHA8Toyg4KGC9PUTdjiZTCQp2a49FA4CAtHY39/Xfffdp1arpZ2dHS2XS9VqtdQ60G63U+AcZMOPIW0qn1TDeR8uAGkT2uZ957QMdDoddTqd1IJBXz1jhvx5LgIVeCreVMTL2QyMx6/Zj8Vc+ZhqtZparVaq3nvmBJVttuCkUr67u1twQkCAPaiP+0VWBfPkYpCkQvggf7DS7+/vp3wExJ71eq3RaJTut1vZvZ8fQk9rAbZ+D+Tz7f9oC/GtELknEPlyUCAihrcNlIMJGR+E3R0eTox5Lw4LRCvuKWsHkYcx4pJwMc13dyiTYdYl9xp4m4+3SjA2b+HwOXQRw9s9ECqkjSuhvC4ZV9nx4s+atznwGq/7Mfgcgp+3DXEMro/16ZkOzJULglyTB4QGAoFAIBAIBAKBK8OJEBQgCVSkIcfdbjeRA9/JwC3U0saGDTk7d+6carWazp49m7aIJPUfwcIrud5aASBdVPQhrB44ByksEz62iKSSDjmElHHNVKq9rcBbMBBPqIhTkYWAeo84JB1iLG1cCFS+PbegHN4oKeUUYLfvdrtqtVoFh4akQkuBC0G0JDAPZEIgNFApZj5brVYSQbg3nU5HvV5P8/lck8lEk8kkkTy30fscSJsMC+aLgETEB3b/IGyTe8NnEQp8HSLU8HN28QAIEu4gAC4icI5yFohU3LEBYaNer2s0Gmk0GhWcAl6N91aCcqaCB0L6vXJXAmuQzx/nBEAMIffDc07KIY3u8jlOUOB1H0O57cGdR/4+H1t5bl08KecplNtevFXnOEEwEAgEAoFAIBAIXB1OhKDgvcpUyOv1eqqqe7Cd93lD9n17N/rvH3jgAU2n02ThP3Xq1GXWc6rP5QqyV48hH1SVve96vV4XWg8kFUg1BNbzHyBBXC9CANdIrz2EzcP6EBsYs9uxIbpUkKmgV6vVtDUmhGt/fz/1+NM+gcCCiIIQAVH3dgRCE7lm3yEDog8RxAlCcCRklHlotVoaDodJeKH1AbEB94O7G8rBmW5f574hGngPPtfhQYxUu7lenA++Hn07Ssg41wYp9jEwNifDbuv36v9xPfq4O/I8Tzkc3qrAH54Hb1vgeeI54t/uuvAx+LjKGRIIXDxniFLu1PDnl/vDeMquinIbjL/mc+M/ly4XI8qig7+3LJIwT379vAdRx1uHXOQIBAKBQCAQCAQCj4wTIyg4yaQa2mw21Wg0ko3fU/wh/9jepU1q+3q91nA4lKRkp0dM4BhOmJyQQVKw32Nj910b1ut16sWv1+tp68TlcqnxeKzRaFTYVYHrQ2igou3hk7QUIHh4ICEkyivQXC+hkdj5Ob4fgzntdDqJLA0Gg9QOAtFni0Z3MbjgwC4GkpLrwrMb6EeHxHlLASKBE+xKpaJer6fpdKrBYJCyJxBREDm85QCSiKCEK6UcKOi2fSrsbBeKQONVdm+D8d0TeD+5EU5McS2UQwzdtcBr3G/fitQdLWV3g+/kwZz6H29zcAGn3EZRJuDl5w7xxEUAbytgnhBo/Dzkfbg7aGtrKwWX8pwxfq6NsbjgUs5ZKAsLzFFZAPTsBYQNHx+ve+tQufWDZ96dRmUXVCAQCAQCgUAgELgc1yQoZFn2HkkDSStJyzzPPyHLslOS/qukp0l6j6S/nuf5pUc6DgSUX/7zPE8khNYH335R2rgSyr3jbIXopL/X60lSIoy811sIvBecijVVcnr5Z7NZIiOIHAgKhDmycwFhg75DhZNARAQn4/RyIxhANqWNxR1yx+uSUtaD73iBKDCbzdTpdAoZD3t7e6pWqxqNRtxHVSoVdTqdJOCQjQDphFS3Wi1JKmwdiWDAcSD4bsunbQPShjDRbDZ15syZ1K7gTgVIIZkPzJ3vpsA4yUjgHiJI+TG9BYT77TkF5Dg0Go10L52Y0q/POKjUcw9wfSDiOHEtOxQYpwsE5baZRqOR7i1CUblSX84V8HNAvvmcV/z9WfP3ubuCNe3ncCHEj811uiDnbg4Xt9yhwVgf7nr4eTmjgX+7s8hdCf49wXv83rlbwu8HW68y57cKrtd3cSAQCAQeG+J7OBAI3K64Hg6FT8nz/Lz9+xsl/Vqe5/86y7JvPPr3N1zRYI5I3XK51GQy0XA4TBX0TqeTdh3gvdLxtmVs677FXafTUbfbTeJCu91Wu91OFX4P1uOcBBBKG/I6mUwKgX/D4VCDwUA7OzuSDoUGdpSAzFJlLrc50C/vDo1qtapOp5PCGr0PHvs5xJeqLW0AzIWTMZwZ0iYYr9FoqNFoqN1uazgcpuvhmJVKRdPpVP1+X8PhUOPxOIUfsuUmdnqvaG9vb2s4HBaq05Bujsu2nJDPra0t7ezsqFqtpvvLeHEpOBlHTHHiB/Hn2iHjiBQuCLmwQjsKogkhfbQ3MF8QYM5fdrH4euAeOOHl3riTwKvr7ljwP76VpK8fjlFuv5FUOK67U3xNIMi40FDOPuDn3kLCOZkHdwO48MC9c+eFuzcYZ3nsnJOfAxdRyiGQ3obE+F24KzsdPLNEUnJW+PcIgp47K24RXLfv4kAgEAg8JsT3cCAQuO1wI1oeXijpk4/+/iOSXqMr+PL0bfmoaA6Hw1T97/V6qY3BifPDHSc/ylJYrVZJkGi1Wup2u1oul2o2mymjQToMJIRMeiV9PB4XeuohIIT/TSYTHRwcpMq8Zwww1vl8nkQLzyRAtIDsYiknQJBj9vv9lCUAyYGEsQUmJLEcWukki/ERVMnuCLQ/eJtBnh+GKiKOOElHUPCqL04C3CXMD3+81913lqAqzPUiKnDMer1eyAzgenAREOaIy8ADIZ2c0x7BGuGPt3FAkt3t4MTZd91gnUnFlgNEBK4ZcotY5VkPEHGcJIgaiGWIAe6mKM8h8wIp9kwFbx9yAu3hop7h4E4KXAu0gkgqCCfe/lEWAVxw4ZkuOyjcqVBesy4c+Fp3J4PnNfi8M86yq8XH6jt/+C4cZWEPMe8WExUcj+m7OBAIBALXDfE9HAgEnvC4VkEhl/S/sizLJf1AnuevkHRnnuf3S1Ke5/dnWXbHox2E/mxInNvLV6tVantot9uFdH4IsrSpZjuRgmBQ9d/d3dXOzk4SD7xiDrxKLR0KDW6ph+ggECA6HF1vOk7ZRu4kp1KpqN1up10DsixL2yRC+FqtllqtVhIkEEe8igwhRwDZ2tpsN+ghhGXyKim1c0BGB4OBhsOhWq1WwaXRaDQ0m810cHCQCDg7NnB9zD/jZqvMMrzqzOcgbJ5FMRqNkkDQarVSNgNiwWKxSK0LCDLkVyA++BafnJcef0gy7TGsORcaGB/rjf/6PfS8BRcafP14ZgeVb3dBIATgophOp0lUQDjgfuC68awR7kGWZWmNeEtD2bnjQkE5A8FbF1jP5YBSRDEPMCyve55brpewT18HLiiQk4FY520YvN+FARdMPODU230QBH1cnM9FH7+HLrp4DgOi4wnHdfkuDgQCgcBjRnwPBwKB2xLXKig8L8/z+46+IH8ly7K3X+kHsyx7saQX828IFb3kJMpDmNvtdiL0VDQRFNxKDRmr1WqJYEEsIJleYadC7lVUJ1A4ECAwnU6nEALpwXaSLiNOEEKIFoIF7gTGSqAiuQatVkvtdruQ1g/p8XYPJ7KcE+LE8dlycmtrK80XbgNcGpPJJAkXtDVAeGk/OTg4ULfbTdtJQuaYNw/SxDkwmUxUr9c1mUzUbrclFbcl5PP1er2w2wSuCeYLMYTPzOdztdttdTqdlFvhcw8BdWGBrAycBS4c4MAg00LaBDWOx+M0P17BRlxw9wPwqj0Em3XGPeT+ME9uvefzrH/mjLXmLQBecUf4QEzwCj/zArn2fAFfr57Xwb1lffK6707iLQasS/IkIPm4bcpOBZ8P5pz77KJJ2aXgrhBf++V2BhcHEA9x67i7gWfa58mdErcArst3cUOtGzW+QCAQeKIjvocDgcBtiWsSFPI8v+/ov+eyLPtpSZ8o6cEsy+4+UmLvlnTuYT77CkmvkKQsy/JytTfP80RAIWK+nZ6LD2QMlPvM6T+nqg0ZpH/ee/2xf3s13x0BkNitra0Uctjv9wt9/GVxAbJEtb9ctYeES4fhhPV6PbU2jMdjdTqdRLAhb5B2ciZms5nG43ESSrD6O+mCVI9GoyTCMKZms6l2u63xeJwcElT4q9Wqut2u9vf309aOtIDwHq9I12o1dTqdJMBwL7HzY+nnZ+zqgIADSeX6aAHh2NKmpYNr9GBEn3fIK6KEE1uq99wfJ++Mweew0+kUMgb4O5kMtKKUQxrdkcH69EBJzyooOyRoFfCx+bPB+nS7P04VRCPmizXA8Xhe/FqOcxswf76FKPcaFwDrzdt8eD5dEPKsDW/N8PP53PE6a5jPe6tDuY2B132LWW8TYZ4QC3idc/F5z424Vdodrtd3cS87dWtccCAQCJwwxPdwIBC4XfGYBYUsy9qStvI8Hxz9/dMkfZukn5P0ZZL+9dF/f/YKj3fZzg3eM41A4BVdfsaf1Wql4XCYSCACBG0JBCpSiZaUiE+5952q83Q6TeSNkMjd3d0kdkDSIVFe+fX+bIgy5IrtEflZp9PRzs5OqlS786IcQIc7gPaA8XicrPY4D2htgFhVq1W1223V63VNp9PkCIFsE1ZJ+4YT5E6nk8blfea+YwOEr9FopOsg8JG2DcaC22A8HqfAxyzLkruBdgS3srtFHmLKOnGRqd1uJ1KJAOTZFVSlad3w3vn5fK5ms1k4LsSTXT+yLEvikedq8F8n/MwjfxiLtCHKOAu8PcDzGTxnAiHLwyWdILPeaWNBYINYO2H218vtBV7l51oqlcPtQzmuOwUQ7sbj8WV5FKwjJ+7MlRN+FxAIZ/U2DM+TKAtI5VwEd4XgdOC7hf/694a3iPizhjB10nG9v4sDgUAgcHWI7+FAIHA741ocCndK+ukj4rEt6cfzPP+lLMt+X9J/y7LsKyW9T9IXXsnB7rvvPm1vbyei7gn7EEls4jgOIB8egEflvl6vq16vpwqvBx9Km6wEKuWQWAgS1XjOQx871c9arZYIFoKC91szHggOn+Xa6Jf3nRogrYvFIl0Tn4UAb29vq9vtqtlsqtls6ty5c2k3Buz6iBfAd4bwSn+52txqtVK4Im4FLPQ+Tmmz0wAkGfLnhN6r+B4syM4LHBuyiWPBwwQhdB4s6e0urBFpk+PAXCOCSCqQRAL3yltIEgRKXz+EFHJNRZ5zcj6uhzXqc+ICg5NonAMufCB0eUsLwpa7MXCIeKXdsyUajUY6BuvRCbsHfvquFfyca8JNwFyx5hFvPOSS9c51ungBEG98vXjLQtmxwWdYH7RLuPBYvvfAWyX4jDtGPFgS8cZ3rfBj3AK4rt/FgUAgELhqxPdwIBC4bfGYBYU8z98l6WOOef2CpOdf7fGwiBMUR8UQwu/EodvtJkLKa048PK2eaudkMtH+/r4Gg0Eh/NHPDbGQlMgTFU7PWUBkIERwvV4n90OtVktErdzCQS/8er3WeDy+rC8ckkrFmkqyW9uxrkM85/N5cmxcuHBBkrS3t1fIB5hMJhqNRoVWBmmThi8dkjlI42Qy0cWLFwvz2+l0CiR4sVikij9CDcLF7u5uIvYXL168LPBvNptpMBgk8QBiN5lMCrsQeJWZvzP//OG+cy8hlr6VoPfbM9/S4faZrVYriRnMCdfiWQROSDkf88X5cHcw79xfv29lscHJqweLugvDd5qgfcV3vCiTXo7luzg4uebfPBvMjTuCuF7PWeB9CDJ+bzieZ1J4+5Cj3IrA+9zB4UIDc8h1lvMqGCfvd7GoLOq5U8KvGZHF5xNx8aTjen8XBwKBQODqEN/DgUDgdsaN2DbyMcErsE7Ex+NxIsN5nqvZbKrT6WgwGBSEBmlTxS6HxC0Wi9TyQF8+JAIBg8o3BIxKb6fTSeTf2xkkpV0aIDgQSm958H5xCIyLEE6EcTpwfAgnY3OSRrV8d3e3EIDY7/cLLQzSYZV6NBoVbN9lAul/x8LuFWgq48wzFWpINW0PtI90u900ZncdOKnn8wgT7jqQDsk9YoWH/CEyjUajgqvEXQJ+XCfjiE+SCqGU7ohh7Xn1nnaCshjAThjMy2QySQ4Wzj+dTi8jr+5k4H76jgpcL2P19o9Wq5XWarnPn/lnfbi4USbSZRLvOQVe1WfcTuR99whfs757CudnjL49JJ/x7IjyGMrk3+eftVRupfDjsC792XX3h7ufuC/Mh4e5BgKBQCAQCAQCgeNxYgQFadNX7snqOAsguNj52UISMuAV08VikbaGpPqMoDCbzZLdG3jI23w+V5ZlKQtga2tLg8FA/X4/2feljeW92WwmQQKXghMvKt0uAtDywOe84utVWD7nhJMxYsuv1WqFufBMAjITsqNMCKr75Qp0uYoPIZxMJpKU2ifoKaePfjweq91upzmQNjtf1Go17e3tqVarpR0YyHdgjr3y7eIBa4H54Z5KG3GDa+HfhANCXAmopNUFwcpzNXBrIAg44QXufnB3AaIK1flms5myErxFwdcBx2DMW1ubHSLczYBrpJxTAMHFHYGg4FtT+rhxsSDeeFgh95yfQ8o5t2cLeAuEE3wn/b6TCv/FJcBxPauk3MaBsMcaKgsJ7nbwNh0PYnTxw9sjvH3D11DZ5eGiw3G7tgQCgUAgEAgEAoEiToygAIHwbIM8z1PV37MTIEvtdjsRZbcqz2YzDYfDRNTY4WA4HBZ636XNtnweBAhR47Xlcpl668tEB0JPbz27GXhQHy0S7hDwSqhXld3eT088WQ1kDvj1kW9A9gSEcTqdFoIIJSXiiR3eK9GMBVLF/CIOcGzIHG4I5gBSjuiwvb2dWgq63W5yeWD939nZKezEIB06PA4ODlJ12avnVKV9ZwnGxLWwRiCaBAmyNhCKfCeAcoWcdVcO+XOSCvn1fACECUQF5pDr5RqcRLP+nCSzPrzFoNFopLVPC45nRfD8lFs6fKxOnr2toLx7Bp93d4o/k75lpYstnnHgoklZrHGXjbcjOPl3BwxjYE7ckeHtGuUAxvJOEi7QuRDlLgWeAc7nwkIgEAgEAoFAIBC4HCdGUFiv17pw4YJarZaazWahIushdG79dhs6hAKiQqVbUqqS06MPWW42m6pWq+nfjUYjBflB6CGF0iEhh7DQFkB/vKfy44KgHcBzCryS7PZ6t4hjdwfValW9Xi+FBvJfD7drtVpqNBrJPeDVdEmJIPlOB1wjc0AeA8Sf4zmBdts47SPsqAFZRPThZ4xtMpkkEshWlaPRKFXvEWO8El/um+f8vuuFVOx357Xytpag0WgUAjzdrg84HuKDk3BvH2Bdsh4ZA6SZ9gbyLlwQ4Lq4fif+jMWr/D4PkHaeBRckmHvmySv0LpB4oKm0aZfwrAjWBuuWTAlEBc8q4N75PPp88qzw83IgJM8RApe7Ojz7weed63AHBuJPWaDhnOWciLLzhDXq30GBQCAQCAQCgUDgcpwYQSHPc128eFHdbleSEmGHSFD5RTQokxy3KPN3SA7bE47H42S9397e1unTp3X+/PlClZ1kfc8/8NYAiDU98uVKLYQEUkKF1reWdHKEZR2hAzLkO0JwzTgyptNpEkcgrd7LD0n3MUMOAWQLUudOBkkF4impQD7b7XZyA9BaAhHkmiCxtKfw89lspvl8nsY7Go0KW1y6aOHjZ0xOLrkHHgzoIgOfKbsEEFZwgPgxXaCo1+uFqjkuAUlpzE5s3alRPj+OBT7v5/QASM7lZJ1Kuoc4Ojxkk3vhGQjlFh8XUBAeuNe+u4WvU4SScggjohnv83DVcj4D10ILje/CwZx4joqLJJ6/wbx7rgPz6S0d/rmyUII4WV4f/jwjFAUCgUAgEAgEAoHjcWJ+W/ZEe4Lt2MYQkjqbzQquAXZNoKXAq8cuMLAdIQSG7RlPnz6t3d3dRBzciu0WaAieZzx4FZXzQ3BpeXA3QJZlms1mBTLmNvLFYqFWq5XIIcSWvAH67aXNLgJcI1VjHBceUOiBdRBUbOBUlBEvylslck/cnYAFv9PpFPIUuC+es7BardRut9XpdNL9QlhBBCGM0smd74rA3HJffOeFVqulVquV7q8TQdYU8+VklPmt1+sFNwzvgdh6OCU7d+DsYN7LpJc8DP5dziFw1wjvYY6n02mhOo7oAlGmEs9xEINcfPHxA1/PPB8eZuhEnvn1lgGv5JfDOl3kabVaqbXFn0dvpeBz7XZbWZalZ51cEZwezO9sNkvnPc51wXdGuS2Ce8wfb19xgYjrd2cJbht/NgKBQCAQCAQCgcDlODGCgveoIwJAHJ1UTafTVOWkt7xsi/dEed8tgsr+YrFIpHhnZydlE0BsOYbvNiEp2dchmryfgD/s/YQZemXUyYlb9qUN4cvzPJEp7yX33RWoAIMyqYUoMwdu2S63CEhKYoA7Nzi/E32OBXlE1GHuxuNxEko4Zp7nGg6HKUcB8uzj8pBE7o23G3CNtFJwXESJTqejRqORyKvvOOFZCKwl7i33gZwHJ/lU5D3Hwe8lopSHS7pzoCxelOfeRQnWEuuMSj6CggsU/pzgdPG2BObe7fueCeLiGPPu8+vX6OvenzHusbsQeJ375sdzh4m/r1KpqN1uq1KpaDKZFMaNaMW9Zr066XdxycUPF5+87Yh59O8RBBl3i/BsImwh4gUCgUAgEAgEAoHLcWIEBUBlmmotZEDaCAWj0UiNRiPZ7r3qiMhA9b3ZbCaC1O/3tb+/r8FgkAhYp9NJr08mk1RhdYGDc29tbanZbKrb7aawRpwAklJFGVIrHbY6eEijtCFHkBeIKT/Dju/bGXo2Ay6Ecjhhud/bRQy/Fv83xIn2EHdMQKao1no2Aw4BHBkEaJYdDoRhIlZQSWesEE+31EtK1+nkmTaX8Xic5rDT6aT3036xtbVV2C0CcskcIwD5LhlU52kr4GcICNKmRYXtJlmr3i6B48Kvjev1zA1JBQJNfgSZFVxHWdDgWISRenYDRJ/76Ft5Ut33TAfGyf30HRecsFPNd3cD8+NuCBc+gIskLjD4PHBNfk7EHp87BCmfEz7vrT3caxdmEG5o02H+uK8utLm4wLoMBAKBQCAQCAQCl+NECQpZlqXt/iB30+lUzWYz/fIPWaVKzHup4kOa2CnASc90Ok1bQLZarVTlhlCPx2MNBoMCuXASCoFrNBppm0J3KDi5czLmfyArbh8vtzB4Jd9dF34uyBnBiJAfKuY4MqbTaaFFxLcRZM6ZP+YcYcWdEev1OrUVsOtEp9NJRHEymSSihgCAIIHLpNfrFXZTwBlRDtDzlgJvNfE2EXdP9Ho91et1HRwcFAQU7m+tVivs0uHEmHnzeS1X1D1I0JP/GRefcfGpvOuCh/35GuX6m81mmvtyqwrj8BwM36YUgcMzL1hP7orh+hANcNl4CwPCD59FmHHnTrkFgaq/i1Au9vn65f47iUek8eBVWmK8hcHB+VmzLpgRxsna8etlDAhNXLeLON6mEYJCIHB1+Itvmutv7f7ezR5G4ATgr/76P9CzXvTGmz2MQCAQCNxgnChBARt0q9VKle35fK7RaJRIjm+551VNPg/J5H0EAvL54XCo4XCo8XicSJsLCpPJJIkabgvnfVRW6/V6cgyUq8lOviA2Pu7j4ATbHReQoul0mnaZKLdlTKfTRDYZw2g00mAwSONpNptqtVqpSstnvYqNOOD95cwzTovVapV2bNjb20sBe4vFIokQVNl9jL6bgDsePPgSAoqgwrm99QXHAi4FXCONRkOVSiVtDVpO+GdLR2mzmwJiA9fA2DzHg/EwvxBYFx3K8PvONTAWbxfwPAss/n7O8q4DnllA+wef8TnnGqWN6IH4VnbCQNjd+cJ65p4gNvk1uzjAfLoQ4gKLu0PK7RP814+F4wVB0IMxfRcMb3Hgmhgb8+hz4fPhToyyC8KfvwhlDASuAlsVPb1+Th9S7dzskQROAP7s035Qs3s3gvDnfNnf0fZv/FHxTevYSScQCARudZyo35YXi4X29/d16tQpNRoNTafTQo80DgB+8YeQlnMCvE+7XJ2czWaaTqfJns9/pQ0RgYB50J1UJCb07/s2i55DACnCzt9qtQpE0Hci4By0Nbgt3Svt3W43CRi4NCDwkE4yCLhOxjcej9MYIFrsaOFz6BVkt5K7eDOdTtPuDLyf47o13xP3L1y4kFoUyiTNcyA86JLWEe9jbzabBUGFdhHEEsggY2dcZfLpOQoQde4L7xuPx+lee8BmeecBb8vw62ANco0u4viuGD4WKuKIBB5Q6cftdDqFMbr7wvMuEMa8dYjjesZEueXB5wXRgbmD1DOPiB9lZ4Y7H3gv65v59qwLf9Y8twTBwUUCdzhwLuaG6+E1z4PwdgbcTT7esogQoYyBwCMjq9e11Tzc3eZZvzbSl/bO3+QRBU4KKtmWWtnG5fVr/+WVhZ/fuxzqxR/9WVd0rKx/+XbEgUAgEDgZOFGCwnK51AMPPKAzZ86kvmcnZmQkNJvNRDCclLgd21P7pU1PPjbpyWRS6Ft3kkjfdbPZTL350iZQDsLPeLzCC6H1cdGnT4ghQkm5Ci8ptRWQ7+BkSFISVMiYcBJJGCTXX7Z0M8ecE8GBa+O90iFxR+BwC7i0sdsPBoNUYXfBpxxmuVgs1O/3VakcbhvZaDTUbreTkDAcDtP1MC7m1MUiJ8m4JRAcdnd31Ww2U4Xbq/3lEEuO7YQX+7+3qnBO5ser+wg3jBki7bkErMFydgU/53jY+/M8L6ybarWa3DL+M1oCaK3hvvq5cZz4MVibrGFvo2E8ZcJOSKiLQx5eWr5PnqlQdiaUHTvlIMvyfcIF4ffK4UKD31c/9nq9Ts+v53h48KILJD5WricQCBwhy1T5kKcVXnr719+hd33+D9yc8QRuaTx5u6Nf+OP/fUXv/cRPH9zg0QQCgZOC7Sfdo7xZv9nDeESs/uzdN3sIJwonSlCQNlVCCAW/3EMU3JZNzz6EwCvR0mbLSEgEhILXh8Ohzp8/r9FoVAj+g3CxtV2/3y/0akubDARPnodMUdFlRwYIvbcccCyukSo81eV6va5Go5FcFLggOp3OZWIATobJZJL68SWlecMhweue+C9txBbmCWcALRO+DSTzzPnKBByyXSbrs9lMFy5c0GKx0JkzZ9TtdpMAg5uD/0I8PYOBFon5fJ5aYxAx3AWyWCxSW4vvNsCaYDcBb2Pgv2RHOKHkWiHogLl3MBYcDV5B5/zeBuG7EzQajXRc1k2r1VKv11Or1UphpAgvuBm4P8xXed5odUCUQChgfN5GAKn3aj/PBM+mh24yr74uuN/lFgf/gyjhc+Fr0YUHf55BWXxgTR+XOwEIYURU9OeGa/OsC2+BCARuZ2R/7qO0qh/lnXSq+o3/9IM3eUSBQCAQOMnYvutOzZ9x92P+/If/+zfpO+76w+s4ouuPT/3iF0mry8PIrxe2fudNUn7jjn+9ceIEBYisVKymQ/Kd/EpKQgABgtKmh52qKaGEHjg3Go20v7+vS5cupQwCSB0VTlwI5ANA2Nyp4BZ1T5mn4i1tKrVO5ry1YDQaFQL6IGaNRqNgYSe7wavnWZYlwkeF3YMJa7Waut2uOp1Osni7CEMVutVqJVcIc+bhfJ4DgOgym82SqIBg42IO763VappMJmknDSz77XY7WeA9KNHbMgChkGQecM2ME8FmOp0m0lhuJWDXDG9xYQ64NhwO3Cu365dzBGg1gXwz32z3iCPAP+fn4B4Q8ikpbb/J+XHKMG7PEmCNchwCOsvOjnIOBE4ShC9EijLBh4B7G4jnHbCuGU9ZrCjnm0Dg/R74GF2AKd9/vwZ/X3mN+PPj4hdj8c965kr5GDy7ZZEiELjd8LU//tP6vPbwZg8jEAgEAjcIs8/4c1p0r19b0X1/Za13f+4rrtvxTiJ+5VU/dEOP/9x//LWqXF67LGD3t96j5f0P3NBxXCkes6CQZdmzJf1Xe+mDJX2LpF1JXy3poaPXvznP81+4kmNC2hAUIJ/b29up6gpJgMQR3AZJLh8PsiNtCBDvPTg4SFX4Vquldrt92Y4LkhLpwhHhtm3S7JfLZRIdqAx7NZdjeuUX0gPJ8Sou/+Ya1+t1Iqu+tSDXD9HCScAxIHjNZjNtR4nw4GICJJ0xQU6p+COg4JzgnhCcSSgiWRLz+bwgFFA5pz2BdhGEjHa7neYMsgzh5bMeTIiYg1uF+ajX66klxrMocHhUKpVCK4ekJJD4rgPMXXlnCQctF7TaIFrR3kL1fjKZpPXLmMqOF8bm4ZWMiZ/V6/WUL8H6QBygBcQzAfw5wNXg8+buH3cMMG4EF6/oexZFeecEX9vlVg8EMs/+OC64kvN7oKNfKyLNlYBnArfBccGQ3hrBucrukZOOG/FdHAgEAoErR3wPB241rD7l4/TQRx8WUv/NS1+pF7Rmj/KJwOOJ133Hyx/1PU//2Rer9/YPvuz12iDXqf/02hsxrIfFYxYU8jz/E0nPkaQsyyqSPiDppyW9SNJ353n+ssdy3MVioYODg0S6INRlqzqVb+mQEEL2y2TD8wwgB1SHJ5NJIhIQU3cEYKl3oul72EMOOS9knWo55MnD8HwsHn7nfd2IHt7qQZghJB0b+3w+T8fwKi7X5XkPi8UiCSOSUpsApJ7KM2Okko6wIx1mK9RqNW1vH27Dyc+Zaw+e9MR+RA6El8lkom63myz17XY7taIwvnLIIESUa0XEYJ7ZRrFSqaRtQT2nAMLPWF04KCf8c362HeUzHBPhxNs7IO04Yji2j8NDNT0Qk7YNXCKIHggWiFfuDuB11qe3jbgwhVsHMQHhiPtMDoWvP9a7k+pyzoIHOXIdHENSIUzTRQ0/votnxxH98r95bjynw509jNPFCuaq7LDwAE3WqAdMloWZk4ob9V0cuL1x4av/gvofIj27+ruSWjd7OIHAiUZ8DwduFWSf8JF61xd09Zc++c361Q/67Zs9nMA14N0vfIX0wstff+t8os9/1j8svPbUn59o67f/6IaN5Xq1PDxf0jvzPH/vtf4STjW6TIggl5A3J83eHuBBeBBpJw0ICfyRlIiWEyMqwRA5xIv5fJ5s/t6PXW4LoNruPdoQ5sVioU7ncFstr/R6xZc8hEajoV6vp06nk0g/4Y6eE9BoNNLWiBD6ra0ttVqtQq/9ZDJJP5NUEDUQR9gFw9tIjqtYu5XcdyXgunxbQmkTKEmeAj/3kEAId9nZgWgwHA7TPeN6mDtvAfGdQrgvnU4nuSwmk0kKx2T7Twg+f2g54N6zhjzzwF0G3F+EMA8K5fq8nYHjkqGBqOVODdYLbgV3TLgLoFqtXpbHwZhZkzgMPBeDdVvOMWC9cm5cC4zf14zvoIBwc9w4EDUg9Nwzf0a8pcTFBOasLBKUtx7lj4dpuqOCP56TwT0oO4NcfLiFcN2+iwO3N8588fv0hg99tUJMCASuGvE9HDiR2PqYD1PlZRf0jmf96M0eSuAG4iNqTb3jS7+/8NqX/KVP0ev+9OPTv5/9d9+u9Wh03c55vX5b/iJJr7J//70sy75U0hsk/aM8zy9d1aCOSLOkAnnBmg68ikniPa4Dr8xLG/JLyCFBjJzLQx8hcVj5y1VnFyjKIZKMR1JBmICwMT5vl5A2lWvIzmw2S2QJdwJtCZD+brdb2MmBrQFHo1GaA15jNwW2yeRa3I3B9YzHYw0GgzQ/7J5QDvHj7379EN1ms5nmzgUOCOj+/r6q1aparc0vq7gT/PjMDWPFms9aQPzAtdHr9dL2mqwbtrdsNptpjUDK+cO98vwJ5hlRhJYNBCzI5mAwSMeYzWap9YVrKDsLPCMCYuw9+6xD34mBewyp5n0IBPwc8lxu/ymHlbIuWWeMl/YFnAusZ9YH5/EMBta3i0kuDLjDA9GJ+1NeT/6scq3ejuLHcsECuBCJaODtSTxz7mR6pB0kyLa4hXBdv4sDty+m33GPfuJ79vRF3VgygcBVIr6HAycOlWc8XXf/wPv1ynAl3Jb48af/hvT030j//tSf+xxNFndqNKvpjhe+/ZqPf82CQpZlNUmfK+mbjl76fkn/j6T86L/fKekrjvnciyW9uPy6V2L5RR/C4STcCY5/DlILGYC8Y493Kz4k1+3mkBE+6xXnctAeBJKWh/KWdVSYOQ67MzBeD/zzqihEiOujTYE2D4h4r9dL1WbOCzmFuHnF1q8ZwjwajdJ8QrjdybC9vZ3Ow30Yj8eSNq0j0kbQYBzMKdfnIZAIAf1+/7K+fYgu10FriQtCiAjM1WQySbsYkDEB2fSef44DYaZFwnfcoF2Fz/vOBmXhiPYBWkmkzXacbp3HpYADgX8jiiBcuJvCWyP82n3N8zO/By6iuEDizw4CAu/h76vVqiCcMWdcC8+SCyIuRnlgYtlp4KKQ7yLhx/Bn2kUUH4M/71yTt6/wmq9XdymUAyv5TLlFgvV7KzkUrsd3cSOq0YEj1H/x9/XK4efpKT/ySj2vcfKzRAKBk4D4Hg6cVKx323rlB/30zR5G4ITgVz7sf0qSFvlK/+D3nydJ+sU3f6Se9RVveEzHux6/LX+GpD/I8/xBSeK/kpRl2Q9K+vnjPpTn+SskveLofXm579srrRAqyBw/g5R4TzU9/DgQCBH0nRColHoPPAQCIkdSP1VzJ8MQ9Mlkon6/r/F4nCzyTr64FtoHPBMCEkrVn2vn2prNZsHKT1BllmWp/aHZbCZyL23aEty+jniAw4D+eYjtaDRKBByxAcLl4ZNcF9eN4LBYLNRoNNTtdtVut5MDgTlg/mif8NaS4XCoLMvS52q1WmpDGI1GifAzFx4kiKDDtRF8iMDjbodyPoV0KIY0Go1UrffWBFwgXgF38nq0fpMTQ1Ii4TgLyrs7uLDju0p4cKXnMXAcaeMo4J5wbm9LWK1WScDx5+iY5y4dEzEKoYlzM0bWs7cOkYHgQgbzU969xHfbcFGJsZXzFLhX7jBwlwrzx+vuIPBwTH+OfP7L88DPXJTwdUAb0S2Ea/4u7mWnYluLQMLWb/2h/uXnfLHyakU/8+ofUT2r3uwhBQInHfE9HDhx2L77Ln31q37mZg8jcAJRzSr6vie9TpJ07q5f0y+9/an6lz/1hXraP726UMfrISh8sczalWXZ3Xme33/0z8+X9JYrOUg5QE7a7BNPGCKkErIAqYYYu30dspvnubrdbqFPG1LvQX+Qfc4BUfTWAxcV+Gy/39dsNkvEq9wWwfU4acQpQRCeH5fr7nQ6BZs94YdY+53wcR5yFaiWQzh9S79Wq5UI72Qy0Xg81v7+vur1unZ2dpLYwfu5F7SFTKdTjUajJBBUq1W12+20LaW0CTyk6g6x9+R+xgvxpCVhtVol1wRCDoIGQg9rhcBLiPRoNNKlS5eSAEMrAp/jOIRAUpVHsMIST1sMa8ZbRyQlAYJ7RXsHZBRRy0k0YYnHOTm4H5Dv8raIrDXWkrs8OC7j8vwJd8vgUHHHBWuD19wZ4yGOZGt464HveOG7jJSdNpy77PI4zikgqXC/JRUECeBZC4gSLnrwfcJr7tzwLAie2XIYp4eZ3koOBV2n7+JAwLF6659Ikv7acz9fr379sVwoEAhsEN/DgZOH7e3Y/jfwqLij0taX9s7rBV/2Mt33N7f1Nd/yddr9L1cmLFzTb8tZlrUkfaqkr7GX/22WZc/Rob3rPaWfPSogVG7RhlDhOqByyC/9kCFP7Ye8E5545513pso/lWmIn4fUtVqtQjuCpHQcb8eA8B4cHGg2m6VdHSBC3gaBtZ1KsqRki2c7RwiQvx8yOhgM0mcRDSBkLp6Mx+PkWPAefFwErVYrkTkq3ORJ4BrodDqJ7HvKv5N5chhoD9jZ2Uk5C7RRjMfjNG9UwCGZHA8SSihivV5PxJdWBgSdTqeTSD07XEDeCWx86KGHNBqNCoINLgsP7MRZ0Gq10lxmWZa2DvVwQ8aLeIWo4tV22mMgvbRpQFJZYx7W6HPAmmdsvmMCa4k2Hsiub6PJfXLSjejAnG1tbRV2jXB3T9mJ0Wg0Cp8FvuMF7hPe5w4Aro2cCt+i07McmKuj75J0fce1PJUFEs9PcVHNBUUXfTxTg/d5KCiZI4gXiIO3SqDWjfguDgQcy/ffq8/44Oemf+9//nP02y/7PklSJYuWiEAgvocDJxFbrZZ+/LU/Kal5s4cSuEVwR6WtOyrSb3z7v9Pi2w9565c89wu0/MB9h99kx+CaBIU8z8eSTpde+9vXckwICpV0yCKkBJLlJAFBANs75IxKNxX+ZrOpnZ0d1ev1Asnx7SDpi5c2wW/uaqDSTRWb3QK8nQCxAdLXbDbVbrc1m800Go1SpdZDISFrXsF1YoagAGHHSeAp/b7ThFvBuS7vR4fUIlK4mwIi6JVhrzgjLFQqFbXb7bSFImND+OH9LrJwLO+L57+IOMwNY2cciAru0PB7PZlM0jaYuBYQHCDAnA8hoNPpJEHG2wzKGRw4NCD3XoX3dcl64h54ZoP38XsLRjlY090Efg+8/QBHhLcwlPMVIOHMNeuk/PwwP5KS1Z85drcFwgfrg+MS0OjtCJVKJYlMtA6xZn2cPh7uP0KhC0GSCuf3dcm94HXcN6PRKAkC1Wo1CUJ+37ivPjesERc+TjpuxHdxIFDG+sj9Jkm9V71On/mqj5MkveM/foL+4NP/vXpbjRAXArct4ns4cFKxsxViQuDq0dqqpb+/+vdeLUmq3H38e0+cn7dSqajT6aRtFakqU+XFYu5uAJL7aV0gvHA6nRa2Tzxz5ozuuOMOSUqtCh6WOJlMUqsDlX0nLlKR+HgoI+TPq6SQOsg8pG02mxUqo2VnA+eHUFUqlbRzwWKx0MHBQdo2EVHB3Rlu4SarwW32XBsihdvReQ2CSnUY0cGr54ggy+VSg8GgICS4AAEp5P4sl8vkMqH9wcUdyGqr1UqtHrRY0OLiYYvcfwQIcjPYYaIcqOhVcJwbbNPJvajX66nyD+nE2eBVcubEXS5lm7yTd89PcBHCe/rZApUWF8gy8817PfPAHRn+LHFOzxZgTXIshA+enXq9np4xDzd0YQPBCjcGIgOtELzm5+F1f054RjzQlPEiVHH/XAxw5wACFZ/znTpw7HjApO8U4rkTvM+/V3w+A4HA8XjWV71BX6S/qA/5/UbqxQwEAoFAIHB74EQJChALiEGZoEOEvffaSQyExIPqII3tdrtg+x+Px4m8cI7RaJRaKRAxjuvzBk5qqYwOh0MdHBykrQoJUGTskjSZTNL1erUfssR5EQWwoGO3J8yQ3nxEhe3tbXW73VTJ9jDF6XRaaBHBQeGOCEkFiz9kFsJOlZ15p7KLS8OzJHgPfwhy9P50SKDPJSDvgUBL75mXNlVkiDBrpFxhRwwpBw0yv5Bn7odve0llnfF5Xz5jJP9gPp+nNg9fi3wW94q7AZxoQ/bLOQQIVS4K8HPfEpTcDM+rcPdLWeTAicGuDuyOwXWVrf4+Vm+v4Dy0PXgOQbvdTnPENboI4qII1+duA661HDLJmnZ4SwQ/537z3XFcWKU/wz73LrAFAoErw+vuf6qGd79Gna1bKsw0EAgEAoHANeBECQoOiCIWc3cA+N95L7315e33ms2mOp1OssF7JdXD2TykENGBajvVUyrQs9ksETS2qEOkGAwGGo/HyZbuLQFutZY2lXu3229tbaXWgfl8nqqvVFIhz4wZl4WkVHF1EgfZ5f24HJgD/k4lGWt4rVZLlV6q9zgZaEdw4ofggPjB+wlW9HyAPM9ThgEBmBB4Kvyt1uG2SaPRSMPhsEDwPGTSd3MgA4Hzc48Yr1Qk+tw/3B8uHiD0ML/uGPHcA8i4b2eK8ML7arWa2u12Wiu05jCHwKvvtD4g8Pi6YdzcUwj9ce/juJ6bwWvSpr0AIYs1520J7sjxrBLPdEBoYdcK/xnPWXkbUW8/cSHAnRxcP/B2IL9WFx5cUOM6y7uC+D0qiy3cA9/FIhAIPDpOf0dLv/1DO3pBa3azhxIIBAKBQOBxwokSFDxhHqv+eDxOAYeeMeA909KmFcF75Xu9ns6cOaPTp0+nsEV2KYCwS5sQR8jeeDxOJIuq/2q10sHBQapE42KAeOJwoJWCNgUcA8PhJl0V0QBBwEMoXbiYTCbJoo112yvsZENAzCD8bv+GvHmbgFvZPSOAjAj+8HMqz956AnnzlgtvJXCrOuNGpKjX6+r1emlu2F0Bck7Ape+8gACEmMN9Z57cbeDEVdpkMnh2AQ6McgsETg/EjtlslnaLgKz6zgjSxt7vIZnSpl0HlwyOB67NCasHAEJoPRBRUiEYlPvl21tyTS4eeaVf2ogWCCKIIdKm3cbJNyIT944WobKjgmNzThc83PngzxXjZy3ybDBehEMfczmXw4WPMhAWeAZGo1HKxeC6vO2B43sLUSAQuHI887veFmJCIBAIBAK3GU6UoCAVnQmQbicSkCAIX3k7OyrvhCGePXtWd955p3Z2dlIVmgA/7+GWNtssjsfjtBsEbgVen8/nmk6nSaDAfcBxESpOnTqlvb29FMZY3qbPrxWSLm0IH6ICIgrz4AQIwsX1I8YwT062/H0ezEh4HmIC+QN8hrYN2iuoiHubBOQLlwUuEK88Z1mWyCNbTfZ6vXQe77HnvmZZlrZ3xAFBqwqVcM+I8HlA4HBHC8fkWrl3iAi0gzC+arWaQjS5RsjxeDxOZLqcU0BWhIs9Lma4ewEcF+rIWF0YkVQIWvQcBwQp5s+P62uD9Q7xJw9B2uwo4WGJnMszCjzTwJ0bfh98xwXurc+Tr3P+uAOkHErpa9mfoeNEBRcM/HuBn3HdrAWOyRjKOQ2BQCAQCAQCtxryxVLPfM2X608/+Ydv9lACT2CcOEFB2hBt/6Xeg9vYws+t0FSvqWRjZT99+rTOnj2bBAUcCtjkITiSCmTJSQcWfaq0jMm3cSQjAHs8n+WY/sf7u6lWuy2/HILnr9GLz2uED0oqCBeeWM9xPFCRaj4/r9frarfbqfWA61mv1+p0Omms5CR4RR/4NUHQvdVD2jhJcB6wwwaCiWdWQGYhfC7GeOhkuerPNfq8Oiln/un7p5LugYW0QUibnTLcrcGcc83ca4Qb7iXiAm0tno/ghJXxer6C50p4uORxzgOOgc3f2wf4fLk9wN8Pjstt8PFyvLJYVSbgjNXFGJ4pH5OHifr9951LHMyH5y88XJ4C5y+3S+FccGeKt/S40PFIDohAIBAIBAKBk4x8MdezvuG89PqbPZLAExknTlBwJ4KTJw+Z86qr9+ZTXYVQUGne3d1Vp9PR1tZW6omH6EEsvIWiTOadBPM+6ZAQDQYD7e/vJ4cCO0tAUNilgNchxWQNQFBns5mGw2Hqs+c8HhjHWDzvgOvnerCjO8rVYHr6ERIgnq1WK7kTIPqcv9lsptBJP+ZxgXeMm502vFru+Q6QPAQFggWZP3cTQOL9+n0HAo6DW8GzHchG8F0PqF4jevjuFIgt9P/zecip3w+uAyGBNVLOzHAxyZ0lHNe31PRQQV7zLAzIsocHsl593ZJtIOlYMQHnAWPw3T54L8csk3vWrv/cCbu3J+F08fXs8+Kf9WtxQcB3gSiPh+8KFzZc1Co7QsoCSjmIEWHy0UJZA4FAEX/0sufod779d/W8RmwdGQgEAoHA7YITKSiwNWS1Wk02dQiEiwFOqKlW02feaDRSGCPVYwgnVnQIlKfwU60k24AKuTsZnPxImwo27gQq1IPBQNKhPd6JNVZrT/1n20PvaXci5GSatgQIOls6zufz1HYAIFuLxUKj0UjtdludTqdgvedzHlrJdXouA20ChDRS/ccRADnkuhBoFovFZWLCfD5P4YQILohALn54foa7Rra3twstMQgS5FtISu9BOGLecJswPhwGLsh4TgHZB+WwxXKYIGPx3UZYq9PpNBFZr34jBtHe4veen7OuuRfb29tJfHHnhK9F7j3ri/e4q6ecGcD9hJx7iKeLIJB1xsbcQL79HNKGtPscuZjA8VnDTuJdxPDnpeyQ4Hg8p4gxfk7G4o4LnxMXOkJICASuHt3/+jq981vv0PMa52/2UAKBQCBwhNW5h/Qx//YletM/+b6bPZTAExQnTlCgEsl2diT8U91FZKCtwYm+VzMRFCDeEEuyE6TN9nPeHy5tCJ8ktVqt1FsP6XHi2O12tVwudenSJfX7/UJY4XA4TJXz2WyWquBeHYc8Q5Lof/c+esblBJfrq9frGgwGiQxyHewg4CII1Xwq/FTefd4RGryyDZFECHHHA7s4SErBh4hBjN9D+rD2Q7A9fNMFIgguzg53DnAMxAwP7vNdMyCs3k/fbrcLIpOHWXrGQJlsuhvDe/h9HL57APB554+35rDefBtO1qWLNpB2CL4TXgiyhyaWHRQIbe5sYD0ydheIyi0CvpsD1+Hz5u4NnyPPtWDN+Ly5a8dbE5g7rs+FnLJI4PPOOTk2uSdl18VxYC26qFHeASIQCDw87vvpD9cLO6+V1LzZQwkEAoHAEfLZTHf/dl/6Jzd7JIEnKk7cb8sQ7na7XSAfToa9ioxY4CFu0qb/niotBJXP0r9ftqZD7iHY5S3znNgQDFmv17VYLPTQQw8lYrNardTv99PYOA/EmvEhAkgqVPSpWLtN3N0JrVZL3W43tU5MJhNJG3JFroAH4Xmfuvfgux3c20s4ngfuIShQYYfESUqElt0pcEs4sYTQUUVHTCiHHrIdJPOHyEQFfzweq9/vazqdFtwP3kJCRdvdCQgKngXA+qD1grYTSDdiEGsIR4X37jMPnjNAsCjv4/ieyeBri7lmDsqhhRzfW3UQbljLCAqEEeKUYA1KxYwBngn/488SLTKcjxYRrsGfifJz7K+Xd044TsRxUa/cXlF+jhGZWItl4s/uH6PRKH0fHLc9pM8t4Z/uHgkEAleOv/Tkd2lnK8SEQCAQCARuJ5xIQUFSqi5SoS6H9lH1lpSq3ZAAJ9Cr1Uqj0ShVLZ30uSPBt4rEBQBBdeu6OyhoHahUKrp48WKq7jtRdCJFoKS0sVc7WXLxwivrXKeLJNj0yULodDqJjA4Gg7SVolfhIZW0GgwGg7SLgVfVndgd5zAoByTyPmlDHD1Rv5wFQTZBv99PYgLz6rkZtHh45gEtHv1+P7WUeK4GRH21WmlnZ0ftdvuy+er1eqn6z9wgbKzXazWbzRRKeXBwoOFwmOaJKjbX5+GeXC/3i3Xru4nguvAdL1zQ8f8iZJTDAWezWXKpeP+/H5f75M+VtyR46Olx5J73cI8RsLa2tjQajQptP2U3h7dmuPugHNLo641x+Zpx0YprwK3B8by9xK+TeWZ87nooO1l433g8Tg4mb2kJBAKBQCAQuJWRv/Gtet7Xfa1+53tefrOHEngC4kQJCtvb27rjjjtSCB9Et1arJRJBpRHy7rsyeAWc6jTk06ul5bA2KtoQ31arpXa7rXq9nkigExHs971eL1WC9/f31W63k4PCbeuSUsuA9+r7cV3coOrOOCHUTj7p/W82m8qyTKPRSMvlUsPhsOA6WC6XqX0kz3ONx2NJSrkAHigobfrRy+F8Pr/8HNeCtLGnl4MaERJcHKAa7JV6CDLz43OG1Z45ZY4IjWTHD4ig50GU8yj8nrttHvg55vN5ErWYD88zQGxi/Xmgorc2eIsCTghaRbjXnvuAIIOIhajD+mAcbCnJ/fAMEX8WXOzJ8zyt63I2CevWAxR5f6PRSH9qtVraHtXFEq6ZMXAs3AQ8Z2Wxiev2lgX+AObK8xZY3wiH/j7ml3N4uKukwvpmvgeDQXo+mINAIHDlmKyqj/6mQCAQCDz+yHNtj9ea5QvVs/iuDlxfnChBAfGA6rGkgt2aij2klEoslWcnSlQ4aQUgS4Gfg+VymUhjo9EoBBF6fzfHYDeEZrOZyFWz2VSv19Pp06d18eJFHRwcPGyivAe/0V/PtXuV2HvknSxx3Hq9ngggeQpUqN3ejbPAx8J1uQUel4akArmVNo4FciEGg4Fms5m63a5arVYiil4x5rjejkBuBDtiQMqbzaba7XYhzBHRCPEGckc1mfvu1XTG6wGWUjFEkxR/F3SAk8jJZJKuFQLsOwmwnSjOAK7F2ytohRmPx4WqOq4Dd3ywBlgHuBMQbWjtYY3gonHhyNtqyi0tPn4+TzYIP6P9xo/tRJxr4ufuHkKU8NwFUG6hwHnA/eKaWTOc11uQ/Bny0FE+R4sP1+JuBxcQeeZ5D/kmiBDuNik/h4FA4JFx33MH+mdv+gh9y5k3q5KFuycQCAROEho//3t63j//+3rDt37/zR5K4AmGEyMoeG89FWt2FPAKNf3tEOc8zwtbA1KdhqywI4H3T3tIHWQC0kjfOwSJ9/uxaXeAsELCIMyQPAijbxXJ+CGhHN+T5SHgVF4RV/gZoYeQHwQFnBi85rsESBtxhnmTNhV5yCCk1q3sPpf7+/vq9/sFkunCSLkqDmmFaEtKbRer1SptVdlsNtN7fYtFd2i4bZ5zuHvDAwY9+R/yjkgkbdoRuF6CGhFbyE5g3jz7wAUrBAMPjvR8BoQGrtsdLpBjCDrXjzC0WCzS+7xVADcH64/1yj3jmljn/LwcKFl2Z5SfRf7rrTfNZjMJOogK3mbiLRdcswsxx50XAYX1gqCEAMD6d8cO8+HuBM7JvHKffP4JDvXWHcQbX1eMi/USCASuDK/7mKre/O6FnnP0fR8IBAKBQOCJjUctIWRZ9p+yLDuXZdlb7LVTWZb9SpZlf3r03z372TdlWfZnWZb9SZZln36lA3HCsb29rXa7nYgzpACy7NZ5yIZXY6le8x4IqpNCeuQ9W2A6nSYrt28FicCB/Z7tE73i6kn3/NfzHCBjbNvY7XbV6/XSNUJiGDtWccbpFXOyD7D3My633UO+fE7YjhM3h2/D5/Z/rpvwRkjbYDBQv9/XZDIpCCQevujzzN+5LsQVqsJZlqVjeOCeJ+0zHzhMXNzxoEV2f+Bn5DS4TX4+n2s0GiWXQ7kdw9toeI8LMJBl3BNcM+uJOXN4HgT3p1qtpkyCXq+nXq+nbrebQjpZc6wd5sW3wHThyp8bFydoQfDsBFB2aLgTwUUHz71wsu+5GNLG4eBhhr4Lg7f2eOaCz7ffK56h8g4Q5VYgxu5j49749wb3yXey8F0dPDfBAxrLeQ83E4/Xd3EgEAgEjkd8DwdudTQurfVzo9bNHkbgFsO3PvTh+oYHn/OwP78ST+IPS3pB6bVvlPRreZ4/U9KvHf1bWZZ9uKQvkvQRR5/5vizLrrgRGcLglnG3Q0sbOzMEDbLAL/7NZlN7e3va2dkphCoiEEBcILVUjHkfwXwQHUgSQgIEmOow1U2vyjJOSBEkhyp9t9vVzs5OEhQ8oBFCSEjcwcFBGud6vdZoNNL+/n7KTHi46q/bv/mszy3OAA+w9KoyDg4PmkQkoMLuxyi3FfjOHJ5p4FVi2jGclI/H49QiAMGDOHtAIeQZcYfjcB0cs9xqMBwOU2Bls9lUq9UqhDoigrAWy8IBbotms1kYv+cBcB/coeBrgD+scRwNnNst/lTQXeDx+wEBd2HEd+LgHnAvEcIgzC6ScC+5R55t4QKGC0Y+vnKOBtfC8+lzylyVRYOya4f3sM49B8PXPdfvu5qUxYTy9p6+fae3I/nrJ6zl4Yf1OH0XBwKBQOBY/LDiezhwC6P9U6/XN/zol9/sYQRuIfyt93yyXv9X7tIffezDv+dRWx7yPP/NLMueVnr5hZI++ejvPyLpNZK+4ej1n8jzfCbp3VmW/ZmkT5T02is4jyQVKpBlAuHBfm7F9+3rms2mdnd3E1HHKUDfPi0Dbo+HRA2Hw1Tp9B5uSBhkyFsOfJtJr4x65RfiybVA6iVpNBol0szreZ5rNBoVKqQEVULMvDUAsYT/8hmImLQRCfgZGQBclyf+M2e0cdBrTu4BAgE/92A+iJ20CVVESMEJ4veUXTikjfWdKnw5jJGxl63tbnv30L3xeJxEGqkYeLm7u6tut6vt7W2Nx2MNh8NEJL3dY2trK82t79aBAwLC7XkW7FYB4fd5Z33TfsIc+L3zVgMXGXzOEEU85+A40s+8uJgB+edcnrlBhd7XL/cQRw7CHFuE4s7wzBEXPo4Dc+zOGBcQys4LxlZ2T3hehwsN7oDgve4C4jvHz8+/EbO4zycFj9d3cSAQCASOR3wPBwKB2wV//V3P1x++7yl61jdd0OrC+x/xvY81Q+HOPM/vl6Q8z+/PsuyOo9efJOl19r57j157VEAOPeHdSV2z2UxVcdoZGo1Gsku7rR/RQdpsYYfogMsA4gOBGA6HGo/H2tnZSZ+FeEE4ms2mOp1OquR6Cr8n4UNw1+t1gThyLIjKeDxOwgDXD+ErV3QRNY7mvND/jbUf+/ZkMkm9314t3t7eLvSjt1qtRLgIpONn7XY7VbXdGeGZFAgL7JCBeOKhftKG5ENGffyk8UNWfS4IAOQ+eqWdajJ/53q515zTcwaYA9oLEG8g/8y7uwTcKr9cLgvVdeaK9cS8kZOB2OPBnh4QWD4v7+F+u1sCoQt3gbsiyFlwgYK1jdDBnILZbFZ4xrhPntXgLSGeV0KIKS4HHCUusDUajUKWA+vfST5jc7BemWfP3XCy76KfZ2YgNrq7xUU9Sen55FyclzExd+U5O6G47t/FgUAgELgqxPdwIHBC8ME//TXKZtkjvucfvuDV+ru7j0yQTzK+4J1/VX/4+8+4pmO84Qu/S3uVYuvLTwz29H+/+m+kfz/jJ0b64N/7I11J8+/1DmU87g4em/yWZdmLJb2Yf+Mc8IoigLS12+0CCYbsQEghDxBVr8rjNGAXCV4jVI+QRIgH+QUedAdZxl3gln63oztB49+ci2v0Xm2q5h4kiA2dzAOu2bfNXK/XGgwGqlQqSUTwxHonTBBO5sX70HEfEIDZbrfTrgs4CPb393Xp0iVNJpNEEt1V4pkGrVYrVemxz3u1nPn3//L31WqV2koQZ5hr7g//hkB6hdu3eyS3wsMJ2ZWC++NOD3ci0FohqeD6kDaiBSIG5NfzNZj/cn6Aiwle6Ycke1aEt9H4DgUuKOAg8bXn7QMQ53KrUJZlhSBCzwPhs55LIB2KEOR3+E4ZHmzqwo8HInpbEe0UjNWFQ39ucGiwjvi3OxEcPl+Mw7MfXDRgTvwZYR7K7RS3KB7Td3FD0VcZuHa86Du/Xr/zjd+j1lbtZg8lELiZiO/hwInEU/7XSJ/3Vz5dP/PMX77ZQ3lM+DcXnqkf/ZFPPfZnz/reNyo/Cvp+OLzqdz9TL3/apjj4+q87ef+/+ojvfYm2HiYX/O7XjvWM33nd8T+8QnzKe/4vrUqX3LlvrWf8+GM77mMVFB7MsuzuIyX2bknnjl6/V9JT7H1PlnTfcQfI8/wVkl4hSVmW5W6VL1fiPWyPaizk0SvIEKnxeFzYVcDt6t5XDREipd8DCCFITgolJaJLpZhqKuNwgsy5sNpDiHyLQ2kjTEAsXdwgcNB3dIDAjkYjnT9/PlWzmbfFYqHBYJCumTG7EICAIymRf0hno9FQr9dLQgUEEgINES+Tahwg3CPmdjqdXlbZx5JfJsPcN7bl3N7eTgSfa6nVaolYA9YEY3KXha8V3/3C15j31/N+v1ZIJ0KTV7m9Hae8SwHjL++ywPjH43FyPpR3e6hWq4XgRAQoSDWOBObTWyL8j4tU7kjg796ewTV5NgHiA8ITzho+x1rweeL+Mh7O7+4bF1d4HjzTA0cCc+A5Fd5mw9wgSCAgsbZdgPA8DYQTrtXnhXtZdlCcQFzX7+JeduqWVlECJwNbn35e1WgVD9w+iO/hwC2F7LVv0pve9onSM2/2SK4Ms3yhv/xPXpr+3b5/oXt+/XePfe+VPDztn3q92vbv53/g7yvfkmY7W/rDf/p91zbYx4gP/h9fozteu9Egn/yq10vrG5fjdee/P37+Hiseq6Dwc5K+TNK/Pvrvz9rrP55l2XdJukeHS/X3ruSAbrN2ouCEzUkctvZyQJxXQT0PwQUFdyh4NR93AoRJ2tijqX56Pz5VcwiV70wA2aOdYrlcJgIPwcfSzzk4Jm0FLqBQMcYOL0kHBwfJ9UAbCJVYKvX1er0QoOhhfR6ix7V6aF45+Z/741Z2SCqE0Ns7ptOpBoNBEkd8t4RypgDndTLHGnBBiLkrp//T7uE7IXCv+bxfj1fF+VOpVJLwULbDswMDJJex41zxvAg+w2sejsiYyR4ot8z4Dg7SJlTTSTn3odw+QYgizwiOFZw7vk7dwYNw5k6O7e3t1P7D2hyNRilrAveBiwpe6Ueg8HvorgAXM3gu/Zr4THk7U8bLs+Dz5NkhnM/vLd8ziFzlHRyYA2/1uAUEhev+XRwIXCte+ZH/RdUsto0M3DaI7+FA4AbgL37916r50EJZnmvnN66tIv9I6L3q8NhZtabnv/0rde7j63rz1994YeEFb/8sLf7FXZKkD33ru7V68NyjfOLk4lEFhSzLXqXDsJkzWZbdK+mf6fBL879lWfaVkt4n6QslKc/zt2ZZ9t8k/bGkpaS/m+f5Fckr3jfvWxBCJrwnfTabpSouAXU4CrwK7kQCG3+tVkvkzJPhIXWSUvp9nuepUg7RhcyXq9lUXqUNqV4ulzo4ONBgMND29rY6nU4aR7PZTNsG7u/vJ1cCQkA5Q4BrgexDDCeTSToO73Oihu3/1KlTiSBBGqn++nZ/EEWv1vp2fAgc9K/Ta95oNBKh3draSoF97OjgTgFIO+Phupg7joWzwav0EHgq/+PxuCDmZFmmbreb2i6O1mUh84ExIjAg7nj7A2IV5ySMs5yrIakgvjD3Xun39cb8+w4jrVZLrVarkD3h2yi600BSekZceMAhATFnR4vpdJpEGMQWz9kok3wX0hCn+v1+cmawCwpzyLy7q0ja5I/4fTvuuQTlHRrKz5TnLvh3Bq/79wSCCWCeEXWO2+LThaWyWHNS8Hh9FwcCgUDgeMT3cCBwY/FhP/ASPf0nz0uSum///RtapS8jX8y1/etv1JNf19Jnvvqv609efErv/Osvv+7nefn+k/RzX/A8VQ6Gyj/wRknSrf7FcCW7PHzxw/zo+Q/z/n8p6V9e7UAgir6tHc4BSDKEjb5+Qga9YuyJ995fXu6nx3FAJgOEHsLEDgbSpueaMUibfm0q1x6ECCkcDofq9/sajUba2dlJeQjtdruwUwLjcrLtOyxQ4feedHdYQJhcfIAMNRoNnTlzRmfOnJGkJLogXlDZ90qxV7aZWwhrvV5P7+W8HpQI0ccev1gskjsCgsk8cl9814ZyVgBuDQ9gRHDy1hUIO3Ps58Pd4dtM0ubha49r9hBECKrnYXhQn7sZvG3CnQAeGsh4WK++BannSPT7/dQO4fPsu6B4vkKtVlOr1SrM23g8TuehpcZ3BGHOXSDy83AfaAHy7TxpsfA16+KJOwQQPtxpZN8Xhe8BdyaVd4DgfvEcuEvFRSsEG+bChReeAXcTsa44P2PkeCcFj9d3cSAQCASOR3wPB54o+NB/+BZ94lO+UL/3sT95s4ciSfqQX3+Rnv1179NTB2/U6lEyEG401uOx9Mfv0LO+saHP/BfP1/kfOXXN87TIV3rhx3za4T+WS63233EdRnpycL1DGR8znvSkJ+mOO+5QrVYrkFyEAXrK6YH3LfkkJfLv29xBIiDvkBBIjtvAvW8bIoSIABGFGLtNH3JI5df787HHY2v33nqs//T1u03biW852M77w6mG09PfbrcTuYPUIUbs7Oyk90KOvUddUqr84/qAZEpKRB2ruOc10HLhIY6DwSCFTfLz8XhccCN45oC0qRIzN8yPC0XAre6QfGz6nU5HWZYlUs1YXcQptzpwLMZxHJFEsPBWEV+DvhbInoCEI2q4NR+BAlA9JyDTcxHcieAuFHcGcG/8nnoLhbc6MO/lKr+3tiBseBsNuRdcL88T7SJU/zmvO0VcvODz7gJh7vzZcIGB6ynfL3cSeP5DWVBC7EJY8fwO/vgx/F4FAoFAIBAIPFGwHo81W5wMGvjcP/oCPeNL/49Wj6Mb4Uqwnk6l6VR7n7OvF1Q+Uc//wwv6ur2rFwI+7xM+S6vzF5UvLtyAUZ4MnIyVJKX+ca84Q0DIDWg2m4VtFemLd9EBgoAt3Ak+8B5uLO/SZqcJzyRotVrq9XrJVSAV2wAgVePxOO0K4cSEyriH7UEwIY18hmuktUDa9J4DRJZTp05ptVrp0qVLGo1GhaozLSCQM8QAjkPFm88wx1TK+Sxz6K0o5fBErgtBgf50cih4Tznwzol8uUrtoXlexfd2AYQHjk1fv9+f40gm//aWFQ/T5LOej+HE2dsCEBO8ag8J9fYJ3znCwfrkfpBTwP30DBAPZoRwu+A1Ho9TfgLngUS7a8TDDVmPPi+eIVAOLZRUIN7eioFYAVF3EY5rK4dCOrifHt7oggLPJ+4UnDOeW4GzBiEGIYX/ejuDO2Q8g4L7y3WHoBAIBAKBQCBw/bHK1/rCd366dj7zz272UB4Z65Xy9Uq/+pFd/ao+/jEc4IHrPqSThhMjKEBKveIrbQi0uwIg8JKSZR7yCYHwsDoXHiANnuyOq6HRaKjT6SQS3e12dccdd2h3d1edTieRDz6Dm2I8HicSKG16xL2FA+Kb57mGw6H29/f10EMPpW0fOWee54Vqf9kxUalU1Ov1dOrUqVQxpu0BwojlHYFkZ2dH3W43BSSWQwIRBXznhFarlbaOhGjyxwMUIbXMNa0O8/k8CRXlXAuuk/mXisGQOElms5larVYhN4KASzIHvCd+Npup2WwWgiQhu1T0IbQeDknWA9fhGQfl3S3cZs+Wj6xXBAQXIbh3XKO3z3jVnXEMh8MUOuhkF3AOXDV8tl6vJ6HFAyhd9PJ7fpyY4M+D3zNvN0B04r2IOaxFrodWHlpkPAPCj8v7cfv4HHLtLnTwfv+sCxoeEuqiFetsa2tLrVYr/R0nRrklBUHzJGUoBAKBQCAQCDwRsMhXesm9n6TRJz10s4cSuA44MYKCtOkFp6JZ/qWetgAIh9ufIWveK09onIsIVJq94ixtQuE4V7PZ1NmzZ3XnnXeq2WxeFirHZ6fTqQ4ODnRwcJBInrdWeE7Aer1OdvZ+v69+v18g5E7kGDcEHhLfbrd19uxZnT59WoPBQA89dPggeqDjdDpVlmVqNptJDHEbd9nuvb29nezqo9FI9XpdOzs7arfbScCBsBNeCcHn876VpmdJII4wL07KvcXB/0BOOS7uk/JOBh4c6OQYYcd3RfA2EIh7OaCQ18l+8GBQxuViAecBCCiNRiMRYs7JmvBWHg/JdAcDP3PHA9fuOQsQ7nLLiIs2CCnu6HHRQVIhA8F3xyhb/nFD4Aggc4Q5YdzNZlOdTifNg28p6YKOOwa4Fg9E5Frd3cC5/blfLpcpgJLvEK7DBZxyu4vfD+avvG7K7plAIPDo+N4Hn69XPOU3VclCkAsEAoFAEat8ra9836fowb/Qv9lDCVwnnAhBARIhqUCkII1uRy+H2lWr1USWptNp2smB1yFJvvOCExe3NbMlXrfbVa1W06lTp3T27FlJSmQasiZtAgwRBwg89Oq4Oxrm87n6/b7W63Xa8tHdAQDyBRFl7M1mU2fOnNGpU6fUbDbTsfgMQZbY5WnV8Ot2YUHaELKDgwPt7+9ruVym9geEhuFwmIgjP8vzXOPxOF1Ds9lMBBNih+uC8ftY3XXB2LzFQFJyjCAMQaIh9NKGDHslmusr7z5AJXswGKQQQ64DZwXiAudgPLSHQPoRb2iLoW2m3BbhwpALA7yXsbH2Gb8Tev9TbgNwUcwJOmNgnJ674S6EsmgB6feQRcbHmnAhxHfKgMzjEnm4HUQYRzlbwR095fl34c3v82w2K+yIwbPEHPJZWiU4J98XPCve5uEtMse1ZwQCgUfGn/7rD9fkP/yqOlnjZg8lEAgEAicMn/OOz9bqU+672cMIXEecCEFhe3s72euPsxg7MQcQDLIGIAeEwLnF3Uk7vdme9O9VShwOklKllWOXA/Km06n29/d16dKlZLf27RQlpRBHJ1hY6aUNsYLIeEWdYEKIVqvV0t7entrttsbjcaqye/XdK/udTkeVSiU5FnwrP8aHdZ8MCGmzgwSuBMiak0C3sXvrBe0X0mF/e6fTKbSyuADg5N8r9wgUtJlwPs8P4BjlUE5cINx/b5fxyjr3k9wCciPc8u6ZE2xPyVrkvfV6PW376BZ6RBV3YXjl27eZ9DYSn0/WubeDPFxgpD9LCF6e68DnPe+CeUCs4PMegllek2zlWd5hwkUo5tV3kvDwQyf1HgLJcVkrfj+YQxc4WHPshuHPJmvQxRN3ZCC0uLjj4mV5rIFA4Mrx77/7e9XZCjEhEAgETjKWr9/Tb3609EmP49f1R//eF+vuz3vb43fCwOOCE/HbslcnIY1SMb2dn/s2dbQoUMn03AIAiZKKVWWq9mXbM2GJ6/VarVYrVd4hRFTdsccTilhO+mfMXnGGYHkrA8IGY2AciB+eyI/9fzQa6dKlSxoOh+kasexTMcfajaXfQxjZahOyhnAAKYNkV6vV9HlyBgCVYwSU6XSqwWBQ2HYT2zuVZHcZONGez+cajUZar9dpW02cJk7eee9sNkvk0wktFXmEBHeHNBqNNH+sD98KsRw+6BVuxi2pcN4sy9JYyQrw9hBfCy6ekNeB+OBr3YUa1giiGOvCWxEQzZwYe26CtwrwB+JPbgPrjs8yPj8+f+eZ4VjkdDA3vs7KrgLWqocg4nopt68gdLj7hGN6YCLCkLcyeD6Ft1TwOdYy88u43D3BeCJDIRAIBAKBwBMRT/7239XLP/tT9ElP/43H7ZxP+pL36uRsyB24XjgxggJVzXI4H24DCIOkQoo7JFNSqhYjFkBoIDmTyaTQOw7J9+omlXlJaWcHJ6acczKZpOyE6XRaIKBbW1vJmUBAIWSS/5YDCz3TgHEzN/Tlb29vq9/vazQaaX9/P5Eub4+o1Wqq1+tpDshF4Fqx9fM5aVMpRiRg20eIKoTacw7IiGDsvmVglmXqdrvqdruq1+tpDE7ivGrvroV6va52u50Irc8dbglvFeB6EXmcxLvrxO+hi1Bcm7cNIJK4dd536oDoVqtVdTodtdttbW1tpfENBoPkeqDaXRY2arVauvatra3kGuAZQDDwTAEPjGR83l7hz4RX4Dk3c8G685YCfsZ8OpEut1/4dqY8E8wf1+Rj4nn255pze+sLYpELOO5m4H7584Fo5+d3YY51wPpmbGXBgfYPH7OvoUAgcGV458ueqydv/46k+s0eSiAQCAROEJ71n/+OPnj++zd7GIEbgBMhKFCxHI1GklSoqjqxlpT6oSGR2J7zPE+veZWf/7rwwHG8Z5/qqHTYpgAZdsLvhLLf7yeXAMcnQ4Eww+FwWMiCgLR4hdsFBogc4Ya4KSCguCL6/X7q/SaEcbVaJUEF4jmdTjUcDtXpdArncnLIXIDVaqXBYJAq4vwXAkz7Q54fbkdJSwLtGVmWqdVqpVBH2gVwAkgqOEb8Nba3dKcK88d1LpfLlOHgVfWyMON2fW+n8MwAt7Z7C42TWLIrEL28XYNtEQkfpF1hNBqle08QID9zscnH4C0Zfm9wE7gzwsUcxu0km3n11pDValVoSUBsgqATZMr9LJ8DMg6YD29DYq4R6bxVyV0WvtMIzgE+i2OCZ9nFJ1w0Lsh5WwLClAsI3iLiAhFrpdwKI21Ej7JrJRAIPDL+9D/8ef3m575MZyqdmz2UwBMIH/NvX6J33vddN3sYgUDgGvHM731vITMu8MTBiRAUJOnixYtJLIBIQBzo/4ck1Ot19Xo9VSoVDQYDzefz9DkP7XOhwMPW6HGXlI4rbdL1O52Odnd31Wg0CnZwtsGbTCba399PxJ6K8mq1Urvd1t7enpbLpS5cuJCs7y4iuE19NpslIaHZbKrRaKSHjbERMEl7BS0M5COMx+NCIJ63jZRDDKWidd13BZA27g+2ngR+TzxPAfLv2032er2U34DbAaLIPYL0QuKYW2/f4BpJ8UdEoQrPPWN+3J3gVXUnlMe1x0CCyQHwvAeOT3gjn6WthDEf1xqAGOROlDzPk7DhwX/83EMIPSzQr4n7SjsJx/AwTwQpfk4bA8IQLgrWAGID99fFPG8zKDsX/O+ISi5meDaDt3m4c4O5pu3FtyR14c8FpvK8easIP+Oeu+jB94nfLz7P+dzhEKGMgcCV4wV//k168naICYGrxzc/+NH63X/654/92d3/6w1673z0OI8oEAhcT3zct/0d3XHujTd7GIEbhBMhKCyXS50/fz6R+bLd33vw8zxXt9tVq9VKveoeoObklmM40eB8VMbdUg9J29nZ0alTpxL5oipOrzjuBM8mwP0AYR6PxxqNRprNZpeFTfquC1jG2VrSgyIhnovFIu1EMBgMUg87PeSS1Ol0CgGIVOSxhEvFHQG8fQEyRrAhhHR/fz85P6hIQ/BarVaBTHMtuDtqtVphdwQn+9jxx+NxIs5U2Ms2fN+JAPcB5BVxgfniGl3g8fBJt+M3Gg21222t1+skyBAMSsAmYslqtbpsW0LfmhBii0vFRYd2uy1JhTXpc++VdoSfcsAg5Jf5pILvpJm58jwMjk8uAttvHhwcpJBJiD73xefZd3tgPKzjcsuFE33WBC05HmLKPULE8tYc1jWveStRmez7tXkbiq8ZdyP4M+BCZTlk1J9RaeOmCQQCgcCV42+955N14SX3XPH7s9FU9T893godPrFA4NbHna870Hoxf/Q3Bm5JnIjflqnUQwalTUWTXAPIFuSoWq0mC7zvlDCZTApBbJKS5RwS4QIF1ViI4unTp/WkJz1Jp0+fTpV0xkOLBeGDVLKx41OBnUwmunDhQmqHYGzAbfdeYSU0kBwCJ6gICowHEWO5XCYLPcQckk4FHoLIHDJut7HjkKhWq6k9YTababFYqNfrpYDHcuXWreHlHQ3G47H6/X5K4XeBhEwFiDn3CBJZDuujGu/Bmlj3h8NhoWrtxJvgSwQb6dANsbu7q2azmWz/W1tb6na7ajQaqV1he3tbs9lMly5dStuC0v5Q7v+HkELkPfcCos5997krtxW4k4SfeesOjgLafnh2nAx7ywfPEW0ivsMB72VNMibcPu4K8N1PGK87IPis71zhOQgeuIgg41kVft20/Lgo4tfPGvfMCP+s76CCiMZceo5G2eEAPHMjHAqBQCDwyPjMT/kCZcNx4bV8OtX6wh/fpBEFAoGThOf+46/Vzv+J7IQnMk6EoOA91lSO6/V6qnJDeiuVSnInQBr5vJOtTqeTyK0TGWmTCTAYDBLhbzQaiUzv7u7q7rvv1tmzZ1Wv15PNHXI7m820v7+vwWBQ2DEB8kULAu0O5YR5D36kPx8xwB0EVG0hRwgLbB+JmLBYLApbJtLbz3xBqAkNnEwmyQ7v2/MRFui7NkCIyWUYDoeFgED+61Z47sVsNkvZCWQrSJv+ebfuMz6uG4LfbrfV6/VUr9c1n891cHCg2WyW2hVoQ2DteJ4Da4a2BAgsW1L2er0kECEm1ev1FBrZbDaT6EHAIhka3EPaJRA2EJpWq1Uh14H7jXjFvQLkh5R30pCUxuMEGoGFdhDP6XC3jlfgeQYQB3yNMPesrbJwQL6FCwCsS8C6cOEPh4fnFPi8MHYEGK6xHOzIHLno4cfk5+UQSndTlIUBvhu4Rl7zdR2BjIHA1WGVhwB3O+GvfslXqPq6P9Z6+mc3eyiBQOAEo7G/ktarR39j4JbFiRAUII8Qvd3d3UQiqYJC+CEtEHfIAFboMskgQNB3UYBISxsiVKlUtLu7qzvvvFNnz55N7Q3eby8pZQJA6MfjccoaYIeEfr+vfr+fjg+59R0ncCQ4ScO6jRPBq7eQZsi9jx1BwYP8EBN8m0SEAnZDcFEGUcPJ/vb2trrdrnq9XqGyzJyW3QqQPo6LjV3a7KhR3h6T+8J9Za4bjYZ6vZ56vV66P8wR5+I6yF9ANIHUE7Do5NDDNb1KzfkBYtb+/n7a2QCBhXsynU7T7iO0oyCeeG4CJNu3InQ3wnE7O3DP3CFApd3/eJsEghXCiX/Gq/geEOqiA/NQDihFHMB9Q1uEu1JYi+Wqvlf6XajgGC5+lLMLWOesKXcZuSjB3HlYo28DWQbz7GGWXLdnN3ibUiAQeHS875Ny/dibTutvdi/c7KEEbiDG67k+/e+/VK3XvD62fwsEAo+IT/iWv6PTr37tzR5G4AbjUQWFLMv+k6TPlnQuz/OPPHrtOyR9jqS5pHdKelGe5/tZlj1N0tsk/cnRx1+X5/nXXsE5kkuAUEN2SZhOpwXi7L3qECkPToSc+PZyZVLpwgMV0larpTNnzujOO+/U6dOnVavVErH3fAYEg+FwqIODg2S3p1rOzxaLRSJjTh69/xvCX+6H935wrt1bQCDWiAtOjhETIGQQXkgXrQzASWGlUklb9lGlb7fb6nQ6Wq/XGgwGajabyRUAcYXkscuF754BaLFwezv3BPLqWxu2Wq30ByJKhR83AG0yXIfPm+coOEn1bRF9ffi4vNWi2WxqZ2cnXZukZMfnWhG3aMVwAu7rDbdBOdjQd0/w7VEhyB5ESWgm68DbUPyY3n7AtXBMjuu7PjA/XJeft7yLAveKZ83bEvy/ZQeAn4M15gKB339vzXHRoxyk6G0Znm/B2vLvBhcs3M3hQgLOCP8+OSl4PL6LA4FrwdN/SyEmPMFx73Koz/u2f6zT/+P2JAjxPRwIBAKX40p+W/5hSf9B0n+2135F0jfleb7MsuzfSPomSd9w9LN35nn+nKsZhJMX+v4hq/ycX/y9Uk0vu6RCtoKkgmU6z/OUb+B5CbVaTbPZTNVqVd1uN+3u0Gq1Cn3y2OlxIOBKwNIP0cVRAFmiD302myWCIm0qxLQZlHvOEVi63W4ieJ3OYXI2VX8IHcej7x3CxZaGEGhs99j4IVT83MUK8hR2d3e1t7eXBIVer5d2ovAdDKSNG4T59moyc+DCgd9z/g4Jx7FCyCSEk+0Zx+PDXk2vYHPu8raQCFLkCECigecQTKfTQoYAVXPpsEWGVhFvX+HaaH1gXE5SEXkgx+6YccKMyIFrxeeReQUQbhcUEBtctPCWl/J2jv6H43M8RByv2Pu8ekW/vGMFz1k5A8HHWRZS/JnkPIQ4Ovnn2n3HDo5PcCrtEy7icczj4O0gOI8eyeFwE/HDusHfxYFAIHAc3rcc6pdGz9L3vvLzdM9//N2bPZybiR9WfA8HAoFAAY8qKOR5/ptHKqu/9r/sn6+T9AXXMgi3TJf7mCFdXk10QiGpQF69Z9yryPS8Z1mWeuV5b7fb1d7eXvoDqcG+jqV+Op2mdgaS8r0KynmobPMZ2gogx4gUEGaq+ZCxbrdb2PGh3W6r3W6nXSMgQJA6hBhaHwjsw/WB22I4HKaARMSXarWaMit8i0t2u6AVhZYHPlMWEyCz0oYwuvWe3njpkPh1u93kauB+QfzdjeI7CHjgJNtjkguBaOSiDuB6aIGAjDtRhcAzBlpecJiMRqOC24FcBif0LlRwXEg8bhRECt+Zgcq8t2N4SCPrwwUJb1dxx4PncLhAx84d7g7x8/p99LnzY7I+ed7cBeIuoEcj76wR/l0m7t7+gMDD3JYDKt0pg2jkP/f2BuaV6/Br8PYiFylPEh6P7+JAIBBwnFuN9H/f92n69dd+lJ7xda/TPbqtxYT4Hg4EAoFjcD1+Y/4KSf/V/v30LMv+UFJf0j/N8/y3Hu0AXqH1nnacCk5YnTC5ld+JAY4CCIO0aTWgZQKy0mq1dOrUKfV6vbSTgPf7VyqVtJ3gaDTSxYsX084F9PBDTL2622q1VKlUUtWb91Adhtx6BZgKKzkCEPbTp08ncrO/v1+wkzMvXCf5A5AwBJjhcJh2wMASjvDBOBEUtre30zaU7XY7EVIEllarlUL9IKnMuxNmJ30uCHFcF2MkFXIKmCts/TgDEHiyLNNsNtNwOExrqNxKgDCFE8RbJ3CmuGuC97ZarYJgUSa3tKlw/axF1iaEFBGknC/grgTPVJA2QgUVen5WzqtwtwLPSbmNA2cEbRmexcHz4W4CAjuZC8/J8LGyXn1bSMQv3BrMyXq9Ljgm/Dkt33uO54KEPyfsUEErkt8Pz1dBbGEcnjPCffEQV+4Z3yPuMLnFchSu+bs4EAgEHD8zfKbe9+dHeoZed7OHcqsgvocDtwwWn/YJ+oSdX7/Zwwg8AXBNgkKWZf+3pKWkHzt66X5JH5Tn+YUsyz5e0s9kWfYReZ73j/nsiyW9WFKqLJN7ALGklcCroy40uJW6HMyGtR1CB0lwezPVeez+7jSADFLpX61Wunjxoh588EFdunQp9cy7jRtxodfrqdVqpcp0mfA52ZvNZomU1Wo1tdvtdLx6va5ms5laDrhW4OKKtCHkiA28fzQaaTQaaWtrK7VzSEpZAtPpVNPpNIkT9Xo9BSJyb1xAgeROJpOC3bxarT5sVgKElFaORqORwhN5T3meOBZE0s9T3tWA++S5Ct6+wL1nVw6CNLkX/ncEA9wg3B/aZjg+YsNxeQHe04/Q4lshYu/nXkPKcWaUAygZB/OIcIXDgXN4BR5CD1HnnJ7ZwRziXIFkM3/MCc8Q94NjQsAh+qwRdxS4C6PchuAZGt5GwppAEGG+fUcVfo5gg6DBM8V3C4Ig6xJBiWwLF0l4jhhzedeNk4rr9l2s1uM15EAgcAvgOY336hVf/UKd/sHbMzPhahDfw4FbDRdeMtI/PPWumz2MwBMAj1lQyLLsy3QYTPP8/Og38TzPZ5JmR39/Y5Zl75T0LElvKH8+z/NXSHqFJPV6vdx70KkUUy31vnAnkZCAsnUZkuGVRsgPwXIIE61W69hcBcIYIej7+/u6//77df78eQ2HwyQmlF0SzWZTrVYr9eZ7sr+3ZVQqFS0Wi7RTBa0FEFnficL75b1f3bMTsPRDNp2MT6dT5XmedmtwIkx2ACQQUYO8hPV6rX6/r/Pnz+vg4KBAJBEXqP5DhOfzecFe73kYCDiS0vV4W4Rb7iHEXAfz5uSdbSA7nU5yWnjrAiKABzRCMlknrAkPySwHMDLHLgz4LiQIUl45p58fQYT75q0qHMcdAC4aMQ537niWANfKFo2eW+DPB60vzLU7HphjF61w8+B4cUeGk3rGwe4PHnjKz8vCF/DXPa+C/7pzw10LzIWLitwLd2JwL8u7nCA4eIuG3xvG78LEScZ1/S7OTuXlnwcCgdsXn1iv6mO/6v/ofT94s0dyshHfw4FA4HbGYxIUsix7gQ4DZ/5ynudje/2spIt5nq+yLPtgSc+UdEXSl9vNCRM8LlPBw+rK+QUQELdCO2GEYEEwISX1el17e3s6c+ZM6otfrVZpLIvFQg888IDuu+8+Xbp0SdPptEB+IMFbW1upVYDKv7QhhZISyVkulxqNRmk3CO91x1EA0aSyjvgA8Ww0Gup0OgWyyHs94NCFESr7VHK9x5+56Ha7arfbyvNcly5d0v7+vi5cuJCq2IgJzCUV3cVioclkosFgUNgVAbKO+EHVnLHgQvFdGhBG3OoOXBhqNps6ffq06vV6co3k+eGuHWRDrNdrDYfDgoXde+i5fy4m4MDwzAkq1lTCEZ0YE3PDPNKa4SSWn5HTgVOGNe0ZGcwvZBsnBvPKnCAoMH9eVefeI5yV8w0Yt+cRcE4EN9piuGfexoKIwjEh5MyFn8eJO44RwH3nNRcY+LnnPnBtzAPOE4QCb/1hThDDGKdnRyD0ubPC19xJxY34Lg4EHiv+6GXP0e98++/qeY1bqlUo8Cj4yrO/qRd9y0v1Qd92e+cnPBziezgQCNzuuJJtI18l6ZMlncmy7F5J/0yHCbZ1Sb9yVCFkK5xPkvRtWZYtJa0kfW2e5xevZCDY4TudTsofgOA4MVgul4V2A37xd9u0hzR6LzVhjBAj6dASfeedd+qpT32qzp49K+mwMlmv15OggDvhgQce0GAwKBAyt4m3Wi11u90UYmhzmP4LIUIg8OuWDncTuHjxYmpR4FrdGVCpVNRqtdTr9VLGASQYQsoxIbRO1La3tzUej1NgJKSTbSKp3vsWmfTzI4ZAerlPi8VC/X5fg8GgYHv3rAraJzx7AoKNyAMZ9blCwIHUzudzTSYTVSoVdbtddbvdgitje3tb7XZb3W43zelqtUqiirfDuNPEMzsQRmih4P3cbwQNt+V7ZgM5FbhQCAVlXbEGfEtGzxaAsFNdh7z7vfZ2Dl+LnmvA+cgH8Z/neZ6EJdwefA7HjD97EHdcD1LRzeAig+cvHBfSyPPpx+Az5XYm/4w7E1iDOGz8Pvr8l/MRmHPPNHm4UEnm/yTg8fouDgQeK+5/wULPrE4ktW/2UALXEc9tVPRDX/69+srlS/Xkf3V7iwrxPRwIBAKX40p2efjiY15+5cO8979L+u+PZSBUQ7HEuyWb6jVBdYTHuTXeCQmfxZpNxRJCCpne2dlRr9fTPffco7vuuittryhtdiKQpAceeEDvfe97df78+VRlhlQ68Wi1WkkQoUqPJd3J1Ww2k6RE4E+fPq1qtarhcKiLFy9qMBik945GozRH5UwCD25kLPP5XO12Wzs7O2q1WokQe8UfIjaZTDSfz1MvP4S3UqloMpmo3+8XshcInnSiTSV5MpmkXSS4VsaL9b8seCBceL8/rg6uC6LI/UVQWCwWiSxvb28n0QPSjUODrTK3tg53z6AdhfUBOfbKdJ7nGo1GBSECx4mTdki9j5+1wzkYP9Z72iY8O4P+fl/DHMOdB056pY3bhbF5awWuBdwJiD7uCmAuyxV62na8fYbcgXJrRHlHCBcYfEcNSUmU4Rq9dcO34nRhwp9njuHijl+ziyh+P307VhcycGF4OwbXhyBxknZ6eLy+iwOBx4rP+Mi36o5KiAlPRDy3UdGPffV360unX6+7v+v2FRXiezgQuDp86zf+kL77z75Eldf8wc0eSuAG4kT8tgxhoBrqyfb8sk8WwHg8TmTMe/SljRMAYk37A6SLimxZNKD/nkqmb6U4HA71wAMP6MEHH1S/309EyAUPXAY4GqiMUs2VNs4JqtLtdlt7e3s6ffq0arWaJpOJDg4ONBqNUiXVr4EKvrc8SEqEEOLHsf2aPOvBK81Ub6VNAB5kej6fp7Hs7e2p3W5rPp8X8iOoBCOSeCsI99VJMC0eEHu2ZpRUqCITsMj1MWeeCeFVaM7NfeXzzDfVd9wXZReEW/FZexcvXtR0Ok3CjYsI3B+EFq/gA8SPxWJR2IKSa+K9XiWnbQRxynfNcHs+ax5BgdfcMeLEmp97DocTdVwbjIe/01rin3HhA6GjLCogdJWdFghxvmNL2YFAlgRr1duJEBPKgh7nQEQpCy+sE+6hi1g+r569wPdQIBAIBA7xnHpds9PR3h8IBK4cn9Wa6jvaFVUe/a2BWxgnRlCgMlqr1ZTnedpVANJCJRJCAonBAg3Jy/O8EMwHSI+fTCaazWZqNBra2dnR7u5uqsbyvmq1qm63q62tLZ07d07ve9/7dPHixbSNpLscpA2BRUyg9x4i60IGJPTMmTM6c+aMut2uxuOx+v2+9vf3C60CECCq1PTiQ6homQCQTDIcmEMIMyIB7g4P+vOsgvV6nZwGTsL7/X7aHQF3BdXxyWSSghMhwtwjD8ur1WppBwmEFyet3JdGo6GDg4MkUiyXy8Ic4mCA3CIoQCypWiOy4Byh7QGyy5y5WIE7IcuydO1eBc+OdnwgeJFjch20krA2aBNhLrwlB5eH52Kw7SgkmGeE8/tOFLVaLQkJzIm3CfEMuNPDr51jIiown6xZzs/8uHjl1X8fm29Lyr3yZxYXDPffAxFdtOD9CASeccBnWGtcvwsEnNtDWXnGHy4oEgGJ++OOjkAg8PA497Mfqp+/58ek+LXxCY03ftl365Pe//U6+/LY9SEQCFwZfurl36O//dlfpfWb3nazhxK4QTgRgoKkZBHHng4pg/Bhh/d0eWnjEHCSAOFBZPBtICHs7KjQaDRS9RtCt7e3p3q9rtFopAcffFAHBweaTCaJjOGU8FA+qquz2UyDwUDD4TAF/Xk1uN1u68yZM9rd3VWj0UgtBP1+X/P5PJEYyCnH9gorf+e4iAOdTidtycgYuV4s6xBvBBeIGsfBDYDTAdHg4OAgBVK6gwOho7xLhPe2IwRtb2+r1+slwQPCT05Es9lUt9vVzs5OoQLtFnvPEcCB4cIJ5NF759ntgZDEci4C9xLRhQBHXBQQ22q1muZ4NpsVdpLw7AVEGlolmAvOS0uGt+iwE4OHV5Z3zMB1gOjAM8M653wICR7eyBx6aKI/O74bCn+8jcAJNsdzd8tx+RGsJxce3EngLQisUWkjXiDuudjnzz4uFeaM9eAtFlwT4h/nP05MKI/NRY1AIPDweMcPfbze/edeqRATnvjobDW0qmdSlkkhuAYCgSvAmUpb6/qJoZyBG4ATcXfzPNfBwUGBpEKyaFeA8HkCvm+15y0LkCNIrlekCaeDLEIqpU2Fv9FoaLlc6sEHH9QHPvABXbp0qbBrAdVyeq09HG44HKrf76cef/r7fetB3+JxOp2m4EN3J5QD5nzbQw+sQzyByGVZpv39/UJoYLVaTWJCOe2eqjXuDd7P/LDrxWg00mw2U7VaTfkMWZalHAbmx1sAuG/MLUTN8y/Iw9je3lar1dKpU6e0tbWlfr+vg4ODVH1nnXCvqUYTBjkej9N6KbtUCKikmu89+uQklNs2CLv08Mlut6vt7e0UCrlarQrbKnL/fKtI2jx89wHv//eqfbldpLzWOQ/n9DYYSSk0kyo+4pqvbyfvnq8hFYMhedY4ru/KgKjm4gcCD+vQhSTWBudBeGKMLn7MZrNCtgEtNYyjLG7w/LvLhPvgohXnLbdU+HPEOQKBwNXhGH0u8ATGm77h+/T/u/dr1P7vr7/ZQwkEArcIfvln/os+4wVfpPX/efvNHkrgBuDECArY/nd2dhIphLBQ+feqqAfpeUib5wVAFLF/Q2qwwFPd5Dy0LVSrVV28eFHvfve7de+99+rg4CCdxx0SkG/GRRvEdDpVrVZTs9lM5Mwr/ogktBZg7YfMcA4IZJZlqQUBUgQho9LM9RGMyOd3dnbSPJVbR7yP3cMZcXDQ+49QQ4UcEgexRjBhZwDuKcfyfAeOBxmGQLbbbZ06dSqFUxJGCYHkM+4SWK/XKXeCgESvPCNAcJ8994LqOSILpNNJqtvqCXPM81yDwaCwOwYOBV8T3BvWpQdj+raOvnMBa8XXAc4FcgmcwLPGEXT8PDgEXJwrhyByfs7lLp7yjgisG9a3pLRGuEe0TdA+w7l9Vw3mF1GAdghaLICLhaxdFxQ8H8EzLHhGuB8eIsn7vR3HW6hwVrhTI1oeAoFAIBAIBK4dv/hLP6EXfO7fUv6Gt9zsoQSuM06MoOB95eWKIq9BYKlI+uchCB7ABpmBgCEaQEp3d3dT+0G73U6hisvlUg888IA+8IEPpCBGnBP08UNSGQfbA0KYfLcE33kA8kgOQr/fV7/f13Q6Te4JrOYQZI7NOBAasIVTlab/fz6fF8QI3yEBcsW/AUIAJJlsAM+tgJzjmJjP50nooXLuqfuNRqNQNaadApcC4yL3oVarpV0ZmDM+686JTqejarWqg4OD5E5wMQESSCXf++49lJL2D4g35NXdAjhE2E0C8QLXgpN/X8OQb0iyV+g9INN3HfCMBuYGcsw9hoyXswbcecHnPdASEl0m2AgeHh7KGMvXxlrAiYDQwbPqLgNahBi3txvhHnDRg2tlfTFe/y4gqNPdBAgrvv2ltyuwdhES3c3kW7F6+4S320TLQyAQCFyOS88+dO2tj3alCgQCgSvBL/3cj+qvfPlXqTJbaet//+HNHk7gOuFECApbW1vqdDqJVDrhkQ4JysWLFxO5h+xCmnwbRkg8BMsFBbe/nz59WnfffXcKRoQQU/V+8MEHde7cOY1Go1R99W0ieT/khcoorQCr1aqwbaUTR2+FOH/+fBIipM1Wi95e4VspQuSoaLPVY5ZlGgwGGgwGhdYDdkGApJeJHOcqV6z5O8QLUoYgg7gzHo8lKVnwqZZDziaTSaE9QFIi0ogv3HuyM9brdWHLQv7NdobValXT6VT7+/vp/Gwh6SGV5bA+2lI8o8IdA052/Rg+j8wxjghpEwwJCO1EBCo7Cphj1iSfYY7dgl8m4C4geJtGedcIFxy8vcUzKVzg4HMe0uh5JMyXb0fJvLijg3Xl7UqSCmKCZxgwHziOGEdZVORn7kJCqPAwUX7m3yGMj2OwprnvLhjxuotvgUAgECjirX/v+/Rpr/kyZb/7pps9lEAgcIvh13/4P+qdi6G+5J/+YzUvLFX/hd+/2UMKXCNOhKBQqVR09uxZnTp1Ku2iICk5E/b39zU4UsEhMpBdSD6VaAgigYgQOWz87XZbvV5Pp0+f1unTp1NQH6RlOp3q/Pnzeuihh3RwcJCqnoQHsssBW8tB7ur1uu644w71ej2Nx2OdP38+peR7ZVxSIqcXLlxIeQsuWEBivV/cHRa4IiC129vbidwzFmzmkGACHyFNPvdeXfYE/9lsltoPEAQgvIQ+kkeBa4H5QnDY399PLSCeo+BtHV7phhRScZ7P56l6DIHHsYE4QN6DOwYgurQjuDDh2QIQc9+dgEq/tyKMRqO0EwdbO0Kovc2G+R6Px2lXC4gvBBUSjdCAS8LH44IC43ExAReIb4PqohQiAK0L3BM+C8FGoIGUs6ZoI/CsB8QEFyLKO4S4U8jdRYgWZVeHtxB5S4znPjB/bAFabt/wbS1ZQz5GFwYQ+ngecCvh+OF4jNl3igkEAoFAIBAIXDs+pNrR6//N9+uH+3foZR/1BTrzfxaq/2IIC7cqTsRvy1tbW+p2uynZHiLEL/8XL14s9PCX+7oh3YgJZZs074dg9no97ezsJJu/E7Z+v697771X9913nwaDQaqmU91eLpdJTGCMzWZTd911l57+9KdrvV5rOBwWkvWpFtNvn2WZhsNh2jXBt+aTlEibhwxynVyPB92xu8B8Ple9Xle73U4EH3Lr84Sw4BkSEDd3XIzHYw2Hw7RVJaR/NBqlsEFEjq2tw20qyUQgkHA4HEpScpUQEEnrimdZ0CbA1p7eKpJlWcotkJSItAcBIvx4LgbzTygmpNYr9eRdsP6cgCKSkHXBlqMIEF5VJ5QTZwJCiTsDHu74vl6Oa2HwlgWIuzsVyjs1uJjgLRS+TaMTZuz9iAYEXno2A8+cpIJYR0Ufh4W39/jrzJWP0Xdj8dYPX5cucvFcu+ji+RPeJuKZK6wD/jBXvsuLf3fg+gkEAoFAIBAI3Bh8ee+cvvwffJ/+0f0fp5/5tOdKkp71yn2t3xLhjbcSToyg4P3ykACIMmn0kBjf2g4SBJmEoNPa0Ol0ChZzKuKeZwBhm0wmOnfunO677z499NBDKcnet8qDcDG+VqulO++8U0996lN1+vRpPfjggwULurcTQKh8Zwfe56SNnm62toQke7WbVgrcDrR9MEdexfeqsbQh925159o4x3K5TIGLVK0ZOzkN9Xo9uSVwMnj4IrZxhCCS+NnZgRBH2lcQMGjxYLyQWyfiCBeIFFKRiPM5X2P1ej1tA+mWd+a5nI2Q57lGo5HG47EGg4EWi0Vhlw53M7D2ptNpCpn0nQe8fcBFBV/vbt/3Vg1s+u4C4I9v/+jihVf4WQ/Mizty3EGD24U14W0hfBaRDncOYoi3NOAOIKfCnQycC0HBRYHyThI+H7gW3PGA0OTzyf0ot614K0tZvKDNxkNPAWsxEAgEAoFA4ImE3o/09PJnPUlfu/uBmz0Ufefdf6Dv/Bt/IEn67I/9DL3rwY9OP3vaF705tqk94TgxgoJUTJ+HiFNR9e0Z6ckv5w1AEvM8T60NOAIgOk7SnPxMp1NdvHhR73//+3Xfffdpf39fkpLQ4fkD/KnX6zpz5ow+6IM+SHfffbdWq1VyBPB+36LOgxgPDg40HA7TtbibAos/4gBz9P+1d7WxkZ3l9bwejz3ftofdpSEJEEISlX5o+SggQBRKBUmKmoBKCKUClYqAGqSiJm1DUQtURRWlQEuhQGhQCKIJKW1oRBoKrYKiipIPIJ9ASEJYsuvd9dqe7/GsPfbbH57z+syN17vetefe8T5HsmKPr+c+97133uw5z/Och1lTejOQQFI0oFgCAPV6PRhC6nvze/o/kATrxAKKFFq2z3NRvBgZGUGpVMLIyAiq1SqazWbosdfpG/xbGuq1Wi00Go0wvSCfz2NkZAStVgu1Wg0LCwtwzgUvCraacAwngPBc8P11EkDUz4DPR6FQQD6fD/ea7ShsD9GWAK5Vt9sN8fJY9Q7QyhiKLxQdGBeJMEm0Ghxq+T4JbbTtgHGQNGubgHoesMoj2i6gxp5qNKlGlToxhZUQFPIosFC00LGgasCpYpSuMY0Zo59xxsNqBDVi1LXQqgGKPGxVYJUQP/OsdIgKSerbwPWhAKceJ9H1tikPBoPBYDAYdipyt9yFO68+PxGCguLr598OnL/28+vvuAgrfv2q0epnn4niV747oMgMx0IiBAVgrS1ADf20nBtAIBjq5k5iwd+TABcKhb5xfiTLSti1pLlSqeDnP/85pqenMTs7i1ar1VeKHyWA2WwWExMT2L17N6amppBKpcLUAZbmk6iqAR1HLJLwk5yreWQmkwnZexJZklfNlPM9FxcX+/wClpaWQum9+i7oZIpMJhMM/VZWVkIrCDP4JJNsMaHIQA+JfD6PTCYTqg1YmaA9+SSY2upAPwdtO+l2u6G1gm0emUwmZP21p13L9UmEM5lMX2ZeySuwVpHBKhRWWPBvmQmnSMNj2X5BwYfrR+hEB95LYK0SRScFqFigkyt0rKZWSPBZUCFBiTIJL6s0omamfKbYdqD3SKtdtAKCsakpIUUtbYvRkZCa/efnUKdnqBcIBYSoYSJFJxp4qmCoLQtqtMq15zGMRyc5qKDCNVtaWgpiEoAgeKgnCqudzJTRYDAYDAaDIV58/fzbj/m7r/11Afe+75xTPsc9e1PHP8hwTCRCUGAptBKtqHmeEgfNQlJ4YIn+yspKGAGphnYkxpqJJLnqdruYm5vD/v37sX//fszMzABYq04gAWGVQSaTwcTEBMrlcsikt1otzM7OBkFBXelJKCkkNJtN1Gq10CJAss+sNr/XNSEh7XQ6gXCT9CoR7na7IdOvUyBIsDh2UVslRkZG+owN1Z9AxzyyUoCiAe8b10qd/elZwNeY7e90OhgdHcXk5CRKpRKAtXYJmiOqTwSrBoA1Qslng0abNJokweWzQTGFpL3ZbIYRnRQIWHWhZfTRKRjRUn71adBpF9q2ov4GzKLzWaIhIEURnQCRSqWCmKRCg0550GkRKhpQZIhWJqgfhRp2qqEiny8+E+oBoW07WlmgkxN4DaxsofEjnwfGrKKcti3Qo4Kkfz3/Am3V0EkdXCM+r3ze1WeBx0VbZ9Z7T352+HuDwWAwGAyGnYja7xZw7TeegSsmpuMO5aRwab6JS/MPnvL73PpoDitYS9xdddeb8Nzfs7GWJ4rECArMlgNrY+zUJwFAKK1WcsXqAWZFNdOvYgKJEckDjfhGR0dRqVSwb98+7Nu3DwcPHkS73Q6mhhoD2wKKxSJyuVzosSfpYOk/qyRIJJk5J5nUKQC8fgChTUJ7wzWrytaEbDaLbDbbJ3awX58eB51OJ7RAsCojnU4jl8shn8+HTD2JY6FQCNUJLEPXLDD9GNSpX2OiYMMKCWDNPI+Zbx5bLBYxNTWF0dHRPu8FXlsmk8Hi4mKoJADQV4nCdWIlh/bB8znRa2JlAokunwGaeFIoojkffRC0/Ybkm9UgagzI1hU+n7zfjF2z7fxidQQrRRg7fR5IiHl+ChXriTgUKHgs49MKD94jbdlgbCp+UKigsSfbMSgqaNsQr5/nZiWE+ofos8315TpxDSkm8PPP50iFnmjbAu+z+qhoO896605RUCdo6PGsfopWUBgMho1xwZU/xsXZ1+AX/6uCj53x/bjDMRgMBsMJorvvSTSXM3GHETt+O9/u+/m1r/ocDu5bxOuv+1M886++E1NUw4OR4x3gnPuCc27GOfeQvPZB59wB59x9va+L5Xfvc8495px7xDn3uhMJgoZ8NEFkH3+0hJtkgBUGJH9sH9D2Ai2BJmkg0aLgMDIygsXFRczOzuLQoUOo1+uBUPC9Sa6BNVLEjHitVgttDtVqtc+UkCXvbM/QKQY6417jU9NFehuQjDNrmsvlQsafJIzv22g0wmQKEmq+H9sJSLB5LIA+4UFj1MoPVi1ohYASPR0HyZj5N7wWjoCcmJhAoVDA8vJy3yhOnbTQaDRCG4S2TejEhomJCYyNjYXqCTXvVGLO9dP4KYjwNS3FJ2GnoEIyzXNo6wLFBF0vZvl1HSi+6JQE3gtttyCR57nV60OnNGhVg8au2XauOc/Hsn6KcSTbmpnn8xutQGFlj/pv8F5QxKJgw+OjPiAq/PHvO50OarVa8Kng54Bx6TOmZo4U5yhy6NqpmatWbqgfAisZVEzQiSs8L0WsJGAQe7HBcDJYabWwPDuHh18yghvqu+IOxzAAvPy974b7zv1xhzFw2D5s2In45t4y7jQP6j7kRsZwbrqAB971j7hl/91o/c5LgBFLMh0LJ1KhcD2ATwG4IfL6J7z3f6cvOOeeB+ByAL8E4BkA/ts5d773fhkbgASB/8jXkXUUAUg4FCzTjmZK+y6wV43A0mYlVgsLC6hWq5ieng5kkYSQlQLMlJIMU8io1+vBwI/kjlUHOomB5yVpYyad10UixNYLEl11tG+321hcXAyCA0koRRgAfWvDUvVcLgdgdSIC/3Z5eRmtVgtzc3NhGgaJ7eLiIqrVahAauK4kgVwTdezv3fcQb7RfXdtZstks9uzZg927d4fMNIUStjqMjIwEsaPT6SCbzaJYLCKVSgWBJ5fLoVwuI5VKoV6vo1KpoN1uI5/PY2JiAhMTEyiVSkGA4H3Vfn8afZKkAmuVCGpQyDWjaMAKDWazW61WeBa0qoNEnv4QnF7R7XZRLBaDeEJSvB6B1SoCxsl2A62eoOjB550CEkU2NYlU7wBtpWEcjF+9KrgWPBfFB15jtDUn2mKkAgzXlK83Go1gxElfDhVe1Ogxeu2MS6+b5+L1RD0bdE9QoYPPSLQlI2E+Ctdjm/dig+FU4CP/jzbsTFSW20gtJmpvHCSuh+3Dhh0G3+3iyaWnAZm5uENJHNIuhbRL4X8/+Tngk8BFF70Fbt80lqu1uENLFI4rKHjv73TOPfsE3+8SADd5748CeMI59xiAFwP4v43+iGQpm832tRKQFGjJP8k3gNCXHp1bT4JPYsBMZ6FQQKlUClntlZUVzM7Oolqthuysth2wl75erwdxg5ULPB5AILuNRiOcV80jKRKQVCoxJ7HU6goAaLfbfYQonU6HDGy320WlUgkZfJoSkiipSR+z48xyUzSgjwBHa3JaQ7VaxdLSUl8mm+0FNF0kOWVlgIodWlaupppjY2OYmpoKQoB6MrC3n1l1ignMiuuoUJpH8h7W63U0Go2wPrwenQAA9I+gJGHWLHgqlQpTJwD0eQZoVQmfiXa7HVpLKCboBAaSWxpRtturpVT5fB7FYhGjo6N97Sk66YDg9yTIuq6Efs+fVbhie4y2CK1ndqqmoxqDPpcUuDjBgfGo2MHPH8k4xQLN/POc/DzQN2J0dLRvBCo/v9G9IvpZ0Yka2qKk1UJ6vTqho9vt9rUlaQVLwsSEgezFBsOpYPSsM5EZeSLuMAzbjN/4yNXY87XTswTY9mHDTsUNF5wNPAK8tWiiwka4/fYbAQAX//obsfzoT2OOJjk4FQ+F9zjn3gbgXgBXee8rAM4EoLM79vde2xDMhrI6QScHcOLAwsJCX/82R8WpIz6AQD75exIEljez+oHEq9FoBFJH0sPsJSsT2u12X2aWLvfAWqk0CR/NElltwPdhJhZYGwHJKgJmwQmSNTWnJJgZZruDkiQd+6hkKZppZ2XF2NgYJiYmMDo6ioWFBczPz6PT6YTSdh2PGJ0+oJMAtB0h2tLBsvdcLofJyclwf3UcIAk+q0NoLEhzTRLWTCYTBINOp4OZmRnMz88jnU4Hk0f1TGDGXZ3+ATyFBDO+UqnUJ0axykI9Abz34flU0YPvS6GCpF6nZfA8FIVYFcNnVFtrKCTx/GqGqNDr4v1ut9uhMiE6ASU6OQFAuLd8jkjiGYM+x6wq0akTaoip1RLRSQk8np8rVtfwGVEjTBUTKNAwHsbE39MLg4JJVHRYr3VKfRUIxs3XvfeJannYAFu2FxsMp4Jn3TKHywqWtdnJ+PbCCMYryRJbEwLbhw1DjxsuOBuXHZhB2llp//Hw1TtuwiWXX4HU0WX4e07dFHLYcVwPhWPgMwDOBbAXwEEAH+u9vp4l+rqD3J1zVzjn7nXO3ctMouuZM3ISQrvd7iuL13GA2j/N7K62S+i0CBIzEkSWv7PUm4SN5ILZbRIokjhminksif3c3ByazWbItOvYusXFRdTr9b6KA53kECW7JDrAWiaV2eWFhQU0Gg3Mz8+j0Wj0GchpZQJJP0k6KyEoDIyOjqJYLKJcLodJC6zSIJFnK4dWPbAf/ujRo6hWq6jX63C9KQ4AgjDDaglm4ycnJzE5Odk36lLN8XrPQ7hPKo4Aa94VHDXZ7XZx5MgRzM2tqqj0ZBgfHw9VGcy464QBJZJaeTE5OYlisdh3LL0j1DyT8XG0IZ8VbRGgUKEtBPSAiHo6qOEgnzlWVbTbbTSbzVBhQbIbrR7Q87LigVUfrExQjwNWhqiJJZ8LzeKTpKv4xuumqSIrcXgMr5X3WH0MtG2D1Ts6mYHC4XpVASquqCjCZ0h9EihiaCz8HKjAwTgoPnCf0OvhdSQcW7oXL+HotgRp2PlYecVenJ87FHcYhm3Era0crvrIuzDxZZv5HoHtw4Ydg7f81Kw+TgS5kTF86+br8edf+RKWXvuiuMOJHSdVoeC9P8zvnXOfB/D13o/7AZwth54FYN05JN77awFcCwD5fN6T1JBIkXCRLJB4AAhEBVgj0vwdSRrJLzOXFBqcc8jlcqENgeX1PA8zrCzX1lGAShTZ581MaLlcDu0YJED0K4i2OrA9gIJBbx2D4MGMNoA+0UPLyBmrviewRr75XhQISqVSKCn33mN8fDyU3tdqNTSbzVD2n8lkAulmbNo/z9GLFE1YVaDTHSjycBKDZnp5zZp51vPpWEPeM5pMLi8vo1KpYH5+HgAwOTnZJybwnpCkM9Os1RUknGyTUENJkl6KSUePHg33lDEDCCaWWs4fnQ5AzwLGou07JOA6QYKiEe+RTivh8eohoJUM2oZDrxDvfZ8owecJwFMy/LwvFHa4DnxGWSXEShG971xv/QxSuIlOeoiSfj7D/Lxo64Reo06B0ckLaqTJ82p1Q/RcWunAe8mqJq1Y4D1JOrZ6Ly658rr/2DUYjocDr87hZblHAQxFVY9hk/haq4AP/cPbsOfa07PVYSPYPmzYSWi+uooX3nIZvvfCm+MOZSjwygzw7k/9Kz786bei/MgSxr5xT9whxYKTEhScc2d47w/2fnwDALrd3grgX5xzH8eqAc15AO4+kfck2eJ/SRT4XxIgNVDTDDo9A4A1R3sAoZWB/gPFYhHFYjEY5XFsIckKs+LM8rI3nqRkaWmpz9GeYkKpVAojDDXD3Wq1+loYlNQooWMml8fRT4DtASRtXCsKGSTvSgB1KkShUMCuXbuQy+XCWqRSKeRyOaTTabRaLczPz4dxiOxFZwab/gckx7x2xs/jSBR7z0cgtSSfWk5O0qrrqtUEFFtYaZDJZILBZKPRQLVahXMuVCywjYD3jdAKj6jhoRqA6nqyCoUik5Jeknz+Ha9ZjQv53nwOKCTxmtUjgPGQ9PK8y8vLwVhTWzDUYJBkmIReRRKOLNXpE0ra+ZmhYKOkm9ej4gjvAys69N7wvqmYoH4EfL5VpCDUC0XFQ11znepAsUzJPj9L/Htdf70/6kehMeh7RVsltAIkqdiOvdhgOBnkD3hMd6eA8WbcoRi2GLe1M/jQ378Nez5tYsJ6sH3YsJPgu108/R0V4PQb4nLSuKxQw2V/9k/4k0PPxz2pX8P4baefqHBcQcE5dyOAVwHY5ZzbD+ADAF7lnNuL1dKtnwF4FwB47x92zt0M4IcAugCuPBE3WyVz2h+tvcwkOUpcKSgwW8ySfZJYbWFgaXsul8PS0hIqlQoqlUrwNqCvAEdCskpAs54UFFhFsbKyOsZxamoKU1NTGB8fDx4LzOiqVwBJjhLcaL89r2lhYSFkl3k814PiBz0O+BorE9hLnslkgtixsrISDBRZ3t9sNnH48GHUarU+Y0E19SP59L0pFmwB4Fqo/wGJqxI4oH+UoY6V1Akd3W43kHVgrc9eX2u1WsE0slAohOoEHXnJdeb7UhQicdSyfr23KkgoCWf7in6vJpFaZcDzqTBBvwR6Tigx1ikOrExgNUYulwviFo9hO0RUXADQR+pV/NFWId5jTjnhWmnVAz9XKmKQVPP6tZpE1xXAUwSP9dpbFHx2o59p/k4rXyiCRA0wo+8fvR6utYov3vu+CRL6LKhwlyQMYi82GE4WY5cdxqV5ExN2Gr7bWcYH/ub3sec6ExMA24cNpwd8o4Fzv/JuPP7mz8YdylDho7/wA5z7mpfgubfFHcngcSJTHt6yzsvXbXD8hwF8eLOBkLAxE6wlyPqPfGZTSaAKhUIw7gOeauaWTqcxNTWFyclJpNPp0EM+PT2NmZmZMMGBJIvvo4RLvyf5YbZ2165dKJfLyGQygfBpnzirC/SaSHDS6XSoeGCZOwkW2xx47SRtJPokrlwPEnKuZTabRblcRrlcBoDgS0GxpdPp4MiRIzhy5Egg7prV1Sy6c65vIgHJtmZzSRyB/kwvzSfZfgIgZOm1ckO9JDSzryaLbM1Ip9MolUoolUpPqU5gbDoulDHxHrKEXr0N9O+BNRKq2XISUBLWaMsKRS8l4SqeUEBRs00KD1pxk81mQ8sOwfUlISYB1woLFeL0OeXfU2xjO4S+F4/l3xPR1hwez2NUOFJTSsamGX5toWFM6wmEWsHCzz/HUOpaaDXPetUF/OxQ7KE4wZYfCjb8vLE1JhpnUjCovdhgMBgA4PGlJq665mo87WYbSkDYPmw4HbDS6eCCf64Ab447kuHDH194G278zsXIf/WuuEMZKE7WlHFLQTKmPdwqHOg/7EkgSKAKhULwBlDn+XQ6jWKxiD179mBqagpjY2NYWFjAoUOHcODAAUxPT6PRaASfAWbB1eyRsfD3zI5yfGK5XMbu3buRz+f7iBlbHdjCQIJO0YCGgxQItAefhnwk35oV1hGIJLYULaJmgfRNGBkZQb1eR6VSCcS11WoFU8N2u93XY85YmcGlnwINCtluwqw+qyyiRnmMU0f6kejy+MXFRbRarVDJ0W63Ua1WMTs7GyZrAKsjNI8cOYL5+Xl478Okh1wuh3w+j2w227c+bJHgeRkTv+eEBvoNRCeDsG2ARp+8Xzo1gdfP9hqKGryPfBZ4Lq16oFjANdFWBYoJWh3AqgkV2VSwoEjFVgxWkqiIopNOVOBSkSM6VUFbRthWoy0DrNxQRIUPknr9fPP9oy0F0eoPfg7V+FI9GHh/tf1CPRu02kGnkmgrjrZQ6f7C76PXZzAY1kfxL/L46Py5cYdh2CI0Vzp45zvfi8LNZsBoMJyO8E88iV/5xB/GHcbQ4crJJ1F79uk3JeNUxkZuGUioWEGg//gnYSVIUsbHxzExMYFMJhN6zzudTiB+ExMT2LVrVyDubB9gppvjIgEEYqzkXrOZLLtnVptf5XI5TB0gMWs2m+G9o2XY9HCgHwCNHZnZ1hGFJDJRQUV9DrQXnOSHGXeKCWwTWFhYgHOuzySSkyd0KgQJqhJfGhSSsNO4kW0GKgDxXtEokZ4OWrFBIYFtI5lMJqw9M+WFQgGpVCq0l7BigjGRLNJ4USsq1JCTVR4UQVgxQNGBZo5qBkjxSMku77mWxfP+8j15PyhutFottFqtvljV+JHtEkpco1UJJMwUzLTdgPeLLRQ0AWULD2NUIUwz+FpVEvUN0FYPfu7U4FSP5/MXNTWkkBD1Dom2Yeh1q2BCAYLQagb+rJUFvGda2cPjVCRjRVOtVgvryjVivBu1aRgMhqfC3/Mg7njjXpx3m7U+7AS86fXvQPq+e+MOw2AwxISVdhu7f2ATRwwnhsQICsyckjAxC88sMtsNSPLp+s9yfGa+OV6wXC4jl8sFMtFoNAJxbTabWFpaCqSHogMznVreTaEDWCujZoa8WCwGkkpCPD8/j1qt1mfoxywrs9kknCR7FBOiPdtqZqhrFXXLJwlixpzjCWnq2Gq1wrrSf4Hvr733OjmD183RmM1mE957FIvFIBbQeZ+xqBhQKpUwNjbWZzZJ4s2Rk7wH+vcAkMvlkEqlQsUFfSR4XUp2WT2hbSj6TGgrAc/BtgI9j1Zd0OBTqwcojETbC7gGKgSpmOB7JpMsr2eWncdq+wLvA8/Nqg0+F1HfBL4Hs/Ltdhv1er3PYJNCBj0EeN/VuJOv8bxcL5J+rZDQ8yrhJzHn73gtwJo/gf6dig9qWqnPkVYJ8fzqh8Bzclwq42D7D0UMFQ3S6XS4ZxQU+awzZn5GrDrBYNgcln/yOK59xcvweY5szY7jP++8JeaoDJvBhb/1VqRmKlg58MO4QzEYDAbDkCARggIJhZZfs9SeRJAl4yQQ2WwW2Ww2lCyzlYB+CePj41hcXES9Xke32w0eB5qNZjm3usnznOzBj5JJEp18Ph8c70n8tLWA10TySpDUc6yitguo0Z2WbvPvFHqsZlNJwNrtNoA1B32SR/UroG8CSRfJb7R8nkJDqVQKLSaMV7POAIJJZTqdRrPZ7HPZX1pawtzcHGq1Wt/0AxJrXjOJOk0q+cXnggSShod8buiBwQkc64k0vK+coqCEU8ePqnDA9dVefQChtaDdbofKhsXFRVSrVVSrVaysrIQWBgB9IyP5vhSxGAvFJbaYqMClnxU1MB0dHQ1CGcmwjnFkFYyKBvTiUMNP9UXgupDgR58/rg//Tj9TapCpsWtVAys6KLipmKCVDSom6FQIXienlSwvL4cqGvpEAAj+JPo5p9ikrSbcZ7T9h+tkMBhOHMuHZ/p+vug5L40pEsPJwHceRvf4hxkMBoPBEOCiRCGWIJw7AqAFYDbuWE4Cu2BxDxIW9+AxrLFvVdzP8t7v3oL3STyccw0Aj8Qdx0lgWJ9RYHhjt7gHi9M97tNpH7Z/Ew8eFvdgMaxxA8Mb+7buxYkQFADAOXev9/5FccexWVjcg4XFPXgMa+zDGnecGNY1G9a4geGN3eIeLCzu0wvDum4W92BhcQ8ewxr7dsdtTcIGg8FgMBgMBoPBYDAYNg0TFAwGg8FgMBgMBoPBYDBsGkkSFK6NO4CThMU9WFjcg8ewxj6scceJYV2zYY0bGN7YLe7BwuI+vTCs62ZxDxYW9+AxrLFva9yJ8VAwGAwGg8FgMBgMBoPBMDxIUoWCwWAwGAwGg8FgMBgMhiFB7IKCc+5C59wjzrnHnHPXxB3PRnDO/cw596Bz7j7n3L2918rOuW855x7t/Xcq7jgBwDn3BefcjHPuIXntmLE6597XuwePOOdeF0/Ux4z7g865A711v885d7H8Lilxn+2cu8M59yPn3MPOuT/qvZ7oNd8g7kSvuXMu45y72zl3fy/uD/VeT/R6Jxm2F29LnLYPDxC2Dw88btuHtxi2D28PbC8eLGwvHnjc8e/F3vvYvgCkADwO4DkAxgDcD+B5ccZ0nHh/BmBX5LW/BXBN7/trAHwk7jh7sbwSwAsAPHS8WAE8r7f24wDO6d2TVILi/iCAq9c5NklxnwHgBb3viwB+0osv0Wu+QdyJXnMADkCh930awF0AXpr09U7ql+3F2xan7cODjdv24cHGbfvw1q6n7cPbF6vtxYON2/biwcYd+14cd4XCiwE85r3/qfd+EcBNAC6JOabN4hIAX+x9/0UAl8YXyhq893cCmI+8fKxYLwFwk/f+qPf+CQCPYfXeDBzHiPtYSFLcB7333+993wDwIwBnIuFrvkHcx0JS4vbe+2bvx3TvyyPh651g2F68DbB9eLCwfXiwsH14y2H78DbB9uLBwvbiwSIJe3HcgsKZAJ6Un/dj4xsXNzyAbzrnvuecu6L32tO99weB1QcRwJ7Yojs+jhXrMNyH9zjnHuiVf7FkJ5FxO+eeDeD5WFUIh2bNI3EDCV9z51zKOXcfgBkA3/LeD9V6JwzDtj7DvBcP8zOa6D1BYfvwYGD78JZi2NZnmPdhYLif00TvCwrbiweDuPfiuAUFt85rSR478XLv/QsAXATgSufcK+MOaIuQ9PvwGQDnAtgL4CCAj/VeT1zczrkCgH8D8F7vfX2jQ9d5LbbY14k78WvuvV/23u8FcBaAFzvnfnmDwxMTd0IxbOuzE/fipN+DxO8JhO3Dg4Ptw1uKYVufnbgPA8m/D4nfFwjbiweHuPfiuAWF/QDOlp/PAjAdUyzHhfd+uvffGQC3YLU85LBz7gwA6P13Jr4Ij4tjxZro++C9P9z7oKwA+DzWynISFbdzLo3VDejL3vt/772c+DVfL+5hWXMA8N5XAXwbwIUYgvVOKIZqfYZ8Lx7KZ3RY9gTbh+OB7cNbgqFanyHfh4EhfU6HZV+wvTgexLUXxy0o3APgPOfcOc65MQCXA7g15pjWhXMu75wr8nsArwXwEFbjfXvvsLcD+I94IjwhHCvWWwFc7pwbd86dA+A8AHfHEN+64Iehhzdgdd2BBMXtnHMArgPwI+/9x+VXiV7zY8Wd9DV3zu12zk32vs8C+E0AP0bC1zvBsL14cBjKZzTpewJg+/Cg4pX4bB/eWtg+PFgM5XOa9H0BsL14UPFKfPHvxT4G90/9AnAxVl00Hwfw/rjj2SDO52DVEfN+AA8zVgBPA/A/AB7t/bccd6y9uG7EalnOElaVqD/YKFYA7+/dg0cAXJSwuL8E4EEAD/Q+BGckMO5XYLVc6AEA9/W+Lk76mm8Qd6LXHMCvAvhBL76HAPxl7/VEr3eSv2wv3pZYbR8ebNy2Dw82btuHt35NbR/ennhtLx5s3LYXDzbu2Pdi13tTg8FgMBgMBoPBYDAYDIYTRtwtDwaDwWAwGAwGg8FgMBiGECYoGAwGg8FgMBgMBoPBYNg0TFAwGAwGg8FgMBgMBoPBsGmYoGAwGAwGg8FgMBgMBoNh0zBBwWAwGAwGg8FgMBgMBsOmYYKCwWAwGAwGg8FgMBgMhk3DBAWDwWAwGAwGg8FgMBgMm4YJCgaDwWAwGAwGg8FgMBg2jf8HBkLedT6sUc0AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 18849 471871\n", + " Min thresh = 1000\n", + " Sliding\n", + "\n", + "\n", + " Winner = Sliding\n", + "\n", + "\n", + "224s_iimage_3315947589826_clean.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADDCAYAAAAya0IYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADij0lEQVR4nOz9eZyt6VnVD6+nau/a865ddYbuTmcOAUJCEolEIIBBVGZCeBFBFIRIQoIgKMrohK/8kEFexR+BIAIqg4gyKCgCGiWQkBACQggJJCSdTs5Yp2rPcz3vH1Xfu9Z+TnWfPkN31em+1udzPulTtffz3M9933vnrHWva11ZnucKBAKBQCAQCAQCgUAgELgZrJ30AAKBQCAQCAQCgUAgEAjcfQhBIRAIBAKBQCAQCAQCgcBNIwSFQCAQCAQCgUAgEAgEAjeNEBQCgUAgEAgEAoFAIBAI3DRCUAgEAoFAIBAIBAKBQCBw0whBIRAIBAKBQCAQCAQCgcBNIwSFwGOOLMvenmXZS096HIFAIBA4QpZl782y7M8/wtfmWZZ9yC3e55bfGwgEAoFA4HQhBIXAY448z5+b5/nrT3ocD4csyz4py7Lfy7JsL8uynSzLfibLsvtPelyBQCDweEaWZd+RZdn7syzrZVn2vizLvvmkxxQIBAKnDXdamL3R9eLfxYGHQwgKgcDx+ANJn5LneUfSkyT9kaTXnuiIAoFA4PGPH5L04XmetyV9nKS/kmXZ557wmAKBQOCJjvh3ceAhEYJC4DGH22qzLPtHWZb9xyzL/n2WZf1D9fNDsyz7xizLLh+eVP1Fe++XZln2jsPXvifLslcVrv33siy7kGXZB7Ms+xuuuGZZVsmy7LuyLHsgy7JLWZZ9f5ZltePGmOf5pTzPP2g/WkoKi24gEHhCIMuyF2dZ9sbD06gLWZb9qyzLNgov+/TD7+GrWZZ9Z5Zla/b+Lzv8rt7NsuyXsix72iO5b57n78zzfGg/2ld89wYCgcchsix7TpZlrz/8nn17lmWfbb97fZZlf8P+/tezLHvD4X//n8Mf/26WZYMsy/5ylmUvzbLswSzLvunwO/m9WZZ90a1erzjW+Hdx4OEQgkLgNOCzJP07SVuS3ibpl3SwN++X9K2SfsBee1nSZ0pqS/pSSd+TZdlHSVKWZZ8q6W9L+vM6+JL7s4X7/DNJHyrphYe/v1/SP3ioQWVZ9tQsy/YkjSV9naTvuPVHDAQCgbsKS0lfK+mspI+V9MmSXlN4zcsl/WlJHyXpZZK+TJKyLPscSd8k6XMlnZP0a5J+4pHeOMuyb8iybCDpQUkNST9+G88RCAQCpw5ZlpUl/RdJ/0PSeUlfJenHsiz7sBu9N8/zTzz8zxfked7M8/w/HP79Xh18Z98v6Uskve42r1ccc/y7OHAsQlAInAb8Wp7nv5Tn+ULSf9TBP0C/Pc/zuaSflPT0LMs6kpTn+S/kef7u/AD/WwdfxJ9weJ3Pl/TDeZ6/Pc/zkaR/zA2yLMskfbmkr83z/Fqe531J3ybpCx5qUHmeP3Bo7Tor6Vsk/eEdfepAIBA4pcjz/K15nr8pz/NFnufv1YGwe51Ie/h9+oCk/5+kLzz8+ask/T95nr/j8Hv92yS98CZcCt8uqaUDoeLfSere9gMFAoHA6cLHSGrq4N+7szzP/6ek/6qj79Fbxd/P83x6+G/kX9DBv43vCOLfxYGHQggKgdOAS/bfY0lX8zxf2t+lgy9dZVn2aVmWvSnLsmuHKumn6+CLTTqo6Xq/Xcv/+5ykuqS3HlrL9iT998OfPyzyPL8m6Ucl/VyWZaWbebBAIBC4G3FYevZfsyy7mGVZTweiwNnCy/w79n06+A6WpKdJ+hf2XXtNUqaDU7NHhEPR+G06+P+Af3yj1wcCgcBdhidJen+e5/v2s/fpJr4nj8FuoWTMv5fvGOLfxYEiQlAI3DXIsqwi6T9J+i5J9xyqpL+og3+oStIFSU+2tzzF/vuqDv5h+tw8zzuHfzbzPG8+wtuXdGBJa9/GIwQCgcDdgtfq4PTp2YcBid+ko+9a4N+xT5VEfe37Jb3Kvms7eZ7X8jz/jVsYR0nSs27hfYFAIHCa8UFJT/HsGR18j37g8L+HOjgIA/c+gmtuZVnWKFyP7+Vbud7DIf5dHEgIQSFwN2FDUkXSFUmLLMs+TdJftN//lKQvPQy5qcvyEQ4V4B/UQebCeUnKsuz+LMs+5bgbZVn2uVmWfViWZWtZlp2T9M8lve1QlQ0EAoHHO1qSepIGWZZ9uKRXH/Oav5tl2VaWZU+R9LckUXf7/ZK+Mcuy50pSlmWbWZb9pRvd8PD79lWH18yyLHuxpK+U9Kt34oECgUDgFOE3dUDy/16WZeUsy16qg0yxnzz8/e9I+twsy+qH4eKvKLz/kqRnHnPdf5xl2UaWZZ+gg8yx/3ib15MU/y4OPDxCUAjcNTjMPfhqHQgHu5L+iqSft9//N0n/UtL/kvTHkt54+Kvp4f9+/eHP33Ro4f0VSQ8VVnO/Dkoi+pJ+TwdJ4y+/g48TCAQCpxlfp4Pv2L4OxNjjQrp+TtJbdfAP1V/QQctH5Xn+MzoIwf3Jw+/a35f0aY/wvi+X9O7D+/57Sd97+CcQCAQeN8jzfCbps3Xw3XhV0vdJ+uI8z8kl+B5JMx0Q/R+V9GOFS/wjST96WFpGTsJFHfz7+IOHr/+K27yeI/5dHHhIZHmen/QYAoFHBVmWPUcH/5CtHAaDBQKBQCAQCAQCjyscOhz+fZ7nT77BSwOBO45wKAQeV8iy7OWHVq8tHZyQ/ZcQEwKBQCAQCAQCgUDgziMEhcDjDa/SQcbCu3XQR/24ut9AIBAIBAKBQCAQCNwmHjVBIcuyT82y7J1Zlv1xlmXf8GjdJxBw5Hn+qYfdG7bzPH95nucXTnpMgcBJIb6HA4FA4OQR38WBRxt5nr8+yh0CJ4VHJUMhy7J1Se+S9BckPSjpLZK+MM/zP7jjNwsEAoHAdYjv4UAgEDh5xHdxIBB4vOPRcii8WNIf53n+nsMU05+U9LJH6V6BQCAQuB7xPRwIBAInj/guDgQCj2uUHqXr3i/p/fb3ByX9mYccRKmUl8tl7e/vK8syra+va21tTfv7+1oul8rzXOVyWbVaTbVaTaVSSVmWSZLm87kWi4X29/eV57mWy6X29/e1WCzSz7MsU6lU0vr6enofWFtbS/fLskxra2taW1vTYrFI18qybOV3DsbIOHnP/v5+ej33XF9fT+NgjPP5XPP5XHmeX/f6PM/TtdxJwmu5f57nK/PGa7gO42d8y+Uy/az4vvl8np7B73e4TqpUKmlt+MN1/L5cz++3vr6+ck1+lmXZynOsra2tPLuPn7H4OvJawPX8/b7+PpfF+7Mf/LlZk+IzOor7lvH4XPr+4VmO+1Nce5/P415f3JvH/d7H6/v5uPnz9xXfU5wXnyt+7p9b7sN7+e/iPY+7j3/+fE/4vY7bCz7O4muPu5+/z+/Pvebz+dU8z8895EVOL27qe1iS1puN/JnP2Nel3689qgMLBAKBm8FEQ83yaXbjV55K3NR3cXwPB+4WPO0j+6pk6zd+4SnGH71jU/l8ftLDuGvQ1+6x/yZ+tASF4770V/5Vn2XZKyW9UpKq1ape8IIXaDweazqdan19Xc1mU/v7+xoMBhoOh6rVanrWs56lF73oRXrGM56hs2fPamNjQ9euXdODDz6ovb09zWYzjUYj7e3taWdnR5cvX9be3p7yPNfW1pbOnz+vRqNxnVDRarXUbre1tbWlVqulSqWi4XCoq1evajAYaH9/XxsbG2o0GqpUKiqXy1oul5rP55pOpxoMBtrb29NkMtF8PtdgMNB4PFapVFK9XtfGxoZms5nW19fVarV0zz33KM9z9Xo97ezsaGdnR91uV8xFs9lUrXbwfyT9fl+j0UiLxSKRqsVisULGESayLEtjhCwuFgvlea5KpaJarablcqmrV69qOBymea5Wq0ks2Nvb05UrVzSdThMJn0wmmkwmKpVKuvfee3X//fer0WhoOByq1+tpuVyqVCql+62traVnWCwWGgwG6vf7WltbU6lU0sbGRvrvWq2mer2uPM81Ho+1WCxUrVbTffv9fno2F0Sq1arq9bokaTQaaTKZaDabJfFibW1N0+lUo9FI8/lcjUZDW1tbarfbKpfLmk6n6V71ej39TJJarZbq9XoilKVSSeVyWRsbGyqVSprNZum9pVJJ+/v7ms/naY/4a9jD7KNGo6FyuZwEL16zWCw0nU6TuCQpvXexWGhjY0MbGxtpjkejkUajURKuqtVqujf7krWXlOYbsB/K5bIkaTgcpn3mYI+xbuvr62kPsn6IgePxWMvlMj3XZDJJYy+Xy+karH+e55pOp2mu+DwyR6PRSP1+X7PZTGtra9rY2FgRC10wPPxOWRl7qVS6bo753PN6xuECV6VSUalU0nK51HQ61Xvf+973PYLvvNOIG34PS4XvYtX19Ld/pp5+t/6zPRAIPC7xm/mvnvQQbgc392/i+B4O3CX4vl94g55Vbp70MG4Ln/HRn67FBz540sO4a/Ar+U8f+2/iR0tQeFDSU+zvT5a0slp5nr9O0uskaWtrK9/c3ExEfjqdJmEBEjKbzdTv93X16lXdf//9qlQqqtfrms1majabmkwm6XQYsusEbDabaTqdqlarKcuyRCwgf4PBQOVyWeVyWc1mU41GQ4PBQJPJJJ2kQuT99BlyBXFeX19P4/YTVeng9H9vb0/SgXAAUS6Xy6pWq0mQmM/nicRCtofD4QrpgbhVKhU1Go1ESKfTaSLclUoliQ0Q7VarpbNnzyYCCFnjmdbX17WxsaHpdJoIHqRyOp1qb28vEUJI6WAwSNfJ81yz2UyTySSR8Hq9rizLEsHc399PBJNTfYg5ZHljY0PL5VKS0tggfjyTpOtIJvPCOtRqNa2trWk+n6vf76tUKqnZbCZizJicGM9mM1UqFVUqletcEaytO1Xc+YCowR/WGnFgNBollw2v39/f1/r6usrlchoTP2NtuRb34poIAD4edx4U57BSqaT9P5vN0jpUq9W0bogUOIFcQNjY2FiZExeTJKX3cw1JSdzg+ZgTnpm5QlxYLpdp3RBIEAHZj6zB/v5+ElaYC9ZeUtpjy+VyxXnk+6no5nBhyp/tLsQNv4el1e/idrZ950N1AoFA4ImNm/o3cXwPBwKPDX5qsKl8EZ3l7wQerX8tv0XSs7Mse4akD0j6Akl/5aFevL6+rk6nk4gkxGs2m0lSIiK4Ee6//37de++9yVnQarV07do1lctlbW5uqlwuazweq9/vq16vrxCO2WyWCLF0ZMGezWbJJdBoNFSr1dRqtdLJt6REhvf39xOhgRRJSiSdnzlJz7JMg8EgnUJXKhWtr68nssRYlsulxuPxioUeYj4ajVbGzDNtbGyo1WqpVqsllwcCC4Sbv9frdbVaLS0WC12+fHlFUICQcaI8n88TuUYUmM1m2t3dVaVS0dbWliqVShJC3Fo+Go2SKIJjAtcBZSo8OyIGxNVfgxMEQsg8IyAgBKyvr6+QReaJZ0H8GQwG6Rk5oXbHQbValaQVpwNkExGDnxf3Au/zE3TGUK1W07PNZrNE4ufzucbjsSQlUcUFIy9NYJ+4Y6DoKGC/VSqVlXKLoijgDhYELYCQtr6+rmq1mvY3e6VcLqe96u4Bfx3z4sIHY2VMkHUvm8CpwFh5rQtzWZatuFwQHRDIvNwCQYT3uGvBr+vz5J/Huxw39T0cCAQCgUcF8V0cCJxC/PDnf4b2L0U26p3AoyIo5Hm+yLLsb0r6JUnrkv5Nnudvf6jXr62taWtrK9WwQxywUEsHJGI0Guny5ct673vfq/Pnz6cSha2tLV28eFHdblcbGxuq1Wpqt9vq9XrJMg3Z9KwE7sOJ5v7+vnZ3d1Uul3X+/Pl0nb29vUR0ZrOZ5vN5IlpZlqlSqajT6SRSs1gs1Gg0rrOHb2xsaDKZJJcCp6ec4DpR5TqQIIgZP4dIQXQhrYgXODK4jyT1ej2tra3pnnvuUavVSqIL8+O17pVKJRFBToSr1aqm06nG47F2dnaUZZmazWZyQnANnsHdEkWSjKNiNBolNwWn5ZysQ+54rT+LEz+cJQgWXtvPPElKAoCf6vtpPuTYT6W5DsIGogIkmvf6eBB7mFfWhhIQhC0EDEpKqtVqElY4kQfF/AJp1Z0BwXfbP9Z9F8IQxyDkjAXRqt1up2emXKRer6f9zHXY2y6yUPKBcOKiDCUEiEP+ufM5lLQiKrCPvHSDsglEt3a7rfl8rnK5nMQQntNzU7iXZ11wb88+oYyimF1yt+Fmv4cDgUAgcOcR38WBQODxjkfNz5vn+S9K+sVH8tosy7S9va0sy3T16tVE3CAWEMTFYqFr167pfe97n57ylKfo3LlzajQa2t7e1pkzZ7S7u5uyCxqNhjqdjnZ3d9MJJiTHcxSwdUOwxuOxLl26pMVioSc/+cna3NzUYrFQt9tdOXmGaLhlvFarJSfBdDpVtVo9NpRxOBymcgeITfE0FBv4ZDJJBIoTaWz6XB8yjCMA8QEbudvDe72eSqWSNjc31Ww2k5uBMXCyjIOCunpOvSWl2nbpgKQjGEAAIW6LxULj8Vj1ej2VlkD4PXNhPB6n+2HHd9JfKpWSs2M+n69cnzX0cEUIq59iY/X3teN/XUCA6JOLwLqxPrPZTLPZLOVSIBZwPc+2gHAztxBuynq4Ny4PxBX2yXK5TKSbOSmeoON88N8VAy5dpGHe2GMeUsm9qtVqEnSGw6EGg0HaM4gYlOpkWab5fK7RaKR6vZ5yOqSD8gc+vx7GyL5hftxF4IGajNHLefI8TyIbn10cLvy81+ulz5jPoYt2xYBV5pt55I+LOncjbuZ7OBAIBAKPDuK7OPB4xJ//hb+tP37Z92s9u/scnS9+21/SuatdXR8PHrgVnIoCYUjp+fPnE8GVVoPkIDHz+VyXL1/Wu9/9bm1uburs2bNqtVo6f/68rl69qitXriQyVKvV1Gw2U43/eDzWaDRSp9NJp+pFAkqt+4ULF1Qul3Xvvfeq3W5rOp1qOBxKOgrFg1RhL69UKunE2csdvLyCk2A/1XYyJWmFbPvpNSTK8xkgaryW+nxq4iHhjIcsCg/bY37zPF/JNICwUc5QJGf9fl95nieXAtcBEE3WoVarJReH5yGMx+NECCGcbpuHpELyyb5AJOLeuEB4zXw+T8/iggjX8hwA4HPr+7NouS92w6AMgNfhhvGTfIQCXAOUFUC63ZXCfiE3gHEhREi6TgiAELuo48SZ0iEXxthni8UihVwydvYqGSPsK4Qtf0ZfR8Qbru1zyJ7lj5epeMYCc0W5iuc7MIeMj2t5LgfCHXPK2rLvfV58XO76CAQCgUAgEAgcjw99zZs1/eyF6tnGSQ/lpvCRv/lX9JS/N9HiwQ+c9FAeNzgVgsJ0OlW/39e9996re++9N3UF8LZxkARs2xcuXNCFCxd05coV1et1bW9v67777lvpPEB3Bif5nK6fOXMmhToiYpB9UCqV1O/39f73vz+VP+BUwF4OWSa3ASLP+8kIcPLC6S8npTgLCD/k+bytH6TZyxyKoYDAHQl+euuntYT+dbvdldBBbyUpaUVUwKUA0aZWfrlcajQapfcXx7W/v6/hcJienTWs1WpJKPGcDCftTuo4xfcTZ3dmOImmE4FnTOCK8KwAfw9ukGIeAoILgk1xP7qLwcflXQc8v4H3QmzJ9vAyhclkoul0mkg5+Reee4AAxXNwPc8gYD2KghzjYu64hmdSeLmBh2UOBgNVq1WdOXMm7QuEH3d/kKdARoQ7I5gzL1vwzBAEIdaekNT19XX1er3URYXAUl8r3k/eB2tH6VRRRPNyCEo/PN/hbi53CAQCgUAgEHi08ZJv/xq97Zu+76SH8YjxvDd9kZ76jVMt/+g9Jz2UxxVOhaAwm830gQ98IIUsnj17Vv1+P7Xak3QdMZ9MJrpw4YIeeOABdToddTodnTlzRpcuXVohwLwHFwHhi9izOSXl5JeWdVmWqdfr6eLFi6k8YDQapW4L1HYPh8NUq45DgfwBMgQ8NV9SCilcLpcrwXp+0sx/ezgirRshTZ4nwP+67R1CyXMjXjCfXqPupQPurvCTfQi/nwYjYhD46ARWUirbgIwinrhwQyihdHTSD5F9qCR+ng2HCSQUkcB/P5lMUlgmmRd+gu/dHZxE8t+IUrgr3IECvPbeBQ0PA0QE8YwHxCLu520N2Qusv4dPFssCvGMCexmBA7EBwuyn8whkCC8IRu4oYE1ns5n29vZUqVTUarWSe4HPmmcTuHOBeWbfU97h10awQRBC4OBn5XI5fV49z4JQThcWcHjgYKAEwkU5hB8XK1mP4joEAoFAIBAIBK7H+X/1G/qYva/Qm77j+096KDfEi976+XrqN0y0fNe7T3oojzucCkEhz3O9733vU7Va1dOe9rQkDgwGg5V6eghArVaTJPX7fV28eFFPe9rT1G63V8LjPNmdNogAC3ez2VSz2VSe5+p2u+kk063+3W5Xu7u7KciQ0DfG4oQaO7ifartTAaIDIXY7frG2HBeDlzj4XPBzSJ2XAvhJdKlUSs9IoCIiB04DL2coWtW9BMA7LQDmwLMCpOsDDyHXuAE2NjbUbDZTrgNiCcSYfAh3TjAGCCD2dMSSotXf6+onk0kSg2gdKimFazppdseCpOQsobRjd3d3JbCSeWDdWG/G4TZ8F5icgOMWcLeIlyQQOuhlGx5u6OUvXnLBPHGd6XS6kq2AEMNc0p2D10PCPauh2+0m9wWCmJcPsc7MH64EnpdwUtqseokJ9+P56cLBXHLt4XCoRqOhRqOxIhDxPp6h2WymceJ6cqGR+7JP1tfX02fEP2+BQCAQCAQCgeux+eNv0cePX6U3fO8PnPRQjsXXXPjT+oOveq7u/eCuFu994KSH87jEqRAUsixTt9vVxYsXVS6XtbW1pe3t7XSqyMlpMel+Mpno8uXLunDhgra2tlStVrW1taWrV6+mcMb19XU1Go2Vk+AiCfVgPH4HsZ3NZrp27Zrq9XoilZAyCB0Wbn8eiB1BkBBKTkSr1Wr6b8bk73ci49f2Z+C1ODa8y4J0FCBI54tGo5Es6LPZbEWw4PTcS0ucKLpg4CfwvI918rIMnwuIJOTe21EuFgv1er3U0rFWq6X5h1AWAwopNSBAkDnx9ofSgSBC5wLmCAEIos51KFXhNcyFhxVubm4mpwTZHC4OMe8IPFmWrQhNiDispXfjYM5djID0IlwRxumhj6wB+QXsYa7Ha/jsIIgxHm+bybxwf8bJXPD+wWCgVqu1sq7evQMRwINHXRjAhUDQIgQeYc5dBEUxjf2GqIBzg88CoovvAeay1+uthDu6gONhj+PxOJUKBQKBQCAQCAQeAvtLNX7mt/TxOl2iwq9P9vVtn/xyaTJVduF3FUdEjx5OjaAwn8/1wAMPaDKZ6FnPepZarZbOnj2r6XSqa9euJbIKCSmXy+nE/fLly3ryk5+sarWqer2uZrOZ2iFizybzgFPs+Xyu4XCodru9UjcOWaQMQFIKc8T6Tj2/5wJIWiHY0lHJAAn1XsbgJQYesFhMn+c62NABxA9SWK/XUyI/2RGSEunM81zValWdTieRWIgV9foICsWQP15LQCAkmXIJiCtlGfzOcxh4hlqtlizolCF4UKGLClyHdYH0OcEk8BFS7nMIkfVuG35q7t0IXDxAHPF6e4gueR1cxy3y7GX2l3eUKO4TSi9qtVrqYOHjZ11ZC8JCKQ/BiSMdCROIFb4Hi+4Yfsd+dPELws8pftGt4u0/+/2+9vf3k1sIYaFSqSRBhXu4A4SxFufKRRAcLORG+GeDeUfQ4fNDKKoHWPrYyVtgHhHfHKw/eSg+j4FAIBAIBAKBh8D+Uo3//GZ9+i9/ot7/qufp97725HIV5vlSL3vOJx3wq/77TmwcTyScCkEB8A/9UqmkJz/5yarX6+p0Oim7YDabJSLNyTDhfrgEGo1GEhUgKpDpWq2WroMYMRwOkxW7XC4n+7dnETjhw/7NKTunz4gE2K+LqfZOYCF+nrQPOCXl9x7kx8+wbEOAIHKlUkndbjdlSEAiId+QKOaIkDvIsneM8M4R1KtLRyUZODvcMYHDw2vVKSnw56HUYTQapVNpTpUJomSuIdX8joA+t67jUtjb29NisUgWd8gqc866QX5xPyBWcQ/GAHl3ZwYCBR0RSqVSOuEvihq8l2txeu57q1wuJweNr1utVktr6hkB7opgr3joYbF8gBwC1oTPAs/OZ8TbKnrJDQIbnVdwgBDIuVwu0xqz/71Exz9/zD/v864mkHf/rJPJwbNzD8bGGIphoPzdO28w9k6nk5wKlJFwb+/EISk5aAKBQCAQCAQCN0Cea9nr6Unf+Rv6lO9+kSRp9788U69/wY9d99L62p3pDDHN51ra4c/nvegztbyyI+337sj1A48Mp0JQwBad57l6vZ7e//73a2NjQ+fPn08kjLpryAQuBa+x39jYuK5cQlI6Sd3e3k4nmwT19Xq9RDZJnZeOTishnN5poVKprNiqPRmeU3hOuAGEB2IF0fGSDkQCCC+/92fklBhgFacko1wua3d3N80T44QkQvIhSzs7OxqPx8nVwB/eQ3kExN+JIqICQgw/83BIf3aIMHPoqfpe+lFsbcjz89pGo3GdSNNoNFZKTHxsiEK+rpxEu0DF/PpJPEST9XQhhzIIhJXxeJzaFPra4xDx03Z3XiCouCAznU6TI8YFBRwvvM7h80SJBKKFl9143sdoNErjJheB93uoJ+Ga0lEJDqLadDpN8yYdhSE2m80VB4eXHrCu7Mcsy1Sv11PWgTsZAOuJo4l9Qjgqa4XY4kIU4/LPDA6dYh4K40T8CQQCgUAgEAjcBPYP/n2+9Rl/pJfrxSu/WqvX9S/e8ct35Daf/91/V/f8y9+wn1y+I9cN3BxOhaAA+Ef9eDzW1atXU/4BJ7iDwWAlwZ7/dXKwubmps2fPand3N9Wce2hiu91O2QKDwSARaE76y+Vy6kQAEYWwQM6wVnvwHSez3rqOE3/pyHrO6XalUlk51SbbwO390mpdvVvhIXpOuiuVijqdTiodcHGEk3JIKGRVkq5evbqSU8HpLqQZwsWzQwi9o0KtVkvz4WSaa0J0x+NxIngQUyfZkFZJiaT7c7A2lAq4RZ4yAOZDWs0BcOcAz8j9KYdBzGGOeX5IKK4F5sFLFLDfu6NjY2MjCRwenuhdGtjHBBwWwx1xzCAyefcEL+HgGjgsPEiTfU0eAvveSTZOC/YAJQmUwiAquAPFW3fyuWo0GtdlaRTLB9jXjBtBgiwGWr+6s8KzHFhTSis8w8HdEn5fvgP4LHh+gq+JOxeKZRGBQCAQCAQCgVvH/mikr3raS+7Ite7Rb9z4RYFHHadOUMiyLJH9er2eSG2j0VC73dZisdBoNEon7K1WS6VSSdPpVJPJRK1WS1tbW2q1Wsk6zWkswXObm5vqdrupDR529u3t7VQTDsEfjUaazWYaDofq9/uJaOOY4CSc6/vptRNrD2Dk5BshI8uylY4W8/k8OQ687ACSQ4kDifSQKp5ze3s7uSu4NwKGuw0ItONZSbfn/jwXP/PWndKR60E6ygjw5/ZUftayeDLs3Soge1wPck6pS9HiX6/XNZlMkmAEafZgQSftRTcE84IDYTQaXScQ8DwQZ8bMXvXfQY7dxSEddeRAaIC8eggmYo0LDV4qQVkOfyDNXId5pSUne6XYThNhB4GlXC6r2WxKUuq24e4OLw/hWuwXz98go4T9RbAm+8eDFxHBimVEOJHYP96RArGA0iZvzTocDtO6FoUPD2zkWrVaLc2Jl5l41wt3VAQCgUAgEAgEAoHjcSoEBdodegu66XSqfr+f6ubd5o7zQNJKSGK/31er1VKj0dC5c+dS+J/XvLu1mdKHwWCQ6qs5XYWoOqnvdrsrbQbdpQDpgcw5EYeU+GkobgWv4ea5qQuHZHsdvIsC1NpLSmOExDFfnoyPhZv7EHx45syZRLDIlnBbPPX2uA2Krf4ocXAS6gIKogCOCO7jz+DCAmN2Z4OXZEAauQfPg0vEXSGQWT+lZgxcs16vazQaJVGBe7i7gudEeOG9/B43he9NhAZEDhwZTlq5j7fK9PXGaUI5AOvg84HgRD4E8+kBiZSbILrgBkFMo9uGr43vJ9bcy2CYH/YJjghvv+oBiUXnCq8niJMyFOaCOXRBgPci+vB56Ha7WiwWSRRkz3pZCvNdqVRSjgeiAmIM95lMJumZAoFAIBAIBAKBwPE4NYICp6LVajWdrEOgCXVrNpsrnQc4NcfaPBgM1O121el0tLW1pXPnzqnf7yeyyYkuZMnbRNJ1gByGwWCgXq+3ki6PS6HRaCRyAkF3YcHFBkiKExOs4RBNTqcRRhhTUVTA8i1ppca+VCqlzAicDG5/52Sd02TEEUnJOdBsNpPdHRLKia8TSreG++mtP4//gQziSmA8lCtA+qmjx87O+zY2NlZO2aUj+zzvlZSEG56ZMg+35HtGBevGHEIwId9F4QLyXBQ7EAQQqchQALzHs0C8DMPbErrLg7GwVoRBbmxsrGQo+H6jG4mkFWGLnARcDhBx1psxVavVRP7ZA+5Y4LUe2EhmAWKOO0NwZLCnWVvfJ4hu/X5/xfXhnzsvK/LSCkQs9jRdHxBV+JzP5/OVzg2IB41GIwlx3poU8OyBQCAQCAQCgUDgeJwaQQGbdLVaTaSIf+xD+ur1ejpNv3r1qhaLRRIMeD1ug42NDW1ubqrVamk0Gq2E6HlSP6eYvHcymSQbOLZ/SMVsNtNoNEontZAnCI6fjkM2Ifd+ms9Y+/2+pINAQVoIQm4gTpzy+gmyE1+ECEQWyKsTM06JsyxLzoXBYKDd3d3U5jHLMjWbTWVZttLdwDtK+Gm8hzIyHwhDiCiMHWKIUARZ5dqciFPGwZz7epGtwIm1hwdKWhE3fKwegMipuosiuFAQVHAfcE1fNz8h99IExsF9fA2Kr/H5pNyE1/Ps7CucHuyJVquVxCcn8+w3/8zwnNVqNZXEkEeBW4fx4HZgXr0MhpBLfu/Bjv5szI+XkzBGujrwfoDghLCCqMCae86Czxn7wR0/CC3dbjfNBdem/KHdbifhCSGPdqvMMYKOP1cgEAgEAoFAIBA4HqdCUAAQSKzds9ks2acpJ6hWqzp79mwiiL1eT/1+P5FFSCFt9yDrfmK/v7+f3A6e3j+dTrW7u6szZ86k1pONRkPdbjedtEI43UXg5BeCWwzE4/QXorlYLJKrYLlcqt1uJwu7d1HwsD23eHOyS0051/dQPcB/e6cIxJFut6vJZJJOmGnL6KfskEXKGfg9AYk8E6fzhP15PgDzwXVdCMDmz/V8nSDAuAW4Jpb4tbU19fv9NE/sI285CQGmXt5JJYISJJtn4X3eMcIzIchtcMGJufJ59zIBDwj19XC3gbsXXLhBZGo0Givhod4JgRN/PgvePpF9w5gRInCOeI4AogLPwziK+Qw8n4/f95vnJngWBi4Cd6Tw+16vl67F3OFwQPjAuYMQxbqVy+X0Gc7zXK1WK+0tyog8N4RxIGJ6Vok7ZQKBQCAQCAQCgcDxuGVBIcuyp0j6t5LulbQv6XV5nv+LLMv+kaQvl3Tl8KXflOf5Lz7ctSA9TnghQ+PxOLWR29/f15kzZ1StVrW1taW9vT0Nh0NduXJF586d0/b2dqrhJrit3W5rd3dX/X5/JbAPUurkZn9/X71eT91uN51etlqtRMA57YREYQmH4PNH0kraPw4DJ72MczAYrAgSjUYjEUg/pZWOSJP/HMKLEOFlD94q0mvnCWSUpMFgkLpnNJvNdFrvBJDnwvLuqfvYzgn2g+B6cCQEExIH2WUs3goQJwK19C7MEGSJ6ABhLZfLyfXAzzm1hkwzDsIvERI4zaZzhKQV8uyOjGKGgLsqDj8T13VIWF9fT6U5PAtzy16RtNLBAEHN7f2sd57nqtVqaX7YR94Wk+t55gUCQdH5Iil1MqnX60kswOXh68/asubufnFho+gg8fBK5g9xze/l5Q9eHsF7R6NR2tvkUXjrUeZjMploZ2dHy+VSzWZTpVIpBb1KSjkprFmtVrtu//K95LkPpxV38rs4EAgEAjeP+B4OBAJPZNyOQ2Eh6e/kef7bWZa1JL01yzKain5PnuffdTMX89NNTsMh5XQygIS02+1EiIbDoS5fvqxz587p/vvvT2n0lErU6/UU0ubdDgizg8hLSkGMg8FArVYrEehWq5VOSSGHkHSC/LCVF0P1PG0ekg1B43e4FXAi1Ov1FQLGPKytraUSB8obPB+Ak1WuCwnnFLbYaQCyhGDDKS7EEtKPSAHZh4y5mMHpr6T0/JRxeHAi+QSSkmCBjZ85ZB+4uOIdASCgTiS99h9RitNwFw7yPE+iEOOnRIBAPy+r8PIIT/5n3ufzecqm8DKG4ol6kZzicii22kTIwO3C2Iq5DJJWrs1ecCHH9wbvYz4pL2IsuGW8ZSb2/2I5B6QeAYZ5Zc+7w6NYMuDuGQQP1pV9wrPwXtaQz587mTx4VFIql5hOp9rb20sCDO4esiSYO99rPlYX/u4C3NHv4kAgEAjcNOJ7OBAIPGFxy4JCnucXJF04/O9+lmXvkHT/rV7PLeFeFiAphfoNBgPt7OykDATpgLzu7e3p0qVL2t3d1dmzZxOZcls1pLxarapWqyXyzwk3JJpWkcPhMJE18gsgip4PkGUHLR8pu/CuDJziF8kw95nNZon889+NRiOVL3h7Rc8goLMF80XmQbHOn7ljLNVqdaWm3skdbTRns5nq9boqlUqaX67HGD2BH5KGlbxarab6dkmphIJnwRngtn3mf21tbaWWnTIMMjCYw6Kl3oM5qf3n+QAiFYJB0QFCy8jNzc0kQHEfHAPcC6cHQgeCEYKPJI3H41Suw7M5kea+7ixg/drtdmqL6ONEIOC9iCY8n8+vh0/6zxCoptNpculA1Hu9XmoZ6m0q6XbgZSLsaSfmXAdRoVKprHT9QJjwuZCORET2BGIZnzcXFvie4H+9RMrLg7wkyvchDgh3YyBYIOQhGrJvTzvu9HdxIBAIBG4O8T0cCASeyLgjGQpZlj1d0p+S9JuSXiLpb2ZZ9sWSfksHiu3uja4Bgc8P2xu6pZ9/3HNiS7icdER0d3Z2tLOzo2c84xlqNpuJhGBbl44s95BVhAdOXFutVgpm7Pf7iWyVSiXVarVErDyAjutDYr1VImP3sEbG1Gq1kngBAYdwQcwhnAgRkCwXMyDq3NtPWSGinMpXKpVEbl1MwEmAgwCrOLkSHlIHcBkgiCA0UHLgte/NZnOlZSXWc07jsfnzB7EHtwYixWw2u67cwZ0AjUYjhQD6uuIaYE2w2XuHBQ/D3N7eTg4VyK+LGJ5v4WUMkFM6UxBGKEmtVmslnNNr81lXL4PgVJ1sjcFgkJ7LRQbuyZ5wd46k5DJhfC40UCKC5Z8x8H7e68GU3I/96vvN97B0IKpQpsKa4crgs+5BlYheLkIUAy7ZQ9wHQYqfIQ7455K9z15j/hDmis/n97rbcCe+iwOBQCBw64jv4UAg8ETDbQsKWZY1Jf0nSV+T53kvy7LXSvonkvLD//1uSV92zPteKemV0hHpgZhC5LA/e5Db/v6+xuNxqgnHsn7lyhU98MADeuYzn6lz584lAuMnuRC2VquVRAUvpyDnAEEBouFEiXFACKknlw5IKdZtQg8RAPy0GJGhXq+rXq+n+/NzSBWnsLgEOP1Oi3coMgyHQ41Go2S9l44IPy4MxsbJsRPG8XisUqmUauknk0k6wXUC7Mn+bjfnmXABQARpzbm1tZXm1rtRkO+AawOxg5aglEKQFzCZTJLQwB7xUhhOmavVamr76d0h3NEAWD9Ifa/XS8TTMxWKAoC7ULiOBx7iBBkOh4noEvxon4H0Xt9jrHuz2VwRxPz+7FPW2D9HuAQ8mBJHDG4FX0u6muR5rr29vZXwRMbm/82cMBbENYi4t/P0e7h7gLlz1wIlSF4Gwf715/QgSMQ4z3pgvyKGIO6wn7ykAgGTeyIeeaeMuwV34ru4qnrx14FAIBB4hIjv4UAg8ETEbQkKWZaVdfDF+WN5nv9nScrz/JL9/gcl/dfj3pvn+eskvU6SarVajkAA8fAacH4OONn3hPzBYKDLly/r0qVLeupTn6p2u53ISbvdVqvV0oULFzQYDLRYLJLjAFvzYDBIXSGwXXMi7gRGUjpRh3jU6/WUEI/YgWOBE1rEAE7KORnl9N0DDiGjRTLpQX+SVkLx3D7P7yHoEFBOzAlfhIhDgj1jgbIDToslJSEAokVpAMIJ5JI54nlpxdlutxPBY209Q8CzJlhvTrMZr7Rqs6esgFNpTp0RCXZ3d9NrmDPm8nAfrnTj4D0IJIgXTpCL+8HXyQk0ro/FYpFCQdkbnrOAgIBIgHCCqIFY4SUliBrsG3dHIA55QKZ0FMiI8MN6F8eMewGRC6ELEcKzEnAQ+Gt5DXtG0krQKmvHmPjs4KRBDODzgMNkOp2uOIT888Rnw4MoEfEQ1HycCGmM0wVK9gWiwt2AO/Vd3M627z5bRiAQCJwCxPdwIBB4ouJ2ujxkkn5I0jvyPP/n9vP7DmvJJOnlkn7/RtciNBAyST241/EX67QpReD98/lce3t7+sAHPqCnPe1parfb2t7eTiRuc3NTzWYzdTU4HKs2NjZSO0EIvrsP3EYNwYCMkXcASSyVSur3+yuhiE5kuQYuAESJer2+cnKMTR9ix3g9vI+TVLIDIEmQOcQU3Bmc+iPGUCbAST+ODbeJO1HmNdjFl8ulGo1GOv2G8LFWlJR4RwQI8ubmZsqe8DA/zyxw0slpNvXtPHer1Vqp5+c1OBoQM3q9XgqcxEFSPPX38oHZbKZ+v68sy1JHAA8QRNhw4lxcAwQOTsTJaCCU00UBdzkgtlAe0Gq1VKvVkgjAPHpGhneA8A4TCAguThSdQMy35yW4U4J7FEsPvCSAz6KLMHxuCUg87rPl4kDRQeLuHN+n7IViMKi7F4Bfl9d6tgaiAi4m75DBniaf5DTjTn4XBwKBQODmEd/DgUDgiYzbcSi8RNJfk/R7WZb9zuHPvknSF2ZZ9kId2LveK+lVN7rQ+vq6Wq3WwYAOyZLblyGBkEQnKk5MhsOhLl26pPe9730pXK9UKqnT6Whra0udTieRS/IU+OOt7LyEAbIK2fJch0qlomazmU51eQ+vxxXA7yCsEGOIEEQXx4S33avVaqkrAUKGk1APs4NAuyWfcXN6y7wiKkhayRVwMofowevoxIAbYn9/PwXZ0b7QBQgPAvTQPIQISk6YK4SWcrmsra2t1DXCxRB3Y1Amwam+zwutRSGFZCS4w8NPn925sLa2tvIsEG6exYUbMgFwovB77kO3BjIQ2B8IMIg/kGVO1TnZd8eH709fO9YE8cbFGPYvhLlWq620QPXPIMIAogdz7uKFCwfu1PBuCB6iyH97hwXey7xzHYQUXoPwglvHBTUXzVhLF2aYS8btv3dhAgGHDhke/Mj3zF2AO/ZdHAgEAoFbQnwPBwKBJyxup8vDGyQd16T9pvvrrq+vJ/IH0fZaaP/fUqmUyAAEwbs4XLlyRR/4wAd0zz33qNFo6OzZs2o2m2o2m9re3tbe3l4iQVjEuZeXHUAgnVi4kwJy1Wq1UonCbDZLVnO/jgcUMl5Oj91J4KQJ+zltIpfLZRIOirb3Ymq+rVGaSyzdkHsyHvxE20+WIZw+z7TX85aVdM2AjHpZCOUHhEfi7vA/iDReVkHnilarlToOQBwhfMPhMF0D4UE6cjOwVu12W8PhMDlTfF1c5IB0SkdCAx0ByJzgpNxBmQKkF/GrGIRIm1LKEMhsYDyQWf9dlmXphBxRA7Bu7ENECIIWeSZKXsgQYJ15Xtal+GzsRc/w4Nm85MDFhuIaFEsgvLzF3+MBl17m4EITn1cEFc+BYJ9zP+6F8IeAgcMDMD8EvTI3RfHttONOfhcHAoFA4OYR38OBQOCJjDvS5eF2kWWZms2mZrNZOk0mLFFatcC7fRmSQXnAcrlUt9vV5cuXdfHiRbVaLW1sbGhzc1NnzpxRt9tVr9dLZBoy5nXj3iYO8gJhxJXg9eAQ/ul0mtrRMVZEAmzVuCIgduPxOIkKTsCk1RN+iJBb6UulUrqu1/e7zd1D9CghqdVqqtVqGg6HGg6HK50FPNxPOhJYGBPiARkT4/E4dQmA+BfHybPmeZ7KDvz1klJ9O8TdHQXNZjOFGTpBHY/HK+GNdOTAvcCYK5WK2u22Op1OIokIG9VqNRF8f37gAY6Qy2IXDwgtQgikt9gdAiBA+Lx6m0U/sWdPPlRWAX+HpHOiT8gmY8Glwc8pR2Eu2QOeb+Ck3TM7cMRQRlM8+fc97GIUfy+GYvp/83t3D3kwqO91Pn/uMGIM7IPiZwP3S7F0CGcJ5TOsmbszAoFAIBAIBAKBwPU4FYKCpNTxYG1tTcPhMFmkpaP6dpwBkAaIs5cCDAYD7ezs6PLly6n9H2UJm5ub6nQ66na7iXDgBpCUbPuQKwi915VzEuqEy9sbMh5IGMSFNHpqwjnBl1aJe5Fs+em8uxo8mX44HD4k8YGgYVXnpL1WqyVHCETOA+3crs7PF4tFEiUo2xgOh8kN4ATX589LBdzx4SUk6+vraY0oD/ATd1wQrL+k5LSQlAQFJ5/u9mg0Gqk0Qrrelk8Zgaf/Q5a9lKJ4b+7JM7kLhT+Mp7jO7CFfK99jjLM4dy5WFMsRIPqe/eFlB4yBvco1isKF720/qec+PBfuAZ6ZvY2wU+yE4Z8Jns2FDBcgvPuLZ0UgGLHnXLjh2gRs+n6jI8pyuUxtTP27hXnwriUhKAQCgUAgEAgEAg+NUyEoYJentWCv11uxjUPsvCzASwmo9efUeG9vT71eL7kcIKXNZjPlKMxmM3W7Xe3v76eTYazhy+UykRVOdLFee826k2/qshmrn+ZyAoxgQfcIyLEH3SE6eMaCW+E5Za3X66lEwZ0VEEUnsm7ld8JIJgKkz8kTz+YknufENcE4yUGgmwXOBD8tlo7IuJeQMD/8vV6vJ6cCjhWIMmtENgEuBtbXswW4p4f2uYDjgoOTVa5XfO5iRwpKW7gP84so4eUdnKAzFsQdFx08G8LXjH3u5QHuhHCBwv+7KE549gOknbGxdz3YkUBJd1g42ff94NdmbVgzzyEpBib6uHyf81rmCFcD84bDSFIqA3LhDaECN5FnfrDGjMHFDhe+uOdxpUSBQCAQCAQCgUDgAKdGUIAUtttt9Xo9VatVDYfDdGLoddmQR4gapIU/vV5Pg8FgpZaadPx6va5Op6PxeKx+v59cEIQLel17tVpNJ9zc20PoGBtEl5N+z1Bw27cLAJwI8xqfB9oGQtbcuo6YQcZClmUajUaJYNEOk/d7PgTjdjHET5sRECRdJ0p4qUWxXp4AQ06NEQTIfhgMBhqPx9rfP0j69/Xj/og1EP8sy1bKU3Bk8Bx+Gj6dTrW2dtTGEpHEAywhypBk7zxRPMF3McJJJnvAswUgyy4OscZe5uKCDXNbnH/2n2eIYMF3YstYinsSFMUkFxsQLvjM+P295MCFmOKz+/j9mv4aD1J1EcOFh2IGgl/PAypZC67Hs/FZxe3iXUlchKBMBwGIz5l/Nr2MxFtIhkMhEAgEAoFAIBB4aJwaQYE2ds1mU5ubm9rZ2dFgMEjELM/zRLSBn9xDMKbTqYbDYQot9DIDD+obj8e6du2aer1ecjh4Bwav9YaM1mq1FeKEo2E2m6WxOfF3YgJB5PQW4siJtXR9WzvIMeIEBBly1Wg00ticaDebzesC/qQj0uS14dSPcx/G4WKHCxPMu5eBUH9ePNn2Lhqj0Ujj8VidTiflTHCyDMljrSh/IZcCsYRT78FgkJ7FMxWYJ59HJ+nHiQI+F+6kgBS77R2iW8wG8BIFv4c7EoDvK9YU4s7fea+TdUQTXyPEJkg1IpV3KvHxspa81jM9ELu8vIK19pIHzy7wMbN2OAFqtdpK2Y/Pu8OfyUt+3EXixJ59yVzzWeX+HoTqYkBxDXzv+lhcWAhBIRAIBAKBQCAQeHicCkFBUiK0zWZTW1tbiXQ6sYO4Sko/g3Bwssof6uWLOQC4FMhT6Pf76eTSW/JBfDzYkPtKR6n73IdOCs1mU4PBIIkaEHaIIeF7WLcZG79HAOD0GKIEWffTdK5Fy0h/H204IdcEOJLB4CF2nvngogXvR1CYz+cp0I+1ITDSwzF5huL6URrRbrdTuQPP74Aoc+JMS79Go6H9/X0Nh0P1+/30eoQXkvo9b4C95R0WXIhwgu+tE8maYK4grp6n4OKBE1gPp3QxyQkr14T8MlfsUS8/8D3uZQ3FcXsJhv+ea/p4XEBy54SXIgAfr5efICZUKpX0fncOUGLCmnKt4+aO1xTH5KIe7/FuEzwP4gJ7050KPnd+L/8d43dHkJfQBAKBQCAQCAQCgetxKgQFSOj+/n4qSaDFI/XoHnpHSYGkFVHBT7khz5PJRHt7eylbQDogzY1GQ51OR7u7uxoMBisnpZzYUn9dtEgX7efU3UP8NzY21Ov1rssO4LVkKJBDwO8YO+D+uB8YF5Z9OlV4Xf/a2po2Nze1traWHAy830/qIdJ0qeC5cB4Q9Mg4R6NRcoBQzuBtIb39I2Uo1LFTCgFRnkwmyeLurQw5YZeUgi5xqbjghEDQ6/USwYRselcLz8RgHVlDF5F4fbFDBXONG6UoJBRPt1ln9uNxZNj3KyIPgZLMnZNib/fpxNc7L7Bn8zxP6+RlLJy4c1/yNvyZcfE4UWdPIEiwzxGGINt+LzIg8jxP+/E4ZwLz5yJJ0Qni81oU+Nyl4J9F78bhc43bhpIk1hkgmPAczIW/JhAIBAKBQCAQCKzi1AgK/X4/nehvb29rc3NT9Xpdo9EoEVUIgZ+AA0iH15RDKDlFx4rPCWe9XtfW1tbKySqEnjwHXAj9fj91n+DUv1qtpj/+3kqlkggYrRWLrRiL7Q4p0YD4Fk/8vVZcUhJKnDBBrOmOkGWZGo2Gms2mNjY2dO3atfRzL6VoNBqJpHrNO6UGdGCAbNIpgbp1noN5Zo4QFWq1ms6dO6e1tTXt7e1pNBqp1+upXq+vEHeeDSJeqVTUbDZTi8jJZKJms6lqtZq6NvT7/UQgubd355hMJimLg2sXnSDu0HAwJsoycDkUT8/5byewrCv3ZU9Cnn2eeY3vj2LLRp6RcTm4L3NJPgKfBy89wdnCuuI+4B7F58jzPIkaCAqICv56RKUsy5JgxD5GHPFMBz7PLmoUnRf8zAMo2Vue5+Dv5Tk8QBOni38vUKLjYY7+/ul0el0oZSAQCAQCgUAgEFjFqRAUAMSiVqup0+moVqslcg6hg1xAwIuhdC4qQFgI/Fsul2o2m6pUKprNZqrVamq324n8Qmy5zvr6ujY3N1MIIq+D0NRqNdVqNVWr1eu6M9ClgFp+SDfPwSmrCw2e8F8MueM6EE06WEhKDgQIEeQbUoRgMJvNUvcLCJWklGfAWMiaQJhYW1tLbTHpbkAZAqe5OBakgxKDfr+fxozrhDkgRLLf76c5LJ6MuzUdkrq3t7dyKl6tVjWbzZLQgyABQeZ+uBEQpljbYhkBz+4kF1LMs7JW7gzxTATpqM0pZNXvy5pBsimlYC08B8Gv72UJRYcMv2MemS8PNiy6BLhOpVJZ6SrhIYmMHVGAXAvG7HvS54dr8AzMmcPLC4r3Bi7YMBfFPIjjxBUXCBBMijkNfm2/p8+NO1gCgUAgEAgEAoHA9TgVgoKH52Gp54RZOkqrd1JAy0OIogsMHmxHZgDdHBqNxkqwHEGLkjQej5OAgYAgKQkGw+FQo9EoncBOJhM1Gg21Wq3kDvBSgXq9nsSA4XCYBBLG4/XaPENxXmhZyd+lIwKEAwBxYmNjI4kJnKRD/nBcTKfTFJzHdTY2NtTpdJJQ4IQMYk2mAL+bz+crrftoF+ihdv4cGxsbespTnqKzZ8/q0qVL6vf7GgwGydngYgTjcNeItx6EYHv+g2cmkLvgZRxeWuJ19w6EKz/BxtEiXd9msXj67+URZGogIjF+LwFAiPHODpzC+2u9ZKNI3F2I8awNulg4ufc/OFQYg89fseQAl0Ixd8AzEIodK9wJwfNyTS+nYN79d0W3QvFPMWwRsZDx+FrwPMwRYy8KBcUsBy+/CAQCgUAgEAgEAsfjVAgK0gGRHAwG2t3dTUGDtHuDVHrSPESieJoMsfaTYcg+YgOkHkJWr9dXCA02fq8359S+2Wyme5PRgOuh0WioWq2mLgQbGxuJ1LuVvVwuJ8cA96tWq5pMJql8okjmIYzF9P9iYCTXdLs4hJUxeT29ZwPQgnEwGCTRgetTD896uPhAu0YPsoOAcm/mr9FoqF6v6/Lly+r1ehoOhysiDmMbDocr3Tp8HotigM8Ha+VdENgDkGZe57X/HiBJyQCiAu0veQ7P7PD9WKzTx91RDFn0kgPuO51Orwsn9OwOJ/Lc10/emWtIt5dUuOiEUOYkHFfDcY4NBzkk5HW4KMXnxMt7fG8yxuMyE5gLvy/uCvacCxWAzzt7rbgnECyYE5xK/r2AK4kMBRdVXFgJBAKBQCAQCAQC1+NUCAp5nmswGKjb7SYyy+n8xsZGchdISie91WpVtVptpT7bT6URDZwsQ1ZobQhpz7IsnZBzGru+vq7ZbKZut6tGo7Fi+4a4O0FtNptqtVpqNBra3d1N94E4eQkCYYZOHCHc0qrt3Fv7eXcG704AueXU24P0arXaiu2btpJZlqWWl7Rz9HvgwoAkQzap03dRwUkuhNJPeD0HgBIRQMYBIYyQda4PUWW9PBsD4YL1ZSwQ5KJ9vlh373Z55qb4M1oRumiFUOPX573FYEFIsrsFfI0hxPv7R2Gjbsn38gOeXzrqqODWfz+BZ97ZY15KwX7yuXGnjAsfvpcQ+iD3lFVwD9xA7uJ4KFdCUTzx9fF5La5HsVyB19RqtfScLi64swFhx0ui+JzyWcVNctx9AoFAIBAIBAKBwCpOjaAwGo3U7XbV6/VSJgB2eP+HvdeFOwHmRLgYvsYfr5mHgEDqIc71ej2RvCw7aHPIH8aB+MBpPqST0/9ms6lms5l+B8lnjHR4gKhxis0Jf6PRSGUOBN9JWiFqHuIHeefUlTp6rsep8ng8XnEpALpFDIdDtdvtRBidTBeJlYcYcm8/sa9Wq1pfX092ftaENapWq+p0OsrzXDs7OylckVp8iCWkz0/GuYafKHutPiTW7feej+COleNANoOkJKr4qTjXcJEGMctDQhE0mHPPh/AyBspRyPXANeOBiX5az3t4Xl7PPYvOCT5fiETMi7tUPMCQa+JyKM4jn4Oiy8HnwcWNopPG8xxcqELgKa6Zlyrwc8+W4HWMk3IPz4XwUFfgYp4LO4g73ItnDQQCgUAgEAgEAtfjVAgKlBZ0u13t7e1pPB6r1Wql03yS6/nHP2QMYlutVhNZgHDSbtBPQl1ccEGBa0Ge/QR3PB5rOBwmhwLlCbgjyH0YjUaJCHIKPxqNkvDhp8fuLmBs/A5XQaPRSGSfXAQvQSgGAkpHJ81FsknJBJZv7omVnzaMODFcMEFUYK65HiQQcg+Bg2BSrkIuBKf8XjpBC0jI7mAwULPZTGvGXOI4kaTRaJQEnuOyNXhu1plOFF4eQKmGuwXcZcFpfLFEAlJPJoMTaZwkTog9X0A6cG84ifVyEJwfXBMBzJ8PBwHj9xwAF8K4v4cWcj+fJ/6bNfBr+T29UwP3RPTiVN/n0k/4fQzHdWiQjkojfN183Ah2no3guREuGCHWuXvChQ/m26/H/RHbXJgJMSEQCAQCgUAgEHho3JagkGXZeyX1JS0lLfI8/9NZlm1L+g+Sni7pvZI+P8/z3Ye7DqRhMBgkh0Kr1dLGxkYit36iCTnyE9RarZZs8sPhUFevXtW1a9c0nU7VaDRWbNkuKkB6/ZTWa9DJIBgOh4lo5nmeSh84ee/3+8qybKVUgJyEw7laIUKQV7eWY+svl8va2trSxsaG+v2+er1eKgeRtFKrz/shUm7bJ4CREot6vb5iyYcce3cCF1S8zaC3h+T+nmngggKlEZz2u60dYYPXk5UxHA41nU5XyCSn4YgCdMLgOT3wEKJKdw1OpSmBYD0Rbfy0mvE7mfcafM9OQITx90KiaWUK+XbnibtpPFODe7Ouvi+8nMTXhft5Log7Org3c+kCBff0/ch+OG5Pct9ii1Zv8emdH5y0u3vBXScuHPDcLnS5S8NLfxDneCbmjrmQVgNC3Rnh+5O9RQlHsTwFYceve9pxp76LA4FAIHBriO/hQCDwRMWdcCh8Up7nV+3v3yDpV/M8//Ysy77h8O9ff6OL8I99Oik4EXRBwf/hv7a2pkajsXIqC8nY3d3VxYsXtbOzo2azmU6Vx+NxClKkc4Fbv/30FqeBkwsfA6fmy+VS3W43CRrkJXC6zXsgU6PRKAkTwB0QjUZDjUZD7XZbzWYzlTnQQaJ4SispnXAD7PHY6HEVeMAhxLdSqSQxg7EinvCskGnKAZywUs4BgfNyD+l6eznk0G3pEF5ag3KaznM56fSMDMgsAkKxZGI6na50ApCOSgE888Br5yGUzJeHJ7L3APPKNdi3Pj8IIMd1g8DZwFz5GiI0uGCC6wJxzN0ZXo7hHR38tN3LY9hvvJ9185wFLxXwzyCiGeUovr58nn19fVwuanjAarGEgnEVHTxe+lMUDGazWcpewZmD24Y9ynURyIruneJ83kW4I9/FgUAgELhlxPdwIBB4wuHRKHl4maSXHv73j0p6vR7BlyfdA0ajUQoLdHIjHZ1eeviedBTcBmGZTqfq9/t64IEHdO+992p7e1vnzp1LJHY6nSZ3AoICZNDJb7PZ1ObmZnI6eO03WQj8GY/HGgwGqUSBP15nD6khHM6zCMhmoA1lq9VSu91OoYlkDEDGvM4eu7vPE2QIwl2tVlWv11OJBoQRAaPVaqlcLqcQREkpBwHRAaeDpPQc3saQ97g1HxcFRH8ymSThx90GjLtYOsE1uSf7ohhSCUnmOSmj8K4Q7lxg3V30cPcKc4oghNCAK0A6qtvHxYHTxV0D0lFopr/HCTS5A+5C8L2Os4O59JIcxufEvVgGwj5hLPwv+Q3ucGB+iqUOXnrgop67W4oiEffnM8V8cy93P/DMlCxJR8Gj/odrFfcG4oL/IYPF19iFPUQ1F+j8z93kUHgI3NJ3cSAQCATuGOJ7OBAIPO5xu4JCLul/ZFmWS/qBPM9fJ+mePM8vSFKe5xeyLDt/o4t4ON1isVC/30/2free+wk6ZMNJASfxOAV2d3d14cIFPfOZz9S5c+dWWhm6zdwdCpxoQijr9boajYb6/X6yYpOhgP1/fX09uSqm06nG43ESFCB8noPA+4rlBtJBoGG73Vaj0UgBi5CiYveC42rbeQZ3X/izLBYLDYfDFfLabDbVbrdXSgH4X2/hyX+7S4L70DKTZ4IYci9vqwjxpBzEyyggvk7mWCMEJ3IZ/Lq+hi7UMA5fD+YJwsk8skbkRnBvJ88eFuhuAZwA3maU7AaEARd8INiIBS4A+NrgkEF04H04d3BReHkFnxH2SJGAu6jgoh371DMR+Pz5yT6iAfPm5Q/FMg2e10tBvMyDa7C3+V8PHmU+XaRx9w2/572sg7sMvGUm42cfIRTxx50Yd1GGwh35Lg4EAoHALSO+hwOBwBMStysovCTP8w8efkH+cpZlf/hI35hl2SslvZK/e2lDt9vVzs5OOmn2BHhEB2rRnURJR0F+EKfBYJBOeSF/kEZe76ezbuOHbEH8SqVSKkfgtJ5ad4g0KfOQSEjzZDJJ94XwQ3i89aULHfV6PbkIpKPadQ8JpFyhUqloNBqp3++neWHu/FnII4Dg1et1bW5uqtVqJbKHS4TxERJJECUEkTlot9vqdDqq1WrXtY1knXiOYhmEdx/wE2xO7lk7Ser3+ylrAVINmcZd4QSbNZeU7PzSAZEej8daLBbpmSjx8L3Bz4pktli+wNwipBzu77SuCFiQYParCyLsCz/hZ54RctwZwN71TiX8zrMaPDPCnRWSUhgnnyvcJ5Dywud1xT3iZQ6IbORXUPbjwgn/y77nM+JhqC6WFF1DiAXF4ElJK59l1uG4rAZfR8aGAMIz89zsnWJg5SnGHfkurqr+aI0vEAgEHu+I7+FAIPCExG0JCnmef/Dwfy9nWfYzkl4s6VKWZfcdKrH3Sbr8EO99naTXSVKWZfnm5qbK5XJK8d/d3U2ny37KyGki5Mbt2RAwyOtyuUzlApAXyKafCuNamM1myTJP6OLh+BJ5rFQqajabqWTCyR1kqNForAgKkEnu6QFyXkIwGAxULpe1vb2dSJqXHUhHlnnpiCB5fsJwOEyuDcYOeXJBwQMPuSZiDD9zl0Kr1VK1Wk3Eq9lsJrLW6XS0vb2dnAZunfe8gDzPE/Hk3rgCKCGpVquJDHsOhaTU3hJBwUm9rxeknt/TktFPvSlBkbQiKiAKOBH1kg4v0eDZuC6/83DK4sk4/8texkUiKWVLUE7ipRnH5U6whxC1iiU7nNIz3/zxPc1rjzvp57PB//Jav5bnSjhZp02pu0yYSy/7YCyeS8F1EQDdleNOCTpxuOOB8UtHZR3Fkhz2vosOzK9/nn1Mpx136ru4nW3nx70mEAgEAg+P+B4OBAJPVNyyoJBlWUPSWp7n/cP//ouSvlXSz0v6Eknffvi/P/cIr5dOiHu9XiKfRbJAUCClCdTwF0sC1tbWUjhit9tNrSglpUR+6aiu2mvlK5VKIsiUMnhHAgIdscs7mSIHwQMbIbiSEpn0+n3EBOz6niGxsbGher2eiDin3U66sO57d4XFYpFaQTrJclEBsumEC+cBwg2n2JxE+zpsbW2lZ2ZuCFRkbI1GI5Va4NLI84MuGZy8r62tpTBO8h68ZGE8Hqe5g6izXqVSKa1JlmUaj8fpOuwDLw1hrdzp4vZ+5sXt90Uy6wKMBx0iXhSFEC8rYPyeYeFdFFhfvzfE39ugMkb/HBTLeVww8NIE/xluDQQdL5/xcqNiWQbijwsKPB97kJDLYjgkz+ulFe6ocMHEQxF5v4/Ry068U0RREODviFsuwiEmegCpfx48V+Q04k5/FwcCgUDg5hDfw4FA4ImM23Eo3CPpZw7/0V6S9ON5nv/3LMveIumnsix7haQHJP2lR3Kxd73rXXrmM5+pPM+T5Z6TecgW5BNS4qfUklZIjZOY+Xyufr+fcgI4FXf7NCfYbnGHbENg+bvXfHsWAifIpVJJrVYrOSgguZLSff3e8/lcg8Egnep3Oh11u12dPXtW9Xp95VQXkundBNxNwBi9BKRoz3fSVgzpG41GK0QYQQEy69eGELdardR1AdIG4fRshzzPNRgMkuDg711bW1Ov10sklLZ++/v76vV6yTXgNfqQdko3EHE8r4JrIWqMRqMVwunzhGBDbb2TaUh+kWy7Rd6DMQnghAS7s8TzDfg5pNVt/O5KobSBPeb3Z2/6tRm/uwjcNeLtJ71lppedcH931jCnXMNFkuOIvpcZFAk/Y3b3ju9FRCn/DLK/eB46OlDyQvZGcb+zDzx41HMnKLFwBxFzMBwOH+ab61Tgjn4XBwKBQOCmEd/DgUDgCYtbFhTyPH+PpBcc8/MdSZ98s9fz019JqVtCpVJJpB1yUgwydGLINTjdx8LO6XhRCADz+Vzj8VhrawedEY4rS+Dafn8cDZRAeOs9Sh94rXcZ8A4TnpDPOMhDIPNBOiI4EFUIrJeBQOQh3k5UiyfEToIpAej3+8kh4Se6XmsOCd3Y2EjPzZxDGmkvyVghrNPpVMPhUP1+fyVQstlsSpL29vY0HA5VrVZTRkO5XE4dFJhLn7PJZJIEBeaW8haeHbeElzogUOHKYF0RKvgdRJPnd+JbtPC764BnZ918rTxjwk/SuS9AwCHLwgMPPd8DBw3umWJpiJdLsO4uLPl/F8tJjpsD/3wwbp6rUqmsOERqtVoi7MyHO3S4P9fxz7ILYO6E8BKM9fX1VPIyGo1Wvhf4bHNvd/CQZ+Fr6PvLRZ3TjDv9XRwI3CmsP/fDbvm9eZYpyx+58/tmX38reNyO6f0XtOz17vDInliI7+FAIPBExqPRNvKWgWXcQwohe56Y74TPQ/443YYsuaV/Op2q1+ulU/PhcLhCKrxMADGj2WyqUqmkEEbs4ZxyA07TK5VKchp40F+1Wk0hgBAg6uez7KBdJPeifWa/39fe3p5ms5n6/f5KoCNOAg8eZB4QH1zA8FNrrxGnXKBWq6W698lkkoIsGScE0jsk+Kl0sfWmCzaep+CuDUoZODnmNBrxYDKZpL/X6/X0M4QUP9WmrGQymawQbFwFdHRgjJJW1siJuYd0TiaTFZeFl4Ywp8w79znu9J3XeBYIhJi1gsTzPl6LyMTaEfrpHQh4HeUnOAIQNYrrz7PiUij+3ssUPMST5+FzUqvVJCm5UyhnYU+7m8FFCuaYZ2etGAf3AswTc0fZE64iykdwNLko4aGK7BcvBeGZfVxeMlIMpwwEAtdj/TnP1uT+9uoP1zL90o/865MZUOCm8KE/+mo9+VdnN3xd9QM9Ld/xR4/BiAKBQCBwN+HUCApuo282m4mgIShAUKbTaRIMnKBBIjgVhmRAdIbDoWq1WiKkEBJIE6KFdEDK+/1+ItqcfJPJgGVfOnJJcFpPgJ7Xn/NsPIsHOkICIXY4F1xI2N3dXSlFKNakQ8b9BBbBwE94PUgPMaHdbqvZbKYWj9STsxYIH1zL7fLSautGyKaH9FWrVU0mk/T3zc1N5Xmufr+f5srzLNzyPxqNUhAk5Q+eTeBzS6cNxA1EBa4/nU5XTrLH4/GKxV9aFQlwIkBYmV/A/uP1/nPPRPDxFMssimC/Hke22fe8zp/dcyIQ5SD5g8EgBSS6aMH+8dIA1tOdQLyHsVGSxH5BAPTwyeJcsge91IN1xjnhYgyfRRca3D0B+BnOHH7vgaSMBQGB9psO9p1/HrlusX1lIBA4wvqHPks7f+a8On/9/fqfz/mPJz2cwC3iXV/y2oPq/hvgk//gszX40Y899nedf/fGOzyqQCAQCNwtODWCgnRUW91sNtVoNK6rZ3arvnRks15bW1Oj0ZB0QCyn0+mKA2C5XKrf76c6dE7BOdWUlNonQl7IcYBMY/UnT8CJO2SL01y6O/gJJ6TYyyOKJ69rawfdCjY2NrRcLrW3t6e1tTX1+30NBoNk+3fS5K0BOemHFHmugIsK3mWB183n8/SsxdISv0/xhNkJIwSMZ+Y5vSYekcFPkTlppkQD54jX8EtHmQ08jwdGQtghtS4S0PWC/YWo4GUU7hhAbPHSBAQRP9H3Z/DcgaKd3wm0iyG8350PPvfupoDYsq95NvYd68Z9EOYgypTisE9cIJKUHDDF3AY+c6yzd1BhvRAAXPRhPr10hrlwoYC15j08P2GiOFPcfcSY+Wy7Y4nvjKLTwt0SrDf7hPnnc+7zGAgErkfpvnv1vi9+ppZ/uq93vOS1Jz2cwGOEX/2In5f+2fG/e979r5GO0crvffNE6//rtx/dgQUCgUDgRHFqBIX9/X1dvXpV9Xo9dQuA9EA4nQwtFotkzYcA1ut1TafTlFoP4ahUKup0Oup0OsnlwEklLSIrlYo2Nze1WCxUr9dTiJzXwGOrXy6XajQaKyf4iAoIBeQ1ALIN+G+3XR8XksjJ+nw+T+0S6XbAybK/zk/P3e0BeYZ0ra+vJycFAgQkkXlwtwO5B6PRKJFxWktC8iC7Tvz4XzpUeGcGSCNj9qBM8hsgrN4uEaHEx4WAA2n3mng/oSYfA0GnXq+nMfvc8V5cKd5SkN97MKXDHTOsA6fjCCHSkUDAulEW4xkUPKtnD0hHwgbXQXxwJ4Q/C3uOLBEXTXgNJBvRATgB93IBOmSwznSIwCnDXmP9eC1rhKDA3mceXIzhWjwn4yl24eAz5KKRf5bcfeBigc9psfTBP0OBQGAV62e29c7vuk9//Enfd9JDCZwi/P5XH78fvvSBT9D/eePH3PD9zfeu6d5/8Rt3eliBQCAQeAxwagSF5XKpa9eu6d57702lBpLSaTpkBqLYbDZTzT+OBAg9J56cunK6Lyn1rufkkwBGyipo0whxlo5IpnREPiCBvMf/ID5AgnEnOBFD7IBou32bvy8Wi5Vn9BaaCB2cEjsZhKQ5EYbEQqiL5RDValWtVkv1ej11YvBAQEQFAhNxe2DHR6jBLcEYZrNZuh/jJmfBcwI8lJLfQ/CKhB9BAzFpOBwmIonDAWLvJ9jcn6DNer2eshK83MJdHpRlIGo5oXcrv+cseMcPxuXk3+fBiTpkm/fgLvFyC4g78HwCxu//651J2EveHQORxXNEiqU6RYLuz+9uA+ac8a6vrycXiZfz8NwergmKoZcevoig6I6CYlAnc1EMcnS3C3PFvXwMHl4aCASOwdam/viTfvikRxG4S/DDT/016am/dsPX/ep4Xa/5uC96yN/PviHEhkAgEDitODWCgv/jXjo6lfR//EtaIS6Qq9lspsFgsNJm0kk6pJjww/l8rm63u1JCICmdpm9ubqaQRIgQggD3RVDwsgd+DwmGqNJhAEs4J8WQHq/xpt6fZ/CEes8owHnh5QaA/AFKQZwgeU081x6NRmnckDUPYeT9ODQItHSxoujm4PkRB3h+J/msK/dyp4ULCsVT/0qlkgIePSfD6/FLpYNWkpTAQJTd9VAul1PnBJ8/7otToVarJUGF/eAlJzg03ELPc/i1EWIg8k5kETpKpVLK6PAOHDw7TgT2vRNkJ+YuOrBfEeMoyWFOcKhwb78fKDobvCTDRREvi/F15Oesd7E8xEM+fc5cfOBaXtbi+RTAu24wNg8SZX5wuuBYIDvEyyECgUAg8Ojjk2tLvfMT/u1D/v7FzZ3HcDSBQCAQuBmcGkEBFIPQIJ4QME4qvR58Mpms2LklJTKGa8Bbw7kVfDweJ9IIEB9qtZrm83nKGSDxH/HARQbyEbi+n4hCoAgYXFtbS6GAiAkQG34G+SvmCPgY3a7u7Qdns1nqRNFut9XpdFZS9j1rAXcD1n/mmdN/CB4El24QkHSIuxM6iCXXzfM8zWGz2dRwONRoNErPxSm2r2ExiwB3BwIMJ+GMkfIXxsUJv5erFN0FTqZZh+K9PewQEs/PWFtEBtbFcxbYw27z9xaXOAYYD64E30c4drx0AgGCezoJZi/wfvY9+7XX6624UCDpxZKB41DM78BR4i4F5hcBBGHOnSKexeHOEp6dfcHn30tYeA2iQZZl6fPsoZhF0c5bmPJ+/wx64KrPXyAQOML++z+oj/onr9Zv//3ITggEAoFAIHDKBAVOmKn1h2D7KTyElhIG7PSQSU4hCf9DTODkH/IEqYNM+EkpxMMJC+IFJJa/+x9+Tp0/RM/FAYjwcrlMz8CzQbAgNJxGe7cEygt4PcRTWiV4dD2A2LpY4Q4PLxVwkQYhwcsAyIqgTIEyANaBeeBU3QMRJ5OJOp2Otre3NR6PE6FlPEWnAdkZHljJWnoaP+tBqUa329VoNEqCAiSa3AzfT35KjggCIeV3/B4bPyfl7Fd+x/s8lNBJMy0tEbM8w8IFEs8J8ABCPhvFsoSiW4HXeLkKwpoLc3meazgcPmT+AHuGe7CPCEzMsix172BsuCXK5XLap76f8zxP7hD2N+IEjhnfc9zT9ylrx/s9aNNdNQgouA8Q8HhWv7c7GHg/8+vBpIHAExpr63r1O98pSeqsveWEBxMIBAKBQOC04FT9a5l/8LuN20sgIE1Y7zml5eRfWg1ic1IxnU4T2Wy1Wiv12IgBvI5gQEnXlTYUSRcEFUDyEQCw6EPCiyffEB4Po/MaeLINsixTv99Xv99P5Qzess/LDLzcA1HDT3whSYRfko3gz+BkmueGiDWbzZW1QKhxkke2Ah0xECwIRMRxAHEj1V9Sal8JyWdM3pUDQYWOIKPRKOVnuBDE/lgsFhoOh+najJm5KQYaukWe+XJC7kGarAWuDK/PL5fLWiwWqTzFLf8IYWRstFqtJH65e8A7OfBMlC14OUvRWcB9fF9y+s/zskfd1eDlBYhV7rhw18P6+vp1+R7MmQsc/nnx9/vv/PMuaaXTh5dO+DxwTQRA9oakFdGM56V9qAtxntPAurHvA4HAET6nMTjpIQQCgUAgEDhlOHWCgrRqq/ZwRSdO/JlOp+kkupjQDsngRHg2m6nb7a44B4ot+9yuj2DhJ++QL2z6TlYgb+5EkFbbJ3peAT/jND7PczWbzTRe6cDq3+l0VK/Xtbe3t3Li7cSf58DhARHj7xB8P4Gv1WorAZi0jmw0Gur3+xqPx8myzppAfjc3N1Uul7Wzs5NcCn4S7uUDELbJZJJKUOr1+sp9eS0knq4WnChXKpWVlpHMF902EEeGw6F6vV4aS7vdTmQfocG7gLDuuEE80NKzFNhXrLXvRxwpnLB7ECCvddLLPBbDCHkOz9Vwgc1LBLif2/rZLzg5GDNiAC6LdrudxoCbhGs7uT6udIN1RNiB2BeFB9wViB7F+fPxsQ7FEh5ew7p7yYtna3ibSnd0LJfLJDa6w4k9jICBeMhnOModAoFAIBAIBE4Qa7d/qLP+IU/XT//Pn7gDg7ken/uMj1du/0a+LeT7Un53dxc7NYKCW++ddNGK0OueIRLj8ThZ6yF+nHxD1srlslqtlhqNhiSt1PX7iS0kHKJBu0ZJ6eTSnQxu3fY2gu5A4MQccQIy5IKJE3+6MPhpeblcVrvd1ubmZjrZ53cQ2KJjArGAZ6Ojhafq436AgEJcPQwQVwNj8lKLVquVsiC63W7qhMB6TafTNH4Xc7g/bgPmHJHAuyXgJuCU2/eIJG1vb6vRaKjT6aQyh3a7rfl8ruFwuCLssB7r6+u6cuVKGqe3zmTvuDvBX+fEF7D+HmbpIgIOFdZ4Y2NDtVpN1Wp1xenAaxmvl4N4DgAEnnETkEmOQ6PRSPZ/D4xkrKwl+8cDKj2kkOdg3XluBBn2gaSVz6tnSvB58f3npSSSVvYvv3OHBGCOEQb4ngAufLi7gPBSursAL82hTSnzjzjp7o9AIBAIBAKBwK1jvd2W1h7ZYc2n/fp79VVb77vNO75V0sZtXuN4/Pf3vfmOXevDfujVetZ3/8FNvWd/OFY+n92xMdwuTo2gIB2QsX6/r9lspkajkWzd1GojJjQajXTiTPK+kxgIGSBgEcLI6b4TGMiOZyJwQuzkjtdDxKbTaXqtXxOSRe0+Ioak5Ezw01SIMzkJjUZjRXSo1+tqNBqpnECSBoPBCunyenkwnU41GAzSfXlNlh0EGXLC77X5tMPs9/vJ3eBtInEHbG5uajQaaTweazQaaTQaJeGF8XASzzp1u910ao0zwJ0CnNIzVzwjBBDyPZ1OE7ElE6PZbGpzc1OS0v9Clr1lJx0OGIOXtXjmBWUqCBh0aWA8CBxuw0eQ8Xp/6YgQs6a+DuwNSkS8swRuBM+kkI4yAnxvebcN1sBFCp9DxuSlFIwNJwdiAmJTsazAnQ3FchA/7Wed+Yx7loWXKrmDw8m/u2NcuHFXhruWHJ6FgLDj9+F37sbwsQcCgSO8fryml9ZCZAsEAoEnArJKRWtPedIdu953/sqP67kbtRu/8AmGd77itdIrbu49H/F9r9HTf/LCw74mG461uHDxNkb2yHFqBAX/xztkTDqqZcdWDimCoHhJRNEx4OGDforqNe6ceA4GA3U6nXTKS307J+fecg6RwZP2Ga+nxkMYERUkXXeS7TX8EDICFSGDODDq9XpyToxGo0QguVelUlG73V45DZaU8gsg681mM53ODofDlDHgqfqUQ0CmgVvsETrq9bpGo1EKHlwul6mEgDWEMO/v72s8HqexAD+pl5RKVTyYz50Z8/lc/X5fvV5PW1tbKpfLajabOnPmzEqrRfYWP5vP59rb21vp4IGg4CSXU2qCJxF9EGVwCnAfSiTYk4hhLja4KEC5BnNIi83pdJq6iUCsPayTufJMiWJbTAg7pRLejYTnYE/6Z4T3+14sCiMugrlwRp6Hf36LjhP2suctlEqlFXeMCzLuRoLkuxPIxSL/nDEuD2X1jAjGw+/4/Hjb0uJ3UiDwhMf+Ut/xok/QS//gf5/0SAKBQCBwh7D2/A/Xol099ndXX1DX2775++7g3UJMuFP4g9d8n/Sah3/NKx74eD3wdS+87ufrb3mH8gK/u12cGkHBcw8gPE7ii6n4khKJpK7bSx+8Hp6fexgbr8HG7yfJiASQyV6vt9KOcDwep1N8iBqEzgULSckiPhwOValUVK/XVwQNdz9AyLzjAvXfhCHu7+9fFy7omRD1el2tViuReLfXExiIKyHLMo3H4zTPnJBj0/d2hcwvgYAQL+bTyTTPwmk+84hYMhwO01qy9qwDJQZu73fLP3tkuVyq1+vp6tWr2t7e1tmzZ9VoNNJ9CN9zl8RkMlG5XFa1Wk0hkJzc46KAwFMKghDAvLA/Ib3H7WOeg4BIFxTc4cFYEKbo+kGJB2sIjrsfooLnFFBiQFmLuyG4P+vpDg0cGV7Og4jC3nchATKPeOR/2COeKQGZZ08j9HlwKJ9zD9YsPr+HlyIceEhknudpXJ67wb353LL/cAy58ODfE4FA4AD5fKFXPPDx+qGnvuGkhxIIBAKB20D2p56r/rNb+rRveb2+5ewfnvRwAo8Cfuipb5B+6vr/v/5T3/Ya1S+vcoqN3lIb//3WOzjd8r+Wsyz7MEn/wX70TEn/QFJH0pdLunL482/K8/wXH+l1qVt3oiyt5hhAfCE1XqfvKe3SkYOhaGd2u7Vb172eHTs/deputW82m+p0Oomc+D39mkWi7fZvd1V4LT6ihXRAnrzrhJ9MQyQZOyTK7fLVajXV1HNizBwgunB9nB4ehuen3tjt3V7ugY/Ms7tDmBvPe+AZEWlYd4Iu5/P5isAyGo3SeruLo9fraWdnR7u7u2q1Wmo2m2o2m8lV4aGb7iDwjgouHkGuae3orT8RBziJdxGK+WRuIN+e4cDcMb9O2ikn4Q8Cj1v43TXg4YwIE4B55fqISr5elHywxggDPle+LxEkPGgThwlknnsX31c85fe9J2ml5MXDEb1EwgUnL6dwd4WX8yDQsFZ+jWKHB+5HjgfrxLXvBkHh0fouDgSK2B8OdeFl5/W8136RPvzcJf30s37lpIcUCJwKxPdw4K7Ciz9Sa/9sR7/+YT920iMJnADe9k3Xu05+YVTVN33vl0mSzv3uROuv/+2buuYt/2s5z/N3SnqhJGVZti7pA5J+RtKXSvqePM+/62au57XUboF20u9lBW6Zdnu829bzPE+hgTgJeJ2HHkpKgsRoNEqnl2QDQHIpCZCOSCnhh8WOD5B8dx944JyTN+6PPZ1WfJB8HAl+D0/9l5RKFfyUV1J67uPew/smk0kSFTyvgHEhfEA8JSWCzbzMZjMNBgONRiM1m82VLAVEGJ8ft9H7NZhrHCDsCZ6P0gXG3e12de3aNZ07d06NRmOlPKA4z5B0P732uWbeyNzwE2r2BOtDWYl01Gaz2CGCEE1EmSKZ9f2KUMT+8nID3x/seebB3TpFYcyDCv2zw5g9W8E/Y1zHP5suApRKJdVqNTUajeRCQQjE4VDcRy6OeNYEzw2KIkrx+f17AOGh6ALxdfISE+9SgvDgWREuMtwtYoJ057+LA4GHw/LSZd3/uZd18fP+jPQvQ1AIBKT4Hg7cPcj+9POU/z+7+sUPC10rcITPqE/0GV9/IDR86QOfoF9//cdKkj7khy5p+UfvueH779S/mD9Z0rvzPH/f7dYdO5nxf9R71wUnXS4sUPOOYMDJMi6DVqu1UiZAACHk0+341NRT701NPESp0Wio0WisnP5CmD0gD+Lkqf7UyUtHJ8+8ptlsamNjQ4PBQHt7e0nk6PV6qtVqWltbWzl9lpSuiZVe0gpJ9MBKiBmug8ViodFopOFwmML8vNYdEYUSCNrwUR6Ae8CfmXlgDN71wTtrFF0ObsWH9LGfKCHgRBwC3e/3dfnyZXU6nbRX3Dng4g7CCBZ/HB5Y5CHCjUYjPae3P4TAMocIAOxZF5FwObDO7Feenzn2Fp9+4s7auQDg+SHFfAp33DiZLl6Le9Tr9RWRACLuJRbMIe9BGGGvep4EIgauE8Qr9r13UvBcB/alv9fFHS8f8v3smQvHhTZ6VwjWx4WkovMDIDR4mchdhjv2XRwIPBza//eqnv/mL9T/ffGj05IrELiLEd/DgVOJtRc8R+vftaP/+qH/7aSHEjjF+OGn/pr0xb8mSXrJCz9XFy6+6OiXX/LTx77nTgkKXyDJ/1XxN7Ms+2JJvyXp7+R5vvtIL8SXLwIBp5LD4TARCQgZBMcT+7HXQxI8g4ATVV7v93FRgXBByBWWftr+bWxspK4LhOJxLxcy+DnEdTwep2tLSjZzJ1+Q2TzPNRgM0kn8YDBIp+ZY2jkN9hPpYqkBRLNer6tWq6X5QgRAsBgOhysCDgIBr9vY2FCr1UrXHQ6H6vV6qV4fC7yHM2Jnd1Lnz+6n6JA3TviZA6/Jx7lCC03W5erVq6mEgZ87AWeuEBPW19dT1w9fb8QUhADECG8nydy48OLXhyzzrJygs8cg7hBXhArPBGDPP1T+AIICz+ddK5yAs38JY+T3kHwvr5BWSxbcHVQMEuW+fAZ5jf+dsfLcHmzKvHhYpM9z0bUB/HML3K3A/7qrwUugEAq9DMldID7uokhzF+GOfRcHAg+H5bverex/fZz04pMeSSBw6hDfw4FTh/UPeYbu+4H3RwZO4Kbw68//z9Lzj/6+/hCvu21BIcuyDUmfLekbD3/0Wkn/RFJ++L/fLenLjnnfKyW98pifp1r1arWaQgO9LrzVal0XdAecpEFSS6WSOp2O7rnnHjWbTfX7fXW73VSXz6llsVzB8xQgUpAgMgzoBuE1//P5XOPxeMUJ4UTRT+alo6wCrukiA84IXBaSrhMUuBcn0ogS0lFHgHq9rs3NTc3ncw0Gg0TMmC9IuBNNJ5ieN9Dv99Xv95OYgZjAvAyHwyQk8IxeV8/YKBtw4QjhwIUK1oMyC+mo9n44HKrb7erSpUsql8up44OXZkAcERIYr5ci8Hp+5x0GyM5A3BmPx8nNwd4hn4JreWtSSihwyLgI4afxnsMAAZeOTs0lpX2COwIhysn2cWUlXBsyj/DGfnTijlAC/PWMx0U9FxoogXDhgbn3Th3uUHBBAZeNBy4WHTUuOrgbhXswHncf+PeBl24U3Q/Mv4uDdwvuxHdxVfXHZKyBQCDweER8DwdOK/Y7Df3QU3/mpIcReJziTjgUPk3Sb+d5fkmS+F9JyrLsByX91+PelOf56yS97vB1uZ+Megq7kxeI1nQ6TUF2WP2dODlph7A0Gg2dOXNGnU5HWZap2+0m0seprXTUYWG5XKZx0GIQksM1IUy8H+JF7sFsNlOlUlkJY/TQQ29lV/wDmZKU3odjYblcajAYJNI9HA5TBgLEnlIO75bQarVWygscEEPm+HCNVggXpO7atWva2dlJc7K5uZkcIC7KeJBgMaxPOjr5hjAiQPAHocTLWlyoQPSYzWbq9/up9afnFvAsrAOW/UqlstJNgn3nZSGcaEOKybCggwLXrdfrSSRgzVkrSUlQ8P1K608nz/zex8T+YH48kBPnjRNr1lI6al+JK8BdB0WbvweL+prxM4D7hz1KNgGCAP/LPj78fKcxIwawBh6+yM9wxOAUwdnBazzUlP/lmjhr+Fwytx5m6RkK7AF3aiBa3YXuhNv+Lm5n23ePghI4cdz/7/9Qz/iIL9effNYPnvRQAoHTgvgeDpw6lO67V1/+Ez970sMIPI5xJwSFL5RZu7Isuy/P8wuHf325pN9/JBdxogOxc8INSQWcZHLK7WQfcs2pN6Sv2WyunKT3+32Nx+MkCECk3D7OiT/kxO37jBfBA6GB09zFYpEIKafZnIjjrvC6culIZGBMCAuUQLiAQubD3t5eeg46EECsyB3ApbBcLldaRTLfkKvBYLBS4w/BZK5Ho5G63a663a5ms1m6JgQSok67QUg85JS58RPlUqmk0Wi0Ijz4GpPhABFcLBbq9/src+drkh+GcXrJCSIDJQe4XlhnTtZ9Ldk3CDvj8XglxFLSSh4BwYRY/D1YlOtyCs9+pnxCUtozLoTxv+xz32/+mWFP+Sm7Z2o4fN5d1PFr+efAsylcCODnXnLkQiBryGexVqulsRXDSXkPe83dBAgqiAEOd3V4yY6LCYzvobo8eFtM3uuBkncR7sh3cSDwSLHcuaby7oed9DACgdOE+B4OnD6USvqcxuCkRxF4HOO2BIUsy+qS/oKkV9mPvyPLshfqwN713sLvHsk1Vwg5qf9ONCERnAg7mYC0Qtra7bYqlYqazWY6pfZab29Ht7+/nzIAms2myuWy6vV6spiTZcA9PTQP27r/gWS7/bpoxV8sFtedukJsIH2QpOl0quFwmIgyrRoZPyQPEu5kkvEhpozH40T8JaXacsoZIMr8HEEBou7WdO+s4NkJCDRePuHEDoLop/CUNfBeX18/eUcYKAZ3TqdTZVmWHByUpTAHnFbzLDhR6P7hc99sNtVoNJK4MpvN0vx521J3RBCy6Cf9RaLKfHuAo5dB4Iopukzc3eEBi07MPZeC/ekWfr+Gk3gn7d75hPFJR6UPx5U7+JiYI57duz54+QR7j3vhcJCOsk34fHrbVPaMB3sW59mv63PmP+d6zAH7xJ1Cd4tL4dH4Lg4EAoHAI0d8DwcCgScqbktQyPN8JOlM4Wd/7XauSdDecDhcsb1jM280GsleD+GCdNoYJB1ZrQkkxBXAqXC1Wk3vhfSMRiNNp9N06l2tVpOlf29vT4PBIBFPyFsxyM7JEcKC28kh/YgBkq6zXQOeq1jawDUkpbwJnkk6sqY76YcE+ok4z+9OEMoMINT8DBIIqWMeXShg3j10sBhaOJ1Ok/OiGOTnAYY8P8+LIOSlCvzxbgvj8Ti1sISYIwpBgovuhI2NDY3HY81mszSPHqhY7KzBeLxLgbe99PmgTMfJK2IV88/4sfpzb4hzsaaftWW/u/3fQxbZo+5EYI+y3zwY0vMXPDvEQyKL3TQYDygKB4h07rgoCnJckzG7+4E//hnDfYCw5SU17D8cQS5ouXPJu0BwPcQV/8zeDXg0vosDgRvh0ld/nN71xdf3sw4EnoiI7+FAIPBExalrtJ5l2QoxGw6H6VSe0+Zms6mzZ89Kkvb29nT16tXUxtDzFCB7jUYjBcJxMg3h9rBE7NnD4TAFIpK/4HZrr/WXjsg+JNZbJPq1paNafogPp+hO/gAEGRs9RNldFpQBuM28SO68LR/jgYRClGu1mmq12spryuWyNjc3E+EajUaqVCpqNBorHSYIhnSxBFLNc0DcPDwSV4aHbvoemE6nSVCCYNfr9VR6AvH10gzaS167dk2TyUSS0nVZD0IVIZ206iyVShqPx2nu3CEzHo81Ho9TaUbRRUEpyWg0SsIEZHY0GqU1gVDjamAPsJcQwCDDzDP/KykFOTJ3EF8EHwQIwi29pIbn5r3kcEgHrol6vZ7EIAg8pN9DOz0Y0TslHHeiz+cSZ4sLA0XXgHfIYLwILozFRRN3wVBm4+NgT/IedzogbLhgw7p4iU4gEDge69NcDy4GenKpedJDCQQCgUAgcEI4dYKC95h3e7YTBEjyxsZGqvuHyHNiCcF02zLEENLp3RI8+NFBi0hJKyfGOCkQKDxAEBLitdsQ4GKoo6f7e/kAY/MTVlpncrpfr9eTywCBw90TPBOnvZzO+uu4Lzb1TqeTRAYyJwi587DI+XyuXq+XTqBxSXhtf/G02R0OHjQoKZ3Ot1qtlYBDyDnX8O4ezA+OEE7FEaTG43EqLZCOSGQxb4C1YMy4F/w6tNZELPJ6f9ZqNBqtlMQgfCBgLBaLVEbiJTG+Zux5xAzvesEeQoDh8+KkmtcxNncoMIf83OeYNUN4O65DB6/xMEzvoOEZIvwcYYXPC4IV+6FYroQwwv3c3cKz8McFJYQgz/xAbGG9mFPKXIC7PvhfnqnoGAoEAkc4+wNv1J97xt/Vu774tSc9lEAgEAgEAieEUyco0AaPU1oS8SEQklbs2RBZSICklZNHRITBYKC9vb2VHASIczHgDnJarVbVaDRUr9eT5RoLOHX1k8kkhSLipnCbf9FKzvix1ROICOGEcHsZASQXpwIn3Nj56RjgtnwXSag55/1u9y/OfavVSvfGmeGntB4wCPGFWPpruIbnK3hIpBNu/rvVaqUylF6vl9pu0jXAA/ecNGLfJ0MBYcmJqKMoNvlJO9dhrSm/YY0pY0FYQsDivrgBaOWI2MA6zmYztVot1ev19DzSKql1cQDnDWSbveBkn/3ujhHWFkLvZSjMF04dzydh77BHvBTByTX3Yf7Zs4gd/DcOD9wBCCHu2ikKUdKRGMfccT13RriDgLllb3BtPnfFshGfP67BXvTg1RAUAoGHRulpT1H+1PGNXxgIBAKBQOBxi1MnKECYIZ3j8Tg5EYqnwn6qC+GQtFLXTwlDr9dL7R8hTJwke/YAZAJRwTsLIBDgWkBUGI/H6vf7Gg6Hyb7OPTy7wEsRsNsjmkCWIDUQHreyS0pj8iBB7y7gosrGxkZyQDBflHL4SS8Ei7p+b53ItSlV8HBH5mU+n6e5pbwCIYC1gGTy7HRtkJQIMOUMWPB5ftaU9TkufI8yC+bLrf1er+9uEe+2QSkEBJ5gyTzPk1hEm1EIubfedILrLhoyIyDgrOP+/v5KqYuLXzwnDgl37LBHikKNOxJcVPISIOae6/DclDl4CCL39W4rvN/FL54XcYg/fFYYD/OO44Rr+GfD8zFcBGLu2A8uzvD55/qICg/13cI+YkxFIcUdUoFA4OHRf+F9evXzf+WkhxEIBAKBh0E+Hutz/uhT9LPP/qWTHkrgcYpTJyi4SOA2arfRj0ajlWBAr+HmPRAt3sPptdu9OS2FQPC/kH1OTiEqkBVC85zEQTqdrDuxddt48Q/kyU9E/cTfx+5dBYrPjJjhzgSEEk7KeR7yCSDvvK/ZbCZHBnZ4nBfSUQ6Bt9WbTqfq9/vq9Xor5PG4TgCSVoQLJ8A4TiDj1WpVg8EgWfIhkV4Ow2shyZB9r+n3xH4njH56jSg0Go1W2jJ62cN0Ok17i98hnDgxxaXgzgpEmcVioeFwmAi1E3EPGJSO2mZybSe8XN/zGLiXuwec0LsIIGkldJKxu9OBeWQtfQ4pl+C+rLELHlzXy4Rc+PI9wr5wF4K7enzvMUbEwWKIZ7F0gTn08ieff8/CwNniezcQCByP2s+9Wd//sZ+ivx0lD4FAIHBqsby6o8nfeZ708yc9ksDjFadOUJCOOhu4tZ7TYizo/B1i7a0XIXLUSkOcnCC4NZvTdYiP2+yxadOOsF6vq9VqpXBFHANe1+8lDJBcJ+BOklxE8BNdFxY4OafOHIu7dw5AeOE6nlSP0EDQHyfh5AJ468Fi14bhcKhut5taJuIgQaygO8JkMlGv11t5Fn7vp+kuRkAOpSNnCu/jvRB3Xx/PQpC08ux+uu2hm0Ui6Y4ND9l0IQBBhc4ahElCPp3Ier6AdNRCkf3pJ/vuCvG8BPaYC2GUNOB0wFmDcICDhv1NACGiAJ8H1o5SAl8L/7mHPBZDF/lfDyQtlhBA9Eulkmq12sraO4l3hwBuCHeFuCjgbR1LpdJKBxPm0zM2eA/v55lwsRy3R9hb7n4Il0IgEAgEAoFAIPDwOJWCgp+8Q5awKnvqPaSueOIM0c/zfKVloLRKOPk7xBGi7u0FKZmA7NVqNTUajXRNchZwAng9Nqf/1NQzBl7nFnEnXhBoiK6TTSf9s9nsutIBb0PpZRP8L88EUaaFo5+Ce9DdYDDQYDBIlvNarZYIGx0JsP7j4OC1zWZTlUpFtVotkVpJK4QcQlgsB2GuKHmBfPI6F12Y31qtlkijiyQAsuon28zVcrlMJRqQ9X6/r729PQ2Hw+QO4Y+37XSCCzlHuOF17hJgLF7+4EIXpLvYzYDXFgkxY+LvLnT4/FD64j/3+fHSAncD+DgQ2CgL8tIYFxrcQeOBju7Y8ZIUxBX/HBeDIvkdwg7ijj8Lf3yf4KrgGREwEDGKn5HimgQCgUAgEAgEAoHjceoEBbd4czrLabh3CPCTYcoAIIIIDGQxeHI9DgJ+v79/0JYxy7IkEtTr9UTUOeFHHKjVasmdAFFrNBpqNpsrXSIYO/8N3DngNfVFeze2brd/Mxee1u+nzMwR5G48Hq/kQ3idudvaASINZSU4D8gAcLs97SP9VB1iSXihpNTVoNhCk6wCL2mhU8JisVCz2UxjZx0ApJA1W19fV61WU71eT8/IOnsWAZZ6fwYEHOavXC5rNpslMWE0Gkk6ItjMd71eTy4X5ow5doLM31kThBHu6cIAzzYajdL+2N/fT0IJe8nvxR7C2QGRd9HBRRCcDpKSgMLa8ixF5wLj9jEh2nmwpIsRjJPx4RLwLIZiIKbPBQKCO17Yo4h+zWZT1Wo1XZc58r3CXHg4J4KW35tnweFQfE8gELgeg8//GP3Dl//USQ8jEAgEAoHACeLUCQpew439HHLjpQse+sd/Y7/39HgPjIMcc5Jer9cToYQ4Qr5qtZpqtVrKJphMJqncwE+nK5WKNjc3tbu7u2LPR2zw03ZPxCcXgdNtr83301xCICFRiCSAOeEEvVKpJFJebBXISTNkt1h7Tks9r+dnjikTgOBRYkInCIQP7PgIEpQWIEBArj1sEMcF78H6Tlggf0d0oH6fcbD+kHzEH56p1+utWOLJx/D59nmmrIY1Z54QiRBI3B7vZNmt87gwip0ZjjsRd2ECMutlG5414fkbiDq4ciiN4DPE/bk3JSe8nvUeDodaLBZqtVrpc+AlCu4+wBHiz8Hnls8bY+B9XGN/fz+JYy4mIGYghvgcF51FXuLkgoiXnHBN9ruLHy5gsK4IVPzexx4IBK7H5v9+j77lDS/XF33avz7poQQCgUAgEDghnDpBAaIEAYBEQwbILDiuhMHr8iH8Hho3nU5Ty8hSqaR2u62NjQ31er108grhcsLk5JBTbb8+p+QQs/39/eRc8FNonBRcA6Lop8o+B04iK5XKSjtLyJRfw0+YeRbPLICMF+vHEQIIC0T4gKjjfODk3U9uXQiBwEP4PbsAwot4gODBCTilHf1+Pz0388H4vX4fUcgdFr7e0lH+BPX81PQzj1wPYSnLslQGgtCDmEH5ggs4OCrIsvDrepmKi2S+T90h4qfnHhbIGAkzdFeKz1OxVAISLSkJRfv7+6rX66mbBuvuXSzYo41GI7kXWDM6ULCWXsLC3LiLgX3gGRIe2slzMDdkVUDuXchw8n9caYSLDbzPXSE+x3yPFMUCxC32Dq1aA4HA8VheuqzylWed9DACgUAgcCP8zh/qo7/51XrLP40Q3cCdx6kTFNx6DimRlMiTtNovHvLECTHCA6e7EGtp1dJfrVbTCXix/R/3K7oRnMh5gKPX93t4nJdaEBxH7oATHU7CvYtA0aq9tramWq2W5sa7LXg9PiTYgyC5Bp0d3HbOdebzufr9fiJ9GxsbyaFRqVQ0Ho9XOj9AmnFteDu+YtYA5JMOAwg0HlronQcQJriW1+mztqw19nS35VPycFyJDPfkvz3UEOLNzz0jwd0HlKIMh8MVm3+tVlvpGuGuDQ9I5HVO9N2t4ePzsEdELXeXuKDCXvOcAhfECNaEsOPEoOUp70NEqlarKx0aKpVK+vy42OH3Zy0R17xjAgKFB1YilOECGo1GaZ/wueSzzV7n+ozNRUXmy/cU84nIQuimCx5eLsHYi66IQCCwistf+XH67b/6zyVVb/jaQCAQCJwc8sVC9avLG78wELgFnCpBoVQq6b777kuE20/FIYnYmslLkI7aKnJSyqmnE3yvB4eQQfDL5XI6TYb8uwgBafRgRcYAwXE3gIfF+Yk/WRC1Wi09DyQNYiMdETPuT9ZArVZTs9lcOZl3h4D/r4ftQdDdBl9M04f88X7+zvwX8wj8RByRhPwED0lElGDOIP08AwTVT7g5GZ7P5+k6XuvPc0tKrpPhcJhO3rkeeRcIKx5UyNqzL3gu9ge/8zILnAKQTuYUR0ur1UqCQ6VSWdlvjMnbZdJ1w90vZDjw/MXcAfYX7g4PdvSSA7I2cAZ4JwQn/ZRHcBLfbDaTAATxdnLve9dzKoqkXFptS+ldJryMhD++1zxo1YUWd55QooTrheellEY6Ete86wX7DKGJfehlUextPiuBQOB4nH/tb+qFT/9a/fEXxYlXIBAIBAJPVJwqQQFSDjmCNEkHosFwOEykks4BXt7g7gROsLG5A8iGnwx7ABwnpU5+qc/ntV7X7SQbEQMbtt/DwyUhaW7XpkTAOw9AvqjbbzQaSUjBio7t3C31HiqHBd2zHTiVd7KFoIKrgOfjvZ6SPxgM0jzyPH4i7V0tfO4h5HSnQJCB5LEOvI7Tbe86MZlMVkghRJT8BcQQSD4lJrwe0orjI8sydbtd9Xo9DQaDJJJ4qQPrgkBA+YOkFWKMcMV+8EwEz2rw1obsEcaLQFR0WBRdMpQ2eLmJZykcJwiwn/wz5Q4f5hVhwzMK2Bv8nc+SO0N8Hdlv/rl2N4zvC/ap54543oGHb+KycWcIY2W+mdOiuIYYw2sR8XBbeK4H6+QBj4FAYBVXXvVivekLvktS46SHEggEAoFA4IRw6gQFr00vprUT8icdnKQ2m81E9Dh99jp7bNsQMOBiQDHBnrZ4hOhBqrym3a3clAAMBoNk15aOyisgWpyyuuhRPOn18D/A+xqNhmq1Wrq21/mvra0lIYRxO9mUlLoitFqtFI7oCf60AqQUZH9/X4PBYCWQEps+pAvyx5gQX6QjEurlG/7MXhbiORAQUW+5yWk/c4vAgxOFUM2rV68m4uk5E5x0s271ej3dHyGEME+380tKRB+xiX3lDhIvS4Gwuj2/uH8QmBCZfP8XuzN4BgivAcw9J/H8jDGzPoxtNBqtlEhA4hkD/80eYH4RcnxNfSyeYYL7gkBHPlestTsmPKCRzwnP49dlf7Cv2LeIKohnLpLxfnft+F54qM4Pa2trqcsL9wsEAsfj3p/8Q330C75Wf/LZrzvpoQQCgUAgEDgh3FBQyLLs30j6TEmX8zx/3uHPtiX9B0lPl/ReSZ+f5/nu4e++UdIrJC0lfXWe5790MwOC0FMmwKmolz5Acr3toBNGiKEHu2HZhnBAUD3kDwEAt0GRdBeFCMSAq1ev6tq1aylbQDoiPtJRCJ8TJa6NCAD5KQoOCAaQS55zMpmkE24XW7wDAk4FxIJWq5X+OLnnmsXSDbf3MxZJ6YQZ0ohY4afvOCa4D+SP4D1Ozv2k2vMCEA+YRz8xX19fTw4VygIQOprNptrtdgpa9NwG1sNJJ/PDuHwc3GtjY2PFHUOmgpcjeH6Ahw96Db7Pmwc0ViqVFZu9l3Wwv13IwoXggg738lIeHBiITF4uVOxqwB6lTadncwyHQ3W73SRg0eWCa7KO/nlzdwwOCnflsGaS0rVwQXAtvzZCoWequEDDOhcFAHcr+ee+eG/+UJqB0+I0hTI+1t/FgcCN8IEvfo7+5LO/76SHEQg8Zojv4UAgELgej8Sh8COS/pWkf2s/+wZJv5rn+bdnWfYNh3//+izLPkLSF0h6rqQnSfqVLMs+NM/zGx7zeZia151Tx4ydGlJFRwNOL2kDiNXciZafsCNQ8DvpiHjzOkkr9m6v755Op+lkm1N8BAXIEwIAJ84eHIjFGkLHM2PBr9fridx7SB4k2MsxPDyO+fC6e/IIIEpkMOB0kJTEGQQad0n4fT2vwkUWSYnwuyuAuXNChrvE13kymSRrvs+F51Dg0HChwjsquOhRLpfVbDZX5tFFlmIpitf98wexAULPHHs7U9+zuAggyzw7ZJjgT/9dce8Xcyv8d8W96GKEB1NCtnkeXjcajdTv9zUYDCQpkeX19XXV6/XUxWNtbU2NRiOtIZ0/rl27pr29vfTs9Xp9Je/ChSHGTxkNn0UXB1kPXodY5n9wLHjehgtCPBtj8O4l0pHA4h1iPC+DzyDjZp9S8lEqldJeP0X4ET0G38WBwCNF+/1Lff/e/fqKzgdOeiiBwGOFH1F8DwcCgcAKbigo5Hn+f7Ise3rhxy+T9NLD//5RSa+X9PWHP//JPM+nkv4ky7I/lvRiSW98pANyUuDEmVPX6XS6YqN3OzX/+IfYUXM9GAwSCfVadq9/n8/n6vV6ySpOXgGEFGK+v7+fTn6Xy6V6vZ52dnY0HA5XiCjXxH3gp9Zefw+hrVar6WTdMw+8bKFINnkdRNSD5yCodBvAyo6g4CfofgoOQatUKils0Uk2z8F9inZ2XAwQNcg4zwqpdPeApBVnA6fgeZ6r0Wio1Wqp0+lofX1dg8EgCRNF9whr7yUUh3t4xRJfFD4YD9d0l4mXa/DfLiBwLQ885LUuLOEmcaHLO07gOvEyH7+nu0kkpbwEJ+C8x50gWXbQChMnjItZXlLBH/Y2ZQ7dbje1lOT5ELUYh4sxjMUFLtaDfeTCSbFchJIIfzbWhX3inUv4HPhnzH+H8OG5IMxBtVpN10Z4YD353Pvn7aTxWH8XBwI3QuNPBvrx979YX9H5mZMeSiDwmCC+hwOBQOB63GqGwj15nl+QpDzPL2RZdv7w5/dLepO97sHDnz0i0BWgUqkkuzXkn7p0P830WmoPxuO1CArdbncl1E46yiaAgEC4Op2ONjc3k6AAqSiWA7hYUQyJk5TGD4kiTK7dbqf78zuIKbX9WLLpIMDpLGGDnEwzbv4gVnh6/Xg8Ts/daDRSFgOuBj/5xRWCo6FSqajZbOpwnVdyA/b399O1nFB7KYGTcdaHUD6enWvye7fkr62taXNzU/fcc482NzeTOMHYOUF24glpdLDW9Xo9lURwyu2dLyDafspOOQjX4TUuGrD/GDdj91BA1tE7gzhZnkwmqaWnX0fSSgkOc8r73RnAGBEUPJ9AUto7dEWgNSbPD5EeDoepjAYxrrjvEMo81JFrsw44bMi14HPAmnl5j3/GinkjfJ6KJRH+uXJBzcEYXLzz67kLiu8Xnp1OEqccj8p3cSDwSLBslHVvo3fSwwgEThrxPRwIBJ7QuNOhjNkxPzs2Jj3LsldKeqX/rNPpqN1ur1i4ncR5aQNlBxByyAc14U7IIGyQJgidh8bxXkgyRI2cBH5fr9dXatMhdxAht2dDeAk9HI1GK44FfgfZpaRjOBxel8cwnU7T+J20McbxeJy6WlDSQLAlY6vX68nSzn0g5m7XP1wflUqlFHwJwYa0UaJBzTmOAM+YcBGGdSiepDMX7tyghr9SqWhra0tbW1tqNBrqdrsrORJkM/i9IZlkHuDOqNVq2traUqvVWmkXCVH30gFO14un3ZBpSl2YBwQK71Th74Ece8mDhzlOJpPkIigKZ8y7pER2j3Px+Ck815vNZikTwQlzq9VSrVZLcwB4L6TcQxOLQpoHNXr5AE4Md4pwL3ej+Jqxp3zPIARIR2ITggZz6SU+ntnB/uWZXPjgmbxcyD8jjGcwGKT2n3cpbum7uKr6ozmmwOMMa2/4Hf3OGz5WeuavnvRQAoHTiPgeDgQCTwjcqqBwKcuy+w6V2PskXT78+YOSnmKve7KkDx53gTzPXyfpdZKUZVnuNft+cghZ8oBDP730GnjpiPT56bCf2ku67mSYmmoCC7HDOwnJ8zyVJTQajfR77NsQaU5OOeH0On2u5afsBMDRArPf76vX66WsBi/v8HBGm8cVyz9E3F0BlUpFm5ubajabydLNe7wlJASW02aECdwWZCzgSGB8/t/UxvsJOgIO40V4cas8xI65aDQaqlararVaSURyJ4LnExRr5xF6OFl3oQgxwfMIyGjwwEUP+vT8BYgsokOj0UiCBc/PKTzrQYgh13NhBhfJeDy+7kSf/c/c+rMjpECm2e98Vpw4+2eDsRJoydwhkrh4UWxXiQjA/qb0xJ0P7tChvKRWq6XwQ/aKh3EyV+7YwclSdB/xh33vgoCXufhzFz/H7L1iECkiAwIdpRenHHf0u7idbUefzMBN4Vk/vqu/8NGfpV9+zn856aEEAieF+B4OBAKnAg8uBvq8b/y6W37/pZcu9Sef8YM3/b5bFRR+XtKXSPr2w//9Ofv5j2dZ9s91EEDzbElvfiQXRESAAEMIIDheE83r/X8hxcW/VyqVRGycmHmZQ5ZlqtcPFGGs2R7C6KGD7XZb1Wo1nSgXCaILADyPnypDyPr9vobDYcoLWFtb02Aw0M7Ojvb29rRYLFKKv7cCZJxOSLmuuyT8hBwSyWk1ZJJ58rBBPw3GfYDwAiFD1Cg+l1v/XbTxDgsICk4qIXeIGDgpPNvB22F6zf3a2lpaQ07gmZ/9/f1UuoHrwUsjnDyvra1pPB6nNaxWqyvlE068R6ORhsOhpANXTbPZTHPa7/fV7/evC6okoBJXCEIK2Qnsbcp9eE7PN2CefY0RtBgbggpz5J8ThBIXpMBsNkvlO7hP3FXANTwQFYHJ3QuQddxECC4ebsraO2EvlUqpdKEoDrgDyTMlKAXhO4PxeemD7x3EAw915DPv5UMuNJyyUMbjcMe/iwOBm8H+//1Dvfv9L5Kec9IjCQRODPE9HAgEThQv/fIv1/p4X2vzfW3+2ptu/IaHwJn/ea8++Sde8TCv+MZjf/pI2kb+hA7CZs5mWfagpH+ogy/Nn8qy7BWSHpD0lyQpz/O3Z1n2U5L+QNJC0lfmjzDN1i3wnhlAS0Inu2nwVo/u//D3mnkIndf5Y+2GnEBY+DunzKVSKZ3gI0o0m02VSqUUVkd+gncwcBs9JRA4EUqlUiKWnNjS0WBvb09XrlxJ5QsugECyIT9+mgqB49k8IK9Wq6nRaKher6/UzxOWx7wXCRZkkjyH8XicQv4gb4yDZyf4UdJKMKCTcUIKj2v3yb2ZJy9v8BIVTvEJ4mS9ndR6sJ//r6RESLk2c8a6u/OB58epgNVfkhqNRip38I4IvV4vPauXLQwGAw2Hw5UuJDwTQo9nb7AO3kGCZ3ey63PobgSEG37GvDB+RDvINM/mwZk4fKSjgE3KK9ibLjDxmUVsgNBzfUnp88h7cHawJi7qufuEtXY3gTt3eA1lPLzO59m7vAA+ozwzDp5iCOpJ47H6Lg4EAoHA8Yjv4UAgcJrwcV/7Fer83jVV3vFbUn775qbFhYsqXbh40+97JF0evvAhfvXJD/H6fyrpn97sQNxa7Hb80WiUTtl5HYQUtwInkn4CC1mVjtr/eZCjdCQ8QJg42XU7NSee1Wo1nTh7JgIJ+Lweezfk0AkYJQTj8Vh7e3saj8fJ0s8J8Xw+T+IF1nds4zyvlwl47bnPHafsvB8SR/tITufdCi4dWdvdwcGpOnOJ22M6narX62kymaTn5nl4DyTWXQU4EbiGr18xeE86Ir4uOnDK7eUo9Xo9CSfMBXNV3GNec89zDIfDRGgpbcBJ4sID4+90OqpWq2k9e72eBoNBcpcwBl8XBCjEHRdJiiGE7CNKNBAUiq4DiDliCKSZPeKlA7goELs8dwERoFj6wl7wsdFOFAJ+XM4GogdjO64cBuEQ0cjFC/YnayQpuU382Rmvf179mV0ccLdDcS9IRw4oL5M4LXisvosDgZvFh33lH+qTf+6z9asf8fMnPZRA4FFFfA8HAoHTgI/8ntfoKT/8TrWuvUXL/ZPXKe90KOMt48yZM6mjgLdC5ATSLeQecsdJOP3sqYWXlDomQK451ZSOEvs5wcXWz4n0aDRKZATyA6nnJBeHAmQI4g65gmBlWbYSlsiJN8TQWwb68yGEQIC8TIEEfncOcF8/AS+2BKSUACLnpRpOViF/2MDJGqB0AsLNXEkH9n8IGWIH4gydI7wEwZ+Jsbol30+93ZmCO8JLNfjD+P19fsrsuQ2s+WAw0GAw0Gg0WnFqLJdL9fv9JDSxpxCH2As4DwaDgaSjYFCuD/l2EcPH5aUajI05Qkzw8gAXkhAMcNQg9iAGeY4Ae/K4cE9KDfg5DgtO+X3cDi+/QDggf4DPAp87PiesIbkKXubA8zE/lJjg+HFhirEzj+xphAnmz8H8erYJ9/TXIJYEAoEbY3800nRxz0kPIxAIBAKBxzXm+VLP/dG/qWd81xu1vAOOhDuFUyMocGLtZAniAAEoBgBit+f0FMLOaShkDnu85yxA2KXVgD9PekcMoH0ideWcSHe73UQ2OVlvNBrpvYPBIJF7LO2SVsgeAsDa2kGLxFqttkK+/MSXU1oXP7DHF10b2PelAxLc6XR09uxZ1ev15K4YjUbpVDo77FrhGQneReM4IYDwQ2rYsYpLSmOhtMNdE5zeMw7vFsD8LJfLFULNc3u4YzE80stBWBc/5We8zA1/Zx5pA8ozIwixhog7jJP54lo8d3FfuTPCw0IJz4TAst8YL/dwgu2Bk4BTdLIyXGzg3ovFIu1HXwfPsoDUU5ZSFBPcAYCQ4yGqCFQ4dqSjsgmEAxeLcDd4WYi7h4ruAif4LhrirnAnDMGe5XI5fQ+4++S46xYdLcUSq0AgcDz+6Ic/Su95/g+d9DACgUAgEHhcYp4v9aK3/FXd9znv0DP0xpMeznU4NYKCE8UiAUVYIPyOlHlPwYfw4liYTCaJ6Dabzess0pAmSAQtEiHCTohKpVIKl1ssFur1eqlkwU/46RIB4ef9tVotdY/wwDxp9VSeE3xOynEJ8LzFk3UINs/jDgl3d1SrVW1vb6vVaqlcLqvb7arb7abWh26L94A9SWmsOBNwixB0x0lwvV5Pc4qjwvMUOD1nfBBPXBbuOBkOh+kZpCNrP4TT7e+cciPOQLjZF5R9+Gm9g/n1zA4cH+4i4O8E+kFocWHwbH5dTu9xSyDeuPtAUspm6Pf7WltbS609eZ+7E4qhgxBknAWUJ3hgIoIJhJtnpvTCOx94OcZxTggXddhziDXT6TRli5BhUuzG4qGdiBEuZkmr2SjuQGAOjssnYW6kg7KFYntXFyRZN9xKHg7qJUrsrUAgcAP0Srq6HOrseuOkRxIIBAKBwOMKo/2ZPvXtf1n3fc47TnooD4lTIygUw9CcDNfr9UQeOTEeDofpNJ3XZFmmwWCgXq+ntbU1NZtNnTt3TpVKZcUK7VZsTnFrtVoi0hBhBIlGo6Fms7niTuB0HxLEiW+9Xk8lAJKSoAFBhAh6ToDfH9LGaTKlBkUyDwHDVUHYYqVSSbkHk8lErVZLW1tb2t7eVq1WU57n2tvb08WLF9Xv99N8En7pJBB3BnOC5dzzFhBaCIyEMHuoI+uE82E+n2s4HGp3dzfNFeSw1+tpNBol14HvD392MibW1tZW0v55nQtNeZ6n0hB3uUhHbhEXsRAC/HmkI3s9wg6uEPamu2Z4JkpDivuPk3ncEuQ00BHBS0781J5rsgZe0oMIUHSasAasmbskvOSHvcT12a9eZsA13XWD6ICQl+dH7T/Z08UOEx666W4Dfs+Yim0hjxMoEJvcfeGOJ0Q3XuuCGOsK2DdFkSIQCDw0nv3Vv6mXfehf068//z+f9FACgUAgEHhc4d/3n67ap/zJSQ/jYXEqBAXIP+RDOrI0b2xspN/t7++r3++r2+2mLgWQfcLxIE8bGxvJMUD4n1v3/eQVezSiBDZw7t1ut9VoNJTnuXq9nnZ2dtLpfrG23h0W/MwJpyf18+yel4CgwAkyr/F8BLd4S0etGCGLnCbnea5Go6Ht7e0UINjv93Xp0iVduXIlkVi/lncWYB4YOyfGAHJMe8BarZYC8yhnQBDxdo4ICqyhlzpACHGiTCaTROw5yWdfeBkLp+pF8umBgIzVcyKKZRtez+8CSrGMgBNy1oc96yUoiAnc38fJ79zhwok95Jw5gZAjWnkAoudfeOYF64NohiDAfPOZYk0Ym5cEuNPDw079tZKSeMV1cKwgEPqe4ZoQdUpNvMTB9zdrwdq56CEpjbNY4uJhlr5vi2UVPr5iicNpC2UMBE4zLv3+eb3jw0d6zkb9pIcSCAQCgcDjAoP9ib7n9z9ZT9XvnfRQHhanQlDY2NjQ9vb2SvtCiIu3p3PbdvG018lUlmVqNpspJNBJP8S4WC7gJQ1ct9FoaHNzM1nQF4tFKheAQHnQ3Hw+T6UECBjFk3mIJaTNLeB+WisdlUMgpriY4PXskCAIJmJHpVJRp9NRp9NRo9HQ2tqa+v2+dnd31e/3kwDjhIqT6VKppHa7nWzf3srQx8j4PcxvNBqp2+1qNpslJ8b+/n7qooCgwPs9eNBbLbIWvJ/n9vaUnOTjOsE5wrx56QTXxTlBmCdODMbBvPMzxst1XUDwbAHP/vCyE9pn+r6m5IP7ESbqZQaMGSHAy07cKeFik+di4HCB6DOXCD+sBZ9BRAAHAghCnHR0ok9JhmdIFJ0jrBvr5OUFLpbwufY9zhrghEAg8u8A5pHPMq/zAEsv8+B3CF8PldHgIlsgELgxnvV1b9L3/tk/p++7/9b7XwcCgUAgEDjCH8zX9dS/dLrFBOmUCAqSrrMicyrqoW2SkishyzI1Go1ELGnhCJlCUIAEQUak1RN9SCy/RwTwNoSUAfR6Pe3u7qb2ji5KLBaL1BGALhBe2+5dFSA4xbZ/xWvS4pG54f3uYlgul+kkHSEBMsozEE43m820t7eXHBaIIcyLCxo4PNbW1hJJ9ZN1D8BDZKCsgBNrSiUgfTgi3ILOdeggwT34UwzK9LwCT/X3gEs6SniApIsGxQ4RXkoAYYfIs0e8nSDX9Pnimqyrn5zT9YDTf8aNc8Br/T1M0+eJYFF3EPj8kB/BGI47WUdkKYZdsk94dhwZzAuE3vMWpKNuLOxBHx/3Z14oR3DngAuIzC1/EEoQjyD7xSwJz7zAwcHnUVoVFKRVgYSSk9FotPJZdCGB75dAIBAInBx+r3v2pIcQCNzVKN13rz74hbOTHkbgJjDN5/orP/3VetYpDGEs4tQICtIRocC67PZ7/pEP8eH0MsuyFYs0IoQLAU76pKMuD5AITtad2DabzWTjhxRT949wUBQUxuNxsvlzXU64+eOAwPizQ5pdUMF94QQOIs19nNBKuu5EG2v5lStXtLu7m06PKZHwzgZra2uq1+tqtVrpFJu2nH7aCyCMLoggyhC8CNmH3LuYsLGxkcpKuJ+7Mzwcz0Mzx+Nxssvz7F4SgdDizgIIM0QZxwDz5gGErJGvCc/hrg7GjDvBQxiL9n3fi15a4d0WimUCTtZ5r4tA7izhZ8wX12XP06kE8QKC7SUKnrnAvV2A4B6IJQgKGxsbKwIPWQzeEhJ4BoK7AxASGJMHeyICkImBsCetOiNwIElKn0WuQ1AnnxkXPjy01b8rAoFAIHCyqL5/ctJDCATuaizvP6s/eumPnPQwAjeBj/p//5ae9W2/cdLDeEQ4FYIChBzCAiHilBkyggiAfR9i4ZZlCAOn8py2ejK/n4KDyWSicrmsdrutTqejVquVRIlKpZJs/DgUsGtDVCHOHgwHAcWS7aF/LpYA70Lg9dze3vA4sgkp5n3Y2pvNpur1uvI812Aw0GAw0LVr15IF323jHkZXqVTUbrdVr9dTrgFrAUFGOPAOCbPZLHXLIHOCOfJUfp6V/Aq6YNCNwU+LPbgScszrCFRkPb3tIq4Q1t1bSnonC0Qk3rdcLpPThev5eCHMfhJfLH2RjrIiXEwAEOyiSwX3gItPjJO55PU8l7tuPDDThQRJK2GZ3vITIcC7PHiwondDgZwjOjD/rKmXeuDI8DBE3/++X4uiDuN0N4y30pzNZqnsSFISQ1gPFwf4bwQm5pl58NKS4vNG2UMgcHP4/X/6fL3+u9+sl9bicxMIBAKBwK3iRf/41XryD9wdYoJ0SgQFSYnEeOs6/0e+d1OArHI6Kq0ScG/z6IQZkgPR8hIETtSbzWYKMURM4F67u7va29tLhNMJFPkNkE0PSPRwO8ikEz1IjqRk3/bQOez5RSFBUqqH5wQdAtVut3X27FltbW1pfX1dvV5P165d0+7ubiJK/vwQO3c2MF4n8gg4TrYgZry32WyqUqmstPaUjkILfc2okffTdyeDvmasEeUbjJucCifUCBOe8cCa+99xPFBywM8Yr2ckeHgha0VnA4Bg4ZkQPg7PP3B3Aq/zNoisM+KDz5sLS+4qQAhgf7jQgavACT/kmtd6rkMxL8IDU9nvOGYYq5creDkGwYre1tT3sc8HYJ9RykCXF7pYuIvJnSg+R4gmHnzqe5YxeHkV81PMVQgEAg+P2s++WQ98+7ZUu3rSQwkEAoFA4K7Ex/zdr9DZH7+78ohOhaCwXC7V7XZX2gx6XbefYHIaOZlMNB6PE8F1koVLAQLpJKnYCcEJLtZ7ukaQLD8cDtXv97Wzs6O9vb2VevD19XUNh8PkWoC0OIHlZBfy650gJCWytb6+nsip28QhQcf93AUFrlkul3XmzBk96UlP0vnz55MQ0O/3k+jBibQTJ/4gKPAazzvwE2C39hc7a3g9PIILr/X8ApwJEDknhEUrfzGYj/X0Np+SVk7yaR/o13K3CHvFuzDU6wcp5XSVgJh66N9gMFgRE4oOARwdCBR+6u0ZHi4yuXOF/y6GT7rQwvWYS3dnQL69FGU6na6EnULIPecAQcs7k3jZC59XrolLguswfu7h8PwKd8RwPXdxsEcQ+arVahqHd2wBTv7dRYELxp0evgclpe8Y/5yxT7zMIxAI3Bg/+bl/Th/9iz8S3R4CgUAgELhJvORvvUqb/+ktkrme7wacCkHBSaOkRMIoOfCaZv7x7yGFfmIqHeUsOEny4D2IgpMTiMvW1lY6YYcQ9vt9Xb58WZcvX06dCuh1T9hgsfUeRIkSAX8OJzROajlNLboXIEqIDk7ivBsBhH1zc1P33XefnvKUp6jZbGowGGh3dze1ivTWiE7KmAfKRSBlXv/v4gguhzzPVa/Xtbm5qe3tbVUqlZSbAJF1Cz+5F05YcQ44CXUBiNN0Agy5NnPg5Q0IAMX/Zg7dEUC5CpkCRTs8awEpLZfL1wlZpVJpJWySvePOE9Y9P+YLgvVlj3I/nBu4CpgTFwC4HuKD50J4cKSXRvjrvHQIUcXdKbyf/VoUwshkYH94KYk7EVwA8fIL5sTdN56tgbCX50ftP10U8uwJ/z5h37F/XLigXAnhz50T7vR4qPUKBAIPjeUfvEtf97GfK62v6xfe/AsnPZxAIBAIBE49XvCdr9GTf+q9al74LWn/7jvMOhWCggcjQuKwIDuB5LX+j3y6C0C6EAXK5XI6FYcQey03ZHk0GiUS1Ol0tLW1pVqtlsSMxWKhXq+nixcv6sqVK5pMJisn+EWXg3TU7pE6f8btp/zD4VB5nifSWKlUVuzo1NN7m0bPCEBQ8PR96aAEYmtrS/fee6+azWYa43Q61Wg0Sh0EIM6QtP39fdVqteR4gFxx6k5+AGODNJJh0Gq1UonF2tpRZwh3L+AE6Pf7aZ4krZQAIOLwPJ6t4W6Voj2edeCkGvGIda5UKmluEBG8UwZEsphRQUtH5plWm96JhPdBUHEIeIgg92JsLiohVCAm4GLhtd5Kk2f1zwNCi7sxuLZ3/eA+LlSxB7hmtVpNawv5Z448jFI6EmdYL57RnTn+WeVz6KUUrHFx3hFqPKtiMpmk/A/m3sVGroHgwhqxl3EredcPukjwmWJO3YkTCARuDosLF096CIE7iFc9+LF6yw+/UG/5lv9XkrSeRSlYIHDXIf49cyqxzPf1vB/8m3rqv/hNLe5CIQGcCkGBE3oPNZRWT0D9lNkzBfy0uNFo6Pz589ra2pKkZEnnpNtD8NzhQKlDq9VKxBdHwWg00uXLl3Xx4kV1u10tFotEQoqn75JSnT9E3tsMQsgg25BPyAxkB1IGqXISXwxgZA44GW80GnrSk56k7e3tZHsfj8cp+8GvRUcEiBfPXqlUtFgctcEEfuKPq2C5XKrRaKjdbuvMmTM6e/as5vO59vb2VjoyeEcO71bh13MSidCBIwIRB+eJ5wYU2w96/T/XxUHRbDZXOmqwr3B38HMIJeIKZRCMnzaOrC0iAif/3sGDPQ7RpkRmPp+rXq+n/elj944DrHmxdIQ1Yx+5m4U55t5c1wm6uwdwgSAeeUgjP+MzwzgRH3AnsBbe+tLXxAMagYs6XMOfxcUE3DWICThTXDhACEEMWV9fT3OBYIeogVOFven5FYgb4VAIBAJPZHzntWfpvS8e65zeqE9/7UdJkt7/08/Tr/+Z10mSttajtCUQOO0oPeXJ+oWf+3cnPYyAYZ4v9ZG//tf1tM//PT1Vd0/44kPhhoJClmX/RtJnSrqc5/nzDn/2nZI+S9JM0rslfWme53tZlj1d0jskvfPw7W/K8/wrbnQPSBNkxAMHq9VqsiDTcUBabQEpHZyWbm1t6b777ruuXSEuB04cy+VyIg8QN7dXe4eGXq+ny5cv68qVKxqNRqrVaunUdjgcpnyG+XyexuYBe5yGQlohTTgg2u12stGTXE/9vHR0Qs/pMZ0IIHicemOvbzabqeY8z3P1+31dvXpVw+FwpTbek/4hlAgpCAr8ztP/XUwgPLPZbGpzc1Nnz55Vq9VSv99PZI2SCuaA8UpHJNP3AO6BwWCQbPisCYRxNBqp1+tpPB4ncugn3JQLeKp/vV5Xo9FIzw6Zlo4yAYohnwgE3kEAFwWv4dkgqC40eHmAl3awfsXyCHePuADg+8BdGPzOS2U874BxIXYU59wDM71sAMeFd0Bgfhk77gsPjHQXDJ9P5s9FCQ+T5H8996I4zsXioCUrbh8PT/SyBN5bdDB5poNfH/GPezDHPsbT5FB4LL6LA4FAAHz/3v36lee1rvv5Uz7v9/UF+jhJ0qe9fU9fs/XeR3UcvzOdnpp64vgeDgQCt4N5vtTbZvv62nf+ZT3t83/vpIdzx/BIfGs/IulTCz/7ZUnPy/P8+ZLeJekb7XfvzvP8hYd/HvEXJ/Z5SCvlDpz2u6OA2mk/ra/X6zp79qza7XaqafdODBBF7yoAaaDEAUt4pVJJDoVr167pwoUL2tnZWREPIE5+sgphh0A5cYWYE3rYarXU6XRSwOTe3l4iTFjWafXICTgdDjjB9VpvyG6z2VSr1VKpVNJwONTu7q76/X46Wfake07jfR42NzcTYfYMivF4rNFolE71PdNia2tL58+fV6fTSfkLGxsbajQaajQaSdBhHiB5bsGH0CIWXLlyRZcuXdK1a9c0nU6T6ENbR3dzMMbZbHbdSTytQFut1nWdPSDO3rHAww9xa/h+4ecIJe5+4NnZm+RseMmC71/mxkk5JS0IIJQxsAYuhHBy7yU/nMT7aTzzi7jgQkSxAwPP6vPKenvwJNdBxJhOpytuIT5rXgLiDgZ3WkDgPQAUwk/3DcJE2UO+jh5UisDA2Lwchdf42vI5HY1G6c94PF7JnDhF+BE9Bt/FgUAgsLsc6Wc+4twNX/ffntvR//fqhz+qY/nmj3/5afou/hHF93AgELgFLPN9vebBT9Tff8ZHq/mp7znp4dxR3NChkOf5/zlUWf1n/8P++iZJn3e7A/GTckoQINzj8Ti1JHRi410d6vV6Opl3ku+n+NT6Z1m2cs1arbZCqCBVo9FIV65cSSf8XIvTfj8xlpSIoNewO8Hlv5vNZiKfy+UylWb4SS9ihRPiWq2WnAV+upsfttBDdKBkoN/va29vT6PRaOX1nMJSroGAQ4bE+vp66gjhwYqQS4QI8gXa7bbq9bpKpVIav2cZeFmDdGTrx3kAaZ5MJmnMlFvwXLVaTYvFQoPBQP1+Pz2T36Nopa9Wq2q1Wtra2lK9Xk9jL3a6kJTG7qf6kGH2p+c0uDjEKTfvd7s85LjYXtE7dHjJRTEXgxIJ79Dh+RLcA8FIUnKTMNfuzEG8oJQB4cOzFVjv5XK54rjw0EW6rSB00OUEgYLMCj6PxRalwLMcJKXPP59JxAfKhLyMhT/eWrYozOA2Yu0p1Wg2m2ldECzcleBBjqcFj9V3cSAQCLz6gc+UdO0RvfbXnl/VK9708fqhp77hjo/jmy49X3mhhO4kEd/DgUDgVvCqBz9WVyZNDT/xykkP5VHBnchQ+DJJ/8H+/owsy94mqSfpW/I8/7UbXQA7NGR7a2sr5Rlw+ljsZDCbzVZIBqQIQutp7fP5PJUCQMohHeQhcOrsgYS4E65du5ZKGjw93k/qIUFY9t0RwEmth8AhjkC0/EQUQSHLslQawUk2J89+EusBjRDUbreb2lxyos9JMIKAdGT93t7e1rlz59RoNFLQJa/Hys6cSaudOFqtlhqNhiSljgnMDe/Hzu9dCVxkQcAZDofpGSG0OCboVtHr9RK59q4afkqNuHPu3Dl1Oh1JSqKIu1YgjpBw1tYDB3l+5hHBxMMU/STfBSZvRcjPqtXqSpaAl48wNn43Ho+1s7OT8i+cPHu2SDHLwwk65RveflVSKgvhOfj8MPeIPsyVzwnzwtxwbxfmIPKQdpwp3r3Dgyq9DIE2kZS/FLt4MBYED/9sIOQhNrD2dLhA/PJchaLw6GVYdxFu+7s4EAgEJGn3JY9MTAAf+PiJPum/vUz/67k/d8fG8Fff+1LtftGmllffd8eu+RggvocDgcAKPuntL1Pl0z6gfPH4FBOk2xQUsiz7ZkkLST92+KMLkp6a5/lOlmUvkvSzWZY9N8/z3jHvfaWkV0pH7RApb9ja2lKn00kiAfZ5TkHH43EKtqPrAqQCmz7EglNMHAzr6+vJbcC9seYjKqyvr2swGOjixYu6fPmyBoPBijXfT6A9uZ5OFV5u4afdfmoLKXRCxTVBuVxOYyuXy0kIoPTCuxlAxMhNmEwm2tnZSeQbMgwRlZQIWb1e1/b2dgpyJJ8AQYH6dcgWz+xiApZ2t7FPp1MNh8Mk/CCWuDDhQgoOAMZIyGS5XE7Ej2wFau45fYdgAjo6tFqtldaQiEiQZA8gZF8hFpRKJY3HY/X7/eSY8MwKshtYF8bFyT9gvtlfHpxIqQAZGdJRF4fJZKKrV69qd3dXkpK4RIgg70VM8CwH7l8k3R426a0zua+3WfXSCEkrZQQ4ZfyZXbhgrT38EXHF97vPpZf14CRx54DvFxcgPJyxKOSxzu4mQUzw8E3vEOHr6vc+zbhT38VVRcBaIPBExzP/xyv0bL31pt6TLxaqfs5VPedH/pre8ZLbD3/71D/8DGVf3dL+n/zhbV/rsUJ8DwcCAcdH/dZf1u7Vlj78q96h/bvrgOqmccuCQpZlX6KDYJpPzg//lZ/n+VTS9PC/35pl2bslfaik3yq+P8/z10l6nSQ1Go3cXQjUj3OSCylwwuOBiJwoE9zov+PEFCK2XC41GAw0Go1SECFtAXEgUOpw4cIF7e3tqVQqqdU6CCZyMcFPhREbvMVe0XbNH8QFrOeeLO+khpNab6/opQfezYASjG63m56f03xa7blVnFKRarWqdrut8+fPq9lspnpySKA7QRATvMyk3W6njASvu59MJup2u+p2uynskDVk/jzozzs1QIzp8iEpEXaew4UX75DAXqBkBkcKRJPaebfO+7p62QTv83abvhaMfT6fazgcqtfrpbKAWq22EvAIeS/mXiB0sPcQfVgHOnFQnoNzx7tRQH4RB1wsQ8xib5LHwbx65xREINaXn7NHvcyHdeb+lDoUAxx9XJ5b4ZkajBFRCFHOXQ3urkBEK4ZQ8tyIKO4icteBv8fDIhGXEI1coDjNuJPfxe1s+9QUKgcCgZPBh73mHboVKXV/ONQzXnNRz/zOV+g9f/GHbvn+n/T2l6nyDU3t//7bb/kajzXiezgQCEjS5737z+v3/s+zJUkf8oMf0Ln3vvOWvk/vNtySoJBl2adK+npJfzbP85H9/Jyka3meL7Mse6akZ0u6YeqE1ywXwxin06kGg0Gqq/cWcNJRoGJmLQkHg0EiaZQLYKEeDAbp1L7Ycg9iNpvNdPXqVe3s7KS2iJBAJy8QGMgRZAsSUwyO9AyBcrm8UlfP7/1U1LMXeL23xYO4IabMZjP1+33leZ7q7iHhTtJxOezvH7RzJMhxfX091atjLee1nIAD6tA9PwES3Ov11Ov1knADMZSOTut5Bid27p5gbBDDYqtJXl/MB0CE2NzcTKQekk65Ca/1+7FmOFAQi/zEG7LpHSXI4yBUk5N2xuWdBSCvEOaiI8LDB3mtpDRuMkIkJdGG8bCHGSfkHsEJwuwuAO8UwhozB74PEa4krbgSEEgYJ58Rnt27QHA9d0Pwe58j1tbzJhCA2DfMv38GmTN3ZBSzGo5z0bA/5vN5ei8lJHdDucOd/i4OBAJPbDz3e1+jJ09+85bfv7xyRc/55rKeMfty/cln/uBNv/8vvOOzVPmGpvK33lViQnwPBwJPYPxkf0v/7Hu/UJJ07m0jPf3X3yjpwK70RMEjaRv5E5JeKulslmUPSvqHOkiwrUj65UMiQCucT5T0rVmWLSQtJX1Fnuc3LMTDVo/tG2cCp9y7u7vJ6u4tGnnt5uam8jxPpI5TVsL+INxcq9frabFYJLGBOmvI7XA41LVr11L4IqfcfrLKCbm3sfRMB05bIXSQJLfYOymkNR6iCfXnnBYjungon5/WeltC6s6L40Gg2dvb03Q6TSSVbAk6KLiNHUGCGn/pSBBptVrpvVmWpYyDa9eu6dq1aysC0P7+/koQJWKFhzXinuBUGycHYhHhlVwP8u4EkjIJBCnPRXCBxrtkcG/2Add3B4pnEriQMZ1Ode3aNQ0Gg0SQPTCQfAUPdPQgQzpTsDcg/X4/RB9cBewTPjOIYi6MMWYXvXBvZFmW5t47qyCwQNZ93xTdPxB035c4c6SjMqZiUCIuh2I4o5ev+OeL31HWgJjg7iSu6y4gd5JwDdaWdUUw8jyOYukEAs5pwGPxXRwIBJ64eME/e42e8v1vVb5/e2G0iw98UB/xrZmesfY39Cef/q8f0Xv+4ZXn6le/9ePV+uOe9n/39IoJ8T0cuBuxvHxFL/iO1+h3/973nfRQHjd4yd96lbJD60Flb6Hzv/obJzugE8Yj6fLwhcf8+FgvW57n/0nSf7rZQezv7yfy3mw2JR2QewSAbreb6t8hJ2tra2o0Gmo2m6n1oncmwJIPIYKE7ezsaDwep4R9wuMgOoPBQN1uN7UrhJh4zTWkxk9VvfWdZzF4NwpJKbxwNputlCPQlYEAunq9ngiWOyewljMuL6GgNnw4HK50ZGAOZrNZCmrkJJ+QunK5vFJWIGmlowPEF6JMqQj5Cf1+X5cvX9bFixd19erVRHhxJ+Akqdfr6vf7K44JzxRANOD6tVotCU7dbjd1L/BcCtbP2w0iXHjpy3ElB07I2VuUlbhFn/nwFqHs0cFgkAQshCScAqyvtyKkrKZ4yo+I4qKLdHS6Lh201WQPS0chj7htKJcodqVAdIGMu9OGkgBvJ+qlAOw1xAfpKOyR8XnpBSIanw13kDC3/j72cfF9Liq4+8c/T3wXeEgjYhzj9LBOb1npgaiUQrgbh8/wacFj8V0cCASemHjht79GT3rdb2v/DnVUWDz4AX3Etyz0F//Nl2j0D/p6w/P/87Gve/N0rm/5or+hUneixtt/89Rbg+N7OHA3Ip9Odd8betLfO+mR3H14xi98uZ79w9eXvzZ/49adXI9H3IkuD7cN/iFPloGkdHLvAgGkhdNyRIHZbKa9vT0NBoNEDgh5hCj3+/2UL4BFvFarpZNfJ1uUC0B8PEfAiQ5k30sXGNPGxsZ1LRTn87lqtdpK1wCS8mmFCMFxWz/WeJLqIY48K5kTCCKQaIQAxjsYDJJgARn3DAkIJqf3EDBIKdfEGUJ+wmAw0OXLl/XBD35QFy9eTEIC1vKNjQ21Wi11Op2VuYMIeskG88zYpKM2iOwJTr6d4DP/EGzW0kMv+eNlHAgy5AfgaHA3BHvQa/YRwa5du6bxeJxKM1ykIpCyWE7h9n/m2d+LO4LcCvI9cOwgUkCgCdbEXUDwKPPvORweasrauPvBSwGKY2YveatJHytjQhjw/APcHP4Z8twC1tqzFrw8xPMa3KFTDBj18gkPZZWUXCEu8vm6ulhJ2ONpahsZCAQCjwY+8nteo/t/4K13TEwAi4uXlF28pPZfO6fPaL7s+Bft7yt73+8qvmkDgUcZv/OH+uhvfrXe8k9fe9IjORF8zO98ns585fzGLyzgObvv0nKv+yiM6PGFUyEoSEodECBPkFss336qzOm219e7BRpCwIkrp6qTySSRF4gnp/SQ1Ol0mlouYv+HwHm9Nv9LBwQEDsIfJaUkfIQAgh3JOIBwQvB4BidlEHOu4aGKPm/7+/upq4PX1EtKxI3ciWq1msoVOp2OOp2OaMnpHRiYVz8h5zSbOUTMefDBB/XBD34wdYfAVl4qlbS5ualOp6NyuZw6Jsxms7TelFr0+30Nh8OVto2cuCMqeWtFbz/IfEhKbgzvHsB8sMaDwUCSUjYF2QCs92g0So4RTsa968FkMtHe3l4qO2BdGA8dLrzdo4+PE3EcHLyPdYJ8sy8RadiLntFRzDFg3yGIUe5BhgilFp5Xwty4yOFuAd/HPp+sNWPyvIVi2KiXq/iYERNwRrBfXbzheuRT8HcPLy3OhaQkRLpA5OvAerLvffx3QyBjIHBqYZk7gdOLD/uhV+sZ3/Nm5Y9iZszyyhXp8dstLRC4K5AvFtr+0TfrTzVeo7d9091b+vAtlz9Sv/2JWzf9vq3Zg1oc8sHAncepEBSywxaEhOlR/87PISMQCEg3ZIZTd0krBAPruKQkCEDAIVIQV8hcv9/X1atXU5igCwmcuuIOKBI7iDCnumQZ4KjgdaPRSN1uV3t7eyun/4wDsUTSij2b8gRJiYTWajWtra2p1+ulDAnmjBNdxAmEADoG1Go1tdvt1G6Se/Hf4/E4PZOH+tHdYW1tTf1+X+95z3v0wAMPaDQapTkie8BLKvr9vi5evKh+v79S545jYDQaKc/z1M2AAEnWArIIoXXRwU/DIaOc3nuNPeUT4/E4nbBDNhES/E9xb3EvRKDRaJTKKTwskHtAht2ZIR3Z711MQAgoBhhCrBET/DpOziHFrKPPVZ7nSUwYDAaqVCra3NxUo9FI60DopAsHtVotlb0wh/7ZYt729/fTZ9g7MriY5aUUrBf73Ls64NDhj2dTeMZCUUzwtp7FbBHcOszJcQGSlKngivCypkAgcHP4dw+8QVLjpIcReAgs8309+2dfrWf//TcqWgoEAk8Q7C91/l/9hp6z/Rr931d9r8rZ7ZV1jvZvfPDyif/ob+nMv3nzbd1nBfm+dH3n1cAJ41QICuvr6+p0Otrc3Ex19pASt0pDIqntxh4P6ecf/xB3CA+nqRAhLOLNZjO5GHBFDIfD1AmCbhGQfg+YY2wedoc7YX19feWEW5LOnDmj7e3tlPdw7dq11GbQQ+uwvlNz7qf9hPdRd89z9ft9Xbt2LbXCpMOFn+RC3nCAtFotnT17Vtvb20nkgDiTpeAtLSG+Xkays7OjCxcu6IMf/KD29vbS3HvnATIWdnd3dfXqVXW73SSOEOI3nU7V6/U0m81ULpfVbrfTs/Z6vWTfp2sH5Ro8CyfrGxsbqRRhfX09hUB61wPIMUQVQkzmA+QX4u3lDj4/RdcKjhqyJjxjgD0OCacEB5KOO8SdFhBrSWn/Q4CdWB+Xx8DYeO7FYqHBYJDKHBCE6vX6SkYA5T5ecsJ8jsfjlIXA81KGwt701o+IYMwRz4PbwztAQOARoXg9z+khmPydUhXWHFEDUc4zILwso9jBgs+GuxK8TMm7tAQCgUeG9bNnVMnWbvzCwIlgtD/T8//3q/Tsr4wa4EDgiYinfutv6MO3v1L/7eXfrSevl1Vf23jI1472Z3pweXypwNd81GdpufPwOaNn9MbbGmvg7sCp+Nfy2tqa2u22Wq1WqsunlpxTTj9JhPhTIw+ZqlarqY5aUiIokA/ej6CAQ4HT4fl8rt3dXe3u7qbMAs808DZyLl6sra2thDx6Pb50cEp/5swZNRoNjUYjXbx4MQVNci2s+VwTNwHX4EQfAcKJKMQXAsoJsKSVEhCeY319Xa1WS+fOndPZs2dXSivIrXBnBc+KoEDewpUrV3Tx4sWVrhHAW2ZCzsmJcKs+3Tso1eh0Omq329rY2FjJMsC1Qd4FBN3DKZk/D3r0k37WxdsFUgbQ7/fTHED6sfD7fCJgQKZdZGKPMibWgz2CAwHSzus958LdMh4A6l0fmFdEBpwc7kqBXPOcrOv6+nrKTHDRiZIPchVoxcrnjLINBCNEitFolK6JgMNnErGBuXEiz2fOS1W8vSWCA2tQ7NoAXDyhNMrFC3caFIMk+V93MbiAhAMoEAjcHL7tLb+ozbX47JxGdPfH+oTf+jI964vedtJDCQQCJ4gP+Zo36au+5iW6+LPP0T/4iF849jVLZfr7b3uZnv6X/+9DXCWalgQOcGoEBZwDiAqccpIrADhBLJ4yOtmFILjdH3EBUkQHAX4Hub148WIi/Pxc0gphdIKNo4B7L5fLZNGXDjIOtra21Gg0NJ/Ptbe3l07juS6khlwHiDNEUdJKFwrpoFsEpIzTXU7xEVW8LSLXKJVKajabuvfee3X+/HltbGwkos+JMiIGggU2clpMZlmmq1ev6sKFC7p69aqm02kiud4JgpNj8hHG43E69UXEWCwWKTuh3W7r7Nmz2tra0mKxSM4ETr+9fAHxxp+LE2/fL4gR7AfPopjNZup2u+r1eit2eQg85BhS6vkeOBJ8/yJweLcA7+xAtwcIuZfCAJwg3oXCxSvA750Me3mFW/oh9QQ0Ms7i2HhG5tlbLELGuS/ZIXQ18bIZF/yOK2HA7eFBmS44IBa5OODZCDhz2K/8zJ+dzAffH+5cYN18Pj3fAYHKsy8CgUDgbsZgf6KXvvVLdd/nvOOkhxIIBE4J7v2cd+h1euZD/v7peigxIRA4wqkQFCAcEOp6vb5iPYekkMCPUCAp2bOLbeewZztpgCg2m01tbm6qVqslUj4ajXTlyhVdvnw5ZRFA5j3x3k9pPZcA4uEBdbQAxDq+t7eXWip6+J2kJAR0Op2UH0BuRLlcXikLaDQa2tzclHSUXD8cDiUplUt460EvH6nVajp//rzuvfdebW5upkBEyJmHE0L6yuWyNjc3dfbsWdXrdY1GI+3t7aV58nwIJ4mIK7Tz9NN7iCA2+/X1dZ05c0bnzp1TvV5P5SDMDU4BBByyJNzB4a9lLXyePUCQjIirV6+mlo4eqsjewrHgDgg/+aaUBseLd6tAMEA88LIcL6GBREPkvXzC55O97CKRX8s/S95FgntC/BGqvJzAS24YA0GQlBsxh8ydu4IQGXAYsK8JTWW+/HPK+Lw9KfuNMfv6uTvDW0jyHN4KktdTFlHMP/HMDXd2IBLS5cFdSYFAIHC34lPe8Zl6cG9TT/7/vP2khxIIBAKBxxlOjaAAaSHAbzwep1aPs9ksnXJDEjmRdsu71647kQDU4HPS7mSv1+tpd3dXOzs7K8QIAuLX9JNWRANJK/X5EKNSqZRC8iDX5Av4uCqViu655x7dc889Wl9fT6SeuaHWn3FQEuLtFL1zhYcT8gzkCmxvb6vT6SjLslRSANnGrcA80wnizJkzarfb6VR/Z2cnnf57sKU/EyIQ93aLvocb0gGj0+loY2MjdVpwe/tkMkliCcSd03MIqK+5n0QjCnD/0WiUQiwJXYRoe0tDyCmiQaVSSSQbkYEASfYFYgWn8+QAePcMCK9b63ENUBIBYeb3xVN+Hyfz7Y4Sfua/Y03+/+2de4yk6XXWn3emq7vr2tU90zM9uzveS2QblsgYEyykoCgSEdhOpCV/IDkBJSIO5g87AQQSDkHYCOWPIByQEsmSI1sOYGKBuFkQ5UoiSxgwTrK2d7M4ceJFWY81vd1dXd1VXdPTl48/un5vP/Vt91zWM3WZPY/Umu66fHW+9/vq1TzPOec5VLK4eOKCBPex+x/4dwWvCfxCvErmLKLOcdz3gGvkQhbClJsmuqjl95ibXLq/Be0pPlKTygoXL3x9uM9YZxcoQlAIBAKzjGc//9d1+/acvu0Hn9cTemXS4QQCgUDgEcRUCArSqc8BmVDGC1KKD+k9a3QixAvSQWWCk2/EAfrDaSlw00eflAAZh9BgAgh58cy/94hDFp289Pv9kb/d6JAKi+XlZV2/fl3Ly8vq9/va2dnJZeWIEYeHh2q1Wmo0Grpw4UJuJ6C0mzWE6LnLPtnkVquldruthYWFTF7JOHe7Xe3u7o6IO61WS8vLy9kosd/vq9PpZHEDAajc9w6J9xjImjthOzo60uLiopaXl7NnBJ4KVIlARhuNRp4Awuv8vkHY8Ew+ogYVEYeHh9ra2tLm5mYWd/B+4LO8RYBWGhdwWO/5+Xk1m82R5yDWEF4qKPze8XYd95PgfvdqDi/TdwPPcqsMApI0ajSI6Ea1COKSt2j4hAr+dhNIhBzEAQQJv6e9WoBrgEjF+FDGhCIKcF97RQ9iA5Uk/r326+pCDdcZkaU8TpR70L8LPjWiLDQgkoSYEAgEZhlP/9KP6k/8+O/peG9v0qEEAoFA4BHG1AgKkDaylXgNICSQLXTfBIgAj+FlAKGqVCq55x8yBVEmi08mnHYEytSl07JqDBd9ggHHl5QfI4vMv56hZ5ykl1yT+W21Wnr66af12GOPqSgKbWxs5CkQe3t7uWKCCgOINxl2svRk7yHdTkAvXryoWq2WWyowI2T0YbfbVa/X09HRUa7gqFareeoGa9jpdNTr9UZ8A/gciD0CkI/e9L50yOnR0VEm5Ux9IB6fOODjASWNtGTgvYE3gHRa9g9hRdBJKanX62ljY0MbGxuZLHOt6btnvagcoGWFygay6ZBffB58YgIE9vbt27kdxisKfFQjbSb9fv81ExC4jmUvAr4DrDmkWtLIZAvejzhVNo0sV3N4y4NXYbDumBZyvpDy8nHd4JLKGTdARZhBtPD1Yw/g++oVLcTofhmss4uNvJbju3kmx0SU9GoUjoHw4BVOgUDg3vA3Pvp39T8+9C/v6BweeHh4+lfep8aLC/qTn3hJRyEmBAKBQOAhYyoEBSoAJOWyezLnZArd5M7d4KXTlgFvcXBzOcY34j2wurqa/QP29vbU6/XU6XSyaaCXjkNm3UGez4ToUHVAJpjsO4TYybCb5c3Pz6ter+upp57Sk08+qVqtps3NTW1ubmp7ezvHjaiCk76kTJTJFpPpJis9Nzc3YkqHGLG0tKTFxcXsT9HtdtXpdLSzs6OiKLS0tKRWq5VbACCrt2/fzqM03aQP4ugTF5g8sbu7m9fLvR0QZvB0cMJeFMXIuVEhwLhIHzXpZe1eLYKY4wIAxHl3d/c13g8QXEQKF6S4plRw+DVFTHEyzWdDpt3MEDHAKwxoj0D0QHgqV7GUJxV4Cw7Xxz0KXLhCLHGDR6+WOSsT78fi+8eoSxeuWHcqJPgsN0HlfPx5N0DkfBAbiJX3Ei/fOz8HH/PI84hJVB/4VBS+p6yRx+PCIJ8TgkIgcP+48nOf1/4/OFRNISiME3/6Cz+g6r9f0rOfe0WHf/yKju7+lkAgEAgEvmVMjaBQnm9PCbPPs6d83CsDGO1Wr9dH/BRcTNje3tbx8bEuX76sq1evZuM/yDrj74gDckk5fL1ez+QZIugmjGS6aa1AqMBjwN35vSS80Wjo8uXLWltbU6VS0fb2tm7cuKH19XV1Op3sGXF8fDxSKUA7CP39kCTPqpPBhUzTVtBut1UURW7v2N7eVrfbzZ+xvLyc1w7Xfkg67RWeGb5165YqlUpe/4ODgywIkeGGePIvJfC1Wi0TQB/nSGUD2XGqMrxfHx8Kst4IBJVKRQcHB5n8IxJwrXq9XhYZvOIBUsn9BbnkHKmY4Z7AM0E6rTagxN/Ju7eeICggNjjBlpSne/h0A291cLNAr5BAGGB9+QyqJNzbgDYAFzWo3vCqFog0LTt8J+fn59VoNEbaSzie+y6wLtxHfJ+9JYjn3AfBTTARSlxI8fhpMSn7U7D25bYSb3Vwg073iiCesglkIBC4P/zVH/qgfv3Tn5x0GI88frbzpP7zj32PJOmJlzd1+EcvKZq1AoFAIDBOTMX/lt35HuIFOYGgOcmEFCAc0MfvBndUGUCG2u22Hn/8cV29elWXL1/W4eFhHhP56quvZpLrI+8wOMSQzkv3pdOe+8XFRTWbTUnKJLw8fQDUarV8Ds1mM3sHUCVx48YNbWxsZLHDKxnm5+czEYJQe2k8a+ljIxEbGo2GVlZWVK1Ws0cB0xcw2KvX61msobedDDhTNyCbmBtCsHH6h8QjmEA8mahRHtnnDv5ugElLCu0mbgBI9pzYmDiAuIDBJlMyuJ8Yu4kIRFadigrPlksaycxTbVGtVtVoNPL1d9Lvxo+SRio2/N4mgw+B9ZYO7lvWhfXyMYbuIcKxyehLGhEqvKXAqw0Q46gcIU4+m3vexY1ylYlXRvhxOScqDvCTQAiAqHMvuWEk1S8cs2weyTHKIy25l4jV9xYeJyYfPettU95O4t+dQCBw/7j4m7+jd33vX9Mv/7dPTzqURxJfP+jpA+/+EaXBvua+/tuSFEJCIBAIBCaCqRAU3EW/bKAGcR0MBiO9025ACLGmRQFiDHFcXFzU6uqqrl+/rmvXrmlxcVHr6+vZq4DecrLwg8EgZ/Qh8VQDSKd97wgceDIgJJDplk5L4CVpaWkpCwreJ49vABUDnU5H/X4/E2qEDUrk3eeBnnbI2fz8vKrVas6y8zmtVksrKyuqVCra2trKEzR2d3fzNZCUz4vPZ+yfe1VAHiWp2WxqZWVF8/PzeVQi5F5SJsG0K0A6/Tq7+z9VIn4+3BuQRe+T5xpXq1UdHh6q2+1qY2Mjm0Y6UYWIUo0BwcYMkTjcOBHxhfuo2WyOTA3guNKpgEDlg2fc3YiQShfeQxUMbSqQZsrvydA73JDUP1s69YPgWlDd4QIbwhseFJyPTwXxz0aso/WH+w6RyH0PXEgpez+4zwJx01ZDpQbr6gaOLpq5+alXL/CYt4z4+ElEGKZUIFSU15c4uScDgcDrQ/G7L+o9b/uL2n/bU/qNf/OJSYfzSOB7v/M5Fbs9qSh0tPn7kw4nEAgEAoG7CwoppU9K+j5J60VRfPvwsY9I+puSXh2+7B8WRfFLw+d+QtL7JB1J+vGiKH7lHj4jGwnS+46gQFkyxIvMKASAPmu8BMrl8RDBtbU1PfPMM7py5Yr6/b5u3ryp9fX1PNWAUnuy3WTFKX+GFEnKWWYy+LzOSY8bvpGBpsoAAub92XgUdDodHR6ejoBk0oIbOrJmtIf4OjSbTS0tLenw8DCX8i8tLenatWtqt9sjGfe9vb1MrMh28x7IpjRqbMc6UB3CxIly5QBrTzba20AA54IIUq1WR9opyPR7KT7ZbzcFRFzo9XpaX19Xt9uVpBFDP18rvCgwo+z3+5mUlid20PpSq9VGxASIuU+CcC8ANwt0fwDMCBFaMJRkjXwygq8TwgGEnVYF1oNKGMwwEU4gxBhUMqYTHwT3PnAPAa5duUKA6wiZZz3c34QqAPclcA8D7iH3Ryi3HZSrEvzHBRqeL4+sPMs/AdNP7lOv6uE13JN+nGnBOPbiQOBB42hjU3P/fVPvevKdkqSX/9F36Cs/+rMTjmp28Od++se09rEv5r+Lg/83wWgCsQ8HAoHAa3EvFQqfkvRzkv5V6fF/URTFP/cHUkrPSnqvpD8l6TFJv55SektRFHf0Brp48aKWlpayIR9ZePcPIFvoXgq4z0NmnaCBarWqdrutq1ev6urVq7kk/ubNm9rZ2Rlx4yfrypQD6bRcHbLn5f+U5lM9UDaZk06d+Mns+khCevErlYp2d3ezb4JPWqjX66pWq5nIkcEfDAbq9Xq5mmJhYUHNZlPNZjOfY7fb1dHRkS5duqS1tTVJ0s7OTp4e4QSQ6gqy0FR5IIpIpxn3ubk5NZvN7IHgveeQQ5+UQFtCr9fLYglrSkVJo9HIGXrILcaIlMcPBoNcKYLfAMLRq6++qn6/nwUiWi0kZZ+Mw8PD3B7jEyCYROD9/vv7+yNmmHwW1RvcO94GgIEjBpO0XHAfeQuLE3pi5Ic19/J9r2pBQPB7DLK9t7envaGrt4+TRMjwViH3I3CTRG9b4H6HdPuYR/dPoKLExR8XgRDjhvvECFlHfECU4BxdfHBRSzoVo6TTag1anVyAqVQq2ZfCJ734NAs/F+5j7t0pGx35KT3kvTgQeFgoDk4q95788Of1fR/+sxOOZnZwVZ9XcfeXBcaHTyn24UAgEBjBXQWFoig+l1J66h6P95ykzxRFsS/p6ymlr0l6p6T/eac3UfaMbwBkz8chLiwsjLjDuyEc2VJ/rRv/velNb9IzzzyjRqOh7e1t3bx5MxNPSVkgkJRHGErKLQ0QTTKxkKdms6lWq5UJr5vnQeYYi0gpPYSRVoFGo5GrE7a3tzUYDDQ/P69Wq6WlpaVMOL0FBP+HwWAgSdljgUqGbrermzdvan9/X6urq3rrW9+qRqOhXq+nzc3NXMLvAg1eCK1WKwsF+CtAshE76Pcv9/BT4eBVGXNzcyNiAqSPHzwJiAXB5eDgILc58BkeJ8Sx3++r0+mo2+3m13l5+61bt9TpdLS3t6dGo5HPzY0juQfK4goCxMLCQl6PnZ2dkUkP1Wo1eznQl48gVjYbJFuP6IWwgngBsSYer/LwrDoZeZ9W4JM1IM2cPy0fXhXA9TorS889xz3N85yf+wz4vxwDEcBFODwgEJj8+F7h4NUXCBncEz41w1uGEAe8GoXvBWs8GAxytQhCAedx1iQHJnu4cDFpjGMvDgQCgcD5iH04EAgEXotvxUPhgymlH5L0RUl/ryiKjqTHJf0ve80rw8fuCMqmGZ/ns+7dfI9ybh53koNZHRlSfANqtZquX7+uK1eu6ODgQOvr69re3h5x2ofQUIYuaYR8SMqZc8gR5f6QazLS9MeThSYen1xRrVazcHF0dKRut6utrS3t7e2pUqnkuH16QNl7gGz3wsKCWq1WFhOc9Nbrdb3lLW/R8vKybt++rZs3b2prayuPeWT9IO9MgZibm8vXgGoBCBnVCWR83USTv7lmkHN61qk24HojnCwuLuZz8lGhfl/wrws8vV5PGxsbuVoAUulrxqSMxcVFNRoNpZTU7XbV6/Vypt1JsHsc+ESAbreb7z/WC+LNPUhFDfcu7y0bepL9lpRJP+srnbZ4AEi0k39IN4R9MBio3+9noYFjlMm+Vxu4MMdreK+TfL5/3oLibRGSXtOG4e9H5PNrh2DCd9CP5Z4LLlr5KEevXJE0YoxJtRJiC0Ik5+3rzPXwihDWw31DphwPbC8OBAKBwOtC7MOBQOANi9crKHxM0j+VVAz//aikH5F0VsPxmSm+lNL7Jb1fOjErZLwjpPz4+HiklBzS5lMceMx71xEbFhcXValU1G63tba2pgsXLmTTQzLMED3IBv4GkDQmDJA5h9RQRt1oNHKFAq+Zm5tTo9EYIU1kTDGfbDQaajabOj4+zuaI9HYvLCxkMu6Eyk3vINheydBsNjU3N5ez1JVKRWtra7py5Yrm5ua0tbWl9fV19Xq9TO7oqV9YWNDS0lI2BnRy7+MH5+bm1G63NT8/n40sJY1k1inHJ/PO9anVapKUxZWyESexcCxIuRPmw8ND1et1HR0d5ZYOxmeeR9Jpj6FagtGRvV4vx+tmk1wzyt85L8/20xZSrmYAtD5wL3EdIbQIEb62PF8m0z4S1H/3Y7vvgpNyJ8zehsDnMGKTzL4LDR6Ttxu4p0C5WsC9IxB4MBblMzg23xfWq1wpIZ22MvHdoX0IsY7XuDjBNXV/Bvef8KoPzCARsPx1Lp5MOR7oXryo2sOJMhAIBB5dxD4cCATe0HhdgkJRFDf5PaX085L+6/DPVyRdt5c+IenGOcf4uKSPS9La2loB+XMSQZ85/+lfWFiQdFrR4MZzlLLzHnwAVldXVavVtL+/r263mzPMEHRIs3sA7O/vq1ar5WOS+fWYeH5xcXGEHEF0BoNBNjik+qHdbuvSpUtaXl7OmdJer6ednZ1sPEkZNxUIlHwTKwKDpFwl0Wg0Rgwkj46OVKvVtLa2pvn5eXW7XX3jG99Qr9fL5pC0lSCAMPUAIs46uZhQr9dVq9VGSt7d9I6qh3IbRaVSGTFlTCllsUY6HVHpXhZeacC1gvz3+/0cvxN19wCASLr5Ia0ljIikLeA80z83qyTjjvAknRog+ijMcmWAewJIGsnSl0k6fxN7WURwcYB7jnuZlo2yqSBZ+jJh9koF6bTCgON5ywbvKcOFPOm0dYj34n3CfYmYQCwIDsTo1QC+NlwLxATuDY+Va4844dfSvRzK5+FrUxZjpOkXFB70XtxKK9PT4xEIBAIzgNiHA4HAGx2vS1BIKV0riuKbwz+/X9ILw98/K+nfppR+RicGNG+W9IW7HY+Mc9kjwY3uIB+QKc+IIzB4m8TFixezM39KKY9mhBju7+/nDDZEC4Lm7QyIHF66jWcB3gheXYAYgDke72s0GlpdXc0jFiFfkGwnwRB0jBydEPlUAaoTEBSoLJCkdrutpaUlHR8fa3NzU7u7u5qbm1Or1cojJSHjrCHiChUigKoQN/KDAELYfXQga1qtVrMAQYUBhJwqCSd83hrg1Q/e1kLcTrrLfhq0FtAGA1HGkLIoiuyNUDYQ9JYF6bTP340/qY6hmsaFIJ9Owb3ihn+8xu997juvtil7TfiEhLKQMPxOZlGBCgqus9/jDu4lrjXfC68u8Of5HP71CRtuNsrne/sQzzvxpy2BNXaRxdswEBS8rYKJGV7NUp5G4feDxw5cZCi3cXj7xjTjQe/FgUAgELg/xD4cCATe6LiXsZG/KOm7JV1OKb0i6cOSvjul9HadlG69LOlvSVJRFC+mlP6dpN+TdCjpA/fiZutZZ/cpoCQZ4gaJo0ybjGWZfEB0qSKgzB4yCuFHwHATOUlZiGCCANMIIEBUP9RqtewlQBWDE3Ky0o1GQ5cvX9bKyopqtVomeZT4Q45oBYDIkdklQ+5EeXFxMYsJHsdgMFCtVtOlS5fyNIhut6uUklqtVq5OcIJ3eHiYRRHvVbd7YKSEHCLWaDRyOwoVDbRlICbQroAnBa0HVAcgDLB2kGpJ2ciRz8RDQRod60e8XubP41QY0FqC0FGtVnN7R7ks3jPjZUGHSotyXz9CAtcJQu+fATyTjpEl9zQiGp/n7/EYvOffqypox6EqxEdQltsKEB/wGeCeQBBgrX2EJbFwL7jYglhEFYG3kPgkCPdUcCHHybyfc3nag7dM8J0or5GkEeNFrqWjXKXh1R2IlNMkKIxjLw4EAoHA+Yh9OBAIBF6Le5ny8ANnPPyJO7z+pyT91P0EQXabjCNEBzLC2D8qExAT6vW6pNNea4QDyuzr9fqI14J/jlcnQBwgqWSvIcI8x/M49N++fVv9fl9bW1u5l99JjKQ85WFlZSWbD/Z6PXW73SyQuH8AhIxJBt7P7mJCrVZTvV4fmbawu7ur4+NjLS8vq9Vq6fDwUDs7O7kFolqt5s/f3d3NrQ0eq3sNQFjJfHuPvjvo93q9XGkhKRtVppRGHveqEwQCN17keqSU8vXB34L+eRdqiMuN+VwMQaDY29vLUz3wvsD3gix/mdR6ptuJO60ciALcf9xHkHpK/REeOBZiF/G5mOBjJHkPRH343RoRYVzscP8QqgYQ4jwD7xl/v7+8wofrJ2nEP4EY+PGqC0kjZqllMcHFHqZm+Od66wpr5Z/rcbqAwevPE2AcLpKddU6SRiZMTJOYII1nLw4EAoHA+Yh9OBAIBF6Lb2XKwwMDGVIIJMTx6OhI/X5fu7u72VMAQs+oQdoYyFoyHnB+fl7VajWbA0JuqCagisDHyLlpoqQRg0hJmSyS/e33+9rZ2clVE2f1pVerVS0tLWWvhV6vp06nk2Oip39vby8fv1arZTKOGMJ5V6vV7BFx4cKFEYFkf39fKysrWl1dzZ4BZPUx4GMaAGvlIgAZdUkjY/m4RqyBk9adnZ08gpH4aY1AJPGqAenU/JCSfIQN2lioHPFrND8/n9eYewTPBjfu4xpwvfGywM/BjSd9lCNtCFxfz4pzL5IVJ4NPdQbjBcm+s26MIuVY/A2BpSoAEk9FTFmUApyXGwa6bwJVD75OTprdPLEYGk6WyT7n72vobSF+HzgRd1NMr3xxkQa/BD+Ps4SBsrjj4oD/znO+Ht6qwvtdPPEKFL+vzzqnQCAQCAQCgUAgcGdMjaDg5Nl78hkjyeM+qpHqBQgIRJVMPiXR0glZuHXrljqdTi7Pd/M9Ms4QTm9J8NJ2CAwiApUT5fNBBKD8fDAY5LL7nZ0dSSfEa3d3Nxv7eWbf/RW8IoPj8X6I98HBgZrNph577DG12+3cKgL5Yn29WgNAaBEyyKJDKHlNuZUAcaTb7erw8DALHVxPF4E4LuSPyoq9vb0sykinmWifquEtBcTiRJ/HyxMNqABA1ECEQbDwsnneX/aJIFvN9aZSRVIWLKiacTGBagnWwysh/F+INtfLDQa5b8utKAgnZfLr7RBnjXj0bP9ZLQYIDj6S0ol/+bP8/jmrsoLPdH8Dr/Lw8ykLEA6v0iBOSa8RXlwEQkA5q4XiPISQEAgEAoFAIBAI3B+mQlAgmzsYDCRpRCTw7CbEBQNCyrlpReA93hcunRCeW7du5WoAN3OTTokGngsew1nj7ojTfRcgX5AYyDXEeWtrS5ubmyP99wgBx8enkyoWFhayUFIWPcqZVl6DeNFqtdRut3M1gvf1c85eKQCI06ce4IfgQocTtsFgkMdwMi5zbm4uk2zaGah6cFLt0x14fzkTTRWBizgQPq9M4D3073OfuGki6wuZ9YoWHxnqrRQuUrEOvI715QexAqGH+wZTQl9L4vbqAsQBbwGQNEK2nRR7uwXZfa868ONzPrzGDSEB9wP3rosCPo7xrPf5ZAuO4d8X97rgXKlk8WteNuME7tfAurqgAlzo8TUp3yfnnXuICYFAIBAIBAKBwP1jKgQF6bTf3Q3jvOfbe68hFxA1+r0h5ZBHeuaZYNDpdNTr9XLLA2IEQgCE0r0TJGUSRubczfcg/7yGSQTeGkFVAj4LVAl49t8NJHleGu1Zd9JDlp3Y6/W62u12HrPphBjSjshB335RFLkyodVq5fNhjRATaCHhWvg5DQaDnH1mHVxgcEGGygdaVba2tnLJv5NBrgOtKBBTz3ZD9CGJCAJFUeQ2B29R4NwQcLyU30vxXTjiPRgVOuFGOJFOKyOkU/LO+dB24q0FkGlvt3Aiz3E4Z47l7QFeqeAVJy4meJuCizKsL6+nqsffX26J4No4AT9LsOBauxDm5+WjML2iwlszzoK3LngMvkeUvy+gfMyyEFKugAgEAoFAIBAIBAL3hjQNmbmU0quS+pI2Jh3L68BlRdzjRMQ9fsxq7A8q7ieLolh9AMeZeqSUdiV9ddJxvA7M6j0qzW7sEfd48UaP+420D8f/icePiHu8mNW4pdmN/aHuxVMhKEhSSumLRVF8x6TjuF9E3ONFxD1+zGrssxr3JDGrazarcUuzG3vEPV5E3G8szOq6RdzjRcQ9fsxq7A877gsP68CBQCAQCAQCgUAgEAgEHl2EoBAIBAKBQCAQCAQCgUDgvjFNgsLHJx3A60TEPV5E3OPHrMY+q3FPErO6ZrMatzS7sUfc40XE/cbCrK5bxD1eRNzjx6zG/lDjnhoPhUAgEAgEAoFAIBAIBAKzg2mqUAgEAoFAIBAIBAKBQCAwI5i4oJBSeldK6asppa+llD406XjuhJTSyymlr6SUnk8pfXH42EpK6ddSSn8w/Hd50nFKUkrpkyml9ZTSC/bYubGmlH5ieA2+mlL6y5OJ+ty4P5JS+sZw3Z9PKb3HnpuWuK+nlH4zpfRSSunFlNLfHj4+1Wt+h7ines1TSosppS+klL40jPufDB+f6vWeZsRe/FDijH14jIh9eOxxxz78gBH78MNB7MXjRezFY4978ntxURQT+5F0UdIfSnpG0rykL0l6dpIx3SXelyVdLj32zyR9aPj7hyT99KTjHMbyXZLeIemFu8Uq6dnh2i9Ienp4TS5OUdwfkfT3z3jtNMV9TdI7hr83Jf3+ML6pXvM7xD3Vay4pSWoMf69I+t+S/vy0r/e0/sRe/NDijH14vHHHPjzeuGMffrDrGfvww4s19uLxxh178XjjnvhePOkKhXdK+lpRFH9UFMVtSZ+R9NyEY7pfPCfpF4a//4KkvzK5UE5RFMXnJG2VHj4v1uckfaYoiv2iKL4u6Ws6uTZjxzlxn4dpivubRVH8zvD3XUkvSXpcU77md4j7PExL3EVRFL3hn5XhT6EpX+8pRuzFDwGxD48XsQ+PF7EPP3DEPvyQEHvxeBF78XgxDXvxpAWFxyX9sf39iu584SaNQtKvppR+O6X0/uFjV4ui+KZ0ciNKujKx6O6O82KdhevwwZTSl4flX5TsTGXcKaWnJP0ZnSiEM7PmpbilKV/zlNLFlNLzktYl/VpRFDO13lOGWVufWd6LZ/keneo9wRH78HgQ+/ADxaytzyzvw9Js36dTvS84Yi8eDya9F09aUEhnPDbNYye+syiKd0h6t6QPpJS+a9IBPSBM+3X4mKRvk/R2Sd+U9NHh41MXd0qpIek/SPo7RVHs3OmlZzw2sdjPiHvq17woiqOiKN4u6QlJ70wpffsdXj41cU8pZm19HsW9eNqvwdTvCSD24fEh9uEHillbn0dxH5am/zpM/b4AYi8eHya9F09aUHhF0nX7+wlJNyYUy11RFMWN4b/rkv6TTspDbqaUrknS8N/1yUV4V5wX61Rfh6Iobg6/KMeSfl6nZTlTFXdKqaKTDejTRVH8x+HDU7/mZ8U9K2suSUVRbEv6LUnv0gys95RiptZnxvfimbxHZ2VPiH14Moh9+IFgptZnxvdhaUbv01nZF2IvngwmtRdPWlD4P5LenFJ6OqU0L+m9kj474ZjOREqpnlJq8rukvyTpBZ3E+8PDl/2wpP8ymQjvCefF+llJ700pLaSUnpb0ZklfmEB8Z4IvwxDfr5N1l6Yo7pRSkvQJSS8VRfEz9tRUr/l5cU/7mqeUVlNK7eHvVUnfI+n/asrXe4oRe/H4MJP36LTvCVLsw+OK1+KLffjBIvbh8WIm79Np3xek2IvHFa/FN/m9uJiA+6f/SHqPTlw0/1DST046njvE+YxOHDG/JOlFYpV0SdJvSPqD4b8rk451GNcv6qQs50AnStT77hSrpJ8cXoOvSnr3lMX9ryV9RdKXh1+Ca1MY91/QSbnQlyU9P/x5z7Sv+R3inuo1l/Q2Sb87jO8FSf94+PhUr/c0/8Re/FBijX14vHHHPjzeuGMffvBrGvvww4k39uLxxh178XjjnvhenIYHDQQCgUAgEAgEAoFAIBC4Z0y65SEQCAQCgUAgEAgEAoHADCIEhUAgEAgEAoFAIBAIBAL3jRAUAoFAIBAIBAKBQCAQCNw3QlAIBAKBQCAQCAQCgUAgcN8IQSEQCAQCgUAgEAgEAoHAfSMEhUAgEAgEAoFAIBAIBAL3jRAUAoFAIBAIBAKBQCAQCNw3QlAIBAKBQCAQCAQCgUAgcN/4/yHYbHFJzp+GAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 0 560660\n", + " Min thresh = 1000\n", + " Sliding\n", + "\n", + "\n", + " Winner = Sliding\n", + "\n", + "\n", + " VFOLD = 14 of 15\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsIAAAGDCAYAAAAh/naNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAACLk0lEQVR4nO2dd7wcVf3+n7O7t9+bRm56T0hCSwKE0HsHNaAgRQVRERQsyO+rgAVFRcSuoNgAUQEBERCQ3ntCCS2FNJIQ0svNza27e35/zJzZM7Nnyu7dvXfuvc/79crr7sycmTkzu5l55jPP+XyElBKEEEIIIYT0NxI93QFCCCGEEEJ6AgphQgghhBDSL6EQJoQQQggh/RIKYUIIIYQQ0i+hECaEEEIIIf0SCmFCCCGEENIvoRAmZUUIIYUQU3q6H4QQQgqnL17DhRDvCCGO6Ol+kHhAIdyPEEKsFEK0CiGatX/X9XS/vAghPmtffD/Z033pKkKICfaxpHq6L4SQ/ocQ4mEhxFWG+XOFEOu6cm0SQjxlX99meubfY88/othtF9kfdb1V97f1Qoj7hRDH6u2klHtIKZ/qzr6R+EIh3P/4qJSyXvt3cU93yMC5ALbYf0sORSkhpB9xM4DPCCGEZ/5nAPxTSpnu4vaXADhHTQghdgFwAICNXdxuVxgkpawHMBPAowD+I4T4bA/2h8QYCmECwInCPi+E+J0QYrsQYpEQ4mht+SghxH1CiC1CiKVCiPO1ZUkhxBVCiGVCiB1CiFeFEGO1zR8jhHhPCLFVCHG94YKs92M8gMMBfBHA8UKI4fb8G4QQP/e0vVcI8Q2tf/8WQmwUQqwQQnxVa/d9IcRdQoh/CCGaAHxWCDFHCPGiEGKbEOJDIcR1QohKbZ3jhBCL7XPxeyHE00KIL2jLPyeEWGgf08N2vws950HndI4QYr4QosmOavzSnl9tH8dmu+/z1DkihBAD9wAYAuBQNUMIMRjARwDcEnYtjMA/AZwhhEja02cB+A+ADm1/CSHEZfY9YrMQ4g4hxBBt+Z12dHq7EOIZIcQe2rKb7fvGA/b95WUhxOQoHZNSrpNS/gbA9wH8VAiRsLe5UghxjP3Z9/4lhJguhHjUvkYvFn3gLSXJh0KY6OwPYDmAoQCuBHC3drG6DcAaAKMAnAbgak0ofwPWxe8kAAMAfA5Ai7bdjwDYD9bT+ScBHB/Qh3MAzJdS/hvAQgCfsuffCutiKwDnQn4cgNvti9t/ASwAMBrA0QC+LoTQ9zMXwF0ABsG6cGcAXGIf64H2Ol+2tz3Ubns5gF0ALAZwkNqQEOIUAFcA+DiARgDP2uenUILO6W8A/EZKOQDAZAB32PPPBTAQwFi7bxcCaC1i34SQfoCUshXW9eMcbfYnASySUi5AwLUwImsBvAvregx7P7d42nwVwCmwghyjAGwFcL22/H8AdgUwDMBrsK7ROmcB+AGAwQCWAvhxAf0DgLvtbU8zLDPev4QQdbCiybfa654F4Pe6SCd9BCkl//WTfwBWAmgGsE37d7697LOwLmhCa/8KrNdnY2FdLBu0ZT8BcLP9eTGAuT77lAAO0abvAHBZQB/fA/B1+/PlABbYnwWAVQAOs6fPB/CE/Xl/AKs827kcwE325+8DeCbk3HwdwH/sz+cAeFFbJgCsBvAFe/p/AD6vLU/AEv7jDdudYJ+DlGd+2Dl9BtaFf6hnvc8BeAHAjJ7+PfEf//Ff7/gH4BAA2wHU2NPPA7jEp61zLbSnJYApPm2fAvAFAJ+G9WA/DcASe9kaAEfYnxcCOFpbbySATu910V42yN7nQHv6ZgB/0ZafBEvEm/rjd72ttucfbE+vBHCM/dl4/wJwBoBnPfP+CODKnv4++a+0/xgR7n+cIqUcpP37s7bsA2n/b7d5H9bT+ygAW6SUOzzLRtufxwJYFrDPddrnFgD1pkZCiIMBTARwuz3rVgB7CSFm2f26HdZTOQCcjVzUYDyAUfarvW1CiG2wIra6ZWC1Z19ThTWIYp1tl7gaVkQE9vE67e19r9FWHw/gN9q+tsASy6MRnbBz+nkAUwEssu0PH7Hn/x3Aw7Ai4WuFENcKISoK2C8hpJ8hpXwOlmd3rhBiEqw3dLcCodfCqNwN4CgAX4F1jfIyHpZPV10zF8IKBAy3rQnX2NaEJlgiFZ4+RLqHBKCuq1sMy/zuX+MB7O+5r3wKwIgC901iDoUw0RmtrAc242BFidcCGCKEaPAs+8D+vBrW6/uuci4sQfmGEGIdgJft+eqV3m0ATrP9uPsD+Le2/xUegd8gpTxJ27Yu8AHgDwAWAdhVWvaDK+x9A8CHAMaohvY5GaOtuxrABZ791UgpXyjgWAPPqZTyPSnlWbBeyf0UwF1CiDopZaeU8gdSyt1h2TU+AvcrT0IIMXELrGvFZwA8IqVcb88PuhZGQkrZAutN2ZdgFsKrAZzouWZWSyk/gBXUmAvgGFi2rwn2OgX1IYRTAWyAFf019c10/1oN4GlPn+ullF8qYb9IDKAQJjrDAHxVCFEhhDgdwG4AHpRSrob1Ov4n9mCtGbAilioi+xcAPxRC7CosZghr5HBkhBDVsHxrXwQwS/v3FQCfEkKkpJSvw4pq/AXAw1LKbfbqrwBoEkJ8SwhRY0cY9hRC7BewywYATQCahRDTYV3AFQ/AikSfIqwMExfBHQW4AcDlyismhBhon68gquxzV20f6wcIOKdCiE8LIRqllFlYFhYAyAghjhRC7GUPTGmC9XoxE7JvQgi5BZbYPB/A37T5QdfCQrgCwOFSypWGZTcA+LEdxIAQolEIMVfbfzuAzQBqYUWkS4IQYrgQ4mJYY14ut6+nXvzuX/cDmCqE+Ix9T6wQQuwnhNitVP0j8YBCuP/xX+HOI/wfbdnLsAYsbII1GOE0KeVme9lZsJ7U18IaEXyllPJRe9kvYXl/H4F1Qf0rgJoC+3UKrEFft0hrpO86KeU6e1tJACfY7W6DdTG/Va0opcwA+Cgs4bzC7v9fYEUX/Ph/sCIROwD8GcC/tO1tAnA6gGthXZx3BzAf1sUaUsr/wIrS3m6/ynsbwIkhx9dsH5/6dxSCz+kJAN4RQjTDGjh3ppSyDZYgvwvWeV4I4GkA/wjZNyGkn2ML1BcA1AG4T1vkey0scPtrbQuGid/Y+3xECLEDwEuw3uoBlkB/H1Zw4F17WVfZJoTYCeAtWJ7i06WUN/q0Nd6/bNvacQDOhHWNXgfrul9Vgv6RGCHcllDSXxFWjsUvSCkP6em+xA07K8UaAJ+SUj7Z0/0hhBBCSGlgRJgQA0KI44UQg4QQVch55koRqSCEEEJITIgkhIUQJ9jJpJcKIS4zLB8ohPivEGKBsGp4n1f6rhLSrRwIayTxJli2i1OklY+TkNjDazYhhEQj1BphD8pZAuBYWK+H5wE4S0r5rtbmClg5/74lhGiENTJzhJSyw7RNQggh5YHXbEIIiU6UiPAcAEullMvti+TtsFKd6EgADXaaqXpYufq6Wr+cEEJI4fCaTQghEYkihEfDXYxgDfILB1wHK9XWWlijNL/mk6aEEEJIeeE1mxBCIpKK0MaU1NrrpzgewBuwUkJNBvCoEOJZKWWTa0NCfBFWnljU1dXtO3369II7TAghceDVV1/dJKVs7Ol+GOiX1+xVW1qwvbXTNW+v0bkMiu+ubUJGSuw6rAFbWzqwqbnduJ1d6ioxalANPtzehk3N7RgxoBqNDVV4Z20TslJi91EDkBThtR7e+mB7Xh/UPAAYMaAa65rakBACe4wa4OpjbWUSQ2orMbiuEgCwbGMzWjqsdOF1lUlMaqx3+jNmUI3TTrFxRzvWNbWhsb4KIwZWB/apkP7r8/cYNRAJ4Z5fkUxg+ogGFIIE8LZ2XsYOrsGgWvfxbNnZgcG1lYhw2p3+TRvegJbODFZvacHAmgqMG1JbUL8UHeksOjJZ1Ffl5JKUQFZKJLUTsLG5Heu2t2FIbSVGD67BzvY0lm/aCcD/fAd9H7nzPACJKAdewDbVstaODJZubAaA0HOUlRJrt7Vha0sHaiqSaGyowqotLQCA2sokJjfmiv2p/ew+cgBWbNqJ1k7rt5sQAlnbjqv6oNpWJhPoyGTR2FCF+qoUNjd3oKmtE+OG1GJgTa54amtHBjWVycjnQ8fvmh1FCK+BVYJQMQZWFEHnPADX2KVolwohVgCYDqvQgYOU8k8A/gQAs2fPlvPnz49+BIQQEiOEEO/3dB986JfX7Av+Ph8Pv7PeNW/+NSc7n/f94aPYvLMDt3/lENw5fzX+9qL56/v0AePwo1P2wrUPLcLvn1qGS4+diq8cvSv2vPJhNLen8cz3j0NDdXhV8wmXPZDXBzUPAC49dip+8egSANaI3Ae/eijO/stL2NZiifkMgGvOmY1lG5vx8Dvr8NqqbQCAfcYNwt1fPtjpzw9P3Qtn7z/Ote/rn1yKnz28GBcePhmXnZh7eDH1Kaz/r1x9EhKa4FPzn/r+cRignYdCtq3Tns5g2ncecqZ/fsYsnLJ37gXGfQvW4qu3vY4zjpiMb54Q/iCm+nHPpYdj0bod+PI/X8OJe47AHz69b0H98m5v0TUno60zg5ueX4n7FqzFwg+bsFI71l89ugS/efw9nHPgeEwcWocf/PddjLSX+Z2ToHOmlj155XEuIRi1v0HbVMteX7UVp/7eKoh6xuyx+OlpM3y3+8P738Vfn1uBkQCmj2jAonU7nOObMWYg7rv4EKfdpudWAAAe/c4xOPfGV/DOWuv5WoldvQ+qT8MHVGF9k/Vw2gZg7m7D8djC9bjuM/vi+D2selY/uv9d/OW5Fbj3G4dhyrDCHrgA/2t2FCE8D8CuQoiJsBJenwkr+bbOKgBHA3hWCDEcwDQAywvuJSGEkK7SL6/Z2ZCU+KmkJeba7QifHxnPhtrSVjRLDSwvNvN+2rNPbx8eX7g+L/L3hVusB499xw/O9c/ugOpPJmDAuxDA9tZOvLF6Gw6fWtzLi3RWojKRH5HsTJfGSePtvjf42dxmWde37CxsHGcmm4vYdmaK/dbc/P6pZfjt4+8506s2t2BwXQUaqivQ0mH1MyslltlR1lKQDfthdwH9t15dEeyU3bgj9wal0/Pb1c/vX20RrLavd1//zS/b2Iyt2nfa2uEukJrJWm2llFi1uQXvbdiB215ZBcD6TZaSUCEspUzbJQofhlXh60Yp5TtCiAvt5TcA+CGAm4UQb8F6LfctuzoXIYSQbqS/XrNNejCblU40M5WwbvQd6SzaA0Rc2r6pq5tta4d9Q1b7KVL/eYWc92a+rbUTBr0JAK75jkCwp01CSYnkhAC+dvvreGrxRrxyxdGR+6pvM53NotIwnKhU4jJfCLtPgjr2Qmt/pbMSKXtldc66yvrtba7pw372JGaOHYR7LzoYO20h98HW1kgR3KgCN0j0Ld/YjFQigXG7FGf70LedkRLn3PgKJg2tw/c/tkde27bOnFDtzEiMGVyDNVtbMWVYfZ4w1rfvl5ns6F887dm+exuqbzvbMzjml0+7RHSJvk6HKBFhSCkfBPCgZ94N2ue1sEoREkII6WH64zXbdMPVo5kVdkS4I5NFR4AQVlEydXNX/ka1eVlkTHhTs1sIeyPPW1s68kSgQmi277c/aMKTizY4/TEJJTVLQGDVZsvH2dTWmdfOj50duQQifkLMT/wUStbzvXnPgIqSe9uFkclK53sOiyBub+lEMilcPmATze35iVUWrN4GAGixlz25eGOk/gW9ldAJOu6jbDG5skA7ikL/DWayEs8s2Yhnlmw0C2Ht/0xnJothA6oxubEeA2sq8OaabXj2vY34zF9dzipkMjLyA4z3fKjvrqUjnbfM+3+nq7CyHCGEkF6P6daoi4iKpHW7a+/MBArhu1//AM++t9G52eqRMGubwNUPLsSX//mqM++/C9bi2feCBZB3cJ5XSG5v6TSOcgSQpw7Pu3meI8jNEWF7NQFUVSTt44guXHe0aULYJ/IbVciF4d163sAwe7JQ7fOveavxpX++BiBctM+86hHs/+PHQrdpEsKKnZ5X+2G0R/w+Sm0DAIANO9rQ2pFxbTsswu+NCGeyWaQSAhXJBDozEjc8vSxvnXQ2W/SDoxLeze355zXIDlQMkSLChBBCSJwxRc70G70Swm+vbcIj767Pa6vzx6eXY6w9gl55Px3hKSX+9IzbTv2V214HEByZ27zTLYS9US3LGpETgZWphCPYjWlA7NVNokD1VQjheD+9gj4I3TqS9nkPrYvLsMJcQeRFhD0Hq85JoYLqv2/mxof6iXmdKEJ2p0EIN9hR5JYOf5EspcyL9renM4HLFcV6hHVbkJc5P34c+4wbhIuPmuLMa24LTiPe7hLCWaQzlge7IinwwbZWfLAtv/Cq1yNcCCrCbjqvjAgTQgghHkz3xoxLCFuiQB/s5Ed1RcIZ3KbSljnWiIB78LYW/wFd3oisNwK3raXD5QXWMzKY0meptU2iQM1KCKA6ZUWEg3zRXvSBfbqI1Od3pnPzu6JLwjzXhXqEVXs94lqqqKopItxQbQnhnYbIpcK0e/37aA14SCm2723pYGH/2qptru/WL52gs71OtzUinZWoSCacB0wTQR7hMLba/5dM57VQm0wYFMKEEEJ6PaYbrh5NSwXcsL1UVyQdAeIVP/p+7pi3Gmu1SNisqx713aZX0HgHcG1vTbuigkpgAflRUqsjajv+g+UEiosI633VxZJuh9A/Fxuhe2ftdjy60B2d9wYxhSOErX1s2dmB7937tq+9RZ1DPeLqF9UuFJMQrq8Ojwibzo/ePyX2OtJZvLd+R+i6UYhihdG/541hQjjtjgirrBwqG4uJTDa6R9iLGlxqisIzIkwIIYR4MN1wn1+WS4SR8iisXTxFKHRqKpLOq391I3ayNGj7+ea/38RZf34psF/qpp3x+FS9r+ullEhod+SqVG7i5RVb8rarrAJmIWz9vW/BB07kuRCPsL5NXUTqu9KtEcVG6E7+7XP4f3cu8MwVnilljbC4+sGFuOXF9/HgWx8at5kweIqjWCOiYLRG2JH7oIiw6Tu64u63nc9KRH/v3rdx7K+ecUVnF6/bEehN9iMoyqxQQrgymXClRzPR7ooIS3Rmch7hoO0Xe+bVKdtpeMAodUo5CmFCCCG9HpMYu/jW17G+yUp5VakJy7PmjMOpe3urTufYsrPDsUQ43kmfrBEbmoIFxB+eWopzbnwlLyLcabiZ69khdIERZH8wCmG7j8s27sRzS62HgUIiwrrI1futn2M/ITz7R49izdaWyPsKQ3iErdqX3wA4YXBUm9pKKfHFW+bj+aXRswaaxG5DlIiw4bf5ysrcw43a7kvLN9vTuW1ddOtr+LI96M8PU0YQb15eY7/sh5yqVML5vVvz8/vrtVq0p7OORzho+121MTQZvMulHixHIUwIIaTX43fDVa/QdWEpBHwHEgHA44s24IlFGwDkvw73aoSwG/3PH1mCZ5ZszBfCnlf7Evm2gCCcSLO2/zk/fgx/f+l9oyc1yDP6xKL1+NH97+ZtG3BHU/VIXKePNWJTcwfuef2DiEeRj9fiIjzp01Rk3++8m2wkZmtCFo+8ux7n3TQvcr9MmTLU7yposJ13/95j3OkU47CmvZ7w197f6ppu7cjgzTXbnOkZ338ELR1pvL4q1y7swacylXC+2ypPMY3JVzyIu19b45rn3V5rRwappHDyc5tIB6RP0x9Mg9iyM/9Bk9YIQgghBO5qV373RiV4k5rKFDBnYjDR3J6GlNI3XVnU4JT35u0VVVJKlwCKerNX/ZFSYsOOdnz3nreNfQqyRnzu5vn4i1YRTBft21s78Z/X10BKT5UwfbCcZ9OFphLT8Xbd+drsBep79BtEZhpYaM61bM2LmgbO7/vIZi2bQFhu6icXbcDbH2y39+1eriLAqk/eQxhU6y7Q8Y073sDHrnveNe+8m+Y55ZKBcCFcW5l0jqnKHlCp85P/LXI+Synzfj+tnRmkEolAQWtljTCft4aQnM0KUzYLDpYjhBDSb3li0XrM+P7DmLdyC/b78WO461UrcuU3Oj2p0m9pixNC5KWrOnnGSOP6WWmJSL97r/em7CeYvD5V0+t6vUtRhXDaEcK5eaZzUdBgOa2vV93/Li751wK8vGKL0RohpcR9WqoyIJf6qhi859NbUEMJYT+fqCmqbvIIF5qNwa95OitdtgITmazEeTfPw0d+95y9jvu792Ym8eIVwm/YRTx0vD7ysD5Vp3IDQr0RYcD9kGnKOOIMlgt4jZEOGCxXXx1NCJseMEqUwtqBQpgQQkiv4ScPLkJTWxrPvmd5O59YZGUd8Lvhqje3ujgUIl8wTR/e4LvPHe2d2mA59468035eUW+WCJO4cEWEI0a9TBYJoxWgoKwRub6pgVsbd7QbhfAtL76P797ztmt9PxG2eN0OV7YEE36C0xHCopiIcP65Dhpw9c7a7Tjl+udd36VfFDKTlYH+YNO63u/HGxH2dndwrXtgZ5S3GWED7NY1teEfL70PwBwR1vEr/pFKiMBsLJmA9GlhVfwUpoh9qUpmKyiECSGE9BqUABpsR8lUFTRf4egZZAWoiLC7WZBneGd7xrmh53uE3dOtHRm8v3mnb78V3kiX9zVyZGuEtMTGzx9Z7LsvwF0iNww9gqrSr+1sT7sEmhLC81a6I5EA0GIQ3Vt3duD4Xz+Db931ZuC+vcLJm785aT/Z+J0fk0fYVDXNdI7Uvn90/0K8sXobXl+1zVn2/mbzAMB0NhuYMcK0L29/vELY+1seWOOOCEdhR4SS2ovWWanaqkL8un7+8mRSoDJgsFxQ1giTEK42RKbN0WjfXRYFK8sRQgjpNSgBpgpOqMiXX4qsXCTXPd8UOfRD9ymGFQho6cjgiJ8/lTc/zyPsucE3taVdI+QLsUa8+2ET/vh0rtqdcdS/Jk6DKpmpbSpUtLC5Pe0S6h32+Ta9ujZZI5SgeX7ZZt/9Wn1zT6t9qtkqAOk/WC7/uIxZNwzzrCIRIleZT1t2/K+fMe4vk5WheYq9+8qLCNsRdL9MIF4fbtB3p9gRUilOxyRAdfxsNeERYf+sEQ0Ga0RNRTLPi2y0RtAjTAghpL+iBK/SAiqa5pdOy4koavOEyBcTQgD/vfgQ1zwVtdKtEcs35kd7dfxsAflRwWDxZBJvJ+45Im9e1uDDNAkz/fV2mI7Q961EklcIq6wXpkiz6Ryowgthx+1nPVEPICpy77cZo0fYcD5MEWEl1p0uRHhWCvLBKvTzuWZrCxbYHt8zZo9FMiFyZbwNby8A4O7XPsCX/vFqeGc0ChPCIdYIn7cJqYS7spz33Ad6hI0R4fx+mKwRzCNMCCGk36JEjRJUKlrr5xlVI/WlxxrhvWknhMBeYwa65g2us6LOTa05UfGFW+YH9q+1088j3DUhPKSuElMNPuZMVubZAUzRcV1chY2614WjKtG8sz3tEjWq/60Gf6xJCDtZGkIsGn4RYXU6lEfY6xPd0daJC//+Kra2hFsCrPXzz4HqW04HhyvhoMwICv23edi1T+K8m62UbXuPG4S6yqRjrVC/UVPf/vf2utC+6BQihIOsER9sa8VxvzJHw1OePMLeyLV1bszbNQ2WSxqeYkynlunTCCGE9FuUv1L9bQ6JCH/hlvl4eflml1ix0qd5K5jlM7S+CgCwvbUjcpo0v4iwt39hgtCUd9g0Qj+TlXnHElSAw/tZZ8JlD6A9nXHnDpa582waLGfyx5oGjyndWnBE2G6uRGLKJyJ8x/w1eOgds1jszMg8z6zpHD2myj3bi6K4Z4Jy5SrcDyG5+cmEQF1VKt8jHCL0ovTLe7xBlp6g6nC3vLjSd1nSk0fYux3rd2Ter1pvWENVbnsBPv1zDhyPafaDIK0RhBBC+i1pWwGpv0oIB4mHNVtbXQO9EglzRNhLTghHizIC/kLYK3w7MtnASJxXEHZms8YBfRKAt6aBqWqdjBgRbm5Lu86lei3e3J5xzVceYVMpX9Or9FxFuGARExYRzlkj3PsIKkaSyUrs9f1H3PMM5+Cb9kA+k0c4aNuFWCN0UkmB2sqk85vxVs/zQ/+pXnD4JGMbb0TY77yHlUkOyiiRFxFORo8IjxtSi7PmjMXN581x5gUJ4bmzRuOm8/YDQGsEIYSQfowSeSpiqu6JhUTlBPKzRJiibANrKpBKCGyL+LodAC74u9nL6fU6tqezgcUI0p726Yw0RoSlNEWEDSWFfffkJist0a1QAn5ne9olanIR4Wiv4KO+zvbmGcgJYU9E2POFB4moQvqjC9sog9LS2Wxen6PuK5lIWBHhjgIjwtr3XeUjYne0u3+zfpH4ZEIEnrugh7WkxyOcFxG206d9fJ/RuPTYqa5lqaTATz4+A9NG5Ow+yYDzXZHM9ZMRYUIIIf0WJRBNldkUvzh9pnsZPELZcL81iZ5UQmBQbQW2FRAR9sMbEe7MZH2jbQ3VqTwxlLYLGHiRyBfxXfEIS0hjRLitM+M6x2qwXKshAm7SM1G1i37YLR1p3KBlwwByDzBe60gU0arjJzbXN7XlPMIRNhkU9TTtS8+WkEoI1FQk8wpqFOKB9Yvm6plOFn7YhD2ufNjYLhVQFENKGSiEK5LuaHJFKv+BLCutKnLDBlS5lqmW+q6DBHkqkcgVV2FEmBBCSH9F3QO9Yk+/N3pTM+klkgE1WC7cI5xICAyoqYhsjTh016G+y/KsEWmzNeKkvUbgrDnjjFEvk1DIyvy+F+sRBgBI97lVBTDa01nXejs7LGG80+AHNg0yi1oWV2/3kwcXYcUmK0uHk0fYRwwFRRNN+InN1VtaHMEfZYsq6hm4L235LnW54hgqGpt13m5EiwjrVPgIVd2ycvsrq3zXTyaEk9Ejr99ZGTjozruu1xqhzo0wVHJU0/r8oJSGrogwhTAhhJD+wqrNLTj+V884Fc4U+qvehR82YVtrhzNd50nNdN+CtZi3cqszLZDvKTUFoxICGFRTge0RrRF7jx3ku8wbwc5Kc2lbwBIYppu9eVR9ftaIMI9wkHDLSHdeXD0irIvUxeua8sRxEFFfZ+vN1m5rdT6rfatjVafzg22t+NMzyyJFb3X8soys3d5a1oiwXhxDiTt1bvwKanjR++UXEdaPb8OOdmMbAEglE64BbzrXPbkUv3n8Pf91PR5hb1+UzcSq5BhuRQqMCCcTmjXCt1lRUAgTQgiJLX96dhkWr9+BQ376BD7z15ed+frgnxN/86wrEX9tpdtyoMoxK0yV5Uyv1hNCYFBtJTbsaIvU19Nnj/VdZhpA5o2gAZYQTIp8IXzKrFG+1ggvRo+wISK8ubk9T+SnM9IlolT+4daO3GC5MYNr8O6HTb7RQrM1IqoQzrXTywTncuyqv9aHC//+Kq5+cJFLNEfBe35/8vG9AFip8nJdiOIR9s+MYNqXXoAiab/u39mexl5XPuz8hsMqCOu9MlV2E8Id1Q8SwkEe4UffXR/YD69H2Ot5V5XlEkLA+1M3RX+DqjumEnpEmCWWCSGE9DPaOrMuQesdTKYTNAoeiB6hEgAOmDQES9Y3B24vmRC4+MgpGDWoxreNKV1alaGAQFZaXmBdpw2oTuEXn5xlfv0v8/23Jo+wbg1RYnPfHz2GmVd5silkJTLa+iqS3dqZcfYzfcQAtHVmsXxj8HlxbzdaO73nuhD2DppTUWtlAfAr+qCjLAjvrd+BV993l4bOlezujCzagWgRYd3GoYtO5c9dvaUVO7RjDY8I+0dhAWuAmxLfUkpjyW9n/QCPcJgFweq//2A5lWPZegMTbkXyanr9XFUkE1oO6cBuFQyFMCGEkNjipwn8Xm0D8PU8KgRMleVMkTWBY3fPr+bmJZOVSIjgFF5GIWzwd2Zl/ivi2sqUb+QuK/OF2MsrtuS303YfpG/SWemyVigx1NKRs0aoanN+gwhNfuDIHmFt36aIcG5AGVx9CcvLDOQE5rG/egZXP7jItay2MoXKVAI72tOOGI8iiKOkT9N/q97BYQnD95rNSgyoTmHurFHYc/SAwG2bhXDSsQ4t27gTm5o78to4fdC8t15BbPrOdCtEKilQmRLGZUAux3IiYfIIG/ri2b93X0pzR/0tRYVCmBBCSGzxu+WZSq8qwgZOCZE/nMu0hhBATUj5WYXpZq9j6q9JCEuDEM71x1x5Kyx9F+AWD0ECr60zY3z13KoJYSWYvL5tZ1+GrybqACfXgDxdCNvHqISy6qPKvBElIhzUh1RSoKEqhR1tOWvEE4s2RNpmmDDT96ufm1RCIClEnohX4nqXOnemhYfe/tDYby96RFhVVvQjlUg436fX2mA6XXoE2BsRrvRkQbGyRlgRYe//SdOASm/U2JWRIqFHhCmECSGE9BN8I8IBQjjIawgoa4RnHR+PcFh0OWh9nagRYSnN+YLVsrx5kKGeUqtdjiAd8ZHfPYeVm1ry/Msdmazjy07a4mejj/fUJFSiBvH0ZroH2esR9kaEVXaLIIIEa0UygYZqWwjbvfj9U8tCt5nOZkOPTX8I0m0PKsrvfUjKSNtSINzC+cJ/vAbA/dBmGuhWmUo4EeGwSLmV+SHhfNYxpSnTo7TJRMKTNcITEbY9wsJQ0tz05JkfEdZEN7NGEEII6Z+Yb3omH6zCT0gqEkJEKqghYEWiohBWz8EkSEwFNZRHOKxviqgRYV1Ef7i9NVA4LlzXhIpk/oBCFaFVYsgvImzyuEZ9na33U4/yejMqqIhwtR2FbA5I8+X0KyDVWTIh0FBdYXuEI3U1t82Q869nOHn1/a3O51QiYXxoyzqDzMLPm+ntgR4R7gx5SkolRO536NmV6XvUf7OphHA9MHltGu9vbnGymnjfZswcMyj0WLzWCGEPci21NSIV3oQQQgjpGfzueaYUYYqw6KxAfkDKmD4tIMdq3jbDIsJGa4RpsJy/NcJ0xBLRoq366frYdc/jk7PH+LaV0k5Xlc4irW382ocXA8i9jt+0owNCGMoiG74bXVSlM1lX9gR3P80H4/Xtqu9fpaALyneb65eV/9hERcKKCDe3pQsSwukIHuGgqm6mhzYVEU4IYd62topp/apU0jk/nREiwirLitd3b3rY1H+bejQZyAnhQbUV2HvsIDzwlmXl8Prnb/3C/q6KcndccCCGNVThyvvece3La40AzBlVukqvigiv2dpS0ChVQgghfZMga0RYuV1ThMrkWRQifOCdolTWCGNEOGC7UoZ7VFU7HdOAOkUma9kzvNHKhR82Aci9jt/Y3O7Ki+usb7JwaPN2tKV9q4P5HYo3bZoSeCoi3NQWnus5IyU2+0SxhQDqlUc4YBveKL6UuVf1x+w2zLhOZ9q8xYpkfmEXIJeJQghhjDbrayRNHuGKXEQ4aFApkKtup/arY4qe6/1NJc15hM+eMw4XHzVF6697QKA3f/aciUMwYWhd3u9eRZsTImd3Smh5l0tFrxLCl9/9Fr5xx4Ke7gYhhJBuwjci7COExw2pDbVGCFNlOaM1QpTVGlHoYDmTQpOy8IgwYJ0nPzJ2OWe/QYfq/G5ubscQrVKavn7+vNznprZOXzHjp9uUKHMqC3oiwlGEcDqbxead7gwKA+wqhDvb05o1wv+Emr4z9Vu88PDJWHnNyZj37WNcy/0Gdloe4fz5WSkdS4H3fOgloAG/iHDCsYGofd954YH45SdnGvtQW2mdA+93YvqOvP5kdx5h4Wxz3/FDMGloHQAVEc6t6ffQ6DdYzpV7WYj+XWK5piKJts5wQzwhhJC+Tafhte2Fh0/GM988MtJguWgFNawIVJjItdoWbo3w9QgXUCZNIppn0ttibIAQllJaeVt9DlxFIZva0mioyndYmoSK3sem1rTv622/MsPePMJKfKrvrak1mjWivdP9PVxw+GQAwMTGOtRWJl2liU2Yzon6Laq+5BWW8BHCqYT5HGey1sONySO8/9WPY/nGXF5gs0c4Z3VQ9oZ9xg3GIYYS4KlkwrFGeM+53u2/f34OAPfvyGvtyEVwc9FbAICngI3v78rz30GdxwpP7uVS5xHuVR7h2sokWnz8PYQQQvoefgOR0oZBQOp+GWmwnFcIG9qpm3cqmQgdfR8mvk3UV+XbCsyD5axp07mQMspQufzX3AOq8/etyEiJqmTCOUcNVSlA5Hy4KkrekTZ7fY2D5TSR9c7a7fjq7a8H9relwy1slaBTm1bTqvhHlIjwik07ccHf57vmnbzXSFx0pPUaX5W2DnquMD3wqEGDapH3p+AbEfaxRmSzOY9w2JdryhqhotaZrERnJouEUKI1v20qIVBTaU4RqItw0+9lWENVXtELICd0E9r50Nv5PTT6DZbTf2OJhOjfleVqIjytEUII6Tv4vQU1RYTzIlE+CORHgE0OCLW9iggitwgdjPpqQzQ1otXB3T58BW9kMSiKnMm6S9oOH1iNB796qLNc+aY7MlnjQ4dJp+jf488fWYwVm8zVzn728GJsam5Hqyfo5Y0UK7GtLBJRztn37n0bTZ5Bdd5Kb2FZIEwi7jv3vO1a5m3jLd6h789/sJz1Ow3PGpE/T1Us7LRT3jnp0Qx9T2oe4bx++FTEU4wcWO2ucpdyC2HluxdwC36/iLCfNcKdsq2fe4RrKlJoY0SYEEL6Bdc+tAgvr9jsmnexHb0zeYTV/TW8oIap5KtpsFx+RMqPMGsEAJy45wjMHj/Yma6vyhcgUsq8aGhumWGez/ywdYNG3nekM3be1pyA8gpGq13WOJjQJFQyHmtEENc+tCgvu4MSvI5FwlNYIwqmY/ZmQQjLAhH0U1BbiupsUZXl/PppDZYL24Yhj3DSHRF2LAuGvqe0rBFewkS4+n8xuLYC/3f8NEe4qv8LeoQ8mjXCM1jOFtZ6JDshSm+N6F1CuDKBls5MQXXACSGE9D6klPj9U8uwekurM+/uLx+Ej80aBcCc2kkJ17CsEQlTZTnjYDkLb+lY8zZDm6C+KoVvHDdVmzZZI4CWAt58SkOJZRNeUeM32BCwIr0JkRvIlfBELnXxZRJiJsGp7z+oKiBgPZR4HwZUEMyxRjh5cqPrAdN+vUI4kw22mgQ9ZPlFhP1QleW8KE9xQohwMWryCNsDCDsz0k5V59+fZCLhb43Qzq3KDnKowWf8+veOw0VHTnEKangfFoRwnzdfa4Rnvjq2lCsibPagd4XeJYQrkvYTDoUwIYT0ZUz5XpOat9ck5NR9NEwIA/nRMfNgOftGHCFzRFgeYcCujqW1q/OJCHttAc4yn+1GGSz30nJ3ujTvoDHXMjvSmxQ5YeP2guZHh720dWawZmuLM11IAGvBmm245n9uO4GyNHgHzWUK0ANheXFT9mv3oL4Gfc9qUdSIcMozIPG6s/e2+mkLvYQAPrX/+MBt+BXUAIDTb3gBHRnpRGrrKlP4yIyRaNAsOSkta4QXPYo/sLYCz/zfkfjRKXvh56fPxN8+NyevvYrg5iLCub965Nvvv6c3Op6zRrizRvRva4T9ZfldJAghhPQNmlrzBz8ltLRnZmuELdxClIi+ndy8/HYFCesI6sf7KrzBxyPsNyh8WENV3ryo6dO8BEVlpbQfOhJKCCdcDwOpRLgQPu+meTjkp09CSolfPLIYP7p/YeS+LVq3A8++t8k1r7k9jXQmm+cVDsuTq2MaYKn/VpKJBKQMLkGtM6yhCl89eldnOmcFKCAirJ2/acMb7H4qawRwwWGTcNaccYHb8DKk1kppt3JzC257ZVVu0FpC4Lqz98GcCUOctslkkDUi9zkhBMbtUovKVAKn7TsGh09tzGvvHSynW0X0bvpaI7weYccaoYnoBNOnAQAHzBFCSB+mtSODg655Im9+IpETGSYBpN/wg/DLGey3vVJZI1KJhKudyRohpcTBU3Yxrn/U9GG46bz9XPvMhkQw/QgqsQxY51AJlqRwF27QPdN+r91fXG55u7MS+N0TS7HcZ3BcITS3px1xlinCI2x6m5z0lPEFzDmfTVz50T2wi5ZHOTc4LMekxjrf9ZMeIeykPdNSwwkhAr9fk6gcPbjGNe0tP+3NQ2zKjQy4LQhRft95Qlh7MNAj6b7WCM9vKfdGgoPlHNRTC4UwIYT0XXb6DBZLaIO2gjzCYQjk34zNEeECBstFUAqphFsQmKwRWQkcNX04PjpzlNaPXH+OnJarXpayI5jFyIIwsaf7V735Yv38wiai2Daisr01V+xCbbeQiLBxsJwhm4EpcuzlmydMw8kzRroKiqhTof+2TGW09X272mreXn07QceoR+q//9Hd8ep3jgn9verCOun5TeqkXUI4/PetBuWp7TkWCZjPsxdvRFh9x66ME6Kfl1iutiPCfiNqCSGE9H78xJN107Y+m17t6zfMmz67X95yp10iYmU5e15YXmLvvv2oqki4PcIGb6Y69lotpZXfphMJK7dwMWKzPSwvsvbQ4Y1cuiLCIefGK1qinEs/9EIcaSciHP3YTXYaV7RRCc8IvmPVVre3OBFh7RD9oq2AO+oO5MpFKyGuFgUdox5F3W3kAOxSX5V3jr0DCr0RYQC44qTpuPPCA333E+UZs0JVlsvLGhEtfZqaP31EA750xGSMHmRFtvW3DolE+ADCQulVQlhFhFldjhBC+i5+N349Mb+pWpd+fw26cQvjcpM1wppXESl9WmgTVKWSLkFgGq2vDj1ahDnh6xG+au4eqK7w73eYENbFr7fccpTBcgqvaKkzVKKLyvbWTuf8qNf2UUSrwhRZ9b5292vnt56+vh65V5iqB/rtX0WEdY8wAAytzy9jrfD6Z73zgPz/K/pXon6PXzxsMvbTvMNeokWErd+z+u+ie4T11cNKLE8ZVo9vnTDdOR5GhDXURaO1o8RJ5AghhMQGP3GjR5ZMbfQbZvDo/vzKckZrhP03KP2Uad9+VKUSodFC9do6gvZGMiHswV355+L4PUbg84dM9F03zBqR1KLmCc+of3d0uLCIcH0XhHBTW2dusJxjjehiHmGRfyx+JZF1vK//rc/57Uzf8fmHTsTKa0629q+tpKwFaY814tLjpvn2w1SxzfudBOnGqHaiKL9v9YCUyD0ROPswPXB4SXqsJU5ecEOKu1LSu4QwrRGEENKneHHZZvzthZWueX4ROVfWCIMA0u/VQbdtK0LltUYERIQjpU8LbYKqVCJUrCuhF5b5ArCFMMwFIATMAwAVoSWjPdYInVQEUaPwjukx+aKjYnmErc/q6++KKBICRoGvWwn+/SWzXSDp1npqi3ntTB5h/Xt35ddNWA9o+mA5wLKFnrTXCGM/XBFhx8oT4hF29SWwad62g8ivLAfnr/6794uSq+/Cm33D6y/u10JYPUl6SyQSQgjpnZz155dw5X3vuOb5ZQJIJvQ8wsGD5YKtEfkSMSh9WskiwhVJVKbCrAT29vRX7j6CVkWEjSUgRLB4CStqoad6875qd6dSC5YR3ipyXbFG7GxPa4Pksvbf4kVR/nHlR4T14zvnwFxOXyX2iokI64PVvBaYZEI4Qlxf4he5NUVaw+wq+v4j6uBIkeNK36wR7nPjl4UlKdznVLXSf2K71FdiQE1+tpWuUPwvsgdotHMobmpu7+GeEEIIKRd+4kaI3E3WFBVyeYQDbvHWjdkbETbtT71qLk2J5cpkApMb63H2/uN8I74FRYSFVYLX9NwgIAKfBsLSp1m+YOuz99iSBXiEm9rc+aC7Yo1o6cho6dPUX/fv4NBdh+blIPYj77hsxaVvUj0E1VYmcdXcPfH4Qiutn8kaYRKLZiGs7TPPoiOcIiHu37MZb/lhq8/RY5xRI8JR8JZY1gtr6IK/0qd/XgFtqhR583n5hTy6Sq+KCNdVpVBbmcTGHRTChBDSV/HzCAelegK8osR/+9Yrce88a4XHLz1c2571tyLCe+Eo2qOqIgEhBK4+dS/88JQ9jW2USIpSxMOKCJtLAouQiHBQZTnAEtl+1gjdKpJMisBzvd1TGMWUKSMKlakEFq/fgZZ2d4U5PRNEQ3UKf//8/pg01D93r06+EM5vo8Sd9xBzEWF9e+Z+e9G/r6Rnp1ZE2M4aYfD/etF/xwmDcAwjavGPKFQk3ft3Iroi/IFB70uekI4cty6OXiWEASsqTCFMCCF9F/+sESLwJh8lggbYhQo8LdTU5MZ6J22TmhfFGhHl1XFQTlmFem3tskb4bDqVFMj6DJYTCPEIR7BG+HqEPRHhoCP3Vggs1hpRW5nEA29+iMcXbQCgF9TIf80f1SzhPa+mnMgpJ0rpEc0if77pTFRrafCmDKsH4P6+vJH/pBDOg2AUq48rImx/DCsAs9fogbl1SiiEB9qWBRX1dzZtGJxqwiSgXdspE5GEsBDiBCHEYiHEUiHEZYbl/yeEeMP+97YQIiOE8M/D0QUa6ymECSEkiDhds4sheLCc/3ousRLUDvk3V5MgcDyyJbJGBOWUVXzmwAkACrNGGAfLhZyrsIhwIkgI61kjQjzCze1uj3B9kYPlvMfopE/TfiuF2oW935nJ5uEXEVarmtKn6VRpKezGDakF4LFGeE5fQhsMpm/OP+WYti2DXcPEN46dio/vMzqwTTFMaqzH3V8+CIdMGQog92BgsiKZ8Pquo6QQLAWh/yuFEEkA1wM4EcDuAM4SQuyut5FS/kxKOUtKOQvA5QCellJuKUN/rYgwPcKEEGIkbtfsYvBLX6Wn9DLh1sFB7SIW1LD/RrFGRMsjHHzL/djMUU7KM/dgOTPJhAB8SiwnRHAkLTQirIkXryj3FtTYZ9xg3+10erJTFBsR9v4m0lmJjnTWFRhTA+iilpz2szvoONHvvOhxvjXCdL5rtIiwafumVGHK7hFm9fFWKlSfwwYQppIJ7D5ygO92u8I+4wbnfrvOHxFJ1OYEMFx9K2XU2rjfCG3mAFgqpVwupewAcDuAuQHtzwJwWyk6Z4LWCEIICSRW1+xiCCqoEXRTjOoRNg6WM8jNYgbLBe23qiI4GnrmnLGuPoZhpU8zR0IFgv3UYSmokolEtPRpSYEbz9sPg2ut1+Le1/Le7B7FCmHvdjJS4vxb5rsKgxSaVst7ekwRYRXx9hPN7qwRwdYI9UDhLXEM5LzECSEcIRs2+NP7vQQVm/GjnP5b3eIQ7ffsXtP7kFAuogjh0QBWa9Nr7Hl5CCFqAZwA4N8+y78ohJgvhJi/cePGQvsKwLJGbG/tDB3xSggh/ZRYXbOLwdcakQh+3e8euBQcOc63RpjbAeGeS71tEEER4ZXXnIyDJg/NbS+CQLE8wtI3fVpXAmnJRE64BXmEKxIJDKiuwKyxg6xlHquEN99zdcjDgB/e7WSzEk8vcf8m1e8mukfYLCRN81RblbrLm+HA+1lRnXIPLPT2zxHCTuoxGCPCpt+nV7irSe/x3/+VQ/LWVVq8nCIzl/0hWlTXK3xzHuGejwibeuD3O/sogOf9XrFJKf8kpZwtpZzd2NgYtY8ucinUOopanxBC+jixumYXQ7GD5aLmEU4IQ6YDQ/tCSixHGanvV0hg5MDqvHlR7v1JoSrL5S+LKj58t63lEfa+1jYV1MhFz91tvYU7aooUwl63g+lhKaIjwiF/sJzhrYBn+vef2gf/d/w0HDbV+v8QFhHWy2jnIsL5+1S/DVcJ4RCR7e2v2v++4wZj/4mW5b8iKbCnNjhOoQbslVNjqoc5kxXJRJ5H2MkaUV6iCOE1AMZq02MArPVpeybK/IpNCWHaIwghxEisrtnFoESOVzgmRQHp00L24b0x69NO5gZ71owxg0K2VvxguQVXHocnLj0ib36Um39CFdTwzRpRPAkhHOEWWFAj6RYr3radntf0NZXxSVblZ3fQUWdWfb0Th9bhoiOnYEC1FRkO+83pEXB1bvQIvjrHKiKcSIi8Esvez872PA9o+oPLFSftZuiN6bjKaI1wIruFZY3wto1D1oh5AHYVQkwUQlTCunDe520khBgI4HAA95a2i24ohAkhJJBYXbOL4YVlVkEEb+J900h9nbCBS7ll+cYDU3PV6ujpw4K6G7o/hSl92sCaClfUUOFOn2beeCoRnDWiUAEhRC5im0wI51W+V8CbqpmpfXnFmdfbWx0hhVx3kZ81wr8KnN+pdP/m8lvp37n6TvXvS82r0s67k0e4wIiwPqgxl+3C3HOZH3QuOY41AoVZI/KLlfSwNUJKmQZwMYCHASwEcIeU8h0hxIVCiAu1pqcCeERKubM8XbVQQnjDjrZy7oYQQnolcbtmF8pLyzfjpudXAjBEhH0iRgr3zTYocpwvWkyj2lWTwXWVrkIb4fs2o6fSKgS/LecKapgjwsVYI1TU0qosZ332+np1q0iuuIZtIwmJCFcbRH8Uovi0FVEtElGsEUPqKvG5gyfi1vMP8NlGsB1Hf8jJRYS1fXoiwnoe4bAiFH4eYSD8fOWsEWWMCKtBb4loqdBMpZn16XIRafimlPJBAA965t3gmb4ZwM2l6pgfjfVVqK5IYNmGWF27CSEkNsTpml0oa7e1Op+9N3O3d9Ag/qJGhJEfLTVGhLVGQ+uq/DcIs+isSApXRDRKHuHcvsPbpBIJyyNsKrFchHgQyA3oSgrhiCWvENZ9wOER4dJ4hO//yqE4/tfP5M2f3FiH0/Ydi58+tKiIrXojwqaHIYHvfXT3vPmKsAGarsFyhoiwOt8VqZytQVmDXL9nw77zPMLadJiv3Wv/KQe5iHBEa4QnEqyOp8w6uPdVlkslE5g2vAFL1u/o6a4QQggpEerGrI+B8kaEc6PJzbdGd5Uvf4IyRPi2C7kbm7apxMjoQTWYOLQuz+oRRJSsEYmEgIT0qSwXbYCSax3NF6zns/UKeFdBjRCPcKkGy00b0YAJu9Tmzf/XBQfixD1HFLXNKBHhMArxCOe27+8RtiLCWbt/uS0aPcI+g+UAoEJ9Zz6H5FgjyiqEcw9JkawRnjc++RaJ8lBcQr8eZnBdJTYzawQhhPQZstIq4pDVlHC+Rzgn0kyE+TVzy0zzcjNVD8LSV/mtr1BC5fTZY/D1Y6YGbyBCH03bl9KcEkSI4kSOYz/RBm158x+bPMLqXHmzRng9wsXaQ1SfvAysqch7EDCmkzNtr8RCODRrhL19PYKv1lFe4kRCoL0jk9e/gj3CIcfiDJbrhjzCUbNGeMtZd5c1otdFhAHrh7/dU7+cEEJI70WljNJFTaXPwCq/G2P0rBERB8uFvPYGcmLEsQhoy1REO52JaFr164/PwaiCGn6V1LrkERbCqT5XHTBYzik4IdzTCq81opCoOAAMra/E8AFVTp+8VCQTqC+ySEeUEsthhNnS9cGBpqwR6vw46dMSuawp+q/UVFzCK4SFdmrDrRFqu4HNuoTu9Q2pxG21y/MIMyLsy4DqCjS1UQgTQkhfQQngjC6EfQb8dDVrhGl10802Sl7iVMLK+xpkjfAWg4hCpLyrto/XnDWiuEhaIkJEWO9byiNe8iPC7mMPq67n5ZUrjnE+e7935SH3ZqKIPFjOM11URDgR/BuprtA9wtZnvX+qMp6eRzg3WE7rq/agoR5Qkh516YoIh/jRsyHeiNrKJFo6ula4zIkIR7Tp5HmEcxsoK702ItzU2ul6hUYIIaT3ou7L7Z054eRXgCKKRzi4spxJ9BraRdinEoLmPK/WvEwxEWFtc4NrK41tkkkB+BXUCCmxHLbfVEIgnTVHhPXNJh2PsPXXa4XwThcaEU5ohT28QlX5b6NkJDDhPT+m9Gmh/Qt5a6APHlQf9TOiRK0rj3A23yOsZ2DI9de9P33/pui5Ts4aYabYUtg6usUhWkENOO319cusg3unEB5Qk0JWAjs70j3dFUIIISVARahaO3NRKL/Xu75COOK+okaE3emrzNvyZknQUf33KxkdhVRC4A+f3se4LCFsa4TBE5sQ4efD70EDsERnR8acNcLtRXUPyvIOsMuzRhSQOcPUJx2/LByFVphztl9AijZFmB1Hj5DPtAuzHDktl5e6wxAR7jREhNVnXaznZ43Ifa6uSODcA8fjjgsONHc8pLJcQymEsPorolkwcpXk3AI4DiWWY8dAu9Y3fcKEENI3cISw9jrWPyJs3kYU4Rq2zK+dn/hWr+dN4qvSEcKFWyPUzf/TB4zHsIb8EsxWnyx/sNLZH997tGv9sChcXqQXWuRRCHSmzVkjXJFHjzdaCbtae5CYN2tEISnkvORbI7omYbwB4LAoqomw34getd1j9EAsvOoEnDxjpDNvcmMdAODgKUPtPuVKLJusObqwDooICyHwg7l7YtbYQcZ+H7u7lWnjmN2GG5eXJiKc60sUMevNEx6nEsuxQ5U2pBAmhJC+gRJzui/R7zW6r0dYax40Gt60zBwR1tcxoyJ0GYMSdqwRRUSEo9z8BazzpgbL7T9piGtZmPbwRnp1rEFbWWM7fbtO+jR75t7jBgEALjh8MgBgzdZW17qFWiNcffIcUFeiy0D+76DL6dMMq+vbTAjkVRHce9xgvHzF0Tht3zFWe5FLW2eyXSQNDyHOdAFCfq8xA7HympOx5+iBxuXFDkDUKTSSmxssp/7C9bdc9MrBcioivK2FQpgQQvoCSsztbM9Z3rriEQ6LCHuX69O5cUThnmMnJZZJCCe6kDVCqL7krzt9RAMWrdsBIaw8wqb+RnkdbUplpkfjOp3BcuY0dkAuwqvmDGuowsprTsaba7YBAD7Y5hbCup/3lFmjcM8ba4M76bMu4I4If/WoKQVHMb3np5isEWFCuCKRwLCGKmzY0e77QDR8QC7ir+dvdv3mRG6501+PlaMUgvGSY6ZiW2sHVm9pDW8cguqO/hNWgt+Ed7CcglkjDEwb0YBkQuDl5Zud1wmEEEJ6L5msxBurt+Ff81c788Iiv97KbdGtESLPyhA2WM7fI2wLYYPIqeyCR1gdi2nNf33xQHywrRV/eXa5VVnOPpik6/hFaI5Yb7YFICcuU5ogM7VTqIeVYlJe/frMvQsSwl6hqgvhbxw3LfJ2FN6IpTPwT0T3GbvOuelNQ0Lg1vP3xx+fXo6RA2tCt5dICOftiH58Tp5mVw5n/weUYvnaMbsCAC751xtd3lauO9YBLf7RCVpJ7ny8VQqdB7wu9ySYXimEd6mvwogB1Vi1paWnu0IIIaQEZCWw6MMm1zw/MaXmVyQT6MxktPm5NkEisLjBcubtKWFiivYpkVyMEFa7M0WaB9ZWYGBtBWALNtUkL69siIIwRdyV+HJVlgsogqHEvtpVOauB6TmbM1npm14vKt61c8UtEmjrjObr1nP3+gWUpwxrwM9Onxlpe/oh6RFf9SkZ4BEuJXVVxVUA1FH/B9XPvyrggQrIT5vm/PLLrIR7pUcYAIYNqMLG5vae7gYhhJASIKXEANv2pgizI3gHS0WOCEPkWyNM7SLcgFUfTB5hJ2tEpojBcvbfoMikOl4llr3WgbAIoWmwmRLHeh7hoEFpuYiwO5pXjN/Wy9Th9a7p3AOQcO3bi1+BkTw8XaypSGL4gCpc8/EZkfsY5WGpEPTzZo4I+2eNKCX1VRXhjULwRnbDyEWE7bch6nfNrBFmhjVUYUMThTAhhPQFsjI/1ZbffV69XvUKNOHzGQBevuJoDGuwKpQZbRAhEWE/vnSENShstxED8pbtO34wAOCM/caGbsfQIQBma4TTBO6Isfd8hekkr5AUIhfhTQphRZ21dvddfDB+dtoM4zbUrhKOEA7edxjXfmJGXuovFQH1+/4Lxfv9JhMCL19xDE7Rsm+Eb8P8uRR9qtCiv7nz2k0R4coSRISdyG40JZzLI+z+7dMa4cOwhmq8tHxLT3eDEEJICchKmVd8wS/iVZGyI4J5g4X8I8LDB1Tn0jEZhXDus7pxRwlEHTFtGFZec7K7D7Y4HTGw2rWsEKJEhNWuTB5htTwIUwYHPSJ8y+fm4Jklm5xMTTPGDMIMOxeuoiqZtPfltkQERUc/OXsMpg5vCOzbrHGDMMhTSMRbgtc3Ihy45RylEFjljAi7CnxEyBpRSoLsMFFR1oioEeG8/5/Bxe9KRi8WwlXY3tqJts5MYAoYQggh8UR/hW0JYXdE2N+Xa0cE8/Lbhq8LRE+fFkXYeLWIfkxduX97BxoZ28DKGqE8mF5rhF9E+9jdh+PRd9e7Io4KNS8pBMYMrsXZ+48L7Kd3sJwwCDYAePabR2LDDust7rWnhftlTSJPbdM0mCyIW8/fH5+/eb6rWIve565QapGmf4eVqfyIcKKbIsIl0VVer28I3jzCzgNpmWPCvVYID7VfcW3Z2YFRg8JHYhJCCIkX+hgyabBG+OkcJdbyPMKaMAi6dVrNPNFT33bBFFrKOSrO6+Egj3DCM1guwv6+cexUbNnZAcAsJJ2sEREHonmtEeqvV8iOHVKLsUNqI20TMB9L0pOX2S8nsfecHTR5KGoqk/lCuAQCq9T+Vf249Yiw6qt+yOr3fteFB2L++1tL2o+uFD5R5H7D0aSwN+NI7gGvy10JpNcKYZXsubmdZZYJIaQ3oldcy2SlU4Xs5vP2w5adHXhj9Tbjeikfj2jkiHBEP3AUoZSfjzhnjehSRNj+a8oaobfasKMdP31oEQBDyV3DMUmpDTrLqywn8uaFofapehlkPylmu655nqwChRTUMEf8i+tb2Ha7gmuwnHZ83mprADDEto7MnjAEsyfkiqmUgrAMD1Eo9MzkD5YrdkuF0XuFcDWFMCGE9Gb0lGO6R/iASbuguiKJ11aZo1wqWhnoEQ7YrxDAbiMb8uZ56XpEOHz9sHXDPMKFTAPWeVbPD6aIapU9z+vXDkP10zSoqxiMQth5da7eCETfh6k7pfD0ltqd4Bosp7/h8FhPAOCSY6eWducapYgIF501wp4uxKvfFXpt1ggVEd5JIUwIIb0StxDOWSOclGQ+WceUgAvMGhFw80wIoLYyhYe+fmhwByPcgAPTtHVFCKuBRoFt3ESKCCNASIpclFVF56OiRIt6XV9IuV/F9BG5hxOTEHZendvLuhoRLoWILYWY1tF/0iltIue9tqZrK5MFV9IrhNIMlrMIfquRIy+PcDcV1Oi1QriukkKYEEJ6M7oQlvZguYTQyhb7FKJI+XmEQ6p85RaLvDbegWbe7fkRZJ/oigd1zkTrVfepAam8vN3z9te0dymlc6wmIVXhRIQLz33s6ksRKvNrR++aWz/g3J81ZxxO33cMLj3WXE1u/C75XmRTCq9yRxqLwZ1HOD8iHMU7XgpKYo0osK9OxN9jt2FE2IcG2xqxeF1zD/eEEEJIMXgjwh2ZrEvc+lVkUwIzP2tEvnAwobSG3kZvnnvNH34HDtJ7XbmBTxhah5XXnIyDpwwN2HdwBNgUrdTTrQ32pCcDuiCEPecsqnd2oFZERe+vKSNCxvaUD6qtwM9On4nBdfn9B4A/fmZf/Pmc2aH7Lnc2gmJw5xHOL6iRE4nlVcIlsUbYfyNnjfCk3pOO176831OvFcJjBtdgvwmDcfu8VT3dFUIIIUWQ5xFOS5dv1e+VqpNHNs8jHG2/ThU0bV6xg6nKXfUqiDBrhJ9HeEeb9SZ1UG1+9TCVo7mjQCGcGyxn9yXiebn/K4c4n13FKQxCuNP+vYSJtEG1lTh29+Gh+45/RFjPGmFRxoxpLkobEY5ojbAP1xHQHt95uei1QlgIgf0n7oINO9qjl1MkhBASG9J5g+Wyrihvxi8ibN8Yiy2xbIwIG9pHuQHnDVBzLSvvHdy7/TCrBGBF3ptaOwG4o7EKNViuYI+wpxxu1JRXY4fU4uApuwBwi0CTRziTUUK4NLUDyv39FIOedUM/B95Ie7llT3UpPMLK6xuxfU1FEkJYfwEtIlzm76nXCmHA8jdlshJtnV3zMhFCCOl+XBHhrPU6Xn8lnvGNCPt4hBP5bYzr52W99RPO7pmXnzjdty/ha5cf7/78PMIqIqwshjqn7jMGlakEPjZzVHF9UBHhAsJ4JiuKyRqRjhgRDtqHTjm/nycuPRyPfePwgtdT563C8yTh9QiXm5KmT4uohHepr8Jt5x+Ak2eMdK1Gj3AATKFGCCG9F681wusRzkUAEzhprxHOfHVfzM8aoUfQ/PebS0VlXtdvGxccPhnjCigKUfYbeFhE2HCHlwB2tFkRYVU62VkfwMShdVjyoxMxqbG+qD55Sy1HwckOoFsjDOurvNOlyGjg3V+pmdRYjynDCj+HjhD2SQ3oHUhWLkqSNcKJCEfvrUqdCOQKarCyXAANWlGNRrvSHCGEkN5BvjVCulJiqYjwb8/aG8fvMSJvfb0ELeApqBGUzUEJYZ91vcUhdAqJdJb7Bp7fPY94Muy/MplAkx0RHuCxRpx/6KSi++L1CBcTudTXMVojsiW2RpRkK6VFnYOUT7EY57SUPWtEKQbLdc3GkbNGdLkrgfTuiLAthJ9evKGHe0IIIaRQ8vIIp7OuSJha7h145WeNCPP8OstU+jSXpzjaYLlCbsrlvoHnWSG8fmXP9MiB1bjoyCkYM7gGADBEy7pw2/kH4P8db05HFgWvvaEgawTc/mLrc347lcmiFCLNuz8vPzplT/zhU/uUZD+FoH7SeRFh+29vskZ87pCJGFRbgaOmDytq/Y/MGIWh9VX41P7jutyXIHp1RHjOJCvP4sIPd/RwTwghhBSKPiBLSol01mONUELYmw3B/usVwi7Pb8B+vaPT/dqbizAUEhEuL6F5hD3Tlx43DTWVSfzmjL2xYM02DK3PvUkt9FX4QZN3MebrzXlZo2/LlB3A9GCStq0yUQtpXHrsVMdCaSLoq/z0AeMj7aPUJH0f8jyD5cocEtbPsakCYRSmjWjAG987rug+jBhYjfnfOabo9aPSq4XwgOoKHDBpCJZsoBAmhJDehp6iy8ojLF0CQKVP86bSUgImFVRiN1JEODcvqsAtpGJa2SPCIQU0vGJUTQ6srcBhUxtdywqNst56/gGu6dzApvxoexiOEA5Rz8pKk/8AZOYrWoEOE7HMI6wq8/n85rsrfZq+/1e+fXT37LSH6NXWCACYNrwB761vZgo1QgjpZXS6hLBEZzrrij6piLA3g0Au50NQxoYoHmGXqTiPYnMLB260hIRZIQoRel19FZ5Ln1bEulCFE4JRg+XySkMXS/x0sPOg5fdg1l3p0xS7DqvHIEPhlb5Er44IA1YOwub2NLa3dvb5L4sQQvoSeUI4k3W9olcRwCgV07yUIo+waV5Bg+XK7hEOHhxXiCjtqu82aIBhVMK+V2WNSEVNUqxh0o3dFV0tBL+IsBK+yW7KGgEAj196uMs+01fp9RHhBqZQI4SQXonuEVZ5hF3WiBCPcL5uknltzORbI0x5a3ubRziva2HLNUqWkqyIdaJGN9WDUaAlJoT9Jw7BBYdZ2THGDo6eCq+7UL91v++qO2uATG6sNxZd6Wv0+ohwfZX1Je1sz/RwTwghhBSCNyLs9Qir9Gl+Y+KCBFRQdDEXEc610aOMQaVdC4kilr2yXN7+3NNheYZ1upwlwFAUo8BVQ89t2v69mB5aovKpA8bjYzNHYdbYQThiWnHZDMpJVGsEKR29PiJcV2X9513X1NbDPSGEEBKFCZc9gP+7cwE6MoYSy1q0LxcRNhfOCBobEiQXnAFd2jyT79RYdjlEhLmLdJSXPKGbZ5VA4HKdrlsj8nO+vhpxxH82Yr7Ya0+bif0mDMbYAoqaeFFf34l7jURNZWnyEZcSxxrhczIcawTHRZWMXi+EVU3qc298pYd7QgghJCp3vroGna70aVbET4/MHr+nVURj1MBq17pKI2QDxIBxoJv3b0i6LtO8sIic3qUirKwFETpYroDoYZeFsCEivEvB/tLg/s6ZOAR3XnhQ5KwRJgrJ+tETqOexMGsEZXDp6PXWiFGDanq6C4QQQiKiR7LuW7DW+ZyVEumsdPk/v3T4ZHz6gPHGUsDWtgJ2FDhYTkWEoziJ3RSUPq3cWSO803nWiAK2VSKBWMxmuiO4GTVFW0+jIr51VWZ51t1ZI/oDvV4Ijx1Si12H1XfpVQkhhJDuoVOzQzy9ZKPzOSutrAC6/1MIkSeCrfnW33wtIPLamBAhUTdFUPq0k2eMxKShdb7LPd0pD2HWiAIGy5UK7zm788IDMShkwFUuB3GZOqURd49tIkQIxz2i3Rvp9UIYAAbXVTJrBCGE9AL0Iho6uYhw+GvvnEfYmq6pSOLCwydjcmOd1iZgfRHWxt+zqoTUEVMbcfrssSH9LC9hEeFyD9bTUd+Fd5f7TRgSeWUB4MGvHor1ZRzz0wVXRbeghG59ldm/XG67TX+kT5zS+qoUWjoohAkhJO60d5oz/GSzEplsNlJGgEuPn4qTZ4zEx2aNAgCMHlyDrx2zq0v46Z8/d/BE1/oiXAkDMEcPc+mtwvtZbiHq7Z9fJbnuQA2W61rWCIHdRw3AkdPLl80h7hFhdS7qfSLC3flw01/oE0K4rirF9GmEENILaE/7RYQta0SUghXDGqpx/dn7oNYe9W9aQ5/3vY/u7lomnQhk9AwQ3nlR5Eg3OyPy9lhMIZKu0hWPcHdovEIKovQEO+23215rhPrN0hpRevqENWLEgCo8/E4rOtJZVHZx5CshhJDy0eErhC1rRFcyAuhE0QthbUzCUQmpKK+oy19ZLnh/UfZ/0ZGTsXJzS5f7YsoaEXndbsyBEPeIsLJ51lX6RYStv2eE2HJIdPqEEN5z9EB0pLNYvqkZ00cM6OnuEEII8cE/IiyRzmYLitgFjbCPkrEhrIW5oEa0jBNR23SFPOHrWZ6fZzif/zt+ekn6ErUohnFdFRHuBjNH3IVwS4f1dttvsBwAvHvV8V0vgEIc+oQQnjS0HgCw8MMmCmFCCIkx7WmzjU1Kq4RuRQFKatLQOlx24nTMtb3COtEiwmHp00x5hIO3b60TrUBEV/H2vyf9ozl7QxER4W6xRpjLdccNFRGur/aJCAOo9YkWk+LoEz6CiY11qKlI4ucPL2G1FUIIiTF+EeHOTBZS5leRC0IIgQsPn4yRA4vLJ9+ViLAf+mv+7vYIh0aEu0EDFrOL7rxrxz1rxAl7WEVkDpq8Sw/3pP8Q859ENOqrUjj3oAn4YFsrdvveQz3dHUIIIT74eYRVfuGUodRxMZhzAEcThkHRzUKyRpRbCXsj1mHCt8GQk7l0FC9nZcQSy6Ug7lkXDpvaiJXXnIzJjfU93ZV+QyQhLIQ4QQixWAixVAhxmU+bI4QQbwgh3hFCPF3aboYzepBVgrOt03yRJYSQ/kKcr9l+1ogOe36U9GlRiKZTC88akfMId337XSVscJzqa0IAPz99Jg7bdWjZ+tIVa4SiOzzCzLpAvIQaTYQQSQDXAzgWwBoA84QQ90kp39XaDALwewAnSClXCSHKlwTQB/1Jd/WWFlaaI4T0S+J+zW73CVaoQhul8nBG2koRu/Kvaufftlzom7/nooN991+VSuK0fceUtS9Odbhi1mX6NNKDRIkIzwGwVEq5XErZAeB2AHM9bc4GcLeUchUASCk3lLab4ejJp4/9VbcHpAkhJC7E+prtV1nu6gcXAUAJ06dFKXhR+HZVlDWbNUvh4QOqc9svfPNF9aWhOoVZYwcZIsLW3+5MT1YMlxw7FQAwrhsCWAwIEy9RrjijAazWptfY83SmAhgshHhKCPGqEOIc04aEEF8UQswXQszfuHGjqUnR6Bcf2iMIIf2YWF+z/SLCinJGhHcb2QAAqK7wL8QRhupfxkcI/+uCA3N9KLPqUpt37Bp5++sdqu+EPUdg5TUnB6YMKxW9NSIc70eZ3k0UIWz61Xi/kxSAfQGcDOB4AN8VQkzNW0nKP0kpZ0spZzc2Nhbc2SD2GjMQYwYXN3KYEEL6ELG+Zns9wj88ZU/XdEWJBsuZNOivz9wbt3/xAAytr7LbFL4vJyLsk6Fo9KAa7Dt+sG8fyoGT0s1nfnckU+rOAW/FoM4BPcLESxQhvAaAXsJkDIC1hjYPSSl3Sik3AXgGwMzSdDE6135iBgBgz9HMJUwI6bfE+prtTZ/mHcBVSPq0IEwit74qhQMm5dJS+QUHg3RjIeKy/OnTrD041e56MK+w4xGOuc5M9NKIMCkfUa448wDsKoSYKISoBHAmgPs8be4FcKgQIiWEqAWwP4CFpe1qOAdNGYpDpgxFZdwTBRJCSPmI9TXbK4RTnut1qSLCUQjNGmGYp8RmJgY563OaTlkjzMu7s6fdkfmhK8S9slwYcU//1hsJVYxSyjSAiwE8DOtCeYeU8h0hxIVCiAvtNgsBPATgTQCvAPiLlPLt8nXbn6pUAq+t2oa7Xl3TE7snhJAeJe7XbK8Q9laS604Pp5+mUFFq5SXWURFFP2uETrkFqOq+nzWiO0VpDJ4LIlEOa8QR0xqxz7hBJd8u6R4iOdOllA8CeNAz7wbP9M8A/Kx0XSuOqgpL2/+/OxeUPV0MIYTEkThfs70e4SqP2EyVyBrRFX562gxccuxU4+AtJTr9skYA3TdEzWuN8O64O4OHztmIecCyHD+vm8+bU/qNkm6j5684JaYqlf8ETwghJB54K8s1VKVw9al7OdOlKqgRBT+hWJVKYvwudcZlSSciXK5eRScva4RHhXarEFaD5bpvl0XRa7NGxOD31lfpc0KY/mBCCIkvXmtEIiEwWsv4k4yRR9hEWNaI7sSxRti3Pa/Gc/yw3djVuHtYe7tHmJSePqcaa6tyEWG/Up6EEEJ6BlMeYT2AUdGN1ohiNJFaxy+PcHciPJFgrwil5suhvq3eKoR7abd7BX1OCO85aqDzua2DhTUIISROmCrLVaZyt6JuHSxXxDpqsFUMAsKaNcKe9ixXoq87Kss5ZZLLvqeu0VsFZRx+b32VPieEp41ocD4zIkwIIfGivTOTlyKtShPC3Zo+rZiCGqqyXJSsEWUWLyoSrPrkPZzu1HxKbPdWoUn6L31OCI/VapWz1DIhhMSL9nQWNZ5MEVW9KCIcxSPcXWJQ7UdZS/IHy8Unek1IXOlzQnhgTQU+e9AEAIwIE0JI3GhPZ1Bb6U5Lpmf7qejGAc9KSH5879GR1+nOssVhqL44DxI9mD4t7qhz1FtPSb2dym9AdaSst6QA+uQZPXjKUNz8wkoc+6tnsODK4zCwpqKnu0QIIQRW+jR9UDPQgx5hIbDgyuNQVxk97aZTWS4Og+VsWafOn1/WiO7oac4jHE+p+Y8v7I//LliLIXWVPd2VovjEvmOwoz2NTx8wrqe70ufocxFhAKiuyB3WkvU7erAnhBBCdNrTWdRW+gvh7vQIA9ZbRG+Z5yAKqSxXdpQ1QkU7vVkjurErjhCOpw7G5MZ6fP2YqbFP7+ZHMiHw+UMmslZCGeiTQlh/tbZ6S0sP9oQQQohOezqL2gqvNUKPCMf7tnTc7sMBAEdPHx7aVpZZLCtJl/MIu3Eiwt0o2nunzCT9mT5pjejU0vNs2dnRgz0hhBCiE2aN6M7KcsWw5+iBWHnNyYFtusseoIRuLiKc15FuoztStBFSDuL96F0kB08eiu9/dHcAwM52DpgjhJC4YA2WcwthXfzq0eHeSneJQidrhP263CvAnYF93dAXJ+gc7+cYQvLo/VccA4mEwGcPnojKVAJ/fnY5Jlz2AJ5ZsrGnu0UIIf0eK32a+2Wk7ttsbKjq7i6VjXL7UdP2gD3HGpGXNaL7VGlOB1MJk95Fn7RGKDrSWXTYde1ven4FDpva2MM9IoSQ/k1HOou6qvwBP184ZCIOmrJLrx3M1BOo+5ufNaInXCb8+khvo08LYUIIIfGiPZ1FjSFd2Xc+snsP9KZ3024L4VyOXG/WiG41CRPSK+mT1ghFd6fhIYQQ4k86k0UmK/OyRvRVyp2tQQ0Mr/KJCKvp7kga4ZRYLv+uCCkpfVoI3/7FA3u6C4QQQmw6lHCr6NO3nm6LxCprRIVP+rTutCkoSwutLaS30aevRpMb63q6C4QQQmxUMbYkxVJJaE9bWZH8C2p033n+5Sdn4pwDx2Pf8YO7bZ+ElII+LYR1H9qTizdi7vXP92BvCCGkf6OqsVEHl4aOPI+wm+4cLDdmcC2umrtnt5bIJqQU9GkhXOkpm7lg9bae6QghhJBu8ar2Jzozdvo0X48wRSkhYfRpIcyLACGExAhbCCf6ybW53Lq/3esR9pxXBmcJCadPC2EAGDukpqe7QAghBP3IGtFNxzdxaC0AYPwuteZu2Cf6swdN6J4OEdIL6fM5bP7fcdPwtdvf6OluEEJIv0dFSPt6RHja8Aa8smILBtVWlHU/nz9kEvYeNxj7TRji22bZ1ScxMkxIAH1eCM+dNRqpRAIX3fpaT3eFEEL6Nf0lIvydj+yGk2eMxPQRA8q6n2RCBIpg1YYQ4k+ft0YAwLghuddG65vaerAnhBDSf1GD5fq6NKtKJXHApF16uhuEkAj0CyGs+4S/9e83e7AnhBDSf5FORLj7pPDQ+qpu2xchpPfR560RADCottL53N6Z7cGeEEJI/0V5hLtLB794+VGoq+oXtzlCSJH0i4gwANxxgVVuWeVbJIQQ0r3Ibk6fNnJgDQZUl3fAGiGkd9NvHpXnTByCQ3cdim2tnT3dFUII6Zc4g+UAXHvaDDTStkAI6WH6VXh0cG0llm1oxgvLNiGbZYkjQgjpTvT0aZ+cPRZHTh/Wo/0hhJB+JoQr0Nyextl/fhnfu+/tnu4OIYT0K5wARF9PG0EI6TX0KyGsD5r7x0urerAnhBDSf6EOJoTEhX4lhAeXucoPIYQQf7p7sBwhhITRr4RwY0O1a3p7CwfOEUJId9FfKssRQnoP/UoIDx/gHqH8owfe7aGeEEJI/0MfLEcIIXGgXwnhXYc1uKZbOjMActWOCCGElA9GhAkhcaNfCeGBtRVYec3JGNZgRYYfePND/PvVNZhz9eP46UOLerh3hBDSt2HMgRASN/qVEFbo1eUuvXMBNu5oxx+eWtaDPSKEkP6ApYRpjSCExIX+KYST/fKwCSGkR3HSCFMHE0JiQr9UhH/8zL493QVCCOl3MH0aISRu9EshvOvwhvBGhBBCSoozWK6H+0EIIYp+KYQBFtcghJDuRjrWCEphQkg86LdCeMqw+rx5Lyzd1AM9IYSQ/gHTpxFC4ka/FcKXn7Rb3rx31jbhu/e8jTY7vzAhhJDSQx1MCIkL/VYI7zNuMF759tGuebe+sgp/f+l9/P3F93uoV4QQ0nfhYDlCSNyIJISFECcIIRYLIZYKIS4zLD9CCLFdCPGG/e97pe9q6RnWUO2aXrFpJwBgw462nugOIYSUhLhes2mN6B6mcUA4IZFJhTUQQiQBXA/gWABrAMwTQtwnpXzX0/RZKeVHytDHbieR4FWaENI7ifM1WxWWY0S4fCy48jhUpfrty15CCibK/5Y5AJZKKZdLKTsA3A5gbnm71bMIOtgIIb2X2F6zs07aiJ7tR19mYE0FqiuSPd0NQnoNUYTwaACrtek19jwvBwohFggh/ieE2KMkveshnIs1IYT0PmJ7zaYOJoTEjVBrBMzXLK9SfA3AeCllsxDiJAD3ANg1b0NCfBHAFwFg3LhxhfW0TLx8xdFo6cjgyJ8/5czrSGd7rkOEENI1YnzNtrpBawQhJC5EiQivATBWmx4DYK3eQErZJKVstj8/CKBCCDHUuyEp5Z+klLOllLMbGxu70O3SMXxANSYOrXPNa08zfRohpNcS22t21imo0eVNEUJISYgihOcB2FUIMVEIUQngTAD36Q2EECOEXSpICDHH3u7mUne2u2jvZESYENJrie01m+nTCCFxI9QaIaVMCyEuBvAwgCSAG6WU7wghLrSX3wDgNABfEkKkAbQCOFPK3mm0bahO4e7XP8AXDp2E3UcN6OnuEEJIQcT5mu2kTyv3jgghJCJRPMLq1dmDnnk3aJ+vA3BdabvWvbx0+dHISImDr3kCAPC9e9/GXV86qId7RQghhRPXa7YzWI4RYUJITGCyQZsRA6sxelCNM71i004sWb+jB3tECCF9C8mCGoSQmEEh7MPmnR047lfP9HQ3CCGkz6C8F9TBhJC4QCHsobbSnYhcRTBaOzJobk/3RJcIIaRP4AyWY/VOQkhMoBD2cN/FB2PUwGpnuqXDSqV26LVPYs8rH+6pbhFCSK+Hg+UIIXGDQtjDlGENeOiSw5zpHW1p3PD0Mmxqbu/BXhFCSO/HsUbQJEwIiQmRskb0NxqqcqflgJ883oM9IYSQvkOWg+UIITGDEWEDQdGKXpoemRBCeh6VPq1ne0EIIQ4Uwj5MH9FgnH/fgrXG+YQQQoKRthJmZTlCSFygEPbh12fOMs5/bOGG7u0IIYT0EbJ29XrqYEJIXKAQ9qFe8wl/ZMZI3HvRwQCAiUPrcPWDC/Hkog1YtbkFEy57AP9llJgQQkJRxjJGhAkhcYFC2IeG6grn83Vn74OZYwehoTqFptZO/OmZ5Tjv5nl498MmAMC9b1AIE0JIGFmOsSCExAwKYR/0iLBiUG0FtrZ0ONO5oAYv7oQQEobSwQwIE0LiAoWwD8mEwK7D6jFnwhBn3uDaSqzb3uZMq2t5Oitx0/Mr0NaZ6eZeEkJI70Fl3aE1ghASF5hHOIBHLjnMlUotnZF4ec0WZ1ote2rxRjy1eCO2tXTikmOndns/CSGkN5ArqNGj3SCEEAdGhAPw5hNWnmBFOpN1TbP6HCGE+KOsEYwIE0LiAoVwAZx38ATX9Jf++ZprutMjjAkhhORwKsv1cD8IIURBIVwAV350DyeNmonODAfNEUKIHzlrBKUwISQeUAgXyMyxg3yXvbZqa/d1hBBCehlqsBx1MCEkLlAIF8GPTtnT+bzbyAHO5/c3t2DmDx7B4nU7eqJbhBASa5z0aT3bDUIIcaAQLoJZdlR44tA6/O1z+7mWbW/txC8fXey77ubmdny4vbWc3SOEkFgiwfRphJB4QSFcBMmEdRFPJQSGNVTnLW9uT+NnDy/KyyoBAPv+6DEc+JMnyt5HQgiJG1n7kkgdTAiJC8wjXASNDVUAgI/vM8a4/Pmlm/H80s2Y3Fjv24YQQvobarAcI8KEkLhAIVwEQ+ur8PYPjkddZTKw3TfuWOAI4bfWbMewAVXd0T1CCIklKn0aIYTEBQrhIqmvKuzUffS65wpehxBC+hRqsBwDwoSQmECPcAm49Qv74zsn7xbarrk97Xx+9r2N5ewSIYTEDg6WI4TEDQrhEnDQlKH47EETcPb+44zLpeF14HfueRsAsGT9DnSks8aBdYQQ0pfIMiJMCIkZFMIlIpVM4OpT98qbf8hPn8DpN7yYN//9zS149f2tOO5Xz+Cbdy3AlG//D796dEl3dJUQQnoEFRNgRJgQEhcohEvMZSdOd02v2dqK+e+bK8594g8vAADueWMtAOA3j78Xuv2WjjTunL/aGGUmhJA4owbLUQYTQuIChXCJ+exBE3Dq3qNx6t6ji1p/e0snbntlFaSUaE9n8Oi7612i9wf3vYv/u+tNvLxiS6m6TAgh3YK6kglGhAkhMYFCuMRUVyTxqzNmYezgmqLWv/w/b+Lyu9/Cm2u2449PL8f5t8zHk4s3OMvXNbUBAFo7MpBSYtnG5pL0mxBCyo16qKcOJoTEBQrhMlGRtE7t5w+ZiHsuOjjyequ2tAAAdrannSwTN7/wPh56+8O8tre9shpH/+JpvMLoMCGkF6BeblEHE0LiAoVwmfj4vmMwelANPnPAeMwaOwh3XnhgpPXaO63sEZ1ZiWF2BbtnlmzEhf94La/tG6st7/FyRoUJIb0AFRHmYDlCSFygEC4TowfV4PnLjsKEoXUAgP0mDIm0XnvaEsIdaXM6NeWx+6WWYWJnR6b4jhJCSDfB9GmEkLhBIdyNXHDYpNA2yhpx/i3z0RGQW/itD7ZD2C8Yf3j/u77CmRBC4gIHyxFC4gZr/nYjlx43DUPrq3DuQRPw/LJNOO+meQCscs161TnF8o078+b5pU1rS2dQmeJzDSEkvnCwHCEkblA5dSOVqQTOP2wSKlMJ7FJX6cyvqUwa29/16hrX9PbWTt9tt5XAHsHcxISQcsLBcoSQuEEh3EPMGDPI+fwpuzTzj07ZM3CdM/74Ip5busmZzmjCta2za9aIJet3YOLlD+Lxheu7tB1CCPFDgoPlCCHxgtaIHuSVbx+NHW1pTBpahwsPn4zqiiTmzhqFvb7/iLH9onU7XNN6xPiwnz2Jl684GsMHVBfVlzdWbQMAPPjWOhy92/CitkEIIUFwsBwhJG4wItyDDGuoxuTGegghUF1h2SMaqiuK3t77m1uKXlfdmIq1R3y4vZVp3AghgajLCyPChJC4QCEcQwbXusXw8XtEi9C+vHxzQftp68ygPW15i5MJ68aULVIIH/iTJ3DUL54ual1CSP+g2OsLIYSUCwrhGPL6947Dm98/DgAwbkgtfvLxGZHW+8WjS/D2B9uxdWcHFqzehq/d/jo60lm0pzPY43sP4b4Fa/He+h3otNOyTf/uQzjyZ08ByEVosrxPEULKDCPChJC4QI9wTBlQXYGXLj8adVVJNFRX4IBJQ/DS8vBSyh/53XOu6U8fMB5jB9diZ0cGX73tdQDANR/fC2fOsQbord3e5mrPiA0hpFxks0yfRgiJF4wIx5gRA6sdz/C4IbUAgLmzRqEimbuLnDxjJD45e4zvNj7155fzxO17G5qxqbndNU8V76AOJoSUC6egRo/2ghBCclAI9xIuP3E3nHPgeFzz8Rl478cn4Q+f2gcAcPWpe+Ha02b6rteRyWJzc4dr3l+fW4HZP3rMmf7d4+/hm3e96bT/3r1v44VlmxCF+Su3IEM/BSEkAhwsRwiJGxTCvYTBdZW4au6eTvGNE/caiZXXnIyBNeFZJj563XOBy3/x6BLn86PvrsctL76Ps//8MgCgtSODtE+p5xeXbcZpN7yIPz+73JmXzmRx+g0v4A9PLQvtFyGkf5FlZTlCSMygEO4jfOuE6WXZ7m7fewhf+udrrnlH/+Ip3PT8CqzYZJWAXrohlzbtT88ux7yVW/HThxaVpT+EkN6LY42gEiaExIRIQlgIcYIQYrEQYqkQ4rKAdvsJITJCiNNK10UShXMPGl/ybR58zRMArCgxACz8sAlrtrZg2cad+MF/30Vbp5V6rSOdixhf+9DiovfXmcliW0tHeMOIsGQ06a/E9ZotpWQ0mBASK0KFsBAiCeB6ACcC2B3AWUKI3X3a/RTAw6XuJAmnxinIkcJN5+2Huy48EA989ZCCtjFn4hDX9AfbWl3TJ/7mWRzy0yed6b+9uBIAcN+CtYHb/c/ra7C+qS2wDQBcescCzLrq0Yi9DeZf81Zh4uUP4vonl2LCZQ84+ZIJ6evE+ZotJQfKEULiRZSI8BwAS6WUy6WUHQBuBzDX0O4rAP4NYEMJ+0ciIoTAPRcdjOe+eRSOnDYMsycMwR6jBhrbfmKfMUZv8eTGet/tr96SX7UurJJdRzqL9U1tuORfC7D/1Y8bI7QtHWl89qZX8OKyzY6g9vMkF8J3730HAPCzh60I9Y62dJe3SUgvIbbXbAnJgXKEkFgRRQiPBrBam15jz3MQQowGcCqAG4I2JIT4ohBivhBi/saNGwvtKwlh1thBGOipSvf8ZUfh6lP3wrThDc68X3xyJhZceRyqUu6v/ytHTfHd9qHXPum7zI+p3/kf/vrcCme6pcMdlZVS4uoHF+KpxRtx1p9fcua3pd1CeN32Ntzw9LKCrA5D6ypd060djAiTfkNsr9lZyYFyhJB4EUUImy5bXkXyawDfklIGqg0p5Z+klLOllLMbGxsjdpF0hdGDanD2/uPw8CWH5S1La2nPDpvaiFGDanDtJ3JV7PabMLjL+/9ga85e4RXCf3h6Gf7x0qq8ddo7c+06M1kc8JPHcc3/FmHZxp3OfCmlK23b1Q8uxC22VQMABngi3js7zBHhZ5ZsxFG/eIrWCdKXiO01W0oOlCOExIsoQngNgLHa9BgAXlPobAC3CyFWAjgNwO+FEKeUooOkdFxw+CScsMcIZ1oXkqMGVgMAPrnfWFx96l4AgG8cOy1we585YDxOmTUqsM2CNduczw+9/SFaNEGqBuF5abcjwulMFlfc/ZYzv1OzTPz1uRWYfMWDWLFpJ55avAF/emY5vmfbIaSUWLRuh2ubO9vN9/vv3vs2lm/ciQ+3hXuYCeklxPaaLaWkR5gQEiuilFieB2BXIcREAB8AOBPA2XoDKeVE9VkIcTOA+6WU95Sum6QUXH7ibq7pfcYNwmurtuG3Z+2NY3Yb5sw/e/9xOHt/qwTzuCG1WOXxB/+/46Zi+cad+OEpe+LSOxYAsMo2X6aJVsUaLSL83XvfweOLNuCpxRtx6xf29+3n2m2tGDWoBr97YinufHWNM79NixTfOd+af8wvn84r6GEavLezPY2NO9rxv7c/xGcOGJ8XlQoyXfzq0SUYO6QWp+3rX8GPkBgR22u2BK0RhJB4ESqEpZRpIcTFsEYWJwHcKKV8Rwhxob080GNG4stN583BB1tbsfuoAb5tHv76Yfjny+/jRw8sxODaCvzqjFk4YlpONLfZlgJV6MPEKbNG4Z43LHH61GLLZ3j2X172bX/aDS8a51//5DL84dP7YNnGZtRWWfvziuBfPboErZ350d+7X1uDDTva8cKyzTh4ytC8gYFB1ojfPP6e1a99xyCblejIZFFd4X+8hPQkcb5mZ7McLEcIiRdRIsKQUj4I4EHPPOPFVEr52a53i3QHA2sqQivT1VQmcdaccdja0oEvHzEFdVXun8z+E4fggTc/xFRtMJ6Xw6c1OkK4Kzy2cD12/fb/AFjeZxNKtHq55421mNxYBwBIZ0zZK/KF8I3PrcBV97/rmvfde9/GP19ehRU/OanHvI7bWzuxqbk9MMtHKWnpSGNHWxrDB1R3y/5I14nrNVuC6dMIIfGCleVIKHVVKfzf8dPzRDBg+YRfuOwo7DZyAG749L6456KD8fPTZ+JjM3Pe4RP2GImZYwbi2N2Hl6xPUQe3/eL0mc7nD7dbPuDmdsun/PSSjU4KuDaDEL75hZWu6Vff34J/vmwN7tvR3nPp2D55w4s4+hdPd9v+Lvv3W9j/6sed80ZIsUgJRoQJIbGCQph0CSEERtnR2RP2HIFZYwfhtH3HYMqwXLSypjKJey8+BD/XRGlX2dQcrQLdJ/Yd4wzoU1Hf9U1t+Mptr+PcG19x2r23odlVIQ8Axu9S697WH3KWjc32/pvaOvPWKzeL11sDAb22kHLx3NJNAIBFHzZ1y/5I3yXLihqEkJhBIUzKwql7j8bIgdV49ptHOvMGVJudOHrmiW8cO7XkfRm/S51r+sv/fA3/9Qyou/K+d3DdE++hM5N1CnoE2UZee38rNjW3Y8b3H8FXbnstUj860tmSile/lHClZpB9HjbvLF35a9J/YUSYEBInInmECSmUsUNq8eLlR7vmCSEwZ8IQtKUz+ONn9sW8lVvx3HsbcdXcPXHK3qMxZnAtpgyrx1+fW4HtrZ3Oejedtx/Ou2le3j4OnrILnl+62bcPdfYAvouOnOLrHdb57RNLcd2TS6G06kGTd/Fte+mdC5zPD7+zHq+s2ILfP7UUfz5nNiqS5ufLqd/5H2aOGYhDdh2K8w+dhEG1lXltLvnXG1i3vQ23ffEA1/wnF23AwVOGWhE1m+a2NAZUWyJ14YdNePuD7Th99lgUwqbmdjy/dBOee28TPnvwBGM1QmWJ+en/FmFwbWVeKW5CopKVklkjCCGxgkKYdCt3XHig8/ljM2scL7GeieLhrx+GZ97biA+3teHio6YgmXDfOacNb8ABk4Zgz9ED8fzSzThw0i44cnojfvv4UsfH+ovTZ2K/CZZgq0xFf/GhB2xfWOYvsnUaqlI498ZX0NqZwf1vrsWpe+fSrP3s4UUYObAGH51hHeeCNduxYM12rNvejl98Mt8q8p/XPwAAfPW211FXlcRPPj4Dj767HuffMj+v7VX/fRen7TsGx+w+HF+97XW8t6EZTW1pfP6QiXlt/bjs32/isYVWhd0l63fg3osPyWtTaz9QLN+0E5/844tYec3JkbdPiA6dEYSQuEEhTGLHiIHV+KQnsrnn6AGYOWYQvnb0rhhQU4HqiiSa2jrxs4cX4wuHTsTRuw3HOQdOwPTvPgTA8gbr7DdhMAbWVOKxheYiHl1h1KAax7d7yb8W4LBdG7FLfRUAK+UbAHznnrdd66xvCi7goXIhXzV3T6MIBoCH3lmHh95Zh+vP3gcbm9sBAD+8/10cMa0Rkxvrsa2lA9c9sRTfPGF63sPA+5t34o/PLMcWze4wpC4/Qg0Ab6zeFthXQqIiwfRphJB4QSFMegX3f+XQvHkDqivwyrePcaarK5K45uN7YZIhrdidFx4EAHh91Vac+vsXAAAfmzkK5x86CbVVSTy/dJNTmc7L14/ZFb9+LN9aUZlKoCOdxZqt7oIj+/7oMcz79jEYWm8WloA1AO3HD7yLi4/aFQOqU76p2JZuaPbdhuIH/30H21pyVpKjf/E0Vl5zMn7+yGL846VVSGclzthvLK5+cCHWbW/Do984HN/695t4afkWVx+ftHM86yxa1+RU+lM88OaHOHnGyNB+EeIlK1lQgxASLyiESZ/izDnjApfvPW4wVl5zslXqVbsjDx9Q7QjhOy88EM+9t8nxFX/9mKk4aa+RaGrtxGk3vIjzDp6AKz+6BwDgW3e9iX/NX523n/1+/Bg+tX9wX/787Ar8+dkVzvQuhojswgiZGjbsaM+b97cXVjrZLG5+YaUrFdyEyx5wPnuzb3RmsqhIJrBg9TZ8sK0Vgw0+5r+/tDKSEF6ztQWPL9yAcw+aENqW9A8sizuVMCEkPjBrBOmXeCOw9faAsJP2GoH9JgzBV46aguvP3gdvfO9YAMDU4Q2YPWEIVl5zsiOCAWDu3rmMF//58kE4c7+cpUPlHI6KKSvDN+wS1pdq2TR2qav0LSiiuPK+dyAjJqj4+D6jnc/3vrEWnZks5l7/PL78z9fQYshM8dLyLVi6YQceN9hMXn1/C95asx0A8Pmb5+PK+97B5uZ2NLen8e5af1Hf1pnBk4s2ROtwRN5asx23v7IKMuqJIGUnm5XwGUtKCCE9Ai9JhNi884Pj8dsz9wYApJIJnDxjpDGzg85Bk4fi5vP2wxmzx2LW2EH48al75bX5f8dNxd7jBgEA5s4ahW+eMC1wm/O+fQyqK9z/NWfZ6wPAz0+fiboqd4nnfbTlijtfXRO4H0VjQ1Wur3cuwO+eWOpMP+ERpxOHWqnojvnlM/j83+Zj3fY2/PD+d7F6Swvuef0DfOIPL+Kj1z2HDU1t2NJiCfsl65ux55UP46TfPos/P7M8b//rm9pw4E8ex3k3zzNGwHe2p/H6qq2RjkXx7tomfPS653DZ3W/htVXbClqXlI+MlEjSG0EIiRG0RhBiY6qcF4Ujpg1zsl4kBTD/O8fgX/NW40uHT0ZTWycG1VaiuiKJ11dtw+Un7oYRA6vxiX3GYP+rHwcAPHLJYRhUW4E5P7amGxuqsOiHJ2Leyi04/QariMe4IVZxj0mNdThy+jBceZ/bz7yjLY1/fmF/fOovLxd+3JUp/OqMmbjkX1b0+bdaqjkV1X7i0sPx5prtGNZQhbO1fRzwE6vPf31uBXTm2McGAF/656vO5x8/uBDnHzYJAPCR3z2LptY06qtS2Gp7nLfa4rm1I4Mbn1+BV9/fiiXrd2DN1la88b1jXQ8mW3d24OoHF+JLR0zGV257HfuOH4yr5u4JwEoLp/jEH17Aez8+0UlrJ6W0KpwlKMi6m0xWIpnkeSeExAcKYUJKzND6Klx05BQAcITb5w+ZiE/uN9bJ+zt8QDVu+ux+mDaiwanM9+kDxmFYQ7WzHZX+bcSAaowbUour5u6BY3azylRPaqzDqi0tOOfA8XhlxRZ87pCJOHjKUHzt6F2xsbkdt2q2jBP2GIGH3lnn298z9xuLB976MPCYJjXWY1JjfVE2A30gHwBsb+3EuTe+grc/yI/+nv1nfyE/66pHUZEUuO38AzB7whD8/aX3ceerazB6cA3eWduEd9Y24YqTdkNVKoGnl7gH/u367f/hpL1GYPnGnZgxZiDumL8G91x0MEYPqnFFxEl5yWQZESaExAvRU/652bNny/nzzWmhCCEW21o6kEomHA+zYntLJ15fvdWVf1nnrlfXoK0zg91GDsC+4wdj7bZWfP32N/DLM2biufc24bK738JLlx+NEQMt4b1hRxvOvXEe6iqTmP++24YwZnANnvvWUc706i0tOPTaJ0t8pNEZNbAaf/vcHBz7q2dKsr1/f+lA7Du+8CIhQohXpZSzS9KJXkAprtkX3foaFn7YhCcuPaI0nSKEkIj4XbMphAkhLp5eshH/mrcKB04eioE1FThg0hBXpBoA7n3jA0zYpQ4zxw7Cvj98NLT88rxvH4PVW1vwcTt1nR/nHjgef3vxfQDA4Forer61pRPH7T4cTy/ZmJfKLYyffHwvXH73W4FtLjlmKr52zK4FbRegEC6GL/3jVSzb2IxHLjm8RL0ihJBo+F2zaY0ghLg4fGojDp/aGNhm7qxcpgmVyzkhLK/wIbsOxbk3voJfn7E3Zk8YjHRGoqYyicaGKiy7+iTc+8YHuO2VVahIJnDzeXNw56urUV+VwhHThmFgTYUjhF/77rFYvaUVyzY248jpVuT7lOufdxX4qEwm0JGxxPHMsYOwwFP844hpjThrzljc9spqnLzXSMyeMBg/+O+7rjbjd6kt6jyRwklnWVCDEBIvGBEmhHQ76rpjKiSyeksLBlRXYKAdEdZZumEH/vP6B7j+yWX44dw98Kn9x2Peyi3YbdQADKiuwAvLNmHNllYMH1iNXz+2BHdccCC2tXTintc/wOcPmegMkOvMZLFxRzuee28TTtt3TFED5xgRLpzP3zwP65ra8MBX8wvkEEJIOaE1ghBCSgiFcOF89qZXsHVnB+69+JAS9YoQQqLhd81mHmFCCCHdQiYrmbaOEBIrKIQJIYR0C0yfRgiJGxTChBBCuoVMViLJiDAhJEZQCBNCCOkWKIQJIXGDQpgQQki3kJEUwoSQeEEhTAghpFvIMiJMCIkZFMKEEEK6hTQHyxFCYgaFMCGEkG6B6dMIIXGDQpgQQki3kJWMCBNC4gWFMCGEkG4hnZVIJimECSHxgUKYEEJIt5ClR5gQEjMohAkhhHQLTJ9GCIkbFMKEEEK6hUyGQpgQEi8ohAkhhHQLGQ6WI4TEDAphQggh3UImC6ZPI4TECgphQggh3UImm0WKQpgQEiMohAkhhHQLGZZYJoTEDAphQggh3UJWAgl6hAkhMYJCmBBCSLeQyUqkWFCDEBIjKIQJIYR0C5msZESYEBIrKIQJIYSUjY50FpmsBKAKavRwhwghRIOXJEIIIWVj6nf+hwv+Ph9SSnuwHG87hJD4wCsSIYSQsvLYwg2wg8IsqEEIiRUUwoQQQsqOskfQGkEIiRO8JBFCCCk7WWkJYVaWI4TECQphQgghZaeptRMAWFmOEBIrKIQJIYSUnbXb2wCwoAYhJF5QCBNCCCk72+2IMEssE0LiRCQhLIQ4QQixWAixVAhxmWH5XCHEm0KIN4QQ84UQh5S+q4QQQqIQx2v2tpYOALRGEELiRSqsgRAiCeB6AMcCWANgnhDiPinlu1qzxwHcJ6WUQogZAO4AML0cHSaEEOJPXK/ZyiPMwXKEkDgRJSI8B8BSKeVyKWUHgNsBzNUbSCmbpbSHBAN1ACQIIYT0BLG8Zm9rsa0R9AgTQmJEFCE8GsBqbXqNPc+FEOJUIcQiAA8A+JxpQ0KIL9qv4eZv3LixmP4SQggJJpbX7G30CBNCYkgUIWy6auVFD6SU/5FSTgdwCoAfmjYkpfyTlHK2lHJ2Y2NjQR0lhBASidhcs3NBZw6WI4TEkyhCeA2Asdr0GABr/RpLKZ8BMFkIMbSLfSOEEFI4sblmZzX5vXWnNViOQpgQEieiCOF5AHYVQkwUQlQCOBPAfXoDIcQUISzjlxBiHwCVADaXurOEEEJCic01O6tFhN9Z2wQAGDO4ptS7IYSQognNGiGlTAshLgbwMIAkgBullO8IIS60l98A4BMAzhFCdAJoBXCG1N+JEUII6RbidM3Wt7iuySqoMWVYQ6l3QwghRRMqhAFASvkggAc9827QPv8UwE9L2zVCCCHFEJdrdtajrUcOrMbAmopy75YQQiLDynKEEELKgjfGPHoQbRGEkHhBIUwIIaQseCPCjAYTQuIGhTAhhJCy4BXCAyiECSExg0KYEEJIWfCOvmuojjQshRBCug0KYUIIIWVBZq2/dZVJABTChJD4QSFMCCGkLChrhCqikUrwlkMIiRe8KhFCCCkLSgjbtTuQEKwqRwiJFxTChBBCyoLXI8zqyoSQuEEhTAghpCyoiHBlyrrVVKR4yyGExAuOXCCEEFIWVPa08w+diA+2tuKcA8f3bIcIIcQDhTAhhJCyoCLCA6or8MW5k3u4N4QQkg/fUxFCCCkLWTsizDFyhJC4QiFMCCGkLEhP1ghCCIkbFMKEEELKgvIIM20aISSuUAgTQggpC8ojzLRphJC4QiFMCCGkLGQZESaExBwKYUIIIWUhV1muhztCCCE+UAgTQggpC9LJGkElTAiJJxTChBBCyoKkR5gQEnMohAkhhJQFeoQJIXGHQpgQQkhZcDzCPdwPQgjxg0KYEEJIWaBHmBASdyiECSGElAXmESaExB0KYUIIIWWBleUIIXGHQpgQQkhZcCLCvNMQQmIKL0+EEELKQm6wHCPChJB4QiFMCCGkLNjOCFaWI4TEFgphQgghZSFXUINKmBASTyiECSGElAUW1CCExB0KYUIIIWUhm2X6NEJIvKEQJoQQUhayjkm4R7tBCCG+UAgTQggpCxL0CBNC4g2FMCGEkLLAghqEkLhDIUwIIaQssMQyISTuUAgTQggpC8ojzIAwISSuUAgTQggpCyqPsKASJoTEFAphQgghZYEeYUJI3KEQJoQQUhboESaExB0KYUIIIWWBleUIIXGHQpgQQkhZUBFhQgiJKxTChBBCygI9woSQuEMhTAghpCyorBEJ3mkIITGFlydCCCFlgR5hQkjcoRAmhBBSFpg1ghASdyiECSGElIXcYDkqYUJIPIkkhIUQJwghFgshlgohLjMs/5QQ4k373wtCiJml7yohhJAoxO2azYgwISSuhAphIUQSwPUATgSwO4CzhBC7e5qtAHC4lHIGgB8C+FOpO0oIISScOF2zc9YIKmFCSDyJEhGeA2CplHK5lLIDwO0A5uoNpJQvSCm32pMvARhT2m4SQgiJSGyu2dms9ZdCmBASV6II4dEAVmvTa+x5fnwewP+60ilCCCFFE5trtooIUwcTQuJKKkIb0yXMWC5ICHEkrIvqIT7Lvwjgi/ZksxBicZROehgKYFMR6/UG+vKxAX37+HhsvZdij298qTtSImJ3zR730z77++H/jd5LXz42oG8fX0mv2VGE8BoAY7XpMQDWehsJIWYA+AuAE6WUm00bklL+CV30ogkh5kspZ3dlG3GlLx8b0LePj8fWe+mDx8drdjfRl48N6NvH15ePDejbx1fqY4tijZgHYFchxEQhRCWAMwHc5+nUOAB3A/iMlHJJqTpHCCGkYHjNJoSQiIRGhKWUaSHExQAeBpAEcKOU8h0hxIX28hsAfA/ALgB+LywzWLqvPokQQkic4TWbEEKiE8UaASnlgwAe9My7Qfv8BQBfKG3XfOnLqdn68rEBffv4eGy9lz53fLxmdxt9+diAvn18ffnYgL59fCU9NiGlcQwFIYQQQgghfRqWWCaEEEIIIf2SXiOEw0qGxh0hxFghxJNCiIVCiHeEEF+z5w8RQjwqhHjP/jtYW+dy+3gXCyGO77neR0MIkRRCvC6EuN+e7kvHNkgIcZcQYpH9HR7YV45PCHGJ/Zt8WwhxmxCiujcfmxDiRiHEBiHE29q8go9HCLGvEOIte9lvhWA23ELgNTt+/ze88Jrdq4+vz1y3e/yaLaWM/T9YAz6WAZgEoBLAAgC793S/CjyGkQD2sT83AFgCq/zptQAus+dfBuCn9ufd7eOsAjDRPv5kTx9HyDF+A8CtAO63p/vSsf0NwBfsz5UABvWF44NVaGEFgBp7+g4An+3NxwbgMAD7AHhbm1fw8QB4BcCBsPLy/g9WmrEeP77e8I/X7Hj+3zAcI6/ZvfD4+tp1u6ev2b0lIhxaMjTuSCk/lFK+Zn/eAWAhrB/zXFj/YWH/PcX+PBfA7VLKdinlCgBLYZ2HWCKEGAPgZFh5SRV95dgGwPqP+lcAkFJ2SCm3oY8cH6xBszVCiBSAWlg5Z3vtsUkpnwGwxTO7oOMRQowEMEBK+aK0rrC3aOuQcHjNjuH/DR1es3vv8dn0met2T1+ze4sQLrRkaKwRQkwAsDeAlwEMl1J+CFgXXgDD7Ga97Zh/DeCbALLavL5ybJMAbARwk/0a8S9CiDr0geOTUn4A4OcAVgH4EMB2KeUj6APH5qHQ4xltf/bOJ9Horb8TI7xm97pj67PXbKDfXLe77ZrdW4Rw5JKhcUcIUQ/g3wC+LqVsCmpqmBfLYxZCfATABinlq1FXMcyL5bHZpGC9tvmDlHJvADthvarxo9ccn+27mgvrFdMoAHVCiE8HrWKYF8tji4jf8fS14+xu+sz54zXbWsUwL5bHZtNnr9lAv79ul/ya3VuEcKSSoXFHCFEB64L6Tynl3fbs9XZIH/bfDfb83nTMBwP4mBBiJaxXoEcJIf6BvnFsgNXfNVLKl+3pu2BdZPvC8R0DYIWUcqOUshNWtbGD0DeOTafQ41ljf/bOJ9Horb8TF7xm98pjA/r2NRvoH9ftbrtm9xYhHFoyNO7Yoxf/CmChlPKX2qL7AJxrfz4XwL3a/DOFEFVCiIkAdoVlBI8dUsrLpZRjpJQTYH03T0gpP40+cGwAIKVcB2C1EGKaPetoAO+ibxzfKgAHCCFq7d/o0bC8kH3h2HQKOh77VdwOIcQB9nk5R1uHhMNrdoz/b/CaDaAXHx/6x3W7+67ZpRr1V+5/AE6CNWp3GYBv93R/iuj/IbDC9G8CeMP+dxKsMqePA3jP/jtEW+fb9vEuRi8ZsQ7gCORGIPeZYwMwC8B8+/u7B8DgvnJ8AH4AYBGAtwH8HdZo3F57bABug+Wb64QVJfh8MccDYLZ9TpYBuA52ASL+i/w98Jodg+OIcJy8ZvfO4+sz1+2evmazshwhhBBCCOmX9BZrBCGEEEIIISWFQpgQQgghhPRLKIQJIYQQQki/hEKYEEIIIYT0SyiECSGEEEJIv4RCmPRbhBBHCCHu7+l+EEIICYfXbFIOKIQJIYQQQki/hEKYxB4hxKeFEK8IId4QQvxRCJEUQjQLIX4hhHhNCPG4EKLRbjtLCPGSEOJNIcR/7JrsEEJMEUI8JoRYYK8z2d58vRDiLiHEIiHEP+2KNIQQQoqE12zSm6AQJrFGCLEbgDMAHCylnAUgA+BTAOoAvCal3AfA0wCutFe5BcC3pJQzALylzf8ngOullDNh1WT/0J6/N4CvA9gdwCQAB5f5kAghpM/CazbpbaR6ugOEhHA0gH0BzLMf/GsAbACQBfAvu80/ANwthBgIYJCU8ml7/t8A3CmEaAAwWkr5HwCQUrYBgL29V6SUa+zpNwBMAPBc2Y+KEEL6Jrxmk14FhTCJOwLA36SUl7tmCvFdT7ugWuFBr87atc8Z8P8EIYR0BV6zSa+C1ggSdx4HcJoQYhgACCGGCCHGw/rtnma3ORvAc1LK7QC2CiEOted/BsDTUsomAGuEEKfY26gSQtR250EQQkg/gdds0qvgkxSJNVLKd4UQ3wHwiBAiAaATwEUAdgLYQwjxKoDtsDxpAHAugBvsi+ZyAOfZ8z8D4I9CiKvsbZzejYdBCCH9Al6zSW9DSBn0doKQeCKEaJZS1vd0PwghhITDazaJK7RGEEIIIYSQfgkjwoQQQgghpF/CiDAhhBBCCOmXUAgTQgghhJB+CYUwIYQQQgjpl1AIE0IIIYSQfgmFMCGEEEII6ZdQCBNCCCGEkH7J/wegiwd/hhghNQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "221ns_image_584357289931_clean.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADDCAYAAAAya0IYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAACwJ0lEQVR4nO39eZitV10mDN9r79pD1TkZyUhCSEICCMgMBlTkvUAEWgVsB9BuEbVBu+1X2+7X2XboTz9tBftr3xbFFsF2oLFRnEFFEQfmUUIIJJCQkJA5OTmnas/r+6P2/dS971pPVZ1z6tTeVed3X1ddZ9fez7PWbw37OXXfv2GlnDMCgUAgEAgEAoFAIBAIBI4HjXkbEAgEAoFAIBAIBAKBQGD/IQSFQCAQCAQCgUAgEAgEAseNEBQCgUAgEAgEAoFAIBAIHDdCUAgEAoFAIBAIBAKBQCBw3AhBIRAIBAKBQCAQCAQCgcBxIwSFQCAQCAQCgUAgEAgEAseNEBQCe46U0rUppWfP245AIBAIbCCldFNK6bk7vDanlK46wX5O+N5AIBAIBAKLhRAUAnuOnPNjc87vnLcd2yGl9M0ppZtTSsdSSm9NKZ07b5sCgUDgICOl1EkpvT6ldCSl9IWU0vfP26ZAIBBYNOy2MLuT9uLv4kAdQlAIBApIKT0WwK8B+NcALgSwCuBX5mpUIBAIHHz8JICrATwcwP8F4AdSSs+fq0WBQCBwmiP+Lg5shRAUAnsODatNKf1kSun3U0q/nVJ6MKX0zymlR6aUfjildGdK6ZaU0vPk3leklK6bXvuZlNKrrO0fSCndnlK6LaX0naq4Tj1fv5hS+lxK6Y6U0q+mlJZrzPwWAH+Sc35XzvkogB8H8HUppTNOzawEAoHA4iCl9PSU0rtTSvdPn6n/b0qpbZe9cPocvjul9AsppYbc/+3TZ/V9KaW3p5QevsOuvxXAf8k535dzvg7ArwP4tt0ZVSAQCCwOUkpflFJ65/Q5e21K6Wvls3emlL5Tfv+2lNI/TF+/a/r2R1NKR1NK35RSenZK6daU0o9Mn8k3pZS+5UTbK5gbfxcHahGCQmAR8DUA/heAcwB8GMDbsb43LwHw01hXRIk7AXw1gDMBvALAL6WUngwAUy/W9wN4LoCrAHyF9fPzAB4J4InTzy8B8J9rbHosgI/yl5zzjQAG0/sDgUDgoGMM4D8AOA/AMwA8B8C/tWteAuCpAJ4M4EUAvh0AUkovBvAjAL4OwPkA/h7A723XYUrpHAAPhTx7p68fe+LDCAQCgcVDSqkF4E8A/CWACwD8ewC/k1J61Hb35pyfNX35hJzz4Zzz/57+fhHWn9mXAHg5gNedZHuK+Ls4UIsQFAKLgL/POb895zwC8PtY/wP053LOQwBvAnB5SulsAMg5/1nO+ca8jr/D+oP4y6ftfCOA38w5X5tzXgXwU+wgpZQA/BsA/yHnfG/O+UEAPwvgpTU2HQbwgL33AIBQYgOBwIFHzvmDOef35JxHOeebsC7sbhJpp8/TzwH4bwBeNn3/VQD+vznn66bP9Z8F8MQdRCkcnv6rz9547gYCgYOIa7D+zPu5nPMg5/w3AP4UG8/RE8WP55z707+R/wzrfxvvBuLv4kAtQlAILALukNdrAO7OOY/ld2D6h2ZK6QUppfeklO5NKd0P4IVYV2OBdc/WLdKWvj4fwAqAD05Dy+4H8Lbp+yUcxXoUhOJMAA/udFCBQCCwXzFNPfvTaWHEI1gXBc6zy/QZezPWn8HAev2D/588a+8FkLDuNdsKR6f/6rM3nruBQOAg4qEAbsk5T+S9m7H9c3Ir3JdzPmbtPbTu4uNE/F0cqEUICoF9g5RSB8BbAPwigAtzzmcD+HOs/6EKALcDuFRueZi8vhvr4sRjc85nT3/OyjkfRhnXAniC9H0lgA6AT+3GWAKBQGDB8VoAnwRwdc75TKynMCS7Rp+xlwG4bfr6FgCvkmft2Tnn5ZzzP23VYc75Pqw/x58gbz8B68/jQCAQOEi4DcDDtPYM1p+jn5++PoZ1Rxhx0Q7aPCeldMja43P5RNpTxN/FgVqEoBDYT2hj/eF1F4BRSukFAJ4nn78ZwCumRW5WIPURpgrwr2O95sIFAJBSuiSl9FU1ff0OgK9JKX359OH80wD+YJoqEQgEAgcdZwA4AuBoSunRAL67cM3/k1I6J6X0MADfC4B5t78K4IenVcGRUjorpfQNO+z3twD82LTdR2M9Ve0NJzGOQCAQWES8F+sk/wdSSq2U0rOxXlPsTdPPP4L1oocr0+Li32H33wHgykK7P5VSaqeUvhzrNcd+/yTbI+Lv4kAtQlAI7BtMH1r/N9aFg/sAfDOAP5bP/wLAfwfwtwBuAPDu6Uf96b8/OH3/PdMQ3r8GUCxWk3O+FsB3Yf0BeifW/7j2gmSBQCBwUPGfsP6MfRDrYmypSNcfAfgg1v9Q/TMAvwEAOec/xHoR3DdNn7UfB/CCHfb7EwBuxHqo7t8B+IWc89tOeBSBQCCwgMg5DwB8LdafjXdj/QjGb805f3J6yS9hvejhHQDeiPW/RxU/CeCN09Qy1kn4Atb/Pr5tev13nWR7am/8XRyoRco5z9uGQOCUIKX0RVj/Q7YzLQwWCAQCgUAgEAgcKEwjHH4753zpNpcGAruOiFAIHCiklF4yDfU6B+sesj8JMSEQCAQCgUAgEAgEdh8hKAQOGl6F9RoLN2L9HPVS3m8gEAgEAoFAIBAIBE4Sp0xQSCk9P6V0fUrphpTSD52qfgIBRc75+dPTG87NOb8k53z7vG0KBOaFeA4HAoHA/BHP4sCpRs75nZHuEJgXTkkNhZRSE+vHiHwlgFsBvB/Ay3LOn9j1zgKBQCCwCfEcDgQCgfkjnsWBQOCg41RFKDwdwA05589Mq5i+CcCLTlFfgUAgENiMeA4HAoHA/BHP4kAgcKCxdIravQTALfL7rQC+pO7i5eXlfPjwYQBAo9FASqn6N+dc/aSUqvfG4zEmkwkmk0nVDj/je2wjpQQAM235Pf6Z3jeZTDZ9ptf4741GY9OP2j0ajTAajTAejyt7tS22pzZ6fz42v97nwsfI+eRn2g/B933OCJ17h6+Zv++2an+la+siaTjOrbDV56X5q7NzJ6ibq+3sqpv7rfrf6bhL83u87en1Oufb2XmiEVB1tpbaq9s/O8FW93L/TiaTu3PO5x934/PHcT2HAaB5+FC+8ooJ7vj48ik1LBAIBI4HPRzDIPd39h/x4uG4nsXxHA4EAouKB3Ff8W/iUyUolB76M3+xp5ReCeCVAHD48GG8+MUvRkoJnU4Hy8vLOHz4MNrtNkajEVZXVyvS3Wq1AAAPPPAAHnjgAayuriLnjGaziUajgfF4jH6/j8lkgna7jXa7jW63i5xz9f5kMsFoNEKj0UCz2cRkMsFwOES/38dotH4gQLPZRLvdxmQywWAwwOrqKkajEVJKWFpaQqPRQKvVQqvVwtLSEpaW1qdyaWkJKysrOOOMM3Do0CF0u10sLy+j0+lgOBzi/vvvx3333Yd77rkHDzzwAHq9Hnq9HlJKWF5eRrvdRqOxETjCviggcEwrKyvVZwBmxBV+NhqNMBgMMBqNqnEMh8NKjAE2CPBkMpkRQCaTCcbjcSWA8HoVVyiMKOHT+7hmS0tLM8RtNBpVfTabzU2fq1hEuwFgOBxWYgqAmXlS+5rN5samm/ZXEj841qWlpeoe9s19pNfWiR+0iX1QLOJcuUDG9/2aVqs1cw33IvepgmswHo832ahzQfvcZr7PfaviA9fP51jnjP3wWhWoSgIa2+b3VIU874ftaZ8E54v/cu/QHu459sf3VADR/dpoNGrFEdrX6/Vuxv7Ets9hYPZZ3MUKLr/2q3H5fv2zPRAIHEi8N79j3iacDI7rb+J4DgcCgUXFX+f/U/yb+FQJCrcCeJj8fimA2/SCnPPrALwOAC644IJMsri0tFSRKRI9CgvABrlwAqpQguEgwdTf1ZO+tLQ0QyycADl5dhJC8kfbm80mUkozpNajIFqtFsbjcfU7RQ5eq23quH2cnIvV1VWsrKzMzBMFkNJ8aISEtk2BxqMn+B7tVEKmv3tEBYBqreqiG3itk9DxeDyzNk50dTyl9jxigzawHRUUOA98z9ed4Fh4He2ri3YhedW9pILNeDyeGZeSbp9nvUbHo9EpuvalaA+9TteI93B+eB3tpIDHtdG5YPu+J5To63fYbXXRpW5NS9E5aqtfr+/paxcvDhi2fQ4Ds8/iM9O5B3YyAoFAYE44rr+J4zkcCAT2G05VDYX3A7g6pXRFSqkN4KUA/nirG0ioSCaGw2FFKtvt9gxBBzBDUEmk1VOqnntgg0TwGiU6wCzx1Nfal7azlaeaIgSjF2iHpxCwD4oF/ExTNjQFhJEQKiyoqKCpFIPBoCLH6tFvtVqVfWozsB4BUBdSrsSv1WpVtinp1uv5L8e1VcqA91kSXjxCYCtBwm3h3ilFc3ifGgnge0HHoHtVIzL0Xl8/f5+kXOfX95f2qWRb93uJLLsIpOKW21PqR/cxMBv9oHvU26YNbpfOs5J4F7G0r5JooPbTNu/LIxD442JPnY2ldvYpjvs5HAgEAoFdRzyLA4HAgcYpiVDIOY9SSt8D4O0AmgBen3O+dqt76BEdDocV6R2Px1VaAT2gJKhK/NQ7ShLkXnsnXR6KDmwmV/yXJJ4eWvVsl0KpVdgg2XLvuNtAku6h7do2x6ZREyXSRXHBSfNWJI3RCO7l5tqQTPJ6ro8SQv2c68T7aVcplF3nszR2XQt9XfJsb0U09bWuo66FjkvHUIoU0HB67jkSa7ZbShnQOeZ6uthUihrQcer1Kg6oWKVrC6CyzQm1RyqUvPweceB9lwQ83sPx6RyWxlYSBbaLyvD9Ubf2LkCWUBJj9jNO5DkcCAQCgd1FPIsDgcBBx6lKeUDO+c8B/PlxXI+cM4bDIQaDQUXsGF6tQoJ63j3SQEkmf1fi695vJd3aHkFi0Wq1MBwOZ0LT3ZvtpJpRBRREWDvASRvJK2si0OZScUkVFtTLzetoo4aZlwQEnQO9huJMSqmKEFGSWiKaPmdbwUUFzpPaSgLK9VeyroTQybdGr5QEALchpVStpd6vY1PRKeeNsH8VAdgmRRmf07rICF1f2qt7tZTeU5pP7U+JtItl/PFoIL1P95MKDbpe2kdpPevm0EUJt01TQvS6OnGD/dfZqfDoia32qwtV+xnH+xwOBAKBwO4jnsWBQOAg45QJCscLJSiDwQCtVmsmDL3T6WwiFyQ/JGpaUBGYLcoGYKYYoHuJHRrurSHdJS+8EnMXKFQMUaKontTS+0r4lAQx3UFDufU+LfhXImw6NqZIKInkPKnAoB5lFU7Utq1Asu3zzHZ1zrTInkPFB0KJsAssaqOnJCihbbVa1ZhUqOF+Kc0hf2eKiUfQcD11LDp3JVKtkRpav0DHyfXTyAItoOgCgc+l77vSWnr6gu8jn3tdH/+cv3sUhkcpeFSA1nDguqkQ5P24kKef6ftcMxUhdK7c9rrImUAgEAgEAoFAILBgggK9xepB5R/1JHia3kCvshYxVKFABQV6l1W48HB3QskvCWK73a6iFJTs01YKDEoYdQyMVNBaEEoYOR4WpaQ3vhSJoORW/60rjMcxKXlSkk2hgvdxfnRdOBe6Pnodr63z6HK+l5aWMBwOi+sPYCblpRRFUmpX2wdmySuFE+1D51Dv1XuUmHuqB6Gh/ErI9T6v3cD1ok0eYVCKAuHnJdt5rUdulIQFJ9e8trSWJSLtdul3rDSnbrdHjmiEhl+j93oKk0bLqA06fr3WIz5UbGM/pSiLkggWCAQCgUAgEAgENrAQgoISAHoPvcgiIxacbJQ8le5ZZFtePM89xHWh4sA6eSTRpbBB7z4JGW0l4VaPKomlFgj0goZaH4G2UmTwwne0nx59z49PKWE4HM7kuKuAoMICvbaEz6m+risGqNcoyVSvv0acqLed1+k9tMM92yXoWHQuSdzZho/RIxnG43GxhgWv8YKgmvpQElK8voCSeBU56lJTFHWe/1IEg9rMa7zmh97jAkWdTbq/OB5eUxLmtD/uTz01pDRGjULx/vT77+lALs75nKjIqHvO55P7pq7NQCAQCAQCgUAgsIGFEBSADbKqYfAakVAiIe6l1X/1Wraroem8hu95GoL2oaSI14xGo+oevd49qSRBTH3QiAMt9qiERwlNXWqD9klRg22qaML3fU5IrDT9Q1GKtlBPth/V6WvpXl8nwToWF3X0WEqdSxVElBy6xxnYHDLPa5XIl0La69IzdC59TKU0DA2p5xrxMwpBGolDr7uuj7dXt/81sqG0LioQlO4HNq+3CzMenaGflcQqb5+/c9yc65IYVCdy+Pe9biwl0UTFD0bj+LNA2wohIRAIBAKBQCAQ2B4LIyiQjCjxV4JT58XV1AEn8Qo9RpFQouJHLCrpJSFhlALbYpQCr3cCREHEvaRLS0tot9sz92g0BvvW4otql49RibV6z5VEljy7FBo8BUGjJ7wdFXrUFtqhfbkXXes16Ji4ftq2Xqfjcg8359Nz8d0mFXGU+HodBx2PRp/wM60voSKA1u3gZ3UEnmMniXehxPeTzilfq5ihopaP2393ocfnUr+HPhcqCOg+dZt8/CXC7gIH116FNb1ehQ2PWvC5L0GFBRX1/Hvk/QYCgUAgEAgEAoF6LIygAGx4vjXkn4SGYf9Khkqh5IQLBJPJpCLOWsOAn/GeVqs1Y1OJbKjX3sm8Ep3RaITBYIDRaFSR3na7XUUmMF1Bx07yRTtK6Rdqg5JiJYC8pi4H3D3Omg6ghLHT6czMaUmwUa8zxRnOnadpqFig49N0Ah+b1ipgRIeSSx2nz5FCRZqSKEGbdR51j7hQUhdRwN91L5TsU2GBp3PURSM4XGzg3mOBSR2/7hGdN2+P66AiV6lPJfDsl/PnAoaTdp0HXx+KSfrdKM2DigMqZJSiGHw/aJFUCkTett4XokIgEAgEAoFAIFCPhREUSHpIOD1awUPXlWg7sdY2NUzfQ7kJv0e92Oo9JjHU0Hltw3PsSVj6/X5Vf0FTHdSzrvaq97cU9u2eYRJ9EjKtR6DEjf0p4XdPOe1nHwzPd5LK+5WI8ppSGoKLNx5VwPt83XRu9T2uhe4HT0dRKJHWOaoTXPQ+Ja+liBSfDxJWPSZUr2F7nrrBzx1Obj233yMM9Dp+L7Svku18T9eUtrqQp326wKfjU1s1ymS7uXbRaTvoXnA79dlAkU73PbBeCFTv0zSlQCAQCAQCgUAgUI+FERRIhgeDwQzx8DB4YMNT7uHWfK3eZRUDlAyTgJbC9bXugBIyHrOoUQV8v9vtotVqodPpVHYOh8MqQoFtttvtGWGh1WpVbbq4QCJWiswoiSmam67zp2RYSbx6lf3oQ6Z3KBktEVkVAzS9wwUErWegKHnunaxyPkvzoO1T/Kjrj15vzpfPex1p1n9LtlGkcds0PcChdql44552t6XODifU/rnXK/A2S6Cwp3VMfA8Qaof2ofZ6ZEtJlOB7ujYlYu/vuQClUIFEozZ0jBR/dC/sRHAKBAKBQCAQCAROZyyMoEDCqz+axz0ej6ujGzUtoY6suRdWT02g95P/si8N1yfBO3bsWGWfk0PvWwUD9jkcDmdqKSgp07x+9kn7lciVyI1GFegYNCLDPd8eZq5eaJ0Pr2/QbrdnwvFLJItefxcISsTZUYpkYJulUzRoj0eJkMxqyL4W3KTXmXUwPPxeUze0TRV2SjUKfK/5emkbnlKhbZXEFW2zNF8ecaARKBrNooLbVlCBSIUA3usRNFrbgvOh0FobOhZNU9C+VQCpExxKETwqqJWiFFSo0T2i0TWe4uEiZCAQCAQCgUAgEJjFwggKJGs86nA4HG46npBeXz0toZQP72RWCYyCHkmmMCiJUZKuooZGPyhxI5zEqzigodYUEkhwlTR7kUTaz6KGOk4SayfYSn6B2aiOUmqIE/06jziwUTOBXl224feyXSVqnk6xFdn1aBPOk7apqQtuJ+1TbzSv6XQ6Mzbwel6nAgwjSkqkU6MgdD9QJNK2SmkbpTkuRd6U5od7V0myRgi4AOSpO9q3Rjj4vx7pUbLJ16okKHl0xFbfS90bGmHgIo3eW2ej9lUXMaJ9+PuBQCAQCAQCgUCgjIURFDwsn4KCeyOXlpbQ6XTQ7XbR6/Vmiiv6H/9K0j0UX1+zbQ3J9lQJ/SExUTJUCgXXa2kHx6CiiJMi3qdEV1MK/PpSuD2JsNqh86HkV4mgtqNRG04GOQ4VFfQeFyx4n86/58m7517BNhmd4NC11DFrAUdGGZCI83MF58ajHXTMvE73ivatY1F7VEhRG31eNcJF5680H2qfz4VeW/q3bv/q90CJdinKwMfL/VRqbyfREf4989oSLiLqntU18/78O1OatxIiQiEQCAQCgUAgEKjHwggKSo6YKsCIAJIDkolut1udlqAnNmg4uhOLnXolXVQgwawLf+bJEErwtD0di5K0Vqs142EueVr5HtMbKB5oQTmS4pKooFEKjUZj00kOdevg88DjMUskU+EEVdukKEK769bDC16qh1qjG3wM7smugxNTJ6Qeuk8hggKQF7D0iAWHigpb7UONJvAaIroWpTnnvxxLSdziODSCwUUTvbaupoP/rveoUFGal5LIVJoX3YO67voZ94qPwSMQthMzSpEMdZ8HAoFAIBAIBAKBWSyMoEDCRk88SSzJOI/V0zQBFjXke+7Zd++vF3JTEloK0VaCpO9TxADKR1aql15rGyhJ1ZMJ3NOq4OkQhKcPuOiihJt2qjdeT19QEYavSYCV1JcEFa1JwAJ6HonAOVAhRG3zeaVdWhBT51gjSbQt94grdA29P7VXf/dTIlTQ0fWuO1bRo2DqxBtNuSiRe/e4l6CfU1QqnZCwFcl2McAFLq2DoIKF3+NruhMyrmMrjdWjCbxffu7RONqORxP5nGzVfyAQCAQCgUAgEKjHQggKJAQepUACXDoKkWkDLNKonm0NcQdQkSwP7XdvJokdCTBQruLPfH6eGqAEjqRLSQmFkeFwWN3DMbDPUnoGx6pj0vZ1jtR+JeDqkdYaFZrbv5WXlvdppAbb5vW8R8URjSpgf/ovUI6S4Lz4sZP8TAk9IwYo2nh7deHsddEmJWGJAgaAmeKZfmKE9sd2dF9QdNH19Hl3D77PYV00hO4JjSAoCRS83usdOKlWUcQLKzqx132pNpaIuZN4H4deo2Mr3avjU/FMU0rcVp9rnztd/xAWAoFAIBAIBAKBrXHCZ6KllB6WUvrblNJ1KaVrU0rfO33/J1NKn08pfWT688Lt2mK+Pwkb36OYQCKrHlgKCfxxEit2VoSMIgRJIk9gKHlqCfeS83e2xR+SRxU/SsSfhJnjpajgxE8JnKYJkAzyJIy6+gZK9iiAdDoddDqd6rSMTqdTzV1pfkqh9u7pp4ddT4hwcUjHrIKDtucixla1MQiN8vDQf7XDPfZ1ZNEjDLy2hs63iiOlmgXap66nC2O6Rvqj17Ev3W8uDqjgw++M7l3/KZFsnR+PeimJJD5mF5NKa6tr7NEMpX3g4k9pH5bERp0vtV/n3O1XQUz30KJjN5/FgUAgEDh+xHM4EAiczjiZCIURgP+Yc/5QSukMAB9MKf3V9LNfyjn/4k4bIiltt9sz0QODwQD9fh+DwaDy8rNegUYnkCBTIAA2SJ2SeGCj5gAJmBKlOq946Xclu0ooNTReixpqTQj2p8RV23dvsBLbkodXQ7vZnnpaVTDQdjTKYzgcbiJ1StJ0vH4N++OY9HqtO+Dva+SIe+v5vqZI+DpoVERJUFGByudsO+gc+vrSbifsW9VLUEFBoZEiJQ8873U7CI1sKQkb/trTZ1wwc/GOPyqgbDWPun81OkaFHl7jwkpJvAJmI1lc2PPXegqK3lMSR0pz5fO0T6IUdu1ZHAgEAoETQjyHA4HAaYsTFhRyzrcDuH36+sGU0nUALjmRtjxVAVgnNoPBoKqdoHUISh5bJ7NK6JWUa00DJccuDNAeokQ4tL9SnQO1A9iIuih58NkXSTDnhMKKE9bpvG+aS86Vp2EowaatfpoA+6LtTgT9VIdS/YPSax4z6SjNgRYCLM2/izXaDu1S4ttoNCqb9ZqtUPJi65hL9SR0jKWoBRUgVGwo9eG2umjDddT6GVuBe517QvdBSVQg2VdBQ21y2ynOlUQdjzLwufF1dOLv0QnHQ/BViKGNap9GgvAat2U/YDefxYFAIBA4fsRzOBAInM444ZQHRUrpcgBPAvDe6Vvfk1L6WErp9Smlc7a7X4umKcEiwfUTDDRfWosz8ncVHPQ6L4QIbD7+T73ITozd61kKya+LLNBCkxQ1SPIAzKRuaNusvTAYDDaFeGtou4a+q81uk0ZG6Hx6mL9ey/ks1T9QwUTH7PNU8gx7WLkXCyyNQ8fJ61RQ0nFSbOp0OpuiFRQataL3leaKdmqhSR27RzaU3nOi7N7y0phULHEhRsfhpN7nj+A4PXJCU0XqCLzOr+4HPdaU3zlGD6ndvrf0fc6jpwLpmtftjzros0DnqjQu/uvrtl9wss/iQCAQCJwc4jkcCARON5y0oJBSOgzgLQC+L+d8BMBrATwCwBOxrta+uua+V6aUPpBS+sBwOAQwe3oC6wQ4yZ/eu268EA8VE3iNRjAoSSgRNaLOK6kkSGsauNdWSb4SfI2ucM86oQTU8+QpRKiooARbCR5/eB9t0rnzsXp4PV+XxBkXS7heTkyVFJdO2ND+S+H6KaUqDaau8GXdnOmaqfCk0SA+JxrJ4AKIvlbyrGLKVqIJRS8l4KW9pnvJhRyKNxpRsLS0hHa7PbMupb1dEjU0akH3l77PPeQRGS4QaJ86P2qnr40LCs1mszoOFpiNAiI0UsnTKErij9rn+2inUTP7BbvyLEZ/r8wNBAKBA4d4DgcCgdMRJ3XKQ0qphfUH5+/knP8AAHLOd8jnvw7gT0v35pxfB+B1AHDo0KGsJIZE1UUFL0DoqQ8lMufeYGA9GgDATL0F3uc52H5Mo36uxEPD1RmJsFUOfyksnv03Gg0Mh8NNxMeJldqkn+lRkUoIPaxba0bo3JYIlxIzhsoDQLvd3iT4+D0qQCjRLHmbecKDpqHoenuxSK0HUSrepzaonX6th7+zP7+W0OgEHa+ugbavY6gTrXTu1Xa/xyMNJpNJVVtEhQcV1zSaQ+eS13PONSVHjxtV6Jy73VwbFZ/0e6Jjc5FJxQXOMdt3Eahu3uvmUoVATxVRoUrnfT9ht57FZ6Zz90eeRyAQCCwY4jkcCAROV5ywoJDW/+L+DQDX5ZxfI+9fPM0lA4CXAPj4dm0peXTSPBqN0Ov1wCiGkge8FJ6u3kWKCkocS2RX89zVDpIsvl8ifWqz54tPJpOZoozaH8UQpjSQqGqUQV10htug3mwvMklSyPe1jgTHqJEM2q6KLToXvE/FChUldD1JMukN93HpaxZxdM9ziYhzflnfwdfOU0CcZJYK/nGsOtceiVESqhROSH0NS0UmtfYGbW232zP9qhij61La/xq94uKHiiYa+aDrpfuK15b2Y534oN8D2qP7VMfic6H2Kfn3ug86Hrfdo03URq+noHuj9AxYZOzmszgQCAQCx494DgcCgdMZJxOh8KUA/jWAf04pfWT63o8AeFlK6YkAMoCbALxqu4achKrHdDQaVac88FonA3xNcq6h2+qJ1RMf9HXJg63tK7lRb69eo/czwoDEScnoaDSq2lNBwT33/Ny9xnyfhFajF7S2BEkgoxMoIPi8b0eMddw6Bp13FwiciDkJ5lrQPv3MRR6fB0/zoH0UFXxdCLdN18U906WjPLVdL0BYmi+/p9QO7eAcbhWyzzEoUVYbXBTzdSJ0ntn/VqBw52JD6XvI6zQdRIUmv5/3aKFPH08pMkP3j86hfid4r4pSLgRyzkv9laJnFhi79iwOBAKBwAkhnsOBuaL5kHORzji89UW9PkZfuGPrawKBE8DJnPLwDwBKLrw/P962xuMx7r77bpxxxhkzf9jT+02PYsmT6b+rl5zvKQFRwsowcSdn3o9GFaiXlv00m82KvNFO9ulEtkTo+KOnLfA+EkTPAS95nD2fXCMxOM+0V9M33AOvbSqB1bDxEgnk+JT0+5qoEMH2lPj6Omy35poOoCH8Tg55rdrvc6Wh/t6fkuWSHT5nfK12lQpZEmyf9mrKgnr2dTwUiyiKdTqdatysiaB26nj9WEgVInS9CV0/XRv/7lCM8UiWUsQAf1qt1iZBzcVCtUEjFtwO//6XxAXCU1xK/e0H7OazOBAIBALHj3gOB/YSaWkJ6TFXzbz3hS89Bw88cuu/W7p3NnDZn23UBU233IHxffedEhsDpxdOqobCbmE8HuOee+7B4cOHK3LNFAFGKJRy70vh6k4qlBR49IGHiG/1r/ZDkuKh2FowbmlpCcPhEK1Wq3pfi9spiXGSVvKma5SE13nQsbmH3z31Hg3C39k+U0v0erardRlKEQ9ah4A2lTzD/p6TWe0XwIww423oetRB59T3hM5XKWVAx8X7S4IAoZETKnAofO95DYwSWXexxMH1oajF6BffFxwP55Wf+TW8TsUo7hePEFChSNdFxR6fb7eFdpfSe0rRGDpPOue8R4UR7Uvn2kUn74fvBwKBQCAQCJxKNM44A6MnXrX9hQBGK0187vlO4bb/e6V3wQSfesXZ1e/nf/BsnHHzRhHQxj98BIi/ewIngIUQFCaTCfr9/gwxIYHS6vMeGQBsJqh6vxNa/ZdkS4miE1/+q3UHvJgfUydolxd7Gw6HVUqDXqOkS0mW3+8kT0UG/l4iYdpHydsLbHjFVegoHRlY8lZrH3yv5DVW20rFI52MOnHXtSytC9dRUydKhNxt1znUufN9wP79uq2g86bzqv1q4Umfn0ajgcFgULXF8ZcIsn8fAMzsbf0euICkdUU4dhfp1IPv81uKIOF9pfnl/S4+8No6kcYjIjQtyr8vOme6h/y54POnY/N+A4FAIBAIBE4F0tIS1p7/ZPTPauCup+5t33c9BbjrKZ3q90vOfRrS1F+0tDbG0js+uLcGBfYtFkJQIEoFFjV824mVhvmXog2AjZB49ci759SLxynUg60eaxU4NLVAPbocE4/D4z0UIVxU0PHyXh+bk0ONXNAx6WsXVXx++KMF/EqE0UPwlYxpvzzhwsmvCxs555moBy8IWefd5ms/JnM8HmM4HG4ixiXURRmoCFM6UWCncIJfqpVQEir0eEUKJS6o6DVKmLl+XB8KC3U1HzxyQve372fOR53o4uPQaAAKCx7VoNez37q14/v6fdFTIDRKoQSPTNDvn9vONv27EggcFDz4Tdcgb10+JbAHOOstH0buxxGBgcBpi5Rw38uehrufvBjOi88/W6Jn+0085MJrAABn3LSG9E8fnZdZgX2AhREUPPTevY2so6A50du1595hDedXouBkTYs6qmjAtkq52J4vrt5hAFXqhkcnlASFkteVnzEvvhTi7X2qfUqiVCDxKAQlXipucIz0JJPccT5K6Sf62qMx2C/bU0HBbXB4FIue8KCnDJSiH7YjiUokPYplJ9B9VycElXL2Kabxdy3UqTUYPAVC51YjDTiPvLYE38MaQbNdsUbev1UUCMdB8HXdnHqNCL726BedM7dD55T9lOqOlITFujEGAgcBqy/5EqxesP4deOCRGXlzDdjAHqN3zlPQGGWc92vvnrcpgUBgDrjrVdfggUcthpjgGHcy7nza+uv7rz6ElS9+BgDgor+6HaPP3DQ/wwILiYURFEgQlHBpTQJGKRDuWWQbTpLU61oK5+dnGvnA+gelKATNJS+lOShIkjmG4XCIwWCAQ4cOzYzXUwH0Xo2w4L/D4XAmV53Xsw8/lq9E1DzEXUmutqnebU1xoN3M1y+RaN5TirTwUH967kspKrRFw+N1rZVct1qtmSKeOh6NwtAoC08nyDnPEGEdOz8vRTj4HqBd4/G4EidUTPL7GdmhtQ04x1oPQeewTpSirSoAcQ6YSrTVONingvOoe8K/Uy4GTCYTtFqt6r1S1IeKPRpt4tDoEZ0f3y/+HChFW7gYUtprEaEQOChYe/HTcceXNDDuLOYfrqcrjlw1ATIw+r5n4qL/9k/zNicQCOwhvvC9z8TRh+/cYTVPDM6eYHD2+uu18x6Kpd5Dq88ufs27o+5CYHEEBa26TyjR0fBv90QqEVGSyevb7XZFkErRA05IPKdaPZmarkBo5IB7bBmGz5SH8XiMfr+P5eVlNJtNtFotdDodDAYD9Hq9TVEDCv1dibymDDSbzZn8excRnNRTGKAQAWxEYbA9zVXfLmzcfy+lkei86Xrx+kajMUNC+/3+JvLHHxeCdNyaXlDypCuZ1ggJ1pbg3PB+CjxKftV2F7D0fp0fPV3DP/N0Aj2VwoUr3YeeMlKKEvH12i76ovSZ7jcVeIDZ4pkqxvmJD1v14/axHz3tROfJxQUVIV14ol06F6XvfggJgf2O5lVX4KaXXVz9PjyUMQkxYTGRgKOXTXDLjz8T7fuBC385hIVA4KDj9v/4TBy7ZFI+F2TB0T9vAk3UuuXHnrHpmnOun+Dwm9+zd0YF5o6FERTuvvtu3HPPPWi1WpuEASUmToLUa+miAoAZsqneaZLuUlE27YO/u9DhRNgJk7bJEx5Go1EVpcBxdjqdSmRYWlqq0iLYtnqKfVy03SMKeK9HJijJdfLb6XRmCJzWaKDHX4ldyYPrUR86V/yMoo5HEOixmaw5oWvCUz84Dy4Q0I7SXAGYKdro12vki84j+9EjHTm2uugEHZN7+N1Wt9FTFjh/FFjULrUTwAxpp9DifbrYwz61Lx2Df8+cjLuNGlGhe5N91M0HUbd/fN5KIllp7rQt/7xuDereDwT2C5Yuvgif/s6LMO7sD89XAEAC+ueuewBXf/YZOPtTwDlviDSIQOAg4vbv379iQgn9czf/X3PH0xLueuJmoQEAUgYu/9F4vh00LIygcOedd+LOO+/EhRdeOEPOScxIcEnONcyeRKaUOkBxgFEKnkLA0G9g9nQC9YIqUSt5ubWfUl62pj4Mh8OKHFNUYKi7jlujCzTcnu0rCaaNHi7vYeM6T3ryhIsynp/v0QC8RmsYTCbrJ3WwH5I4nVt+Bszm93uFf9qo/XDNfX1c/NFIBV3jVqu16VhCXUOtUwBsEHT3gKeUZqJRVMDq9/tVVATHwLG5aOH9l7zlapN/pukbBPc358LHWkphKAkPul6lz/y1RgKoKKd2AZgpmFlqv4Q6wYqf+dz5tVsJA3VjDTEhsK/RiNSG/YrcAMbLGfd+MXDvLzwDl/7NCJ2/eP+8zQoEAruIcQcHRkyoQ17KGNcxzAzc+AuzYsPZ1wMP+Z8hMuxnLIygMBwOK0JKIgbMkiAN7VfSSjJOoqw54u71dILi4dvABlHx3Hp+pqkQBKMJSrUd2BdFBSX67Xa7Irx6uoWSLpLRVqs1Q555XV3euRMuFR40UoFzo+RcC1PqmCjo+PuepqB9OoHkfVzjwWCwyX4KA0qYmRJS8ipTQKFIo/Pu6QB8XyMQOE/D4XAmQqQUXq/1EBhxUUovSSlVQgb3pBLtulQRXVMVqVTk0P3pdS7qUEor8j49oqRE6LU+h39vdM+o6KQi1W7iRNrUfVkX1VD3fiAQCJxq5AaARsYtX9kEvvIaPPK3jiB//FPIWwjTgUBg8fGF730meuef5tFjaV1wUNz3GOC+11yDS/9mgu6fvT9qMuxDLIygoCDpcc+uk1MStqWlJbTb7YpMkoC5t5TihB43p0SRxEfTBrYrFshQdD0NoU50UKh3/9ChQ1hdXa1EBQ9pV4LLz7VGBIm3Hieo4oZGWGgIunrd2Z/XFdDK/CTbGhLvHnyNplCCqZ7pVqtVG2rOkziUzDGaQsPp/b6c88wJHCT6LGDpgkLdSRJMgdBIBbatIf0+bt2TnHtNGwHKYfx8X9fERaCSGKLRObRZ00YctE9t1zn0WhEegbAVua4T4zzixkWFOlHC96D2XUq3qYtiULHQ7S9FSZSExUAgEJgbpo+gT738TABPxaNfcyvyA0cATJ+pDz44P9sCgcBxodHtrh/XG39abMZ0Tm59TgOXrz0Znfd/GuMHHwxhYR9hYQQFJQhKoJU4e2h+ifwoAVHvbV3utOeFkygTSm60oj0/U9Ko0QdKZJzYkJyzzWaziZWVFXQ6nRnBQCMUlGBpDQSNKlCBoES2dExKfN1OTQvh9YyOYLoGCaMKGXWh/e7xdkKoHn+OUfPyOS5GVbAehY7VI0q8fxUVdA/pWvr86P0+n6XPdU5072jkSWk9dKxaW0Lb4rzWkVyeTKKoEwHq3qe9WtxS++TeK0HXWEU13ZvbwdeE61kXQeCRITrHJXvqxAL/vgUCgcAi4pPff2n1utFPeOQv31z9no8dw/j+B+ZhViAQ2AHu+pYn4djDTvPohB3gpq9uAV/9GFz92w8if+gTISrsEyyUoKDQ6AKG2esRjEqGSXgZpaBEQ+8pRQxoyL+TU7VLSbBGLKSUZmo6aHSDpiKMRiMMBoPKm6z1C1iEsN1uz9QW8HoFSipLRM09zSoalOabxQZVoNE2XThRTzrnlu9pdIB6wz0KhOui17uQoOIGMBuhoKSZ/VNYYFTCdlCSryReo0Z0jA4n3FwnJ9s+HyW4iOW1B7Ybj66bR1WU+lK768QmhYppnm5Tlw5UZ59HHvh3T8U0Rlt4eyVByttjm/oMKQk63P8qZuk1pRoTgUAgsAiYdDI++Z8uq34/89MNXPy3dwEA8q1fiOiFQGCB0LzwAowOJQBBjneKT/+rM3B143HIH/h4iAr7AAsjKACzIeEkcyR8GqngFe3VU65HQ5Lg8D56XzWyQIsYArNhz0qQ1HuvRfdoN09n8PQHjSTgCQ+9Xq+qncC2KIjoyQxqG9sYDAZbRiA4IVRy5CRMUedFV8+tE2euBQUJ3quvtRaDtgmgEn/4mRde1DFwfRkp4aKPF+T0dauDCkjatxPUUupCiUB74Ui9nyTZPem6HzkP2paO0e3SfeD1RpRIl4jxTsQO3U9K+L1Nrb+wVds6ppJNKugAmDndQ21SYUvHq7/zev9uu4ijc6RrshNxKhAIBBYBR66e4MjVDwEAXPyP5+LQrWvrH7zvWmBSToULBAJ7gwe+4ko8eEU4KI4Xn/7mQ7j6Y23kfn/7iwNzxUIJCiWQtLrn2smMh98DGx5eHteoOfgUKDQMXiMeXGgglJTwHhJhfp7z+jGHGilBoWE4HFYh+4yeIFHmD+/TYxQ5FxyPRgxoUUolW6XoizrU1Xro9/szqRXapgsmnC/tS9MZ3FtNEqy1HrQOQ8nbzTUurYN74BVbjd+jMzS6BcCM8FMSLTjXTlhL/ZdSK3RuVODwWhe+H/Qz3RfARvSG2lPyxruNPq9cY103jlfH4f/WraHOFV87efe19GgGXQu1T0WE0l4rjdfv8/Wr+14EAoHAouL2L00AVgAAl573FDSGE7Tf/oH5GhUIBAIngN5zHo/On8dpN4uOkxIUUko3AXgQwBjAKOf81JTSuQD+N4DLAdwE4BtzzvftsL0q/F9Joh63yGgDFxVINJX0aci9RiboZ2yr5KEn0SgdR6lEVsPB1YOu3m4SVBUS+v0+BoMBOp1OJSr4cYnajpNFokR2PYqhlF6g17IdfqYigIoiTtrUzhKRpm0a4cFoDNaM4JzonKotSnApUACzkQ5+1ChtUqFHhaLSHPkcOBHl/qwLrd9KsPEIB+650jqpgON9l1IF1HadBxd/eJ2363vBox1ULCrNie6J0kkjPsecD/8cwKZ9wPXWOdaTLjg2RnV4xEydWOTQ75mPbz9gt5/FgUDgYODW5zSA3MBFZ10DAGgfGaP9tvjj/FQgnsOBwO7jluc2cdVfpEh7WHDsRoTC/5Vzvlt+/yEA78g5/1xK6Yemv//gdo2Mx2N8/vOfx9lnn42VlZWZ4/+YLqCCgocrl6IUGBEAoEorqPPQes0CzxMnUWMf/HGCnnNGu92uxqT/8p5+v1+lP/DkhEajUQkLOi4KEUqy+X5dLrvao/npnFP1zJa8t3UCg0eJ8DpGaLhH3T3dACrhRGtG0PvOtSuNUUFRwsUNHYtHo6j4owKNz6mTe+9XRS4nyiVbdR14bclubZvRLEwXIby4YEm84ee6XpwPb4vwdrS+ROnz0tzUjd9tc2j9CxXeVACkqKCRCG4ba5PQjlL0h4tibrtev5MxLSB25VkcCAQOGBLwhemx783eEs685BlbX29YuXuMw5+4G3c+68Jtr20fyzjjTe85ESsPCuI5HAgETjucipSHFwF49vT1GwG8Ezt4eE4mE9xzzz144IEHsLKyUtVDIEkgAVcPqBIzYDZKgR5HknHmYmtYuIc8E+rJVc844ekRwEahPiVNKn6Q3LHAoP4wf7/dbmN5ebkSJHRutgq9rssfpz0qtjhZLHlwtU21geknpfnSezXFhDUtNK2BokK320Wr1arWts6zrHOoRf22I7wk1iToejpG6bQC3UelNpV0avSLigwl0qp2+n4rrY1G4Pi1moqh77MPry9SOi6Tc+pwcaMEnQPueSXyW63LVv3V9aPXErov9H2OTcUJXq9z72N3gUj722eCguOEnsWBQODgYtzNuO9xx3fPkV4TrcdchN4F2+eAN4YJxy585sx7D/27+zH5yCeOr9ODg3gOBwIniTv+/TNw4X//p11r74bXXIMv+ZLrAQD3v6iB8d337FrbpytOVlDIAP4ypZQB/FrO+XUALsw53w4AOefbU0oX7LQxFh0EUAkDWuCQ3nyNJNB/PQRcizlSnHCCr9e7V59EH5gNOXeSR5A8k/SRbGouPsmMngbBYpFLS0vodDpVygdtUu8/bXZvtbZVFwrvBK6UKkE4mScRUyLNNkqe9ZLtGkFCQaHb7aLf76Pf76PT6RSJtHvbtwtN13WkiKD7RNdNx8L76CFXMUb7YTtaZ4NzUDo2U9v2lIk6L7pHU7AN3z8ORmZoaoiKQCqQlaJ8fF71O0hwLjX1QPczsCGw1UUTcVwaiaARGb6/6sSHUlrIVnBRR0WQOgFjn2BXn8WBQCBAjLsZ4+7OxNVJK+Po5bPXfvYhZ6H5gg2R4WGv+eBBLbIWz+FAYLeRgKOXTbB9fNTWuP9bn4Fv+oG3AwB+5YxfxCNahwEAv/quS7A66eCB8TLe84TWSfZy+uJkBYUvzTnfNn1A/lVK6ZM7vTGl9EoAr/T3SRpIynncIlMeGHHAkHcPc3fypYQj5/ViiaUIBSexAGbIjqYOuNffCRWvIwFXoqhh+BQ7PB2A4oLmj9P+Ou+sRhCwLSWPnhLA+dppeHfdHKk3mn2rF51kVmtELC0todvtYmVlpSLNLEjJFBUSd+1b+3QPtN5DW3TtuB5+CoOTSJ9rnR8Saa6pCgG8l2k1vh/q5pfjKHnNlfSzDZJuJfXeXkls4z7Tk0lcKHFwX7uAULqOfbNNL3Zaur4kaOn1pdQULUBZAufN9wbb479ah4P9qACmz6F9gl15FnenhdwCgUBgtzA8I2N4xsaz9LM//mSkCfDw//zuOVp1ShDP4UBg0XDN4/Gjv/tbuKj5j3hk69D0zcPVx9919uer1+/6DPCme67BjU/r7bGR+x8nJSjknG+b/ntnSukPATwdwB0ppYunSuzFAO6sufd1AF4HAFM1d92gpSW02230p+o1iTLTHdT7TNJMgtfr9TZ5NpXQU0yg91TD/5XYqUAh9m5KdVBhgn2qffq7eos1NF69/o1GA+12G91uF51OZ2Y8agfH7URVaxyMRqNNxzKqHd4Gx0ECSlKmBIvzpPcwxF4FB019YDtK7NkmRYRGo4Hl5WUcO3asmBZAm0rk2+eH5FfHqigJCb7e2rfXHtA2NPJDRQ2dG21PbSuNTW128UcFFt3zugfcbkLTfOoEIYdGK2zl+XfBhePe6kQMT19QAcAjBnQP6typ2EKoAOXQPbpVlIILSXXzs2jYrWfxmencfaOgBAKB/YnRoQxk4DM/v17LoXt3wkN/YffCmeeFeA4HtkQGsD/+pFgsZODqH/sITuTQzaUrL8cbf/+1OK95CMChba9/Vhf40of+E77p75+HB7/87m2vD2zghON6U0qHUkpn8DWA5wH4OIA/BvDy6WUvB/BHx22UeTWZk8/THkaj0Yz3nV59khglwX7qg/4AmLlWIwdUsHDb/HhKYMMr795v93Z62LoWm1PvfbvdnulDPa7qGVcBYTAYYG1trTrqUQkvgCoiYjgcotfrVcUhtZaDzivnlnPjAgjBdaF9pXXU9tgmRYVOp1OlP2j+O73QStqV7GkaQemUC08VUZvZFudYi0i6wKRzXWpf14Pvl/YIocKL73WPnlEBpiRoubjh11Og435S8WsrMcHH5dgqVcYFm9I1Om7uA42q0X3o4/f51fe51poSomvLtryIaMnmUnTFIuJUPosDgUDglCABk3bGpJ2xevEEN776Gtz77c8AGs31n32GeA4HtsLhN78H51wbasKJYnICKVLNCy/AH//9H0zFhOO4LzXwfx7x17jvz64+7j5PZ5xMhMKFAP5w+kf4EoDfzTm/LaX0fgBvTil9B4DPAfiGnTZY8hqTBI9GI/T7fayurlbeWZJUpkbwJAP+8DNgI8xZvbVeD4D9bUWInEiybe2D5JzXkxypB1WPrdQweo6BhMnTOrQftVNt4ThV3AAwU49CT1ZwrzhtdS+8pm2oTRrVkVKaOYFB502Fik6ng06ng+XlZQyHw5lTH0jeOS/sS4m4izAuZHB/eE0J93prFEtdZAQ/K6Ul6MkUtM/nR2tK8D7fd7yf9vvpB/ys1VrP7/Lii9q+7hP2P5lMKiFH0wW02Ci/Z94394rOrQo72pYKTyo6+IkV/p3TvUGRi9dx7kvfSRUldH1KkR4aZaGROlyzUrHLfZLysOvP4kAgENgzJCAn4N4vzrj31U8DAFz5B30sffB6TNbW9stxcfEcDmyJ5hBIYyDvP71srmgO0nE9A5rnn4+01MSfffBtOAm/OQ61B2gcOoTJsWMn3MbphBMWFHLOnwHwhML79wB4zskYBawTCXrTU0pot9szJzUo4VXSrV7aVqtVFXkENkjYYDCoCEgpF1vDnz0UWk+SALCJxJSO+3MiRMFBCTqFDhLyQ4cOodfrVfbovySs6qFVGzTkn+2yLx2TtsXr2+32Js+0joX39/v96jQKPaGBRF09y+odVm+5pj6srKxgZWUF7XYbq6urm/ojwfX5VMFEIwm071artakWQCmChf1xb2nNCBVPNIVB7+c8u5CgAo3vMZ8fFUNUKNHClCklDAaDTcUOFWq3CmjsRyN0dJ65H5kuo9eyPYoauud8n7A/TS+qKyTJMbBwKvtW+3Q+df78dxWu2K6nL6iQx/e1n/0QlaA41c/iQCAQ2Gt85us6wNc9Ho/6n/cBd9+HdPepOJRs9xDP4cB2OPu33o3e9z4TRy8/keD90xdX/sSHsBM5oXnVFUCnjV/9i9/AZUuHt79hG/ztY/8IV/zyd+KR3/6BrS9sNNE8/yEzb+UHjmDSO73qMCzkE1r/uNcTElicUQUFJZwaneCpDO7Z1igCgmSORMijG2ibpgFo2gLFhOFwOENq68ZFgcTJHz343W63Gq+DY6oLy1ab9XQLJV5aX0JTA5yga4i6evJdjFCSrOKCht9zfXiaBeeZQg3f60t4k46xVNNA51kFJg9p9/QLjabgCSIeqaDFHUtFKTlOFSF0Lj1She/ruDz8vtFozKQoMP1DIxK0Dgfb0mgDj77xe/VanUeOV1MyVHRQYYfrrhEYStRL99DeUn2LOsGBhN9TGerg+0WjbthGSYzR9XFxKBDYL8iDITp3N9A/L/5oDex/XP+d5wA4B71Xd+ZtSiAQ2GMs39EAJvVyQvOqK9C7/FwAwEv++9umBRZPXkwgzj3/CJaueDhGn7252DcATM4+hOu/ZbbPi/8h48yPbpRLGd94036JtDphLKSgoJ5mLcqogsJoNJohxBo9QMKvhE69/CWioHnWSlqUgGsEBMkjRQWSdo1QUHKqfep9KnYo8fW0DU9xcCLP9zQ6QVNB3CNLUqmeaYb/a9u8XiMKPF2jRCBdlPBc93a7XY1RSSeJNAto+vhoj6ZqeJSAhud7kUn3/qtAoZEipegETRfQOSFZLoXMq7hQJ9pomgfb1fkq7V39jnhfRCmFwtMv9FpGHpRSO9RutUG/Xy646NoDG+kFniLjkSO6dnqdR6aooFKKaND3FT7f3ib7DwT2I8Z33YXL/+BsXP/Kh2x/cSAQCAQCC4jDn2vgoa/7KCbD9Ujz1Grjvpc+Zeaa4Tfciw899TdOmQ0ffMqb8ajv/G5c/qMbgkLj8Y9GbjVx/becUVtk8/YvS7j9yzYOunzEm89EY7DhHG6sDTH+xKdOmd3zwEIJCpPJBL1er/LwqydRSbj+KOFy4kooadb3CA+J9txpDedX8qppA0qulXS6IEFodIISNE2pYHpAXYQC76nz+mq1fR+/QsdRghe+9PGqIOG/a/E8igWdTmemeKCuG8l+s9msCj1quoKKA15YUwUkXwcl1Upy+buSYRVLnBQ7wfW11bnOOVdh/KX5pqDh7XjRQY7Jow60n5LH3z/Tcei9FDFUWHERzIUNfV+FKLVDxQEd+3ZkXetjKHTtXSzU75YKYmpTs9mcWQsXZjwtxccTCAQCgUAgEDh1OHxzA917MtbOB275no0sonEXuO5VvzJHywBc83jc+OJDGHeOL9rgxm9cnvm99WDCJe98Ss3VQOtdH0WuOR59UbFQgsJoNMKdd96Jhz/84TOEQglznTignkUnTgq9Vtulp9q91oQSvlIahV6nfbFtRykcnoRJawzwB9hM+HUunGgSmhqiHmsXYXQsPEWjZBvrEVDc8TB0vZ9FFkmMtRijzokTfi96yb40qgBAFaXAOdIIES/qV4Kvs6+d21e6xgUhziXnoFQ4kVEQKqqoTTofHi1SEj40Wkbb8tM4SntaX/tcMQJIw/+1/dK+1xQJXUP+7nBxjvPphS31fhXAPEJBvwcu9Ph3eDt49E0gEAgEAoHAieKCD62hd353/ejUwAbO6+NZV98AAPj7C67C0Ts7+J0X/b+4prs4FSwnX/4kfO6rusctJpQwPCPjpq9p1X5+0XlPRWO4834O/8VH516zYaEEhZwzVldXMRgMquKAwGw4s5MgYDZ/3z2nGsbMa5VAa1slIaIUvcBq9sy793QC9aarzUo+9Xq1wb36GlIPYBN5J9nWfki+NWe8br45rx5dwcJ4pRD2rSI52B/7p/ebP+12G51OB4cOHUK3253xEtMWJdpax8LTQjQChGPQsHydXw3JZ/QE21DxoQTdF4w4KIlJGqbvUQi6Zioa6A+v7XQ6VR0Qtutj0f2wlWjin7tA4eIaoWKYt18i2h4JUGdPSehzkW6rU1LqIk1olxbCLPWtJ3LofSWBry7yIxAIBAKBQOB40fj7D2Ppy555WgkK538QOHzrACs/dRuecvbnitd80fLn8Y2HH1j/5bK/n767OGICANz55GWMDu3N34RfeAZQm09RwDkPeRIaw83vH759iNZfblNUcpewUIICgE1En8SU3mQl0UA9CeRnrVZrE8lTQpRz3hR2zrB+9s22lPhpDYRSgTwXA5Swe0SA2queayXiHhHhxNmJP8esxwsSnuuu86h9pJQqb7974VutVnUCh9YnYPusKQFgprYFIxRImD0lhGvWbrcr25n6UFoHtk/xgZEBXBe/VueAIoR78gmP4mBfjDLw1Agn6T63fK1CASNROI8s+tnpdGbWV8WVkvjFn9KpDLoveE3J3tIclCJsPIVDx1MXtaCRJ6W9T5tVoPP7dV9zrnR+9FhU7V/t5z0uOOl+daEsENhvyJ+7DRf/47m4/UujqGggEAgE9h5nX5dw/vuP4FPfeRjnPuYL+LUr/g8u3oXTF+aB/gufhrULF/fvwvseW7btgatbWLn6mdXvF7/9doxv+OwpsWHhBAWPBOB7Gtatf/wTngpRV/NAPaD0VJf6VqKh75EIaR0H7Z/tqCeVffBa9s+TKzw3XQkYIxV0Hnitj700j6W8cN4zGAyKYkWdrSSjpVB8t2U4HGIwGFTtUCTodrtVQUaSXyXIjGLwopsq/OgYWZvBbfHUl5JnXOe75Nn2vUEBQkUlXzu+Vlu0joX2zc/0iEatIVGKonHxxmsbqOhQ14b+y7H7d0fnt1RskvOte1VFgZzzTGSNimwqWGk9DrVRo2F0HVR0UegYtSiqfpdVjHN4pIMKSIHAfsPk2DEcunUNwMq8TQkEAoHAaYYzb2hg7ULgqb/5MfzS2e/FF7VXsJunL+w1jl68hPHy4goKdRgdyjhy1Ybd/XMvRmNwcfX7Jf/13bt2+sTCCQrALCF3r2cpBF9Jj97Hz1RsIOni9RoBodBQdNpU+leLK6qdJIYqbJDoAKhSJnhqhXtMnVBpcT8nie6hVvKsXlf2q/PV6/WK+fml2gtqy3g8RrvdrgipHk3JyAL+rlEIWmzS11bXj8RxMpnMHC1Zmhc9knA0Gs2kW+h1pdoYPj6Sex7rqXOn0QUaNaEE34UmJcQUBPQerZnBvjwqRdvRFA/uT03jUPtVYKgj0dz7GnWg+17hEQEqdnm7KqgpudfXnHdGlXAOVSxQUZA26ikdugb8l+P2dBL2pTU2fG1dZAwE9ivSh6/HQy9+Im57VkQpBAKBQGBvcOjWBnIDeMt3/OJUSNjfwvZl19yKm5YunbcZu4L+ubOc63M/8QykIfCwn/mnk2574QSF4XCIe+65pyIMGuJOQkISrqTRSXVdKoR60J04KTEEsIkU8xpthwTaw9NJqHg6wmAwqO5Tr6weOck2PGWi3W7PkC/OjXumtYglj4skcfOCfZw3kl/3oDsh5/GOWhxRhQ33Yo/HYwwGg1pvsUafECrCkOApqff8eX2fEQMKzr9+zjmhoMHfuT66Jzg36onnOLrd7kw/REkk0WtIkHWvqgjkwlbdPqYY4VEZOsd+8kJdGL+mfLiApmNSccBFDU8bUTu8MCVf6/d6NBpVa6LRQLxW29bTPbiP9NjWUlSDRmL4PKpIEzUTAgcFud/H0uoYC/jffCAQCAQOILp3NXDGLRP84atfjQuah+Ztzq7grPYaJu39F52wEwzOmgAZ+OzPPQMAcPhm4PzXvvuE2lq4vzQmk0lFREn4lBjRc8xrnDB6pIDCc95Lnzu8Yr22oeSqlHZAIq5RECVS7DUY2K/WUvCICc6VCxwAKqFAPcQakaF9p5TQ7/eL3ma2x8+0D3q1ORcagaE1BVxQaLVa6Ha7M6IPxQ8KAO12G8PhED2pWEqbldSr4ELbGYng3mkNk+eacBy6v1SoUG+/Cyx8XyNheI1Gcfheon1cP/W065zUpZJ4aoB61VWk4FxQXNJIhZJIUZcW4REFOn6OU8UaXf+tPP2cS43E0DUldA45P1w/XXdNWVFRhuk1KtYRujc4555+EdEKgX2Lp38xbnnewv0XHwgEAoGDiumfkgdFTDgtkFCdXPHA1cCRX7wGF70n49Bb3ndc6RAL+9eGkkKFkmitBq+ES72t7nWkN9VJVUlkUPKk4fYaTk7CpXUZXHDw6IbxeLwpB9yh5Jl2K1nywnM6Dk0D0fQHFT404oFk1E8V0P60vU6nM0O+SSjVG05hqNfrYTAYzBByXs9CjSSIKhCURA4l5Coq6O/aju4htVXTJNgu79W59zGq55s1AkhwfR/VpRgoiXYireKUF9Os8557dICncKjNdcUaS0IY+9a6CCW44MCx6Zyrbb6vmQLjdunnmoaja8q945E6bquKBipiqYCg0Sq8To9PDQT2FVLCpN1EDj0sEAgEFgqNEdaJ90H78yIDa4/q49p//xvztiRwokhAbgK3PzMBz/wSPOItPTQ+cN3sNTWnUy6koKCefWDz0XuE5qo7iddQcg39J/nyegbs1+0oeYrV20ni6cUMSykS3o6nU7BP98ZzDvRfHTPJqBI5CgRem0H7VVJNkLjyXs1FZ2QBo0NIjnl8ppJZ3jsajarTIEgA+VqjCvRH54BrxmNElUyql9prEqjwowKJFkBUkUSLHXo6htrp4oQKDLqfdC8xbcPHpvPkof4lcuxRKPqdUDFC95KusUc4qPCh93ItKczoXGp//I7pvnExge1pn54KAQCdTmdGEPSUB73X00+YzkARiREv7ENFAl0zF85UGFExKRDYb2g++irc8C+7218YCAQCgT3FQ3/hn3DTf3kGRocPVhh962jCw/5gDDxv3pYEThrTP39v/Pou8PVPmv3s+36neMtCCgoESQsjCpyokLA6CVCyo57JUlE+Jw36eV2ItBOrkjDghFEjA9RjrEXiaCOJdbvdRq/XK0YhkGizDydwGq6udlKEceLF8U0mk4p08z0l3Nq/hsG7x1sjIJQksk31zAOo0lgGg0HVpxJoTbWgmKAEne3RY80ilk6wvQ3uH9rAeddxaD0K34OlNBG+x9oXmt+v88j5IxnXtrRIIudBxSBFKQ1Gvwc6ByokecoO94lDv4elmg26Njo29lcS5krRAKXipmyLNmqECtvnempdFI1C4rNDbePae4SCF8P0IzIDgUAgEAgEArOYtID7vmh53mYE5oSFFBTqQrYJEgUtbuhk3tMUSCjqwphVeCgJA7RLCxiqh5Tt+zGSmubgUCFE7eh0Ouh0OlhbW9sUPq/EjyKBfkZCpqkRng7iYfwemu7jdu+5e4r1c9qr61L60bGS3HG87kHWIoYAKtLvBQ45Bg9v5xyRiJKUahFLkkxNcdE1UTGEfZba51pr1Etd+g77ca+7p/XovtJoDBdy1FYl9BQDVOxwwWgrKJmn4KPfTR+rigguJjA6RUUN/7wOvj6a8gJgRiSiPVtF4ehasm8dw3b2BAKLirTaQ/fOBnoXRJHRQCAQCJx6DM8b4QMv//V5mxGYE05YUEgpPQrA/5a3rgTwnwGcDeDfALhr+v6P5Jz//ET6UA+252STHHlNACcHGsquXmAloB6GLmOc+d2jG7aymySMXlNGImhbesKDe095lKAKFurZd4+2CgaewuHEXgmzRxb4a21XCZwKHWq7p1awiKYWMOTatNttHDp0qBIf1tbWsLq6uqkNJ9BeS6F0NKJ65+vEJv6rxxbqD9dCRSb1rHNuVaDhe9of0zu0IKOSft+b2jZFMF3XUrQO59/D+zkvpegKF9507T3qpfT90LFqWyqw+D7iPDCSpC4CQPewrpe+VlCcYvQN03BKYpnOlUfYUHDi93M/CAp78SwO7C+Mbr4Fl/7tObjhm/b3cV2BwH5BPIcDgcDpjBMWFHLO1wN4IgCklJoAPg/gDwG8AsAv5Zx/8QTb3fSehvfzGiWZ/NzJudZOKNVgKPXlEQAO9cIr8eS17o0mafIIhclkUh1/yaKFKoBoUUGSZo6TJKhEKl1YURsItd/v9WgPvq8RGS5CqEjhHnW2ybXhPUtLS1heXsahQ4cq4YXEe6vQftZh6HQ6M9eW1oj965qpp5/2qpdb29BaCiqq6Ng1vaTUv+4HpmlsFSHj6Qla7JN28zP+XtoHChVmfG1LEUBsvyQqbBXNwDnWQolK6D3Kg5+rSObwSBn/XqhNS0tL6HQ61Xr680Dng1A7uIdVbCpFFi0aTtWzOBAIBAI7QzyHA4HA6YzdSnl4DoAbc843n6xHr/THP73bJXJFssfif3ryAjAb2l2XjqB9OVEh4dF+txIb3NsLzNY8GAwGM+S11+tVYgiwQXCcNLEdeqs5RhcOOEb+695+fY/zoukR7EMFEQoAvN694DrXtEHHzOgMXZ92u43l5WUsLy9XRReVLPpeYL88VpKFF9mPi06e668ecl0vHu9YWk+NDNE5Vfie0H2lefkeoeDz59Ee2pZ76zlu3aN1hLzOXoV+Rzh36r3X/aHHYdI+XbNSSpG2VToCVfeQj8P3gKZ0uDBQak9FBRdrdPwaeaNj3i4dZAGxa8/iwP7F0kUX4ranHgYQKQ+BwBwQz+FAIHBaYbf+Wn4pgN+T378npfSxlNLrU0rnHG9j6il3MqBebiVjjALQavRKUkrk0PP8CQ95d4KrJMO9w6XQcY5DiTULEA6Hwyo8W/sukU2Obyuvq/bpxSB9jjmHWuBQ+9GCkSSRJaEjTcP6VXzhvRzjaDRCr9dDv9+vvNisFdFqtSrizde6XvxdibkfNanXewQFx8i+XFQoRSjwM/em+zq7cMXPtLgmRRAtFMrP6uor6F7w352M83UpekLFFj9eskTINa1FU0v8hAvuIbVB16iUkqCk3cdcEo80aqM0D9wr+l1dXl5Gt9tFu92eKS6qbW/3vaedbGOfYVefxYH9iXzOmTjyiBATAoE5IZ7DgdMOqdfAiz/9VfM2IzAnnLSgkFJqA/haAL8/feu1AB6B9dCv2wG8uua+V6aUPpBS+oC+7x7u6bXVZxoGroSZ1zmxdO9nqb0SQffrnUTLOIoEyom9VpQn0VZBQSMK9EejJEju9ZhG92RrVICnHxTWoBqner7Zh4oJSk5L8+VzrtfRnn6/j36/X6WgkNyr916FBhcYtB9+pmKPCwlaiLDdbleCghbq07b4mYoETqhL+8g96ho94EUXdY2VUHsEjBLq0r4oiRtqh35/vN1SnyrQuTjg/bsY4OPy4zF9L+v3r7R/6r6/Tv71vXa7jW63W/2oyKRrqeuv4lwpZcXXYNGxG8/iIfp7YWrgFKJ5/vm4+cXnz9uMQOC0RDyHA6cr0ijh47c+dN5mBOaE3YhQeAGAD+Wc7wCAnPMdOedxznkC4NcBPL10U875dTnnp+acn1r4rCLgW3n83VvvJK5EaEpEqJTvrf/yM40WKMFFBbcZwIygoP96cTolYEpGVSTQ2gSaClESAkp2erqE3k9BQQvbEX50HwmakrOSuEAbVbhQ+7h2JP8UFXQ9NWKB76uYoO/xfY0YUBFDP3MPvQoJjDBQm+rGWoqo4PxqLQ0dQwm65r4/+bleV9p7eq/bqHZxrzD1YyvhQteCa657T1MGSnNMwUb3BedDCb+2oXurNE8UoSgk1EV9eBSMjt9rUtRFrSw4TvpZ3EJnD80NnAqkditOdwgE5od4DgcCBwi//PC34uyr7p23GQuP3RAUXgYJ7UopXSyfvQTAx4+nMSUwJQ+ih28rIVGS66TS+yiFh5MQKUrigudf141DbWAbSuBI2D2CwImpk8s6oaAEJUpKTHWufH41JUMjJzwcXqMnNBqBtikpVAFkOByi3+9X7fs6KQkm+WP4ekmI0DEx0oDCAe3myRmMUuD1eo9HKijpp6igaQy+19zjX4oS0LGq4EC4aAbMiiQEx6SoS5vQIoMusOg+9fokvvd0PUp70oU9zpUKBaW0FhVtuG48LcIjJGiH7i2uS6fTqVIeut3uTL0NPTVlKwFG29/qmgXFrj6LA4FAIHDciOdwYFtc+XMfQ2O47/7G2Bb5rg6e/uFvmLcZu4qLlw5juVU+kSywgZMqyphSWgHwlQBeJW//15TSEwFkADfZZzuGEzJH6ahA9Up6ITsHc6nVUzsd00w0gB6DR5tKJwJsNQZ6p+mhZjSCkkQPp3dBgderwKJjd9Kpn2sEQR0Z5Oel0yRctKEt/F1TMCgasF8nrpxXTQHxdWLferygrpkWjvR9wFMylBBTTGAf7o3nePRUByfSutYqvlAc4HucH45BCxpqGzqv/jnv13HrmvN+9bK7977ZbM6812q1MBwOq/7VDp0/f9/HzLnh3nAxSEUJF620Pd3TGvXA9J9+v1+NW7+j2ldKqRIhVOgajUaViKDpRJxLTyXh+xq9wX2yX3Aqn8WBQCAQ2B7xHA7sFJNjx9Z3xEFDBlb77XlbEZgDTkpQyDmvAniIvfevT8oigxMxkhkPA3eS5CkRLK6mdRm8gBzJNUUEkheeMuEEvtlsVikLSvhc1OB9WtsAwIxNmmKgBeE8CkC9/7TRQ/8bjcZMCoUTJXqKaZOSR9oCYOZ6en1JVIfDIXq9XnWdhvQrodTwfw+V55jVTp0vtd0jRLi2JIwULjh/elqGFkCk/VrnQPdH3R7U4yZVmOHc6zyqSMP3/NQAFXG4fyhw+TxwbfUEEy8Uqf3ouFxo0PB+2qPEeauIG/7b7Xar2h9+j4sF3HccG4/75P71tKZms4m1tbXKfv8OsV3tk+vb6XRm1ovRMC50cdzN5vqxkBpJ4aJkKc1iEbEXz+JAIBAI1COew4EAkDMwzGO00r5LGw2cBHbr2MhTAhLR4XA4Q7S04J+TbCfH6i2vIwcaYq73kHCwLRINfd9tIBFyOzySQsP2mQLg6QXuQdY2/LUKC07S9HotMKiknkSbY1eC67nno9FoJg+dffb7/VqPMIUJDVUHUIk1TjJLBJJzy6KRLg7odRrpod5nCj6cL46H4fwcfykyxlMcGD1BgUFtobhREmxKghfXxlNkvG8XxABsmnM94tPTLuoEOl5fF+qv6S4Uvrh+2pa+TinNCDVMHdGx6gkinBePfNF11bYoIjSbzSrFYTKZoN1uV2JCt9ud+U7zX03J4J7UFBSd50AgEAgEAoHA9uh97gx85Rn/Eu983Fvnbcqu4XC7j9wAUpQnqsXCCQpKepQ0qReREQSDwWCGnJdC/vlDLzDbdc+sfsb+nagSJMS9Xm+TSOFeZocTfZJ61i3YjsjQ7pI4ot5gEmYfm3u0+bmTWxI7ki0WJGRYuhJMeqr1dAgKOD6HGrXgNunvJS8/SfhgMNg0PiWxnAfuD6+toZEpWh9BT9zQOh3q1S/Nn4bNc/59b1E44dg5N1qkcTvy6p/rXldRgAIRI1yWlpZmiLSOhXOoQpL3o2sNYFN7dSIO6xu4EKBrrONi30tLS9Ua+9hVXPCjN7VGA8ek66jCofbNudJ0II8ACQT2C/JohNaRBoZnxl8+gUAgENh7PNhv4/bRUVy8dHjepuwK3vboP8Pj7v8WrN18xrxNWVjsRlHGUwavtq/5+ACqYxf9WEMlWhr67GTfSbXntOecZwoHqieTReZK+fWlUHMlXeoZ1agIigoqfmwFJbslsr7dvZ7HrnOipK3dblfF7ki86H3WoxtJ9mm/EksXEDRywKMhWECvBM6V9uPh71pssVT40MfHMWrhQM3b579eY4Ke+jrBxj3+GtWhqS+6Bl6fQ+fJ9yvrcnD91V6+1jQcr7mgaRJ19Q5og9fz0DlldAd/eOIC0xs4z17rQNNGOAf+3fGjYbkH1E6NVmDRTf6wHxcffEx6DVFaj0Bg0TG593489B8H8zYjEAgEAqcp7r/hXPyHW7523mYE9hALF6FQgnqANfSZHnESERJ0JUsuNGj0gQoIHm6u4gND4pWEAthEPJVEukDB+0r9cxwUSLrd7sy4fS40ikLJoUcClO5T6Fx5SLmOlUSNXnxdC47Vw+51XktebG1D55zvc34ZZaA2q+CSc54pOqn2M5KF9/jRnASjHRiBwdoQOmeaDsKUF41c0BoJvu781/eozoGmoWgEgQoUnobhHnwXAjwCoLQH+LumBLlIUxLgdC39VA3de7pPXNjR/cM5LYlxCk9h0egEikLAutioogK/e5rawt/9aNKtvkeBwKKjecF5uPkF++K/9kAgEAgcUNx433n42CU9PL7dnbcpgT3AQkcoOLb6A19DmZ0MaQRAXapAKfRe6yN4DQQlSO6N1pB9JYgsbqjF33jdYDBAr9ebiYjQsflY66Ig6l6rXS52qMdYySO9/PQ26+d6v0YMaH49iVq73a69V8ejXmL1FHtUA+8prY0KJDpWFQB4j9c8UC+27ge9HsCmKAWdL43c0GgORqS4R7zk/dd18YgaTZlwuKigpNgjHUpilUeN8L2SGMR17Xa7FZHX4xm9yKGPrU408PQkt8/tL0V5MNKE7XmkTOmnZFfdPAcCgUAgEAgE6nHvp8/F/7r3GfM2Y9fwL664FpPlSCWsw8IKCkrglJx42DfJgOajl8i4e2tL3nhPAdA8fvWel/Kv9VhC9YgrOaIXVUmr1nhgDr+mcSj5d0+zk97SHNSJHiSyJL4lkqm1Ezg+nRP2wwgLTdnQkyxI8BjtoSdaeISEElNdF/3xeXMCqvPF+dMjOz2vXsftEQKEizyeHuPRFZ7Tr8KBh/x7VIumMajwpGtYQp2IpGvraQvu8dd1LbWj42Jqw/LyMjqdzkw6EtvwFCRFKT2j9B32/kvPARdrNPXHI0Z4Lb+L3p6mtpSKcwYCgUAgEAgEtsZf3PQYvKe3f47g3go/f+FH0Dg8nLcZC4uFi4tUz7OSNM9/VvKgleLZBrFVmDjhhEVPS9BTCNRjTBJDkYBtq/0K9awz/JrCAYl4v9+v0h48BUPt1LB6FQlU/ODpApqiwXH5WNgX72W0AL3QzEtX8YLkXIWQfr+P0Wg04+EukTutP+De93a7jZWVleqYSiX/vE73CdeJ4ev8TF/XEVp/z/vQfjjXOlcqhgCz+f4u5GidAI6VY+O1LiJpvQUVXygw6BzrsZYl0IbJZDJTMFPnS+dW26e9mrKjwgLtYWqQrrMLYjo3Co820b3O/lTAK9mpBRk9ksPXnmNxwUXTWuqEm0AgEAgEAoHA1li7+Qx88NGX45ruLfM2JXCKsXARCnWh7fqZvvbwfQ1x19dO8EueRwoE9KiTTCv5di+w1lEoEaW60G3eNx6P0e/3qyMX9ZQBkiwXAUrRFRyT/vjxje7BZTSAFp9TQqeRBXrygRa6pAiiJ1Twfk+jADDThtZjKIkJ9Hr7uH0d6Nn2Io1b5eNrdILWtfA2+V5dEU4l4r7XXPzifDPqQ+smuP3sh/PsJ03oHHAfeuqK7pmSPVtFO3jov66RRpF4xI1/b0uCjv5bSiVhnwA22c/xlgom+np4374fVKj09dc9EAgEAoFAILCbuPq37gVOg6zK13zouXhf/2B49l97zW9H2kMNFiZCwf/Q9xBsJVAkAE6C1cuuJIzH6CnR0H4155/Er+QJ13tIatRG97DWQcmeh+4Ph0P0ej00m81N9RTUy+xF5Dwqgx57D+lnO3pMHu8hPAycc6jkO6VU2drr9WZqJ2h4fSmdQNdnPB7PVOLnKQEkri6gOOnne0oKNYpA7aH9nJO6iAS+p/tNUxK0HfbnESP8rJRmora6WKBr5GRbU2rYts4xo1LqUh14j4pU2ocLYh65U0p7UGFMo3pKhSWd7HvqiY6LkRQaMcN9q31rOglFMr2e8+zHorrQpWPXeY0ohUAgEAgEAruN8bXXI+VrkA/6nxl3dXDX+AwAvXlbctJ43soQaJwGKtAJYOEiFBQaaQDMEnGNTnDvI9/T0PoSqVCUvLd+nB1f15GMUqi//mh4OK/3CIBSLQUXQNRD68SnlJbgHnhNZ1APrUcVqFjBedNaBEzP0JoIbF/TMjScXI+55HhIAOn5dtKoUSulddf9omkqpUgGXy8XChxKmnWetNZBXZ69CyoapeCnOpQ86L6mfK2EV8epkRxaz8DnQT39/J743HhETOm0Dn2f6+epCaX9yH1QikzQtdf9oN8ffm84Ru5XjZLQdrR/3ZMqOqjo4eMOBAKBQCAQCJwYvuevvxXXDVbnbUbgFGKhBQWHe3qdXPq1wGzdAA3H1uucVChR0ygI93CWUhzUA+2eYvXE5pw3eXlHoxH6/f6M1x/ATKRFiUgqKSRB1eKHw+GwIsxKAFNKMwReyRPb10KGWnBxMplUdR/W1tYwGGyce65ebJ8PADPpEbqeJKQevg9siEReX0PHyogOzgsLB7KgpK6jtqdrpePX0H6SWtqj5NaFCK8/wHnX9A2Fpre4OOGCiEfT+LVOiLdKbSj1p2kNpTQGtUXHtpV4oUJaqaaBpy01Go1iOgXb1wgUbZ9zzHt0jraLnlHb9bsfgkIgEAgEAoHAiaOx1sBwf1HOWlz7wv+B3IooBcfCpDyUoMTX/7D3ooWl0H4SAi2sSMJJaAi8kwh6kNmPezjZr79HUkLC5rbzM40EoG0kxktLSzMpD14PgbbThpxzVZNA7fSaCnocI73ATGcgOWPEAG1jaL5HUvCoSwoWHDvXpNVqYXl5uRIsShElLu5QVOA4SkRSoyE8JaCUh6/rzNckuJpGoCH4KhYwZYbzws/52vcT7aENFDRI1gFUc6ZikKd3+P50lN6rExFUGNC2vUaAh/7rPlCU1o1zxfeUvOucl8bB8att/l3UiAGNYqDwo4LKVkUV2+120Y6SXZHyENh3KAjdgUAgEAgETh4rjfa8TVhILKSgoN509QwrAVJCytQAkmUnVZrjTpDcqEcSmC32SKLpJFiJT0lQ0PZ5jZKTUkQFiSULHeq/JGka4VACybSeeqGh5uqp59wy55z2M29dI0C8PdqgIexqU6kwoEYaaJqBtqdzr/PYbrcrAq5r4VEG7Fvn2ee4FJ3CkwE4z/55u92uokN0Tbci/9oXiS/FrRKR1/2l9muah9q0HXROdV65vow28RQdFatKXny2W2eDRj2o6FcXQcT50VoKeq9H42i0g4oOKi5Q+FEbNWKJ4/B9C2xELmhtiEBgv2Dpogvxye+/dN5mBAKBQCBwYJHbE6RhRLAqFs6VodEITiYIvqckXMmmh2nXhXtrCoDmZPv1pcr97tHmj56MwOv1WvVgl/Llh8MhVldXcezYMfT7/U1e+pIQodETnA+SRYotOnfq3aXYomkYJGaMKtB6CRqhUCKLWjyPx01qeoD2pePWsejc8X0KBS7eaG68ixWlPaD/8iQPhtazvVIf/p7Xr/D2fYycc5L50lGnmsKi86rimM5N6UcjZ+oEFE0x8b3k0R3anl/r86Br4aJPyQb9/nnRVBdQNNJD14Rr7vU2fJ48vUjbVdBeCmU7iWQIBBYBaWkJn/zBK+ZtRiAQCAQCBxqf/epfByKAdQbbCgoppdenlO5MKX1c3js3pfRXKaVPT/89Rz774ZTSDSml61NKX3XcBjUa6Ha7xdxlFxi86CJJhL7vXmX+q4RFyYWSEc8xd28mUwH8uD8P3fY+tW+tHcD26D0uRSJ4TQEntGq3kj4lvHqSgteI4PV+soHWKeBRkSRdXDf+y6MRSdRJ0HzcXqSStjuZoyjh88jrtc6Dflaq7K91DDhvWq+hRDC1boSmJ2jOvobj+zr7Z1xnJ9slAUBtdCLs614Xnq9pFaW0AG1b94/Pgwsg2m5JXKNN2p+OQd/T77vXkyhFrnA9XLzSlBmuNfeh153QCCj93rKf0jzME3v9LA4EAoHALOI5HNgtLF15+cE/4SFw2mAnEQpvAPB8e++HALwj53w1gHdMf0dK6TEAXgrgsdN7fiWldFwxIc1mE4cOHaq8p6WQeK2Q70QGmC28R5Ac81QCfV/FBK0xoFEFLkZ439qee6v9HooFddEGOga+VxfCDcxWpi+NSwkcvfIrKytYXl7e5PnnGniFfkYp8IfvlbzEzGlX8cPnqUToVbwgeS3lw3NOdHwky7xXf5SYeqSJFoB0oq3ihgsKutalqBZ+7sIJxQQl+FqnQH80msAJeZ3n3O3wKAG319Ma9HoXgeoEC+6B0nGR+l3w91TA4vulPaJ9eBQEr9N11D61SKPPJ+HFHOvGuQB4A/bwWRwIBAKBTXgD4jkc2AV86lUXnzZe7kO3NnD/pDtvM3YVZ11537xNWChsKyjknN8F4F57+0UA3jh9/UYAL5b335Rz7uecPwvgBgBPPy6DJKedhMFJnFag9xDrOs8osEGM3RNMOJlj307+NcSe7SrBVXil/BLJLQkQHmLvpN9D4r2yP+9TL7Tmmnsl/1LqAr299EAzQsHFGs071x+tf6FjU9tcDNEUFp1TJYPuaXaxhkKHigvqnVfoHNLDrfUOfMwl8uzRApwL9/yrR79u/UrYiXBRqndQ15anBKiYo9EeRB1Z1zksff+2EhV8bLrG7NNPh9BjVVXE0lNKSn2WRCOfj9J3h2NbFOz1szgQCAQCs4jncCBw/BgtA20crJpU733K787bhIXCiRZlvDDnfDsA5JxvTyldMH3/EgDvketunb63Y5SICjBboK5EvJQolYiVeqxL6QdOVEv56GynFLHA1x4VoZ7XkpDBzz0nXAkmozE4Dz5P2o4SRI5H8+EZAk4SNhwOZ+bNIx80nJ1knYTTvegAZo5qpB3j8bgie+oJ1n44dj3ZQteV66NkUuskqN0aSaBpIRqtsdXcNZvNKpVDI2S4/ppOo/1zfB79UMrp9/XTtVZoyozCibvuER2X31MS2vgZx6Z2eJQFbSqJAh75oLbrd8DFDH7G9Bjd/yrg6PwBs5EFap+ul86rFmetEwo0AqQURbSAOGXP4kAgEAjsCPEcDgRqcMGj78JvP+aNeETr8LxN2VU0kPC0p38K73/fI+dtykJgt095KLlIi3+Rp5ReCeCVmy7Os9X7eRwgCZzm0isBd08nUK554AKF2QQAlXeaBHE4HM4IAhoRofeRCLkXnvY6WXN43QAS+kajsclz7ARa50/JrUZIeMHFOnGmjtS6l54kkEchAkCn06kEBdrPEyaUcCvp0zVhTQrOpacGKNnnvijV21CbdT+4qMOxlPaCpxiU1oBjcYHEoy888sVD+7VfFbLcptL7KlCogMVr/TPODYsYanqDijkl4q5j11SMnNcLkvI7yz5VfGJfPh+cQ9rmUUVO7LmPOp0Out1uVXOlTgQszaFDvwsaLbOPcULP4i5WTqVNgUAgcDohnsOB0x7/6uHvO3BiAgA0UwOvvexP8dT3ff+8TVkInOgpD3eklC4GgOm/d07fvxXAw+S6SwHcVmog5/y6nPNTc85PtfdniDuAIvEtFUzzcOapfTNEss7rWPJga7i13q9h9aWQ6ZJXmgTK7XOvquaVe6qApxmUwv5pJ+/XgnRa22C7yAm2WQqnVwLIsXq6A8UMn3cVFbTYoufGNxrrxTnV++wRKiUSWCKMKk6V0ka8VoCvo86FX6OvVbDRz+qiZupSBLxt/Vw/c9FD50RD/Pk77SrVZPBUHLbF6zgu7h++pnikv3PdSlEjKsj4/Okc+t7XOWg2m5WQQDGB/Xl0Sql2h+4TjZpg/6W9tsDY1WdxC51TamwgEAgcQMRzOBAo4Oon3IKvOXzdvM04ZTjc6OAVz3nnnK1YDJzoX8t/DODl09cvB/BH8v5LU0qdlNIVAK4G8L6dNtpsNnH++efjrLPOqv7QV1JDEqBeS/WmKlEiWXIRgMUFlUiXQraBjTBwFy74GUEiwiMIncg5YdJ/ndioiOL1DTxcveTtLhEjTXFwjztPa9B5rCNyhIsDjEqgiKB1CDw0nvbzHnq1eXIECSDb6HQ6Mzn+6nn3NnWuPSLACxO6SKIpHL5mvhc07aSuoKKHzXvYv5JdF3R8f3i9DSXeKt5QPFIPv+5NXRfOCYBN6R38Lmpb7IeigUai6P7i+uv+4xjYT2ltaKvW9lDyr+vb6XSwsrKClZWVag/pWmi/XFuPutDvnH9vvP8Fxyl5FgcCgUBgx4jncCBgeMhHE266+1xctnTwohOIVmriX575oXmbsRDYNuUhpfR7AJ4N4LyU0q0AfgLAzwF4c0rpOwB8DsA3AEDO+dqU0psBfALACMC/yznvKG6YhOCMM85Au92uSC7/yFehgMTMi/c50XavqBdw1L7Vw0uUSDawEQqt/ZJY8z0fm3v4SWCY0uHQvHWOV8fO8amdbr/a5oXrOA+livluu75WD7BGaNBD3e12sby8XAkrXhSSIgE92Y1Goyp8qEdwcg6UJKrooqSddjPaQcmlkklt1yND9HMlpWxbayc4fI60Xd1rWsdDoTboKSMuJvFajUDRPjlurqvuAc4P61TwWqYYlI4+1TXzood8X0k+owSYIuR7yYU19q9ROToXKqTwe0ABg0KCp0fo/NZF3ui867zpXtPUnkXBXj2LA4FAIFBGPIcDgZ2h/dI78Bdf9FsADq6gAABXtTr4kee/FT/7thfP25S5YltBIef8spqPnlNz/c8A+JkTMYYeb2DWa0lC7B5jrbWgHkYSX3pF1fNdCjHXom+ak+9kRD2ewIZnV4mW3udCBImLYyeeUPfY0g4fU928qrBAwuRHLPJ9kncFUwMo4nhuu4oqnlbhYg9JoZJnj5hQkqfX6HhJWkm89V/uBeb9a0SAR1tokcfSmpfmtSQi8DUFCN1brA+h9TjUBreL4wM2p8XwOo1CUKjIxp9Op4OUUrVnCRVN9LWKCVw3CgsqaKgtJPwANh2NqkKC1tdwUk9BQkUXrrFGZPi6cO25p3WPqGABoNoTvEcjWnTutxIj5oG9fBYHAoFAYDPiORwIbI+LvuhOvOOL/zc66WCLCcB6lMLl7bvmbcbcsdtFGU8aJBYkH/zDX4vcscAfAAwGg4qYOsnRqvUlz6UTY/VU6/Ulwq/3KPFQQsvx6PvaD4BqLE6+2YfeS5CwOukpESCNdHAMh0Osrq6i1+vNEGAHo0F6vV4VSZBzrjzeDDlXEu/edY2yYCQDBQxNAWDbGgnB9jyawqM4lCB6yosTR50PF1E87cGJJtdVCXgduL8olGhUjYP9+R5R6LxyPnmv3qMihQoE7nnX+1utFkaj0aZjIj2qwNNKdF5Kc6yRFComKPHXYqslgUznmsKViow5Z/R6PYxGI/T7/SrapbQ+S0tLGI1G1XzoGH1MiyYqBAKBQCAQCCwyWo0JOqk1bzMCe4iFSxLeKl1AiY2TPCUxGgK+FTSKgV5RDW3XSAVvs1R9vi6NQgliySbarKIJ79M2mV9eCsf2qAW+5/n27IORG/1+f8ZrTS8vx8brnAhzTjzyQGsnqB0a0s/oBBUR+EPRQFMfNIqCdmgdBkZFaAFHPSKUc6yedtpdEhx0Pzl0LJ4OoIRU92MppULX3SM4ttrHmu6hEQjct7pnvJ6I7gcXSnyMGqGgZLvUphN/tVujCTjfnAsVkzySQNM2dA8QusdcsOGe9e9H3Zo6tvu+BgKBQCAQCJwoUufgFt5cfviDeOfj3jpvM/YUz1ke40ee/9Z5mzFXLGyEArD52EfN7S4RLiVqJTSbzU1h7yooDAaDyoOuhJTXOxFzUcOL9vH9UgFJPUpvK48vCWSr1aoIt3t3nZDR4+5z2u12sbKygqWlJfT7/YqEUlBQ+zgvJW+yr4mG1wPr5E+90lo4UEPbVdAppa94eL7Ou4pLtIHzs9U6Kbl1T7ST2Dr4/nIhidewLz1Wk9dreokKCiWPP4CZeQFm02w4lz7nOk+aMqPCiY5Jr9NCjlqosLQHXBTw+dBUA0az6HeE73GcXkvD2+P60p7RaFR9P7ivdV/ptdqvptOo3YtUNyEQCAQCgcDBwmd/7MmYtA9eBGRuAGcs9+ZtRmAOWEhBQQmWh7Br+H4p71kJvRORUmqCkiAt4uih1xryzfs0BJ9EyO/XQn5un4+Z/7JtJYwUQ7TWg0cM6Ptsl2R+eXkZZ555Jrrd7oxtWhNB+9Z5clv9dxUKlAAzjJ3RA4wO4JgoUjDvnfOmwojOs4pBToCZeqHzwTmss1v/9UKTulZe48A96y4iaJ0DbV/rgmhEBICZfa1RCKX969EJngbiggujOGgH59rrOXC/qJDA4plcN90fJfGrtLc5ZhWcdI/q90PXW+eqJFLo2Ll3tAirRpowzYF2lvaE9sPIjMFggEAgEAgEAoHA1mic18e7n/CWeZsRmAMWSlBQQs3fS6S+RMI0F5u59bxOjyZUUuGeXRIRXs9+6VklyVKiS/JDu+nxdxLk3lslou7hJSmiXepJ1dBzrQmhUKLLiAtW4WddCoaJe4qEjoX2eLi7eogpDNBOHRNJPudPjzXUCBCSWx4dqSSe1+nxllt58rl2Ps8e/UFCz99VqFGxw+eUGA6HMykWbF/to6jikQMuevjpAvp94L8aLVNKkdD9oeuj865ryX9VSGFfGlmxvLyMlZWVas2Gw+HMvOu8qqDC/cC2S1FFdfu/JEq40Kj3c8+Mx+OqfoJG89StoUZ86Jh0/2rh0EAgEAgEAoHAZuRmxlUXRXHC0xUL+9eyE8FSmDowS7ZVdFCyR6HAw5o9zcDb1nZ5MgEJk7apUQqaKqDvuzCitquIoN5ZFQbUG63eVk9H0GgDki/azoJ4foQm2ymJCV60j/0zjL8kPBAuxNDrm1KaOX1jMBig1+vNFNLjnLjooX1wHOqx9sKbJPglcD95vQb3+mvEghJwjeTQdXWPv66f26b720PynayraMa9rbZ6f/o9cNFB9wrXTqMCdM90Oh00Go2ZOiP+/dB9wDY0RYK2lcbGeSd8XjTtR8USrn2v15tJf+DeYu0PhwpyLMzo/eo8BQKBQCAQCATqkZcnePsX/em8zQjMCQsjKGg0AUmEhyYraVMypMRcc839fbanJxq4952fexi5tqUh1ST0Su68T21HveE6FiX2Hoau4f0eDq8FC32u2KcXZdSTFBRqgxfiIzR1gXOhY9FQ/FLtBF1fiij9fr/yLLN/vYZ58RwPr9H53Yqc+74hVFDyuXBvuAtHSjZ1vAAqQUmFDrWvtO46/74mei/nUNfERScdmxcvLF3v0RzsY3l5eSbdQY9a5J7X6IuS99/Tk3Q/qQhW2n+6h1XUY7RNSZDgnvRjK90GFbZ0LXV9VKAKBBYdeZJxwfuAO58+b0sCgUAgcDohN4DnPeHj8zZjrvjn1Utx5o0NHHnE6VmHa2EEBWCdOJx33nm1Ycbu1QRmj2/kNUqGNSS/BJJjJV4kyerpVQKvx9Kpp5oExUUFjawgEVP7Nfxfvc0ePeHj5/UUONTedrs9U6mf0QGl0wh8PrVPChL8jHOmIfN8T9t2Mq4h+LRFxRAluUoK9eSHkphQEj18vjgGjyjwOdD0FU03UVKv86RrxT2kYoPPtXu8PRqklCajJJ9tauSNCmV1HvWS+KIpH7ruKkApedc5U/s1ysPfc6HG966OUT9X8Y52arQF10QjIxQagcM+dO1LkSKOurYDgUXGpJUAxJ4NBAKBRUXvq5+OSXv76/YVmhm/dum7523FXHHd/Rfh3E/0ceQRp+dxmQslKFx88cU499xzq9/5R70SVBIKJVMa9q8kgITNPcqE56KzT5JahmlTUNCUBidzKggoifLccQ+xVvGhlGrhpNfzzf14RLXb6xaoMKDea85T6V+OnXPsERKlVA7e57UEut1uVfCP92ukAvvU6A5GU5TmQF97nr4KFFrHwEmmiicqTpWKf7p3W4WV0lGMFKsUGtWhgpfao3tN+/CxKOml3SqOABvREio+eTSGpylwPJ1OB61WC91ut2pH59hTPNQu9qMRI4Tb7FEj/p3QuS4JYvqd1f1E0U/FBNaS4Fx49AZt0DUIBPYD7nrl0/HAo0JMCAQCgUXG3V+8hEn7YP1t8UPP+ZN5mzB3XHPeZ/GWp18G4GCt7U6xMIJCo9GoohM8QoBQzzswS8idpKh3l2RD/1WC4nnnSrI1Vz3nXBUH9HQM9wBzTEqAnPzXkVn1ICvp137cg6/CC9thdX+tX8C5on3qxSe5UsJYIvEa2u8EWfvgZ6w9QTsIkj9PVfEQdF6rqRAlDzdt08+VhKtXm/A0F+1XBSWtGaHh/i7MaDQB9w6v96M+XRDQ/cZ1JXQvaxqFCluehuGRNaVoEL1eC3h2u110u10sLy/PFABVkUC/F1rwk7brfOi4fe/rOuh3hZ/5ftTvHiNePMVIhUaNZKHNFB10b/G17oG6qI9AYJHwhe97Jo5ednr+ERMIBAKB+eHVX/3bePGho/M2Y+64rH0P1i48ff8fXhhBgeSNJMlDzElalFjQA1nyoitB1OMn3cNOcubh+iX7nLAo4SlFGDhxH4/HFRnPOc8II07elcy0Wq0ZAkSvq0dFKHHjmJaXl6uiemoTQeKpXmGN2CDRdSHE0wh0DLyeogfHwHx8RmnonJHMKmGsizjR/ggl1CoWaQSKRkzo/lJhajwez6SLDIfDKtJA01s0aoLzoaeDaGQB94oKABqJQE+5Fq3UfaL7bKvTHVRE07VVsswTEHQsmqLAezgHJVGpFDGgURAAqn60eCJt8H2odSG4z2gHP6cYxdel01zYvj8DuN6690pwwcnFrUBgEXHbDzwTqxdNgLT9tYFAIBAI7Cb+xcoDAMrFzwOnDxZGUAA2vL+avgDMnjuv9Qg87cFTANTLzIru7k1X4gdskDZew3/VA+qkSAmKEjr3vtI7r+Pi8ZClcHQlq+75V0Km3ljepznwmmKgdqqowTZ4EgTFieFwOEMoVWzx9VBSS081xQwn+a1Wa6b2g0dEcD6cFKpQpMJQySaNMFCxoUQo2b5HhFBM4Dy4EKWRFxRm+J7WX1APv4pAHA+vV3FKhSsl7xQJXAzS/UeBRgm0X6dCiaeIMDXFxQbtQ9OBONbRaFTd54KKiyS+dvqd9IgPjqMkRGj0h4paXpiRopPuTxeIuOYqPgYCi4z+2TnEhEAgENgHuOu7noH+eQfHi/2nL3kNWmll3mYEFgALIyi4F1Rzn51U0dtPAqGe7OFwOHPUoJI+Pc4RwAxR1/BzEkQlfQBmvPQqfnj+tY5JCS0JDAmhplaQMGkkgqY9EN6fvq99t1otHD58GJ1OZ4bY6o8T5xLJ4/xzPJ6CQu864dEburb8fDAYVGMjgV1aWpo55UFFJY10cFJZ8por8d1KNOKPF+yj51vFAE/N0HoeFG90btg2gMp2PRazFNXiETK6J/m5evI9okUFAU/VUVGDbfN6T2PQtAeKKdybtEUFB00b4Rrp3nbQRn7HS+kjFAA1CkTv9ZQOLwSpESw6h5oupOIj7y/V9wgEAoFAIBA4WYw7CblxcGrdXBSBCYEpFkZQALCJQDL8Hpgl/xomr7naWtyOZMDD0ukl9fBx9e5rPjiAKgVDyWVJTNAUBralnnkPrfeTBzyknm10Oh30+/2ZQocl4q/H+jWbzUpMIPGivaW0Bxd0fE18fOot13br2qftLg4xKkKjM3SuB4PBTE6+2quk2eea86D3sNCger0pHKnIo550359cE97vXnfN1+ea8HPuayXC2pavrZJjjsHbHgwGm74nLIBJcsz9S3gfane73Z4pnsmoHh7vqaeJUEjRdffoHJ17FVxc0NJ7XGTg9RTbXODS/nkNv5+aPkVBaDAYVD86B9qf2xQILCJu+fFnYtw9ON6uQCAQOLBoNA9UNNlffN2rcU7z0LzNWBj08ul5ugOxbYJwSun1KaU7U0ofl/d+IaX0yZTSx1JKf5hSOnv6/uUppbWU0kemP7+6U0P4B7/meCuRJYFR4cDv11Dn0jFxfK2ecXpotT8WemN/Suyc2GhUgxJ+vu9eePWsuidUox/c66455FrAjrZrcUb1OGuouBMxjc6gbXV1B2inhs+XIhM8AoJzMR6P0ev1NvXHcejvnsaia+zh8Gqzphnweo8AaLfbaLfbWF5exvLy8kxUgNcO0PB4jWph22xTxQD+3mq1qnQTANVpFVwrXQvdv5raoL/r/uE9LsL4XuP4dW+7qKRiRbPZxOHDh3HWWWfhzDPPrApRanoASbiOmdCUI/6wDxJ7/Y64wMAxeOFVX0Ofc51H71/FSUbG6PsaMaKiQ10k0DyxV8/iwD7DAfoDNRBYdMRzOHCiuOcVT8fRhy/W3xWB3cE71pp4zdv/xbzNmCt2UnHsDQCeb+/9FYDH5ZwfD+BTAH5YPrsx5/zE6c937dgQ8XZ77rMSUCeuJCBafHA8HqPf72/yzCpZc+KvBE+Ju5Nm94bSO6xEie2UyCJzvjWNQU9scBJDO1iw0AmUCyiNRgPdbheHDx+e6UOLBSphdRKsggLH5POg5Eu90uxHi/2xtoDOoV5PG9wTTQJY6kM99S4qqPihZJR7hUTfhYPSWg8GA/R6vZmjK70OAcfpqRaOkhffyTLnQ8UYigO6/zVagPfwGo5PUwcGg0F1vfep4lK328WhQ4ewsrJSnQ4CbIgQGqmj49S0Ch8L9xH3gYpVuv5cMxfq9BlAkY9CjaeIcO9RlOSJLCouUhjRZ4NHfuialdZyjngD9uBZHAgEAoFavAHxHA6c5picOUILC/X30dwwzGN8onfpvM2YO7YVFHLO7wJwr733lznn0fTX9wA46Zl8yEMegnPPPRfA7CkGaRryv7KyssmDDaAiK0pcvWiieuvVE6/Xk8SRaHr1+JzzTBQAia+GSqvXVYmae7xJbtUj6mSNbSixB2bJj84HP1Pypp/rXGj7SoLdI651AdQ2DzvXcagtHmHB9+oItwo2FBOchKtX28eh86vChObUM+1heXm5SgvQqBUluKx54Pn2GgXi9Qq0kKETb50vHbcLMtq22sUxlep2KLlWMUHXyos96v2tVgsrKys4dOhQVXsjTdMlKHZ5WxpFwmtUuPB97NEdOhZ97QIb54gpFr6/+d3s9Xro9/uVrSoY6F7XtdQjVT0CadGiFPbqWRwIBAKBMuI5HDgRNC+8AKNDByec7Def/Xpc0To8bzMWAjcM+/hvf/mCeZsxd+zGmWjfDuAv5PcrUkofTin9XUrpy3fayHnnnYezzjprJi+cBJB53UxB0PoI7l32UGpCPaMePq6EkyHx2qYSJQ0ZL3k2nUS6B770npNxjsEjBLQvbxOYrVWgJDTnPOMVLokLpdQA/axUG8HhRF7H4lERLogocVOC6QUqPZrBx6Lh9WqX9umii0c7AOuiSa/Xqwp8kmCyLQ/d13nX9fF54zUlTz/HTkLt8811KKWDED4P9NJrGL//22yuHy/KVIdut4tGo1Hdrz8arcH9pZEBHl2kc1HaT57uwzlgWxp5w0gdF224VwaDAdbW1maKX2q6iO81ftc5Xk/ZWLDohJ1gV57Fgf2Ds26cII0Ozh+pgcABQDyHA5vwwFdciQevWBwHRSCw2zipoowppR8FMALwO9O3bgdwWc75npTSUwC8NaX02JzzkcK9rwTwysqQKSHr9/sz+eoUFDQfvUTQSBJ5kgOhhHra74w3niRCq8wr4VPvtJOMrUi3e57Zt6Y7KIFhn7zHUzM8PF/H6ITWi9m5B9/TAYCN4oHsW8dEcYc/GjLuRFBPH/B8d033KHnl1RPuEQEqpPDfkqiiYyOh19QPHYfOs64PgBkyTZs00kXrbFCccFvdw+0RLLpXlFi7uKPj0nVV0YhrpOIUQ/8Z/u+EX9tgusOhQ4eqQotM+VhbW6uEFd1DtLfUvgoGHpXikRa0m/+qSKQRMy7acK8xkkHrIvieYcQG14NrxlQi2qR7bD8JCrv1LO4ijn/aTzjzd9+Dex73DIwXqrxyIHB6Ip7DgRKWrng4jl7cABCCwkFDPw/xM7e9cN5mLARO+M+QlNLLAXw1gOfk6V/eOec+gP709QdTSjcCeCSAD/j9OefXAXjdtK3qL3cPxdboBD8pgUSBpM5z2af9VKSShIX38HNCvZ4MuyfJ9ZMd3OPqPx69oKSJdjPqoc6br2kZSoR1jBq5wB8/pUC97066bE1myJpHgpBMl4QEnQcdB9dPU1NctCH5dQLvc6P7QsfEtpzMOjFU2+oiPEg8GTqvNlCY0hoTmsuv669ee40S4B7Q61TE8DVh37oOvm95HeeM7VBM0Pe1xoUKJBTtmOYyHA6xurqKo0ePYnV1Fb1eb9P+IJFnHxrBoOvg9pYELRX69DtG+3S+NbKHtmgUBcdZt2c5Bl1vTbHS/bkfsJvP4jPTuftj0AEAQP9fPA05xIRAYO6I53CgDquPPB9HLw8x4SBidTLEu9/76HmbsRA4oT9FUkrPB/CDAL4i57wq758P4N6c8zildCWAqwF8Zqft6h/99AKvrKxgZWVlpkAcSf60z2JuvhMCP/XBRQe2BWx42tXr6REKSka1mr0LIkpcGUngoeokP1rEUL37Sq5UcNBrAMx4cD3CgiTOw+ApdNAOJcZaD0G9/EoYOVeaX6/1BDznvXRqhBLfkpebc67CkJJCbUtJ7Gg0qjzQuh6l9VHiySKGKibp9VooUU+WoJdb555tlApuepoH7/doEhcr6u5NKVUnGXD8upcJba/RaKDT6VRHRTab60exrq2t4ejRozh27NhMYUrapiKQfj/4vdQ9yPtUmCmla7goxPVzIYi/MzpB59iLMGpfmkKjn1OQUMFI7V1knKpncWB/4M4ntzBpLf4+DQQOMuI5HKhD8+orcdcT24johIOHcZ7gBf/8rfM2Y2GwraCQUvo9AM8GcF5K6VYAP4H1CrYdAH81JWjvyevVa58F4KdTSiMAYwDflXO+t9iwQYkhSRu92zzBgQSCntC6sHcl25raoJ87MdN2NIRaC8O5V5XQcGna74SK/VIYoceXn+mRhSSpJKwqnniVfG3Tib+GvNPG0nF5jFzgWNiXtq0k1KM11CuuogILIDJdxSMn2BZt7Pf7VWSAe7eVzOpxn0xr4PwrmfQ9oZEfFGp0H3Ac6u1WEYmEUwUKFXBIhjm/3KdaE0Rz+AlPEfDUFJ0znTdNEdDrPWLEhTbtv9lsVoKCnpKyurqK1dVVHDt2rEr30H2nYouLVhplwPd0vUpgdADnm/OgaRGMbtGxqWjiEQqcW+2/9Dvt5xj1+7RI2KtncSAQCATKiOdw4HgwfshhrF0UYsJBxLP+w7/FXc+YtxWLg20FhZzzywpv/0bNtW8B8JbjNSKl9dMVlJBomDO93EqIJ5NJ0evN9vx9JcoeieBEUY/aU4+mEj0nR+5J1tQJ9k1CNBgMZsavwoeHd3PcSg49SkL/9cgEJcRK/vQ+2uDElsRLwTnToolaT0GJH8k/Sat69HWulchTWKCo4IKRryvnTQUd2qFzqiINRQgSUKaekPzraQEUY0p7iSKJhs1rEUdtj6KQCgCl9VNBSPcOURIa2J+KcnpUJ6FRPBoVo95/2t3r9bC6uorBYLApwiNN03VUhFJBgVEO+j3R9BlPY1GBw1NMtBCm9s+2eISmzjf3eCl9hz/ci15skz8cxyJhL57FgUAgEKhHPIcDO8XSlZfjxhccRkQnHEzcd3XUxVAsRPbl0tISzj///JnCiayf0G63KzLI3HYWblSvtedF13lCgc1V/9XTDGycVU9SqwTIveZKipR8k8AwHJ5RF24v2yVIwimiaJi3k30loCp88Bol+0p4lfgBG95hANV8s30l9SqmcG40UkGvVbGH4/J0BY0K6Pf7WFtbQ6/Xm4laIBFnzQvaoVEKOmZNT/CjRHXdNV2DbSgp9XoAOtd6/Cjb1mMTNR2A49G0GN07vvaa16/ve0qP7lOPOPG97vtUhR8vdphzninEOBqNZtI7mFbBMep+1374notCGhFAIu+1CzT9Q58JvIZ1FCgs9vt9PPjgg3jwwQer+XYBUUUfCm66FzwCozSXgUAgEAgEAjtB7rQwPDMI50HEC57/UvS/LdZWsRB/MS8tLeGCCy7Y5BEkkSKx9rPugdkaCp4Tr4SBxEoJPrDhHSWZc8+7F7DjPZp64SHsSrwVmq6g+fy0XftxcuNwokhPM8erOeX+u4awq/eZQoamJritOeeKNGuqg5NmrpuSVU2h4Dw6ideijCSFnqpAcq3pD0oMtQ8XMJSU64kHKpR4MUber9EhTE9huxrdwXs1lUPnS9fBbdL1ULs8hUDD9d3D7ykppb3IvpiWQhFJIxNUaNL1UsFHx6E2aBoB506FG01t8PH43Otxkb4WjDThcZFcO/1c517t9X3mESgqUAUCi4jLfu4DaK7FsZGBQCCwSFi6+CJ8+hXnzduMwClCuuk2pM0Z8Kc1FiJCgUSYJEbDlfUMeQ1pprdUf7Q9vc+hBJO/qxdTPe8O9fyX2vWcddqjhQnVu63EXqMlVFAo5ckrEaJXl2NWAuopGkqePK+dqQqap855IRFeW1ubERF4Hf9l9IASQKZuqFjhBJtecY1ScI+09uWRE5rmoONjG5oKomkPXE+mOHgRRY90cbHHiT1/GIbPqBrdP4xm0SgZj3rQmhSTyWRmTWiH7mGPDvCIDa6rRwTwZAcKChoZopE5WstAybgKWtz/Ku6ozZ5KxDQNfj/8lAuPjPD2uJ58buh4PTUopTQjNuj3hvbrngZQRagEAouKz/3gUzHuhpckEAgEFgqNBiatg/v3wyA3cbqG+7/wWS/B+Mhn523GwmEhIhTUq6ukQo+JI/l0skyosKCpBXUoeW3Vo+tkwkP+SVj0Hg3h5rg03UE99p5D76HvKiqQOLEPP26y1WpVXmYl6urtdy8ygKJ31olryYusdro4459pLQjaqF5mtVVJOW3iHHD+3QOt88w1VKKqa+RFJNVDnXOeKcTo3n3dkywQqvaX5teFIB0bRQIXQbjXNbpE96umTPgeqhOS/DWvV1FDo2785AYdF/vQfaUREU7Kda9RTPDoGd3j+p7uIxWO2AfTZLjPeT3H4pEKHp3C1A2C12ntDE3rCAQWDmn6EwgEAoGFQV7uzNuEU4rv/pPvwKeGx+ZtxlyQxqenkLIdFiZCwQmrernVE8nj3RghoKRTvevqzVRPu3uclWQocdf29XMn2Ep8SsUOAVQh2+12GwCqoozqNeepA2yLnnkNo1fCxfcpUGjkghM9rQXgnmvOiUYRaD6+kjglmqVx8h6uCb3LFBOYJqDkkF5rXV+SOL1f554edvava6ZV+mmjEmM9NcPFFg3VV7FCxRba48RV7+F9SmK5trxOi2C6KMM1Yw0Big+cN8/9d7jo4Puc86DiEQk6C1J6CkPOG8UWVYjSfnQP69i5dxiJwvlSQUVTIDTtw2uO6Heh1+tVBS+5J1VU4fWaEuNr6sIZ+1VBKRAIBAKBQGAnaJ55Jq7/dxfO24zAKcBfrraAUaTClrAwggIwS3q8UKKTaU8Z8Pxqfqbh8HxPBQxCCbm3ocULlZyWwqE1hYFEnWSaJzbwOpIn9VIDG0f5kaB5/jf71zQJ2sexKLwwIsPbOS+NRqOKHnDRpXS8IudHveM6dj1RodVqodvtotvtzkQnKMljykGv15splsc50/XhfCgR1bB1zokKLTo3vFcjOHyOvaifEnC2SVLNz11MKBF5nTMAM7UsdBwUWPRe2q11LyiO8DuhUQpsX+eK/es8MVqG12rRTo+q4Fp4FIRCv4P8zE9g0DQO3QNun6c56HVeK0Lnmuun37GSQOQFT2mTRoJEYcZAIBAIBAI7Rb7iknmbsCf4+9VH4BFn3oZmOn3+TvrFb/1mpFs+Om8zFhILsQs0pYHeZyXiSggIJeEkxSQaJA3qPSXJVJLi3vK6sH29plRIT8fh0RIk1cxTV9LnXlVND1ARw4mdCy+aT+8RGfTyK8nWfH0tyqenIrBtLYToY3XCpde3220sLy9jeXl5RqwgSA5ZUI+1GTgnFIhKpxbovaWimBpCTyLrtTFcTFIvt6+tF9NU+3U/KNEtQcUjFXMYkaARIE7qtxOyXPTRuXT4EZo55yp9oBRpoREBWmBSowp0Pti3/uufcT48ZYhioQoKKtD43Ps49Xvuoo63yz61fY/AWLSjIwOBQCAQCCwm0tISPvVtZ83bjD3Bz77txTgy6c3bjD3D993+VCzdv1b9fsaNC0GhFwYLE6HAP+SBDVJAQrq0tDRTN0A986Wcf0+fYJtOKEg8gc056nofsBEhwWs9gqHRaFQpDUrOO50OlpeX0e120el0qnaU5GqhQIoPWuXfvebqqfbTAGiT12HQgosaRq7igheVdA8xx6aeYv7rAoqKCexbo0RIULXOA8dQup7/aioB11OLAQIb3nxdTxU0tA0SZrVBhahSHQcNzde5YttKUrUoopNX7iWtx8D3HN6nikjsv05scOiYOF9sX78jAKr0EPfYq73aLtNrVDzSOhk6rxpx4pE7uhdL301GtOjRmTo2LZrqkQhqr+8Jfk7RpZRSEggEAoFAIBA4ffCBn30KDn3ivdXvF/zqe3Hk1U+bo0WLhYUQFJSkAuvkq9vtVoSUYdka2q4CATCb3kCyo2SrFOGgnwObj/9T8uTeZyVfFBO0EGG73a7EhJWVFXQ6napPL2SnfXi+OImuklEdtxMhj47wPHRNCWAEA2sbNJtN9Hq9mbB5JfVK0jkHGhHCaAimKlBE0TnmGOiRZ3QCiSgjNDTVgbYroVZi6lCiy/liKLvWT9DijP1+f1PtABeuVLzhPlSiz769uCTt0HB9TXPwefX50jQfXQ8VAtyOkmdd7dFTHzTNRPvUfVqKFnB7XWzxPexjY7ta38K/c1xjFQV07/DEiJLoUEonUmibGv3hUUyBQCAQCAQCgUCFPMHF/5hx+5eG4wlYEEHBPbQk4svLy2i32zOEvpRWQE+iFyN0QcFD9J0Yaeg1MJsProXyNP9boxG0hgAFBYoJnidPcuupDEqCVOBQwsRrlaQpkaJgwB//jLUcSOCZjsF503x29/4DmCHiXBMVLZjuwOgERm6oADEYDNDr9XDs2LGqUB/Xit7h0jqosODRE+xDSbJ64ZUkc/61doPXLXAyqsSd663ecR2jRyN45IPOmwtbJTFBiznqOui+8P1OEcVFEiXunAd+jzxVQQsoemSBzhPt8agFbcvt0/aZaqPzrZFEmsbC9IzV1VX0+/2ZaB8VA/W75vvEv9uavqJpPzuJ+AgEAoFAIBC49189DcDp83fDiz7xLfjbx73lwNdReOS7vhVXf/gOjPTNnHH4rR/Ew9aehFueG86nhREUSOaY6rCysoJut4tms1mlOwAb5EBD/pUcsbCcEjoN53by6WkCmt/OzzRX38PgWRCS9qiHvdvtVoICySdtIxkfDAZVvyqOaFSFe6+38hJ7lAQ9/YPBoCJrKhLwGhcwlIxraLrOJ0mcplOwfkKn06lqJ3BMWseAkQlKBkmCtV8AxfD10jUeBcHr+S+v4RgpKPA4Q0254X7xOdcoEhVVXCxQQq73q1jDUyl87XR/+vGlLkrV1Uko7Rv2o7VDdJwuVnF8vE699W6Tzr1G/KhQo5ED2gff9zobbrfunWPHjlURCvxuaiSPp4T4+HSO9Puo/QEbJ7IEAoFAIBAIbIV7Hn/6iAkA8PlPXIjJ4zIOOp0+9A+HMfrMxza9n0cjdP/yo7hs/AR87qsO+ixsjYUQFICNMHWecLCyslIVZCRZIPlU77SHYis5cOKtRJnXKkFWby3hOd4ktIxKoHigZJ0igx6VyFDt4XBYeVbZvtYy0H9dUFCSx/u8iB7vL9UvUJKtaRGMTvDoDLZfOipSw9pVjKGYwKgHreTPtSORp5eZtRR0PXXcLiKUIg/YtpNF926rEMJjDFWAUgLKfUOhQ23jfuSaqAClogLnzYsqsi3d95x33Xd6vYf1K/n2UH3d97Sf7eu+og0uAqiAVpoX70Nt1wgbjXjxqBqNftBaKCoWch9pqsORI0dw9OjRau08ZUH70Dlgn5wnfa6osKc2lMYdCAQCgUAgEAAe+65vx6e+4o3zNuOU4Yq3fwce85bPzEYnCPJwgM7ffgyP/tTFeOBJF+L2Lzs9UyAWQlBQ0t5ut9HtdisiDsweGQlseJDVK6yeahcBXHxQTzwL+NEOD3P3NACtPaAnJHjIOT31FEUoJmgBQM1P9xQOtlmq4+Ceac33brVaOHToELrdLlqt1oxYotdwHjnP6vmmAOGE0HPoKaiwLU330BMjOMe8d21tDUePHp0hhUr0lGgTniaga8o51bnQ1ARPdVBxiiRVCTSJtkZr6MkB6nnXe5ws67yX1kxTeDxCRqMTuA9UCGAfuq/5WtdcP1OiTxGE6zwcDtFoNCqRRWsTsE/ayvs14sALaHLf6BGYKrioYKJRGTo/+l3gd+jIkSM4cuRIZZ/XkXAhhbZ7+gPXygUIFR5KdgUCgUAgEAgE1jG+Y3neJpxStG9rY3T7F7a8Jvf7GH3mJpxx2xdw5rvOAAB8/puvxtHLTx+n1EIICsBshAIFBYaVM8/dBQL3ypJU1BVYU0FBPchOhghtC9ggZHr8ouae6zhIrEloWTNAw7RJiDRlQNtWm7wmBOF5937spEJTNfi7F4FkugTnU0mge8Y5F56jrqdJEErAWVBPaxcwdYL96ho7uVNb/OhIFV64ZvSCkziT5E4mk5lUBxUHlNxrcUvar6Hy3jfXi6+VVDPyxNMyvK6BRmxoMci6NAe2oWMneOqBFphU4YbjpOjFdVESXiLrJcFOjzv1KA1dP/2OeloGbaaQQFvW1taq6AQtcKnr5ntEhQvdoxQSNLIkEAgEAoFAIHAcyMAVf/pv8Nmv/vV5W7LreMTfvAKP/C8fxk7/Spz0ekBv/SjNi3/1CJJwsU//9OORD3BWxLYuuJTS61NKd6aUPi7v/WRK6fMppY9Mf14on/1wSumGlNL1KaWv2okRSty63W5FqoH1avwkn6ylQFKrBInX0vNMEuHku5Rnr953FSWUxKlXXol/yYtJYq52URRZW1uriGiv15sJr1YxgQTRhQV9rQRew8NJxPR0ArXZhRP93WsYKGkrRWBoexRRSikGelzm6uoqVldXceTIEaytrc140pUIakE/j1IZj8czXnRPKeBYOA49FYBijtYncFK5VX0Cjo1iAteTESheQ0GjPDRKopRG4kRcRQcvpOgefo/Y0b3sR49qf9ybDP33eWTbvN778LnjfPD0Dm9LhS19rSkuul8pJmjdBN0PKnxoCoPWRfB10roLngKidnr6xDyxF8/iwP7Cw/4/78bSajqdaoAFAnNFPIcDgc1IgwbG+eA5Zya95rpIcALI/T4mq6vVzyN+4P145I9+DGkCpH06VVvZvZOY3jcAeH7h/V/KOT9x+vPnAJBSegyAlwJ47PSeX0kp7UiPIaFmqLweaUehQD209FrzHg3dVo+kwsOuq0lozB5Byfa1TydE2q+CKQWa+02S0+v1qh8SW23PCz2qAEKbNbzc50+JGKMMSqHfpTFx/N5niTACQLfb3VTkUkUU3qvCQs4Z/X4f9957L+65556ZgnoeaUKirPOnp3gomfQfroOLR2zLSaQf4+ltOUiqnahzz7DYpKZzaC0HFUk4dq4pC0S6mKERBUr6/XNfNyXZFFB4Hd/3UxPUPr7W6AMXcBSarqFpJh6Vwfb8RAXOh6bMjEajKk2G0RPat4sFahPnS9NcSoIJ94xiAVMe3oA9eBYH9hFyxuU/+m6k8emZsxkIzAFvQDyHA4EZpGHCVX/2KqxODkYh62Ee4/Hvexke+Z0f2L1GJ+N1YeE/vgeP+u+fR2O4v/7fbgwSrvrB+vnY9i/mnPO7ANy7w/5eBOBNOed+zvmzAG4A8PQd9AFgw8Ot5IliAouvuQdaTymoqy9Agu/pAUpcVFAgCdNQaiVrdSkS3p+Gf2uY/9raWkXSNFec92khRyVLhIeKay4+CyISJa+5hvmryEJiq9EfSoRJRpUEevSGnnjhxRRHoxEefPDBqhCjCwo6Hq014YKBHw2q611K5xiPN06VIPlX8qlr7yRY29T9yqgTLZTJH86xpmPQbl7L17rnSsKPeuxVwFDhTAk0yTz74L5zO7TGgR69qGKNp3TUkXHew6ib1dXVTadTcN486offAY9+YZTNZDKpvjOaOqJ7dzgcVmKD18LQ+SyJRirSlVKAFgl78SwO7E+0jkaUQiCwF4jncCBQRuNYE4/76+/GO9aauG6wOm9zThirkwGe8/Gvx8Uvvu6U9TG6+RZc/Zt3o/VgQrO/+MLC0rGEq376Y8hbRO2ejAvue1JKH5uGf50zfe8SALfINbdO39sRNGRfiYQXYNPj/SgGqNigocwa9u9pDerRd3HA86/Zp3rx1eta5+HWInf8YX682kWiTkEgpY3TEJgaQSiRVqHBUyHcU6tE11MYdE7U211Kr/A6DCTl/NFIE36+trZWiQn0hrvHXEmgkm736GvqAG3WKBM9ypNREdxDjBBRwk2iquKLRg5o5EVJ1NDXWqPBc/d1r9Butukedk830LEroQYwM1ZPxXBhg+2wr9L4NSKE88B7/VQM/75o2pHDI2BUbOK4/Dupe0D3q0aE+OfaHm3SdCmdO8KLsZauWWDs+rM4sL9w2U/9E7p3LVxETSBwOiGew4HTHt0bOnjNlz4X3/bj/xHvOo5MgU8Nj+Hn77kaP3/P1XMVI/p5iK/55Ndj+as+e8r7Gl/3aTz8P78bl72tj+baYosKV/2Pz2Jy7NiW15zoXyCvBfAIAE8EcDuAV0/fL81I8a/ylNIrU0ofSCl9oNfrVURUPewkREp0SBJYM4DRCSo4qOcT2CwOqEffxQT1XCqxK0UyAJghZRraDmCGwPJzzZ3nvxy7FnJUcqh2q9eY86GRA5qLPp3nalxKrDXNQOtF8J5SzrsKCRwLgMr2Uq0GJXRHjhzBAw88gAcffLAal7atUSlKsr2afymKgPPoqQW6ProW2q5GDfi60z6N0lAxgvOpEQokudx7bMfbLR2vqHtd39PTKHQPaZ0IvV4jD3S/eGSCpmtoQUYXC3Rd9DtCuFilwkfN979qW/eeFgXVaAYV7ABUe5nikB9zqTbr94RQcYHr62IavzcLjl19Fg/RPyVGBk49Lv359+Lw50JUCATmgHgOBwAAh28+vZ/B/YdMcPO3PQLnfvQ+fPf//Lf4+hufi/f0yvXIjk56+Pobn4uvv/G5eOGb/xP+5osP4W+++BBe+pHv2GOr1zHMYzz7Yy/F0nM/t6f9Nt/5IVz6NwMsHVtMUWHl9gbyYPtUlhM65SHnfAdfp5R+HcCfTn+9FcDD5NJLAdxW08brALwOAM4555ys6QtezFBJFr3f+gNsrg9AOMlQwqlEltcq2SehoT0UHzREW0PZtf4BgBkiq+NwEqx1DzTdgYKEEl0NQVdxQ8URJWhKrhhir0Ubddw6TzqPtJEF8vx69k3RhaIQr2chRhbVU0HACbunNmhqCNMXdHw6jwrer3uI60p46oCGv9cVsmS7Hn6v9nI9fA+6zRpdQ3LvYpMKDn5aBG3SsamQocKDk2n+q+KApwp5VIZG1ozH45kxqu0ahcHf6+oRqF0u8Kkg5FE5nA8VOTTaxQUUYGOPuFjmIoJ+DxY9SmG3n8VnpnMXe8CBekzGeOhrP4Q7XvEkPPDIWMZAYK8Qz+EAcfH/eB8+/QtPnbcZc8XahRN86hVn48xPA2sv6+DbX/Hv0XjSA5uuWz3awdXf+iEAwCNw916buQlf/I/fhod/4z/Ppe/WX38QlzSeis9/RQujlcX6+j/sj+7E+J7ts7xOSFBIKV2cc759+utLALDa7R8D+N2U0msAPBTA1QDet5M2lVRriLWSNk8P0KP2gHIBQg2F1uPylFD79dqWejGdZAEbJG40GlVFGhkloMXuSH40RUHHrEIJPfUanu8F51Qc8SKMKgaQCOocuDdW50JPK3AyxXVxDzXvp5ii0Ryj0QjHjh2rTnRwz7i2vZWg0Gq1NkUP6L26B0rh/n4igAs0FI60roWf5EESy+KFtE096J7C4XuJ/auY4LULlOCzPY18UBHGUxJ0P2tqhY5B7fA6CbRZo3FcQOJ1uoa6Lho946eUOFlXEUdPCdHICU170BM6uI80osYFNE+98HHq98AFBO6PRcapeBYH9i8mvR4u+p1r0fiGx+K+xy3WHyWBwEFFPIcDgc04cvUE+NqH44rX34TR54s62iasft2X4Buu/LtTbNlmXPHHr8Qjv2u+X83WX34Al46fglue28a4uxj/f591fQLu3SwGlbCtoJBS+j0AzwZwXkrpVgA/AeDZKaUnYj106yYArwKAnPO1KaU3A/gEgBGAf5dzLse6zPZRRSZ4LrjnUJMAlI5tVJLA30shyyRkW9UcUKjHWr36SiSBjSMlSeJHo1FVgFCPsNMie5r33+l0KgKm4y+RfCW9GpmgXlkljSRuKihoXQmdA/XYl+ZEiT8FEBVGmLYxmUyqIn38l6KCk3hv3/PiuS9KXmMSa9pPIUPD5FmvQUUJFwH4r6dhjEYjNJtNDIfDmZMQSukxJU+37i3apwIO76cgQJGANuo+4/1cV/7udmgNERXfPJJH+9V51UgLFdp0nmirknmNCNIIFJ0PFShUTKAopiKJPgP44yc96B6inS4m+ryqkFb3vKD4tSjYi2dxYP9jfOQILnjr9WiMHoV7nrgYf5QEAgcF8RwOBHaOI1dPcMElDwF2KCjc+ryMHzvvk6fYqlk88re+G4/6sfcvRF3jpXd8EA/vPxE3fc0yJu35W3T+h45ifNddO7p2W0Eh5/yywtu/scX1PwPgZ3bUu0C9w8CGp1yJoQoG6gX3qAElYgolRQW7NxV+Y191YgLvIzFhhIIX/KsLnaY3VgsZ6skQni+vRIy2UcTgPSTyvFZrJKi3uI5Iqbe2FImgnmkKElyLbreLlZUVdDqditQzQkCPzNRoCw2bZz/qjec1Lt5ouocLSRR0OIcq5nA+SgSdr1VMUILOUzo0X1896Vqo0j3jBOeebZaiEXQ+VPjgelAYYNqBnlahYoKus6+p7ymfVxVZSlEh+ntJKPBIAN07nmKiKTPcx/yc3yEX1zQaQ+eawlNdaoyKeC7GqSije2dRsFfP4sD+x/iee3Hen16Pc667BHc95XCkQAQCu4R4Dge2Qh6PceVb+/jMizvzNmVhcNtXnIHLbrsEo1s/P29Tirj6l2+e+Zty3mj8w0eQXviMeZtx3DihlIfdhpIKeoS1QJ3XDaAHXE8SAGY9504qSlEBSvSV6JS8qoSSHbVfCzFqtIB6pr0t2kRSznExXF/HTah9FFQ8P13H6qSqdAqDEmonsR4C7kSZtnc6nap2ghbKpEeZnn0eYVgKUVdvvHrPKU5QxNB5UGgtBm1DhSIXUXR+9MjLnNeLL6qowCKAOgc6Zz4m94TrPWqPi1ieHqDX6/2aDqSigK6NCiMuEHkNCU0nYtqBtkWbCBcS+J6eiFL6TG3VVCLaR0GGaQ1+EoUWFdU55ph0PnSfqHDAPepRFboH9XjVQGC/YXzPvcA99+Kimy/ARWefCQD47DddgME5C19oNBAIBPYnckbrwzcCL37MvC1ZGKw+dIJ8aHneZhTx5J/+blxw5wfnbcYmXPWbd+BTr7oAubn9tYuChRAUgI16AgBmPNta4V9z9VNKFYH1Ex4UShT0cyd4SlK0cCOvo20e+cDPSdApWJQiJIANYqbRAu12GysrK+h2u9X4/YhJjkWJqJJj/V3D0dWrrWNXT7zOkfblUHLGyAGvm9DtdmciFLQgJUPVKboo+QcwcwQg+1A4EdU5deKuIkXdWmiqgL7n66feciftKh7U9dNqtWZEA00H8KgEXT8XAjxFQwtZMhqFP1rPQ8egNqvgwzn1faRk3cUlFTr0dwoxHnGg3zNGzLRaLSwvL1cnu/CaulQHPUlCbfUoDN4zmUxmvrsAZkRIgpEIjG7x6KBAYL9ifMedwB13AgCueO0DSEv76C+UQGCKe+9anPSzQCCw+/jC9z0Tf/78XwSwsmd9XvieBzAZbn+CwV5j/OnPAPlC1BwKsyd46N9nND72aezUBbEQgoJGBJAckXy6l55EmJ7w8Xg8UwVeowKAWY+pCgX6GUmE1jNg6oCGRms4Oe0GUDwBwaFtKxkGsOl0i8FggLW1NfT7/U0kXvssebJpVykSQ2soqIDDmgu+Hj6XtIHvaah6t9udERO4LhRGWDuBa0qSrSkDfkSmphuUTlrgvGrahx6RyBM2VEjSOfJ0DiffTuTZtqaFePSDihQqSPlJA1w3FUJ0nXitetx17nXNNT2BY6mLKNB/ue97vV4lLKn4oW1p+3q/rp1HXvC7UhJhuH/82EumCDHthVCRwQUn7nPuY0/j0H2se1ajFDjHWvCxJKoFAvsZO82FDAQWDTlHtFggsF9xwyvOx9X/7UGMvnBH7TWDs4Avau+dmBDYGq2jY0ymDsedYCEEBQDodDoVmVFCUPIg65GRWqBOQ/ydUKlnV8miCgQKJeAqGLhnk0RI6xgooQM2n0KgtrAY4/LyMrrdLlqtViWQeIg/yRD7oJdWoWHmemKGFmLUMZFAefSGpwgoiaNdKrbQ20zhRUWR1dXVTcUiKRJwHhhirmNw77fOMUEvOLBB2rm+9DrTHiX8ugYk9CmlGVGDINGl551CDO/jtb5fKRJoHn6J7HPuXWjSz/R6PZlA95Sul+4dj0Dhd4BiD+eNBFvH5jaoYMY59tQRXTMdh64dU2T4vWI7mubE7xXnX4/N9LoX3Ft6dKfaovtM3wdQLPhYijQJBAKBQCAQCBwfxp0MpM316wIHB2kRvHAppbsAHAMW4CDS48d5CLv3EmH33mO/2r5bdj8853z+LrSz8EgpPQjg+nnbcQLYr3sU2L+2h917i9Pd7tPpORx/E+89wu69xX61G9i/tp/SZ/FCCAoAkFL6QM75qfO243gRdu8twu69x361fb/aPU/s1znbr3YD+9f2sHtvEXafXtiv8xZ27y3C7r3HfrX9VNvd2P6SQCAQCAQCgUAgEAgEAoFZhKAQCAQCgUAgEAgEAoFA4LixSILC6+ZtwAki7N5bhN17j/1q+361e57Yr3O2X+0G9q/tYffeIuw+vbBf5y3s3luE3XuP/Wr7KbV7YWooBAKBQCAQCAQCgUAgENg/WKQIhUAgEAgEAoFAIBAIBAL7BHMXFFJKz08pXZ9SuiGl9EPztmcrpJRuSin9c0rpIymlD0zfOzel9FcppU9P/z1n3nYCQErp9SmlO1NKH5f3am1NKf3wdA2uTyl91XysrrX7J1NKn5/O+0dSSi+UzxbF7oellP42pXRdSunalNL3Tt9f6Dnfwu6FnvOUUjel9L6U0kendv/U9P2Fnu9FRjyLT4md8RzeQ8RzeM/tjufwLiOew6cG8SzeW8SzeM/tnv+zOOc8tx8ATQA3ArgSQBvARwE8Zp42bWPvTQDOs/f+K4Afmr7+IQA/P287p7Y8C8CTAXx8O1sBPGY69x0AV0zXpLlAdv8kgP9UuHaR7L4YwJOnr88A8KmpfQs951vYvdBzDiABODx93QLwXgDXLPp8L+pPPItPmZ3xHN5bu+M5vLd2x3N4d+cznsOnztZ4Fu+t3fEs3lu75/4snneEwtMB3JBz/kzOeQDgTQBeNGebjhcvAvDG6es3Anjx/EzZQM75XQDutbfrbH0RgDflnPs5588CuAHra7PnqLG7Dotk9+055w9NXz8I4DoAl2DB53wLu+uwKHbnnPPR6a+t6U/Ggs/3AiOexacA8RzeW8RzeG8Rz+FdRzyHTxHiWby3iGfx3mIRnsXzFhQuAXCL/H4rtl64eSMD+MuU0gdTSq+cvndhzvl2YH0jArhgbtZtjzpb98M6fE9K6WPT8C+G7Cyk3SmlywE8CesK4b6Zc7MbWPA5Tyk1U0ofAXAngL/KOe+r+V4w7Lf52c/P4v28Rxf6maCI5/DeIJ7Du4r9Nj/7+TkM7O99utDPBUU8i/cG834Wz1tQSIX3FvnYiS/NOT8ZwAsA/LuU0rPmbdAuYdHX4bUAHgHgiQBuB/Dq6fsLZ3dK6TCAtwD4vpzzka0uLbw3N9sLdi/8nOecxznnJwK4FMDTU0qP2+LyhbF7QbHf5ucgPosXfQ0W/plAxHN47xDP4V3Ffpufg/gcBhZ/HRb+uUDEs3jvMO9n8bwFhVsBPEx+vxTAbXOyZVvknG+b/nsngD/EenjIHSmliwFg+u+d87NwW9TZutDrkHO+Y/pFmQD4dWyE5SyU3SmlFtYfQL+Tc/6D6dsLP+clu/fLnANAzvl+AO8E8Hzsg/leUOyr+dnnz+J9uUf3yzMhnsPzQTyHdwX7an72+XMY2Kf7dL88F+JZPB/M61k8b0Hh/QCuTildkVJqA3gpgD+es01FpJQOpZTO4GsAzwPwcazb+/LpZS8H8EfzsXBHqLP1jwG8NKXUSSldAeBqAO+bg31F8MswxUuwPu/AAtmdUkoAfgPAdTnn18hHCz3ndXYv+pynlM5PKZ09fb0M4LkAPokFn+8FRjyL9w77co8u+jMBiOfwXtkr9sVzeHcRz+G9xb7cp4v+XADiWbxX9op9838W5zlU/9QfAC/EehXNGwH86Lzt2cLOK7FeEfOjAK6lrQAeAuAdAD49/ffceds6tev3sB6WM8S6EvUdW9kK4Eena3A9gBcsmN3/C8A/A/jY9Etw8QLa/WVYDxf6GICPTH9euOhzvoXdCz3nAB4P4MNT+z4O4D9P31/o+V7kn3gWnxJb4zm8t3bHc3hv7Y7n8O7PaTyHT4298SzeW7vjWby3ds/9WZymjQYCgUAgEAgEAoFAIBAI7BjzTnkIBAKBQCAQCAQCgUAgsA8RgkIgEAgEAoFAIBAIBAKB40YICoFAIBAIBAKBQCAQCASOGyEoBAKBQCAQCAQCgUAgEDhuhKAQCAQCgUAgEAgEAoFA4LgRgkIgEAgEAoFAIBAIBAKB40YICoFAIBAIBAKBQCAQCASOGyEoBAKBQCAQCAQCgUAgEDhu/P8BaBlm1RvG3skAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 864393 322526\n", + " Min thresh = 1000\n", + " Not Sliding\n", + "\n", + "\n", + " Winner = Not Sliding\n", + "\n", + "\n", + "221ns_image_588695055398_clean.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADDCAYAAAAya0IYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAACsI0lEQVR4nO39eZitaV0dDK97V+2h6pzTfXruBrrpAZoZmkECOJGggEpA8qqBT/Oh0YCv+kWT+CpqNGpe/Uwcv8QoaS8VNAhqEMUZgyLxFZAGGRqalm5ooAd6Pn2Gqtrj/f1Rez219qr72VV1TlXtXef81nXVVbX3fp77+d3Dfs5Z616/35NyzggEAoFAIBAIBAKBQCAQ2Akasw4gEAgEAoFAIBAIBAKBwMFDCAqBQCAQCAQCgUAgEAgEdowQFAKBQCAQCAQCgUAgEAjsGCEoBAKBQCAQCAQCgUAgENgxQlAIBAKBQCAQCAQCgUAgsGOEoBAIBAKBQCAQCAQCgUBgxwhBIbDvSCl9PKX0wlnHEQgEAoENpJTuSCl9xTaPzSmlx53mdU773EAgEAgEAvOFEBQC+46c81Nyzu+edRzTkFK6IqX0jpTS3eP//F4965gCgUDgbEdK6RtSSn+bUlpJKb171vEEAoHAPGK3hdmt2ov/FwemIQSFQKCMEYA/A/B/zDqQQCAQOIfwEIBfAPBTM44jEAgEAhuI/xcHahGCQmDfobbalNKPppR+N6X0P1JKJ1JKH0spXZ9S+oGU0n0ppc+nlF4s535LSumW8bGfTim9ztr+vpTSPWMF9dtUcU0ptVNKP5NS+lxK6d6U0htSSkulGHPO9+acfwnAB/ZwKAKBQGAukVJ6bkrpvSmlY+N76i+mlFp22FeP78MPpJR+OqXUkPP/5fhe/XBK6c9TSo/dznVzzv8r5/w7AO7ezf4EAoHAvCGl9KSU0rvH99mPp5ReLp+9O6X0bfL6m1NKfzP++z3jtz+SUjqZUvrnKaUXppTuTCn94PiefEdK6RtPtz2PNf5fHJiGEBQC84B/CuA3AVwA4O8B/DnW1+ajAfw4gP8ux94H4GUAzgPwLQB+PqX0LABIKb0UwL8F8BUAHgfgy+06/wnA9QBuGH/+aAA/shcdCgQCgQOOIYB/A+BiAM8H8CIA32HHvBLAcwA8C8ArAPxLAEgpfS2AHwTwzwBcAuB/A3jLfgQdCAQCBwEppSaAPwTwTgCXAvj/AHhzSukJW52bc/6y8Z/PyDkfzjn/9vj15Vi/Zz8awGsA3HiG7QUC20IICoF5wP/OOf95znkA4Hex/h/Qn8o59wG8FcDVKaWjAJBz/uOc8+15HX+N9Rvxl47b+QYAv55z/njOeQXAj/ECKaUE4F8B+Dc554dyzicA/CSAV+1THwOBQODAIOf8wZzz+3LOg5zzHVgXdjeJtOP76eewnqbw6vH7rwPw/8053zK+r/8kgBu261IIBAKBcwDPA3AY6//f7eWc/xLAH2HjPnq6+OGcc3f8f+Q/xvr/jQOBPUUICoF5wL3y9yqAB3LOQ3kNrN90kVL6qpTS+1JKD6WUjgH4aqyrsQDwKACfl7b070sALAP44NhadgzruWCX7GZHAoFA4GzAOPXsj1JKX0gpHce6KHCxHab32M9i/R4MAI8F8P+Te+1DABLWd80CgUAgMP4/a855JO99Fmd2n3w453zK2ntU3cGBwG4hBIXAgUFKqQ3gbQB+BsBlOeejAP4E6/9RBYB7ADxGTrlS/n4A6+LEU3LOR8c/5+ecD+995IFAIHDg8MsAPgng8Tnn87CewpDsGL3HXoWNugefB/A6udcezTkv5Zz/ds+jDgQCgYOBuwFcqbVnsH4fvWv89ymsb4QRl2+jzQtSSoesPd6XT6e9QGBbCEEhcJDQAtAGcD+AQUrpqwC8WD7/HQDfMi5yswypjzBWgH8F6zUXLgWAlNKjU0ovqbtYSqkzvh4AtMevA4FA4FzAEQDHAZxMKT0RwP9ZOOb/SildkFK6EsB3A2De7RsA/EBK6SkAkFI6P6X09du5aEppYXyvXQTQSCl1xrnGgUAgcDbh/Vgn+d+XUmqmlF6I9Zpibx1//mEA/yyltDwuLv6tdv69AK4ttPtjKaVWSulLsV5z7HfPsL0K8f/iQB1CUAgcGIzrHvxrrAsHDwP4fwF4h3z+pwD+C4C/AnAbgPeOP+qOf3//+P33jS28/wvAtGI1qwBOjv/+JDbSLwKBQOBsx/di/R57AutibKlI1x8A+CDW/6P6xwB+FQByzm/HehHct47vtTcD+KptXvdfYP1e+8tYr4+zOr5+IBAInDXIOfcAvBzr98YHAPwSgP93zvmT40N+HkAP60T/TQDebE38KIA3jVPLWCfhC1j///Hd4+O//Qzbc8T/iwNFpJzzrGMIBPYEKaUnYf0/su1xYbBAIBAIBAKBQOCswtjh8D9yzo/Z4tBAYNcRDoXAWYWU0ivHVq8LsL5D9ochJgQCgUAgEAgEAoHA7iMEhcDZhtdhvcbC7Vh/jnop7zcQCAQCgUAgEAgEAmeIPRMUUkovTSndmlK6LaX0+r26TiCgyDm/dPz0hgtzzq/MOd8z65gCgVkh7sOBQCAwe8S9OLDXyDm/O9IdArPCntRQSCktAPgHAF8J4E4AHwDw6pzzJ3b9YoFAIBDYhLgPBwKBwOwR9+JAIHC2Y68cCs8FcFvO+dPjKqZvBfCKPbpWIBAIBDYj7sOBQCAwe8S9OBAInNVY3KN2Hw3g8/L6TgD/qO7g5eXlfPToUahbYjQaIedc/TQaDaSUkFJCzhnD4RDD4RCj0ag6h5+llKrX+sN2+aPHsH1eT6/PYxuNBhYWFtBoNKrPFI1Go2qHfzca65oNj2fcjJ1taFv8W9vROPU9Pa40dtqm9l0/03YcOgelz+rO82N0HHcLHpv3Q+dT4+DnpbHnedqnuuPqYvK2dnLMtHEu9ZN93G58W6HUxrT53Qv42qy7vvada6u0Jkvn+3vTxm44HD6Qc75km+HPE3Z0HwaAhcOH8rXXjHDvzUt7GlggEAjsBGs4hV7u7u8/RruHHd2L4z4cCATmFSfwcPH/xHslKJRu+hP/Y08pvRbAawHgvPPOwzd90zdVZE+Jd7fbxWg0wuLiIjqdDhqNBnq9Hk6ePIljx45hbW1tgiQC68R+cXERi4uLSClhcXERzWYTANDv97GysoLV1VWMRqPq2OXl5Yljut0uut0uBoMBVldXkXNGs9nE8vIylpeXqziVyLRaLSwtLaHZbKLT6eDw4cNYXl7G4uIiRqMRVlZWcOrUKTzyyCM4fvw41tbW0Ov10O/3J4jQYLD+UIKFhQV0Oh0sLy9jaWkJrVYLnU6niqPValX9bbfbaDabSClhbW0N3W4X/X6/GpPhcIiTJ0/i5MmTWFtbQ7/fx3A4rD5fWFjAwsICWq0WFhfXl8VoNMJwOMRgMKh+VJjhaxU0nNBRwOBYqpjTaDSqeVZBROdxYgGN14XO92g0Qq/Xq46n6MOYGHev19skPnGsB4NB1SbHQdeTClcUY1yUIfi+ClkUf/Sc0nEO7S/HezgcYnFxEQsLC2g2m1hYWJgQvnROXaioE4ZKx/A4zoH2Q9t2oaYkfpSEPh2DUgz8jN/jkpDXaDQwGo2QUkKv16vWFwVIFeI0Fs4z/+bYlmIZjUY4fvz4Z2sHbb6x5X0YmLwXd7CMqz/+Mlx9UP/bHggEzkq8P79r1iGcCXb0f+K4DwcCgXnF/8r/s/h/4r0SFO4EcKW8fgyAu/WAnPONAG4EgCuuuCLnnKv/1JPEkODW7T6SPJJEOWlRh8BgMNjkHtDd+sFgUJFJfr64uFiRGsbW7/cxGAwq0u3EyUmcOy3YXrPZrIgw4UTWCbUSOiWkSu4ZM4koACwuLmI4HE6IIPq5EmbG6ERMx8NJtRJxQttLKVViDUkfwbb1vZK4oGPt8DVQ6pfGpeuAMas4xGN87PW4OmdJXYzTXB68HglzCYxXj/fr6zFbiQfToOepk6c0LyWxoETM9XiHzpGuKXf36Ji7M0FFAl2/JVFqO/2eFu8Bwpb3YWDyXnxeunD3i+oEAoHAuY0d/Z847sOBQOCgYa9qKHwAwONTSteklFoAXgXgHXUH624nd6yBdaJI8q1k1q3/uouqZILiANt2csTPSqkA2jbFA7bju5me6tBqtSZ2jvXahIoXjInHsN/87WPFNnVHluRZXw8Gg0oA4bm+U+7EzQm/9k1FAxdJvI9sy+fT521xcXFiHkpjVQcfdxVb9LoUWjxVBFgXW9rt9kQcRF0c0+z0Tkr92Dr7PUWhunZ1bXAO3O2hpJqxePqLCl/TUgl4vq6tkkjhY78TEcO/9/xeab80DgXXl7ZVui/4fOu4lObRr3XABYUd3YcDgUAgsCeIe3EgEDirsScOhZzzIKX0XQD+HMACgF/LOX98q/N055zkk7vP3IEn6aPIoHZ3J8IkWG5Z1891116JxMLCQkVsaLsmiVE3A9ukgOBW9vF4bHJX6C4s+6Tkh+070VVruRJmANUYMW6SahUhNB7dofd5KDkU3PGgYoKTVCX07Ju6FdQxQjANg6kqCiWP6sxg2wpfCwSdJtpPtb43m82io4HX1OsrfE7rSHtp997b1N1+9otz6OD4urW/TqDRz91Z4H/r98XFAu+nxqnHeczTyPlWooeKAF7/xMdW39Pf7rxQt4reC07X2TFvON37cCAQCAR2D3EvDgQCZzv2KuUBOec/AfAn2z3eSZCKCimlCfIEYIJs83O1uvNYt4pTXHDC4sUaeQ2et7i4iH6/j9FohH6/P+EuUIKj+fie810SGZw8af6/W/Kd7FBU0P7xfY5DzrkSXdyVoKKLjhf75IKCji3fV1FDRYeS06CU6qBz6n8rNEXFUXJU+HF8zz/jHHCu3bVSR7RLQgFFKP9cr+U/+n6JgG8lQmgbfp6vv1LcDp6j9Qm2ikM/1+9hSSCoE2OUzE8bOxf+dM78GnUOBP5mrC5sTevrQcNO78OBQCAQ2H3EvTgQCJzN2DNBYScgodPidb773Gq1Jgg4yfbCwkJVfFBJge5ANhrrxf+8+KHvSpZIsF6LFn7+1h1OXlN3UtkX3c3Xdom63HTu1PvOqe4ws30lkOo60PO02GMdAVV4XzRujcV3s53o6q4ywRj1txZ93Aq+k+8x8D2tr6Bkmcf6LrWOiY6ZHu/Hsm2NrfQ32/Ux0rlUYanuXLara9brb/h5/K2iT8mdoOtA11aJYKso5W2XxCOPvQ7+mQuFdYIB49zOGvLxc6HC2w8EAoFAIBAIBAKbMReCghNlYIPMNJvNibQAflayRRO6Y6+7rbyWkzlCreW660mLPs9XQcEJopIT363Xfnr+f6kQoManj5vU97nTOhwOJ+o2+Njqe6XjSuNYcgSUiJjOj4ocWxFrdZswjaTuiQ8aE8dQ14rHqG4Pvy7ni+Pu7gKPj2PstSf0t7tS1Kmgfde4VWhxZ4iTZXVz6Hri3yVhy1G31ty5osRcXQ4uEpW+f/q94fFe10Gv621prPq5nleas9I9wMXCkqBX+qx0bwgEAoFAIBAIBAKbMTeCgv+HXh8nSEJColoqtFayz5eIfYkc8TdFAyW6/ExTHOh2oNjBY5zk+W6tk7BSQUE9Tl8rSjnkSv6VqGr/mCZC0kphhMcryVJC5tdWsaBE8Etxlwil14xgXYVSn/WcOqGjbszoUNHztW8UYyhoaN8Y11ZQ8qvXLwkDumZc3FARTNcJ132J4DNWdQiUxsQdBTyvNM8av5L+aSKUinEuqtSNl46LHlcSRHhfqBN1PEXFxZdS23Wx8fc0cSsQCAQCgUAgEDjXMReCAoCK3PruN7BRIJGkWIUGorRjyl1vABMkUesAKJR88NGQJOD+WEQe60Sr3+9XxQXVkVASAfjaCZj3iWNQR3C0WB377DUAOHaaOqLEVEUIxswYSrvKWnNCiazmpXvaiooWOie8jtZy4PE8TkmirhMXKpxAaxteO4HgddUNon3VOfJ1Vqq1UPrt73mtB3cDsG6Hjr+TbBUH9BruIlGHw1aCR2msFaXzSudrLHXuGz/X23RBRPsGTK57Xc9+nKdb6Od+bkmsCQQCgUAgEAgEAmXMjaDQ6/WqRxyysGGv16uq/pOQ6C627/b665xzVTfBSZbvyBNKQEvF/Uq78PzhTreDZLlEaEt1C7xvwMYuupPslFL19ALa8rWmBHd12SaP1/ZKbgZ/JF9p/LRopbbvhNjfd+eIXkcfk+lxEYxfx0wJqY+pz6GmOujY8rXWXdBzSs4PFZR0TbmIMK1Ogx+jjomSUODte9sak1/ThQ+KGC7mOUFX6JovCTkqwuh7dagbE4d/f3Rt+xj5uqsTCnTNuyujLnUkEAgEAoFAIBAIrGMuBAUSfxY85H/ke73ehDNBUwRIPHWnXJ+QQIJESz/JNt/3fHnfUSWpKhXHAzZqGqiQwWvzfNaAAFDF7DvFJI4ak+84l6D99UdWKrH13XOC46eP1ORr3Y1n7Bwbxsd+ktx76gf/ZpoFY9Hf2qa+VgFG41Pngqcn6LkE46ybQy3cSOix7rZQFwWv5wUxNQ4erwKYzhHHx2sgqPuGY8cnjBA+hryOEuzS7j7jZT+VRJdqRLgTRNtS54ELCtPmxY8voUTwtY/uTnGBg24db4PH+7U0Lp2nSHkIBAKBQCAQCATqMReCAv/TrzvsJOkUFZrNZlUckYSotPutu7okXRQp6moclHa2XVjgtZTUMr2hVD+AUMJKQqSEUXfFm83mhKOCMTnhLLkClGArefLjp6FEun2seA2Nv9lsThBlPdcf96lEl0KE9kVJKtNNPC53jpR2ybkOSsKItqGOCG3Dz1HRiGKXEvM6N4CKLSp26TG6jnWMdI0DmBDbXOQh6FZxEq/1F/gdchHDd/K9Lz4HKirUOTbqdvi32vl3YUi/zyUXUOm8UqrFtDWu5/s1A4FAIBAIBAKBwGbMhaAAbOwokmzRrdDr9dDr9dBqtTYVFXSrN9MjnEyzfb5W8qNCQ8lBoMfq5+548McgKjFjn1iTge2oE4Htk/B5DQnGoE4IJ4Ttdhvdbneibz7GJVu39rNkE/fXSohLIofCyZrOr86L9o/nadqFuwE4Llp7Q50rXAva9k6ECbblxFprWQwGA/T7/U1Cgq8dFxtUoNJ50POYLqLuDq4DFZj0ySR+DRU7/FyvQ1FyWZScBRw3HbuSyOHuka0cCY6SSOQ1Mfi5OxQ0dk3f8Edg+ry566eu1kogEAgEAoFAIBBYx9wICsDkDixfr62tVTuqi4uL1S4+d/mdvCmBmAa1tqudnCkKbJNEib/pMlDCr+2pxV1j8J1ubUd3o9kH/i7l3gOTpFQJOwUXFV2UJJYEBLeoe/91F12FAH3fazto/P1+vzhXrIehoooKFi5EaF9KYP9YUFPjq+unCkBuodfdbbf3l1IpSiQYmKzR4A6IEhHWlBOep3UydN50bfBcXX9+HY5lXR0LQp042je+p+uv1Gdv28emdF0XZdiGX0/FF2/Tz/E5VJFBvx96//D0pUAgEAgEAoFAIFDG3AgK3O3XXWimPHS7XQwGA7Tb7YowA5utz2rB1vf8GKK0Q607wU72gHXBYTgcotfrIef12g+dTqeKZ3FxsdrdJGF22zXrJpAk8lqNRqMSNFhYUXfdOU5O9EmeSwSTbbNv04oZKlSU4Zj4WJZcIk4cOb5q/ef7XhtBSa8/qlEJrs6Lnqef83x9csQ0cliyxpdSJJzI6k8ddOynPZlEybCKLmxbn3bi5yt8Pvy4koji5+ujWtXF48fp7+2KeaXx8TanwV0F22mb53hNDhXb+FvXWCAQCAQCgUAgEKjHXAgKSqR015pEhqJCu93eZPn3WgRuHyec6HjKAMUMfb9EKkjw+TQKpmU0m81NLgMvwEeS2mw2q9QH7ac/mlLJHGMhMe33+xPjoTbzOkJXcjSUdnr9WM2XdxHA51F3eL3YpJI/d3homxwnF47Uuu/xahtKxj3WEuH1dkrrR9vRcVGhxUm3r0k6POp29UvigqZuqDOiLjZtw9NJ9LfGrfHztTpyXCzSNVZHuuvWlb6n7fjvaaJg3Xt11yfU1aHfz5Iw4g6NQCAQCAQCgUAgsBlzIyjwP/lKXLnT3O12q7QE3d0HJp8x7+1NIzUkvEpWS7vIbMt3hdUpoRZy3y13a7mSQi0cOBgMJvrG9xgThQ51Pij5UjJYVwxPbd4ap+6CE562oTnxahOvG2NNM+BY6JgyRo6dW/jV2s/PtY1SfNNEDmDjcZBOkH0M9bMSMXVBxl0Q00SdafC16Db8Ur9LffG5cXFMHS66vkvuC15TXS76/dSYHFxr2l7pui66aV9UoPJz6q5ZBxes/HupY1BK9QgEAoFAIBAIBAKTmAtBgdD/5JPk0qFAQUELGuqjJEs7z6WdaCUOKijoIyt1V1hJlBOZknDg12e7TIUgyWq1Wmi1WlUKhboUgMnHBSoJ1icj8DwtuKdOBXUZuCiihfWUCPtnShr12BKx8/QM/4zxO/lV8UBTRNxFUiKujEdrFPgOP+e5lLrB95xIMrYS4XbhRNvSeVBwLbu7gddRAq9zzfZcUPCdc49JRTp+7ue6+KWxeyxO6EupN9qmHq/XZn91Hejxpetr306H4LtYogUXt+O2CAQCgUAgEAgEAmXMlaAATJI4FvOjxZ9wcqCvlXw5ESmRHSXuJHtKCEvEQ8HPKUb4dV2IIEnWpz3wOJJfvqePgnS7uf94TCo08LzS+xov22EMJcKrlfLVWq/EsbTTr2PjO8E8X3/z2Lr0AI454yxV5PdxcYcC58Ph46EuB5J1d3ko1HGhIk3ddSh2lD7XtajrBdiYZ29fnSEuBKjTRQUctqM1BnQMnOC7KFMSEThupfXmbbhw4WKDwgWp0hxMc03o2it9f85UwAgEAoFAIBAIBM4VlP/XvQ2klK5MKf1VSumWlNLHU0rfPX7/R1NKd6WUPjz++eqt2qLzAJh0BOguPHf6AWza7S8Rijp3gp/D1+5WUNfANPLO+Bmjuh/YF21PCaaTG9ZkUELNvmo/dJz8b41ZSbbWLCiRfB9Dxsjrq3Cj4+euBkdpblzY0eOU0Gq7+sjNkhCj8F1zhRNvfbRiCU70S1Z4tqNCkPZT++Ax+bi5+OQOGa9DwbVVEk+YPuPXdXGL65XjqqkBpR38kmuAPy7IqZBVgq8jHUddJyVRoe57qePuLib94Zou9eUgYTfvxYFAIBDYOeI+HAgEzmWciUNhAODf5Zw/lFI6AuCDKaW/GH/28znnn9luQySEJHdaTE+t8vq+iwrqLnALvMJ3Rnld30VVx4A7BPS3Cg4UBZrN5gTh1QKOJHelXWvvuxJ47wOP5467ChYluBCh41XabVeyyT5oaoXOm5JBJ45KXnl8yXng4+pEu86pUCKqpZ1vf5/nah2L0s48+6nteMwK7Wej0Zh40gf7XXJlsD2tBeHzxLXF49w9o+OqfVEhwOOvE3ZKbgNtr8414N85JfxK7tVFodfx89yB4e6E0jX5nq6hkqAGbH5SjItTJVFqDrFr9+JAIBAInBbiPhwIBM5ZnLagkHO+B8A9479PpJRuAfDo02lLCRh3W0mmnExzF1XrEnAXVnf360gGsFGQkeDrZrM5sbvvOfxsg2SOgoO2V9rRVacC2ywRWH2EpFrs6yzjJJlKiJ3k+mMi+cNr1e1C89pAOb+efdD26ahwsqhtqGDQarWqzzRVRaH9J7GngKLt8vq6dkoiio4F2/Q6HL7jXxoTvu+Chqd8lMi3xqBkXceqzrKvbaog4ed4HKXzVYjwNaAx+VhomklJVPH+8Dxd0y6o+ToiVHzRuLgW65wx6grhcZo2pWu0rs+le8g8YjfvxYFAIBDYOeI+HAgEzmWcdsqDIqV0NYBnAnj/+K3vSil9NKX0aymlC7Y6X0UEoL7IIYnFwsLCRFHDVqtV7X66U6FEhkrkkSSp2Wxust+XyLa26Tu//pmnPQCbd7fdBaGOByXIaksvEUH2g7FouoKTJrXRq5DCa3pKhQoYJRKnYkFpTFz0oKjQarUmbPnuBuD88NGc6lDRNINSSoEe430q7YLrOqprR0mt/uixFEFKzhdHqZ2SUKLgGJSEEyXudVCRi/NdcqjosXXjoW3WCTF1qT91c671HeraLjl3Sm2Wvpfahr/WlJWDhjO9FwcCgUDgzBD34UAgcK7hjAWFlNJhAG8D8D055+MAfhnAdQBuwLpa+7M15702pXRTSummfr9f7ZgTpZ1PYLIAnDoU3CFQyjkfX3cTUSoRFSczJXLBXc7BYDAhTPj1UkoT9RF4vB8DbIgYGpcfq6JJv99Ht9utiL46NpR0qwjhPyVS6qKCz81OyBaPLQk9JHAqKugcsE88zomsu0jc0eHz6ekHGpteW9vXVI86QYjzy2t6Gg3brBNinHBreojG6nUvvIAmoaKC//i1/RzvKx0h/X5/k8tHxSsXj0rw71spNYPQ77aLKjrfJbhA4cKauzRcsCjVV5h37Mq9GN39CjcQCATOOsR9OBAInIs4o6c8pJSaWL9xvjnn/HsAkHO+Vz7/FQB/VDo353wjgBsB4NChQ1l3kdWarI4BJR9qaVbi7Lu9+hhDnueEhq9p42bqhRMkJ7kk1iTCpTx/tu2756X6Bb4LroSHx7qlX0WTOrIs8zGxo+81DfQpEJqiobv4Pp4l1FnhOT9aXFPnvUTgOG66a+xxl4gmx4apMTrOOgc+PnVEmPGzfzqWLr5orPqYSr2+z7/GwHY0rcddMpwLXSdaf8GvV3LAsC+lugEcV/1uqKtAxTP93tW5AhQqvmmMKirqXJTiLo2b/9Y26kSP0pzzvYMkKOzWvfi8dOHBqkgZCAQCc4K4DwcCgXMVpy0opPX/af8qgFtyzj8n718xziUDgFcCuHk77XGXVdMQSuR1MBig3W4DWBcbXFAAJosVKumSGCfaLD1ykO1obvo0kjEtBYDEksUaS7vl7OtWBJBwa3uz2az+brVaE0+cGA6H1efsr453yYngdQ2839vdga6L2Ykqsbi4uKlIJ6+9uLhYCR0+nxxHOjV0d10LI/rTQbQWQ0mA4bHqGiilHyhUfGLbJOh1a43nads8R+Pgrr2KZipylWo6+LU1Hu2Pf09UVHCBwfvuO/7aXknwUWFAxQWuH3d36Hwq6r7XLrxNE49UmDsoAoJit+/FgUAgENgZ4j4cCATOZZyJQ+GLAfwLAB9LKX14/N4PAnh1SukGABnAHQBet1VDJEYkvTln9Pt9LCwsYDAYTOSscxez0+mg3++j3W5vepQgd6ZJRCg2ONnhb60foOSHhIht+e5nqViiQsmgigrAxqMvaffXvPKSJVyfEOEx6hiqSMG+UXhx8sUxoyOExIvESkmo71pPEw4cXqcCmKwtoLv9Si5VbCk9OhPY2Knme+q8UNQJBiX3AMUdTWHQx5r6eCs55m+Ni+1QzKhL7ykRciX5GiOvW0o54JrXY/m5uwA0Bl8f+lpTinwMeQ0VOXRsdW2Xrq1rEJgs0qrfH3VG6HultBztF69fGkvvj98fDgh27V4cCAQCgdNC3IcDgcA5izN5ysPfACht5/3JTtsaDAZ48MEHcd55500QYX9+PfO4+fg8EnLddXaQ4NQ9HnDcl9odTC/ip8TVjy2RECWdKaUq7pwzer0eWq0Wut0ums1mUdDg+JDQ8hgnwrSu6y62117gIwc9vYBjV8qzVycBr68xeCx6Pb5WR4FeS8eHn6kgoHUTlNDqHNCRUIeS00KdL0qIKbDoPHiaDdeSjomSdwX7yqdZcCw0Lu23xuyijQsn7EdJfFJBxqGuFI4nUZpHvp72GftPwU9jVJFM587XGvtSckOUhAg9l09nASbTJkqCRp2oURLRDgp2814cCAQCgZ0j7sOBQOBcxhnVUNgtDIdDPPjggzhy5MiE7VnJqxNUEg/d6VcS5ekPavkndLedrwm3ZvNvEjl/7KIWXeT5JI0URpTsdzod9Ho9rK2tVQ4F9k2vp2Ohx5AAKdHk8fpIPyVp/gQLJatsj6IDP9NHXap9XONiG15IkH3Q9kuFCvU151IfEak70T5HtP/zGkpInRjqfJeIscaun2ttAvbTnQF1oob3kWOghTwBTAgVGqv+7TZ+fuZOhBJKgpmPTelzr1FROk7Hxp0E3h8dX+2HpuDodXwtafslR4+/1r/1nuACoPbTnRuBQCAQCAQCgUCgjLkQFHLOWFtbq4jqYDBAv9/fRF51d1st9PooxdIuOzC5E85rek58HTFxYgtsfhwgRYVSLQLGqzvI+thL3RnX83QXm+NCAu2FDb2QohJwJZ08H8CEzZxQ0qV9URLoxEyvpaKB7rQreSztAOvTKXT81VlSsqn70xRUiNA+ueiiefk+V6Ux0IKLToY1phKBVTcG42A9DU0RoFBR2lFXQUHXsq5pHutrncepIOOx130H2I7PWZ3DQQWSOlFCr69jw/cpLPgY1Ik2JdK/nfe2iqmunUAgEAgEAoF5Ru8lz8Go2UAaZbT/5AOzDidwlmMuBAVgc0G64XBY7eKWRAUSDSWiJeKvJFiJTd2TCPQafM12/LUXFFSngu+28nrquKCosLa2NlEvwms6kPSpnZviAQUErT/B3W7fpWctCU2HcHKuBRE9ZUJ/8++ShdyJmYtBTtjUoq/pCBpjyQ2g9v3SXPr8aGxes4JCBMeO88Fj9bqMsa6ugApHDhci+v1+RfbpfHGRoESkvR29rqMkjnnqg4o27JNfo5Qq5E4BnQu/Zh0512v441/9mFKftgsv7FgnMJTWdCAQCAQCgcDc4nlPx/Frl6uXD9yQMGpmpBFwydHnVe8furuHhXd/aAYBBs5mzI2goCRR7eQkzUqutUaAFmRUAsQ2SsX8ppGEOpJWIocl2zndA042WXhOazqQQOsusZIydQWwLRUm+Hcp/UFt/9omd69JXumqIIEs7XjreDmpLI1LKXYeqwUyeaxb3wFMuBy0BoXOPwWYRqMxUUCRx1AkqCOmJeu8kk7vW8kJA2CicChj17ZLTg8dD02p0OKPW+Xyl0g24bUf9BgXE0qpIWzDXRJ+LTor1KXi1/ZUGYWmetSlV7i44LG6e0Vfa1x6Tl2/9PNAIBAIBAKB3cbDr3k+hp3J9zoPjXD4d9+/o3YWr74KX3jJowEAK5cl9C7Q/2ON/w/VAO77oo13myfaOPSE5+OSD55AvikeOhLYHcyNoECioY+BBLApjUCJL8kpCSZfK6nk7q8XtdtqB5TvlazxpWPYpropGD+P8SKTJSKvZK4Uo75Xl97hbgx1ZejuOmsq9Hq9qQ4EFXdKxK6OfOn5JJ2enqDH6nyWbPgqUviTGBTuznB3hMarx6ngouf52LroVReHX8Mfg8p4nIB7TQ1PbygJMC5aKEr1E5SAl4i4uw9K8FoOujZ0HKetYXdPeJyltqd9d3Xu9MdFn9L1FPzehrAQCAQCgUDgTLH6tc/FsevW/x+4csUIeTJzGo1uAyeuesGO2hy2gbVL+H+87bk2+0cyjj0RWLn8PDS/fP16V775dgy+cO+Orh0IKOZGUNAnFGhevNvjKTCQsJAUl4giUH7kH993wlTatdQceieXJcLBNrWaf855ohK9tq/igJ6v7bsYor9dVHCCqXn6WnfByb0+2lDTJko7yhRBdBx8DPQ354Dz69CnQKjoos4Df8qDFzDU4pF6PtvWcVIxgGk1pX6ooKCxU8DS65SEJ08BIKll/NoPprC4iKOf8/U0x4ijjrirg0O/O16wkueoyOPOBT1OhSx1ztSNr/dhmjjlbhI93sfNX3Mt+Nr1eXNXRAgKgUAgEAgEzgTdr/ki3PO8BYza9f9nG7UzTj1m/+o29Y6O0Du6/venv/06pOF1AIAr/+Pf7lsMgbMHcyMo3H///XjooYcqMUFJiNZTUFEBmNylV+Kou+m686w7ryW4RZ7nl4hFidQAG2kPSr40nq12PpU8sl+6K66FFzXlw3fUvcYAx46fUVgANoo1uqChtRkAbCK9ddbxkshA0szrlZ5qULezXUpH4O9+v1+JH/r4TYoTXrizVFDTybEez91qPvJTr19KS6iz7QMbO9/A5qKNOvcumrjLpk7EIVQwUOhcqZPF0yBK8en3R9tS0US/tyqsTROgtoJ+v1TQ8poIpXFR8cbvCy7YlWq11N0nAoFAIBAIBLbC4J88G3d9+SJGzfn9/0Tv/PH//TLwmZ98/sRn590OXPSr751BVIGDhLkRFB544AHce++9uPTSSwFsEBCKCd1utyLqJKZKFNzOruSIZJltTRMTgPKuL8lRyQ3Bz0miSNq9AKOnOJRSHRwklUoknRx7br/GuLi4iJwz+v3+hKig56vjQ8eNsZKU6a48P9NjNEfe7fMcV15bx0vJoYowTG3w3HudcyWRnOPFxcWq2CHdKepmcbeDpiuog4Fj4zU6SkSztHbq3ANcw74G2LYKO6WUCLbtIsi0+hZ+vJJxXtfdEMCGI4Jrie3o/Pt3ge+rS4fvbyWEbAUX/OrSJUrncS3UrVP9LvJ7466kQCAQCAQCgW3huU/DZ7+midyYXzFhAgkYLk3GeuzJwLGfnhQZnvDL92Dw6Tv2MbDAvGNuBIVer4derwdgg3goodLdZoXu3rsdHNgQAkgi6uoAECRzPM53mPn3tGuxYORwOKx2z3u93oTlWp9MwXOnCR1u315cXKzcAx677waXLPnqcnCSpmPO/pCQLS0tIeeMlZWViUd9llIt3Eqv5E1JnJJUHW/tL/+mkKREkmRYH8Wo86Gih485gAnRQvvTaDTQbrc3rQXGrk+BcJR2zz19oJRGw89V5FCiz7GqEyvq1lApJYPH15HyUiqNptDoWJS+V4yzToQ7HbigU6qP4v3TvvG7qTGXBKpSAclAIBAIBAKB7WDhSY/Hra86BBzwzMncAGCCyCe/63IAl1evG72E6/79xqMp8ygDo+mFxQNnF+ZGUCCcePhuIn8rEdI0CSVwKkzoeUQdAXEXgxMlkiR/koOSXu7Gk7TQIaDXpoW+dA13HGgaCD/nDrqTUpJVJd5K+DW9QMm9k3gfZ15Ti2BqioGScZ0HnqvWeB8/nWO9nu4a6664Qp0Y7CNj8919XRdaMNPHnv3U8fU++HjWQXf3S8KKzlvdozL1Nz/fKepEhVKagMZW+i65KEOCruNFIa10vgsuChcJPGa99laOBR1HzpP2rSQU6RrbDREkEAgEAoHAOYiz9b8Q1q9RO+NTP/2c6vUFn0i49Lc/PnHM8MQJINJIz1rMnaDgtQIAbNot1N1dEgR1DCjJIClV0lsHJSjTHtnnueR+vlu9eSwJl8bWarXQarUq8loiy2o71/cpSmgs7Cd3Yr0tQtMDfIw4Br4LrYUy6bAgyddHYvKYElGtG8t+v1+99uOVWOrYa3ua0qCuBwBV26yxoO0qeXViqX1WsjkYDCb662NVssq7UFNyt7jY4Oe5Td8FKif5GkOd+6M01nqujgHXqK5xtufpL0zroBCm4piLdk7uVTziGnMHRErraUSehuRjwHkviSQ6HjyGDhbGHi6FQCAQCAQCO0JjAYMLD806ipnh4SdnPPxjT5547/o3PoLGA4+svxiNMLjnCzOILLBXmBtBQUlQyaHgYoASMLcrOyEkaVaip7Z+x1a7kiSh7gJQ+zRjdQcB0wgYCwUFHlMnZJR2qdlWKW4XM0oWbiVjbmMnmSMxdAt+s9mceOKGEm6HkkTOCefFx7PkcFBSq9f0NVM6j3/nnCfEga3GuES4naD7I01L81B6z9N2vA0XFaa16aRchQAl11qgUUUfHstUEr1+6bvI45Xo+/hq2/xbn9yi4lcpdcLXEgU1T43RdVcat2nOBa6pkjvGv8OBQCAQCAQC28XiFZfhk1/XmXUYc4V/+ObzAZwPAEhD4PpfPQL0Bxje9pnZBhbYFcyNoFAicySy+h97tUC7XVl3QrWuAgkJCwICm1MAStffju3Zd6f1fW1Pd/31MYX+mEyNSfulBKqU4gBsCAReK6LUR45BaadWHRH6uECKChobRQeN1XeDnaix/oO2rQ4NrWGQUqpcBZ4qwOvSncDaAySmHGd9X+PiNflEBCXQ7kDRopQlF4nXkCjBaz8QdIfwb/2tboDSEyZ0/vTckuuCY+DEfzQaTfTNRZ1SqoDGp6KSugv4uYpH3ndfk/5d9/H18/14F330bx8PXXMquml60TSnUiAQCAQCgUBgZ8gLwK2vvQjNEwmP/ZMjAIDFLxzD4I7PzTiywOlibgQFhZIz3cV0KElWMaFUf4Ck0QmPkkm2qbvzJVJSioPweg8aixf+a7VaFbluNptot9vo9/tVn1WEcLFCf9SG7kRQ22C/VOBwUcbJHsUMfQym9lMJo4oGJL/avqZKtNvtikjrcfoECgAT7hLfzS7BSaimwpRSBry/+h6PdwJeci/odbdLQuv6oARc51jdOLprP63NUnpO3RzzeP+sFKc6b+pEGBdH1KFAEYl9YAwquhAlp4H3r9SX7Tg8XDhwQWWamBgIBAKBQCAQOD30j2Tc9s+XAQCHP3cYF37iUizffDcGd90948gCO8UZCQoppTsAnAAwBDDIOT8npXQhgN8GcDWAOwB8Q8754a3a8l12zxkHJslOIZYJIupEQG32JdJYKr6nsdWRCyXnPFZ3sXlNJV2aXrC4uIhOp4NOp1PVUtDret0AFT54HSXh2rcSkaSrgFAng5Mx33Hu9/tV7QAnjiSC+jhPb0fdGBQW9DGSnuuuxzJOd3foeLrdn8eUdtV9nhcWFtDtdifG1Z8c4i6PEvnd6Y62k1/tM10F7n4g2fVHatYJXtq+QvuvY6Jrt9R3b8P7XKqjoY4JF8hK9Rr8O8r17cJW6fvnY1oSRejW0OtPc57MO3bzXhwIBAKBnSPuw4HA6ePkVSOcvGoR5z3uajzq96LGwkHDbvxv+R/nnG/IObO85+sBvCvn/HgA7xq/3hKj0Qj33nsvjh07tsmV4P/RBzbvPip5LNmeFxYWKkcAd715rlqclZxMg+7elnbC3S6vpJDOCxKxdruNTqdTPfbQBQElzXzNR1JqTQGiJKqUCKvHTZJaGluOy3A4rB7x6aSu1J4KPZqKQrdCu91Gu92uXBr80ad2MC5vX10onuah1/e/lXRq0UBtm/OjaQAuvvg5W62baWRfRQSNVcdO166OoxZN1HXmbo064qzveV0Cj137rfNTR7y9P1ocVR0XKkJonwi/H9SJZd4ftqVOII6hxlbnPPE45hy7ci8OBAKBwGkj7sMBjB58CI/63/FEg9PB8ceNcOc3XIuFiy+adSiBHWAvtt9eAeBN47/fBOBrt3viww8/jIcffhj9fr8oCtQVwHPiVCKO/EyfaqCCwDRiUbJZ+2s/p5RrT1LKx0ny3FarhXa7valAoxIvdXAMBoOqjRKJ1ph8J1jdAfo3r91qtSZIl4N1LbrdLnq93qZHBXo6Rp3jgH/zWkr4+J6Pr4sTJbFjmptE59N3uSk40SXC9nSMtTilxsA2SiLAVjvcJddGyVGhYgKv62NZ2vUv9Z2YNkYOva7GomJP6Xj2sSRueRHQOncR4cU/Oe/TxITSWlER0UWF0lo7wDjte3EgEAgEdgVxHz4HMVpbw5FbHpp1GAcWJ68e4fPf8gQ0jhyZdSiBbeJMayhkAO9MKWUA/z3nfCOAy3LO9wBAzvmelNKl221sOBxibW1totK71hwYt1k8VwmZ7tKSPCoR5LVcjCCU0LmIsRXBULLqwsZoNKpcBUrEU0qVoNBsNtFqtSZIuVboZ7+8Ur+mO+iuuxaBdJGBv2mdZ1tafFHrWHh/WLNB50bHq/TIxZIARGGB86LX1f5RZEgpbSoQWWdX15QRHTftL8eg2Wyi1+tVY8BrME3G29d+cXyUqOq6U/i1fZw8vUDdJdpXFWnYR16v9CQHJ8g83+fN4URf11ZKGzUj6r5DCqa5qKtBU3lcbHAwZl1zJUGP1657sgf7zXsMj9G1OS2FZA6xq/fiQCAQCOwYcR8OBHYJK48aIS3OZam/QAFnOlNfnHO+e3yD/IuU0ie3e2JK6bUAXuvvKwEjWRkMBuj1elX+tO5+8zjfvQYwQeKV0LqooLucSsRK+eVb7XyX3BGeuqA73yTSOedqt5lEiOkMJceEts1x4rFMnVC7fmkXm33nMboD7uRbyb+OA2smcPdeSTjFAU8p8Z1hxsbrsQ1/+oXG7W4SFXF4jhba4/zp2Kmgo9fyMR8MBhOkXdeMPhHDhSTfOS+JPzxOhTAVP1yE8fQXXr9unHi+zpOP37TCp9qWziP7wRjZNtcRP9c+qTBSetypjm1JFJzmGCh9X719/074dfW8A5bqAOzSvbiD5b2KL7BPWLz8Mtz2ndfOOozAnKHRT7jqx/921mGc7Yj7cKDC8NZP45p3HMFnXt6adSgHFrf/uyfimh/7IHK/N+tQAlvgjASFnPPd49/3pZTeDuC5AO5NKV0xVmKvAHBfzbk3ArgRAMZq7npAokb5zrenADg5dhs6d2yVcDk5I/S8RqNR7Y6XdvdLroY6aDsk3Cxu6KkPJWGE/e31ehM2c88h5/FK+Hm+nqf9VhLpVnsXR3SMfaecAgD7VmqHcWlKgxbJLO3mOxnltYfDYeWqcGFDr+tz5O/RZcG+kxS7oDMYDCbqG3iqhLanRJhCDq+rj2bU9zQFhef2+/2qL2yH/dS1RTGCcLKu36G6dBD2m9fQQpA6duoSIbQtrnWdL65VLabobgR1C7BPSuj5PdE1yTXNvpZcNPo9SSlV7hOPf5pIcVCwW/fi89KFkfR5gLFw3nn4h397LUbNmMaAIWd8+j89v3p54ceBo7/x3olD7vyBF6B3dPfWzsUfyTjvt963a+3NO+I+HJjAaIiF1QGQW8CBMTvOFwaHMtCIwTsIOG1BIaV0CEAj53xi/PeLAfw4gHcAeA2Anxr//oMdtAlg8j/y3NHv9XrodrsTj350KJHW3WgSJCdfJJR+bZIyJSS6O6pEV9vSdhi7uiwWFhYqIYGiQqfTqeJShwLjUCdCr9erChb6NUtkn+S15HDg8XRG+C5uSYBRwcKJqgomKhJoXOpI0Nx/AJtEAhVA6nb81RmgDoe6vlAg4Gdaf4Jx6a6/uhfYpjownDRr27T2KznnPPtaKTlfPB2gJIwo6WbsnE+dm9KuvK9hHSsl6hpnHXQdeaqFXkOvo691Xr12hgoQvBdw3XDNeF+1PU15cej3RmPS9w8C9uJeHDh4SIuLuPVHnwyk4CKBAhIwam2sjQduAB58xvMmDslptKvE577nAPc/e+Ma17/hPgxv/+z6i9HOnog074j7cKCI930UVx39InzuJQfO9RgI7Ahn4lC4DMDbx/9xXwTwWznnP0spfQDA76SUvhXA5wB8/U4adYIBbBD/1dVVrK6u4siRI5uIAomfEm7dLVcyy/OYduDOAyVwSlT9M4WTSndTONEDNqd3aD68pmWo8OE71CTtnU5ngnjpb++7j4kSQa+m73Oix7tNXgWckiigP41Go3qyhY4Hd+Z1XBxub1crv7oEdF68HRcrBoMB2u32RHFI9jGltCkuHReKEErqS2Ac/iQNjUndKbxmKfZpZNfTBfwc77uex3FVt8Y01I1rCdq2p3X4nLnw4e4Cfp8Ys7sa9Pur/S/VtCjFzfjckTGn2JN7ceBgoXH4UOyCBbaPBOS9Xi92jVu/41IA6yUEnvAfPoHMmj8rK3scyL4g7sOBIhr9EdJgEXkxxN7A2YvT/t9yzvnTAJ5ReP9BAC863XaV+BK6+83HFeruu5IwrxVAwYBEwp+ioBZrJVy6O1pH/vh+ya4PYCLO0WiEZrM5UT+h3++j1+uh1VrPr9KnHmg6hJJUFRcYh+ffl9JBfNfW41c3hkLJuo5Ns9lEv9+fcHi4EOSiCIm6P9WCfSo5Lwjtv4sevrtcstwDmLDda7+5Bnq93sQTF/i0EXW8OHH1cS+ReE9J0NScUhqCrulWqzXx+EpeU9v1HXh1Gmi6TZ2QoNfU9aHHThMf6tqcBhcOdZ60/xzbxcXFSlRQYYbHe1qE/9b0Hy/M6W4KFSgOgqCwV/fiwMHCrT/ypFmHEAhsG7f+2JMBAIunEq77r7cDvT6GDz8846hOH3EfDtRh8V0fxGUXPQ9feP7Wxwb2FwvXXwc07f95vT6Gn/r0bAI6wJjL/y37f/KBjbxyLfzHY/Q583xSAkUF3zVn6oEXLHRy4wRHCZvvEHOHWom+Hq8uA8Y/GAzQarWqFIFpjwB08q9pAXzkY2kn2eN2p4GOoZOw0vklKHGnnV93orWuAY/pdDpot9tot9vodDrVuLD/dYLCtFiU4DrRpSOAc875cFKs7TAFheuFTgoXd7TfFCZUAPC14i6BUjoD54cCVClG/ub4Mp1GHRq+hraCrwWNz8Un7d9WbasrRWMpFT70uh48zt08On6cLxXT9DukAoyKdKV5cedLIBAIBPYOg0MZt77+Wizf08CVv3cPcOw4hg88OOuwAoFdRfvYAAurTQyXwqUwD2jc8GR0L17Cv37Dm/E1y2sTn73j1DJ+4f98Ndr3r2D0kVtmFOHBw9wJCvyPPAk2yR/rJ/AYEr66JxD4Did3wOkO4PsOFw7qxAQlWmqNL6UCABtuBToT+Lrf71d90b4radTHJ/oTCDRG1pqgy0EFkpLNXsls3S6/j40XFVRyRwLoNRh8F58CDJ0KFBToYCjlvJfIv86NuxY0fvbT01t0h9oJpcau7Smx1UKN2iawkc6i77trwgUsJe3q1uA5FDeADbHG3RJa+JHn6w79VuOp6QguUpXcOtq+Ev86l0xdWypgaCFRvqd9ZZx09miNEh1bLUaq65zXcOFK29ffgUAgENhbrFwxwq3feRmO3nI5LvuD2zG8t1i7MBA4kGi+8yacd+Xz8fBTZx3JwcKRzzSA4e7VW2nc8GQ89LTz8UX/+kP4xUe/v3jMyw+t4OW/8av4jruehw/+l+fjwo8eC2FhG5grQSHnXOWNK6kmYaBDgZ+TPJXy20ttuy3dd/1L9nmv00CURIWtCtnxiQGlHWfuSHOX3okqr0HixPHRndjRaIRerzexQ6t9UBLlOfJu/3ZSqu/p++pq0B1zHR+NUZ/20Gq10Ol0qn5RTPC6FT4fOqelmg+MU8eI73OM9FhdB060/XMdKyft7GvJWq/Ev2Tt12KNdCXQdaNiiPeN7ejYqv1f4ddlbNoG4cU9HXV1NPQ62q6Oq4oJOjc8V9cLRSp1FvG7744Kfrd0znT+mTqh3xOez2tSFGGb4VIIBAKB/cOxJ2Wk0XU4/9NXov2h2zA89sisQwoEAjPCo37zFgxral/tFOmZT8Gpn1rB+5/2W9s6/pce/T7gP70PX/zRf4bzXv9kjD78iV2J42zFXAkKw+EQDz30EFZXVysiQXLVaDSq+gkAKlJKMtrtdicIdin3nSTBybKKCSVrvRIOJ2V0PTi5KrkfGKcKIxqnPkJQSZeSN3VbqLCgu+B0YSip17EEMGETd5eCjpvb/KehJIKULPEUTzqdDpaXlyecFSSLvtPtu+Uet86nPoqTY0Qiyl1tf5yojpUKK1qLQAmmx+Mk3VMV3DHjYoKuTyXKOg+6DjylR10o/K6oE8edLSVHhvZlGnTd8fun8H773yp08Ue/e/o5wbXKeVNBYjgcVmKUigr6HfF+aoqSuyVUjCilEgUCgUBg7/DwUzIefkoTF131ZFz0tpsxOnFi1iEFAmeMiz96EqcecwS9o5v/3xXYjEtuAvLq6hm3s3j1Vfjkdz8KVz7lC3jPU39/x+f/P0//PTzzS74Dl374jEM5qzFXggJTGygg+M6yFmV08cAt/k5mS8S6TgAo7W7q+SR9TkDVzq4gYdKCjCwQ6ORKRYUSGWd7Gqv2S9NCnAy7QwPAxG6wxlKqR6Dw95XI8zWvQfcBYwRQ1X5ot9vVvLO2wtraWnWNusJ5Oi7aHx3vklPDf9Qir/OpYoMXvfRdaz/Pybums6g7RueYbdKJoFBy7ddWJ4I/ElXb8/P4ns+b9kdRl6KhKQTal5IA5d9H/+Ga0VQHwlNoVJxwYcwf1elrWs/TsSphO0JaIBAIBHYfDz4jY9h6Kha6AN74rlmHEwicEfIHPobWC16A3tFZRzL/uOx9wPl/9DGM1ta2PrgGjeVlfPrXH4fLjp7A7U97wxnF87RvvBn3vf9pyB/42Bm1czZjrgQFYLKGgpMaLWpYsqfr+SVC7jZ1J6ZKHpTAlAieEkgVNfxJAnptYGP3urTzr9fyuErF+Txmttfr9dBoNNBut6udWhU0vP6BX1dTTTxmJY4qnjBGFxK0TRUxms0m2u12JTRoMU3NjafjQt0ldbvGWm9AnRs+/iWRSONU0upiA9vQNvW6TnjZrqbosD/uINE2PT6PRcdbRSSOLx0qStBVzNC50++RinQK3c3X7447NpSke62S0nea2OppChQAXKzQMVLBr+TQ0ba0z3UxbdeZEwgEAoG9wbEnjf8/cemhGUcSCAT2A5e/FzjvTz+O0alT2z7ntp9/Hp5ww+cm3uss9HHr435jV2L6jce+B19y1etw6AObP1s4ej7u+canbKudS//b3+5KPPOIuRUUSFy4S02HQr/frx5XqISgtPNcImpa4FCPKdnCt4pRd33rhAAnoUrq/VF3SmbZPsmRk3/GOxwOJx6f5+kbvLbb8H3n2mPV49WOrjG5lZx90jF30YZCQqfTqWzq6jgppTYQpUJ6jcbGIyx5PMdRnR5OQtlGiXACmBC1dD3xffZf14/3VceW13UCrLvxjNPb1ZQAxkCyzjnynXg+9UHXi451Hby/TLWo+17oGtK1ws88BUXFDe17SRjgGvTUCIp2pbj1bz9P/1ZhRr8ngUAgEJg/DNuzjiAQCOwlLvh4wmV/eQ8+8fpL8I9/8NiOzv2vF/wsrm/urej4bT/xdvz2bS/aKNCYEu76vucjN4C1S7fx/8cM9L//BcWPHvWeU0jv/cguRrv/mDtBAZgkV/6oRX10pO7MNhqNqsgfH6PI93Wn1Emv77LzN4kMP1eyo7vfpRz/aTubo9HG4y89RYFtu7VcK/d7vr0+clFJqMKFma2ggoQKHOpAUGLmhFbHEEBVWJDt0ImgLgBgMjefY6V1I3wcdcwYD0ko21MSqW4NrjPGBEyKTbxGr9ebmAvvpxJtH2MdG46JuzUAVDvvCt9F1xQZrr1erzexFv0pCBR/eH11mUwTFTwOxsg+lNa3igOaqsJaHRxrfRJIqUijtlEnCmqNDXecaHFLFxj4ngoJjEHXtD/tIRAIBAKBQCCw+1i4YgV/9PxfxkOv6OAL338+ntP+Ah6zeHiHrey9g+mbz7sPv3WohQTg8z/0AuQm0Dt/BxtRCVi9vHz8HS9fxsJLymLDdvHYn7gJud87ozbOBHMnKPR6Pdx///246KKLJgQEJYsk0d1utyJNSlbdbk645Vs/dwLjxMt3mf0aJTLv7gR1B9BloaSGdv92u41Wq1VVnHcnBv9mfNwtJ0jQ1PbuYoLWFuAY8kddE74D7eTeSbaLF1ocr9VqYWlpCcvLy1W6g5JmnUN9EkMpNUVFCBVc6NjgmtDdbxWT1OFQIs10PuS8/uQRbY9j58UIXSTwVA0VBJTIan/UnaLjqWtU14IKPE7E1cmg1200GlXsngKjv0tQIUu/d94vJfDez9KTE/x76bFyvfMzH0MVitx5wrGg8Kbx6Dp1B46OfSAQCAQCgcCZ4Io3fBCf+95no3vxufl/iz965c/hcvsvYDM1cLhxCGgCwEkAOxUT9hef/+EXoHvBCNjFPadhJ2PYObMU29v/47M3hXTe7cBFv/LeM2p3u5g7QYGkz10DSoj1MZIlm7WmI9ASXnr6gxPs0q6tk1lew90PO8FoNMLa2tomxwWhu7kUHvi+OyfYb8+j53X6/X7RXVByXyjJckKofWZhTP5Wcu8ETftEsWRpaWnCSaJkU+32Did7bJfuDIoJXBfNZrOq0aCpI0r2uS5IxHW326/F9zkOrFGhrgh1j6io4+Oh65r9Zh+ZqqHjCWAirUOFIBURvEChXkfXvKeq8Dvi4gKASlhRMamUcsB2NYVF2y45DrR/fn0tiuljy/e4ljnP2idf69p/FcJ0HhQu1AUCgUAgEAicLnK3i3QuaQkJ+J6v/FN8+9FPAwCaaXnGAZ0hUsKwlXdVTNgtjNqbBYmHnwQc+5nnVa8f95YTyB8aP/6yxkl/uphLQWEasSSpKRU29N3dEvSzOuu6vlaC42RL3RIlQsKYSCxLfdDzNOefhNL7oTu+zCfXY5S8kmjqeE3bfea4q0DgzgAKAyWngqYquO2cxJ/FF2mD18cfkhh2Op3KfaK78n4tzr0KRf1+v2pXf7szQefG0xD4t+501xFwj0uLCyqp5nipnZ5iD6GuBG1PHwOq4+vkm33ztBF3jmi6gK4XxqfrpPREi9I6rxtTXoefedqCfofpRABQCQQ+zyX4GnIBR10PdLPoOGo/9VqtViscCoFAIBAIBALbRQLyYsaXPPsW/MZj3zN+8+BvzjwwPIXbXtdAevAAFetOQJah/9Q3HgG+8R8BAJ7wH2/FaGUFudvdlUvNpaDgheZcWNDaA3UEx3eVHdOs2SRydAeo68HzvZXYl6BEhXUTSGzoUuj1elhaWqrIeqfTwerqatEJoc4EXps71yV7uRPhOsu5EkAlYmo913NLtnx3R/A3yXez2cTy8jKOHDmCpaWlaodf+9lqtbC2tlbVWQA2dubpQPBz9Hdd0U0nmFrXoTQWdAqQ5Grqgj5GUp0Bvp7UGaJzQLhAwHhUDFFBohSnkmVPe2GsPFZdGqV5V3cJ29bvmY6lOio8DcO/WyVhUNvQMSqJWepW0HkAsEl4UxHNnRq+xnXu65wXgcBBQfNkQv9IrN9AIBAIzAa5AVx2/f147zPeNutQdh1f84Pfi85jE7oXHeCNJvmv+K0/8gSkEXD9T/4DMBxieOyRM2p67gQF3W3WNIW6JwA4afRHIxJq8dcd3tLut7brDgiPQcUPJ2tqt9aYKUD0er2JWgG8Pq36JK51KQA+FkrsKTTQrq454j4uem3+ViHDx5Kknm4CL5Lpx5MYN5vNyqHQarUmCLuOFZ8EMRgMsLa2tqn2BUmr2ug1dgCbRAdfPyqIMAYVYniuFnz0edLrqqtGxwjAphQeTzdxUYTx0gnia1z7yb+12KWm+biDxd0YFFbUHeBQt4K6LLZyvACbxTz/Dmq6iLqTOIa6LvQ7yX6wDofOP9c+RT6NwVM/9NGoGp+La4HAvOPqH/8APv99z8XaJQf4PzuBQCAQOJDIDeDSxz9wVooJAHDqlcfR/eyRWYexq8gN4NZ/fz0WVxIe9yt3rb938hSGDzy447bmUlDQHy26qMTALd+6o7oVCfBUCSdFSljdecCda2BjZ1XJvD6aUftEqO2cj8D0ooRMfdBdeu17qcaEtq99dLI2bXxcFNHcdiX1PFYt+U58+brdbuPw4cM4dOgQlpaWqmKTFBUocvB99p0/Poa8JteE7lArSeWx3lcdNwoSWryQ/fb0GSfCCnUleMqIEldtS0kw+81Y6pwT7jZxB4CLTy6AKFRY0kKFfq4SeE+xKNUPUUeLi2nu9PAYNS1DY1TBSfvCceP7FE80Vi/UyPc0rYVxa5/odIkaCoGDgjwY4Kpf+DDu+bYbAAD9Q9t8lFUgEAgEAmeIvDzE+274n7MOI3AaGCxnfPK7HwUAOPKZBq5490NId9+/I2HhtAWFlNITAPy2vHUtgB8BcBTAvwJw//j9H8w5/8npXENz0HW3XneRlcA5oayDEhcnwCpkjPs5QXpIhtU+zh1eYLI4otvW9akNTIHgEwSc2CiZ1ZQHxlBngyc8x1/Hpd/vb7Kna3+dBHKM3VZOAqZjqMKKkja6LigksG8UTpSAalHH0pyTqJNQbpXnr44UJ7rsn9YVUNLrjgB3Meja0c91THUd+zxrvE6Et5pjbUdTBNyFo31SwUuJOTApVKlIodDPdf0ovPaGu0dKa0c/15oOPo4uOOpjVH3e9D2fJ+2LOlj4XXbxYp6xH/fiwMHAaGUFl/2XvwUALDzuGtz/pZcDAE5eldA7GuJCILBXiPtw4FxGbgBPu/7zsw5jz/COU8tYPdWadRj7ghPXjHDimqO48GMX4Oin1tD8yO0YHj++5XmnLSjknG8FcAMApJQWANwF4O0AvgXAz+ecf+Z023ay55b1kjsB2Eh5UEKqxygxJfFwO7iKCRQymMOvMal4oX/7rrAKChon6zMoodc6BSomuEV+O1ZzhfaZRI3FJJ1UMgYl4OoUUWeA101Qt4USWXVeMNVBaw7o7ro+waPkiOA5paKOHNvSTru/r0+AYPu6rtTNoc4DXUtcB+7o8PlXkUTnWvtVmlddTx6bkmEfH593b8/dByqAuOugJDDpuJbgpL3ue8j46TihCKXCkrqFdC40jcZdD7peuY40Np83rQehMdc5ReYNe3kvDhxcDG/7DC687TMAgPytz0fv6GzjCQTOZsR9OHBQccHHE05cs75LfVrIwCU3Jbzj6/9sdwObI/zn218KPNCedRj7ioeelvHQ09q45LFPRvuY8Js/LLtQdivl4UUAbs85f3a3dvQ8H90ty0pWlYgpCXRyVkqZ0KKLwCQZUSGgtDOrRMUJFgk00xZKxE6f8uB9UTGB5J3HKyHy65bGX10DOn4scug77t4ur6+7vnqc74iX2mM/PJ1B39f5VYLo/VNngs573Ti42MNzm81m1S/Wc9C1QegccG6VjNY5YlR4yHmjKKeOj4sUSo77/f7EOC0sLGwiyLquPSVC01v075IopmPr4+fEm8eX+j2NgJdECBXLNEWkJJq5OMEaCuwfnTwuQlGoKsXmwpkKaHRAHDDs+r04EAgEAjtC3IcDBwaXvO9hXHhLB3f80yUMC48e3BIJePCla7sfWGAucP+zAUD+//yH5eN2a/vtVQDeIq+/K6X00ZTSr6WULjjdRj1H3m3d/ttJvua2+w6vuwqccNXt+CrqdmLVmu1xa4xeRFJrCLgrQ0nSNJTGpbTzzmu6m0P7RmKlqQn61AD+1muo0OPjrmKCHscijJrL7/GUHBNeM4Bjz91rClFK4H1nW9NL/OkK7kbgebom9acuBUMfl9lqtapxqVuv2l+tr8G+sAimuh5yzuj1ehOPMSX0EaW+w+/ryZ0gLib4elb4+JXqD7jYxGuqeKbkXr8HPj762+PS2Etr279X7pjQe88Bw57ciwOBQCCwbcR9OFCLq/7wISyszZfQlP6fDyP1tz6uhOt+dxW3/eNf392AAgcOZywopJRaAF4O4HfHb/0ygOuwbv26B8DP1pz32pTSTSmlm/R9J+ZK3nRn1VMNSM5LpHZ8Pfh1Sju0RMnhsBXUOl6yS6tTQGPm7jrdDE5oS1Aiy/h0TOrED8ZAUso0hVL/VGBRsuxpIk6KvU6Bjw3Po5DAGgrsBz/XnHZ9igSJPX9KO89cO4ydhF7HV4tfqrihefl6rP5WklsSFzQOQo+rI7l6vrs0fM1y/rrdbvUIUn3MY6m2gsfhMWrc3neP0fvpQkBJfNB5dZFCv6sqTqjIoO2wL1qTQwWgOvFDj9N14OJS6Ts8z9iNe3Efu/M84kAgEDgXEffhwFYY3fxJpPKT5meCz738Qtzz716A4dLppTw0PnDLLkcUOIjYDT/vVwH4UM75XgDgbwBIKf0KgD8qnZRzvhHAjePjJlaxPoqR5Etz0XXXWXdfSbZ8d3l8jU2EpNReaRe0DqXPlejUWbaVhCv5J9lWwloiNUqGSukB7JfuXvO3123wtA51UnAulFypqDMNLuR4EUxen4LAqVOnJoiezn2jsfFoR3cSqIBUNw/6nj9toTTvPFZrCtBOrykKpXllmyp8uZNCnRsqnvFHx1b7pmOjwtFwOKzSIxg3f5dSCXR8+Lf3X0m+9stj0X7q3Gg7LPbI80vrR79LJWGv9P3Vdck++jirgOPpQkx5UccQ2z6AqQ7ALtyLz0sXxnMyA4FA4PQR9+HAgUI8ang6vuOu5+Hu2y/BfHlK5g+78b/mV0OsXSmlK3LO94xfvhLAzafbsO9KOunhLq0WGFQywR3skqWfBJFQouU7/CWyUycmlN53m7e7FJRcaZ9LO7L8uxSn2uP9mkpgmU+upFRFBu2fXsNJtsbsDgPdHS65S4D1VIClpSW0222srq6i0+lMpBSoiAAArVYLrVYL7XYbS0tLADaeTMBrsYCmxu+74YyN8ZYcFuxvyW2gY6L9Lc0Pj+F7fFSmiiTss7ahrhV1JrgopeKbXlPFidL3qFRAchpcnNPaDfxMnR0KrT/hDgJ1VTi8fRcKSu9pvRJ1w/A6frw6m1R88sfFHhDs2b04EAgEAttC3IcDgbMI960dRuqFnLAVzkhQSCktA/hKAK+Tt/9zSukGABnAHfbZmVxr03uaMqAOBd/lJvkhAdPfBMmLkhuSVd3t1nZ0t1/hogIt+xobd1RLRLGUMqBFFV1wcPGjRBY1NUT/VsJf55xQQUGJmMfs11TS2O/3J57c0Gg00Gq10Ol0MBgMqtSHkkVfd6HV1aAiCIsquiOCc6vCBOMqEVmOiTo3fBzzuI6BrjedMwo2Ou7aL5JvFUqYeqFii9e60KcgcE3xp9FoVLvqnjLDAo+6Q69jW5o//0w/ZzscI1+vpZQNF1x0Xuqga9Nj8mM4xizSSEFAXRYANjlUdE7dEaSP0Zx37Oe9OBAIBAKbEffhwDmJRpDtwBkKCjnnFQAX2Xv/4owi2gFI6Gn5dpJHojkabVTxp5tBdyCVgGlNA/2cBfWUqG3HpcDYut3uxG6yp2zwM83r9ycZqO1c/wY2Owk8Nj2HO7XcUeY1NSZNJdAdXy1iyTEkmVUCzfc5PxQVWDiw1WpheXkZhw4dQrfbrcaXYgFJu5JlOk50N5+OCcbGOHTu6pwufF+Jto6V12fQYoiEzwGACeEGwKZHXPJYXlfrNviceeFOvY67BnhtFTScgLuoVRKO9FhCHQk6huqO2MrloDFzrXghTv3+1sHdCVzDOn/qQNGxp4NlmgtFz6lzT8wbZn0vDgQCgXMdcR8OnIv41E89Ew8P/woXLCzPOpTADDHXicJOLtQpQJDccgdcc8VJ0iksABu7jrq7rbutSqRJXPQxgyQmSn6ciBKaeqAOg+FwiF6vh06nsynlQMle6Vrsm/4mnGR5XQWFnqvWcJJXFQtKTgQ9jqknWuxRz2O/VazQ/qnzoNPpbHoKhD7a010GulZ0h9qJLnegfd2o46DkSCilMuh4uoBS5xpxh0TpWg5dN54io44NjUmv42tYxQMVZLQPGrcKUCUCrrv6ejyA6npev4HxqaBA4l7n+FFw3j1FhJ+x71xzjANYd4J4HCpKOuqcG4HAQcNiNyMNgXzgHloSCAQCgXlGGgHf9CX/HH/83prnCR5grIx6WBm0Zh3GgcBcCwol6K5yaZdfUxr4txNJhRPAOrGBYoISKwATJEh3NRmjEhxPR/AUBCV8vL7vXJcEFl5bLdvD4XCCmOvxTow1bnV8sF0vdqcpExq/kl4dX63LoOkPTIEgQVR3RrPZLLoBXNggYdXXjF1jcBKvcQHrxFPrL3iVf/aTLpdSXF4LQ69dEhv42msFOIlV4cOv0Wq1ivUv9IfrSMUBXssdMzpmbMsdL+6U8bHW1CDGqX97SoQLQx6jtl364Wea8uH1SXwePS5315S+Y4HAQcX5/+N9WL3oBTh5dRTfCgQCgcDuITeAW/6vR806jD3BD9/7PNz64atmHcaBwNwLCqUCckrA+/3+BOHi8fzRyvxKypzI6Pv6ZIOSO8Gh5MqJKjBZ60GJntcz6PV6VXsqDrigoP1U6G682+7dTu7EjqB7ot/vV31xEqY/6gTRXWYna+oSSSlNpJ/o+OkONNNU6nb+fd4Y3+Li4sRY1pFfTX1QEqrzWHIROPn2NUBCrc6MktigTgIXpQBMCC4lQUedNbpm1SGi11RnAK/rRR91jksCg77W9ACvy+DjpfNLdwEFGv5NQccFizonh69FfqYFWj0WTdnRmOpSG0JQCJwtOHTvCCuPShi1DkZdkEAgEAgcEGTgnStNvHi5v/WxgbMSc+3nJVEoFVbz9Aa1yBNO3J00kAApGQImCRHFBHcoeBt6fIn8uX2dxNt395UA83pKwHznVaGiiackKHnnsbpzz3NY70Gr4rvwQKFFSZoLGE5QKSgoUdVx0IKT2udSoUZPJyilizSbzarQY2lNaGwUL9zlMW1HvA46riVizWtoLQgnye4k0bWgUDLtNTd0vdft6GsKSV27uv7Zvo5NSdjycZjWHn/4vtcQURdHSeDxtA+Ohf7o56UnaugaYP/q0ioCgYOKI299H1rHQiALBAKBWePop9ZTBc4WpEHC6/7qm2cdxq7i9v5JfOihK2cdxoHB3P1vuWS9riNxJdLqu/kkOy4aOLFUQs82SIJZhd8t6br7r6KGxuDkX10Tem2197MvfESipz14ekTpN3d/nez7br2LGixuSds5CRvHQomf5++XUiBIopXYaWFMXo/9dkJd2p0vrQvd9XeBYCvirP1jnNpf/rhToiRKMK5pNS9KT2FwqBNFhQf9TdHA51TPVTFHybIKdb5O9RwdA3cDuNOlTnxRUu7j6fPt77sgof3j5ypW6WuKSS7Q6Hec4pimuGiMpXUTCAQCgUAgcLo4+hvvRRqcZQJvP+GnH7pu1lHsGv7k5FPwuZuvmHUYBwZzl/JQspOXjtHfwOSj6jSXXGsIeOE5Jc1uBedvJ02+I87aAyQpLkoQ/lpdBErm3BWhRLAUu9crUIeAtluK28dJnQwl8ulFFJnCUOfa4G+KMrTnMz6mqzAOJXUk0tpPJbwuOnCeWVOAKQzuWtG5YmwlcUbTIXyXXOdTx0bJuY5FaV3xWH16g9bcKK1xdcAQdTn/TsZ5LR0TXT/e72niQCmlpfSa8elYlr5vWvRRCzTqenAhQGNU8UHHQMUqtl1K7yiJOuzPVo6UQCAQCAQCgXMdjW4Dv/Q3L8LJ53fwY5d8fNbhBPYZcycoODxtQUkv86+BjQKKJGVu+3ZruZM+fU93JZ2QqmDQarUqJ4AW6vP2Stfk39yl13aVODqx0b9L+f4kRy6AuEhT57RwgYK/uVtN8qdigZI2b5+/fZddRQwl6Xq8FsVknziv3ne2oWuAcZXIKOeZT4XwvrMtt8ZrnPxb3Qu+XtVloO6ORqMx4SDRmOji8PWk4+rz6cKFOzu0L0rqVXRQV4MLCX59hTtm9Dr6ndIiozpuntLi19U2XFBQp4WLD/xu6jzoePlcl9xRgcDZgrWXPRf986N+QiAQCAT2Bo3VBt52+w0HXlC48ZFH4b//5tcAl51FeSl7jLkVFKaRKH1SgD4WblpbpR1nflZKf/AaAX6O27X1uNLuMoAJ4sPPSSg95cFJW4lIKwH3yvpKoLV2hO6y62t1V/AcjafVaqHZbG4SJ0p55iT/jcbmGgh+3ZIgoyKB9k/z6nWnvd1uTxB8feyl1o2om3Ner91uT6R7ODll3N4PJcAl4YaCjNbh8PWkc6VCmLbhLgAVIrQAZLPZLLpQ6CgptcGYPJXFv4eaakBQ8FHxTmNVMcjh63E0GlVx6niXUnZUqOL6UOeFzqO6WHwMSmJSIHA2Ye1lz8U9X7yAYTsEhUAgEAjsHU7dewjfcdfz8EuPft+sQzltLGCEHHtKO8JcCwpKAEhO3b7e7/eLKQtOuJRwOrEhSakTAkq7nE606nYzdRfY7ejsQ6/Xq4gs+8rjSmIJyZUKCfybhRT1PM85V8FiGhkG1gUDreOgZL3UZ3c7kKQ6aStZ8bUIpBbn03Pd2aBEWNvm8Z6Owmt5IT9fQzoPmpZSsvsr0Xb3ArDheOH61dQPfyqG/qhI5K4Bdey4+2Kr1ACNWdeGF3X0NcNUBK/pwT55uob2veR48Pd0bPT6hIosXoeBggLfGwwGVdqQiwXu5nCEwBA423DqsgUMOyEmBAKBQGBv0Vhr4E9vejq+pzHAL1xx06zD2THedvI8vPEHX4G1L4v/B+4Ecyko6C44iY5XmOd/+rWgn5Mm3d3Und8SwXDiogUGlfRtd4daSYlb2kvX6/V6E/n02oaTKz3Od5mdDLm7gu+504A72m6R1511PdefmOGPxPTdfx8HH38VSdrtdvWkiW63Wwklmu7iLg3GrONMYUFTY5zQqhNCC3NyXlXIcMFF1x9TJ7RdFYgoJqjwwc90nSmB1zXPz92BQqKvAg5dH77WtA88njG2Wq1iSoA6MxiHCyY+9jxPU2FK5zh8TnmsijmcE84Px6xUSJNrRR/ZCmBiPVGQ5Dz42p4WbyAQCAQCgUBgEo21Br6wdt6swzgtXNl8EPd+UQNAiPA7wdw95YFwIkNhoUR6dLfWi/dNy5suXY9Q4UKJiRfBA8qV69kmf0iCtJaAEmm9BuEFGzVW3W1XglWy0xPuUCjtGDO9gUJCp9OZKKio4gzHScm+jr0/+o99YlwUDHq9XtWHZrOJpaUlLC0tVQSR48MfprvwRwUSdTiomKEik4oF/f7GM3N1t1tJuLsASm4CHWcVEnRtuJjg60gFsGkx6486I7Q9bYsOm1KfdB5Lj9osrSldO/q9Y9suKE1z8JTGw9Mu2C77499xLWLqT2TR7940l5JC17ILJYFAIBAIBAKB6fi7m67HD9779FmHsSN8sNvDj77kVRguhZiwU8ylQ4FQck6y7oSccAs4MEmcdHeTbQPlHUjuNpOMqaXdY1PXhNvy+ZspDSQyi4uLE+4F1k/QnWYnjbymxsA2dXdcr1965B1j0JxzdTW4M0FJGp/KUBI49NGXJKF1JFoJm57LvvDarVYLvV5vYmdfhQ06D3zOCV0z2ncfS+5yOymngKHv8fpKNDVfX8/ldYCNdAcnuR5XyQHggoUTdY/fU2x0TeWcq115HydtW+stlJw5Llz4ExSU0KswwvXhn+ka59rV74iLPz4uKaWqzgf7qM4FT3/StBXtjyMcCoFAIBAIBAI7QxoBv/3uF+DSFx/H91xwx2m3088bG6239Pt45e9/z5bn5ATc+nX/rXrdTNMfAb4y6uGBUQ8//Kx/ilt/+JLTjvVcxlwKCk6oPZ3AH6WoZEGJZSl9gHBCobvbaiXXXe46IkjCojvLaqtWkqV1DuoIX93Ot0LFB99x9nPU+r6wsIBWq1X9aF+UmGuqgxZt5G63Eu0S6fJ50119t6Fzd7zT6VRtr66uFlMZfJ696KLOl9cMULdCznlTkUS+p8TV3Qnu6NDxL8Wpu+OlOff1qsIF31exRq/t4khpd1/TREjKOQelNkrfCxWoSuKCuyRcdFLSr2NWchXxOBXppgmEi4uLWFpawvLyMtrtNhqNRuVaKYlfpflh/0sIh0LgoCM1W8jT/y8VCAQCgcCe4L++86VovuSP8drz79iS2CseGa1ilDOe/fv/Bmmws82dlIEn/s53rr+4uIubXvjfsJZHaKaEixcOAQA+NziJtXHlxe9+woswWlvD4uUtIPaRTgtzKSgoaSORUUKmtnbNVZ/WXiktQskGnQ++80zCqukWvhPcbDarGNxezuNILLWWA4m+p1SULOlKshYWFiYeNekCghIuJ8LqHtBCejpW6r7wJzGU7P2MX9/3tIput1ulN2jsHBder91uV8RQ58Ht+S5k8DGR+mhLvq8iiRJ6uiHoGCHJ5ppy0q9j0Wq1qnN07FS80P4xppJjQ+dYx5W/PQ6dY44HsFEHgWKQppc4XCirg695xq9iXskdwtg1hcS/1z4G/E6U3ENMxVEhSx9DSYGMbburSNdAqXDptL4HAgcZJ175LBx7Utg3A4FAIDAb/PEr/xHe++vX4ZUXfwj/x+Hjtcc9MDyF+4fr/2/7mr/+LqSHWmfO7x9o4zn/89/i/FsTTlwN/MrX/3c8ODyMX/r2b8XiX35wfNAa0uIiPvn915zp1c5ZbCkopJR+DcDLANyXc37q+L0LAfw2gKsB3AHgG3LOD48/+wEA3wpgCOBf55z/fCcBNRoNdDqdysrtxEN3UrcjKJDM85i6HUu2qU8VUMeBHsO/9bWTEyXuLgyQlJGMqZjgNQp8911FhTpCpBZ8PVddGC6GMH3AxRsSPe5uDwaDCYcB6xjoDrvGyT7osWzDn2zRbrexsLCAtbW1KvaSE6LkWiFJpCjA97zPvlvuhSgpYHmqA8eCJLbf70+IFi5ucO1oUcWS+KPkl24NQsUn/U3od0HHkO3p+77utT6FtudQEYepNfzu+Zwz5pJbQwU5X9P8rpe+QxxbLb7K1AZ9Egj/dhFBn9Di19bX7iKiiFgSgGaF/b4XBwKBQGAScR8OBHaO3qPOwwNfdgduHFyLd32ggyOLa5uOuar9IH7788/BXZ+4DMDuGwUeecL6//d+6Adei/M/dC9ad34c+j/jxnVX7/IVzy1sZwvujQBeau+9HsC7cs6PB/Cu8WuklJ4M4FUAnjI+55dS2oG/BZMV8Z1cez2F0o6n1zMgUVBSp8fzHBUouHOrlnzfYVVSXoISWXUDqCNAUwdK7gkl83rdEml3KKkq2ekXFxc3VfbnebpLTCGAzgJ1F2ihRO0H2+c8loiwx8V41LKvKS91BS+5RljfQX80TUBJe0qpqg+hzhQn53pdFx9K8+FjyPQStu/rmed7uova9UtPnuB5+qhEFlR00Ut/+9rQv3Wd6uf+3eNc6ZhovQ11tXDsdAz1x8fLP2cdjXa7jU6nM/FDUYGvtQCoiwQu1tV9Twgt8jhnLoU3Yh/vxYFAIBDYhDci7sOBwI7wmZe3sHDJxQCA279oDR9+JiZ+PvZPLsBv/NTLKjFhL/GF5wO3fudlWH3R05Da7er9W1938Z5f+2zGlv9bzjm/B8BD9vYrALxp/PebAHytvP/WnHM35/wZALcBeO5OAiJhKRFl3ZkGNu8May68Ogw8hUB3xZVMKqFyy73+7fZzXsOJTCldQcmTpxBovrvv/E8br9LfGrcS/hJx8zFVYuZPVdCdXnUZqNtACbvb3f16JfhjEElKdV3oNdWlUBIT9LrqblEBqRSjCis+P5oG4YJEaefcia7HRbDf6uRwpwyPY4y0+7tA4qBY5/Oix3paha8R9qM0jvp98jFxIUzfY7squmlBUIolFBZUuODa4HGewqMCjX/fPAZ9z+u0zAP2+14cCAQCgUnEfTgQ2F0sXHABHnzZE/HAM/c3Ne/zX7GAlZc+A2lxEcMXPmtfr3024nT9vJflnO8BgJzzPSmlS8fvPxrA++S4O8fv7Ri+q67gf/iVpJFYAOXd+dLuv7ZXchG4A6JE7HUXVMm2P8ueNnqvOO99Hg6H6PV6WFtbw9raWm06hxJB7afuxqpTQ4mWkjcXYZxcU9zg32q/7/V6VV0EfqYEjMSQj510IqnkUvuvO/LNZnMiLUB3+Z04a4qDzknJheFk2tMC/HN3C5Tmge2o0DWNlPquPfvAuLU+g7psfG1RSGCc7mjx40t947X52h023k8VxhgX02b4/WTcKkLo+T4W2q7Xd1CRTtduScDw760KTSURRYUrF9pcoJhD7Pm9OHBwsXD9dThxZQNA+d+cQCCwK4j7cCBwGmgcOYIHXvFEPPiM2dT5ueuFDVz/l0u442va65UcA6eN3U4QLm09F2copfRaAK8tvL8p11qFAxIrEnOSLhKMaWSdv1WscHJLocJdBkq4nYxMcyuwbX/NIoJ6Dkn6YDDA6uoqer3e1Cr1bFeJNmPSXW2/vtrU9dr+VAsAVUyj0frjLz2tgKkQ2hdgs/ujzg2iqRWj0QjdbrdKq+B88G/u3Kt7oUQgeX2dN02BIQHmcXSL6PtKZD0FwcfToe6BOreNjomSZ/5QoCkVNCyNs35vSvUfFCoc+drVdcRdeq1/4KkR7KfHzuN0vDyO0jiq64B90TkqfbdUGNP4tE/6PWIqA9dZSTDR8T2gOK17cQfLexlTYJ+xes0FOPWYEBMCgRkh7sOBwBQ0zjsyMzGBuP8bngo0Qkw4U5yuoHBvSumKsRJ7BYD7xu/fCeBKOe4xAO4uNZBzvhHAjQCQ0nRZiLusvoPM3XOSRCVe/lp37DXf33dsSUQoWLhDQIvsSV8m8uQZH+NQkqtEWGsYUBzpdrtoNBoVedfdYrahffN0CRvjCcGjZFOnhb/b7U60z3HQR/DRfq91C1i7oLRbrH3zOgEaB2Nlf3kdxssnKvT7/U1uCkLXhqe4+OclEYjX0vnRcVX3Qx18/nVdqQNBr6nXZdyaPuKimqb9qLvEr1nqN49RgcCLFupYcI7UcaDihwpDFD84t56exL9LY8hiivpUCP+O8VwXzVxQ0O+x1kDQPvE4zq2LMurqOQCCwq7ei89LF8a/qoFAILAzxH04ENghGsvLuPMbrsasHXQPPzW+bruB0/3f8jsAvGb892sA/IG8/6qUUjuldA2AxwP4u+02urCwgIsuugiHDh3alNsMTLoTgEmyV9rJVzLAnVNPedBdXN99rcuvVrLpbgf9vK4PhF6Dsfb7fXS73YkYVZDw45X0kHC5sMJr+a647gLrkyZ4vKdRDAaDSuig0OBjUxI7Sq+1foEWYaRAwTZJCjWNQImsrwP98XHT8a8TFNzZoPUnCC1o6QRd15cLOGxfXSW6BktrRIUid49wXNm2pqO4mKHX1flQoq+uDfaxVFhRXSbqXHBHBI/R/qnYw+vQBUE3h35vKexxbdAN4w4jXdMlV4xew78DOo907hwQMQHYo3tx4OCj8dQn4p4XtGYdRiBwLiDuw4HADpEWF3HyqnDQnS3YzmMj3wLghQAuTindCeA/APgpAL+TUvpWAJ8D8PUAkHP+eErpdwB8AsAAwHfmnOuf6bj5Wuh0Omi325t2Mkk8PF+8tBvtZJHH8rda6H33nmBKglvrSUy63e7E7i4/Y9tORmjZJnkvxUfCnlKaeJoCx4E7wcBmBwbfd3GFBJNkTZ8I0Gw20e12J8htKW7GRtGBNRXUQaAWdy1oRyGnlEOv46Q78Iyl2WxWx9FBoYRYx64kENW5CTTFQ3PyOS8qJqiok1KqHm3JYzkuPmY6Pyp8sG8uLHHsSLR9Xt2lwvXgOf5q4ddx0PXtKQU+VrpO9Bx14ngqRklcGo1G1Vpg3/3xpOxHqX4H49P1x7FWx4gKTOqs0Pb5/fMYKcQ45lFM2M97ceBgY+Hx1+L2V1+AwXL8Zy0Q2E3EfTgQ2Dke95ZTGNx7/6zDCOwhthQUcs6vrvnoRTXH/wSAnzidYLhLqORS39d8bhJdFRH0HCfVmpeu7yvZdsK2FXh9b0N3hNleibTosdyBVbGE0F1zkicnpPyc7QCo6g+468Jz+3VXW2NmH0pPTvAdbSWarVarerSfkjbtk5I/7QP/5jwzbhVYvMaDE2gdK3eJMAbNx+eYtlqtStBxUcFFIhegSoRf13MJnH+t0eBrR+F94mM2tY8uSNSd62tIP9f14vHqvPnjXb1opc+tink6VnWFRylEUcTi+uN1VLTR75Je10UXxkZhgufpOOq8lsS/WWE/78WBA47FBQyWw8YZCOw24j4cCOwcC4+sYjiaXy3tCT92C279kSeVq54EtoXdLsp4xtDcfS8uR3cCd661SJ/bxEuEjDuc/Ewt4po3TVLmcEeEuhgYpzoVnLC5O4IiCdtmfCXrt/bRP/P49FjuNCtZVJeH9sf7wDgJEq7S7rruAPsTBzwdhe06seWckzRS+GDthFKdiJIgoYS8NFYkieom4XyUrsFx1NQMnu+Y9rhBH3Ouv9L48DjtB9ecii38rET+9W+SZv+u8Dr8rSRc+6u7/XQAlIQLxs9raSwlkc9dKXyt53j6iq5hXcsKPZ6x0OkyGq0XGCW8wCTHuuQ+CQQCgUAgEAhsD9f9ziqGt9426zCmYnRqddYhHHjMnaAAYCLVQKE5+sCkhdzz6EttqkNB21By4zZutbz7b92R9R1evQ77ooKCkiC+TxeAuwc8116fRFEXE4mnWsGbzWaVUtJsNidi1rF1G73nx+vushax5G8VfdgfbUfTSEji1RVAwkixgSKQikE6dnXElmIRyaTOEz93V0spdULHstFobKo3oSkIzWazil3TdABMpIr4WGo7Smh13TDHX4UBb6P0N8dxOBxW867CAh0A7krxFAQ6EvhbBZKSW8OFEf/+lmqf5JyrceKcsA/8TukYuyvE14KKVhQfVQT0egvsE+8XJdEoEAgEAoFAIDAdaZDQ6A/LjzaZMzR6CaP2QYh0PjF/icICt047NA+er0sEoEQitH0lV0reXWwo7bb7a93ddUu2nkPywmN9Z1yP17oJPJ7netqCHqtpCLT0Ly8vo9PpbNo1brVaEwUQS33zuLS/JG7NZrNKdSgVSNTd5Xa7XRQDKDSQOPI9Has6F4rObV2hRhVNtCClpgS4o6OUnuBrwAsCqriixQDr4tedf51bfRKBry2dE12rpbZVsPDrU8TQuhKawqJro9Q3T5HQcWT7+uMx6mtN2+B1CK4bxsTCkRy3ksNEXUieWuLt6TjUuVUCgUAgEAgEAvVodBOu+aM15JtunnUoU7F4MgF5hOv+/QfW/w6cFubSobBdeAoCUWd3L1n73eXgufIuJpQEAm2v7n2Ni9fyXdY6MUTbIqHW/qiFXnPDlfh1Oh0cOnQI7Xa7Il9ra2vFgoJORnUXWHeZSfToRCilpDCVg3EuLCyg3W5PxOEpIzyfT7zwcahzKXhdAJ1vTUMgKVfRgcS55NbQcaf4QNLrVnx1EahAUXJGKIn2Ogisy6HkWmPz3X596oYKInXrytcYf7RvOh46bpxn9kvFDh0Xr4/ga0vTG1QIcsFHRUMVeTSVR9dpXd9KrqeSyLGV2ykQCAQCgUAgUMbCWsKj391H46//vvaYPByi/WAD3Ytm6wS99j/fjNGYC137Ux/FZ//NM2Ye00HE3DgUSrvNRInk+3/0XTwgKalzN5RQ2mlNKU0QGsZDKCGqIzhOZrTApOZse+HDEnwXXUUVJbfcfeVPu91Gp9OpYnTxQYUPj0GvyT7rddg2hQKmVPg4se+tVgtLS0ubUiv0WvooRh0/d34olHT6Lj/f9/oDHD/dudZjtYClpke4rd/XjBJtv4aSVR6nc6VihDoEOKYqdGhcLqx5DYsS4faxU9cM54pOAH06iP9obQV1Duh4usihaRvqvOBvJfcuXPAarVarevKGrhUfZ13PGldpfvl4yjoXTCAw70gra+jcNzf/vAcCgUDgHMHCasKj/maA1p/fNPW40alTuObX79ifoLaJ0alTuPoNt2L5nvj3c6eYqxFzwua7s2oBJ+lVsuTCg7/nKQJOmv1pDx4bj3PyqHZ2JbtOiBiDx+a709slMqWUDV5DiTddAfrkBbX6O7kDJkUD7bcLK55aoQTTa1Bw13tpaQlLS0sVQfb4dQy1kKbOge/waz0BJahuzeff6lLQa+o1OG7qTnCniq5XnRcXuFhwUomqzrWnM2iKgYoMJUHFHQ/+o6kDHG+HHkOSTtLOlAD+prigAoDOfenJFu4C0DopOi/+WFhNUyitM8bJceC61h8t9qnfNRU3ODf9fh+9Xm/CuRIIHDQMPvt5POavTs46jEAgEAicY1i6N6H9xx+YdRjbwvm3JkDqdgHA8IEHcdWb78Dhz80VRZ57zNVokXACkzvamhqgNnXfKS/tXLswwbZLj7jzfG0VI1xQ0B1k3eVkmyUCzvP9EXUab10dCL+u9o19KhFFJdQcRx5PssXif06o68aUY6O/dRy86r7ufvORkr4LrX1WUqhk0FMEVDBhe/qe7pjrLru6HzR9xF0e6rLQnWsVMXyd6Hx5KgrPLYlJOs4u0qjI4K4LjpeKQb42dF5KhFrnW8k9xQO+V3JKaFuMrSTO+FrS+dG4fF1oIVUeT/dD6bszGAzQ6/U2PTHE06PYls7tcDisxAR1RAQCgUAgEAjsFvovfg7ywtnngFxcSbjkI2vbPj6fOIkLbp5N3YILP5Zw2Ztvxmhtc7yDu+7G5e8NUX4nmKsaCs1mE+eff/5E7rimBTi5VyKlxKzOVl2C7w5rjQIAm8iPOwp4jsJztbVoH3+7wKGW9ZJV3R0avkNfAsULJdGeXuGFCp0ks991xShVsCHUVcC5UzJKQsi+aH9JInu9Hrrd7kRqgNv63R1S2hUnOSWR1V163TGnG0KJtbok9Po6Dz5WfK3rSwUSLbDoa1ePV3Ghbmc9pY1HdbpDo+TW0LlbWFioBA53SagLodlsbnIIcNxcVGPcXOM8h/Hx2hqbPjqVx+laoKOD1y0VueR56i5Qh4KnQDA+/f6524XHhEMhcBCxePlluPs5hwFEHmggEAjMG+760uZZJygsdBMe+8crSH/7EfS/4tm445vqj338N38QADA8fhyX/u0DePipF+1TlOu46MMJF7/jkxieOFF7zOJn78PRT16DY088u+ZprzA3gsLCwgIuv/xyXHzxxRXRUZKvJI//+fedWf+tRIIgQQMmc/N991bBz7USvAsYGlcdlBDyHLd162slNqVdWy+oWLqeFtEjiSrt/JcIsRLFUh85B6PRqNq15njyNx9VyRi44+32dxU46ARQwUPHR+dcSZ8KSXUuD3ePqDigBFjni22yz0rU3VVAMl5yYOhYe8oEr6tz6utFvwP8nCTeSTA/U0cBhQSOtYs0KixRWPBHfhIlQUuFAo4lxUHGqYKMioRsU9e/uhO4jjudTrWe9NGiw+EQ3W63cieo+4bz53Ps7goep/PLdIpA4CAhX3Aejl8XYkIgEAgE9geNHrB4bBXH/+xavPDyv8NfXvqx2mO/7M9fiQdOHMKVX3cz8p1fwOXvvQhfeP7+xXrBLScxfPjhqccM7vkCzrvjMTj2xLmhynONuRmllBKOHj2KVqtV7RQrqdEceGByV7FE5HVHUnfdSznvvsPs6QO0m+tuqpPNulz6ku3bd5tJ/ribqlZ53f13G32J0CmJpSjD8eNnJO2lKvbu1uB4u9Ve43BSzNeag1/Kr/eUgMFggG63i9XV1QlC6H31FAyth6Dz7WOvIgZjLT2qU9vXGPmj88FxZSoHay74WKgTRGN3Uu2flcQTFcx03krpO5re4SitI00TUWFEhQBPFWJsHBse6/2qE3p0DnLOEzUM2LamYHBNcW3yWE1X4LnuWuI1OEaMWdM4KILw2oFAIBAIBAKBMhr9hCvfuYoXvPWj+PcXf3LL49/ztLdjZdTDl7zjX+CSl9+Kw59bAZ6/vA+RApe9H2jcckf493YZcyUoKFlSQsfXanNW54ESyNIueomIlqz9tFjrzijjcmJWsknTPaCEnuSlRG69z9qOklaSGpLuXq83Qeq0bc+d93QHdTiQTOmuuc8HSRtdI5oiwBhU+NBUFc35b7fbWF5eropCal/7/T7W1tZw6tQpnDp1Cmtra9X73HFeW1tDf1w4xcfLBRol8Tp+HBcnsNqOzhH76q4RjhvHhk/R4A/Xk7sHPI3B4cKUujG0AKKuYRdS9Pujj/VUJ4LOFcUlAJUYok6SUmpOScTSdCEdO42VMWk7FA/ZlrpVcs4TNR38KSwU4nQOKUSpyKVrcjAYTLieNM2H51OYKLmVAoFAIBAIBAIbGC6N8K9+7e34hsOPbPuc5UYL73nWm/Bl73gNLvnJPQzO0HlogNGUVIeJY//mFlx82dPxwDMj7WErzF3FMSWATo6c5CpKqQZO+lVQUHKnpMfzrgFUpIZxUXQokT/fJZ/WT3craDvAhjNCyRQJkqYHqK1bbfXcxdWdap7rtQicKGqM6lbw4oeaPuA75ouLi+h0Ojh8+PDEYyW9MKS6E9S27mkZKmCUCLS7Rlw08toUPE9JtrengoC2zTZ1btRNw7aU3Or5+tvrDOjfno7A9jU1QYuC6vzo+LjzxdeAXpNCVLvdxqFDhyaEoGnuCp6rf/uPihy8ZqmOBgk91xCfMOHrkG146pD2Re8n3geub/ZXv+uc30DgIGHxistx22sunnUYgUAgEDgXkID3fe3P7UhMIA43OvibZ/0m7vq+IR7zl3vvGbj074DWX31028ePTp3C4lqICdvB3DgUCN1p1l1jL4xYOk8JcGl3kbuRJB5sjzur3KlVUk7ySGIPYMKOnXOuziNZV3KtFvDSzrpCSaSSQxJrd0iQiKv7gG2wX7o7XyKPTsJ9PLU+AXeuKWZwx9d3sDXf33eDlezynH6/j9XVVayurm6yrTtJ5PgqIfW+MV6OVx1h1zFWN4P329cSj+FapJjAHH8lxJ5OwLY4d7TXu4NFbfvaHx3bfr+/ydGjtQqazWbVjjpbNIWD462uCZ0rrnsWyPQaAw51Jug8Eexvr9errqXrVr+b01IdPIXBa2xoP1g7gr91TP1eoQVIPVUiEDgQWFjAsB3/AQoEAoHA3uMjX/cLONw4dNrnLzdaOLK0hkZ/71MeFvoZud/b8+uci5ib/y2TvPgOaN2OqOf+83NC7eqE7mpzx9OfOKDuApJGdScMBoPKfq9pF9oPJ7skRmoFZ/tKiN2WzvZIcjRVgbUGer0eer1eRbSBjccE6i667portM+eQqIuCs0vZ2E8t6CXdrBJPHWHmSSS9vRut1uNKeeH5+mudUkE0bHyHXfdzfaaGnodkmTOgdYf0J1wHTN1OriDQwtPaowcH49ZRRIl2F4zQeeG86pk2wm+XkO/BxRxKIRxTJmiojv2TuDZj9Ja0mvqPOl7jEUdIOqwUJLPONyho0TfhSet6eFz5t9rFRh1TnT+S26oQGBesXDeefjkv71y1mEEAoFAoAZ3/sALMDh0doi+eSGjnc7cyfneZ7wNz/iJv9+FiOqRRus/gb3BloJCSunXUkr3pZRulvd+OqX0yZTSR1NKb08pHR2/f3VKaTWl9OHxzxu2G4jmizt0l7vOgg5MVmvXNoHNRIeETHeotTq87mCTrJGIqVDBeJTI+GuFk2IVE7yqPYmVigW628x49ZGEOg76ZIqSa0PHXHfG1cVBIqZEmWRMH62ou/sKvmYsrVYLKSV0Op2qb1p4UetHaN0Cry/gaSoq8DQajYnHHjIuFwH0iR2eHsH+0upfetoEU030HI6P1orQVA0KKJwrXSNOvHXsNVXAnQpefNEFKxcy9Duh5FwdG5q6odctpYQ4NB4fd+0jP3dxggIU503TO3isFvjk99LvA/zO6vdHr+cpFvr9mVbMclbYr3tx4IAjSn8EAnuGuA8HdgVnwX16YTXhg6/8eTTT7hSvXh020ejv3cBccHPC8u+9f8/aP9exnf8xvxHAS+29vwDw1Jzz0wH8A4AfkM9uzznfMP759m0HIuSLr53s+K4kSXXJ8u4OBSd8pZQAJba8nu80K8lWUUEt56XcdBcSPP9bSZ4SOyVdTK/odrvFxyrquepK8NQDTznwMXLxQutFuFjBIoQ6BipIAJgghmxDc/o1xcSLDnLMS3NcIoX6WZ3TQAmjrzGONQUJFQs4XrpOPAdfn/SgY+5j4mt0WtqG78j7GKhwoHPrzg0n9nxPCbo+3YFijK4TvQ7nXVNaVGxiilBJZHL3hQs6dBEoqXcnCNeqijVel0LrRXgMvK47G3QdzJmo8Ebsw704EAgEArV4I+I+HAjgqnd2cSLv3pb/O29+Ci696exwbpyL2NLPm3N+T0rpanvvnfLyfQC+7kwDefSjH40rr7xygtBqTj6JoZNWYJLEl5wBJaKgVmpNaVA7vO+cOsHWNAGS2zpngranqQK6qw5M5q8vLi5iOByi3W5POCNYU0Hb1jFRQucEjwRSj1eizzFSkuvj6mSStRR0/NwJ4O4FL8RHR4BeRz93kUZ3yh0aG50QvCaASgjRWBg7sLHDrkRc23UxibUTOp0OlpaWqmO73W5RSPE+8G/f8eeYqajBufG15f13N4/WE/BzdEef16XDwkUddxXo96a07vl91uM8BcXTETx1Q9clx8BTHXS9ltZEae0yHs6/pjeU2pg19uteHAgEAoEy4j4cOBMsPvZKjFqzjmJ38Etv+q+4avHwrMMIzAl2Y/vtXwL4U3l9TUrp71NKf51S+tLtNnLppZfiggsuKO4I+k5zybqtO8DuBuAxpfaUxPnf+lt3MvWHdnsVGVyU0B1ct+CX3A7upFBC5cSN76k4oI/a07x4JVNKcjV9QeEOAt9FV4FG58HhNnN9igZjVqIKoNpx1voQOie+TnhtHWvWbeCuuz7aUXfIdXz0cZcl94CLTZri4CkhnvPvzgGPX/umgpDOkaf1+LkqkhEagws7Ol6a5sHaCcBk6pCLIKVUAl7T14i7GNg26zl4mo2erz/aN00/qRPZOGfuOtLvrwprOq4lkWSOsSv34kAgEAicNuI+HKjFnV97JXpHD9T/K4pYeuwJHEnhJghs4IwqjqWUfgjAAMCbx2/dA+CqnPODKaVnA/j9lNJTcs7HC+e+FsBrq0CEvHguM4kxCZsScSXTJZK6sLAwUQ1fd1adSJfSEkhGSHT0cYae3uA7pEqidJdWd8wZL/uvufF6nuaDyxhWxI1PW2AKgtZO4Lhq/5VgqYjh5Nmr53sfeezCwgKGw+Emgurkmv0mASRBbLVamx4TSaFGn/zAfvM8J9gq3DD9wNcEx8jnhOPX6XSqz91x4oKPFi9kqoCnb2hbLiZwPD29xYl/iUxzXjkf7IsS+1Ib/prXZl+WlpaqteOPUVX3UGkX39Ms/Hvnx6jLQOPiOV6s0WsnsB2Nzdefr3MKIVxvdQJP3WfziN26F3ew91WWA4FA4GxE3IcD5wp+8RlvwRW77E64+NLjOHnFxQDmR3BZvOaxOHlFA/MU07zitAWFlNJrALwMwIvy+H/dOecugO747w+mlG4HcD2Am/z8nPONAG4ct5UpCngdA5IAErZpOc1exZ/Qc5SslXYk63a+PVffizM6lKS5wABMkinfASaZ08dUKoEiseQYkfyQUPJJDLx2ndDhJMtjd4eH5t+Xdu4Zq9YPcNFGxQzvMx9Juba2hsFgUD39gY87ZKy+Y6+59hw77rI3m00Mh8MJpwYLQ3J3mudq7Qn2hXU6NP2G16SQwHQHXoPHldaDpleoq0RRNx+6drQeAueitK71mjruum7V0XH48GEcOnRoQnTxNa8imab++PdPay5QNFNngLt9lPi7q0HdBaU6G9McNJrKof3XdCMfc7ZVeprMvGE378XnpQsPhoIS2IzGAh76p0+edRSBwDmJuA8HtkJ+wTPQu2DWUcwvvuyK2/D7V1846zAmsHL9JTh5dYgJ28FpCQoppZcC+H4AX55zXpH3LwHwUM55mFK6FsDjAXx6O23yP+9a9d93TlkDQK5X/Vai4rnvpWNL1wc2PylCCbmLCiRBvhtMUkRyytg85UAf28fzdNddSZXGyPfZP3UtkBRTfHHHgwsFTlbdas/jGb+ne/gjFAndofYCiNof33kGNoi816vQ/nk6hzo8tA+cPxWmKMYA6wIE3R2aYqJP0FBHDI/Tx45ybXpqg68tfe0OEXcOKMF1J0rJOVESwvxv/04oAW82m1haWsKRI0dw6NChqi6GPvmEgoI+ipNzzdQFFcicsOtaokDhRSrZF3WB6Bpx4u81NlSo0jZ5fRc/OJ/q7lDhbN4Fhb24FwcOJlIj4f7nzDqKQODcQ9yHA9vBQ09aRu/8IKezwsmrEi54/jOQ3vuRWYdyVmJLQSGl9BYALwRwcUrpTgD/AesVbNsA/mL8n/v35fXqtV8G4MdTSgMAQwDfnnN+aDuBlIq00bpPEuhCgNvDSWpokfcdRz9fiY+nQvh1VPDQnG99nB8w+Sg8Fwb4ubarP/qeEyGNXdMHlNRrHQC9nrsUOFZKvNxRoATMbexKylxIcGKrqQFaD4Lzy89I3Dl/7trQ8aRgokUnVfzgdTR9wne+2S4Fn9FoVLULbHa7uEBCp8PS0hI6nc6mWhdccypA0Y3gAoPGxDFkezyHbfrTDDjGzWZz07zo+Cl8F58pJ8vLyzh06FAl3K2trVVPFOHa9/h1zjyuUsqACyfaf3VsuBvBv+u8tv5oHQV3z7BdP9bXj/Zr3lIe9uteHDiYuOe7nouwZQYCe4u4DwdOB4N/8mycuGbWUZzb6B0d4fMvOYTHDp6G/IGPbXn8wpOvx73PbSH+Xd0etvOUh1cX3v7VmmPfBuBtOw0ipVTtqHMXlO8pER1fY6IegO9EOxHUXU/d+VVirHnvbM93J5nLrzn93G0tFbpzsYCfk6y5wOG7qr5rraICiVWpboSmSihhc7u3Cgwq2jix8uO9noJehwSYP5p6sLy8XBVDBFDtXKu7hERPySnz+DUvnvPE9aFjrPH3+/1NbhN1BXDeAUyISko69TGdXCMku5rqoEKQiy762EK6SXTNlBwohKZZqEhCcq92fhUuNJWDbfv3g9dqNBpYXl7GkSNHsLS0VH0Pe70eer1elXrCeeDTRxgfj9Hvrq4FFQzcrcC41QWjol7J3eE/WodB+8+YdIw5dpwHFRFVaCu5nGaN/bgXBw4uTl41P2s1EDhbEffhwOlg7eImBofmZ4Ni3vDmExfh9z747F15UsA09M4f4TMvP4xru0/E6KOfrD1u8dqrcfs/vxj98+Lf1e3ijIoy7hYWFxdx0UUXTZBVrZzPnHcAE//Br/vPvroJCN+ZVnINoHJD8Lo55wm7N0lTt9udyKdnHL4LzF3jktDg7gUSqZJ9W4/T3XEWQXRHQMlhoYRJSSWATY/PZMxeI6JO8NA4SFRJPDudDg4dOoROp1PNoxJLFyn0qQ4q5mgOPtMN1J2Qc54g6Gy3Lg2A48i5o/CgKRdra2tYXV1Ft9utCKgKM0yfUPeMWu5JcLVWAHf6dX40dcD7oEKEp5vofKiVn7UndA2R9KvNX1M4lpaWcOjQoap2Qs4Z3W4Xq6urxadsaGwuJqiY484DXeMuavA746KWXpd9YR+U+HOO1OmiT1+hMKW1IFyE0vZ0bAOBQCAQCAQCe4OHBofROLWw9YG7gMHhjNtffQHS1z8f1/3i7Rjee1/1WePIEXz6+56KvAAMl0JM2AnmQlBYWFjAkSNHJqza3IHmLrT+h98rwpMwq8VZyaoSklLxN5ILvabu9lJI0Hx6ABMkiaRWUx6UsLh1XeMs/V06XgUGXksFCHcnqDuj1LY/7tCLOJbEBAfjI4EjMWc6gBJ/PV7P55iSAKrIoIRP6yZofQqdRx1LnR+Og8JTGdgGd+S5y93tdit7PNcrn+igohGvr2IW2+T4EKWnNbCvSva1LyTOKpioc4W77yqSULDQMeUxFNGWlpawvLyMpaUlAMDa2hpWVlYmxASe5y6JbreLXq83EYOKd7o2/X0VpNhXFbbciUFBgO9xbr0Qq7oWCHUu6D2A64rrUNfFvNdPCAQCgUAgMN/of8Wzce9zZx1FQDHsrP9/8VP/7jogX7fxQQJGzXCSnA7mQlAgGSE5UZu3kkjdWdf8e+5Yk8QpkVBSTTKjxF93SbUQnO5mkuhSVNB21angu8+lfirBJZTUkuz40xH0fD65oNQ+23Z7v16HYzAajarx486wuwbUBl6CkjSOjboIVLDR3X2NV9McdFeZUDJKEq+CjacaaGwOd1qQpFOQYkHIlZWVSlTQnX2KJOq44LU4t9oHFQF4TZ+TEkjeeYySXe+jW/65NrQOBoAJ4s14FxYWJlI3AKDX62Ftba1KcwAwscYpIHC+mF6h86F901QcHQ8VUDRe/a5TXFTHgv6t30MVXjzVROPRlBx1iKjLgSLINDEtEAgEAoFAYBpGzQby/my+H1j0ZzRAIR7sHuZCUFBix11KLRCoue1qleZOOHfB68hZKe1Ad5U1nUB3RykoMJfci87pjqsTVRIbT6tQAlNHgLUgnV9P//bXPp4+BtwpZ/rAwsJCVdtAiZkWtuN7uvPMuBYXF6tdd7Xte6E7tbJreoCSYMal11ARSOdHUzj4o+PNsWA7urZ07OlAYH9dTGDKQ6/XmxjPlFJVD0Lb1JSP1dVVnDhxAmtraxNrzOdKURI7lJzr3Lgo0Wg0NhXo9HEm0WYMrVarKihJEk93BsUzTdvQ9aAiDt/zWiIUWHQeXQBRaMqJOm/UBVQaK7aroo26GlRgUHcG15iODY9z4ScQCAQCgUBgR3je0/H5F4eaMA3vOLWM//YXL551GIEzxFwICgAmSIvWGPDdbK1jQPcCd4qVSKq139MP6HhQ0kZxgoRXaydwx1lt1E7mVfjQ4nIkUp4XXtpR53HqUCBhV5Lkj5vk53WvVUjgzjdFGB0LOgV0PtTFwb5qbrySQ33tzhCtBcGYSBrdkq/5+ErC1abuKSuMmcRW3SjqENDdfn0iiNr619bWcOrUKZw6daoaL4oI6rwANlwpXJ/9fn+i9gLHXceDcejaUOfGduaUr3VNeu0Jrq+SQMTxVXdCznlCTFDnCX+0WKILeD7nnAu+x3WoRU1dCNB55DE8X9ePfn91LLTfPi4qFqgYyDFR8YFrLmooBAKBQCAQ2CnS4iJ6h5uzDmNPcHvvUnxx5y4005mJJSdHa/jr48/apagCs8Rc/G9ZrfZK+mkrZ243d5TVkqxFBZ1ouuXfd7+BDRJDcu3uBLW8l+L21ATf0XSSVdpl9fj8UYulQoslBwKhRF0r3+v11DXgu8pKxnRnXWs3ANi06+vx8Ieihaea6BjrkwQ0fhdY6hwh+lrrWGj/1Aavj//k+XQnsH6AO0ZUwOJ13WVBMeLkyZOVOMM50XhV2HC3iUN3z1Vo0VQGd9D4OKmYwM+1DgXFEAp27D8FFhW2KLzx2tpHv47Gy/a0BoM7H5T86/1AxQeuB60joi4TvYbOjz6OVN0d+h1xQSYcCoGDgIXHxfPIAoFAYJ7QePw1+OzXnJ2Cwk/+2dfiM4O1M27nt05ci1u+6bqtDwzMPebCoeC58MAGiaMlW9MPuGusO+0uJmi7/Ft/+/UpCpBUMM2htONe2jXVnXcAFUlRy75eT4/T3VitE8BaDqU6ASSZ6ujg9UnMlOwrwVOQkHEMNL1BnQgcG2BDsNBaAdyp91oVFBM0DYIuDs3VJ5HVFATuQqugUHqag9YGcEeIihee1sHxUYGk2+1iZWVlk3DFa3NeeLw+nnEwGODUqVObChqWxJ9SykppHWlNAI6JQusmuMii7/tn7XZ709yquKPtMga6M1QY81QEFYK0XxqPuir4PlM21JHE74KOh6bR8Dxt22spqGDA1yqa8fulY8Q0CO9bIDCv+IfXXQ6kWKuBQCAwD0jtNk5dd8Gsw5h7HF04FeN0lmAuBIU6WzHTEGhb90fYsdo+d4yn1RVwqNVec/KHw2FFcnWX1F0PbF9z1TXNopQqULJYa4E4jgXjKdURUPeE7nBrH9j2yspKVcBRiZpW/icpU8KvokWJsPH6/tQLEm/u4mubWvSRRJ4ElsKCCwqMVV0lGrOOB8/hdRiLkku11FMw0poQfFSirzGvA1G6Not2UlDgoxTdmQBgon8lJ42nE/g61DnSHXfddfe0GG1Pj1XnjD5akn3S2ha6JlXA0Mezsk3vnxc8dLLP41UsVAFKhQp+5+nKWF1dnXCb6Lr0R0WqCKX1KHQcNVXKnTeBwLxh9KXPDDEhEAgE5ggLF1+EO180Fybwucb1zftinM4SzIWgQOLX7XY3ORRYeV7t6rp7SaKn9nig7Ehw0uVkjC4BrdPAWFwg0DZJ1kmy/bqa9+87u/6ju/ol1wVQb5lX0YC7vXocPyvVmODOO891+7cKCUo4SSz1cZGal69PduA8sw2mCDDNgCRcx8+JpQoKADaRfxdhtBaAzoHvPtPaT6FBC/OpUOJPTuC5w+EQq6urVRscF15b507nkH3S/vIc3UUHgFartcmtoutIRR8XvziHugY0hYTXK6UkjEajStjT9BHf/VexSq/NtigAqGihqQqaqsK1rHUPKCDStbS6ulrNFX+rO0drn3DMS0KIplaomOPpQIHAPOKzX9VBXghBIRAIBAKBwGwwF4IC/+PO//yTuPFxhsAGgeHxuouvhBPYLCY4KdDdUbYHbJBmzZ9XglN6ooE+ek6t6YSTN7di87cWSVQirvESpXoILEypu/Jq2/Ydbq1232w20el0KkJF4u156To+TtYYe6fTQbvdrn5rLQjtC0lxv9+feKoCH0nobgA9V4USnSfOiZ6ju+ylJ2wwBlr9SUw9ncRFEf5wXCiO8IkQ3OlWkq5zxrZdqNI14Q4Wjd3rFfiOvwpMnvKgxJ3n062hJNu/b/xbxSUVPzTdRFMz2L6KNZ76wHY1dcedHCpW8XOv98D1SaeLrlu9FtcG166+V5eqFAgEAoFAIDANjU4HX/iaxwIIoTdw7mAuBAW1RJNEaEFCkj7dSSwJCQonBE6g1BFA0kjbu5IPfQICUF+oTVMAeD2SaT4dgOfrzrMSQy3GyMcSkozpsUq2KDyoJV8FBHdVaH54SqkSAViMUmPUXW8l31oAsJR+0ul0qh1tpj9wHDm3FGe8Nobmxev8MS6SZYL9qDvWa0jwmr7DznQHJaiEF4T0/H9NodB50uvwWtoG1x5dOBqbOit0fbC/2qeSgKROHI2B0O8D6wjokxOUzGsKgooDKqYAmx0UPF+FB3UGKVT04P1A+7GwsIClpSUcPnwYrVYLp06dwurqauUKobuFc6nuB1//KlANBoNqXLm+S2McCAQCgUAgsBVSq4VjTwoxYSv8Q/8Uvu3//l7gqTFWZwPmQlAAUO3skmDxB9jICVciUkoHmLab6GST7ehTGjTPmwICCbjncusTEph/TtGD5F4dB3wsn9rDPYdc0wZ4XX/qgRJ8nlOXFlEntGgaAWNrt9tV3QUSLX2MnqY4ODHVOgdaP4Fta+0DxqluB3U8aNtO/jjWSpp1DvSHa0rbpIijzgIS5JMnT1ZPMyi1r6ko2ge382ub2ifGpOIMY9L+MfVG55oEl4UIfZ4BFJ+24a4Fd9boMRQVXIhzx0DOuSLvKgSpiKAOFF8/7qxwd4OOvQpey8vLVaoDv28qJKgQ5EIO+8M1qutIC3+q2KECWiAQCAQCgUBg93Bs1MJlf/ZZPPzUq2YdSmAXMBeCAkkH/4NfqqavpERdBdz91t1IJde+W6vQ3VfPIffjlNQr6dLY3UGxuLiIdruNQ4cOVU9s6Ha7VbvsD9tqNptYWlqq0g+UkJL0KVQccHKtrx2aUqApFqurq1VM7ogo7fQzxUIJt7syKCio3ZzjRRKou9dKmLUWAsfLUzc8dYDX0ToNmtrCuVRHDB9Z6fUOfMy4npQI67rUH3+Mo9ce8NoG6nZwIaK0m8+21tbWJuz+vi61BgE/Gw6HlduAY6QpCiosqJDD8dE5Y6ya0qJpLRqbji2PIWHXudZY6XxZWlrC0tJSVWSU6SWnTp2q3Aql8VLhTYUM3kf0fV0jKogEAoFAIBAIBHYPz2w18MI/vxWf/IsQFM4GzJWgoCIBd7m5G6m78sD6f/yZFqD5/tqmwgk3SZ2SL57nlmwlZ0rQlQDxhyICyXWr1aoe0ee7x2xX3QI8l3F5KkiJ9Kpo4v3WRy1qnjpfU5DRvH3uOAMbu8j8W9tnnCos8IcODX3yBOeBpJY73J5eQJdDp9OZmBOOOfugu/Nsk3FxzPhbHShsi8TU8+1VkPJdfU0NUEeCWuZZC0LjrpsfFRIYk49VKZVD50OFFl1X+ltTQ7QOhNchUajQxvXPJ6BoSgbnQ10Gvn71e+WOCRVpKA6qw4V1E1qtVnU/WFlZmUh7oFBXEhTUwaROH/Zfj9HvtK/NQGDecNfrX4BhJ9ZoIBAIBPYPP/uy/4Hrm4fOqI1mWsBXHvoE3oCv3KWoArPEls/qSCn9WkrpvpTSzfLej6aU7kopfXj889Xy2Q+klG5LKd2aUnrJtgMZ77S3Wq2KjJP46K7t+BoT5Gea7Z2f++6nQo9XwqakyK3q6gzgsUquSYy1noAWq/PrUEBhHjqw4WDQ3WCPX3eyldzSIaH2dh8Pugd4rRIB1jFjH9UhovUFKPJwDrUvwKRDZDgcVkRQST7HT58qoHUAfOfeLepa00DrYXD8uI60ZgJ3uYHJFBLGouktuqNdci0oWVYBg9dVR4WuA0/94LUATMTAcdRaFjxHnQ2anuIpKjrO6qjh+5wfFSFIsPV6KhYwLiXsjFGFHRWt9Dul60RFDk2fYWHUkydPVo/nZApGqeaEOg04Jvp4Se2bnsOUFU/vmTX2614cODgYNQFE3dBAYN8Q9+FAADjaWJl1CIE5w3YcCm8E8IsAfsPe//mc88/oGymlJwN4FYCnAHgUgP+VUro+51z2kQu4y6k5/SRvbmV2Qstd6xLR1B1ekos6uD0cmHQnkKgrIXQC44RUSbtegzvYdDUoiebuuxJH3WnX3XMKHo662gr6uQoBpdoIvkNd2vUn6ddaEdxRpg1enQ0k8ydOnMCpU6eqx3MqgabzQQkt21EnCdv3OeS8u82e52ndg1OnTmFtbW3CfaLikO/aq/Ck4Fwxp1933J1A6zpRscRTanLOE4+qZJ90x1/HxOFiAsdHnRYUfrwf/rhFPkpVnReMm8IE16I6IHzuVPhxMYjQ8VFRgfN27NgxHDt2rFpDKiSo08JdIS6aubDD3xrbnOGN2Id7cSAQCARq8UbEfTgQ2BU0UkZezEiDUMYPOrZ0KOSc3wPgoW229woAb805d3POnwFwG4DnbuMaVcoDCUS73Z6wygPYtGOsJMt36VVMcGLoJMvzvH0n3fPTlUiruOE723x6AgmW7mArMdR++aP+XBDQ89XS7s4J/s22dAx5jBYY1B/tB8dHr5nGKQ0qmmgNBR9vF2AGg0FVnZ+7xTyf6SHAuvjAGgEOF4+ULOo8qkiga63b7WJlZaUSAEppNbo29Fq6Xvje2toaVlZW0O/3J4QrCii+fvjDWhLq1vB5cjHB15FCUzdcjFOSTBeJp9ewNoE6OvjDz0qpDi4ecEx7vV7VN/1uci7UScHx1PVD4Ws0GmF1dRXHjx+vHCWl2hf6fdE58rFTYUHHSM/hZ/OC/bgXBwKBQKAecR8OBHYPT2918Asv/c1ZhxHYBWwpKEzBd6WUPjq2f10wfu/RAD4vx9w5fm8q+J/5RqOBTqdTFV8DNorIeW45CRFdDHqMiwp6jTpy6juo/jmhZMeLHmqaAa3/Xk1fxQ+SICXlGo9bwbUfDhUC9GkRGr/a2zUtQ50MLo5o3G7ZVyGEtnQXfHh9xk2CeezYMayurm4i0EpQdV6UCCoh9fFwgcHt78AGyVdRQfuoNQo0ZYEFBDUNgzUTNL1C4/L1SBFH6xHoYxV1Pj2lQm39XjhTz/Pvg4tBut54HbZJcYOuGD5NYW1trfa74qKFOmc0RaLuyRe6RhQuppw6dQqPPPIITp48iUceeQSPPPJItYbU+aGCjvdfBQtdn4yPsflamHPs2r04EAgEAqeFuA8HAoFzFqcrKPwygOsA3ADgHgA/O36/5Fkp+oZTSq9NKd2UUrqp2+1Wu97tdhudTqcqFOi54QAmdvOVgCqJKhHJQgzVuZ4PXgUvJEyJMnfoAWyqWaDFGHUH2GsBABuOgml1HrayX5NIaQ0KJYvqSNCx09oA7k5gHGpRVxeEp2jUCRIaI0n0iRMnKvu87qizbSV0TvCU9JXcKCWHAvsMoBIBPDVBd6tLIg5/MwaeR4FEHzmpcdF5o2OUc5547CKdCd4vxlNK51HCWxJVVLBSG7+mOnD+S2OidRI4VyzGqLH4etX41PmhroDS+mZsvmY4dqydcPz4cRw/fnwiDUjnjN8tTTPxehLarq7xkgB0AASFXb0X99EtHRIIBAKBesR9OBAInNM4rac85Jzv5d8ppV8B8Efjl3cCuFIOfQyAu2vauBHAjQBw9OjRTKLD/HvdyVVSoE8sICnynVglqL5jSXiBRCcSfH/cx03EXK30JGW6c+8CgRJXEi3uWDupV2JV2oFW0uUpDCSLTop199bfd6Lncbugo3nqSphL48qY2H/udnNX34sVluaAf5OkqnvCd6U5/wCqopAqOJEY+240r83f2j7B66vTYWVlBSsrK1UdBu1DKRefY0hxQkUy3THXOVBXiIoFLpyRtNc5F1To4nt0PGiKgxNqd174d0bHl226m4KfEdoH7W9pDChKMK1E6zlwPvQ8d1HwfZ1PF7xKTgbO+Txjt+/F56UL565wRCAQCMwz4j4cOJew9NgTuGzhJIDlWYcSmCOclkMhpXSFvHwlAFa7fQeAV6WU2imlawA8HsDfbSuQRqNyJ+iuvlqmeRww+Rg/JS366D8l0J7uUNrRVFs/z3FRQXeZtT21/uvjEt36rf1xkkXS4zUISu4BYLISvzodtH/eD4WSW8/HJynTXfBSuoQWRvQ6FdqX4XBYPervxIkTWFlZwerqapULr2kGvgvP8aMzwMmo/q2P+mO86lxgXr8/pcDb0bXA89VVQFGCAonvmDs5VSFAr81YuV7V/eKuBhe+VDhw4u+Cg7pKOH9sjy4JEvTS0yM0Tr2e9ms4HFbtqGDjdQncEaAOGO0X1wNrJVC8WVlZqUQGFfb4ndA5cBeLr1OdexcT2Pd5xl7ciwOBQCCwfcR9OHAu4Xuf/Bd4UivEhMAktnQopJTeAuCFAC5OKd0J4D8AeGFK6QasW7fuAPA6AMg5fzyl9DsAPgFgAOA78zaq2eacJ547r1Zkt74D2ESeneDoTjqhpELJvhJYPdd37b34ohIUFl1U14Q+rUEFDyWz4/HdZIl394MSIB0zHQuOnY4L2+Bvdyeoy6BUf8LdAtzlVpeIjqt/psSV9QpOnDhRCQokhhQpFEpAtY6B9kvHTOfe14c6Q3R3u7STz7XCdtzhoGARQxLuup1td7zo7rm7S/Qcjqv+VgGAu/MqnKkgovHzaQ5ac0QdKOpO8O8Rx5sxeVFGOlBYYFMFGZ83Xr+UYqTrT99jXHS2rK6uThTzVHcCx13Xj659r51Q6ivjc5Ft1tiPe3EgEAgE6hH34UAgENiMLQWFnPOrC2//6pTjfwLAT+w0EBYydPs6dyd7vd4moq3H6Y6q5lQTJL9KXJ3oAZMFDPVvErcSYeexWl+BRSVJrDyfXMUR3fkvuRM0Nncb6M4zCaOe444GnqM730q+OB5KspSQOflXN4jXZ+BxrDNAh8Lq6ipOnjxZPcHBY9Zda77WMRsMBpt2m1X8UHLO8yhoqMvBXS8qTGgNCu2nknCuzW63OyEA8DidAxVHfGx9Xfn61flgTQOud7btBTCn1cbgMXSGUOjyGhCMza/vjiF1CqkQpc4fXl/TX/ij4ht/nPjrUyP0iREqQOp4+drXOWbf9PukAqE6TeYJ+3UvDgQCgUAZcR8ObIXRygoe+6cDfParTiur/JzD8zr345nPuQ1/f9PjZh1K4AwwF6s9pVTcYXd3gpJIJbZaAK5UWBHABMksfQ5M1itQouFtuIuAMZEw6dMdlKwpESwJCioqaF57HVliEct2u71JjCDhcyLrjgUXVXzHVuPT3ySkhDpM+MNd5eFwvUL/2toaHnnkERw/frx6n2RXx1/dJiTNvgbUEu9rqbSjTwFDRR2HkmR1gOh1VOjS9abjqGOnxJXt6/iro8NJNKGuA31UIq/Bvnhajq5PHY9Go1GJOWxXnzSh4hjHXB0HegzjYzz6vdF6Fu5u4PV0bQ8Gg2odUSBj/7R+AsdGU6N0DlQI0THkePlc6ndYU2P8+x8IBAKBQCAwDXkwwNLH7wa+6qpZh3IgcOnCIXz5hZ/C3yMEhYOMuREUmDeuxJ+WclaXJ4EgUaMLoJSTzp1QJwUkVSVCrcd5DrqnPCh4jBIhtkGhg4X71Gqv7Wn9iEajUR2nu8EKdUNobCR/JPRuA/f88dLYaN89p5/ChQo3KiawH07O1tbWcOrUKaysrODkyZOVqEIxhKRO7eZuo2e/tT9eIJPjp+KEulx0h18dBby2ChLaB02t6Pf7Fal3d4fn6zvZ1c9VVFAhyOPnWPO6Wj9AnTSeNqLuBF23Kg6wXXVu6FgzZp7j19a0I11rdCh4nJxfLcapqQsU5NrtdjUOdCaoi8IdHCpOlNxJKiS4k4LH+Nr3VIhAIBAIBAKBQOBcxBN/7k7cUfPZ3AgKmvJQsnfrf+y5M99sNicKHjpZ051I37VWYuoCgdYT4OdOYJy0kFxxVxVAFRdJoD+aj+fxyRaHDh3C0tISAFQkXAs4aj+UxJdy73WXmNcjsaIQwzEqFThURwPbV5KtogzrRrRaLXQ6HSwuLk7kvlNQ0Sci9Pv9ijjqXCl5phih16a40u/3q36QiLL/2hemJOg6Ke06c7w8JUadDAsLCxMpLCpKAJvdErqL7wUa/TjGreRY8/jp9tA0Asbq7blDQUUX9kdrGKjAwHO0Ha37URJD/Lvg7gSdF6+doE4QCmtLS0tV37iO1EHB91Ug0Lj1eipk6JxoHRMVG7TdQCAQCAQCgUAgAAzv+ULtZ3MhKACY2KnWnW2SQSViJMW6U65PaQA2yIXuNKo9WklInR2aUMLqYHu6e892lHhqrrrb7UmsScaduGvqAz/TJwIwDhcFNH2A6RQk4cDmugBOBEv5+D4m/Iw1E7ymAR+tyL6vrKxUu/AUdTgHWhRQSayKGlrMkOkQ7IcWT1TXCkUFijOlNAW6N4bDYeUwKY0DCb+KQj6f7rbQdcJjtW6Ciw7+5AnN5+daUpHLXQ68nlr5GXtKG4+K9MeBavw63vq0B59/dfpozHVPS/HUB7ZFot9qtSbqImjqD6+vpL/0FAZ1HvncqPtDBQ/97uuYuesjEJgnXPkT78dn/u/nYrgUqTmBQCAQOJh46+efjSvfOcTnX1zmWoHZ4wk/fiuGBcc8keYhRzildD+AUwAemHUsp4GLEXHvJyLu/cdBjX234n5szvmSXWhn7pFSOgHg1lnHcRo4qGsUOLixR9z7i3M97nPpPhz/J95/RNz7i4MaN3BwY9/Te/FcCAoAkFK6Kef8nFnHsVNE3PuLiHv/cVBjP6hxzxIHdcwOatzAwY094t5fRNznFg7quEXc+4uIe/9xUGPf67gbWx8SCAQCgUAgEAgEAoFAIDCJEBQCgUAgEAgEAoFAIBAI7BjzJCjcOOsAThMR9/4i4t5/HNTYD2rcs8RBHbODGjdwcGOPuPcXEfe5hYM6bhH3/iLi3n8c1Nj3NO65qaEQCAQCgUAgEAgEAoFA4OBgnhwKgUAgEAgEAoFAIBAIBA4IZi4opJRemlK6NaV0W0rp9bOOZxpSSneklD6WUvpwSumm8XsXppT+IqX0qfHvC2YdJwCklH4tpXRfSulmea821pTSD4zn4NaU0ktmE3Vt3D+aUrprPO4fTil9tXw2L3FfmVL6q5TSLSmlj6eUvnv8/lyP+ZS453rMU0qdlNLfpZQ+Mo77x8bvz/V4zzPiXrwnccZ9eB8R9+F9jzvuw7uMuA/vDeJevL+Ie/G+xz37e3HOeWY/ABYA3A7gWgAtAB8B8ORZxrRFvHcAuNje+88AXj/++/UA/tOs4xzH8mUAngXg5q1iBfDk8di3AVwznpOFOYr7RwF8b+HYeYr7CgDPGv99BMA/jOOb6zGfEvdcjzmABODw+O8mgPcDeN68j/e8/sS9eM/ijPvw/sYd9+H9jTvuw7s7nnEf3rtY4168v3HHvXh/4575vXjWDoXnArgt5/zpnHMPwFsBvGLGMe0UrwDwpvHfbwLwtbMLZQM55/cAeMjerov1FQDemnPu5pw/A+A2rM/NvqMm7jrMU9z35Jw/NP77BIBbADwacz7mU+Kuw7zEnXPOJ8cvm+OfjDkf7zlG3Iv3AHEf3l/EfXh/EffhXUfch/cIcS/eX8S9eH8xD/fiWQsKjwbweXl9J6ZP3KyRAbwzpfTBlNJrx+9dlnO+B1hfiAAunVl0W6Mu1oMwD9+VUvro2P5Fy85cxp1SuhrAM7GuEB6YMbe4gTkf85TSQkrpwwDuA/AXOecDNd5zhoM2Pgf5XnyQ1+hc3xMUcR/eH8R9eFdx0MbnIN+HgYO9Tuf6vqCIe/H+YNb34lkLCqnw3jw/duKLc87PAvBVAL4zpfRlsw5olzDv8/DLAK4DcAOAewD87Pj9uYs7pXQYwNsAfE/O+fi0QwvvzSz2QtxzP+Y552HO+QYAjwHw3JTSU6ccPjdxzykO2vicjffieZ+Dub8nEHEf3j/EfXhXcdDG52y8DwPzPw9zf18g4l68f5j1vXjWgsKdAK6U148BcPeMYtkSOee7x7/vA/B2rNtD7k0pXQEA49/3zS7CLVEX61zPQ8753vEXZQTgV7Bhy5mruFNKTazfgN6cc/698dtzP+aluA/KmANAzvkYgHcDeCkOwHjPKQ7U+Bzwe/GBXKMH5Z4Q9+HZIO7Du4IDNT4H/D4MHNB1elDuC3Evng1mdS+etaDwAQCPTyldk1JqAXgVgHfMOKYiUkqHUkpH+DeAFwO4GevxvmZ82GsA/MFsItwW6mJ9B4BXpZTaKaVrADwewN/NIL4i+GUY45VYH3dgjuJOKSUAvwrglpzzz8lHcz3mdXHP+5inlC5JKR0d/70E4CsAfBJzPt5zjLgX7x8O5Bqd93sCEPfh/YpX4ov78O4i7sP7iwO5Tuf9vgDEvXi/4pX4Zn8vzjOo/qk/AL4a61U0bwfwQ7OOZ0qc12K9IuZHAHycsQK4CMC7AHxq/PvCWcc6justWLfl9LGuRH3rtFgB/NB4Dm4F8FVzFvdvAvgYgI+OvwRXzGHcX4J1u9BHAXx4/PPV8z7mU+Ke6zEH8HQAfz+O72YAPzJ+f67He55/4l68J7HGfXh/44778P7GHffh3R/TuA/vTbxxL97fuONevL9xz/xenMaNBgKBQCAQCAQCgUAgEAhsG7NOeQgEAoFAIBAIBAKBQCBwABGCQiAQCAQCgUAgEAgEAoEdIwSFQCAQCAQCgUAgEAgEAjtGCAqBQCAQCAQCgUAgEAgEdowQFAKBQCAQCAQCgUAgEAjsGCEoBAKBQCAQCAQCgUAgENgxQlAIBAKBQCAQCAQCgUAgsGOEoBAIBAKBQCAQCAQCgUBgx/j/AxFpnaSr+iYCAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 985737 170969\n", + " Min thresh = 1000\n", + " Not Sliding\n", + "\n", + "\n", + " Winner = Not Sliding\n", + "\n", + "\n", + "228s_iimage_3321463845606_clean.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADDCAYAAAAya0IYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADXlElEQVR4nOz9eZxl2VXdia8bEW+4b4rIrKwqlWaBJAZhG5ChDbRBgBmFwWAbgzFgwIjB0Mb452ZotwG3TUMDnj4YsDCTfhaToRkMMvNsEINANponVEI1qKoyI+LNU8TtPyK+J9Y9+bLGrMrIqr0+n/hkxIv77j3n3HNfxlp77b2LqqoUCAQCgUAgEAgEAoFAIPBIsHWjBxAIBAKBQCAQCAQCgUDg5kMICoFAIBAIBAKBQCAQCAQeMUJQCAQCgUAgEAgEAoFAIPCIEYJCIBAIBAKBQCAQCAQCgUeMEBQCgUAgEAgEAoFAIBAIPGKEoBAIBAKBQCAQCAQCgUDgESMEhcATjqIoXl8UxUtu9DgCgUAgcIaiKN5ZFMVfe5jHVkVRPP9RXudRvzcQCAQCgcD5QggKgSccVVW9qKqq37jR43gwFEXx0qIofqcoioOiKO4tiuJ7i6Lo3+hxBQKBwJMZRVF8e1EUby2KYlQUxZuKovi8Gz2mQCAQOG+43sLsQ50v/i4OPBhCUAgENmNX0r+U9HRJ7yfpmZK+7YaOKBAIBJ78mEj66zr5DP58Sf+uKIoPv7FDCgQCgac84u/iwDURgkLgCYfbaoui+MaiKP5LURT/+TQi9adFUbywKIqvK4rivqIo/rwoio+3935BURRvPD32HUVRfEl27v+9KIp7iqK4uyiKf+CKa1EUrdPo17uKonhPURTfUxRFuWmMVVX9cFVVv1BV1bSqqn1J3yvpIx6/VQkEAoHzg6IoPrQoit87jUbdUxTFdxZF0cwO++TTz+EHiqL4tqIotuz9X3j6Wb1fFMUvFkXxnIdz3aqqvqGqqjdVVXVcVdXvS/ptSR92HacWCAQC5wJFUbxfURS/cfo5+/qiKD7VfvcbRVH8A/v57xdF8Tun3//W6cv/oyiKcVEUf6coipcURfHuoii+/vQz+Z1FUXzOoz1fPtb4uzjwYAhBIXAe8Ncl/f8lXZD0J5J+USd78xmS/oWk/2jH3ifpUyQNJH2BpH9TFMUHS1JRFJ8o6asl/TVJz5f0Udl1vlXSCyV94OnvnyHpnz/MMX6kpNc/smkFAoHATYsjSf9Y0iWdEPqPlfTl2TGfLukvS/pgSZ8m6QslqSiKvyHp6yV9hqRbdSIK/MgjHcCp4Pshis/eQCDwJENRFA1J/1XSL0m6TdJXSnplURTv81DvrarqI0+//UtVVfWqqvqx05+fppPP7GfoxOH18sd4vgdD/F0cSAhBIXAe8NtVVf1iVVVrSf9FJ3+AfktVVStJPyrpuUVR7ElSVVU/X1XV26sT/KZOPoj/6ul5PlPSD1RV9fqqqqaSvokLFEVRSPpiSf+4qqorVVWNJH2zpM96qMEVRfFxOvlgfrjiQyAQCNzUqKrqNVVVvbqqqnVVVe/UibB7lUh7+nn6Lkn/VtJnn77+JZL+76qq3nj6uf7Nkj7w4boUDN8j6X/oRGQOBAKBJxP+iqSeTv7eXVZV9WuSfk5nn6OPFv9nVVWL07+Rf14nfxtfV8TfxYEcOzd6AIGApPfY9zNJD1RVdWQ/SycfugdFUXySpG/QidNgS1JH0p+eHvN0SX9k5/pz+/7W02Nfc6ItSJIKSdsPNrCiKP6KpB+W9LeqqnrLI5hTIBAI3LQoiuKFkv61ThwIHZ38vfCa7DD/jL1TJ5/BkvQcndQ++A4/pU6iZnc+zOt/m6QPkPTRVVVVj3gCgUAgcL7xdEl/XlXVsb12p04+Jx8t9quqmmTne/q1Dn40iL+LA5sQDoXATYOiKFqSflLSt0u6vaqqPUmv0skfqpJ0j06KxIBn2fcP6ESceFFVVXunX7tVVfUe5HofJOlnJX1hVVW/ev1mEggEAuce3y3pTZJeUFXVQCcpDEV2jH/GPlvS3aff/7mkL7HP2r2qqsqqqn734Vy4KIpvkvRJkj6+qqrhY5pFIBAInE/cLelZXntGJ5+jd51+P9GJmAue9jDOeaEoim52Pj6XH835aoi/iwPXQggKgZsJTUktSfdLWp+6FT7efv/jkr7gtMhNR2bFOlWAv1cnNRduk6SiKJ5RFMUnbLpQURQfIOkXJH1lVVX/9XGZTSAQCJxf9CUNJY2LonhfSV+24Zh/WhTFhaIoniXpH0ki7/Z7JH1dURQvkqSiKHaLovjbD+eiRVF8naS/K+njqqq6/FgnEQgEAucUv68Tkv+/F0XRKIriJTqpKfajp79/raTPKIqic1pc/Iuy979H0nttOO83FUXRLIrir+qk5th/eYznkxR/FwceHCEoBG4anNY9+N90Ihzs6+SPzp+13/83Sf9e0q9Lepuk3zv91eL03685ff3VRVEMJf2KpGsVq/knOkmT+L7Tirfjoiii+EwgEHiq4P+nk8/YkU7E2E1Fun5GJ2kQr9VJru73SVJVVT+lkyK4P3r6Wfs6nTgOHg6+WSdRtbfaZ+/XP4Z5BAKBwLlDVVVLSZ+qk8/GByR9l6TPq6rqTaeH/BtJS50Q/R+S9MrsFN8o6YdOO0RQJ+Fenfx9fPfp8V/6GM/niL+LA9dEEamJgScriqJ4P538Ids6LQwWCAQCgUAgEAg8qXDqcPjPVVU98yEODQSuO8KhEHhSoSiKTz+1el3QSYTsv4aYEAgEAoFAIBAIBALXHyEoBJ5s+BKd1Fh4u076qG/K+w0EAoFAIBAIBAKBwGPE4yYoFEXxiUVRvLkoircVRfG1j9d1AgFHVVWfeNq94WJVVZ9eVdU9N3pMgcCNQnwOBwKBwI1HfBYHHm9UVfUbke4QuFF4XGooFEWxLektkj5O0rsl/aGkz66q6g3X/WKBQCAQuArxORwIBAI3HvFZHAgEnux4vBwKHyrpbVVVveO0iumPSvq0x+lagUAgELga8TkcCAQCNx7xWRwIBJ7U2HmczvsMSX9uP79b0v9yrYO3t7erZrOpoihUVZWqqlJRFJKkra2t9CVJVVXp+Pg4HbO9va2trS0VRaGtrS3t7Oyo2Wxqa2srHXd0dKTZbKblcqmqqtL5eD/nyK91fHzM+NRoNCRJs9lM8/lcy+UyXY+xSkrj8Gus12ut1+s05p2dnTSuoijUaDRq42COR0dHOjo6SvPg/JK0s7OjdrutoijSOFkfv9bW1lbt/JK0Xq+1Wq10dHRUW0//16/NefzfnZ2d9D2vHx8fa71ep/PyusPf42vGz/lYmDf/bm9va2dnJ83l+Pg4fT3Y+/wajM3nw3Gcm3/9/Zv2IPfRr+/3i33g95fr8T6+fO/4s+Bffl3/8vvv88xxrfuSj509ld8r4HPM4e+51ljye7TpuHyP5GvP+vrv8uvk5/X7mb+Wj49/V6vVA1VV3bpxsucbj+hzWJK2e93qvZ53rPe8rnxcBxZ46qHa7ej5z7lP21G66Ybjz5Z9rd58LN1EXb7mmmhZLa7+z+jmwCP7mzg+hwPnDKundfWi2+6/7ue9/6ih/dc3rvt5A48fRtrf+Dfx4yUobPrQr/3PVRTFyyS9TDohce/93u+tnZ2T4RwdHaXj2u22er2eEBwkablcajabSZL6/b4Gg4EajYYajYZuueUWPetZz9KFCxd0fHysyWSi8Xis173udXrXu96lyWSira0t9ft9dToddTqddI5+v6+LFy9qZ2dHR0dHWi6XWiwW2tra0m233aZ+v6+77rpLb3nLW3T33Xfr+PhYvV5PvV5PW1tbOjo6UqPRUFmW6na7ajQaKopC4/FY73nPezQej1UUhZ7+9KerKAqNRiOt12vddtttuv3221WWpZrNpiRpsVhoOBxqNBppPB5ruVyybtre3tZgMNDzn/987e3tJSLfbre1Wq10cHCge++9V1VVqdPp6MKFC7pw4YIGg4GKotBsNtPly5c1Ho+1WCySwLBer7VYLDQejzUajTQcDnX58mUtFgu12211u111Oh3t7u7qlltuUafTObmxVaVut6uiKDSZTHT//ffr8PBQzWZTzWZTrVZL6/U63a+yLNVoNBKRbDQaajabOj4+1mw203Q6TeNhbMvlUkdHR+p2u7r99tt12223qdFoaDqdajgcajqdaj6fp6/1eq3j4+MknGxvb6vZbCaRgD1WlqVarZbYh51OJ51/b28v7UfGvLW1pdVqpeFwmMY1Go00mUy0Wq2S4ORiTavVUrfb1S233KJLly6l9ZhMJjo8PNRkMtFsNtPx8bGazaa63W7ag4g7+ZwWi4UWi0VNAFqtVpLOSDZz52dEoq2trTQfBKn1ep2EstVqldYRIYRnk/vN/XDxiLHs7OwkoY1/EUwA11ytVjXhjnlwfxDzGAdrsVgstFqt1Gq1krB2dHSUxDT+5fouQPgY2P8uKvgxq9VKd955550bPs9uBjzk57BU/yxuq6Pnvv5T9Nyb9c/2wPnFULr8Vz5Mf/BN332jRxKQ9AGv/hw94zNunhbyv1/96o0ewmPBI/qbOD6HA+cNd/39D9cf/KPvuu7nffnh0/WT73fbdT9v4PHDr1Q/sfFv4sdLUHi3pGfZz8+UdLcfUFXVyyW9XJLa7XZ1dHSUSItHhjdFb/mDf7VaXRXRXa1W6fWiKNRqtbRYLJJg4IRka2tL7XY7nUtSIkPuZKiqSuPxWDs7O7pw4YKe+cxnar1eazweq9VqJaLZbDbVbrfTvxCsra0ttVotTSYTzedzHRwcJBEidwNApiCPOAyqqtJisUiiBeS1LMua06Ldbmtra0v7+/saj8eJsM1mM1VVlebbarVUVVUSMHBxHB4eqtfrJfI2mUzSPJbLpXZ2djSbzbRer9P9QgTAGeLkD7KWO0k4pqqqRBgBY/FINASbewdZRUji/JzHCSRrUFWVWq1WOmY6nWqxWKjT6ajdbifyD8nMnQXufpFOhK31el1zV0hnEXpeX61WGo1GaR+wxxkH94+9ztryM+IBohKRePYP40GAgYRD/JkLY+J1wHlwZbCfnZizP328m+acOx9wrOS/49lqNBpXuXBcTHH3Ar8ry7I23+Vymfazj4f9x330Mezs7KRnDBHD3RscjzPpJsVDfg5L9c/iQXHx5glZBgKBwM2BR/Q3cXwOBwKBmw2Pl6Dwh5JeUBTF8yTdJemzJP3dB3uDE1RA1H+5XKosy0QG+CPfUxUkpeg6JHhnZ0er1UrNZlMXL17UdDqVJB0cHCTxAVIBYV+v12q1WokEQXohVzs7O9rd3dWtt96arrG7u6vt7e10fsinkzBIL0IEx7g40Gq1VBRFckZA5px0TafTRMQgmvx+Z2dHrVZLZVmq3W5rPp9LUiJMROmdeDtB63Q6KopCh4eHWq/X6nQ66na7aW0hlsvlMhHSRqORBIvFYpGIMoICEWwp2ce1Wq1SdBwBBwLLMZ5uIZ2R2OVyqYODAz3taU9Tr9dTWZaaz+eJ7BOBdzghhjRzDG4CSep2u4nAI2ggwLhIwL2E8LMXfaz+PfNaLBaaTCbpPhwfH9fOhfCBg4Fxsyaz2SyJZfmzw77jZxcQINYujiyXy7Qenh5UFEXNDeSpMX5/uBbPR556cHx8fJVI4mvEfWA8XJ+0JL93zIfrsWerqtJ0Oq3NDQGDY/nexSwXFVgvnjcXS3y8Nyke8edwIPB4YfvSLTp43+BJgack4rM4ENiAZzSu6Ph//Xht/c5rb/RQAo8Rj4ugUFXVuiiKr5D0i5K2JX1/VVXX9NZRZ2A2myUSAkGAYFOzQDojFU6kiFCu12tNp9MUjcYaLUm9Xi9F+UejkZbLZSLdWMQh7BBniLpHZEmZoC4DBB9CC6GCNK9WK5VlqbIsNR6PNRwOtbW1pW63m+biUW4IznQ6TXZ9Jz+SUqQeEgSparfbaSxVVWk2m6nX6yXiLylF9U/vVU2ImE6nKRUDEQJ7PHPDHo8wUJZlEjcQDNzuznu4dxBInAEuOHiEmbXObeqkC/T7fbVareQSyaP7XisBYsucIPXsrcViob29veRgYI6kbfg8cKMgCjBurx/hufqsNYKQv8aaEW0/OjpK7hlfD38WcHx4+gZrxFyZp68dY+PanhLBmHEo4FLAGYG4g+CCU8ZFQHcAME5fCyf3zJmxIHz4nH1c3FeEPvYx99r3HM+J/8waso6ebtNqtTSfz2tOKPbjzYxH+jkcCDyeOHqvp+tTXvJHN3oYgcATjvgsDtzM2Hmv52rxl6aPy7lf2pnrp7/jrXrXg1Z3CtwMeLwcCqqq6lWSXvUI31OLaEImcRFcuHAhRdH5ndcPaDQaWi6XGg6HyWmA9RviPBgMUu47UXcirES/ISeQJ7eQE+lutVrq9XqJIBL5J/8fMuw56N1uV6PRSNPpVLPZTO12W61Wq5Zn7muAoIE4IJ1FXSHVnU4nOQwg9dvb28llgfDQarXSvBEcms1mGm+z2UxjdAcHgobb5fndaDSq1YwoiiIJNIwzt+ev12sdHByo2WwmmznkHtEBou7kUToTjo6Pj7W/v5/qVOByWCwW6TjWbHt7O82D+XOeRqOhTqdTc6n4vqLeRq/XS+4R3wNux0eAwvHg0W13RhwfH6d7IikJGi7EuFDGHuCezudzjcfjJJi5WOHOGBcIdnZ2kqPEXRXsI0m1sXrtAc7PGCD2jDlPV3Gizv3O4YKBp3Fwz/m9jysvrsizhbDI5wX3yd/vDggEQl5nrJ1OJ4kK7N8nAx7N53Ag8LjgD/5Ur/+qD9IXfVtb3/fs37nRowkEnlDEZ3HgZsUDH3GH3vqSx6/2zcfuvUH/9nP+jnZf+erH7RqBxx+Pm6DwSECtAyKYTm6IPkonlnQK1iE0QBK9noILEp4PTlE+CMh4PE4RYUmpyB/F3igyCFEjeg3poCghRKbdbidSiQ1fqqcclGWp7e3tdEyn07mqAwORavLDJdVcDERzqeuwXq9TFH0+nyeS3Ww2NZlMEiklNQECT12H2WymoihSWgkk0ceNqIIIgBMEFwakTDpLbXDSDWnn98zRu1U4Cae2gxejRGjgfJPJJKUkNJtNzefzq9IOtre31el0ajU5OGez2UyCgq89x+KaYQ6eu48A4KkxiBBHR0dJ4EIoIqJP9Jt0EIQtTw3h3DgQWEdEhdlslu6Zu2c4xkUp3/88R16vJE8tWa1Wae+49Z9z5LUHvOijp2h4XQ8vsupw4SB3dXg9A6+TkqcgeJoDYgefD167gc8EF0xwQrHX2FfukggEAtcPW7/9J/rd//bh0peEoBAIBAIB6bP6+5r8s5/Wy7c/XXuv+L0bPZzAo8S5EBQkJfIFKYFcQky9ij2EF0IHMYNMkW+OpZpze6HGbrebHAVU5se94HZxBI3xeKxut6t+v5/O46QXizWRd4+a4hSQTtIu2u22rly5kohbp9NRr9eTdEZ482J7kCkvGIkb4/j4WLu7u2o0Gonsciwkt9VqJULOWLi+p5Tktm8IJ8TL3RK4FLa3t9P4+b0Xl2QOnIv1o1bBfD5PxSUhj5BC1gQSKCnNnyKSZVkmwYc94qQWVwMpA3lKgKcGsJ8kpeMhqnl3CsYmqdZFgloaXJvx5CkYXIf7xHFOfiXV7kuj0UjCFc8EYpKnN+TFEBm3iwFcz10Efu+Yjwt1PD/UhMjTVaiDwLw80p+7Ffz+uujgAo2LCfyOlAnWmGeCa3gBUHc0uODBHvJ90m63tVgskhjjbo5AIBAIBAKBwPXHF+3eq6Ov+xl9//Gnavc/h1PhZsS5EBQgC5AWf40/9onQewQUAo3LgJ8p1oYtnFoFRIk7nU4iDhDw6XSaItCQEMgbpHc0GqUUBSd4LoJAZBAmKB43m81S+8FOp5NaHRKhdxs2+fsQmjy33NeHNA3EAVIeIEySNJlMkhjQ6/Vq46VrA+u3qWMCxNR/xzrhyPBIMuQst68zl2azWbPSQ3JpTenCg0fWXVAgmowjA/s/5BLXCaQYYs8e4toc45F8dwP4npPOCKyvDXuu3W6r0+kk0QIhxut9MAbW0NNiuJ++5hzPF+IA5BdhxN0PeSqGpwew53M3ANfz15k7z6CTc4Qj5uoOEESZo6MjdTqd2trmbgU/t4+b++iv5YIjx/lzg1jk+yu/3/y7KSXD74sXgwwEAo8ds0/7UH3NZ//EjR5GIBAIBM4ZXrZ7t9r/7Cf08vnfVPcnfv9GDyfwCHEuBAVJtYisdCYuQNCxMruw4GSE+gEQb1IXKIZI5XzqBMzn80RYptNpLYrvVm+I8Xw+T20GvVCgR0+lM4K5WCzUbDZT9NxFhWazqX6/n0QFrPtOPnE5SPXuCMCL1R0fHyenAISOczUaDR0cHCQSRXqBp1AwZsSXbrebUiJwWEhKdSLIj4do004SYuddDCTV0j+8PgBEk/PQclM6EUGINm/q+MB7PYqMMOB1JhAqIKYQYb48Eu0F+yQlkYI2lYhXiErU7GAv4dRgL3Lera2t1M5TqtcQ4LqIYfzOSTrHOrlm/VgbUhXcEeDiW542kAsH7Cl/HhGl8u4r/l4vBsl68j372I+5FkHP0xnYB7lLwMUPnn3uKyKAF6lkffL15Bnx9BtfB1/nQCDw2LH+mBfra77jFXppZ36jhxIIBAKBc4jPGzyg277lB/WGb3yGfvnv/RUdv/YNN3pIgYeJcyMoOHFw0uB/0DsBdNszBHc4HGo+n6vVauny5cva399Xp9OpRcQhqW6D9zQJfgf5wl7uFnPPpQd0h4DQrVYrzefzVPPBC/JRSJHcedpdbm1tqdPp1MhwHqXNyS/rQ/oAdnpSCMjlX6/XGo1GOjw81N7eXqrdMJlMUlrJdDpVr9dTt9tNHRgg1KRwQNwggNSvoFAlQgaE21NXdnZ2kpsBUcOP4f2si6cO5IX/qA/gX97lQjoj1N7JwKP9/JxHznkd1wdjkM5Icb/fT+OcTCZJzCqKQp1Op0bCIeZeHBARgPtJUUzfZ1zX3Sb+PLjrwF0sTsy9FoOn/SAEsS45INr8HjGOVBUn9XntE8A8PK1kk0shL4DoThf2vM/HxTQ/F2uOGNdsNtPzO51O09q404X1z4tT8vsnS3HGQOBGY93dDjHhHOHXPuTletM7uvqK//DluuM7fvdGDycQCAQkSZ/YWegTO+/QR/3UmzSpTv4G/1fv/UHShr9VA+cH50JQcDs/ZMK7PEAecAl4UUaIDuRKOiH3ly9f1sHBgW677Tb1ej31ej1dvnxZi8UiRcLJFScFguu7zZ3OEPn4jo+Pk+Xc87edxC4WC41GoxqJcft+u92u1UdgHRAUINQUHuQctGx0gr9arXRwcJBSN0htQHxZLBapAKNHriGZRNkZD64OItSQQxwUXiEfuJiAMwMiSVoF95vaEbu7u7WijLu7u0lAoNaDE7s8gg/pJ1qPSJHX3QCID0SuWT+p3knACyFyn9g7HEsaibcuZEzcK8aLqOFpLJ5KwbpTG8SdJt4xAzcDBSjdwcGXiyS+Xn6PGKtH812Q8OKOrCG/8+fO58ZYPT0kb9/Iuf16nsKQ11JwEYTvvXaD7z0HgpzXOfFClszH18zBepGCEggEHhvaP/8afdA3f7n+5Ou/60YPJSDptu2ubtuWfvsff4em/+jkc/cL//oX6/h/vPEGjywQCASkF7ea6fsX3Pnbtd99xus/X4NPevsTPaTAg+BcCAqO3GLtZGo6naaaBhALBIeyLHXrrbdKksbjsabTqe666y497WlPS1b+Tqej+++/X0VRpKKMEBXIUFmWySJPdBdiTW42RHI4HGo0GiWC7BFofkYcgMAtl8uUXtHr9VJHCY8UQ0idbHFdF1Pm83mKwnJu3ARE/CWl7gyIFN4eDzKOQEIrSK5JQUvIOYUPIaEu5EAsybEvyzKtGa8hhmDZ95aMjGd3dzelcZC6sl6vU8tQ1hjC3Gq11Ol0tFqtUqpJu93W8fFJVwt3BUAevUMBqQ2QYq7hxBqxiDXANeBFCzkOUQFxgDVwsk9U3AuQen0Kdwc4vPikdzKhXSX7lig+8DSHvPsI4ogLKr5eEHj2RV5EMU/78ddxXHh7VK+TwDjyeXLP/LwuWmx6D+f0+8ia4lTwOh7cD6/dwvs2tbsMBAKPAcdHuu07f1fve+uX601fHKLCecHuVqndU+Pbz73qlTpWpU970cfoeDJTtQpBNRAI3HjcsdOr/fx7f+kntbqr7nb9hC/4EjV//X/G59YNwrkQFPI/6t2S7HntR0dHGg6Htfxxj44iEuzs7Gg6neree+/VO97xDvV6PTUajSQW+HWwmUsnhKXb7aaINFHNXq+XIvb8S2E8rpWnR0CgnVSSBgFh8y4PkGrPW18ulxqPx5LOiA41ANwG7vUSOD/tC1lDRIjJZKLpdFprNdlqtdTv93V0dKTZbFar3wAxRsDAWeGtF/MUBydzOCTokOARX+aaCyJlWWpvb09XrlzRaDTSaDRKqSplWdZs6j4O1pT9kRNYhARcGi4ocL+odQCx973oHUVYIye9bufPbf2Qct8TEGLOiQi1s7OTajBwfva77xsXDbwWRZ4OwL1xxwb3zInzpvQiqZ6OlNcL4X3+OvfenwlPYfK0E75wFLhD6Pj4ON1DL3jqdT18LJ4Wwn5HvEIERGDiWj5fd1Z4HY5AIHD9UETjlHOL7WJL25Je9Ybf1P7RVJ/zQX9dRw9cvtHDCgQCgavQKOrO1F/7wf8kSfrkj/5b0pVDHd1//40Y1lMW50ZQKMtSk8mkZjV3suQYDoepY4ETDW+NuL+/r+l0qvvvv1933nmnnv70p6vX6+ng4EDD4VDL5TLZ9T0ii8XdSePR0ZEGg0FNuIB8tlqtJCB4YTfG7VFYiMxoNNJsNkt2f9pGekV6SOFyudQDDzygxWKh22+/veZU4NhGo1HrjkCOOykdLiqsVitdvnxZ/X4/kVu3qlOA0gvVuVsCV4hb9iHvzWYzvcZaUevAawJ4+oLXiEBwQbhBVMCNQioFBTbdqg6JRKAYDAaJqHobTncruMuByD/pMIgtkPE82n98fJxaSrrjwIkxpJr7RAcORA8XIJzk8uVpONw/1pPuIQgPEHMXFXxvex0Hdyq0Wq1aMVMn/O6q4FyeRkBqhsPFGK7Be1k75o2o5S6XTS0svX5FLt7k9UW8/gWiACKE1zLxlA3m6kVQXYQIBAKBpxoubHf0LX/08/ral36+itlC63e880YPKRAIBB4Sr/r1n9CqOtKnfsLnqFitdfTmt93oIT0lcC4EBaLE8/k85YYT7c6j8U5YIA4QBshQr9fTZDLRcrnUaDTSlStXdNttt6ViiLPZrEZ68+izpORkmM/niaD3+321Wq3kUNjd3dVsNkuRUM95d3eFR3AhdKQdQHwRKWazmQ4ODhIBd1KMnd/JqpM8SPBwOEydBiCskDZSR+ii4C0TaZ8JwQZe4wGC56RyNBqltYFsI85ISi08ORdEcL1ep2KUiAQHBweqqkrdbleSEsmfTqepuB5tQBnPaDRKXTJ8vSGFgHvMmuASIL2DopD5HkNkYv0QDXx/8JoLMb6//PqbnBMelXeXB3uFQo+QZNIoNkXRcxGAfekij+9/BCOvE+I1C/Kijl6vgH3q9Ri8g4h0lnLjdTtw7CyXy7T+XpOD4xGyWHvGzzxdhJHOalEwD0DqEqIP7/eaKF4A81ppHIFAIPBUwV9stvWqX/4x/csH3le/9tUfIUkq3/6A1n925w0eWSAQCFwbjWJb/+2XflSvWSz1T7/4y9Q8WKj6o9fd6GE9qXEuBAUnKpAN6azafi4oQIKIJntUFodCu91Odvn7779fz3nOc1Jk1+3iTkSkk3aF5PEjcsxmM02nU+3u7qY2lBCURqOhTqej0WiU8tFxD3jdgJygIl6Mx2PNZjNJSp0XxuNxsrZDsPJovtc+cPLXaDTU7/clKTkNfJ1ZX+pMkM4BWXfhgrQOUjqYQ07EeA3iCrGuqirdBye+WP4pskmtB0jcwcFBqrWAK4G5cl72BykMdNnwVAJPvXCnhUeo+WJP5a1DOReEF/s+4/V742NivXNrPdfdRFgRFLxWgAsDnJPvfe1zZ4TvF37HHDy6D5FmX/jPXuPB7zm/Z2zuvvH2lb6GPBPu9GBs/tzkQoq7BnyduCapMF78kvN6bQ5JKbWGehPXEgxcxIwuD4HA9UX/nZVeObpFn9MPK/3Ngn926U36Z694kyTp/X/376n/Mx8mSbrlVW/W0eUrN3JogUAgcE28uNXUr73i+/TND7yPfubbPkaSdMsfX9HR6998g0f25MO5EBSIaua2Zwi/kylJNWHAc+XX63X6udVqpXZ+EM5+v58Ighd05FrHxyetEylGSMvJ2Wym0Wikvb093X777UlQoJNBTrbdik1BSCepkCeuOZlMNJlMUgoELR89v99JHC4J5ozrwLtMIJpIZ1Fkrk1aw2g00mAwUL/fT24BSDDEF9GG6DBzhKBCjr0YHvUQjo6OkihxeHiYCCtzh/hh7Xfy5i6AnZ0ddbvdWlcL9g1pGMPhUK1WKwkXTvJZb67rHSs8nQCXB+NgbN5JgvUhN9/FHK7lHQtcfCBFQTpLBWDvuW2f4110IPKOm4TXvJYD72MczA3y7d0acuHDj83rQnBvfDx54VSP/HuHFu+owDXdicAe9raNXMfvF+d1YcHP684Sn6+vB6k0klIHFd9LLsKAvFZDIBB4bLjwQ7+nf/Zhf1Of86kvv9FDCTwKvOHD/7P04Sffv/cHf6nKe08/Y4+lp39btJ8MBALnD19/6c36+m89ERFe/JrP1OJ3Tj7Env19b446MdcJ50JQgDx4dNVzy50YUi2+3W4nQguWy2UtXQKiMx6PNRqNUiTco68QOCd7kpIFnnHRAWE2myX7OWTZI9Dk65Njv729rX6/r36/r+FwmNwHXGNra0uj0Uj7+/va29vT3t5eOh7SwxxxIHhXAgSCxWKR0hUkpfoOEGWvp+CRYdwcZVkmh4SnDPR6vZSy4CIGxJmocrPZTOOaz+epoCUtLKfTaUoP8RSK5XKZ2kMiziDouC2/3W4n67tHsT31wc/Jl0eaKejohSHdLu92d0kpbYTINufygofUtGAv5qkiee0FxpfXHmA92Tu5W8HJOMcwF4+2cx53B3A+0gw8us813KnhhD4n2V53gvVzQYJWqhzLmDbB5+tfnp6Tvz8vvujPhoswzE06E9R8X3ldDd7voofXnggEAoHA1Xj73/me9P2qOtL7Pv0fqnm4pWd/YwgLgUDgfOI1L/5x6cUn37/X+3+hiisvkCQ9/x+/+gaO6ubHuREUIFteDwELuxen63Q6klQjlsAt0ESbIc+j0UidTieRiLzAIFZ/CNl0Ok3dFyBK1GNARKAwI3Z8t13TFYEuEd1uV71eT+PxOBFoxIHj42MNh0MdHh6mFIR+v6/Dw8M0J0k14p6TLMYPIfNo+/b2dqpPgY0cUsw8EDCazWZNWNnZ2VGn09FyuUxCjlvbEREg1RBSUigoODkYDFKHCS88iaDg7TA9iu0E0yv+k+qR1zuAPLugADmmxoRH+L1AIB0mEJKclEOiSQ2gbgKklnXxXHwnyexf5uB1FvJign7P87QJTy9gz3t9Au53nlLB2Dnex+Z1NjY9h8AFLBcwOA7XAfvQ3Q6eHuPiRH4tH7Pfb+bujgWu6cKDf+WfCzgW2E/+XPm+wKnhwkkgELh+eN5PHOmffMgH6zvu+OMbPZTAdUKj2Nbb/8736F3rsT7u/b5cklT+955u//chLgQCgfOJd3zc96fv3+fpnydJWt1X6gVf+fs3akg3LR61oFAUxbMkvULS0yQdS3p5VVX/riiKb5T0xZLo1/H1VVW96iHOlchDnn9NBJY8bEmJBGNxxxbvZKrVaqnT6STCAsGUzoiMExRy+hnPfD7XZDKpRW3n87kODw/TdSkY6BFkzk/EfDwep3G5s4BxUzRwsVjo8PBQFy5cUK/XqxF1uk5AUj0VxOsIeOQbIcCdA9vb27XoPYSKrhF7e3sqyzK1qsSV0O12a8dzH7yYIWTVUyZYr+3tk84Yt912W0o/QeiByDMGCO/R0VHq4jGbzVKBSa/d4IKAd5fIq/lDgiWlsR4dHaVxkDYwm83U7XZVFCftDvnymgcQ1cVikeo8kP6Bi4LXvPgf+xaxgnmyT3KCjnDBffDijggBkG3Wkfci7nhBSs7JHnLxbJOt39MePN3GO364u8HTRnyMXNsdR8yT3/lccleHi4v+rOZpIpuIf+5wYM1xOvl4fI28gKW7Wc4rrudncSDwRKDxK6/R//yqD9I3/4eJvv5S5LI+mfDsnZ7e/FdfIUn6+Re39R8+/SRvef6v7lDjV15zI4f2uCI+hwOBmxt8br17PdbLPuAz0+v3vfI5uuU//d6NGtZNg8fiUFhL+idVVf1xURR9Sa8piuKXT3/3b6qq+vaHeyLEArddQ0w99x2RwckRpBI7s0eWiRpLSoQxL1gHQVksFok0k/tPa0rOuVgsdPnyZR0fn1T3v3DhQu08Tpq8yKNH0DudTiqICEmDhOEy6HQ6NRt5u91Wt9utRfSJtrN+3mmC9A0ixqQ/MJ7JZKLxeJy6QWxtbaXI/J133qkrV65oPp8nEYKWluPxuBYddns/nSggiKzBZDJRp9NRt9vV7u6uLl68mNaIKL/Pye8xZB5BYTKZ1CLP7rTgdXeNsE8YC3sFIYRz0DLQ90G/31e3201j8PaHW1tbms1mmkwmiaAjFvg9cNu+p7mUZamtra3UacMj8xBn1sHFCUi0C0uIVRznDgZcHhzPz3RX8HoIeZoEe9PbKbIfvFaHp0143QS/JmBc/rwyLxcIpHqBSo7FsYRAkTs88rQe9ir3j/VBNOB+5WPgeG8tec5x3T6LA4EnClu//Sd63ejpUggKT1q8tDPXS9/nhDu/4jsv6S3zOyRJf/ySizo6OLyRQ3s8EJ/DgcCTAM/c6elV73Om+f3S1zb0W1/xvunnP3nps7S+6+4bMbRzjUf913JVVfdIuuf0+1FRFG+U9IxHez4i3XkBQc8h95oJ/OEPkfB8cyfSkIz5fK7hcKiyLBP5XywWqqqzavIICp4iQLV4xnB4eJiO83oNEEHaCELIPWUDoYLuEU7opHq1fggZdRh2d3cTKSay7nUGKB4JUST67Y4NFzQg0Kx3u91WURS6/fbbNRwOUx2EoihUlmUSZLhGVVUp9QOXwXw+TwUrIZ44Enq9XhJomAfEn/M5SYU4djodTafT5Bhxp8bp3qsVG/Rikl7Vn7FISq4NUlDc7k7rzF6vl5wKjN3Ja7vdTiktiAK+Z318LgZIqrUexV3C/vHngXvn6Qnsce4568yezNNuXAjh/Lnl3+sgcGz+DPrP7qjANcL4vJNGPif2BWkh/jy7wOHCCONBqHBRgC+uUxRFeqY97cSv78IN8/LUD96XOyXOM673Z3EgEAhcb3ze4AFp8IAk6ef/qK1VtaO7Vhf0s+9/yw0e2fVBfA4HAk9OfHxnpY/v/Gn6+Rd+8y2aVyc8862L2/UrH9C/UUM7V7gu4beiKJ4r6YMk/b6kj5D0FUVRfJ6kP9KJYrv/UOfIo4pE7Sl+CMF04sYxEFDy/KWzegO0q4PUQz4hwR7ZhJARid/a2lK329WFCxfUbDZTgUfEiaIotLe3VyMeEGuI9Hw+18WLF9VoNFLBuk6nk9IY3IHBOiA6MC86LbRareRuOD4+ToTeSSZz8/aG7mbwFoEHBweJELNely5d0t13351ED0giJJi5Ieh4kT8IGbUniCjjvOAa1MGAsE8mk1RwkTUAFFOcTqe1SLz/nvSK9Xpdq5NBCgLEmT2AEITwwLgQaEh/Ic1CUkq/wHGxu7ub1hhXQ062/Xv2t9dLcBHNXRbM39fDXTUQcifSkG1/nrxmAMIGYhrk3qP4TrA9XaDdbtfEB+4tv2fP5eKDnwOngacduKhwcHBQE138PC4wMTaux/1mXnTicKHDx0FqlaSaW2FTysS10kHOM67HZ3EgEAg8nnhpZ3763VifeOcbJUkve+vf1c5fe9eNG9R1RHwOBwJPXnxiZyHptNZcd6zPuHNc+/0n/cg/1fO+9qmXIvGYBYWiKHqSflLSV1VVNSyK4rsl/V+SqtN/v0PSF25438skvUxSioCTfgCxRxDwHvaQCQq/YdeGdMzn8xoxwp0gKbkFiM56FBRSCTGsqiq1i/Rcego9zufzlAYBaYPIQPqlM0t9p9NJ1yONod/vp/cyDuYPIKwIC5DI2WymqqpSlJqaCZyDc2IXZ3z8PJlMdOXKFd199926/fbbdenSJbVaLQ0GA916663p927p5zys6XK51MWLF1WWZS2/n7oLFMPkvngxS8gjwgnOA+aMG8K7f3hqAvD1W6/XGg6HyZnANRA2nPRWp/UhcLOwLvzMPmNcrC+kdDgcJhHE6zG4C4DIugsMpHog0vR6PR0fH6f9wli86KIXZWRM7Fe37rsbgut5Vw3W1sUJjmNs9nzWijDmgoV3gGCMCDCbzsc5GbOLUKwtKSS8nxQM5s1Y3H2R10DwYq4OvxfudPC53uy4Hp/FbXWeuAEHnvJYV1taVUdqFNsPfXDgSYn3bvQkSb/0fj+txbvX+oCf+Uq94Cv/SDq+ucRcEJ/DgcBTC3yGgdd/7ndq9ffOPr/+1id8ro7e+LazA27Sz7aHwmMSFIqiaOjkg/OVVVX9v5JUVdV77PffK+nnNr23qqqXS3q5JO3t7VUelXYRgJ8hIOPxuBbtd8GB6v6SEjHE1o9zoN/vJ9IFuZeUui1g/Ye0UANhMBik6CdfRJaJ2noBP7epuwNhvV6rLMtkoQfkmxNtRwxAvKD+w+m6pnlBNnMS5mOFwPOFs2N/f1/33HOPXvCCF2i1WqnZbGowGOjixYu677770j3w8ZCyAIFdrVa1+hWMBZGhqiqNx+NaOgmCTavVSvUeZrNZLVqed0ogUu51F5hnXhfASbzfB4+yS0p1EiCbud0dwuytGVm7fr+f1n86ndacGrbH097iZxejXGhCTGN8pJJ4+oSn+fAeL2bKnvfilbnrw9eDa3ntAn/NXS2skddL8JQXxoMIxLhylwLn41jvquH1GjYR/LzDBdd14YH3ehFLf8Z4LnJsup4XmTzvuF6fxYPi4s2R5xF4UuDwf72sT9GL9Xlv/nN9Tj96gT+VsV1sqVM09Y5P/4/Sp0sf9M1frtu+6/dvqj++43M4EAg0iu2aSP6qX/6x9P2712O97C++NP1cLVc6toDizYzH0uWhkPR9kt5YVdW/ttfvOM0lk6RPl/S6hzoXRKssy0TMpLMK7BADIu/T6TRFhL3lm0c3PX3CK8RPJpNai0PIq3cKgIQhbPBeUg9cIHCBodFoqNvtJqGC93rdAyL4njIAMUVQgFh6u7zZbJas58yb33nhPggWdnqK2Xl3BNZkvV7r4OBAd911l572tKfplltuUafTUVmW6na7qRiiFzTkvNJZtJxCg4zJayS0Wi3NZrNE+Muy1M7OThIEvLsDogNiC3UockJNNwsvushaQsIZS976UVJyB/i1EWNYJyednhbD/NgnZVkmkWU+nyeSz32H5ENmvdYGAg37nuu4TZ97xRgpSMjxrCH7xuedzyV/nqjhwNrmhRnzf/NUFPYDqSg8PwgmOFD8+l50U1Iq5OlfPlbuV/5MMz/EEx/3pnHyfHhBR7+/PjbHzeBcuJ6fxYHAjcAr3udZ+ph33ak7dnoPfXDgKYE/+frv0oeOv0yXfudeHb3jXdI51xXiczgQCDwUnrnT06ve8Jvp5w/7H39TF76y7uY9fuefqzKn+s2Cx+JQ+AhJnyvpT4uieO3pa18v6bOLovhAndi73inpSx7OyZxgenFGyCkk0nPWiZKS/uBResi5pJTX7y4BFw44BnLpKQiQRAgvRJTIJfUJiNZ6lJx6C9KZ3Z1/yfmHREpnJB9iSNR2sVhoOp3WKuhDrt067u0D6QxBjQDm7fn6RXHS1vLy5cu6cuWKxuNxEhTKslSj0agVmZROou39fl/D4VD7+/uptaZUr6a/Wq1q7SpJe4Bg4gLZBOYzm83UbDZr3QG4BiT76OioJvIwTq9DAJEnTYCUDO/4AWH12gRe4HA+n2s8Hl8lQCCwsL+cWHuNAG9ZikhDigotJz3NgWOAF0z0PQ4JZz96MVH/Ped1dw0pPO5wyAm9E3GewWazWSPy7mbYVK+AvZw7FiD7uFxwCbnjgffwfsbnLgrm5feRe+Bj417yvINNjoWbDNf1szgQCATOA/7gm79bkvSRX/Yy6Vd++waP5iERn8OBQOAR4ff+0k9Kv1V/7X/5mi/T4M9OisgXlVT899c+8QN7FHgsXR5+R9Kmv8QfcX/dnFRjS3Zrs4sGkEcs45ALLy4IYVgul7XUCHrLQ1Y8mkz00qvVz+fzGhlutVoqy7JWEJExY+GHkEJoPMKeR0o9Rz4XQYjwIyg4CXWrO+N327yvp6/zcrlMdQFwURwcHOiee+7RxYsX9dznPjfNsdVqaX9/X9PpVMvlMpFWiLLn9eOMIPVDUiJ1eVtOJ4JuzUckQqCgVaQX2nP3BuQRksp9cCK+vb2tbrdbc58wN8aQdxWQzkQNT2Xg3nF+F0UYN2SbsXlLQie4y+VSs9lMg8HgqrHgdvAikl50058DrktNAV7Law3wfuqNsN+coHukn+vkDgfm5OkhnIO5e2pO7j7I71c+F6+hwp5lz7io4GIGx3mhSNYkT3tgHi7I5M6E3OVw3nE9P4sDgUDgvOG3vvvl+tBPON8pMfE5HAgErgd+/1u/O30/Pp7rE776q9LPnbvn2vqd1z7xg3oYOBdN1iHSTpCwyDtBh2xB9iDdECgnIrgXcDQgPpDbT14/5IT6C5A6b61HVfrVaqXZbKbJZKJut1ubg3dmmE6ntUiokx4INvP16CvHkatflqX6/X6KOhN9dzGBa1LvAQFlPB6njgpuFXeRBKI6nU51//3368qVK7r99tvVaDR04cIF7e/vJzEHEgkZpUMC52SNPR0EEQjHwmg0SoKDE1Pg0XacCRSfvJZdn3Pzu5wgMlaPQvtrec0KB3vKXSBezA94cUEXBxAxfI+7S4C9hThD2gxCD64ASeneewqLPz/ejtGfFy92yb5ibE7KXbDwdfLCi8zVUwTytfbXPC3H96CLK+5wQJDwL45z+HPiBRZdBEAs8PSRTSIKc8prU/j8A4FAIBAIBAKBJxK9rbb++7/9nvTz17znA/ULP/jh6edn/uxdWv/ZnTdiaFfh3AgK0llEFELkkeBms5mIIxb0RqOhwWCQRIPRaFSLAkPyy7JMBKjb7SZCOZlMUjs6zk+rR+mssCHV64kAU0MAuzjEhKr94/E4zcfnlwsLEG4i5l4wjnaJFP8bjUaazWZJVKHOAPUghsNheh9dB2jJOJvNrrou9R2IltPVYTQaqdvtJuLv0Wbm6mIG94Siirg/aOEnKaULLJdL7e3t1VIvIO2MHTGB+bl7hPVBOMAh4EU7ed0FC0i6pHQtamLkkWi/n14AkPXLrf2ck/PmNQX4nQtlLgDM5/PkIPBrIgYVRZHcCohR1PLI63gwVk8l8K4OpIawf12AcGLv83RRwNMQ2Ie5I4jzMifm6u4SsKlehXf9cPHC28bm9yAXDnzc7BFcL5tcGL5m7k4IMSEQCAQCgUAgcB7wrbe/Vt/6Na9NP7/wwz5PeueHSZLe6/98jarV8gaN7JwICrgJvMJ7nkfu1m637fd6PTUaDY1GI913332JJB0dHSUxoaoqDYfDRO46nY7a7XYtUk8eO7ZrSbWIMYRua2srWdFpJ+k59U5gPY9fOrNv5yR2uVwmkkjk3bsKUOgREpe/3x0VHgkfjUba2dnR7u5uyk9nfPP5PJFnXAjD4VCj0SiNv9Vq1SLeHsH2ugWQNi/iCPGFEDN+akx4kUNcFVyDOgesA+4HJ70e0afOhUeX82gz818ul+n+UUjSa2Zw3yVd5Shwu727EDgOQUM6c6a4DR+Hh7+OEwFxwx0QdPnAqYE4AInPxyvpqoKDzIPjvFAn9yIXjbwWwSa424Bzt1qtNCfcArk7JHccuCsnL8JIoUmQuwuAv499yrn9e8btgkLuRsgdGbkTJBAIBAKBQCAQOA94y0e+QvrIk++f/6wv0PHqlHNcaej5X/3qJ3Qs50JQgBg6gYGseu0EQOrBeDxWURTqdrvqdruJTHMuzitJ4/FYs9ks2fIhzBSwy4vSQd4ouIcY4bn2tK7kd5BKFyi89R81DCBkkB7y6RFHeB3i2G63a20RIaUUIYTUsn6QU7paDIdDdTqdWuHLTqdzVf56VVWazWZJbMApQG0ISKOnZNCFgYi4F6UkKi6d1W9YLBZJxEBI4HWPaHvBSdaWbhKeVkEtjfl8Xuv+wD7xdBZeg9gOBoNa3QOi6J624K1B8+t6scjcdu/iiHdS8ONZkzxtAHGFPdxsNtXr9VIqTe4A4X3+bx7FZ49LZ602uZaP71rpGk64cyDKeV0R9oPvLX9/XqjRyT3z8BoLLug4ciGI810r/cHP7c85r/P5wOeOF24NBAKBQCAQCATOG9720T+Qvr9nPdbffv/PkyTt/+bT9Mz/+3cf9+ufi7+WPSLopAJykBMByMpoNNJkMtGlS5fU7/fVarUS6YIUUUhxe3tbk8lE0+k0pSbgIiClwQsEQmQgl55r70SXto/T6TQVBHQLP19e7JG6AJAaJ+OSateH5LTb7USYWRsIL8ScNXJiRUFJ6awmAIIH0W5qS2DVJ6+/LEsNBoOUMuGiz/HxsTqdTnIQ+FpISkIINSIQCCCZiAisPQTZySNjhtySwuL2ftYAl4GTWE8joB2j1xQYj8dJiGLNF4vFVW4Bvxe+F7kmQhNEFrEAQcWdKU6MOT+iAqIWggLnwcFAegr3P3cieKtIrw3CHvO6BX4/2VdeLNRrh7CHIdeexuBgfzNO3yv5tf18Xt+DsbLnEcy4bp4i4Q4Hf78LCp4Gw+8ZC88s7+E11jnSHgKBQCAQCAQCNwvu2Onpd/7i/ytJ+u8vPNYrP+Os7sI7vuz5qv7o+nevPReCglQnBhB3Jx2QOorKLZdLjUYjHR4earVaqdfrqdvtan9/PxEySB4ReaLY0+k0Rdex5DcajRSNJ5rvRQIRIMhnh0jz/cHBQSI+s9msVpmeVI28CKF0luvtxRzz2g3kqJOikVfB5zXPb+c9efQeosfY2u22er2eyrJM5Jfo7Pb2tvb29lKtCYSZPL+9LMvkMGBM3hnB7y3k2aPSeZTYCSBEV1LqcOFCTF5wjxSCsixr4opUrwMgKaV3eLTaHQKeqrIp6p1b+fNjIaisjxN0iori1EDIQlTYVLuh3W6n33lqy7Vs+ZtEB3c2uPDg5J81ckcLwpannXBvNrW39DaYvM6acC7G4fUe/HhqPeB6caeEz5F/WVfWlNoJrK2k2nPo5/M0Dv+cCQQCgUAgEAgEbkZ8RHtLH/GMs/SHn//R1+ryuidJ+uEPeK4q+xv+seBcCApFUWh3d1fD4TCRGKleQI0//iEGq9VKly9f1v7+viaTicqyVKfTSdFvj3pC7CCLs9lMy+WylkvuRfWI1rvlmmt7dwG39tPWUTqLuPKeTqeTzkcxRCLhkHRSL7D2U6uBsUP+cQtwrJNQJ+EIBnl7R6/FAElrt9tp/chd5xydTkd7e3uaTqeSzlJRiOq6Y8LrCUhKa5wfwxqQnsI99sJ53DvWkoKGTn4hvS6mcI9xl+TtEv38o9EodQpx4Yq16XQ66na7V4lAnMPTChgT1/NaCV5zgXVwK71H17mf1HnwZ4SxUkOE+UB+3emD4yI/x3q9Tqk/7j7g9wgp7Duvh+D1FVgD6n7ka5PX3MhFD87B3qatqLe4ZB7sSa9NgssmF55Yy00pGzwL7FPmzr1x8cXFiUAgEAgEAoFA4GbHSztzSSfO9b/41rv0rvUF/YcXvPAxn/dcCApbW1saDAZaLBYpuu+k3AkNZOPo6EhXrlzRW9/6Vl28eFHPfOYzU2cC7NreYhKigsV7Pp+nwoJ+DCkS0hmhpd6C51i7qwEi4hFjr7SPY6DX62mxWOiBBx5IY4TEcy7prCjdeDyuRe65llvrOR4CBHkiqsx7ff0k1VIlsNQTVfY6ENj6ObcXOYR4El2mK4Sfe7FYpPdxHq8p4aKHE2DqN3h6iNdhYL2n02ktgp07NxBo3MnAtefzuQ4ODpK7Bbs+60FtDgo6Uv/B0xFATrS9lkGeYuBdHxAD3C2wqYUj8/MUGtwmkG0XJojws79xnLAui8WitkdcNHGRgRQW3u+kO5+np9nk5Jx9lKctsB8A1+H87vBxQcZFAv+d3w+eXXfkcE2eIU/H2ZTisklMCgQCgUAgEHgqYO+Vf6AXPevL9fqv+K4bPZTAdcYHtlr6wNZUH/Xu35Mkfe7bP12Ll7zn5JfV5sLs18K5ERR2d3dTDj4kMs9b51i+IIT3339/Sklot9uaTqe1GgdOmig8OBwOa9Hu1WqVBAbP94dIE0nNi+l5xXiPsJZlmYgbBDI/D2Oi6KLnuXsePseSVz6dTtMaOGl0i7unH0DM8sgxc+SLNA6fB04Ectk9esx8vIaB1xagKCQEDsIOOUeEID0BocDz213wydNDOM9sNkvv2d3dTc4OIvLebtRFAF7PCwTO5/MUxe/3+yl9JE8fQHSh7gFzZ4759Xzvss/8nBB/F4L8uu5qQKTJhZ5cIOC++nm8tWc+HxcJcM54iosLJJ7S404B5pLP2zuY4IDIRRi/97nDw1NjfP25nguI1YYPQoQ29j1zdAGH8/szGwgEAoFAIPCUxPGRiqOHPixw82J3q5Qk/ewLfkG66+S19/3eL9fzvvW1kqTj2ewhBYZzISgQlaR1ImTAc9g9hQFijPhwcHCg0WiUcp+xukN2cgv90dGRptNpivhjI6dgI+fAPg9Zb7fbtcKG7XZbUr2CvlvTqTeAPb0sy1QoErKCK0JSSnuAJEpKzgm31fN+bwHIsYyBuTFej36zprSLhDQiLFDE0FstjsfjJDTgqPDIP8IDa05aB+TVC/shQkD8PPrN9XJC5+kUuBRwoeRkHoLvopIT7jxnfj6fp3m5Y4I0k06nUxuLk1aIsdcWcDLr12VfbaotgDhCLQpPFfFr+Rz4HfvF0wC8ToILY5JqLRnZyzmp9n3FcYgKCD2Aa7tLJJ+j1yzI61Fsb2+n/eqtLLl/fi1EQXeieOqJCwv+Hk/Z8P2Pe8jdOH6uQCAQCAQCgUDgqYQ3ffF3SV988v1Hf8E/UOcN95788K7Nx58bQcEjoABy5GKC25KPj4+1v7+vu+66S7u7u7p06ZLKsqy1D3SSl0enIchONvICcE5C3F3AMV5vwAkbZN9bIxKlpU4DxAxLt6dkcF3s7d7ekoh+t9tNYoiLDnzvBNit24yVehNXrlxJ47lw4YKqqtJoNEppIW5l91z9PBWBuVOTgPF41wLSRyD6LjjgRoFYS2cpCuwBhAVEEL9PTqTzjhhuzWfcTm6daOIsoTgo+9Dnzh7M0x7ywo05saZdJ+kKuRMHQoxgRDR907k9kg94jXVgXVx0QUzxriK+f73mg6fPkJ7AnmVvORCzpDORibXx/cje5nfuinBnAuvsggevLRaLWppK7s7x+eZfvi94zZ087JNwKAQCgUAgEAgEnqr49R/4T+n77Ts2H3MuBAW3UTvBIvLLH/yQT7eGHx8fazKZaDgc6sKFC4lQ5XnckFacA1R7JyLt9m7PY4d8eZ2FTTZ15uEtECkkeHBwkAoRQuTdau3z9Vx96czCTvtH5s35iSTjFmA8WLq5poskXIsoONFa1gxy5YUFIXoe2YcwIno4Ge73+yqKQsPhMK21z7/VaiWizHUgepBoTx1AYOB41tuLUkpKa+j/so4epfe15V8I9tbWVs0FQVTe54e7I68V4fvDhSyvS1GWZVo/rud7x58BP86JsEf1OS9zxWWDGMAY3f3ijhp/Dl1Y4Dgn97zmdS/cxcN82Z/eftFFvvy5B7kYwDV8jTx1Jne/uEjg6RJcD9Egvz98FnAenp9AIBAIBAKBQCBwbZwLQUGSut2u5vN5La/aI6JuiZfqlfK99R6/86iyW/nzVoDSWYR2Pp+nCKvXbkDMwBqdt/bjGqRAQISw0SNguDUddwPj8pQPSel1xueEMLfYe3oHjgkXB5gzx1EAEqLWbrfTWnS73bQ2rAedKjx1wIUdFwWYY7vdTuvP/fH34bTwGgc+L0QIinR6e0LaZ7I2FJRE7JjP5+l8Tlq5F4xDOhMajo+PNZvNNJ/PU3vGw8NDTSYT7e7upte8+j/1MXBasFe4/y4YARwukPxcZCqK4qoODzhdPMKeiwKIC9TvcDLN6/4ceF0FLxbJmrBGFHzEceKOBEQEFwHcTeKpGfzsQomn5bgQwJw8FcNdDV77wdu7en0P1nqToEBqC+f1jiUuvOU1JgKBQCAQCAQCgUAd50JQOD4+VqfT0XK5VFmWarVams1mNaJJMTUiwVI9Hz6PxBOhdPLmpFQ6i/hKZwSG1734oqcUeOs5t6Iz1na7XRNB+MqvDZHCdZFH2p2wOzGCZLmggD2+LMvkYvD1oHCjOxO4XqvVUq/XU6/XS50VXHiRlMg/qQgIG5BTJ5ZuO2dM4/E4iUPcLx8XkXkED+oMTKfTJB5QVwGxxLsDkGIiKc3fSSrjcdu8j5c5IKBI0nQ61XA41Hg8TgQf4YmUAi9O6GTaiTBChLsMcLAsFotE0H2vSLpKQPCcf9aPY/N1d8cKa+5pDV5TwfccY8Pd4YIa+9qLlSKEUSzUx826UIhROkth4pyeVsAYKKjp++VatQy8Boc/H6zDpsKXiC8+v7y1KfchaigEAoFAIBAIBAIPjsckKBRF8U5JI0lHktZVVf3loiguSvoxSc+V9E5Jn1lV1f6DnQdi0ul01Ov1VJZlEhTW63UtAu2k3G34btnP0xCcmHgUMre/extJRAIIKsSr1+ulSOlkMkmkGqItKRVvhED5dbgW5Iwvai446SLq7eIBP7sVHRLUarVqhek8ks2xecS4LEtdvHhRe3t7GgwG2t3dTSLKbDarVdbHAeGR6jx1hPtBzj6vu6XciSjCCuPJi+553Yy8OCHz5P0+99VqVUtncTEGtFqtdH2EC3cssAakwiCANJtNdbtdTSYTNRqNVLSRPZATalIQXAxxR0l+nxA3nNB77YZ8H3m6EHDizhdr7+fwvcQ+h9CzDi5KQNC984MXP/XUBOnMCYIo6HNxcYT9z7PkQounJjBvT3nyNBzfVy4y5GkcjA1R0J8L6azF580iKlyvz+JAIBAIPDrE53AgEHiq4no4FD66qqoH7OevlfSrVVV9S1EUX3v689c82AmI7hPppECgRycho54f7akRFNHD2n18fJzqJXi0cTabpWJ+TlQhPBAJXvd8/Xa7rd3d3XR98uxJD4AMSdKlS5dqqQ/Mx6PFeaFE5ujw8TnpIW2BCD/jg7RNJpOahd1z3J2otlotDQYD7e3tJVGBtomIJnn+O2QNoYAvb6+Yt8p0McQFlrIsExllvb1Inhf485oOnGO1WmkymaR5spe4t4g0Tj59Lu12u1YHACBSzWaztGcQKRBvqBPB/dja2krtNZ0Qe60GxJRNnQc4BkLue4/1cOLM8aTosF8QVRBFWDdvicp4WU/2qI/d74O7Lng+uFcUFJWUxoIY6PuFMboYxdwRa3A6cD3EAdI1fE/7/nOxgT3DeXKHgtdlIYXC7wGfBdTKuInwmD+LA4FAIPCYEJ/DgUDgKYfHI+Xh0yS95PT7H5L0G3qID8/5fK7Xve51et7znqd2u53IhaRU0Z+0AVreOelZLBYajUY6PDxMXR4gXy4qePTVCRdEE0GDoo6QabCzs6N+v5+IDKKEpFpaRbPZ1OHhYa3ivheTg5g5+c0j8U4scV7kqRRen8FdFJC+6XSaiJcTTsbqhQI7nY46nY62t7fV7XZTq8grV65oNpuluUK83O4Pqev1erWWgh6Bzkmp11IYDAZqt9taLBYaj8epgCWpHNw3j+a7dZ+aCYgDeZQalwLFE1lf1g+BAHLp5HU+n2s0GqW2pNSGIJ1BUiremKc2OEllrfx++3r4+vLlzg3+9XaQntKCkLRcLjWfzzWdTtP9Zq9KSmTbhQzIvrcBRXxwocXXM6+NIZ2JAhznrgrvPOJCIWvBc4PbA0GK59adK+x3xsIedPdRXouBZ9rFS78nOTxF6CbGI/4sDgQCgcB1RXwOBwKBJz0eq6BQSfqloigqSf+xqqqXS7q9qqp7JKmqqnuKorjtoU5yfHysy5cv65nPfGaNNEM8ZrNZIgsQfrePr1Yr7e/v6+6779ZgMEjuBI+uEpn14nKQHcgqBLbdbieSTKQfAtPpdNRutzWfz3XPPfckgg65Qsw4PDyskTSve+CiBZZ9t/MT8c1TFzwlgFxwiCTkFncHv+dcECSvfyCdOSMQPrDoHx0daX9/X+v1WuPxOBEzjwh7nQfmzhhIAdhUNM/vO8JIp9NJBJb0A08DQBRgf+RpJpLSfkAUkc5cL7x3NpulOhweBSeNYTab1Qg9hNzHhXDhhfz4mXl6FN7TD1x44ngXYLw2RXrIsuh57nrodrupcwRuCk9tcNLszg9SPDwtII/mu6jFs+OpDdJZ8VQXxHC54B7h2uxN9rGnVjAfF1h47riX7mCRlIQgdyb59RATeE68COi1xASQpwidc1yXz+JAIBAIPGrE53DgSYnn/NDb9d5/4Qv09o/5gRs9lMA5xWMVFD6iqqq7Tz8gf7koijc93DcWRfEySS/LXqt9QXAh6xCkfr+fBAIvMHdwcFBLkYC47Ozs1HLSvXge6QpHR0cpYg0R8dx7CD2Cg+ffMwbIjkeJiXB2Oh31+311Op1E5qqqSgQXwkxRQreu51Z/LyYHUYJM4TZASPB0DubmhJd8/cPDQ0nShQsX0vwojkixwjyvnLm6wCAppWJA9hmXu0Qgs9x3J+TSSdSfFBTWvyzLJDIgRhB1dqLL+yC5ROVxRpCW0mw2U60OFxjcBeJ1A7w4pKfMIKZ4ioITbE9tyNtNerFEFxQQGlzcQPTygpk+XwSfvC1inlaRP2/cS08P8gi/O3ryAqEO3sM9YV38Gl4/gvV2QYF9zZ7LnQaSasd72oKLhbnDg3sCeP6vJbr4Gt0kuC6fxW11Hq/xBQKBwJMd8TkceFJife97pPufd6OHETjHeEyCQlVVd5/+e19RFD8l6UMlvacoijtOldg7JN13jfe+XNLLJakoiionHdVpsbeyLBMRnkwmNeKXW6pHo5GqqkodITxn2wkOkU8EAwiTV/GHZHK8dNZNoNvt1pwSDrdcQ6awxzebTfX7fR0dHWl3dzc5L0h/cFu4kxqs971e76qIcqvVquWsI1js7u5qZ2dH4/FYjUZD3W435YXTuYAUgOl0ms4zHo+T24H187oDkE7WEvEE2z2iS6dz8h/iarVKTgl3i+SEXDpJG5lOp2nNWRNPY3DSi/jiJJ8oOF0fIJz8m9cz8MKDjM1bUbqwwL6Yz+dJPGANEQmks3of7AfGQRqAt5zMnSi5OOLEmL3MNbw2Aq4JIvY7Ozu1/bepPgf31btFeDtRvtzN446BB0PutMCxwpxJjUEQ2dTO1R0PeboIX97ylP3prgdPaWEv5U6Ga631zYTr9Vk8KC5erTwFAoFA4CERn8OBQOCpikctKBRF0ZW0VVXV6PT7j5f0LyT9rKTPl/Qtp//+zMM5nxM+yEKj0VBZlom8QTa9feB6vU750JBbIve0oOS4vGaB5/VDStzK7zn33g4PguZExNtSYq2n1Z6kRHKx4k+n0xQpd1v86dqmcTnZcjLndnvqD0DEIVZ0pWg2m9rb20vpGpcvX9ZwONRqtdJ4PNa9996r2Wym3d1dDQaDRLxms1kajwMyCzF2cu8kHAGG++ZiCA4CnB4IG3RUWCwWNQLsPzuh5T44yfe6BBzjAgXvabfbqVYGglJZlmo2m2q320k48rQIb1WIEOCR8LwYI/cCos69y/d+nl7huf5eLNGFlZwUb29vpz3le8S7h/g+d/LuzgwfE8KPpyB4tN9rWvAscD7cM170EKGNMftezfcZP+PYcAGR67JOOHF4zhBmvLaCF6JkjP6seZrIzYTr/VkcCAQCgUeG+BwOBAJPZTwWh8Ltkn7q9I/zHUk/XFXVLxRF8YeSfrwoii+S9C5Jf/vhnOzVr361brnlFt1xxx0pGiydtWBEHPB8bs/hh/R71wOs4F6rgIguPzuBklQjdZA8FxakM/LllmkXFbyIHQQWslOWpaqqUrfbTcUPGbfbzTneBRYiq7gwIEo+fhdOILWsHYS/LEt1u90kGuzv76dzD4fDRARJg+h2u+mcThq94F+329Xe3p663W6tCCTrABAbmGNe/M9FEdJRuBZk0NMgdnZ2UtoI6+TilItP3Ku84B6OC09RcEHh6OhIs9msZvd3Qcu7H0hK95nzs/aSUhtK6ji4m8CLQXJvPYWB9c87fPjxDtI72OedTieJCtSK4D1OqlmbsizTc8VzgFAAXJhwwQ0Hz2w2S88awo7X8cBd4W4f3u/rStoTa+TPLmsraaNowzxdwPBn2OfhuInSHa7rZ3EgEAgEHjHiczgQCDxl8agFhaqq3iHpL214/bKkj32k5xuPx6mrwvb2doru81WWpQaDgQ4PD1P0EWLhOdJegNCj4dJZZBtCS9Q7z5/2VohuT3fnAukG7g6AFONSwNbtlvler5cEAUirkzrPoXfHBikKng4CCSbNAbLoEWGIIm0OOZ7Ckk4WV6uVrly5ku7BdDpNNnpJV4klLs6UZaler5fqHLg9nnWUVMvDR0yAaObn9si41xXgXnqBQo5jPtj9iWrnopC/v9Pp1Egx4yZNBRs93UYg3twTd0ZIqt1zfkYA8joZROqZt+8h36vsS9aG83lqzXA4TMIM13fBaz6fJ4GNPbpcLmt1Ldx14WkPCAOke3hNCn+f31vG2uv1kujh6QsuBrqwwXq4KJU7K/L0C09rYU6542i5XKZ0ENbd05N8P/P5sklkOI+43p/FgcCNwE+MXqSvvHDnjR5GIPCoEJ/DgUDgqYzHo23ko4KTSSKw1D0gp7zb7WoymWg6ndZs4uTNdzqdROIhc56j710RLl++nEiJkyLP/YdEgdVqlVoxEmGWzkgOgPC1Wq1kV3fSQleDsiw1mUxqZJHrIAQA/x1kNie0eZFDCCyCQ16dH+u8F5ZcLBa6cuVKItCQNQSG5XJZq5UAufSoP4RxuVymrgPucMhTF0hXyIv+kXIhKXXcoBvEYDCo1chAZOHa8/m8JmYgILl7w4/nX0QLyKXn3iMo+N7ziDnndbEib2fo6QFe+wLRA0eG72GEEo7rdDppXMwVlwsk2B0u1OCgLSh7ezKZpHvhRR1z4cjBOiJO+P5xIYg1ZT9sbW3VBBQXC93pgtBxrfaWPg5HXuvBi6QiCroA46KNi0x+Tc4TCAQef/zciy7oS+96hxrFTd2qNRAIBAKBpxzOjaAgnaQ3IApISmQJwkyUfzabJRKDxX9nZycVIqRtIXn72Lu73a4uXryobrer/f19TafTRBggUYeHh7WcewQAyNtkMknuAEk1QgrR9uKKEFO+l85INQSG6C1CCgTSXRe4Nrz9peeT0x6RiLLn3Ev1mgse5fUoOkIFpBSi7NZ67gWCiDsBXOCBxE4mE00mk1rePPfX8+l5n7syOCcCA46JsiyTsJBH1HkN0ug1MTZV9Me9gYDFGLl/LkJtIpieToHw5etBtJv7gLjCPeDeeycT3ye5A4BnAjLvqTYu5pASgIOG9BaEHne80M2D+8B4GIO7RxBWXMTZRNy5vz4Pf81FFV53Icz3bi5quPvI15zxedcR7gHI546gkReu5H3sz0AgEAgEAoGnKgZv29LPT9t6aWd+o4cSOIc4l4IClvK8TV9eF8EL5EEadnd3ddttt6ndbms8Hms6nWo6naZr7OzsJDJM9wHOgQCBLRwyTZ43pFZSjcRWVZXywL3+AwUj80i6W/WJ+HItiA1pE8ALNCIgOFGjWr4LGqQJECl2kQDCzbw4P184QyBbjJ91YQ5lWdZqPLi13Yv4+VdOfF0UYK5E4N2av16vNRqNUroIAorn1DcajTQ35uDukTzyzfgglpBwUgpwvnjKhAs5jNvFlPl8nvYjhJe9AJllrTxdJneqsOZ5CovX02BPuRPDCTn3FyLNe3NRg/G5W4U1cQcGeyF3erBXAAKBi0d5WounKvlc8/ab/n6vg3Ctc3C8/8x4vZsGa7QpxYTPHhcjAoHA44sX/dYX6i0f9UM3ehiBQCAQyHDbf/hdffVHfqZe+ldfcaOHEjiHODeCwnq91hvf+EY985nPTGQS8kDUGZJAxB9C7aRxa2tLvV5P7XZbw+FQo9FIy+VSZVlqb28vEW8KE3pBP8bhUVLSFqgjQEcACKt0lqaBSAHJ8Txvj7zjRICwQVQp5Eee93q9TnnfCAIQYK7nBe1cdHCXg0fRiS5LShHmbreb1hxRB8LL8V4Xwokcc5HOotvuZoBQexFNj0zn6+1pD0TrmfPOzo4Wi4Xm87lms1lNCGA+LjLxGqQwb53oYol0lgJC3QRPw2D/5WKAz5kv0hZ8jdvttnq9XnrdiTyFOb0zxKaCgL7nOZ5z8a/n/3O/PLWEPcv9ZE/i8uGeu2jkooanrDCmVqtVK2TqtQcQ0Pz++lr7XsjTj3AI+f1i/7iI4GPJ181TMJirr1k+Vr6Yz81QQyEQeLLgeZ/zOj3vO1+mP/sbL7/RQwkEAoFAIPAwcW4EhaOjI73hDW/Qh3zIh6jX66nX66UijXzhICASDbnwDgFVVaksS5VlqYODA00mk1ruO5FTKu9TcBGy5CTFI9R0mBgOhzV3AA4GyGceSYa4EZmHqEIiveI9xBdiRIX/brerTqeT5rJer2uiCI4CxBIEF4gU0XVJ6V8ivKSIkEJAp4bZbKbDw8Oa2OIFL8mdZ928ZgS/k+rdJySlOXMc997JJN0E3BEBsWe9qKPh+8AJqxNh7sNqtUoCjFQnlRBOn6MLMTgaWEuPYHNdRAYIOXsNkYa95QTai39KddEjj+azf7knTsiZkzs02G+cw+3/zJe96e4AUl/c7eIOBSfmvl897cDdCr4XNjkK3B3gKTveTtXdIDiVfC19HPnPvNdrd/j3Lhq44yefZyAQeJxxfKT3+4Y/k/7GjR5IIBAIBAKBh4tzIyjwh39VVTVLO4QNogDZa7fbiVxBeCAgvJ86CpPJRN1ut2andgEhJxGMx68LuaRQY6PRSGOF6ELCnIhA5CCXCCAQawdklToKzJcOFxDF+Xye6ilA4qnr4ISKtVutVmo2m7Wcfsgi5+/1etra2tJgMEg2eSreHx0dpai955rnKQrUIoAQsm5eewABh/XjOp4iwf1kjRizt4tElMmj5j4mz6X37gmQZAfvY494aoOnEszn8xTp9wKGXIOaEZ6G0W6305xxurDvXExhHOw7BCtJqcaDE2v2uTtYnKx7LQr2hTsIvAAmzwT/uithk9sgXz8EM9/3/j6vC+HiCMcg0nn9FE+rcHEor4EBfN5ck/XiWMRIf749rcL3ai4wBgKBQCAQCAQCgTrOjaAgnUVsIWJeL0E66TfPH/kQQ087cPdCWZa1dodexFGqV3b3iLoXMfQicZBHiOpqtUoEGrKHe4CaCh6pdWJHmgPHcn13EziZgoh2Oh0Nh8OahRtBwwkqRNJTMyCciC5E9kl1oKgjKRZOMv06/LtcLmsFM3EocD5v58j9Wa/XKcWEY5if338n1y4aeCFCj9QjgEhK4gkEtSgKzefzRHg5xseFqOFdCHB9uChB1wrSXlgft+izx3AvQIZ3dnZS1wr2Y07KmWtea8JbZSKg4V6RVLv/HvH3a3kbS3c3sCZ+PnfSACfb7B3GyvHsbX+eeS/XZ96sFeuT7xd/Zpi7d25xwQJsSoNwYcLTkVzE4r2M1Z/LTakngUAgEAgEAoFA4ATnSlCQlKKwOVGhsB3H5EXiIBxE69vttsqyTCQEoo7lH9IAWQUQM0QLItt5EUaPZCIIkNe/qeYD74PAISh4nrp0FkGG7HkaAU4Cot1ci2g/DgWIOz/T6tKdE1yX9aUWQrvdlnRGlJ3UIiZ4ITvm1Gg00hfn5VgKHEJuJ5NJEkny4nq+rt4qcXv7pP1l7uxAQOD9fDEWiDLRaF9rTxNBPOK+jMdjjcfjtNdwp9C5wnP5PdXC8+/ztA+6OEBk2VtSPSUBl41b+Nk3dGTgXMfHx0k82eQocNLtDoBcNGIO3C/uVX6Mn8/TeVygcceEiyf8jmcRoSvfcy7g5ed0ke5a9Q043h0beYoHcMHC1wQRJhwKgUAgEAgEAtLzv+o+/d2f+Gj98PN+/UYPJXDOcG4EBf7QdzKd/7HvdnQXFNxOLSmRLIozeteF8XicSDbighMZosm0CvS2fi4qQBq9QN9isUgk1gvddbvdVAeB+gb5+RAOIOROsonoQooQTZgrZHQ8Hms2m6nRaGgymWg6naZChjgpPJXCo9lHR0fJYTCbzXRwcJDOlRNEXxfSLhi/p64g8pC+MplMriKo7hiBsEKqfX2cIOYWeIojsi5+vKewcF8h5F753+sI+D7jHtMlYTabaTqd1ooabiow6M4C4AUoWQPAuuVReUQgzuduFn8va8I8vB6F1wHwugqcJ69nwPptqiOQiwOegsFxrImvKYKXOzkg7b4WLt7x8ybhgOtxDs7pKREu/FEsE/HLBRjWJU+lCHdCIBAIBAKBwAnW99yrK4tn3OhhBM4hzo2gkBOSTX/cewQ2J2CeK++pDR7Bh0hyPY8+eroFEW8itpB/iInb650YuQiyXC41Ho+1Xq+1t7eXahB4CkFRFCmVwS3opGp4GgS1IHAbMCe3kJO732g0NJ1OE+EejUa1PHEnUU7YXDhxqzwkllQF7g+kkXQH1g2xBWGHWhPdbrdWHBKHRk4+PfrOved6kH8vsuf1Dvw1xsH5EHO85sVyuawJOdwX1obimdPpVMPhUMPhULPZLO0fF2lwT3jdBHeeeKqFpyhwn9kjrLGkq4QnF93Ys3lrw6qqUp0HTwnKHQsuFHAtRBCve+CuDq/x4GvvopynoOTz91oZwGs9uLDnY+Acm2pfuGiRp1zkzyX7wMH+ymufBAKBQCAQCATOUP21e/UNf/IifdOtr7/RQwk8zjiqjnWsh9ft7NwIClVVaTgc6ud+7uf0mZ/5maklImRQqleTzwv2eW2Cw8ND3XrrrWo2m+p0Oup2uylnmjaIRLU32Zo9354IPwSUFnlE6ql3ALGGmM7n81T4DhKTR4aZy2AwSATcaxAQBScnHwLsxeZGo5Fms5muXLmiy5cvJxu/E6jZbFZrtYkjwt0gLl5A/HgP8GJ3nU4nEftWq5XcIH4ffG2qqkriCeuZE2KPvEP8GR9rsrOzk+6hOxoQAthLOZF14umCEBHzRqOhwWCQxICyLFVVlSaTiS5fvqzZbKbhcKjpdJpqIbBurAuuh8ViUavpURRF2m+M02t65G0tXVBgPp5e4J0n3IUAWWevzOfzJODkaTib4E6DPOUhL5IISee67FGv1eCuIsbpIos/e/5MMo+8FoT/m4/ZXSs8V/697408Zcnn6A4Mf18gEHjicM96rDt2eg99YCAQCASeWBwf6d7FQEfVsbaLSAt9MmFRrXT/0SL9/Bn//J/qwg/+XnbUn21877kRFMCm+gmQAy8CCDmB2POHv+evQzQgupBPL7CII2A0GtVs4h5BpisA70Mk4FxE4LH2kxPukdj1ep3y7yGwdKIg4ks0mcg3BJJifNPpNKUxNBoNjcfjFOFnbSCz2LohfoyV1AfEDeZPwUu6GCA2kKYBUa2qKo0dEtdoNLS3t6der6eqqjSbzTSbzWprQ3tLSCTE3AkuDgGi+1400CP2uBgohImY48d4qkJeyJP9k+f+b21tpRQZBB3cCQgk3gGCdfVij+w9xCTm4ETY6wh4W072AeP0mg60yXQnB84K1jEvmMj480h9ngbBOuTuH/YmzwTzQqDalBaAgIALxFNL3J3gLqTcJcM5vB4Jx+VwR4MXWeSzhPvAHnIx58FcSiB3MwQCgccXR/ffry/6uL+vf/Kqn7rRQwmcIwyjg28gcG7wzg+d6Wv/+MX6lttfE6LCTYzfmG3pSGd/x3/tGz9TFz/lLennC8rFhGvj3P21jADgxM6jpgBi4BZliiiOx2NNp9NENHu9XiK+kD5/T55z7f9KZ4XwEBYg/G41J3/fixYijJCvPZ1OU/cASckBgCgwGo1SGgRtLr1mg7s1VquVRqNRIl6Hh4e1CKunTyBcQKJZX9akLMtERFerlabTaXIBEK2XlMipiyZHR0e1+0VkfDqdpuMhvhyfEzfI787Ojnq9XnIKuE2e++XiEaTcibsTS8aB24LXuKaT7035/1yD9aDQpadSUJSSmhuQYfYOAgDn5hivycD9Yr8iUHA/cKbkY4UUe1HD3HXDeF2kcgLvQoJH7XM3DXuP47xlKYLE9va2FotFquXBz3kaAmvBGiM6uPPG3+MpC8yTfUB3Dr/PiGnsBa7HfLzug88zT6HyVI9AIPDE4ejNb9P/895/4UYPI3COcG91340eQiAQMPzPD670j/7ww/Sdz/j9Gz2UwIPgfy7n+m+jzf+f/voH7aoybn1Rb9l43MPBuRQUdnd3E2HZ2dm5KkfcRQS+vAsBhITI+3w+V7fb1fb2diK60hmpgYA5YcvFC69xADGDPPtYiAS7Vd+7PHjEFqLEcZ7H3263E2kFXvTPo+PkzOfr5AXoNtm8IfoIDkdHR7p8+bJGo5H29/e1Wq3UbrfV7/cTcUMg4PhGo6FOp6NOp5NEC6z2uBPc5p9Hh/1nrnXx4kV1u12NRqPUohGSngtAkGXmQYqHCwBOYnmf15HwSD57gHvAGFlft/j7HPL96W4WjiMlwEls7hZot9tXkWcXVvL7iECGcMGe9+g/v2f/eNqBd2lgzHk3BFwr7qBg7Twtxl07PAub6h544Uh3JLgjh2N4ljcJf/4McW2EBq+b4sd6egRjdvhYc8dDIBAIBAKBQOAEb/2Qhf7Gb36CfvoFv3ijh/KUxf9294fo7tnuNX//+l99oZ79jb97jd+ur/H6I8ejFhSKongfST9mL72XpH8uaU/SF0u6//T1r6+q6lUP43zpj3nPPfdUBVIGiHp6XYJ2u51qGHhhOQgF5NrrHLjd3Ys8OmHLK/g3m82UXy+pRo49XcLt+i40eNFISDIiAk4B5sK8PWLqY4bYU6vAW+0RVWYM0ln+ea/XS0UU+eI91AogBSTPm3dxBbhY4qkBrLnb92ez2VVkELgAwzp4mksuBJAagGDDenBffI0hsKSreMpCXtSx3W6r0+kkcu81GLz7Azn6iAp58T9Pu+G6jNnrVThpRcjgnnDfnNw6EScVBfj9yp0By+Uy3Qu+vF4I6+X1H/zYvOihd4NgPO6S8SKUfo99TDwz7FV3s/j95hmjbomvlwstfn53X7j45LVAOHcuVvn7zzuu92dxIBAIBB4Z4nM48FTF7CX36QN+8nMkSc/YPdQvvt/P3eARnV9Mj5f60D/4gut6zmd/7VxHb3n7tX+vB67r9a6FRy0oVFX1ZkkfKElFUWxLukvST0n6Akn/pqqqb3+U503RbekshxlBAQs3BFs6s6lDjumSAKmk2j2CAETVo81+vmvlUDvRgsxBmiCJXMeL8R0fH6frEgn2tAo/J4TKazg44cGBwZxJ48iLDjrp8o4IXJ+1QGDxiPB4PNZ4PFZVVdrd3a1FmfMcdc5HK8XZbJacEz4XL1joxJrjeI0xIKQwfu4hhNfdJxyT29vz+SNCuXDE2joR9cKITpJzEcLFA87HnmMskHa/R+7k8HlSR2M+nyfRCiLswkMuJngaBOILRBuwrnnUnvPhIPH0B3cSMA7On7s5EJM83WMT3OHgxRrdXeAiwCai74Kfr73XfMhdHl6HgTn4c8f5c8HhZnAoPF6fxYFAIBB4eIjP4cBTFlWlZ3zGSceHnec9R8/7py+TJL3kg9+oH3j2b9/Ikd0wfMpbPkmvf8Ozrnp9a7ml53/Vq6/rtY4e+pAnBNcr5eFjJb29qqo7H0tVdEjN4eGhGo1G6mggnbUZJLUBAsH7nCgQtXbSRTHDnZ0dlWWZbNzeux7xgPN4LrsXlPMWkpBRt75D2N0qz3Uh4F4gz4WEPH/eOwp4twPPXd/Z2UkpEqwh5Ar3gtcZ8LH7mjEGHxeuAi/U55Z4J7W4FKR69NpTAMjFZz6kqRDJp2YB8DEgkri7wsewWCzSurhzAaEnj35D7t22n1vuIfisoztYfD29WGhO8r0eA2TXybmTWch8TmTzdBVfW4QW4K0subdezNGdDoxzk3jAMewznzdzZq7eqjX/DHBhgC/fE74X84KQOVxA8HE6eP54jvLz8Jq3QHV3VF5X4ibDdfksDgQCgcCjRnwOB56SWP/ZnXrhl98pSXrXx7xY7/8RJ7n7//zv/Yg+q79/I4f2uOF/Luf6rO/76tprz/rlsV746j+4QSO6MbhegsJnSfoR+/kriqL4PEl/JOmfVFX1sHcRgkJZlrVIIjUV1ut1isq71Xm5XGo2m6Vc/E6nk8j8crlUWZYpqn98fKyyLHV8fJy6DRAthTxJV0dTPd/bc7sbjUYtbxyS5vndRNUpVAeZofuDuxEg5UTlq6pKkX5vycf4aMfI64gvHvWFYHc6nWRln8/n6ZydTicRdSd8kHkEAHcdQOwQbCCldIDw8UISIbtEtnd3d9P6QkoRMLyuxWq10mQyqY3Bi/jl6RTMt9lsJvfEYrFIRQ+9y4XXkuC8jGc2m9XSbPz+M0/m5zZ6n7M7JpwQI2iwVrhFuPdeY8NrILiY4A4bT7Gg/gP72O39Pj4XKnjNax/kzwJjcRdNnpLhcPJPGofXzsidEkdHR+keuZgBXEDwa3o9FfZk7jDgnJvqSHgNE0/vyOuS3AS4bp/FgUAgEHhUiM/hwFMeO7/2Gj3r106+/64//dv69ltO/l7+rW/6d+psNR/knecfH/Qvv1zbi5NAVHNS6Vk/eq0aBU8dPGZBoSiKpqRPlfR1py99t6T/S1J1+u93SPrCDe97maSX5a8fHZ10Q/C8dASC6XSaorxEtT3KCtkoy1LdbrdmA4eUQ2ibzWZKe/DoMy4AqR5ll04izMPhMKVkkJPvefEQL5wEXqSR3+VpBrSS5LjJZJIi+aQveGqFF1sk+kyElX95DzUdEAra7bZ6vZ62t7c1n88TgfMaBIg3EDlcEt1uN10D8sZ9QgTAceAE250Jvra9Xi+1miQdwqPl3It2u63lcqnRaJQItKcuIBZ4fQBJqZMFe4AxIBzgWqATBnOGTCL2kMbh6Q/ZXq5F1Bkbe4Pf8bq/z+tMuBCTR+J5L5073HnhnStYExcLPL0GeOqDX8vFC0+xkHSVEJOLb9JZigc/u3AAmed+u5vFC0Z6LYc8DclrY7j45qkKLka4mJM/o7wfgcT3Myk6N0PKA7gen8VtdZ6QsQYCgcCTEfE5HAhcjfKn/0Dl6feffM8/1G/8p++9oeN5pHjvH/9SPeuXz/72v+2//b50fNM5WB9XXA+HwidJ+uOqqt4jSfwrSUVRfK+kjdU5qqp6uaSXnx5Xnb52lYW72+2q1WrV2vdBPJwweYE5L6LoBL8sS3U6nVqBOiKs3hIR0u6ExG3rDqKauBU8x5xrSKqNhd/nOemQSs93ZxwQKMgwNQQgl5A0j/pCoJ2wtdvtJLbQ3q/b7arT6dTcENShgHhtqhvglnDPUfecdwi+W+qLokjjcNLvkWgXXXjvaDRK6QesLwRzsVjUqvd75Jx7wFicGCPUbG9vazAYpMj+er3WaDRK12TeFIl0ActFACeyfDmZZm6eBuCFKFnbyWRSW1OPrrtQxVhcwHEy7+0eff05L2k53CMvosnxeUrQtVBVVboPpM6wx3lucuGAn6mjkReT9LoXXuOB9fe95fuV++L70a+Nk4G19TXxmhVe8PImwGP+LB4UF89/FcpAIBA4v4jP4UDgQdB61R/qkz7572p+e0e//gP/6UYP55r41Ld+olb/6KIk6X3+/C06unzlBo/ofON6CAqfLbN2FUVxR1VV95z++OmSXvdITgZhkE7Ieq/Xk3QScT88PKxFDz13n8i4dJYqAPGUlPL1ESfcZl6WZS0aCUGHvEmqVd2HpENSnOC4Jb7VaqXoslv0idpCdrytX1EUKS0BYSXPJ8dBQKtGCJhb0p1gQuzcheHrzXshVQgbvhYQzNwVAoH1yLVf20ld/h4n3FzXUyPa7bbKskypDN1uNzkvmBPpJpBZxoDYlDs73C3g94z76y0xvRAoa3G6xyXVC/yxlk5SOcYj/ZyDdfHOFKyN3yvG62vG+RgfxDqvgcBY3F2RuwE4BpLN9XO3g0f6HXlqiotMvvfYxy4I4hTydIP5fJ6EEne4+FpfaywOFxY3uS6Ym3SWzkSLWndJbKrRcI5xXT+LA4FAIPCIEZ/DgcBD4Pi1b1CzKPTSD/lkPfAxz9Hvf+t33+ghSZJeu1jo//hfP12SVM3nOr78hhs8opsHj0lQKIqiI+njJH2Jvfz/FEXxgTqxd70z+91Dwt0FWN6J1AOvCg9y4uYdITziCanwiCy1AyiWCJHjXERbc5s3RMtJyGKxqNUsOF2nmuvAWxVKqjkitre3U/FGnyPjgfgTScaWT5T5WnnnFGakCwWkfb1eJzcA9vnt7W3t7u6q1+vVot20hJSUIsqQPe/GwZq12221223NZrMk/hCF9nQSTytxQOxxNPT7/ZT6cHh4WIt650KN12RgzXKxxQk+4/Ko/XA4THU5EC7YO4vFIjlQWq1WIu7cf+57niLhooQXg+Q+HR8fp/vJ8Qg8PlbqZFAnZDab1YQ4vmctOB91Jfz3/txA5j0NgnPm9SB4BjhHnpZAioELG+5wYTx52kTuqGBt3AFCUU5PY2A+Lr7kQhJzQJTk2SSth+/d+XEz4PH4LA4EAoHAw0d8DgcCjwBVpfVdd2vvP9+jT/ovf0WS9KZ//xf0tpf+x2u+Zbuo/w16VD10Wqq/Z9Pxn/pXP0PHd9+bfj6e3/2Q5wxcjcckKFRVNZV0S/ba5z6mEemsbR/dHMhjhzjklmxJKZqNOICTQTqL3LuQgECQt5rkd0RPXUTwYoBuJ2e8RHm5jkdZpbO0AO9wANHhvV6DwKOyPmeIkhNpL8LYbDbV7XZTbQPEBsQPv74kDQYDNRqNRJ5JjWB+7gjAeQFBREDAmQDxY60gr4vFIr0vTyVBLPJCeZ6Kkos8Tk49Ms5a5t05JNXuHektrF+j0VCn00ldIxBW/P55+oGkRNBxoTB+v9/86+kreRTfc/9Za74QMpiPH4eg4YU7/f0uwDncieL1BBjfJtcFx/o5AOfI01Y4ById53KXhI/Dn2Un8b6W7nzx1A+eR55BjnOXxaaxO9hTnv70YMefNzxen8WBQCAQeHiIz+FA4FGgqnR8+jf1C1/2h/pkffA1D91+0fvolb/wA5Kkv/wb/1DP/9w/edBTbz//eXrlr79SkvRhv/cles5n/umGo975qIYdqON6dXm4rmg0Gtrb20ttBCeTiabTaYquUzwPskEO9s7OjgaDgW699Vbt7e2lqGNRFCni7FFUCFu32621rGMMXktAUiqIB+l0WzoRbIg/wgCWbboQEDHtdruaTqdpXp4LnlvfERCc5HKdxWKh0WiUItSQrX6/L+mEnB0eHqa5TyaT5EqgeGW/31dRFJpOp2l96EjhrSiBEzUIIuPhWDoqUGgQgYj75gULPTLPPBAHECcg45wjT0XwSL8LFH5P8wg4Lg0/Pw4ICmP6PYEQsxYexfb5MB5EJ8g11/RIP2KAO2nydAMnxJ6+4vUkIOUeoXc4Ccf5gRslP96JvV+b58V/dqGJNeEeeGqJuwgYz6a0F++gAhi3v+7pD5wXccsdTi7I0eGF8blw4elR/vpD1Y0IBAKBQCAQCDz+OHr9m/VZz/pwSdLz9eBigiQdve3P0vHP0SYxIXC9cG7+WnYLtpNUiLu7E7A5Y8P23zcaDe3u7qrf76vdbicXAIKCt2SUztoLelE8H4uLFt660m31kG9Pc+C6EObJZKJGo6HBYFArtJgXX8zXxCOx/jrXn81m6auqqlS0kdoTODs8BYB54c7AzeARYNbX61LkkWiEFE+f4Jj8fKwfBN+Pc2IKscudCrg2mANrsCmFxR0pRO0ZM3NjbXFIeCqKiwD5fPx8XBfRJ0/fyKPc10oX2ESiGaunI/Cv1+pwhwLXdNeDE+hNKQu4S7zoIwTfxQR3knghTq6PM8TrV+S1F9w54Wk+7uhhrMzPj5VUu/fU+XDHh9dF2OTG8PuZp7/kaTH58xgIBAKBQCAQCATqODeCAuCP/mazqU7npHUO5DxPdfD8bUkp8r+3t5eINbb75XKpg4ODRII7nc5VbeScgLgV3C31RD09xcCjv4gKXhNBOiNCeV63dBYx95aQbqOXlMQOiNdisdDW1kmLyfF4rPl8nq5NBwWKFvr8IMDMu9/va3d3N7VddDLFuvN+COx0Ok11HljPvCsGpA1iR4oFBBaxB/LpJNRdAH5dt/l7nn3e2YP7xnVxkhBhd3cFAsHW1pbG47HW67XG43GtPgPRfI+yM28/zgkupN/FIBcxXEDxufsacu/YBwgdpGTg0nDhgj2Yj83PxbU9JSSvM8F4eBbcheARfF53cQfk9QdcHPLUFJ4vvt9E5P1crBdOGxeV2Hs5KLhIGhDH+9ptEu9usqKMgUAgEAgEAoHAE4pzJSggJjg5RFggRUA6a4cHyOvvdDrq9/sqy7LWWhFBYTKZSFLqouBCgRMqt7d7RN7JBsRaOhM83D7vVniK4lHU0Akd5JC2lr1eT3t7ezo6OtLly5drBJsxEmVdLBaaTqeazWa1FAPpLD2D1AucBhBoyC5jznPP8yg36wA5r6qq1rLSwVhZP3d/8H2r1Uqkl44d7iTwPYF7YDqd1oitR9adkHq02efNuHxOTqq5HxSR9JaguYDEtRgja+xOB8QUiGruvvCChe7M8Xvs7gnP88/f611LPF3EhQFfJ87DvH29vVaDOx4Qszytgt95ykeeHgPyOhh5jYlcGOF3ecqI7+OqqtLeymtYcC5+x3UXi0WqgQFyUWrT+AOBQCAQCAQCgUAd50ZQ2OQMyC3Pnmfv1fTX67Xa7bY6nY56vV4SDCjU2Ov1aiSCf6nS73DrtVv2c2LkZI9jSBFoNBqpCn+r1aqlDZCCQLTZCxEinnQ6nSQQEMWHjLVaLbXbbVVVpfF4nNaC4neQKmo/dLtdlWVZcyBAxBg/9R2cAEtKBJ/5sQ4QW08xgPTmogDXKcsynRfhA/KZk0kvYuliwmw2q9WtQDBwcsna5tZ+iCTwYoH+mnfMYA1yV4eTa98XiACIRHTWgKiyrzzNw50c+f5iDn5ehADOjzDk5B7BwYs75vfE5+P3mD3g6TieRuA1PCDh7G/G60JLXgvB55Y7jSTVajogjuDC8C/GgQvHr+2Cgosl7izy5471ZbzXKmgZCAQCgUAgEAgE6jhXggLkAts5hB8SgO0dMuXv29raUqfT0WAwSISb1oUUUoTAQsxIfeAcEL08r5zf5cQH+zyCRrPZVL/fV6PR0OHhYU3UoNYDBSbdVk80nW4TkCoKJyJC4MIgsj+ZTJLjwa30zH1nZyfVkuC8eUQfYYCoPFHuqqpS3QREAYijt/CTzgiw5/f72hRFkRwJi8Wilu7hc8f+nxNfF5HyXHscBBx/rRQWdwa4COLvYbycP+9u4ekI7AV+j3jAzy4ocL08Iu9OFZwcntZD1N/JM2vsLoV2u11z1+De8WO8WOGD1WvwtIGccJNq4qk5eZqLPyuSamKJ18Xgd4DXOFeeQuOOJNYyF6FIa/C19fe4qOOOEBdT/H2bak4EAoFAIBAIBAKBM5wbQcEBmYW8zGYzTafTRNKcUEDsIOA4AohA53UBiEJ6BBqhgS9PvXCiwfWkuqAgKYkJe3t7kqTJZJKcArgFiH470XZCLKk2Pgom4sxAnKAuAGLI9vZ2jfyTW76zs6Ner5fqSeAMgAiu12uNRiNtbW1pNpullJBGo6Gjo6OaWOG2diK4Tswhjjg33A3hZHlTLj6pE9QEcLGDugkQRUfuHAHeEjNPP+B97jJwAcNJL/eBMfvcnXBTC4HzcE0XRxirF/70tAXGzd7nmLw4o6ekIMx44UEXvvJaApvqDDhh9qi9X5v7xr7xVBpfJ18rh4shXJP35XBBz9+/6R77GHkOvDZE/mw1m82aKwLka5gLFoFAIBAIBAKBQGAzzo2gkNcq8MjwaDTScDjUZDJRURTJLo813aPckG3Pi/eCdkRXIWVOhjhXt9tN6QYedQUUufOxl2WZvnJRAvKKZR/CTZ0DxusR+eVyqWazqV6vl0g59Q449+7ubhI1XPCAaCEgILJQpNKjvhy7WCySY4JrIOpIZwIKc3G7O/cJ4YUaCV5QkTGzXpybYoatViulhOBUwJGCOOTk3Ek7Y0bwgOx63YM82txoNNKe8LE5gXbByt0Y7tqAvCICeNqJj5l9xvm9IKQLDQg5kpIoItUdEe7A4He8lzH4mNkTuUDBeaih4edHLGAPA3/OXEji/dxvr0nA2FjrfM19nVyUQBDwebhrgWcR4dF/x+teMNLnzzHsGU+TcISoEAgEAoFAIBAIXBvnRlAApC5cuHBBknR4eKjpdKrJZKLZbFaLzEIqd3Z2kgAgKZFQT5XA3eDH5WQRMkKnhHa7nd7r+e4c70X7sPQ7MWGcCAUICru7u2q1WrX0BAjY8fGxJpNJirBSM4E0Al+jsiwlqVbxn/FBovO2mC5wICB4Kz9JarfbKc1iOp2qKE66QSAg+JhdzEBowA2RpwVg5/cUBQibtwNFKModIawlDgonpj5PL0qIO4Lr5Vb8PHfec/A9hQOBgNcRZ7yoJHvRxQQvLoh44NH8/B4AruuiFPPy2hVFUdRqPtDa1MfEmNk7Lo5wLRcTEOz8GHepeN2RfD75vc3TTvw545zXSk3J/3UhgL2Wj3OTMJCnRnAcAoS/x0WavB5DIBAIBAKBQCAQqONcCgrtdlu9Xk9VVaVaA57uQDQSYkmthKIoNJ1ONRqNEjGFLHkxP8+fl+pEE5LixIn8fsZBEUNPAfACgaQccD5PmYCwdTqdREaJ0Lfbba3X65R6cMstt6T2lt1uV5PJRMvlUt1uV51OJxF+xomLod1u13LQid4zHsj+YrFIv/PUDZDnmUM6IdOSkvvABQVvCemE3QknY4Cse8Qeh4LXhfD94SkV/IyY424SCD7jJ/KPQ8LdD7zugpVH4Il4s4YeDffOF36MO1lYv9lsVovIMycH+9pdNnnxUCflOzs7qdAo99eFg7x4JGvOfXO3B+4DxC3usaRa+hCpGd4tQrqa0Ps4eR/r5eKWj9mFJhcyWAtfD685sUk4cLj7hHNx/z0dxu9XIBAIBAKBQCAQuDbOnaAA8SGi7tZrgK0dwthoNNTtdrWzs6PFYqHDw0Mtl0vt7++n2gvSmZUfVwHEziPQ7XY7pSOQ8iCdkdCqqjSbzTSbzRL58lQARAyIqefEQ4y63W5KVYAYISgsl8tU16Df76vX6yXCM5lMahFqj/4zNs7DmCG1jNHbEHpxQ6Ln3lHDj0E4YCwUeZSUiiaSZsE5mCtFKVkb1pbUBben+73w/Hgn10Tu3Q0Acc8r+OdRbBcw8jVgvfxYfrdJfPL9Chn2ayN0ITQheEknrUvZP+xn5pE7HxgbqSubCgXyHJAWg4NkOp2mOXvBQ9aKvQlJ9/oBnsri7/M0h7zwoRN/hxP1TTURcJu4s4FnykU79nr+Xt8TiBWMib3E54mP2YU+F6S8tkUgEAgEAoFAIBDYjHMjKHjkE5IIochJtNvbIe+kHEDqZ7OZxuOxxuNxisR7FwXgYoWfN7egQ0zcLQEx6ff7D5rXDznl+pBpr75flqXa7bYODg40nU6TmMG8cR6QXkFFeydbW1tb2t3d1S233KJms5kII6SMGg+MCTLFXLztIwTUhRxeo9AkhMvdH5JSqgbpJawb58ijzzmRowMHIgF7gLm4XZ3zMCdJNTKI44X5MW/qNbC+wGsBeNTbx+7jxbniZNsJ7/HxcRJz5vN57V93jyAIeDFAdz3kY2S/cg531vi18zlsKsLoDgTOQ6qP14PgWSF1J38+3E3AOklKTgZ3l/hY8jF6jQh3JPheYS9SEJPnKE/JyM/HfcydL+7E8RoskfIQCAQCgUAgEAhcG+dGUACeDw+hwjkAkYEcQBLdji6dRUE9H5/oukcuPRILaeH3FEVkTIyL93r+PfUQJCWxodPppPN45JmijR4B9kKJ0lkEGILP77hOp9OpzRmxoCiKWm0F0gcg1Z1OR91uN+XYY62nBoO3dKSOBLUUWHMIoZN5Tz3Y3t5WWZba3d1NbgXm4RZz73KBCES9hr29PbVarUTOET28JkC73U4kFLs89wVS6OkxjBO3AHvLyWleD2JThJpzuuXfj/Pvc9cF72VdIMx5xB6Sz3wRDHA7QPS9/aQ7MXjdI+0u+HANT/Px549zsJdx0/CeXEzwtfJnBGHCu3/k7op8jVkX9rc7Q/jXRak8neOhXAUu0nktCU8D2eRACQQCgUAgEAgEAlfj3AkK29vbyeo/mUySxRkS5cXbiA5DjD3i7lFq3AFEgN36TDFDJ1weTedaeTQV0sN5PQ/fSYhXsvfobJ6q4B0O+D0kmvoQFMuj/kBVVWq329rb20uixIULFzQYDJJIcHx8nNpLDgYD9fv9RLL7/b6Wy6XG43EisJ1OR61WK6WQLJdLTSaTmpDg4oqnU7gAhEPBWxn6OiBAQLpZB8g21/Y0C+4NZNNrGXAur3ngaROMFXHDq/978UTfR4yXa+Mi4D67G0Wqiw25wMX7PaXGU0vYr55m46JNnm6wWq2uciMgirA+XpDUi0pyTsbr8+M++ri94wLH5fUqGAPPY+4IcAeDOzA4v3ef8PF4kVF3jbD27Bt3GuVtSTc5Ify13PXgY4+0h0AgEAgEAoFA4Nq4Ohk7Q1EU318UxX1FUbzOXrtYFMUvF0Xx1tN/L9jvvq4oircVRfHmoig+4eEOBMJz22236VnPepae+cxnajAYpGJ63sXAo54eXSQaDFnL8+7Js3YC7ITodPypFgCpBi5GQDappg9p9Qi6F7vzaK53j6CtYnHaRg/i59br+Xyu8Xicaid0u10NBoOU2sE4cR70ej31er0kQEA82+22Ll26pNtvv1233HJLSq9g/JAp5oRAwjyc1EHSIOG+PhBl1nC1WmkymWgymaS54WAoy7LWlWM0GiXxg7SM9Xqt8Xis0WiU3i+dEXcXJvJOAr4+nlrBXpPq4gapAwga3oaSWgh84RDJ3Rn5ccwBS76k2jEQ/9lspslkoul0mlw43rGCvcq5fO/7vmOs0lnqhRPu/P7hlkBEYjyId7T/pG4IQgxpL6TucE9YWwSCfI0QIvLn3veZF/J0Z4k7SpgfDpw8ncY/F/xnFw9ZA/ZK7tjg/p+nlIcn6rM4EAgEApsRn8OBQCBwNR5SUJD0g5I+MXvtayX9alVVL5D0q6c/qyiK95f0WZJedPqe7yqKYlsPA0VRqNfr6aM+6qP0Xu/1XhoMBokYe9Q4Ty3wVolEb/1YyAMiglunl8ulptNpOodbvCHdTpKlswJwUr3V4WQy0Xg8Ts4ATyPwwoG9Xk97e3upe4PXimCcLnhAmpxQe149HRXojNHr9RLRY6yNRkO7u7u6dOlSSifAccC/nU5H/X4/vZe1c7GGL4/eU8/BC2iuVitNp1MdHh7q4OAgdergeK/lQBHKvCPHYrHQZDLRaDTScDjUdDrV8fFxIvTMm/XyFBnuDSTZiaintyC+IKr4PFgXfnYhiLoQkHKO9SKLvMba4TzB/eGFOV0gYP96QUfGzX7yPe41DvKijZ5ywfkZM3uR/eJChN9fdyKwRj6uTU4Qru9CwrVqkyBMcY283oO/JxdEfF6bXAz+OcD5vT5CLo7lz7o7V84JflBPwGdxIBAIBK6JH1R8DgcCgUAND5nyUFXVbxVF8dzs5U+T9JLT739I0m9I+prT13+0qqqFpD8riuJtkj5U0u89jOukiLITIycDHlEk+gqR4XdEZiHhFGSEMEFe/BxYpDlHs9lMgkJeUZ5x4Jxwq7R0ZrfOCVir1VK/39fFixfV7XZrx0GyaQWZtyocj8fJWdFoNBKJzC3qvV5PnU4nHQNxajab6na76vf7qUChiwQ7OzsqyzKtC50InOTjdmg0GprP57UoO+OE4C0WixRtn0wmajabNfLutQBwL3AfnDSORqP0e9I72u12rRUj+8HdC265d4KaOzEQPzxv3lMgNrlXvBuEd3/IXR1elNBJP0KI7xFPPci/GKPvM8g0X5zTiTxkvtVqpfFTTDPfN36PfV2Bpwk46fZOKHn6B+PA8cH7WbtNaQ+8hzm6O8DFQUfuTmGt3HnjeyG/N5zjWsJBXvPhRuKJ+iwOBAKBwGbE53AgEAhcjUdbQ+H2qqrukaSqqu4piuK209efIenVdty7T197WHCSTE0ByKSTAo9mYsv2toGLxSK9FwHA86Ih2xApzzvPo9FeMNEJLwR7Pp/XLPAQltFopPV6nWoctNtt3Xrrrbrjjju0Xq91//33J/u1E/7FYpFs6kTdic7v7u7WotN+PSLkpBp4Kz0cDGVZpnoTrK8XjVytVhoOh+katNyEMC6Xy7RO3W63lrsOmdva2tJqtUrnxiHBWnpRQu4jX7PZrEZqPV0EAuvW+twuT/Tdf++59YgNpDa4mOR1Hnh/vjcRobj3nDsXALgWa7GptoRH0hGLWq1WOp/fQ+4vZN5dI16bw6/PtVgTBBle88KU3rGEtWAOvN/rhuTCQV53gXXO60lA2vPaD+404F7n9+BaqRJ+rjxdIhchcicD5/TaJps+E845HpfP4kAgEAg8bMTncCAQeErjehdl3JRwvLFMelEUL5P0MvtZ0hk5IcqdtyT0/GjcDOSAk7O/tbWl2WyWCKpHPCFpEGTvYEDBQy+a5+0pF4tFIiyICURtJSVnwHw+18HBgdbrtXq9niRpd3dXz3jGM3THHXfo3e9+t4bDoQ4PD5N4AKmXlNIhJGk4HKZxul3bUw+Wy2UiyrRohCASSc+LQkL6cRvQeWE0Gmk2myWiuVwuaxHt2WyWiDW1ASBvOEYQDaqqSmIGaRb8zD33KD52fo9oE3n34nneNrE6rTVBjQv2CITRiTY1HFgnd5/4753ou/2d89LdwYmytwLdFDVnD3rqjZNoJ88IFp7eAHz/e7tHf04YTx5d59p5fQXSMTy1gJ+Pj4+vKsjp4gNjcjeAPz++dp5uwfGsD6lDXN/3AeIfa+MdVvz++Tk9VYN18ev5ffU96CIT++smxaP6LG6r83iOKRAIBJ5KiM/hQCDwlMCjFRTeUxTFHadK7B2S7jt9/d2SnmXHPVPS3ZtOUFXVyyW9XJKKoqg8dWE8Huvg4ED33nuvDg8PU6R/vV5rMpkkAuQF8La3txMRhhTw8+k1EuHL6yAURVGrRQCh8eg25Npzs53AQbogJaQNcI3BYKBLly5pd3dX73znO2uCB+eBBEEIgadB4CygJgERaxdC3D7OnBFoIPOsD2SuKIpUt2A6naa5e3FCLywIMXNi53UCqANAtJpjvN6Bf+9dKZwo4iYoiiKRYOms+4IXCkR4cKINKfYWnQg3vvZ+T/3euwXfwbxyez1OinyvOYHl2r4PEYx8Drgg8vQNin3i4PCfSV/hnrogsbW1lQQv6lr4ffYxIgwgKHixUIh67gBwFwl7mWu6w2HTeuZOAq+H4evIOrno4SkrUr3Wgp+b45gz40PAdNFw0xjPKa7rZ/GguHjTKiiBQCBwgxCfw4FA4CmNRyso/Kykz5f0Laf//oy9/sNFUfxrSU+X9AJJf/BwTggBqKpK999/v+666y79+Z//uQ4PD2u1CBaLhRaLRcqD73a7ajabqRCgEy2IEqQjj6oTAd/e3k6F8iBRLnBAnFyckJRy1CGpEC23+jNuuhcURaHpdKrRaFSrG5Dn3nt02DtJ0PUB8ujdIrwiPuNztwdzdzcExNYt+wgSiDWMh/uA2EGU3tebKDQCi3cDcPLtqQ0IJZBUnA7SWXFFHBOeBpG7NqQzUQP3iqSUfiEppXwsFotEqrmGOxC4tq8ne0M6i8q7IAA8sp5b+d0twesUBOUYXBdE6XEbOJn3+gsIEHmqAPfUSTfOmtlsVhPVcneCpwi5U4RUEQi4rxPjRwDY3t5Oz6uvi6elIEr5tTmXu3FwFeTFFl3EYG95LQmQn9vvHXvIBR726jkryrgJ1/2zOBAIBAKPCPE5HAgEntJ4SEGhKIof0UmxmUtFUbxb0jfo5EPzx4ui+CJJ75L0tyWpqqrXF0Xx45LeIGkt6R9WVfWwkpCbzaZe/OIX65ZbbtF9992nd77znbrrrrs0Go1q5H93dzdFYCER0lmhRgi61z8gSkp0FmKM4IAzwa3aEOJNkWnGK52RMU8RwEpO3YSnP/3punjxoiRd1VnC6zMwdo/wEun3+c1mMy0Wi1rrxdP1r5FUCPJisUhCxnK5TCkIrVYruSQ8fQTBhQKPHhWGWBJB57rMBXLulf297oG3PSQtAeGENAkni1jkPTWF+w0R97mu12uVZVmrtwGpZR/5Ws7nc5Vlme4B83IrPGPn/iNCcR72lKdYIH5sirZ7dJ3oPyKH1wRwd0hep8DXG/dI7g7gPrI/GSvj9TocuG/42Z8r5s0zkhdIpfYIgJS704Jx5F0YWPdcyOCe579jLi70+O/5nX+/yaXkThgEi7zeCmM+L3iiPosDgUAgsBnxORwIBAJX4+F0efjsa/zqY69x/L+S9K8e8UB2dvS+7/u+ajabuueee3TlyhXNZjNJZyQegopt//R66XsIESkSRMYhbRDO1WqVnA3e7o/idzgKOp1OqjFAlNwjoJ6rjYjAv3Q2oLsBDgNSCojguguC97p7IK9RUFWVJpOJlstlmh/HUu/Ai+0RiaZFIwRQOksbYF7Y5REKcD9sKkDotSk4HheGp1VwT1qtlpbLpQ4ODmqEdT6fp+4HCBWIA5BvFwIYuxND/5d5YOFHUKH4ZG5tZ5zUYfBUlvx+c28Qmtyd4fUYiqJIxN3rDbjo5AVDvT6BPw/u9vB5g1xgYY3cxcF1EaLG43Eaa16XxM/rNQtwtCAacD+820Mugm26hyB3Avh99S4vXtDS0zD4nbs8/B65oJDXQXDRwN1HeZcJBC4XSm40nqjP4kAgEAhsRnwOBwKBwNU4N38tQ3rm83lKByiKIlXEdxs1dmQIAeIBxADS0Ww2a7ZmL1YIEXJyeHx8nMQFqu67a8HrAHiElDQHCKl0Qgi73a4Gg4EGg4EajUay2R8eHqaCji5WePoDAgJjlZRIqNvj+RdBod1up7UiMu82e7eO48zwebh7w+foYgKkzNs3ck9wPkCePdfe6z9Aond2dtTr9VSc1s7wa0onBJN7yz1w6z2dJ5x8u6DhTgHvOpALB6yp59i74DKfz5MbxIs6+rl83DggvG6AOzs8Iu6CQi4cuLCR1wrwOgf8i5jA+RB8EDJwMjA37os7FtgLjAVhyeHPprshNsEFHi8qCbhP7iqAyJMu4WvIfXInhH8e+HPhz60LEOwFXDLuSnCRzu9pIBAIBAKBQCAQqOPcCArk+nsEH1IB6XEChpUdskJBxDwNYhPRcTGBaCxEWjojanlUFMIHme50OqnQH8S33+/X6hIQ5VwsFhoOh5rP5yla3m631e12ryqkCPF3gWNra6vW+cLbMHp0G6Ll1nLWAYcEZDFPAYA4r1arRJ7zHHUEjb29PXU6nVoePGuCGwHyu1gs0nkh0lj2t7e31el0aqLJYrFIQpFb+nELcD9wXvBeotsusECwKdwJ+B5HhDtVnGB6xB0RiHVaLBY1wcK7D0B2se+zntx/xCFJ6V7mbTKlustDOhN9ms3mVSTdHQrugGEtvI4Ez5Cf19tyOjyVxlNVpLMOE+7mcBLujg5PM8jBOSH9XivC55+nP3i9BH+OckcNc+R7xDCO9W4gfLmoEggEAoFAIBAIBK7GuREUgBOS3AYOcfHfU/SPLhC4C/Lid5A/SIXbnT1iCgF0J4R0deV4FwsQGCA4kDWIL2T06OhI0+k0EVgIOORQ2kzYut2u5vO59vf3NZvNkhPARQ+ujzOBQoSIJYvFQqPRKNULYB3a7XZKLXGyz3Woo4DIAyHrdru6cOFCSquA4HnNBBc5+NkjyF4vgd97XQtf+/V6ndppskc82owgQCFGxASvz1CWZYqG83sIe25td5cGogFjw/mBOONzdEcH99T3MffH95vvcRcZ8uKLnprCPuMa3nHDnSFFUdScHE7w81oMXh8Dxwb7l9e9/oU/R8zF7yPnJZ2I1/nZ3SsIXO5G8nSHfC8xF67H8+oigHeucCeJFwmVztp+uosHcec81VAIBAKBQCAQCATOG86NoDAYDNTr9VKEFcIHEYDkQIiwbSMmYLNvNps1EjwajRJBdhJEmgIkyPO9vTCjw4mUF2OETCMocI1Go5HqJ0DqJpOJ1ut1spG7AOJtAnFiQPS8k0Kz2VS321VZlklI8Gg1ZPfw8DC1gGTcnU4njVs6K7bHMa1WqzZHiCRkcr1eq9/vpzoT8/m8VnyRcXr7PepSQOBd3MFZwmvUKWCekEvmznwXi0WtWwXfkwrhAhBdOHi/R8GlM0FCqkex8/x+1mg0GqXvEWw4X75n/FwuYvj4+NedLS58uEjDPnQRAPLu88pFG5+nn8/dDWVZpp+99gDj8tQY3utzvFYdCLBpTLlQwHqz31x08OP8Wl5XIRccEURctMhdEu5I8k4wfr1AIBAIBAKBQCBwNc6NoPCRH/mResELXqDDw0MNh8Nkzya6PhwONZ1OU7FEIvSQRS8QR3Tbq+dDNvIq/NjNnRRCONw+7jnokBfP1eZ4fvaIuZM9TwVwUsk4i6K4yp7v0WYElLIsazUeWJPxeKwrV65oNBppOBzW2ih6CoQXrfNihOSy48CgVeV4PE7EqyxL7e3taTAYXJW/7ikAnKPb7SbRhGvkLQERDfw+SqqJK+Ts+xoDItZE9p1kM1eO42fSThB+IM7cX+8w4HuRuTrR9kJ/HOuuAk/h4febahZwHGkK3COcF4zLHSFOhlk773zha+RdI9wNhOuF+hbb29u1ehu+zxk/+9FFE9aB58HFBp8ja+bvcUGONWNs/uz4HNi/HI8Y4OlAnkLB+XDz5I4lf9Z8LoFAIBAIBAKBQOBqnBtBod/vq6oqjcfjmlWdiPtsNtN0Ok0EnWhzWZYplx/Swvv5nsr+EPCjoyONx+NEUiXVctEB54CoODnzlnwuKPB6WZbq9/vqdrsp2stYPJ8dizq/RxxpNpuaz+eJSNHysSiK1N4RmzbESpKm06kODw+1v7+v0Wgk6ax+AKTN2zNKZ1FYiBYdFyDQebvJXNRxYcVFmVarpcFgoAsXLqgoCg2HwzRPiJp3W8gFFo8Se20IJ6WcBxdEs9lMIgrn8LoIPlZEGQSV6XRaK9wH2SS1xdNR3MHipNR/xmnAOLlPrVarVmzQ5wbYb5B7ryeSFwrMux2QCnR8fKzJZHLVswaZ5/li/XBx8Nx4/QCP7DNvBBxJNXIOiff6BS6s+Dz9XjBu1m2TOyB/jXuySagAjId7x3Pke9XFDuaYOy4CgUAgEAgEAoFAHedGUIA44wIApCvQHcALyUFY+/1+yvleLpcaj8fa3t5Orfum02kqmugkCpIJ0fHINq97IUFEDo90ems5xl9VlQaDgW655RYNBoNEuubzucbjsSaTSY1U816i38yb49brdSrGCMFk/NJZMUK6ZEyn09SyENGEFAX+daGGwoROLqV6lwTPS2+1Wqlgor8P0glZLcsypWVAJL245qYocN7ZwnPjvd1jTmCd5DNu9gTnyJ0knU5H3W435e7PZrOaK8WLPnoU2yP9iEisg3fqyFNhXIDwaDxj8qKgjNldOKwLYhBE2Nsw4rbY2tpKogXndLcB1+T13AlCaojXzQCklnhKDJF9b0npqSSMMRdDXHzIj2ctWY9cKHAXBvs5L/zoxST518/htS34cudFLn4EAoFAIBAIBAKBM5wLQaHZbGp3d1f7+/u6cuVKTVTw/PrcEQBhhSBDLrzSO6QNYivVrdtOBiF/kHYIlbfiA3m1ecg5NQU6nU6qNSBJs9ksOQcoYkikn/fTXQEBYTKZJAIE4fSK+dIZgSyKIrXcnEwmNWIHcYas4ZhwwWVTlX8vCsg6QbbcdeE1F4hy53UJyIunwwXk2tv3cYzfIy+w6RZ+T4vgWPLux+NxrYuCdwpw1wJdNjwNBWLqxRqddPseoX6Bd23w4oO+PzwFJz8G4IaAyLKe1+pQ4U6Ca0XU8+KPiBC+h13c4Wf2gT9vCBy+TxCccAV53QqfFw4FX5c8hYJ9wP72sbOX3OXg8/Aijw/mKuA6LlD4/vPf+d4KBAKBQCAQCAQCV+PcCArNZlOXL1/WlStXUqSYdouQDBcUIFsQMCcAEBLP+ScSnVu5V6tVInzeqUE6c0dAFp3YeCeGqqo0m81SnYF2u629vT3t7u6mFoqHh4epSCKdG3Z3dzUYDGqE3ckzgPx6tBTi5BFpBALyyCFHkDsnYm4DZz3cscFYSHFwF4LXQ/DIuJNNJ4UIRMfHx1e16yMSTueExWJRy6f3KLrXf+C+Q2SPj886acxms0SyvVChR/OpucAaICpwj9kTLkRJ9e4P7k6BVLsgk9fk4NqehpEXPGRcvj7M1d0QnN/fT+0FRDQcFhQs5Ry5S4Fr8XNOzj3dwu+dE3GHp67ke4w5co9d9HGBg3GwJxFvaCnqnRhyFwLPjO+hHC52ubOE67tgGAgEAoFAIBAIBDbjXAgKklKE31sX8oc+xFaq260hJJALIreQCQiZ29WptE99gNVqldIAut1usvJD9kgdkM6qyXsBR6keAacI4e7urtrtdqrXsL+/r8lkou3tbfV6Pe3t7em2225Tu93We97zntRxwskWQoETKelMNPHUC6z68/m8llZAxB2xg84MkpLrg3oMzAWXAGPw++Bk3+fNOruFn+sgUiB+kGLhRf/ymgk4A7x1JOdqtVqJJDthheAeHx+nIpQuwuQpGQhMi8VC8/m8ts8oUuh1BVhLcv4p/uc1KNhnXJe5sx8h9oyPewWhzcUL6kJwX7zbByKJ3+ujo6O07sDTfJyou7jgdUJcmPKuEFwvv7Y7MPwYzpuLVozJi0m6sJCLMj5O7gHiUe4gQEDz5x6wn7xDi4s5vq5+DwKBQCAQCAQCgcBmnJu/lin851FJr2eAxbwsy1qON4ULJ5NJrSK+59a7gOCpFPP5vBbl9zaMEC6PhHohO895h1hBrPv9vi5evKhut5vGRlpBp9PRpUuXdOutt6YuCR6dpt7BpnFAhCD/uC9arVZqi5nniB8dHWk0Gmk8Hmu9Xmt3dzfNZ7lcppQRag8Mh8N0D9zuzxi73W4qgonIADl2QcGdIKSAINx4bQaOnc1mqqpKrVYrrQFj9Hx6xATqMkiqkVtSV3AfcP89Ct1qtWq1FnDEeEoMZJ77jXiBcAVR9RoT7FMfi4PxUswS4YY5+D3L38s5uQ5dGPLOERQcZK/6c+AFMD31AFAw1J8T6azWgu9HnlXmjJsB8YTzcv/4vad7OHnnWUfA4NnkPawd95L3eKoS8/HPjjxdxx0fzIHPDQQf7jM1VwKBQCAQCAQCgcBmnAtBgait26jdKk7xv7IsayR+Pp9rf39f7Xa7Zu+HdCI2QLS4TqPR0HQ6TRFY6SxiyrWm02kSOTwCzTg9+un5+kRHIf3k10MeG42Ger1eaqU4mUySfZ5/IfhY92ezWbq+OwkQNYi2ev0BrN7ewvHSpUuJaPP+vb093XrrrSqKQqPRSAcHB4k0e0E8yBUChkfXIfestQs53L9ut6uqqnRwcJDcC9wfCCMkHsKPK4PIvBdVzCvyu+jB+2n1yXvcHUC6BAQd8ur1CvyceU6/v8Y8EGDYvx5B93SNvN0l95NxTKdTSUr7mnkwFiL77FXWQFJas031GfJ1cDLPGLybCe/xf3EUIFyQ6pI7DDylhjG6SOGCjosf7kzx4pasqe8bxuQtIn0+zAPnhDsX3BXhLpj8HgcCgUAgEAgEAoFr41wICrQxhCy4/dst7hAH3AZO3CEx7XY72cQhrp4j7yTMI+pun59Op8lZgPWbiCXkyaPEkD3Gxr+0uoQ0QXSYC+kaW1tb6vV6yUrv5AoytLV1UljSSRrk22tDcP2yLDWZTJIoccsttyQhg2j10dFRqpFQVVUisp6Tj92fVI1er6dGo5E6b3A9ajxAwj3izv0jp9+JsUefcaGQTuH1AVwk8cKbXguB8yJ+IDLhUGG+EEgXATjW0w+kM+LLnDqdThq3CyJOfFkHOm9A8nk/x+GK8PoGOGcYp9dZ8JQQry2AUIFLxR0C/I73MSfey89+n73+waaihOx39rGLgP6VpxMAhAmEKtbQHRW+Z5h3XvgRMctdTIzbBScXUVwoyOtDeCqT/xsIBAKBQCAQCAQ241wIClVVaTKZJALvRMaL1Hk+v0d7vfsBIgOWecQB70TgFfT5Oj4+1mw203A4lHTiJMDO7gTOCbAXpUNkQMxA9KCFI1H/TUX7II8QK8g+7/M8dQgOKRHeEQLi6k6KxWKhZrOpwWCgixcvJuFiuVwmUQCHhc+XeeIOoDZEr9dLJN0dHES2PT2FLyLto9FI0+m0RuQoxMj6ueUcMcgjz/ye+UtKoszR0VG6pnTWnpF7JZ3VwcA94AJHXoRQOiukiHuEmgo5aQVeYwKS7gIN53RBxMkrx3uxRxeeWHsXBdgrXnsiL0bIPBAcpHodA3f4sAbuNnAgrOXz8eMQGDgWNwJr6ddkHVxMyAUlFxk9Dcjfx5zzmgsIHF7rgb3ge4hruUgUCAQCgUAgEAgEro2HFBSKovh+SZ8i6b6qqj7g9LVvk/TXJS0lvV3SF1RVdVAUxXMlvVHSm0/f/uqqqr70oa6Brd3/oHfbOcUJJSXiTK793t5eLcpJykCj0UjihOdQO5nzgnN5egDk0smcVK/mD4kFEDRJydkAKWYMHjEmZx2yKik5F8hlz7sPIGwggkDkx+NxEhRcTCAqf+HCBe3t7Wl7e1uHh4cajUaSTqLN1J+YTCbpOqw/96QsS+3u7qrT6Wi1Wml/f1/D4TBFq/PWkR41rqpKh4eH6d5JSkR4vV6n629tbSU3CKkiuDdID3FxJY+me2V/3BpEwXOXCykPrIG7JiDTCDp+HvYK+8Kv68Taazi4WyMvmIhbwd0HrA/Hu5sBkltVVWoX6vube5cLPJ4awTm8ngCimI/VUz78NfahP7/SmYDDnLe2tlLBz9VqpclkUiuqyn1z8cJbkiJouUvH01k8tQNBxp1ALiy4KwVnA3PxVqSOTakjNxJPxGdxIBAIBK6N+BwOBAKBq/FwHAo/KOk7Jb3CXvtlSV9XVdW6KIpvlfR1kr7m9Hdvr6rqAx/JICCSmyzSTqIh2ev1OjkBiNpybFmWyZ0gneVPeycIIpaIFS5Y4FjgnN7JAECYd3Z2UmSTqDxdIqbTabKvQ/QRQSBM1FZw2z0E0QUF5kZqAaSRmgeQbwQUSB3z6Pf7yWqPgDCbzVIxxytXriRiv7OzowsXLiSRZzabpXUtyzKlVyyXy+RQIOoM2fNIfqPRSB08Dg8PaxHq9Xqt0WiU1oBrIipISsUcvXimOw9YY+5RTo4hoYzf6w8wNsQs9hP3PS8AKJ21Jsz3SG7Hl1Tbly4o+b4ncu9pDwgCiEmkikhnJJd9wjoyf4QaCDmEmdecICOAMSYXRHycjJt9V5ZlrSsE58rTCoqiSCki0plIwjPgdTh8TaR67RGcCbyPZ4LnmDF6LQwvTMl5mTvPR/5ZwGvcA4Soc4Qf1OP8WRwIBAKBB8UPKj6HA4FAoIaHFBSqqvqtU5XVX/sl+/HVkv7WYxlEXhwOEuXV2yEY7i6AoHuLuLIstbe3l6LznpLAOSGhXJPodavV0qVLlzQYDGoV+N154CTGc9Kd8HjUGMIonXRIoEuFp27kjgxaFtJ9wK3gZVkm4k3nBhdMIJkILRcvXtSFCxfU6XR0fHys0Wik0WiUyCatOhkj4oMkjcfjWioJUf3JZKLDw8Nks/fIMESdOgbk9g+HQ41Go432fubt9vajo6O0XowHJwciDekYXvMAci6dkUzGxH5C7CBVhM4Wg8HgKreKk9M8Ak4kHrLu13X3Aqk6pJd4rQj2h6dEeC0Hfua8uHC8nSWpDrgvvMMG99nrMbjo4XVDcK34c+fX8LF5J4p870LQEecAYoHXQUFs41jWGTHBUyk8ZckLOebFI/36/pzm4pDX+3BBAWGEPX9e8ER8FgcCgUDg2ojP4UAgELga16OGwhdK+jH7+XlFUfyJpKGkf1ZV1W8/1An4Y54oveeQEzEkpx5C1W63E+H0nGgIqBNsLxIHAV2tVqkjxGAwSG0j9/b2NBgMdHBwkIgaNRE8wsxYISNO2FarVYrmE71mbIPBQNvb24kweVQUEQBLt5MmahiQEkH9A0gu5AtAZPMWjLPZTIvFopZmQccLrjEYDFKNBEm1SK2vK2LDcrlMY2RNy7KUdObwwHnAHCF1CA+eGoBYNBgMUhFJSB4kECHEizYiUnBPnATzXq5PRwNqXBwdnbT09LoBua3f0yLYt3lKDXsVUDTT01EQwnwv+Xhzmz37gL3oRJf7CDHOHQ/5l18HhwHr4PuHtfIaBLkQxB5wscYLILoI53NlX7gYRCvN7e3tq7qV+GeE31Pmzrp77QN3/eR1LFw48PEyVsbhnSNuEjzmz+JAIBAIPCbE53AgEHjK4TEJCkVR/B+S1pJeefrSPZKeXVXV5aIoXizpp4uieFFVVcMN732ZpJdJJ5F7/ngn+umuAxwF1C6A/EMMISadTkeDwUC9Xk8HBweJXEJoiagT4Wy327pw4YJ2d3dT5LrdbteiqkR9IT4uKnj0lnF7PrwTuXa7rX6/r263m2ofcEwe5YfkQNSIllJwkNQNCJcXGWQskC0INCScwpc4ERqNRrKVsya03GS9uRc+PyeMXrsAMcHXzCPiwJ0DjBnCR2oHQghWfFwJiCl520juiRcwdGLIWFarVUrBoK6Dd5xwN4ITce4385fOUmq49nq9Tm0+EUs4L68h5Ej1Thfcg1zMoPaDuz68joR3EnE7v7spfN3Zv5PJJO01F0FyOPHm+XFnCc+OOyu8qGSe6sF8mbOnyfixEHsXS1y8cWGG8SMmMO/8mXShxdNQfA+xvjeTmHC9Povb6jxRQw4EAoEnFeJzOBAIPFXxqAWFoig+XyeFaT62OmVUVVUtJC1Ov39NURRvl/RCSX+Uv7+qqpdLerkk3XbbbZUTBwfF8Ygi07qQXHqIL+kOu7u7arVatUg65IXIJ2S20+mo3++nNAIiwJBvIrherFFSEiiccLgwgBjg5+x0OimfnPN6OoekRKgQSUihcLLearVq30PomCvXd0s6NRlIldjZ2VGv10sFLbk2YspisdB4PNZ0Ok33w6v0U8TQ0zEg7mVZpir9uCaqqkqE0cfldnVEEMSivJXoarWqRdQ5r9fYcCEAgsu8IIs4JYbDocbjce0e+R6E6OYFCN0R4S0mczEHUcTrInAdXB3sExccGLOTXEQIr/+Qiy2MwS38CEFedNL3rNeayGuXsM89feL0uX3QQo0Q9k31UDzdhb1DqoMXaUSAI31jsVjUPhs81cJdFC70cS+8toWvjTsacgeGC0g3A67nZ/GguHi1+hcIBAKBB0V8DgcCgacyHpWgUBTFJ+qk4MxHVVU1tddvlXSlqqqjoijeS9ILJL3joc5H9JGceIgMRJnoI7Z6SKvXIGi32+r1eup2u5LO2uRtslvv7Oxod3dXt956q/b29lI0HYI/nU41HA6THZ5uAx5ZzvO13VLvrgDe54IC4ggEf71eJwGCYodVVWkwGKjT6aRxeTE7iDLXox0jJJF6E81mM7kzWEvEhFtvvTVZv8fjsdrtdkp1GI1Gte4WpElIZ6Tc89sp1tftdtVsNjWZTGq57pBprP8eGcd54DUT6OrAenjHBaz2uaBDq0/G4UIMJH44HOrg4EDj8VjL5TKNzfPtXQTxdA9vF+qijbsXIMO5E6HX69UKTzLm3KrPeLytpIsapLK02+20d4jWu2MHQcEFNebhhQ/z60O2eU/e3jJ36GxK00BM8kKjPN/Mh/vi9UlcKGB+nkriop6nbyDCIXwwFj4fuFeeNkNhUcbn6Rk4P24GQeF6fxYHAoFA4JEhPocDgcBTHQ+nbeSPSHqJpEtFUbxb0jfopIJtS9Ivn/7RTSucj5T0L4qiWEs6kvSlVVVdeTgDoWOAOwL4Y9/z9b3lnNuY2+12KqqHIEAUGrEAgleWpS5evKiLFy+mGgxE7ufzuabTqWazWaotQL0FyJO3tXPLNlZ/CI50Qny63a4uXLiQxgc5lpTInxcDnM1mqfZBv99P54OMHR8fq9Vqpci7W9xxT0yn0xTldsEGwtvtdtXr9VQURarFIEnD4TDVqsANISm9H9cAtn7WhO4aXhMBIk8xTK+rgOAznU6TGOIpE5A5J4weefcOC+6A4F4gtnihPwQV1t47hThpZb/gFoCIMxdSbBAUOLaqquSuYA2Wy2USFygoCbFlzZ3MO0n3ehPe9aLVatXcA1j/KZrJfeK+5VH3fG3zlARP02AtGIvXG/B2ltQJyfc+83HHAmktLkywDpLSPWPO3HeHn5dOEddyRLC3eB/z4vw+P56xXOQ4D3iiPosDgUAgsBnxORwIBAJX4+F0efjsDS9/3zWO/UlJP/lIB+ERdY9EklNPGgJ/6LtFmegiqRBVVeng4ECXL1/WcDjUbDZLx1BrADfD3t6etre3NR6PtVgs1G63NR6PdXh4mNoZbqqHwJgpMojQUZZlsm+7RZtijFT7p8AkJAlrOu9hfIPBILXow7GROxQkpZ85B/UZvNghJJPodr/fT2kjrA31BBADcqILactbJNKakgKKOBcg9RBXRCEEFdaQ+hfdbje9h4gzpM+jz+4AIcXA14M1cQv+6f5Mx/IzoglOifx8eRtSBAlfF28P6QIEzhMvXMgYnEQzF+BuBNadnz1Nhj1B3QvSQTw1h3QBd3Tw7PA96wyRZ55+XU9pyIWX3LHgQgkCCik8iDj8PofPkf1BTRWvC5Ff61ppG15rhHvnqQ6+L1yY87U5L3giPosDgUAgcG3E53AgEAhcjevR5eExg0gjUXhImLsRIF4c7zZtyB9iwr333qsrV66kLgqQPCLjjUYj2eshO0Qth8Ohrly5UhMUnOAwJk8H4BpOcrBr8x46NFBQcDgcqtlspjQNz79vtVopdYDzkzrhZNNFBCeskpLdnXHnlnlvA4kIAPn0GgZ59Ner5fMapBu3A3P2LhNlWabigaQ4TCYTSWcRaye93BNvHyiplkYAyMNHjKBg42KxSOvEHnM7O0SZPYD4wZhwgbRaratqZnBfPF3CC1V6rQVAm8ScpObOgU2RdhfTZrNZSptgfX1PemtH5p+f150EALcN8HQQ1o/6CKylR/OZN/fL26OypjgpWOccuDv8mWRt8zaQPk5SP/x3eTFNnrE8NcKPczeQHxsIBAKBQCAQCASuxrkQFCDgRVGkFATIpZMB6SwKDDlqNpu6cOGC9vb2tFqt9MADD+jee+/VcDhMrRA9oi0pXacsy1rEEsL7wAMP6PDwUOv1Oh3jRBqyDoGB0HlXCsi5dEZ4JSWb/2w2S/Z8z5lnXHS+AC5aeK4+BC9vgyfpKsLM2DudTiLmvMft67Tw85QSxg5xc2cGooi7FygaSZ4893lnZ0fL5VKj0Ujz+TyJG1wT94a3MqSGgpNbjyi7uLJcLnV4eFgrdNnpdGpiAOtCm8jpdFqrh0BHBYQQJ/xu9+e+uFUeIsrvIK3j8ThF/d0pABnmnJ4K4WS2KIpa3QrSQ6ixgSBHnQn2tAtdfj7ejwOEOTOOvG2it3j0uXsLSxwA7CVcMdVp8UlPoXH3g7sL2D8IcggJ/ozxe55/33e+7l5/wvcMAlF1WpCT55PPGfZ4nmYRCAQCgUAgEAgE6jg3goKkRKBxKEC0+YK8ISg0m031+31duHBB7XZbk8lEV65c0cHBQaohICkV1iPvv9fr6cKFCyrLMkV7Ia7UXnCS4vnWjBey5mSYYyGNXkASNwDXmM/n6nQ6qqoqFWGkeCNuBo+25pFjiJSnYriVHeK1Xq81Go1SjQHvFkAEFnJH6gEkbz6fazQapU4TOAZYe+ZOC0/EAH5HaoWkVMtiOp3qvvvu08HBgY6Pj5MTA2LqkX1PrXBLP0KFR7896r1arTQej9N+IgWE6LO3OXT3AwINXRQQh3gv0XdPIYCg8jOpCIwF8ssX9zWvk4C4sInEkkJBfQS6aUhnYg/3hpof3m0Cx4KD13AEsGd9T7EGFBHlvrjQxb7kGfHnjj3D8wzJZ819XHzvKRiMyZ0QLj54a0qcMbn7hPdwz72riX/WuBjC/QxBIRAIBAKBQCAQeHCcC0FBUq1VnJNEb1eItb7T6Wi9XqfIOALDaDTSAw88oIODg9SZIe9xnxfwc8In1aPCtFCEAEEysEYT5e71eqkwHefDZeHpAN5yEZLj7gzqG7hFnfF48UCK8EG8KJIImfQWhJAvBI5+v5/cB/P5XIeHh9rf39doNEpCCcR1PB7r6OhInc5JT2QKZ0pnThEEnUajkcQGL3wIacfdcPnyZd13331arVa1lAInpqwThRy3t7eTKACIJHsxQLe0ezV/L+iIo8ELe7r7xfP01+u1xuNxrUChr60TV+4ZpJnxcH/9viBwVVWValb4NZkHaRfSmZjAOF1sotYADgbmhHMirwMCWFtfS3cFeJ0Kxu7w6P9isah1FvHUIOZICs2mYoukazB+r2XBfWGuCBscz/PjqQt5MU+eZ69LgcDgQpEXwvQaHoFAIBAIBAKBQOBqnCtBIY9ASmekGsIAWet0Orpw4UIis9PpVFeuXNFkMqkRKCLfEAXaN5ZlWWuF55X7JSXRALLBa5JSoT8ICQIFBIRo6N7envb29tTtdlNuP/Z6SPRqtdJkMklpCF67AOKUk26irG4ppzsFBQ8hiovFQo1GQ2VZand3N70XAjocDjUajTQej1UURbouNQ4gyhBDT/sgPSO3skOmIXiLxUIPPPCA7rrrLu3v76eoNR0LqA3B+/L0izxlBJLMce4ggdDm6Qm+J7wooNvgIfk4IRAjXJDw9+U1BnC7eFFETxPw4oJeoDEvZMgaIy55UUv2iO9p73Tg4/QOD7mYgJiztbWV9gJkn1QW9idtR6WzOgi5mIArg/NyvxCG3IGAeOAOAPaNi2jcD5459iEiEvfdSf+DpSp4vQdvueopQnkHi0AgEAgEAoFAIHBtnBtBAYI/mUwSgYeEQPhwA+BSwJ7vhf4gN5AHdyhAFnZ3d1NBRu8s4fZrXAuj0ShF6b2rwtbWVqp1QEFISNIm4YJCjNQCQCAgqkuxxGazqfF4rOFwqKIo1Ol0EnnjX8/rn0wmOjg4SGKKtwwkauzpCawpjob77rtPly9fTlbvTqeTrOtHR0fq9/tpnJLSuXw9WavpdKrJZJLuCV0GDg4O9J73vEf3339/ciaQEuFiAfcPUQSxQlKam7fb9KKTkFScLi5AeE0AXAteUDNPA3Engnc0oH4B76MtJuOB9Lvw4GTe3RGkrNAFgbFyn9m7EH6vaeBuAQix13LwwoheB4G5UHRza+ushSlOF+ksxQLCjsjEa7lTB9FkZ2enVkzUBRsvfkpqghew9NQb1i0vVOm1SVhrhIy8m4evCd+zd3nG3RHBPfX3830gEAgEAoFAIBDYjHMjKEhKogDpCkRn+R5yTpvCXq8nSTWbvhdn41hSDkh32NvbU6vVSkX/3B5OHvpkMkndAryav7ehgxh79BWxAFs75H8ymWg8Hic3Aq8jAHAsNQ8ODg5qhewgWBTZI0o/Ho91cHCgyWSSyCkpAJBFfz91DIimj0ajlPeOcFBVlSaTSa0AJtF1yKiTfQjsdDpNhTD9Ou95z3t0+fJlTSaTJJp4jjtOEYQMxsPcnZhyPVICGB/tEtkruF2Wy2WtW4Zb+/P8ekQDXvMifayLR78ZH4IKBBbCy75hbSXVxAKOczHL9xaEl6KGTnhxMLDWXsfj8PCw1pnDRRFPLUHAgaj7M4PrxQl87nTI6xng2MGtw9hdkPF0Bcbmoh6vuRsJ+DnYQ1wrd2cAL1TKtTgGIcrdQLzH3x8IBAKBQCAQCAQ241wICm77RhTwyKpX0Id87+7uJks0pIAuDbwHsu9RSWouQF5Xq1WykS8WCx0eHmo2myUyhcPB2915tNOLJXoXBQge+f/j8Vjz+TwJHK1WK7UQxHnBsZPJJK0BUW1JyY5Op4TpdKrDw0NdvnxZw+GwVgDv8PAwiQk5aWderBsRbzoeQLywhRMFhsT5mkA83T1AjQY6bdDGk3Pmc1qv15rNZtrf39fBwUEiyJ4aICkJBxBKruPrwrjcJSGd1Vzw9AivtYC4w7WpnzGbzRK5dcHB0zR4zYk2+xryzHy9QKHXJ3B3DGPy+gfA0yEQHRBDmDPwIos+Ju4n8/UiinmRRVwZ3ibUxQq/lqcMOLFH3OJcfo9cTHBBgfl4rQTWydcUtwOuAncncK683gTz41/ECBdIuD+BQCAQCAQCgUDg2jg3ggJRYG9JB4mBFBHp7fV6qRAiEX5yyCG7kmrknvcOBgO12+0kGBD1l5QinU5Em82mBoNBSj2A0CAwQEaw8BOl9ijobDZLHSY8sg+5cUHBSUxerI/ie6SEjEYjHR4eplQK5gKBhOBBEin2RzQdEQDxQjpLJfCienl6gdvyESiImufRddZZUiq66WIC78eVMZ1OU90I5g7R5XykNfg5uBfu4oDAEsX2onvk/rNPvD6E1y7gnPwOYuv5+L5Hff94zQIXx3LS7ukyXlwwdy74c5F3IfB6Cnl9gnwMXNtJvHdu4DlwoQGy7WPKiyCyt/xc7k7gOjgr/BngOPaprynPhdc68Noo/px4+oPX5eDe+T3l9xzDs8xnTS7mBAKBQCAQCAQCgTrOhaAgKRUshJxTpJCWdZCSRqOR2j5ub29rMpkk2750QlqJrNLVgI4I7XY75XjjDsgjmJBxCGS329VgMEhignTmRIDgcxzdJ7z9HQXvJCVLOFF/yKTntEOIPTpLXQhs/VTnR1CgzoNb/SHlTqA9ms7YSOvwFA0i9wg23qUB0Ya1c9IOSaN+BGQNZwgiBZF0zjkejzUej5PTwNtR4iaRzqLNTgI9ui+dRfg94uzReY9sS2cii3Qi9rgAlRfm43qkUXg3DtwT3mXCSbOPA7KK8OCEPD+vOx/ccYAogauHsXq3Ak+14P3e7tIj+qwP49/U1cH3EvNC4PBuCn4+f6+7E7gW1/fiil77gPf66+6kcEeBH+vPcV4vgXG70ObOBtbGUzMCgUAgEAgEAoHA1TgXggKEAhJPAUSs/U4ou92ubrvtNu3u7mo8HtfSFJxoeNE/iBRtJiWlWg0UJyS6DPmA6FEA0usLEB3GLdDtdmv5+RDP8XicihtSMwDBg/dCnBm3k0XWZjgc6vDwMBHZ3d1dNRqN1KEB9wMihOfKu1Dh5JP5E/GnLkK3261ZvxFnPDq9vb2dnASMF5K4s7OTultMp1MNh8MUkc4dF5JS/j4OC6zwiAmMnXQGdx+wb3zurJkX3HTy6STX6xJsbW0lIYR9x7ncdUK6A/fMnSPuJnDHh+fue1FJHDK5EwcSm7d7zKPpiDKIQqwla8va+TPh84Cwe10B5uz/IvLk7Ux9nf16vIfnDhHDO0RwXXc2IMQwXs7hpN7raLjDwJ0dfix7ORdKXEzg9+w/xI7cZRIIBAKBQCAQCATqODeCAmLCYDDQ7u5ustO7FXq9XqvX62kwGKjVaunKlSs6PDxMrSKJSkKocTkURZHa2TWbzZrVn8J0RFm5HuSdyL3brvNc+ePjY00mk5pNHbJL6kG/30/vo/aBR/PdTk+UeWdnJ7V2vHLliqqqSjUgdnZ2kpjg0XbWjGMg5YgJVXXW3pB1bbfb2t3dVa/XS0X+yHvHXSGdETRPLaAmAtdHECrLMhFmUjy4vjs4IJJ+LhwqnuqBMIDbhLWHnLoIc3R0lMbuUfWcqLvI4UKS10qQdBWZ944LEHt3pniHBva25/QjPiBWeI0L7+TgzhkXdNzdQNtR7pNH7J2ge5eL3PGACMGzg1DgNSY2CRF+PYg/5+C+uFMjf+a5F4g3vId7QoFT0nM4n9de8NoT/N7Xy5/HXFByxwvj9PSYcCgEAoFAIBAIBAIPjnMhKEB2cRCQHw/p9ZoGCA6tVksHBwd64IEHNBqNEtGjDkO73U4uBwhRWZbpmt460SO0LmBAMpwgQqq81gNkR6rnpq9Wq5SiAZH3bg8XLlzQ3t6eut2utre3U6FFnBBVVWk6nWo0GmkymaQIMULIaDTSeDyuCQoQfd7vFnfSLyaTSUot6ff7qWOGF55kHWgl6AJFs9m86l65EyPPgadGAecjLYP7UFVVKjII+cU94KTe90VO0iG/nJv7w1rgCKHopLcShThyz7gGnSQgsAgB7C0XHpzIIjTQZSOvOQC8JgCEHOHK3Q5erJB/qfmAOORgLi6iueDiLgIXJlyocZdFTqoRT3g++D33Pi9y6I4fXyc/D906EC68C4iLDgglLnzwnHtNCN8XeVpTLiq4e4L5uXAUCAQCgUAgEAgENuNc/LXstmV/jcjvarVSq9XS3t6eLl26pE6no+l0qoODA43H41QIztvfkQvPuTz9AdIDafPaA16IDocCkWy3znsLOyev/J4oPh0D3H2wXC7VbrdTLQjSMDzaTReKqqpS1wfmA4nkdemsHaG3KYQQEeVFuIHUQ8Qgc+64cGcA88T2TltMLPSMl+KIq9VK8/m8ZhlHTPD8dc+Nb7Va6vf7SQByuzqRe2obcA8RTxALmM9qtaqlv4zH4yQeQWDzyDbrzz2SlPYM6StE3r1ApyR1u91077yDAmvp9wfSDYF3V4JH+6lfQRvOvKMIe4CUFfYZIgGvIVbl97XVaqXuGuwjTy/wGh7sDSflzAVnid/jPI0AeJcGT2fIO6jk1/AaGdw79gV1QvIaClw/F3wkXVWXwsUTfp87YAKBQCAQCAQCgcDVeEg/b1EU318UxX1FUbzOXvvGoijuKoritadfn2y/+7qiKN5WFMWbi6L4hIcziDyCCIEbjUap4GC73dbe3p4Gg0GNGFOM0W3pTqLd4cB1PIfbo8fZvBOh8VQGxrter1ONAFwRnNtbI1ILAIfCdDpNxSWf8Yxn6LnPfW4qYAgBYl60mnRyQ7T98PBQh4eHkk6KCXJNFwByUQE7N0US6XjhOePedtBrLhDBLctSvV7vqi4DrCdkEhcFY5pOpyk1RapHs7e3T1ppegcMSLkXwkTI2NnZUVmW2tvbU6fTSaS20+mk+8j4VqtVKl45mUw0nU41nU5Tqgjklqg/RN1rKiB+kIpBOkZVVWlMnCMXpWhxure3lwQTd7r4Gns9CuoyeATdU1jy1BjEHif53uaT9eQ6iBreHtIFDdwN/gz4s8F1er2eyrJM83Ihwt08ntZAS9V8TXu9XhIIXBhwJ4c7X+gmIqkmOvi6skabnnF3p/AMeJFSxnJe8ER8FgcCgUDg2ojP4UAgELgaDyf89oOSvlPSK7LX/01VVd/uLxRF8f6SPkvSiyQ9XdKvFEXxwqqqHrT/mueGO7EbjUbpj/vBYKBnP/vZ2t7e1nA41D333KMHHnigVv/g/2vvfGIku84qfr6enuqp7q5R9UyPkT1jk4nlTYSQsZCFBIqyQJB4Y7ILqyyQwiKRYMHCKBKERRYgJdtIjoKIEMRCAoTFigiBskEYA7ZjY0ycxFKGscfunqmuru6q6p7uy6LfuX3q9Z+ZHrrrvZc5P6k1XdVV9b5336urOed+33e1zlrFAoUrP4tmABsBUtxw5ZK7NlBMabZEuZkgxTZLASguKfD4NxVWS0tLuH79Oq5du4bl5eWJkg6uwFLU8rm5ubm8mry+vp53fqAYZ3kE42Qphtair6+vIyLQbrezCNRz397ezqKOtfk0bCgc2YxQa9SB/f4JNHJGo1HegYK7cIxGo4n+CLxOWlrCVWoaEtqvQbeo5HjrFo5awsDjsSyERokKfu03QKOGfRe4a8fMzEzO6FCBrvcNe0PofceUeT0v7YtQLrFhhg7vFTUSeB/xXlAjgaUgPHdgP7uAZSS6S4p+J9iUk8fl33h9+bi8fSLNKe7cARzcyQJAzhoiNIx4b/IctcxBTTtgvykor50KfI61ljmoUcPXlEs+eA15b2lPlHIPjDoZCpjCXGyMMeZY/gyeh40xZoJ7Ggoppe9FxMfu8/OeB/BSSmkM4McR8S6AZwH8y73eSGFF0djr9bC6ugoAuHLlCp588kl0u90snHu9Xl5NZs02f+dqPY0EilOKpHIdO4WbNmfjSi4FdVn48bGKPqaYc3V8YWEBnU4nC2yumM7NzeHSpUu53GFtbS2LIwr5wWAAYHKXBmY4sF/B+fPncwYEd13g+TJmiik2oqQQ5euYwcBVba7K6hZ7PDeWdIzHY2xubuaMBe1J0G63kVLKfSK4JSRj5haZFIk0Ayh+ddcErYFnOcF4PJ7YzWJ7ezsLQGY38HWbm5v5cyju+R4eu9VqTZgJd+/enSgf4DXnMZgNQnOA48r7iIYARXq5vIIlIpoZQbTUg/EyC0DLIli2oedQ7lOgRpE2jOT3gmUiNEYo6LV0QHeHADDRN4E7gkTRm4PnpyYY/6XpQXNFmyRyfLSEhO/Ta8zxoejXHhx8P49FAyUiJswEPsfzUfNDm5TqeehrqmZac7ExxpjD8TxsjDEH+f8sv30pIt4o0r+WiueuAviJvOZG8dy9Ayn+Az8ajXD79m2srKxgOByi1WpheXkZ3W4X7XYbW1tbWF1dxdraWq7J19prijoKLO0Gr6vpFIQUy8B+x3lNI2dPgPLWicD+NnzMIKBY5nu1QaEKqAsXLuStLyne+RoVbeU+BWzOSKHEVXSmfqvRwfjm5+fzuKqBAOxvaUihvLi4mHfYGA6HWFtbw87OTt7pQrMntJdBSilnkSwuLmJnZwerq6u4desW7ty5M7GtJ4/NLTspZHUnBhobW1tbGAwG6PV6WFtbyz0ldnd3c1kIm0ZypZwlDv1+fyJ9nSaBmieLi4uYm5ubSP+Pop+D9p3QBn1qiGgJi2Yn6P3MzABtGqnnrL0vgP1+Irx2NBM0S4HZBwsLC1nUl8tiNIOEmTHaI4IZMCxt0BIhbYDI89Gxa7fbE7tw8LP1O8ZzosHB+5n3u+7gwtgPMw+0zwR7feiuGhxLzawo77bB9+j9p9dArzPnATXUGsCpzsXGGGNOjOdhY8xDy4MaCt8A8CSApwG8D+BrxfNxyGsPXeKLiC9ExKsR8ar2NWCzQYoaFeoRgcFggDt37mB1dTVvS6jpzBR22nhRu85TCDLVW3sPcBWcnwMgP0cRo7sOaIM4iicti9AmizQ62u02lpeXc2kB49va2sJwOMT29nYWu51OZ0IocwWdorvT6eQMAT1XmgBXrlxBp9PJJR4UfuPxOBsMKaUsEOfn53N2wc2bN3OPBmZvcIcINvDj9WJDxIsXL+adNjY2NjAcDnPTTAA5U4KZC/1+f6IZoG7RybR4xs0VZI5pv9+fyFLR7A3dSpTXiivVrVYLnU4Hly9fzo0PeQxeI75WTQuOE0s+NOuFUIhSnGpZjJomev8ww4CGB68tzSLe+9oDgd8XNRpUUGtfBBo3LBWhUGdmgpbmAAcbpOrWk2Xzg803tdcFz4nnqhkwanhpY0UtyaCppOerY6fZFoyThgLfz3Mr7zrB68tz0ywRNSX1cQOaMp7qXLyN8WEvMcYYczSeh40xDzUP9L/llNIt/h4R3wTw98XDGwAel5deA3DziM94EcCLADA3N5f4H3emnlOkUzh3u110u130er0sAAFMiBUVa9ppXmvlWVe/u7ubxSuFY7/fx3g8nkh553spevg5XNXWWnY1JPi+VquVswTYfJFbLrIeXvsNsH5fty8cDod5hZ+mBFPOVZjxuBGRx2tmZga9Xi+bL7pCvLOzg263O5EJsbGxgZWVFdy5cwej0QidTif3EWD5A8+H4k6bT45Go1zmQJHPsb579y4++uijbGiw/4X2cijujYmVfabm6y4auvMErytFKM0ELT3gNZudncXFixdzc89+v5/LMTQ7gsdnBgJX8nnN9D28P7S0QUWzptiXa/spfPWHBoKKXDUJmKHCz9RSBhX3HCP2eJDv7IQJx/HU8g4V0loWoZlENFU0Q4MZEoyhnClAg0XPTzOGaF6wlERjLTeOLO9EwXuRBoPupKHlH4xTP1PLoGiCqAFUV057Lr4Yl+p9wsYYUzM8DxtjHnYeyFCIiEdTSu8XDz8LgN1uXwbwlxHxdew1oHkKwCv385kUBTQUWBuvArDVamWBzWZ82tOA6fv6mKvwKaUsNAeDQTYr7t69i16vl40KikRNYVfBpX0EVJxQ9OpqLkU/08O5+s2VfIoproLz2DwmTQWKM2ZTMGuDx9VVcopipvMzGwNAFvW60q09CjY3N3Hr1i188MEHuXeErgxT2FG4DgaDnN3AWPr9fhbpFLL8/I2NjZzlQJGnK+w0bTgemhqvdfzat4CikXFxDNjLQMUmgJyJMTs7i16vl7e35DH4Pt6HvCYs+eCKv+6Goc389Hhc6VbTody0kGPM606TgdeH9x2vmQpsLadh/wwKZBpHzO7Qa1l8hwHsNz3UvhK8Xzm2vFd1bBiP9h3QlX81udgfgddORbz2RdCx5LnSyNC4+R3TshI1DTnWHAceR7OJyo05+V49ZhPKHc5iLjbGGHP/eB42xjzs3NNQiIjvAPgUgOWIuAHgDwF8KiKexl7q1nsAfhsAUkpvRcRfAfgvAHcBfPF+u9lStGtzPG4VefnyZczNzeWtFHU7OO1PwBV8Tcen6N/a2sLa2tpE48aZmZlco9/v93NzNwoLijIKM4oqiiPW28/Ozk7U8lPQc5vLmZmZnGHAFXBgz5Tg8QeDQRY3LBlgSQZNCK7Y0qTQkgqtoed7mJLO40bR2JFCGdhPW+fzNANSSpifn8/jVDZodAtHlkqMRqNsKFCIq7immcNsCd2ykuNHMUkxWxZ1jIHnUO7WT1NAX0+jiI8ZB0trdLcBLX/hyj8zDniNWD5AYa/3nvYU0OwW7W1R7nOhvRd4bC3xUNOAZpX2R6BpoWUHFPVqfJXHk8Yc0b4dZaOGx2cZRTkLQY0Ffvd2d3fzva7NUXXs+LfDxLs2luRrymYCx4xjo71KOE7ayFH7S/C9AA6YIRxHNRyqZlpzsTHGmMPxPGyMMQe5n10efvOQp791zOu/CuCrJw2EJgG3+Gu1WlhaWsLVq1fR7XazGGbNPIVwccyJnQiYAq+r0to/gJkCFJYqOMvd6Zmaz8aDKkhoPNAIoXBng0OWNoxGo1zKcPHixbyVn5oZW1tbWRwzQ4PGQHmrQtbVs5+BrgSzSSOwn5auW/XpbhcAcj8Cnt9oNMoGhn6WNutrtVq5WSCbGg4GA6ytrWFlZSULbzV6tIGjNsSjEaElGdzOUDMEVFhqzwg1UrR8gM9zNZ19JXZ3d7OQpkmk2xbSrOBYM1tgOBzmc9FMEl0J10aIeo/o7gLaB0BX52mOUJgfVhqgBoaKcM2i0RIcXn9+NssA+J1hFohmvdCM0d4WPAftdcCx0dIfmhY0Dg57P+NlDNo0tdzfQcdYy0nK20vyufJjNSLURNAMCG3GSDSWOhkK05qLjTHGHI7nYWOMOUgtOo5p2j+bJbbb7by1YrvdBoAs3LmaPhgMJrrlczUU2G9iSEGuK8wU6uyZQAGjadcUIOznQKOBAoOChYKKz5XFGUUyG++x/wDNgJWVFayvr2Nrayt3sQf2zQGu/tMY0J4RwL4BwnR5Ho+iiKKbAlrLBwBgMBhkMcxjlZsEsgyBvSc6nQ4eeeSRCdNlY2MD/X4/l5Vw/LVXgJoGfG53dzeXHVDg0TDS1HjNkNAme1yJXlhYyLsI8DrqKj+PqyvvvGaEcTNThWYC70tmQGhNP0W2bofIVXTeS/pD8V3uj8A+DdrjQgWt1vXrOXAMyj0btOcHz43fAy2H0FIc3j80TDie2siTmRgU9eVyAwp4fg90rFgWwu+njoWWPWi2QPkYWlqhY83ndHcJNU/UNNDHanLQRNCyqSaUPRhjjDHGGFMVtTEUNI2dK+CXL1/G0tJSFtps+McadjZQ1FIHCk9mKMzPz6PVamEwGOTVd11ZBYB2u53ru7VfAIWdNqOjEKTYGY/3uvG2Wq3c14CChq9nDT6wl+LOLIv19fW8paLW4NME0S0KaSSw1IBCRwWcitjhcJjF23g8zmYAmzqyzIAlJjQ0dNcLNRPYZ4JNA2nuDAYD7OzsoN/vY319/UBJBT8zInJ2CH9mZmawsbGRha+ucOvKsfYr0JV/7VfBa0JocmxtbeWxA5CvLU0ZFYw0HvSzdGWdaDkBtyPkarqujPNaaIwqUpkxoeYB31teNdcsDf7wPMqiW3/Xe5Hmi2ab8HqqyUSTgfEwi0fjKJsv2gODpUA0ApkJoSaNloRojwSOGf/VPhT80fdR/Ot3hPcv7xe9L8rGYLmPg24tqf0vjDHGGGOMMQephaEATO4Y0O128dhjj+GJJ55At9vNtekUq7qbgq7cavNEGhM0HPgerpRvbm7i9u3bE80dNfWaIpf9Ftrt9oQw0SwGCh0AE0JUV1U1vl6vl8syhsPhRG040+LZK4GCkcJHmzmqgKPY1IwKGh7MhtCdBBgX3zMej7G4uDhhygCYMHI4firi2NOCWzYyu4Cp5xcuXMhjzt4LFN9Mjef5U1hTbHJVXNGeB7rtIf9GA4hZBcxc0VV8vVa8jhxD7cXA11Bgc9Wd94WuurO5ZLkEgpkqPD+OLVf/dYWe15JZIuVdDdTMUhON50Tjhu/jeVEg00jjvc1MncPMMl5jml8p7W2byfPnd4WGBB+zDKbdbh8wjPQ7oPHQQOC58hrSDOG/zIrQ75waNPwOabnNYddQ/66mjp4338vzNcYYY4wxxhykVoYC/4O/uLiIpaUlLCwsTKx+al09sCeIFhYWMDc3lwWU1u3Pz89PrMZzFX5zczPvfsDXU1RvbGxgdnY2C60LFy7kUgMAEyJQt+NjM8Zut5t3EaBA1RVXrpinlLC2tpZX+LkVJLDfqE9XlwkFHFexaahoo0iKz83NzYnSEG59yG35dOX33Llz+bXaD0L7BDDboNPp5KaPzBbp9Xq5N4HWsFOk0khgrwjdRYFjU84W0MfMFuG4MCuA58prSEHN7So5rrozhGYLMD6aCBSe2tCPgpsGj/bnYE+LxcXFbGSwPIWCnWNFAc4SA12BJ1rCoIaVjulhGRnMvNFyEd3hQEsP1BTSEoRyDOXsF/bi0J4PzJhh+QS/c5qxwM/UBpMaG7BvFKmBAuwbdFrWwHsAQP4O684Maprw9WqcHDb36Gt5XDUKjTHGGGOMMQeJcmp1JUFEfARgA8BK1bE8AMtw3NPEcU+fpsZ+WnH/bErpyil8Tu2JiHUA71QdxwPQ1HsUaG7sjnu6POxxP0zzsP9PPH0c93RpatxAc2M/07m4FoYCAETEqymlX6w6jpPiuKeL454+TY29qXFXSVPHrKlxA82N3XFPF8f9cNHUcXPc08VxT5+mxn7WcTuf1xhjjDHGGGOMMSfGhoIxxhhjjDHGGGNOTJ0MhRerDuABcdzTxXFPn6bG3tS4q6SpY9bUuIHmxu64p4vjfrho6rg57uniuKdPU2M/07hr00PBGGOMMcYYY4wxzaFOGQrGGGOMMcYYY4xpCJUbChHx6Yh4JyLejYgXqo7nOCLivYj4fkS8FhGvFs9diojvRsQPin+Xqo4TACLiTyPiw4h4U547MtaI+P3iGrwTEb9eTdRHxv2ViPjfYtxfi4jn5G91ifvxiPiniHg7It6KiN8pnq/1mB8Td63HPCIuRMQrEfF6EfcfFc/XerzrjOfiM4nT8/AU8Tw89bg9D58ynofPBs/F08Vz8dTjrn4uTilV9gPgHIAfAvg4gBaA1wF8osqY7hHvewCWS8/9CYAXit9fAPDHVcdZxPJJAM8AePNesQL4RDH2cwCuF9fkXI3i/gqA3zvktXWK+1EAzxS/dwD8TxFfrcf8mLhrPeYAAsBi8ft5AP8K4JfqPt51/fFcfGZxeh6ebtyeh6cbt+fh0x1Pz8NnF6vn4unG7bl4unFXPhdXnaHwLIB3U0o/SiltAXgJwPMVx3RSngfw7eL3bwP4jepC2Sel9D0At0tPHxXr8wBeSimNU0o/BvAu9q7N1Dki7qOoU9zvp5T+o/h9HcDbAK6i5mN+TNxHUZe4U0ppUDw8X/wk1Hy8a4zn4jPA8/B08Tw8XTwPnzqeh88Iz8XTxXPxdKnDXFy1oXAVwE/k8Q0cf+GqJgH4h4j494j4QvHcz6SU3gf2bkQAj1QW3b05KtYmXIcvRcQbRfoXU3ZqGXdEfAzAL2DPIWzMmJfiBmo+5hFxLiJeA/AhgO+mlBo13jWjaePT5Lm4yfdorecExfPwdPA8fKo0bXyaPA8Dzb5Paz0vKJ6Lp0PVc3HVhkIc8lydt5345ZTSMwA+A+CLEfHJqgM6Jep+Hb4B4EkATwN4H8DXiudrF3dELAL4awC/m1LqH/fSQ56rLPZD4q79mKeUdlJKTwO4BuDZiPi5Y15em7hrStPG56dxLq77Naj9nEA8D08Pz8OnStPG56dxHgbqfx1qPy8Qz8XTo+q5uGpD4QaAx+XxNQA3K4rlnqSUbhb/fgjgb7GXHnIrIh4FgOLfD6uL8J4cFWutr0NK6VbxRdkF8E3sp+XUKu6IOI+9CegvUkp/Uzxd+zE/LO6mjDkApJR6AP4ZwKfRgPGuKY0an4bPxY28R5syJ3gergbPw6dCo8an4fMw0ND7tCnzgufiaqhqLq7aUPg3AE9FxPWIaAH4HICXK47pUCJiISI6/B3ArwF4E3vxfr542ecB/F01Ed4XR8X6MoDPRcRcRFwH8BSAVyqI71D4ZSj4LPbGHahR3BERAL4F4O2U0tflT7Ue86PirvuYR8SViOgWv7cB/CqA/0bNx7vGeC6eHo28R+s+JwCeh6cVr8Tnefh08Tw8XRp5n9Z9XgA8F08rXomv+rk4VdD9U38APIe9Lpo/BPDlquM5Js6PY68j5usA3mKsAC4D+EcAPyj+vVR1rEVc38FeWs429pyo3zouVgBfLq7BOwA+U7O4/xzA9wG8UXwJHq1h3L+CvXShNwC8Vvw8V/cxPybuWo85gJ8H8J9FfG8C+IPi+VqPd51/PBefSayeh6cbt+fh6cbtefj0x9Tz8NnE67l4unF7Lp5u3JXPxVF8qDHGGGOMMcYYY8x9U3XJgzHGGGOMMcYYYxqIDQVjjDHGGGOMMcacGBsKxhhjjDHGGGOMOTE2FIwxxhhjjDHGGHNibCgYY4wxxhhjjDHmxNhQMMYYY4wxxhhjzImxoWCMMcYYY4wxxpgTY0PBGGOMMcYYY4wxJ+b/AOoedUmzSCJGAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 38368 502346\n", + " Min thresh = 1000\n", + " Sliding\n", + "\n", + "\n", + " Winner = Sliding\n", + "\n", + "\n", + " FP ROI = 228s_iimage_3384882513134_clean.nii.gz\n", + "228s_iimage_3384882513134_clean.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADDCAYAAAAya0IYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADlFklEQVR4nOy9eZwk2V3deyKzconcKqu6e2akGS2jFSQDArGJzWABBoPhYXb72WazwMI8jI3Z/LxvGIOFlyew+GADZsc8jAGZxTxjsLUhsVgLSDDSSJqRZqa7qyqXyD0z3h9V31snoqtnume6p6qn7/l8+jPdWZkRN27cyKlz7vmdX5LnuSIiIiIiIiIiIiIiIiIiIiKuB5XTHkBERERERERERERERERERMSthygoREREREREREREREREREREXDeioBAREREREREREREREREREXHdiIJCRERERERERERERERERETEdSMKChEREREREREREREREREREdeNKChERERERERERERERERERERcN6KgEPGkI0mStydJ8qmnPY6IiIiIiGMkSXJ/kiSffo3vzZMked7jPM/j/mxERERERETE2UIUFCKedOR5/uI8z3/jtMfxaEiS5NOSJHlrkiQHSZJcTpLk55Ikufu0xxURERHxVEaSJN+VJMn7kyQZJkny3iRJ/vZpjykiIiLirOFGC7OPdbz4e3HEoyEKChERJ+Mdkv50nud9SU+X9EeSvu9URxQRERHx1McPSvqQPM97kj5B0p9PkuTPnfKYIiIiIm53xN+LI66KKChEPOlwW22SJH8/SZKfSZLkR5MkGR2pny9IkuTbkyR55Gin6jPts1+ZJMkfHL333UmSfG3p2N+SJMkHkyT5QJIkX+OKa5IkjSRJvjtJkvclSfJwkiTfnyRJetIY8zx/OM/zD9hLa0nRohsREXFbIEmSj02S5PVHu1EfTJLk3yZJUi+97c8cfQ9fSpLkXyRJUrHPf9XRd/V+kiS/kiTJs67lvHmevzPP88xe2ih+90ZERDwFkSTJhyZJ8htH37NvT5Lk8+xnv5EkydfYv78iSZL/efT33zx6+feTJBknSfKlSZJ8apIkDyRJ8h1H38n3J0nyFx7v8cpjjb8XRzwaoqAQcRbwZyX9R0k7kn5X0q/ocG3eLekfSvp39t5HJH2upJ6kr5T0qiRJPkqSkiT5LEl/Q9Kn6/BL7k+WzvPPJb1A0kuOfn63pL97tUElSfLMJEkOJE0lfbOk73r8lxgRERFxS2Et6ZsknZf0Mkkvl/TK0nu+QNJHS/ooSZ8v6askKUmS/0PSd0j6c5IuSPotST9xrSdOkuTbkiQZS3pAUlvSjz+B64iIiIg4c0iSpCbpFyT9qqQ7JH2DpB9LkuSFj/XZPM8/5eivH5HneSfP8586+vddOvzOvlvSX5b0mid4vPKY4+/FESciCgoRZwG/lef5r+R5vpL0Mzr8BfQ78zxfSvpJSc9OkqQvSXme/1Ke5/flh/gfOvwi/uSj43yJpP+Q5/nb8zyfSPoHnCBJkkTSX5H0TXme7+V5PpL0TyV92dUGlef5+46sXecl/d+S/vCGXnVERETEGUWe52/J8/wNeZ6v8jy/X4fC7hUi7dH36fskfa+kLz96/Wsl/bM8z//g6Hv9n0p6yXW4FL5TUleHQsV/lDR4whcUERERcbbw8ZI6Ovx9d5Hn+f8n6Rd1/D36ePF38jyfH/2O/Es6/N34hiD+XhxxNURBIeIs4GH7+1TSpTzP1/Zv6fBLV0mSfHaSJG9IkmTvSCX9Mzr8YpMOa7reb8fyv1+Q1JL0liNr2YGkXz56/VGR5/mepB+W9PNJkmxdz4VFRERE3Io4Kj37xSRJHkqSZKhDUeB86W3+HfteHX4HS9KzJP0r+67dk5TocNfsmnAkGv+uDv8f8A8e6/0RERERtxieLun9eZ5v7LX36jq+J0/AfqlkzL+Xbxji78URZURBIeKWQZIkDUk/K+m7Jd15pJK+Voe/qErSByXdYx95hv39kg5/MX1xnuf9oz/beZ53rvH0Wzq0pPWewCVERERE3Cr4Ph3uPj3/KCDxO3T8XQv8O/aZkqivfb+kr7Xv2n6e52me5697HOPYkvTcx/G5iIiIiLOMD0h6hmfP6PB79MGjv2c63AgDd13DMXeSJGmXjsf38uM53qMh/l4cERAFhYhbCXVJDUkXJa2SJPlsSZ9pP/9pSV95FHLTkuUjHCnAP6DDzIU7JClJkruTJPnTJ50oSZI/lyTJC5MkqSRJckHSv5T0u0eqbERERMRTHV1JQ0njJEk+RNJfPeE9fytJkp0kSZ4h6RslUXf7/ZK+PUmSF0tSkiTbSZJ88WOd8Oj79muPjpkkSfKxkr5e0q/fiAuKiIiIOEN4ow5J/rckSVJLkuRTdZgp9pNHP/89SX8uSZLWUbj4V5c+/7Ck55xw3H+QJEk9SZJP1mHm2M88weNJir8XRzw6oqAQccvgKPfg/9KhcLAv6c9L+i/28/8q6V9L+u+S/ljS649+ND/677cevf6GIwvvf5N0tbCau3VYEjGS9FYdJo1/wQ28nIiIiIizjG/W4XfsSIdi7EkhXT8v6S06/EX1l3TY8lF5nv+cDkNwf/Lou/Ztkj77Gs/7BZLuOzrvj0r6N0d/IiIiIp4yyPN8IenzdPjdeEnSqyX9pTzPySV4laSFDon+D0v6sdIh/r6kHz4qLSMn4SEd/n78gaP3f90TPJ4j/l4ccVUkeZ6f9hgiIm4KkiT5UB3+Its4CgaLiIiIiIiIiIiIeErhyOHwo3me3/MYb42IuOGIDoWIpxSSJPmCI6vXjg53yH4higkRERERERERERERERE3HlFQiHiq4Wt1mLFwnw77qJ9U9xsRERERERERERERERHxBHHTBIUkST4rSZJ3Jknyx0mSfNvNOk9EhCPP88866t6wm+f5F+R5/sHTHlNExGkhfg9HREREnD7id3HEzUae578Ryx0iTgs3JUMhSZKqpHdJ+gxJD0j6bUlfnuf5O274ySIiIiIirkD8Ho6IiIg4fcTv4oiIiKc6bpZD4WMl/XGe5+8+SjH9SUmff5POFRERERFxJeL3cERERMTpI34XR0REPKWxdZOOe7ek99u/H5D0cVd7c61Wy+v1upIkUaVSUZIkSpJEkpTnufI812azEW6KsquCn1UqlfD5zWYTjre1taWtra3Cz9brtdbrtTabjSqVihqNhprNpiRptVopz3NVq1V1Oh1VKhWtVistFgstl8vwWf/DmPz4m80mvFatVlWtVrW1taVGo6FGo6Gtra3wft7r18d1S9LW1pZqtVo4Xp7nWi6XWi6X2mw24dhJkoRzVKtVrdfrcD18lvlIkkTT6VRZlmk+n2uxWGi9XktSmLdqtRrGwVh8nvnDaxyb6+XnfJ65qVarhfuxWq1OnNMkScKY/Jj8jPvvfxgPc+j3h3P6PPs4+ZnfP78v/Fmv1+H9vMaxOIe/DrhfjNPnj3MzTl+n5WP7eBwnXYO/h/vE/Jw0N35cv3f+Wvl4vM/H4PNV/uOf9/eWj+H3yf/uY+F95b/7vff59mvgfSfdY5vHS3meX9Cth+v6HpakaqedP+fejR5+W3pTBxYRERFxPZgp0yKfJ4/9zjOJ6/oujt/DERERZxUj7Z/4O/HNEhRO+tIvMJ8kSV4h6RWS1Gg09DEf8zHhl/g0TVWtViUpkM3pdKrZbBY+v1wuA1FfrVZaLpeqVCpqtVra2toK5L/dbqvX6+nuu+9Wv99XtVrVZDLRxYsXNRgMNB6PJUnPeMYz9KIXvUj33HOPxuOxDg4OVK1W9ZKXvET33nuvKpWKHnjgAb3zne/U5cuXdXBwoL29PWVZpsFgoNFoFMSJ9Xodxjufz7XZbNRqtbSzs6Pz58/r2c9+tp75zGfqzjvv1O7urvI813w+12w2CyLBer3WYrHQZDLRarVSv9/Xc5/7XHU6HSVJosViocFgoIsXL+rg4EBbW1vq9/uq1WpK01Qf8iEfonvuuUfT6VR7e3saj8darVaqVqva3t7W+fPn1el09O53v1tvfvOb9c53vlMPPvigLl68qNVqpVqtpn6/rzvuuENbW1uaTCY6ODjQYrHQ1taWtre31W63AyFsNBrqdDpqNBrq9Xq688471e12laap6vV6uE/Meb1eV6fTUb1e12g00uXLlzUYDMI1HxwchHs8n8+VZZmq1aq63a4ajUYguayTxWKh+Xyu6XSqJElUq9WUJIlms5mGw6Gm06nW67U6nY62t7dVqVQCuUdMYpySNJlMNBwOtV6vVavVVKvVgjizXq918eJFLRYLVatVNRoNSQrz1mw21Wg0wn1i3W5tbWk6nYY5WK1Wajabajab4RycH3FrPB5rMBgoyzI1Gg21Wi21Wq0gLqzXa83n8wLRrtVqqlQqmkwmGo/HWiwWYW1ubW2p0+mo1Wqp3W5rvV4ryzJNJpPCs4eIwXWPRiONx2PN5/MgbK1WK9XrdfV6PaVpGp7LPM9Vr9fDveX8k8mkIJJUKhXV6/Uwf/P5PKx95ouxuBDj4pYLbdVqVe12W1tbW+FezWYzTafTcK8QPprNZkF04r4iYC0WizCng8Hgvdf4vXfW8Jjfw1Lxu7iplp799s/Vs2/VX9sjIiKeknhj/uunPYQnguv6nTh+D0dERJxV/Lf8P534O/HNEhQekPQM+/c9kj7gb8jz/DWSXiNJ3W43hxRIx7uHkAZ23yFQvMaOI+SRz/oO/mQyUa1WC4SE90LEECve8573qN/v68KFC+p0OtpsNprNZppMJsqyTP1+X7u7uzp//nwQCprNZnjfYDDQdDoNTglIHS6A6XQaCFK/31e321W/31ee54F84h5IkkTL5VLValW1Wi0Quclkol6vp0qlEn7WbDaVpmkgVlwfQsb58+eDu8J3liUFYeCuu+7SwcGBptOpxuOxlsul/H5AmhuNRnBucC4I4mq1CoR6Op3q4OAg3I/NZqN6va5ms6lz586pWq0G8sh95Jjcm+3tbS2Xy3BMCDJj43zc/0ajEQizk0F20DkP88Q853muZrMZSCj3DLLp96HRaAQXR6vVCiTU1xX3jnPjFkHwkKQ0TQPB9t1xdtERFhgnO+yz2azwc64HQszzgjDXbDbDPLlrZjKZhHFtbW2p2Wwqz3ONx2ONRiPV6/Xwc5xD3IODg4NwfCf7zKuLEYgYjM/HiZOF+8DnODZzyHWuVqvC/WSuEGDKc7i1tRU+X6vVlOd5waXEz1lDPJv82+/1LYzH/B6Wit/FvWT3xofqRERERNzeuK7fieP3cERExK2GmyUo/Lak5ydJcq+kByV9maQ//2gf8N3Zk4IiIcPssp9khed9bo1frVYaj8fKskzb29uBKLsVerVaaTQa6a1vfasuXLigF77wher3+8ExMBqNAvnq9/tBPICIsQOLQFGv19VqtcIu83w+13w+D26Iy5cvq9PphJ3su+66K+yslkkmu7eIG9PpNBD5ra0ttdvtQLx9F3qxWGg6narVaoXxZFkWdoAhn7VaTa1WS91uV7u7u0G44NxO+CDCvotLSQQ78RA2HAXsmCNGIKJcvnw5CDBcS5qmwWlSqVSUZZnW63VBBJCOhablcqnZbKY0TYMzpWzR97IX/g3Z3traCiS9Wq0GVwtrCScEO9d8BjGJOWb8rDfELBeLGDeuCubSy0hwHTBOCHe329VsNgviwHw+v4IcI7aVy1LSNNVqtQpOF+ZtMplcUZaytbUVngcvuWDucVOwjvksTpLVanWF8Me9g6i7qMX1MSa/X9xH1piLCNwvL90ol3YgUPB+niMXmPiu8fchnKzXa9Xr9VtdULju7+GIiIiIiBuO+F0cERHxlMZNERTyPF8lSfLXJP2KpKqkf5/n+dsf5f2SFGzIEHNedxu07x77rqfX9ENqcCas12vNZjPNZrNAbLFDTyaTsHN8cHCghx56KLgUEB/G43Eg79vb2zp37lyw7a9WK3U6nUBOIYnY/yuVShAmVquVsizTcDjU/v6+Go2G0jQNbgV2SSFMSZKoXq8HEjQej7W/v69msxl216vVqprNprIs02w2C8ScHe0sy8JcVKtVLZfLUBowm82CoyJNU7XbbaVpGl5zggkRRiRBVPDsCkgfJRyDwUDr9Vq9Xi/cy06nozRN1el0wj0A7IpDTCHPTq4hwdVqVbPZLDhNIL0QVH7mu+nlTAYnjFwf98mzDRBPmCPEBVwWzBHn9tp93su5OA+EGVeEiwlOjinj6Xa7YV5xBfgOvQtqrEFKKRgT95vngd17xuOOBgfjZM64N9wzMkYQ01zsKGd3lJ/5sqDANW9tbRUcKhyznOPAPUd8cNcLY0Bc8NddXGLdclx3PZwkbt4quN7v4YiIiIiIG4/4XRwREfFUx81yKCjP89dKeu01vjeIA4gK4/G4UC8NqfXANKzz0vFuqZccQDQkBRKNq0BSgYTgMHjPe96jnZ0d3X333WF32XdB0zTVzs6ORqNRqPlvNptqt9tqNps6ODgIJQaIAZCs5XKpxWKhS5cuBdJC2YETH64Tgt1sNlWtVrW3t6dHHnkkiBVeKlCr1YI4Aumk3IPdWUgYJRpuT4fEdbvdwk6/pEBgy+SXjACEhq2trXCt7Fize48DYDabqdvtqtPpaDab6eDgoCAWcc2SlGWZarVayAhg99hr633X3neeXfBgbbBOWG/U+XvYJi4P5rZer4cSF9whaZqGzAuv+4fcQrZZB8BLFMiDYCzMKcciF4Rxt1qtsO75ma977qFf+3q9VqPRULfbDa9D3BFiGKcHk/Is+v33kgOcG+VQS66Xe86zzXtY75VKpZAtgUDmYB559nkOuf8cu7x+Ecz8fD735c/5dfKMu6hTHtethuv5Ho6IiIiIuDmI38URERFPZdw0QeF6sNlsNJ1OlaZpsCdD1MqOBK95hvRRy46AgCW8Xq8XXA4E23kNPWSS9128eFEPPvigms1myB/wDg+UTfT7fbXb7WD/3t7e1v7+fhAZptNp6LQACa3VaiEk7uDgINSnE2iHbd9r4REkkiTRcDgMn5eOyTHig++EE7IHyS5bwnEQQGTJSGi32wXSXe5q4bX7Dkhn2Y7Oe7k27gXhgFmWBQLrxBiRBndHuYODO02m02m4h27hZ+fZcwg8o8J30heLRche8PXBOqK8gnG1Wq3QGcPHjqiAjd5DCMvr1kt33GUznU6DiOICDoGJCEY8O7gofNfdxR7KWng2ENK4bz5PtVqt4KbgnrOGeA+k3B01PKPcQw87dEcC64ASHsYoKbh8uMcurjA2XDJcD8+Chyy6a8VLohj31TpXeFcNL0mJiIiIiIiIiIiIiLgSZ0JQyPO80BUB0u9Eh5A0dypIKpBHt5KzA91sNgPZpAQAYgbJ8B3y8Xis973vfYGEdrvd0HmBXeHt7e2Qks/7sKWnaRp29Hk/dnKuhVaNly5dUp7narfbajQaQaSAcEF8IL7UwyMy4LaAHCMqUGZB6Qi5BBA174yAkIDLgVwHPrdYLEJmg4dOchwXHyDcdGLg3nCNrVarcM9rtZra7XYQBfw+4A7gviPoMB7GnKZpKJPhTzmozwMYOTfWeBdGygTSRYXNZhNEBReJXOxgzOyUu1MAQYM6fQ+hZDyeEcC1Mg6IMW4V1rRnTrjbgeuhDMaDI/OjLgyUQLAuIP8uGDBPXjbgWRY8a9KxEIRbANcC73W3AmU5ngmBAMi4PLiRZ9+PgXDjYo27PFhj7uLwHAl3QHlZjAsgt3LJQ0RERERERERERMTNxpkQFLyjAiGC/jMINHX3EEwnWp434J0HvMabnX1cB06uJYX3PfLII6FzAq0YW61WwUHRarVC+z3yFHgNsuLt+hgbAXXL5TK4G9rttur1uubzuXZ2dkI7xnq9XgjGazabwSZerR62f5QUukjkeR4CCgmOvHz5csgxYIeXa4X41Wo1XbhwIex8e6tEyDFkH0Lm4XjSsUOBHXAEBUgvxNfvEcS2VqtpNBqF4EFcG56dQF4FVn0CIxF03MXCrrWXxnBv3THAfOFsgDRz/Vjzyw4YSDutMr18gGvkuhBCpGLwoJeNgHIZg3/OOyMgppTdF8y3OxV4Vpgfd494qRHPWtnqXy4J8JKDckkS1+4tML3LhN8T1gfiAfcQVwJhmYhKCCDl5xrxgzWJk4J7QkkS3xOskbKLpRxm6QGXEREREREREREREREn40wICuv1WuPxWLVaTd1ut0D03XbtxAJiy05lefd2NBpptVoF4uIkwglT2SIvHe7cX758OdStY3mHgE6n0yAmtFqtQmtBdvilIhlj9xaHAkRrNptpOByGHdvFYqHd3d2w0w3ZhaSSRSApiB4QX3+92Wxqf39fly5d0t7entbrtfr9vjqdTpgziJykUO5ABoQTXkouEH6cBPvfF4uFRqOROp2Oer1eOAddBmhxCdH0Y6zX6+BSYe5cvHBRgc4dXnvv3TvG43EgsbzuAYuICZQVuDjC+91Cj6jAcdjFhgDjSnGrPuPFKUK5S9mJwNpgR55xE6joZQM8Cx5E6M4CjuelIZ7L4evdS2m4tjzPg/hQbpNZPp7PKWuI1qSU9/BMEq5YFmsQl7w8xMtpWIf1ej04UbgXCBiSCqVNOED4PEIiop2fx8tUyt8JvCciIuLsof2bF/RJu/ed9jBuG/zgO1+me74wZghGRERERJyMMyEo5HmuwWAQSDVEBIt8OXjNg+/4PIQQUWE4HIYWjBBxFw3KNf/eHm6z2Wgymejy5cuhUwPdEtiRpgSh2+2GvATcAXSU4Fjl+vpms3lFKF6WZZIU8hcQLJIkKZRXQKqGw2FoX4hLgtwJSjXY6R0OhyHgEBEE0jYcDoMQ0Wq1rmi3x7whRNBNwm3hvA/iyPVjf99sNgU3RqfTuaJmHWLpqf7Y/umy4PPFGJhL6VBU2NnZCXkTEEqOfxK4dhd82KWWjnMqvJ2kl+PQhQEyjuDA6/V6PQSMVqvV8HcIMefxbIWTHBfcFxeB3Obv1n0EhJNcBk6kcatw7zwro+wA8KDCsmPBx0qZBOU4EHzEHReKQDmTAzGG9qWeneCdXfz9XtLC8arVqqbTaSEbw0Wj8nwwV55tEV0KERFnA+/6gY/RD7/8ByRJL2usVUuqj/GJiBuFV3zcO/Q7727qK37h6/T8b3zDaQ8nIiIiIuKM4cwICvP5XJPJRJvNJggA7NZ6TTS7pF4O4HX9kD1Ig+/MpmkadimzLCsc18EO5Ww2C+UMHp4HmUFAgIhDfLzswm3fiBsnBcVRO84uPSSIUojlchlCCglnzLIslDJ47sJ8Pg+ZBdSZU34hKdjSuXaOh5UcgknpAvDMAgg9r3t2xXg81qVLl9Tr9ZSmaRBl1uu1Dg4OClZ9BBSul3lAKHALPnMIwR+NRoUOEOzst9vtcDzfXS/X8eNwcOHCnRu+k4040263wxy6COXiiYdpEszJ57kXZWLO+vE55d552UlZVMCp4K6Jcl4Ex3GhwsdILgUozxPgfrhDwEUN7hFOlVarFc7hgos/l2XCznlxSCyXS00mk1Dq4Q4l5huxB7cE5/BzsXZcKCoLG3yGZ/Nq74mIiHhy8e7vepne/tn/Sq0K5ZBRTHgy0ak09SlN6W1f+K81+ILjzkVf8SWvlN7wv09xZBERERERZwFnQlCQjkUFap49xR/43528lcPhsEizY8r7/Q8J8ViofZfSa63ZcSXsDTJLW8hut6vhcFgINvRae87tFvxer1dI2peK9ehZloW2ghBxDwLsdDoajUY6ODhQp9MJIYjScfeGTqcTyJx0nLPgO/KSQp29l5GQ1ZBlWSC0EDYEG+6Xk09I5Xq9VpZlYY6omef15XKpTqcT5ppjQ3yZKw+HhOgRNMnrhG8CMiHSNC3U3NMBw3fyuVesifJaQ7xqNBqaTCYhC4IQTtaFd0KANFMq4kGhEFTm1R0zXrpBiCfXg4DjopCvG3bo3XXj3Seu5s7gnMyzi3LlfAwXWRzlZ4oxeUgn69BDFMsCllRs54hQgYhB/ol30eB8HJPvDHekeKbCZDIpuJxcEPJzu1DiQktERMQpIEm0bm5MTIg4LbQq9cJ9eO3P/pA2urbg2k/8jr+m3R9/y1V/ni8XV/1ZRERERMTZxpkRFMq7/7SOZHcbguK293JdOMSt0Wio2+2GzwDIlYfhOSHO8zzUv0vHmQCQiizLdHBwoO3t7eAY4P24E/r9vmazmfb29sJY2WGeTCbBHUDApNeWu3WdVoje7YDd8fF4HAg/O8G8J8syZVmmwWBQSPUno2AymYQdaXav6/W6hsOhHnrooUD26UqRZVlwSrCbPZ/P1Wq1wg6y1+9zPt5HycbOzo62trZCOQTkjjp5zyHg+lutVrCpQ6y5FoizBz7S8tJzEHBbIG7wM98JT9NUi8UiXCsElHmqVquhGwXCUpIkYY2Nx+Mginj5zHq9DtdA9gTCAmIHa7GcIcB5EQy4nkqlEsIzvUyA4zA+BBd+xty5G8fLf3z8OAr4vM+Xf96fP+lYiPLn2M/D/UBwQMhqNptBQGE8lBRtbW0Fhw7z6eKFP6t0tOAY3F93z7izguvx8E8vg/LAx4iIiNPBg9/yMr37i1592sOIOAHVpHLNXpE3/bPvk/7ZyT/73v1n61c/9fmP+vlk78z8uhoRERERUcKZ+YaG0EAW3Z4sFVvnYQ2fzWYFQiYd27JxKUjFkgJs8W5rdjLFHw8KHI1GkhSO2+l0tLOzo263W7BGu4282WyG3XRs9IgAOzs7StM0hAfSCYD6eQiQh9ixw75er7Wzs6PFYqHJZBIIOsR4MpkoyzJdvnw5tLyEMCEQDAaDsEPPmCFi0+lUm81Gu7u76vf7YZ6r1WoQQchR8M4C7sbgXtBm8aGHHgphjJBrByULzFmWZZpMJlqv16FkYrlcBnLowZo4TVwg4N556j/Hw/3Cz70rArvWvg5xN7CWvJUhIkOSJEEw4Nw+1rLI4aUW3oaRjgfMo5dfIIxwTC8zcJeDr6FyroC7cMpODb+HXkLk7S/LJRq+dtxd4oDA8x4XuBAFPUeC9cGzzXFZb7Q6xa0iKYiOfk3lcXJef874vuA83At3LsRgxoiIiIibi7++c7/++u/f/6jv+dg/PXxyBhMRERERcd04E4KCuwUgE+zkQtbZJaaemp1UDzz0Lg+Qf3awnSxxXEoUsKm7fVtS2G32Dgp7e3tqNps6f/68zp8/H2q9XdhgLJ4zAEmFTDcaDfX7/SAqeB04u8kecOiWdGz40+lU4/FY3W5X58+f187OTijjIGzRhRgs4dPptHDtEK40TbW/v68sy8L4CGNsNBq64447gpvhj//4j0Oryke7p5I0mUy0v78fyjPyPNd4PA4klbBIBIXxeBzuM/cBskkwn9fjM38edOndNQDhhk7ovROI3ycvpeFzjUYjhG92u90Q0OkOGS8z8HIIzwVxEYO1yzE8K8GDEXHSsG45TnmnnfniPdwL71pB2Qafo2QEou8BjtJxSYGHnyKa+HG5P16a4W4F5kBScMB42Y87JBAbKJeRVCiT4A/PnX/G77+3hETkQYBCbPKQTNaZl0BERERERERERERERJyMMycoIABICjZ7avWr1aparZayLAsiA5/z3VqIirerK1vlqZ93QlQOaGT3EkLJ+CqVinZ3d3XPPfeo0+kEwudZBHRfYMdfOs59WK1WoYNFpVLRZDIJu6YQHC8NGI/HGo1GOnfu3BXhgpRlnDt3Tp1OR9vb2xqPx3r44YdVqRx2pUjTNLSSrFQqoYafTAEs9JQEUK4wm82CWIItvd/vq9Fo6ODgQIvFQuPxOBC6cqYFQXqz2UyXLl0KoXpcK20UeY0OEOPxWMPhUKPRSJvNJtjcIcrU/HO/ERTKmQqQRm9fieDgtn7PaPB14K9xXBworVZLnU4nvA/SfVI7TIgpO/reyhLxa2trK4SGktfgYoK7SDyUlPG6EMBceWtJXnMizRpaLpeFkhIvjUCg89d8Xjg2c+NCCufGqcM1cR1ezkRWiQev8j1AWQ5jpUyC62McOFnKpRheIgF4zUUp1kWr1QrPYOzyEBFxuui9d6MfHNylr95+6LSHEhERERFxC2Lrnrt16dOe+ajv6f/H1z9Jo3lq4kwICp4ET2cFt7uPx+OCLZ18BYgJxACi5Yn6gJ3ism2cnXonht5RwMUCyFCWZbp48aL29vYKXRDISfBuFRyH6+TYlUpF58+f13q91t7eXiBVEC/IOl0faLvoNeEQ6IODA41GI7XbbfX7fWVZpkuXLoVcgDRNC06K6XSq/f39Qhgh4+x0OmH3nxaOgMyF8+fPh3BF3gfBJfwREQYL+aVLl5Tnuc6dO6c0TQs1+t6NgXvobSMhk5S6LJfLcC3Scd7GarUKLTw9P4HdbElhPp2QsqPO2sIt4G4Dyl8ITEzTVP1+Pwgoy+UyuEMg61yjk1InzO5qwKlRdsV46YOLX6x7/ouAhhjigkk5NwThoDz/0rG452Pj+r20AtHIRQQXC1wYI5vAgxV55nBteAYC4+O5ZV00Go1wrQiKLkZybf69wtwxHhdF+BnnkY6zWXAZMeaIiIjTQe++TD/9gY/WV2//4mkPJSIiIiLiJqB65x2av/gZhdfqb/xDbbLscR/zwW/9hPD37AULveezv+9R3/8nnv7KazruM179Vm2OSuEjjnEmBAVC+diR39/f13g8DsF/Xi8NwYFkQMAgFwgEZXs0RAHCDiFl99NruSHqvksNKYFMEYjY7XYLIXxkAEDWPKSP40Nqe71e6NCQZZnG43FwD9AWkddwOrCL7WRyOp1qMBjo3LlzarVaOnfunC5duqT9/f0CCXXCxy44oZLMKzkJ3kIRskxmQ7Va1fb2ti5cuKCtrS0NBoNgYU/TVAcHB2HHl6wBPntwcBDIJPPZbDZDaQX3zK+R1zgeAX6co9VqKc9zjUajEFJJYCZk350nhHsSZomQ5XZ8d63gZIEgIyx0Op0gqJBj4TX4LtaA8u4/68PzMtrtdkGEcCHgpK4NXg6DsIJIV/685yaQ08E64r0IHoDrKDsgvIMFrzM2d6lA5FnX7kphPjimlya5WMO9904dLniVsyIYv5feeOmTB1p61gTndHdLRETE6eGBP9XV2z70P572MCIiIiIiHifWn/pRmu9cvWvW5EJFBx9aLKG+8PQPUy07fK31c2+85nO9+ztfpk0z131fcn1hvm/7xmt7/73P/SuqZFUlG+m5f/MN13WOpzLOxG/LJLpDvsbjscbjsc6dOxds8nQnkI5JD+TBd1NxFdARATKZpmkgxezcc2wPh/MdUOCBdhAjhA/s+F6KgL0esubBj5BXWj4S8ggx4hrzPFeWZRoOhxqPx+H1Vqulfr+vvb09jUajQMp4L06EbrcbMg4gYOxWQwKn02kovyBI0nMRfPeWORuNRsrzw24Y586dCwSfXWzCDz3kz+9PlmWhbabvGDebTdVqtYItHnLqmQOITwQhErIpKTgE6A4CIaSFJaGAkoIo4OtoNBppNptpZ2cntMfEuu9lE2RXJEmifr8fQh/pzIEYhQiB8wU4qeU6nTg3Go1gu/cgUv+ci1zlIE8v9fEAR59L6VhEKIsKLkCxfinP8OftpBIHF/BwtLiLADcCAoKfg7XiAaflgE3WG9eHq4PrOCkctBy8yrPkoomvLxdaYihjRMTp4p5fH+ozPvPP6tc+9BdOeygREREREdeB/BM+QgfPb2nwfGnVfrSuWVf+7OJLJSmRcul892Xq/8hjlyS86/s/Vm/93FepU2k+5nsfL97zuT8gSVrnG73onq94XMdYPdjS8/7GU0uMeNyCQpIkz5D0I5LukrSR9Jo8z/9VkiR/X9JfkXTx6K3fkef5ax/tWLVaLRAzWjPu7+/rwoULgRhKCgGCZQIkHZJJ6qi3trZCyB+75RyDPAaIq6RAFtld9pIJrPFur87zPJQk0FaSHAHe63X4HpjHdYxGIx0cHChJEt11111qtVpaLpehXEA63Enf399Xv9/XZDIJO/Xdblfb29va39/nXgQy3+v1QgtJ8gvozECrS+mQcGGrJ0yPnX4PxGPeECwgi7SBTNM0zCO5BtjjIYY4IWj/t7e3pyRJQnkA94RxIyh4xoXXwXOfmSMEDuaQlpS9Xi+EV04mk7Az32w2wz3E0VKtVoNDhjl28YVSDMholmWhrKPdbqvdbofuFJ5RUA5r9DWEgAA5p9SE0gv/GZ/1MgO/R6zfch5BeafexQIXfMrZIax3chwQL8oiBdkJHmTppQScn1IkBA3PlXBhibnzsfnz51kQ3hoSsHa9RIrrRSTy62V9+fvK3y1nHTfyuzgi4qxh8PyO/urdv3zaw4iIeFTE7+GIiBI+/sP1/s9sa7H9BH+fSqRLL8m1ar5M519zdVHhXf/hpXrjp79KnUr7iZ3vGlFNKnrnJ//I4/rse5Zjff1Hfone/VvP0rP+7lMju+GJOBRWkv5mnue/kyRJV9JbkiT5taOfvSrP8+++1gNVq1WdO3cuOBOm06keeeQR9Xo97e7uFna8IUteooAVncR+HAppmqrdbofWj+xme0tACApEyQkHBBjixuvseNK6Eds8BAthgdZ3UtGSzXhp35imaSjvwKnB8RFYLl26pIsXL6rdbgfHBc4Gz4fABo77gtp6SJrb0CGxs9ksCAOQUuam0Wio2WyGkgwEA+znzKfb6BF3uG7KOLjuxWIRCCLnoUyB8Egn1My52+BddMDmjzhAiYjPw3w+13w+V5IkarVaqlarIetCUhCiWCu4ZqTjVqSSwr1drVbBjdFqtdTr9cI5yFvgvjAP3FcPGmXXn/XjdnvEgrKYUM45cEeHO23cJcOxnJAzfn7uog2Eng4cCAdkUrhjAGcJzp6yS4DyBs7rzyzwTAbGwnzh0ChnTHAeL22SFMbizgXEBX+PuyB8ThnPLYQb9l0cEXHWsPtb79c//t3P0V/6kz982kOJiHg0xO/hiIgjJB/5Yt3/Z9padm/Q71KJNHhhrs0rP0F3vPp1V/z4Xf/+o/W6l3+v7qh2bsz5bjLurXX02he+Vv/73pl++vM+Rq/9/k/She+/tYWFxy0o5Hn+QUkfPPr7KEmSP5B09+M5FnX0/X4/7DgPh0M98sgj4edYpb1GHGIDiVkulxqPx6Fun11riCJ2eRwIEFRIDseFQFOesFgsQlcG6Xi3E1cApRTYsZvNZmhZCfmWdAVZm81myrJMg8EgkOrz588HZwVdEHjP3t5eyFxwAu9tD3EDcP2z2SwQJjIevF2j29Ah5avVKpQ2QMSwvCOyzOfzQttOSk0oLYEEspNMOYB3VZCObeqEQXY6ndDJg3vPe+lAQakD88kx1+t1cCQwb5DGWq0W1g5En7XADnin0wn3ez6fB2ED8ouQQzcM1hzOClweuFuYe3cFIB4g9uDmcEIPAYaI8x4n5P7sQLqZk3a7rSRJNJlMCuUrbuv31qYQd9aDl+5ICtebJEkIQ/Uxu4uE9cV6Zw5xhCAOIn45cffyB8+FQEzwAFVyVcriF+/xY5VDNhGE/Ly+jm8xMeGGfhdHRJw1rB54UOuHnvHYb4yIOEXE7+GIiENUX/g8/fEX97ROH63E4fqRV6TRczZSSVR41/d/rN74Ga+6ZcQEx4fXm/rwO96qL/+2N+lrht+k3o/fumUQNyRDIUmSZ0v6SElvlPSJkv5akiR/SdKbdajY7l/DMYIAQIDfeDwOBA4SDIFgZxS7tXRsQ59MJup0Onra054WdlYvX74s6ZBgYHlnl5g/EM16va7t7e1AChEpKH9wggVBZWwQfa8dl47r1CWFa2g2m0EEwYrfbrcLu+AHBwfabDYajUZ64IEHAvnG5s04OG6WZYGIpmkaiHmn0wm7+YgCjBXSP5vNggADAfeOCE6uKWfAkYFdP03TkFPhjg/mvtVqhfNTcrFcLvXII4+o3+8rTVNtb2/r4OAg7IYzPsgh1wmhp0yEeUfU4GfNZjOQaBcBmEO6YHC9lJxAsiG/3DPWHcJDr9dTp9PRfD4PXS5whUCg3bHBvCOmUFLh3Q1cfHAxobxevSyF93K/arVa6A7CumYe6vW62u12WH8etFhudek5DqwB5s7dG+Vr8KBH1jQuEc5D2YcHTXI9OHxqtVoI7eS8uHlGo1FYS9x7hAUPRvWcB0mF7JTyc+Bjv9VwI76LIyLOEh76pk/Qm7/ouyW1HvO9ERFnAfF7OOJ2xdYz7tG7vuqCNvUbKyaAvCqtSrpBfWemO6pPTpnDzcKL66mWrRuT2VVptXTf3/2Ia35/spSe/XeeuDviCQsKSZJ0JP2spL+e5/kwSZLvk/SPdJiw8Y8kfY+krzrhc6+Q9ApJoY0gRAcyuL+/H6z9kBz/RZ/dyOQooG88Hms+n4fSieVyqfPnz6vb7Wp/fz/sbDcaDa1Wq7DD6Sn01PYzLnbvIYlOhtjRPTg4CGPzML7ybrKTtMViof39/YKtu9FoqNPpqNPpqFKpBNs8YxqNRqrX65rNZur3+2GX3B0W0+lU9Xpd3W43ZC9Mp9Ng4acdI/ZySh1Iz8/zPIgKBwcHmkwmkhQCJCFuWNLTNC3UtyMIMLeUMOAugPTTtWI2m4Xyj729Pd11111qt9u6cOGCHnrooXB+6bhLhZdWECyJ4OAtCb0Vp6RC7T1lHuygM/Y0TcMa415CRiHfnc7htxnjx93g96icGeAdM9h5bzQahXUDseXY9qwUdtkZG3NcLo0A5I9Q2uC2f66X9/NsMIe+o8+zhljgeRCelSGpIP7hrEAsc5GFsXCfOB/3AkHFQzo9KwEBhHKjsliA8HGSkMc5y+UO7sTxcolbBTfiu7gZSVvEGcOmJvVuYsBWRMSNRPwejritUa3cNDHhJNz3PR+vd37SqyVVHvO9Zx2v/wf/Vp/xga9T47W/ff0fPvo99r7v+nipkiuvXMc9qEv3fffHF1666w252j/7Jim/9uM8IUEhSZKaDr84fyzP8/9XkvI8f9h+/gOSTmwenef5ayS9RpJ2dnZyCIbbsLHKl9sksvNYr9dDPfx4PA7tF9llhkjW63X1ej1NJpNQHw+p8p72CAGSAsGHaM3n80CkqNGH+CyXS128eDEQJeqzITme9+DlBdSxX758OVjJ77zzTp0/fz6MgfNtNpsgQPT7fTWbzdCNALILoUU0aTab6na7wfrf6/UCKYRcQQohuN4dgfcR5tjv98PYndhLx6ULnmVAKQK173SU2N7eVpIkunz5svI8D+IC7hJvFyodk13utdvvJ5NJuD53MSD6cFw+464AHBUQUOm4fMIzJ9iZx6nA+kPkwhWwXC7V6XRCu053DpQFAYisCwC+/igPYI07QfayhHJL0vL6bTQawTHCdeJkQMCrVquhw4X/DIHBnucwRncUkO/g/y6LaQgLLv7gkCgHKXpmgudxeDAq5SEelsmaxKHgz6ALE4SB4rxgzByXcFbu262AG/Vd3Et2n7zfBCIirgF3v+rNev6z/qre/QX/7rSHEhHxqIjfwxG3O/L61VtD3ihMnrbRI0dlD3nlMBzxqYBaUtWyXVEjSa6LyCe1ut7z916qVSuXksfx1ZEcOj8cH/yERPqEj9Nzf3am5HW/f03jeSJdHhJJPyjpD/I8/5f2+tOOaskk6Qskve0ajnVFAjsEHlu5ky92eiF2aZrq/PnzgSx6rT6kzAMPaVvnJMwJitu7cTKwe8k5qI/HXo7tnnM4+cKq7jkQlARAEheLhRqNRiivoPVjv98P10sIZK1W02QyCV0wyHIgKJDSj52dHXW7XQ0GA0kKxJeMB2+9B7l0x0GtVtNsNgviSafT0WazCQ4OShK4h8vlMpRt9Hq9QMx91xsyl6aper1eyLZAWLh48WJwWGxvb4fgRMaAY4CwRe6f1+Nzn1grXi8vKdxTgiy9IwdzQ/tMdxhwrxFUWDMILgQ7Uk7h95i16+QbEaMsfkGEIeVkUyDgeDAlZJp/+3tYw551gFAEoWZM7ghgrfCzchmEk2wXIAjEZC693IXP8dxB9LkG7guvuRjjmQ7unHBXBnNf7trg9xhxiOfHHRSc3x0JXqpylnEjv4sjIs4aHv7aj9avf+53Sbr16mMjbh/E7+GI2x3Vc7t651+9cNrDuKXxv/7Vv9Nn/9Gf1+b33nFN7690u3rvN36YVu0bXKZ79Kv7fV/U1PPnL1b+lrc/pqjwRBwKnyjpL0p6a5Ikv3f02ndI+vIkSV6iQ3vX/ZK+9loOBjGWFELtIODD4bCQFQDBmE6nIcTPuxtAQiDgW1tb6nQ6Go/HYee3VqsVsgogNpALrOHdbje4AHhdOg5WZPd4sVhoMBgUiCzjwLngTgJ2aTebTRAAKpWK9vf3tV6v1ev1gtDAdeBUwFkB0YUUMTZaUna7XXU6HaVpGgSWVqsVrP6e/QCBZXcXNJvNQitLsgLG43HIMiAHgWuEzG5tbYUWjpQ9DIfDgijQ6/XC5yqVikajkfb29kIpQqfTCeGCjBNS6uTdHSy8jzUEMXeSyn9ns5mGw2HBhk/JiYsn7IRDMHm/i0xORhGm3Jnin3VyWy7n8R1yxCvuIw4T7j/XXN7h53jNZjMQdMYMPKQQgaZM3H0tc608N5LCuuDfuBBc4OEZYG0xpz7esrjH8Xhm3P3CHPAMM1bvYuHiJPCQR8buc4D4AMoOjTOMG/pdHBFxlvD0n323PuNl36A//rT/cNpDiYh4NMTv4YiIJwmbxqGAcTujev6c3v+VL9T83M3N/Pqjv9DR8/MXKf+ddzyqqPBEujz8TwUNo4DH1V8XW7ykkNQPmWJHGFIkKZRDTKfTsPtdJmjT6bQQKthut5VlWWG3mN1RBATKK5z0lomYB+TleR5C/5bLpfb29sK1YK8mE8Jb65VJG/X4g8Eg7I6naaput6vJZBJKHwiqo7SBcUFq+Tfna7fbYaefMdHNgDlCGECc8F1yt4VznxgLrgjCD2n96HZyJ/VJkhRyIba3t8PONu+fz+caDAZqNpva3t5Wr9dTlmXB7YB13UtkINdOyr2Uw3MUpGNi6Z1CyEKgXERSGLevB/7LXEOymU/gJQ2sF89SYN58zdJGkdIOronuHG7nL5Nwv76yuEGoIR0sXChg7XDfPdOB/3oZAD/35wGBDoIPUef4XCeiEqJDObTRO1X4s+ZlNS4sSgqfY7x+f/k866XcfcJFFoSJ5XIZuqvcKvkJN/q7OCLiLOHyn3q2/vFH/9RpDyMi4lERv4cjIp48jJ+50eU/80Id6nS3H7aedpce+JLnaPL0JydA/I/+z66eV/0T0pveevUxPSkjuQZAtBAGCA+EeDmhg5AhKLDbznEgPwgKWPHZhXXbOSS6/AeSBmmFYDipZLyE8JFiTyYDx6KVHgIJJI1jeZnHcDjUYDAIboLt7e0QCOkdGnAEYHmfz+fKsqxAmmh9iEDAmJ3EQ7SoQfewSeayTNg8f4KxQYbZiadshPvI+XE3SMeWcsgl8zsej4Og0G631el0gmgByfb74d0n3MHgeQUQXLfT8zrigLsOEJrKpTFco5dJ8DMvO2BMHgLI+crknJ97nkeapoUxzmazICQwrwgsXsbA/eH4ZCewHhmn52f4tXG93BMn+FyrBxp6JgVj8+cUNwXrwM/J/PGa54F4eGW57MCFONYo5TReooQTgeP79XS73UJwpr9PUkGYjIiIOD1s/9gb9Lc/+kv1ZV/6/ac9lIiIiIiIM4LZuUTJndPTHsaTjq177tYHPv9ZGj/7ye1G9sdf3tbzf2dLWp788zMjKHiGAWFytHWEkEjHBEJSYfffCRU7jQgSTv48yd1LHTzx3UsVfLcUB4N0bMVGAGHMnN/ryl0IYHfX68udNO7t7enhhx/W3XffrU6no36/r+l0quFwKEmFsTEmSB0lHTgjECEYswspXoPOHCPQ4Bxw4cFRJugcg64LnonhHQMgeN4NodvtSjp2A5AXsbW1FTo+7O7uhnNBork27PMQwPL1sbaYO+bNnRyUn3gNvjtHGLeLGd5hwcWhVqulnZ0d1ev1Qlikk2CCPFkP3FN3GngpDaIaHS/IDHAi7MTf22syP+V76OdkXl108vvsrgSEJOaMn9HBg3vupQOSQklPs9ksPGf+DHBuz2zgmfWShvJzynOJGIWgUBbtCArleUHEQNDxTAbuc0RExOnjrtfl+uef/nx967k/Ou2hREREREScgHw607nfS3T5JU+Oa2D8rI0+5Tn3PSnnerLw4W/6cj3j4oEeTSqYvPhpGj7vdFqbTz7no6T//JMn/uzMCAqeHE+AIlZ/SA0/L1u9IaLeJjDPc41GI43HY7VarQKplnTFTqZbqanXduv4arVSu91Wq9UqEBGIFWGHTqC9S4HXofsfxs25RqORHnroIX3wgx/UXXfdpW63G3bsy0TKa9BxOEDoG42GBoNBYecX4lk+DudeLBahxATy5rvhkDzfvWf+/D551wxs8NVqVVmWqVqtBpLbarXU6XSCBZ5uDoRMzudzbW9vq9vthnIRr8un5aTb4n13vSzyMH63/PsONGTVxR5KEcgi8LBQygfctdJut8P81+v1KwJC+Szz46UBPnZJYY1xj3CBsB6d/POadCwoIJwh1HFc1ibPCaKAhx8yZ+5g4Rje/YI5Yg27MIPgxjkJwiyX0XjeSPn58LIR/pB7Uhb+WIseuokjybu4MJblchnWJtfhDhaEloiIiNNF52feqF/Y/Ck1/uFSf33n/tMeTkRERERECZvJRBf+x4O6/JKnP2nn/F/336tfPv8mfVZr/qSd82Zi9wc6Wj34B1f9+da9z9IHX1yXHlVyuHl48FMr0n8++WdnRlCg8wK/+NOZgZ1G6bgeWtIVLd9cDIAcDYdDDYdD9Xq9QGK95p3XfKecn7lVHWBF9zIFCFuapkrTtGCbdwcD5AsS6OTNd4vpdPD+979fz3ve87S7u6t+v69er6eHHnqoQHbL6ffMI8dBiHDRwscCcfeMAlpuQsS4J5A0dqLLtvN+vx+6cXhwH7vECC7evtFt8tw77gm5Dnmeh/aCo9EoEGnaSkIO2SX3uYRgNpvNwtrg/jAn5fXknQZcZKEMgblwkcNJvAsMrGvcH96ykFIe1gXEF6HGSTSuAOYNF0eSJOG++HouuwlchPPSIi8x8GeHZ0W6UnjhPYhpLiaVBRnOxWcIcfRSBhdUyvkMfjyfF+YKlxJrztc26wJwTneGlMuT3F3jcxAREXG6aP/sG/XLX//iKChEREREREiS1h9s6Y3Zc/VZrWvrinCWce9/eYVe9HsPaPUo71ndua3sGWdzo+vMCAoQJd8V97A+t7yX6/s9Gd7t1tj42fnm2E6Q+Vyn0wmlAnzW/y0plEcgKrg4ICnkGUCkGRvBgV4q4ASw7LgYj8e6dOmSxuNx2PXu9Xqh1SP2da+ZbzabarVaIbiRMhBq9iFzlcph+0dINUGQ7J5DtqTjnWPmfzKZqNFoFGzn2P47ncOWXr7z7SUVlUpFrVZLrVYrWM+99SY7xYQ25nmuLMsKnTza7XbIUcB1gmvAWydyvRBk7gfk0Ns6IhbwORdoTtrl555PJhMNBgMdHBxoMpmEDgyUoCCIdTqdQlYEogc77X6PnIS7nZ975w4NSYEMe6tUwDW6cwdwHq6vLI64kwaUhSteY/15zkHZ4eFOCtYvxL0sILhrw10LnMPFBy9b4RoRITm3X6efB8cIaxCBCrHL29hGREScDeTftqvX/PDT9YrtD5z2UCIiIiIizgB++Hdfpo/+pHfrc1qzx37zGca5N1e1evDW/X/bmRAUIEwQILdFs4PrNnUIIL/wQ3Tq9bqazWahbR079ev1OuySU5rg1m7cB4yBDIIyUa3VaqG+vdVqXWETZ+fWhQuICqUCnPOkGnas7ePxWA8//LCe+9znqlaraWdnR9vb24XdcIi7BwHikvCsAHZtcSNAjLHxQ6wh+m4n93IMgi4hbI1GI5BYt8+XbfNuiWdeOM98Ple32w3dNMpOA4IW0zQN5JxyBoSI6XRayABgnp0AM0fSYSvMNE0L9xZhA3s/ggwgFLLdbofxD4dDHRwcaDgcqt1uX7Hj7hkTLliUcz1Yf5RneBkKnyczgfwGRAgvQyi3QfRrdkHB16o7K1xMAAR6Onz33rMqvDWmi2ScxwUT3sPzzjPPuD3A1M/lwgDPlJeU8JqLNR7U6eNj7bvYxnqVVHAqREREnAG86a163/ycpFv3l66IiIiIiBuHZL+mi6uepFtXUHjOz3ydPuRn/1C3cgz4mREUyvXfTi48jA/CABH0XUs+g7MAIsvubrvdDrv5Xk7hNdiQZYg4xIbzeMcC8gHY5YZc++42bf54zZPlnfR7/sBkMgn5D7PZLFjY0zQN141bYbVaqdVqKU1TtVqtQMAhvVjuEVEgy5RokM1A5sTe3p62t7eDYwDruFv7Iez83S3w7N6z+ywpzE2e50H0gQROJpNQRsFcMieQXO4tjgQP1HOCSF3/hQsXggPBSTauEYg4a4HSCs7DmN1OD2HlHL1eT/P5PGQ9eMaAd+Tg814K4yKUBx5CghE1PL9COhRwvFSjXL7hDgUXBfwZIn+ALgpbW1tqNBrhehkb99cJPvDAVD+XC0peclEOR3SB4iRngz//nnlR/s7g3HwOMYr76Md2ccfPRfClO6T4ToiIiIiIiIiIiDjb+I+v/LP6wPf+T33H+Xee9lCuCx/7u1+sC6/I9MKDt2qdZac9nCeEMyEoQDIgA9ieIRe+a40ogLDQ6/XU7XYDWaHMQSqm8rvbgJ18CKp0XB4B4QWj0aiwM0r2QpqmhZ17D9PzNHrPfeBaqV3369za2gp19o1GQ8PhUJcvX9ZDDz1U2EGFbGFVR3DwEhGI+XA4VKvV0mq1UqfTUafT0cHBgabTaRBuOp2O2u12IL6DwUDj8Vjj8biwOw3RXCwWOjg4CBZxyBdlFpICSS132WBuGo2GJpOJlsulBoNBEG4QQTzMr9lsXuEemU6ngcRzTkSWer2udrsdrmkwGBScHN7JwUtTIMzMJfkSrAs+D9H0MhovZWEuEBPG47EODg6UZZkWi4WyLLvic6wF7ybBnHvIaJk8+zlZF06OESP8j7fo5H4gcnEezu33izniGJSCOMqZI7yG8FEOLeX1sgvASxQQJdzBxPrg/iGKIVq54OSilOd2eAAjz5KPGQEoIiLibOHNH9fSf3lbS5/Xnpz2UCIiIiIiysglPcm/PtX2Z/rNj+nrRW/r6P9oj2/osdf5tWUWVJNrc7Su842+e++F+o2POafd9Xu1Wi4e+0NnBY/SwONMCAqE7EFqfZfag/Igp+4mqNVqarfbwS4+nU4DsfZdS+rEvZVis9ks7K6XiaykUNbgFm5IG+TGE/ypXcfR4DvrvnsrKYTKsSvqlvgsy3Tx4kXt7e2p2WyGbIFWqxWI2Wq10mg0CuJIt9sNnQ+Yv/l8ruFwGMbRbDaDKAIBpwyEVogHBwchF8FLJiDK5D+wY75er5VlWYGk4kLAZQGJh6Aiejz00EPKskznzp3Tzs5OIduC+4IQhBAzGo1CdoG3bmSs7XZb/X4/WOazLAsEFScE2QsQTN9dx3UxHh9+KUGkIbd5noe5weXgNnvpONwzy7IwB6xvF1d815x8Cq5ZUsG14K4M1h3uGXfrsB6ZQz9vuSSBufPgSsbg84Fg4cGKXCfCBvPkJS8unHAM4IIHzxZk34UN/pTLObz0CeGR7weO4d8fPi4/n39XuNgjqfD+iIiI00c+n2ujWIoUERERcdawuv99esEPtfSur+w/6efO53N93/Ofpw977//Uc2udx32c/fWxWP1Rr/1GveBrf/uaPjf4Pz9e//Wf/ctHfc97V1V9670fd/Svx1GiscmVrKW8+thvvRl4/re8Wfdf5WdnQlDI8zyQRa8/d5LnpN9rxyUFkoiQAEGAFLH7yk6zEzq3tkN2EDhoa4iN3S38k8kk1NNLCudcrVaFtoqQWEjgarUKJReeEQBxcxI0nU71yCOPBEv6ZDIJYYRpmhYC9Tgm+QAch/OOx+MgDLCzjzPAa/+Za3bm+QzX7cILRHw2m2k0GoXsCMoIINSz2SzMJwQWUWE0Gmk0GklSKE/ArTAYDDQYDNTv9wtzPxwOdenSJWVZpuzIIkRpCRkNiB2TySQ4VpxE47bwLg+SCo4HykKm02mhLAIBZTqdFspwIN7e3pHrceEJNwU77r4m6cqBgIQQUs5lcMeAC16SwpzgTsE94g4W5hI4UXdRw0sBAHPMGkVg4L0uXLBGGDtzyzXwGiIVopS7flxw4L1ch7sIyp8hGBPhruwY8qwRLwthbLH0ISIiIiIiIiLiOnDKTQh+e/YMPbe2f12fect8obUS/c702fq5F10Ir79A1yYmSNL2j75BX/ajn3Bd571uvOmtesbOR+t9n/Xk0/fq9NFtJ2dCUJAUCDIp8B7khjvBCR3kQToO3CuLCl777vZ7SCY78h7A5+S6Xq+HXAKIEkQLEQJyxk41JJXx5Hl+hQOAXXUIju+U82ez2QTiTF7CcDjUbDZTmqah64N0vKsMAabbBK4HSYH4lueEQEOs75BF5th3v/mMoxzeyLm4P8yVZ0hsb28XsgqWy2Ug6Njg0zQNbogsywpOEQSS0WhUcEr4znWZ6JfbHiKEkPfADr1ndVBqkaaphsNhEDwkhTWE84Dz8xlIvJftMH7WBqR4PB5rOp2GY7Tb7YKY5nMNaXc42S/nOHjbSc8IgDyXW4t6+QWuIRwmzI+vXS/3cJeCVCzvyfM8zBNrjPli3fDscJxydwqfBxfnWEeexVJ2SLCm3RVSnl+u2ztuuKAWERFxNvCfLn60Pqf166olp7RNExERERFxJvEfXvgsXXx7T93qVF/Re+RR3/vT420drNv6uY98pjazWyPUcWuyVnVW07r55Dlo6wcVPfu7f1+b1dWbWp4ZQcEJLcn9TjogW557IB3vSvrOLZ8jN2E4HCrLstABwXemN5tNIIZpmhZaDPpOMlZ3xALvyiAd7pC32+0gikjHu55easCYsLJ7qKQTPnZvKX3YbDZh55lAPQSL2WwWOiU0m82QH+DWbydOWOWl4x1mdwA4qaTzAwSLnXY6LkBcmVMIP0LCbDYLQgHXRTeFTqcTnBeIEE7ah8Oh9vf31W63C/kC3F92+DkuDoH5fK79/f1QV8/Pub7BYFBwAbiTxMUnF5Xa7bbG43H4GXNIVsJkMgk75ggZCBVcL2g0GuGPl8Ug7HhrUOm4U0aZXHsOAM9EuVNEObDQcwu8RIASGi8t4NgeysnYEP0YE59BOMB1xHpmvB5qWl6XHMezSdxBUA6BlBRKQ7ykwR1NjIvr8bWytbVVKJtxQc8zGCIiIs4WLn7Cgb7wf3yOfu55r73mutWIiIiIiNsDv/jiHVXa9+h//X/P19ObB/oHF95e+Pn/c/AM/d7omXrwL96l9bvu063UIaLyW7+rZ9Rfqgc+ra5V++aLCs1HKnrWD7zzMUMjz4Sg4L/0+y//nvYOAYCgOQlnF1VS4XOQFu/0wGd8BxNSTj06ZN/LKyD4EGiIEWQPmz1EhhIE7P2ee1DexfUWd5A/Av329/cD6URQGA6HgShDbL0rAMTad7l9TiUFhwXXwlgWi4Umk0khG4B7xNyUxQecFxyDn00mk7CTz9wToEnrzXq9HoIgIaKMK8uy0O2i7GDp9XphB927RBAGyVxxHeyK44Sg/MUdMIgA7PB7G8I0TcNrzAntPafTacEVIR3vdnONhAq6aIQ4xrxyHP8Zx/PyA+mYnDNG7mu1WlW73S6UCvE6a8XLgrzjgwc8Im6cFLpJxoU/S/5edxSxFv39zJNnH/A88jxxvcyBBzSyFj1w0cWEk4QKnnWfc54Rz4TwTIVy5kNERMTZwfxPPqSX/dKX6k0f+TOnPZSIiIiIiFNC+lBF1UGm8t75Jsv0vo+THnzRi/Wy7/mQws+a37uj+q+8WdJ9T9o4byS2fv0tevrWR+sDn1y7qaJC68GKnvkT92t16fJjj+mmjeI64KQHmzxklcA4yB8ZApB93xH33VCIuqSCvZ1SiHLtPMRqMpkUxlPeFSZ/AGLtuQvsvlcqlRCeCEHjPYwH8uwhcJAmF0GGw2HYUR2NRloul9rf39dkMtG5c+cCyRqNRmq325IUdsZ9t5/dYi8HybIsiAHsXFMGwXu9LSQk2VsUuiDh5RqUJHAO3/2FZG82G3W73bDrzzGYp9lspr29Pe3s7KjT6ahSqYSxnTt3LnTduHz5chApuG7uE04AxAaulVwFJ5XcO9akZx4gKDiBhvh6KYtnakCmPRDSybSTataKrwlEED5TDh30/7K+tra2Ck4cL8fgvuGygby7owZ4mQPiRbmtJM+ZO3m87IUcA64RBwOiCaLBcrm8QkApX5d/V/B5D2J0eO6ECw4c14U1XCme0+AlJTGUMSLi7GLnc/9Yz/2Rr9R9L/8Ppz2UiIiIiAhJlf2huu/e1eg5T06Ywl1vnGn17vuv+vP1O96l3mc/KUN5UlH/lTfr7vVL9cCfqmud3tjfVVsfrKjz/o12X/+AVg9+4Jo+84QEhSRJ7pc0krSWtMrz/KOTJNmV9FOSni3pfklfkuf5o6ZjQBJqtVog/tjlF4tFIFyQJYiWW6q9vhyCwc4/O7GEDLLLGSbhiGQjPLC7yg6lEw7fgffzYL+HNFN6sFwuA3nx66V0AALtpAvSN5lMCtcNcfcgQyzpk8kkkKjkqEUf52BclEgwXwQvsstNmchkMgnXhUgBOS3vpjNWr6mnXSOuA8QIWk622+3gUCCsEQLKfQXsji8Wi9AeEAKbpqlarVYgpfw7SZLQWcHvE+fyNokQShwUlAy4sMWc8Tl23nkf8+C5H6wVd7i4Q4UuG4DrLndk8GwI1jj3lOcGsaEcSsl9Yw68nIXgTu9mcFL4If/mTznLRDoOafQgxLIbCPGN4yCSIGBRWsJxPGukPE4vi/Dx+bPEunEBzR07HJt1jkjhpSF87lbAjfoujoi4pZDneuE3vFt6x2kPJCIifg9HREjS6sEP6MLv3anRcxo3/Vzd91TUeM/FK9wJtwtq/+0tetbyI7Vsb+mBP1W9ru4Pd//GRpXlyUJE6/49rd/xruua1xvhUPi0PM8v2b+/TdKv53n+nUmSfNvRv7/10Q7gu/i0TKSunl/8Ie0QFi+F8J1pjuG12hBlyC07yhAVL5FgJ5Yx4YZgZ9sD2zgG4/DdV0QFbO/ssvouLDvEkE4IF8SHsgd2wyE88/k85BJAQv3fTv74e3lX3MsXKBfxQEt2+QkLpHSBuffOB5zXa/XH43HIHPD8A2z3ZceCiwjMsY9luVyq1WqF+4QI0mg01Ov1gkOF6yDYkPG4s4QSlPF4XMhMYPy4AviME2nGydgQdMbjcSDE3FuvxXeyiqCA+4b3c9/dPeM7+4yDdeyOF0QyXAI8L1tbWwVRQTouWUBoKgdtSgrPi2cjQMa9RMcDTSWF++nj9KBVnwMv32AN4lzh+eKZKQs1fm85LiITItFqddhW1dcfzgiO5Y4TzoszhfHcQnjC38UREbcaNtlUL3r1K/WOV776tIcSESHF7+GICNXe9aB23vFc7b/o5rk8O++t6O6ff79W733/TTvHrYDK//hdNSQ9Z/8jpMq1534lr3+rtDl50+zxbKXdjJKHz5f0qUd//2FJv6HH+PJcLBZ64IEHdMcdd4Qa/vF4XAiVo5a91WpJOu4h32g01O12A3mH9EIWIU4QcYLePFdAOrZusxNPXT4dBLw23jMVEB7KpRQQSdo4kgHB6xBib91XJm9OhGu1mjqdTjgW1wRxhQC75Rzi6h0uOEetVlOapqGto1vJfRcZQYFcA8ZH9wXuA2Sa8oHhcBhcFAgqhBbSKtMJNdfvbgJa/nEdkNlK5biTAwIT4gxjrNfr6na7gRRT7kKJCmsJJ8xsNgvEv1qtBqcMZNtJPve12+0G1wJ5EeU145ke5dIbCLk7O9iZ9zp+rtXDLsly4LPcM9agl7s4WP9eesF8uhPgpPBSrr/sfuCzCEv+PHm2hj+LXIN3IfE1zd+9dMJDWgHCB8dhbAg9iFeev8GaY668vKScF3GLCQplXPd3cUTErYZ8udCzvvt39GGLV+qtfz2KChFnDvF7OOK2w/rhR3THf861qT5PgxfeeFGh9WBF9/yn92r1wIM3/Ni3KpLX//6pnv+JCgq5pF9NkiSX9O/yPH+NpDvzPP+gJOV5/sEkSe54zIPkucbjse68885AFny3n91072yAW4AWiq1WKwTupWkaCAXH853Rcn02hMzJDsF9Hq7omQpuq/Z2ik6o2PlM0zSULmCvpkTCSZwnypdFBY7R7XZDNwrpuDtGmQBCtCaTiQaDQcgHcBIJYW00GgVLODv5OB9wKGRZFsILPdDR3SN83sstuEaIPvNPJw93VHgQH2sAkcfLNSjVQNCBeONSYW1Uq1WNRiNNp9NAhlk77N57G01vr0nJBPeGdVir1ULphHTYQvLy5cvhZy42eb4AYspkMglkm+4irCcPI/S1QCkK4hDjYn16uYK3OeV4zHnZzcBadiHJ74V3UfH3I4iUHTsuErCGODdzwLmc7LvQ5w4DdzN4bom3o/QyDEqkuA8Egno2CVkXZTcIzySdSdbrdRAobgHckO/iiIhbEZvZTPf8P7+vD8tfqbd+UxQVIk4N8Xs4IuII64sXdddPrbT5ix+q0b03Lk+h+UhFz/jhP9Lq4sUbdsyIJ44nKih8Yp7nHzj6gvy1JEn+8Fo/mCTJKyS9gn/77iO7iBASdmgJZ/RSBhwKnU5Hm80mdIGAkLErCRGD0EvHHQAgpLzmwXyQM0gi5AlShMDgQgOkqVy73+v1ArHhXF4z72Sa8gvvKNFut7W9va2dnR11u92CACEd18FDVPmTZZnG47EajUawhDebzeDmcDJJWKG3RuRavKsARJkdZEijhxD6eHCcnDt3LuzgQ24958Fr2yGTlFjMZrMwdzhOEHr8Go7WVyjPIJMDq7s7XWjhyTxDPsu2e9wSvjYhpcPhUPV6Xb1eT/P5vNAZAxLva4J8AUSLLMvCmp1OpwVxipwBdtu9xSdrkh12L4OgFAAHhnfykI5t/VwD94/7UnYr+Nz6z71UgJ95qY3nG/g8QNx5DriHLoB4xwiELMZMmQzPK0ISx3QBxdcEY2PtevlI2aGAU+UWwQ35Lm6qdbPGFxFxU7HJMm2/59bIPIl4yiJ+D0dEGNb7+3raD/6+1l//EZo87YmJCtV5ouf98z9UvlppfeSAjjg7eEKCQp7nHzj67yNJkvycpI+V9HCSJE87UmKfJumRq3z2NZJeI0lHam6h5tyD39gt5L8edAepQUjAAs9/IemQewgix/fQOyz4EE5aF2Kj5z2Qfsghu5sQMm8XiPBBCCFlBJDper0e8g/c8s2YJ5NJINu1Wk3nz5/XhQsX1Ov1whgg9J7/gEjBteK6KHfB8BaTvhPMbjRk0J0em80mEDqIOeS9LPa4ywShwXe1ueZKpVIoFeDalsulxuOxms2mOp1OIbSSv7tbAzHAxRYP7sSZ4E4HzucZBT53AJeIOwpms5mGw2G4x/1+P7RtnE6nwdmBGIAAg53fyw1wInhYJGGiCCKe79FoNMLnuOesca4HUclboLJuPdfDy2H8vnBMd4zwPHhWic+3h3Vyb7mXXrrAez1Q0sUpD7BknH6vEE0Yr3cfKQt9rGP+jvvEy4E4h5eOnFQ2chZxo76Le8nurXHBEREnoP3/vlkfdm90KUScDuL3cETEldhkme5+1ZulSqJ3/72P0rp59eV9z3/fKP3Vq1j3N7nWy8VNGmXEE8XjFhSSJGlLquR5Pjr6+2dK+oeS/oukvyzpO4/++/PXcjws9JBBt8hDBCCX/X4/EBzfRfcOEPV6XbPZLJAPB8QEQgH5d6LjZRVOcLwjBMQDkgZZRDxAUKjVaqGen91USCsODN/5d2GBXAD+IHp0Op1COB5Ez7MS2HWF7EOknPR7wKELK15Xzh/vEiGpkH/gu+QIFZAz/g1pJAeCe8B4XdxwMYXuHwcHB2Fn2UUdL1PAzs4xvMQFcQM3C90InPDTTYL1xn3wgMT1eh26hXht/vb2diD9rE3WJ6GWZQLsa81dFghZrJHpdHpFmCjrz10VCGi+JgH34uj5DeOTiu0UcfR4CY27FRA4vIyI+UEo8WBDLytyku6lFuVMBy/PcMcDXTwkhTXt4gHvJ1eB6/FMinIopHQcsMo95tni2GcZN/q7OCLilsVmrepMWuZr1ZLriLuOiHiCiN/DERFXR34kBNz7Ha+XkkcJDsxzRTXt1sQTcSjcKennjn6535L043me/3KSJL8t6aeTJPlqSe+T9MXXcrB3vvOd6vV62tnZCfZvT6v33AMnG9PpVKPRKIgKCA1eq00JgKQQ3ggRnM1mhTIJyCI5AV7+ACCA1IBDXCCJlEnwWUh9s9kMHSm87t3t+JIKxFI6JHNc52q1KuySu7ABeV2v1wXSjluD60YEgcAzNx7AV6/Xw+dwgEAiGaeLJ7SR9BwK2j162KGkIDBwTu4t5QQEc3LtzDkOFeaobMknZ8DbBHo+ggcLskY8/8HDDym/QITgeN5ylOuC0LfbbQ0GA+3s7BScIHQu8ZINt+KXgzm99AUXxGg0CsJP2R3jWRPlMgLuE388rwARxYkzzwc794g3HkTqWRU8B6wzhApcBS5IcY+4Z14aw3hwqXhOhIPnmrH5cRwuXDBud1Jc7fjuyCk7L84wbuh3cUTErYw7/83r9OHnvkE//5X/QpL0rK26GkntMT4VEfGEEb+HIyKuBbeI8zPi+vC4BYU8z98t6SNOeP2ypJdf7/FGo5GyLNO5c+fCTniSJGq1WqpUKoVWg0fnCeUD2LohNGUSAMGVjkPspGNS4fXkvgMMqZCOSQmkiPA3ry9nJ5mdcUQF7/iwXq/Vbrc1Go2CMIIwUM5o4JyQXq7NCQ+kkPKMyWRSyG7AdYAoABHlOL7L604JJ+4+DxBlt4R7SQFzypxnWRYCEimDoDTBd/Gxw7fb7eBCQHhot9tBgIFsnyTieE08518ulyFMcmtrS1mWhdwIBKNerxcIrQdGQjh9tx8BYT6fq91uh3EsFguNRiMNBgONRqNQ7oEQ4eNhfMwhwgaCjWctlHf7vRzGHRDJUeAjYha78ogrrH8fC9fo4YQ8LycFMroLwsUQrsE7TnAc1gpj9s+z/jmPZyR4qcFJzzPHRRBhnbN2eZ5cLPFcFXcj8B4XnbgeD8c8q7jR38UREbc6nvn3X6dv+PufKEka/tfn6puf+2v6vPZ+dC1E3DTE7+GIiIjbGTejbeTjgu9EO3GGrBKm6MQeQjEajTQcDrWzsxOyBvx4Dggb9ny3a/vOaLnG2x0K7MpKCuUMkFoPh+MzZA14LTvjS47CA6Xj1nlu6ea/PkbgxI5/Qz4hy0mSBGIqHZMq/xylJAgNZAC4a4Dke8bHPaDGXzom3hA6J/20caTzAnOLCOBheYQkSlK73S7kT3jA33q9Djvak8kkEGpEDnbssywr7LRLh8ISXUHW63VwY3hdvgPijgDDPfbWjVmWaTQaaW9vL4hijMt3xBEFJBVEBF9riABlUu+Bj4gEHBOhi/IBrom14YGOOBCYR9wLkHwn+u4iodQDlDs7MDZ3WvjzetLz5GsJAQQRAGeDOzu8zAcHCWNnHC6Mee4Ca5/1QGmOC2q3Sm5CRETEY6P32ffpNXqOfup/ntO97ctXfd/nbP+ePqV51R9HREREREREXAVnRlCQVCAKkEKs9/zcd/AlBfs1ZAmy7qFuvM6OPG4B6dje71ZrCLPv5rpFnrG4iOCBck6U2ZGv1+tqNpuh2wHXUK/XA5mDhJXFFD7rc+M2drfqQyrLQYV0EnArPwRqsVhoPB4Xyj/c1k8eBLX1kgqdGigT8Z3jarUadvAZf7vdDvkFzCHksWz/r1ararVaarfbwbUyHA7D+REXvMuEO0cgzAgh3EOvuUcgAAgOnIN1x868u2AYN+erVCqaTCba398vZHK4A8ZJtIsKHMvnwh0CrAnG704AWqNyLs81mM1marVaoYSBUEgfi+/Al++Hk3jPTPDPeTYFr7sgwM9drCuf2/MguFbO7+U1/JdjMTYvL/JSB87t3y2sGQ9a9SwSz0y4hUoeIiIiHgODT7qs33uUn//yN71Sd33u+56s4URcJ941+/HTHkJERERExFVwpgSFsgugWq0qTdNAaMqBghAH3xV3YgHBLpcxYL0HEF/PB2AM5BuUbeRbW1thPOPxWGmaFogYbf5wTDgB8x156bg0QVJhh5kQQxwX1NLv7++r1WqFXXDG7RkJ5ABAkEejUajzd7u828+d6LurASGFnAEPdHTSBbFGtEEMQVBJ0zQICrgxaP0HfGe60Wio0+loe3s7nHs0GgXyxzX4DjNEmvuPa8GJppNixgf5dELJdXt4pKTQAaO8u7+1taW9vT1JCiGUOCtYn27HZwzcQ8/+AF5yw1pgbJ7lwetl94ekghiF8MZ95H45yqTar9PLTXwcdCwpd3BATOC4ZcIPmAfO7VkVHtToAo1fo6TgYrracT0XwttCUm7i4o2XI0VERDz1cderXie96rRHEXFV5MvHfk9ERERExKngzAgKm81GDz30kM6dOxd2W3mdnWMnsLSW9J1QD3nz2nB2P9nZdVKUJElh5x44qZ7P51qv14WuBpCd1Wql8XhcIOMQUEoEms1mEDPW63XIfZBUIODu0OB4tLHM88NQwv39fe3t7anX6+ncuXPh87gAsO0vFotC+0zyFsqJ+8wLGQXNZrNgG2cH3ktFJIW5Lu8gM3bEDDpFMBZIpwsKTtARCKRjcuxikQsJlASUxaAsy8KYnMAj5hD4yLwQ+gk59ZaZjAMiyn1H5HDRaWtrS5PJJAgVaZpeMVaOWxZsfE4B94b1j0vEXRb8l3IBD1DEucM682wJFxT4OWue58BdLF5q4M9kOVSR47GGKPPxbIRypgHX7qIQ5/K54dngOfL3+neA5yA4rubA8CwVz1bgnBERERERERERERERJ+NMCQoPP/yw7r33XrXb7cJus9epn7Rr6TXYZTLkBNp3gSGrTpJ9LG4Rh/h5qQHElmO4YAARHw6HGo/HIQNAUmFHnHILro3deq4LsQByttlsNJlMNB6PlWWZtre3wzy48wIBhB3yZrMZrmMymQTxADKGIEGWAAKLpODCoKUiYgHX7UKCt2CEmLkzwwMV+Wyr1Qr2c+4vAgThiWQ7OAH0QELOAykdDAaBeELCGYe7R9zVwc+kYzLMPHppAj/HkYBDgHP73yWFcSIiQYrd+VI+vsNdEd7FpFwmwnG9LSS5DCeBe8i98TIO7q0HFfr8ObEHiBGsQS9NcneDP7+c20l8OV/ByyL82sviG5/xkqRytgNz4k4QF9cYozs3YslDRERERERERERExNVxZgQFh+9W0rWAkgPPKZCOW+Jh5/akduk40NB3qGezWdhhZjcXq7Ok4CIgsI9dds9J8IR5iKmk4CaYzWZh7Fj9IbZlwuU78hCnskjgO/QIFvP5PJyvLLQwFsopmEPS9HkvHRj8315uwZx5TgWOi3LOxHQ6VZZlwSGA7X+zOeyacHBwoH6/H8a0tbVVmGfmoNlsqtvtFroK8B6/fgIXGS8/JzehUqmo3++H6+OzrB3IvmdWcK8JOfR1xtqAaNO6E+LutfmSwpgmk4myLCvY+VmrTljLjhsvGYB4l7MWyrkQTv45Zvk8HnDqYgrPUlmUcBcD7htEN17359LLgvhZOauiLCiw9rysgTE5uE7v5uDCigsf5bl1V42LUO6GYGwIRrHkISIiIiIiIiIiIuLqOFOCgu8Ye324W5mdvHj9v+9as+vu3RG8zh77OYQX4gFBwhlBfbW3X4QcI3bw/kqlojRNw1jG43EgmFjf+Xmr1dLOzo7G43Ghhp3rdIIDwSe1H+HCLeaeZ8B8lMkxJIqdbgQI/s08uDXf21O6M0M63gleLBahkwEOCHbiXWhZLBYaDAYaj8fa3t4O7UBHo1EYpzsAyLUgb8KPze4+RN2zELiXi8VClUolzD9AqPEuH7xeXovlUEXfFUfU8PVIeQHXwJzhpODzCApe0sD7vISB9YpgwXvLuSDu1MFRASn2YyFQ+fPgZJx58B36k1qG+q6+55m4Y4R7wec5JqU9nnXi4prnVZQFDn/ucfmUHT1SMdvCXQZeHsF1+B93SjD3iG8REREREREREREREVfizAgK/ou+EwcnbpIKZAjy66n23pqRzIN6vR52hDm+pEDSIUiQGciepCtyCBARfIe2Wq2GUDpJBcLpRA3yV6/X1Wq1Ch0oyqUY5Z1Z2i52Op1QBgCxajabhV1jt3p7SQSuA299yLhwOozH40JnByfpEC0njIg+ToYhtxBHLwcYj8dKkkT9fl9JkuiRRx4JhM5LUujEUa1WCy0huY/s3lM2sNlsQomE3y9JIa/CMxlYT4T/IT74z/lD3oGXFNDZg2MQ9OgZEsw3rhTvslDOJICgcxzuDwQcMoyg4JkR3Meyu8AzGdzFwuvlLAF+5oIExF1SwWXgJUWeuUFJiZdccI1lV4FnYvgY/HqZC3fncL2Ml7kulzvgMvGSiJOO4QKel1S48yMiIiIiIiIiIiIi4kqcGUGBX+YhACTzr9drNRqNQBicREESyg4FJ/puXcYOPxqNCmF1ZTED8gg5bTabwWXgwXO+S8sx/L+QKknBJl+r1cIxKb8oiweQQ3cbQPrLu7VbW1tBnOB97mYod7SAVENOyRmoVCohABIBxwnp1taWtre3wz2oVCrBqcG9Ilyy0WgUsiy8UwLp+pB/d4g4cJm4SMG9dUHIa+GdqOJ6cJJJ4CPXDplGQEIMSJKksOYYN84Crg1xxQUFv2/L5VLdbrcgyjAWd3x4NgTn9516xoG7wcUaxDV3WDgRZu3zeQ83LZNt5rScfeHj5lwnCQ3eLYH1yLx69wneW3ZQuBvD58cdNuV8BRcWWN/ugCgLL96tg7WDgMA99XviXSQiIiIiIiIiIiIiIoo4M4ICv8RPp1NtbW0VyKOHFjohdps8JIqdbOmYHJ0UDug7luVWc9Kx3R+S7LkD/rqLBl73XnYASAq17AgV1Nj7Tm6tVlOapkHwgBzRwUE63B3PsiwQMAgnu9lOoDzcEBeAzy3H5Zq8Nafv2OKQSNO04OgYjUZhnJIKu/ZOInk/JBD3AZ0fvK7fSS/3y3eiJYUuCjgU6vV6CD9k7hCTOLY7LaRi+GJZpPB1x86/d0eg5KVWqwWxgWMiHhEo6veZOWW9cH1eSgF8Z97XEqQcgl3OXmA94jCRjjt2cBx3/3h5je/ul4UeH1s5X4H1w/3gXiKYcU7WCveW/7ojwQk/8+/wsblA5OICr3sJUfm8/nnG5SKl56pERERERERERERERFyJMyMoSIfW9Le97W163vOed0X4XHmXHTLoYoGn1ENSfXdTKpIZ6VgEYOfZ6/6l46BC34WFLPGatxnkZy4ocF4/Hq8jLkAu2R1n/IgZiCnsLHu2AISYY63Xa7XbbZ0/f1533nmnKpWKsiwLYgLjhIh3Op1AslqtViHgkB3ara0tdbvd4FKYz+ehTeJ4PNb+/n64nqt1JKCsANs/703TNNSre5mAH48yBsYiHbbUpPTDd7Yhob7Dzf0pk1EPEqRMYrVahTGwbkajUQiGRIjhmKwFt85LCgIH4hf3GZcGJQDS8c4943KngwcI0nLTRQUEDV+TXjLheQ4uWjAmujO4k8cFEHcScB85HqUyLqTxX1qQUjLiTiDgYkPZLcH8u9BQFgM8U6Ts+HAByYU0D2/0c/kzzPxERERERERERERERFwdZ0pQkI53lSUV6vKl47BEOhOwy10mIpJCNoKTvPIuN++jdp1AuVarFc7ttm7KC7zUwUmn19hLxzZ9t2tDgiCsfgyO410gcBCcFEzHOAgqhHx6dwjGTbkFpIpjkFXgIX8QVFogSsdCSLvdDhkQktTpdNRqtTQYDIIzhDaUzIkT+sVioUuXLqnX62l3d1ftdlu9Xi+IFxybceOO8P862fWSBnamIbFuZZcUdpwJG/Sd8TzPw7yXMw78nvm1AOYbZwQlHaxniDeCj5dcMKZyrgCuCM8z4BogxbyHZ8SdHC7mcL3uIJBUcLQkSRLWtrt4nFQj2vi80tLT54y/e4cVxsf8lEUIX//cE17z4Ep3AZGT4uIVYgBrASGOOXORwXNNXKzzcoyTRJCIiIiIiIiIiIiIiEOcaUFBKiazsyPPbiJkAZKRJImazaZarVYhcZ9ad0ghZLdarQYL/2g0Kuxg+y63dLy77eTOa9h919Qt5VwTXQXcUs75qcOXDsl4p9NRu90O565Wq2q329re3i5Y3jebTbhOd1hAWufzuabTaXAV+FzhVEB4aLVayrKs0OYR8uqElPF5RkCr1Qr5FH5fyqSMHfH1eh1KE5iD+XweyjO8vAOyV87Q8J1q7rETVuaJ3Xfeg+MC8ky3iEajoV6vp2azGd7n96nZbKrZbBZEE4STRqNRcH8gGOAw4XpqtVoh64Lr4Npms1lhzlk7LhBA9iH2rNVyDoivE9afZzOUS014L/fHd+pd+HK3Az/z87iI52KcB0kyfi8nKLt2EFcqlUooyWFcHprKM+/XwPt87lyY8fH5dTF3J5UrRURERERERERERERciTMjKJR/cfdARakYpgaZS9M0kHecAAgKfAaCV6vV1Gq1ClkM2PhbrZbG43EgdG6fhvxgg/dxui0dkgb58TR/dj9dTGBMZfs2u9iIAljFK5XDtpRecrFerzWZTAqBlIx/MploMBgoTdNgaydUEAs614LIstls1G63ValUdHBwoPl8HsZDKQT/hgD7rj5kWzp2DHgAYavVUqfTUZIkoVSC13Ad4DpBEMmyLNwD5o/xI4i4uACphZQuFouwiy2p0B1jvV4HIYZd8HK3AM+GoMzB16AHN7Lm3O3Be3gfu/Ce/8HPIOe4GSC2XLdb9t1Z4ON1Kz/rorymESUQ0yaTSSF80F0JXsLhpT9eysI4cftwT7gWd/rgDnKBwcUqnivPe+B5dTdQOTvChQEXDbjXjN8DLH3NuJjhLoYoKERERERERERERERcHY9bUEiS5IWSfspeeo6kvyupL+mvSLp49Pp35Hn+2us9vu+4OrlyUsH7ICDs9jYajUBunRRCNiBv7DwnSaJut6vpdKrpdFoIlmPnmXNTSuHnhzBhwS7nM5CLUCaF7NjTghDC6n/33WLyBiBFeZ4HguykTTokk1mWaTAYBEFhMBhoOBwqy7JCaKKHXTqxgqDR5aLc0rK8m4so4bvCvKdSqajVaqnf76vf74ecBhdMvI6fUo7RaBTCEGkfyTVzLxGbvDxGKooL3G8v5SDTgSBKH0s540DSid0yfA3yh3NQRsF9JqOBAEm37yOi+HVwT8nJoKuG37PyDjtjY937bj7HZG4g6wg0Dg98RBRDEGFeKY2hK0h5HH59XgLB2qW9JIIWx/eQRC9J4L2eV1EGAkW5LMh/hrCAoOFrmvf5+c86bvZ3cURERETEoyN+D0dERNzOeNyCQp7n75T0EklKkqQq6UFJPyfpKyW9Ks/z734cxyzUtUvHAXz8Yg/x8J1SSNxisSjkE3i9PXZzb2FXq9XU6XRUr9c1mUwCcXVyyO6429A9gwF4+0XgJIWdYsbAuMoCCfZ+BAVaMnpduRMzSh687ILjzedzDYfDEHo4m800Ho9Dh4g0TSUVgyM92R4Ch8sBkkmooKQCWUzTNOQFQA49oLJer2t3dzdkJjBHOBO8bGC5XGo4HGo0Gmk2m2k+n4d75DvtjNNJInPI30+ytvs6ANwfD4WEjJbDHckmgKB76CBuDQQF5plze5ggrhHfbed40+m0QHqd3HtZDtfm4g6fc7HD16EfD6LtmQbMaVk0cscApUOey+CuCv7LvHtoJKJA2WHhz72X9ngpCaIe5/JSB59Dn1OfL3ceeFYG70PwKN+Ts4qb8V0cEREREXHtiN/DERERtzNuVMnDyyXdl+f5e5/ojh47xfydXdjVanUFOXN3wHw+13g8LuyA0hKPWnd2Yn13G8s9O9XD4bCwywqhIAzS0+DdaeAtBqXjoD4nznRjgHy6hb4cKMfnW61WsKTPZjOlaapWqxVKDcgJYCcaAQCbP0IKcwZxXC6X4T3udPD3QawhkDgKPJfAbffMgwdO+m4x9fC4LHy3PUmS4BDhHDgqxuNxEBYkhW4Q3B+3/zOmcoilv+5rhABFBAgXK/gsf5xw47Bw0u7lNKxjhK7FYqFWqxXueZkQI6rgoiHskC4ROG9cTHASzJrj/iHsQPYpIfDSjNlsVig9YL6kk/NByuAzLkJwLcyz3wcvnfDPcy/8XnrYKvPOs8c8cV4PhnRhg/uGEOH3t+wy4j2UPPi6ucVww76LIyIiIiIeF+L3cERExG2FGyUofJmkn7B//7UkSf6SpDdL+pt5nu9f64GcWED+ISC+o+whbJIC4aabgQsTEBtPl4d8VCoVdbvdYK+nMwL2dggIpQpOkDgO43KSzHl5L8THWzx6WB2f9fR/L0Vgh77dbgdXRa1WC7v3CAKIJ51Op1B6QCbDZDLR/v5+YWfb5wTiKilY7H0X10mapIIjBELtGRVkInDdHh7pbgzms1zW4KUP4/E4OAi2t7dDhgaiincX8Bp7L+9AQMBdwBzhwPC1NZvNNJlMCs4D3w338El3vSDUrNdrDYfDMK40TUMOhu+QMz6s/5VKRbPZrOBwgfC6iOHuEA/BZM1drfsBAshkMgnvKYsUJ5V9IAr5mmfuuQacC6xDX8++lpjvsluCY/N84BriPdyrWq0W1pS7arj3JwkuZfHEf+bPrIsYtyBu2HdxRERERMTjQvwejoiIuK3whAWFJEnqkj5P0rcfvfR9kv6RpPzov98j6atO+NwrJL2i9Fr4Bd9roMsdAyAeECknFLxeLlPwUgTfbSbfoNPpBGs/ggQOA4QKygvKNnBJgfiwE+w16ZAqdwpAzDj2er0OXQ4g9AgQiAbj8Vi9Xi90fWi328G9MB6Pwy53u90OwZQQsEajEXIMEBFwS7i4Uq/Xtb29HV4bDoeBVJbJOx0aaPPoRJPr9vp4SKC7PXAsrFYrNZtNTSaTMP/NZlOLxULD4VCr1SrkW/BZrs1dBIAdbmr9fX15Hb67FnxHHQEJwgrxR/Tx3Ww/J4GarJMsy7RcLkOuB4KIuyQ8tPGkLIFyoCHXitPFWyuyXnEmIF4wXp4hzxfgPpVFBXcmeMkAzhxJBfGHte1dLSqVSiFTwo/HNXsbTHdZAM8z4dj+/eAOGVwSOIfceeFlIY6yEFN2qtwquBHfxU21npSxRkRERDwVEb+HIyIibkfcCIfCZ0v6nTzPH5Yk/itJSZL8gKRfPOlDeZ6/RtJrjt6X22cCQfIdwvLuNju+nrfgO/GA4DfPZyDd31P22T1m5xSC5dkLZQs1BI5zS8clEogWkDmHp/2XxRF29CUVwvhms1nB8t/r9dTv99VsNjWdTjUej5XnubrdrrrdbiE7APKK+wCBYLVaheN71gFiSrvdLuQq8DlECHb72ZH33WLIopcYQG65r4gn1Wo1BCXSLpP3kdfgpJgdd7fz+w48ZQWUvPg9cqLLmmDHnHtfFllcgHKS7yKRrevC/cY9kqapdnd3r1gHrGPPB/ByFsbhtnxcF5zHBQjGXm4jyrWzNr1cp7wuWeNO1pk/jp1lmSqVShB5AM4U7m054NQ7Y3jOiedheCkEpSW+lr1dLPeY59iFE3++fC6YW67P11XZoVHO2TjjeMLfxb1k9+T6loiIiIiIa0H8Ho6IiLjtcCMEhS+XWbuSJHlanucfPPrnF0h62+M5KMQQosqOMe0OG41GIAXsnrtgMJlMNJ1OC7uYWLPZ7aYuH5I5Go3U6/V0+fLlQHA9e4GdbogRY5CKXREgMbShbDabajabgdi12+0gWDgZxi5PjTjBfPzBxdDpdEI9/mZz2Oqx2+0qSZLwM685d8u716tDDJ20s5vcbrfVbDYLO8tee+52cidlJwXjIRKVCbOTeAgcc+AkleN7SYDX2EME2eGGGJfr5svhf81mMzgP/Dx8xskkwoCLSMwr5Jh15uUVEHK35OM0cOcBzhG3+5fbJUKqPTPCcz2cEHMNzDkuCEQHnzM+6+fx0hzf6XehB2GC83kuBOMul8ic9JyXBTfmkHPyrHBPGLevufLx/DnEMcLP3P1Rdplwj5ifW6z+9aZ8F0dEREREXDPi93BERMRthyckKCRJ0pL0GZK+1l7+riRJXqJDe9f9pZ9dEyA1TtScuDjYOfbdV2zYTopoowhBLneSSJJEaZqGndUyMfagNsh5s9ksdF/wnU6Iitus2a33bAQnhG5Px1XhgYAeJumBiZQ+5HmuVqulNE2Dq8FDBBmLuzW89GE6nSrLsrBjDwkt72azc4tgwtgJNqR7RrkkpdVqFcoxWq1W+PtsNjsxFM93rnFDeCAfYys7QrDGl8tNnECyU46gkOd5ocTESzh8LUqH7hHIuq9Lv9dlZwP3l2tjTVM6ggOEcfCZZrNZeD/rnPOVSxi8UwnwQE4+73PiOSX+Pu/O4NkELjSxRhze1aQsKEDWGSfnLb8H4cUzEMrPpQdHeuCkfw7Rzrt3lEtKyhkU5GzcKoLCzfoujoiIiIi4NsTv4YiIiNsVT0hQyPN8Iulc6bW/+DiPFf4LafYyAyfalAawk42terPZhCA9WgwmSRLC/HgdYg85cju515BLxTZ7bq/nGJzXAxgrlUpooUjrP64N9wRklmNB4J2AeyCkE9bFYhGuw4PmvOzCwxo5h5c6SMcBfbgZsK/XajX1+/1wfGzlzHuv1yuUOEC8Id8QVA9H5L3SYcmG7+w7ofUd7cViEUQgz8k4ySnBfShb6Dk+5JWMAsi61/Hzx7uBAI4znU6DWMC4vUzAXQJXW+fuXqF8pd1ua7VaaTweX+HwcMLLGmfN4zrwuWM9uFsCUCpSFqi2trZCyCXnc+eMw0m9P5N+H7zlo4ttXBPXxXr243FOSD+fZ/yeYeFjQtBijl2MLJeiuKDAc+DlFrx+q+BGfhdHRERERFw/4vdwRETE7Yob1eXhhqJMjtkJhnTW63V1u111Op2QKwDJY4cZgkEo32w2U5ZlBTEA+3zZ2gzB8DIH7xDhgGyVCTVhgf5+SBzXwGfYeQdYzj2wcb1eazQaaTgcajQahZ19dq6dOGdZVuiW0Ol0wk4+c1N2Kng2wnq91nQ6DcSfOWCcrVZL4/FYBwcH2tvb02g0CjkQTuTJn5hMJpIOywa8c0e5xeRsNtPly5dDR4dLly7p0qVLunz5cmgnCaGXijvdk8kk5GVkWaZWqxXuL6ITc8BagkB6ZwXuue96e3kF5HdnZye072T9+DwCxAs+yz2ZzWYhXLPT6ajX64XcAxcVGJ/PpXcg8IwD1hjrwkUFngO6hfAcQNZPKgfwZ4LnwdcD9xmXR3mOPC+Dc3l4JMTfBRgXacg78LXL/cA9wzUzPs9HKJeHuJuBZ7ac2cDf+d6JiIiIiIiIiIiIiLg6zoyg4OQFkkttP8IANuhGoxEIo9v5IcNeE89/IXJu04bscR52M+moQEcBCD6ExUsbvMb9JFECuBWdnWbIE9Z8ByIIJApCNRwOdXBwoF6vF0ozGFeSJJrP54E0IjRgoV8ulxqNRtpsNiE3QjrujOG7/RA3iB0CDcGV0qFAMBqNwrwyTifuHI+x4BLBweH3CTJdFhRGo1GhRIXrZeyejcG9mk6n6nQ6hTnytoVY4N3a7uKK46QMgHJQpP/bu0NwfcwBrUkRCiizYa4QDxys+3K2AOfGpYBThLXkmQys73KZgT8jCGLu8Ci7DcrODc7Dc+JuED4jHQdwuvDloojPX71eD6U73G8PoqQMBIcP18u1MGZEQ7IyWGPuuGGuXUQpi4YRERERERERERERESfjzAgKDshhnuehrSCvQza2t7eDLR7SVE64d/u1Exhvz0cZALvykHh2tCHqHuKGVd93Qsvvc0IJieK62AV2F4aH4kkqlCdA0inn4PrK9eRe/kGAIccbj8fKskzj8ViSCiF9Hg4IoUX4IEByuVwGEYfsiNFoFIItmevlchkcEswL48/zXJcvX1ae5+r3+4XcisViofF4rPF4rOFwGP4+Ho81nU7DnHAsF29YKxBSxKDpdKputxtcBB4mCBnl89wzJ+BeWsCcu23fuw9IhwSddeP3mLFOJpPgRCE8kznFJdFqtTSZTAq759wrBDTmhHXFTn69Xg8lInyeEEyuE+cA99ldJeWwSUg56xxnQ7kzhI+B9exZE54N4p91IcFLGRqNhvr9fqFsaD6fB/Gn2WyGkghakHIfPDeCLA0PWfRcEZ7lq4kIj1a6EhERERERERERERFxhgQFJzPSsVW8TIjIK6DG28kLxAOC620F2TV2u7WHvS0Wi1BOAOnw7ARCAb3e33difXf0JCs3r7t13MMZORdkifMTLgkhLx8PkuZ2eum4RSJCCyUKk8mkQCgZK5/xUhAImc8Z7y9nDnAf+PdoNCqUNEDUyY/gXhNISOmKW/CZV8Qb5nw+n4fxlgMv+buHATphZi5ZV/P5PLgD+Cw2e8Spspjk5Qte6sL9goj7Z1hnlAsgzECo3ZrvpQHcI782RLayQwYng++8e/YC4kRZjGFuXBxzx4qvZ87l5+U+IXi4q8aDLZkjvyderoEw0W63df78eTUajSAe0ekEQcHbjfI8+VrxtexOHARG7yLCuR/t+Y2IiIiIiIiIiIiIuBJnRlAAkBnIIuIBbgUn7l4XLymUBSAoOAn21Hv/O6US5XR/PuNEy3c0+TtChecY8MfHKhWT9cutBRkLZQVehsEYXADhGuv1ethRdkEBh4Okwu4/ZRz8YdfeCSs74ogBfmzuAU4Jt4pzzzgf74WAQpzH43FBjOh2u4Gc9nq9cH86nU4ItWScXrbCvCIOsPvPPfFafBwjdJMAZXGJsTr5hKgjrjD/AJHB23t6C0zIrztK2G1fLBYaDAZaLpdBOGMdsLvuQhiCQrvdLgRBepilE/0yUfZny8MLy88ggh0CmGcy8P5yBokLM6xPfw7cNUR2CMIFx0nTVN1uVzs7OwWhKcuyQokDwgnuFtbWSZ05yvkQLjbN5/PwHs8UOak7RUREREREREREREREEWdWUKBuXzoOSINwYV1GAICkuC3byxB8R7XcHYDjz2az0A2CbgbVavWKIEc/FrunkBB29KXjjAbpeBcYEs21eF05pIodWjoAuEABYcuyTIPBQLu7uwVLN9kBiCTSsXjiLgIXWMiMgADTIhDyNZ1Otbe3p8uXL4csivF4rP39/cL1O4n3nILlcqk0TQu71BBL5j3LstBhADFlvV5rMBiEzAUIO/PkRJlda0oxgAc/elkD7hB/LyTVRSBe41hup2fskFrKb3BPsAYQZXw+pOOQT9p0LhaLIKZQatJsNgviGMIPAgkEGmHNBRfPUXCwdsvuC54Jd9xQpsP1crxyZoEDwYPr5Rl0cYZxtFqtwrxy3e12W91uV+12W/V6PThKvEzFvyd4HUcSx/c8CT6DUIMQyXPggkJZUIyIiIiIiIiIiIiIOBlnTlCAlDcaDU2n00Dw0zQN5AxLursTpGMS5DuVvObuhnJ/eer+h8OhVqtVYad7Op0GUuptDt3Gjw3fhQjIC+UITk7YNWeHlp8lSaJms6k0TUP7Ri9BkBTG2W63NZ/Pg6NhMBhIOk7jx2nhNf7827MZpGLwHsdghzbLMl2+fFn7+/uFXWAC8hgb9wJXBefjuiDrEDjECspUut2utre3Q0bGYrFQs9kMtfmMmWN594SyWFEWChBJuH9+jX5PuBeci7WIu8Ct9Igm8/lcWZZJUrjPvj685IA2noybtpgeXIhA0Wq1Qm0/IaHj8TgQduDdKBiTlyu4y8U7LHBc5pT7jdjgZR6ICT5/XkbiThieQ4Q8dwW5W4D1z9rhntJFhO4X1WpV4/G4IAYCFyLcWeBuorLwRAnJbDYL8+DXwjy6mBQRERERERERERERcTLOjKAAWS3vQNMtACLlgYHYlSFLEE/IxUkkHlLB+RAT2A3HGeB1/rQ9lIqt5SB2nA8iBRAUXMgoE00nbrzuBJiEeiztWZYFgQWbPOF+ECvPOPD2me5O4HjMNZZ2iC6CBEGO8/k87AS77RzhxsMhIdou5iAOlDMYINg4UrhHTvzZ6YcQl8UBnB4IC277964ffI7zSQrZFOXsBMQB1ly5jILzkBng/3ZBwde1h0LiVPBchTRN1Wq11Gw2tb29rW63G0IYH3744ZAhwJiYSxekvIyBtcTz4p0cXDRi/UHsfa3jsimvZUQHL+Pw8heeOXdL+D1AKILM03GDDBGCKr1zhV+POwxcIPPn3cfk4hPuBs9dQOhibXPOssMjIiIiIiIiIiIiIuIYZ0ZQcPCLPZZsfrFnF9N3wiFFTtZdjHAS7Wn5EEtCCg8ODjQajbRcLgOpqVQq6nQ6SpIk2Mod7CY7eZaO7eFum4eIum2e93pwIceBzLVarUDM2NFOkqRQitFut9VqtQIphDjhjuA8Ppe+m+3lGVmWBds+JQ7MN+0NvYaeHAfO4aUUzEOv1wstEhGCvHtFpVIpJPkDxpemqba3twtz63b3snjAGPw6uB+eFeE71DguvAUl8++hfnQaqdVqmkwmIZzRx+GCB/eU+eCcnI/77YS/Vqup1Wqp2+2GsSLs+BqEkCPaTCYTbW1tXdHWkbXqgoKXZiAKIDwwl+7G4Ric34UFPw4ZHawPF/mYG9Z72Q3CH4QRF++YH37G/aH0iXXKuvE5daGgLBL4e9zx4M9hREREhCTln/AR+qzX/NZpD+OWxa98zSdJb/jfpz2MiIiIiIgbjDMpKJR3PqXjWvAycYf8rVarULvtggQ77y5K+O40QYW4E9g9xpadpqlWq1Vhl76883qSnZ4xO0H2tH9q2MuuhdlsViDX29vbYef10qVLVwRP4rzAuQGh7vf7QXyhdISx+S4/NeXScagl42GeKMXo9/vqdrvBgUBNP+4DF10g2svlUufPnw+CBOeRion6ZDNAQLkOdpPb7XZwNEgK2RGeezCZTIKgAlgHzI0HE3rAI+IJ7gzq+T3MkJr+SqUSRAQvZ/Hddsgz15ckSRBkGIs7LzxIkHvizhJKYRhbOa/CXTk4Kvz5QahA3HAXB6UH/oyVAxh5xnwdeQCiCwPcH+bWhYZyyYE7Kwh2RCCkFMPvKWvIy2DKYkJZtPMyG58Pgie9zMFDVzlPRETE7Ytvue+tqiVH4njyRr3E/p8ecX34pdannc1fOiMiIiIinhDO3Hd7eVeRX/Bps9dsNoMAMBwONR6PAxnB0eA14BC+TqcTdrWxyNdqNY3H4xD4B7GgJr7ZbBbyACDLThwZG5b7MsnzMEWujR1/dlqr1Woo35jNZmq1WuGaeB+k0neAIbrUneMAoEyAsgjIm1QkrNSqkxMwHA5DYj7OCIgmLgHyDbIs03Q6DYT43LlzkqSDg4NC54JWqxU6NTDmsmXdWykyTwgm3j2g0+kUSiTcaUFuBOKB3yfO460pETwg5twXRJHyLrYHPEKQed1LJnyOPUSQ+9Fut0MgJCUGHMdLVgjRhPR3u90wT/v7+8Hh4F0afIffXQGePeK5Fl5+gNDGnHKvysGPnk3ic+NuCW9JivDE3Nbr9eB04L40Go3CM4GTB+EMYQTRDMcIc8ScMz/excTdFYyX55k54jO+PiMiIiL+6XvepJc26vZKFBMiIiIiIiLKOJOCgqNer6vT6ShN0yAKsGMJIeDfbnOGIELoCNhL01T9fj+0pXPS47u8fmwnqU44IEFY1CUVdmx9R9Rr69kdZ1yIFXme6+DgoBCqB9FhLnid3WDmZ3d3V+fOndNkMtH+/n7h/L7jz853s9lUp9MpBBxCJp1AQzhJ38fNwO4wZQGz2SzsdHs5A/8lkHCz2YRSAS8tQFRBECk7FDin76RzHO4fIgfH9HwID/D0chkvmSFgcbPZKE3TQitKPufdR6jB5z6xE+7tCv093iqRMfHe1WqlyWQSyP9sNtNkMgnrqdlsqt1uh64YTnrLBLi8E+9hkx7UCbmndIT16DkSPB/MlZN+rqvsHvJ557x8xktTcHm4CAd4Dv3Z5BgErLIGeT/3oSwmuNjAOJk37qU7OMpuloiIiNsLSa2uv/WHbymJCREREREREREn4cz8tlwmQQT0EVTX6XTU7/fD7rWnt5fbvzmZKKfKE2LY6XTCjiwEAhIL2RuPx8EJUa4dB05aECA8zI5jISBASCGBEEauiZZ23hmA93tZA2Ols0S329XOzo4uXboU8hUgXLSTlI5bGeJO6Pf7arfbwZUBMcOSjzsBIcJ3vPmD4LC3t1cQL7h/kjQajUJLy8lkoizLNJvNggsD+znOBubMcxk8G4JrQ0SAeOL0KAdf+vpweN0885PneXDDcM2cj2v3UhFfi5VKRa1WK7Q7hDTjiGG94aZAVHDRgWugiweiUa/X03w+D06SxWIROmUgAuCy8baJnNODGBE+vHsJn2eN4eDgGQPljh0elsjcAw9A9KBELzHwUiGOxfVkWRbIfZIkYf36d4U/616C44KH5y+wzpl/rofxlcMbIyIibh9U+9v6nNe9Wy9Pr8yiiYiIiIiIiLgSZ/K3Zd959IC6nZ2dQIwJUcQSjaUai3yapoHssstOev7u7q52dnZC60V3JHhQ3HQ6DfXZHmboJAqwC1pOupcUdtylYwJbdjywA0ydvOdBsIsK6YGIuTuj2+3qrrvu0qVLlzQYDDQajbRYLAJB9S4UkK5er6c0TcMOsXddGAwGms/nITfA2w8yDkQaLO7sGpMdwXlwJXAenAnr9ToQbXa+IdrU2UOQy6GYzJeXT7grw8kgRBXizvm86wL3ELdEt9vV+fPng/tiOp2G+9FoNELQJGsEdwVE1Gv7y/cKYk/GBOdsNpvBLTEajZRlmer1unq9XgjdZM65p1yfX0Oz2QwCgQsqLk4xTy4WsH7d0cE6LZeA+NovH69MxL0Ug+ei7N5BdEHEQUzy++PBlS4+cN/4vigHtkoq3H8/tz8TLi65aBYREXH7oP9LFX19//2nPYyIiIiIiIhbBo8pKCRJ8u8lfa6kR/I8/xNHr+1K+ilJz5Z0v6QvyfN8/+hn3y7pqyWtJf1feZ7/yrUOBjEAogW5QkzodDqaz+fB9u119p4ODwl38siuJX/YmYVkQaYhIYgKk8mkEJ7I+Xxn1Hd+IfvsajuJgrh5lwkPIcRyP5/PC231vHWmdwZA9GB8ng2BS0BSILvMhc831wS55nP8F8GBceIewKnAHw8fbDab4dgewue2ed+1951hhA2uS1IIsByNRqpWqyFjwkWdMkEt193jLkAIgZzPZrNwL1kbW1tb2t3dVb/fD2KKOy84LnOCI0RSECo8Q4PxQebdXUCJy87OTshZoOTBcxIoT8nzPBBvdtkJemT9QdC99MTzENwh4EKM5zG4IFYuqUCg43nx9Q+x92eSdeACjwcfkvnRbrdD6CICEudwsu/CAvkL/BzhxdcAQqBnRPj3hpf6cG8Z61nKU3gyv4sjIiIiIq5E/B6OiIiIuBLXsv32Q5I+q/Tat0n69TzPny/p14/+rSRJXiTpyyS9+Ogzr06SpKprAIT3aU97mqRj8i2p0JUAooBdmz9OeF1M4E+j0VC321W32w3iAtbp2Wym0WgUdvUhSCcFtLGbSY09NecQILd9Q6i4Bhc2nKRDHqVjC3e5haQLFbyHUobJZFLIc4AgQVwlBbGBn/l7fXwnOREgp+PxWAcHBzo4OAhWcUoDyEjwXXS38rsbgPKNbrerXq8XdtSl40R+J+/s5jPHEGTOD+l3UcnXjpeXeI2977QzvzhZWq1WaBnp8+Rhhy5o4JDBrYBbxluQIj7QAnIwGITyhTLpzrJM+/v7unTpki5evKiHHnpIly5d0mw2C+4SyiDIF6EsaHt7u+As4V5zzU72GTuOBxcJmA/vRMIa9PXo4P6xxvi8C0dlos88EQSKkDcejzWdTgudNPy+8lyTL9HpdAqihItkiA7uSDjpOQXuuDhD+CE9Cd/FERG3M97wOy/Qe5bj0x5GxNnFDyl+D0dEREQU8JgOhTzPfzNJkmeXXv58SZ969PcflvQbkr716PWfzPN8Luk9SZL8saSPlfT6ax0Qu+kniQaQ7Gq1GkgUHQQQIMq29yQ5bNfX7/d17tw59ft99Xq9Qh04AXiUU5Stzk62Sblnh92t805QPASPsg0+g7WfXWHGTL08O6m8/6RdY3bysywLO/cebAexpt0hhNIJoO9UQzrJBWDHmH87SWauyQpgDiDa5ERATH0epeMdboIecVoA7PZlx4nv+EvHQXo4DXi/XxPX6bkVPo+Qa3d/uEjlc4VQVRZcgJ8DoYWSD8pmJpOJJGk4HIYuGe12W5I0nU7DOHDhQMz39vaCwMH6SNM0zAEOEMg6Lg/e53PCMb1UhHvFs8d9QkzClQKR92tHgPN7zOch9x5K6s8mn/HWp5SRIAa4yFEuT2IcXqLgmRveypLvFNakZ4CUXTIevHlW8GR/F0dE3I54/je8UZ++/Ga9/ou/R3dU26c9nIgzhvg9HBEREXElHm+Gwp15nn9QkvI8/2CSJHccvX63pDfY+x44eu0x4ZZsfpmXijvHEEbfLYVAnES6vXab4EJCCEnan06noV6dOn9PvIfYOhnCaUAGAzu70nFXBgL5VqtVEDSazaYajUYgv7yPAEQIKKSVEhAvi4C4c11OutjJdQHExRh3P1BGsFwulaZpaDE5nU6DCIMIAsnjZ+zwcryykwOSB6mjrIQ5ZVztdltpmmoymRRaFfo8+v1GwPD7Q4YD1nfuKz93sQlByq39nKv8b0QS6ZhUMpecg3XBmHgf9w3nhe92E6BIu9I0TUP3jtFopOVyGcoJEJoojyColF14/jSbzeCMoGyG63cBgpIKhB/aMgIcJNxPuqIwh9wLnkPEF67Ny2rckePPESLX1cIOGRPn86BI1jtdLjy4k3tdvgb/bvAcC7/PLrQhnoAz5lA4CTf8uzgi4nbH8/7GG/TJ2TfrLV/5KnUqzcf+QMRj4iN/+8v09Psv6+xItDcU8Xs4IiLitsaNDmVMTngtP+E1JUnyCkmvKL12xS5qOQneybQTR/7rIoOT6263qzvvvFO7u7uhXMBT8iEykF3f4XRLvnQcfEcGgLsRIE9+vHq9rm63Gwi6dNz20YMFKRPAfQD5SpIkBAPieMAdsVgslGVZ2KX2Vn31ej2QcOm47SKCBYGUHlIIufXkf+aCcXNNzIuXJ0jHIYjSYS38eDwudE/A+QCZdoGFunjukbfHhMTyh53yNE01m83CdXorRlwuXgrhgZgutHjXA0mFfA2IOT93Rwb3jXXrZRKUxAA6UUiHZShkVKxWKw2HQ83n8xDOCIlmzBwHEcUDNVkfw+EwrGHaK3I9lOowFwghHoKaJEkowWCdM1fMB/PIOuBaTwovdQGrXG7AemJOcNogdrkYw3t9fbu7h/XtORXlsqmrdQxxQcGPzTXeonhc38VNtW7mmCIibhk8+++8Xp94+W9o3ZDe9o2vPu3h3PJo/Exfq3e/4bHf+NRC/B6OiIi4LfB4BYWHkyR52pES+zRJjxy9/oCkZ9j77pH0gZMOkOf5ayS9RpKSJAlfsF53Lx3vaLtF2kmWEyHPHWBHHwLtdeaQaTII5vN5KHnwHXEIk5cS8PNaraZOpxPGCQlCTGAHutPpBGcE5Gw2mxXq6iG+EEWOV063L7cuxGExGAyUJInG43HYsZUUdqRbrVZwTEgqzBOEOM9zTafTwi4+HQi4D8w5O8+IBOPxOIgTTswZCw4O30kGWMy97r4cKAhR9SBMvzcQX0gyZB/xg11274zA/FDCUqlUCmIHc8t9h6BD0rm/EORGo1HY+ZZU6FDhggnOCkQpSQVRhrlwYYd/e6kF5THuDHDxg7VfnnN7BsM9RqBCyOKZYV4RM1iXCEqEQ0oqlP14GYSHKJZLHrjW0Wik8Xgc5tG7UeBAYRy+rhye08HPEFxYD5TseMkEz7Q/yzyT5WyFM4gb+l3cS3ZP/GU3IuJ2xF3f+zoltbr0jac9kogzjvg9HBERcVvj8QoK/0XSX5b0nUf//Xl7/ceTJPmXkp4u6fmS3nQ9B+YXfzIGnCxJxSA33/2E5PMzSId3eSC0jnA8iAOklbKBspXd3QdlIi6pUCvPbqsTuzRNQ14ApRFOYjgPBIZgSO82QSihE3BKFA4ODiSpEFgI2K12IuXBfJBasisYG7u85fBGjg2ZH4/HGg6HodOBk0e6D3BPyxZ05p35YrwIGm53993yzWZTKHNAhKBDAgKHpALZ993scseBJEmCmJDnuSaTSai5Z47SNFWtVitcp5fk+H31dofeOtLH7zkevqOOa0RSEDa8rSJj8WO40EUXjLKA4qSZc3jQp3RM9Gu1WmhXORqNgqMHBwWCAtfN/eB6XfxAQHEnAX/neWFd4urhfV5K4WvG55dzlssdXAjkPe5U4DUEEL+fzJfP2RnFTfsujoiIiLgReM7PfJ0+5Ffu0/qx33qrIn4PR0RE3Na4lraRP6HDsJnzSZI8IOnv6fBL86eTJPlqSe+T9MWSlOf525Mk+WlJ75C0kvT1eZ5f0/9DqtWqzp8/r1arpdlsFggStfzsDJfJBCTAHQrSMbmeTqehbIGsAKz3iBHsBJ9ELCDB3tWAEDcn75zXOyvU63V1Oh3t7OzowoULqlQqGg6HgSzzGXbVq9VqcE5QL877IEkIC9VqVXfeeWf4N3+cQPkuN+N1+z2iSKPRCOeBzHFtnllga6LQanM8Hofj+jE4R9kC74LIZrPRZDLRcrksuDD4g4OAucdaD6mez+dK07QQSEiYoZdH+Ni9ZaV0TDQ9l4LyES9LcAGAa+d6PKzQ59lDNRGJ3LXA+8ldkI5DCr0sIMuywjqXjp0MCDfcq3a7HY6BMOLjQ8BgPtz5w/tY517CwzXxbLgIgRjmc+ihje4GcKeBi03uWuBZkhTmvixqSccdIzzHg2eW+caJ4l1iXGzg2faQRq6DNXIW8GR9F0dERBwjXy70mV/8FfrVn/mh0x7KLYv2+ytaX7x42sO4IYjfwxERERFX4lq6PHz5VX708qu8/59I+iePZzB0X4AESQohdK1Wq2B19hIESAI2bQLnIKUQHnZRG42GLl26FNwL7NTiMvD2gez0ulMCEun137SeZOycx7tUOJmk5p+dW4gVxLhWqxV2b6mTn0wmgTxuNptwjsViEVrt+fw5yZKOWyeWyZmTVxwDjIMSBM8cYOccdwI1761WqyD6OAGXFP7t7QB533q91mQyCQID7/eAP64BAggRR1Qo2+Cd/HtopbsBCMXknAgKyVE4pRN/SeGeMF+sSxcuvLSB6+Dec4+ZI0QHSDWBiLVaLeR75HmuNE3Dsb0MyLMAaL/IdbEbXy4HcucIYwG4PShncCGB+UZ8KwtyzIuvr3K+hmdycD4ELBcL/B66AIXoAZh7hC+EORfhpMOuJIgGLuqdNJ5yicZZwJP5XRwREXGMrXc9eNpDuGXxnJ/7Wr3g37zl5OCAWxDxezgiIiLiStzoUMbHDXYtfccRS36n01Gj0QhWdu8a4CULECoIB0JAs9nU+fPn9bSnPU1Pf/rTNZlMCuTH2yVCWJrNpra2tjSbzQqlDu5EgEyuVitNJpPgFoAksssLGWWn2Ymt7xjTAcBdAuze8m/IkZM4nBtY0tkhpy7e69Z5v9ep83dPysd6Tv6AdNzdAkcD52H3F1LL/fHWhBBFdrt9p927KtBto+wk4L+QTifQXAd5GFJRIHFRwcmjl8bwdz7jThV3xnCPeB/iUNkJ4cGZbuF3ko+QUa7Vh9DjWOD+eGtU1jvz4Lv7CE+sEz4Pcff75s4Od4O4C6dM4DmfizdkFfjxXExgPr3Ux+8FpSTcOy8xQtTjOKxpxuCdPbycgXvs4ZYcHzcP6xAXBOuw7NiJiIi4vbHM16ol8fvgevCC3/xLev43vFn5Jm7KR0RERDyVcWYEBUiL18V3Op1Qxw1pp4RBOi5r8F197xCBmNDtdtXtdtXpdMLuvNv2nfCW0+05npc2rNdrjcfj8PnNZqOHH35Y4/G4sEssHZMm7yrh1n+/Bt/ZdwJXDjvELQGJWywWWi6XOjg4CJ0CcFh0u93QScHnmmPxecSI0WgU2hfi2HCRBYGELhZ+PZB+D/BD4KBMw0sJsOd3u93QsQLnAoICbhFyAXBr+LVAgjk299+7D7hjo5zl4PPsIgvnRiRBQHCBp9zhwucX4uvBj9z3xWIRxBm6f7iA1u12Cx0/ptNpmFPmwAmvuwYODg6CwEJLTs9+cDGIeUBMIoMBMY0WlNwvngFvA8kxEWWYR89AcPHrarv+jAOCz5pB/EPwKb+PMZXXhnRlKQTlRV6q4gIFx/f/RkRE3N5YX7yoz/vTf0H/9Vd/8rSHcstgni+1mtWkKCZEREREPOVxZgQFUK1W1W63tVqt1O12g+2a3WvvPODkin+zo4o1mw4L/X4/ECVv6+g5CL4DT9aCl01AMCA27JpKKogOkEPPZWB3GrINqWTcgM9560NIX7fbDSUd586dk3S8S45zA7EFMQYi6LvtiAkIChBj5gSLvHcX8BwDSRoOh5pMJoFAklHhRN3LUxgDO890uqCspOyWcAu7CycIGB7W6O0evYSFWngvUXC3CSUaLkKcBHcieDtBd49wDYzXcw7Kln/ek6ap+v2+ut1uEB5arVZBuPGWltJxiCE/R1yifSlkmRIYd09w3WVBwlsnEjxJSQudLnwN+TVxzS6UcC/93kvHOSPMgTtffP0zl+WsCBd6PJyVz/HH3RLl/AZ3n7BOvCsGIgNjLotFERERtyeSE8qxIk7GeDPTx73xq/X8r3jLaQ8lIiIiIuJJwJkRFDz4DzKJAMCu9XQ6LZBUSAvEnHIHCEun09HTn/50PfvZz9Ydd9yhVqtVaGnn1nf+QOZwCFDfzi6pCwKMG4LiAXxcA60I6/V66ITggX6QJt+JhQyXLeXeVpLd4CzLriCItLRM0zR8xnfXaSeJA4Eyg/l8HggW54DAuiXcBRzG6AGXTv7YHXdyT0mDuw4Qbrw7BNftO/u+++0dHnASIBJACrG2E7aHWFHujsD1SseOEK7VxRbG4q4HJ+m+nqTjdpCUP3BNaZrq3LlzuuOOO9RutyUphE3SYrTcNcOzO9y1Uu7SsFwug5uHbAvfiffdeO6dizBJkmg6nYYSI8p/KC1wIa1SqRTcDsyLCyz+zLE+EBp8PsvlOByftcYfD1H07hrl7xHm1MNavZWli3fuYojOhIiIiDLy5My3kD11LPO1/uXeh+gn3/1S3fOFbz/t4UREREREPEk4M4LC+fPn1e/3A6mm/EFSsOKPx+MQUsdOqBNL6XineGtrS9vb2+r3+9re3g4kdT6fBys4wY3S8a4yYgK77R4W523ppGOxAXLk7ScJW0QYaTabGo/HV4QUsktPvbqkIGpAUiHNZBdAfiDnbu9HKHAXAkIAxAriyK42oZIE/0ESuW4Pi2T8hDe6MCMdEz/ew9yyw+3iB8eeTqeB8CE8nGRf9112iC3zQi09ZReQVHI0aHPJeb1G3wmln0s6dqNAmhmbdBy8KKkQ9OgZGKxl1jVzWqvV1O12tb29rTRNg4OFtVIOBnTS7y4B32ln/c/nc2VZpvF4rNlsVgiG5D0u+JSdBwgA/NxLbViz3AsEMi/b4Rye2cG6YH5cCPDPuMDkxN5LghAcODafcZcC95Y/Pp/eIcbnw787PN8kIiIiopJN9bce+kj9i7t+97SHciaxzjf6jLd/oRqfeb/u0B+e9nAiIiIiIp5EnBlBgV/i2V3tdruFQDa6KBwcHAQhAALiNn6IZqVSUbvd1s7Ojvr9fth1RZzgmC5GMA4nf8CD8MoJ9l6TLh13Smi322o0GiHHoNVqFfIHIPkQIBwDtMnEYg9pdHcAJNDFAkgzZSGUbvjOu18T70UUoI0k807gJMSNecEKj7CDq6JsUXdLvlvUfdd5Op2GnWInb+40gei5O4Vr8hwMXCJ8nm4XLh5Abp2ASirU9zMW1h5km+4B1OI74fUd/3JmAnPq4Zc4V1qtlur1enACuKDg81ir1cL7EaA898PPj2DmrSG5N5TdENzouRN+DC8LYd5Y775ukyS5ovTHSz+83aM7Ljz0lHXEeb38pTzH5dIFujm4aOBiia8n7wLh4kU5yBH4mo6IiLi9sXrPe/WWb3mp9CNRUCjjI3/7yzRb1PTML37raQ8lIiIiIuIUcGYEBUkF0gjpkKTBYKC9vT1dvnxZg8Gg0FaQX/ix6WNPJ+wPh0Ke50FQyLIsEGKvrWeXeLVaFWqqGRtgx5jdTjIMyvXd1WpV3W5Xu7u7qtVqGg6HwYngwYWQNEikkyZ2uCFmngHgte/MHQGLuBwgq4RCsqvsTgon8+z2Q7RwimCFXywWYefbd4ylK+3mkDh3LED++Xm5Pt47YDDHvJ97406FPM8DIV0ul6EVJzkZDq+39x3+cskEJSnewUI6bjHJvDhh9cyAcqgf52LO0jQNTpJyfoB3WHAynaaper2eer1eIUPEgxUR0yaTSdjhZ564FkqHKHNB4PAMCZ9fzyPwZ6XsDnD4fLrbgWN7Fkc5T8FdMRyL63Vxg7/7PXKhgefBRSx3J3iJg4spfm4vlYiIiIhovu9AL/v9L9TrP+JnT3sop46XvuVLtPf+viTphd/0+8pNWI6IiIiIuL1wJgQFOjpAkKRDYtvpdJQkiUajkS5evKhLly7p4OAg1MU7CSoLApAayBnt/ugWUW7zKB3bqiUFIl8mTOz2QrB5zXfGqe3u9Xrq9/vqdDqBLLr1W9IVZMvD7ZbLZcGd4KFzZCQwxul0GspCJKnb7YaSDMQTdpKn02kgtORUQNQgowgkuBwo4fCWhO6IoDsB5RxO0CaTSSFIkXlyS7pUbPnHfaXUgo4D6/U62OU5HkSfnf9WqxWcLhBS3+mXVGgXSaZBo9EIIoN3//D/eucBDw9kHC5UIN4gkuF2wJ3gTgOECP9Tzr0ol4OwRmjTSTkPz4WXyCBmjMfjsP6ZE54RLwfxZ8szEXBnAC974TMEm56Uh8Bz6e0ZyyUz3rXFXSSeA8HzQmmO50p4zoaXXbg46O4HF/G85IM/EREREZK0ftd92vnmF+ql3/klestLf/q0h/Ok4cdG5/RPfvRLC689+6ce1vl3vUmSFL8lIyIiIm5vnBlBodVqBdLZbDbDDjstGofDobIsCyKAB7pJx4IC5K/ZbOrcuXPa3d1Vo9HQcDgMpI3deo7l1npcBsCJMYQUm7qkQGiazWYgJUmSqNPpqN/va2dnR51OJ5BsSJeLB1437hZsyg0gwQgVZDwgBhCsuL+/H3bpy6TPMwAQThg344FEQz6x2Xc6nSCGMH5KKRg/u+58rhymB/klqJJSAEgypDNN0zD/4/FYo9EoiA9emuEuB+5Bo9FQo9EIx8etQKcDnB4+L1wj2RG+Y++72d7Sk5yGcqcJt+kzv4Rm8qfVahU6UiBG+PpDlEFE8SBQLweo1+vBcVCtVkNuAkLQcrlUlmUFwYH34GBwIQwi7S4Szsv98zVKyQFjYm74w3jLpRSsG8QQxuLCQrncwN0SLlC4IME1uKDgx3AHFPetnHvhoY3lHIeIiIiI9dvfqTu/7YX62O/6Yr3pI3/mtIdzw/ER3/VK1UZFiaB1aa1n/PzrCq/FZpAREREREeBMCArS8e48bSP7/b56vZ5Wq5UODg5Cm0JKISAOvgPJv8kr6Ha76vV6YZceEjQcDjUcDoNrQVIgjOXacakY9Fiv1wtiB+QGwr1cLoNAsrOzowsXLqjRaIRASQin28IhxF77DYn1TAgIUr1eV5qmIaPBCSPzQVcBHBlcv6TCTj5tE2mhSckEYXxpmhYcAf4zyJZ3oODanES69Z6xs+NOSQRiR7vdVq1W03K51N7enrIsC6IK5/X8AN/lxmHAedrttsbjcbC6eztQSCjtLiHW0pVWdxwQCFkIE4gPHlgIWWW+CbtEzPIWl06aEXS8defBwYHG43GYHxcX/LnhtfF4rEuXLoX1ROtISDsOBvIKyuUz7qjwbAIcAPzxMFN3nXhwJGSd9ejOH4QZdwi5g8BdGC7SlbMiXFBkHbKe/Lnl2WEecepw7/zeu7jB/Y6IiIhwrN/+Tl1+18dLH3naI7mx+Kh/+Ff1tB98s/Ll4rSHEhERERFxC+HM/LbML/6tVku9Xi+k31+6dEnD4TDU7WN53traKrTEc6v21taWdnZ2Qku+5XKp4XAYiNf+/r6Gw2EgWuXPcg4nP7gF3CUAOWG3lSyFNE21u7uru+++Wzs7OyHMz2v9pWKYnucRsAvPvGRZFnIRcEI0m031+321221lWabhcKhWqyVJBYfAeDwO9fJY55vNpra3t7WzsxMIGITTuyJ4ScNmsynY2/k7BNR3h8vJ+7gCcHfgBoCscSx+xr2lfIXPYpX3rhGQVuYS8svuP+/zUhTcDNKhoMB88V9EIUixBzW2Wi212+1CUKV3z/DdcRdfmNNut6tOp6NOp3NFhoJ3TMBN4IKXh2BybweDQZhP/j0YDEL5y2g0CgID95Fxeg4HghzrmOt2BxAiFyhnRDBOPu+CAGuZ+01LT79/vMfLZlgjHlLp5+be4HzxMhjWIO4U5pVnFqGpHDrpAqJfb0RERAT4kO+6Xx//wi/SG17yn057KE8YL3r1K/WsXzzQHX/wO1FMiIiIiIi4bpwJQQHSJSnY1CF+8/lcg8FABwcHwaKPBb/ZbAbnAoIARIGWkdSRkyFQr9cLu7TerhELuBNDbN5OXKRjGzz/HY/HwUpOOQKkkXp+douvltngQXSQHd8ZptSAP+12OwgmlEEkSRIs/IQocg20sMT9QUbFZDIJVnjmgPNB7tzyD2lkHp0UQ/i8HSYtMMuJ/b5z7K02fRfZSwM86M9dELgHvGTGAxhdCGKsTlRdGOAznleR53kQuhqNhlqtViF8ETLuWQL8nDGTg9Fut8Pcl50NOBQITaTEh7INCLoHMdbrdXU6HVWr1eC6GY1GGo1GodODCzuUYyACcQ04WXg/9wdnCMQbYYF55Z4jKLAm3L3ieRN8nufRszQcnjPCPeB1vi88rBF3DGvT54jPeWlEOQTSy568g0wseYiIiDgJf/QN9+qNH/Y9klqnPZTHjXt/+Wv0or/zAT3r8u9oUwoxjoiIiIiIuFacCUFha2tL7XY7EANqww8ODnT58uVg+4YQd7vdkBJPzbhb37H8swvKri95DE5WfUcWy7zXhPM+fz918b5DD0GC7Jw/f1533HGH6vW6Dg4ONBgMgg2enU8nTdIx0XFy63XrEF9vxwex43XaVEoK9fOci3KD3d1dbW9vq16vh44XlH9A7rj+soNDUiCEo9FIi8UiOCOchEHqGb/vThO4V61WQ8gjDgUXUTiWB1Kya839l1RwJuASkRRKBxiLhzNCdH1O+bnvvEsKJQ60OkySJMxXpVIJ52SN+bom/BInxM7Ojnq9XkEw4/PME84Gz/OAIDsxxvkxmUwKQYKsUcbIcRA3yl1CpON8AeazLNBRtgDxZwy+RsqiGPPpx/EyIr9/PBOUGjC3PMfudOD8LhBIxx1e3FXg5/OcCM/HoPtJuSNFOYMhIiIiAqzTXDvVW09MWOcb/cX7X679l0/1wtXvRRdWRERERMQTxpkQFDxpnl/qcRCw608QHpZx313F+r5YLFSr1dTpdNTr9cLnPT8BUoLo4A4BrNhSsYOAEyE6JkBQ2Flmd5hQwH6/r2azWeg8IemKwDrs955K76TNd9oh1BBQrsdT8clG8OR73y1nHnEfUC4xGo0KYXnY/nF1QMAhlR5ux7mw5EuHZNft5mVhp9lsFsL+uEYPHpRUEHXKCfy+q83nECn4PI4Nn1cXaMrrkONQJoB4g9uEdeYtKVerVUFg8HIOD7XEXUMHBMjvZDLRcDgMQgmtOV2cYC36Dj2uFNaTrxXWnbsJ3NmBCMAc42Ch5IOfe5AlpN+FJeYeEQQXQjnQ0MtU/LNluKDCWvXAVeYW8a1cauFrqVzSwVosl2D4uTkW5yq/JyIiIkKSklWieb5UI6k99pvPCH59WtV3PfclkvZPeygREREREU8hPKagkCTJv5f0uZIeyfP8Txy99i8k/VlJC0n3SfrKPM8PkiR5tqQ/kPTOo4+/Ic/zr7uWgUByJRXC7CSFnWF22L1WGkCaIeySQogjxKher4ccBm8/JylY99lB951WgubclcC5IB0QZYLpqNmm3GGz2ajf74frvHjxYhABCIrMsiwIEpAlyBOkjrFxbNwFkG0CIz3DgN1XOhpAsLHHD4fDMC8IGy7A4KpwUQNBxm3xjIfzMr++6+9tBd1V4mQW0UZSoVtFOQRTKoYyHq3NcD8RNxBEPN2fYzlZlY7zHDgWZQrMGfcfwQXy7PPN9TWbTXW73eDggNh68CVrnVINjlde327fp20o4kS73Q4hocPhUA899FAh1JByETpMsB5x5/A+gian02khu6Jc2uFijIscnm/gAgJ/RzBycD+q1WoIaEQwwdnhZQgICe6i4f67u8efbRe9EBxOEu84NuuiLDidNp6s7+KIiIjHxnP/1uv14c/8ar3zk3/ktIdyzagla23ddadWDz182kO5ZRG/hyMiIiKuxLU4FH5I0r+V5P/X/DVJ357n+SpJkn8u6dslfevRz+7L8/wl1zMISAB5BtSSE6AmHYfnOTn0lHws1RA5yhuSJCmUAeR5HroMIDaUbdKSAoE5KTOBz7qdmn9TdjCdTnXp0qUQqliv17Wzs6NWq6XBYKDxeByEjsFgEGz/7LAzBuk4vNF3qTebTcg+uHTpUjiHlwh4mYILHYgJtJrk3Mx9lmVXXHc5y8Dr/xeLhS5fvhycCy4McQ3lTAHIJWUW5C14/TtzyrVPJpMrdr0RFBijiwW8hiDFtbi7w0UTJ/AIPzg+vL0jP/dx8Jq3oUT8Yl4g8V5OwrVBniuVSiHjwz/LPPq6x7XDumFNeyChB436zzhunueFjiO+7vgcQg9uG+/kADnHycOzWp4rLyNywaRcykGXFModPCCSa+A+Uq5QzsxwtwlrtCzSML/ltcA8IyycIfyQbvJ3cURExFMXn9KU/vC/v1X/+fNfpvW77jvt4dyq+CHF7+GIiIiIAh5TUMjz/DePVFZ/7Vftn2+Q9EU3YjAQHc8L8F/qPQjO/+0p//x8MploNBopTVNtb2+rVqsVasClYzJRtkeXdzdpqSgp7Di7PR/yieAhSQcHB4F0Q2ogl+wWM5b5fB6yIHxnFELL3Pg11+t1TSYTzWYzZVmm1Wqler0eBJRWq6X5fK6Dg4NA8rvdrrrdbqjdp/OEE2wC9XAfZFlWsPEz1xA6DwvkvmHDx4ZerrfH7o8rBKGB1wkHZB4g4awH7tnVSDN18S6EUBbA7ryHGjJWr/WnBKfT6ShN03C9nudQDifEOUDGR71eD6UgCDZeMiJJrVarkIlBKCP3gev2DgfuhmDNeamCOxx8beLAcQcGa7ycgcCxIfQ8A94xoix4sbZpWcpYEbf83H4NPHOIcbg8mBMX7FgP3F/KTJgHd8e4K4HPuHjpz79/B/k6OEuCwpP5XRwREfHUxCu2P6D3/fS79Oav+Qjlb37baQ/nlkP8Ho6IiIi4EjciQ+GrJP2U/fveJEl+V9JQ0v+d5/lvPdYBnNiQ8I8VGjLJ+yAJ0jHp8TA1djsnk4nq9XrY9fVWeU5Q3OrNLjHAmk45w9bWVtgNdus1hJXODpI0Go0KhBC7uXRcRlGtVkP9POQXW7238mPc2Nv7/X4QFGinyVy0221tb2+r3W7r4sWLgUB3Op2w005ZB0KCz6uHWvJeL/UACDYk9QNEkLJl3OvsEQvIxsBFwP13AQFRwnfmy/PCvfWAQVwuWOa5Z1yPpJBB4O4Dv35KbFgfrDkPcyRElPWxvb2tbrcbPoPgw/ry7Ak+68QdkcgFMnIFfL1D2L0Mg/aqCEwuckG2vRTCS0jcPeEOBoQDRB6uE2HJyxv8HnH9fhwXIVwE4vy8znyw/rhnZbEIMcBLKjiWOzu81IX1yfgQClmjzA1zfZYEhWvAE/4ujoiIeOrjH9/xVv2J7/hw3f3nTnskT0nE7+GIiIjbDk9IUEiS5G9LWkn6saOXPijpmXmeX06S5KWS/nOSJC/O83x4wmdfIekVkpSmaWHX2+u62a1FXKB2vVarBTJqxwzHybIs7BJTa86OOsf00EC3akMkNptNqOeHaAKIDA6F7e3t0IGiVqtpb28vjBv7drnWfz6fF8hfueYcQiUdhzkS7Ac59gC7Tqej3d1d3XnnnWGnfzgcqlKpqNfrhRaTkDHEEggkO+AIMZKC9d4BEYPYQbC5JxBCd5dA6jxzwWv8Id8EaDp5XC6X4fq53wgEiBZORBGAnLz7v7HolwMsvfyC++A7/HmeazqdhnXGOGq1WrjH29vbwdHgeRAuDHBPyVPwOWIXv91uF9Y8DhTmAZGA90wmE+3v74fOG+U58gBDFyO85MP/68KdOysIlPRr9zwLno1ySZBfG4KNH4vPMjZfE2UXDM9utXrYRtXFBG9tylplbXu2RaVSCRkrjJE/7pg4azkKV8ON+i5u3sIt8CIiIq4dn3fvW/W6z/k4NX7pt097KE8ZxO/hiIiI2xWPW1BIkuQv6zCY5uX5ERPN83wuaX7097ckSXKfpBdIenP583mev0bSayTp3LlzOTut3maQTAUIErupEKvlchms6ZAYbOYQ01arpV6vF2z+WZaFXXtJV+xGp2kazgWpgbx4cGR5Z5x2gG5dpzZdUiBPnkafZVkgm5BhiCKtMz0tv16vh7KFra2t0AkAB8Tu7q4uXLignZ0dPfDAA6FFZqvVCsGAk8kkzCOEFxLpoYLs7PuOPvDSBUg3wo3nK3BvEGQgwJQfsCOOpZ75cJGB43BcgKuA9eK78Qgm7FIj7JCXsVwuQ0tHOlBwT92l4sGcgM/iSuBzlHngloHkT6fTQqgmpBpBqFKphO4kEFrWgj0rVwRjum2fFp50NPFdd58DjuXuBy8xKodBelkPghfdO1j35FNwj730hHN7zgX3hTVyUqgjJJ6yGEQCz0Vg/Jyfe1MOFGWd8pzTrYOcEhdVeJ87E26FLg838ru4l+zm5Z9HREQ89fBP7/zfuvdzPl4v+KXTHslTA/F7OCIi4nbG4xIUkiT5LB0GzvzJPM8n9voFSXt5nq+TJHmOpOdLeve1HBMLPiQC8gQB9EBASB8tDSFgnmFQtl9jB6ejge9UQ2689h+yJqmwMwwB8ZIJdkoJFoTUQJgRPyCPnq4PsWU3lOtxdwI7rN4mkDmTjkWRXq+n3d1d1ev1QqcEjl8u4YBo+o4zuQLe9tEDAqVDUYIdX+8e0el0Arlj5537AUktk2J2rieTSRB6nEx7EKfb0RkXwZvdbrcgLnlZAEKVhwJy33FqrNdrNRoNnT9/Xp1OR+v1WqPRKNx/WkVSPrHZbML9cTEjz3NlWabxeKzRaBTKOrxbhZceIC7QVpI8BC/hwa3BZyDerFFcD97FwAm9E2Z3DnjwJvfM237yc5wJnnPh+Qw+v+WMCQQjF8fckeGlNC5UuLvE54HrRsxgvjgez77na3B/cKQggPiadocLY2FdnGXcjO/iiIiI2wN/40/+in7iSz9b3Z96w2kP5ZZG/B6OiIi43XEtbSN/QtKnSjqfJMkDkv6eDhNsG5J+7egXclrhfIqkf5gkyUrSWtLX5Xm+91jnwEoOCfZdUv4NmWk2m9re3pZ0TIA96R4yVqlUdP78efX7feV5rsFgoP39fQ2Hw7BLD8lCjPBdU0gb5B0rv9d+u7XbrdOSwk48n2Onn2M7cadG3UUQJ78Ah4LnILjlfnd3V51OJ3wekYTdcYQMXAkAYg358p3jLMs0HA5DEOVqtSp0qGi1WkrTNJxXUiCbR+snZEJ4iQQODwilB/ZxDMQHFwfcKYLYVK5199p+Px5z7+F//EySer2ednZ2lKapZrNZmKM0TUMgI3NP2Yw7BTwzwdctZLx8fcwP5JfrcBGH9zB+5tCFFT8m5SIIW5xzsVgEAs498bIdz1Nw1w75G2maBlcG48Oh48SbMSEolI/NvfFuDy4qUO7j3w3MMfcLJwnnLzts+A7gXiP2ICb4cYGX07AWy7khp40n47s4IiLi9sE37LxX3/eCirqnPZBbCPF7OCIiIuJKXEuXhy8/4eUfvMp7f1bSz17vINbrtabTaSDdHhAIccYW3u/31Wq1Qi17tVpVu90OBEo6JGC9Xk/dbjdYy8fjsT74wQ9qNBoVQtc4P+TVd0YlFXbqpWJdugdIAndSEITILq3vsPvOKsTYyxsQJiCaiCbU/EM4sd97foMLIpAmiHdylEvBzv729nbY/ecz2MqdODcajbBLT5lGvV5Xu90OogKfk1Qgu75bXXZ4lIP1fI55HeeBW905vu8qewifOyHKYoMLFH7vuBaOD4nGPcK1IeQ40eX+kQPB/SZXApGn7KDwEhHe5yKBr0n/O2AeuW7PxMD5ISkIBOXSAu4BThVyBgirxIlCKRBCgrdhxIWDC4D5KJcscC/9WaMMxR0PiASsFyf7CCZ8RzDP/uwjkvi/OTeiGOuMa+YZIAQS9wlzdRbwZHwXR0RE3F549Vd8v/72H/4VdX7mjac9lFsC8Xs4IiIi4krciC4PTxiQHw/Q22w2hRp0QuoIzJOOyxrYOYVs1Ot17e7uqtfrabPZ6OLFi3rf+96nwWCg2WwWOjJARCCVlEH4ax725hZydqMhHtKxPT/Pc6Vpql6vp2azqclkEqzoTtbIiMBKjxDA+TmWOyjcoi8Vyx3a7bYkaTgcKsuyME/+XrIbptNpgdx6ar50SBy9Q0S1Wr3iOig/gSQ60eX6uJ8E6UE4ue/MMa4Bd0nkR2GThByy48+/+RzzwjxyfnIgyDSQriTg7FQzv94FAYeJf87JK9cHIXayyrhwiLhtH5dArVYrlImQFcH5WZPeepP/lt01kHjIO/dvPB6H45wkjnBM3Cwu7jAGdyt4aQVjIMzUXQQIH2UnDWNg3vy5Z/58jl1k4rju3uC+It4gEnowpYtV3HfmjvXPsXGW+BqMiIiIKOP+f/wy/dYnfLek9mkP5QnhU9ON5tsVdU57IBERERERtyzOhKDg9mRIL/Z8Ev69NVy5lZvX59PasdfrqVqtKssyjUaj4IDA6eC1015rP5/PC60L3a4NnPRAaMq77wQhsssLeWw0GqF+GwJGy0TfcYUIsfvbbrfVaDQKFnNaUSKQ0AqPmnrcE5yHrhUHBweaz+fqdDonXiMEHBLqJRMQLUiZBzS65Z45hvh71gVj5HNpmhZCARFUyMpg7D5nHu6HC4V70e12Q24EpBXC6iGDkEXPeuDe5EeBmh4oSPjhaDQK84UQ5DviOCoQCDiXi0iIMRBd1n69Xi+sqXLLQw8abLVaarfbhetDrECoYuffy3QYr2dpkC/g5TIu2uBKQNBCOKFrAs+RZz+w9rhvBIN6OQHPGg6B6XQa7gnPPcdl3XjoZPl7hPciAPn4XbB00YZ/+zzy2YiIiIiTcO8/+h192oe+Qm9/2Y899psjIiIiIiKewjgzggLEA1IO0fBdc0oMIOD823czadOIBX8+n2s4HGowGGi5XBbq/amTd0HBw9rK1nPeh6XdOwZAgrGEe2Cd7566mMF5IGTskErHdmyuiwBE/xkE0nMSRqORLl68qNFoVCCTq9VKe3t7unz5csiQ8N1urpHxQa7a7XbB0u9OBHaBfbcfi7wHCCLyNBoNTSYTDQaDkEmAVd4dGoDr9uwDCLOkQrtC1gvOAkpNuF/cP9/9Xq/XYe7o7JBlWUFwYC1Op9MQHDmZTAptCSnHYIysP4QSDyRMkiTMqZNff7+kIH4h1LibhHnhM95JBPcL8ycdh4q6gwLBDieMizf83IMQnYhz31zAYB25sMSaQjRjnnhOEMYQOfg34gPPEffYA029VSTPkbtVXITheUFA8TXPe72N7K3ULjIiIuJ0kM/nuueL3qGX/9rn6Rc+5D+pVak/9ociIiIiIiKegjgTggKECiLCzqrXt2Npd0IwmUyUZVmwKEOcSPyfTqcaDAYaDoeFLIJyVoLv2krFtHg+A4mTFBwAWZYFQoa4wecQCAhAxDXhu88QRidDnN8JHdZ7t3+7HZvd5r29PY3HY+3t7WkymQTChwjggYyQc8YCWfXXnOwxHoQFhB6IGPfKuxm4wNDpdJTnucbjcRiHW9G9FIGwQxdaeA+78wgq7Pi7Y8FdC6PRKORHeFAhRDdNU7VarXAeyD9hmVjg6dwwHA7Djr503LUC4tpsNtXv99Xv90N3j8lkEqz9uACkY9EAdwDXi1Dj7gRIv5/j/PnzarVaGo1G6vV6ms1moZUoIoQTasQUnjHmmbXdbrfD+b3bCuUJhKYyzy7EcT5cFwhSLgIx9+7E4T56bgpCAGIT6/GkkETGgDDAOqFEA/h3hwsRvrbdfePHjoiIiDgRea6tT3+fvkAfq09/20if3/3fekHt1i6BiIiIiIiIuF6cGUEBIuqEu+xOkBTIB0GLtCekPhtyttlsNBqNNJlMAnHHnl2pVELYIKQWsgHBkI7zCTy7AaIFYYIEY63f2trSuXPnAlkcDAZqt9uFYDupuENaLqmA0EkKu+29Xi+QTnZqXQxZLpcaDAa6fPmyLl68GIIUO51OGLcTTebLgxGZP5wXkGCINrv3tLqs1WrBWu9lDRBs7h07vp5j4GUskEXILkKOk3zKLbyVJsGRkH7WAWICmRkezOfEt9PpqNvtBnHg4OBA4/G44Cbgvo7H4yDGsJvvpS8IC9yrXq8XgiwZr6RAuNlpZyy4C7Doc03MH/eZFp3nz59Xr9crrF8EkOFwGNY8pQSIVL7WWeMefOniEKILoh33yAMSWYeMk8+XHQD/f3vnFitZfp317191qk5ddt3r3Nwzw3giI2QiZCxkIQVFeUAk8YvJmxESeUBKHhIJJHhwFAnMQx5AJLwgRXKUyAGFWEiAsHgiRqC8EMwAY2eMM8kMY4ue6ek+t7pX9bltHk79/mfV7tO3obsumfVJrT5dp2rX2v+991+9vvWtb/EMQ0hBIgJaHawSxZ6bVcFAsvEsWE8Fq3bi/rMEHXHZexLijGfZfjb7bDocDsdt+NaP1vQt/Zj+5h/dVTV3vSddKiivl+vD8rzfcdv7C2P3inE4HA7Hx8daEArSjYmfnbxA8kKCUS6XYxIBmYAMn9YBJiFQBR+NRrFn3foVkIzbMXLWOV5SrNqSIEMgZHurQwgajUZR7o56AuLDtg3YKiqJkn2NxOns7Cwmebb/XVKcvkCC9PDhw+iLMJlMIhlBtZ51xG8B/wXIFSuhxwwTQoQ1GY/HcWIA/hDWKNB6FDBOkt9ZfwRJMVmERCIZtsmk9YOw0wRoxyCZzSa0qBBQFNC2AWlgnf1pTSCBZ3QppANrYV/nHqN9w44DzefzqtVqarVaarVaqlQq0cjy/Pw8ft/V1ZX6/X68RhAUmFJyPBJdO+GiWq3q4OBA+/v7ajQakWyhJQPSx1b+OY69XyFf+F5UO3Y6g20NsSoEabHNhPOwbTtZk1Xb3sF14N6jFQPSCGIL0mo6nUYigs9mW4d4lvgunnc+Z/0o+N7sxAv+Zi+C3HI4HI5nxe/8uVdWHcJzo64/WHUIDofD4dhgrAWhgIRa0oK8mopqqVRSvV7X7u6ucrmchsNhrCZbl/5yuaxWq6VyuazJZKLBYBDHI1oPBBITK7UmMaM/HmUAkxNI3knW+DyJEv37/Dwej+N32cQua+ZnR1SSTJLM2xaHbOJFZZaqNQSGnThgTSItMUNCTWJve+9JxIfD4YJnAoQCPfs2ASUR5PiWcLCJHudJAmv9BawBIO/jM9boD7CWNtHkfcPhMJIhXEfIGRJZKtycn/VGoDLPsc/Pz6P6gFGgqCVISlnTRqOhVquldrsdCRtMHCEMIGZYe5J6fg9JgR+A9Qip1+tqtVpxgshsNovTHAaDQTy2rdJbPxD+be87a8JJW4Nt/4HAYd3s+6Ub4kq68WbgmvIdEAAk6DyvJPaTySTeV7aNBPUNbS3Wh8SaK1rD1ixRyNplyTtLFkAkWJKCfcHhcDgcDofD4XDcjrUgFCTFiqCVsCNvbjQaunPnjnZ2dhRC0Hg8jr3sJLHI+6vVqorFosbjcUy4rRQ+K9MmWaH/fDQaKZ/PK0mSWDmWbuTdJHgkUzYBxFNgMBjEZJbk2SYvJERWgm3HLEKSkPRkfR6oSM9ms6hGaDabMdHlvTZRhzjh+1F1oFqwiTUTE6xrPmuYJEmssiOBR4aPgoS/7TqjNrCVapvsoUig3cIaRVoDQbs2NknmWlh1CPdErVaL50xCbY36SMptawymnSTHKA9oZZjNZgvHrFQqarVaajab8T38Hk8P7l3Wxa69nephlRrWuLBWq6nT6ajVasX17fV60TODteRZ4t9cv8eNQsS3grWAIOJ5IRHnGbLPJmQeJIOdtpFVJdj2B8iUfD6/0BYCEQKRgAKH+5jvs4oV2pEgySAVbMuIdEPuoYyxzx7kGp+zJKPD4XA4HA6Hw+G4HWtBKFhDPiujxu29Xq+r3W5HiTf+ByRy1ufAyuglRfM4kizbc229D6hQI2tHnVCv1yUpegiQdM1mszjGUbpJlkhMSZJJbuxUBkgGzt0mSSTptorMZy3xMRgMNJvNYh+6NeAjSbOTFGzLgU0siUe6IVes1J4WE0gCJmTwXmTz1Wp1oTXDGkCiurATEaw8nQQcE0USOUuiWGm67W9nfUgGue7lclmNRiO2JxCbpIUxl/hV4J1AIm+neBQKBbVaLe3t7SlJkhhHpVKJ16rZbGpnZ0eNRmNB+SApTixgOgiVduvRYUcb2pGbJOiYerbb7WhwOZ1ONRgMojko3hYoIrjfuDez0xisFwLPgm2XscSEvbesiSckiL13rAqA77TKHGt0ConFM8n7ed2atFpPhNu8FiATrKKF5wuCya6zJdh4DlDNQOR4y4PD4XA4HA6Hw/F4rA2hQDJIIkQyzmg8+qlJPqjYJkmiXC6narUa3fqpAPNv5Om2Yk7F3lb6Ly8vVSwWlSSJms1mrDhfXV1pPB5rPB7HqrWVoiN7J/mhsmyrs8Qh3ZjdWaM9knR7TOtKf3Z2FpNt+vqpptsJECRbljygFQJDQztOL9tKwXcixSephDCARLEjEqvV6sJIRogXvo+4iEdS/F29Xlej0VAul4stLHwWdUCW5CAh5H4plUoLVfJisahGo6GdnZ1oSiktVr1RlqBoYD0hpCCZuM+Y3MDxLi4uYjtMsVhUt9tVt9uN96NVn/D9fHexWFxowbBEjPXygISBKEiSJLY6YMLZ6/Ui+WKPZ/1H7JQMjm9HS1rPBo6BooKqvr2HeT6lG+WONcZEFUFCniUlIBRopaE9iM9xnaz3AWvKdxIH7Sxcf+uDYk0pIX5oQ7GeEJCRPAs841Yx4XA4HA6Hw+FwOB7FWhAK0qLxG0kdCV65XI5VdOvSTzLNaMJ8Ph8TUFtxtBMBSHhIIm2lElVBrVbT7u6udnZ2VCqVYqXUtmNkSRA7LcEaKEqKleJyubwwQYDzsVXZ7CQEyBAUCRAKl5eXUc5viRQScWIi2aMFhL511iE7+o9kjYqv9XMgGaNajMlluVxe8Dvo9XoaDocxeSZptU76rB+eDFSQkbgTO+di74ssyWBbOvgexofWarVY7YbooNXj6uoqVvmn02k01OQ6c806nY4ajYaq1WokTx4+fBgT/kqlomazGd9Dsg2hgDno2dlZNOi096X1NcA/hDWy00tQzGxtbWk4HOro6Ciusx2faA0e7WhSiJSs0sB6e9hxjTZxh0TImqayDhBZ9jrzPp4ByARIDp5Bex1RWqCiYR2yExogvCATsoQax7ExoGDIPvPco5BnED/sBw6Hw+FwOBwOh+N2rAWhYJMpWg5Iauv1usrl8oL7PUkWPgDWHJEEh2SQpIqxdLa/2kqnSSYajYZ2d3e1t7enVqu1YMxHxdzKxS2BQBJj/RqkG6LCGsXZCiztDBAcVkGAugBTP+Le2tpSkiTR6wHJOedP8kgVmNGOxGLbBEisp9NpXI9c7nr0IlMD8GfgfCRFjwmbDF5eXsaWjDRNo7qExI33M86Rc7eJ8GAwiOsNcWAngEDqsA7cQ1yLJEkWjAv7/X703WBcIX4Go9EoxpIlMWyrDWoYplegCikWi2q329rd3VW73Y5+DazpbDZTv9+P92S73Y73mlXGkFgPBgMNBoPoHQKBhjqhWq3q8vJSvV4vnhf3EsQLhpjZcYq2/Ua6UQzYVghrXMn9jYLG3vO2vcGaZaKKsK/xGUgN7nvW2bbB2NYFS1zxPHH/2vYmjmlVDDxD9hnPKkeyZATPD88aZJfD4XA4HA6Hw+G4HWtBKEhSv9/XdDqNSSFmf3YiAOaHVFGRMlPxHI1GMTGxCQdVaY5r1RC2FYEqPP3qmO9BdlCpt7J/2+tPEmarxcBK/TF/RGVgWzmszBrPB2Jl6gWTFFAnSIrJGQkqxAvmcnYahiVB7JQAJjtke9WtYoHEDnUB5I90M6UCg0CUA5eXl1GyD6kAyYGSgmvNGuEDYNs0QgiazWbxd3gdWA8CWlYwj0zTVIPBII7VxGSTdbGmfrZ/njaG/f19VatVbW9vRxKLc+WzrVZrQcFAywskDS06EBR8P+tPEouh53Q6XfC2KBaL2t/f18HBgarVqqbTqXq9nsbj8YJCgHgkxfXNeidY2HaX7CQQFArWp8IqHaSbcaG2LcCqH4jdrpf1xLDmnJBd3NsoBSyxYVscrAKIY2UnYvBdkBa2tSNrhInqx36e73Q4HA6Hw+FwOBy3Y20IBf6jT2JjkxhJ0SwOk7xisRgry5Ji0k9CQEJjpfwkR9YrQLoxoEvTVJVKJbY6TKdT9ft9nZ6eajAYLKgH8F/gO6RHpw1wLrYfnZGSVEFtG4GVh0NWTKfT6K+AuR/H5bO2Uoy8HzPCQqEQzxdyhsSRBJ1qN4k0iTPJIAQO/6b9gOQ6n8/Hqj/j/6rVakzyrAdAuVyOJAgECC0KSZLEc+j3+48YWSKTH41GUdLPOlQqlXhfdDodVSqVWEnHP8MqKax3RalUit85mUyUz+fVbDb16quvqtvtxj5826YiKa5Vp9NRrVaLPh+oSvr9fpyYgLkobS+QDSgS7EQD+134Qezv76vZbEq6Jt+Gw2FUgnA/SdeJMMoHjsP52gq+VSHYUYl2+gLrb4mh7L+tYij7fRyPa22fExsHhALtM6yxJRlI8G0bkyUFUa9AyoGsOsE+Y3bvsLEVi8WF/cPhcDgcDofD4XDcjqeW30IIvxVCeBBCeNu89tUQwgchhLfmf75ofvdLIYR3QwjvhBB+8lmCgDiwvfCSogSeROtJffMk6ngN0EfN7+0YQtuiYE3xisWiDg4O1Gq1JEmTyUS9Xk+DwSD29dMjTxJDjFY+TRIl3VQ6rYSfRIkxgCSgSNStYSRV6GxvOskgydv5+bkmk0k0bszn87FabtswOD7V/6Ojo0iYoAbY3t6OCTDna8f5kXRZkz9aTJi6YVs+kOxjbEjyaXvVK5WKKpVKNFgkuUSFQdXaTgMgEbUTORqNRoyD1gPrC2Er3u12W/v7+3GsI6ad29vb6nQ62t/fV6vVUq1WUy6X03g8jkaIhUJB3W5XnU4nKhswpDw8PNSDBw+i2SDSeUgRSAS8Juw0DDvpgwkYr732ml599VXV63VdXV1pNBrF+3IymSxMBsFk0hITWUUBRAy/I9mHnLEGkVxvSANLjPGdqE7K5fJCO5FVtdj3ZU0eIaD4PH+Ig/uX78dHBPWQVVpApjChAzUE62pJCNYkq8SxEy/WaWzkMvZih8PhcDwevg87HA7Ho3gWhcLXJf1zSf8i8/o/S9P0n9oXQgiflfRlSX9e0qckfSuE8GfTNL3UM4BEgaquNQ2kWk+fOwm6dDMFARUDFUamBtgRcPxtj09yRTLM8RkliUmebbOwZnUcn0SYv+30gYuLi4W++0qlonK5HKXYSOCRwWOiSFJIUma/N6uIIMGr1Wrqdrsql8uRNMn2uls1AyqBXO56Wkar1YrnSq+77bvPEhOcOwoGSBaIh263q0ajoXq9/kjctGFAHmSNDC0JYEcSQsjga0D1n7XlnKfT6cIUBOIuFotqNpvK5/MajUbq9/vxGu3u7ur111/Xa6+9pu3tbU0mk+hXwFpbLwp8DGhJwdQRTwCIj6urKw2HQx0eHurw8FAnJydRgcLYTJJ1WnaazaY6nU68luPxWL1eT6enpzo9PY3KElQzmGjyXHANrerBtrRYjwpLhFkSDkDmYfSJOgF1Cu0btk3FgskWgHuBa0ysljjieqNK4PisLc8FJADtNtZo0SoaLMnFcYkVlQPrwnO3Rvi6lrQXOxwOh+NWfF2+DzscDscCnkoopGn6+yGE15/xeF+S9I00TR9Kej+E8K6kL0j6r0/7oDU9vLq6ihJ5K3WnUirdjJijukpSTyJrq7HWeM32fVMRtUkqknGqwL1eLxIVttpre863trZiMkl1nIo8rv4ktCgFrGeAHetH0kjVOtvrbRMt4raj8pDw4y9gVQ8ANQQVWJIvlAJUla0hJetDgmaPDUmCXN0qOPB6qNfrSpJkgczZ3t5e8KVAaj+bzWLFe2tra+G7JEWfBMwSLbHAediJH9bg8uLiQoVCQfV6Xd1uN7ZdQBhVq1Xt7u6q2+2qXq/H5Pbk5EQnJydRdl8qlaLKA88EWka4jiSreCjg//DRRx/p8PBQs9ksqkEgIrg3mTRy584d7e/vR4XERx99pHv37sUJD5YwsWaf1ovEtg5xT9nng58tAYAqyFb0UQGgfuA+tq9znSDTIMUsuQYglKz3gaQFdYWNU9KC+sG25UAmXFxcxPsXsoHP8HxwLnYv4TWei6zJ4zpgWXuxw+FwOG6H78MOh8PxKP5/PBR+MYTwtyS9KenvpWl6KumOpD8w77k7f+2pIKGg2o3UnWSdJNU6wj98+DAmVFRZmSpAYiwpVnCpgEqKI/BICqlQXlxcRDn56emphsPhguzbjqSjn5vqvPUeqNVqqlarkm4SJ8gKSVFabvvQOSck2LRRkIxRYbXO83Zco52Mkc/ndXZ2FqvltCaQPEMm2OOzfpA12WowZI31JYAIYN2pYiPxr9Vq2tnZ0cHBgZIk0dHRUfy9vba0LNiWBggXSXECBr32mCDy3Zhbcq3sqEiq4CgtUGHUajUNBoMYc7vd1sHBgd544w3t7u4ql8vF8YwnJycaDofxPrTtHiSkECgQVZBdGAyOx+PYXjKbzaLKolqtxjWGEKrVavEc0zTVdDrV6emp7t27pw8++ECnp6dxxKSV5dsKvFV2oMwJISz4jHDvUMFn/a15Kc8X5I49Pkk3hIr1arAmq5bQg1QgDhsX9x3Imjcy+hUCq1AoxPYEe+/YNgirHrG+H5AUNh7IhKzqZs3xQvdih8PhcDw3fB92OByfWHxcPe+vS/oRSZ+TdE/Sr85fD7e8N73lNYUQfi6E8GYI4U3MDeevRzNBqtW481er1Wi2x0jD4XAYK6P06rfbbe3s7ESpOIkFY/ysXNoa7CF/Pzk5iT3w0+k0JjgkWLYHnaTE9oOTVJKQUG0/Pz+PEnUSqCwRghSbhAkfBElxYgAgUaKqXSqVVK/XY+sAvfTZCi+GgFTrIRSs9Hw8HkezP8gXvnM6ncapFLlcTkmSRCUGPhGYLDYajagkQMFggelgu92Osn4SZRJeWmHSNI0kRZIkMSnEYwF1AIkvcTSbzXgflMtldbtd7e3txXOSrgmeTqejO3fuqN1uq1AoaDgc6u7du3r//fd1fHy8oPawPhe0jbDetMswaYHe/uFwGEkq7lXGTNppF7Ss1Ot1SdcmjB988IHee+89/fCHP1S/31/o8bdtAsRoR5daYoA1taankFIQH3YMJRV7iDerprHEAV4fkuI1gwCChOF4lkiwbRIQYNYkEeKCZB9lBIQV7RcQdZAGVrXDsSDosool3stxeJ6sEeka44Xuxed6eNtbHA6Hw/F4+D7scDg+0fhYCoU0Te/zcwjhNyT9h/k/70p61bz1FUkfPuYYX5P0NUlqNBop1U4M2kqlUkw+qNbu7e3FHmmSTGTMW1tbkUxAJm4TParCJJmSopkh1f1cLrdglIeMGxNBO1aOqi5JLcl4uVxeMDMkwbETCpCRcxwq1VTSkf5DqiDft8QAyRmkBQQHpATqDQgQEjqr6rDj92yVmDg5dxJCRiH2+32NRqM4EaNarWpraysSNiT+lUolegAkSbJgPMj30WLQbrd1fn6uk5MTHR0dxWtnk9V8Pq9Op6N6vR59Esrl8sK4SVtd5jogoT8/P1e73danPvUptVqt6B3BmnU6HXW73Tia8cGDB7p7964ODw91dnYWiRcSadp07EQCyCvuF5vgs4Z4VaCqsKaAxWJR9Xo9ji3FCwRlwvHxcfTXsOQA542SgHsEYiM77YB2AMgRCAV7PIgn7lXOkftFuiGoaG3gd7bFh9eyCgZiJhY7CYL72p6jNZSEZLAkRDY+zse2Jtln15q2ci7Sjf8CnifrjBe9F9dD+9b/7DocDofjdvg+7HA4Pun4WP9bDiEcpGl6b/7Pn5GE2+03Jf2rEMKv6dqA5jOSvv2Mx4wu81SyGQuJYV+5XI7Ji5V201OPa//u7q5qtVpMRkej0cJISZtQSDdjI5HJk/STbPBzllTg+0kyqWqSeEo3I/KGw6F6vZ5OTk5iUkmVl358VBaoG+h1t98FOUECheSf9gsIDksK0Kphq88cT9JCnz0VY5Jtkite6/f7GgwGStNU7XY7TlW4uLiIay1J1Wo1JuiMg6Sab9sout2uDg4OVK/X9eGHH+ro6Ei9Xi8qJCAW0jSN5ESlUonnCpmBXB+CoNFoxJGZx8fHse8ef4QkSaLxHqqSZrOpQqEQv/v+/fvq9XqxL597k4kQEE7I8CEHSES5z7gXIDY4Bu0jlggolUpKkmRhwsnZ2Vlcd45B8s53cn0kxdYT7gFUMNKjbQ52AgRkG9V6EnXuDWuoyXGsSsaqdbJjTXl+LJFm71d7H9I+BHiGrLEkazYejxcmPdjnilhpJbHEgz0Pngeea77fKljWFS9jL3Y4HA7Hs8P3YYfD8UnHUwmFEMLvSvoJSd0Qwl1J/1DST4QQPqdr6dYPJP28JKVp+r0Qwr+W9L8lXUj6hWdxs7WmbCTMJCG1Wk2tVkv1ej0mjlQeqWCSANTr9ZjkhhA0GAx0dHSko6OjhUqrdOM9ABFA4oZMnSSGCipxkoBZNQWSdeLI5/PRKA9fhMvLSw2Hw9jrbZMWElRiYkIEUmwAccF6kbThJcDnrXcC8ZMkUkm2UwpI5KxU3Va0SWhpMZlMJrH6j5oE6TmKkXa7rb29PbXbbeVyuagSoY0CyT8tBpeXl3HyAe9lvViT3d1dNRqNOMEBMsdK2+v1uvb391Wv1yNBwjklSaLd3V1VKpUFhQnTPTiP8XgcTRgxjWSSBL4eh4eHse0GQiGfz2symcTrBxlmPSms2SCJOGQIxEaSJPG7IM+stwYJvr0+tjUIj4vpdBq9OGwCbZ83VBbcv9wDrJv1D4F0I2m3/iU8uyTrkCrWaDU7NWK+v8TnDxWBnaZiCQirvrDX3JqeWlNOSzDYlhCIjtvIQnuMdcMy9mKHw+FwPB6+DzscDsejeJYpD3/jlpd/8wnv/xVJv/I8QWQTWaqp+Xw+9tdXq9WYFNOmQAWR3vNOp6ODgwO1220dHh6q3+/r5OQkkgTSTUXXtliQbDH+T7qpipLwEKedEkHyhwEi1XxrgGdN4U5OTjQYDBak4PxsK/F4MCCXh6CYr+9CkmdJDDvxwvabkzSSIEJEWAk85AnJoZV70zaCb8LV1fUUjlarFWX7xH95ealGo6H9/X21Wi1tbW3F87YVdlpU9vb2VCwWdXR0pOPjY/X7fU0mEw2Hw6gUoWqPsSNKB5v8Xl5eRnPGTqezQNJQsS8UCmo0GpGY4l6j5YE2Go4PKYR6AQUDCTgqBdbOTgY4Pz+PbRn22rDGJMp872w2i/cPBpWFQkHT6VS9Xi+2mbB+Vl2CzwdqHZ4TWkrCfNSqbe2RtDDRgKp+1m+B58SaJdo2CUgCknDuSUgs+4zfZsgIaFewxqeoFay6CPIBrwpr+GjbFOy4xyyZRlxZjwU7gnKdpjuAZezFDofD4Xg8fB92OByOR7EWZbirq6uYkFoZP6qDSqUSzfr4Y9sXmGywv7+vnZ2dKFsfDocLyZ+kKF9HKk/iQtJxeXmpUqm04M1QKpXiZ3kdCTx97tZ8zsrYeS+J4dnZmZIkiQkcld5er6fRaBRHBqJ6IKFDsWD7yPlDLzwJNpVjKw8n8WUSgTWcs9MlpJsWEJQAxAEJgrFhvV5fqPaGEJQkifb399VoNHR2dhanGpCok7wyqaFYLGoymej+/fsaDAZRJYKihPft7u6q1Wopl8vF43COtBHgjwCBAGnAFAlrLknSaM8L9QVrhdFloVBQu91WrVaLrR2cB2toE1M7UYDfYzpITPa62Ckl1Wo1+mkMh0MdHx/r+Pg4ji/leyHG7MhLiCWUCdyfxGVbDOwUD5uUW5KE+9n6HQCrcuCY3DN2Paw5op1GYePJtjJAevFsQQbyPfba8hxBzEHKWI8ESLasOamN0U7uyN4fDofD4XA4HA6H43asBaHARALaF7a2tqKPQLPZ1Pb2tobDYfQhsIkViUen09He3p6SJJEkHR8fxwTV9oNnE3FJsQedajSJCJ4IVLRtVZtk21b9SeguLi40HA4XquO2uo8kG5M+et0xWbRya1vhzprSkayhiCAZtDJ23PHxF4BQoH0C5QLVZ6T/qAKIKUuctFqtOIECr4JcLhcr+cj0B4PBI5V8SJNutytJGgwGGo1GcY2oPJfL5djqsLu7q1KpFKvxtJFwvHq9rlarpU6no4uLizgOEjLJTjWAyEENwNrZBNmOBbWKAdsOQkWdana2Uo6ZJ+aGXBPuPWvqCPjceDzW8fGxHjx4oMPDw9j+YZNqqvTSDQkEEcL9aI0ObUsC1XrUBNabw6oDJC14lgCr3OF+tuSBJRzs+EqraLDGkNbXIzvy0hJqvMY5EoM1gqR9KRuL9Uyx7UvcC7xmFQy3tWk4HA6Hw+FwOByOa6wFoWATeMYINhoNtVottVqtmDzRX08yxHjJZrOpV155Rc1mU+fn57p//34c+wj5YKvO29vbUZJN4mGN60go7Jx7RltStUURMJ1O4+hCKt0QCFR5qbpfXFzExI/3SYoxkuzTe269DWwLA0QIrRQkapAnlrzAAJH2DkgPVBkkTCTPjJGs1Wqxlx3TSPrsacngOCTspVJJrVZL+Xw+JsDWxZ9KMH4E9Ptj1EjSx+hEiIxGoxETf8gEq9ao1Wra29tTs9nUw4cPNRqNorcBlWZ8EDh/SQukDt9P8omKIkkSJUmicrkc489K6rOtM9vb29HXgvaN6XQa7zFLBtEGQHwYTt67d08ffvihDg8Po0klMUMScUzbYoBqg8SaNWIShqR4b7AOdgqInXSASua29gTOwa6jJSRI3nmde9z6GnAPQjRZU0dJC+QDrRxWbYFyCBKCsaG053DuWY8Wq6iBGLLGj+wBVjnhcDgcDofD4XA4HsVaEAqSYiKLA3+tVovGepPJRMfHx7GH3CZ8lUpFr7zyitrttgqFggaDgU5PT6Oxn00UaVOwkmiSbunGq4C2h1qttlDBtz3eJEkc07Y7UJXHmM8mdSQ9fB7jQNtigWICWLm4laYjo7eJna1A29+hfOD7bX88x4NQYKpGtVqN60PFulAoKEmSqGRAgVEul2NibckHJnOgFODzEAqj0Uinp6fx2uZyOdVqtYW2EtaRqQ/WJFCSKpWKSqVSnKbx4MGD2LowHA6VJIl2dnbi+1gPrvdsNtPJyYlGo1FcF+4t2kPwF7CVec6T8+besB4FmGNCumTl+NKNfwBqmOl0qsPDQ3300UfReyJ77cfjcVT0oLDgfrAJOwoKW6W350GijdqGFhGOe5ufAJM0+ByGh9ZAEQURih2IA9Y+O/3BKiIs+DzfJd2QHdzHvLa9va3ZbBbVLlkDx1Kp9AjxwzNjz5/14h53OBwOh8PhcDgctyOsg6Q3hHAoaSzpaNWxfAx05XEvEx738rGpsb+ouP9MmqY7L+A4a48QwlDSO6uO42NgU+9RaXNj97iXi0963J+kfdj/T7x8eNzLxabGLW1u7C91L14LQkGSQghvpmn6l1Ydx/PC414uPO7lY1Nj39S4V4lNXbNNjVva3Ng97uXC4/5kYVPXzeNeLjzu5WNTY3/ZcbuFucPhcDgcDofD4XA4HI7nhhMKDofD4XA4HA6Hw+FwOJ4b60QofG3VAXxMeNzLhce9fGxq7Jsa9yqxqWu2qXFLmxu7x71ceNyfLGzqunncy4XHvXxsauwvNe618VBwOBwOh8PhcDgcDofDsTlYJ4WCw+FwOBwOh8PhcDgcjg3BygmFEMJPhRDeCSG8G0L4yqrjeRJCCD8IIfxhCOGtEMKb89faIYTfCyH8yfzv1qrjlKQQwm+FEB6EEN42rz021hDCL82vwTshhJ9cTdSPjfurIYQP5uv+Vgjhi+Z36xL3qyGE/xxC+H4I4XshhL8zf32t1/wJca/1mocQSiGEb4cQvjOP+x/NX1/r9V5n+F78UuL0fXiJ8H146XH7PvyC4fvwy4HvxcuF78VLj3v1e3Gapiv7Iykv6T1Jb0gqSvqOpM+uMqanxPsDSd3Ma/9E0lfmP39F0j9edZzzWH5c0uclvf20WCV9dr7225I+Pb8m+TWK+6uS/v4t712nuA8kfX7+c03SH8/jW+s1f0Lca73mkoKkZP5zQdJ/k/SX13291/WP78UvLU7fh5cbt+/Dy43b9+EXu56+D7+8WH0vXm7cvhcvN+6V78WrVih8QdK7aZr+nzRNzyR9Q9KXVhzT8+JLkn57/vNvS/rrqwvlBmma/r6kk8zLj4v1S5K+kabpwzRN35f0rq6vzdLxmLgfh3WK+16apv9z/vNQ0vcl3dGar/kT4n4c1iXuNE3T0fyfhfmfVGu+3msM34tfAnwfXi58H14ufB9+4fB9+CXB9+Llwvfi5WId9uJVEwp3JP1f8++7evKFWzVSSf8xhPA/Qgg/N39tL03Te9L1jShpd2XRPR2Pi3UTrsMvhhC+O5d/IdlZy7hDCK9L+ou6Zgg3Zs0zcUtrvuYhhHwI4S1JDyT9XpqmG7Xea4ZNW59N3os3+R5d6z3Bwvfh5cD34ReKTVufTd6Hpc2+T9d6X7DwvXg5WPVevGpCIdzy2jqPnfixNE0/L+mnJf1CCOHHVx3QC8K6X4dfl/Qjkj4n6Z6kX52/vnZxhxASSf9G0t9N03TwpLfe8trKYr8l7rVf8zRNL9M0/ZykVyR9IYTwo094+9rEvabYtPX507gXr/s1WPs9Afg+vDz4PvxCsWnr86dxH5bW/zqs/b4AfC9eHla9F6+aULgr6VXz71ckfbiiWJ6KNE0/nP/9QNK/07U85H4I4UCS5n8/WF2ET8XjYl3r65Cm6f35g3Il6Td0I8tZq7hDCAVdb0C/k6bpv52/vPZrflvcm7LmkpSmaU/Sf5H0U9qA9V5TbNT6bPhevJH36KbsCb4Prwa+D78QbNT6bPg+LG3ofbop+4LvxavBqvbiVRMK/13SZ0IInw4hFCV9WdI3VxzTrQghVEMINX6W9Nckva3reH92/raflfTvVxPhM+FxsX5T0pdDCNshhE9L+oykb68gvlvBwzDHz+h63aU1ijuEECT9pqTvp2n6a+ZXa73mj4t73dc8hLATQmjOfy5L+quS/khrvt5rDN+Ll4eNvEfXfU+QfB9eVrwmPt+HXyx8H14uNvI+Xfd9QfK9eFnxmvhWvxenK3D/tH8kfVHXLprvSfrlVcfzhDjf0LUj5nckfY9YJXUk/SdJfzL/u73qWOdx/a6uZTnnumai/vaTYpX0y/Nr8I6kn16zuP+lpD+U9N35Q3CwhnH/FV3Lhb4r6a35ny+u+5o/Ie61XnNJf0HS/5rH97akfzB/fa3Xe53/+F78UmL1fXi5cfs+vNy4fR9+8Wvq+/DLidf34uXG7XvxcuNe+V4c5gd1OBwOh8PhcDgcDofD4XhmrLrlweFwOBwOh8PhcDgcDscGwgkFh8PhcDgcDofD4XA4HM8NJxQcDofD4XA4HA6Hw+FwPDecUHA4HA6Hw+FwOBwOh8Px3HBCweFwOBwOh8PhcDgcDsdzwwkFh8PhcDgcDofD4XA4HM8NJxQcDofD4XA4HA6Hw+FwPDecUHA4HA6Hw+FwOBwOh8Px3Ph/eseVTtu91V8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 98597 51176\n", + " Min thresh = 1000\n", + " Not Sliding\n", + "\n", + "\n", + " Winner = Not Sliding\n", + " FP Patient = 228s_iimage_3384882513134_clean.nii.gz\n", + "\n", + "\n", + "\n", + "\n", + "Patients: Correct = 52 Incorrect = 10 Not Sliding as Sliding = 3\n", + "Slices: Correct = 51 Incorrect = 11 Not Sliding as Sliding = 3\n", + "*************\n" + ] + } + ], + "source": [ + "min_size = 1000\n", + "min_portion = 0.0\n", + "\n", + "for prior in [[1.3,1.0,0.9]]: #[0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6]:\n", + " print('*************')\n", + " print(\"Prior =\", prior)\n", + " correct = 0\n", + " incorrect = 0\n", + " false_negatives = 0\n", + " slice_correct = 0\n", + " slice_incorrect = 0\n", + " slice_false_negatives = 0\n", + " for i in range(num_folds):\n", + " (fcorrect, fincorrect, ffalse_negatives, fslice_correct, fslice_incorrect, fslice_false_negatives) = plot_vfold_training_curves(i, test_loader[i],\n", + " min_size, min_portion, prior, True)\n", + " correct += fcorrect\n", + " incorrect += fincorrect\n", + " false_negatives += ffalse_negatives\n", + " slice_correct += fslice_correct\n", + " slice_incorrect += fslice_incorrect\n", + " slice_false_negatives += fslice_false_negatives\n", + " print()\n", + " print()\n", + " print(\"Patients: Correct =\", correct, \"Incorrect =\", incorrect, \"Not Sliding as Sliding =\", false_negatives)\n", + " print(\"Slices: Correct =\", slice_correct, \"Incorrect = \", slice_incorrect, \"Not Sliding as Sliding =\", slice_false_negatives)\n", + " print('*************')\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.7" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/Experiments/ARUNet-MiddleLines/ARUNet-3D-Middle-ExtrudedNS-VFold-Test.ipynb b/Experiments/ARUNet-MiddleLines/ARUNet-3D-Middle-ExtrudedNS-VFold-Test.ipynb index 2fc9882..dde7c08 100644 --- a/Experiments/ARUNet-MiddleLines/ARUNet-3D-Middle-ExtrudedNS-VFold-Test.ipynb +++ b/Experiments/ARUNet-MiddleLines/ARUNet-3D-Middle-ExtrudedNS-VFold-Test.ipynb @@ -7,7 +7,19 @@ "scrolled": true, "tags": [] }, - "outputs": [], + "outputs": [ + { + "ename": "ImportError", + "evalue": "cannot import name 'TubeTK' from 'itk' (/home/local/KHQ/christopher.funk/miniconda3/envs/myenv/lib/python3.9/site-packages/itk/__init__.py)", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mImportError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m/tmp/ipykernel_2576751/1503744359.py\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 38\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 39\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mitk\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 40\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mitk\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mTubeTK\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mttk\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 41\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 42\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mnumpy\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mImportError\u001b[0m: cannot import name 'TubeTK' from 'itk' (/home/local/KHQ/christopher.funk/miniconda3/envs/myenv/lib/python3.9/site-packages/itk/__init__.py)" + ] + } + ], "source": [ "from monai.utils import first, set_determinism\n", "from monai.transforms import (\n", @@ -2562,7 +2574,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.8" + "version": "3.9.7" } }, "nbformat": 4, diff --git a/Experiments/ARUNet-MiddleLines/ARUNet-3D-Middle-ExtrudedNS-VFold.ipynb b/Experiments/ARUNet-MiddleLines/ARUNet-3D-Middle-ExtrudedNS-VFold.ipynb index 318f314..c9dcdc0 100644 --- a/Experiments/ARUNet-MiddleLines/ARUNet-3D-Middle-ExtrudedNS-VFold.ipynb +++ b/Experiments/ARUNet-MiddleLines/ARUNet-3D-Middle-ExtrudedNS-VFold.ipynb @@ -80,7 +80,7 @@ " print(\"Using device\", str(device_num),\"of\", str(num_devices))\n", "else:\n", " print(\"Device number assumed to be 0\")\n", - " device_num = 0\n", + " device_num = 3\n", " num_devices = 1\n", "\n", "\n", @@ -89,7 +89,7 @@ "all_images = sorted(glob(os.path.join(img1_dir, '*_?????.nii.gz')))\n", "all_labels = sorted(glob(os.path.join(img1_dir, '*.extruded-overlay-NS.nii.gz')))\n", "\n", - "num_folds = 15\n", + "num_folds = 3\n", "\n", "num_classes = 3\n", "\n", @@ -145,21 +145,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "53 4 5\n", - "53 5 4\n", - "54 4 4\n", - "54 4 4\n", - "54 4 4\n", - "55 4 3\n", - "55 3 4\n", - "54 4 4\n", - "54 4 4\n", - "54 4 4\n", - "53 4 5\n", - "53 5 4\n", - "53 4 5\n", - "53 5 4\n", - "54 4 4\n" + "4 4 6\n", + "4 6 4\n", + "6 4 4\n" ] } ], @@ -218,7 +206,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 4, @@ -227,7 +215,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQEAAAD8CAYAAAB3lxGOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9yc9tW5fmB/1mtapdvtUpb/UVERlFGqcBFwiBKBJEA8ktLKBDwyhbiK6TLq0U/wHZsAQNwNCwQMjCYCQQcgMlFlJmRoYjvupWp3zLXa1yFjTG3Ps994t7I5ykP+eR4i7p6JzzFnuvvdaaY47xjOd5hkop8ePx4/Hj8df30P+8T+DH48fjx+Of7/FjEPjx+PH4a378GAR+PH48/pofPwaBH48fj7/mx49B4Mfjx+Ov+fFjEPjx+PH4a378zoKAUuq/o5T6M6XUL5VSf/d39T4/Hj8ePx7/bIf6XfAElFIG+HPgvwV8C/wD4H+QUvon/6m/2Y/Hj8ePxz/T8bvKBP4V4JcppV+nlEbgfwf867+j9/rx+PH48fhnOOzv6HVfAt988P9vgX/1h364UGWqmKHKklBbVEqoKN9LClDyb+UTKkRICZQiWU0sNNFCdJBsAp3kl7xCT8gfn1AhZzwpoeIH2U9KECLESEpJ/v99hwKO31L5PwmU0WAsaAUxQfDy9+nl/4rXU6CUltdUCowmWQNaPb5dTKfPjFYQImoKECNonf+ox88DJC2vp0IE/1vnFOMP3Yp/Locy5nSPSYC18v98X+SH1OPnVCp/PiAe722+mKT8WRMoDSbvczHK6ylA5/eLkTT5H77npxNUco5aP57L8WTzfUtKkawiOkXSoD3oIaJCgBDk9LScT9JK7mm+f7E08nlSQoX8KRQko37ghHhcE0HWSvrgayRQKT+fw0jyAYAd9zcppavffqnfVRD4vrP/zpVWSv0d4O8AVDT8q/pvY2Zrhv/8TxnWFhXBdvIARKuIhUJPCdMFivsec38gaUW4XDCuS/pzQ/tE0z1LTJcTugyk+4LmlaF5m5i/Gik2Y170Cd2P8lA4i2p7UtvJn34gTeOHJwpKo+sKQiB5T4oJ5SzERPITCoderlCzmrQ/kPYH+dWqBKWJ+wPJT48P2/GhUvJQ67JEzRp5+EF+zhrSrMYvK1SImLs97A7yQOWfSeOEKhxqtSSVTj7Hdg8poqqKtJiB1qj8oCejUT7I+anHwKGUIu72xLb94G6lDx52fvjrHy6g49fVBwlmegw4yhgwBpU/pzIGdb5m/PSC6DRmCBK0ALMb4OaeeHsn1385Ry3mJGtQkycVjlQXEgx9kPe2hqQ1GEUq7ClQqinIvQZS5eSadCO8uybk6/Wdz5U/k3KFvG/TSDDJz0syGjVOsvhnNdNlw+FZybhUKA/zN57qzR6962CcSNOEqkrC5ZJYWHTv0aM//R4KqjuPPXhioekuHcNKY/uEO8imFZ06raBoFcmAGRO2jUSnUBH0lNBjzJtoQg8B++U7/Lv3APwH8f/w1V+8ob+7IPAt8OkH//8EeP3hD6SU/j7w9wGW6jwdH5zy9RbTNYxnBdNMo8MHO5iB6DTjRY2ZF5jWo3tP+S5Q3GnmryzDmaO9dOw+d0yfDRwWnuG8oH1WsvjGUd4His1IrPLN6EdS4aAqUKsF+tCRDgfioZNgkBIQiV2P0koe4LyzKqNJQZOmkfiwQU8jqqqgrgmbLYyTPPgfLIRjUFHWyoKoStR8RqpKeUBDQrc9dD1q8lgfiE0pwcpaUteTvJfXipE4jugQoCxJw0AKEdXUYC1qnxe1MRCC7A5lAU8uCPOSZDTaR1Q3oZtaXgcgRNIwktqWNE6kEOQzKI2yRrKfx/soH8ta9GIun++DwJCGkTSOEry0RtUVqq6hcMSmYlpXRKex7YTZ9jnL8aTdAaYRPZ9BWaKKQnbKbpCFrZT8OwR5PyNBk8aSnEENkyx0rUmlhdKBj6jBo4aReHtPPLSP9+aDwKasRTcN6uKMsJ6TSoPej6hxItUFhASFYzqraZ+XhFIW4fy1p7gbMe1I0ppwsZBsw2hibVFerkv72Yz2yhAKRfUQad5NJKNon5X055qkYfGtp7gfiaVhWDuiUagEvlT4GlSAaBShUJghUewCyieSVeBBj0GCX11JUE4/nP39roLAPwB+Tyn1E+AV8N8H/od/6W+kCIWDyWM3vUSyZcG4MKj8TIVCAxF369FTwM8cyRToIaDHgO48zX6kemeZvym4u6/Y/cGE+vzA4aqge2qpbhyzV5bqIWCGAtsV2NtOHoxlTbyYY7cLzN2GuNkSu07ePAbZMHJarYx8WTmLMiVp8sT9AZ0XtgkzYts+ZhUf7JLKGHBOFpOW3TFVjljK7UiVRU213MSUUCGQjEEVjhQCsR8gBtAGddzNq5K0WkgKZrTsiOOE2rekQyu7vjaoEFH9iKodaIUaPXqzf1yogMrnlo7pdwBl5Wtq1nwQyD5IkXOqS4iPKXhKqGMJExOqLEirBWFZ42cO5SPurkXdbx/PEYghoqxF1TUpRgkA1siObw2pauRnJy+ZwzhJkGt7CQz6g0zlmAlNHrwndR3hGOB/O9NJCbSRAHC2Iq5mTGcVSYNxBnQtqbxPhFIzri3JKMqHSPEwYg4TqTSMlw2h0CSjMGPE7if0EOgvK7ZfWIYzcHuYvY64NtJfOKZGEQpwbWL56w77fsv0fM32s5JYQNIQSvkZ24KdEtGCHaDYBfQUJVCEhOk8ySiGq4ZSa9S3huT/Mw4CKSWvlPqfAP8+YIB/O6X0J3/pLylN+Mkz/MxhdyMqJOxugpjwc0NS8gGnWhOeFVS3HrcdJM11siKTyen16KneRy6nRLFx7D9z8NQTzybapWI4t1Q3lvI+UWwNjdWUbxPm9S2mLEh1SZo3qGlCx0gcJ+AIUuS00kdS0LIIiwJdV6RxIu4PKDug5jO0s8TNluT9Y/pPDhxKSSbQVJLi+ojS+T00JKtJVp8+VywMpjSYyUO6l+CUolzemDGSykEEfeigH0jjSDy0xJyR6FktGeU0oXcHlDWkaSKFKJmDc3I9u47Y9VL+hPBYDhlD6vPua4yk53UpC/FYc6cku681ssia6hQYQlUQG0coDbHQuF3+naqU0iklUicbgJrVEkTGiTSvifMKNcnulpQSSNsYGEZwVoLEOKGGKQfV4pSVqF1L2u1yWeY/fFDzs5cDqbXo+Qy1XuGfrJjWJdHKLj+5Ix4gtfq4yJnrfaC87bHXW1LhGNdL+nMLSuH2AdMFxrOCzU8cu88TekrMXimq+yg7ey2YlopQ30WaVz120zF+esb2s1xiJPAN+f0StpN633WJ4sGjUmKaS6bhWk8qNFOTcZWUM9bph3GP31UmQErp3wP+vf/kvxBRQ2B6WjGcNdg2YvqIDgm3DYRKE0qNHRLRQPfEMa4s1Z1EYDV6eUCMAaMgBYq7xBIo9pbhlWFcWfqLRJhHhrNE0opxqfBVwaxaUluNfn9Pur2XdD1FedhdygDSb0XTY3ZwaNE0qKqS3W5/IN7enVJ+vCeFgLIaVTj5uN7LYrIWpTUpJWnVRNmp8eG0oyZrJDg5QzxfoJ1F3T/IQo2JOAzo3R6dBBRLXa5FvZfXze8Z9wdULXgByHkDco4gmVhMpF3ODEACQFVKiaGUlBw+YwzHNFznGlkD2pCskZrdGVJpiFajQkJPAd1P6DGQlKSsqS4Iq1rS10OP8k7OIwRSP6CqktgUhMqijcJMQcqlnLUkZ0lNSbIanRKpLIiVPYGHegzQdRIAjuUOPJYtSqGK4rT7h9WMMC8ItYB12qdTmh1Kja81weXLdcgZwP0BJk88n9OfO6JVmDHRnxlu/9jRvogkF6jeGGavE66LqAhmkL99rdE+oX3CzyzTcsnuE8c0V+ggWYA9gNsnXCeLWU8JdxAUcVjJCblOAmQstGQghwm97Ygh5s/7/UvvdxYE/mkPZQzm7S0N0L2cMawMem5w+4D2SQLCGIlOo63cwFgo9i9KzFhQ7AJ2N2EOOTswBlKiuOuxO0OxLvB3mtlrxXBmCAWYQSLs4aWiv3S4T9fUdysWv9hJMPAePZsBsmhT28kC41gWPGYH8dCixhFVFKhFTsunESZ/CiBpGiUYaPX4QHY9yll0WUrta82phk9t/v28IFVRCAg4r+HyHH1zJw/3JDsoSkkqb62AjMMIx3MqCzn/EOS8jkd+r9i28LCRrsQRMdcGM5/J17yX166rUycl7Q9orUmzmlQWj+BajBIUjCJFCQB206G2HwCb1p6Qf62UBMq+l+talo8ZV1lI2XCzR+3l+iefr2m+JvpQgrWSwTmDbkfJjoxGHT4IAB+Af8oYzOUF6WxJrAp8bRnOc32fZIHaNkiKbzR+4QT1nxK2TdguYHcjZteD1kyfX9FfFkSr8JVi+4WmexlI1lPcGNn97yLaJ0H9U2Kca0KpiE66WOVW4WeG7sIwrhRun9BeggBAKCE6hRmg6iK+1vhKvllsA6YPqJgw7YQePHrbkrY7lLPfDYC/dXw8QcBa2al+eWC2u6S8WjKuC2IpEUwj7RAzRGJUUm8NCdOBbzTtlUWfWYp9gT0ESa+P2d4UqN62JCdpdXNtGReGpKWVtvtU018mDp8kHnTi/vdWrH+5YP51hx49yWiS0ZhuwtzvHndQ7wVA9JNkBUMgDQOq6yStrCooE8YYkvcf1PJW6tzcXUjjSIwJNY4k5wTxd04Qfi31bux6GAZ0CLLjWyOBTmmUQW5y1wtoCbK4j5lL7mocF/wREVfGoOpa6m9rZZefkgQpjHRAilwitB2J7rvZzTAQ7jy6l/KH3GJN4wQpossSrTVME6ntCF0vOERRnAKVtFjNYyu1LGE1P70vPqBvtxIgPnheUgZnk/cSfKsS5T3cTVJiZBwijiMpJZR1pwCsL86Jn1yx+3RG0grTRfxM06802oNrI25K6D5nG0Zeyx6OG5LPgQaSM4R5ybhyhFLTXWj6K/B1orwx1G8TzXV+FpMsaF9JOREt8mAncD7hK8V0ofG1orpNFIdIv9J0V4pQJ0ynmL1OVPdyXqFQkinvI24zYnYDahhRPrePlYInF6j3t/Bh5+e3jo8mCOj1inS2RLU9HDrcvsUu5/jLOclp4QhMQdK+UYFRxFwzu70nWYWvj9iAImmDDhFCItUWkzxm12O7gWQN7nzOcFlJWjYlDgdN+1wxPA/wLx14/8eWhz+dsfgqUd96olVAifpkTnk/Yg4javSYXUt82BD3e/kgSR7MsNnCdp+BQ9ndj7gBcNqdOaLvWj+i7pOUD7hCHm6jJfPpB9IwEDdb2dn74RThVZLsIg2DvEZGhE/fP6b8Sn/nPOk60gctPWUE/Vday46/P8ginTxpGlGukPPJAGma5LPqYfguwt408iBaIwj1vJFAfvw9LZhIrBxJa/QwCXintfzO5FG7A+nQEr2XoHEMSBkIPHZZlDGPGdcxixrDY2fj+IwVDv3iGd3PL2XTCGCGxLgy+EqhPVSbgOkiKiRiZUja5r47shmNAd1LoE2VJVSWaek4PLWMS0UsoNhC8xbcPlLsI3pKgiVoRX9mGFYKFYRLEAtB+lEQnHBbZhsJ3vsXhsPLhEqJ5pVi/iZgD5Hwwe5v24BpR2khT166LrOasCyFf6AUZYhwv4EfSAY+jiCgIJ2vGJ/O0eMM3U7ofYcaJ8xhJDQFegqo3gvSazSpsMTKSr2ZwN4PuLtErN0jMSi3Z5IzhMYSXYMpLMpHzK6nsBrfWMq7QPU+0rwv2T44dn8In352w/nffsOfvn3K9p/MWXyZ5IaqRPekxAwOd/CY2mHy4pWW02Mfn5SzgyOa7jKpKATioUVPk+zEmXMAZDJMkof8VH8/YhGy4+e0OKbHtDnwW62g4yJxp9c9BoIPF0by/jv1sTwpDl0UkqGMEzB98PMTJPOd9waIXScBpChQizksZiRnM0ioiaUlllY4D/tBeug+SNngg5RZx8CV24oflkHECOMopUAImbwj1zLlDoXKQSiFxwCgnBVQU2lUU+OfLAmlxozyeaNT2C5S3UWUl358LDTJJvQg5WeopaSRklQRZgWhMvjGcHhm6C4lpbet/JEMk1waaCwRMyRJ/Q3yXgmGlUIPAhLaXt7bV4ruUjOsINQCIq5/NVE8TPRXBd2ldLbKmwE9enQ3oXayy8fzBd0nC4aVwYxJ3rNSFDdOAOyPOggkSFozLq0AJDMLFxXFw4DetOjCMlzWmD5QvJeIp1JC+4i2kuLHyqK7Cd1N0ifufa5LNbEpiKWQPPyyOjGxVErYVqK6HgPzLyfcocG2lnfvn3H9+3v++PkbDpclf/7ZM+rfFDRvE8U+oZJiShZfW9LTBre7wN0e4P2t1OcpyYPsj4y0KA/1Bz302IcTl0DahRpVlvLN447mvSDy0p+Uy3VcuH/hOn4XuDx2BFD68bUm/xd/7/QL+hQoYtv+hYV+DBbfQdg/OI8UAipKe4+YYN+RSgeuJpaWUBvsLqJ3Hen2Xq5P+CBbOWZNkDseOShMXhZ8zqiISX4nBCgKFBIAUi5R0iTdGDOffYeEFVdz/MwxNZruShMNzN5F6nc9uveM5zWx0IRCaKqpkTbfEYRTCYbLgnGuGVaacQnTMqFHqG7B9IJTJYPETSVMVnXI10cLoh8KRZ+zgfnbQHU9Mpw7hqUmGSl76xtYfuWpf3VLakq2v78kOsX89Uhx24GPuZRIxIsl40XN4bm0GqsHARnHpaa90vhyzfmXDWy+/7Z/FEFAaU3/yQJfSYROWhZKVzUUlaV4/UA1TPTP5wzPFrjdKESZ0qKniG4nyLtNsprkNGleYHcD5v6AnjysGsK8kFajj6dyQoeE6Sb5mlKU1y1nU0Wxc3TXC/7x0zn+xcDsrKOvPf1VRfGgKR80xUOi2kSmRrH5iUP7ivrmjNmrTgKSj6jNXtqEx50baaMdWXMpBGk3Hls4/SBovLVSJ59os7n2/+A1vjcQfHCkjLCTQVJZdOG7jL7joQ26cKj5TN47RJhGYtc/gnD6cac9BbMPyELH3j4hnMg+lOf4eUF0GvcwYF/dEm/vcoZxPNGMTxyp0yl9J+gprQRjmc1y16AXjATQTfOILWROhbIWnJPWYZRrFddztn9jxf65ZjyD6CTFLjaCH/lFSX8piyjm5MkdEtVdwO0m/MwyLAyHp4ZpwelnmteK8iFhct/eB+mJqwi2T5QPAbcZCY0AAONMMZwJ6Hf+ZwN2O9A/aZhmmuoh4vYRe/C4d1vUdk98dsH+JwvMmJh926OnQKhdbiFLB6R96jg805mwFDFDZPfScvg0EapI+aC+G7h/6/goggCA6QPx0mBGQWZB0qnhssDPr6jeHqi/3eFXFaSE7oS2GWqHsgLa6TGQEkSlwEKsHLouUW2P3g+gNaGyqASq8xJIjQQPCoilEUqm1ZRbSdm010wPFeOqhFKIjX4WCaViXCiSlp91h8S4VGy/MByezalvImZKkNaU9xPF+z1qs5eafZygrqTtNnmpe4/U4hgktT6m8fDYqjSF/PyR+PFDFN4T/TUSh+GxTDi2xLQCU5wwCMkstOAPZQmFk+6GL6VrkbMRVZWS6vcDcbeX18udAl1KGzFenhFLg971sNmh+lEyJKVQ91vCzZ18zg8PpR/blCCftShOnQ29XAiuMHk5V2sxZ2v5nOUHfIDJQ1VKp8IJkScZw3hVs3vpOLxUhDJhRsXsnbDyXOvpn9T054b+TNh6rk3UN5FiIwunv5Ldf5rJLu92YDtp19kuCq3d5ZZkkABQ7CLNq1bah84SmoW0Die4+NOJ+ts9avRMl3OSVVS3nvJGNg/V5o7DT54xXJTYLmI7TyylrA2lPr1fv9b0Vwp7gPmbQNKw+Yll/1kkuURxZ0g6oS/O4fD9a+/jCAJa4R56Zloxri3RKorNRCw0k7ZMM830swXlvRCEVO9RbY85dKizxYkspKYgDLhWEQsRIjFOknIrJd8/knCckd5076VrUFvGlWVqHts2AgQlCg9mUN/5uu0F0ElGgpVrJQUjcWoTTY3KfdwS/bKg2K8pth5336PagdiUEsSCZDO6H1D7lnB7/139AsgOqIScpIpC0t+UvrNLn7KHI8nneHxIjVVaqLhHlD8m6HshFR0EhzkJk7JoR5kcIKqK1FSkZQPPLuTnsiYnGbnmobISpPfDI9MvlxWpHx41FEqdAp2e1ajFgrRohPPfjfCwRQ0Daj4nLRrBD3x47E6UxYnDL7yGSYKa0pIZLGbEiwX9k4r9c8uwVrg9rH6dKLYBd/AkpRiXju7cEEooHxLVQ8DtPXqMTHOLnwloGArpUpUPgg2ZIRILxbA0hIrcPoRyG6nfDsKEzCC0P2uIVjF7M+CuD6jNXoRDF0uSUdhW2o3KR8FPLpeM65JQGVRKRKuYZkL+ESai0If7c824hmIjOEN3ptn8Pvj1hNkbyndGvvcQSbvdDy6/jyMIKEX3fIYOwqgaF6LyclsPCmmnGJiagnJhKB8mrCaDS5FYO3Aa3Sn0oYcY0V6IKKkppWUyjKhOCCehKAjOkKxCDwE1BLQO2E743KFQJ3AHhE9ge0n3QqGIpdR/9Y3QPlVeb9HJDmwPEpHlAdLCgIuCDk8zSygaio3F3Oxwm4Ow6wpHXDWwajBNTdpsT2xD4BFojKCtlUUZE8naRxDMGPRR2HQE9T6s6TM2gcrYg83BsxBKcOx6aWPyAasxBFCFBNumOoF807rEN1pAT8CMch1MH7Cb8TGY9B7VDyQfiPlB1E0j71nXclqzmtiUgh/4KLiCUjCfk5YzISOBfH8cYRhEnZcSse1gmiT9j4mUvNCrq4JxVTA1srs37xKzNyNuOxILw7RwjCtDNEL6sdfSETgG8qTyZ0qQlLSTi91j3767sPTnilALkWf2LlLeTYJjtSPJGabzM/zMEiot3/vmlrTZkQqHampC4/CNQQVhvaYk98gvCsaVxdeCG7guonvyJiSbS3+hJHDdgz0kuivN7otIbCL23lJsFMUOyvuI23lpvf7A8VEEgVQ4tl9YbCeLLThFe2VxMyPMwTHRvZQIOM0MvtZUpaFwBr3tsCHgz2dM5xWcVbjdKIDizYbUVMTVTAQl+w4zjOhWHrjkjKSMTlpebjtiWpF2+towzaRne6R1mkFaSrEHUa4q2TU6n1lwitg4UcT1Qt4wM2Gv6UkeMuVz+8kZ1KrB3Gxh20EIGOdI80b46U2DDuG7RBfkPeM4obWwD1XZoBeaeGgFdzjuiFpAvuRzvW3tqQ5PXSfdAuekh+4caj5HH9V9ywXTsxXTssjlEQxLg6/yKURkVyqV0FkTmN7gDgl3MFRWUWhE6XloTwzEFJOk96slad4QZxWxMFLfapUXYRQG4EwCjvIRvW2h60USO42gNMn3IpYyGjVbSbkAUDjCWUP3rGKcaXwl5J9yF1ARDp82dBeaWAjnv3nv0VOU4FwK004PERNEHjzNZGNwrWxQ00wzLBXTXEqD+TeRxbcDZjtC/hzjk/kpqzRjonnd417fSUk1nxHPF7SfzOnXRtqSt48syums4vDMEUqwrWQdoVAMV5Jx+EoW/7EsiRY2vw/T1QiTprgxlPeKYpOoHqQroeJj5+T7jo8iCJBgmin6C3A7dTrxaBS+NNg+UmwThxcKX4tuW0WL8hXlfkDdb3Ftj1nP8euK4bzEVpbiVYDru5PwJZVO+tReJKsKhF7q7KmksJkEUmiITUH3tJLe7jrLNUfZDVSA4MBXBjdFeSCHgNkFdOmIVqSxZgiSKueAIwHBo7cCbMXFTHjy4yRg2v1G+vJw6oMLmPfdmxj7ATV5VCF1sMpU21MKf/z53BpUhcMsFpIZeBHUnPoUWssiWs1lB1uVHJ6VdFeaaS67YrLy4Pk6SZZkpHGuEritxvRSJ1e3k9S2mwP0Gf84MgMz4AnIYq0d06rAN5JymT5iOyNqu5SkJz/mc/VBOgRPLoUJ2I8igV7UhNoRKlnE49IwLiR4mzGhc/XRnRm2n4p4RwWYvUksvhow7ci0rtBTxB1EhJOMYlrKIp4aoarrKbcPrXRwq7tEfRNovhV+iF+VhOwLIBkSlA+B6rrD3GxJVUl4umZal+xfyCJ3B1H/mT4QKkv3tKC9kuxq9l6CVntpmOZShqok52578DW0LxLTkwllEvrOZcBaMgPXijeBGSLFXSdA7w8cH0cQIHH5j0bu/qCgfSEtl2Ir0SwZpGvQCwmje5Jon0E0mlA4dFhQTJ54fYs6tBS7BXZe4ZcV07MV1mjS22shvTgHVSW6/zqnn/Bo0BESqh9Oghi9bZm1DW43Q8WC/UuFfwIqKGwHplck7aiNonjIrMYhoLoJk4lMavSibOsHSXvXM0ItpBdzs4W2f0zZPyC3KGM+SOk/APwyLpBiEhqyn4QpmA89a041vzr+3lHdp5Qg5gBH/4QcOFRdEWbFSYGnQ0KPkheHGlDCWJtfZ0MMJFUtt4nZty3unZCjUtsJWFgUcmePbVJjcgmSKc3jhL31mIMjZgWlClFKp0kQe4IEA6wRclRdEtaNZHB2zjSz+FoW6rhUgtobUeg17yPlg2hOukvNNFd5d4X6OjF7O4kSdVmix4jbeqLTxMZi+0DMu7rthJAj2gFZ5PWtpP7uoSdZzXBZn+TEekpUtyO6E3IaMeGfrBjPSsaloT/Xct02EgAAumcl40wzLaQdWR3JQs8Mfi7lh+nEPyAUivZFInzWY12A2wp3aygfFHqU90duF27nKR4GVDt8lyr+W8dHEQRCZegvLOf/8YgZHQ9/kJiWiWg19U3CjUkA8l4Ri4R/MjFeGsY3Fl9VzBZPmP3Cwpv3pLt7dFtR7CpSVZDKQtiIbSuy3RRJdw+Czi/n+MsFqsgSWyV6+zROqD4ACb1tKfsJ286o7ioefm7pniW6ZZLzcYpoLUkrip3GqOkEUCaXTS6che2OtNmiNzP02fJkbpEyKHdC70HOE/4CoHdqmymHLjTgTuQZ+XkRDyWlToIfeU174uZzlOjmfn/sB5T3qK7HDqPQkcsCs6+o34mQxjcaX2p0iLhdZqn1HnxE7zu4exBuRAYUVeFEFQgnQFPXVZYzi7aAuweR/xqDUQpjjLAUf/vIAGWqCuKqyXwPRagM09wwNeq0wE0P9TbRXAfsIRBdBnMtkt1tEraFYh+JhebwUjCJYhfwzREjEtIQFpRP2F50+sNShEHVfaC8HdBTxM8LxrOC6EQxaPcTpp0E15g8yVnGFzP6C0coyNp/yZjsEAmZkxCdZFmmkx0coF9rfJMDwCAl2LhUHD73lJcdvnPEb2cs38rijwWESpij5oMM48SXWSzg/vvX30cRBLRPjAuFLx2LbwLlRnP3x4ruk4BvRPQjkTMx/1Jz+Mxx9jfuKL7wXD/M2f1yxsXskpWzqHe38vD3A9w/5JZX8Vj/2hLmMxhG4ttr7P0GtVyI9BRk4Va1KO+OQpoYMZuOegi4Q8nhXcHhuWZawDQHXyvGlcUdDPVNgduJS4zuPQqpcVVciS/A4SAOV/OGVBWya+d0WTn7SJAZp+8KhwontXDXnQA/VdeiQDySiZB2X2xbcZcpi1N77/Q7RYE+Go+UpZxTZud9h3IMWGdxNrMcj8FjnoNLtqxSPsj1PF+Ds8Qy97Az8VGN4v1w8jYI8tmISbQV2aQltd0jz//0eXPHY96QqlL+H0VIkoxQkN0hUd8k9BRPSr+pETJPKKRLI8/YI5bhK+namEGsydLRkyGIaU0/N4xzjch1BZTWHpp3I3oI+MYyri2+lJZf87qXvn7bQ+FIdcn0ZMHhZUm/VidymhlEBuwO8WQZp6Ji0vJedhC+gS9zNyLHRF/BuEr4c48qIv6bGavfaNw+EcokJbIB20mgK3fS4bA7AVDDxUJk9l9///r7KIKAion560B3bth9amiuI1f/38TtHxn6TydCbZi9EnKOOyRmX2sewgX68wO//+wa/+SWPzt/STJrzv4jT4qRuKxF5HG3kVLAWtHPey8LJ9fi6tCRbu7EuadpYCHppl9Vog/IPfkTgAiUG2GPTY3CN7ILjUvor6B9YijvRaTUvM098lE07mq1JN09yI6cIkotSIuZ8BUyaJTmdXbG8dnlqJXFWZakZxeiV7jbCOFmv/+uc9GRNuuFe6AzceZIPVbZ90A1Ug5Rl5imJtzcPkqEv/M6k/AEtJag6r1cQ2cfRSogLbvcChvXwsjTnhPIZrsgqbGzpwCiJi+7+ywv7mESodDhkCnWTnr+WQatxok4Lxiy45SvJXWub2UHDpVhWAt//7j7C/tOFh8RlJeUunk7SZ2slMiOtfTcp7llWhj8MXsA6VIdEtXdSDSaw8tKAoSCYp+Yf91i321Iuz3MGvzVksNnDdvPDNM8ew1OIgNubgLFgwCRSSvpHJQCeNtBaL4o8I2UNkcA0DeJMA+oSVO+dtRv5WejlXa0GdIpwyg3gfJuwOwGklHSnizMY2n4PcdHEQQAiu1EsZ2YGkt/IaShp//RxO6tZftTOLwU6WSxkQtbv1NMhzn/5H2NuRiYP9/z7r+0gHTJ8jetECmeNJgXS9xdj7nfycNXlbIr7Q5QV8SrNepsKUSefhB2GhBdzXReo6aIGUJuXYlrC1lMYkbNOAnrMCnozzXDBfRPAGVQqRDl4WYvoF127IkH4f6r/UForc6JFHa3Q00TzBspFZoKmgrd9qRDi/KR/uWS8PMzqutn2LcPgrx3/SMb8HjEXOsv5tJyHEYJFjERtztUmyXRWgnn4AOJLTyyAo+GJKcs5WisWTqxAjvyMELAlA5TGqaZYWogWk0RgCg05zivmBZFTnHleoZSHlALpOXsJFw6GahG+blUl4yrgnEpiL8ZhKzja013UZ1qchWEdquUwu2SkL5yrLJ9pLgbcW8fRK+waMAI4Wya20zamUgKYvko01Up0T4thfeRd2x3iNRvOsxhJNUl/vmaw8uK7eeG/on4OthW0v/Z68jszYhphdLua3MyyrFtxAyAgqnW0vtfycKPFpJLhEbIGHajcVtOn0dFCWp6FOFT8eCFn+AjsSnwi0KCTe50/dDxUQSB6DS+trjNSNX2uFa8AkOpWf16ZPGt5v73HP1lYlqA6eTimh6KO0NoazpbgUvc/ZHC1zNWvxkoNiPTsqB7OaNYFkLU6AZSUwnJZLNFtx3pYk1aL1B3G9JmixpGXDfgn64YzkqmpcN2AT0Kqce1I9aIYUZZW6aZxXaBxbeR/qJg99IQCxhnmv5pTZXO0JtW0Pz1CjOfS+3e9SKfVkp65sYIEy+z8ZS1j+49hYOHHaXVdC/n7D+tMU8r3C7gtgPmdke6vRfO/4eioBihFDUi/XDyRIgxnQLFkbyjyzL322PWPwSRSJ+wCIXqerHZKktwRhbpkMuWYcK2FtsJFqI92E50HkdKt4opG8ZO6MOADVlpmP+OqzkqU31PLtBaUmq39yfgS48BjKI/lzKu3EZsm5mmmdhj+ojtHwOjmqL4/xUOmkoEaIVhOHeEQtG8H7GbQRbq3BEKYeZNOcC4Q0QHAd+K7URoHMNVxTg3dJea7mlimkdsq6huhRpc3UVm37TEwtC9qJnqrADcRcwkwKWvtGAbC8VwJsKhBIR5hLmHSeNuLG73gfrQSYu22CZm7zzlbY/qxMNhupiJAUpubyatcO1H3h1IGg7PLMVcS8+0D9SvO8bzinFlKXaBy3800D517D7T9FeRwYHbK/QoASEkhR2kNrr/Q+iuKla/iTRvxGQkVAauZtgHI33nYTzp9LVSpLWk5sQo6XrfY7sec79gfLHEVwYasfhyO5ERqzZgNh0FCCsuBIqvArPfLOifNwwrQ782+HpOfV3gbtqsbDSwXqD3reziuz1xtxOG3TEVn7zQh9tWcIOzNQD63R1NO+CvFsRCdu1xXWILgy0c+vae+LA5cfkB2fW8h04496eM4eR7mN/z6Gc4eQkQH96jo6qxs4LUR0ilIWWCE1pnRWeivBuxByPcCB8JtSWUBj1GMRS9b1Gb3YmufFQDqvkM6vKkPFQ+SLkWI7ob0Pses2xETt6KR6DufE53Eft5p7GdgHloSEpAxGgVKiVMZSWzyJbloZTUvrz3mL0Es2SUdAwO8jpmCITSMC1NbiFCl4VEoZSgMy6ApJh9q2jeRYpDwG0DpvOntqAoDaX3H53i8MwxLcQ3MNQwriKxjpBA1YEUFfrOUd1pzEC2z5d2ugpQ38QMVEoAiPMC30j5FCohqmmfKO8nqtcfOWNQ5gJAd6EZ5yXlJp6iuJ7iSV3YvJsodob9S8PuCxjPAyoo3IPGHRTRSQ/bjNB+Gmg/hflvas7+zFPej6gpEBqx6dIbA20nGv1wj/YBLtewnKPafFmsQR06yq889nwuvejG0l9WuN10Eh6pbiDdPwAQJw9v3tH8pqJ5esXwyYru0jEuHXooMdv+0R7Lh5M/IIhy72R3NauBOivmIrSdgHnJosYJ9+pO0vL9AbVcEJtK6uxs0onWJ9kxMcni/y3b898+0lGTnwOArrKvoPenVl88dJLR7PbopiEtGsKykodPgR6j7PL9JMZLVhNTZibGJP78pYXlPAt+ovAjgpQAqbCERnZ3k01ClQ8CuGklwK3IBklKiYPO4EVaXgjpy1eGWKpsTAskAeRMJ6WFzKpQJ///YiM0YXlNToYhujWgITQFfmZOWcg4l98/7coWih0Ur8Tw48g81FOkfVHRPpFFXN8I3XhYGQ4vNMN5IpSRMIvoxSS3ZNRCzNhaFl8ZiodEMkduRrYaHxL1bcQeRGwE4M9q/Ewo2wKQKtwhUt4N2Ju9lL8/cHwcQWAILL4d2H1a0p8pxoWh3Gj0ZHCdROToFMOZnO7sXcAMhsNzS/80Mj6bYNSUNwa3z1TLrWE4S+x+7ukvDctf1pz9eY/dig1XXM/QWmPevCfsdoTbO8w0ouZzSU+HEcqCuBYbbdV7XDvirgV07K8qpoXLNlMOM3nSfi+7OYhF+et3lCGg4hnT3MpglcGhfRDaaxTGm5B9ihPyn8ZR2nyzBrWaPQ6qONbKIGBnSqeeu05JJNZH005yj77rsynp9wBDf0GA9F3Z8EkvkJ2FmKZTazHtPXryKO8x44Q5eidq8W9QR7//Q6DYqke34KMrUuHkGviAWsyk5j+rieWjkChZLS6/5AWgpCxQMRErCRbJKvGYnCL2YSA2jqEyjDPZ4W2XTl0A35gTkUf7hO2Fvekrg3YamxLmKDSbOVKhIUq56vYeXxm6M9EZ2B7EKETqcpN79MNSo4MYiky5yzB/Eyg2nmgU/YWjfabprxJ+EUlVQNlI3DvMQVP0ivqdYv5a2rAnqnCtSFpaiHbIcwWmiAqRcVXg5wY9ymyJUIpHQvEwYTc9cVYRnix+y/T/8fgoggApUX55i7ufsfvZgv1LQ/tMUWwgFAY91xS7iO0i00wz1jKYYf4t2F7TXzjGFxP+ZxP+dUV1ozAjzL9VDDvLuE48/GFiWtSsvnQ037bodiTOS9QXLzDv7iC3x9J+L44+hdTGagqEZUWoLKadMPcHzLfXNPsF0+Wcce0Y15ayKXDvKtShe+zRG2F/2Z0s6qSFVqzyQsBZ2enqShaFVthhIt1vpLbfbFGHVvCCJKxEPWuy14BYaClrSVUhu2VKxIs1fl2RnEb3AXu7x7y/+U7L8WTKkf99Oo4SY8WjO3JVwqxGpbUs2A+DiTXSEjQiztLbVkDGI6LfCmB5FBCR239pMUP7kbSTATJcrAmzQrovSYA45QU3AIjOyC53tC5PMJ4V+FpjBknt7W5Ej4HoBG0vNxE9SVDzM3OiPesgaL/uE6HQ+OzmW2yDaAacwS9KyfCmx8xh/7yQmQBGkP6kOFmBJ01WGIotWPNuzAIjTf1GvBDGtaNfG7orTfs04VcBighBYa9LqmvBEOqbSHU7IV4EGjNKyWJ7CTIyeEQAxWIzMi0es5RQimWZmRK2lfs6PJszLm32SPj+46MIAim3nfT9juU/HrHdGQ8/cwxrAT5ML2otMyZcKxJdXwkqX90Kg09PBcOTAE8H2tJR3Buy+oNiqwgVdE8TvrZ0ZwsBDl9vpG11vpIeL5wm1WDNd4wrlReAKq5nYox5fUdxv8VenomVU2GkLXkU3Tj76HysFG47nNLZUDu0ki4Ew0Ta70Bn+/HCodZLQfT7Xnr8bfu4kJYL0npBfHGB6qT3zu4gbURj0G2BKQ3BFExLh1+coV+shII7STZhei+CqtylIKaTwWjKVl5qPkPVorvwC/l8R7u2k3OTVo/o/n6Scz900HbZ4mt69A6MomFI2sDdg5Qnw4Cqa3RVYpKcg8/aCzt84GZkxEsvRU7jtfQQqQ553sQgnn8pK0ftIWCmSHCP4BhIH911KS/4JMKeB2lh6kGs64ZlLWy73hOdoXtacHgqjEMzSh9exGD5calkGIgZYfl1YP7lAb1pSU2JX5SMZwXdhSU66C8U/UXCn3l044leo3eW8k4xex0pdpHydjhdV9MJU/FY/kxzYTEWG09xPxBKc8I0ppkhuCyG2gdCnmTkK00o/vL195EEAcX4ckXxbo86dDS/uEWPZ9z/jZL+UhhR5UPKvXmNayUrCKXYPhVbAIWeDMOZJswC4zpmD7dMxJkERBzXiWkJ47ri0iiqX99IEGoqofd+WDNngEr3Hv3qRgZhVKWo6V5cweBRIWAfOmEGWo0/n3H0kzsi79NKkGbbBswYT2ktVkPpMPeaeH1L3G6F818U2Uvfohcu25NHaSPOG/qXC3afOKKF5nrF7Ms9+tv3slOOE3o/EAsLlbTrxqeO9qnCz4EI5QPM3kbq9yPuoReevw9SmkzZCj1nJ5Lei8VWDJri4bEHnZxBD152zVFq9+P0psebG8UIJQ9L0Unad6rIHYuYhOzkbA60osYcz4qTOlNeR+psNcZs9SXBSHWTzNsrC/yywtdWfn9tTwpCEX8JIFfeDphDHjySOSDDsxnts5op6w2qexkU0p8bWeCDoPnFQfwCfaUZFyIkik5mASy/9tRfb4ilo/vpOePKMizEczAZEVr1lwl/OeGakRg1HAzVO83iK9n9iwfxaQyVmOWE2jAuhaocc5U0ezNidwOhdgwXRV7kUiKVW3Hk7i9kA51mkuXoQbonP3R8FEGACKE0jE/nuDuD6ifK65ZlZdgmS/siMZ5Bda1ZfJP55R6SFodWkqCu0SpMD3oyJxdXPSlCkUg2EVwSk9KgOLxIRFeyXj5j9uVe6teyEHCt78WhRkkPnXGSIZ7DIC09Z0UJ11SERZUdjmQwRqwM0zyr8fIwCNNFpplh/9JlEk1CRYdtZW6cXZe4ZYM5uup28ofcw1fzGVysZQhHYbKHP/SXinFtaK+WLJ41FA8jKkT8oiAU0o4zY8R10LzXjL0g0SoKmBUqg1qVGCUS7FQJj/84xAXIQzYzDqGl96+NEhk3cLQYF3OUA/E4h/GDTofKvgfKiM8fl2f4ZYVpR7EaM5pwNmNa5tQ2j+tK+R6qmB6pytlRytcOPQZMSsTG0T+pGVYC2B1JNse5AcVOAkD9+oDe9SIxVwpqx+GThv1LsaAvNlJv+6NwqIssvpkENExSh0/Lgulci1loEolydS9W34efrZlm+iRFFy0BDHPhuVQv96yrkXZwtDcliz+3LL8KuEPE9EF6+vneHb0KBNeIlBuZcaAHz3hR05/Zk7pV+4QOSKn8zDCcyX3WXmTO5VbUhD90fBRBQKUkSqpSky4bGZrQTZS3A7NKEWpD9zSx/0mgu9Isf21Zfu2prgfGdcE014w5AJQPiv5S0FQ9IgFiUqioiUUiVMIe0xMM68TtHxvGxZLlVz32oYeUFX1BJsqqPOrqeAlVI6Ng4vUtAKapMU8v8auKVMoUGBkZJQ+RHgLufkdxY5nOG/EYqDXBKYa1YAbxqSX9rMT26/ywdjLRpu1E8ZcS7CT4UFnsbmT2ThGdo32m2H0BD39oSKZCRYWaFOWdYvG1GFiqKCzH+Supe0OlT154oTSkdYmaOUwv9urTSuptFI99/V4+iwpJZNg+CknIhzwbYZI/3ov2YRxPw0fVbCY+gFVJPF8wXDUCZA0FZmxEZWklYJQPk7RSJy+4iVIC0j5sZSHWNXrRoKviZCE/rops4Z0XX0btbS8pdv2mxdzuIEbC1Yr+qpZhNoXslmU2+hRrO9m5Z69Hqq/uheq8mBFXDd2zmu3nlnEpMt76WjwUppk+lafFTiTlEkgU41xx+Cxw+dM7Gjex6Sr6bxZc/Ili/koCjO2kSzRcVKKoVOI8bPsok7Y24oHolxW7ny1O48rskGgvTNYNSPALWbJhu2x8esgTi/6S458pCCilvgR2iI+pTyn9F5VS58C/A3wBfAn8GymlH5AuyJHMcY6AWDWFOk9+nQLV7cSwFGunUIF/MnF3oWifOda/MCx/01LsDG4pRo1jUhQPiuE8MS0jphPSSjQJM6jsECSlhfKild+/VERTsfqNwimFnhrS/QNpM6L8TDKEE7NP5u8pa4jbnfTkhxF3eY6/WoISZPY4RVZNAdUPcHtP8SpRLubE9fwkPhnnOmsPFPsFJGUw/8ICt11Q3QkP/MgE03c7sUyvZZjo/LVCBUv7TNE1CX058PR8y9yNvN/Peff5kuLa4A5yLtrbUz0bLbiDtK3q6wmdgJCwuwP2ocWfNdlnAUgJc5gwD1klCELrzerE5L2o1GJEueJUAui6QJ+vhfvvDL52p6CdjEK5RPDCLTBdxO0m7H2L6kfJRo62eFrDWq4teZaiBlIwpNLhdhOu9QQnPAGVxNzE3XdCRR5GmDf4p2uGi4ppIW1GFRPNewEQY6FPw0VUHyluewlwZZF1AJXoReZS/xfbHDQUeYK2WIOPC0N3rvFzGWzTP/FcfX5PZT1vHxb4r+ac/Rk01wEzREw2uh3XIqk+6hvKh0B106MPAlj3Lxa0T52AmPuILzX7TwzT7FEXEY1sbscMxHSJchdJRrF//rtlDP7XU0o3H/z/7wL/95TS31NK/d38/3/rL3uBaKX9Zw/CDVCZW40z6D6w/Gok6QKUYVCQZgH/By1vXxR0V3PWv5go7keKB0Fhh5XG7TT9pWFcx5P32zQTPoJtRQp87PGGEvafKlAlq1+DVUoERA95jmBm3R1luMlZVHB5JkC2vp68mGjMZJS4HkXtFisnbb4ijw7fi/Gp25fYXYV+NiNpm6feSKDrLxPdZ55uMRCDId6UzF5VXPzJgtmfXqP2HWpVo6fI4puR2TvN9CsBtR6eNbz+xKMXE5QBv9BHfBQ/k7JIedl1By9DMHxVUN8GXKFxKaEOveAchX30QOhHITVtdo/ipaMsODsBn65HBjHVenUSr8TSMi0tw0qKW9cKgGXbbMrSjzJHMEZSXRLnVdb1P5Y27uCx9x2qFVZfbGSAi93JQjHZ9UhPEX0YBOOxhvDiGWHm8LURbz6VXYCjYnSKaI34+PXC3Zd7LFOF+6c1/ZnU5e4gKkQ9QbmLJ95BqDWHZ4b2qWBOYe5RM0/VjFxWI+1QcP16TfnGsngv7D17CNjDJBZn64JpYU4zGYqNx931UqLVBX4tpDkVBS/ZfG7pr8SQt7yXDDhpUAXC1Riguhdq89Ro9p+o0yCe7zt+F+XAvw781/K//1fA/4O/KggYIQqV5pEeag/TqTfstiPrXyb0VAKGcVL4hULPJjZ/K3J44Vj90lLdS+1TbuRv12q6TtM9iwQH9iAAi58lVFCU91JbjyvFuEQuVihZfg2sSvSF9Oh1N0kNPIwiM57Vkg04R9LZLtzoExCoQsIehJgjbcECVTpUI62nlGcnqG6k/nKi2DSMK+F5o6E/MxyeOfY/VZSXHYufHdg+q/jmWcPyixesfj1hRpGiur2nfLenHifiqqG5btg+WHwjgUWP4takgkxqOk5Oiw6GcxjPEn4O3aWlvjGUa4ee5tKisgI4mSFha4d1YuOdjv4Fx1kJRxuzY4vRaDAilda9f7R490ZktK2Mhze7QboU/ZgHo4aT+cu4KoilzJ8UCnCSzcEZwpMlsTR55JZItmNhTmrA45DaMF/iFwXT3IgfpBWc4Oj/b3uppcuNx20mKS+MwkyCO/RXBeNMi6fgmKXJhbga20PA9oFx4dg/Mxw+gWkRSU2gPut4stzTe8vNwxz1bU1zryi2YlFW3svnBxguS/pzI739Hkn/73rM3VZA0yoPcHVibDucyUZx1CXYNhOwNBkPS7iDBIXdp+Y0DKXY/u4wgQT8X5VSCfhfppT+PvA0pfRG7kV6o5R68le9iB0E6OvPhSjU3MgDWNz3mN4TC4vdDKz/POC6mu1nmnElWAFNxF94bpeK4s5Q3qks15S0qdhDsZXpQtMsnbTZfp7ooqJ+n3A7CQrDWuYSJl0KF70TEI5VgTmrBUm/352IRNTVY9+8H0RM4yxhLg+kve8wD7vsj++EfVc6Aaa0RrdiLGq3e2xVitegs9SvLKs/N0z/sKR9MuPwbIGeQ5Gyo8xTGUAhtFRxp00PW0yIFJVlKZ4fgp5HTovFHCZUjGK4shBDDtGzK1QQ9Fv5vFhOlGJyiWZQUSy8VG4FprbLMuRJsgCbuwvGCMmoKrIFvCE5I4aaOdPTbR66WjjCosmOLErmE5RGZk5OWbCl5EmLpREjUyUEs6Nr07GDIUpBAUbFLkw9zrHMMwCTEg9It5sw2wG9b0Uh6RxpORMSUu0YzwqSEjQ+WRlzF0pO04PtwTOeFdz8TUv3IpBcAheZn7c8Wey52c/YvVpSf2uo32dLcnOUEwfGs5L9c8e4klKtfEjU7yfK9wf0/V7k1WsZJtI+EaPUdEz3k2ycSYuM/SScioINjGvJcMsHhMK8i6S/ZKX/swaB/3JK6XVe6P83pdR//J/0F5VSfwf4OwBVseL8T1v6JyXthfDtXeaB16/36F0rNtgxsvzzCTPM2X1qM06giTYRS5jWMjHGbWVBu4OheR+Zvw5U95rDU037UvrNbit4QPtMIjRKWGChgMMnir4zzF8rmrcTZhASynBZY+YF9qGXmW+TP6nqKAtS26MOHboRk0vWFcXDjnBzB2RX3boWcpA1J4FP3O5gs5XrUjj0YoFazlBTpHwXWf6qwC8c0YhXofZJFkE7ijOvD1KH393jtEKPc5mduMsPuVIiQupH6HpcN8PsZdS3bnuSs8RGECUZ/+1FFJRFPcnoEwAISEDL9yON44n7n2J8HFteldlss8ZXsmvbPhCNFs2B0UL3NfrkoR8K+Vs6AhJ8YjYz1RlwNUPC7SZ0KwFNT9JHTM5Id2ZWMlYFyUhaXTwM4lBksiX44NGbgxh+DgMxRuFXrFfEyuIXJcO5O6H7hxcF3aVIe20H9XvZeXdfVNz/oYKf7ym1YBuu8DgT+PLtBeabisV7RXUjAWCqxRpPJXj4WUn3RNqHbg+zN+KCZPogDMXzBeNlQ/tE2IVHwxQ9wriGaSGlgOhmFMoDGqa5lDNuo2jeJJrbgB4SfqZpL39HmEBK6XX++71S6t8F/hXgnVLqec4CngPvf+B3/z7w9wEW609S0orZr7fUrx3905pxrunPDdNiRfOmEl1+SKRSM/tqj+0aDk+dmJHMRP8dD0a013XCHhTdVaK/0JR3mvmbyPrXE821Yf9CMy2ldlIRpgWnB8+MgnKOq8TOaqItWHw9YDcDGMVwUTGul1TvO8xGePSnARyFkwGaDweKlMT77mqN7nviZney9FY+yM864XpzHNqZEung88y+iF7NibMSFSLl632ug91j2hskiKSqQNm1yIq/fYO5KVGLhRCW9gfxAZjmJ3dhbu/RmzwUNSVUjJjjAs8DS07z/jKJKObpRWY+k9kDx0BQV0IOIrMMa9EbULgsApJFqxJZtpwwByH4qOkDRyRj0I1IemOhmeYyAtz2CbcXteOxPElaEZYFesjDWXMGQLaVL297KYUeDnkKlZDRCEFwB+/FcCXbt8en57RPZdFNc3K3QrCZI7hcXYuxTbRw94eG4Y87nl5seDjUdLuKlGA6OMZbx+KVQo8J20vg6s41fkbOZgTF15MElOrhMUvxc8lA+rWhv5TnN9lEca+YZtA/iejLQfaObeZwaEg2EeuEOWhm3wjl2HYiROrPDYeXGl//8Dr+/zsIKKVmgE4p7fK//9vA/xz4PwH/I+Dv5b//j3/Va0Wj2H9aUd1Zqjd7Zr8aqJYVw0XJuDBsv6goLguq60ymqA12NzEPif7cMh00/aXURbZTTAvRXxcbuXiHzyL9E0X13jF7F7n8xyP7F47dZ1KDq4BE0wwY2S7zCyo4vFBMTcn8raV6P1DcDwyXFcNFRWG0GGECetejxgNpytr6yaOdFdfcF1eYqiJtd9nw4wCpFjXeYoZ2TrwMplHMT7Kcl/e3aGPEBKTtBJ94ck77+ZJhZVCpprrz2P0k4FpVyELM/gI0FenZFfr2QfwLikI6HdYK5XcmT4YaRhFBDeOJH6CaWhY6oLpeUv/j1KTd/kQ9VrMGfnIpC6d0OY0XunUyGtN7WXhwMnPV3ST+DeMko9jririoxePP6cz9SJSbRHXTZyWiAw2m9USrmZaO1FjUuhRX56zVVyFrFiKkOoO5k1hsJaPFQwBOWc543tA+E6MSkjwLwxq654FUJNy9obyV+rt9oui+mHjx6S2FCby6WTNtCym9Bk15bZi9kYEkwancKpYugUjfxTNTD4pil3BdpjVX2Uk7d4n6y8R0IdfM3VqmVcK/GLg437PZV0z3FbrPrcRFRE2K6o1h/o10k44DUNsry+Glws8Sdv+7oQ0/Bf7d7Gprgf9NSun/opT6B8D/Xin1byKGRv+9v+qFzCQRc/eJYzhbiyPPQ0/1NuC2BcO5oz8zTLOK8kHqm/68FhbYLlLee6qNYfuZpbsS9HtaypQgt9WUt5ppnth/HmlfKuZfF6x+M1HsNPuXhnFFvjmcfOXdIWE7YYRNS8X93FKdGeZvRHGWbJ5Zr2Rn1mcVxUONeXtPmibZda3JiyGn40pJCn2cQtR2cL4Srn1dCpo9TbKLOgvlSlL9cXocW3ZzT20USS/pLgztEysW3wBWowqL6qeT2QfWkM5XQufVQsoJTZHlskHck7pBxq3nnZ88kyAV0gZUMUprLko/++hAlLIIKixKEVTlHnexDZQ3/UlJqHLZo3ednFMIco1CAFMR5xXjRXOy/C52ATWKNiIpRSqMKBN3ffYcqLJtexYDTSr7FShUVKRK6MPmMKH3+5NGQc0aoUaXBWFdM57JXAKVoL4RXcT+mWAO9qBxb2Tx+wbaTyL2ecvnZ1vayfHm7Rmpz+rIIT9nD5KyRyvdqCNnobqTTNFXsumYTgKACmR3IBjWmmEN0yoRnozS0t04QpMoXh64mLdc3y1J70q0glTmTsKtpnkjw0dQ0gUKhaJ9Ytj9BIiJ5p1i/up3wBhMKf0a+Be/5+u3wH/zn+a1VD+x/vMDD78/o1/LzltuHMUuYHcT1fsBPRUcnlraKyO9TwX75wbba+rbQPV+oLyduPujit3nwgEIi0A489hrR7FRuJ3CN4nd54lx4Tj7RWD9y4nuwjKu1KnmJANrZkikgTzvQNFfKZK1lBth4pGUON0uVB5fVbCsnTjvpkScV/iZQ/mIa/MChzxyaxKHn2FErRbiRFy50wJWUWYTjE/nsjiGKIu2m9C9Z/abDeV9zbg66sct4NHJoMaMVbSZx3+xJpwt5L1z3z8dJwxBRvM/0PUrRapKUin6B+UMat4IIKoUNCWxdqKp2HXo/UgFlEa47UfDkNOo8RhPA2DSJOk5ZytSJa/jZyKqqm76U9YgI8vzzh7yrIaFzCmIpbAK9d5LAB6DzCvw6qRCNK1HP8jcA7yM7GacYDWn+2zBuJDJQrZP0q/P3RYxQgGSAG7dE6H6FosRrRPfXp8RJ03qDcorzEFjO3Gbrm9koU21wk4CQmvPybrdttC8jVQPQQxNI4wry/6FzEcczgNpHqA36E4Ty0hx0eOc5+2XF9itISwDaubhvqB5ramvJRgcx52Don2m6J8G3E4z/wqWX42U7z+gcv/W8VEwBgHMN+85my7Y/3Qh89XOJC10cyOmCNc92pfsXjq6c02xEyZU91TRX1qWpWb2quf8TzrMULP9qWJShjj3+AuZ42b3CreXySyhhM1PDPNvlSDtnZg7HllnMm2IU99YewhWHF8BbKsxU6YAJ0V/JnMTxnnNamEp76R3HQuNX1vG9RXl7YC93grHfjkXQc44iSfAMJ50CX4tvnAcgcDx0QQk1GLPbfYD9nqHvTfE/DXghMYDwsfvB9geUOcL/Ko+GW2IoYYBSqnd10d9v7g8x1Jcd0JjmebyesXGf8eY0w3hpBjUvdT4qs2uwzHJ4jPS8UBr0qxG+UIMSKqSVJrcbpskoOzbk62amiK6nx6n8ygFQWYRiBBLi3w4T6IGZBIVoMeMNyhRKB6HmIRZSf+koju3Jw/BpKUUjFYxLjXdE0nHSYjO/3ykLieMicSo0DoSgsEctDhc9Qq3kwlEScM4V0LeSTCsZUH6JlHeyW5cv5/kng6e7kXNw89NlhUH0AlzZ1FR4RcBvZiYBsv0rkYB/mKCqDBvSmYZdxhXjxThaGE4S8QiUr81LH8TmX/T4+5a/PqHQYGPIwgcjT8PPbNvDLatGJdi+OhLCE8LisZQXvesxsjus5L+XKa7FJtEd6W4+RcV++cNZ38+sfh6RE+O9qmmv5SUKtnEtEokp3Gb7EZUwP5TTXmrcJ0wwLSXSC4kojxmGskGogFyVpA0hEn84xffeIqtoT8X49Ht55ZyZR5136N44W1/VqO+kDpe+5SNKRLFZkTve0n9vbTQ/FnJtDCYPgkI+dDKbn28XkpJyt/2aGbSyvTx1LJMRbbzqiQTOU5b8rU5tdxSHqRpldh1JSNMPj/LBh2J0+cXd1yw+1EAty4bky5mhPMZ09KhQsJtC5mr+LCTjKOpmJ4uCaW43Lh7GUyidwc4ZE1CXYr7kZM5g8lqaRkGJDB1o3gPOEucV6fBsVqpx6lOo0fvB3SUHS+uZ0znjciSx0gq9ElcZMbcLtQgsyLF2699npjO8mzHqGA+CeJvAwnoDhXqtqA4KPSUhW33CdtBfyb33raJlKB9InMCo0vU7xXLLwOzV90pyPZPa27+2NK/COIpsLeU95poEtN5RNWBOGkxGZkHmBT2xlHeC9FNeU5DSZKBcS3+BHavOftTRXPtqa5H7EOHP2vY/KyG//D7l9/HEQRCEOCmkbaV3Us6bGp9koH6WpOe1ridZ/lVz+6TkmElfO3yHrpnAgCGyjH/NuK6xOxtpNgquivNuEqERcQvIqAxfWbNLZK0E3cy4+BIB0XJBfYZR5J+OyewR4XsMpwNUJprT3WfGFYm2049ut4Wu0R173F76K4su08dJpN4zBiJrsKVwpNPRmH3I+VNB9QMZ5ZQNhTrErsXkwiiTE9KhYwt8+uK0FjswWPvDtIKNDKGDKPxq1oWaSIPFRE5cVLCDzCHUVL9wuFXNckoxrl4NtTvszNNniaUfPYdDAE1m8lchyngtpAKTWjyeLc8mDRWToKKVagunAaKpEL4EiCp/9Hxl6NbUHc0MBUGYaoLaWk+HCj3PbEqiJWVNuhmL6VWbtX6Jyv6JzXu4DE7oSBHZaQFl7TcnyIvnoUYfIyXHlV7rIuEMQOYTnb/ti3xB4fZGhGgKUntyzvh7w9LoQkfKbvBZQegDspbxeLbwOybA2r0+LOazRcVD38A8fOWwgaGuxrbitDNryLMPLqQ7C9EhbmzlLfiTgSc1JXJwrRM+HkU8tu1YfWrSH0jHArdTvhVxcPPa/rLj9xP4CiBFSMLhYpOuPeKU5sladm1xpXFHgKztxOutfRrjR4T6pWif6LonkempWL+laLcig2TGTR9p+jQTKvAtA7EvQQC00m6NlxEQq2o32vsIZEsmUYqbMJQywQe20tGEMoMIhrhGowLR3UfKfaR6iGeFF5koGZYW6qbifm3I/2lY1jIrHpVGyGSlErIP1nXrqaA2074RsZqyeQaR/VQYduYHXEzo/IQ8LVmWJW4taO4z+YhR/Vf5jJETVZgRvR+lGlL2bXo2Ep03RoVlphBWnD2Zi/06TzHkMKh5ouTB0QyCt1NmLv9yfnIXy4YLirp+Udwey+KwW4CH4jruZQw9sgwVMIfsFL+mH149HcAeTYGUUjiA1iDBvQgXYaj9Bml5LysprrpsW8fOI6Z071jvJrRXVmp0RtITlx9/ZnHzUeuznYUJvBus2AaZWlMg4Wdw3QK7RV2rygfoMqio+CEnGbz6SYFmgS9ohgS8zee6nVLrCybP1zw8AdQ/NGGn642bIaK97dLMInpTExGitlI8IbQWeyNE5rxPuFreeaKjbAcu0vRx8Q6onvF7FvN4psg7sW5W+JXJYfnBd1TddrMvu/4KIJAKizxYi27jZcesj0YhjOXzRwemW8qktlrwgQrd4K6qgj6NaigGc4i258qmjea2bsoSOyNQntN39qsJ5AHQHuw+4wqG5kfEI0EIPHMk6g/VIgnXCf0YwAvJagwuJzUg740p5pQT0mEILeBcWVpnzqKXcTtc29Yq9MU5O7cEAoBeswhPJptZhONaGC8UOw+N5jeYIYjsw/MYCDJIJRYGGzn0KN8P5qjoiyzJRPoyVIuHcVDie7EE0FZAeHiaib8+0FAyDgvSauncu17j5q8sPpmQi7SU7Zj75CUvhIikBkiehekdbnvUD4QFzX+vCE0md8/ysAQXxlClUHFQaGWFaaw6G0ncyP6XhiIZ0vSrBay0bHdWNjsNSjMSTUlyVzaXtq1VUk4n9G+qNk/N/RXMFwEmaWowK5GzuYdZ01HTIpXtyumhwo1CEhY7jTlHbid7PpmFPDP5PmEqlSoJAHdz6Q+N4Og9fX1RHHbE2vL3R823P5rnj/+vW95Xm/59e6C67slxkSoPXEwaBcYW4d7W1DfKsoH8VDwtTxfTsYeMpzlAFBG3EbTvFFUt+K27FqPHjIj8YWje6oY1o+aiO87Po4goBXTVYOaKvEAzOQP2waSNnm4ZFZqZb56UkpGRYWcHuWdt3mTKDaa/jJx+ES04fWNEErMkJi9hupWE53YQ40LIYTYVkDDIy0zkXu8VVaNPShJvZqEnyX0oDKvQJyPyjvJEsyQTrROFIzL7G2AZAS7T0z2FJAgIf50QilNRtGfOwqncdtR8IQh4WykOECxU+w+0wwXkVh8IHYxSd5DJzCJ0UXSqCHmYBYU7t5QPAgWQhIJbdVo7EHUe7oppFZ9UjLOpX63XQkKGcaRVZHFQcwyhWosFNzirpMJTrWg/SolUT3uOrE57wdpuFSFCFmO91BLAJjmUuPbXmS1KojyTXphefJwUxELR2wcYSZ8ej1FLJl30PYiaW4qIUktZ6TCcvhkzt0fWqZFYlwH7FVPU3qUSjxb7jgrW963C673M/bfLqneGsoB+azbxOJbAaX9zDGcuYwpyCbSXRq6C501GIFkE/VrS7EVohBa0T9vePi5Y/O3Rv7l3/8NVkX+328+Y//QYIrA1Fvs+wITIGlHtVXU18I1SFplnEl8AZIWncu0FPPR6looye4QKbeB4mEkVoaH35vRPpNA4Zc54P1nLCD6pz5E6CLGDWFe5hTuOBAyoqLIbUMhwAuATimnXpKWi/ZdEZx4wNkOxoViWkq6fhzjTPYZ0JPc5Ooa2meaaZkY1gm3ExqxHQT1H84glvI7bq+wbcYKarmwZpC6f1pCsYF6HzGdTCg6ctWTkQXkukQsBCsQph55MR1Byeyb7xR+5sSLoPXYPptphkj10LB/Ia45oZL5c8dglIwARmbISrkyXyMvsxpsJzuazlN5zJDQQSy19WHA5DFf6klJvzLitJM7IGTdQig0xV6UcCqIfDY5I9nAOGEO3WNaXglZRxkjJqzdgNkZdG+IhSUVWiS8RmWQ14txCBLk47xCh7WUK1nBqdvphGGokOcTZMPUtJwRVrW4QlfCoZBSTVik6nykKOX1X642FCbwi9srHu5mmJuC+k7uvWSZUD1EKcnmjvZpwTgT5H9YmtxFiMT1iK08OinUq4piK5mA2Og79i8V3R/0/P4n73l7WPL2foHvHcpE/LaguDbYTmWcSXZ75WW6Vfc0E312ilgKizVUwoOprjXVrTzn5Sbi9p7uuQw/6Z4kprVHz7OD8V1B88rwQ8dHEQRk9LXCHHymBos6IhZKJhJnCmZwilhkvb4R3YBKH+ymVqFLmT+nJ0Fu3V5EFmhJ65OFcQGhSugg/d3yIQlDsJYSIRnxJXR7mRU3LqX2F82BXHQzpmxkITd8OIfuiUJ7w+rX08lvPxVagLhBHGLcQeHrPJn2QWYsoCSNP5pIRqdldzwTq/Vi44XUs2+Z3e2pX80IjaD+sbTEbP8Vyg8cgLI9tUxKyuVUSierbe0ToVRMM0HMq3cJc7vDDiPNNEeP0qGJRu6P6yJ2kF3QbWXgydEKKzqNu+1PjEhVVScD1NSUAlIWjlQVhLl4IZBE/1C/lWnAx7bjEScIlSGWGrMsZOjL4MUJ+M21eC6GwHFmgcxlWBHnFcNZSX9hODzTjOt0Ug+GecToRIyKWTVy2864ebfE3DmKEdwuu1J5mehjsxNP/6Sku3icajysE34dZIHphNORaV/Q/KqQ4bn7mGt2zfZnkD5pWc16fv3uEgClEroIhIPD7AyxhG4Z0aO4DJtB2n79VSIUEoz8PNFnFqzdaJq36uR1WBwkK7n7GxXbn0obsVr3GGBoHe6bkuWvoNyG3152p+OjCAIAvs6RvvPZQ85T+ggXwqW2g1hEJyNCk6OQxtf6ZPt8nN+uoqTy0ahTkEha/m13EqmHtaRV7TPZ4c14zBBkZx+X5DlvkorpIHX1cVE170eaN+k0lbbYK9onmsMLhZlKFl92mN7jZyV+YbF9ltAevIiXjML0Hr0fpV2mFOFqxXBRESp1Mqs4et3HpkBZkR+rQ4/NPfm0b8XQQ2kB7YqCeL7ALytRWUZRrUG2cFtZghMEOxRCjR6WlnExp3j62Es2XWS2lS6Nb2wem4X0z0uNruwpczlODUYvhWRktZB+Ji+CmFlJuJgxrRy+Fscl0+f5BJtWDEKa8jtdAjMJwKV9lHT/0MP9hrjbfeCQLIEgZVC5v6rYfmY5vITxyoNO6H1uiaqEMZF5PXDoC/qvFyy/lqGevnpsF4rDUWLSspn05/KchFJSa6oAQRE7K2Xrg2X5WlHdiVAoKejXisMLhT+bUJPm4c0SPZu4ON/TDgVdW4BJhEUAlXD3lvqtZLnTXOFnoEfJEP0sEWYRNSqq94by7iiBlo1xahT7TwztJwF72bGuR3aHivS+Yv6NZvY6ngLaDx0fRxBIggFEo6EWi65QSfpiD4FSSw3rS407ROnZKxGnmDEy1dL2USGdqJMylprTDqMnaeulWqJ9sU1oL9qCZKRUSArMJBnDKZA4TgNN3F5wCV9p9i9K6ltPeTcyrhxJCTp7eG7YfqHxZcPsrZdJOMjuf+y5u40o21SMQiOuSlQ/YN7cUY1LdKbQAnn8WZDP1BSo2okO3wdZeEYGdKTNVhD+yqONxvmInhX4ecG0cEInzeOujmVKdMJ5CLX4FZpeLK7dLjF7O1Hc9Oj7PXbR0L9YPHoNWsVwWQhesRcBlT9rhNR0nLCsNaoXpWVwS6ZlHlQaQA9iVYZSQiTyATV4TD8JFyJPc1JdFjINw+PkpDwbQRmDbhp4csHw+TkPPyvY/RSmJxPVYmBdTOz2NXHMHgo24UfDzZfnzH5jeP6bgG0nxpUhWvKA01z6RLk2fibmrNGJSEd3GvNghGCURIla3suQXBXTaUBtfwHjRdYv9IbyvONyeeChrWl3JSlo1MGgJkXxoJm9EZCxv5Bn1h4yXrWW56V8b2jeyIZwfIaiFbegw8tEeDbg6ompt2zfNtRvpVQ4rRWTLdV/4PgogoBKsosnq4hoEd8MgWn52CpUMaf16JwRZFVaIKuwjlE8p8Mu37xcE4NcxCN+ELPRhTgSc/p3UgjIOIp8M9RiQjItpAtR3UpAmGbSFmxuhNF4rO9nbwLDWuMbxf6FxWV/N7E4k+ET08LgtuHEHFMxCamnHVCHXhSIi+rUX495+o4MRA2ZJBPAFoRLce7RVyvU6Ekg9baVxWQ6T7KOkDMmyFlTSJjx0duPbEpRPYivXXnTobctaRxRm0gVInFRiWaikc9wHARiN73U5V74Hsc5gmm/B2sxxlBmduI0N/SXDhUdbh9wW4vd9kKWipFUFqK7yNZlCkgpok5j2ivUfEZ8ccXm9xZsfqrpLyNhLdTeZ8sDZ1XHFA1tXxATmE6j9ppiU9C8S9S3XkC2pQQAFY7jwXL5YMCjMF3eGDqFGeVZEw9CySbdXrLMaSZsw2kmMt+w8ujaUzcjz1Y7ajvx9cOaw32N6g12l+nJB0XzLmVqsViXu10uWVfy3DSvNc27mBmNuWQyonxtPwno81FcuN/XVO8NLhuIqChAtJ5SbmF+5EFALKJGYm2JVp8oocX9iJ9ZhnPR0vsKprnG7QSYOlpFHT3WlBIyjDla1i/ld443WodjhyGbMjTqpCCMBagJXCs/G0pOqjLTSUo4XESmhaK6U4LWGrJO21HeTdh9xDmNa2UO3MnKKktgy4dsKHlmCZfiNmxGk4NBwISUJxMhCLmCMDNMjbjb+pnUrc37gvLeC0VYyYTfZBWqMJnlp5gWTlLG/UT1aidl1KyU9twYTyQhGbZR0F/IUE4zyAOjd8JgVO5xkIiZvLD7YgL1KEJS2ZMgrBsBebcimebyXNL8Qu5rdApfZp1Fl0d15Qm64+UMANML/kFK0FQym3As0Ys5cVYzvJhz9wcFmz/yzJ7sKKyn1oll1bNwA3M3cNPPeP2wZNwX6CDMvtlraN4HwUKykYrMsUjYTBzzpWScIAsILR4TKrsfRyfAoDlIuzVaZDbmZRRgtgqYxcSiGWiKifO6JUTNr64v6R8qVGtwOwGX3Q7qW7HF37+QAGI7IacdsYz51+JFOM417TO5btpLR2t8JoEmHCzFe0uxyec2JKIjayBkTkexmzJF/PuPjyMIoGRibBjRzkggMBo9BYrbHh0S3VVx4mN3TxTxQWPbdOIICLqewUGfqO8jtlf0FzLqeSrkfaLlxLyKRpB/24LZyA3wlRhw2lai7TQX1yF7EBOIaZFonyXKe53lxwrfGGaForrzFLcderDouSweM4iRxrEP7g4e0wemlZMAMwTxzfNR9OGl6PCj1aehmclAqBXts0RsIu0zTX1dnphjthXPeZdn0x2txo9dCdUNcGhxRYGd17LDTl4YgONE2VTY7fI0A1D5SKqcGIvkicMoJfLk3QFrDbYW5yAQ5mI4axjXpagxz0oZ5x7Sd6YKNa9aZr/K6H/tCI2VEVozQ3CKchOEdusyezJGppX463WXmt1n4L/o+fmLr/mbtTTNfdJoEj5pfnV/wd3NAr1xmF5RBAH8mjeJ5r3HDAKu+Vo8Bc0QBVyO6gSYHjNOP5PNQSVIhTrhTWRG4LCC4VJQeBLgItVqoKnk4Rq94d1+zmbXEB4K9KBFu3IQo5FymwgF7D6VmYQgXJRYihfG/BvhGvRn4op17Px0V4lwPqFsJG0KijsRMEUrz6y4LEvnxx2kzd4+Kdh/YuDf//7V93EEAaOEAppZZdpqUZE5g9IBd9/LUIXLQtDThaTbx/TVZ9cW2wlgEq0SufggY52SFt5AfyXYwNGfDRDAp4HqvSCu01xcibQ/chCEUSgDLMSjIBTSIjS9ItSJ7lnk8FJTPBTM3jiaa9F0JwV2ipQ3rezOFw39VXGy7hJ1YkEdEsW3d6iU8M/PmOYCkOkpoqKiDMgOrzT7n8L0+cD4XKM6UbLpSVE8GMo7TX1naN4MuLv+cR4giCeBs6TSibz5OAQkz13Uv34tZiZlAU1NbCqhcYd4YuQpECUeCHV5mwHNp2v6y4qY089hpfGVw4xJFvbBg4ZQO5k0BAwXFbtPZDyWGSUVF9ZjQ3TyeYeV5vBZwj8f+PzFLf+F1XtqM1Fqz8GXTEnz5e6Cr+/OGL+dUb/VLDJ11+2TsPpaUQge+SW+NEzzjI0oeUa0l5LSDtA3EgCSBrLni/hLJOlI1dIqHdeRWMkGkYqILgPBaw5diTGREDTDQ4W9sxQTIjQ6yO6MgsMz4RcMl4FURvAKuzHUbzTNe9nQ2isRNEUnv+OXsgmo3mC3TkhuKXdvDrIZuFZsz7UXjszDi5LdF+J/+EPHxxEEUiLUouM2+wHVDphsFQXSMzaHkSomQmNxe2mJJSXKtvom0j4RYwgVEfZco1BJHspik/D1kTwhKX1xn/XfXhxih0vpNdtOSoHhTBa+pG6KZIW5hZY+rcriGtMpktH484nuMtE/cRxuLPU7ifbJyggvm4dmmj7hm1yL59Fb41mB6Zfob95j39yjzpek0ohbDhCdobyFcluikhXLqXk8lSvAqd4/Xk+9ayUDcFYmJjkj8mENasy99XESg888bFQVxckHEaMI81oIPkHmDTCIUUlc1jIsdNOBD0zLkvaJDOosdpKddVfZNPagKTZWVJgF4lOYhN8QncrMO8FbhqViXEv2Ei20X0xcffLAZXNg7gYOvsSohI+GKWmu+zm/fHOF+3XF+hWoIO01PUK5TaeFMJwJmOcrxbAWsE8P4uxjRvk9oXYrEeVkopfyCHFnSAwryQRDIRiRHmWiVagT5iCS62kRKNc9KSmmVzOa91L76ymXoT4zS8+k/h8uA2o1knpLcWOYvYZiKyShYakEKGyS2OcVEnCqN1Z2/FEy12SPbWvJBm0rAa8/s+w+1/QXubvgP3LtwLEl6BtLchqrFKodZL6ce6xlTDuiR48pLGkvXHPlE6YdmQ+B4bykPzO55suCHyULtryXRd4bRSoT41pISMUGqmtplR1xADOCO4hD0XARxWBiq3BbGC4QnncUwEkeBrC3jjCPJ0mnzJ1TlA+KYqcpdlbaYkOgvG4/SP/FlFR5GSker2/Rm60MIa1KsQ4zBjWKe1C0c/Qo7romG6qaKWVX4IjbZ6JSJbZkjJMYijgr0uXJS2DIwUFN2cnIWRH1WAH8yOo8jCJhJM0H/Lqme1IyNQpUgy/FAXc8k8zH7aQDEAvRW4SabJKZRG8RBBBTmTWZlOA2vsm07OUkHPpm4uVqT0iKN9slVTFRmoCPmgRs2prDQ03xxjH7VurraSb8CxR0F4ro7IkrkYzs4H4uGpBiIwM8SJkvkbsm2j8+B+VG2n7duRYLOqQ8KO8yhjCTcgNgWonYZ7irqd5alu+FdHTEobTPQehCZQAxolYjcTA0v3aU94Iz+Eqe3eFMMS1kcKmaxLSk2Er2q6JwXfxMSodyIxOWTBfxdfbSfK4YzwNp7lEHi9v8jjwG/1M7YsRsJT/3jSVcNdiuFEXcoSfNxOU2aWn3mOwzj1En/bzyUdxsfMm4NOJH0BzRUdkZzABmkBsaXWJapGwgKUCN2+aHpRGQ0O41oUr4WcTPoX5jmH2r6EbL8HIkmERqRVmmPegHjfIKt8+Ta7UiVIquEKFPqY4swkqmyuwHIiVxXjA8aXCVxVoj7b5xFIKNyw7FGdiRHruGlDkMfdYiTFGGdqqjFLiBS1GNuPsO/bAXI1RrxMBkXkpZUDmpvwsr3IQpimVajKhDIBlDKg3DZc20MKepPd3lMXAmkhMQU4/qtEuqIDZafh4pPt/x+1fXFMYLQ+/1UrQajRel3mgwlefZ+ZbzukWTeBhq3m/ndA+V7MoukiaN2lup9zeKZSeCmtlbL1wIJa1aqftzZ2jMbT8yWexOnf4/LhQqHLnXkvKPC8U0TzLEthCbb99IwDIdJ1LauELG4M056fnLd5bqRtD5ZDixAPUkmen+c8W4jMQmYpYjYVOw/HNL8SA/f9QehBKGyyg8Aq+wrRa9SoJplrOoImWqe+56TYlprtl9auieJcKzntmiZ3/bUL8yLL7+6MsBUP2AnTwwE8PFpSOUS4rbFtVPeeBHkJ2zEnGJ8kEGVWgxwRBXm0CBRMv2UktEnUN5n+mVrZB6QplBoBn0TwLDFdSvDNWNRO1hrYSfn8D0Gr8MtF9M+HeW+lqRtGO8CsQqoqfjRBtASWCR+Qngjg9EAb7U2BQZ1o74ssg7uFyCqVHEzxzF5w2z15e424PM78sWXak0YhySpPsxnAmPvA8Ge5DR1MXukUByMkdxYIaS+auG6vVORoXVhYiEQIxAfER5QeTjrMRXOehaTagNw8rQn8s1czth1BU7CCP4Rpx44yziq9zDjwq71+hRjDmWTc/cSeA+n7VUXwiuEKKmGx2jsxSF5zAUjMGQkuL2do6+LigGSc9lYlQeHNOLX5/tEEOYnYCN5b3HHnSeMCSlhgp8hyyTlKT+ycjCJj2ax0wzwX/cQfr/0Qow63aPilHfqMdWYC2ft7g3QjVv5dpMmV+gPswKLxN+5cFGdBWINyXr/9gIppW7EqGWnx9XksITlbQ3pyOT9UiGEzWjmQQEtEMiOsX+pWH3c8/ZJxvOmo5ff3NF86uC5VeR+sbzQ8fHEQSyBBWtsO+3mEN1kpqOFw22FfeY5MSJ5riDqb1YVmkgqYJUWtGiDx4VClQwqGQ4PFcM5+C2htnrxOJVoDuXvnl1C+Wt4fBpov3E4xtD/V7SRR2U3BADatCkmWf6fMDPC8obTfnOMq0ioY6Y9pGyi5KbFgppJ1a3gkpPjfAcVIBYwbjSpwfcdpJOb3+iefi9mvKhpnkXmH/TYd/ckwZHvFyIq46StHpciQEFZBFRBNNqYpVIRjTmapIHZjgvKV8W1HcB04mFejJZCehz6q9V7p1n05Qit1hd5lSMKRulSMDrL2TR+KXQaJ0LKJVISTE2BaqTluX7myV3mxnGRrSOaJ0Yeod/X6NHRSwj4yygTBYWdQb3YE5p/NFgRE+S/ehJOA2CfucpQNUjb8EdAiYLvHyZvR1cDiT53O1BQOTuXCjBR8JY80ZR38ac8QhekYxsJKGW3T8WiBZko6luZTIRSNdgXH/gQWEEW/LzRCoSlAFtI+bbitnXinIrhqT9heBSsZAdPtmEGnSWrsvYvGTESvxDXovoRKS1uftMM/4LLX/7Z7/gup/zD//hF6x+Yahuoww7uR9+cPl9HEHgyHozwjVXUxDzizxYItZW2ldaUl178JhNn8lCEVrhSkOuw9oRcxgx6xqV3SN2n0P7mad7oZh/aWjeRlSSG9dcB8qN4vDSMi4TwznYfQaP3soDMJ5BwEKfiE2gfyL1oNtoQpmIZTrVo7FImE7jNpm4ZJUsHieBQNBoMZw0Ryuz3Lc2HYxPE/1VYveFYvPTOfNXDbaTaH/UKritAEXRSZYCQBExFz2rpkcr6CfLOFqmzjGdW3YJ9KApb63sblMuWXLqfHQcOqohRSCVx1qnTJRRshv258cHN1HcGuzXlqM3Y9JQlOmknkz3Qt09uo6FKveyRwVKgFZ7LW09exDGYrKKcSEPvP6ArWmzAxRIIASY5pbuSt7fdXmu4V5YlklLvR9KdaL1koll40q8/2RunwCF5Vb4J8P6EVfyTfb0z+Izt5XzPIqwxKotp+mWEwAYZiL4iVVEz8UazH5d0byWc5kaCQDdy0BqAmpvMJ3GPmhM/5gVABRb4S2Ma/m/2wnD0dew+0Jx9S+95V+++pr/8M1PefiTC1ZfK8qN+BlW1x3mZvuDy++jCAKxsoTzOebdA2QXGbRMnAVO8+ST1Rit6J6UmJWjem/FzOLoZttPxEZEKuZuj/v6gNnNse0M1zr2n1gOnwR2v+cZzo47fjq1qRZfRcal9IBjIaWCPYg60PaK7ok8EHo0wtJapDz6SVK0UGV5rwJ/OeHnmngtxhvlPXm2vdTSKmdnyoMJcjOHtaS69bVimBR+FmlfRLpnyOc3svB1L8DlkQClvHClzcYQbx0bm7eiYxbsIJURVXtCaRhiFmId8m7ZCEYipY/oKOTkjpRqdfJcPA4FURGqG0V9k5i9GbGHCT9zedqvzjRvdXqdaS4p8XgphBoNxIeC4lZT3imKrbS2xNUJplpT3ksNXuyyWhC5Dr7WDEsRb3Xn+pSi6wnqm0SdB4XGQjpIrk0UB/nauFRZkSqL1nQCALq9ZDlHYs5x2lAopXcvQLBgRyI4k0UqknR5/2gl2xCbcdnR4zygK0/cOxa/sJT38nVfKdrnifCp0BLd65LiaB2WDU6HKxGXmZ1hXCbRQoxKglAvz+jmP+f5r/zNP2NpB/7Pf/Y3Kf6kYfVeRvG5XQ4AtzvCxQJ+8/3r76MIAgD904Yqgrl+EKuxeYOymlAJBda0k1iP9Z5mCmx/0jCs59TvS7HiipFkJGjE2hKfrXDXe/S2pfQRHWa4g6O6Mew/UYzryO4n4j1Qv4XqnkxFfpQmpxx5fSNuMrNXivapWDoR806WDzM+tg0ZFD4oOBsZ557hYHEPhupaPy4wJ1lLygtMCEHyUNlWMAzTa/xMPAxilS2l60A6i/hJADBlEraasFassIZ9iX6wlHfSLk2GXEtqSPZxWIUTToRtj4CoOukkZLz1Y02tvTSjT3TZgwy30D5hdxP2oc0eAQ1JOWFL5tcDWST9ZWK88qgqEFqL3hma9/oEbAldV0Q7cj2zOrTLk3nynMdYGMJKZuwdkfRkpb637WNb8MgFOGYHehQbsKlRGbF/lPwmJa/14SCbY5vS9LLrHnkis3fi3jMujIz8Wqls7ilTr0HA0lgJYEoE+1XF/GsZixcKGVfePkukTzvitqD+xooEeZRnbfeTiHt5QLUF7Cyxya9z7FIdZDaC/4OW/8ZPf8nXhzP+X794zuw3luatsATdIZ5mNmz/1jPu/tDA/+f7195HEQT0GHEHj1+XoNeY2x3q0KGUwiAkk9A4CQQpYrY9i68U25/WPPxegXte0LyfsK2AXLrzxMIwfLLCdB57e8DdtOihpLpW1Lclu08t7bPEuIyya70VjrbKu3I86bvVaXinPUDzVjF26mTsYduMMOegcPQqqL3Cv62k7bUITFcTfmZOdaSk3urkCRCdGIugRUNRbKStWb8XqvS0eGzxSPkh9WloIl4nrB15stqzfnrNt5sV92+WqElL9jBqqmvN7PUj6BmOHgkZzFLpkXUprdVjJ0M6EHpKmfmXGYVGEY1iWhWkQp+GgviZYf/CMJxLi1BNGVkfFPNfOGznTgzCI7dBeWlzng71mG3YxElJmArLuC7ozxTTQhac7UBlfUbSiiFbx8ciL+Ix19BJxD0o0B9Y1snv5ZZmoTCddFiiA/cA5cMjqm4HMfuY5ob+LLdG13IPdK9PoqxYJDFy2VmKB8lyVBKCUKigexpJC495VTO7lbQ+lDCuFd1PRuZnLfuHGtVaUhUFTLyXcgkF259FPv+jN1zVe/6fv/459hcN6/fQXMesj5E/w0XFw08d29+LJP2RdweSkX6/iqKP52Ih6P8wghX6sJ/JtmLvBVk2h5HmrWWcF/SXilA5yo2l2HjBDLoJ03umVUm6motIpZWyohk8KsxIyjLN5UYePo3iQvQuUexgRBanClDeZcaYFZ/6YgvFRtxpxe1VgsFRwXg0ejAjxC+hP7MMZ+AX4k+gwlHEIxNjfd5RYgnRJHwttbptxWVm8SqcWnMg5yTgoIzVHtaWaVnyejbnm7NsUhkUutMkl04SYBXJAzqlfDG9KOBkeCmUm0DxMEgLdvLEZc24LkEr8T5UilAZ+ZONVEV5aVBBJNXjTAKMGSQomvEIwnHSUaClBatH6XSUm4AZEtMsi5yyi3B1PWD3I6F2TOc1/blj81PDcC7tXrtHFH82I+vmkTorqlFASSswFvL+KnEyrxVcRjAQCRjH4JCp5INwCJKW1/MK+pXMqJCNIpdQnSYW2ak4KvTBUDzo07lMM2EhjutIrGVR2xuH2zyqOaOD/mnAlIH99Qyiwl12VOXE7qHJdOZE/FnPZ0/v2fYlX/3pM5rc0ao28ZS9hEJGpR9eKvonHjVpZt9+5DyB48Nl+vA4QmpWoYZJ/hgx6xhXBclo4dpnXcFsYdm/MIzLzPRKBj8zmM5RbKdHYVJToPcjKUuU63fi5nt4ZoQYNMtAl0OMRu7FXCQWQmaq72IWn2hsG5m9i8zfGPbPDH6OpJ0Z0AoVTF7S12Ivwyana83huWGa5V23lzS12HjcbiIWhsPzgvaJzK1LRoLQ/hOFOxiKB2Gc+VpBITyE+jZQ3fQko+myLdiwLmifJ9JMtm09CpbgZyJVrW5l9w/H6ba5HBHUXBPKiqKyMoH5MFBk56BoNX5hmRZ5VkCmaA8LIxhKHiSqvQzYPBqZHLsMoRTOhIBrj+1MM4i3QKj0aQYggE4wLRzds5L2UhMqqbuHC+l6iNkGJ6RepceFm4w6lRihVISZgJGnnzuoEy08mQzWhpR9J+UcQyV6jZhbifYgA1vGFSd+RKwSsQ5U5z11ObLdNeIu9KBOzsO+knMOswguwqQp3jmK+xzQj7LlJncYNg69mPj06T2NG/nlu0tSJ0NHitVA6QJf/9lTFr82nO8k9dc+i5/m+c8CxlUkFRG7NVQ3YpDzQ8dfGQSUUv828N8F3qeU/mb+2jnw7wBfAF8C/0ZK6T5/738G/JuIa/z/NKX0A7KFD97jKHl1GhDDS6Z44rmrIWC0pJvDuSPUhuJWPNybNx1mKNl+LhFaB035EIkLg2801e2ESolxXQo20I7EWUkyivrVgerGnEZoDSt1mkSkA5gPTET0UUmWR0YVe6Esrw+BaW4YVrKLqUHSa7H8UgxLk1NfMY0IpXQbjtNitDd5IXia94poC/qsLbCt2JGNC2D9aK02LcTFaDiznKWS5pf3zDc902VDsXfYXrP/RONnQuJJCvwicmhUznayiEo9ElrskMdnW8X+ZYF+WlDdy4Sfaa6ZasEg3EGCIRl51yGRchlUHCL2IC27WEhrLrpHxV71IKy2UGvZvQtpmYZSBs0ctfLBKaZLzbgy8jDbhN0LaFlsxZt/XEeSSRT3BtNLUAVh2gmVNrfTHFmoJSzFI1NwyvwGOBJ6ct3fSbYUnWwAdn8kCOUSowQ/l0VtliPnixajE9fvVpTfuscAEDiVesmAGjX2weC22cAmZ0KhVEzngvukIjK7bPn5xQ0A/+ibF6TbEqqAbjzjXYX7ynL5VoLnsZzq14r+UtrZ0cUTn6C8Nrid/Myxzfu96y+lH44QeVH/V4E98L/+IAj8L4C7lNLfU0r9XeAspfRvKaX+CPjfItOJXwD/AfD7KaUfFjMDq/p5+td+738sQqLSSv3fZ+/5o4+dUaTSnVRnenx0zNFjIFSW3acFw7kslqPW24wJtwv5pmrKmwF7dyDOS/yiFEPMfS9DLSqHXxSMKyuDNI5tJqtPzrj9uWXM9aieHqmn0anTUJLjvPjj4RtJH49pd8h9Xnd6wI67qOxex362a7NpSqNPry3AnTzAvhHa6OxVYvEqE3BKkeweXYx9Le8/LrNYpREWGlGwDDWKsUV5L7z/mBWLfMBdGNfCmlMe5q/SKRAcnY+O9XWxmbD3HRiFX1aMa8c009L+zKaq6ijwKtXJ0+FI7T0uvu5K0T1JhKUHl1A7S/NGQMSYGZ2hygvpgy5LdBmHiEomTqdjWSI/o72g+uNCMZ7l8iAg2cmQ7ejaR3BUZUVen2nDyUhHyM8Ddj2yXLTs9jXpm/8fdX8Wq2ua5flBv2d4x2/c0xnjxJBZlZndVV3dLrrbA0YyCHGFZLgAIYRAwqK5MPKNhZDhwki+4QJsISGBGgmBL2xjgQSWQbIA2zTQ7XZX2V1dWVU5RGRMJ+Kcs8dvfMdn4GI977cji4wuVNW0gk9KReQ+O87e+9vvs561/us/1Mxey+wf1S//jgTslUDQfC+/+6jTe50pji8i45VDFZ7ZouOsbrk71PS/WGJ6GFOxK27kRhf6u/w8UQlX4/iejBkq/V5Nn8hEQyrwDczeev7W/+6/+7sxxr/8x8/fn9gJxBj/hlLqwz/24X8a+KfSv/9vgH8f+O+lj/8bMcYe+FQp9TFSEP7Wn/R1VArPNINDRRjOCtQsI9v2qBQzFRWCFIMk2OYit/WFxnae9cctxxcF7WUigLSKqNMtnpD743slZW1F0OMj/ZMZeZGhtw320GG2lmxTEDMj3vyjI8wLfJ3jrUkPfgKTjKQVqSikmsnohAiGx45ADxGVi+kp3/jvXU1aecnDQnikHGdNTBkBkO8DPjN0FyoxAGV7kB3k67ZPFf15frIVz5okJT3IRmGYazFJPRra54r8gwOZ9fSDZewt3crQfQgMGnOQkAvdi5FGVNO6S27isRbRlUn223oM4ok406dcRJ1CWENK5gVOFFyfC6FnapdPrj6pPXcz4cwD6NZAC6aZfB8ixUFwFFnDqZMeQcBHTtiMhIrGE+jmS1kNhkx274ok/rJycE2U/87naSQAtI4czyW4xiS5rq8DxWXLrOp5uFuQf5FTXSdrsJmMghNT01URX8p2Id8nvn8dyQ5SBI8vIu7CoUsnv6fB8uXtJeXrDKthOJfRuLy2Ql4bI2MaPU0vblDHDz0xC6IoTeI53XP692wfWX7pyDeTycb/5+tPiwk8jTG+AYgxvlFKPUkffwn8B9/4vNfpY3//V1r/THHRuhkoBsdwUdNflGR7g2kef4iJGaaHkNpuzTizqJCoo61hWOrTPDrOhFYbMllB7V/l6DETAo8HNzeY84Ls4MQkY/SgI6HO0L1k3ptWHHP03MgNGtIYM8AU8Ck3vBQcVypUwcmC3HRye8kDLsy3iTJc3seT39/J8lzJPBpm8nCaMYrHwXLyRIjkRygS7VXSjtKhi5yKns9UwksU5V3E9JoDc9pVArEORjJDl47ivGWcW4bBwCi3iu5FJJU/KOq3wtPPDi4lGMk6FgTtd5XCF/npRp/WfTZ59A/TNxfkZ3Sl0GtdBcF+AzRt1aPRi5c1Zr6T7m5q8d1MnzT/9sjJWk60Apwi4Lq1Zlw8FqOJLmw69djB7KG8EznzVASEoy9FYkLl+yeO7KwjeM3Dp2fi5HOUw318KT/D5E4VykjUUXQeCg7vyxYh24qysD8XSjUqEgaDsoHhWGAfrOQiFAH7kCjqp63DI+7SXQqQSAT7YE+SYhUEMNYjzN5EynuP8tA8L771+P2DBgZ/1eDxK+cNpdRfA/4aQJmvBAgcxK9ukr3m9y2+FoELyIODEcdbcdNVsj4aAsEauXlKoZtmTfocPa2PSIQTIYoMi0eDUtuAnulT8KbpI8WDcOnHmZhvRiX6/vkv9vg6Y1iLs47y0uLaVnwOxvnjAyepMWlt6CLFvcym4yzxARIxhCDtYTzKuzVFtbvqkSFoeihTuyrEFEWccWqvo5UbAC23adRgRqHLymwuxdM2kdlrTdtnuKUk4+pOYZoMV1hiFuXtng5kr8g3irOfSZSWblK6UW6JucEnFWS+FUs4X1oZ11ykvAvku/EUqFrMMlwt9N72wtA+hXEVhAMRhfJsmkkCLtwL0wk5Z8qcmIw/SIVVj5w4A9pxIv0EI4XC54/sPsFA1CPz0kpXUd0EynsxuD0+z0+JU9K1CX3YrT2q9LgbsfGqdtLJdRfCCoxWtkRBAX7aAIl+or+STIL81lC/la/t6kisPMoKCSh2BoIivuqIB8v8E1EWdhfyHEnXlDItkp+FHoTwpUeJMMOIGK64g/pWfBRcrU/j57e9/rRF4J1S6nnqAp4D1+njr4FX3/i894Cvf9VfEGP868BfB1jVL2JUCnIr3NKYcACr0a0DI52CakcozMmE1HTiXqOjHGRfGkJMbV/KiJc5e3IbFsKGHhVjSCKhQvZneSLMiJJM069Lio043oZMEwqFKzKqW03x9oC92RPmlXAbANt49GgAi6uk+MTx8WGLUXbQ1U3EHlOIxFweJFOLn51NzDbpHiL98tHUcooz005IKVGTzC/UqaOYyD46OSeHRBYyvdyykLCGvXQeKmr0KBJpGSWkj1Yh0W9TsUUJCIpSuLMaN5OkYpdEWFkTMB1Eo9M6LWJ3DrMT6XdMKcfRKPqVoXmmOXwQ4KIjeg2dQQ06maECOs3QW/m9qigIfrSPbL/puvmmBDzatC5MHYgeOBGeJvpvyBHiTSNRYidF4crSniuOr2SGn9D77ioQVk6MPL7OKTbCCRnWsnGIE6syD6goGMsEQorPn3xvxbWheifYSvMyEM8GGDXsrJDCEs4Q35Sc/0yem933YDxzqF7LugRZu0bFyRxH9yqRpZL13DsxcvG5olsZtI+UD/4UTferXn/aIvBvAf8N4H+U/vl//MbH/zWl1L+MAIO/DvyHf+LfNo6Y260ET+ZZEq6Hb+jZNVFrlJe23M0zxrn4CWQ7hz4OmBCwmcHPMrSzkmqcbodJLTal6JghkrUB7UwizqQFMvI5WRtwpWb3vsV2JhlQCpK7+X5O9vyM+esBu++xu/5k7KlHWXtFk+bmTlh505wYlSIOcptnTWSYC07g6gkwEmVYdpQAEz3IdiBqdTLFOAGEJlmhJ7wjS5uD7lxLB1KmQqQFlMv28XRghf2m6dOsXW4C+S5QPAzYd1uxC3eOmMj+qi5xT9cS631hGdLPpB3Mv/bYoyfkAkgK3yPSrzPcs+IUyho1jAsBseKTFpN5xl1BdmspNurElZ+i1SbQL+SC+HeXYvuNDpijYBymFzQ/O3AylZ26MJ0Sq3wBfjEBpFKAJR8gEWqWWkg6VwLQEaB6nZEdxcoLDXpnxY2qSSNaxemQu0UAA2rUp3VsyCLGJ2ryLGBa+aYO70fcxYitHW6fkd1b7FHRXQVU7TEfV8xey+aHv7Rjljk2N/NTK62GpGzVoCbBWmKY5lvJ3bTHQH8mBbrcBoqHEXMc0f2fQUWolPrXERDwUin1GvgX0+H/N5VS/wzwBfBfAogx/oFS6t8E/hBwwD/7J20Gplfc72EYUIsZpMx7QLYDcNK1KxfItgMhK3CVJmQZuVVkDx2qc9jOYTKDHkoJ/lzKbDrN5hNqnjUTyq3ozjXDXFHdC9LvM0W+80QNXXIO1inXIFhFe6EYFgX5PpcE2FOAiNiKu0K6kHIrWYnHZ+bkVhOsYqwFwKtvPGEjX9+VgkSDAHk6FTCUzPUTndkmRtvE4Mvax85hIv+0F5ruQhFnUzRa+l3GySYtkCtwlcbNlMzNlULFDHstXoJKawkQ6TriscE8ZOhlntankfxGuqrydhBuRAoQiblw+7u1rFvbZ2LDRUBsuOqUu/emZH6ryHbS6k9y64nFBwIUyu474kuhMepOY3oBUIuN8DCmTkiP8fT7HWth9Lma0xxdJ2//qBFmoRHUv7uI+MsBWsPsc0t5G/GVEtwgsThN+9hx2SaJilaCyJtGlH7+fBQl5EMmBWDpIA/4VUTlDq3AOCMJxwcB8vrLACZS/bTANvDwm54XP7jBR8Xbt2twWvgFESIabACnE3NT3ofyLlLfitdhn0x15m8c9jASM42fZbj5t88Ef+KK8B/Ga1W/iP/E8/8q8dCgyoKwmgs6fxQbapQS74AyJ8xLiBE3z3G1Od2U2SHJJYPEY02RZseXJe2FmHqcdv2ZPBwnc8ZR9r/ZTgxKpwQf20s73K/0ac0X9bR3JuX1yc2dHcS40s0Mx2eSn2iPkdk7WU/KiMCpI3Ei2T8ddELa1Q9SRKbuwfSkFGRhK07z8ETEASi3wmef8gGjgeMTK/50VrT/0wNsWhk5fJ6UgKs0/8YkkDlyEjfZLlI+pASkPuCLpNXXimzvsZ2nX2c0TzTDUg6M0Izl53F1aqercGrf7c6QP8jXKTZCdvFZsvVKnH0gmccmtl1ar05gpxlg9nVg9lUneENyZopW0z4t2b+yHF9KYSlvFcvPAvW7nrG2HN6zdOdpfeYkxNXNBP2v3wkpTIxEReE3LgUYNH3iEzjBZLonHnuUZOthHTDPG4gKd1uKunPhqFYd37u8Y523fLK94N3NitgZ7MaK10Ip2RfVO+kamj/f8d6zB95tFozXFTGLmMVIDBA6e+pWzdZSXmu5/e8j5e1IyDXdueBh9bsRPQbJwzDJiKb1/Lt/43/wp1sR/sN4BasZX5xh9hU0fVrL5fisFh8774nWoDrxDgjz8nRjCOoP/crg6oridpAikHT31fWAChn9Up8eUpMOW3cuSi4F2IMUimh0coJVdOdGEn2TPZR4v8vvQnswx3RbzTSu1BLW2QUB+bTs29sLI95vbUwOMFIoQiZilqmtNm080YEf2XaP5hfRyGgxoeaoiRobaayhyB47B9MFZteOCZ9AC3PNV6AWCndIFOeJnFMmZdsCutrz7PkDf+XqCzLl+bw552d3V+zfLtDdI/VUDxblxL7L17LL1p0We7ERYvoe67daNgzjJAoSLUDUyRCjCehMYUbBcYaFbDOSAvy0khVXKMEIip0n26eNDeCLHArDWFv271kO78nvdPZasfrUUd509BcFm+9lNC+ijCxbBelclbdilmJGGBJ12dXilSDgGydb+2Ep9N9sr8m30qXEPDJuSuzOYAB3NfD06Za/+uRzKjPyH95+wNuvzrD3QhU2vfxs+UaljQ8cvz8yW/R8+fklZmeI84BZjIRRE3stIgqFiMNutehK7gLFgyNk8qxqB/W7nqgU7ZNcxr+jxzQCen7b6ztRBCZTCChhVqCT241b5MTMYPYdqh2IRkuoZT8CC3xZMsxF1ksC0oZZSX3j0GNgnFl8GgVm71yiJyvGSqN9pL7x9EvD9vuK7olH9/KLnRhuvlR0l0IzzZPc1NXCzHKVzOjVdUwGH4ru0pAdJNpKyRn8hopP0H5jhXacp7Z1UrGFDNlt9wGdRheJABOyzQTsjQt1YsEJCCfF7vDCJM58xAxaeAJNPI0YrkyrwhyGFWkLkTgHdxpXiQmrLR3PZzt+e/45v11+QXYR+PrFgt//9Ve8Gda4IIXgfpzx+rjmzXbJMBjGTUm21xLO0scTQJk1wkScoseCVbiZSQYrj8SqMBmNTrz8TPIhs/1ULEitvxDH+nOLm82ElJPYjJMMvNiIrXf5IJ799z+ac/i+Q5U9sTMizdUxcSESXjFXeC/cgpA9pv+IypETh8AXkWynqd/Gkw9EcWPkMlhE/NOeD1/c8Y9ffkofLP/2L34D90dLVu9SJ+dlDTkRwvqV4vihw9SO9rMFxSF1PhHCfY4aFXHlxGL8aE9Sb4mbD4xLyaUotp7yusOXlvZZltbSgumMq4x+ZeBv/urz990oAoMj2w34wqCUqAYlbVYMI9xsTv7Qo3ftya5bb46ULqBCTXdmTkGWw0LhyozqYXrotMRfjYKaFvceW0oOgM8Us68HynvD/j1D+0yqP1Fh2wQ8dULTDbkUApNiq8dzz/gkMK4yilvBAHwO7jKlJ7dSNLI2Svx34xhri5tpVAbV9YgeLf1Kn+LSxhkQNcXoiamDLu5GacOXVkw0lDywJ7JNgk/MMPkLClPNHkUnrz0nFL+6FZ75xGjzBSdugW0UY2/ofcnv+ff42e0TVnXLquhY5y1We3ZDhYuaXDv2Y8ndsaY5FLDPZG12HU+ZfLaRDIRo1GktOC7kge3WEg2fNZFhJmvVYfmo3BTsQ27gchNO5ieulIDa1BUTl8ndaCbrUe05JfX6Au5/ZGhfOcxSTGf8LsccdeoqVKIIp4dQg07YRHepcGU8GXdM1mZEqK6Fh689NE84JT+7VcQ8a/mtF295Wu34u5v3+KNPXjD7ec7qXWKVTqCnE2yqv4T2/RFVedRXJfVbQfqjjqiQCsuTEVN6/NGeLoLJN3Gca1DyDOc3R8bzmuPLQmLHjqLHaJ7aRwflb3l9J4oAWmHePsDTtfDR2+RTn8IwXKUZZzX5LhcGYecSyBUobltMn9Nepejo5HTbnmuyRgItXCmMtsNzS36M5DuP6QKx1jRPM7ImsvrMMXsnZhVjIrCMc/GXOxF90txqO0VoNWEZcM97xqUl2xrKG7GacqW0s7N3gfKmT1yCQNk4wlYzJoCtftOhfcHxqcFXMj6Mc8EPsuOjg47pPfZdj6sMZrB0o3DtUanNL8WIpL4OBJNAL6tOrjljLQpFexRX3nzvJdFpJpqAcc4vqeX8PqO9LWjjgjfFpIsXUE6NSY9/EAOMs72IgerrHrsfkkeCltEqF2nx8amluxTdfTSIP+BRjE0mAlWwEos2iXuygxSUfOcJhTqJiOS9TMzCudzM0qk9evrvP1D03++4uDigh4zjQwWjfO8T9XrCVUyXAF8jK2QxHYlyCaQOYAKFxZ9BpVjySCgE844Lx/de3fDh/J7PDuf8+PWPMJ+WrK7VqbMINmFPWepYziK830JrKX9eUl0Lt2FYpe7RRtyTEZMH/NGKKrRX1G8Vs3chdXyB4qZDNyPtqyXNE4vPpbtrLgztU3WyInPVd3wcCIUlnM3R20Y87QuDSdJfMy/pL8oU9Chkk3w3Yrd9oqYa9BAo7kdZDc41kx9/sHJz2CZgu0C/MgxzhSss+SGcQKj2UqMHTXXnmb0dTzTY9lL038JWe2RtOQ9RaUKXyYooC/hSxof6XaTYRLpzRXuh0WNOvh9xRXbCMaaDEnJDcTfiCn0KtojqkSSkoiD3treUd6I2FLVbhnYan0GOwvfAhFz3kXFU+DS+y/css6zQc3UCMh161JjeYEad+PUi6JncgqfWUw9GupDEktReDk9+CGR7l8xFelTvCXWGqzOGlZV48KWAay6Bg/YgzjioxMOfyS9BAmHUSQwk7b/kNY5zKx1PeByDTmKgg4wJrhQgr3kW0R8eqDPPw3aGb4WEI3t2yQowvTq5AE9dRdbE00iWJxvx6faMWor6uIiM52KMEiMoHZktO75/fsd+LPj3fvJD7NucYvsIPD4StcBdyJpyvBixixG3zam/tJR3E1chKQ7nIk5STuO3GWoUv8HZ14rlF070DhGynfhmtC8qmksjUnMN7ZWY4UQdQUnhtc2v4vGlZ+bPfoT/7C8VoX1vQXndoo89bl2LRdimwVxvqI4V3XtLcXMpFN15TqEUdttjWpHhUhlMFyi8pAb7Qj3SV2eafOOo3wooJwk5Uul1Mmv0OTRXhnKjyHeOfDNQbDMOz60kxY4yh8UhisVUouoOC8Ow0vhqkutqkRRrRXsFzTNL1PYUYzWh5+VdJN/LgSy2cqMMSwH+JmrspEMPVrF/P6e8zSgfwklwJPTYkLIVpOV0pYwErgKOchNlx0TpraQ45QeDPYzk2wG2UBqFqzP6jU1knEnR98jxJ0406XgqZmYQm3MU+HkOVWRcZHTn4k48zpFD9aCo3whZCkjiJ1BBgl2mVnsadyZDkGAVURlQj8Yb42IqUPHknNRc6USjdejlSBgNwzEN3hpwCnPQZAd9GhsmHsFkPBp1CqxJhiroxwIxLtLfvRglcchpqlXHk+WBzll+7xfvkX+dM9t8gxzmJ0ETKfTGoyqxWFeDISZDEdMnPOkiEl60lLWQeppdibnPJAy1Fcr3/K3MLuNMxtv+XKLe20stOoR56kxsSkYyEd1r6jea8uY73gmo3pHtRpqXNfXXCrvrcMuSsCjFFrvpKF+DfjJnWFupsKVBjxlm26FdwFrNaCdENJA1nAIwh7km2Ix8J/bU9qgYl7LqEnMOaUXHStaBYGUHvelZdZ7j8/xE0plMQm0jh6vYQL/V9BfiuT+shBQk7X0iq8wDzEe0TYSeUbNvDOU7S7Y3EpM+cmLD5XuZa00iC4l8Wf7u8dqQbx9XhRGVCoZw0k0nfIFoJnqyHCA9ysPcX0T2UTNWFVkjDkFRC24wAY4TEh5MMupwj9bo2SGI/0EhGw5XmXSAI4QoDExFwkQ4uRMDJyBNDEMfi8tU7MZ56gpS7uPx6SNjUsxNI76StZqaLOBU2k6cD9SzHucM3ks3SFCo3vwSiw84JQKJv+Jj+Ek0yZp+I12Bz2WMclWELBA6I235zKF15PPPrijeZMyP8vf6YmJoytdon0Xci568GmVr4AzhvqB8Z8gOnJKu+qeOFx/cUWcjb7ZLjvcV9j47eQ7mu0h173FJcq3TSDTWmt1Hmub7A/PzBn8sCAexVY55ILvJxNZsL9upb3t9J4oAIZB/8hY9XNFdlRS3YHcdoc4Js1QIuoH8+oAeKlxtQYvTrqozdDNiDj1EcIsMn2shxGw849zSPLFCXplbiq2meHDkmwRaVcI10E6YfL6QNn6c5ZR3MnrM3gz05xntmUh6xb5JPbalB3EjcpVQeQWZhz5INY6dwluDzyLKBvJ6wC4Dw7lhGA3Hu4LiVqccBCGq5NvHt0cFTtbT7VO57fOdHHhB3wWvGFayAsw3kepaDvhYyyEqWgHDhlUaDWq5Zd1MnJJ1L6rE4gHsJjyu9Ho5wcPCyMEoE1uvdYQsJ+QK04p+Q7QJYgMuEmyFT0zC6Waf4r1OcliT1q0d8sGYnH4yRUxciqigu4yMF4l8M2rUoJP5jKdY9FgbGAaDu63I7wxFN41Cac/fPfIXpoyBYZ1YiDG9R3fqVAAkKg6GM2H5mcrjeyMy7JuCcF+xSIdf6MqCH9lWNkiH9wPqWUdmAv2hQB1MkmwL7VichiL+Wc9vvP8GFzQ/+/Ip5k1BlTAOPaaEqT7Src1JQTrlcd7/hcjLP/+GV9nAL64vRIhUO2JrqH+RM38dkz4Gyrt/8CrCf7AvrSHPsG8e0MOS9vmMrLKY4yi04SqHJC4yx+HkHzBx0tEK1Xt059CFSXp1LZ4A+5FZhOaJ0F27s8Qy3IeT8iwYAR+Vn8xDhHEWjMWXmvJ+oLwbIOY0VtOvH51+p3XO6VAehB1nBrGw1sOjUUkoAmqwDDajLz2m8swXHSw69mcV5l2R2t6YKLgypoRMDk6WjCyjFhWacoqxUeT75J/QpxVikuvmR4/p9cm/z7UiNhnniSegBZGfNPj5FpafO/KdRFkHo8h3o8SY91nSVoTT5oYYGWsjbkttOPkCnLwUVKI6zxU+k1t14v2r8NiSZ4eIMeC7acyQ7zcaEoD5uAXBaZnxFcTaowvP0OQMO0v5zrC4ET4GJAzES76f9nJQu3NNd56chvSEtE9pTgKqjgv583EdqJ4fuJq1vLtfojeW8nbCTxIVPBGcqptIsY10a8m8DDMP+4zYGMoHTb6Xz3N1WiUWEfO85TdfvOOmmfHuk0tmnwkvBfilvf6UvF1sAraLNFeG27/q+eEPviJGxS/eXRKCJqsH/Jua1cca0wktPT9E6nc92dv9tx6/70YRMJrxxbk8bPuO8rqhv6oZ55LfZ48jxgVJxE2x1cpHTC8gni8tlPZkPiKMPM0w19hO/o5iK1Q6V8sv2pXmZOhhUkLNOBOEWA+cvPdCphgWGbb1iQgkhJb+XBBkPQo6f3wp/3/aK/t0i5kuUvVgW037RG4mNQhTJ7SG3cGSr3sWq5ZjFvBvSuxRxgLr0lg7+Rdkj+NIsDCuIu0zKTTFg3ztfJvGlJ0/+SIKZVnGHXEHiieALdvL6m7i3kvgiBFnoFxhekN+P5AfBk6xb+ZREDTO1ImCO63bJtfmycDTlVHCUZCfJdsL5qDTzxYMJ7lvdoxJZh0ZltK5hBTzxV6QumjT3Hu0mNsMu5fOSHkezUTHJGRq5Ps5PNG0TyMhDwnxfzTeiIlM5SohZbk6Ep4MrNdHcut58/aM4hfFqdsbVul3n/IQiodAsQv0S0m8clXE7E1yQlInZmL78pG/v3i258OzBz5/OKP9yZr5tVwsIcWQRTU9S3Lw9SgA3+G54f4f8Tz74I7rw5zDMaVFBdAfz1l8JSEmw1o4LKuPG7LXd2AeiV5//PWdKAISgCH+dXaZkz90FDcN/WVFd5Fh5oaiMNhtL1r/fiSWFa4UgIsIMRmMnNxikAPcztSJPGMTCWecycMbMnlYujMt6rxBDoKsAuWA17cBFSPj3KT5Wiq+myv6s5DMOsSlZ1gF3Eyd1mei6kuIdyuknMl9WFUObSPBKYZ9ztAkQw4jBCBfyi1NAr90KgjDWg6UGtVpbeVnntHJQ0ec3gNDsRFnpH6pTwdpOvyTbdmUmCRpubCpDCqYk7dedqHJ99I5QdqOlCnQI08HzoO3PNJ7SeAaqaD6FK8d5X3JDo8MxqZWp+JWPMh7a6bcACtc4WCluxGrMvC5eDmqIIYj2TF5DKwfKcD5Tg5Sv5YQWXc+SDDnQbqhCSD0eTIATQlFIQ/oxUheODb3c8x1TrmT/X3zVLqHbP/ocTB769BDYFhbjs813RN5n+xRAD1XQ3/hsZcdJmhigOdXW17Mt/z87orDZysMkjOgYiqeJlLcafJdPFmbjTNNd6bZ/cCzeL7n2Od4rymrgf1DTfVJQXYQsZUKQqs++/EW9fZOgm2TJP5Xvb4TRYDJ+tko2quMUGjyzUi2G9EuMqwszdOCrLayJhv8CTwclznaBdQYUEqhQ8SMAdtoxqWhT7dcMMLYsp1QgIeFtItRpfy+mYBR+TaS78SUs30W6Z5oFp9Jmovs/6U4lLdywId1ENuyO0XhNOMqpo8psSs3Av5MEVrFvcK3ybF3FohFWhkkpVlMbsNSCGR3HI08INlWvs44h+HCC/It00sKTpUC0F8FYhbJby3Fg3QV/Xm6ib2MFhKnFR8NMINCjRrVT5Ri6YSijac/lw1iOGUdeGewnwnJRfckRWRSUU4HbSQpHh9HmZMVeOS06zc7eXjHSiWGpBiZ2lawkMlQg2+AjOgpZETMPwigxmk1B34l6b++EpCsulapyKe8vzoQy4AqPEpHYlDQG+J9QTyU5E7IY+1Lcf45mXbuI9VtoH47EDLN9qOc3a/DeD6ieo3di4Z/OPOwGpktOobBUhYD7603zLOeP3j3jOahQp0NOAVsxYodDfm9jA8hT+KzXApsdxWwlx2F9cyLntEbvnp9Tv5GLpBxJjqR1aeO2Scb1L6BPCcWuWhwvuX13SgCUR440wd8bmgvLK7SIlJpPMXDSHeeiUKqFNAv2zvsvidmBjfPiLkRIkmMqCGQjSPZQyRfF/RnmTxcxdQOSyy5HuUmUB7K+yCOMnNB52dvBFA6fBDZ/Ajmn2nKTTwZeugxUjykGLCZxIznD+LA42qRfPpiAovkRnD1YzucbyEqQ8hSkSoSIl0HxqcjjBqzlxkxGikIbi7FobpWmM4KySaXwy1El7QXLkSt52Yj4zpHtxo/91RXDVUx0HQF3bbAbC261wQdwURi4YlKi1Kv04RMjC9M7SjLkUXVMc8HNJHDmHO7nTOce0JmREJbxcei5tVpTaV6TfGgpfhYTr53pNFLBWEvHt4D7cXfIN/Ln/lcOreQ/rtQi3V7NKJ38DPQzaNmwVeSNq1IXU5QZDtJju4uIsO5p356pNQR7zVaR7QONMcS/VVBvk0chnlkeOrQsxGOGfmdId9KAch3kfp6wM0sN38p4/iBgyyg9xbdK8Yzj6q8AMA24L1mVvX86OKagyv4/a9f4EbD8vJIiIrD9UzYgCpidxrbyPshLs2PJiJh6fjek3ue11t+vrni7ddnmK2V97QRJ6HVxy3ZzUHOVfbozzFezr/1+H1HigDo3p/mc/Hu0ycyz2T6qZ040/rc4CqNnVvK247svsXPckJuCJnF9B5fZSgfhMU2BswqY5yZk6uQSaDUJOaI5pHtN86So802on8xGV8iO+9d/IYCMVLeKHqvU5iksPKEWJRa11Ie+OxAChnhEeUdOCXb+FFWjFErwjxSrhrCuaLflJitPa3NuieBcSXy1eJBNAXT7erLZLd9b4kPVsAvG8WEctB0xxznNK634LRQXm2EPJzCQMkCah3QJlDmjhgVzaHgeD2jqQu29YAxQTIOO4uaO/RFx3LWkVvHri3pu4wQNMErGDX6mLoczYnwM2EQIROgLGait9CH9HOeqzQfiz+BbQRHkOCVdKsp0K0cGj1IAQhWPu5tJBaRaAM+i5jSsVo0LIqBzlmaIcOYgFKR/dsF5ddWFJyVdFkxT93PTUFxkNYeOPkm7t4vObwnITTmqNGDFHN3ITqAKZjVe81q1vJstueum/HJu0sArs737NuC5rZGdckkp0lekI1gSeNC4eYp2+Jlx4dP7llkHX/7iw8Zbysp3AqJaf8sMP+ywxwHwrxAd04ap0XJ5odzDu9p+Bu/+vh9N4qAAoySBKEIKINPdli+0uhe2kFxiImn8aE/M4zzmuLBkR1GdO8ZlxnjIpdiYgVAzBon7KpMWCA+Q1Jqg8iBdccpfVcccZMJRZVwgbcxSVqTpVlS+UnREhVafx6T/ZPcFpOfv8yw6cf0YJLUd9rJT2abQBLTKPRtRtsZls/2PP/omm1b8vBmSXZvZa9+4RjPwW4s2Tbp3NM+fTLWEAchmaP9TA6NeVfg81we8DyQn/dcLGXPte8KuQ2N54OrBz6c33N0OR9vLjluKtSgiFi6xL6LTsOgBQvpDHedJQaFShRXlISyTjJcWRmSEPLEo7cphegkzxabrP4swmokrwei1wz7HLe1EpoSwRwEVdT9I81YcAX593ERCGsJYdE6UhQj1gT6MePhYU5srKCSQWE3htkmSXmfB+LMgdOY6esFeQaihWEWMYUU3mlr8+jyFIkLMSXxR4uZOYwJnM8bXsy3fLlf8+7dGmUCq1XD5lDR3yXrujyQ35tTJiMBmueK7qknVp75RcOL5Y43+wWf//SZ/C4WHtUY5l9q5q895Z0jZJo4zzGdwy8KmhcVDz8waRz9jvME1OhRTrzqTeNkWFxaCZAIaZYdhIgSErklb0Tn7uaGYW0JuSY7SvpQyHP6laD/sVCEPEuaamHbqageDSET+PS47lMU+4AZZQswoda2lZ2tq1JakH1knmVH+bPJxGJK99FOnQ7mtKI6edHLl5VxoUmsu1wllp1Cv9W0mzVffZBzsT7w9NUD19USdhmq06KtKEPyOVQnIC4UgTgX33J1sOI9fzDiQYesFaNVkAWyzBOiwgfNOFr8oAla8Wa7FHFQl9NvS/TRPHo1dkK+0V6lgE4FGEKR4ar4Dat1ddoWiDYgFbwsEhYppLO16MYki6zIuAjE2pMvBmZVj9GRbrS4UTYpttGYtJs3idr8zXVkiLIxCRcjeTUy9pbQG5pNjj0Y4ULoZF5ipbswnbgbD2eCsajWkO2keE0g89RhZAdRJ9oW/IVKLNEgseMAnUh+81XPat7ybL4n147PtufcfLVG5YFqNnBsC4Z9DqmjKV5nlDcyhrSXYsSizjusDczqXjgEv3iO2VhJaV867J1l/oWiTqKwyXEbo+iuKvbvW3bfB18E0UG033HaMM6TfXaNf3bGuC6FuPEw4kpzyr6bXFRBmFL9WlPeRaqvW6LR+MqKcUiM5JuRqLNTnh3ImwRy8w9zzTjjxKIac31S5In3n6G6DTIOjOJF2D4RWevE7ju8AjcXpRlRMXsbKB8Ch+dGVId2ah8TM66dWGqTU05MraXEjWWHSHkIZEeZA20D5T0c2hnvnpQwcygTiHMhg+T3cnh8nR7EIrWvgDJBNg+rkXFQ5A9SNMZVSPyACF4zDJa73uJ6S2xFXB81HG9rml4EN8pG9JOO5xdbKjtyGHPaIcOkonDsctxo0CaQm0DX5ITWogYtPvhpposKYhYw64Ey8wydRbUyq0/jDBoYNMNDyfAg5hz4VFRbdQoRVY+btjQipO1AHXGXqQB0FnWfk+/FKDUm1qWv07oySufniyBxYoA56pNxp4wqkZhA9WIjnv96gP5ccfjQy+GPqbDqSHbe8fJiS649i7xDq8hPbp9w+HIJJlKcDbRNTvQKUzvCXcHsC4M9Qn8G7StHtu4oTESpiLWe3a6CuwJ7cjmKFO8sy1+IWUiw8lxN3I7ji5zDe5r2iYxNuhfz1vgNs64//vpuFAFriH2Pud1JFsBlBUqd3GwUaQzwSS/fi+lHvxYPguKuo3h3IOQWPxMZcrEZCTYl3ZT6lAkwmXVO6bDZRPksOTn/Hl9G+jNNeZsoxR2gROAxJRRX19CPcovEq4gKmtlbz+ytp4lGUoYmqW/aW4OYfBIU/UXqDCrBGLonskIsNtJVTGEc1TXCb5hLEQuZzPluFtHJ+iqWgXLdkWUyw4eg6PuMOMgGopuQ9FJAPmOkC6jyEWs83ZDRz+TGzXJHmY84bxidzKqXiyPPZjtCajeez3Y8K/dc5Acy5fFR04ScvSv5ZHfJ682KZluhdkLxVl6A0phLRe4epLuwrTrlBIhZqHpM9i3TLGzl/VIhYSpGRoLpz30h2whMJM4c2gbGa3EEzvaJOzBL/P2FBxNlFIhKphanTgfZdAqVNgKulo2MTXhAMHJL91eBuB6IXkGvUVERs8DZ8x3vrzbsx4LjmOOi5vXdGv9ljbLAaqTbF1ITR439zDL/Qr6X7ffBfv/AWTFwOJZ4D8bA/t1cshcS+cw26kRrnuLT6htPvhnoz3KOzySbYljL3zttpEIRTzFnv/L4/YM5xX+2V8wt8cUVategjh25UgwX0hHYzgt5JeM0GqhE85T5UuPqmnybk991mHbEVxnB6iTWERusYZHhayHMiOXSJFKZ+O0C5BUP8u/t08ixlBZQ0niEVz4sobtI6rWtIP++lEoeMkN5J6aerkwhmVYShKc8sCmMtP76MUNgSrY5fJBCUa8jxS790qZ/6Hh6UKe0YF8HaWE7TXfIyc4cH5w9cFUeeOhrfvFwzmFbweSzZyJVNXAxa8iMpxkzQlSczxqsCtwcZwB8tL7nWbln5wo+212w7wrePrxkbHLwinLdwTN4VmxZmRatAiFqssLxNN/x+/kLfqKechxrlNPgkjvQxqJuM4q0EYhptekLCKUYcoYsfgMjAH0QgNgXkXEuRcTXgeysxyS/vRAVCnC9wX5enrwEISUwl6n7UaBrR1GOuNHg2hLdKyaBkj3KAXLnDrwShx8j/v7qbKCaDayzkaYrZEQpREy0XDc8mR94e1zwsK9RKtIfCrJ3GTqCNxF9nZ94EvMvJIS1eWrY/NbIBx/esOsKHu7mMEix90eDyiK6k21QeSfmuGYIYp6zUOIPMQYO75ccn+nkpjwZsnLySHSzIPkH3/L6bhQBBeN5TTaFkGjINz1+JvJbM4hBgitNir+K+EyMKfKDrBbHpSXkNcV9L9uBlJ7rZia52ojXn3aKoZbVVb6XB0X20o/fT7ERQVF3IQ+pCoqh4MQ/n/zmzfC4Cwe5zdorQXdtysZTTuGj7P4lZeiRqZcdxQxjis72V5H2PcE5/Fea8j6cxD+Sd+9RvZZ1UgIR8YhDzkNO+y7nD5/VPHmy5dfWt/zo8pov8jMOXYH3Gu80fW+5owaga3O808wWHRezhlXVcRxy7roZVgdmZuDZbEdha/rR4nOPsZ5n6x0vqi1z01HrnjEampjzblzyrl9y180YBoNyGt0mV6RUzCYQz1eBuB6ZrVqsDtKNHHNia8g2RtSFKVlokoWHo2QAhEoxthljQEBIE2HUlG8s9bt4Am77tVCOXS0ErfMXWz5a39P5jE9uLhmthIrqQbqP9rlHX/aYqPD7DHc5Ui07ruYNT+s9IWq2Q8l53dI7y92hxjlDXQxs+5LNoSJ4jR8M6mBOgK9pk939Vlh8RHj4oSH+xT0frPa8vl0T7grMoCCoU4Kz2WtmX0WKncS+RUUaN5PlmY/s389oL2XccbMo0nYnHVZU0gVkO3HM+rbXd6IIqAiuMqhYYg4Dvs4TCu9RSiVvfUHch7k+ZQz6XNGeK4qdprp18uernPyhJ98ODLrAF5phkeimWrTnWQP9SkaFyYLbT2SU9F5l+3hyu53CKF3FKdtOYrAiqiBp1DlJW8cFJy46LYQmCXfWQuKJWcQtwW1l9zyFg9qjYsxhfDqwXRv6N5Z8IwdBdxIkIvbWQFCEKiQ6rsYMimKj8E3Bu+ac7VXFopZKZHQgBIU2gbG3HA75N8g/EecMmfF8OL+n9Rn3fc1DV+NyzZPywCrr0ESOY86Hy3t+fXZNnSyMb92C62HBl+0Zb49Ltm1J22W4wSbuAEQjfnllNWB04KxuWRYdVnke+pq3myVuNMRBk98K8zHkMvvb5pHm7Et5r/O9IRhDtIk9aKC8UxT38TQ2dOeK/jLgF57lkwO//ew1369v+Ly94G+/uaLblFAKEOkaA3mgWncYE4hRUSyPvFzuWOcNmQpY7QlRc1UeeNMu+ephxTBYFrOO0jraMcPaMOXk4BYQtE3FT1NdC/LfPlEcfjDw8r17Ho4VX/zsKdlGYwPSKaaVcXYQqzPbycq8X2raJzJ+ZgdhoO7fM0kM9hiOou4zigf9WADu9QnL+rbXd6IIEFLw5sxCAN07xnWRnHQCuhcPftOFxOUXmm9+jHRniuZKlBzVzSjUz8pimmS5rCSRI1pwVgDBYhuYvXWMM2mRskPAWvC5lk4EAY3UIeEHmTopxYAkOX3MHzTJ1nsKsvSVgH7ZMXHY/TfXgbIC0oNk2ncXkB2FXx6N7IqDU8QyMKwDykvOfb7RuPHReEMPEHJDvxbC0OTtr0fI7wzDMOOmrE6rMAJyY4IAcJPRRoShs7zZLtl2JUYHVkUn+/Oh5Lad44Kmd5ZutPzh8JRPd+eclS0hKnZ9yS51GiHoR7yhHKmvBpZ5zyzreVbtWdiOEBX3w4ztWPL2uOThWOGdJkYFLkl3FwEClDdiJTas5L0OhbT10yZERdkS5FvZq/fn4tgzXHrscmC1aPj+2R2/NrvBo/m3vvwL3Lxei9tvLsV4KoRoGAfLcn3gxXzLVXnAqMjB5WgVMSqyHQs+ebhks6txvaGYDcyKAasDufEU2UgXM5RWmFyhqxbXZeRvC0wH+4/A/tqOV4sjX9+uMZ+WVMfph4EpY1CPPHovJIp78yLizkbJN3ApWk1B98xRXrXSDL2eUb8VdWXI5L2Z1KCTluVXvb4bRQAwrThz+sqgR0+26RnOS8a5QdUGe/RJECIy1e5MDrAkD8H2e5p+lTN/4yWaPHvcBoQMdB/JvIg82gsjAR9jxOfi8We7kGyrZR2pfMTVBucUOgczRlyy4Jo43jbFjJ8CLzy4DMazwFB6hgdLdS2H2LYikpl+2TZpDmLKI5he00yMjoSFYxwz9Ciz5JSBOOnhVcIl+rU4IBGFaZfvFPFaRD0TOWlyWvaltIyCkMuqUGkYeksIitWs5Xm9Y2E7rvsFr/frUwFoDgXxvmCjIm+WsoePXhF6I2k6Ecgi9XnDy9WWV7MHlrajNgNdyPiqXXPbzdj2Jc4bdseSsbPCOQhKAM/zEdUYigdxM2qeRsZVIFYBlUu+Qzxaimsr1m9pnDq8gurXNvyTz7/gebml1CN7X7J3Jf/3d7/Gm3dr1EOO7ZVsAxIIPCH8qMjF+sBfvPyKF8WWnSv59HhB5zPGYNh2JYe2oN2W4BV2PrKcdVgd6J3l0OeMXjrO9aKlzkbebReo1zlo2P52z5/78A23zYwvP7mifGuxnXQ7rpJNk0mCtMnnYAqt7Z6IpXllA+2uJG414zziXvb88NU7bo4ztj89Z/GFqAddpU6+iBOfRX17I/DdKAJTxpzuPdGKKtDue/JNT39eMM60MAFbmY2E9jsFgyR2Va04vpQ4qcWXmtmbAd35E5joS42K8VE0stBp1gSUIj+oU16dq0QXnx09KohqbjKIHFZyYqctRTQiUvFl2iknllqx6InzgWNZUb41aTxQ+F4T545xIesooQXLebStAqUlaCMosvmAs5FOZ2Q7/agyS0QmM8rYMtmZjcuYMhjkfbVtRO2RHbqdRENCmJqQ91h5inIgtx6lorS2XvZJISouqyO5kZ3czXzO23LJMBGDgKx09FGhDhY1KvzKMSsHajsQouboCzZjzVfNirf7BUXmWOY9xzFn7C3sM2yjkwJQNh+2EbnusJBb3awGynIkRsExIuDmgeE8EsvA2dMd/7nnn/Nbsy+5snu+Hs/48fEFH++ueLdb4Jzm7PzA+Xui0327W9C2uYxJXtYNHzy55y9ffMF7+QNjNPz08JTjWBBQbLuS7aGSteWoiLWnrAZyIzyLdszwQbOsOi6qBk3kD79+RvyyJswis9+659dWW77crNl9uqbc6NNFMpyJZNm0+uRyNBGRoha7sfy9I09Xe+6ONXojTND597b8xadfsRlq7t8tWXwtmyWfyWWESxegEROS6u67rh0AzHHEL/PTrRjKDHPoKW4jvqwZZpLKM/n3mz5S33qJxF6IaqzPFO3zwLhQdOuS2bVPpqKeaMyJNzDpwK2TzUC/1DRX6uQOrHzEJQsnMXTkZGJqejlwKiZ6Zx/JjioJUmSFhVf0xxydBViOtHkQgk+UFlzZgH3a0CxyzIOVG34ivUSwjSa2mtEr9GzEr3xK5338vJAnA5JMUWxTp7ES99phJ8IhUCeS0oRrhFxWTVM231AZXGXIrccHzd2x5nonPPMyH6kyx3nVsMw6fmP9lt8+/xKPZjtWtD5jN5R8entBbzKijdQXDWdlyxAsD0PFECx3bc3oDXU+si5bjmPOti2JjcUeNflGWvpwckBOfn4XjvmTIy+WO2ZZz3aoaOoMfRm5qBquigPn+ZEPy1vWpuHGLfjX3/1VfnZ3dXquFlXHb56/5bfmr7l3M/7OwwdS7MqREBRZOfL981v+8voLzu2BJhR81a8BOCsbDmNBP1qGXYEaFSwcs2XHk8WBTHuhBkfFsuwojOPtYcHtzRL1kBHOR66ebymt4w++fI5+XZI3Sta6WgRBfuFRnT45G49z6QZVUIyrwPKjDa/WG97slxzezmHh+d5H7/iN9RuOruCnb58w/0nO4nU4OTeZdkrLkouguvdUb9pvPXt/YhFQSv2vgP88cB1j/M30sf8h8N8CbtKn/fdjjP/n9Gf/AvDPAB7452KM/86f9DWiVpIzeBgY1yXRpN1tlaEPA9WbjvBeKam/tUr6aukg8n3ADMnmuxNG4biMHN+HYW0o7jX1rWS0TfHkuZbCETUpjszTXqYUHQ1ZI173UYvoaAqdHAsB+/JtZEwBGSRaqXKKmHTzutdEp1IIqbSfYeUo5r3MvoC1Hrvs6POMsM2lPZ1ccAcxxLQbgwMoPG7lQRmRqHaQHWVPPC6k+OhBvlZU4mcoxCdZGenxEXPwhcyHAnAq8jvDOFZsygJdOpSJRK9QGhZVz7PZjovieALHAC6zA98vbyj0yNZXvKyf8eXFGh81F+URFzSNyxl8wbYvafqcKh/xUfHJzSXdrhBNQSsFYPZ1pNgHhpno8fs1uBcDP3z/Ld9b3HGeyBxfdWse+hoXNcusozIjWkU+6y759HjBF7szNvuKPPesa9k6ZMZz0835v3R/jptmRtPnJ06/1oEPzh74C6uvMSrwaX/FbT+nT+DPTTvn3W5B12WoLFCsOxZ1x3nVsC5aXNBcNwsOXcH9OKM75KhDAgMve85WDfum5Oamorg16VlI24paKMqqsRR3Yi/eXwi+oweFWzjO39vww/MbPt5ccvt6DXngxct73p8/sHclf/Pzjyj/5pz1Jw5XiYfGNz0d8r2cj+ptI4nff9oiAPyvgf8Z8K/+sY//KzHG//E3P6CU+vPAfwX4DSSQ9P+qlPrBn5RHGLUSY9FmJLvvcAkU9IXGFgbTOGZf96jnBd1KbMHNKCo/nwuCWmy87FKPlt0HIul1s5j0B4byVlPfOBEijREwJ018dT1SPEQO7+ViGJIJGPNLnveVUIJ9mbgEUWYvQaiTn2Al6L/uJHVHRRkhsqNm8JbBBowVcU7f5fjkWUflRXXXy8GY1mJRC4vN24CqHH5UKCe+CRMN1/Qq7drDaQ+tErPSV1EUbb0m3wg2EW2S0c7E3MQMCnvQcNRprSrSYpUFRq/JtedV+cDcdPyiveInu+eMwfBytuEvLV5zZfecL4/81rwgU45bt+Dv7V5Kd3BdozspgrvsUfRDkifH9B4NS0X7RDju45OBxeWRv3j1jmelEJS+aM+47ebcHOe0Q0ZmPOPcnPCFXVPivaYuBz66uuesbOhcxi8ezunaXFx3ckdVDBSZw+iAVpF5NrDOGx7GmtfujO1Y0ricMRiaMePhIDv/qhool47COjLjyY08zg99zVc3a+Iml3j3qAhlQCW/w0NTMN6XlNcW3Sen4WUk1h6VBWgN2YMmmkh7KZwPnMI/GXj2dMNF1fAfffUew3UtY1Ll6EbLj2+fc/fZGef/sWb+9YivNMNCn97fqMRXMN8H8k2Pm+fc/KUl/N6fsgjEGP+GUurDP+nz0uufBv6NGGMPfKqU+hj4q8Df+vv+Vwp8ZWUl2AmqPyXb+kqjayuegTsvaPZckndjBSomiTASn734tKW8z3n49UxYewn/ErMFQ3UHehAzkGBTEOdlxuxNz+LznuPLgn4lYZbtlaF4eOQThLSLJSrqmyCgTrJ51iNyA9ggvgQHAYnGdWCYuoPG4rIgHvgugXyDws8D5UVLjDBc1+QbCasMBcQReJAZvXgQ6rK47iZaq06zveIk2ik2EkQyLqWFicmTQExR1MnkMlpOST/KkWjCUwqy4uFhzt/Z1/zd/OWjcrC3aBvozy2F9ixti0ezH0v2ruC6WfDV7Zr4pqTY67QNUaijxHuFOhCNAHyoyDgTd6TsxZGr5ZGrhEEM3vAHm+cnQK7v5D2oZz2X8yOVHXnXzNmkg/ryfMvTak9AcRgLHrpKCkBUVHXPvOwprWOR91wVApocfc59P+O6XeCjJtMyErmg6UaLTtToMnNY42lHiws6fe0Fn7+5QF/nmJQW7OeebN2zWrT0zjA2OeYojD83f0weYtDEUWHaFGA7E3BSNxp/PnJ1tQPgDz55SXaToY1oQtwu5/6Qkb+zPP2jSHk3Jv7MY56CHlPK9NZhWkf7tOTNf9Jw9hs38K/86uP3Z8EE/jtKqf868DvAPx9jfABeAv/BNz7ndfrY3/elfBSv/1VB5qO0LqUlO0jFH5YGFU2az6V1tJ3cziCtb3up8XlGhRCNLv4wcHyeiSy4nyi8SoRFoz4550QN7YWmX5YyNnSBYW5SYCQc34Nxp09IazRwfCW9++xtOGUG5luFaQ2+EqR+QvRDplEfHDEm0reZ0E0D2J1mMgNRo6LbF1w93WK+3/C2OkPv7GnrMK0FbSPhIT4XTMLV0glNIwYqFQ4jO+msEcbjJNudCqJpFei0dsvjYyCHFmmxKjw6C8QgFOR2X6COVmzRigjrgQh8vLukc1aoylGxb0q6TYm9s2CgezWgbEDd52QPAv75XjOeIb4DyX4slAGtI6M3bIcSHzTHIRMCUZcTvEKpSF46LmYNhXG0LmOeDzx9cuCiOKJV5I8ennKznaN1JEYwNnA+a/lwdc/LcsOTfM+l3ePR/Lx9ypvtkoeuwgeND4oQZEQYveGwq4hOY0uXGIAlbrAU1SgS4E0leE5QuHmA1chy1bIoe459znFfijYirYZNp07P1DgTgVcI0iWZo8a2mu6Jo1z23D3M4VokzMJoVcRBntnyTjF/LXZ50U5WevI7zg5Q3Ypdvh4997+54OY/NfKDD7/m4zdXv+LkyetPWwT+58C/hNx9/xLwPwH+m/zSsuv0+pXLCaXUXwP+GkCZLSluGronNfGipLg+Yncd3fO5rAUJcvuXOjn9ysrOjJPzzpQiq/F5Tn2jyTcDy089wzrDlfobyL8+OQQFI8BgvpeWdPuhkVtf+DdJrCKz/7RiV05BGdn90OFLy+oXHtvL+CABofKLHpbyy198BsdxRvdUoqNVp9GjvE2mF9ccFvKgPWxnLBcN8/OGg6rl8yeRjRLQaDwkJl078RYU07Dl80h/7ukvECVck1SMRv6nHCcLNVEzxlMaD3Di4CsT8b1BmUhRjfQhwx7kEA91YDFvGZxl15ZoFanykdI6+szR515yIASXJDqNdvKw+0JmYSqPyQOx9MQzMEoMPkZnaFWG1QGtICQ7rrwcWdQ9VTbSjBnHIeeD1T0/mF8D8LPDE/7w3TO6Q4HOPdaKdPh81vBq/sCPZu94mm25sAc0gc+HK46+IE83//1mLjFfyWEoNBY1iiLQW83hZibjWi1zdXssICj80oONmEI2LM5r3t6tCE6JU5GStZ/pE0azDvjzkax0jEcBUs0hBZsuZDXcv63JH0SijRKVacgBpyi3sPhSEqQmAVS/kBV3vo/Ub0eKm4aYGd79o0uG/8yWX1vv+PkfvWTxsfnWw/ynKgIxxnffOMz/S+DfTv/3NfDqG5/6HvD1t/wdfx346wDLxcuofKS8bhguKtxZRfZ2T37f0bysk3OuAEc++fDrUcC78l5+MXq0EiG2UByNFbLOwctacZR2edJUDwt9yuOLVpD1fBvp1zIG2IPEYPUrhVKJ+ZdWOiFL/n6ZBEmqaFl94k+Bo6cgzr3YfflcUb+BfJfhksGInuyvStHABxOYLTqO+5L7tyuhBPfi7kO6RZSXW35YyhaDpLybkGRIt3oZMPORobborQRYAqdQVIl55yRq0mMy65jMQL0idAbVS55AN2jpAry425jFSJE5miFjGCzWegZnUCqyKHu0iux0JO5y9FZAspBH/CKg5yOZCbjBEJzCFg5rA0XmKDJ3WrkN3mB0oMxHrPXMioFF0WOUzPIvZlu+N7vlZpjzO+9esT+WrBctL89E6RiiYp71PCn29MHy8+YJf8+/ZGF7QlTc9TOOLmfbldxvZ/idjBoxKLEYQxSPymnYZFAFzt/bsK46mjGjLyxGRw5twdBZfGto9jP5vdWes4u98CD2GSGLDMuEGZ05lILxIBoM3WrKG30KpbUbIwIqlXwknRjNaCfbL8G85Hn2uaZbmxPIW9168gex3Hv3VyrcP7FDK/jib77H2ZePz/6vev2pioBS6nmM8U36v/9F4Mfp3/8t4F9TSv3LCDD468B/+P/N3zmuS3Tvye87QmHxZzXm7kBZWNqnKVSkiYy1tN+TnXV2VBTXjfjvrQq6c0t7qWkuDTVgjx5fTOs+T/7gCbbAZzLLu1x8BrNkHOlSWKT2oiGYmFmymlQpqyCS3RhcFWmvIlEZZm/kTXZ1Kgap8EYNIYhGoNrHpCuQG7g70/RB0ecFx3Rz4hSmERmv7R43E5OhxjhH/AASxXni5esBjFWEKj1RIUVuJWAumLTt8JH8G67I2kvxc4lsZI7i8hESm04dbVpdiW0ZneHdu5UAmk7WmK1TxCKQrXqy3JEVjr4w6FYer2gjmIjNPEUxYuqIT6IfraIwD5uSYbAoYD7r+GD9QG0HOm+Fb+ByDkPBeSXjwL//9tf5+nqNtoGPnt6dVmZaBQrtuMiONCHni+M5nz6c0yZ8IAyG6OT9wavHrm8xkuVyobjR4LY5upXb/uWrO359fcNdP8OqQG88bzcL+vsK3WjskAhIVz3fe35LYRyf3Z8ne7WkTo1KiiJALhdJ9VbmPTdLAS3qsTsTHkE4BacWD5KybBuPzzXtpRGcy0F9LXyY3a8vuP9zGvXn93QPFevfy5jtpFvOD38GnoBS6l8H/ingUin1GvgXgX9KKfWX5LHhM+C/DRBj/AOl1L8J/CHggH/2T9oMAKjRk98cJXUoN+hmJGaaMK/IrvcQ5zQvSgljaB4BlqigvbQoV1F8+UA+OPRQYcaMbm3ol3IStYu4SgOWbDtQ3vRAgYqyFvSVaBOKbaRICsBhnlxw0xznC/H3N4NQOVGSLy/EHUnHzfZiV6ZdPKX+TiubkIkfQsgjTgkoWG4C2imImj4UhDokcZBK8tqYiD6im8iOYr4xLIRqnB047fvle1VkG40bC2HCpq/tSxHQZEtZUR7vSsxBJ+bh5GMXwUCcsI9SfApDY1G9xR5B7SQQVTlShoB0JGIKohiHkrEKSQyiT5l6ufW41C0oQKmIQchI3ZDJyjAJgRYXRz46u2OVd+zHgsbl7IeCbVMRguJ2N6PfvweDRi9GXl09UNmRP9g8pzCOD2f3VGbki/aczw7n3B9r9tuK2MsmRp1yCb/xKjw2cycp9tCJH0LIYHbZcFkdeX1cs+1KwT3uS+zGUqQuy9Xi/3e5PtI7y9ebJc3NjDyZkwQLBsEAfBXQjaxGJSNS6Msx0ZfFSTqt+qKMn5OrsW09rjIcXliaZ/K1q2t51h6e5Rzfi4zPeuync84/FqzNVdLVThT5X3n+Yvz78An/Ib1W2VX8J17814hFRqwLYpGhRpktVQS9bXAXc9rnjwRoIf7I9x61orgfKa6PoDWhtAyrnGElKa3ZUUJFohH6sG29rP1mEpXdXmjcXFr1+p2neHBEK9W2eSIzFyQL7sP0NeVjEy3T1ck3sIvY7rH9mrjfk8FmyNNMXiSef8qE6FePduJ6SK48iWIs7r2c9swgXob2SMoGTCm9KUrrxDfwk54+Mp4F9HrApgd9Qr67fSGOOHlAl15a4s6gSo+xAbfNmX1uKW8fsRKfJXmufeS5u1os1iakGw1h7sgXgyjrRi1zstfEUa46lSXn4swzq3pWVccsGxi9YTcUDM48gnSNlVXnNsWunXn0bJS/L8L6/MhvXL2lMiM/315xd6zpe4vrMgEJC48C/KiFpjxqsemyETV3VLMeawLOa9pDQRwM+bLnanUQ67WmwO0zdGMSUJvWsAnrmNySUBCOluzOir1bKpaTjZpOseghjxK7pjhlMkzmKcqJAYxyitXPFKvPHHoMNE8yji803YUU32yryPeTelVGruLGUL1LXpOjeGFMtPG/+7/45383xviX//j5+24wBpWCcURlFtoB5eWHUKPCL3N8scBuOmYu0LyoRPEHJ9suPQbGhQU9J9v0RKWwR0nLdbWEmLpMEoYoYLRWHIOdgIv5XhKF2yeRfm2oroVgVN7JrH94JStJcbIVlPckGlJScW2rTgi8zznlFthOio+rhJYsiUQyyw/rSH8hZiK2A3Uv0tcJTZ68BkwruIVtpSOImlME+7B6DEwxo1yoPouncWSiohY3BvWmEurzMtKvRD8gzsIpkmylUZVDFaIJcKNQgUM2JRrL6jEmy3CzE46GfCEYvDoJsJQTUHNwJWRCo84yT99leKsx1jOve+aFKAsBYSy2NZkOmER2P2wrzJtCQjyCdF0hE3NPjtI9FRct67rlTbPk9jDjmAI5wqhRNrCYi3DpuK1gb0/AbLQRKs/Z2YFXyy2dt2y6inEUklaYgL4UQqp6fTIhmdp23YMNijHTxFwRvcZOxrApxzAamevNQZ28I8RaTophVCJxN11SQL4YwUZmP81Zfj4SrGL7YU53pU6dg90L4OjKRDIqIvmtId+QQmPEBclV8ruqb769If9uFAGdrtV+IJ4tiYURS7EYxTx0nhGvarK7htmnI/2zOd2ZRSHzvALynWQLjusCu3/MXct3I2oIjKuccaYZKy36gUw2BbYTf3udsuv7i0D3JHLYa6q3YjNWvYt0l3Kjj8vHoIr8QZNvZDWjE1UTJgAR+nmyD2slFShYKQpmTHbSpURe9efCgCweFMX9lETM6ZaINpGSCnWK+sLJwSel3kYtnnm2kQfKJ1qxW4YTCl2/SYEWnaIL0uFMPgrKCzAVOk0og3QSo7TP/UVgWAmIqbyIb7RXKb1IxolhFRmvBspVT1UMJzptZjxP5wfWecsQDEOwlEbAOxcMnbcnQVFuHfN8INOet/sFD7cLzF0mTNBvGJNm+zRL1wKK9oeCzx6eoHpNrAJmNgonqRwpCsfhUAqhp9Un5WS0EKvA1ZMd/8jVawDetUsGZ0QG7cWKXZmIUqASyDp1VijkIA7icRArD15jrzPKe7GQExwlJU65pI1QkO2SvkNzCnAhyu9Rvd+gRsPs90vOfu4Ylobt9zX9eRAFZSZckOwo3Vj3RAhq2b0+ReFNilZXiYN2ufn7T+TfmSIQL9ao+y369oFweUbMDBgFIZLtBtw8Z7ickd8eKT97wLRLhnV2Wm+FTJNvevHxLwz2MGA6x7gsyMaR6ssdRW7pn1T0a3uyBG+WmnwbJSm3STbXeWRcBnyhGOf65C2XRdCjlvZ6GeieOca5Yfa1orp5TH4NmWJI4N3kWpxvAS2rwykiK99DvoHmhTxI/Vk8RXWPK9nZ61EeoGCAXEQ1IYlE7EHaQdspukvpQHQvlGLbCPI/Rs249vi17NZdKZ2DryLhcsAWjhjECCO2RmZmK16EjMkENHEIxMorSXDzQG8iJhcxzVXVcVa2PK92FNqxGStc1LwsN1RmZOdK+mDJVKDQI2M0HF1xEiv13tI5Kzd5UzDuc/TByCYlhbBIGrS8PyFP7+O9lsSkXCy0TO3Ic0kNdk5zuKsxDxmYZL0+KnQviUj5UghEv9hf0o4ZD8eKZiumgqYQQZUfDPoml+I8jwxXKYjk3kr3s04ehU6T3xnsQW7r4ULWh9OONnj53u1RnezjhpX8bJC6g6uecMwov8gpbyPHp4bd98CtnBRkr5KDs/glussRoiJ/Z6luFOW9FO8pTLXYCWvQlfo0Ov+q13ejCIRAqDLiqyvszQ51c4+e1cQiI9Q5MTNkux5fZbhVhVWK/ItbsruK8bxOxUJYh6Z1RKcYlwX57ZHi3YhbVygXMNsjVTeQ7Wua5yXBaFQBzTP5xUzRVQQx5lRhEt08kpIkLkuR7Y0EVFx4dj+KDIuM+m08OQqBAIS2Fblxf46g+MnVOGqZ+6dYLj2oU9yYOBhJ5+HqeGo9zUaMQ/p1xC0m37hkuOqkqwBOu3+RMCuKOyu4hnr8c+UUcdSoUvbwbVBQSTdv8oCxHr1MrX1qcZzTjMdceP+F5+p8z/dWd1RmpPUZnbd8vLtk08hBejI/cJ43HHzBHz08Y9uWLMqeD5f3FNrx+rjm7X4hwF0ro8ekgagbRb6R91DITCrdnKkADCQX3aTGWwtpx7eG9iB7fnPU5APELP1KExjq5pG4FFXi67dnghEkJp+0lQHfWFRjyHbSWTUfOMxyQA0Gjha39qDjyS1Z72TVN32eAYiSNmUajU38jslzYkyORzp9LGpgm2NaoYFvfgjuakTnHrXNZWOU4JZhLeQkOkPxNhPtxUYERK4W/kt5L8S6IXlTTmvkX/X6bhSBBP6Nz1Z0H11SfLWF3QE1OkzTEdZzKQT3jYSMVBn4GfrYkn/eEOuSmFlCnRGtVD0VI93zOcVdhzn0+FlOtHPU6NGDp/66Q4USM8hKbZyLcCjfgxnV6eYRsU48uQ+Ny0eabb6TJKDuhaf7cGBcWvKNILsqPLri6FGdgixdximSa1xG+nN5mHU/3XRieqLT7T8sFd25YjgPKK+o30byDfRnWjQAZeIOHKU1nlKSJ1IQpAOTDFUnhyQ9gj5YhlEzJKMT8UBUxAfFWETyq4YfPb3maSU01q+atdhyDRZjPcc+5/fevmAc7InYE0MqLjbSj/bE7e/ezdCtYrf0XC8WeKfhtiDfaOqpcKbvd3LVyQ/SXUUj772rBJsJvXRZKgh25GoZm/J7g3ZGQkySYCpqiEMq7ioh+ZWsOnmXkw/ye4lFOBGc1NFgOk3UkeHKU18deTFrub5fEp1CzUcYjFiAp68znnuqy4bKeiLgE8BotsKxGJfy92dbGUdBNjx6kOcgFqIP4SwwtvZEq+auIN9KUIyrIjETjYG+y8n3mupGnpkJgFYeqvuAGWTLJYY2MWVu/OrXd6MIaIXqBrLrPeOzBeOzBZlWqH1DbHrUsUEvF4R5ie5GGR8yg1/P0d2AajpUP6B8QcwM0RgoJYvg8OGMfJPWK/P8FPnsC012FA67dorxIHkCCrAHecCyZrrNxflIj4aD1ZK3V8qtZAbxgvOAX3m6PJ7MP0yrqN8oyoeATyu9YS1mlnqQ1ZrPI/2FF8BJJXfbXqWNBif34WbUDAuRMc/eRJGOvpUD7XN5mMq7yLBIwSnlNzqZLGJT5r1t025VqeRjoIXLDyfQiwmiOeb89PoJP+UJISjpEkwkyx3eaY77UkaI5HsYiiCsOg2xM3THGUOzkM5m4sh7hbst5ZbeiRx7kndPzk1T8XMzgz3KjTY5Evt8IjdxMtaMSlrtfEOKIuO00ZmyAxQJQ/BQf25lvRolCDQuHDrzhC7xGspIvOxZLRquZkfu25qvv7xADRpKDwfxd4g6uSAtRs7OpMr2o9Cou0OBvsvwc09x2RCCxv1iTnkrHaVl6mAi8YOW80UjBKOHGr0Xhy25HMRWflzKM2L3iY0ZHt2smqfJpr6DfBNPATRZI4XHFZpgvutFQCkpBNs9NrP4VYlb19gQUd4T24H4sJXNV1UQVZSIciDUOZQ5+tDC6MAYlAqYTjwHfWHZv8rJ2ki+80I7HoTzHwypa1Dkyc/NlSodHIUrI8U2fYsuUt3JalHip0HNIsN5IOZB6L29+SWS0LgONGiJLG9kVMj3kX6v6c8EnLKNhH+4pdhhDzXslaV6p0+gXbaPLL4IDHPFsBQJsRmEM1FsRUswEZzynTAdh7V0M8qBSuQq7eMp4kqnGTPbK0Iut57yKQOgiDgbYdT0b2vsUaNGaau7y5Fi2VNWg5BWKES74JHg0qhg0NitITuoUwLxsBbLc3mAVdqNy81lOzmcp0CYPIGgafXpS6GGuym4xcI4k2JuejkstgUUtE8F79AjwuALybhFSwdWbOLJcr5fQ/9CzESd02gTUVp0DIu6J0T4+M0TwiaX8WkmLsQEWVGSBbJ6ZFb3DM6KuaqCYVegjwb9ouVHz68JUfGTP3jF+cfC+ZhcpodzT/GsoS57uiGjfb2gutYnDoyKyTOiSMpUp0SCbCLZVvCScZaSmHvZFmStdFACTqtfCtH9ttd3ogj4QjO+OCf77B369gHsBaG0hEWJNhqVZ8TdAZoWFQIUOTG3wiPwSjgFy0qSjHwkpr5SO7EjA3EhGhaWYhPId497fNNJfJgrxKknP3p8phhrzbBSHOtJE6DJkolIsUlmkHuF6QzdlZh+0usTghytcH7GdWD7A8388xQxpUQEpEc5qCB/z+AM4zoQVWR44hjXWg6WAnvUVO809pi2DJk6xak/hqukESY51Sq5kPEaohbSSL+Wh2/iHpgBCJBdx5OhhashNgrTGHlYM3lwMUn1uLP0UcGqI0zEJvOYKcA2o3zQ4oabEoknlxyV7LSVFzWj7aQAZOm21y4merJmmEk3IDiHgJkhtffKyyhGWn/qpNcYl3JgTLpBZUWbvg8NtpFV8P6lpB1lzxperfcch4yWHO8FE/HO8LCdidR7FA6FWkwReZCteopCNhD9YNluaxGGOY3ZGZSF6v09/+iLz9mOJb/7Rx9x8XuiWTm+F/GzVAxn0lHdv1tSfJ2xuFcp8Uh+D948plLHIgiLc9AU10bCcO1U8BTF3UQ+Sya6JpHAUrQe3/UigFYcPqioixcUn96g73bEyxWhsoSsQlcZOs+g6WSdGCN618KilETc3KJHn0YBZLXYCV0u5BrbBqoAx6ea43MjxiK78JgtmERJUaX9vpeKasZIe6EZluJ60yiZ4/KNtPNkkXyjyA5aHI5WUn6yvTpRfIfzwLj2HDDMXutT4CpKZjnJRhAH2XYwyZ4M3OVIllJtu0NBS062lZtVkozk4LtqkhanmHGFaNs7CS2FNBtbcFFmaEiYwCB/NqzUiQQ1+f3bRgqfm023dGIxelDB0PsUzaOEEqySNr54UCc35mEpIJyby7hh9wntT0Gjw0oAUeVlptUDp26su0xuTVXSaiQioh7UqYhNyUHRPJqT2qM+dRXT+COeD4rmmaL9YGR5deCj5Y7n9Y43zZK7Q804WJQOGBOxxYBSkTG3jIMlRkRRWDgu1geWec99W3P7dom9zdBWuih7lBXy6sMNf+HJ17xpl/zRz16y/v2MYQH7X3NQeVRjxT3aGMZeU73OKB7k7RwW0F8Kyh/yiLnsmdc9h12Fvs6p32iyQ5SuKE/W9Qcp4l3ymjy5VKWCSRDB3be9vhNFQA8CZDTPcsbFc2YfP2C2R2AmhaDMCIXF7HJUP0jksvPofYcqrKwTtZaxQkVR1VmNSloEt8jRY2QeIs2VoTvT+EyRtbK7H2t9akshMQBLdUoeth0ya9dpRWcEoCt2kWEuVNviAfytWF2DgFvZXjwMhnXAzQP9ylBfkyzPUziJIYmdIvUbccyNCrJtzrDOaBf+tNsWk5KEFWzlwHdroT6Py0R+QVpnISwJJ8AeVdIZfONNTyPidPMMS+lUygexVFMR3INirJUQlIzcTqBO2wW5beUvsvtkc5Zo3b4QND8qBKnvZfSIBgkRMcnwpUC0EAGyEE8AV8jgJNqay2ov2ydwbyaFVBiYCegDTGtOfo2xk8LXnwuTcZwH7JOWHz695QfLa0LU/OJwwZcPa7omx+ae1bxlUfRUdmTTVbxtCvzBCjtvPvCD59fUduDHb5/jf7pgtpciHL0Up+6548VHt7xabPjxzXM2n6+pvzYSMfbcgYlk7/IUciLvgb23kkpdyNpveD5K9FsW+ODJPZ2zvP38gvoLS3kXUU66GYA6ZRgMS0X3vqxv882jWSkB7JAutOE7XgSUjxT3I8Pa4gtF87015bsWc39Adxkxt/hZznhVY3cG3QzEzKK6HtV4VC7RYzEz+FmBslGcgzMxCdW9l3jyXmHaQL+2DHNFv1Di6Z+QeJ8rGDi12a7SuJkw9vIk/vGFFINxLjjC/GvhCkQle9liq2mu9EnpWNzJyDCsI8NZQEXN/Mso1bxWyW1GVohFagfdQhRkxb3CNzZZmMdT2Ok4k+/tZGme/ve4S5ZOwFURNw+PKsRcfk6xoVao4tHiOlgRZOkBVP7LIJIv01rzGyxE06TcvkE+ZtI/x5ngFr5M1NZEqDEtaecvXIuYkHhfShHNDmnWr1WKJJO/b1I2TnFgbiYoudjpIpyFgJh3KOFQEKC/irTve8giykjBLKsBrSI/3T7l+jDn2Ob40RCDIk/ioc5ZHpqKh7dLVK+hDCyuDvzm1Vsal/N3fvIR85/mGAXt05C6rEjxtOGvPP+axuX8zmcfEN8VFBuxuh+SkajIihX9WUA/62CfoQInYlH5wZ7zuqPORlZ5y6cPF7R/95yLLyPEiK8UMZfns0og8PE9GK5GCIriWmzKTsa1o4y7RPndftvrO1EEJlWg7iU9JqZk1byw2NsDenNA7w3+fI6f56A1upGnTo2OqDUxz4QL0Ay4RQGZWJdHq/GVgRAxYxA68RixnaE9N4wzeTinNjVkj7NqMBKJ3p/BmGbYiarsamguNcsmUNyPuJkYmZohUN9AvxRGoE4POFFu62EVaXtFdSMuwajEuV+Ke67dG1H9lR7d6cRuE4KOn8NwIdl3U+pOfmcevQW0UGpDDlGLO1FEcIkpVVgFRXCCOEeddAqDjC/DmWQiTgrFScEYbThxD6KNj+Gn0aBz+bivZNb3pbTwj4dT8voAguMUT45O+3pShLqZOjB5JnwVcfN4KmoqqFM6sPICUkYb0a2WPMMoBSXkAVV7itlAjLLhiL3BzBwK+Pz+jL7P5KIMyS49Kg63Mw5BuhblREIeZ475RUNhPb/7+hX+y5rFG2FaNu87SDjI8vzI8+WOL/dr3r5dY69zWR/34ObSNYVM9BtD5SkXPX0jOgSA4SJw9v4DH63vsTrwrlnwH//Rh8x/nrG8jYn9+Q01q4PjC83xlcSjKa+wb4oT2U00MuliSPUy+7OoCP9hvEKuaS8zYcE1Ae2CtD2FIT5ZkN1p1O6IefuAOl8Q6pxQ5yilUD6g+oFYZrhFhR4c5jjKGGE1ehS0Z1xl+FLCTEAepGIf6JUANhMTY6ITm04UheZdRI+afi0z7gRMkdYwzRNDfQN6iLhSsAEzRMpNkJyCFKUu/fgEtEn7lx0ShVUpxqAZV15y8JyCPBDygM49dS0P9NBnYl5qPVerA8ui45PrS4YvaxG07PWJWhtthFFwAT0qXP2N5GIjBU651DUM8pC6SliKptPo/nFVHcMUAy7ClzDIoZzILyGXTuWPv2IecEXAz/SpS2H6O438N3qQzZBIpB8xCVI3o4K8V8LB56SFwKtfChGdvr4KCg6Wfi+7dgXEWlSCbZszNmIaSlCwzbApIsz0kiysghIEfy3dw+GuprvLyDcKCxzfC8TzQYJInSKbjTiv+cW7S8Z9Tn5jyR+kw2yvhGeQrXqqwkkUnFd0W+EP6EExrj0vP7rlz52940275CdfPkV/XnH5c7nxxxmP4xEI1XweGS9GzNzhB425z1Cj0I5DJsCoPYrrcL4PZMdAtvt2ZPA7UQSikgCNqAX1LR88xnvMUb5xt64wuZWO4NCdBEaxMARTo3cN+tARi4xxVWI6hzn0oDW+ylBe0ou6c0s0GtMF4QvElNCiE8oeZfz2NjHQZhJHPXvrsUeNq6Zwy0fE29USjWa7R6XitJuevRlPs7cvNe2FpU+5BcEKiotOpKRWEbVJ8uFIjBqyKGw24GzWMpQD+6Zk6C33h5rMeM6XR25faIZdnoxIHm3JtYd8LyYpvjL051oouEmiPOEMU7y3CmD34khkeqSzmFyJ/IS0S4swvQeT1yFGthB2byju5H11M3NSFaq0PSR1F8ECCdzrLgX1E9msRjWQH+Xz+gvoz4JQcIMUomlUmIrAxB6ME/chFaYpiVd3Fvcgdm0qFXHTPWIWAgg/cimGtVi3oQx2K3hGfx4JT3vKeqA7FMTWQBYYjxnjthDn5IOS4BcDux94zHnPetaxKHvuj/Upa5EoP7dfOc6f7liXLb93+4Kbz89EsXkn33e/ltFonEtnRJDi7udBWI1Hiz5K5+jPZSTQW1EvFvdyiWWNZHWMi2/PJv9OFAGpxNCdCSAnBpwBrRVm26K9J84rwnou/oMxonqPagdiXQhp6NCijz26tLhafiy77TAx4ufFae/aLw2Fgmzv0WNAe0NrjWTf+RSAGSMEmf3bJ4rwoMW59fA4ukytss/F560vEoId4gnQUiFi9/2paJm2xPQZw1wEQVP3Mc3Wtk2+gUU8IeDRRNpNxnFeUSx7rJVOpr2r+GxToksv7kfLgeAV7phJO+vEh1B+bjlg9igHyLRTiy0HWUJXITvok9kIJIOUWUyU44hv1Mkf3xecbmbTp8Jg4sm1SMBDMI3c0lPSkvIJw+hVcoKWn1WPQtkNmejjJ8DS59L+Msr3bFspouNcQM/swEmZJ2zA5JAUwO4M5a3cyhJjnjYJdWS8dNj5iEvpSfm1EIhCLnkAYelg0LhlwC1HXjzZMMsGPrs9Rz1kaKfQ3qCSO5MS20DBfp6O2NoJBqGDOBLf58Q8YlcDWe5wTpNlnkNT8gdfryjeZqxvRJYd8unGF8VnKAO6Vyfqr+o1qtMycl321LOBrs3hTUH9RlPeJus9m3Ct9aMf5696fSeKQFRp/74VFL690JjRokJE9w69G+HNLawWxFK8BogR5TxqcyAsZoT1DL1rsfuekFW42qLHHNWPKB+Ixp4OZ7cyuEKT7z22CeS5pi0U40rowKYXZaG48irGuQJ00u7LQcoPAdsILyEUmmFupFPIJBcBBeM8taQhEqxOKUippU2orR7laxGloAxzCZ50syiJvj7tg5uM4WgZ1gNZ6URpuM9QD1liBsaTxFg7Qdul1U8P1OzReGTyMbBHsUCTVCK56aMWAooK6fY/KojCTQgWuiuxVgewyR9PDwpdJpJPntRwyctg8so7ORsPk9JR5vrJ5gwSpTdLngkdZDsSw04KrR6kIA1rTqSmdgbuzGHmI3nuGAaL74T3b1t1SpySgyWW3/nLI08WR459zlgaujZnTNZ0cebQpcfoCKWirAY+PL/nebXjd96+Inw2o9xMGX/JcCbnFI7qKtnlO2PwuWZznBHvCmLpmV01FNnIsS1wvcVdVxR3huVOtip6FLGZJCnLFiUa6c5sq06sSj0KWam+OpJbz3ZbY94WlLfSuaJgmEth6leCTU1Yy696fTeKQKKJ6mTaETJoz7SEiQLWaoxSxPsN2lrivH5cCYaI3uwJLIRc1AzYw8BwVjCcFWQb+RqmD8lKG1wpXoXdmbjBEjlFjrsaxuWUV5+Q81zmsomLH62099lBUd05su1IdnCMtWVYmm+AaDDObMooEBmztKoTwJg0+qmwTPwE9VacioaVjCey8pHZ3vcFw7mmPmsZrWekxBzMiRxjOkXWpAPoSOQihDaaSERmkDZ/UptNK6VgJu9DIaBkx0mRmDYiK+EixDyghuTAnN6/yQkpGoTkhBRU4TXI1+nPU7JQ2qtPXcHkcRjyKFHtNgG0jVC2gxNbNF8o+osk0c0irgioPKB0xLeW7q4QZp2RzmZcBLoPHKbw+N6QzwbeP9/ycrblMBaSI+gNVT4yf3IPwLaV01JkjsEZXi53PK+2/I3Pf43wkznVwyPL8ZRFkaf5JBmHmPXA5frAsc8JrYWFY37WEKPYuMejJb8zlDdC5DG9vIdSkDkFr+YPGjttVXJwM/B1JFyM1IsO5wzNzYzs3lDcK4qtcCxcArtFUCR4ijv/s4WP/P/8FY3wn20rgp1px9mtNa7MMUNG8VBS3Nao7RE2O1RZCiFdy62nN3viak60Gt2M2MIyLizjMsc2TnCBIaC38fFGV+AKJSrBKAVIBZn7g5VZzDbp38/kFs136cG3EJcQjSVrxA5dD5KNMKyMrBtHGBdaJL5JPQjygPtSpKS2NYlA9I29upebIWp1SpNVTr6mHsBsLY2uMKVD1Q6v42lbkD0IXdc2YoVmu4g6RpQXBiRK1kZRS5Hpz+RAqXG6NaX9BOjTLc7Jc0Dsy/RoEl9ffl8TWKqdIigh5wSTBAFR2JnikCx79VAHcI/GKSGPhFLceUMu4J7PZQ07LFOBTOvFYNM83yvCoBBgQb53PUx4gMKtHZcvtlzNDjRjTmEc788fuMr3jNFwr2e4qFFjzqv1DU+LPZ8cLhlSqGg7ZMyLgRAV/+7HPyT7o5o8XRRyMSSOQLoY3DKgz3teXW54Ntvxer+ma3NUFshr2WS1xxx2GflGSFViHacSAJiEUFoun3yHdGDJtaq/lHWvWg0YE2l2JaqxZDtNca9OxrjDKsrlMqTV49pLUVo2fPEt5++7UQQSAaS/EE2/Tqk6KjHAooZoDPm2YP71gtnrjuzLW+gHsOlHMBqGEapcTEm86AN8lSzK0lYgGHEhDilkw7QQjWJYakIS4jxScZNs1cm81z31dE855eeZQWLPfDY57IhCLCQnoT61sc3zeAqGiEmvQCCt6eSmjVpmWu1EaTbNvieQz4E3AhD5WQCv8IcMNWgJ9DxpIeQmGVH059NDxi/9XFNHJLhGFOGPVYTk8zclBOk8UFbyAB83FdlXGbOvksNRlsRTQ6RbKwalfgnHMK2mvFEnC/cpGdd0oL0AlG4l/HvhV6uTy5E9yqEeVvJ1sp28FxNXYfo5JosvSV5OwZ7LgcWs43zWcFY0DMHy/uKe5+WOlWl5L7+jizl/Z/yI0Rue1nu+X99y8AWlcTyt99x3M7yVN/4PfvYes08yUOLgExP3QaeUKDeP8F7LX/3gCz6o7zm6gt+5ecXN3QJlIvWyo8hGdvuauM0pkvuPqziNQiFPtva9XEQTh2RYpLXyOkhh1pE4GsIAqjPYnaa8lY6rfaoYVkJHjz7SPfHkFx2Xs46r2YHSjPxH33L+vhNFQB4OAYmGK4fqRJUWzwZGIB4tau6I5cjuvqL+fMbljwtmHz+gHnYyFlgr/wRRGeo0y1rNsLRke7EbE2MPK/+OEJWyoyM7QneR0Z1pXGLITcKTqKQ6+0IMOsYzT7By4yqXaLdHlW5vucGm+TgUwgHQZz1RByGneE3sNZiILj1DL7fP7KzlfNbw0FQc3szJtkkWm4JMxI9QizJtJfrboc0ILqe8lkIwziLdRWL8VRHWA+VsoB8N4y4nu7eikR/Fjqy402LqamXeDrVQgM2DZBq2uVh4oWWe7hspyhPfX95ETqpJe0ztciuf47Nkp1bIuCCFPd1UURO9QjdyM5ouzdnFLxeA7Cjr2eHSE2uXBEpWPBczwSj0Rc/L8x3PZhJd5qJBq8jzasv3qltqPfAie6CLGV/1Z7Q+Y5F3nOcNYzRkyvNhfcfG1Vw3C0JUvL1fUn2ZYVtE8KVl/04UncJw6Vg+PfAXnrzhz8/f8PPmCX9w94zNviJLduoA231NeCikAGwTnbqOJy6BeD+IWlSFSH8mArNxJgVfObEnD1VAWU/spQDk2zSmLUQzoSL4WcBedHxwsWWe9+RarNy/3K+/9fx9J4pAsFIFizvN2Cvc5Sht1qhZXh6prkZ80Dxf7Hjvow2/+MEFP/3wBasfX/Hkd2uyL+8gPJIh1OgxQLRSDFytGZcSba5chFzWc2LsEXG1WJKXtyO2NXRnhu5cYs+nXbgK4i6svJEuxSegK4rjTPdEDoRpxbzSXYzowmNMYD3rMDoyL3oARm+IwK4tiVHhco3WkfNZw/dXt/z2e1+w/37J/+HL3+LmyzPx01NiHzV7EynvMg6vLP7ZQDEbyFYth3Px4lMe3NqRLQfWs446H3lvseFlucHqwO9vXvDT108xX5UUt+JMNM4SwLXwqNoRGwutzKy2kaLZXQX8xUi7gmbQ6KOEo2YHhT1CcS/89OwYT9ZWvnjcb3PaIshokyeXnWAft0NmSIrDMzFSsckEZFgg9lomonbZyejDzWTWLdcdecpCeB3WrIqO9+cPfFTd8l5+R648Xcz4afecT5ortmNJbQdWWccYDGM0vF/c8QfHl/zO9Sv60eKDZnwoyJJSL2TS0YzrwLhw1MuOF4sDT+s9WgX+b9c/5KGpUCpSFI6uzRm6TExVB51s5OH4Qp6T6lqo55NhbdYKKej4QtOvBR9BQbaRqLLx0mFmDt9Y9F7GseaVF3xm8j687Pn+81venz1w9DmaiIua33/7nOZ69q3n7ztRBGzpOH7oqD+3iTqbMV44sJH9tmL+tOeyPmKVZ2Z6/gvP/i4/Xtzy/3r2Ea/X5zz7W5bys3vUMBJmJaGy6DFgDwO6N6iYC913phMIGAiZYZgn9V1yLg42w3ZiMKqdCI5c/bhLlwCTRHpJes9oH+mr+mygnHUoYFV1/KWL18xNz8q2NCHn54cnzOzA02JHqUduxzk/2T7l87tzYlQ8m+34sLrj3B74C+WXnH904H9f/jZf3J7RHXKGvaV8p6muI6ufQ7cp6C5y+quBs4s9YdWwuZmjOsN4zOgTFfaumzEzAx/Vt/yV88+F/148pylmcpvmUeLPc7llTqGo7pG8Y1pF3GayltIyQox6Cs5INxoKnYHtI/WNP4VkDHPBRaYkpEn4FNPTp5JxqwqyHYgmjUTN439jjwpzZ9FeZt3uvZH55ZGzumUMmu2x4jgUzOqeJzOJLP+guGVtjvy4fcXHzRM+3l1y6AuezvdoFbkdC0ozkmnP/6P5dX52d4UPmnnZc7udo0Z9Yim6RUCtB2bznrO65Um956I4sh9LPtlecrudk+fi5Hx8qCAoVOExpccn9WR/FdCDYvVTqO49w0ITcii2EeUjTQplnfIhs51sSrorJ/bvLo0/ZyP1upWvtamIJlI9P/CPvfycddbwZXvGYZRE6Hd3K+K7AsrvOGPQec36+Y5NPif/OqPYKLJ9Rn8Z8LPA16/PaZ/sebHc8WV7RqEdvzl7zYuPNvyNxa/xyfx9nv3tJyx+ukEfO/x8yTDPhCLcjBSdY7goCYUW/7+5QXtBZV0tD6TpJGugvZz8+CP5TsQakz249uCyCbwirc6EvKHKpJTTgR9dXPOy2vAb9Vf8lfJzPrKGQxz596sX/J3D9wC4tHtqPdDOM64Pcw7Hkm1fsVh3zHSPR/G9/Jr/7JOf8JPZM1qfsekrPr254P5tTfVOP9qWf1Jw/CKnfzGyvjpImMdDTftmTjcoNtmaTxZP+J31K87qlt4buaXKQFiEE4Mutha7NULAcbKnnwCwkMlu395riWeLE3ga6Z5MAh7JZLSNcORVkC2HzNJRALH7hI0kHbweSP+NvK/aywhg2/RsZEnr0MsBGFaR8dnI2eWeq9mR3lv60eKcxlpPkTlKM7IyLZly/GH3kr/98CG37ZxNW6KAu7bm63HJ4OTx/1hfEqNiVgysiiPXhznjbSVeD2XqrBYDs7rn6WLPq9mGddawGWt+fPOM/fVc1nImF7anjdTnDdYEdrczTCNMzmynWHwqITqHl7JFmr3xZE3g+NSe7OFMK6SjYGFYBSg8Wkfqeceq6qizAR81b3cLdO65eLrlP/3i5+xdyd+5/YCHpuK4L9HvCrKjjEwqBeT+qtd3ogioXrN9vaK4ahheBcKbguJBUX8tiLabaR6GFft1xcX6IPHRS8PzfMM/fvEp5T/m+LH5CFeesf7DHfahxRcz2qcF2cFSfH0g3/R0Tysx1Bg8/UocWvSQVlL2UQRzfC7EDPEdkPnPzUhMLEV3Kf76KkIoAno2Mlt0lJmjHy0/vb8inCvObMNdfk3tD9yHnFKNFNrxt24/IkQpBvfHWtJxgub1ZsX/M/s+9WV/SsN5nj3QVdJT78oSHzWbWcf9xewUF6a8pn6nqK5z9h+ckX14YHnW0FYZ40ZcfOJDxq5bsMskV89urKz+qohbu5Mppp8HQiLrKCc3vO5T8Em6lU8Kv0wwj7B0mMrhg6LXkWzWcT4/clUeeF5u0SryplvxO69fsf98Tv1G1phmVCdPAF9KRzFtY0L+SK8GWZmNS8E48lJu3Ieuoh8tRgdeXW74cH5PYRzn2ZGF6fi0f8Lv719yHAuhZY8W7zRNU4ixamcgD2T1wPmyYVH0fHZ7TvxkRrUXcZdbCFvR2MC6bplnPdux5OfbK754c46+Lsh8ojUXErWWFw7nDN2XC8p7aef1ANWt2MEdPhDV6vpnYgS6e99K/F3LSfEpEm9RSM5WHR+e33NVHhiDYTNU7LuCYbCslg1/9ckXvOmW/O7Xr2juavTBUKROSlbP/3/AEyBC9ZWhb+bE8xF34QiFobzWVNfqhJT6Y8X1fcHt+Zz9UPCDVcVFduQ3V18T/ori95evGBYrzn/SkT90RFvTXljG2Yr6TUu+GenPc0kb2nm6tTmZVmon6xjTCajVPYmMC6Ex51uhjfbnQQ7cG7HaHheRUEJRjdQplPO8ath0FT+7u+L1fs3v1O/zotqxGSteH9aMQXPoCnbXc3RjTuh/yCJNbfgpT7A68FvLrzizRw6+5GZY0PoMrSIzO6ArmSs3uxrnNL6OtE8Es6jeKbowp1s76U6sHGoiovu3QSjJCak3rQIs7sxRnsts3Q8WN1p08strH0ryG5O2GAidOE/MtlmgXre8WO94f/bAe9UDPyjf8iq7Y6l6BjRfjhd8nD3l3cWCT7qMo82lW2gToaWSglNsImoAkI/ng6xO3TwBc7WnnvcUmWNZ9igV+bX1LT+cv+OfnP+UtW75yfCcv9e84t+7+wFvjkucN/igaLpcQlC8JqQ5ncJjC3FhedjXvPt6TfVZTnYQOvRkLY5TeK/46nbNl/EM3xv0Q0Z+UCcGYlw4TOmIXtG/qymuDfOtAKIhXcLHl/K59qhYfCk084cfZPiCU4xddyHELl/I9uTq1QP/yNVrCu247ed8vj+jHTJ2+xqtA0/mB3788JzPP78if2spnbAo811ibwKHDxT+h8dvPX5/YhFQSr0C/lXgGbIx/usxxv+pUuoc+N8CHyJRZP/lFE+OUupfAP4ZhDbyz8UY/52/79dIbjjVO8XY5AwXnphHoW9mmvqdvHHDCnxj4L7is03O/YuaX7+44SxvuSoO/Cf+3Kf8veULuvM5V3/Pkj8MKGcZ1pbjexX1150UgouMYISoMTHhbC/A1liLv1/YKLrLQHcZKW+1fG8zAQH1qISa2SlsY2mpqV4OHPsagHnZY3Tkze2Kr7dX/F4v2IHudVIgBjG1vZfZ2yc2mw+Kxtf8OD7nrpvxciZ23fux5OAK5rbnw/kdR1cwBMN9mAmjMIv0V4HhTNZs0Sa8Ijn4MkVvpRANQlK1zWW3HzUQFONg8f4xovtydeCDxQO7pyV/NHtG+KqUmX4h6T9FNfJyted5vWORdVxkR87skYVuMQS6aPnKnfG7xw/5u5v3uN7PmS06+swz3pdEo4VglEVMk8hfidU5yaRtKzkNoAjW0lU5s3Lg2WzHs3LHj6o3/Kh4w0J3fDZe8n+6/S1+54v3GbeFbF8qsR/XRkhFcVTgNLoW63D/UICTojN7J6POOH+0L8ODipr4hQSOxjyS9UnyXYGfedTMYbKA3+UpAESdvA5dLYDfFDVW3mjKe3F6Orwy6BHWH4vt3fYjS3eZNkxXIz/83hv+8vkXHHzB7z+84O12gXOGsf9/U/dnMbeuW34f9BtP8zaz+5rV7eacOqdcTRxXRbJjYgt8QUJywQWSBUqQAQUjLMxFUBQpF3Z8A1JkyUhgxAVCKpSLICUYQ4Ji0iiKIwyYuC1jbKfK5Sqfc+qc3azu62b3dk/DxXjed65TPvtU4bKizZS29lrf+pr5zfm+4xnjP/6Nw1WBT5898YOHa4bvbdm8NsX/AjZfRFyX6W8s+58Uxp/qFv/Ef6gigGYK/qs5578hIlvgF0XkPwH+B8B/mnP+UyLyx4E/DvwxEfldwB8Cfg4NJf3zIvKzPy6T0E4UynBxtElWq2uRm/aTIql20HVccoI/OPqHa/7GN1s+fvnIVd0zRMfPfvSOz9uRL7Y33P6SZfu9nvX3R4ZnDf3LGjNk/D4y3DimtebNZYGpFdyQl22AO0PzXiOf+mdZDUPfF0138W+TQlBpf+B47G5Jq4gMhm7cLaud6t6y+Uwp0dkoo2u4skwbFkdiMylBJqwzUifCZPns7pr3xzUvt0du6rOm6fZKcGnsxFXVs9n07HuLnC32aEmNIvjVemSz6jEC58EzDF5Pv07ptBKUmDQ+V19DQGnLJ0dMXjkMBt4bdUra1T2bbc/hI8Nq1/O7Xr7mZzdvee4PXNszjUzsU8svnT/hrz99m+/Vz/knVp/xzB15jCu+HK54d9oQom5BprMSZqQUoOiKxduK4nOovo9zgrKSj4qNGLCuRtZ2xJL4/vCM//fxJ3jXb/jVuxecPtvi9wZXSEi5M4RaBTcMVotilUi9wz0olTz5TH2n/gyzW7M7CymARMWIYqMrVFfGovFWvQrsSkkk6a6mfW3xZ32uwy2EdQmqKevT2XWpf6ZdpDvB+nPtdh5+1tK/0A2IfT7wB779PX5q/Y4v+mt+5fElX9xdYUxCBJrVSFNNfP/NLfb7De2jPqdqrwXAnyLnl47Dt/TQqv5+S/Oef3iyUEkf/rL8+SAivwx8CvxB4J8un/ZvAn8B+GPl438m5zwA3xWRXwN+H/CXvupnSMqs3irDbNrORheyuM9mpzd//ZipnrJy+QVWnwvDueHLxxc8fnpkVU/cxxVXbc/2977mBy+e071YcftLI83rM7m2DM9qYmOoHwOIo78yxGJmOQdaaDqQ3qBtEoabTPcqUz8I1VNe5MHZzs62merJwJMpmm+wn19otQpsJap9YFo7tUSzl+Ri25duyBn6jXB7dWKKhsOp4bvnZzxdNaz8xFPXqIBFMt5H2mpi9/zE6VzD5y3NG8twK8hm4Gdu31OZwP2wZooaBnocax7PLePgsC5hTNLIrdGRR+UtuLpYZveO8ex5HXccVjVXbc/PPHvHT67v+L3r7/GJf+CL6Ya/fPwpxuQwZN4OG/roae3Em+mK+7jm9XDFu34DgDGZ7lxj9m5RKvqDEFa2dEoKJmanFO3xShmM2UHYRex24sXNgcpE3g0bvn+64cunHed9A3uHOxtcUYO6kyB7LXbTWi275xAVGQ3uZNTDoM60rw3tO2XtSdKbSXJhdtbKqkx1XgrAdKvPxbrINDjkfc36S4M/ZMarMiZ6LezuVFyDZw/HzUV3UT/AcCN0L1ULkFeB5y8O/P5Xv05rR37l+IrvPd1y/7TGuYj3kWmyTKOje7uifq908eQ0tXj369r/Hz/2hbsC6y+g3kdC/Y9IQCQi3wZ+D/BXgFdzPHnO+UsReVk+7VPgL3/wZZ+Vj/3Yh+sS9SOAuvnIzHLLhQdfFG+z2CR5iuEkIJZh2nK+najXI8Pk+InbB/6pf/w7/NKzj/j85Y7n/x/H9jsnmjcd43VNtoI/qHtwKhTVWCv90g5aaGaK6Ifpw5LK6WRYgMWZrKEptPpvsYKq06RjNyhJZrxyGomeWUIi1UyFou4D/8bzrt6y3qiDSdxXvDs73Crgq6BGmFEvBJHMT9++5+qjni9eXfGrP3iFfV2Rf3XDX3n8KTYvTlQu0PrAy5Wi2k+bhi+OVxz6WvX1vVMHXQFXR3bbM7tmYN/XHM8NxmQqF3m5OvA7t28A+MXTt/lFvs3jtOIHp2vuuxUhGmofWPmJznt+vb+li57vH255u98w9J5cYtRzm4itYKeLu/Gst7CzMaigMWCxvNdFlXcePYeuZugr4sFjzkadi8YPrqVzifkqgON4nUlbdV6VsxJtZol3814LQDZa0GcjDsr11j9TGrXfG0gwPS9BqAnGp5rqrWP1WrP/xq1eJ2rUUu6ZrIVsuMnkSsceo3QRjt/M6h68jmyfnfiJ60e+vb5nH2q+c3ymRfvY4rw20edTTTo57N5RDRTlJrRvMpvPI7E2ajLqoLlPVMeEGXPRs/wjKAIisgH+HeBfyTnvRb7ym/6of8g/4vv9UeCPAtTtNe6kGesmwDBpy2+HS277HNU8q/u6F0K41q5BknYO5k3FuHLkTeQ74Rn/1Z/8+/zhn/3L/NInn/D/+vbv4PRXt9z8vYnqYSQ2DhGVFI9rVwguMG1VibV6k+leyBKDXj1efjszaHcy6+zr94bxJhOazOpJL/RYqxApG6E6qrmDpLwkD1X7vOT4hWIOOX8/3tccjh6JQvva4s4QmkpXcTcjrgokFO0+TA2/c/uGf+b6l3n/asdfuPtZ/vavfoPqjWd4f8Vpl3jYBM63nsO6ISTDEBzHQ0M6aeuPU6pw6B2PaY01mZ+5fc/tR2emZBmS5Rwq/sbDN7nvVhz7mtpPfHP3xE9v3/OF2/Hdh2c8Hlf01YSRjJU1ffC8edrS37WaA1iV6O2oJKLxqszL5WNkpY3bvoisRlmERbm3nEKrc/1olPnYy+KjODMNlWGpRSSuoH+eiTeaK5AfK6r74rhk9Wf5A8X3UBbXIqCEverPdgcdXWbTU96pi0/1VBykc2YsNuLuqNdLaLS4jZuskfOj6JbGZsZnqWTaZfx65Oc/+ZKNH0jZ8MtPrzgMNdYk9ueGFA1jb+HgMZ1QFROUVAE5s/pS3auHa7OYtVaHTHVQR+PhSmnzrv9t8gRExKMF4N/KOf+75cNvROTj0gV8DLwtH/8M+OYHX/4N4It/oCrk/AvALwBsbr+ZsxP8MWCGhBssU2uWJz+nx+gXqiAleZXcTtu8hFfEVr3cUhCmwfB/zz9N+zMj//zzv8bv332HP/Psn+LL5x/z/G8amnttnVwXWb0Xume2uNjoJqLaZ5r7y5sb2kKaGVRq7B/y0i7mo65hhlut+NWjjg1Q5tgaxmxwwyUt2J90IxFa1Y1PO52L1bAjQ5XIUYi1oX0D7Vuo9obuo5rxxkGrV+v745q/4z4B4OdWn/OHP/7P+OWbT/jzr38n3//imZpY9JaH91se7jaKilc6W8oqICZjTCZFIfWO1Fueji1fuCvcNtEqKsdxqhc+Q87C1arjk9UTL6oD9+OKMViGTmPA72RFN1T69xIpLhGkaBx0lMqEmiV6LLsMZs58uJiCZFe0G/dONRO7CULxHBwKNlN0E6QPCkBbTGGbDINB7h31o1lWm7moHk1xSSKrO7EtG4nZPGZmRaoxiuCOtgCW83r5Mrb6AsCP2+JvcB0hgX9Uhl/YRQ0vGQ1Eob3p+C99qpP6fmx5360ZgqN2QXMRi0jInM2SwxgrxSbsAKsv9Gd2t2axFrdjpjpqVzBuzELt/m0lEIke+f8G8Ms55z/9wT/9OeAPA3+q/P/f++Dj/7aI/GkUGPwZ4K/+Zj8n1kZZfl3EDglXG8Jad/n+EMAIsVLmlQmweqfruvPH2lK6Y5nh1gl7NEg2hKnhPwg/z+NPt/x3X/wV/sTv+A/4P139Pv78zc/x7BcrVnfFT+BhxJ0tp489U1JPg/Mrdc+dbbmVuFFyAr2CiNUhkYoSznX6JnUv9PMkCu1dwp8zkjKhVtbcjH7HWr+3pgRrCzk8LzOj6Oe59cT0E5G9r9l8v0SNfaGgaFhZQgtPbc3T04q3zzf82u4Fn7RP3Lgz/9xHf5cvbq75O/cf8/phS5wsqdeMPgZDXkdW255VrfZY575iSoKYjEjmsWt46j7GSKYfPcO53NBJNEQEcBI5p4r7YcX5foU5WIaVY1x5OPjl5Es+qxS6dHP6d3BHKdhP1gATmcUymewSUmshlLPVLmIToHM0bxz140XBl41KwV2XFwej2Ai2FtKg4J4dlBmZrRaMXLwNZo6IGslqKEnc6vewnSzALQDdpVtTcdqFRGa6vGQijteFQBYFtzeFkame9nJ0SBTqbxz5+Y++5BwqxlJF1n5k7Uc+e7yi+2xLVYrPHHsX1urfWN+ZxX2oe1ncqU9KvHJDZlpbhq36WmSrMni+uhH4LXUCfwD4F4G/LSJ/s3zsT6A3/58VkT+CAo//AkDO+T8XkT8L/BK6WfiXftxmAIqKsDVIsMpZCQnbR0zMjDtH2FjMqPmCuayR7JBZvUsghv6ZngarL4yaXqwTbm8UaX5T8//s/zH6f9zzz7/86/z3nv8l1r9/4N+rfzfxFyuah0SbMu4UWH8J3XNdH8YW+lu9uCi4hCltWAD6W0OymvZCERz5Y1bTT6/gVmg1ecj2GYmJYVe6my4TyhVsx7zMobHRr8lNhMkQpgpcIuwip08tqy9lMZ9o3xYVoDNMm4b3H1e8fbFjvetZ1yO37ZlX7YGfuXqHNYm70wrZ6lw2DJ4YFFc4Ji2sMVhy58gJhmJplrMwdWpc4gYpN5defGNwfNFdMSbHr9/d4u7V1ir0ojkXVSIW+y9XrMklwuyFb7tLPHdoL2nQEkTTjqyuNa1PKpWOgpwc7eeW+jEvcWTuxJJgNMe2Zz87JJfxY3b+iaW6lk5gzh503Ry+omvgBSQeLu+/CdohzDhOaAte1et7OEuBw+yUdC6va1tUmoPVoijApx2vrg48DCvWbuS6OmMl8yQN33u8ZfjulubRLCpDSQpOxjrTvjH4PcvPu+QraAFIVpmvdtIuZbzS9629+22MAznnv8iPnvMB/tmv+Jo/CfzJ3+x7zw8TdYc67iyxMdghLVZdZsqMW0sqK7XZxslMSrZYvUvYwdA91/bw6u/B6RNLbJWmmY1QPRr+xtPP8Ms/9Yp/5pu/ys+vP2f1T478H+T3sf57FeO2Yv3GUj0F2vcTkr2293OUV9Jq7/aXUxyKD7+YJTk3tFqgmseE6xKhEaZWSFZ34LNtVr1P+C7RX2sGgqRcPASgeWsIxVhSVXVO59zZSrpYhrtB5csz0NiKYexrjs8dp1Vgv2o4bmu+sXnk0/UTOQuHocLbxLpW1GqYHMdTQ7hvsEeDNbr3JovSigeLe3C4k87mYReRTcC6xOFc8yvTS8bRMd411MOsMxDCKOTZfOSsQiM76U2lUmtF7bO7mJjMIi3KqIBL5GBIB7s4ItcPJdZspViNLwVgWmtS0VwEkr8oU+sHWXCj0OrqbnY4qu904xS9cPxUrd5BjTr9XrsDM2kBmL9v8vo+qy+kPt/uhb4+ttPU6Gmtq+3Y6srPDGq0mgXizcSmHemD41u7B9ZWbdCfpoZffvMR8e9vaB5niz29xsZrJf6sXuvGaXjGkrRUPZYOqHQnU1ui52tdRZLh6ruJ9Q+6r7z/vjaMwWof6W/VksmUm2meZzSCSkgtSjPNWtV9CQqt94ksGsKBwPqLzPkjWdpE20P9YBjvr/m/vvk9/LVv/QQ/c/2Of+zbX/Ir46fESn0JN18Y6vuJ6qlEzWa9IUnl5gu5OB+p5dis0Y/+Ylg63Ar7K6Mx5YN+bijcglirt6BkQ3MftcJfw1TGDL8vkdJfgBpOaLFzg24sZhOU0GpxUev0pJbrVseRau8Yri3dreNOMrUL/MT6gU/WT3wpO05jxTAq+3AMljA4/KPKUsddJm5BbMK4REpS0oMUyJAk5MFqZ+kiziQKwU/Tl0pegpmEfHAXY1EPwYGUAFddw15Oa/3eigPEtcqWtXiov0A2etpV+1wstmSJkuteCudvqJqOJMgkuIMpBSMvmQzTWg03wjphz8pEbe4zw41w+kYq3aOapDbvNecRSrE9J6a1IYiuG+dIM82l1K6ielRAU7MSi89hUQgq8KlAoW11tfvp5onKBE6xYj82fOfdM+L3NjR3WrSyVRu1aZ1VRv5YwNRnHwSwHkoXVADzqcSSx1pZlmaC9ReJ7a8esO+fvvL2+1oUgWxVxVc/Kco5p/8g+sLOJyCwzMuhhXGnybbVKVGVFN/ZiUddYykEjxkxhfrB8vTZK/7iy+fIzYjdjUxHA8ZwFEP0Xk/qo9qRaSxZXhJg5/YxeT2R3EPCD3pC+JNe5P2tcPpEcMUJN8+nXvGiC40Qa1voypSduLoamUmwJZ/PhFw8CTWPwYRMhXZM/ZVhWhmq/UTzbmD11hErQ6qF/spy+sTRTRu+N3ierhpumo6rqqd1E/fdisdjy3DXUt1b7FkWlZ89GTjUZJcVPCwztonKcATDtLVMLzLWJsazx3RmUVYqgKVtb6pL8OlsplI4E0uyUFFgmlEvahDygymd3qwspGRKgmQdA6q93lTDrXD+OMF20qjx4kZsitnpuLs0sMONruPc2bD6XHCdHhTnTyLZZ/yjZf0DoblPyzranzN+H4qHpGG4LhH2J+WSzME0802bigkNoIIsSVoIIqQmI7uRj5498e3dPe/7NZ8drjkNFad9g3lX0b4v2okKzh8rUFyV1WT/PC8aBH/Wz1vMXQY9HObg1pk5uP4ysv3VJ8zDkdwPX3n/fS2KAEBYWSXUHBLDTuOkpuLhZoY5AkvnbtdBvc/0N5pZl7yhfkplV1w6AMnkY7HQui1+BfsM6Fy9em04v2o1LdepD/+0EuRWZzE7anV1ve5//TFRnRLJ6YXlSuDHsDM0D6mElQj+rK7Ew05XNout97zBcDonnj4W6scZGJSF369mIKpN0JFH117VSVdRJoA7JSqrhqz7b3lW73WUkZSJvnQFPdR3liHXvDs73tkdYjOuCngfSdEgo8EUdV5YzxeZFDfgko5bdAKzPfs8Ww+m5twox8BMpeUO5rJiKxJcvWjBnfIyX0/r4nhUMgb9QWPV3aD6jVhYdlUphMnJYn3ueu2KZr8C2wnS1coJKKEnYT0Lksr44fW5NO8sq9cZUqZ/IfTPdCzwd7aoG5UfMgNttktMO8ewVSHbtGPhiMS6cBqCAsFQNj4jSFNOKrjEvW8mvv3xHR+v9vy9hxe8e3OlWwLAHg2rLw3urGSj4UY7CTuKmo063aL4kywrSBM1rWl2ssJQimDGD9A8JDbfPyPnAYzAze6yv/sNj69NEQCtYiZk6kNkirrOGXeyxHjHJjPeQPUgtO90Q9DflNndGdp7tVqOVUHSI5B1Xjx9Isupk41m+blO6J8psJhtYaatYRoKFlDAO8nQvVATkvYuFITELHNiLGysOVXXDolVp6eArpBKtqFXNddwo1V7uNEVVP2UkX0JjdQ6RfSyzL4WtfACKWkygu8S9R5OHxv6Z5b2vQZVzthEclo8q0dDGAyz/0FoPFMbEa9hJLFVG/H6rjgAm5JM7JWsM9Oq9eTRE3qcuzJXaM5tJESd88Um8mQwR3Uwqh+gelJH5TnboTpoUU57/TbVUQ1Fs9UTjeJcVN9PauO9cwoIc2nPXacndXLCcCWcX5ZUpSqpjflkcHu1BLdRqI9KPZesWgN5/gAAeCFJREFUs3LyGvvmT1psFZwU/CHTPBYsqnhFxhKJbsaLSavr9MQ+fqy/V/Wk14w6BSs3wIxaFNOzid/1rS8xkvnPfu13YL9U5eFcXGfAd94sqPYDpl1EsmCPs50dy0ExbfS9mslVdlTcwAR9jarHgDkNYC1p3RA3NfzKj77vvjZFQL3x8wJB2iEvqHw2wrhSdDStEmFlCCtD+45La3itb+LqrYabRq/IvKbvaiE4v1QJq99roaj3GuUMRgNH14XuGTUmTGIu1M9cHIfBBEu9j7hOUawUKKEjsgSGLuEYEWxI1OdI8tpGZytUR40WH68K0NTMxChZdPoqbS5FZcwL9jBthLwFSQbXZdZf6Ag1XOnNMAuSFLQsu+2unLDtZVY1PhGnRLaqa1eqtnrbxSYXj8fisCy6w58djFOV4Wbk5vpESIacBWcSTTVhJXN3WDM9qUHMHMc+reZCqad5ddLV6bzmS14ItZ5s9pxZvx5wTwNhU2GmYudeSfFqFKrHieohcf6kYVqr+QegK9AJbMEF5hHOlzCT6Aozs4B+oFuBbKF5r8lRyUH33GhxX4g5qnGZT91po/kEmEx9p25T3SslXQGYkjs4fjLyT/zk5+yHhu//6ivqN7r2jm0JW3nS4jttZ98G7Vo0LQr8g8EfLv4KsYKpGN3YroxYQdeDpvy5fozUr08QIrnyZGNw749fee99PYpALmu0pK0a2ZBW2hX4cyGLJCG/gLSCdD0xeMd0JT9kVDFewbhVlZYGZGhHUB30e8wGItmIEnyCwZ8T7Tu9sIYkTFeZ7lXSzuKtIvnZXC5ApQQb/CHgQ2a4VrahHfXzJOlFMG30Isoi+M7S3E3UdyNx5bC9piydXjrGnRTLbbkASF5DPdUZuCQcn7VdBj2V+hsNF7GDugeHVtSWq84ajFHa/DnZxxet+rQVgkAcK+zRLCaewzMgl529VTNV112IN7FRubJEGF9Ent8eebY68e605nBqGLLKdQHGY0Wz1/fBdak46OjPyUbXvNUx4ztdW00rbYvnLIfqacScR9KqYryuGK6NrmR92T40Qn+tPIn+mbrvmCDU7+YAGBYb9XmMnGnamq1QbNhLenKs9TBpnnSjownUFzxhpoGPV5cotNDqKGF7TRjOtxpnnk5eQ3MHGD8KfPrxAz94vObp169YfWGLdfglgm3eWsyKwznNSQYFaz9MGdYVpF7LvugbJGhXoluzTHMfaX+wV9NdZ5F+wDxNkPNX3n5fiyIwr9h0NVhax6w3NChrsH2nJV2CZXwBbALRWro2MdwaNdoM6k/Xv8xUT/oGTSc9CbOZTyGt5uPVrAbUCLH6sZzco9C/gP5lIjaG9NqwfqNRTslrYbJD0n3/MWDHpO3qLCoygusjaRSGnc6SHZZxY1i9Dfq1puxuHyImWoYrbU9jpSehlOcZmkIqCrJYU1cHldb214ZpBexmopJyEwBmDr4CXHL53c86SgyDI6yUpLTkI5SgCwnaTbizdgdzInG8nbBtwEjGS+bhac37tzvM3mmaUMlAlAjN0bD6MtPehUIH92Qx8EHH0TwE/ONAqiwS/ZIQJTEzbTzTJy3j2iy2bmoHrzfztBNOW0XhNVKMRTs/pxxJhlCzPKd5TJo2ekPbceZZsEjZx42KilyvzyM2WoyH26z+i5NSfwXdNmWB/hsTzz95op8cx7sV7kkZhePzyM2rPd3kePr1K5o3Vp/7lW4iZBT8UceFsNaMBNVQZNzRFhtxfR6pmLXGKusoeNJOUQKFjKajZP0QtACECDkjjwcwBupKnbm/4vG1KAIyRfwhEFYWv58wuXQF2X6Q9pupH2bcwDHeGPIuwCSkbeDcGqr3+gaE68j0LDBGIfdWXXRO5SQq86zGkRdCzykvzLDqURHt7oW2veePhNhYVq/TAlyF1pS2P2NPE3XITBunY0pTdtp3I3bwdL1luDKFfuyo9zrT6vxrlpwBKSSUZMEkneeb88V3Pq21GJig/nR2yHTPyve1UB80rnpal8SkXPbGGy2M066cXB90CNN1ZnSXEQxQP4JQyDsNi96fIKTRIlUkDg558FQn/X5ztzDbp9f3Sk5xp4gZI+2bRP1Q1oyF8GXGSFx7VVVWotmQwPjMM9wYxp2+Lu1bPaGVKi50t0Z5+V47HjvoDZwaff1EyaWKBcyx6zN5qBjHzpTf7PSAlLJ2dn2mudMZoXvheXopnL8ZkFVEnjz1nSl5jLraTT974tObg4qt3q/VANRmxtvI7UdPtD7wxesb6qJXmLbFPXgw1A+lAKxKB1AKQPPWUd/pChK04I1XQILmvtiw+RJb1xfL+k7HJ//uBJNWQxkm8rolr2qkn5Dua+4xSAb/5SN8fE1sHX4/YIcIUW21YmsY12bxrU8O2tdGdfKf9KTJQh2Zvhkw7yrs3hJtptkNrG6P8Ak8Pq01tuuDQA0zampvrAVzxeIlb6ZMc6enBpQ33KnBpx0zuRJi7ahqg+3isqd1nXYPYWVxfaR5faJ+J8TWMzyvmFrzQbqOKhjnXMKZHJJtEa+sAQo/3pV8vE3k9BOG+r2jfZuXebV/nuk+Aj+34Oe8zLlm0hsiXiXSi0A4euzRaFQZEOc030GzDvxeFrAptoAoUGcGV0xFMzZc1p9ziKuZZgak4jnTWoNjTIDmbsKdQ3kvdZUZW+W7T63qCVwRV8VKU3hm9D3W2vUocy4vEWrzz5tv8ORLJ5ILGzHojRRbWTIIzVi2EGd9X2Ot44DtM5svAqvv7yElDr/zlsefNvQfRe1e3lS0b/SwyAKnb0D6HR1tO/L5959hjhZfxE720zM/9fweaxK/9voF/vOK6qkQjSy4J7tIkuek5VQrq7F9a1l/oeB2qIXhVq9BM+jznjMV7aAgoCRoniLt6x57GMp7ZSBG4qtrFaudJ7CGvNv8CAWPPr4eRUB0lvbvj0zP1oRNhTsMmDFinSE75UFPpjCpSsRS9ST0VY3/qCMVhCm/GshPFQyG/lgRo3C97fjmywfuNy3duSZ0DkZDrBKp0d23CUK6ypB0JLBLi62FITbQP9eV1MwbiJUg0egpttCZE6E1DNeq0HOHAf/uiO1qwrbWC71WBqHrEs0TnBrLuOMDbr0aeKa6gERNxKwD69XIp1dPeBv5/OmKx/s1cnLkNrJ7ps677w5rzu/W4BKmjqSDp3qwuL0lUG6QvSyjgjvL0orb7sKuk6yovj9cdPVqH37ZImS5tNumXJRk3d+fVrrm8EchtBWu85ioa9SZ8WmHRHsOmCmRrDDtXOFhaDGRVHCcta4Y/VkxneFKb5xYUXQGeorisxazs9V238li6iGjriLVtCYv1121z2w+H6nensjOcPjpa+5+zhI2Gf+ooFz9kAszEY7fgvhpTzp6uu+31GXbND6LPP/mIz95fUcfPX/3y5fYv7vWlSQqRKvvZV7S6IieNXzWHXX2X73NSxpR91yfe/WobsSuU0OaOePRDdr+N290DZgbj4QEKZHXjRaAIZAbR44W+/TbsBf7L+SRM7n2ECLusWd6viLs6rIdyJghQaMqPPboqqvMdu4sjE81qxcnchaG3iPXI/noYTJMseLdsWLz7Myu7dk1A0NwPO5XxPtaketdLowv0cCHJmNaqB/LaecgSdk7h7wkxmYxhbE3rx9VAOXOhuHGM9x6XXdNUcNSE6TGIdky7pyegF2ivVOuw3CrRpSStK21vUCTSU3k5bM9Y7Dsx5qfv33Nf+Pl3+Lv9y/5mw/f4LFrsSZx25z4r7z4Di9/554heWI2vJ22/I333+TuuMIlQ99UTKnSYhbAlZRhYBkLktMLW7MhwcRE9DoizOEqw20mrJKOCvnytYC2Blnwj0rg0X29rt1mFWHyAmKgS0xrr6PN1Qc3bbiAcQByDdNtYvPpno83J6ZoiVl4PLXFFs2QTsp+XPQbc4HS+1B5AGvIRrEmfyq4xXlier5i/62a4ze182nf6FbIDpe14umTIgt+V1Ody+bAaQTZi5944NtX9zwMK37t11+x/TsV6y8VO+puzVJ85lUnaBdne1nES9lAf2Ponxds5R7qh7RQxlOlz7m5C9R3PebxBMZoyz8G5HAmb1d6qE5J14I5a5fd9V95+309ioARBTO8hne6p4FwVavjjJWCGAe9qVBu/jRJIeMIZmXou4rdtiNGw9R5lcsedR1DhmPY0O8qtpuOq7Zn97LnTbPl9HaNRAVs1Ou+yFpRKaorDjgmzDx3PT2Ga6F7KSCO5lHnrVSJEp7eniCv6Z97xq1HQot7yJhTDzSkWn+vaS3F2lxn/ONo6T7KJYylzH0nYZpq3sgVq81AP3rerLasrgZ+7/p7XLmOh2nFkDz7UHNOFR+5J77p7zilmu+ML7n6qOMYao6xZkyO7376jNePW7r7VsMs5/SfIZffNS/rsJmUM8ewx7bYfr+YaK96jMlqdhqsypE7hzlbqkdD876YWxzSEggbG90GhLZEuLWW88eqSwAdS+YsBHk18OJ2z6Yaedac+H1X3+OVf+Ixrvh8uOHvHl7RT45h8EvElz+WjqToPZLT91+3AoJkpQSbkGkeItXTRFh5+uee4bokPRVlZ6yUpzJea/gJLiPjJSlaEsRVxr/oMJL5219+Qv+uZfcrju3nmrtwfn6xt9fUq4v4ycSLH0as5+xFfb7VXl87O2gQa6yE5iGx/v4Ze+h19q88cachvLI/adtvDNkZ4lrvFf/2BCmB93zV42tRBLIR8kqrFsaAM9g+EFrLtDJMa0PzfqJ5P9E/94RG6Z2uk2IoYTi2nqGZaOqJMFry5DQPfq+gDCeI54aHa0e4NbzaHvn4as8bkzi83ZCDMN5mzcMbS/6dKHc7bMCWOO3xSglACtwI3QthWlvqJz3p0qtK58g+INEz7gySPbDCnkYkRtxh0O/9acWwM1QnvRDa+4SditagtOhzQRimmtM3hNvnBzZu4Cmuqc3E6+GKfaj5ydUdP716w/f65/y1408SN4Zn9sg51dQSuGlOPIUVU7Y8r458t33GZ5truo+8WnA/1FR3mrTsjkLzmPCnhInKQZjTbuf5mqDGpM5HRCAGA0+e+t5egMHCTzh+rJ1PKhHhYW7hHaQmUt30bCrdPBjJOJv4mZt3/Jevv8MLtydieIwrtkaX5SkbHsOKp7Hlab+G1zXNvYJ22q3pqZ+NQKHQ+rPiOf6cMCV63p4DyRstADsdOauDtt79tVFW4YsLai+TWTYvyvLMBJsZn2ref39NfS+8+n6ieZwKiUnB0OYhl3AbfR1nCvUs/FGOygWDqp5g9VZFaNPakKyw+WKietdhxkD2ltxUZG8w3YS5P4CzpN2K1Hj9dyP4+065AuuW1PqvNBn8WhQB3QRkUuO1ZbJCqi1mSki2DBth3FRsvgg07yfOrzzjxtA8RiSpg2/+ruOUV+TnHXU70QVd6ofrgDna4lgj5LPlaFs1xmh7ts3AeVOT3jVqKyX6Zk2bTP1Y7MafqZuvOyjDLKwoJg4UCTCMZWc/JSHZmuZB14HT2qq7S6HTmiEgIeEOI+svheHaqfqQGWNQIsscT5VtQa7PgFSc1jUhG74cr5iy5TvHZ7w5bvh+fcvP33zJ2g384HzDX+Mn+SfX3wPgIaw4p4rn/oAlc04V+7rhHCp2Vz0v6wPvhw3f3d9yv19zHi1P+4r191yh2ZbNyayibHS3FiZDKMEl9mxwx7nt1d+FDMO14fjNTHg50u56tu1A4wJTMvSjJ2bB20jlIjdNx8qNrNzIq/rAfVjzt47f4G5Y4UziW6t7XlZ7nsKK7xye8b0vn2F/0FA9FeVchW5YvOI6+pwz9T4vq91ZgGamRKos47VjXBefvn2mfR/obxz98zl0RnQWlIwdSrjKSYvZhJR8Qas8gwftWMPK6vUxZNUixExYG2IxQNHTv8iXV6IS8gbFkAZYv06s3o70z7xug96OuHMg15bQaLcsU8QMAXPoyKuGvFLLPFAsxPRRu4LrNcmrV8dXPb4WRYCYMAet8mHXYIJmBuZGVMHVWoZr4eEf87TvEv6k4El/Y1m9DUi0RYrrOH5rTX410GxGhpOSV8xHE+PZYZ+cOtxmKYEfgrUJaxOxjbj3ThVwppBy6sJrf6/cgekmIVnBolQEQbKwA/VNTQ66Z4bQqBCpOhZnpKyeAqBrTukDzgjZCnZQvcKwU484O2k7Klnn7Wx1NNh8H05pw18/f5vPP7piWw0cxlqnqWR4O2z4lh152Rx43e/4v03/OLf+xJA89+MaK4mfaz+jkoiRxMYOdKnicWoZk+X3Pv8MnsP7cc27bsN3Vi+IVU1zlxfS1LyStINgJoMkiz/oalVSXgg486py2ih41+56fvrFe76xeqQ1I7FI7LroOUwNY7I4k3Alcvi7p2f8yvuXHO9W+PXEz378lilb/u7xY/723ce8/7VnrL40VI/5gw2BrttA8ZzmfaY+pEV7QG3K6jQTG6d6+41h2upYVj9dNjYz9yKWk3v2DXRdYUBaVfFVe/WUcKeEHXU7BODOCX/QTmO4UW/JOQRXyWU6Fig/RLsXO8D2s0jzdmB4VkHWzQoZPRSHqM8/JGSKyBCIV2tybTHdpPeMt0jQay3uKiRkzHnCDDPw8w8+vh5FIGdICelGHBCuWtXY58LyGjKxU3Dm6acMzTsFSPSCdGWPrC36+geGU27on4+4OhJOnpCh2o6EOpLODgEV0STDNFlyUh/6sDNUd1arvxTfgHIK13ei2XSV2sNpfjzLyaM3c6K9S6o4u1Lgq94nbJdwfcT0AelGnd2cQaaEPQfMZMhlQzLrC1zSuTw0RR7aaPehXocVXx5f8MUqQhBMG3h2q7TQITk2dmDrBj4/X/G9wy0v2iNXvucptPy9/mN+un7DK/eEJfPleMV3Ds+4O685TjXPmxP7sWHfN7rwKOSZ5iESK1UuShL1Bii8BX/QIoEI/cwMLJZs47UmFLX1iJPIEB1OIm2JChuc49p3DMmRsuAlYiTz3fCMofeQBGMTx7Hmr737Cb58c437vObme+BPqvgLDUiWZXTyJ1h9mWkeo8pq60LHTsoNUcwjM2wNYaWuPXpiq0LTDZn6oGh8KPfOvP1QUFPfe3/SAmCmTKqEbC2SVN5uOyXszNb2JuRlq2VH3SZdVKrK+mzfJ9o3A2Gtt2X1FNThKCTcY0+uCrGhAOlxU5Mqi78/IyGRVtVy4KTaYYaI3feQM3H71RFEX48iIEDK5LrSFd1xJK087jiRTUXy2oq5MwwNnD/N+IOCWd1Ltaxu36fFb66+F3rrCTvBrSfCyTO9aclr9YoHSElYtwPD5Og7S+oc2MzwyYQ52gU9n7Z6Gsz2YTOgUz+lZVWmBKKyc34X2b4fqG8rhp1eFK6P2HPQ6j0F6CP5ak1ce2JjoTAIAaqDeiMkL7ghKfmpKeNCreyyVKFhHWdTmHKOd73GcTXFE7A2gV3V89C3/NLbj3ixPfKzV295m7c8hZabeVkOrNzIo2m5O685TxWPXcPxsx3t55b2rc7I08oQGqPZjMV/j2IkEmthuDYqr11RfPbBB4pmwfJgtoRo+Zln71i7gftxza8OLzCSuak6ahMwkgojUb0K6mZiOnuG9y0/+GyNPxh2d1A/ansfl5xEHT38Uf+tOhQp9pQXH4jkhWl1AeKGrYKTZspqA3eMhJXFTJn6PhBb9bbw5WVKVpYCoKtVtZezvTpegeIQZkrIlMjecH5ZExr1vZi7gHmNOutDTMzYo0rdV6/HpTD4Q8RMCdsHzNOZXHmSN6TKLitmO0SqL/YQI2m7IlW2HEyCe+qQXqnD40dbzq8q9Qj/EY+vRxFAVKAyBdKuBcCMUTcDp0BoqyLrhXhWMVD/POFOyrrqXmUkmyXUcibfSGcJBqrdwGgq7KPu+tIqMUlmcJGcNZVHRnPxxHs2Me0E987rvtlqWs9cBKZ1YcY9KtAUap33koXhxmH7SP2ux50VkbWnCRmDVum2Xnjc2Rlia/Uml4uL0cxMTE6oDmqhNm5lIc9IQM0yXS6ONgZ353idNd34G9tHKhMJxTqsO1X8oLvFmcQ31o/cJ8sP8g3Akl9/3XS8O625O644P7W0X1rWX+pJl41SoIdbWezbAEwv+IMhH7UQzLkN1eOlM/BHwXWW7pVwqmo+q655fdqx72u6c42YxHbd82pz5LY+U6uii3OoEMlIb6nf2GKhlUv6sdq7jVt9r21XPPYCkFSJmIuTUxaWYjGPbuNOwdeZXqxrT4vrEtXjSPbqb+nL2i5ZXTGlkr7cPGjRkLL2NFFHPjMlJCZSbemfed3znxThBy2IS/dYrlHbK/Nv9WbEnkfCtsb2CdsFzBgwfQDvCM9appUjNupE5Q+R6vUBmQLxdkPYVnryn0cdrVMibVZ039xyfunUBu8rHl+TIgDZO3AWUiJsa1XwRdUSuC4RK4vrCp++FWLWtZ4Z9YU9fSPTvimGjCs1kMApqBUmS7MbGGzGva6oP7dMG8P5ucVtJl1KTFL24kaj0F4G4jbh3tnFw95MM89eLaWSFVbv1N01W9UAjFuDP/tCyMkQNQBVxkBaVSRvSbWixqkySFAmWGgvDkQz5Tc3gqQiRy3EF1v85jUVR0kz4Sri9pbqjePt9IyH5ytudydqq2ikdYnpUPG9N8/obj3exiVXQCSzakY29Yi3icNkkYOjOrAoF+fCFE9C5YR8sMsKzkylGypmGu6UaR8S9cOkblDOI0mLBX9vxT6slC23Lp77VaJzib3XdrWxalmesmI3xAv4mvzFOmu2eHMdC/GJnJHCQVCkXRZ3qmyFnCBtytrQzBRyYbgyNI9qOGu7ibiuyo2rxVgqilhLNyZ2SAsIZ6aEhITJKn6La8/5ZaVRaucLBpCNSslntyUTVHSmnP8J99iTagX9bGFXpsqRrZ7+w41natU9uHk34t8ewDumj64IJYHb3Z2QU6cHys2G87d2nF5a6n1i/YNL5/cbH1+TIpCREElrs8xKsdHtgBk0j0BZXmoZFVYCW5XFzpLMVGtuYftanWWnKuHX2hrnLITJ4pqJ8BHYTlOPXecZnlnYBk3AmZTCunoj+KNXokq5+euHvMyg8/oorBT9NgHWX4xUe0f3zDJuLbZL+uY3euG6Se2nU20JrYJSqZo5/het/YenhGQUW0Bvgml7occyHyqjAplxrQOrPRim3PL67LFVwvlAjAaSEJ4qXucrbq8VP4jREDvHeK441hqnNXUeX4JCXZ+LZFqNYNv7xPpNXk5U0CIxbrWA2VHR8Pph0lHOCqkyRa5dyDorHR26kt4kVSJn4e3DlrdsqerA9aojZtFOIWg6sJQik73+3nb4Yf+D+rE4/LjCyCuUaSgFtOIDkRJLoQVlJ/pDVDBtXTHulOQF+t7MMm8z6oYheaPFIWas0QITKz2lh2tLLPbfycly3YbCtcgiuD7hz7qpcH3E7ke97p3BdIFsDWHtdCNgDeN1pbT5BO0bZaCmbcN40xA2Fr+PuIezsgXbGipP9+mW8wuL6zPrz3vs6WsuICJn8vGkTkzPtgujLHmLTxl31FMlNKpEq/baDQxXAWwmDxaJQtxFzgaqBzW1cNc962ZkDJYp2CUFZ3gZkS8stofmjWHqPWGdlMLZSRFr5EJ5BbJ2IP4E9WOgOgiud9rGG1U72t6y+uxI+8bSv2gWfYAm+BriutL14JTIResPRTlYPAl8p62sHz/IUqgL4FWcjEIDcV2YepIhyaKHCFs1oSCBefLIKBSDX2wpMiEJx7pW7b9NJJvJUZhOHukt1YP6763fRJo7RZzD2hF3erG7Pn2QD6gX++aLWBh5ekpiYNpVJUAmUb/vwQjDbc24ccVxSMNTo7f0Xat8jgjndeZ8U+ProCd3m8hevQNn9xzb692cbUkvflJmnR2VWDMbs9qh2IDvWF5wKe47c6iN66B9H5CY6V+1TKuynSmmMHOxsDFjh0isLaFIn3XF50i1FMxkBicpp72OC/oe6s/350T1FIoBTcYMWiGztzoCu0sBMF1gum2YNgY7weqLHn9/JjzfMF55YmPwx0j9Rot62rRgYHjeMtyUDuCzTnUF49d9OyAC1pKfDtiYsKtKZ+VWV1DVmKieRlIldM5CpWSeaeMwH/XY9chwrFVReD0xWIc7GrrHhpc/ceS2Dbw9bphGR+4s5mzIHihKMnsWbGc1btuxnMZ2zIuAJ9bC8RMlLzWPkeYxElolcpiYmTYGebWi+fzI6u93TC+U+WH3E5ISxIxMAddPSFK5rBkFn9WfQANO9dTIRqWhUhxjklfLLTsqIt9nw3SjIKe4SO4t0htYJewqKHPv5FXXUDYds9WWfzQMw4a+mlvVi4rQDMqDqA7KYpwBrmx0to2VYdipjj9W2uHUDwlJuhNPdVmH1bKMEat3AXs2hK1n3Nmly9GiAebeYkchla4ubwKr9YCziS5DEj2V06aMNgdbwFho7opr0URJLlbcwJ8KJyBDqgUT9W6ecx9gLmhZZ/sEYWMJjVEbucNE9IbkdXUrUQ1vYmXUG8EroKjjTvGNKAXD9Xrzu74UEoBasJO+pn4/YYJ+XKLu+7MzihlVjrD26qfwdCa82DLuHHbItG963GNHuGqZtp7kRQvA27N2IpsGCYmwqYiNodon2tdnzL5DQoTz191tWAxs10hM5MOR6rtvkW+9IL2sibUh1hY7ROr7CTNm+ltLtob63tC1FXI9sLk5051r4mDheiLkCnfn+Wx1zU++uuN61XE612ST1avtrDveMAndR+rMYgsffGZ0pULU8cXUcdoI/TPdRtRPF1ccO+pNGxtD980tzbsOExJh5VWY81R429bAOGEPAzJEcKbsrSBc1/TP/BKEmYtqbiGAFDtt2ylvwUyKa6RiES5RMA+e6DLNZmCymUCF6QzZZ+RqJASDefS4oyAHU7wVSw3IM8mnRGh5wXjDtHbFrkwWApN6Dc5FRDu0WCvxZbiRxflGFxCO4Uo9I2fLtGmjGEK1V6FWWMH4IpOfj9TNhAicTg1x75XXsYq4NhAGqxmGmMJuvKRIJ3tZ49khLWg8A9guKP4SP+gGshaJWOsvJVkdedxxIpcCkAuQJzGRKnWzUim7fuvktMBqdkRexhN1+tFVYXIqFHPniNsPKvIpxLgsgDNaCCpHbBz+vsc+HEjXG0KrYKV/GnH7nlR7Yqtrwvpu0o81nrhqMEMk1WW1uA/4+w6zVxwgnzvy174IkMFa4vUas2rg8YD//nsk3jLc1sq+6jIYPXWb+1jUWIZpb5lyTdwa6nainwx5NJjbgXhf477f8p34nI9fPNG2I+Fdo+KcTlvB1btINlY3DAn8YyGElGso1sK4URpsvU/012pDPpWwUjU/EfxJQaPkhP5Vq6InI6RksOVmT7WH1TzcZgjacppjR/1wwHbX9C+axa8gi6qpZ675vILLTrcTZhBidzmFzCSk1xXdc8HUenJmmyGqF4BrA+l5YqqqJdpKI7Wk+CuUmbkcYFn05yYvRf2nF7vrMqYwIKO/GKJMm7IqbTVbUCKaECWFKTdyiew6zixISussxCfPcHIMAqYzuFGImwQmEyfFNfCZFDOhVcKYM9oJqC/EZSSJlSGsL8QdMybc6QJmTFtdtc3ZFrYvZJ+VW7o7SgcgKZPrGR9gWQnaqUh6C6lrxnfmVWG2oqPYXm9YspJ50qoiW6OAcUj6scri9j3m0JF2qwJOJuxDj+kDqfXEVhm11dOE6UPpChz+VDwEogKU/u6khiLlOsvHEzkEvurxNSkCKKq5qgnXLab1mKcz9uFMJaLkCSPYblJKZqWtXPOgevFsLCkL3WCRKkERs8jVRAoe83nD54Nl8+ysXAGKm/FKAabtDxTdnxVsrivBHoXGGxtlAbb3ieYxETttd+2kc10u5iRgaO61L01W97gzP0BvKEPYVEr7LHLWLIITwTyesHdH2pCIjVtOI1AKas7FiLSsKVPFhbX4gZTXjGAfPHGjpJ5cZagiptLIcbGZvJ2IlYW9xU2zQQXMqk3XKRAYK51zyWr9JUn5AtPKLI67U/FDmDsJDeX4Ycl3qi6rOChEIl8MTW2GrHoFMxrNH6zyQrO2RwPHatnMJDfv24sKsrt8Xw3qFM471QJkI9RPiWqvCVPmrO/NdKNSWzumotaMhXasp78ZEnYGpWMmrlyxLCt3euLy/pW0X8mqItUikAo4qTJz2036/q8q3eUnZfHJFMEq9mX6SQtCq2uPGciTbiStasJW2X/uOELMDM9bYmvVuWlM2LOCizJF5GFPzhlCUKvxnPkxAcK/pSzCbwL/e+AjIAG/kHP+X4vI/wz4HwHvyqf+iZzzf1i+5l8D/ggQgX855/wf/9gfkiFPE/bL98hHzxiftZjGYbsJMwas05HADCqhPH9jpQ4+Qd2GkhP6BmSwGn/tEkyGPJglm9DdeY7jBprEtNGRIDvh9JGwepfYfJbonusKJotgQsIfImFtlZuwVl8/O6g/Xn2IywVkp8S0cow7S2gtzZuzbgIapxLPbtCW25lCrVUutxkTuRLCtsKVNzBVxYEnZLCKTFekpSUnzwQYdCtSqfcASHHtKUWhM8p8zJC9Id6AqSJptDAJRNHIr2Juupi8ihaW5BQgM2GmRCsrbrgu7s61mmLERklT7miURQka8+VAOmgelfk4pz6PO2HYZeIuLJqDOc59jvhCdPVpO1nEOotcOcsyalRPefH/MxHGjY4mYa2vgT/ly3jlhFxbvSmHSPWkP3PuesLKan5h2elLyMvIpk5I6YKdjLoWnNWg88fMoLbv2RnCxis2cBjIIqSrUnjOI6YPurKsdaw1QUdCUoIpINYu6/LcVqTGYfqo4iFrGJ81pOJz6Q4D5ljIEykh3UCOSQtA14H3iHM6in7FRPBb6QQC8K/mnP+GiGyBXxSR/6T82/8q5/y/+PCTReR3AX8I+Dk0kPTPi8jP/mZ5hOI9ueuQz9/h/UcMz1Rya7ugrbPAtKuxQ8TvI8NWTRuhEC5ORsM8AdNEaCJp0H128mADVA+W5OziVWcG1Zr310ZVZgVN1hNe1zeuj4xbjxtYEODhSvAndfu1PZgusHp3olnX9M8bYuupPn/AOKvCjqZC+lFp0d4SRNs6c56wh0jYNaTKYgu/e9r65eIKrSzt+HwjhFZZe+58SaZJZTWG0Rso7QLSROJgsXce/9aTvMMm/b6pSYRnEyEL095SvzcanjLkZSTw56zUVSuLC9C4E6adGprOUV+uE6qni/Bpnr1dp6Qh1+Xi3KuegbEVJLqyFRF12K2LlVkbwSfobHE3vqz3zKgA4DyT98/KTN4Dodiju9mGW3GeLBQ8owCvISFWMFGQQZWG084RZ8OOpGOnROXnkzNm1NU1KWMm5XxgjBZdWzYF5wnTj2AM002r257HXgvAqpDG+oAMUdv/xumpHWeQMKolmDUqrUc3BmTtJEjqDD3dVOpY/TBqATh02o0YowBgeeRxRJoaaVuoK+XhvONHPn7TIpBz/hL4svz5ICK/DHz6Y77kDwJ/Juc8AN8VkV8Dfh/wl37MD1Fn1KYhn06Y73xOM7xk+GjDtPXYMWFCItaWsfEasHDWuW9uQ2XS0y+aTE5Cux5ItSmGEwK9xfaCL6dSrMB43YWDgmG614ahzNehddR3Pc0QGZ7V2JL/N7VlN94I2ZRR5dBjvvea1dOOeLsmbVvM3V4r87olbZQMI2MoCcp6EUk34mMmXDVgDO7dAWTHcFsqnMjyOy45hJ3Ow8PNDNJBvI6kRo0wswHbRL7x4oFNNfDrNzcc366xBwtGO4lceBRNOzLsPOd1Q/XOsnqjp+EMds0cjVi5xXFZx46i0nvSOK/qWFhxViXRc3LRtFJm3/x3KGYlk+YT5nK6Z1NAviCYk6d6MsiEFjUzcyMKY7NRQphELYKumwlBJZymz6V115WcPwYl4KREWnldwZXxILVOtR3nqN2Q0aJuj2rXldG/mzHoKT1OYAxp0+gNXhnsaVKvCGvKLB8xd+rkk5sKM0Y95Y0ht1oQZIhaRJxZBEHZO/28qDe8TBFKkcBZwk0LphSAuyMyaWeAL7fxBHkYyX2PrFbIuiVX5eft/xFZjovIt4Hfg7KQ/wDwPxGR/z7w19Fu4QEtEH/5gy/7jB9fNFCYVuchSYncD8ibe2pjGJ63hFbTicyYSNYSW6NONQGmWi4nStbwx5w8XQZXB4yNxErbLqV2FrKIUBKGS3LwpBhBspphkI2hfhKSb6nvR9w5aqvZaCy5zpClYhtherbGA9KP2PsTua3IVxvk1CH9oBfglfpfm/OoK+9VRd61yBAxXSCuPMYK9jhQiXYE/hT1JLNqLKEZBVA/aHjJeKU2ZNQJ1oloCj/g4HnXrBlWlk0zMN1YBtNAFLDKMZh6R0qGnACTCdtMOGjOnyTN3Yu1x520Fc6msAQHwRagr7nLtA+qvuueKX16TgmegcJZZLTgAvkD0o6UIl4Kix0t/kkWp+NktBswRYKrY4UWMr+XSz6hL5TlQyopRUlHriLcwhmm64ZYG1wXsU89MoUCduqNlpwWZjMEECGtKkgJcxz0PdSbgOwsudZioryDpP7+rVdw7umsY0FT6fUcKGMFyDTf8FZp5KU7ydZiBgUP09Vaf9Y4IUGLQ9w1kMA/DtjHsxYAZ7UASAFfQ4RhwKxXsGq1qOSMHP4RAYMisgH+HeBfyTnvReR/C/zr+pbyrwP/S+B/yDI5/ca7/B/4fn8U+KMAjd0yS23zutXRL0TMm3uaccf0Yk1oLCaDPwZCskwbq6wrDGGlVtrZFlHGINDVhNqTW6XepUr30K4rQE5BxlOtuvDqoI4z2c0R03rjjVuhv25p78MyLswXerXXCHV/LGDgqkKsXfTeiJCbWts7ESQkYut1NnzqkG4i7mpoPPY0Ys8T2RlVgI0ROxQEO85bCkXgZ9qrFOJMKsQhXwdMO9Hva6SznB9aYjRYq6y8mUOQB4ucVDCVyoJdRoM7KdFm2aUXuquZEjJA+6A791gXPr1oJ2WGDCYj0RCuYLwuxbHQY3PSgmCKiWv9WKi9a90khJWCg2ZSJ6XZJTk2RThW3IFBC4M7Ca4vHIHi+DR3SMhMrsoK7OVMri3TxhPWCqT5+w5z6shtTVxXKuKizPV92ddviyKwvLd5s9IRzRhS4wgr9Ux0h1Fv6nLCmwLQ5UZDP4gZkUxOaeEHYAWJ5fow8zihBSC8ulKz3ftO8R9nyW2l5iGzCjVnclvr1xYClTl15PMZWbVaAJoKOfe6GUDH7a96/JaKgIh4tAD8Wznnfxcg5/zmg3//3wH/fvnrZ8A3P/jyb/AjfE5zzr8A/ALAVf1RzqvmMtM0tbZd6NbAx4TcrokrfbquJPqkSmieImEwdCJ4kUIj1RVW9WDJB0Wc55Ns9pxPDQv9NTYwZT1Vqr1SRNVBRgVJ41YAh+v1TbzshQvqfFTHoFw5NXYE1Xd3A8SoCsmmQgAjQtxU5Ns19jBghkCqnXYBXUD6AK1XIHRKxNosVuZzJNa00RsnNYXVZnIxms1sVz3bVc/TsWU8VkqQ8lEBU8lYp3Zgal8mjMZBGzFB48j8SV13TMwQKDtuNULReV8LU6jLZkLrMLO0donwLjv02UZdC1ZeMhun9XwhyOIpOK8q9WS/BH1I8dib+RvNk4bSzFwF7QRZipeZMnZSHkA2osq71mLGTPU0qjFn5ZluV4zXFWbSccB2itinsoozQ4AE2TsF8XzpKI0sAh+Zii3aGJYVoJjC/zCAMXrAhcs5KJMafqSV085gnFQafNUS1h6/H5dZP9eV5gmWeHsAqgtmJDEj5x76QW/0Mv9LP5Ifn8CWMbtsHX7U47eyHRDg3wB+Oef8pz/4+McFLwD4bwJ/p/z5zwH/toj8aRQY/Bngr/7YH1L8BHJbwxS0clW+gDH6Irl3e+y6Ia4rfRN6XeshGmtux0x3awqoo5FbSAkhOWuy0By0kUvYRCoZBBILSaZVAlH7Li+acXPSf5tPRTvmJTJNUlYDlH5AhgnxjrRtyU5JJVijFT8EZBQIEdsNmIOaQ85VHCCsHKxUgai0Vi1c/hgKLdVip0wu6b2SYBKDedVzc6Xz5xQsRjLramRbD3wuVwxPDWNvdQQo9GKxxf8+GOp3juTtcrPN/6mttRaD2KgLcFjbZQRyg45QkmFaK4DlhlRCU0yxDVfBjOuKbVfBX6aVFuL6UT8n9B/YoxdfwOQLEFgouAsjr+RDRK8F1RQB1vywg5q9EhXgy6LIv8Ss5pznkVxXxG1NXDn8MeBOevPLeVCfy5D0Bu9LO157iNp6yRQVjS9gnL55cfGImP+ea6dOWUVgBCifoAB8y+hw6smNJ67V9NY/9ti7S2iIOXUqIlo3+hxFCl06Q4jIMC5ZA3ivRWOcyHcPWgA2a/K65bebQPQHgH8R+Nsi8jfLx/4E8N8Rkd+tbw3fA/7Hej/n/1xE/izwS+hm4V/6zTYD5IycOtVMrxvMUXcZswMxAJVHxoAFUutJaUb5S27AlGkekrZISSO6QpMxXn3qMRoXFcvsCXrKpGIpnp0CgxrBFXEPSvyJtSl+dXrB+1M52a2ocQToG1Z2siZGcl0pJrCqdWar5zWGQYYJno7I3SPS1Nr15DWpVh++aedwZx0zzJQW2Wj0yk+viuuQ3wvNe2F4XPHuW44Xr55oqoljX3Psa9pqYtWMhGBJ9zWUyO5sdTMgm0lTbR+9BrPky97fjmpzpQm8QthqUYvltZ5P9mwvXgftfcKc1W59WsvinjMXFNcrgy5WZklrSl4xg7DKRRKsbb6dwDzqehAuHcAsu/1Q/JOtEEsLMHdoqXAs7BCXsWWm8KbWkypL9gZ30BX0TN9FRE/yKV68H6awzLdy1hUcoAdWUHQ/W6Onb7nZ06ome1NA1bQU+2wFxIIVHRumQFo36gxU7MLNUbuUvKp1W7BqCDsFlQ1oZwmKF/SjFpUQEGPImxYZJtL7e4gRc7Ujrxq9h54OX3n7/Va2A3+RHz3n/4c/5mv+JPAnf7PvvTxEyCEiT0fkxTXx2Qa777WlKW1MFoHaF0eeqImvjQE/r9I0Qqo6zio3KerCzJQ00ikbw7RLpF4WkOliD6adgaLVOh9W7wadJ3cV00Y56+PWUj8G3DHMv6zudK2FaSIfT3A6Y9Yr0nZNWpc2LF0AIbEGOZ6VyDEqSOhDwh0907Zi2llC63HnWMwzNHjFDRpKIRGMZKJVpyE7VLybrtm8VNv1vvec940W/yTYTg1EJej6MEyWKBm7ncjPE0FqqgeDP6jHfXVMmFmCW975VPCWZRUJy0rOnTL+mLB9wgyJan/BBGKjZiTTSgitLUKwIp1esawbTdD9/6zanIHbWM3zvr63Vfk5sVZTkFmH4AZ1cEqVflz3/ao/SV6045Jq2eebLixpSHo6C/iqAGyK0C+im5x1y9P15BiRttUT2CpAmCtXAL7imF1uVCkuQDpSFKwoRjjp5iFdr5VV2E36PYwhbepCMkqkq5bxutiG7ycFF8vnS6ckoDwMiHPkm50+1bkA3FyTtyu9h572eq19xePrwRjMGbGGPE7IsSNtrogvN/j7M2Z/1kJQawVfyDSpyDorWWSduZxUdii6gKCt05zp19yBJMO4U1qrnSBaBQc17VY/bzb0wBnswxl7GLDPVwzXnmlt6F54mvfg92N5PhVmCsrKSok8DOSnPWacyLdXxG2t7fYQlrYsb1ZI5cmnM/ncYUTIU6A+9viHiuHVilQpvz9WZjHuRNTpKM0c/1rb5vYHnlO/Q54NWBcxTVIb8JNb/OsWrcMA5t6R9k6dlkoh1LY9LeKbhRxTXHwWILAQiFQqm6iflHNvpoQ5Dci5J+1WTM9WhLW9OOwW1l11KEXXS/EqRBmAhQOQFjYhSyrU/Nw16EVvMI1KzwtVOBSDFlP2/bGZr4dcEqMT9jgW0o0UAM+RbGnN+4A5K44jp46cknZrOZO7Xse63VZReWPIjVcPgClhzp3u/KcAq4bUGGSYsRRzAYsH5RLE27XyDrqJVMBifc21gxh3DeO109frKYIR4sphurDkCuYQkLomPb/S1+b1HTkEzItnCrCfe/LTYeEM8BVbwq9HERBZfiH6EXccma4bxudrKlBL5dhAtVL0vCqzV+FpRy+6Pz0lBmNLiKcCVdGrB8G0UffY5r36D4xXGXmSQpHVEy02umoMjeB6w7StcKJEEPfQ6YwcPOPW0r1Uuyd/DiQRZK17fmJEvCOfOtLxBMcT7vktadsuFxeFEZabWtlho5JBcLo2Mqee9geB8eVarbq9LLP4fPItJqdZ22k7CO1rQ9g3eoJ+NNBuBsaSCyDBYKIwbZWWazpNHzJ7o/LcclCMWzU7nenT6oen75EJir+4TmnQyUtp7YXxqsKOCZ+z4oTWEmvNkfRdWdmNZbXaKIU67xUMjM1Fsm2Cvg/ZlWh0qwXB9QrQZmOLDJfFtw8UrwitKX59WsTMlKnGWAQ9pQCcesWanHr0zZwBexj0dJ10rMs56TztrBK9nCO9uiVVbhEBZVf4/6ceORRewGZFWlVKA+5GBfG81bFgCmAt4Xa9UMdj0ZKY6fI9x+ua7pnFd0rWQmC88pgx4d+PCqBbg7iG+HwHMWPfPpBjxLx6Qa68BpEcDqSux7QNUlVfeft9PYqANch6RT73SF1hHo94IGxrwlWr3PpDhz2o+4qajiiLznWqI9c51FAdE4PRtaHC9JBK3JQWAt2D6ypQ21B/KmQhYXF+UX68kKoGs1ECCDnjnyZsr0nE08aAqIAje4uMRm/kGkWIcyIfT6S37zHTtXY0BT+grH7izUq3C8Oo/HJvyY1D+oC/O5NFW0ZJsrTGdsjFbwFcOVFjk0kt5eYV5IuabufJPiGUGysUcLSOxBJU4c7gSwrRrPDTSDJd2yWvo9jMpExeiNEsnHlg0crH2pBvG+xaT7awmkc05XhMG/tDsls76Mkem0ukeGjnrkwW9+ZUqZFMrFUboHZiylnQG0dPUdelC69f1EnITKno+pWsk3attuKV1SL+OGDvj9ruD4NiO1PA7La6Z0cJP2m7IjUOexrUu0/dRJDzsOAEeE9uapXvnntyW5Mq/R7zFiHcrot5yFTWr3HBErIVwsozbvU6bt6PZCcM1x7bJaq7XjuYVaN8go3+3z4UIPHVc5IzmMcj+XAgjxNmswbnyKevvbNQaY+NSm2JCbM/Y0Vb8myMrti6AX9/JlUbYrHomtam6P41BDML1B/48i1zZVD5cKr0ZJmjqqatmofMkeXzRW9isYR2gjRC6guzq7SVzfuRWGbcPBuFhqjI7Kq5CEvaVpHj4xEGNZIkZd0oTC3xpiG2Dnf0SFlRZSxpU2GOI/6hB2kgO43OdkW6/FCy+Fw5WUVz7cJaUTMJ8xwMeRVUH98bzGBw9yUKPM2AKEu7DloAmsd8afklkwvjb5mxPwCb545kmc+nhIgUgFOfw7jTdOZ57JpNPSQrkUgxG90WzM9DAmrAwuXvZiqFsEh1ba8nPWULkKrS5pesRxOztuSCXjMlYJWY8Q9d2SJoB5c73dVL5fVjhW2XRXUZSwEA5X30BZyrZrGE6L5/CgUr8EhKuj5MmfBsQy7BOkSlIF9ugExqVTFbP0Wqh4HkDNPKUz0G3NMAVjsh0E6LkJaMwXS1UcBxfybvj0sHgAj53CH1170TSLo6SdsWc0BXLNZghomcrL7wRltILQQOSbUCTWVWtYNehcNO52d/Uhvy/lbJLeNOTxN/oEhPdQ6NTWbaXOLGki2cdIySkQQySms1CTWVLNxyew64Qqs1/aTz/jAqqmwU48jjiGy3yGajlM5zpwivczBNVCkxPd/o6GFLgSiZdfGqwQxKeXXFqur83GpSbWmD55Si2F525tkUKyufsatAuxpwJnHqKqZDjX1SCvUcUz4z7uzwwX8Fac9G+RAS8qIhmN15QA06g9dT2R8z/hiWYA8JiVwXI5Lm4qCURRaOwZwVuBTfoNu4+WEmlOdfuAASlLsxXAuhtzRZrcHUOEXKOlG3RRLSxZqucP+1WmmHkFpPcgb/ZiRPl5sba3XfLmp+K9bANAMnduH0S87k3VqLf1nTZWugbvV9zBnGCCGSrlbkSu3D5u3D0iUUSvG8ErazIMhX1He9goQr7a7cXscZ04/avdQVuXb6fpxHzRyMEVPXusUaRt0SNNU/vHbgv5BHTsixg5WSGuTcL3TJXAIXzbErJhsGc+zwMWLWdeH7K4HFnZWIMlwpp7t+TDT3ZW2IENaZ8ZriL6iHwBxckSUX/oE+peFGiJWhOqq3oFJds/rBGX2zFc0uLWhIOqtVZa0ZArLdwOkEk3YAUldazM6doshNA8cOD8SrVi9iK6RaUeDkBCmGKiZkpEtsvsx0z5w+v2IlH/28W8/LOk0yas81GUQyV23P882J41XFw9WK4aHB3zn8UU/1WcVnildANroq9TMjzpXxqHWE1qkf/lhMNwU1uiya+el2RfdRzdQWdqErGM3xA3feAoQlp6ErczcS1lqgdR04Xx/lfwam3aWA1A8Zudf2fxYIJV/ku4N2CbPkVzdKcWFshrUSbqq7Tmm1MYIxiHOKBRQKO0Yufv+wdBkAuSoq0XG6GOWCru9SVjlvVit9TQmOF9PZ1us1NCX9/oA9FxzBCKmpsMeBXDmm60Yl3k/D4lA182qy1UNS8YyJ3Pf6c2NEVi1yc0WqK8zx6z4OFNKFHM9agetK2+XDGRNq0lZjluTppGSglJFjr2i70dCHuKsJK0d1LBuAjVpB+VOmuc8MSWPIlHGn40D1lDGjMNyUXDwHuaWgztpmjwKIoTrozjl7g+mnMtMZmFFmZ6Cp9FQwZikE+Er/H4Kul5xDrnZgDWm7XqSqs7mEzv8qN46NLRc4ak9eq9nl6u2EGxzds5IIVKS0BCHHwn+oMpKF3FsO92vOJ3UWzqBy4lRWjdOlPTdTxp11FZmFBYDNIsTGLZJj14Uir1XNg0Q92S6hsvq9pNB+/SnjBnXbSdVF0afAnpBtZkRZhGFVft+y1Vn0CgFm2zdEk6FW7xLVXrX6YWWZ1sWO+6iOvSakpZWfTUSzk6Vou2PQ+bl0AVJ55GpHKlZdSvqyStEOpZtAT+5cueUAyKt5DUwZ84LSxZ1diodMSUeDKRI39cJHyN6QrcGelcmoHYGe9DOD0PYR99hdCtGc2Zmy6g1G7UJzTOQpkIcBc3MDL28Vf9ifyfePX3n7fT2KQFbyhXQD+XRG2kZbsjAihxOmiG9y5fUFrjyz3FKGCUmDVm1ZMVk1+7BTXgAt3ymhI5QbPHnll2ermwPbiwaNehYuul5oekFOrSDR4DMMzxv8wWmoaFJEV6XOCuphVewvohsLMWYRb4hzugVxToNWgNTMjD0FuKI3C5otjVGwzc6ntTDuTGHJJdo7g+vU/nzaCGIu8l5TJMaxzXoh45EA/iSLvh/09fAHZQbOOEb0AMK4s2RpqPaTzqOgF/qUMClfAK3KEdc1qVGMxE6KmdR36I1TLt64cpr/ty4rs9JxTGsN5MQoSOkKJTis5Iei2mdjUNtn2ruM7TPT6nIJ+3Nafi+skDCliJoldsx1ehpD4fnHpGOCc8huu6g9lZdv9MYd4oUNON+IIWm779QSXKaECZOShzYrvcmHSQ+FQnTLIsobMYLpp0VEZLtJC8DcSYSoJCJr8E8D5lBaovnfQWn1QcFqKq8j5uGoQOGrl+SrjRbq/Zn88Egavu48gRC0JdusVDx06hSccZbcB3g6YlMmbVv95WMEp7rqtFY0lrKHzdar5VXx6ZcOpMRoDckylty5eQuQij30+suygrKKL0xb9cPzx9n5Vxbbr2nnyE5wx2nhjM+yz+zVwCFHQSYtDlJXigfEpAWg7/X0rDySM+n5ShVsQU/HmRbq9wG2btnXZ6Mz73zizaKZ2VgluzLfVxkzKfNv/v/Mv1cUvejoNzBuCwZwKmOF1+2CP+vWxRQ2nRn1Jp42ruzY9TmZschwk24eFluuKWIyP8Rxz84g0ZQCXQrARoo2Y7Z8U6PQJQW5yUQomyAFLV2n2M20MWrrdlAcYrz2TCuL8SoUs0HVjTOI7M5BtRqVU7+Acw/TpAVgs9LtTaL4BIi25jPxRypI5T2uPHhI1urvlDJm0JY8rVvSptKV47FT1uv8KIaipnQZiL7PciqA5FB8AyqPOQ+YU69tvrPKTchGgchzp5iSCOl6q/fE/YNyBOYVYa/YVD4cVJVbVdDzIx9fiyKQcyYdTxhjyKtGK2xZo4n35L6Hc4c0lZIgTh3ZBLD6AqerlcoxvQKF84wZ1ooP1E9KKW4e1FosaMiRbgucnjhZ1DN/BrBclxluhPFK14tyLsWghFiERoMfbUjKAsuK+JOzUoWLcER9wQqHe/ygEISooo9hxDaO4cUK8ep6I4O6/Joh4s5xMcOcVYyqddDduqLe2vHERtWSEvSm0nBV/V2rA0ivxa1/JuWG1Ruxv5WFjGSitu5qLa4rwfGm1gvOaZGcH/MIYQYFs3LRy6fKLtiBAokZU8w/XZdKPJgW1dyhyHgRHGnCk9q1xZpFw2Gl4De1MO3ADLMrsgJ901b5G5IUKPTvdQZOK4/fDzq7T6o3sSFhnk7K7rT2h3X3pbuTIehNOTNCo6L+uMLxQAsAGb3hD4XUZkX/vlfUHmsXDEHOpXu0thSAgAyjrhNDWNR+M8ioXyTlcxNMvRKFrCVvV4SblXodvH8gi1GSkDXI00E/p++1ALStdgt7fuTja1EEAF3RDGrDldetVsCkN5RIq65Dp454u0PsSvezMUMfwApxVSljrNa8vLCmzLVwboXQWM2cOyckFlPMlTIL7ZQZrg2TXDzr7JBZvc50Lwz9MyF6y/ptxPa613ax7KeLiWi2Vok/qVR5Vy3cc7zTi6yMPIRQBCiitmpf3FGjfvFTEbWYPi4dgR0KkEaCVkU8M4ahMeoQtloAcpPICWJwuHMB21aZsNI1qXY/WijsEeo9ujIrdOl5PWcmLUh6I18ouv6UFBMwOtubqOBZ3NSk1hFrLY5mjOr/4JXE46O236qMVCA32ctYMlN4YwnpCA1LrBloYlFoVTlpekPz3uB6GK40+l2jxzP144R/d1ZarzHYp6AgWQEPzYf03/VKbxZrdO8PetOFqHTbvlcGXzBq2ZWTgr1ZrccMii0QonL0QYlD/ajveZH7Ss56HaQiJJqCcmO6QZ2AZ8VsXV02R3AZMwsOxhTINzvSqmK8bXCHCfv2QYvEZq0F4mlP9hV8UACkrvT5f8Xja1EEBPRNiWlRDeZVoydriIoXWKMBJd4RbzcYU6yaZ9+4biLVVhF7KTv/qsySUEgwujEwQbuA0Oqp095phlz/zDBaRZtDoydNc5fos2F4Bqmy7H49KuW1EvVsyzpzCkUFOYzqG7CtIbfKduyLFLSuyDkjfemm28IynAL2zSM1MN40xNZiu4J6W73QTFQQM7amJP4Kts9UZ/2FU6Xru2gFbCauI1NUgw4XhLDJDLfqreDOBntWBN6fdQQJrTCtyvdxaNrzvaL+sTZInpmFxcVYdHsybSxI0dJPWcVXR90oxJWaqrqTLF8XG7ukL00rUbS/5mKSOmQSs+8hZC+q99hETBugc9jHghsU2bE/Zw16gSWeG6qlrUe8OjsPo46a1sC6EBDGSbdSZeZXl59AHkYtAHWlNxkTNNpCyjCRt07n/pj1hu7H5aZN11tSsZuXMcAsIy4n+jIi9HogSFNIZM4uij89LKJ2HiKQE+nZjrBrmLZere/ujgufIe+VHCQrZabmKehquvJafL72bsPGIFVFOp+1uloLNQv/WeWclYJsT0csEG83hasPYVMpL7wP+KPFbgVbXxhtJrJIducdv0sA2lKPW0NzH6mOicM3bHEw1tazuc+sX0fsaBhuhMM3rboTizK5zBBVd56LxNNaCOpmo+y/Ch738DDqKWLKqRNi4Z9X2u2cey0E8YrxWUtYu8W9FqcmFG7fq5XVtOL00jF73PsTJbzEEPvCHvSZWGXYKtjmD1KELLI4+Ya1vh6zXHcW7SCKp8wXresynMOyok3eYGLCHGKJVdMZwXb6HpCVDhtbvbzm03+80tQmW4I7ZolwspAb9Yc100V8FNaZ6SZit5OqRx8qVp9bmvuMO+vIUh0S7hTUSLQw8AAVfm1rjf4ufn+my7BWxiBdT54mZKWAMwltzcdJT9C60pPcOz3Fa69tfM6kqxXTVn0IzFH39YiQVyp1jytfdBTjBUgs7MPY6KhoHk+qjLVWMaRVo6Y0MWOeTovTFk6vp3i7YXzWarLVKVJ9uV86i3w4whSUHVhGa9mskWJWOguNvurx9SgClPWMc+qQSukOdmvSZqVrl3FSHve6hWFSdLX2qg/3Ri2Zo4JTbsiks3rbz6EZM8Fl9hAwU8YnXaPFSpjWhvbdxOZLOHzDMW6BCnqE9k4diauDcH5p6G8M6zeBWBn6lzX1g0GKK40pc5sU1pj+MgZyJB9PavxQeb04zp3+nk2lnc/xjHk8UsHyhkvUOT2u3MI2q+6VYjzuDKG+nKTuDHa4tNSzjZcy7ECSLLTc7It4ysOULhbhElQVWB0T7jhhzzNY5QjbqrT7SU/8JwVk3VVLbN3iwputYbqqiI2UGC5DbNV6THIJIWkL9bu4JCWr2EyqFNsYrzJ5FTFNIAVB7io2nxmNJZ+UwuxP+hy1OOmpLDGDgbipFhm4OwwQ0oL8m0OnHdluq4dJVFBOxklJPquWtFuRWo/pplK4dY2bSkqQZP2+5twv7j9xXet7dNbrU6ZS6Gc6eK34gNvrwTaPuzOYqOrAsRSaja4mzwN50zI+a5ULc4r4+7M+16k4ChdOADkT7x6UKWitEtWqSrGB8eueRQjLmsbcXKuyruu0krW1ttFT0BdOpMg1SwzUqsIeNOsurPWmc71Kbu2Eil2sBkKC3lALWFVOUVCgbbhxVIfI5ovI8RPLuKWk2xqSzTSPkd33NVQzG6F+nAiNVb520tMnG4FhgKEAMkbIqRy9VtVn2sKVI3AYF8ZYXpd2cwz4/ch4VSlxKGobPm0d3auqEG0UTJv5/sqCYznlZz9/088FoPyetd4kZhB8xxKzNm8WZkB17AzmplJELmYttKtSQbOQGsvkNDVq3p+nSmPPUqX23bHQi2c6sR11vAn1HFiinUfyytOYmkyqE3Iz4nwk9J50dpiTpXmnNmvjthihPqpQSNWCjrAquMB50lGrYCnVmwPSDcSbrZqKzqfzdk243Sw7+mLNRK4s6XpN2KghiIHlNSDprt+dJmSYMEeF23NdkZpy7T11P+RNQNKvz94gQ8SeFQwmJi0AO7Uts/tetxUiWoAaj308k5ua4XlbYseCxpHvT/r9Z5aj13Vz7ntkNh3temTVkvtBhWzyAQ3zNzy+PkXA6NyD8cjNlSK3w1iQ9vxDRguLk0rKTDul29p9r/PctipSWKdbAiO076YSZ6YgzdyKxkrZZdVB9ekaaa2JwlffSRw/cXQvhNiCQpaW9j7Svk+FbDJhT9OFTecMcrXCnjqt0CFA2yBtqwKO4lQ7OyYRos5v46Szp7P6e9ZWGXlTIjaWsFZtwgwQds81AARzkdwuTr5Fiz9tMtmn4j4sPyQlTn5W4RV6bRRdHxnFSZLXm02yQZK7yHW7dNHgozd9LhfXHNsVWstM3bVTXnwJlBqsoq9sZVlvakGbbccTXE1UTWDsHZwc/mCoHmQBOXXFCdUhYmIirBxhrT/TP0zYp47cqD2Yuz8jjwfybkNce928nAe9ASu9yaEw/0LSdn5bE1bzYRIWyvq8kxdjkKCIPjkXzgqaOTCGZY7PlSsrvwwT2KnIk/tCCGpqxbqGSfUGc1ewU46BFgBP//GG7LQA+HcneP1eV4BVpS5DxurocjorhlF53UA1DXmaSAc1ExHv4Cuaga9JEcjahjWzA49VVt25UwR1t9ZxAE/cNtpq9RMyOcgwXlV4a7CnEXeciLWlfRMxoWLc6M3v9xO2KhdoWU+FVoppqK6VUgnSjFcW1yc2nwdcbzm/MsRG+eqIpr36o+667XHQIuCttorbGj59jv1SzR1mR1ixRiWqsyWUMRcdgbU6qzqr2wYUFJQpUT1NTBvHeGWxo8HvA+svE+eXnmmtJ/oStV2o8XrDGHVWKm5CoOORHdWqHC58fck6AtRPuZi16lbCDTOBqJh2lv22pKyz8BTItSNuau1avJBrFe7UD5pobCbVgcTGEtDNxpxbODsEaxyaIMEQYsXw5LFnNUKpH5UcNMex+1OmftT15bj19DdKtFq9mTDnidxWmvIUMyRIL28I1+rUax5Pi+RXrEEaT/a6yk2NI1Vl5Boi7t1BV3dNBcYtwB3wD4B2MmlmwPxeZhHMw0E/p9bIsdn0E2vIu40ebuME+6OuBletWtOJYJ7O4B3jizWI4J8mqs8fyHcPyOwWNIyQrBaCvi+qxkw+lQ50Gklz/Jixl4PzRzy+HkUgU1RcHbLd6p+90zlnGPXF8k536lk9+i1g+hHbO7JT++dUGQ19TIbsDfXdiBk9YaXR4XP0swmppMxqmzZuCrPwqKfdtLEMW0tlEs2d9tfnV4ZUF0KRzDFcLX7lFQ0fA64PhKtGL8IX15h3j3piVF6LnDF6k8+GkUbIIS9ONKn1xE2lbWgXyvPNVE8JTEV/bUnOUz0FVu8Cw2gZN1wUgFlb+dCCTOrtPwethBXF7JMlcj00MFt+x0pJRe2dchNsH3XFWqyvNFa9jGMxI8UOG0Aav4B8CryCPU2LcCd9cJXNicLzDe3OMEea2VFIh4t9WXOfF0+IedOj+Y+Z2Br6K+V8VAc0EfnVqmxrBNdHsm0Wzb+7O+kNN5N/goZ/GGMWQpM9KPYk3aA37Gat1nAzMy/EQhVOC6Cr/JDxYoMnCTkrh1/Wq4vrb9dpe75q9HoYRvWWMAbaopkJCXM6keuK8YVKyN1xwr/Zkx8ekasd8flV8UNUbgGFip5jIh8PxQQlaQFIGYxFjPz/QyeghCGmSH58wlztEPlg/i+cgVx7pBtwQNzW6vizH7SRaFQfPj5rcadAcho/bkt8VPKaOqOyX8UEdAzQv8+R0/6U8Me4ZN2nWmgeIiawFIvsYGoNoc6M2wo7euqHQPX+jHvsSAUgym2tfoKzwWSIkMbF/VW8g8NJL5ipONsaAW9gMosGPXuLf5ogwXhl6Z85/Kko5AqwOafywnzTZ00jDoVy7BV4s4MU0lMm1pBdLtbgCijGyrL9vHDvo0qnZYr63IqdOiaT2wpKxJp9SFTeQvaK0luYrmsN/BApib52cSfSQqRRblmE4Uq7H39UYBcUq6hOSbEcoaQDld/PaRpScmo55oZZ8vxBMWwtxhvccdIC8LjX8SxGnaG9U8NPK5orcFbnoDx79hXuv+xPui1o6tIVmCIVL5TibrgEhHzINbi5Im5azOGspLBiN4cB6cpGoVZAeBEiHc7g1HQk1gZ/mHBv9/D2Dnl+S3i+1ffjVJiO43RxPjqf9c9A6hSrEKtWdni/bBJ+1ONrUwRISR15pkB62mOKyGYGbDh3RZhRIcczNmfipsY+nHApEWiLcYVjvPY/RJOliGGCzC7FomqzpAm746a40jZCchbvBXdK+EJvNTHTvpuoDvPsX4qBKfp6J0TvSX5D/b5b4qvm/W4+6ynA7Ua9BcfiTLxZIbVH7p+U8nnqsUVQQkoXpllMgNHc+snRP/MMO4uJeQHb0kqWeT678rE6gwMzqt+iRoDlCxc/o3mE6I5edRNCf2NJrr7M85OGvyyPrCi8MUZXXAZMP1GlTKqtcgGsYEuxlaRaCLK+Vm5QYs/s/qzMw7LJKHJjSdBfaQJ0NuDOuhXIFvob7QDm5zy7CKn1mCwmJxI1gGRODcJ7aPU0Tm2lXcK5nMgixcx20s/Lmbw/LEUj137xFyCXTujUacHwSnGnWI3nttasgPOgorhVS1o1Shs+F4FRW5M3reYMHkfkYQ/WEm83hK1XVebbvR4iz260AKSsz7eYmMz8gnw66Z9T1o2AtXrZi2jxmsLXP5U4f2CHLKuVSm/3BwXVjFEG1bzyKNVWugE7iyeGEdN7cAZ3gulKRwDgYp5h9YZ1BWXNomCW67UbUIkoy5oxVVLy7HQPLTljxjITBo2wzlaoHwKxsYXBV8JF94OisesGMwX1eTudYLMi3ewwp1nrEMiNh1e3y2poTr8hKeqeMUUNp1Ri10XqJ8NwbRen5OqgN0is1B0IlAYt0ej6fyqiosAyHsQaxBaAcFTD0vpJ127qIcjiypMLmCel1Q6tK1LnRmXCEfwx6oV7KmtFWIQ6WSosXDQHeV7ZQq4KT8BBKr4GoF3JtNHRwUwUpyIld8VGu4lqD3Ga39+Zd1D0H33GdgHpJgVb1+0SKZ69Jba+4BUWrjZLHNgS6nk8FbCuUl3BbMpRoshy1+vuvf7Az38WlBUnLLq+2IB7HfmGD4JD5jzCIWIe9uSU4PaK6arBngP+3VGLzO2V4mBFgrzQmGcOwDgh67U+l6hhpnMnQFUO1a5HPnCC+o2Pr0URgHxR2onRXyoEGNWCiRAXZ5Tc9ZqyarK2YcaAtZhTvzi3uHNcBD8LLTVm1a5fGZLz1A8TJkZNNpq0nTQxl315pp4jxr0hVwb72GMPA6lR4Qa9MG0c1XGifntidpRd7KRDJK9q4s0WU3m1fH57h7neKQFlPuWnSLhuiS/WuMN4QZmnQF43ClwlFeRIr7ZgEhImaHS43iRFeGSURWgmDQmdigBH/RMz9iC4U+Ed1KI31AdmJGrMol8nSahTxk4BGVWKq0m8eslMazVvyaK8DDe7K1E6lwRzGIcZo17s4+zLoAUmtGo3Nm0v1mlmKtyFjbo+pUq3F6UpITYJ25slSSobBRmjN4tLcvUYyi5e5cPTbq3r4KIniK2qULMzpN0HN3EG0wfsMJXTPS9CHWWCqvtQDuoU9MOXsILbWHOxBa91fJBBOS1LZFhJMpIhYh+POg5e7Rifr7B9UFAyRNKz6+IW1BURkW6z8qq55CI2tQLMYzHe6Qf1Gmwb1SNMAVPGBKYfffd9LYqAUJh2WdsZrFHTURGlb6YiJqoqXb3NrdsUSJUn71rlpfeB1Fhd/RU3YkWjRVujMi/OCLjror4A5nKC+C4VsCwvGu64qYmbGvdwxhx6cuWxUyyW2k4joh6eFv93jNE39n3Wm76t4WoL94/k/UHNRMo6ECOYITBtPf2rVp1lOk01ylbFOxplnnHHy7toh0xyCm7OJqSzwCZVesq6DlwvH4SnQGwhlYSl+YTNJewjFfcidVtW6nCsDf4UcSXm23YqlzWjUw6DaEyZP6qeYNoV48xi7T1Lvpkipk94I4S1Izbq9zDszJJGJBlNqjA6yoRdhKaMIaOKdWQ0uLOuDO2YF9CxOqhuwJ6m5aYZPtrSP3PYMdO+6XUr4512AM6QvCU7NfvQn68gba59YQ722riUfXxORdiWZ/+zcsLMY6sro1zltR3/IKNgBh+XR0qY80A+nuHmiunVlT73p7OONNtWO5MhaBdSvj57AyFhig1f7rrFGj1HxTNMkRaLCObmSseEQsL7UY+vRRHA6E2fQ9Hh56xrD+cWZD1P0xK1PBcKRJBh1DSZm1YR6SlhjBBnGmkEhry8CWo6mbVqGtEkoaBt8LQpANVBY86yt4vXYfalEpd5kJyp9mfS1Vrjx9atyqFnZlaM2pYdT+r2ul5BrVU7DwOS/OJdb4cJXzn6lzXjzmEai/d2ocCqKlKw1xenXfW01x8l+TL2zOYbCx8/FA+F0nbHWv/LVtV3oLhAbJQj4Aaon9LCslTV38y5zkgfcOcRuzeLIYq+sBB2NdPWKuswA8YtjjpYQ2pVijytLXEuWJ7lecxkJTUXZRkdGIw6D7u8aAwkageAgepROyHdWgRyW9F9uuH8wmEnxXPM+Yeh8VRbiBl3mH4YwzEGGXrdu1tzGVXnVa5zMJO/jKpcFxESLBFhc9RZ2hUtwOwnWPAUhlHxoest6XqNfeoxT0cFLGt/saf/YG2cZynyUcHGPF3WksQI06RdcjlQzW5LzlnzCPNv6Fw+eHw9ikAuIgzji9oqLzc/KeoLLbrrzKtGAURrS+bagLs/MX6yI1zXCwFkSR52gh01GTY5iief/NAOWxNyM/VjXKKzTEiEba3gViymErG08HOhAjVtaFRkQl3pm1DsnYy15K4nnc/Q9ZjdRokdWdvMPI5QZNI+Z3J1S7KmCHD093CngLlxTBXkRhbJrSnGILMLbxb93eYIcInoiVqkuPOJaQctDBr+UaTJPpNqvSnDWmjfJZr7SH0/IEMkrTQbMQuKwwzojDt74xnIxi7efrZPqi5EOwJ7Vvcf8RnbFbefppCGSqZAbDK0RTsgQAL3ZJGk3I7pJmLWEwnPtLt4Hdb384pRzT3CTctw4xk3Bt9l2ndqYU+CJTYMMEPE7osrT7mWICMpaqu9ai9AXzGCwc5cfHPxIax9MSYphTJEBV0rtTTHCOb8gTlpVDWghEjerkmbVt2Jj+cLD2GYtKjMBbbQts15RJ6Ol45ThB9iAhZGqohoPsI0kR6fisbmt1EERKQB/h9AXT7//5xz/p+KyC3wfwS+jcaQ/bdLNDki8q8BfwSIwL+cc/6Pf7Ofk8/FSGTm1Ue9+XMSZUDNcs+s4Z6ABkdsKuzDmertiel2pe0SQNYLLl5ZplZNQ2fPutAI084WFtykrNDrCpK2lMmaQiKB8VlTHGuVbiuTXtTkrKKSYqsl46TVOabl9xDnEO9JB33jcq9CE8U0RB2U+iInvXugEiHerHXmP3TL6VI/OLIpppSx3PTmsg4bdxA2qdz8siDt2SooWO2VMShBKdWSwHaa2RhWmtacq8KbMAYzGewIfm907HHCtLWAxZ2smnOMHzjlilKF3WmiejcqnTYlJUrNmZIi2GMqRzyYYJS5mVXhGDaJbDPuYPFH0RSjrONL/+nEzas9OQuPvQa++oPaw9X7SxR5qgzjSv0PN58Xp+acL65A5bmaTpF9+kFn6mIoOucLzsk9DOOlAMwFRGQR/Fwiyz4wGS3ZEblxiuafxiXoZLZgkxBLvHnZIJy6cuglPQSNLHLjhUF4dyAfjpeE4SJUW5RxRhDs4l1BziosAr324gfv1294/FY6gQH4r+WcjyWd+C+KyH8E/LeA/zTn/KdE5I8Dfxz4YyLyu4A/BPwcGkj650XkZ39sHuG8Rx8nZKlsmcyk8zNouzNXxpjItYOYiVtHljXuqcMdBqbrpqwF9XP9MTFcaxRW/VSyA5KChuOVp5miqg9PhuHak63HndRP0ASdg8Oq2ECNSXf4oBx0WBxiiFFxjWkiH4ZCd7aQdfU5V2hiIufCby8pssSkG5GTrj7TWldKMql/nz8GYmOK/2AiDmYh1CSrp2fyeiOTIfembAGyJhi1OkfbrlyMkYWtVz0JcRCSy+X10nUc6JYlrhwUnUWsDGGtfAzXqWSYmEmtVaLWoURnF0YkRYZLiOrL11ZL6MbsnbjEmmWQyVxCSLMSnPpXge0LvZgf329ov+9p32bau4g/6uYGWGzYqseAf+ovs/Wm1ZvT66FBzgtwO1N3F61/AtCbOp+KdmW3uRSJ+XNmT8x+0pEOtJtY1QuXQsZw8Sn09vIz50fBtKQQ4ZZ/yxmGMuM3azAGe38kPzyqA1KJGM99Tx7G0qEY8hCQutKxM0TdRoGO0in/9pyFsg4Tx/JXX/7LwB8E/uny8X8T+AvAHysf/zM55wH4roj8GvD7gL/0lT/EmqWVWXABI+oWdCqZ602t65uY9B4v7LWZJpxWlTLAhkhYuyUHz4RM/ZQYN0bNLU7q3OOyrgyHm5r6ri9Mw8y488vXaYRVonqcir25wQ4qWDFjVAXjfMqUN1LcmtlCPRfsAFHH30UfEYGq0t/bqGY9gwKfZcRRoEmVceY84TqnzjkoZpFtidgaNTxl6gzRpuKaXPb/CbLJxKtI3Agy6X92lGVNZzsF2cyorblmDmjen2IL2hG5LqrdGZCdLOs2SUmZjdZoMMzNmvxiS2ydujU/jrjHM6CmnakkSOlNW57DqCtZ5TfoKhDKiOAyx6cWeahYf2lo3+nz88eogbAF1DUh4/c99jioIUiJ+o6txoRRQkhtF3SUvN3q8+/Gxcci94PScGNCnCXf7Ban4dz4sqHRNd9CEirJUWmlHv/m1BcnorS09+Y4LCvf2UUb0MIiAmflG+i4USL5dhtwFvPuUU90ox1kTgmGgTyFC44RdXsm241u1MZJx4SkRiimqS8H6D9MEQAQEQv8IvDTwP8m5/xXROTVHE2ec/5SRF6WT/8U+MsffPln5WM/7gdoCzNOF+S1CCqIkbQ/YK6vfsi9FbQSkzNuipoJWIA7YDHZGLfaATQP8ZLFN6lJR7ZCdkKqHfY8Yo8jFZCKbZRaiwtyjtSHnnDVatptH9QcdHacNUCS5YXOm2aZJ+Xclzdm1DcnpdLVGNisVBQ1+oulGrW2hlPQi9k7xAruMBFWhlAbXE5lnQfJZZr3AMJwo2aq2eaiIkRPriTYs0GiBrSGjZ5oEorhqhHqXg1H7XQBHM2QFgBVqdZFQBS1/R9vm+LVKCURSRYHn1BLWQU6bOfVZHOlnYWKuWQxNk0Ocl2KSmbJHjSD4N85EPdDI84cGJu8KS5QqWwUypi1romNI7ZWtxRh3jAU7wcUA2Kc9EbM5c+VWsLLOKnhC6gEeaX24PYwXEJGYcEBclPrqf7UX9yE9MbQlGEjC3iXXcGyCmeAcVKAT3SDReUu2MD+RNof9ONidFOWUxmPrb43U1gAc6bCiEzxsnKvC6Pwt+snUFr53y0i18D/RUR+/sd8+o8qOf8AKiEifxT4owCNWRf+c3n3ASjqukoVYflpXxD2SrsB7xYKZm4rZJIFD5jJI3OreXplWb+JtF/qmiR7C5Kp9hPTSmWokjzmPGmuwNpfWtY5dz6Bf3sg7VoFyE5j4QwoYy6XomCeTkuasvrJN0rYcQ7xxRfeGDVQ2fvCHGyU4tkPelIUn8Isl8JizyPt68xwU5OqYno6Zfw54U9QHYXprVJwQ7FOSz6T+9lkc8YFioBnd1mv6dggS7ZfcsoTUBRe37pYW3KjKzX9u2FqNbcRwwfbBGVhLsXECKlxzClNtlMdvQRTuBx608tYwlCymolktENQEFOvKok6qthRU4RV26AjSqzUHNWdZv6A4Pej+gHkvNiAycz/j+my2gPyZqUU9ZnPX0axfL3RQ6IPF4ff+VQVUXwqFjuydXvp5GC5fhaxUBEhST8o+NcPRchUVsbe6fOLCZ4OpHOnHYoxCsTaUhyc0y3FMCDeFR/OQRWEBU9btgbGkLtO15tf8fj/aTuQc34Ukb8A/NeBNyLycekCPgbelk/7DPjmB1/2DeCLH/G9fgH4BYAr+zzn4qAqrlh0+wqxF5lt7no4nQu9uDgRN16R0GLekKxhTpexfWJa2WU/fvzYYvua5vUJ+kktsp3ys6etZ7zyeCcXv/oSF2ZKlc6NQ6aA2XekrZ4S9uG00EFnVt1sDiL7k7aUziogmLJSO2NCREeefDgiMWJurjSgYlWTk7bYjFOhC5fXq1Y+gl17stUTTnK5+WIuN5/BDZmhM0vu4uwYNM/d6uYLoKAgRo1I8rxJKQ7Jc6vuZmQbCmtP2YIuJswouEGWuDZgyUr0J/VJtGc98WbDjZmU5bpJvR2so31rmM4KEE7XiewypjNghNgmzCDU94b2rdKkQ6vjRKy04zBBvR6qh/HiJTglNQrp9bSf475nNd0iACohobl2utbr1QsCMchuQ67UXt7sixR8Hl1T+qG2XnUFoms+a/R9nwtAcZGaHaSWcJqm1u1C4b0wG4UMH4waBWuSVbsUAUDTrWJEsNpJFDt7xuKeLEpayiEoJmBEx9Af8fitbAdeAFMpAC3wzwH/c+DPAX8Y+FPl//9e+ZI/B/zbIvKnUWDwZ4C/+pv9HP3NEvhab5DiiiJNo3v11Urb5dkkslTx3FbqHwfaHlc6R7tzpKqE7sZiR71ZuucOd27wdyfc45lwsyJVlvphIM7JOkaKh7zOurOJKM6QVjVmDOoDX97keX6f2z+ZgoJ//WX9BIrQMgzaZuakXY+1ejF0qjFPqxpqQ3QGE2oFkwogJUFjs2JtmDaKTVT7sLjpZCvgMv6orDw7ysKNSBZiwxLVrRHkBVCsLnO5ncopO2c65Ix96i4a+Vqlt9FYzBDxQzFsWWs3NWc5ZAemeODJFEjbllRbpq26D9cPqrM3o9qDTSspRStjesEOaiAS1hl3NFSPQvtGu4v+xhRqtFKDV+8T7ZsR//5I9pawu7TxC2txzqmYSiKxd3pD9gXcrbze5MOo70vKUGs2hDkW49CC1i/04aynOmWul5ThYa+KwKbSj5d2v9xIFwdiUAOZWYsgokX/3F9wpDkRabVCtuvLCJJz2SidmZ2tpaoUK0hZu2VY3IRySckGfluMwY+Bf7PgAgb4sznnf19E/hLwZ0XkjwDfB/4FfY75PxeRPwv8Esr/+pd+7Gag/GI5BASnbc2qWZhast1cXFhD1JsrK2VYigV0an05vRR00nSbRH2ntONhZ/DFMny89khoFwWiaVRDXr09EXYNYe2wqQRX2AubTKmeENc6jphywsmcbxfjZb6LiTwMl8QhW3TfOSOFby4zwaPkxdFU6t5TbLEUZ2g06qtTv3wS+EMAgdAobdgfQ4nKFvJKVXGuS5hQYsxKtxB7YbiC2BZAcci4LASZNQeQ9mXP30UQlHs/3wAlg09CxhjFBlQdWS7iQlaacxSnnQez1S6gcUw7y7gprL/ocN6UNOXZ+VkVj67XkSBVGf+kqckmwLQVzh8J443O5PWdsHrKbH91j3Qj4fmG8UZv0OpxWp7ffNPOxVlvhoDMHoNNs0R90xa7+836Qu2eZcQzkajkZM4U4MVZKUZYtSpwO2jHOvsKKuJf3Ity1oOgrn4Y35pFQZUnHwbyOGKur8i3V4oBzN3MuV8cik3b6ChRCgDXW91kHE6qiPwg9AZjflvbgb8F/J4f8fE74J/9iq/5k8Cf/M2+9/IoL2JOCckJRqtvCCit8vZK2+yiNCREXY8Uw07phbirF9RZwSC9INvXPRLry2YgwnRVFGRD2XcXjru7O2KmllQp332JhDp0pKu1ik5K15E2Deb/297ZxEh2XXX8d+59X/XVPR89kwQnIg5ikwWKLBQhgbIE4k1gx54lSLBgERQpCkuQYIsEgg1CsAlIWRIhJHaBALbjyJgkYJQ4jieema7u+nwf97L43/eqx3KPDZmuHjJ1pFFVV7V9T996dd495/zP/7/cwnK9w4wXeWJ31c8x4QN2E4VRgaEs4dYNXVR1I4zEco13CfAy8VL+BbqRw4092TITM06IFKcNvuzJEtFdLmHS65kb9ACiYxibdq3u/k3owVJgJhmwXoMAEHryPBWtOgm+DJ9r7pNoiKYwuwuYjHzRDcNXwE5v0KmTkC06TV9an1aIc7CeulS/gJjFoTPQKxEBg5J0M40pEBrjtyOz/5agZP0TxyyeKyQi86Y6BDgnkZFhECtTyy/xAvTBmq7T3btUMTae3CQkUhJbJ9afPngkcJQ6VK0eB8iwCEPtfKXhoyxLEHIjrjZCGTovH2BglYIUAHqKudVa2P+T24OwiNWpcLjaEJfSTXSTETadJnm7gM0mYhxargln58N8g6UOFM0lxwCeFsSgM8GGt4k3YLnSnbIqpbZy/yF25xbd8Qgrc6m9bHK9Nx0rr962hEI1gGaW+OZavT7+Xsv2ZET0Rn7eEHJHM8twpSNfXICNeqcvdrww+JF7qB1uviRUx7TTXBjvTUMYF7i2G1hjep4A8gzGFb4sCafzocBJSJXd9QarSrpbR8TjEXAkfcPzNfkPF+BnNONe+y/N9EeJbYbCDcd1gBCVExN3Rby2MjJIYKJItgoJN6D2YFeoHdjlqVBQ2gUEoifbZFgdoDTayUh5fB1Ed1Z62nHyISrQWpfqEk3Q3qQ0KlQ5oVQ7NavFBB1yP/ALUOzEUVwDMez+LhOB844JuYTygSVtycD4nu6sq48fSYlorYCfna4HgU/rOkKVDwE/Rl0DtmkG7MYw4rttErdggbVBQ0Sd0IP07TsTWI1GU6UUubAgqXXNcq3+fC9o0qccfccrCeoMBcqedToFg7hcSlL86Egw9LrRXb3IB1AZoGLgZLI7Qc+muu7qhng633UCEuZGjFZPexDolWPLMm2MWFStK9S2aRo4Pceb0R6P9KEVmejItrUUiJxad1nh2Iwy1ic51X3IYsQva6q3FtQnE1WNTzdAxeZ2TihEPYaZKsDrBusEjHEkDbkkhurvL+g+eoP6Zkn5TkoJ+qPhBgWvVOUl88TpGJd54vxMuV5qHYXtFjc/03htVRLGJd1MCDQ3X5G/syLemajIudkNt4TMEUaebuSGY3cPhfbblGOfBdqRDScPTQeGdJd25J0UlXwdCN5oZhmbm26gIAsZdLkj33bQBKwVMw1pBsCvWlyTE9J0I068gcAuOAWtZ03Ah0YknelztjbgYsQP+opOJWXTaaCZqHsBSgNitmNAkg6h5j+aSUZ3uyd87SThvU18jz3Uu8joJuISjLkn9EVkII5KumOdctymlfjnWDyEflkPmIBY1zsgWBd0bda1ZliKNP/Rp6ltq6r9jSPCuBRwChRAUrExNg2kepcIHnQq6QVI3HSCTccKKOs10Xmo66GACahIaKbvSO/HakO8/5BusVTQMYe5QGxT/empnx0Awvm5NiAvNaPdpwdtu8vHzldkXSBMS931xzlunWNtoL1R0ItjVA9gdTdje0sCEP3xPlvUdJOcLlGCld5Y39HAh6sDzSyjeCj2Wdd0AgV5wUzD8QR3tqJ4c0793DH1zYrCOdxio1xtMlZhaX6+kyjvizWzGazXhPOFuhlFUoSZn8GmxJ853NFU8uTTEbbckM23hER4CWjstOnAG92ooCvcQIQibkEpK/laOgHt2CeiVWimiQXZIFsFzQSsdcrxmxy/ydN73UCV1msr+tPVLrdNqLa8boe2lW1VuIxlMYxSA1A3uJRmxTRfoBOCgqFrA0zViq0eJLmzmRf7cc6g+9BMxJCcrVP7cKSeed7rDswb/LrdzTH011Olz7lXQ7IUgKwNiR68SASsHe2spCsdfqtisK1rbFsLpNPPsSSLIegL3Pf6u5D691EnweOZWtarJEnXg3t6laF+KC7pT8T1+pH3rKqUEiyW6e9J7yX4tZViPIrzM31P8gxbrAinc82o9NfLRf4Ac0B4j0a97OkIAumPC+sNLi+wUsMZPYfdALDJFDndYkuscgIZ3VEhEswm0E7zgRikPA1sjx31UUZ52lDfKIZKehhn+KT4aiGyvamrLmaw/nDF6G3hALyZyENM+nJxVGLnK8o3WtoPHYtduMzlZ9s9ykhTljoVNOoQWFnizKmq2zQ7dRjQnWa5xo0KQpXhmzyJgO7472JiQnLrlmyVsT1O1fiEaxIrj1iBe4BMyAqaibGppNGXbcKj257uDn6rSUG/qCWC2aPaMq+qdSpaDUMy3kEWd7DZEMWdMJEOoetyOKrS80A232Lztcg4My9YdNbDoMX6vLnpE4+B0oCu6BmFIFvbQKfum0i2iZQPW02DAiGXvuBwlWe93Hdqszo3wLulTkQ6kWgUPBROALKmw81XSR5spc+lqgQvztUiVo/e7/YiRgXgqpIacWo1DujWzWbXzjNLRWHVj+JiJX6MItcX1ZlSguVaKXKvWZgLum3jSviR80Vqp2cKGOcLwnqd7v42/L8I8m1IRy6xpyMIBCGgYtsSzs7wJ7fTUdPt8rG+wlrkCVQRcFHHv2aaDxeP5uM1rVWeBeqZI1t78vOWzUkxqPbELN2dNh2jH0hJp5lkNDNj/eGK6p6RnYu9KBQSjrB5khNbb8i+2wzIrh4duBt6EucbifJJ2oOCB1vmRQK5XGLj24PWgHrHQWjFSSEorgm96NcJS557ulFG9AxS4i5JcUWD4NXHbyuXSFRM1Gk+cfU3Khw207F+XneqGxjK0++O8HVJ/lBHa821q1JnTaciWd/Kmo6Jo4JwNKKdFmr/ZX19QmQhANWDhJL0Xt2LKieMco3ymroDqxMvvcc0/gwMfAiuBVdHspQG5KugImPuaCcCTHk6ITgT6QagMWwzEYh4w+qAESUp3nRQerppkfa3TWpCGxXhQF+yotCkYJEC/bbWSSAEHfud7Yg+R0pl+5Mh3utIn0g+AN0knOmxUct4CAAxEDepoh8D5ovhBIy5gbSU+6d6fzRScFmtCJstluVDK7AH3olU5PI0oLenIgjExCzUk4bE5VKVzwu9dLzXEfpsgd2+QRjpbumXtSrqie+eKLhryHW8y3Jx5lVAMW/Z3spoxiKJjFuDQupB2XmdcOWVWll3S6q+TpBUdQbm2b5X3OsGbOsLc93CnZOndmeK4jFIjRgQ+GmxJLzzAOfv0J7MFPk7DSz17D0xc4PyULaosW2HZQ6iOPz6ohoG9TSRdNwwNidRWomRtCeRbGU0pzbAjS1A9dBRnIlZOKThoHbisSaQ1wKeWM+Ck4AstPpneUacVIQySzLwiZ4taOLSp8k+n9KOblISC0dbeZqpT9iEkHQIFMg0palioJSXFABGD5KScSKJ3d5Ue67nPYzOBskzv9EXOuSeWAjpORCN9BX4cUk3VvqYn9UKDL0OhHO62bStOP2LxB+xrdVS7MVC0502hqBp0JSuqtWoOZd+3l9SY4n0M0QBkmJQq7BNLFI9/wRIQeiCWZWKzffu6+ejma67jSjOBkLRlGoOiMGue99TADwlQUC3ovBoWmBO8wTpdYJGdGPbYg/m2IduEaoct2nIlhIXiWnWHifWoJAZxbyF44xm4ijaQPVOw/Zmrh516rP35B1uVTP+Xgcfm6SJuWxo71mIYjju5wEg5f1ekXexkAZckevDTfgAFT27JHw50ocZFMnDYkn4/g/wZU5zdwoghl5IR2Wx/naVZ3NnRLbpsFZAKAuwveFpcxXzRBUG9XGk++iGyWxDlbdsm4xtnbFdFWzPM7Klw211gmjHRj4zynNRrPXVfryot9xSx+lYpZ62M6hKwnRMd1zRpTal3wb8fRXB3FZUYkNrLvdsb1d0I5cKgTZ0Oy4yC2crYC1Eo6tVF/BbpCIdpD7cpPZhtobxO0oHusLRlfI/P293/IZAcCoEuvlKBB6zSQoAOX7dDPz+MfeqA2zqNOQV0xDYDoGH97sZfqBnErJ8rJPpUhoScTpTgff+Url+nu8G4swNrUISoo9OMPFYN5gz6QmaU4Xfe9xERe/w1tsCz926MaScA1tQDIBTYE6FTJwTVLifyn1MMHgqgoBZOiL1PxdFgkDWqoReqA1YnkPbSl/+5EiBYNvitzmt00XZlYq42VpH6mKutmE78RTzluqHW7qUJw+48thTmjeM31yzuVvtwEBDmuHheITvEtW0pZTFOezGMS5EwmqlD2sy3mEDtjU00k+IRxNwE9UAUieEB3P8uKCdlYOgiQQxCglhnG/pJoUgu/0Xb9NRPYhsbmXUU5FyNseRbhJwPpL7juNqg6sii6bg1AfWVDTeS3EI2N4y8REuBcopzqI6BxuPLzJVw+sGylygm0LttnamqTTXaN/8thOHQBdUT6gKwrhQjSBzadBHd+5slWTN/aOszbArBlqI4jNY6cJd39qhBMvTyPheSz6v0zCS7QqESWIs5n6o5fSw53D7BjGdHrP7S+Ez0t8jmXsFuwGqHcPw5e95LNLFqusgDfAQogJAUpuKZb5rOSesiy7K1OXJMuH7+xNAjOp+xZC6Y4KZ9wXE2LaEh6e4ssRu35RrfREwpRGY0o/YtAOTNTA8xscIjwDY42iH9mVm9kNgCbxz3b4AJxz8uGgHPx61/89+/GSM8c67X3wqggCAmX09xvizBz8Ofhz82K8f7v1/5WAHO9iPsx2CwMEO9ozb0xQE/uS6HUh28ONRO/jxqP3Y+fHU1AQOdrCDXY89TSeBgx3sYNdg1x4EzOyXzex1M/t2oi7f59pvmNk3zOwlM/t6eu2WmX3VzL6VHm9ewbp/bmb3zOzVC69duq6Z/W7an9fN7Jeu2I8vmdmbaU9eMrMX9+DHx8zsH8zsNTP7ppn9Vnp9r3vyGD/2uidmVpnZP5nZy8mP30uvX81+xBiv7R/gge8AnwAK4GXgk3tc/w3g5F2v/QHw+fT888DvX8G6nwFeAF59v3WBT6Z9KYHn0375K/TjS8DvvMfvXqUfHwFeSM9nwH+k9fa6J4/xY697gnCv0/Q8B74G/NxV7cd1nwQ+DXw7xvifMcYa+GukW3Cd9jmko0B6/JUnvUCM8R+BBx9w3c+RdBxijP8F9DoOV+XHZXaVfrwVY/zX9PwceA3R1O91Tx7jx2V2VX7EGONlWh9PfD+uOwg8B3z3ws/vr1HwZC0Cf2dm/5Io0AEe0VMA7l76Xz9Zu2zd69ij3zSzV1K60B859+KHmX0c0dl9jWvck3f5AXveEzPzZvYSolz5aozxyvbjuoOAvcdr+2xX/HyM8QXgs8BvmNln9rj2B7V979EfAz8FfAp4C/jDfflhZlPgy8BvxxjPHverV+nLe/ix9z2JMXYxxk8hyv5PPwmtj8vsuoPAB9IouCqLMX4/Pd4D/hYdod5OOgq8S0/hqu2ydfe6RzHGt9MFGIA/ZXesvFI/TDqXXwb+Msb4N+nlve/Je/lxXXuS1j5FEn+D1kfy84ntx3UHgX8GftrMnjezAgmZfmUfC5vZxMxm/XPgF4FX2ekpwKN6Cldtl637FeDXzKw0s+f53+g4/B+sv8iS/Srakyv1w8wM+DPgtRjjH114a697cpkf+94TM7tjUvvCdlof/85V7ceTqO7+iJXQF1EV9jvAF/a47idQRfVl4Jv92sBt4O+Bb6XHW1ew9l+hY2WDovivP25d4Atpf14HPnvFfvwF8A3glXRxfWQPfvwCOr6+AryU/r247z15jB973RPgZ4B/S+u9Cnzx/a7NH8WPA2LwYAd7xu2604GDHexg12yHIHCwgz3jdggCBzvYM26HIHCwgz3jdggCBzvYM26HIHCwgz3jdggCBzvYM26HIHCwgz3j9j87/jRTr6tujAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQEAAAD8CAYAAAB3lxGOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9ScxtW5emBz2zWtUuv+qUt/qryCjSOA3YCRJIgBMECMm9FNABCSlb9B1tWtlFQkJkwwIaCEPDAiELA5ZAyA2UGKTMjIyM+MtbnPIrd7XKWdAYc+/v3D/ujbBJ/84jxV3S0TnnK/Zee601xxzjHe/7DpVS4ofjh+OH46/vof9Fn8APxw/HD8e/2OOHIPDD8cPx1/z4IQj8cPxw/DU/fggCPxw/HH/Njx+CwA/HD8df8+OHIPDD8cPx1/z4nQUBpdR/Uyn1Z0qpXyil/vh39T4/HD8cPxz/fIf6XfAElFIG+HPgvw58A/xD4L+XUvqn/4m/2Q/HD8cPxz/X8bvKBP414BcppV+llEbgfwv8G7+j9/rh+OH44fjnOOzv6HVfAl9/8P9vgL/9fT9cqDJVzFBlSagtKiVUlO8lBSj5t/IJFSKkBEqRrCYWmmghOkg2gU7yS16hJ+SPT6iQM56UUPGD7CclCBFiJKUk//+uQwHHb6n8nwTKaDAWtIKYIHj5+/Tyf8XrKVBKy2sqBUaTrAGtHt8uptNnRisIETUFiBG0zn/U4+cBkpbXUyGC/61zivH7bsW/kEMZc7rHJMBa+X++L/JD6vFzKpU/HxCP9zZfTFL+rAmUBpP3uRjl9RSg8/vFSJr899/z0wkqOUetH8/leLL5viWlSFYRnSJp0B70EFEhQAhyelrOJ2kl9zTfv1ga+TwpoUL+FAqSUd9zQjyuiSBrJX3wNRKolJ/PYST5AMCO+5uU0tVvv9TvKgj8lYdS6u8Bfw+gouFv67+Dma0Z/rM/ZlhbVATbyQMQrSIWCj0lTBco7nvM/YGkFeFywbgu6c8N7RNN9ywxXU7oMpDuC5pXhuZtYv5qpNiMedEndD/KQ+Esqu1JbSd/+oE0jR+eKCiNrisIgeQ9KSaUsxATyU8oHHq5Qs1q0v5A2h/kV6sSlCbuDyQ/PT5sx4dKyUOtyxI1a+ThB/k5a0izGr+sUCFi7vawO8gDlX8mjROqcKjVklQ6+RzbPaSIqirSYgZao/KDnoxG+SDnpx4Dh1KKuNsT2/bxcx+Dzm8fv/31DxfQ8evqgwQzPQYcZQwYg8qfUxmDOl8zfnpBdBozBAlagNkNcHNPvL2T67+coxZzkjWoyZMKR6oLCYY+yHtbQ9IajCIV9hQo1RTkXgOpcnJNuhHeXRPy9frW58qfSblC3rdpJJjk5yUZjRonWfyzmumy4fCsZFwqlIf5G0/1Zo/edTBOpGlCVSXhckksLLr36NGffg8F1Z3HHjyx0HSXjmGlsX3CHWTTik6dNqFoFcmAGRO2jUSnUBH0lNBjzJtoQg8B+5t3+HfvAfi/xf/9l3/xhv7ugsAr4NMP/v9J/trpSCn9A+AfACzVeTo+OOXrLaZrGM8KpplGhw92MAPRacaLGjMvMK1H957yXaC408xfWYYzR3vp2H3umD4bOCw8w3lB+6xk8bWjvA8Um5FY5ZvRj6TCQVWgVgv0oSMdDsRDJ8EgJSASux6llTzAeWdVRpOCJk0j8WGDnkZUVUFdEzZbGCd58D9YCMegoqyVBVGVqPmMVJXygIaEbnvoetTksT4Qm1KClbWkrid5L68VI3Ec0SFAWZKGgRQiqqnBWtQ+L2pjIATZHcoCnlwQ5iXJaLSPqG5CN7W8DkCIpGEktS1pnEghyGdQGmWNZD+P91E+lrXoxVw+3weBIQ0jaRwleGmNqitUXUPhiE3FtK6ITmPbCbPtc5bjSbsDTCN6PoOyRBWF7JTdIAtbKfl3CPJ+RoImjSU5gxomWehak0oLpQMfUYNHDSPx9p54aB/vzQeBTVmLbhrUxRlhPSeVBr0fUeNEqgsICQrHdFbTPi8JpSzC+WtPcTdi2pGkNeFiIdmG0cTaorxcl/azGe2VIRSK6iHSvJtIRtE+K+nPNUnD4htPcT8SS8OwdkSjUAl8qfA1qADRKEKhMEOi2AWUTySrwIMegwS/upKgnL4/+/tdBYF/CPxMKfUjZPH/d4H//l/6GylC4WDy2E0vkWxZMC4MKj9TodBAxN169BTwM0cyBXoI6DGgO0+zH6neWeZvCu7uK3a/P6E+P3C4KuieWqobx+yVpXoImKHAdgX2tpMHY1kTL+bY7QJztyFutsSukzePQTaMnFYrI19WzqJMSZo8cX9A54VtwozYto9ZxQe7pDIGnJPFpGV3TJUjlnI7UmVRUy03MSVUCCRjUIUjhUDsB4gBtEEdd/OqJK0WkhEaLTviOKH2LenQyq6vDSpEVD+iagdaoUaP3uwfFyqg8rmlY/odQFn5mpo1HwSyD1LknOoS4mMKnhLqWMLEhCoL0mpBWNb4mUP5iLtrUffbx3MEYogoa1F1TYpRAoA1suNbQ6oa+dnJS+YwThLk2l4Cg/4gUzlmQpMH70ldRzgG+N/OdFICbSQAnK2IqxnTWUXSYJwBXUsq7xOh1IxrSzKK8iFSPIyYw0QqDeNlQyg0ySjMGLH7CT0E+suK7ReW4QzcHmavI66N9BeOqVGEAlybWP6qw77fMj1fs/2sJBaQNIRSfsa2YKdEtGAHKHYBPUUJFCFhOk8yiuGqodQa9Y0h+f+Ug0BKySul/sfAvwcY4N9KKf3JX/pLShN+9Aw/c9jdiAoJu5sgJvzckJR8wKnWhGcF1a3HbQdJc52syGRyej16qveRyylRbBz7zxw89cSziXapGM4t1Y2lvE8UW0NjNeXbhHl9iykLUl2S5g1qmtAxEscJOIIUOa30kRS0LMKiQNcVaZyI+wPKDqj5DO0scbMlef+Y/pMDh1KSCTSVpLg+onR+Dw3JapLVp88VC4MpDWbykO4lOKUolzdmjKRyEEEfOugH0jgSDy0xZyR6VktGOU3o3QFlDWmaSCFK5uCcXM+uI3a9lD8hPJZDxpD6vPsaI+l5XcpCPNbcKcnua40ssqY6BYZQFcTGEUpDLDRul3+nKqV0SonUyQagZrUEkXEizWvivEJNsrslpQTSNgaGEZyVIDFOqGHKQbU4ZSVq15J2u1yW+Q8f1Pzs5UBqLXo+Q61X+CcrpnVJtLLLT+6IB0itPi5y5nofKG977PWWVDjG9ZL+3IJSuH3AdIHxrGDzI8fu84SeErNXiuo+ys5eC6alItR3keZVj910jJ+esf0slxgJfEN+v4TtpN53XaJ48KiUmOaSabjWkwrN1GRcJeWMdfp+3ON3hgmklP5d4N/9j/4LETUEpqcVw1mDbSOmj+iQcNtAqDSh1NghEQ10TxzjylLdSQRWo5cHxBgwClKguEssgWJvGV4ZxpWlv0iEeWQ4SyStGJcKXxXMqiW11ej396Tbe0nXU5SH3aUMIP1WND1mB4cWTYOqKtnt9gfi7d0p5cd7Uggoq1GFk4/rvSwma1Fak1KSVk2UnRofTjtqskaCkzPE8wXaWdT9gyzUmIjDgN7t0UlAsdTlWtR7ed38nnF/QNWCF4CcNyDnCJKJxUTa5cwAJABUpZQYSknJ4TPGcEzDda6RNaANyRqp2Z0hlYZoNSok9BTQ/YQeA0lJyprqgrCqJX099Cjv5DxCIPUDqiqJTUGoLNoozBSkXMpZS3KW1JQkq9EpkcqCWNkTeKjHAF0nAeBY7sBj2aIUqihOu39YzQjzglALWKd9OqXZodT4WhNcvlyHnAHcH2DyxPM5/bkjWoUZE/2Z4faPHO2LSHKB6o1h9jrhuoiKYAb529ca7RPaJ/zMMi2X7D5xTHOFDpIF2AO4fcJ1spj1lHAHQRGHlZyQ6yRAxkJLBnKY0NuOGGL+vN+99P6FAYO/fShjMG9vaYDu5YxhZdBzg9sHtE8SEMZIdBpt5QbGQrF/UWLGgmIXsLsJc8jZgTGQEsVdj90ZinWBv9PMXiuGM0MowAwSYQ8vFf2lw326pr5bsfj5ToKB9+jZDJBFm9pOFhjHsuAxO4iHFjWOqKJALXJaPo0w+VMASdMowUCrxwey61HOostSal9rTjV8avPv5wWpikJAwHkNl+fomzt5uCfZQVFKUnlrBWQcRjieU1nI+Ycg53U88nvFtoWHjXQljoi5Npj5TL7mvbx2XZ06KWl/QGtNmtWksngE12KUoGAUKUoAsJsOtf0A2LT2hPxrpSRQ9r1c17J8zLjKQsqGmz1qL9c/+XxN8zXRhxKslQzOGXQ7SnZkNOrwQQD4APxTxmAuL0hnS2JV4GvLcJ7r+yQL1LZBUnyj8QsnqP+UsG3CdgG7GzG7HrRm+vyK/rIgWoWvFNsvNN3LQLKe4sbI7n8X0T4J6p8S41wTSkV00sUqtwo/M3QXhnGlcPuE9hIEAEIJ0SnMAFUX8bXGV/LNYhswfUDFhGkn9ODR25a03aGc/XYA/K3j4wkC1spO9YsDs90l5dWScV0QS4lgGmmHmCESo5J6a0iYDnyjaa8s+sxS7AvsIUh6fcz2pkD1tiU5Sauba8u4MCQtrbTdp5r+MnH4JPGgE/c/W7H+xYL5Vx169CSjSUZjuglzv3vcQb0XANFPkhUMgTQMqK6TtLKqoEwYY0jef1DLW6lzc3chjSMxJtQ4kpwTxN85Qfi11Lux62EY0CHIjm+NBDqlUQa5yV0voCXI4j5mLrmrcVzwR0RcGYOqa6m/rZVdfkoSpDDSASlyidB2JLpvZzfDQLjz6F7KH3KLNY0TpIguS7TWME2ktiN0veAQRXEKVNJiNY+t1LKE1fz0vviAvt1KgPjgeUkZnE3eS/CtSpT3cDdJiZFxiDiOpJRQ1p0CsL44J35yxe7TGUkrTBfxM02/0mgPro24KaH7nG0YeS17OG5IPgcaSM4Q5iXjyhFKTXeh6a/A14nyxlC/TTTX+VlMsqB9JeVEtMiDncD5hK8U04XG14rqNlEcIv1K010pQp0wnWL2OlHdy3mFQkmmvI+4zYjZDahhRPncPlYKnlyg3t/Ch52f3zo+miCg1yvS2RLV9nDocPsWu5zjL+ckp4UjMAVJ+0YFRhFzzez2nmQVvj5iA4qkDTpECIlUW0zymF2P7QaSNbjzOcNlJWnZlDgcNO1zxfA8wL9y4P0fWR7+dMbiy0R964lWASXqkznl/Yg5jKjRY3Yt8WFD3O/lgyR5MMNmC9t9Bg5ldz/iBsBpd+aIvmv9iLpPUj7gCnm4jZbMpx9Iw0DcbGVn74dThFdJsos0DPIaGRE+ff+Y8iv9rfOk60gftPSUEfRfaS07/v4gi3TypGlEuULOJwOkaZLPqofh2wh708iDaI0g1PNGAvnx97RgIrFyJK3RwyTgndbyO5NH7Q6kQ0v0XoLGMSBlIPDYZVHGPGZcxyxqDI+djeMzVjj0i2d0P72UTSOAGRLjyuArhfZQbQKmi6iQiJUhaZv77shmNAZ0L4E2VZZQWaal4/DUMi4VsYBiC81bcPtIsY/oKQmWoBX9mWFYKVQQLkEsBOlHQXDCbZltJHjvXxgOLxMqJZpXivmbgD1Ewge7v20Dph2lhTx56brMasKyFP6BUpQhwv0GvicZ+DiCgIJ0vmJ8OkePM3Q7ofcdapwwh5HQFOgpoHovSK/RpMISKyv1ZgJ7P+DuErF2j8Sg3J5JzhAaS3QNprAoHzG7nsJqfGMp7wLV+0jzvmT74Nj9AXz62Q3nf+cNf/r2Kdt/OmfxmyQ3VCW6JyVmcLiDx9QOkxevtJwe+/iknB0c0XSXSUUhEA8teppkJ86cAyCTYZI85Kf6+xGLkB0/p8UxPabNgd9qBR0XiTu97jEQfLgwkvffqo/lSXHoopAMZZyA6YOfnyCZb703QOw6CSBFgVrMYTEjOZtBQk0sLbG0wnnYD9JD90HKBh+kzDoGrtxW/LAMIkYYRykFQsjkHbmWKXcoVA5CKTwGAOWsgJpKo5oa/2RJKDVmlM8bncJ2keouorz042OhSTahByk/Qy0ljZSkijArCJXBN4bDM0N3KSm9beWPZJjk0kBjiZghSepvkPdKMKwUehCQ0Pby3r5SdJeaYQWhFhBx/cuJ4mGivyroLqWzVd4M6NGjuwm1k10+ni/oPlkwrAxmTPKelaK4cQJgf9RBIEHSmnFpBSCZWbioKB4G9KZFF5bhssb0geK9RDyVEtpHtJUUP1YW3U3obpI+ce9zXaqJTUEsheThl9WJiaVSwrYS1fUYmP9mwh0abGt59/4Z17+354+ev+FwWfLnnz2j/nVB8zZR7BMqKaZk8bUlPW1wuwvc7QHe30p9npI8yP7ISIvyUH/QQ499OHEJpF2oUWUp3zzuaN4LIi/9Sblcx4X7F67jt4HLY0cApR9fa/J/8fdOv6BPgSK27V9Y6Mdg8S2E/YPzSCGgorT3iAn2Hal04GpiaQm1we4ieteRbu/l+oQPspVj1gS545GDwuRlweeMipjkd0KAokAhASDlEiVN0o0x89m3SFhxNcfPHFOj6a400cDsXaR+16N7z3heEwtNKISmmhpp8x1BOJVguCwY55phpRmXMC0TeoTqFkwvOFUySNxUwmRVh3x9tCD6oVD0ORuYvw1U1yPDuWNYapKRsre+geWXnvqXt6SmZPt7S6JTzF+PFLcd+JhLiUS8WDJe1ByeS6uxehCQcVxq2iuNL9ec/6aBzXff9o8iCCit6T9Z4CuJ0EnLQumqhqKyFK8fqIaJ/vmc4dkCtxuFKFNa9BTR7QR5t0lWk5wmzQvsbsDcH9CTh1VDmBfSavTxVE7okDDdJF9TivK65WyqKHaO7nrBP3k6x78YmJ119LWnv6ooHjTlg6Z4SFSbyNQoNj9yaF9R35wxe9VJQPIRtdlLm/C4cyNttCNrLoUg7cZjC6cfBI23VurkE2021/4fvMZ3BoIPjpQRdjJIKosufJvRdzy0QRcONZ/Je4cI00js+kcQTj/utKdg9gFZ6NjbJ4QT2YfyHD8viE7jHgbsq1vi7V3OMI4nmvGJI3U6pW8FPaWVYCyzWe4a9IKRALppHrGFzKlQ1oJz0jqMcq3ies72b6zYP9eMZxCdpNjFRvAjvyjpL2URxZw8uUOiugu43YSfWYaF4fDUMC04/UzzWlE+JEzu2/sgPXEVwfaJ8iHgNiOhEQBgnCmGMwH9zv9swG4H+icN00xTPUTcPmIPHvdui9ruic8u2P9ogRkTs2969BQItcstZOmAtE8dh2c6E5YiZojsXloOnyZCFSkf1LcD928dH0UQADB9IF4azCjILEg6NVwW+PkV1dsD9Tc7/KqClNCd0DZD7VBWQDs9BlKCqBRYiJVD1yWq7dH7AbQmVBaVQHVeAqmR4EEBsTRCybSacispm/aa6aFiXJVQCrHRzyKhVIwLRdLys+6QGJeK7ReGw7M59U3ETAnSmvJ+oni/R232UrOPE9SVtN0mL3XvkVocg6TWxzQeHluVppCfPxI/vo/Ce6K/RuIwPJYJx5aYVmCKEwYhmYUW/KEsoXDS3fCldC1yNqKqUlL9fiDu9vJ6uVOgS2kjxsszYmnQux42O1Q/SoakFOp+S7i5k8/54aH0Y5sS5LMWxamzoZcLwRUmL+dqLeZsLZ+z/IAPMHmoSulUOCHyJGMYr2p2Lx2Hl4pQJsyomL0TVp5rPf2Tmv7c0J8JW8+1ifomUmxk4fRXsvtPM9nl3Q5sJ+0620WhtbvckgwSAIpdpHnVSvvQWUKzkNbhBBd/OlF/s0eNnulyTrKK6tZT3sjmodrccfjRM4aLEttFbOeJpZS1odSn9+vXmv5KYQ8wfxNIGjY/suw/iySXKO4MSSf0xTkcvnvtfRxBQCvcQ89MK8a1JVpFsZmIhWbSlmmmmX6yoLwXgpDqPartMYcOdbY4kYXUFIQB1ypiIUIkxklSbqXk+0cSjjPSm+69dA1qy7iyTM1j20aAoEThwQzqW1+3vQA6yUiwcq2kYCRObaKpUbmPW6JfFhT7NcXW4+57VDsQm1KCWJBsRvcDat8Sbu+/rV8A2QGVkJNUUUj6m9K3dulT9nAk+RyPD6mxSgsV94jyxwR9L6Sig+AwJ2FSFu0okwNEVZGairRs4NmF/FzW5CQj1zxUVoL0fnhk+uWyIvXDo4ZCqVOg07MatViQFo1w/rsRHraoYUDN56RFI/iBD4/dibI4cfiF1zBJUFNaMoPFjHixoH9SsX9uGdYKt4fVrxLFNuAOnqQU49LRnRtCCeVDonoIuL1Hj5FpbvEzAQ1DIV2q8kGwITNEYqEYloZQkduHUG4j9dtBmJAZhPZnDdEqZm8G3PUBtdmLcOhiSTIK20q7Ufko+MnlknFdEiqDSoloFdNMyD/CRBT6cH+uGddQbARn6M40m98Dv54we0P5zsj3HiJpt/ve5fdxBAGl6J7P0EEYVeNCVF5u60Eh7RQDU1NQLgzlw4TVZHApEmsHTqM7hT70ECPaCxElNaW0TIYR1QnhJBQFwRmSVeghoIaA1gHbCZ87FOoE7oDwCWwv6V4oFLGU+q++EdqnyustOtmB7UEisjxAWhhwUdDhaWYJRUOxsZibHW5zEHZd4YirBlYNpqlJm+2JbQg8Ao0RtLWyKGMiWfsIghmDPgqbjqDehzV9xiZQGXuwOXgWQgmOXS9tTD5gNYYAqpBg21QnkG9al/hGC+gJmFGug+kDdjM+BpPeo/qB5AMxP4i6aeQ961pOa1YTm1LwAx8FV1AK5nPSciZkJJDvjyMMg6jzUiK2HUyTpP8xkZIXenVVMK4KpkZ29+ZdYvZmxG1HYmGYFo5xZYhGSD/2WjoCx0CeVP5MCZKSdnKxe+zbdxeW/lwRaiHyzN5FyrtJcKx2JDnDdH6Gn1lCpeV7X9+SNjtS4VBNTWgcvjGoIKzXlOQe+UXBuLL4WnAD10V0T96EZHPpL5QErnuwh0R3pdl9EYlNxN5bio2i2EF5H3E7L63X7zk+iiCQCsf2C4vtZLEFp2ivLG5mhDk4JrqXEgGnmcHXmqo0FM6gtx02BPz5jOm8grMKtxsFULzZkJqKuJqJoGTfYYYR3coDl5yRlNFJy8ttR0wr0k5fG6aZ9GyPtE4zSEsp9iDKVSW7RuczC04RGyeKuF7IG2Ym7DU9yUOmfG4/OYNaNZibLWw7CAHjHGneCD+9adAhfJvogrxnHCe0FvahKhv0QhMPreAOxx1RC8iXfK63rT3V4anrpFvgnPTQnUPN5+ijum+5YHq2YloWuTyCYWnwVT6FiOxKpRI6awLTG9wh4Q6GyioKjSg9D+2JgZhikvR+tSTNG+KsIhZG6lut8iKMwgCcScBRPqK3LXS9SGKnEZQm+V7EUkajZispFwAKRzhr6J5VjDONr4T8U+4CKsLh04buQhML4fw37z16ihKcS2Ha6SFigsiDp5lsDK6VDWqaaYalYppLaTD/OrL4ZsBsR8ifY3wyP2WVZkw0r3vc6zspqeYz4vmC9pM5/dpIW/L2kUU5nVUcnjlCCbaVrCMUiuFKMg5fyeI/liXRwub3YLoaYdIUN4byXlFsEtWDdCVUfOycfNfxUQQBEkwzRX8BbqdOJx6NwpcG20eKbeLwQuFr0W2raFG+otwPqPstru0x6zl+XTGcl9jKUrwKcH13Er6k0kmf2otkVYHQS509lRQ2k0AKDbEp6J5W0ttdZ7nmKLuBChAc+MrgpigP5BAwu4AuHdGKNNYMQVLlHHAkIHj0VoCtuJgJT36cBEy730hfHk59cAHzvn0TYz+gJo8qpA5WmWp7SuGPP59bg6pwmMVCMgMvgppTn0JrWUSruexgq5LDs5LuSjPNZVdMVh48XyfJkow0zlUCt9WYXurk6naS2nZzgD7jH0dmYAY8AVmstWNaFfhGUi7TR2xnRG2XkvTkx3yuPkiH4MmlMAH7USTQi5pQO0Ili3hcGsaFBG8zJnSuProzw/ZTEe+oALM3icWXA6YdmdYVeoq4g4hwklFMS1nEUyNUdT3l9qGVDm51l6hvAs03wg/xq5KQfQEkQ4LyIVBdd5ibLakqCU/XTOuS/QtZ5O4g6j/TB0Jl6Z4WtFeSXc3eS9BqLw3TXMpQleTcbQ++hvZFYnoyoUxC37kMWEtm4FrxJjBDpLjrBOj9nuPjCAIkLv/xyN3vF7QvpOVSbCWaJYN0DXohYXRPEu0ziEYTCocOC4rJE69vUYeWYrfAziv8smJ6tsIaTXp7LaQX56CqRPdf5/QTHg06QkL1w0kQo7cts7bB7WaoWLB/qfBPQAWF7cD0iqQdtVEUD5nVOARUN2EykUmNXpRt/SBp73pGqIX0Ym620PaPKfsH5BZlzAcp/QeAX8YFUkxCQ/aTMAXzoWfNqeZXx987qvuUEsQc4OifkAOHqivCrDgp8HRI6FHy4lADShhr8+tsiIGkquU2Mfumxb0TclRqOwELi0Lu7LFNakwuQTKleZywtx5zcMSsoFQhSuk0CWJPkGCANUKOqkvCupEMzs6ZZhZfy0Idl0pQeyMKveZ9pHwQzUl3qZnmKu+uUF8nZm8nUaIuS/QYcVtPdJrYWGwfiHlXt50QckQ7IIu8vpXU3z30JKsZLuuTnFhPiep2RHdCTiMm/JMV41nJuDT051qu20YCAED3rGScaaaFtCOrI1nomcHPpfwwnfgHhELRvkiEz3qsC3Bb4W4N5YNCj/L+yO3C7TzFw4Bqh29TxX/r+CiCQKgM/YXl/J+NmNHx8PuJaZmIVlPfJNyYBCDvFbFI+CcT46VhfGPxVcVs8YTZzy28eU+6u0e3FcWuIlUFqSyEjdi2IttNkXT3IOj8co6/XKCKLLFVordP44TqA5DQ25ayn7DtjOqu4uGnlu5ZolsmOR+niNaStKLYaYyaTgBlctnkwlnY7kibLXozQ58tT+YWKYNyJ/Qe5DzhLwB6p7aZcuhCA+5EnpGfF/FQUuok+JHXtCduPkeJbu73x35AeY/qeuwwCh25LDD7ivqdCGl8o/GlRoeI22WWWu/BR/S+g7sH4UZkQFEVTlSBcAI0dV1lObNoC7h7EPmvMRilMMYIS/G3jwxQpqogrprM91CEyjDNDVOjTgvc9FBvE811wB4C0WUw1yLZ3SZhWyj2kVhoDi8Fkyh2Ad8cMSIhDWFB+YTtRac/LEUYVN0HytsBPUX8vGA8K4hOFIN2P2HaSXCNyZOcZXwxo79whIKs/ZeMyQ6RkDkJ0UmWZTrZwQH6tcY3OQAMUoKNS8Xhc0952eE7R/xmxvKtLP5YQKiEOWo+yDBOfJnFAu6/e/19FEFA+8S4UPjSsfg6UG40d3+k6D4J+EZEPxI5E/PfaA6fOc7+xh3FF57rhzm7X8y4mF2ychb17lYe/n6A+4fc8ioe619bwnwGw0h8e42936CWC5Gegizcqhbl3VFIEyNm01EPAXcoObwrODzXTAuY5uBrxbiyuIOhvilwO3GJ0b1HITWuiivxBTgcxOFq3pCqQnbtnC4rZx8JMuP0beFQ4aQW7roT4KfqWhSIRzIR0u6LbSvuMmVxau+dfqco0EfjkbKUc8rsvG9RjgHrLM5mluMxeMxzcMmWVcoHuZ7na3CWWOYediY+qlG8H07eBkE+GzGJtiKbtKS2e+T5nz5v7njMG1JVyv+jCEmSEQqyOyTqm4Se4knpNzVC5gmFdGnkGXvEMnwlXRsziDVZOnoyBDGt6eeGca4Rua6A0tpD825EDwHfWMa1xZfS8mte99LXb3soHKkumZ4sOLws6dfqRE4zg8iA3SGeLONUVExa3ssOwjfwZe5G5JjoKxhXCX/uUUXEfz1j9WuN2ydCmaRENmA7CXTlTjocdicAarhYiMz+q+9efx9FEFAxMX8d6M4Nu08NzXXk6v+buP1DQ//pRKgNs1dCznGHxOwrzUO4QH9+4PeeXeOf3PJn5y9JZs3Zf+hJMRKXtYg87jZSClgr+nnvZeHkWlwdOtLNnTj3NA0sJN30q0r0AbknfwIQgXIj7LGpUfhGdqFxCf0VtE8M5b2IlJq3uUc+isZdrZakuwfZkVNEqQVpMRO+QgaN0rzOzjg+uxy1sjjLkvTsQvQKdxsh3Oz333YuOtJmvXAPdCbOHKnHKvseqEbKIeoS09SEm9tHifC3XmcSnoDWElS9l2vo7KNIBaRll1th41oYedpzAtlsFyQ1dvYUQNTkZXef5cU9TCIUOhwyxdpJzz/LoNU4EecFQ3ac8rWkzvWt7MChMgxr4e8fd39h38niI4LyklI3byepk5US2bGWnvs0t0wLgz9mDyBdqkOiuhuJRnN4WUmAUFDsE/OvWuy7DWm3h1mDv1py+Kxh+5lhmmevwUlkwM1NoHgQIDJpJZ2DUgBvOwjNFwW+kdLmCAD6JhHmATVpyteO+q38bLTSjjZDOmUY5SZQ3g2Y3UAyStqThXksDb/j+CiCAECxnSi2E1Nj6S+ENPT0P5zYvbVsfwyHlyKdLDZyYet3iukw55++rzEXA/Pne979FxeQLln+uhUixZMG82KJu+sx9zt5+KpSdqXdAeqKeLVGnS2FyNMPwk4DoquZzmvUFDFDyK0rcW0hi0nMqBknYR0mBf25ZriA/gmgDCoVojzc7AW0y4498SDcf7U/CK3VOZHC7naoaYJ5I6VCU0FToduedGhRPtK/XBJ+ekZ1/Qz79kGQ965/ZAMej5hr/cVcWo7DKMEiJuJ2h2qzJFor4Rx8ILGFR1bg0ZDklKUcjTVLJ1ZgRx5GCJjSYUrDNDNMDUSrKQIQheYc5xXTosgprlzPUMoDaoG0nJ2ESycD1Sg/l+qScVUwLgXxN4OQdXyt6S6qU02ugtBulVK4XRLSV45Vto8UdyPu7YPoFRYNGCGcTXObSTsTSUEsH2W6KiXap6XwPvKO7Q6R+k2HOYykusQ/X3N4WbH93NA/EV8H20r6P3sdmb0ZMa1Q2n1tTkY5to2YAVAw1Vp6/ytZ+NFCconQCBnDbjRuy+nzqChBTY8ifCoevPATfCQ2BX5RSLDJna7vOz6KIBCdxtcWtxmp2h7XildgKDWrX40svtHc/8zRXyamBZhOLq7pobgzhLamsxW4xN0fKnw9Y/XrgWIzMi0LupczimUhRI1uIDWVkEw2W3TbkS7WpPUCdbchbbaoYcR1A/7piuGsZFo6bBfQo5B6XDtijRhmlLVlmllsF1h8E+kvCnYvDbGAcabpn9ZU6Qy9aQXNX68w87nU7l0v8mmlpGdujDDxMhtPWfvo3lM4eNhRWk33cs7+0xrztMLtAm47YG53pNt74fx/KAqKEUpRI9IPJ0+EGNMpUBzJO7osc789Zv1DEIn0CYtQqK4Xm62yBGdkkQ65bBkmbGuxnWAh2oPtROdxpHSrmLJh7IQ+DNiQlYb577iaozLV9+QCrSWldnt/Ar70GMAo+nMp48ptxLaZaZqJPaaP2P4xMKopiv9f4aCpRIBWGIZzRygUzfsRuxlkoc4doRBm3pQDjDtEdBDwrdhOhMYxXFWMc0N3qemeJqZ5xLaK6laowdVdZPZ1SywM3Yuaqc4KwF3ETAJc+koLtrFQDGciHEpAmEeYe5g07sbidh+oD520aIttYvbOU972qE48HKaLmRig5PZm0grXfuTdgaTh8MxSzLX0TPtA/bpjPK8YV5ZiF7j8xwPtU8fuM01/FRkcuL1CjxIQQlLYQWqj+z+A7qpi9etI80ZMRkJl4GqGfTDSdx7Gk05fK0VaS2pOjJKu9z226zH3C8YXS3xloBGLL7cTGbFqA2bTUYCw4kKg+DIw+/WC/nnDsDL0a4Ov59TXBe6mzcpGA+sFet/KLr7bE3c7YdgdU/HJC324bQU3OFsDoN/d0bQD/mpBLGTXHtcltjDYwqFv74kPmxOXH5Bdz3vohHN/yhhOvof5PY9+hpOXAPHhPTqqGjsrSH2EVBpSJjihdVZ0Jsq7EXswwo3wkVBbQmnQYxRD0fsWtdmd6MpHNaCaz6AuT8pD5YOUazGiuwG97zHLRuTkrXgE6s7ndBexn3ca2wmYh4akBESMVqFSwlRWMotsWR5KSe3Le4/ZSzBLRknH4CCvY4ZAKA3T0uQWInRZSBRKCTrjAkiK2TeK5l2kOATcNmA6f2oLitJQev/RKQ7PHNNCfANDDeMqEusICVQdSFGh7xzVncYMZPt8aaerAPVNzEClBIA4L/CNlE+hEqKa9onyfqJ6/ZEzBmUuAHQXmnFeUm7iKYrrKZ7Uhc27iWJn2L807L6A8TyggsI9aNxBEZ30sM0I7aeB9lOY/7rm7M885f2ImgKhEZsuvTHQdqLRD/doH+ByDcs5qs2XxRrUoaP80mPP59KLbiz9ZYXbTSfhkeoG0v0DAHHy8OYdza8rmqdXDJ+s6C4d49KhhxKz7R/tsXw4+QOCKPdOdlezGqizYi5C2wmYlyxqnHCv7iQt3x9QywWxqaTOziadaH2SHROTLP7fsj3/7SMdNfk5AOgq+wp6f2r1xUMnGc1uj24a0qIhLCt5+BToMcou309ivGQ1MWVmYkziz19aWM6z4CcKPyJICZAKS2hkdzfZJFT5IICbVgLcimyQpJQ46AxepOWFkL58ZYilysa0QBJAznRSWsisCnXy/y82QhOW1+RkGKJbAxpCU+Bn5pSFjHP5/dOubKHYQfFKDD+OzEM9RdoXFe0TWcT1jdCNh5Xh8EIznCdCGQmziF5McktGLcSMrWXxpaF4SCRz5GZkq/EhUd9G7EHERgD+rMbPhLItAKnCHSLl3YC92Uv5+z3HxxEEhsDim4HdpyX9mWJcGMqNRk8G10lEjk4xnMnpzt4FzGA4PLf0TyPjswlGTXljcPtMtdwahrPE7qee/tKw/EXN2Z/32K3YcMX1DK015s17wm5HuL3DTCNqPpf0dBihLIhrsdFWvce1I+5aQMf+qmJauGwz5TCTJ+33spuDWJS/fkcZAiqeMc2tDFYZHNoHob1GYbwJ2ac4If9pHKXNN2tQq9njoIpjrQwCdqZ06rnrlERifTTtJPfouz6bkn4HMPQXBEjflg2f9ALZWYhpOrUW096jJ4/yHjNOmKN3ohb/BnX0+z8Eiq16dAs+uiIVTq6BD6jFTGr+s5pYPgqJktXi8kteAErKAhUTsZJgkawSj8kpYh8GYuMYKsM4kx3edunUBfCNORF5tE/YXtibvjJop7EpYY5Cs5kjFRqilKtu7/GVoTsTnYHtQYxCpC43uUc/LDU6iKHIlLsM8zeBYuOJRtFfONpnmv4q4ReRVAWUjcS9wxw0Ra+o3ynmr6UNe6IK14qkpYVohzxXYIqoEBlXBX5u0KPMlgileCQUDxN20xNnFeHJAl5/9/r7KIIAKVH+5hZ3P2P3kwX7l4b2maLYQCgMeq4pdhHbRaaZZqxlMMP8G7C9pr9wjC8m/E8m/OuK6kZhRph/oxh2lnGdePiDxLSoWf3G0XzTotuROC9RX7zAvLuD3B5L+704+hRSG6spEJYVobKYdsLcHzDfXNPsF0yXc8a1Y1xbyqbAvatQh+6xR2+E/WV3sqiTFlqxygsBZ2WnqytZFFphh4l0v5HafrNFHVrBC5KwEvWsyV4DYqGlrCVVheyWKREv1vh1RXIa3Qfs7R7z/uZbLceTKUf+9+k4SowVj+7IVQmzGpXWsmA/DCbWSEvQiDhLb1sBGY+IfiuA5VFARG7/pcUM7UfSTgbIcLEmzArpviQB4pQX3AAgOiO73NG6PMF4VuBrjRkktbe7ET0GohO0vdxE9CRBzc/Mifasg6D9uk+EQuOzm2+xDaIZcAa/KCXDmx4zh/3zQmYCGEH6k+JkBZ40WWEotmDNuzELjDT1G/FCGNeOfm3orjTt04RfBSgiBIW9LqmuBUOobyLV7YR4EWjMKCWL7SXIyOARARSLzci0eMxSQimWZWZK2Fbu6/Bszri02SPhu4+PIgik3HbS9zuW/2TEdmc8/MQxrAX4ML2otcyYcK1IdH0lqHx1Kww+PRUMTwI8HWhLR3FvyOoPiq0iVNA9Tfja0p0tBDh8vZG21flKerxwmlSDNd8yrlReAKq4nokx5vUdxf0We3kmVk6FkbbkUXTj7KPzsVK47XBKZ0Pt0Eq6EAwTab8Dne3HC4daLwXR73vp8bft40JaLkjrBfHFBaqT3ju7g7QRjUG3BaY0BFMwLR1+cYZ+sRIK7iTZhOm9CKpyl4KYTgajKVt5qfkMVYvuwi/k8x3t2k7OTVo9ovv7Sc790EHbZYuv6dE7MIqGIWkDdw9SngwDqq7RVYlJcg4+ay/s8IGbkREvvRQ5jdfSQ6Q65HkTg3j+pawctYeAmSLBPYJjIH1016W84JMIex6khakHsa4blrWw7XpPdIbuacHhqTAOzSh9eBGD5celkmEgZoTlV4H5bw7oTUtqSvyiZDwr6C4s0UF/oegvEv7MoxtP9Bq9s5R3itnrSLGLlLfD6bqaTpiKx/JnmguLsdh4ivuBUJoTpjHNDMFlMdQ+EPIkI19pQvGXr7+PJAgoxpcrind71KGj+fktejzj/m+U9JfCiCofUu7Na1wrWUEoxfap2AIo9GQYzjRhFhjXMXu4ZSLOJCDiuE5MSxjXFZdGUf3qRoJQUwm998OaOQNUuvfoVzcyCKMqRU334goGjwoB+9AJM9Bq/PmMo5/cEXmfVoI02zZgxnhKa7EaSoe518TrW+J2K5z/oshe+ha9cNmePEobcd7Qv1yw+8QRLTTXK2a/2aO/eS875Tih9wOxsFBJu2586mifKvwciFA+wOxtpH4/4h564fn7IKXJlK3Qc3Yi6b1YbMWgKR4ee9DJGfTgZdccpXY/Tm96vLlRjFDysBSdpH2nityxiEnITs7mQCtqzPGsOKkz5XWkzlZjzFZfEoxUN8m8vbLALyt8beX31/akIBTxlwBy5e2AOeTBI5kDMjyb0T6rmbLeoLqXQSH9uZEFPgiaXxzEL9BXmnEhQqLoZBbA8itP/dWGWDq6H58zrizDQjwHkxGhVX+Z8JcTrhmJUcPBUL3TLL6U3b94EJ/GUIlZTqgN41KoyjFXSbM3I3Y3EGrHcFHkRS4lUrkVR+7+QjbQaSZZjh6ke/J9x0cRBIgQSsP4dI67M6h+orxuWVaGbbK0LxLjGVTXmsXXmV/uIWlxaCUJ6hqtwvSgJ3NycdWTIhSJZBPBJTEpDYrDi0R0JevlM2a/2Uv9WhYCrvW9ONQo6aEzTjLEcxikpeesKOGairCossORDMaIlWGaZzVeHgZhusg0M+xfukyiSajosK3MjbPrErdsMEdX3U7+kHv4aj6Di7UM4ShM9vCH/lIxrg3t1ZLFs4biYUSFiF8UhELacWaMuA6a95qxFyRaRQGzQmVQqxKjRIKdKuHxH4e4AHnIZsYhtPT+tVEi4waOFuNijnIgHucwftDpUNn3QBnx+ePyDL+sMO0oVmNGE85mTMuc2uZxXSnfQxXTI1U5O0r52qHHgEmJ2Dj6JzXDSgC7I8nmODeg2EkAqF8f0LteJOZKQe04fNKwfykW9MVG6m1/FA51kcXXk4CGSerwaVkwnWsxC00iUa7uxer78JM100yfpOiiJYBhLjyX6uWedTXSDo72pmTx55bllwF3iJg+SE8/37ujV4HgGpFyIzMO9OAZL2r6M3tSt2qf0AEplZ8ZhjO5z9qLzLnciprw+46PIgiolERJVWrSZSNDE7qJ8nZgVilCbeieJvY/CnRXmuWvLMuvPNX1wLgumOaaMQeA8kHRXwqaqkckQEwKFTWxSIRK2GN6gmGduP0jw7hYsvyyxz70kLKiL8hEWZVHXR0voWpkFEy8vgXANDXm6SV+VZFKmQIjI6PkIdJDwN3vKG4s03kjHgO1JjjFsBbMID61pJ+U2H6dH9ZOJtq0nSj+UoKdBB8qi92NzN4ponO0zxS7L+DhDwzJVKioUJOivFMsvhIDSxWF5Th/JXVvqPTJCy+UhrQuUTOH6cVefVpJvY3isa/fy2dRIYkM20chCfmQZyNM8sd70T6M42n4qJrNxAewKonnC4arRoCsocCMjagsrQSM8mGSVurkBTdRSkDah60sxLpGLxp0VZws5MdVkS288+LLqL3tJcWu37SY2x3ESLha0V/VMsymkN2yzEafYm0nO/fs9Uj15b1QnRcz4qqhe1az/dwyLkXGW1+Lh8I006fytNiJpFwCiWKcKw6fBS5/fEfjJjZdRf/1gos/UcxfSYCxnXSJhotKFJVKnIdtH2XS1kY8EP2yYveTxWlcmR0S7YXJugEJfiFLNmyXjU8PeWLRX3L8cwUBpdRvgB3iY+pTSv95pdQ58G8DXwC/Af5uSul7pAtyJHOcIyBWTaHOk1+nQHU7MSzF2ilU4J9M3F0o2meO9c8Ny1+3FDuDW4pR45gUxYNiOE9My4jphLQSTcIMKjsESWmhvGjl9y8V0VSsfq1wSqGnhnT/QNqMKD+TDOHE7JP5e8oa4nYnPflhxF2e46+WoASZPU6RVVNA9QPc3lO8SpSLOXE9P4lPxrnO2gPFfgFJGcy/tMBtF1R3wgM/MsH03U4s02sZJjp/rVDB0j5TdE1CXw48Pd8ydyPv93Pefb6kuDa4g5yL9vZUz0YL7iBtq/p6QicgJOzugH1o8WdN9lkAUsIcJsxDVgmC0HqzOjF5Lyq1GFGuOJUAui7Q52vh/juDr90paCejUC4RvHALTBdxuwl736L6UbKRoy2e1rCWa0uepaiBFAypdLjdhGs9wQlPQCUxN3H3nVCRhxHmDf7pmuGiYlpIm1HFRPNeAMRY6NNwEdVHitteAlxZZB1AJXqRudT/xTYHDUWeoC3W4OPC0J1r/FwG2/RPPFef31NZz9uHBf7LOWd/Bs11wAwRk41ux7VIqo/6hvIhUN306IMA1v2LBe1TJyDmPuJLzf4TwzR71EVEI5vbMQMxXaLcRZJR7J//bhmD/9WU0s0H//9j4N9PKf19pdQf5///m3/ZC0Qr7T97EG6AytxqnEH3geWXI0kXoAyDgjQL+N9vefuioLuas/75RHE/UjwICjusNG6n6S8N4zqevN+mmfARbCtS4GOPN5Sw/1SBKln9CqxSIiB6yHMEM+vuKMNNzqKCyzMBsvX15MVEYyajxPUoardYOWnzFXl0+F6MT92+xO4q9LMZSds89UYCXX+Z6D7zdIuBGAzxpmT2quLiTxbM/vQate9Qqxo9RRZfj8zeaaZfCqj18Kzh9ScevZigDPiFPuKj+JmURcrLrjt4GYLhq4L6NuAKjUsJdegF5yjsowdCPwqpabN7FC8dZcHZCfh0PTKIqdark3gllpZpaRlWUty6VgAs22ZTln6UOYIxkuqSOK+yrv+xtHEHj73vUK2w+mIjA1zsThaKya5HeorowyAYjzWEF88IM4evjXjzqewCHBWjU0RrxMevF+6+3GOZKtw/renPpC53B1Eh6gnKXTzxDkKtOTwztE8Fcwpzj5p5qmbkshpph4Lr12vKN5bFe2Hv2UPAHiaxOFsXTAtzmslQbDzurpcSrS7wayHNqSh4yeZzS38lhrzlvWTASYMqEK7GANW9UJunRrP/RJ0G8XzX8bsoB/4N4L+S//2/Av7v/FVBwAhRqDSP9FB7mE69YbcdWf8ioacSMIyTwi8Uejax+VuRwwvH6heW6l5qn3Ijf7tW03Wa7lkkOLAHAVj8LKGCoryX2npcKcYlcrFCyfIrYFWiL6RHr7tJauBhFJnxrJZswDmSznbhRp+AQBUS9iDEHGkLFqjSoRppPaU8O0F1I/VvJopNw7gSnjca+jPD4Zlj/2NFedmx+MmB7bOKr581LL94wepXE2YUKarbe8p3e+pxIq4amuuG7YPFNxJY9ChuTSrIpKbj5LToYDiH8Szh59BdWuobQ7l26GkuLSorgJMZErZ2WCc23unoX3CclXC0MTu2GI0GI1Jp3ftHi3dvREbbynh4sxukS9GPeTBqOJm/jKuCWMr8SaEAJ9kcnCE8WRJLk0duiWQ7FuakBjwOqQ3zJX5RMM2N+EFawQmO/v+2l1q63HjcZpLywijMJLhDf1UwzrR4Co5ZmlyIq7E9BGwfGBeO/TPD4ROYFpHUBOqzjifLPb233DzMUd/UNPeKYisWZeW9fH6A4bKkPzfS2++R9P+ux9xtBTSt8gBXJ8a2w5lsFEddgm0zAUuT8bCEO0hQ2H1qTsNQiu3vDhNIwP9FKZWA/0VK6R8AT1NKb/L33wJP/6oXsYMAff25EIWaG3kAi/se03tiYbGbgfWfB1xXs/1MM64EK6CJ+AvP7VJR3BnKO5XlmpI2FXsotjJdaJqlkzbbzxNdVNTvE24nQWFYy1zCpEvhoncCwrEqMGe1IOn3uxORiLp67Jv3g4hpnCXM5YG09x3mYZf98Z2w70onwJTW6FaMRe12j61K8Rp0lvqVZfXnhukflbRPZhyeLdBzKFJ2lHkqAyiElirutOlhiwmRorIsxfND0PPIabGYw4SKUQxXFmLIIXp2hQqCfiufF8uJUkwu0QwqioWXyq3A1HZZhjxJFmBzd8EYIRlVRbaANyRnxFAzZ3q6zUNXC0dYNNmRRcl8gtLIzMkpC7aUPGmxNGJkqoRgdnRtOnYwRCkowKjYhanHOZZ5BmBS4gHpdhNmO6D3rSgknSMtZ0JCqh3jWUFSgsYnK2PuQslperA9eMazgpu/aeleBJJL4CLz85Yniz03+xm7V0vqbwz1+2xJbo5y4sB4VrJ/7hhXUqqVD4n6/UT5/oC+34u8ei3DRNonYpSajul+ko0zaZGxn4RTUbCBcS0ZbvmAUJh3kfSXrPR/3iDwX0opvVJKPQH+r0qpf/bhN1NKKQeIv3Aopf4e8PcAqmLF+Z+29E9K2gvh27vMA69f79G7VmywY2T55xNmmLP71GacQBNtIpYwrWVijNvKgnYHQ/M+Mn8dqO41h6ea9qX0m91W8ID2mURolLDAQgGHTxR9Z5i/VjRvJ8wgJJThssbMC+xDLzPfJn9S1VEWpLZHHTp0IyaXrCuKhx3h5g7Irrp1LeQga04Cn7jdwWYr16Vw6MUCtZyhpkj5LrL8ZYFfOKIRr0LtkyyCdhRnXh+kDr+7x2mFHucyO3GXH3KlRITUj9D1uG6G2cuob932JGeJjSBKMv7biygoi3qS0ScAEJCAlu9HGscT9z/F+Di2vCqz2WaNr2TXtn0gGi2aA6OF7mv0yUM/FPK3dAQk+MRsZqoz4GqGhNtN6FYCmp6kj5icke7MrGSsCpKRtLp4GMShyGRL8MGjNwcx/BwGYozCr1iviJXFL0qGc3dC9w8vCrpLkfbaDur3svPuvqi4/wMFP91TasE2XOFxJvCbtxeYrysW7xXVjQSAqRZrPJXg4Scl3RNpH7o9zN6IC5LpgzAUzxeMlw3tE2EXHg1T9AjjGqaFlAKim1EoD2iY5lLOuI2ieZNobgN6SPiZpr38HWECKaVX+e/3Sql/B/jXgHdKqecppTdKqefA++/53X8A/AOAxfqTlLRi9qst9WtH/7RmnGv6c8O0WNG8qUSXHxKp1My+3GO7hsNTJ2YkM9F/x4MR7XWdsAdFd5XoLzTlnWb+JrL+1URzbdi/0ExLqZ1UhGnB6cEzo6Cc4yqxs5poCxZfDdjNAEYxXFSM6yXV+w6zER79aQBH4WSA5sOBIiXxvrtao/ueuNmdLL2VD/KzTrjeHId2pkQ6+DyzL6JXc+KsRIVI+Xqf62D3mPYGCSKpKlB2LbLib95gbkrUYiGEpf1BfACm+cldmNt79CYPRU0JFSPmuMDzwJLTvL9MIop5epGZz2T2wDEQ1JWQg8gsw1r0BhQui4Bk0apEli0nzEEIPmr6wBHJGHQjkt5YaKa5jAC3fcLtRe14LE+SVoRlgR7ycNacAZBt5cvbXkqhh0OeQiVkNEIQ3MF7MVzJ9u3x6TntU1l005zcrRBs5gguV9dibBMt3P2BYfijjqcXGx4ONd2uIiWYDo7x1rF4pdBjwvYSuLpzjZ+RsxlB8fUkAaV6eMxS/FwykH5t6C/l+U02Udwrphn0TyL6cpC9Y5s5HBqSTcQ6YQ6a2ddCObadCJH6c8PhpcbX37+O//8OAkqpGaBTSrv87/8G8D8B/o/A/wD4+/nv/8Nf9VrRKPafVlR3lurNntkvB6plxXBRMi4M2y8qisuC6jqTKWqD3U3MQ6I/t0wHTX8pdZHtFNNC9NfFRi7e4bNI/0RRvXfM3kUu/8nI/oVj95nU4Cog0TQDRrbL/IIKDi8UU1Myf2up3g8U9wPDZcVwUVEYLUaYgN71qPFAmrK2fvJoZ8U198UVpqpI2102/DhAqkWNt5ihnRMvg2kU85Ms5+X9LdoYMQFpO8EnnpzTfr5kWBlUqqnuPHY/CbhWFbIQs78ATUV6doW+fRD/gqKQToe1QvmdyZOhhlFEUMN44geoppaFDqiul9T/ODVptz9Rj9WsgR9dysIpXU7jhW6djMb0XhYenMxcdTeJf8M4ySj2uiIuavH4czpzPxLlJlHd9FmJ6ECDaT3RaqalIzUWtS7F1Tlr9VXImoUIqc5g7iQWW8lo8RCAU5Yznje0z8SohCTPwrCG7nkgFQl3byhvpf5unyi6LyZefHpLYQKvbtZM20JKr0FTXhtmb2QgSXAqt4qlSyDSd/HM1IOi2CVcl2nNVXbSzl2i/jIxXcg1c7eWaZXwLwYuzvds9hXTfYXucytxEVGTonpjmH8t3aTjANT2ynJ4qfCzhN3/bmjDT4F/J7vaWuB/k1L6Pyul/iHwv1NK/Y+AL4G/+1e9kJkkYu4+cQxna3Hkeeip3gbctmA4d/RnhmlWUT5IfdOf18IC20XKe0+1MWw/s3RXgn5PS5kS5Laa8lYzzRP7zyPtS8X8q4LVryeKnWb/0jCuyDeHk6+8OyRsJ4ywaam4n1uqM8P8jSjOks0z65XszPqsonioMW/vSdMku641eTHkdFwpSaGPU4jaDs5XwrWvS0Gzp0l2UWehXEmqP06PY8tu7qmNIukl3YWhfWLF4hvAalRhUf10MvvAGtL5Sui8Wkg5oSmyXDaIe1I3yLj1vPOTZxKkQtqAKkZpzUXpZx8diFIWQYVFKYKq3OMutoHypj8pCVUue/Suk3MKQa5RCGAq4rxivGhOlt/FLqBG0UYkpUiFEWXirs+eA1W2bc9ioEllvwKFiopUCX3YHCb0fn/SKKhZI9TosiCsa8YzmUugEtQ3oovYPxPMwR407o0sft9A+0nEPm/5/GxLOznevD0j9VkdOeTn7EFS9milG3XkLFR3kin6SjYd00kAUIHsDgTDWjOsYVolwpNRWrobR2gSxcsDF/OW67sl6V2JVpDK3Em41TRvZPgISrpAoVC0Twy7HwEx0bxTzF/9DhiDKaVfAf/yd3z9FvjX/+O8luon1n9+4OH3ZvRr2XnLjaPYBexuono/oKeCw1NLe2Wk96lg/9xge019G6jeD5S3E3d/WLH7XDgAYREIZx577Sg2CrdT+Cax+zwxLhxnPw+sfzHRXVjGlTrVnGRgzQyJNJDnHSj6K0WylnIjTDySEqfbhcrjqwqWtRPn3ZSI8wo/cygfcW1e4JBHbk3i8DOMqNVCnIgrd1rAKspsgvHpXBbHEGXRdhO698x+vaG8rxlXR/24BTw6GdSYsYo28/gv1oSzhbx37vun44QhyGj+B7p+pUhVSSpF/6CcQc0bAUSVgqYk1k40FbsOvR+pgNIIt/1oGHIaNR7jaQBMmiQ952xFquR1/ExEVdVNf8oaZGR53tlDntWwkDkFsRRWod57CcBjkHkFXp1UiKb16AeZe4CXkd2ME6zmdJ8tGBcyWcj2Sfr1udsiRihAEsCteyJU32IxonXim+sz4qRJvUF5hTlobCdu0/WNLLSpVthJQGjtOVm32xaat5HqIYihaYRxZdm/kPmIw3kgzQP0Bt1pYhkpLnqc87z9zQV2awjLgJp5uC9oXmvqawkGx3HnoGifKfqnAbfTzL+E5Zcj5fsPqNy/dXwUjEEA8/V7zqYL9j9eyHy1M0kL3dyIKcJ1j/Ylu5eO7lxT7IQJ1T1V9JeWZamZveo5/5MOM9Rsf6yYlCHOPf5C5rjZvcLtZTJLKGHzI8P8GyVIeyfmjkfWmUwb4tQ31h6CFcdXANtqzJQpwEnRn8nchHFes1pYyjvpXcdC49eWcX1FeTtgr7fCsV/ORZAzTuIJMIwnXYJfiy8cRyBwfDQBCbXYc5v9gL3eYe8NMX8NOKHxgPDx+wG2B9T5Ar+qT0YbYqhhgFJq9/VR3y8uz7EU153QWKa5vF6x8d8y5nRDOCkGdS81vmqz63BMsviMdDzQmjSrUb4QA5KqJJUmt9smCSj79mSrpqaI7qfH6TxKQZBZBCLE0iIfzpOoAZlEBegx4w1KFIrHISZhVtI/qejO7clDMGkpBaNVjEtN90TScRKi8z8fqcsJYyIxKrSOhGAwBy0OV73C7WQCUdIwzpWQdxIMa1mQvkmUd7Ib1+8nuaeDp3tR8/BTk2XFAXTC3FlUVPhFQC8mpsEyvatRgL+YICrMm5JZxh3G1SNFOFoYzhKxiNRvDctfR+Zf97i7Fr/+flDg4wgCR+PPQ8/sa4NtK8alGD76EsLTgqIxlNc9qzGy+6ykP5fpLsUm0V0pbv5lxf55w9mfTyy+GtGTo32q6S8lpUo2Ma0SyWncJrsRFbD/VFPeKlwnDDDtJZILiSiPmUaygWiAnBUkDWES//jF155ia+jPxXh0+7mlXJlH3fcoXnjbn9SoL6SO1z5lY4pEsRnR+15Sfy8tNH9WMi0Mpk8CQj60slsfr5dSkvK3PZqZtDJ9PLUsU5HtvCrJRI7TlnxtTi23lAdpWiV2XckIk8/PskFH4vT5xR0X7H4UwK3LxqSLGeF8xrR0qJBw20LmKj7sJONoKqanS0IpLjfuXgaT6N0BDlmTUJfifuRkzmCyWlqGAQlM3SjeA84S59VpcKxW6nGq0+jR+wEdZceL6xnTeSOy5DGSCn0SF5kxtws1yKxI8fZrnyemszzbMSqYT4L420ACukOFui0oDgo9ZWHbfcJ20J/JvbdtIiVon8icwOgS9XvF8jeB2avuFGT7pzU3f2TpXwTxFNhbyntNNInpPKLqQJy0mIzMA0wKe+Mo74XopjynoSTJwLgWfwK715z9qaK59lTXI/ahw581bH5Sw3/w3cvv4wgCIQhw00jbyu4lHTa1PslAfa1JT2vczrP8smf3ScmwEr52eQ/dMwEAQ+WYfxNxXWL2NlJsFd2VZlwlwiLiFxHQmD6z5hZJ2ok7mXFwpIOi5AL7jCNJv50T2KNCdhnOBijNtae6Twwrk22nHl1vi12iuve4PXRXlt2nDpNJPGaMRFfhSuHJJ6Ow+5HypgNqhjNLKBuKdYndi0kEUaYnpULGlvl1RWgs9uCxdwdpBRoZQ4bR+FUtizSRh4qInDgp4QeYwyipfuHwq5pkFONcPBvq99mZJk8TSj77DoaAms1krsMUcFtIhSY0ebxbHkwaKydBxSpUF04DRVIhfAmQ1P/o+MvRLag7GpgKgzDVhbQ0Hw6U+55YFcTKSht0s5dSK7dq/ZMV/ZMad/CYnVCQozLSgkta7k+RF89CDD7GS4+qPdZFwpgBTCe7f9uW+IPDbI0I0JSk9uWd8PeHpdCEj5Td4LIDUAflrWLxTWD29QE1evxZzeaLioffh/h5S2EDw12NbUXo5lcRZh5dSPYXosLcWcpbcScCTurKZGFaJvw8Cvnt2rD6ZaS+EQ6Fbif8quLhpzX95UfuJ3CUwIqRhUJFJ9x7xanNkrTsWuPKYg+B2dsJ11r6tUaPCfVK0T9RdM8j01Ix/1JRbsWGyQyavlN0aKZVYFoH4l4CgekkXRsuIqFW1O819pBIlkwjFTZhqGUCj+0lIwhlBhGNcA3GhaO6jxT7SPUQTwovMlAzrC3VzcT8m5H+0jEsZFa9qo0QSUol5J+sa1dTwG0nfCNjtWRyjaN6qLBtzI64mVF5CPhaM6xK3NpR3GfzkKP6L3MZoiYrMCN6P8q0pexadGwlum6NCkvMIC04e7MX+nSeY0jhUPPFyQMiGYXuJszd/uR85C8XDBeV9PwjuL0XxWA3gQ/E9VxKGHtkGCrhD1gpf8w+PPo7gDwbgygk8QGsQQN6kC7DUfqMUnJeVlPd9Ni3DxzHzOneMV7N6K6s1OgNJCeuvv7M4+YjV2c7ChN4t1kwjbI0psHCzmE6hfYKu1eUD1Bl0VFwQk6z+XSTAk2CXlEMifkbT/W6JVaWzR8sePh9KP5ww49XGzZDxfvbJZjEdCYmI8VsJHhD6Cz2xgnNeJ/wtTxzxUZYjt2l6GNiHdG9YvaNZvF1EPfi3C3xq5LD84LuqTptZt91fBRBIBWWeLGW3cZLD9keDMOZy2YOj8w3FcnsNWGClTtBXVUE/RpU0Axnke2PFc0bzexdFCT2RqG9pm9t1hPIA6A92H1GlY3MD4hGApB45knUHyrEE64T+jGAlxJUGFxO6kFfmlNNqKckQpDbwLiytE8dxS7i9rk3rNVpCnJ3bgiFAD3mEB7NNrOJRjQwXih2nxtMbzDDkdkHZjCQZBBKLAy2c+hRvh/NUVGW2ZIJ9GQpl47ioUR34omgrIBwcTUT/v0gIGScl6TVU7n2vUdNXlh9MyEX6SnbsXdISl8JEcgMEb0L0rrcdygfiIsaf94QmszvH2VgiK8Mocqg4qBQywpTWPS2k7kRfS8MxLMlaVYL2ejYbixs9hoU5qSakmQubS/t2qoknM9oX9Tsnxv6KxgugsxSVGBXI2fzjrOmIybFq9sV00OFGgQkLHea8g7cTnZ9Mwr4Z/J8QlUqVJKA7mdSn5tB0Pr6eqK47Ym15e4PGm7/C54/+tk3PK+3/Gp3wfXdEmMi1J44GLQLjK3DvS2obxXlg3go+FqeLydjDxnOcgAoI26jad4oqltxW3atRw+ZkfjC0T1VDOtHTcR3HR9HENCK6apBTZV4AGbyh20DSZs8XDIrtTJfPSklo6JCTo/yztu8SRQbTX+ZOHwi2vD6RgglZkjMXkN1q4lO7KHGhRBCbCug4ZGWmcg93iqrxh6UpF5Nws8SelCZVyDOR+WdZAlmSCdaJwrGZfY2QDKC3ScmewpIkBB/OqGUJqPozx2F07jtKHjCkHA2Uhyg2Cl2n2mGi0gsPhC7mCTvoROYxOgiadQQczALCndvKB4ECyGJhLZqNPYg6j3dFFKrPikZ51K/264EhQzjyKrI4iBmmUI1FgpucdfJBKda0H6Vkqged53YnPeDNFyqQoQsx3uoJQBMc6nxbS+yWhVE+Sa9sDx5uKmIhSM2jjATPr2eIpbMO2h7kTQ3lZCkljNSYTl8MufuDyzTIjGuA/aqpyk9SiWeLXeclS3v2wXX+xn7b5ZUbw3lgHzWbWLxjYDSfuYYzlzGFGQT6S4N3YXOGoxAson6taXYClEIreifNzz81LH5WyP/6u/9Gqsi/683n7F/aDBFYOot9n2BCZC0o9oq6mvhGiStMs4kvgBJi85lWor5aHUtlGR3iJTbQPEwEivDw89mtM8kUPhlDnj/KQuI/mMfInQR44YwL3MKdxwIGVFR5LahEOAFQKeUUy9Jy0X7rghOPOBsB+NCMS0lXT+OcSb7DOhJbnJ1De0zzbRMDOuE2wmN2A6C+g9nEEv5HbdX2DZjBbVcWDNI3T8todhAvY+YTiYUHbnqycgCcl0iFoIVCFOPvJiOoGT2zXcKP3PiRdB6bJ/NNEOkemjYvxDXnFDJ/LljMEpGACMzZKVcma+Rl1kNtpMdTeepPGZI6CCW2vowYPKYL/WkpF8ZcdrJHRCybiEUmmIvSjgVRD6bnJFsYJwwh+4xLa+ErKOMERPWbsDsDLo3xMKSCi0SXqMyyOvFOAQJ8nFeocNaypWs4NTtdMIwVMjzCbJhalrOCKtaXKEr4VBIqSYsUnU+UpTy+i9XGwoT+PntFQ93M8xNQX0n916yTKgeopRkc0f7tGCcCfI/LE3uIkTiesRWHp0U6lVFsZVMQGz0HfuXiu73e37vk/e8PSx5e7/A9w5lIn5bUFwbbKcyziS7vfIy3ap7mok+O0UshcUaKuHBVNea6lae83ITcXtP91yGn3RPEtPao+fZwfiuoHll+L7jowgCMvpaYQ4+U4NFHRELJROJMwUzOEUssl7fiG5ApQ92U6vQpcyf05Mgt24vIgu0pPXJwriAUCV0kP5u+ZCEIVhLiZCM+BK6vcyKG5dS+4vmQC66GVM2spAbPpxD90ShvWH1q+nkt58KLUDcIA4x7qDwdZ5M+yAzFlCSxh9NJKPTsjueidV6sfFC6tm3zO721K9mhEZQ/1haYrb/CuUHDkDZnlomJeVyKqWT1bb2iVAqppkg5tW7hLndYYeRZpqjR+nQRCP3x3URO8gu6LYy8ORohRWdxt32J0akqqqTAWpqSgEpC0eqCsJcvBBIon+o38o04GPb8YgThMoQS41ZFjL0ZfDiBPzmWjwXQ+A4s0DmMqyI84rhrKS/MByeacZ1OqkHwzxidCJGxawauW1n3LxbYu4cxQhul12pvEz0sdmJp39S0l08TjUe1gm/DrLAdMLpyLQvaH5ZyPDcfcw1u2b7E0iftKxmPb96dwmAUgldBMLBYXaGWEK3jOhRXIbNIG2//ioRCglGfp7oMwvWbjTNW3XyOiwOkpXc/Y2K7Y+ljVitewwwtA73dcnyl1Buw28vu9PxUQQBAF/nSN/57CHnKX2EC+FS20EsopMRoclRSONrfbJ9Ps5vV1FS+WjUKUgkLf+2O4nUw1rSqvaZ7PBmPGYIsrOPS/KcN0nFdJC6+riomvcjzZt0mkpb7BXtE83hhcJMJYvfdJje42clfmGxfZbQHryIl4zC9B69H6VdphThasVwUREqdTKrOHrdx6ZAWZEfq0OPzT35tG/F0ENpAe2Kgni+wC8rUVlGUa1BtnBbWYITBDsUQo0elpZxMad4+thLNl1ktpUujW9sHpuF9M9Lja7sKXM5Tg1GL4VkZLWQfiYvgphZSbiYMa0cvhbHJdPn+QSbVgxCmvJbXQIzCcClfZR0/9DD/Ya4233gkCyBIGVQub+q2H5mObyE8cqDTuh9bomqhDGReT1w6Av6rxYsv5Khnr56bBeKw1Fi0rKZ9OfynIRSUmuqAEEROytl64Nl+VpR3YlQKCno14rDC4U/m1CT5uHNEj2buDjf0w4FXVuASYRFAJVw95b6rWS501zhZ6BHyRD9LBFmETUqqveG8u4ogZaNcWoU+08M7ScBe9mxrkd2h4r0vmL+tWb2Op4C2vcdH0cQSIIBRKOhFouuUEn6Yg+BUksN60uNO0Tp2SsRp5gxMtXS9lEhnaiTMpaa0w6jJ2nrpVqifbFNaC/agmSkVEgKzCQZwymQOE4DTdxecAlfafYvSupbT3k3Mq4cSQk6e3hu2H6h8WXD7K2XSTjI7n/subuNKNtUjEIjrkpUP2De3FGNS3Sm0AJ5/FmQz9QUqNqJDt8HWXhGBnSkzVYQ/sqjjcb5iJ4V+HnBtHBCJ83jro5lSnTCeQi1+BWaXiyu3S4xeztR3PTo+z120dC/WDx6DVrFcFkIXrEXAZU/a4TUdJywrDWqF6VlcEumZR5UGkAPYlWGUkIk8gE1eEw/CRciT3NSXRYyDcPj5KQ8G0EZg24aeHLB8Pk5Dz8p2P0YpicT1WJgXUzs9jVxzB4KNuFHw81vzpn92vD81wHbTowrQ7TkAae59IlybfxMzFmjE5GO7jTmwQjBKIkStbyXIbkqptOA2v4CxousX+gN5XnH5fLAQ1vT7kpS0KiDQU2K4kEzeyMgY38hz6w9ZLxqLc9L+d7QvJEN4fgMRStuQYeXifBswNUTU2/Zvm2o30qpcForJluqf8/xUQQBlWQXT1YR0SK+GQLT8rFVqGJO69E5I8iqtEBWYR2jeE6HXb55uSYGuYhH/CBmowtxJOb076QQkHEU+WaoxYRkWkgXorqVgDDNpC3Y3Aij8Vjfz94EhrXGN4r9C4vL/m5icSbDJ6aFwW3DiTmmYhJSTzugDr0oEBfVqb8e8/QdGYgaMkkmgC0Il+Lco69WqNGTQOptK4vJdJ5kHSFnTJCzppAw46O3H9mUonoQX7vypkNvW9I4ojaRKkTiohLNRCOf4TgIxG56qcu98D2OcwTTfg/WYoyhzOzEaW7oLx0qOtw+4LYWu+2FLBUjqSxEd5GtyxSQUkSdxrRXqPmM+OKKzc8WbH6s6S8jYS3U3mfLA2dVxxQNbV8QE5hOo/aaYlPQvEvUt15AtqUEABWO48Fy+WDAozBd3hg6hRnlWRMPQskm3V6yzGkmbMNpJjLfsPLo2lM3I89WO2o78dXDmsN9jeoNdpfpyQdF8y5larFYl7tdLllX8tw0rzXNu5gZjblkMqJ8bT8J6PNRXLjf11TvDS4biKgoQLSeUm5hfuRBQCyiRmJtiVafKKHF/YifWYZz0dL7Cqa5xu0EmDpaRR091pQSMow5WtYv5XeON1qHY4chmzI06qQgjAWoCVwrPxtKTqoy00lKOFxEpoWiulOC1hqyTttR3k3YfcQ5jWtlDtzJyipLYMuHbCh5ZgmX4jZsRpODQcCElCcTIQi5gjAzTI242/qZ1K3N+4Ly3gtFWMmE32QVqjCZ5aeYFk5Sxv1E9WonZdSslPbcGE8kIRm2UdBfyFBOM8gDo3fCYFTucZCImbyw+2IC9ShCUtmTIKwbAXm3Ipnm8lzS/ELua3QKX2adRZdHdeUJuuPlDADTC/5BStBUMptwLNGLOXFWM7yYc/f7BZs/9Mye7Cisp9aJZdWzcANzN3DTz3j9sGTcF+ggzL7Za2jeB8FCspGKzLFI2Ewc86VknCALCC0eEyq7H0cnwKA5SLs1WmQ25mUUYLYKmMXEohloionzuiVEzS+vL+kfKlRrcDsBl90O6luxxd+/kABiOyGnHbGM+VfiRTjONe0zuW7aS0drfCaBJhwsxXtLscnnNiSiI2sgZE5HsZsyRfy7j48jCKBkYmwY0c5IIDAaPQWK2x4dEt1VceJjd08U8UFj23TiCAi6nsFBn6jvI7ZX9Bcy6nkq5H2i5cS8ikaQf9uC2cgN8JUYcNpWou00F9chexATiGmRaJ8lynud5ccK3xhmhaK68xS3HXqw6LksHjOIkcaxD+4OHtMHppWTADME8c3zUfThpejwo9WnoZnJQKgV7bNEbCLtM019XZ6YY7YVz3mXZ9MdrcaPXQnVDXBocUWBndeyw05eGIDjRNlU2O3yNANQ+UiqnBiL5InDKCXy5N0Baw22FucgEOZiOGsY16WoMc9KGece0remCjWvWma/zOh/7QiNlRFaM0NwinIThHbrMnsyRqaV+Ot1l5rdZ+C/6Pnpi6/4m7U0zX3SaBI+aX55f8HdzQK9cZheUQQB/Jo3iea9xwwCrvlaPAXNEAVcjuoEmB4zTj+TzUElSIU64U1kRuCwguFSUHgS4CLVaqCp5OEaveHdfs5m1xAeCvSgRbtyEKORcpsIBew+lZmEIFyUWIoXxvxr4Rr0Z+KKdez8dFeJcD6hbCRtCoo7ETBFK8+suCxL58cdpM3ePinYf2Lg3/vu1fdxBAGjhAKaWWXaalGROYPSAXffy1CFy0LQ04Wk28f01WfXFtsJYBKtErn4IGOdkhbeQH8l2MDRnw0QwKeB6r0grtNcXIm0P3IQhFEoAyzEoyAU0iI0vSLUie5Z5PBSUzwUzN44mmvRdCcFdoqUN63szhcN/VVxsu4SdWJBHRLFN3eolPDPz5jmApDpKaKiogzIDq80+x/D9PnA+FyjOlGy6UlRPBjKO019Z2jeDLi7/nEeIIgngbOk0om8+TgEJM9d1L96LWYmZQFNTWwqoXGHeGLkKRAlHgh1eZsBzadr+suKmNPPYaXxlcOMSRb2wYOGUDuZNAQMFxW7T2Q8lhklFRfWY0N08nmHlebwWcI/H/j8xS3/udV7ajNRas/Bl0xJ85vdBV/dnTF+M6N+q1lk6q7bJ2H1taIQPPJLfGmY5hkbUfKMaC8lpR2gbyQAJA1kzxfxl0jSkaqlVTquI7GSDSIVEV0GgtccuhJjIiFohocKe2cpJkRodJDdGQWHZ8IvGC4DqYzgFXZjqN9omveyobVXImiKTn7HL2UTUL3Bbp2Q3FLu3hxkM3Ct2J5rLxyZhxcluy/E//D7jo8jCKREqEXHbfYDqh0w2SoKpGdsDiNVTITG4vbSEktKlG31TaR9IsYQKiLsuUahkjyUxSbh6yN5QlL64j7rv704xA6X0mu2nZQCw5ksfEndFMkKcwstfVqVxTWmUySj8ecT3WWif+I43FjqdxLtk5URXjYPzTR9wje5Fs+jt8azAtMv0V+/x765R50vSaURtxwgOkN5C+W2RCUrllPzeCpXgFO9f7yeetdKBuCsTExyRuTDGtSYe+vjJAafedioKoqTDyJGEea1EHyCzBtgEKOSuKxlWOimAx+YliXtExnUWewkO+uusmnsQVNsrKgwC8SnMAm/ITqVmXeCtwxLxbiW7CVaaL+YuPrkgcvmwNwNHHyJUQkfDVPSXPdzfvHmCverivUrUEHaa3qEcptOC2E4EzDPV4phLWCfHsTZx4zye0LtViLKyUQv5RHizpAYVpIJhkIwIj3KRKtQJ8xBJNfTIlCue1JSTK9mNO+l9tdTLkN9ZpaeSf0/XAbUaiT1luLGMHsNxVZIQsNSCVDYJLHPKyTgVG+s7PijZK7JHtvWkg3aVgJef2bZfa7pL3J3wX/k2oFjS9A3luQ0VilUO8h8OfdYy5h2RI8eU1jSXrjmyidMOzIfAsN5SX9mcs2XBT9KFmx5L4u8N4pUJsa1kJCKDVTX0io74gBmBHcQh6LhIorBxFbhtjBcIDzvKICTPAxgbx1hHk+STpk7pygfFMVOU+ystMWGQHndfpD+iymp8jJSPF7fojdbGUJalWIdZgxqFPegaOfoUdx1TTZUNVPKrsARt89EpUpsyRgnMRRxVqTLk5fAkIODmrKTkbMi6rEC+JHVeRhFwkiaD/h1TfekZGoUqAZfigPueCaZj9tJByAWorcINdkkM4neIgggpjJrMinBbXyTadnLSTj0zcTL1Z6QFG+2S6piojQBHzUJ2LQ1h4ea4o1j9o3U19NM+Bco6C4U0dkTVyIZ2cH9XDQgxUYGeJAyXyJ3TbR/fA7KjbT9unMtFnRIeVDeZQxhJuUGwLQSsc9wV1O9tSzfC+noiENpn4PQhcoAYkStRuJgaH7lKO8FZ/CVPLvDmWJayOBSNYlpSbGV7FdF4br4mZQO5UYmLJku4uvspflcMZ4H0tyjDha3+R15DP4ndsSI2Up+7htLuGqwXSmKuENPmonLbdLS7jHZZx6jTvp55aO42fiScWnEj6A5oqOyM5gBzCA3NLrEtEjZQFKAGrfND0sjIKHda0KV8LOIn0P9xjD7RtGNluHlSDCJ1IqyTHvQDxrlFW6fJ9dqRagUXSFCn1IdWYSVTJXZD0RK4rxgeNLgKou1Rtp94ygEG5cdijOwIz12DSlzGPqsRZiiDO1URylwA5eiGnH3HfphL0ao1oiBybyUsqByUn8XVrgJUxTLtBhRh0AyhlQahsuaaWFOU3u6y2PgTCQnIKYe1WmXVEFstPw8Uny+4/eurimMF4be66VoNRovSr3RYCrPs/Mt53WLJvEw1LzfzukeKtmVXSRNGrW3Uu9vFMtOBDWzt164EEpatVL3587QmNt+ZLLYnTr9f1woVDhyryXlHxeKaZ5kiG0hNt++kYBlOk6ktHGFjMGbc9Lzl+8s1Y2g88lwYgHqSTLT/eeKcRmJTcQsR8KmYPnnluJBfv6oPQglDJdReAReYVstepUE0yxnUUXKVPfc9ZoS01yz+9TQPUuEZz2zRc/+tqF+ZVh89dGXA6D6ATt5YCaGi0tHKJcUty2qn/LAjyA7ZyXiEuWDDKrQYoIhrjaBAomW7aWWiDqH8j7TK1sh9YQyg0Az6J8EhiuoXxmqG4naw1oJPz+B6TV+GWi/mPDvLPW1ImnHeBWIVURPx4k2gJLAIvMTwB0fiAJ8qbEpMqwd8WWRd3C5BFOjiJ85is8bZq8vcbcHmd+XLbpSacQ4JEn3YzgTHnkfDPYgo6mL3SOB5GSO4sAMJfNXDdXrnYwKqwsRCYEYgfiI8oLIx1mJr3LQtZpQG4aVoT+Xa+Z2wqgrdhBG8I048cZZxFe5hx8Vdq/RoxhzLJueuZPAfT5rqb4QXCFETTc6RmcpCs9hKBiDISXF7e0cfV1QDJKey8SoPDimF78+2yGGMDsBG8t7jz3oPGFISg0V+BZZJilJ/ZORhU16NI+ZZoL/uIP0/6MVYNbtHhWjvlGPrcBaPm9xb4Rq3sq1mTK/QH2YFV4m/MqDjegqEG9K1v/MCKaVuxKhlp8fV5LCE5W0N6cjk/VIhhM1o5kEBLRDIjrF/qVh91PP2ScbzpqOX319RfPLguWXkfrG833HxxEEsgQVrbDvt5hDdZKajhcNthX3mOTEiea4g6m9WFZpIKmCVFrRog8eFQpUMKhkODxXDOfgtobZ68TiVaA7l755dQvlreHwaaL9xOMbQ/1e0kUdlNwQA2rQpJln+nzAzwvKG035zjKtIqGOmPaRsouSmxYKaSdWt4JKT43wHFSAWMG40qcH3HaSTm9/pHn4WU35UNO8C8y/7rBv7kmDI14uxFVHSVo9rsSAArKIKIJpNbFKJCMaczXJAzOcl5QvC+q7gOnEQj2ZrAT0OfXXKvfOs2lKkVusLnMqxpSNUiTg9ReyaPxSaLTOBZRKpKQYmwLVScvy/c2Su80MYyNaR7RODL3Dv6/RoyKWkXEWUCYLizqDezCnNP5oMKInyX70JJwGQb/zFKDqkbfgDgGTBV6+zN4OLgeSfO72ICBydy6U4CNhrHmjqG9jzngEr0hGNpJQy+4fC0QLstFUtzKZCKRrMK4/8KAwgi35eSIVCcqAthHzTcXsK0W5FUPS/kJwqVjIDp9sQg06S9dlbF4yYiX+Ia9FdCLS2tx9phn/pZa/85Ofc93P+Uf/6AtWPzdUt1GGndwP37v8Po4gcGS9GeGaqymI+UUeLBFrK+0rLamuPXjMps9koQitcKUh12HtiDmMmHWNyu4Ru8+h/czTvVDMf2No3kZUkhvXXAfKjeLw0jIuE8M52H0Gj97KAzCeQcBCn4hNoH8i9aDbaEKZiGU61aOxSJhO4zaZuGSVLB4ngUDQaDGcNEcrs9y3Nh2MTxP9VWL3hWLz4znzVw22k2h/1Cq4rQBF0UmWAkARMRc9q6ZHK+gnyzhaps4xnVt2CfSgKW+t7G5TLlly6nx0HDqqIUUglcdap0yUUbIb9ufHBzdR3BrsV5ajN2PSUJTppJ5M90LdPbqOhSr3skcFSoBWey1tPXsQxmKyinEhD7z+gK1pswMUSCAEmOaW7kre33V5ruFeWJZJS70fSnWi9ZKJZeNKvP9kbp8AheVW+CfD+hFX8k329M/iM7eV8zyKsMSqLafplhMAGGYi+IlVRM/FGsx+VdG8lnOZGgkA3ctAagJqbzCdxj5oTP+YFQAUW+EtjGv5v9sJw9HXsPtCcfWvvOVfvfqK/+DNj3n4kwtWXynKjfgZVtcd5mb7vcvvowgCsbKE8znm3QNkFxm0TJwFTvPkk9UYreielJiVo3pvxczi6GbbT8RGRCrmbo/76oDZzbHtDNc69p9YDp8Edj/zDGfHHT+d2lSLLyPjUnrAsZBSwR5EHWh7RfdEHgg9GmFpLVIe/SQpWqiyvFeBv5zwc028FuON8p48215qaZWzM+XBBLmZw1pS3fpaMUwKP4u0LyLdM+TzG1n4uhfg8kiAUl640mZjiLeOjc1b0TELdpDKiKo9oTQMMQuxDnm3bAQjkdJHdBRyckdKtTp5Lh6HgqgI1Y2ivknM3ozYw4SfuTztV2eatzq9zjSXlHi8FEKNBuJDQXGrKe8UxVZaW+LqBFOtKe+lBi92WS2IXAdfa4aliLe6c31K0fUE9U2izoNCYyEdJNcmioN8bVyqrEiVRWs6AQDdXrKcIzHnOG0olNK7FyBYsCMRnMkiFUm6vH+0km2Izbjs6HEe0JUn7h2Ln1vKe/m6rxTt80T4VGiJ7nVJcbQOywanw5WIy8zOMC6TaCFGJUGol2d085/x/Jf/5p+xtAP/pz/7mxR/0rB6L6P43C4HgNsd4WIBv/7u9fdRBAGA/mlDFcFcP4jV2LxBWU2ohAJr2kmsx3pPMwW2P2oY1nPq96VYccVIMhI0Ym2Jz1a46z1621L6iA4z3MFR3Rj2nyjGdWT3I/EeqN9CdU+mIj9Kk1OOvL4RN5nZK0X7VCydiHkny4cZH9uGDAofFJyNjHPPcLC4B0N1rR8XmJOsJeUFJoQgeahsKxiG6TV+Jh4GscqW0nUgnUX8JACYMglbTVgrVljDvkQ/WMo7aZcmQ64lNST7OKzCCSfCtkdAVJ10EjLe+rGm1l6a0Se67EGGW2ifsLsJ+9Bmj4CGpJywJfPrgSyS/jIxXnlUFQitRe8MzXt9AraEriuiHbmeWR3a5ck8ec5jLAxhJTP2jkh6slLf2/axLXjkAhyzAz2KDdjUqIzYP0p+k5LX+nCQzbFNaXrZdY88kdk7ce8ZF0ZGfq1UNveUqdcgYGmsBDAlgv2yYv6VjMULhYwrb58l0qcdcVtQf21FgjzKs7b7UcS9PKDaAnaW2OTXOXapDjIbwf9+y3/tx7/gq8MZ/8+fP2f2a0vzVliC7hBPMxu2f+sZd39g4P/93WvvowgCeoy4g8evS9BrzO0OdehQSmEQkklonASCFDHbnsWXiu2Pax5+VuCeFzTvJ2wrIJfuPLEwDJ+sMJ3H3h5wNy16KKmuFfVtye5TS/ssMS6j7FpvhaOt8q4cT/pudRreaQ/QvFWMnToZe9g2I8w5KBy9Cmqv8G8raXstAtPVhJ+ZUx0pqbc6eQJEJ8YiaNFQFBtpa9bvhSo9LR5bPFJ+SH0amojXCWtHnqz2rJ9e881mxf2bJWrSkj2MmupaM3v9CHqGo0dCBrNUemRdSmv12MmQDoSeUmb+ZUahUUSjmFYFqdCnoSB+Zti/MAzn0iJUU0bWB8X85w7buROD8MhtUF7anKdDPWYbNnFSEqbCMq4L+jPFtJAFZztQWZ+RtGLI1vGxyIt4zDV0EnEPCvQHlnXye7mlWShMJx2W6MA9QPnwiKrbQcw+prmhP8ut0bXcA93rkygrFkmMXHaW4kGyHJWEIBQq6J5G0sJjXtXMbiWtDyWMa0X3o5H5Wcv+oUa1llRFARPvpVxCwfYnkc//8A1X9Z7/x69+iv15w/o9NNcx62Pkz3BR8fBjx/ZnkaQ/8u5AMtLvV1H08VwsBP0fRrBCH/Yz2VbsvSDL5jDSvLWM84L+UhEqR7mxFBsvmEE3YXrPtCpJV3MRqbRSVjSDR4UZSVmmudzIw6dRXIjeJYodjMjiVAHKu8wYs+JTX2yh2Ig7rbi9SjA4KhiPRg9mhPgb6M8swxn4hfgTqHAU8cjEWJ93lFhCNAlfS61uW3GZWbwKp9YcyDkJOChjtYe1ZVqWvJ7N+fosm1QGhe40yaWTBFhF8oBOKV9MLwo4GV4K5SZQPAzSgp08cVkzrkvQSrwPlSJURv5kI1VRXhpUEEn1OJMAYwYJimY8gnCcdBRoacHqUTod5SZghsQ0yyKn7CJcXQ/Y/UioHdN5TX/u2PzYMJxLu9fuEcWfzci6eaTOimoUUNIKjIW8v0qczGsFlxEMRALGMThkKvkgHIKk5fW8gn4lMypko8glVKeJRXYqjgp9MBQP+nQu00xYiOM6EmtZ1PbG4TaPas7ooH8aMGVgfz2DqHCXHVU5sXtoMp05EX/S89nTe7Z9yZd/+owmd7SqTTxlL6GQUemHl4r+iUdNmtk3HzlP4PhwmT48jpCaVahhkj9GzDrGVUEyWrj2WVcwW1j2LwzjMjO9ksHPDKZzFNvpUZjUFOj9SMoS5fqduPkenhkhBs0y0OUQo5F7MReJhZCZ6ruYxSca20Zm7yLzN4b9M4OfI2lnBrRCBZOX9LXYy7DJ6VpzeG6YZnnX7SVNLTYet5uIheHwvKB9InPrkpEgtP9E4Q6G4kEYZ75WUAgPob4NVDc9yWi6bAs2rAva54k0k21bj4Il+JlIVatb2f3DcbptLkcENdeEsqKorExgPgwU2TkoWo1fWKZFnhWQKdrDwgiGkgeJai8DNo9GJscuQyiFMyHg2mM70wziLRAqfZoBCKATTAtH96ykvdSESuru4UK6HmK2wQmpV+lx4SajTiVGKBVhJmDk6ecO6kQLTyaDtSFl30k5x1CJXiPmVqI9yMCWccWJHxGrRKwD1XlPXY5sd424Cz2ok/Owr+ScwyyCizBpineO4j4H9KNsuckdho1DLyY+fXpP40Z+8e6S1MnQkWI1ULrAV3/2lMWvDOc7Sf21z+Knef6zgHEVSUXEbg3VjRjkfN/xVwYBpdS/Bfx3gPcppb+Zv3YO/NvAF8BvgL+bUrpXMpPsfwr8t4EW+B+mlP4/f+V7HCWvTgNieMkUTzx3NQSMlnRzOHeE2lDciod786bDDCXbzyVC66ApHyJxYfCNprqdUCkxrkvBBtqROCtJRlG/OlDdmNMIrWGlTpOIdADzgYmIPirJ8sioYi+U5fUhMM0Nw0p2MTVIei2WX4phaXLqK6YRoZRuw3FajPYmLwRP814RbUGftQW2FTuycQGsH63VpoW4GA1nlrNU0vzinvmmZ7psKPYO22v2n2j8TEg8SYFfRA6NytlOFlGpR0KLHfL4bKvYvyzQTwuqe5nwM801Uy0YhDtIMCQj7zokUi6DikPEHqRlFwtpzUX3qNirHoTVFmotu3chLdNQyqCZo1Y+OMV0qRlXRh5mm7B7AS2LrXjzj+tIMoni3mB6CaogTDuh0uZ2miMLtYSleGQKTpnfAEdCT677O8mWopMNwO6PBKFcYpTg57KozXLkfNFidOL63YryG/cYAAKnUi8ZUKPGPhjcNhvY5EwolIrpXHCfVERmly0/vbgB4B9//YJ0W0IV0I1nvKtwX1ou30rwPJZT/VrRX0o7O7p44hOU1wa3k585tnm/6/iPkgn8L4H/GfC//uBrfwz8+ymlv6+U+uP8/38T+G8BP8t//jbwP89//6WHCpkxaGSmnF+U4rrTTZn2m2CYBMBSojqLT5qTY07xMHLWR3afFgzn0lZ0+4RJMubJ7QKkRPe8obwx2LsDcV7iVyXurmX+J1sZalE5/KJgXFkZpHFsM1n9gTNuRr5rg16bE/XU9qIrjxlBV3mmoewueSpsTrslkGTEvdLsn1d5Fz2WCLKLujZhxsDU6NPAE5VEuBQddE8T09wxe3LF4pWUSdqLzXqxk0Xma3n/cSlc9e6Lke4TBVGwDDWKsUV5ryh2svOF+shOEzOScS2sOeVh/kqfAoGeElUbT/V1sZmw9x0YhV9WjGuXB6w8ejrE4iivFn+FI3Hn+Pmjkwe6e5IISw8uoXYWtxfyVcyEHRVlsZ1eNyP1oZaSyzf/P+r+LNbWNM3zg37v8I1r3NMZ48SQWZWZ3VVd3S662wNGMoO4QEgNNxZIiMmiubDFja/gxki+4QKwLCGBGglBX9DGEhJYxhJisGmg7XZX211dWVU5RGRMJ+Kcs8c1fuM7cPG839qR1RldpqqxgiWl4uQ+++y19lrf97zP83/+Q+q4ehm5pvdGjxLZNZyl8cAj3Umf7OiaieshY5PtIl2iDQtZSEhCdjmwXDTsDxXxy5rVa5n9o4oJXE0rxpgITlPyVc4p7i5kSj7DK4cqPPNFx1nd8vPbS/pfLLE9jGshDWW/KClvVaK/c5KpdxeK43uBUHnZEgVxbLbJLWsabWZv/xR+AjHGv6mU+vCPfPmvAP9M+vP/Bvh3kCLwV4C/HmOMwL+nlFpPMeV/3POoFJ5pBoeKMJwVqFlGtu1RKWYqKgQpBkmwzUVu6wuN7Tzrj1uOLwray0QAaRVRp1M8IffH90rK2oqgx0f6JzPyIkNvG+yhw2wt2aYgZka8+UdHmBf4Osdbkyy/EphkJK1IRSHVTEYnRDA8dgR6iKhcTE/5xr93NWnlJZsBwiPlOGtiygiAfB/wmaG7UIkBKNuD7CDP2z5V9Of5yVY8a5KU9CAbhWGuxST1aGifK/IPDmTW0w+Wsbd0K0P3ITBozEFCLnQvRhpRTesuOYnHWkRXJtlv6zGIJ+JMn3IRdQphDSmZFzhRcH0uhJ6pXT65+qT23M2EMw+gWwMtmGbyfYgUB7mpZQ2nTnoEAR85YTMSKhpPoJsvZTUYMtm9K5L4ywpmYqL8O5+nkQDQOnI8l+Aak+S6vg4Uly2zqufhbkH+RU51nazBZjIKTkxNV0V8KduFfJ/4/nUkO8h4dHwRcRcOXTr5nAbLl7eXlK8zrIbhXEbj8toKeW2MjGn0NL24QR0/9MQsiKI0ied0z+nP2T6y/NKRbyaTjX/w8SfFBJ5+48Z+iyQUA7wEvvzG971OX/uHF4G0/pnionUzUAyO4aKmvyjJ9gbTPP4SEzNMDyFVRc04s6iQqKOtYVjq0zw6zoRWGzJZQe1f5egxEwKPBzc3mPOC7ODEJGP0oCOhztC9ZN6bVhxz9NzICRrSGDPAFPDpc5Bqk7IQCk4W5KaT1lAucGG+TZTh8j6e/P5OludKTuUwk4vTjFE8DpaTJ0IkP0KRaK+SdpRuusip6PlMJbxEUd5FTK85MKddJRDrYCQzdOkozlvGuWUYDIxyquheRFL5g6J+Kzz97OBSgpGsY0E6FFcpfJGfTvRp3WeTR/8wvbggv6MrhV7rKgj2G6Bpqx6NXrysMfOd7PKnFt/N9Enzb4+crOVEK8ApAq5ba8bFYzGa6MKmU48dzB7KO5EzT0VAOPpSJCZUvn/iyM46gtc8fHomTj5HubmPL+V3mNypQhmJOorOQ8HhfdkiZFtRFvbnQqlGRcJgUDYwHAvsg5VchCJgHxJF/bR1eMRduksBEolgH+xJUqyCAMZ6hNmbSHnvUR6a58W33n5/amAwxhiVUt+OOnzLQyn1V4G/ClDmKwECB/Grm2Sv+X2Lr0XgAnLhYMTxVtx0layPhkCwRk6eUuimWZO+R0/rIxLhRIgiw+LRoNQ2oGf6FLxp+kjxIFz6cSbmm1GJvn/+iz2+zhjW4qyjvFh12VZ8Dsb54wUnqTFpbegixb3MpuMs8QESMYQgEtx4RKp8imp31SND0PRQpnZViCmKOCNl28kcrHtAy2kaNZhR6LJTaxqNnFiz15q2z3BLScbVncI0Ga6wxCzK2z3dkL0i3yjOfiZRWrpJ6Ua5JeYGn1SQ+VYs4XxpcTNJDS7vAvluPAWqFrMMVwu9t70wtE9hXAXhQEShPJtmkoAL98J0Qs6ZMicm4w9SYdUjJ86AdpxIP8FIofD5I7tPMBD1yLy00lVUN4HyXgxuj8/zU+KUdG1CH3Zrjyo97kZsvKqddHLdhbACo5UtUVCAnzZAop/orySTIL811G/luV0diZVHWSEBxc5AUMRXHfFgmX8iysLuQq4j6ZpSpkXys9CDEL70KBFmGBHDFXdQ34qPgqunw+nbH3/SIvBuavOVUs+B6/T1r4BX3/i+99LX/oFHjPGvAX8NYFW/iFEpyK1wS2Pys7ca3Tow0imodoTCnExITSfuNTrKjexLQ4ip7UsZ8TJnT27DQtjQo2IMaS4vZH+WJ8KMKMk0/bqk2Ijjbcg0oVC4IqO61RRvD9ibPWFeCbcBsI1HjwawuEqKTxwfL7YYZQdd3UTsMYVIzOVCMrX42dnEbJPuIdIvH00tpzgz7YSUEjXJ/EKdOoqJ7KOTc3JIZCHTyykLcjFle+k8VNToUSTSMkpIH61Cot+mYosSEBSlcGc1biZJxS6JsLImYDqIRqd1WsTuHGYn0u+YUo6jUfQrQ/NMc/ggwEVH9Bo6gxp0MkMFdJQZeiufq4qC4Ef7yPabgle+KQGPNq0LUweiB06Ep4n+G3KEeNNIlNhJUbiytOeK4yvhbEzofXcVCCsnRh5f5xQb4YQMa9k4xIlVmQdUFIxlAiHF509eW3FtqN4JVtG8DMSzAUYNOyuksLnHrgfim5Lzn8l1s/sejGcO1WtZlyBr16g4mePoXiWyVLKeeydGLj5XdCuD9pHywZ+i6X7V409aBP4N4L8B/I/Sf/+P3/j6v6CU+tcQQHD7HwUPYBwxt1sJnsyzJFwP39Cza6LWKC9tuZtnjHPxE8h2Dn0cMCFgM4OfZWhnJdU4nQ6TWmxK0TFDJGsD2plEnEkLZOR7sjbgSs3ufYvtTDKgFCR38/2c7PkZ89cDdt9jd/3J2FOPAhBGk+bmTlh505wYlSIOcppnTWSYC07g6gkwEmVYdpQAEz3IdiBqdTLFmADCaJIVesI7srQ56M4FhPRlKkRaeOrZPp5uWGG/afo0a5ebQL4LFA8D9t1W7MKdIyayv6pL3NO1xHpfWIb0O2kH86899ugJuXgICt8j0q8z3LPiFMoaNYwLAbHikxaTecZdQXZrKTbqxJWfotUm0C/kgvh3l2L7jQ6Yo2Acphc0PztwMpWdujCdEqt8AX4xAaRSgCUfIBFqllpIOlcC0BGgep2RHcXKCw16Z8WNqkkjWsXpJneLAAbUqE/r2JBFjE/U5FnAtPKiDu9H3MWIrR1un5HdW+xR0V0FVO0xH1fMXsvmh7+wY5Y5NjfzE/tbDUnZqkFNgrXEMM23AgjbY6A/kwJdbgPFw4g5juj+T6EiVEr9DQQEvFRKvQb+pXTz/+tKqX8O+Bz4Z9O3/1vIevBjZEX43/pjC0B6xP0ehgG1mEHKvAfE3AJOunblAtl2IGQFrtKELCO3iuyhQ3UO2zlMZtBDKcGfS5lNp9l8yv7LmphQbkV3rhnmiupekH6fKfKdJ2roknOwTrkGwSraC8WwKMj3uSTAngJExFbcFdKFlFvJSjw+Mye3mmAVYy0AXn3jCRt5flcKEg0C5OlUwFAy1090ZpsYbRODL2sfO4eJ/NNeaLoLRZxN0Wjps4yTTVogV+AqjZspmZsrhYoZ9lq8BJXWEiDSdcRjg3nI0Ms8rU8j+Y10VeXtINyIFCASc+H2d2tZt7bPxIaLgNhw1Sl3703J/FaR7aTVn+TWE4sPBCiU3XfEl0Jj1J3G9AKgFhvhYUydkB7j6fMda2H0uZrTHF0nb/+oZUMQjaD+3UXEXw7QGmafW8rbiK+U4AaJxWnax47LNklUtBLHHtOI0s+fj6KEfMikACwd5AG/iqjcoRUYZyTh+CBAXn8ZwESqnxbYBh5+0/PiBzf4qHj7dg1OC78gQkSDDeB0Ym7K+1DeRepb8Trsk6nO/I3DHkZipvGzDDf/9pngP8p24L/6LX/1n/0V3xuBf/6P+5n/wCPLUGdr4qFB9SOhTOj8UWyoUQrdDUSfSzTVKBpy5Q0hVykjTotcMkg8Vn7XYPoCKGkvZLV32vVniuPzb5gzjrIW6xdQPchFMiyMtLl98syr5TSJmpOme1hAsJbsqMkOYlxpeiGbDDNJ2p2988y/8mlE4NSRuBLaQp8cYk2bdvXDI/FjwgIkBVnYiicEeNowFCnDL7kv2zYwfxNQ3tI+ETR/AjJB4YpIfkzrw/oxcZkIx5cZ2Y+encRNtouUDykBqReqcH4IxEaR7T2283SXQnAalnLDCM2YxOSbTmeZV4kK/aakfBD+e7ERsovP5PcVa3n5jCbJr/Ky88/2j9JiMwghafZVJ3hDcmaKVtM+LTk+Nxxfpry+W8Xys0D9rmesLYf3LN25rM9UAvFMD/nHhdiR33sxEjXyGaNIicScVp1CWvLYvSRbD+uAed5gosLdigmKPx+pVh3fu7xjnbd8sr3g3c2K2BnsxorXQimgY/VO5vb9b3e89+yBd5sF43UFWcQsRmKA0FkpAIA5aoo7GZeq+0h5OxJyTXcu79HiiwE9hoRbJSOa9jtuOR6sZnxxhtlX0PRpLZfjs1p87LwnWoPqxDsgzMvTiSGoP/Qrg6srittBkOKku6+uB1TI6Jf6dJGadLN156LkUoA9iPtPNDo5wSq6cyOJvskeSrzfZXLQHswxnVYzjSu1hHV2QUA+LYWlvTDi/dbG5AAThOeQiZhlaqtNG0904Ee23aP5RTQyWkyoOWqixkYaayiyx87BdIHZtWPCJ9DCXPMVqIXCHeTiPpFzyqRsW0BXe549f+AvXX1BpjyfN+f87O6K/dsFunuknurBopzYd/laiDu602IvNkJMr7F+q2XDME6iINECRJ0MMZqAzhRmFBxnWMg2IynATytZcYUSjKDYebJ92tgAvsihMIy1Zf+e5fCefKaz14rVp47ypqO/KNh8L6N5EWVk2SpIqr/yVsxSzAhDoi67WrwSBHzjZGs/LIX+m+01+Va6lJhHxk2J3RkM4K4Gnj7d8peffE5lRv792w94+9UZ9l6owqaX3y3fqLTxgeP3R2aLni8/v8TsDHEeMIuRMGpir0VEoRBx2K0WXcldoHhwwq04l6Db+l1PVIr2SS7j39FjGgE9v+3xnSgCkykElDAr0Mntxi1yYmYw+w7VDkSjJdSyH4EFviwZ5iLrJQFpw6ykvnHoMTDOLD6NArN3LtGTFWOl0T5S33j6pWH7fUX3xKN7+WAnhpsvFd2l0EzzJDd1tTCzXCUzenUdk8GHors0ZAchKim5B7+h4hO031ihHeepbZ1UbCFDdtt9QKfRRSLAND5TJ2BvXKgTC05AOCl2hxcmceYjZtDCE2jiacRwZVoV5jCsSFuIxDm407hKTFht6Xg+2/Hb88/57fILsovA1y8W/N6vv+LNsMYFKQT344zXxzVvtkuGwTBuSrK9lnCWPp4AyqwRJuIUPRasws1MMlh5PO3DZDQ68fIzyYfM9lOxILX+Qgvuzy1uNhPGXWIzTjLwYiO23uWDePbf/2jO4fsOVfbEzog0V8fEhUh4xVzhvXALQvaY/iMqR04cAl9Esp2mfhtPPhDFjZHDYBHxT3s+fHHHP3n5KX2w/Ju/+A3cHy5ZvUudnJc15GRw0q8Uxw8dpna0ny0oDvL7EyHc56hREVdOLMaP9iT1lrj5wLiUXIpi6ymvO3xpaZ9laS0tmM64yuhXBv7Wr77/vhtFYHBkuwFfGJQS1aCkzYphhJvNyR969K492XXrzZHSBVSo6c7MKchyWChcmVE9TBedlvirUVDT4t5jS8kB8Jli9vVAeW/Yv2don0n1Jypsm4CnTmi6IZdCYFJs9XjuGZ8ExlVGcSsYgM/BXab05FaKRtZGif9uHGNtcTONyqC6HtGjpV/pU1zaOAOiphg9USgQFHcjvtCMSysmGkou2BPZJsEnZpj8BYUOa4+ik9eeE4pf3QrPfGK0+YITt8A2irE39L7kd/17/Oz2Cau6ZVV0rPMWqz27ocJFTa4d+7Hk7ljTHArYZ7I2u46nTD7bSAZCNOq0FhwXcsF2a4mGz5rIMJO16rB8VG4K9iEncLkJJ/MTV8pYNy2k4zK5G81kPao9p6ReX8D9jwztK4dZiumM3+WYo05dhUoU4XQRatAJm+guFa6MJ+OOydqMCNW18PC1h+YJp+Rnt4qYZy2/9eItT6sdf2/zHn/4yQtmP89ZvROsaRqPxHlZ0V9C+/6Iqjzqq5L6rSD9UUdUSIXlyYgpPf5oTwfB5Js4zjUouYbzmyPjec3xZSGxY0fRYzRP7aOD8rc8vhNFAK0wbx/g6Vr46G3yqU9hGK7SjLOafJcLg7BzCeQKFLctps9pr1J0dHK6bc81WSOBFkL11RyeW/JjJN95TBeItaZ5mpE1kdVnjtk7MasYE4FlnIu/3InoM084QqcIrSYsA+55z7i0ZFtDeSNWU66Udnb2LlDe9IlLECgbR9hqxgSw1W86tC84PjX4SsaHcS5rsOz46KBjeo991+Mqgxks3Shce1Rq80sxIqmvA8Ek0Muqk2vOWItC0R5JlGIviU4z0QSMc35JLef3Ge1tQRsXvCkmXbyAcmpMevyDGGCc7UUMVF/32P2QPBK0jFa5SIuPTy3dpejuo0H8AY9ibDIRqIKVWLRJ3JMdpKDkO08o1ElEJO9lYhbO5WSWTu3R03//gaL/fsfFxQE9ZBwfKhjltU9U7klVaboE+BpZIYvpSJRDIHUAEygs/gwqxZJHQiFzdlw4vvfqhg/n93x2OOfHr3+E+bRkda1OnUWwidOQpY7lLML7LbSW8ucl1bVwG4ZV6h5txD0ZMXnAH62oQntF/VYxexdSxxcobjp0M9K+WtI8sfhcurvmwtA+VScrMld9x8eBUFjC2Ry9bcTTvjCYJP0185L+okxBj0I2yXcjdtsnaqpBD4HifpTV4Fwz+fGHxPW3TcB2gX5lGOYKV1jygyCuIDHSetBUd57Z2/FEg20vRf8tbLVH1pbzEJUmdJmsiLKAL2V8qN9Fik2kO1e0Fxo95uT7EVdkJxxjulFCbijuRlyhT8EWUT2ShFQU5N72lvJO1IaidsvQTuMzyFH4HpiQ6z4yjgqfxnd5zTLLCj1XuP/ZwaFHjekNZhRSi/Qe+uQWPLWeejDShSSWpPZy8+SHQLZ3yVykR/WeUGe4OmNYWYkHX0qEm6uktbEHccZByc3vZvIhSCCMOomBpP2XvMZxbqXjCY9j0EkMdJAxwZVi1dU8i+gPD9SZ52E7w7dCwpE9u2QFmF6dXICnriJr4mkky5ON+HR6Ri1FfVxExnMxRokRlI7Mlh3fP79jPxb82z/5IfZtTrF9BB4fiVrgLmRNOV6M2MWI2+bUX1rKu4mrkBSHcxEnKafx2ww1it/g7GvF8gsneocI2U58M9oXFc2lEam5hvZKzHCijqCk8NrmcevyRx/fiSKgIrTvLSivW/Sxx61rsQjbNJjrDdWxontvKW4uhaI7zymUwm57TCsyXCqD6QKFl9RgX6hH+upMk28c9VsB5SQhRyq9TmaNPofmylBuFPnOkW8Gim3G4bmVpNhR5rA4RLGYSlTdYWEYVhpfTXJdLZJirWivoHlmidqeYqwm9Ly8i+R7uSGLrZwow1KAv4kaO+nQg1Xs388pbzPKh3CS7Qo9NjyKrKJ0IW6W5sqjnETZMVF6KylO+cFgDyP5doAtlEbh6ox+YxMZZ1L0PXL8iRNNOp6KmRnE5hwFfp5DFRkXGd25uBOPc+SmelDUb4QsBTJeuVrQ92yvTq32NO5MhiDBKqIysh1KGoBxMRWoeHJOaq50otE69HIkjIbhmAZvDTiFOWiygz6NDROPYNpCRJ0Ca5KhCvqxQIyL9LMXoyQOOU216niyPNA5y+/+4j3yr3Nmm2+Qw/wkaCKF3nhUJRbrajDEZChi+oQnXUTCi5ayFlJPsysx95mEobZC+Z6/ldllnMl4259L1Ht7qUWHME+diU3JSCaie039RlPefMc7AdU7st1I87Km/lphdx1uWRIWpdhiNx3la9BP5gxrKxW2NOgxw2w7tAtYqxnthIgGsoZTAOYw1wSbke9ktWiPinEpdFcx55BWdKwU/UoDVnbQm55V5zk+z08knckk1DZycxUb6Lea/kI894eVkIKkvU9klXmA+Yi2idAzavaNoXxnyfZGYtJHTmy4fC9zrUlkIVEdys8erw359nFVGFGpYKR1Yyd8gWgmenJS241yMfcXkX3UjFVF1sjab1o1ToDjhIQHI/+z7tEaPTsE8T8oZMPhKpNu4AghCgNTkTARTu7EwAlIE8PQx+IyFbtxnrqClPt4fPrImBRz04ivJFJeTRZwKm0nzgfqWY9zBu+lGyQoVG9+icUHnBKBxF/xMfwkmmRNv5GuwOcyRrkqQhYInZG2fObQOvL5Z1cUbzLmR/m5vpgYmvIc7bOIe9GTV6NsDZwh3BeU7wzZgVPSVf/U8eKDO+ps5M12yfG+wt5nJ8/BfCerS5ck1zqNRGOt2X2kab4/MD9v8MeCcBDpYswD2U0mtmZ72U592+M7UQQIgfyTt+jhiu6qpLgFu+sIdU6YpULQDeTXB/RQ4WoLWpx2VZ2hmxFz6CGCW2T4XAshZuMZ55bmiRXyytxSbDXFgyPfJNCqEq6BdsLk84W08eMsp7yT0WP2ZqA/z2jPRNIr9k3qsS09iBuRq4TKK8g89EGqcewU3hp8FlE2kNcDdhkYzg3DaDjeFRS3OuUgCFEl3z6+PSpwsp5un8ppn+/khhf0XfCKYSUrwHwTqa7lBh+TpLZoBQwbVmk0qOWUdTNxSta9qBKLB7Cb8LjS6+UOHhZGbowysfVaR8hyQq4wreg3RJsgnAWRYCt8YhJOJ/sU7zXRfqNJ69YO+WJMTj+ZIpbpexR0l5HxIpFvRo0adDKf8RSLHmsDw2BwtxX5naHoplFIdvEiC0bGJsXJRMYndyAVobhTpwIgUXEwnAnLz1Qe3xuxF7opCPcVi3TzC11Z8CPbygbp8H5APevITKA/FKiDOUm2CSSnoYh/1vMb77/BBc3PvnyKeVNQJYxDjylhqo90a3NSkE55nPd/LvLyz77hVTbwi+sLESLVjtga6l/kzF/HpI+B8u4fvYrwH+1Da8gz7JsH9LCkfT4jqyzmOAptuMohiYvMcUAP/mRAGgopCKr36M6hC/HN94UWT4D9yCxC80Tort1ZYhnuw0l5FoyAj8pP5iHCOAvG4ktNeT9Q3g0Qcxqr6dePTr/TOud0Ux6EHWcGsbDWw6NRSSgCarAMNqMvPaYSDTmLjv1ZhXlXpLY3JgqujCkhkxsnS0aWUYsKTTnF2CjyvTyv6dMKMcl186PH9Prk3+daEZtMxBx5TY8a/HwLy88d+U6irINR5LtR/B76LGkrwmlzQ4yMtRG3pTacfAGmfEQBLuX5fCan6sT7V+GxJc8OEWPAd9OYIa83GhKA+bgFwWmZ8RXE2qMLz9DkDDtL+c6wuBE+BiQMxEu+n04+Dt25pjtPTkN6QtqnNCcBVceF/P24DlTPD1zNWt7dL9EbS3k74SeJCp5MSaubSLGNdGvJvAwzD/uM2BjKB02+l+9zdVolFhHzvOU3X7zjppnx7pNLZp8JLwX4pb3+lLxdbAK2izRXhtu/7PnhD74iRsUv3l0SgiarB/ybmtXHGtMJLT0/ROp3Pdnb/bfeft+NImA044tzudj2HeV1Q39VM84lv88eR4wLkoibYquVj5heQDxfWiitiI6Sjt2VmmGusZ38jGIrXlKulg/aleYUKWVSQs04E4RYD5y890KmGBYZtvWJCCSElv5cEGQ9Cjp/fCn/f9or+3SKmS5S9WBbTftETiY1CFMntIbdwZKvexarlmMW8G9K7FHGAuvSWDv5F2SP40iwMK4i7TMpNMWDPHe+TWPKzp98EYWyLOOOuAPFE8CW7WV1N3HvJXDEiDNQrjC9Ib8fyA8Dp9g38ygIGmfqRMGd1m2Ta/Nk4OlKYe+B/C7ZXjAHnX63YDjJfbNjTDLryLCUziWkmC/2gtRFm+beo8XcZti9dEbK82gmOiYhUyOv5/BE0z6NhDwkxP+XjTdcmaLLTHJ3fjKwXh/JrefN2zOKXxSnbm9Ypc8+5SEUD4FiF+iXknjlqojZm+SEJMV8nEP78pG/v3i258OzBz5/OKP9yZr5tRwsIcWQRTVdS3Lj61EAvsNzw/0/5nn2wR3XhzmHY0qLCqA/nrP4SkJMhrVwWFYfN2Sv78A8Er3+6OM7UQQkAEP86+wyJ3/oKG4a+suK7iLDzA1FYbDbXrT+/UgsK1wpABcRYjIYObnFIDdwO1Mn8oxNJJxxJhdvyORi6c6EUiwBmdMqUG7w+jagYmScmzRfS8V3c0V/FpJZh7j0DKuAm6nT+kxUfQnxboWUM7kPq8qhbSQ4xbDPGZpkyGGEAORLOaVJ4JdOBWFYyw2lRnVaW/mZZ3Ry0RGn98BQbMQZqV/q04003fyTbdmUmCRpubCpDCqYk7dedqHJ99I5QdqOlCnQI083nAdvObknQQLXSAXVp3jtKO9LdnhkMDa1OhW34kHeWzPlBlgFpEKWT1Zl4HPxclRBDEeyY/IYWMs4ZVopClFJzHx/Ae58kGDOg3RDE0Do82QAmlyAQh7Qi5G8cGzu55jrnHIn+/vmqXQP2f7R42D21qGHwLC2HJ9ruifyPtmjAHquThTjyw4TNDHA86stL+Zbfn53xeGzFQbJGVAxFU8TKe40+S6erM3GmaY70+x+4Fk833Psc7zXlNXA/qGm+qQgO4jYSgWYfR04+/EW9fZOgm2TJP5XPb4TRYDJ+tko2quMUGjyzUi2G9EuMqwszdOCrLayJhv8CTwclznaBdQYUEqhQ8SMAdtoxqWhT6dcMMLYsp1QgIeFtItR/bI1WL6N5Dsx5WyfRbonmsVnkuYi+38pDuWt3ODDOhBy4XIXTjOuYvqaErtyI+DPFKFV3Ct8mxx7Z4FYpJVBUprF5DYshUB2x9HIBZJt5XnGOQwXXpBvmV5ScKoUgP4qELNIfmspHqSr6M/TSewTZ16LV/7JADMo1KhR/UQplk4o2nj6e9kghlPWgXcG+5mQXHRPUkQmFeV0o40kxePjKHOyAo+cdv1mJxfvWKnEkBQjU9sKFjIZavANkBE9hYyI+QcB1Dit5sCvJP3XVwKSVdcqFfmU91cHYhlQhUfpSAwKekO8L4iHktwJeax9Kc4/J9POfaS6DdRvB0Km2X6Us/t1GM9HVK+xe9ECDGceViOzRccwWMpi4L31hnnW8/vvntE8VKizAaeArVixoyG/l/Eh5El8lkuB7a4C9rKjsJ550TN6w1evz8nfyAEyziQjcvWpY/bJBrVvIM+JRS4anG95fDeKQJQLzvQBnxvaC4urtIhUGk/xMNKdZ6KQKgX0y/YOu++JmcHNM2JuhEgSI2oIZONI9hDJ1wX9WSYXVzG1wxJLrkc5CZSH8j6Io8xc0PnZGwGUDh9ENj+C+WeachNPhh56jBQPKQZsJjHj+YM48LhaJJ++mMAiORFc/dgO51uIyhCyVKSKhEjXgfHpCKPG7GVGjEYKgptLcaiuFaazQrLJk+AmIik1KhILUeu52ci4ztGtxs891VVDVQw0XUG3LTBbi+41QUcwkVh4otKi1Os0IRPjC1M7ynJkUXXM8wFN5DDm3G7nDOeekBmR0Fbxsah5dVpTqV5TPGgpPlbeb9sgW4VBVoW+gMN7oL34G+R7+TufS+cW0r8LtVi3RyN6Bz8D3TxqFnwladOK1OUERbaT5OjuIjKce+qnR0od8V6jdUTrQHMs0V8V5NvEYZhHhqcOPRvhmJHfGfKtFIB8F6mvB9zMcvMXMo4fOMgCem/RvWI886jKCwBsA95rZlXPjy6uObiC3/v6BW40LC+PhKg4XM+SWClidxrbyPshLs2PJiJh6fjek3ue11t+vrni7ddnmK2V97QRJ6HVxy3ZzUHuq+zRn2O8nH/r7fcdKQKge3+az8W7T5/IPJPpp3biTOtzg6s0dm4pbzuy+xY/ywm5IWQW03t8laF8EBbbGDCrjHFmTq5CJoFSk5gjmke23zhLjjbbiP6For2SCDKUtICuJikQI+WNovc6hUkKK0+IRal1LeWCzw6kkBEeUd6BU7KNH2XFGLUizCPlqiGcK/pNidna09qsexIYVyJfLR5EUzCdrr5Mdtv3lvhgBfyykVAF1KDpjjnOaVxvwWmhvNoIeTiFgZIF1DqgTaDMHTEqmkPB8XpGUxds6wFjgmQcdhY1d+iLjuWsI7eOXVvSdxkhaIJXMGr0MXU5mhPhZ8IgQiZAWcxEb6EP6fc8V2k+Fn8C2wiOIMEr6VRToFu5afQgBSBY+bq3kVhEog34LGJKx2rRsCgGOmdphgxjAkpF9m8XlF9bUXBW0mXFPHU/NwXFQVp74OSbuHu/5PCehNCYo0YPUszdhegApmBW7zWrWcuz2Z67bsYn7y4BuDrfs28Lmtsa1SWTnCZ5QTaCJY0LhZunbIuXHR8+uWeRdfztLz5kvK2kcCskpv2zwPzLDnMcCPMC3TlpnBYlmx/OObyn4W/+6tvvu1EEFGCUJAhFQBl8ssPylUb30g6KhDeexof+zDDOa4oHR3YY0b1nXGaMi1yKiRUAMWucsKsyYYH4DEmpDWLKoTtO6bsSCpJMKKqEC7yNyWE4WZollZ8ULVGh9ecx2T/JaTH5+csMm35ND8Yn1Dvt5CezTSCJaRT6NqPtDMtne55/dM22LXl4syS7t7JXv3CM52A3lmybZMJpnz4Za4iDkMzRfpYkqO8KfJ7LBZ4H8vOei6XsufZdIaeh8Xxw9cCH83uOLufjzSXHTYUaFBFLl9h30WkYtGAhneGus8SgUIniipJQVtMl1Zx6RNJdnXj0NqUQJXm26cUmqz+LsBrJ64HoNcM+x22thKZEMAdBFXX/SDMWXEH+PC4CYS0hLFpHimLEmkA/Zjw8zImNFVQyKOzGMNvIyNQ8D8SZA6cx0/MlV+NoYZhFTCGFd9raPLo8ReJCTEn80WJmDmMC5/OGF/MtX+7XvHu3RpnAatWwOVT0d8m6Lg/k9+aUyUiA5rmie+qJlWd+0fBiuePNfsHnP30mn8XCoxrD/EvN/LWnvHOETBPnOaZz+EVB86Li4QcmjaPfcZ6AGj3KiVe9aZwMi0srARJJX64HIaKERG7JG9G5u7lhWFtCrsmOkj4U8px+Jeh/LBQhz5KmWth2KqpHQ8gEPj2u+xTFPmBG2QJMqLVtZWfrqpQWZB+ZZ9lR/m4ysZjSfbRTpxtzWlGdvOjlaWVcaBLrLleJZafQbzXtZs1XH+RcrA88ffXAdbWEXYbqtGgrypB8DtUJiAtFIM49qIg6WPGePxjxoEPWitEqyAJZ5glR4YNmHC1+0ASteLNdijioy+m3JfpoHr0aOyHfaK9SQKcCDKHIcFV8XA+iTtsC0QakgpdFwiKFdLYW3ZhkkRUZF4FYe/LFwKzqMTrSjRY3yibFNhqTdvMmUZu/uY4MUTYm4WIkr0bG3hJ6Q7PJsQcjXAidzEusdBemE3fj4UwwFtUasp0UrwlknjqM7CDqRNuCv1CJJRokdhygE8lvvupZzVuezffk2vHZ9pybr9aoPFDNBo5twbDPIXU0xeuM8kbGkPZSjFjUeYe1gVndC4fgF88xGysp7UuHvbPMv1DUSRQ2OW5jFN1Vxf59y+774IsgOoj2O04bxnmyz67xz84Y16UQNx5GXGlO2XeTiyoIU6pfa8q7SPV1SzQaX1lx3ImRfDMSdXbKswN5k0BO/mGuGWecWFRjrk+KPPH+M1S3QcaBUbwI2ycia53YfYdX4OaiNCMqZm8D5UPg8NyI6tBO7WNixrUTS21yyomptZS4sewQKQ+B7ChzoG2gvIdDO+PdkxJmDmUCcS5kkPxebh5fpwuxSO0roEyQzcNqZBwU+YMUjXEVEj8ggtcMg+Wut7jeElsR10cNx9uaphfBjbIR/aTj+cWWyo4cxpx2yDCpKBy7HDcatAnkJtA1OaG1qEGLD36a6aKCmAXMeqDMPENnUa3M6tM4gwYGzfBQMjyUkvGYDFxMq04houpx05ZGhLQdqCPuMhWAzqLuc/K9GKXGxLr0dVpXRun8fBEkTgwx65iMO2VUicQEqhcb8fzXA/TnisOHXm7+mAqrjmTnHS8vtuTas8g7tIr85PYJhy+XYCLF2UDb5ESvMLUj3BXMvjDYI/Rn0L5yZOuOwkSUiljr2e0quCuwJ5ejSPHOsvyFmIUEK9fVxO04vsg5vKdpn8jYpHsxb43fMOv6o4/vRhGwhtj3mNudZAFcVqCUAIWFFhv5EMEnvXwvph/9WjwIiruO4t2BkFv8TGTIxWYk2JR0U+pTJsBk1jmlw2YT5bPk5Px7fBnpzzTlbaIUd4ASgceUUFxdQz/KKRKvIipoZm89s7eeJhpJGZqkvmlvDWLySVD0F6kzqARj6J7ICrHYSFcxhXFU1wi/YS5FLGQy57tZRCfrq1gGynVHlskMH4Ki7zPiIBuIbkLSSwH5jJEuoMpHrPF0Q0Y/kxM3yx1lPuK8YXQyq14ujjyb7Qip3Xg+2/Gs3HORH8iUx0dNE3L2ruST3SWvNyuabYXaCcVbeQFKYy4VuXuQ7sK26pQTIGah6jHZt0yzsJX3S4WEqRgZCaa/94VsIzCROHNoGxivxRE42yfuwCzx9xceTJRRICqZWpw63cimU6i0EXC1bGRswgOCkVO6vwrE9UD0CnqNioqYBc6e73h/tWE/FhzHHBc1r+/W+C9rlAVWI92+kJo4auxnlvkX8lq23wf7/QNnxcDhWOI9GAP7d3PJXkjkM9uoE615ik+rbzz5ZqA/yzk+k2yKYS0/d9pIhSKeYs5+5e33j+Yu/tM9Ym6JL65QuwZ17MiVYriQjsB2XsgrGY/WU4nmKfOlxtU1+TYnv+sw7YivMoLVSawjNljDIsPXQpgRy6VJpDLx2wXIKx7kz+3TyLGUFpAo3188COW2u0jqta0g/76USh4yQ3knpp6uTCGZVhKEpzywKYy0/voxQyAaaZkPH6RQ1OtIsUsf2vQfHU8X6pQW7OsgLWyn6Q452Znjg7MHrsoDD33NLx7OOWwrmHz2TKSqBi5mDZnxNGNGiIrzWYNVgZvjDICP1vc8K/fsXMFnuwv2XcHbh5eMTQ5eUa47eAbPii0r06JVIERNVjie5jt+L3/BT9RTjmONchpccgfaWNRtRpE2AjGtNn0BoRRDzpDFb2AEoA8CEPsiMs6liPg6kJ31mOS3F6JCAa432M/Lk5cgpATmMnU/CnTtKMoRNxpcW6J7xSRQske5gdy5A6/E4ceIv786G6hmA+tspOkKGVEKERMt1w1P5gfeHhc87GuUivSHguxdho7gTURf5yeexPwLCWFtnho2vzXywYc37LqCh7s5DFLs/dGgsojuZBtU3ok5rhmCmOcslPhDjIHD+yXHZzq5KU+GrJw8Et0sSP7Btzy+G0VAwXhek00hJBryTY+fifzWDGKQ4EqTorMjPhNjivwgq8VxaQl5TXHfy3Ygpee6mUmuNl7IPk4x1LK6yvdyoche+vH1FBsRFHUXcpGqoBgKTvzzyW/eDI+7cJDTrL0SdNembDzlFD7K7l9Shh6ZetlRzDCm6Gx/FWnfE5zDf6Up78NJ/CN59x7Va1knJRARjzjkPOS073L+4FnNkydbfm19y48ur/kiP+PQFXiv8U7T95Y7agC6Nsc7zWzRcTFrWFUdxyHnrpthdWBmBp7NdhS2ph8tPvcY63m23vGi2jI3HbXuGaOhiTnvxiXv+iV33YxhMCin0W1yRUrFbALxfBWI65HZqsXqIN3IMSe2hmxjRF3o0wYlycLDUTIAQqUY24wxICCkiTBqyjeW+l08Abf9WijHrhaC1vmLLR+t7+l8xic3l4xWQkX1IN1H+9yjL3tMVPh9hrscqZYdV/OGp/WeEDXboeS8bumd5e5Q45yhLga2fcnmUBG8xg8GdTAnwNe0ye5+Kyw+Ijz80BD//J4PVnte364JdwVmUBDUKcHZ7DWzryLFTmLfoiKNm8nyzEf272e0lzLuuFkUabuTDisq6QKynThmfdvjO1EEVARXGVQsMYcBX+cJhfcopZK3viDuw1wnrzpp6dtzRbHTVLdO/n6Vkz/05NuBQRf4QjMsEt1Ui/Y8a6BfyagwWXD7iYyS3qtsH09ut1MYpavS6TSQYrAiqiBp1DlJW8cFJy46LYQmCXfWQuKJWcQtwW1l9zyFg9qjYsxhfDqwXRv6N5Z8IzeC7iRIROytgaAIVUh0XI0ZFMVG4ZuCd80526uKRS2VyOhACAptAmNvORzyb5B/Is4ZMuP5cH5P6zPu+5qHrsblmiflgVXWoYkcx5wPl/f8+uyaOlkY37oF18OCL9sz3h6XbNuStstwg03cAYhG/PLKasDowFndsiw6rPI89DVvN0vcaIiDJr8V5mPIZfa3zSPN2ZfyXud7QzCGaBN70EB5pyju42ls6M4V/WXALzzLJwd++9lrvl/f8Hl7wd9+c0W3KaEUINI1BvJAte4wJhCjolgeebncsc4bMhWw2hOi5qo88KZd8tXDimGwLGYdpXW0Y4a1YcrJwS0gaJuKn6a6FuS/faI4/GDg5Xv3PBwrvvjZU7KNFg/RqE4r4+wgVme2k5V5v9RiHLsQdaZpYf+eSWKwx3AUdZ9RPOjHAnCvT1jWtz2+E0WAIC4p48xCAN07xnWRnHQCuhcPftOFxOUXmm9+jHRniuZKlBzVzSjUz8pimmS5rCSRI1pwVgDBYhuYvXWMM2mRskPAWvC5lk4EAY3UIeEHmTopxYAkOX3MHzTJ1ltsuxKanKWTfkwsvdM6UFZAepBM++4CsqPwy6ORXXFwilgGhnVAecm5zzcaNz4ab+gBQm7o10IYmrz99Qj5nWEYZtyU1WkVRkBOTBAAbjLaiDB0ljfbJduuxOjAquhkfz6U3LZzXND0ztKNlj8YnvLp7pyzsiVExa4v2aVOIwT9iDeUI/XVwDLvmWU9z6o9C9sRouJ+mLEdS94elzwcK7zTxKjAJenuIkCA8kasxIaVvNehkLZ+2oSoKFuCfCt79f5cHHuGS49dDqwWDd8/u+PXZjd4NP/Gl3+Om9drcfvNpRhPhRAN42BZrg+8mG+5Kg8YFTm4HK0iRkW2Y8EnD5dsdjWuNxSzgVkxYHUgN54iG+lihtIKkyt01eK6jPxtgelg/xHYX9vxanHk69s15tOS6jj9MjBlDOqRR++FRHFvXkTc2Sj5Bi5FqynonjnKq1aaodcz6reirgyZvDeTGnTSsvyqx3ejCACmFWdOXxmxFN/0DOcl49ygaoM9+iQIEZlqdyY3sCQPwfZ7mn6VM3/jJZo8e9wGhAx0H8m8iDzaCyMBH2PE5+LxZ7uQbKtlHal8xNUG5xQ6BzNGXDElA8sNZ1PM+CnwwoPLYDwLDKVneLBU13IT21ZEMtOHbZPmIKY8gukxzcToSFg4xjFDjzJLTtbhkx5eJVyiX4sDElGYdvlOEa9F1DORkyanZV9KyygIuawKlYaht4SgWM1antc7Frbjul/wer8+FYDmUBDvCzYq8mYpe/joFaE3kqYTgSxSnze8XG15NXtgaTtqM9CFjK/aNbfdjG1f4rxhdywZOyucg6AE8DwfUY2heBA3o+ZpZFwFYhVQueQ7xKOluLZi/ZbGqcMrqH5twz/9/Auel1tKPbL3JXtX8v9492u8ebdGPeTYXsk2IIHAE8KPilysD/z5y694UWzZuZJPjxd0PmMMhm1XcmgL2m0JXmHnI8tZh9WB3lkOfc7opeNcL1rqbOTddoF6nYOG7W/3/JkP33DbzPjykyvKtxbbSbfjKtk0mSRIm3wOptDa7olYmlc20O5K4lYzziPuZc8PX73j5jhj+9NzFl+IetBV6uSLOPFZ/mFBgd+JIjBlzOneE62oAu2+J9/09OcF40wLE7CV2Uhov1MwSGJX1YrjS4mTWnypmb0Z0J0/gYm+1KgYH0UjC32KCUcp8oM65dW5SnTx2dGjgqjmJoPIYSV37LSliEZEKr5MO+XEUisWPXE+cCwryrcmjQcK32vi3DEuZB0ltGC5H22rQGkJ2giKbD7gbKTTGdlOP6rMEpHJjDK2THZm41LexyyxRm0bUXtkh24n0ZAQpibkPVaeohzIrUepKK2tl31SiIrL6khuZCd3M5/ztlwyTMQgICsdfVSog0WNCr9yzMqB2g6EqDn6gs1Y81Wz4u1+QZE5lnnPccwZewv7DNvopACUzYdtRK47LORUN6uBshyJUXCMCLh5YDiPxDJw9nTHf/755/zW7Euu7J6vxzN+fHzBx7sr3u0WOKc5Oz9w/p7odN/uFrRtLmOSl3XDB0/u+YsXX/Be/sAYDT89POU4FgQU265ke6hkbTkqYu0pq4HcCM+iHTN80CyrjouqQRP5g6+fEb+sCbPI7Lfu+bXVli83a3afrik3+nSQDGciWTatPrkcTUSkqMVuLH/vyNPVnrtjjd4IE3T+vS1//ulXbIaa+3dLFl/LZslnchjh0gFoxISkuvuuawcAcxzxy/x0KoYywxx6ituIL2uGmaTyTP79po/Ut14isReiGuszRfs8MC4U3bpkdu2TqagnGnPiDUw6cOtkM9AvNc2VOrkDKx9xycJJDB05mZiaXm44FRO9s49kR5UEKbLCwiv6Y47OAixH2jwIwSdKC65swD5taBY55sHKCT+RXiLYRhNbzegVejbiVz6l8z5+X8iTAUmmKLap01iJe+2wE+EQqBNJacI1Qi6rpimbb6gMrjLk1uOD5u5Yc70TnnmZj1SZ47xqWGYdv7F+y2+ff4lHsx0rWp+xG0o+vb2gNxnRRuqLhrOyZQiWh6FiCJa7tmb0hjofWZctxzFn25bExmKPmnwjLX04OSAnP78Lx/zJkRfLHbOsZztUNHWGvoxcVA1XxYHz/MiH5S1r03DjFvyNd3+Zn91dna6rRdXxm+dv+a35a+7djL/z8IEUu3IkBEVWjnz//Ja/uP6Cc3ugCQVf9WsAzsqGw1jQj5ZhV6BGBQvHbNnxZHEg016owVGxLDsK43h7WHB7s0Q9ZITzkavnW0rr+P0vn6Nfl+SNkrWuFkGQX3hUp0/OxuNcukEVFOMqsPxow6v1hjf7JYe3c1h4vvfRO35j/YajK/jp2yfMf5KzeB1Ozk2mndKy5CCo7j3Vm/Zb770/tggopf5XwH8RuI4x/mb62v8Q+O8AN+nb/gcxxn8r/d1/H/jnAA/892KM/+c/7jmiVpIzeBgY1yXRpN1tlaEPA9WbjvBeKam/tUr6aukg8n3ADMnmuxNG4biMHN+HYW0o7jX1rWS0TfHkuZbCETUpjszTXqYUHQ1ZI173UYvoKKoE+BUC9uXbyJgCMki0UuUUMenmda+JTqUQUmk/w8pRzHuZfQFrPXbZ0ecZYZtLezq54A5iiGk3BgdQeNzKgzIiUe0gO8qeeFxI8dGDPFdU4mcoxCdZGenxEXPwhcyHAnAq8jvDOFZsygJdOpSJRK9QGhZVz7PZjovieALHAC6zA98vbyj0yNZXvKyf8eXFGh81F+URFzSNyxl8wbYvafqcKh/xUfHJzSXdrhBNQSsFYPZ1pNgHhpno8fs1uBcDP3z/Ld9b3HGeyBxfdWse+hoXNcusozIjWkU+6y759HjBF7szNvuKPPesa9k6ZMZz0835v3R/hptmRtPnJ06/1oEPzh74c6uvMSrwaX/FbT+nT+DPTTvn3W5B12WoLFCsOxZ1x3nVsC5aXNBcNwsOXcH9OKM75KhDAgMve85WDfum5Oamorg16VpI24paKMqqsRR3Yi/eXwi+oweFWzjO39vww/MbPt5ccvt6DXngxct73p8/sHclf+vzjyj/1pz1Jw5XTSlb6Z4yIoTL94HqbSOJ33/SIgD8r4H/GfDX/8jX/5UY4//4m19QSv1Z4L8C/AbwAvi/KqV+EGP89gwkEolnXmCakey+wyVQ0BcaWxhM45h93aOeF3QrsQU3o6j8fC4IarHxsks9WnYfiKTXzWLSHxjKW01940SINEbAnDTx1fVI8RA5vJeLYUgmYMwved5XQgn2ZeISRJm9BKFOfoKVoP+6k9QdFWWEyI6awVsGGzBWxDl9l+OTZx2VF9VdLzfGtBaLWlhs3gZU5fCjQjnxTZhouKZXadceTntolZiVvoqiaOs1+UawiWiTjHYm5iZmUNiDhqNOa1WRFqssMHpNrj2vygfmpuMX7RU/2T1nDIaXsw1/YfGaK7vnfHnkt+YFmXLcugV/f/dSuoPrGt1JEdxlj6Ifkjw5pvdoWCraJ8JxH58MLC6P/PmrdzwrhaD0RXvGbTfn5jinHTIy4xnn5oQv7JoS7zV1OfDR1T1nZUPnMn7xcE7X5uK6kzuqYqDIHEYHtIrMs4F13vAw1rx2Z2zHksbljMHQjBkPB9n5V9VAuXQU1pEZT27kcn7oa766WRM3ucS7R0UoAyr5HR6agvG+pLy26D45DS8jsfaoLEBryB400UTaS+F84BT+ycCzpxsuqob/4Kv3GK5rGZMqRzdafnz7nLvPzjj/DzXzr0d8pRkW+vT+RiW+gvk+kG963Dzn5i8s4Xf/hEUgxvg3lVIf/nHflx5/BfjXYow98KlS6mPgLwP/7j/0XynwlZWVYCeo/pRs6yuNrq14Bu68oNlzSd6NFaiYJMJIfPbi05byPufh1zNh7SX8S8wWDNUd6EHMQIJNQZyXGbM3PYvPe44vC/qVhFm2V4bi4ZFPENIulqiob4KAOsnmWY/ICWCD+BIcBCQa14Fh6g4ai8uCeOC7BPINCj8PlBctMcJwXZNvJKwyFBBH4EFm9OJBqMviuptorTrN9oqTaKfYSBDJuJQWJiZPAjFFUSeTy2g5Jf0oR6IJTynIioeHOX9nX/P38pePysHeom2gP7cU2rO0LR7NfizZu4LrZsFXt2vim5Jir9M2RKGOEu8V6kA0AvChIuNM3JGyF0eulkeuEgYxeMPvb56fALm+k/egnvVczo9UduRdM2eTbtSX51ueVnsCisNY8NBVUgCioqp75mVPaR2LvOeqENDk6HPu+xnX7QIfNZmWkcgFTTdadKJGl5nDGk87WlzQ6bkXfP7mAn2dY1JasJ97snXPatHSO8PY5JijMP7c/DF5iEETR4VpU4DtTMBJ3Wj8+cjV1Q6A3//kJdlNhjaiCXG7nPtDRv7O8vQPI+XdmPgzj3kKekwp01uHaR3t05I3/0nD2W/cwL/yq2+/Pw0m8C8opf7rwO8A/2KM8QF4Cfx73/ie1+lr/9CH8lG8/lcFmY/SupSW7CAVf1gaVDRpPpfW0XZyOoO0vu2lxucZFUI0uviDwPF5JrLgfqLwKhEWjfrknBM1tBeaflnK2NAFhrlJgZFwfA/GnT4hrdHA8ZX07rO34ZQZmG8VpjX4SpD6CdEPmUZ9cMSYSN9mQjcNYHeayQxEjYpuX3D1dIv5fsPb6gy9s6etw7QWtI2Eh/hcMAlXSyc0jRioVDiM7KSzRhiPk2x3KoimVaDT2i2Pj4EcWqTFqvDoLBCDUJDbfYE6WrFFKyKsByLw8e6SzlmhKkfFvinpNiX2zoKB7tWAsgF1n5M9CPjne814hvgOJPuxUAa0jozesB1KfNAch0wIRF1O8AqlInnpuJg1FMbRuox5PvD0yYGL4ohWkT98eMrNdo7WkRjB2MD5rOXD1T0vyw1P8j2Xdo9H8/P2KW+2Sx66Ch80PihCkBFh9IbDriI6jS1dYgCWuMFSVKNIgDeV4DlB4eYBViPLVcui7Dn2Ocd9KdqItBo2nTpdU+NMBF4hSJdkjhrbaronjnLZc/cwh2uRMAujVREHuWbLO8X8tdjlRTtZ6clnnB2guhW7fD167n9zwc1/auQHH37Nx2+ufsWdJ48/aRH4nwP/MnL2/cvA/wT4b/9/8wOUUn8V+KsAZbakuGnontTEi5Li+ojddXTP57IWJMjpn5KFtZOVnRkn5x3xuesuND7PqW80+WZg+alnWGe4Un8D+dcnh6BgBBjM99KSbj80cuoL/yaJVWT2n1bsyikoI7sfOnxpWf3CY3sZHyQgVD7oYSkf/uIzOI4zuqcSHa06jR7lpjW9uOawkAvtYTtjuWiYnzccVC3fP4lslIBG4yEx6dqJt6CYhi2fR/pzT3+BKOGapGI08j/lOFmoiZoxntJ4gBMHX5mI7w3KRIpqpA8Z9iA38VAHFvOWwVl2bYlWkSofKa2jzxx97iUHQnBJotNoJxe7L2QWpvKYPBBLTzwDo8TgY3SGVmVYHdAKQrLjysuRRd1TZSPNmHEccj5Y3fOD+TUAPzs84Q/ePaM7FOjcY61Ih89nDa/mD/xo9o6n2ZYLe0AT+Hy44ugL8nTy32/mEvOVHIZCY1GjKAK91RxuZjKu1TJXt8cCgsIvPdiIKWTD4rzm7d2K4JQ4FSlZ+5k+YTTrgD8fyUrHeBQg1RxSsOlCVsP925r8QSTaKFGZhhxwinILiy8lQWoSQPULWXHn+0j9dqS4aYiZ4d0/vmT4z2z5tfWOn//hSxYfm2+9F/9ERSDG+O4bN/P/Evg30//9Cnj1jW99L33tV/2Mvwb8NYDl4mVUPlJeNwwXFe6sInu7J7/vaF7WyTlXgCOffPj1KOBdeS8fjB6tRIgtFEdjhaxz8LJWHKVdnjTVw0Kf8viiFWQ930b6tYwB9iAxWP1KoVRi/qWVTsiSv18mQZIqWlaf+FPg6CmIcy92Xz5X1G8g32W4ZDCiJ/urUjTwwQRmi47jvuT+7Uoowb24+5BOEeXllB+WssUgKe8mJBnSqV4GzHxkqC16KwGWwCkUFfXo2S+U5GTWMZmBekXoDKqXPIFu0NIFeHG3MYuRInM0Q8YwWKz1DM6gVGRR9mgV2elI3OXorYBkIY/4RUDPRzITcIMhOIUtHNYGisxRZO60chu8wehAmY9Y65kVA4uixyiZ5V/MtnxvdsvNMOd33r1ifyxZL1penonSMUTFPOt5Uuzpg+XnzRP+vn/JwvaEqLjrZxxdzrYrud/O8DsZNWJQYjGGKB6V07DJoAqcv7dhXXU0Y0ZfWIyOHNqCobP41tDsZ/K51Z6zi73wIPYZIYun+Hd/5lAKxoNoMHSrKW/0KZTWbowIqFTykXRiNKOdbL8E85Lr2eeabm1OIG9168kfxHLv3V+qcP/UDq3gi7/1HmdfPl77v+rxJyoCSqnnMcY36f/+l4Efpz//G8D/Vin1P0WAwV8H/v3/KD9zXJfo3pPfd4TC4s9qzN2BsrC0T1OoSBMZa2m/Jzvr7Kgorhvx31sVdOeW9lLTXBpqwB49vpjWfZ78wRNsgc9klne5+AxmyTjSpbBI7UVDMDGzZDWpUlZBJLsxuCrSXkWiMszeyJvs6lQMUuGNGkIQjUC1j0lXICdwd6bpg6LPC47p5MQpTCMyXts9biYmQ41xjvgBJIrzxMvXAxirCFW6okKK3ErAXDBp2+Ej+TdckbWX4ucS2cgcxeUjJDadOtq0uhLbMjrDu3crATSdrDFbp4hFIFv1ZLkjKxx9YdCtXF7RRjARm3mKYsTUEZ9EP1pFYR42JcNgUcB81vHB+oHaDnTeCt/A5RyGgvNKxoF/5+2v8/X1Gm0DHz29O63MtAoU2nGRHWlCzhfHcz59OKdN+EAYDNHJ+4NXj13fYiTL5UBxo8Ftc3Qrp/3LV3f8+vqGu36GVYHeeN5uFvT3FbrR2CERkK56vvf8lsI4Prs/T/ZqSZ0alRRFgFwOkuqtzHtulgJa1GN3JjyCcApOLR4kZdk2Hp9r2ksjOJeD+lr4MLtfX3D/ZzTqz+7pHirWv5sx20m3nB/+FDwBpdTfAP4Z4FIp9Rr4l4B/Rin1F+Sy4TPgvwsQY/x9pdS/DvwB4IB//o/bDACo0ZPfHCV1KDfoZiRmmjCvyK73EOc0L0oJY2geAZaooL20KFdRfPlAPjj0UGHGjG5t6JdyJ2oXcZUGLNl2oLzpgQIVZS3oK9EmFNtIkRSAwzy54KY5zhfi728GoXKiJF9eiDuSjpvtxa5Mu3hK/Z1WNiETP4SQR5wSULDcBLRTEDV9KAh1SOIgleS1MRF9RDeRHcV8Y1gI1Tg7cNr3y2tVZBuNGwthwqbn9qUIaLKlrCiPdyXmoBPzcPKxi2AgTthHKT6FobGo3mKPoHYSiKocKUNAOhIxBVGMQ8lYhSQG0adMvdx6XOoWFKBUxCBkpG7IZGWYhECLiyMfnd2xyjv2Y0HjcvZDwbapCEFxu5vR79+DQaMXI6+uHqjsyO9vnlMYx4ezeyoz8kV7zmeHc+6PNfttRexlE6NOuYTfeBQem7mTFHvoxA8hZDC7bLisjrw+rtl2peAe9yV2YylSl+Vq8f+7XB/pneXrzZLmZkaezEmCBYNgAL4K6EZWo5IRKfTlmOjL4iSdVn1Rxs/J1di2HlcZDi8szTN57uparrWHZznH9yLjsx776ZzzjwVrc5V0tRNF/lfefzH+Q/iE/zE9VtlV/Kde/NeIRUasC2KRoUaZLVUEvW1wF3Pa548EaCH+yGuPWlHcjxTXR9CaUFqGVc6wkpTW7CihItEIfdi2XtZ+M4nKbi80bi6tev3OUzw4opVq2zyRmQuSBfdhek752kTLdHXyDewitntsvybu92SwGfI0kxeJ558yIfrVo524HpIrT6IYi3svpz0ziJehPZKyAVNKb4rSOvEN/KSnj4xnAb0esOlCn5Dvbl+II04e0KWXlrgzqNJjbMBtc2afW8rbR6zEZ0meax957q4Wi7UJ6UZDmDvyxSDKulHLnOw1cZSjTmXJuTjzzKqeVdUxywZGb9gNBYMzjyBdY2XVuU2xa2cePRvl50VYnx/5jau3VGbk59sr7o41fW9xXSYgYeFRgB+10JRHLTZdNqLmjmrWY03AeU17KIiDIV/2XK0OYr3WFLh9hm5MAmrTGjZhHZNbEgrC0ZLdWbF3S8VyslHTKRY95FFi1xSnTIbJPEU5MYBRTrH6mWL1mUOPgeZJxvGFpruQ4pttFfl+Uq/KyFXcGKp3yWtyFC+MiTb+9/4X/+LfjTH+xT96/303GINKwTiiMgvtgPLyS6hR4Zc5vlhgNx0zF2heVKL4g5Ntlx4D48KCnpNteqJS2KOk5bpaQkxdJglDFDBaK47BTsDFfC+Jwu2TSL82VNdCMCrvZNY/vJKVpDjZCsp7Eg0pqbi2VScE3ueccgtsJ8XHVUJLlkQimeWHdaS/EDMR24G6F+nrhCZPXgOmFdzCttIRRM0pgn1YPQammFEOVJ/F0zgyUVGLG4N6Uwn1eRnpV6IfEGfhFEm20qjKoQrRBLhRqMAhmxKNZfUYk2W42QlHQ54IBq9OAizlBNQcXAmZ0KizzNN3Gd5qjPXM6555IcpCQBiLbU2mAyaR3Q/bCvOmkBCPIF1XyMTck6N0T8VFy7puedMsuT3MOKZAjjBqlA0s5iJcOm4r2NsTMBtthMpzdnbg1XJL5y2brmIchaQVJqAvhZCqXp9MSKa2Xfdgg2LMNDFXRK+xkzFsyjGMRuZ6c1An7wixlpNiGJVI3E2XFJAvRrCR2U9zlp+PBKvYfpjTXalT52D3Aji6MpGMikh+a8g3pNAYcUFylXxW9c23N+TfjSKg07HaD8SzJbEwYikWo5iHzjPiVU121zD7dKR/Nqc7syhknldAvpNswXFdYPePuWv5bkQNgXGVM840Y6VFP5DJpsB24m+vU3Z9fxHonkQOe031VmzGqneR7lJO9HH5GFSRP2jyjaxmdKJqwgQgQj9P9mGtpAIFK0XBjMlOupTIq/5cGJDFg6K4n5KIOZ0S0SZSUqFOUV84ufFJqbdRi2eebeSC8olW7JbhhELXb1KgRafognQ4k4+C8gJMhU4TyiCdxCjtc38RGFYCYiov4hvtVUovknFiWEXGq4Fy1VMVw4lOmxnP0/mBdd4yBMMQLKUR8M4FQ+ftSVCUW8c8H8i05+1+wcPtAnOXCRP0G8ak2T7N0rWAov2h4LOHJ6heE6uAmY3CSSpHisJxOJRC6Gn1STkZLcQqcPVkxz929RqAd+2SwRmRQXuxYlcmohSoBLJOnRUKuREH8TiIlQevsdcZ5b1YyAmOkhKnXNJGKMh2Sd+hOQW4EOVzVO83qNEw+72Ss587hqVh+31Nfx5EQZkJFyQ7SjfWPRGCWnavT1F4k6LVVeKgXW7+4RP5d6YIxIs16n6Lvn0gXJ4RMwNGQYhkuwE3zxkuZ+S3R8rPHjDtkmGdndZbIdPkm158/AuDPQyYzjEuC7JxpPpyR5Fb+icV/dqeLMGbpSbfRknKbZLNdR4ZlwFfKMa5PnnLZRH0qKW9Xga6Z45xbph9rahuHpNfQ6YYEng3uRbnW0DL6nCKyMr3kG+geSEXUn8WT1Hd40p29nqUCygYIBdRTUgiEXuQdtB2iu5SOhDdC6XYNoL8j1Ezrj1+Lbt1V0rn4KtIuBywhSMGMcKIrZGZ2YoXIWMyAU0cArHyShLcPNCbiMlFTHNVdZyVLc+rHYV2bMYKFzUvyw2VGdm5kj5YMhUo9MgYDUdXnMRKvbd0zspJ3hSM+xx9MLJJSSEskgYt70/I0/t4ryUxKRcLLVM78lxSg53THO5qzEMGJlmvjwrdSyJSvhQC0S/2l7RjxsOxotmKqaApRFDlB4O+yaU4zyPDVQoiubfS/ayTR6HT5HcGe5DTeriQ9eG0ow1eXrs9qpN93LCS3w1Sd3DVE44Z5Rc55W3k+NSw+x64lZOC7FVycBa/RHc5QlTk7yzVjaK8l+I9hakWO2ENulKfRudf9fhuFIEQCFVGfHWFvdmhbu7Rs5pYZIQ6J2aGbNfjqwy3qrBKkX9xS3ZXMZ7XqVgI69C0jugU47Igvz1SvBtx6wrlAmZ7pOoGsn1N87wkGI0qoHkmH8wUXUUQY04VJtHNIylJ4rIU2d5IQMWFZ/ejyLDIqN/Gk6MQCEBoW5Eb9+cIip9cjaOWuX+K5dKDOsWNiYORdB6ujqfW02zEOKRfR9xi8o1LhqtOugrgtPsXCbOiuLOCa6jHv1dOEUeNKmUP3wYFlXTzJg8Y69HL1NqnFsc5zXjMhfdfeK7O93xvdUdlRlqf0XnLx7tLNo3cSE/mB87zhoMv+MOHZ2zbkkXZ8+HynkI7Xh/XvN0vBLhrZfSYNBB1o8g38h4KmUmlkzMVgIHkopvUeGsh7fjW0B5kz2+OmnyAmKWPNIGhbh6JS1Elvn57JhhBYvJJWxnwjUU1hmwnnVXzgcMsB9Rg4Ghxaw86ntyS9U5WfdP3GYAoaVOm0djE75g8J8bkeKTT16IGtjmmFRr45ofgrkZ07lHbXDZGCW4Z1kJOojMUbzPRXmxEQORq4b+U90KsG5I35bRG/lWP70YRSODf+GxF99ElxVdb2B1Qo8M0HWE9l0Jw30jISJWBn6GPLfnnDbEuiZkl1BnRStVTMdI9n1PcdZhDj5/lRDtHjR49eOqvO1QoMYOs1Ma5CIfyPZhRnU4eEevEk/vQuHyk2eY7SQLqXni6DwfGpSXfCLKrwqMrjh7VKcjSZZwiucZlpD+Xi1n300knpic6nf7DUtGdK4bzgPKK+m0k30B/pkUDUCbuwFFa4ykleSIFQbphkqHq5JCkR9AHyzBqhmR0Ih6IivigGItIftXwo6fXPK2ExvpVsxZbrsFirOfY5/zu2xeMgz0Re2JIxcVG+tGeuP3duxm6VeyWnuvFAu803BbkG009Fc70eidXnfwg3VU08t67SrCZ0CeBWRDsyNUyNuX3Bu2MhJgkwVTUEIdU3FVC8itZdfIuJx/kc4lFOBGc1NFgOk3UkeHKU18deTFrub5fEp1CzUcYjFiAp+cZzz3VZUNlPRHwCWA0W+FYjEv5+dlWxlGQDY8e5DqIhehDOAuMrT3RqrkryLcSFOOqSMxEY6DvcvK9prqRa2YCoJWH6j5gBtlyiaFNTJkbv/rx3SgCWqG6gex6z/hswfhsQaYVat8Qmx51bNDLBWFeortRxofM4NdzdDegmg7VDyhfEDNDNAZKySI4fDgj36T1yjw/RT77QpMdhcOunWI8SJ6AAuxBLrCsmU5zcT7So+FgteTtlXIqmUG84DzgV54ujyfzD9Mq6jeK8iHg00pvWIuZpR5ktebzSH/hBXBSyd22V2mjwcl9uBk1w0JkzLM3UaSjb+WG9rlcTOVdZFik4JTyG51MFrEp8962abeqVPIx0MLlhxPoxQTRHHN+ev2En/KEEJR0CSaS5Q7vNMd9KSNE8j0MRRBWnYbYGbrjjKFZSGczceS9wt2WckrvRI49ybsn56ap+LmZwR7lRJsciX0+kZs4GWtGJa12viFFkXHa6EzZAYqEIXioP7eyXo0SBBoXDp15Qpd4DWUkXvasFg1XsyP3bc3XX16gBg2lh4P4O0SdXJAWI2dnUmX7UWjU3aFA32X4uae4bAhB434xp7yVjtIydTCR+EHL+aIRgtFDjd6Lw5YcDmIrPy7lGrH7xMYMj25WzdNkU99BvomnAJqskcLjCk0w3/UioITLrrZ7bGbxqxK3rrEhorwntgPxYSubr6ogqigR5UCocyhz9KGF0YExKBUwnXgO+sKyf5WTtZF854V2PAjnPxhS16DIk5+bK1W6cRSujBTb9BJdpLqT1aLET4OaRYbzQMyD0Ht780skoXEdaNASWd7IqJDvI/1e058JOGUbCf9wS7HDHmrYK0v1Tp9Au2wfWXwRGOaKYSkSYjMIZ6LYipZgIjjlO2E6DmvpZpQDlchV2sdTxJVOM2a2V4RcTj3lUwZAEXE2wqjp39bYo0aN0lZ3lyPFsqesBiGtUIh2wSPBpVHBoLFbQ3ZQpwTiYS2W53IBq7Qbl5PLdnJzngJh8gSCptWnL4Ua7qbgFgvjTIq56eVmsS2goH0qeIceEQZfSMYtWjqwYhNPlvP9GvoXYibqnEabiNKiY1jUPSHCx2+eEDa5jE8zcSEmyIqSLJDVI7O6Z3BWzFUVDLsCfTToFy0/en5NiIqf/P4rzj8WzsfkMj2ce4pnDXXZ0w0Z7esF1bU+cWBUTJ4RRVKmOiUSZBPJtoKXjLOUxNzLtiBrpYMScFr9Uojutz2+E0XAF5rxxTnZZ+/Qtw9gLwilJSxKtNGoPCPuDtC0qBCgyIm5FR6BV8IpWFaSZOQjMfWV2okdGYgL0bCwFJtAvnvc45tO4sNcIU49+dHjM8VYa4aV4lhPmgBNlkxEik0yg9wrTGforsT0k16fEORohfMzrgPbH2jmn6eIKSUiID3KjQrycwZnGNeBqCLDE8e41nJjKbBHTfVOY49py5CpU5z6Y7hKGmGSU62SAxmvIWohjfRrufgm7oEZgADZdTwZWrgaYqMwjZGLNZMLF5NUjztLHxWsOsJEbDKPmQJsM8oHLW64KZF4cslRyU5beVEz2k4KQJZOe+1ioidrhpl0A4JzCJgZUnuvvIxipPWnTnqNcSk3jEknqKxo0+vQYBtZBe9fStpR9qzh1XrPcchoyfFeMBHvDA/bmUi9R+FQqMUUkQfZqqcoZAPRD5btthZhmNOYnUFZqN7f84+/+JztWPJ3//AjLn5XNCvH9yJ+lorhTDqq+3dLiq8zFvcqJR7J5+DNYyp1LIKwOAdNcW0kDNdOBU9R3E3ks2SiaxIJLEXr8V0vAmjF4YOKunhB8ekN+m5HvFwRKkvIKnSVofMMmk7WiTGidy0sSknEzS169GkUQFaLndDlQq6xbaAKcHyqOT43YiyyC4/ZgkmUFFXa73upqGaMtBeaYSmuN42SOS7fSDtPFsk3iuygxeFoJeUn26sTxXc4D4xrzwHD7LU+Ba6iZJaTbARxkG0Hk+zJwF2OZCnVtjsUtORkWzlZJclIbnxXTdLiFDOuEG17J6GlkGZjCy7KDA0JExjk74aVOpGgJr9/20jhc7PplE4sRg8qGHqfonmUUIJV0sYXD+rkxjwsBYRzcxk37D6h/SlodFgJIKq8zLR64NSNdZfJralKWo1ERNSDOhWxKTkomkdzUnvUp65iGn/E80HRPFO0H4wsrw58tNzxvN7xpllyd6gZB4vSAWMithhQKjLmlnGwxIgoCgvHxfrAMu+5b2tu3y6xtxnaShdlj7JCXn244c89+Zo37ZI//NlL1r+XMSxg/2sOKo9qrLhHG8PYa6rXGcWDvJ3DAvpLQflDHjGXPfO657Cr0Nc59RtNdojSFeXJuv4gRbxLXpMnl6pUMAkiuPu2x3eiCOhBgIzmWc64eM7s4wfM9gjMpBCUGaGwmF2O6geJXHYeve9QhZV1otYyVqgoqjqrUUmL4BY5eozMQ6S5MnRnGp8pslZ292OtT20pJAZgqU7Jw7ZDZu06reiMAHTFLjLMhWpbPIC/FatrEHAr24uHwbAOuHmgXxnqa5LleQonMSSxU6R+I465UUG2zRnWGe3Cn3bbYlKSsIKt3PDdWqjP4zKRX5DWWQhLwgmwR5V0Bt9409OIOJ08w1I6lfJBLNVUBPegGGslBCUjpxOo03ZBTlv5QXafbM4SrdsXguZHhSD1vYwe0SAhIiYZvhSIFiJAFuIJ4AoZnERbc1ntZfsE7s2kkAoDMwF9gGnNya8xdlL4+nNhMo7zgH3S8sOnt/xgeU2Iml8cLvjyYU3X5Njcs5q3LIqeyo5suoq3TYE/WGHnzQd+8Pya2g78+O1z/E8XzPZShKOX4tQ9d7z46JZXiw0/vnnO5vM19ddGIsaeOzCR7F2eQk7kPbD3VlKpC1n7Dc9HiX7LAh88uadzlrefX1B/YSnvIspJNwNQpwyDYano3pf1bb55NCslgB3SgTZ8x4uA8pHifmRYW3yhaL63pnzXYu4P6C4j5hY/yxmvauzOoJuBmFlU16Maj8oleixmBj8rUDaKc3AmJqG69xJP3itMG+jXlmGu6BdKPP0TEu9zBQOnNttVGjcTxl6exD++kGIwzgVHmH8tXIGoZC9bbDXNlT4pHYs7GRmGdWQ4C6iomX8ZpZrXKrnNyAqxSO2gW4iCrLhX+MYmC/N4CjsdZ/LaTpbm6X+Pu2TpBFwVcfPwqELM5fcUG2qFKh4troMVQZYeQOW/DCL5Mq01v8FCNE3K7Rvkayb9d5wJbuHLRG1NhBrTknb+wrWICYn3pRTR7JBm/VqlSDL5eZOycYoDczNBycVOF+EsBMS8QwmHggD9VaR930MWUUYKZlkNaBX56fYp14c5xzbHj4YYFHkSD3XO8tBUPLxdonoNZWBxdeA3r97SuJy/85OPmP80xyhon4bUZUWKpw1/6fnXNC7ndz77gPiuoNiI1f2QjERFVqzozwL6WQf7DBU4EYvKD/ac1x11NrLKWz59uKD9e+dcfBkhRnyliLlcn1UCgY/vwXA1QlAU12JTdjKuHWXcJcpn+22P70QRmFSBupf0mJiSVfPCYm8P6M0BvTf48zl+noPW6EauOjU6otbEPBMuQDPgFgVkYl0ercZXBkLEjEHoxGPEdob23DDO5OKc2tSQPc6qwUgken8GY5phJ6qyq6G51CybQHE/4mZiZGqGQH0D/VIYgTpd4EQ5rYdVpO0V1Y24BKMS534p7rl2b0T1V3p0pxO7TQg6fg7DhWTfTak7+Z159BbQQqkNOUQt7kQRwSWmVGEVFMEJ4hx10ikMMr4MZ5KJOCkUJwVjtOHEPYg2PoafRoPO5eu+klnfl9LCP96cktcHEByneHJ02teTItTN1IHJNeGriJvHU1FTQZ3SgZUXkDLaiG615BlGKSghD6jaU8wGYpQNR+wNZuZQwOf3Z/R9JgdlSHbpUXG4nXEI0rUoJxLyOHPMLxoK6/m7r1/hv6xZvBGmZfO+g4SDLM+PPF/u+HK/5u3bNfY6l/VxD24uXVPIRL8xVJ5y0dM3okMAGC4CZ+8/8NH6HqsD75oF/+Effsj85xnL25jYn99Qszo4vtAcX0k8mvIK+6Y4kd1EI5MOhlQvsz+NivA/jkfINe1lJiy4JqBdkLanMMQnC7I7jdodMW8fUOcLQp0T6hylFMoHVD8Qywy3qNCDwxxHGSOsRo+C9oyrDF9KmAnIhVTsA70SwGZiYkx0YtOJotC8i+hR069lxp2AKdIapnliqG9ADxFXCjZghki5CZJTkKLUpR+fgDZp/7JDorAqxRg048pLDp5TkAdCHtC5p67lgh76TMxLredqdWBZdHxyfcnwZS2Clr0+UWujjTAKLqBHhau/kVxspMApl7qGQS5SVwlL0XQa3T+uqmOYYsBF+BIGuSkn8kvIpVP5o4+YB1wR8DN96lKYfqaRf6MH2QyJRPoRkyB1MyrIeyUcfE5aCLz6pRDR6flVUHCw9HvZtSsg1qISbNucsRHTUIKCbYZNEWGml2RhFZQg+GvpHg53Nd1dRr5RWOD4XiCeDxJE6hTZbMR5zS/eXTLuc/IbS/4gHWZ7JTyDbNVTFU6i4Lyi2wp/QA+Kce15+dEtf+bsHW/aJT/58in684rLn8uJP854HI9AqObzyHgxYuYOP2jMfYYahXYcMgFG7VFch/N9IDsGst23I4PfiSIQlQRoRC2ob/ngMd5jjvLC3brC5FY6gkN3EhjFwhBMjd416ENHLDLGVYnpHObQg9b4KkN5SS/qzi3RaEwXhC8QU0KLTih7lPHb28RAm0kc9eytxx41rprCLR8Rb1dLNJrtHpWK02569mY8zd6+1LQXlj7lFgQrKC46kZJaRdQmyYcjMWrIorDZgLNZy1AO7JuSobfcH2oy4zlfHrl9oRl2eTIiebQl1x7yvZik+MrQn2uh4CaJ8oQzTPHeKoDdiyOR6ZHOYnIl8hPSLi3C9B5MXocY2ULYvaG4k/fVzcxJVajS9pDUXQQLJHCvuxTUT2SzGtVAfpTv6y+gPwtCwQ1SiKZRYSoCE3swTtyHVJimJF7dWdyD2LWpVMRN94hZCCD8yKUY1mLdhjLYreAZ/XkkPO0p64HuUBBbA1lgPGaM20Kckw9Kgl8M7H7gMec961nHouy5P9anrEWi/N5+5Th/umNdtvzu7QtuPj8TxeadvO5+LaPROJfOiCDF3c+DsBqPFn2UztGfy0igt6JeLO7lEMsayeoYF9+eTf6dKAJSiaE7E0BODDgDWivMtkV7T5xXhPVc/AdjRPUe1Q7EuhDS0KFFH3t0aXG1/Fp222FixM+L0961XxoKBdneo8eA9obWGsm+8ykAM0YIMvu3TxThQYtz6+FxdJlaZZ+Lz1tfJAQ7xBOgpULE7vtT0TJtiekzhrkIgqbuY5qtbZt8A4t4QsCjibSbjOO8olj2WCudTHtX8dmmRJde3I+WA8Er3DGTdtaJD6H83nKD2aPcQKadWmy5kSV0FbKDPpmNQDJImcVEOY74Rp388X3B6WQ2fSoMJp5ciwQ8BNPIKT0lLSmfMIxeJSdo+V31KJTdkIk+fgIsfS7tL6O8ZttKER3nAnpmB07KPGEDJoekAHZnKG/lVJYY87RJqCPjpcPOR1xKT8qvhUAUcskDCEsHg8YtA2458uLJhlk28NntOeohQzuF9gaV3JmU2AYK9vN0xNZOMAgdxJH4PifmEbsayHKHc5os8xyakt//ekXxNmN9I7LskE8nvig+QxnQvTpRf1WvUZ2Wkeuyp54NdG0ObwrqN5ryNlnv2YRrrR/9OH/V4ztRBKJK+/etoPDthcaMFhUiunfo3QhvbmG1IJbiNUCMKOdRmwNhMSOsZ+hdi933hKzC1RY95qh+RPlANPZ0c3Yrgys0+d5jm0Cea9pCMa6EDmx6URaKK69inCtAJ+2+3Ej5IWAb4SWEQjPMjXQKmeQioGCcp5Y0RILVKQUptbQJtdWjPBdRCsowl+BJN4uS6OvTPrjJGI6WYT2QlU6UhvsM9ZAlZmA8SYy1E7RdWv10Qc0ejUcmHwN7FAs0SSWSkz5qIaCokE7/o4Io3IRgobsSa3UAm/zx9KDQZSL55EkNl7wMJq+8k7PxMCkdZa6fbM4gUXqz5JnQQbYjMeyk0OpBCtKw5kRqamfgzhxmPpLnjmGw+E54/7ZVp8QpubHE8jt/eeTJ4sixzxlLQ9fmjMmaLs4cuvQYHaFUlNXAh+f3PK92/M7bV4TPZpSbKeMvGc7knMJRXSW7fGcMPtdsjjPiXUEsPbOrhiIbObYFrre464rizrDcyVZFjyI2kyRl2aJEI92ZbdWJValHISvVV0dy69lua8zbgvJWOlcUDHMpTP1KsKkJa/lVj+9GEUg0UZ1MO0IG7ZmWMFHAWo1Rini/QVtLnNePK8EQ0Zs9gYWQi5oBexgYzgqGs4JsI89h+pCstMGV4lXYnYkbLJFT5LirYVxOefUJOc9lLpu4+NFKe58dFNWdI9uOZAfHWFuGpfkGiAbjzKaMApExS6s6AYxJo58Ky8RPUG/FqWhYyXgiKx+Z7X1fMJxr6rOW0XpGSszBnMgxplNkTboBHYlchNBGE4nIDNLmT2qzaaUUzOR9KASU7DgpEtNGZCVchJgH1JAcmNP7NzkhRYOQnJCCKrwGeZ7+PCULpb361BVMHochjxLVbhNA2whlOzixRfOFor9IEt0s4oqAygNKR3xr6e4KYdYZ6WzGRaD7wGEKj+8N+Wzg/fMtL2dbDmMhOYLeUOUj8yf3AGxbuVuKzDE4w8vljufVlr/5+a8RfjKnenhkOZ6yKPI0nyTjELMeuFwfOPY5obWwcMzPGmIUG/d4tOR3hvJGiDyml/dQCjKn4NX8QWOnrUoObga+joSLkXrR4ZyhuZmR3RuKe0WxFY6FS2C3CIoET3Hnf7rwkf+fP6IR/rNtRbAz7Ti7tcaVOWbIKB5KitsatT3CZocqSyGkazn19GZPXM2JVqObEVtYxoVlXObYxgkuMAT0Nj6e6ApcoUQlGKUAqSBzf7Ayi9km/flMTtF8ly58C3EJ0ViyRuzQ9SDZCMPKyLpxhHGhReKb1IMgF7gvRUpqW5MIRN/Yq3s5GaJWpzRZ5eQ59QBma2l0hSkdqnZ4HU/bguxB6Lq2ESs020XUMaK8MCBRsjaKWopMfyY3lBqnU1PaT4A+neKcPAfEvkyPJvH15fOawFLtFEEJOSeYJAiIws4Uh2TZq4c6gHs0Tgl5JJTizhtyAfd8LmvYYZkKZFovBpvm+V4RBoUAC/La9TDhAQq3dly+2HI1O9CMOYVxvD9/4CrfM0bDvZ7hokaNOa/WNzwt9nxyuGRIoaLtkDEvBkJU/N8//iHZH9bk6aCQgyFxBNLB4JYBfd7z6nLDs9mO1/s1XZujskBeyyarPeawy8g3QqoS6ziVAMAkhNJy+OQ7pANLrlX9pax71WrAmEizK1GNJdtpint1MsYdVlEOlyGtHtdeitKy4Ytvuf++G0UgEUD6C9H065SqoxIDLGqIxpBvC+ZfL5i97si+vIV+AJt+BaNhGKHKxZTEiz7AV8miLG0FghEX4pBCNkwL0SiGpSYkIc4jFTfJVp3Me91TT/eUU36eGST2zGeTw44oxEJyEupTG9s8j6dgiJj0CgTSmk5O2qhlptVOlGbT7HsC+Rx4IwCRnwXwCn/IUIOWQM+TFkJOkhFFfz5dZPzS7zV1RIJrRBH+WEVIPn9TQpDOA2UlF/BxU5F9lTH7KjkcZUk8NUS6tWJQ6pdwDNNqyht1snCfknFNB9oLQOlWwr8XfrU6uRzZo9zUw0qeJ9vJezFxFabfY7L4kuTlFOy5HFjMOs5nDWdFwxAs7y/ueV7uWJmW9/I7upjzd8aPGL3hab3n+/UtB19QGsfTes99N8NbeeN//2fvMfskAyUOPjFxH3RKiXLzCO+1/OUPvuCD+p6jK/idm1fc3C1QJlIvO4psZLeviducIrn/uIrTKBTyZGvfy0E0cUiGRVorr4MUZh2JoyEMoDqD3WnKW+m42qeKYSV09Ogj3RNPftFxOeu4mh0ozch/8C3333eiCMjFISDRcOVQnajS4tnACMSjRc0dsRzZ3VfUn8+4/HHB7OMH1MNOxgJr5b8gKkOdZlmrGZaWbC92Y2LsYeXPCFEpOzqyI3QXGd2ZxiWG3CQ8iUqqsy/EoGM88wQrJ65yiXZ7VOn0lhNsmo9DIRwAfdYTdRByitfEXoOJ6NIz9HL6zM5azmcND03F4c2cbJtksSnIRPwItSjTVqK/HdqM4HLKaykE4yzSXSTGXxVhPVDOBvrRMO5ysnsrGvlR7MiKOy2mrlbm7VALBdg8SKZhm4uFF1rm6b6Rojzx/eVN5KSatMfULrfyPT5LdmqFjAtS2NNJFTXRK3QjJ6Pp0pxd/HIByI6ynh0uPbF2SaBkxXMxE4xCX/S8PN/xbCbRZS4atIo8r7Z8r7ql1gMvsge6mPFVf0brMxZ5x3neMEZDpjwf1ndsXM11syBExdv7JdWXGbZFBF9a9u9E0SkMl47l0wN/7skb/uz8DT9vnvD7d8/Y7CuyZKcOsN3XhIdCCsA20anreOISiPeDqEVViPRnIjAbZ1LwlRN78lAFlPXEXgpAvk1j2kI0EyqCnwXsRccHF1vmeU+uxcr9y/36W++/70QRCFaqYHGnGXuFuxylzRo1y8sj1dWID5rnix3vfbThFz+44KcfvmD14yue/N2a7Ms7CI9kCDV6DBCtFANXa8alRJsrFyGX9ZwYe0RcLZbk5e2IbQ3dmaE7l9jzaReugrgLK2+kS/EJ6IriONM9kRvCtGJe6S5GdOExJrCedRgdmRc9AKM3RGDXlsSocLlG68j5rOH7q1t++70v2H+/5P/w5W9x8+WZ+OkpsY+avYmUdxmHVxb/bKCYDWSrlsO5ePEpD27tyJYD61lHnY+8t9jwstxgdeD3Ni/46eunmK9KiltxJhpnCeBaeFTtiI2FVmZW20jR7K4C/mKkXUEzaPRRwlGzg8IeobgXfnp2jCdrK1887rc5bRFktMmTy06wj9shMyTF4ZkYqdhkAjIsEHstE1G77GT04WYy65brjjxlIbwOa1ZFx/vzBz6qbnkvvyNXni5m/LR7zifNFduxpLYDq6xjDIYxGt4v7vj940t+5/oV/WjxQTM+FGRJqRcy6WjGdWBcOOplx4vFgaf1Hq0C/7frH/LQVCgVKQpH1+YMXSamqoNONvJwfCHXSXUt1PPJsDZrhRR0fKHp14KPoCDbSFTZeOkwM4dvLHov41jzygs+M3kfXvZ8//kt788eOPocTcRFze+9fU5zPfvW++87UQRs6Th+6Kg/t4k6mzFeOLCR/bZi/rTnsj5ilWdmev5Lz/4eP17c8v9+9hGv1+c8+3ct5Wf3qGEkzEpCZdFjwB4GdG9QMRe670wnEDAQMsMwT+q75FwcbIbtxGBUOxEcufpxly4BJon0kvSe0T7SV/XZQDnrUMCq6vgLF6+Zm56VbWlCzs8PT5jZgafFjlKP3I5zfrJ9yud358SoeDbb8WF1x7k98OfKLzn/6MD/vvxtvrg9ozvkDHtL+U5TXUdWP4duU9Bd5PRXA2cXe8KqYXMzR3WG8ZjRJyrsXTdjZgY+qm/5S+efC/+9eE5TzOQ0zaPEn+dyypxCUd0jece0irjNZC2lZYQY9RSckU40FDoD20fqG38KyRjmgotMSUiT8Cmmq08l41YVZDsQTRqJmsd/Y48Kc2fRXmbd7r2R+eWRs7plDJrtseI4FMzqnicziSz/oLhlbY78uH3Fx80TPt5dcugLns73aBW5HQtKM5Jpz/+z+XV+dneFD5p52XO7naNGfWIpukVArQdm856zuuVJveeiOLIfSz7ZXnK7nZPn4uR8fKggKFThMaXHJ/VkfxXQg2L1U6juPcNCE3IothHlI00KZZ3yIbOdbEq6Kyf27y6NP2cj9bqV59pURBOpnh/4J15+zjpr+LI94zBKIvS7uxXxXQHld5wx6Lxm/XzHJp+Tf51RbBTZPqO/DPhZ4OvX57RP9rxY7viyPaPQjt+cvebFRxv+5uLX+GT+Ps/+9hMWP92gjx1+vmSYZ0IRbkaKzjFclIRCi//f3KC9oLKulgvSdJI10F5OfvyRfCdijckeXHtw2QRekVZnQt5QZVLK6cCPLq55WW34jfor/lL5OR9ZwyGO/DvVC/7O4XsAXNo9tR5o5xnXhzmHY8m2r1isO2a6x6P4Xn7Nf+7JT/jJ7Bmtz9j0FZ/eXHD/tqZ6px9tyz8pOH6R078YWV8dJMzjoaZ9M6cbFJtszSeLJ/zO+hVndUvvjZxSZSAswolBF1uL3Roh4DjZ008AWMhkt2/vtcSzxQk8jXRPJgGPZDLaRjjyKsiWQ2bpKIDYfcJGkg5eD6R/I++r9jIC2DZdG1nSOvRyAwyryPhs5Oxyz9XsSO8t/WhxTmOtp8gcpRlZmZZMOf6ge8nffviQ23bOpi1RwF1b8/W4ZHBy+X+sL4lRMSsGVsWR68Oc8bYSr4cydVaLgVnd83Sx59Vswzpr2Iw1P755xv56Lms5kwvb00bq8wZrArvbGaYRJme2Uyw+lRCdw0vZIs3eeLImcHxqT/ZwphXSUbAwrAIUHq0j9bxjVXXU2YCPmre7BTr3XDzd8p9+8XP2ruTv3H7AQ1Nx3JfodwXZUUYmlQJyf9XjO1EEVK/Zvl5RXDUMrwLhTUHxoKi/FkTbzTQPw4r9uuJifZD46KXheb7hn7z4lPKfcPzYfIQrz1j/wQ770OKLGe3TguxgKb4+kG96uqeVGGoMnn4lDi16SCsp+yiCOT4XYob4Dsj852YkJpaiuxR/fRUhFAE9G5ktOsrM0Y+Wn95fEc4VZ7bhLr+m9gfuQ06pRgrt+HdvPyJEKQb3x1rScYLm9WbF/yv7PvVlf0rDeZ490FXSU+/KEh81m1nH/cXsFBemvKZ+p6iuc/YfnJF9eGB51tBWGeNGXHziQ8auW7DLJFfPbqys/qqIW7uTKaafB0Ii6ygnJ7zuU/BJOpVPCr9MMI+wdJjK4YOi15Fs1nE+P3JVHnhebtEq8qZb8TuvX7H/fE79RtaYZlQnTwBfSkcxbWNC/kivBlmZjUvBOPJSTtyHrqIfLUYHXl1u+HB+T2Ec59mRhen4tH/C7+1fchwLoWWPFu80TVOIsWpnIA9k9cD5smFR9Hx2e078ZEa1F3GXWwhb0djAum6ZZz3bseTn2yu+eHOOvi7IfKI1FxK1lhcO5wzdlwvKe2nn9QDVrdjBHT4Q1er6Z2IEunvfSvxdy0nxKRJvUUjOVh0fnt9zVR4Yg2EzVOy7gmGwrJYNf/nJF7zplvzdr1/R3NXog6FInZSsnv//gCdAhOorQ9/Miecj7sIRCkN5ramu1Qkp9ceK6/uC2/M5+6HgB6uKi+zIb66+Jvwlxe8tXzEsVpz/pCN/6Ii2pr2wjLMV9ZuWfDPSn+eSNrTzdGtzMq3UTtYxphNQq3sSGRdCY863Qhvtz4PccG/EantcREIJRTVSp1DO86ph01X87O6K1/s1v1O/z4tqx2aseH1YMwbNoSvYXc/RjTmh/yGLNLXhpzzB6sBvLb/izB45+JKbYUHrM7SKzOyArmSu3OxqnNP4OtI+Ecyieqfowpxu7aQ7sXJTExHdvw1CSU5IvWkVYHFnjvJcZut+sLjRopNfXvtQkt+YtMVA6MR5YrbNAvW65cV6x/uzB96rHvhB+ZZX2R1L1TOg+XK84OPsKe8uFnzSZRxtLt1CmwgtlRScYhNRA4B8PR9kdermCZirPfW8p8gcy7JHqcivrW/54fwd//T8p6x1y0+G5/z95hX/9t0PeHNc4rzBB0XT5RKC4jUhzekUHluIC8vDvubd12uqz3Kyg9ChJ2txnMJ7xVe3a76MZ/jeoB8y8oM6MRDjwmFKR/SK/l1NcW2YbwUQDekQPr6U77VHxeJLoZk//CDDF5xi7LoLIXb5QrYnV68e+MeuXlNox20/5/P9Ge2QsdvXaB14Mj/w44fnfP75FflbS+mERZnvEnsTOHyg8D88fuvt98cWAaXUK+CvA0/lduWvxRj/VaXUOfC/Az5Eosj+2Rjjg1JKAf8q8F8AGuC/GWP8tu2EPEdyw6neKcYmZ7jwxDwKfTPT1O/kjRtW4BsD9xWfbXLuX9T8+sUNZ3nLVXHgP/FnPuXvL1/Qnc+5+vuW/GFAOcuwthzfq6i/7qQQXGQEI0SNiQlnewG2xlr8/cJG0V0GustIeavltc0EBNSjEmpmp7CNpaWmejlw7GsA5mWP0ZE3tyu+3l7xu71gB7rXSYEYxNT2XmZvn9hsPigaX/Pj+Jy7bsbLmdh178eSgyuY254P53ccXcEQDPdhJozCLNJfBYYzWbNFm/CK5ODLFL2VQjQISdU2l91+1EBQjIPF+8eI7svVgQ8WD+yelvzh7Bnhq1Jm+oWk/xTVyMvVnuf1jkXWcZEdObNHFrrFEOii5St3xt89fsjf27zH9X7ObNHRZ57xviQaLQSjLGKaRP5KrM5JJm1byWkARbCWrsqZlQPPZjuelTt+VL3hR8UbFrrjs/GS/9Ptb/E7X7zPuC1k+1KJ/bg2QiqKowKn0bVYh/uHApwUndk7GXXG+aN9GR5U1MQvJHA05pHs/0Pdn8Xctq75fdDv7UY3m69bzW7OqXOOq3HZrkh2nNgKvoAEuEBCspAMMUHGgEVxEYQickHwDZFCpCCBIyRQUCFf2ChQMkmQTWKEYnAAE9uxq2JcpsrVnXPqnN2s7mtmO5q34+J5x5hrl88+VXFZ0WZKW3utb33N/OYc43mf5//8m7FIvluIq4haBYxLxH1VAkDU4nUYOgH85qix5q2meRCnp+PXDdrD9a+J7d3uW5bhWdkwPff87t/1Of/E7fc4xppfePyIV7sNIRj8aLFV4OO7Hd9/vGb87ob1K138L2D9WcT2meHGsP+WYvrRfvFP/IcqAkim4L+Yc/55pdQG+Dml1L8P/LeA/1vO+V9TSv1LwL8E/I+A/xISRPrjwB9GYsz/8A/7AcZTKMPF0SYZqa5Fbjp4QVLNKOu4ZBXuYBker/n5r7d8+OKJq3pgjJaf+OAtn7YTn21uuP1Fw+a7A6vvTYx3DcOLGj1m3D4y3lj8SvLmsgLfKuyYl22APUPzTiKfhrsshqHviqa7+LepQlBpv2956m9JXUSNmn7aLqud6sGw/kQo0VkLo2u8Mvg1iyOx9kKQCauMqhPBGz65v+bdccWLzZGb+ixpuoMQXBrjuaoG1uuB/WBQZ4M5GlIjCH61mlh3A1rBeXSMo5PTrxc6rQpCTJqeia8hILTlkyUmJxwGDe+0OCVt64H1ZuDwgabbDvzeF6/4ifUbnrkD1+ZMozz71PKL54/427tv8t36Gf9Y9wl39shT7Ph8vOLtaU2IsgXxZyHMqFKAoi0Wbx3F51B8H+cEZSEfFRsxYFVNrMyEIfG98Y7/+PgjvB3W/Or9c06fbHB7jS0kpNxrQi2CG0YjRbFKpMFiH4VKnlymvhd/htmt2Z4VKYCKghHFRlaotoxF0614FZhOSCTpvqZ9ZXBnea7jLYRVCaop69PZdWm4ky7SnmD1qXQ7jz9hGJ7LBsQ8G/kj3/wuP7p6y2fDNb/89ILP7q/QOqEUNN1EU3m+9/oW872G9kmeU7WXAuBOkfMLy+EbcmhVv97SvOMfnixU0oc/L38+KKV+CfgY+KPAf6582p8D/oNSBP4o8OezhBz+DaXU9W9KMf4HHiplujfCMPOb2ehCLe6z2crNXz9lql0WLr+C7lPFeG74/Ok5Tx8f6WrPQ+y4agc2f/AV33/+jP55x+0vTjSvzuTaMN7VxEZTPwVQluFKE4uZ5RxoIelAcoO2STHeZPqXmfpRUe3yIg/OZna2zVQ7DTtdNN9gPr3QagXYSlT7gF9ZsUQzl+RiM5RuyGqGteL26oSPmsOp4TvnO3ZXDZ3z7PpGBCwq41ykrTzbZydO5xo+bWleG8ZbhVqP/PjtOyodeBhX+ChhoMep5uncMo0WYxNaJ4ncmix5Et6CrYtl9mCZzo5Xccuhq7lqB3787i3fWt3zB1ff5SP3yGf+hr9x/FGmZNFk3oxrhuhojee1v+Ihrng1XvF2WAOgdaY/1+i9XZSK7qAInSmdkoCJ2QpFe7oSBmO2ELYRs/E8vzlQ6cjbcc33Tjd8vtty3jewt9izxhY1qD0p1F6KnV+JZfccoqImjT1p8TCoM+0rTftWWHsqyc2kcmF21sKqTHVeCoC/ledibMSPFvWuZvW5xh0y01UZE50UdnsqrsGzh+P6oruoH2G8UfQvRAuQu8Cz5wf+8MvfoDUTv3x8yXd3tzzsVlgbcS7ivcFPlv5NR/1O6OLJSmrx9jek/z9+6Ap3BVafQb2PhPofkYBIKfVN4A8AfxN4+d6N/QoZF0AKxPff+7JPyse+tAgA2D5RPwGIm4+aWW658OCL4m0WmyRHMZwElGH0G863nno1MXrLj9w+8k/+nm/zi3cf8OmLLc/+P5bNt080r3um65psFO4g7sGpUFRjLfRLM0qhmSmi76cPq1ROJ80CLM5kDUmhlX+LFVS9JB3bUUgy05WVSPTMEhIpZioUdR+414639YbVWhxM4r7i7dliu4CrghhhRrkQlMr82O07rj4Y+OzlFb/6/ZeYVxX5V9f8zacfZf38RGUDrQu86ATV3q0bPjtecRhq0dcPVhx0Fdg6st2c2TYj+6HmeG7QOlPZyIvuwE9uXgPwc6dv8nN8kyff8f3TNQ99R4ia2gU65+md4zeGW/ro+N7hljf7NePgyCVGPbeJ2CqMv7gbz3oLMxuDKiQGLJb3uqjyzpPj0NeMQ0U8OPRZi3PR9N61dC4xXwVwnK4zaSPOq+osRJtZ4t28kwKQtRT02YiDcr0Nd0KjdnsNCfyzEoSaYNrVVG8s3SvJ/ps2cp2IUUu5Z7IUsvEmkysZe7TQRTh+PYt78CqyuTvxI9dPfHP1wD7UfPt4J0X72GKdAEfnU006WczeUo0U5Sa0rzPrTyOx1mIyaqF5SFTHhJ5y0bP8IygCSqk18G8D/0LOea/U5ZvmnLOaY2p++9/vp4GfBqjba+xJMtZ1gNFLy2/GS277HNU8q/v654pwLV2DStI56NcVU2fJ68i3wx3/2W/9On/yJ/4Gv/jRR/y/v/m7OP1HG25+xVM9TsTGopRIiqeVLQQX8BtRYnWvM/1ztcSgV0/zE5ebNlsWnX39TjPdZEKT6XZyocdahEhZK6qjmDuolJfkoWqflxy/UMwh5+/Hu5rD0aGion1lsGcITSWruJsJWwUSgnYffMNPbl7zT1//Eu9ebvkP7n+CX/jVr1G9dozvrjhtE4/rwPnWcVg1hKQZg+V4aEgnaf2xQhUOg+UprTA68+O377j94IxPhjEZzqHi5x+/zkPfcRxqauf5+nbHj23e8Znd8p3HO56OHUPl0Spj1IohOF7vNgz3reQAViV6OwqJaLoq83L5GFlo42YoIqtJLcKiPBhOoZW5ftLCfBzU4qM4Mw2FYSlFJHYwPMvEG8kVyE8V1UNxXDLys9yB4nuoFtcioIS9ys+2BxldZtNT3oqLT7UrDtI5MxUbcXuU6yU0UtymdZbI+UnJlsZkprtUMu0ybjXxUx99ztqNpKz5pd1LDmON0Yn9uSFFzTQYODh0r6iKCUqqgJzpPhf36vFaL2at1SFTHcTReLwS2rwdfoc8AaWUKwXg38w5/zvlw6/nNl8p9SHwpnz8U+Dr733518rHvvDIOf8M8DMA69uv52wV7hjQY8KOBt/q5cnP6THyhSJISU4kt36Tl/CK2IqXWwoKP2r+H/nHaH984o89+1v84e23+dm7f5LPn33Is7+jaR6kdbJ9pHun6O9McbGRTUS1zzQPlzc3tIU0M4rU2D3mpV3MR1nDjLdS8asnGRugzLE1TFljx0tasDvJRiK0ohv3W5mLxbAjQ5XIURFrTfsa2jdQ7TX9BzXTjYVWrtZ3xxV/z34EwO/rPuVPfvgf8ks3H/FXXv0k3/vsTkwsBsPjuw2P92tBxSuZLVUXUDqjdSZFRRosaTDsji2f2SvsJtEKKsfR1wufIWfFVdfzUbfjeXXgYeqYgmHsJQb8XnX0YyV/L5HiKoIqGgcZpTKhZokeyzaDnjMfLqYg2RbtxoMVzcTWQyieg2PBZopugvReAWiLKWyTYdSoB0v9pJfVZi6qR11cksjiTmzKRmI2j5lZkWKMorBHUwDLeb18GVtdAeCnTfE3uI6QwD0Jwy9so4SXTBqior3p+Sc+lkl9P7W861eMwVLbILmIRSSkz3rJYYyVYBNmhO4z+Zn9rV6sxc2UqY7SFUxrvVC7f0cJRAXt/7PAL+Wc/8x7//SXgD8J/Gvl/3/xvY//95VSP4sAgrsfhgfMj1hrYfn1ETMmbK0JK9nlu0MArYiVMK90gO6trOvOH0pLaY9lhlslzFGjsib4hn8v/BRPP9byzz3/m/zp3/Xv8X+8+kP8lZvfx93PVXT3xU/gccKeDacPHT6Jp8H5pbjnzrbcQtwoOYFOQMTqkEhFCWd7eZP65/J5Kira+4Q7Z1TKhFpYczP6HWv53pISLC3k+KzMjEo+z648/kcie1ez/l6JGvtMQNHQGUILu7Zmt+t482zNr22f81G748ae+S988Pf57Oaav/fwIa8eN0RvSINk9DFq8irSbQa6WuyxzkOFTwqlM0plnvqGXf8hWmWGyTGeyw2dlISIAFZFzqniYew4P3Tog2HsLFPn4OCWky+5LFLo0s3J38EeVcF+sgSYqFksk8k2oWophOpspItYB+gtzWtL/XRR8GUtUnDb58XBKDYKUyvSKOCeGYUZmY0UjFy8DWaOiBjJSihJ3Mj3ML1agFsA+ku3JuK0C4lM93nJRJyuC4EsKuxeF0ameNqro0VFRf21Iz/1weecQ8VUqsjKTazcxCdPV/SfbKhK8Zlj78JK/Bvre724D/Uvijv1SYhXdsz4lWHciK9FNiKD58sbgd9WJ/BHgD8B/IJS6u+Uj/1p5Ob/C0qpPwX8BvBfK//2l5H14K8hK8L/9m/1A7ISBxQVjHBWQsIMER0z09YS1gY9Sb5gLmskM2a6twmUZriT06D7TIvpxSph91qQ5tc1/6/hdzP8Hscfe/G3+W88++us/vDIX6x/P/HnKprHRJsy9hRYfQ79M1kfxhaGW7m4KLiELm1YAIZbTTKS9kIRHLljFtNPJ+BWaCV5yAwZFRPjtnQ3fSaUK9hMeZlDYyNfk5sIXhN8BTYRtpHTx4buc7WYT7RvigrQavy64d2HFW+eb1ltB1b1xG175mV74Mev3mJ04v7UoTay4x1HRwyCKxyTFNYYDLm35ARjsTTLWeF7MS6xoyo3l1x8U7B81l8xJctv3N9iH8TWKgxKci6qRCz2X7ZYk6sIsxe+6S/x3KG9pEGroCTtyMha07gkUumoUCdL+6mhfspLHJk9sSQYzbHt2c0OyWX8mJ1/YqmupROYswdtP4evyBp4AYnHy/uvg3QIM44T2oJXDfIezlLgMDslncvr2haV5mikKCrg456XVwcex46VnbiuzhiV2amG7z7dMn5nQ/OkF5WhSgJOxjrTvta4PcvPu+QrSAFIRpivxkuXMl3J+9be/w7GgZzzX+PSjP/mx3/+B3x+Bv753+r7vv/QUXao09YQG40Z02LVpX1m2hhSWanNNk7aC9mie5swo6Z/Ju3h1a/A6SNDbIWmmbWietL8/O7H+aUffck//fVf5adWn9L94xP/B/WHWP1KxbSpWL02VLtA+86jspP2fo7ySlLt7f5yikPx4Vd6Sc4NrRSo5ilh+0RoFL5VJCM78Nk2q94nXJ8YriUDQaVcPASgeaMJxVhSVHVW5tzZSrpYhttR5Msz0NgqzTTUHJ9ZTl1g3zUcNzVfWz/x8WpHzorDWOFMYlULajV6y/HUEB4azFFjtOy9yUpoxaPBPlrsSWbzsI2odcDYxOFc88v+BdNkme4b6nHWGSjCpMiz+chZhEbGy00lUmtB7bO9mJjMIi3KqIBN5KBJB7M4ItePJdasE6zGlQLgV5JUNBeB5C7K1PpRLbhRaGV1Nzsc1feycYpOcfxYrN5BjDrdXroD7aUAzN83OXmfxRdSnm//XF4f00tqtF/Jaju2svLToxitZgXxxrNuJ4Zg+cb2kZURG/Sdb/il1x8Qf31N8zRb7Mk1Nl0L8ad7JRun8Y4laal6Kh1Q6U58W6Lna1lFkuHqO4nV9/svvf++MozBah8ZbsWSSZebaZ5nJIJKkVqEZpqlqrsSFFrvE1lJCAcKVp9lzh+opU00A9SPmunhmv/z6z/A3/rGj/Dj12/53d/8nF+ePiZW4ku4/kxTP3iq3SXSNpRWSmLDc3E+EsuxWaMf3cWwdLxV7K+0xJSP8rmhcAtiLd6CKmuahygV/hp8GTPcvkRKfwZiOCHFzo6ysZhNUEIrxUWs05NYrhsZR6q9Zbw29LeWe5WpbeBHVo98tNrxudpymirGSdiHUzCE0eKeRJY6bTNxA8oktE2kpEp6kAAZKinyaKSztBGrE4XgJ+lLJS9Be0U+2IuxqINgQZUAV1nDXk5r+d6CA8SVyJaleIi/QNZy2lX7XCy21BIl179QnL8majqSQnmFPehSMPKSyeBXYrgRVglzFiZq85AZbxSnr6XSPYpJavNOch6hFNtzwq80Qcm6cY40k1xK6SqqJwE0JSux+BwWhaAAnwIUmlZWux+vd1Q6cIoV+6nh22/viN9d09xL0cpGbNT8KouM/KmAqXfvBbAeShdUAHNfYsljLSxL7WH1WWLzqwfMu92X3n5fiSKQjaj46p2gnHP6D0pe2PkEBJZ5ObQwbSXZtjolqpLiOzvxiGssheAxI6ZQPxp2n7zkr714hrqZMNsJf9SgNUelic7JSX0UOzKJJctLAuzcPiYnJ5J9TLhRTgh3kot8uFWcPlLY4oSb51OveNGFRhFrU+jKlJ24uBpprzAln0+HXDwJJY9Bh0yFdEzDlcZ3mmrvad6OdG8ssdKkWjFcGU4fWXq/5rujY3fVcNP0XFUDrfU89B1Px5bxvqV6MJizWlR+5qThUJNtFvCwzNg6CsMRNH5j8M8zxiSms0P3elFWCoAlbW+qS/DpbKZSOBNLslBRYOpJLmpQ5EddOr1ZWUjJlASVZQyo9nJTjbeK84cJNl6ixosbsS5mp9P20sCON7KOs2dN96nC9nJQnD+KZJdxT4bV9xXNQ1rW0e6ccftQPCQ143WJsD8Jl2QOpplv2lRMaAARZKkkhSBCajJqO/HB3Y5vbh94N6z45HDNaaw47Rv024r2XdFOVHD+UIDiqqwmh2d50SC4s3zeYu4yyuEwB7fOzMHV55HNr+7Qj0fyMH7p/feVKAIAoTNCqDkkxq3ESfni4abHOQJL5m7bQ73PDDeSWZecpt6lsisuHYDK5GOx0LotfgX7DMhc3b3SnF+2kpZrxYffdwp1K7OYmaS62kH2v+6YqE6JZOXCsiXwY9xqmsdUwkoU7iyuxONWVjaLrfe8wbAyJ54+VNRPMzCoFn6/mIGINkFGHll7VSdZRekA9pSojBiy7r/h6N7JKKNSJrrSFQxQ3xvGXPP2bHlrtiiTsVXAuUiKGjVpdFHnhdV8kaniBlzScYtOYLZnn2frUdecG+EYaF9a7qAvK7YiwZWLFuwpL/O1XxXHo5Ix6A4Sq25H0W/EwrKrSiFMVi3W53aQrmj2KzC9QvW1cAJK6ElYzYKkMn44eS7NW0P3KkPKDM8Vw52MBe7eFHWj8ENmoM30Cb+1jBsRsvktC0ck1oXTEAQIhrLxmUA15aSCS9z72vPND+/5sNvzK4/Pefv6SrYEgDlqus819ixko/FGOgkzKTEbtbJFcSe1rCB1lLSm2ckKTSmCGTdC85hYf++MOo+gFdxsL/u73/T4yhQBkCqmQ6Y+RHyUdc60VUuMd2wy0w1Uj4r2rWwIhpsyu1tN+yBWy7EqSHoEssyLp4/UcupkLVl+tlcMdwIsZlOYaSvwY8ECCninMvTPxYSkvQ8FIdHLnBgLG2tO1TVjouvlFJAVUsk2dKLmGm+kao83soKqdxm1L6GRUqeITi2zr0EsvECVNBmF6xP1Hk4faoY7Q/tOgipnbCJZKZ7VkyaMmtn/IDQO30aUkzCS2IqNeH1fHIB1SSZ2QtaZadVy8sgJPc1dmS005zYSosz5yiSy1+ijOBjVj1DtxFF5znaoDlKU016+TXUUQ9Fs5ESjOBfVD15svLdWAGEu7bnt5aROVjFeKc4vSqpSlcTG3GvsXizBTVTUR6GeqyyzcnIScAKMRwAAeLRJREFU++ZOUmwFnFS4Q6Z5KlhU8YqMJRJdTxeTVtvLiX38UH6vaifXjDgFCzdAT1IU053n937jc7TK/Ie/9rswn4vycC6uM+A7bxZE+wF+G1FZYY6znR3LQeHX8l7N5CozCW6gg7xG1VNAn0YwhrRqiOsafvkH33dfmSIg3vh5gSDNmBdUPmvF1Ak6mrpE6DSh07RvubSG1/Imdm8k3DQ6QeYlfVcKwfmFSFjdXgpFvZcoZ9ASOLoqdM8oMWEq5kL9zMVxGHQw1PuI7QXFSoESOqKWwNAlHCOCCYn6HElO2uhsFNVRosWnqwI0NTMxSi06fZE2l6Iy5QV78GtF3oBKGttnVp/JCDVeyc0wC5IEtCy77b6csO1lVtUuEX0iG9G1C1VbvO1ik4vHY3FYVrLDnx2MU5XhZuLm+kRImpwVVieaymNU5v6wwu/EIGaOY/fdXCjlNK9Osjqd13zJKUItJ5s5Z1avRuxuJKwrtC927pUqXo2K6slTPSbOHzX4lZh/ALIC9WAKLjCPcK6EmURbmJkF9APZCmQDzTtJjkoW+mdaivtCzBGNy3zq+rXkE6Az9b24TfUvhXQFoEvu4PTRxD/2rU/Zjw3f+9WX1K9l7R3bErayk+LrN7Nvg3QtkhYF7lHjDhd/hViBL0Y3pi8jVpD1oC5/rp8i9asThEiuHFlr7Lvjl957X40ikMsaLUmrRtakTroCdy5kkaTIzyF1kK49o7P4K/UFo4rpCqaNqLQkIEM6guog32M2EMlaCcEnaNw50b6VC2tMCn+V6V8m6SzeCJKf9eUCFEqwxh0CLmTGa2Ebmkk+TyW5CPxaLqKsFK43NPee+n4idhYzSMrS6YVl2qpiua0uAJKTUE9xBi4Jx2dpl0FOpeFGwkXMKO7BoVViy1VnCcYobf6c7OOKVt1vFEFBnCrMUS8mnuMdkMvO3oiZqu0vxJvYiFxZRZieR57dHrnrTrw9rTicGsYscl2A6VjR7OV9sH0qDjryc7KWNW91zLhe1la+k7Z4znKodhP6PJG6ium6YrzWspJ1ZfvQKIZr4UkMd+K+o4OifjsHwLDYqM9j5EzTlmyFYsNe0pNjLYdJs5ONjiRQv8eILTTw6eoShRZaGSXMIAnD+VbizNPJSWjuCNMHgY8/fOT7T9fsfuOK7jNTrMMvEWzz1mJWHM5pTmoUsPb9lGFZQcq17Iq+QQXpSmRrlmkeIu3392K6aw1qGNE7Dzl/6e33lSgC84pNVoOldcxyQ4OwBtu3UtJVMEzPgXUgGkPfJsZbLUabQfzphheZaidvkD/JSZj1fApJNZ+uZjWgRIjVT+XknhTDcxheJGKjSa80q9cS5ZScFCYzJtn3HwNmStKuzqIirbBDJE2KcSuzZI9hWmu6N0G+Vpfd7WNER8N4Je1prOQkVOV5hqaQioJarKmrg0hrh2uN74DtTFQSbgLAzMEXgEtdfvezjBLjaAmdkJSWfIQSdKGCdBP2LN3BnEgcbz2mDWiVcSrzuFvx7s0WvbeSJlQyEFWE5qjpPs+096HQwR1ZaXiv42geA+5pJFUGFd2SEKVixq8d/qOWaaUXWzexg5eb2W8Vp42g8BIpxqKdn1OOVIZQszyneUzya7mhzTTzLFik7NNaREV2kOcRGynG420W/0Uv1F+FbJuyguFrnmcf7Ri85XjfYXfCKJyeRW5e7um9ZfcbVzSvjTz3K9lEqEnhjjIuhJVkJIiGImOPptiIy/NIxaw1VllGwZN0iipQyGgyStaPQQpAiJAz6ukAWkNdiTP3lzy+EkVA+Yg7BEJncHuPzqUryOa9tN9M/TjjBpbpRpO3AbwibQLnVlO9kzcgXEf8XWCKijwYcdE5lZOozLMSR14IPae8MMOqJ0G0++fS9p4/UMTG0L1KC3AVWl3a/ow5eeqQ8WsrY0pTdtr3E2Z09INhvNKFfmyp9zLTyvyrl5wBVUgoyYBOMs8354vvfFpJMdBB/OnMmOnvyvc1UB8krtqvSmJSLnvjtRRGvy0n13sdgr/OTPYyggHiRxAKeadh0fsTFGkyqCoSR4t6dFQn+X5ztzDbp9cPQk6xp4ieIu3rRP1Y1oyF8KWnSFw5UVVWSrIhgenOMd5opq28Lu0bOaGFKq7ob7Xw8p10PGaUGzg18vopIZcKFjDHrs/koWIcO1N+s5UDUpW1sx0yzb3MCP1zx+6F4vz1gOoiaueo73XJY5TVbvqJEx/fHERs9W4lBqAmM91Gbj/Y0brAZ69uqItewW+Ke/CoqR9LAehKB1AKQPPGUt/LChKk4E1XQILmodiwuRJbNxTL+l7GJ/f2BF6qoRo9edWSuxo1eFT/FfcYJIP7/Ak+vCa2FrcfMWOEKLZasdVMK7341icL7SstOvmPBpI3UEf81wP6bYXZG6LJNNuR7vYIH8HTbiWxXe8FauhJUntjrdBXLF7y2meaezk1oLzhVgw+zZTJlSLWlqrWmD4ue1rbS/cQOoMdIs2rE/VbRWwd47MK3+r30nVEwTjnEs7kkGyKeGUFUPjxtuTjrSOnH9HU7yztm7zMq8OzTP8BuLkFP+dlztVeboh4lUjPA+HoMEctUWVAnNN8R8k6cHu1gE2xBZQAdXq0xVQ0Y8Jl/TmHuGo/MyAFz/ErCY7RAZp7jz2H8l7KKjO2wnf3regJbBFXxUpSeGb0PdbS9QhzLi8RavPPm2/w5EonkgsbMciNFFu1ZBDqqWwhzvK+xlrGATNk1p8Fuu/tISUOP3nL049phg+idC+vK9rXclhkBaevQfpdPW078en37tBHgytiJ/PxmR999oDRiV979Rz3aUW1K0QjA3ZnFknynLScamE1tm8Mq88E3A61YryVa1CP8rznTEUzCgioEjS7SPtqwBzG8l5piJH48lrEamcPRpO3a/jsB99+X40ioGSWdu+O+LsVYV1hDyN6ihiryVZ40F4XJlWJWKp2iqGqcR/0pIIw5ZcjeVfBqBmOFTEqrjc9X3/xyMO6pT/XhN7CpIlVIjWy+9ZBka4yJBkJzNJiS2GIDQzPZCU18wZipVBRyym20JkTodWM16LQs4cR9/aI6WvCppYLvRYGoe0TzQ5OjWHa8h63Xgw8U11AoiaiV4FVN/Hx1Q5nIp/urnh6WKFOltxGtnfivPv2sOL8dgU2oetIOjiqR4PdGwLlBtmrZVSwZ7W04qa/sOtUFlTfHS66erEPv2wRsrq027pclGTZ3586WXO4oyK0FbZ36Chr1JnxacZEew5on0hG4be28DCkmKhUcJyVrBjdWTCd8UpunFhRdAZyiuKyFLOzkXbfqsXUQ02yihTTmrxcd9U+s/50onpzIlvN4ceuuf99hrDOuCcB5erHXJiJcPwGxI8H0tHRf6+lLtum6S7y7OtPfOv6niE6/v7nLzB/fyUrSUSIVj+oeUkjI3qW8Fl7lNm/e5OXNKL+mTz36knciG0vhjRzxqMdpf1vXssaMDcOFRKkRF41UgDGQG4sORrM7ndgL/afyiNncu0gROzTgH/WEbZ12Q5k9JigERUee2TVVWY7e1ZMu5ru+YmcFePgUNcT+ejAa3yseHusWN+d2bYD22ZkDJanfUd8qAW53ubC+FIS+NBkdAv1UzntLCRV9s4hL4mxWenC2JvXjyKAsmfNeOMYb52su3yUsNQEqbGobJi2Vk7APtHeC9dhvBUjSpWkrTWDgiaTmsiLuz1TMOynmp+6fcV/+cXf5deHF/ydx6/x1LcYnbhtTvxnnn+bFz+5Z0yOmDVv/Iaff/d17o8dNmmGpsKnSopZAFtShoFlLEhWLmzJhgQdE9HJiDCHq4y3mdAlGRXy5WsBaQ2ywj0JgUf29bJ2m1WEySlQGvqEXzkZba7eu2nDBYwDUNfgbxPrj/d8uD7hoyFmxdOpLbZomnQS9uOi35gLlNyHwgNYQdaCNblTwS3OHv+sY/+NmuPXpfNpX8tWyIyXteLpoyILfltTncvmwEoE2fMfeeSbVw88jh2/9hsv2fy9itXngh31t3opPvOqE6SLM4NaxEtZw3CjGZ4VbOUB6se0UMZTJc+5uQ/U9wP66QRaS8s/BdThTN50cqj6JGvBnKXL7ocvvf2+GkVAKwEznIR32t1IuKrFccaoghgHuakQbr73qpBxFLrTDH3FdtMTo8b3TuSyR1nHkOEY1gzbis2656od2L4YeN1sOL1ZoaIANuJ1X2StiBTVFgccHWaeu5we47Wif6FAWZonmbdSpYTw9OYEecXwzDFtHCq02MeMPg1AQ6rl9/IrVazNZcY/Tob+g1zCWMrcd1J4X/NaXdGtR4bJ8brb0F2N/MHVd7myPY++Y0yOfag5p4oP7I6vu3tOqebb0wuuPug5hppjrJmS5Tsf3/HqaUP/0EqY5Zz+M+byu+ZlHTaTcuYY9tgW2+/nnvZqQOssZqfBiBy5t+izoXrSNO+KucUhLYGwsZFtQGhLhFtrOH8ougSQsWTOQlAvR57f7llXE3fNiT909V1euh1PsePT8Ya/f3jJ4C3j6JaIL3csHUnReyQr779sBRQqCyVYh0zzGKl2ntA5hmeO8bokPRVlZ6yEpzJdS/gJNqOmS1K0ShC7jHveo1XmFz7/iOFty/aXLZtPJXfh/Oxiby+pVxfxk44XP4xYz9mL8nyrvbx2ZpQg1lgpmsfE6ntnzGGQ2b9yxK2E8Kr9Sdp+rclWE1dyr7g3J0gJnOPLHl+JIpC1IndStdAarMYMgdAafKfxK03zztO88wzPHKEReqftVTGU0Bxbx9h4mtoTJkP2VvLg9wLKcIJ4bni8toRbzcvNkQ+v9rzWicObNTkoptsseXhTyb9Twt0OazAlTnu6EgKQADeK/rnCrwz1Tk669LKSOXIIqOiYthqVHdBhThMqRuxhlO/9ccW41VQnuRDah4TxRWtQWvS5IIy+5vQ1xe2zA2s7sosrau15NV6xDzXf6u75se413x2e8beO3yKuNXfmyDnV1Cpw05zYhQ6fDc+qI99p7/hkfU3/gRML7sea6l6Slu1R0Twl3Cmho3AQ5rTbeb4miDGpdRGlIAYNO0f9YC7AYOEnHD+UzieViPAwt/AWUhOpbgbWlWwetMpYk/jxm7f8U9ff5rndE9E8xY6NlmV5ypqn0LGbWnb7FbyqaR4EtJNuTU79rBUUCq07C57jzgldoufNOZCclgKwlZGzOkjrPVxrYRU+v6D2yutl8yIsz0wwmWlX8+57K+oHxcvvJZonX0hMAoY2j7mE28jrOFOoZ+GPcFQuGFS1g+6NiND8SpOMYv2Zp3rbo6dAdobcVGSn0b1HPxzAGtK2IzVO/l0r3EMvXIFVS2rdl5oMfiWKgGwCMqlx0jIZRaoN2idUNoxrxbSuWH8WaN55zi8d01rTPEVUEgff/B3LKXfkZz116+mDLPXDdUAfTXGsUeSz4WhaMcZoBzbNyHldk942Yiul5M3y60z9VOzG78TN1x6EYRY6iokDRQIMU9nZ+6RIpqZ5lHWgXxlxdyl0Wj0GVEjYw8Tqc8V4bUV9yIwxCJFljqfKpiDXZ0BVnFY1IWs+n67w2fDt4x2vj2u+V9/yUzefs7Ij3z/f8Lf4Fv/46rsAPIaOc6p45g4YMudUsa8bzqFiezXwoj7wblzznf0tD/sV58mw21esvmsLzbZsTmYVZSO7teA1oQSXmLPGHue2V34XMozXmuPXM+HFRLsd2LQjjQ34pBkmR8wKZyKVjdw0PZ2d6OzEy/rAQ1jxd49f437ssDrxje6BF9WeXej49uGO735+h/l+Q7UryrkK2bA4wXXkOWfqfV5Wu7MATftEqgzTtWVaFZ++faZ9FxhuLMOzOXRGySyoMmYs4SonKWYeVfIFjfAMHqVjDZ2R62PMokWImbDSxGKAIqd/kS93SiTkDYIhjbB6lejeTAx3TrZBbybsOZBrQ2ikW1Y+oseAPvTkriF3YpkHgoXoIUpXcL0iOfHq+LLHV6IIEBP6IFU+bBt0kMzA3ChRcLWG8Vrx+Lsd7duEOwl4MtwYujcBFU2R4lqO31iRX44064nxJOQV/YFnOlvMzorDbVYl8ENhTMKYRGwj9p0VBZwupJy68NrfCXfA3yRUFrAoFUHQbKqmorypyUJ/pwmNCJGqY3FGyuIpALLmVEPAakU2CjOKXmHcikec8dKOqizzdjYyGqy/B6e05m+fv8mnH1yxqUYOUy3TVNK8Gdd8w0y8aA68Grb8Vf97uHUnxuR4mFYYlfh97SdUKqJVYm1G+lTx5FumZPiDzz6BZ/BuWvG2X/Pt7jmxqmnu80KamleSZlRor1HJ4A6yWlUpLwSceVXp1wLetduBH3v+jq91T7R6IhaJXR8dB98wJYPVCVsih79zuuOX373geN/hVp6f+PANPhv+/vFDfuH+Q9792h3d55rqKb+3IZB1Gwie07zL1Ie0aA+odVmdZmJjRW+/1viNjGX17rKxmbkXsZzcs2+g7QsD0oiKr9qLp4Q9Jcwk2yEAe064g3Qa4414S84huEIuk7FA+CHSvZgRNp9Emjcj410FWTYrZORQHKM8/5BQPqLGQLxakWuD7r3cM86gglxrcVuhQkafPXqcgZ9/8PHVKAI5Q0qofsIC4aoVjX0uLK8xE3sBZ3Y/qmneCkAiF6Qte2Rp0Vff15xyw/BswtaRcHKEDNVmItSRdLYoEBFN0nhvyEl86MNWU90bqf6q+AaUU7i+V5JNV4k9nOTHs5w8cjMn2vskirMrAb7qfcL0CTtE9BBQ/SSzm9UonzDngPaaXDYks77AJpnLQ1PkoY10H+J1WPH58TmfdRGCQreBu1uhhY7JsjYjGzvy6fmK7x5ued4euXIDu9DyK8OH/Fj9mpd2hyHz+XTFtw933J9XHH3Ns+bEfmrYD40sPAp5pnmMxEqUiyop8QYovAV3kCKBUgwzM7BYsk3XklDU1hNWRcZosSrSlqiw0VquXc+YLCkrnIpolflOuGMcHCSFNonjVPO33v4In7++xn5ac/NdcCdR/IUGVFbL6ORO0H2eaZ6iyGrrQsdOwg0RzCMzbjShE9ceObFFoWnHTH0QND6Ue2fefgioKe+9O0kB0D6TKkU2BpVE3m56IezM1vY65GWrZSbZJl1UqsL6bN8l2tcjYSW3ZbUL4nAUEvZpIFeF2FCA9LiuSZXBPZxRIZG6ajlwUm3RY8TsB8iZuPnyCKKvRhFQQMrkupIV3XEidQ579GRdkZy0YvYMYwPnjzPuIGBW/0Isq9t3afGbqx8Ug3GErcKuPOHk8K9b8kq84gFSUqzakdFbht6QegsmM37k0UezoOd+I6fBbB82Azr1Li2rMiEQlZ3z28jm3Uh9WzFu5aKwQ8Scg1RvH2CI5KsVceWIjYHCIASoDuKNkJzCjknIT00ZF2phl6UKCes468KUs7wdJI6rKZ6AtQ5sq4HHoeUX33zA882Rn7h6w5u8YRdabuZlOdDZiSfdcn9ecfYVT33D8ZMt7aeG9o3MyL7ThEZLNmPx36MYicRaMV5rkdd2FJ99cIGiWTA86g0hGn787i0rO/IwrfjV8TlaZW6qnloHtEqFkSheBXXj8WfH+K7l+5+scAfN9h7qJ2nv45KTKKOHO8q/VYcixfZ58YFITuG7CxA3bgSc1D6LDdwxEjqD9pn6IRBb8bZw5WVKRi0FQFarYi9nBnG8AsEhtE8on8hOc35RExrxvZi7gHmNOutDdMyYo0jdu1fTUhjcIaJ9wgwBvTuTK0dymlSZZcVsxkj12R5iJG06UmXKwaSwux41CHV4+mDD+WUlHuE/4PHVKAIoEaj4QNq2AOgpymbgFAhtVWS9EM8iBhqeJexJWFf9y4zKegm1nMk3qjcEDdV2ZNIV5kl2falLeJUZbSRnSeVRk7544t15/FZh3zrZNxtJ65mLgF8VZtyTAE2hlnkvGRhvLGaI1G8H7FkQWXPyqClIlW7rhcedrSa2Rm5ydXExmpmJySqqg1ioTRu1kGdUQMwybS6ONhp7b3mVJd34a5snKh0JxTqsP1V8v7/F6sTXVk88JMP38w3Akl9/3fS8Pa24P3acdy3t54bV53LSZS0U6PFWLfZtAHpQuIMmH6UQzLkN1dOlM3BHhe0N/UvFqar5pLrm1WnLfqjpzzVKJzargZfrI7f1mVoUXZxDhVIZNRjq16ZYaOWSfiz2btNG3mvTF4+9ACRRIubi5JQVS7GYR7dpK+DrTC+WtafB9onqaSI78bd0ZW2XjKyYUklfbh6laKiy9tRRRj7tEyomUm0Y7pzs+U+C8IMUxKV7LNeoGYT5172eMOeJsKkxQ8L0AT0F9BDAWcJdi+8ssREnKneIVK8OKB+It2vCppKT/zzJaJ0Sad3Rf33D+YUVG7wveXxFigBkZ8EaSImwqUXBF0VLYPtErAy2L3z6VhGzrPX0JC/s6WuZ9nUxZOzEQAIroFbwhmY7MpqMfVVRf2rwa835mcGuvSwlvCp7cS1RaC8CcZOwb83iYa/9zLMXS6lkFN1bcXfNRjQA00bjzq4QcjJECUBVUyB1FckZUi2ocao0KggTLLQXB6KZ8psbhUpFjlqIL6b4zUsqjpBmwlXE7g3Va8sbf8fjs47b7YnaCBppbMIfKr77+o7+1uFMXHIFlMp0zcS6nnAmcfAGdbBUBxbl4lyY4klRWUU+mGUFp33phoqZhj1l2sdE/ejFDco6VJJiwa907EMnbLlV8dyvEr1N7J20q40Ry/KUBbshXsDX5C7WWbPFm+1ZiE/kjCocBEHa1eJOlY0iJ0jrsjbUM4VcMV5pmicxnDW9J66qcuNKMVYVRawlGxMzpgWE0z6hQkJnEb/FleP8opIotfMFA8hapOSz25IOIjoTzr/HPg2kWkA/U9iVqbJkI6f/eOPwrbgHN28n3JsDOIv/4IpQErjt/Ql16uVAuVlz/saW0wtDvU+svn/p/H7z4ytSBDIqRNJKL7NSbGQ7oEfJIxCWl1hGhU7BRmSxsyQz1ZJb2L4SZ1lfJdxKWuOcFcEbbOMJH4DpJfXY9o7xzsAmSAKOFwpr91rhjk6IKuXmrx/zMoPO66PQCfqtA6w+m6j2lv7OMG0Mpk/y5jdy4Vov9tOpNoRWQKlUzRz/i9b+/VNCZQRbQG4Cv7nQY5kPlUmAzLiSgdUcND63vDo7TJWwLhCjhqQIu4pX+Yrba8EPYtTE3jKdK461xGn53uFKUKgdcpFMixFs+5BYvc7LiQpSJKaNFDAzCRpeP3oZ5YwiVbrItQtZp5PRoS/pTapK5Kx487jhDRuqOnDd9cSspFMIkg6sSpHJTn5vM37R/6B+Kg4/tjDyCmUaSgGteE+kxFJoQdiJ7hAFTFtVTFsheYG8N7PMW0+yYUhOS3GIGaOlwMRKTunx2hCL/XeyarluQ+FaZKWwQ8KdZVNhh4jZT3LdW43uA9lowsrKRsBoputKaPMJ2tfCQE2bhummIawNbh+xj2dhC7Y1VI7+4w3n5wY7ZFafDpjTV1xARM7k40mcmO42C6MsOYNLGXuUUyU0okSr9tINjFcBTCaPBhUVcRs5a6gexdTCXg+smokpGHwwSwrO+CKiPjOYAZrXGj84wioJhbNXRayRC+UVyNKBuBPUT4HqoLCDlTZei9rRDIbukyPta8PwvFn0AZLgq4mrStaDPpGL1h+KcrB4ErheWlk3vZelUBfAqzgZhQbiqjD1VIakFj1E2IgJBQn0zqEmRTH4xZQiE5LiWNei/TeJZDI5KvzJoQZD9Sj+e6vXkeZeEOewssStXOx2SO/lA8rFvv4sFkaenJJo8NuqBMgk6ncDaMV4WzOtbXEckvDU6AxD3wqfI8J5lTnf1Lg6yMndJrIT78DZPccMcjdnU9KLd8KsM5MQa2ZjVjMWG/AtywuuivvOHGpje2jfBVTMDC9bfFe2M8UUZi4WJmbMGIm1IRTps6z4LKlWBTOZwUnKaS/jgryH8vPdOVHtQjGgyehRKmR2RkZgeykAug/42wa/1hgP3WcD7uFMeLZmunLERuOOkfq1FPW0bkHD+KxlvCkdwCe96Aqmr/p2QCkwhrw7YGLCdJXMyq2soKopUe0mUqXorYFKyDx+bdEfDJjVxHisRVF47RmNxR41/VPDix85ctsG3hzX+MmSe4M+a7IDipLMnBWmNxK3bVlOYzPlRcATa8XxIyEvNU+R5ikSWiFy6Jjxa4162dF8eqT79R7/XJgfZu9RKUHMKB+wg0clkcvqSeGy+BNIwKmcGlmLNFQVx5jkxHLLTILID1njbwTkVDaSB4MaNHQJ0wVh7p2c6BrKpmO22nJPmnFcM1Rzq3pREepReBDVQViMM8CVtcy2sdKMW9Hxx0o6nPoxoZLsxFNd1mG1WsaI7m3AnDVh45i2ZulypGiAfjCYSZFKV5fXgW41Yk2iz5CUnMppXUabgylgLDT3xbXIU5KLBTdwp8IJyJBqhY5yN8+5DzAXtCyzfYKwNoRGi43cwROdJjlZ3aoohjex0uKN4ARQlHGn+EaUgmEHufntUAoJQK0wXl5Tt/foIB9XUfb92WrBjCpLWDnxU9idCc83TFuLGTPt6wH71BOuWvzGkZySAvDmLJ3IukGFRFhXxEZT7RPtqzN636NChPNX3W1YadisUDGRD0eq77xBfeM56UVNrDWxNpgxUj949JQZbg3ZaOoHTd9WqOuR9c2Z/lwTRwPXnpAr7L3jk+6ab72857rrOZ1rss7i1XaWHW/wiv4DcWYxhQ8+M7pSIeq4Yuro14rhTrYR9e7iimMmuWljo+m/vqF526NDInROhDm7wts2GiaPOYyoMYLVZW8F4bpmuHNLEGYuqrmFAFLstE0vvAXtBddIxSJcRYV+dESbadYj3mQCFbrXZJdRVxMhaPSTwx4V6qCLt2KpAXkm+ZQILafQTuNXttiVqYXAJF6DcxGRDi3WQnwZb9TifCMLCMt4JZ6Rs2WaXwuGUO1FqBU6mJ5n8rOJuvEoBadTQ9w74XV0EdsGwmgkwxBd2I2XFOlkLms8M6YFjWcE0wfBX+J73UCWIhFr+aVUFkcee/TkUgByAfJUTKRK3KxEyi7fOlkpsJIdkZfxRJx+ZFWYrAjF7Dli96OIfAoxLivAaikElSU2FvcwYB4PpOs1oRWw0u0m7H4g1Y7YypqwvvfyscYRuwY9RlJdVov7gHvo0XvBAfK5J3/liwAZjCFer9BdA08H3PfeoeIt420t7Ks+g5ZTt3mIRY2l8XuDzzVxo6lbz+A1edLo25H4UGO/1/Lt+IwPn+9o24nwthFxTi+tYPc2krWRDUMC91QIIeUairViWgsNtt4nhmuxIfclrFTMTxTuJKBRsorhZSuiJ61ISWPKzZ5qB9083GYI0nLqY0/9eMD01wzPm8WvICtRU89c83kFl61sJ/SoiP3lFNJekV5V9M8UupaTM5sMUbwAbBtIzxK+qpZoK4nUUsVfoczM5QDLSn5ucqqo/+Rit31GFwZkdBdDFL8uq9JWsgVVRBKiVGHKTVwiu44zC5LSOivizjGeLKMC3WvspIjrBDoTveAauEyKmdAKYcxq6QTEF+IyksRKE1YX4o6eEvZ0ATP8RlZtc7aFGQrZp7NLd0fpAFTK5HrGB1hWgsYXSW8hdc34zrwqzEbJKLaXG5YsZJ7UVWSjBTAOST5WGex+QB960rYr4GTCPA7oIZBaR2yFUVvtPHoIpSuwuFPxEIgCULr7kxiKlOssH0/kEPiyx1ekCCCoZlcTrlt069C7M+bxTKWUkCe0wvReKJmVtHLNo+jFszakrOhHg6oSFDGLuvKk4NCfNnw6GtZ3Z+EKUNyMOwGYNt8XdH9WsNm+BHsUGm9shAXYPiSap0Tspd01Xua6XMxJQNM8SF+ajOxxZ36A3FCasK6E9lnkrFkprFLopxPm/kgbErGxy2kEQkHNuRiRljVlqriwFt+T8uoJzKMjroXUk6sMVURXEjmuTCZvPLEysDdYPxtUwKzatL0AgbGSOZcs1l8qCV/Ad3px3PXFD2HuJCSU44uS71RdVnFQiESuGJqaDFn0CnrSkj9Y5YVmbY4ajtWymUl23rcXFWR/+b4S1Kk4b0ULkLWi3iWqvSRM6bO8N/5GpLZmSkWtGQvtWE5/PSbMDErHTOxssSwrd3ri8v6VtF+VRUUqRSAVcFJk5qb38v53lezyk7D4lI9gBPvSg5eC0MraYwbyVD+RupqwEfafPU4QM+OzltgacW6aEuYs4KLyEfW4J+cMIYjVeM68HyD8mx+/ZRFQSn0d+PNI9HgGfibn/L9USv3LwH8XeFs+9U/nnP9y+Zr/MfCngAj8D3LO/9cf+kMyZO8xn79DfXDHdNeiG4vpPXoKGCsjgR5FQnn+WicOPkHchpJVDA2o0Uj8tU3gNXnUSzahvXccpzU0Cb+WkSBbxekDRfc2sf4k0T+TFUxWCh0S7hAJKyPchJX4+plR/PHqQ1wuIOMTvrNMW0NoDc3rs2wCGisSz36UltvqQq0VLreeErlShE2FLW9gqooDT8hgBJmuSEtLTp4JMMhWpBLvAVDFtacUhV4L8zFDdpp4A7qKpMmAVxCVRH4Vc9PF5FVJYUlWADIdZkq0sOLG6+LuXIspRmyENGWPWliUIDFfFlQPzZMwH+fU52mrGLeZuA2L5mCOc58jvlCy+jS9WsQ6i1w5q2XUqHZ58f/TEaa1jCZhJa+BO+XLeGUVuTZyU46Raic/c+56Qmckv7Ds9FXIy8gmTkjpgp1Mshac1aDzx/Qotu/ZasLaCTZwGMlKka5K4TlP6CHIyrKWsVYHGQlJCXxAGbOsy3NbkRqLHqKIh4xmumtIxefSHkb0sZAnUkL1IzkmKQB9D86hrJVR9Esmgt9OJxCAfzHn/PNKqQ3wc0qpf7/827+ec/6fv//JSqnfC/xx4PcBHwF/RSn1Eznn+MN+iHKO3PeoT9/i3AeMdyK5NX2Q1lmB39aYMeL2kXEjpo1QCBcnLWGegG4iNJE0yj47OTABqkdDsmbxqtOjaM2Hay0qs4Imywkv6xs7RKaNw44sCPB4pXAncfs1A+g+0L090axqhmcNsXVUnz6irRFhR1Ohhklo0c4QlLR1+uwxh0jYNqTKYAq/22/ccnGFVi3t+HwjhFZYe/Z8SaZJZTWGlhsobQOqicTRYO4d7o0jOYtJ8n1Tkwh3npAVfm+o32kJTxnzMhK4cxbqqlGLC9C0VfitGJrOUV+2V1S7i/Bpnr1tL6Qh2+fi3CuegbFVqGjLVkSJw25drMzaCC5Bb4q78WW9pycBAOeZfLgrM/kAhGKPbmcbbsF5sqLgGQV4DQllFDoq1ChKQ7+1xNmwI8nYqaLw88kZPcnqmpTRXjgfaC1F15RNwdmjhwm0xt+0su15GqQAdIU0NgTUGKX9b6yc2nEGCaNYghkt0npkY0CWToIkztD+phLH6sdJCsChl25EawEAyyNPE6qpUW0LdSU8nLf8wMdvWQRKovDn5c8HpdQvAR//kC/5o8DP5pxH4DtKqV8D/hDw13/IDxFn1KYhn07ob39KM75g/GCN3zjMlNAhEWvD1DgJWDjL3De3ocrL6Rd1JidFuxpJtS6GEwoGgxkUrpxKsQLtZBcOAobJXhvGMl+H1lLfDzRjZLyrMSX/z7dlN94osi6jymFAf/cV3W5LvF2RNi36fi+VedWS1kKGUVMoCcpyEal+wsVMuGpAa+zbA6gt422pcEotv+OSQ9jLPDzezCAdxOtIasQIM2swTeRrzx9ZVyO/cXPD8c0KczCgpZPIhUfRtBPj1nFeNVRvDd1rOQ1nsGvmaMTKLo7LMnYUld5O4ryqY2HFGZFEz8lFvhNm3/x3KGYlXvIJczndsy4gX1Dok6PaaZRHipqeuRGFsdkIIUxFKYK2nwlBJZxmyKV1l5WcOwYh4KRE6pys4Mp4kFor2o5zlG5IS1E3R7Hrysjf9RTklJ48aE1aN3KDVxpz8uIVYXSZ5SP6Xpx8clOhpyinvNbkVgqCGqMUEasXQVB2Vj4vyg2vfIRSJLCGcNOCLgXg/ojy0hngym3sIY8TeRhQXYdateSq/Lz9PyLLcaXUN4E/gLCQ/wgSQf7fBP420i08IgXib7z3ZZ/ww4sGAtPKPKRSIg8j6vUDtdaMz1pCK+lEekokY4itFqeaAL5WlxMlS/hjTo4+g60D2kRiJW2XUDsLWURREoZLcrAXjCAZyTDIWlPvFMm11A8T9hyl1WwkllxmyFKxtcLfrXCAGibMw4ncVuSrNerUo4ZRLsAr8b/W50lW3l1F3raoMaL7QOwc2ijMcaRS0hG4U5STzIixhGQUQP0o4SXTldiQUSdYJaIu/ICD422zYuwM62bE3xhG3UBUYIRj4AdLSpqcAJ0Jm0w4SM6fSpK7F2uHPUkrnHVhCY4KU4C+5j7TPor6rr8T+vScEjwDhbPIaMEF8nukHVWKeCksZjK4nVqcjpOWbkAXCa6MFVLI3F5d8gldoSwfUkkpSjJyFeEWVuOvG2KtsX3E7AaUDwXslBstWSnMegygFKmrICX0cZT3UG4CsjXkWoqJ8A6S+Pu3TsC53VnGgqaS6zlQxgpQfr7hjdDIS3eSjUGPAh6mq5X8rMmjghSHuG0ggXsaMU9nKQDWSAFQBXwNEcYRveqga6Wo5Iw6/CMCBpVSa+DfBv6FnPNeKfVvAP+KvKX8K8D/Avjv/Cf4fj8N/DRAYzbMUtu8amX0CxH9+oFm2uKfrwiNQWdwx0BIBr82wrpCEzqx0s6miDJGBX1NqB25FepdqmQPbfsC5BRkPNWiC68O4jiT7RwxLTfetFEM1y3tQ1jGhflCr/YSoe6OBQzsKpQxi94bpchNLe2dUqiQiK2T2XDXo3pP3NbQOMxpwpw92WpRgE0RMxYEO85bCkHgZ9qrKsSZVIhDrg7o1jPsa1RvOD+2xKgxRlh5M4cgjwZ1EsFUKgt2NWnsSYg2yy690F21T6gR2kfZuce68OmVdFJ6zKAzKmrCFUzXpTgWemxOUhB0MXGtnwq1dyWbhNAJOKi9OCnNLsmxKcKx4g4MUhjsSWGHwhEojk9zh4SayVVZgL2cybXBrx1hJUCae+jRp57c1sRVJSIuylw/lH39pigCy3ub152MaFqTGkvoxDPRHia5qcsJrwtAlxsJ/SBmlMrklBZ+AEahYrk+9DxOSAEIL6/EbPehF/zHGnJbiXnIrELNmdzW8rWFQKVPPfl8RnWtFICmQp0H2Qwg4/aXPX5bRUAp5ZAC8G/mnP8dgJzz6/f+/X8L/Lvlr58CX3/vy79WPvaFR875Z4CfAbiqP8i5ay4zTVNL24VsDVxMqNsVsZOna0uiT6oUzS4SRk2vFE6pQiOVFVb1aMgHQZznk2z2nE8NC/01NuCznCrVXiii4iAjgqRpowCLHeRNvOyFC+p8FMegXFkxdgTRd/cjxCgKyaZCAVop4roi364whxE9BlJtpQvoA2oI0DoBQn0i1nqxMp8jsfxabpzUFFabzsVoNrPpBjbdwO7YMh0rIUi5KICpyhgrdmBiX6aYtIU2ooPEkbmTuO7omCFQdtxihCLzvhSmUJfNhNRhZmntEuFdduizjboUrLxkNvrVfCGoxVNwXlXKyX4J+lDFY2/mbzQ7CaWZuQrSCbIUL+0zxgsPIGslyrvWoKdMtZvEmLNy+NuO6bpCexkHTC+IfSqrOD0GSJCdFRDPlY5Sq0Xgo3yxRZvCsgJUuvA/NKC1HHAzbwGkaGhN6qx0BpMXafBVS1g53H5aZv1cV5InWOLtAagumJGKGXUeYBjlRi/zvxom8tMOTBmzy9bhBz1+O9sBBfxZ4Jdyzn/mvY9/WPACgP8K8PfKn/8S8L9XSv0ZBBj8ceA/+qE/pPgJ5LYGH6RyVa6AMfIi2bd7zKohrip5EwZZ66Ek1txMmf5WF1BHIrdQJYTkLMlCc9BGLmETqWQQqFhIMq0QiNq3edGM65P823wqmikvkWkqZTFAGUbU6FHOkjYt2QqpBKOl4oeAmhSEiOlH9EHMIecqDhA6C50oEIXWKoXLHUOhpRqMz+SS3qsSeKXRLwdurmT+9MGgVWZVTWzqkU/VFeOuYRqMjACFXqxM8b8PmvqtJTmz3Gzzf2JrLcUgNuICHFZmGYHsKCOUyuBXAmDZMZXQFF1sw0UwY/ti21XwF99JIa6f5HPC8J49evEFTK4AgYWCuzDySj5EdFJQdRFgzQ8zitkrUQC+rAT5VzGLOed5ItcVcVMTO4s7BuxJbn51HsXnMiS5wYfSjtcOorReykdB4wsYJ29eXDwi5r/n2opTVhEYAcInKADfMjqcBnLjiCsxvXVPA+b+EhqiT72IiFaNPEelCl06Q4iocVqyBnBOisbkyfePUgDWK/Kq5XeaQPRHgD8B/IJS6u+Uj/1p4L+ulPr98tbwXeC/J/dz/v8qpf4C8IvIZuGf/602A+SMOvWimV416KPsMmYHYgAqh5oCBkitI6UZ5S+5AT7TPCZpkZJEdIUmo5341KMlLiqW2RPklEnFUjxbAQYlgitiH4X4E2td/OrkgnencrIbJcYRIG9Y2cnqGMl1JZhAV8vMVs9rDI0aPeyOqPsnVFNL15NXpFp8+PzWYs8yZmifFtlodMJPr4rrkNsrmneK8anj7Tcsz1/uaCrPcag5DjVt5emaiRAM6aGGEtmdjWwG1NpLqu2Tk2CWfNn7m0lsriSBVxE2UtRiea3nkz2bi9dB+5DQZ7Fb9yu1uOfMBcUOwqCLlV7SmpITzCB0uUiCpc03HvSTrAfh0gHMstv3xT/ZKGJpAeYOLRWOhRnjMrbMFN7UOlJlyE5jD7KCnum7KCUnuY8X7wcfFiNldZYVHCAHVhB0Pxstp2+52VNXk50uoGpain02CpQBo2Rs8IG0asQZqNiF66N0KbmrZVvQNYStgMoapLMEwQuGSYpKCCityesWNXrSuweIEX21JXeN3EO7w5fefr+d7cBfY9mQfuHxl3/I1/yrwL/6W33v5aEUOUTU7oh6fk28W2P2g7Q0pY3JSkHtiiNPlMTXRoObV2kSIVUdZ5WbKurCjE8S6ZS1xm8TaVALyHSxB5POQNBqmQ+rt6PMk9sKvxbO+rQx1E8BewzzLys7XWPAe/LxBKczetWRNivSqrRh6QIIKaNRx7MQOSYBCV1I2KPDbyr81hBahz3HYp4hwSt2lFAKFUGrTDTiNGTGirf+mvULsV0fBsd530jxTwrTi4GoCkV67A1RZczGk58lgqqpHjXuIB731TGhZwlueedTwVuWVSQsKzl7yrhjwgwJPSaq/QUTiI2YkfhOEVpThGBFOt2xrBt1kP3/rNqcgdtYzfO+vLdV+TmxFlOQWYdgR3FwSpV8XPb9oj9JTknHpapln6/7sKQhyemswFUFYBOEfhHd5Cxbnn4gx4hqWzmBjQCEubIF4CuO2eVGVcUFSEaKghXFCCfZPKTrlbAKey/fQ2vSui4ko0S6apmui2343gu4WD5f9UICyuOIspZ8s5WnOheAm2vyppN7aLeXa+1LHl8NxmDOKKPJk0cde9L6ivhijXs4o/dnKQS1VPCFTJOKrLNSi6wzl5PKjEUXEKR1mjP9mntQSTNthdZqPEQj4KCk3crnzYYeWI15PGMOI+ZZx3jt8CtN/9zRvAO3n8rzqdA+CCsrJfI4knd79OTJt1fETS3t9hiWtiyvO1TlyKcz+dyjlSL7QH0ccI8V48uOVAm/P1Z6Me5EidNRmjn+tbTN7fcdp2GLuhsxNqKbJDbgJ7v41y1ahxH0gyXtrTgtlUIobXtaxDcLOaa4+CxAYCEQiVQ2Ue+Ec699Qp9G1HkgbTv8XUdYmYvDbmHdVYdSdJ0qXoUIA7BwANLCJmRJhZqfuwS9yA0mUel5oQqHYtCiy74/NvP1kEtidMIcp0K6UQXAsyRTWvMhoM+C46hTT05JurWcyf0gY912I6i81uTGiQeAT+hzLzt/H6BrSI1GjTOWoi9g8Shcgni7Et5B70kFLJbXXDqIadswXVt5vXYRtCJ2Ft2HJVcwh4Cqa9KzK3ltXt2TQ0A/vxOA/TyQd4eFM8CXbAm/GkVAqeUXYpiwxwl/3TA9W1GBWCrHBqpO0POqzF6Fpx2dkv3pKTFqU0I8BaiKTjwI/FrcY5t34j8wXWXUThWKrJxosZFVY2gUdtD4TYVVQgSxj73MyMExbQz9C7F7cudAUgq1kj0/MaKcJZ960vEExxP22S1p0y4XF4URlpta2GGTkEGwsjbSp4H2+4HpxUqsup1aZvH55FtMTrO002ZUtK80Yd/ICfrBSLsemUougAoaHRV+I7Rc3Uv6kN5rkeeWg2LaiNnpTJ8WPzx5j3QQ/MX2QoNOTpXWXjFdVZgp4XIWnNAYYi05kq4vK7uprFYboVDnvYCBsblItnWQ9yHbEo1upCDYQQDarE2R4bL49oHgFaHVxa9Pipj2mWqKRdBTCsBpEKzJikffzBkwh1FOVy9jXc5J5mlrhOhlLenlLamyiwgo28L/Pw2oQ+EFrDtSVwkNuJ8ExHNGxgIfwBjC7WqhjseiJdH+8j2n65r+zuB6IWuhYLpy6Cnh3k0CoBuNsg3x2RZixrx5JMeIfvmcXDkJIjkcSP2AbhtUVX3p7ffVKAJGo1Yd+Tyg6gr9dMQBYVMTrlrh1h96zEHcV8R0RFh0thcducyhmuqYGLWsDQWmh1TipqQQyB5cVoHShrpTIQspFucX4ccrUtWg10IAIWfczmMGSSL2aw1KBBzZGdSk5UauEYQ4J/LxRHrzDu2vpaMp+AFl9RNvOtkujJPwy50hNxY1BNz9maykZVRJLa2xGXPxWwBbTtTYZFJLuXkV6rOafuvILqEoN1Yo4GgdiSWowp7BlRSiWeEnkWSytktORrGZSZmcIka9cOaBRSsfa02+bTArOdlCN49owvHwa/MF2a0Z5WSPzSVSPLRzV6YW9+ZUiZFMrEUbIHZiwlmQG0dOUdunC69fiZOQ9qno+oWsk7attOKVkSL+NGIejtLuj6NgOz6gtxvZsyOEn7TpSI3FnEbx7hM3EdR5XHACnCM3tch3zwO5rUmVfI95ixBuV8U8xJf1a1ywhGwUoXNMG7mOm3cT2SrGa4fpE9X9IB1M1wifYC3/N48FSHz5jGQ1+ulIPhzIk0evV2At+fSVdxYq7bEWqS0xofdnjJKWPGstK7Z+xD2cSdWaWCy6/EoX3b+EYGYF9Xu+fMtcGUQ+nCo5WeaoKr8R85A5sny+6HUsltBWoRpFGgqzq7SVzbuJWGbcPBuFhijIbNdchCVtK8jx8QijGEmSsmwUfEu8aYitxR4dqqyoMoa0rtDHCfc4gGogW4nOtkW6/Fiy+Gw5WZXk2oWVoGYqzHMw5C6IPn7Q6FFjH0oUeJoBUZZ2HaQANE/50vKrTC6Mv2XGfg9snjuSZT73CaVUATjlOUxbSWeex67Z1ENlIRIJZiPbgvl5qIAYsHD5u/alEBaprhnkpKdsAVJV2vyS9ahjlpZcIddMCVglZtxjX7YI0sHlXnb1qnLyscK2y0p0GUsBAOF9DAWcq2axhJJ9vw8FK3ColGR9mDLhbk0uwTpEoSBfboBMakUxW+8i1eNIshrfOaqngN2NYKQTAum0CGnJGExXawEc92fy/rh0AChFPveo+qveCSRZnaRNiz4gKxaj0aMnJyMvvJYWUgqBRaVagKYyq5pRrsJxK/OzO4kN+XAr5JZpK6eJO1CkpzKHxibj15e4sWQKJx0tZCQFGaG16oSYShZuuTkHbKHV6sHLvD9OgiprwTjyNKE2G9R6LZTOcy8Ir7XgPVVK+GdrGT1MKRAlsy5eNehRKK+2WFWdnxlJqi1t8JxSFNvLzjzrYmXlMqYLtN2I1YlTX+EPNWYnFOo5pnxm3Jnxvf8K0p618CFUyIuGYHbnATHoDE5OZXfMuGNYgj1USOS6GJE0FwelrNTCMZizApfiG2QbNz+0R3j+hQuggnA3xmtFGAxNFmswMU5RZZ0o2yIV0sWarnD/pVpJh5BaR7Ia93oi+8vNjTGyb1difquMBj8DJ2bh9KucyduVFP+ypstGQ93K+5gzTBFCJF115Ersw+btw9IlFErxvBI2syDIVdT3g4CEnXRXdi/jjB4m6V7qilxbeT/Ok2QOxoiua9lijZNsCZrqH1478J/KIyfUsYdOSA3qPCx0yVwCF/WxLyYbGn3scTGiV3Xh+wuBxZ6FiDJeCae7fko0D2VtiCKsMtM1xV9QDoE5uCKrXPgH8pTGG0WsNNVRvAWF6prFD07Lmy1odmlBQ5JZrSprzRBQmzWcTuClA1B1JcXs3AuK3DRw7HFAvGrlIjaKVAsKnKxCFUMVHTKqT6w/z/R3Vp5fsZKPbt6t52WdpjJiz+U1SmWu2oFn6xPHq4rHq47xscHdW9xRTvVZxaeLV0DWsip1MyPOlvGotYTWih/+VEw3FWJ0WTTz/raj/6DGt4VdaAtGc3zPnbcAYclK6MrcjYSVFGhZB87XR/mfBr+9FJD6MaMepP2fBULJFfnuKF3CLPmVjVJcGJthJYSb6r4XWm2MoDXKWsECCoUdrS5+/7B0GQC5KirRyV+MckHWdymLnDeLlb6kBMeL6Wzr5BrySb4/YM4FR9CK1FSY40iuLP66EYn3blwcqmZeTTZySAqe4cnDID83RlTXom6uSHWFPn7Vx4FCulDHs1TgupJ2+XBGh5q0kZgltTsJGShl1HEQtF1L6EPc1oTOUh3LBmAtVlDulGkeMmOSGDJh3Mk4UO0yelKMNyUXz0JuKaiztNmTApSmOsjOOTuNHnyZ6TTMKLPV0FRyKmi9FAJcJf8PQdZL1qKutmA0abNapKqzuYTM/yI3jo0pFzhiT16L2WX3xmNHS39XEoGKlJagyLHwH6qMyoo8GA4PK84ncRbOIHLiVFaN/tKea5+xZ1lFZsUCwGaliI1dJMe2D0VeK5oHFeVku4TKyvdShfbrThk7ittOqi6KPgH2FNlkJoRFGLry+5atzqJXCDDbvqEkGap7m6j2otUPncGvih33URx7dUhLKz+biGarlqJtj0Hm59IFqMqhrrakYtUlpC8jFO1Qugnk5M6VXQ6A3M1rYMqYF4Qubs1SPJRPMhr4SFzXCx8hO002GnMWJqN0BHLSzwxCM0TsU38pRHNmZ8qiN5ikC80xkX0gjyP65gZe3Ar+sD+TH56+9Pb7ahSBLOQL1Y/k0xnVNtKShQl1OKGL+CZXTl7gyjHLLdXoUWmUqq06vBGzD+PzAmi5XggdodzgyQm/PBvZHJhBSdCoY+Giy4UmF6RvFSpqXIbxWYM7WAkVTYLoitRZQD2MiP2Vko2F0noRbyhrZQtirQStAKmZGXsCcEWnFzRbNVrANjOf1oppqwtLLtHea2wv9ud+rVD6Iu/VRWIc2ywXMg4VwJ3Uou8HeT3cQZiBM44RHYBi2hqyaqj2XuZRkAvdJ3TKF0CrssRVTWoEIzFeMJP6HrlxysUbOyv5f6uyMisdh19JICdaQEpbKMGhU1+Iap+NQc2Qae8zZsj47nIJu3Nafi+MIqFLEdVL7Jjt5TSGwvOPScYEa1HbzaL2FF6+lht3jBc24HwjhiTtvhVLcOUTOnghD607uclHL4dCIbplpYQ3ohV68IuIyPReCsDcSYQoJCKjcbsRfSgt0fzvILT6IGA1lZMR83AUoPDlC/LVWgr1/kx+fCKNX3WeQAjSkq07EQ+degFnrCEPAXZHTMqkTSu/fIxgRVedVoLGUvaw2TixvCo+/aoHVWK0xmSYSu7cvAVIxR569XlZQRnBF/xG/PDccXb+VYvtl99aslXYo18447PsMzsxcMhRobwUB1VXggfEJAVgGOT0rBwqZ9KzThRsQU7HmRbq9gE2dtnXZy0z73zizaKZ2Vgl2zLfVxnthfk3/3/m3wuKXnT0a5g2BQM4lbHCyXbBnWXrogubTk9yE/u1LTt2eU56KjLcJJuHxZbLR3TmCxz3bDUq6lKgSwFYq6LNmC3fxCh0SUFuMhHKJkhAS9sLduPXWmzdDoJDTNcO3xm0E6GYCaJunEFkew6i1ais+AWcB/BeCsC6k+1NovgEKGnNZ+KPqiCV97hy4CAZI79TyuhRWvK0aknrSlaOx15Yr/OjGIrq0mWg5H1WpwJIjsU3oHLo84g+DdLmWyPchKwFiDz3gikpRbreyD3x8CgcgXlFOAg2lQ8HUeVWFQz8wMdXogjknEnHE1prctdIhS1rNOUceRjg3KOaSkgQp56sAxh5gdNVJ3JMJ0DhPGOGleAD9U4oxc2jWIsFCTmSbYGVEycr8cyfASzbZ8YbxXQl60V1LsWghFiERoIfTUjCAsuC+JOzUIWLcER8wQqHe3qvEIQooo9xwjSW8XmHcuJ6o0Zx+dVjxJ7jYoY5qxhF6yC7dUG9peOJjaglVZCbSsJV5XetDqAGKW7DnSo3rNyIw61ayEg6Susu1uKyEpxuarngrBTJ+TGPEHoUMCsXvXyqzIIdCJCY0cX80/apxINJUc09gowXwZEkPIldW6xZNBxGFfymVvgt6HF2RRagz2+Ev6GSAIXunczAqXO4/Sizuxe9iQkJvTsJu9OYL+ruS3enxiA35cwIjYL6YwvHAykAZOSGPxRSm1Hy972g9hizYAjqXLpHY0oBCKhxknViCIvabwYZ5YtU+dwEfhCikDHkTUe46cTr4N0jWWkhCRmN2h3kc4ZBCkDbSrew5wc+vhJFAJAVzSg2XHnVSgVMckMp1Yrr0Kkn3m5RppP9bMwwBDCK2FXCGKslLy+sKHMtnFtFaIxkzp0TKhZTzE6YhcZnxmuNVxfPOjNmuleZ/rlmuFNEZ1i9iZhB9to2lv10MRHNxgjxJ5Uqb6uFe46zcpGVkYcQigBFia3aZ/fUiF+8L6IWPcSlIzBjAdJI0IqIZ8YwJEYdwkYKQG4SOUEMFnsuYFuXCZ2sSaX7kUJhjlDvkZVZoUvP6zntpSDJjXyh6LpTEkxAy2yvo4BncV2TWkuspTjqKYr/gxMSj4vSfosyUoDcZC5jyUzhjSWkIzQssWYgiUWhFeWkHjTNO40dYLyS6HeJHs/UTx739iy0Xq0xuyAgWQEP9fv031UnN4vRsvcHuelCFLrtMAiDL2ix7MpJwN4s1mMawRYIUTj6IMShYZL3vMh9Vc5yHaQiJPJBuDH9KE7As2K2ri6bI7iMmQUHwwfyzZbUVUy3DfbgMW8epUisV1Igdnuyq+C9AqDqSp7/lzy+EkVAgbwpMS2qwdw1crKGKHiB0RJQ4izxdo3Wxap59o3rPak2gtirsvOvyiwJhQQjGwMdpAsIrZw67b1kyA13mskI2hwaOWma+8SQNeMdpMqw/Y0olNdKiWdblplTUVSQ4yS+AZsacitsx6FIQeuKnDNqKN10W1iGPmBeP1ED001DbA2mL6i3kQtNRwExY6tL4q/CDJnqLL9wqmR9F40Ck4mriI9i0GGDIqwz4614K9izxpwFgXdnGUFCq/Bd+T4WSXt+ENQ/1hqVZ2ZhcTFWsj3xawOqaOl9FvHVUTYKsRNTVXtSy9fFxizpS75TgvbXXExSx0xi9j2E7JToPdYR3QboLeap4AZFduzOWYJeYInnhmpp61FOnJ3HSUZNo2FVCAiTl61UmfnF5SeQx0kKQF3JTYaHRlpINXryxsrcH7Pc0MO03LTpekMqdvNqCjDLiMuJvowIgxwIqikkMmsWxZ8cFlE6D6UgJ9LdlrBt8Bsn1nf3x4XPkPdCDlKdMFOzD7KarpwUn6+827DWqKoinc9SXY2BmoX/LHLOSkC23REDxNt14epDWFfCCx8C7mgwG4WpL4w2HVkku/OO3yYAaamnjaZ5iFTHxOFrpjgYS+vZPGRWryJm0ow3isPXjbgTK2Fy6TGK7jwXiacxEMTNRth/FTzt4XGSU0SXUyfEwj+vpNs5D1II4hXTXUtY2cW9FismFHY/iJWV7zi9sMwe9+5ECS/RxKGwB10mVhk2Ara5gypCFrU4+YaVvB6zXHcW7aAET5kvWttnOIdlRZucRseEPsQSqyYzgunlPSALHTa2cnnNp/90JalNpgR3zBLhZCA34g+r/UV8FFYZfxMxGy/q0ceK7lND85CxZxlZqkPCnoIYiRYGHiDCr00t0d/F70/3GVbCGKQfyN6jOgGcSUhrPnk5QetKTnJn5RSvnbTxOZOuOvxGfAj0Ufb1KEXuROoeO1d0FNMFSCzsw9jIqKifTqKMNUYwpK4RU5qY0bvT4rSFlesp3q6Z7lpJtjpFqs/3S2eRD0fwQdiBZbRW6xWqmJXOQqMve3w1igBlPWOtOKRSuoPtirTuZO0yeeFxr1oYvaCrtRN9uNNiyRwFnLJjJp3F234OzZgJLrOHgPYZl2SNFiuFX2nat57153D4mmXaABUMKNp7cSSuDorzC81wo1m9DsRKM7yoqR81qrjS6DK3qcIak19GQ47k40mMHyonF8e5l9+zqaTzOZ7RT0cqWN5wFWVOj51d2GbVg1CMp60m1JeT1J7BjJeWerbxEoYdqKQWWm52RTzlwKeLRbgKogqsjgl79JjzDFZZwqYq7X6SE38ngKy9aomtXVx4s9H4q4rYqBLDpYmtWI+pXEJI2kL9Li5JyQg2kyrBNqarTO4iugmkoFD3FetPtMSSe6Ewu5M8RylOciqrmEFDXFeLDNweRghpQf71oZeObLuRwyQKKKcmLySfriVtO1Lr0L0vhVvWuKmkBKks31efh8X9J65qeY/Ocn0qXwr9TAevBR+weznY5nF3BhNFHTiVQrOW1eR5JK9bprtWuDCniHs4y3P1xVG4cALImXj/KExBY4SoVlWCDUxf9SxCWNY0+uZalHV9L5WsraWN9kFeOKWKXLPEQHUV5iBZd2ElN50dRHJrPCJ2MRIICXJDLWBVOUVBgLbxxlIdIuvPIsePDNOGkm6rSSbTPEW235NQzawV9ZMnNEb42klOn6wVjCOMBZDRipzK0WtEfSYtXDkCx2lhjOVVaTengNtPTFeVEIeitOF+Y+lfVoVoI2DazPcXFhzLKT/7+ethLgDl96zlJtGjwvUsMWvzZmEGVKdeo28qQeRilkLblQqaFakxeCupUfP+PFUSe5Yqse+OhV4804nNJONNqOfAEuk8khOehm8yqU6omwnrImFwpLNFnwzNW7FZmzbFCPVJhEKiFrSEruACZy+jVsFSqtcHVD8SbzZiKjqfzpsV4Xa97OiLNRO5MqTrFWEthiAalteAJLt+e/Ko0aOPArfnuiI15drb9V/wJiDJ12enUWPEnAUMJiYpAFuxLTP7QbYVSkkBahzm6UxuasZnbYkdCxJHvj/J959Zjk7WzXkYULPpaD+gupY8jCJkU+/RMH/T46tTBLTMPWiHurkS5HacCtKev2C0sDippIzfCt3W7AeZ5zZVkcJa2RJoRfvWlzgzAWnmVjRWwi6rDqJPl0hrSRS++nbi+JGlf66ILQhkaWgfIu27VMgmHnPyFzad1airDnPqpUKHAG2DalsRcBSn2tkxiRBlfpu8zJ7WyO9ZG2Hk+URsDGEl2oQZIOyfSQAI+iK5XZx8ixbfrzPZpeI+rL4gJU5uVuEVem1Usj7SgpMkJzebyhqV7EWu26eLBh+56XO5uObYrtAaZuqu8XnxJRBqsIi+slHLelMK2mw7nuDKUzWBabBwsriDpnpUC8gpK06oDhEdE6GzhJX8TPfoMbue3Ig9mH04o54O5O2auHKyeTmPcgNWcpNDYf6FJO38piZ082ESFsr6vJNXWqOCIPrkXDgrSObAFJY5Ple2rPwyeDC+yJOHQghqasG6Ri96g7kr2ArHQAqAY/hwTbZSANzbE7x6JyvAqhKXIW1kdDmdBcOonGygmobsPekgZiLKWfiSZuArUgSytGHN7MBjhFV37gVB3a5kHMARN420WoNHeQsZpqsKZzTmNGGPnlgb2tcRHSqmtdz8bu8xVblAy3oqtKqYhspaKZUgzXhlsENi/WnADobzS01shK+OkrRXd5RdtzmOUgSckVZxU8PHzzCfi7nD7AirjBaJ6mwJpfVFR2CMzKrWyLYBAQWVT1Q7j19bpiuDmTRuH1h9nji/cPiVnOhL1HahxssNo8VZqbgJgYxHZhKrcrjw9VWWEaDe5WLWKlsJO84EomLaWfbbKmWZhX0g15a4rqVrcYpci3CnfpREY+1FBxIbQ0A2G3Nu4ewQLHFoChU0IVaMO4c5ixFK/STkoDmO3Z0y9ZOsL6eNY7gRolX32qPPntxWkvIUMyRIL24I1+LUq59Oi+RXGY1qHNnJKjc1llSVkWuM2LcHWd01FWi7AHfAPwDaKS+ZAfN7mZVCPx7kc2qJHJtNPzGavF3L4TZ52B9lNdi1Yk2nFHp3BmeZnq9AKdzOU336SL5/RM1uQeMEyUghGIaiaszkU+lA/USa48e0uRycP+Dx1SgCmaLi6lGbjfzZWZlzxkleLGdlp57Fo98AepgwgyVbsX9OlZbQx6TJTlPfT+jJETqJDp+jn3VIJWVW2rRpXZiFRznt/NowbgyVTjT30l+fX2pSXQhFao7hanGdEzR8CtghEK4auQifX6PfPsmJUTkpclrLTT4bRmpFDnlxokmtI64raUP7UJ5vptol0BXDtSFZR7ULdG8D42SY1lwUgFla+dCC8uLtPwethI5i9skSuR4amC2/YyWkovZeuAlmiLJiLdZXEqtexrGYUcUOG0A1bgH5BHgFc/KLcCe9d5XNicLzDW3PMEeamUmRDhf7suYhL54Q86ZH8h8zsdUMV8L5qA5IIvLLrmxrFHaIZNMsmn97f5Ibbib/BAn/0FovhCZzEOxJ9aPcsOuVWMPNzLwQC1U4LYCu8EOmiw2eSqizcPjVqru4/va9tOddI9fDOIm3hNbQFs1MSOjTiVxXTM9FQm6PHvd6T358Ql1tic+uih+icAsoVPQcE/l4KCYoSQpAyqANSqv/f+gEhDCEj+SnHfpqi1Lvzf+FM5Brh+pHLBA3tTj+7EdpJBrRh093LfYUSFbix02Jj0pOUmdE9iuYgIwB8vc5ctqdEu4Yl6z7VCuax4gOLMUiW/CtJtSZaVNhJkf9GKjenbFPPakARLmtxU9wNpgMEdK0uL8qZ+FwkgvGF2dbrcBp8HrRoGdncDsPCaYrw3BncaeikCvA5pzKC/NNnyWNOBTKsRPgzYyqkJ4ysYZsc7EGF0AxVobNp4V7H0U6rXyU51bs1NGZ3FZQItbMY6JyBrITlN6Av64l8EOpkuhrFnciKUQS5ZaVYryS7scdBdgFwSqqUxIsR1HSgcrvZyUNKVmxHLPjLHl+rxi2Bu009uilADztZTyLUWZoZ8Xw0yjJFTiLc1CePfsK91/tT7ItaOrSFegiFS+U4n68BIS8zzW4uSKuW/ThLKSwYjeHBtWXjUItgPAiRDqcwYrpSKw17uCxb/bw5h717JbwbCPvx6kwHSd/cT46n+XPQOoFq1BGrOxwbtkk/KDHV6YIkJI48vhA2u3RRWQzAzac+yLMqFDHMyZn4rrGPJ6wKRFoi3GFZbp2X6DJUsQwQc0uxUrUZkkSdqd1caVtFMkanFPYU8IVequOmfatpzrMs38pBrro660iOkdya+p3/RJfNe9381lOAW7X4i04FWfidYeqHephJ5TP04ApghJSujDNYgK05NZ7y3DnGLcGHfMCtqVOLfN8tuVjdQYLehK/RYkAyxcufkbyCJEdvegmFMONIdn6Ms97CX9ZHllQeK21rLg06MFTpUyqjXABjMKUYquSaCHI8lrZUYg9s/uzMA/LJqPIjVWC4UoSoLMGe5atQDYw3EgHMD/n2UVIrMfUYnKiogSQzKlBOAetnMapraRLOJcTWaliZuvl83Im7w9L0ci1W/wFyKUTOvVSMJxQ3ClW47mtJSvgPIoormtJXSO04XMRGLU1ed1KzuBxQj3uwRji7ZqwcaLKfLOXQ+TuRgpAyvJ8i4nJzC/Ip5P8OWXZCBgjl71SUrx8+OqnEuf37JBV14n0dn8QUE1rYVDNK49SbVU/YmbxxDihBwdWY0/gr2QEAC7mGUZuWFtQ1qwEzLKDdAMiEWVZM6ZKlTw72UOrnNFTmQmDRFhno6gfA7ExhcFXwkX3o6Cxqwbtg/i8nU6w7kg3W/Rp1joEcuPg5e2yGprTb0iCumd0UcMJldj2kXqnGa/N4pRcHeQGiZW4A4HQoFXUsv73RVQUWMaDWIMyBSCcxLC03snaTTwEWVx5cgHzVGm1Q2uL1LkRmXAEd4xy4Z7KWhEWoU5WFQYumoM8r2whV4UnYCEVXwOQrsSvZXTQnuJUJOSu2Eg3Ue0h+vn9nXkHRf8xZEwfUL0XsHXVLpHi2Rli6wpeYeBqvcSBLaGex1MB6yrRFcymHCWKLPeD7N7r9/z8Z0FZccKiH4oNuJORb3wvOGTOIxwj+nFPTglur/BXDeYccG+PUmRurwQHKxLkhcY8cwAmj1qt5LlECTOdOwGqcqj2A+o9J6jf/PhKFAHIF6Wd0vJLhQCTWDAR4uKMkvtBUlZ1ljZMazAGfRoW5xZ7jovgZ6Glxiza9StNso760aNjlGQjL+2kjrnsyzP1HDHuNLnSmKcBcxhJjQg3GBR+bamOnvrNidlRdrGTDpHc1cSbDbpyYvn85h59vRUCynzK+0i4bonPV9jDdEGZfSCvGgGukghy1CC2YCokdJDocLlJivBIC4tQewkJ9UWAI/6JGXNQ2FPhHdRKbqj3zEjEmEW+TiVFnTLGB9QkUlxJ4pVLxq/EvCUr4WXY2V2J0rkkmMM49BTlYp9mXwYpMKEVuzG/uVinaV+4C2txfUqVbC9KU0JsEmbQS5JU1gIyRqcXl+TqKZRdvMiH/XYl6+CiJ4itqFCz1aTtezdxBj0EzOjL6Z4XoY4wQcV9KAdxCvriJSzgNkZfbMFrGR/UKJyWJTKsJBmpMWKejjIOXm2ZnnWYIQgoGSLp7rq4BfVFRCTbrNw1l1zEphaAeSrGO8MoXoNtI3oEH9BlTMD/4LvvK1EEFIVpl6WdwWgxHVVK6JupiImqSlZvc+vmA6ly5G0rvPQhkBojq7/iRixotJLWqMyLMwJu+ygvgL6cIK5PBSzLi4Y7rmviusY+ntGHgVw5jI/FUttKRNTjbvF/R2t5Y99luenbGq428PBE3h/ETKSsA9EKPQb8xjG8bMVZppdUo2xEvCNR5hl7vLyLZswkK+DmbEI6C2xSJaes7cEO6r3wFIgtpJKwNJ+wuYR9pOJeJG7LQh2OtcadIrbEfJte5LJ6ssJhUBJT5o6iJ/DbYpxZrL1nyTc+ooeE04qwssRG/B7GrV7SiFRGkiq0jDJhG6EpY8gkYh01aexZVoZmygvoWB1EN2BOfrlpxg82DHcWM2Xa14NsZZyVDsBqkjNkK2Yf8vMFpM21K8zBQRqXso/PqQjb8ux/Vk6YeWy1ZZSrnLTj72UUzODj8kgJfR7JxzPcXOFfXslz351lpNm00pmMQbqQ8vXZaQgJXWz4ct8v1ug5Cp6hi7RYKYW+uZIxoZDwftDjK1EE0HLT51B0+DnL2sPaBVnP3i9Ry3OhQCnUOEmazE0riLRPaK2IM400AmNe3gQxncxSNbWSJKEgbbBfF4DqIDFn2ZnF6zC7UonLPEjOVPsz6Wol8WOrVuTQMzMrRmnLjidxe111UEvVzuOISm7xrjejx1WW4UXNtLXoxuCcWSiwoopUmOuL06542suPUvky9szmGwsfPxQPhdJ2x1r+y0bUdyC4QGyEI2BHqHdpYVmK6m/mXGfUELDnCbPXiyGKvLAQtjV+Y4R1mAFtF0cdjCa1IkX2K0OcC5ZjeR4zWUnMRVlGB0YtzsM2LxoDFaUDQEP1JJ2QbC0Cua3oP15zfm4xXvAcff4iNJ5qAzFjD/6LGI7WqHGQvbvRl1F1XuVaCzP5S4vKdREhwRIRNkedpW3RAsx+ggVPYZwEH7rekK5XmN2A3h0FsKzdxZ7+vbVxnqXIRwEbs7+sJYkRvJcuuRyoersh5yx5hPk3dS7vPb4aRSAXEYZ2RW2Vl5ufFOWFVrLrzF0jAKIxJXNtxD6cmD7aEq7rhQCyJA9bhZkkGTZZiief+sIOWxJyM/VTXKKzdEiETS3gViymErG08HOhAjFtaERkQl3Jm1DsnbQx5H4gnc/QD+jtWogdWdrMPE1QZNIuZ3J1SzK6CHDk97CngL6x+ApyoxbJrS7GILMLb1byu80R4CoiJ2qR4s4nphmlMEj4R5Emu0yq5aYMK0X7NtE8ROqHETVGUifZiFkhOMyIzLizN56GrM3i7WeGJOpCpCMwZ3H/US5j+uL20xTSUMkUiE2GtmgHFJDA7gwqCbfD30T0ypNw+O3F67B+mFeMYu4RblrGG8e01rg+074VC3sSLLFhgB4jZl9cecq1BBmVorTaXXsB+ooRDGbm4uuLD2HtijFJKZQhCuhaiaU5WqHP75mTRlEDqhDJmxVp3Yo78fF84SGMXorKXGALbVufJ9TueOk4leILTMDCSFVKST6C96SnXdHY/A6KgFKqAf6fQF0+/9/KOf9PlFLfAn4WuAN+DvgTOedJKVUDfx74g8A98M/mnL/7W/2cfC5GIjOvPsrNn5MSBtQs98wS7glIcMS6wjyeqd6c8LedtEsAWS64eGXwrZiGzp51oVH4rSksOC+s0OsKkrSUyehCIoHprimOtUK3VV4uanIWUUmx1VKTl+oc0/J7KGtRzpEO8sblQYQmgmkocVAaipz0/pFKKeLNSmb+Q7+cLvWjJetiShnLTa8v67BpC2Gdys2vFqQ9GwEFq70wBlUQSrVKYHrJbAydpDXnqvAmtEZ7jZnA7bWMPVbhNwYw2JMRc47pPadcJVRhe/JUbyeh06YkRKk5U1IpzDGVIx500MLczKJwDOtENhl7MLijkhSjLOPL8LHn5uWenBVPgwS+uoPYw9X7SxR5qjRTJ/6H60+LU3POF1eg8lx1L8g+wygzdTEUnfMF5+QexulSAOYCotQi+LlElr1nMlqyI3JjBc0/TUvQyWzBpkIs8eZlg3Dqy6GX5BDUapEbLwzC+wP5cLwkDBeh2qKM0wqFWbwryFmERSDXXnzv/fpNj99OJzAC/0zO+VjSif+aUur/AvwPgX895/yzSqn/DfCngH+j/P8x5/xjSqk/DvzPgH/2h/6EeY8+edRS2TIZL/MzSLszV8aYyLWFmIkbS1Yr7K7HHkb8dVPWgvK57pgYryUKq96V7IAkoOF05Wh8FPXhSTNeO7Jx2JP4Ceogc3Doig3UlGSHD8JBh8UhhhgF1/CefBgL3dlAltXnXKGJiZwLv72kyBKTbEROsvpMK1kpKS/+fe4YiI0u/oOJOOqFUJOMnJ7JyY1MhjzosgXIkmDUyhxt+nIxRha2XrVTxFGRbC6vl6zjQLYssbNQdBax0oSV8DFsL5JhYia1RohahxKdXRiRFBkuIYovX1stoRuzd+ISa5ZBeX0JIc1CcBpeBjbP5WJ+erem/Z6jfZNp7yPuKJsbYLFhq54CbjdcZut1Kzenk0ODnBfgdqbuLlr/BCA3dT4V7cp2fSkS8+fMnpiDl5EOpJvo6oVLoaZw8Sl05vIz50fBtFQhwi3/ljOMZcZvVqA15uFIfnwSB6QSMZ6HgTxOpUPR5DGg6krGzhBlGwUySqf8O3MWyjJMHMtfXfkvA/8M8M+Vj/854F9GisAfLX8G+LeA/5VSSuUfNpQYvbQyCy6glbgFnUrmelPL+iYmuccLe22mCaeuEgbYGAkru+Tg6ZCpd4lprcXc4iTOPTbLynC8qanvh8I0zExbt3ydRFglqidf7M01ZhTBip6iKBjnU6a8kcqumC3Uc8EOUOL4u+gjIlBV8ntr0axnEOCzjDgCNIkyTp89trfinINgFtmUiK1JwlN8r4kmFdfksv9PkHUmXkXiWqG8/GcmtazpTC8gm56kNZfMAcn7E2xBOiLbR7E7A7JVy7pNpSTMRqMlGOZmRX6+IbZW3JqfJuzTGRDTzlQSpOSmLc9hkpWs8BtkFQhlRLCZ465FPVasPte0b+X5uWOUQNgC6uqQcfsBcxzFEKREfcdWYsIoIaSmDzJK3m7k+ffT4mORh1FouDGhrCHfbBen4dy4sqGRNd9CEirJUakTj399GooTUVrae30cl5Xv7KINSGFRCs7CN5Bxo0TybddgDfrtk5zoWjrInBKMI9mHC44RZXumNmvZqE1exoQkRii6qS8H6A94/LYwAaWUQVr+HwP+18CvA08555mB8Anwcfnzx8D3AXLOQSm1Q0aGdz/kB0gLM/kL8loEFcRI2h/Q11dfcG8FqcTkjPVRMgELcAcsJhvTRjqA5jFesvi8mHRko8hWkWqLOU+Y40QFpGIbJdbiCnWO1IeBcNVK2u0QxBx0dpzVQFLLC53XzTJPqvNQ3phJ3pyUSlejYd2JKGpyF0s1amkNfZCL2VmUUdiDJ3SaUGtsTmWdB8lmmncAivFGzFSzyUVFiJxcSWHOGhUloDWs5URToRiuakU9iOGo8RfAUY9pAVCFal0ERFHa/+m2KV6NqiQiqcXBJ9SqrAItpndistlJZyFiLrUYmyYLuS5FJbNkD+pR4d5aUPYLI84cGJucLi5QqWwUypi1qomNJbZGthRh3jAU7wcEA2LyciPm8udKLOHV5MXwBUSC3Ik9uDmMl5BRWHCA3NRyqu+Gi5uQ3ACSMqzVAt5lW7Cswhlg8gLwKdlgUdkLNrA/kfYH+bjSsinLqYzHRt4bHxbAHF8YkSleVu51YRT+Tv0ESrT471dKXQP/J+Anfztf98MeSqmfBn4aoNGrwn8u7z4ARV1XiSIs7/YFYa+kG3B2oWDmtkJ5teABM3lkbjVPLw2r15H2c1mTZGdAZaq9x3ciQ1XJoc9ecgVW7tKyzrnzCdybA2nbCkB2mgpnQBhzuRQFvTstacriJ98IYcdalCu+8FqLgcreFeZgIxTPYZSTovgUZnUpLOY80b7KjDc1qSqmpz7jzgl3guqo8G+EghuKdVpymTzIBTWHq6hQBDzby3pNxga1ZPslKzwBQeHlgo+1ITeyUpO/a3wruY1o3tsmCAtzKSZakRrLnNJketHRq6ALl0NuejWVMJQsZiIZ6RAExISZOmzP4rScjSraBhlRYiXmqPY08wcUbj+JH0DOiw2Ymvn/MV1We0Bed0JRn/n8ZRTL12s5JIZwcfidT1WlBJ+KxY5s1V46OViun0UsVERIahgF/BvGImQqK2Nn5fnFBLsD6dxLh6K1ALGmFAdrZUsxjihniw/nKArCgqctWwOtyX0v680vefwn2g7knJ+UUn8V+KeAa6WULd3A14BPy6d9Cnwd+EQpZYErBCD8zd/rZ4CfAbgyz3IuDqrKFotuV6HMRWab+wFO50IvLk7EjRMktJg3JKOZ02XMkPCdWfbjxw8NZqhpXp1g8GKRbYWf7TeO6crhrLr41Ze4MF2qdG4sygf0vidt5JQwj6eFDjqz6mZzELU/SUtpjQCCKQu1MyaUkpEnH46oGNE3VxJQ0dXkJC02ky904fJ61cJHMCtHNnLCqVxuvpjLzaexY2bs9ZK7ODsGzXO3uPkCCCiIFiOSPG9SikPy3KrbGdmGwtoTtqCNCT0p7KiWuDZgyUp0J/FJNGc58WbDjZmUZXsv3g7G0r7R+LMAhP46kW1G9xq0IrYJPSrqB037RmjSoZVxIlbSceggXg/V43TxEvRJjEIGOe3nuO9ZTbcIgEpIaK6trPUG8YJAadR2Ta7EXl7vixR8Hl1T+kJbL7oCJWs+o+V9nwtAcZGaHaSWcJqmlu1C4b0wG4WM740aBWtSXbsUAUDSrWJEYaSTKHb2TMU9WQlpKYcgmIBWMob+gMdvZzvwHPClALTAfxEB+/4q8MeQDcGfBP5i+ZK/VP7+18u//99/KB7w/iMncLXcIMUVRTWN7NW7Ttrl2SSyVPHcVuIfB9IeVzJH23OkqhT9jcFMcrP0zyz23ODuT9inM+GmI1WG+nEkzsk6WhUPeZl1ZxNRrCZ1NXoK4gNf3uR5fp/bP+WDgH/DZf0EgtAyjtJm5iRdjzFyMfSiMU9dDbUmWo0OtYBJBZBSQWKzYq3xa8Emqn1Y3HSyUWAz7iisPDOphRuRDMSGJapbIsgLoFhd5nLjyyk7ZzrkjNn1F418LdLbqA16jLixGLaspJuasxyyBV088JQPpE1Lqg1+I+7D9aPo7PUk9mC+U6VoZfSgMKMYiIRVxh411ZOifS3dxXCjCzVaqMHdu0T7esK9O5KdIWwvbfzCWpxzKnxJJHZWbsihgLuVk5t8nOR9SRlqyYbQx2IcWtD6hT6c5VSnzPUqZXjciyKwqeTjpd0vN9LFgRjEQGbWIiglRf88XHCkORGp61Cb1WUEyblslM7MztaqqgQrSFm6ZVjchHJJyQZ+R4zBD4E/V3ABDfyFnPO/q5T6ReBnlVL/U+A/Bv5s+fw/C/zvlFK/BjwAf/y3/AlZaMMKK21N1yxMLbVZX1xYQ5SbK2c5UYsFdGpdOb0EdJJ0m0R9L7TjcatxxTJ8unao0C4KRN2Ihrx6cyJsG8LKYlIJrjAXNplQPSGuZBzR5YRTc75djJf5LibyOF4Sh0zRfeeMKnxzNRM8Sl4cTSXuPcUWS3CGRqK+evHLJ4E7BFAQGqENu2MoUdmK3IkqzvYJHUqMWekW4qAYryC2BVAcMzYrgpo1B5D2Zc/fR1AI936+AUoGnwoZrQUbEHVkuYgLWWnOUfRbB3ojXUBj8VvDtC6sv2ixTpc05dn5WRSPdpCRIFUZt5PUZB3AbxTnDxTTjczk9b2i22U2v7pH9RPh2ZrpRm7Q6skvz2++aefiLDdDQM0eg02zRH3TFrv79epC7Z5lxDORqORkzhTgxVkpRuhaEbgdpGOdfQUF8S/uRTnLQVBXX8S3ZlFQ5ciHkTxN6Osr8u2VYABzN3MeFodi3TYySpQCwPVGNhmHkygi3wu9Qevf0Xbg7wJ/4Ad8/NvAH/oBHx+A/+pv9X2/8CgvYk4JlRNMRt4QEFrl7ZW02UVpSIiyHimGnWpQxO3/r72ziZHsuur479z7vuqre6anx45JImKjbLJAwYqsLKJskIB4Y9h5xYYVHxIsWBhFQmEJEizYEIGUBQhBIGGRDRIBIbHCJiDbcbCcWGBEjD1jz0xXd328z3tZnPNe9Yymxzaarm4ydaRRVb3Xmnvqvlfn3XvO//z/+ZB11mSQ3pCjd0ukyzeVgQ6afesgq6zebRj35NYC14wImeLdB0mokzVhf6JNJ7bqCNMCt6xgud5gxrPU2F31czR8wKajMGpgyHM4uKI3Vd0oRmK5xjsDvEy8Kv8C3cjhxp5kmSgzTohkRw0+78kS0aecYdLrmRv0AKJjaJt2rT79m9CDpUBEZcB6DQJA0ZMnlrTqVPBluLapN9EQ7cLsTmEy0kU3NF8BG71Bp5WEZNFp96X02wrlHKynzvIXEJM4VAZ6JSJgUJJuptECoTC+EZn9lwpK1j+2z+LjmYrIvK0VApxTkZGhESvRkp/xAvTBmq7Tp3euydh4eJVgpCSyNtafPngYOEorVK2+DpBhJQyVk5U2HyWJQciFuCoVZei8+gADqxRYAOgp5lZrxf4fXhuERaS2xOGqJC5VN9FNRsh0avJ2AZlNlHFouSYcnwz9DWIVKJozlgFcFsSgE4UNV8YbsFzpk7LIVW3l1h3k+gHd/gjJU1V7KVM9Nx3rvrpqCZnmAJqZ8c21enz8w5bqcET0QnrSEFJHM0twuSNdnIKNeqc/7Hiq8SP1UDvcfEko9mmnqWK8y4YwznBtN7DG9DwBpAmMC3yeE47mQ4KTYJnddYkUOd3BHnF/BOypvuHJmvS9BfgZzbjX/rOe/qhimyFzw3IdIETdExM3Sby2EBIwMFEkWQXDDWh5sMu0HNillijI5RQC0ZOUCVIHyIV2MtJ9fB2U7iz3tGPzIWqglc7yEk3QubFtVChSQq7l1KRWJuiQ+oFfgGwjjuIaiGHzvUQJnDdMyDnkt8W0JQPjm/pkXX1qT5WI1hrwk6P1IPApXUco0iHgx6j3gJTNgN0YWnyrxrgFM6QN2kTUKXqQvnwnClaj0a5SslSxIFa6ZrnW+nwvaNJvOfqKlwnqDAnKnnXagkFcLlVSfG9PYeh1o0/1LB1AZYAmAyeTzQp6NtX7rm6IR/NNJcAwN8poddmDQK8cm+c2McqiKl2mZZumgaMTvAjt/kgvWpYoHVlVqwKR09JdkjnKUcL6MKW4BUmM+GVN8c6C+nCiWeOjEigor6WETKnHENEM8LpBOgXGOExDzsRQ/a0F3SeuUF/Nyd+3LUG/NCzR4GVZXhJPnI5xiSfOj3WvZ6WjUFW4+bG21xY5YZzTzRSB5uYr0vdXxOsTTXKWm+aWkDjCyNON3LDs7qHQvrI99nGgHcmw8tDuwGBPaUfaqaKSrwPBC80sobzqBgqykECXOtKqgyYgrTLTYD0AftXimpRg3Y045Q0ENsEp6HjSBHxolKTTrrO0ARcjftBXdHATzeek1ipsTW+uRTUWjAFJdQi1/6OZJHTXesLXTiW8K+N77KHeWUI3US7BmHpCn0QG4iin29dVjitbFf8cKw+hX9YDJiDW9QYI1gW9N+tae1gy6//ot6ltq1n7K3uEca7AKdAAYsnG2DRg+S4leNBVSS9A4qYTZDrWgLJeE52Huh4SmIAmCUX0N9L7sSqJt+7QLZYadMQhLhBbyz9d+t4BIJyc6ASkufZo99uDtt3sx05WJF0gTHN96o9T3DpF2kB7JaMXxyhuw+qxhOpABSD65X2yqOkmKZ1RguVeWF/Xhg9XB5pZQnZH2Wdd0ykoyCvMNOxPcMcrsrfn1B/fp75akDmHW5S6V5uMNbE0P9lIlPfJmtkM1mvCyUKrGZkpwsyPoczxxw63N1V58ukIWZYk84pghJeAtp02HXihG2V0mRuIUJRbUJWVfK06Ae3YG9EqNFNjQRZIVkF7Ata6yvFlii9TO9cNVGm9tqI/Wm32toZqS+t2KFtJpYnLmGdDKzUAdYOzbVa0/gJdIWgwdG2AqZZii9smdzbzyn6cMug+NBNlSE7WVj4cac087XUH5g1+3W76GPr7qdDr3KshiQUgaYPRg2dGwNrRznK63OErTQbLukaqWkE6fR+LWQxBf8B9rb8LVr+PuhLcn2nJemWSdD24p1cZ6pviTH8irtd3nZOi0C3BYmnfx84Z/FpyZTyK82P9naQJslgRjubao9LfL6f5A8QBYdiq3WuXIwjYlwvrEpdmSK7NGT2H3QCwSTRyukVFLFICCd1epiSYTaCdpgMxSH4UqPYd9V5CftRQX8mGTHoYJ3hTfJUQqa7qXRcTWH+sYHRDcQBeRMlDRPXl4ihHTlbkb7W0j+8ru3Ceqp9tdzcjTZ7rqqDRCoHkOU6cZnWbZqMOA/qkWa5xo4xQJPgmNRHQDf9dNCYkt25JVgnVvmXjDdekrDzKCtwDZEKS0UyEslCNvqQMd0+7PR18pZ2CflGrCGaPaku8Zq0taTU0yXgHSdzAZkNU7oSJ6hC6LoW9wt4HknmFzNdKxpl4hUUnPQxaWZ/Lq954DHQb0GU9oxAkaxno1H0TScpIfqfVblAgpKovONzlSS/3bWVW5wZ4t6oTYSsSbQUPmVMAWdPh5iuTB1vpdSkKhRenWiLWGr3fzEWMGoCLQtWIrdQ4oFvLclPOE7GksOaP4mKl/BhZqj9UJ7olWK51i9xrFqYK3ZZxofiRk4WV0xMNGCcLwnptT38Z/i+C+jZsR86wyxEEgiKgYtsSjo/xh9dsqek2+7E+w5qlBqoIuKjLv2aaDjeP9sdrt1Z+HKhnjmTtSU9aysNsUO2JiT2dyo7Ru6qk00wSmpmw/lhBcVNITpS9KGQqHCFzkxNblyT/3QzIrh4duGl6Us43jPJJtQcVHiyJVxLI5RIZXxu0BrR2HBStOMkUiiuKXvRrw5Knnm6UED2DlLgzKa4oELzW8dvCGYmKKHWaN67+RhOHzXSsn9ed5g0E3ac/NsLXOekdXVprX7tm6qTpNEnWl7KmY+IoI+yNaKeZlv+SPj+hZCEAxW1DSXqv1YsiJYxSbeUVrQ6sDr3qPVr7MzDwIbgWXB1JbBuQroImGVNHO1HAlKdTBKeRbgDahi2iBCJekDogRJUUbzrIPd00s/ltTU2o1CQc6I8sy7RTMLNAX9W6EghBl/1ONkSfI93K9itDvNclvZF8APqQcKKvjZaMhwAQA7G0jH4MiM+GFTDiBtJSbh3p+dFIg8tqRSgrJEmHUmAPvFNSkQ+uzl+KIBCNWagnDYnLpWY+T9XS8V6X0McL5NoVwkifln5Za0bd+O6JCncNqS7vklQ58wogm7dUBwnNWEkiYyWQqXpQclIbrrzQUtZjOUWfJzBVnYF5tq8V97oBVX2qr1tx56RW7rQoHoOqEQMKflosCe/fxvnrtIczjfydNiz17D0xcYPyULKokapDEgdROfz6pBoC9dRIOq4I5WFUrcSIzUkkWQnNkQxwYwlQ3HFkx8osHKw5qJ14pAmktQJPpGfBMSALrf6TNCFOCkKemAy80bMF7bj01tnnbdvRTXJi5mgLTzP1hk0IpkOggUy7NDUZqMpLGgBGt03J2Ehiq6tanut5D6OTQfLMl/qDDqknZor0HIhG+gz8OKcb6/YxPa41MPQ6EM7pw6ZtldM/M/6IqtaSYi8Wak/aGIJ2g9p2VUuN2ufS9/ur1JiRfoaogKQYtFTYGotUzz8BqiB0yqSwZPNNxdzJ3kzvu1IpzgZCUdtqDojBrvvAVQBckiCgj6Jw97ZAnPYT2HGCtujGtkVuz5HHDwhFiisbkqWKi0Trtccpa1BIhGzewn5CM3FkbaB4v6G6mmqN2ursPXmHW9WMf9jBJyfWMZcM5T0JURmO+34AsH2/18i7WKgGXJbqxTV8gCY9OxO+HOnFDBrJw2JJ+J938XlK89gUQBl6wZbKyvrbFZ7y+oik7JBWgVASoLriaVNN5ilVGNT7ke4TJZNZSZG2VE1CVSdUq4zqJCFZOlylK4h2LKQzIT9RirU+249X6i231OV0LKym7QSKnDAd0+0XdFam9FXA39IkmKuUSmwozaWe6lpBN3KWCJSh2nGaWThZAWtFNLpa8wK+QlWkg6oPN1Y+TNYwfl+3A13m6HL1Pz1pN/yGQHCaCHTzlRJ4zCYWAFL8uhn4/WPqNQ9Q1tbkFa0JbIPAw/tNDz/QMwlJOtaV6VI1JOJ0pgneW0vd66fppiFO3FAqxBB9dAoTj3WDOFE9QXGa4fceN9Gkd3jnhoLnDq4MW86BLSgGwGlgtkQmzilUuO/KfUAwuBRBQMSWSP3nLDMIZK2Z0FO5AUlTaFvVlz/c00BQtfgqpXV6U3a5RtxkrUvqbK5lw3biyeYtxXsVne2TB1x57CnNG8ZvrykfKzZgoGGb4WF/hO+Malpsy+IccmUfFyJhtdKLNRlvsAFVDY3qJ8S9CbiJ5gCsEsLtOX6c0c7yQdBEBTEyFcI4qegmmUJ2+x9e2VHcjpQHCfVUSTmb/Ug3CTgfSX3HflHiisiiyTjygTUFjfeqOARUB6J8hEsF5WTHUSsHpcdniWbD6wbyVEE3mZbb2pl2pblG581XnXIIdEHzCUVGGGeaI0icNfrokztZmay5v5u1GTbJQAlR+QxWeuOuDzYowfwoMr7Zks5ra0aSTYLQJMZi6odcTg97DteuEG31mNxaKj7Dvo/K3GuwG6DaMQw//p7Hwm5WvQ+sgYcQNQCY2lTM003J2bAuelNalSdJFN/frwBi1OpXDFYdU5h5n0CMbUu4c4TLc+TaVXWtTwLaNgLR7Uds2oHJGhhe4wOERwDkwyJ6z9NE5D1gyYM6Dbdnh1y8H5fBB9j5ca/9f/fjx2OM1+89eCmCAICIfCfG+LmdH5fDh50fj44f7oP/ZGc729mPsu2CwM529ojbZQoCf3zRDphdBj8ugw+w8+Ne+5H049LkBHa2s51djF2mlcDOdrazC7ALDwIi8nMi8oaIvCkiL2x57LdE5Lsi8rKIfMeOHYjIt0XkB/Z69RzG/ZqI3BSR104du++4ovaHNj+visjT5+zHV0TkbZuTl0Xk2VPnfsv8eENEfvYh+vFJEflHEfl3EfmeiPy6Hd/qnDzAj63OiYgUIvKSiLxifvyOHX9SRF608b4uIpkdz+3zm3b+Ux9pwBjjhf0DPMpc/BSQAa8An9ni+G8Bh/cc+z3gBXv/AvC75zDuF4Gngdc+aFzgWeBvUSzk54EXz9mPrwC/eZ+//Yxdnxx40q6bf0h+PAE8be9nwPdtvK3OyQP82Oqc2Pea2vsUeNG+518Bz9vxrwK/bO9/BfiqvX8e+PpHGe+iVwLPAG/GGP8jxlijfIXPXbBPz6E6Ctjrzz/sAWKM/4RSr32YcZ8D/jSq/TNK8PrEOfpxlj0H/GWMsYox/ifwJvdhlvo/+vFOjPHf7P0J8DpKXb/VOXmAH2fZucyJfa+ztD6+YcfvnY9+nr4B/LTIA4QG7rGLDgKDRoHZaf2CbVgE/k5E/tUo0AEejzG+Y+/fBR7fki9njXsRc/Rrtsz+2qnt0Fb8sKXsT6FPvwubk3v8gC3PiYh4EXkZpVz5Nh9B6wOYo1ofH8ouOghctH0hxvg08CXgV0Xki6dPRl1fbb18clHjmv0R8BPAZ4F3gN/f1sAiMgW+CfxGjPH49Lltzsl9/Nj6nMQYuxjjZ1E6/2d4CFofZ9lFB4Feo6C30/oF524xxrft9SYqqvIMcKNfWtrrzS25c9a4W52jGOMNuwED8Cdslrfn6oeozuU3gT+PMf6NHd76nNzPj4uaExv7CKX3H7Q+7jPW4Ic8QOvjLLvoIPAvwKct65mhSY1vbWNgEZmIyKx/D/wM8Bob3QS4W0/hvO2scb8F/KJlxD8PzE8tkR+63bO3/gV0Tno/nrdM9JPAp4GXHtKYglLVvx5j/INTp7Y6J2f5se05EZHrompfyEbr43U2Wh9wf60P+KhaH3Cx1YG4yfR+H93zfHmL4z6FZnZfAb7Xj43upf4B+AHw98DBOYz9F+iyskH3dr901rhoprjXf/wu8Llz9uPPbJxX7eZ64tTff9n8eAP40kP04wvoUv9V4GX79+y25+QBfmx1ToCfRLU8XkUDzm+fumdfQhOQfw3kdrywz2/a+ac+yng7xODOdvaI20VvB3a2s51dsO2CwM529ojbLgjsbGePuO2CwM529ojbLgjsbGePuO2CwM529ojbLgjsbGePuO2CwM529ojb/wKALxmJfhmfiwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -239,7 +227,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQEAAAD8CAYAAAB3lxGOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAASjUlEQVR4nO3df5BV5X3H8fdnl3UJIAbCTwEjKjbBtKLZANGMTWoaic4EnarFpolNSElSbXWaNgXtJHYmTk0mwWmnxQarkUmNhGocabSNSH41iQniL36GsAqRlQ2gGEWd4rJ8+8c96GW5u3vl7jn3ss/nNbNzz33uc+757pnLZ5/zg/soIjCzdDXVuwAzqy+HgFniHAJmiXMImCXOIWCWOIeAWeJyCwFJcyRtkdQuaWFe2zGz2iiP+wQkNQO/Av4Q6AAeAa6IiE0DvjEzq0leI4GZQHtEPB0RrwHLgbk5bcvMajAkp/edBOwoe94BzOqt83FqjaEMz6kUMwPYxwvPRcTYnu15hYAqtB123CFpAbAAYCjDmKXzcyrFzAAeirt/Xak9r8OBDmBK2fPJwM7yDhGxNCLaIqKthdacyjCz/uQVAo8A0yRNlXQcMA9YmdO2zKwGuRwORMQBSVcD3wOagdsjYmMe2zKz2uR1ToCIeAB4IK/3N7OB4TsGzRLnEDBLnEPALHEOAbPEOQTMEucQMEucQ8AscQ4Bs8Q5BMwS5xAwS5xDwCxxDgGzxDkEzBLnEDBLnEPALHEOAbPEOQTMEucQMEucQ8AscQ4Bs8Q5BMwS5xAwS5xDwCxxDgGzxDkEzBJX0wxEkrYD+4Bu4EBEtEkaDXwbOBnYDlweES/UVqaZ5WUgRgIfiIgZEdGWPV8IrI6IacDq7LmZNag8DgfmAsuy5WXAxTlsw8wGSK0hEMCDkh6VtCBrGx8RnQDZ47gat2FmOap1VuJzI2KnpHHAKkm/rHbFLDQWAAxlWI1lmNnRqmkkEBE7s8fdwL3ATGCXpIkA2ePuXtZdGhFtEdHWQmstZZhZDY46BCQNl3T8oWXgQ8AGYCVwZdbtSuC+Wos0s/zUcjgwHrhX0qH3+VZE/I+kR4AVkuYDzwCX1V6mmeXlqEMgIp4GzqzQ/jxwfi1FmVlxfMegWeIcAmaJcwiYJc4hYJY4h4BZ4hwCZolzCJglziFgljiHgFniHAJmiXMImCXOIWCWOIeAWeIcAmaJcwiYJc4hYJY4h4BZ4hwCZolzCJglziFgljiHgFniHAJmiXMImCXOIWCWOIeAWeL6DQFJt0vaLWlDWdtoSaskbc0eR5W9tkhSu6Qtki7Iq3AzGxjVjATuAOb0aFsIrI6IacDq7DmSpgPzgDOydZZIah6was1swPUbAhHxY2Bvj+a5wLJseRlwcVn78ojYHxHbgHZK05WbWYM62nMC4yOiEyB7HJe1TwJ2lPXryNrMrEHVMjV5JarQFhU7SguABQBDGTbAZZhZtY52JLBL0kSA7HF31t4BTCnrNxnYWekNImJpRLRFRFsLrUdZhpnV6mhDYCVwZbZ8JXBfWfs8Sa2SpgLTgDW1lWhmeer3cEDSXcD7gTGSOoAvAjcBKyTNB54BLgOIiI2SVgCbgAPAVRHRnVPtZjYA+g2BiLiil5fO76X/jcCNtRRlZsXxHYNmiXMImCXOIWCWOIeAWeIcAmaJcwiYJc4hYJY4h4BZ4hwCZolzCJglziFgljiHgFniHAJmiXMImCXOIWCWOIeAWeIcAmaJcwiYJc4hYJY4h4BZ4hwCZolzCJglziFgljiHgFniHAJmies3BCTdLmm3pA1lbTdIelbSE9nPhWWvLZLULmmLpAvyKtzMBkY1I4E7gDkV2m+OiBnZzwMAkqYD84AzsnWWSGoeqGLNbOD1GwIR8WNgb5XvNxdYHhH7I2Ib0A7MrKE+M8tZLecErpa0LjtcGJW1TQJ2lPXpyNrMrEEdbQjcApwKzAA6ga9l7arQNyq9gaQFktZKWtvF/qMsw8xqdVQhEBG7IqI7Ig4Ct/LGkL8DmFLWdTKws5f3WBoRbRHR1kLr0ZRhZgPgqEJA0sSyp5cAh64crATmSWqVNBWYBqyprUQzy9OQ/jpIugt4PzBGUgfwReD9kmZQGupvBz4NEBEbJa0ANgEHgKsiojuXys1sQCii4iF7oUZqdMzS+fUuw2xQeyjufjQi2nq2+45Bs8Q5BMwS5xAwS5xDwCxxDgGzxDkEzBLnEDBLnEPALHEOAbPEOQTMEucQMEucQ8AscQ4Bs8Q5BMwS5xAwS5xDwCxxDgGzxDkEzBLnEDBLnEPALHEOAbPEOQTMEucQMEucQ8AscQ4Bs8T1GwKSpkj6gaTNkjZKuiZrHy1plaSt2eOosnUWSWqXtEXSBXn+AmZWm2pGAgeAz0XEO4HZwFWSpgMLgdURMQ1YnT0ne20ecAYwB1giqTmP4s2sdv2GQER0RsRj2fI+YDMwCZgLLMu6LQMuzpbnAssjYn9EbAPaeWPqcjNrMG/qnICkk4GzgF8A4yOiE0pBAYzLuk0CdpSt1pG1mVkDqjoEJI0A7gGujYiX+upaoe2IqY8lLZC0VtLaLvZXW4aZDbCqQkBSC6UAuDMivpM175I0MXt9IrA7a+8AppStPhnY2fM9I2JpRLRFRFsLrUdbfxKGTJlM648m8ML902h+6wn1LscGmSH9dZAk4DZgc0QsLntpJXAlcFP2eF9Z+7ckLQZOBKYBaway6NTsnHsSj09bAsCl//VBnlp+DgATfrSX3eeM4mBLNvgKmPgfG+h+qa+BWoOReP6Ts+keWvodxj72Cnr4yToXlRZFHDFSP7yD9D7gf4H1wMGs+TpK5wVWACcBzwCXRcTebJ3rgU9SurJwbUT8d1/bGKnRMUvn1/BrDF57P/le7vjCYs447i1HvPZ3u2bwxbFrGNZ03Ottpzw4n9P/fD3R9VqRZR6dpmZ2XD+Lny74KqOahwGweO8prPqTmbDtWQ6+/DL08/m06j0Udz8aEW092/sNgSI4BCprHjWKjm9MYN3Mu6pepyu6+d3brubtX3g4x8oGQFMzT//jTJ786D8dFmIAnQdepgu46F8+z4lf+Vl96huEegsB3zHYwA6eNvlNBQBAi5q59CM/Ycfd7+L5T703p8pqt2PRLB7/6M1HBADAxCEjOGnICO6/+ivs+Wzj/g6DRb/nBOzY86Vx6/nSuPXsnvUKHzzhbxm5vfv110742a850PmbOlZX8pbZzzGiaWiffU4aMoLWj+ym+e6xdO/ZA8CQk0/ixXdPrNh/5Ka9dG/eOuC1DnYOgUFsXPNw1n1uyWFt73nsct72Ry8Qr/U4Z1DwYWFTpQvJFTx85j38/qwFDP3uHppHjkR3dPGT079ese9f7XwPT10ymQM7Ogaw0sHPIZCYn5+1nNUbj7wk+xf3zee06x4n9ud/z8ZvP/5e7j/zq8DwqtcZMmUy3cuCB06/v9c+/3ziI8w+7zOccKdD4M1wCCSmWU18aFjXEe3tV/wbp7/2WaYuyv+EYtew0iilaoJnrjiJ9e9Y0m/Xyxc9yPfuHFlDdelxCNjr/uyi7/PTfz2NAx3P1ruUwyy6eRlvbXoV8P9Dy4OvDtjrrhuzhfbPnlTvMo4wZ9h+Zg91AOTFIWCFanrXO7j22v+sdxlWxiFghYlzzuTCbz/Mx0c+V+9SrIxDwIrR1MwzFwznL0f9ut6VWA8OASvEkBMnsHb+4v47WuEcAlaIOGEELf6WuYbkELBCjFy6h1a11LsMq8AhYIU4rulAvUuwXjgEzBLnEDBLnEPACtGs+n95jVXmEABoakatrez8/DnQ1Ayq8v+5WtW6w/u0USX/H4ji3Bl86hv3MmHIi0xv+T6bPjOcb+45l2f/dDzdW5+ud3lmuUt+JLDv7/dx+YgXOW8ojGkeznlD4dYpP6X9E+PrXZpZIZIOgebx45g04sWKr3WN76JpaN9ff2U2GCQdAp2Xnsbdpz5U8bVtH/534p2nFlyRWfGSDgErjq8ONC6HgBXCVwcal0PACuGRQOPqNwQkTZH0A0mbJW2UdE3WfoOkZyU9kf1cWLbOIkntkrZIuiDPX8CODR4JNK5q7hM4AHwuIh6TdDzwqKRV2Ws3R8RXyztLmg7MA86gNCHpQ5JOj4huzKzh9DsSiIjOiHgsW94HbAYm9bHKXGB5ROyPiG1AOzBzIIo1s4H3ps4JSDoZOIvSjMQAV0taJ+l2SaOytknAjrLVOug7NCwBPifQuKoOAUkjgHsoTTX+EnALcCowA+gEvnaoa4XVj/gESFogaa2ktV3kP+uN1ZfPCTSuqkJAUgulALgzIr4DEBG7IqI7Ig4Ct/LGkL8DmFK2+mRgZ8/3jIilEdEWEW0tHDktlg0uHgk0rmquDgi4DdgcEYvL2sunhr0E2JAtrwTmSWqVNBWYBqwZuJLtWOSRQOOq5urAucDHgPWSnsjargOukDSD0lB/O/BpgIjYKGkFsInSlYWrfGXArHH1GwIR8RMqH+c/0Mc6NwI31lCXmRXEdwyaJc4hYJY4h4AVwlcHGpdDwArhqwONyyFgljiHgFniHAJmiXMIWCF8YrBxOQTMEucQsEL46kDjcgiYJc4hYIXwOYHG5RCwQvhwoHE5BMwS5xAwS5xDwCxxDgGzxDkEzBLnELBC+BJh43IIWCF8ibBxOQTMEucQMEucQ8AscQ4Bs8Q5BKwQvjrQuKqZi3CopDWSnpS0UdI/ZO2jJa2StDV7HFW2ziJJ7ZK2SLogz1/Ajg2+OtC4qhkJ7Af+ICLOpDQN+RxJs4GFwOqImAaszp4jaTowDzgDmAMskdScQ+1mNgD6DYEoeTl72pL9BDAXWJa1LwMuzpbnAssjYn9EbAPaeWPacjNrMFWdE5DUnM1IvBtYFRG/AMZHRCdA9jgu6z4J2FG2ekfWdszojoOcvfaPaXqms96lmOWuqhCIiO6ImAFMBmZKelcf3Ssd/B1xVkjSAklrJa3tYn9VxRZh6Ysn8js/nM/4Kzrofn5vvcsZNHxisHH1OzV5uYj4raQfUjrW3yVpYkR0SppIaZQApb/8U8pWmwzsrPBeS4GlACM1uj6fkICu6AZKj2fdcQ1vf+BVTv3Z4xysS0GDl08MNq5+Q0DSWKArC4C3AB8EvgysBK4Ebsoe78tWWQl8S9Ji4ERgGrAmh9prNuGb65n74KUA6GBw8rafQzTOX6ymV/Zz/6tDuWjY/9W7FBvEqhkJTASWZWf4m4AVEfFdSQ8DKyTNB54BLgOIiI2SVgCbgAPAVRHZn9sGc3DfPti3r95l9Kp706+49p5PcNHHbql3KTaI9RsCEbEOOKtC+/PA+b2scyNwY83VGdMWP8Xii07hr0c/Xe9SbJDyHYMNrnvXbr5+n++3svw4BI4BY969q94l2CDmEDgGfGDC1nqXYIOYQ6DB/ebac/jM6IfrXYYNYg6BBvfqxGDykBH1LsMGMYeAFcJ3DDYuh4AVwncMNi6HgFniFA1wm6ykPcArwHP1rgUYg+so5zoOdyzX8faIGNuzsSFCAEDS2ohocx2uw3UUW4cPB8wS5xAwS1wjhcDSeheQcR2Hcx2HG3R1NMw5ATOrj0YaCZhZHdQ9BCTNyeYnaJe0sOBtb5e0XtITktZmbb3OpzCA271d0m5JG8raCp/HoZc6bpD0bLZPnpB0YQF1TJH0A0mbs7ktrsnaC90nfdRR6D4pfK6PiKjbD9AMPAWcAhwHPAlML3D724ExPdq+AizMlhcCX85hu+cBZwMb+tsuMD3bL63A1Gx/NedYxw3A31Tom2cdE4Gzs+XjgV9l2yt0n/RRR6H7hNKX9Y7IlluAXwCz89of9R4JzATaI+LpiHgNWE5p3oJ66m0+hQETET8Gen6VceHzOPRSR2/yrKMzIh7LlvcBmyl9TX2h+6SPOnqTVx0RBc71Ue8QqPccBQE8KOlRSQuytt7mU8hbI83jcLWkddnhwqEhZyF1SDqZ0tfZ1XVuix51QMH7pMi5PuodAlXNUZCjcyPibODDwFWSzitw29Uqeh/dApxKacq5TuBrRdUhaQRwD3BtRLzUV9c8a6lQR+H7JHKY66M39Q6BquYoyEtE7MwedwP3UhpC7crmUaDHfAp56227he6jiNiVfQAPArfyxrAy1zoktVD6h3dnRHwnay58n1Sqo177JNv2b4EfUjbXR1bngO2PeofAI8A0SVMlHUdpItOVRWxY0nBJxx9aBj4EbOCN+RTg8PkU8tbbdlcC8yS1SppKzvM4HPqQZS6htE9yrUOSgNuAzRGxuOylQvdJb3UUvU8kjZX01mz50FwfvySv/TEQZ3drPBN6IaWzsE8B1xe43VMonVF9Eth4aNvA2yjNsrw1exydw7bvojSs7KKU4vP72i5wfbZ/tgAfzrmObwLrgXXZh2tiAXW8j9LwdR3wRPZzYdH7pI86Ct0nwO8Bj2fb2wB8ob/PZi11+I5Bs8TV+3DAzOrMIWCWOIeAWeIcAmaJcwiYJc4hYJY4h4BZ4hwCZon7f++3JVXBBVVNAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQEAAAD8CAYAAAB3lxGOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAATCklEQVR4nO3df5BdZX3H8fdnf2RjEgKJQAhJkF+hFm0JuCYBGaqiAmHGwJTSUFsoxkYRWhhtFbCjdMZO1dEwZRQ0FCRaSkCQIRVaCZFqVX4tv/KzyJIEkzUkQCAEGMNm8+0f90m4bHazm733nnvZ5/Oa2bnnPuec+3zvyeaTc55zcx9FBGaWr6Z6F2Bm9eUQMMucQ8Ascw4Bs8w5BMwy5xAwy1zNQkDS6ZKektQp6fJa9WNmlVEtPicgqRn4DfBRYAPwCHBeRKyqemdmVpFanQlMBzojYk1EvAEsAmbXqC8zq0BLjV53ErC+7PkGYEZ/G49QW4xkdI1KMTOAbbz0QkQc1Lu9ViEwIEnzgHkAIxnFDJ1ar1LMsnBf3P5sX+21uhzoAqaUPZ+c2naLiAUR0R4R7a201agMMxtIrULgEWCqpCMkjQDmAItr1JeZVaAmlwMRsUPSJcBPgWbgxohYWYu+zKwyNRsTiIh7gHtq9fpmVh3+xKBZ5hwCZplzCJhlziFgljmHgFnmHAJmmXMImGXOIWCWOYeAWeYcAmaZcwiYZc4hYJY5h4BZ5hwCZplzCJhlziFgljmHgFnmHAJmmXMImGXOIWCWOYeAWeYcAmaZcwiYZc4hYJY5h4BZ5iqagUjSOmAb0APsiIh2SeOBW4HDgXXAuRHxUmVlmlmtVONM4EMRMS0i2tPzy4GlETEVWJqem1mDqsXlwGxgYVpeCJxVgz7MrEoqDYEA7pX0qKR5qW1CRGxMy88BEyrsw8xqqNJZiU+OiC5JBwNLJP1f+cqICEnR144pNOYBjGRUhWWY2VBVdCYQEV3pcTNwJzAd2CRpIkB63NzPvgsioj0i2ltpq6QMM6vAkENA0mhJ++1aBj4GrAAWAxekzS4A7qq0SDOrnUouByYAd0ra9Tr/ERH/LekR4DZJc4FngXMrL9PMamXIIRARa4Dj+mh/ETi1kqLMrDj+xKBZ5hwCZplzCJhlziFgljmHgFnmHAJmmXMImGXOIWCWOYeAWeYcAmaZcwiYZc4hYJY5h4BZ5hwCZplzCJhlziFgljmHgFnmHAJmmXMImGXOIWCWOYeAWeYcAmaZcwiYZc4hYJY5h4BZ5gYMAUk3StosaUVZ23hJSyQ9nR7HpXZJukZSp6Rlkk6oZfFmVrnBnAncBJzeq+1yYGlETAWWpucAZwBT08884LrqlGlmtTJgCETEL4AtvZpnAwvT8kLgrLL2H0TJg8ABu6YpN7PGNNQxgQkRsTEtP0dphmKAScD6su02pDYza1AVDwxGRACxr/tJmiepQ1JHN9srLcPMhmioIbBp12l+etyc2ruAKWXbTU5te4iIBRHRHhHtrbQNsQwzq9RQQ2AxcEFavgC4q6z9/HSXYCawteyywcwaUMtAG0i6BfggcKCkDcBXgK8Bt0maCzwLnJs2vweYBXQCrwMX1qBmM6uiAUMgIs7rZ9WpfWwbwMWVFmVmxfEnBs0y5xAwy5xDwCxzDgGzzDkEzDLnEDDLnEPALHMOAbPMOQTMMucQMMucQ8Ascw4Bs8w5BMwy5xAwy5xDwCxzDgGzzDkEzDLnEDDLnEPALHMOAbPMOQTMMucQMMucQ8Ascw4Bs8w5BMwyN2AISLpR0mZJK8rarpLUJemJ9DOrbN0VkjolPSXptFoVbmbVMZgzgZuA0/tovzoipqWfewAkHQvMAd6T9rlWUnO1ijWz6hswBCLiF8CWQb7ebGBRRGyPiLWUJiadXkF9ZlZjlYwJXCJpWbpcGJfaJgHry7bZkNrMrEENNQSuA44CpgEbgW/t6wtImiepQ1JHN9uHWIaZVWpIIRARmyKiJyJ2Atfz5il/FzClbNPJqa2v11gQEe0R0d5K21DKMLMqGFIISJpY9vRsYNedg8XAHEltko4ApgIPV1aimdVSy0AbSLoF+CBwoKQNwFeAD0qaBgSwDvg0QESslHQbsArYAVwcET01qdzMqkIRUe8aGKvxMUOn1rsMs2Htvrj90Yho793uTwyaZc4hYJY5h4BZ5hwCZplzCJhlziFgljmHgFnmHAJmmXMImGXOIWCWOYeAWeYcAmaZcwiYZc4hYJY5h4BZ5hwCZplzCJhlziFgljmHgFnmHAJmmXMImGXOIWCWOYeAWeYcAmaZcwiYZW7AEJA0RdL9klZJWinp0tQ+XtISSU+nx3GpXZKukdSZpi4/odZvwsyGbjBnAjuAz0fEscBM4GJJxwKXA0sjYiqwND0HOIPSRKRTgXmUpjE3swY1YAhExMaIeCwtbwNWA5OA2cDCtNlC4Ky0PBv4QZQ8CBzQaxZjM2sg+zQmIOlw4HjgIWBCRGxMq54DJqTlScD6st02pDYza0CDDgFJY4A7gMsi4pXydVGa2nifpjeWNE9Sh6SObrbvy65mVkWDCgFJrZQC4OaI+HFq3rTrND89bk7tXcCUst0np7a3iIgFEdEeEe2ttA21/iy0TJlM288P4aW7p9J8wP71LseGmZaBNpAk4AZgdUTML1u1GLgA+Fp6vKus/RJJi4AZwNayywYbgt/NPozHp14LwDn/+RGeWXQSAIf8fAubTxrHzlaVNgyY+O8r6Hnllf5eqvFIvPjJmfSMLL2Hgx57DT3wZJ2LyotKZ/J72UA6GfhfYDmwMzVfSWlc4DbgMOBZ4NyI2JJC49vA6cDrwIUR0bG3PsZqfMzQqZW8j2FryydP5KYvz+c9I96xx7ovbprGVw56mFFNI3a3HXnvXI75m+VE9xtFljk0Tc2s/9IMfjXvm4xrHgXA/C1HsuQvpsPaLna++ioM8Ptpg3df3P5oRLT3bh8wBIrgEOhb87hxbPj+ISybfsug9+mOHv7ohkt415cfqGFlVdDUzJp/mc6Tn/jXt4QYwMYdr9INnPntL3DoN35dn/qGof5CwJ8YbGA7j568TwEA0Kpmzvn4L1l/+3t58VMn1qiyyq2/YgaPf+LqPQIAYGLLGA5rGcPdl3yD5y9q3PcwXAw4JmBvP189eDlfPXg5m2e8xkf2/wfGruvZvW7/Xz/Ljo3P1bG6knfMfIExTSP3us1hLWNo+/hmmm8/iJ7nnweg5fDD2Pq+vj92MnbVFnpWP131Woc7h8AwdnDzaJZ9/tq3tL3/sXN555++RLzRa8yg4MvCJg1uuweOu4M/mTGPkT95nuaxY9FN3fzymO/1ue3f/e79PHP2ZHas31DFSoc/h0BmHjx+EUtX7nlL9rN3zeXoKx8nttf+Mxsvn38idx/3TWD0oPdpmTKZnoXBPcfc3e821xz6CDNP+Qz73+wQ2BcOgcw0q4mPjereo73zvO9yzBsXccQVtR9Q7B5VOksZNMFvzzuM5e++dsBNz73iXn5689gKqsuPQ8B2++szf8avvnM0Ozbs8dmuurri6oUc0PQ60FzvUoYl3x2w3a488Ck6Lzqs3mXs4fRR25k50gFQKw4BK1TTe9/NZZf9qN5lWBmHgBUmTjqOWbc+wPljX6h3KVbGIWDFaGrmt6eN5m/HPVvvSqwXh4AVouXQQ+iYO3/gDa1wDgErROw/hlZ5cK8ROQSsEGMXPE+bWutdhvXBIWCFGNG0o94lWD8cAmaZcwiYZc4hYIVoVv2/vMb65hAAaGpGbW387gsnQVMzaJD/z9UGrSd8TBtV9v+BKD4wjU99/04OadnKsa0/Y9VnRvPD5z9A119OoOfpNfUuz6zmsj8T2PaP2zh3zFZOGQkHNo/mlJFw/ZRf0XnhhIF3NhsGsg6B5gkHM2nM1j7XdU/opmnk3r/+ymw4yDoENp5zNLcfdV+f69ae8W/EHx5VcEVmxcs6BKw4vjvQuBwCVgjfHWhcDgErhM8EGteAISBpiqT7Ja2StFLSpan9Kkldkp5IP7PK9rlCUqekpySdVss3YG8PPhNoXIP5nMAO4PMR8Zik/YBHJS1J666OiG+WbyzpWGAO8B7gUOA+ScdERA9m1nAGPBOIiI0R8Vha3gasBibtZZfZwKKI2B4Ra4FOYHo1ijWz6tunMQFJhwPHU5qRGEpTkC+TdKOkcaltErC+bLcN7D00LAMeE2hcgw4BSWOAO4DLIuIV4DrgKGAasBH41r50LGmepA5JHd3UftYbqy+PCTSuQYWApFZKAXBzRPwYICI2RURPROwErufNU/4uYErZ7pNT21tExIKIaI+I9lb2nBbLhhefCTSuwdwdEHADsDoi5pe1l08NezawIi0vBuZIapN0BDAVeLh6Jdvbkc8EGtdg7g58APgrYLmkJ1LblcB5kqYBAawDPg0QESsl3QasonRn4WLfGTBrXAOGQET8Eugrxu/Zyz7/DPxzBXWZWUH8iUGzzDkEzDLnELBC+O5A43IIWCF8d6BxOQTMMucQMMucQ8Ascw4BK4QHBhuXQ8Ascw4BK4TvDjQuh4BZ5hwCVgiPCTQuh4AVwpcDjcshYJY5h4BZ5hwCZplzCJhlziFgljmHgBXCtwgbl0PACuFbhI3LIWCWOYeAWeYcAmaZcwiYZc4hYIXw3YHGNZi5CEdKeljSk5JWSvqn1H6EpIckdUq6VdKI1N6Wnnem9YfX+D3Y24DvDjSuwZwJbAc+HBHHUZqG/HRJM4GvA1dHxNHAS8DctP1c4KXUfnXazswa1IAhECWvpqet6SeADwO3p/aFwFlpeXZ6Tlp/aprZ2Mwa0KDGBCQ1pxmJNwNLgGeAlyNiR9pkAzApLU8C1gOk9VuBd1ax5prriZ2c0PHnNP12Y71LMau5QYVARPRExDRgMjAdeHelHUuaJ6lDUkc32yt9uapZsPVQ/uB/5jLhvA30vLil3uUMGx4YbFwDTk1eLiJelnQ/cCJwgKSW9K/9ZKArbdYFTAE2SGoB9gde7OO1FgALAMZqfH1+QwK6owcoPR5/06W8657XOerXj7OzLgUNXx4YbFwDhoCkg4DuFADvAD5KabDvfuAcYBFwAXBX2mVxev5AWv+ziGjIfwYO+eFyZt97DgDaGRy+9kFooFKbXtvO3a+P5MxRv693KTaMDeZyYCJwv6RlwCPAkoj4CfBF4HOSOild89+Qtr8BeGdq/xxwefXLro6d27bR07mWns617FizrqECAKBn1W+47I4L612GDXMDnglExDLg+D7a11AaH+jd/nvgz6pSnTF1/jPMP/NIPjd+Tb1LsWHKnxhscD2bNvO9u06rdxk2jDkE3gYOfN+mepdgw5hD4G3gQ4c8Xe8SbBhzCDS45y47ic+Mf6DeZdgw5hBocK9PDCa3jKl3GTaMOQSsEP7EYONyCFgh/InBxuUQMMucGuETvZKeB14DXqh3LcCB1L+ORqgBXEdvb/c63hURB/VubIgQAJDUERHtrqMxanAd+dThywGzzDkEzDLXSCGwoN4FJI1QRyPUAK6jt2FZR8OMCZhZfTTSmYCZ1UHdQ0DS6ZKeSvMUFPoFJJLWSVou6QlJHaltvKQlkp5Oj+Nq0O+NkjZLWlHW1me/KrkmHZ9lkk6ocR1XSepKx+QJSbPK1l2R6nhKUtX+f7OkKZLul7QqzW1xaWov9JjspY5Cj0nhc31ERN1+gGZK31x8JDACeBI4tsD+1wEH9mr7BnB5Wr4c+HoN+j0FOAFYMVC/wCzgvwABM4GHalzHVcDf97HtsenPpw04Iv25NVepjonACWl5P+A3qb9Cj8le6ij0mKT3NSYttwIPpfd5GzAntX8XuCgtfxb4blqeA9y6L/3V+0xgOtAZEWsi4g1K31c4u841lc+bUD6fQtVExC+A3l9l3F+/s4EfRMmDlL7gdWIN6+jPbGBRRGyPiLVAJ318s9QQ69gYEY+l5W3AakpfXV/oMdlLHf2pyTFJ76uwuT7qHQK75yhIyucvKEIA90p6VNK81DYhInZNOPAcMKGgWvrrtx7H6JJ0mn1j2eVQIXWkU9njKf3rV7dj0qsOKPiYFDnXR71DoN5OjogTgDOAiyWdUr4ySudXhd8+qVe/yXXAUZSmnNsIfKuojiWNAe4ALouIV8rXFXlM+qij8GMSNZjroz/1DoFdcxTsUj5/Qc1FRFd63AzcSelgb9p1apkeNxdUTn/9FnqMImJT+gXcCVzPm6e3Na1DUiulv3g3R8SPU3Phx6SvOup1TFLfL1P6ev/dc3300dfuOrSXuT76U+8QeASYmkY9R1Aa1FhcRMeSRkvab9cy8DFgBW/OmwBvnU+h1vrrdzFwfhoRnwlsLTtFrrpe19ZnUzomu+qYk0aijwCmAg9XqU9R+qr61RExv2xVocekvzqKPiaSDpJ0QFreNdfHat6c6wP6nusDhjLXRzVGVSscCZ1FaRT2GeBLBfZ7JKWR3SeBlbv6pnQttRR4GrgPGF+Dvm+hdFrZTenabm5//VIaKf5OOj7LgfYa1/HD1M+y9Ms1sWz7L6U6ngLOqGIdJ1M61V8GPJF+ZhV9TPZSR6HHBPhj4PHU3wrgy2W/sw9TGoD8EdCW2kem551p/ZH70p8/MWiWuXpfDphZnTkEzDLnEDDLnEPALHMOAbPMOQTMMucQMMucQ8Asc/8PInkpU56yxuAAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -337,28 +325,12 @@ "name": "stderr", "output_type": "stream", "text": [ - "Loading dataset: 21%|█████▍ | 11/53 [00:01<00:05, 7.17it/s]\n" - ] - }, - { - "ename": "KeyboardInterrupt", - "evalue": "", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mIndexError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m~/anaconda3/lib/python3.8/multiprocessing/pool.py\u001b[0m in \u001b[0;36mnext\u001b[0;34m(self, timeout)\u001b[0m\n\u001b[1;32m 850\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 851\u001b[0;31m \u001b[0mitem\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_items\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpopleft\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 852\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mIndexError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mIndexError\u001b[0m: pop from an empty deque", - "\nDuring handling of the above exception, another exception occurred:\n", - "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m/tmp/ipykernel_751527/1089140602.py\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m train_ds = [CacheDataset(data=train_files[i], transform=train_transforms,cache_rate=1.0, num_workers=num_workers_tr)\n\u001b[0m\u001b[1;32m 2\u001b[0m for i in range(num_folds)]\n\u001b[1;32m 3\u001b[0m train_loader = [DataLoader(train_ds[i], batch_size=batch_size_tr, shuffle=True, num_workers=num_workers_tr) \n\u001b[1;32m 4\u001b[0m for i in range(num_folds)]\n\u001b[1;32m 5\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/tmp/ipykernel_751527/1089140602.py\u001b[0m in \u001b[0;36m\u001b[0;34m(.0)\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m train_ds = [CacheDataset(data=train_files[i], transform=train_transforms,cache_rate=1.0, num_workers=num_workers_tr)\n\u001b[0m\u001b[1;32m 2\u001b[0m for i in range(num_folds)]\n\u001b[1;32m 3\u001b[0m train_loader = [DataLoader(train_ds[i], batch_size=batch_size_tr, shuffle=True, num_workers=num_workers_tr) \n\u001b[1;32m 4\u001b[0m for i in range(num_folds)]\n\u001b[1;32m 5\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda3/lib/python3.8/site-packages/monai/data/dataset.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, data, transform, cache_num, cache_rate, num_workers, progress, copy_cache)\u001b[0m\n\u001b[1;32m 603\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnum_workers\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 604\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnum_workers\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmax\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnum_workers\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 605\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_cache\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mList\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_fill_cache\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 606\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 607\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mset_data\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mSequence\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda3/lib/python3.8/site-packages/monai/data/dataset.py\u001b[0m in \u001b[0;36m_fill_cache\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 624\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mThreadPool\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnum_workers\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mp\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 625\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprogress\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mhas_tqdm\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 626\u001b[0;31m return list(\n\u001b[0m\u001b[1;32m 627\u001b[0m tqdm(\n\u001b[1;32m 628\u001b[0m \u001b[0mp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mimap\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_load_cache_item\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcache_num\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda3/lib/python3.8/site-packages/tqdm/std.py\u001b[0m in \u001b[0;36m__iter__\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 1183\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1184\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1185\u001b[0;31m \u001b[0;32mfor\u001b[0m \u001b[0mobj\u001b[0m \u001b[0;32min\u001b[0m \u001b[0miterable\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1186\u001b[0m \u001b[0;32myield\u001b[0m \u001b[0mobj\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1187\u001b[0m \u001b[0;31m# Update and possibly print the progressbar.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda3/lib/python3.8/multiprocessing/pool.py\u001b[0m in \u001b[0;36mnext\u001b[0;34m(self, timeout)\u001b[0m\n\u001b[1;32m 854\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_pool\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 855\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0mStopIteration\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 856\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_cond\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwait\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtimeout\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 857\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 858\u001b[0m \u001b[0mitem\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_items\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpopleft\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda3/lib/python3.8/threading.py\u001b[0m in \u001b[0;36mwait\u001b[0;34m(self, timeout)\u001b[0m\n\u001b[1;32m 300\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;31m# restore state no matter what (e.g., KeyboardInterrupt)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 301\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mtimeout\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 302\u001b[0;31m \u001b[0mwaiter\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0macquire\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 303\u001b[0m \u001b[0mgotit\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 304\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mKeyboardInterrupt\u001b[0m: " + "Loading dataset: 100%|███████████████████████████| 4/4 [00:06<00:00, 1.51s/it]\n", + "Loading dataset: 100%|███████████████████████████| 4/4 [00:05<00:00, 1.43s/it]\n", + "Loading dataset: 100%|███████████████████████████| 6/6 [00:08<00:00, 1.38s/it]\n", + "Loading dataset: 100%|███████████████████████████| 4/4 [00:05<00:00, 1.40s/it]\n", + "Loading dataset: 100%|███████████████████████████| 6/6 [00:08<00:00, 1.38s/it]\n", + "Loading dataset: 100%|███████████████████████████| 4/4 [00:05<00:00, 1.40s/it]\n" ] } ], @@ -376,10 +348,39 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "id": "f5c1f433", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "torch.Size([4, 1, 160, 320, 32])\n", + "torch.Size([160, 320, 32])\n", + "image shape: torch.Size([160, 320, 32]), label shape: torch.Size([160, 320, 32])\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsYAAADHCAYAAAAaq5U5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAADXxklEQVR4nOz9eZisWVrWC98rIjLmiIzMPVQV1VU9YDdCH5TTcFBAAW0UGhA+PIh6zgEEtJAWFUfA73O4OB/nQ0ERDwI2B0QcUVBBRoGj4qEZukGUoWnppruhq6ur9t6ZGXNkZES83x+ZvxX3u3ZW17R3Ze5d67mufe29Y3jfNb2x7ud+7udZoSgKZcuWLVu2bNmyZcv2UrfKRTcgW7Zs2bJly5YtW7bLYBkYZ8uWLVu2bNmyZcumDIyzZcuWLVu2bNmyZZOUgXG2bNmyZcuWLVu2bJIyMM6WLVu2bNmyZcuWTVIGxtmyZcuWLVu2bNmyScrAONsltxDCL4cQPvGi25EtW7Zs2Z67hRDeHUL4pGfxuSKE8Fue5z2e93ezZUutdtENyJbtA1lRFK+96DZky5YtW7Zs2V4alhnjbNmyZcuWLVu2bNmUgXG2S26E4UIIfyOE8K9CCP8khDAOIfxiCOE1IYSvDCE8FUL4zRDC77fvfUEI4W1nn/31EMIXJ9f9yyGEJ0II7wsh/HEPxYUQGiGErwsh/EYI4ckQwreEEFovdt+zZcuW7X6xEMJHhxB+KoRwdPbb+40hhHrysU89+72+GUL42hBCxb7/hWe/6YchhB8JIbz8Re5CtpeIZWCc7V6yPyDpH0vak/RfJP2ITtfww5K+StI/sM8+JenTJfUlfYGkrw8hvE6SQgifIunPS/okSb9F0icm9/kaSa+R9BFn7z8s6a/dhf5ky5Yt20vF1pL+nKSrkj5G0uslvTH5zGdJ+ihJr5P0mZK+UJJCCJ8p6a9I+oOSrkn6z5L++YvS6mwvOQtFUVx0G7Jle1oLIbxb0h+X9LskfVxRFL/v7PU/oNMfxt2iKNYhhJ6kkaS9oiiOzrnOv5X0H4qi+IYQwrdLerIoiq88e++3SPo1Sa+W9E5JE0m/rSiKd569/zGS/llRFK+8m33Nli1btvvN+A0viuLHkte/TNInFEXxWWf/LyS9oSiKHz77/xsl/c9FUbw+hPBDkr67KIpvO3uvotPf6Q8tiuI9Z999dVEU73ix+pXt/rXMGGe7l+xJ+/dc0s2iKNb2f0nqSlII4Q0hhJ8OIRyEEI4kfapOmQpJ+iBJv2nX8n9fk9SW9HNnIb8jST989nq2bNmyZXsediZ9+/4QwvtDCCNJ/4e2v8mY/xa/R6e/1ZL0cknfYL/JB5KCTqN52bLdUcvAONt9ZyGEhqTvkfR1kh4oimIg6Qd1+kMqSU9Iepl95RH7902dguzXFkUxOPuzWxRF9+63PFu2bNnuW/tmSb+qU2a3r1NpREg+47/Fj0p639m/f1PSF9tv8qAoilZRFG++663O9pKzDIyz3Y9Wl9SQdEPSKoTwBkm/397/l5K+IITwoSGEtqS/yhtFUWwkfatONcnXJSmE8HAI4ZNftNZny5Yt2/1nyN0mIYTfKulLzvnMXwoh7IUQHpH0ZyV919nr3yLpK0MIr5WkEMJuCOEPvRiNzvbSswyMs913VhTFWNKf0SkAPpT0v0j6Pnv/hyT9PUn/QdI7JP302VvHZ39/Oa+fhfx+TNKHvCiNz5YtW7b70/6iTn+LxzolH77rnM98r6Sfk/QLkn5A0rdJUlEU/0bS35T0L85+k39J0hvufpOzvRQtJ99le8lbCOFDdfpD2yiKYnXR7cmWLVu2bNmyXYxlxjjbS9JCCJ91Vq94T6dMxL/LoDhbtmzZsmV7aVsGxtleqvbFOq11/E6d1tc8T++WLVu2bNmyZXsJ2V0DxiGETwkhvD2E8I4Qwlfcrftky/Z8rCiKTzmrNrFfFMVnFUXxxEW3KVu2i7T8m50tW7Zsd0ljHEKoSvrvkn6fpPdKeoukP1oUxa/c8Ztly5YtW7YXZPk3O1u2bNlO7W4xxh8t6R1FUfx6URRLSf9Cp8c7ZsuWLVu2y2f5NztbtmzZJNXu0nUfVvkEm/dK+h3+gRDCY5Iek6RKpfKRzWZTsNeVSkWVyilm32w28bXNZqOTkxNtNhuFEFSpVOLfOzs7qlar8TOVSkW1Wk3ValXL5VJFUWhnZ0e1Wk2bzUar1Uqr1UpFUSiE0xrjRVHEP/4a9wshxPdqtdOhW6/X2mw2qlarsQ0hBG02G63Xa61WK63Xp4ez1et11et11Wo1hRC0XC61Wq0UQih9jz+05Wy8VKlUYh9pO2Pg7eL7GO9VKhUVRRHbnBr3rNfr2tnZie3h/unnmCN/f71ea71eyyMR3j765HNGm/gs169Wq3Fc0jHgPpvNpnQtvwdzd3JyouPjY63Xa9VqNTWbTVUqlbgG0rl28/XAH8bAx8bHKn3fP+PryecunWu/13nrkmfE++nPT7Vaje1gnPg+4+TrLZ1Dv5bPSfps+rMRQijNSfrM8G/mmuv4WvJxSNddGt1KP+dj4/eif+kzlt7Tv5/ew993o/+bzeZmURT38umIz/ibLZV/t6uqfmRb/Renddkuv9kzKEmt37rRy2qzC2zQ5bFChd7xSz0V5+y72S7GFppqWRzf/qOuuweMn9GKoniTpDdJUrfbLT78wz88AsWdnR0NBgPVajUNh0NtNhvt7u6qVqvpfe97n5588kltNhu12201m011u13t7+/r2rVrWi6XeuKJJ7RYLPSKV7xCjzzyiA4ODvQbv/EbarfbetnLXqb1eq2bN29qPB5H4MpmuFwutVwuFULQzs6OlsulJpOJarWa6vW6VqvTwgXdbletVkvL5VLD4VDValVXr17V/v6+ut2uNpuNRqORbt26pdFopKIo1O12deXKFT366KMaDAaaTCZ64okndHx8rFarFQHfZrPRcrnUYrHQdDrVcrlUvV5Xq9VSt9tVrVbT4eGhRqORNpuN6vW62u12bHNRFJrNZiqKQrVaLQKPdrstSRqNRprP51qtViVgtFgstFgstL+/r5e//OXa39/XbDbTfD6P9wdQzufzOCaAr2q1qvF4rMPDQy2XS1WrVZ2cnETQUqvVVKvVtFqtdHJyot3dXT344INqNBqaTCaazWYR7C0WC4UQdPXqVXW7p4fOrddr1et1Xb9+XZJ0cHCgo6Mjrddr7e3taX9/X+12O4JhAM98Ptev/dqv6Z3vfKeq1ao++IM/WK961as0m810dHSkk5MT7ezsaL1ex/46qAb84FhJimOwWq3UaDTUbDa1Xq81mUzimprP5zo+Pla1WlWr1VK73dZ6vdZ4PI7r1wG6pOjYSFKr1VKz2dTJyYkWi0UE99VqVY1GQ+12W41GQ8fHx5rP55rP5xH8sz43m41ms5lms5kWi4U2m02ct3q9Lkk6OTkpfXe9Xsd7SlKn0ynNZavVUr1e13K51Gw202q1Uq1W087OjlarlabTqYqiiJ/DarWaKpWKxuOxptNp/A7rtF6vx7ZIUqPRiI5T6jT6PNBOfg8cGNP3zWajVqulRqOh9Xqt4+Pj6BSxTnZ2dmJbd3Z2bltHOBw4p4Dmk5MTzWaz99yJ38XLbv673Q/7xe8Ir7/gFmW7aAuNhiq9rt72Na/Uuz71/0revXIhbbqMNtzM9Tkv+5iLbka2M/uZ4sef9r27BYwfV/lox5edvXauFUURgQGbEQCgXq9rNpvp+PhYjUZDvV5Pw+FQ4/FYx8fHajab2mw2Oj4+1mKxiCBxMplE4Njv99VutzWbzTQajdRoNCJYA4jx71qtpuVyqfV6rZ2dHTWbTS2Xy9PBOtuMT05OYnt3dnbUaDQ0n8918+bNuGH6Bg3bLUnHx8d68skntVwuS0BzsVhEUEQ7Go1GBK+SIgNdqVTUbDYjcAZIdDqdyPadnJzENhurFRnDRqOher2uxWKh0WgUmVRJJRC1s7OjyWSi8Xiser2uZrNZYnnp43q9jsw8YySdMnknJyfxe61WS5J0eHiog4MDhRB0/fp1dTqd0vcAmg7QFouFer2e5vN5dCTo32Kx0Hg8jmuANgG6rl27plu3bumJJ57Q+973PrXbbfX7fTUajdgHZ6cXi4WWy+VtzC9j6mwuQJ95ow8ALcam0WhEYDabzSIQxXmhrdVqNYJlxpjxoE+shWq1WlpnfM/BNiwvbeP78/lcIQQ1Gg21Wq0I5Jk31j7PHmCReaGPPH/cq1arxWvxf74nnQJeWHwfJwA2zhPXSxl11h+RgvV6HR0HAD+/I8wrzwTrEHDrkRkH4PTP598dQP4PsL4P7Dn9ZmfLJkmVdlvv+orfrl/949980U259FZVUO0Vjz7t+8V4ovWtgxexRdmezu4WMH6LpFeHEF6p0x/XP6LTE2/OtTQ8vFqtNJvNtLOzE0Pky+VSJycnarfb6na7ms1m8TWACcxqu92OoG86nWp/f1+dTieyR/V6vbThnhciZWOu1+saDAal8Df3Ozk5iUCGTXM6nZZkCPTJ5RbHx8d66qmntLu7G/uYsobOtPF9AJakCFolaTqdSjoFGL1eL4JRl3HwvUajEZk7gKCzfoDx4XCo/f392A7GstPpRHC3XC41n89VqVRKIWvGE+ZdOgWHgCuueXh4qMPDQ+3s7OjKlSsRpDp7z5hz/eFwqGazqWazGUGU95G5abVaETAxLteuXdPR0ZFu3rypnZ0dXb9+Xe12O/abMcPZ4lrMC3ORSmYY23q9XpJzAMhgn4+Pj6OzBZjy9b1YLCI4dqkNn3f5DuCUKIOk6CjwGYChM60urQBU+pqjz7QNxpq2A9qZF9Yiz4WDcMAoa4D1SF/4v69HlzjQd/rD9RgfxpDxOT4+1nQ6jcCXtrlshXXozqbLbbg2c+5SCq5HGx2o3wf2nH6zs2Wr9Hp6z5/5cP3qH/+mi27KPWHdSlM/8Obve9r3P+zN/5te/lWn0dDwm09qfXj4YjUtW2J3BRgXRbEKIXyppB+RVJX07UVR/PLTfZ6NlA0XEAEjXKvVYuiz0+lod3c3spgAH1hXGKFOp6P5fK7pdKperxfZWRgwZ1EBQWzmtIn27OzslPSItHW5XEZAAVgklHxeyBVwXKvVYhi/1WpF1g3WK4SgwWAQ5Qep5MH1tWzKw+EwbvqE7WFakRMANAEihNwJ7ztbd3x8rIODA127dk3NZrMEYnd3dyNIAUCk4BFw4XpsjwTA4A+HQx0cHMTrwuS7vpg+VioVwtbqdDqlULw7I4A7/j+fz+Oa6Ha7WiwWGg6HEVR3Op0Sw8+9AMH0D7YV5pd7Ib9xMIXDxfdxpFijrFlYdGQDx8fHkX1mTTBeDmRxFo6Pj0sRFweNMLYpKOa+rEXWtsshWLNcj3bB1C6XyzjmAHvYa9pnvwe3aXV5bmDm3dnA0aBfRHhY/0hfXPtMu5E+sT54zZ0Y2swz71GC9Xpd0rS77hvj2TvPob5X7bn+ZmfLNv7kD9Ov/KkMiu+U/crH/hPph0///erv/BK98t/NVfvFX9d6NLrYhr0E7a5pjIui+EFJP/hsPgtb5IloMMCwjAATtJntdjuCvcViEf8PkG42m5rP55pMJlosFmq1Wup0OhHMAQIc1DjIgxE9OTlRp9OJGz2gms8CfhqNRtx0YQhhprHFYlHSpKJlhUUFxAFo+v1+iV3EAHSE2QEA9NfZVKxarWo6nUa9NvdjLPgOMgt0q4vFIgLB8Xisg4OD2B6XG3APwIIz0w7gcWQARrVaTZPJJI4J4f4QQhy/SqUS5RHT6TSCO6IHziy7hIP7o1eu1Wra3d2Nc47UBrBLG7kGEgZkK/P5PIJDHBpAkjPHLgOgDbD4y+WyJEfxsUMuwXUAyoDpTqdzm6wAltaZ2DQCcfY8liQh3Id1gkPSbDZvS0yt1+tR900OANdi7XN/T5qkPaxXj2Awp9VqNT7HrDPALOww65L1BVMOs8981ev1uG75vz8vnpDnkQjWIWvFHQcHv55ImCYU3g/2XH6zs720rbq3p1uvvS8iJZfSfu3zvln6POm13/hGXf1vK7X/71/SZpYTGV8su7DkOzcSw1Jw6kCXzbgoipgIVq1WI9AC/AIqYbYmk4nm83lkpACUaBGREQCO2SxhNrkumzDvA64ASAA3AAgbfbPZjMlW0lb24FpI9Mztdjsy2tPpVPV6vZREBWsH4AV0A7QAbzDtkiLwxnFAStJoNOI4OxDgewBaxrNer2u9Xuvw8DCGv9FiS9twMt8jSWtnZycCF0kxGc0dGJjjZrOpwWBQqrhBW3FsYGABJThJrA0cF8B3o9EoAXgAJhGB4XAYGUi04s6sp6w1Eh7pNDkOdt1ZzlRa4tIexhsWlDazNl1GwjyzHq5cuRLXJmAfeYCkCPhoN06gs+AAQIBqCj4llXTXzia7/IHxw8GpVCrRaXFZRsr+44x5EiHRB6QMPKv+Gg6SO6g8d0VRaLlcRoafZ9NlUq7FZv2gfeY5JjnS9dBeXcMT9egX7xOdyZbtpWDHr3uV3vbFmS2+2/bLX3o6xr/t696o9pMbDb7rrSqM8Mh2d+xSAGPpFGSQZMcGOp1O1Wq11Ov1IjsHqCDjfTqdarFYaDabqdVqRW0pG9x0OtXR0ZEGg4EkxQ0PAAObxMbmCTkAxk6nE7WoHhpfLBbq9/txg5cUZQ8wXq7T5L5UmgDQApZ2dnbUarViQt14PI6bPwwcoM0rPXB92DBAR6VSidUpSGR00OBgzTWsDojQbQNuALGMm4+Jay25Z7vdju0GiI1GozhftP/4+Fij0SgCZu/Ler1Ws9mM+nG0uCSOASoBmMwrwNj7vdls4neWy6UODg7i3Ozv75ekBoAfdOAAuJOTE02nU+3u7sZKIePxOH6X7wGwKpVKlPPAZrqWFVANyGX9EXUgUQ79OtEJ1/p6iTbmnzYzT6xb3uNeJH4yLjhsPCNc06s94ACdnJxE58UrRLAmnVmmDTxbSH+QPfH8MT6VSiX+HuDgpW2H0aYtrp13dp31yxi5s8Cz2mg0YgUUl1t5RQpn63nNq1lky5Yt2522//YXTwHyhz/0Rn3Q3/kZabO+4Bbd33YpgDGbnusdpdNNfDKZxLq6fFZSKfTuiWCuF5VOgep4PI7VEHwDlbZg7jxwwsY8nU5LpaAANc7IeXiZTd8rW8zOwiCAfkqmdbvdCF7QkTp7TuUA14p6OyVFtg8dNqCGTR3GHAADYAPMUOoLIOXhY0CM62UXi8VtYMwdCcaIdsJAUuJtsVhoMplE0L2zsxMBd7VajVVEXEe7Wq00GAwiCKXU3mq1ioxlWknAATJzBthhnVCphO/CPktl9huW26ML3Lvb7UY236UVnpgpqeQIMW+sPRhP1wIz70gjZrNZXCPNZlOjM+2ZJ7wxH6xB18Kiy3WnAtaf+/IZZ3zTqg3OwrqUwce4Uqmo1WqVyp05iHVZA9GfdAx5RmHH6Suaf5ftSCo5hay9NPnQr0MfWJMeXfF1Tzv5jmub/RnIli1btrtpv/jnv0kf1nyjwlp62f/vzRfdnPvWLgUwZiMktOmJOrDBvV4vMkFewgpwQ4iWxCxAIOFY2EJYLDZxz+SH/fJEH5g7BxnOICJNgM0iBOwbPPcAUAF8SRSStslUbPIAE08WYgP3tjkIcKZV2mp+AV58jvC9dFqPmbZ6mN/ngWtRrs11xQ4AXerh1TgAOc5yr1YrHRwcxMoc6HgBx5VKpZTkNplMtLu7G5lXyrN5BQUkNAB0Z8rd8XKJA+Xfjo+PNRwOSwy9M9YAIGQRrnWFbSXJz8cOh4kScw50fY4cLNNGnw/GdzKZRCeNZ8N1zA5OcZKYcwf3yIa4DmvAow1clzXlAJf1h2PqGmYiJe12O0p8nPl1aQrXwbkh6ZZrer4B8+JOmT+/Lmnhul4hw5MU/fv0h3XNmsH4zfHEPBw25ixbtpeK1R56UO/4gnxQxUXZr7zxlD1+ze6X6JVf8VMX3Jr70y7FLzqbDhuMZ8WniTgOGgBPrkvm8+iQ0cjyecAxIXZAjbNGnhjFHxKgABOwhDCuhKP5DPdic0YHvVgsYmUNtK9ssABwZ8y85BigwEP9zhxL27rBHjLnHoyBM16tVkuDwUBFUUQ5gINexhbwCnBwUODh9+l0quPj43j4BO0HhABU6vV6lIuQZCgpOhvSNoFPUgTCzI0fJjEej9Xtdkugz50J1woD9JjPwWCgk5OTeFAIbXdniXUG8OQ9JDOewEg/WUvp53if+fWEOObH5xnJDZIVHL1msxk16SlzyXzwfUAmLK5r63F2AKX+WfrKmKUOEfPvax0QzRrEiSSq484WshDAJm1ONdrc31lkvx/tQBqU1i9mPP35cr0y8+rXdU2xJ+ql8+WRlGzZXhJWFNqcVJ75c9nuqv3y536jXjP4ElXmFf2WP/fTF92c+8ouBTAGrLJBArrYZF2v66wy7B6Axlk29JlUokgT7mazWQRLHmqHvYLVpCrEbDaLQI2EIZioNGnQk+oklZLzYM+uXbumXq+n8XisGzdulGoio8UF7NAfQIYfb8xnuBeha5L3YHQdPLtcBabOy44BgJx5rdVq6vV6UdcNWPBqDgA+qm2kCYl8BxADaF8sFup2uxHoOZvumlJOVINVR54xHA6jHp15czadufFIBBpxdKVebg3wz3U84ZGxoF8AQNabJ4r6eLOGuLavOweLOHX0EacM9tXZWyImyG28uoQnwAHMWTOczDiZTOL64F7eFsaDNcJ64rOMB88l9wAYwxKzTnjOAbSsZ1+fXmmC9rgcxuUn3IfXvUKGy1FYCx4JcqfVq2Xw++K5CN5XqZy4t9lsDzfJlu2lYKv3P6lX/ZOXSZ980S15adtOqOpdn/EmHa5nel3zy/SaL/nZi27SfWOXBhhPp9PIXDlAgUFqt9slgMLGBtPo2k82NdgcKgdwjC5gAemEHyTCRgyY4XUYy8FgUAK+gGJAFJ8HvAK8uA+b+Wq10u7ubtQbeyUGL7eVsmQAS3/PwdhkMolJaAAalzu4xtJ1lzs7O+p2uzo8PCxl2DtD6bVmAQw+/g6kCfNTAcKBhqTotPi9AIOAHnTjsODUmeUAD+r/ok925wVgDlBjvCRF0AtwI+wPs817sIWuS3fNsVd2gIXk3owLc+UsPdeu1WqlE/ywVOIDOGZNAn6JXrju3LXdrFMft9lsFgE1Tp2zww7oWR8uw8HZQNNN9RVnl/15dNDqUSDGDUcHB4l1SyUWZ+xZf4wxkRrWkycd+m8A5slzrAueWfpJH/keAN2jMymr72OWLVu2bC+m7VXbevOn/R197Lf+Ob3mT7zloptzX9ilAMaSdHBwoCtXrpR0ipJKABMdqes/XU4xn8/jhnx8fBxBB4DGa6V61jlMm7RlwhzYsKHOZjN1u92YTOaJVWmYHdaWEDunr7GpE8rnfUAlr4VwWrPXgYuDL8y1kvSNY56bzWZkdGH8/NQvvg+TiEQESYWH0ElA5DpUegCoABIZM4AtLKqznQ7auLcDLk9aY854T9om/0kqVfIgVA8YBajRfpg914/ikADu/EAPZwjRATs77Mym66i9UgHJbCTXSYoVMVxb73PK+vbXmDPWA/3wKAkg0sEgzHG1elpR5OTkRPP5XIPBILaN5wOgl8oPfL14gibvIU2q1Wpqt9uSVCqDyPpMD9lJ1wzPBWPu96I97jQg/5jP5/FZ9ueReXDGl9dZexwTzb3cifT140yzO6Q+1tmyZct2EfZQrav//Mlfr9/97V+m13zhWy+6Ofe8XQpgXBRFPOQhBcZsXiRGAXzY2NgQCRvDyHGalqQSIwRQcCADMIFl8vAyDFYIQUdHR5pMJlGfmMoTCOWyYcPgAt7YgJErUAnCGWva1+/3JSkeysE9XIoAqKHNDipTUOLfY3y9wgDjTWKb61YJF8OuwboBilLgmyaPMY/MB7IQHAJnYfmeJznxXS99R3toJ86OJ/fhmJCUSaIaDkPK9HoVA8BbtVotHYNNSTIHh17KjPWcAmUvgYa0hjlIkwKZV5dcAHwB2O4swp76nHtkgFq/Lg9Be586WX5//u1yAgDsZrMpjSHgERbb9f44HOiZPVnODz2hOkkqgQDgunTJmV2PLPkY4cD5M0JEid8LnlNYdFhn/+PPsyfi0SbWeLZsLxVr/Nw79GHf9MaYCJbt4u1lta7+0yf9XX3Ct32ZXvNFGRy/ELsUwFhS1JT6xsOGBsvFUcts9A68PON+PB5HYABrDIhCKzsej2OImA27Wq3G8KyDO4r/oyd1/a+01SUCXLkekgmS50hIozwaOmDYMcAZ4II+UO3AE+78/jgIAAmYQLTXgG5pe2CBS0FgCgEcHFzBmDA/sGuSYiJhWsaKueBeAEj0uF7ZoNvtKoSg2WwW2+UMHHMAKHGH4ebNmxHkweKh/0arDPvo48H6qdVqUbPMHPI5xgagLynqyhknDp5w4OjAn+u6dhX5ggNlZ6alcgKeM/2eDOjssOt+YU5peyrJIHmP+zFvtJHkNZwNT+BLk9WcZWZOvU40c0GVCb6LE4oEhOeDPqLDd3DuDhBr0fXi7oR4XkK1Wo0HwDAvaf9ns1msoUytbIy1jbQJR4Y+ewWPbNleSrY+Gmr/V3Mt3ctmj9a6+k+/7+/qE9705/Sax7Ks4vnapflFd+0lAMnZWo7G5Y8nVJHQBiO6Xq91dHSkw8PD0vGxAMR+v6+rV6/GDVPankTHpgrT5SWg+LwDUU8OAtSFcHq0LslgAHsAxpUrV7S3txflGbB/MK9stkgbOGAEoApDnh424qfUwSZiXAvQSngfllVSBLoAe+5DDWjuA0hARwwAdZYNZ4GQOcAUthdZA/MC8KJ9zp46C9hoNNTv99Xv90tOAoBR2oJQ2DzYPUAPa4t7+Zpj3LwKCH2nvYBkADnjAftNgp3rULk2cwiAb7VaJTCOA+JMNhIZ75Ov+X6/r16vF9eKnwbHM8X40jfXyXq1Ba++0e12Y8UQHDeXZkgqJWACPDlUhnux1jhS28E+EpX0pDrWiifZORDn9TS505llT6ik3jRSKNYo/Z1Op1H+4QyzM8gYa5n5dtY9W7aXivV+6Jf02v/zjRfdjGyJPVrr6s2f8vX6tb/3Oy66KfesXZpfdEAYjJpXXKASA8lVvhmxqR8fH0cQB2ADoDzwwAOlUmOcprdarXTr1q0IQpwx8kSy0WgUwQybPLpXaXtIAOwfGzwAik2UAz0A4UVxWiKNZC3X6gJCOIlrs9mo0+nE+0uKoNtLVAFcYDdhA+kfffNkLBg0rgEwdomAJ0U6eIXt87JcsMOARkqgAer5e7ValQ5UcEmBy0dCCBqPxzo6OtLu7m48+ZBQPkCFMm+AH5I66SPgkPHd2dmJLCtOQSptAYwRxWD9sPZS4CxtE8FcWkFfHXADxnHunAVlfj0qQUJhvV6PNY0BzV7FgvUxGo2iI9PpdGJ/XBKAAQhxiBgryrtNJpPYx/P0vjg67qgwxh59gQ0G6OME4MAyJt4GHAecLNf7OoPrOQPpWuIP/QME0/c0WdA1z84cu4yE/ubku2wvRdtMp3r0639eH9p4o972WJZUXCZ7qNbVz37W39HHzP+iXvXludbxc7VLAYwdSAFGpW0iFqeRwagBqgDHaAA5bKPX60VN6XA4jPpBWNdut6vBYKDNZqPZbKbDw8MY2oex88oE0+k01j1GriFtQ+bOKPkpYGymAN7FYqGjoyM1Gg0NBoNYP9h1ul7315PdPEydJnsxhh56lxSTEhk79JbUT5YUQTXfRUbSarUii4deG1BJHx0w8xnaxxx5+S5nhmkT5lU0qtXqbeF0yrLdunUr3htAzlHL4/E4nqrHuvCqJM7yuqwC0Mc8MO4emgfs0VbAMmtiOp2WwDHJc16JAUbVy/cBRr0qA697Uh7Php++x3r3vqasKvNFZRHGnvdgwLmHVzjhnl4FwrXErHHmwte+tD1N0p9pnBD65nILoia0n3FmTLyaBADZdfDeLpwXn3Pawji4XpvnHhaetnmCIPkDOBvunGfL9lK0zWKhl3/1W/Wp3/B79La/9Vv0rk/71otuUrYzu1rtaN3OTvvzsUsBjCXFDQgmCYbPARlspDNALhcAXCA9mEwmmkwmcZPb399Xr9dTpVJRv9/XZrPRU089pZs3b0bWdn9/X0dHRyWw7olyADXXOwLOJMXMf9eFsrFT8q3f78eELvTOhJU3m008OrnVapWA3XK5LMkzJJVq3roUAQAKAHBwTHvSMlWSIkDkc86YwYoDhhh7rwKBphvA7aXsYNIBP5gDKten0g9Y8slkooODgwgmHezwZz6f6+joKGqSpa32GTAM4GetwWROJpMS05vqsVkPHi1wtn84HMaxdOkF/efUQj9ABHYUXTeOCe97Uih/w/wDtJkTgCyRCubSjwr32sfO1LoO3/uHzIf2pTXFHSCS3Ee7PYHRZUbMuSchprp9PpuuFZ5/5omxcrDP/V3KwbPKe54PQBu9tB9OQ6fTiWDeowV+sErWGGd7KVtxstT6cKkP+ZL/ok+pbsP3v/2nj/U3H/iFi2tYNr39D36TftutP61H/0Y+Pvq52PMGxiGERyR9p6QHJBWS3lQUxTeEEP6GpD8h6cbZR/9KURQ/+IGu5aDLQZnrEZvNZtTQAlgAKlxDUon589PRDg8P1Ww2tbe3d9rxWk3Xr1/XAw88oCeeeCIm9iFfcNlArVaLhyzAZgF8CL9yVDDyBIDZer2OGk20xk8++WTUb7q2GYaM/jkrBjj0UmWUQ+t2uxEcAEi4f6PRiAdynM1b6Q/hYWQIVHCAsQbsOCB09s+1wZ4kxfhTVcOT8FarVenYZeYNptcdEE8cg3EHWDpLzzrgOpvNJspWPPzuzo6kKBVg/XHkMn/8VEKMuQf8e8UF18MDrvr9viqVim7dulUCZ0hPnEnHeJ8++lHgaKiZC9hV5AoARj/wAlAL2Gu1WhqPx7GaBeCYscHx8PY6Q4qMInUUuRZzBsvs/XGwzxrE8aNvfmiGS058/XHfVCvNOPFs4dz4b4U/Y7TBZR2AY54vHBvANu97tZV7we7k73a2bG7FaiVZhZZfeF3QJ+t/vMAWZZOkR4sMip+rvRDGeCXpLxRF8fMhhJ6knwsh/OjZe19fFMXXPdsLoTn0JCuvECCptHkCjJxdBVycnJzEGr7oZNfrtSaTicbjcdQpUuHg+vXr6na7unnzZkkygD7VE4IwNmZC/4BxWGCvewqwpFzbfD7XZDLR+9//fknbBB8/upr+AP4AIfP5XLPZTO12O27GlUpFu7u76na7EVjCMFcqlQjYPWTs7DvJZmhxvQIByYbOoAIgXL8MIHdgl4IRr37BtQBaOBqAOq8hzVzAHsKqXr16VZ1OR6vVSkdHR5rNZnGckKMwR15BIGUyea3f78fksNlsplarFRPZnJWlXawBKhpcu3atlJzJfNVqtZhsyfHVzLFXZmAc6C+VOhgjr8CC0R7Xs1MCDbCHM4eGmTWOMyVJk8kkyhv8Xu12O2q3iWjw3KEJTzXxvM/aZ86dXcWJ4nVnxAGqnmOQGmNE3x3o4ph4ZRsiLPQLh44xp21Ij3ztOnCmYk2alHleGy+x3bHf7WzZPqCZA5st271kzxsYF0XxhKQnzv49DiG8TdLDz+davrGzebHJsnkCEmGkOp2OpO0mzibKRu1hT9iyGzduqN1u6+GHH9ZqtVK329Ujjzyi3d1dnZycxPJpvuEDIGG7qtVqZAQJofsJYK6hpc2wbn7C2ng8jqAV5pH+wtZyPb7rukgSzKjty0ZOu5B0bDYbtVqt2A8MMB9CiNURAEj0AdkCQA8wDriGaeYwlV6vp06nU6rV7CAd1o8wNKy2h9qdjWfe02O/YWMrlUqUzTDPnhiIrMEBecrCAsRhBo+OjmLFB8r0HR8fR9Y9Tcqj/NdoNIoHWDAnrJPlchl17YB41g5r3itcsG5gggFqzJe0LRHoemnkDg4aXTONY8m49Pv9mLyJtMJBJ+uePuJgebWPZrMZxwsQ6Yl0AFzWN86L6/S9ygvg1hPx0ogDUSQHxfzxtnmSLOuQtc8c+m+Qr0Nvm48lx51zb+blXrE7+budLVu2bPej3RFxXAjhFZL+R0k/c/bSl4YQ/lsI4dtDCHvP5hpeTYFEJk+8cTbKM9upFOGgD1CL/tMP3Xjqqaf03ve+VwcHB1qv19rb29PDDz+sXq8XAS4bImDBs9I7nU4puQhg42wrFRM8PI5+FV3rer3W4eGhJpNJBCsAPq99C4jj79lsFqsN8D7t4vhl2EjXkLqm1ccJwOwsGACN/nt1iTTRCKkKIXOvEwsIZs4A6rDxyAMAOs5GAqS5DmsAQO0nIiINoO2Ml8tRSB6DKQasTSaTOJ6dTkeDwSBWS3DmlfECLJL4BzhCi+1rFaeI9yiphuPAGsW5S8GiA9a0djdl8nzN+hqAOZa2FUnQlI9GoygBabfb6na7sUoLiXAkrnoCJmsVMMgzSlUR5sSTYlmfzF0qa2G9ADR5llOdNzIrB7M8ky7R8MRGQD/OCfdjXFkP5CoA/AHkmOvjkTSl5eXuRbsTv9vZsmXLdr/ZCwbGIYSupO+R9GVFUYwkfbOkD5b0ETplJv7203zvsRDCW0MIb031tZIi0ALkehgXXSQ6XZgoB2SehEPNWMLbN2/e1Pve977I2l67dk17e3txM3XNJUDVM9Op7eqZ8r7JU+0A4MR1kXKg/UUWQHKUl48CbALG6AdgLz3dC1BAxj0VOGDcGFfP6JfKR9wydm4uIfBkL68iQt8AGmkSlMsDJEW2FBDGdVw+43NJ+1zf6QeMoJuF6Ucr6kl3DjZ9vQEC0YX3+311u90S+HMJA/PtABjj8wBG+kM/6/W6dnd3Yx8AmTiFLkVh/SDtcFkFjgprB6DG+gSEpvIBwCOHy6DnZ63AzLOOAcrMB5UwuB/HbANqmSuvw8ycuZzHtekOnnH+3DFyNtb7kWrmvc6ySzX86G3GzZNZPZqTtoF/s955FlPJ0L1od+J3+0TH530kW7Zs2e5pe0FVKUIIOzr9cf2nRVH8a0kqiuJJe/9bJX3/ed8tiuJNkt4kSZ1Op/BQN5saNXLTrHRC1Lu7uzFJilq1ziw6QD5rj1arlUajkW7cuKEnn3xSnU5H165di1pjEs8AbgA1NlKkBxihVdrkiWPcUypX3UhPxjuPIVsulzo6Ooq6ZfpFwhaMNpUXYIk98Y6KCA6KYc4ADF6DmXsDwtLKCV71wJMTASIAYgCyz6m0lb2QjOayCdejck9nAKXtUdLozW/evBn15p1OR91uNzpUjKU7TfwB6PH3er2O2t9erxeronjIHaBHGwFKsMIuu8FpYAwB5DgwyA9cU02EgXmB5fUEOPrDawBwNNMAXbTsXIvnwNfieDwuVWxAckFdZx83P4yD9QUAnk6nsW04Se7IkvzHnLJOPBriDrE7S4yds7VITXAQvSqGyynQ+qcstbPS7vS6Y+4gmPEBZPO8pg7bvWR36ne7H/aziDRbtmz3nb2QqhRB0rdJeltRFH/HXn/oTMcmSZ8l6ZeexbUkbZkiWC0v4+WJUoTAYd880ckZM2mb/Ob1VxeLhW7cuKHHH39c+/v7ajQasULF448/LukUzPX7/Qh4SUI6OTlRq9WKoIrDRJzxBUx5SDYFZgAikqK8fi1H8SI1gFFzQA3rOBwOVRSFrly5UgJckiJQhsX05DtvB9dyRhIDwDqTBmjx7H9PIKP6hpcsA8AhT2i1WhFAeiUFaXtwhutJeR02XtpWhXBwjEbYZQn87U5CmjAF4OUIbTTv1JCm336SG2vTqywAGmH5XZc9nU4jCHNpEOOLYwazDtuOdIKKKZRgo58uF0ilAM6SOnAEOANc6Y8zoK5v9vq/Hjkg+dDHGvDLXHn5N9rL80x7PULDGPJsM5c4yc5MM54ebXA5jUuE3Plk3LmWOz6w/FwXAO2RDJ4bf1buBbuTv9vZsmXLdj/aC2GMP07S50r6xRDCL5y99lck/dEQwkfotBTQuyV98bO5GMwOG6knWPlm6KzTdDrV/v5+qeQYm3EaakVXCKidzWZ63/vep4cffljXrl3T7u6u+v2+bty4UQISbLhelxeQAHDiiFk3NlivpcrhAX5d2FbPwvdqF/Sz1+tFqQTAjUoeVLrY3d0taaWlbc1b16e61hemsdFoxOQzBw0pW8zrzlzCguN0wChzqAbjBZhZLBbq9XqStqeXwURzWAdzx1gBkFxS4pIA1gnJci5/4T4A8BSEk+zooAfwTS1pZAtojGHtz6uzjUNAfWsfa5wsgDHrerPZRImJryWS6nDKSLjk+6xz1gHz7NdNx5J+83l3mGgvc8LYIe1wJplx9mRJl0DwvCAVcWcSR9Y1+ziuLk9i/TpQ9XVLW1NZC+3hWfS5xhnwRMMUNAPgHTi7ebWYe8zu6O92tmzZst1v9kKqUvw/ks4T2D2v2pcOftnkPNOdMCobFGzVarWKOlv0j16T1WUBngTmB0Zw4MZgMFC73dbR0VHMoucP+khPMGKj5pQ42Cnuzx+Ao3TKcnJIhzPDAC42eQDwdDotyTBwGqStLnI+n8c6zbXa6SEbaeUMAASMHEDp+PhY4/FYvV5PrVYrln1DRkKCmzsuzpByTYCFg1KAInMIuKUmtFfTQCdMQth8Po9ADlDmbDdseFEUsW6xpHhKIpIA2uC6Z8aSa3pVB2d5cUSq1WoEc161gz77Uduu6+W9VFqDwwHA9/Fzp3C12h4jzfperVaxiojX+mVcU9kR48t8w94iv/DoivdZ2taQZi6pIIKDw3V9LXgyJeuB5zuVosB8A0bdASPCARBPK7+4LAT5hc+LyyWYT9rmjg/PA2OA40WUya9FH+lPCsTvBbvTv9vZsmXLdr/ZpfllJ2TNxpuGOdk0MZg5ws6tVkuj0SgCJ098A2hy2AQbKRpJKhJcvXpVe3t7MZxNYhegDQALa8y1PZsdkOBAALAHu8l1KOk1Ho8j8KDdJENJiiyj13vF0BEfHx/r4OBAV69eLYW8PXQPuPfkNLTMgPxerxdlEABPyuBJWza11WophKDZbBbrJ8MKAqRgvaWtBtoBs5e745js3d1dbTYb3bx5M+pyAYYAXObQmUscGU7eQ14jbU88AwShi2UdFWcVK9Apez1bgBIyDWpbO3hjfdTrdY1Go3gvr7HtjC2abg/Hp8mKJIYB1gHCAErGE0dS2tZUxmnDufRrM8+w+/4+kQAOtHCHgjkCEHqi3nmVTaQyS+9SIRhb7s1zz/MuKa45DrHZ2dmJzyXrm3vhFBBZ8DwD//1g7QH+GTccOcaV2tWMN067a44ZX3/ms2XLli3bvW+XAhi7HtMTpRwgswk7u4Mkwlk13/wAloTyAbfO6MEYcuhBv9/XrVu3omaTMPtgMCiFjtkUnREGeLFRphnufgrZfD6P9WUBQr65s2nDgLp+kj+AMvoxHo8j0wyoKYoiMr6S4rjA+kmKzsVgMIgA3/sC4OE7gBtYV0AFVTDQ0rpeFTDiIIpT4Rjnfr+vq1evRtb94OCgBOoBT7PZLAIzTzxbr9elk+xcEgATiV5X2obYi+K0RGCr1dJgMFCr1SpJBZxpBJi6XERSdKCcrce5oA1IYKgZjVzHtbkAMy/d51pcr0ZC+1krfIdygRx3zFp3qQ5rhuiDtJUdeTSDZ+z4+Dj20edUUrwHbaW/OHP+OteGiXdNNusO55Zr0/ZKpRIjAV7GkHUJiHaHlDFlnI6Pj6PD4k4IAN2jQbDbLr9x9t3Xd7Zs2bJluz/sUgBjrNFolNgzD8MDSH3ThHUCWHQ6Hc3n85KkAWBdqVSinpHN15meer0eD4totVoaDocx+Y2DG7rdbgR9gBruAZPq9W9dSuBVBiRFQA+4QeZBPV7XgwL86AufZ9OH/ZpMJjo6OiodLiFtATpjSRkwTzhaLBaRUfcwPgx5Gu5mTJvNpnq9XjxS26UDXmMX1hxwAlAeDAZRswtLvrOzo93d3Qh8vc8kQTL2ABrGjnYDlpzpA6wBIJ3FXK1W8XREJB3Slo30Em2MD2vRQRmlAX2NuNaXfru0gzWCbIUEUta8h+/pr7SVZXAd15bjULAm6SfzRt9dH+zrirYCKr2P9MerOTAWyEMYq7Q8IM8c/aTaC2sxTValfd5+9Mb+PPBZxsTlO2nZRMbeQTyRC+qD035PBPSkPU9uvNcS8LJly5Yt29PbpQHGgC5pyw6x6TiAkbZaRmdzYGRDCJG5lFSqTlCtnp6Yhx4xLa/VbrfV7/fjkcu+kc7nc+3t7UU5gGfqA5xcQ8lmyd+u7wQcAPAADlRt8O+hnwZ4sCkDEjwrn2sAHsn+B6y6rIFyVtwDFjvd6GHVaDftdSbQZTDOKrqOlPJ63W5X4/E4AuZms6mrV69GIOmhagA9zC0sLIyvRxcYCy+xxnh4WbBqdXtyYaWyPYwFkM3R2DD14/G4lHxJ2/gbR4O1xj0At0QAvDKIr2/GlbYinajVajFqwVgSbWANsHaZB0Ai64i583JmyFAAj+n13GGk7R7RcLDo0gdn1hkP5AwutyDiQIk6l1AA2r3iCSCVZ8rv79EHT8r1z8JMu4YYCQnfcxDt4NhzFRgP2upzmKUU2bJly3b/2KUBxtI2q91D177hPt0mD8ACpPnJV9R2ZXMj/O8sHUw0G3az2YwJYAC7yWSiXq8X7w+YAMS4rtYBPMa1SaiTbj8wY71eq9PplBIMXZfK+ACCaTsbuCdScT1kIs6iAgJcB03VDEklKYInY6XSFoCJaz0llSQDANmDgwPt7u5qMBioKAoNh8OYLNntdlWv1+NpZDC6gBAAImwpINrD2rDOjAfz4WuJdgPQfDxZP0hSkC2MRqPSWEtbsAYg9VPl3GnysQwhaDKZlFhN1+NSfQQpCEl43h/GxFlYoia+Fl33mrKbLkdyp9EdC+nUGWm327c5Yc4wuyML+KQKBeufaIvreH3uXJfupxK6/IW16GudNhNR8NJ3vj74PNEHxg3HyBNJ/Vkm0c+fKWeR6bsn5mXLli1btnvfLgUwTjeZVBuahsNh6QirUmXAmWWYQdfJ8h4hd8LnhOGdEfRErqLYlpjymqzeToB4moAEKJC2VSQAZamdnJzo8PBQ3W5XnU5H0u3yB1g8wBFaVbSRnpXvmmB3DhhrQICDnJOTE3W7XUlboMupgZJiJRCAo4MwSoZ5oiCgfrlc6tatW+r3+3H8qb9bFIX29vbU6/X05JNPxhq7AJTJZBIrTzCGDm6dVXc21BlNzN9zdpq5dt06/z86OooSjXSMSfREa+16W9aItAXT9AvWHuBFAmAqsSG6wZzhfNF+l7Z4dIX58+oRzKf/DWBlrTGmPB9EGxgL5p71C7hEBsW8EMWAeXUJCOw/48b3GTsAqjsikuLYIbeRtrpqHLyUoWa+cNCc7ea58L4wdoyF10f2BEN3EDIwzpYtW7b7xy4FMEZmQMhc0m1A2EPPkkobHglYXu+W0lKAFa8bC5CSpMlkEpk6NmY2zXa7HZO80OHSFu7NZprKDbCUrSO87sCG71GhYjQa6cqVK+p0OhEMwGwCkgEXHB0NkKFyQLPZjJKFk5OTeKKbSxacOXcGk8QtZ2A5WATWDZDH/PFd2FbXh1LzGeb4wQcfVLvdjpUXVqtVlC4cHBzEseC45ul0qvF4HOUurVarBK5JOJMUQ+EOjryvPn+E2r02MLKZWq0WGVOkF91uN64x17mzHumzlyDzeWaMCNUD8HDiqMvMHFYqFc1ms8is4rCxRlnD9NsjEPzxsmc+J5JKn+P5gFEFhDuIT9czc49T4Pfz9ei1vPkeFWFg6rk/lTUYF0kxEpSeiucJkPztUSZ3BpxlB+Cz9p1lZ3yYv9RpIBrl+vcMjLNly5bt/rFLA4wBT4RHPeQLu8l7GBuqh9cxmDxJJX0oG6FXNZhOp+p2u6X7shm7tAMglko6SBrzEK60BR4ASRju9XpdOsXOpRXT6TRu9H5PGDhpW/qsWq1qNBqV6g7D7pHsRnITbfZkOjZ5T0aDOXU5igMX2uROgTsas9lM8/m8BPhhDYuiiEC+2+1GMAzYcQYUpng4HEbdL4Ae4AiLzny75MABvCdYwfjRH4AbIXfGw/Wrfl2v2MBceig/TR51R8vXrBvtQPoDMPckRtrhiXMksFWr1XgACA6TJxqy3gCK7hzQXmdPibA4UES/788sY4J2v1KpaDKZREfVHUwf+9RxIpoB4+ssu7O5flgKffBKL65R528/8dKZbsCtt9MT/2iDv7ZcLkva6DSxMFu2bNmy3ft2aYBxu92ObBesqicsAY5haglzssEDBlqtVky+AzzC4gFUAL5sqABiBwIeBvaDFADhtIfSXrBiHkKn3ZgDY8Ar7QCoYbzWaDSiPIH+8h7g1xlSgBtAhz45QAVUMJ4A03q9rna7HR0GgJmDEf7vTCggDeaQ44sZf8Ag0o/hcBjb4Iw/oBRJwWw203g81ng8juCdU+godQc4AQAxv8yDh9jpgyd3+Zz7gSMwl5yI50DOx4G2S6fgsdlsxhPl+A5r2kuWcR1ntF2nnOrGiVawjvgD4HVQjjPmDDZt8DFgfQLufL2zvtxp4pnwsXNQTTUOmGt31mB3XWYjbWUdrFuv+uHPHG2mTVTIcIfRJVeMLWPAd3H2XHPuZd64jj+zLpXySi+U1cvAOFu2bNnuH7s0wJgat1RUYDP1JDLP1p/NZnEDYwP08C41ZSkPBtBB1wpohMXymsKSSgAm1WF6SBag4LWMARIpQwvLeXx8rNFoFCUKMJKNRkO7u7sRCAFm2MS9+gQsZaPRiMdAj8fjUtKaJ+Itl8tYw9idCNdk4kzACFMlwWUsgGkHK4wXDKakEhBLx2I8HkfGHCBNuTdKpjlARkftoX4AGA4Un3GmmrXggBGHwHW2AK3pdBr7QzvH43FJz0wNZdfD41jBnMNi8p5HGVhfnrDIPLkOHBAJk0k7nX32SIBfm7XJfBOFoN04CqwN/u1yCtawJ865kweg9IiIl6qjffzhOg7qGQdYcHTFk8kkPpu00Q9JwaFiLJz99uu6nlgql59zDT59c71xqqNmXF0/Trt9vWXLli1btnvbLgUwlraMkesKAWBeNcJBMOFyB8388WoBHC8sbbWNhP75PMDYw+TUB3YtprTdKKVt2NUZbUA9IBh2ibbDcAO6PHEK5pwweKfTiSXhJJW0lmzMnU4nggCAlOssPQnPKxcwTtyTMmO026/HdwEoAFMAbypRQJICOPaQM/0FcMEM12q1ElNMYqTPk6TIRDqL50mWACeXeXiSlutTWV/ME5IAl8Ug9wBcwmw66IUl94oS9JeEPt5nXACUgOOUEZYUZSCMmSd4AvpgTPkuzwTOhx8nzZiwjh1cwvITgXDNP4CQOXCHNWWCvXaya5XdUuANY+vMuYN3X+/+LHkuAuPFeuXeDlpZ+/Td2+fRBebGk+5wYKmVTvuzxjhbtmzZ7h+7NMCYDRpw6XIB36Sd4XJwBePkCXMepiY5SzqtrICWFuP/6Fcp6QRjyv2cofK2AjzZkLlvmqTmjOZ4PJakKMHYbDYlDeNisYgsLOCDPsO6AuTq9bq63W4EDphXk4BlB0gwZgBrSSUwSageOYonQ3oCmIfvkWRI5VMF3QjtA1gPDg50cHCgTqej2Wym0Wikw8NDDYfDqFf28nIOIAGxnrQFMOfz1FlOnQfKsxFFACSlR2oD6lgT4/E46l0Jw8OMMn44c9K2OoTLKmi7t8kdrtSJIFFvMpnEcnhpghvRERIIkd5QCo/nxnXHOH4AQJ4l1qi/TrucdXVwz/tcA2mKJ92x/lzjz2fa7XbU3VOrGmeHfvpzhTwqBcf+rLEuvX2S4jPmvz+02xMlPQGVftAmZ9CzZcuWLdv9YZcCGKcJWAAGgIYzlB5e5v8e6m02m9rf34+vs3l5qHm9XsdKFGywkmI9XWmrfWTzdKAE4+jAeLFYxBrIDiS8lBjgCbDhIMKToLy6hh9fy31wFJbLZWQhYQ65Hywm4BS5gIMFr5BBCJyx5fQ310Ez3jDNaYUDxtoT9xwI8R3u79rXmzdv6vj4OCbaDYdDjUajOK6cWgjYcy2pH20MQHSW30FoCn4Ye2dGXTPqYByQBEvMXM7ncx0dHakoihilQGvsEhSAoAMrn3fYTDSxLv9Av4z8xcsIrlar6NwAFKm97ZIh5scPpEHK48+BywV8bFLwyPPhY5smyHriZTrmnpxIuTf/jkcZzovIVCqVCPgZu1Q6wf89GTNlyrkX8+2/QalMCzbZdePu0GTLli1btnvbLgUwXiwWOjw8VLvdLr2OvGBnZyfqGdlgnS2WyppHNlGAi7QFuK5T5e/pdBrr9yKf8KzzNJveQ+RssoAYACB1d/f390the/TOZLi77hMJhwNWP/Ia1lHa1rcFEMLoAiIXi0WsVuFjhcyAP5486Myeg/50rL190vZEMHTBHrp2BrZSqUTJAiAMoO/l15hHwL8nE3qbGDOPGrg5MGYOAb4ORJGnwDryPlEHgKAz3w5mSSpcrVbq9Xrq9XqRzWfeGcOiKGIonnF3vTp9ZK3xXRhjGFWcSAfy9J/16I6LzxdtBoC7PAIn1YGij6M7Op7MB6vKukJzzHPkLKwDZJ4JxtyfB1/3Dl496ZM1RvTDkxAZX5hl+sPzTaTGnRx3prlWKk1yh4ZrZsuWLVu2+8MuBTDebDalBCsAQloFwLPnXW/MNabTqQ4ODuLRzWxobg4E2CRXq5VGo5GuXr0aQQ3vc28Pv9MWaauVBKDRHhKe+v2+9vb2JJ1u8MPhMLYFcABbC8BD98rG7aACiQD/JpHOJQIw2s1mM5bxclCETMOdDQc6LjPxgzZgqrkOjkAa2nZw4ppenzvaD7ggGRE2k/EBTI/H45IGnNC6z6nPFa85U+8SDmf/YdlxxJBi0FeXnQDYUm0trDUglugB/eNwCWnLOrq8AyaeNnU6nRLwnc1mkd1lfDwREVBLu2BE00Q3n1eAMX0kOuGsK/1OIzYAZBINXXbhjDvtpF84HCkzT5k6nmWeewfmOCauX3Ym3yVPAHzPOwDQ+vPE+gHcp0mGjJdrpD1ilb6XLVu2bNnubXvBwDiE8G5JY0lrSauiKD4qhLAv6bskvULSuyV9TlEUh093Dd/cMWfNzu5TStpK9X0wcaPRSO9///t1/fr1uNH5UbCSSgwgGy9AFm0kwJwN1MPaJEEB9DwpzQFCevAI9/UKEyQ88TneB8zC9KXAm9JogAlAh1+/3W6XdMWAZj9S2kPFXjmCMYBNXSwWkUnkOu5AuMyB8YEVp68ATaoU8FnmYDwexyoUgDYAiOu9AVGALWdzU/aOefA14PPoUhckEp1OR5PJJLLfqRbY5QXck7lw4O0A3aMQvE9bAJYOKpkDyvUBurkuc+7jwxiwDv0ACh8j/j4+Pi5psXEGAMsOgp3B5dp8z5+tVH7AGvHKJ87I+rPurKzPDyw048hYANhxNADMDtR53l3X7Zp1jz4wLrzG9z3hlHGXtqfu8f97xe7Eb3a2bNmy3a92p37Rf09RFDft/18h6ceLoviaEMJXnP3/yz/QBRxQSFtNIRslG63/zSbLRrxanVY4ODw8jGAUAOuMl7TdLLkHVRDQXbKRAkypIOHXSrWWtN/bJm3BGhszpen4DMDRGUZP8IP98oMeqOcK+wbAc3AN80j7CIF3u92o52WsAY/SFgjwHUCdjxuAB60wwKvZbMY59dA3fecaztgC8Ji78Xgc2+YSiNFoFJligJzPhZfj8jakWmP+uHQFLS7z5LIMl1g4Q+8MqrPMh4eneIIEPR+DzWZTaj9zCPhLD48g4QzHhPZJivPtJwgydzxTvt7pB3INnAaiHs72s85cG8waS3X9zvDzHvf3/iN5oA+0jzXF/dy5ZG6YP77jsikcSQfy7mTgtPn88iy5PMLv75Ib/5t+ekTiHmWMX/BvdrZs2bLdj3a3qI7PlPSJZ//+R5L+oz7AjyysLppMSSWAk8oY2Lz4tzPLy+VSR0dHMZwtbUOrDqABiTBFq9VKk8kkMrhsxs6YoecF1FIdwMEi4MlBPWwgf3c6nail5H0AOG0lFI+m1A8ZoT0O0DxJi7ZWKhX1ej01Go3IHiKVYKxdDwprCjA4OTlRs9mM5dxoAwmG0qlEAHDpMg7exzzpzN9zzfh8PtdkMtFkMtFsNoustydE0i8qQTC/SBEcwHB9QA79hNmeTqcRZLHmAIuuo6Zfzjh7cppfG7DNcdzOoPs6QIsOkARUMsasTfq62WxK0hcfQ54Pnh1kNDgOHonxMmM4Kl4Pmfc8KdGjBDibrkN2YOzPmbPEjBUSIZ4vlwCdFw0C7LsT6s+SR2HcCcAA9XzXgTTJqHw+/Yz/SUEy7eB+qXzkHrTn9JudLVu2bPer3QlgXEj69yGEQtI/KIriTZIeKIriibP33y/pgQ94AZNLwJ4BdJx5ZQNz5heAy6YLsBkOhzGpxzd8Z/kAk71eT5XKaYZ7v98v1X4F9AFMADNsyLDLKfNLyNerGLjWE0ANKwZA975SFYLPOFtGCJzPAOQ8aa8oTqtNUFd3Pp/HRLfd3d3IwkqKmmzYScYSIN1qtTSdTm/TFXuZMpKppO0RwgA512/yuidHAvr4nOtKcRBGo1FkkilN56yxS0087M+Ysg683BjrxtuFjIFSga6PBcAyj+5oOZPuFTfcOQJYA2L5HgAOIMr8uSbe/00EYWdnJ1YQoVYxgNGfE54rNMEOXrkP2nIHsi6R4Flz9tyBsBt9ZgxYl4wBjqUz0j6W/lk/hdLHAQBPn7Hz5DS8DrD1BEYHz84e811+L+gXr7vW+h6zF/ybnS1btmz3q90JYPy7iqJ4PIRwXdKPhhB+1d8siqI4+wEuWQjhMUmP8X8Ps6e6Pd+UnLlzvS3JQw7oAJBIIlqtVmQLXUpB6TVOX+Oo5fF4HJkl13c6Y0W7nInjBDC+w+EOHkqmDWzK/jrjAPNHAhr9oaoFp95Rqss3c1jCSqWi3d3dUsgegO8Jd4A6wKInrNE+6gwDaqh+MR6Pb9MP4xw4OANEMMeARKpnAAxhL10rChACqJIo5mF7xs0ZvDTJivclxcMsPKEQx8pP5vPT21x+42sIcAbIdVbZJTWAPmeTAZz0A7Du38VwSiqVSimhzw/GSMfcr+POiYNExs914jyH9MVBKs6Qj68zs8w192PcXYLhMhjM++2A21naanV7aqM7NGnVCo/A8H0HwKncgmfb1xBtcAc9lXeldbrvAXtev9lS+Xe7qfZ5H8mWLVu2e9peMDAuiuLxs7+fCiH8G0kfLenJEMJDRVE8EUJ4SNJT53zvTZLeJEkhhIKQOWyds2oezkb2IKkEgl0n6uDHk3AAO8gNUiYOEEvST61WiwlVzrylYWXftB3osHlzkIcncsGIe1JeWvGCTRowwmYMMKbPvV7vNsYu1XC2Wi01m82Y2OanoiFzqFROj8YGCNL3arWqfr9fqiEMW93tdiUpyiAArLQb5hBA5ElO0laX6mwqCZCMEZ8DmACenMlzCYSDrhRY+Tz5v935osKEs6M4N6xTv54Dx9SYW+aB6EYK/BxkexURT/Lz9dVqtWL0gPVIXe5UY+uyCWeUAagpGPZ/0zacKo8Y8Lw60OQ5ow1pkiJ98mRSZ/kdOONoel/ov8sfnLV1aYsDY0B8up74DMl9Plb+TDmbzHtpv+8Ve76/2Wffib/b/bB/b3U8W7Zs2Z6FvSBgHELoSKoURTE++/fvl/RVkr5P0udL+pqzv7/3WVwrglPMNzU2QsCmpAi4XEPp3/WQOQwZoM6BgrQFaGSak2jEZwBhDohcvuEbOZ8FWKH5dbCPzKPVap2b1U5bAegeOkYGQgLR7u6uQgixioKzqIAPr34B+IHdBkRTRQJwTDUKKkIwlswL18RoE3Pi0hcHW+68uC4YOYWkUjIcIJsSZrDekkp6cJc9+PoBbMMIO1jDvC+wyB5ZgK2nL55oKZ1KR1x368DJWXJYbmciaau0rTfMGkq1tT72OIn+eX+GeB1WE4Ceanl93bpuG9DMHLEmvBJIKjnwZy2tDsG88Nn08/5MAYh9PJz99eiGOwD0kfu4k+CJni6LoR08F87S+zV8Prmv3/9esDv5m50tW7Zs96O9UMb4AUn/5mwjqUn6Z0VR/HAI4S2S/mUI4YskvUfS5zzThYbDoTqdTqligWtQXWJAqN7lAa75k24P2/Na+neq90SqEMLpEbWj0Ujj8TgCENcsI1lA7xnCtq4rYB1AVxRFrB3smy+AjI0Zcy20JwRKimXYAFiNRiOymN4W13k6y81rkiIwBgDDJHe7XS0Wiziuzs7zGqDRk+2KYnsoCWPl12C80SBzvxBCLJkHMAIU8sfBsleZqNfrtx2bnR5LzfzSBz9Iw8cYYLlYLDSbzUpMsoN3QF46vjDV7pjxfRwaxsmlF85cu3aV7/EZnos0SuEgm++5DIJnCAfCNe3OfNL+5XJZAr7SttawP2epU5cyqQBs14B7e9xhpf1cP2WdcbpcduSg1ceJezmIdemSr1dnjJl/Z7K9DZ7s5w7IPWR37Dc7W7Zs2e5He0HAuCiKX5f02895/Zak1z+Xa733ve/V/v6+2u12BBuuQ5W2IWHXCWKuO+ZvgBubM5/jWsgS5vO5ut1uSYfJd/h+qlV00EKy1GQyie/Rhp2dHfV6PVWr1Qg+uTesKuybg3zfjAG+sI0AQQdC/B+A7YdfeK3aRqOh2WwWK2c4Gw/oarfbajab6vV65yb9pdrhtP4y12IOGDfa4vMjbWUE6/U6Ohb0CwOEOMvsa+K8Um3ezhTMwKK63tklAn58dwrc3Jni3wB5Z3VhqnHmuC9r1dcQ93AnjXb7mndWl3sDFrkO4+3PCNdK++Nl2XA0WIcOJiVFB8ojJw4UAd4pUGQs6LNHMfhO6ry6Y+drgT7C6LuUwkEvY+xOhv8OuMSGMfG1mcpdfEzpE32+l+xO/mZny5Yt2/1ol6YyvUscnLnyUKVvSg4s+L5rFVNgm26igKjVahWrT8AipuFZB9ts1LBL6GUd2Ph10MvWajVNJpNYNo2Nmj7D5iJ1oG0ASKpY8Fqz2YxtTNlT6udSmgzgDiuKRhkw6CAEVo7rAHRTwOfsH30AnDG+9NGrgjAHXmoOB6HRaKjb7ZbkINzbgZFXVmDsGWfmxsEfgImxcCDrDCNrhjGCOXWZgyfoOeBjDh3IAuC8ioe0PbktZScdCPOaA2UHd/RjsVjcBghxhPzzzvD6WgYUe5IjRm1l+pK2n3u4nCK9j8sVvO18xtvJ51PZC9/zcfW2OThNnY2n+63hmXHn1sE7a8375eswZaGzZcuWLdv9YZcGGEvbqgHSlmWStqCMTZzNzJNznKVKN05nx9jsnK06OjpSs9nUYDAoAQUMICRt2WBPiuP+XjEAzSn3g4EFuFASDYDkWfGupyRhy8EH7Uf6MRqNIhAAHDvAR57gGksAsKSSE+KsMMy0AxlAMZ+BFXVG1OeSeaRqgjPurhVer9dxjJAy+CEOsLv0nwNOHDx6OTM/PIPxT1lljwAAjHAwWC/OhvocMQ5c3xltSSUA56DZASn3Zi58vs8DlFwXS6UF/tykiYnuvDDPXBN5DWDfHRg+585pKiGgfc4yuwMKGE6/l7aRP14VgrWGlIZx87rQzuz6c34eYGW+3LHy3xB39HxNu5OVRjLuNdY4W7Zs2bI9vV0qYOw6WjYjzDcjmFrfVNMQ6Wq1iscsU93Aw8awUgBjQui7u7uq1+uRVUWj6kwvLDEsrjONtJ9QsW+qtVpN/X4/bupombk3ZcNca+zsGTILpBUAnKOjI0mKoJg/rin1ELezwx7aB3BMJpP4f08qow/OHgMSHXC608LnAHDnSR6cMfeDWQDF0vbAC2lbEg5A546SA2P6DXB0XTBtB7hxP5faeIkxB8UAvPN0p2mZNT7v1RtcwpICWde5IjHwefMIhQNNjz4gp6Ft/vlU2uEAMO2/X8efRweifIfPpsxq6jA5sKSPDmhdJuNrx1lldxxdTuRzw/W8LYB3xszHjrFyJ5u2po53+l62bNmyZbt/7FIBYw/xelhVKoNFl0nArD0dO8SGfV6tUde9jsdj7e3taTAYqNFoaLM5LdE1n891fHwcjz32Y6ubzWZJ3gDwS8PSAMtKpRLrG3PKHhusH7EsqRR+93FARkEbKS02Ho+jzthLUqXVCxyUeEIdgGm1Oj30Y7FYqNfrxdP9SETjvlIZHHjCIeYAg/vBHEuKJwnS1nReSDKUtkdu4/CkWlZKhGEe6ncgj9Pg9YvPcyCcffdrOUsplVnqNNEPJ8IZbQfvLsVwYOug9Ty9LuPp0ROPsLg8AbaY92mDj4sDU5cQpbIiZ8+pmZyWXUvlEqkEwtfDeQ6DV64ABHNPHA+YdAeszvq69CIdP/+MX9elLbyXOud+DWeks5QiW7Zs2e4fuzTA2AExYAGgKZVr1zr7dR5r7Nfkddg3lz5wfeQDhN4BD/P5XNPptFSJgE2dz3k9V0+Q8zJai8UitpWkuH6/X9Ij81k23UajET8rbYHjarVSu93WYDCIAG86nZZC0QARAITXz2WzB9gwTtIW+AC2N5uNrl69Gtl5gK3Pl7OmqU7TwSFz6HIZB6weNkde4W1GhwyoSytfAGAdoKcgy8GQpNuqnhwfH8d5cu23z4HrVp3h5bppiJ5EvhQc0ycHlq6P5drnOSE+/t5G+p6WEPRqGev1OrL2XsHEwTgOkjsrqYQp1SL7uNA3rufscdp+d3LpnwNn3sdJdBbdZTku2fA17WPnzoDrpr1ftNWjClyD66YyjQyMs2XLlu3+sUsDjCWVwCGbHUAMwOlMEZ9JN2ZntjxcjbTCGTpYX5goQu+EXWezWTz0wyUcfJ5T8wCz1Wo1yi7YQOfzuYri9HjmTqcTT8ZzsOftJxENsAcTCWjdbE7rH1+5ckUnJye6ceOGZrNZTEDje5yW52wYulz6XRRFKeEPZ2E8Hms8Hmt3d7dUA9elCqlu1AECCXwOZpgb/k6rYTBHOBKMAe95GxkL7i1tq2OkThP3csmHs8Sw9ScnJxoOh/HzXsM3XV/nOWHp/dJ7u4QHZ8wdC4Aj68elHvzxBEl37lwSQP/8eykj71IXpCmsYb7rf/t33bF0Vh5j/F2ikrLOPm7pOPo401Z+B9yR8Dn2teVMMp/DPKnP2WK+m+YYuJPD+J8XjciWLVu2bPeHXRpgvNls9F//63/Vq1/96ts2eKlcvsk3LQ8l8zlneVJ9Lt+DrYW5PTo6iuDLN2KAaArG1+u1xuNxbB/HSANS2JCpNMERzkgEeA3Q4Cwf0gqvq+uMH2zelStX4qZ/69YthXB6IprXFYYF5Whp2goAms/nOjg4iOC/3+9H9hT2EWfA/ziwQ6IAkEvD/Iw/kg6OpPa5pwoE70tbkA645lQ9GETXEQNYHKyxFgBpOCAODJ1BdDaSZD+ArIMxZ2h9XTxd6J3PnidtSUEVaxMmN9UEM14paEXekEoAHPA5oHNgnEogfN6cxfU28jl/Hvz5cseQPqUgO2VrU12zf97n0Z0r3uf+HgHg3ucBcS8xiNQJx881xy6f8eiFj63LvLJly5Yt271tlwYYVyqVWOfXQ6WAQd+cvEzT0wERSZF5dJDgTBaHb3BiHGXbOHDCw9owyKvVKp4Cx4lwXv+21WrFjZLXAdDcu1arqdPpaDabaTKZxJrCgBPf4D2sDPjhdY55pt2Afd/MGTvALUwsAHo0Guno6KgkIWm321osFppMJprNZrEfzkZL29P7JEXJBgDcwQJMcMpeemUQ15PSV9qdlgMDYPqYOmMrKbYFMMznuI+k0ql9rAfXzZ53wIyztDgPXsEEYOdgMgVzVPs4Pj6Oc+SJZyloZl5Yx/55l3545Q+vouLPmCc/ck3X6rvkJHUsPDoA0GU94fz4971tfM+BtgNwdxBcBuJg23XYqfPla4dnjO/z3BL1cYeL17iPJyD6vLn8gvWYarCzZcuWLdu9b5cGGDvrJpU3dDYrQItrhR2UYM5SwVS6PtiZYYAczK5nrfsGvtlsImh25rDVamkwGMQNutlslsCo1xt26YKkCGrn83mp+sF8Pi85CPRxZ2cngmGYx8FgEPs0nU5jchxsqtfdZQzq9bra7XbUKHslAMLprVZLs9ksstoOJtIwuzOInU5Hg8FA0+k06rZToAfDXKvVYnt9jtFWw5p6sqFfBwae9jsAQ+aCo4KEBKdBUiz/5fIEZy9pA+31NenaXU9643ru5Dgb6glnDoZT8OwMtIf+YWeZS9dRo2l2dtzXMk4Bc8Z8unPhrHH6LDobzR8iD4wlOn0Hrc7Op6DYdemAT68A4vIRgH8aAeK7Pq6uvUYukkY3eM9/M+gnrzGOHmlgPFxW9IEc9GzZsmXLdu/YpQHGGBuQlyQDGKSVKQCgXu/YwYWkCCLS0HLKPhLe9tqwaEO9WsF8Pi/JFdD6uoa02+1GBndnZ0f9fj9WjECm4Pcmwc9Dt/P5PDLBntzFvQGCyEGGw2E8lQwgsFqt1Ol0tFqtNB6PNZ1OY0m6TqcTx9FD82zyMI7SNolMUpRQALpxBKgwsbOzo263q0qlouFwGJ0SQPbJyUl0RrrdbgS3VMKAwQwhxFrGHFTC2AFmnE120Mxcw8xOp9O4FphXvi8p1pTmNWe1nQEFUKcADBDMOKVaeB8/B7wp4+1r1JlKNMAAUWlbhs2BPt8HcPtYuEbW59VlJg6G3fy58qQ4wLVr7wGfgFmXcnh7+LxXF1kul5Hlp28Obn3OPSrh0YaUFWfsXafvURgcBQC3OwVcz5lhb5OXp8uWLVu2bPeHXTpgfHx8HOUJJKhRdcHZqhQMp5tTylTxWWmrHQTwSiptwISHvSIGoEpSLGkGO7e3txfr/8LIcnqaVE4KI8y92WxKpcvQDdOX2Wymo6MjtdttdbtdSVugQJIffeF7zvziMPD5xWKh2WwWQRBsMYleDvIWi4Xm83lk6UIIsXoHbDb9gs0FqNA2Z9VarVb87uHhYXwdaQYaYwxgDNBKS6Qxv+iMqTe9WCxKkpFUiuCOFdIXZ2KfjhEGLLE+lstlqYIFgNNZdb7jWvG01Jyz3KmO3dcCVhRFZPiZY3emSLTk+w5E3SFw3bwz1866st5YG9zPbb1ex0NsuAbAnXvg2HE9/k4dC48qwD77s+4RCb6PNth/C5wJ9jHG8QUMe6lAZ89TOZNHDxwcszZpSwbH2bJly3Z/2KUBxh7uRfdHKbPzdLMezpXKTDAg0WUEgBRPnloul5pMJhG8wBySCOalydignWmiFi4SCk8aQ0LhbWeDBci12+1SGBpmC9A+mUxi++gjIMJDwK7TrVar6nQ6Ojg4iJ9FIwzoddAym80i+wtoR/4AqACccj0YTJdWMOZ+GiD9r1Qqmk6npcoafrgJ4+UyFTfXcSInAXC5nIO5YlycIU01pUQkTk5OIoOPwVoC3ny9AcSWy2UE4V6iD8AN844D4OF/B5guCUr7IJXrOzvjzVxQ2cTXBvMQQlnv7M7EefplAJ7LLfw5pJoGbDDjEEKIziwRAE+yTGtOMz8OOokE+Dh53Wdnqd059AgCz547C7423bH1Z8cdNJ8b5jwdcy9Vl4FxtnvaQnjmz2S7OLuo35UXui7u8d/DSwOMpXK5NjYpNkFYT99kUzbN2S/AJuBB0m3gzYEFQFraygWcJeT6MJQA0fF4rPl8rn6/XwLe6Bi9ugUbNdfgMBCYRv6QhAhrTFKftGWCU12jl/1KmTh0upyu54whAIY2p/V2/QQ9mDvAPKXyXFrBvLlzkoIwwDbSDq6FxAImF9ADQwuIBoRJ0nw+j4AU4OPsrK8h7ku/qtVqdGZoJ21OJQ6uJXaQ5ubyAua90+mUksOYp/O0tB6ax5HDcCK8fBv35D1vj0tMHHRzLf52BwBn0J8XnkUvXQe7z/u02+UL9MudLu8bURnWa1Fsq0M4AOaPM9k+frSBkoi851El5sLH2pl0fj/OA7dEefgMenXWk2vKs2W71BaCQm170NXbv+W36V1v+L8usEHZnsk+/o2Pqf0Dv6DiZPnMH34BFna2e031wev6gZ/5/hd0vTe8+uNULE/uervvll0qYCxtE9ScEWVTBsiclxQkbTdLlxr4+1Rc6Ha7Eej4oRWVymlljMPDw7jZwbxxHcL+RVGUgCbtAuQC3prNZin5i0Q2NlRJEUjxGkCR0Pl8Po/AhwTB3d3dUvUEr0Xsh4PMZrMIWJrNZkyIg80DxPBv2E7ux5hUKpVYDcSTAF0e4Axto9GIrLnXIYapBYABsgDGjEfKbuKotNvtEkjlb8AuoIvPwHw7cEyPnQaAulMAmGOtudb0mcpz0U6/r0uBWAOeOIe5Y+GMKtIKNypj8B4gl/nkuUEWw3d4xlh3zoAyzq7h92cQSQ3t5n48ew5iXSvs4+hgnHXKevf5dqcplY+4lhhnEWfMNcI4fl6GjvXi0iOPBjl4Zt78N8BZdZegZMt2aa1S1cHnf7Te8tXfbC/+7IU1J9uzs5/4pjdJkj75D36eqr/ybq1Ho2f93bBTV6XVfOYPSvret/0H7YTqM3/wWdoP/dpP6qRY6zM/9Pc8pzZfFrs0wNg3WNgzrxDxgT7vGxUbqYeF2dicMfaMfWnLAq7Xa41GIy2XSw2Hw9LJYCnAYrOmBjKbbQghbviNRiPKBjxk7ZpPQKFrKQFrtVpNi8VCIQRNp1MNh0OtVitduXIl9m02m0UZiLO1kqJcwgEpYJp6xmhgW63WbWWv1uu1JpNJKUGPfuJQUAMZcOL67OFwqPl8Ho/WJuHOazkzJowZYW0v/+Ugy3XU0ha0+gErSF1cNsDn2u22Go1G6XQ2AB2WstyYJ3KmazGVAXENACafdSbW7+XrkTl0va1fC1Dnshp/fnDqkMek2mFnxF2rjHPhNardKfHx9zY6+MU5dYbd1w7rxwGy65CZP5wajzw4APbID2xz6jy4/MV/BwDd/NZ4UqG0zUNIne+UqffxyJbtMlqo1TT67I9KQHG2e8l+5F9/pyTpU1//hxSOxpKk1RPvv+1zYaeu6tV9SdI7vvSVevsXPNs5v3OgGNsJVf3LX/n3+sP/0/9LxWaj9ZNP3fF73C173sA4hPAhkr7LXnqVpL8maSDpT0i6cfb6XymK4gefy7XTTfG87G82xzTJiPd803K2zSsEnFd5ACCA7tSlG75Bwz63Wi2dnJxoPB5Hlk7aamEBCFwHUI4u05mr0WhUkj6gvQ0hxKOfJ5NJBAIOXgGZMMSwwkgu0EZ6+SkYO4AslSqkbfIUbPRyuYyyCkmR0YNV9jG6du2aOp2OnnrqqZIkZbU6PaRjuVxqd3e3pAPFKXGW1AGygzivfMA8wn46KHegA+B3h8TBN0wm8+5g1ZlBX0v+mRSQYYy9J3o6kEpD8O7AuWaXNgH2WSOSoiae8aedfM9ZZ7dUJuBrkWfHn0UvfUi0xBlq/u0SCGdk0+fSJQ04bcgiXPueap/pi0cv/DfCHUxPkKTPDs5pmzPFDuJdAuK/EazdVA9/2e1u/m5nu3wWajVNPvMj9ea/8y0X3ZRsd8B+8Mf/lSRpXWz0Bz7xs297/+bHPaCf/T8ujwPUrTT1Az/3w/q546X+2u/9Q1q96z0X3aRnZc8bGBdF8XZJHyFJIYSqpMcl/RtJXyDp64ui+Lrnc102LNfxOiPmmy8AiO+l2uSztnmbSwCpOEsE80QjpAOSSppO1+2GcJodv7+/H7PkHdT5Zg+YBMTBAKKZ5bQ8AGxRnB7XTCiedp6nbwUk+oEnJycnGo1GsXyb60aRdEjb2qvcg88RKgfMIRNxEOTX9TYBtPf29nT9+nWtVis9+eSTajabMSkt1eumgBeQDGhrtVpqtVqlxCyv/ODzDVPJ+nGNNJ93yYqf3ncesPVkK2cQXSvsrL/rcL1SAtdKpQcpC8m1XH/rQNm1wu6kudwHEOvsKmvZ54v7OtPt447z6PWb/XRG2P00MVFSjAiwdhlrxsBlHvQ3jah46USvN+0gnD4wPy6hgRX2MfTogQNmLzmYOlvc1xP53Lk6L5p1me1u/W5nu4RWqWr6GR+p/+f//AcX3ZJsd9iqoaIf/E//+qKb8aztIxt1vfFHf0R//zM+Q+tf+e8X3ZxntDslpXi9pHcWRfGep2POnos5a+iMFZpKB3GYh0y9DZ7Iw+ZIshmMIdZqtUoArl6vq9vtajQalZhPNt1+v68rV66o3W6XkoUA6GkSEteECYXhBPTAQpPY43rq9XodAbMnuhF2dgaMU+tgeZEXLJdLTadTVatVTSaTCCSw9XqtdrutdrtdqjssbSUFXhYMwEtfOVCj3+9rMBio0+lELTLaYKQu55VBA+QCUADGaJUnk0kExoCZ6XSq6XSqzWYT6yfTVhIOuT73B3gRfk8Tsuivn5jm4+vm8gNAkwN/199yHyxNdHQJjIM/fw4YN+Qv9I3v8CzgCNAGIgMuXXEmFcbVkze5L8ZadkmRJ6/yeeaH9vDsIDdKtc0Oxl2O4uA1TS6kLWnOAc8e/XWH2UEyf1KH1qUqrmF2x8bbdY9LKe7o73a2y2W1hx7Qf/7GDIqzXQ77tPZC7/+en9C/+txPUvHWX7ro5nxAu1PA+I9I+uf2/y8NIXyepLdK+gtFURymXwghPCbpMf4P68QBEGmI0lnizWYTASaMqbN5znABBNj4jo+P41HOgE+SywCpDlJarZa63W4peY7rEbbn8A4vVeYAEjDjIVuXAtBWgGC32411hqnhzCZO8hwsMMBQKtdnBtRxwh3/BwhOp9MIUNnkGS/G+2yeShUqAMrcwxMjGb96va79/X09+OCDunHjhkajUdQpdzod7e7uRgDpCYse1qevrVZLvV4vvj8ajUprgTkHxDuw43OMnYfOcVQcgHrSWuqceD9dPgBAdRDIOK/X67hGdnZ24jw93bp2SQmA26UIOAzMCWvNZQs+x75WO51OPOwEIM/YuDPniXMAYJc9OAj1g1eoKCJt2WzG2+VDrCPai4PHazD9AGHvpzPxDmBTmZXX1/aokDvSXIvrMp/uwPD6ebIaXnfm/x60F/S73VT7RWlktudhlapu/L6XX3QrsmUr2Rftvl8H3/FT+r6/9klqv3cm/ewvXnSTzrUXDIxDCHVJnyHpK89e+mZJ/7uk4uzvvy3pC9PvFUXxJklvOrtGIZ0yRzdu3IibrUsfPITpSUke3mWDdMaL95wh8tPXNpvTKhNslGzUDkAASZI0Ho9LFQ8AQn4iHQDj6OhI1WpVR0dHEVgDgDlsg/6hE202m+p0OlFKQYk6gBKHfcBoTqfTqMd0QORAnQ0eAIPW10P36/U6Jgl6uN6rEDigcs0ngLjT6ajT6USH4sqVK7p69aqeeuqpeLDH/v6+9vf3Y7UAB8aMu5e/ApR2Op3oKPC6s3geene2ESDrTkjK6Ho1C4CZgx/mkzGh/4xvq9W6LXkPQHa2vqPzxNi648Q4cz9ed429y4m4JnNHDehKpRIdP5c4ABQpx8fx2rSLfvsaTfvq7CztYix5HpkXvsua87lxh8UBPVp6l1vwN2MXQohjmpa/c4kGz4mXH6RtXId59d8NZ/2fjgXmM/7b0mw2NbrHMq/vxO92P+zfsx7B/W7VfvdSaU2zZcP+0v479Ze+8Z36vPd8vN7/Fz9C4Sd/4aKbdJvdCcb4DZJ+viiKJyWJvyUphPCtkp5VQTw2GxLJnJ1y5g8wQijdAUDKHPm1z5NnwFoirXBG1lnldJOfz+cxjH90dFRiEwEOq9VKs9lMq9Xpccyw0oTvOeqYjR7pAv2EEQe0nI1tiRFfLpexjjIAwQ8dAVCgrSS8THk1PyQDBhiHAC0yQNolKi7BANi1220NBgMNBoN4306no16vF99rNpvq9/vqdrsRACLpcN3w8fFxBKvOzHmtYubQmeBULuFAC920f85BdMoE87fruAFT6Yl5SEpYtwBF5Cyr1aokJ0EqgKX3p50k3+E0sX7TBDJ06e5Q+qElrCOM9hGhYH275Id7EL1hvZ+cnMQKJ+cBdu7J/ZwRd9lNyurTdhxHX+ueT4DzxLxyP9YH8wGTz5pivlLm2383fIxdWuBAOP2NgQG/B+2O/G5ny5Yt2/Ox73z5T+izv6auX/vXH6sHf3J8qdjjOwGM/6gsHBdCeKgoiifO/vtZkp6VmMQBnzNMgGFADqCRTfY8UOyaRoCKb8TS7eAIsAMDu1gsIljhPQ+zhhA0mUx069atuGnDHPP58XgcQTHh3MViEbWU9Pf4+DjqmGHOAD0eXj8+Po6AB4YX0EafYAxd1wqDCLBkfJ0NBWjCUAKMCZd7shlOBAYo2d3djQmJkmJy4e7ubqzH7ICl3W6XkhJZBy5RQDLCEcywnScnJ5EphyVE+kC/uR71klkPjHuqMwe8uZwAAAjA9fC/a3t9XFg3zsI6MHXtubPKDiZdH+z9qdVqkdlnXTNvgFjWi0sCHMTSVv7GAXQZBoasBEeqWq1GNhYnkiiFrxGcKe+Ts80uQXKpDn1hPQNqvRoGkhmPKLkUBxmF/57gYHoUwOeF9U9bXZrl8qfzkihT2dc9YnfkdztbtmzZnq999wf/mPSXfkwf/ymfpRs/9bGSpFf+kye0fse7LrRdLwgYhxA6kn6fpC+2l/9WCOEjdBqSe3fy3rMyNlU2UmeJPLnKWSVnjjyRizAtGkv/rLStAEAoejabRRDlJdbYKAEfgCU0vl6mDUkFANPrMTu4AoROp9PICgKYnd3yihKABEA276UgQdJtzBrAiM878PCQPCXhiqK4LbOfsDyAHeYbhvjq1ava39+PEoxGo6F+v6/1eh2vizyCA0f4P86QpMiw0g8AGHPBQSchBPV6vVj6DofI14CH01M9sQNcjwwwJn4gBt9D/7parUoHeDD/fJ45TrXvXMcjGP4Zb3daRQHgTl9gc9HKNpvNWF6PPjHnXNufISIT3v+0agVrkWsh9eHgGZ6DtBwdEQnayHuNRkOdTufcdcrhK8ikpG1ZPdpIO1jzXjlE2jLkOB+MrTstzDvPkuv/XXrkgNjbmjrZ95Ldrd/tbJfHNvOFXvm9j+ldn/mmi25KtmzPaD/x4f9G+vDTf3/oaz9Xy/f+Tn3I1/z6hdU+fkHAuCiKqaQryWuf+4JapPJGk2aHu+bQw7gAEwd7gJNOp6PBYBCBqFeDKIpC3W431iNGx8r9HAg5oAM4LpdLzefzqNXkEATXQtMuB6eAMmQbgCM2YQ/le9m0oihi/72EGowmsgYkG1zXAaKDNNdvc/Q09/FxZA4AJYAJxkE6BYX9fl+7u7vxuvV6Xb1eL7ZzNBqVtNA+x4ATH/dqtRoPCPHqB1yv2+1qb29P/X4/AloYQuaQ++CwAGQ96Yz7eSgdoMgYMscwxoBPT1pjvmEnqTWMdtllEAA5B+6ptjUF3Q7imBNn//15oa0AZdf0OtvJPd1ZSyMrtBFnAUeEyAInGPIdr6FNP2gP1UsajUZ0emCBXbrE9wCj3ifWAX1z3TPfdQbck/9SiQ7mjouPvzPhPid81yvb3At2t363s10eK46P9WH/3/dKn3nRLcmW7bnZ2z7uH0uSXvvo/6qX//ETrQ9vywG+63apTr5Lk2AkRXBBOD8N5adaUt+IHQC5xrPRaMRjoWFg2+12SfbgiWlYKi9wPbEDBxhDSrqdnJxoOBxGbS+HXNAf2gQInkwm6vf7EewiQwCgNptNFUWh2WwWwQ0ly3Z3d9XtdkuJiYBLGDwHR66RhI11TbfrM5GwwCASWvfwOIAHiQNjjW55MplE9tcZcELkztIx/6ksxvWvJOb1er0I6mazWQRTfrodUgnGmdcAXYwHY+anwEnbE91wRFhz0rZMGfV9AedegszHCcDMmgCMur7XGWX64I6WV0ORFB0a2gqIpcShOwMu3fDvuD7bHQMcOKIFDtL5Ln2SVJJCMYeMD/NNmUNJkXHmd8DnYr1e3xa5oB2MNcb6dg26j5/3K3VC3GnCUtkF1/C58s9ny5YtW7YXbr/8Mf9U/9M//hzNjj9Ij/zht6uw3/m7bZcGGLO5sIHCRgGMOa6Yzc7Z0zSZJv03+uBOpxPlApJKJ83x+TSk6iFkD6fDMDuAYzMH7Lo+czabxfD/bDYrgWc2en+fRCckG14vFnDkmtnxeByBX7/fj+11DSWsoX8fh4G+A9Rcb8v4pWAKYNntdmNFCph4wB0JZEVRxHrE8/m8VE8asNjpdEp9Pj4+Lo27a2eZT9YKoBHQ6gCGNtN+5gwWMa2p685DqiulrBhA1x0zaRvGRy8Oo+sJkVSI4HM4SYwzQDfVrgKs/bhp1i5Jlw4C03C/O5M+7n59xtAZWqIV1M8GxANUndEFrOMAcV2X4TC2ODa0gfUPEHbQSVudnW+1WiqKIq5ZHzMkSD4eDtTpB8y7f4/vuITL2+DzzrOVLVu2bNnurL3ldf9SkvTJP/Lp0ic9Lr1IJMSlAcbSdpNPNbYeVgdkpBshbKdUlgoQ1t1sTkuhXb16NWb6T6fTknwBMMf3zjPXxAIcfcN2/S6JSuv1WoeHhxqNRhHwUlUD8Oo6Zmc9YZUBLM6a+cYNy03ikYedU2aQA0xgddHyzmazWEnDx0La6r6dvYfBbrfb8bS7fr8fx8UdCxwBpCeAQNqL1hVg4qftOUOHrpgKG7zuAJ614t8FBLtmdLPZRE0rABKnB7DmyWU4B3zOQSSyCuYKJ8DXFYlusMq87hpYbzsMvQPRarUaj0B2Fr1SqUSHwyUb7rixfpkT+uh1rx0IOmPtumeSQJENMV9+GEuj0YhjJ21BZbfbLdX/7nQ60ZH0ccaJdYkQ/XGGHcfLn1eP4ji4Bhy7E86c4QAQHXC9us8ra8Odb+Y+W7bLYpVORy//twcX3Yxs2e6I/ciHfr8+780fryc/5sUpi3mpgDHmzFaqdfSQpm9+fDatluCfo74puktAFRIDT1hygOwJe4STASiw2pvNJuod03bCVAIq1uu1er1eZItT3SkAgM86q+uADqkAQJPNXNo6DIvFIpaC4xhqKlvgQLDZhxA0HA4lqaT3dWCUjivW7/e1v78fJQ2wf7B2VNGYTCY6Pj5Wq9XSYDBQr9eLfQ4hqN/vx3akzgkacLTFAFqXQfjfMM8w8mmiHOY1hAH6Xr/Zx90dNW8Xn3MgyLHIlUolOh9IAKhP7fIG2o6jQP+QfbiTwX1ZZw6C/Rny9rBeAJSsa9YtDiTsr7OrHpmZz+fxOeBegGqXp9BHXmu1WvFkRxwh5oXrMMawwchvPM8AR2SxWNzmJLrW2BPm/LfE5Vq+fpgPn1/AvfeBOaTf52mTs2W7SAs7NX3Twz950c3Ilu2O2T989D/qU/W6F+Velw4Ys3kT6oVdm81mkso6S8p1eWUGZ5kdMPkmKG2z9NGQoi1OM/LRijqIgHXzGr+SIpPqzBvgAI3marVSp9PRlStX1Gg0Ymk4wDahdkLw6/Xp6Wkk1DEOXuPYQbiH5AFVw+GwpO0FDDsz2el0Igh3ptDBl7PyAF1JEeju7u5GsMTYudYXUCxJ3W5Xg8EgAn4v28ax14B9T+YC6MI44jTAXvraYT0BTOv1eumQChyMdrsdHSMqmLBGnJUH+LojA2OILMRLicF8so6Pj49LyXgeymeds17b7XZsB/dPQaRHLwCZXJfv+NqUthIYnx+uwzPkjgMMOsCcdTybzeJhMy7ZcEYfxxFWl7mC6We9sz54nmHXWXsAYBwbnlUcWuYZh89BLmvKEyVdZiNtHWEcDn4ncIox/w3hfb9PtmzZsmW7O1YNFX36Lx/q+1+7d9fvdWmAMRsQtUzRD8O0skmhzwTgAIzTzHCXHwDovOyXh0jZ6LkPGz2brrTVHi4Wi1KyFq+n4ACA4sCd1+gHwHU2m0Ww5SfoMS5sxAAFr7Lg4ByWk2OTV6vTUnAAUkA0DKmDMcAVfyifxuZPez0hCpAbQojA08GFJ6ZNJpN4vHWr1dLe3l48Gpox9WQor01M8hhjGULQfD5Xq9WSJPV6Pe3v72uz2cRDNXCgaBOsuAOn9Xod24JMxzXYrBVP6GSccRQA8DCxOEPoZJEQ8F0cLE8oREPP2kF/S5Il+nqeB9rEmnJwjRPmJ/jxx6Ux7hC63INngGfDJTkefZlMJmq32/G5BPzyOeaOaAb9YR5cL01bqIji68xZXp5p9MGLxSKuYZd04Hx4vyuVSqmvtDkFvoBfB8/8wTlirbIOspQiW7Zs2e6+/em992j3V6f6p7/1ZXf1PpcGGGNshFRqAAAAiPiDVhUW1kuLIV1gswa0AUY4cY3kIGlbHcA3Q6ksSSAk68wdIIXvrNfrWJcYDS/aWPoBkJIUgSuHXwwGA0lPf9qWb84paw14Ho1GqlarUYrBeDjY9iTBNHkInehkMindnyOo0UAD6gaDgfr9fhwrZ/vb7XasX4yGttfraW9vT+12OzokrhNm3Pr9vur1ug4PDzUej0tSDua/1+tFrSpjBrOOfAFWWFJknJnbdrutXq8XnRQfe2eFXffOe8w3DoSvAa7lDC7zSR+QHDSbzXgaIOPqc4+e3eU93AdQhvPnwM0TxDypFcfN6x07AOX+aNbRfgN0kQRxPDf357ngufOyivwfAJ9Wh/DvecIo4B19Nm2EoXdHgXXNWPsJfS4HwZHluy6TYazTsnWMoydVEgXIlu2y2fpoqDd8yh/RD/3wv7jopmTLdkft8/o3VX/7Wv/wQ15+1+5x6YAxm7IDScKkbLLOhLr8QdoyrF6RwBONPCHKmTaXSACkpXKYGLCeSh1IyuE1dL/nARQ2bWcYvUav6xZhhmGVcQII+zM+zqzxGglSXl0gHQ9kCmkoGDAB2AIIhRA0nU4jGGg0GhoMBvEkNB93l2fM53O12211u93I6DkLjtMBI79er+MpehybDUNN+B1Q4+w8+s9WqxXBrlfKAMjx+Xa7rX6/HxPAuLcDXdYMrLPrhllD0hYYpjr3w7MajD4HrAkAJwCc8fCKHM7Cp6Dc1xXPjjtBfBeH0ZlcP3ade7tUiKgFQLEotodv8F3a6Lpl5sbBJY6Oa+BTppZnLQXvRDlwnHj+XS/NOPnYpmUJvd/0j3nxhD7azrPiMhdAtevBPaqULdtlsWq/r+/8gW+T1LnopmTLdsftt9bfL+klAIydpQKsAew86QmWmPJUaXKcgwaYOpgqwq2+ubLxcT1nOwGqntCVJkCl1SIAkePxuMQuA5jZSOfzeUygQ3bAddj0JUVnwKUQRVFoOp1GLTEAwPWzAEn0nhxTzWbvGf7SVvrgelYADeAdgIpml0oUsLZc05lhr3zR7XYj44yu2svRHR8fx+OO9/b21Ol0IuAGhDSbzXiYx3Q6LWm36QvgeLPZRGkKfUCvjDzEmWDGzWU2MKbIG9xhcmDKvJLUSYQCHTYAGCDmaxUwzvrEQQBUArhxBHAOcBqksnwHcOzr1MGia6f5HOvDAT/9A0DTb/rmz1K73Y46eUAxY+Mlzri29wejjf7Me7URj7gA+Pm3g1ScQSIfyDNoO5IK18z7fPgzlbLM7nDjnHkSarZsF21hp67v/pUfU7uSQXG2+9M+otHQF7z9PXeNNb40wJgN2HWQXoeUTTMFtlK5BjIhV4AhGzQspUszPHEGZoxNFTAEOw2odZaQ2r3OOBHmdTbLQ95edspZvFqtpitXrqjb7aooipiIBIsIY8zmzWvNZjPqa70MGuAKQAAI9aQjb4/LBGAeAQcOLvgsrCyJaz4uDmyQMcDCM2/T6bTkXDAfnuzogBi2knmp1+uRAaa9gKROpxPD4rQJMATwdeAImGUM+CzjAYgiIQ4HgTbTf9YqJehchw2j3Gq1SuF3d+LQJ6cJfPyf+XRtrEszHNC5DjZ1egCNkkoyA67nzhXridepN81nJ5NJdJQ8cdMdU09s8zXobcLJpS8+ry7JoD2sMeay1WqpXq/HSAnXYR3y/AFicT69jjKVa3CkeT5CCPGavm5w8DxilS3bhVqlqh9+z89Kql90S7Jlu6vWrhxLIdyV2saXBhhLZRmEtM3GdxbLN1QHB84a+Sbs9XZdbsBmlpZycmaQklB8liQh9MmDwUA7Ozsx2QmmzsEI+trJZBI1rQAINnWAFJIEQK0De0/wAqQAhGAxYUQ9aQxwATPOGAI+cRjoe7Vajayt19UFkPR6vQgSSaiivwApvuv3BpAyJ4vFIjJ2gEbXEDsorVar6vV6cb7QceM44GjM5/PSqWonJycaj8elAyoYb0kxcWo6nZYOfoGt9c+5/ASQ5tU6WB+SoubZqyZwLLnXr/YSeqwHX9cAN+Z8uVzGNtAOXz/cxyUpREwA+jxTqdzAq2Ww5lw/7xICku4A6j5GPCvO4DNWMMSu1cdR9QNKGF//XXBdMk4DERSXMvF7wDVclsLa4hlj/lKdvkswJEXnhPtzHQfm2bJdBvvB33yLpMozfi5btnvdPqMz06//0qF+6LWDO37tSwWMpW0SkW/MUpnJ4t/OFMOOOdBzoIpmcjabRbDqoX/XAwMMfHP30DkVFtbrtdrtdtzMPSzLxoneGBBBmDkNOTs7yuEjy+UylvsCnBJ6brfbMSsfYIZUgQ3fJSaMC4Cae8LAuqTAdc4+HwBivlOr1dTtdkvJaw7eXRsKk+dJgABbQJ2kCOI42MLnHXmHH8QA+4nMhtJxtGE2m8XXYdyplezsMNcCRHud61arFRlJ1hZrIw3J4/zgWHlInvrIrpX3Ork4cGkymdcL9nq+jB/AOIQQmX2PUjC3rHVPUqONRVFE/TyJqM7oMl7Ml4N3HBfXvjNGjI+zt6xPHEaeD0+g9TJzOCV+XTTarAscBtaLV+egH5Ii28+YAIS5LnPommWXVnkUyOt0Z8uWLVu2+8MuFTBmwyaEnIJfGCcHzJ5sxCaHnAJ2iD+wXM4MeSIewCfVvoYQ1O12S+CCzbzb7cZQLpu6J27N53ONRqOo23UQCrvp34PtI6TuiYOud6Y9DnL5v6TbABwAAsAlbZl2Qv6w3iQoAeLQYDszDIgaDAaxwgRzx/cJjzsjSEJYmqznyYt8n0odkiIwAYjQdj9aGWkFQM7LvLmuGPYZwAx4czCZMrI4UYwT3wP0omf1OYAVlRTBGyDUpTwAcyQSPgcpMPb61bTPpRUO3jyxjnsx/6kUwxP2XEftjDxr16MIlIXz5FYALmvOQbFr0NFfIxuCNccppT9c3+UrHkE6TzoymUxKa4Xr0d/NZhPnDZDuvytpdMmjVlzXnYBs2S7aag89eNFNyJbtvrBLA4y9MoJXaGBz98SoFNw5q8MmClDx0KiHcSnfBQCVdBsI5bMAbXSjfmiHh+95DV2ltJVzUOWB8C7/TrPwAbKAY9pE/wFsAHEPOwMISc4CXAIIPdTMtTwpzY/a9jC5J+sBbhlvDnLgwBAYOUDQ8fGxhsOhDg8PY0UKnBZ3IPg3DoykWN/Zdd8whwAo5pz7clIaLDRzw5x1u13t7u5qvV7H60sqlS5jvXD0MtdhXCaTSZTGdDqdWEbM9bqAYuaWfsBgkhDJ+sMxY134QRmUcmNcXUebhv39+fEoBOPl+lhf4zhCaGxhZH3NpJUbcCCd6fbyaoBsgD73Y64AyLSZ97gXbDbXgZnlWfLnlPZ70ijX5LeCceK6VDGpVCrxueWaLgnx9cx68DJ8GRxnuwz2v/zHt6gasowi20vHepWFaq94VKt3/8Ydve6lAcaYs26wwzBcqcTCQ7sAND88wLW1nuAE2ARIepa5tD16mM9yShubIxstyW9og0nq843ZM+JhoOnbYDCIwIU++YbLBu2gSNpWwmC8pG2CH8y0Jz+5HMUZM1hWPusMmMtLGBcACCCbzzD29NePFkanjTQBYAzzx3jDajMP1Jr2SguATa9MwKEmgLL5fF5KOERzy7HC3W5XjUZDo9GoVGWD/qGhBeQyVozRfD6PiZCw2CT7eY1kwCIadNftwvJ6OTXXV7uevNlsand3V8vlMspCuA6Al3lw+Yq0lVA4K4xTQtTDWX4HvOfVFE6TDpmDVDLDGkE64qyrtD2mvCiKWKsaGYhLVOgjDoZHN+ifVE6oo72MvTtQgGnWB0mhDorpqwNg3sNx5Fn25ypbtou27/yQR/RHHr+RwXG2l4x90e779V+/+wm9/aPu7HWfFTAOIXy7pE+X9FRRFP/D2Wv7kr5L0iskvVvS5xRFcRhOd6tvkPSpkmaS/lhRFD//bBuUahodvPqmjwGCO52OHnzwwQhgOEbWS1s5YwcLDRjzcm4cHsHm2e12owyh1+uV2C0AFyAFZowNms2d78DgEiYnVM5nuLdroB1YwBg7gPCkNml7KAn34fMeJvbrklDI5/z7nliWajsBvQ4i5vN5PNzETyjESeF6qTbTQ+e007/r+u2dnZ0I8EgWBJA7i+6yBk/SKooiMvKsD0/a5Ghl+u1yAgehtVpN7XY7OgXU963VaqXKCKw1rkGFDeo6U02Ee7J+AMXdblez2SxKfzzRlPnziArOmb/OunFpAmw2YBcmlTFzPTRjIamU4Ml6AbDy3KUyDOae97inSywcYHs/GT+cLZ5r1vDJyUmU4gDU/bmmL65Tps62V9zwSJRHbegzziPOWJoHcZnsxfzNznY5bPX6j5SUpy1bthdqz9a1/A5Jn5K89hWSfrwoildL+vGz/0vSGyS9+uzPY5K++dncwIGPVM5kZ0N0Jsw/D0t67do1Xbt2rXR8MRt0vV6PbKEnpQGG2PzT0mhXr17V3t5eBFX9fl+9Xi8CZNciwyYBHJ09JuTuAAFgSViXDZdqBmhLYeHY+Al9A0YAxs4eSiqxwABH7okMZDabxT9+LQCXtAV3VKbw09C4Nqwb4BHAx3WRfwDGvPyVtGXpADXoTbku4+JMKuF1gDHsdb/fjyy+a0L9sArmC4DJfEnbRE++R/9ZR2hTKdfnB4ugz/XkNXfAYIupgtHtdiNAo7+A5263WwJ8/gfAyh+cMsadY8C9mgSAlGfI2V9PuKOvgEzWAOPE9zjsBUeDSiGpjtn77ODe9eE4U/5M40z585k+/y4RcYafduNE9Xq96ODCZjNXLtny3ANPvEVfzfrwyE7623VJ7Dt0l3+zs10u+95/9PczW5wt2x2wZ8UYF0XxEyGEVyQvf6akTzz79z+S9B8lffnZ699ZnO5MPx1CGIQQHiqK4olnuk+asc+m7iyypNLfbPQkVTUajRjydqaOP4S2AZrcj00ZFni9XqvX62l/fz8CMA+H+2Ea0vb0r06no9VqFcPeq9Uqlg8jvA7odtaWGqwAI09Gg5UFcLiMwk8H81JbvJ/qtGHYYCcJd3NNZ+wA6M7mAuba7Xas9AGoRZPKgSaule33+7cxyui2XdssKTocAByqC+AAAbD4DGuB8el0OhFQUeEDp4W54v9evxoQDsAisQztr0cxqNAB20y7Aaq+JgDS0laugTMEGBuNRvHztAsnDuCH/IJnwuU3gH3mnP7x3Ljm21l5f5ZYG4yJJyA6SHYQjqOBc5gmqtF2vsdaZlyLoigl36UJcClb7AmjgHCvRsP65dlj/F1iler2Yfn5HeG5ow2eMMu/uY/rpC+TvVi/2dkuhx3+sY/RTnjLRTcjW7b7wl6IxvgB++F8v6QHzv79sKTftM+99+y10o9sCOExnbIT0brdrmq1WgwtpxniHqIF5LH5dTqdCNiGw2G8pm/OsGBs4BgbNvIAEsw6nY729va0s7MTAQXgB9DgDBubK6XWCH/DLpLQheaWttMv+uOJhLDOhKidXR6PxxEcS9vjpqWtntglBeiCXcrBvbmOgxdJkY1FVkHSWKvVUqfTiQd8AGAIV1cq2+N3SVKjnFe1elrea3d3N4IT18u69AMgShk6GHk+y/8BVi5PQcs6m80iiMbxQD/u7DRSDJwrl7ukII37Mu6pBt7XH9/DMWBNA0BhX1mXPp6APe7nlTl43zXKDtJ9bl0qkGq0aYNLGACOAEuXGQGm/Tn0ZDqe1+Pj4+g8bTabmLSIYwFL786gRw4A59yLZ5kky/TZllSqasIYObPurLRHXCSVTll0SRFA3KMLfB+H5R6xF/SbLZV/t5tq372WZntO9t1f9bVqhO5FNyNbthfV3rac6Yd+/KP0Kv3UHb3uHUm+K4qiCCE8J6FdURRvkvQmSQohFGhXPUzKRu56XQ/BSrotVCyVQ6mABxLSJEUgCYhDWuDsNCB2MBioVqvFUmAAVNdo1uv1yFZTng32EbYRHbIzs+lGC7uafhZA5aF43mezp+1s4v5/Nm9YP4AuDB0MMvIGvk+I24GxA7Z2u61+vx/H1pO/PDzO3ALeqLSwt7cXGW80uoT/AaW1Wq3EKNI+2uqVH3wd8Br1plkvXh3BwawzgYA12uAaXdeqOsPp4NdD8M6guq6ZMWZO6ZdHIbgm7CRrlggDAM4rofghLjChruPl3jhgvoYAmV6FxJ8/Z4/T59RLyzH2VP3AueMIb67LOFOWD2024BV9L4wsa9pL3XkVEBxLB7uuwef/PFMAbN5j/t3B5L4upcCc3b/X7Pn8Zp99L/5u98P+5RNXvwTtvV/5sdqt3FlgkC3bvWA/Mv0wverL7/zafyHA+EnCbSGEhyQ9dfb645Iesc+97Oy1ZzQHVvz/vPelss4QUOTgg82Oww8AXoTyYcn4PJuwM1SAUBihzWaj8XgcPwd44KSzer0eD//w5Cs/rcxBUxpmpoKFAxb+AHx43ccDkOAgzOvz0n/uBeNKnxg3tMCe4IdO2JO2aGO/39fu7m4sVwagOT4+1ng8jiXNACez2Uzr9VqdTic6ErTZw9PIXAB/nkjFGMLqO0PJdRhLak17+J3IAP1kDOmTy1tgSFkbzu6n8hyiCqw9ZAJIQBhHWEwYSQfnzAXXQyvvFTy87q60Pe2QNeH1tF3/6g4An0V2w7x7XV8HiOdVfaD9tI91jmQIln61WkWHEadEOnUCZrNZdDhd64+D4Eeas6a9NrH/PjBX7tQwn6nsiftUKpUI3mGiHey7pTpxniUciXvE7vhvdraLt3/42Ddot9K66GZky3bf2AtR6n+fpM8/+/fnS/pee/3zwqn9TknDZ6NVg3Vi42Pzc32kM1+uLWUDRh88nU41m81KEosQQgTADjZhzzzU7Al0gGMkAx7qdWaZZLzpdKrxeHybXEO6nb1yoMnmTZ/SMK8zd66bdV0loAMGmFAvDLRXXuBebPgAQELlMI5eeQIgCjO4t7en3d3dWDOZpMXRaKThcBiZ3uVyGWsZr1YrtVottdvt20AI95RU0vA2Go2YPAVjClvoAAVAd3x8rMlkEueBMQGcObMMo+nJaYwB7CTrxMP0IYSYcAdj6evLE9VITGNdOgvvTLc7ZRy5vV6vI9NarVbj2DE2foCN674xZ7nprzP3OH1IdBqNRgnQsw4B4B7x8HYCFgGJfAc5S6ojP4+t9TUMoGW8cdxYty5lYo15aUDXn3uUxJ3h2Wx2Wz1inBD/4xIunAccTnfM7gG7o7/Z2S6HfdHf/7M6XM8uuhnZsr2o9svLuf7R3//Uu3LtZ1uu7Z/rNGnjagjhvZL+uqSvkfQvQwhfJOk9kj7n7OM/qNOyP+/QaemfL3i2jSF5zEPdqTyCzdrZO+l0Iz44ONB8Ptfh4aFOTk7Ubrc1GAzU6XQkKW6EfgKZa5ldLwiY8MNC2OBdioEsoF6vazweR0DoofY0Gc7ZKICmJ365FAEGEVBYFIVGo1GppBagADAAc+aMJMAF4ACj5uN7fHx8G4CCfQMAtdvtmJTIiXdFUZTA3sHBQaxBzPePjo40m83U6XQigPV6uIz/2XqLoA3taSo3cGZT2jKOrmdl/DxRi2s6W8x7Hsb3CgeMJQA6hNMDYqhIgQaaShBIgnCEYK0Bmzhb0rZsHfMD4IRVxlnxBDMMJtwPyQDQM64uO6JvLuPge8hzfH3SBxwF2kdNavrP+mW80mf1PEvlTrSZ58bXiFdLYW7cQeY7Dmz9t4E++ecZP2eJPUETWQ+sujvL/P10fbsM9mL9Zme7ePugr3uzxn9mo72Lbki2bC+ivfPkiq5/05vvyrWfbVWKP/o0b73+nM8Wkv7U82kMG9h5rJ7LK1xW4EcF37hxI4Znw1l5sH6/Hw+UgEVutVolhgrwykEVAGQSxjyxx5ngavX0aOZ+v68QgiaTSQTFUvl4XGevnBl22QKAnxJknnAHCAeEwe4BSrwyAfeA/QPMEdL3Y7E9NO4gjbbCjrvm+qGHHtLLXvayeEAJIAJgCFvN/3Eq6AsSDal88uB50hSYatcR+zHDtu6iEwDL6WF7nA4YYZelAEA5PIPjrfkujhBh9Ha7rd3dXfX7fUmK8pxUH8t3kSp40p9HCjzpEFCMFIc1Ryk4l8/AXLMOkDWk8hBkJC7P8TaQ7ErUxTXsDkaZDzTjVAjxkxz9JD8/VIPvMY5pTgBVJCSV3qtUKqUoD3PgMg//vDPQrnt3AJwmDXIfpBfStoY2+Qk4MlyXsXLH9zLZi/Wbne1y2B/+8r+oH//av6d25Z5JBM2W7Xnbu04m+ltf8cXq6GfuyvUvzcl3bDCegARoTAEQn4GtAkh4map6va7r169rf39fkjSZTGI42nWvkmJYvNvtRkBEyNRPJ2Mj9NAp4fT5fK7hcBgZQ0DxeRsoQD5ltTCY2uVyGduBA+CHSABK0NzCLsPs8j73nc1mGo/HpYMzuB+sM8AQIARYAEj1ej1du3ZN169fV7VajaBwOBxqPB7H8SmKQsPhMB6AQh84VpsDVFxKQPs5NAMngXWBBpujmplDAKOHwT18z3dg3B3sIYEA3MPKOsj2REAAIZKFVNPuyaCwrcVZhQXeJ2IBGw2gZixcH+3sLgAfLTMMNu11OZDLVLxNmDtF3k9ANmsYEMn6cwDPe6xj2j+bzWLlEtY6z3Sq1WVemTfXbLsD4A5bCkQB5P7b4M+VS5f4LmsLJ9LHh+fL59rL7bl0izHKlu0i7YE/+S41Ql6H2V4aNtzsqPM9dwcUS5cIGMNuegUA15x6hj6gjk0LVoikOvSvV65cUafT0XK5jIDQE5BcQ8iGDKjg1DEADMDJtaAArvV6rRs3bujGjRtar9dRekEoH+CFFhQQCkgADNEGPg/IcXYP0EJpOgdX0inT5cfxOkhwZtlBBu0BGCLvcDZeOgVTu7u7unr1aqy7jN756OhI4/E4amABv8hjqGCB9AMnhTZIW2kATJ8nV8IaMkcwvDDnSE8ALtSiZi4BkMy5l+7zusbMKwDL9ew+91TcwCFxoOlA9+TkRJ1OJ+qFnfV0uQF/JJUY9c1mU3K00pJ6AFln913rC+jl3zxH6GVpe6rb57Opdpj16MmMzgYjqWB9nqfTddDqDDftd0DtjpP3w2UYOEkAXMbAozv+DPHs+xy7vEXalm7jmfXETP/j0axs2S7K/t4rv0fVXK4t20vAnlpP9Zf/1zcq6L/etXtcGmCchlnZbAAsgDQv79VoNNRut2NCU61WiyDkypUr2t3dVbVa1eOPP673v//9WiwWETB6gp+0DaXC6HEimeszndV1gLNYLKK2GPDoekbYTAAnDB9lvwBS6GoJ3cN8I+ngM7u7u9rd3dXOzk5kRgHtzhqn1RYALYAT2gOzSlIdbG1RFGo0GpG57na76vV66nQ6UcdLwh1A0Z0J5pM+oJMej8dRcuFgE6ACcMbBgJ2DaT0+PtZoNIptxpGg8oODX6/E4YxgGspHHoBcwEvgeX+KorgNpHNtnBmAK2ONHnk6nZbu61Uv3PlIw/xeuYS/WTfME2vZy5fxWfripdsAuC4xcIfPATCgFjlGyrx7RAdnkWfHnQqvXezyE5fFEAnxCA3t5Dlk/NJKFunzmUqwHDiniY8u+3BJC2OA7MXrPSMZysA4W7Zs2e6+zTZLff6nfZHCf7t7oFi6RMAYkOMAmE3bk88ARIQ30fsBVHq9ntrttvb399VqtTSZTPTUU0/p4OAgXh+mECbLE70AgWyUbLh+ZC1AAbZ6NBrFwwy4HsAM5m29Pj04QlKphFgIITJbrr2EvaItsGcwr4PBIGbjAzDQoXJEMayjZ+W7xtSlACQaOUO2Xp+WVgvh9OQ6JA6cVgcoBuTCbqKHBmBTUQLtbnr6mmtxYREZZ5fH4EigXQakenibuZK2gJJ7AHSk8qExOCsArbRihLQFYbQRwAu76cldMMkcR4xEx/+wbtPa1a5hlRR1vIBl+gxTC0gF7LJ2cCAcdAOAPUJC/5Av8CymzC7OAI7MbDYrRR4AnTir1K12lhw5AqCeUmmsdZc5AZS9prJXg/EqJP6ey0joKwyzy634HuNAMmeqOeZ3gHllHFhrHOmeLdtF2Rt++UgPV/NhK9nub1sXG/2h3/XZ2rz7V+/6vS7NLzobOmDTQ5wkY3m2e6ohRBtLfdxu9zSsdHR0pKOjIy0Wixg6TuvCenIaUoQUxPqJZYA0r1xAKS1nPwHKgE3fyD37nWRB12sC4NvtdolBhIEFTHKABRpa7kN1DsbVw8bOcgESAC0AH4AH0ogHH3xQe3t7sY9+fLW01W/SfhITW62Wrl27FoF1CCGCIsC+64F5zSuE0GecCJdo+FwC7PwACMzBEnMIIG02m/GerlPmfT9wxdnlarUaPwtg9cgCoJh5dmeJfjpzz7zwfT+aGQOU8X2eD9cPO5BkrGGW3Wlx/S0SGthUr6bhYBIAyTh7AqmPLd9hrryiBu3CuZHKyZM4fIy/zyMMss8Ha5r7e1sklSJNPAewwgBf1627g0pfF4uFJpNJdOD9vj722bK92PbvP+GD9dk//0t6WS1LKbLdv/YZH/kGrd7/Gy/KvS4NMIa5cWaMjdwBFSyeA0mAHJs2oAWJAwyfl6Pi2oA3au06YIHZdC2kh865JsC31+tF4O1MIKwffaC/Hv4FkAC2YOOc3Qb4AigAFw6giqLQeDzWaDSKgAQZBYDBnQMAMAeeMDbSKbinNu6DDz4YtcXubMDGeZUHxo8kvk6nE2UH9BlQT0ida1CdgEND0AUD0AA4ODGeXEcIHjYVR8KTq7w6BEAMkIQBeBzsY55ECAjGOWG9eOQA6YCzlO7gOVBGcsM6Yz5Zv6wd18fCBvsRzi7RYIwAkshavMoHAJC5cVkHr8GM1uv1KJ1BD+zJhO5wudPCGvfoAM8IkhovwccaIrEyZfvpD3KLVM4h3V5BwpMA+b3w69Jm1nIKinEUuF4ahciW7SJsffOWNs/8sWzZ7kn7tI/+NG0Oj7SZPvmi3fPS/KL7ZubAAEDJIQmezNXtdiM4QErBtY6OjuKmSEgfUOQh516vp1arpfF4HO/pjBrgDwbRgSR6ZSoj8FlP+vFNHFCeOgCuffVTyABD3i5JGg6HJZDQ6/WipACwBrAAaEjbULXX0wU4Axxoy2w202w2U7VaVa/X02AwUK/X03q91s2bN3V4eKgQgjqdTkl3S9IhmmqvdYvDMBqNdHh4qFu3bkUmv91uR7Dh9Y29egHACikBIXvvW6r5dAbU9aLSVqvr1RAYv5TZJ+SPpMcrjkjbsmqMKRVNPEkLA3gyf65VB+ghh6AdaHEZH8C6H8RByB85icsoAPNoz89zjkgk9IiApBJYpo2z2SyuUb7vkQZn0DG+x/rgXjxXOJw4PzD4AH6cJOYbc7mEG05nmkAJO857RISm02lJTuF6ccbT5R5ci2hLtmzZsmW7c/ZpH/eZWr33PS/6fS8FMHbGzqtESNuw8GQy0WQyiQCY0+bYDCeTSdS3AlL4f7t9qr/y5BxpC1r5AxuM5tiBqpfNAhDDNnvY3UPhnhAFyHF9KWDHWWlJJdkFABP9MIDC2TkHfA6maAubOcyefxam2Zl3wu+TyUSdTkeDwUAf9EEfpCtXrsSxXq1WkU0mKRAAAWAkfA+zvVqtNB6PdfPmTd28eVMHBweq1Wrqdrvqdruaz+cRQMMqsj4A9JSFo9qEH9jBvDO3jKFXuJC2jDBa4NVqFQ+BcTkIn91sNhG845wAjNBvw+p6JAPw7PPlNZs9Qc6Pk3ZpBYmm/jy4HnY2Oz3xCnDG2OHoIOlxJ8IdIQeuHqXw9evjB4BcLpe36at5LugT88JnxuNxqYqFjwHAmPUCAKauMpEU5pb2Ma4OVs8znAo/BRA2PF07/lvBaZokdfrhLTzbGRhnuzALQf/7r/+sHs0yimz3ia2Ljd7wOV+o8JO/oNNziF58uzTAWFJJLuDsH0fippnrftQzzE2j0Yhlu2D42OgBEbC2MEewTYBFQMRkMomMFff244l3d3dLTJWz3I1GQ9PptJQFD2CazWa6efNmvJdLADzxDjbS2TQvK4Y5w767uxs3eTZ9Zwm9jbCS9AsHYjqdxuObSZq7evWqut1uqWYvY+d6S0+iIwlxOBxG1vOJJ57QzZs3NRwOtVwu40EelKljzp25lVQC+uiBAb84C57w5fIO18kyXpJi4qAzsawdrx5BZKHX60U5DKAMUAvL78DQtcDOWjKnLrPw95kTgLvPP0CT61IGkPs6S4tW3bXwaSUQ7olD4Mdb00+vREHCpTt0JMniGHhFDYA2VUN8PDCeeR835spZYsab1+mPO4KAY8aTdjJ+/PGIBOvDfwNwxIhOMKa+Nv13KFu2i7DH3v5OfXRj56KbkS3bC7bj4kQnxVqf/tifVuMn33KhbbkUwFgqn04Gs4luE0YOq9fr6vf76vf7cZNuNptROwnL5Il1rr/cbDYRSPvmXq/XIwgkHA1YlxT1svzxygok/9Xr9XjAAUDcmePFYqHRaKTZbBY3VRIOOXmNthImp8+AFACYJ0cVRRGvRZ+90gIADl0rumhAEqCYwzomk4mkU3C1v7+vwWCgdrsdgRgAimO2GUMS6QAnk8kkgqNbt27pqaeeipVFAOmerOXsKUw0jgWnGlKVxJ0ngJ1LRJCJ4BAwF5IiqwqABgQBsAHAOC+MK9fabE5PIByPx1qv15E1BFwB0pw1BlClulbWj7QtVwjrjswD8Mna8KhIt9tVpVKJMgfmH1mPzwtVS+gfzw+OEa9T7WS1WkVHjz4URREdOk9KpT8+5qxTP21xZ2endDIhBtB35tblOZ6s544y48Ka4jXXkePEwTz7oTt+HS9Rx3zyN84d/eU3JmuMs2XLlu352+F6ptd/9V/QtW/5KTV0saBYuiTAGOAD8Gy325E9dGDhFRsAoYBDmGE2LpiylAXy0lVoLtEGNxoNDQYDdbvdCNAAlgAokqu4FjV1YUhhAh30eR8JdcMkAzIJ08KeOeNG6BcQQ9kzNKDcw6sFAMQ9AQzg5Nn4JK41Go2o/wSAtlot7e3t6aGHHtKDDz4YxxVdMcdAM0fj8TgCaoA2zkGlUomVKGirJ315yTfmDIaQseZeHGAibaU3Dk680oNruN08FE6Yn5J3HiFwWQRtZyxhT12i4qx2KqXwJE6cEk+A436wkmiJPeKAdpe5J/mNe/GMOHMNK833qcLBekDHTyIc/eIe9AknhLWDI0dfeBbROjN/yDaYE496APT5rJc/4zOebMk44pjBKLukwueb8UCCxfPH2JLk6aw3Y+fmSZg8k0SOnk6+kS1btmzZPrA9sZro93/jX9YHfcubL7op0S4FMJZON3BqELMxOhuLAYwBMJKihhfmEk2uazqlrf4SBhNtqycCoXMcj8eSVALBgACXOozH41iVwCUhAAQ+C3Dxcl6u65UUmUoAFOyl1w1mfFwq4QCTPkrbUnReUgwQBihm/JBBwBbP53P1ej3t7e2p3++r1Wpps9mo1+upWq1qOBxqOp2WKjKMx+Mov+j3+xqNRqVKALT3POAD0Ab0ML+AoclkUooEkPTocwQ4SsvjOdAFtOFE+EmELjVhXJxZ5XVO+qOWb7omXAaSap2dgWQ9AFiZS64B4HTQ66F8IiU4HS6ToO1+WIbLN/ygHEA9wBTHiDWMjAJw6Rpdd7y8bjZANo0EAWzd0fU1CuhkLFnL9MF/B3AI+Jzr5V0X7bINH3d3lP159ecRh93BN+PKOvR2ZcuWLVu2Z7b3rib6+ePr+vJ/8kY9+rcuDyiWLhEw9goG0ikoAaAB6vgcjLHrTD0su7e3p263Wwors+GfnJzEpKF2u612u62jo6MIllarVQzXw8wSQiZs6lnsN27c0HA4jCAGUFCtVkvso8siYK48IY4N2LW6gK5qtRoPEaEkHPdwIEW4ejablQAejKGDVL8G4e7JZBJP8Gu1Wtrf39ejjz6q69evx74hERmPx7p161Y8cZD2Ig/x2rHIUTxB0UuO0V7q7VLz2KtTcIAKunLXeUoqjTGg0Fm+tJoB68blEUhMms1mBELubDBv4/E4JmORqCkp6mgB/AA/l3swjilAI6rBWnO9L8mOnuiGc4fudzqdRkfKNcHeR/rpshHWOMDUK2Ogw8dZo0+AdBwSaesQ0EaX7jC2lUqldMoi8+EgFnDqUhKPungyIE6CJz8yb4wBvx0+Dqw7HELM9diMswNil+z4MdHT6fRO/ARmy5Yt20vCfmM10Sf+u7+gV/+pn9GjulygWLokwLhSqajT6ajf72tvby/KE847chW5A9UBeB+2Ci0smz36RBL4YJVIqPLDERyQppUFXBN7fHyso6MjTafTCFhhw5AEAFyQW4zH4wiCHeQDGAFJUllv6ify8T1PJAPMALj4f7vdjiysa2kxAIUfZDIcDqP+dzAY6IEHHtAjjzyiwWBQ0vDOZrNYHQIwxDx6jV9C8rTbWeu0L85eo4FFZwww4dpch/Z4vWmADvPFZ/zACAAw44CkAvDmACi9BmvJ9bI+ngAuWFBJpfWbzgF998oL6N2lbQUNZ765HsCMQzRYs14dBRDIumK8PdrAugOUp7rjoigi4wxLizH+PiaMhSfKSdtDTnjNIyau78UR8n464HWgzmd8/QOKcaAA8Wj8+bxLIGCaPcHP+8EYetWOzWYTHe5s2bJly/bM9q6TiX7vD/15veZP/cxFN+Vp7VIA4xCCrly5ouvXr2t/f1+PP/54qSA/mx9JVbDFzu6yyXoJKUmRQU3DxiQU+SbLNWE+AReAKlgidJgw2jB4sEcACyQABwcHms/nsbwbzGuv14sn+gGgvWIAIJ5QPoCHBCUAO44FyVBpeNo3dsaGSgqezASIQGbyspe9TIPBII4L4fLhcKjDw8PI8AIw/Ghdjm12AO+sqc89CXbIYLxkm5fUcr2tj7kzjmnJNmnr8MDeIgVw9pC1wH3SpE0YTKIOXurOK0r40c6w2n4fl4/QJq8I4oDegSHg3Ss2uN7YZTcws75OnP1mzbhUBVBOkh7lAQGqVGBgPbJmXYYCOKUyCa+l65Cx5ZlmvHCYvCIG7zG+zL+0rVLBe0g9UicDR8XXqieQcl0HxavV9uhxf3YcvLMW0iTCbNmyZct2u/3GaqLf+6Nfptf8yZ+96KZ8QHtGYBxC+HZJny7pqaIo/oez175W0h+QtJT0TklfUBTFUQjhFZLeJuntZ1//6aIo/uQz3aNSqejRRx/Vo48+GkOw1Ep1fSCJZ3t7e6rVahoOh1H7id7PdbWEWmGTea9arcZNEfBF+TI2d0klYOYyCrS1sKFstvP5PDLI7XZbs9lMo9Eo9oXPITfg4AuAxHK5jEdAE8qWVCqZlSY0kSBISJ8kJweP5zHUMKAASfTAAIsHHnhAL3/5y9XpdGJlCem0hvHR0VEM76PJlsoHiHA9l1QARiRF5g7pgldwQLMJkEW/zb9JsATMoPF1IIj+VlJJ80ubYFsBQoBlQI/LH2gTbWSMXDqTjoFXr/AKGDDBrEmSGWHZAYdpsqnrtAHZXjfaHSpe93FiPOkv14Jt98oPsLde+YMxZsxgdFn/rG1POpS2VSW4tycGMq9eMSSVUHB/l494zoEz4shRPBmROaFtzvSnOQGMt5dpk3Sbo+QRnsuqL34xfrezXayN//Dv1CM7b5GUy7Vlu9x2uJ7pDb/4eXryN/YvPSiWnh1j/B2SvlHSd9prPyrpK4uiWIUQ/qakr5T05WfvvbMoio94Lo2oVqt66KGHtLe3pyeeeELj8TjWk3XjUA2qRsAWdzqdeCKZb95e/gkwxHXQMXK0LXpjQsOwqsgZYOIAv7DIMFqSIosMw0k5LzZPpAutVivW73UG2JO4XJ8KMAZwUQ8WUOCnpAGCvLYu7YNt5xqc5oVEYLM5LWPX6/X0wAMPaG9vL4Jm2oUGGWmG95/2TqdTTSaT25KwAE8AJcbWEye9bi+sKzpcxsLZX+a1VqtF3S9gzEEmjLRLP3yc3ekA+HB9xovx8aQ41zR7mB3A58lhXIv7UB4QJhZg7EDbJQGMEaDYHUfu5SfTuebYxx1AzzUZP18zOBWe5Edtb4+KcH3u7+PuMhmAMfMKaHX5AuPkjhHv03ZnkL36B0wuzwEgOK3xTH+4Zio3ARizxnGmeY9/OwN+XhWLS2Dfobv8u53tYu2z/uqP5hrG2S69TTYLve6H/qxe89hbtHvRjXmW9ozAuCiKnzhjFPy1f2///WlJn/1CGlGtVnXlyhXVajUdHR1pNBpFxsz1mdRglU6ZSypHwCJ5CSxCoCRN8TlkAp7gAxPdarVKJcO89Bu6V9hfZwYBJIAGSqkB6JrN5m2HdXjSEmHv9GQy+k9SHa+n2tsUjHFNABdaUsANAAGQD1uGDnNvb097e3sqikLD4VCtViue8Ec1Bq5HeN/ZSlhzAI+z6gAKWDvC/rCcOBXStiwa4+ZVBgCJ/X4/6ov5LADJJQyur2VeU71oWl7NGUv64BUZ3DnC3JkDdAGyXSPsCXeMS1rRwqUczk4yLv4ZwCZrA4BPX1zG4ddz1pwxpl3ueFHdAt04iYeMoTO09N1Bayp5cQDNmnZ5iR+b7kyzS1fc4XLH15MLeaaQZ7gEx+Vazkan5eUwnw9YbZd5XCZ7MX63s12cPfWnPla/o/1NF92MbNk+oL3y+x5TOK7oNX/2py+6Kc/J7oTG+AslfZf9/5UhhP8iaSTp/1MUxX8+70shhMckPSYp6oLH47GefPLJUqIZG6knThHmBKC5Rtg3PF5jI3R2UdrqPJFgYB6KhWWl9qtv3DB8MEwceessHYDSmd1UNkD7AfBoc10PDNDgjwM439QdkPhx2H59gJWHln1cSF4E5ANQAP+e0ITxGeQjAGKALv2mL4ApgDkMv4NRQvsAcO7hcgl0116VwUE648V68gQtN5dhALY44hhmFGCEvha5Swr23FnyZE7MGWHGxFlgTyL0deL6auYKqYzr1AGgzlD7M8R1PaGM58TlF16isFqtxiiDP0usOT9t0hl3Z/49kdGrPVDNw9llPudzzXgBlj2S4iDaJUbO0ONwONvMeKVlIhkTny/uhXPla/setBf8u91U+7yPZHsR7GP+2M/r4/NJ5Nkusb36H3+JXvPlP3XRzXhe9oJ+0UMI/29JK0n/9OylJyQ9WhTFrRDCR0r6tyGE1xZFMUq/WxTFmyS9SZKuXr1arFar205FczbGj3AG2Hk4lJDpeZuWh0n5HMCFTZdN1bP6YUUBiuhqHThTXxig7qFZdL/OUMJgOTAK4bQuKiCadgD6eQ3ZB6CJz3jpLhgwQDGlx2CRYWhh9+ibJyy6ThuNdlEUkREnxMw9YdDm87kmk0kp89/DzM50A3q8hJxLM5whda2r991lDjhJzsSneljAn7RNcktBJW0D+HnJL+aL+QCQueSFz+KcuYPH/Vl3qSSAseDzRAsYf38eXCLj7KmDYpd7sEY8gc9lFM4W0ybWB06h6/49Ec31zF7dQSpXlGDcGR+eA0/8pN2MM4fvSCqB9lQb7mx/WpYwlXjwbxxIpFJUPPF2uFafdYlj7nKZe8nu1O92P+wX6fvZsmXL9mF//4161VdfvjJsz9aeNzAOIfwxnSZ3vL442/2LojiWdHz2758LIbxT0mskvfUZrqXJZKKbN2+W9KuAFNhJjmH2UCngixPA2Ew9E11STCbi1C5pyxi75hFQiBaVJDlKYtHe5XIZ5RwpMEjD5M6cUQ2DNsA6AlC9UoFXDUC7S19c5+pAAxYN+QPX8KN2zwOjkmLZOQcbgAfC6CTRuYyC+RiNRqWjfwGWtM9LXwHmfNy5N/eFrWS8nbnDXDIDgw3LKKkEYgHYgFbXiQJuWDO0HSCEfIZrArQBRjgb9BPGHvbTQSmJlq519SgA84JzwLy4Zvc8UAbw82Q7dyy9RJ2fguigj8+TKEgkZTqdRrYY54zkOT+mO9UEezKdg2TGEIcAh9SlKy5zcIeQ/rHGWC8u5ahWtzXCXXOM8X8cbp4nl5GkrDTrxX97HKTfC3Ynf7ezZcuWLbXf/rVv1CN/995kirHnBYxDCJ8i6S9L+oSiKGb2+jVJB0VRrEMIr5L0akm//kzXK4pCN2/e1I0bN2LSEBvR2XXVarXi4Q4csLBer6M2mKNZ/dhgDyV7ohebJcwPQBxwDXsIMCBUD5u0Xq91eHgYpRN+YpvLGhxASFvWu9PplELilOtyiQIgBpYb8CVtQX4IocS2OSD3ihfT6TRqJj1Jyh0H2gigBsTM53Pt7OzEcLek6GBIKgFjHATGE6bPtbM+Hq63TVlv+uTVExgPNwfMkkr3gfFG5+oadECXh9jpk0crHPjATgMCAUZIabzKB/NG/3CEYLd97XufYfsBlfTbZSjuyMEQOzPtunxPSmO8kET455hLgDdrP00iZUyZWz+Ax+UOrCln2H3sU32zr00H9zgjvObSKoC/R0DOc0zRsLPm0YfjLOEMwyZzP57RVNbh65C+3Qt2p3+3s12c/cpf+3B9zzf8iv7n7m2kfrZsF2av+6ov0YNv+hmpuLeDSc+mXNs/l/SJkq6GEN4r6a/rNJu5IelHzzYqyvt8vKSvCiGcSNpI+pNFURw80z02m40ODw/jSWoeIoZl9dPQOOmrUqnE6g4OoGBcAQlskp7U4yFswAtAADat3+9H3eV8Po+h1sPDQx0cHJTYOsKvftRyypByah9Al+90u101Go3I+rKxA+gJZXuVDE8aQ0YAeOCaAGdPwAJUOXgFEPhRyoAX1y4D/mG8YUcBxF7lAMDiIWtnMvkbRs4POnGHSNomsQEw6bszkjCqnuTFew6SHKi5thlnyZlAQKmvEwev9JEqHLzHmqXd3Hs+n8djs+kD4+IOgyd1YjhgWDqWrCfGzJ+tVNdLVRPm2nW4JIwy1kRGSNhk7EheRVIAO+vt41lMHQycEZ8r7u/OWuoEsSb8er42XIbBukXqxDwAzNfrdaxk4wmMtN3nI70Xn3ed9GWzF+N3O9vFWeOH3qJf/9prOpWEZ8t28fZRf/VLdP07f07F5t6Slp1nz6YqxR895+Vve5rPfo+k73mujQAYUzCf8LuDDA7CALRKWw0rGx7saa/Xi4ddUP7LAQPAjzA8x1E78JZUShyiDYeHhzo8PNR0Oi3pbF1D6iFyWETAuifD8X+YRRKsaCv981JingTkrBagrVbbHsSAoav2a5w3JgALD+sD9vwgCAAh7OdsNoul3wC6sJ3OHqZJZSlohRFl7DCvPHC2ziKQcV2t63MB7KkD4CwgYwzb7olszAX99XA884y8BAkJbWGsaTf3nUwmJTmOA23+BqwCzvjb9c8OIGkL7bRnsTSOALvzxtM1x8vlslRKcLFYxGgJn2XsuGYq7eHZYq0BJHG00iiI63id2UZK41U2HERjfI5rMmY4asyZO15UYGENMaYpYOf3yV9zZ/KyAuMX43c728Xaj3/u79Trvvvden3r3gci2e5t++i/8iW6+s9/XsXJ5azr/lztUqRTI1XwZCU2ODZdSTFcjZQAWQSsKcyh63XTWq9+T5guTvkCUMHMegJTp9NRtVqNQIjNnU0d5smvCxBZLpdRpsFGD4Cl8gGJfc5wA2CQVzSbzVICEv1B9oAcoNvtRuCWsqtPB64B84vFIh424eWtnG0HcEwmk5h46NIFaRtOd10zTGlRFLGKgR/44UlaHjKnv856wkg6w+sl7gBcACZAUaoZlU71zR4tYB36tR10AmTX67XG43EJ8HpNY3d4cPrcYB8Bci6HcW2uj2saTcEAn+lnpC3wZe7RD7scxyUSgFNAMcmUrCO/flpuzv/tkggHj9wXRpfn5+k03Hw/Taajzz7HjKsneXpJOdfgs07ccUzBruulfYy9P5cRGGe7/634L7+so3VHmTXOdlH22//mG/VBP36g/V/7eRUW0bzX7VIAY8K7KUPnTJ7XFEbiAIBk4wYUekk3D306m8Tn04QbAByAjc16Z2dH4/FY4/FYJycn8bQylz9gAC9P/HPw5QAeoAxAALDQBwdEKcsJ0KTtKfPJa2k9VkAF4NDZVJ8PmPJ+vx/7AkMMI0uIn8M1pC077MAMIOkVBKRtWTAHnw4+UoDqbfWEOBhogAwsPX983n0sGC+va03yJuuG77MOAJNoV/2+6XVduuGOjjPJgH1nPUnQS9nLpzOXVqQg3u/hsiLm38vUsU7X63VMLmUsWYcpu+4MrjscGPPrSZup9tiZYtrJ+Dlj7FIbPsM9WUvuDLusiX6g9/ZEQJ5jbxdj4s4lY+1a6HutKkW2+8e+/ff+bn3wf/7X+ggrnZkt24thH/5336iX/YOf18aIk/vFLgUw9jA7ANCBIPrVavX0hDwP9brGdn9/X7u7u7eVuEIT6+CF1x30eNi11WrFUlXcH/as0+lE8OB1jWkPIBAZSLVajVINzKUAlMGCCe90OpG9Po9xgzUDLACGAMGu0fTQrwMkAAoA1rXWsPdopvkskgGkBgB3StVxT8A8INgZSQelzvABMlJG0tk6B+7O/KL95h7OLDO/zpDTX6kMYP2gERh+xt4lGw6cAFtoV9GEcwIjiW7Mb6qvlhT75eXcnF32OU7XQpr8lTLurBPuT/SF9c5nuD9zzby6JAIHwp0b2oqkydleIhDr9fZIadpImzabTWSQXYvebDZL69ZlIO4o8AzxnidbkjTqkSieMfpPv9Lnyq+Dk+Ta41S2ki3bRdjqvY9rqdu1+Nmy3S374O/6k/qQr/41PTx8qzb3iXQitUsBjNlYUqkDG+h4PFalUtFgMFC73Va/31ez2dRsNtNwOJQk9ft97e/vRxkATJuXAPOMdTS/kqIWmc2v0WhoMBjo2rVrkcFDTwvg9XCuV2hwjTHAqt1ux7aT0AQryMbdaDSiNlpSrM4B6GdM0Go6Q+g6Z8YRHTWggLA18gJAMfdno4cJrtfrunbtWpSZHB8fR/aQ9k2n01JFABLYGJudnZ0IDAGy0vZQCqmcNOavOZuIE+TsuSe1MTaeWOVMJAmPAGIAH/ND35GFSColSXJNDOcAIHlychLlFH4kOSDKGWHXn3siJECcsXM9tQN9N2feXd/O95gL7uF9dUDJ50kOdQ05a5XIBPdxiQhzyvpnPlmnXp6Qz/jJcZJK65T7sB55NmnveREFj/Yw7+jcPXKCQwtg94Q9HD6+g513Px+3Z2Lzs2W7m/bXP/R36x/89x/To7XuRTcl231sH/qTn6tXfP479erlW7Ve3RuVeJ6vXRpgDHODzpENxxOaAI+9Xk8hhAhoe72erly5EssuSYobH2BY2tY2RWPY6/VKpZzYDPf29nTlyhV1Op3YRsAUIPK8o4ol3ZYhzybPcdaumSSjv1araXd3N9Zp5l4w1GiTAS1eocJrucJ0uc5Z2p6klybDOSBmrAEsjUZDV65c0bVr1yQpJthxHerauiba9ccpwyZtawSn4+XMLGCJdrlUwsP10lbjCsB0SQBrptPpxGPEF4uFxuNxBFowitIpMAPEe0UJIgXcC5DqJdiQPQD+YYppo+thuZczwiTc+Vh59RRnqIloAPxwnIgyMO4pKObeqfSB8cTBgy1GE+1OK+uY9c/R39TLZp5wkJhzvy/XAnw6g+6MONIHqngwJh5x4LoeceKZlLYOLyx+6rjRd19jqaPnwJl7eBJellFku2jbLBb6E6/4BIVK0A+852dVDZlBznZn7Xf9tz+oRz/nl7R5iUTHLgUw9g2djSaVDoQQ1O121e/31el0Sock9Ho97e7ulg5BYFMHiMEc89re3p7a7bYODg5UqVQ0nU61Xq/V6/V07do17e7uql6vR6AIg+YlyVyHykbrmzevdTodXblyRa1WKwJqwAla4729PfV6PU0mE00mE41Go8jQcigIgA72MWW7XAcKwE5rCHviGuPXarW0Xq91cHCg2Wymer2uwWCgbrer1Wql4XCow8PDeK2jo6NYVs+ZTdd3AiBSoEGtZz+NLi195Yy81zambwB6wCGAFXDJvdBwS9tEMk8ohB10VpZ7eGWNVAMtbat4ACJhi2u1WinxjARQIgGr1So6GNL2ZDkYVtfbMh4+tjhJRBNwLFh37hw4iOM58LlxGQH1wHkWvDScjwnrjTloNpvRUfVT8T6Q/tZlDV7hIZWqAJ7dwaUPLkVyzTF/3EHDiWFuXN6B1KYoijgvXN/vwbj5GmBdEAXKlu3CbLNWsZE+9eHXXXRLst2H1nmJlTW/FMBYOh8Ie5iy2Wyq2+1GVhhWFbAMwACkpKweeuLNZqN2u61utxtZ2KIoNJvNtLOzo263q+vXr0eGiQQzQCMsl7N2Doq5j6QI2jqdTkk37OCnVqvpypUrun79uqrVaqxycOPGDY1Gowj6nG2rVColBswTF2H1Uj2ts3GwmTgJLkOoVCp66KGH9PDDD6vdbsfDHQC40+k0HgvtmtGUoeT/jAXWbDZvC0W75ANw60l0zni6tpq+uqyFsa3X61HTTR1egBbtQx8LCGYOU6eCcZfKJ+NJWyadOXHgCKPriaIw7axJ1tBisYiyEQfWsM/j8TjqZmFsAfh+UqG3mXa75AQpCZKaoijUbrejzAfJkDsqPl9pgiJ9YF5wPr2qhstlPNmR6zGuOCfME20IIZSOcvfxd0eHOeIaOF5ec9qlFS55cecSeRJzkyba0SZ3OLJly5Yt2/1hlxIYY2w4sH8kvbmUAc0x2kff+AHFngwVQoiJdZ7Utdls1O/39fKXv1z9fj8C89FopKeeeqrEzrEpspkCkgEKlUqlVEWD8nHINlx60Ov1YjLhanVa63Y4HJaqXThrBaDx+zhw9IQlH1MPaft7AJLpdKoQgq5evarr16+rVqtpOBxG3a0nmzEnjLdXEkiT/bhPs9nUYDBQvV6Ppw16e72dsMJcG1CElne1WsX5Yy14u0h6xIECLAL0+L8DGg//ozV1Z8QBIveFded+sMK8xni5XhZW0iMLyDAAYlK5xBrX81rUJPpxDfqJxpZ2ss6caXfZB89GtVrVfD6PCZZpAqRreJk/1jvODSwskQLAsz/jPC84ZKm2nLlkrgCqPHfpGnedsifqwTK7Q+UOpjuvrFnXnHulCu7J932tA5izZcuWLdv9YZcCGJ+3ufj/q9XT45r39vZi1QkAR7/fLyWTHR0daTKZxJD9er3W3t5e1CR3Oh1dvXpV3W43Mp+S1Ov1dP36dV29elXNZlPL5VLD4VAHBwcajUYRzNTr9ZiU5MlCMI0AA9rd6/XiwSFII0hoo1/NZjOydc5iemkrT9TzU8YALWhE6XcKNr2SgEsTPNzd7/d19epV9fv9EkgB9PA39/DKFJKiLMRZbFg1HwfAdjpeACrXUTO2OBbOZEoqRQc8CTGEEAEcDpG0ZTw9wc31w6kGlc+4JMATtZA3pOXGJJXqAm82m8i8MyfSNpHPJQ7eL/7PGPC5nZ2dOBaMP2DX/6RyGw//E8nAwUqri/jnWTPOAMMOw5rjGHAtwL5HAQCraVk31pKz5YBPl4GkyXb0mbFy4OvOoMuIfN0zRshRUobY17A7kzir6bOWLVu2bNnubbsUwJhwsbM/Upkx3t/f15UrV1SpVDQej7VcLtVut2OpJ0k6ODiIYLfZbMa/Ydp2dna0v78fj0tmE6W+6pUrVyJbjIQAcCydstNsyLB4rVarxBhL2/qoHMqBJAOgByiGZYQB9FrGMJjOVLkUAPPkNwArEg7Cwe12O46xh4/Z3GE8SQCUFOcD8JDqRSlrBugE5KOF9uQmNODVajVqpyVFBwGw6ocyAJAo8+U6ZAAPjJ6PgbSVCwDApG2dY9pGJRHAK9di7NN7YYxXCq4Brc6eA0ArlUrpIBSXPjAfLnlIwbtXdPDkTpfI8FlP5HM5hkcKvCwbzDYVJmCcAZPMuSd1EsVwGQhzAINfFEWpHjfPH/PlEgZ3RtyxSeUrOHbetzQ3gc87m+vSEv/Nwdl15htnAMmT39sjM6nePFu2bNmy3R92KYAxm/F5oK9ararf7+uhhx7S7u6uimJ7Sp5vnjCyACLYHwdVMJoOOmu105rF/X5fjzzyiDqdjsbjsabTqZ566indunUrVmlotVo6OjqKelVKegFoaAv9gMV0DS0AmhA2OlTaK6n0PQCfn/JGWBnwwvVg8Bw0tFqtCKpTcARAA6QzB8gzAEGSIjuKYwAoBojRTgciADXK6/mBGM6Uu2TAAQegxauTAFS4jzP2zmLjHCC9AexIijIM74/LChx4O8ilbWlCmYf1vaqGn1ZIlQfG2wEpLLxUrqWL5pikMcAla8MTVVMQ50wvjDVrFAcKeYWkeCAOANvBJuvRq604C+2MO2sMx4xxO4+9ZbwcKLtcAsMRcX1v+juBeeTAk3Bdg+xjhkyH9fR0yZa0wwE3c5krU2TLli3b/WOXAhhLWwYmDUs2Go0Y3t/Z2dHBwYGGw6EWi0WUPKzX65jUhPaSTcuPn221Wup2u7HsGRtlp9OJlSg44OLmzZs6OjrSdDqNoMn1qZVKJTJiAAM/SQwAy8bpiURIMgD5hLI9JO7aVWQEAFgSpXiNsLikuLnD9HY6nQhGAHi8DgAC8ABA0YrSFoAw14XN9YNOmDcPb1M3FgdgNBrFRDX64CF6SbGN55VpIwnLteEAY5dK+OEMADyvZMF9WW+0F+fH++oygHStOlsJwPMqCK63dUbagRsA2A/IAKCmdY/dscF5wbnhvjgBjFnabm8zTiRzyprzpEnvC8cueySDcaLtPH9+QqA7F56I5zIdf/YdwPI9XwO8zvfcQeY6qZ7YpRAuz/AcA9rvY+YA2Z8Rb0sGxtmyZct2/9ilAcbnMTQAUg6+mM1munXrVjzUw0Oro9FIw+EwsmqABpK2YPBarVYEEGgeO51OTAzjIAvuA3jw0C8hYU/WATDAiFJiDRkHbQAEVSqVyLry/mQyKQF8QKWzW1wX4MjrnU5Hy+UynqLHa17SDIBDn+mXJyK5BILX0LsC3gBCOBKE4HFSXBYA8KWG8Hq9joCahC9K5XlI+jxnIpWr0C/ACk6LS3L4nCdMcW1vL+zuer2OsgeXUfB95BKMEWCL5E5epy9es9hZVMAZINKrTTizzPwB2ljPzij7c5My74yXs96se9aVs918x+/PuuP67gQxP3yXteHAl3u7tMNZ4vMAsQN4IgPuBKS/FT5PqdY4ZZgdSPv6wCk8D2iniXb+zGRgnC1btmz3j10qYIx5ljilpCqVikajkW7duqXJZBLDy57MtVgsSmwxiWAAE0BxChCQUqAtvnXrlg4ODjQej2NbnJ0FxABaXfpARj/AFDYYEAeLCXhD2zidTnV0dBQTtCg3BliXttIExsvrEPspbWiZATZodfk+SXqAXcbovIQzB6CAKEAtbKqzflyP/yPhgJGsVqux7N5qtYoJiYApQIi0PSVNUpxXrpWG/b1yBqCTPtAW5twBGvdA0jGdTmMCmmt7MQfrrvelbdyH+wKccEhYT67T9cQ95sHlMs6Ccx+eF3dmcLBcduLJap64mJbBcwad9jk4lhTlKA6ouZfr0dPEPfrMuLkkgdccwHKNVIJEe1wn778X3n6fa3dw6JtXqUiZ37R9vObm7z8dSM+WLVu2bPeePeMROSGEbw8hPBVC+CV77W+EEB4PIfzC2Z9Ptfe+MoTwjhDC20MIn/xsGuGMDhuX16JFJ0oNXYzNEdaRELiHp/1gBGdw/ahbDlhYLBY6OjrSzZs3Y/1ZQCAgGgAH++oMMJUjqIeMjANg2el04pHVgMFqtarFYhEZathepAYeppe2iYoASuQiAAmvYwtgca0qzKtn7aMrlranfaF9dvBNe7kW2lkABdflb0B6etSyH3vtelSprBF1kAx4InzPISvStqIB93ZWGXbVQeHTAafpdBorkPjcOfBMq2I4yE1lIRhadGeXcU4cALMuAGuw817hwbXlq9UqrneXdMBu84fPOVNN2/nbQSnzARAtiiIeAQ6j7WN7nnyDfnAdn08H4yk4ZQ0wlqm23OU+/PG55Lr+Hv/2Z8i1zv6MeYm3VNbl6yeNaFw2ezF+t7Nly5btfrRnwxh/h6RvlPSdyetfXxTF1/kLIYQPk/RHJL1W0gdJ+rEQwmuKoviAsUbfgDzhyo9CZnNn03cGcTab6ejoKCbbAVgBZrxOgpNrPs/aHeUYTz31VLwWjCFMmAMJBzqSYla/pFJCD2yh12BeLpfqdDpROzyZTHR0dFQCy/SX8fGSX67j9FJ1qf5ZUilsTrs5qQswgJPQ6XSiMwED7+FjDxlT4cFlGs7MSYosrrSVEXAPnAgHoNK2TJhLMmg/7DT3ZJ6ZSweCrst1AMy4eJk5XyubzSZWbAD8Meep3MfBMdpg1g39wElgvJHHSOUwPOuCNeDaYsavXq+X2umOAOPj4JZ1Tf9dt53qkh2M8xmvm4xEyNl1+sTnU6mEA3AAMWPj0iR3hBgLB/wun2BtpL8fKcvrQDm1VMLhgN0lE+n3GS++447bJbTv0F3+3c6WLVu2+9GeERgXRfETIYRXPMvrfaakf1EUxbGkd4UQ3iHpoyX91DPcI4IaT0Jio/byVmyA6IWLotBwOIz6YkqxoXEEnFABwbW+3Icw/2w2i6XgnE2VthpNZAlcH1A6m810fHxcqg6BTrjb7arVakXpANfj/8gnSFZDJ0xIHeBDqbPVaqVWq6Vr165FjSn9kBRZbhhxwIQDI1hI+ull7cbjcal8HuAHZpSx8kMmAGEpMAHESopzCUPNvCAlkbYaVgAfQN7BlFSWxRRFEdlXD+2nrC5aWT8Mw7/HWvEyZkgtXALhAJlKGPyh9Jczya77Zbwpd8c1HPCl8gzGT9JtEQE/KMQ18Kx11zen5jpyXwup1MSdUr7n8g4Hwt4Pl8awTnASvPpDKqtwUOwMszsKtN3lGc4Up9KslC1OJRL+fcYglfbwG3UvaIpfjN/tbNmyZbsf7YVojL80hPB5kt4q6S8URXEo6WFJP22fee/Zax/QYIeRBUhbfakzbGzUACdPlptMJqpUTg+S8HDrycmJer2eWq2WJEUw22g0SiwvyWHT6bQUZvUwOsAGBhuZAgwr7JekKIkIIUQQx8EgrVYrggNKzAH0act8Po+gkOuhQ5YUZRkw14Abxsw3edrKtQiJM97OyI5Goxh2d6AhKSanASwllZhNdzpSq1Qq6na7EbCv1+uSNhrA5I6MJ6dJ2xC5a15dNgPAdM0o1/AEMsrtSVt23xOvGG8/VdDLcjnD6lpidO04GKwd2GnW8WQyiTIS+pb2xTXLjNFsNivVGsZpApyTnMea8FJljJ1Xs2DdEGVIGV6X5rjzClAGdNMegCQOFYDYowkpKAYs+/h7xCB1vADKzhKnbHIqwfG1zDpKf3+ejl3mOh6hOg/430N2x363s2XLlu1+tGfUGD+NfbOkD5b0EZKekPS3n+sFQgiPhRDeGkJ4q6TIlvZ6vdOGnVWkGAwG8TADNlRPTlosFppMJpGBhO1zWQEJfM4uAlQBGvybezjzxL8BxSTMAQL8KF5PDgIgwLDBEIYQSuy0SwxghZ0VpFzabDaLAAXJSJzIM3Dh7DqJiXzPS8ehg+52u/HUvaOjIw2Hw9juNJnLNbDO5PtYAM4BM1iz2YwOAuCW0nOw7oA2TmRDj+yHcTCvx8fHkVmn/4Awry/NugJoo8/ebDaxlnJRFCXZh7R1JqRtmS6fD2c7JUWHBNAOUEvHZLFYaDQaRS0zgC+tpcw1+Jsa0ABy7kfpQf8+Eh2qOdAfJES0DcDu7LZLM/i86299bACJjH36HuMCyMbh45rcz6ULaZWK86pKOLPtTK9HCXxuUokH1362gNYZbZeMYE8Hqi+h3dHf7RMd3+HmZcuWLdvF2/NijIuieJJ/hxC+VdL3n/33cUmP2Edfdvbaedd4k6Q3SVKtVitarZZ6vZ5qtZqGw6FqtdPjnhuNRgRNgE9AFlIEKkHAnrF5UQHh6tWr8aAL2GKqDwAK2Lgd4Lp2t1arRYBNYh4bKyAWsO66W1hKAAEgj2SmzWYTwQ2giUQydKfz+TyWdpO2J/XB3gE8PAkLsIQsxAGbOx2VSiUmGyItoO0epvZ+AkA9/O36XY7NBli22231er3IfOLYIN/AISmKItaa5rqARBjz2WxWAksAOeYV4IohK2DMj46OomyF9jI3sLCM+3q9juA8TcBzEMnrngzorCLOAwmNfmKgy06cHWfs6A/1ghkPwL5/lrlD1gFg4/nxcXEHxxlY+u9OKM8I682PQ3dQzNz6a8WZhh0w7AlszgTzXcYMZ8SZ7Kf5HSl9F3suLK5/1kFvCqyfzjyacJntTv9u98P+PeMRZMuWLduztecFjEMIDxVF8cTZfz9LEpnP3yfpn/3/2zubGMmuq47/Tlf1V1V3VXU8HxolEdjIEsoCGStCQYqiCMRHvDFIWZgNWUQCQZBgwcIoEoRFFiCRBRIiAiVSQCgfBBDZIBHAEitsAtiOncjJAJaINcS0Z6prqqZ63D1zWbz3v3Pq0eVpxpN+dUfnJ5W66lX1q3/dV3Xf/5177rlm9imqSRyPAs+dZp/9fp/BYMB0OsWsWtii3+/naJ5OxsrZ7ff7zOdzJpMJt2/fzqXNNCwOlXm4ePEig8FgIZcWyEPpihrKSMqMyeRev349G8nd3d08cU25vTJRfva9jIr2I4Mqcz2fzxdyMxV9vHHjBtPplMPDw/w+SveQ2VIbqCoEkCORimgpeqg28yal06mWaNZkwPl8znQ6ZT6fL5THk3lV9NlHj5WXKzMuQ6d29BHzXq9Hv99fmKzoI7u68Egp0ev1silWGyrSeXBwwHQ6XWhrP1nMm/nmMVCqgVIYZN404uCX4tb/6oLFT5j0kWIflW5G2DVp0a+K6C9UlPJw0qQ5+L/1gf2kPl2wadTDl63rdrsLvxVvZH0Kks+nbppif5Hlfu8Ln89fDImT8pSb1SN8NFcR9Cb+Is4bZB+1ln5pahrZ5v2THjff0+/rbqbaG2ZpLMEYfy/67SAIggeNuxpjM/s88EHgnJl9B/gt4INm9hiQgFeBXwRIKb1sZl8CvgEcAx9Lp5jZ3OlUyz73ej0mk0meXKeTtB+W7ff7eYLd1atXmUwm2VCNRqMc/V1fX+fcuXNcuHCB9fV1Dg8P80lWw/Cbm5t5yH4+n+dcVJ10U0rM5/M85K+UCFUXkJn1ucWz2Yz19XUGg0E2PvoMvV6Pzc3NbGhlNOp2zuZC5tw/r9co+uqrMfj3UPUK32Y+d9RXMjg+Pubg4ICjoyO2t7cZjUY5z1nGWKZSUcfbt+9UbfDHRrmtMvc3btyg260WAVG03ufGqkSeTJhSVBTx1GsVZR2Px0yn03yMfA6p0jI2NjaYzWb5/Xu9HkA2xTKsMmWKxGrFN7WlDJ5yqhXN9pPxFLmVadV3Qzm0flKcDLWG+xUt9SkAvhSZzDcsVlCRcdUFi/bpc4L9ctiK1nrT5lNA/KQ2P9qhCyu1h7T5HHIZaj/h0htKGWuZzWber8/Z9ebW4/OndYy8ofbVJfxn0s3nAy+jafD99+A06AJHv+lV4Sz67SAIggeR01Sl+LkTNn/mLV7/SeCT/x8RyplVdNQPW+tEePPmzYVI8ng8Zjwe50jf+fPn2drayidvpVDIiGqBDuVqHh8f0+/32d3dzWYEyBFnRUQ1tC0jKmMh0+QrM+h9FCn0E3+k3Vc1OD6uFpRoVjLQ8td+39qP8oLhTmRR+/KltryJUITWm2wZQ73HcDhkOBzmY7C2VtUululSZNmnDyi9RTWONTFPFSZ2dnZyiTFFmpUGolxsRemVA678ahkvTVC8fv16bneVC5NGRb/X1tZyuoXaQ1FhrSboo59KT/DpIv47p/fX8dNrVTdaJrKZsiDzCneqSPg0Al/xRN8hXxrNpwX4qL90NKO3iuorWqyLI28ofUUF7a+Z/wxk4672V4Tam3ifF6w2g+VLJHuT6bWclAbRNNm62FAaia/77A219qn0jObzyyLBvub2sujzMry5XzXOot8OgiB4EFmJle90Qrt27drChDdFA3WS99Uk9vf3GY/HdDodzp8/z2g0ynm6GxsbjEYjhsMht27dWpjkpuHnbrebl4G+evVqNsveKCj6p//VydMvZ6zosZkt5Awrt1U1e/2wu2oEz2Yzjo6OcrR0Pp/n6PfGxkY2if5krfrHSkHwkT1tl9n15ljRRF8dQSXXtra2uHTpEkBeREVRckURp9Nprugho3d8fLxQ7UEXBlClMKj6hiKqMug+F9fXala1DKFJh8q5Xl9fz9FnXRDt7Ozk/OXxeMwbb7zBbDbLNY51/GRI/WiAbjJH+h9FO32lCJkmn5rhj40uDLwR8xPRmjm8MtpeG9zJ01WE1v8OmqkWPufbl4STfj32lVI0quANqL9Ya0aLvQlXJL1pOpvR5yY+Uuxzhn00uTmZTcfOR311fHyahjfG/oLGV1PxFz5ek89xbpr70+D/PwiCIHgwWAljnFJiPB7nfE+dgFWxQEPJijhOJhNmsxmdToe9vT329vbY2dlhOp0C1WSvwWAAVKWxlJ6h6LAmeW1vb3Pr1q28ap4qP2xtbeVJb3ofH23t9Xq5tJmiljJJ29vbOa9WaRrKm1bkcjweM5/P8+sfeuihbGgGgwG7u7sLE+f8pENF/WQ4Nayu4W5FMf3wvDdhfoKZqlUoBUXl4FTho5nTqfJuMiubm5u5PJlWn5MJ1kQ4vyiErxiiFAmZdbU1kC8gZrNZ/hy9Xi9HsJVSoVxppUxMp9P8HVBEWuZbxsdXDtF7yRTDnQilz7H1aSlqF7Wz2kXbvAFXfnRz8po3lr78XNPAK8Kt5xXBFv7CyBtIH3n2qTT6/NqXTLJMuD6j2sFHwqXFG2M99ubaG1zf5n4EpanZm1Lp8qZZv329t7/Y8cfUt7s3q00Dr++1n8R5t9ziZiTZG+owxkEQBA8OK2OMFV1ThGx3dzcbHkVhB4NBNrLKix0Oh+zt7S3M1h8Oh6ytrXHt2jUmkwn7+/tcuHAhn7w7nare7NraWl4cZDKZMJ1O81Dy4eEhV65cyUO4a2tr2TSrDNrR0RH9fj9PelKupips9Pv9fAJXPrJSAjqdDqPRKC8drcVBhsMhW1tb2UwDefheJ31FVWV8fFTQn6hlMt58880cNVfE2UcTVcZsMpnkJZ5VNs9XM/CTubSan0+h8LmwKgGnsmKqYazqEko7UDk5X19XEXWltGjVQhk4VcDQBZBGGw4ODhYmxqmtdNHiKz34XGs/cU0pF748n8ywjoevEqELD0VWfS3ek8q9NSuHCB2zZj6vRhpklL1xlBFslpPT8z6CqtcL/53xUWo/UdM/p3xf7cundTRLxsk0yoTqc+m77NvnJFPpUylkXNV2Psru9UqzLnybucLNx950380U+//373UvUeYgCIJgtVkJYwwsnLx3d3e5ePEiOzs7OWKoyXn7+/s5FUImVNEkDXN3u91cEmt/f59ut5sn7cnoKhqtaOXBwQHz+Zxut5vr+c5mM4bD4YIOn6esKg4pJabTaTYQvvauX8VLJ3ylWmjyn1/4YzAY5EirzKbMgUyBDJMm88n8Avk1Mh8ppRx9VvtqX4o0Hx4e5pztmzdv5v3KBHvT682QTKyvJ6zPrgsMlV9T6slkMlkwN/p/pTToeOgzDgaDbHK9IdNkO5ltGX+fKyzdy4b94U40U3Wm/QQ9LSLjjaYMoK8RrAsHP6ogndLYHHKXHr+Yh6L5Ol7S69/TRzr98dBn8ZHwZRPJvCn0kXGfa+wjqdq3R2khvubySSkL2q9/3pv306CREH+x4aPOat+T9nuSoVWb6rfQbJ+TWGawte00+wiCIAhWH1uFDt3M/geYAftta7lHzlGudihbf8naIfS3yf3U/n0ppfP3aV9FYGbXgVfa1vE2iO9ue5Ssv2TtULb+M+mzV8IYA5jZ11JK721bx71QsnYoW3/J2iH0t0nJ2leB0tuvZP0la4ey9ZesHcrWf1ba73VJ6CAIgiAIgiB4oAhjHARBEARBEASsljH+o7YFvA1K1g5l6y9ZO4T+NilZ+ypQevuVrL9k7VC2/pK1Q9n6z0T7yuQYB0EQBEEQBEGbrFLEOAiCIAiCIAhao3VjbGY/bWavmNllM3u6bT2nwcxeNbOvm9nzZva1ets7zOyrZvbt+u9e2zqFmX3WzF43s5fcthP1WsXv18fjRTN7vD3lS7V/wsxeq9v/eTN7wj33G7X2V8zsp9pRnbW828yeMbNvmNnLZvar9fZS2n6Z/lLaf8vMnjOzF2r9v11vf9jMnq11ftHMNurtm/Xjy/Xz39+m/lWmtH47+uyzo+Q+u9ZTbL8dffZ96rNV4L6NG9AB/h14BNgAXgDe06amU+p+FTjX2Pa7wNP1/aeB32lbp9P2AeBx4KW76QWeAP4GMOB9wLMrqP0TwK+f8Nr31N+hTeDh+rvVaVH7JeDx+v4u8K1aYyltv0x/Ke1vwE59fx14tm7XLwFP1ds/DfxSff+XgU/X958Cvthm+6/qrcR+O/rs1rUX0WfUmortt6PPvj99dtsR4x8BLqeU/iOl9CbwBeDJljXdK08Cn6vvfw74mfakLJJS+kfgamPzMr1PAn+SKv4JGJnZpTMRegJLtC/jSeALKaWbKaX/BC5TfcdaIaV0JaX0r/X968A3gXdSTtsv07+MVWv/lFKa1g/X61sCfgz4cr292f46Ll8Gftws1ns+gQel344++3tAyX02lN1vR599f/rsto3xO4H/co+/w1sfxFUhAX9rZv9iZr9Qb7uYUrpS3/9v4GI70k7NMr2lHJNfqYetPuuGQFdWez3E88NUV8DFtX1DPxTS/mbWMbPngdeBr1JFRMYpJa2F7TVm/fXzB8BDZyq4DFbuOJ+C6LPbp4g+w1Nyvx199r3TtjEulfenlB4HPgR8zMw+4J9MVVy/mHIfpekF/hD4AeAx4Arwe62quQtmtgP8BfBrKaWJf66Etj9BfzHtn1K6lVJ6DHgXVSTkB9tVFLRE9NntUkyfIUrut6PPfnu0bYxfA97tHr+r3rbSpJReq/++DvwV1cH7roZP6r+vt6fwVCzTu/LHJKX03frHcxv4Y+4M/aycdjNbp+qg/iyl9Jf15mLa/iT9JbW/SCmNgWeAH6Ua6uzWT3mNWX/9/BB442yVFsHKHudlRJ/dLqX1GSX329Fnv/0+u21j/M/Ao/WMww2q5OmvtKzpLTGzvpnt6j7wk8BLVLo/Ur/sI8Bft6Pw1CzT+xXg5+uZtu8DDtzw0UrQyN/6War2h0r7U/VM1YeBR4HnzlqfqHOdPgN8M6X0KfdUEW2/TH9B7X/ezEb1/W3gJ6hy7p4BPly/rNn+Oi4fBv6hjgwFixTVb0ef3T6l9BlQdr8dffZ96rObs/HO+kY1o/NbVHkkH29bzyn0PkI1i/MF4GVppspr+Xvg28DfAe9oW6vT/Hmq4ZMjqvycjy7TSzUr9A/q4/F14L0rqP1Pa20v1j+MS+71H6+1vwJ8qGXt76cabnsReL6+PVFQ2y/TX0r7/xDwb7XOl4DfrLc/QtX5Xwb+HNist2/Vjy/Xzz/Spv5VvpXUb0efvRLai+gzaj3F9tvRZ9+fPjtWvguCIAiCIAgC2k+lCIIgCIIgCIKVIIxxEARBEARBEBDGOAiCIAiCIAiAMMZBEARBEARBAIQxDoIgCIIgCAIgjHEQBEEQBEEQAGGMgyAIgiAIggAIYxwEQRAEQRAEAPwv7mW0TSjLBDEAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "tensor(0.) tensor(2.)\n" + ] + } + ], "source": [ "imgnum = 2\n", "check_data = first(val_loader[0])\n", @@ -400,7 +401,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "id": "5197d7dd", "metadata": {}, "outputs": [], @@ -414,7 +415,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 21, "id": "2591bee5", "metadata": {}, "outputs": [], @@ -508,22 +509,7752 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 25, "id": "5aa4ecfe", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0\n", + "0\n", + "----------\n", + "0: epoch 1/500\n", + "1/0, train_loss: 0.7605\n", + "0 epoch 1 average loss: 0.7605\n", + "----------\n", + "0: epoch 2/500\n", + "1/0, train_loss: 0.7469\n", + "0 epoch 2 average loss: 0.7469\n", + "saved new best metric model\n", + "current epoch: 2 current mean dice: 0.2817\n", + "best mean dice: 0.2817 at epoch: 2\n", + "----------\n", + "0: epoch 3/500\n", + "1/0, train_loss: 0.7388\n", + "0 epoch 3 average loss: 0.7388\n", + "----------\n", + "0: epoch 4/500\n", + "1/0, train_loss: 0.7335\n", + "0 epoch 4 average loss: 0.7335\n", + "current epoch: 4 current mean dice: 0.2608\n", + "best mean dice: 0.2817 at epoch: 2\n", + "----------\n", + "0: epoch 5/500\n", + "1/0, train_loss: 0.7258\n", + "0 epoch 5 average loss: 0.7258\n", + "----------\n", + "0: epoch 6/500\n", + "1/0, train_loss: 0.7241\n", + "0 epoch 6 average loss: 0.7241\n", + "current epoch: 6 current mean dice: 0.2632\n", + "best mean dice: 0.2817 at epoch: 2\n", + "----------\n", + "0: epoch 7/500\n", + "1/0, train_loss: 0.7221\n", + "0 epoch 7 average loss: 0.7221\n", + "----------\n", + "0: epoch 8/500\n", + "1/0, train_loss: 0.7191\n", + "0 epoch 8 average loss: 0.7191\n", + "current epoch: 8 current mean dice: 0.2662\n", + "best mean dice: 0.2817 at epoch: 2\n", + "----------\n", + "0: epoch 9/500\n", + "1/0, train_loss: 0.7127\n", + "0 epoch 9 average loss: 0.7127\n", + "----------\n", + "0: epoch 10/500\n", + "1/0, train_loss: 0.7138\n", + "0 epoch 10 average loss: 0.7138\n", + "current epoch: 10 current mean dice: 0.2678\n", + "best mean dice: 0.2817 at epoch: 2\n", + "----------\n", + "0: epoch 11/500\n", + "1/0, train_loss: 0.7094\n", + "0 epoch 11 average loss: 0.7094\n", + "----------\n", + "0: epoch 12/500\n", + "1/0, train_loss: 0.7103\n", + "0 epoch 12 average loss: 0.7103\n", + "current epoch: 12 current mean dice: 0.2686\n", + "best mean dice: 0.2817 at epoch: 2\n", + "----------\n", + "0: epoch 13/500\n", + "1/0, train_loss: 0.7033\n", + "0 epoch 13 average loss: 0.7033\n", + "----------\n", + "0: epoch 14/500\n", + "1/0, train_loss: 0.6983\n", + "0 epoch 14 average loss: 0.6983\n", + "current epoch: 14 current mean dice: 0.2708\n", + "best mean dice: 0.2817 at epoch: 2\n", + "----------\n", + "0: epoch 15/500\n", + "1/0, train_loss: 0.6961\n", + "0 epoch 15 average loss: 0.6961\n", + "----------\n", + "0: epoch 16/500\n", + "1/0, train_loss: 0.6945\n", + "0 epoch 16 average loss: 0.6945\n", + "current epoch: 16 current mean dice: 0.2807\n", + "best mean dice: 0.2817 at epoch: 2\n", + "----------\n", + "0: epoch 17/500\n", + "1/0, train_loss: 0.6874\n", + "0 epoch 17 average loss: 0.6874\n", + "----------\n", + "0: epoch 18/500\n", + "1/0, train_loss: 0.6837\n", + "0 epoch 18 average loss: 0.6837\n", + "saved new best metric model\n", + "current epoch: 18 current mean dice: 0.2887\n", + "best mean dice: 0.2887 at epoch: 18\n", + "----------\n", + "0: epoch 19/500\n", + "1/0, train_loss: 0.6897\n", + "0 epoch 19 average loss: 0.6897\n", + "----------\n", + "0: epoch 20/500\n", + "1/0, train_loss: 0.6875\n", + "0 epoch 20 average loss: 0.6875\n", + "saved new best metric model\n", + "current epoch: 20 current mean dice: 0.2937\n", + "best mean dice: 0.2937 at epoch: 20\n", + "----------\n", + "0: epoch 21/500\n", + "1/0, train_loss: 0.6834\n", + "0 epoch 21 average loss: 0.6834\n", + "----------\n", + "0: epoch 22/500\n", + "1/0, train_loss: 0.6798\n", + "0 epoch 22 average loss: 0.6798\n", + "saved new best metric model\n", + "current epoch: 22 current mean dice: 0.2963\n", + "best mean dice: 0.2963 at epoch: 22\n", + "----------\n", + "0: epoch 23/500\n", + "1/0, train_loss: 0.6771\n", + "0 epoch 23 average loss: 0.6771\n", + "----------\n", + "0: epoch 24/500\n", + "1/0, train_loss: 0.6800\n", + "0 epoch 24 average loss: 0.6800\n", + "saved new best metric model\n", + "current epoch: 24 current mean dice: 0.2967\n", + "best mean dice: 0.2967 at epoch: 24\n", + "----------\n", + "0: epoch 25/500\n", + "1/0, train_loss: 0.6712\n", + "0 epoch 25 average loss: 0.6712\n", + "----------\n", + "0: epoch 26/500\n", + "1/0, train_loss: 0.6691\n", + "0 epoch 26 average loss: 0.6691\n", + "current epoch: 26 current mean dice: 0.2934\n", + "best mean dice: 0.2967 at epoch: 24\n", + "----------\n", + "0: epoch 27/500\n", + "1/0, train_loss: 0.6737\n", + "0 epoch 27 average loss: 0.6737\n", + "----------\n", + "0: epoch 28/500\n", + "1/0, train_loss: 0.6698\n", + "0 epoch 28 average loss: 0.6698\n", + "current epoch: 28 current mean dice: 0.2911\n", + "best mean dice: 0.2967 at epoch: 24\n", + "----------\n", + "0: epoch 29/500\n", + "1/0, train_loss: 0.6673\n", + "0 epoch 29 average loss: 0.6673\n", + "----------\n", + "0: epoch 30/500\n", + "1/0, train_loss: 0.6660\n", + "0 epoch 30 average loss: 0.6660\n", + "current epoch: 30 current mean dice: 0.2888\n", + "best mean dice: 0.2967 at epoch: 24\n", + "----------\n", + "0: epoch 31/500\n", + "1/0, train_loss: 0.6617\n", + "0 epoch 31 average loss: 0.6617\n", + "----------\n", + "0: epoch 32/500\n", + "1/0, train_loss: 0.6600\n", + "0 epoch 32 average loss: 0.6600\n", + "current epoch: 32 current mean dice: 0.2839\n", + "best mean dice: 0.2967 at epoch: 24\n", + "----------\n", + "0: epoch 33/500\n", + "1/0, train_loss: 0.6602\n", + "0 epoch 33 average loss: 0.6602\n", + "----------\n", + "0: epoch 34/500\n", + "1/0, train_loss: 0.6654\n", + "0 epoch 34 average loss: 0.6654\n", + "current epoch: 34 current mean dice: 0.2755\n", + "best mean dice: 0.2967 at epoch: 24\n", + "----------\n", + "0: epoch 35/500\n", + "1/0, train_loss: 0.6580\n", + "0 epoch 35 average loss: 0.6580\n", + "----------\n", + "0: epoch 36/500\n", + "1/0, train_loss: 0.6535\n", + "0 epoch 36 average loss: 0.6535\n", + "current epoch: 36 current mean dice: 0.2712\n", + "best mean dice: 0.2967 at epoch: 24\n", + "----------\n", + "0: epoch 37/500\n", + "1/0, train_loss: 0.6503\n", + "0 epoch 37 average loss: 0.6503\n", + "----------\n", + "0: epoch 38/500\n", + "1/0, train_loss: 0.6567\n", + "0 epoch 38 average loss: 0.6567\n", + "current epoch: 38 current mean dice: 0.2659\n", + "best mean dice: 0.2967 at epoch: 24\n", + "----------\n", + "0: epoch 39/500\n", + "1/0, train_loss: 0.6512\n", + "0 epoch 39 average loss: 0.6512\n", + "----------\n", + "0: epoch 40/500\n", + "1/0, train_loss: 0.6525\n", + "0 epoch 40 average loss: 0.6525\n", + "current epoch: 40 current mean dice: 0.2617\n", + "best mean dice: 0.2967 at epoch: 24\n", + "----------\n", + "0: epoch 41/500\n", + "1/0, train_loss: 0.6578\n", + "0 epoch 41 average loss: 0.6578\n", + "----------\n", + "0: epoch 42/500\n", + "1/0, train_loss: 0.6433\n", + "0 epoch 42 average loss: 0.6433\n", + "current epoch: 42 current mean dice: 0.2694\n", + "best mean dice: 0.2967 at epoch: 24\n", + "----------\n", + "0: epoch 43/500\n", + "1/0, train_loss: 0.6482\n", + "0 epoch 43 average loss: 0.6482\n", + "----------\n", + "0: epoch 44/500\n", + "1/0, train_loss: 0.6485\n", + "0 epoch 44 average loss: 0.6485\n", + "current epoch: 44 current mean dice: 0.2705\n", + "best mean dice: 0.2967 at epoch: 24\n", + "----------\n", + "0: epoch 45/500\n", + "1/0, train_loss: 0.6429\n", + "0 epoch 45 average loss: 0.6429\n", + "----------\n", + "0: epoch 46/500\n", + "1/0, train_loss: 0.6348\n", + "0 epoch 46 average loss: 0.6348\n", + "current epoch: 46 current mean dice: 0.2712\n", + "best mean dice: 0.2967 at epoch: 24\n", + "----------\n", + "0: epoch 47/500\n", + "1/0, train_loss: 0.6540\n", + "0 epoch 47 average loss: 0.6540\n", + "----------\n", + "0: epoch 48/500\n", + "1/0, train_loss: 0.6354\n", + "0 epoch 48 average loss: 0.6354\n", + "current epoch: 48 current mean dice: 0.2764\n", + "best mean dice: 0.2967 at epoch: 24\n", + "----------\n", + "0: epoch 49/500\n", + "1/0, train_loss: 0.6448\n", + "0 epoch 49 average loss: 0.6448\n", + "----------\n", + "0: epoch 50/500\n", + "1/0, train_loss: 0.6401\n", + "0 epoch 50 average loss: 0.6401\n", + "current epoch: 50 current mean dice: 0.2868\n", + "best mean dice: 0.2967 at epoch: 24\n", + "----------\n", + "0: epoch 51/500\n", + "1/0, train_loss: 0.6332\n", + "0 epoch 51 average loss: 0.6332\n", + "----------\n", + "0: epoch 52/500\n", + "1/0, train_loss: 0.6367\n", + "0 epoch 52 average loss: 0.6367\n", + "saved new best metric model\n", + "current epoch: 52 current mean dice: 0.3021\n", + "best mean dice: 0.3021 at epoch: 52\n", + "----------\n", + "0: epoch 53/500\n", + "1/0, train_loss: 0.6382\n", + "0 epoch 53 average loss: 0.6382\n", + "----------\n", + "0: epoch 54/500\n", + "1/0, train_loss: 0.6293\n", + "0 epoch 54 average loss: 0.6293\n", + "saved new best metric model\n", + "current epoch: 54 current mean dice: 0.3150\n", + "best mean dice: 0.3150 at epoch: 54\n", + "----------\n", + "0: epoch 55/500\n", + "1/0, train_loss: 0.6247\n", + "0 epoch 55 average loss: 0.6247\n", + "----------\n", + "0: epoch 56/500\n", + "1/0, train_loss: 0.6369\n", + "0 epoch 56 average loss: 0.6369\n", + "saved new best metric model\n", + "current epoch: 56 current mean dice: 0.3309\n", + "best mean dice: 0.3309 at epoch: 56\n", + "----------\n", + "0: epoch 57/500\n", + "1/0, train_loss: 0.6379\n", + "0 epoch 57 average loss: 0.6379\n", + "----------\n", + "0: epoch 58/500\n", + "1/0, train_loss: 0.6208\n", + "0 epoch 58 average loss: 0.6208\n", + "saved new best metric model\n", + "current epoch: 58 current mean dice: 0.3586\n", + "best mean dice: 0.3586 at epoch: 58\n", + "----------\n", + "0: epoch 59/500\n", + "1/0, train_loss: 0.6340\n", + "0 epoch 59 average loss: 0.6340\n", + "----------\n", + "0: epoch 60/500\n", + "1/0, train_loss: 0.6325\n", + "0 epoch 60 average loss: 0.6325\n", + "saved new best metric model\n", + "current epoch: 60 current mean dice: 0.3700\n", + "best mean dice: 0.3700 at epoch: 60\n", + "----------\n", + "0: epoch 61/500\n", + "1/0, train_loss: 0.6177\n", + "0 epoch 61 average loss: 0.6177\n", + "----------\n", + "0: epoch 62/500\n", + "1/0, train_loss: 0.6227\n", + "0 epoch 62 average loss: 0.6227\n", + "saved new best metric model\n", + "current epoch: 62 current mean dice: 0.4150\n", + "best mean dice: 0.4150 at epoch: 62\n", + "----------\n", + "0: epoch 63/500\n", + "1/0, train_loss: 0.6222\n", + "0 epoch 63 average loss: 0.6222\n", + "----------\n", + "0: epoch 64/500\n", + "1/0, train_loss: 0.6220\n", + "0 epoch 64 average loss: 0.6220\n", + "current epoch: 64 current mean dice: 0.3902\n", + "best mean dice: 0.4150 at epoch: 62\n", + "----------\n", + "0: epoch 65/500\n", + "1/0, train_loss: 0.6291\n", + "0 epoch 65 average loss: 0.6291\n", + "----------\n", + "0: epoch 66/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.6221\n", + "0 epoch 66 average loss: 0.6221\n", + "current epoch: 66 current mean dice: 0.4090\n", + "best mean dice: 0.4150 at epoch: 62\n", + "----------\n", + "0: epoch 67/500\n", + "1/0, train_loss: 0.6245\n", + "0 epoch 67 average loss: 0.6245\n", + "----------\n", + "0: epoch 68/500\n", + "1/0, train_loss: 0.6145\n", + "0 epoch 68 average loss: 0.6145\n", + "current epoch: 68 current mean dice: 0.3873\n", + "best mean dice: 0.4150 at epoch: 62\n", + "----------\n", + "0: epoch 69/500\n", + "1/0, train_loss: 0.6359\n", + "0 epoch 69 average loss: 0.6359\n", + "----------\n", + "0: epoch 70/500\n", + "1/0, train_loss: 0.6159\n", + "0 epoch 70 average loss: 0.6159\n", + "saved new best metric model\n", + "current epoch: 70 current mean dice: 0.4537\n", + "best mean dice: 0.4537 at epoch: 70\n", + "----------\n", + "0: epoch 71/500\n", + "1/0, train_loss: 0.6154\n", + "0 epoch 71 average loss: 0.6154\n", + "----------\n", + "0: epoch 72/500\n", + "1/0, train_loss: 0.6051\n", + "0 epoch 72 average loss: 0.6051\n", + "current epoch: 72 current mean dice: 0.4383\n", + "best mean dice: 0.4537 at epoch: 70\n", + "----------\n", + "0: epoch 73/500\n", + "1/0, train_loss: 0.6056\n", + "0 epoch 73 average loss: 0.6056\n", + "----------\n", + "0: epoch 74/500\n", + "1/0, train_loss: 0.6220\n", + "0 epoch 74 average loss: 0.6220\n", + "current epoch: 74 current mean dice: 0.4533\n", + "best mean dice: 0.4537 at epoch: 70\n", + "----------\n", + "0: epoch 75/500\n", + "1/0, train_loss: 0.6061\n", + "0 epoch 75 average loss: 0.6061\n", + "----------\n", + "0: epoch 76/500\n", + "1/0, train_loss: 0.6099\n", + "0 epoch 76 average loss: 0.6099\n", + "saved new best metric model\n", + "current epoch: 76 current mean dice: 0.4717\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 77/500\n", + "1/0, train_loss: 0.6180\n", + "0 epoch 77 average loss: 0.6180\n", + "----------\n", + "0: epoch 78/500\n", + "1/0, train_loss: 0.6047\n", + "0 epoch 78 average loss: 0.6047\n", + "current epoch: 78 current mean dice: 0.4472\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 79/500\n", + "1/0, train_loss: 0.6023\n", + "0 epoch 79 average loss: 0.6023\n", + "----------\n", + "0: epoch 80/500\n", + "1/0, train_loss: 0.5960\n", + "0 epoch 80 average loss: 0.5960\n", + "current epoch: 80 current mean dice: 0.4542\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 81/500\n", + "1/0, train_loss: 0.5958\n", + "0 epoch 81 average loss: 0.5958\n", + "----------\n", + "0: epoch 82/500\n", + "1/0, train_loss: 0.5922\n", + "0 epoch 82 average loss: 0.5922\n", + "current epoch: 82 current mean dice: 0.4344\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 83/500\n", + "1/0, train_loss: 0.6015\n", + "0 epoch 83 average loss: 0.6015\n", + "----------\n", + "0: epoch 84/500\n", + "1/0, train_loss: 0.5811\n", + "0 epoch 84 average loss: 0.5811\n", + "current epoch: 84 current mean dice: 0.4516\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 85/500\n", + "1/0, train_loss: 0.5811\n", + "0 epoch 85 average loss: 0.5811\n", + "----------\n", + "0: epoch 86/500\n", + "1/0, train_loss: 0.5896\n", + "0 epoch 86 average loss: 0.5896\n", + "current epoch: 86 current mean dice: 0.4220\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 87/500\n", + "1/0, train_loss: 0.5828\n", + "0 epoch 87 average loss: 0.5828\n", + "----------\n", + "0: epoch 88/500\n", + "1/0, train_loss: 0.6047\n", + "0 epoch 88 average loss: 0.6047\n", + "current epoch: 88 current mean dice: 0.3674\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 89/500\n", + "1/0, train_loss: 0.5947\n", + "0 epoch 89 average loss: 0.5947\n", + "----------\n", + "0: epoch 90/500\n", + "1/0, train_loss: 0.5846\n", + "0 epoch 90 average loss: 0.5846\n", + "current epoch: 90 current mean dice: 0.4425\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 91/500\n", + "1/0, train_loss: 0.5862\n", + "0 epoch 91 average loss: 0.5862\n", + "----------\n", + "0: epoch 92/500\n", + "1/0, train_loss: 0.5824\n", + "0 epoch 92 average loss: 0.5824\n", + "current epoch: 92 current mean dice: 0.3731\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 93/500\n", + "1/0, train_loss: 0.5726\n", + "0 epoch 93 average loss: 0.5726\n", + "----------\n", + "0: epoch 94/500\n", + "1/0, train_loss: 0.5700\n", + "0 epoch 94 average loss: 0.5700\n", + "current epoch: 94 current mean dice: 0.3586\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 95/500\n", + "1/0, train_loss: 0.5839\n", + "0 epoch 95 average loss: 0.5839\n", + "----------\n", + "0: epoch 96/500\n", + "1/0, train_loss: 0.5697\n", + "0 epoch 96 average loss: 0.5697\n", + "current epoch: 96 current mean dice: 0.3562\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 97/500\n", + "1/0, train_loss: 0.5675\n", + "0 epoch 97 average loss: 0.5675\n", + "----------\n", + "0: epoch 98/500\n", + "1/0, train_loss: 0.5889\n", + "0 epoch 98 average loss: 0.5889\n", + "current epoch: 98 current mean dice: 0.3190\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 99/500\n", + "1/0, train_loss: 0.5629\n", + "0 epoch 99 average loss: 0.5629\n", + "----------\n", + "0: epoch 100/500\n", + "1/0, train_loss: 0.5758\n", + "0 epoch 100 average loss: 0.5758\n", + "current epoch: 100 current mean dice: 0.3948\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 101/500\n", + "1/0, train_loss: 0.5668\n", + "0 epoch 101 average loss: 0.5668\n", + "----------\n", + "0: epoch 102/500\n", + "1/0, train_loss: 0.5831\n", + "0 epoch 102 average loss: 0.5831\n", + "current epoch: 102 current mean dice: 0.2536\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 103/500\n", + "1/0, train_loss: 0.5797\n", + "0 epoch 103 average loss: 0.5797\n", + "----------\n", + "0: epoch 104/500\n", + "1/0, train_loss: 0.5774\n", + "0 epoch 104 average loss: 0.5774\n", + "current epoch: 104 current mean dice: 0.3651\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 105/500\n", + "1/0, train_loss: 0.5644\n", + "0 epoch 105 average loss: 0.5644\n", + "----------\n", + "0: epoch 106/500\n", + "1/0, train_loss: 0.5603\n", + "0 epoch 106 average loss: 0.5603\n", + "current epoch: 106 current mean dice: 0.3688\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 107/500\n", + "1/0, train_loss: 0.5604\n", + "0 epoch 107 average loss: 0.5604\n", + "----------\n", + "0: epoch 108/500\n", + "1/0, train_loss: 0.5627\n", + "0 epoch 108 average loss: 0.5627\n", + "current epoch: 108 current mean dice: 0.3574\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 109/500\n", + "1/0, train_loss: 0.5604\n", + "0 epoch 109 average loss: 0.5604\n", + "----------\n", + "0: epoch 110/500\n", + "1/0, train_loss: 0.5620\n", + "0 epoch 110 average loss: 0.5620\n", + "current epoch: 110 current mean dice: 0.3174\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 111/500\n", + "1/0, train_loss: 0.5464\n", + "0 epoch 111 average loss: 0.5464\n", + "----------\n", + "0: epoch 112/500\n", + "1/0, train_loss: 0.5506\n", + "0 epoch 112 average loss: 0.5506\n", + "current epoch: 112 current mean dice: 0.2866\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 113/500\n", + "1/0, train_loss: 0.5582\n", + "0 epoch 113 average loss: 0.5582\n", + "----------\n", + "0: epoch 114/500\n", + "1/0, train_loss: 0.5585\n", + "0 epoch 114 average loss: 0.5585\n", + "current epoch: 114 current mean dice: 0.3562\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 115/500\n", + "1/0, train_loss: 0.5517\n", + "0 epoch 115 average loss: 0.5517\n", + "----------\n", + "0: epoch 116/500\n", + "1/0, train_loss: 0.5568\n", + "0 epoch 116 average loss: 0.5568\n", + "current epoch: 116 current mean dice: 0.3338\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 117/500\n", + "1/0, train_loss: 0.5504\n", + "0 epoch 117 average loss: 0.5504\n", + "----------\n", + "0: epoch 118/500\n", + "1/0, train_loss: 0.5616\n", + "0 epoch 118 average loss: 0.5616\n", + "current epoch: 118 current mean dice: 0.3553\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 119/500\n", + "1/0, train_loss: 0.5667\n", + "0 epoch 119 average loss: 0.5667\n", + "----------\n", + "0: epoch 120/500\n", + "1/0, train_loss: 0.5533\n", + "0 epoch 120 average loss: 0.5533\n", + "current epoch: 120 current mean dice: 0.3199\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 121/500\n", + "1/0, train_loss: 0.5644\n", + "0 epoch 121 average loss: 0.5644\n", + "----------\n", + "0: epoch 122/500\n", + "1/0, train_loss: 0.5497\n", + "0 epoch 122 average loss: 0.5497\n", + "current epoch: 122 current mean dice: 0.4391\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 123/500\n", + "1/0, train_loss: 0.5653\n", + "0 epoch 123 average loss: 0.5653\n", + "----------\n", + "0: epoch 124/500\n", + "1/0, train_loss: 0.5434\n", + "0 epoch 124 average loss: 0.5434\n", + "current epoch: 124 current mean dice: 0.3544\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 125/500\n", + "1/0, train_loss: 0.5507\n", + "0 epoch 125 average loss: 0.5507\n", + "----------\n", + "0: epoch 126/500\n", + "1/0, train_loss: 0.5512\n", + "0 epoch 126 average loss: 0.5512\n", + "current epoch: 126 current mean dice: 0.3227\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 127/500\n", + "1/0, train_loss: 0.5671\n", + "0 epoch 127 average loss: 0.5671\n", + "----------\n", + "0: epoch 128/500\n", + "1/0, train_loss: 0.5451\n", + "0 epoch 128 average loss: 0.5451\n", + "current epoch: 128 current mean dice: 0.3848\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 129/500\n", + "1/0, train_loss: 0.5387\n", + "0 epoch 129 average loss: 0.5387\n", + "----------\n", + "0: epoch 130/500\n", + "1/0, train_loss: 0.5435\n", + "0 epoch 130 average loss: 0.5435\n", + "current epoch: 130 current mean dice: 0.3989\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 131/500\n", + "1/0, train_loss: 0.5344\n", + "0 epoch 131 average loss: 0.5344\n", + "----------\n", + "0: epoch 132/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.5278\n", + "0 epoch 132 average loss: 0.5278\n", + "current epoch: 132 current mean dice: 0.2899\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 133/500\n", + "1/0, train_loss: 0.5406\n", + "0 epoch 133 average loss: 0.5406\n", + "----------\n", + "0: epoch 134/500\n", + "1/0, train_loss: 0.5451\n", + "0 epoch 134 average loss: 0.5451\n", + "current epoch: 134 current mean dice: 0.3703\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 135/500\n", + "1/0, train_loss: 0.5394\n", + "0 epoch 135 average loss: 0.5394\n", + "----------\n", + "0: epoch 136/500\n", + "1/0, train_loss: 0.5324\n", + "0 epoch 136 average loss: 0.5324\n", + "current epoch: 136 current mean dice: 0.3749\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 137/500\n", + "1/0, train_loss: 0.5270\n", + "0 epoch 137 average loss: 0.5270\n", + "----------\n", + "0: epoch 138/500\n", + "1/0, train_loss: 0.5441\n", + "0 epoch 138 average loss: 0.5441\n", + "current epoch: 138 current mean dice: 0.3496\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 139/500\n", + "1/0, train_loss: 0.5303\n", + "0 epoch 139 average loss: 0.5303\n", + "----------\n", + "0: epoch 140/500\n", + "1/0, train_loss: 0.5293\n", + "0 epoch 140 average loss: 0.5293\n", + "current epoch: 140 current mean dice: 0.3143\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 141/500\n", + "1/0, train_loss: 0.5333\n", + "0 epoch 141 average loss: 0.5333\n", + "----------\n", + "0: epoch 142/500\n", + "1/0, train_loss: 0.5295\n", + "0 epoch 142 average loss: 0.5295\n", + "current epoch: 142 current mean dice: 0.3033\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 143/500\n", + "1/0, train_loss: 0.5315\n", + "0 epoch 143 average loss: 0.5315\n", + "----------\n", + "0: epoch 144/500\n", + "1/0, train_loss: 0.5235\n", + "0 epoch 144 average loss: 0.5235\n", + "current epoch: 144 current mean dice: 0.3435\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 145/500\n", + "1/0, train_loss: 0.5196\n", + "0 epoch 145 average loss: 0.5196\n", + "----------\n", + "0: epoch 146/500\n", + "1/0, train_loss: 0.5385\n", + "0 epoch 146 average loss: 0.5385\n", + "current epoch: 146 current mean dice: 0.2616\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 147/500\n", + "1/0, train_loss: 0.5281\n", + "0 epoch 147 average loss: 0.5281\n", + "----------\n", + "0: epoch 148/500\n", + "1/0, train_loss: 0.5254\n", + "0 epoch 148 average loss: 0.5254\n", + "current epoch: 148 current mean dice: 0.2798\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 149/500\n", + "1/0, train_loss: 0.5333\n", + "0 epoch 149 average loss: 0.5333\n", + "----------\n", + "0: epoch 150/500\n", + "1/0, train_loss: 0.5288\n", + "0 epoch 150 average loss: 0.5288\n", + "current epoch: 150 current mean dice: 0.2694\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 151/500\n", + "1/0, train_loss: 0.5426\n", + "0 epoch 151 average loss: 0.5426\n", + "----------\n", + "0: epoch 152/500\n", + "1/0, train_loss: 0.5251\n", + "0 epoch 152 average loss: 0.5251\n", + "current epoch: 152 current mean dice: 0.3546\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 153/500\n", + "1/0, train_loss: 0.5212\n", + "0 epoch 153 average loss: 0.5212\n", + "----------\n", + "0: epoch 154/500\n", + "1/0, train_loss: 0.5190\n", + "0 epoch 154 average loss: 0.5190\n", + "current epoch: 154 current mean dice: 0.3350\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 155/500\n", + "1/0, train_loss: 0.5387\n", + "0 epoch 155 average loss: 0.5387\n", + "----------\n", + "0: epoch 156/500\n", + "1/0, train_loss: 0.5240\n", + "0 epoch 156 average loss: 0.5240\n", + "current epoch: 156 current mean dice: 0.3315\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 157/500\n", + "1/0, train_loss: 0.5128\n", + "0 epoch 157 average loss: 0.5128\n", + "----------\n", + "0: epoch 158/500\n", + "1/0, train_loss: 0.5359\n", + "0 epoch 158 average loss: 0.5359\n", + "current epoch: 158 current mean dice: 0.3961\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 159/500\n", + "1/0, train_loss: 0.5121\n", + "0 epoch 159 average loss: 0.5121\n", + "----------\n", + "0: epoch 160/500\n", + "1/0, train_loss: 0.5115\n", + "0 epoch 160 average loss: 0.5115\n", + "current epoch: 160 current mean dice: 0.3796\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 161/500\n", + "1/0, train_loss: 0.5139\n", + "0 epoch 161 average loss: 0.5139\n", + "----------\n", + "0: epoch 162/500\n", + "1/0, train_loss: 0.5150\n", + "0 epoch 162 average loss: 0.5150\n", + "current epoch: 162 current mean dice: 0.3269\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 163/500\n", + "1/0, train_loss: 0.5418\n", + "0 epoch 163 average loss: 0.5418\n", + "----------\n", + "0: epoch 164/500\n", + "1/0, train_loss: 0.5273\n", + "0 epoch 164 average loss: 0.5273\n", + "current epoch: 164 current mean dice: 0.3817\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 165/500\n", + "1/0, train_loss: 0.5268\n", + "0 epoch 165 average loss: 0.5268\n", + "----------\n", + "0: epoch 166/500\n", + "1/0, train_loss: 0.5121\n", + "0 epoch 166 average loss: 0.5121\n", + "current epoch: 166 current mean dice: 0.4014\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 167/500\n", + "1/0, train_loss: 0.5276\n", + "0 epoch 167 average loss: 0.5276\n", + "----------\n", + "0: epoch 168/500\n", + "1/0, train_loss: 0.5226\n", + "0 epoch 168 average loss: 0.5226\n", + "current epoch: 168 current mean dice: 0.3720\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 169/500\n", + "1/0, train_loss: 0.5201\n", + "0 epoch 169 average loss: 0.5201\n", + "----------\n", + "0: epoch 170/500\n", + "1/0, train_loss: 0.5213\n", + "0 epoch 170 average loss: 0.5213\n", + "current epoch: 170 current mean dice: 0.3564\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 171/500\n", + "1/0, train_loss: 0.5124\n", + "0 epoch 171 average loss: 0.5124\n", + "----------\n", + "0: epoch 172/500\n", + "1/0, train_loss: 0.5089\n", + "0 epoch 172 average loss: 0.5089\n", + "current epoch: 172 current mean dice: 0.3968\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 173/500\n", + "1/0, train_loss: 0.5043\n", + "0 epoch 173 average loss: 0.5043\n", + "----------\n", + "0: epoch 174/500\n", + "1/0, train_loss: 0.5131\n", + "0 epoch 174 average loss: 0.5131\n", + "current epoch: 174 current mean dice: 0.3192\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 175/500\n", + "1/0, train_loss: 0.5195\n", + "0 epoch 175 average loss: 0.5195\n", + "----------\n", + "0: epoch 176/500\n", + "1/0, train_loss: 0.5250\n", + "0 epoch 176 average loss: 0.5250\n", + "current epoch: 176 current mean dice: 0.4160\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 177/500\n", + "1/0, train_loss: 0.5088\n", + "0 epoch 177 average loss: 0.5088\n", + "----------\n", + "0: epoch 178/500\n", + "1/0, train_loss: 0.5017\n", + "0 epoch 178 average loss: 0.5017\n", + "current epoch: 178 current mean dice: 0.3800\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 179/500\n", + "1/0, train_loss: 0.5172\n", + "0 epoch 179 average loss: 0.5172\n", + "----------\n", + "0: epoch 180/500\n", + "1/0, train_loss: 0.5115\n", + "0 epoch 180 average loss: 0.5115\n", + "current epoch: 180 current mean dice: 0.3946\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 181/500\n", + "1/0, train_loss: 0.5074\n", + "0 epoch 181 average loss: 0.5074\n", + "----------\n", + "0: epoch 182/500\n", + "1/0, train_loss: 0.5194\n", + "0 epoch 182 average loss: 0.5194\n", + "current epoch: 182 current mean dice: 0.3995\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 183/500\n", + "1/0, train_loss: 0.4993\n", + "0 epoch 183 average loss: 0.4993\n", + "----------\n", + "0: epoch 184/500\n", + "1/0, train_loss: 0.5064\n", + "0 epoch 184 average loss: 0.5064\n", + "current epoch: 184 current mean dice: 0.3974\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 185/500\n", + "1/0, train_loss: 0.5145\n", + "0 epoch 185 average loss: 0.5145\n", + "----------\n", + "0: epoch 186/500\n", + "1/0, train_loss: 0.5068\n", + "0 epoch 186 average loss: 0.5068\n", + "current epoch: 186 current mean dice: 0.3488\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 187/500\n", + "1/0, train_loss: 0.5080\n", + "0 epoch 187 average loss: 0.5080\n", + "----------\n", + "0: epoch 188/500\n", + "1/0, train_loss: 0.5003\n", + "0 epoch 188 average loss: 0.5003\n", + "current epoch: 188 current mean dice: 0.3739\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 189/500\n", + "1/0, train_loss: 0.5082\n", + "0 epoch 189 average loss: 0.5082\n", + "----------\n", + "0: epoch 190/500\n", + "1/0, train_loss: 0.5115\n", + "0 epoch 190 average loss: 0.5115\n", + "current epoch: 190 current mean dice: 0.3935\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 191/500\n", + "1/0, train_loss: 0.4941\n", + "0 epoch 191 average loss: 0.4941\n", + "----------\n", + "0: epoch 192/500\n", + "1/0, train_loss: 0.5085\n", + "0 epoch 192 average loss: 0.5085\n", + "current epoch: 192 current mean dice: 0.3061\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 193/500\n", + "1/0, train_loss: 0.5018\n", + "0 epoch 193 average loss: 0.5018\n", + "----------\n", + "0: epoch 194/500\n", + "1/0, train_loss: 0.5084\n", + "0 epoch 194 average loss: 0.5084\n", + "current epoch: 194 current mean dice: 0.2529\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 195/500\n", + "1/0, train_loss: 0.5041\n", + "0 epoch 195 average loss: 0.5041\n", + "----------\n", + "0: epoch 196/500\n", + "1/0, train_loss: 0.4963\n", + "0 epoch 196 average loss: 0.4963\n", + "current epoch: 196 current mean dice: 0.3534\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 197/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.4910\n", + "0 epoch 197 average loss: 0.4910\n", + "----------\n", + "0: epoch 198/500\n", + "1/0, train_loss: 0.5094\n", + "0 epoch 198 average loss: 0.5094\n", + "current epoch: 198 current mean dice: 0.3938\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 199/500\n", + "1/0, train_loss: 0.5046\n", + "0 epoch 199 average loss: 0.5046\n", + "----------\n", + "0: epoch 200/500\n", + "1/0, train_loss: 0.4951\n", + "0 epoch 200 average loss: 0.4951\n", + "current epoch: 200 current mean dice: 0.3306\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 201/500\n", + "1/0, train_loss: 0.4949\n", + "0 epoch 201 average loss: 0.4949\n", + "----------\n", + "0: epoch 202/500\n", + "1/0, train_loss: 0.4975\n", + "0 epoch 202 average loss: 0.4975\n", + "current epoch: 202 current mean dice: 0.3232\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 203/500\n", + "1/0, train_loss: 0.4867\n", + "0 epoch 203 average loss: 0.4867\n", + "----------\n", + "0: epoch 204/500\n", + "1/0, train_loss: 0.4914\n", + "0 epoch 204 average loss: 0.4914\n", + "current epoch: 204 current mean dice: 0.3475\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 205/500\n", + "1/0, train_loss: 0.4928\n", + "0 epoch 205 average loss: 0.4928\n", + "----------\n", + "0: epoch 206/500\n", + "1/0, train_loss: 0.5024\n", + "0 epoch 206 average loss: 0.5024\n", + "current epoch: 206 current mean dice: 0.3607\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 207/500\n", + "1/0, train_loss: 0.5032\n", + "0 epoch 207 average loss: 0.5032\n", + "----------\n", + "0: epoch 208/500\n", + "1/0, train_loss: 0.4875\n", + "0 epoch 208 average loss: 0.4875\n", + "current epoch: 208 current mean dice: 0.3105\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 209/500\n", + "1/0, train_loss: 0.4948\n", + "0 epoch 209 average loss: 0.4948\n", + "----------\n", + "0: epoch 210/500\n", + "1/0, train_loss: 0.4931\n", + "0 epoch 210 average loss: 0.4931\n", + "current epoch: 210 current mean dice: 0.3299\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 211/500\n", + "1/0, train_loss: 0.4925\n", + "0 epoch 211 average loss: 0.4925\n", + "----------\n", + "0: epoch 212/500\n", + "1/0, train_loss: 0.4822\n", + "0 epoch 212 average loss: 0.4822\n", + "current epoch: 212 current mean dice: 0.3893\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 213/500\n", + "1/0, train_loss: 0.5028\n", + "0 epoch 213 average loss: 0.5028\n", + "----------\n", + "0: epoch 214/500\n", + "1/0, train_loss: 0.4822\n", + "0 epoch 214 average loss: 0.4822\n", + "current epoch: 214 current mean dice: 0.3467\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 215/500\n", + "1/0, train_loss: 0.4810\n", + "0 epoch 215 average loss: 0.4810\n", + "----------\n", + "0: epoch 216/500\n", + "1/0, train_loss: 0.5010\n", + "0 epoch 216 average loss: 0.5010\n", + "current epoch: 216 current mean dice: 0.3119\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 217/500\n", + "1/0, train_loss: 0.4979\n", + "0 epoch 217 average loss: 0.4979\n", + "----------\n", + "0: epoch 218/500\n", + "1/0, train_loss: 0.5033\n", + "0 epoch 218 average loss: 0.5033\n", + "current epoch: 218 current mean dice: 0.3938\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 219/500\n", + "1/0, train_loss: 0.4768\n", + "0 epoch 219 average loss: 0.4768\n", + "----------\n", + "0: epoch 220/500\n", + "1/0, train_loss: 0.4905\n", + "0 epoch 220 average loss: 0.4905\n", + "current epoch: 220 current mean dice: 0.4155\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 221/500\n", + "1/0, train_loss: 0.4878\n", + "0 epoch 221 average loss: 0.4878\n", + "----------\n", + "0: epoch 222/500\n", + "1/0, train_loss: 0.4820\n", + "0 epoch 222 average loss: 0.4820\n", + "current epoch: 222 current mean dice: 0.3972\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 223/500\n", + "1/0, train_loss: 0.4836\n", + "0 epoch 223 average loss: 0.4836\n", + "----------\n", + "0: epoch 224/500\n", + "1/0, train_loss: 0.4939\n", + "0 epoch 224 average loss: 0.4939\n", + "current epoch: 224 current mean dice: 0.4086\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 225/500\n", + "1/0, train_loss: 0.4820\n", + "0 epoch 225 average loss: 0.4820\n", + "----------\n", + "0: epoch 226/500\n", + "1/0, train_loss: 0.4807\n", + "0 epoch 226 average loss: 0.4807\n", + "current epoch: 226 current mean dice: 0.2828\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 227/500\n", + "1/0, train_loss: 0.4802\n", + "0 epoch 227 average loss: 0.4802\n", + "----------\n", + "0: epoch 228/500\n", + "1/0, train_loss: 0.4757\n", + "0 epoch 228 average loss: 0.4757\n", + "current epoch: 228 current mean dice: 0.4055\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 229/500\n", + "1/0, train_loss: 0.4825\n", + "0 epoch 229 average loss: 0.4825\n", + "----------\n", + "0: epoch 230/500\n", + "1/0, train_loss: 0.4792\n", + "0 epoch 230 average loss: 0.4792\n", + "current epoch: 230 current mean dice: 0.3962\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 231/500\n", + "1/0, train_loss: 0.4784\n", + "0 epoch 231 average loss: 0.4784\n", + "----------\n", + "0: epoch 232/500\n", + "1/0, train_loss: 0.4763\n", + "0 epoch 232 average loss: 0.4763\n", + "current epoch: 232 current mean dice: 0.3126\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 233/500\n", + "1/0, train_loss: 0.4761\n", + "0 epoch 233 average loss: 0.4761\n", + "----------\n", + "0: epoch 234/500\n", + "1/0, train_loss: 0.4735\n", + "0 epoch 234 average loss: 0.4735\n", + "current epoch: 234 current mean dice: 0.3715\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 235/500\n", + "1/0, train_loss: 0.4750\n", + "0 epoch 235 average loss: 0.4750\n", + "----------\n", + "0: epoch 236/500\n", + "1/0, train_loss: 0.4834\n", + "0 epoch 236 average loss: 0.4834\n", + "current epoch: 236 current mean dice: 0.3505\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 237/500\n", + "1/0, train_loss: 0.4705\n", + "0 epoch 237 average loss: 0.4705\n", + "----------\n", + "0: epoch 238/500\n", + "1/0, train_loss: 0.4885\n", + "0 epoch 238 average loss: 0.4885\n", + "current epoch: 238 current mean dice: 0.3177\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 239/500\n", + "1/0, train_loss: 0.4825\n", + "0 epoch 239 average loss: 0.4825\n", + "----------\n", + "0: epoch 240/500\n", + "1/0, train_loss: 0.4910\n", + "0 epoch 240 average loss: 0.4910\n", + "current epoch: 240 current mean dice: 0.3622\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 241/500\n", + "1/0, train_loss: 0.4818\n", + "0 epoch 241 average loss: 0.4818\n", + "----------\n", + "0: epoch 242/500\n", + "1/0, train_loss: 0.4777\n", + "0 epoch 242 average loss: 0.4777\n", + "current epoch: 242 current mean dice: 0.4023\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 243/500\n", + "1/0, train_loss: 0.4746\n", + "0 epoch 243 average loss: 0.4746\n", + "----------\n", + "0: epoch 244/500\n", + "1/0, train_loss: 0.4760\n", + "0 epoch 244 average loss: 0.4760\n", + "current epoch: 244 current mean dice: 0.3307\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 245/500\n", + "1/0, train_loss: 0.4820\n", + "0 epoch 245 average loss: 0.4820\n", + "----------\n", + "0: epoch 246/500\n", + "1/0, train_loss: 0.4850\n", + "0 epoch 246 average loss: 0.4850\n", + "current epoch: 246 current mean dice: 0.3099\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 247/500\n", + "1/0, train_loss: 0.4808\n", + "0 epoch 247 average loss: 0.4808\n", + "----------\n", + "0: epoch 248/500\n", + "1/0, train_loss: 0.4842\n", + "0 epoch 248 average loss: 0.4842\n", + "current epoch: 248 current mean dice: 0.2712\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 249/500\n", + "1/0, train_loss: 0.4786\n", + "0 epoch 249 average loss: 0.4786\n", + "----------\n", + "0: epoch 250/500\n", + "1/0, train_loss: 0.4767\n", + "0 epoch 250 average loss: 0.4767\n", + "current epoch: 250 current mean dice: 0.4057\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 251/500\n", + "1/0, train_loss: 0.4732\n", + "0 epoch 251 average loss: 0.4732\n", + "----------\n", + "0: epoch 252/500\n", + "1/0, train_loss: 0.4774\n", + "0 epoch 252 average loss: 0.4774\n", + "current epoch: 252 current mean dice: 0.4033\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 253/500\n", + "1/0, train_loss: 0.4833\n", + "0 epoch 253 average loss: 0.4833\n", + "----------\n", + "0: epoch 254/500\n", + "1/0, train_loss: 0.4716\n", + "0 epoch 254 average loss: 0.4716\n", + "current epoch: 254 current mean dice: 0.2902\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 255/500\n", + "1/0, train_loss: 0.4697\n", + "0 epoch 255 average loss: 0.4697\n", + "----------\n", + "0: epoch 256/500\n", + "1/0, train_loss: 0.4792\n", + "0 epoch 256 average loss: 0.4792\n", + "current epoch: 256 current mean dice: 0.4038\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 257/500\n", + "1/0, train_loss: 0.4709\n", + "0 epoch 257 average loss: 0.4709\n", + "----------\n", + "0: epoch 258/500\n", + "1/0, train_loss: 0.4841\n", + "0 epoch 258 average loss: 0.4841\n", + "current epoch: 258 current mean dice: 0.4038\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 259/500\n", + "1/0, train_loss: 0.4720\n", + "0 epoch 259 average loss: 0.4720\n", + "----------\n", + "0: epoch 260/500\n", + "1/0, train_loss: 0.4614\n", + "0 epoch 260 average loss: 0.4614\n", + "current epoch: 260 current mean dice: 0.3480\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 261/500\n", + "1/0, train_loss: 0.4731\n", + "0 epoch 261 average loss: 0.4731\n", + "----------\n", + "0: epoch 262/500\n", + "1/0, train_loss: 0.4703\n", + "0 epoch 262 average loss: 0.4703\n", + "current epoch: 262 current mean dice: 0.4161\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 263/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.4717\n", + "0 epoch 263 average loss: 0.4717\n", + "----------\n", + "0: epoch 264/500\n", + "1/0, train_loss: 0.4729\n", + "0 epoch 264 average loss: 0.4729\n", + "current epoch: 264 current mean dice: 0.3850\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 265/500\n", + "1/0, train_loss: 0.4607\n", + "0 epoch 265 average loss: 0.4607\n", + "----------\n", + "0: epoch 266/500\n", + "1/0, train_loss: 0.4630\n", + "0 epoch 266 average loss: 0.4630\n", + "current epoch: 266 current mean dice: 0.3820\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 267/500\n", + "1/0, train_loss: 0.4795\n", + "0 epoch 267 average loss: 0.4795\n", + "----------\n", + "0: epoch 268/500\n", + "1/0, train_loss: 0.4818\n", + "0 epoch 268 average loss: 0.4818\n", + "current epoch: 268 current mean dice: 0.4359\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 269/500\n", + "1/0, train_loss: 0.4607\n", + "0 epoch 269 average loss: 0.4607\n", + "----------\n", + "0: epoch 270/500\n", + "1/0, train_loss: 0.4694\n", + "0 epoch 270 average loss: 0.4694\n", + "current epoch: 270 current mean dice: 0.3806\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 271/500\n", + "1/0, train_loss: 0.4757\n", + "0 epoch 271 average loss: 0.4757\n", + "----------\n", + "0: epoch 272/500\n", + "1/0, train_loss: 0.4660\n", + "0 epoch 272 average loss: 0.4660\n", + "current epoch: 272 current mean dice: 0.2645\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 273/500\n", + "1/0, train_loss: 0.4619\n", + "0 epoch 273 average loss: 0.4619\n", + "----------\n", + "0: epoch 274/500\n", + "1/0, train_loss: 0.4588\n", + "0 epoch 274 average loss: 0.4588\n", + "current epoch: 274 current mean dice: 0.3757\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 275/500\n", + "1/0, train_loss: 0.4585\n", + "0 epoch 275 average loss: 0.4585\n", + "----------\n", + "0: epoch 276/500\n", + "1/0, train_loss: 0.4847\n", + "0 epoch 276 average loss: 0.4847\n", + "current epoch: 276 current mean dice: 0.3939\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 277/500\n", + "1/0, train_loss: 0.4769\n", + "0 epoch 277 average loss: 0.4769\n", + "----------\n", + "0: epoch 278/500\n", + "1/0, train_loss: 0.4593\n", + "0 epoch 278 average loss: 0.4593\n", + "current epoch: 278 current mean dice: 0.2924\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 279/500\n", + "1/0, train_loss: 0.4665\n", + "0 epoch 279 average loss: 0.4665\n", + "----------\n", + "0: epoch 280/500\n", + "1/0, train_loss: 0.4700\n", + "0 epoch 280 average loss: 0.4700\n", + "current epoch: 280 current mean dice: 0.4013\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 281/500\n", + "1/0, train_loss: 0.4642\n", + "0 epoch 281 average loss: 0.4642\n", + "----------\n", + "0: epoch 282/500\n", + "1/0, train_loss: 0.4598\n", + "0 epoch 282 average loss: 0.4598\n", + "current epoch: 282 current mean dice: 0.4119\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 283/500\n", + "1/0, train_loss: 0.4667\n", + "0 epoch 283 average loss: 0.4667\n", + "----------\n", + "0: epoch 284/500\n", + "1/0, train_loss: 0.4530\n", + "0 epoch 284 average loss: 0.4530\n", + "current epoch: 284 current mean dice: 0.3584\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 285/500\n", + "1/0, train_loss: 0.4585\n", + "0 epoch 285 average loss: 0.4585\n", + "----------\n", + "0: epoch 286/500\n", + "1/0, train_loss: 0.4660\n", + "0 epoch 286 average loss: 0.4660\n", + "current epoch: 286 current mean dice: 0.3733\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 287/500\n", + "1/0, train_loss: 0.4596\n", + "0 epoch 287 average loss: 0.4596\n", + "----------\n", + "0: epoch 288/500\n", + "1/0, train_loss: 0.4640\n", + "0 epoch 288 average loss: 0.4640\n", + "current epoch: 288 current mean dice: 0.3846\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 289/500\n", + "1/0, train_loss: 0.4502\n", + "0 epoch 289 average loss: 0.4502\n", + "----------\n", + "0: epoch 290/500\n", + "1/0, train_loss: 0.4570\n", + "0 epoch 290 average loss: 0.4570\n", + "current epoch: 290 current mean dice: 0.2783\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 291/500\n", + "1/0, train_loss: 0.4555\n", + "0 epoch 291 average loss: 0.4555\n", + "----------\n", + "0: epoch 292/500\n", + "1/0, train_loss: 0.4534\n", + "0 epoch 292 average loss: 0.4534\n", + "current epoch: 292 current mean dice: 0.3228\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 293/500\n", + "1/0, train_loss: 0.4675\n", + "0 epoch 293 average loss: 0.4675\n", + "----------\n", + "0: epoch 294/500\n", + "1/0, train_loss: 0.4710\n", + "0 epoch 294 average loss: 0.4710\n", + "current epoch: 294 current mean dice: 0.3718\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 295/500\n", + "1/0, train_loss: 0.4744\n", + "0 epoch 295 average loss: 0.4744\n", + "----------\n", + "0: epoch 296/500\n", + "1/0, train_loss: 0.4638\n", + "0 epoch 296 average loss: 0.4638\n", + "current epoch: 296 current mean dice: 0.3142\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 297/500\n", + "1/0, train_loss: 0.4601\n", + "0 epoch 297 average loss: 0.4601\n", + "----------\n", + "0: epoch 298/500\n", + "1/0, train_loss: 0.4476\n", + "0 epoch 298 average loss: 0.4476\n", + "current epoch: 298 current mean dice: 0.3536\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 299/500\n", + "1/0, train_loss: 0.4733\n", + "0 epoch 299 average loss: 0.4733\n", + "----------\n", + "0: epoch 300/500\n", + "1/0, train_loss: 0.4533\n", + "0 epoch 300 average loss: 0.4533\n", + "current epoch: 300 current mean dice: 0.4423\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 301/500\n", + "1/0, train_loss: 0.4559\n", + "0 epoch 301 average loss: 0.4559\n", + "----------\n", + "0: epoch 302/500\n", + "1/0, train_loss: 0.4582\n", + "0 epoch 302 average loss: 0.4582\n", + "current epoch: 302 current mean dice: 0.4087\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 303/500\n", + "1/0, train_loss: 0.4535\n", + "0 epoch 303 average loss: 0.4535\n", + "----------\n", + "0: epoch 304/500\n", + "1/0, train_loss: 0.4562\n", + "0 epoch 304 average loss: 0.4562\n", + "current epoch: 304 current mean dice: 0.3446\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 305/500\n", + "1/0, train_loss: 0.4581\n", + "0 epoch 305 average loss: 0.4581\n", + "----------\n", + "0: epoch 306/500\n", + "1/0, train_loss: 0.4554\n", + "0 epoch 306 average loss: 0.4554\n", + "current epoch: 306 current mean dice: 0.3429\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 307/500\n", + "1/0, train_loss: 0.4530\n", + "0 epoch 307 average loss: 0.4530\n", + "----------\n", + "0: epoch 308/500\n", + "1/0, train_loss: 0.4624\n", + "0 epoch 308 average loss: 0.4624\n", + "current epoch: 308 current mean dice: 0.3878\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 309/500\n", + "1/0, train_loss: 0.4451\n", + "0 epoch 309 average loss: 0.4451\n", + "----------\n", + "0: epoch 310/500\n", + "1/0, train_loss: 0.4514\n", + "0 epoch 310 average loss: 0.4514\n", + "current epoch: 310 current mean dice: 0.3762\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 311/500\n", + "1/0, train_loss: 0.4652\n", + "0 epoch 311 average loss: 0.4652\n", + "----------\n", + "0: epoch 312/500\n", + "1/0, train_loss: 0.4537\n", + "0 epoch 312 average loss: 0.4537\n", + "current epoch: 312 current mean dice: 0.3057\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 313/500\n", + "1/0, train_loss: 0.4580\n", + "0 epoch 313 average loss: 0.4580\n", + "----------\n", + "0: epoch 314/500\n", + "1/0, train_loss: 0.4492\n", + "0 epoch 314 average loss: 0.4492\n", + "current epoch: 314 current mean dice: 0.4023\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 315/500\n", + "1/0, train_loss: 0.4445\n", + "0 epoch 315 average loss: 0.4445\n", + "----------\n", + "0: epoch 316/500\n", + "1/0, train_loss: 0.4560\n", + "0 epoch 316 average loss: 0.4560\n", + "current epoch: 316 current mean dice: 0.3918\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 317/500\n", + "1/0, train_loss: 0.4616\n", + "0 epoch 317 average loss: 0.4616\n", + "----------\n", + "0: epoch 318/500\n", + "1/0, train_loss: 0.4514\n", + "0 epoch 318 average loss: 0.4514\n", + "current epoch: 318 current mean dice: 0.3554\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 319/500\n", + "1/0, train_loss: 0.4563\n", + "0 epoch 319 average loss: 0.4563\n", + "----------\n", + "0: epoch 320/500\n", + "1/0, train_loss: 0.4547\n", + "0 epoch 320 average loss: 0.4547\n", + "current epoch: 320 current mean dice: 0.3832\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 321/500\n", + "1/0, train_loss: 0.4566\n", + "0 epoch 321 average loss: 0.4566\n", + "----------\n", + "0: epoch 322/500\n", + "1/0, train_loss: 0.4528\n", + "0 epoch 322 average loss: 0.4528\n", + "current epoch: 322 current mean dice: 0.4319\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 323/500\n", + "1/0, train_loss: 0.4553\n", + "0 epoch 323 average loss: 0.4553\n", + "----------\n", + "0: epoch 324/500\n", + "1/0, train_loss: 0.4440\n", + "0 epoch 324 average loss: 0.4440\n", + "current epoch: 324 current mean dice: 0.4187\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 325/500\n", + "1/0, train_loss: 0.4524\n", + "0 epoch 325 average loss: 0.4524\n", + "----------\n", + "0: epoch 326/500\n", + "1/0, train_loss: 0.4437\n", + "0 epoch 326 average loss: 0.4437\n", + "current epoch: 326 current mean dice: 0.3994\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 327/500\n", + "1/0, train_loss: 0.4470\n", + "0 epoch 327 average loss: 0.4470\n", + "----------\n", + "0: epoch 328/500\n", + "1/0, train_loss: 0.4508\n", + "0 epoch 328 average loss: 0.4508\n", + "current epoch: 328 current mean dice: 0.3339\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 329/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.4608\n", + "0 epoch 329 average loss: 0.4608\n", + "----------\n", + "0: epoch 330/500\n", + "1/0, train_loss: 0.4419\n", + "0 epoch 330 average loss: 0.4419\n", + "current epoch: 330 current mean dice: 0.2709\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 331/500\n", + "1/0, train_loss: 0.4474\n", + "0 epoch 331 average loss: 0.4474\n", + "----------\n", + "0: epoch 332/500\n", + "1/0, train_loss: 0.4476\n", + "0 epoch 332 average loss: 0.4476\n", + "current epoch: 332 current mean dice: 0.3798\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 333/500\n", + "1/0, train_loss: 0.4491\n", + "0 epoch 333 average loss: 0.4491\n", + "----------\n", + "0: epoch 334/500\n", + "1/0, train_loss: 0.4579\n", + "0 epoch 334 average loss: 0.4579\n", + "current epoch: 334 current mean dice: 0.3953\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 335/500\n", + "1/0, train_loss: 0.4535\n", + "0 epoch 335 average loss: 0.4535\n", + "----------\n", + "0: epoch 336/500\n", + "1/0, train_loss: 0.4457\n", + "0 epoch 336 average loss: 0.4457\n", + "current epoch: 336 current mean dice: 0.3470\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 337/500\n", + "1/0, train_loss: 0.4365\n", + "0 epoch 337 average loss: 0.4365\n", + "----------\n", + "0: epoch 338/500\n", + "1/0, train_loss: 0.4431\n", + "0 epoch 338 average loss: 0.4431\n", + "current epoch: 338 current mean dice: 0.4220\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 339/500\n", + "1/0, train_loss: 0.4646\n", + "0 epoch 339 average loss: 0.4646\n", + "----------\n", + "0: epoch 340/500\n", + "1/0, train_loss: 0.4537\n", + "0 epoch 340 average loss: 0.4537\n", + "current epoch: 340 current mean dice: 0.4566\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 341/500\n", + "1/0, train_loss: 0.4480\n", + "0 epoch 341 average loss: 0.4480\n", + "----------\n", + "0: epoch 342/500\n", + "1/0, train_loss: 0.4599\n", + "0 epoch 342 average loss: 0.4599\n", + "current epoch: 342 current mean dice: 0.4383\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 343/500\n", + "1/0, train_loss: 0.4554\n", + "0 epoch 343 average loss: 0.4554\n", + "----------\n", + "0: epoch 344/500\n", + "1/0, train_loss: 0.4631\n", + "0 epoch 344 average loss: 0.4631\n", + "current epoch: 344 current mean dice: 0.4253\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 345/500\n", + "1/0, train_loss: 0.4466\n", + "0 epoch 345 average loss: 0.4466\n", + "----------\n", + "0: epoch 346/500\n", + "1/0, train_loss: 0.4464\n", + "0 epoch 346 average loss: 0.4464\n", + "current epoch: 346 current mean dice: 0.4028\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 347/500\n", + "1/0, train_loss: 0.4408\n", + "0 epoch 347 average loss: 0.4408\n", + "----------\n", + "0: epoch 348/500\n", + "1/0, train_loss: 0.4468\n", + "0 epoch 348 average loss: 0.4468\n", + "current epoch: 348 current mean dice: 0.4036\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 349/500\n", + "1/0, train_loss: 0.4659\n", + "0 epoch 349 average loss: 0.4659\n", + "----------\n", + "0: epoch 350/500\n", + "1/0, train_loss: 0.4356\n", + "0 epoch 350 average loss: 0.4356\n", + "current epoch: 350 current mean dice: 0.3980\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 351/500\n", + "1/0, train_loss: 0.4526\n", + "0 epoch 351 average loss: 0.4526\n", + "----------\n", + "0: epoch 352/500\n", + "1/0, train_loss: 0.4548\n", + "0 epoch 352 average loss: 0.4548\n", + "current epoch: 352 current mean dice: 0.4025\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 353/500\n", + "1/0, train_loss: 0.4455\n", + "0 epoch 353 average loss: 0.4455\n", + "----------\n", + "0: epoch 354/500\n", + "1/0, train_loss: 0.4474\n", + "0 epoch 354 average loss: 0.4474\n", + "current epoch: 354 current mean dice: 0.4057\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 355/500\n", + "1/0, train_loss: 0.4486\n", + "0 epoch 355 average loss: 0.4486\n", + "----------\n", + "0: epoch 356/500\n", + "1/0, train_loss: 0.4429\n", + "0 epoch 356 average loss: 0.4429\n", + "current epoch: 356 current mean dice: 0.2880\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 357/500\n", + "1/0, train_loss: 0.4391\n", + "0 epoch 357 average loss: 0.4391\n", + "----------\n", + "0: epoch 358/500\n", + "1/0, train_loss: 0.4539\n", + "0 epoch 358 average loss: 0.4539\n", + "current epoch: 358 current mean dice: 0.3418\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 359/500\n", + "1/0, train_loss: 0.4479\n", + "0 epoch 359 average loss: 0.4479\n", + "----------\n", + "0: epoch 360/500\n", + "1/0, train_loss: 0.4444\n", + "0 epoch 360 average loss: 0.4444\n", + "current epoch: 360 current mean dice: 0.4093\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 361/500\n", + "1/0, train_loss: 0.4524\n", + "0 epoch 361 average loss: 0.4524\n", + "----------\n", + "0: epoch 362/500\n", + "1/0, train_loss: 0.4340\n", + "0 epoch 362 average loss: 0.4340\n", + "current epoch: 362 current mean dice: 0.4006\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 363/500\n", + "1/0, train_loss: 0.4417\n", + "0 epoch 363 average loss: 0.4417\n", + "----------\n", + "0: epoch 364/500\n", + "1/0, train_loss: 0.4345\n", + "0 epoch 364 average loss: 0.4345\n", + "current epoch: 364 current mean dice: 0.3761\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 365/500\n", + "1/0, train_loss: 0.4505\n", + "0 epoch 365 average loss: 0.4505\n", + "----------\n", + "0: epoch 366/500\n", + "1/0, train_loss: 0.4481\n", + "0 epoch 366 average loss: 0.4481\n", + "current epoch: 366 current mean dice: 0.4109\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 367/500\n", + "1/0, train_loss: 0.4541\n", + "0 epoch 367 average loss: 0.4541\n", + "----------\n", + "0: epoch 368/500\n", + "1/0, train_loss: 0.4411\n", + "0 epoch 368 average loss: 0.4411\n", + "current epoch: 368 current mean dice: 0.3448\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 369/500\n", + "1/0, train_loss: 0.4443\n", + "0 epoch 369 average loss: 0.4443\n", + "----------\n", + "0: epoch 370/500\n", + "1/0, train_loss: 0.4404\n", + "0 epoch 370 average loss: 0.4404\n", + "current epoch: 370 current mean dice: 0.3673\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 371/500\n", + "1/0, train_loss: 0.4336\n", + "0 epoch 371 average loss: 0.4336\n", + "----------\n", + "0: epoch 372/500\n", + "1/0, train_loss: 0.4368\n", + "0 epoch 372 average loss: 0.4368\n", + "current epoch: 372 current mean dice: 0.3919\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 373/500\n", + "1/0, train_loss: 0.4373\n", + "0 epoch 373 average loss: 0.4373\n", + "----------\n", + "0: epoch 374/500\n", + "1/0, train_loss: 0.4430\n", + "0 epoch 374 average loss: 0.4430\n", + "current epoch: 374 current mean dice: 0.3398\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 375/500\n", + "1/0, train_loss: 0.4318\n", + "0 epoch 375 average loss: 0.4318\n", + "----------\n", + "0: epoch 376/500\n", + "1/0, train_loss: 0.4332\n", + "0 epoch 376 average loss: 0.4332\n", + "current epoch: 376 current mean dice: 0.3278\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 377/500\n", + "1/0, train_loss: 0.4323\n", + "0 epoch 377 average loss: 0.4323\n", + "----------\n", + "0: epoch 378/500\n", + "1/0, train_loss: 0.4287\n", + "0 epoch 378 average loss: 0.4287\n", + "current epoch: 378 current mean dice: 0.3370\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 379/500\n", + "1/0, train_loss: 0.4416\n", + "0 epoch 379 average loss: 0.4416\n", + "----------\n", + "0: epoch 380/500\n", + "1/0, train_loss: 0.4418\n", + "0 epoch 380 average loss: 0.4418\n", + "current epoch: 380 current mean dice: 0.3894\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 381/500\n", + "1/0, train_loss: 0.4339\n", + "0 epoch 381 average loss: 0.4339\n", + "----------\n", + "0: epoch 382/500\n", + "1/0, train_loss: 0.4336\n", + "0 epoch 382 average loss: 0.4336\n", + "current epoch: 382 current mean dice: 0.3813\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 383/500\n", + "1/0, train_loss: 0.4385\n", + "0 epoch 383 average loss: 0.4385\n", + "----------\n", + "0: epoch 384/500\n", + "1/0, train_loss: 0.4400\n", + "0 epoch 384 average loss: 0.4400\n", + "current epoch: 384 current mean dice: 0.4269\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 385/500\n", + "1/0, train_loss: 0.4388\n", + "0 epoch 385 average loss: 0.4388\n", + "----------\n", + "0: epoch 386/500\n", + "1/0, train_loss: 0.4373\n", + "0 epoch 386 average loss: 0.4373\n", + "current epoch: 386 current mean dice: 0.3860\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 387/500\n", + "1/0, train_loss: 0.4362\n", + "0 epoch 387 average loss: 0.4362\n", + "----------\n", + "0: epoch 388/500\n", + "1/0, train_loss: 0.4326\n", + "0 epoch 388 average loss: 0.4326\n", + "current epoch: 388 current mean dice: 0.4215\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 389/500\n", + "1/0, train_loss: 0.4319\n", + "0 epoch 389 average loss: 0.4319\n", + "----------\n", + "0: epoch 390/500\n", + "1/0, train_loss: 0.4350\n", + "0 epoch 390 average loss: 0.4350\n", + "current epoch: 390 current mean dice: 0.4386\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 391/500\n", + "1/0, train_loss: 0.4335\n", + "0 epoch 391 average loss: 0.4335\n", + "----------\n", + "0: epoch 392/500\n", + "1/0, train_loss: 0.4275\n", + "0 epoch 392 average loss: 0.4275\n", + "current epoch: 392 current mean dice: 0.3915\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 393/500\n", + "1/0, train_loss: 0.4401\n", + "0 epoch 393 average loss: 0.4401\n", + "----------\n", + "0: epoch 394/500\n", + "1/0, train_loss: 0.4313\n", + "0 epoch 394 average loss: 0.4313\n", + "current epoch: 394 current mean dice: 0.4088\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 395/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.4363\n", + "0 epoch 395 average loss: 0.4363\n", + "----------\n", + "0: epoch 396/500\n", + "1/0, train_loss: 0.4348\n", + "0 epoch 396 average loss: 0.4348\n", + "current epoch: 396 current mean dice: 0.4048\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 397/500\n", + "1/0, train_loss: 0.4291\n", + "0 epoch 397 average loss: 0.4291\n", + "----------\n", + "0: epoch 398/500\n", + "1/0, train_loss: 0.4375\n", + "0 epoch 398 average loss: 0.4375\n", + "current epoch: 398 current mean dice: 0.3712\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 399/500\n", + "1/0, train_loss: 0.4237\n", + "0 epoch 399 average loss: 0.4237\n", + "----------\n", + "0: epoch 400/500\n", + "1/0, train_loss: 0.4311\n", + "0 epoch 400 average loss: 0.4311\n", + "current epoch: 400 current mean dice: 0.3595\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 401/500\n", + "1/0, train_loss: 0.4256\n", + "0 epoch 401 average loss: 0.4256\n", + "----------\n", + "0: epoch 402/500\n", + "1/0, train_loss: 0.4297\n", + "0 epoch 402 average loss: 0.4297\n", + "current epoch: 402 current mean dice: 0.4045\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 403/500\n", + "1/0, train_loss: 0.4378\n", + "0 epoch 403 average loss: 0.4378\n", + "----------\n", + "0: epoch 404/500\n", + "1/0, train_loss: 0.4334\n", + "0 epoch 404 average loss: 0.4334\n", + "current epoch: 404 current mean dice: 0.3568\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 405/500\n", + "1/0, train_loss: 0.4223\n", + "0 epoch 405 average loss: 0.4223\n", + "----------\n", + "0: epoch 406/500\n", + "1/0, train_loss: 0.4301\n", + "0 epoch 406 average loss: 0.4301\n", + "current epoch: 406 current mean dice: 0.3217\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 407/500\n", + "1/0, train_loss: 0.4309\n", + "0 epoch 407 average loss: 0.4309\n", + "----------\n", + "0: epoch 408/500\n", + "1/0, train_loss: 0.4267\n", + "0 epoch 408 average loss: 0.4267\n", + "current epoch: 408 current mean dice: 0.4196\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 409/500\n", + "1/0, train_loss: 0.4243\n", + "0 epoch 409 average loss: 0.4243\n", + "----------\n", + "0: epoch 410/500\n", + "1/0, train_loss: 0.4327\n", + "0 epoch 410 average loss: 0.4327\n", + "current epoch: 410 current mean dice: 0.3885\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 411/500\n", + "1/0, train_loss: 0.4268\n", + "0 epoch 411 average loss: 0.4268\n", + "----------\n", + "0: epoch 412/500\n", + "1/0, train_loss: 0.4257\n", + "0 epoch 412 average loss: 0.4257\n", + "current epoch: 412 current mean dice: 0.3235\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 413/500\n", + "1/0, train_loss: 0.4258\n", + "0 epoch 413 average loss: 0.4258\n", + "----------\n", + "0: epoch 414/500\n", + "1/0, train_loss: 0.4344\n", + "0 epoch 414 average loss: 0.4344\n", + "current epoch: 414 current mean dice: 0.3939\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 415/500\n", + "1/0, train_loss: 0.4238\n", + "0 epoch 415 average loss: 0.4238\n", + "----------\n", + "0: epoch 416/500\n", + "1/0, train_loss: 0.4266\n", + "0 epoch 416 average loss: 0.4266\n", + "current epoch: 416 current mean dice: 0.3908\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 417/500\n", + "1/0, train_loss: 0.4255\n", + "0 epoch 417 average loss: 0.4255\n", + "----------\n", + "0: epoch 418/500\n", + "1/0, train_loss: 0.4380\n", + "0 epoch 418 average loss: 0.4380\n", + "current epoch: 418 current mean dice: 0.3503\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 419/500\n", + "1/0, train_loss: 0.4317\n", + "0 epoch 419 average loss: 0.4317\n", + "----------\n", + "0: epoch 420/500\n", + "1/0, train_loss: 0.4299\n", + "0 epoch 420 average loss: 0.4299\n", + "current epoch: 420 current mean dice: 0.3583\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 421/500\n", + "1/0, train_loss: 0.4258\n", + "0 epoch 421 average loss: 0.4258\n", + "----------\n", + "0: epoch 422/500\n", + "1/0, train_loss: 0.4319\n", + "0 epoch 422 average loss: 0.4319\n", + "current epoch: 422 current mean dice: 0.3418\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 423/500\n", + "1/0, train_loss: 0.4251\n", + "0 epoch 423 average loss: 0.4251\n", + "----------\n", + "0: epoch 424/500\n", + "1/0, train_loss: 0.4392\n", + "0 epoch 424 average loss: 0.4392\n", + "current epoch: 424 current mean dice: 0.3407\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 425/500\n", + "1/0, train_loss: 0.4273\n", + "0 epoch 425 average loss: 0.4273\n", + "----------\n", + "0: epoch 426/500\n", + "1/0, train_loss: 0.4252\n", + "0 epoch 426 average loss: 0.4252\n", + "current epoch: 426 current mean dice: 0.3265\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 427/500\n", + "1/0, train_loss: 0.4361\n", + "0 epoch 427 average loss: 0.4361\n", + "----------\n", + "0: epoch 428/500\n", + "1/0, train_loss: 0.4337\n", + "0 epoch 428 average loss: 0.4337\n", + "current epoch: 428 current mean dice: 0.2747\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 429/500\n", + "1/0, train_loss: 0.4287\n", + "0 epoch 429 average loss: 0.4287\n", + "----------\n", + "0: epoch 430/500\n", + "1/0, train_loss: 0.4325\n", + "0 epoch 430 average loss: 0.4325\n", + "current epoch: 430 current mean dice: 0.3246\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 431/500\n", + "1/0, train_loss: 0.4226\n", + "0 epoch 431 average loss: 0.4226\n", + "----------\n", + "0: epoch 432/500\n", + "1/0, train_loss: 0.4341\n", + "0 epoch 432 average loss: 0.4341\n", + "current epoch: 432 current mean dice: 0.4028\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 433/500\n", + "1/0, train_loss: 0.4191\n", + "0 epoch 433 average loss: 0.4191\n", + "----------\n", + "0: epoch 434/500\n", + "1/0, train_loss: 0.4333\n", + "0 epoch 434 average loss: 0.4333\n", + "current epoch: 434 current mean dice: 0.4575\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 435/500\n", + "1/0, train_loss: 0.4234\n", + "0 epoch 435 average loss: 0.4234\n", + "----------\n", + "0: epoch 436/500\n", + "1/0, train_loss: 0.4326\n", + "0 epoch 436 average loss: 0.4326\n", + "current epoch: 436 current mean dice: 0.3826\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 437/500\n", + "1/0, train_loss: 0.4322\n", + "0 epoch 437 average loss: 0.4322\n", + "----------\n", + "0: epoch 438/500\n", + "1/0, train_loss: 0.4384\n", + "0 epoch 438 average loss: 0.4384\n", + "current epoch: 438 current mean dice: 0.2925\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 439/500\n", + "1/0, train_loss: 0.4246\n", + "0 epoch 439 average loss: 0.4246\n", + "----------\n", + "0: epoch 440/500\n", + "1/0, train_loss: 0.4293\n", + "0 epoch 440 average loss: 0.4293\n", + "current epoch: 440 current mean dice: 0.4209\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 441/500\n", + "1/0, train_loss: 0.4185\n", + "0 epoch 441 average loss: 0.4185\n", + "----------\n", + "0: epoch 442/500\n", + "1/0, train_loss: 0.4361\n", + "0 epoch 442 average loss: 0.4361\n", + "current epoch: 442 current mean dice: 0.4204\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 443/500\n", + "1/0, train_loss: 0.4334\n", + "0 epoch 443 average loss: 0.4334\n", + "----------\n", + "0: epoch 444/500\n", + "1/0, train_loss: 0.4298\n", + "0 epoch 444 average loss: 0.4298\n", + "current epoch: 444 current mean dice: 0.3611\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 445/500\n", + "1/0, train_loss: 0.4194\n", + "0 epoch 445 average loss: 0.4194\n", + "----------\n", + "0: epoch 446/500\n", + "1/0, train_loss: 0.4222\n", + "0 epoch 446 average loss: 0.4222\n", + "current epoch: 446 current mean dice: 0.4053\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 447/500\n", + "1/0, train_loss: 0.4286\n", + "0 epoch 447 average loss: 0.4286\n", + "----------\n", + "0: epoch 448/500\n", + "1/0, train_loss: 0.4214\n", + "0 epoch 448 average loss: 0.4214\n", + "current epoch: 448 current mean dice: 0.3995\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 449/500\n", + "1/0, train_loss: 0.4247\n", + "0 epoch 449 average loss: 0.4247\n", + "----------\n", + "0: epoch 450/500\n", + "1/0, train_loss: 0.4156\n", + "0 epoch 450 average loss: 0.4156\n", + "current epoch: 450 current mean dice: 0.3993\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 451/500\n", + "1/0, train_loss: 0.4328\n", + "0 epoch 451 average loss: 0.4328\n", + "----------\n", + "0: epoch 452/500\n", + "1/0, train_loss: 0.4208\n", + "0 epoch 452 average loss: 0.4208\n", + "current epoch: 452 current mean dice: 0.4692\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 453/500\n", + "1/0, train_loss: 0.4190\n", + "0 epoch 453 average loss: 0.4190\n", + "----------\n", + "0: epoch 454/500\n", + "1/0, train_loss: 0.4216\n", + "0 epoch 454 average loss: 0.4216\n", + "current epoch: 454 current mean dice: 0.4571\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 455/500\n", + "1/0, train_loss: 0.4289\n", + "0 epoch 455 average loss: 0.4289\n", + "----------\n", + "0: epoch 456/500\n", + "1/0, train_loss: 0.4221\n", + "0 epoch 456 average loss: 0.4221\n", + "current epoch: 456 current mean dice: 0.3323\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 457/500\n", + "1/0, train_loss: 0.4259\n", + "0 epoch 457 average loss: 0.4259\n", + "----------\n", + "0: epoch 458/500\n", + "1/0, train_loss: 0.4269\n", + "0 epoch 458 average loss: 0.4269\n", + "current epoch: 458 current mean dice: 0.4320\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 459/500\n", + "1/0, train_loss: 0.4196\n", + "0 epoch 459 average loss: 0.4196\n", + "----------\n", + "0: epoch 460/500\n", + "1/0, train_loss: 0.4240\n", + "0 epoch 460 average loss: 0.4240\n", + "current epoch: 460 current mean dice: 0.4188\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 461/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.4245\n", + "0 epoch 461 average loss: 0.4245\n", + "----------\n", + "0: epoch 462/500\n", + "1/0, train_loss: 0.4308\n", + "0 epoch 462 average loss: 0.4308\n", + "current epoch: 462 current mean dice: 0.4202\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 463/500\n", + "1/0, train_loss: 0.4284\n", + "0 epoch 463 average loss: 0.4284\n", + "----------\n", + "0: epoch 464/500\n", + "1/0, train_loss: 0.4217\n", + "0 epoch 464 average loss: 0.4217\n", + "current epoch: 464 current mean dice: 0.3579\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 465/500\n", + "1/0, train_loss: 0.4273\n", + "0 epoch 465 average loss: 0.4273\n", + "----------\n", + "0: epoch 466/500\n", + "1/0, train_loss: 0.4211\n", + "0 epoch 466 average loss: 0.4211\n", + "current epoch: 466 current mean dice: 0.4101\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 467/500\n", + "1/0, train_loss: 0.4168\n", + "0 epoch 467 average loss: 0.4168\n", + "----------\n", + "0: epoch 468/500\n", + "1/0, train_loss: 0.4188\n", + "0 epoch 468 average loss: 0.4188\n", + "current epoch: 468 current mean dice: 0.4204\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 469/500\n", + "1/0, train_loss: 0.4366\n", + "0 epoch 469 average loss: 0.4366\n", + "----------\n", + "0: epoch 470/500\n", + "1/0, train_loss: 0.4153\n", + "0 epoch 470 average loss: 0.4153\n", + "current epoch: 470 current mean dice: 0.3338\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 471/500\n", + "1/0, train_loss: 0.4169\n", + "0 epoch 471 average loss: 0.4169\n", + "----------\n", + "0: epoch 472/500\n", + "1/0, train_loss: 0.4289\n", + "0 epoch 472 average loss: 0.4289\n", + "current epoch: 472 current mean dice: 0.3517\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 473/500\n", + "1/0, train_loss: 0.4241\n", + "0 epoch 473 average loss: 0.4241\n", + "----------\n", + "0: epoch 474/500\n", + "1/0, train_loss: 0.4162\n", + "0 epoch 474 average loss: 0.4162\n", + "current epoch: 474 current mean dice: 0.4341\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 475/500\n", + "1/0, train_loss: 0.4241\n", + "0 epoch 475 average loss: 0.4241\n", + "----------\n", + "0: epoch 476/500\n", + "1/0, train_loss: 0.4245\n", + "0 epoch 476 average loss: 0.4245\n", + "current epoch: 476 current mean dice: 0.4177\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 477/500\n", + "1/0, train_loss: 0.4205\n", + "0 epoch 477 average loss: 0.4205\n", + "----------\n", + "0: epoch 478/500\n", + "1/0, train_loss: 0.4214\n", + "0 epoch 478 average loss: 0.4214\n", + "current epoch: 478 current mean dice: 0.4193\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 479/500\n", + "1/0, train_loss: 0.4266\n", + "0 epoch 479 average loss: 0.4266\n", + "----------\n", + "0: epoch 480/500\n", + "1/0, train_loss: 0.4137\n", + "0 epoch 480 average loss: 0.4137\n", + "current epoch: 480 current mean dice: 0.4079\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 481/500\n", + "1/0, train_loss: 0.4327\n", + "0 epoch 481 average loss: 0.4327\n", + "----------\n", + "0: epoch 482/500\n", + "1/0, train_loss: 0.4135\n", + "0 epoch 482 average loss: 0.4135\n", + "current epoch: 482 current mean dice: 0.3386\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 483/500\n", + "1/0, train_loss: 0.4144\n", + "0 epoch 483 average loss: 0.4144\n", + "----------\n", + "0: epoch 484/500\n", + "1/0, train_loss: 0.4286\n", + "0 epoch 484 average loss: 0.4286\n", + "current epoch: 484 current mean dice: 0.3970\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 485/500\n", + "1/0, train_loss: 0.4195\n", + "0 epoch 485 average loss: 0.4195\n", + "----------\n", + "0: epoch 486/500\n", + "1/0, train_loss: 0.4126\n", + "0 epoch 486 average loss: 0.4126\n", + "current epoch: 486 current mean dice: 0.3878\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 487/500\n", + "1/0, train_loss: 0.4103\n", + "0 epoch 487 average loss: 0.4103\n", + "----------\n", + "0: epoch 488/500\n", + "1/0, train_loss: 0.4210\n", + "0 epoch 488 average loss: 0.4210\n", + "current epoch: 488 current mean dice: 0.4125\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 489/500\n", + "1/0, train_loss: 0.4184\n", + "0 epoch 489 average loss: 0.4184\n", + "----------\n", + "0: epoch 490/500\n", + "1/0, train_loss: 0.4123\n", + "0 epoch 490 average loss: 0.4123\n", + "current epoch: 490 current mean dice: 0.4482\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 491/500\n", + "1/0, train_loss: 0.4251\n", + "0 epoch 491 average loss: 0.4251\n", + "----------\n", + "0: epoch 492/500\n", + "1/0, train_loss: 0.4135\n", + "0 epoch 492 average loss: 0.4135\n", + "current epoch: 492 current mean dice: 0.4561\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 493/500\n", + "1/0, train_loss: 0.4186\n", + "0 epoch 493 average loss: 0.4186\n", + "----------\n", + "0: epoch 494/500\n", + "1/0, train_loss: 0.4177\n", + "0 epoch 494 average loss: 0.4177\n", + "current epoch: 494 current mean dice: 0.4378\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 495/500\n", + "1/0, train_loss: 0.4181\n", + "0 epoch 495 average loss: 0.4181\n", + "----------\n", + "0: epoch 496/500\n", + "1/0, train_loss: 0.4135\n", + "0 epoch 496 average loss: 0.4135\n", + "current epoch: 496 current mean dice: 0.4235\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 497/500\n", + "1/0, train_loss: 0.4107\n", + "0 epoch 497 average loss: 0.4107\n", + "----------\n", + "0: epoch 498/500\n", + "1/0, train_loss: 0.4310\n", + "0 epoch 498 average loss: 0.4310\n", + "current epoch: 498 current mean dice: 0.3507\n", + "best mean dice: 0.4717 at epoch: 76\n", + "----------\n", + "0: epoch 499/500\n", + "1/0, train_loss: 0.4154\n", + "0 epoch 499 average loss: 0.4154\n", + "----------\n", + "0: epoch 500/500\n", + "1/0, train_loss: 0.4138\n", + "0 epoch 500 average loss: 0.4138\n", + "current epoch: 500 current mean dice: 0.3544\n", + "best mean dice: 0.4717 at epoch: 76\n", + "1\n", + "1\n", + "----------\n", + "1: epoch 1/500\n", + "1/0, train_loss: 0.7457\n", + "1 epoch 1 average loss: 0.7457\n", + "----------\n", + "1: epoch 2/500\n", + "1/0, train_loss: 0.7349\n", + "1 epoch 2 average loss: 0.7349\n", + "saved new best metric model\n", + "current epoch: 2 current mean dice: 0.3851\n", + "best mean dice: 0.3851 at epoch: 2\n", + "----------\n", + "1: epoch 3/500\n", + "1/0, train_loss: 0.7278\n", + "1 epoch 3 average loss: 0.7278\n", + "----------\n", + "1: epoch 4/500\n", + "1/0, train_loss: 0.7214\n", + "1 epoch 4 average loss: 0.7214\n", + "current epoch: 4 current mean dice: 0.3810\n", + "best mean dice: 0.3851 at epoch: 2\n", + "----------\n", + "1: epoch 5/500\n", + "1/0, train_loss: 0.7180\n", + "1 epoch 5 average loss: 0.7180\n", + "----------\n", + "1: epoch 6/500\n", + "1/0, train_loss: 0.7141\n", + "1 epoch 6 average loss: 0.7141\n", + "current epoch: 6 current mean dice: 0.3811\n", + "best mean dice: 0.3851 at epoch: 2\n", + "----------\n", + "1: epoch 7/500\n", + "1/0, train_loss: 0.7147\n", + "1 epoch 7 average loss: 0.7147\n", + "----------\n", + "1: epoch 8/500\n", + "1/0, train_loss: 0.7103\n", + "1 epoch 8 average loss: 0.7103\n", + "current epoch: 8 current mean dice: 0.3832\n", + "best mean dice: 0.3851 at epoch: 2\n", + "----------\n", + "1: epoch 9/500\n", + "1/0, train_loss: 0.7075\n", + "1 epoch 9 average loss: 0.7075\n", + "----------\n", + "1: epoch 10/500\n", + "1/0, train_loss: 0.7042\n", + "1 epoch 10 average loss: 0.7042\n", + "saved new best metric model\n", + "current epoch: 10 current mean dice: 0.3865\n", + "best mean dice: 0.3865 at epoch: 10\n", + "----------\n", + "1: epoch 11/500\n", + "1/0, train_loss: 0.7044\n", + "1 epoch 11 average loss: 0.7044\n", + "----------\n", + "1: epoch 12/500\n", + "1/0, train_loss: 0.7006\n", + "1 epoch 12 average loss: 0.7006\n", + "current epoch: 12 current mean dice: 0.3863\n", + "best mean dice: 0.3865 at epoch: 10\n", + "----------\n", + "1: epoch 13/500\n", + "1/0, train_loss: 0.7009\n", + "1 epoch 13 average loss: 0.7009\n", + "----------\n", + "1: epoch 14/500\n", + "1/0, train_loss: 0.6985\n", + "1 epoch 14 average loss: 0.6985\n", + "current epoch: 14 current mean dice: 0.3864\n", + "best mean dice: 0.3865 at epoch: 10\n", + "----------\n", + "1: epoch 15/500\n", + "1/0, train_loss: 0.6969\n", + "1 epoch 15 average loss: 0.6969\n", + "----------\n", + "1: epoch 16/500\n", + "1/0, train_loss: 0.6969\n", + "1 epoch 16 average loss: 0.6969\n", + "current epoch: 16 current mean dice: 0.3859\n", + "best mean dice: 0.3865 at epoch: 10\n", + "----------\n", + "1: epoch 17/500\n", + "1/0, train_loss: 0.6945\n", + "1 epoch 17 average loss: 0.6945\n", + "----------\n", + "1: epoch 18/500\n", + "1/0, train_loss: 0.6911\n", + "1 epoch 18 average loss: 0.6911\n", + "saved new best metric model\n", + "current epoch: 18 current mean dice: 0.3892\n", + "best mean dice: 0.3892 at epoch: 18\n", + "----------\n", + "1: epoch 19/500\n", + "1/0, train_loss: 0.6895\n", + "1 epoch 19 average loss: 0.6895\n", + "----------\n", + "1: epoch 20/500\n", + "1/0, train_loss: 0.6892\n", + "1 epoch 20 average loss: 0.6892\n", + "saved new best metric model\n", + "current epoch: 20 current mean dice: 0.3910\n", + "best mean dice: 0.3910 at epoch: 20\n", + "----------\n", + "1: epoch 21/500\n", + "1/0, train_loss: 0.6858\n", + "1 epoch 21 average loss: 0.6858\n", + "----------\n", + "1: epoch 22/500\n", + "1/0, train_loss: 0.6835\n", + "1 epoch 22 average loss: 0.6835\n", + "saved new best metric model\n", + "current epoch: 22 current mean dice: 0.3931\n", + "best mean dice: 0.3931 at epoch: 22\n", + "----------\n", + "1: epoch 23/500\n", + "1/0, train_loss: 0.6847\n", + "1 epoch 23 average loss: 0.6847\n", + "----------\n", + "1: epoch 24/500\n", + "1/0, train_loss: 0.6814\n", + "1 epoch 24 average loss: 0.6814\n", + "saved new best metric model\n", + "current epoch: 24 current mean dice: 0.3973\n", + "best mean dice: 0.3973 at epoch: 24\n", + "----------\n", + "1: epoch 25/500\n", + "1/0, train_loss: 0.6783\n", + "1 epoch 25 average loss: 0.6783\n", + "----------\n", + "1: epoch 26/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.6742\n", + "1 epoch 26 average loss: 0.6742\n", + "saved new best metric model\n", + "current epoch: 26 current mean dice: 0.3979\n", + "best mean dice: 0.3979 at epoch: 26\n", + "----------\n", + "1: epoch 27/500\n", + "1/0, train_loss: 0.6724\n", + "1 epoch 27 average loss: 0.6724\n", + "----------\n", + "1: epoch 28/500\n", + "1/0, train_loss: 0.6718\n", + "1 epoch 28 average loss: 0.6718\n", + "saved new best metric model\n", + "current epoch: 28 current mean dice: 0.4050\n", + "best mean dice: 0.4050 at epoch: 28\n", + "----------\n", + "1: epoch 29/500\n", + "1/0, train_loss: 0.6712\n", + "1 epoch 29 average loss: 0.6712\n", + "----------\n", + "1: epoch 30/500\n", + "1/0, train_loss: 0.6675\n", + "1 epoch 30 average loss: 0.6675\n", + "current epoch: 30 current mean dice: 0.4030\n", + "best mean dice: 0.4050 at epoch: 28\n", + "----------\n", + "1: epoch 31/500\n", + "1/0, train_loss: 0.6686\n", + "1 epoch 31 average loss: 0.6686\n", + "----------\n", + "1: epoch 32/500\n", + "1/0, train_loss: 0.6669\n", + "1 epoch 32 average loss: 0.6669\n", + "saved new best metric model\n", + "current epoch: 32 current mean dice: 0.4052\n", + "best mean dice: 0.4052 at epoch: 32\n", + "----------\n", + "1: epoch 33/500\n", + "1/0, train_loss: 0.6632\n", + "1 epoch 33 average loss: 0.6632\n", + "----------\n", + "1: epoch 34/500\n", + "1/0, train_loss: 0.6596\n", + "1 epoch 34 average loss: 0.6596\n", + "current epoch: 34 current mean dice: 0.4051\n", + "best mean dice: 0.4052 at epoch: 32\n", + "----------\n", + "1: epoch 35/500\n", + "1/0, train_loss: 0.6614\n", + "1 epoch 35 average loss: 0.6614\n", + "----------\n", + "1: epoch 36/500\n", + "1/0, train_loss: 0.6535\n", + "1 epoch 36 average loss: 0.6535\n", + "saved new best metric model\n", + "current epoch: 36 current mean dice: 0.4185\n", + "best mean dice: 0.4185 at epoch: 36\n", + "----------\n", + "1: epoch 37/500\n", + "1/0, train_loss: 0.6559\n", + "1 epoch 37 average loss: 0.6559\n", + "----------\n", + "1: epoch 38/500\n", + "1/0, train_loss: 0.6508\n", + "1 epoch 38 average loss: 0.6508\n", + "saved new best metric model\n", + "current epoch: 38 current mean dice: 0.4325\n", + "best mean dice: 0.4325 at epoch: 38\n", + "----------\n", + "1: epoch 39/500\n", + "1/0, train_loss: 0.6504\n", + "1 epoch 39 average loss: 0.6504\n", + "----------\n", + "1: epoch 40/500\n", + "1/0, train_loss: 0.6451\n", + "1 epoch 40 average loss: 0.6451\n", + "current epoch: 40 current mean dice: 0.4152\n", + "best mean dice: 0.4325 at epoch: 38\n", + "----------\n", + "1: epoch 41/500\n", + "1/0, train_loss: 0.6442\n", + "1 epoch 41 average loss: 0.6442\n", + "----------\n", + "1: epoch 42/500\n", + "1/0, train_loss: 0.6453\n", + "1 epoch 42 average loss: 0.6453\n", + "saved new best metric model\n", + "current epoch: 42 current mean dice: 0.4366\n", + "best mean dice: 0.4366 at epoch: 42\n", + "----------\n", + "1: epoch 43/500\n", + "1/0, train_loss: 0.6419\n", + "1 epoch 43 average loss: 0.6419\n", + "----------\n", + "1: epoch 44/500\n", + "1/0, train_loss: 0.6416\n", + "1 epoch 44 average loss: 0.6416\n", + "saved new best metric model\n", + "current epoch: 44 current mean dice: 0.4634\n", + "best mean dice: 0.4634 at epoch: 44\n", + "----------\n", + "1: epoch 45/500\n", + "1/0, train_loss: 0.6335\n", + "1 epoch 45 average loss: 0.6335\n", + "----------\n", + "1: epoch 46/500\n", + "1/0, train_loss: 0.6286\n", + "1 epoch 46 average loss: 0.6286\n", + "current epoch: 46 current mean dice: 0.4348\n", + "best mean dice: 0.4634 at epoch: 44\n", + "----------\n", + "1: epoch 47/500\n", + "1/0, train_loss: 0.6270\n", + "1 epoch 47 average loss: 0.6270\n", + "----------\n", + "1: epoch 48/500\n", + "1/0, train_loss: 0.6267\n", + "1 epoch 48 average loss: 0.6267\n", + "current epoch: 48 current mean dice: 0.4352\n", + "best mean dice: 0.4634 at epoch: 44\n", + "----------\n", + "1: epoch 49/500\n", + "1/0, train_loss: 0.6293\n", + "1 epoch 49 average loss: 0.6293\n", + "----------\n", + "1: epoch 50/500\n", + "1/0, train_loss: 0.6253\n", + "1 epoch 50 average loss: 0.6253\n", + "current epoch: 50 current mean dice: 0.4569\n", + "best mean dice: 0.4634 at epoch: 44\n", + "----------\n", + "1: epoch 51/500\n", + "1/0, train_loss: 0.6255\n", + "1 epoch 51 average loss: 0.6255\n", + "----------\n", + "1: epoch 52/500\n", + "1/0, train_loss: 0.6184\n", + "1 epoch 52 average loss: 0.6184\n", + "saved new best metric model\n", + "current epoch: 52 current mean dice: 0.4967\n", + "best mean dice: 0.4967 at epoch: 52\n", + "----------\n", + "1: epoch 53/500\n", + "1/0, train_loss: 0.6209\n", + "1 epoch 53 average loss: 0.6209\n", + "----------\n", + "1: epoch 54/500\n", + "1/0, train_loss: 0.6134\n", + "1 epoch 54 average loss: 0.6134\n", + "current epoch: 54 current mean dice: 0.4466\n", + "best mean dice: 0.4967 at epoch: 52\n", + "----------\n", + "1: epoch 55/500\n", + "1/0, train_loss: 0.6266\n", + "1 epoch 55 average loss: 0.6266\n", + "----------\n", + "1: epoch 56/500\n", + "1/0, train_loss: 0.6154\n", + "1 epoch 56 average loss: 0.6154\n", + "current epoch: 56 current mean dice: 0.4891\n", + "best mean dice: 0.4967 at epoch: 52\n", + "----------\n", + "1: epoch 57/500\n", + "1/0, train_loss: 0.6110\n", + "1 epoch 57 average loss: 0.6110\n", + "----------\n", + "1: epoch 58/500\n", + "1/0, train_loss: 0.6095\n", + "1 epoch 58 average loss: 0.6095\n", + "saved new best metric model\n", + "current epoch: 58 current mean dice: 0.5032\n", + "best mean dice: 0.5032 at epoch: 58\n", + "----------\n", + "1: epoch 59/500\n", + "1/0, train_loss: 0.6091\n", + "1 epoch 59 average loss: 0.6091\n", + "----------\n", + "1: epoch 60/500\n", + "1/0, train_loss: 0.6078\n", + "1 epoch 60 average loss: 0.6078\n", + "saved new best metric model\n", + "current epoch: 60 current mean dice: 0.5268\n", + "best mean dice: 0.5268 at epoch: 60\n", + "----------\n", + "1: epoch 61/500\n", + "1/0, train_loss: 0.6079\n", + "1 epoch 61 average loss: 0.6079\n", + "----------\n", + "1: epoch 62/500\n", + "1/0, train_loss: 0.6017\n", + "1 epoch 62 average loss: 0.6017\n", + "current epoch: 62 current mean dice: 0.4867\n", + "best mean dice: 0.5268 at epoch: 60\n", + "----------\n", + "1: epoch 63/500\n", + "1/0, train_loss: 0.5993\n", + "1 epoch 63 average loss: 0.5993\n", + "----------\n", + "1: epoch 64/500\n", + "1/0, train_loss: 0.6018\n", + "1 epoch 64 average loss: 0.6018\n", + "current epoch: 64 current mean dice: 0.4734\n", + "best mean dice: 0.5268 at epoch: 60\n", + "----------\n", + "1: epoch 65/500\n", + "1/0, train_loss: 0.6000\n", + "1 epoch 65 average loss: 0.6000\n", + "----------\n", + "1: epoch 66/500\n", + "1/0, train_loss: 0.6098\n", + "1 epoch 66 average loss: 0.6098\n", + "saved new best metric model\n", + "current epoch: 66 current mean dice: 0.6051\n", + "best mean dice: 0.6051 at epoch: 66\n", + "----------\n", + "1: epoch 67/500\n", + "1/0, train_loss: 0.5943\n", + "1 epoch 67 average loss: 0.5943\n", + "----------\n", + "1: epoch 68/500\n", + "1/0, train_loss: 0.6061\n", + "1 epoch 68 average loss: 0.6061\n", + "current epoch: 68 current mean dice: 0.5616\n", + "best mean dice: 0.6051 at epoch: 66\n", + "----------\n", + "1: epoch 69/500\n", + "1/0, train_loss: 0.5902\n", + "1 epoch 69 average loss: 0.5902\n", + "----------\n", + "1: epoch 70/500\n", + "1/0, train_loss: 0.5890\n", + "1 epoch 70 average loss: 0.5890\n", + "saved new best metric model\n", + "current epoch: 70 current mean dice: 0.6106\n", + "best mean dice: 0.6106 at epoch: 70\n", + "----------\n", + "1: epoch 71/500\n", + "1/0, train_loss: 0.5885\n", + "1 epoch 71 average loss: 0.5885\n", + "----------\n", + "1: epoch 72/500\n", + "1/0, train_loss: 0.5866\n", + "1 epoch 72 average loss: 0.5866\n", + "current epoch: 72 current mean dice: 0.5568\n", + "best mean dice: 0.6106 at epoch: 70\n", + "----------\n", + "1: epoch 73/500\n", + "1/0, train_loss: 0.5862\n", + "1 epoch 73 average loss: 0.5862\n", + "----------\n", + "1: epoch 74/500\n", + "1/0, train_loss: 0.5880\n", + "1 epoch 74 average loss: 0.5880\n", + "saved new best metric model\n", + "current epoch: 74 current mean dice: 0.6798\n", + "best mean dice: 0.6798 at epoch: 74\n", + "----------\n", + "1: epoch 75/500\n", + "1/0, train_loss: 0.5817\n", + "1 epoch 75 average loss: 0.5817\n", + "----------\n", + "1: epoch 76/500\n", + "1/0, train_loss: 0.5823\n", + "1 epoch 76 average loss: 0.5823\n", + "current epoch: 76 current mean dice: 0.6793\n", + "best mean dice: 0.6798 at epoch: 74\n", + "----------\n", + "1: epoch 77/500\n", + "1/0, train_loss: 0.5841\n", + "1 epoch 77 average loss: 0.5841\n", + "----------\n", + "1: epoch 78/500\n", + "1/0, train_loss: 0.5851\n", + "1 epoch 78 average loss: 0.5851\n", + "current epoch: 78 current mean dice: 0.6593\n", + "best mean dice: 0.6798 at epoch: 74\n", + "----------\n", + "1: epoch 79/500\n", + "1/0, train_loss: 0.5781\n", + "1 epoch 79 average loss: 0.5781\n", + "----------\n", + "1: epoch 80/500\n", + "1/0, train_loss: 0.5756\n", + "1 epoch 80 average loss: 0.5756\n", + "saved new best metric model\n", + "current epoch: 80 current mean dice: 0.7114\n", + "best mean dice: 0.7114 at epoch: 80\n", + "----------\n", + "1: epoch 81/500\n", + "1/0, train_loss: 0.5699\n", + "1 epoch 81 average loss: 0.5699\n", + "----------\n", + "1: epoch 82/500\n", + "1/0, train_loss: 0.5689\n", + "1 epoch 82 average loss: 0.5689\n", + "current epoch: 82 current mean dice: 0.7094\n", + "best mean dice: 0.7114 at epoch: 80\n", + "----------\n", + "1: epoch 83/500\n", + "1/0, train_loss: 0.5769\n", + "1 epoch 83 average loss: 0.5769\n", + "----------\n", + "1: epoch 84/500\n", + "1/0, train_loss: 0.5709\n", + "1 epoch 84 average loss: 0.5709\n", + "current epoch: 84 current mean dice: 0.7100\n", + "best mean dice: 0.7114 at epoch: 80\n", + "----------\n", + "1: epoch 85/500\n", + "1/0, train_loss: 0.5660\n", + "1 epoch 85 average loss: 0.5660\n", + "----------\n", + "1: epoch 86/500\n", + "1/0, train_loss: 0.5708\n", + "1 epoch 86 average loss: 0.5708\n", + "saved new best metric model\n", + "current epoch: 86 current mean dice: 0.7391\n", + "best mean dice: 0.7391 at epoch: 86\n", + "----------\n", + "1: epoch 87/500\n", + "1/0, train_loss: 0.5641\n", + "1 epoch 87 average loss: 0.5641\n", + "----------\n", + "1: epoch 88/500\n", + "1/0, train_loss: 0.5671\n", + "1 epoch 88 average loss: 0.5671\n", + "saved new best metric model\n", + "current epoch: 88 current mean dice: 0.7443\n", + "best mean dice: 0.7443 at epoch: 88\n", + "----------\n", + "1: epoch 89/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.5751\n", + "1 epoch 89 average loss: 0.5751\n", + "----------\n", + "1: epoch 90/500\n", + "1/0, train_loss: 0.5629\n", + "1 epoch 90 average loss: 0.5629\n", + "current epoch: 90 current mean dice: 0.7048\n", + "best mean dice: 0.7443 at epoch: 88\n", + "----------\n", + "1: epoch 91/500\n", + "1/0, train_loss: 0.5715\n", + "1 epoch 91 average loss: 0.5715\n", + "----------\n", + "1: epoch 92/500\n", + "1/0, train_loss: 0.5617\n", + "1 epoch 92 average loss: 0.5617\n", + "current epoch: 92 current mean dice: 0.7154\n", + "best mean dice: 0.7443 at epoch: 88\n", + "----------\n", + "1: epoch 93/500\n", + "1/0, train_loss: 0.5679\n", + "1 epoch 93 average loss: 0.5679\n", + "----------\n", + "1: epoch 94/500\n", + "1/0, train_loss: 0.5605\n", + "1 epoch 94 average loss: 0.5605\n", + "current epoch: 94 current mean dice: 0.6456\n", + "best mean dice: 0.7443 at epoch: 88\n", + "----------\n", + "1: epoch 95/500\n", + "1/0, train_loss: 0.5619\n", + "1 epoch 95 average loss: 0.5619\n", + "----------\n", + "1: epoch 96/500\n", + "1/0, train_loss: 0.5514\n", + "1 epoch 96 average loss: 0.5514\n", + "current epoch: 96 current mean dice: 0.7312\n", + "best mean dice: 0.7443 at epoch: 88\n", + "----------\n", + "1: epoch 97/500\n", + "1/0, train_loss: 0.5554\n", + "1 epoch 97 average loss: 0.5554\n", + "----------\n", + "1: epoch 98/500\n", + "1/0, train_loss: 0.5544\n", + "1 epoch 98 average loss: 0.5544\n", + "current epoch: 98 current mean dice: 0.6269\n", + "best mean dice: 0.7443 at epoch: 88\n", + "----------\n", + "1: epoch 99/500\n", + "1/0, train_loss: 0.5673\n", + "1 epoch 99 average loss: 0.5673\n", + "----------\n", + "1: epoch 100/500\n", + "1/0, train_loss: 0.5637\n", + "1 epoch 100 average loss: 0.5637\n", + "current epoch: 100 current mean dice: 0.6727\n", + "best mean dice: 0.7443 at epoch: 88\n", + "----------\n", + "1: epoch 101/500\n", + "1/0, train_loss: 0.5639\n", + "1 epoch 101 average loss: 0.5639\n", + "----------\n", + "1: epoch 102/500\n", + "1/0, train_loss: 0.5542\n", + "1 epoch 102 average loss: 0.5542\n", + "current epoch: 102 current mean dice: 0.7118\n", + "best mean dice: 0.7443 at epoch: 88\n", + "----------\n", + "1: epoch 103/500\n", + "1/0, train_loss: 0.5472\n", + "1 epoch 103 average loss: 0.5472\n", + "----------\n", + "1: epoch 104/500\n", + "1/0, train_loss: 0.5542\n", + "1 epoch 104 average loss: 0.5542\n", + "current epoch: 104 current mean dice: 0.7284\n", + "best mean dice: 0.7443 at epoch: 88\n", + "----------\n", + "1: epoch 105/500\n", + "1/0, train_loss: 0.5562\n", + "1 epoch 105 average loss: 0.5562\n", + "----------\n", + "1: epoch 106/500\n", + "1/0, train_loss: 0.5417\n", + "1 epoch 106 average loss: 0.5417\n", + "saved new best metric model\n", + "current epoch: 106 current mean dice: 0.7609\n", + "best mean dice: 0.7609 at epoch: 106\n", + "----------\n", + "1: epoch 107/500\n", + "1/0, train_loss: 0.5450\n", + "1 epoch 107 average loss: 0.5450\n", + "----------\n", + "1: epoch 108/500\n", + "1/0, train_loss: 0.5395\n", + "1 epoch 108 average loss: 0.5395\n", + "current epoch: 108 current mean dice: 0.7594\n", + "best mean dice: 0.7609 at epoch: 106\n", + "----------\n", + "1: epoch 109/500\n", + "1/0, train_loss: 0.5451\n", + "1 epoch 109 average loss: 0.5451\n", + "----------\n", + "1: epoch 110/500\n", + "1/0, train_loss: 0.5454\n", + "1 epoch 110 average loss: 0.5454\n", + "current epoch: 110 current mean dice: 0.7542\n", + "best mean dice: 0.7609 at epoch: 106\n", + "----------\n", + "1: epoch 111/500\n", + "1/0, train_loss: 0.5377\n", + "1 epoch 111 average loss: 0.5377\n", + "----------\n", + "1: epoch 112/500\n", + "1/0, train_loss: 0.5381\n", + "1 epoch 112 average loss: 0.5381\n", + "current epoch: 112 current mean dice: 0.7006\n", + "best mean dice: 0.7609 at epoch: 106\n", + "----------\n", + "1: epoch 113/500\n", + "1/0, train_loss: 0.5427\n", + "1 epoch 113 average loss: 0.5427\n", + "----------\n", + "1: epoch 114/500\n", + "1/0, train_loss: 0.5417\n", + "1 epoch 114 average loss: 0.5417\n", + "saved new best metric model\n", + "current epoch: 114 current mean dice: 0.7618\n", + "best mean dice: 0.7618 at epoch: 114\n", + "----------\n", + "1: epoch 115/500\n", + "1/0, train_loss: 0.5359\n", + "1 epoch 115 average loss: 0.5359\n", + "----------\n", + "1: epoch 116/500\n", + "1/0, train_loss: 0.5381\n", + "1 epoch 116 average loss: 0.5381\n", + "current epoch: 116 current mean dice: 0.7393\n", + "best mean dice: 0.7618 at epoch: 114\n", + "----------\n", + "1: epoch 117/500\n", + "1/0, train_loss: 0.5439\n", + "1 epoch 117 average loss: 0.5439\n", + "----------\n", + "1: epoch 118/500\n", + "1/0, train_loss: 0.5293\n", + "1 epoch 118 average loss: 0.5293\n", + "current epoch: 118 current mean dice: 0.7305\n", + "best mean dice: 0.7618 at epoch: 114\n", + "----------\n", + "1: epoch 119/500\n", + "1/0, train_loss: 0.5417\n", + "1 epoch 119 average loss: 0.5417\n", + "----------\n", + "1: epoch 120/500\n", + "1/0, train_loss: 0.5363\n", + "1 epoch 120 average loss: 0.5363\n", + "current epoch: 120 current mean dice: 0.7109\n", + "best mean dice: 0.7618 at epoch: 114\n", + "----------\n", + "1: epoch 121/500\n", + "1/0, train_loss: 0.5313\n", + "1 epoch 121 average loss: 0.5313\n", + "----------\n", + "1: epoch 122/500\n", + "1/0, train_loss: 0.5253\n", + "1 epoch 122 average loss: 0.5253\n", + "current epoch: 122 current mean dice: 0.7448\n", + "best mean dice: 0.7618 at epoch: 114\n", + "----------\n", + "1: epoch 123/500\n", + "1/0, train_loss: 0.5286\n", + "1 epoch 123 average loss: 0.5286\n", + "----------\n", + "1: epoch 124/500\n", + "1/0, train_loss: 0.5362\n", + "1 epoch 124 average loss: 0.5362\n", + "saved new best metric model\n", + "current epoch: 124 current mean dice: 0.7853\n", + "best mean dice: 0.7853 at epoch: 124\n", + "----------\n", + "1: epoch 125/500\n", + "1/0, train_loss: 0.5258\n", + "1 epoch 125 average loss: 0.5258\n", + "----------\n", + "1: epoch 126/500\n", + "1/0, train_loss: 0.5313\n", + "1 epoch 126 average loss: 0.5313\n", + "current epoch: 126 current mean dice: 0.7200\n", + "best mean dice: 0.7853 at epoch: 124\n", + "----------\n", + "1: epoch 127/500\n", + "1/0, train_loss: 0.5354\n", + "1 epoch 127 average loss: 0.5354\n", + "----------\n", + "1: epoch 128/500\n", + "1/0, train_loss: 0.5330\n", + "1 epoch 128 average loss: 0.5330\n", + "current epoch: 128 current mean dice: 0.7014\n", + "best mean dice: 0.7853 at epoch: 124\n", + "----------\n", + "1: epoch 129/500\n", + "1/0, train_loss: 0.5241\n", + "1 epoch 129 average loss: 0.5241\n", + "----------\n", + "1: epoch 130/500\n", + "1/0, train_loss: 0.5353\n", + "1 epoch 130 average loss: 0.5353\n", + "current epoch: 130 current mean dice: 0.7091\n", + "best mean dice: 0.7853 at epoch: 124\n", + "----------\n", + "1: epoch 131/500\n", + "1/0, train_loss: 0.5247\n", + "1 epoch 131 average loss: 0.5247\n", + "----------\n", + "1: epoch 132/500\n", + "1/0, train_loss: 0.5266\n", + "1 epoch 132 average loss: 0.5266\n", + "current epoch: 132 current mean dice: 0.7469\n", + "best mean dice: 0.7853 at epoch: 124\n", + "----------\n", + "1: epoch 133/500\n", + "1/0, train_loss: 0.5224\n", + "1 epoch 133 average loss: 0.5224\n", + "----------\n", + "1: epoch 134/500\n", + "1/0, train_loss: 0.5229\n", + "1 epoch 134 average loss: 0.5229\n", + "current epoch: 134 current mean dice: 0.6563\n", + "best mean dice: 0.7853 at epoch: 124\n", + "----------\n", + "1: epoch 135/500\n", + "1/0, train_loss: 0.5224\n", + "1 epoch 135 average loss: 0.5224\n", + "----------\n", + "1: epoch 136/500\n", + "1/0, train_loss: 0.5194\n", + "1 epoch 136 average loss: 0.5194\n", + "current epoch: 136 current mean dice: 0.7011\n", + "best mean dice: 0.7853 at epoch: 124\n", + "----------\n", + "1: epoch 137/500\n", + "1/0, train_loss: 0.5237\n", + "1 epoch 137 average loss: 0.5237\n", + "----------\n", + "1: epoch 138/500\n", + "1/0, train_loss: 0.5207\n", + "1 epoch 138 average loss: 0.5207\n", + "current epoch: 138 current mean dice: 0.7533\n", + "best mean dice: 0.7853 at epoch: 124\n", + "----------\n", + "1: epoch 139/500\n", + "1/0, train_loss: 0.5220\n", + "1 epoch 139 average loss: 0.5220\n", + "----------\n", + "1: epoch 140/500\n", + "1/0, train_loss: 0.5190\n", + "1 epoch 140 average loss: 0.5190\n", + "current epoch: 140 current mean dice: 0.6995\n", + "best mean dice: 0.7853 at epoch: 124\n", + "----------\n", + "1: epoch 141/500\n", + "1/0, train_loss: 0.5338\n", + "1 epoch 141 average loss: 0.5338\n", + "----------\n", + "1: epoch 142/500\n", + "1/0, train_loss: 0.5164\n", + "1 epoch 142 average loss: 0.5164\n", + "current epoch: 142 current mean dice: 0.7721\n", + "best mean dice: 0.7853 at epoch: 124\n", + "----------\n", + "1: epoch 143/500\n", + "1/0, train_loss: 0.5240\n", + "1 epoch 143 average loss: 0.5240\n", + "----------\n", + "1: epoch 144/500\n", + "1/0, train_loss: 0.5220\n", + "1 epoch 144 average loss: 0.5220\n", + "current epoch: 144 current mean dice: 0.7515\n", + "best mean dice: 0.7853 at epoch: 124\n", + "----------\n", + "1: epoch 145/500\n", + "1/0, train_loss: 0.5146\n", + "1 epoch 145 average loss: 0.5146\n", + "----------\n", + "1: epoch 146/500\n", + "1/0, train_loss: 0.5255\n", + "1 epoch 146 average loss: 0.5255\n", + "current epoch: 146 current mean dice: 0.6657\n", + "best mean dice: 0.7853 at epoch: 124\n", + "----------\n", + "1: epoch 147/500\n", + "1/0, train_loss: 0.5143\n", + "1 epoch 147 average loss: 0.5143\n", + "----------\n", + "1: epoch 148/500\n", + "1/0, train_loss: 0.5221\n", + "1 epoch 148 average loss: 0.5221\n", + "current epoch: 148 current mean dice: 0.6668\n", + "best mean dice: 0.7853 at epoch: 124\n", + "----------\n", + "1: epoch 149/500\n", + "1/0, train_loss: 0.5104\n", + "1 epoch 149 average loss: 0.5104\n", + "----------\n", + "1: epoch 150/500\n", + "1/0, train_loss: 0.5219\n", + "1 epoch 150 average loss: 0.5219\n", + "current epoch: 150 current mean dice: 0.6567\n", + "best mean dice: 0.7853 at epoch: 124\n", + "----------\n", + "1: epoch 151/500\n", + "1/0, train_loss: 0.5091\n", + "1 epoch 151 average loss: 0.5091\n", + "----------\n", + "1: epoch 152/500\n", + "1/0, train_loss: 0.5141\n", + "1 epoch 152 average loss: 0.5141\n", + "current epoch: 152 current mean dice: 0.5764\n", + "best mean dice: 0.7853 at epoch: 124\n", + "----------\n", + "1: epoch 153/500\n", + "1/0, train_loss: 0.5122\n", + "1 epoch 153 average loss: 0.5122\n", + "----------\n", + "1: epoch 154/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.5157\n", + "1 epoch 154 average loss: 0.5157\n", + "current epoch: 154 current mean dice: 0.7691\n", + "best mean dice: 0.7853 at epoch: 124\n", + "----------\n", + "1: epoch 155/500\n", + "1/0, train_loss: 0.5094\n", + "1 epoch 155 average loss: 0.5094\n", + "----------\n", + "1: epoch 156/500\n", + "1/0, train_loss: 0.5005\n", + "1 epoch 156 average loss: 0.5005\n", + "current epoch: 156 current mean dice: 0.5741\n", + "best mean dice: 0.7853 at epoch: 124\n", + "----------\n", + "1: epoch 157/500\n", + "1/0, train_loss: 0.5182\n", + "1 epoch 157 average loss: 0.5182\n", + "----------\n", + "1: epoch 158/500\n", + "1/0, train_loss: 0.5078\n", + "1 epoch 158 average loss: 0.5078\n", + "current epoch: 158 current mean dice: 0.7822\n", + "best mean dice: 0.7853 at epoch: 124\n", + "----------\n", + "1: epoch 159/500\n", + "1/0, train_loss: 0.5005\n", + "1 epoch 159 average loss: 0.5005\n", + "----------\n", + "1: epoch 160/500\n", + "1/0, train_loss: 0.5185\n", + "1 epoch 160 average loss: 0.5185\n", + "saved new best metric model\n", + "current epoch: 160 current mean dice: 0.7858\n", + "best mean dice: 0.7858 at epoch: 160\n", + "----------\n", + "1: epoch 161/500\n", + "1/0, train_loss: 0.5106\n", + "1 epoch 161 average loss: 0.5106\n", + "----------\n", + "1: epoch 162/500\n", + "1/0, train_loss: 0.5162\n", + "1 epoch 162 average loss: 0.5162\n", + "current epoch: 162 current mean dice: 0.5685\n", + "best mean dice: 0.7858 at epoch: 160\n", + "----------\n", + "1: epoch 163/500\n", + "1/0, train_loss: 0.5045\n", + "1 epoch 163 average loss: 0.5045\n", + "----------\n", + "1: epoch 164/500\n", + "1/0, train_loss: 0.4996\n", + "1 epoch 164 average loss: 0.4996\n", + "current epoch: 164 current mean dice: 0.6272\n", + "best mean dice: 0.7858 at epoch: 160\n", + "----------\n", + "1: epoch 165/500\n", + "1/0, train_loss: 0.5107\n", + "1 epoch 165 average loss: 0.5107\n", + "----------\n", + "1: epoch 166/500\n", + "1/0, train_loss: 0.5071\n", + "1 epoch 166 average loss: 0.5071\n", + "current epoch: 166 current mean dice: 0.6875\n", + "best mean dice: 0.7858 at epoch: 160\n", + "----------\n", + "1: epoch 167/500\n", + "1/0, train_loss: 0.5054\n", + "1 epoch 167 average loss: 0.5054\n", + "----------\n", + "1: epoch 168/500\n", + "1/0, train_loss: 0.5040\n", + "1 epoch 168 average loss: 0.5040\n", + "current epoch: 168 current mean dice: 0.5543\n", + "best mean dice: 0.7858 at epoch: 160\n", + "----------\n", + "1: epoch 169/500\n", + "1/0, train_loss: 0.5047\n", + "1 epoch 169 average loss: 0.5047\n", + "----------\n", + "1: epoch 170/500\n", + "1/0, train_loss: 0.4989\n", + "1 epoch 170 average loss: 0.4989\n", + "current epoch: 170 current mean dice: 0.7583\n", + "best mean dice: 0.7858 at epoch: 160\n", + "----------\n", + "1: epoch 171/500\n", + "1/0, train_loss: 0.4959\n", + "1 epoch 171 average loss: 0.4959\n", + "----------\n", + "1: epoch 172/500\n", + "1/0, train_loss: 0.4974\n", + "1 epoch 172 average loss: 0.4974\n", + "saved new best metric model\n", + "current epoch: 172 current mean dice: 0.7990\n", + "best mean dice: 0.7990 at epoch: 172\n", + "----------\n", + "1: epoch 173/500\n", + "1/0, train_loss: 0.5016\n", + "1 epoch 173 average loss: 0.5016\n", + "----------\n", + "1: epoch 174/500\n", + "1/0, train_loss: 0.5174\n", + "1 epoch 174 average loss: 0.5174\n", + "current epoch: 174 current mean dice: 0.6490\n", + "best mean dice: 0.7990 at epoch: 172\n", + "----------\n", + "1: epoch 175/500\n", + "1/0, train_loss: 0.4947\n", + "1 epoch 175 average loss: 0.4947\n", + "----------\n", + "1: epoch 176/500\n", + "1/0, train_loss: 0.5093\n", + "1 epoch 176 average loss: 0.5093\n", + "current epoch: 176 current mean dice: 0.6887\n", + "best mean dice: 0.7990 at epoch: 172\n", + "----------\n", + "1: epoch 177/500\n", + "1/0, train_loss: 0.5106\n", + "1 epoch 177 average loss: 0.5106\n", + "----------\n", + "1: epoch 178/500\n", + "1/0, train_loss: 0.4999\n", + "1 epoch 178 average loss: 0.4999\n", + "current epoch: 178 current mean dice: 0.6674\n", + "best mean dice: 0.7990 at epoch: 172\n", + "----------\n", + "1: epoch 179/500\n", + "1/0, train_loss: 0.5014\n", + "1 epoch 179 average loss: 0.5014\n", + "----------\n", + "1: epoch 180/500\n", + "1/0, train_loss: 0.5013\n", + "1 epoch 180 average loss: 0.5013\n", + "current epoch: 180 current mean dice: 0.6082\n", + "best mean dice: 0.7990 at epoch: 172\n", + "----------\n", + "1: epoch 181/500\n", + "1/0, train_loss: 0.4951\n", + "1 epoch 181 average loss: 0.4951\n", + "----------\n", + "1: epoch 182/500\n", + "1/0, train_loss: 0.5075\n", + "1 epoch 182 average loss: 0.5075\n", + "current epoch: 182 current mean dice: 0.6651\n", + "best mean dice: 0.7990 at epoch: 172\n", + "----------\n", + "1: epoch 183/500\n", + "1/0, train_loss: 0.5039\n", + "1 epoch 183 average loss: 0.5039\n", + "----------\n", + "1: epoch 184/500\n", + "1/0, train_loss: 0.5050\n", + "1 epoch 184 average loss: 0.5050\n", + "current epoch: 184 current mean dice: 0.7896\n", + "best mean dice: 0.7990 at epoch: 172\n", + "----------\n", + "1: epoch 185/500\n", + "1/0, train_loss: 0.4978\n", + "1 epoch 185 average loss: 0.4978\n", + "----------\n", + "1: epoch 186/500\n", + "1/0, train_loss: 0.4908\n", + "1 epoch 186 average loss: 0.4908\n", + "current epoch: 186 current mean dice: 0.7055\n", + "best mean dice: 0.7990 at epoch: 172\n", + "----------\n", + "1: epoch 187/500\n", + "1/0, train_loss: 0.4870\n", + "1 epoch 187 average loss: 0.4870\n", + "----------\n", + "1: epoch 188/500\n", + "1/0, train_loss: 0.4932\n", + "1 epoch 188 average loss: 0.4932\n", + "current epoch: 188 current mean dice: 0.7327\n", + "best mean dice: 0.7990 at epoch: 172\n", + "----------\n", + "1: epoch 189/500\n", + "1/0, train_loss: 0.4972\n", + "1 epoch 189 average loss: 0.4972\n", + "----------\n", + "1: epoch 190/500\n", + "1/0, train_loss: 0.4895\n", + "1 epoch 190 average loss: 0.4895\n", + "current epoch: 190 current mean dice: 0.7857\n", + "best mean dice: 0.7990 at epoch: 172\n", + "----------\n", + "1: epoch 191/500\n", + "1/0, train_loss: 0.4873\n", + "1 epoch 191 average loss: 0.4873\n", + "----------\n", + "1: epoch 192/500\n", + "1/0, train_loss: 0.4970\n", + "1 epoch 192 average loss: 0.4970\n", + "current epoch: 192 current mean dice: 0.6734\n", + "best mean dice: 0.7990 at epoch: 172\n", + "----------\n", + "1: epoch 193/500\n", + "1/0, train_loss: 0.4922\n", + "1 epoch 193 average loss: 0.4922\n", + "----------\n", + "1: epoch 194/500\n", + "1/0, train_loss: 0.4905\n", + "1 epoch 194 average loss: 0.4905\n", + "current epoch: 194 current mean dice: 0.6391\n", + "best mean dice: 0.7990 at epoch: 172\n", + "----------\n", + "1: epoch 195/500\n", + "1/0, train_loss: 0.4912\n", + "1 epoch 195 average loss: 0.4912\n", + "----------\n", + "1: epoch 196/500\n", + "1/0, train_loss: 0.4933\n", + "1 epoch 196 average loss: 0.4933\n", + "current epoch: 196 current mean dice: 0.6710\n", + "best mean dice: 0.7990 at epoch: 172\n", + "----------\n", + "1: epoch 197/500\n", + "1/0, train_loss: 0.4773\n", + "1 epoch 197 average loss: 0.4773\n", + "----------\n", + "1: epoch 198/500\n", + "1/0, train_loss: 0.4884\n", + "1 epoch 198 average loss: 0.4884\n", + "current epoch: 198 current mean dice: 0.7491\n", + "best mean dice: 0.7990 at epoch: 172\n", + "----------\n", + "1: epoch 199/500\n", + "1/0, train_loss: 0.4811\n", + "1 epoch 199 average loss: 0.4811\n", + "----------\n", + "1: epoch 200/500\n", + "1/0, train_loss: 0.4941\n", + "1 epoch 200 average loss: 0.4941\n", + "current epoch: 200 current mean dice: 0.6742\n", + "best mean dice: 0.7990 at epoch: 172\n", + "----------\n", + "1: epoch 201/500\n", + "1/0, train_loss: 0.4874\n", + "1 epoch 201 average loss: 0.4874\n", + "----------\n", + "1: epoch 202/500\n", + "1/0, train_loss: 0.4846\n", + "1 epoch 202 average loss: 0.4846\n", + "current epoch: 202 current mean dice: 0.7508\n", + "best mean dice: 0.7990 at epoch: 172\n", + "----------\n", + "1: epoch 203/500\n", + "1/0, train_loss: 0.4923\n", + "1 epoch 203 average loss: 0.4923\n", + "----------\n", + "1: epoch 204/500\n", + "1/0, train_loss: 0.4811\n", + "1 epoch 204 average loss: 0.4811\n", + "current epoch: 204 current mean dice: 0.6474\n", + "best mean dice: 0.7990 at epoch: 172\n", + "----------\n", + "1: epoch 205/500\n", + "1/0, train_loss: 0.4836\n", + "1 epoch 205 average loss: 0.4836\n", + "----------\n", + "1: epoch 206/500\n", + "1/0, train_loss: 0.4864\n", + "1 epoch 206 average loss: 0.4864\n", + "current epoch: 206 current mean dice: 0.6864\n", + "best mean dice: 0.7990 at epoch: 172\n", + "----------\n", + "1: epoch 207/500\n", + "1/0, train_loss: 0.4781\n", + "1 epoch 207 average loss: 0.4781\n", + "----------\n", + "1: epoch 208/500\n", + "1/0, train_loss: 0.4894\n", + "1 epoch 208 average loss: 0.4894\n", + "current epoch: 208 current mean dice: 0.7909\n", + "best mean dice: 0.7990 at epoch: 172\n", + "----------\n", + "1: epoch 209/500\n", + "1/0, train_loss: 0.4746\n", + "1 epoch 209 average loss: 0.4746\n", + "----------\n", + "1: epoch 210/500\n", + "1/0, train_loss: 0.4846\n", + "1 epoch 210 average loss: 0.4846\n", + "current epoch: 210 current mean dice: 0.6731\n", + "best mean dice: 0.7990 at epoch: 172\n", + "----------\n", + "1: epoch 211/500\n", + "1/0, train_loss: 0.4937\n", + "1 epoch 211 average loss: 0.4937\n", + "----------\n", + "1: epoch 212/500\n", + "1/0, train_loss: 0.4749\n", + "1 epoch 212 average loss: 0.4749\n", + "current epoch: 212 current mean dice: 0.5427\n", + "best mean dice: 0.7990 at epoch: 172\n", + "----------\n", + "1: epoch 213/500\n", + "1/0, train_loss: 0.4892\n", + "1 epoch 213 average loss: 0.4892\n", + "----------\n", + "1: epoch 214/500\n", + "1/0, train_loss: 0.4883\n", + "1 epoch 214 average loss: 0.4883\n", + "current epoch: 214 current mean dice: 0.6497\n", + "best mean dice: 0.7990 at epoch: 172\n", + "----------\n", + "1: epoch 215/500\n", + "1/0, train_loss: 0.4812\n", + "1 epoch 215 average loss: 0.4812\n", + "----------\n", + "1: epoch 216/500\n", + "1/0, train_loss: 0.4732\n", + "1 epoch 216 average loss: 0.4732\n", + "current epoch: 216 current mean dice: 0.6722\n", + "best mean dice: 0.7990 at epoch: 172\n", + "----------\n", + "1: epoch 217/500\n", + "1/0, train_loss: 0.4789\n", + "1 epoch 217 average loss: 0.4789\n", + "----------\n", + "1: epoch 218/500\n", + "1/0, train_loss: 0.4733\n", + "1 epoch 218 average loss: 0.4733\n", + "current epoch: 218 current mean dice: 0.7752\n", + "best mean dice: 0.7990 at epoch: 172\n", + "----------\n", + "1: epoch 219/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.4769\n", + "1 epoch 219 average loss: 0.4769\n", + "----------\n", + "1: epoch 220/500\n", + "1/0, train_loss: 0.4731\n", + "1 epoch 220 average loss: 0.4731\n", + "current epoch: 220 current mean dice: 0.6606\n", + "best mean dice: 0.7990 at epoch: 172\n", + "----------\n", + "1: epoch 221/500\n", + "1/0, train_loss: 0.4877\n", + "1 epoch 221 average loss: 0.4877\n", + "----------\n", + "1: epoch 222/500\n", + "1/0, train_loss: 0.4815\n", + "1 epoch 222 average loss: 0.4815\n", + "saved new best metric model\n", + "current epoch: 222 current mean dice: 0.8219\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 223/500\n", + "1/0, train_loss: 0.4800\n", + "1 epoch 223 average loss: 0.4800\n", + "----------\n", + "1: epoch 224/500\n", + "1/0, train_loss: 0.4745\n", + "1 epoch 224 average loss: 0.4745\n", + "current epoch: 224 current mean dice: 0.6291\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 225/500\n", + "1/0, train_loss: 0.4786\n", + "1 epoch 225 average loss: 0.4786\n", + "----------\n", + "1: epoch 226/500\n", + "1/0, train_loss: 0.4794\n", + "1 epoch 226 average loss: 0.4794\n", + "current epoch: 226 current mean dice: 0.5681\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 227/500\n", + "1/0, train_loss: 0.4795\n", + "1 epoch 227 average loss: 0.4795\n", + "----------\n", + "1: epoch 228/500\n", + "1/0, train_loss: 0.4739\n", + "1 epoch 228 average loss: 0.4739\n", + "current epoch: 228 current mean dice: 0.8026\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 229/500\n", + "1/0, train_loss: 0.4841\n", + "1 epoch 229 average loss: 0.4841\n", + "----------\n", + "1: epoch 230/500\n", + "1/0, train_loss: 0.4855\n", + "1 epoch 230 average loss: 0.4855\n", + "current epoch: 230 current mean dice: 0.5882\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 231/500\n", + "1/0, train_loss: 0.4823\n", + "1 epoch 231 average loss: 0.4823\n", + "----------\n", + "1: epoch 232/500\n", + "1/0, train_loss: 0.4745\n", + "1 epoch 232 average loss: 0.4745\n", + "current epoch: 232 current mean dice: 0.4826\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 233/500\n", + "1/0, train_loss: 0.4774\n", + "1 epoch 233 average loss: 0.4774\n", + "----------\n", + "1: epoch 234/500\n", + "1/0, train_loss: 0.4842\n", + "1 epoch 234 average loss: 0.4842\n", + "current epoch: 234 current mean dice: 0.7280\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 235/500\n", + "1/0, train_loss: 0.4842\n", + "1 epoch 235 average loss: 0.4842\n", + "----------\n", + "1: epoch 236/500\n", + "1/0, train_loss: 0.4869\n", + "1 epoch 236 average loss: 0.4869\n", + "current epoch: 236 current mean dice: 0.7161\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 237/500\n", + "1/0, train_loss: 0.4778\n", + "1 epoch 237 average loss: 0.4778\n", + "----------\n", + "1: epoch 238/500\n", + "1/0, train_loss: 0.4795\n", + "1 epoch 238 average loss: 0.4795\n", + "current epoch: 238 current mean dice: 0.6729\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 239/500\n", + "1/0, train_loss: 0.4662\n", + "1 epoch 239 average loss: 0.4662\n", + "----------\n", + "1: epoch 240/500\n", + "1/0, train_loss: 0.4718\n", + "1 epoch 240 average loss: 0.4718\n", + "current epoch: 240 current mean dice: 0.6257\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 241/500\n", + "1/0, train_loss: 0.4629\n", + "1 epoch 241 average loss: 0.4629\n", + "----------\n", + "1: epoch 242/500\n", + "1/0, train_loss: 0.4686\n", + "1 epoch 242 average loss: 0.4686\n", + "current epoch: 242 current mean dice: 0.6261\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 243/500\n", + "1/0, train_loss: 0.4637\n", + "1 epoch 243 average loss: 0.4637\n", + "----------\n", + "1: epoch 244/500\n", + "1/0, train_loss: 0.4639\n", + "1 epoch 244 average loss: 0.4639\n", + "current epoch: 244 current mean dice: 0.6557\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 245/500\n", + "1/0, train_loss: 0.4695\n", + "1 epoch 245 average loss: 0.4695\n", + "----------\n", + "1: epoch 246/500\n", + "1/0, train_loss: 0.4774\n", + "1 epoch 246 average loss: 0.4774\n", + "current epoch: 246 current mean dice: 0.6025\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 247/500\n", + "1/0, train_loss: 0.4647\n", + "1 epoch 247 average loss: 0.4647\n", + "----------\n", + "1: epoch 248/500\n", + "1/0, train_loss: 0.4693\n", + "1 epoch 248 average loss: 0.4693\n", + "current epoch: 248 current mean dice: 0.4660\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 249/500\n", + "1/0, train_loss: 0.4756\n", + "1 epoch 249 average loss: 0.4756\n", + "----------\n", + "1: epoch 250/500\n", + "1/0, train_loss: 0.4727\n", + "1 epoch 250 average loss: 0.4727\n", + "current epoch: 250 current mean dice: 0.5495\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 251/500\n", + "1/0, train_loss: 0.4708\n", + "1 epoch 251 average loss: 0.4708\n", + "----------\n", + "1: epoch 252/500\n", + "1/0, train_loss: 0.4681\n", + "1 epoch 252 average loss: 0.4681\n", + "current epoch: 252 current mean dice: 0.7182\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 253/500\n", + "1/0, train_loss: 0.4714\n", + "1 epoch 253 average loss: 0.4714\n", + "----------\n", + "1: epoch 254/500\n", + "1/0, train_loss: 0.4712\n", + "1 epoch 254 average loss: 0.4712\n", + "current epoch: 254 current mean dice: 0.6040\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 255/500\n", + "1/0, train_loss: 0.4756\n", + "1 epoch 255 average loss: 0.4756\n", + "----------\n", + "1: epoch 256/500\n", + "1/0, train_loss: 0.4727\n", + "1 epoch 256 average loss: 0.4727\n", + "current epoch: 256 current mean dice: 0.5935\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 257/500\n", + "1/0, train_loss: 0.4632\n", + "1 epoch 257 average loss: 0.4632\n", + "----------\n", + "1: epoch 258/500\n", + "1/0, train_loss: 0.4670\n", + "1 epoch 258 average loss: 0.4670\n", + "current epoch: 258 current mean dice: 0.7181\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 259/500\n", + "1/0, train_loss: 0.4637\n", + "1 epoch 259 average loss: 0.4637\n", + "----------\n", + "1: epoch 260/500\n", + "1/0, train_loss: 0.4649\n", + "1 epoch 260 average loss: 0.4649\n", + "current epoch: 260 current mean dice: 0.7594\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 261/500\n", + "1/0, train_loss: 0.4612\n", + "1 epoch 261 average loss: 0.4612\n", + "----------\n", + "1: epoch 262/500\n", + "1/0, train_loss: 0.4632\n", + "1 epoch 262 average loss: 0.4632\n", + "current epoch: 262 current mean dice: 0.7227\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 263/500\n", + "1/0, train_loss: 0.4616\n", + "1 epoch 263 average loss: 0.4616\n", + "----------\n", + "1: epoch 264/500\n", + "1/0, train_loss: 0.4709\n", + "1 epoch 264 average loss: 0.4709\n", + "current epoch: 264 current mean dice: 0.5449\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 265/500\n", + "1/0, train_loss: 0.4658\n", + "1 epoch 265 average loss: 0.4658\n", + "----------\n", + "1: epoch 266/500\n", + "1/0, train_loss: 0.4629\n", + "1 epoch 266 average loss: 0.4629\n", + "current epoch: 266 current mean dice: 0.5397\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 267/500\n", + "1/0, train_loss: 0.4730\n", + "1 epoch 267 average loss: 0.4730\n", + "----------\n", + "1: epoch 268/500\n", + "1/0, train_loss: 0.4633\n", + "1 epoch 268 average loss: 0.4633\n", + "current epoch: 268 current mean dice: 0.6563\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 269/500\n", + "1/0, train_loss: 0.4548\n", + "1 epoch 269 average loss: 0.4548\n", + "----------\n", + "1: epoch 270/500\n", + "1/0, train_loss: 0.4597\n", + "1 epoch 270 average loss: 0.4597\n", + "current epoch: 270 current mean dice: 0.7176\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 271/500\n", + "1/0, train_loss: 0.4620\n", + "1 epoch 271 average loss: 0.4620\n", + "----------\n", + "1: epoch 272/500\n", + "1/0, train_loss: 0.4543\n", + "1 epoch 272 average loss: 0.4543\n", + "current epoch: 272 current mean dice: 0.7908\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 273/500\n", + "1/0, train_loss: 0.4574\n", + "1 epoch 273 average loss: 0.4574\n", + "----------\n", + "1: epoch 274/500\n", + "1/0, train_loss: 0.4611\n", + "1 epoch 274 average loss: 0.4611\n", + "current epoch: 274 current mean dice: 0.5924\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 275/500\n", + "1/0, train_loss: 0.4614\n", + "1 epoch 275 average loss: 0.4614\n", + "----------\n", + "1: epoch 276/500\n", + "1/0, train_loss: 0.4561\n", + "1 epoch 276 average loss: 0.4561\n", + "current epoch: 276 current mean dice: 0.5774\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 277/500\n", + "1/0, train_loss: 0.4654\n", + "1 epoch 277 average loss: 0.4654\n", + "----------\n", + "1: epoch 278/500\n", + "1/0, train_loss: 0.4581\n", + "1 epoch 278 average loss: 0.4581\n", + "current epoch: 278 current mean dice: 0.7485\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 279/500\n", + "1/0, train_loss: 0.4570\n", + "1 epoch 279 average loss: 0.4570\n", + "----------\n", + "1: epoch 280/500\n", + "1/0, train_loss: 0.4618\n", + "1 epoch 280 average loss: 0.4618\n", + "current epoch: 280 current mean dice: 0.6728\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 281/500\n", + "1/0, train_loss: 0.4655\n", + "1 epoch 281 average loss: 0.4655\n", + "----------\n", + "1: epoch 282/500\n", + "1/0, train_loss: 0.4675\n", + "1 epoch 282 average loss: 0.4675\n", + "current epoch: 282 current mean dice: 0.5696\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 283/500\n", + "1/0, train_loss: 0.4601\n", + "1 epoch 283 average loss: 0.4601\n", + "----------\n", + "1: epoch 284/500\n", + "1/0, train_loss: 0.4564\n", + "1 epoch 284 average loss: 0.4564\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "current epoch: 284 current mean dice: 0.6021\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 285/500\n", + "1/0, train_loss: 0.4506\n", + "1 epoch 285 average loss: 0.4506\n", + "----------\n", + "1: epoch 286/500\n", + "1/0, train_loss: 0.4472\n", + "1 epoch 286 average loss: 0.4472\n", + "current epoch: 286 current mean dice: 0.7264\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 287/500\n", + "1/0, train_loss: 0.4713\n", + "1 epoch 287 average loss: 0.4713\n", + "----------\n", + "1: epoch 288/500\n", + "1/0, train_loss: 0.4531\n", + "1 epoch 288 average loss: 0.4531\n", + "current epoch: 288 current mean dice: 0.6909\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 289/500\n", + "1/0, train_loss: 0.4540\n", + "1 epoch 289 average loss: 0.4540\n", + "----------\n", + "1: epoch 290/500\n", + "1/0, train_loss: 0.4578\n", + "1 epoch 290 average loss: 0.4578\n", + "current epoch: 290 current mean dice: 0.6378\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 291/500\n", + "1/0, train_loss: 0.4491\n", + "1 epoch 291 average loss: 0.4491\n", + "----------\n", + "1: epoch 292/500\n", + "1/0, train_loss: 0.4571\n", + "1 epoch 292 average loss: 0.4571\n", + "current epoch: 292 current mean dice: 0.6285\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 293/500\n", + "1/0, train_loss: 0.4465\n", + "1 epoch 293 average loss: 0.4465\n", + "----------\n", + "1: epoch 294/500\n", + "1/0, train_loss: 0.4484\n", + "1 epoch 294 average loss: 0.4484\n", + "current epoch: 294 current mean dice: 0.6133\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 295/500\n", + "1/0, train_loss: 0.4436\n", + "1 epoch 295 average loss: 0.4436\n", + "----------\n", + "1: epoch 296/500\n", + "1/0, train_loss: 0.4479\n", + "1 epoch 296 average loss: 0.4479\n", + "current epoch: 296 current mean dice: 0.6432\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 297/500\n", + "1/0, train_loss: 0.4481\n", + "1 epoch 297 average loss: 0.4481\n", + "----------\n", + "1: epoch 298/500\n", + "1/0, train_loss: 0.4616\n", + "1 epoch 298 average loss: 0.4616\n", + "current epoch: 298 current mean dice: 0.7067\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 299/500\n", + "1/0, train_loss: 0.4499\n", + "1 epoch 299 average loss: 0.4499\n", + "----------\n", + "1: epoch 300/500\n", + "1/0, train_loss: 0.4433\n", + "1 epoch 300 average loss: 0.4433\n", + "current epoch: 300 current mean dice: 0.6915\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 301/500\n", + "1/0, train_loss: 0.4465\n", + "1 epoch 301 average loss: 0.4465\n", + "----------\n", + "1: epoch 302/500\n", + "1/0, train_loss: 0.4581\n", + "1 epoch 302 average loss: 0.4581\n", + "current epoch: 302 current mean dice: 0.7206\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 303/500\n", + "1/0, train_loss: 0.4582\n", + "1 epoch 303 average loss: 0.4582\n", + "----------\n", + "1: epoch 304/500\n", + "1/0, train_loss: 0.4420\n", + "1 epoch 304 average loss: 0.4420\n", + "current epoch: 304 current mean dice: 0.7729\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 305/500\n", + "1/0, train_loss: 0.4375\n", + "1 epoch 305 average loss: 0.4375\n", + "----------\n", + "1: epoch 306/500\n", + "1/0, train_loss: 0.4449\n", + "1 epoch 306 average loss: 0.4449\n", + "current epoch: 306 current mean dice: 0.6758\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 307/500\n", + "1/0, train_loss: 0.4534\n", + "1 epoch 307 average loss: 0.4534\n", + "----------\n", + "1: epoch 308/500\n", + "1/0, train_loss: 0.4417\n", + "1 epoch 308 average loss: 0.4417\n", + "current epoch: 308 current mean dice: 0.6396\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 309/500\n", + "1/0, train_loss: 0.4510\n", + "1 epoch 309 average loss: 0.4510\n", + "----------\n", + "1: epoch 310/500\n", + "1/0, train_loss: 0.4440\n", + "1 epoch 310 average loss: 0.4440\n", + "current epoch: 310 current mean dice: 0.6921\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 311/500\n", + "1/0, train_loss: 0.4446\n", + "1 epoch 311 average loss: 0.4446\n", + "----------\n", + "1: epoch 312/500\n", + "1/0, train_loss: 0.4395\n", + "1 epoch 312 average loss: 0.4395\n", + "current epoch: 312 current mean dice: 0.7071\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 313/500\n", + "1/0, train_loss: 0.4354\n", + "1 epoch 313 average loss: 0.4354\n", + "----------\n", + "1: epoch 314/500\n", + "1/0, train_loss: 0.4510\n", + "1 epoch 314 average loss: 0.4510\n", + "current epoch: 314 current mean dice: 0.6664\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 315/500\n", + "1/0, train_loss: 0.4383\n", + "1 epoch 315 average loss: 0.4383\n", + "----------\n", + "1: epoch 316/500\n", + "1/0, train_loss: 0.4522\n", + "1 epoch 316 average loss: 0.4522\n", + "current epoch: 316 current mean dice: 0.6606\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 317/500\n", + "1/0, train_loss: 0.4532\n", + "1 epoch 317 average loss: 0.4532\n", + "----------\n", + "1: epoch 318/500\n", + "1/0, train_loss: 0.4364\n", + "1 epoch 318 average loss: 0.4364\n", + "current epoch: 318 current mean dice: 0.6274\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 319/500\n", + "1/0, train_loss: 0.4413\n", + "1 epoch 319 average loss: 0.4413\n", + "----------\n", + "1: epoch 320/500\n", + "1/0, train_loss: 0.4416\n", + "1 epoch 320 average loss: 0.4416\n", + "current epoch: 320 current mean dice: 0.6297\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 321/500\n", + "1/0, train_loss: 0.4448\n", + "1 epoch 321 average loss: 0.4448\n", + "----------\n", + "1: epoch 322/500\n", + "1/0, train_loss: 0.4450\n", + "1 epoch 322 average loss: 0.4450\n", + "current epoch: 322 current mean dice: 0.7505\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 323/500\n", + "1/0, train_loss: 0.4344\n", + "1 epoch 323 average loss: 0.4344\n", + "----------\n", + "1: epoch 324/500\n", + "1/0, train_loss: 0.4390\n", + "1 epoch 324 average loss: 0.4390\n", + "current epoch: 324 current mean dice: 0.6995\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 325/500\n", + "1/0, train_loss: 0.4424\n", + "1 epoch 325 average loss: 0.4424\n", + "----------\n", + "1: epoch 326/500\n", + "1/0, train_loss: 0.4417\n", + "1 epoch 326 average loss: 0.4417\n", + "current epoch: 326 current mean dice: 0.6484\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 327/500\n", + "1/0, train_loss: 0.4322\n", + "1 epoch 327 average loss: 0.4322\n", + "----------\n", + "1: epoch 328/500\n", + "1/0, train_loss: 0.4415\n", + "1 epoch 328 average loss: 0.4415\n", + "current epoch: 328 current mean dice: 0.7377\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 329/500\n", + "1/0, train_loss: 0.4608\n", + "1 epoch 329 average loss: 0.4608\n", + "----------\n", + "1: epoch 330/500\n", + "1/0, train_loss: 0.4486\n", + "1 epoch 330 average loss: 0.4486\n", + "current epoch: 330 current mean dice: 0.8188\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 331/500\n", + "1/0, train_loss: 0.4361\n", + "1 epoch 331 average loss: 0.4361\n", + "----------\n", + "1: epoch 332/500\n", + "1/0, train_loss: 0.4474\n", + "1 epoch 332 average loss: 0.4474\n", + "current epoch: 332 current mean dice: 0.7302\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 333/500\n", + "1/0, train_loss: 0.4398\n", + "1 epoch 333 average loss: 0.4398\n", + "----------\n", + "1: epoch 334/500\n", + "1/0, train_loss: 0.4409\n", + "1 epoch 334 average loss: 0.4409\n", + "current epoch: 334 current mean dice: 0.7228\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 335/500\n", + "1/0, train_loss: 0.4388\n", + "1 epoch 335 average loss: 0.4388\n", + "----------\n", + "1: epoch 336/500\n", + "1/0, train_loss: 0.4393\n", + "1 epoch 336 average loss: 0.4393\n", + "current epoch: 336 current mean dice: 0.7682\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 337/500\n", + "1/0, train_loss: 0.4491\n", + "1 epoch 337 average loss: 0.4491\n", + "----------\n", + "1: epoch 338/500\n", + "1/0, train_loss: 0.4370\n", + "1 epoch 338 average loss: 0.4370\n", + "current epoch: 338 current mean dice: 0.6872\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 339/500\n", + "1/0, train_loss: 0.4357\n", + "1 epoch 339 average loss: 0.4357\n", + "----------\n", + "1: epoch 340/500\n", + "1/0, train_loss: 0.4333\n", + "1 epoch 340 average loss: 0.4333\n", + "current epoch: 340 current mean dice: 0.6876\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 341/500\n", + "1/0, train_loss: 0.4443\n", + "1 epoch 341 average loss: 0.4443\n", + "----------\n", + "1: epoch 342/500\n", + "1/0, train_loss: 0.4343\n", + "1 epoch 342 average loss: 0.4343\n", + "current epoch: 342 current mean dice: 0.7488\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 343/500\n", + "1/0, train_loss: 0.4370\n", + "1 epoch 343 average loss: 0.4370\n", + "----------\n", + "1: epoch 344/500\n", + "1/0, train_loss: 0.4344\n", + "1 epoch 344 average loss: 0.4344\n", + "current epoch: 344 current mean dice: 0.7741\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 345/500\n", + "1/0, train_loss: 0.4368\n", + "1 epoch 345 average loss: 0.4368\n", + "----------\n", + "1: epoch 346/500\n", + "1/0, train_loss: 0.4313\n", + "1 epoch 346 average loss: 0.4313\n", + "current epoch: 346 current mean dice: 0.7262\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 347/500\n", + "1/0, train_loss: 0.4286\n", + "1 epoch 347 average loss: 0.4286\n", + "----------\n", + "1: epoch 348/500\n", + "1/0, train_loss: 0.4323\n", + "1 epoch 348 average loss: 0.4323\n", + "current epoch: 348 current mean dice: 0.7461\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 349/500\n", + "1/0, train_loss: 0.4355\n", + "1 epoch 349 average loss: 0.4355\n", + "----------\n", + "1: epoch 350/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.4304\n", + "1 epoch 350 average loss: 0.4304\n", + "current epoch: 350 current mean dice: 0.7251\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 351/500\n", + "1/0, train_loss: 0.4291\n", + "1 epoch 351 average loss: 0.4291\n", + "----------\n", + "1: epoch 352/500\n", + "1/0, train_loss: 0.4492\n", + "1 epoch 352 average loss: 0.4492\n", + "current epoch: 352 current mean dice: 0.6390\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 353/500\n", + "1/0, train_loss: 0.4346\n", + "1 epoch 353 average loss: 0.4346\n", + "----------\n", + "1: epoch 354/500\n", + "1/0, train_loss: 0.4271\n", + "1 epoch 354 average loss: 0.4271\n", + "current epoch: 354 current mean dice: 0.6622\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 355/500\n", + "1/0, train_loss: 0.4448\n", + "1 epoch 355 average loss: 0.4448\n", + "----------\n", + "1: epoch 356/500\n", + "1/0, train_loss: 0.4403\n", + "1 epoch 356 average loss: 0.4403\n", + "current epoch: 356 current mean dice: 0.7898\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 357/500\n", + "1/0, train_loss: 0.4472\n", + "1 epoch 357 average loss: 0.4472\n", + "----------\n", + "1: epoch 358/500\n", + "1/0, train_loss: 0.4284\n", + "1 epoch 358 average loss: 0.4284\n", + "current epoch: 358 current mean dice: 0.6470\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 359/500\n", + "1/0, train_loss: 0.4381\n", + "1 epoch 359 average loss: 0.4381\n", + "----------\n", + "1: epoch 360/500\n", + "1/0, train_loss: 0.4325\n", + "1 epoch 360 average loss: 0.4325\n", + "current epoch: 360 current mean dice: 0.6576\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 361/500\n", + "1/0, train_loss: 0.4305\n", + "1 epoch 361 average loss: 0.4305\n", + "----------\n", + "1: epoch 362/500\n", + "1/0, train_loss: 0.4348\n", + "1 epoch 362 average loss: 0.4348\n", + "current epoch: 362 current mean dice: 0.6811\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 363/500\n", + "1/0, train_loss: 0.4293\n", + "1 epoch 363 average loss: 0.4293\n", + "----------\n", + "1: epoch 364/500\n", + "1/0, train_loss: 0.4340\n", + "1 epoch 364 average loss: 0.4340\n", + "current epoch: 364 current mean dice: 0.7579\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 365/500\n", + "1/0, train_loss: 0.4408\n", + "1 epoch 365 average loss: 0.4408\n", + "----------\n", + "1: epoch 366/500\n", + "1/0, train_loss: 0.4260\n", + "1 epoch 366 average loss: 0.4260\n", + "current epoch: 366 current mean dice: 0.7109\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 367/500\n", + "1/0, train_loss: 0.4314\n", + "1 epoch 367 average loss: 0.4314\n", + "----------\n", + "1: epoch 368/500\n", + "1/0, train_loss: 0.4348\n", + "1 epoch 368 average loss: 0.4348\n", + "current epoch: 368 current mean dice: 0.5859\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 369/500\n", + "1/0, train_loss: 0.4309\n", + "1 epoch 369 average loss: 0.4309\n", + "----------\n", + "1: epoch 370/500\n", + "1/0, train_loss: 0.4425\n", + "1 epoch 370 average loss: 0.4425\n", + "current epoch: 370 current mean dice: 0.6192\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 371/500\n", + "1/0, train_loss: 0.4286\n", + "1 epoch 371 average loss: 0.4286\n", + "----------\n", + "1: epoch 372/500\n", + "1/0, train_loss: 0.4485\n", + "1 epoch 372 average loss: 0.4485\n", + "current epoch: 372 current mean dice: 0.7101\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 373/500\n", + "1/0, train_loss: 0.4294\n", + "1 epoch 373 average loss: 0.4294\n", + "----------\n", + "1: epoch 374/500\n", + "1/0, train_loss: 0.4358\n", + "1 epoch 374 average loss: 0.4358\n", + "current epoch: 374 current mean dice: 0.6149\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 375/500\n", + "1/0, train_loss: 0.4274\n", + "1 epoch 375 average loss: 0.4274\n", + "----------\n", + "1: epoch 376/500\n", + "1/0, train_loss: 0.4336\n", + "1 epoch 376 average loss: 0.4336\n", + "current epoch: 376 current mean dice: 0.6806\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 377/500\n", + "1/0, train_loss: 0.4256\n", + "1 epoch 377 average loss: 0.4256\n", + "----------\n", + "1: epoch 378/500\n", + "1/0, train_loss: 0.4442\n", + "1 epoch 378 average loss: 0.4442\n", + "current epoch: 378 current mean dice: 0.7484\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 379/500\n", + "1/0, train_loss: 0.4315\n", + "1 epoch 379 average loss: 0.4315\n", + "----------\n", + "1: epoch 380/500\n", + "1/0, train_loss: 0.4310\n", + "1 epoch 380 average loss: 0.4310\n", + "current epoch: 380 current mean dice: 0.6461\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 381/500\n", + "1/0, train_loss: 0.4314\n", + "1 epoch 381 average loss: 0.4314\n", + "----------\n", + "1: epoch 382/500\n", + "1/0, train_loss: 0.4298\n", + "1 epoch 382 average loss: 0.4298\n", + "current epoch: 382 current mean dice: 0.5944\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 383/500\n", + "1/0, train_loss: 0.4245\n", + "1 epoch 383 average loss: 0.4245\n", + "----------\n", + "1: epoch 384/500\n", + "1/0, train_loss: 0.4282\n", + "1 epoch 384 average loss: 0.4282\n", + "current epoch: 384 current mean dice: 0.5918\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 385/500\n", + "1/0, train_loss: 0.4218\n", + "1 epoch 385 average loss: 0.4218\n", + "----------\n", + "1: epoch 386/500\n", + "1/0, train_loss: 0.4264\n", + "1 epoch 386 average loss: 0.4264\n", + "current epoch: 386 current mean dice: 0.5832\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 387/500\n", + "1/0, train_loss: 0.4211\n", + "1 epoch 387 average loss: 0.4211\n", + "----------\n", + "1: epoch 388/500\n", + "1/0, train_loss: 0.4225\n", + "1 epoch 388 average loss: 0.4225\n", + "current epoch: 388 current mean dice: 0.6556\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 389/500\n", + "1/0, train_loss: 0.4310\n", + "1 epoch 389 average loss: 0.4310\n", + "----------\n", + "1: epoch 390/500\n", + "1/0, train_loss: 0.4363\n", + "1 epoch 390 average loss: 0.4363\n", + "current epoch: 390 current mean dice: 0.6791\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 391/500\n", + "1/0, train_loss: 0.4312\n", + "1 epoch 391 average loss: 0.4312\n", + "----------\n", + "1: epoch 392/500\n", + "1/0, train_loss: 0.4267\n", + "1 epoch 392 average loss: 0.4267\n", + "current epoch: 392 current mean dice: 0.6087\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 393/500\n", + "1/0, train_loss: 0.4332\n", + "1 epoch 393 average loss: 0.4332\n", + "----------\n", + "1: epoch 394/500\n", + "1/0, train_loss: 0.4357\n", + "1 epoch 394 average loss: 0.4357\n", + "current epoch: 394 current mean dice: 0.5982\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 395/500\n", + "1/0, train_loss: 0.4340\n", + "1 epoch 395 average loss: 0.4340\n", + "----------\n", + "1: epoch 396/500\n", + "1/0, train_loss: 0.4248\n", + "1 epoch 396 average loss: 0.4248\n", + "current epoch: 396 current mean dice: 0.6640\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 397/500\n", + "1/0, train_loss: 0.4332\n", + "1 epoch 397 average loss: 0.4332\n", + "----------\n", + "1: epoch 398/500\n", + "1/0, train_loss: 0.4353\n", + "1 epoch 398 average loss: 0.4353\n", + "current epoch: 398 current mean dice: 0.6289\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 399/500\n", + "1/0, train_loss: 0.4225\n", + "1 epoch 399 average loss: 0.4225\n", + "----------\n", + "1: epoch 400/500\n", + "1/0, train_loss: 0.4205\n", + "1 epoch 400 average loss: 0.4205\n", + "current epoch: 400 current mean dice: 0.6181\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 401/500\n", + "1/0, train_loss: 0.4264\n", + "1 epoch 401 average loss: 0.4264\n", + "----------\n", + "1: epoch 402/500\n", + "1/0, train_loss: 0.4248\n", + "1 epoch 402 average loss: 0.4248\n", + "current epoch: 402 current mean dice: 0.7213\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 403/500\n", + "1/0, train_loss: 0.4170\n", + "1 epoch 403 average loss: 0.4170\n", + "----------\n", + "1: epoch 404/500\n", + "1/0, train_loss: 0.4187\n", + "1 epoch 404 average loss: 0.4187\n", + "current epoch: 404 current mean dice: 0.8136\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 405/500\n", + "1/0, train_loss: 0.4277\n", + "1 epoch 405 average loss: 0.4277\n", + "----------\n", + "1: epoch 406/500\n", + "1/0, train_loss: 0.4208\n", + "1 epoch 406 average loss: 0.4208\n", + "current epoch: 406 current mean dice: 0.6691\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 407/500\n", + "1/0, train_loss: 0.4170\n", + "1 epoch 407 average loss: 0.4170\n", + "----------\n", + "1: epoch 408/500\n", + "1/0, train_loss: 0.4177\n", + "1 epoch 408 average loss: 0.4177\n", + "current epoch: 408 current mean dice: 0.6777\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 409/500\n", + "1/0, train_loss: 0.4321\n", + "1 epoch 409 average loss: 0.4321\n", + "----------\n", + "1: epoch 410/500\n", + "1/0, train_loss: 0.4238\n", + "1 epoch 410 average loss: 0.4238\n", + "current epoch: 410 current mean dice: 0.8117\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 411/500\n", + "1/0, train_loss: 0.4272\n", + "1 epoch 411 average loss: 0.4272\n", + "----------\n", + "1: epoch 412/500\n", + "1/0, train_loss: 0.4181\n", + "1 epoch 412 average loss: 0.4181\n", + "current epoch: 412 current mean dice: 0.7275\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 413/500\n", + "1/0, train_loss: 0.4184\n", + "1 epoch 413 average loss: 0.4184\n", + "----------\n", + "1: epoch 414/500\n", + "1/0, train_loss: 0.4283\n", + "1 epoch 414 average loss: 0.4283\n", + "current epoch: 414 current mean dice: 0.6459\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 415/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.4199\n", + "1 epoch 415 average loss: 0.4199\n", + "----------\n", + "1: epoch 416/500\n", + "1/0, train_loss: 0.4236\n", + "1 epoch 416 average loss: 0.4236\n", + "current epoch: 416 current mean dice: 0.5986\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 417/500\n", + "1/0, train_loss: 0.4266\n", + "1 epoch 417 average loss: 0.4266\n", + "----------\n", + "1: epoch 418/500\n", + "1/0, train_loss: 0.4164\n", + "1 epoch 418 average loss: 0.4164\n", + "current epoch: 418 current mean dice: 0.7503\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 419/500\n", + "1/0, train_loss: 0.4269\n", + "1 epoch 419 average loss: 0.4269\n", + "----------\n", + "1: epoch 420/500\n", + "1/0, train_loss: 0.4313\n", + "1 epoch 420 average loss: 0.4313\n", + "current epoch: 420 current mean dice: 0.7135\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 421/500\n", + "1/0, train_loss: 0.4172\n", + "1 epoch 421 average loss: 0.4172\n", + "----------\n", + "1: epoch 422/500\n", + "1/0, train_loss: 0.4220\n", + "1 epoch 422 average loss: 0.4220\n", + "current epoch: 422 current mean dice: 0.6260\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 423/500\n", + "1/0, train_loss: 0.4252\n", + "1 epoch 423 average loss: 0.4252\n", + "----------\n", + "1: epoch 424/500\n", + "1/0, train_loss: 0.4148\n", + "1 epoch 424 average loss: 0.4148\n", + "current epoch: 424 current mean dice: 0.6324\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 425/500\n", + "1/0, train_loss: 0.4208\n", + "1 epoch 425 average loss: 0.4208\n", + "----------\n", + "1: epoch 426/500\n", + "1/0, train_loss: 0.4277\n", + "1 epoch 426 average loss: 0.4277\n", + "current epoch: 426 current mean dice: 0.6772\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 427/500\n", + "1/0, train_loss: 0.4155\n", + "1 epoch 427 average loss: 0.4155\n", + "----------\n", + "1: epoch 428/500\n", + "1/0, train_loss: 0.4180\n", + "1 epoch 428 average loss: 0.4180\n", + "current epoch: 428 current mean dice: 0.7111\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 429/500\n", + "1/0, train_loss: 0.4170\n", + "1 epoch 429 average loss: 0.4170\n", + "----------\n", + "1: epoch 430/500\n", + "1/0, train_loss: 0.4220\n", + "1 epoch 430 average loss: 0.4220\n", + "current epoch: 430 current mean dice: 0.6824\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 431/500\n", + "1/0, train_loss: 0.4209\n", + "1 epoch 431 average loss: 0.4209\n", + "----------\n", + "1: epoch 432/500\n", + "1/0, train_loss: 0.4144\n", + "1 epoch 432 average loss: 0.4144\n", + "current epoch: 432 current mean dice: 0.6278\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 433/500\n", + "1/0, train_loss: 0.4155\n", + "1 epoch 433 average loss: 0.4155\n", + "----------\n", + "1: epoch 434/500\n", + "1/0, train_loss: 0.4161\n", + "1 epoch 434 average loss: 0.4161\n", + "current epoch: 434 current mean dice: 0.6213\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 435/500\n", + "1/0, train_loss: 0.4211\n", + "1 epoch 435 average loss: 0.4211\n", + "----------\n", + "1: epoch 436/500\n", + "1/0, train_loss: 0.4157\n", + "1 epoch 436 average loss: 0.4157\n", + "current epoch: 436 current mean dice: 0.6335\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 437/500\n", + "1/0, train_loss: 0.4152\n", + "1 epoch 437 average loss: 0.4152\n", + "----------\n", + "1: epoch 438/500\n", + "1/0, train_loss: 0.4159\n", + "1 epoch 438 average loss: 0.4159\n", + "current epoch: 438 current mean dice: 0.6156\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 439/500\n", + "1/0, train_loss: 0.4225\n", + "1 epoch 439 average loss: 0.4225\n", + "----------\n", + "1: epoch 440/500\n", + "1/0, train_loss: 0.4148\n", + "1 epoch 440 average loss: 0.4148\n", + "current epoch: 440 current mean dice: 0.6265\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 441/500\n", + "1/0, train_loss: 0.4123\n", + "1 epoch 441 average loss: 0.4123\n", + "----------\n", + "1: epoch 442/500\n", + "1/0, train_loss: 0.4157\n", + "1 epoch 442 average loss: 0.4157\n", + "current epoch: 442 current mean dice: 0.6719\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 443/500\n", + "1/0, train_loss: 0.4120\n", + "1 epoch 443 average loss: 0.4120\n", + "----------\n", + "1: epoch 444/500\n", + "1/0, train_loss: 0.4145\n", + "1 epoch 444 average loss: 0.4145\n", + "current epoch: 444 current mean dice: 0.6196\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 445/500\n", + "1/0, train_loss: 0.4200\n", + "1 epoch 445 average loss: 0.4200\n", + "----------\n", + "1: epoch 446/500\n", + "1/0, train_loss: 0.4140\n", + "1 epoch 446 average loss: 0.4140\n", + "current epoch: 446 current mean dice: 0.6047\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 447/500\n", + "1/0, train_loss: 0.4205\n", + "1 epoch 447 average loss: 0.4205\n", + "----------\n", + "1: epoch 448/500\n", + "1/0, train_loss: 0.4088\n", + "1 epoch 448 average loss: 0.4088\n", + "current epoch: 448 current mean dice: 0.6023\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 449/500\n", + "1/0, train_loss: 0.4132\n", + "1 epoch 449 average loss: 0.4132\n", + "----------\n", + "1: epoch 450/500\n", + "1/0, train_loss: 0.4117\n", + "1 epoch 450 average loss: 0.4117\n", + "current epoch: 450 current mean dice: 0.6151\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 451/500\n", + "1/0, train_loss: 0.4056\n", + "1 epoch 451 average loss: 0.4056\n", + "----------\n", + "1: epoch 452/500\n", + "1/0, train_loss: 0.4099\n", + "1 epoch 452 average loss: 0.4099\n", + "current epoch: 452 current mean dice: 0.6667\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 453/500\n", + "1/0, train_loss: 0.4175\n", + "1 epoch 453 average loss: 0.4175\n", + "----------\n", + "1: epoch 454/500\n", + "1/0, train_loss: 0.4122\n", + "1 epoch 454 average loss: 0.4122\n", + "current epoch: 454 current mean dice: 0.8023\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 455/500\n", + "1/0, train_loss: 0.4132\n", + "1 epoch 455 average loss: 0.4132\n", + "----------\n", + "1: epoch 456/500\n", + "1/0, train_loss: 0.4105\n", + "1 epoch 456 average loss: 0.4105\n", + "current epoch: 456 current mean dice: 0.7146\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 457/500\n", + "1/0, train_loss: 0.4135\n", + "1 epoch 457 average loss: 0.4135\n", + "----------\n", + "1: epoch 458/500\n", + "1/0, train_loss: 0.4145\n", + "1 epoch 458 average loss: 0.4145\n", + "current epoch: 458 current mean dice: 0.5865\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 459/500\n", + "1/0, train_loss: 0.4122\n", + "1 epoch 459 average loss: 0.4122\n", + "----------\n", + "1: epoch 460/500\n", + "1/0, train_loss: 0.4311\n", + "1 epoch 460 average loss: 0.4311\n", + "current epoch: 460 current mean dice: 0.7030\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 461/500\n", + "1/0, train_loss: 0.4108\n", + "1 epoch 461 average loss: 0.4108\n", + "----------\n", + "1: epoch 462/500\n", + "1/0, train_loss: 0.4202\n", + "1 epoch 462 average loss: 0.4202\n", + "current epoch: 462 current mean dice: 0.7345\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 463/500\n", + "1/0, train_loss: 0.4248\n", + "1 epoch 463 average loss: 0.4248\n", + "----------\n", + "1: epoch 464/500\n", + "1/0, train_loss: 0.4284\n", + "1 epoch 464 average loss: 0.4284\n", + "current epoch: 464 current mean dice: 0.6994\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 465/500\n", + "1/0, train_loss: 0.4106\n", + "1 epoch 465 average loss: 0.4106\n", + "----------\n", + "1: epoch 466/500\n", + "1/0, train_loss: 0.4166\n", + "1 epoch 466 average loss: 0.4166\n", + "current epoch: 466 current mean dice: 0.5903\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 467/500\n", + "1/0, train_loss: 0.4138\n", + "1 epoch 467 average loss: 0.4138\n", + "----------\n", + "1: epoch 468/500\n", + "1/0, train_loss: 0.4282\n", + "1 epoch 468 average loss: 0.4282\n", + "current epoch: 468 current mean dice: 0.6435\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 469/500\n", + "1/0, train_loss: 0.4139\n", + "1 epoch 469 average loss: 0.4139\n", + "----------\n", + "1: epoch 470/500\n", + "1/0, train_loss: 0.4087\n", + "1 epoch 470 average loss: 0.4087\n", + "current epoch: 470 current mean dice: 0.7865\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 471/500\n", + "1/0, train_loss: 0.4200\n", + "1 epoch 471 average loss: 0.4200\n", + "----------\n", + "1: epoch 472/500\n", + "1/0, train_loss: 0.4249\n", + "1 epoch 472 average loss: 0.4249\n", + "current epoch: 472 current mean dice: 0.7102\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 473/500\n", + "1/0, train_loss: 0.4141\n", + "1 epoch 473 average loss: 0.4141\n", + "----------\n", + "1: epoch 474/500\n", + "1/0, train_loss: 0.4110\n", + "1 epoch 474 average loss: 0.4110\n", + "current epoch: 474 current mean dice: 0.6490\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 475/500\n", + "1/0, train_loss: 0.4062\n", + "1 epoch 475 average loss: 0.4062\n", + "----------\n", + "1: epoch 476/500\n", + "1/0, train_loss: 0.4056\n", + "1 epoch 476 average loss: 0.4056\n", + "current epoch: 476 current mean dice: 0.6377\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 477/500\n", + "1/0, train_loss: 0.4085\n", + "1 epoch 477 average loss: 0.4085\n", + "----------\n", + "1: epoch 478/500\n", + "1/0, train_loss: 0.4068\n", + "1 epoch 478 average loss: 0.4068\n", + "current epoch: 478 current mean dice: 0.6701\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 479/500\n", + "1/0, train_loss: 0.4106\n", + "1 epoch 479 average loss: 0.4106\n", + "----------\n", + "1: epoch 480/500\n", + "1/0, train_loss: 0.4092\n", + "1 epoch 480 average loss: 0.4092\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "current epoch: 480 current mean dice: 0.7903\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 481/500\n", + "1/0, train_loss: 0.4131\n", + "1 epoch 481 average loss: 0.4131\n", + "----------\n", + "1: epoch 482/500\n", + "1/0, train_loss: 0.4105\n", + "1 epoch 482 average loss: 0.4105\n", + "current epoch: 482 current mean dice: 0.7567\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 483/500\n", + "1/0, train_loss: 0.4025\n", + "1 epoch 483 average loss: 0.4025\n", + "----------\n", + "1: epoch 484/500\n", + "1/0, train_loss: 0.4056\n", + "1 epoch 484 average loss: 0.4056\n", + "current epoch: 484 current mean dice: 0.6703\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 485/500\n", + "1/0, train_loss: 0.4123\n", + "1 epoch 485 average loss: 0.4123\n", + "----------\n", + "1: epoch 486/500\n", + "1/0, train_loss: 0.4234\n", + "1 epoch 486 average loss: 0.4234\n", + "current epoch: 486 current mean dice: 0.6009\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 487/500\n", + "1/0, train_loss: 0.4100\n", + "1 epoch 487 average loss: 0.4100\n", + "----------\n", + "1: epoch 488/500\n", + "1/0, train_loss: 0.4262\n", + "1 epoch 488 average loss: 0.4262\n", + "current epoch: 488 current mean dice: 0.6173\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 489/500\n", + "1/0, train_loss: 0.4211\n", + "1 epoch 489 average loss: 0.4211\n", + "----------\n", + "1: epoch 490/500\n", + "1/0, train_loss: 0.4076\n", + "1 epoch 490 average loss: 0.4076\n", + "current epoch: 490 current mean dice: 0.7426\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 491/500\n", + "1/0, train_loss: 0.4080\n", + "1 epoch 491 average loss: 0.4080\n", + "----------\n", + "1: epoch 492/500\n", + "1/0, train_loss: 0.4144\n", + "1 epoch 492 average loss: 0.4144\n", + "current epoch: 492 current mean dice: 0.6861\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 493/500\n", + "1/0, train_loss: 0.4126\n", + "1 epoch 493 average loss: 0.4126\n", + "----------\n", + "1: epoch 494/500\n", + "1/0, train_loss: 0.4290\n", + "1 epoch 494 average loss: 0.4290\n", + "current epoch: 494 current mean dice: 0.5922\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 495/500\n", + "1/0, train_loss: 0.4020\n", + "1 epoch 495 average loss: 0.4020\n", + "----------\n", + "1: epoch 496/500\n", + "1/0, train_loss: 0.4113\n", + "1 epoch 496 average loss: 0.4113\n", + "current epoch: 496 current mean dice: 0.5982\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 497/500\n", + "1/0, train_loss: 0.4233\n", + "1 epoch 497 average loss: 0.4233\n", + "----------\n", + "1: epoch 498/500\n", + "1/0, train_loss: 0.4156\n", + "1 epoch 498 average loss: 0.4156\n", + "current epoch: 498 current mean dice: 0.6954\n", + "best mean dice: 0.8219 at epoch: 222\n", + "----------\n", + "1: epoch 499/500\n", + "1/0, train_loss: 0.4097\n", + "1 epoch 499 average loss: 0.4097\n", + "----------\n", + "1: epoch 500/500\n", + "1/0, train_loss: 0.4194\n", + "1 epoch 500 average loss: 0.4194\n", + "current epoch: 500 current mean dice: 0.6779\n", + "best mean dice: 0.8219 at epoch: 222\n", + "2\n", + "2\n", + "----------\n", + "2: epoch 1/500\n", + "1/0, train_loss: 0.7386\n", + "2 epoch 1 average loss: 0.7386\n", + "----------\n", + "2: epoch 2/500\n", + "1/0, train_loss: 0.7271\n", + "2 epoch 2 average loss: 0.7271\n", + "saved new best metric model\n", + "current epoch: 2 current mean dice: 0.2580\n", + "best mean dice: 0.2580 at epoch: 2\n", + "----------\n", + "2: epoch 3/500\n", + "1/0, train_loss: 0.7202\n", + "2 epoch 3 average loss: 0.7202\n", + "----------\n", + "2: epoch 4/500\n", + "1/0, train_loss: 0.7149\n", + "2 epoch 4 average loss: 0.7149\n", + "saved new best metric model\n", + "current epoch: 4 current mean dice: 0.2670\n", + "best mean dice: 0.2670 at epoch: 4\n", + "----------\n", + "2: epoch 5/500\n", + "1/0, train_loss: 0.7104\n", + "2 epoch 5 average loss: 0.7104\n", + "----------\n", + "2: epoch 6/500\n", + "1/0, train_loss: 0.7085\n", + "2 epoch 6 average loss: 0.7085\n", + "saved new best metric model\n", + "current epoch: 6 current mean dice: 0.2729\n", + "best mean dice: 0.2729 at epoch: 6\n", + "----------\n", + "2: epoch 7/500\n", + "1/0, train_loss: 0.7054\n", + "2 epoch 7 average loss: 0.7054\n", + "----------\n", + "2: epoch 8/500\n", + "1/0, train_loss: 0.7036\n", + "2 epoch 8 average loss: 0.7036\n", + "saved new best metric model\n", + "current epoch: 8 current mean dice: 0.2762\n", + "best mean dice: 0.2762 at epoch: 8\n", + "----------\n", + "2: epoch 9/500\n", + "1/0, train_loss: 0.7009\n", + "2 epoch 9 average loss: 0.7009\n", + "----------\n", + "2: epoch 10/500\n", + "1/0, train_loss: 0.6971\n", + "2 epoch 10 average loss: 0.6971\n", + "saved new best metric model\n", + "current epoch: 10 current mean dice: 0.2808\n", + "best mean dice: 0.2808 at epoch: 10\n", + "----------\n", + "2: epoch 11/500\n", + "1/0, train_loss: 0.6970\n", + "2 epoch 11 average loss: 0.6970\n", + "----------\n", + "2: epoch 12/500\n", + "1/0, train_loss: 0.6914\n", + "2 epoch 12 average loss: 0.6914\n", + "saved new best metric model\n", + "current epoch: 12 current mean dice: 0.2861\n", + "best mean dice: 0.2861 at epoch: 12\n", + "----------\n", + "2: epoch 13/500\n", + "1/0, train_loss: 0.6928\n", + "2 epoch 13 average loss: 0.6928\n", + "----------\n", + "2: epoch 14/500\n", + "1/0, train_loss: 0.6894\n", + "2 epoch 14 average loss: 0.6894\n", + "saved new best metric model\n", + "current epoch: 14 current mean dice: 0.3013\n", + "best mean dice: 0.3013 at epoch: 14\n", + "----------\n", + "2: epoch 15/500\n", + "1/0, train_loss: 0.6876\n", + "2 epoch 15 average loss: 0.6876\n", + "----------\n", + "2: epoch 16/500\n", + "1/0, train_loss: 0.6864\n", + "2 epoch 16 average loss: 0.6864\n", + "saved new best metric model\n", + "current epoch: 16 current mean dice: 0.3174\n", + "best mean dice: 0.3174 at epoch: 16\n", + "----------\n", + "2: epoch 17/500\n", + "1/0, train_loss: 0.6859\n", + "2 epoch 17 average loss: 0.6859\n", + "----------\n", + "2: epoch 18/500\n", + "1/0, train_loss: 0.6810\n", + "2 epoch 18 average loss: 0.6810\n", + "saved new best metric model\n", + "current epoch: 18 current mean dice: 0.3304\n", + "best mean dice: 0.3304 at epoch: 18\n", + "----------\n", + "2: epoch 19/500\n", + "1/0, train_loss: 0.6817\n", + "2 epoch 19 average loss: 0.6817\n", + "----------\n", + "2: epoch 20/500\n", + "1/0, train_loss: 0.6769\n", + "2 epoch 20 average loss: 0.6769\n", + "saved new best metric model\n", + "current epoch: 20 current mean dice: 0.3410\n", + "best mean dice: 0.3410 at epoch: 20\n", + "----------\n", + "2: epoch 21/500\n", + "1/0, train_loss: 0.6773\n", + "2 epoch 21 average loss: 0.6773\n", + "----------\n", + "2: epoch 22/500\n", + "1/0, train_loss: 0.6718\n", + "2 epoch 22 average loss: 0.6718\n", + "saved new best metric model\n", + "current epoch: 22 current mean dice: 0.3509\n", + "best mean dice: 0.3509 at epoch: 22\n", + "----------\n", + "2: epoch 23/500\n", + "1/0, train_loss: 0.6706\n", + "2 epoch 23 average loss: 0.6706\n", + "----------\n", + "2: epoch 24/500\n", + "1/0, train_loss: 0.6659\n", + "2 epoch 24 average loss: 0.6659\n", + "current epoch: 24 current mean dice: 0.3450\n", + "best mean dice: 0.3509 at epoch: 22\n", + "----------\n", + "2: epoch 25/500\n", + "1/0, train_loss: 0.6624\n", + "2 epoch 25 average loss: 0.6624\n", + "----------\n", + "2: epoch 26/500\n", + "1/0, train_loss: 0.6649\n", + "2 epoch 26 average loss: 0.6649\n", + "current epoch: 26 current mean dice: 0.3350\n", + "best mean dice: 0.3509 at epoch: 22\n", + "----------\n", + "2: epoch 27/500\n", + "1/0, train_loss: 0.6599\n", + "2 epoch 27 average loss: 0.6599\n", + "----------\n", + "2: epoch 28/500\n", + "1/0, train_loss: 0.6600\n", + "2 epoch 28 average loss: 0.6600\n", + "current epoch: 28 current mean dice: 0.3257\n", + "best mean dice: 0.3509 at epoch: 22\n", + "----------\n", + "2: epoch 29/500\n", + "1/0, train_loss: 0.6610\n", + "2 epoch 29 average loss: 0.6610\n", + "----------\n", + "2: epoch 30/500\n", + "1/0, train_loss: 0.6554\n", + "2 epoch 30 average loss: 0.6554\n", + "saved new best metric model\n", + "current epoch: 30 current mean dice: 0.3662\n", + "best mean dice: 0.3662 at epoch: 30\n", + "----------\n", + "2: epoch 31/500\n", + "1/0, train_loss: 0.6527\n", + "2 epoch 31 average loss: 0.6527\n", + "----------\n", + "2: epoch 32/500\n", + "1/0, train_loss: 0.6499\n", + "2 epoch 32 average loss: 0.6499\n", + "current epoch: 32 current mean dice: 0.3477\n", + "best mean dice: 0.3662 at epoch: 30\n", + "----------\n", + "2: epoch 33/500\n", + "1/0, train_loss: 0.6458\n", + "2 epoch 33 average loss: 0.6458\n", + "----------\n", + "2: epoch 34/500\n", + "1/0, train_loss: 0.6468\n", + "2 epoch 34 average loss: 0.6468\n", + "current epoch: 34 current mean dice: 0.3528\n", + "best mean dice: 0.3662 at epoch: 30\n", + "----------\n", + "2: epoch 35/500\n", + "1/0, train_loss: 0.6438\n", + "2 epoch 35 average loss: 0.6438\n", + "----------\n", + "2: epoch 36/500\n", + "1/0, train_loss: 0.6420\n", + "2 epoch 36 average loss: 0.6420\n", + "saved new best metric model\n", + "current epoch: 36 current mean dice: 0.3875\n", + "best mean dice: 0.3875 at epoch: 36\n", + "----------\n", + "2: epoch 37/500\n", + "1/0, train_loss: 0.6412\n", + "2 epoch 37 average loss: 0.6412\n", + "----------\n", + "2: epoch 38/500\n", + "1/0, train_loss: 0.6370\n", + "2 epoch 38 average loss: 0.6370\n", + "current epoch: 38 current mean dice: 0.3772\n", + "best mean dice: 0.3875 at epoch: 36\n", + "----------\n", + "2: epoch 39/500\n", + "1/0, train_loss: 0.6352\n", + "2 epoch 39 average loss: 0.6352\n", + "----------\n", + "2: epoch 40/500\n", + "1/0, train_loss: 0.6347\n", + "2 epoch 40 average loss: 0.6347\n", + "saved new best metric model\n", + "current epoch: 40 current mean dice: 0.3974\n", + "best mean dice: 0.3974 at epoch: 40\n", + "----------\n", + "2: epoch 41/500\n", + "1/0, train_loss: 0.6309\n", + "2 epoch 41 average loss: 0.6309\n", + "----------\n", + "2: epoch 42/500\n", + "1/0, train_loss: 0.6287\n", + "2 epoch 42 average loss: 0.6287\n", + "current epoch: 42 current mean dice: 0.3801\n", + "best mean dice: 0.3974 at epoch: 40\n", + "----------\n", + "2: epoch 43/500\n", + "1/0, train_loss: 0.6291\n", + "2 epoch 43 average loss: 0.6291\n", + "----------\n", + "2: epoch 44/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.6252\n", + "2 epoch 44 average loss: 0.6252\n", + "saved new best metric model\n", + "current epoch: 44 current mean dice: 0.4217\n", + "best mean dice: 0.4217 at epoch: 44\n", + "----------\n", + "2: epoch 45/500\n", + "1/0, train_loss: 0.6268\n", + "2 epoch 45 average loss: 0.6268\n", + "----------\n", + "2: epoch 46/500\n", + "1/0, train_loss: 0.6236\n", + "2 epoch 46 average loss: 0.6236\n", + "current epoch: 46 current mean dice: 0.3882\n", + "best mean dice: 0.4217 at epoch: 44\n", + "----------\n", + "2: epoch 47/500\n", + "1/0, train_loss: 0.6253\n", + "2 epoch 47 average loss: 0.6253\n", + "----------\n", + "2: epoch 48/500\n", + "1/0, train_loss: 0.6207\n", + "2 epoch 48 average loss: 0.6207\n", + "saved new best metric model\n", + "current epoch: 48 current mean dice: 0.4265\n", + "best mean dice: 0.4265 at epoch: 48\n", + "----------\n", + "2: epoch 49/500\n", + "1/0, train_loss: 0.6177\n", + "2 epoch 49 average loss: 0.6177\n", + "----------\n", + "2: epoch 50/500\n", + "1/0, train_loss: 0.6140\n", + "2 epoch 50 average loss: 0.6140\n", + "current epoch: 50 current mean dice: 0.4128\n", + "best mean dice: 0.4265 at epoch: 48\n", + "----------\n", + "2: epoch 51/500\n", + "1/0, train_loss: 0.6119\n", + "2 epoch 51 average loss: 0.6119\n", + "----------\n", + "2: epoch 52/500\n", + "1/0, train_loss: 0.6140\n", + "2 epoch 52 average loss: 0.6140\n", + "saved new best metric model\n", + "current epoch: 52 current mean dice: 0.4300\n", + "best mean dice: 0.4300 at epoch: 52\n", + "----------\n", + "2: epoch 53/500\n", + "1/0, train_loss: 0.6107\n", + "2 epoch 53 average loss: 0.6107\n", + "----------\n", + "2: epoch 54/500\n", + "1/0, train_loss: 0.6090\n", + "2 epoch 54 average loss: 0.6090\n", + "saved new best metric model\n", + "current epoch: 54 current mean dice: 0.4354\n", + "best mean dice: 0.4354 at epoch: 54\n", + "----------\n", + "2: epoch 55/500\n", + "1/0, train_loss: 0.6027\n", + "2 epoch 55 average loss: 0.6027\n", + "----------\n", + "2: epoch 56/500\n", + "1/0, train_loss: 0.6044\n", + "2 epoch 56 average loss: 0.6044\n", + "saved new best metric model\n", + "current epoch: 56 current mean dice: 0.4386\n", + "best mean dice: 0.4386 at epoch: 56\n", + "----------\n", + "2: epoch 57/500\n", + "1/0, train_loss: 0.6023\n", + "2 epoch 57 average loss: 0.6023\n", + "----------\n", + "2: epoch 58/500\n", + "1/0, train_loss: 0.5975\n", + "2 epoch 58 average loss: 0.5975\n", + "saved new best metric model\n", + "current epoch: 58 current mean dice: 0.4467\n", + "best mean dice: 0.4467 at epoch: 58\n", + "----------\n", + "2: epoch 59/500\n", + "1/0, train_loss: 0.5959\n", + "2 epoch 59 average loss: 0.5959\n", + "----------\n", + "2: epoch 60/500\n", + "1/0, train_loss: 0.5988\n", + "2 epoch 60 average loss: 0.5988\n", + "saved new best metric model\n", + "current epoch: 60 current mean dice: 0.4490\n", + "best mean dice: 0.4490 at epoch: 60\n", + "----------\n", + "2: epoch 61/500\n", + "1/0, train_loss: 0.5940\n", + "2 epoch 61 average loss: 0.5940\n", + "----------\n", + "2: epoch 62/500\n", + "1/0, train_loss: 0.5946\n", + "2 epoch 62 average loss: 0.5946\n", + "saved new best metric model\n", + "current epoch: 62 current mean dice: 0.4609\n", + "best mean dice: 0.4609 at epoch: 62\n", + "----------\n", + "2: epoch 63/500\n", + "1/0, train_loss: 0.5902\n", + "2 epoch 63 average loss: 0.5902\n", + "----------\n", + "2: epoch 64/500\n", + "1/0, train_loss: 0.5925\n", + "2 epoch 64 average loss: 0.5925\n", + "saved new best metric model\n", + "current epoch: 64 current mean dice: 0.4698\n", + "best mean dice: 0.4698 at epoch: 64\n", + "----------\n", + "2: epoch 65/500\n", + "1/0, train_loss: 0.5884\n", + "2 epoch 65 average loss: 0.5884\n", + "----------\n", + "2: epoch 66/500\n", + "1/0, train_loss: 0.5826\n", + "2 epoch 66 average loss: 0.5826\n", + "current epoch: 66 current mean dice: 0.4507\n", + "best mean dice: 0.4698 at epoch: 64\n", + "----------\n", + "2: epoch 67/500\n", + "1/0, train_loss: 0.5865\n", + "2 epoch 67 average loss: 0.5865\n", + "----------\n", + "2: epoch 68/500\n", + "1/0, train_loss: 0.5870\n", + "2 epoch 68 average loss: 0.5870\n", + "current epoch: 68 current mean dice: 0.4620\n", + "best mean dice: 0.4698 at epoch: 64\n", + "----------\n", + "2: epoch 69/500\n", + "1/0, train_loss: 0.5815\n", + "2 epoch 69 average loss: 0.5815\n", + "----------\n", + "2: epoch 70/500\n", + "1/0, train_loss: 0.5827\n", + "2 epoch 70 average loss: 0.5827\n", + "saved new best metric model\n", + "current epoch: 70 current mean dice: 0.4725\n", + "best mean dice: 0.4725 at epoch: 70\n", + "----------\n", + "2: epoch 71/500\n", + "1/0, train_loss: 0.5803\n", + "2 epoch 71 average loss: 0.5803\n", + "----------\n", + "2: epoch 72/500\n", + "1/0, train_loss: 0.5783\n", + "2 epoch 72 average loss: 0.5783\n", + "current epoch: 72 current mean dice: 0.4494\n", + "best mean dice: 0.4725 at epoch: 70\n", + "----------\n", + "2: epoch 73/500\n", + "1/0, train_loss: 0.5736\n", + "2 epoch 73 average loss: 0.5736\n", + "----------\n", + "2: epoch 74/500\n", + "1/0, train_loss: 0.5707\n", + "2 epoch 74 average loss: 0.5707\n", + "saved new best metric model\n", + "current epoch: 74 current mean dice: 0.4738\n", + "best mean dice: 0.4738 at epoch: 74\n", + "----------\n", + "2: epoch 75/500\n", + "1/0, train_loss: 0.5721\n", + "2 epoch 75 average loss: 0.5721\n", + "----------\n", + "2: epoch 76/500\n", + "1/0, train_loss: 0.5723\n", + "2 epoch 76 average loss: 0.5723\n", + "current epoch: 76 current mean dice: 0.4725\n", + "best mean dice: 0.4738 at epoch: 74\n", + "----------\n", + "2: epoch 77/500\n", + "1/0, train_loss: 0.5697\n", + "2 epoch 77 average loss: 0.5697\n", + "----------\n", + "2: epoch 78/500\n", + "1/0, train_loss: 0.5688\n", + "2 epoch 78 average loss: 0.5688\n", + "saved new best metric model\n", + "current epoch: 78 current mean dice: 0.4794\n", + "best mean dice: 0.4794 at epoch: 78\n", + "----------\n", + "2: epoch 79/500\n", + "1/0, train_loss: 0.5628\n", + "2 epoch 79 average loss: 0.5628\n", + "----------\n", + "2: epoch 80/500\n", + "1/0, train_loss: 0.5663\n", + "2 epoch 80 average loss: 0.5663\n", + "current epoch: 80 current mean dice: 0.3862\n", + "best mean dice: 0.4794 at epoch: 78\n", + "----------\n", + "2: epoch 81/500\n", + "1/0, train_loss: 0.5681\n", + "2 epoch 81 average loss: 0.5681\n", + "----------\n", + "2: epoch 82/500\n", + "1/0, train_loss: 0.5647\n", + "2 epoch 82 average loss: 0.5647\n", + "current epoch: 82 current mean dice: 0.4717\n", + "best mean dice: 0.4794 at epoch: 78\n", + "----------\n", + "2: epoch 83/500\n", + "1/0, train_loss: 0.5600\n", + "2 epoch 83 average loss: 0.5600\n", + "----------\n", + "2: epoch 84/500\n", + "1/0, train_loss: 0.5642\n", + "2 epoch 84 average loss: 0.5642\n", + "saved new best metric model\n", + "current epoch: 84 current mean dice: 0.4873\n", + "best mean dice: 0.4873 at epoch: 84\n", + "----------\n", + "2: epoch 85/500\n", + "1/0, train_loss: 0.5601\n", + "2 epoch 85 average loss: 0.5601\n", + "----------\n", + "2: epoch 86/500\n", + "1/0, train_loss: 0.5565\n", + "2 epoch 86 average loss: 0.5565\n", + "current epoch: 86 current mean dice: 0.3697\n", + "best mean dice: 0.4873 at epoch: 84\n", + "----------\n", + "2: epoch 87/500\n", + "1/0, train_loss: 0.5585\n", + "2 epoch 87 average loss: 0.5585\n", + "----------\n", + "2: epoch 88/500\n", + "1/0, train_loss: 0.5555\n", + "2 epoch 88 average loss: 0.5555\n", + "current epoch: 88 current mean dice: 0.4782\n", + "best mean dice: 0.4873 at epoch: 84\n", + "----------\n", + "2: epoch 89/500\n", + "1/0, train_loss: 0.5551\n", + "2 epoch 89 average loss: 0.5551\n", + "----------\n", + "2: epoch 90/500\n", + "1/0, train_loss: 0.5585\n", + "2 epoch 90 average loss: 0.5585\n", + "current epoch: 90 current mean dice: 0.4767\n", + "best mean dice: 0.4873 at epoch: 84\n", + "----------\n", + "2: epoch 91/500\n", + "1/0, train_loss: 0.5521\n", + "2 epoch 91 average loss: 0.5521\n", + "----------\n", + "2: epoch 92/500\n", + "1/0, train_loss: 0.5520\n", + "2 epoch 92 average loss: 0.5520\n", + "current epoch: 92 current mean dice: 0.3440\n", + "best mean dice: 0.4873 at epoch: 84\n", + "----------\n", + "2: epoch 93/500\n", + "1/0, train_loss: 0.5518\n", + "2 epoch 93 average loss: 0.5518\n", + "----------\n", + "2: epoch 94/500\n", + "1/0, train_loss: 0.5475\n", + "2 epoch 94 average loss: 0.5475\n", + "current epoch: 94 current mean dice: 0.4554\n", + "best mean dice: 0.4873 at epoch: 84\n", + "----------\n", + "2: epoch 95/500\n", + "1/0, train_loss: 0.5547\n", + "2 epoch 95 average loss: 0.5547\n", + "----------\n", + "2: epoch 96/500\n", + "1/0, train_loss: 0.5457\n", + "2 epoch 96 average loss: 0.5457\n", + "current epoch: 96 current mean dice: 0.4040\n", + "best mean dice: 0.4873 at epoch: 84\n", + "----------\n", + "2: epoch 97/500\n", + "1/0, train_loss: 0.5452\n", + "2 epoch 97 average loss: 0.5452\n", + "----------\n", + "2: epoch 98/500\n", + "1/0, train_loss: 0.5479\n", + "2 epoch 98 average loss: 0.5479\n", + "current epoch: 98 current mean dice: 0.4772\n", + "best mean dice: 0.4873 at epoch: 84\n", + "----------\n", + "2: epoch 99/500\n", + "1/0, train_loss: 0.5425\n", + "2 epoch 99 average loss: 0.5425\n", + "----------\n", + "2: epoch 100/500\n", + "1/0, train_loss: 0.5403\n", + "2 epoch 100 average loss: 0.5403\n", + "current epoch: 100 current mean dice: 0.4299\n", + "best mean dice: 0.4873 at epoch: 84\n", + "----------\n", + "2: epoch 101/500\n", + "1/0, train_loss: 0.5382\n", + "2 epoch 101 average loss: 0.5382\n", + "----------\n", + "2: epoch 102/500\n", + "1/0, train_loss: 0.5346\n", + "2 epoch 102 average loss: 0.5346\n", + "current epoch: 102 current mean dice: 0.4515\n", + "best mean dice: 0.4873 at epoch: 84\n", + "----------\n", + "2: epoch 103/500\n", + "1/0, train_loss: 0.5363\n", + "2 epoch 103 average loss: 0.5363\n", + "----------\n", + "2: epoch 104/500\n", + "1/0, train_loss: 0.5417\n", + "2 epoch 104 average loss: 0.5417\n", + "current epoch: 104 current mean dice: 0.4555\n", + "best mean dice: 0.4873 at epoch: 84\n", + "----------\n", + "2: epoch 105/500\n", + "1/0, train_loss: 0.5367\n", + "2 epoch 105 average loss: 0.5367\n", + "----------\n", + "2: epoch 106/500\n", + "1/0, train_loss: 0.5355\n", + "2 epoch 106 average loss: 0.5355\n", + "current epoch: 106 current mean dice: 0.4536\n", + "best mean dice: 0.4873 at epoch: 84\n", + "----------\n", + "2: epoch 107/500\n", + "1/0, train_loss: 0.5338\n", + "2 epoch 107 average loss: 0.5338\n", + "----------\n", + "2: epoch 108/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.5348\n", + "2 epoch 108 average loss: 0.5348\n", + "current epoch: 108 current mean dice: 0.4683\n", + "best mean dice: 0.4873 at epoch: 84\n", + "----------\n", + "2: epoch 109/500\n", + "1/0, train_loss: 0.5311\n", + "2 epoch 109 average loss: 0.5311\n", + "----------\n", + "2: epoch 110/500\n", + "1/0, train_loss: 0.5307\n", + "2 epoch 110 average loss: 0.5307\n", + "current epoch: 110 current mean dice: 0.3754\n", + "best mean dice: 0.4873 at epoch: 84\n", + "----------\n", + "2: epoch 111/500\n", + "1/0, train_loss: 0.5297\n", + "2 epoch 111 average loss: 0.5297\n", + "----------\n", + "2: epoch 112/500\n", + "1/0, train_loss: 0.5321\n", + "2 epoch 112 average loss: 0.5321\n", + "current epoch: 112 current mean dice: 0.4532\n", + "best mean dice: 0.4873 at epoch: 84\n", + "----------\n", + "2: epoch 113/500\n", + "1/0, train_loss: 0.5308\n", + "2 epoch 113 average loss: 0.5308\n", + "----------\n", + "2: epoch 114/500\n", + "1/0, train_loss: 0.5297\n", + "2 epoch 114 average loss: 0.5297\n", + "current epoch: 114 current mean dice: 0.3234\n", + "best mean dice: 0.4873 at epoch: 84\n", + "----------\n", + "2: epoch 115/500\n", + "1/0, train_loss: 0.5325\n", + "2 epoch 115 average loss: 0.5325\n", + "----------\n", + "2: epoch 116/500\n", + "1/0, train_loss: 0.5330\n", + "2 epoch 116 average loss: 0.5330\n", + "current epoch: 116 current mean dice: 0.4470\n", + "best mean dice: 0.4873 at epoch: 84\n", + "----------\n", + "2: epoch 117/500\n", + "1/0, train_loss: 0.5285\n", + "2 epoch 117 average loss: 0.5285\n", + "----------\n", + "2: epoch 118/500\n", + "1/0, train_loss: 0.5251\n", + "2 epoch 118 average loss: 0.5251\n", + "current epoch: 118 current mean dice: 0.4414\n", + "best mean dice: 0.4873 at epoch: 84\n", + "----------\n", + "2: epoch 119/500\n", + "1/0, train_loss: 0.5195\n", + "2 epoch 119 average loss: 0.5195\n", + "----------\n", + "2: epoch 120/500\n", + "1/0, train_loss: 0.5215\n", + "2 epoch 120 average loss: 0.5215\n", + "current epoch: 120 current mean dice: 0.4032\n", + "best mean dice: 0.4873 at epoch: 84\n", + "----------\n", + "2: epoch 121/500\n", + "1/0, train_loss: 0.5203\n", + "2 epoch 121 average loss: 0.5203\n", + "----------\n", + "2: epoch 122/500\n", + "1/0, train_loss: 0.5203\n", + "2 epoch 122 average loss: 0.5203\n", + "current epoch: 122 current mean dice: 0.4362\n", + "best mean dice: 0.4873 at epoch: 84\n", + "----------\n", + "2: epoch 123/500\n", + "1/0, train_loss: 0.5207\n", + "2 epoch 123 average loss: 0.5207\n", + "----------\n", + "2: epoch 124/500\n", + "1/0, train_loss: 0.5177\n", + "2 epoch 124 average loss: 0.5177\n", + "current epoch: 124 current mean dice: 0.4333\n", + "best mean dice: 0.4873 at epoch: 84\n", + "----------\n", + "2: epoch 125/500\n", + "1/0, train_loss: 0.5197\n", + "2 epoch 125 average loss: 0.5197\n", + "----------\n", + "2: epoch 126/500\n", + "1/0, train_loss: 0.5165\n", + "2 epoch 126 average loss: 0.5165\n", + "current epoch: 126 current mean dice: 0.4594\n", + "best mean dice: 0.4873 at epoch: 84\n", + "----------\n", + "2: epoch 127/500\n", + "1/0, train_loss: 0.5171\n", + "2 epoch 127 average loss: 0.5171\n", + "----------\n", + "2: epoch 128/500\n", + "1/0, train_loss: 0.5199\n", + "2 epoch 128 average loss: 0.5199\n", + "current epoch: 128 current mean dice: 0.3916\n", + "best mean dice: 0.4873 at epoch: 84\n", + "----------\n", + "2: epoch 129/500\n", + "1/0, train_loss: 0.5182\n", + "2 epoch 129 average loss: 0.5182\n", + "----------\n", + "2: epoch 130/500\n", + "1/0, train_loss: 0.5165\n", + "2 epoch 130 average loss: 0.5165\n", + "current epoch: 130 current mean dice: 0.3771\n", + "best mean dice: 0.4873 at epoch: 84\n", + "----------\n", + "2: epoch 131/500\n", + "1/0, train_loss: 0.5118\n", + "2 epoch 131 average loss: 0.5118\n", + "----------\n", + "2: epoch 132/500\n", + "1/0, train_loss: 0.5159\n", + "2 epoch 132 average loss: 0.5159\n", + "current epoch: 132 current mean dice: 0.4176\n", + "best mean dice: 0.4873 at epoch: 84\n", + "----------\n", + "2: epoch 133/500\n", + "1/0, train_loss: 0.5095\n", + "2 epoch 133 average loss: 0.5095\n", + "----------\n", + "2: epoch 134/500\n", + "1/0, train_loss: 0.5164\n", + "2 epoch 134 average loss: 0.5164\n", + "current epoch: 134 current mean dice: 0.4317\n", + "best mean dice: 0.4873 at epoch: 84\n", + "----------\n", + "2: epoch 135/500\n", + "1/0, train_loss: 0.5111\n", + "2 epoch 135 average loss: 0.5111\n", + "----------\n", + "2: epoch 136/500\n", + "1/0, train_loss: 0.5105\n", + "2 epoch 136 average loss: 0.5105\n", + "current epoch: 136 current mean dice: 0.3812\n", + "best mean dice: 0.4873 at epoch: 84\n", + "----------\n", + "2: epoch 137/500\n", + "1/0, train_loss: 0.5054\n", + "2 epoch 137 average loss: 0.5054\n", + "----------\n", + "2: epoch 138/500\n", + "1/0, train_loss: 0.5160\n", + "2 epoch 138 average loss: 0.5160\n", + "current epoch: 138 current mean dice: 0.4854\n", + "best mean dice: 0.4873 at epoch: 84\n", + "----------\n", + "2: epoch 139/500\n", + "1/0, train_loss: 0.5092\n", + "2 epoch 139 average loss: 0.5092\n", + "----------\n", + "2: epoch 140/500\n", + "1/0, train_loss: 0.5128\n", + "2 epoch 140 average loss: 0.5128\n", + "current epoch: 140 current mean dice: 0.3473\n", + "best mean dice: 0.4873 at epoch: 84\n", + "----------\n", + "2: epoch 141/500\n", + "1/0, train_loss: 0.5133\n", + "2 epoch 141 average loss: 0.5133\n", + "----------\n", + "2: epoch 142/500\n", + "1/0, train_loss: 0.5085\n", + "2 epoch 142 average loss: 0.5085\n", + "current epoch: 142 current mean dice: 0.4636\n", + "best mean dice: 0.4873 at epoch: 84\n", + "----------\n", + "2: epoch 143/500\n", + "1/0, train_loss: 0.5118\n", + "2 epoch 143 average loss: 0.5118\n", + "----------\n", + "2: epoch 144/500\n", + "1/0, train_loss: 0.5034\n", + "2 epoch 144 average loss: 0.5034\n", + "current epoch: 144 current mean dice: 0.3934\n", + "best mean dice: 0.4873 at epoch: 84\n", + "----------\n", + "2: epoch 145/500\n", + "1/0, train_loss: 0.5110\n", + "2 epoch 145 average loss: 0.5110\n", + "----------\n", + "2: epoch 146/500\n", + "1/0, train_loss: 0.5012\n", + "2 epoch 146 average loss: 0.5012\n", + "current epoch: 146 current mean dice: 0.4776\n", + "best mean dice: 0.4873 at epoch: 84\n", + "----------\n", + "2: epoch 147/500\n", + "1/0, train_loss: 0.5032\n", + "2 epoch 147 average loss: 0.5032\n", + "----------\n", + "2: epoch 148/500\n", + "1/0, train_loss: 0.5004\n", + "2 epoch 148 average loss: 0.5004\n", + "current epoch: 148 current mean dice: 0.3637\n", + "best mean dice: 0.4873 at epoch: 84\n", + "----------\n", + "2: epoch 149/500\n", + "1/0, train_loss: 0.5038\n", + "2 epoch 149 average loss: 0.5038\n", + "----------\n", + "2: epoch 150/500\n", + "1/0, train_loss: 0.4989\n", + "2 epoch 150 average loss: 0.4989\n", + "current epoch: 150 current mean dice: 0.4055\n", + "best mean dice: 0.4873 at epoch: 84\n", + "----------\n", + "2: epoch 151/500\n", + "1/0, train_loss: 0.5013\n", + "2 epoch 151 average loss: 0.5013\n", + "----------\n", + "2: epoch 152/500\n", + "1/0, train_loss: 0.5013\n", + "2 epoch 152 average loss: 0.5013\n", + "current epoch: 152 current mean dice: 0.4115\n", + "best mean dice: 0.4873 at epoch: 84\n", + "----------\n", + "2: epoch 153/500\n", + "1/0, train_loss: 0.5040\n", + "2 epoch 153 average loss: 0.5040\n", + "----------\n", + "2: epoch 154/500\n", + "1/0, train_loss: 0.4972\n", + "2 epoch 154 average loss: 0.4972\n", + "current epoch: 154 current mean dice: 0.3911\n", + "best mean dice: 0.4873 at epoch: 84\n", + "----------\n", + "2: epoch 155/500\n", + "1/0, train_loss: 0.4989\n", + "2 epoch 155 average loss: 0.4989\n", + "----------\n", + "2: epoch 156/500\n", + "1/0, train_loss: 0.4985\n", + "2 epoch 156 average loss: 0.4985\n", + "current epoch: 156 current mean dice: 0.3942\n", + "best mean dice: 0.4873 at epoch: 84\n", + "----------\n", + "2: epoch 157/500\n", + "1/0, train_loss: 0.4989\n", + "2 epoch 157 average loss: 0.4989\n", + "----------\n", + "2: epoch 158/500\n", + "1/0, train_loss: 0.4947\n", + "2 epoch 158 average loss: 0.4947\n", + "current epoch: 158 current mean dice: 0.4308\n", + "best mean dice: 0.4873 at epoch: 84\n", + "----------\n", + "2: epoch 159/500\n", + "1/0, train_loss: 0.4926\n", + "2 epoch 159 average loss: 0.4926\n", + "----------\n", + "2: epoch 160/500\n", + "1/0, train_loss: 0.4904\n", + "2 epoch 160 average loss: 0.4904\n", + "current epoch: 160 current mean dice: 0.3681\n", + "best mean dice: 0.4873 at epoch: 84\n", + "----------\n", + "2: epoch 161/500\n", + "1/0, train_loss: 0.4900\n", + "2 epoch 161 average loss: 0.4900\n", + "----------\n", + "2: epoch 162/500\n", + "1/0, train_loss: 0.4979\n", + "2 epoch 162 average loss: 0.4979\n", + "current epoch: 162 current mean dice: 0.4241\n", + "best mean dice: 0.4873 at epoch: 84\n", + "----------\n", + "2: epoch 163/500\n", + "1/0, train_loss: 0.4936\n", + "2 epoch 163 average loss: 0.4936\n", + "----------\n", + "2: epoch 164/500\n", + "1/0, train_loss: 0.4958\n", + "2 epoch 164 average loss: 0.4958\n", + "current epoch: 164 current mean dice: 0.4374\n", + "best mean dice: 0.4873 at epoch: 84\n", + "----------\n", + "2: epoch 165/500\n", + "1/0, train_loss: 0.4968\n", + "2 epoch 165 average loss: 0.4968\n", + "----------\n", + "2: epoch 166/500\n", + "1/0, train_loss: 0.4954\n", + "2 epoch 166 average loss: 0.4954\n", + "current epoch: 166 current mean dice: 0.3480\n", + "best mean dice: 0.4873 at epoch: 84\n", + "----------\n", + "2: epoch 167/500\n", + "1/0, train_loss: 0.4967\n", + "2 epoch 167 average loss: 0.4967\n", + "----------\n", + "2: epoch 168/500\n", + "1/0, train_loss: 0.4996\n", + "2 epoch 168 average loss: 0.4996\n", + "current epoch: 168 current mean dice: 0.4748\n", + "best mean dice: 0.4873 at epoch: 84\n", + "----------\n", + "2: epoch 169/500\n", + "1/0, train_loss: 0.4915\n", + "2 epoch 169 average loss: 0.4915\n", + "----------\n", + "2: epoch 170/500\n", + "1/0, train_loss: 0.5029\n", + "2 epoch 170 average loss: 0.5029\n", + "current epoch: 170 current mean dice: 0.3301\n", + "best mean dice: 0.4873 at epoch: 84\n", + "----------\n", + "2: epoch 171/500\n", + "1/0, train_loss: 0.4981\n", + "2 epoch 171 average loss: 0.4981\n", + "----------\n", + "2: epoch 172/500\n", + "1/0, train_loss: 0.5002\n", + "2 epoch 172 average loss: 0.5002\n", + "current epoch: 172 current mean dice: 0.4248\n", + "best mean dice: 0.4873 at epoch: 84\n", + "----------\n", + "2: epoch 173/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.4947\n", + "2 epoch 173 average loss: 0.4947\n", + "----------\n", + "2: epoch 174/500\n", + "1/0, train_loss: 0.4957\n", + "2 epoch 174 average loss: 0.4957\n", + "current epoch: 174 current mean dice: 0.4290\n", + "best mean dice: 0.4873 at epoch: 84\n", + "----------\n", + "2: epoch 175/500\n", + "1/0, train_loss: 0.4873\n", + "2 epoch 175 average loss: 0.4873\n", + "----------\n", + "2: epoch 176/500\n", + "1/0, train_loss: 0.4922\n", + "2 epoch 176 average loss: 0.4922\n", + "current epoch: 176 current mean dice: 0.3725\n", + "best mean dice: 0.4873 at epoch: 84\n", + "----------\n", + "2: epoch 177/500\n", + "1/0, train_loss: 0.4962\n", + "2 epoch 177 average loss: 0.4962\n", + "----------\n", + "2: epoch 178/500\n", + "1/0, train_loss: 0.4939\n", + "2 epoch 178 average loss: 0.4939\n", + "current epoch: 178 current mean dice: 0.4605\n", + "best mean dice: 0.4873 at epoch: 84\n", + "----------\n", + "2: epoch 179/500\n", + "1/0, train_loss: 0.4838\n", + "2 epoch 179 average loss: 0.4838\n", + "----------\n", + "2: epoch 180/500\n", + "1/0, train_loss: 0.4813\n", + "2 epoch 180 average loss: 0.4813\n", + "current epoch: 180 current mean dice: 0.3541\n", + "best mean dice: 0.4873 at epoch: 84\n", + "----------\n", + "2: epoch 181/500\n", + "1/0, train_loss: 0.4914\n", + "2 epoch 181 average loss: 0.4914\n", + "----------\n", + "2: epoch 182/500\n", + "1/0, train_loss: 0.4847\n", + "2 epoch 182 average loss: 0.4847\n", + "current epoch: 182 current mean dice: 0.4448\n", + "best mean dice: 0.4873 at epoch: 84\n", + "----------\n", + "2: epoch 183/500\n", + "1/0, train_loss: 0.4841\n", + "2 epoch 183 average loss: 0.4841\n", + "----------\n", + "2: epoch 184/500\n", + "1/0, train_loss: 0.4853\n", + "2 epoch 184 average loss: 0.4853\n", + "current epoch: 184 current mean dice: 0.4219\n", + "best mean dice: 0.4873 at epoch: 84\n", + "----------\n", + "2: epoch 185/500\n", + "1/0, train_loss: 0.4832\n", + "2 epoch 185 average loss: 0.4832\n", + "----------\n", + "2: epoch 186/500\n", + "1/0, train_loss: 0.4853\n", + "2 epoch 186 average loss: 0.4853\n", + "current epoch: 186 current mean dice: 0.3517\n", + "best mean dice: 0.4873 at epoch: 84\n", + "----------\n", + "2: epoch 187/500\n", + "1/0, train_loss: 0.4831\n", + "2 epoch 187 average loss: 0.4831\n", + "----------\n", + "2: epoch 188/500\n", + "1/0, train_loss: 0.4845\n", + "2 epoch 188 average loss: 0.4845\n", + "current epoch: 188 current mean dice: 0.4360\n", + "best mean dice: 0.4873 at epoch: 84\n", + "----------\n", + "2: epoch 189/500\n", + "1/0, train_loss: 0.4880\n", + "2 epoch 189 average loss: 0.4880\n", + "----------\n", + "2: epoch 190/500\n", + "1/0, train_loss: 0.4821\n", + "2 epoch 190 average loss: 0.4821\n", + "current epoch: 190 current mean dice: 0.4002\n", + "best mean dice: 0.4873 at epoch: 84\n", + "----------\n", + "2: epoch 191/500\n", + "1/0, train_loss: 0.4764\n", + "2 epoch 191 average loss: 0.4764\n", + "----------\n", + "2: epoch 192/500\n", + "1/0, train_loss: 0.4807\n", + "2 epoch 192 average loss: 0.4807\n", + "current epoch: 192 current mean dice: 0.4616\n", + "best mean dice: 0.4873 at epoch: 84\n", + "----------\n", + "2: epoch 193/500\n", + "1/0, train_loss: 0.4808\n", + "2 epoch 193 average loss: 0.4808\n", + "----------\n", + "2: epoch 194/500\n", + "1/0, train_loss: 0.4832\n", + "2 epoch 194 average loss: 0.4832\n", + "current epoch: 194 current mean dice: 0.4546\n", + "best mean dice: 0.4873 at epoch: 84\n", + "----------\n", + "2: epoch 195/500\n", + "1/0, train_loss: 0.4804\n", + "2 epoch 195 average loss: 0.4804\n", + "----------\n", + "2: epoch 196/500\n", + "1/0, train_loss: 0.4765\n", + "2 epoch 196 average loss: 0.4765\n", + "current epoch: 196 current mean dice: 0.3423\n", + "best mean dice: 0.4873 at epoch: 84\n", + "----------\n", + "2: epoch 197/500\n", + "1/0, train_loss: 0.4775\n", + "2 epoch 197 average loss: 0.4775\n", + "----------\n", + "2: epoch 198/500\n", + "1/0, train_loss: 0.4812\n", + "2 epoch 198 average loss: 0.4812\n", + "current epoch: 198 current mean dice: 0.4527\n", + "best mean dice: 0.4873 at epoch: 84\n", + "----------\n", + "2: epoch 199/500\n", + "1/0, train_loss: 0.4764\n", + "2 epoch 199 average loss: 0.4764\n", + "----------\n", + "2: epoch 200/500\n", + "1/0, train_loss: 0.4784\n", + "2 epoch 200 average loss: 0.4784\n", + "saved new best metric model\n", + "current epoch: 200 current mean dice: 0.4992\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 201/500\n", + "1/0, train_loss: 0.4776\n", + "2 epoch 201 average loss: 0.4776\n", + "----------\n", + "2: epoch 202/500\n", + "1/0, train_loss: 0.4772\n", + "2 epoch 202 average loss: 0.4772\n", + "current epoch: 202 current mean dice: 0.4201\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 203/500\n", + "1/0, train_loss: 0.4792\n", + "2 epoch 203 average loss: 0.4792\n", + "----------\n", + "2: epoch 204/500\n", + "1/0, train_loss: 0.4807\n", + "2 epoch 204 average loss: 0.4807\n", + "current epoch: 204 current mean dice: 0.4360\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 205/500\n", + "1/0, train_loss: 0.4771\n", + "2 epoch 205 average loss: 0.4771\n", + "----------\n", + "2: epoch 206/500\n", + "1/0, train_loss: 0.4743\n", + "2 epoch 206 average loss: 0.4743\n", + "current epoch: 206 current mean dice: 0.4333\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 207/500\n", + "1/0, train_loss: 0.4676\n", + "2 epoch 207 average loss: 0.4676\n", + "----------\n", + "2: epoch 208/500\n", + "1/0, train_loss: 0.4728\n", + "2 epoch 208 average loss: 0.4728\n", + "current epoch: 208 current mean dice: 0.4238\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 209/500\n", + "1/0, train_loss: 0.4766\n", + "2 epoch 209 average loss: 0.4766\n", + "----------\n", + "2: epoch 210/500\n", + "1/0, train_loss: 0.4753\n", + "2 epoch 210 average loss: 0.4753\n", + "current epoch: 210 current mean dice: 0.4270\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 211/500\n", + "1/0, train_loss: 0.4733\n", + "2 epoch 211 average loss: 0.4733\n", + "----------\n", + "2: epoch 212/500\n", + "1/0, train_loss: 0.4718\n", + "2 epoch 212 average loss: 0.4718\n", + "current epoch: 212 current mean dice: 0.3541\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 213/500\n", + "1/0, train_loss: 0.4692\n", + "2 epoch 213 average loss: 0.4692\n", + "----------\n", + "2: epoch 214/500\n", + "1/0, train_loss: 0.4750\n", + "2 epoch 214 average loss: 0.4750\n", + "current epoch: 214 current mean dice: 0.3697\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 215/500\n", + "1/0, train_loss: 0.4680\n", + "2 epoch 215 average loss: 0.4680\n", + "----------\n", + "2: epoch 216/500\n", + "1/0, train_loss: 0.4688\n", + "2 epoch 216 average loss: 0.4688\n", + "current epoch: 216 current mean dice: 0.4420\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 217/500\n", + "1/0, train_loss: 0.4667\n", + "2 epoch 217 average loss: 0.4667\n", + "----------\n", + "2: epoch 218/500\n", + "1/0, train_loss: 0.4722\n", + "2 epoch 218 average loss: 0.4722\n", + "current epoch: 218 current mean dice: 0.3720\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 219/500\n", + "1/0, train_loss: 0.4680\n", + "2 epoch 219 average loss: 0.4680\n", + "----------\n", + "2: epoch 220/500\n", + "1/0, train_loss: 0.4635\n", + "2 epoch 220 average loss: 0.4635\n", + "current epoch: 220 current mean dice: 0.3438\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 221/500\n", + "1/0, train_loss: 0.4688\n", + "2 epoch 221 average loss: 0.4688\n", + "----------\n", + "2: epoch 222/500\n", + "1/0, train_loss: 0.4651\n", + "2 epoch 222 average loss: 0.4651\n", + "current epoch: 222 current mean dice: 0.4178\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 223/500\n", + "1/0, train_loss: 0.4662\n", + "2 epoch 223 average loss: 0.4662\n", + "----------\n", + "2: epoch 224/500\n", + "1/0, train_loss: 0.4759\n", + "2 epoch 224 average loss: 0.4759\n", + "current epoch: 224 current mean dice: 0.4533\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 225/500\n", + "1/0, train_loss: 0.4644\n", + "2 epoch 225 average loss: 0.4644\n", + "----------\n", + "2: epoch 226/500\n", + "1/0, train_loss: 0.4666\n", + "2 epoch 226 average loss: 0.4666\n", + "current epoch: 226 current mean dice: 0.4562\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 227/500\n", + "1/0, train_loss: 0.4745\n", + "2 epoch 227 average loss: 0.4745\n", + "----------\n", + "2: epoch 228/500\n", + "1/0, train_loss: 0.4684\n", + "2 epoch 228 average loss: 0.4684\n", + "current epoch: 228 current mean dice: 0.3386\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 229/500\n", + "1/0, train_loss: 0.4606\n", + "2 epoch 229 average loss: 0.4606\n", + "----------\n", + "2: epoch 230/500\n", + "1/0, train_loss: 0.4678\n", + "2 epoch 230 average loss: 0.4678\n", + "current epoch: 230 current mean dice: 0.3391\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 231/500\n", + "1/0, train_loss: 0.4646\n", + "2 epoch 231 average loss: 0.4646\n", + "----------\n", + "2: epoch 232/500\n", + "1/0, train_loss: 0.4666\n", + "2 epoch 232 average loss: 0.4666\n", + "current epoch: 232 current mean dice: 0.3741\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 233/500\n", + "1/0, train_loss: 0.4674\n", + "2 epoch 233 average loss: 0.4674\n", + "----------\n", + "2: epoch 234/500\n", + "1/0, train_loss: 0.4613\n", + "2 epoch 234 average loss: 0.4613\n", + "current epoch: 234 current mean dice: 0.4403\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 235/500\n", + "1/0, train_loss: 0.4617\n", + "2 epoch 235 average loss: 0.4617\n", + "----------\n", + "2: epoch 236/500\n", + "1/0, train_loss: 0.4639\n", + "2 epoch 236 average loss: 0.4639\n", + "current epoch: 236 current mean dice: 0.4008\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 237/500\n", + "1/0, train_loss: 0.4595\n", + "2 epoch 237 average loss: 0.4595\n", + "----------\n", + "2: epoch 238/500\n", + "1/0, train_loss: 0.4587\n", + "2 epoch 238 average loss: 0.4587\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "current epoch: 238 current mean dice: 0.3359\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 239/500\n", + "1/0, train_loss: 0.4612\n", + "2 epoch 239 average loss: 0.4612\n", + "----------\n", + "2: epoch 240/500\n", + "1/0, train_loss: 0.4552\n", + "2 epoch 240 average loss: 0.4552\n", + "current epoch: 240 current mean dice: 0.3556\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 241/500\n", + "1/0, train_loss: 0.4641\n", + "2 epoch 241 average loss: 0.4641\n", + "----------\n", + "2: epoch 242/500\n", + "1/0, train_loss: 0.4602\n", + "2 epoch 242 average loss: 0.4602\n", + "current epoch: 242 current mean dice: 0.4283\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 243/500\n", + "1/0, train_loss: 0.4638\n", + "2 epoch 243 average loss: 0.4638\n", + "----------\n", + "2: epoch 244/500\n", + "1/0, train_loss: 0.4532\n", + "2 epoch 244 average loss: 0.4532\n", + "current epoch: 244 current mean dice: 0.3491\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 245/500\n", + "1/0, train_loss: 0.4653\n", + "2 epoch 245 average loss: 0.4653\n", + "----------\n", + "2: epoch 246/500\n", + "1/0, train_loss: 0.4545\n", + "2 epoch 246 average loss: 0.4545\n", + "current epoch: 246 current mean dice: 0.3996\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 247/500\n", + "1/0, train_loss: 0.4608\n", + "2 epoch 247 average loss: 0.4608\n", + "----------\n", + "2: epoch 248/500\n", + "1/0, train_loss: 0.4581\n", + "2 epoch 248 average loss: 0.4581\n", + "current epoch: 248 current mean dice: 0.3197\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 249/500\n", + "1/0, train_loss: 0.4528\n", + "2 epoch 249 average loss: 0.4528\n", + "----------\n", + "2: epoch 250/500\n", + "1/0, train_loss: 0.4623\n", + "2 epoch 250 average loss: 0.4623\n", + "current epoch: 250 current mean dice: 0.3405\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 251/500\n", + "1/0, train_loss: 0.4557\n", + "2 epoch 251 average loss: 0.4557\n", + "----------\n", + "2: epoch 252/500\n", + "1/0, train_loss: 0.4581\n", + "2 epoch 252 average loss: 0.4581\n", + "current epoch: 252 current mean dice: 0.4059\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 253/500\n", + "1/0, train_loss: 0.4580\n", + "2 epoch 253 average loss: 0.4580\n", + "----------\n", + "2: epoch 254/500\n", + "1/0, train_loss: 0.4559\n", + "2 epoch 254 average loss: 0.4559\n", + "current epoch: 254 current mean dice: 0.3188\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 255/500\n", + "1/0, train_loss: 0.4604\n", + "2 epoch 255 average loss: 0.4604\n", + "----------\n", + "2: epoch 256/500\n", + "1/0, train_loss: 0.4609\n", + "2 epoch 256 average loss: 0.4609\n", + "current epoch: 256 current mean dice: 0.4200\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 257/500\n", + "1/0, train_loss: 0.4540\n", + "2 epoch 257 average loss: 0.4540\n", + "----------\n", + "2: epoch 258/500\n", + "1/0, train_loss: 0.4594\n", + "2 epoch 258 average loss: 0.4594\n", + "current epoch: 258 current mean dice: 0.3549\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 259/500\n", + "1/0, train_loss: 0.4555\n", + "2 epoch 259 average loss: 0.4555\n", + "----------\n", + "2: epoch 260/500\n", + "1/0, train_loss: 0.4552\n", + "2 epoch 260 average loss: 0.4552\n", + "current epoch: 260 current mean dice: 0.4379\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 261/500\n", + "1/0, train_loss: 0.4556\n", + "2 epoch 261 average loss: 0.4556\n", + "----------\n", + "2: epoch 262/500\n", + "1/0, train_loss: 0.4557\n", + "2 epoch 262 average loss: 0.4557\n", + "current epoch: 262 current mean dice: 0.4889\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 263/500\n", + "1/0, train_loss: 0.4528\n", + "2 epoch 263 average loss: 0.4528\n", + "----------\n", + "2: epoch 264/500\n", + "1/0, train_loss: 0.4486\n", + "2 epoch 264 average loss: 0.4486\n", + "current epoch: 264 current mean dice: 0.3735\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 265/500\n", + "1/0, train_loss: 0.4528\n", + "2 epoch 265 average loss: 0.4528\n", + "----------\n", + "2: epoch 266/500\n", + "1/0, train_loss: 0.4527\n", + "2 epoch 266 average loss: 0.4527\n", + "current epoch: 266 current mean dice: 0.4356\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 267/500\n", + "1/0, train_loss: 0.4512\n", + "2 epoch 267 average loss: 0.4512\n", + "----------\n", + "2: epoch 268/500\n", + "1/0, train_loss: 0.4471\n", + "2 epoch 268 average loss: 0.4471\n", + "current epoch: 268 current mean dice: 0.4481\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 269/500\n", + "1/0, train_loss: 0.4517\n", + "2 epoch 269 average loss: 0.4517\n", + "----------\n", + "2: epoch 270/500\n", + "1/0, train_loss: 0.4540\n", + "2 epoch 270 average loss: 0.4540\n", + "current epoch: 270 current mean dice: 0.4432\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 271/500\n", + "1/0, train_loss: 0.4543\n", + "2 epoch 271 average loss: 0.4543\n", + "----------\n", + "2: epoch 272/500\n", + "1/0, train_loss: 0.4515\n", + "2 epoch 272 average loss: 0.4515\n", + "current epoch: 272 current mean dice: 0.4491\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 273/500\n", + "1/0, train_loss: 0.4527\n", + "2 epoch 273 average loss: 0.4527\n", + "----------\n", + "2: epoch 274/500\n", + "1/0, train_loss: 0.4537\n", + "2 epoch 274 average loss: 0.4537\n", + "current epoch: 274 current mean dice: 0.3021\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 275/500\n", + "1/0, train_loss: 0.4505\n", + "2 epoch 275 average loss: 0.4505\n", + "----------\n", + "2: epoch 276/500\n", + "1/0, train_loss: 0.4526\n", + "2 epoch 276 average loss: 0.4526\n", + "current epoch: 276 current mean dice: 0.3937\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 277/500\n", + "1/0, train_loss: 0.4465\n", + "2 epoch 277 average loss: 0.4465\n", + "----------\n", + "2: epoch 278/500\n", + "1/0, train_loss: 0.4532\n", + "2 epoch 278 average loss: 0.4532\n", + "current epoch: 278 current mean dice: 0.4159\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 279/500\n", + "1/0, train_loss: 0.4480\n", + "2 epoch 279 average loss: 0.4480\n", + "----------\n", + "2: epoch 280/500\n", + "1/0, train_loss: 0.4469\n", + "2 epoch 280 average loss: 0.4469\n", + "current epoch: 280 current mean dice: 0.4327\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 281/500\n", + "1/0, train_loss: 0.4504\n", + "2 epoch 281 average loss: 0.4504\n", + "----------\n", + "2: epoch 282/500\n", + "1/0, train_loss: 0.4467\n", + "2 epoch 282 average loss: 0.4467\n", + "current epoch: 282 current mean dice: 0.3812\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 283/500\n", + "1/0, train_loss: 0.4506\n", + "2 epoch 283 average loss: 0.4506\n", + "----------\n", + "2: epoch 284/500\n", + "1/0, train_loss: 0.4533\n", + "2 epoch 284 average loss: 0.4533\n", + "current epoch: 284 current mean dice: 0.3843\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 285/500\n", + "1/0, train_loss: 0.4491\n", + "2 epoch 285 average loss: 0.4491\n", + "----------\n", + "2: epoch 286/500\n", + "1/0, train_loss: 0.4457\n", + "2 epoch 286 average loss: 0.4457\n", + "current epoch: 286 current mean dice: 0.4653\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 287/500\n", + "1/0, train_loss: 0.4555\n", + "2 epoch 287 average loss: 0.4555\n", + "----------\n", + "2: epoch 288/500\n", + "1/0, train_loss: 0.4469\n", + "2 epoch 288 average loss: 0.4469\n", + "current epoch: 288 current mean dice: 0.4292\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 289/500\n", + "1/0, train_loss: 0.4485\n", + "2 epoch 289 average loss: 0.4485\n", + "----------\n", + "2: epoch 290/500\n", + "1/0, train_loss: 0.4439\n", + "2 epoch 290 average loss: 0.4439\n", + "current epoch: 290 current mean dice: 0.3395\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 291/500\n", + "1/0, train_loss: 0.4504\n", + "2 epoch 291 average loss: 0.4504\n", + "----------\n", + "2: epoch 292/500\n", + "1/0, train_loss: 0.4421\n", + "2 epoch 292 average loss: 0.4421\n", + "current epoch: 292 current mean dice: 0.3528\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 293/500\n", + "1/0, train_loss: 0.4473\n", + "2 epoch 293 average loss: 0.4473\n", + "----------\n", + "2: epoch 294/500\n", + "1/0, train_loss: 0.4514\n", + "2 epoch 294 average loss: 0.4514\n", + "current epoch: 294 current mean dice: 0.3704\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 295/500\n", + "1/0, train_loss: 0.4444\n", + "2 epoch 295 average loss: 0.4444\n", + "----------\n", + "2: epoch 296/500\n", + "1/0, train_loss: 0.4433\n", + "2 epoch 296 average loss: 0.4433\n", + "current epoch: 296 current mean dice: 0.3891\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 297/500\n", + "1/0, train_loss: 0.4463\n", + "2 epoch 297 average loss: 0.4463\n", + "----------\n", + "2: epoch 298/500\n", + "1/0, train_loss: 0.4476\n", + "2 epoch 298 average loss: 0.4476\n", + "current epoch: 298 current mean dice: 0.3474\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 299/500\n", + "1/0, train_loss: 0.4452\n", + "2 epoch 299 average loss: 0.4452\n", + "----------\n", + "2: epoch 300/500\n", + "1/0, train_loss: 0.4490\n", + "2 epoch 300 average loss: 0.4490\n", + "current epoch: 300 current mean dice: 0.4109\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 301/500\n", + "1/0, train_loss: 0.4433\n", + "2 epoch 301 average loss: 0.4433\n", + "----------\n", + "2: epoch 302/500\n", + "1/0, train_loss: 0.4417\n", + "2 epoch 302 average loss: 0.4417\n", + "current epoch: 302 current mean dice: 0.3526\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 303/500\n", + "1/0, train_loss: 0.4439\n", + "2 epoch 303 average loss: 0.4439\n", + "----------\n", + "2: epoch 304/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.4455\n", + "2 epoch 304 average loss: 0.4455\n", + "current epoch: 304 current mean dice: 0.4334\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 305/500\n", + "1/0, train_loss: 0.4443\n", + "2 epoch 305 average loss: 0.4443\n", + "----------\n", + "2: epoch 306/500\n", + "1/0, train_loss: 0.4426\n", + "2 epoch 306 average loss: 0.4426\n", + "current epoch: 306 current mean dice: 0.4413\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 307/500\n", + "1/0, train_loss: 0.4422\n", + "2 epoch 307 average loss: 0.4422\n", + "----------\n", + "2: epoch 308/500\n", + "1/0, train_loss: 0.4463\n", + "2 epoch 308 average loss: 0.4463\n", + "current epoch: 308 current mean dice: 0.4524\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 309/500\n", + "1/0, train_loss: 0.4409\n", + "2 epoch 309 average loss: 0.4409\n", + "----------\n", + "2: epoch 310/500\n", + "1/0, train_loss: 0.4445\n", + "2 epoch 310 average loss: 0.4445\n", + "current epoch: 310 current mean dice: 0.3961\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 311/500\n", + "1/0, train_loss: 0.4549\n", + "2 epoch 311 average loss: 0.4549\n", + "----------\n", + "2: epoch 312/500\n", + "1/0, train_loss: 0.4419\n", + "2 epoch 312 average loss: 0.4419\n", + "current epoch: 312 current mean dice: 0.4145\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 313/500\n", + "1/0, train_loss: 0.4398\n", + "2 epoch 313 average loss: 0.4398\n", + "----------\n", + "2: epoch 314/500\n", + "1/0, train_loss: 0.4441\n", + "2 epoch 314 average loss: 0.4441\n", + "current epoch: 314 current mean dice: 0.4503\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 315/500\n", + "1/0, train_loss: 0.4395\n", + "2 epoch 315 average loss: 0.4395\n", + "----------\n", + "2: epoch 316/500\n", + "1/0, train_loss: 0.4432\n", + "2 epoch 316 average loss: 0.4432\n", + "current epoch: 316 current mean dice: 0.3717\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 317/500\n", + "1/0, train_loss: 0.4362\n", + "2 epoch 317 average loss: 0.4362\n", + "----------\n", + "2: epoch 318/500\n", + "1/0, train_loss: 0.4351\n", + "2 epoch 318 average loss: 0.4351\n", + "current epoch: 318 current mean dice: 0.4135\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 319/500\n", + "1/0, train_loss: 0.4368\n", + "2 epoch 319 average loss: 0.4368\n", + "----------\n", + "2: epoch 320/500\n", + "1/0, train_loss: 0.4367\n", + "2 epoch 320 average loss: 0.4367\n", + "current epoch: 320 current mean dice: 0.3709\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 321/500\n", + "1/0, train_loss: 0.4362\n", + "2 epoch 321 average loss: 0.4362\n", + "----------\n", + "2: epoch 322/500\n", + "1/0, train_loss: 0.4390\n", + "2 epoch 322 average loss: 0.4390\n", + "current epoch: 322 current mean dice: 0.3699\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 323/500\n", + "1/0, train_loss: 0.4313\n", + "2 epoch 323 average loss: 0.4313\n", + "----------\n", + "2: epoch 324/500\n", + "1/0, train_loss: 0.4368\n", + "2 epoch 324 average loss: 0.4368\n", + "current epoch: 324 current mean dice: 0.4044\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 325/500\n", + "1/0, train_loss: 0.4313\n", + "2 epoch 325 average loss: 0.4313\n", + "----------\n", + "2: epoch 326/500\n", + "1/0, train_loss: 0.4403\n", + "2 epoch 326 average loss: 0.4403\n", + "current epoch: 326 current mean dice: 0.3331\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 327/500\n", + "1/0, train_loss: 0.4349\n", + "2 epoch 327 average loss: 0.4349\n", + "----------\n", + "2: epoch 328/500\n", + "1/0, train_loss: 0.4315\n", + "2 epoch 328 average loss: 0.4315\n", + "current epoch: 328 current mean dice: 0.3776\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 329/500\n", + "1/0, train_loss: 0.4337\n", + "2 epoch 329 average loss: 0.4337\n", + "----------\n", + "2: epoch 330/500\n", + "1/0, train_loss: 0.4385\n", + "2 epoch 330 average loss: 0.4385\n", + "current epoch: 330 current mean dice: 0.3024\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 331/500\n", + "1/0, train_loss: 0.4320\n", + "2 epoch 331 average loss: 0.4320\n", + "----------\n", + "2: epoch 332/500\n", + "1/0, train_loss: 0.4327\n", + "2 epoch 332 average loss: 0.4327\n", + "current epoch: 332 current mean dice: 0.4517\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 333/500\n", + "1/0, train_loss: 0.4369\n", + "2 epoch 333 average loss: 0.4369\n", + "----------\n", + "2: epoch 334/500\n", + "1/0, train_loss: 0.4372\n", + "2 epoch 334 average loss: 0.4372\n", + "current epoch: 334 current mean dice: 0.3686\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 335/500\n", + "1/0, train_loss: 0.4400\n", + "2 epoch 335 average loss: 0.4400\n", + "----------\n", + "2: epoch 336/500\n", + "1/0, train_loss: 0.4327\n", + "2 epoch 336 average loss: 0.4327\n", + "current epoch: 336 current mean dice: 0.4222\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 337/500\n", + "1/0, train_loss: 0.4379\n", + "2 epoch 337 average loss: 0.4379\n", + "----------\n", + "2: epoch 338/500\n", + "1/0, train_loss: 0.4316\n", + "2 epoch 338 average loss: 0.4316\n", + "current epoch: 338 current mean dice: 0.3742\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 339/500\n", + "1/0, train_loss: 0.4330\n", + "2 epoch 339 average loss: 0.4330\n", + "----------\n", + "2: epoch 340/500\n", + "1/0, train_loss: 0.4340\n", + "2 epoch 340 average loss: 0.4340\n", + "current epoch: 340 current mean dice: 0.3533\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 341/500\n", + "1/0, train_loss: 0.4339\n", + "2 epoch 341 average loss: 0.4339\n", + "----------\n", + "2: epoch 342/500\n", + "1/0, train_loss: 0.4330\n", + "2 epoch 342 average loss: 0.4330\n", + "current epoch: 342 current mean dice: 0.4537\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 343/500\n", + "1/0, train_loss: 0.4399\n", + "2 epoch 343 average loss: 0.4399\n", + "----------\n", + "2: epoch 344/500\n", + "1/0, train_loss: 0.4371\n", + "2 epoch 344 average loss: 0.4371\n", + "current epoch: 344 current mean dice: 0.3704\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 345/500\n", + "1/0, train_loss: 0.4423\n", + "2 epoch 345 average loss: 0.4423\n", + "----------\n", + "2: epoch 346/500\n", + "1/0, train_loss: 0.4340\n", + "2 epoch 346 average loss: 0.4340\n", + "current epoch: 346 current mean dice: 0.4043\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 347/500\n", + "1/0, train_loss: 0.4368\n", + "2 epoch 347 average loss: 0.4368\n", + "----------\n", + "2: epoch 348/500\n", + "1/0, train_loss: 0.4393\n", + "2 epoch 348 average loss: 0.4393\n", + "current epoch: 348 current mean dice: 0.3577\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 349/500\n", + "1/0, train_loss: 0.4323\n", + "2 epoch 349 average loss: 0.4323\n", + "----------\n", + "2: epoch 350/500\n", + "1/0, train_loss: 0.4364\n", + "2 epoch 350 average loss: 0.4364\n", + "current epoch: 350 current mean dice: 0.2841\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 351/500\n", + "1/0, train_loss: 0.4416\n", + "2 epoch 351 average loss: 0.4416\n", + "----------\n", + "2: epoch 352/500\n", + "1/0, train_loss: 0.4282\n", + "2 epoch 352 average loss: 0.4282\n", + "current epoch: 352 current mean dice: 0.4348\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 353/500\n", + "1/0, train_loss: 0.4290\n", + "2 epoch 353 average loss: 0.4290\n", + "----------\n", + "2: epoch 354/500\n", + "1/0, train_loss: 0.4355\n", + "2 epoch 354 average loss: 0.4355\n", + "current epoch: 354 current mean dice: 0.4133\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 355/500\n", + "1/0, train_loss: 0.4277\n", + "2 epoch 355 average loss: 0.4277\n", + "----------\n", + "2: epoch 356/500\n", + "1/0, train_loss: 0.4347\n", + "2 epoch 356 average loss: 0.4347\n", + "current epoch: 356 current mean dice: 0.3447\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 357/500\n", + "1/0, train_loss: 0.4316\n", + "2 epoch 357 average loss: 0.4316\n", + "----------\n", + "2: epoch 358/500\n", + "1/0, train_loss: 0.4296\n", + "2 epoch 358 average loss: 0.4296\n", + "current epoch: 358 current mean dice: 0.4329\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 359/500\n", + "1/0, train_loss: 0.4318\n", + "2 epoch 359 average loss: 0.4318\n", + "----------\n", + "2: epoch 360/500\n", + "1/0, train_loss: 0.4274\n", + "2 epoch 360 average loss: 0.4274\n", + "current epoch: 360 current mean dice: 0.3586\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 361/500\n", + "1/0, train_loss: 0.4264\n", + "2 epoch 361 average loss: 0.4264\n", + "----------\n", + "2: epoch 362/500\n", + "1/0, train_loss: 0.4409\n", + "2 epoch 362 average loss: 0.4409\n", + "current epoch: 362 current mean dice: 0.3798\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 363/500\n", + "1/0, train_loss: 0.4343\n", + "2 epoch 363 average loss: 0.4343\n", + "----------\n", + "2: epoch 364/500\n", + "1/0, train_loss: 0.4267\n", + "2 epoch 364 average loss: 0.4267\n", + "current epoch: 364 current mean dice: 0.3849\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 365/500\n", + "1/0, train_loss: 0.4302\n", + "2 epoch 365 average loss: 0.4302\n", + "----------\n", + "2: epoch 366/500\n", + "1/0, train_loss: 0.4296\n", + "2 epoch 366 average loss: 0.4296\n", + "current epoch: 366 current mean dice: 0.3891\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 367/500\n", + "1/0, train_loss: 0.4339\n", + "2 epoch 367 average loss: 0.4339\n", + "----------\n", + "2: epoch 368/500\n", + "1/0, train_loss: 0.4327\n", + "2 epoch 368 average loss: 0.4327\n", + "current epoch: 368 current mean dice: 0.3216\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 369/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.4322\n", + "2 epoch 369 average loss: 0.4322\n", + "----------\n", + "2: epoch 370/500\n", + "1/0, train_loss: 0.4331\n", + "2 epoch 370 average loss: 0.4331\n", + "current epoch: 370 current mean dice: 0.3453\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 371/500\n", + "1/0, train_loss: 0.4299\n", + "2 epoch 371 average loss: 0.4299\n", + "----------\n", + "2: epoch 372/500\n", + "1/0, train_loss: 0.4306\n", + "2 epoch 372 average loss: 0.4306\n", + "current epoch: 372 current mean dice: 0.4439\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 373/500\n", + "1/0, train_loss: 0.4324\n", + "2 epoch 373 average loss: 0.4324\n", + "----------\n", + "2: epoch 374/500\n", + "1/0, train_loss: 0.4278\n", + "2 epoch 374 average loss: 0.4278\n", + "current epoch: 374 current mean dice: 0.3263\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 375/500\n", + "1/0, train_loss: 0.4293\n", + "2 epoch 375 average loss: 0.4293\n", + "----------\n", + "2: epoch 376/500\n", + "1/0, train_loss: 0.4281\n", + "2 epoch 376 average loss: 0.4281\n", + "current epoch: 376 current mean dice: 0.3569\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 377/500\n", + "1/0, train_loss: 0.4333\n", + "2 epoch 377 average loss: 0.4333\n", + "----------\n", + "2: epoch 378/500\n", + "1/0, train_loss: 0.4263\n", + "2 epoch 378 average loss: 0.4263\n", + "current epoch: 378 current mean dice: 0.3557\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 379/500\n", + "1/0, train_loss: 0.4318\n", + "2 epoch 379 average loss: 0.4318\n", + "----------\n", + "2: epoch 380/500\n", + "1/0, train_loss: 0.4306\n", + "2 epoch 380 average loss: 0.4306\n", + "current epoch: 380 current mean dice: 0.4110\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 381/500\n", + "1/0, train_loss: 0.4261\n", + "2 epoch 381 average loss: 0.4261\n", + "----------\n", + "2: epoch 382/500\n", + "1/0, train_loss: 0.4265\n", + "2 epoch 382 average loss: 0.4265\n", + "current epoch: 382 current mean dice: 0.2939\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 383/500\n", + "1/0, train_loss: 0.4264\n", + "2 epoch 383 average loss: 0.4264\n", + "----------\n", + "2: epoch 384/500\n", + "1/0, train_loss: 0.4235\n", + "2 epoch 384 average loss: 0.4235\n", + "current epoch: 384 current mean dice: 0.4573\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 385/500\n", + "1/0, train_loss: 0.4309\n", + "2 epoch 385 average loss: 0.4309\n", + "----------\n", + "2: epoch 386/500\n", + "1/0, train_loss: 0.4383\n", + "2 epoch 386 average loss: 0.4383\n", + "current epoch: 386 current mean dice: 0.3332\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 387/500\n", + "1/0, train_loss: 0.4234\n", + "2 epoch 387 average loss: 0.4234\n", + "----------\n", + "2: epoch 388/500\n", + "1/0, train_loss: 0.4335\n", + "2 epoch 388 average loss: 0.4335\n", + "current epoch: 388 current mean dice: 0.3650\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 389/500\n", + "1/0, train_loss: 0.4273\n", + "2 epoch 389 average loss: 0.4273\n", + "----------\n", + "2: epoch 390/500\n", + "1/0, train_loss: 0.4312\n", + "2 epoch 390 average loss: 0.4312\n", + "current epoch: 390 current mean dice: 0.4873\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 391/500\n", + "1/0, train_loss: 0.4290\n", + "2 epoch 391 average loss: 0.4290\n", + "----------\n", + "2: epoch 392/500\n", + "1/0, train_loss: 0.4299\n", + "2 epoch 392 average loss: 0.4299\n", + "current epoch: 392 current mean dice: 0.4060\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 393/500\n", + "1/0, train_loss: 0.4273\n", + "2 epoch 393 average loss: 0.4273\n", + "----------\n", + "2: epoch 394/500\n", + "1/0, train_loss: 0.4294\n", + "2 epoch 394 average loss: 0.4294\n", + "current epoch: 394 current mean dice: 0.4374\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 395/500\n", + "1/0, train_loss: 0.4212\n", + "2 epoch 395 average loss: 0.4212\n", + "----------\n", + "2: epoch 396/500\n", + "1/0, train_loss: 0.4294\n", + "2 epoch 396 average loss: 0.4294\n", + "current epoch: 396 current mean dice: 0.3727\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 397/500\n", + "1/0, train_loss: 0.4213\n", + "2 epoch 397 average loss: 0.4213\n", + "----------\n", + "2: epoch 398/500\n", + "1/0, train_loss: 0.4256\n", + "2 epoch 398 average loss: 0.4256\n", + "current epoch: 398 current mean dice: 0.4499\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 399/500\n", + "1/0, train_loss: 0.4215\n", + "2 epoch 399 average loss: 0.4215\n", + "----------\n", + "2: epoch 400/500\n", + "1/0, train_loss: 0.4276\n", + "2 epoch 400 average loss: 0.4276\n", + "current epoch: 400 current mean dice: 0.4668\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 401/500\n", + "1/0, train_loss: 0.4223\n", + "2 epoch 401 average loss: 0.4223\n", + "----------\n", + "2: epoch 402/500\n", + "1/0, train_loss: 0.4262\n", + "2 epoch 402 average loss: 0.4262\n", + "current epoch: 402 current mean dice: 0.3912\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 403/500\n", + "1/0, train_loss: 0.4331\n", + "2 epoch 403 average loss: 0.4331\n", + "----------\n", + "2: epoch 404/500\n", + "1/0, train_loss: 0.4209\n", + "2 epoch 404 average loss: 0.4209\n", + "current epoch: 404 current mean dice: 0.4223\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 405/500\n", + "1/0, train_loss: 0.4260\n", + "2 epoch 405 average loss: 0.4260\n", + "----------\n", + "2: epoch 406/500\n", + "1/0, train_loss: 0.4250\n", + "2 epoch 406 average loss: 0.4250\n", + "current epoch: 406 current mean dice: 0.4509\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 407/500\n", + "1/0, train_loss: 0.4220\n", + "2 epoch 407 average loss: 0.4220\n", + "----------\n", + "2: epoch 408/500\n", + "1/0, train_loss: 0.4235\n", + "2 epoch 408 average loss: 0.4235\n", + "current epoch: 408 current mean dice: 0.3684\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 409/500\n", + "1/0, train_loss: 0.4256\n", + "2 epoch 409 average loss: 0.4256\n", + "----------\n", + "2: epoch 410/500\n", + "1/0, train_loss: 0.4203\n", + "2 epoch 410 average loss: 0.4203\n", + "current epoch: 410 current mean dice: 0.3192\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 411/500\n", + "1/0, train_loss: 0.4256\n", + "2 epoch 411 average loss: 0.4256\n", + "----------\n", + "2: epoch 412/500\n", + "1/0, train_loss: 0.4220\n", + "2 epoch 412 average loss: 0.4220\n", + "current epoch: 412 current mean dice: 0.3784\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 413/500\n", + "1/0, train_loss: 0.4230\n", + "2 epoch 413 average loss: 0.4230\n", + "----------\n", + "2: epoch 414/500\n", + "1/0, train_loss: 0.4254\n", + "2 epoch 414 average loss: 0.4254\n", + "current epoch: 414 current mean dice: 0.3252\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 415/500\n", + "1/0, train_loss: 0.4205\n", + "2 epoch 415 average loss: 0.4205\n", + "----------\n", + "2: epoch 416/500\n", + "1/0, train_loss: 0.4175\n", + "2 epoch 416 average loss: 0.4175\n", + "current epoch: 416 current mean dice: 0.3071\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 417/500\n", + "1/0, train_loss: 0.4205\n", + "2 epoch 417 average loss: 0.4205\n", + "----------\n", + "2: epoch 418/500\n", + "1/0, train_loss: 0.4189\n", + "2 epoch 418 average loss: 0.4189\n", + "current epoch: 418 current mean dice: 0.3577\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 419/500\n", + "1/0, train_loss: 0.4195\n", + "2 epoch 419 average loss: 0.4195\n", + "----------\n", + "2: epoch 420/500\n", + "1/0, train_loss: 0.4172\n", + "2 epoch 420 average loss: 0.4172\n", + "current epoch: 420 current mean dice: 0.3933\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 421/500\n", + "1/0, train_loss: 0.4161\n", + "2 epoch 421 average loss: 0.4161\n", + "----------\n", + "2: epoch 422/500\n", + "1/0, train_loss: 0.4220\n", + "2 epoch 422 average loss: 0.4220\n", + "current epoch: 422 current mean dice: 0.3396\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 423/500\n", + "1/0, train_loss: 0.4215\n", + "2 epoch 423 average loss: 0.4215\n", + "----------\n", + "2: epoch 424/500\n", + "1/0, train_loss: 0.4238\n", + "2 epoch 424 average loss: 0.4238\n", + "current epoch: 424 current mean dice: 0.3617\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 425/500\n", + "1/0, train_loss: 0.4212\n", + "2 epoch 425 average loss: 0.4212\n", + "----------\n", + "2: epoch 426/500\n", + "1/0, train_loss: 0.4212\n", + "2 epoch 426 average loss: 0.4212\n", + "current epoch: 426 current mean dice: 0.3555\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 427/500\n", + "1/0, train_loss: 0.4213\n", + "2 epoch 427 average loss: 0.4213\n", + "----------\n", + "2: epoch 428/500\n", + "1/0, train_loss: 0.4194\n", + "2 epoch 428 average loss: 0.4194\n", + "current epoch: 428 current mean dice: 0.3268\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 429/500\n", + "1/0, train_loss: 0.4162\n", + "2 epoch 429 average loss: 0.4162\n", + "----------\n", + "2: epoch 430/500\n", + "1/0, train_loss: 0.4166\n", + "2 epoch 430 average loss: 0.4166\n", + "current epoch: 430 current mean dice: 0.3276\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 431/500\n", + "1/0, train_loss: 0.4173\n", + "2 epoch 431 average loss: 0.4173\n", + "----------\n", + "2: epoch 432/500\n", + "1/0, train_loss: 0.4209\n", + "2 epoch 432 average loss: 0.4209\n", + "current epoch: 432 current mean dice: 0.3822\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 433/500\n", + "1/0, train_loss: 0.4186\n", + "2 epoch 433 average loss: 0.4186\n", + "----------\n", + "2: epoch 434/500\n", + "1/0, train_loss: 0.4222\n", + "2 epoch 434 average loss: 0.4222\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "current epoch: 434 current mean dice: 0.4306\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 435/500\n", + "1/0, train_loss: 0.4207\n", + "2 epoch 435 average loss: 0.4207\n", + "----------\n", + "2: epoch 436/500\n", + "1/0, train_loss: 0.4247\n", + "2 epoch 436 average loss: 0.4247\n", + "current epoch: 436 current mean dice: 0.3566\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 437/500\n", + "1/0, train_loss: 0.4216\n", + "2 epoch 437 average loss: 0.4216\n", + "----------\n", + "2: epoch 438/500\n", + "1/0, train_loss: 0.4204\n", + "2 epoch 438 average loss: 0.4204\n", + "current epoch: 438 current mean dice: 0.3698\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 439/500\n", + "1/0, train_loss: 0.4146\n", + "2 epoch 439 average loss: 0.4146\n", + "----------\n", + "2: epoch 440/500\n", + "1/0, train_loss: 0.4176\n", + "2 epoch 440 average loss: 0.4176\n", + "current epoch: 440 current mean dice: 0.3579\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 441/500\n", + "1/0, train_loss: 0.4134\n", + "2 epoch 441 average loss: 0.4134\n", + "----------\n", + "2: epoch 442/500\n", + "1/0, train_loss: 0.4156\n", + "2 epoch 442 average loss: 0.4156\n", + "current epoch: 442 current mean dice: 0.3462\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 443/500\n", + "1/0, train_loss: 0.4202\n", + "2 epoch 443 average loss: 0.4202\n", + "----------\n", + "2: epoch 444/500\n", + "1/0, train_loss: 0.4150\n", + "2 epoch 444 average loss: 0.4150\n", + "current epoch: 444 current mean dice: 0.3354\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 445/500\n", + "1/0, train_loss: 0.4187\n", + "2 epoch 445 average loss: 0.4187\n", + "----------\n", + "2: epoch 446/500\n", + "1/0, train_loss: 0.4175\n", + "2 epoch 446 average loss: 0.4175\n", + "current epoch: 446 current mean dice: 0.4302\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 447/500\n", + "1/0, train_loss: 0.4130\n", + "2 epoch 447 average loss: 0.4130\n", + "----------\n", + "2: epoch 448/500\n", + "1/0, train_loss: 0.4173\n", + "2 epoch 448 average loss: 0.4173\n", + "current epoch: 448 current mean dice: 0.4036\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 449/500\n", + "1/0, train_loss: 0.4120\n", + "2 epoch 449 average loss: 0.4120\n", + "----------\n", + "2: epoch 450/500\n", + "1/0, train_loss: 0.4186\n", + "2 epoch 450 average loss: 0.4186\n", + "current epoch: 450 current mean dice: 0.3442\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 451/500\n", + "1/0, train_loss: 0.4190\n", + "2 epoch 451 average loss: 0.4190\n", + "----------\n", + "2: epoch 452/500\n", + "1/0, train_loss: 0.4166\n", + "2 epoch 452 average loss: 0.4166\n", + "current epoch: 452 current mean dice: 0.4056\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 453/500\n", + "1/0, train_loss: 0.4145\n", + "2 epoch 453 average loss: 0.4145\n", + "----------\n", + "2: epoch 454/500\n", + "1/0, train_loss: 0.4106\n", + "2 epoch 454 average loss: 0.4106\n", + "current epoch: 454 current mean dice: 0.4005\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 455/500\n", + "1/0, train_loss: 0.4116\n", + "2 epoch 455 average loss: 0.4116\n", + "----------\n", + "2: epoch 456/500\n", + "1/0, train_loss: 0.4124\n", + "2 epoch 456 average loss: 0.4124\n", + "current epoch: 456 current mean dice: 0.3716\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 457/500\n", + "1/0, train_loss: 0.4153\n", + "2 epoch 457 average loss: 0.4153\n", + "----------\n", + "2: epoch 458/500\n", + "1/0, train_loss: 0.4165\n", + "2 epoch 458 average loss: 0.4165\n", + "current epoch: 458 current mean dice: 0.3765\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 459/500\n", + "1/0, train_loss: 0.4157\n", + "2 epoch 459 average loss: 0.4157\n", + "----------\n", + "2: epoch 460/500\n", + "1/0, train_loss: 0.4131\n", + "2 epoch 460 average loss: 0.4131\n", + "current epoch: 460 current mean dice: 0.4198\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 461/500\n", + "1/0, train_loss: 0.4134\n", + "2 epoch 461 average loss: 0.4134\n", + "----------\n", + "2: epoch 462/500\n", + "1/0, train_loss: 0.4166\n", + "2 epoch 462 average loss: 0.4166\n", + "current epoch: 462 current mean dice: 0.3436\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 463/500\n", + "1/0, train_loss: 0.4128\n", + "2 epoch 463 average loss: 0.4128\n", + "----------\n", + "2: epoch 464/500\n", + "1/0, train_loss: 0.4220\n", + "2 epoch 464 average loss: 0.4220\n", + "current epoch: 464 current mean dice: 0.4422\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 465/500\n", + "1/0, train_loss: 0.4114\n", + "2 epoch 465 average loss: 0.4114\n", + "----------\n", + "2: epoch 466/500\n", + "1/0, train_loss: 0.4135\n", + "2 epoch 466 average loss: 0.4135\n", + "current epoch: 466 current mean dice: 0.3808\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 467/500\n", + "1/0, train_loss: 0.4141\n", + "2 epoch 467 average loss: 0.4141\n", + "----------\n", + "2: epoch 468/500\n", + "1/0, train_loss: 0.4128\n", + "2 epoch 468 average loss: 0.4128\n", + "current epoch: 468 current mean dice: 0.3406\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 469/500\n", + "1/0, train_loss: 0.4208\n", + "2 epoch 469 average loss: 0.4208\n", + "----------\n", + "2: epoch 470/500\n", + "1/0, train_loss: 0.4137\n", + "2 epoch 470 average loss: 0.4137\n", + "current epoch: 470 current mean dice: 0.4429\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 471/500\n", + "1/0, train_loss: 0.4168\n", + "2 epoch 471 average loss: 0.4168\n", + "----------\n", + "2: epoch 472/500\n", + "1/0, train_loss: 0.4092\n", + "2 epoch 472 average loss: 0.4092\n", + "current epoch: 472 current mean dice: 0.3127\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 473/500\n", + "1/0, train_loss: 0.4073\n", + "2 epoch 473 average loss: 0.4073\n", + "----------\n", + "2: epoch 474/500\n", + "1/0, train_loss: 0.4080\n", + "2 epoch 474 average loss: 0.4080\n", + "current epoch: 474 current mean dice: 0.3845\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 475/500\n", + "1/0, train_loss: 0.4124\n", + "2 epoch 475 average loss: 0.4124\n", + "----------\n", + "2: epoch 476/500\n", + "1/0, train_loss: 0.4099\n", + "2 epoch 476 average loss: 0.4099\n", + "current epoch: 476 current mean dice: 0.4583\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 477/500\n", + "1/0, train_loss: 0.4109\n", + "2 epoch 477 average loss: 0.4109\n", + "----------\n", + "2: epoch 478/500\n", + "1/0, train_loss: 0.4142\n", + "2 epoch 478 average loss: 0.4142\n", + "current epoch: 478 current mean dice: 0.3374\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 479/500\n", + "1/0, train_loss: 0.4125\n", + "2 epoch 479 average loss: 0.4125\n", + "----------\n", + "2: epoch 480/500\n", + "1/0, train_loss: 0.4109\n", + "2 epoch 480 average loss: 0.4109\n", + "current epoch: 480 current mean dice: 0.3948\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 481/500\n", + "1/0, train_loss: 0.4132\n", + "2 epoch 481 average loss: 0.4132\n", + "----------\n", + "2: epoch 482/500\n", + "1/0, train_loss: 0.4145\n", + "2 epoch 482 average loss: 0.4145\n", + "current epoch: 482 current mean dice: 0.3901\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 483/500\n", + "1/0, train_loss: 0.4107\n", + "2 epoch 483 average loss: 0.4107\n", + "----------\n", + "2: epoch 484/500\n", + "1/0, train_loss: 0.4157\n", + "2 epoch 484 average loss: 0.4157\n", + "current epoch: 484 current mean dice: 0.3917\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 485/500\n", + "1/0, train_loss: 0.4093\n", + "2 epoch 485 average loss: 0.4093\n", + "----------\n", + "2: epoch 486/500\n", + "1/0, train_loss: 0.4068\n", + "2 epoch 486 average loss: 0.4068\n", + "current epoch: 486 current mean dice: 0.3808\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 487/500\n", + "1/0, train_loss: 0.4139\n", + "2 epoch 487 average loss: 0.4139\n", + "----------\n", + "2: epoch 488/500\n", + "1/0, train_loss: 0.4073\n", + "2 epoch 488 average loss: 0.4073\n", + "current epoch: 488 current mean dice: 0.3878\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 489/500\n", + "1/0, train_loss: 0.4088\n", + "2 epoch 489 average loss: 0.4088\n", + "----------\n", + "2: epoch 490/500\n", + "1/0, train_loss: 0.4133\n", + "2 epoch 490 average loss: 0.4133\n", + "current epoch: 490 current mean dice: 0.3700\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 491/500\n", + "1/0, train_loss: 0.4074\n", + "2 epoch 491 average loss: 0.4074\n", + "----------\n", + "2: epoch 492/500\n", + "1/0, train_loss: 0.4114\n", + "2 epoch 492 average loss: 0.4114\n", + "current epoch: 492 current mean dice: 0.4150\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 493/500\n", + "1/0, train_loss: 0.4091\n", + "2 epoch 493 average loss: 0.4091\n", + "----------\n", + "2: epoch 494/500\n", + "1/0, train_loss: 0.4135\n", + "2 epoch 494 average loss: 0.4135\n", + "current epoch: 494 current mean dice: 0.3310\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 495/500\n", + "1/0, train_loss: 0.4057\n", + "2 epoch 495 average loss: 0.4057\n", + "----------\n", + "2: epoch 496/500\n", + "1/0, train_loss: 0.4112\n", + "2 epoch 496 average loss: 0.4112\n", + "current epoch: 496 current mean dice: 0.3541\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 497/500\n", + "1/0, train_loss: 0.4117\n", + "2 epoch 497 average loss: 0.4117\n", + "----------\n", + "2: epoch 498/500\n", + "1/0, train_loss: 0.4087\n", + "2 epoch 498 average loss: 0.4087\n", + "current epoch: 498 current mean dice: 0.3679\n", + "best mean dice: 0.4992 at epoch: 200\n", + "----------\n", + "2: epoch 499/500\n", + "1/0, train_loss: 0.4061\n", + "2 epoch 499 average loss: 0.4061\n", + "----------\n", + "2: epoch 500/500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1/0, train_loss: 0.4078\n", + "2 epoch 500 average loss: 0.4078\n", + "current epoch: 500 current mean dice: 0.3295\n", + "best mean dice: 0.4992 at epoch: 200\n" + ] + } + ], "source": [ - "for i in range(device_num,num_folds,num_devices):\n", - " vfold_train(i, train_loader[i], val_loader[i])" + "for i in range(0,num_folds,num_devices):\n", + " vfold_train(i, train_loader[i], val_loader[i])" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 24, "id": "1fd1e392", "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "3 3 1\n" + ] + } + ], + "source": [ + "print(device_num,num_folds,num_devices)\n" + ] } ], "metadata": { @@ -542,7 +8273,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.8" + "version": "3.9.7" } }, "nbformat": 4, diff --git a/Experiments/ARUNet-MiddleLines/cufile.log b/Experiments/ARUNet-MiddleLines/cufile.log new file mode 100644 index 0000000..bfb46f9 --- /dev/null +++ b/Experiments/ARUNet-MiddleLines/cufile.log @@ -0,0 +1,15 @@ + 14-12-2021 17:48:35:505 [pid=2576751 tid=2576751] NOTICE cufio-drv:620 running in compatible mode + 14-12-2021 17:49:03:988 [pid=2576957 tid=2576957] NOTICE cufio-drv:620 running in compatible mode + 18-01-2022 16:08:41:265 [pid=1157048 tid=1157048] NOTICE cufio-drv:620 running in compatible mode + 18-01-2022 16:42:16:629 [pid=1197498 tid=1197498] NOTICE cufio-drv:620 running in compatible mode + 20-01-2022 11:13:30:408 [pid=1558746 tid=1558746] NOTICE cufio-drv:620 running in compatible mode + 20-01-2022 11:38:29:229 [pid=1562314 tid=1562314] NOTICE cufio-drv:620 running in compatible mode + 20-01-2022 13:42:26:660 [pid=1580070 tid=1580070] NOTICE cufio-drv:620 running in compatible mode + 20-01-2022 14:37:40:180 [pid=1710093 tid=1710093] NOTICE cufio-drv:620 running in compatible mode + 20-01-2022 14:54:40:149 [pid=1759474 tid=1759474] NOTICE cufio-drv:620 running in compatible mode + 20-01-2022 14:54:45:300 [pid=1759520 tid=1759520] NOTICE cufio-drv:620 running in compatible mode + 20-01-2022 15:18:49:428 [pid=1864864 tid=1864864] NOTICE cufio-drv:620 running in compatible mode + 20-01-2022 15:29:42:437 [pid=1913394 tid=1913394] NOTICE cufio-drv:620 running in compatible mode + 09-03-2022 17:04:21:582 [pid=312946 tid=312946] NOTICE cufio-drv:620 running in compatible mode + 17-03-2022 15:45:53:591 [pid=417918 tid=417918] NOTICE cufio-drv:693 running in compatible mode + 17-03-2022 16:12:07:54 [pid=421224 tid=421224] NOTICE cufio-drv:693 running in compatible mode diff --git a/Experiments/BAMC_PTX_ROI_3DUNet-NS-VFold-Test.ipynb b/Experiments/BAMC_PTX_ROI_3DUNet-NS-VFold-Test.ipynb new file mode 100644 index 0000000..b0c6878 --- /dev/null +++ b/Experiments/BAMC_PTX_ROI_3DUNet-NS-VFold-Test.ipynb @@ -0,0 +1,1879 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "scrolled": true, + "tags": [] + }, + "outputs": [], + "source": [ + "from monai.utils import first, set_determinism\n", + "from monai.transforms import (\n", + " AddChanneld,\n", + " AsDiscrete,\n", + " AsDiscreted,\n", + " Compose,\n", + " EnsureChannelFirstd,\n", + " EnsureTyped,\n", + " EnsureType,\n", + " Invertd,\n", + " LoadImaged,\n", + " RandFlipd,\n", + " RandSpatialCropd,\n", + " RandZoomd,\n", + " Resized,\n", + " ScaleIntensityRanged,\n", + " SpatialCrop,\n", + " SpatialCropd,\n", + " ToTensord,\n", + ")\n", + "from monai.handlers.utils import from_engine\n", + "from monai.networks.nets import UNet\n", + "from monai.networks.layers import Norm\n", + "from monai.metrics import DiceMetric\n", + "from monai.losses import DiceLoss\n", + "from monai.inferers import sliding_window_inference\n", + "from monai.data import CacheDataset, DataLoader, Dataset, decollate_batch\n", + "from monai.config import print_config\n", + "from monai.apps import download_and_extract\n", + "import monai.utils as utils\n", + "\n", + "import torch\n", + "import matplotlib.pyplot as plt\n", + "import tempfile\n", + "import shutil\n", + "import os\n", + "from glob import glob\n", + "\n", + "import itk\n", + "from itk import TubeTK as ttk\n", + "\n", + "import numpy as np\n", + "\n", + "import site\n", + "site.addsitedir('../../ARGUS')\n", + "from ARGUSUtils_Transforms import *" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": { + "scrolled": true, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "110 110\n", + "96 6 8\n", + "92 8 10\n", + "93 10 7\n", + "97 7 6\n", + "96 6 8\n", + "98 8 4\n", + "100 4 6\n", + "97 6 7\n", + "98 7 5\n", + "92 5 13\n", + "92 13 5\n", + "98 5 7\n", + "93 7 10\n", + "92 10 8\n", + "96 8 6\n" + ] + } + ], + "source": [ + "img1_dir = \"../../Data/VFoldData/ROIData/\"\n", + " \n", + "all_images = sorted(glob(os.path.join(img1_dir, '*Class[NS]*.roi.nii.gz')))\n", + "all_labels = sorted(glob(os.path.join(img1_dir, '*Class[NS]*.roi.extruded-overlay-NS.nii.gz')))\n", + "\n", + "gpu_device = 0\n", + "\n", + "num_classes = 3\n", + "\n", + "net_in_dim = 3\n", + "net_in_channels = 1\n", + "net_channels=(24, 32, 64, 128)\n", + "net_strides=(2, 2, 2)\n", + " \n", + "num_folds = 15\n", + "\n", + "num_slices = 48\n", + "size_x = 128\n", + "size_y = 224\n", + "\n", + "roi_size = (size_x,size_y,num_slices)\n", + "\n", + "num_workers_te = 0\n", + "batch_size_te = 1\n", + "\n", + "model_filename_base = \"./results/BAMC_PTX_ROI_3DUNet-Extruded-S.best_model.vfold\"\n", + "\n", + "num_images = len(all_images)\n", + "print(num_images, len(all_labels))\n", + "\n", + "ns_prefix = ['025ns','026ns','027ns','035ns','048ns','055ns','117ns',\n", + " '135ns','193ns','210ns','215ns','218ns','219ns','221ns','247ns']\n", + "s_prefix = ['004s','019s','030s','034s','037s','043s','065s','081s',\n", + " '206s','208s','211s','212s','224s','228s','236s','237s']\n", + "\n", + "fold_prefix_list = []\n", + "ns_count = 0\n", + "s_count = 0\n", + "for i in range(num_folds):\n", + " if i%2 == 0:\n", + " num_ns = 1\n", + " num_s = 1\n", + " if i > num_folds-3:\n", + " num_s = 2\n", + " else:\n", + " num_ns = 1\n", + " num_s = 1\n", + " f = []\n", + " for ns in range(num_ns):\n", + " f.append([ns_prefix[ns_count+ns]])\n", + " ns_count += num_ns\n", + " for s in range(num_s):\n", + " f.append([s_prefix[s_count+s]])\n", + " s_count += num_s\n", + " fold_prefix_list.append(f)\n", + " \n", + "train_files = []\n", + "val_files = []\n", + "test_files = []\n", + "for i in range(num_folds):\n", + " tr_folds = []\n", + " for f in range(i,i+num_folds-2):\n", + " tr_folds.append(fold_prefix_list[f%num_folds])\n", + " tr_folds = list(np.concatenate(tr_folds).flat)\n", + " va_folds = list(np.concatenate(fold_prefix_list[(i+num_folds-2) % num_folds]).flat)\n", + " te_folds = list(np.concatenate(fold_prefix_list[(i+num_folds-1) % num_folds]).flat)\n", + " train_files.append(\n", + " [\n", + " {\"image\": img, \"label\": seg}\n", + " for img, seg in zip(\n", + " [im for im in all_images if any(pref in im for pref in tr_folds)],\n", + " [se for se in all_labels if any(pref in se for pref in tr_folds)])\n", + " ]\n", + " )\n", + " val_files.append(\n", + " [\n", + " {\"image\": img, \"label\": seg}\n", + " for img, seg in zip(\n", + " [im for im in all_images if any(pref in im for pref in va_folds)],\n", + " [se for se in all_labels if any(pref in se for pref in va_folds)])\n", + " ]\n", + " )\n", + " test_files.append(\n", + " [\n", + " {\"image\": img, \"label\": seg}\n", + " for img, seg in zip(\n", + " [im for im in all_images if any(pref in im for pref in te_folds)],\n", + " [se for se in all_labels if any(pref in se for pref in te_folds)])\n", + " ]\n", + " )\n", + " print(len(train_files[i]),len(val_files[i]),len(test_files[i]))" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [], + "source": [ + "train_shape = itk.GetArrayFromImage(itk.imread(train_files[0][0][\"image\"])).shape\n", + "\n", + "test_transforms = Compose(\n", + " [\n", + " LoadImaged(keys=[\"image\", \"label\"]),\n", + " AddChanneld(keys=[\"image\", \"label\"]),\n", + " ScaleIntensityRanged(keys=[\"image\"],\n", + " a_min=0, a_max=255,\n", + " b_min=0.0, b_max=1.0),\n", + " ToTensord(keys=[\"image\", \"label\"]),\n", + " ]\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "test_ds = [Dataset(data=test_files[i], transform=test_transforms)\n", + " for i in range(num_folds)]\n", + "test_loader = [DataLoader(test_ds[i], batch_size=batch_size_te, num_workers=num_workers_te)\n", + " for i in range(num_folds)]" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "tensor(2.)\n", + "Data Size = torch.Size([1, 1, 128, 224, 61])\n" + ] + } + ], + "source": [ + "batchnum = 2\n", + "imgnum = 0\n", + "lbl = utils.first(test_loader[batchnum])[\"label\"]\n", + "m = lbl[imgnum,0,:,:,24].max()\n", + "print(m)\n", + "if m == 1:\n", + " img = utils.first(test_loader[0])[\"image\"]\n", + " plt.subplots()\n", + " plt.imshow(img[imgnum,0,:,:,24])\n", + " plt.subplots()\n", + " plt.imshow(lbl[imgnum,0,:,:,24])\n", + "print(\"Data Size =\", lbl.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [], + "source": [ + "# standard PyTorch program style: create UNet, DiceLoss and Adam optimizer\n", + "device = torch.device(\"cuda:\"+str(gpu_device))" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": { + "scrolled": true, + "tags": [] + }, + "outputs": [], + "source": [ + "def plot_vfold_training_curves(vfold_num, test_loader, min_size_comp, min_portion_comp, p_prior, graph):\n", + " if graph:\n", + " print(\" VFOLD =\", vfold_num, \"of\", num_folds)\n", + " \n", + " correct = 0\n", + " incorrect = 0\n", + " \n", + " slice_correct = 0\n", + " slice_incorrect = 0\n", + " \n", + " false_negatives = 0\n", + " slice_false_negatives = 0\n", + " \n", + " loss_file = model_filename_base+\"_loss_\"+str(vfold_num)+\".npy\"\n", + " if os.path.exists(loss_file):\n", + " epoch_loss_values = np.load(loss_file)\n", + " \n", + " metric_file = model_filename_base+\"_val_dice_\"+str(vfold_num)+\".npy\"\n", + " metric_values = np.load(metric_file)\n", + " \n", + " if graph:\n", + " plt.figure(\"train\", (12, 6))\n", + " plt.subplot(1, 2, 1)\n", + " plt.title(\"Epoch Average Loss\")\n", + " x = [i + 1 for i in range(len(epoch_loss_values))]\n", + " y = epoch_loss_values\n", + " plt.xlabel(\"epoch\")\n", + " plt.plot(x, y)\n", + " plt.ylim([0.2,0.8])\n", + " plt.subplot(1, 2, 2)\n", + " plt.title(\"Val Mean Dice\")\n", + " x = [2 * (i + 1) for i in range(len(metric_values))]\n", + " y = metric_values\n", + " plt.xlabel(\"epoch\")\n", + " plt.plot(x, y)\n", + " plt.ylim([0.2,0.8])\n", + " plt.show()\n", + " \n", + " model_file = model_filename_base+'_'+str(vfold_num)+'.pth'\n", + " if os.path.exists(model_file):\n", + " model = UNet(\n", + " dimensions=net_in_dim,\n", + " in_channels=net_in_channels,\n", + " out_channels=num_classes,\n", + " channels=net_channels,\n", + " strides=net_strides,\n", + " num_res_units=2,\n", + " norm=Norm.BATCH,\n", + " ).to(device) \n", + " model.load_state_dict(torch.load(model_file))\n", + " model.eval()\n", + " with torch.no_grad():\n", + " i = 0\n", + " fname = os.path.basename(test_files[vfold_num][i][\"image\"])\n", + " prevfname = fname\n", + " count1 = 0\n", + " count = 0\n", + " for b,test_data in enumerate(test_loader):\n", + " test_outputs = sliding_window_inference(\n", + " test_data[\"image\"].to(device), roi_size, batch_size_te, model\n", + " )\n", + " for j in range(test_outputs.shape[0]):\n", + " prevfname = fname\n", + " fname = os.path.basename(test_files[vfold_num][i][\"image\"])\n", + " \n", + " if fname[:22]!=prevfname[:22]:\n", + " #print(\" \", prevfname[:22], \"Count of slidings =\", count1, \"of\", count)\n", + " if count1 == count:\n", + " if graph:\n", + " print(\" Winner = Sliding\")\n", + " if prevfname[3] == 's':\n", + " correct += 1\n", + " else:\n", + " incorrect += 1\n", + " false_negatives += 1\n", + " print(\" FN Patient =\", prevfname)\n", + " else:\n", + " if graph:\n", + " print(\" Winner = Not Sliding\")\n", + " if prevfname[3] == 'n':\n", + " correct += 1\n", + " else:\n", + " incorrect += 1\n", + " print(\" FP Patient =\", prevfname)\n", + " if graph:\n", + " print()\n", + " print()\n", + " count1 = 0\n", + " count = 0\n", + " \n", + " prob_shape = test_outputs[j,:,:,:,:].shape\n", + " prob = np.empty(prob_shape)\n", + " for c in range(num_classes):\n", + " itkProb = itk.GetImageFromArray(test_outputs[j,c,:,:,:].cpu())\n", + " imMathProb = ttk.ImageMath.New(itkProb)\n", + " imMathProb.Blur(5)\n", + " itkProb = imMathProb.GetOutput()\n", + " prob[c] = itk.GetArrayFromImage(itkProb)\n", + " arrc1 = np.zeros(prob[0].shape)\n", + " if False:\n", + " arrc1 = np.argmax(prob,axis=0)\n", + " else:\n", + " pmin = prob[0].min()\n", + " pmax = prob[0].max()\n", + " for c in range(1,num_classes):\n", + " pmin = min(pmin, prob[c].min())\n", + " pmax = min(pmax, prob[c].max())\n", + " prange = pmax - pmin\n", + " prob = (prob - pmin) / prange\n", + " for c in range(num_classes):\n", + " prob[c] = prob[c] * p_prior[c]\n", + " arrc1 = np.argmax(prob,axis=0)\n", + " \n", + " max_size = np.count_nonzero(test_data[\"label\"][j, 0, :, :, :].cpu()>0)\n", + " min_thresh = max(min_size_comp, max_size*min_portion_comp)\n", + " \n", + " itkc1 = itk.GetImageFromArray(arrc1.astype(np.float32))\n", + " imMathC1 = ttk.ImageMath.New(itkc1)\n", + " for c in range(num_classes):\n", + " imMathC1.Erode(10,c,0)\n", + " imMathC1.Dilate(10,c,0)\n", + " itkc1 = imMathC1.GetOutputUChar()\n", + " arrc1 = itk.GetArrayFromImage(itkc1)\n", + " slice_count1 = np.count_nonzero(arrc1==1)\n", + " slice_count2 = np.count_nonzero(arrc1==2)\n", + " slice_decision = \"Unknown\"\n", + " if slice_count2>slice_count1 and slice_count2>min_thresh:\n", + " count1 += 1\n", + " slice_decision = \"Sliding\"\n", + " if fname[3] == 's':\n", + " slice_correct += 1\n", + " else:\n", + " slice_incorrect += 1\n", + " slice_false_negatives += 1\n", + " print(\" FN ROI =\", fname)\n", + " else:\n", + " slice_decision = \"Not Sliding\"\n", + " if fname[3] == 'n':\n", + " slice_correct += 1\n", + " else:\n", + " slice_incorrect += 1\n", + " print(\" FP ROI =\", fname)\n", + " count += 1\n", + " \n", + "\n", + " if graph:\n", + " print(fname)\n", + "\n", + " plt.figure(\"check\", (18, 6))\n", + " plt.subplot(1, 3, 1)\n", + " plt.title(f\"image {i}\")\n", + " tmpV = test_data[\"image\"][j, 0, :, :, 24]\n", + " plt.imshow(tmpV, cmap=\"gray\")\n", + " plt.subplot(1, 3, 2)\n", + " plt.title(f\"label {i}\")\n", + " tmpV = test_data[\"label\"][j, 0, :, :, 24]\n", + " tmpV[0,0]=1\n", + " tmpV[0,1]=2\n", + " plt.imshow(tmpV)\n", + " plt.subplot(1, 3, 3)\n", + " plt.title(f\"output {i}\")\n", + " arrc1[0,0,24]=1\n", + " arrc1[0,1,24]=2\n", + " plt.imshow(arrc1[:,:,24])\n", + " plt.show()\n", + "\n", + " print(\"Number of not-sliding / sliding pixel =\", slice_count1, slice_count2)\n", + " print(\" Min thresh =\", min_thresh)\n", + " print(\" \", slice_decision)\n", + " print()\n", + " print()\n", + "\n", + " for c in range(num_classes):\n", + " arrimg = test_outputs.detach().cpu()[j,c,:,:]\n", + " itkimg = itk.GetImageFromArray(arrimg)\n", + " filename = model_filename_base+\"_f\"+str(vfold_num)+\"_i\"+str(i)+\"_c\"+str(c)+\".nii.gz\"\n", + " itk.imwrite(itkimg, filename)\n", + " \n", + " i += 1\n", + " \n", + " #print(\" \", prevfname[:22], \"Count of slidings =\", count1, \"of\", count)\n", + " if count1 == count:\n", + " if graph:\n", + " print(\" Winner = Sliding\")\n", + " if prevfname[3] == 's':\n", + " correct += 1\n", + " else:\n", + " incorrect += 1\n", + " false_negatives += 1\n", + " print(\" FN Patient =\", fname)\n", + " else:\n", + " if graph:\n", + " print(\" Winner = Not Sliding\")\n", + " if prevfname[3] == 'n':\n", + " correct += 1\n", + " else:\n", + " incorrect += 1\n", + " print(\" FP Patient =\", fname)\n", + " if graph:\n", + " print()\n", + " print()\n", + " \n", + " return correct, incorrect, false_negatives, slice_correct, slice_incorrect, slice_false_negatives" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "*************\n", + "Prior = [0.7, 0.6, 1.0]\n", + " VFOLD = 0 of 15\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsIAAAGDCAYAAAAh/naNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAACZ40lEQVR4nO29d5gc1ZX+/96qTpODNMoRJAESySDA5GiDMTb2OtsLzmkd1xHb67jfddy117+1vTixOIBxAoNtTDCYHIQIAkmAJIRyDqPJHaru74+qW3WruqqnZ9Qz3TP9fp5Hz3RXVVffW92qfuvUe84RUkoQQgghhBBSbxjVHgAhhBBCCCHVgEKYEEIIIYTUJRTChBBCCCGkLqEQJoQQQgghdQmFMCGEEEIIqUsohAkhhBBCSF1CIUzGFCGEFEIsqvY4CCGEjJzJeA4XQqwRQpxX7XGQ2oBCuI4QQmwSQgwKIfq0fz+o9rjCCCHe4Z5831jtsRwuQogF7lwS1R4LIaT+EELcLoT4WsTyy4UQuw7n3CSEuMc9v50QWv4nd/l5o933KMejzrfq9223EOIvQoiX6dtJKZdJKe8Zz7GR2oVCuP54lZSyWfv34WoPKIK3Azjg/q04FKWEkDriWgBXCCFEaPkVAK6TUhYOc//rAFypngghpgB4KYC9h7nfw6FdStkM4AQAdwK4SQjxjiqOh9QwFMIEgBeFfVAI8T9CiENCiOeEEBdq62cJIW4RQhwQQmwQQrxXW2cKIT4vhHhBCNErhHhcCDFX2/1FQoj1QoiDQogfRpyQ9XHMB3AugPcBuFgIMd1dfrUQ4j9D294shPiENr4/CiH2CiFeFEJ8VNvuK0KIPwghfi2E6AHwDiHEqUKIh4UQ3UKInUKIHwghUtprXi6EeN49Fj8SQtwrhHiPtv5dQohn3Tnd7o57pMe81DE9VQixUgjR40Y1vusuz7jz2O+O/TF1jAghJII/AegEcLZaIIToAHAZgF8Ody4sg+sAvEkIYbrP3wLgJgA57f0MIcRV7m/EfiHE74QQndr637vR6UNCiPuEEMu0dde6vxt/dX9fHhVCHFnOwKSUu6SU3wfwFQDfEkIY7j43CSEuch/H/n4JIY4WQtzpnqOfF5PgLiUphkKY6JwGYCOAqQC+DOBG7WT1GwDbAMwC8HoAX9eE8ifgnPwuBdAK4F0ABrT9XgbgFDhX528EcHGJMVwJYKWU8o8AngXwNnf59XBOtgLwTuQvB3CDe3L7M4BVAGYDuBDAx4UQ+vtcDuAPANrhnLgtAP/qzvV09zX/4u57qrvt5wBMAfA8gDPUjoQQrwHweQD/BKALwP3u8RkppY7p9wF8X0rZCuBIAL9zl78dQBuAue7YPgBgcBTvTQipA6SUg3DOH1dqi98I4Dkp5SqUOBeWyQ4Aa+Gcj+G+zy9D23wUwGvgBDlmATgI4Ifa+r8BWAxgGoAn4Jyjdd4C4KsAOgBsAPAfIxgfANzo7vuoiHWRv19CiCY40eTr3de+BcCPdJFOJglSSv6rk38ANgHoA9Ct/Xuvu+4dcE5oQtt+BZzbZ3PhnCxbtHXfAHCt+/h5AJfHvKcEcJb2/HcArioxxvUAPu4+/hyAVe5jAWALgHPc5+8FcLf7+DQAW0L7+RyA/3MffwXAfcMcm48DuMl9fCWAh7V1AsBWAO9xn/8NwLu19QYc4T8/Yr8L3GOQCC0f7pjeB+fEPzX0uncBeAjA8dX+PvEf//HfxPgH4CwAhwA0uM8fBPCvMdt650L3uQSwKGbbewC8B8A/w7mwPwrAOnfdNgDnuY+fBXCh9rqZAPLh86K7rt19zzb3+bUAfqatvxSOiI8aT9z5NuMuP9N9vgnARe7jyN8vAG8CcH9o2Y8BfLnanyf/VfYfI8L1x2uklO3av59q67ZL93+7y2Y4V++zAByQUvaG1s12H88F8EKJ99ylPR4A0By1kRDiTAALAdzgLroewHFCiBPdcd0A56ocAN4KP2owH8As99ZetxCiG07EVrcMbA291xLhJFHscu0SX4cTEYE7X2979723aS+fD+D72nsdgCOWZ6N8hjum7wawBMBzrv3hMnf5rwDcDicSvkMI8W0hRHIE70sIqTOklA/A8exeLoQ4As4duuuBYc+F5XIjgAsAfATOOSrMfDg+XXXOfBZOIGC6a034pmtN6IEjUhEaQ1m/ISVQ59UDEevifr/mAzgt9LvyNgAzRvjepMahECY6s5X1wGUenCjxDgCdQoiW0Lrt7uOtcG7fHy5vhyMonxJC7ALwqLtc3dL7DYDXu37c0wD8UXv/F0MCv0VKeam2b13gA8D/AngOwGLp2A8+7743AOwEMEdt6B6TOdprtwJ4f+j9GqSUD41griWPqZRyvZTyLXBuyX0LwB+EEE1SyryU8qtSyqVw7BqXIXjLkxBCovglnHPFFQDukFLudpeXOheWhZRyAM6dsg8iWghvBfCK0DkzI6XcDieocTmAi+DYvha4rxnRGIbhtQD2wIn+Ro0t6vdrK4B7Q2NullJ+sILjIjUAhTDRmQbgo0KIpBDiDQCOAXCrlHIrnNvx33CTtY6HE7FUEdmfAfh3IcRi4XC8cDKHy0YIkYHjW3sfgBO1fx8B8DYhREJK+SScqMbPANwupex2X74CQI8Q4rNCiAY3wnCsEOKUEm/ZAqAHQJ8Q4mg4J3DFX+FEol8jnAoTH0IwCnA1gM8pr5gQos09XqVIu8cu4851O0ocUyHEPwshuqSUNhwLCwBYQojzhRDHuYkpPXBuL1rDvDchhPwSjth8L4BfaMtLnQtHwucBnCul3BSx7moA/+EGMSCE6BJCXK69fxbAfgCNcCLSFUEIMV0I8WE4OS+fc8+nYeJ+v/4CYIkQ4gr3NzEphDhFCHFMpcZHagMK4frjzyJYR/gmbd2jcBIW9sFJRni9lHK/u+4tcK7Ud8DJCP6ylPJOd9134Xh/74BzQv05gIYRjus1cJK+fimdTN9dUspd7r5MAJe42/0Gzsn8evVCKaUF4FVwhPOL7vh/Bie6EMen4EQiegH8FMBvtf3tA/AGAN+Gc3JeCmAlnJM1pJQ3wYnS3uDeylsN4BXDzK/PnZ/6dwFKH9NLAKwRQvTBSZx7s5RyCI4g/wOc4/wsgHsB/HqY9yaE1DmuQH0IQBOAW7RVsefCEe5/h2vBiOL77nveIYToBfAInLt6gCPQN8MJDqx11x0u3UKIfgDPwPEUv0FKeU3MtpG/X65t7eUA3gznHL0Lznk/XYHxkRpCBC2hpF4RTo3F90gpz6r2WGoNtyrFNgBvk1L+o9rjIYQQQkhlYESYkAiEEBcLIdqFEGn4nrlKRCoIIYQQUiOUJYSFEJe4xaQ3CCGuiljfJoT4sxBilXB6eL+z8kMlZFw5HU4m8T44tovXSKceJyE1D8/ZhBBSHsNaI9yknHUAXgbn9vBjAN4ipVyrbfN5ODX/PiuE6IKTmTlDSpmL2ichhJCxgedsQggpn3IiwqcC2CCl3OieJG+AU+pERwJocctMNcOp1Xe4/csJIYSMHJ6zCSGkTMoRwrMRbEawDcWNA34Ap9TWDjhZmh+LKVNCCCFkbOE5mxBCyiRRxjZRRa3DfoqLATwFpyTUkQDuFELcL6XsCexIiPfBqROLpqamk48++ugRD5gQQmqBxx9/fJ+Usqva44iA5+wJwM5DQ9jXl0VD0sRg3kJXcxoz2jLe+o17+9CfK14eZn9/Dj2DeSyc2jTiMQzlbazf04vWTBLzpzR6yzfvH0DPUB5TmlLY35/DnI4GdDSmil4/kLNwwF0fx6Z9/ejNFrBgShNaMuVIjsNj9fZDSCUMZJImDg3mcdzsUlU0ST0Rd84u51u5DU4LQsUcOFEEnXcC+KbbinaDEOJFAEfDaXTgIaX8CYCfAMDy5cvlypUry58BIYTUEEKIzdUeQww8Z08AvnDTM7ju0S2Y19mILQcG8O6zFuKLly311r/mhw/iqa3dePMpc/HN1x0fu58FV/0VLQBWfvOVIx7Dmh2H8Mr/7wFcdMw0/Oztfv+hd137GO5+bg/eeto8XP/oFnz9dcfhTafMK3r9D+5ej/+8Yx3u/9olaEiZke/x9mtW4N51e/HDK5fjoqXTI7epFLYtccTnb8WCKY1YNK0Ff392Nx77xqUINkwl9UrcObsca8RjABYLIRYKIVJwikvfEtpmC4AL3TeaDuAoABtHP1xCCCGjhOfsCUC24DhRDvY7+Ym5QtCZUrCd54cG82M2BvctULCDNwzylrMi747Jjsmpt7zXx7tqbDchX+1ztPRlCxjMlW6iqY5prmAj575feG6EhBlWCEspCwA+DOB2OJ2sfielXCOE+IAQ4gPuZv8O4AwhxDMA7gLwWbc7FyGEkHGE5+yJgRJtvVknRzEsFAuWI+DKFcJSShzoz+Gd/7cC+/uyZb1GCVj1XgrLDopXK0ZMWnbp9c64nL+5wxTCH/z14/jCn54puc1Q3nLfSyJXcB6H50ZImLIMO1LKWwHcGlp2tfZ4B5xWhIQQQqoMz9ljx4H+HDqbiv2yIyWbD0Y3w0JRRTLLFcJ5S2Ltjh784/m9eG5XL85cNHwn4LhorRKPefdvXJlVy12+tzeLj97wFL73xhMwpTn4vuo9RiJIdx0awhU/fxS/eNepmNXu+I939wx5Fw9xDLniN1ewvAi7I/ajbRvDcdvqXTiiqwlLpreM6vVkYsDOcoQQQkgZ3LduL0769ztxz/N7DntfYVFXZI2wRmaNyBYsZF0hWCpCq6P0b3j7vBvpVWOMjwg7f5/Zfgj3rXMEeJjRWCM27uvD+j192LCnzx+TJdE7VLrC31DetUZYmjXiMCLCX7jpGVz70KZRv55MDCiECSGEkDJYtbUbAPDYpgOHvS8lWhVhoZgfoTUiW7B94eqKz789sxPrdgfF6c5Dg/jCTc+gYNmeNSJvR1sjlJiM05LKGqEEaJQfVy0aiRCWEa/JFWz0ZUsfC2WNyFvSu7DIl/AvD8dQ3vJ80mTyQiFMCCGElEEy4fxk5ivgOx02IuwKuN6hQtG6KHIF248Iu+P7wp9W4xehiOZDG/bjuke3YOvBQS9ZzrKjRbgSgbHWCFvNRUWii8epXpsbwTELe5Sd97DLiAj7EfHB/Mii41FkC/a4JdtJKXHdo5vHNDmSREMhTAghhJRB0lRC+PCjhNl8tPhUWLbETLd+8P3r9w6/v4LtCWYVEc5py7z9uussW8YmyylbxnDJcsr2oES9Poev3LIGP7h7vRcRLozgmPl2Cn9/uYKFvqFCrCgH/Mg0APRn45Pl/vW3T+H3K7cWLddxjo+syGddDtsODuILN63G7Wt2jcv7ER8KYUIIIaQMUqZTj7YiQrhQOlkub0mcf/Q0dDQmcdOT22P3YxrOmHKaNcLWIqrhsap1Usr4ZLlQRDYuKKqEtBL1umC+f/1ePLGle1QeYf01D72wD90DOeQsJzpbKmFuSDumfW70OCqie++6vVi56WDJMXjJduNUdUJFs4fypUvEFSwbX7llDXZ0D47HsEZMz9DEi2hTCBNCCCFl4EWEC+NgjbBsNCRNvOqEWbhz7W70ZaNtAQlXCGcLlidIlfhzIpqhSLOKCEsZmyxXCCXL2cNYI5QA1UVnf9aCZUtPRI/EGqEcFv05C1f+fAV+s2Krd3xKCS29EoefLFcsnG0ph/UOZ705jU9EWI03fKcgzCMbD+Dahzbh8zeVLiWn85Vb1uDPq8I9dSrPxr19OPGrd2Dtjp7hN64hKIQJIYSQMhitNeLJLQex69BQYFlYCBcly9kSCVPgjCOnIFuwsXl/f+S+U+6YdI+wLSWklLBsWRRpVhFhy5aepzcsllUUVL3WjrNGuMv9iLBuTSh444iaXymUWO8bKqBgSxwazHuCui/GJ/zEloPY25crWh4VEbYiLhDC5CLsHmOJer/hIsIDOWf+6gKoHG5ZtaMse83hsqtnCLYEttdotDoOCmFCCCGkDFSy3EibQ7z/V4/jJ/cFG/eF6wgX1/K1kTAEprp1efdFiDx9TIGqEZrQK/IIe9aIEuXTrKB4tWIiwkpkZkPNK6SU6Ms5QtivIzySqhHOa5To06tFRCXMDeUtvPHqh/Hz+4ubI0ZZG6TEsNUg1LEcr4iwOubD10p21qeT5ddG1m0zY4k61oPDiHmdW5/ZWXSRON5QCBNCCCFlkDRG5xEezFlF4mAoxhrx9LZurN/dC1sCCcPwGlTEdYvTrRF+Ewk/ES48VqULLVt6Ajcs9rxIsWsBiY0Iu68Pl08byFmQ0rE4qF3rkdW/PL2jZLtkNWRlB9HFb5RFZG9vFgVbYtvB4khklAXCKiMJTon7kUaEswULhwai7Rt/eXpHrG1AfXZh7zgAvLC3D9//+3pIKb2IcSYxAiFsFSdNjgXqezQ0TCtsb3vLxoeufwK/GyZxcayhECaEEFKX7OvL4q5nd4/4dSMVRwVbBsSklLJImKh9XvXHZ/D1W58FACRNganNKW+sUSQD1gjfyhCO6io8a4Qc3hoxfLKcK4RDHuF+V6xaWkRYRdG3HhjAh69/Eret2Rm9U/gCe8Ct/KAL4d4Ij/Be99jE2SCi9j9cVN8T9yO86Ln6no24/IcPRK77yi1r8atHNkWuy1kqWa74/f769E587+/r0JsteHcSMsny5JuUjugfj4iw+h4NRYj5KLIFG1JGi//xhEKYEEJIXfKHx7fhvb9cGRst+/kDL+Lbtz3nPR9NcwjAiZRZUuLNP3kYp339754oEZrNUy07NJj3askmTAPN6QTSCQP7Q9aIPT1DONCfQ8IU3uu9er5SegIunKSmosCyRLKciqKGy7GFKfIIuzvsdYVwoDJFyAM7UCJqqF7Tn1MR4dLWiL290RcJQPRnZUs5bDUIr5nICOsI7+4dwtaDg5Fl3nIFK1aQ5gpBm4mOmv9Q3vKEcqZMa4RlS0hZbJEZCzxrRJkR4fH2YcdBIUwIIaQuyRVs2DJe7Nzz/B7843k/yciLbo5QVBRsJ3HtkY0HsLsn64mhtoakt40SbD1Dea8GbsIQEMLxCe8NRYQ//Jsn8bU/r/EiwtmCHShj5pVAi/EIW7ZmgSjyJ7uizIsIx1WNCHmEwxFhrWqEWldOdQRPCLv76RnUI8LFQjguWq6PMbxsWGtEPl6k2bbEbat3RlpG8gUbli0jhX6pJD3vuER8t9Scs3nbt0aUGRGO84rH8dCGfXhiS+nScnEoa0S5HmE15/Gq1RwHhTAhhJC6RAmucMTzrT99BNc++CIGc1bg1vhoauKqiJwuyJRwbHeFsGkI5C0bti3Rly14kVDl/53anCqKCHcP5NAzVAgKYS2KmfciwtHWCDsmIiylLK4jHHOhUAhHhN3nysdrSxRZI8pJClPj6vesEX5EOMojvK83OpEQiE6Ws+Xwn2Gp8mlPbu3GB379BB598UDROrXfKMGet2Vskl6pqhE9WkR4wF1viuiqEYM5C398fJvW0S/eexzFW3/2KP7pRw+Vte196/bixie2ec/zI0yW8yPCFMKEEELIuKP0XThquGprN9bs6MFAzgqJROfvSG7lKiGli20lHNsbHf9vayaBXMHGQN5JMlOR0IQrcqc0p4uingXLiTInlTUibwUjwnEeYXcYdiBZzi9zFjXfOHeA31kuGBFWJc6c8mnOtkoAFsoQZkXWiOxwHuH4qgNxHunh6hqXaqgxEGHZ8N9Pxq4rRDQ4CY+zVER4KG9734241s93Pbcbn/z9KmzaPzDsfg+XK69ZgU/8bpX3XH225SbL+bWeaY0ghBBCxoShvIW3/ewRrNvdW7QuSvwBTkWHgbxT6UEXHKOJCKsfeTsQEVZC2IkItzUkUbAlelxvsIqEKpE7tTlVJITztg1bSj9ZztI8wqWsEXpDDW0eehOOMHHWEd8aERQ0SsDq5dPCEepSt+rVsVKiT48CjzQiHB57uZ+h1zY6IiKsXhuu/KGvCzf+sF2bSFySnlc1wr2Y2deXRfdAzt2XK4QLljf/uM/EG5sblVX7Lafk32h9xOq98ip5cpimIOH3G0k5wttW78Q/nt8zwhGWhkKYEELIpOXxzQfx4Ib9+NLNq4vW2RFCOG85Hs/BnIXBUETY8qKJIxDCEQJTCQdljWh1/x7ozwX2nzD8iPD+vlwgAatgOSJTtVjO5rU6wtIvnxaOfPrWCL+Umj63KCE8nEdYzUd5jvuy6rn/Wt9uMbw1Qg2h340s6m/fM4xHONxoIh+ajxcFL1MIR0UrVWJbVOTTF8LBceZj/Nj+PpW4dvb50d88iS/evAZAMFlORdvj7kr45eqC7zdcxzoART70clFl69QxHbk1ovyI8I/ueQG/eGjTyAY4DBTChBBCJi2NKSe7Pip5ybMJyGKROpArYCBXCAgX3xoxMo8wEIwId7t1Zn1rhCOE9/cHI5sJLyKc9jqsKfKWhB6szFnB8mlx1gglBG2ts5y+XVxL4lJzC9cRVmJNSn+MnugpUS83PMaBiOhvVGe5vX1ZTwC3ZBKhMQbnU669pZRIy5cQfGr7nsFgRNj/PIZJlnOP5YH+nFc7OmCNyKmIcPR30ApFvOO84lJK7DwUrLu8p2dkjS2UTXnLAafr4UgbapRqgx1HwZLeBWKloBAmhBAyaUm7jQf6I0RVVERYibqBnFOqSl/nd0kbgUc4ojtb96AjeI+e0YKWdAKLpzcDAA70ByNyyvbg1xL2hXLBtUaoKHE2bwcaaoSFkDeHQItlf7llxwu1OJ2i5qRbMoBg1Yhwi+VyIpTqNf2hi5e2hmSMNSKLBVObAPjRdUV4PuVG9Usly4XtBzpqv+FkubgLE+91oYhwwZbehU1kRDjGGuElyRXCf4Pv+5P7NuL0b9yNTfv81t17SpShi2JmawYAsFn5ke344xLFaJLlLFuOqL10OVAIE0IImbT4pbiKf5yVNrUibAu9QwXkLDvkEXb+jsgjbBeL7YNuRHjJjBY889WLsXhaCwAUVYZQtocpTcXd5ZQ1whd2lifebM0jHNdiWffvOnNSFobiuRUsGwuu+it+9fCmyH0NhUqN+VUjpHbMwlUMSlWNiBZ5nU2poojwQK6A/pyFJe7FhIqux+0rHDGNw7OZRFwYlIp8xlWNCNdmDhOOCOctp1RarmB7x3cob3mJg1HjAoq/o36yXHCs16/YUjROJYSHE5rfu3Md7np2N5rd6LsSwuq4jFwIl39hmbdtmCaFMCGEEFIW4dq2OnaESFWCQYnOqIjwSJKKlDjQ93PITYJKJ5yf4JT790DIGqGS5RrTTlRbF155y3bLk7njzmt1hKUfEQ53tfOsEaGmEkoAR0W71ft+9c9rA8vDdYR9j3Bx+TTfejH8MYyrUtHakCwSn+riYVGXK4QbgtaI8G13aavlEr99bAv+5671ke/lCdKICwMlWqOEsJpfOFluuIiwbxnxj1O2YAeqTwwV/KoRUeMCio+3Z40IHW8lXvU7FXtda0TYXhLmmgdfxG2rd3n73HJACeGReYSzo4wIJxkRJoQQQspDiTPlrdTxyqcFPMLBZKegR7i0zzMKr3xaRERY2TaU4A0LYeWFVIJZj6KqJh2eNUJrsVywgyJXF03BZLlg8p16bdEcYtZZ2r709f2REeHSEcqf3rcRl//ggcAYw7Q1JIu83ur57I4GAEBLehhrhFZf97bVu3Djk9sj30u1PI66MChl7/AjwvnI5cN7hC1v+2zBCkRss5o1Ii5qHj7ear+2jPbi6t9vFRGOK80GOP8H+rIFZAt2kRBWdo2yO8uNoqFGwZIw69kjvGX/AJ7b1VPtYRBCCJkgqN/YqN92FT3ThVf4tm4wIuz8HVWynNSFcCgi7HqB45LllGBWQldKXwSrMeUKNnIBa4SeCFccEbZCkWKvukXE3OL8tEW2g6KGGrLo4iGuru2L+/ux0fWrxiXntTUkiz4fVdO3qyWNhCHQlE4EWlcP5i3cv764O6BjPbADCYg6WS0BMNwu2UuWixB8cR5h34MdExEOHZeCLZHN24H9DOQszzcd51PXL4yc/ep3O5xlektqPVKslpeK1vfnnFrX2YLlzXXXoSF3TMrCUd7/j9FYIwq27V04VooJJYS/8Kdn8Nk/PlPtYRBCCJkgRHleFV4d4YiIsP96XwiFS4GVQz7CGqGqRqSTw1kjghFhr16rqk2sWQ+yBcv3tdpBcaHXEvYvDGRgHipyHjW3OGEUFqxFEWG7+Fa9KucWFsL5gt9sItzpT9HekMRArhAQpuo2fGMqgflTGjGzLeNdWADAd+9chyt+vgIr3C5wSvxL6YjonsF8kdANjy98TEp1UPPKp4WrRgxTPk29X87tMJh3q4DokWX9+1GwbXzmD6sCnd2A4qRH/bNTj5/d2RNYtrtnCFJKLyKcs+zIYwL4kW79DkS/+5mMtLNcXEJnKSzbLxlYKSaUEJ7WkvE8LIQQQshwxN1CBrRb+pYuhEuVWRv9+wetESoirKwR0UJYJS1lksGIsG638DzCmjCxbDswJz2iq7dYjkyWi6qbGyNU4qwSpZLl4jyrTqWL4gi9TltDsqgphYrKNiRN3PgvZ+IjFy7yLiz0MW3c2+c81+bcmy2gYMvI0nr6+MLHRK0r5REuSpYbxhutL88WbNcjbAXqEe8LJUveuXY3Hn5hf2A/cVYUwD9uj28+6C3b1TOE075+F77wp9XYvN+JyEsZf7Hnl3KzvDFL6VxAFiKqRty3bi+e3HKweEfanEdShSVv1XnViOmtaezpzcb+JyGEEEJ0SkVv7VCkF4iuZqDEhB4li4uYFb02osWyFxF2BZsSwvtDDQ08j7AbOc4WRYT9aLVeVkxvqAEERZZfMi4oQLxkrhLlwsKEf4vVdv1eQ43iznJxdYRzbiMTWxP3Ydrc0mhDOX88SsQ2pky0NSSRTpiBiLBC+bL1fStRF05sC48vfEz08mnbuweD28Z0lhuujrB+jLMFCwXbsW7o+9kfKJ/nXDiEv69x5eoAx+5h2RK/X7kVM9uc0me73eDi9Y9uQc9QAecd1QUgXrD7pdxs5Czb+0z6c4VANQ0pJW5fswtXXrMCH73hych9jbp8WsTnezhMMCGcQcGWODAQ306REEIIUZTy/3rJciW20dfrgrnc7nJ+RNhPitvRPYiGpOlFelUEM9yNzPcIB5PllBdTj+rqEcgia4Q2Vr2hhj6fqKS+qNcDwG2rd+GGFVuKLAzFEeHiJiQqoSos4AreejtyDKYhvHJdA3l/rioq2+A2TgEQiAgrVBRe/z6oxLMon3C2RERYtz+c+c278dk/PO2tU+IurnzacHWEAUdkqs9Pid+mlBmMCNt2oK22IlzZJGCNsCzc8/we7Dg0hHecsaBonCfP78C5S0oLYfUddSwqQIfbJnwg67cjdzzENv7jr88CADrcxjFFc45p9lGKgm0zIgz4VzCEEEJIKfSIcFichL2/gN/QIGofuj5TXuL3/2olvnLLmtj3V8LHtqUXqcwWbExp9sWBHsHUf+SVcE6ZBoTwI8L6eJRo1L2kjjUiOllOt0bogtNvgRyRLBcSRR/49eO46sZnigSi8lPr1givdXM4WS7kxdatGVHR9pRpoMG9cNCT1HRrhLetK4QzSf+4KkGpf9ZKRPcMFlcUCXqEo8e6y9Ui963fV7QurqGGXs5uT+8Qbn7KqVqhi0G9wokSv1Nb0oE6v3lLIqfZYRTFVpSg//221bvQ3pjEpcfNdMfpfG9OmNOGr756mXfscpaNvb1Zb3wKNS/1V3VHdCLCupi3vETGOE9vqTbWcThVI+pYCE9zu5js6RldP2xCCCH1RaB+byjyp9sEFFEZ71ERYRWJ27x/AFvd8lGl3r9g20hqkcopzWnvcTIhtOW+QFbWCCEE0gmjqO6qbUsv4qqLOcsOdh4LRoTV32CyXMEKCladuNv54WQ5y3Zu1Uc17VAJWHHWCP1WflSyXNIUXtRX9/TqyXKKlGkglTCQ1MpsqQBaVLQ5KiIc5RG2bUfkK9Gqqiw0atFoNY++bCF4oaFfmLjC+qYntuNjNzzltPIuFEeqAUcIN6VMNKYS3ji7WtLeRVH4giKujjDgfAZrd/bguNlt3piVoP3sK47GsbPbvIuyXMHGDSu24GM3PBW4yFKPVTKgFxHOFQLfucG85deZjqkiEWeNGMpb2LCnt2h76X5n69oaMa3FOXHs6WVEmBBCyPDoYi/s2/Tr3wYjWUX78DzC/jL14y5lfJUD/f11mwAATG2KjghP1QRyQisTlU6YRRG0sND05yUDwkuPGnoR4aLyacFEPB1dFOrR2rCoLNh+NDhhCLfEm78+b/mNPsJRZr3ObpRHOJUwvaiv/hkpUZzWLjKSpoG0aQQ6kO04NOjMO2Lf4QoPQFCoq+N945Pbcda37saAZv0AgCZXhCuh1uQJdl/QBi9MgvaQobyNrB4R1vzeB/pzaEonAtHtrpa0dwEQthWozzRKCA9kLazf3Yels1q9yK8SwipxM6XZcFTEW7/wUNurMm7K9tCftUIRYdsv7act37J/AB/89eOBZLuwEP7qn9fiou/eV+SZV9+3urZGdLUoawQjwoQQQoZHF3thwePXEfaXZaOEcETlB69CQ8hiUPRarXyavp0e+U1qQvikeR3e44QW0UwnDE8AKrHqlE+LeE871FBDjwjrtopQQ403/fhhvOvalUX704WMLoqKhLBle9HM1oYkpHSOcZMXfczHlk/TrRNRCfHphOFFMfUxDOUtNCRNGJo4SiUMpJNG4Pjt7B5y6y6XFxHWx6ciuDu6B9E9kEd3aPsmt/OfErjKy6zfXQhEhENe72zBEYVK6PdqQnh/Xw7N6QQyrlAVApjSlPKOQbFH2Pkb1cp67c5DyFk2ls7UhXAwcVP9VWXVgLAQDs5dWSMGtGQ5wLGsqM9Rv+j51B9W4W+rd+GJzQe9piXhOw5Pb+sGALzo1pVWqP+HiXquI5xOmOhsStEjTAghpCyCEeGwR9j5G6gjHJEkVMoa4VRuiH9/S0tCCwphP/KrRzPPWjzVe6z/4GeSpmaN8MV1lLCzbRmodBCVLBceT8GWeNSttRtGf324OoWOHhFuzSS88U33KhRkA62fg3YB35oRNadUwvCSCwcDEeFCIFFObZsyjUDkcDBvoWewEHnRElU1Isoa4XeNC36PlC1DrW/JOHaBQFQ5wqqilmXzTg1l1dq4VES4rSGJVMLwvNFx1ohcwcYP7l7vNbsAgKe2dgMAls1q9e5CqLlkQjWtc5btBR318fSF5q6sEf1Zq9gaodW4Vij9lkwYsRHhGa4NdsOevsByRoRdprWkGREmhBBSFpYmCOM8wqUqSwDRyXJ+l7fStYp10aoLxylN0RHhpTNb/eWhiLASFEqYyRgRbpWICMcmy5XI3NdF4UGtapMVbl9sS080tTYkvTrCqlTXnt6hwPvkIqKkThk1f59K86RMPyIcTJazA4lyattUwiiKHO44NBgbEc5bNh7c4Ce9ZQu2Jw7Ddo5wVFSNS23XnI6KCPvvmwsLYbddcZwQbkz5FUY6GlNIGIYWEXb29etHNuPt16zwvqMv7O3Hf96xDrc+s9Pb11NbupFJGlg4tRlCCKRMw7s49KwRpunNVYlW/cIjfBHQ3qRHhIMWo3AFC8DvQtefLfgJknYwQVKVZAsLYXUM67rFMuCUUNtLjzAhhJAy0CNx4WhWXPm0lnQisJ3vEdYiwnkt0lsiJOyVT5NBT+7UQLKcJng1L2jAI5w0PGGl1yaOEnbhaGtOS8TyyqeFhHC+pJj397VTizCWigi3uBFhwPndBoA9vdnAbfBA1FXzKOtzUqIylTC8yK8uzAbzMRHhhBG4wACcxLOoRoM9gwXcsWY33vazR73Ex2ze8t5bfYfi2ier9895EWHndcGIcHEVj7xmjXAiwo4A1K0ROct2rBGeEE4iYQrvGKj3+Lc/rca96/Z631FlA9IvXHYcGsIRU5u9qguphIG+bNAaoSLCA7mCV7FCF+bhuypeRDhnoWBJ75g51gh3DqFmIc4+rcDyH9y9Ab96ZLP73s6cNuwNCWF3h3XdYhlwSqjp/xEJIYSQOHTxGRaNUS2Th/I2OpqCdU8LWhRVoVsjSjV50is86O+je4QbkiYShsAXLj3Gi8wBIWtEwiyKCNuyeE5qTLFVI7S6xpYtPeFjhRSinsCni9ed3ZoQDs3bsm3NGpH05qtude/tzQaiwNmCs/1gzvLFYSEo7pU4TCUMNCbdOsKh8mmNISF88bLpePUJszzBp9Y7CVzREWElGJVNImfZnuVhy4EBbNjTF1sjWM1TfS4tER7hqLrOBc0vHRcRBoBGzRrR0ZgKlA8rLp8mA/MIfzVVrhXgCEo1xnCy3I7uIe+1gyU8wm0NSQgBDGQLyNv+HIYKWkTYu4DwX9ufLQTG/ocntuG21U70Wn2H1u8OC2EVEa6sEE4Mv0ltMbejEXt6sxjKW94VEiGEEBKFLj7DgjWyjnDeEVZ6uTI9wUyh1oUbU4RRrw37IKc0+YLENAQ2fP1S7/0VAWtE0vCi0AVNXEshcNnxM/GXpx0RkUkarjVCjwgHK0qov5aUSLtezXDCUjphRDY62OlWX9DnpihY0usq1+oKWMAR+q2ZBPb0DBV1OvvU7x/H9NaMbz+w7JAQdmRK0hTIpJzj8ejG/Xh+Vw++eNlSDOSsImvEm06ZBwDeMWlvSGIgZ2FI863q9AzmvQoPShhm8za6Wpz3/uotazCnowFHzWgBEPRJA76tw/MIp12PsPZZRn0eKsKZzTtCWB0zdQwVzWnTE6odTSmYQhPCIY+wehu9nJ4h/O+uficiFXEnQl0AbT3olwTsj6ga4b0uYaIxaXoR4ZZMAjsPOeJZHeu85Vwsbtzbr+2zEPh+HRrMe2NTEfHt3YMYyBW8CxL1fzlZ79aIeVMaAThXaIQQQkgprEBEOLhOBUED1oiCjXTSDEQZoyLCSrA61Rfi3z98W10xtTm625a6RS0EApUQ0gnTa/aR18YjpUR7YxKXnzgLANDZmIJly/jOclr5NMuWnsAKi1rdoqGzQ4sIh9tXO9YIJ+rX2uDH2QxDYFprJpAsBzhR9W0HB7FbE8iFkEdYCeGU2zrZEMAda3fjdyu34V3XPoa+bLE1QqEi6m1uZYMht/WvjuOTzfue27zvvW12q0Hs78+hd6gQ220t3Iyk2bNGFCcD6tupzyhnWchpyXJhsdmUSnifR0djMlAWLlsIzkk91qOvTZrVZ2qLVrYvEfSg68v02tiDWhm43mwemg53IvXphFNH2LID3ycpg8l3L2hWh/5sATnNOtIzmPf+T/VpY99+ULvw8jzCdW6NmD+lCYBTxJwQQggpRSAiHGONCAvcTMIINGiIqiMcaBpRsnxaUPQowvYLhRCiqBkE4CbLhSPCrjXCEALfe+OJuPWjZ2N2R4MTEY6pGuH5oqUSwoa3z6AwihaXO7oHI5cDzjHpc6OZzWk/IiyEk+i+p3co0DhCWSOyeVurzBBMnPKsEaYBIUTgc3ls00Gs3dlTZI1QqPJpysc6lLcQDnJ3taRxaNAXwkMFp+yXbo1QY41rLOIn00l37soaER0R9rvo+XWEdSGsLiYUjVr5tPbGFJKaELRl9HdcF+HNmhDu0iPCpi9+hQi289aF8K6eIXz4+idw0L0g0Fsmp0wDTSnTqSOsfZ+U8FfR+mzBxtYD/nenP2eF7lT4x6svW/AsHHo0Wnnj67p8GgAscCPCm/f3D7MlIYSQekePdIajgWqVntGfzVteRFgJw4IWRQ2/Vm9qEUVUDeLpremiRC6ddETFg6jyaY4tAzCEgGEILJ3VCkMIp2ucJT0RktPm51eNcMaU9iojyICdQS/pprOrRPnSgm2jP1tAU8oMjN8QwhXCWeRt24soZgvO9lnL9qOkth04ViqaqcajLJFqH1Ii1iapkqraPSFsF0W+p7WmA9aIrCtKgaCAzIbaGet2jHAZMN0n6x2biAi9Eov92QKk9C8eoqwRao6dTamiqglhQRlGv1AIWiOc5fpn7UWEDw56kdcHN+zHX57eiSe3HkTfUCFwNyPlXjSqqhHq+6REvi+ELezuHcKUphTaG5NORLioo5zzvG+o4DVQG4yoW52od2tEe2MKrZkEI8KEEEKGRRc+YX+oEsaBOsJ5G5mEgQ+ceyTeecaCwD50keFHk0uXTwvbBz5ywSJc956XlhxzOmEW1UoNlE/zGmo4Ily/VZ0whWeNCJf10ucaZY1ozWhtimOEcMmIsCXRN1RAUzoBQ+hC2Kkcsac3i1zBRnPKj5gO5Cxk83qynB04zmm3AoQaj5rTiXPbvW3iIsJKyLU1xFsjpjan0Z+zvIoiQwXLE7z6flVlB4Vu/fCS5exQ1Qg9WU6L0OesYGRfeY4zSaf+cW84WS6lJ8sli6om6Ml10TWY44SwaqLhr1dR4gP9OUxpSqEhaXqf+b6+HAq2DPjb0wkDTWknIpy3/O+TEv5eRY2CjT09Q5jWmkFTKuG0qg5ZTbIFpy1zf87yhXC+gKe2diNv2Vr5tDqPCAOOPWIzPcKEEEKGwUuwMUWxRziqjnDBScR+3clz8PJl0wP70EWGrUV6y0mWU0xpSmHRtOaSY05HlP5yOssFqw1Ybh3hoOgUnjVCFyHhcevJcoAj1IKe5Gh5EK5SoJO3JfpyBTSnE9C1iiEEulrSyBVs7OvLelHeA/1OpYacZWvl04LHM5UwHDHsHg8VYTx+dpv3HuFkOYU6hs1pE6YhMFQoTpZT0c29bqmwobztXXDo3tqcW9lB0aJFz8PWCLVOt0boNZf9znLKz1sIzDVcNUIvn9YeqhoBOGXpvPeJuChLacJZ9winzWA3OTUGRUdjCk1p0zs2e9336QxFhJtcj3DBtv3OdO4xUeN26hJnMb01jaa0iQG3fJpenSSb96uOKGvEpn0DeO2PHsSfntzufUfqvqEG4CTMbaE1ghBCyDBYtg3TEDCEiPAIu9uEPcJu9E3dgo2qI6xbI8ppsawoJ5qVThpF2znWCNWSNuwRDu7fdq0R6YSTXBbZWS7kEbasoNc5EWHdmKaV3opCNdRoziQC4xeuEAYc0aZaEish7HRW8xPOAkLYNHD8nDavYoMS97PaGzCtJeMuiy6ApcaQSZpoSJpu+bTgNipCqhp1DeV976oaJ+CWONMjwpmgSFZjBzSPcGyynAwsU4ltSdNAOmkW1btuSic828q0lnTRZ6N3243yMesXVZER4WS0EG5vTKIhZXre+D3u++jNYByPcMKrGuHZidxxqP9LTqe6IUxvyaApnUB/zmmo0agd46GC5Qlh9dnu6B6ElE5NYbZY1pjf2YhtBwdLdsIhhBBCLBueEA4HbqM7y9leFEsJqajOcvprS7VYLoTq8xrlCOGEGRkRzhZsSCkDnmWVLKdIGAIFSyJv2UiaTmRZF3DqobJGpLyIcLDOcZRgP3VhZ8lxFyzlEU54yVeAY41odbuFSQk0u6JuvyuEB7SqBHkreGGRShi47j0vxbvOWgjAj/7OaMt4rZvjIsLqQiaTNJFJGhjMW0WJjUoYKpGne4GbQo1V9Ejt9NYMTEPANER81YhAZ7ni5MWwNSIuItyUMvGypdNx7TtPwRFdzUURUT0iHKWLwlFehbJYBGpXG8Kz2nQ0ptCkXWSoi4XOprBH2HTqCFt+RFh979VnM5CzsK/PjQinEl4dYX3/eUvi0IBzUTCt1flcVFOPrQcGPHFd9x5hAJg/pREFWwbKuBBCCCFhLNtGwhBOLdWiOsLOX10AZgt+jXoVedIrRCgCHuEykuUU5dzWjWoPnE46kbmcZWtVI9xkOSNojbBdsZwwnTa6eqUGPVnOlhKmIVzxHEwk02vVKk4bRghbtkSv6xE2Q9YI1TYXgNe570C/6lymVQaw7MCFRSp0QaB8u9NbM5jpNuqI8wj7Qs9wys9pbX8VSgirjmlDecsTsM0hIazXD57Z1oB/fPI8vPK4mUXl0DIJ02lWEegs57+v7xGWgfdOJwykkwb6csUR4VTCwHlHTQNQHBHd01PaGqFfVOkXOL5H2F+vWi8DQEdTMlCabk9vRETYtUb051TVCOVLD1aN2NE9CFvC8Qi7nuJcwSo6xkr4quoWypaxef+Ab41gRFgroXaA9ghCCCHxFGwJUyhrRHCdEkVKPEgpvWQ5QLNGaEJYiauA17aM8mkKI0JghkknjMhkOSBYxsuWzjjC1ggnWc5GwnCSzCKtEbZjn0gYwkuws4aJCJ8yXETYlujPFdCSSYTEebDBRnOER9jbR0iQhyPjGVeYzWjNYIaKCA+TLKciwtmIqhHhes5DWtWIxlS8EE4mBOZNaXSOb8gakUoIpBNmMFkuIiKsEuiUFSJpGsgkzKI7DOHIdHFEWLNGDCOEdaKqRjjLneftjanARYaKPHe6yXJCOGNpTJlu1QjNc648wu7rVem06a2ONaLPrRqhWyMATQi7VhrlS96yX48IUwhjvldCjQlzhBBC4rFtCdN0bvcOV0dY3RJPq4iwskZ4ndx8cRUonzaCqhFleYSjkuVUGaq8HRBVBTtojVBCuGA5oj1pOkL427c9h7O/fXdAwCtbRdIwkLd8a0QqYURaODpjah8rHI+whaa0GUzgM0SgyoISdvv7ckX7yFnFyXI6jZo1YsYw1oiklgyWSRZHhA1RXM/ZiQirWsjB/ereXRU1TZqGJz7V55I0DWSSRlH5NHVIipPl8t4+db+u2r4pNI6wNWB3ICIcZY2I/s6pOaRDx0+J2Y7GZOBiwBfCKe/1Qgg0pRPIW07tZd8j7AphV2yrJmjKGjGQc6pGNKWiI8KtDUlkkgb2ud+R3mwB+907CKwaAWB6SwaphMHucoQQQkpSsJ2op0oi0/GS5Vzt4EX0XIFQ7BGWXqML3RpRQgePKlluXmcjZrc3BJYpcTKUt4rEtQgLYelUjUgYBpIJgVzBxo/ueQFbDwz65dNc+4RpCJimgGU7SWpXvHQ+1v2/VyDq7nPCMPDw5y7Ad15/fMQ6xysbXT5NBCLCqryYigjrFCXLhYTwjLYMZrc3IJM0MWMYa0Q4WW4wbwU+q0zS9MaiKOURLkREqlOm0KwR6ta9b8XwX2t7gl1PDASCVSMyml9XicSiiHDow9nbO3yy3N8/cS7u+/T5geVR1ghnTtERYZUUOMWNoqvX6/YG3XMOAA1uW+xtbsvmaW6yXM9QAbYs/uyU8G1OJ9CYSuDggP8dUS2aS9XgHg1l7U0IcYkQ4nkhxAYhxFUR6z8thHjK/bdaCGEJIUrfQzkMDENgXmcjm2oQQkgEtXbOriaWK/aiqkZ4dYTtYIROCY1ij7C/TLdVjMQjXI4Q/trlx+LHV5wcWBa0RoTtFsH9qzrCCTciHEyWU+N2o+WGQMJwopoFy/bGFzVO0xCY2daA6a4AjRpfznLqBOtaxRCO6FQiqSntCNOtB4uDWcoakdKEps6Hzl+Emz98JgB4ZeiixgP4HmHHGmG6neX8zyOTNIs8qtm8Xkc4uhqFs2/XPmMa3vdGNS5JmgLppBFssRxocOKXigPgib2GlBmICKuxNSZLR4T3DpMslzQNLJrWjHnu3XRFOk4IexHhVOQxUB5h9To92q+OS7ihxtYDAxDCsaI0pUzvc4jzCLdkEmhIBm0iG/c5mm/cI8JCCBPADwG8AsBSAG8RQizVt5FSfkdKeaKU8kQAnwNwr5TyQEVHGmJ+ZyOtEYQQEqJWz9nVQnmERaRH2PnrRYRtP6IHFHuEpZReVy9b+kK6lDUifKu6HH+jaYiiElkqgS9bsIqizAFrhFZHOGk69XcDLZa1uVgRyXKlhLAae1Sykn57vTkTrBqhHrd67ZJNzGzLeHWRdRxrhC+ywhHhTNL0EtyOnd2GRz53IY6d3Va0H2e8qmqEa1XIB6PN6YThVrjwXzNU8MunhUWajhLZ6kJjX18W+1xBmnK9vtlQi2XlZd7TM4Rdh4Y8saiqZ7Q1JAOitCnteJvD34WSVSNG5BEubqihL3esEcXR9raGJAzhR471aH/SdO6+FCXLHRpCZ2MKCdMIRLjD0W4VEW5KJbzjpab7ohcRHn9rxKkANkgpN0opcwBuAHB5ie3fAuA3lRhcKeZNacSWAwNFXWIIIaTOqclzdrVQHmFDRLVY9mvqAn5EOKkEX9gjLKW3zGmkEdxPFKVE60jwrRF2oEuZs0//se4RThgCzekEDg3mvfXhZDnTTZYruJHtxDARYSAorJRoygQEXCJQdULNuc2NHCYTIjaKW3CtEdNdC8SiaS2lDovnE45Ct0akkyaGCkGPcCZpwjCE1+kOCDbUSCeK6zkr1LyVNeIj1z+J79+13pmf6/XVhX7BjXInDIFfPLwZL/3GXZ5YVENqa0gG2kU3pxORYjx8IaKLX/371uG2lo5rjuJV1UhGR4TD1ggAnjBPJ/wIf6tWESRhGDCFbxdRF0i5go02dzy657koWa43i6aU87mo927JJJEwhPc9DreYPlzK2dtsAFu159vcZUUIIRoBXALgjzHr3yeEWCmEWLl3796RjjXAgilNGMhZXmkNQgghAGr0nF0tHI+w4VgjQgFIT8jaQSGsInBmCWuE1KpFjKTF8mhv66qoXVREOOwRtqVfR3hWewO2HfTbIutd6WzpRMuT7u19y5ZeklyUYI8Swl53spCA07WKmrISTCnTiBWwyiPc1pDEg1ddgJPnd5Q4KqXxrBEJ043Q2oHvgBKIzRldCFta0mRx9Q5/3741Qkpgl9bUQlV/UIL6/vV7MZCzPKuKIlxjujUTjAg3ZxKR1oRS3yF9nypyHhdBTZkxVSNMPSKcCOxDCfN00m97HY4IC62Ji57I2N6ghLA/p87GYLLint4hr9Seem1TyrG2qKod1agaEfWOcf/rXwXgwbhbbFLKn0gpl0spl3d1dZU7xkgWTHVKqKlQOSGEEAA1es6uFr5HuDhyK0MRYRVpVT/6XkRYS5ZTy1QdXvVY7S8XakEcFjujFcKqQ1e2YBf5QPV9qgYPqo5wWAirBC4p/WPjRZHtYSLCInhcAD+aGBBwEclygC+YEkZ8RFg11IiqYzxSTM0a0ZByGmqoz9rx8aqIoy/Mslor5XTCHFYIq7961D1pCs+KsWlfP674+Qrc/dweJ1qq7U+/oEm5lSZ0m8LiaS2R7bi9RD3tmIe/q4AuhEdnjWhr8K0Rs9zkTSVi0wlNCGse4YTpzFHNTS9tpwSuXini0uNmBt57X1/Ou2BSr21KJ5BOGL4QroI1YhuAudrzOQB2xGz7ZozTLbYjlBDeRyFMCCEaNXnOrhYF2/Y8wuGktnAd4XDnKvXXrzPsC0TLlkWv/9Ztz2PJv/3NiwTq+1QcbkT4Pb9YiUc2Bq9b9F0aQrdGGJjVHhScKtqp6gYrj3DObWTheYRdIaqig4bwG3cErBGm371NEa4aoR4qgZNMGJhZMiIMVEAHB5PlVEMN97NKJ0zPzqGinAlDuBFh5/NzGpuUthWovz2aEBbCrSNcsLBJS+pPmiJQi1j3brc2OL5qdcFjCOArr16Ga95xStF7q8+oRYusKqGqf9+mtpQrhMPWCBOtmQQSpuEJYVXFRInYdMKM9AgnDOFYI1TVCD0i7EZ/lUXiX847MmCr8LdzljVqQjiT9BPsqlE+7TEAi4UQC4UQKTgnzlvCGwkh2gCcC+Dmio4whlntDUiZBoUwIYQEqclzdrVQLZZNI6LFsq22CZazSoQiwnnNI2y6LWilLPYI//axLQCC9WaLrBGjVHhKIFm2xPO7ewPrwi2WbVtZIwRmtQXLsKnxWHqynCm8SLEan2+DUMdCiz5qETkVVS0vIqxusxslPMLSq2ZxuKgxp5N+HWF1MZRxlwF+y+eOplSgs5xTz7l0DV6vSkLoc1YRYT0aHxbV+muUIFQXPHEC3HlPX+Ar1AWPLq47G5N455kLcP7R06LnkPCPT3huqr7yS+Z14LSFnThujpOQ2BwREdZ9xEnTqUGtaiUnTcO7UFMR4ZfMbcefP3wWPn3xUd5c9M/bt0ao8nHBahrJCnuE41MiXaSUBSHEhwHcDsAEcI2Uco0Q4gPu+qvdTV8L4A4p5bgoU9MQWDi1CetCJwRCCKlnavWcXS0s20bCDFoj1u7owWC+UBTRDdcRNlzRq7dYNrQudeHWy44wyWOoEEyS0hmtwJs/pQkfvWAR/r+7NxStC3uEw9aIKKSUsCy/fJqKFJshYeIIMivg+dXbHnsluEJVI4Ll01SyXLFHWNUfViiP8GiTCnUSekQ4acCW8ETuv75sCRa4XWpVZLWzMeV1PDOEM7ZwqTLne1RsjQijhHdACIc+ez16q6Kq6oInWeJ7oiwfujVCXfDox7IhlcBVrzg6dj/K350JWSPedMpcryTbomnN+O37T8fPH3gRgJ/c1pzxE/n071/CrRqhLEGm4Yj7wbzlff5CCE9YJzU/sqoY0d7giHAvIpxKBMZoVtgaMawQBgAp5a0Abg0tuzr0/FoA11ZqYOVw7Ow23LtuD6SUgQ+CEELqmVo9Z1cD1TRCb7H8vb+vw56eIS9CrISsEhF6xFMXas4te0dUW1JqdYh1IQwM5nxrRLh82miFsGkIfOLlR+GWVTuwKVQ6NGCN0JLlEoZR1JjDH5cbERYCSVN4QliJtbANIi4iHFU1ojkVLJ8WTpZLmobXDKOjKRWog5u3JSyJyM52I+WUBZ24eNl0NKcS3mczkHOi9Zcsm4EprodWeYQ7mpLY359DtmAjnTAhhBMt178DzW4ziETIGhEmnXAuLvRayWHRrNd3bhtJRNgI2lYA3xoRrJNcOnIaFxF+2dLpRds2aTYFAPiP1xxXVNoOgJuY6jf2EEIglXD82cryENzemUtHY8oTwso6oTzCzelEYC5ssaxxwtw27OvLYcehoeE3JoQQUneoxCu9xXLO7R4WFsCeNUIXfYaheYSl45V1m3P41gjnr4qOKrHl7DNUPu0wf8TbIjyVYWuE3mK5tSERWQvWsoPJcqrmrdqX7xEuvnWtH59oj7AZsICE6wgnTIGuljRMQxRVDcgXbO84Hy6nLuzEj69YDsMQmhAOzhPwb/d3NqWchhp5yxN5Sc0mAAQrX6j1UURGhEtEMj1rRLL0fgHNtqK1Tp4ZYY2Iaz2t8FtQl94OABrdY6RKzS2d1RqTyOdcdHoRYVcIA9HfXeFeiHVo34OiqhHpRGCM4Sj94TKhhfCyWU5o/bmdPVUeCSGEkFpE7yznNcBwS4d5VR9CyXLJUETY9wjDs0aoqgsK25aePWAgEBEOCuHDjWa1hYQjUJwsZ0tHECVMA0JE2yNU+TfTcLvPhSLCvtgyAsuB4PFRwi2j/U2YRkz5NEdEpdzKAmcvnopTF3b6+0oYKNh2xapG6BQJYW0+qnxaR2MKQwXLjQj78+7QIpktGT/hD4gXrOmkiWzBxrYDfkQ4YQivK1sYVWNZWQBKNY1IRIhwJSStgDWitMCNS5aLojkdjAiHUZ+/qhqRLzjjMAx//1ERYTWPprSffKeEsLqAa3QbiygYEdZQVyMb9vRVeSSEEEJqEcv1yup1hJWIVdYIr2pEqLMc4PgR9XrBTkRYvd4XHZaUnj1AjwiHS50drvc1LqrmjVcro6WE0vzOxqLXBJLlDC1ZTtVQDjUVCUSEI6pGqIidiq6WKp+mxnXtO0/Fu89a6G3XmDK9znKVtjsqIdXvVm3QtdRFx0zHlafPR1dLGnlLYjBveQI/YRpetQNnDn7Cn7M+3hoB+F3jACeSueILF+Frly/TlgWPjf++JYRwhDVCHWP9DkTY+xtmJEJY1RNuTkfvU1WTSLoXnaoUoTFMRBhw5tOYSnhzD1eN0K0tQlTGNqMzoYVwW0MSXS1pCmFCCCEAgGsffBHv/L8V3nPHI+xksutd1fQ6wF4dYa98WpxH2MlHUT5cvRybpUWE+7Na+TS3o5jicKshtEeIiXAdYYXykn7l1cvwmUuOCrxGXQg41ggtWa6oakRQGDvLtIhwIlg1oilKCLvTP3VhJz50/pFYvqDDf70W6WtMJZAv2G7ViBIHYRQoUagiwvp8jp3dhq9dfqx3K75nMO99ZgumNGLJ9GZvzl5E2CwWo4H3CzUYAfxEMr1JhjpeYY9wqcoISiTrHl01Hb1udWa4iHBEPeI4lNCNiwir6LO6G6DuohhCaJHe6Gh4KmGgwW2a4WynEgeD5dOAyleMAMpMlqtljuxqwoa9FMKEEEKAr/x5beC5c5sdgRbLttYVDoiyRoQ8wlorXN9m4XuD1ToVEdaT5QqWRDpheIlRh22NiPQI+491gacEztzORiyd2Rp4jRIqsclyIii2ggJbiwirZDmvC1iiaHsV3c0kTXz64mAVA11INqRMFOzKVY3QUUKtP6ciwsX7V2K+Z6jgCdL//eeTIaXETU9sR96yAvYOIPhd+fylR+PY2W2BfQHAGUdOwR1rd0c2wlAtsMMe4dIRYf+9r3/PacikTBx0I896JYrhPMInzm3HO89cgOULOktuB/htkeOEcKMnhJ06wt6FlSGGtUZ87MLFOGpGKx59cb+znVc1wi+fpiL6la4hDEzwiDDg2CM27Okr6iFPCCGEWCoirFWNUNaI2GQ5MxhhVbd5bRm0Rth2yBqR9MXWM9sOQUqJgm0Hop6He1s3SkwErBHa43B9Vx3lCTZUslwh6J1VmythrAt4wxCe+A7fXld+W11nlhK1etm1hqRjjbCkrPjtbyWkopLl/G2csRwazAc+MyH8LnQvmdeBo2e0+OXftO/KKQs6ccaRUwH436WzFk3FifPaAfgWHF0kK4HpR4SLq3SE0StWnLFoKk6a1+HNp2DbXoWHzqZo4aloSJn48quWeRHrUsztbMSbT5mLcxZHd5hs0KLchiG0qhF+lDvOGnHF6Qtw6sLOou0aA53lfKFdaSa+EO5qRu9QIVB+hRBCCAFcj7ARrCOsEuXC5dPCdYQB54fXClkjTEMEku3U+ygR8+CGfXjVDx7AU1u7YYWtEYcZ6YzqxGVEeISBoDgJR6J1G0jSNIpsIWqcUdYIwPcJp0MRYSWqzIBHOH4++rFpTJkouB3uKh0RTnvWCCciHBVZ1IVw2PKgnp8wpw23ffwczSIRtHYozlnShQuPnob/fvOJnrBT7x0Uws5r/DrCZSTLKY+w5gFWFw4FS+LY2W246V/OwEnzOiJfPxqSpoFvvu54zJtS7DcHgEatdKAZUTWiKWWWrIQB+BcrqnyaOjbNad8/XOlEOWAyCOFpLQCA9fQJE0IICVGwbZim02JZBXAt1xpR1GI5oo6walABqKoR8PalWyNsNykP8BO49/RmkbdkIOo5Fh7hOGtEkxYRDtel9awRbrJc+PWGJ7aiI5ThJDklYjyPsB5BLiFqdcHXmDKRt2zPzlJJvKoRWRURjtrGtUYM5gOfGeBbFsJ+2oC1Q3vNkV3N+Pk7TsHU5rQncpV3XC8F1lzkEfaT9OLwq0YUX2youtkvmdcxrv0VjnGtNw0p00mW0+44pBJGbDRYJ5MwIYTf4OSkee348quW4owjp3oeb5Me4WKWzHAqRzy3qxdnLppa5dEQQgipJVQprqBH2I3uelUjnL+FiDrCyYBHWMJwGwbYdshnrPmOd3Q7te37hgqBSDFw+EJ4uDrCRiAi7AuucIQzpwths1gIK3Gsonhhq0I4YatU1YhSekwI4TWfaEwlnBbLY+AR9ms8WxAiuiqFEr96+TSFl1gWOo76sYsrV+ZFhN3KHLrt4oQ57djbm/UirZ4FoMT3JKpqhBlzV2C8uOoVR+PMRVMcm4YhkHf/LxhCYMn0lpIRbkUmaaKtIel91xKmgXeeudBbB5SOlI+WCS+Ep7Vk0NWSxprth6o9FEIIITWGJZU1QngRYFVDV4kh3xpRXEdYbxer6gib7r7C5dOULlYis3co73iENVF1uLd22yPqCOuaTt+/fqs+7K0MRoSLhbrfWa7YI+w8D1ojlLhT5bXCtY1LkXKTCVVSoW1X3iOsBLvTPjl633q5sbAQjmt0kQwl+0XhCeFssTXi2Nlt+NTFfkWPTBkNNcIXKUBQ2Fej024qYeDCY5yOdKbhX1QaAiXbPOtkkvGR47FMlpvwQhgAjp3VijU7eqo9DEIIIVUkKmnastyGGkawHrCTRBe0RETVEU6Y4fJpcdYIBJLnAKAvW3DKp+llrsY4IhyfLBcSwgU/YhfsGhf0CCdiPMJqf3M6GpBKGOhy2xUra4S+/XBCOJ1wmk8kTcOrelDphhpqXtm8Fbvvrhb/IiPOAhEXKQbiqzS0eh7hYmtE+HMpJylMXYSkYu40VCEgHMDUbEgjEa5vPW1ebL6XV1au0nX1MEmE8FEzWvHAhn0ouJ10CCGE1B/9Wtky6Sa2FbyGGr5wVSLWe24HI8LhOsJ+spzbWc6IKMEWqisMAL3ZAiwrKIQPV+BFVY0IiCAjWgiHPb55rZxbwGsaaqChhF5RRNh9zdmLu/DEF1+GXYecVsJR1ojhfpbTCQNJ16KRt2ynKkWFf8pVJ7hswY4VmXoHvnDb4TghpltE4kSfunjpj0iWC2uWsiLCXtUIXQj76yttKxkp5frDw1xw9PTYdSyfNgyLpjUjb0ls0VoZEkIIqS96h/LeYy8xzpZaW2TfGqFXffCS5WLqCBd0j7CAZ7MIV40It1PuHSogb9sBUWUepscxExF11LWBLlj1mq9x1gjDEMEIeKiOsBLJxRFhX5g0pxOe0I72CA8XEXbaMjvVK2z3OFdW8KjaxwU7ft+NqYTXTrko8puITpZTx6GxRPOKFrek3KtPmOXsW/MIJ0PHNV1Gi2X/IiX6GFc7IhzVVfBwUd/7sagaMSkiwkd2NQFwMnWP6Gqu8mgIIYRUg94hv7Wx5WbPBz3C/jq9DrDfWc6GEMWd2gqBOsLCu/WrC+GwMAZikuUqIAyWzWpFZ1MK96/fByAkgkaaLCeiq0aEo45FQtgILp/b2Yj3n3sELjhmmjsOf9tyPMJJ00DSdOrPmsYYCGHd911i37M7GnBwIF/sEU5ER2rVcS3VvCJpGnjmKy/3PNv6hVE4Ipw0BYQoXUc4ZRqY09GABVObIudUDY+wzlgk7mXKaDQyWiZNRBgAnt/VW+WREEIIqRY9g3pE2BW5ltNQQ4j4OsIqkpu37aIWrgGPsO2IDOFWjdADwNER4bxTPq2CVSMA4K8fPRsfPPdI73msRzgZL7hU569Uwggmy4lwRDiujnAwUmwaAp97xTGY1pIpGtNwU3aEsPAiwras/C1w0xBeUmEpnTirzbFHxEWEw5FadRyG6+LWkkl6cwpaI4L7E0IgkzBLCj7DEHjgsxfgn06a4y+L+Q5Ug+BFUGX2mWb5tNK0ZJJYOLUJz7ByBCGE1B0//McGnDi33euWBgRrAzse4fjOcro1okjoGMGGGro1IugR9suwKQ65wjwuqelwiLsVHkh8M+MFl7oISCWMwLqwwI2tGhEjkP0xjSRZzokIJ0wDBVtV9Cj5khEjhEDScKpSlPoMprU6SX9hC0Q6YSJlGkXRVnWhEFcxIgo9Oh++8AIc60TU8lIExGeVQ5xxnvXDITOGDTUmhRAGgOPntOHRjQeqPQxCCCHjzHdufx4A8P03n+gtszSRqyoj6FYIW/rbeK2WIxKuTc0j7FkjjOLyaVHWiAP9OQBBX2+lonVx5cniRJ4urITQhLBphKwRRmCcfkQ4bAkIVpcoNb7hpqzEuNpnrmCPSVQzaQrkrNIXI1OaHCE8lA9e1aQSRpE4VvsEho8I6xiGQMp0RHlU5PefXjIHyxd0lL0/YGSe7LFmLDzC5dRXHi2TwhoBAMfPaceuniHs6Rmq9lAIIYRUgR7NI6yL3qgWywAC5dQAIG9HR4QDdYSN6PJpUdaIrQedSgoz2jLeskpFyHQxp2uNuGID+rx0UZxyE9W81ytrhNbUAIivIxwnKkdaPi1pGJ7ozrmVIyqNmkspoTi1xRHC+/qCZbyOmdmCZbNai7YXrsd6JBFhQPccF4/lS69aikuPmzmi/Y3keI81Y2HT8JLl2FAjnuPntAEAnt52CBctzQyzNSGEkMmGXjXCsqXXOMPxh/rWCFfXeuXSfGuEXZSkZIbqCBtul7pwZzndagEAU5pS2O9GhOd2OF3DKhnNEjFRtzgPpS6UVGQUUB7h4ojyvM5GNKVMdLnCcDiPcJiRRAXfdMpcHOzPYTDvl78bCzHnRbdL7Lur2aklHBbCV56+AFeeviB2vyOJCAOO/aE3WzopbiQE7xBUZJejJu4i7XDwrRGVj99OmojwslmtMATw1Nbuag+FEEJIFegZ1KpGaB5eFRGWoYiwt63mEQ5HnJKaR1iqznIR1ggZqiIxt7Ox6HElo5zhyhbe4xjlIYRfLzip3eJPmUGPsNrXqQs7seZrl2BKU6roPQCt9XLMlIK1ZEvP5eJlM/DmU+cFG4+MgZhT8y+173OXTMOFR0/DVa84ZkT7LVU+LYpyGmeMhLGwI4yWcqw6I4XWiDJoTCVw0rwO3LNuT7WHQgghpAroEWEp/Y5xhhFssVwkhKVujRjOI+xbI/QGGlYoeW6eJoTndDiVCCrpe43z4JYKmKloWiJkjdCtEmHhokRNsTVCeJH24cdX3rz1JLKxaJzgifcS+25Imfj5O07xqlGVQ0smGdsaOI64cmyjpbaEsP64sslybKgxDBceMx2rt/dgTy99woQQUg/oUdlDg0FrhBK84TrCISuv31muYEcKvnAdYeU3DnuEbRvobErhtIWdOG62Y9eb2pz2bptXMpoVJ3yUyA2X/wK0LmhaFDLcES08RvW0KCKcMEoKezMwvtjNAugR4bFI+Ep4EeHK7vsnV56MD12waESvUXOt1HeiplosB6pGVGafyiM8Fi2WJ5UQPnWhk2W5auuhKo+EEELIeKCLUb27qGVLLyKsasgqYSxjIsIFO6JqhCn8iLBbR9iM6Cwn3RbLx8xswW/ff7pXhmt2e8YTBpW0RsQJYTX8KCHstUs2h7dGhJ9HWUZKiZw4D3MpKt14JExqmJJvo2XZrDavfnK5pL3kr8rIsMBdgWpHhMcgcS9pOhdsjAgPw9KZbTANgVX0CRNCSF2gorUA8OzOHu+xLSUsy48IB8qnhULCaru8JQPRUsARfAXbF9BeHWHbjySrfapSbYDfVndWe4O3rJI/4nFNC9R7pSOSt5SYTYQiwokyrBFhQZMwjZKJS6OpYjDWHuFEGR7h8SIdU41jtIxFFHa0BDrLVVCUZ0I1ryvFpBLCDSkTR01vwapt3dUeCiGEkHFA08HIWxKz3FJl4YhwKWuEJSXW7uiJjAgnTAMFSyuf5naWs8LWCDdCrARJS8bxjM5sa/DETiWFcFxL3ZLWCHddqkREuMgaoSLCRclyoqSgHEkdYX8svngfi/JpfoJf9ZVwusItg2upjvBYlXJLJ00my5XDCXPb8PS2Q0W3vgghhEw+rNC5fsHUJgDBBhdRLZZ1dvdkcen/dz+e2tId4xHWkuUM54dehpLjbNsR30qgNqdVRDjjibpKRsfiOssZJawRyZiIsF7LNixAfY9wcH+z2xswq70hdnyB2+NlipdgRHgMhPAwtY/HEy9ZrmLl02rHI1xu8uZIedeZC/CKEdZXLofJJ4TntOPQYB6b9w8MvzEhhJAJjbI1KJQQtmy/aoRKllP61w6HhF36c1ZRMk4iUEfYEaAquhzuLGfZ0hN98zobceLcdpx+5BQAqLi/MS4zXw1JlZsKzqW4UoGTLKe1Yg57hEWxeAaAD563CDd/+MwS4zu8ZLkxyIlCMuEMpNoRU8D5fAxRuci3vpux8FePhGCiZOXG8uELFuP8o6ZVbH+KSdNQQ3H8nHYAwKpt3d4JkRBCyOQkHBFeOEUJYd8jbBZ1lovfX1jwJQzDa86hPMJCuPsPlU+zpR8Rbkon8KcP+ULRFJUVwnF1hLMFpymFuvWukwwJYSEc4ZuM2RfgC7WoJDrTiK+dOxoxpFs2xrShRg2EANOhjn6HS7CJRe1YI2oh+j4cNfB1qCxLpjcjkzRYOYIQQuoAPVnONIRXs9eW0lvne4SjrRE64QQwZRvIW9Irn6asEbqgVp3mSrUcrmxEWBc+/vJs3plzKWuE/9dwqmCUEsIq0W+E4krfvGyP8BhbI7y20LUQEU4agQuQw2U0VTrGirGoGjGWTDohnDANHDe7DY9vOVjtoRBCCBlj9GS52e0NnpjS6wibhoBh6MlyvoIt7phWXB3B3x/cOsLF1ghv/XgJ4RixceycNsxsy+DTFx9V9Bple1CR0XREObXiyG/08uEYTcJUoHzaGEQSUzVkjZjZ1oDpbSMruVaKWqojHLTtVG8c5TLphDAAnL24C09v6y7qFU4IIWRyoUeE53U2egLRkjLkEfa9wXoktyg5LuwRdtfnbRu2LSGE8+OuyqUpbOl3novCEGPXWU4Xmq2ZJB7+3IU4eX5n0WvCHuGU191MiwiHxqhE40iz9UfT6WzMy6fVULLcB887Erd8+KyK7S+YMFk7HuFaONbDMSmF8IXHTIOUwN3Psd0yIYRMZpQOfv3Jc/DZS472foRtW3qNMEq1WA4nx4VvVysBWNCsEWpfAWuEmywXJ3ZVVLpSjKZzW9gaoYRnKWuEeh9zhGW+RhMVDHiEx7R8WsV3PWKSpuFVFqkEcVaZaqB/drUQfR+OSSmEl85sxcy2DO5+lkKYEEImMyph7axFU3HcnDZPENjSb5yht1h2kt781xd1TIuoIwwABcuGLX2/sZTFDTVsrWpEGNMQFa2BKsTIxUY4Wc6PCPuCOLwvr7PcCMcu3HrLIxnfmJdPG6MWy7VAoLtgtZPlxqCBzFgyKYWwEALnHTUND27YV9RBiBBCyOTBckPCSoCqXDe9qoPeYjn8kxBVLi24XlkjnIiwEM57qCoRCtttsTxeEeHRRFyVNcATwqHuZlFjV4tGIx5H2lEvNcYtlmupoUalGasmFqPB+784QQ7zpBTCAPDSIzrRmy0EWm4SQgiZXLhN34rEnLIqOOsMP4obqhgRtkIUCWNXPFqWE0kubY0okSwnBCrZHXY0wieqagRQ2js72ogw4H8W5Qt1PYo84rcbfv/mxIpUjoRaSlCLa8tdq0xaIXzaQqeI+f3r91V5JIQQQsYKlSwXjj5aAY+ws9wORXGB+OQ4f72WLOcmwylRHagjbMNtsRw9TsMQRaXZDgfdblCusEuEhK+KwKo5Rold77iOoubtSKPJQggvSj0mVSNURLjaSnEMGI0VZaxQXxUK4Sozoy2DE+e245ZVO6o9FEIIIWOEHYoIB6tG2O46w2uCoZdbAyIaaMREhIPJcvCabPjjKCdZbnRzjNufoly9EW6x7Anh0LHTUWJmVBFh9zUj0UNqTGNSR9jzCFd81zWBWSORWHqEa4jXvmQ2nt3Zg+d20R5BCCGTEb1pBoBA1Yi865tIJUpZI6IbaCi8iLCbLCeEqkkcLp82fLLceLRYLoWaq4qMpr2IcFAQ63jHdRRjH80tcjWmsawaUe1ksrHCP95VHscoLoCqyaQWwpcdPxOmIfBnRoUJIWRSooRtuBWwZUvkCs66pOm3WA4L4XwoRBzfWU5ZMKCJan87a7hkOSFgVjAkPJo6vYmQN9hLlivhnW3JJGAaAp2NqVGMcWTj08c0FmLOby09QRTaCFFfr2pbP0aaJFltJrUQntKcxolz2/Hghv3VHgohhJAxQPmAvdv7WrKcFxE2DT/BLWSNGMxZABzBB0RYJVx1kVd+Y80aoZdPK6vFcgV1QVAIl/eaZEj4hq0RUWOf2pzGPZ86DxccPW3kYxxF9QCvtvEYlk8bhd15QlArSWqmURvjKJdJ+nXwOePIKXh6Wzd6hvLVHgohhJAKoxLWipPlfNtE0jQg3DrC4YjwYN4RwtNbnXa3qZjkuVzBjwhHJd45nuH4aNzMtgxmtjeMfqIh9LcpN8IZbrFcTtUIAJirdewbCUrMjiQCq4TwWERtJ3P5NGDkVTrGiloR5OUy6YXw6UdOgS2Bx148UO2hEEIIqTBeslwo2mdJibyyRiQMTxxYYSHsRoRnuEI4LnkuZznbOdn5SlRr43CrSMSJkB9fsRxfe/WykU8whmD5tPJek0wELRHlRIQPB+FGz0dCVLe7SpGYxFUjgMOr+VxJ/KoRVR1G2Ux6IXzSvA6kEgbtEYQQMgkJl0/zrBG2RM5SEWHhRcuUlUKRdSO901rTACKqRpjhiHC033i4FsuphFG078NBBKwR5SbLRVeNcFpQV158msbIRdlYeoRT6mJpgkQqR8poqnSMBfQI1xiZpIlzl3ThllXbkS1Y1R4OIYSQCqLE6LAeYSOY9KZoSJoAgHmdjQAiGmwYKiKsLBiOkFJVIhQFO5i0Nx54yWgjrCMcTpZT6yrZAtoZnxi5EB7DqhHKAjJB9NmIqRVLQq2Mo1wmvRAGgCtPn499fTl849bnAicuQgghExsV4Q2X+bK08mmORxjecp2vvnoZvvrqZbh42QwA5UWEhRBOcpwWEc6768cz2ugnJZW3/ZLpLThqeosn/tNaS+OEMXLROhyG1uShXFIJ03ttpUmOociuBcKVU6qF972cIAqzrGEKIS4RQjwvhNgghLgqZpvzhBBPCSHWCCHurewwD48zj5yK2e0NuPahTbhj7a5qD4cQQsaUiX7OHgl2KFlOiQEnIqzKpxne+kKobERbYxJvP2MBFk5twsuXTsfJ8zsC61WUVN1RFG75tLBHOF+FiLAYYeTtkmNn4PZ/PafIGgE48wz7ow8X4zCsEWNSNWKCVTMYKX65uiqPI1TTu9YZVggLIUwAPwTwCgBLAbxFCLE0tE07gB8BeLWUchmAN1R+qKPHMAR+/Z7TALDlMiFkcjMZztkjQVkSEiH/p2X7UVxVR1jfXqFEUSZp4idXLsfCqU2B9V6yXMFv3GEajtDWO8up6PN4RuNG20lMbZ8MWSMqWecYcMY30sPhN9So6FAATP6GGqOp0jEWjKZ+dDUp56t2KoANUsqNUsocgBsAXB7a5q0AbpRSbgEAKeWeyg7z8Fk4tQnnH9WFh17YHzh5EULIJGNSnLPLRVkd/Iiwu9z1CCdN4VYviE6WG06oFZdPE15NYsuW3vpqWCPU2Ef6lkqshyPCFQ4IH55HeCxbLFc7ZDpGjPQOwVhhiol1nMsRwrMBbNWeb3OX6SwB0CGEuEcI8bgQ4sqoHQkh3ieEWCmEWLl3797RjfgweNnSGXhxXz/W7GDLZULIpGXSnLPLIZwsF26xHK4dGxcRjkO9Xu8s53iEHWuEYTg+WG/9eCbLjfJWvxqiniyXNI2irnqHixAjF+meNWIMjuNYVqSoBUbqGR8rRtNIpZqU862Pmko4pJoAcDKAVwK4GMAXhRBLil4k5U+klMullMu7urpGPNjD5ZXHzUTKNHDTk9vH/b0JIWScmDTn7FLkCjY++4ensfXAIIC4ZDmpCWG4y4Me4eGEmhmKCKvauKp8mmq5rDzClY6qlsLPzh/d6/SIsGP5qHT5NDHiCwM/IlzRoQDwk+WqnUw2VtSKJWG0lp1qUY4Q3gZgrvZ8DoAdEdvcJqXsl1LuA3AfgBMqM8TK0daYxHlHdeHPq3YUZQ4TQsgkYdKcs0vx4r5+/HblVjywwcn78DPV/WS5nB4R9sqnjTQi7CbLWb41wuss59YNNoXwrRHVKJ82QsERaY0wKy+Ea84aMdmT5UL/B6rFZGyx/BiAxUKIhUKIFIA3A7gltM3NAM4WQiSEEI0ATgPwbGWHWhle85LZ2NObxcMvsMEGIWRSMqnO2XEM5AoAgKzbItmLCHvJchL5gu01URDacp3hfqzDyXKeNcKtGmEIAcOoTh3hsPgvFzVnvXxa0jDGSAiP7DVjKYQne4vl0d4hqDTq8E6UyHtiuA2klAUhxIcB3A7ABHCNlHKNEOID7vqrpZTPCiFuA/A0ABvAz6SUq8dy4KPlgqOnoSWTwG9XbsVZi6dWeziEEFJRJts5Ow7VGnkoH4zEetYIlSwXutUebqgxumQ5Z51l205XNik0D/H4lk8bjdZQwlmvGpFJmcgkK+sRNoyRVzAYS49w2CYz2agVS0KteJXLZVghDABSylsB3BpadnXo+XcAfKdyQxsbMkkTbzh5Ln758CZsvfgozHW7CRFCyGRhMp2z4xhwhfCgighHtFgOeoSjI8LDCbVwspwQ/nvlbel1mvPKp41nQ41RWA/U64Bgstx/vOZYZNxGG5ViNOXTVER4LA6jsrlMlEjlSFHHrNoB78lYNWLS8b5zjkDSNPCje16o9lAIIYSMgoG8igg7f8NdtSwbQY+w+5tcXDWi9Puo9YGIsLuwYNnec+U9Hu8Wy6MRwl7VCM0acezsNiya1lypoQFAoGxduaTHMKEt7BefbNSKN3e01UyqRVkR4cnGjLYMzlw0BStepE+YEEImIoOuR1hFhBOh27G2a41QHuHYOsLDiCIhBJKmQM4rj+ZH3AqWhGEImNAbahzevEaCGEULYwBY2NWEI7qacGSFhW8YcxRtm8fHI1zxXdcE6phVO+LtjWOCCOG6jAgDwIlz2/HC3n4c7M9VeyiEEEJGiLJGZEMeYSUObRlXR3hkHmEASBhGICIctkYYAlXxCI9GaALAzLYG3P3J8zC7vWEMRuVjiJF3iEuNYUJbuPvgZKNW6veqi8GJcpjrVgifd9Q0GAL48i1rqj0UQgghI0QJ4VxEa2NTCLdqhOYRdn/twhHhcpK5EqZANlBHWNkvbM+nq6wR410+rdqipxSjKZ+WTo69NaLaLYjHCr/TYI1EhGv5y6lRt0L42NltuPL0BbhtzS70ZQvVHg4hhJARoKpGKPQon2EIWKqOcGK4iPDwP9ZJ0wiVT3OW5y0J4dYVrkaynDHKiPB4MRohfMHR0/GFS4/BgimVT2Sf7MlytVc1YmIc57oVwgBw6XEzkSvY+K87noeUbLBBCCETBeUNBhxhaoQiwqrFcriO8EiT5QDnhz0XaqgBuMlyhrPME8rjGhEeeee28cQ0Ru5hbmtI4r3nHDEmUc10wsT01jTmdIytJaRa1EodYW8c1R5ImdRlspzilAUdeMcZC/B/D27CKQs6celxM6s9JEIIIWUwoEWEw1FY0xCwbIQ8ws66kTbUAICkIUJ1hH1RbQoBGNIT2ONfPm3c3m7EiFFWtRgrTEPg4asunDDe1ZGi7D/VPuZ+slxVh1E2dR0RFkLgS5ctxZSmFG5fs4tRYUIImSCoqhFAceTJ8JLlfI+wl+BW5BEe/r0SIWuEV4rNkl7yXD7CqzzW1JrQDOMk81V7FEEMQ1TdQztWjLbT4JiNY4Ic57oWwoDzhTl1YSdufmoHrn1oU7WHQwghpAz0iHDCiIoIS+QKdlGClDUKj3DCDHaO8+oIq85yhvCS8Mbzt98QtS3qRuMRJqOnVqwRqmpEtQV5udS9EAaAD553JADgwQ37qjwSQggh5aB7hCOtEaqOcCIoDsIR4fKsEVpE2EDAGqGaWlQjIlyLEVedpCm8kmVk7PGFcG1YI2r5u6lT1x5hxfFz2vHqE2Zh5aYD1R4KIYSQMgh4hENiy9CS5YrqCBcJ4eHfS0+WE5ovV1kjBFCdqhE1bo34yAWL0c+qTOOGXz6t2uOYWNU5GBF2OW52G3YcGsLq7YeqPRRCCCHDMHyynETBKq4jHLZGlGMtSGp1hPXb/flqt1iu8YjwsbPbcNoRU6o9jLqhVry5enObiQCFsMsbl89FR2MSP75vY7WHQgghZBj0ZLlw5MkQArZ0mm2EPcKjKZ9WnCynWSMMxxMZ1dhjrKl1jzAZX0SNWSMmSgc/CmGXtsYkTls4BU9v6672UAghhAxDICIcFsKG32JZ1RH2u8GN3COcMMLJcs7yguV3litUocWyISbO7Wcy9pieJaHK46iRVs/lQiGscdycNmzeP4DugVy1h0IIIaQEeme5sPg0hePptSWGLZ9Wbmc5pZ/1kmWqs5yKQAPjHxGeKGKDjD3qAq3adwnUd5JVIyYgZy2aCgD4wd0bqjwSQgghcUgpMaBVjQhXJjAMgay73m+x7Kwr9ggP/366uNU9wpYtYRoisH58k+VYnoz41EzViBrxKpcLq0ZonDC3Hecf1YX71u+t9lAIIYTEkLPsgMWhKFlOCAzlHcEb9gjnw9aIMqJWSTNaCBdsuygia4xjeGk0LYzJ5KVWypZ5Fo0J8uVkRDjE4ukt2LR/ALbNLnOEEFKL6LYIoNiOYBoCQ25E2PcIO+uUl1dRVrKcpm4dX67zWLdGxI1lLKn1znJkfKm1qhHjeVF4OEyQYY4fC6Y0IVewsePQYLWHQgghJIKBYYSwIQSGCq41wiufFlc1orzOcgqhVWqwbAlT0BpBagP1Vaj2V0K9/0T5blIIh1g4tQkAsHp7T5VHQgghREdKic37+7Fmh3N+ziTdRLjIiHDQGuF7hB0hrNoyl/NbndTS8J1ublodYSP4/uOZqERrBNHxq0bUSER4gnw56REOcdL8dsxub8A1D7yIS46dUe3hEEIIcbn2oU346p/Xes/bGpIYymcjyqf51gg/WS7YWS5hCrdF8vA/1sFkOd8aoV4vqmSN6GhMefMkpFaS5WpFkJcLI8Ih0gkTr33JbDy+5SAGcmwNSQghtcItq3ZgyfRmLxLckkkCiCqfBi8iHK4jXLDDkeKRJ8vp1ghDCOhFK8bTGvGVVy/Fj9520ri9H6lt/GoNtTIOCuEJy0nz22HZEp/83apqD4UQQuqalZsO4NmdPdjTO4SntnbjsuNn4b7PnI93n7UQpy3sBODbHBSmVj5NJbqFG2qELROl0JPlwglqhghaJ8YzQaglk0R7Y2r83pDUNOq7XO06wqaoDUFeLhTCEZw83zm5/m31LuzpHaryaAghpH656sZn8K3bnsNdz+6BlMDLlk7HtJYMvnjZUnS4IjBcAi2QLJdQ5dOcdaqhhu8RHlmynBMBDlohVGRaPSekGtSKN9egNWLi09aQxJ8/fBYA4IH1+6o8GkIIqV92dg9iZ/cQVm46iK6WNI6e0eKtUwI1HBE2hPAEb3IYa0Q5P9aBiG+om5sQAq0NfrrNRKmdSiYftVJHuFY63JULhXAMy2a1oiWTwMrNB6s9FEIIqUt6h/Loz1nY1TOEHd2DmNfZGPhxjROz+vOUVz7NeV4oEsjDjyOcLBdIjhPBiPBEaStLJh81kyxnqIhwVYdRNhNkmOOPYQgsm9XqlekhhBAyvuzucaxphwbz2LivD7PaGwLrUzFCWBejnlj2IsIy8JqykuVC5dECwtgAWjOMCJPqo76W1b4YqxVBXi4UwiVYNqsNz+3sQT7UiYgQQsjYs+tQ1nu8uyeLWe2ZwHoV1S1usaxvE2yxXAgly5XzW50IWCNQbI1gRJjUAP7FXXXHQSE8iTjjyCnIFmzcsWZ3tYdCCCF1g5SOWN3VE0xWnh2KCKtEuJLWiERQHFijKJ927OxW73FR3WAh0KJHhKutQkjdImpEgCYMgbaGJKY0T4yKJhTCJTjvqGmY09GA367cWu2hEEJIXbBxbx8Wfu5W3Ltur2eNUMxsCwnhOGtEhI84qqFGeNs4Ljh6Ov7rDSfg5PkdmNaaDkTcDAG0NiQDzwmpBqaXpFbdcRiGwJ2fOAdvPmVedQdSJhTCJTANgVccOwP3rduLfzy/p9rDIYSQSc/vVm4DADywfi92HRpCOuH/TMVZI8J2BF0YN6edaK0RY40oV7i+7uQ5+OMHz0BjKhHyCAcjwtWOxpH6pZYsCdNaMkglJobEnBijrCJvPW0+hADe+X+P4ecPvFjt4RBCyKTm0Rf3AwDaG1PY1TOEBVOaPDFbZI1wxWxR+TTtuarooLRBwVLWiPLrCIcJNtQIeoRpjSDVwqvfWwNCeCJBITwMC6c24eMXLgEA/Ptf1nreNUIIIZXlYH8OT287BADoGcpjd88QprdlML01jcaUiTbNggAUV4RQqOcNSdOLSilxrCLCCcMYtY1BhKwRLawaQWqAWmmoMdGgEC6D84/u8h5vOzhYxZEQQsjk5enth7wWyD2Deew6NIQZrWnMam/A7PaGouhtXPk09VwXzmbII5w0xagFg/5+4c5yrBpBqoXXYpnKbkTwcJXB8XPace07TwEA1hUmhJAx4kC/Uy7NEED3QB77+3PoaknjMxcfjf/3mmOLth8uWU7v+KY20esIj1YI668TQkwYLySZ3BiMCI8K/u8tk+ULOgEAH/nNE3jGvXVHCCGkcuzvywEAFkxtwraDg7Bsic6mNI6b04bTjphStL1XR7hICDt/de+uiiZbtg3TcJpijFYv6G9HKwSpFVozSWSShvf/gpQHhXCZqGSNvCXxlp8+UuXREELI5ONAfw4JQ2BORyNe3NcPAJhaohZpYhhrRFRZs4Il3aYYlYkI6/5gQqrJ60+eg79+9GykE2a1hzKhoBAeBX3ZQrWHQAghk44D/Tl0NKXQ1pD0zrOdTfFCOBXTFEPdIm6NKGuWt22vTfJo7bz6+5UaHyHjSSZp4siu5moPY8JBITxKhvJWtYdACCGTigP9OXQ2ptCmeXtLCc2k2zUuXD7NFFERYWWNkDCFgFmhiDCFMCETGwrhEfCjt53kPVa37QghhFSGA/05dDalAt7eqc3p2O3jkuU8a0SgmoPzN6+sEYfjEdZ+OSmECZnYUAiPgEuPm4lbP3o2AOCFvX1VHg0hhEwuDvTn0NmcCpQ962gc3hoRFsLqjl2wakSwCYYSw6MhKiKsxkIImVjQ5T9CjuhqghDAhj0UwoQQUkkODDjWCGVpaMkkSpYmi4sIK39xICKsC2FDVKx8mhLq937mPOzoZp15QiYaFMIjJJM0ccTUJjyxpbvaQyGEkElDwbLRPZAPWCNK2SIAIBFTPq1fCeEGvXyav94QwIzWBkxrKb3/OHRrxBS3qsXMtgbMbGuIeQUhpFbhvZxRcMHR0/DIC/uxry9b7aEQQsik4OBAHoAjLJU1Yjj/bVyL5f6sa42IiwgLgQ+dfyT+9KEzRzVWfV8NSZaqImQiQyE8Cl538hwIAbzj/1agL1vA/ev3omcoX+1hEULIhOXggNNMo6Mx5Xl7hxPC6YQB0xDIhMSoZ42I6CwHONaIhGkUva5cwp3lCCETl7KEsBDiEiHE80KIDUKIqyLWnyeEOCSEeMr996XKD7V2OHpGK3741pOwensPLv/BA7ji5yvwvTvXVXtYhBACYGKes1VXuSkBa0RpIZxJmrj2nafgDcvnBJb35xwh3BIbET68sbKbHCGTh2E9wkIIE8APAbwMwDYAjwkhbpFSrg1ter+U8rIxGGNNctHS6Thxbjue2toNgMlzhJDaYKKesw/0O0K4cwTWCAA4e3FX0bK+IUcIq46gQLBCxGiT5BSC91IJmTSU89/5VAAbpJQbpZQ5ADcAuHxshzUxeNUJs7zH96/fh+se3VzF0RBCCIAJes7e1TMEAJjWkkFbQxKvPG4mzl0ybVT7ettL5wNAoAwb4EeCD1cIH+7rCSG1QzlCeDaArdrzbe6yMKcLIVYJIf4mhFhWkdHVOC9fOh0AcOrCTgDAdY9swX/e/jwGcmzBTAipGhPynL3t4ACaUiY6GpMwDIEfvu0k79w6Uj7xsiXY+PVLi0qvKQFrHGZEl9YIQiYP5ZRPi/ofL0PPnwAwX0rZJ4S4FMCfACwu2pEQ7wPwPgCYN2/eyEZag8ztbMRz/34J0gkDb7j6YazcfBBrd/agIWXiQ+cvqvbwCCH1yYQ8Z289MIg5HY0VSz6LapbhCGF5+BFhV0gvn99xWPshhFSfcq6LtwGYqz2fA2CHvoGUskdK2ec+vhVAUggxNbwjKeVPpJTLpZTLu7qKfV0TkUzShBACR3Y1e8uyblcjQgipAhPynL3t4ADmdo5tHV6lfw83optOmPj9B07HNe88pQKjIoRUk3KE8GMAFgshFgohUgDeDOAWfQMhxAzhXsYLIU5197u/0oOtZWa2Z7zHo23bSQghFWDCnbOllNh20IkIjyUqElyJoPMpCzoDdYoJIROTYa0RUsqCEOLDAG4HYAK4Rkq5RgjxAXf91QBeD+CDQogCgEEAb5ZShm/FTWpmtvlCuHeIHmFCSHWYiOfs7oE8+rIFzOkY24iw6kDHZDdCiKKsFsvurbNbQ8uu1h7/AMAPKju0icVL5vlesbU7eiClZKF1QkhVmGjn7K0HBwA4eRdjiahQ1QhCyOSB1RArxOJpvkf44Y37ccNjW0tsTQghRLHt4CAAYO44WSNoXyOEKCiEK4QQAv/41HlIu+V6bnpie5VHRAghE4P1u52GRHPGOFnOt0aM6dsQQiYQFMIVZOHUJtzz6fPwsqXTsWLTASz/f3/HR3/zJB56YR/qzDJNCCFlkS1YuH7FZrz0iLFPPmt3G2zQGkEIUVAIV5iZbQ34j9ccCwDY15fFLat24K0/fRTfv2t9lUdGCCG1x81P7cDuniw+eN7Y116f2pwGQGsEIcSHQngMmNaawdNfeXmgq9GvH9mMwRzrCxNCiM6DG/ZhZlsG5ywuKmNccaY0pwDQGkEI8aEQHiNaM0ms/erF3vN9fTkc86XbirbLWzZtE4SQumVn9xDmdVauo1wpvIgwrRGEEBcK4TEkYRq47j2n4ZMvW+It68/6NYazBQuLv/A3fO/vtE0QQuqT7d2DmNU+tklyCiWEbQYfCCEuFMJjzJmLpuK95xyBlOkcalUvEwAO9ucBAP97z4aqjI0QQqqJZUvs6hnCLK0z51gytcWxRhzsz43L+xFCah8K4XEgk3T60gPAPc/vxaEBRwD/bfVOAEDeYnSCEFJ/7OkdgmXLcY8IH6AQJoS4UAiPE/Pcjknf/NtzeMe1K7By0wF89c9rqzwqQgipHju6nUYa4y2Ee4YKw2xJCKkXKITHiY6mlPf4yS3deGFvX2C9bTMqTAipL7Z3DwEAZo+bEE4NvxEhpK6gEB5Hvv26473Hq7YdCqz789M7xns4hBBSVVREeGbbOHmE3YgwIYQoKITHkTeeMhd/+tCZAIDrH93iLZ/anMKtz+ys1rAIIaQq7OweRGsmgZYx7iinaEonxuV9CCETBwrhcebEue34zuuPR9L061iefuRU3L5mN7588+oqjowQQsaXbQfHr3QaIYREQSFcBd6wfC6e/vLF+PhFi3Hs7FacNK8dAPCLhzfjqa3dVR0bIYSMF+v39GHRtOZxfc93nLEA//bKY8b1PQkhtQvvE1WJhpSJj1+0BB+/aAlyBRtLprfgXdc+hj8+vg0nzm0HAAzkCmhMJfDszh4cPaNlXDovEULIeDCQK2DLgQG84eQ54/q+X3n1snF9P0JIbUMhXAOkEgbOXDQVrzx+Jq5fsQWDeQuGAH63cht+8a5T8fZrVuATL1uCj164uNpDJYSQirB+t1M5Z8mMliqPhBBSz9AaUUN87hXHwLIl/vD4Nvxu5TYAwB8fd/8+sa2aQyOEkIry/K5eAMBR0ymECSHVg0K4huhqSeOPHzw9sOyWVU5Ztc37B6JeQgghE5Lnd/cikzQw1202RAgh1YBCuMY4eX4n1n7tYtzxr+fgytPnB9at3n4IH7vhSQzlrSqNjhBCKsO63b1YPK0FpsHcB0JI9aAQrkEaUwksmd6CN5w8N7D8sv95ADc/tQN/fZo1hwkhExcpJdbs6MExM2mLIIRUFwrhGmbZrNbI5bet2YWhvIXugdw4j4gQQg6fbQcHcaA/h+PntFd7KISQOodCuIYxDIE3Lp+D847q8pZ1NqXwxOaDePs1K3Di1+7EihcPVHGEhBAyclZt6wYAr1QkIYRUC5ZPq3G+/foTAAC/fHgTLjpmOu5dtxefu/EZ7HcF8Bt//DCe/srL0TpOLUoJIeRwWbW1G6mEgaNYOo0QUmUYEZ4gXHn6Asxqb8DZi6cWrXt808GiZZ/5wyr85L4XIKXE71duxcF+2igIIbXBqm2HsHRmK5Imf4IIIdWFZ6EJxpyORiyY0ogpTSk8+7VLkDIN3L9+Hzbv78emff0AgGd39uB3K7fh67c+h9Xbe/DpPzyNf/vT6iqPnBBC3ES57Ydw/Jy2ag+FEEJojZiI/PWjZ8OWEg0pE8fNacM1D76Iax58EQBw/lFd+Mfze71tX/WDBwAA2w6yDjEhpPrsPDSE/pyFJWykQQipARgRnoA0pRNocT3B86cEi9HrIlho5TnX7e7Dnp6hcRkfIYTEsX6P01p50bTmKo+EEEIohCc8n73k6KKC9FOb03jj8jlY/ZWLsfZrF+P/3nEKBvMWzvzW3fjeneuQK9jYtK8fli2rNGpCSL2yfrfTWnkxhTAhpAagNWKCM701g6e//HL8+pHNeM1LZqM/W8ARXcEfmPOPnoaLl03H7Wt24/t3rcf371oPAJjRmsFv3vdSLJzaBACwbQlLSiawEELGjBf29qGzKYUpzelqD4UQQhgRngw0pRN4/7lHYnprpkgEKz718qPwjjMWoKPRL7O2q2cIL//evXh+Vy96hvL48i1rsPgLf4OUjBQTQsaG9bv7aIsghNQMFMJ1wuLpLfjKq5fhbx87x/MONyRN5C2Ji//7Prz1p4/gV49sBgBsORCfWPfC3j487RbDJ4SQkSClxPo9FMKEkNqB1og6Y0ZbBk998eUYzFuY0ZbB3c/txoMb9uPnD7zobfPIxv2YP6Up8vUX/te9AIBN33zluIyXEDJ52HloCIcG8ziKFSMIITUChXAd0taYRBsci8QFR0/H+UdNw9YDA3hqazf29Gbxb39ajRltDThlQQeyeRsdTSkAjodYkbdseokJISPiyS3dANhamRBSO1AIEwghcPU/nwwA2N49iH/++aN4+zUrYAggYRj42EWLccXp8/Gh657wXvPwC/tx2hGdSCfMkvu++7ndeMncDk9ME0Lql6e2HkQqYeCYma3VHgohhACgR5i4GIaAYQjM7WzEu85cCACwJZCzbHzn9ufxn7c/j/vX78MUV9Beec0KnPjVO/Hje1/AM9sO4b//vg57eoN1ig8N5vGua1fi/b96fNznQwipPZ7c0o1jZ7UileBPDyGkNmBEmBTxttPm4YiuJsxsa8BgzsKrfvAAfvnwZpx+xBRc845T8NofPYjndvViMG/hG397znvdwf4cPnLhYlz/6Bb8y3lHYm9vFgDw3K6eak2FEFIj5C0bz2w/hH9+6fxqD4UQQjwohEkRCdPA2Yu7ADi+4KUzW7F2Zw8+ftFiNKRM/PWjZ+Nbtz2Hn9y3MfC6Xzy8GY++eADP7epF0jTwrdsckVypYmw7ugcxsy0DIcTwGxNCaorV2w8hW7Dxknnt1R4KIYR4UAiTkhiGwI3/cga2HRz0Sh6ZhsBnLzka7zvnCDSlEsjbNi78r3uxtzeL53Y5XaOUCAaA3qECXvH9+3Huki5cfe8LmN3egAevugAAULBsmIYYVtw+va0br/7Bg/j2647HG0+ZO0azJYSMFQ9u2AcAOP2IKVUeCSGE+NCoRYYlkzSL6n6ahsDU5jQaUiZaM0n89MrlyCT9r1NLJniN9ezOHlx97wsAnIS87d2DAIBP/n4Vzv/Pe3CwPwcpJXqG8pFjeN4V2J+/6Rl0D+QqNjdCyPjwwIZ9WDarlR3lCCE1BSPCpCKcOLcdj33hInz91mdx/lHTcMHR07DoC3+L3f5/79mAOR2NuPmpHQCA363cis6mFD79h6fx90+cg60HB/Hszh78y3mLAACDeQsAULAlTvzanQCAd5+1EJ+55KhhK1cQQqrLQK6AJzZ3451nLqj2UAghJACFMKkYLZkkvvFPx3vPv3b5Mnz3znU4bWEnvv7a43DP83vxyd+vAgD8+pEtAICEIWBLiTvX7sa0VidSdNF37/P28eZT5qGzKYUd3cGKFADw8wdexC2rduCxL1w0ltMihBwmT23tRs6ycfqRtEUQQmoLCmEyZlx5+gJcefoC7/nsjgYAwLvOXIg3njIHKdPA3M5G/Oz+FwOe4sA+rnkU33n9CdjhWinC7O3NQkqJr/55LS5eNoM/tITUIOt39wEAlrJ+MCGkxqAQJuPGaQs78aO3nYQLjp6GTNK3M1xx+nz8+pHN2N49iLecOg8H+3O4bc0uAMDq7T14xffvL7nfn9y3Edc+tAl3rt3tJeERQmqHF/b2oSWTQFcL/cGEkNqCyXJk3BBC4NLjZgZEMAA0pxO4+cNn4uuvPQ4fuWARls1yokbhH82PXrAIN/7LGWhrSAaWq1rGCXNsyqoN5iy85xePYf3u3jHZPyGTnQ17+nBkVzNLHxJCag4KYVITTG1O462nzcOs9gacsWgqAOAzFx+Fs9zHAHDivHacNK8DT33pZXj76cGi/K85cRY27x/Amd+8G9+943kAThRqMGd52wzlLc9iMZS38PVbn8WKFw946z9349P43p3risb28MZ9+Puze/C1v6ytyFz/5brH8dafPlKRfREyEXhhryOECSGk1ijLGiGEuATA9wGYAH4mpfxmzHanAHgEwJuklH+o2ChJXXHy/A7c/5nzMaejASfP78BP738Rrzh2Bs5e7IhiIQQ+8bKjkDQNzJ/ahO7+HC47YRaSpoG7ntuD//nHBiRMA991Re2cjgYsmtaM9bv7sL17EM9+7RI8sGEffnLfRvzkvo146KoL8MSWg/jNiq0AgOPntOFvq3dhVnsD/r+71uPfXnkMAOD+9fuwp3cI01oyAIBswYIpBBKmfz15sD+H/f25onJzOrc+s6to2X//fR0KlsSnLj6qMgeR1DW1dM7uHcpjd08WR05rGovdE0LIYTGsEBZCmAB+COBlALYBeEwIcYuUcm3Edt8CcPtYDJTUF3M7GwEAR3Q14xv/dFzR+rbGJP7tsqWBZd95wwk42J/D669+KCCC2xuTuOf5vd52n7/pGdz05Hbv+RnfvBsAYAjAlsC7f7EysN9bVu3wHr/jmsdw68fOxq5DQ7jgv+5BKmHgu288AectmQbDELjsfx7A9u5BvPiNSyGEgG1L3P3cHpy1eGqRJWQwZ6Eh5Sz777+vBwAKYXLY1No5+4W9/QDAiDAhpCYpxxpxKoANUsqNUsocgBsAXB6x3UcA/BHAngqOj5AR0dGUwg/eehIA4APnHokHPnsB/vKRs5Fyo7bTWtIBEay4/MRZ+O37T8d5R3XhlAUdgXVPbzvkPV67swe9Q3n8bfVODOQsdA/k8a5rV+Lsb/8Dv31si9coZNtB5+8vHt6E9/xyJT503RP49O9X4c+aqN58wBEIth3dhLpnKI/P3/QM9vQWl44jpAQ1dc5eucmxHy0ucZeEEEKqRTnWiNkAtmrPtwE4Td9ACDEbwGsBXADglLgdCSHeB+B9ADBv3ryRjpWQsjhmZivu/uS5mD/FvxX7t4+fje6BHGa1N+B9v3wcz2w/hIQh8MrjZ+Lmp3bgW687HpmkiWvfeSoA4IYVW3DVjc9E7v+4r9wBAJjRmsG7zlqAr9/6HLZ3D+Kzf/S3X739EL765zX4+7OOxrjrOefv7x/f5m2zbncfjp7Rit2a0N11aAh7eodw/Jx2fPWWtfjjE9vQ0ZjEWYu6WBqOlEvNnLMHcxauvncjTlvYiYVTaY0ghNQe5USEo9J8wyGs/wbwWSmlFbGt/yIpfyKlXC6lXN7V1VXmEAkZOUd0NcM0/K/ukV3NOHl+J2a2NeDPHzkLD3z2fDzw2Qvw7dcfj8f/7aIi28Ibl8/FRy9cXLTfi5dNB+D4iP/nrS/B+845Eqcf4QvU699zGtIJAx+87glPBP/rRUvw1tPm4d9fc2xgX7ev2QUpJR7ZuN9b9tJv3IVX/+BBDOUtrN7uRKJ/+I8X8JafPoKhfMn/XpFs2NOLm57cNvyGZDJRM+fsXz2yCfv6svjky49ixQhCSE1STkR4G4C52vM5AHaEtlkO4Ab3RDcVwKVCiIKU8k+VGCQhlWZOR6P3ON1c3KLZMAQ+8bIl+KeXzMaKTQdw7pIu7OvLYtmstoC3FwBee9JsPLxxP+799HmYP6UJpx0xBfet24uT5rXjlIWdeO85C9GYSkBKiS/+aTUMAbz51Hm4/tEtuGPNLuStYmvEhj19ns1C8aHrnsBPr1wOwxBY8eIB3LtuDz5+0RIkDBErMt7y00extzeLcxZ34bFNB3H6kVPQ1pDEUN5COmFQnExOauacffbiLvzrRTZOXdhZyd0SQkjFEFJG+xO9DYRIAFgH4EIA2wE8BuCtUso1MdtfC+Avw2UgL1++XK5cubLUJoRMCKSU6MsW0JJx6htv2T+AO5/djXecsSAQlQaAF/f1oyll4vHNB/HB657wll/x0vl4eON+DOUtbDs4iI9duBjfv2t90XsdM7MVv33/S/GSr90JS/MWX/OO5Zjb0Ygju5phGAIFy8YfHt/m2TvSCQPZgo0juppw84fOxLnfuQdXnj4fH79oCWxb4rpHN+P0I6dg0bQWDOUtZJIm9vQMoaslTbEcgxDicSnl8mqPIwzP2YQQUkzcOXvYiLCUsiCE+DCczGITwDVSyjVCiA+466+u+GgJmUAIITwRDADzpjTi3WctjNxW+SRf6top3nHGAnzpsqUwXMFcsGwc9cXbPBF8yoIOPLbpoPf6Z3f24HjXo6zzrmsdgXLFS+fjfeccgae2dgc8ztmCDQDYuLcfX7p5DQ705/C/97yANy6fi837B/DFmx2N9L03nYB//e0qfPyixfjvv6/HqW43wP/467PoaEzhS69aWvTeA7kCGlPFp5IX9/VjdnsDUgnHgfWrRzbjmW3d+PbrT4g8NgDwH39di2zBxtcuPzZ2G1IanrMJIaR8ho0IjxWMLpB650B/Dh2NyaKI67/+9imvssVjX7gIfdkC0gnDK/Om+M17X4rj57Rhe/cgfr9yK356/4uR73PFS+fjV49sxiuPm4knthzEzkNDSCcMSACXHT8TfUMF3LF2d+w4X3pEJx7Z6GT+/7/XHIsX9vbhzafMw+rth3DKgk6c851/4FuvOw5vOmUe3v+rlZjWksGbTpmLy/7nAXzswsU4NJjHnI4GXPvQJuzuGcLar12CpBmdnrDgqr8CgFd+Lo5fPbIZhgDedtr82G0AYHv3IN5+zQr83ztO8UryAcCmff3ozxWwbFZbydeXolYjwmMFz9mEkInMqCPChJCxobMpFbn8P157LF530hyc5TYQUa2m//6Jc/H3Z3dj+8FBnLV4qldFYsn0FnzhlUuxYtNBrNra7dkgTEPgipfOx3vPOQKffPkSZJImbnxiOz5/0zP46IWL0TOYx4/v2wgAeP3Jc3D/+r3Y3ZP1xvard5+K//eXZ/Gwlsz3b39aDQD4vwc3AQD+6aTZAIDP/vEZ5C2J29c4gvo3K7YAQKS9Y/P+ASya1oy+bAFfvnkNLjh6Gvb1ZXHyfL9s3dYDg5g3pRH/dcfzWDStGZefOBt5y8anfr8KgznLE+4nzm0vKWave2QzNuzpw+9XbsUnXu7XaD7vP+8BAGz65itjX0sIIWTyQyFMSI3RmEp4Ilhn0bTmkh3r/vdtJ+H53b04/6hp2NE9CNMQmN6aCWzz1tPm4eJl09HZlMLunqwnhL/+2uOwaX8/rn90Cy46ZjpeMq8dTekErn/vaXj59+7D+j19OGZmK3YeGsRxs9tw//p9AIAbn/BrMiuRDACFmNrIAPC6/30IR89owe6eIWzaP4A/PlFc1eKhF/ZhRtsc/M/dGwAAT27pRiph4OannJyv+VMasXn/AK5/dAv+47XBhisDuQJ2dA/i0GABPUN5AEA6WZwQCThR+bgLEkIIIZMfCmFCJgmz2hswq73BexzHlGYnwjyjLYNLls1AV0saqYSBJdNb8JVXLwtsK4TAb99/Om55ajuuPH2B52U+NJDHLx7ehO/euQ5vXD4Hs9obcGgwj837B3DJsTOQThgwDYEPX/+kt6+XLZ2OO9fuxqHBPB598UDJuVx14zNYoW1z7UObADjJgpcdPxPvPfsIfPDXj+O6R7fgQH8On7nkaExtTuHpbYdw7UObcGfI6nHHml2wbYn3n3sk/vqMX0Dhe3euKyprRwghpH6gR5gQMiqklHh2Zy+OntHiCeQwdz+3G5/6/dO459PnoTWTRLZg4RX/fT827nO66l28bDp+8NaTcP/6vfi/BzfhytMXYCBXwPfuXIdN+weK9rfqyy9HW4OTmNg9kMO7rn0MT2zpPqx5PPDZ8wPl9MqFHmFCCJk4xJ2zKYQJIeOKbUts2NuHD/z6cfzsyuU4oqvY7tEzlMdF/3Uvzlo8FV999TL0Zy0kTeFFsxW9Q3mc8NU7EHZi3PrRs9HVksZgzsKnfr8KKzYFI9C//8DpmNGawdnf/gc+8bIlkc1ThoNCmBBCJg5MliOE1ASGIbBkegvu/uR5sdu0ZpK47zPnex3/9PJ0Oi2ZJP7+iXPxpye3wzQM7OkdwutOnoOls1q9bS5/ySxsPtCP/37TS/DIxv04YW4bTlngNHj49uuPD3QGJIQQUl8wIkwIIaOAEWFCCJk4xJ2zo4t5EkIIIYQQMsmhECaEEEIIIXUJhTAhhBBCCKlLKIQJIYQQQkhdQiFMCCGEEELqEgphQgghhBBSl1AIE0IIIYSQuoRCmBBCCCGE1CUUwoQQQgghpC6hECaEEEIIIXUJhTAhhBBCCKlLKIQJIYQQQkhdQiFMCCGEEELqEgphQgghhBBSl1AIE0IIIYSQuoRCmBBCCCGE1CUUwoQQQgghpC6hECaEEEIIIXUJhTAhhBBCCKlLKIQJIYQQQkhdQiFMCCGEEELqEgphQgghhBBSl1AIE0IIIYSQuoRCmBBCCCGE1CUUwoQQQgghpC6hECaEEEIIIXUJhTAhhBBCCKlLKIQJIYQQQkhdQiFMCCGEEELqEgphQgghhBBSl1AIE0IIIYSQuoRCmBBCCCGE1CUUwoQQQgghpC6hECaEEEIIIXUJhTAhhBBCCKlLKIQJIYQQQkhdQiFMCCGEEELqEgphQgghhBBSl5QlhIUQlwghnhdCbBBCXBWx/nIhxNNCiKeEECuFEGdVfqiEEELKgedsQggpj8RwGwghTAA/BPAyANsAPCaEuEVKuVbb7C4At0gppRDieAC/A3D0WAyYEEJIPDxnE0JI+ZQTET4VwAYp5UYpZQ7ADQAu1zeQUvZJKaX7tAmABCGEkGrAczYhhJRJOUJ4NoCt2vNt7rIAQojXCiGeA/BXAO+K2pEQ4n3ubbiVe/fuHc14CSGElIbnbEIIKZNyhLCIWFYUPZBS3iSlPBrAawD8e9SOpJQ/kVIul1Iu7+rqGtFACSGElAXP2YQQUiblCOFtAOZqz+cA2BG3sZTyPgBHCiGmHubYCCGEjByeswkhpEzKEcKPAVgshFgohEgBeDOAW/QNhBCLhBDCfXwSgBSA/ZUeLCGEkGHhOZsQQspk2KoRUsqCEOLDAG4HYAK4Rkq5RgjxAXf91QBeB+BKIUQewCCAN2mJGIQQQsYJnrMJIaR8RLXOfcuXL5crV66synsTQsjhIoR4XEq5vNrjGC94ziaETGTiztnsLEcIIYQQQuoSCmFCCCGEEFKXUAgTQgghhJC6hEKYEEIIIYTUJRTChBBCCCGkLqEQJoQQQgghdQmFMCGEEEIIqUsohAkhhBBCSF1CIUwIIYQQQuoSCmFCCCGEEFKXUAgTQgghhJC6hEKYEEIIIYTUJRTChBBCCCGkLqEQJoQQQgghdQmFMCGEEEIIqUsohAkhhBBCSF1CIUwIIYQQQuoSCmFCCCGEEFKXUAgTQgghhJC6hEKYEEIIIYTUJRTChBBCCCGkLqEQJoQQQgghdQmFMCGEEEIIqUsohAkhhBBCSF1CIUwIIYQQQuoSCmFCCCGEEFKXUAgTQgghhJC6hEKYEEIIIYTUJRTChBBCCCGkLqEQJoQQQgghdQmFMCGEEEIIqUsohAkhhBBCSF1CIUwIIYQQQuoSCmFCCCGEEFKXUAgTQgghhJC6hEKYEEIIIYTUJRTChBBCCCGkLqEQJoQQQgghdQmFMCGEEEIIqUsohAkhhBBCSF1CIUwIIYQQQuoSCmFCCCGEEFKXUAgTQgghhJC6hEKYEEIIIYTUJRTChBBCCCGkLilLCAshLhFCPC+E2CCEuCpi/duEEE+7/x4SQpxQ+aESQggpB56zCSGkPIYVwkIIE8APAbwCwFIAbxFCLA1t9iKAc6WUxwP4dwA/qfRACSGEDA/P2YQQUj7lRIRPBbBBSrlRSpkDcAOAy/UNpJQPSSkPuk8fATCnssMkhBBSJjxnE0JImZQjhGcD2Ko93+Yui+PdAP52OIMihBAyanjOJoSQMkmUsY2IWCYjNxTifDgn1bNi1r8PwPvcp31CiOfLGaTGVAD7RviaicRknt9knhswuec3mecGjH5+8ys9kArBc/b4MZnnN5nnBkzu+U3muQEVPmeXI4S3AZirPZ8DYEd4IyHE8QB+BuAVUsr9UTuSUv4Eh+FFE0KslFIuH+3ra53JPL/JPDdgcs9vMs8NmJTz4zl7nJjM85vMcwMm9/wm89yAys+vHGvEYwAWCyEWCiFSAN4M4JbQoOYBuBHAFVLKdZUaHCGEkBHDczYhhJTJsBFhKWVBCPFhALcDMAFcI6VcI4T4gLv+agBfAjAFwI+EEABQmMxXI4QQUqvwnE0IIeVTjjUCUspbAdwaWna19vg9AN5T2aFFMtlL/Ezm+U3muQGTe36TeW7AJJwfz9njxmSe32SeGzC55zeZ5wZUeH5CysgcCkIIIYQQQiY1bLFMCCGEEELqkgkjhIdrGVrrCCGuEULsEUKs1pZ1CiHuFEKsd/92aOs+5871eSHExdUZdfkIIeYKIf4hhHhWCLFGCPExd/mEn6MQIiOEWCGEWOXO7avu8gk/N4UQwhRCPCmE+Iv7fDLNbZMQ4hkhxFNCiJXuskkzv1qF5+zaZTKfrwGesyfB3Mb3nC2lrPl/cBI+XgBwBIAUgFUAllZ7XCOcwzkATgKwWlv2bQBXuY+vAvAt9/FSd45pAAvduZvVnsMw85sJ4CT3cQuAde48Jvwc4dRlbXYfJwE8CuClk2Fu2hw/AeB6AH+ZhN/NTQCmhpZNmvnV4j+es2v7ezOZz9fueHnOnthzG9dz9kSJCA/bMrTWkVLeB+BAaPHlAH7hPv4FgNdoy2+QUmallC8C2ADnGNQsUsqdUson3Me9AJ6F081qws9ROvS5T5PuP4lJMDcAEELMAfBKODVlFZNibiWY7POrNjxn1/D3ZjKfrwGeszGB51aCMZvfRBHCI20ZOlGYLqXcCTgnJgDT3OUTer5CiAUAXgLnKnxSzNG9DfUUgD0A7pRSTpq5AfhvAJ8BYGvLJsvcAOcH8A4hxOPC6ZQGTK751SKT9ThOuu/NZDxfAzxnY+LODRjnc3ZZ5dNqgLJbhk4SJux8hRDNAP4I4ONSyh4hoqbibBqxrGbnKKW0AJwohGgHcJMQ4tgSm0+YuQkhLgOwR0r5uBDivHJeErGsJuemcaaUcocQYhqAO4UQz5XYdiLOrxapt+M4Iec7Wc/XAM/Z+ksiltXk3DTG9Zw9USLCZbUMnYDsFkLMBAD37x53+YScrxAiCeekep2U8kZ38aSao5SyG8A9AC7B5JjbmQBeLYTYBOf29QVCiF9jcswNACCl3OH+3QPgJji3zSbN/GqUyXocJ833ph7O1wDP2ZhYcwMw/ufsiSKEh20ZOkG5BcDb3cdvB3CztvzNQoi0EGIhgMUAVlRhfGUjnFDCzwE8K6X8rrZqws9RCNHlRhUghGgAcBGA5zAJ5ial/JyUco6UcgGc/1d3Syn/GZNgbgAghGgSQrSoxwBeDmA1Jsn8ahies2v4ezOZz9cAz9mYoHMDqnTOHqusv0r/A3ApnMzWFwB8odrjGcX4fwNgJ4A8nCuYd8NpcXoXgPXu305t+y+4c30ewCuqPf4y5ncWnNsRTwN4yv136WSYI4DjATzpzm01gC+5yyf83ELzPA9+BvKkmBucqgWr3H9r1Lljssyvlv/xnF39OZSY26Q9X7tj5Tl7gs6tGudsdpYjhBBCCCF1yUSxRhBCCCGEEFJRKIQJIYQQQkhdQiFMCCGEEELqEgphQgghhBBSl1AIE0IIIYSQuoRCmNQtQojzhBB/qfY4CCGEDA/P2WQsoBAmhBBCCCF1CYUwqXmEEP8shFghhHhKCPFjIYQphOgTQvyXEOIJIcRdQogud9sThRCPCCGeFkLcJITocJcvEkL8XQixyn3Nke7um4UQfxBCPCeEuM7tuEQIIWSU8JxNJhIUwqSmEUIcA+BNAM6UUp4IwALwNgBNAJ6QUp4E4F4AX3Zf8ksAn5VSHg/gGW35dQB+KKU8AcAZcDpGAcBLAHwcwFI4HW3OHOMpEULIpIXnbDLRSFR7AIQMw4UATgbwmHvh3wBgDwAbwG/dbX4N4EYhRBuAdinlve7yXwD4vdu3fLaU8iYAkFIOAYC7vxVSym3u86cALADwwJjPihBCJic8Z5MJBYUwqXUEgF9IKT8XWCjEF0PbleoVXurWWVZ7bIH/Jwgh5HDgOZtMKGiNILXOXQBeL4SYBgBCiE4hxHw4393Xu9u8FcADUspDAA4KIc52l18B4F4pZQ+AbUKI17j7SAshGsdzEoQQUifwnE0mFLySIjWNlHKtEOLfANwhhDAA5AF8CEA/gGVCiMcBHILjSQOAtwO42j1pbgTwTnf5FQB+LIT4mruPN4zjNAghpC7gOZtMNISUpe5OEFKbCCH6pJTN1R4HIYSQ4eE5m9QqtEYQQgghhJC6hBFhQgghhBBSlzAiTAghhBBC6hIKYUIIIYQQUpdQCBNCCCGEkLqEQpgQQgghhNQlFMKEEEIIIaQuoRAmhBBCCCF1yf8PIGcUqK7E8R4AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "236s_iimage_1139765223418_CLEAN_ClassS_166-294.roi.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADYCAYAAABberBAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADmZ0lEQVR4nOz9eZhk6VXdja6TmZEx5lDV3aputSQ0ICEQ1wzGAsl8GBuwwR8gPCDAA2KwBR4+sP2Zyffa4FlcGxu4xvInPAA2j4XAmMFgsI0tgxGIQYBBEggJCU09qasqKzMiMjIz4tw/Mn9vrrPrZFV1V3VnVtVez5NPdkWc8553iuhca6+936quayUSiUQikUgkEolEIpFIPBEsnXYHEolEIpFIJBKJRCKRSNx+SEEhkUgkEolEIpFIJBKJxBNGCgqJRCKRSCQSiUQikUgknjBSUEgkEolEIpFIJBKJRCLxhJGCQiKRSCQSiUQikUgkEoknjBQUEolEIpFIJBKJRCKRSDxhpKCQeNpRVdVbq6r61NPuRyKRSCSOUVXVe6qq+vQbvLauqurDn+RznvS9iUQikUgkzhZSUEg87ajr+iV1Xb/xtPtxPVRV9aeqqvrdqqrGVVX9UFVV50+7T4lEInEno6qqblVV/7qqqitVVT1cVdVfO+0+JRKJxFnDrRZmb6S9/Ls4cRJSUEgkWlBV1Usk/T+S/qykC5Imkv75qXYqkUgk7nx8k6QXSvowSX9Q0tdWVfWZp9qjRCKRuMuRfxcnroUUFBJPO9xWW1XVN1VV9f1VVf27qqq2q6r69aqqXlRV1TdUVfVoVVXvq6rqD9u9X1pV1duPrv2dqqq+IrT9tVVVPVRV1QerqvpzrrgeRb7+cVVV762q6pGqqv5FVVX9E7r5pyX9aF3XP13X9Y6kvynpj1dVtfbUzEoikUicHVRV9dKqqn6uqqrLR9+p/6yqqtVw2R89+h7+UFVV/6iqqiW7/8uOvqsvVVX1k1VVfdgNPvqLJf3duq4v1XX9dknfKelLbs2oEolE4uygqqqPrKrqjUffs2+tqupz7b03VlX15+zfX1JV1f86+u+fPnr516qq2qmq6guqqvrUqqreX1XV3zj6Tn5PVVV/+sm219Ld/Ls4cSJSUEicBXyOpH8r6ZykX5H0kzrcmw9K+js6VETBo5I+W9K6pC+V9E+rqvp4STqKYv01SZ8u6cMl/YHwnG+W9CJJH3v0/oOS/tYJfXqJpF/jH3Vdv0vS3tH9iUQicadjLumvSrpX0sskfZqkvxiu+WOSPkHSx0t6haQvk6Sqqj5P0t+Q9Mcl3SfpZyT9++s9sKqqc5KeKfvuPfrvlzz5YSQSicTZQ1VVHUk/Kum/SHqGpP9L0vdWVfUR17u3rutPOfrPj6nrelTX9fcd/ft+HX5nPyjpVZJed5PtOfLv4sSJSEEhcRbwM3Vd/2Rd1weSvl+Hf4C+pq7rfUmvl/Tcqqo2Jamu6x+r6/pd9SH+pw6/iP+Po3ZeKenf1HX91rquJ5L+Ng+oqqqS9Ocl/dW6ri/Wdb0t6R9I+sIT+jSStBVe25KUSmwikbjjUdf1L9d1/fN1XR/Udf0eHQq7V4m0R9+n75X0rZK+6Oj1r5D0D+u6fvvR9/o/kPSxN+BSGB399u/e/N5NJBJ3Ij5Jh995r6nreq+u6/8u6T/p+Hv0yeJv1nU9O/ob+cd0+LfxrUD+XZw4ESkoJM4CHrH/nkr6UF3Xc/u3dPSHZlVVn1VV1c9XVXWxqqrLkv6oDtVY6TCy9T5ry//7PkkDSb98ZC27LOknjl5vw44OXRCOdUnbNzqoRCKRuF1xlHr2n44KI17RoShwb7jMv2N/V4ffwdJh/YNvs+/ai5IqHUbNroWdo9/+3Zvfu4lE4k7EMyW9r67rhb32u7r+9+S1cKmu63Fo75knXfwEkX8XJ05ECgqJ2wZVVXUl/QdJ/1jShbquNyX9uA7/UJWkhyQ9y255tv33h3QoTrykruvNo5+Nuq5HasdbJX2MPfv5krqS3nErxpJIJBJnHK+V9JuSXljX9boOUxiqcI1/xz5H0geP/vt9kr7Cvms367ru13X9pms9sK7rSzr8Hv8Ye/ljdPh9nEgkEncSPijp2V57Roffox84+u+xDgNh4P4baPNcVVXD0B7fy0+mPUf+XZw4ESkoJG4nrOrwy+sxSQdVVX2WpD9s779B0pceFbkZyOojHCnA36nDmgvPkKSqqh6squqPnPCs75X0OVVV/R9HX85/R9IPHqVKJBKJxJ2ONUlXJO1UVfViSX+h5ZqvqarqXFVVz5b01ZLIu/0Xkr7hqCq4qqraqKrq82/wud8j6f9z1O6LdZiq9l03MY5EIpE4i3izDkn+11ZV1amq6lN1WFPs9Ufv/6oOix4OjoqLf3m4/xFJz29p929XVbVaVdX/ocOaY99/k+2B/Ls4cSJSUEjcNjj60voqHQoHlyT9KUk/Yu//Z0nfLul/SHqnpJ87emt29Pvrjl7/+SML73+T1Fqspq7rt0r6Sh1+gT6qwz+uY0GyRCKRuFPx13X4HbutQzG2rUjXD0v6ZR3+ofpjkv6VJNV1/R91WAT39Ufftb8h6bNu8LnfKOldOrTq/k9J/6iu65940qNIJBKJM4i6rvckfa4Ovxs/pMMjGL+4ruvfPLrkn+qw6OEjkr5bh3+POr5J0ncfpZZRJ+FhHf59/MGj67/yJtvz/ubfxYkTUdV1fdp9SCSeElRV9ZE6/EO2e1QYLJFIJBKJRCKRuKNw5HD4d3VdP+s6lyYStxzpUEjcUaiq6o8dWb3O6TBC9qMpJiQSiUQikUgkEonErUcKCok7DV+hwxoL79LhOepteb+JRCKRSCQSiUQikbhJPGWCQlVVn1lV1W9VVfXOqqq+/ql6TiLhqOv6M49Obzhf1/Ufq+v6odPuUyJxWsjv4UQikTh95Hdx4qlGXddvzHSHxGnhKamhUFXVsg6PEfkMSe+X9IuSvqiu67fd8oclEolE4irk93AikUicPvK7OJFI3Ol4qhwKL5X0zrquf+eoiunrJb3iKXpWIpFIJK5Gfg8nEonE6SO/ixOJxB2Nlaeo3Qclvc/+/X5Jn3jSxf1+v15fXy//XiwWWiwWquu6/FRVpaqqtLS0pKWlJdV1rfl8rsVioaqqtLKyUt7jfm9naWmp0X4baH9lZUVVVUmScHC09cX7tLy8rJWVldL+fD5v3Ev73lbsx8HBQeMZy8vL17wn9oH/5nlxDmnX25rP5432eA/4vMW58rHF109CbL+tPf47jt3vYx7i3DIPcUxtffX7mIe29W3bC74Ovk4nPSf2019nD8c2vJ3YB9albR5OWps4hngPnyva9bVog+8X319tz4z9buvDSc+43hrG109a57a59/cBY7cxfqiu6/taH3y28YS+hyVpeTSsn/PcSo/O1rT8ztm1Lk0kEomnDbsaa6+eXfsPjLOLJ/RdnN/DiUTirGJbl1r/Jn6qBIW2L/3GX/lVVb1a0qslaW1tTV/0RV9UiMPe3p4mk4n29vauItgrKyvqdruazWaaTqfa3d1Vt9vV+fPnNRqNtLq6qv39fW1tbWkymWgymWh/f1/dbldVVWk+n+vg4ECLxULLy8uFRNV1reXlZQ2HQ21ubqrX6xXBYm9vTwcHB40+9Hq9ImB0Oh2NRiNduHBBdV1rOp1qa2tL+/v7RdSQjonnYrHQZDLR7u5uQ3jY2trS3t6eFouFlpaWtLGxUYSS+Xyu3d1dzWazcs/Kyoo6nY56vZ76/b5WV1cbBPng4EB7e3uaz+fa398vv/f397W3t6fd3V2Nx+NCppeXl4tQgwizurqq5eXl1kV2Yu3km/mcz+eF4HMtoknYC5JU5pJ5dWIMyWM9dnd3tb+/r4ODg9IG962urpb/duLtP7zHmkyn09IebXQ6nSIuxXbYE5K0urramCfGzfUHBwc6ODjQ6upqae/g4KCsyXw+L+vMmOM8ra6uNvre6XR0cHCg2Wymvb097e3tSZJ6vV4ZfxShEJDY177uKysrWllZKf3lt8/RwcGB5vN5Q3ibzWZl3hBG4n5gnIyDfca8xPV2IWxlZaU8n3vYn23XRzHP2/Y94vPhgqQkTSaTsrZHY/zd1g/A2cd1v4el5ndxr7OhB1/4/9bzL+9r6V2/8lT3L5FIJG4Ib65/6rS7cDN4Qn8T5/dwIpE4q/hv9Q+0/k38VAkK75f0bPv3syR90C+o6/p1kl4nSRcuXKidmEL0ITiAP/ghRNIhGYoRYkgQbUAa7NlaLBZXkRX/b4gX5MQJ/OrqqgaDQYO0QNYhPW0RaydBbeTHo+NS00kRI6zcu7Ky0rgvOg+cqM5ms2tGlGPEmjl0EnY9p4T3zd0P3MtrUTCIooJHryG87kpZXl4u89xGnH2ecK1EYcKj5W1uD++bixD0KYoUcT9GB4q/5vsrIjpyILyMN841xDw+k2sQOmgXsSE6QVzwYby+f1w0oI3oBPL2vB9tDqHoBvLx+1rGdfLr/DfPia4b/1wsFgt1Op2r5jyKYXcIrvs9LDW/i9er83X/h3/h6eldIpFI3B14Qn8T5/dwIpG43fBUCQq/KOmFVVU9T9IHJH2hpD910sWQcOlYNHDyBvijP0b8STXwaGeMuvLbBQIIDfe7AIFTgB8I9vLysrrdrvr9foM47+/vazweFxcE4Bq3pkfC4mQnRsM9GtvpdEo0uM2iv7S0VN4/ODgoggBz5sSK+WSuYpoDz3PRhT7xTBclmB8n7RBQnwtJZb59/PSF6LrPrQsbrFubQETbkVR7BPskMA++z6KI4/92wcGFDxcBnPA6cWZ9XFzx+XERhz3nqTw8y10ne3t7ZeysdZt4489jLhmPO0voM64XhAbEuZOEN9Y2Pi+KNFyDeBTTc3xu4x6LKVG0xf5wd4d/Z7gbIYoY4CSx7TbFE/oeTiQSicRTgvwuTiQSdzSeEkGhruuDqqr+sqSflLQs6V/Xdf3Wk66H/DgRd+LPNUdtl9c6nU4hEkRXq6oqtmrIinRIwCD2XI+AsLq6KumYeNEPj7qS5tDv90taxHQ61Ww202Kx0HQ6LQQpRpVj5NydDU5inRCG+dRisSgOCI/s0gZjJiWC566urpbnHRwcaHd3t5FWsbq6Wq5ti8wjKEQLPcTN3SBLS0uFKLutvo3YRnKOsMPauJV/bW1NvV6vEErG7UKSk9roJHByH+fVxZq2yHXcp+wrxu3Pph3mg3G76OUpEzgtojizWCzU7XYbc88aMQ4n9rg6APvHRTr2C58DFz2i0OFzFV0x/nyf8wgXRyIxd5HEBQxvJ4ps/uMiBP2NgtP13BJtQlGboBE/i7cTnuj3cCKRSCRuPfK7OJFI3Ol4qhwKquv6xyX9+I1eT+SxjcwTpZbUIKFOZiFiHpmP1nnuWVpa0mw2uypVAlIdLfgQMtIdut2uOp1OIVRep0A6zhOHEO3u7pa23Q5PvxkbRBMy7ikCXgeB8USbOX1GUFheXi7tzWYz7ezsaDablXG5MyFG0SWVMbuQwD0xahwj9/Qv5ru748HXlNcYJ+TWibSLGb7+TvpczPA0Ce+zOyTcfXJSzQXmi3nydJJIRH3d4v30LQo4cU8z7/RJUql94SJFdJq4i4TPgvfd95s7XPxzFom9X+fOABch2uYozi/wzyDikb/HT/weiAKFPyOmZcQxx+e6C8j3cZyPO8Ch8IS/hxOJRCJx65HfxYlE4k7GUyYoPBH4H/tOxK5VX8Cjs54jHk9+aLO7u7MhRmmd6LntvNPpqNvtqtvtluJ6LmZwr/eNPiEUxOiwkx3IkJM6t2/HdA3uA3GM7sTAEk+RSNJBnMB5uoG7Orz+gI/xWukDkHwcGnGtIwF2cueFLP1ZrGkk0f5vbyv2NQovPs75fN5I7/C587H7vLrLBQLsfY7pC/QjOjba0npcKKN/FHGM7fvpIrG9aN+P77nYE9v1eacPbWkJse8R8dpI8NscSNGR0OYciO4Bvza+5s/zZ7bdG9+71j5PJBKJRCKRSCTudpwZQQH7uNQsNEfhwTarMqQLEuiEoI3se1QeEuiRd+9PrPC/urqqfr9ffmJ0ORJDEMWBaO930QLXBHZ2J9Zt9us2QurvMW4IKc+PJJd/u7PCI9I+Fo9Y+/w5IaQtRJJ4EoMjikH8d1wTj/77e+4w8PXjPX+NuXchyd0vsfgj/aX/rKNHuk+y+7elkPgejY6I2HfaRowiBYS19ZQHFxT8eW3FCf0kDxcUPKXFPx8+nrZUHL/3WoLCSVH/k0SDOB/+vos3LjL4dRE+r21pFL5GbW6FRCKRSCQSiUQicTXOhKAgXR3Vd7u7dHykIcSFP/Q9mosAsb+/37B3Q7hicUGOCuSZXEO6hBM0XAkcJyipRP0llevn87mm06mWlpaKMwDy4+SZMWNxp929vb0G2XXi5GSWZ3a73XJUIOSy0+kUUcbdCdwPWeR1BA5SOiBWbrOnDx65p03GBMkdDAZaXl5Wv99XXdfldAnGHNeN9iHuvmYIAE7q6YOTf9qOBNCFJH77yR9tUW3ucxHH957/uAjh8wBidN5dKi5MsJ5+RKP/cEylp0D4vna404PnQvpxvPh6+fjifnOHDGTbiXZMTfJ5jM6Nuq7LXLWR9ZhOEV/350Qxoa0/be3w3YBg6MKg75MbceIkEolEIpFIJBJ3O86EoBDdBx6dhfS4U4FUhpiL7Uc3eq6+kz+ECYgNpBlSBqkmLUI6ri/Q7/dLsbzJZKLZbFaKINInL2xHdJl/kzrhBekkNdwBPI/XnUT5yRVOgpgzv7eqqqvEBOo/QCa9ngLz5Q6FSDZjJBni624FUkIQXabTqfb29hoR+mhDp2aCE0R3Hfg4EWa8nwgEzJNHzttqEjB/7BnfhzzDT+bw910E8rl28hoj/MCf7aIC+7Tb7ZYxsG9wl0S3QEzt8Kj7teDFMp0sR7HE56bNHfNEcZLjJTo32u6Le+akdheLRSmS6o4L37cuIvmc+RhjocybHXsikUgkEolEInGn4kwIChFOMpxskOsuXV093gveEVltEyogYk4aPKrZRmJdoPCoukd7ETUODg4aEXknuC4o8J4/y8cTnw/55H4XQBA/YpTZCZwTayelbr33YzajcODpIt7X2Wx21fGQfi1t4jDwkzba1pfrGaPXnKBtqVnrgrn1fH93cUSHAnPXdnICbohrRbrjqRcnpZ20gb7SpotELkq5EOWFJl3IoQ2vG9KW7gF8f8Riim1CRNs+8J9I0K8XzW9zFDAnbdfEaxGTopuJz1ibCOSuCp4VxTfvh3/uuAYXUiKRSCQSiUQikWjiTAgK8Q97j4z6NZAGj+S7M8HTJNwe7m15hLktVzpGlaXmMXeQrxhVRcTwH4+c46wgdcJdC05OgUfoPSrPEZGQY5wNiByMwU+EYLz8Zm4YixNa+uxr4GII/VlZWdHe3p62t7fLnEfrvbfNfNEuRJp++utuR4+AHCLguFvBi1a64EBbfuSkizRR1IhijI/L0yZuxBng63oSIXcHBadyuNMl2vnd4cDrkN7r1XZwh4KvsYtXfq9/HmLNhxj9b0sTiCJZm/AQXQLuummb1/gZjEd3tgkUcf7b4MJedP4kEolEIpFIJBKJq3FmBAX/w9+jyfyOpE86Js4UdHTy7gQlRlq9HoCT8bb3IcTY+CGT8Vg/CI4XIXSStrq6quFwqOFwqJWVFY3H4/LMg4MD7e7ulhQK8rxXV1cbtQNok/cQJ1wccWcHhLTT6ajX66nb7Zb0B4ispHJ6BWSeNrjWxQycB20RbifrXrCR+Yloi6Izv1G8OQmsUXQy0JbPkdfV8D45MWWuozUfEcX7B/mNx226MOGpBb4fAPvURTIXpRzeL59nUmsY87WO8WRfeDS/zWkRRS4XE7xtX18vrBrb4Rr/nEgqx5JGR8hJrgU+e7Szu7tb6kWc5BaJYmKbWOBjYiz87OzsXNVmIpFIJBKJRCKROEOCghMvXAhOtvw4QalZed5rK/DfdV2X3H1SJSAv3O/kgZx4yOne3l6pB9Dv97W2tqZut9so1kiEfX9/v1j/q6pSr9drFBKMefyeow6Zog2P1DsBinne1yJOnv+OmNDr9dTpdBqFFHkGc8PYaCOKKggQ3i+P1DP3XhOByLmvD/9mbZyEOmHn+YgXbdFy+g+8sKOnO8Q5on0XFZz8IpzEtJG2kyfoiztmHF7/gPsi4WdPRGeEi0Ox2KMXs/TIPnvb54o0HBcTojPHhRyfKxBTc1xMOCny7ykeMd3gWikQ0SnAPPh8uXji17tg5O26SyU+O7osruVkSCQSiUQikUgkEoc4E4KC1KzO7nUO+A3R4tQE6Th3fLFYNNwDnirg6QfS1cfQ8TwIhOfw40zgFIUY+XVy4hFfiMvBwUEhhZGsx6iqOy+cfDmBi+TIyRYkHoHDI8C4Gfw67OEICZBJP/3BSRdwqzlrQ1+8NkG0tzMPvgYRtOMCirtS2ohnFIVIB5HUECY8ms48Mw8+zraUFxefaNtt9vTd8/U96l5V1VUpOH6f1+NwQcHFBBcA2lJ5mA9PQ/DXGJvXW/A22lIRHG370cm3izFt97qbpw3RCeFigX++ojDhJ4Iw9pPSPuJ7bWJCdKZca04SiUQikUgkEom7HWdCUPDoo5NK/8EB4FZwv89FAMi811eQmsXn2gq4eTQeok06gBNViIsTlDYiSpukKHAdhRu9sJ5b7n3c0rGN3fvr5NZt7y4sONFeWloqaRWIMl7gMboLEDzaotVRjEEsgKgxDid9fkShCyuOtmj2tUgd7/k4Sd1wl0uMOjt5ZI/gTHEHgtd98L67bd/3An1y4h7FAR8/1/oRkO7WaEvXiT8+dz6+NjeAn6TB/jmpXkmbg8LH78+PbXl7LiLEtALvG/AaFXwO+cy728XdS+7kcEHK593nJz7bBSuu9d+JRCKRSCQSiUSiHWdCUJCa9m6Igp9KEOskeEE86ZjUcB+EjlQCvyYWT9zf32+cHhFz71dXVzUajSSpVOAngo8IQZ+kZmTZ8/YPDg60vb2t3d1dbW9vlz5BXHZ3dxt1HTqdTiMKTv8RTZaWloojAUHBRQUXQWh/d3e3UW/AUzFoI9ZHiK6P+J4Te+aINXUrehR0YvudTkeDwaAIAlG48PWORJG1YCw+hpifz2ttxSf5b35zjR/V6e4TSWUO2BukF7QJIb4faH8ymTTGyLP98+ApFZ5WEUUV739Mw4gChPehbU5pg+vbxhTTDaLgEU9lADyXMbu7INYpcbEx9iU6R9wNwXvxaNAokpAa5df43kgkEolEIpFIJBLtOBOCQiQ1TpwRBzidgAg/UWOv8E+BRrdAI0Z4IT2It59OQJ0B6iX0+/1G4UVqBUgqhN2j3H5cJOR5Pp+XugsrKyuazWaF1Hu0VVKDpCNouG0bguTFGBFMGA9kdnd3t9SAwG7vxxBG4cZdBW2uDe9jzPGPpDQCoueuC8ZEW4w5HokZ6xN4ukHcP5EQ8vpsNiuk1lMy4gkK3lZMZ8D50O121ev1JKkU6WSv7u7uln3g6SIeFY81Crw2wt7eXtm37mCI4oBH1COJbiPLPte87iKYk+6YKtEmBLSJLjGaf5J7Iq5XXdeN1B/2gIt5bc6YeJpDWx9jwdToqPDXY7pVpjokEolEIpFIJBI3hjMhKEjH5BLiC/mCtEE023K1ERMg8ZC3SIpi7QXpmDC7G4F6CX6PR9bdpYADAkLPtU6GnAjv7e1pOp1qPB43SKZH8d0REMm/iyOQXu8DxzDSjxh95nWP4PK+EzNPY+AeJ2QxOsxrsXBiW0G+SLI9vYRaD74+TsBjDYC2dj1Fgde9/oWnEcS0Dj+dAfhxn/TJ58bbZo/4nHoqjhNdUl6iGNPmqICwn0SS3dnie9VdD3Huve++39wp4AQ7phJ4/9pSA64l9Pg1vBdTffwIWF8XRMCTajLEfXlS/9r6GX9HsSKRSCQSiUQikUgc48wICh6p9Vxv7O9umV9dXb3KHcC11Aao67pBzHmGpEZ9AAitn4Tgx9JF6zwEPv7Qb6mZb+7/5t7d3V1Np9NGfz163UaiPb2C96NDwYsxRkHEI8nevhNrj17HNIZI0LmXcboI4HDHAfAIs4s43W63OFF4jrtQuLeNUEZRAbLuaxBrYLibxPvutRFcaGI/xWfFdA7mPeb0xxMsYkpGJL+0Hf/Nf0c3QRSifK7jGjJ2n8e2dJa2sbS5Ovw3/+0/Ps/ed1+/6GRgf7tjxItbtgkUsb24tjfqPHDBLJFIJBKJRCKRSLTjzAgKnsrgEdoY5VxdXdVgMCh29slkoslkUo6GdOt0r9crwsBisdBkMikEfD6fq9/vFyFhOBw20hwQHSC4nnPPv/f29hopDH7ko3T1SQwxouzvcV8kpj52L1bHuLyGQkzN8LoM3pa7Hpw8+zPisyGCbbUuWL+YnsEYOeEirivP8ZM1eJbPCXNPSoc/w90SvE6bPDPOqR8tyr1em4PXqekwGAzK3qD96Erw1JiVlZVSF4E2I1y8WVpaukqM4r/bSLYLAN5WFDtOSkHwcfN86Vho434/jpM59P1/0rhiGoGT+2ulE8Q+8hnzI2P9c06/bhQnPdtFEhex3LmRSCQSiUQikUgkrsaZEBQgtpBjyCN/6FMXgFoHo9GoXE8+vBM9SK9bzBESIvnmWMjhcFhOCKA/Tjpns1np29LS4akNs9nsKqs/hHIwGBTCJh27I1ZWVorQEY+J5L/9ekgbfeW92WymK1euaHt7u/TVySHuCi8cKDWJeFVVV6VpuLWcNYBYtqUZUDSTZ0YXhK/B8vJyeR5gPqhJ4OSfZyNW8NudDe6m4B6vuYGjxefFT1Wgn+6MgUxT/4LxRwLtOf3UxGBMrG90t/DM2IY/2wUp5psTKNyB4PvHixiyR6jlwHhiakVMffB95/A980QIPM/wGhknpUYAf74XTo3pDrTdBneFIGz4/f7cts+gC2IpKCQSiUQikUgkEifjTAgKJ8Et/RANJ/0ehfXaA04kpGa+uRNtrNguKEDesIrHUwMQEyDb7oDo9XqNIozAc/W73a4kFXLtEWG3vLcRSCLZRIkpvigdCxlOvJ3Axjx6frsjZG9vr+E48FSLtig46SgxggzpdFHB18SJXazo7zUSnNBF8sh7ccwnFY6MLgXagIz7vcwlP8xfdFj4PmVdInn1dBdPs6BvkeC2pQPEdYuWf0QT5tkdCMyjuzlim3G9XASJLg8n6NeC95V5vBbol89zPH6zzfVwUs0DHwNC4EnOp+gEaav7kUgkEolEIpFIJK7GkxYUqqp6tqTvkXS/pIWk19V1/W1VVZ2X9H2SnivpPZJeWdf1peu0dZXV20miF2p0K7LXG3BiGklrhL++vLysbrerfr9fTlag4j7iAW1CvoiMR3s3bgdEA4iYCwqx4GOM6vu19M9JHuQdoYVrGb+nZng0N8JJvp9ogNAiHZO0ePylp1B44by2lI7rRbVdCFpZWSlH+EWXA9fy263pXgTRx85e8j67vd0dFJBOxuDpJcyBk+k2AutzSVvMp+9nT3e5HiKhZd28DeaQayPhd3Ls9RpiH/xz6G24cMcYXZiIn10Xb2LdieuN0+e37eeka/3Z/rqLO21ttfU7/j7ruJXfxYlEIpF44sjv4UQicTfjZhwKB5L+77qu31JV1ZqkX66q6r9K+hJJP1XX9Wuqqvp6SV8v6euu11j8Ax8CV1WV9vf3CzGkeN/+/n4p5kdeNeSFCL7byCNB9Qg4xwJ2Op1yD8/hqEAvULe/v19EBiLTOB3It19aWtJsNmsUmHSbPfZvJ6oIB05G43GXk8mkkR5Cu9SC4OhKCHK32y3jdsdCJGWRLLszgesika3ruqQWODlti+yeROIg9C6y+Npgle90OmUftLXtaQdtz/Kx+DOZX68fgIOFe6i5QbukEiDYkCoSrfmRaOOy8X3o4oP3NX4mYgoJYhbzweeAZ8f9z7M8qu/9ayPfLiTQhgsvbWvtIkxVVeWYTeY13stzvD9xD7qg5s6E6Drg/ehEaBNGoosj7u14DOcZxy39Lk4kEonEE0Z+DycSibsWT1pQqOv6IUkPHf33dlVVb5f0oKRXSPrUo8u+W9IbdZ0vz+ootcAJG+SIiKMTPMgaAsN8Pi+R/7quS6FEyAu1B5zYR+uzEw9cCxxjyP0QSAjbbDYrP1VVaTAYaDgcajAYNHKzIbpOoOu6LgIGRMsLO9LPWBPB60wwb7GgIePodDrFTRGt7NGdEIkW/+3HOjrRdUu7k13mKkbuIzGj371e76q6AMyz//iz3QbfNifxlIgIFymoj8BaUF+B+cExwTNYK18jnzfmkTbcAeHOk6pqFjhkLmN6gLcb61G0uXq87gBpM9Sb8JQM5sEFJU8NYM2c7DMOJ+PuRPG+MBb2QHSN+LVt4Hn+efd952P17weftzb4PvJ5j3UibhMhQdKt/S5OJBKJxBNHfg8nEom7GbekhkJVVc+V9HGS3izpwtEXq+q6fqiqqmfcwP2NFAZJV7kLuK6NuLjYAFFw6zyRToirR7ohR7EIIxX+SWGIx9fFnG4/fpIaC0762khXjIJOp9MGWY0pEx7h9ciqEy93diCGOEF2wu/zzhxFa763EWsheLSbtYvFDn1OuRZi7OkfR/vlKqu+P9fn0NM0KLbJOniEHOLujgvSWGjX3Qf+bF/jeHQhY3SRxsfhKQi+V/3fTvyZl5PIv5+Ewbr5+973NjLt/aMffrJFmzuB9/hvFz/8s+dE3Me9tLRU0nJc6HKcRPx9vuLn38fNZ4Sfk/YQ6xtPI3FxJApXtyNu9rs4kUgkEjeH/B5OJBJ3G25aUKiqaiTpP0j6K3VdX7nRyF5VVa+W9GpJWltbu+qPeSKhpAecFIF0G7h0THo8culEtu3eSJ7c/YBAECPQHs2lbQhfLAToZDgSGJ5NewgbOCG8wGLb0YyxbY8uu0NBOi4M6CQ0pn+4KOGCQnQIAI/y+nF+Lni444Fr41GRXgchuh9O2lPu7Gi7j74xdzHC35bbH/eYk1D/oT0npVGQaKuT4H2Mr3vdhki+vdYEbcd18FQBf1Zb/+J9TvidwHs/Yv2FWJsC54evqe/JJ0LSo6DgokGbUOMpJHH87vLhtwtGsf045tsFt+K7uKfBU9fBRCKRuMOR38OJROJuxE0JClVVdXT4xfm9dV3/4NHLj1RV9cCREvuApEfb7q3r+nWSXidJ999/f+2k2E8OIGJLVNkj1JJK/rp0XLBwb29Ps9msEYmNVm/s9v1+v5wcQdtRvIhk/eDgoBSK9DbdbRDJEGQdYheLLUpqEPkYIcdy75HUmFfuAoSkUs/Bixp6vzmpAiK4urracEEsLy83UhLcYu4/0ZngfXAi6UIHPy44tKU7RIt6m4uF1Ji4fl6Tgt9LS0vq9/sn7efGfHr/nQy7S4H9F6P7vp+iyBLdHMw1aSCsCc84icSz71lPxuj7z+fFxR8cEi6QxGg/8+dr7cJHFEUQoKIrpa1OxLX+yHIxqs39EEUFF1riWvnn0IVHrzXh+y0KbreLU+FWfRevV+dvjwEnEonEGUN+DycSibsVN3PKQyXpX0l6e13X/8Te+hFJr5L0mqPfP3wDbRXyghjgkXrqGcTCfU4uPPrOCQj8OwoERIG9LsDBwUH5N+SfIxmxbZNjP51OtbOzo/39fS0tLWk4HDZOiIDUxfQEqVkMzvsuqSEYxDoPS0tLGgwGZfwenfa2nRitra3p3Llzhbju7OyU+hK7u7uFLFKUstfrNYQMTx/wFANPwYgRcc+b5zonuU6KXQzgHn8WxTb9GaRsANIRcFEwd4wDMcbrKjjBpQ+Mxdef66qjNAnWln3IbxecPH3B9yp9P8l14Udn+j6h/bYoOnU8PD3IP088n2tjBN777GuEiMee9CKT3W73qtMvuK/X610zRScKFD53UWiLwiHjiTUmEKiiyHIS2kSnmLpBn/xze5ZxK7+LE4lEIvHEkd/DiUTibsbNOBR+v6Q/K+nXq6r61aPX/oYOvzTfUFXVl0t6r6TPv15DLgQgBszn80YKQYz2OjHF6gy5mc1mpbgehMlJ2fLysvr9vtbW1rS2tlZOZXBCJh2SExcTvBAjNRqcXMZ0gbaoLK/FHHvagJR7NDZGmT333okkZA1S2O12NRgMyokSkEPGNJvNyvy6oOAE9aQoNe8x595/aho4cSWi7dFkiBsk1OeDZ8Wihfx2m350k9A3b2M2m0lSo0Cn10eg3TYBhfVwIuzrx1rcqFXeXRlt84IDxtN++v1+o7gm64dYEp0PnU5He3t7Za3pe6z14K4DxDcn7X6vCzZxPjz6726eeLJIFBh8zV0I8f7xHp/buN99Pl0EOMnpEN1Kt4twcA3csu/iRCKRSDwp5PdwIpG4a3Ezpzz8L0kn/RX+aU+ivYaoIF1tU/aIKq+vrKw0Tkdwwi2pkF7PPceaDYn2KDjkBOK9tLTUOHUCoodIAbFcXV1tRII9D94Jj6TGvU6EIFg+ZieccSwIKZEQ0TZHSdKX1dXVQqxJK/H2GYtH933ePdoOMfNnOllzMuniiD/D4WvjdvTYlzY4wfT+8hpiU4zO+/u+Dh61Z01cwGKtQawR0Pactj67GOWWfdwx7L942oc/Mwof9JfPhc9HnHNEAv6bPrmI5WvmLgqfJ09DaZuPSOaB3+fr7ykYvr7+efP18/G4MBXFON93LmL5z+2IW/1dnEgkEoknhvwevgtQVdr5/E/UvHNjly8dSGtveLN0m6ROJhI3g1tyysOtgBO//f39UkyQvHK/xkkwVnTPlfdcf+nYjg1pjlHheByeux2kJhHBQbFYLAq5ok230jt5ipZ4jzxLV5M5f57PQafTKRFphA5/jo+30+loOBwW9wVpAdKxmIAYEaO0fvpB/HEi7GNzx4FH/134ccLr98dimQhL9NUJvxNN5tBJpfcxkvm2CHibWOEiQ7ToQ2i9ZoK3B+hXnB/Wy+uBeJ9I+ZnNZleRdV9n358+B369p3W0keWYXuD1BFzw4jNHkVL6MJvNrnIRxblsSyWIdRpcuPDPoouCPocIaYzR54f228RI3we+Hr5vryVcJRKJRCKRuLtQdbuqVldVrazodf/ff6qXrLbX4Yp49/6O/tJPvUL17DB9WouFFuPxU9jTROL0cGYEBZwJs9lMVXV8QgHCAuTOCQhEotPpXJXj77nsOAjItXbi7ZFf7iH6ivWcFIy6PszH393dVV3XjeMHo32cCLGTFP9v7687FiD729vbGo1GVzkN6A8kkLFT78HHy5GXjA8ihiiCAwDQf7eDS2qIM7GwnZM83AWQ7Si6IIxEchsJM+87oXdC6n1gLH4SBUCYQIChH04ynXQ7mEfvM2Pg1A/WYjqdlnGwNxETopPF8/X9OR6V9/n2sfj+hjh3u92rimCSjuPr6J8h5pN0GPoymUzK/PND8Uz2GqIU43Nh46R5dOGA/eifPeaV5/g4fZ5I46GPJ4lBLnLweffjOd0l46kx7vi4lhCTSCQSiUTi7sBv/YuP1ps//dslSc9YHt7wfc/rjPRdv/Ij5d9vmZ3XP33RR0uLa9d6SiRuR5wJQcGJjufJE9GO1vu6rhvR0zYrNyS30+mo2+02Crc5/N6Y9+51E9xd4AUjPRoMAet2u43UgVjMELJCFJ5+LC0tFfECV4WTQidnkKYYSXfiG+fFCbZHcv29+Cy3nSPwOJmjkKSLAE6gETUiifO1iusRI/0QeMbrp0OQthHJr68lKQrMiz8n9in2p+0khtXV1atOjojOC9bF3RzMMeknbU4AiLqnLngRwti3NmLP+GIU3teaufUUAif4kHcX8vzH14c224p0xn0Y58lf8xQgfy+6XFz4i2uNOyfWpHCXEN8f8WQId0n53kgkEolEInH34YP/8aP0Tz/6+56QkODw+z65t6Vv/W/3q64rfeC/PkcPvuZNt6qbicSp40wKCtH+3xalbsuBjoTHybcTmXjqQ+yL53WDWHTPSST9h9BCxDwf3K+LxRtj/vn+/n7D9eC1GaIFnz676wJ7up80AFHyonjxWEZP14jjd4GG+fB6DrRBHySVfrgrIEaFPQrsz/CotbsvaJdxxXoTkGwINu0xLhc2nDDGNI64P1xQoQ0vhuinT1RVVVJK3DnA2vnrJxUF9L17kqAQ18jhwg5txToPXlfET69wwSo+y0l4nDP2tO9H9ouksodjH5kHnAT+XeCuEsQJb6Ntj/qPp8fwWfL95n3xuhRxfyQSiUQikbg7sHzhGXrkFS/QGz7uW/SRq4Nb0uZoqaefePGPSZI+e/mz9NgHXqbNf/tzt6TtROK0cWYEBaKCTiDcruy51/x3JPgQCGzgJ0Vp4xGUHvH0SCnRUL83Wtbdpg7h5Pm0H4sFkkpxcHDQiJpzjeeP84zpdFrIFnUmvLYBcyCpFJuEKHrqRnRvOHF0t4P3h7ZJv4iV+t2lwTy6qMHcucPCRQ4Xj3BlMJedTkeTyaS4E7wgIIICrgngR0QSsXZBIYognkZB32LBw+XlZfV6vXLKwHg8voo0+1gnk0lZL9wR1N5grrwoowssUvMYyUjuoyPkpM+Ui2mSGo6Y6E6J6xlFOZ/PttQGrnVxkDljP1Pzw+ed8fs+Z596mowXDeX7wFOgorDAHqHdOEbfk7zntTNc0EkkEolEInH3YO8jn6Vf/qbXSro1YkLEf3rRf9ZP/23pNf/50zS/eDnTIBK3Pc7UX8v8oe+2dY/s8se9E2U/4QFCuL+/r36/X9wCHu32qKyTZycZpEdwDbZ+Ivy8TioEbXS7XfX7ffX7/ZJXX9d14+g+PxrTT2uQ1LBaLy8vazabaWdnRwcHB6UYngsSHgX3aDQkrK7rIkRQz4GxkpbBnHoBPMQG6jMQiUcgcGdGVVXa3d0tz4A0unPARRuOsCSdBFLoUWkn09wD8WNu4skM0iFxnEwmjZoX3g7j8zVhfAgYXgfCCbYLJIwT0oyg4aTWazeQshFrI3g6ie9jJ9DsaxcVuI/0CeaQtiDTiGfu2vB9wvyzlswP7zMuF7hcMHAhKzoBeDbzyfWxZgTrxjr4PkBQcocR8+rFNz0txR02vg6eTsJYXejw40l5j7lPJBKJRCKRuJX4lJ708b/6Y/rjr/wKVW/6tdPuTiJxUzhTgoITY49Qt9mQPfoLsYMsUMDQLdq065FOT68gSsx1bovudDrq9XpFCNjd3dVsNmuQYk5VGAwG6vV62t3dvcra7wS2zf4tHRMYSCE1HKrquMCf5+9zLWPBIcGJENIxofe0DaLHnuPuBN375vUQ+v1+6TvFICGUs9msUTCyLbXET2846XmRcNJH5sQj3T52HB8+FsQNd4yc5O7wiLT3jTlF1ECwYK+4w4R+DYdDdbvdskep9eApLy6Q8Tva+3nd/+0ilt/ne8mLGCKyxb0W58sdOHz+2sQET9nxtAJ3jSwtLWkwGDTcMV4w0d0B3nZ0Efi4/LPjn31PfYoumJgqgfjiYqI/k397SlMikUgkEom7A+//hpfrFa/8X0/Ls0ZLPX3cd/yafuz1L9eD35w1FRK3L86UoOACgOd+S83K7/x4RXYXG7yKv1vaKajnOf6IF5BV2optI2xAMiBVbpH2KLeTr2ih91x2+ukEKaYSeHTbyX+svcBYIFBe7d9PXvC59ghsnEdJhfQxvl6vVyLdEM1YHyDm63v7cR3bxAwHRxb66+4q8RMMfIyxPebK18IdJ7FNotkubklqFOl0Au7Pg9TSvjtcoiASibT/uGji6RjxdSfevgbdbrf0mzoU9JP9ctLax73hcxYFPr+GfUutiejKoN14n18Tx88+8Oe3rbHPCc+S1DjhwufgpGf564nE042VB+7X+7/w+afdjUTiTGH/e3/+tLuQuAvwoVe/TC/8zHfpH1z430/bM7/5wq/qDc976dP2vETiqcCZEBQ8mtyWN+7pBx4hdSuzR/ZjJJcocrfbLQUTJRU7tR+t6KkUboWOJIY+uFjh+erR1h8Jr5MYJ/zuVPD23DLOv2NUH4GEa6bTaSM/3G3dXO/t0S/g0X0/vtIdCpJao8axxoWvtb+OG8Fz4uNae40EXCKkpUD4sf/TlzbS6M/zfPnYHyeZROuXl5cb9njW3d0RTvzZx55m4AKUuzd8XTx63yZSsC6+f+indFybgZQD1s/3K216JN9FCt9Hvh9In0FIQjxz10xMD/FaCbHfcT1cXIqCHM/14x8Zt6fgeLtSU0zwUyg8tUg6PgbTRS6ekUg8HVi5/4K0vKwrn/hs/drX/PPT7k4icabw0v/22Gl3IXEX4Bu/5rv1ucPJ0/7cqjfXyv0XdPDwI0/7sxOJW4EzISgAz4l2u7GTFUmF7BP9lZrHy0Xy4NZniGhd1+r3+xoOh6VWgBOvvb09TafTEo2OjgLP/19dXdX6+rr6/X4hkRBHyBURYs9N95MYgFu9veYDz40k0/uF9d7dG23HCUIiIYJOTJ2cOcl1NwDXu9sDeHTYyXGbw8BJMHNP+/5aXPvxeKx+v19s9dQ1iOKAr5cTyOhkQSyhrgRr6OM9ODjQeDzWdDrV/v5+qU3gaS08y+cMcj6bzYpbwIm4uzmim4J++nGYfqxhJPS+x6L7wAtVxv3GtexJP2XDHSV+D9f72nhdDoQMr28Si176vPEMrmetff+6OAbcQePOCk9h8RoOCC5eD8Tnxd1RfHYTiacDX/bTP6fPHV7SkipJKWQlEonE3YLf/ozv1Otfdp++5yOefdpdSSSeFM6MoMAf+URvIUsx0o1l3AkSJMKJK9Z0qVlokNMPiHxDpmazWSGL7k4gKg3Z9Ugp5KPX6xXigcjRJkIwTvrN63VdF2HEo9H9fr9c4zZ7J6veBq/TB+ob+Lx4xBqhBWJLaoG7KJwgRvfAbDYrY6Vt3B5e0yKmisQ0A3dxsF7RGQJpJkoeUzNOIqfsE0938UJ+zKe7IFwccGeHF/bjXubbXQ0xYg5Rl1TqKsQimYhP7lTB6eCFLLmPlAbuZe85EBKYA6/hwOfFxTvmwQt1xrF7G/TdP8OeouQugzZBCUSnQNt1rK+n/vi+je2xDtHF4W4iv8/bZb9HISyRuNX44Ne+XH/4Cw6t3J8+eESdqn/KPUokEom7D8sv+Qh95Pf8tv5A/3FJT//38HK1pE51cP0LE4kzijMhKLRZlQGkwgur+RF0XmsBEoeYAEnAleAnPXibOBIoKghJRlRoO+4OUuZHRdJft2W3jUlq1oSIRJQ0DNIzqIXQFu3lmZ4CMZ/Py/iJxOJmcOeHkydPE3Hnh0fNY20AihPyfixOGMcdxQWfL0hvdGTwOxZRdLeB29idXDMW2uU3/aQf/Dhp9dQQ9ojPsws7voY+phhNh8hCsKN7JEbgXSjz+fC0BO7xfeqiGu1yPWJMXFv/fMRUGF9jB0IKiOvtc88cRScH7cZ0F/rddg/XnTQ/vs8cjNFFk5iSwRGjvicSiVuJ5XvO6z1f+WJJ0vM/4936lgfecvROigmJRCJxGlgMVo++i/N7OJF4MjgTgoLUJBhOqiApiAKSyjGFXiXf0yMguxTD4xoishAm8qtns5l2d3dLNfqYj39wcFCe79FZyGm32y3HOnqqQRspcdKIq8BrRkBqEBRilNgjyTwvpiggkEAkGf9JgkJ0JrgY4lFeIvyILcwT7dBmW2TZib6nHcS6B072/BqveRBz8V1w8Ki4F13ketYs3u/7LjpMvOYC7fla+Tr4HvAxsF/YA06WGRNpPO4MYV+4I8dPKXHnArUtIPDuDHBXhtdS8Ai+R+49FcPdCbFWhn8O24Qzdx/4s10ccaGQfeqngMT2ooPA97PPbdzPpBuRmrFYHJ7Y4Z/V1dXVxmkobSk0icSTxfK5c5p+wvP1tr+UNRISiUQikUjcGTgzggJwAut5707YpebReZEA7e/va3d3t3FCAJFJSDFEEDfDeDwuTgCPfEPWSMfY39/XdDpVVR0eozgajbS+vq7BYKD5fK7d3d1Grr0TU7eOu5jgEVbGDOnFLbC/v9+4ntxx7lssFhqPxw2Czhghyfy3uxmcaEYS5cQVIs74x+OxxuNxI1UFIYWxY+OP0WAn6l740p8FKYZYcg99chHERSFcJu4SgURynCbpDT7fLkYwDtIZvFBoLORI6oGkxlhiWsHq6mpDGIJY47Lhv138oJ4BZDuKCezfk4h3/PE6E/SBWgmdTqfUAPHPF8IU8wRYG9Y21vNgflyc8nQf5t+dNtwX6z0wXhdHYo0D/z6Inwvfh8yxn8DhqQ6eihPTlhKJm8U7v+bFeseXvPa0u5FIJBKJRCJxy3CmBAUvkAbZ8bQCj7p6VB9iKh0SLBwM0nFeP8TMXQrj8ViTyUTb29sNK7iTeLfj7+/vazablQJ7nHrgx056zYVogfeIKf0gKszz3aGAaODHVzJP3CMd58ojonhByJhmAFElFcSdFxA95nw0GhWS6QIMhF1SaYM1iAQypma0rbnnwnPUYay14JFur3lALYfpdFqKaBLlZ3/4OlEg0fvC833NfS0grZ6Kwesu2kBSqd0RC//5dQgILuhwLWTbi14SPfc5JeUEJw4iVGyTPR2dHTHNxoWSKOa4E8A/E55+wLz7eFk/d4b4Z4H9CMn3NBAXl/zZ7BUviulzy3z5vo/1ENx5wfsx9SfWfkgkEolEIpFIJBJNnBlBwcmyEwRIARXn2wgCBA1COJ1ONZ/PSyrC+vp6oyo/xMat+xChkyKSLhZQ5R+hA1IOsaV+gYsBwK3eTmLaXAsQdCf7Tjh9nqgB4eKDp15A6JygIlrEHHUI+3A4LKco8MNJAsCLBjrxhMi628TTPbwYJKSc6LuTUp8/XqffvoYIPYzX7fuDwaC4DBBfnHjy40UcnZjjLmAc9APC62uLoOPzAFl3Z4K7MfxUBPag1xSIbgfa87lifb09/1wBdyDweXCHjK+RF9yM7bijwmtRsIY8y+fJT0xwF4cLA74/fby+PyN8DqIw5n3zZ0dRJAoO8Z5E4mbx0P/9cr349//OaXcjkUgkEonbEnt/5BP0gT/Yuf6FtfTh3/w2zS9vPfWdSkg6Q4KCw4m41w2QmuTBbd8QoOl0qt3dXUmHZHcwGGhjY6NBQr1SveeHQ9R5Tszv9uMq26KkRMlxSHgklraceLcVFfTrvLZAW7Tfj7mEVPt8cfShk3vuhyh7nwCujtFoVAQFyNXu7m5pB4cFjgcnmV5nQjoukujODc9bp0/RLSHpKqHCj67EMbG7u1scGvQfQclPQ2CftLk+vEaC19mA7Pv8xIi2R7w9TSK6Cdyaz17k2k6nU/ZOdDbE/eZCi0f54z6hb8DdCIguPjc+lii6eF9cKPB58FQU3+NeRJL964ICzgV/HnvU9/xJooILUL7P24QBXB3uZIn71tMyEolbgT/7pT+przn/rtPuRiKRSCQStw2qlRVVH/XhkqT3fN6S3v2K66cNzuuFPv2Nr1bvoZ1rt/3eh26J6FB1VlV95POf9P1LO7s6+J333HQ/ThNnRlDwqDQ1ENyNAOmBLEJgIXAck0guPfb5tbU1ra2tFUIDgdvZ2SnHHnoUGSLkhfWWl5cbhRvn87kGg0ERGiCz0+m0vO/k0QUEyCnRVOo27O7uNsi310NgzJB7SUU8YNxeTBIcHByUYzIhS04CGbMTdiL6GxsbZe6oXzEej3XlypVGikKv12scawi8YF4sKulrTv0BwLy5swGbu7s4INT0CecEKQ6DwUC9Xk/9fr8QcBeFnJw6eSRVBOeJH+XoKRC4XJxwOqnt9XqNfetCQtz37vKgX8wl4/QTSphT5oW0FOaIsbqroq1eQTzNIV4f3Qdef4MUElwfi8WikUJD6kdcbwQCPiN8Hl0coZ+IQlFIiAKBF1mMooCLduxRdxC5w4Tnx2KoiUQikUgkEomnH0vPfbZ+/Cde/4TuWa6W9D/+zb+87nWf8Lf+gu75lz/3ZLtWUH3E8/Wfn2AfHV/47j+kS7//prtxqrhpQaGqqmVJvyTpA3Vdf3ZVVeclfZ+k50p6j6RX1nV96Vpt8Ic+5MVt4xAYJ+ZOviQ1CBvkj4hvt9tVv398DAxkzIsmxrxpdwR4PQVJhQDRDkf1Odni/el02sit535IGE4KSaXwI+P3iLHb++NxiCelVOzv72s4HDZIHmkBHsX28TPfpDucO3dO6+vrpV4DBNEJJ22zNk7A3F7vBM4j7bzvLg0nhYyRefb6CjhSEHG8LgU1LpwcumOEYnwII55CwjhcJOFaUmdcLEDIigUSo2vBaxt4kU0XLjx9hDVuK3aI0OQiGfUhqBHhjgDSc2Lb3m4kz1FwYa+wdgh7jI0aFZ46w77gOtJbojsDcYE2PEXHxT32A3vLTylx0cDh6Sxe/8P3ijtguN7HcjvgVnwXJxKJROLJI7+HE08GL/qfr9KH/92ppHfc0narzqre9zWfoHr5+te2obMt3f+tb7qlfXoieOSrXq6/+Zf/3VPW/j/5G6/Ve/76vTfdzvryO2/q/m9/zo/qJ37zw27o2u/6qs9T57/80k0976nArXAofLWkt0taP/r310v6qbquX1NV1dcf/fvrnmijbqn2KK8TmugG8PQFouuj0aiRK44QgDMg5vi3WZ7bIp60EXOvXVygb+50cFdFbDeSbNqDzFFxn/Z9XMyXW/mjcIAjwyPrnrvu9QeoPbGxsaGqqjSbzbS9vd0Yl4MIdySh9N/TJFxo8Hl3p4STUBdQYvQeiztEFWLrR1x6uoFb4D3dIdZp8DXweYyRe/ro7hC38bcJQ231D1w0invPf9yZ48eL+mkHiF9tnymuaasPEGsp+Prxutd/8PmTjotQsg/iPsGV48JFTGXBDcNrnhohqXHahR+r6XvaBROvv9C2z7wfLvh4utVthKfkuziRSCQSN4z8Hr4NsfzBx/XCf/cX9GNf8I/1os7waX/+/lZX87f9Wut7sz/6+3TQX2p973qol6TZ+cWTFhQOhpXGf+ITr3vd2o/9mhYWJL0VeP83vFwf8Vm/rT8xunJL23V8Sk/6lN6HnrL2bxTPWB7qi9dvrB//+C+OtfM511+Tk/Div/M7mj/22JO+/yTclKBQVdWzJP2fkv6+pL929PIrJH3q0X9/t6Q36ga+PJ3Y828iltGW7GRxd3f3KrLQ6XQaxzk64fZoZYyCe/V9J1FO7oEf5RiJM8QQZ4ITfP6bVAUIZa/XK2QGRILnJzhIx24HCJc/G5cFbc7nh0daIrh4FNmdHkRt+/1+EWSO1rr036P53BfrA/h8e0Tfc+mZcz9NgPng3y5S+G8XGTyqj7gAoSdXnmudwPs+iykQzBn7yYmmix70w8m2X+8Elj4RYfc5asv5d8HFiTnzzHGY/X5f3W5X8/m8UTTT964jEmn2gc87z4nP9PH7Z5XxcX9Mu2C/+lx5H5g3/+xJx04On0Pait8PtO2OIPrn/W9DWz0Ir8Vw1nErv4sTtxZVZ1X1x32Ezi//19PuSiKReAqR38O3Lw4+8EE9/2s/qN/8Y/fpRZ3J0/rs12+fU/fRZWlpWSsPPnDV++952YoORqfjlpx3az30ydcJrNTS+tufo5Xto3mrax184IPSk3R4Visrqj/+I/UlfzrrDrXhf7/030svffL3f/L//AoN33/1Prth/NwPtL58sw6Fb5X0tZLW7LULdV0/JEl1XT9UVdUz2m6squrVkl4tSYPBoLzOH/5EK/nB8u4F1EJ7hSx4IT5JV0Ua/fQEnAaTyaSQcPL6PRrsBAVSCNmBxHoU1Um2R3W9r/v7+yUlAau3E/IYofejMHlejKbTvrsCEBMmk0nJN6cPkC/mfDgc6vz58zp//rxGo5F6vV6J8seoOkcsMuY2MYH1jVH+2WxW6j44CSZC7VH5tjZdVPHro9ODuafdKBDhaGAeSO3AAUCtAD+21Nvx50KKETY8dYWTJuIc+qkI0ZXi/Y8Rc2qEuENhsVhoOp02CDbtxWMh6S9r4g4JF268/gXOh9g32uez5TU9PGXEBTMfo88HiM9zZ5KfXOKpSdzD+rFnXODwPvv3iaeO4HqhjdsE36pb8F3c06DtksRNYOnDHtSP/9C/Pe1uJBKJpx7fqvweTjxB/Osve4U+7Gd/TssXnqHf/KvPkq7i72c89bKSfuvPn5d0/vCfC+mF33RFi+3tJ9Xc8v0X9EP/8bvUqZ6krSJxTfyvb/9/bur+5RO0iCctKFRV9dmSHq3r+perqvrUJ3p/Xdevk/Q6STp//nwdCXGv19NwOCwpC54eEIvsxVQIIreStLe3p/F4rM3NzUKQqF3gYoIT5hgljpHWpaUlTafT0h7HSHoBOcgQZMzJi+dw01fu9Ui+Cx+M14krtQ0gjh5ZhXCSngGBX1paahyvCQGGmCEmnD9/XmtrayW1RDokof1+X/1+X7PZTJPJRNPptFG40CP63W63cZQh6+hzR+qJp58c7Y9GmgIE0Mkk7fGaW+Gd7LtjgdQP8ubdPcFems1mquu6FF+kHgOk9SRLP/CUDq8H4gR4Op027iGdhf3EiRXcR9/5HHS7XQ2Hw1LTwd93scP3RNzDLky5IEffJRVRIKaySGoc94nTxY/wZB4lNQQx74OfcAH5jyKXu0m8oGZ0feDQ8JQPd9awv1xAQVDyFCvSR05yeJw13Mrv4vXq/Bn/y+X2wsN/9eX6J3/55v7nnUgkzj7yezjxRPGzuwv9/c96pR7+7IH2/vDLVS/VUnX7L31dSe/+mo8+/A9J1Vz6sG/+ZdWz2XXvfewrX6Z/9DWvSzHhNsTNOBR+v6TPrarqj0rqSVqvqurfSXqkqqoHjpTYByQ9eqMNum0cZwKkGEBoIMgedSQCyskGUrPYnEeMXTCAiLjt24nddDrVwcFBg3xyj5NSb8+JSCRjTvLcZu0/nqPvEWNPBYA8+TGIIJJQHzt9n81mGo1GhTCvra3pvvvuK2IC0VqIF5Fwd2M4aWZMTvghvIgpFEOMKQYuGnj6AuTO19KjzLTlxzwyP/SHI0N5HcGBue92uw1hirYRE/zoQvpFH3xfOmF1Eo7bhnYODg4aQoukQqIh8ETH3dnBNYyJvnmhT+bJUxPc0cNvj8zHVJmT9i57yve7H4+5u7tb+u9ChH/WXBj0+WOs7nTxdeB6F5m8PoinWLhrIq5nBONmTKQf+efkNsAt/y5O3Brsj6RP618tOiYSiTsO+T2cuGH8yHigb37XZ2rx8fdq955a8/7tLyQUVNL+Wi2cFdVCuvwnP05Lc2nwyJ6W/8dbTrz1YFjl/zNvUzxpP29d199Q1/Wz6rp+rqQvlPTf67r+M5J+RNKrji57laQfvl5bTpz5457IvRNKAPGi2J7XA4C8Onl2ouUkhygzUVUIm7+GoMAxjU7QY0qDR9Vtnq5KR3CLdUzfcKdF2zy5SMAxllFQcPt4rOWAW2EymWh7e7uc+jAcDnXvvffq3nvv1cbGRklT4Jl+GoELK4zRx0YaB4ICZDpG0oETZ/rLerqA0Zbm4pH1SDqx2fsRkG51R0xAcOA9xhD7HutkRJt+FIzYF76XaSe6JkgTcJGMOUc4IAWj3+8Xsc3XxNcDISjWaaBNT7Px9YxE350VfnSlR/T9NIb4ufS2otjmZD++j2jgz/N5Zd/gwOEHwcd/pOMTHTjm1EUR7wvrzphuB9zK7+JEIpFIPHHk93DiRvHLsz19z8Mv18Nvf4YefanuLDGhBfWS9NgnSI98ovTox/W08rz20wyq3/sS7Tzn7LtCE+24Fac8RLxG0huqqvpySe+V9Pk3eiOigpMdCCIgarizs9M4tcAtzH5dFBeifR5iTY2G+Xyu2Wym8XisyWSi3d1dzWazkhrQ1l+3mLslPhJn6Zg8DwaDUpyPKLVbwL3egrsVIFVeA8IJmEfqJTXIlqQyLto5f/68+v2+zp07p/vuu08XLlzQ5uZmqUFBfz3nPxYU9Og4QgTFAvv9fsM14MTPo8xOGH2ecA84EfWjAiGuXO8uhpWVlUK+Ie1ep4A2nEgvLS2Vfq+vr2ttba0cj+hz7C4L+ifpKrKNoODE2WsJIAzt7u42jrbkM4AQQSSe56+urqrf75dnuN0/ui3YO20iQHTMxFoNXMd9PtcuMHg9EtwJjJk5J2Unfob8eRznyrNjXQXSlXwOvW4DooDvKeaMefM++ues0+mUNJ+2VJbbEE/6uziRSCQStwT5PZxo4It+/s9r/nD/+hfegRg/e6F3/IVn6gV/8+GrUiAe+I736iee8zOn1LPEzeKWCAp1Xb9Rh5VrVdf145I+7Ync72QOst3v94s7wSv17+/vazKZlJQHJ+UQL2oL+AkGUrNqu5MYFzEo8IYzgVx2j+pCrNzWT60Bj9B6pNbrHECkvcAf7dG3vb09TafTq9wNXO954twbreJS0/6+WCwa4gmR+eFwqM3NTW1uburcuXONAoIe6W0rlAgRk5pk2m34CAgQXcgo/SbKjCjhefUUG3RBg74hEnjhQK8xQTS/0+mUEy680J7PkztHut2u1tfXS1HKqqoa6S2+FghanhrCs71Nz9OnP15roK1oIA4JLyhJW4PBoMy/fzY8XSKemuDOkbaTLTzdJK4n44DQe8oJQsh0Oi3zQKoLLhovBunODheY+LcXuWRcLhrgxlgsFrpy5UpxFzEuB/PpbidSK1xsGA6HWl9f1/r6eknZiA6U2wE3+12cSCQSiZtDfg8n2vDofKxP/PG/omp3+eq6i3cRFiu13v23Pl7P//eXtPiN3zzt7iRuEZ4Kh8KTAuTTj4KjQB7F3ZzQOhGSjnPDI/HlWq9FAEFEqHACLKlRpd7Js5MzCB/2aKmZ3uBpER7VhSjFNAci2ZIaYgSI7oh4L/8dXQUeqYb0Ibb0+/1yvObGxoZGo1GrHdyfjzgCcWS9fC0kNRwEkag68eY9hBz2QqwL4ONaXV1tEE2i434NbRBtjrn3LmB57QUEBcQExCnfBz43EGrEDK5xQcEFM08/8MKiLjitrKxoMBhoOByWdAcXCbrdbjkZhf3lQhZzGPeGp60sLy+X+gAuJvjeiY4RxhVrLXiairsWJGkymTTacKEq1jbxvvB6FBS4zh068/m8iAkrKyvllIfoaOFzyvX0odfraTAYaDAYqNfraXd3twhebXUXEokbwe9888v0WZ/2i6fdjUQikUjcIL7pn7xK3/VF79QPfvitPeb3xyY9ffO7/piWJrdXkOIpQSUdDGpp5fZIK03cGM6MoOCkiz/mIVuz2azYtmMUHtITq9t7Hn0UFiDsMVcfAhuLPUaLOM+H7EXyHfvkUWePiPv1TpQhmifZrj39AeEl2rtjTrzPpxdQHAwGGo1GGo1GxZkQ6xW4OEJEGRLo6RWx6J50LEDEtXPi6GJJTKmgn+6C6HQ6DTLbFmlHKHDCz/v016PljLuu66vqHURXhrtBfL+5WECaQ1w3H7OvB+vpDgTcFYgPsSaF1xtwccXH5n12d0Lsm/eRucaB4OuJSITI4nVI4vox5+544D0XqNypE/cOogHuC9aO5yIkeX0EPsO+p3w/sWdpDzFhMBiUFBscJSfNUyJxPXzeZ/y8/tH9v3La3UgkEonEDeK+1/6cfuXjfp/04beuzZ/dXei7H/79+sDbLty6Ru8ATJ851PBDD+rg/R847a4kbgHOjKAgNUUCiBZECdIO6YBYxKKLXngRYuS1DebzeamN4IXvYntuV+90OhqNRoVwElHnPQhmLA7o0fVYNC8WbmzLZ4e8+/0xl97z1yGLkE6vmu+FJ5k/8vD7/X6JehOVh/R5bvx0Oi1HbJ50rJ/n7bsrIAo7vuYuOniEnPe9fgVrxWkRUUhgzV0gImKN9d3nnDoLLqD4iQyAtBcn49E146IRkXhfawg1dTqYS95jXTguFVECN4gXaGRtWRvqMLA3cSj4/nP3AON3USA6RHC10MbS0vGxjS4s4B7gXq6N+9o/w1E88P8mnYW96/UlEHqY1729PW1ubpYUqaWlwyNd3QHhIoq7MOjvcDjUxsaG1tfX1e12NTvK6/OaJYlEIpFIJO4CLCrN6n11q5t3KO7Xc/35t7xKs/eNbkHH7iy87zOWde7B5+ie70xB4U7AmREUIKYekaVOAoKCHwPX6/XK0YeeEuFRWciMk4/FYqHJZFKKOhL5lZrHVnLUH+Sy1+s1IqUUxAOeay4dW7KdtLoF3/PGnQx7CoATbcikR9ohiB69RSQYDocNEQAxgYKLw+FQ999/v+69916tr69rMBg0SLQLM5DWyWRSxBjmMpJsBCDgpMwj1RBMt7HHVBAn5tzv4gptsDecNONiYNxErzudTnmNdaYGhq+Z17PAfeARa0g0wgZ7hLn3ApG+P5hbP/aU9JlOp1Ny+Ulz4PnukOE19r8XGXSxiTnweWJPRdcO/+0OFe97m1sDocpTQmJ9C19vdy3EPc/n2sUZnuF9cKGINiic6WkztOPuGdphbVZWVjQajfSMZzxD6+vrJU3Fi2AmEolEIpG4e/Di//ut+oz//Jf006993U21s7WY6mP/01draTet/Yk7H2dCUIAAQboQEzjFgWsgsJANoqdeaR9CBImBGHOywXw+L8UWJTVOIIjRZIiFF3Tz6vU8hz5ITZeEtxP75DnrMbLvBeliyoRHkZkLxA8KWkJOx+NxIZwIANyHi8EL/0WLN/O6u7urnZ0dXblyRdvb24UoEi12h4KTZl83B4SQH1IEaIPfROulY4HGXQGSGnNAX7ymg6dlEN2PBRS9ToITT1/LSL5jXQV3EEBu/X36ScHPyWRS9hIpDpyMgYvC00t8nyI0xKKOcT5czGmri+AEPEbjWftY/4G1QDiKzhL67WkRUSjyFJ9ut3uVg8X77mkOS0tLJQ2EPi4Wi8axny7U+efSx+j1KNbW1rS5uVk+P7S3srLScG0kEjeK5XPn9NB3XdCfPf9dOjyOPpFIJBK3Cxbjsdbe/Lv6uL//F/V9X/uP9KLO8Am38ROTrr7pHX9SS9MUE66F8YOVll71Mp37np8/7a4kbhJnQlCQmkXkILFEcPnj3nOgPQfbbdkQO49wUozQ7fv7+/uNs+YhabTjRwqurq4WJwDEKboa3MYNmaKv8XQIqb0GBEQQwhMLEoIoZkhqFOvz1AwvSMhY+KGoJD/uNPDcfE68GI/H5dQL6TitgL56qocLH8wT8Gi0X+Pk1YUPSSUSHsfDWiOixEg6hN3rIkBo/cQIFwuYY6+5wW9P5fC1jMc8uojidRuI3OOqWV5ebog6EFt3HXg/wMHBQfmMtB2f2ul0Gkdten0Hh6c1sE48Z29v76ojL/2zgjvDPzPeV3cMRSGDuer1eg2hJH42YroPp1vQV+aQNff6HvG53nf2zmg00nA4LOvj3wuZ7pB4olh+4fP1yB+6oF/6hO/QcpViQiKRSNyOOHj4ET3jOx7RF/6RL9NzNi7rBaPH9C0PvOWa9+zXc33R7/wRHSyW9e5L57Xz7o2nqbe3L/Y2Frr8kZXOVSm83O44E4IChAuSiZ3bj5vzqL4TT4gNBAELOyQJe/l4PL6KcEDAeKbnXENgIO4e5YYQecE/r2UQCx8SeV5eXm7koEP+aCfWbZCahexoDwLt4sPS0lJxHNR1XfLpPc2g3+9rbW2tVLXHok9U3FMumNfZbFYEhclk0ijG6PnyTrJdXKF/jJM1diLKHuA3bXs6ha+RCxGslQsKCCGsC2P2sbkrpM2ZEutiICbEuglOTinsx0kDHrnvdDoNd4GLMtRMINLO+rGGbWSZtWF9ZrNZY02clHsKhJNxP4UEccDFE8g1bbSdOuKfo6WlpSICemqDixSeQsR8Uc9kb2+v0XfWFfD58zXg2Yh4nGLCHmUt6T8iDZ+ftbU19fv9xhqz51ysTCSuh6VeT+/9E/frN77qn0vKP44SiUTidsd9n/tbmkp6y2f+Pn3oO3/mmtc+Ml/S+DOnWkx39YyXP6CdP/H09DGROAs4U4ICf8Bjp4ZUQbqkZioCVu+9vb3GEXuQSo8w0qZXhY+5/Z6bH3PfXVTw+yBKser9ZDJRXdcaDoeFsDuhxGbvpAVy6oTa0zpi7QDvM9Xqmb/d3V1tb283HAWeDkKEeHNzsxyR6FFZrPnj8VhbW1va2trSbDYrrgGuxZbvc8WPR4mdWMbotZNcxkb0ut/vlxQL5s4LULo7gD3EvsCR0esdRgopXoh4Q9+8/oaLRdRJiOkwkF9I+PLycnEW0E93IDAfBwcHRQDA6o+F31NH4hGQwFM+3MXDfvL6B/TfPzN8bphv+sJ84HIALgrRp+l0Wopc0iZzOJ1OrzppAmGHPvoJFpwqsru7W+7z+ZJURBbWO6YTsbaxLonvL9aLe3u9nkajkc6fP69z586V9ebZ+/v7xdGUdRQSN4ruT27oZ1/wLZL6p92VRCKRSNxCrP6Xt+iLX/JZ17ymrmstxtt67CtfpisvkKT2494TiTsRZ0JQkI7zriFqiAl+wgMEgoKDUlMMgIQS3fdCfZBMSILbpL0Qm3RMTjz/XDomxk5GXVyIJyHwDIge1vQ2G7tHXNtqEUjHbod47B/kHrJHWoeTLC9YiJhwzz33NE4T8LVgLFtbW9re3i6V7z3n3U9xANFq7kXwmCMviOjWfF730wxWVlYKGfR8fbfgk5JCFNoJZ7/fL/UG2FOcFuCpIS5OuPvAnQHMk5+uwP6MxQx93bxmBPPgbhrEJa8f4seW+j5jjt3lgF3fo/e4M5h/UjFckEIo8P3nz3CBzB0rPNOLX3rxStbfBRH6gSOGmhE8m+fRJq97fQzmx50fvV6v9Mn3H64E4P0bjUZaW1srrhDuQ1RABEGcSyRuBOe6E20spZiQSCQSdxwWc82vXLmhS+uVSvVKBiMSdxfOjKDgdmSPDHuKAySm2+0WkglZhjB5FBYiQvueo+3FDt0aPZ/PNR6Pi/3ZI9heByCSWrehT6fTRoFIyK6TUCdH/Dj59tx22mDsXtwx1pIgSuxkyMkXp0Csra1pY2OjRNYZp68FxQMRdtxJ4tF6J8sxohvrRLAOfhoDNQPcdeFFFj3FwKPfTpY9ncFTMjhiEjEBez3j8D5G8QNSCRllT/hpH0TevaZFm9Di6QVev8HXkms8tcGLeca9xp5hXZaXlxtRenevuDuFvRuLG/peom13BPh+QsTx8fnnydNeeB2HgtezwJngY/EaG1GkQTzwGhsuOPln3FMdYorJ2tpaSU/xvvpaeepGIpFIJBKJROLWYrFS6/Evf6k+e+3HT7sriZvAmREUXEgguu4RWE8DIKqN4EDUE8LsEWDyup20xEKBKysr2tzcVFVVpd4CEV7IFn3ye/x9CA0kHNLsjgm3mBMZdcICifY8dggz9nDGJB1HcOkDggJOCLfdcyTh6uqqNjc3dd9995Xq9l5gkj5FQcEdG8ylp0e4wyRG52ONBchsv98v60Mf2tY7uhOkY8JILQjSCaL7gb3l8xKLY/qcMj7mk33pqSkuKHiqBCTYX49CgaQGoZZUxBp/pjsMmI8oQsU0DcQQqXnUozt1IOv+GXDiD7jOa5HwPNJIut1uSX9w4c/n0eeZzwNiBOkO7ipw8SSm4LAnEZAQFHZ2dsreiwVafX45JpKTHTY2NkqKgwtjpMb4KTOJRCKRSCQS18JSr6c6S+g8IcwHC/3cN71WnWr5+hcnzizOhKAQo9xEgonGQ6aJbno6hHRI0IbDoYbDYXkf8i2pQS6l4+PyVldXNRqNdM8992g4HGqxWGhnZ6dB3CF6HiV1UUI6rjdw8eJFjcdjSdJoNNKFCxe0sbGhlZWVQsy9WJ27HDx/m2MamQNECa9wT/SWYyEh/5Aqjsr0avq4E5grKuzHiPRsNtP29rauXLlS3BTMIWPgelwXToSd1LrgwZwjAvR6vQZBZq28roOnm3gRRggqa868O4Glbgbz4m4WCDGFCqPDwtNvaA8hgbVkDSC4rAuWeU+H8fQZLy7InHE/fZZU+ojzhvYRHiD3frIE+4j18L0aTy+gnx7Vd/i8uLME4u/CV13XjRQGF4/oIycqcB0nh7gI5P3zsTAvdV03XAY820+98GKe9J/viLW1Na2tren8+fPa2Ngonx//TG5vb5fjUbMoYyKRSCQSieuh6qzqXd/0cZqvZrpD4u7DmREUEAicYEEa3f6OhRnyNBgMCklAgPDCgZANj0oDIqZra2saDoflNAOPOMcijV4gDpJJ25APyL9X7XdHhdu63X6+WCxKIcTxeKxer6f19XUNh8PSntcJ8IJ3Tro8ek6qw8bGhobDoTY2Nsp/4xDw/sQIrVvRPcpO310McPcA/0akoP7D0tJSERNWV1cL6aU9nCZO9OmD7wHmDIGAEyiiRd3FD/oRiyB6ioMTdubR96lb+52AezTfnR70lWdAkiUV0g/p9fVkn3nU3p0o+/v7RRBhrvx0Ea8J4Sc8+GfIU1f8vTh//nmJbg6e4ePxZyDqIRh4OsNkMtF4PG6INl5Q1V0SiAUxZYL0D1In2F9eDwVRYzgc6vz587rvvvs0GAxKnz2Vw91IXnA0kUgkEolE4lqolyTlidOJuxBnQlCQ1CBzUpO4R/KHtR3yQNTTizc6mZV0FfmVDp0Na2trWl9fL7Z5jyADt5d7kUWIqkd5JRVBgwi7pwJ4rj6ALEOciKhzygHH60ULPRF05sP7ylg4spJ2PDXEjxHkXkiUCxIuKMSTKKLDgXFIx8KCp5pgl/fTOGIU3Umr1wSgfen4CEE/PhMBwOtQeB0C4NFrdyb4j9cxQEDgdRcUPPXF9xb/TfSduYw1BniGuyF8j3lqgpNc2mO+fB2Ye99rLhbQlqeheBoE8D0dhSd/nee5kyde46IG84hI4J8tB58tF1pcDPJ0JK83wv5BbGDNSR0aDoeNzyVrxJojUPiaJBKJRCKRSCQSiatxZgQFL6SINd6dAJCdvb09jcdj7e7uqqoOj90bjUaFVBHdlZr54V5sD6I0HA517tw5nT9/vkRMIeFeiM8L5HkhwViEkGgtroBer6eqqrS3t9daTC4esbe3t9ew09MGEVnG7xX3ERNijYP5fK5er1dEBASFKCa4M6HthAHqVXgRSIiq1z1wsSUWeGR8VPnHgeBRbAiyR/Bj+gD7gOcwP5JKDQUI4P7+ftk7ODsiYiG/KDAAxsL4+bcXloyCgkfZsdT7+Ly+gM/7ysrKVS4N5sndJzwfcu3pCxB0r73g68y4/ahTFwriWE4CgooLI3Eu/XPNKRmM14t9+rpzDyk97rzwdAbmhM+E141gv7IOLmaxXpxk4ifGeAoRP4nENVFVWrnwDPWXt067J4lEIpFIJBJPO86EoBAJDX/0e/48BMJrJ1ATAIszBR273e5V9nDpOJoKKaEwG0fPufjgkWTISrfbLeSePHDyuldWVkpNAsguJAsSGHPevQAjzguI9dramp75zGdqfX295MdDwiaTSTmekn57xJ0fhA1cGBRldEGBKK2TUf6blAQn2bFYJQIF81tVVUmXmE6nJX/dXRtOCmezWcNNQn9YC0QeJ5l+3CLkbzqdlrVG8PB0Ck8b8NQNX+82QQGxw8fn/+1k3R0OsS4I8x3dES4UQNBdKPH2iJhH1wV1LFxQ8VQHL7rpz3SHQkQcA/czdtp2x4y3S7/Ya9RBIcXB3SSxZgnj8lQGXyc+15K0s7NT1rnb7Wp9fb0820WGjY0N3XPPPbrnnnvKdwX71Ot/8ExPI0okroXle87ru3/xB3Xv8vC0u5JIJBKJRCLxtONMCArSMVmAcDl5c7HBj+rDwgzZhhy0nQ4AgfdINQIBRRPdiTAcDq8iFF4gz10Q7qKATCEkeLoDJxv0+/1GgUNII+8jTAwGg3IMplvxPYK6t7fXcAYwX36aw3333afz588XEYScd/rm7c9msxs6Ko81Ivrv7ggcFl6YLx7/h2jgKQ1evwGSGEmsO1cklQKWLjR5igr7hNchiggUFG+MKTKeOoDwQj98DzlJZ/xc11bw0NMnnMizf/gcxNMy3L4PQUfI8XoaLs4hynk9AdrxUwxioVDvf9uau/shpojEexBH/FQILxjZ7/evmhuvfYLY5XPop3lcuXKltNXWp/39/SI4Mqatra0ieO3s7JS96OLISWkgiYRj5/M/UZ/8N96sc0v90+5KIpFIJBKJxKngpgSFqqo2Jf1LSR8tqZb0ZZJ+S9L3SXqupPdIemVd15duoK1GDQS3Z4NoN4fYx3xsJwdu3fccbiLmEHEnVxByJzo808WD6KxwODnBdYDlGoID8eYajnB0Quj2fxwK/GDPdpLrBH40Gml9fV2j0aiIGJAzr8HgTgzmIUba41q5TR0CGIlctN6zvi66sN5EnN2h4CcJcL/nz8/nc00mk0IKvW5CrA0AQUVQ8HluWztHW10A349RNIjtMEe+lrHwoBeLJJ/f2/XnkJbjbgPGxvNcPPP188i7iwDu4nBxyMflggLtRleLg37yOXMBiT7i0vH14tkuNkWhgfnZ29srQiTiIG4VxsV3xcrKShFTptNpcfl4ulBErOtwVnErv4sTN47pPUv65gu/Kun22CeJROKpQ34PJxJPDPW5fX3c89+rpaxkedvjZv8K+jZJP1HX9YslfYykt0v6ekk/Vdf1CyX91NG/rwsIDekCbtWW1CAx5MUjBlBXgchltJ7jKsB+zXn0/X6/WNqpy4Cln2v9uEovlBcL/cWCeJEkMS4cCE6Ko+AwHA5LXQjpuJYABGhnZ6fUWnCnAmN3+zcnOkC2nJQhHngRunjaRhQV3OrPeiEsxCivCwpeaDHWtkAoIHLvlngnybFAJO4Ejvjz1A8nuB6hR0SJkWgnjtE94Ln5EXG8Xm8BME+e6uDFDCHE7DnG53s5Fh2EiJPm4wJEm3jhzhDmwF/3Eyk8tcQFhlhnwQWatvQJ9jwuG/aYpwghCkYhg/aYG3cfsHcnk0mplUHxUYqCeuHKfr9f9v9sNiunqEwmk8ZRqy6gnCQ2nWHcsu/ixI1h5f4Lmp27rfZIIpF4apHfw4nEE8CFC5f1gx/+X7VcpSh/u+NJOxSqqlqX9CmSvkSS6rrek7RXVdUrJH3q0WXfLemNkr7ueu25lZ2IcIy+IzpQuI5caMi1pEbVf4jbYDDQ5uZmIT+kE0DsiVZSwwBy4sRFahbBoxgdUXTcBhAyxiMdCwKkNAyHw9KmdEgAR6ORzp07dxVxHY/HjTFC+iHR9MvzxSFrm5ubuvfee7WxsaFut6vFYqGLFy8WooYIgBBA9JYaDTyPf8eK+cPhsBD/mIMOmeP0DSdpRISJynsdCQQdTwWBdDIvCEgQQq8jwXzzfOAODJ7lNTq4z0Uhfnu/aSumafiJJIwpiiGRnHvNAAQrryURnQyIN7EoqKdceFqAizbUZKDWQiw66C4SFyNICXGxirQJRAWEAj5bno7kTgpfd+bDT9Pw9BJ/HkCQoT/UnUD0o25GFPLW19e1vLxcPjdbW1uNQo6IOKxHdEWcddzq7+LEjaF6/ZLe+qJ/ftrdSCQSZwD5PZxIJO5m3EzKw/MlPSbp31RV9TGSflnSV0u6UNf1Q5JU1/VDVVU943oNkWLgxRDj+04cIF5EG69cuSJJxYUAqcJZQLSfCGSn09FwOCyv7ezs6MqVK9rd3S153cPhsJAy0gIgXe5AiJX3ETtGo5E6nU4RAEhBGAwGJbpM7n6n0ymOCY+K4hbwqHok+xBAjtSj8OHa2po2NzdLqkOn09F0Or2KeDPviCK7u7u6cuVKmQ/y2LGW+2kRkhouh4ODg1KIEfGEeXCS6mkZ7ijw6LZH+l1UWiwWxaWBq4T2aAdRAoGFug6IIt1ut1FDgT3mdQP86Eus8k6MpaZQ4IjFBek37cXX3J3As9vcHJ5mgmhDv7vdbhG1YtFDF6lcTCD1wwtd+jq5W0E6dpNIx8e8ukOBueJzylGs7HXEBsaFgBdTalwIiW4B9i9j8iNefW0YCzVLFouFtre3G8Khp+54SokLEreJS+GWfRcnEolE4kkhv4cTicRdi5sRFFYkfbyk/6uu6zdXVfVtegJWrqqqXi3p1ZIK4Ycsra6uajabqdPpFHLlJMWL+3nVez/rnnaI/DrZ4PWDgwNduXJFly5dKukOXhnfj5OjD05cvbr+fD4vp04Mh0MNBoNG9XvP4yYyW9d1KbA3Go20urrauMfTOLzyvNd7cGKFmOA/MeoN0VpdXS1k31MNGA/E090Hkhpz7DUXPB+faxAfvIDlbDa7isg5IpF254J0XPTR01scLkzwHI7YZK8gvLg45HUX+PEUAObIU1Siy4Bxt9VaiKTYUzK4z49/bPm8XBXZ97mLrgbmAgIPqfdijP5sF3187jxK7ykz/vnjuexBipdSG6OtRoK34c+JaQd8J8S14hpEGMaImIRI2e/3y75jf7sTw/emuz1cYLgNcMu+i3saPDU9TCQSiTsb+T2cSCTuWtyMoPB+Se+v6/rNR//+AR1+eT5SVdUDR0rsA5Iebbu5ruvXSXqdJF24cKH2YyIHg8MvUyKo0rEIwBGKbpWOxd8g2BAlCrURRYVoY++/ePFiicA7eYGkeRE5bNU4F4j27u/va21trUTlu92udnZ2SrTYSRb30pfRaNRwTHh9AEhwLEbnNQ1IceBYSJ5FSoekEtEmb73f72tjY6OILTGy7YX7vJBePDXA8/GZK/rgBSghargy3FkR6xV4rQGInffJa0ZEou7zwnMRSLzgJsKKE3Hu9zWPRSeZC8hurIHQVgyRPeouCy9a6Xvf0xccpDr43PPb187n04s4UrjUi3l6qoWfwiEdOykYO2P0k0wg8J7qwOkTnu7j6R/2+W88iz3hqRuM1Y+VjEUkO53OVePmer4DcNggEPb7/cZ43UER1+B2SHnQLfwuXq/OX32GaCKRSCSuh/weTiSeAFbGlbanvdPuRuIW4UkLCnVdP1xV1fuqqvqIuq5/S9KnSXrb0c+rJL3m6PcPX68tj/4vLy9rMBg0CC0kkGtwBvAeKQMIBZAFisJ1u11tbW2V+giDwUBVVZWcaiq9D4fDUsANkgF5WVtbK8Ts4OBA4/FYW1tbpUAiZH19fV3D4bARFV0sFhoMBoVsQWzW1tY0Go2KEAHRo/gibgHmyO3lkFSKOa6trWl9fb0QW/LXIU2QZXcyDIfD4gLxIzK9UKJH0ikqSYTcXQIQcMi659C7ACSpCCs+nzzD3QFEpD3yTuqCpyQgtrgQ4KkcfvQg7gQv+Mn8eo0AXAhc5/2EzEZLPj8efacvns7AuroDwoUq+4w1ovGx0CPzglBAuglz0Ov1GkUM2V9RWGMsfKbYQ+w5xsURoZIarg/mFiGLsfrJK20OBEQCd9FIKrUN3KXAf9MvF56iwOZj8roeuFNIA6rrutTicAGBtff1P8u4ld/FiUQikXjiyO/hROKJ4fk/sKVHPmlD+qTT7kniVuBm/1r+vyR9b1VVq5J+R9KX6vDkiDdUVfXlkt4r6fOv14hbnmPVd/6od4IDKfLq704yEBk8WiwdR3lxAng+OU4BUhUuX76snZ2dRp0BCkVClCCGFOXzInQPPfSQLl68qKWlJQ2HQw2Hw0KgqXQP6eMUBuojUDhuNpuVcUnHUWkfB0ICTgCpSaoAZOr8+fNlnBBO5hlnCGODuCNe+OkUEGaeE63xcR25x4vguash7gWu99Mb+DdigsMJJYKGn4RAv3q9XhGUPLrOb15zMulRcWp0eP0FRBTmO55OABFn71BTw0918NM2vBih1zGINnws/B595x7/3JBK4W1TeNRJN20wfvrIunhE38Uyxri2tlaKlXIqiQsSwN0cJ6UVuCPC90Wsx+F947+ZK5xDLi6ur68XwcOLO3JvPC3jNqmhIN2i7+LE9bE0HOoPvflhfdH6/5I0Ou3uJBKJs4P8Hk4kbhD3vfb9+rpnvP60u5G4RbgpQaGu61+V9Aktb33ak2mPP/yP2m5ERokcEymGOHCfR5Y99xqSQNu0RUHHyWRyVV49xI/7IJZ+vCKnLrhLAtHBreU4HhAaIDDuFID0zWaz4k6g+n7M85aOc8f9WD4n9VGEYB68aCPRaXdAUMPBi/gxfn/Nc989F52ob+wHokFbLQEnhW1F/9xd0ZZzjwjAv5lXiLoXbeQ9xgkhpi8uHLhQ5Sd4eFFBTwWI4pV0fMQj8+b1BFgzxuqCCKC9k+bMI/P0i/tddOLaKEjxbFJsiMw7OY8ResQe+oLo4K4Pd/d4AUtcPO6M8L3hbbozwfeUj9vTU/x9X0veZ90Rd/zIS6/t4Cke/jk667jV38WJa2BpSV+68b9173KKCYlE4hj5PXx3o57P9cyfmeuxj13R7PxtU4PpaUc1lx54U637PmVHn9rPebpTcCb+WvY/4CGlgGKG0jH54fW2InExakkkmnzxXq+nqqo0nU41Ho81nU4lqREtxnXgRBQxgJoBHFdIhJboPe95VXtIvxex46QJr3OAEIEDw0+WYJ4YG44IUjqiuIK44cXwGCNzyjXephNgd404AeY9L0RIzYZ+v984DQNngfc9WtXdjRIj/W05/TzX58ZFjZjDH4mvF06E8HotBdacvsdTDIiAe10JJ7++b3wstOM2f8hvTKUA0drvZNqv8fmIBUr9s+P9pU84bfxzyO+Y2uHiDvPB/kA08FocXjsDscrrfPge97773EX4XMYijfF9F32iwOL1QXy/+89tVJgx8TRg+dw57f/eF2pZt41zJZFIJBJPBxZz9X70F9S9dNodOduoFpWGP/or+q3tC6fdlcQtxJlJECbaDtHxqL90HLGu61q9Xq8c5UdhRcgI7Tgh5B7qLMznc+3s7BRLv9dV2N/fL0IDxNRt3AgKCA4QoNFoVGztk8lE4/G42MqpI+DFBP2UBXc1YNOO5B5yRJS9rmttbm5qfX29EXWFFDkxh0xz6gIuDfLg3WWBM8KJsefGe+0Gj4Yz97TBvVJT5PAoshNkT5fAxUH+vbtNIMX8G2s9/XCi7mMg1WE4HDbSHdhXXgyQdYcI41SBVHsxyCj40B7ClaQyHgpDevoCvz1izz3uTGhL8+D50TWAMIEQ5/UcWCtSAhCvELl8Lb1tT3XwOgyevjCfz4uYhqAWa2ewlyD2rHdMaWDczL+LUj5vvs60x2eMehCDwUBra2taW1srtSpYf//MuMvExZZEAjz+OS/Wm1/zWimrsCcSiUQi8cSQ5UbvWJwZQcHJk+e88x5EMp4rD3nxFAjp+Ax7iMfa2lpxCWxvb+vhhx/WdDpVVVWlWKLXVYB8IUpMp1NNp9NGDrx0HB1eWlrSlStXyvsURuTYRMgk4xoMBuW+xWKhS5culZoNTuxcyKDoHqICDgVJpYo/hNmj9bgH1tbWNBgMio0fcYRxeNV+RB3s6fwAyCK1IXjW7u5uIyUB0glBo13W1SPdMfddUuPoS58T5sUFB95HMHFXhqeGuGDhRSd9H7rjhbGzl9zG72kOvged6FLHAXGDNfeaEkT42eue4hDTAvzZHnX3FALWiv7yWhRcIOUrKyvls+VOFi+8SGFHiHqcV9ImPOLvex6RywUmipRC7D39AMJPW17rwvehP89FquhKicKUFyFl/mkTAaXtxI1EIpFIJBIJR9VZ1Xu//hO0v5as+SSsvWdJD/7I+/X5v/4effbwf0gannaXErcIZ0ZQ8GKLHGkH8aAiPtHQXq9XyLX/we/RX8+th8hBlqmdsL+/X56DYOE2fK9f4DZuh9cJICrr6RXcHyOhHgGfzWa6cuVKiYS7zd2PSqQN5oFq9e6cgBxBkNydQOFGIq84CSBw8SQAxhEFDkmN1ABIrb8f19bt6b4WkZx7JF9SIbbMByIPFn2PTHNtLOTnNScQdzwyDxHlHulqouoiAONoS+XgXr/G60EwTv9v3+vRbh8dFJ7X76KB18pgPrwfiFfeRx9bTEXwegh+qor3mzn3MdNH9rcLb55S4KkdbXUj2PteoLJtb8W559/MKd8Xbekfnlbkn2PHSc9MJBKJRCKRcOyv1Vp08u+GNpz/35Xu+fUrWjx+SZ89fLfuXU4x4U7CmRIUKBAoHdc0oC6Bpxe4ZdyL6nluN/8NiGiTIuH2cycSLiZ4yoHnhENe3MLvR0z6cZVey4Draffg4KAUYcSd4JF9SG+s0O/tE2328fC+1zlAZHD7/Ww2a+T4467wkx1cnPAceuY31nnwegAx0uvRY0iqE0ZPC5FUhBfIMWKECwrc70KNk0upWXdhaWmpiC/ucHDi6JZ6qV1Q8DFyjf+OdT08pYI+OcH2oopOkL3uBiTeSTlt0g+/3yPs0c4PXBhgT3EtYoKn+PAMrxHB3LgY5uku0VkR0188dcH72Pa6zyH/7f/2mhyMywtG0i5Closi6UZIJBKJRCKRuIWopd5jS7r3Fy9q8Ru/qWpt7bR7lHgKcCYEBQgxRAAS2+12JalRV0E6jqR7gTsXFrxYI8RhMpkUwsopCrGwI9FcLxBHRBxS55FmJ0TT6bRh/Sctgz543QEvXoegMJlMJDUJISIIxLeu69I2+eCz2awcN4kIgxuB8TnxG4/H5QSKuj6sfk+6BEJLJFtuq5eOxRPWxo/hm06njZoIbbUK3CHBmHErbG1tlZSRmNfOXDM3sYgia8Vz/T1/n/1DP93Vwr3sJa5xMQbBgzmNJxa4iOLt+h6gL06sXahizeOeA4zLxR1SEXxfxucizvFsXCjD4VDr6+tlnRmrC2m0Fd07iGj0y4W+k8QOF2x8vtyZw79doHCXCk6P6BhxUcPTPJijyWTScMC4Q6Xt+yaRSCQSiUQi8QRRS9W80nP+6Vu0OPqbv1o+E+cBJG4xzpygEI9DpGYARMhJqZN/j95HUrK8vKzt7W0dHBxoZ2dHjz/+eClC51ZtiBYRzVjpHxLmpNVz8clBp66BR7KlY4IOaaMw5N7enlZXV0tf3DruQodHdnFV7O7uluKSFy5c0L333qvRaKSVlRUNh0NtbGyUuZzP56XuhKTy2u7ursbjscbjcTm5gue7MADJ9UJ73kfuZa0kNUifr5vn4vtxnNQsiJX+fW7aahJ4agP99XoCq6urxfUxm80akX4vCsi/3Q7vR0UyD+wNBDDp2E2AOOLjJWLu4k5MbwGMz+fR0wTc0QDxj+KJz6O7JHwvsc+9ICrjjPvXP2PARQlPg2Ds9N/HQPuQf8Qt9pO7Q5jbWJciChPMs6RGGkW329Xa2pr6/X75PmDfxXba0ldSUEgkEolEIpF4chi+f0nP+tdv1fxITNj+gk/SP/mH35HpDncgzoSgIKnUD/CIuNc0kI6JFq9Lx1FPovPULoi1EGazWSmqCFFyEuepBhA9iA3k1SOlFPfzyGq0gPs9/htSTo64dFztPt7njgaeS6R5Npvp8uXLOjg4KMdQImj4MY5OpmNaxZUrV4qwwfx4BF46jnR7TQe3lu/t7ZWikU6E3anAmCncB7Fl7Z28+j7wVAqcETF9IqZheDoFhNePR0SkasvNjzZ75snrVLBeOGkYi6+fF0N0R0BMPYhiQkwRiff6SRbuInC3jhfzpE+ecuFOCGomxBMhaJfr3MXhxNs/qy5YxBQhF07cmeAOHN9r/pn25zIP7IlYRJRr/ISVqqoaqT5RtGg7OtLnIpFIJBKJROIkrDz3OXrsDzyoejnrJ1QL6dn/da6lvYU6l3Y1v7xV3pt3K31Sr/1I8MTtjTMjKPgf7l6RXTo+MtHzwSU1CDfkgR9PoYiEMAoJECYnKpIKUYmFA6NFGmIFAbpexBPCdZLoAOGNkXO3gM/nc02nU43HYy0vL2s4HGowGJS5I/WB1AGEEalZ+2FnZ6cck8kJFxAtL/oHAfN0B1JNSF8g+huFEhciWAPm3VMXPPfdxRknjpFse7Qb4ozA4WvLcxnf9eBrhqOC8TG/kGkn0J7m4KTV3QjsAfYaogmvtwleXgeCefFaEDgxqHvh5N5rA7hAw57FqXCSA4g96ilEuCEo4Ojz5QUvmUsQ60rgTvA1jMKir7unL7DWPr7FYtFImXJxIAosbakVOJB8HRIJSap+3/9Llz7ytHuRSCQSibOG+T1revxj7z4xYWmvUv/RppuzWki9N/6qFru7jVMi8/+hdzbOnKBAZNKLqEEcIJuSCumAaI1Go0KgPb/fyYfn8RO9xtXAb0kluu3kw23mngIB8RkMBhqNRpKOC0x6vrdbxYFH6bkGYkdUnfcgZZ5uATnG2s0RjhDPjY2NQqYh/MwZtQQoCMnxgF4osS0yjVsDCzwnJiA0xBQN3CH84IAgisxYXDyILhHECHcyREHH58ULVBKB9j54CoM7ADyNw8dOZBsRCBcMc+nzRr9i1NtTcVwMcRGLZ/m+8DF6qoTUrCUSi2/yeWE8zKlH+nGyRGu/CyF+VKgXsYxHRjKGNtEn7n/mChHLRToXTtyl5KIBopULap6KxJh5Juvja+jpK6yDu0fYb7g0Enc3qpUV7fzdsd7xe/7taXclkUgkEmcJVSW1/I1/J6M6+hO893ilB77lTVe93xaK2c7/h97ROBOCAqQDkjIYDAoRdGLkNnfp+Gz79fV1DQaDBvkg6oo1PBYJRJxwcuhH4Lk1emlpqbQPKXRbe1VV6vf7pX3EBCLAXjxPUqMNSQ0rPETd8/BjgTvIKhHY0WhUcsWHw6HuueceXbhwQf1+v1Gd363yk8lEjz/+uC5fvlyIHcIDhNFdEovFYUHL/f39RurGzs5OIZAQNz+dgfnABRFrUTjxY874b+bB3QHsFd8Lnl7g99JPng155PhMJ/fuDoE0Q2JJBanruqSSQMQhnYhOiCLeJmN1ku3CCa4HF7ukYyGAfexCm6d1eL0ML57JZ4q2XUChdoILN/4Z8/0SUyDcReKkn/vdnUAbOCt8ryCIeXHHlZWV8nmsqqqsm3822Ke8598jODS4djKZlCMv2SPukvA9RBtXrlwpBUqjsJO4+7DU6+mrf+NX9Mm9/yWpd9rdSSQSicQZwsUv+SRdfrEk3SV/L9TSR3z7B7T40EVpPm8VDxJ3H86EoCCpEHfPm3eCCEGBcEGwcAZ0u93iZOB9/6EdT2GQVIiOR+KdcLlDwQUFr/DvzgIvBMixkdJhxNNPo/C871izgXE4+faosAsDniuOU2F9fV1rR8eyMBaPvOIo8DQHfk8mk1Kgz+fd5wYixjw6SZvP5+V5uBM4VcOPg3QrekwJod+07SdseM0BJ+yMzS3s7Be3/7sgQ/sIAxBdP0XA72+zxNOPKIR4EUMXKny/c40TW3coeJFFJ+5u2feTReibpw2wr5gb9q2nA9AfF7BiekYU8fhhDZkP9i19dGcNbg6vr+B7c2lpSb1erxx5Ss0Nxolrx4839b3ieyd+Z9Annz+cJ55SxJ518SSR+KjVxzVaGp12NxKJRCJxVrC0rEt/9qXafm6lxerdQas725We85NTzR9+VPVsdtrdSZwhnAlBwUk8Of+8Lh2Tb48WQmwGg0Eh7h5t9Lxut8674EC0mfvd6o2gECvjQ9g8/QKy58UK/ZSKmGrhxNHrMri9HiIlHdu3IZZEqomgQsJGo1Ej9cPnlTa8lgBCgosJOAx8LtscAV7PIkb6/eQNovt+qoOLCbRxEnGL0WQnwTwLJwQkUVLjKMtYk8D7yvw6GeY1H5evA21wv9ek8FSGkxwpvu/ZAz5Wn1uvJ8F8MVZPD2ibF4i4OwbcLdA21y6SIGD4PvCUGuadez1NwE/KcHEiptVQdJG2XcyiLf8sc7+37/MZ55a9G50JUSjydfAikZ7ykUgkEolEIrG0tqb6w5+jSy+RFp27Q0yQJNWVlndmqhd3iRsjccM4E4KCpEYEHhLEH/5Etz23nRMMiLRCJiEaTsIhFNikF4uFBoOBNjY2tLm5WY6Vg0T46Qb8EF2XjnP2OR6SZ+0eHYtCGsXq6mojMo9gQC0CnoFYsb+/30gNoEJ9fK67Gojqrq2t6cKFCzp37lxJv6Bd7pUO89fH43GxdZOHDvH3cTshjDnn3h8H42a+t7a2NJlMStpJJOX824/7iznzjlg7wSPXXh+APvvJDO468Dlkj8XjF+P+jIU73f3hpNn75KkAUVCApJPWg+sjilq+H13gQgjzdAmfE/rpe8wLnjJWn1PAmpAqEE98iGkSfPaoVcB8IjxAzH09OGHCxQVOm6CdWN/AHRDuGMIVEt0JrK8LYu7EQMxg7vhc4u6gP4m7FFWlajg47V4kEolE4qxgaVl6wbP121+8prsmzeEI++sLveNVG3rxPzqv+WMfkiTV5vpO3L04M4LC2tqaNjY21O/3VVWVdnZ2ygkERNSdnHh1+cXiuDggleABhGh7e7txysHm5qaGw2G5djKZFFJD5NVt3B659aKPAKs8rgki1NRigLhBtLa3t1VVVRFE6rrWeDwuRfY8v57cffrsfVhdXdVoNNL58+e1vr6u4XBYrOheCHA+n5cCjJcvX9bFixe1tbXVcClMp9PyrFhYz8WVmKbhaQbci5iws7NTyB5zKzWFAXd+4CjwtW3LY3eCH4tnRkLt9/vcScepB356hdc/cCcK79GOR995Jj/T6bSsH6krPm4Xr+irrz2FQl1McGHK97enWCCaRCHD+8qaeSFDfruzgs+VCy2cZCKp1OdgvTl+FDcKohvCGOkOfM6olcJewhGEIDGdTsuzmMfLly83xA3WxgUpHw9zyvpGwYMxs1foI98xg0GSybsZk897qf79t32LnrWS6Q6JRCKRkC7/mZfq4kdLd5uY4HjHX3mepOep/2h7UcbE3YczIShAoIi4TiaTEj0ncu753/yxH50JkChIJSQeUg45odYAkXREi36/X0QBiIgfQQiBdrs8/67rWv1+v0To5/N5cRrQH0+7IPoPIaNQokdvPVJPeoYX5YMgrq6uFjHBU0a8j4gZV65c0fb2tqbTqfb29kp9A57rhf/8xARPOfC6E35UImIPa7a9vd0o8ujRXubEc/npp7sWPCWEPrmY4BFoT2Fw50S0wsc1bDuRgDZcVPD6AsyBp+rQH2+b/sRTKnxPxHQNdwEA398uCtA+e5y1gIDzTOnYEdI2N1F08foRPNuPRI0pDP5Z9b1EcVRP02AvLy8va3aUg0e/IPyxkCpik6efeF/89ZgC4vfz40KT19Xgewb3hLeTuPtQLyvFhEQikUhIVaWLX/pJ2v6w6u5Kc4iopMXq4d9Pu/dJj33ly3Th3/5vLcbjU+5Y4jRxJgQF6bg4Yl3XjWKBTr6vdVSdEyInhFwD8e50Our3++XUBk4RgBy6ndsLyEWC4mQEokdU2SPTjM2t/G1kBlu5E3PqKMT6Ek6gV1dX1e/3S+0EPz3BbfRUxkesoYq9OztIJXF3gM8vc+OE10Ucxg7B3N3dLW4DL3zpFvdo55eO019i2oEjjs+dA36iAIjrBQmN9SFi+gLj5r/jNV4w01Mo2lwVviciqec9nxfvQ2yTcXv9Ddph/0WXSZuY4n3w93imr68TdfrDvsLpgpjAOBAmPIXGTz6hfcbGXvVUBK+nQOpGTAXyFCcvTuk1P9jLPjf+Wef59NudHom7E/2HZ/q0t32ufvTFP6DBUqa/JBKJxN2IpbU1LT7yubr8ImnRzb8LwLxba+tF0j2f8CItTw60NJ5p/rZ3nHa3EqeAmxIUqqr6q5L+nA59P78u6UslDSR9n6TnSnqPpFfWdX3pOu2UP+K9KCHRSkgCxyNy7J8TBY8MQ749+uuEj5MhJBUiNBgMGvZzJ0qe/uCEVGqSTCfIsZBjVVUN4cDbwM6+WCwax/k5+SSqSw467w0GA62trWltba1Yy71OAeki7vqYTCba3t4uRRjpK8UdES7IV/f8e4g+ZI+ILnO+WCxKugo1GWLdBCz6PAsi6gUVeU6MoEPeJZW5JNfeRSOPWvOerxnzSju+jp6W4cX6/HcksV4HwvP6nTQz9gii5+5+YC+5KABcgHDRxWsEsD9ioUcn2jH67vube9xNEVNomHvcCV7bgDV0MWA+n6vf75d22PP+fF5DrMElw76PYg/rwf7zkyc8FYb95Z8frxHia+N7tU0YOou4Vd/FiSaWf/43tPpn7tGHfmFPz0lBIZFIXAP5PXxnolpZkT7sQb3zi4a6m9McTkQl/c7ndSV1Nfjgmh581+8ev7eoVe8fpuvu7Hb1oflY9y4PT6efiacUT1pQqKrqQUlfJemj6rqeVlX1BklfKOmjJP1UXdevqarq6yV9vaSvu1ZbiAGcKw/ZXSwWJZoJoYFsQ1Dc9s1vnAKQtBhdj6cYSCrHMS4WC125ckWXLl1qnLQAYZJU6gw4gfTINEfbITJ0Op0SdXUrOkddkoPuxevG47F2d3c1GAyKAEKKAQSLegnx6EwI1N7ennZ2drS9vV1SHS5fvlzIPuSNORkOh+r3+4VgsRZElSlCydzRDwQe1oX8d4rySWoQ49XV1UL+WAMnyL7OTkal45QM1p4xsMakVjiptz3b2CsxdYA+IWy5iLG7u1vaghCznxAxGAcCiacpeDFBT5FgHDg52Ie4OfjhM+KOkyikkT7gooALJYhajN1rgNBP+sJ6uKDA9ezvnZ2dqz6D7rBwQcSdOcytHx8Z1ygKAax/FItcbOv3++r3+yVFinSl2A7z5M9jPXl2FJPOMm7ld3GiifHn/l79p2//Vm3kkZGJROIayO/hOxdbr/wEPfbxp92L2wOTBxZ65987nqy13630jH92WGPhgc9/lz7zi/+6funvvva0upd4CnGzKQ8rkvpVVe3rUIX9oKRvkPSpR+9/t6Q36ga+PCEwuBMkFXJIsTZ3D3huOPdD4J18QZQ8yguJdJLKT1VVRTxwAjedTkvqRCwsyGtORCA6iCFuT+eZtEF+uhN5ihl6xNpt6IvFQqPRSPfee6/OnTunbrfbcD/QjytXrpRTHEhx8GPxcCOsrKyUIzgRBHBnEDF2Qri/v18KWTJXs9lMW1tbmk6nklTy5D0C7GkVkFEvRoiY4OS1zQ3gBBUxAYcF+yWSaeBig7ss3CkAmVxZWWmc1OHCVVsBSCfiXmeAMcYaIJIaogQnhEDG3Q3gIhgknvnZ2dlpCASeIsFe9KKNwN0TLnrwLPav7+9YV4TCmDhK2k4GYV6oqeGpJt6XOJcunLA3oqAQT5JwgYr+enpPdCLEfeG4HQSFI9yy7+LEMeolaWOpf9rdSCQStwfye/gOwcr9F/SBV75AkrR7j1QvZ5rDDaGS6pXjv6PGz5Qe+aqXS5Ke+V8f0/L+aXUs8VTjSQsKdV1/oKqqfyzpvZKmkv5LXdf/paqqC3VdP3R0zUNVVT3jem05ucCSDEHo9XqFGHINJydwr6cXeO75UR8KqfFoLm1KKoQEEufRaQg0IgcEMpKamGcvNQscOjHx3Hu/Xjomn7PZrNj+cUM4OVtaWtJwONTm5qZGo1GjaCBkm/QGCjASoY2iCIXyeA6CC6TRyT2kEwcEkXnmiSMivZaBzxXjceu8z6Nb2p04x5SFmIbiJ3/glPA94vsCISmKEpGIMkdemyCmO3gdCRdyvE2eQz/iviCFhDWIKSVeP4BneB0IX1f6S5+8Ngn3eHqGz7On0jDfXhyT67zWBXCBJbbrdQv8VAquoc/e9/gsBAWv4+CfM/auP9OdES5q+OexTTBw4eZ2qKFwK7+LE8eY/dHfpw/8obS3JhKJ6yO/h+8crDz/udp5yTO0/byz////s455v9b28w7/P3rpY+/R7vlK/+Ti8/XV596p5eq2CdgkbgA3k/JwTtIrJD1P0mVJ319V1Z95Ave/WtKrJWl9fb38wY9dGft5r9cr0Xre92MhJV1VHT8WnItRyZiqgKAAQYVIQyRxTUBanLhBvGLkdGVlpZxa4eSPe4j68m+IDznpBwcHpcYA0WxqOvDe2tqa1tfXS/0Hjy7v7+/r8uXL5ShKakVA5vr9fiGRkHxcEE6GGQvz2FbUDgJNBJi5ldRwC3jxQunYNeJ2c+bViSDr5sITfWC+Pep/EhmNzgR3JDgZdbQRS9YPJ4Xn67sg4WTa94Q7NNiLvOYODJwA7irxvH72jffV142UEp9T+hFFG0Qs1smPY2TPt6VBUGsDONlnf3nNAj67LuyxjnyWXODgGb5HY50STmSoqqqcMtG2Hj5X3v+2OgnMpY/trOJWfhf3lMdkStLyhWdo/Be39O6Pf8NpdyWRSNwGyO/hOwNLg4Eef9n9euwTTrsndx4efakkLfTP/sdn6E++4n/rgeW+OtXy9W5L3Ca4mZSHT5f07rquH5Okqqp+UNLLJT1SVdUDR0rsA5Iebbu5ruvXSXqdJD3wwAM1UXTOnt/c3NTq6mohO1jrPWoOISS/vd/vl2KMkAHs/nt7e4V0QGqJopN+sLOzU9qHQFHQsM3iTlSZUyMgR8vLyxoMBhoOh4Voe648BJboPuPZ2toqaQarq6va2NgoJzccHBxoZ2enRMpJdxgMBsWO7qkN0+lUjzzyiCQ15olnQeAgaYgb4/G4nAABYtHCo/UrhG1nZ6cRxcdV4tFnF2+izR1Hg1vrPf+dNmKbnkYBEfVjDPf391VVVeNoSiL5/HhRQ0QMHzd9rKpKvV7vqrQM9onXreD4T4+KMy+kZEjHIkk8+eDg4KDUEWmrFcIe9NQfHDpcg2jAa+xrHAvMoTsTSFvwz4bXPKAOCO17+o0LHb7mXgPD9wHz7XUeeEYUcFxMIL2Ca1gT5mF7e7uxX9ydEPsQUxx8f0XHxhnHLfsuXq/O3/Uh+WplRd/08z+m37u6LCkjKIlE4oaQ38N3AN7zNR+rvY10JjyVqA4q/cEf/Ov6xs/8AX3x+odOuzuJW4SbERTeK+mTqqoa6NDe9WmSfknSWNKrJL3m6PcPX68hiATRQIr8ISA4mYQAEM2fTCba3d1Vt9ttkHMIwe7urra3txvF4iDWHi32SKZ0nIYBycQtACGDGBIdHQ6H2t3dLWSJ1yFTiBtEXSkgF0+18JxwHA7uYOCUis3NzUYBQQotQkTH47H29vYaJyWsrq6WNhgfBDnOAfd4TQhSC4js0kZcGz/Zoi2FxNuNqSSIAt6PaDv3Ghke6fa5xtngBNaJr0fEJTVqFETRpO24THdCEBX3/eKFBEkpccu+p0rQDz+JgBoWfvqDzy/7308MaUv5cReIpyPUdV1qZfDZY3/7Grsbxcm3Ozy8Dz7mtsi/w50ibc6YKGLxPE/bwSHhbgQXidxRw1zjZGlLd2Af8bzbRFC4Zd/FiUP0qrmWq871L0wkEolD5PfwbYzl++7T+7/4hdof1VJ1/esTN4la+tu/+Dn6bx/+Ln3Ph/30afcmcQtwMzUU3lxV1Q9IeoukA0m/okN1dSTpDVVVfbkOv2A//wbaahAFt8n7MXLAiSpRbASCfv+wgJaTMicZHhEn+u+EHXLjRMyLQ0L2qSzf7XbLqRIuCOB6oB+TyeSq4nJuD0dMgdB1u91GqgHkj7ZxJkgq5BshYWtrSzs7Ow3CDKF0QhwJlRNa5tXz5Xm21znwOXOC7GOLQgOve2SdexAEnGA6mW0TMrwf3O8k2mscRGLcJlYxBp7Hbx+/2/LZY76H/Dlx3r0+gY/RiweSPsLaRhIcybiTbncgxPXjdXdzuCuGftKWpwrE/RJrUPj8eaTf041YuziGtloFvn+vlbLgDgt3riAsudPAazC0zRVukDYh66ziVn4XJxKJROKJI7+Hb0/UL/sYzfsrmq4va/ys2+P/+XcMPtTVz688T39v+Ki+4Z63ZU2F2xw3dcpDXdffKOkbw8szHSqzTwhOfKqqKvn+frRhLNjHH/9EgPv9fiPNgLoB7mqAWHgUVjo+Ls9rEBAZJpXCq8n3+/0iKDgR84r9s9lM4/G4nLQgqQgR7giA9PhxglT6hxTt7OxoPB6XVBBcHN73K1euaGtrS5cvX9b29rbW1tYaBQmjxdtFGiLtLl54fQEEEk/5cHcA6+Fr5OvqogHrB2HzNnFs+LUeYe71eldZ7VkvrO+IM350If11OJlv66dfzxywPoguiACepx/nwveGCy2eprFYLEq6CuvghSURXrxApq9hnF/mkvdiscToLuA6TwVw14Z0XHvBCyy6cOKEn+fjTkGY8+e7CMBYYvFSxBvWCUHO9xnCCJ9XvjcQ8vyEDsYWBUr/LHqdiDYXw1nErfwuTkg/P32+thfv1+bSTC9ZzVMeEonE9ZHfw2cTVWdVS8P27/F3f8ZQe+dSSDgtzB/u619f/AP605/9S3rWStZUuJ1xs8dG3hJAlrDzQwr4o57oLIQMoQASvr6+rnvvvVdra2uFhEMkIDlRgBgOhyWlABLqhA8C3lbAsdfrlaMaPUo6Go0a/6amAWQXAaLT6RSRAOJ4cHBQxAK3mjNW6kT0ej0Nh8MiOEiHDobt7W09/PDDeuihh0oaQa/Xk6RG8TnmxYvk0YfJZFJOheA6r66Pk8PrSRBNxyXi5NWJtYsl1MVgzunffD7XeDwujhIi6tFGH1MpPFIeo93RaQCc1NKOX+PEHzGBddna2irzxOkhiAP8+IkTnsYSCxyy93xdvO6A73s/gYPnMj9ecNFFByfF7hZYLBalTgZ7cjAYNMbB9e4e4Teih7sTXGDytA/qhXB0pTsBvI+eqtDmHKnrunHiyWKxKKk+PLvb7TZSoRAUeQbzx3x1u11JaohCpC7xWU/cXagPDvQfPuqC/oMuaOdPvlQ/+23/z2l3KZFIJBJPEnt/8Pfodz/zJLqTYsJpo9qr9Ok/+Nf1LZ/97/R5w53T7k7iSeJMCAqSGoSirutCYN2RAAki35xCd+vr6+r3++V1iFKb9R4xAYLoOdMx999f63a7pdDi5uamhsNhI+IJOZZUSOfOzk7pL84J+nhwcKDpdNqoUeDHCZLj7uSffgyHw8bpDru7u7p8+bIuXrxYToioqkrT6bQRMXfi7RFeCL5bxyGSkGIn7pwGAbFk/vzUA2+LYoQUa/Tou5+SQMQf4g4hRVjy6v5el4HxuhjkQtJJ8JoKXmODuhNO5hGBWBPEqug08H87Gfd5ZGwepfeoP+9xDykwOHeYW57lQhjjYh7ZS/v7+6UIKKTZa2Kwpi6yeLFMn1fEIHck0Bd3ariYhBjCfvbPY1vtB19n5tDHSPukm0gqQgNiAu+5aMW9fLb5t68FY/b0iMRdhqPvlo3//tv69D/1ZZKke//+e/T65/330+xVIpFIJG4AS8Oh3veXP0aqpIO+pCqFg7OOv/azX6AffvE79G+e8zOn3ZXEk8CZERSwMUNGvICdF+hzGzqFC/14xlgLAXhtAyKyns/t4gVtOEntdDoaDodaW1vTaDQqkU0n6RDCvb097ezslLoJkkr/YkoFz/eIPG0gDtA+UeTBYFBSHnjW5cuXtbW1VSKyKysrjWdAAP10Asgh5AuiGC3wLj543j/pEZBJKv/zLApQetQ8klHPgSdKzEkPEDz664TXxQDmL7bndQM8dYDfvj88Su7uFD9uEkEBt4iLT7GeAf2DyJIy4ikZUUiJJzYgJvDZ8NMkPE2Atk4iv56S4jUp3DXh9RboE/vF3R/e35g6wN7wfe77x+sTsGaeiuGCkAstLmggHniqkM8X+wjXDO36WtFv75PvKa9xkYLC3Y354xe1/MaLkqS3v+Hl+tT/c11v/OgfOtU+JRKJROJkrHzYs7X9cQ9oemGRBRZvI1SXOvrZ9zxPX9fd1jdf+NXT7k7iCeJMCArkV/MHPkQMQcGJtxM/bNQQ0Dbru+fpeyFFdwJAhqOV3iO8OANGo5H6/X6JYkM0ISbUHxiPx8UpEV0SkQx7JNxJK8SV63q9XhE0IKiTyUTb29u6cuWKtre3GyTWCSiElbQQ6ZCUjcfj8iwnipBMyHyMgCMcEAlnDXCReNTYnRA8S1LJqfdihP4MyCHOBifDPIsouBNsrwsAfO5P2oNeMDJG1l14mU6nxVHiewbE/rAeXiiQ/cNr7nhg3vhxgcVPj4inNkRRIY4ZQs7riHZSUxhzl4Sno7hDw1MVvNaBCz9x77vzBbEG14SnTPDj7h0X+xASqLOytLRUTnlxsY796+4QrvF6EMwpP7HeRCIhSfd/25u088FP1A/9g1F57dkrF/V7u6un2KtEIpFIgOXNDY1fcr8+8AcyGHA7Yv7QQG+49FJ9yWe9Sc/vdNTN05ZuG5wZQcELrxF9j5ZkSB7HLXY6nXIO/c7Ocd6N52JDMIbDYREERqNRI1Lq10JYYnX69fV1ra2tld/YzyHDWP+pP+DuANr1wo4QUAhPt9staRAU5+PZCA6DwUDnz5/X+fPnNRqNSq749vZ2qT3APZLKOOgjOeyQVxcu3JngxfN8jtyyTt4/kW5IJ0IDhBUrPcIFdSM4qUJSee/g4ECDwaBEl93lcFItBCehjNmj/Owfn28nvW77B+5UODg4KHn6nt5BrQ8fN+3jLKA4J3U6GCPP9MKGpPB4io0Xq/S6BW0FA2MdAxd4cEi0iSoe8XcnEGKCCwyk8Pg6ePTf3SO+b1zs8zQad1c4keffLrzxw95jPuu61mg0ajhmcIDg6EFc85QG5oy5jc4FhDEXuRKJ0fe/Wa/9/g8v/37sK1+mt/yt155ijxKJRCIBPvClL9HOszMQcDtjaXdJn/0f/5pe+zn/Sn94sH/9GxJnAmdCUJDUIDFe8R/isLS0VE5x8Ar3dV1rOp2WIxu5H0Kwu7ur5eXlQsQpPOeWd7dSe8V4z1HHHUD9BY/SU5zPbevczxgQP8jz9joGPg5Iq1uvSdWgaONisdB4PNZjjz2mra0tXblypXHsJmNB2CBSSzQYYuVpGcz9YDBoWO9jHQX6x487S3zucJBQJJMTLyaTSSOfnh9JpWCjFyikMF6spcH8s36e2uFigh8ZyGtOsnGFONlGdGBOd3d3i3jiBS5dgPIUAoQECghKuqpmARF9Iu30x4sa+tz7qRuM2dNyGJsLJswPRNyLES4tLRWnCNfENUdYmk6n2t7e1mQy0WKxaBxr6ukSUQRgrh2ccEL/J5NJGYM7WVh/6bjmQZtLw2uY8J67lxBuuNfXnfn3tfdrmYdE4iTc//2/pc/8pT9z2t1IJO54vOOdWRw1cYPINIc7Al/xP1+lT//ot+s7n/2zp92VxA3gTP217BZv/8NeUinqB6H2yC2RXsgaRAVLNJHKXq+nTqdT2nSy49Zsns3rWKr9iEiIIAS6LR/bhQVPa/BUDEklah1rA7iYwDGVLjxsb28XUYCxeoQV0u/PxnIfjzv0ugFuvZeO8/RjKolb3Z3sRYs6oosfBxmjwk7ifQ69GGMkp06i3XHg/fWTJHw8iAK07237HOJMILXCUyFirQCvF+G1Kugb4gDCCWuBUMH1cX94Wo2/5mP1ozz9ujanT4zQe/TfT5SQVNJ3SOHxuhQ+5y7yROdPTP9gjOxBakR4agV7gPuYfxe7GDd7hes9FYrPF3PiaVSe5uDfN74eicS1MH/8ovT4xdPuRiJx56Pevf41ibsW1cqKpp/18dpbP+2eJG4Vlq6s6H+++wX6KyszfesDv3Ta3UlcB2ciychJpYsCEOLl5eVCqP3oPUiz5/1D1nAtSCqEHOLiRMoJvJOMSIIQEyAkkCF/Nv2Jtm+PivJcrwVAccSYhkEqRK/X02AwKKkS4/FYly9fLsdSYvOOZC4Wp4Qgk1bhffXcdQinE0CfLx+X57p7mgjPcxs6tnYn6zG1AyLpdQycZEc7Pe1B3H1PeaFHR0yb8FSDKEbgyHDxwefEUx1I8YjXeH0DxuNts9ax1gZ71YsZRqHHo/sxdYh+eeqCOxw8ncCFL1+LnZ0d7ezslAKhcX/5usfPDXvA94t0fKoIIpPvGf/ct7kdorPI9wzjpeiqCxSx7kScU5/nuI8TiUQikUicXVSrq/rAH1jS3mb+v/tOwvyhgX74lz5OvzqbaVZn+sNZxplxKHihRem4ivtisdBgMGicrIBN34+2W19fL4TfCalXym/L3XYbux815xFlj/DTN8g8RBHyHAk6BHMwGKjb7TZOOXCi6/ncCCyj0UjD4bA4M5aXl7Wzs9Ow0XOMoBMmT1Fwwjgej4sQ4nUFsOqTvsB6+JghpD5fjMEJv0f84zj7/f5VDhCcJ16hH1eF15YAEHL6GIsASsdFHn1suFo8XcHnnPcYr9eW4LSDSM79tIR+v1+IrM9PdKqwP7a2tjQejyWpiFW4XvxkA58/dyPQJ58PFwtc3CD9hxQSnC9Otqnx4SlD0+m0OGD29vYa4o7XRGAd3FXi/eH95eXlkvqCmMLaxBQYb4t2eK6nebi7BOGR1B5SnphP9ndM6YmFSz1lhe+cRCKRSCQSicTTi6XJsv7ED321vvcV36FP6p12bxIn4cwICn6EHBF76ZBwXrhwQffdd5/m87muXLlSivtB3CHr3W73qsJ2Kysruueee8p7AJJGSgEFFTlZAULR6/VKIUfs1U5YIXPj8bjY/Xu9wx0/nU4lHZNzyGE8MpJ2IHoIAuvr64VsMyfuGuA1yOLq6mrj5AFyxj2n3o8cdGCrp+YEfY7WencCxLz/1dXVkgISBQv6zNyRRoLrxCPcMQfeI9DSsSshCgoeLW+LuHtNC4+2e60DSY2+8DwXIzyazR5FTHCbPXuZ/cTaj8djXblypTybgomeggLhJ2XEiXpMkaBf/DdrQwoJ68paeMFJrxfidSdms5kuXbpUPmfurqAPPl+MmWt9v/j8u5jgNQq8n23tnOQYYN8hPnU6natOLfHimLiIWF+cEn4yhDua2j4riUQikUgkEomnD/+fL/vzetcrV/Tuz3vdaXcl0YIzIyi4hZycdU4CWF9fV7fbLWkMREyJxCIoQFogi1VVFXLgYoUficfrOA4g4bSLO6LT6RQiglWbqCb2demYsHk1eU8N8GrzkKZYsV9SIdtE7ilMyZhJGSCC7s/xiL0/2+cZ0kzU1iPpMTVDOnY+cK/XK/AcfY/MSypkjve9r14bIdaN8IJ/7vqI+yW6MNqe4eOnPdrw4xkZb1uU3NMKYr0GnwOeQyoMoPgjggrzyfGRnqLDvPhpF95OTE2JKQDeH4h6XdcNUc3FBJ7JniJliD3tqR6AeWHNfQ19z7iYFVNIfPzuEPC96mseU5UYK6Kgp5MgHJ1UQ8JTJeJ+4YQNXDaJRCKRSCTOJlae+xxdfNkzsxjjHY4rz+1q822VnqdXp6hwBnEmBAUnuViVIQr9fr8c/UZ00avNr66ulpMXvKifR7qdIHi023PFiZxKh9Z8TpTgqEmPrkP+/N/eZ2odOOE+qbBhjH5DajgRgqjteDwuJ0UwVx5ZhaC6Hd+fC2LU1/sVaw0wX5BtJ6q872Tco8ht5MwFi0j0nOz5CRHScbSff7cVFYy1MCCjsXinw1M9pOMjJ9tOEojz4iTUx0I/ONWBPkCo2Z+4Z5h3iDxiFiTbCb9H+9vmIa6vn8bBvLpTg/okMU0l1neINSF8Hvjtzg1Af90NgIjhbcYCrFFc89QUB64JT2XCtcPcxfQfUiZOWkdPc4hpSYlEIpFIJM4W9h84p0dfetq9SDzVePxjat3/poUe+InH9Pc++cX6S+feonPLg9PuVuIIZ0JQAF6sEIfA2tpaIYXYxSFI3W5XGxsbGgwGVx0Ph+CAy6DX62lnZ6dE9T0CPh6PtbOzo729PXW7XQ2HQ913332lfkGv12tYoyEss9lMk8mkuBsGg0EhSeRvU4wRJ4BH/6VmFBYhARFlZ2dHly9f1nQ61Xw+12g0Ks4Ht/d7u+6AgCy2pStIuopsxRoTEMpYCNDR7XaLfZ5rXRTp9XqFRLO2HvF3qz9jg9QhqFwLsUaBpCI+eVE+PwXB3QEIN7gBcBZ4CoC7G7w2hKdmIBqwLp4S4zU2YvoAbgDqG3h9DK9JwfXuUKBPsRCidOiQGI/HZV0o6okzgTG4o4GTQ7xQohcTjUTfcZLzw0W8KCbEPcuedBeIu41YC0+X4eQTdw7NZrOGmOPr56k/9AdBiT2LyNh2YkUikUgkEolE4nQwf+e79TO/p6cH3v58ffnGw6fdnTsK8/rJFzU9E4KCR5Uh3+fOndO5c+e0tram1dXVkhcNwYRQxFQHnAGkStDOZDLRZDIp6RS4CPb29vT4449rf39fq6ur2tjY0P3336+NjY1GTryfpsDP448/XkQKCsLFtAjI8crKSuMkBorEOUFEzGBMnm/uqQuxeB/kCTIMKWduATUgpONChG5jn8/n6na7jWhxG6FinSC6XnDQxzwcDoudfzKZNCLeHml3V8Xy8nKjpoETSSeWbRHzmAoQo/s8CyGBnHuP5Hs9Af9vjiv12guetsHe8vfdmk9fcF6wTxBbnPCzz9ocJozP18c/N4gofBZIkUE0QTibz+fq9/uNooRbW1sN0cPdMJB+CLe7EWLNCV8D9il98rWIThA/6YKx+Q9zzmcEIQDnB89ib7E/6Vt0n/hz+SywBu5ySiQSiUQikUicHfzgZ/xe/b1vfKbe/X9+52l35Y7A33jk9+jX/vjzbuDKb2l99cz8tew5+kQKIQ1ui5ZUiD5EAMKDW4D6C54uAakhQtrpdBpEd2lpSaPRSOvr66Umg9vlEQ4gIpcuXSrugf39fQ2Hw2J3p86DF8/zPHPG4IQa8uI5/xBct3bz/Gj/dqEippA4IFPMAaSM53uth5gL73311z3qLalRHDIeaeknCXCvR6GJOjvR9dQDz9OnDUQVQB+d2Lq13etG+CkZbYUymScEIeYmFhtEnPL6APTF9533BwGIgoKSGnPh6RQIbp5e4NfhlnCXhBc9ZB3Yw+6+cKItNVNBvIilz+1J6QAusvj1sc4DY+UeXAfMDT+xHgj9Yly4hLwYZ0wz8rQLr9HgDp4o3rgIlEgkEolEIpE4XWy9YFlLf/wTNfjBN+vg/R/Q819/v16w85V61xf8i9Pu2pnHT+9Kf+E7/+KJ7w8ernX+3T/3pNs/M4KCk1uiqi4YOIHx9yQV0oOLgQJ0HLdY13UhtZBEr4mA7Xk4HBZBgft4Lg4FiMmVK1c0mUwa9nDICuSt3++XYnFtZCYSLcg2BNVJMNHbSLKkpsMjFuRzG7rPIW06+aNwoBPMGKH1qH0sqIegQLvMm0e94/GLnrLg6067ntbhtRLoN4Q+vs9rzJvn+3Mtc+F1NxzsE8QRH78fQ0pdD4g3ffK1QezxPQWxZ04YaxRDfJ9EIclFFfoSa2jUdd1w+CDc0B6fHZw7FDnE1YCIwl5AzInzFQk58+WCAK8xLt+LCGZeYyS2j9tHUuMz70Ua49zx20UKn5v4ufF+JRKJRCKROJtYedaD2r6QxzvfLZheWGjeXdZzfvDw3ys/9cv6iIdepL/8yZ8oSfpj539Jn9afX6OF2xO/OpvpX37oU26qjTc99Fw96x++6Rb16GqcCUEBUoVNH9LDH/2e8w2ZxEEAQSDFAFJEbQUiyzs7O4VkLS8vN05qWF5e1ubmps6dO6eNjQ1tbGyU50JaPJLtx9t5TQDytzku8vz58+WECiz1HvmPUXMf//b2dpkH0gAglpFsQZY8hcJPK5CaFfedPLkrgj5yn+fwu3jDPSsrK5pOp2UuF4uF+v1+IYaz2Uzj8bjUrOBoz2632yDV/MRTAZwARgcC8+bknWf6Hun3+405dwdGTI3wuWNuINYejfeTRSQVcYl5bkvHoN/0xdMR4qkduBZcjIjt7e/vFwcPP7SLS8KFrp2dHU0mk5LuQe0IrzvAPkMsiXvI5z7WNuA9F8hcNPP7/HPvYoK7XbymAu1RpFVScVtQX8SdGnEtEXpiAVOex35rS5dJJBKJRCJxNvHBz/swXXlB/v/6bsb8be/Qb/++w//+c//iy/Wbn/Md5b0VLWu5ag8O7ddzLXR77J0v+/Uv1n2f+1s31cZ9urn7r4czIShUVaV+v18Kw0kqxJN0BeoJOAnHsg7ph0i5mMB7PIfINwJBVVXa3NzUgw8+qPvvv1/r6+vqdDqlsJt07DyAlCAMuKtgaWlJOzs7pT8bGxuNgoV+IoOkQpq4l1oEkDhOjfDTDiQ10iBwXngBOunYTn/x4sVCxIiyO8HzgoyeE8+4Ic6Qz4ODg+K4gCx6XQpqDUCMJ5OJdnZ2SlSZFBR3E7AuXuAw1sPw6yGOvV6vzBmFBJlP6m64sMK91C+ASEaLPIIDY/TXGZ8LPC4q+X6mb7TlYgJzhYPG94Okq6L/zIEXycQlgaiAm4B5Y00g0xQI7fV6pVCpF45kXemPn2bS9nn13w53vUD2o5Mhwj9bPNMdMMxnr9crgsPu7q4mk4nm83kpysr1LjB5kVJJJZ3GhQQvEOmOhugESiQSiUQikUicTbz4a96uP/63P6f8+3e+/T69/ff/26uu21ns6pWf8WdVXd5+Orv3pHH/9GGddd/FdQWFqqr+taTPlvRoXdcfffTaeUnfJ+m5kt4j6ZV1XV86eu8bJH25pLmkr6rr+iev9wyi4B6pdiJNlNQr/nu+dzzxwNMDqEXgNvf5fF5qLXQ6HfX7fW1ubmo0GhVCFQGJ8RMUeA4FHiFx1IBgTBAliHYsUufjR1Qgwi6pCAfuGuB1J1x1XRfhhecxj9EyjyDjLgBIJLZ96li4Vd9rQTC3R+te+oANHcLHe0SFPRJMXzz3PjoS/Bo/OtNrN5BSANlfXV0tjoXYFn3iOU4oY+qFR9m9eB/X+p71HH9P1fGigIgPFK50R4b3IUb7uZe5w0ngdSiYdxcWIOtLS0tFSHB3j9R0VXhKhrsJrue8iPUqXMhpg9cs4BqvkwJcEEMM4vhJ6bjIJXPne5TPezx9woUd7ztzyb1nTUx4Or6LE4lEInEy8ns4kTg9rL9zSRd+YVsnhakW29tabB+LBPf/y2fpY3/m6roB1UK68M5fUr1/ddAs8eRwIw6F75L0zyR9j7329ZJ+qq7r11RV9fVH//66qqo+StIXSnqJpGdK+m9VVb2orutrCitOBiBnXpzQ0xMgDJBC/+PfI8tOwjxvfj6flxMfsIoPh0ONRqNCtJxIQexcBMA27bn1WPsRQyCLRMMhQW71p31+R2HESb+TZuYsEmUK1FGcUlKDtEZXgHRMXt0ZATHGWeB9gyjzWixwR1FK1ou5ivno3hdSNbCr0z79dMGh1+sVez8kmvx+dzm4oBSj/cyvt+/PjQJILHhJ2z5+FxN4vjtS4rzH0w48r7/ten+OH1XJeFg/T6vx1BgcIswfbcb6AV4/w/sURSCfT//texghw4WGeG8UMXzcnsZAO/7ZiUVM43cBbbqDx0UeF3Hon6eZnEF8l57i7+JEIpFIXBPfpfwePn1UlZY/6kU6GJx2RxJPJwaPzlX/4q/f8PWrP/lLunCChHcm/8q7jXHdqmN1Xf+0pIvh5VdI+u6j//5uSZ9nr7++rutZXdfvlvROSS+9kY4QbV4sFsV+LR06A65cuaLxeFxIqlecJwrtxQY7nU4hBrEo4e7ubnEnLC8vazAY6L777lO/328cuwcJcjFBOj6NAtEAAeLy5cuF2I5GI/V6veJOIEfdo6Ie5YfAuXuB/s5ms4azIRI4J6Xj8bhRKJK++okKTrb8JxI17Pg+Bs+pR9zxdAFcDi7++PtO8rymAVZ8P93BI/lE83u9XqnRgGvDBYV+v1+EIS/22CbaQCYRTnwtEBR8D9BXH6s7HHyuo4DCHgJegNDTZ4i2O4HnmTyn1+tpNBppOBwWwcqdCfHoS/bs6upqSQ1gv9A+RBvHCYIQn6e2MbWBzxc/UZjziL8LAAhufuwjz3SnkgsdrBviktdZ8TGwdl6o1L8vGJcLKb43z1JhxqfruziRSCQS7cjv4bOBaqWj337VeU0eOFtOwkTibsWTraFwoa7rhySpruuHqqp6xtHrD0r6ebvu/UevXRdUau/1etrc3FSn09HBwYG2t7fLEY2QQI/MQhKlY+IUXQYUTNze3tb29rb29vZK7YRnPvOZuv/++3Xu3LlSH4G2pENBY3t7W7u7uw27O+kF9G97e1ubm5vl+YwnFhb0SKwLC5AZj+bu7Ow0ilHiNognPnDvZDIpKQvk2PvxlA5/rtvxIZ6DwUDLy8uaTCZXHYfoUef6qCYF7zlphAj7PDC/rBlj8ui/14xYLBZXneqxs7NTXCsHBwcNIh4FE9bS+4FQwe+VlZXGCR6IE4wt7iWP/DvpjM4aF7W8wCXX4zpZWlpqiCC+xuybfr+vbrdb+os7w0WoGN1HXFhZWSknl7howLwzT5PJpPQbMk90H8RUjPgep6z4mjIPbfuQ971td3sgNjD37nLgv319fN3dbcIed8GAe/3zyGfgWq6MM4Zb/l2cSCQSiSeE/B5OJBJ3NW51Uca2v75bXSVVVb1a0qslaXNzU5JKPYPRaCRJ5ZSAK1eulMKKMbcdMgB5JrLsdm5J2t7eLtX45/N5cREMh8NSKNAju177YHt7uxCs6HRAbCDCzL2kHEjHpNvJrqRG5BU4WW2rm+BEx90FHqGFRLmY4I4Iv9+FmaqqCnH16HdMXYBUQ0w9hYBnQRJ9nVwUgHDGHHb+DZmOtnbGSjTebfku0EAcXcjhPdaS+WHeIPxE8l3MwfmC08OJtdQ8YtDTS1xQ4j0nsS6GeNpHnEfEBMQyhB7653uI50hqnK6B48XH62KWp0dEsYF19/FF4PphTVwYOglRZPMTGNhfETGNJO5xXxMvVOpukJhC4WNindvSim4jPKnv4p7SP5pIJBK3CPk9nEjcIjznJ+cavPUhHVz/0sQp4MkKCo9UVfXAkRL7gKRHj15/v6Rn23XPkvTBtgbqun6dpNdJ0oMPPlhLx3ne3W5Xe3t7mk6n2traKjZ+t0B7hN5JqEdFJZWcfo7Ng/wTFcY27RZ2v4eTG2LEmP55mgbtkHLg/XELvnR17j4k0+3+XlDOc+6js8Gt2k5MvaBgJE3S1UXwINkQLbehsz5O3D11IboWfF1ATD9oI2tt9RP8mRScZLzRiu8E2Ym8CzleOFFSscZ7QUcXMOL8ezTbx+CvtbkG4r0uEvke9qKCvO+uFD+l5FrwWhDUdGA9cS7EUxC4lr55DQUXGNjfbWkhcd1oh/sAn6dY54D2YmFIXvc24ute6DTOe6yF4aKPz1kUT844bul38Xp1/swPOJFIJM4Y8nv4acTy5obmL/4w1Us5TXcTBm9/WAfve/9pdyNxAp5sgvCPSHrV0X+/StIP2+tfWFVVt6qq50l6oaRfuJEGqUnA8ZF7e3va2trSI488Ukh9m228jZg6GZzNZrp48WIRJrCZUzneK947Sd/Z2dGjjz6qS5cuFfLnEXJcE0Q8NzY2Sj43QkMknTFaTV+lw9xuTmhwt4FH+hEIvKZBW/0DfqTjvPPoJICcO5GEZJM+sb29rclk0nACuHXcyXYUckDbv10IcaHFi+h59Jlxkn5y5cqVYoP3kyPoGw4Gj277OhDt9zoVjCMSd3L6ff1jAUDm038jaHjUP54kEft2EvlmbjmFgxM8oqDjBN/Hw/72FAn2BnvNC1u2Pd/rmvh+9r5D1l2UOImQe10NEPctnyH2cPzxlAf2eNvJEi7Uxb3izgwvAMk4o6BxBnHLv4sTiUQi8YSQ38NPIxYveJbe+QUD1dc3QSbuBNTS0l4lLVJAOsu4kWMj/72kT5V0b1VV75f0jZJeI+kNVVV9uaT3Svp8Sarr+q1VVb1B0tskHUj6S/UNVrPt9/saDAZaWlrSeDzWu9/9bj366KPa2dnRfD5vVPGnsFxb0TQnQxxduLOzU6z70iFBWltb09raWsmVn81mpT1qN/Bav98vBIcUiJ2dHUkq9vh+v98oDkcBPcjndDq9KlrtaQu4ASA1HhWGAOGMAJGEIsY4sfQxU9sBouzRWp4xHo/L+/v7+0XA8fQJyNt8Pi/kXFIRUzwNwUnofH54wgYiDOST2gttjgZ3SlCgcnd3t9j/6Zt0SBxdzHEi7icp+B5hPjkBYWVlpRQARTxgfC7GRBcEIpifgnGS68BTL/w1bz+um5904kKHpxhQC8LTb3CccL8D8s2zEde8//1+v+Hk8Ei/71XGiFB0Ehl34YX9759lLyrpghlzybp6oUgEA9I4/MdrivCctlQULwTJ58zrMZwFPF3fxYlEIpFoR34PJxJPL1bGlZ73d35ZB3nE45nGdQWFuq6/6IS3Pu2E6/++pL//RDoBmYFYXrp06SoHAA4GiulxH3Byw/GJRHLH43FxN3CCAakOXB9J5u7ubiGq+/v7unz5conWQ7QhYN1uV4PBQJcuXSrRXkiopAZxcUBKiTx7VJf+OjFvS1lwa72fMsC4SAtgrjyKG8k+v/0UBCL5XowwFsGkLzzP+x2j+9Rl8GMp48kE7AN3G7hzQzp0tHDqw+rqannP3QY818mmCxhx3hiHnxDgln93UTjp9hMTYnS/rVaEuy74b3dG+Pz6unnKwsHBgbrdrn/uit2/bZ9Fcu81NWIxSfqOwML1PN/FIOY5prIwT9zv+8fTGmI/efa1UnV8f8U6CAgpOHn8s9eWnuHHg3o/TvrMniaeju/iRCKRSJyM/B5OJJ4+bLyj0v0/fVHzFBPOPG51UcYnBf6Yx5a9tbWl6XRayDBiApZ8z9+GrHkahLsSiGwjSrgw4STRC+M5uZVU6ilQwV5SSZmgdgK28lhw0SOg9Fs6zukm2gy5dMQ89hgt5XluTUck8dc8n91TFZwAe96/jzHWDiCy7NZwFyH8dXc+INQgyMRovPeX/tAu6QuQaZ971hEHCX1wgSDOj6duME4npvEYUuAiRBQUEHzinMZ9zn71kwj8xwm9fy7cmeDEO+4XCDvtezqJO0B4FmKCF4OEsCNYeCFM/6zEPeDijReujEIFY3OhIAoGPr8+F57y5HuL5/iJHrEOhafktKUS8ZrP740UlkwkEolEIpFI3Dyqg0qbv3X43+d+a1fzt/7W6XYocUM4E4KCdEyaONoREYAoNCRSurqwnR9lOJ/PS559tPaTMrG6uqper1dIJNZwP/YQ4YI0BxcT6NdoNCouhZ2dnVJrwImN/5sINM9wd0EsJBfzub1AINdA3Ohvt9ttRIshfZ7+EK30Tn6J/nvxS97z5/IcSSWFAgLra8S6eo77/v5+Q7yJbgCe5+TUi0PWdV0cJkTQcSf42KhnwXGQUYDwvPlOp9Nwpvh7TkKdKHvEPZJWP8nC348FB53Esv89/cEFC9w6zHWsT+DpMR7Vj30E/tlxl4GnFq2srJS9T/0Rqb1OR/yJKRz8RNGMPjLf7Pm4132M0bnBe1HciM4Gf6bf433wVI3Y10QikUgkEonEU4PqoFJnu9I9/+rnpDPmEk1cG2dGUOBIx62tLV2+fLkQ5F6vp16v1yBekMBIeCFdfgpAVVWNHHjI5vr6eiFEnC6BiCAdkqCdnR1tbW1pe3u7CA8QGUgt0eCdnZ3WugROWojMt7kFEEzo79raWrnGf5xcEd3vdDoaDAblaEDPiec6XBbMXyRg3OdWcumQsPm8kQbiqQHScfqDt4mzAKeIO044/tCPBnSS7uQ0pgCMRiMNBgOtrq5qsVjo4sWLxe6P+ORijafMdLvdRqFEyCS1HTynn/F2Op2rotZE7VkTCnziEGEPISj1+/0yL14jgL3gUXza83lgDVkj5tqLaVbV8VGL7FcXKNy5IKnxGWL+XHSjBgGpPohTbWKCO27cYRGFE+Ak3j8nnnpwkgvD70cEAS7qOaJDwcUChCjWxMW22E4ikUgkEolE4tbj/Fulc9+dYsLtiDMhKNT1YTHA8XisyWRS/qh3Ii6pkLbhcKhOp9MgqxBzSDbElZoJ0+lU0qEQsLm5WciUX0dRwUuXLunhhx8uBd2kY3LkVu+qqrS3t1eOo8SO7cRaOibs7kCggJ+TobquGyIK0X+IuddVgLxhTcdx4SSWSC+FDDl60yPMkHj6KakRHaYtJ5r0heM0fS6XlpZK8UB+e0oKz+d+J4CQ5mifhzQiGAyHwzKHFGH0gp2xcKG7XDx1BJIZ0yJ4z/egHy3JXDmhjSkpLmawB+kXQozvB69zgLCFIwLxwiP5/Hbhyl0JrJ2kBvn3NeXzAlhfhAc/FYVnuJiAaEcfKdoY9447JNi73r9YwNNdFS4CcI0Lf/6sOLb4vosQfo+fLOJ1GFJMSCQSiUQikXjqsLRX6YXfc1FaLFRd3tZBigm3Jc6MoIBtPZ5i4DUOcBKMRqNC4Nwq7tF7ahtAgIgkU0DRK8VDohAoOKYS4uNpB167ARJFwcA2S3bMHfdoLc4JIqMQz16v1+iPR/ed6DAeJ4G87oKCuwBcTIDYuxPABQaPliO8+JrQHu8DJ5lOqumTF2kkSu+E2Mm6E3tO0yCdATEHlwanBFD4EXLIPqCPTsx9PVwE4pnummBuve9Otj1VwesT+Hpyb6y34CkB7mDx2hGxj0543fHifeKeWOwwEnL6yvotFouS/hFTK7y/Ts7jfHgfTiL8pF601arw+6KDIdZfaKu34H2hf/4ZaRtH/PwmEolEIpFIJG4eq1tLWv+dpmCwtF9r/rZ3pCvhNseZEBRiwT6pmWcOOet2uxqNRhqNRtrf3y/H+02n00YEfHV1tVjiIdptr3NSQK/XK/n8k8lE4/G4Ef31fHWIbVVVJfJPqkU8ZYFxODmCLCEGQPglFUs+aQU7Ozsaj8eNOg8encatsbq62nByIL54qkQ85QB3Ai4B5tqPcJzP5+UkBlwIiCf0yYtSSs2otYsOPp+e2++kmme6Q4L3iJ6TxkFKBaSXdl2Egcy7cMP8RIJJdJx2GHN0NEjNWgogRtNZH3ePIIKw/m0ih7smGB+R/0ioY3oA+3CxWDRcMjHdgPXFceNknrVpqycRr3FxgrlsExOuRc6jCODiVhQT+Gx5OouPh376HHEf8+7CTJs7he8GxpbCQiKRSCQSicQNopZWppXUog+M3ltr83t+7unvU+Ipx5kQFOq6bhAnLOAQlV6vp8FgoNFopLW1NfX7fe3s7OjKlSu6dOlSIb6QmG63q7W1tWKNhiAOh0NtbGxoNBoVN8BgMFC/39eVK1f06KOP6rHHHisRbwggogFEHAK/u7tbitZBRjyPHnLNOKIY0O12S9HA5eVlra2tldz57e1tjcfjhkjQ6/XKfC0WC62trWk4HEo6zgOHQFVVVYoZxroTftqBR9+9/gFkajAYaH19vaQSEGWnxoCTYi+86Lnt9Acy6FFhj8i7KELUmjVlbqVDoQU7flVVZa1xJjBexI44ztXV1YZIsFgsioPC0yukY4JLvQWfG/aX9186Fj96vV4Rh1gLxBiELFI32APSIUFmX5FygCjjhBnRA2EopiewV+izOxUYV0zh4XXECd8XwPey15LAZcO8UssiCgN+ioOPyd0p8fuBfiCQucPDxRgKbPo8uEiBOOmiFmvGuvneyFMeEolEIpFIJG4MVS09/zW/ocX29ml3JfE04kwICkRXnax6xH9tbU3r6+taW1tTr9fTzs6OHnnkEV26dOmqKu8rKysaDAZFENjf39d0Oi1FFCGGq6ur6vf7pSbA+973Pj3yyCPa3t4ued4uKDip7XQ6pVidnyDgxfHc9u+RcC+k5/UFIDPSMUnzEwroK+0ghlD7wck5z/bjMoGLCdfLzfdnSGr01aPxEDXqV8Q0AOA1BniOk+gYFeY37hP2iefqQ4YRMxAZWGvvJ8/EXUHbTsB9/B7R9j5FIiupRLZZX06goFYEp4Awr9R08GKYXjPET1VoS72IRzZ6SgtjRjDw/sc9ydrybD4z8aQGb8NTFKIbxdN+VlZWSu0JFxMc7JGYWuEuCNYoOhFoy0UM5skFFdqPjpgoavj+j89IJBKJRCKRSBziwpulc7/w8NVv1LUOdnae/g4lThVnQlCA/MRo+crKikajkTY3N3X+/PkSjd/e3tbW1pZ2d3clqZA3iDo56050eR+yg0uB1IlLly4VgSCSJUgNRNPzyyHFPJPxQM6IPktqEE4npJ4mQQ2Hy5cvF6fE6upqg0ASfcex4ASKZ7VZ1aVmZX8nel6rgP5AyrmW5/Icxu8pEr6mXv8iEjzpmHx6fn8k91znNn2fN54freteJNLbpS+xFkGsE+Brz5xEGz7t+WkQPof0F3cC0XEvbEhbvt/iyRc+xzzTCxi6YAX8316zwn8czFNMN4juAq6NJ2l4rYy2dAufe2/fr4l1HrwP/l50r8R18zaZ0/h58PZZM5CuhEQikUgkEnczBg8tae29V5+2BTZ//ZIOfuc9T1+HEmcaZ0ZQcGIiqURyNzY2dP78ed17772qqkrj8bgcMbm/v6/V1VWtr683oudY4z3KCQmB/K+vr2t5eVnT6VQPP/ywrly5UqLrbueOdQDIL6dKv59+4GMh0ovFnag+okYsIkc0e2dnRxcvXtTly5c1n8/LcZA4KyD1FGP0KHSM9LoDAHjxPU7DiETVUzvcZcC9RLBns1khj7FWhEf3IZtua/f2ojvBBQ9vD8LL2Fz48VQE5jiKBifVuHCyym+36rP2kQh7ig3OFT8lgn3ix0t6nr5H9RkDdRP8uTh2cBQwFsbuBTV9vpzYs15+ioa7NLx2hhdF9NoNXoOD9JXodqBmBeJYm6vBP/eeLhIFBP8s+jq1ra2vW3TPtBXBbBMUokMhimSJRCKRSCQStztWJpWqg2vXiDr/tgP1/tMvnPh+/nWUcJwZQcFJcKfT0fnz54uQcO7cOfV6PY3HY128eFHve9/7tLu7q16vp9FoVMgAVnJ3CEACITxra2t69rOfrbW1NU2n01KLYTqdFsKCswBC0+l0GuKCk0IIPjUTIISTyURbW1sl5cCLG3Y6nUK2/PSDixcv6uLFi9rZ2dHe3p4Gg0HJw4cskboxGo0KMXbi7uTdHQUQKk9XcKIIqURocfs41xKV9pMtYsFDj7LjsHDBA4HF++4RdifkwIUK71cki+5K8D4xPn6TAuJ2eObXUza8PR+Du1Y6nY7W19fV7/cbz/UTGjwNw4+2ZNykRbgw4PNNv1gjryfB+zyb+fGUD/pCCg1zh/OFWhh+9KPPAfuU/sc0DhwACGuklcxmM0lqiBBedJW++Hrs7+83Uklc0CDtyN06pNn4Z93f48fTGhg/a+hFShHHTnJ+JBKJRCKRSNzOeMH3Pn54skIicYtwpgQFiPpwONS5c+eKqHDu3DnN53Pt7OzoQx/6UCF90nF0lzoGEFwIGsQFx8NoNCrpCdPpVFtbW5pMJoU80hcnn/P5XLu7uw3S5scl8vre3l6prXDx4sUiekAiPa8eYgUBdPJJlDWeANDtdtXv90ubni4QK+xLx7UAmCsn9z7fCDHk9UOavSAkz2JckaQBJ3iIG7g1EGoYmws/MZUg7g3gaScQcF+D6NDwwoWenuAOhLquG5F7d2t4jr/XFYCE89sj7ewX6j0goHCtj4m58etcCPD0BK/hsbS0pOl0elWtAwQw1no6nWo6nZZaGU6mfe18fO72YK8jKFAXAcGIfcAJKggT9J09xpgkNYp2RqeJp6+wR70mg7tAXDDwdfd18HX2vePuBIpjAk+TSEEhkUgkEomzg+qt79KL/3/367f+wgOqV/KowTY85ycONHhbS32DI8wffexp7E3ibsCZEBQgaJCutbU1bW5uanNzs5GaMJ1OSwSVIoiQP2znFLqDqEFkITwUbMSdQN0Ej5i7vdvFC0QBTmJwGz+klEiwW/Mh7V500fPG6asf0+e2fOCkymsbxBoBvO4RZqK7WPcRCyj4OBqNNBwOC1GFpNGek2TEC38WhJT3mS+i1ZB/0j88vcWJm7sB2Bv8Zl0gqx7N9+vdkRAdGE5s3VrPPpEOhZs4/1GooC6HR+T9Whe0XExAYEF4ccHAnSE+RubSI/2AMbirgXb8CE1PBYgiDXvXaw3EPedpH37MqItrfPZoq000oL9xv/rnNdauiPVP4jhcjPI18PQpT7eJ6xJTHNw5EucjkUgkEonE6WGxu6v6fR9UVT/QdjLhXYH1dy1p9MGTAx6Dtz2sg/e9/2nsUeJux5kRFIi6r66uam1tTRsbG1pfX9dwOFRdHx8r6QQLEaLb7TZOcfDCc0RR+/2+hsOhBoOBlpaWdOXKFe3s7Gg6nUpSiRy3WdxJlyCK3+12GwTMiQouA+n4RAX6ByHzAoIQcS/cF3O5actTJjqdzlUnNCCw8AyInIs1EE3mBZFlOBxqbW2tETEHpAOMx+NG3j/EWmoeGelRftIc3MruNROiQ6ENsQAfpJN+eD89VcHFFCelThYhwL5mUUyIpNUFJ+z6jIGfWH8DkcKf65Fwr2URrf8xyu+EGiBwQMIXi8PCoZ6S4GOBsLuY46IIe89ratR1fVVNCMQEhJUokiCEILp4xN9rMUQB0Peun57in0uvq+B7wfeXj8XrTbDOHAEb0xzcqZFIJBKJROJsYfVSpb1NabF65/1/enlaaWV6co2D+94yVvWmXzvx/YMT30kknhqcCUFheXlZ99xzTyHf/X6/HBHp+dpYvEkdgGhyT7fbLaSCFAIi8evr61pfX1ev19Pu7q62trY0nU4b7oQYscbFsLW1pWc84xklXWJpaUmTyaRxMgVH/VFboK5rdTqdRirBfD7XZDIpDgAXIiBoUpOsIySQlkBdBS9miPvAi8i5q8JJXSTT3W5XGxsbOnfunFZWVjSZTCQdCyk8B5GBnHcniRBBRBae7+/F4pZO/hgzcAt/jC5DZiVd1Y6nIngRzpiaMJvNShrA/v6+dnZ2Cnn10xd4/vLy8lWCAwINAoX/cBwn9+KmgWjjHGCfxOi/p724iBRrA7iAUtd1eQ7EfzweNwQnnDM8k7lzwcGdA4h1zKWLCaylF8B0Ic9dE5JKwcm9vb2yJoPBQFVVaXt7uzFu1g1nD/3kc+rClI+P5/h4ooi2v79fBB5PfWLPxpSLRCKRSCQSZwv1/p6e9Q/fpEf/8st15QW34f+rr9Pl+39hrv4PnVwQMZE4azgTggIFFb3gnEdZH330UV28eFHj8bjxR/7y8rIGg4E2NjY0Go0kqQgBOBrqutZoNNLa2pr6/b6qqirHRFLozsmI29FJsYDQQ678aD8nkJBpCOLm5qY2NjY0GAy0WCxKsUVInUf1Ic1eBwGyhtAyGAwKeSTS6oTSj/GTjo+IjIUKIX39fl8PPPCANjY2CnGbTqeNyK8TMaLyTvCZN5wIHglnblgr1hqxxFM/EFH4bye2kDxSKhBrPCfe74nCjNeSgGxPJpNCcPf29jQcDougEIkq80zBPpws0vFJIDHKzT5g7nkOqS0e4fdUAca5tLRU3DQ+TqkpuDC3zB0Ogd3d3SKOxFQUCLu36fPmaQa0yV71vcX73OciCZ9p9hA/iAQuSO3u7mo6nZY91u/3GylN0aHidRN4vouBjJH3vDbGYDBQv98v+8fTQaLDIZFIJBKJROJW4/yvV7rvx9914vv1zliZcJm4nXAmBAUnVkT1Dw4OtPP/b+9cYyO9yjv+fzyeGXvG9nq9DtE2mysKIIjaElUItQVaUbVJBKQ3VUH9EBUkhETVUoQENGrLF4QoKl8qAaICBbXh0opS0qqoXNQWRAg0hNwgbLIhQBe22eyuPTfb67mcfpj3f/x/j8fr3cRz8fr5SaMdv35n3uec97xn/X/O8zyn2Yw7JugqN7AV4j8zMxOFC8WJpkZwNZLRC1wppWhLdwSgMBlUcI41FrQonYoVTS/gdpaMaKCTQ50W6oSgWE2h+NOQb62boIJTQ7UB5MLkKb509bharcbaDgw9p8imqNIVZ67Ga0G7dNWcAnxQbrsKWe2HVJhqm6anp2M0AQW3jhveMxWe+vlBhQc5RlgfI+0ndUios0Jh37Cf6CTRFBmNfGENCgp+to33XY/ToZbWh2AbtI80PSZ14tA5AmylZGjkBr9P+1p/z5V9OtA0VUAdQ9q3ek6a8tLpdDA3N5dLdeCzTScNt0NNI020/RpFoGi9jHT8pnOB1ksYVCeB981xHMdxnMnkBQ80UVivYuWmyf3/evlBw+y5fBLC7I8b6D5zekwWOc7es6tDwcw+AeB1AE6HEG7Kjn0QwOsBbAJ4CsAfhRBWs9+9B8Cb0d+i9E9CCP9xEdfYVoCNwrbZbOZyr7WYGsUBc7cZyq4ChQ4KFlLklocAcoKPK6sqVhhCT6GjxRM1tJpCjauevV4PCwsLMaKg1+tFhwLbwBVpYEscahsH1QPQIohpTj+QXy3XWhBpbj+AWBNCt+HT3QbYNi2+B2ylQtC2dHU4Fd66Usx26mo+f6fOiTSqQp04tH2QyE+jFNK+YXQCHRS0V7dYTKMdUkHLfqdIZl+rmGdaiDoTNKoFQC49QdNJpqam4k4O6U4UO/Ut74u2U6NW2Nf6nGlEDEkFvEbe0DaNuuB1+f16De1Ptp2pFqzHwF1RtN4C254W1aS96sTTvtFnhi86BrvdbkwbUccinYZpRII6lCbJqTCKudhxHMfZGZ+HJ4z7H8GS/QJWbpodtyU5CucNxVr/b4kj3zyF7omnc7/36APncmNq91NwN4BbkmNfBnBTCOHnATwB4D0AYGYvBXAHgJdln/mwmRVwEdCZUCj096qv1Wqo1WpxVVf/8J+dncWhQ4dw6NAhVKtVbG5uotVqodFoxHxsFWdHjhxBuVxGu92O5+iqtG7ZqJEH5XIZCwsLWFpaQggBrVYr7gyhW/HpKnGxWES1Wo3bO3a7XbRarVhzga9GoxFrKaS55jyHDhEN7x8kcCgcWcOBwo6CiqvDtDe1kX3QarVicUiey1XdUqkUvwNATE9JV4EJnQSVSiXntGAb04KDWjhSt8XUXQW0WJ+KTS3ap32ijo6NjQ00Gg2srq5GJxXQF7GaSqKRMOrk0noN6hxg8Uo6mhgdQ8cLj3Ml3sxi4VH2vabPsD/StA11BuguDwBiFADTVdiPg8R82k/sS90Bg59jVAjvVXof2c9sI6+hu4nU6/VYq0S3TaVjj+2enp6OY1LrO7B97FM6SFInBs/T3UQ0nYgpQyxmura2Fp8XdQwOclRNEHdjBHOx4ziOsyN3w+fhySNg17oEIyMACyeAY++/D8fef982Z4LjXI7sGqEQQviamV2XHPuS/Hg/gN/P3t8O4DMhhPMAnjazEwBeAeCbu1wjV9Cu2+3mIg0ojAFgZmYG8/PzWFhYQKlUQrvdjs4EfpbCc3Z2FocPH8by8nJcgWdROAoL3VqPApCfp8gql8tRFLKuAsWfphswbFzDqilkWfiPbWX9Bt2Sj6vUFONAvvAcsBVVwUgE9tXq6mquJgQFXSqOWaNiZmYGi4uLUbRz5b5er8fv0V0juGUkgOhgmJ6eRr1ex9raWs4xooUNuRqtRSjT8HYNnadzgY4QjQihGKeDJa25oOHuAGIKAUU1c/VDCDHdo1wuAwCazWZuB5E0pUBXtVutVhSqDN3X2hg8psUsWdOA23QCiE6AtbU1mFl08HC70kERGPqvFjJksVItkKg7PHA3ChXNOv64OwrHP9/reNL0ID2HDjx1JvR6veig0nHHscbnaXNzMxZUpVMnjcpQZyKvnT4X2i7dBYRFTOmk4BjQtCiOq7SuxKQxirnYcRzH2RmfhyePqQcex0t+sozjf3YNwgS4a174uQ0UHnrSoxCcA8Ve1FB4E4DPZu+vQn8yJSezY7tCsRZCiM4EYCvsWFfGKbw6nQ7W19dx9uzZXG59yIr2zc3NxSgGFWea272+vo5Wq5Vb/eeKpob1UwRRPNHpQAcAHQxazI4inII7LSanK77pFnWDxKSmVFDMMZUircXAlAoNU09TRQqFQkwloLBlrQSK83RbRdZcoAClE4TXprDXNmhIOo/ryr+ix9KIAQ3J14gBFZPqvKBN7B8KftbdYKoDxx1tS6+hQpYr6uwnjl0Kd9qh0SiDdj3g2NMdQTT1Qvtx0Jhg+obWLeDqPx1ArBPCe6XRNOxPOo16vV5utX5QrQato6HOBB17WkCz3W7HrWA5ZnTM8vc6rlXk6zjQ16BoAn6WL44x3WFFI5HSNI7UYaL9vI/Yk7nYcRzHec74PDxiQnsT3WdO49ovHsWpXy7j/NJ4pLx1gau/0sX0Ez9Ft9Uaiw2OMy6el0PBzO5Cf7vTe3howGkD/yI3s7cAeAvQ39KRwvH8+fOo1+tRyGs+t+4CwYiDRqOBer0ehRFF3szMDKrVatzqEUBONPJaDHvWtAKunutKqYo3dQzQRtZRoHhn5ABFIx0G+jmtlD9o1TUNR+cqs65862orxRVF1ebmZiwKSScBhR1XgxmhwV0P0roBGsExNTUV0xH4WU0vSesWqBhPnSVaT0GP0y62U7dWpN3JOIrOHYr+OPCy79FVdI4Ninf2F/tbnSka6aH3LhWzKsJph0YIpMVEGbnCNBiukOsOGmzboL6hQ4m7mPB3jEzQVAx1IPD7NEVH26BFLweF/mt0gEYzaC2G1IlC5xXHrhZoDCHkIhO0dok683jt1FmktRLSqIr0mVGHgqbc6DObphSl43aS2au5eAaVodjnOI5zuePz8PgInQ6mv/odLBx9JWo2hc3Do3UqFDYMs6cN5a88gG6SAuw4B4Hn7FAwszvRL0zz2rD1V/dJAFfLaccA/GzQ50MIHwPwMQC48sorQ6PRiEKZQkPFEGsaVCoVzM/Po9FooFarYWVlJYpdCpNisYiFhQXMz8+jWq3GUGsNhWceNfPpe71eFN8apq8r9JqfLe2IojBdaWX+OMU/v3NqairaRUGkaR+E9QFKpRKq1SpKpVIUfe12O6ZgqKjXVAENgVcxqau6zGenfaVSKf5ubW0t1rEAELfbU2cMaz3oan66cpyu/KapInQIsBYCoybozNAV+7QYYLpqnwp4tpn3mE4pFunkWND8f66apxEP6vDRWgY6tugE0agIXQln9ALranAscOxxfMpzFq+Xpl3QycZtTflZRvfovdbvSp0hdJhpVBCvqe3WNmo/a7so2DmWOAb5TGjxSdbL0Doc6fhJo0R0dxY+azrmu91uTKGgM4HH1WmnjkPakEZIsK2Tzl7OxQu2tD88KI7jOBOEz8OTwaF/uB/zr3k5nn5DGcEw2KWz1wRg7ifAFR+5b2LKODjOqHlODgUzuwXAuwC8JoSwJr+6F8CnzOxDAH4OwI0Avr3b9zHcmoKhUCjEWgcUI5VKBYuLizhy5Ah6vR7q9TpWV1fRaDS2VbRfWFjA8vIylpaWMDc3B2BrdZUhz+fOnUO9Xo+r8iyEp6ujWtyNApGOBeaKq2CjeASAer0eRSOjG4AtIcrraeqFrvYyXLtarcbtJ6enp9FqtVCv13H27Nlok+aa81q9Xg9LS0vxc8DWNoLsA7aV0Q3lcjneC9ZTaGVhW1ztpYOl1Wrh2WefzaV4pGH1FPLsfy1+RwHH36ktDNlvNps4f/58dL5QwLfb7YF9z2MqAs0sly5TqVRiO3WlPQ2v53s9T4t20vHCe6ZpEbRRC0myroKOp6mpftHQ2dlZzM7Oxs8zRWGnFAfdFYJjKnVkpDU02H5NBSkUCjGCRguBqvOCjhyN6tFVe34PgGifFhOlbelOHXTqMNKFtnIsaCHMNLJHIzlSZ5+m0vC6+gxqNAcdSDrueB/VCTHJ7PVc7DiO41waPg9PFoVvPIoXP7GM4++8ru9UGDI3fOE8pr/1uNdMcA40F7Nt5KcB/BqAZTM7CeCv0K9gWwbw5Uz03B9CeGsI4Xtm9o8Avo9+2NfbQgi7/kVOsUR0RZjV4Rk6PT09jfX1dTSbzeiEsKwQG8VPtVpFpVKJ2yJOTU3FcGeGmrPqfgj5LRY1B56r5BRBWktAV6hpr4a+60qtrswz4oCCTyv8A1sh2OVyOVa9Z2rExsYGVlZWcO7cubhCrWg+O8UcsLUKzRfFWKfTQbVajSHfdCao40XTDXq9HprNJprNJlqtVnT66P2ioE/THXT3Co2CYEQJ+1PTUNIVc13JTusv6DmDxldagFCdRSqcVZCqA0mFq4poYKuGAtvEe6mpGxxTmsaRbn2q4f500nA88drqTNDUlWazuW2HCq3LoeH8HIe6swnFto4Nfo9GKHD86PNC4U3HjPazOmO0aKWmvOxUs4F9yMgC9plG89BJQUeWOtB0HGt6El/qoFIbNJphkhjFXOw4juPsjM/Dk0/odNB99gyu/5ejOPnrs0NLf7AucO2/t1H8/kl0s0hexzmoXMwuD28ccPjjFzj/fQDedylGpAKGwofCjqHRFKIa6s9zdXWVld0pVLniSFGodQdCVvsgTQWgcFVxMaiQG88HkBNWaXg1P6N1E7SonQrBUqmESqUSV9O5sszoBIp5Dfln6De/Q1eHVexT1NG2SqUSxRWFlYpM3c6z2+1ibW0NjUYjFnDUe8drA3mBnwrSNIKA940OBW4nqCJTIwXSWhPq2FEbeH2K2LTvmerBqAAVw7yfKoZpv66Qq7MkRVMHOEbpFKDTgGky6WfUAcA+4zhJxywjOnRXhlQM633h53ifOVY11Sd1CrH9GsFA2zRdgX2sThmtPaLpK+w7dXqos4H3VO1he9OikByn6pzRZ5F9QNt5HY0q0b7WSI5JcSyMYi52HMdxdsbn4f1B6HQw9fXv4tA1r8T68hTCNNC6qrcnKRDlM1MoNgHrAcWvP4pue/P5f6nj7HP2YpeHPYGCjKuaFD1cxZ2fn0e5XEan08GZM2fQaDSiqNYw6kqlktvPHti+vZ6GM+uKMGsQUJxp8TgVuExHSMWICl6NTDDrbwmoxf4oeNICcXSeLC4uRscIU0BWVlbQbDZjWyjqKJzYfyxcqavHtJvbQoYQUKlUcqvSbPva2lrc+YLb6bEfmYagol4dGbqCTRGo0Ql0alA0sn6A1gdQEchihWynRgLwmoqOHXVecByVSiVsbGygVqvF1W2ubGudA4ptjUxIayFoXQC2jfUMWq1WzhljZjEdodvt5rYzTJ0sbIeOLU2n4fU1jYK2agi/1iJIxbo+B3QU8HMaicCftV6Cfod+D+sW0JnFPlLHiDoL9H6ynzQygc9TGmWhkUNqFyOS1MnDe6YRCRo5xOvrs6TPOdNPHMdxHMfZXxy6534cAlA4fBhP/PlLEArhuTkVQt+BAADH/msN9o2HeNhxHEyIQ0FXBZlzTiFLgVKtVhFCwOrqKlZXV7GxsZHLwV9cXMT8/HysN6Db0XG3BYbSUzRo1ACQX5HW7SEpYFjAjc4BCk0AMYScQrpYLOZWfSnO0pVZDUOn42Rubg6VSr/KL7fYO3PmDGq1GprNZq5OAYCc0GR7SqVSjOJgfzKdgHZRrLON9Xodp0+fzqU6aGoGa0JwhX1mZiZXVHHQDgyMCNGq/7SVBRA1AqTVasX0lzRsPq3RoDUGVKjq9ol0nNAhNTU1hdXV1ZgiELLigRwvAHLt5DnMz+eY1FoTnU4nOoJ4vzXShk4U2sm6CTw/rQeRpojw/qqjhvdFo0noeOH1dccMDffXcUOnHceBXit1MPCZpKNAU2T0+zV6QR0yaW0EFe4q+jUaRVNiOJ7UmdDpdOI2oHQiclcS2sb2MQpHbdU5hONcozD0vjiO4ziOs//orqzgxr/4Ln7yjpuxccWlRx1WTk3h2N8+CADobbb32jzH2fdMhEMBwDYhQ8E5OzuLI0eOoFgsxpB/Vv6nKKDQ5wop89K1IByFOWspaAg1YRi8ihYKk0KhkNtuUOsVpPZTtFF4auQCgNwKt36Gwog7DDAaQQsU6spqKlo1rJ9iS1eHtRggU0govNfX11Gr1aIjhTbxe3SbQy1opxEBwFbqiQo0dQSkNSs0bUCL8qmjhavgbE8axaKh7ITfxYgB9inboveCfcFaHK1WC+vr67moATqJtJZEq9VCu91GsViMOwvwvg5Kh2HbBm2HyJV2dSKk6R0q8NkW/Tnd0UMjHNQeddzpNpmDHFV6fU0TYJFFfkZriuyUopE6TfQ79VnUsaBzQmoTr611KADkIkbSCBe1hS9Nx+EzdKGaHI7jOI7j7C96Gxu45t/OoVcpoT1XxI9vK144WiEA1//rJgrrHRQa571OguNcgIlxKABbwpqriRRqjE5YX19Hq9XatiLKlV6GKKuIoDOBglTrIvAcALmijXouX1z1V2eArhar6KOwKhaL20K2Naw7bTtXyinIKWzp4NDVVAr3NKRdxRND2QHEbSY3NzdjGgXDuemwYKFHbQOFIaM0AORWcFXYpYXs0lQRzZ/X1XYKUI3a0PP4u3TnAw1n5/fzOMU00xzYB7pyzRQTzbtnRIW2VZ1EbBPrWPAa7FMV62qTjgGu0mttC94zjdbQVIjdcvkHCfN03PGYjg2tBZKmFvCYim/ayegN2qYOBX5OUyd4nt4/vcd6T/VzafqK/h5A7nlnyhLnB003SVOLtK/SSCHtK3coOI7jOM7lQe+RHwAAZhYPYeFFL9v1/OK3j6PXasEraTrOhZkIh4IWQKNgZyh2pVJBoVDA6uoqarVazO3Xc5jawGMUd+12O25/qHUNUkFuZlG8q1DS6vdcgdaVXhUfuhps1t+CkQJZV0tVIGk4OYC4As78dI0YUPt11VgFmeam63fSabC6urrtM5ubm2g0GqjValhfX8+t9quQVxHK/ta6CGlNCtrBKA72laZkUCRrpIeu5Kvopg1pisAgAc8+06KHLMDIcHi2k33O72ckC1ey+d2av8+UCN7nubk5lEqlXHqMOlFoo0beqFNJHTPsRy26SWFMuzn+LhTxwPfqaNKaAQByKRpM7UifE3X+0E46mDTKR51ZOkb1WR30StujMFVHxwB35aBtjC7hWOL8oHMCIyk0FUTHeDqfaPSQ4ziO4ziXF93VGl7w4ft2Pc//EnCci8MmYQXOzJ4F0AJwZsymLLsNboPb4DYkXBtCuGJM1x4pZtYAcHzMZhz08eY2uA1uw3YO0jzsfxO7DW6D2zCpNgyciyfCoQAAZvZACOGX3Aa3wW1wGybRhoPAJPSz2+A2uA1uw0FnEvrabXAb3Aa34WLZnszvOI7jOI7jOI7jOI6zC+5QcBzHcRzHcRzHcRznkpkkh8LHxm0A3AbiNvRxG/q4DQeHSehnt6GP29DHbejjNhwsJqGv3YY+bkMft6GP2zCAiamh4DiO4ziO4ziO4zjO/mGSIhQcx3Ecx3Ecx3Ecx9knjN2hYGa3mNlxMzthZu8e0TWvNrP/NLPHzex7Zvan2fH3mtlPzeyh7HXbkO34kZk9ml3rgezYkpl92cyezP49PMTrv1ja+pCZ1c3s7cPuBzP7hJmdNrPH5NiO7Taz92Tj47iZ/dYQbfigmf3AzB4xs8+b2WJ2/DozW5f++OgQbdix70fYD5+V6//IzB7Kjg+rH3Z6Hkc6Jg46Phf7XJwd87kYB28u9nl4MvB52Ofh7JjPwzh483D2vftzLg4hjO0FoADgKQA3ACgBeBjAS0dw3aMAbs7ezwN4AsBLAbwXwDtH2P4fAVhOjv01gHdn798N4AMjvBf/B+DaYfcDgFcDuBnAY7u1O7svDwMoA7g+Gy+FIdnwmwCms/cfEBuu0/OG3A8D+36U/ZD8/m8A/OWQ+2Gn53GkY+Igv3wu9rl4t3b7XByPX5Zzsc/D43/5POzz8G7t9nk4Hr8s5+Hse/flXDzuCIVXADgRQvhhCGETwGcA3D7si4YQToUQHszeNwA8DuCqYV/3IrkdwCez958E8Nsjuu5rATwVQvjxsC8UQvgagHPJ4Z3afTuAz4QQzocQngZwAv1xs+c2hBC+FELoZD/eD+DY873OpdpwAUbWD8TMDMAfAPj0873OLjbs9DyOdEwccHwu3o7PxT4XD+KynIt9Hp4IfB7ejs/DPg8P4rKchzMb9uVcPG6HwlUA/ld+PokRT2Jmdh2AlwP4Vnboj7Pwnk8MM7QqIwD4kpl9x8zekh27MoRwCugPKgAvGLIN5A7kH5JR9gOwc7vHNUbeBOCL8vP1ZvZdM/tvM3vVkK89qO/H0Q+vAvBMCOFJOTbUfkiex0kbE5czY+9Tn4sjPhfn8bl4xHOxz8NjY+x96vNwxOfhPD4P+9/EF2TcDgUbcGxk206Y2RyAzwF4ewihDuAjAF4I4BcBnEI/tGWY/EoI4WYAtwJ4m5m9esjXG4iZlQC8AcA/ZYdG3Q8XYuRjxMzuAtABcE926BSAa0IILwfwDgCfMrOFIV1+p74fx7PyRuT/Qx1qPwx4Hnc8dcAx367m+eFzsc/Fu+FzcWbWgHMvm7nY5+Gx4vOwz8O74fNwZtaAcy+beRjYf3PxuB0KJwFcLT8fA/CzUVzYzIro36h7Qgj/DAAhhGdCCN0QQg/A32HIISMhhJ9l/54G8Pnses+Y2dHMxqMATg/ThoxbATwYQngms2ek/ZCxU7tHOkbM7E4ArwPwhyH0k5OyMKKz2fvvoJ+f9KJhXP8CfT/qfpgG8LsAPiu2Da0fBj2PmJAxcUDwuRg+F2dMxHPnc3GfUc7FPg+PHZ+H4fNwxkQ8dz4P9/G/iXdn3A6F/wFwo5ldn3kE7wBw77AvmuXBfBzA4yGED8nxo3La7wB4LP3sHtpQNbN5vke/+Mlj6Lf/zuy0OwF8YVg2CDmv2yj7Qdip3fcCuMPMymZ2PYAbAXx7GAaY2S0A3gXgDSGENTl+hZkVsvc3ZDb8cEg27NT3I+uHjN8A8IMQwkmxbSj9sNPziAkYEwcIn4vhc3HG2J87n4tzjGQu9nl4IvB5GD4PZ4z9ufN5OIf/TbwbYcRVINMXgNvQr2D5FIC7RnTNX0U/HOQRAA9lr9sA/D2AR7Pj9wI4OkQbbkC/KufDAL7HtgM4AuCrAJ7M/l0acl9UAJwFcEiODbUf0J+oTwFoo+9Ze/OF2g3grmx8HAdw6xBtOIF+HhLHxEezc38vu0cPA3gQwOuHaMOOfT+qfsiO3w3grcm5w+qHnZ7HkY6Jg/7yudjnYp+LD+5c7PPwZLx8HvZ52OfhgzsPZ9+7L+diywxxHMdxHMdxHMdxHMe5aMad8uA4juM4juM4juM4zj7EHQqO4ziO4ziO4ziO41wy7lBwHMdxHMdxHMdxHOeScYeC4ziO4ziO4ziO4ziXjDsUHMdxHMdxHMdxHMe5ZNyh4DiO4ziO4ziO4zjOJeMOBcdxHMdxHMdxHMdxLhl3KDiO4ziO4ziO4ziOc8n8P6yIsQ1BsSEkAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 256820 348911\n", + " Min thresh = 1000\n", + " Sliding\n", + "\n", + "\n", + " FP ROI = 236s_iimage_1139765223418_CLEAN_ClassS_66-194.roi.nii.gz\n", + "236s_iimage_1139765223418_CLEAN_ClassS_66-194.roi.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADYCAYAAABberBAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADYhklEQVR4nOz9eZyt61nWiV/PWlVrrD2cnJOETCQBEghhkkkMjUZwiIjgSEM7MNnRhhZbpZug3Yr+WhttB9QWNKCASgNRUbCxRYmkRZOARASBDAwZyckJJzln76paY9V6f39UfZ+63rve2nufc/Y+VXvv+/p86nOq1nrX8z7Tu86+rvu676c0TaNEIpFIJBKJRCKRSCQSiSeC3nl3IJFIJBKJRCKRSCQSicTdhxQUEolEIpFIJBKJRCKRSDxhpKCQSCQSiUQikUgkEolE4gkjBYVEIpFIJBKJRCKRSCQSTxgpKCQSiUQikUgkEolEIpF4wkhBIZFIJBKJRCKRSCQSicQTRgoKiacdpZSfK6W88rz7kUgkEokTlFLeVUr5Tbd4bVNK+ZgneZ8n/dlEIpFIJBIXCykoJJ52NE3z8qZp3nDe/bgRSinPKaX8YCnl/cf/+H3RefcpkUgk7nWUUr64lPLGUsqslPKG8+5PIpFIXETcbmH2Zu3lv4sTN0IKColENzaS/rWk33PeHUkkEon7CB+W9M2Svumc+5FIJBKJE+S/ixNnIgWFxNMOt9WWUr6xlPJPSin/uJSyW0r5r6WUl5ZSvqGU8sFSyntLKb/FPvsVpZS3Hl/7y6WUPxLa/l9KKQ8fK6h/2BXXUsqwlPJXSynvKaU8Ukr5u6WUcVcfm6Z5pGmab5H0n+7gVCQSicSFRCnlM0spbyqlPH78nfp/lVIG4bLPP/4efrSU8n+WUnr2+a88/q5+rJTyw6WUF97KfZum+ZGmaV4n6f23czyJRCJx0VBKeVkp5Q3H37M/V0r5QnvvDaWUP2x/f3kp5T8c//7vj1/+6VLKXinlvy2lvLKU8r5Syp8+/k5+Vynl9z/Z9mJf89/FiRshBYXERcDvkPSPJD0g6ack/bCO9ubzJP0FSX/Prv2gpC+QdFnSV0j6G6WUT5WkUsqrJP1JSb9J0sdI+g3hPn9Z0kslfcrx+8+T9GfvxIASiUTiLsehpD8h6SFJv07S50n66nDN75L06ZI+VdIXSfpKSSql/E5Jf1rS75b0TEk/Jul7no5OJxKJxN2AUsq2pH8p6d9IepakPybpu0spH3uzzzZN8+uPf/3kpml2mqb5vuO/P0JH39nPk/Rlkl77FNtLJG4JKSgkLgJ+rGmaH26a5kDSP9HRP0C/qWmataTvlfSiUspVSWqa5oeapvml5gj/n46+iD/nuJ0vlvQdTdP8XNM0M0l/nhuUUoqk/17Sn2ia5sNN0+xK+kuSvuRpGmMikUjcNWia5i1N07y5aZqDpmnepSNh95RIe/x9+h4dpSl86fHrf0TS/9E0zVuPv9f/kqRPuVWXQiKRSNwH+CxJOzr69+6qaZp/J+n/0cn36JPF/9Y0zfL438g/pKN/GycSdxQpKCQuAh6x3+eSHm2a5tD+lo6+dFVK+W2llDeXUj5cSnlc0ufrSI2VpOdKeq+15b8/U9JE0luOrWWP6ygX7Jm3cyCJRCJxL+A49ez/KaV8oJRyXUeiwEPhMv+OfbeOvoMl6YWS/qZ9135YUtFR1CyRSCQSx/9mbZpmY6+9W0/te/Kxpmn2Q3vPPeviROJ2IQWFxF2DUspQ0j+T9FclPbtpmquS/pWO/qEqSQ9Ler595AX2+6M6Eide3jTN1eOfK03T7Nz5nicSicRdh2+V9DZJL2ma5rKOUhhKuMa/Yz9SJ3UP3ivpj9h37dWmacZN07zxjvc6kUgk7g68X9ILvPaMjr5Hf+X4930dBcLAR9xCmw+UUqahPb6Xn0x7icQtIQWFxN2EgaShpF+VdFBK+W2Sfou9/zpJX3Fc5GYiq49wrAB/m45qLjxLkkopzyul/NazblZKGR3fT5KGx38nEonE/YBLkq5L2iulfJyk/6Hjmv+5lPJAKeUFkv64JPJu/66kbyilvFySSilXSim/71ZuWkrpH3/XbknqlVJGx7nGiUQicS/hx3VE8v+XUsp2KeWVOqop9r3H7/8XSb+7lDI5Li7+VeHzj0j6qI52/3wpZVBK+Rwd1Rz7J0+xvYr8d3HiLKSgkLhrcFz34Gt1JBw8Jum/k/SD9v7/K+lvSfpRSb8o6U3Hby2P//v1x6+/+djC+yOSblSsZi5p7/j3t+kk/SKRSCTudXydjr5jd3UkxnYV6foBSW/R0T9Uf0jS35ekpmn+uY6K4H7v8Xftz0r6bbd43z+oo+/ab9VRfZz58f0TiUTinkHTNCtJX6ij78ZHJX2LpD/UNM3bji/5G5JWOiL63yXpu0MT3yjpu45Ty6iT8AEd/fv4/cfX/9Gn2F5E/rs40YnSNM159yGRuCMopbxMR/+QHR4XBkskEolEIpFIJO4pHDsc/nHTNM+/yaWJxG1HOhQS9xRKKb/r2Or1gI4iZP8yxYREIpFIJBKJRCKRuP1IQSFxr+GP6KjGwi/p6Bz1rrzfRCKRSCQSiUQikUg8RdwxQaGU8qpSyttLKb9YSnnNnbpPIuFomuZVx6c3PKNpmt/VNM3D592nROK8kN/DiUQicf7I7+LEnUbTNG/IdIfEeeGO1FAopfQlvUPSb5b0Pkn/SdKXNk3z87f9ZolEIpE4hfweTiQSifNHfhcnEol7HXfKofCZkn6xaZpfPq5i+r2SvugO3SuRSCQSp5Hfw4lEInH+yO/iRCJxT2PrDrX7PEnvtb/fJ+nXnnXxeDxuLl26VP/ebDatn16vp16vp1JK5zXr9VqSVEpRKeXUtaUUNU1TfzabTX2/lKJ+v9/6vL/WNI0ODw/VNI36/X5tf7PZ6ODgQJvNprbpbg+u43fe5xr+6/2Mf/u9m6apfZNU23Z4+7G9s5wo/pnYl7P61PW6w/vmfZbUGg/Xeh/j/JwFbzeO29fW/8s6sf6xb75HusYY7xn7cyNsNpsz32N/ex+8j7zve4jnwv/uGrO32dV35p/3uvYxP/Eesc9N05x69iLiWvi+5vmKfb7ZOnWtt38/MIf9fr8+11zX6/W0tbVV+3NwcKD1et1ar9Vq9WjTNM88c1AXF0/oe1iS+jvT5iNfVPTB5SX1f3F5o0sTiUTiacNC+1o1yxv/j/bi4gl9F+f3cCKRuKjY1WOd/ya+U4JC15d+i4GVUl4t6dWStLOzo9/7e3+v+v2+mqbRer3W7u6u9vf3tbu7q16vp0uXLmkwGNRrFouFlsulFouFHnvsMS0Wi0oOJpOJtra2WmRps9no8PBQh4eHWq1WlXz0+30NBgONRiP1+31tbW1pe3tbV65cUa/X08HBgebzuebzuSaTiUajkUajkXq9nj74wQ/q+vXr2tvb03w+12q1OpnYrS2NRiNtbW2p3+/r8PBQ6/Va6/Vaq9WqJZbQl+3t7VafF4uFdnd3tVwudXh4WPu2tbWlwWBwNKlGqtbrtQ4PD+vfTdO05oE+QJZ6vV6dExdMnLDxGj/r9boSPeYLYkk7w+Gw9rPf72t7e7u+z1zRznQ6rW1sNps6VifPkaBuNhttbW2dmtuDgwMdHh7We/L+cDjU4eFhJYt7e3u1/9vb29re3m4RytVqdYqwOiFl3phHXnNC6yKSpDou5p392O/3NRqNNB6P69gODg40m83qOAeDgabTqba3t3VwcKCDgwPt7++31nk2m+ng4KC2PxwO672dWLNnIP/sUcbEPPoeGQ6HGo1GdX799a2trToXq9Wqjom539pqf8Uw703TaLVaabFY6ODgQL1eT5PJRDs7O/UzLia6qMJnGC/rwjj6/b6Wy6VWq5Xm87k2m43G47F2dnb04IMPamtrq86bJL3whS/UYDDQ4eGhHn/8cT388MN69NFH6xq8613venfH99ndgJt+D0vt7+LR9hU97yV/Rh/1+Fq9X/qpO92/RCKRuCX8ePP68+7CU8ET+jdxfg8nEomLih9p/mnnv4nvlKDwPkkvsL+fL+n9fkHTNK+V9FpJeuihhxonb5D8xWIhSVqv11osFmqaRoPB4FTkFnIJICjSSRTVCao7Hpys8joEkWjm9va2lstlJXsQ9dFopMVioX6/X9uHcPlrEPODg4Pab9qBFNEXiFjs01lR9Ui2Y9TWSbD3gbad/HZFgiNcbHBS5uPySHaMWDv5hlSzpvTR+9LlWuBz7BUIKvOP+BIj8YgPW1tblRy7G4Xr+KwLG3H+Y79u5LqIc+fRc0m1z3E+2R/M9XQ6rePY2tqqhFuSBoNBq13a83XwPeNiEX27kaOjaRptb29XYcpdEawpzwfvS6rknfdpv5RSSTztI2bwDPi63AjeT8bJ9wECIkLRZrOpYhwC03K51Gg0qkLifD7X3t6eFotFdT/dpbjp97DU/i6+XJ7RjH/gJ56e3iUSicT9gSf0b+L8Hk4kEncb7lQNhf8k6SWllBeXUgaSvkTSD551sVv7ITO4BiBKuAQgBWCz2bSikx5ldnLLtRCYXq+n7e1tDYfDSlwgkzgFiA4PBoNKlol0bzYbjUYjTafT2kaMrEMUnXhF+z+OhdVqdcpq7ZHX6Ligv12pD4yVudne3q7jiCST16M7wu/TRTrpP4Q3Xodw4w4G/nYnBPPj9nPactHI2+VzLu4whkj2+RxgzOwVXCMekcfdQN8hrHF9vf34GuhyV+AkoU364M+AiwC4ZIjMQ8ZxV7CPffwxxcLn0lMMXPzwuXZ3Be35nLjjJ64tQog7Gnw8Ptf+7B4cHGixWJwSbzwdI8KFGQei5Pb2dn02Z7NZFbD42dra0t7enlarlfr9vqbTqa5cuVKdG/T/LsUT+h5OJBKJxB1BfhcnEol7GnfEodA0zUEp5X+U9MOS+pL+QdM0P3ejz7iV3snwzs5OFRSWy6WaptHOzo6kI+fAZDKpkU3pJCJKZNFJmUdIEQ4gHH6tdCI+YAvf2dmpxHNvb0+bzabeH1II4XOCDMHzSCfR5RithqC5sDEcDlvz5ATKI9rMh6RKVhFXnAjOZrPajs8FkWfuH0kc1w0Ggzrf/HgNCsgmaSUuEjhZxy3ha+cRaeYHwukRfBdqnBzzc6N6BT5vTuCHw2EdN/fkmuVyWfcnDofBYNApJLhLxe+1vb3d2teRqLIX6MNoNNJyuayk/PDwUPv7+1XIGg6HNTWDzw2HQ5VSWg4d74cLRFG4iEKTO35IRXGBiz3trp7pdKp+v1+fVUi6p834Pof0S6qi2v7+vpqm0Xg81uXLl1t7sGu+pJNn20Us4O6lfr9fhUYcCTwTjz76qObzuS5fvqydnR0985nPrKlVdyuezPdwIpFIJG4v8rs4kUjc67hTKQ9qmuZfSfpXt3ItxFdSi8hCEMbjcSsqPZ/PWykF5MBDTksplSzwGY/OHh4eVqLQ7/dr/jrEKNr+ISluzZ7NZvUeCA60Sd52V8SasYFYf4D+Q8S2t7dbkXHmqMti72kHCBiQfhdAsHJ7e5DEmHriDgvmmtdjAbuY3uA5+U5GJ5NJHdtsNrslW3mXYwLhgra87zHKH50FLjQx95BPfvd0Crf+x3WNwk4EIgv7hf3onzk4OKhjoO9eLBBng3QkvuGK8TYQhkjp8P55X1jLWKeCNe8aH2IAroZer1cFPp9T6jy4gwTxgOeIWgsuqvDc+Zoul8sqksU+0X/2tjsnmAufW8aKy2k4HGo4HNa0i8ViocPDQw2HQ00mE02nU+3s7FRR427FE/keTiQSicSdQX4XJxKJexl3TFB4onCHgeeaSyfWf4if54f7Z6R2pXe3x7v9PqZDuLUdUuN9oj23c8f8e1I0VqtVrbcg3fopCh7FdRJGUUH6E23ozI/npEdBxIvyea69j492uki3zwn3YtyxHoATf0mVNLr4gzjjY/LaE9EaH0E/3YkRBRx/PbpBHLweTwphL5Ai4cUr+VzXmvrf8Xc/OSTui/iarwUiFnuPMeBIiPPOf+P6xv7gFvB5dRHGrz1LxEI4cCEmijush7thWBN3SPi6UlAxiiGeuuHpKAhxLvwhKnjNBAq54vIgVYR0iOvXr7dcIne7oJBIJBKJRCKRSNxJXBhBwSPmHr311yAcnvMNeJ0IaRfJhDxgy6YddwJAkDzHXTo5gQGbdhQlIP4QZidzfk0EUVWvLcB4EAfoM7ZwJ8YuhAwGg+oGcMII4cJt4W4NJ3X0xUk3bXp6gKcD4BRxQcHH6WIBfSF3XZImk0kVYBB+4vGc0RUQyST34RoXSxCSYj0L+soceMFMj9IjKHg03OfN23Fy7LUD/L/MTVdufnQb+OcYD/PhKQixDgKf92fAx+r3i6lAPr8xNYJ+eHoJn/fikV6X5Cy3A225aIUbAYFnb2+vroenJXnhTE+9YW3cDYEjptfrabFY1JNTEBOo08KpMR/+8IfrczIYDHTlypVT65RIJBKJRCKRSCSOcCEEhZjy4KQUYuz1AZyUOfGGhEUCCQna3t6ux8ddv369WrYhD17wEcIHeSPFwcl6TNOI0Xk+z2uxqB9kHJI0mUxaqR3uXCC1ArGC+7uzQ5JGo1ErDQQr93K5rER+a2uruh4i4XMiypg8wst75Oyzfl6cz9fUUws4OnEymdSieJPJpEajl8uT85b5HLUHokMg7p8YEY9HCroAg3WfIoaeXuPrFsUo5r4rncCJrxfw9L55JJ76B94GY+G/LnAglDkWi0VLJOM5QGzxaD0ih4/V0zkQdfy5c3GL13xv8DviGnvFxZXoCHGhR1KrzoIf4YlLYW9vrzVGd1C4AMHepD13l/h+X61Wun79eh0ntR+opfD444/r2rVrGo/H9SSXRCKRSCQSiUQi0Y0LIShAgJbLpZbLZS1657ULYp49RfFiDj9kg9edFCI6UEjR6xd49X8q7jsxoRaAuxQkVTLlDotYdNHJmeewS+3ig9yf/kcLv3QS4YbAQXwhuhBfv5aigvP5vBa09DnxaLTPI0TeHQexqr8XvXPxhD57CgaiAOS1lKKdnZ3q6oA0e80LSLwXgowuA68DQJ0GCP16va5r5Y4G1tHXgN/Za7y/tbXVes2j775+vs7uMIBE+/wOh8Ma1XfxgM/4SRjUAumaXxd4YqpIrNPgwBXjIgF7LjpputIpXHDxtJH1el1PFZFUj3tl/XidMfKsMWexqCYiFOtKmkecKxcCcR+RysRpD9LJ8ZrL5VJ7e3saj8caj8fa3t7WaDTSaDSq4pavdSKRSCQSiUQikTiNCyEoxAh+tPr7cYdO2vmsk0w/SYA2PfIM0RiNRp055JLqsZNey4G/nbi5AwLC6dFcJ+txvP7jr0GqYjQ8RnpjNJ1+HB4e1vHzO/OzXC41Go1a9/KUgYgouEBsIcCsA+34XHpU3PvvqRgIBy5mrFarem8IIXOyXq9PrbfvGS8YCJmOToMut4Bb9r3WQkyp8PXz6H5MX/A1R/jpSitgjXw+/R6+x5140z5CAvPrAoLf09eD+/jz4ukQXeKc9+ms9ty1E9MTfH663CTMu5/k4W36kZpdooM7mhCtOHXFTzhBkEDQQmTzEye8aOlyuTw1B4lEIpFIJBKJROIEF0JQkHSKpHuRPM/JhjBAIqiHwOeIPHPsnnSaxJRyVHAN4gFx8cr+VKKX1HIgRCu3E1tIkZO06Ezwz0gnhfB8HhA85vN5vT+IhNjJIFFg2o9HNMbUB48we7vME+Oizx6Z5/jEWNXfSa5/PvabNkhnQTSC1LpDwetLRGHJBSgXZLrSCfxzLj5sNpuaGuICAm2728Xb9foRXekCXovA197TethT0X0gnYhmrJ8fhRrFKq/t4G25iyLOH332Yohe+DM6HOLc+34BCAqITNE14WJNbNPf8x9/plyE4nOxgCXjWK1WLVHBa6XQ1/l8rvV6rfF4XAWF2WxWizdGIS+RSCQSiUQikUic4EIICl3RfCfRuA62t7drisF8Pq8F1RAPcBLweoygQpA4ou/y5cs6ODjoPGve7dhdkWtJ1Uo9HA7VNE0VAPg8Y3CHhY9ntVpV0uzEHGI6HA5bBNcJb6/X087OTo0KYw33sXAs3nq9rgLJer2u949rQL89Og3R7iLoh4eHGo/HdfxEdREsqCVA/+k370lHjoTxeNzKd/d6AZ76QjX+2JflclmvZz1IicFV0kUM3f3Q6/Vq0UsvIsm8R9LqKSjU3/C0BI/Sx/dZR0+p8aKZPse0g6OG/e/HIvp6RNHDBYdYJyLuP/aP73MXf3xvRsdFXAvaZG4RCV2wYL1cZOFe/ryxtl5XBHg/+OF549nGmUAqFfsRB83+/n69ZjQa6cqVK7WAoz/TiUQikUgkEolEoo0LIShIJ4UU+Yd+zJUnkkrRQS8OB1mAVF+7dk1Xr16thIb0ARcUPN9+Op22+uLReS/4GKOfgPtAyjwye1Y+OgQWwsQ9EBUODw/ruOizOwr8FAFOoFgsFq1+QWbdlh+j4N6veNKEdERkSb3oamOz2VTST1pFdCrEdAoEjeFw2EpNoG3WmrH5+nFPftwxwjghqewlT29xkcPXr+s4Q/rje43XEWaIyEcnAGsfi1x6YUSvFRGdIe5IwLGCmMCcdqVJAK9dwRy5IEUaBaIC6xHrgThRj6KMP0dejNI/y97w1KEIhIR4kkXXDzVWvMbEWY4H+jibzeo+5cdPdEF4QOQZjUaaTqdarVaazWan+ptIJBKJRCKRSCSOcCEEBScDTsCIakKGSGeIxzISJY5RUEiOpBqdpBo++dhEUp3ExNxu+uZH9BG5dzt27FsXEYtWfoiuFzb0oyppx/sTI83MAcQawQOyi4uDezFWSLSnAXiKBr97PYpI3EhZ6PV6taidR+O7bPPM+WAwqKKCk1+/r6cwsKYcZRlz9umjk2bILnNNikwkzP1+vxJqP4nAybDPVYzg+/7x1AQfM7/7MZzuOPHngb0cCbunUXj7PsfeX95nHF3Rf6+94Scn+D262o/PR7xH0zTVLeRrw9r557mn77N4H9pG8IhilPfPHQ+IJi70eCoO9RboLwLOeDzOUx4SiUQikUgkEokb4MIICh7tdDuyR5Uhl9jZnVCRHgBphqS7rR3iC+Emio4LgFx5J2iR4EqnTwjwe/l7EbHg3fb2dr2nR9a51iOvN5o7FwHcIo4YA9knVYS2qZjv7TixdYFHOilWyTWQUUgYR0D6aQxdkXScE8PhsFUfQzohe070PR2G3z1H38UYT61wMYlrIM9edNPXg6J9Tt4jmY736oqkMw76HyP4kSj7HHm0PqZlsL/iWsV+uKDAWrI/eD68RgSpQtzHnz1H7Lf/7Q6SmH7hRzDOZrO6P/z58vb5r7eDOOeCIWOLiPPpp8S4Y0RSfc/303A41GQyOeVeSiQSiUQikUgkEie4EIIC0VjpJIoJWcBxsF6vK9khqo1leTQaVUEBW7QTIggYLoXNZqO9vT1JJ0Tao5bk0ksnkWOIBtdeunRJe3t7lUD7cXbeVhyndFIfwlMkFouFhsNhvW61WrXyvSGTscih/871buF+6KGHatR5OBxqtVpVYnZ4eFjnA/LmUW0vlMh7MRVltVpV4WIwGOjSpUtaLBZ1zVywgditVqu6Fn6kn9v83fHR7/drgc0IjzozF8wXkf1Y9JHx+LjdOcJe8te4jp+4rk6C3drvThDa8j0e01Fc4Ik1A9w14MKJp2r42rgww/5gTP6MIBINh8Naz8JPOokOIF8jvzd71h0WjM2PRWUP8BzwXDM3jN8dKO7KcKeDp/y4YMJcucPF63L4PPlcIDYgwj344IOd+y6RSCQSiUQikUhcEEGhaZoaOXeC73UFON8eguafhQA4QXdbN8Q0kkbIEW3HPkGoJGk8Hktqp1dQuM2L0EmnI6Ye6XbSQiSfexAZ5/3HH3+8Ro2dAHl9AncxeMV+SVVw2d7e1mg0qmTOhQOImhce9Pt4DnwpRbu7u62UEeomIEBwrxih5j7MK7h06VKtYcAaefQc54ZH+KV2GgYFOd2JEe3+Tji5F+KIOwkoMOnFLSHVCEVeuJH3YyQd8YQ6Ce6S2NraakXMpZN6BC4QeP0G+sWYeDbOmlfvm6cAkPYjqXV6BSIaaQ+sLekFrIPf30/2YB4h+BQl3d/fr3OHuEP73t+YwuECmotLuHj48blin8X1cEGu1zupXeLPlO+JXq+n6XTamqtEIpFIJBKJRCJxGhdGUOAf9y4QeHTVyUvX9dKJRT9GZqWTNAW3jUOoIMROMGjbizk6OR6Px9UFgKgAUcIlwbUx790JkVvkY4QZV4bDaxe4MOBRbiLiRIIhcTgC/EQBPuO1JZh/F2QigaUPCCN+YgCCQlc9AiefFL3DceLr424ACKMLJm7r9xQVrwNAH53U+7i79g+ku2vOPS0kpqO4+6HrdfriqRzMC+Tcx0Q7Xo/DhR0X3Xzv+HzFvex7UVIt4on4QcFDhBXmwZ81T79w8c73oa8TaTYxfcWFkIjoRnB3B/vEHQwusHndFBc7fA3ifxeLRcu1gGiI8JhIJBKJRCKRSCS6cSEEBekktcAjxtJpAg059OJ7UpvsxYg+iNFq2sGh0EUSubcTRUgn0XB3MkB2IJ0eOSUCCoF0ezXkysnrer1upVl4+oUTda4nhSFa0SGriAqMKdZe8P9yDWA9PLLPNe4aIJXB61REAuxkcH9/X+PxuM5ptPB7ioGnkzjJJBrOfXCfML9e98Hhwo6POx7JCDF24cFFBSf1Pj6fR09XcAu/r2cseunpGV58MrbDa/SbZ4W2fE+7UIejh3tzxCJOAi8a6vsLcLynPxtepJSTVyiCSa0Nn4uu1CDv5/b2dmv/0LcuFwL7lP3j9SqYaz9y09NTNptNnQ9Jmkwm9RjJRCKRSCQSiUQi0Y0LISh4VBiStr+/X/Pyyct2QSGS79hetE93uRWcZMxms1ZuOsQ5RpwhWJ464VFSSB4OBo/Y8gP59Qgrf8eCefP5vLofOEaSz8fjD51w+gkJPhcIJ/GzPnfAI+T0EREFK7xfwxySfuL59AgNkmraxXK51OOPPy5Jmk6nmkwmunz5cuv+y+WyzhtrB7HHDeHEkZoaiBqLxaLl9GD+fa79fchmTP9gzRkLc+VijQtdCBrsPa/J4UdmsmckVacL7THv7H3f17TFPNF3T6+BeNOfxWLRSjnwqDzzwDGJvV5POzs7LdEtknbSEGL0P6Z+kCLS6/V06dKlToGjax/2er1az4JrvbgjaSPL5bKVTuQ1K1wk9BQax3w+r+uACDKdTlNQSCQSiUQikUgkboILISjwD34qq1+7dk2z2aza4p0Ix9oDTdO0ihdKJ6Q4Rsa7iIuTYhcZiFZC3KNd3K9B6KA9J1veFydiHhkF7hCI9RV433PxIVEAoQGy6AJHJGVdRy16bQTvA33CBk9dB/qHOEDdgclkoq2tLe3s7Eg6qQ3hRQEhmev1Wru7u60IPfPC2BaLRR2HHxsZT0JgLShwCflkD3mdCCe/vB/3iu8XFxiYOx+/p2W4M8BrCniqB8SWOZ1MJiqlaLlcVqIcUzzYo54a4uNgnzHXfnwlRNlTbC5fvqzt7e1aP4HrXVig2Cjz53PFfXhGeE4ktcQUxLLZbHZKBETMifvanzFPdWJPcD39ikUko4OJ+yKM+DyyNqR9HB4e6kMf+lCdu0QikUgkEolEItGNCyEoSO3q/JxG4FZxiCTRRY8GO5GRTgifW8tj6kRXSoSTMwQMjyK7oEBtAQhXl70fwgNJ529PEXAy5qR/NBpVkuNtx/7EtA93HpAH7hF+2vexRuGAa/x0A0m11gS2dY+cMydU+icKTpScfvtJFn5vIui07SkVfipCV20AHxP7wUUT5tEj53zW58HTbaJTw++Dowbi6tF7v8Z/IMZc7y6LUoomk0m18y+XyzoGdyHEwo1d43DHA3OCUAOxZ+5Zi7iXfN/F1CPvQxRYfD3ok6dFsD9i4VDui/Di9STcYUO/+S/fCf5d4eKDrzVjQIDwv32f8d5sNtNoNGo5ZhKJRCKRSCQSiUQbT1pQKKW8QNI/lPQRkjaSXts0zd8spTxD0vdJepGkd0n64qZpHrtZe25Nhlh4XjoEF6LPZ6Q2oTruW2euukd6Pcfc3+NaP+aONpxocq0XKnQyDzGWTo7v60q9ABAr7sfn3angbZ5V/4DxQeJHo1ElTjE1JM4JBJB7DAaDVv784eFhjSJ7hNzJKETU3RSeDoKTAJcBYydSTQTciSnk1W30MRWFOfH3YspCdLBwTSwAyfi6CDvriGACASWlIa6zO1Z8LHwOwYWUCYSQvb29OmdO6mmvy3FDH/0kEsQ21sDHisDjRRY9xYW9F8ULfrw2AX2Nrho/jaMr1cbbcdHI7xPvT9/ptzuFvK5FF3q93qljL11U4DmYzWYaj8eaz+ed7Vwk3O7v4kQikUg8MeT3cCKRuJ/xVBwKB5L+VNM0/7mUcknSW0op/1bSl0t6fdM031RKeY2k10j6+hs15NFhSAVkzfPDPQ+fExY2m03Ns4/RWdqBpLhN3osiQvTcyk0NAMguduqzop5Y1yElEGPuv16vW/UFVqtVjchz3WKxaKVIYNeH6DFOyCfj9BoJMRIPuYekMeYuAcYj556/7nn0vOfRc6Lp3B9xgPl3Etnv92teOhZ6IuJuo/fxeVTZwevuDGH+EHHYN6vVqq4/6+Sk1VNXPL0lFviMYpV0JAo8/vjjp0Qq+kx6A+IB+4nxc8oAdRVKKZXIumjljp1YL4F1YJ3ZI+7kwSFweHiovb09jUYjjcfj+t9+v19rdriQFIWw6Nhw0c3dCLGIZBQiPFVFUusZ4Xra8TQTapNI0mg0ah0XS3pNFFyiIMWRnsPhsO5z+s5ziLPkLsBt+y5OJBKJxJNCfg8nEon7Fk9aUGia5mFJDx//vltKeauk50n6IkmvPL7suyS9QTf58vQIoed5eyQYwuXHuEHMIUtu7fa0BwgqJALC5BFZSS1yBpnAGQCB4X2PzrrIAEmaTqe1ICBRT8gO45JOItvuSoDETSaTKmRA9CDefhIBBModHIwN4cXFGJ9zT0egPxBoCtMxL7TVlVfuqR7UMXDbvpNS+uLEkHv4aQZO2BFHyHGHYCMU+LrF6HS8f9M0NR0kHssIzhone8pFFSfG0ZGAWMKaI5jEI1Bd2BqNRtrZ2anpAbTnJyR4Cg0kmT6w7qPRqLW2ni7g9v5ynMIxnU4lqdZxcBGgy93Bf+PJDi7WuJgRHSC+Xi4q+bzG9ATaR/xyAciLZcZ++rpKOiUg0Sf6vlqttL+/r0cffbRzD1wk3M7v4kQikUg8ceT3cCKRuJ9xW2oolFJeJOnXSPpxSc8+/mJV0zQPl1KedSttOGmBzHn0HsdALBIHcVsuly2Chj2/y+bvqQEeVfbIpkdRJdWidsAj1Mdz0HJIIARAbCDC7log+s2P56J7LYDRaNQao6eHcK10UkCPvjNGqZ1S4S4I/utOCtwIy+VSk8mkihTb29u18KITVRDz/Z0MutWfz0KcEVoAn40nETC/XdZ2J7zuTOFzftwlbUPuaSeOietjTr7PV5cQ4WkP3M/rLCAuuGgBuSXdB8GJ8SCqxGKUPn7vK/vH9xT9ZizuJqFPXvMC+Lj9d/ZvdCx4ygKfj6kSfm10Wfha++cZgwuQfuRr3NOMIa6fp+vgJvL90PX83C24Hd/FiUQikXjyyO/hRCJxv+EpCwqllB1J/0zS/9Q0zfUYHb7B514t6dWSquXYXQaSKpHyIxBjCkOv16vEL/7XI5DxJAh+57oY9XeS32Wlt3HUv4lAR0IFsXZLuqQaUfYic1wfCaHnvQOPqLpDAvh9uc6j2jHNwwmqR7DdKeKELwoqEFF3c7joQ7uMaTAYaDwen8rHd3JJXQUnvS7C0PeYlsB/3UIPcfW/uZ/Ph6dX+FiiayGmPzhpZl4RFbzoJWQ8kmavDeBzxnjcnePvIRIwB/4cOLxNfz68iGV0GHAPxuouDN/rLnK5+ECfomDoiCJBvIc/sy4UdDla4vzHIo9x/f10CoQnr+PQlWpzUXE7votHmty5DiYSicQ9jvweTiQS9yOekqBQStnW0RfndzdN8/3HLz9SSnnOsRL7HEkf7Pps0zSvlfRaSbp8+XKDzdiJMYRzPB63SECsKs9pC04eIqmKRMkJn3TiCHDi5MSvyzYuqUU+nJB7/QC3b/vxlFwjqV7nJNQJ7NbWVnUgQDgZKz8e4ZZUK+BHxwBz6AQXMkVVfhc++IwfF+n1LhyRZHrkmM/6tcPhsOUE4HUnvKPRSMPhsEbQJVUnBb/f6H/aXhiS+SXiz5r6eoMoJvC795++RgLqewaHgs+zr6MLEqRvdEXu2eOr1UrXr19viW3MMfclbYFxM3b2B8KJF8R0V4TPXRyHPz8IPO6c8OdKUmsPeBpEdDy4IOCpP3HePZ3EnTwuCEWhjDaoKeK1MfwZon0Xre4G3Lbv4vKM05auRCKRSNwU+T2cSCTuVzyVUx6KpL8v6a1N0/x1e+sHJX2ZpG86/u8P3EJbpwisdGJVH41GGgwGlVg6QfDCd7yGFVo6OXd+s9loOBxWks9JA1tbW7XOgRM8itc54XYyS0oA/eQ0BT+hwm3+frwdNQZ2dnYqSZR0imxL7cr9FJ/jfowz1oLwqDVODu8v44hiAAIH5Gq1WtVjIF0UQaSgHw7m0QUgjyr7mCC7V65cqWOI5G6z2WixWFQS6MIKwseVK1dqLQWvARH3Ef2jfReDIomG8NOuC1W+B7vgxJT7QvAh07The8XdIb6WXWPZ2trS3t6eJpNJLaq4Xq9rag5FPBF9WEMXyXwdEHV8T7gYxr2Zd8aI8+fg4ECz2ayuCfeUTp4XryfC/nFXg6eJuBjoLiF3FNGns1xGwIs6UiDTHQz0m+ui0HjRcTu/ixOJRCLxxJHfw4lE4n7GU3EofLakPyjpv5ZS/svxa39aR1+aryulfJWk90j6fTdrCJIEUXVbvqRaO4GILMQWQoZgAHH2tInmOFccQj4cDjWZTFo1DaST6KkTTifp1DGQVN0BnhYQ4ZHYGInucjhEUYB5ibnhTtIhiZAhd1/wGZ9Hj8RHgu9k0yOz7hrwlA4v7hfn0GsUcJ+uiDXj83oH7hJxMYTIslfl57Mx9cPX0U/FcFEh1q3wfvp4EBU8Yo7Q4mviR2QSfXciG9NfXDzz+e5aQz96MfY31nhwS38UI9yd4C4ed/543Qvu6Wvk7hjuzxwPBoOWg4F+RkcB9/dnlN99X3bV/fD9A/y9OI6u5yemcyB8xGu6RM4Litv2XZxIJBKJJ4X8Hk4kEvctnsopD/9B0lk+8897Im15fnsUCjya7NHDSDL4rFeS96gm9u9SSo2qY9P2NIdIpj0vXTqJ6vf7/XpKgbsI6KNbpqOt20kTY+2y/XN9bCMS2Uj+ouXc5wJwXazL4HMbo8cIOh69xX1BW74e3lbsD5/3ayHOrLmnqXhk23P9iaLztxdtdBEg9tvv42M/a858PRE5JLUi/y4oxD0LcDvEop5u9XdRgb3RlS7CvGD5d6LtzwftxroNcY19f7pg4QTbn0F3NUDM/ZnYbDatYxcZlz8z/ozH/eb7PrqSYr8ZC/uaz8fUCu8L7ceijmft14uK2/ldnEgkEoknjvweTiQS9zNuyykPtwuQNQjPer3WfD6v6QFOziKxdkKxWq1atQRoi+jpYDBQv9/XcrmsqQ3S0ckMCA/0x+3/RLo9SkwbbqGX2lX3aT/WY5BUI7+RbEVCQ+SZsQMnWi5IeHScz/ixkZHEcY07FGjT7wNpxAEQXRgu7NDPLhu6w9NPcABEcsl6rNdrDQaDVg0E+ufHZkJ2fdyICt73SFa75tedFzhe5vN5dZUwPncSIIiwJ/gdAcDdAnzGwbwjPiB8+fsICovForXeTorjWrrQ4HUEfA/4NVEUQ8wh5cJFpdFopMViUUWF1Wql0WhUBTxSV0jJiKIC9/J9zr5nrkibYI7jeOLzxXUIS11iIfvCXUNRVEskEolEIpFIJBKncSEEBSdcXhOA6CFCwNbWlqbTaRUDlstlq96BFz30SKXUrmovqR6HuFwutb+/X/vhOfsQGdwLsc6CR0b39vZaBSAZi9diGI/HKqVosVjU3Hx3PozH41MOiVgTwAmoR7k9Wu/ixFnzDLH2CH6sC+Bz1u8fFb4cjUa1T3yeMbhTwUUYxhdTOBhLV90FTwvxMfpr3qaTaHdFxOupEUE9CS+SeVZdBK+HsV6vdf369SqAbG9v12KVHsHnnu68YJ5ZO/apCzeME2HLBSLmmDQXT7mhfoILXi5Oxb1A7ZAIF5Wo2cE+IO2EsQ+Hw1ZqAceAStJ8Pm8JQ/SLYzqZe087ceEtujpKKTWtwouCeg2V9XqtnZ0djUajOkdx//h/2R8uhiFo8JzcqFZGIpFIJBKJRCJxv+NCCAoxhxzC5aTQUxYgFxAAiEasa+Dk2YmLdEKcuIZ7+t+ediCdkCKIBpFar47vRB6Ss16vW5/1on5eEFJSq31IkwsEZ0WPmTtEBdpyQG7d5eEuA8bTZZeHUA4GA00mR0cazWazKva4rd5JXyyW6WsSo8keneaeTvJ4PaaQ+N8QZcbuqQrRvRELegLvV7TY0ybjpr3oqKBfPi5vk/e8roOnNMRUAO7J/ZxMx/u4lb+rZgOIKT7+zA0Gg7qeiEf0k7Gw7+mfp58MBgMtl8tWigokn79xBMVx+hzy3Pt8eWpJPCp2uVy25jr+1+fXXR6sl6+VP9uJRCKRSCQSiUTiNC6EoBDzp+OJBV5foetIOIrCuUshEgPphFTEHGzIJb9DfGL+tkfVvQ9EvSFzED/G5RF8708k3LTntnLGEsm1R7VdjPEUBSeK0c4NvDaBR+tjnQR3UniUmeKWMU/fbeQuWrizwK3sZyGOzVMZWAcHbbrI4oKC35c1iPuQtXDSGX98H/qxlT42X59Ict2R4MJPFIniPorj9XoEtOV98fHH4p3cLwoc9DOS95jGE2sXuJDnTiHWKQp6vj7xO6Crbd/DLnT4+BeLhSS1Cri6QOZwEcPnI34/JBKJRCKRSCQSiW5cGEHB3QeQJ091kI7IE1FPjwATmfb8eYgFFm0nWljxPcff7eFeC8AJlhNtj7xGlwCExEkhee4uQnRFiIni02faXq1WrfmKUXUne1I72o+jw+3cgOMsEQxwQUTRARCZ7vWOTlxYLBba29urbXSlFsS58bm/ka3cBRIILI6OmNbAnmBMURSBjLuTwUUJiKQTYPoQ+8RrrIGLFOyZSESd9Po9GcdwOKxzzT6M9/YCorTBs8LaIwJA3n1f+B70/nlai3Ti7GGtnXgzFmpZ+J5zAs/+diHEUwu8TT+G0vcmwo7PM20gatF3X7vDw8Nau8H3QpdLw9c0uhZiIcxEIpFIJBKJRCLRxoUQFKQT4sY/4v0f/x5hxHoPScCdAMEfDocaj8d65JFHWkSd+gQeifRoMgR4s9loMBjo+vXrtS/b29saj8e1n5Co8Xhc+0afIVtOjCCAi8WiHl05Go1a7oAuOzvHZdImNRkkVdGBPrmLwCO7TtY9Qh6FBR+bX++nCNA/CDl589SEoLYCR3zygxV9Pp/XPo5GIw2Hw1N1Lui/R6D9fdpxUSA6PZgf3zPMqQtLHjV3J4Q7XNgjLpLEoxV9j+I+iCdWkJrDNcyr71EcLJLqfuB6F6mYY0+pIR2FtWJuGRtzuVwuW/32PbtYLDSdTltj6oru0+fFYtHq03w+rwUYAQ4Wjvv0k0IQVbxNn1fmEcFgNptJUhXbRqNRbQdBy4tYsh+94GcUr7qEBuqeLJfLViHTRCKRSCQSiUQi0caFEBR6vV7rKEfphAQSpfRo43K5rKTEo7W4FLa2tnTlypVKZmhnOByeih57xBrQBz+9YTKZtHLgESQg9qvVqhJrCE90DUgnpNjTAJzQQIyc0I5Go1Yk150NfN4dCxDlwWDQIqbeB/5GWPC5dkAY6ZdHwCGuk8lEpZQqGMQTHrgHxNhTBOJxhxEQPq6HFEPuY1+lkxQCFxQ80kxk3cWlCHcPdKVouIC0XC7r3oopF96+9yFa6+kX7g+upZ8xTSKeUIELwPdUnFvmgXVkfJ5ywNr4/o1zzP7xgoyeBhJdOog09MELdXpaD32Ooo+f7IAgQv8R3IDXomA8LirwHYEIFdMtWGfeS4dCIpFIJBKJRCJxNi6MoODkN+Yzu+UZAhLJb6yrgKPAK9lDgCn2BpmKNvhSSut4xOiYcPs2xGZ7e1vz+VxSuzaC28GdKPmY/DqPGHPsHicJ7O/vn8rNd/ImtYs6UqAwzpUTPMYPQe8SFNxKzt8u6BAZh/hFIYW2h8Ohlstly3ng5NbHxDwzXn6n70Sfnfzxt9cA6Bqzz2G088d0AK71vH36ET/L9Wfl68c0FebUXQrsE+7lqRfxfqwz+9hrYHi6jIsAtMVYY/88/cHFgZhK4685Ied5i/s5FkzFreFFUGP/49q604L1JZ3H58dFjLie/oyftU4+H1lDIZFIJBKJRCKROBsXQlCAFHTZxCGqTqKGw2HL3h9rHBDV5zW3qEOAuwieHwN45cqVGuH0qLoX3IPIuMPBj77zFAOOsovELBZydAs+kW+vOO+F7pzIRRs/Px61dpLm43c7fySSLu74fRmXOxUQQVxQILrudRNYz9VqVY9vjJFh5tVrLTDPpL14pJz7xaMTQVfNibgH6QdrCfn0VIfoPOhyGrDufpKE37OLyDNPfl8XR1xI6BJdokPA26eP7kZgP3h/fR45mcTrM7BXu4SnrnmO5Dymi/CMeoHM9XpdXRrsLd8TXEOfSKvx+7nwJammCflceV0FF4Gi8+dG7plEIpFIJBKJROJ+x4UQFKQTUWFnZ0ebzUaz2awSGyeqg8FAo9FIu7u7lVhK7Wg0KQdEP/f29loECDIaiReEmpSJw8ND7e3t1cKD4/G4VazOyf9kMtG1a9dakVgXPSgSh2UfwuZEC9IN0UHMoO7CeDxu5Yh7VB/iAwnd3t7WZDJR0zSazWaazWYtUi+p1Qafc3HGnQG8FmtZMPbxeFzJvbsf+Bt7OnON82M+n9dChhBwd5X4/mCNuS+foz/xesbldShWq1UVDdwZ0SUIcJ0LLMwbpJd7+170NJLYHwcEnR/ug1AV8/2pA+KE38U338Mco+quERfpmIeILjeAH23adRQpYP18P/I6KRQ8x+4yQDzYbI7qMGw2m1pnxJ0zOIvYOzw7PIuj0aiVMsSYSZWg4KgLbv6M+prcaN0SiUQikUgkEonEES6EoODEB6IEmaD4nEdxER8k1ddiGgSflU5OJqAOg3RSUI62SQ2g/clkUu35MbccEjudTqvAMBgMKuHDau2V7okQI3b4aRUQ8cVi0SogJ6lG8Ok//eQ18vnd4eBV/nF+MG6PBtNXLwbo1wA/ecDrEzi55b4UaWQNXPwgRx6yDQl3Uh9TQgDrwLpDKOnLjYifvx+dKX7yRtdnEIP81IRopUcYcpIMsXfcKL2CdtkPcUwx5cZrKLD3fC5xIHjdERd3/CjVrroP3NNdGNzbBSYQ+83+6BJsEMokaWdnp/aB54xr/bQTxutFS71/LqSxj2jHa49Q48SdPO5Y8JSO2O9EIpFIJBKJRCLRxoUQFJrm6HhBIveSKjkdj8eVAEDIIANOqjy1wSPIXuuASvOQN0j1arXSfD5vkV9IGoRiNpudIqKSKhGCpEHcnaDSRyevtAXBllRdF253hwR5SoO3586C1WrVSnWgfSL0EOHYf1+HaKX30x0iyXdxwqPInjLA+5H4+SkOLqT4SQixzoTPs9voI/GO6QGMB/LYlfIR6yA4IKoQcj/Ck3v651kvPyHiZvZ5+hMJP/B18zoBPudd68PnvFAhhNzrZ8SjJrlnrEvg78f+RaEhpsgAd2QgRjGG5XJZXTxR+HABh3bpY9e9fM4QpPx4TN6Lz7WvVwoKiUQikUgkEonE2bhwggKkl9SGyWTSOmHBSSkkw8kG9mYvvsZnOZEAEYFcbFIauKaUogceeEA7Ozu1HSK8XdFs6cSSj3gR87Nd3CDX36OikrS3t9cSGhgP7dOWF+wjYs/xjH4/j1JDIHkft0B8LRJVJ/DuhPDaAh5Z557eX48Oey0ELPA4IHBKeJ671K4r4QKBr4Pn93t02WtvAM+Pj/unC+xHBJCzouSMFfLOeKKd3kmsp7j4Z30PxL54LQBeg5TH+fG0DKL/zJHX1UDQYd5wWEQhi9/9Ot/rXneB+0ZxjTVYr9daLpfVjTQYDDSfz+tzeXh4WE/P8M/6uGLaTxRuYp+8Hoo/S349LgfGmEgkEolEIpFIJLpxIQQFqV3Rn3/Uk0c9nU6r7TzWCoi2cvKwEQP8usFgUAUDSAtpDeTlY8cej8e1bgGCB2kSEBEnd9vb2/W0A+kkOuyF5OIRdJA2CKafLCGpnlQBWfJCk06GIVykR8RijJ5q4E6Jra0tLRaLFrnqItdOOnd3d1tzsLW1VUUByJzXKOBUDq6Zz+etdfOIO4IFOfFxbaWTSLunuLjAFOEiCXPhxLvLNRBTEpbLZd2DkFOOyPS5cNdIdIS4xZ46GL7vPW3H160L7qxwQcJFJX+fdaBehddIcJfLeDxu1a/wPiOC4cDpEm7W6/WpmggId9KRWMdpKAh08/m87s/RaKTDw0PNZrNWCpSvi++xrv0R++9rQ+0FBEcvnMoeiSkgKSgkEolEIpFIJBJn40IICk7KpZOz6geDgabTqS5dulRJphdkc8s79RK8IKJXgPdIph/Nh3ABmcfOfnBwoOFwqH6/X4kQ94NYeZtEYv11yEi/39dqtdJisag1DWLawnQ61WKxaJEwCLtH7OkT0X3uPxwOtbOz00oT8BSQePSlz7tHoiFtLlY4WfeoeVeef8yr57/uKHAy6sSOcfrxgS5wuKuANiCKXBev9XvFSHmM4kdAkiGWrNtoNKp/O5mO4/Z+UAuAe/uekVTX1YshQvhjW/zO3nY3i88Fzwz3Qxjz1A0XDfxIVtbAn0s/icUdAS4IxZQDd5dQr4O0FkQm6olQ3JN95MVYPbUhCmUIKX6dOzFYk+3t7dazEOeXOfS+38i5kkgkEolEIpFI3O+4MIICtnyP1mPDhvBAOL1YIlFFgOjg+fZOqLos/U7cITjXr19vCQSj0aiSFYSISFA93cGJn5/M4MSIlAPGxtGLfC6SGUgk7gO32/tJCU7qqEuBI4PPx3x54IQ0rpF0UnDQXwOQfR+359W7aODtOnnz1AXeY86AH9PIPT11g9c9LSHOY0yH6RIkGAMuBY9gM49c4zUKnOy7O4K19toT3Ju9CvGOdR68Ld/DXq+CPQm5jycpIIoxX4gGjIu+OeFmjhBE6GvX/Lqzw9c29jumsLg4gVhHn6JLwJ8f6cSFwTi8Nkpcd+bYT4Hwk0IcMaUmkUgkEolEIpFInMaFERQ4zYF/6JM7HfOmPS3BiW0krh59p9ibdDrX2oUACBeCAsUgqefgFeGdvPq96CvigRe/g3g62SEqTR+w1XuklP96OgFYrVa1XbdwAz+m0gUAFxW6ik06GfOxev5/jMQ7PMrt5A/S7IILxBNrPukn3p+IKNhEUgjZjYJCnANfSyfMfopErGvgApTX1XCSSqSd9yN55/70zcWgzWZTi4C6I4PxutjhohmiHCk2i8Wi7ifmdjgctsQGxAMvzOipDC5auOjidQlcNGC8/uN7woU+6UQcQuDAVcQ9Yt0SFxRcnOC/7C/64t8prBuiQhR0uvZyigqJRCKRSCQSicTZuBCCAg6A+A/5WAMBNE3TOnpuNBpVQgJRis4Ddw7M53Pt7e1psVjo8PBQo9FIV69e1WQy0Ww20+OPPy5JLSLiJ01gJ3fnA1FVjr3Ehk0uuEewvUAiwgNzsLW1Va3eMepNTjn93d3dbZFfnB3MGSkRHul2cuyEkf9ub29XNwPgdz/Osiua7+AzCDkuoPgpDfP5vFrpR6NRtf67CyU6IVhbryVAnxzuDPDUEY9wA4/EI2qwx9hbXUCIIP+fPrn4w1qQPuEFEJ3QQ/49PcHXNp7EwHu+dpB+Ts/gWvriooUXT0SAiQKCi1+kbrAHqKfgcxRJenS7+PGPPDP0Y7lctoQurvdikewp+r1arVpFHb2vOHN4Xjm5ZTKZaLFYnDpKk7527blEIpFIJBKJRCJxGk9ZUCil9CX9pKRfaZrmC0opz5D0fZJeJOldkr64aZrHbtJGq0aBRz0hKYvFohIcCJOTsWiP9mikR8md0HOyhBMyUi329/dr3QO3jHe5IiTV/rsDIiISZAh/bAuy5acJuIsAcjiZTFqEczababVaVYLuRNLFAyds7tAYDAa1KOJ6vdZ8Pj+VxsA46aekemRhV066k3ecKIzVCa2nCrAPcCoQqfa1jZF6xsiYPcWCNWEcFM+MaRNeuBOhhj0Iee5aT+7PXDMXLsB0RcsZB6KTFxvsiuyz9uz1sxwYrKUXwzw4ONB0Om2lmJDe4OkVURBgL7BXXeRDZGNckqoYhWPC947vA/pAkVTuzf718bgww5j8uwERD6EmupC4RjopDMl9Ka4ZU4W60n4uOm7Hd3EikUgknjzyeziRSNyPuB1+3j8u6a3292skvb5pmpdIev3x3zfvSO+kQCFkYbVaVdJPJNGJmRdgdGLclbcfBQaP+BPZ51jJyWRSSY3b8z21wfPe/e+z7NNu7Qfef/7r9Q6o1UAhO9qNKQSQeG+H372/MVUDQC4Hg4F2dnY0nU61s7NTT5lgviFlfl+vb9E1TneORLGHYpgxHcRPCqDNWB8BeBFDJ+wQa+4RayRE+77D01xirQyfz5j+gChFxNz3HvdxQavL2RH76PvO+xvXnn3jIpsXZHRHj8//eDyu4+yCzw/PjK8T4pXve3dAuPDj4hHPr+8/+tollPh1fmIJ7UWhD1FlPB63CmLSLs8W7hzvE9d0rc8Fx235Lk4kEonEk0Z+DycSifsOT0lQKKU8X9Jvl/Tt9vIXSfqu49+/S9LvvKWOWFE46ST3fz6fV3uyR3I9AnnclxpRjXUAnIR54UTI3cHBQSUgEEmPpNOGCxRRTPCccchRJCS856dPRHGEaDBWbSdtMe3Dc+O9LS+W15Uywt/+PveZTCa6fPmydnZ2dOnSpdZc0rZ/BrLm/XBy6Wvl7hM+T4oDa75arVrjYi67osUuMDhB9blBkImih9/DxQp3SnBsKZ/3vkSRyn98TPTT7+N7N4oj7kTwuYxCkPffI/zMgwsZuCAQhOjPaDSqP3GOInDLuDgU18mdFS6cdO0Bf88FE6+P4Ne7iMYzHvvq3wVcx7Ps80TffW/483qWC+ki43Z+FycSiUTiiSO/hxOJxP2Kp5ry8M2S/hdJl+y1ZzdN87AkNU3zcCnlWV0fLKW8WtKrJWlnZ6dFct2hsFgs1DSNxuNxjaZ25Tg7YcAiv16v6+tO0CDO8/lcq9VK8/lcy+WyEhCs/6RZHPf3huTCHQB+usHxPFSSitvAx4rVu9frtfL2Syna2dmphMdz4omyOqGzuW1FxYEf2SepVciR9yaTSa1PQH84zlI6yWnnc9vb25pOp5Uw+5y5+OBwwjYajSSp1guYzWadJyEwx7EwZSzQGSPKngrhzgDWIJJgF3Lcsk8NBa8x4O0yX5H8s5f9uE/G5cICx4RKJ+SdOXTRgevp/+HhYSt9wa+l+CDOFxc1XATgPqSYcA/WzfvjKRFO1rmWmhn+HPJZ3wfcp6suR3RvIIRwTz8m0o/1jPfgORiPxyqltE5Q8XXiu8IFHeYoFvu8wPhm3Ybv4pEmd7ibiUQicc/im5Xfw4lE4j7Ek/7XcinlCyR9sGmat5RSXvlEP980zWslvVaSnvnMZzZOCojIQ4bm83mN3HN8HxZ3CJGTOAiU56k72XOXAKRsuVxW0kduN+QpFm6DtBCpjcX4vOBddCkMBgNdunSp5uRTzZ/7QOC9fsNkMmnVieCayWRyKqLr0XNcFk6CnYzHSPt4PK5z4ikfuEQQFiD/kEkXKZw0s4aIQlyDCOAOBCfEUZCB5DsJ5H0/CpExRds7hS4hlAgpLowc78lWXQXGE2tVxCJ+rAvgPS9SyF6Nuf20R79cKGN/uVOF92nXSe98Pq+vDwaDmpbg9QkQZTabTU0HYS68kGHcK+wHr1/AqQyeVsJaxxSTmPoT0z+Ya+8foqKLDIw3PnfxOfO1QTDzOeCz7D0XePw5vhtwO7+LL5dn3FU5HolEInERkN/DiUTifsZTCb99tqQvLKV8vqSRpMullH8s6ZFSynOOldjnSPrgzRqCoEBEpBNy0TQn1e4hujHHXDoprAcpmM1mlZBQH8HJFzUDRqOR9vf3az+kdnTSSZ0DEuKEPhKh9Xqt5XJZSRh2eGzmRIQpeMe9aAfhwImv3wPhoatGAekbzBNuA4/K+1y748Dfp5aDuyRinQJ+OFozij2cwuG2fCdrEG2PVvveoC0nqJ5iAnmOn2PsfvoBkXcfJ+vsYgT39PoAEO1orUc8cNLsjhEXIHz/ccqIOxRc5HEbvqcGMH+eYkG//JQTxuak3dMNGIMLIv4eqUAu8LlYxr3oK+4BTyvwZ6frv10igKcR+b1oC+GPdY8pMf5sIibwHeOiAUBMYZ5ZwyhSXGDctu/iRCKRSDwp5PdwIpG4b/GkE4SbpvmGpmme3zTNiyR9iaR/1zTNH5D0g5K+7PiyL5P0A7fQViWbHnWEKGBH9kr4HlXmv04AVquV9vf3df36dV2/fl37+/taLBa1DgMRfKq+04bbs/mByETS4nZ5/zxRZ68BEYssTiYTTadTTafTVhE/J/o4FihKGefMj6T0PHW3tOPE8Bx574fno/OeiwukmkwmE+3s7NSTLnCBcG8XaDx3fTQa1cJ4UTDwNALIdhRu4trGwnyxMGBEKaXOQbzeayj4+BEUuB/zRP9iEUivy8G6dRWO5DUi+t5n1tHn02skuMvG+8x4aJN2XSzhdXcLOFH2SD773eslSKqCUTzy0p9JRLtYV8TrI7A/4/Pj1/MZr4eCuwB3C0KSH2Pp4/H/ugun63vD3SrRVXE3uBRu53dxIpFIJJ448ns4kUjcz7gTCcLfJOl1pZSvkvQeSb/vZh+ApMWj9ZqmqSRFOhEe4gkMbpkm2kjUl+uXy6Wm02klEJCx0WikyWRSXRBusYZcuHMBsuEE0om8/03aAtFvT0V48MEHNR6PNRwOde3aNe3v76tpmlpTwAWD1WrVinj7vDnx9Og188c9JdXcc8Y/HA7rMZGeJw9ogyh4r9erR1Mimsxms0pEXbxwEYCTOmgTR0ZMNYiiEG0iKJEK4UUEN5tNtdm71T6SbCeqq9WqVXsipkz4f+mHHxvJmroQhEvA3SJO1J2cuvuFvYFIU0rRarWqRTHZQ8wf4gbXeh2Dfr9f04P8KEsn9FH0cFfLeDyuKTjMOcc4ci/mgxQYJ+0IdDxDLpYgUHidiPh8efoSiO4CFznY+6yXzznfA4yVe7l7wZ9pPsN3DO3dDYLCDfCEv4sTiUQicVuR38OJROKex20RFJqmeYOkNxz//iFJn/dEPg8p8Yi3pBYZ9lxpAOH58Ic/rF6vV497hPx5zYXpdFoJ6mg0atmrvThdVz+cZHqNBeoJxOr5WLGdUK1Wq0rEpSNyf+XKlZal3QkMEXAXFgA2dsiWOw6isOBE36359HU6nbacCk7w3HEBWR+Px9VuT8oGln5JrfmkLeYWIWE4HLaEGSe6uEhcLBkMBrXf7rK40QkHrIdHuofDYUs04p70NxY/9LmgHebU+8H9vICfrxciRkzXgKBHZw6f8RMIXHDjeM+maVrpPN4P1oR9hMPCHQJ+tCg/9Akniu//q1evan9/vwoijz/+eJ1PT+fxgp4uzPHMMT7cFeyjruum06n6/X7rmfQaDzgUulInpJMUD6/twe/RpeGiA7jbBIWn+l2cSCQSiaeG/B5OJBL3Gy5MCXMIDRFnJxxOECG3MQK6WCwqcXTbNRFxhAVJVVQgGgkRdILaFa13l4H3lwiut0/xN/pAlNlt25cuXWqlaMxms0pq3O7Ofb3wI31nXshd91oL8fQBhAXEBog0pBQbOfeAxDnxgjBK7RMY6Ee0z3Mdv0PIGeNoNKqV+vm8R85jpX0vRkjNBrfod+XIc0/WirlyAYJ2vEiig32ImAIZX6/XLbfEWQTUx08xQ5wGkH0vFCid1BFhT7KHfO78xBA+Ex0qLp50FXNk7VzAcVGKfpdSNJ1Oa38RyLzGgT9/iCi+Ri5WcQ/fK75n+JvnC5Eiph7RP3cK+X3ZFy4adNVH8OfVnR2JxHngHd/2GRpcXp53NxIXBB/1/1tp87NvO+9uJBKJRCJxChdOUJBUyTj/sHfC7gX/EB38aDwIcSxkOJvNahSfqKek1j2cjElqkQ/vo0fecQdEQuSOgVJKFRMQFDabTSXxTdNob29Pjz/+eCVkkE2PhHvf3IHAfT1q35WO4VZwJ3Lu2sD14MdFunOCayW1BAsnXk7cpDYxpi3660U2vTCj59tD2CH7XmMAgYNTQDz9gXvFuhic+uCndBC9l04s+uwdxuQ1KRCo/H0fs3/WC/25oMA+JS2DWhmMczwe1z6zHjgCzqol4mvA3Pv6Q9Sj8MZrXj9DOjmykT6R5kFRyfl8Xu/ppyZ4SoPXJOC//ky5INLlkHFxIDoquI/X44j70NMYWJcuQcHv43s2kXi60Pukj9P+iy9LRfqB3/y39EmD0Xl3KXFB8Alf8NV6Qf9l2vz0W8+7K4lEIpFItHBhBAWPbDvR8/x1yNZyuazExskK75P370dD8nmOxfPc9UiopJMj/JwQOTyyTb7+crmsRO/SpUuVhEF0OZWBPlILoJSj0xN2d3dbJCY6JZz0Rns/77uw4PnitEVU2utObG9vazqd1mMjOapzf3+/lfIgtQUFCk96nxF9WNNo8+fetOcFD73Yn4sepJewfpBIilvSJnPte4UoOXvIxROuIz2APcg6RuHFBSREJBd0PPLtIoKnmUB+1+t1LQg6Go3qPX1+PDWFGhYuOPjpIT5mt+27gOOIhQi5nvvRDxwjiHbuHEJwor/z+bxV+DK26adp+Nz6fo+1QrpSGeiDO4V8briWcfrxnd5ul6Dgp3D4+iYSdxJl++j76W1fu6N3fv5rj19NMSFxgp/92m/RR338V+qlX7mlpsNFl0gkEonEeeHCCAoemR6NRjXSTOTZiSl/QyrG4/GpOgieew/BHQ6HNf3A3QFc7wXevN4B8Gg0KQGeeiC1CWq/39dkMqlpHIghFM7zGgekHcQj+fjdTycAPheQLCdb/X6/HtlIW+6mkFRPchgOhxqPx/X6ra0t7e7uVseCCzWSKpn3woTY8j1twQkr4gFz60UWvQDg9evX6/28RgT3578e3adt5suFCsQI+uUnakD4vVAjAgZE1At1+j7yFJSuVAvfT4vForWeTvSHw6EuXbpU54YUnlJKqz4CwsPh4WFNj2FvxJoBgH3oe8ZTJvxz0knKhAspPEP7+/s1zWQwGOjq1as19cFTHlzQcweL1/dgjOxV7x/r7m4En3/62yV+8Ay6GOjrFJ9n36Ogy72RSNwplE97uf7W9x+JCM/svUHS5Fz7k7i4+KnP/Tv6np/5GP3zj3/meXclkUgkEomKCyEouN0ZEuw54B5ZR2TwgnRuw3aiF+38kAbs435vCKjb4mP/vI+DwUDz+byVcw8ZImXDCwF69H25XGo2m9UTFiCVk8mkOgloo6sPHqk9q5gdc+f561zr0eNoc2eutra2dP36de3u7taaDy6+eHqK2+qZAy9U6f2O9RV4fTAYVGFjs9nUUzfcReLkN4oWsd6G3y/uNdaDkxkgxMwhAkcppY6d3H13KtBeV7SbPeX1ObweRUyjQaRw8QZhKq6fp4RAznGjeIoHqSKsc6xV4RZ/7w9z7ukbzJOLAH6ih6RWfRN3XvgzhViIoObCAc+Hz6vDxQtJNcUpPqvudvLvA+aT5wZR0J8d/0mHQuJpQa+nl25Pz7sXibsAV3pjvWT4AUkpKCQSiTa2XvgCPfKbn3/e3bhtePb/88s6+MAj592NxC3iQggK7j6AeBCJ7opeOuH2qLKTCI9Gkg/ugFxBQJyYelTUc7Bpxy3W1Ebw1AKIy3A4rMTL8/YpwAiZaZqmdeTier1uRZ2B54K7JbsrLYM6A0T23VERP+8ChdeEmEwmNZWDz+JyYF0gZy7iuLvCCV68p881xLDf79fCg9QKcCGEeXCXCEAU8VMnutJVPC+ftXFRiHWIBRpj+kNXioKDcTFfrLmTfncMENFnLyEWuPvBCa47Cby+BGsPmGdfQ3cxdM2Ri3y+zqQ1eA0Tf9ZcdPLjLXlOET7oL2kO0eHhtTvcZcH+Wq/XddwucNFP39c+nz7fMZ0n1npIJBKJi4Zn9vd1/Us/Sw/867fr8LHHzrs7iUTiaUb/5R+rZut0sGPvBZf02MvvnX+/XHrvCzR69jNueE3vkQ+n6HBBcCEEBal9jjwRYEi+W4/dEg0h8Yr/0kmtBPLSacNt3W6pJyI+mUwq8UEA8JoFXkyvaZrqNMCpAMGF7Hg+9mAwqNFV0h5I64Ac+9jdLeHChoslHkWNpJD7e8qCkzhSPpyMMVbm8fLly5pMJrX2A/1H/IB4z+fzU6kf9I/2EGtwIPA7ZNvHvLOzo16vVyPZiAZcx32ImLtQwmeZI49+O5nuOk2BPtMXBKA4x16TwUk68HnY2tqqwozf2693gsu6UZ/Ar3XS7OvM2HBA+J71Ogb0jbWKzh2HPyvss9VqVdf64OBAOzs7dc24DscKz6ULG576gIgTx8a9o0hFH3iOEPMQhGLtBT7noocLFO54wkXBPHn9jEQikbhI+KTBSG/6a39Xv+U9X67yH1NQSCTudZStLamc/Bvpl770GTqY3jvCwVl4z6u2JF254TXP/bHLmv7L8D3YbLLOzDngQggKHhn04oFuRcZ5AKkg0kuU3/OzY6QTtwBkupSi0WhUI52z2ax1DB+1ARAk/PQIiA5Efblcand3t74GYdzf39disahH8HmO/2w206OPPqqHH35Yly9frrUehsNhKw2CExC8aJ4XDPTq+JA0r+K/vb1dCTa2eMaA7d/nyi3rg8FAOzs7unLlSiV+ELlYX4L1AV2uBGoBcEKCdFK/gcKUCAcIO4PBQHt7e3X8bpFnjlarlQaDQSv9gf3BXuJ97sFecneIC0IuGDCnngIAGWb+fD7Yi17nwce5u7urD3/4w5XEUmSSdiHB1Nxgz/t7XUSXOXKS7mKIO2p4H0HIXTjxqNBYj4E2PLXB9xSOBEmnapj4nLkDw4tDsn94zrwGR0zXoX/L5bIlKkTBJZ7g4S4TXz/WDGHE1yaRSCQSiUTi6cZ7XvOZWl8yXrN974sJt4qHX1FUfu2ntV4b/WrRc//qG8+pR/cvLoSgIKn1D3cIMyTBSYh0QgogJIgLAEIS89vdAQBx8MJ7i8VC4/G4kjiICZF9+hGt9twTIhZzryGo4/FY0gkxm8/nNSUB4uYV8imaB5kkBWC5XOratWtVABkOhxoMBvX0BcjeaDSqR2RCFv30A/ri0VsneVtbW9rZ2akugPl8Xo8JhIwiGFA3wdMvop2cMdHH6D6JEWQ/ntJTBVxQidF15tPn2WsTsOYuVrFmvl5OOj167VF2RBqv5+CCAnuCIyAh3/P5vFWY0fcQ7dG+C2xu5/f18oKdfoSqp350FSTklAgn8tzThSYXtHxciB4+d147w4uI+t5ylwaE3kUTB9d6W57G48+5izp+T+nk+Ezmz8UkF5h8/3a5bhKJROIi4Hl/7Zf0n7/3FfqIb85/OCcS9xqaz/4U/eonHxXoXV9uUkQ4A01favrtuVk+JH3wq19R/5786qF2/smPP91du+9wYQQFJ4aQGYie29ylEyuzF1bzwoduLYfwRELljgdJlei4i4E+ROIntSvJx5QBJyye/z8ejys5I6UCUiadRKghiJAo6gvMZjOtVqtat4H2IUtE9unLaDSqR1NKqqKACy3u6PC6BLxOagI/8/m8Reohd7E+Au35uiKsQNQ8N94JIte6qDCfz2tk3HPiEV9iHQ5ed/KKQ8FTO5x8xr3o6xvTS6IggeuC9fOjT7kn4s94PG6d+kCeP+vvpwz4eGmfz3m6QEzVcQKP6MB+py0EpljU0Ik0cxSfT0Qp9p8/j76Gnn7hDiRvy8UYH6P3lb74/LqggJsh9jHuC8ZKf3EQ+Z7yZyiRSCQuIr7jI39ML/64l+kjzrsjiUTitqL3yS/TB18+1vWXZNrlk8HhsNH1l5z8+235jL52PvMTJUn9d35Ah7/6q+fVtXsaF1JQkE4InhdSg+x4kUUi404UqVPgxzo6kYkkg6g1dQKIsnY5HBwQVyzzXOMkFWIJQYQscpzk/v5+/cylS5dOHVmH8wC3wmKxqCkMkCCOzrx06ZKm02nLdTAajerpCcPhUI8++mg9ehABwefCbesQOtIIXJzwNfL0Bid1TjQRCJzoe8E9yK10UvcAASKSYMQUSfU0AcQgjn90UWN/f791UgXr5cdH+lGfUQRBEHJhwd9zIYp94ad64BiA8LMmEH8v5MnnSdFxgt/lyPD5Z1wIEbPZrLXvozhAvQNPA/BaG962P2/sLeppxJQFd8Hwuj9HLiA4afffu9I7/DQSdwO5awO4M6XLbeL7158nF+hSUEgkEhca2xv1r17R4ePXzrsniUTiNqA3GuldX/SAVg+kmHC7sHxwo1/80qOTlF70Lz9SgzfuSpI2x4G9xO3BhRAUPAoL+Vqv15VIc9ScW909d3u1Wmlvb69VYI7oKaQ5VpXHLQBBms1mGo/HlWy7ldr7SMRZUo3ek8ogqZJxXAT0GZeBf4aIOYRoOp3W/kOUPXd+PB5rOp1Wl8De3l6N4HMEIqddOHnmSEoKA16/fl2z2aw1/17AD2JO0cjNZqPhcKirV69WlwRz5MUdmQei9X5ShUfhJ5NJva/n7282mxq5J6WCdA6EluvXr9f1pbjkzs5OPepxPp9rf3+/RegRLHwf+NGQfhIBpNNJJa4Salp49BsHCbUZXIgBjAsy7+kp9MndDghBpZRavHO5XNa59r3GfJFOwpGrpMh4/QLWIaYVdDkHmBeEFOaG59DTb6gPwh6kj35Cht/DiXyXQOJw9wTPAOu1t7eng4ODKnJ5CpM7cDyNBIGK/jVNU2s9uJjiQkgikUhcRLzjVX9P//AVz9PrXpY+hUTibkf/2c/SO77uo9X0U0y4U3j3529Lv+3XqBxKH/ONP5Wiwm3EhRAUgJMLSB1EBZEBQcCP2fPTHJwsSCe1GTwNomkaLRaLGp0FHll18tOVIuDWdKrIY8lvmkbD4bC2BemZTCYaj8cajUaaTCYtwYHxue3bxRDPz2dO5vN5FQ8gzBB7PyUDYk90nEg6ffOUAD8GkNMrmNN+v6/pdNpKAVksFqdIp6SWGOOkEHjtBU9f8BQBF3Y8FcQLNPo6u/OB/nE9JyeQ8kEfWXf2n1v9mQsnpZBWrxcxGo1ahf285gBAcGDMkG/66+4Gd0XQr7gv2NP8F3LMvafTqQ4ODrS/v1/3mc9TV+oE+yU+F7gCcAO5SBHTQDw1g8g/oH/RteJpNy42uPCByIXIhiC0CP8zcMGH9hgXaVEIQ+wX6qZ4apW7lxKJROIiYrv0dak/P+9uJBKJp4jm132y3veK6ZGYkP/suGNo+pLUqOlL7/+jnyo10uX3Hmry/Vlj4aniQggKTlC77OZezwDyBUmG4BHldyLukWLPZyd6C4F1izrHTbpduqsCPSQTQUFS7YenLdAXj4LjPoC8LZfLSlK9HoPXNPCj7RBa3IZP3yFGRLOdWDE/RGohe13kH/FmuVzWfkJyvQ4C6+Gk2+fbj7+U1LLIe3FBJ5b0uSvlxI8cjJF1Xw/GFus0EIH2veWnI+A88HoQToSZS17zyDfE3d+Le88dEMxNV50P+kUE3cca7fu0zQkhvsdcHPPny4Ujd+qclXrkJ1Ewt7Fegu97+uliRpxDnCPunojwZ5i55bQUP0HC++D7mvnhWfaCo56CwvueenNWnxKJROKi4KO3f1WPfO3v13O/+206/NCHz7s7iUTiCaJ82sv1oU+YaP/56Ux42lCkvRceHy8/7mv82Z+i8safltKV+qRxYQQFSJVHJSFlTlpjdBky5Hn/Lip4NBfSJakelyep1giQjkSB+XxePw85cgu0E2gItqcZxNoKni6B5Z3jKXEZkGpBukAkXETwpZNUC0QJ7r9YLCqBhOhyX8bJnMV8cuaT9AJP3eC+EEbSKqhVwf0g0sDXC1GCPiMIxbXDVu/CjZN87g+Z7LLqQ8T5G0LOOHGnSO0CmvQ57j9/350HTqKHw2Ergo+w44KXF2fks54S4g4Yb5995nMCcUcgWSwW9ZhS+rNarapTxgttutuBMfs4u2oRsO+oX+DHadIWYgZre3h4WNMSfP78vr5X/HjHCB+7n4zS5VBwdwTChgscrBn7iRQcxD3ffzE9JJG4nehduqTFg6Pz7kbiLsanDQf6L6/5Fr3qx36/lIJCInHb0b98WWU6eUKfaebzW65t8t7fckWLZ6WYcF6YP3ujd37RWC952wNqVms1q5WaYy6WuHVcCEHh8PDoCEVIPWTaUxuw6nvE1cmgkyy32BOtl06OEZR0yrYOKff8cLdLj0ajlhvg8PCwCgPkuy9tA7qgQDu0zfGUw+GwErCYKuC2ckQQJ5cPPfSQJpNJqzjd3t6ePvShD9VrL126JOnIbTCbzer4YhoB/eKepFSMRqP6OQBhxTXhBS9ZA+zokZxDpGnDI8ZeS8Cj4D521pCClhx96Xn8TdPUFJhe76ioJSIJNQZ2d3dbIgVuDYpyLhaLVgTfUzM8bYZxbW1t1foXCFE+x06AmQcvOuj70ufSUx/cRcEzwny68EVRyslkUtdfOqk5ER03cU+7+ORODn8GcVqwX2nH3RfMH/s3OjrY2z6XjAexyJ1LCCebzUY7OzstNwqFVBFr3F3iaJqm7pkuMZE5ZF/7dYnEncA7/sLL9bYv/juS+je9NpFIJBJPP97+dz5aP/+5r31Cn/l1b/kDeuYXZrHUuwWbrUbv+NMvlSRdfWvRg9/+pnPu0d2HCyEoSCfF8zyyG3Oo3QrfZc8Gbjfvij7zeQhT0zRVuPDIL/fwIpB8HnLo0X4nZBAbPsfpBPyXKLmnKDg585QECNZmc1LcEYcD5Acivb+/X8UM2ndSBwmD+DHWUkoryk1tAIpHRvEmWvo98k1U3K3s9MOPwoSUcn/mYTqdVgLMurlDAUJKsULSMohwIwixf0ajUet4SRcjIJSkFpBa4m4T1hPCu7293XJmeJFH1tpt815/gfliXvib8fseYy9g8R+Px626F9Ex4yIBtQZcHPL0FV93J+7+O3PvNR48vSPWsvAaDC4M+fPU6/Wqw4W/ncC7GOjpDOwTT2WhuKXXr+A6F4Noi9e99oMfp8kzdXBwoNls1krHSCRuNx77oZfo73zsd2i7pJiQeOr4b77rLXrdd32unvPX3njeXUkk7nqUT3u5Pu61b5ck/dkH/r6GZfsmn2jjH3ziP9R3vuWzJUk/+6c+Sf03/OdT1/QvX9Z7X/0JWl1Nm/25o0jNMaW8/lHSwde+Qs/+22/KFIgngKckKJRSrkr6dkmfIKmR9JWS3i7p+yS9SNK7JH1x0zSP3Up7kQR45NQtz11W9K62znrfazG4zdujrF4nwWssePqFE22POMc6D4DoLgQ/EuXVatWy0W82m3oaA3UWIK9E3ksprSMRF4uFZrNZJZIIFZAxt3rTX8+J5xqp7e5gHPTRhZRo3ff8dI9M+9gQbqhXwWe3t7c1Ho9rPrtH+j2dJebHe6qHE8oogOAm8MKAiA2IHYg3sX4AcEcBUXGuc7Lu+833dCTsLlrRd689IJ0Q+eiU8BMNEKvYK8wxxJuCprE2RBQRfJz0kXu4c8idP7EGhLeBsOXCnadrMAeeGnEWeAb8ufRjJF145P6+F9gjMfUhunY81epuwO3+Lk7ceXz1R/9/etUkbZWJ24P/9aG36Tuf+8rz7sZ9jfwevjew/PzP0Ht+e0//+jk/efzKE099/JThUN98/PkX/8FP0fOf8WtPF/7b3tLsuVmE8aLhcNxo//nS+jd/mkZv+eWsTXOLeKoJwn9T0r9umubjJH2ypLdKeo2k1zdN8xJJrz/++8adCIXzPA+b1/jxf+Q7+XDrNsQ41l2IQoXXVcBaTzuRlHghwUgKvdChExT/kU4s5S4oxPHz92g00s7OTrVjczTmbDarJBzCTwSefs9mM127dk37+/tVbHCSCskkTcAj995forYc3eiFML2woDsiIGnj8bge5+ipKPxwPevohA5nxGg00nA4bLXtfUJYgYx6vQnfM15vQVJNfWBMpENMp9PWnLOPvK1YX4DUD98/XfvMBRhPBfDUjMlkosuXL+vSpUvV4eK5/OwxP+nCgV3fI/YuKMR5dBEoEn/EBhcfXGDxVCT66s+qP3d8LgpK7BueGXc6+Fx63QVSU3A1sNf8uFSvnRBdTNyDWgmLxeJUPQ4fy90iKOg2fRcnEom7F4c7h9p6wfPPuxv3M/J7+C7H1gtfoPf9/gP98u/6e7etzXf+tm/X7Cse09aLPvK2tZm4s9hsN3r3b9vS4Uc/T/0HHlD/6pXz7tKFx5N2KJRSLkv69ZK+XJKapllJWpVSvkjSK48v+y5Jb5D09Tdpq5ISL84GQSAK76RwtVpVwuACACTICQ12f9qORw2SiuDH/klqkYvjMbZ+d5s5hNAjorwf3Q1eJI8+DAaDesoDn3EXgkecYzQYEu4Eej6f65FHHtFyuWxFXBk3KQeeux+JoKdFQDYhz+7C8OuJ2EMU+YwLIJPJpNYV6Pf7tXAf8wWxpijl3t5eFUMgsdjWpaPjLVerVYv0xhQDT79AQKF/jI/341wwTuaD2hKLxULr9Vr7+/vabDY1Yu/wvch+YlzUNKBPrImnbdAGn3NxIZJdxrBarbS/v98a12Aw0Hg87nQRsH5x/QFilqSWG2M0GrXqI0gnaQo4TCDstInzhmeC/U09DVJRbgSefcQlT5PwuXaHkV/Pe8vl8pSQ5o6jLtHmIuJ2fhcnEom7F+/8Hd+mv/M5L9APfvyD592V+w75PXxv4I/8yOv1hdPZbW/3LZ/2Or3lR1f60x/966TNXROouO/xi18ylfSx2poXveh/fXOmQNwATyXl4aMk/aqk7yilfLKkt0j645Ke3TTNw5LUNM3DpZRn3awhjyJ67rU7CPzkAl6P9ndJtXCjv+eig4sSUZDgvS4iEXPcJdUaDBBhSL0XdYwEzVMmoqXarf/8PhgMNJ1Odfny5XoiBPdkbAgGkDsXUqiJ4ITZiZi7OGKhPY9QQ7C8kGSce+aSa1wggtzRZ+6/Wq107dq1SiapFQDBhsCS0+6pE56OASHtOoIQcQpxgL3jawy5l9QSHLwNJ8UIQO5SiGvHetO+r1lM44lz7sIR77EvIcW0y172+3ihQuD710WveJJDdHRIqnU/XLhzAYS23AXj7hCu4bjWuB/d2RHTTVwEYnwIFRRL9UKPiEte/8C/V9zFIB09Y54+4iko0eFwQXHbvosTicTdjb4uvgh6jyK/h+9i9D7h4/TK73mLPnf8YUl35uSdTxgUfe5PX9fr/8grjo4oTFx8HP8T8HDU6H2v+XV60f/9Xh28+73n26cLiqeS8rAl6VMlfWvTNL9G0r6egJWrlPLqUspPllJ+0o9+g6hglfe8aP/HvtQm525TdpLGNbTh6RKx9gGkabFYVFu6F0T0iLfnsHfZ0Z0MeuV8t2E7qXFxw/PaY9pBTBNgzrwuQozMe4FDt5y75T/aw520k3YwGAxqPzzNAQJMXj398L651Z5rcXUgICAUuYPE7foIKb4efoSmW+e7rPdxf8Q5wnnhToIu8QSyCcltrH4BRRNjekRcM4eLS/Fz/M18RoGHNfF1gjh7Cojvv9inrj0a+8xzgEMFh0gsZspcUCzTnyEn8rzGvDv59/e7Tlvw9z11yPebPwP+3yhcsGZe24S+eAHQC47b9l28Vub0P134S9//e/S17/+M8+5G4h7Dp4zeo3f9779O/Qefcd5dud+Q38N3KZa//TP0tj92SV//4C9op3fnjvEdlm19/YO/oIOdJ1bgMXH+aHrS4lkbffizn6feJ3zceXfnQuKpCArvk/S+pmmoMvJPdfRl+kgp5TmSdPzfD3Z9uGma1zZN8+lN03z6aHT0AEMSIZHkskdngf9DP9q+Y+62EyYnIE7cIBir1Uqz2Uzz+bwSPK+q720RmUZQgHB79NX753UYIKEevXVxg747yYvk/3gOW5HtrjoPTm65BgLookKM6DPP4/FY4/FY0+m0RVijoEAdAM+pd/u4k+AoKEyn0+pE8IKI7IXhcFjJKusYyb2LCi7IdFXp9/2B9Z0fotvuhPA1c1HLi1FGcuzHeUZnC/32NaQvLny50OB2/FjDgjmi9gQOBifLLkpEB0UUMbocAzwL1B5w0h1TXHDGMJ9dogLPIu25myI+e6x7TM3wApRRXOM6PueFOtmz3lfmycUSdz5ccNy27+JtnU7bSdwZfMx3PKJ/+V8/6by7kbjH8Fmjvt7+ld8qPSvTHp5m5PfwXYr3/ua+3vk7vu1pu9/ec7e19ZyPeNrul7h9+OBnSI9+xgPqP5TfrxFP+l/LTdN8oJTy3lLKxzZN83ZJnyfp549/vkzSNx3/9wdupT3+sX9wcNDK7z88PKzHIRIxHwwGLcs2FmupbeuGYIPFYqH9/f3WfbmXE1EK7ElqkRN3O/gRfN6GW+s9cjoajVrOBcQL2iPH3ckSbfT7fY3H45aA4eSS/pGPLp1EdL1oojsMBoOBer1ezSNn7rHu0x8+0+v1tFqtNJ/Pa6rHcDjUeDyu96OwoUfsmSOIHfUdaJ96CQg5nCJBm6RlRNeFixO+bjgZPDrutQpIDYkOFhdk2EfluHaFCzvsOSf07npxVwp1L5h76gN4egJwAr3ZbGqNBq73SH0XyeUefjwp+8UdFTcD13itAebW997W1pauXr3aSgsopWg+n58SfdyFgxAHnMwvl8vWs81a82zxOgUZGVvTNK1jUkE8NcLFBp/32Wx2SjS6i9wJt/27OPH04Iv/5X/Ql1/u5BaJROIuQ34PJ24VP/GXvlUf9cqv0sf9qXeed1cSTwIf/sRGuy9+qV74Z9903l25UHiq/2L+Y5K+u5QykPTLkr5CR66H15VSvkrSeyT9vltpCCIFkYHwQt6cpEeCBMHwAnce+eXzXteAiLJb2yFPRF/9nkTT+fxsNqttEl1lDPTPI92xcFw8mhCCLh2RHCK8tIeLA/cE43R793q9rvPmNQ8mk4kmk0krbSI6BjynPTofnLhDWt3xwDpBoElDwB7fNf8Q1Gc84xktZ8DW1pYmk0kr5cULcsYotR9BubW1VecAMcDX0h0mzK2nFBweHraKg0rtoxMh/JPJpApJfo9I2JkTHBQIKz5P7EMELe7NnmYNXFTx6xgb90dY2N3d1Xw+V9M09XkgrcRJc0wJcbGj3+93piJ4Oo+7NLpcF11gXJ5mxNzyTLK/vD1cN94XRCv2izsg4v19T7sYx/MU03Qk3TWigm7jd3Eikbj78Yf+xY/oL732S/Wcv/bG8+7K/YT8Hr7LMP33z9Q/e8HflNIVkrhVFOlg2ui9/+sr9OLveJcOfuX9592jC4Gn9K/lpmn+i6RP73jr855gO5W4OMGBZI3HY+3u7taoPtFtSLEfkQdRI9IunZw+EPPBneA64fQ+QDwgfRBSIun87ZFqdzxwf94/q/1oMee/0TrvReqAt+Hw2g7k2PtRjLRDFJ3POOFy4SG+7/dmHREdnBDGFARcARRZHI1GmkwmtXYFggLiSBQDEESchHtkHTGH/nr6COA1hCgXUZgbr1vgKQheHNLTA3xuXNSCvDtBp//R+ULf3J4PkUZUoH0XGvx6/6/XhPDniz0V15v1clcEr3m7/rpH9+kL9/FUGn6nXX8OfT94rRB/RiO65s7FkehO4LUooMT9G4XIuwG367s4kUjcG/iSS4/pz129O76/7hXk9/Ddhy981k/rUzpO6EokboSmJy0f3OjRz32hnvHTl7X5mbedd5fOHRci/NY0TetkBidH29vbNSJM3vVoNNJoNKokyIstum0dUuOiA687QXT7u79PHzwaKp1YqTkO8fDwsB5lKLWLJDrh7fV6rSMX/VonZYDrGANiiZNgJ5guKBB1RSxATEBQIPJKm34coBd3dEIIugiYz58LH5EQegQclwJHQY7HYx0cHNS6DTE6HO/hoo3POZF/P/2CNA1HTEthHGcVL3T7P33ztXOC7qJGrH/gYgf7J6Y/+Dz6nMXcfifVvubRwk9qi88h7SJ+uJDgYpbPL21EESa6cHwuu+B1JjxNxB09pNlEoQ1wLX31OXP3hu8Rb8f753vaXUyJxO1GGQ6lT3qprvZ/8by7kkgkEolzwKWrM60+8UXn3Y3EU8Sjn9qo6T2gZ37w2Tr4wCPn3Z1zxYUQFDabjfb29qobYTqdSjoiPNj0ITqLxUKz2aweF+f/8PfoJuTdhQSPCjth5G+P3kLeXEzwqCUEywvOOTmK9unhcHjqGvoL0feCfDEv//DwsI6NfHMvCAnZ89xy6UgwwAGws7NTxQQKXsZCj/E0CcZO35iHOG+kQWBBp0AlhJ7cfie8TdNoNjs675f0DFIKKNS4t7fXIq7uQnGiGfPlsfN78T13svjacx3jiicL0Ian5fA6woHXBeB93yddcIFhuVy2nA6Mz3P5PaJPf12sQehwQcej9xE3Ek2YV9bT9wXvsyfceeDjReCIYAzsJRclvG+kMdBWFKYQjPy+jDu6LPwe0QHibhKAW+JucSgk7h6Ul7xY/+8P/KPz7kYikUgkzgk//Znfo3d+155+0/d/3Xl3JfEU8aFPabT7oo/WR/75FBTOHW4j9xx9iOnOzo4uX75c6wpQGR7iRrSbz/gJEW4jl06isU5M/TXaOzw87CSt/D0ajU5Z8d3+HaPW0+m0Rs37/X6rqCPjnM/nte7AYrHQ3t5e7b8fzUd/opsAQuhEyMmV107wa6h5gDXfiebh4aHm83n9ezabnXJ4IGhIquKBE2LuMRqN6jq7YMHnPMrO2Kj9MB6P67q4y4K19xMEED64L4Qf0YEI9llE39fVI/oQXqLmPj4EBfo+GAxaJ4NE+z9/u5DCT6/X087OTmt/llJqTQTG2UXWeb9rHF1w4cvHGyP8vV7vVAqKiwEu+HgawVmCAkKVz427ZEjTYb5dUPA+0158ZmN6RUzdcdEEJ5S7HaIQkUjcDrzvG16hv/WH/955dyNxn+Bf/MG/pv/5c36P1q98+Ly7kkgkEol7GBdCUIhESzpJVyCiTRQf0uGRyuFw2LIpL5fLVtTeCQLECBEBEuL2fs+d7yLkEA8+HwvbSSdF7SBKfgKEOyZ83PP5XLPZrB73R4qH28ljOoELBF71PqZV+H1iTjqEit8Zb7SY+0kErEEXMY8k3N/3OSaNxdNcEJfW63WL+OOqiAKGuzL4iakF0cbuJDbWouC/cc48Cg6h94KErA9/s+a+DrSD+OCpBk7oXUzzmhCILsxTVzrBWbn/XcQ+rq+LHnGPuKvF04R8LNFhgCjk7btw0jXvLpJ5ygdr633iGt87/kwwD6wB+9zdHU3T1LWS1KpzclbthkTiyWJ9qdHnjQ9vfmEicRvwssFEn/HAu/VGDc67K4lEIpG4h3EhBAWpTUicqEsnogE/nm+O7ZwijFipYxqAR6chItyH1z1P3IkKhNb76KKDn3oAaNsdC7TpYok7HJbLpebzuRaLxanUB+aIHy/yCBBPnERFF0WMbLtLgTb8fsAL6fl4SXtw4cWdErEdyJwLM7E/fuSkC0HudvC9Qp/c4eApLC5euNPE+x1rG/haR8EoigJRmKANT7dwguppAi6M+H5ARHJBwVNT6Dt/R3fBjVIJovsgRuvj3vDCnU7eSdWgb4hSPh4n9/H0hShyeIpHdDpEYSC6EHzsnvYQnRSMx0We+Gx7m+lQSNwulM/4RK2fszrvbiQSiUTiAmBUpPLshTYfGqocnA76JO4eNP1GWy9+oQ7f+ytq7tP6WxdCUCCKH3OzPf97a2tL4/FYk8mknrgACcDB4FFTt+/HPPIYhW2apkaDPSIKWYpn0juBhNAul8tTR+wxFs97R+jw2gPz+bwlfMQj7yCNjDOmZkC0aJd23EVBUT6vYeDEKpI7vw4CTFur1aqV4uEOD4/Kx+h/zPt35wJ9l1RrRAAXTlgjhAGs8xwD6aKQzxsCDMcU+nrHIn7eH6+rEU8GcWEkOi+kEyGllKLFYlH7isAwGAzq3DGPjLWrSKM7ZWg/nhRB/0nx8LG4C6UrXcGFteFwqNlsdqr+AvuLPrL/vG5EXFN/Vl0kc2ElChC+HxlbFBK9noNf62kaCBk+R1GooDCo70f+9nsmEk8Fn/cdb9S/fsYvnXc3EvcZ+mUjlSKlOJpIXCg8Z2tHv/jK79RH/7uvkH41T5q4m7G+1OhtX/scfdxfWerg4Q+cd3fOBRdCUKDugUcfnUTw/pUrV9Tv92shv5inH3Pw3aJNHYCmaWpKQb/f13g8rlFgFxQkaTAYtNpy0rbZbCp5dnGBHyz7y+Wy5vNfvny5nrjQ7/f1+OOPt3LJEVIgRaR5eI438xWjzjHy70LCarXScDisQgsEsCuCDbiOsfu1kHnep2YFJzV4aoCTZQpKugAzmUwq0aQ9RBacBF4jAfEnroVH05krhBWPruN+8Ot9/FF0AV5AEOfBYrGo683+cVEHscJTcqSTooSk23gRTHexRJHA18DJv6dNsDaLxaIKFxQ43NnZqffH1REdMy6gUDMh1tWIewTElIRSSqs4J2vCMxjTCVzo8zFI7dNb/LnHleMCmq+fi0GkFSHCuDvD195/P6vORiKRSNwN+JPP+Bn9+l8a6C//xt+hg3e/97y7k0gkEol7EBdCUIDwQB6wlHuUVTrJ43bbOMTi8uXLlYhIapE0opkebfQIOZF/z932KCbRXcQKJ4SenuHOgBgpRcSgPfrAZyG9XkySwoNdjghJlRC6wOH99ii+29opbkk9CYSUCBdIgNvIvV4Bc+SE2O34kDzGFk/GYL35YQ9sb293nn7hc+xz7Y4J5kdSSxTyU0Fc/PC++ns4VKJzwNc+Rsy7HB/unvC5I2ru+1VSdYJ4egjveyoHc+qFMplDvycCAWQ9unYYY4zwu0jle8EdMIgjMZ3B032iC6Brr/E76+QiIevgRD+mN/g+kI6+BxCQ6Gd0lXDPrr4kEonE3YxJb6DPHm6kFEcTiQuJ/+nX/Dv9o3d9pj70jgfPuyuJxJPGhRAUJFUi7eQcQcHJA9FeyDkEkig6ZMqLIDrJhJxAwJ3IR4eCExSIradVRCeF95u+QMgWi0W1tBOxheRENwB93N7ebqU40Cfu5YJCdC8wboi79xGy6QQ22sy5V0xNYO48rcHJHm16PrsTNObbCwwyZ16Mknlx90L8oY/0CyLpp3/4vEhHx2Jy5GaXM8PH6fUR/KhIv7+PNYoJHsH3tAUvqklxR18DPhNFgbMEBXcWxPkBXOupB4vFotU2YoM7MZx4ezHOKCzwvoscXXPZlc4RnQ787Q4CnmFOV+F6rvPPuiDiIqQLeJ5i4+KYr2WKColEIpFI3Lv427/wSj3zZT+o3z5ZnFsf/tgD79ZbZ8/RD6egkLiLcSEEBY9ieoQ1ns4gqWW/hzRH23rMrfZ0BgcEhcipCwxeyLHX69Uj7Iigc4Sf56zT78Vi0SItpRwd+bfZbDQej1tHHjoJJILs5Hc6ndbUCyfbECNIHmOOYyS9gLoTEDqII2PtKjgZ0wlcPEE0YX4Gg4HG47EGg0E9WhLQT3dEcEwl/VmtVprP55rP562IuBNB0kPcreHCBWsX+x6j+YgKHtX2tXQ3gQtMbtl3QQR4RJ+9wOdYN+oTuChGWkbM7Y+ChNeGcAdBhBPyKCLwvkf53ZXBerlg5yJRTPlx8Yc97E4CFxHoh4tki8WitedYT59rX1uO2OyqqeDpDcznYDBoOYpcpGEOvKCr9yEFhcTtQtnaUl+5nxKJROIi4aHf8Q597Td/uX77F//dc+1HT41UpPzfROJuxYUQFNyOzD/6IWH87tcSEecf/Zxc4DnrLkYgKEBUIGJcC2mkHxBCJ9ixUGTMPwe85oUjvYggzgYEAidmW1tb2tnZqSRoNBppMplUMUM6sbYjEtBfRAecDe7qgAB7/2K+u6+DdFIAcLVaVYHA6yYgiHRFwp0c8loXYZfa6S2Mh3maz+c1VSVeR9suFtEvPh8LE7LOzIlH4t2q7wKCt+knh9D3syLZ7oTwQoyIU9wHgrtYLFrtu7gGYhqGi0A+p71eTzs7O/W5YMyRMJOC4qKLCzT+LPhcdjk72DvuVGEc7t5xNwak38fohSx93O5EYu8tl8u6r7vWwJ9x4M6XmN7kLo+YEpFIPFlsvfiF+is/+r166fZA0unUskQikUjc3/hrz/0P+tIvfJP+0A989Xl3JZF4UrgQgoLUjjbzNyQSeHTW/7HvhIRcfggGJGY6ndZrIKFEy3E9uAXfo9YuXHjUNJJiJ2QQcMgQpDqmSDAuIrBN01TCNBwOtb29XZ0FwMk1n3fbOXPiUX5INte4xZt54z0XXhaLRSXEh4eHms/nlfj7vbtOp3Cy7VFvP/bRiTbHf8ZChIgMsX6Cry+iApFtFx9o2/vsIpanmZxV+yC6FlgffvfCk14EEocIRUGHw6FGo1HLWeB71dcivg+65thJsv8exRvf0y5GuEvBHRAuQnjffJ64Ljpa/GSUmKbg17hQFdMfXOCJc+IpQ359RJfb5Ky6DjGF4qyaD4nErWD3v/0sbX3lI3r5YHzeXUkkEonEBcWwbOsZvdl5dyPxJLE1K3rhv5pr89jj592Vc8OFERRiATZIjgsKZxW986JwklokoYsQkOoAYcf2HAUE/91JUCQnMbLp1nePkrodHOJJf9wm7v2MUVwXCLryx510u4UdYuskj3mM9ROcpB4cHGg+n1dHBKcvxDQCFxVi+/7+ZrPRcDisa03BPEQVUiG4B0KIH73pcy6d1N/w+/CZWKPAx8dcOaHtivh3kW32ojtjfF9sbW1Vd81ms6m2etYewcFt+FE4cEHI196dNP5aFD8i3FHT5Szx+0eXibfhooLvTdb0rFQB1tPHE+fVr70R/Bn1+eqaA7+PF171Z9GfX/+OSUEh8VTw+Et7+vlP/Ofn3Y1EQg+/6rn6iNdv6fAdeXRpInERsdts69Iv97T//EabQeY+3E3orYrKf/wv2tz80nsWF0ZQWK/XldRzQkPTNC3C6XUJpJNUBI4gpAghJMEJr5MPFwa8ZkKMjHruv1vncRBAUrzAoaR6YoR0cjLF5cuXNZ1OWwUiIZEQaRwTHkX1PH9Py6CGAQSp1zs5ppF+esSa2gOj0aj2K4oe3DM6NNbrtWazma5du1YL+XlOu5/eEI9kpF2vgYALAQcB8+1zsFgs6g8iBnPrEXdOw0CAaJqm7gdcCjGdwYs8uogVI/pOSPnbbfzuPvE0hHhKCOB+TmhZH3e4OJwws/a046/fSr6/E/6u9BNvH3S5BngOu8SLKMjF99gfMc1J6nZmdN2ja458PC4UsJeZd4449f4PBoNTriG/dyKRSNzN6Jee/vP/9q16+dWv1vP/jxQUEglHOZCubea60jtfJ9l71w/qOX//v+hdX/cpWqWgkLjLcCEEBSKXHt12OzNk2qPvnJQQUwjIDafYIgRjPB5X+z45+NQeGI1G2myOjlN0cgPhk9ppBrghPJVhtVpVcuKf8Ug+pzZAwHFfeH44KQ4Q3OVyWXPYI4n06LjXapCOiFUsRrm7u1v7GAvn0RZj97km1eGxxx7T/v5+FRI2m40mk0ldP0QL5gWiTrsIE7SLiIQ44acpSCfpG6RcsCZU+mePuChBPQL6H8k/1/l/ve1YT4PxsK6QZXdmkFJxI5C2wn8pTIh7gXWm/dFo1NrXiGW+3xG7XESKcMdATCPpAs8h8xEdJ9yHe/oeom/+zCKKOTFH8GF9Yj0Ifx8Bif7u7e21Uovog6d6xMKkLpjFe8XX2UtRtEgkEolEInHv4WP+zE/p9/zQ1+hHvvsfnGs/fuf0cf3at/0bfc7rX6be4zf+N2UicdFwIQQF6cSODSmB1PgP6LInQzIODg60WCxa1zuR5LNOSAaDQavq/3q9bpFmPuMF/WK+OvCie1480N0Q5N5DdunjeDw+dbwl7oiYhuGEDFdDjCQjqDBnuBqixZz5jmkcPvZYhwEy7FFdRAL6FqPUEEMIIyIERfMg5ogdCB/0EeJPuoALTbhb3L0RawX4334aRFeqgf/uJDWeLuDXuJsEZwSCFvPlc0H9DtaYNZBU946TdPZLVyoH+4sxcV0cs48nFjz1Z8IJN9F97uGCRNz77AfW1tfQwTzF0y18/8Zn3x09tMH8urjAHuIad+vQZ3f/8GyniJC43XjhD3xYnzT7av3Mn/qW8+5KIpFIJDrQLJfa2lvf/MI7jH7p6flbO0pj5N2FK28vevabHruv0x2kCyQo8I9+yJi/5lbySNw8p9vJNuQTIuek0aO8RK9jG7zmJzR4pBNEqzwE34mwX+e52572AOHzFA3gNnIXQyLxdWLf1UbMkfcouxPXmA7QlVMebea8xnxG+7yTXBwH8eQAxBqfQxc4/LNRPKE/vvY+VieVOFNiSoMTW0/54L04zxHumvD59HvHHP+4DtzDC4AyLvYT88BnXQjy9WF/O/H26DxCle+bSOhx/HQJap7a0vX5mD7gc+3j9/VhvmL6CZ+l0Cl/u+DgIk3sD26LKKZxnX+f3KgORCLxRLD5mbfpBR98tl75W3+n/v7H/mN99PbOeXcpkUgkEgG9azO98md/p173su/Ws/rTm38gkZC0866eHvy5uTY//dbz7sq54ykJCqWUPyHpD+vo5NT/KukrJE0kfZ+kF0l6l6QvbprmsZu0U0m2R5j5Rz/pC0T2qZoPcYsOBlwKtH1WhX/PsXdCIbUJN9F/CC4Ei35yjXRSM4HIM+3H1AS3WvN5LxDnKRzeNyeJcdzAia3Dx+M5/JvNpuWm8HnxInqkbNBGFEuisOAuBObdaxvEte71ehqPxzWn3Z0XtFdKqW4SBydkuMjk9SE8Ks3840Rhz0Qng4sK7ozwfvt4pbbTxokp8xzXy9Mp+Dzz5vsgCh1RrPH96nNNHzwtgrnywpXuQnHhLu5T2o/z786LKCAwB75vY70J38t+JCyfdYHLRUVfX3e4+PPDuONpKfQ3Xns3igq367s4cftx8IFHNPwt0re85dfrzz77P557nm4ikbgzyO/huxeH7/glDX+L9OZfeKa+cJqnLSRugkbqrYue//3v0cF733fevbkQeNKCQinleZK+VtLHN00zL6W8TtKXSPp4Sa9vmuabSimvkfQaSV9/k7Zq5X8nKpBIiJiLDpIqIYKQQcZjbQJqHkA4IKrR8u+EhQKBXLNYLGr7EDo/epLPjsdjTadTDYfDWrNhs9lUUcTJGqkRzAGW9BjljwQcsim1LeJuT4fUef0AijK69Z3UjKZp6nGGXidCOiGhk8mk/k2U34kgRAziRtFFXAduTZeOyCb1A+g3RR8RHubzuebzuRaLRW1vsVjU4np+Ugf7xE99YJ/EXHlEH4QBTmHw9QLsPbfFs39i3QAXpboIqTst2Hu9Xk+TyaTVvosoPq/sFXeL8F+vd8D7nqLhLgOEOYQHLzoai0pGZ0t0HiAI8prPgYtOzBX7yetVxH73ej2tVqvqDAK05+KeC0d+UgqCQ6wDEWuRxHm+C8WE2/ZdnLhz+LlXbOvT/8Kf1C/8wW89764kEonbjPweTiTuH2ztF734z/+nzjpj9yueasrDlqRxKWWtIxX2/ZK+QdIrj9//Lklv0E2+PHu9Xi2MKJ2OwkL2SzmpyA45Wa1Wp/KwPXLM5yHvEE6i8hBVCKwX+HMr+XA4bBE0j9I2TaPxeKymaTSZTDSdTjUejyvB4f5u4fcoLnMQI6QQHfo3m83qEY6cZuFkygv5IUJIquJAPF4Rws58zmYzDQaDlk2fa+kvxQQ5mWI6nVYy6aSXvrtYgOARSTOk3ommp0TE1A3gzgh3H0Cc6b+nSLggwDXsB49Ue0FEd1CwfxApPA8/3oO95/PZNE0Vp7iGcTu5xonB3neHhnRyVKaPw+HpFE7wXcCKcNeLr1fXtaxphDshfPx+X3cnMAfSSQoGn0eAclHB92R8frwwKXuP57krXQlEN8RZr11w3Jbv4sSdQ7NcqnTXQk0k7igOm40+8y98jV74o48ot+AdRX4PJ540/v1C+obX/FFt/Zqiw9Fd82+P+w5X3lH0Ef/fh3SYYkILT1pQaJrmV0opf1XSeyTNJf2bpmn+TSnl2U3TPHx8zcOllGfdrC1IHSTSbetO7qSTlALPBY956cf3btm4qdgPWfI8dJwETmi8b279jnnwtEcfiXwjMJRSak4/hJIfz0OP9/XIt3RyJCMkqSuKGosqxmMTXVDAQeCklfn2Qo9RqIHo4Q6gzbhGXH+jQo5OlunLYrHQYDBo1VmIrgD61+U2cWLpgoKT0vV6XcUY3ArMtRcydHEhRukjMWfsXQSUfcKaMVYXI7x+BkC0oP/utKEfUUxw8cMFAt/DXNdFmH3+aCPWRXDxJM494437OvbTHRbMn7fpqT+A1+IYvF/eNz+xIjoh/PPxWeLZdnHoIuN2fhcnEol7Ex/xb96vg3e++7y7cc8iv4fvDfzxH/vv9N7P+mF9zdX3Pu33/sDBFe287s167GNfkYLCBUM5KLr6Nqk00tV3zHX48+847y5dODyVlIcHJH2RpBdLelzSPyml/IEn8PlXS3q1JF2+fLmSQ+zyHo11SzLiA9d6CoGTp+h2gNS7PRzCsL+/X50KEOtIIgeDQYucOHEhirtcLmvfxuOjPFkEC4gzbTs8ou3CQ8zTn81mrTSKLou2R2iZO4il5/AzxwgUkNVIWJ2ce5Tbr6UPpA1wlCSpC7zO0Yduwfc551jJ7e3tWgfD3QuAehqTyaQ6T9zJ4DUJfKz8F+GHud7e3m7VeWA+2XcIUC5YMT++z5w8M0/814Uej5oDj9jTLqk0HslnXiH8LpxEUuypQt4fxnaWIOX/daHE03D8RApvOyLWOeki6FE0pD13M7gbxYm+zztr7EJEFBhjSgb3j6lD4G5wKNzO7+KRJneii4lEInFPI7+H7w289Ct/Un/1ta/S13zBt513VxLniUbqL0/+XdufFz34D94k3QX/JjwvPJWUh98k6Z1N0/yqJJVSvl/SKyQ9Ukp5zrES+xxJH+z6cNM0r5X0Wkl67nOf2xApllRJJpFrcuj9OEJs99QDgEREK7a7CSLpg0js7e21iF45rj2AUEBeNlHkaNOHcGL5Hw6H9We1Wmk2m2l3d7dlo3fLPJjP5zXlADeCFzH0Uw6ikNA15i64hR1hwsfKmJxUcY10UpfCnSJ8nmsQEDyFwNfI++/iAhFl0iRiuzgTLl++rMlkUtMv/D44LHy8tM++Go1Gmkwmdf8cHBxoe3u7dboI0fDValXniaKgMeWFdBFEK+pUeGqOCzmbzUaLxaLOC+kq3Dum5ngbfl+/9ixEZwB9Z996AcSYjgB5j2kLvi/8Pl2ITgVSlHgvknvaciEkIt7XRUL/8fl1kcFz3lxs4hmnaCUpVXcBbtt38eXyjPy/ZSKRSDxx5PdwInGPoL8q+qg/+xY1B3acaIoJN8RTERTeI+mzSikTHdm7Pk/ST0ral/Rlkr7p+L8/cCuN8Y946YgQc0pDtPHzj38/cQBw7dbWViW10smJBDHNwK3RTtC53l0SXXnqAIIWxQRI6tbWVq1V4LUg+CyA0EJm6JuLCV6DIJJat7t7EUQvHhmJlef4x8r7Hu11IcbXZLFY1B9PJTg8PKzuB0id15Sg3dFoVMfNGBnner1u1Tjo9/saj8dVTPB6DS4YcG10EyAiLZfLOqfxKEXmldMfohPEHTGRqPPD/PjnomMCkSAe+eiuHCf/9DO6cmgvpuGw7r4vuBbXha8rIpEXDvVCje7a8JQdn29EJsbM2ncJEbTtc+Tzwzog4rggtb+/3/qMzzWpS7zOuKLjxN0Kfj9ElS6X0gXGbf0uTiQSicQTRn4P3yN42d+8rk9621frZ77uW867K4k7jOf/u42m7/jw6TeaRofruyKgdGHwVGoo/Hgp5Z9K+s+SDiT9lI7U1R1JryulfJWOvmB/36205/+Yx4FAtDDmcztB9ZMNpJNibUSLHRANCI5HoZ34Yb/n/VhETjqJyNIn7PyQKlIypBOhgHtDcvi8dBI59r/5LyTbT6LwavaMO1ri3boO4fNruYcLEE7eEDOcWPm8M7bFYlFJOmOE4EeRA/HCLexuY0dUcKLnY2Bu2Q8ID8yNux/Ocm0wp4PB4FSE3h0YzJU7OfykjyhMMZ8cR+mpOoyDe/nrzKXPRZxzJ/pet8P3kBfpjMKZ73t/Tjy1wdfEP8fv3ieu5TVPmWEdowjnqT3uTugi7b4W7kKKpz7EdBhEMhdIEEf8OySuIUCEoO9nuSQuEm73d3HizuGhn270qT/53+o/f/r3nXdXEonEbUR+D987OPy5t+tZz/zUp/Wef+nRj9W3//tX6iX68af1vvci+vOiB956a9fu/OwjWVvmNuEp/Wu5aZo/J+nPhZeXOlJmn2hbJ506JuWQRAgk1xEZ9c943npMe4CAez43xIdIOoSKe/kJCZBYyBFkJ5IcyJnXd+jK/8cx4FZ9t9HHvHBIu9v/uTbm10dBQWo7NxhTrEnhNRE8muu1JVzoQdAgRYGUFHdMePSauYmRc8+FZ3xEtmOqBUUgPRcfd4Q7OZz8+5r5fiClxPeVCyscGeppKt5fTxWBxDrB98i7j4F++NGcsbAk6+6Cg9dX4FquceHFa2BEkSo6BfxUhCjI8buP1Z83T7XwNfS+UmfBSbzPCdf5++6yiI4B398uzsS1dXGDk09iH7rElphOwhzdDbid38WJO4dL3/dmXf2Zl+g//tBGnz481LBsn3eXEvc4ZpuVfnI1kDan69ckbi/ye/jeQW91qP+42Ogzh422y53/d8C3vfE36KX/45GY0J9LvVXRZnBXOCTPDf15Uen4Wht/sOjqP3rjLbWR5zTcPlyI8FtXbQPIEacmdJFdr7UAnAjECLV0Ov/aUx66cu8hHNQ2cIIGQXdr9WQyqScg0A7vQ94RFK5fv17t/x7ZdVEgEkIs5U5CPRLrEWzmjPtNJpPWyQqccjEYDDQajWqBQ9ICZrOZ9vf3a9FKxjIcDjUej1XKUSHK5XKp/f396khYLBZVaDk8PNR4PNb29rYmk0lNYwDRjUC/XGDA+j4ej2uqA/flByLprggvHMh84pyYz+d1vsfjcSv1gz0HYqFLXC3Us6APXHtWagygLSfVTpK7Ulp8z+Io2Nraap1O4qKD7+9bgdc4uBF4VrlHnCdSRfzZ8j75c8W9fM974UVP9eDZZz/7M+9uBxc+uhwSfGc4oojhr9+oPkUi8WRw+NZf0F/46E/Tl771V/TllzvTqROJ24a//uFP0o998lhqnv6q9YnE3Yryxp/WX/iYz9Cf+cW36NePbn797cRz/+obNfvdv1bv/5wb/1vyfsdL/s67dfAr7z/vbiSOcSEEBf6hL6kSOo80Q5qJGHMdpBoy58IE17t9OR5b6NHo2WzWioJ61LlpGo1Goxq99f5AfiBTo9FIo9HoVF63n2bgFu4YNSXKzhggkNJJRNlfcwJEDQdv21NHpBNLOBF6Lx4IicN1MJvNau0H5g9xAiLpxx0eHh5qNpu1CJ4XbZSk4XDYKlZIPjzukFKK5vN56yhLRJiYRkKqRTzqcbFYtFwU7A0I6mg0qsUyEQPYG8AdL8ybR/xZ03hqBWvoNTK6CK67HmIqjYthXa6ALseBz6mP210vEd4HL1RIP7zgYay5wFxSl8NFEBc9vKaBuwIQENxZQ59iQciY8sS1MUWG9/w42OFweCqNw0Utd/nwfpyLROK2o2n0PV/+Kv3Fr+3pF175nefdm8Q9jMOml8XEEokng+bpcfV82p//H/Sy139ArVBHPrIVW7Oij/n208LB4SMpyF8kXAhBweEWZidD8XePwCNI+PuIDTFf3yPfTpZiXjbkkXxsyJQ7ALwvtOO1CDxqDumBaEYruPfNT5vAlUDxQq7jnrwWCZKTtJj/73b85XJZ3RUQt+Vyqfl8rr29vZoO4pFziCS/R5LsBTDpo5PnWGjTI/X+mkeSfYxOJJfL5SmiyvtObt3xIal1ggYOEcSe2Ja7JkBMhWDtmJPoMogpOF0EP9rv+b3rWr+e6yL8PmdZ+n2fxN8RmOLzA/yY164Chj7uKDp4H+N+cfHHBUCfY55Bdxh50dKYhsJnvA1/luP8sd9TXEjcMbz5Z/TMF32WXrz330uS/t1v/Rt68fbOOXcqcS/hK97zOXrTD3+iXqhbs/8mEglD0+gr/sUf1Vf9ph/Vn37o7be9+fcd7Olz/vWf0Mf/24d18Mvvar2388vX9eCVq/rQJ9/7ykI5KHrWW5ozRZSt5WHWObgLcCEEhZgT7ZXku8gOgkEkG04i3ZkAvE0in1G8cHLsIoZbt11Q6BoHJJborBcsjCIERMvdDl6vAJI7nU5roUmup8YBf7vw4pF1jwj7fCJ2cD33WywW2t/f1/Xr1yvh9jmM1nYXKWKdByLbXrOBz9C3uL7+u98XgodA46dUxGudSHYVpMTtQp9JU0Hw4XWEC5watBfX39t18swcdY2ROfL/dqHr2hitj46Crs922frpe/w9CneMOc6B1wmJe8URBSLvm4tVtI2YEUl913pTNNMdRS4qgLhX2fOxToKLjnfJsZGJuxSXvvfNuvS9R7//jZ/8jfrcK7dYSSqRuAX85Pd/ol74V1JMSCSeLD7mT75Z3/5/vVL/zee//bamPrxzvadv+dDn6KWv/k+defybn36rnvnIs7X7oo/W+tJGzV2QfdmfF/VXTzxNo7eSLr3uJ6TN4c0vTlxYXAhBwS3SkEUvCCe1xQBJp8hRdBx4pJn3IYgQG7fFx/xtbPBuvfZoNFF6ive57drJCLZ8CBLXELWnv5BEf19Sbd9POYgEHtHCiSzWb09X8PYhhxSl9HWg0OH+/n59jzmKkWj66ikAXN/lROg6OcJFGPruNQZ6vV6tWeA1EPjbXQiQSE9fYZ295sXe3p6kNkH1vcD67e3t6dq1a5rNZnVso9Go1sqgjsHe3l4losvlUqPR6FQ6iJNjUk0QO2K6TVddkDhHvodw5MR5dnHJ4YKKv+YCEHPi6+OnYkTXC4KX77OuZxdE8s99eJb9ONe436NrIY6FZ+L69euaTCZPuLiiF9tMJJ4OvP3T13q7Pua8u5G4h/DcdCYkEk8ZL/kff1x/9vP/e73h27/ttrX5eT/6x/WSL3/LDa85+MAj+shvfETv+cZXaHXl4hdVfcHrV9p6/Y3HlLh3cWEEhe3t7VNFFnu9niaTSSsVgGu9EOH169dbBNZTIfjccrls1TLAzQDJ5L9OYiDjg8GgRsSJxvqRdpClxWLRIkU4E6KAIakWOewSGhAhEC4gQ8PhsJK2ra0tzefzel3TNFUE4f6z2axez7GWnvPe7/dr5J2xbm9v11MbEApYi62trUpUua8LCV5nAAIfj9xcr9f1Z7PZtApuMv9+8oGPnzmlb0SZpdMReCe1nioBYY81Elyooj/cj+KUEOjBYNA6XpK9x75hfOzPfr9fX/OTS/iJ/T0LPhYn/TwTfrqC16BwoYzrvTgir/F3dAkh1HBddLfQHwQ0rnM3zVmiCKknXsODe7qQR0pDdCi4oOD9ZR7Yw+6AchHH198FQ5wp6VBIJBKJROL+xvjH3qbf+rv/kP72932rXro9fUptfdo3/g962Q+/75ZPGPiov/tL+tVXfdS5pj+89DuvqffotRtes3n8mi6+7JG4U7gQggIkDhIBAXCnQUxFoNia1D7ezl/zGgZOYjebTetUBamdj+4RU7dju5Xer4+pEovForoWuKcLIF127Ohu8GMQed8JNqc9eDqGR6WdTDG/LmgAT4mAFEeRQDpxUaxWK+3v79f+Qu792uge8RQH0jRwF8QjGplrF4c8FYR1jJZ8r4FAdNvJYazBwD2cjNJXn39EIT/GMdYC8FQDT0fx+hsx4h3rOrigENMi4v5n3TyqH0UTHC4R8R5d9QzcERDv5Z9lLIyN4zsRkBCvwFn1CnysLgJ5H1ysiW4i/2wUiBAGvO+IGlH0OCs9KpFIJBKJxP2Lze6u9OP/VV/wPV+nr/rtP6Kvf/AXnnAbHzzc12d9/5/Sx/3oIzp4962funLwgUf04E89Q+Xwqh791Nv7b5Leuugj3ry5eRHIX36fDnZ3b+u9E/cWLpygQKTTj4yE+EntfG/phORDGiVVEuduBNIOIAhePwEidVZ1fa7vsj9DbobDYb2H53RT1DDa3z3fHLLk0Vgn4J6v784Ij+pCWiFc3uZZ8H5A7iW1CDQ/Xl9hd3e3ChWkHniKAtd6zQbPcYd4ko7g9TB4nTY4fhMy6fdh7iGvThIROnxvOHGPa+g1LCDjCCteVDLW9/D2fO+40yZG0b3Wxln1FVjTKCp4isB6vW65O2JagKeCgC4HhJNt34fsEQQSv4/vzyi+9Hq9KniREuFj6ILvFeYgigX+nNI278W1dKfFcrms+xERB2HO3Rc+hykkJBKJRCKRqGgavfg1b9Lfvfob9dBv2FW/bPQHL31A/XLjAgc/NBvpA+ur+vnZc/WSP/GfdPgkagVsfvqteuhDz9PuC18oSTrYaXQ4vPG/U3qrou3dG9c06C+lyT//iZueBJPOg8TNcCEEBS9yCAnc3t7WcDjUlStXNBwOq50asuf51xz95ykMTiYhO7xPAT5JLUeEdELYOX4RwgtJoqo9fR4Oh/UoxP39/Xovcu6J+HphQEiOkxYXPWg32tudgCPAUAzPbe4xL9+jrx7tp1aCOwUgskRtIYbM0/Xr13VwcFCvZQ7d1h7X1ck4YguElSMhIe2Qf+pTIA4hzBweHrZSKfxaT2Nw8s14Y40BXxsn3tyHlBLgwhf7KqZd+J5C5PC+Qmyj6OLig7cJ2CuIQKTFsGchxS42jEYnFYS8aKI7blys4vOR2Ds5p9+bzUbz+by193ADlFLqkY2j0aiOl3Xy9fe5dRHBnQbu8PB++Gt8hrVkDkhD8tSbfr+v4XBY12d3d7fuBa/HkA6FRCKRSCQSjpf+0Z/Q6/QR6o1G+g1v/+Wbns7zl7/uD2n8L35CT5WWH7zvV/SC//1XJEnX/sBn6Vc/9cbX77y76FnfknVUEk8PLoSgILWPCnSC4ESAHP74GYiE1CbMHuH1951wE3mFcEJYnQAS6fVou7c7Ho8rWebHK85HAgnBcScAAgjCBa/HPG8vhEfbCAyeKuLw+3v+uxfAJH1BUotoQ54Re65fv67Dw8N6IgIpKXxOOqr1EHPU3S1BagLE30UfiDgCB8TRSTdtREdJXPcockB4Z7NZXefRaNSqQeAFIyHM0lEhRj8ik/f8xAvux5x67Qv2SnRX+H5ivhCtGLMLAJBkd69AkGNqhTszcP+4QBD3F/UpPAXAxZmuIpsU/qRtT+VgzvkdJ0rcA+5y8FoUm81Gs9msJR64mMDzyxrF9Y5t8b4/k75mfJf4cxNThBKJRCKRSCQ2i4W+5lVfIfVu7FCYvvNnb3uE/4Ef+Dk949+Ob3zRcqk8NyHxdOFC/Gs52qchDpAICCokUFKNtjq5hXxhVQdE9WP+tNQuyudCQYwu+ykBm81G29vbGo1GNdJJe36koXQSpXdXAU4Dz8/3qKwXrov1G2Luu5Oj+DqIpJI+eiTWCaKTzVgLIUZxoy3fiZsfN+igHa4neo7TJEbN3WngpNWt7ZBnxucFNFk3F1N87rw4YnS1uGPCo/MIDwgnnuoR54nropuhSyjyz7ubwufXUxP8dBSP5vt94/o4wfb2YooLa+X70NElAroAF9MtEEA8vcHXhrn2/RJFFV+3LgGpS7hz90dMwfH0IL/OnSSJRCKRSCQSEYdvfeK1FG4HNru7UtY0SFwgXAhBwfPr3YruBfi8EKEfISgdRY/7/X5Ni4BgQSiIdDuxcqIUc9D9fu6O8GMF+/2+RqNRKw0CUoIV3gsLxjQEHyNjwR4e+8P8QICc8HgdAc8p9zx6J2hOmL1iftc9/bNEb11MiD/A++QRXhdDIlFlHlarVSvizjV+35g7H0kxYomk6iDwtXWRRjo5fcNz7tl7Dhcx2F/cn7G6Q4C9wF5i7aN4RH/cgeGnQvg6+hhiOoC3H9fJXQkuYLkDJK5jl5PCUxO6ajzEgof+2bgf/b8uPLjo4P2OIhNzxrxFV4ULYr7miBesmwsitOcCUiKRSCQSiUQikejGhRAUJLWsyx6R5B/4flSfn55AvQEIIYICBBhC7+4CIr5+vCQky0mViwHD4bBFlFxwkE6OwGMMfiygn7AQSRo2fEmtiKg7AJycuv2cMdCvmH7gwoCfpOCnXjRN0+qf56V7hJn/klbh5NHJrxMwT3fgvwgfHi3240I9bQP3CadCRBs/93DrvRcGZL/gXkGIifBaFKQUxKg460p+vo8VAkpKDqKGO0267tf1HvNP/QZIPGPpcm746Rr8cK27GKILyNchjpf7QcY5xcGfF4i8u328ToE7Ldjr1N9wgcUFD1IZfD5cxIiuCi8g6ekv3hfcIbEv7MnogHGHTpczI5FIJBKJRCKRSBzhQggKToqcOGE7d7s/JCySUvLU1+u19vf3T5F3yJ63QxqEW8oh3C5KQComk0m1xruVfr1ea3d3V9evX6/FGCeTia5cudI6xtBTI2K0d71ea2dnpxVB5f7kmS+XS21vb1dyiEMCl4RH2f0e0omlfLVa1VoFnp7g1/m8eo48c77ZbGqRRAo7QvjH43HLLRERSRoiEOkF3BvBiPlERIoOA97zSD1kEKHE9xlkOxLF+Dfz4mJIjMj7GPiMi0VxXrmG333tIdKQbAp7IsJMp9NWv1zcoq1Yu4BngHnieXJi7U4A1tjdFrTt7gna73LK+A81DNwx01WXxJ0BiB8+Pz5fcd5ZU++Dpz7E9Blf7ygk+nXucEkkEolEIpFIJBLduDCCAhFgCABHR/KaiwODwaB1lB/gd3cPYF2GPHikGbK52Ww0HA5PRXohFRBTToeACHnO/f7+fut6KtzjDFgsFvUzXuyNv+lvJJykAlCIj8i9k2aPwvMDSfVIbSTFMfffiSP39sg18+Xk3QtlQmC5j7cZo+yeHkKqA9f5qR0xgu7R6K7cf5/TSNjP+qyDegkuXsTUECeycT78PrFtj7y7u4G1ZV8isuBcoa1Ixr1+QwT7hHvw37OEESf0fh8fO330NY2CFHCRwN0RiHmewoGY5OIAbbi45f91EeCsfvjvjNsdCbE+Rex/uhMSiUQikUgkEokb48IICp4H7WSE19x+H63STpIQHDyv3UmuE0GP4PoxjZ4ewf2jndtJllfH93QIfiDJ9Ncjpx5Zxn0gnRCaeFxmtKX78Yq4DhBOIIgx/x7Eee3KM/fIOtFj//H2ILi+pvTHLfCsrx9/6IQS94Nbz71/CCmReLqrwEUF5iXuMe+nF7X0qD7XeJveDvf3mgWO6F5w0cjJNids0A9P6XE42XdRiv56+oG7NdircQ8AT49xl0XXdV7LIhZe9HWS2qk3MY0HwcLFhjhfUUTgd09RiM4QF5O8D11Omyhi+H9TVEgkEolEIpFIJG6MCyEoRMtx/Mc9v3fleksnDgcs1R7th8hyeoGTR5wHm81G4/G4dRIEJBjCQfu8JqleRzS5aZrqTvA++BhpL5JyPodA4YSbaDnHNNLv4XBY+01qhtdHoCCgE6YuguqCQizQ59e7K4O2vVZFvIeLB1I7TQWhgRQMj177enb1mZSFSD75HaEFccGPgnSSyfVdJNvvGYUWdwT43LmgxV7x9XdRgTn0IxOdQHvbUSRhDkajUZ0jHD1cG6Px0kmtCtaCn1i3IMKfN3eDuPgQ58jn0R0bvrfiqS4+3jgXsT8uKHgKCPPmgpA7R/y7hjXx9YmpGikoJBKJRCKRSCQSZ+NCCAqSWqTA7dqemuAWZYQAfw2CDqnz/PIucG2/39d4PG4RSxcuIKOIBnxmNBpVhwB57n5vhAGPdmJjh1DSHu3QBy96R1oD9+PIyul0Wk+4oN9+/OJ6vW65BiDwkOJ+v19rH0QXQCSGrEM8+UBS6+hMFws8XYD5WK/XGo1G9bO7u7utdBD6QKFF2o9RcPoYSW3XaRfz+fyUG8Oj1vv7+6cEAMbiLg3Wkjn3GgZd0X1P64iFQf14UXdPuMvFXRTMJc4Md6XgwFitVqdqNsT5Al3ulHgfT6/wGgpesyDumZia4s4P4PveXS5djgdPL3Hhinlzwu+uBk+V4R7ucIht0Z84X2d9dyQSiUQikUgkEgnppmeilVL+QSnlg6WUn7XXnlFK+bellF84/u8D9t43lFJ+sZTy9lLKb72VTsTccFIGYo44+ear1UqDwUCXL1/W1atXa+X9mCcPOfFifZAOCBiR4clkop2dHV25ckWXLl3SaDRqEcDZbKbZbFar70tqOQWor4CYECOwMacckuPExn8grKRt+KkR/MSK+ozL249OAEis57XjikAAcWHFCZXPLff3UyZipBjEXHqvadCV9tFVayCKFNGpUkqppN1rN/gpANEB4216NDrWlvC+xDQTj6YzBpwkzElXSkAUEm7kEOh6XuIz42Q6pmR0rZ/vL/893sf34M36GWsbeMpQ3J9eIJV2Y0FF70cch4sG3qY/b+wJ31NRVDmrT56mcVHwdHwXJxKJROJs5PdwIpFInMatsJjvlPSq8NprJL2+aZqXSHr98d8qpXy8pC+R9PLjz3xLKeWWyqQ7OXLS7FFgiC/RZKL0XiOhKyWiq/iaE9NSiobDoSaTicbjcT3NwYkNkWAvdujHLUIivVaAE2mPAEfSDpzwep487fPDPSNh7Uqv4O9YANFJudvOY79i3jr3cREhElyPXvt8+/391AbaY5w+ZubU++AksksE8HWP/fb/+nVR3OgSR9xi7/3zdt2h4EJPnAdPP4jCgO+B2FePvPu4fM6jQOWfi3suRv6dePua0q5/hvF0/UTRzAUPv87fi/v5LJdFHIvfL4pNLrrFds/qkwsVFyzl4Tv1NHwXJxKJROJMfKfyeziRSCRauGnKQ9M0/76U8qLw8hdJeuXx798l6Q2Svv749e9tmmYp6Z2llF+U9JmS3nSje0AkIGqj0UhN09QTFaQTIsYxktKJDR97PDnpm83RqQ2ePuBkARLtp0DwO6SDegZY0J3A0E9SMfyzMU+ctAr6HwUA7w9Chbs0IHFExZ1ku4OCtIVIIP0Eh81m0yp46HnrTvzOShWBAPpRjE7WnPxGkgbhY428T4yHsU2nU21tbbVOWnByRzvcP7o8HF7zwMfmY1ytVtV1gWDgkXmPYvO5wWBQ+wK4dxfZZx96zQ13VUgnRzH6uDzSTtvuQvDrz7Lnuwjha82a+nyw37vWn3lhH3ifadP3ctM0VRSM92Ofd4k8LmJFEcSvY2692GqXIOO1PuJno3h2kdMcno7v4kQikUicjfweTiQSidN4sjUUnt00zcOS1DTNw6WUZx2//jxJb7br3nf82g3h0UnIqtvK1+u15vO55vO5VqtVdS/gKBgOh5La0d/FYlHJD4UNnQyTt+/RcEkt0sv1EDonKwgfkJL9/f36ea/NwPtEpCHJDrfn9/t9DYdDbW1taT6ft44U9Gj7aDRqFbyTVF0b9Jt+ILjs7e3p2rVrkk6i2DEdpMum7/d1wgXJdccA8+Nz6Ud8eqV92vCfXq9XayZ4qovULioIQVyv13Xt4p7yIpD0kRoXCCvu0nDrP+Nln3k9DMbqglB00vjYWAPSPdibXt8ijm80GrVEFEQ2XB7s51ibwfcD8+1iAmvvR6bSL9rhv6T28BmO/EQwoA+RyHNv3xsxtcGfDeZzvV5X981ZLpTozuj1eq20ligwxdSJuF6+VxGTXMS8C3Bbv4sTiUQi8YSR38OJROK+xu0uyni6cp7UGe4rpbxa0qsl6cqVKy1RIKY6eKqBdHLcIy4BiLPns7vl2okuZAWC4wXbnFwdHh5WwkfU3O3THtGn7UiqPDrqRMzJOaIA5MkJokfd+bzfG2IEYUNQwDHBvDEuJ3lO6qPl3Ekfa8Ln4lilkyMOPUrMfCKguIhCf0s5KS7on8OZAqmm6KCLFswHcOLupN/H6vc9K50g5szjnGBskPrFYnHKGeGOmMPDw5bjhX3VdXJFdCWw57y/29vbrRoS7tBgvXwf+zw72fZ7e22PLmeGuzf4TKwx4ILCWQ4RfjyNJDppzkpL8eu60hL8h/VhH7AHXFgC9DU+A9HhEOtK3EV4Ut/FI03uZJ8SiUTifkJ+DycSifsCT1ZQeKSU8pxjJfY5kj54/Pr7JL3Arnu+pPd3NdA0zWslvVaSnv/85zeQGI8KehQ95kTHyGNXrvTxfSoJwVoP8fBj8yCBLkTgFhgOh9rZ2WmJCET9IS+OGCX2ftA+r3kU1UUFxupW8Wil53VIrDspvI8euXaBw9tyIum1CJxIx+t9vNj5ed8FmpiOQJsIHy7yMO8eDd9sNi3i7ETR3QIILG5ljzZ2t/u7EyESVyeYvje9+B+vReHI++FikM9R3B/sd4SRwWBQT7mgrwgAFNmUTlIv3K3iNSdYq+hA8T3ltRxc0PL95cKV1wTxfcA8du0P2scZ0fWM+n3cYdAlIPi9uu7vfR0MBqeu830ahQZvP47vAuK2fhdfLs+4mPkeiUQicXGR38OJROK+xpP91/IPSvqy49+/TNIP2OtfUkoZllJeLOklkn7iljrSax8b6ZFMiNTW1lY9olA6KdIYCxdyvGK0VRPpnUwmmk6ntfji4eGhlstlzW2PRRfH47F2dnY0nU4rOVksFtrd3dXe3l7LGu4RZCLSLiDw43nfkSj70ZieX48TgPnyKDIpHJEURht8V0oDRM+PpaQNF2p8ffiMCw/UB+BnuVx22sbd/u7FN3mPdcK9EAtAcp3n6vupCbEIZhcYj4+zi6CeFVGXVPsZC3giinjtDPYCaxT3A+LKcDisaTweHY/uCFJhXAhzV4Z/jj0RT3Pw/bbZbGoaD7U74skJvp/jKQ0+P34Shu9BhBJP9XAxoYvc+0kaPmcuSPn7UcS50SkNXS6H2Ke7ALf9uziRSCQSTwj5PZxIJO5r3NShUEr5Hh0Vm3molPI+SX9O0jdJel0p5askvUfS75Okpml+rpTyOkk/L+lA0tc0TXPTc9cgo13/iPcIMiTF6wI4YRoMBi13gf/OfxEdpBOyCOnw+/f7/XqU5OXLl/XQQw/VYyM3m6NjJL1wYiRqLhwAL5wHWXLSG+sU4C5wYhVPQ+DEBhch/N6z2ezUyRikdEQ7N+0zJp87iLELC/1+v5VS4WST9tzCT5uS6hiIvEOSV6uVLl++3HJLuOiCmIRY4YUscQ2ALkLIa74PzoKn1UBeXRygX4yDOS/l6NQQd6UsFovWnLirxOtmME9eN4O9Efc64J5+XCLCF8Sd92mTv73+gPePdrnehYUukcaFLu4HPEWJvdJF9Nnz7HfWnpQTT6HxNA8XEaJzKTom/LP020UKL4560fB0fBcnEolE4mzk93AikUicxq2c8vClZ7z1eWdc/xcl/cUn0okYEYz5/fwXEutCAIXc/MQHj/pCSubzeU0HiPnrXmMBQuXHNI5GIw2Hw0qW5/N5JcGSajQZqzVFIGPknWtwFuCMcJIGyfRaDiAWt/MUAi/2SB+vX7/eKj7pdQQ8ukv0mGg7bZImwt+lFK1Wq9YJE07aYoFH6cRlQX+Zg7iG/sPcuCjEZxgfffK/GV8kiV48kh+P2NNWV8Td0x+iYORiEOOgngd7gfQETz/wdjya7zUXcJ342GJ6hO9j9ouTap93FxNcQIsuDhe3fE7oV3TJ0KY/Tw4XQaLYgCDgQoP3yZ/HLoGi1+u1REXa5G93iriQ43vW3UtxDrocK+eJp+O7OJFIJBJnI7+HE4lE4jRud1HGJw23bYNYrM8j9P45CDGRW0gCgKg56Zfa0VRPsyBKPxqNNJlMNBqNWhX7IwmlrUgi/bQHTxVgTF7MMIoqHg0+K9LuNm3a8ZMEFotFqw/R8h5PikCY8Xu6a8LnykGbFA50xChxlxACEfd7OmF3Mu7zHa3wfvIC18VUBk99YU25F+3zu7/O/mJMUbjw+XHBwPdIrP3h1/spIkTqPf3GCyd60U4vOBhrY3gNjiiAeP+YX5wI7D9fB993vu6RcEf3gl/je83H704D7tGVghCJvl8f7+X7rUvk8P3giGkXiUQikUgkEolE4mxcCEGhOc4N92J3RMa9DoITYycZRNKd7BLh9nQHLOGQRCeLRIj5m7oJ1E5wMh6jw5EIeS4/BNBrBUAgl8ul1ut17UvXjxOcSEi7SH6M+PM5F1MgsZwIEVM+nMj5ez5/Hsl25wepKPTL0yp83txGz31j9N7ngDXqIvh+D0+38NoBTpibpqkiESkiflJIFAK83y4cOZmPdnvWgh+Pqrug5WKLp5aQ/sF4STehzkE8fSG6DVgL7ufrEvcq93AXQ1daAmN0Yh8R9xDz63sgXu+IAghiCkJPdEN0pV/Qjq+nux18DaOQcVZ/EolEIpFIJBKJxGlcCEFB0qlaAC4aQAogxpAURAjIlUfJvdiedERc9vb2apoCJLhpmmo594huTHmQjvL2yd33vPn9/X31+30tl0vN5/NWlFtqR3UhscPhsNZk4BpPGYDsuCuCgn2TyUTD4bAlTvgxkV4Q0Y9TJBWD6weDQc31Z+6JinvRSCek7lgger6zs6PxeFznOZ6eQP9ZPz8+k3nyAonuFOAeHKPor3m9Bp9nt9njRHAbfSS40SESiasLI/TRBRUn6g7mwdfQ9xiCDm4V1sDrSTD/y+WyJagguEknIlIUU3xumCu3/jOXnm6AayamAjFed5JEwSGSf8buApWvle8xf4/XmfPoXuIz3O8sUYGUIhxHXqg1plBFp9BFS3dIJBKJRCKRSCQuIi6MoCC1j7HjH/cQTRwHkABIKTUCcCh4BNLJXzwtgeviqRCS6lFzk8mkngSxu7ur2WxW0wgguAghkHJcBy5UxPoFpZRKJj1iGyPkkOJISKNDQlIlpcvlsubsj0ajKoZ4zQcIKf3yNAsn1E62fY38OupLDIdDSapFH89KB3AyS70I+gS583nxOUFo2NraakXTl8tla80RghgfIlM82jKmXnQRU09VcadAnH/g42We3RnCa+w93pvP5zX1A3HA+xOFE9wHNwPPlNediC4DF408baJLCIhjBZF8d7Xhr53lLuC9WGchtsvPcrmsApOnTng7vueioCKpJThFp0kp5UzBKJFIJBKJRCKRuN9xYQQFJxvxGLx4zJxH8yFKo9GoVSdBatdG8OKCTmT5bySJHt0m2usWfQQCRAT64RFcdyMgOHRFqr2v3rYX7IMI0ScnTR6593x9jtn06DyE3Y/a9D47GfbikYgIflwh8+6pCvQvHmMI2fM0AIQexByIHesQi+uxFxAO3OnANS4kcW1XnYG4j3zuIuF2p4uT3a49HAUU5pG2fV9RRBRnCA4Qj/B7yoOnN7gbgX3XBRcU/PQCF9/Ocmh4rQJPO2J8ZzkDzpoP3+ux/kH8nH8+9sH3lheNdNHA93FMSYp98f3mc9p1fSKRSCQSiUQikTjBhRAUumzmklrkin/sQyIgYJDb8Xjcykn3XHKIuTsQIFJ+AoCTLM95d9eA9xEi6McyOind3t6uEXzPh4fweJSUexIRpW8ebe/1ehqNRq2jMz3vHrHDnQ0Qb685AKGlbc+XhzRiE/c5Z15Ji3A7O3BBgToOjNnrFbglniMT+/3+qWiw2+G9LoKvHXPoR026uMB4XKzxMTH+swgn5N8JPv3p2ssxcu9RceaBlBnfR/GUA++Tp11g5WfMMWXAnx93g3TVhIguAj96kuvcyeFC1q2QbRduophBm17bwK+L607/PT3ExQYfT3yevT1fFx8r9/L6CmcJNYlEIpFIJBKJROKCCAqQJQg1xPOsnHaIKuTHK+RH2zYkKBJtt8zHFANPg/BIvhf4414Qm5giMBwOdenSJV2+fFmDwUDXrl2rhPHg4EB7e3uaz+c1RaHf79fjJ6X20XUxNSOeCBDdE346xWq1qnUaGAupEE6Um6ZpCQUuwnAPt+272yG6S86CE1HWM9ZOcKGka58wF4goMTWC9AtvjxQDXzdJrT0QCfJms2kd58i6sEem02m9NkbMXSRyIswYuuoDeA0Eny8XS5gXXDE+fzHK7vuT2hpeYNP7QDtR4PL3We/odompGfEzPBOkLJEa4/PkhJ7+sRbu0NlsNtrf36+CW0xP8Hnz+e+aG7+vu4YQq/iOuZkLI5FIJBKJRCKRuJ9xIQQF7OqSWoTfXQFO2shL5+QEyBCFCA8ODioRdJu7uw+IbkMgVquVxuOxRqORptOprl69qslk0irWyOeopUDRPGz/np9P3yD/0eFwcHCg+Xzesq7HqDAk190FtM+88eMpCAgKg8GgnvTgNQq84GQ8VcEL2PkxiU64EFC8oCBrEyPnflpHJN2QfV9DHANxvtwtgqDAujE+hIQYsfYxxMh8rCUQX4tE10+D8Nd8L/O3uz5iio236fuGveGuCa9xwJjdKeH3pI3FYtFyk0Qxh7Eyr6WUziKLMWUgOjS6jgn1E0V8n3p6SpdboGt9fN66jm51Nwr38jYZX0yjcCHR3QyMyx1DCHKJRCKRSCQSiUSijQshKMTaAP1+X/v7+9psNlUkkNrV3nEMuGvAI7JepJHPxrxqz48nIg8Zxy3g5MlrF3j0kuv8RAL6J50U/cOi7QSri8w4IYsRY173yDM/TdPUMZCuQGoIEWL65mkTnr/vRDDayBkr5B8xwt0ifC6SURDJ5FkRZLf+x/cQFVgHF6OckHr6i9duoB+sV3SX8LqTY69DwDz4WDxFQVJNMwGebnBW8UOf63icpr8PzqpDgCjjwkyc/+hQ8M/6nnSyjjjl6QJdn7/R+nsfmA9PVXFHgxdbpB0vcOoumSgg0RdPCekSE+L8R0HiVtI6EolEIpFIJBKJ+xUXQlCQVG3pkHaOPvRTFCDSnhuPbd8r5C+XS+3s7LTqFTiJk07IBsQfqzxHM/K6Eyx3D3RFNiF/1DqAPB4cHGg2m1WLvhMm6USscKLu9RjoLzULOKmC+g3Mk6QqGmxvb2s+n9e0CpwdUVBgnhFuulIunPh2nZwB0QSMJ85PtI+7SMJ4neB1EWH6hKgwmUw6I/Yu9viRiE7U3dnh96AehhNS9qGTXBcgvN3YB6+ZQboCe8uFGD7jYgOvR8R5dZGM12jb1yG6MM5q10UBH6vPf1wf/9xZfY0OEMQE9iYnciCSMX/czwus4haJaRYx5cHHzI/X8eB59n77+BOJRCKRSCQSiUQ3LoygAGHmVIKtra1KAHED+D/6ISOQEN5fLpf1KEkIgRMUiLgXOuQkBoj2ZDLR1atXJR2RFki311lwYkS/EDsgSavVStevX9fe3p4ee+wxSSfuiMPDQ+3t7bXEhOFweOpow3iUIsdS4lAg9WK9Xrcs/4eHh9rf369CRimlVTcBAh9zxZ3cMX4n59STcDu6p23EfH5+9wi/F5i8dOlSLeIYXQ5e9NGdAw7SNnBo0B93J/j9YwHG6Ipgbl1QgLCyBuw39tJsNjvlvACst++Zvb29Ks5E9w199JoG3CuKKl5QlNd8rmI6R6/Xa81TdMnQXz4T00J8TV0kcccNcxXJeRRLouOFZ5B2PRWEtaF/nh7k4iLjjEIcYgR9Wi6Xp/oQizx6vxKJRCKRSCQSiUQ3Loyg4ESWaLpXc3ey7oXs4pGQnpsPkSACD3Hu9/saj8eaTCaaTqd64IEHNJ1OW2kXXn/BK/BDRCDzuBIgJaQbbG1tablcajabaT6fVwdBjNZDwiFTgHEOh8PaJsRysVi0fqjpMB6PJanlXvDIMmSea7wfIIoA7hpAUHCSGesExNQNj2R31U5wZ4Y7AnhNUotYgng/iCR7woknKR/R3g5wt0B4cXGMx+O6LqPRqLVX5/N5TbmIJ1M40fW0GUgyLpo45x5Z579OxGMRxSiuMcfsW9pgvrk21my4mbsgzjvkvMuNwfMQP8fc+57kmfdnJu7H6BihT1GwcOHH++bXIJLEVKIoBrmYlqc8JBKJRCKRSCQSZ+NCCAoQEmzs6/X61LGNThaIzkOUPIrvkUtPD3CChWAAWR+Px6eOIPRcd8g5tQYQKBaLRb3WT0vwnPPFYqHd3V3t7u52kkzPH3fC4wSeMeJEWC6Xms/nLXcCc+NW964INfMdo9IIG359jHx7dNrXLkbNud7bcwcEThAIOwTY++FpKv6e94W+43Bg/aKgEPPlu06m8Ig+JNfXxYs9+v6KhQa5xo/tZO8iPLhAwj7ryv2PaQZ+jTtbfC38vzF9gf0Wx+B7wO/r+zQS6y5Hhv8d0y/8M+4e8qKQLrjgJGHtcS11iUK+L128OSutI6amxGcl7u9EIpFIJBKJRCLRjQsjKBDZxKHgNn/SICBeWPiJ4kO8sT5DGD01wAWLra2teqwi0VFIix+Dx99RRCAFwo+LjNFySTVffj6f1/QGT62ApLpg4uNkPiCOROC9vgRigkeoYyqGR7CZ7/geRRyjZd0jwdFF4JFw6URYceIf78Xxlz73sdifk1pOK4hz7DZ2J5QuJpyV/x5JZxQTEJri+nSRYBDrc5B+wg/zgEsGQYx94uN3USuuAXDRomvvdn3ORaOYFsHeZCzMuTsnaNPFGN8bUVxiHbv6zj09BUg6Op3CU1M4UtXFmi4xw/dl7HMXYt/5b0znSCQSiUQikUgkEmfjQggKUruqvxPVwWCgnZ0dSarEfG9vrwoJpCpI0mQyqeSkaRrt7e1VAWCz2WgymWgymWhnZ0eXLl3SdDqtpzlA8BAQPJ8dhwPpBbPZrAoK0gkJh2zG/Hfe8yKPfC6eTOBEzWtEMC5SN9wC74R1Npu1Ir4gElruiVhBSoVf66kHbruHwHrRPI96e/oGIshms6mEFZEEcuuiBKkjzLe7QJw8u8jAPvF8eoefDOBF+HyvNU2j4XCoS5cu1b3hx2q6Q8Ht+sPhsLpFIL1d1n3mkrGTMuNj8FSH+FywLi7q+Bx6KgOf87b43HA4rGtFKg/XsT4u3JCm4M9kTDfwve6CgosjXYiE3cU7T0FhX9DPLoHlLHTdP6ZPuHAT99iN+p9IJBKJRCKRSNzvuBCCgtcGkFSt/L1eTzs7O7p69WrriMTlclkJAYQbkgch8NMP/MhEjoW8dOlSTXUgNUI6IW30geP/RqOR5vN5jV5CdKh/MJlMaoSe9kitoLZBTLtw4obrwlMDyNuHfD722GO6du2alstlK1LudR0Yp6dSSCfEidx9+kZU29NIPNrLtRBHUjuYr3i0H4KKpy2Apmlq0UtO1IiEejweVzHByRzz7PUy+Ex0GYxGozpu5gXQRyLh1Fzo9/vVMYE40WXzhzQ7GXdhBFEqFhV0IFS584GxuAAQ7+1OBpwejBNxB+FgMBic6r87UiJ5jtcwrnj85c3AmEhtiUIDfaSfq9WqVSuDeY0pD/StC+4YcfHLi41yX8Qjb9OdEp6yE9MfEolEIpFIJBKJRBsXQlCQ1CIBWPo9kg0J6Ire8/lIWiKxIC98PB5XQcEj4pBsTg0gmj0ajbRYLCrZoN3xeFyt+x7B5n0+6yQ2Rnk9uguxgQxGcoozgvcYO0SMYymZByfd9M2LSyJA8Dfk0dMHYiFAbOhe/C/Wg3CiGqPXXtF/MBjUdBRfU58bz+V3J4X/uJjgNSfi/vIx+Zi572AwqCkbXj/D55Lf/dSFmG7gRUPdOs+cuGjghTIjomPBhQfcE7FOgYsBUSyI7SAYeL9jYUPm92bFCWPaCfN4I3j7klpCAq/7M+17yu9JW6QgeQ0Gn//4uSiwRIEnunwSiUQikUgkEolEGzcVFEop/0DSF0j6YNM0n3D82v8p6XdIWkn6JUlf0TTN48fvfYOkr5J0KOlrm6b54Vu4RysCSzpBrIkQo+DxeEPP/Xb4SQQICjs7OxqPxyqlVDeDR6lduOA1iAb3GY1Gmk6n1YHAvSFKXrMBQDK76iYgaHjKAYQbKzhOBo8Ax9MYbkSgIL9udQebzaYWOHSRwAtGen+4p6+J38vz6r0vkH4/LcHX1omd10hAsIAER0EBl4rX3wBExBEbPALuQgf7yY8q9VQJ36teNDK6EXzPcW+EiluB1wzweWXNfD9G0cLTA2Jth7NIPuJGdAHEgpUR9A94zY+uz0TnRVdKR6zR4EJdTENwxxDj9bWjXdqLe8p/4msXLeXh6fguTiQSicTZyO/hRCKROI1b8fN+p6RXhdf+raRPaJrmkyS9Q9I3SFIp5eMlfYmklx9/5ltKKX3dAkhlIAq/2WwqmSeaTbE8P0qRIo5uQXcC6uTST03ghAHy3UejUSt/fjgcajweazwe1+g10U9s8jgdrl69qgcffLBVz4F8dfpLG9RscCJG8UbpxNo/Go3UNI1ms5muXbumxx9/vKaEUFRyMplU9wZE30m5E7IoXkCC3RUS61i4UMD80f+ulIhIRp08sibuAqA/Pm7mCGLKZ/2/EHoi0dEhIKlFDD0tZTqdajqdtopCepoIIg7izXq9rkd/Uj+DeYsR9RhNPzg4qHU3aI/PuCujSwBxRwbpIZxIwtq7m8Kj8ggnjN1Pq/A18nljDJxk4sdbEvn3daQt0oim06l2dnbqnqRtFzR8T3rKjt/f2/a9hWjgwo27bjxdwvvqIpsLBP594L+7WyWKgRcA36mn4bs4kUgkEmfiO5Xfw4lEItHCTf+13DTNvy+lvCi89m/szzdL+r3Hv3+RpO9tmmYp6Z2llF+U9JmS3nSje/APf6LvbnN32zbEcLVatc6t39vb03w+r9F/ag8Aov6SWgQDsrO1tVUFBoim942o+GKxqAX4SimaTqe6cuWKptNpJTqka/BZCMpms6knGvjpE17Y0dM7eJ/2mBvITtepDuTVQ449So6d3SPrzAfXbDablvUfccSJshNgRBXGyn2iS4ScfupC+CkRFJh0MucRY0kt0QCSy9yVUlonXXTl2XuaBYUHWQsv9kjRSwSa9XrdOkmDaz2thf3kp2RQ5NPnzZ0h7DvfH8D3ph8x6rn97gBxYQVXD/Ps5Jp1oC+M9awjRumbR/tjRN/b9XG42OKuAPreBRfCfG69FgbPjn8/uMjUhShceX+66oVw7UWsnfB0fBcnEolE4mzk93AikUicxu0Iv32lpO87/v15OvoyBe87fu2GgMDxj31JNZc+EkRqB0ACIUPUFpBOCIFH771tyJ3nXw8Gg+pOGI1GlaRBeKP1m8gsP5Azz1N3soMwAZFxMujz4PnsHs12EhePCoRYE83mGEzvL33hs5BVFwFwIOAQgHC5Td8jvLhDolX8rGgwQoW3FaP6HjX2tffoNMSSFI3oZPDil73eyVGdjMnrSHgaAEQ/kn+fn5jK4akW3DM6KriH7yfWgjXjHt4e+5y9E9NZvAZBtOaTRuKvx89A+KPwEV0BLn7E/9I/d3fE1JvYry4wRvZTdL0wDn8WfP/Shs+Vz42PyVOOXJzx8ft63EV4yt/FiUQikXhKyO/hRCJx3+EpCQqllD8j6UDSd/NSx2WdDKKU8mpJr5aknZ2d1lGIED+PHHpNA7f0+3n1RC7dVg157vqsk22iupPJROPxWPv7+y2yQv/cLcEPpyW4XduJZUxFoG+IFrQHmXKxwUl5rDMQyaQXiMSh4LZvCDjtRWt6FBQA93GC6nUsmMNYO4HX3SHA/b1PXOcpFi4m+FrjZHESGfeJR9RxUfiJF3Vjhhx96aRmQKzT4DUnYo4/89HljvC54Z4uMLF/nNDSngtnCES+3meRdsbR9ZoLSP75GMn362PqC9fzzDA+J+Fn1V24kaAQ0ymiEyKmS7DHowuD7wBfD9rkWYwpF3E+XXy5G3C7votHmtyR/iUSicS9jvweTiQS9yuetKBQSvkyHRWm+bzm5F/075P0Arvs+ZLe3/X5pmleK+m1kvTQQw81FPkjrYEUBLe9S6qWfKzu+/v7WiwWWiwWNWruEWjphPzv7OzUIop+KkMUAKKT4eDgQPP5vJWjHS3XnqNO5DZGnD0NgTFxykA5zgWH8BGFd2eDzf0p272kWh/AxQDSNajTABEkMu41APr9viaTSR0b42UM9I82yJd3a72fFOD5/LgEInH3iLPXTWBsEEefLxcLmHuIZ0zp6PV6mk6nnWQ/Ogh8nMd7tP7twg9CTxQ1+N3X2AskeuScfY7IQr8Zu5N4P5bS3QXeB58L4JF5f4ZcRPJovxP0WEcjnpwRX3chBzGsS7DpgosH7h5gv8T6Ei60SDp1L++f70Weq1hXwkUDf2bvFtzO7+LL5Rl3z8ATiUTigiC/hxOJxP2MJyUolFJeJenrJf2Gpmlm9tYPSvq/Syl/XdJzJb1E0k/crD2KwUEsOI7Rc7Kd9EDaIAMU0eNvTy3gc5GEHBwc1NQAKtLTBkUhIfXz+VzXrl3TcrnU1taWLl26pNFopF6vV691wt1l13aHAQTGCzH6WGljZ2enfp6aCtH54LbzBx54QA899JCGw6GaptH169drQcH9/f1KSKkZMZlMamQZ0cPJqxNr5sMj2+7+cLLqaRDeP19Lj/7yGT/mjzkYDoen8tkPDg5aLhYnw9juPdc+2vtdcPDP8sM8YN+PZD0Sb6ldG4Dr/MSDSKi9FsZZqR9xbOxFxAS36rMO7kBwscznzotC9nq9WoBQUnXNsL4IHi70uPjkJ414fQh/TuM8+Rq7U4D94fPJs8FY6a+LTDeCpyD590H8jvD7ukgXXS0XDbf7uziRSCQSTwz5PZxIJO533Mqxkd8j6ZWSHiqlvE/Sn9NRBduhpH97TJTe3DTNH22a5udKKa+T9PM6sn19TdM0Nz0nDzIe88Z5T2pXhSc9wI+ZhOyTq04hRMjDzs6Orl69qqtXr2o6nXbWOiCK7w4BqvRzCkI5rlVA/QA/BhLC7eTR0wWIgvM+JI1xex0CFw0oDojrIdrnmRtOqhgOh1VoYUybzUbz+bxVtG8ymVTSBxl3ggt5dGLqggf94D4uQHil/BhhjvZzJ/qeWuJRZuaxy8ru7fvJDJJqgU2PuvuJGC6gcF8n2DGPnnX2Eyac2MfItqeBsHe73BiLxaLun1hLgrmhGOVqtar7xiP5vI8ABamP6QxOktl7jDeSfdws7HdSe3xdojvBRTVPI/B0I187f1b8PVww7jKgX/TVn18X8nzP0j/WItbn6AKfv0inPDwd38WJRCKROBv5PZxIJBKncSunPHxpx8t//wbX/0VJf/GJdAKyiH26q5K+279jhBgiJR2RFsQJFyA4NnBnZ6cS7uP+SjoREyBiEFvSKSBS9BEXAAQKO3vX2PhsV946/XNxwS3ZWLQh8xRgZH4gVdvb2/U4QaLGw+GwHjWJw8EJrRcpdKLntQNAzGd3wuYWej7PWniBRcYec9whzLFoYdhX9b+xkF6c9+iuoE+IJ056vRYFogrjxdkS8+q9BkHsH/fqmi/aZL8w535yBSTWU2qcrLu7ALcJe4gCn752nmbjYhQpNn6vKBghevDDnMc0nFjAkL3R75+cdhFTVJyw+37zZwOHit83uma4n69Zl8DAZ6LYcBZ8vS4Kno7v4kQikUicjfweTiQSidO4EOE3CAe59tj/ic5DfiHK1FuAxPoRdbRFnQQn5/43xwNCEFerlWaz2SkSQjoFUXciuh6xhag4GYLweD65E0QnZR659TngaEOEAI6rjMAGzhGW5OSPRiNdv369js+jy178zms4eK454ooTL4Qb6US8cULoc+2uC6lN/FhfSfV+kfBLaqVZQIhjzrunW/h1fk/uE4v48Tnei9Fvijp6/YJSTo6q9DX3v30fNU1T02t8b0mqghUOBSfELkTFkwxcdHH3i5PsSJi9wCPt85rX/aDP4/FY4/G4tj2fz+v9YuTeXQhRbPJUA08z4FlE7PI2AM8Ja+zj5tllnWLhzZhG4nPgokwE13r9ikQikUgkEolEInEaF+Zfy4PBQKPRqOZsO1lwEgI5g/xC0J1UkpYwHA6rLTtGiP0z0sk596vVSvP5vBLP5XJZ/x6NRtUO70ICkWwnRTHq6pZ9iCKCwfL/3975hdh1VXH4WzPN7WFMjdZWCW1tEqlCn2wQX7R9UbQJ2vgHJMWHgIIIChYRjASkr1X01aJYLFJtES3mRaiI6JN/2pi0KWlMUiPGxkRroLkaJonZPpy9Ttbdc+9MhvSce2bu74NL7ux75u6119lnZdY6a62zuMi5c+fYtGlTk2nggQEv53AnZzAYNJkTcPWubFVVjQPoOnGH37/DneB4xzZmTbjzVDa5i6n5LkfsPRHv2LsuXE+xb4VT3vWN5R1lyrwfH0saLl682NTVR/x8TXIyY3ZB6Uj63fDY9DOWh0Dt/JeBp3inPvYXcPlimUP8HV9n7E0R8V4OMZDhPQ288ajPubi42GTRuL48s6LsyRGvieFw2JxL11dVVc259z4mMVjmeyhmM0THPQYozKzRXWyQ6AE5/+zChQvNno37Kx7jay2zQmKgz8+1l7XEfR2DZzEryfUfg5EppUbPcX4hhBBCCCHEKL0JKJQd7aNj7k6DO+OlIxkbvrlD7o6TEx3kceUHcLUswEsf/M55fDpCvLvugYuqqpifn28a5rmMMaDgjn1M33anzMsaFhYWRpraxVd0jOOTF/wzX290xD2bI9bmxzR1T7Evm/+5nvwpBDHjws9PnCPesfbHbnpNftkToswOiKUQQLMWd6Bj80yg6ZUR1+3f64GEwWDQ6MY/j/0r3KmP9fjeZDOm9nuWRVVVjb5jM0c/zvt1jMtycN374xXd8Z2bm2uacrp8/nlck//r8sRgyLgSm3h33T93mWODQ1+rf68H4MpzUQaEYnCmdPCB5rz7cePu8MdgTyx9ifvF9eBZSfFcldkZMXgFVzNO4hNMyrKNeF16kMTXVfaeEEIIIYQQQoynFwGF6GDEOumyoV0cK1OnY78E73MQ096jQ1s6amV6fOwJELu/x9Ry7/kwGAxYWFgYubvpAYV4dzn2gog13nGuGOTwcoMYlHBHqKyR9zKJ6PiXXffhahM/16nr2R3Z6ED5Wv0OrcvjjmK8ax0dZc8w8WOjYxbLEfyceKDIf9cde2DksyhXLBXxjI1459xLZlw3MaDhxGBT2e/A8eDUYDBomiHGjI24/lgi4sS+ErE0Ylygy3UVS0UiUY/j0vTjOlw3vk/Ka8cDRzH4EM9X/L5yv3oQwPd7+WSHcSUbTix/iMf4d/g1G0ucYnlCGXyIdsNfZdZNuf5YGhKf7OH6Lb+zTz0UhBBCCCGE6Bu9CSj40wD8j/vYc2Cc0x9LF6qqGmleWAYcqqoa6eYfHWl3aq9cucKGDRu4dOnSkrT+eNcyOuteAuE19u7QxzX48d7/IPaIKEshXJ7Lly8zHA4bZ8vT/GNgwnXgaeULCwtNirxnH5Tp/7ERI9Ck3fsa491m10tVVSM9DWKgpgxIuJ5jICHW5rvTHVPQPZvBgwlVVXH+/PmmIaXfUffAi5dx+D7w8x2DUDFDIQaXYiApBqL8nMUAwNzcHBs3bmwe3RnLY/yOeNxrw+Gw2b/uHEfH38f8u+P5d127Exu/O+55YMRZdqLjHPUf+12UGTZlkM5/pwzELRfEiFk4vg4PrnlGTpwvyuLncTgcNk8hiU+UiKUnMbgX9RLl9zl87vJpJP57ZYDDs31cb7FcJz7tQwghhBBCCLEUG5c23bkQZv8E/gP8a8qi3CIZJINkkAwFd6aUbp3S3J1iZueBo1MWY9b3m2SQDJJhKbNkh/U3sWSQDJKhrzKMtcW9CCgAmNmzKaX3SAbJIBkkQx9lmAX6oGfJIBkkg2SYdfqga8kgGSSDZLhW1HVMCCGEEEIIIYQQq0YBBSGEEEIIIYQQQqyaPgUUvjttAZAMjmSokQw1kmF26IOeJUONZKiRDDWSYbbog64lQ41kqJEMNZJhDL3poSCEEEIIIYQQQoi1Q58yFIQQQgghhBBCCLFGmHpAwczuN7OjZnbczPZ2NOcdZvZrMztiZi+a2Zfy+MNm9nczO5hfO1uW46SZvZDnejaP3WxmvzSzY/nfN7c4/7vCWg+a2Wtm9lDbejCzx8zsrJkdDmMT121mX8v746iZfbhFGb5pZi+Z2fNm9rSZvSmPbzGzC0Efj7Yow0Tdd6iHp8L8J83sYB5vSw+TrsdO98SsI1ssW5zHZIuZPVssO9wPZIdlh/OY7DCzZ4fz965NW5xSmtoLmAdOANuAAXAIuLuDeTcD2/P7m4A/A3cDDwNf6XD9J4FbirFvAHvz+73AIx2ei38Ad7atB+A+YDtweKV15/NyCLgR2Jr3y3xLMnwIuCG/fyTIsCUe17Iexuq+Sz0Un38L+HrLeph0PXa6J2b5JVssW7zSumWLm/F1aYtlh6f/kh2WHV5p3bLDzfi6tMP5e9ekLZ52hsJ7geMppZdTSheBJ4FdbU+aUjqdUjqQ358HjgC3tT3vNbILeDy/fxz4WEfzfgA4kVL6a9sTpZR+C/y7GJ607l3AkymlxZTSX4Dj1PvmdZchpfRMSuly/vF3wO3XO89qZViGzvTgmJkBnwJ+fL3zrCDDpOux0z0x48gWL0W2WLZ4HOvSFssO9wLZ4aXIDssOj2Nd2uEsw5q0xdMOKNwG/C38fIqOjZiZbQHuAX6fh76Y03seazO1KpOAZ8zsOTP7XB57W0rpNNSbCnhryzI4uxm9SLrUA0xe97T2yGeAX4Sft5rZn8zsN2Z2b8tzj9P9NPRwL3AmpXQsjLWqh+J67NueWM9MXaeyxQ2yxaPIFndsi2WHp8bUdSo73CA7PIrssP4mXpZpBxRszFhnj50ws43AT4GHUkqvAd8B3gG8GzhNndrSJu9LKW0HdgBfMLP7Wp5vLGY2AB4AfpKHutbDcnS+R8xsH3AZeCIPnQbenlK6B/gy8CMze2NL00/S/TSulQcZ/Q+1VT2MuR4nHjpmTI+ruT5ki2WLV0K2OIs15th1Y4tlh6eK7LDs8ErIDmexxhy7buwwrD1bPO2AwingjvDz7cArXUxsZhuoT9QTKaWfAaSUzqSU/pdSugJ8j5ZTRlJKr+R/zwJP5/nOmNnmLONm4GybMmR2AAdSSmeyPJ3qITNp3Z3uETPbA3wE+HRKdXFSTiN6Nb9/jro+6Z1tzL+M7rvWww3AJ4Cngmyt6WHc9UhP9sSMIFuMbHGmF9edbHFNl7ZYdnjqyA4jO5zpxXUnO1yjv4lXZtoBhT8Cd5nZ1hwR3A3sb3vSXAfzfeBISunbYXxzOOzjwOHyd19HGd5gZjf5e+rmJ4ep178nH7YH+HlbMgRGom5d6iEwad37gd1mdqOZbQXuAv7QhgBmdj/wVeCBlNJ/w/itZjaf32/LMrzckgyTdN+ZHjIfBF5KKZ0KsrWih0nXIz3YEzOEbDGyxZmpX3eyxSN0Yotlh3uB7DCyw5mpX3eywyPob+KVSB13gSxfwE7qDpYngH0dzfl+6nSQ54GD+bUT+CHwQh7fD2xuUYZt1F05DwEv+tqBtwC/Ao7lf29uWRcLwKvApjDWqh6oDfVp4BJ1ZO2zy60b2Jf3x1FgR4syHKeuQ/I98Wg+9pP5HB0CDgAfbVGGibrvSg95/AfA54tj29LDpOux0z0x6y/ZYtli2eLZtcWyw/14yQ7LDssOz64dzt+7Jm2xZUGEEEIIIYQQQgghrplplzwIIYQQQgghhBBiDaKAghBCCCGEEEIIIVaNAgpCCCGEEEIIIYRYNQooCCGEEEIIIYQQYtUooCCEEEIIIYQQQohVo4CCEEIIIYQQQgghVo0CCkIIIYQQQgghhFg1CigIIYQQQgghhBBi1fwfCBdCfyXxussAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 169199 33392\n", + " Min thresh = 1000\n", + " Not Sliding\n", + "\n", + "\n", + " Winner = Not Sliding\n", + " FP Patient = 236s_iimage_1139765223418_CLEAN_ClassS_66-194.roi.nii.gz\n", + "\n", + "\n", + "236s_iimage_1327616672148_clean_ClassS_158-286.roi.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADYCAYAAABberBAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADXZklEQVR4nOz9eZRk+1Xdie8bkTHnVFn1Rj1Nlh4gJjEKJAwGgwGDsDANNLj9Y7RlbLcxbhsbsNs03QbTxkweEMjGRphRDF4MxsYgm6mRMJPMjBBoRELS03v1KjNjysy4vz8y983PPXmjhlf1XkZVnb1WrqqMuPd7v1PEyr3PPudblGWpRCKRSCQSiUQikUgkEokbQeu8O5BIJBKJRCKRSCQSiUTi9kMKColEIpFIJBKJRCKRSCRuGCkoJBKJRCKRSCQSiUQikbhhpKCQSCQSiUQikUgkEolE4oaRgkIikUgkEolEIpFIJBKJG0YKColEIpFIJBKJRCKRSCRuGCkoJJ5yFEXx20VRfPR59yORSCQSpyiK4o1FUXzcdV5bFkXx3Cf4nCd8byKRSCQSidVCCgqJpxxlWb5PWZY/c979uBqKovjkoih+oSiKy0VR/ElRFP+mKIqN8+5XIpFI3MkoiuKfF0XxB0VR7BZF8XtFUXzOefcpkUgkVg23Wpi9Vnv5d3HiakhBIZFoxpakfyLpQUnPk/SQpK871x4lEonEnY99SZ+i4+/gz5X0zUVRvOh8u5RIJBJ3PfLv4sRSpKCQeMpBW21RFP9XURQ/UBTFd51EpH6zKIr3KIriy4uieGdRFG8piuLjce/nF0XxuyfX/lFRFH8ttP33i6J4e1EUbyuK4q9QcS2KoncS/XpzURTvKIriW4uiGDT1sSzL7ynL8r+UZTkuy/IxSf9G0kc8ebOSSCQSq4OiKF5QFMWrT6JRby+K4l8VRdENl33SyffwI0VRfF1RFC3c/wUn39WPFUXxk0VRPPN6nluW5VeWZfl7ZVkuyrL8JUk/L+mFt3BoiUQisRIoiuJ5RVH8zMn37G8XRfEX8N7PFEXxV/D75xVF8Qsn//+5k5f/Z1EUe0VR/K9FUXx0URRvLYriK06+k99YFMX/9kTbi33Nv4sTV0MKColVwKdI+g+SLkj6dUk/qeO9+TRJ/7ekb8O175T0Ykmbkj5f0jcWRfFBklQUxSdK+j8kfZyk50r6M+E5/6+k95D0ASfvP03SP77OPn6UpN++sWElEonEbYsjSX9H0iUdE/qPlfQ3wjV/UdKHSPogSS+R9AWSVBTFp0r6CkmfJukeHYsC33ujHTgRfD9U+d2bSCTuMBRF0ZH0Y5L+q6R7Jf0tSd9dFMV7Xuvesiw/6uS/zy/Lcr0sy+8/+f1+HX9nP03HDq+X32R7V0P+XZyokIJCYhXw82VZ/mRZloeSfkDHf4B+bVmWB5K+T9KziqLYlqSyLP9TWZZ/WB7jZ3X8RfyRJ+18pqR/X5blb5dlOZb0VX5AURSFpL8q6e+UZfloWZa7kr5G0mddq3NFUfw5HX8xX6/4kEgkErc1yrL81bIsX1OW5WFZlm/UsbB7RqQ9+T59s6RvkvTZJ6//NUn/tCzL3z35Xv8aSR9wvS4F4Fsl/U8di8yJRCJxJ+HDJa3r+O/deVmW/03Sj+v0e/SJ4v8sy3J28jfyf9Lx38a3FPl3cSJi7bw7kEhIegf+P5H0SFmWR/hdOv7SvVwUxZ+X9JU6dhq0JA0l/ebJNQ9K+hW09Rb8/56Ta3/1WFuQJBWS2lfrWFEUHy7peyR9elmWr7uBMSUSicRti6Io3kPSN+jYgTDU8d8Lvxou43fsm3T8HSxJz9Rx7YOvZ5M6jpq96Tqf/3WS3lfSx5RlWd7wABKJRGK18aCkt5RlucBrb9Lx9+QTxWNlWe6H9h5cdvETQf5dnGhCOhQStw2KouhJ+iFJ/1zSfWVZbkv6CR3/oSpJb9dxkRjj6fj/IzoWJ96nLMvtk5+tsizXr/K8D5T0o5K+oCzLV926kSQSicTK42WSfk/Sw2VZbuo4haEI1/A79hmS3nby/7dI+mv4rt0uy3JQluUvXs+Di6L4Kkl/XtLHl2V55aZGkUgkEquJt0l6OmvP6Ph79I9P/r+vYzHXuP862rxQFMUotOfv5SfSXg35d3FiGVJQSNxO6ErqSXqXpMMTt8LH4/1XSvr8kyI3Q8GKdaIA/xsd11y4V5KKonhaURSf0PSgoijeV9J/kfS3yrL8sSdlNIlEIrG62JB0RdJeURTvJemvN1zzpUVRXCiK4umS/rYk591+q6QvL4rifSSpKIqtoig+43oeWhTFl0v6S5L+XFmW777ZQSQSicSK4pd0TPL/flEUnaIoPlrHNcW+7+T910r6tKIohifFxb8w3P8OSX+qod2vKoqiWxTFR+q45tgP3GR7kvLv4sTVkYJC4rbBSd2DL9axcPCYjv/o/FG8/58l/QtJ/13S6yW9+uSt2cm//+Dk9dcURXFF0k9LWlas5u/qOE3i208q3u4VRZHFZxKJxN2Cv6fj79hdHYuxTUW6fkTHaRCv1XGu7rdLUlmW/1HHRXC/7+S79rd07Di4HnyNjqNqf4Dv3q+4iXEkEonEyqEsy7mkv6Dj78ZHJH2LpM8py/L3Ti75RklzHRP9V0j67tDE/yXpFScnRLhOwp/o+O/jt51c/0U32R6RfxcnlqLI1MTEnYqiKJ6n4z9keyeFwRKJRCKRSCQSiTsKJw6H7yrL8qFrXJpI3HKkQyFxR6Eoir94YvW6oOMI2Y+lmJBIJBKJRCKRSCQStx4pKCTuNPw1HddY+EMdn6PelPebSCQSiUQikUgkEombxJMmKBRF8YlFUfx+URSvL4riy56s5yQSRFmWn3hyesNOWZZ/sSzLt593nxKJ80J+DycSicT5I7+LE082yrL8mUx3SJwXnpQaCkVRtCW9TtKfk/RWSb8s6bPLsvydW/6wRCKRSJxBfg8nEonE+SO/ixOJxJ2OJ8uh8AJJry/L8o9Oqph+n6SXPEnPSiQSicRZ5PdwIpFInD/yuziRSNzRWHuS2n2apLfg97dK+rBlFxdFUbZaLdktQddEURRqtVpqtVoqikJFUVSv+9+1tbXqfd5flmXth+21220VRaGyLLVYLLRYLGrP9Htsj+0vFova+4vFQu12W+12u9a+3z88PNTh4WH1HL8Xx9v0vPh/9pFzEtuJ70s6M5dNcxTv9/99TXwtjsXz6es5V1wnSbV5ZxuxP3EMy+Dnxfua5jvO6fW6deJ9fi2Oa9m6Xg1Ne9+vX097HNv1jG/ZHl/W3rK91nRv03iaxsL15nOa1vlq+/Vq/Wj6LCxri88ty1IHBwePlGV5T+PDVhs39D0sSe31UfmMZxV652xD7dfPrnZpIpFIPGWYal/zcnb2y/32wA19F+f3cCKRWFXs6rHGv4mfLEGh6Uu/9td/URQvlfTSk/+r1+tVf9gfHh4X5W+321pbW9P6+rp6vZ663a46nY5arZYWi4XW1ta0tramixcvajQaVWR+sVjo4OCgIvFHR0eaz+cqikKdTkfD4VCbm5taW1vT4eGhJpOJ9vb2queura2p3W7XhAaLBYvFQvP5XJPJRIeHhyrLsmp/fX1do9FI6+vrWl9fV7/fV1mWms1meuyxx/Sud71LBwcHVd8lVc+UVLVlcuPxuD9FUWixWFTEqNfrqd/vVwRoNptV/V1bW1O321W73ZZ0KiRsbm5qMBio1+tJkg4ODjSbzTSfz3V0dFQRYc+V18Dte87dnoUUC0KTyURXrlzRdDqtzf3R0ZEkqdfrVe15nfx/P/vo6Kia27Isq+dxT0ShwnMzn891cHBQE6L4g/1Xkct2u13Nneff73PeOTeeU1/neWm32zo6OtJ4PK7G7OsPDg6q16IIVhRFbT+VZalOp1O1OZvNagKN947712q1aoIV16koiqpNz5evm8/ntbH5+na7bTJdtd/tdtXtdqu9Kqm2X/nZ5I/h+fc8ey4ODw91cHCgg4MDtdvt6nPe7/erfepxT6fT6rPt+z0HFrii+Oi195ywD7PZrFp7j2M4HFbjKMtSb3rTm96k2xPX/B6W6t/F/c6WnvbwP9Sfunyg1h/++pPdv0Qikbgu/FL5qvPuws3ghv4mzu/hRCKxqvjp8gcb/yZ+sgSFt0p6On5/SNLbeEFZli+X9HJJarfbJSOFJgQmAibznU6nIjSLxeKM00BSRQRiJNwkieTCz4iRS5MkkiETkabIaSStTRFS38txmRCRwPo6t2tCabJm0kgSJal6Pbbl30n8KQAs62NYK52s05nr2Z7FDpM19snXuu0mZwLh+Xb/l83v0dFRjah6DJ4f95mOEf6f44h98rMsPPl9zmlTf5rEDvaLpD72y+Ohw4PrxD6wf56zOAa2zed6L3HdONdRNDEZ57pEUWGZo8TgvHFt3B+ubxSAIvg59P5zW9Hh0NRW0z6PaNoTtxmu+T0s1b+LN4udcvAj/+Op6V0ikUjcHbihv4nzeziRSNxueLIEhV+W9HBRFM+W9MeSPkvSX7raDSTwJP4WE/r9fhWxdCTdRIeRSd9DctlqtdTpdKrfSZpIZiIxZH8knSFfbk9SLULdRFZJKhlRdkTa0WSSSkZV19bWqjE0uRo4J5E8UWRoioyzn77eiFFeiyCeG0fR+dzFYlFL8fC1nHM+Jz7PpLUJJqJ2evh5HDPFBO8FklQ7HNxeUyqKr6dbxetPBw3HQoLO/Uy3Ax0IJPF8ZlNaDF8nefe4PSbug7j2XEuuIfc11zq6C7zWkmpzIJ0VUpalI3DNPV7vf4+Dn8eYUsN9EMVBPqPJkcLXriUUXEtsuE1ww9/DiUQikbjlyO/iRCJxR+NJERTKsjwsiuJ/l/STktqS/l1Zlr99let1dHRU2ewHg0GNeNvaPxwO1ev1NJ/PNZud5pUdHh5qbW2taqMpN9qEK5JpRkR7vV5FgG0FJylx5P3g4KCx/UjW/QyTSbsr+F7M3TZBYpv8OTg4qNnKTaxtpze5MpmWTgWaTqdTuTw6nU7lIqDTgw4Drw2j3CSaR0dHtbQKk0zPkdNMLBI4hcKkl+Q3RpT9b1EUVVoE4fHHaLp0nFZBcYRiTyTL3hPeHybFnj/PJ50Dvu/w8LAam+eLa0tybOJMocp9jikkR0dHmkwmNdGA7gNfE50b3FMUfvheUx9jKgUR159ijMfPFAy3GwUrOhK8R/y6050o7DAdhp9pioPcA5xPiiOcgyiseDzci/7Xn4eriVurjhv9Hk4kEonErUd+FycSiTsdT9pfy2VZ/oSkn7jOa3V0dFQjwCTnV7O8mwiZGPs1RrCb2iBIHExsmNvPe+gI8DWtVkv9fr8WrY/tM+IdCZmfScIViXhMUfCYSe7p6KCrwmQuzqlBQSE+w8/19SR8MdpM4hfhZ3AOY5Sbz29yehjM22+yzvt5vjaCogDFk7hOca8R8fVYn4B7rckxwlQNzk/sv5/T6XSq+WLaSwRTG5a5BAzOTST8Fgr4uaFjwAINn+H+ccx8LQp58f8UVDyPTUKNRamrgekYvi+O0c+M7V/t/dsNN/I9nEgkEoknB/ldnEgk7mSsTPgtRmMZte12uzWCR3LvSCbJG63fTZbyJtCO30QiTWIoBsQoMSPgvifWNHA/+EypTp44zkjmOF9NZCs+K0bao7MizltTCoV0akV3X9mOr2OhvDgPjMDzXpJ4Ev1IuAmKGRZcmHLQtH7RteK5iMUIOV6KPfGZMToeI/wmr9xzdGNE9wLXL5J1RuVp56fDJkbquc84B/H1ptcM7ukmgccpH+12+4yY4L5YQIvCAR0HUYDgXo8pD3QXuC3/y9oMcZ9znMscFHy96XObSCQSiUQikUgk6lgZQYERREb6XT8hEtpWq3WGwDq33hZ15ohHEh2j6SQm1yJmrFJP0mzy1URW+Az2gW3apdBk0faYCAsa7Ccj8z4ZwwSVfWfNBj/T8+kq+uwbyTDJM2sKuFJ/7IufEV0MdE74//HZFBq8jvP5vGq32+2q3+9Xc7EsPaLp/4SfH+tlSHVXip+7bF19PYWSuA/ifHCsdEjYtWNBgalBV3t2U2HGKEY1gZ8v/04hj+vG66P4FUWSJjLf5HZgW95z/IxSLFgsFjVXUVwziyxxvGyDcxn71STQJBKJRCKRSCQSiTpWRlAwaXLqAHOYnfvfJAIw2kvSxzoHbtttmMCaDPs6HhUZyVMkYXQ/rK2taTgcVuTdrzmSzaP3WB+BNQdi8UKLC/EUAxaKtCvA4+v1ehXx5Jw6ZcJkPTo9TLLcfjy20USN5D+ST9ed8LyTVPp+HuPp1+M8x9z56Byg2MKjBd2PyWRyZm9ZDKEgw7GT0HofOWXGfWakm2sS5y6SeTozSGYjWaWQ5P3BOfDcxxoMTWOleyWmk/jfmDbCWgFRgDCYisD+8V+PmfuT7fJf7kM6IPzZ5D5supeuEa6F+xrdBj5K1XvB6845anJvJBKJRCKRSCQSiWasjKBgwsQ/8pus1iTyFBTiNRQGTNRM0HmkYVOettuIiDZ9RqE9BtrReQ/JD8kon9eUtkEruf9lFJdzQBcHCRTJKx0FtOs3kScWqXN/bL2XVM2lxxdJNYlatKFHYSQ+k/1j3jtfs4jCYpquNdBEdOPYYnv+/2w2q4QEzpnviSk5HPP1WOQjgffccq0smLiPnOuIWDchps7wuU19ofgTHT8RFlMosrC/Xmt+LtwvPi+e6sCx0DETPztxHDwhwvf7c+m91NSfOP64H2K/E4lEIpFIJBKJxFmslKBAEYF2/Kb0AKl+KkKMLEZBgFZ/OgKiHXtZ39hutJzz/+6P++0Cj7E4XazzYEHF5IeRf44lpn0w8h2t5r1eryJsTYUIGfWPz/F7PO3h4OCg5hTxvWyzSTihTZ21B5rm/HqIsduMJ1Y4VYa1HyhKuR0KSHEv+fl0aMS95Ln2evFkgCYXRARTHzjH8RmxfsC1EMWxGM2XdGZMMUWBr1PsiWku8bl8Xny9qY5BrIHAeYjfA3E93TZFD+4nv04nSJOjhvvUa8e9HVOKEolEIpFIJBKJRB0rJyhEMSFW23eUli6FGO1lHn0kRLbcsx3pLKGkzZ+CAvsbC7fRKeCjC1lvwdFdW8FjZJuR7xjxd1+iK4J9IHFut9tVCgTHzzFG0YJk0u2wn65xEIkmawzEiK6vpTPE46UrIIJCBgmv++f6CRZNXBiQ+8eI7o8mAs/8ee4lPpOuFJ6+Iam2B7nO/pdpEXwm26dYtSzt4GrCFwn8smso7HhumZ7DcUShgSScY6FQ4N+jiLDMkRLb51z7s0dxKQoLbJufAc9ldANRyPN+5TV8XVItZSORSCQSiUQikUjUsTKCgtR8MoBUt94fHh5qNptJOms9l07JXJN1+eDgoHaCgYmoax+4D/1+v3ZvPOHBQof/b5jQsG6BawKQxJpwsabA2tpaVQ/AgoPvcw0GkyTWmDB59O9+r9fraTgcVtH7w8PDmgPC8xrTR0jE/D5JqGsLUMS4li2cog/nkiSStSeYakAhwGJIURTq9/saDofq9/tqt9uazWY1gSmmW/j/dm7E3HyOlYJV3IcWVih6WTChCOV0E/fF44x7j6KOxY7YX4+bTg+KMyS9cS2a3D3RhUAhj8S9KdWEz/H+iykssX5BFAoimmo60AXCuY194zz4d7oW/OO97f1LkSLOF+cpujESiUQikUgkEonEKVZCUIiW/abIuiPlJg8xuk2XgIkICYyJhMmYSXpMXTCZjxFpRl2ZL057tcdBgUJS9TzfG59LQkdBxUUOTXzcbpMF3yTbc9ftdtXtdmvOBOarcyzMU6d443GyGJ8FEM+P8/6XiQrRBUIRgmvJ+aO44znm3Phkh16vp36/X7VF8khiGEUCElWOi5Hq6DqJUfjoLGFtCbdFsu7rTGxj7YAIEmiDAoPnvKkuB90BXnuuudHtdmv94/iayP+yPhkUqKTTfcn2rzbmpqNCmX7gOhNObbEAMpvNamIP+xv3vQWImF7h65vcO4lEIpFIJBKJRKIZKyEoSHUhgLnw/OM/WqmZj89IOYkcCQZrJ5CA+nUSCwoC7CP7StIVazG4XToimtBEYklsGIF19DeSPZNVk2wS3JjaYTCiHO3jMVLsCLzFBkfW2c+mZ3iNKJawcn+cW9r+GaXnupDAmygy7YPrEveKx8u5p22feyD2y//3HJCsRqt/WZZV/+xEYP0NruGy1IQoiiwj4oz+817e1yQC0NnTlILQ1K9lfW3qC90zUUyI7VCYY1ueb4pC7rs/n9yHnAOPuynlIe7Z+FkiruW+SSQSiUQikUgk7masjKAgnRJY2v5N/ikASGfJEomDyVK0+M/n80qgoFuBVm+2EcmmnxPzs30NEesfkMSQ7LrNqxFGCwqOqtMqT2Ibawp4fBQ0OCbb6D1mOhUikW+1WrV0h1hXIhZkjGKCr+fpCZxv/lAIihFzp5PYgeG14zNitJ2IzozrAV0PPO3B825RgfPs17kWdrW4LRNmt8V/6YxxvymYXAvcZ00Enn2L8xLnju81CRTxudG9wTls6iPHzWfzc8p9yf3B9Js4xuicifUjfD+FDNfi4LgTiUQikUgkEolEM1ZCUGDk0UcBmkiz1gBrJvCPfZIKE66mNAKT4oODg5q9P+Z9L7PMRzLC/h8cHGg+n9dEDKcrxL76Ht4vqUZIY0oEr/d1tqz3ej2NRiMNBoOqGGSr1dJ4PK6lekT3gUmw24wFE/v9fs3R4fmKToo4P5FYu54Eo8hN70tn3SVlWWo6ndZcGJubmxoMBpULI4oRTi+5WhoG5zimDVhoYQqGhQumarhPw+GwqoNBxwydAhYV4rMjOBaDhDdeez0En+0y/YLjXeb2ibAw0FR/YBmiCML90pSmYiEkHvEq1YUatzWfz6t5iELd9aQseF967xpRNEwkEolEIpFIJBJ1rISg0Gq1NBgMNBgMNBqNqqJ5TUXnYiSaRI2kicKCI8kk676H5NDEgtH6o6Mjzedz7e3tLSWDi8VC8/lc+/v7tZztpnQHP3M2m1WCCXP5KS7QUdGUhuF6DXYmOHpvQmihg/3wfNBO7vcttJjkd7vdGsniUYqMFDOtguM1Ge/1elVfGLX2s+Je8PO9trxvNBppOBxWgoLXqixLzWazM5FuWt+brPUWJSx4cC+5H/1+vxKIvDau4+CikJ1Op3YCBoWluB+bamC4D9yzFGfiPSTfMSXE60BXT3TrNIkJMUUgilu+vuloTIonTY6BJqeEx97kivD/vYeY9kNnhfd0dHLEuW1CrJfA16JjJJFIJBKJRCKRSJzFSggKtrKz4NrBwcEZe3wkLzEP3cSSr5Og9no9HRwcaDabaTab1U4biMUeGUWNpI4E0K+ZwPnH/WeKAJ+3LEWAueMkv4zykuzGInVN5M+ujMVioV6vV7XBvsR0BlrVPb44rzwZwHNoUaLValVkvNPpVGMz+fYYYxSf5NfPdkqBBRMTedbZ4F7i/zkvnB/m0jO9gOTS7o9Op1MTGyRVfaAjJK5RjLozvYBClvcbhQf2s4nsx1MZ4tj5WnRMeL6X4WpW/2WpOtF5wv8vE0PiEZXxs8xnsHCnx9XkNIkpJE0iYBQQKEZyPVJMSCQSiUQikUgkro6VEBSkU+u7I9Mm6I4KN6UvkFxEokgi4foCdhKQBJsksvCjiarJtoWBpvoH8ZmMDDvyz0g5I/gkLm6X5Nj9iDneJuWxlkCTc4KCwtHRUTW/nhtf5x8TcIsKtJo7v9zvW8hgrQuvF/vmkyLikYieU6aBNI0jprH0er0q3SOKAARJPNMooo3ee+rw8LD2bNZIODw8rNwFdCd0u93aHmTajV+Pv3us0XnCPR7TSKKgEFMjls0bhRSmBcRIPIl0FM6M6OBg3xntp5BA0cifsSgYESy2yDlhO3xeU40EX8/iofGaCO6TKFwkEolEIpFIJBKJZqyEoMDoc7fbrcimSZ+j3SQ4JlN2HpAMmcTTsdDr9arXeTwdxQQWaLRF3z9+ZhP5jAIDSVUkTXQ1MGVDUuWaMAlnFN7zEJ0JjqA7Ah0jsXRO0H3AtIjYP7drEcbjp33e68XxxdQTugMiASW5tTuC0XYSP+baR3FBOhYvmEfvdfb+iOPm3iIBtaBjMsrChSyMuba2VtWrcKoD58f7yOvi4z65lyhgsbaB55MOnfl8flXrfnRDMO0gkneSc+5ROjQogLiPFoQoJnANPGbWI+DaXQ18LgWSKCJwfDfiHohCBMfAdujMaRIOE4lEIpFIJBKJRB0rIyiw0Np0OtVkMqlqCMQccBOPSJZoq2cUvdfraTAYnElrMKliQUKTIkm1ooqMhvPUCfff0Xrn8jOi7X7zXhJJRuo5BveZ99ht4XoTFBOkeuSWdRgknSH4fj4Jc4x+u38UQaKzgX33XPkaFv8zYbOo4zY8b6z74Os8t/1+X4PBQP1+v7a20rEQQ3GARL7X61WCk/fOwcHBGYv9fD6vuTG8F0wsSZK5F92mxZeYy+997b56XWINgIhYj2LZ5yYKNkYUXiIxZ0pNFCN4P8UXrw9FEkb2eZ3h9pucQ1Hco3jlPT+dTmt7ytd4//i7wZ9jzoHn2fuLx7j6uijGxfsTiUQikUgkEonEcqyEoCCpJgw4KmsyHCvk23HAI/tMNJin3+v1qjx31w4gQV6W4z2fzyWdWvB9D2sFmKCYqJEwshYBEVMeYi2GWNXeDgCTRp50QaLuPtHt4HZI4OjKiFF/RvtJpGmF970et0UICi+RxFJs8FgpJvi1SEI5Z1EEIfy8prQCjpsuABJIXxuPsmS9A4olkipRx6kmJq10YDACbkEh7hn3P6Yr8Fnx//43CgLul6+hM8Pvc14plHkeWDfA/Y5OHLoT4rpRaGJbcf6uBn624prQSRIdQPycxnXk55dzGVNU4v7KdIdEIpFIJBKJ2w9/8C8/TNo4vPaFARv/s6f7v/EXn4Qe3dl4woJCURRPl/Sdku6XtJD08rIsv7koih1J3y/pWZLeKOkzy7J87Bpt1cgIo/I86cERUdvtKSj4NISjo6PKiu4ItcnfYrGoIp4xl9xwG5JqZJHXR4JMot7UJt9rOhoy5tU35dT7Oo+LUVeDBI+uBs6zbf2xWKGf5VQK98drQiLHZ/hfE+V4mgBJXCSgBCP20W5Pwse0Fs4TC1NGO7z7FUUV77u4HiSXTINwX7yf6JDpdruNEW2KCrFGA/vX5FLgvMcUkCaHQZPYwn/5HI+bc+v+xxSMZQIN7+F7Fo24Xv53WeqGr2Vtk7guBmsccI6jw4Dvce7i/ctEl9tFULiV38WJRCKRuHHk93DitsYL3k8Hm90bvq2zdyC95jeehA5dG+VHfIAOB0vSgVuFfvjF/0IfcBJMvhF8+nM+To/+5gdf9Zr2bKHWz//6Dbd9J+NmHAqHkv5uWZa/VhTFhqRfLYripyR9nqRXlWX5tUVRfJmkL5P0D66nQRcQnEwmmk6nVeTb5McF+XxUn4lAPMnAxM/k27UImEcfI8MkbyQm0RIeSTXz0W2xNjki3M8YpTYp7na7VRoFiRkJ0dramjY2NioyayeH27FLgUTYc+HXfLShdJZodjodDYfDWl68x8hxUwDhSRZuJ+bWN50QEYUQv+/IutunoOD7eDyka244raXf79cs8V5Dig08bnKxWGg2m515VhwjU28sutgub9Gq1+tpMpnoypUr1V7wPZHoNiHuG5Jr9oepF0w7iIKW03QIigyuO9EkGliEIannWJqIO9fS+4Z7fpmYxGfHo1SbwP3GNnhqBFNOnI7B+eFebHKx8MjN2wC3/Ls4kUgkEjeE/B5OrD5azQT8A77tN/X/3vfaG27unzzyXvr5DxjdZKeeGP7St/+EPm/znVe54sbFBEn6wef89LE0eBX8zKSlf/rwB15fg4ubTJ8tCqk4579Fr2MMT1hQKMvy7ZLefvL/3aIoflfS0yS9RNJHn1z2Ckk/o+v48jw8PKyI3XQ6PRNdJ4nq9Xq1P/5Zc8HEwMRvNBppa2urqu5v+3lMlWD0mPnVrlcwHo8rYhmLxZn4+V9G26M9m1Fxv26CaheFr2WtB5PyKKT4ubPZrEYwSSxpA2deOYkkj2O0S4Tts8YE0wQoSkRnhaTqGEmKFhY/2D8KGhZQWDeCzgevw9raWjUeC0fD4VDj8bjqUyyuGNtxvQuKRNxbMXLOIyx5HGlRFJXQ4/XwPCwWx6eLRKGDpNbzSXGMzo4mcC/7/iiMcZ+yXoDnnHvKz/S9Fljsholry/55zzsNhMVAmSpCJwlTLig6XE/tAveRokWr1apSm7iWRky7oFBFYdGOk9sFt/q7OJFIJBI3hvweTqw6Hv38F+pb//E3N773vI4k3fjfPV968Tf15//wfApYv2+3kNQ5l2d/RP9AX/OHr76uaz/n33yJHvqaJ55C8ciPPqyXv+93PeH7bwX+xj/+29r+D1cf7y2poVAUxbMkfaCkX5J038kXq8qyfHtRFPdeTxsuwMZK+I4mm9SQTEdbOlMJSIRMVCNBj3Zy30eS5x8KBCTnkbSYBEunVn+SrhjxjLnbtMfzd0m16Cst4SapJqJ0YDBCG9M1/OP56Xa72tjY0GAw0HQ6reYmnsDAInzMWY/EM/aV60bC6vnzaz4O0uSd0Wg6O0xWLRJ0Oh0NBgMNh0MNh8NKIPL6uY6Gyf/R0ZGm02nl8CBilJ2k2HvLIoYFJ++p+XyuTqdTiWPuB9MDmiLfTImJaTfcY7GPdJ80uUi4h3lSiteUzoeYqsBneQzcl/wces9yzf07nSuxMCjnNdY5MOLYubeiABHTbbiOca/yPc41/7/MVbGquBXfxYlEIpF44sjv4cQqYPGRH6i3/K3TGgIvePpv64N7tzZY0is6+uAnZgS4rdEp2vrg3vLT14hP+vRX68c+4P2e8LO+6XmvvOXrdqN4zhf9nn7tU07G8Bk/2HjNTQsKRVGsS/ohSV9SluWVZX/8N9z3UkkvlU4rxJdlWau2T/IqqUZiTtqoRSmjc8BEhmJCtLPHIm6+L6YcRIIVr5VOySejvyRVPALy4OCgRngdRXfUtklooOPBY7aQwNdMHGMxQObIcyx2fYxGo8qhYFEnFtSj2NFutytC7teaak046ktSyus5l+6755Ck0QTd83h4eFilPLjuA9MeSP7twBgOhyqKQpPJpHbaw9XWnVF7rqVdMI6KW0yIBSnn83mN4HNNOFcUE5h64zH4ujiX3MsUFFiE0nuBqSgUADg2jpX7hOksJO7xM8L+2hnE69jvZd8X/LzRjWBQPLRwwD7Ewp9M3YipIkxbuk1SHBpxK76L+xo+eR1MJBKJOxz5PZw4VxSFpp/8oSrXpLd/eFt/8Kdfdt49uuvxdff/ur7u/tu73sL3PPu/S88+/v8yGeWmBIWiKDo6/uL87rIsf/jk5XcURfHAiRL7gKTGBJeyLF8u6eWS1Ov1Skk1q3fMhzYY3aXbIEYS+TsJMElHtLnT2WDyFZ8XnQIkR8y1j/eb1LodpnA4Hz+S79h/ktQYkY7klNFg95OCAsfo/5twuzYD7fFxbjwnMUfeUW6KGH5+jJzHAnicN4pETSSbYpCJvR0OnsuyLGtHSProSYswHl+329V0Oj3jsIjRf/eTe8HzZrcExQinMPhe1/KgY+Hg4KB2okkUfrh3Sfw9B26feyf+xNQGt02yz7FRpGA/uG88Dq5p7DdFDa8TPy/8HLCvbieKChaUmj4LFBj4e3wGi7nyc+z3I24Xh8Kt+i7eLHZujwEnEonEiiG/hxPniqJQe2tT/+FbvkHPWFs/794k7jLczCkPhaRvl/S7ZVl+A976UUmfK+lrT/79ketpbzKZVOTREWg6ESKpNzmKRNeEIUZ7YyR4Pp9X7zNqyZx0k5HpdHrm2bGugKTqOknVsZbOqze5b7fbFXllKgCfZ+JDUcFk13n/8VhIWs59nYUZX+MaE4yuU0jo9/tVxL3X62k2m9XGFEUa/8vnxt/9byTxHqN0Nj2EzhJa1RlRj5X5vWZ2Wpg4dzodjUYjbW5uVikd4/FY0+m06oPFBjpgmPLB2hitVqtKy6AoQ2LN9IWY8hHrSzi6HvdkUx0Bj8ljZRQ+CjWMwHvNvTbRccG1i+4bziOPy3StBDtyYs0TCnEeeyxOGeeL+55uH7bp8XqN6PThWJrgeXHfPe/LUiaWOZhWDbf6uziRSCQSN4b8Hk6cNyYv+VD9+29OMSFxPrgZh8JHSPr/SfrNoihee/LaV+j4S/OVRVF8oaQ3S/qMazUUiZsJAavkO7rc7/e1vr5eEWWTVBMRHxkZUwTsfmgiPkyxoFAh1XOvLViUZVkdP0k7NtM1fL3JHwUF6ZRMxog3o8kkSnQZkGwxEswUAc5tjK7zeRQW/DuJcqfTqchuXDMS/Jg37/k0gZVUiSDRfeH+8Cfmu/t+Py+OKZJIt2OxZDgcajAYaDAYnHETeA7c3mw2qxVQtNDg9WcEPkb6Leaw0COv8/M8Vx4rhYRIcF0DgnvRKSlcj5iWwDmOLoK4TxaLhbrdbi3qz7lkf5tSF9w2a5n4Hu5r99WCS+xf036P68qxSafFQSlixL4xfYonVVBkiQILRcMVxy37Lk4kEonEE0J+DyfODW/5hy/Sh33Kb+o5nRQTEueDmznl4RckLUsO+9gbbS9WhGe02GSOx/PR1k4HAE9vkOqFEh0BJhFnlDsSDIoFjKi7v8xZp6DgfpP0WwCxDT/a62kPj6TH8+FxxKi9CSQJG9apNs+0lvNZ7hN/7/V6VSTfbTVFt5mCwfx9pqS4rz6VoSm1IJJArwOLP8aaDr4mnipgJ8FwONTGxobW19c1HA7V7XY1mUxqz7NLgeIAhQ+eYGB3AiPiFAIoDkQ7P+ed4+Q6Nc2L18Rj9z6IxJrXUsjxe1yvpjQhp1FwzWJfSMRj/2M6jteOjgnPT3x2FJ88xiYXQxQf6AaJp5fwX64DHT1N44j/X2Xc6u/iROJW4uDjPljj+86nEnfizsHRT7zmvLtwVeT3cOJcUBTa+4wP0wd80u/q3z/j58+7N4m7GLfklIebhZ0GrIgf7e8kJjxi0STCBMEkizb76XSqojg+JpAnSJAUsuaBVC/6JqmWhuEoNiPpjkwz6koxwe36yEQTnFjgzq4AjodOBZKoGN1nkbll88z0EPfT4kE8CtFHMHo9HNknOfOckUBHi3uMADP1hDnxnAfOvfvcdLyjx+taBLPZrNoTw+FQFy9e1L333quNjQ31ej21223t7e1Vz6Dw4VoGruPhtsqyrNIiXAfB6+DTIqbTac3ZQHcChQSS7kh8KTQ0EVmmELjt6EAh8W+qj8B5Zx95XXTGsL9O4YmiHUUujjEe2ennc0wUKXg8qvvj9rjv4hxR0KAbwfswPs9oOvmCJ7VczxGWicRdj1ZbrVFzIbntf/xm/bfn/tRT3KHEnYYX/Ma7zrsLicRqodVWe2tTL/9n36j36Q7OuzeJuxwrISgsFovqmD3/8U+i5Lz4zc1N7ezs6J577lFRFFWVfhfFk+oE5ODgQLPZTOPxuDqRwIRjMBhoNpvVhAaSLrdFcuP/dzqdinjamWAxgYXxTJItgDDyzdMAaGunsBEjqCZx0WUhqUrFiMTO82JnhEUDX8dihxQoIgH1uByhj5F2pjVEQYGRes+V58vXmazzWrft9ZnNZpWo4bmcTqeVK+Hg4ED7+/sqy7LaMzs7O7pw4UItTcbr4XQOr69FIgsETL3x3LGwJ2sHzGYzTSYTjcfjSljwvR6PRa44zxRYojjg+3mSgQUW1miw6OF0H0b0SZj9GVhGlEm2/VwKO27He9H/j8IYxbR48oX7Z5HBAgVrmlC4omDBop1MsaErhukscX/yfQoU7ler1apEoZgelUgkmjH+1A/RD33zNzS+d6HV1/K60IlEIpF4Ipj/uQ/U9//bb9a97dF5dyWRWA1BgcXPSGCleq6/SR0Jymw2qzkLYtG7/f39iihMp1PN5/MaeTAYjYzpFvx/E3FibQanRiyzVEv1IpOO3ro4YoxmRws6+x2L08U5bUqpIInleF1HgPNHkcR9jUXtYmSdogsj+SSxTAuIxTQjoSXRNIn0mC0oMPJ9dHSkbrerwWBQiVCbm5tVny0o0R1CkcA1OWKUvElA8XgODg40mUy0t7en/f197e/vSzqNfvtekn8eg9nkKPE8cK+wDxbU4pxy/aIjhCkTFM38PEb46RhocgKQbMc2PHcUquIe8X1Mz6AY5vFyPqIY4D0Z3Uxxb3rdmcpAJ0OTGyPOTyKRaMabvupF+uQXvyb/qE0kEomnEGW7yO/dxMpgJQQFSWf+2GdEMeag0z7tiCxJismbret0KDD/3GTWBQcZ8SSxJalbljtOck4RJOa5UySI19J+HXPSJZ2JSNNl0EScoogQ+870DBJrEzwLJYw2R7LNObJzIKZyMELeap0ep3h4eFg7sYPCieeSpJvjZaqE2/a9vV5P6+vr2tra0ubmZu3UBwsGkXjH8fv5Tp/g3jL8PBetdOFPujTYHsm/9yFFGxJZCkt8Ngkz90hTKgDvjc/yM+Ke4OeMz/UP9zpfZ0pKFBB4PR0Ifk6sQcG+WaCIzp8oKHjfxfmKr3l+3Hbcw4lE4tpYe9qDescnPVOS9BGf8Bv6+gd+7Zx7lEgkEncPjj7mg/THH70yFC6RWA1BIRKgJpD0xUJvJIf+1wTFJIfWe1qtHR3ntTHnmv3iUZTss4kS0xwoEHicMfppUsXcdKle6JBkuinCzb5yvmg5X1tbq4ossl4Fx8Bxum0KMDEdI4oj7gNTNzhuOgtiLQu366MtHeGOwgpt8XQOsNbFcDjUhQsXdPHiRe3s7GhjY6N2L8dxNeIf90oUE0yQPR4S4kj2/VrT+pnok+BSROPa2AFjaz77zj56DEw7YY0P7r+4Xzj/fI+fIb7m352KwLFSLIguFn/OvB8pSHDefA/X3LCQ4baa0hl8P+fez4hrH5+XSCTqaI1Guvyip+tXvupl592VRCKRuCvxxr9S6vUfk9/BidXBSggKRVFUlnSSrhhBdDQ//rEfiYOkM2ScJMPv+9kUEKTTCvMx6mmbdxP5MGH2sZb9fl+9Xq8WTSacQ06XggslmlixToOkM1FjpllwLnkN0xRIOCnQUHQ4PDys6gHw2W6PR2E6Eh9PP4hFC1lvwGknRXF8xOfm5qa2trZq5JIRafeHhFM6tfhHQcPCSb/fr8bM/RAdLzHFwmNllJ5uk8VioclkUiOxBwcH2t3d1d7eXlWHwXNi8cJOGYo0nh/u4ehEYJ+aXBTeF1G88p6zYELRIu5ht8tUHa+Bi59GMaxp3prQdB/H2lSjgf1vWhf3nYJVFFDiZ5SuEO8rjzE6T3x8ZhZkTCTO4vdf9p76rT/7LyV1z7sriUQikUgkVgArIyjEPHNHYk3KGRFvtVpn8uqj/doR8KZIsXQa6fXxk7TXN1mvDw8Pq4J2bpckz+Sx1+udSV8wEWY02k4IEjmC0WsSYZMsWvxplycpdT94OoHTQEz8LXw4hWQymWh/f78qLuhrKfpEotvpdKr3l+XER4eFib/nP1bWdxSZRzF6Dbx2BoWMbrer0WhUtb0sykxSy7W5HsLMOgSLxaISSWKUnW2wfgGJKvca03csQlBMaqrNwdNAaP9v6jP74c8Q6wg0HVXa6XSqPjc5DZal4zTNO++L6QdeQ6a8RFExfo4pMNBRwXn3fDAViG15btkWRZcoaiQSdy2KQnv/+dn6Nw+/QsNWigmJRCLxlOPke/jbHv7O8+5JIlHDSggKks4Qav6BT3u1f0gyKSiwcN3VyAiJm+9xdNzgNT5SMNrAGTU24TORJ2miWNFEcKR6UThaxmNxOxLhSK5cbI59iycUmIT2+30Nh8Na5XwfvWiCHOs9kCjS7cAoPp0mJKA8LYLXUhChEMF1pH2ecyqpJupYPImnHfB6El6mjXh93L8mcuzaErF+gueL93jeSGopsnjNI6n2v5y7SJ6Z9sH55PxwjSK8T7zPl6UI8DPo+/g73Sd0s3hd3E/uoyg08fNkEcmvxc9wXD/3ORZU5R6JBSSXzUlT+kO6FBKJU/zT9/hhfVT/vHuRSCQSdy/yezixilgJQSGmHTRZupl3bVLiiHUkCyRhRlPEkdZ2E3QTCKYDUMAwQXKEnCkLzLenZZ2E0lHsw8PD6qhH5tRLpxFwEuhILqPAEuFxWSywiOAotmsNDIdD9fv9yoXhWgAWazhXkYzZUh/XLIof7r/dEX7dc8gxRoLp9t0fW9VJ2tvt4yM3e72ehsOhBoOBut1uTYyI1vsoKJRlqfl8XgkKdk4sE33sgPG4nJYRxR/fQxHCz+W/3I9EjOr7/SiisYDjshQCEu9ln5n4LLoZYn8pJsQaEE2iA/dIFFdi35eB7oEmYWCxWFT7qukZTekQfJ0Cor9fEolEIpFIJM4Txdqa2g/cr65+RXkUb2LVsBKCglTPtZdU5aHHav29Xk/z+VyTyaSymkuq2bUZjTbxoL3ZeeF2EphUusid7fi9Xq9KZZBO8/ZpzWY6QiR2vsepEk4jMFEnuTJhNgn2700R8lg7gFFlt0tnQixC6HuZomDSu7+/r8lkotlsVpFlkrfoEOHRiI7qR9IbiR1FmljrwpFu1yBYW1uryJ1JeRQlBoOBer2eBoOBNjc3tb29rY2NDQ0Gg0oo8NxFIu/XLHa02231+31Np1NJqp7JlADp1M3guhC+jnNv1wcLNvr9JrHCaBKJmJLjPUAxwfMdXSV0LTQh2vs5TjpFfK0/N3QSeJ+wr0bT54HOG4ICCb8LuOYeH09QoRDIz3pMd/Jnm98RdH1EwYN9SCQSiUQikTgvHH3E++nHvuffqlOkmJBYPayEoECSTIJOkh5Pc5DOnhsfUySisOAc+36/X5Eg5k2blLjugAWFppxskhKKIBQ1SLKiOyEelxht3rTBu+8koXZJuP6BnQccP0mlx8ACiuvr6xoMBrV0Bx4VydoGBJ0ITekZrHtg0Yf5+nRMWJTw+JbVH/DYPFae0BHFE6ebeA2abPCRzFIMabfbtVoH8V7pmETPZrPaUZG+14KV3TMxgs/xcd9dbZ49D342wX7FlB6iiRx77TxPLOzY1J8oELDOh6Ta/U1iAp/J9Jz4HP9wL3ou19bWqn3T1AevY9PnP46v6XUKfk3un0TibkPxwe+j93n57+qDulNJ6bVNJBKJpxplUaSYkFhZrISgIJ09dpHEkacQxD/wIzk0OXFk1kTE5NsCASOvUj2X26R0WcV4kmMikmASbpMhRulNqqPdm+SQJJD1FzzGppz7ZXbwKFDQoeBaAHZQMN2iaa2axJyYTx+P2IxOCq4dxxnTBXi/++41skA0GAyq9A2mUjRF8S0CUDSItQKiiNDkEuF6xBQUimScR7oHYrsUgbx3CJNmi2485cBoEtXiHmj6DDUdeRnvk+oiAR0R7lMcSxT2mupINKHJ1UDhrmldjo6Oaqd6+N44PzHNgvMU+9b0OUok7jYcbvT09Q/8mlJMSCQSiaces0/+UL3pxfn3SGJ1sRKCAklpPMKO/zZFMyXVIskmVCTEttBbUCAimeezWWDQRNHXx2r30S5N+HcKCkwVWBYFZeoAI7QkwVFkWUYYlzk/7GxYLI5PK3BBRs6pSTn7YmLudqNownoMFgGaQLu622X/WXSTxS8tJrhuwmg0qmpCeEx0iHhtfAyl3QWR4HttKQQ5FYJCCEUXC1Yk+Zwnz2+MmDftZToLTHQ9RxzPsn0c9zPn2e0b7CtJ9TIXR5NTZ5mgx33IsXMuovjFuYngfFI0iNfGPi97jWNin/gZXdaXROJuQvvSRe3el6c6JBKJxHnhTS+R3vDil593NxKJpVgJQUGqF0h0YT1Hm2nTl04LDjK1gGST0VKTQRM+W9FjtN+kN9rRSX5Mwk2WGXHv9/tV/xz9JuHnqQl+PYokfK5/jxF8knSKA1FEoOW/qbYDhYKDgwPN53ONx+MzLgr/y+MKTSY9B8yldyqACTfndZm9v+kEBBaHdB0H1rSgqEBxod/vn3GK+N+joyNNJpNaTQPPM10F8fSQ6CQ5ODjQdDrVdDrVYrGo9inFJpPn6FKILoQmdwPrF8Q6Alxb9p0OAuk0DYDCmoUWo8mVYTGItTUoulis8zjjXmKf3O+r1YtYBpN7/lBsopjAzwFFPbtu4vPpbmA/m+o6JBJ3O373a/6U3vDibz3vbiQSiUQikVhRrISgQDHBVny7BPy+/2U0Odqgl0U7TRpcaHA2m1XXRFJiEj6ZTCpRgO2R4JLEuK1IHmO/JFWnEljkkI4JTa/Xq0gcq8zHugaSagTWz+l2u2ci7rTPOzecKSWtVquK2ltoITkcDAa1tTLxii4Mz4/Jtvs7HA5rJzVwHXmkIMmcia/HzzoL/X5f3W63ciRYaFqWTkGHwOHhoSaTifb29iphoSzLM0UGmwQH10UwSfWaGFeridCUPsDn8ahT7t94DKXv9fN6vV7N5WIhgmJMHEfT56IJMSUoIroS7OiJ9zSlzrDo4rKUEgoqTekRURzzPvfnwp/T+XxeE7Rms9kZlwgFnJj6ca3UjETiTkTrfd9Lf/b7flmS9DWjfy0pHQqJRCJxHhj93D36wafn93BitbESgoKkWpHCWByOpNA/jMASzAdnIUJGu+loMBmyeBCPSyRZ5RGBrsVAp4SLG8YxtVqtyq5uEtNEwCKp8tjtiDg8PKz1Jx5T6euls8Q6ktImAcUFFE2yY7FErkWTJZ5pD55Pu0OKoqheIyk2AXa7TFdYLBaaTCaVG6HX62k0GlWCTDyNoKkv0ulJDTwdhE6MWBMgWt6ja4AnTtAhQBGDa9A07xFNQtmy9AgS4SZBwWNpSrMw7JKhkBH3L9thrQjuT7cVP7NxHaJriM+J+5NOEcJ9bvrcsOAn2/BrXOPFYlH7HHGMFLeWiRmJxJ2M6YtfoDe/pNR/3vnDk1fyj9hEIpE4L3zeA/+fPriX38OJ1cZKCAom2CSxkWDx5ICiKCpib/JPMscj/Hz8o8myo7cmGSZRJCi06xN2N0yn04qQmOC4DZNMR0ujzZzRVBLRGCn1WC1wWFDwXLG2hFMnSIaa0jYknSGzjrhPp1NNJhPN5/NaSoEdDIx2N9nYY448rfwukhit8e6vbekem+93kUi7EPr9vkajUdWm1/B6+uP9Mh6PNZ1Oz5zgwIi+589zyjnzetCCb2GDRUANrynX2/3zv1x3j4f7r0lQoJBBkYJkPK5VdCfYAWRRgnPGuaPI1lQLY5lQEl0IHF8Uo6LA4DHEtu3i8XXeMzFNyOtIJw6FDM5pFBOYsnI1F0cicaeh/Z7P1Vs+/Uhv+PhvP++uJBKJRCKRuE2wMoKC0xx6vZ42NzcrEsm8blrRp9NprVaBVCfHJhomDX7dYoJrHth1YFLhNk2i+/2+hsNh1b7fMzFm3rst9IvFohoPo8bS2boMTekcJtzusyPqkioybaHEhKnf72uxWFRpHdHS3hQVNmm3a8PpBU7HcAoFCVeTM4FwqoajwNGq79c8v76ehDtGyjudjkajkUajkfr9fq0dCjixbyaIFhMmk4nG43E1R6wJ4CKNnjsLFu4Hc/F9ncfl67iHLIwYkfCbXHNdYroE14/7iO6SmNYxn88rISYKIRRt7BzhCRhMO2GajPc165g0uSe4DhQS+GwKQKy/QYHF93rM3W639vmIoozXgGkN7g+PVOVe8Xi5r6P7ZpmbJJG4U/GZP/Jz+rzNd553NxKJRCKRSNxGuGlBoSiKtqRfkfTHZVm+uCiKHUnfL+lZkt4o6TPLsnzsGm3UTnfwUYD+v6QaWSMRZoE4k3QTOhMDX+u0BBNmExAiRjEJ1jFYZlv3OHwkI90VJil+L9YNcMFH1w6wA4MpBL1eT+vr61pfX6/GYLeC58PXxuJ47qP7ZKFid3dXk8lEUp2EuY8xxYQiA63zft2pGP1+vxI+JFXjI3lk4UYXVqRjYzAYaGdnRxcvXtTm5qZ6vV4lCrE+hZ/p+xiht6BAcSZG7bl/Op1OLUJOSz5Jvx0ifp1iFEm2+2rBxnPkOYjOEotG0WXC8XIduWejQ8XX+DPgve/TMZal3Eiq0nTsXqCTgWlBjPTzc8TxNX1mvG6xyKPf877gM66WauGxxmdE0YW1JOL8RcQ5WWXciu/ixN2J9ns8R5/1oz+rT1t/q/JoyETiiSO/hxO3Cq3nP0+f/f0/pY8bXFamniVWHbci/Pa3Jf0ufv8ySa8qy/JhSa86+f2qIGFjBJUR5GXFCdkGBQe/Rss3rd7RXUDiQfJtEuQovkk0I53LBAi/x/f97GhNj/ZrR9FjpJSnXvAepkUwkh3z0nmtCxTSARHzzd0mUwLoFrnaGrJwJK3zFCbW1tY0GAyqIotOj/B8mfgOBoOaI4M/3CuSzvSVc+Nn+zULDdw3RlxnRrRNrqMw4PmPToNlKSgULLj/OIcWF+hgoWAQT3PwNVz7KJzF1BkKSbFIJJ8ZTyWJtU643+PniAJerP3QhPj+MnK/LJ3DnxH2I7qeWITRiMLGbYSb/i5O3H2YfsoL9Hv/aEufs/mI1lspJiQSN4n8Hk7cEpTdNX3O5iMatlJMSKw+bkpQKIriIUmfLOnf4uWXSHrFyf9fIelTr6etJqLBiDBJ4bJCjCQHkUgzih2JUyzyFu3cdj2Y5Dcd03i1MTF/nASJzgVawZl6QSHEkeuYThHnh/nky0g2CxQ6cs7jNU2OZ7NZdQKERZVIxEiG6ZhgbQcKGRYjLCjwmFBf770wGAwqMcF9Y40HP6uJKMa6CKxLwTlz7QjOHRH3ofvGQqJSvXioEcUOtt9EVikwue0ogHlPNgkRXvemPerXKQ5QVPO+iuJB032xP+xDFEy4F+0QiJ/zmKLD9JdlcxUFQ44xFiuNnwe6brgmy5wKq45b+V2cuLvw9he29Ucf9+/OuxuJxG2P/B5OJBJ3K2425eGbJP19SRt47b6yLN8uSWVZvr0oinubbiyK4qWSXiqpsqibPDtiGq3kJnSxvgIr7psU04pusmySOxgMKiu1Sa2jmiYoPKJQUi2CbVLPgowx/5yEj/b6pjxw3+djDff39zWdTmskcW1trUp3cC2B8XhczYnrJxAknIYJMcm1j8FkNNyukP39/Ypwx9oMnEPa4D03XEOTt9lsVovA+1oWNiyKolrjzc1N7ezsaDQaVc/ztW6fwoVt+hQSKCJQsPF78/m8lroRC1x63piuEOeLc05nifdItNbH9AWvidvgNd7bvIfv+166WShyMF3C6Q4+pYRtxGeVZVmlf/h5/rfT6Vw1VYBCGV0nkmrCBN+LYk4ULLw3oggY0yliGoU/z14PO3JiSotFBs+dr79N8E26Bd/FfQ2f5G4mEonEHYtvUn4PJ24RytvKIJm42/GE/1ouiuLFkt5ZluWvFkXx0Td6f1mWL5f0cklaW1srJTUSIUar/cd+t9utcv5JpBjNJWEuy7JWaNCkKhJE98FRb5OQk/5WIoWf4+f730gOmYMeI+q0qHc6naouxP7+flXTgFFmk2ymYLhoo3Ra34FuhhjVbbfbVV2GaK3v9/u1tlnHIRZaZITZfePcMVJNy7mFhaOjoyptY319vXb843w+V1EUGgwG2tzc1NOe9jQ98MADNacFyWNMkYkiDtMcWFeBEepIIrl33A7/3xSp9/i8X71/PH6uN+F2ovWee4mfAUbuWdDQY46OCZJwCy+8h/PHNfO+jP3mfmy1WjXHSazzsFgsqlMZmsSHmHK0LL3Ar8dTN9wuHQ7eA5xPClfcAxQmvL/pQPEcrjpu5XfxZrGzvOJqIpFIJBqR38OJW4k3/d8v1Mv/8svOuxuJxHXjZsJvHyHpLxRF8Uk6ruK0WRTFd0l6R1EUD5wosQ9Iuq6S0dE+bsJzdHRUK9Q4GAzOVJpnZNaE0DDBiKSD/2ck2dc2ETMTREbmDZO5+HuMqMaoPlMdLBKYALMgHQs9OhLP2gfMHWe0neP2OKI9nuSXEXnWOiBhjekjcS0MOjUo7rC/sRaASWmn01G/39f6+ro2Nzer/nu8UUDxs3nSBms9LKsFwWe6H03z1OQu8HrwPu4fCh+cy2XEmXuWIkucT9ZUYHFEX8P/W8wqy7IScez+sDhi5w5TALhv6GDwfmXhSYNpLx4H62h4bfxeFL14P+eabS4THtjXJqeD32chUTsX/P1BAZNrehvgln4XJ+4evOFrXqiP+bjXnnc3Eok7Afk9nLhlONgs9VFZ0iZxG+EJ11Aoy/LLy7J8qCzLZ0n6LEn/rSzLvyzpRyV97sllnyvpR67Vlok2HQFMI2i1jk838KkB0YEQySlJq6OTzAmP1/taRn+ZMjGfzyWpIvVOg4i565HINIkYBgko6xqQ4MYcetY38PGAPLGALg33P5JCzk1THQLOvUkjBQSKLRQhojOAYgZdAZwXkkOSf5P1wWBQnWjhYyOHw2FVnDHOa6zT4DltqvsQ0yC4LrHwZIzSU0zwXuQ6SPW0jEhUue/ifuG6k0RboPAzKcBxnfkM7geKCV5v3+M90FQbge14/y3rPz8T7gNracRnUBikiBOdHNdyMVzrPX72KaCxIKXXPq7P7SAo3Mrv4sTdgaLX0+Gf/WD9o0/7AX3bQ68+7+4kErc98ns4catQvuj5at8/Pu9uJBI3hCcjQfhrJb2yKIovlPRmSZ9xrRtM0JxPHSPoTlFgPjqJI/PYmTPuXHHfY+Lk1y0UsEhgtPOTcJKg+VlGjOT6X5I9R2hJLk3sXPTR17hIIeFIM8kuI77SWcHARIrRX4/Npyr4d9dw4DGbvV5Pg8GgEjEWi0VjIUT+0JLutWJhTKZOsI6B6zQMh0NtbGzo0qVLuu+++zQajar5ns/nGo/HZ8QSPotpKL4nigok+ZwTzwOj6X4tpjxE9wWFB+/n+IyrORS8FkxtYSoG96bbYv+YdsA9SUJNIu1jOnnsaHQ4cJ4dzffnxnNheOwWD+wqiuJfdLPE9BK/53WiaEIBy+tMkaJJvFmW0sR+Mz2Cn6XbQVC4Cm74uzhxd6D1jKfpVd/17efdjUTibkB+DyduCH/p3/1nfd5mGlkStxduiaBQluXPSPqZk/+/W9LH3sj9tHFLqorkmSiQALVaLe3t7Wk8Hms2m1W1DRwlNmkZjUbq9XoVYWK+eK/XU6vVOuMKcF+YHmCiL6lGQg4PD2t2/xiBpx2e1noT35i7fXR0VKUw0AXAiHG3260Rd0afB4NBjfixcKUJ03w+rx296Ln13E2nU43HY83n81rdCYsAHisJteePVnk/v9PpVHUeTNDplKCjwKR/bW2tKsR4zz336MKFC9W4Yx0H75ejo6OqNoTrVnje/exYSyESfTolvK/8vv+NDgKPgUdoMtXB/zp33/uK4hMdGTGib/JMgYauAdv2o0vEa8R6Fu4H19+nazB6H8m6BS8juk34GufHKSsscEnRwH2miMY1dTvR2RNTGuJ+omBngZKCBFOb3C/XEGE9DQoQtxNu9rs4cefjbV/6Iv2Hv/GNknrn3ZVE4o5Efg8nEom7DStRwtyCggm4i/Y5zWFnZ0c7OzvVH/0mvSToLAzHqCtPfCBJoc2adQJIpqI7QTq11fv/JDsklTFiGqPHrKEQCRzbYFuOnpK400ruflJU8PMp0nBO3O/ZbFaRb5N2uyRMiCVVRSCbiFwk+0xFYN0Cjnk6nVZiQFEUGg6H2tnZ0fb2tjY3NysXBR0DFAQWi0VFSnmkqJ0cFipIgOOJC1FEotPCc01iScIZ0yYYAScpNYnl6zFSH4+HdN+4V+hccJ+jqOD7mK7i/cK90e12a0ICP48WkaKYQFGA6+o+eW+x3gfXKqbGWADymP1+U+0Gu2HimkWRwn2hK4eITgcLD1wnXptI3Ek46ksf0EsxIZFIJFYJaw89Ta//+ov6yMEvSFo/7+4kEjeElREUSLQc/R8OhxqNRhWxXFtbq6LO0ULv6KJ0SuqY5x6JbpP13Yi1DUhWTFT9XBJNE6tozybhJCmMr3EeePRiJKkmScwFJwFkVXsLL6zLwCit+82Ui6Yos9MSYtpGJHQxHYDv01nh51rMcCrF5uamtre3tbW1pfX19er0Cc8714f1DixKRBs9haYIijBuN6ZMxPQBri+v416m4BDXvCk/39dSTLoakY2pCP7/smvZL+8ZfjZ4XdO9FAE859GV47HxJBU6cOhwocuBrhULBBxXHHPsX5NAx+sozDSNj58vrzf3UQoKidsda896hnaff3/1++TZ83PsTSKRSCSasNje0O9/5HcqxYTE7YiVEBRYoM2kcTQaVVFqk1rb9g8PD2viAKPTJtQu3sfIPnP+GbkmCaE7YTabnYmGWyAgmbFAES39jJK7hoMJnYmw76d7gsSP5J4pF54vF6n0M5kGwSKLtIEzEuyxWlCwBZy2+yZi6XadHkGBw8IH59DpCHGtLVQURaF+v68LFy7onnvu0c7OjjY2Nmq2fs6P59btO12Ea+VnUqwiifTe8zNY74FEO+4PR9DpauE+NjllX1jEMqYIMNoexS33IUb2udeawOi85841DezgoUuFhL8pNYUCDYUFOkdY68Trz/oYUajjHHAe+Hwee3k9IovbiWIH9w/nSDr9LHkN3cdE4nZHsbamN3/mQ/rNL/mW8+5KIpFIJJahKKS12yvFMpEgVkJQkFSLMA8Ggyrfu9/vV6cqmJw7mm0xYXd3t7L0d7tdbW5uVqSJeewmbTzCz6ClnHnxMYpsUmSXgsHz6+Oz/B5dE+PxuOao8PskViToTNVgBJvkzRFWVvSfzWa10wCiIOCxNI3T4/K8s94E55EnD3iMtrPPZrOq0KPbtONhOp1qb29P7XZbo9FI/X5fly5d0tOf/nRduHBBo9GoRuyjrd19mM1mlbAgqZYO4/njuCkoeK14ogMFgpjaQDu+//UeZcTdNRPcTwo8nHuOzX3kc2Mag++1UNIkQHA/0zniPcHCg76WBJzkezKZ1I7Y5PMt5DU5U0zKWTyUKRN+Dk9aiI6Wg4OD2pw1IQpeHBPTJ5bdF0UF95lpIonEbYv/ep9e9fDXSRqdd08SiUQisQRv/scv1E98wT9TuhMStytW4q/lsiyrCLMkDQaDKprqonGM6kdXgUkKSW3MVadNPtqwTd6jrZtHOEYCRnLXVDSP15HYspAgRYh4j9vjfZE4UWQg6fR4mkgpj2aMdQ4MRsFNHF1jgacdmDRHOz2FCxNRP5fuAosUGxsbGo1Guueee/TQQw/Vaid4TE1z73ZYcNFktyzLmhBjR4pPMogFNp3u4X1E1wf3GIUnj5M1JkhkKaDEGgExgu5nxLUwIlGno6FJcODeitH9uEdj6k+cb7YXxxgdBtxDPPkitu97ohARwfGx/02/+5mcK78fRTn2h8KP++S9ei1BI5FYZTwwvKJ72ykmJBKJxCrjqFfq2Z0UExK3L1ZGUGC00wUZ7TKIBC6SDEY8LSjEPH4TDQoGFBRMIngPSaH7GaPIrEUQ87VjGgSJCwlNE2lyO9Fd4HaaRA5JZwpRRjj6GnPvY184R7PZTPP5vHb6gd9n4Ui6E5g+wHoVnmef7GCHw8bGhi5cuKBLly5pNBpVEX3m2zNVwH1lFJynaZCwet1ZtJHEMqbMMHod0wwoEsXCidxbJNleR++JeCrG9YDr00S+/TrFtrgvm9r0HEbHTqvVOlO8Mt4nnYolJN/87NDpE90CFp+uNQfx/ShM8Jl0hvCa+Hnh+xTw3Efun0TidkPR6erKp32Q3nv9p867K4lEIpG4Cmaf/KFqPXfvvLuRSNwUVkpQILkcDofVUXpNpCMW2jMRcP0EE1e6EZoIuFSvYcATH5gCwZxwP5epDY54075toiqd2udjnyWdIckkgiZqJsRML3DfPUYfH+n6EZEg83fa9jmnvoZE3U4Cp5W4z0wrcHpKu92u1U2I0eCyLCu3g4trrq2taTQa6dKlS9re3tZgMKg5OUj4mwQFp8tQFGC9inhkJOc/1gHgfEfXAd+PRRZNRv0Mv86UDaaPzGazWoQ+ItY0WJba0AT342qCBUUt760mkWIZKCbRocJ76VKI4l0k68ueHQUeCjb8fPp1Cn7+YfFJz43bjn1YLI5PibleoSeRWEW0tjb0X7/+m7Te6p93VxKJRCJxFXzy//vf9KU7f3je3UgkbgorIShIqqzjPqrQhNDkgwTJ+eq2qJdlqX6/r9FoVBXyiwQkRpcZuXQ03xZ694cRb5NsRtoJEivfz8g2I/msYcBifSTdkqpigY7kM9rdVHyOAsTa2lpFxFlokCkRrk1hF4IJvnRaaDK+Tqu816zf71fHS8ZovVMNKOxYTFgsFtra2tIDDzygZzzjGVW6g9fDxLApqh9dFEx7saBCwYciDVNa/GOHhcfG0yzoMPHcRceMBRfOE8mz54JOj1jLgWsZhSe6cAivZ+/kGDgKEU1CHIUS/87XfD/nNZJ9P4+OA3+O2u12td+c6uK+cK97/mLNipimwHQGCiXeG557Fotk/QMeqcpxNYka/pxzDbI4YyKRSCQSiUQisRwrISiYcHQ6Ha2vr2tra6s6JpLkTlKNmDtSaeLQ6/WqonNS/dg7ErJI5Jed9uDILcmLiVG8ji4FkxzfG09tMJGhYMJ5iBZyv8f3GdXmHFCIidFhzh0dAPP5XNPpVJPJpNa2yaHJHAURj58CkOeS/fSc+3qLCZ7zwWCgCxcu6OLFi7pw4UKV6kBxhbn4ngcfH7q/v18VDjSJdMqMxQiSVrovSBiZohDFBBba9P8pNHiP0tYfyTz3CdeCpJbXOP2Hz2A9hCZhgZF87tMoosV+eY0pKniOY1sUFyzEsF2mifAUE88x9x6FnjimuNYGCyZ6b1B8cT/8GWhK64mpKJwz76NEIpFIJBKJJwtrD9yv6X/o6tM3vkdZjDFxu2OlBAVHu0ejUe14Q0YJHQll1N1E2jn8JtNNzzHZMQliqkS0n9MSTiLm631NU465BYVoCTchj8dCkqQy2huj67EAHgUKignsv9RM6kiu/eMaCCSUUQRhm65zsazegefD//K0AKc6bG1t6cKFC7pw4UJNCGD0PKYtONLvH0nV+H2agefAffU42DbnxHPE1I84Xzz60dfSiUKSyrVqEiiaCC+JOImvBQUS+pgKESP8TXulSeTwZ8zr3SQI8PNiRKcP3R+R6MdUHT6bffIzoqARRQGOf9nng30ilqVCeD3jcxKJRCKRSCRuJcrRQK967/+oFBMSdwJWQlCQjiO2vV5Pg8FAo9GokQhIdQLtH7sSXMiRboJlZITtmVR0Oh3N5/Na+kO0ZLu9mC/OdAcSYKZVkHjTtWBi42dTIJjNZrWaDTwpwuM04W06ZcHXLZs/5vQ3WeGdYuL7TNQNHploW7+t7v4/HQaO/rdaLQ2HQ21tbWlnZ0f33Xef7rvvPvX7/RqxpXXebbq/0+m0OiLSY3Ith06nU63hsroIXH+vp/vJ+zy/JKgUS6IAYDEsRuP5PBbNZOSfRDuuHe38TCuhe4cCWIzEUxjxWC0cuA4Fx3dwcFC1677QnWJwT7o919/gvu12u5UYGJ0JcZ6YbsE6FJ5z7m/OK8dM0Yz387NigSzWy6CYmEgkEolEIpFIJJqxEoJCURQaDofa2NjQ9va2JFUWckkVGaHIQOLNqLSJu3RK8JhHb7IlqbrOJMfPLYrTAnp+3dFvpgM0FXeL+f7sK/914TcSRBMcCyMxcm3hIaZD+Bo/q2l+aa93O4eHh7py5YouX76sy5cv6+joSIPB4IxF3nPa6/Vqhfi8bp4vOwd8zCSLJfrISUf+Nzc3dfHiRT372c/Www8/rAceeEAbGxuSVJFZt2GSOp/Ptb+/r+l0qt3dXe3t7Wk8HlfzORwOtbm5WY2BRJ/pKCSdJNsmwu6riT/rQywWC00mk5rYwZz8JheJUyK8X2LaCR0OFmVifj/HYTHCtRhiLQOvOcdG8YIiG4/vtLOGJ3TQLWSSz5NCOE63xXonFtFYrJQuBvaP6RfRXcNxeU4ppNDxwfQlP8/9tYOJnwmPNZ5IwT4kEolEIpFIJBKJs1gZQYGF/WLEkDZ1Xy/ViRjbioSYNRAisWcE2OQn5t1HAu9IMJ/LVABeYxLovP5IdNnvGEVmfj8dDU7tIIHzGCmuREGFz1wsjosjzmazWiTac2BiZkGh3+9ra2urVijPhNHuARNxHzNpgsa0CRO/fr+v7e1tPfTQQ7r//vu1ublZjZmEsixLTSaTWu2FWOjRfaZTw3uH9Ta4d2IKiAmlnRpcD8+l2zTxZZ4/9wgFC98T5yESVRJYj8HPPDo6qoll7Xa7JlB4PBQl2Bc6MLhvOZd0JbgfTKHh2vh5LCRpIYS1Q/h8pptwLuj0YfoFXT/8nPg6fu5iAc7o6mBKVRTEotODzoiYjpFIJBKJRCJxs3j081+oD/rrrz3vbiQStwwrIyhE0kFrNcllJGK+joQ7EpBop46WaJMNE2tHaGNqAwvqMQralKvNWgnRak57exQqfC3t1tEy7oix2zIhiikUnpdo8zeRctoAhQOTSJNkOxP6/X51HCcFm7Isq9QDCxQmlia9tL6bRNqNcvHiRW1ubtZqHsSIfRQRmKNvgYWFOZm+ENeI6+//M0pNFwHdANyXvpb306XiPUcyGvce0SSKxT1Lh4ikWkqNxZ8ohNEt0fQ8ziPdASb7Fi+416IThjUuoogU58fXNs1FrEnBtA3WOYj1USgUeD8yhYR9iM4U9j+eFuJ24twlEquM/U//MO092NbhQOoU/+W8u5NIJBKJBuw/VOjbHnr1eXcjkbhlWAlBwWD0lzZlv7cMa2trGg6H1XGBdBBQBDBMLCLpITmP95iAuU8m9W6r2+1WtnG6LKKQwB8SXEaSTb4Y+e73+7VILKOpsSbDsnz5SAx5fKNdCP1+v5qbVqulfr+vwWCg9fV19fv9av78Mx6Pq8i+T4pgzQOKQzyJ4+LFi7r//vvPnOjBMZGsxpoMbpPHVlr06HQ6tXoDTXZ/OhQcfXfbzLFnIURG4T0/LMBINJF4CglN4hL3AlMYWq1WJeowHYSRfEnVfMd72R8+j3sxfu4sYJGox/ExBcJiAk/I8GeIggILPVI8c58oJjBVwu9HMYZ7sUnw4HUx/aMsy1q9hyiANaUWJRKrirX779ODX/J6vfJPverklc659ieRSCQSZ9G+dFGHw0ynTNxZWAlBgTnY0+lU0mlElrb9mF9Nu7nTABzpZkE3Ej6TBYsDJjqMsB8dHanX652J3sY0Ceap06ZOUYLiBckwaz1Q0GD7FheY/+3+MsVAqueRe1y0ubNYnv8dj8eaTqdqtVoaDAZV/QG/b1I5Go00Go00GAxqhG1tbU2PPfZYJUx4fUwwLTJIqtaGJ3lcuHBBOzs7kk5rZrj2BAkuizGa+HvM3CueH+8l2vc9D4yee038DLoOfBym19Qk3n2IBJUpB01WeUbSHfmn4MV0EPbLqTJOu4iFQv0szgvFFh6jangeSNDLsqxqI1Bc8mclntpwdHRUpcvwBA47czxmEnjCotza2lptTBaemKbBcZLge4zuO1OE+JzoRmKb3mdxXn1vr9c70/dEYtXQ2tjQt/2PH9JDa1ktPJFIJFYZ7/GTj+vH7v/XktIBmbhzsDKCgv/oN5lxRJapBCaH8/lck8mkVuGftQMoOtg9QLJnAsFov/P0TaoiCZNOo6GMeJtU8ji86IygS4AklKcZRLcE3Rl2CsR6BSwe2HTspZ9hQi6peqbJsXRM9vv9vtbX19XtdiuXgcllTIUgmaVw4Oh007yx2ORoNNL29rYuXbqknZ2dau5ouTeB39/f13g8rgo8Rjs/nQJMUWD0PJ4UEW33zPn3/bTZ0xVgdwIdIW4nCgQm+ia+MYUguiRYQ8Dj8+eh0+nUTsugGMAConTP0B1AwcOwKGCxpt1uazQaVQKGyT7FHc8JSTjHHGsYxHoGUj2FpyiKmvMkuhK4l91G/IxQhIr7zuJddIRwXWMajfdBkxiTSKwS/uBff5j+wof/qjrFnh5oD8+7O4lEIpG4BjrFkdpFigmJOws39ddyURTbkv6tpPeVVEr6Akm/L+n7JT1L0hslfWZZlo9do52KaHc6HQ0GA/V6vYoIRCEgFn8zIbYQMZlMqnYd2fe1PBbQbdO2zbz7JuEgCgokNyQ0JrrRdt5ku4/txAJ/JqMm0O6vhRO6MHitdHpiwsHBgVqtViXCmEhJqokxbIvuiFizwaD9nmNvEkncN6cmjEajWr0Dj9drO5vNKheF14Z9oEOE4/Z4+UPSSFJJRwFrR3juTFbZhq+1iGOYTJNU+99I7v18rj9FBY+LNTO85ozmM8pOIaLpeX4mBS7ue9bo4PGjBFNRKJpFZ05EdO3E1B26c7jfIrg32Tb3hOehqS/cp1FEoJuBBSlvB9yq7+LE7YUHnvMufdMDv3LyW/6BmkicJ/J7OHE1tEYjvfmLn6+/vvGd592VROKW42b/AvlmSf+lLMv3kvR8Sb8r6cskvaosy4clverk92vCEezBYFCLksbo+Hw+13g8rsQFRyBNUHu9Xi2K3W63q9oDjFzH3G+mU0iqEXrbsN0PSWfIEUWHCAoGJGm8hxFvExlHbD0PJmDRns/2aZFnjrhJo50NJu0k+hQPSEybCLaFDdveGTn2e7FwoccyGo20sbGh4XBYXcu55pGRPiaSlnS263nr9/tVWoBdE4y+U4QiKCiYwJuMeo9RTIjuhCgyRRLb5Dhh3QLu0ygyMU3E91FM4DPZVhQUCKYLsW7EYrGojSmmcHC+uLZ0B0WHTBShmog754tOkyiIxH3usdC1wRocMUWDY4+OlSYBp8nxs+K4Zd/FidsDa896hja6s/PuRiKROEV+DyeWorW9pdf+7/9SnzraO++uJBK3HE/YoVAUxaakj5L0eZJUluVc0rwoipdI+uiTy14h6Wck/YNrtKWdnR3dc889evDBB7W9vV2rF7BYLDSZTDSbzTSZTGqEutPpaGNjoxINaFGOpM8E24IEHRAmFiZITn1w/0ajkaT6CRBMgYjkiycamKSy8CBTNWLxR54i4Dz+brero6OjmgAineZ5r6+va2dnpxJVWHvAY6N1nXUISPBcANK5/EwhmEwmtei754LFJImYT+/aBPfff7/uu+8+bW9vn3FkzGYzXblyRY8//rj29vY0n89rc+c18lxZpKBF3/UwJpNJJUgw3z8SZKYPmOTSReBx0g7v4p/uC4sRNhHwGMUnufZcSartDQpJdFZ4jUiaWSuCIleE97rTZnyyiVNRmop+8gQEnoJAIURSlUJDEY77hO4Pinu+tkl0a3I9MIUjphjxvnj0JutN+Nnsb/w/r1ll3Mrv4sTtgVa/r3/1s9+jZ3eyZkIisQrI7+FEInE342ZSHv6UpHdJ+vdFUTxf0q9K+tuS7ivL8u2SVJbl24uiuPeanVhb087OjjY2Nqq6CU2534yo+j4WY2RkmTZ2iglMFeApDJHYSvVCek6biDZ1gyTdz3a008SQ15r0mbyb4PE9k0qLK6xIbyLnvllU8PyZWFN4kKTpdFojYJ4393ttba1Gdk3UTcRMzFyHwdexoCDrG3id+v2+Lly4oIceekgXL16s+hpTB/b392vpCVEAWCwWZ+opUEiaTCaVIOF0CVbvJwE3SIqj04B7xWNlDQQKD6zdwfajaMXXpWOBwvvTThILZJ4XuiM4F/5cREEhOh4MCgVeb/chpmIwrYSfQz8jjj+m+fR6vWpPe579WaBYyD439dX/b0oXieDn0+3G9WB/6Thx+7eDiBBwy76LE6uP+Sd8iD7p6/+7HlobnHdXEonEKfJ7OLEUj37+C/W//b3/rE5xe6RRJhI3ipvx865J+iBJLyvL8gMl7esGrFxFUby0KIpfKYriVw4ODjQYDCpyy2hiFANms1nN2j8YDKofR8Tj/SZDPLWBBIzWeZJLHp+3zNIunRIf/iupZp+mTVs6JvI+5pKnQxAsUGfHASP+sSaBT8WwC2M2m9UI4GKxqBwL8aQCk0AKNIxy0/HgH0e349yRLLIQnws/rq+vazAYnDniUlKtbebWx6gxnQU8NcEpMRQTaG9neksk4Fz7ZTUjPPdNeyumR8SaGp4Ppo0YdEGY6HPPxP42pTMYvpbjYapCrBsQT2KIdSbiv5G0c168llGY4z7hOjJVJtZOYGoI9xL70LQ+8bnROdLkEonpJkytuA1w676LlRb6VcfBRltfuvOH+YdpIrFayO/hxFLMdgp9yYU3nnc3EoknDTfzF/NbJb21LMtfOvn9B3X8ZfqOoigekKSTf9/ZdHNZli8vy/JDyrL8EBdh9JGP0QkQi8c5+ul6Cz7S0NF1nnVPgnvy3BopZb45SRxzqt0vEpMmazTz06VTB0WM8EvSYDDQ+vp6RYYJ95nvuV6BHQxu1wUpR6NRFemezWZVuoB0mtbQRCaZt24rv49MdF68x+jTHOLxiXYIkBBGomdBgbUuWIvAwpHbjoKP22TtDNZlsGDCQo6sFRHFkGWkmmQyikBcG5JQChZ0VxhxTqKY4D1LIh9rOdAZEvd27C/7yjHwNAinGnD/LxPGrkXeKe5QVGBfY00CjovjiakLFBTisY5xbZrWx23wvjiP8droyrgNcMu+izvKYzITiUTiCSC/hxONWHv2MzW9eFv8LZFIPGE84ZSHsiz/pCiKtxRF8Z5lWf6+pI+V9DsnP58r6WtP/v2Ra7VlEmJC6Xx5/5G/v7+vy5cvazweS1JFoBmZt5hgYifpDME18XP01mTcUVPfx4iqo/VOFTBZbDr1IUbjbe82WTWJY6FIRrU55qIo1O/3q365foKJGQs42qFRFEVFqMfjca0WgE9NcPR7bW1No9GoEi56vZ6Gw2GVm29xotPpaLFYVATd8Lw2Fc6LkeW1tTUNh8OqTsa9995bpT2QOPu+GLE2aXdtBAsCnmdb6F3EcXd3V7u7u5Uw4fstTDGPn/13IUynp5Dwcj9Focr9otARUx8oOvlnMBhU18ZTE/x5YCpEjOZHIcF9YpFNX8MaCNxr3Lt+RnQ2hM99ra9eb4+b4gydMDzSk2vBPep+MJUj9oNiHsWEWHthmXvDbfCzGoUYvnY7CAq38rs4kUgkEjeO/B5OLMO93/uo/tMzctkTdzZu9pD1vyXpu4ui6Er6I0mfr2PXwyuLovhCSW+W9BnX05DFAEk14sPIuE8lsKPBQgDt/CZFjO4fHBxoPB5rPp9XhLrdbms4HFbuA6YXSPV0hXa7XSPkFiKYC85ijTF1QtIZsuz0BObnW0CIUXfa5FnrgVFgpzq4hsCjjz5aCR+e28PDw4rYeQ6LoqjSR9bW1qq+eO4sppCMe2ycG4/Dc+31ko4L/m1sbOjChQtVrQynuKytrVUpDhYLohU9plnwuMvhcFi5Lzx+99diSST1jHTzdALPr/egr6FLw7+TiLumQ5MrgevP53td3GYk+RQk2Geuucfc5Di4Wg0F9pHiAIWg6KqgSyA6iIworLHuhAUSuiT8HIoG10pfWOYcYFtR+In95L1xfjiGq/VnBXHLvosTq4vXfesL9LKP+47z7kYikWhGfg8nEom7EjclKJRl+VpJH9Lw1sfeSDsmCCYg/pcigcWGbrdbReQZiaWlXTq1+Uv1SDNrBfhekyqSHL8XhYFI2txPtn8yN7Wij8yNt92f1msS0HgigJ9hQskosAnmwcGBdnd3tbe3p729PR0cHNTIKe933x2Jj8+za8Br4SMYSTQZ3aeYwAr6djgMBgMNh0MNBgNtbGxUKSqdTqdyXvgEj6ZjHUlCTWa5fp4fuz3i+lOgcv9YNyKmnMS9eTXS6XGS1DeR2DgvTUcSej4pgsQ0CdYBaCLnTGFocs9wXmP6BT9/nJdYwyG2E8k6xQe7YbhPlrXFNuL7TakMTbDTxPMZ75fqglBTnYSY+nE74FZ9FydWFEWhN/zTD9cXfcRP6xOHmV+dSKwi8ns4QbSGQ73un7y//vrF7zrvriQSTzpu1qFwyxAt1H7NdnIKCrbmM1Ifj8FrIlO2XptMm1iQEJpsMuebpINtOGXBDgASSZMn94MnUzgqbpJuou97ad+26yHm+0unZK4sy6qa/pUrVzSZTKpn+zqe9uC6EE4t8TW+p9VqVc6Nvb29SlBgm4wUM3Idawi4EKNrXWxsbGh9fb1yaDiVYjKZVMdSxog1Cx6SkPNkAj7f8xzJbSyUyLoZJPBNgkD8Pwl+dB5EkLC7fe4t1hFguoNfbyLY0qlQFusBxJoWTU4ArrvvZVu8z7gecu02uN9ZN6HptI3YNyKm00Sngu+hQMA+R8GDqToE54HCz+2Q8pC481G02/rBz/pGvX+3f95dSSQSicR1oBgO9D8/85u03srv7cSdj5UQFBxh9x/zjOhPp1NdvnxZu7u7FTm1VT+SOR69GKOgTiNwtNRiAiO9tPvTRWDRQDol5IPBoHr2dDrVeDyuSDKJCIkQHQ9NdRN8mkR0bESyx2r9Fifcrts0IWRefbfbrRWx7HQ6VU0JpzM41cLODbsHfF0sMslTFFwM0k6DtbU1Xbp0Sffdd58efPBBPfjgg9rY2KjSFA4PD6u5c7FHt8fIu6Ra0UMLCiarUXDwPFqQYltlWVb7yKIU5zRGtZvWkyKWf+w+YSFOwgKI18ZFSBkFJxnmfmQagveK3/d8+Ll2l0SCvYwY8z1/bhjlbxIevDea2uFnj7VDvJfoiuDn0M9v6qf74n3OFKCYSkQxLtZJoAjIeY2iTCzYmUgkEolEIpFIJJqxEoLC0dGRLl++rH6/r42NjRpZHY/HNRu8ibKdCGtra9rf36/qLEyn04rwklg5Yh2JCCPgdicMh8OK/JEsW2gYDodqt9uaTCYaj8fa39+vCQNOE3BNApNnk0gLG9FybhLaFEE2EbVjIYoLFgRIrOgUsOvAtRKYw2/yJ6lGhukOYZqAn+t58TyMx2Ndvny5IvXD4VDb29va3t7Wzs6OLl26pIsXL2owGFSOhHe/+93a3d09E233GlskutpRjBQNXGCyLMtazQWS5XiKhYWICJJMp4d4jSkmtFqtqv6FiWusQ0AybBcBYcHBa2dBhuk0FJoo8kRXhZ/LtBzPEY/kpOAUHQLuZ0y5iY6aOCdNdSRYgNHXRycOnxNxLVIfU5AoSlhIo9hC94oFSN9HN1AisQo4/LMfrP/j5d+t5518ByUSiURitXH5c16or/rH/y7dCYm7BishKJgkmQi02+2KzJpMmhg4wsgK8Ca9Ji1MBSDhYnE5I7oZTB7X1tYqMuq6DIw+x8g9bdVNhIRFHv1joYSEkaBVPF7reeKJGJEYxkirn2vnhcmq73Ef/TwXN/SzGEn2NSa3k8mkOqqy0+lofX1dly5d0oMPPqj77rtPFy9e1ObmZuUuOTo6qoQIp2h4HCTr8fhHOgTcF4sHHouJu9/nGJjm4Pmkq8OvNVnv3QbbpXMgEmWm1LiegNciEngLCdciz26L9SrYRlN6jD8DFG2imBA/L5KqIqh89rXgeaSLI6ZSNN1ztfaXuQXocqCYJp1+jp3ew5ooFtuaPqd2e7iNROI88e6/+kIVL3m3Pnk4lbS81ksikUgkVgcHQ2W9m8RdhZURFKR6TrsFBdcZYF64XQOOoEayJJ2t1k5S5Wc15XQ7PcCkg+4EEiXWFfA9MX+eBNFkxtcx5WKZG8E2chaNJGFlVNr9okuC/aCQQXHFRJd1JWxP96kYzKenKOM5n8/nleNgPp9rOBxqc3NT99xzj+6//37de++9unDhQuXssACwv79fCQq0rfNUB4pKnkenZXh9Pd7oCqCdnfUFYo2CSJx9PyPnnkda+GPdhGVr4jU2UaUg4udwTUmsKbbFlIKYIhBdA95nFBGaUhLimDl/FMviZ4vPiv3wWCjgUWCJaRxxrt0Ox7jMOUAxxm35s8p6IXHeKT5wnNcj7CQSTzbKFz1fnU97p179/B86764kEolE4jrRev7ztPes8+5FIvHUYiUEBal+eoOkygEwmx0rfDzazyc6mMhLqlmqSQhMXny0n0GBwQ4HEm9bw533TcGA90jHxyJK9aPtnF5gkuN2nfLgPtsF4foHrHlAF4OdEiaKdjv0ej31+/3K5s8xut+eE1u+PXaeiMG6CCysSJLMvH2LOhYFxuOx9vb2dHR0pPX19SrVYWtrS/fcc4+2t7ertID5fK7d3V29+93v1iOPPKKDg4Nqvjy3dCZ4D9Dl4bE21Qiga2I8Hleknw6TaMP3GnJvkPiSDFtkcjqLUycsaiwW9ZMy/Jr3AoslUlCIJJaCiB0F7FNMdzC8jweDQU0MoGAQBQ+6P/x+LOzJ+7nf+R7rFXgMHnN0Lfh9zjv75j3HNmI/uC78/LNuSL/fr31+KdJxLTh/FOcSiacURSEVLf2j73qFPirdsolEInH7oCjU+ReP6XUPf+959ySReEqxEoKC7ckUDUwKp9NpjcQsFguNx2NJqkgbxQKSMhaDi/UE2u12zdXg55uAm5Dy+EWTSZPRDnJaefoA3QIUCPr9vvr9vjqdTkXEOT5as6Mtno4L99+E3QUWLX4wCk1HhOtCmKhaZBgOhxqNRrViiRYTSN7oSvAzZrNZLd2g3+/rwoULuv/++/X0pz9dT3va03ThwoWqmOZisdD+/n51vOWVK1eqNbMrZDqdand3V1euXNGVK1d0dHRUiQn9fr8aG90HTAWwEBSPcvS8MVWA7gCPkWOle8Fz5/1GkkwxqSk1xGk7dke4nx63T6yIKTkGo+nuSyTyfp9OmNgnXiOd1lZwDY7oZOAej/2KzgEKJnTI8HhX1ivh2vmHopev5RxEUWSZyEHhhusUT29oui7WoUgkniq8/hs+XN/5qd8iSXpBr1SmOSQSicTtgdZopL/22v+pjxn8oqTBeXcnkXhKsVKCgqPkJtosvGiiwUJ4JlGMAJuc8fg6CgkswMZ0Bx5DaBLoyKgj2pFoR/u7T4YwMYm53x6jSbtz9xmB9fVNNR88xk6nUzutwSkAsYaCdOo+8HNZZ4K2cBI5pkPEFAeKFoeHh5pMJlW0vt1uV0dDWqDw/+3WsEjk+zx2j282m2l3d7d2WoTdK55fPz9a2LlG0bJPB0Ak7U3RaI7d7XNeKFA0pQDEVAyD+yYSYe8jE14KH35eTHMgTMgHg4GGw6G63W61Th4/a25w/3PfsO4E246CQozys4+eZ4oJkdBb1CK5Z9pKrAFCB06cA+59rwsdQf7MWjyhYyQWM+WeyNSHxFOJxfqRPqKfey6RSCRuJyz+9AfojX9roT8//Bn1ihQTEncfVkZQIIk+PDysSKqkyrYsndZEIJFrilCy7gDdCySvsahePELQ98TXJNUq8NuS3+/3a9FOFlvkMYcmNhQoTIJoy7bg4N9N0Hj8I4+35LgsxjBa3ZQLH9+nWOBIPB0P/p2nX/AUCJNZCwpOY3Gkm/cw+uy+u7ij6zEsFosqHcJpHV7/KBLQoUBhIdad4Doyom1QPIj/52kgcV7Zpp/RVJcgXuv3KILxXub7x+h6rNtgF4edMHYeUOTynDD1IIotTMOgOEOwhoSFt/hZjLUL2H6TKOB/o5OGIgTXifNAFwdTXPjsJncCXSoUEKKzI5FIJBKJRIIoPvT99KZPHuh1H/kySXkaT+LuxEoICtJpdNpkzWR6bW2tirZaADBpIsmSzh5ft1gszpAm1gkwsTKRt52eaQgUKJizzmjn4eFhLcoZc7WZcmChwcTXY3QdBJN6zwXnhzn7g8FA6+vr6na7Ksuysq67bsB8Pj/TpxjlJuGjtdtigk958LM9Z6yf4OdKqtIn1tfXtbm5WZ3qYNGDIoXbkFQJIrPZTI8//njN9VAURXXcpk//oDuBqSs8FtFt0InB/UKiSBIZnQ4GUyhYa4OuFiKmJHCfer5IWKOrgiIRxSK6B5gi5N9dU8Pz5fQKi1neu26XEXmms5RlWduPFN9iWo3vt2DhPnl/2XnkPe+xRlcNhR+D+zK6Orh+foafGx0HcS04/7zO85zOhMRTjWJtTWpd+ySVRCKRSKwGirU17f0/+3rd+/+H8+5KInGuWBlBQTolFLZIO++ckf1Wq1VFXyXVCJAJmYkqLd2MVBoUDUajkTqdTlUMcDwenyGgJD8s2CidzbV27Qb3td/vV+RuNptpf3+/OmGh2+1qfX29lgrh9/x8n26wvb2tnZ0dbW9vV2PyPSS9HnOMojN3330z6ffcmZQzYu4jHF1Xgi4AP2M4HGpnZ0f33XefHnjgAT344IO6ePFiZTn32Pf29qqTM1izgu1LqoQWng5hUYLpI4xm81+KRST9MWfe80jCTneDpBp5bnInMDWiKW3A1/onCg4ky6wJQQGLbgUWLZRUHdXpNfW4Sdzd7yYHDoUJCibxeMpYQ4PCCh0Cfl50JjR9XijUWXBjYdBI9tlvFyb1+rIt1pGwq8YilecmCof+7DJtI5F4KvDxr31U37v1LyQNz7sriUQikbgGWv2+/vZv/br+dP8XJGUF3cTdjZUSFCJhcuV9HhPoiL5PQDDZjRFnWtX9Wszv9v95eoAJCF0Gvt+/N0VnSSxNyB01NekhabWI4Yhyv9+vCDVdDSR+jtTzRAapfvoCC1T6WkbyGaG1mMGCeXYGWMRwOoPb9o8FBT/b7oR7771X9957r3Z2djQajWqEzmvl+03cfJKDxYRlxJ1kNDor2JfoSjAx9Rox/YSpE9wbJPAkyBQgGPHnforpE02R9yZHg7Gsfgaf4x+PYTQa6cKFC9rY2KjV8oifLbfvsbBdfxY8R95T8UhWfs7iUaTeVxQFLUDRgWQ0tRvdBHQMRPcC62qwX0wliSkUbDumzLCIZ4oJiacSz+39iS60U0xIJBKJVUf5wufrnV8x0Uf1f07DVooJicTKCAr8A58WZhZNMxGhvdmkhyTFudyM8C6r1u68cxaOi+9bFHD+vPsbo5t+pgUDtxsLCkqqnsf3TL4c9TfJJQGMUVeT/fl8XhWyJNGMdRma5tnPsQuBNSdMxFgzwaIFc+i73a6Gw6EuXLhQI7a09De5H5zqMJlMas+OogH7ztctrPD0AK+J55t2fY/L9zPa7zmKke6YSx8t8tFZYNeI24j1HhgBj5Z//1hYIdlm37z2dpisr69rNBpV6Q5NVv8mQSDu46b0jyg6cH69BtxXnU6n6gNFP9af4GeGTpAozvi9mErhdeNYOadNAk4UirhmflY8vSVTHxKJRCKRSBjli56vN37KUK/74FdI6p53dxKJlcBKCAomEa1WS4PBoEYIoqXcEWLb+01uGdVl5NWgpTtGjU38pXoE1M+j0GCi11QF3yTSRL3X62lzc1M7OztaX1+vSG+r1aqi9/1+v2YtjyQ2iit2HXhOyrLUdDrV3t6exuPxGUJNsC6ACZmLSzoVYTwe16L5tJ9bUCBxd5R4NBppa2tLFy5c0Pb2dlXfgSTaDgweG2hXhI+e5PxFYur16/V6tXoUFiksvrBWBNfH/bUzg0TfQobFExJOzzf3Uoxs+1ruV/Ynpk5EK7/7xv6y1gX3LOuLsJ5Gr9er7RWmJzD9p0kc4HPpDGi6nvNiscfCEt0+rL0RRR2KgUxBodAUP6/8v/edP7e8xv2j84SnO3A/cJ9zfiRVYlsikUgkEomEJL39Sw/0ug972Xl3I5FYKayEoGBSb4LAonUxV1xSVXhwPB5rMplU5IRkm+TcpJQRYxOZtbU1bWxsaDgcVsUMp9NpVf+ApIm2aYN59ySaJtnr6+tVUcnpdFpd49oAJlFOA2Bk3rUEfL0LN3p8e3t7ko4LBrqeAx0dJEt2ILj9fr+vwWBwRlCYTqcVgWVqwuHhYTUvJJq9Xk8PPvignva0p+nhhx/W+73f++nChQsVuY3E3/PuPrqQpN0JRVFUc+djMX2KhteSp0ZQTPBc8YhMk2+fFOIUk2X5/bTts35HU1HOGNkn6aWAFWsDsJAn0yhYJyIWhXRBSqa2XLx4URsbG9Ue63Q6VZSdhT9dZJTOFu8Lz1mcBzp8eA0/s0z5KIpC/X5fo9Gocgj52e4PRUKKBRQsWETV4/bzWQfCdT9i3RHDAoF/vE/4uXdb3pfz+bxauyhoJhKJRCKRSCQSibNYCUFBUq3IHqOiJisUGUxUTLB8n0mAyZR0SkhYJI5WfRNruxpMTugOMHmNNnJfH3O86U4w0TNYG8J56k4F8DM4BossFiU8HpNoCwXMczdB9fV8nekCJPo+ppGEdn9/v5b/ziMkPVY6Ey5cuKCtra2qryaWTGnw3LtNizgWPSy0OBXEApPFEosrniMTQf/QLeA18Xw4os/IM9eRLgbWV2giwZEgR+IZHSImrfEYU7poPCZfG+sC0GngMbmuhgUUt+nfXZ/CzhqKBk1kORL8eA2dEv7d+4lCD1NNljmFPNcUvuK18f9cS89/rClBEZBpNlxjCkBMQYlrmoJC4qnC1/6fn6Nv/MK367+/z4+cd1cSiUQiEdFq6+0//B762vf94fPuSSKxclgJQYFWfhNaVpKPBfNMIhlhjVZqEyYTJEbFTUJckLDT6VTE3BF45tk7JYEkI+azU9TwUZeRYFHUcF9JEg2SXAoKrtDv9+J4WcHepIt99VhYSM+ODB4RabLPyG2MHHusw+FQm5ub2t7e1tbWVjVmFlI0qSWxsyhkZ4IJ+tramgaDQa0WAH+63a663W5FuFk7wePkOnnMLLrJyDrnknUXKFBxn0qq5pnXce18LYm55zWe3EBQcLAgRvJOgc31A+jgYf8cuedRjexjdB6wYCFFANZ34D7mmrgvPEKzKYUgCjN8PvtEEZD/+nquo8fOeeF7dP94Xvy+3TlRJIspIInEU4GN73uNXvdnP1R6n/PuSSKRSCSItQfu1zs+6dn68Q/6Oj1jbf28u5NIrBxuSlAoiuLvSPorkkpJvynp83V85tX3S3qWpDdK+syyLB+7WjutVqsqTGhST5Jg+A9/R8sdHY057THfWzrNnY92ahNNp084LYEnAThyzOgsreExAt7v97W1tVU5EZjfH6PWUUygHd22eB8rWRSF9vb2KpIYCy5ynO4PBRVJFSHvdDo6ODjQeDzWdDqtTneQVDvRIZ4c4XZM7geDgXZ2dnTPPfdoZ2en5gCg7d3tWVTwMZGu/M818fGHJqcWnDwXrA8QT65w31iLwUcpxqMmeYoBCbZTByKRjakCLBIaEYUezyst9RQcLKTRUeBnUJzxa6wfYFeDnR/RiUPXhsG9yJoJFGeaovR83XPpPeU58vr6xBLe42dH4SX2a5k7IJ7GQldDdC9Ip8e7cg58nV0cTcKk5+N2ERRu1XdxIpFIJJ4Y8nv4zkSr39fjH/FM/cr/8zJJKSYkEk14woJCURRPk/TFkt67LMtJURSvlPRZkt5b0qvKsvzaoii+TNKXSfoHV2vLpMS1DUjWTVxoBx+Px9U9zD1n3neMTptAMCJpu36329Xjjz9eI/6xenzT8Xa+xhH/7e3tmjPB5Kosy6pegskSUxbcNt0MktTv97W5uVn1kRFkSTWiGU934Hg9VybXnsvJZKLd3d0z4o1TIOxaYO65x9bpdDQajfTMZz5T999/v3Z2drS5uVnVJ/BaTKfTSrTwXLgGhp/hsfR6Pe3s7FQpKCb8POKx3W5XxR3ZDgURk1QLVR57tNczb94EluvM9Y5Rd/fZc2zxxtcyrz+mYcSTEXyN3RoWjPzZ8DV+nufe/XV/vOYUvTwOpj24LxZm6NKgY4DtWBzyc1jLwvO7WCyq1JmYYuC2KSpQFOB+9rWxzgXnwP3hZ5b1MySdcXuwdkiTC4GOFRbpXHXcyu/iRCKRSNw48nv4zsXvf9t76zc+9psl5fGQicQy3GzKw5qkQVEUBzpWYd8m6cslffTJ+6+Q9DO6xpenySTTHGzhdsTRf+S7aCCL/tH27vZIXEz4/bukylLPIo4xMmvQQcA2mRLBIxIlVYXwBoOBhsPjs8VpCY+pBCZEJHy050uq5db7+nhyAyO0jISXZVm9zmMmZ7NZ9UyndjBFgYTYDgGTdAoePtXB4o+k6jnj8Vj7+/sV+d/b29NkMqly/km0WdTPBC8eP+l5iO4Or4v/vyzC7vssOpB4U7Dxa9JpygJJNUUOOwIoatHGzzHGUzqYWmIBpyzLqvDgYDCoOXIsvlEc8++xtoDnzASfhJ0OiujsYYqD3RNu30eEjkaj2h6jAyW6Avh5jGsS3Rp+n2KC9x+vjXUPogDhfnu9mJbhzwHdIPGZt4OYANyS7+LE+eGdP/Je+sb3/t7z7kYikXjiyO/hOwlFocd+/Ln6lvf8bq23UkxIJK6GJywolGX5x0VR/HNJb5Y0kfRfy7L8r0VR3FeW5dtPrnl7URT3XqstkwGeJmACbIJs4m3yxKMDWdSQYsJJHyoiRwJiQcFuAZJURixjvjmdD6wUT7eAx2AC5nujk4J2eJNhkieKA54b9oMk1/NiUkTi1pQvb0v6fD6v7jFZNyl0u3SKdDqdKso7HA61vb2tjY0NjUajquq+I+esxeD2fDSla1W4zywwyHQEOicclWatgabCf57PZfuBdQK8nrEtkkmLDiyIyJQYoikfn/sm9ifWBOF+cCqBU3WaSHMUAehY8HiZyhBTdigoNKWO+HWLGRY0nEbiZ5icN32OuB/5f99LVxFrYHC94n6OAkSso8L5iesVa5jYxeO26BpqSrtYNdzK7+LEU4/2pYt622e/p77j/b9RH3CSJpdIJG4v5PfwnYl//rwf0EellpBIXBM3k/JwQdJLJD1b0mVJP1AUxV++gftfKumlkrSzs1MrIjcej6uaCjx20GTD1mVHsm3fp2uAueAmEbSG+6coiso+b9u8n8OCetKpA0DSmUJ/jKCbWC0WCw0Gg+p6kpUmMYFFF9vtdlWIUVItwuzXSP7dZ8xvLSosqRI07BpwPQYWcIwCAGsw+MhFH+m4sbGhnZ2dyqFAK7nnwaKFSebu7m4lKHgtLPCMRqOqjoavJwG2UENBgfZ0STUSSKLpyLbXILoH6HKxGELbfSTIdAJ4j7hd9tt9YqqD4WexwKZh4YapN4Sfw/U12XZf/DuFCq4nSXlMTWC73KN2qFhQsNDnveiaGPzM+IeCCD+Pnl+uHwUF9qEpHYWncnDcXg+KftHB0CREWdyx0LXquJXfxX0Nn4wuJpagNRpp8sHP1mu//FskpZiQSNyuyO/hOwvF2pra91xSV0eS2te8PpG423EzKQ8fJ+kNZVm+S5KKovhhSS+S9I6iKB44UWIfkPTOppvLsny5pJdL0rOe9azSOeRXrlyposAmL/v7+9URhp1ORxcuXNBwONRisajumc1mNfu5c/5ZBNEEotfrVYX/TLBNpE0mTGxN+lirgaSI+dqSqtoJrVarIs2xBgSr/dMCTxeAdJyWwcJxPmlCUpVzbxGkqV+2oTMVwg4BF8zj3JAUzmaz6jmszTAcDiu7+/b2ti5evFgdFWnS5hSH3d1dPf7449rd3dXe3l61jpwX93swGGg0GlWiksmm0x0cAbcYwRSXpsh0JKSMQvseR9ZZWyCmAMQIvtNbIjF2O9HFQMeJ+0Pxockt4ZMunNrgfpIUezyM/EeCTALOufA4+ewmcu3rvK+dfuE6GX7fa0ERKooHXg9/jnhvU7qD3z84OKjG3ev1anNF4YNrG48AdbqDUx6aHDB+pj8DFhOaCm6uIG7Zd/FmsXN7VKG8Q/C6/+f99Hv/679W/sGaSNz2yO/hOwhHH/F++pHvebl6xeoHFRKJVcDN/LX8ZkkfXhTFUMf2ro+V9CuS9iV9rqSvPfn3ug7V3tvbq8inI9aO7k+n0+qPfEZHTXxZB0A6jd6aTJiYk2SwdgJTHmgXp8MhHmUXrdIkSST3Jitu27ULfISd2ySpMhn1KREmP46usy4ByRWLF9rtwCi8RQNH+Vkc0NF/981jsTBjIm0hYWtrqzrZYTgc1sizCzHu7+9XhRfp2ohW+n6/Xzvlw8KJXRsuwuh9wBMeHEk23He6VUgave7ujwUZpqNwzgzfS9GHJD6SWPfFe4F9i8Td6T7eLxYUWHOD0XVJtf3M/rkN9ile559Yf4KgUMHPkWtl2NlDlwyP3yRJp8jF+hFRzLEIER08nm+mPBj+3HAfRCcJhUa3H10s7NNisaiEDwqSK4xb+l2ceArRkjrFbbHHEonE1ZHfw3cQyqJIMSGRuAHcTA2FXyqK4gcl/ZqkQ0m/rmN1dV3SK4ui+EIdf8F+xrXaWiwWVQT74OCgEgxYQPDw8LCqm2AXACPW8bhC6fQ4ShZ1PDw8rEVJebQei/VFEnYy5lpUmWkRFCholff4eKoA0yqaiFy73a5SOhgpdyqHT2GYz+e158QigSw2RzGCoofbtqDguSbscHDdhNFopM3NzdqJDJKqIwstTFgI8Jgd4fc8WVxg2oiJaRR8fMwka2lY7IkiT3RqsHYAybaJsMfIuYrr4v7ZOUNyyx8/J55w0ETeSbC9v7yGLLwYo+hsh6TfgofXmmNpur+p1kKcB9YL8WfJ7bOOBcfLuSYxZ50RujToNGHaSFmWtbQipp7QqcOxMqXD88taJ0y1iGP3mDzumKKyqriV38WJpw7v+qIX6uH3f/N5dyORSNwC5PfwnYP5J36o3vTJZ1NNE4nEctyUn7csy6+U9JXh5ZmOldnrxtHRUWXFd0Tcf/gzol8Up4XqfGrA3t6e5vO5hsNhZW1mfr6JGaPRTUdNkhyRXJGg0cEQCSRz9KV6xNikmFH1hrmsOQ2cjhHJs63/rk7PQowUEySdES0oaPgaCwgk2DE/3f3xkZg+bnNnZ6dyUViEcA0Mp1V4Td3/wWBQO0KS88Tx+oenTsSjD6XTkymYmuD15ZowUu10Ea9JU3FFrqOfQ6GIRJM1Cxj9ZxpFdD2QXJsIcx0pfnDMsZ90EFiciOsXhY94DVMfLMhwfikqsJ6JBTim8PDzwDojdPlQ3IuOIBaV9Oed7p9Y88Fz4/ny/Xa8uN9Od6Ao4TZ4YogFzWVFN1cVt+q7OPHU4Yu/5If0eZuN7udEInEbIr+H7wy88dOkN7z42867G4nEbYWVSBB2sb7ZbFYjEfP5XJcvX9ZkMqminYPBQGVZ1o4fZGTXQoSP3DO5vHLlShWNJomLogLrBZA0ksC4LoFJTLSfN1m7fUyiybWJDknSxsZG1d+1tTWNx+OKrFkAmUwm2t/f12w2q11r54YJk4/XZLrH7u5uzUExm80qIcEOAIsdjFR7Lrvdri5duqT7779f9957ry5duqRer1ezvc9mM/3Jn/yJrly5ovl8XjkhHOG24GAC55MhZrOZ9vf3q1QMv2bnSkxJiYQ+5syTkLPugQk6ax0si1x7Hb0fKSS4bUbnKSDQWRCj5hSqfH2M5NuN4j0T9yT3qWuNUEiKe9yvx/FFRwBTCmKfub9Yd8TiAEUP70cXlWTqDwUi1iHxZ8V71MSeY/Znhqd9RHGQ6S38jFJ08Ny6H1xD95sOpEQikUgkEolEInEWKyEoLBaLKpI9HA61vr5eWeb39vZ0dHRU5dmblPp9E2tao2nRdoFDEx+SHdv/HeGOUX5aoWMFexIU5nvbRWCCYvLlVADmhUv1InQxCswUDEnVSRQ87YGWbhNEk6B+v189fzqdan9/v2YVd0TWBDuuicnVYDDQ9va2HnroIT3zmc/Us571LF28eFHD4VC7u7tVzQQ7RiwYSKrWwER+PB5XNRzcl93d3Zr1vdvtVvfH4xxjZJ2nJDASTsGhKU/ez2EtBAoT0S7PqH1TscYoKvAEBqYPcG+ZsHsvUCAiaY7wM+wcoVhiB4r3tPsZxQLPSUw7iM/xPvPnyEScqTv8TFDcinVFmlJN+PmhO4F9iH2kIEBHhUVHzqnn3f04Ojqq1ePg58vrTtfP7eJQSCQSiUQikUgkzgMrISiYAEmqIq6x4KKryzMCb0HABRxduM1tWGQgwXfE2WTK5CgSE6Y4UHTwdc4lb4r+Mk+cooAj9iSU0Q5vAmPRhNdbFGHUn4IEj5Y0KfJc2eLvYo2ec6Z5GHR8uLL/+vq6Ll26pHvvvVcXLlzQ+vp6LZXEP+PxuJojixGdTqdmc4+1BWxbd/oB++G55Q8j7ywE2Gq1qsgyyT1TAXy9yb3f42kDdGcQXC/PGZ0tTaScYkKs9xCJLF02PPbU78c0HAoQnksLN+wTf9gnj4cpKXGsnAvPH90BTF2gW8ZCDIUxC3OxTgeFu4g4T0yx8F6Ijg/32YIIRTS7EugW4lrFtJEUFBKJRCKRuDvwtr//In30+//meXcjkbjtsBKCgkkKiy7yeMBut6uNjY3q1IfZbFYV+1ssFup2uxqNRup2u5JUIzYuTmgSbnu4LeW2bUuqkVkeA8jcfrfNgnmsnSCplsttEsMiiY72UlSgtZwnLngMFjUc+WadAOmYeNlCbneGxxHdFTzZwkJJFEZarVYlJgyHQ21sbOjixYu6dOmSRqNRNX4XXjRJm8/n1fO73a4Gg0F19KfdJiRxPEZTUrWGJnucK/edBTVZu4DkOqZb+Hq7VHwcZVwHt09xh+tvO34UFChscB/4JzpaolgQUzgYrY/v+zWLZnF+LBK4TzEdgGIThQdG8vkcC1r8vHjduHZ0zNgtEgUIntLBftOBQBIf+0JBQVL1WY7zw7nnnPNECgp5bj+e6pCCQiKRSCQSdwe++q9+h/7CaHze3UgkbjushKBAIjccDtVqtSpCvVgstLOzo52dHXU6HR0cHOixxx6rToQoiqIqyGjiYLJFG7gLAq6vr6vf71fkaDweV8UaWaSNRNdExiJFt9s9k+bAdINIzkxgmJ5BoUA6teuz5sLR0ZG63W41hvF4XJFkChsktnZfrK2tVdZujsP9YMHESKxpc+/1elUayubmZnVE5NHRUVUY88qVK1Uqg0UA3zMYDLRYLDSZTGpzRucE577X62kymVRjiHZ1k2RGzplKcHR0VDsK0oSbdRPoLjG5HY/HVbsk3SbTFl4MzztdLrFGAl0HFEFi5DwWc5ROBRG/b8TxGnQb+McClu/z2Ckw0GHgzxP7zH3p9aKg4P7azeL95z3rtCQ/g2vteW0CXSZ0dXg/S6oEK4tbTXUcvFe9Rr4/ChU8lpLrmEgkEolEIpFIJJZjJQQFk1BHjS9fvqz9/X2VZVlFxzudjo6Ojk+DMGGUjiP1FglMYkxGHA31aQgkPNHyL52tK8D8a+aGO43C5MxRcjoQSPZNZqTTKCgLOZrEOL/bQoD7FK390eZtEk2Lf7vdrk7AcGHFoii0v79f1Txg3j/JOsUKuz8sDkiqcs/tImFkeW1trbp+NBppbW2t6gdPK/AzaYe3i8OChgUi29TtLoipIr5WUi0yb6IYrflRQHFhP643bfJul6kg7D+t95IqQYlr5XVcJia4P74/pid4z/j5FqR4vX8siLENzpvvYaFLOhi8B3gqA6P7FBRYa4KFSKVjEWcymVyzmObV3AW+jnUTPH7XVIn1P7i//JlkzQXvjbhuHjfTQZYJHonEE0X7PZ6jT/2RV+vT198sqX/e3UkkEolEIpG4KayEoFAURa1AnklIURTVcYXtdrsi+izCZ1u+UxgIEiiKAZKqYoWMXFNMcL8isSRJNAF0hFQ6FQyajkK0CEACbJLoQoQ+bcGChcfha0lEOc6jo6PKPcFnk4QWRXEmShvbiWKF14XH93kNLJKQ4Ha7XW1ubmo0Gqnf79fqK0SbO4v6SafEONrOuU5xTijoeP7cBlMMeDSgCWPTepNYR7LPueG8x/oDXFf2l44WrifrPbDNWBeAokJctybHAduM89UkzBhMGfI1XAMKcZ6TWISRR5Q2CQdRTOPnh/uPdUgoeHFP0vXAtaHrwvPCzyKvp6uEn9k4N4nEE8Uff9mLNL1noaPtQ/3E1tuUYkIikUgkEok7ASsjKNg9YFvz4eFhJSb0+/2KMMZj9Pr9vvr94z/MSJz8u0mCiTajrowwk1yazDOHvilSGSv/eyy02pNEuyCko7l+jt0TLBbndAffK52SSpKnaPF2+waPzivLsor0e9w+UYDt0O4dRQrm6LNPFmwGg0FV76LdblepECzExyJ8JLqeR849U0biusZ2nM7B+hkUDugm8Jo72h7Jc1GcFj2M5DfWQYjuBM9LFJU4RgpScRxNxQljHYYoKlAUY62I2Cc/u2nuLXbRdeC9z33ZVOOBkX2LCUzbWAZ/hry3/BpTRPhZbTpFoukZUZhh3zknfjbn1M+K1yUSN4PP/cs/qS/d+cPz7kYikUgkEonELcVKCQomMJPJpMrD39zcrMj2eDyuLPsxSsnib5JqxftMlJgPTru3I9u2iVuAkE6JCQu2+XdfY9ITCyU6bUFSlTrgyL0JrAUIp2g4mm8i02SR57xRMOHpFbTxewz7+/u1onS+lpF7ElVG2Z2OMB6Pz9jiWW9gMBhU/XAtCBZ/tGXeAstisaila0SbflOagq9jbjxTV1yoT1LNok/rfUy38P89VxRlOBfuAwsSsp6C5yUKOX6m32c9CVr7m6Li0RURRZ8YxXd6RnSE8B6KIn5mv9+vRC/vTxbbZG0Gino8stRzwrmmA4GpI65bQLeDBTYT+zgnPiqTxTf9fhRQYoqH5yg6fVjUkWJCIpFIJBKJRCKRuDpWRlDgqQuStL29XZ0qcHBwUJ0SsL+/X0WxXTAwRthNikxKptNp5WKQVCNcPp6RpMZuCYMWeP/e6/VqedgWQ3yNo9wWMny0pf9lvr5FlCtXrtTSHWK0mlZwRoNJ3HgEI4nqfD7X7u6uxuNxdQ0j5Z4/Hy3pZ7i/Fgl4aoLb8e/tdlvr6+sqiqJK3bhy5Yr29vZqxSGJJrs9rfPRls+6Cv6xtd6uAq8xxQM+m/PGfP9ou/dPdB14vmKE3yKCI+gxrYL1GNxPt8t2YpoDCwZ6/rk/LPTs7+/X9jHnmPUfuHfcJ7dJUYruALoovE7+/PmeWNyUR7ZGASU6LNwv1mFgWo1htwz3NvcIi4x6vHQnNO037x9+hyQStwprz3y6vuCnflafMHynMs0hkUgkVg+t5z9Pf+UH/pM+Yfi4pM41r08kEnWshKBgMuHopwv7uXbCeDyuChU6uh1z1FlgzT+RSDISz5x7txkJGy3tjGjaEeBIcyQ9JkNszw4CH41JJ0WMtEcrPNtlxNtjY10G5n+zf54/t8HCkB6biZ+JGI9+JHFkNJrzbpeJ53Vvb686RSM6L2JtCs4t0wpi0UeTRjoPTHTZr5gWwWh3FCg8dq416xUs26dNtn8KIny2XRh+vynnP6KJeHvPW5DweE3mYz2KpnQNEm+Pk2ki3Jfsl9v0fuv3+zXXDguP0i3gOYhtWejgHvJcLHMK+HPLzwHbtAMhzj/nhvBceO/7s3+1dUkkbgRlZ03/y/oVpZiQSCQSq4my6+/pFBMSiSeClRAUolWZkc/FYlFLdYiF4Ej4/DoLL/LMeROMaIe3fZsCACPTbJ81EhiBNRgVl1TZs/v9fiUmsCCe+8d++lkUFGKqg3R6ooH73JSL7yKMdj5YjPFckZzRwu/6FD7+0SdpNAkX0qnNX1J1xKUdJT460MKNo8Ycn9eRKSMULSJJpKAQ3+OJGJwTCgtMF2lKMaANPvaLqQW+Ptr/SWZ5rKRdFFFQcP/pfIh98DNi5D0KHE2EnJ8VzjtrJsRimIz8s18m3TyqlY4Xzy1rH7AvnB++FlM/LEJQ7PO+531xbem68X6gOEj4/dg/uoASiUQikUgkEolEM1ZCUGD0f21tTVtbWxoOh1pbW9PBwYEeffRRXblypYqADgaDKk+ekWRGT02kTWJjhDQeJdjr9ao+2LLPQox2LLB2g69vImouqtjr9bS5uant7W1tbGxUJP7o6PiISBNmjy3mdDNqTnJF2z5z2ClKHB4eVmICj6L0GGLtCf+MRiP1ej1tbGzomc98ph544AFdunRJ29vbarfblTjgAo8kotPpVLu7u9rd3dWVK1f02GOPVUdUeh6lU9LmeaVIxFSB+Xx+5nQDnjjAmgBS/QhFpp+QUFJUoQgVa1rQpu9nWHiJJ4pEm7xrYnjuDw4Oamk0kdj6Hgoe3W63Rupde8PpNnYm8AQNtsW+Ne3RploMvoaihPeo01ucbmQxIQpLcZ7iZ4+pDwcHB5Uw4T40OS2aHDVui8IF59ZrwM8ExTS6O5jOwxSepnVKJG4IuYcSiUQikUjcwVgZQcF/0A+HQ128eFHtdlt7e3t67LHH9Pjjj2s6nZ4hgtE+zkjqeDyuyATz1Rm5tE1/a2urZot2zruvMYmTjkkGizG6BoMJtqTKveC277333oqM+7r9/f2KCJpwMdId+8zihBYOGIl3egMdDSTlFCxImqRjp8ZkMtF4PFa/39eFCxf09Kc/Xc997nN13333Vf3v9/uaz+fa29ur6jGY6LlWxdHRkS5fvqz9/X2Nx+PK7u+5pKDA31nc0WKOUxc8Bx4fnSo8MYNE1ETQpDZG+l1jw3NLohlrOLBuA+fYbTnKzzaaCkH2er0qLSTuRxL4xWJR1fwwGfZpJhbSLEhNJpNqfmN6DPvIQpAelz87MS3Eezte77m2S4VrXpalhsPhmfaaHDdNKSdEdBBZ8HBNBRa8jOkMFN9YAJTpKKwRMZlMap9rpvVwfyYSTwRv/7sv0r/9379ZaaNNJBKJRCJxp2Il/lpm9NWnIDi6bsJ0cHBQEQISm06nUyNTJresdu/XSRbjmfaRQDHaGU8ycGTVpJF1GpiTPhqNaqkCdgt4XDHKHcl2tJM3/Z9HE9LKH6PHtNsz791uAzsNnOKwvb2t++67T/fcc4+2trbU6/V0cHCg3d3dKo3B5M7PdTtOcZhOp1WhwJgm4nGS5LlPjGrHQoKM4Dstw6973jxG1pIg2Y/HObJGBvdk3Ad+3a+xJkF8Dt9nmgIJLd0HcQ87ZcBk2DU74hyRnNNZ4WfEFBKmLlAw4X5hvQm6NngCgz9DXA+uD+uVMH0o9oFrQlEsCkpN3xkxbYKpFlyr6B5hioSkSjD0/rRgwjSeROJG8YZ/+kJ93Mf9ml7QSzEhkUgkEonEnYuV+GvZ9m5HYdfW1iqLPovNmZA5kmiS5SrtTH2I0VHWRnDk3oRVqheCYwQ3HgEoneZdm/SwloGJY7/f18bGhobDYSV6MPXAbgYSTBNGigKRyMZ8dqZc8HcTRBJOkmlJtbQFSZWg4xSNnZ0dbW9vazgcqtVqVa4Drot0amH3vFA4YZqF1yv2J1rQKShEMYFk3iklFpv8eqwF4PoBfo5TCehcaKplwP0QSSl/53hieobHG8UczxfJvdsgYffceR5IuOluicSd/aSAwT7HugF0YXCevU4m/Z4TFrJsEoQsKETEGg5RaGEaDtNSYhsUZLiOFDbiWvl699PfPRYT6E5gOkgicb0oOl1NP+75+tsv+XH9ze23nHd3EolEIpFIJJ5UrISgIKl2rKIdACzmJ52SyG63q83NzdoRd87FNuGJaQQsILdYLKrjE5lzz6i0CTCPkCRZi3nh0qlw0el0KkI+Go2qkypYoND99bhYWd5tNUWySaRs+WcUmmNmQTwLFkyZsItgsVio2+1qNBppe3tb99xzj+655x5tbm5qNBpVDg4TRaaEsPCd7f0uxuiUBwtF/X6/djyj++O2XXOAYo+dBCxA6FQVpy3EeWi327UaC157kv1Yc4Bzzwh2rKHgdqK4E1MmKGz4GEmmCkSLvq81uXYaA6Pm3KveQ3RrcH97Xy1DFNVcd6TJ9eCjGikG2ZkTn8376d4wXBfFe5X1PBaL0yKiPHXB8xprPUSRxG3G4zApyrmPbN/Pb5qvZQ6JRKIRRaH2g/fpp/7tt6pTtK99fSKRSCTOF0WhxVoGDxKJm8FKCAomiCYVLuxnUlqWZY2UMY3g6OhI+/v7FeHp9Xra29urESUXeDSx3Nvbq1nZSYpJREgMWdhPOiV+vr4sy+p0ChPzzc1NdTqdShzxz8HBQdUuyRoJup/Bug4UMRgZZq43j6NkPz0mE//5fK79/f0qbaHf7+uee+6p+k0hwakd+/v7evTRR7W/v1+JLiahJmjRZWCyZiLN0zo4/7EGgsGIMtfUFnW2Y+LNeTKhZCSc/aVgwN/ZRkxZ4LVch1gk1HUQ/Hw+1+3yM8C6GZJqR3ayBgKPiaSThaISXRWM4HuuvZ9JpNk398/Re9ZbiMVA3X8KeXTRGHQR8D7uG7p3ojOiyTFggYmpSBY6ovskCl9xfN6L8Z5E4nrxzr/5Qn3P3/vn6hTD8+5KIpFIJK4Db/inH64f/+x/Lml03l1JJG5bXFOSK4ri3xVF8c6iKH4Lr+0URfFTRVH8wcm/F/DelxdF8fqiKH6/KIpPuJ5O2HZsUjwej6vaCbGYINMiXFTt6OioJhgw95q5346A+h6SQhLDTqdT1XQwAWVE2CSVBMWiR7/f12g0qpwJfube3l4lJFBEYP64VLe+szYCI7+R6DKKT3EkpnxES7mf0+v1qtoV/X6/IllSPUJrYcF95LOiwyOSNtadoPgQ8/bdX1r/OY4Y6adw4HlgQU0T0qb2WB+ANvim/nh/eY9yHeya8Xscd6/Xq/YSCb77zGt8nd+jDZ9uE64/ibM/L1erPWDCHa/hOnqefZqE1941Mbh36BpoctFwHTwHMY3CopWFJtZJiTUp2N/oIGnaS0zF8P7z+OJ6LnM8rAqeiu/ixM3hqCc9r5tiQiJxpyK/h+88HPVLvUcnxYRE4mZwPR6f75D0ieG1L5P0qrIsH5b0qpPfVRTFe0v6LEnvc3LPtxTFtX2fJmwmhEx1iHZyHtlokiCpkZTHQnIWBlw3IKYtmFwyp1o6rTbPvHITeJMzSZWgMBwOKzLmZ/qUCo7VbZkUkowxQtoUuee8MW1gGfHk3JA4WuAYDoe1vpMcm2xxDvzeMhJpgs5otOeLRf8syLC/MX+dTgxa7A2mGbA2QLy2iTTyvaa5cxskuBSivO4xZYVOCosNdBOwsGhTFJ73stgiUxr8HK8FU1HiPuF6sZAi952kqi+sUUJXBNMsiLj2nGeuDxFFLtZViGIChRM6NeJejK6ReL2/TywoUHDg54z7eYXwHXqSv4sTiUQicVV8h/J7OJFIJGq4pqBQluXPSXo0vPwSSa84+f8rJH0qXv++sixnZVm+QdLrJb3gWs/gH/+OVE4mk8q6HPPTnU9u8mDyRULpCKvdDK1Wq7JU2/1A4hndCSaAh4eH1UkF0inZZSqAbdf9fl/r6+tVfYeyLDWZTLS7u1s5BphbH2sjxPz16ICIc8Yq9Cz4yOMkOT6SI5OuwWCg0WikjY0N7ezs6MKFC+r3+1VuO0WR8Xhcc0FYHGD7Jm7uA8UFzxWdDSapJJRca/7rPRILH9K2TjGJIkp0Q3j8JtR0qsTaAhZbmFYSnxPX0uk3vV5Pg8GgJiC5XoiFiHg6hAUHCzt+Pe4Pi0gxfYPtcA4pRnB+3Gf3dTQaaTAYVMKdjxWloERyH8UOikVcJ+8ZOzjsxmABRzpk/HluSkMg+acrhiKWx+wUD3+fWEzw+LkPjejkWQU8Fd/FiUQikViO/B5OJBKJs3iiNRTuK8vy7ZJUluXbi6K49+T1p0l6Da5768lrV0VZllWaw+XLl/Unf/InNQJOws+8cxMZRtR5YoHt5IPBoIqwx6J/ju6bwJloLRaLys3gUwRMAF3n4fHHH6+I2IULF6pChm7H98YCcSZDJE0m7b5OUu1+5sSb6Jqo2kHhfnLO3F/plJCRpA8Gg6oYpufRQky329Xh4aHG47H29vZq9RlMyH2ChUmfiScLXloc2t/f1/7+fm0NTYjdv2hrX1tbq0SjmL7i130NybyfQUcFo+Qx0k93QrvdrkQEzwsdGjGa7/YoSrnGA90jdKfEaL0dL967FnWanABMGXEKCu3/7EfsQ1NKjX+3yEFxY39/v1o/phW5L9Gd4rnw54tuHp8qwgKpnk+PlcKQ26RDhetG5wtFB6aWWNTzZ8b72m05zYLPYPrLijkUmnBLv4sTiUQiccPI7+FEInFX41YXZTx7RpzUmIRcFMVLJb1Ukra2tqpI/uXLl2t5+iaHnU5Hg8FAGxsbWltbqwkDjnQ60nh0dFSRYxM4ExqnUbhAoQkKq71Lp0cqOnre7/dr0frHH39ch4eHFUnZ2tqq5cqbVMe6C9Ha7wh5dA94LDzWMQoCJmW0mkf3g6/3/XydNSkcFeZRlx6ri2M6DeXo6KjqA8UBCxusk+C5tzvEBJER/Sahw2PwWtGlEp0MUj1qHUm4+0EniNcg/s70A9v+Pc8eh/dc7GtTSoPX0oLCMpEgij6SqnlmZN770XPNtTcsvDA9iNd6rj0vrGfA9ZxMJjVnAvdWnEOCY+Ccm7jHveg582dnWZoP0xGaUleYAsT58jgpRrk/3qd+Not2Uoy6DfGEvov7yvz/RCKRuEXI7+FEInFX4Imek/KOoigekKSTf9958vpbJT0d1z0k6W1NDZRl+fKyLD+kLMsPGQ6HVcG3yWRSEWgSo+FwWDtWMpJoR2t5xCR/YvoA2+CzTJpM3Fhc0ATFqQWSqvoDw+GwinxK9RMD3B8jigdulwSJqQN8nQSQUd6Ttag9m4QxRsRdO4HHErKWgomVSeV4PK6JCe4Do7msNeG5ZRFARp1jzjrTGHhaQqyDwYg4EWsfUGghmgg4hY12u13VkmDKh8dgUsz+xTX1/HpuoiMmphvEfsaaCZGUe67jOOL+oEDWNBccMwtA+vrpdFpLU/E97BvrdhBN6SRc5yh48bPXNCfx+Uyb8fO8V+jI4HdJTL2g0EOxhyeOxPldQdzS7+KOek9qZxOJROIORH4P36bY//QP085zYwZLIpG4UTxRQeFHJX3uyf8/V9KP4PXPKoqiVxTFsyU9LOl/XKsxpjzYYUBXwnA41IULF7S1taVOp1NFfU1iyrKsjmS0oOBCeCZ9FAdI0qT6sYAmFO6L88BNUix8SMfR7NFopK2trcoublLEInIx4u73JVW1BWazWY1Aub+MzJP82TZOgmXyS6IUiZr7Y+JsMcFzvb6+XtWj8FGRu7u7laDgcTt6TydFFBTKsqw5Fji2KABwTqLIY5LodV8mJtCdYCJLUcVt+7mRNHrNXAfDxz66PkU8arHJbcA97RNFLD6RtFIkoCjktqMAQxHGBRK9lhSL3C/vEc8Pa4bE673+3FPekyzgaVCwioUs42cr/s71iS4kv75MNOJ88fPMugh0xNAdRDGB8ymdpkfxtA+KNyuOW/pdnEgkEokbRn4P36b4K//kP+qXP+iV592NROK2xzVTHoqi+F5JHy3pUlEUb5X0lZK+VtIri6L4QklvlvQZklSW5W8XRfFKSb8j6VDS3yzL8pq+4cViocuXL+vy5cva39+vSKTz13u9ntbX1zUYDKraBCQbPJbx6OioIoKMbkdyQmHBz+p0OrXCjU5pYCTexKnf7+vSpUva3t7W1taWNjc3a5X8LWKEuaxFUmmHPzw8rEiN+2f3BckWC9Z5vI6a0+JtUtnr9c44M5jH72tHo5EuXLig9fX1qu/T6VSXL1+uxBXp9IhEEzeTz/F4XBVt5GkAFFMYdY6uC4I1ICSdER5cK4LOFKZYcB7cZ5L4pn61Wq2q3obdCSbV4/G46oOv4xoxjcP9NqnlvHMsFMSikMS94rbn87kuX75cq8lhwYBzRbHH88DjGDn3TAmiE8Nj3t3drT4fJt0k9BSoYmqG9xU/A7EGQlM9FAsfy8QEim9MLWGtBtbvaHLouJ3FYqFut1sJa2VZninOuEp4Kr6LE4lEIrEc+T2cSCQSZ3FNQaEsy89e8tbHLrn+qyV99Y104ujoqBYBd7TRP1tbW9rY2KiIHKPvh4eH2tvbqwSFoig0Go1q0W2pXgle0pliib6OedWM3ppwmexY4LDoYYJrAYN52KxZYOJiAirVi+iRRMboNwvmkXCRbPneVqtVq/vgezxO1hSgE8RkmmIHo+esKyCdRu8tKHgdPEbWPCChjykHtPnT2dE0D9GFENuKa0viHkm8ybH3mo9qNLmdTCa1trzO3kcUEVirwtH9GJmP0XE6Jvw714mOgZgiwDFzr1rYch0PnlDCvWMBy3vEhNprGsdGMYTR/6Z0Ba8NwdQSEn2KJwRdDNGZ4PGywKI/cxTOPO6Y+sS59JgsTl3NJXGeeCq+ixOJRCKxHPk9nEgkngo8djTWJ/yjv6u12a3/O7T4vHfq/3v/H76lbd7qooxPCPxDXjp1FnS73cqGPxgMavnNvNeE1hFHH9nHaH7M86ZFnjZ0E3NJFcm348FksCiK6gQJnmXP3H9b/WOkns93m0xNYK54JNKelxjpNfExcWRRwUjQo03f82wniEUNRthN0uLzGTFmQUZH8ikGXIukRVGAcxCJ8NXSDBg9J4mkmMHneB9QDPIe8/qxrVjfwPPKH6ZmcD3j+CkuxPdt4/c1UaThfmoi6DEtoKmOBgt7SqoKlzKVgIUnmQbgaywuxXmOYpnHS5Eirt2yfcF0Cs45nT4U+9g2nRNun6KDx+/2XSNkFQWFRCKRSCQSicTti694x/vrv7zlede8bnawpqd/36+pPHGI30q889KL9EHz/1VFUeonP+Df61J7dNNtroSgwNxoHh/X7/c1Go20sbGhfr9f2fB9re3Z0+lU4/G4Ive9Xk+j0ahWWI9R8UgsTXh4tJ3b8SkIfq6j/T5ekQ4I11AwGXV0O5JqEiPWRbDjwu3Fgn8k9BY9IuFx5NZ1EPgckzATTNdRsPjiuhMWE3xcIB0hPv3B9RV88oPrKJh8MyWBcx6JJiP3JJ7xGq6dEdumZZ61LGIev++le4Q1BFyPg2IQCXms2cB+kqBH8aCJRDOaz/3h4z79e5OwwWKc/tx4rljPQjoVmZaRehaepDDFOWR6jgWmpnSHJriPMeWFIl0TgefaRqcPiztyPTx3sS/RpWQnh+eWDhnOUyKRSCQSiUQicS08crSvR69y4viPf9ef1gNf/4vX1daTFdK691/9ovSvJBWFfuR3nqNP33iDtlqDm2pzZQQFHt9mEt/v9zUYDCrbOi3cJrH7+/t65JFHqvu2t7d13333aTgcVqTaFvhoiyYROjg4qFInjo6O1Ol0KmdEr9er8uglqdfraWtrq3JDROLrtmzNtlgQTzZgPQUf72fiVhSFBoNBRTTb7bY2NzdrTgSpnr9uojUajbS5ualOp6O9vb3GyD7dHLSsm5Q7fWF/f79yZLh+hR0lh4eHeve73107WtApFEVR1OY6kjuSb0eFJVWk0329GqGjU8Okm6kIHo906kgxUfSe8NzSyTKfzzWdTmtOAbpYptNpbW1Z0I/tRtGKAgILU1Jo4T0muayLwfQDrj/7R5cBST/bZwFPt+X7KO5xv8RTE5zyQ6GFoOjAZ1MEcHoNX+NcxPSEZSkW3FO+Pwpb0enhPRr3ZSwwmUgkEolEIpFIXAsf9oN/Vw///V9b+v4Dh69+CntzDZSlfuD9HtLXfucn6g8++jtuqqmVERSYB27rvcmaRQETGhea293d1ZUrV3R4eFg5Gba3t2vOhPIkL1w6JV8mhcxFdzX+w8NDtdttbWxsVEdBSqpy2FnAkWS31+tV0e0rV65UAgSL/zEKTQHAhNXF4CwwmBwVRVG5CByBb8qnt+NgNBpVYoRUJ1p0O3h+LXiYpNkJYqeGC9fZGeHjPXmUpPvNOhAxSuy557zZaeHXaFsnoTXoPPB4nGrheWEaClMgmtIKaOun88XPoOjkKH4UE6ILguvTtNdZp4NiTxMhZwSf4ojnwv0naY6RfM5VFNG8r6OLh6kx7mtMn3DbnmeKNtG5wL3neaLToklMiKkTHmfT6Rp0XFBgMCgmxT3YlKbBOUokEolEIpFIJCI+8Jc/S5v/ZrP6/T3/8N06OpifY49uDOXhoZ77z+b6M9/zUpVr0iu++Rv07M76DbezEoKCyYQJnImQbc22YpvkOoK8v7+v8XisoijOpEc4Ymw3QxPhM9HiyQRlWZ6pj8BINsm+pFr9A0f29/f3z1TrJ0hkY7TVJIypCZwTExxHkG3vNvr9fpW6EAUF5rPHow/9E4/cc6FCR5Ink0klJuzv79cEAPfTxJMEMaY6RILKveB5ODo6qo0v1mRg1Nz3eVwUAUjUY0TbggkJZ7S7+/pY4DCewEEyzzbi+Hh8KcfkeaEYEt0LnEc6J2IKB09vkFRztRh0HERwnfhsCn9RMKCbgOBnrkmQoNhGXC2lw/MVazT4X/YtHhfbBM4r3RJR5EkkEolEIpFI3H34mN9+if74ke3aa5s/PVT/x09dB7fjX42L1/6O+q+V1Grrz37Kl6gzPNBz73+XfuI9f+K621gJQcGEwkSYZ8ovFguNx+NKULCoYEfBdDrVcDjU+vq6Njc3a6dBWHxgygNtz9IpwaON3WkWjqj7eqZjGCRGTpmYTqe1SHksCsd6Bsxtd3tMByBRZ4TW93Y6nTOEmvZ3ihmMuLNf7ltRFFVNCh/NaIHCwo4FBa9DjPSzP/FEhViHwKJF7AddFBaaolDAwom0/zN63WRbj+KVi1dezXbP/vokEd/rPeJr3Q5TA3xt3IcUeeL6sz1+RgwWAPX7dLjQneA9HueYr0XBYFmqCU9PobOD9UX4HLpyomgYHShxHj1HHoevZ40M75GmlBH/7n1GgSfOnUEB82qCSyKRSCQSiUTizsJjR2P9/kGv8b32V1/Us39meTrDbY/Fkd7jC39FkrT/KS/Qa775+uWRlRAUpNOc7AsXLmg4HFbV2030TXJd7PDxxx+vnACdTkfPeMYz9MADD1R1BkwIeISgiZ5PhKBl3nULTIppxTbJYvSfkdZWq1UdtcfiebTnx+g6iTUJNGsxzGazSsTY3Dy200Q7u2GSRaIXyTkJnNMXLHo4pYFR+NFopF6vp8XitK6CRYXxeKzpdCpJ1b2eq3hcpp/HcVnoidb5WFPApy4wDcLkPp7CEN0g0Y0QBZ1IipkaQaGDIkNRFFXtgHhKAqPaFpRIXLkfKQxJqlJZKAJxv/BIUO9Rv877KO6wCKPXwMSee57jjKkKJNYm9/4MtFqtqt9xjXg/U2IodNBxQMGE46ELw3PhuYmiH0UNrkU8NpOCId/zj91K6U5IJBKJRCKRuHvw8f/z87TzKX/Q+F67vIPFhID+j/0PfeWPf0jDO29ovH4lBIWiKHTx4kVtbGxoNBpVKQUmjiYbR0dHmk6neve7363d3V0dHBxUYsLOzo4Gg0FF7mPF+oODA+3v72tvb6+KMjNnnkTNRIMRZ5+GYAJIQWA8HqvValWnOrA2QiRC/v/h4WElCJDMSKenTdi1YbLOSHCM5pIIcr4Y4S2KQpPJpCL+MbXDRH+xWNScE04xmU6n2tvb02w2q+bV5NKgmMAoOMkzrfGeJ5JdztVsNqsdTWiCyLSMmFbAqHiTxd31D2IxxugCiCkyvo/7wONkHQCPy2KCX+fpCJwP1lTw54HiCdeSgpfn2sJMrInhvU2C7mdZIPA4PQ4SeLo//BpTHWIknxF/uj18v+uj8Lkcn+fHc+A5aqql0OTkoIDFIzDZbwpBy/ZHdIIkEteLp3/fG/Wn3/jX9LP/4mVqF61r35BIJBKJROIpxd5iqk/+oi9WZ/+sC/XSu8ZaLEmPvetwA/OwEoJCq9XScDisTlSIJx74x6kOTitotY6PdnQhRulsmoMJg6388/m8Ilckg02nHZBwxEr/JkNNNvYoJkh1O7eLNfp6k9VYF8BzYyI4mUxqpItE0CJAzPsnIeJ9Jq10Opggxue6Py5+GCvvsy/LTlmIjoyYBx/nnGNz/7huJJicZ78XT8LwtRSEmHvPfkXCG8UPOhOioGAwqk7bvZ/dVPsgCgqc05jO4jWJRSxj2zFtIu4vrhXTKDyHfI/CDdeIa9EEpknE/cJ1jikXFIk8j0z9oVjDtXPfLY75s0hhjeB9FBOulvqRSDTh8I/fpq3XSAuVSikqkUgkEonzw196w8fo1b/3nLNvHBV6r//2W1qMx2feusqJj4mrYCUEBdrILSgw+mpyYDHBqQ79fl/D4VDD4bCKMrvWQiSHFhNoHSeJM1GMEUnmuUt1omxy7WKJdCa4KCJFCRMWR3NpYff7jPDHVAA7L5oEEdr+/czYtkEC6KM1PR6SWkk1QYcCSiSRkRjyOe5XJM/sUyTdJpYeOxFFCo4rCkG01jOVoClVIfab/7JmBe+hqBD3DfeJ581rSgGJUfrotCD59x6VToUzSbW+WXyJLo34LDoUPB90inA9KL5wDThurzH3W3RjMO0k9icKKk3PtFgShZU4/3ROxFolcb80OYcouMU+JBJXQ3t7S/Nn33ve3UgkEonEdeDnL7+HPnLwR3rOE6hqn1g9vO5gX39wcLH6/Xe+73l6j3/5i43XpnBwa7ESgsLa2prW19crh4Lt1Dx5wSkLjz32mCaTiUajkS5cuKBLly5pOBxqb29P0inRY268CZ1JXbSXO3JK0mMS4mfTJu5aAyb9joLacu5TAyJRcjsmaXQm+H1f61QHSZX1fDqdVtb3TqejxWJRK4woqUaIIrFm5NeukH6/X813rKTPNbCoQ0eGdFoPgpF0z7EJMkmqj520RV/SGYGCDpCyLKt6ARQZSARjvnscN0m894j3hmsALKvBIKm2rp6ruI8Mk2oSbs+d00O8ryxwsf+cr5j6wvoR0+lUZVlWRNljZIpPdAEsS0/gPPne2WxWExPi/LjdpiMcKRj5XosAFKT4L+fRY4pum9gXimBecxcMdTv9fr/mjmARSY8/joniQzoUEjeCt37h++g3/u63SOlPSCQSiZXHWz98Tx//TX9Pf/iZ33reXUncAnzKd/49Pev/PD1x4T41iwmJW4+VERS2traqCOl4PK7lP89mMz3yyCN67LHH9Pjjj6soCm1ubmpra0vr6+sVkWXagaSK/D366KN67LHHaoXvLAYwskqyPRqNqsJ/TpOIhRZN5Jy3bnJuMu77jFiAUTqbWiHVrdaOQlsYYSoCI+vONZdOCXW0pJtsmmBRtPD1FAe8Dk4XmUwmNecDxQPPPYsk+vSESKwpRsSaEJwH/x7z6XmKhNslIWUaCcms59QOF85NPAaRJNaRf/eXwhCdMBQsfE0stMi5jv2OdTSYciCdEn3vY+871tngHJCwU5xbNr9+Botd8rPElIAmISGiKIpKCPGYKJpxLphWQvcIQYHN6z+bzWp70aKba114biwkUMxzH7neFk2iyJFIJBKJRCKRWB38qZ/6Aj38stMU3ue+6Q3Ks7nOByshKJh8Sqo5AVx4bjKZaHd3V+PxWIeHh5WQYEeDiRsL4pnU+ZhDkySmGTDFwaSj0+lUVeAZiW6yX5uwmNjZNcBq/rS3U7hwNDjm3ZOU8scE1Ccq+BrWWmC0N4oUhvsTCTRdAU1ujhj1Z+qHyZ3vYeqF++e2HHFnjQCD/aXl3ITeAhGf6bXnfST4vpdCSSTrXFsS3HjqRtNzSbCjfT7uSaavMLWF/bAAEsUEFqPkM5tEEO6DWMSS+zemPPgz4r75dRJ2Ol2uBQoVTLUgYuqLpNqe9tpQ+IrHklo48evsI+fGnxHOA+s6MBWG+zuRSCQSicSdiQd+vtRz7/l8vf5j/v15dyVxDXzx2z5UP/6LH1T9/rT/Luk1pycvpJhwflgJQcF/yLvwoqvWm8T5dAZH6C0mDIdDdTqdiiCQmLmI4e7ublXM0ITD5N/WZt7X6XQqdwJJYRQUOp2OhsNhzcbuPpBcm0jS4WAiaOJEYmcwnSESLt8biQ9JViS3TaQ1igluj9HsGIUn4aIIwehzLOxHwYGpEJFMMnrsNlgIMZJ5kvKYrmAyyxMPLDJFISAScrbB6Lbng+IIT+vgWGJRSD7DVn32g2vjthg1ZxpCbNPtcg099xSILIx5jmMqiE/v4DPopPF+jvUNeH2sdyHVxaS4VrH+QRQTYlFROlK4L6N4w89kdCXwmUzz8TN96kumOyQSiUQicWdj9EO/pIf/4L30HR98rz5z/a0atrrn3aUEMCsP9L27T5Mk/eRPfoge/oevvsYdifPAyggKttc7l984OjrS448/XtntB4NBJSY4J3s6ndYK0y0WC00mk6pwHU8miC4E6dhC3W63NRqNNBgM1G63qwKIJJ7SqTNhZ2enOoLO5NfEzcQsVrVntJzRfx+nFx0O0+m0IjqxpoOJv8k5o9qRDJkM2hnBFAASOxNWkkrm8lswiNZxz290S/g1EtroQmgi8SStg8FAnU6n6oP7yLQD3+excL6Yb08RINr5o7jBPehxm9A6T5+iAdMs/CzPc6ybYLHL83t0dFRznjD9hAUbPTapHln3GtBBwjQTimm83zUsvFZRQPJ7bsdOIooMy+Cxe82iM4HCRnympCr9ycVNKQg1pYp4zvxZ8j73vFmkYlu+j8KK93d0jyQSiUQikbgzsfiN39P3vteD2vmDPf2F0dnK/4nzwy9M+/re93pQkvQspZiwqlgJQcGEyE6Dfr+v6XSq8Xisd77znbpy5Ypms5mGw6E2Nze1vb1dkS0ec+i2LARYTJhMJlUhw3a7XYkSJl7MR3c0ezKZVMTd6RjOyzbJjbn5PJqSQoN0TLAsGhRFod3dXUnHxRd7vV5Vf8FRZYsFrNlA6z3t6SaskeDF35kKwEJ+JMAWONbW1ioxgIUDSbQ81yzU6AKKMTJO0sh0E5M8E0LPmVNJer1e9RyTcf9LYsj5YWqJo9fz+fyMSEQi6vnxWkmnOf9uk04LF/7z9fH0B9bmYO6/54OOAe+lSF5Jbj033Avc814PvhbXwH2xQ8fzxRobjNzTReIx0jnk+h6eS68Hj62k64GOAu9XFvI0LAbYiROLN3Jfx5omdG7EYp+8n2vt/nK+vB9SUEgkEolE4u7At774k/T3vmqo133Ud553V+56fOg//Ou69MuPqTg4lPT68+5O4hpYCUGBZIjkeH9/X48//rim02lVRNCRXJMxEglGWC1ITCaTGum0cNDr9apov8mSSWEknYZJuCOg7jvJte+LLgE/k+kKfq7bNVGKRCjWOqCtPdqySc4d5V5Wm4Bigu3snl9Gg5laEAsomoCxL3Ql0OkQ0z58LefMc2JBodvtVm4AChex/oGt9Mv2FlMW3Ff/zrWKwo3fp/PALokoGMR593uxLobXny4WppPEtIdl68e0CKNJVPBrdEtYyGFtgybyTIGGdSx4WgSfFz8TFDtYFJRrwDQdPsf72f82iQl0IcR++7n8rFKE8j6zkMbnZQ2FRCKRSCTuLhz9/ut13ys/TM+efKHe8Anfft7duevwFe94f/3gf/4ISdLDP/t2Hf7RG8+3Q4nrxjUPWS+K4t8VRfHOoih+C699XVEUv1cUxW8URfEfi6LYxntfXhTF64ui+P2iKD7hejpBYmfSbWeBK/I7is+TA1jfgETQhRzH47Fms5n7Vdm8XUyRUXJGX6OgYNLvkxzcR6lO2ljRn+SW5MV9lE4FCj+bINGN6QuRVLHoICPgsXggi+p53knQ2+22+v1+Fb2mVT6S15jPTgIWbfaERSPONYvpeT4sJjCSfTUbehO5dn+ajrpsaoN7KKYacL5i8T8T5BiFj0IB24yW/bjGks5cF/saxZJ4P19jPQrO/9XWiqIN640wdSQ+0/1mm3HdSPb5Gt0zJvlcKz+D/Yl1M6J4E8dDUYNHgfKzsqquhKfiuzjxxNF6//fS+MEUoBKJOxn5PXznY/jDv6T3/Ja5vu7R5+jrHn2OfmM+vfZNiZvG9+1e0Pf/7Iv07K94tZ79Fa9OMeE2wzUFBUnfIekTw2s/Jel9y7J8f0mvk/TlklQUxXtL+ixJ73Nyz7cURXHNA7n9B7wJ+9HRkd797nfr8uXLOjo60vr6elWI0UTXZMM1DUguHEVm3riJd7/f18bGRuUyMLGgAyDmrLdaLQ2HQ41Go6rOgq8lYTqZg1ohP0mVq4HEkSIDBQWS0khsoj3ffTe5isUKSeyaiBIFEIsJTL1wJJ7Cg8co1WsL+Id2fl/P+0hmnZJiUYjHb/r/kmopDstEBc9bfM+ihZ8VXSR2EdBpcHBwUBUB9VpF8u69NBqNaiIX55pkt6n/Fsmaijo2OVGiU4UiRhQoOO/u62AwOHOM49VEC9/LUzYoQMQiklx/1tVgfQ2mQ8QaGAbH6GMyKQRQFOGYuYb+3eOlE8KfR38HHB4eajqdan9/X/P5vCbkRaHvnPEdepK/ixNPHPe//I/1+s/Os8wTiTsc36H8Hr7jUf7yb+qn33dDP/2+G/qLv/DXz7s7dwW+5R98hp77Ja85724kniCu+ddyWZY/J+nR8Np/LcvS4cnXSHro5P8vkfR9ZVnOyrJ8g46TXl5wrWcURaGNjQ0Nh0MdHR3pkUceqY6INNE1GSqKoiJ6JtQsEufoqUmdiWq/39dwOKxIM+8xsaTNmkTHxMQ1EJgvbhK47Jg/94EFIOfzeUVGWVchRnbpTogEjPnwLk4ZBQUWIDxZtxoBtSNkNBppe3tb9913nzY3N1UUhSaTifb29qpaDn6mx8ZTCtxeTNWILg2LBCSUXmOvJefYYgDJc0Qk0ySDTMlg/QJeR/FnOp3qypUrunz5cs0WT9IsqRKlvH7Ruk9nQhQjuG9ZiDMKJM7jb3KpeNxca6aeEHR8sDYB9zn3FNNRJNVcInt7e9rd3a1It8l4FJVimgOvoVjgNuKPXSV2F8VUDToZ4pzE/Udx7PDwUN1uVxsbG1pfX1e329XBwYH29/dr+9xr6DZXBU/Fd3EikUgkliO/h+8+vOffeate8OUpKjxZePPhnj7pYz9Do//yG+fdlcRN4FbUUPgCSd9/8v+n6fjL1HjryWtXhQmCiaoLIrrKv90JhvOiHWX0vSZZPl7SBf1ms1lFaHm6A0mqo56OYJMQmvjEKHZTBNqEhlFqR9p98oSLLTLy676bGMZofrTSu888CSCSO6leeJApDyS0o9FIm5ubGgwGtXoFjsSzUr7/bSL4y8ivBRiD95rwWuiJ80wRJCK2aURxiA4Hp3awqKbbMjm30EKxyuPzWtIVEwWBpoKXh4eHNeEqRr/9fqwF4uc2gWKR9wvXx3uXaQTRSRHFGP4/zo9FGc+D22dKAkk5+yGdrUfCtA2/T2HG/eC8RVdEhD8jXH+KSE5z8LhcRJUpLCvmSrgR3PR3cSKRSCRuCvk9fIfh6F3v0j0/N9R7v+xv6FV/9Z/pgbX18+7SHYHn/LfPV+93B2ofSA/+/i9Ji7P1sBK3D25KUCiK4h9KOpT03X6p4bLGhOSiKF4q6aWStLW1VUWTx+OxptOpFotFdZTjxsaGOp1OdfoBo93MX6e9moRuNpvVXAYUDkx4TJBs4yexoDVeOlvJ3yQo2tCZ621btSPPrH0gnRJf94vHRNINwUJ/JGB0C/ieSE5NWu0SMLnyqReeFzsbmooD8tQBv+c5ij9+XToVFSh2eF5N3iOBb0pjiPn0fq2ploZfjykfjnZHQm8i61SEpqJ/fq3b7daEEopPjJ573knwY9qC74+R/jMfpJDywjmIJxx4zuM+9v5i6gev5943iWcai4t38nQF9sfE3OB4fY/bjcc6RtGI6Sgk+5x3zhPnv2ld+fm3I8gCWhQQ435bddyq7+K+hk9K/xKJROJOR34P37k4fMOb9PSvfqv+1sd/qp45fFQPD96hL9r+4/Pu1m2Ne3+ip83v+cXz7kbiFuEJCwpFUXyupBdL+tjy9K/ut0p6Oi57SNLbmu4vy/Llkl4uSQ8++GC5WBwf1fjII4/oypUrarVaVe2Efr9fI1BOYTAxZp61ibDdCfP5XGVZVmkTjizv7e1V0ejhcFgJFtGaHW3g8Zpo8ebxiuvr6xV5seuCVnq3eXBwoMlkot3d3eoaug8YtWWqg3TsevC4o6Dh/rKmgutB+FQL5tUfHR3p8ccfr07G6HQ61fzZgs66CVK9eKSFnqYUBDo3pNNo9Wg0quznJIr+l4TQiMSTRDdGpk0YPTcUj1jI0mk0FFj4LK9bURRVYU7f63FGwYC1OOweIAGnw4BOkiYBxf+P+8F7IkbX7eIxWq1WJVh5Lbl2di9QTHBtCIpMPGaRfWtKPaEIx7Wn+4b3M6WHRSQ5NgpOnkOuDV0eFgzKsqzW1GOyqMITV+Ies5Cy6riV38Wbxc7toaAkEonECiG/h+8CLI60+5GP6Lck/dL/8mJ94b/4FklSJ8ti3DAOyqMl0lridsUTEhSKovhESf9A0p8py3KMt35U0vcURfENkh6U9LCk/3Gt9lw3YX9/X/v7+zo6Oqos8Ca7JrbtdltbW1saDodVBJ8kvizL6h5Wo7egYOFgPp+r3W5rOBxqY2ND3W5Xly9f1nR6XM01VpEnAWwiNjFyb4JclmUlJljAcA69dCwmTKfTSuDgs6VToub7aDWniOL+mSCZJE2n04o8WaQxWez3+9ra2qrI86OPPqrJZFKLpnNs8/m8co9QuLC4Y1Iao8mMrDtH3oTRa+wIvcfdFKlvSrOQTgtcet5MBuNJBLzOYgJTZDwvg8GglkZD0h9PIIjEmZF31iagQ8PP5Xp7/B7nss9JrFXh+gisC+K+cq4YjTdRphDBvnN/T6fT6sfrQyGALpDo7vG4vI6smeC97f0ZazmwpgJFBX7Wvdd59CbHy8++XTD+zFFQ4JxFrFINhSbc6u/iRCKRSNwY8nv47sP6j79Wn/qaT5Ekzb+zrZ963o+dc49uH7zzaF+f9zF/WVtv+fXUFO4gXFNQKIrieyV9tKRLRVG8VdJX6riCbU/ST538Ef+asiy/qCzL3y6K4pWSfkfHtq+/WZblNZNiyrLU/v5+FRln/nar1aqKqpVlWeXbm7zymETm5TOqKp0SfOn01ABboLvdbuNJCCS0TqMwYm0DqV4UjvfZXn0yn7XcekeMo1hBe3ok6W6XNvR4goGvcc0GOw6cWmASOhqNqqKOJo2ef88f55IpCBZ4+MNaALTFk8BzPBYYKE5QVIh1G+K+kVSrieBx0wkRBQGKRN43TqHxPoljpZhAFwCFEo8r1jygY4FtNpHVZSkPjOCTeHut6GhpSh8g6W/aUxSD3F+mETE1w8/2NUy3YXt02Pgeri2LiHrMXkeKCRRc/Dx+1uM8c27dDj9zdmf4uXG9OPZVSnl4Kr6LE4lEIrEc+T2ckKRyNtPhHx+bTab/6sP0/Gf+DS260qu/+Bu03uqfc+9WH+Xb36nypPB24s7ANQWFsiw/u+Hlb7/K9V8t6atvpBNOTSAJZJTehNaOAtv9eSoC6yGYyPh1kkASChJRnyrBKDFFACMSLkbqIxmM9n7WFzAxoqDAayIxZBscu4WEWKU+pmCUZVnljzvdgYUHPVcULVyzYjqd1o7hZL/oDIj5+z7BwP2RVDlNGMFuKibJNYjPJBz1jiJETCXw/zk2EmsLCibWjFxTIHE03HPd9By/zug8x8A5IQlm/5sEgXgvCXdT7QnWwODnhK4Xkv+YwsC55HuxtkaTiyN+ZqR6IUYKCbwuihx2J7AvHB/rPsS5sthCR4o/M/ysxn1LgWSV8FR8FycSiURiOfJ7OBEx/I+/pKGk1nCov/TJn6r1tWOiPGgf6OVP/zm1i9u20PMtx6/O5vrKN326dPTYeXclcYtxK055uGkwomgiavJblmVFZnl0nO9jgTnaqU3Uj46Oaic4+Jg4Cwo+xYD51NJphJL55bRtx+fziEYKDrSQO+3AYPSf+exNEWpJNWI1m800Ho/PCCG8hkUgHcG2/ds/rPzv+gAmXLPZTHt7e1UlfFru/f/hcFiJEmVZVukDnp9Iqn2v3QBsK57OEF0YUVzx/123IYpAJpFeL4oJ0dHCoyopzLgNiw3R7t+0PnH9/Lx4D/P9+TmIYgWFFcPpGZ5/X7fs+bPZrNpnnAuS9yhIRRHCz+Ue8/pZjPK46Hjwc3h0anTleO/zlA8KHd4LdioxVYMuhaajVfmdED/j3h/8zHKvJxKJRCKRSFwLi/FYsz8zluPu7UsX9c5fG2ujdfo3yt3uXviyP/pf1PrYt5x3NxJPAlZGUDAxpMuAtmjWEJBUFQiczWYVgbGV37n+FhlcI4C2fkfp6Waga4CRdBMeVtInyTFRi1ZyRkgjObG4QZJHYeX/397ZxVh1VXH8t4bhIwwglqIlbaVgqkmfhBgTlfbFr0IU/EgMxgcSG42JTWyMiRgSw2s1+mpjY2PTtLYx2kA0Jhhj9KVaW4SWBhCoGLEIloaUzlhnBrYPd6/LuptzZxjpOefO3P8vueHOnnPvXnvtfRaz1l5rH3civX+X18sbPKBQHsgYU8zjLvayZctYtWoVS5YsYcWKFaxevZqxsTHg6iMuly9fzvT0NBcvXmRiYoJLly4xOTnZDZaUKfd+qKPvIvs8OT5+oPs9McDj50C4U+eOn+8i+zij41lme7jjWabCx99Dby18zByJT9OIZybE4IbvcPucxowKD8SUmRHeTymXy1OWTvh8xXsipun7OnGH2+c0BrdieUtZtuC6jw6+B4LKcy5iBkHpoLtePEhRlckRdRx/57LErJmoE5chPhI25bKUeE/GJ534d0d9x+wF11EMTEUdx+9xfcXzLarKIYQQQgghZuLyqxe4b9P2qw23rGXfgSd0iKNYkAxEQAF6SwnKXWrPTnCn2h04uFrLHXci3dExs67jFT/jDnoMWkRn2R2YmDEQD35zJyfu4LqzEx228lBJuJpKHnftS2fOxx4DCu70eBBlfHy8xzErHdeo11iP7hkKrkd3PqMz74GXMjPB5XKnrurgSu8zHgoYa/E9mOM7wX44YJz3qNuYJRKviYfwlbvd8Xdxxz+mxseDA2OWRsxCqUrjL8swfNyzlSjEHXcfR5z7GIyK31EePugvfzKGz1kMOsSzKWKWh1PKEtelj8fvi7J0IJ5l0C+TpgqfA5ej6gBEv19jKQzQc35HlZ0o9R8DQN5nVQDDx10V0BFCCCGEuBEuX3it+35kfIIP7r0fgDc+9gbHtjzWllitsOGXX2b9PliKMhQWIgMZUIjOkDvqHkyI5Q7Q6+y5sxN3c323s/xMPPwvpm1HBz06n1WPufPrPQARD8nzft0xrXJmnNKRKev747kQnn3hevHPRycvOlzxvAR31sqykXgav2cFeIp8LEnwccT69hhkKcsuXE8x8BIDEFNTUz0OfPlkDi9LiEEEn5fyLIoyzb0f8fNVj0B0WcqyjRigqAomxPH6HJYlCmWGS79AUHnOwPT0dDejIB6s6ZkCcdc/ntMRS3niGovnV0SZy/GU5RnxIEafz6pzQkriWH0+4/kHcU7KR396gM/vB/99vzmOayMGFLyf8vGQ5fhnWjtCCCGEEP8PV958kzUPPwPAxC0fgi0tC9Qwa54dZemvnmlbDFETAxVQcGdgZGSkp846pvzHnePSKYw7snDVcSp3VhcvXszKlSt7HDLorVl3Fi1a1H0sYtz9js5OfKSey+Qp23DtUweiY+n9xfcxoBHLPKamppiYmOiWc8xGTB33lwdlYhDA+5mcnGR8fLzbR3TEYoDDH3vp31eWWkBvZkAMgPhnY2q+z9HIyEhPKUcsrSh3paP8cb5jdkR01uOa8XktAwXe7jv/fr1fE88TiBkYccxxdz/OgweZfI5jYML1F+UqDxwdHR1lbGysq/ORkZFrsmR8bcenXXjpiM9dfIJCpMyYiXPuuoXew0D9fivLUPz6ODbXR3xUZQzMXLlypZvN47KX5UjxvIcyK8apyuiJ2UZVlLIJIYQQQgghrg8bhDRfM/s3MA682rIoN0sGySAZJEPB+pTS2pb6bhQzuwQcb1mMYV9vkkEySIZrGSY7rL+JJYNkkAyDKkOlLR6IgAKAmT2XUnq/ZJAMkkEyDKIMw8Ag6FkySAbJIBmGnUHQtWSQDJJBMlwvKhgWQgghhBBCCCHEnFFAQQghhBBCCCGEEHNmkAIKP2pbACSDIxk6SIYOkmF4GAQ9S4YOkqGDZOggGYaLQdC1ZOggGTpIhg6SoYKBOUNBCCGEEEIIIYQQ84dBylAQQgghhBBCCCHEPKH1gIKZ3Wtmx83spJntbqjP283sd2Z21MxeMrOv5/a9ZvZPMzuUX9tqluO0mb2Y+3out91kZr8xsxP537fX2P97w1gPmdnrZvZA3Xows0fM7LyZHQltfcdtZt/O6+O4mX2iRhm+Z2bHzOwFM3vazFbn9jvM7D9BHw/VKENf3Teoh6dC/6fN7FBur0sP/e7HRtfEsCNbLFuc22SLGT5bLDs8GMgOyw7nNtlhhs8O5++dn7Y4pdTaC1gEnAI2AkuAw8BdDfS7Dtic368E/grcBewFvtng+E8DNxdt3wV25/e7gQcbnIt/Aevr1gNwD7AZODLbuPO8HAaWAhvyellUkwwfB0bz+weDDHfE62rWQ6Xum9RD8fvvA9+pWQ/97sdG18Qwv2SLZYtnG7dscbd9Qdpi2eH2X7LDssOzjVt2uNu+IO1w/t55aYvbzlD4AHAypfRySmkSeBLYUXenKaWzKaWD+f0l4Chwa939Xic7gEfz+0eBTzfU70eAUymlv9fdUUrpD8BrRXO/ce8Ankwp/Tel9DfgJJ1185bLkFI6kFKazj/+EbjtRvuZqwwz0JgeHDMz4PPAT2+0n1lk6Hc/NromhhzZ4muRLZYtrmJB2mLZ4YFAdvhaZIdlh6tYkHY4yzAvbXHbAYVbgX+En8/QsBEzszuATcCfctP9Ob3nkTpTqzIJOGBmz5vZV3LbO1NKZ6GzqIB31CyDs5Pem6RJPUD/cbe1Rr4E/Dr8vMHM/mJmvzezu2vuu0r3bejhbuBcSulEaKtVD8X9OGhrYiHTuk5li7vIFvciW9ywLZYdbo3WdSo73EV2uBfZYf1NPCNtBxSsoq2xx06Y2Qrg58ADKaXXgR8C7wbeB5ylk9pSJx9OKW0GtgJfM7N7au6vEjNbAmwHfpabmtbDTDS+RsxsDzANPJ6bzgLvSiltAr4BPGFmq2rqvp/u27hXvkDvf6i16qHifux7aUWbHldzY8gWyxbPhmxxFqvi2gVji2WHW0V2WHZ4NmSHs1gV1y4YOwzzzxa3HVA4A9wefr4NeKWJjs1sMZ2Jejyl9AuAlNK5lNLllNIV4GFqThlJKb2S/z0PPJ37O2dm67KM64DzdcqQ2QocTCmdy/I0qodMv3E3ukbMbBfwSeCLKXWKk3Ia0YX8/nk69UnvqaP/GXTftB5Ggc8CTwXZatND1f3IgKyJIUG2GNnizEDcd7LFHZq0xbLDrSM7jOxwZiDuO9nhDvqbeHbaDij8GbjTzDbkiOBOYH/dneY6mB8DR1NKPwjt68JlnwGOlJ99C2UYM7OV/p7O4SdH6Ix/V75sF7CvLhkCPVG3JvUQ6Dfu/cBOM1tqZhuAO4Fn6xDAzO4FvgVsTylNhPa1ZrYov9+YZXi5Jhn66b4xPWQ+ChxLKZ0JstWih373IwOwJoYI2WJkizOt33eyxT00YotlhwcC2WFkhzOt33eywz3ob+LZSA2fAlm+gG10TrA8BexpqM8tdNJBXgAO5dc24DHgxdy+H1hXowwb6ZzKeRh4yccOrAF+C5zI/95Usy6WAxeAt4W2WvVAx1CfBaboRNbum2ncwJ68Po4DW2uU4SSdOiRfEw/laz+X5+gwcBD4VI0y9NV9U3rI7T8BvlpcW5ce+t2Pja6JYX/JFssWyxYPry2WHR6Ml+yw7LDs8PDa4fy989IWWxZECCGEEEIIIYQQ4rppu+RBCCGEEEIIIYQQ8xAFFIQQQgghhBBCCDFnFFAQQgghhBBCCCHEnFFAQQghhBBCCCGEEHNGAQUhhBBCCCGEEELMGQUUhBBCCCGEEEIIMWcUUBBCCCGEEEIIIcScUUBBCCGEEEIIIYQQc+Z/qrdK0CWj6VsAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 0 799752\n", + " Min thresh = 1000\n", + " Sliding\n", + "\n", + "\n", + " Winner = Sliding\n", + "\n", + "\n", + " FP ROI = 237s_iimage_24164968068436_CLEAN_ClassS_172-300.roi.nii.gz\n", + "237s_iimage_24164968068436_CLEAN_ClassS_172-300.roi.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADYCAYAAABberBAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADWv0lEQVR4nOz9e5Rte37Vh81fVe333lV1zj23b7daAkEiGwwjOA6DOGbYyEOOkQmRgGERQRwLkNPCsYE4dkCCJNgZA1t+DBvHMZCOwSgGWwgMQxiIechWsIcQNlgkIMkyAoum6dvd995zqmq/67FX/qj6/Gqub6065z5O963b5zvHqHFu7cdav/Vbv71vzfmd3/krTdMokUgkEolEIpFIJBKJROK9YO/DHkAikUgkEolEIpFIJBKJjx5SUEgkEolEIpFIJBKJRCLxnpGCQiKRSCQSiUQikUgkEon3jBQUEolEIpFIJBKJRCKRSLxnpKCQSCQSiUQikUgkEolE4j0jBYVEIpFIJBKJRCKRSCQS7xkpKCS+7Cil/Ggp5es/7HEkEolE4hallJ8qpfwj7/K1TSnlf/g+z/O+35tIJBKJROJhIQWFxJcdTdP8nKZpfvDDHsfzUEr5h0spf7WUclJKeaeU8sdKKZ/8sMeVSCQSX8kopfxrpZS/XUo5K6X8rVLKb/uwx5RIJBIPDS9bmH3R8fLv4sTzkIJCItGNH5P0i5umOZb0VZL+uqTf/aGOKJFIJL7y8Xsl/aymaQ4l/QOSfnUp5Vd8yGNKJBKJVx35d3HiXqSgkPiyw221pZR/sZTyh0spf6CUMr9RP/+uUsp3lVK+eFOp+kftvb+2lPLjN6/9m6WU7wjH/s2llDdLKZ8rpfxTrriWUgallH+jlPKZUsoXSim/p5Qy6hpj0zRfaJrmc/bQlaS06CYSiVcCpZRfUEr5CzfVqDdLKf/3Uko/vOyX3HwPv11K+ddLKXv2/l938139rJTyp0spP/3dnLdpmp9ommZpD+2U372JROIrEKWUn11K+cGb79kfLaV8kz33g6WUf8p+/zWllP/y5r///M3D/99SyqKU8r8qpXx9KeWzpZTfevOd/FOllP/1+z1eHGv+XZx4HlJQSDwE/C8l/QeSHkn6EUl/Wtdr85OS/q+S/h/22i9K+qWSDiX9Wkn/Vinl75OkUso3Svo/SPpHdP0l94vCef5VSX+XpL/35vlPSvq/3DeoUspPK6WcSFpL+hck/Wvv/xITiUTiI4UrSf+cpCeS/meSvkHS/y685pdL+vmS/j5J3yzp10lSKeWXSfqtkn6FpNcl/ReS/qN3e+JSyneWUhaSPitpIuk//ADXkUgkEg8OpZSepP9E0p+R9DFJv0HSHyyl/N0vem/TNP/QzX/+vKZppk3T/KGb3z+u6+/sT0r6Nkmf/oDHi2POv4sTnUhBIfEQ8F80TfOnm6a5lPSHdf0H6Hc3TXMh6XslfW0p5ViSmqb5k03T/I3mGv8fXX8R/4M3x/mVkv79pml+tGmalaR/iROUUoqk/62kf65pmqdN08wl/cuSvvW+QTVN85kba9cTSf8nSf/tS73qRCKReKBomuYvN03zw03TXDZN81O6FnbviLQ336efkfQ7Jf2qm8e/Q9K/0jTNj998r//Lkv7e9+BS+G5JM10LFf+BpNMPfEGJRCLxsPD3S5rq+u/d86Zp/jNJf0K336PvF//npmm2N38j/0ld/238UpB/FyfuQwoKiYeAL9h/ryW93TTNlf0uXX/pqpTyj5VSfriU8vRGJf0luv5ik657uv62Hcv/+3VJY0l/+cZadiLpP715/LlomuappO+R9P2llIP3cmGJRCLxUcRN69mfKKV8vpRypmtR4El4mX/H/i1dfwdL0k+X9G/bd+1TSUXXVbN3hRvR+Ed0/f+Af+lFr08kEomPGL5K0t9ummZnj/0tvYfvyQ48Cy1j/r380pB/FyciUlBIfGRQShlI+o8l/RuS3rhRSf+Urv9QlaQ3JX21veVr7L/f1vUfpj+naZrjm5+jpmmm7/L0B7q2pB1+gEtIJBKJjwp+t66rT193E5D4W3X7XQv8O/anSaK/9m9L+g77rj1ummbUNM0PvY9xHEj6H7yP9yUSicRDxuckfY1nz+j6e/Tv3Pz3UteFMPDxd3HMR6WUSTge38vv53jPQ/5dnKhIQSHxUUJf0kDSW5IuSyn/mKR/1J7/Pkm/9ibkZizLR7hRgP+fus5c+JgklVI+WUr5xV0nKqX8ilLK311K2SulvC7p35T0IzeqbCKRSHylYybpTNKilPKzJP3THa/5P5ZSHpVSvkbSb5JE3+3vkfRdpZSfI0mllKNSyre86IQ337ffcXPMUkr5BZL+GUk/8DIuKJFIJB4Q/qKuSf5vLqX0Silfr+tMse+9ef6vSPoVpZTxTbj4t4f3f0HSz+w47r9USumXUv5BXWeO/eEPeDxJ+Xdx4vlIQSHxkcFN7sFv1LVw8EzSr5b0x+35/7ek/5uk/1zST0r6CzdPbW/+/S03j//wjYX3z0m6L6zmk7puiZhL+qu6Thr/5S/xchKJROIh41/Q9XfsXNdibFdI1/dL+su6/kP1T+p6y0c1TfPHdB2C+70337V/TdI/9i7P+8sl/Y2b8/4BSf/OzU8ikUh8xaBpmnNJ36Tr78a3Jf0uSf9k0zTkEvxbks51TfS/R9IfDIf4FyV9z01rGTkJn9f138efu3n9r/+Ax3Pk38WJe1Gapvmwx5BIfElQSvnZuv5DdnATDJZIJBKJRCKRSHxF4cbh8AeapvnqF7w0kXjpSIdC4isKpZRffmP1eqTrCtl/kmJCIpFIJBKJRCKRSLx8pKCQ+ErDd+g6Y+Fv6Hof9a6+30QikUgkEolEIpFIfEB8yQSFUso3llJ+opTyk6WU7/xSnSeRcDRN8403uzc8bprmlzdN8+aHPaZE4sNCfg8nEonEh4/8Lk58qdE0zQ9mu0Piw8KXJEOhlLIv6b+T9D+X9FlJ/7WkX9U0zY+99JMlEolE4g7yeziRSCQ+fOR3cSKR+ErHl8qh8Ask/WTTNH/zJsX0eyV985foXIlEIpG4i/weTiQSiQ8f+V2cSCS+onHwJTruJyX9bfv9s5L+p/e9eDqdNh//+MfV6/W0v7+vpml0cXGhy8tLXVxc6Pz8XLvdTrvdTpJUSqnvLaVob+9aF2maRk3T1OdxX/hr+L2UoqZptNvtdHV1Vd+3t7envb099Xq9+h5e4+/383EeXh/HB+LrfWy9Xk+lFO12uzqu+Lr9/X0dHBxof39fe3t79TH+3dvbq2O9urrSxcVFPe9ut9PFxUU9P/PJnHIOnuN3zseccWy/Zp7jXFdXV3fuV3xNvBfx/D5Xfn17e3ut5+KcxmM7ul7PMX2e4ri5Jn+Pz0lcd/4Yx/Nz8rquuYvXzWu6ru1F1+Jj9rXCe+P8xHF2HYP5j3PMMeN8x999vflr/Jq71ouPIY47Hu95rqt4z7o+i3G+N5vN203TvH7vQR8u3tP3sCTtTyfNT/vaoi9uZ9r/ye3zXppIJBJfNmy01Hmzvf/L/2HjPX0X5/dwIpF4qJjrWeffxF8qQaHrS7/1V34p5VOSPiVJjx8/1r/77/67ev3113V0dKTFYqEvfOELevvtt/XWW2/ps5/9rM7OzrTdbnV5eandbqeDgwMdHByo3++r3+/Xx3e73R1SMh6PNRwOdXl5WQmxpEq6+b3X66nf72symejRo0eaTCba7XZarVaaz+dqmkb7+/vq9Xq6uLjQarWq52UcThIHg4EODg60t7eni4sLLZdLXVxcVOLW6/U0HA41m830xhtvqGkazedzrVYrnZ+ftyZvb29P0+lUT5480eHhoabTqWazmY6OjjSZTDSZTLS/v69nz57p5ORE77zzjk5PT7W/v1/FBB5br9dar9daLpdaLpeV5PV6PTVNUwWcXq9X78lgMNDe3p6+8IUv1Huxv7+v4+NjTSYTHRwcaLfbabFY6PT0VPP5XOv1WqUUTSYT9Xo9HRxcLzcXiPb29jQcDus8XV5ear1e6+LioopKvV5P0+lU4/FY/X5fV1dXOj8/bwlO3NerqysdHBy0xCleu9vtdHl5qc1mI0n1Xh8dHenq6kqbzUbL5bLOG/fz6upKp6enurq60v7+vkajkQ4PD+vzjAGhodfr6fz8XNvtVtvtVuv1WpvNpkWmDw4ONBgM1Ov1qnjl14OYw7ywXjkH6wyRqJSifr9f78N6vdZisdDl5aX29vY0GAw0HA6rqLC3t1fHj3BwdnZW51KSLi8vW3PH+xEGLi8vW4KTpCpidZHz3W5Xj+ciHvd6u93Wddjr9TQYDFRK0eXlZSX3zC/HZRzMLdfinxueY5zM0fn5eV2LzDX3hGM1TaMf+7Ef+1vP+a57yHjh97DU/i4e9o70ya/7bfqZJxfa+xs/8qUeXyKRSLwr/MXmBz7sIXwQvKe/ifN7OJFIPFT8ueaPdP5N/KUSFD4r6Wvs96+W9Dl/QdM0n5b0aUn62q/92sYJoJMNr0zHarZXZG+OWX94PeSS3yGjXomGpDiJlNSqtPv5vFJ/dXXVqtx6RRcSznNerYbQDYfDSmLW67UuLy8rQYqVbp6DMMX3QwC3222LaLrrAoIanRPAq++QrP39fe3v70vSnQq+uyb8HsTj+f2F5MV59fe7Q8OdIlyjiwjuiuB+Ohm9vLzdNdLXD2Pv9/uVxDNeJ94IHzzX7/dbr2GMXRV1PyfXwL9dlXTOIemOmMB9d0Gh3++35pHzcx6OwTGZC66d10PoXfjgHHG9OLocDYD1wxw4mWcOEGx43kUXBByfxzgWd9r4nPp9jtfiIsOLXBTRUfERwwu/h6X2d/FhedyMvv+/+vKMLpFIJF4NvKe/ifN7OJFIfNTwpRIU/mtJX1dK+RmS/o6kb5X0q+97cSQ8EH4XFNxxAIF1IuuA1EAeIDWQDpwOpZRaDZ1MJi3BgGoxBIPj8LyTJyd9/vjFxYUODg5qFdbJXK/X03g81mQy0Xg81sHBQa1Ou9vCBRKugd9Ho1F1X+zt7VWijesiVoe9EutkOJJsroG592M4AXMLPa9hDrwlA1EH0cNFEb+fXKtfv88vlWqcIYwFMcEr9f1+v/UexunCAHNxcHCgy8vLer3cM38PVXGvYvs68Nd3iSpOYrvaIPweM59UynHSxNfEH295wU0TPwM8x1rgPYgJq9Wqrvd+v9867n1wYSAKdf4v14ow5GQ/fsYBY/XHokvC23yiiMbxu871vOv5CsF7+h5OJBKJxJcE+V2cSCS+ovElERSaprkspfyzkv60pH1Jv69pmh993nuwnF9dXVUSCFmDNECMqCpT+cduDsmDVEOYIJfb7bZFuKmaj8djHR8fV+LkVm9J1f4P0WRM0m2lN7oasNZDhiDBCAmcE/J7dXWl5XKp1Wql7XZbSRLXPZvNKsGUbi3zELnNZqO3335bz54903K5rKIM13p+fq6maSq5d1GGa/GWDY7P9bsTw+/D/v5+Jbw4I9wtEIWDXq+n7XZb7y8Vf17r9573MQZEHrfM+3O0kXgrAm0HTo65ttFopOFw2BJKGI9X2nmc99JG4uTdxyrdimQ4CFxUcDeBZ1vwPtYy99bnivvDMX2umAPEINarv+fm81kdHpz/8vJSq9VKm82mCl4uxEVxijWDaMT943PDWL3tR5LW6/WdefXxRiErknsXwnw8nj3i7pJ3C3fG+DE+yng/38OJRCKReLnI7+JEIvGVji+VQ0FN0/wpSX/q3b7+/Py8JRJQrd9sNrXyDqlCUJBUK51OtjhG7LHHmUA1E9I0GAwq4YRQuFX+4OBAo9FIvV6vVnMltYgL+QP+fgQSRAjvZR+NRhqNRpX0ea/9drtttTXwWsaJEBLbECBzVLKdfFORltQSR7ySC5Hy57wCL90SZa/Ac71cA6LN5eVli8j7a2MVm+du1k5LlIC4x9fF350AeksK64Q1gujgpD1WuP04rAGq5+Rg+PUgmIAuh4O7ETg2a471wZiiE8GPHYMxo5DhAkJss/ExuxMkikqMI7YExGMxLo7HcbraORgf4DjeeuHOCXd74Dxh7btQ1XWOKIC8yJXAa12guc8B9VHCe/0eTiQSicTLR34XJxKJr2R8yQSF94poW4agbjab1u4E0m1vdgxi7LJNe3U+ElG3vlONv7i4aJE8juM987RKAAiqOxecBFOZhgzxesi2BxEiglCp7fV6Go1Gmk6nGg6H9by87uLiolbMHV7Z9wq3txhIbRu6tw34+7kOb7+IuQdUut2l0JXbEO+Z707R1VbRlUcA0XV7Pc/5XEShwO+5V8Ejufbrj4KHix3+E+31XW4Fr+T7Mf2xrt5+rsldO9El4M6JOAbuRRQZ/Hpwr0iqgp07MFxoiW4KxuzZH+8WUVDwsfo98FaVLveBCzAuqvi8+np1MSaut0QikUgkEolEIvHu8OAEBa+2IyhIavVGQ1BxMni10skbZAEbN8eA2EE6CDd0Mus7BnB+gKDg9nSS/Z3oeBVbum2PwArvQYqr1apeC9fFjgKz2ay2R1BRZ6cGxJVoifccA64Vwsnc+JwzTiekCDuQRhdZfHeCKAB5PkVX3gDn8BBMJ7k+z07+3B2BeNO1rSH30fManDTzw/FjdgXniv32Tr49i4B1hQtCUktwioIC68uv2d0mXRkMCGhci+8GUUqp7hW/x3Gcfg+jqCDdCgmcDyEuCmPAxSAXZe5rF4juBBcCWcPxfVxfdCD5OPj9vswGR3S/RAHCj5NIJBKJRCKRSCSejwchKEAY+IMecudbRMbefaqPns7vWw9C8CBhXWn4BwcHGg6HOjw81HA4rOKFdLv9nbdZ8LukVtsB7RcuMPDa2Lfvtm3pNnDPWx0gvuPxWEdHR3ry5ImePHmi7Xar5XJZX/v6669rOp1WsoWDgZYMn1tILeeA/HtbgJNsD8b0OUfo8HBCr1CzDSXjie0D3Ft3h/h9wnXB2DmuBztyrCgkSGqJOp4p4EIRrSaSWq0mTmi90r6/v99yntDS4XM8HA7ruoFgRxIMaY7hhfGcHMOFL+YuttO48AGx5vpp8fHrioKIrxFaa/gMcY18NgeDwZ2Qy/39/VaLC8eLOQeANibuKa99kbOBdYjwF4UnFxli/gVwsYh/Wb/R0eEtJolEIpFIJBKJRKIbD+KvZhcUnOzs7V0HKjqh5b+9b58KuBMr7+2mjSH2ZEOKh8NhreheXFzUHAAnFRcXF62ecifpnBOizPX4c7Q4QHzOz8+1Xq8rsfeQPI4/GAzqLhBsK0kLCI4Id2X4NUPavPpKrgJBhV7hd8s4cwSB9etkXMzbYDDQ+fm5pFtxhHwKt+9zH9brdUtoATwfWzeAuzsQVBABWA9dVvZYiXYCyzVyH6RbUYj75+01kGauIbZOeNuOnxfRiXmIeQ0QWdax5zK4o4bPRnRHMPfr9brVEhBdF94C4C4eroGcDs6PG8VDGn1O/ffoqHDXCfA2DeaY6+LfLndDbMvx87wXRHfF/v5+SxhKJBKJRCKRSCQS7w0PQlAAEDIEgH6/r/F4XKuaUnsLQa9me8AbpAgCx3G9l19SS1BwUgjpkW5bH7yi2pVZ4GQH4cGJaXQmkDngLRueSwBxp61gt9tV4WG321VXhNvxnax6P7tXwD2o0gMcY4+/h+y5UDMej1tOEc8z4N5xTB5DcOB6o6Xfe/ljddmvz8/Bjh0IQ1Tx3R3g4gL/xrnwnA7uAXMe7fBOnmPGAYjXQetHV9Xer42fGGqICOBrzu+Hr1MXf1yYiCKYixSMi1yPaPf3eXCBg/e4uMHrmV+fM2+NiPfF21d8/Dzn6yQ6E+Iaio/HNgpv6YmvjYj3OZFIJBKJRCKRSLTxYAQFJ4PY6geDga6urrdE9O33qCxDxqmUSrep806sI7lGGPDdFpzUemUdkgd5dVIG2fGxx8o0VW7fqpFriI4E32lib+96Rwh+v7i4qDkLkF4nXlEo8FwEd2dwLVTbYwXa70HMp9jf368tFlGA4FogmBB6b0Fwoh17+GMbgAfo8Xrej5hwfn5+h6x3iRKsia752mw2rdwHd2Jw3bH3n7mMThTPKPDqPtfjWQZexXeXgV+ztzSw/jmWu12YH+baHTocb7fbtdYMAoyD9/rjLibwu3S7U0gUFHz9eg6Jfz6c5Ltw5cfocinE9/o8RXcKz3e5Yd6ts8HzIxKJRCKRSCQSicRdPAhBYbfb6Z133rlDhLwK65VlhAL6uskOoFKNGOEVbY5BZZ98gsPDQ02n09r7HxPvIWrR3i7dDenzij+kLwoJjMPdDr1er7okttttq9J8fn6u+XzesuV72CGk//z8XKenp63sAyrbXt1frVa1Ir/b7WrbAlX55XJZd2rwtgBJGo1GLaeFt0Yw7v39/SoO0Dbi984t5r6lpbtNYl5F7MHHVcB8eNXZwwtZQ07qIfa0hXh+ggsD3CcIsq9JFyhihgFE2h0tHJNWE1pCvJrvnwVEH/JDaPtx0ELDvCGM+Ph8DftxPG/CswuiQMa4mQd3cbwIcbeTrhaawWBQx++tEC7EsI74jCGmuYjhIlIUWtyZxFry+/u88buQkkgkEolEIpFIJO7iQQgKV1dXms/n2tu7DvIjzA8SttlsKrn1lgS3XyMcQAKwY0McIVoQfHZPmM1mGgwGOj09rSQaoSL2h3t/PcSUHw/AA7F9ghaOwWBQxQOOO5lMNBqNWtX+fr+vy8tLrVarSuomk4kmk4mOjo50cHBQXQlnZ2dar9d1/E74IXSXl5daLBY12NHbKxAC3JHANXK93h6CiHFxcaHFYlFDAn33i1JKy3ESq/48j1jiYY2M13v5mV8cBcCr0wg5fm9wFHBPaJlYLpdaLBatjA0ILyKQV7s9r8LP7S4B7jnHYK5cpEH48J0g3D3irSZOaP2aY+ZIdKXQIsH9c7Etgrnx9qEuuAuDeST7g+tlPliDPi7Wi68FFxw4B9fPNbvDyB0D7kjwe+xj5Tl3FbkTJrYuOZ73XCKRSCQSiUQikXgggsJut9NyuaxkX7rtq4aERKIerfHuWoCweIXbX7+/v18JPOTeAwohxd7v7zZsJ5ee1eCEj3PFNoDRaKTxeHwn3K4ri8Cr3ZJqhdm3nEQwWS6Xd7IY3ELvOztQKfYgRwiiE16uDXLtggLnXa1WreMNh8MW6YPAcQwXhiCwiBG8zu8ZIsdms2lZ9rsq/NwfF3siKUQ0oGXC22bi6xiH/+v33avgXgF34YnHqMIzT77WuQae93XhrSjeLuG5Ch7wyPV7W4av+9iuw9q4uLhQv9+/Q7iBf/5cwOF6cP4g+vjz/CA+uBDir/N/75uT+97P/PNZ8vdEgSReW2yFcRExHQqJRCKRSCQSicT9eDCCAtV1J9tO+qTbSiQElsckVTHh6uqqVqi9px2SSdvDdDrVeDyuveluv8eqvt1uW+KBW/epyELqPW/A4e/v9XoajUaaTCZVLIEIQeY8lFJS6/oJzeM9VOrX67XW63XLYk9F3wUPnAmQMoIVJdWqfbxerrXf79f2iChkePDecDhsVc2d9HH//DFIpj/PHDMf3iM/HA5bIgjXFvMPorvEK+fuUvC57rp3sTff5yUeMzpZPCcB54F0KxS4aBHbCCDpiEj+ftY77/V/Y1vOi2z7LkKxLph7J94xu8BFD3cCuIDg44yCm382nfDTKsJr/F8/notGnJs1Ha+dc0VnCdcTnSgurL3bvIVEIpFIJBKJROJVxIMSFJwQQjY8aM5bHnyLwb29vVp5p30AhwE99/RdHxwcaDweazabaTweV7JGnzbvA95Wwe9U230LwyhyODHZ29ur5yOHgKo4xxkOhy0bOYSHnnuuE4LDsT27wQmTzx9zQGuC1BYnvGffCShEjzYUxITtdqvVaqX5fK7VatUiXdj4vS0FUgfxZ44RYbgvvJdxe5uAk/Nol6d15ODgoAoOXtF2YQDBhvVCzoO3argI5fPpIoULVqwbzoXY5OIFORTReg+875//jruSOMFmfXm7Qwwz9HmQVNeSOzuiIMJ4cVT4mmJd81rEORcHYnsB1+3CTHQv+P3palvw9/t7OZevNdaKj9nn3dcEc+Tz5teYgkIikUgkEolEIvF8PBhBIVb9CcuLyffAK9LeGoDwQEgdFX7vzSaLYDQa6eDgoAYVQsy8XSD2Z1Ot955+HyOv84oswgHn2+12NRei1+tVMhsJ5Hq9vlP1dqLGcQl1PDg4aAUVOoGm3cEJUtM0Wq1WrfmPvfdu3S+laL1ea7Va1R0nooji1yG1A/O4FnceQFqdNLuzAQcCYgPWegQQJ5rM+Xa7bbWjuAAAUeZfKuKxfSIKCJ5tgdjh99bnzR0xvD62QnhwJOsFgQCiHrfDjPfOx9QFz9Lo+sz5uor5CLFthTH6/UaI4fW+gwTHiTs7eEgn53dHBNft4Z6eh8BcR5HFr8vP/15Egbj2UlBIJBKJRCKRSCSejwchKEi3xB3C3GWX5498DxyUbu3LEADPX/C+bYiTk3iIqBNMJ8GSWsQashNt/V5NdTIqXZMmdlKgskzllucRBjywjhYExgCR8rnw9+zt7dVwwxheF1sZGLtXd2MuQSSwCAjRHeLX7ETa7xvj8VYG3u8V4njvI8mNzgG/1uiE4N76+Rg7ZDO2UMRrjq0zzJlb5uM8+Jrugosl8Tr8PkWHhB8vtgowBv+JOQpd4HXxunnuPvIed8RwV0eXm6NrrP7ffLaGw2EV7BDt4pr0QEp3L/nYOW5XG1KcD7/PcUwpKCQSiUQikUgkEvfjwQkKXZVXqpW8zq3xVLidbFOVx53glU3/cQLqZJEwRhcQPEhvf3+/Vel2wSLasqnYs3MF57m4uLjT7+1bX/r1cgy/RogUAY1e6XWnRSS9fmyv0HN9UXxgnj1rIFZ/nTj6HDjJc9IGSXTi6+fyID63vPv99uf9eB5i6W0OMdyPlgLWUrT+O6KowP2+j3C+iLB6DgDnjtV/Huf1XS0NsTofxZmusfA+F+r8NS4mxDHG8/hcujDl1+zn8XvdtS7JjYjbhvrr+Hz4evHvB3736/FrjAJLFBL8+qKok0gkEolEIpFIJNp4MIICoPIaSVSssDs5dHdD0zRVSCALYTqdajqdVuId+6XdPu92byfaEHccAYvFotr+/bWMGZu7V11xTOCe4HkXTzwQ0p0NHtDHNRCUSBvA2dlZ7ZPneQ9+jKID5Ovg4KC124VXpWmXoM0i9puTQeHtDD6P7k6Qbgkd83rf/Xfy7vfe+/vdLeCE37cvhOyynjy7AnGK4/k4nZz7MeJOHj5u7h/CirdA4JqIrQbRBcG8eosO57xvy0fEEa4r7lhxHxBg3E0AuLfePgC6hB5/n7sj/DHWmbc97O3t1Z1DPCTUBT5vHeLH2yD4/Lig6A4Y5oWxcHxEQ+YPxHDTRCKRSCQSiUQi0Y0HIyiQer/dbmuAIESfP/YhDNvttlrvY7WdanrTNHWbw/F4XK3tXg2PxBfCT7aBE0/I+/7+vrbbrebzeW1bIJjOwxwdtAus1+uWq8EJfNzNoNfraTqd1td4dRYy3uv1NB6P65jo6/f2B6rwvV5Pi8WikryDgwONRqNK1pmLWM0ldNJJrc+N96zH9g+v/nq1mvGwGwfz5mQ7uiSimyQ6WDiHj9OFJj+Ot5W4u4LXup3//Py8tdUma5FxMC4noByDMXblCHAfIyGX2i6N2C7i94ofhClfr7HqjniC4OGOCI4dgzl9FxMXPhhTl2vCxRzEGxeQ3AXDWnCnh4teHnTqbiHGy04jLjq5WyGuA47v4qPPI/cEpDshkUgkEolEIpF4Ph6EoOCEj4o4lXyIQNfWblFE8LA/qqGz2UyHh4f1+JBJwhFjj70TD8iHZxQQGAl5h4QgYnil3CvOu931Tha0YtDi4C0Q2+22RTIhibEv3MmZE1+Iv5M/dyNA9v0avdrsVV1JVaSI9yJa0mOPvIsIXYTdd1Vwsuzz75Zzt557e4qP1cmxC0fehsHrvIIex+fHvM894NcecwViS0Ik5F65d8EltgB0EXd3E/j1sya6zs9rmAfQlW3gIoPvUhFFjehQ8OvwdoG4paS7BOKc+5hxGMU2EBeO+MxHYaTrmPH4fu0uZkSXxm7X3moykUgkEolEIpFItPG+S3CllK8ppfznpZQfL6X8aCnlN908/riU8mdLKX/95t9H7/J4tcoPMYaI8bykFoGmeuxbABK6x1aMs9lMx8fHGo/H1W4NSXAhwkmSEzMPgWMHgfV63apoxu0a3fUAubq6utJ6vdZyudRqtarVVydsiA1e/Y6E2s/pzgBv84iZELHvn/YJ3zoykmsXOrqCKv11/r74PP/NPfSxR5cA5NPXxH2VaYe/n3P5OZjHmInBY34ffPzuGomIRDqe0+cw9vH78Z1Y+332uWUcrA/WiJPp++z5fpzoSIgCmB8ztolEgcqFAp8/FyRimOl9Qk38HLDeulwWuCu8FccFgrgOu9AlEHUJJR8VvOzv4kQikUi8N+T3cCKReJXxQRwKl5L++aZp/ptSykzSXy6l/FlJv0bSDzRN892llO+U9J2SfsuLDuZV/c1m02of8D/uLy4utNlsNJ/Pq5DglVdI6HA41GQy0Ww209HRURUpvHLqBCaKF04oGdvZ2ZnOz8+1Wq1qG4STR86N2IALod/v6+rqqm63eH5+rkePHt3p7/ZwQa7byWgUEyRVB4GLMIyZxxkP21ZyfcwdGQhUbCGvvDcSOyfDkNtY2XVi52SaOfJKv4sEWOB5DhGIc7jLgmN4nz3vdweEOyq4Rogpx/N1hhvDXS/u5vDQS78Gnx+IP8f0nSS8NYPrIO8iCjo+t74eEc2iLT+2UPhrh8Nh67WRRLv4QS6Hn1u63SWDtevHkm639eQ6Y5Cif85pGYrbTXaJiKwJ5tXFQ14fHRjAd4XoEhy6ztk1lw8YL/W7OJFIJBLvGfk9nEgkXlm8b0GhaZo3Jb1589/zUsqPS/qkpG+W9PU3L/seST+oF3x5evWTf3kc0gtRodIPkZVuiRGkxZ0Jh4eHreDC/f19DQaDSpqXy6Xm87lOT09bmQgeflhK0Xq9rkLHbrfTeDy+04/uPdxkLkynUw0GAy2XSy0Wi9Y2eO4YGAwG2mw2dzIAvFVjMBjUkEYqw+5oYItMHttut3W8tIA4uTo/P9d6vW61B/juFU5a3Uru7Q9evY6v98DEeE1+Pt+JQ1Jr9wXO4e4FhBxJd1wpHqLJubwX3x0EjM2dDIzbK/TRru/vZx69pQAhIrolXLDgWNGBwpg8HyTCq+tOgGN7BXPn74vikL+X++DtDg7WhrdZ+Fwh1Pl1cF6O56+/urrSZrNp7ezg1+EtOO6Q6QrR5DwxINKP6/kq3BPamOJ8+np56HiZ38WJRCKReO/I7+FEIvEq46VkKJRSvlbS/1jSX5T0xs0Xq5qmebOU8rF3cwz+0I9ExsWESJLBbrdrVaZxJ4xGI43H4xo+6O+BTC8WCy0Wi+qIgEB4zzgEZ7FYVHLubRPb7VZNcx2kSMiiV3AhzavVqpIZiJnvHOGVb0/Cd6cCv0M6IUTY4RE9vH3C2xwiYXKyz3Fu7mkreDGOwclXJHH8G/MaXEiA3LoYwGtjS4eTcYgs1x3T/D1bwufKd2HwkM+rqyv1er3OSr1XrWMvf3Rp4FDh/XFngjhPvnYZh7sf/Lq8tYXXuwjh54zimjsw/Bh+//3+3ud6cJHDHQPxmrzNJWZBMM7Y4uJjvs9B4MIJ8876cvHGXxv/ZVy+jn2sce1+lNoewMv4Lk4kEonE+0d+DycSiVcNH1hQKKVMJf3Hkv73TdOcdfVx3/O+T0n6lCTNZrNa9XZXAOQNYkRWAKTeyYdX+ofDYf3hMW9hgDjTgsDuCzERnveQm7BcLlVK0Wg0uuMQ8Cq2VzypwjJ2f5xxIx54JZ7r87EAJ7P8N7tIEPzIY8xVr9er88B7ohMg2sedaPtz3obhggHX5kIAj/m9dReAu1E4btwakH+ZLyf0kXi7syQ6X3xtcczYQiKpJS6568TWbktM4VqcuPv1O7Husud35V0wF1yT50Z0zSVuD553Yu1CiWdR+H33OXRy7fPX1foSSXd0RPCYz4GvKZ+HrrXG4zE4Mboz4nji+uS87izpEhciPkqiwsv4Lh5q/KUbYCKRSHyFI7+HE4nEq4gPJCiUUnq6/uL8g03T/NGbh79QSvnEjRL7CUlf7Hpv0zSflvRpSXr99dcbCG7MFaB66MGLe3t7GgwGrb5o6bp/fjQaVSEBMcEr2lRaERJon3DS4ueHqJ+cnGi329VjxnaDfr9ft8STrkkU2zlC8Khixyqy28EhuGxFyW4STuadlLFTxHq91unpqVarVavqTTWZ8UUXBGTRK85OhCPp94ow9waC7y0awFs2uA8IHR68h0DAa9jikDGVUqoTgMeiE4B2ECfNTkBv1myLSDrp5Lk4fhcnvOLuzpCYC8F73VbveQzuoPAgQifkHiIZ5zeKF7yf93j7QVw/fm/dSTAcDltjc1dC0zStY/IY/3YFk/pOFO5SiK6IuKajm4j3ABexYrClz5XPVwy4jOJOdAN1CRsPGS/ru/iwPP5oXHAikUg8MOT3cCKReFXxvgWFcv0X+O+V9ONN0/yb9tQfl/Rtkr775t/vfxfHqkQIIUC6JVvL5VInJyfabDYtazSkfr1e1776fr+v4+Njvfbaa5pMJnd6s9kKcb1eV4cCLQs+DqrCu92uihm4HyaTSSXGJM2Px+NKrjnndrttkbPz8/NagUcUoQ1hPp+r3IThTSYTTSYTnZ6etqrrXEMkV1wPAY3SbVXc7f8Q80i2nNT5fDFub0mIOyzQYsJrY/q+dGv7j735bjVn3phfBAXmzcmsE3m/b1yTE1fpOnMhVrx9RwxJmk6n9TmcKE6ufccL1h7/jVjiFXZJ1dngNn/gTpHo1mBeEc0cXdsYurjDPDMe1sJ9iAKGizFdO6B424o7cbrA9bN+XST083Me7rGvnehgiIIM8+ctL11iAOOlZcrnKYpKXdtRPmS8zO/iRCKRSLx35PdwIpF4lfFBHAq/UNL/RtJfLaX8lZvHfquuvzS/r5Ty7ZI+I+lbXnSgvb09TSYTDYfDSgi8Jxyi7BVVKo0QIoL4hsOhRqNRrVZ7UB4BfpGw8Dr67xEnGAMug36/r/F4rMlk0iIiVMepZOOUQACBODoxHw6H1T2BaOG9+8wB5IbdDlwEwC3AGCMJilVwxss5PNwOsuaElcd5f2xhKKXUOWssS4BzI0BAVJ1gxsBDxCQcJt4GEkHwJOfjfjGXfn+jDb4rjwARi7YUb19h/cX7E9tzeC3HdnIct0GMrozoXPCKuSO2XvjjtLbEjAjO5+cHPg4/nzse4nvi2JhPF54828AdA752eF8Ut0B0kUSHhb+Odcj3R3T1+HVFMS6eP7ZlfETw0r6LE4lEIvG+kN/DiUTilcUH2eXhv5R0X3PYN7yXY5WbXAIINtVjJ8ueME+1EXKFnd8zFLwazus5ppMIghwhYu4a4P2k33Ps0WhUj0PWAUIBxK7f72uz2UhqW7wl1S38fLcGt2E7ifWwymhHl9S6Lr++rhwBrxBH0thFnpwM87vfM+bc3Ry+9SCv8/HE+fBdGQaDgcbjsQaDQcsmH6vNLrQwn57a70S5yyrv842gwDkvLy/v5Er4epTa2Qq+Tu5zAsTxM0a/Nt9a0Y/j73MiHkUN1nKXg8HHEV0pftxo9ef5rjmM/+2CQhxrFCA4l4snvl66wFr21/rniTXkx+d9ca59fPGz4vMex/5Q8TK/ixOJRCLx3pHfw4lE4lXGS9nl4YNib2+v5h7s7e3V6jPtCcvlshJrSbWSDEkeDAa1ss0PVVts8ZBCt6hDwugdp1IO0Y9ugPF4XLeBXCwWlVRCYHi/txrEKjDHH41G9TVUpyExCAlnZ2e6uLhoOS1iRdwr9U4COR8OAd+FwHvJY0K+k0ruQbSZuytjNBpV0u0BlU7SXExw4uaV5eFwqPF4rMPDw5oLAYmHyEMO3bEiqWVfjxVzzs/7WT+Qa1wtvmbi/PgYWDsuANB20lVp517441EcktpbYUq37hB/D8KNZxpE4caJPOeOY+H4fm+YW3ek+FjvExX8PfdV9KNo4O04zKnD8yj89f4c5/NWB3eVMF+llPoZcXGO++jjivP0UclPSCQSiUQikUgkPiw8GEEBMYEQxNVqVYkAWQcQCMIFqS5Pp1NNp1MdHh7q6OhIw+GwJSbw35ASyOd4PNZwOKytDVQ6R6ORttttq4p+eHio2Wym4XBYCaQTF/IbIMm4E3gecjMej3V0dFRzAgDWcCfyZ2dnurq60nA41Gw2a+UzxP54bxPx3Sa6rORO1hkjpM/bQqjWe64CIg49/ljMY5YBr/VtNLHBe3WaeRuPx5rNZjo6Oqrz684IBIvValVDHVk30+n0TrsMOx74ubxVAiFpMpnUuUV44XyMF9LMNfguFMyzz6MLHI5IklkTvs2oixmxfSW2arjQhDvAsyQ2m01njoCT8ShQ+Zr1rURp44jtEVFoioQ/Pu7rnefcmRPB58LXOtcSXSv8y3eDpNZnjDnjX28NiRkbL3J7JBKJRCKRSCQSiQciKEiqBHK1WmmxWNQ2B3rXvZJOgBvE1rMPIAyQXEgYiCTOq5xOBCH1kOrpdFrJiec7OBlxYuUEked9jA5IWtM01Z0wn8+1Wq10cHCg8Xis8XjccgN4i0Gs3jo5judxJ4GHF15d3W6P6eN1uzhE0x0FBwcHrXuE6IEw4W0fEFTv9yc3gWvELcJ98eq376zAvZxMJjo6Oqr3nevr6v9nfUnSZDKpItR4PG7dP8bPdqJRKHB3wn0k2AP/gP+3HyMGh8YQR3chQHJdXOpae57XEIm45zz49pxdoomHL3Ke2E7jLQx+Du65uyc4Bu/jcx3bQhzu/IhCGsKCCz+ezUCOie840ZVR4aJKVwtEIpFIJBKJRCKRuIsHJSjQ3rBcLltVaaqqDs88ILDQt9jrSqiHIEm3W9k5yYFcQewhphBf3u8BiM+rYjq5i+JHrPL2er3aluGiynQ6rdfpFWPcF3E3BSeQ7jyg2g7xd9s/z3HNToijw4EAQ7focywnkJJaoY/SbYXcsyv8eARVci0x88HbD3A2jEaj6jBwEcFD/Rgj8zsajTQajaqzhW1A/R5R3WdHANaBOxOig4Dr4rXPex02fXcCdG2r2LWmvHru54iuiOgE8TXgn4NIrj2P4T7yfV+2gJN65tSzCroEgReJCfwbX+OtGl3v89BLb39x8SDOF2OLToxEIpFIJBKJRCJxFw9CUGiaRuv1WpvNpgoKkIG4cwCkyQUE+vBpm3BLP0TUiTWVXbdNu3V7u91qtVrVqib2fsjiarXSZrNpvSdWgd3aD/l1QQGCB/EcjUZVPFmtVjo7O1PTNDo8PKytBVdXV1qv11qv13V7SM4nScPhsLUNoc8T1fu4GwRkmewGdxmwfScktmma6k5gZwcn+ZBGhAPaTHjOMw8IQmReCLykBSXOk4she3t7NcBxNpvp0aNHdfxkGXieAAIR6f+TyUSPHz+u7gSEGM41n891enpar4NjejuBV9Z9bXK/7yPqvM53+ZBuMxO8ku6ugUjEo9Dj54c8+xpANGFtsK7dYeACBO0UHnYZ4cTcXQnusOAYca26g8KvLYZX+mfVvweYs3jcmC3B+vPx8l4XDVwEYY2moJBIJBKJRCKRSDwfD0JQ2O12Ojs7q0Qaso4wAEmAYEB0ea9nMMSKpHRLRiB5FxcXLYHBSdPFxUUVNc7Pz9Xr9SrppIo/n8+rZdwD9vb29loOAg/POzg40HQ6rbtZQJS8goxDY7FYaLPZVJLd7/fruE5OTqqNm2BHSRoMBjo+Pq5W/fV6fce+zfEZF8dlR4m9vb26y4KTXSe3EGFIHU4J7k3TNK0QPMg6Y0E08Go/95QdNBjT/v6+RqORlstlyzrf6/U0mUx0fHysj3/843ry5IlWq1W1uA+Hw+ouQExYr9eSpNFopE984hP6+Mc/rul0qn6/r91ud+d6Id6sJ8i3E2cnx05+o0sivgaHhLfQcF7WMU4OJ7W83nMwEKUQZxBeuF5317gIxXE4d9M01THB673dBXhbjYtX3hYRHQfumokOiTgeqd3iwPs5JmssCjpdx4rv45juqEHocgEztiQlEolEIpFIJBKJbjwYQQESD7GVbkkBFX7cCE4CnLBBHrya7HZ7wvw8c8AJFGSHSr1X0SEbm82mEnrfFcCr9YwbwsdOFGQEQNjJC0CE8K0icS0gnpydnWm9XmuxWFQXgVdtqei7TR8Czzg9kwJwvZBN3/HAq9aSWqSMOQWQfUiq5yTgJCEIkbYGjk3Lg9v/u3ZSgGj2+30dHh7q+PhYjx8/1mAwqI4I3A7ck/V6XQM0h8Ohjo+P9frrr+v4+Lg6LQiFJJRytVpV1wtrwqv4V1dXWiwWLSIdW2J8nfE6hCPWHHZ9X7OsZc9ocIdAzAvwYEFveYEsM3fufuja3SA6ETyzwp0hjNV3FfFr8PHxOe1qC+pqX/A1yfF8ZwbmiOd9HcfjuKvGHSux1QMR0rdQTSQSiUQikUgkEu8OD0JQgIT51pBe+XfSH3vlI8F1m7WTHki6uxb8/RBuwhg9mA6i6dsoOsGN9mp69REdINK4DRAqGI/nRSAQOOmEQC0WiypS+PVStXeBxUWY3W5X2zgQQxAyJNV5h4z7PHMvmuZ2W0w/d7So+73xLTUZZ6y6++NOmjlvDPRjLtnCczKZVEHh4uKitkwQyglRJNzy8ePHOj4+ru4E3A6TyURXV1fVDeFBn8PhsHXN2+22te58dwXPe/D3cE+9nSDa7P0YzBOPDQaDej2RjHN+bzm4L5PASbbjvrXMMXFpOOL9j8/5v/G5+7IUODdz4M4i/7y4iBGDL/06vE2F4/lnV7rN+nhelkMikUgkEolEIpG4iwchKOx2u9Y+8bvdrhVcSCU5kocuQgO59h0FaFVAIOC9btOnek92gpNE3AnkDyA2cJ4oSpAHQQWZtgmyEBAWJFXyu91uW+0D2M/ZfaGUouVy2bklIcTTiRF9+mQLkAtwfn5ex+/zTS6BXxMihRNeJ8suFkQC6RV3SByPxyo4jzPXsWXFq9O0DNAegVDDsRCmPHdht9tpPB7XFonHjx9rMplUQeHRo0cajUbVzcC9R1TAscHYvNIv3QaEMgZ+fI36rhY+L/5ad2P4vUWA8iBNzue7SfhawsXihJ21Hl0FTthxM/BvrNq7mNX1eCTrXZ/Z+Hn19oQoYjliy0kUophDRwwqdTeIu4PcVRHHnEgkEolEIpFIJLrxoAQFyPR4PG5Z7sfjcYusOWHyXnxI4Hg8bjkFECukdtXbq8m0M/g2gZAqSJqTOXdMONFer9darVZ1e0L65Uejkfb39+t2hQcHB/V1i8VCy+WylaeAMOJigwfvYQf31ovValWDEHl+vV7r7OxMp6endRtKdydAnKI7gPwCt+VLqtflGQUefolFHpLGsTwckHvOc34PvZed9hLOQ7vDcDjUZDKpLSTkIJBrgbDCewaDgR49eqQ33nhDX/VVX6XHjx9Xkj4cDvXaa69JUr33EE4cIgcHB3faUnAtOAmN7hTAuNn6k4BNX58xUBHhy3d0cHg7CPcOQYT3I5jwflp3nDx7JoKT8Sh2uFsH8Pnpcp5wHdHx4ruS3Pdd4C0ZfA+wXt3REYUXnu8KkPTzuqDl18F1+vaziUQikUgkEolE4n48CEHBiQlbAUJeIAGQREgfr/HedemWWCA8QNqpuON2oLpbStF2u61kzO3iiBwQGq8ycxzfBpIxQijH43ElvjE138lpJLLujvBtHkejUauKDfGWrokngYuQYEn1+hEkXKiBvMVqc9zSEdKLMOPkjDnzHyeMLtpA8L31JO7mQEsBQYqegQDJPzo60nQ6rc4BCDpz68R1f3+/uhPY1QG3CK0TuBNiYCBE2dci1n/WgocaOgEHvG4ymbSyKQjPZK3gRvF72mXxd+Lv4YK4E3ifz6lfi+8mwVj4vMSgUd8NxDMWnIh7XgNuAMYQP49RaPH14dfJuTwnxHdl8PXrglgUNUAcs69Pz04g64RsE55PJBKJRCKRSCQS3XgQggLwzITRaCTpVhjwyjlkA2JPQr8nyftuB5eXl63dC7yXmtfS6uBkmW0cqXpC0iDBnNePA+H2rQFpHfDKKSGCTmC9oh8r1jGzAYeAk0/CJHkNaf+4M2izcDEh/g7JppWAsdLO4SSWMbjYw1xxbLeTe8YF4Fo9b8HFFg+MpMpP1dvbTgD3gv/u9XoajUY6PDysQgT3BPEKh4fv6uCujBhyGJ0pLjb49fnrPYSRFhyEEt7/vB0TOK7Pk2cweJAhc+otAfFeMz4ec4KOGOWtGJzXWxNcPIguB6/487sLFH59jMG/A5grvzYEldhmE+GPdzkqulp1XETrcjgkEolEIpFIJBKJu3gQgoJXXiFgkFmyCLy6DZkbDAatbRi9qkjrwXq9rtZrXosjAJK8XC61Wq1aBAnSByEej8ettgoniYgevF5S7fFHdHCSCmn1EEraPhAEcAe4hRtRwUmpt3JsNhtJahFk5g+yREsEcPcAlfSjo6NKtHE9cCzyCZz4R0EBMltKqedzYswcM1YXFDwYk3t4eXlZxSDaYTznwMlndFqwXefR0ZEODw9rdgL3bzAY3HGXRBHEjxvbUrz9hPsAeY8tCdx71pwLSNwDzu/kHaEDkY1j+ZzjnPD2EsbjBP1F1n/g7iAXUXCkeM6Cn9MFi3jd0b3h18I5cfLwOPfFjxff4/96voK3Nvl9jIIBIgo7uvhnIwogiUQikUgkEolE4hYPQlDw6iaVf9oSJNUt96iaQy7d7gy5gWSdnp7q7OxMm81Gk8lEx8fHlSRD4Niqcj6fa7vdtvr42REB0j8cDlsBefTCIwTM5/NKfCAmtGXsdjut12sdHBxUF0FMr8exALF38QOSznaIkO6zs7PWMS4uLqqYIKla4IfDYR2Hk3u3tTP3x8fHOj4+1mAw0GazaWUaLJdLXV5e1rT/y8vL2k5BdZx7hwDB/WH8TuYg++PxuBI53CLz+bzeP+4Zve3ecoBIgiNluVzq/Py8vv7g4EBHR0d69OhRa3cHz7VAGFkul1osFrVNxHMh4r+ep+EBiZKqgON9/5Djq6ururZwssTcB9a179zA74gVtMq4wyVuswkYq2eB+FqnzQTHh3QbpOm7XSBGMC/SbdsDc8E1+XV4GxCfdx+fZ5A44fdMDncIcewojHEuD1XlMXdMcL94HHGS9RldOIlEIpFIJBKJRKIbD0ZQgOBAMtn+z+3uw+Gw9sJD5GkbgDzsdrta3ZauyfRsNqsEHSLjFXCIr1dSqcRCnGI/OdkLm81Gy+WyEjJICZVz3tfv91tBhp4l4CQTMWI8HtfrRmwZjUat6n08jldnpWtC5tdMn71XpJm7fr9fxQTcIYQ64vTgtRA9Hvd8A6roTiI9j8HJ8nA41HQ61XQ6rQR8sVjUkEruvbc1IOowL4Q3IgYsl8sWeRwOh3ry5ImOj481mUwqYXaXBdfB7hz8QE7d1cGcuavGhS13BwDPRyDXg/XCXHn13lsOWOOsN5wLjI9r8TYZJ9vuQojtFNxLf51fn4dD+mfNd7vw9hOyIVwUcLcHcHcBLpz4vLtZcEe4COJiiF+ju4CAt+Hwg6OEzyauGp8jHDuJRCKRSCQSiUSiGw9CUJDapAgC4cRtMBhoMpnUcDvaA7wNgNf79o7s+gABhXh7yKCTktib3tWPDRFlm8nValXJF9VzSa0WBnIUIDr87sfhGATD4QZwogrJ5hhU9r19AjjRcou8Zza43Zt2AI7noYgXFxct27uHCiJq4CBASICY+W4DEEdIHE4Pz3yIO2p464ATS64BIcBDNbmu8Xisx48f1+wE7h9gvcRj4LBgnTCfXtn2teck2Ym6rynaHVgXkHBIuocoSu3QRW8ncKLN8b1FgfcyRx5UyTz6tqSsEebTHQeeD+E/nrfgeR+sKe5fnBv/LPn7uA53Nki34p3nM8SgSdqO/PPp18Qc8D3iTgvPJ+E9HIs1nUgkEolEIpFIJLrxoAQFBAAq2ZAtgvUQFKhmxz5pryhTTUdQiOFwHrgIopjgrQHxNRcXF1osFlqv1zo/P6/bF5KZ4FtVIgo4ccJ2vd1ua1XeA/x85wIP2QOQMV7HfABIIdfhOxj4NXs2wWQyqfZ72gfiVoQcE2cABJS5jn32OBG4pwgTtEf4OSH2EHgXEzw0zx0LEH8/JyIUDggEBVpUvALOPcClwHEYC86MGDQJYY7We9Yy9zlmZHgmgAtMrLPYqtDVww8Z92wOJ8KSWoKG/+7CTxwn1+lbRPouCIzX5xhhwl/ray+O2wWDLhGP13nQowex+nV4gCTnd3GA8XrLDCKK50n455vPCZ9ZnEKJRCKRSCQSiUTiLh6UoNDv9zWdTjUajWrFnT/4R6NR3fJPUm1pkNphd1S5sWPzHki+95F7uB4kLybts9UkAgBk++rqSovFooYUkqtAFZ7z0IPugXqSaubBYrFoZT1AFHEvSLfWfciRJ9E7mYQwezAgrQee0eBV/sFgoNlspsePH+sTn/hEndvT01Odnp7W9/g8cz6q9+QmME88TruDiyyXl5e1peXRo0d67bXXJKm2LBAiCVmEZI7H4xqqGF0NXvVnThATXn/9dT158qQl8nA/IL24THAprFarOh5aSyDZvka4V9xPJ6buBOF31h9rDwGAewIQH2KrgGcuUDlnLJBj2ncktbZd5HXcI7a8dCHH245crGNMvnal22wO5pHPnYt3LsQwBy6c8Flx14aLhJwvtpG4+MZnCbHC22MQKd3Vwn1A3PK2Ie4bYgLrM5FIJBKJRCKRSNzFBxYUSin7kv6SpL/TNM0vLaU8lvSHJH2tpJ+S9Cubpnn2Lo5TswMgpRAer4R6XgDPO8klJR87PY6GaNX2oDnCF92V4FZut1xfXl5qPp9XO7z39NPGQNUcku/EFxeDiw6QsPF4XIMcIeS+RSECAETLd6GgqotAgg0cUYbXjEajVoV4PB7r6OhIx8fH2t/fr5kJq9WqtQsBP2QbQIwREobDofb397XZbFouAw9c9L778XhcxaPlctl6n1vRma/j42MdHR3VbSMhyx6Q6NX94XCow8NDvf7663WuWFOPHz9uiTZnZ2d1pw//gXQyV8w1Ypa355AlAfFGaPIsAY4XxxvbHLxth/knq4B14GvEAyN5fWwD4F5464lnIng+CGOL+RGclzUFcfd8BdZeFFi4n3weGBf3xXc38S0q3RnDnPMvYoILKnw/ONy9weeQ13r2CuPc29vTZDLR4eGhptPp8762HhRe1ndxIpFIJN4f8ns4kUi8ingZG67/Jkk/br9/p6QfaJrm6yT9wM3vz0XTNLVqPJvN7qSwQ1ohEB4K59VXKvFUqLE4Y2GPW9DFVgnfUs/zHCBy2NsRLSAfnj7PudhhQVIN43PLO6QcEkj+grcUuAUckubCirsE3JngIkRMs0f8IKdhMplUYk/7BWTaCa1Xfb1yTFgmLQ0QS7fEA64HoQe3ic+LV/YhoI8ePdLjx4/16NEjzWazWhn3sbhrYn9/v66l2WxWXSsIMD7P3CsXUlarVWtXAr+HfhwIL0ICaxDhwdcn99rJua8x5gmRw9txYj6Cj8lDEr2doatFxlsd/L1+r3xuunZH4HPA8WPYY2xR6Aqu5Hq8bYbrRIjwdgfur+dy+JricRcMfX4ZJ+fzfA5vn/FsCt/29SOED/xdnEgkEokPhPweTiQSrxw+kKBQSvlqSf8LSf+ePfzNkr7n5r+/R9IvezfHQlDAiu771rugEPu6+YHIQTh8a0kPEHTCIekOGbm5rhY5h4h5EKCkFimBpHWFFVJxZnxUq10IcPt8tF47mfNEfbf6x+O46ABpZKz8ICjgIthutzo7O6tOARdfYrVZUkugYEwejOhjZRw4MdguEps+ooITdVpJHj161Nr2kWp9HJO7UzjHcDisYgFZENxLhIYoJkByvb+e+8ruCr5e+J1r8J00XFBwgaJrfcWsCwfPcQzPAHAijPPGWwQQC3zbTkQAd+x4oGhXJd/zPO47jrsovG3Cj+HCGy01Xa0WHsTIuXwOY96JiyP+w33g84Kg4NfM55RrQHD7qAgKL/O7OJFIJBLvHfk9nEgkXlV80JaH3ynpN0ua2WNvNE3zpiQ1TfNmKeVjXW8spXxK0qekays2f7wfHBxotVrVfAIq4FRGqWw6uUBQgOiTt+DEO1ZBPZSP6qmn7HubBaSZc0F0IR+QJ3cd8H4EkO122xIMILR+LLepQ/KYm36/XwkRRHg+n9d2CaziPk9e0fXXuJWciv9ut9N8Ptfp6Wlta+iy5LvQwJacbP3n+RJUyw8ODloiw9HRkV577TU9evRIw+GwBlLijIDg7+/vazKZ6Pj4WK+//roePXpUBQivNEvtnR52u51ms5mOj481GAy03W717NkzLZfLOt7xeFwDIpfLpc7OznR6elpbH7h/0u1Wm95eEkkugoTvMMF6IUiwa1cBCC3zGrdBZf1xz/x+RmeNr9O9vT1tNpuWiOSZC6xTd67wE7NEEF8g+55TER0lUXjj3vhnj/P7dpiMcTgcViGBf337VsQiELNTuF7PGPE5ijkQzMve3l6rfWQ4HLY+dx8R/E69hO/ioTKEMpFIJN4nfqfyeziRSLyCeN+CQinll0r6YtM0f7mU8vXv9f1N03xa0qcl6bXXXmuGw6F6vZ7Oz89rlViSZrOZXnvtNc1ms9rHzg+khOqvExOIBiQOuLXbXQFu55bUcgYgQLgzwQn73t5edSDwAymR1CJhjNVFipv5uONCoEqKEEDVeLPZ1Cp6JGDuXCAkT1LdGWO73VYRg556CPrJyYlOT08rMcf6zTVQnYeMIa5AgiHnXL8krVarWoWmfYG2lvPzc52dnemtt97S06dPqztit9vVloWPfexj+sQnPlEDKz0rAFcAGQwIAexY0ev1tFgs9PTp07rrw+PHjzUajeouFs+ePdPTp0/17NkzLRaL2qrCOnACzPrxPA3PRvD2FRe7fA1CoHFPIGx4/oLnYHhORNxlw3fDIMfCx8z5vPXEt/T0LAd37PDZ8Wo9uyNwD7wtBwcLZD6KDS5IuQuDPA0PvHT3g7sK/HjMQZdjCNcM88Dn0eGfsX6/X4/J+5lL1vhDx8v8Lj4sj+/21iQSiUTiucjv4UQi8SrjgzgUfqGkbyql/BJJQ0mHpZQ/IOkLpZRP3Cixn5D0xRcdyMPYCDSUVCv0kEnISGxPcDLgdm9IFfB+bM8E8IR94G0GtA44KXQC6FVY3oergrHiRuB6IWuRbPpzXIu7DlxUcFLlGQKeJ+E28ouLC61WqzvZELQdnJ6e1ko7FXSuE9Ehbs/IPG82m0rIvWceWztiz2w2U6/Xq0TxnXfe0TvvvKOTkxMtl0tdXFxoNBrV7R6fPHlS2xwczKlX9aXbKjnjguyzjmazmUop2mw2Wi6Xms/nms/nNZSRtectFFTSPRARgst6jdkI3E93wvA8c+9E20ktr4M4e45B3A3CyXF0Q/ha82N5O4ePAXjLgYtsjndzTZzPd31ATPDMDx+HH9dzKXhPzK3gdQgXCHBRoOE+xBYO/0wh0Pl8fhQEBb3E7+JEIpFIvC/k93AikXhl8b4zFJqm+a6mab66aZqvlfStkv6zpmn+CUl/XNK33bzs2yR9/4uOhUXcgwZ9lwa2Y5TUIiTey+/2Za/SQ4I90T72p7sTIT7m53Uy473rLhTgkGCrSncyeMXWxYqb+azH8Oqphw/G8Ene4+eAYFOV9aA95oPnvNK+Wq00n89rfoLvEMD7ujIEINTY/mkJ4D5wPnaUmEwmdSynp6d6++239fTpU52cnGixWNRtKA8PD/X48ePqKCA8z7f3QzDwLAqcH4gg7MiASIF7hbaa5XLZEhM8B8F3eWB9kUOA28RFFtZCDBNEbIr311tgfKcOFyWcYLtzwR/zdhaO5QKFC0ce4uhgPXubixP9rtdH+Fp2Qg88ByISe87luRAx5DKew8fCePnMdAVB+jh9jfo5ojMphkA+RLzM7+JEIpFIvHfk93AikXiV8YG3jezAd0v6vlLKt0v6jKRveeEgbggRSfqXl5c6PDyspHI6nbZ2SvCkfUl1G0HpmrRgm/dqP4TNrd+eBeDhctjzyWCgVQACBKHDEQHh3e1ud6Rgq0oPfXTS4338viuCh/QRQgnpITQQ54WTIg8I5HyDwUD9fr+SfloDeJyMgbOzs0rqyXpwIsmcz+dznZ+ftwL3OCb3BnEH0r1YLKqF/Pj4WJPJRE3TaLVa6enTp3rzzTf11ltv1Xs2nU7rfX/y5EkVFBAIuD7GtFgs7rRozGazVtbGcDjUkydPdHx8rIODg5YzgfcjJEBcXQDiflGxXq/XLcHBibiLRC7+0C7gu3CwXr3NwtsaeJ87eFyccgGL+8zckH/g5DjmMOBEYT1760MUB7wFw8UCJ+esF29T8MwDrtdFNQQgjs0x3BVDpgSfNc7rc+6iojsx3CUSnUCsc+asaZoa5urtVR9hvOfv4kQikUi8VOT3cCKR+IrHSxEUmqb5QUk/ePPf70j6hvfyfsgBZGM6ner4+LjuA0+wHxVp0vohI/RB85qzs7M7KfEQLyqQbmP3bAPpdvcCLORxrJDByWRSyXl0HkDgvb+fnQ1ms5n29/dbGQ/0blNh9dYN8gmWy2UVXLzHH1Lkv7N1ItX4Z8+eaT6f12ujf//s7EzvvPOOnj59Wqv0k8lEkmqlfrlc1jwGJ35OALsCAGkfGI/HOj4+1muvvSZJOjk50cnJiT7/+c/rc5/7nN56661KPmezmY6Ojuo2kb4zAXkNq9Wqjol7DummPcar/h/72Mf0xhtv6OjoSHt7ezo5OdHTp0+riHJ2dtbaKpN7CTEloI85IX/BXSXkXbgbxMUd5h3CyrEgrLFlwcUEX7vukhkMBq0sEG/D8PafUkrdEhQ3R9zBwcUMF8Ji+wZzFENRWXv+Y98P9XmEPsQfhDWuG/eEbwHqjh3mCPGHdc7c8tm+T0Tgv1m3iAmIjQgWFxcXna1QDx0f9Ls4kUgkEh8M+T2cSCReNXwpHArvGZAVyPvR0ZEODw81m800GAwqAYI8SmqR7l6vV636VMulW6HCSS7nwdYfrdvefuH97xBWCBzBhjzmfdpkHCB+nJ+fV8LjOz8wBgipW785jrc68HoQAyepJBOkB5GEgG82Gx0eHtYxX11d6fT0VKenp5rP59psNq3z815IJOTT2z5i6wlzhytif3+/3st+v19bI95++229/fbbevbsmU5PT+v9nE6nms1mVayB7HLPfCcIxubOkOl0WgMoqVyT24BwdHZ2prOzs5ZLgfwGnARU3X2XEQ9hdMcJa5B581wHxCLWirdscC+9Ui6p5VrpgucfcCxJtZrva99JOgIJAoATbs8UcMdL3KHBj9G19vyY/nnjWDhJuF8xwJJ7wGPMGePrmhtvz2Ds3sbQJSz458pbJnwckj4SLQ+JRCKRSCQSicSHhQcjKEBS9vf3K6l067H37cfAQuzRse8dIgLhdwJGpdbJE++BHDr5IovAMwm8QsxuCVjxfSxcl4sJklpZBrHvG0LvxMd/qNJGMCcecImlX1IltgQLQqZpIaESv9vt6vsQPTiuk0q3w0dSdnV11couoNUBhwLuANoser1edXEwt1TlEWlcUHCBCTu8tyZA9nFcsCOEiwkIKR6syDqIrSceeuligu/Y4VVvRBhvO+B6nOBzv7uq+zzHv96CwPlcgIoiBYTe142Ta9wsvi2k31efE8btGQxexY9bs/o4XVhwl8z+/n51FHibB2NkDbCu3NXhn5foOohigb/O5yW2bnAOPrsx2DWRSCQSiUQikUjc4kEICvxxv7e3VwkoJI4/7iFZ7BSANfnq6kpnZ2eVFPprIYROTgkg9GorZNKJvYfUue3aRQXs61T7aQ/wXAEPeuP8LmJ0CQmSOjMDEAhoTcABwLggsB6mSJvEbrer+QKEXCIo+NaOCB5OcH1enIBx3zw4UlIre+Do6Khun8m5aDk4OzvTYrFo5UocHx/XTAonuOQlEKDoogJCxOHhYRUPEFbG47GOjo4kXW9hSXvHO++8UwMh2erSE/67giARNcjYeF5GgTsFXBjxjAavnHteAK6GuIsB8PXEsRCzcC9wTsg54ouTaF/PtBMwBl7jZLxLUCCTxHMkGCOfKb9ed31Mp9N6Pt921R0DcRtJd3ZEpwbr0eeRufB1ixODa/IciN1up9Vq1WrjSCQSiUQikUgkEt14MIICuwA8evRIx8fHktpEiT/8vaeenIJnz55puVxWQgWJoaLuAXiQDlok+IFUQSKlW/JBxdwt4bFH3YMPF4tFJxlHZOA6xuNxq6IPqfJedsjzxcWFFotFDaRcrVaSdMf1APFl7jx88vj4uLVt4zvvvKOzs7NWld+dGbR1RFLn5Dj2qjO/+/v7mkwmevLkScu9cXp6qrOzM52enmq5XOry8rLu/nB4eNhyJ9Avf3Z2ppOTE52entb8AtodSiktMcHJYa/X02QyqW6Rk5MTvfnmm/rMZz6jz3zmM1VQWK/XVUyA6PpWh1SqaaVBrPCci9hOwBh87uJuAy7axPwG3uMhndFZ4K0HuFk8NNTXuxNjF8lcTPAdOnCw+D33QEZ3gLj7gs9gbHPg98FgoNFoVHfbQBjzbRujcwKRBnGRzzaZGn4PfP2T6+HuA8breQ6+lrlPiHPu0EgkEolEIpFIJBJtPAhBQVLdInI8Htc/+L0a6kQNAg3JoLoMuZZUSa3vWCDdkjiq/F6h9Gqsb2fn2QCMJ7ZQsHMA7ofYR+6E7uDgQOPxuNrkPSTPq8G+faHvbBEdGFyvV7chW+4giKF27KxAlTpa6p2Ixd54t457gKBXvanyc4/iFo2Xl5d1i0hyFpgXF1QQaVxIcJfAbDZrBSLGtTKfz+sWlW+++aa+8IUv6OTkpOYmxB0HmAtfd07YCbT00EyfG18vkZQ62Ycoe96Cv8cJO/fNyba373iAom8H6k4bwD31IEPcQBB/zsu9Z315mKPnQrhowth5b8zZ4PPLGvRWCd4DWFveptSV1cD7aDHyrAS2LXW3CYhii89nIpFIJBKJRCKReD4ehKBQSqlValoZ7gukg5xRMfYef0iDdGsL9x5v3guRgXx4+B8/nkXggXU+Zu9d950QpHY/ubcgxFwHT9T3irJb4LHaO+HjOLQFIBJ4iCRj8W31PBASNwTj5DixSu4uBCd9Tha9uguhZvcLrgW3BdeCKDCdTmt2ggdccr3e5sCOGZ5xQLif9/wzdto+3n77bb311lvVlTCfz2sriG85GHdpYL69BcCJtrev8FxsWeD9jIn3xkwMr6ZfXl7Wsbgoxu9dYlvMsHAiH7NCXKjg9fHesyYAa5TrRNBxEcw/H11rJwYiupDmoofDWy0i/D18bvx4fJ48Q8HH5HPEtZGRwfgTiUQikUgkEolENx6EoLC3t6ejo6NaofYebncPeHAbJJN+Z29VkFTt8JAJT62HnEImcTdwDCdb3rLg+QxOVjabjebzeW0dII2e1zGu8/Pzaufv9/s1J8G3ucNev1qtausEpMZD7TxED8s8hJDriiSf68AxgJgi3badeAWXqjXkqisrgPnl+FTwIcM4NqLbgnkcDoeaTCaaTqeaTCYtx4VvA4pg4+0ZVMl5j+/swNg3m42ePXtWcxO+8IUv6OnTp1osFq3cjOFwWI/lbQ5+fcB7+Jlzd7QgSEi3JNvXUymlriXuv7dq8HrfEjK2O3C9/lnxCjxbdoLYjuEBmxyrS5hwdwJzwS4i7CTijpjYIuBjjHkK3r4A+BzEwMX43/7jx/TARhfVEBi7Ahk5L/PEMaIIk0gkEolEIpFIJNp4EILCwcFBDWKkeukWaarU7DrgOxC4NRyy4I6AUkpre7qLi4vamoDNPW7/CIlzEuhVeK/IQv59xwHs+j4m2itoBTg4OKgEmxYKjrFer3V6etraJtIDA/mBlEF+nZBKd9sUfMvH3W7XIqtudXcBgPl0MujtKPSpe9Ua0YHMiLh9nxNa2h1wKHAfCGJkW0mCIy8vLzWZTFqhfd6m4XONa+PNN9/U06dP9fTpU52cnGi1WrUEFFocEFkk1WMwT8wnc+PCUhQDvP2E511M4Dici4BP7+d3keY+18F9rQT8+FqIiMTaXRIc2+8d64P746GU3vYSnQSEWHI9zB/3hnvNdXMf+Rz5eLlGb0UiD4X7g8jgO3L4GomukOhmQEBLh0IikUgkEolEIvFiPAhBYW9vr5J+Jx/8ge87OLi9H1Lgdn6IEAQlWsZ5r1vmo5AAIfHKsBNxJzNOTgCkCOLDuBAvugisuw3cZg9pdKu9pBbp53Vd4ZOS6vywu4MTaa6R62ZXCMQat7RDoj0DINrUmX/mDGLuxBoBYn9/X6PRqNV/720Z2+1W8/lci8WiJa5Avn0OuX6EGd8RAzGBUEscKZyT+WdesOH787ENhWvivnQJOVxj3PrQ50rSHdFAUg189N1BvL3Ex4eQwxiZk7j2/V7RiuJhnqxBz2a4r03CHQ4emujHZx45tt+v+Hnye+BuD4e3YnA87o2LVS6UePtSPJ5/RroEhOe1YSQSiUQikUgkEokHIijwR390GEBUcCN4YjyCAhVk/+PfK6UQLkgZx/CEe8ibEw6IiwsCMb/Aq7uQGbeWS22XAOf09zqJ8iyIXq9XbetegfdzeJuDtyt4e4d0LSi4kAEgu34N2+22kuZYeXfniFfH/VpdDEEgcbLuRNzJIUIDLRg4Nfjxar4LJy404K5AfGKrSRwp5GZwD93WzzqMvfZ+XbSKeBXbyTBwQclFAXcncJ88eNF3FnDLv8+lz7WLGbTZeK5CzEPw8cVsCK6BzwifL793LkbFFiSv+PtnMM6hrx0/hq9JFy08PyHOi19PFFpccIn32d0QMdsiCgvPc3kkEolEIpFIJBKvOh6MoODkyav1bMUYswSwY/N+iAmOhvPz80pK2N0gOgxcUPC2BrfvuwVcen4vNq0O7m5wskS2gFeCvXrqxLZpmpo14E4LxsJ1eoUa4cNJFddPVR8RQrrdjQCSvF6va/vGbrfTeDyu52TOcS0ACDDnw65PtVxSncdIBP31hCuOx2NJ1xkYOAp8O1CyE6igY6lnXmiV4L3z+bzuLoH44MQ4CiMxL8EJM84Nwizdmu9iD3PLdfuOCYhgiAOIKNw7juctJv6+SL4Zs4sr/rouEu5ZA96GwZpyIcDdCNFl0dVCwFjdNcA5fUxcexQ03C20t7dXAzxxNrC1aXQpuKAQ21DcZcL4PODU5zF+DtOhkEgkEolEIpFI3I8HISi4PRrixFaBp6en9TlIAAn9Tsjdhi9dk4F+v18D/3gNVeDhcFj79geDQauCSk87JBDiKqm2Suzv72u1WtUxORGKafRN07S22IPEerWX80qqpBCr//7+vqbTaWsLRsQEd1dg9YdUIZjgTvBtNpumqSIEwYef//zndXp6qoODg7qFJ8GKhAdKqmTUcwu6gNgxHA4rcV0sFjXzQVKdl8PDQx0fH+vg4KAKG75FJCIPW1FuNpv6OrezM28ICbQ9ePilh2JGAcCDCp34x+wC8gbiud1JwX1xe79X/n1XCXfmAHckuADAmvL15eJTlzvBd4ZwYY176DkKsYXGwfV520fXfYfce1YE4/drcMeKC4AuKvo2qcPhsL433g/PeXBHhQOhi7XAufweu4DH+RKJRCKRSCQSicRdPAhBQWqTVK+W+y4BbsWW2ls3xh52dxlATqRb+z9CAqSK81Mpx3rv4YROzmOg4nA4bFnZvbdfuiXOkNBI7BAvuMblclmPzXshaC5iMGdU0KU2kfdsCqr+3gZyfn6uk5MTvfPOOzo9PZUkjUajGpDIdXjQXySzjNv72J2QRYKI8EF1nh0eBoNBvXZEAMiih2ZyX9hG0ttVyEDwgEvfHaLX62kymdRjePtLzAVwIsx6Y+48zM9dLNHx4MTWswOia4Hje3ZItOLHFgjmPLYXxNdzf1ww8Hvnx4xWf+6pzwX3F4eBtxf5unjemDgm68UdHy5aRCdHFCO8DQoRhHvZ5WLg+yO6gXx87nBIJBKJRCKRSCQS9+NBCApufd/tdrX67Hb3WIWU2tVOqV0hppWBaiV97xATXAaSKsmA7CNCUM2H1HhgIzkDWPGdYHnPO897L72TQMYNQUVQwBGBiOG7L0C0Y9YEhJ9xEjjpIYcXFxetFhDaAebzuS4vL6vQgggQ++O7es4hZH690t28A8aA8IGwMx6Pqzhyfn5ex+nndaLogtNms9FoNGqNxbMOvEKOyOIukkgevY0lCgqOaKd3McGzFfxex/BOX/9OtD2rwx0s3A93E/jrnRB3vb8L7sbocknEVgW/v/EzeV+2QdfYXKiIORTu5uB7wT+XvMbbjtyVE8UQH487eLpaGmK2RyKRSCQSiUQikbgfD0pQ4L8Xi4UWi0V1JzhJh4BAHLz668F14/FY0+m0ZZHmfVT9IQwQdA+4o0cfQQOCQY8+QYHecw9JhzBfXl5W0cPzGHzrQY7Lf7vNm10QhsNhzQ2g8t7Vy+7kzIkkx/Qxl1K02Wzqtozr9bp1PnYNWK/X1VHg5+N6Y2++E0DfypAMBoQYtuyczWaaTCZ1znFheLCm513s7+/XnR/m83kVFLivcScGdwRgmWcumQt3OMRwQSfZrDFJVXziPSBa+n0XhdiS4EIV18+Pb13aVdXvEiecCLPe/f549f2+7AFe589H8YvXRIHP4UKEk/euFhkn8X4PPPPCcxw8OyW2mXgehYtujMdFr7h+OaY//jxRKZFIJBKJRCKReNXxIASFq6srrVYrlVK03W51enqqxWLR2ibSSSb95/zh7xZ0z0eYTCYaDoctIiaptf0ixMMFCPr4scS7Fd2dANItIfOdJDxIcTAYaDab1RwHxAQcCF4JpfoOoSQzgHC6s7MzrddrSartCjgXEBl8az9cFufn57V9ZDwe13OcnJzo85//fBUajo6OqluAe8G8RieIh0GSyeBCAu4I36Vju91quVxKuhZ8jo+PdXR0VO/Rer2uc4wwsFqt9Pjx4+qcOD8/1zvvvKOnT59quVxqf3+/dZ85hocKkuEQ3SFdgZaQWBcOEAG4vvtcA6wJ7knsyfffAffLhaSrq6tW7gQtMohJBEN6wKS7YyDBLu4wVoJDu4iyk28QPzvuEnDhxd/L/XOh5T4gFPH5cWEQkY0WJEQuzo3A5u1NrDnPv4jXGO8hj/t1+TkSiUQikUgkEolENx6EoCDd9kufnZ1psVi0KrteEQdeYXS7M4SHnnxItfdie1AeIX3e64+Y4MTPq9MQM0imOyW8utnv9zUajSoZQkiAgHPdVEwhtQgRjBWnwGq1qmGAkFdED97vVWquGWfAdrutpOzi4kLPnj2rOxZQwfc8AK8Me3XZnRwutjhRZcxkNyCkIDZMJhPNZrOaDeGkdbVaablcVvGEe7nb7fT06VO99dZbtUXj6OioXhPXRf4ALhaIIWPzoEJ3GTBG6XpHDm9jiI4A7hP3w4m2CwMcg0wOJ6m+nSQOEkl1HXuIp7sXGCe5Eh4e6gKECytdO1rEdgR/DPh9xwXSFUJJe0UMUmSeokuBtep5B/4+F/+i0ODCibdDIKp4zojfa/7bMyS6WkI8wDIFhUQikUgkEolE4n58IEGhlHIs6d+T9HMlNZJ+naSfkPSHJH2tpJ+S9Cubpnn2vONQWaaCvd1uWw4At0539TdToXRSDxnz9zt58Ar2YDCoVni3RbtoEK67ZRN3m7SPzwmfCxsQXid4PnYEBcYfWx14jwfpRRcBBN+zE6jAe84A53PHB3MFGfTH3QkS+9D9Xz9XdG0QFukhez5mz87AMcLxTk9PdXp6Wne/YNxU8L2NgGNCdP3eAa4jBggCr3TH9cA8RDihjaTVyXhstYjkm7XLj4sUkHHWuXQrKDhh93yCKBzENgfGdV9Lggt43rLhRN13kojomgcXsFwEYd58fbhLyfMc+IzRcsR663KVxPnxa/J12JXZ8pDxsr6LE4kuHHz1J/VT/+RP/7CH8VyMP9/o8e/7Cx/2MBKvMPJ7OJFIvKr4oA6Ff1vSf9o0zT9eSulLGkv6rZJ+oGma7y6lfKek75T0W553kN1uV/vhqcJH8h+JCO/D7g05pSoNSXBy4wTOWyfYktEJG++HRHqVnjHxOBVlFy44Hz9N09xrA/dMB9odIDy4JbzCzrXHQLo4Pt/tgPNuNptW6whCivfqM0/MI5Z8J11+PieBzAlzHHcgYCtPchpcrNntdnUN0FYyHo9rK8h8PtfJyYmWy2V1pFD593wGBIY4thjSx/W54OCEH+s+roUoZrnQQvuBpPo+CK+vARfH7nvchSSfRxcBuHYPCo33xu8jj0e4ONSVe+Cv8zBG5ieScl+nXQTef/ex++eUtc3Y/XPsuRi4ZVxU8XwSFxxcNIjiHZ8Xnuf98TP3wPFSvosTCcfBT/8aaX9fJz//4/rRf/Z3fdjDuRd/42KhX/+Tv0r6fR/2SBKvOPJ7OJFIvJJ434JCKeVQ0j8k6ddIUtM055LOSynfLOnrb172PZJ+UO9CUHj69GklYePxuJIID2aLFWEs6+wWEAmiV1sh7F6RpVI+Go3uVFyjs4FKqhPt0WjUCgz0sETfZaLf77eIkAMXA9kG7HZARgKEll0qPMU+ujggfIyP3TKcFLubAbs5JIw5caLHuPkdwo7N39s+3L7Oe6O7AVcB18l93O2uU/1PTk602Ww0GAw0mUz0+PFj7e3tabVa6ezsTNvttraDMNa4q4OkVggkIooLPYw5bvnI/SH3ocud4Dt2+BrjmqOLgHEyDum6jcO383QRLTomdrtdy2XS6/U0nU5bIZ/RVeCfk/uEBG9jQCCAfHvbhCPuVuFCVHRkcL/9MxNFGRfLukQxwkIZs4tE8fq45zH7xEUb1n2cJ+49bUnuUnroeJnfxYmE4zv+3A/omyarD3sYL8Q3/Z7frK/+V37owx5G4hVGfg8nEolXGR/EofAzJb0l6d8vpfw8SX9Z0m+S9EbTNG9KUtM0b5ZSPvaiA0EEpNukdqrUsaJMvz6uBEQBt7i7o8F7/r2K6kJAv9/Xdrut5IhQPa/0OjGG2DMmdz24dR3Svbe3VwMOIYGQnMFgUAly7HuH5FBtR8CAJJEZAGKuBITaq++Mi9edn5/X8TCfkqq7wZ0QkfRxf5xIes8+9wW3BMKQCys4Q9g54/T0tGZPsB0kogjnjxkDy+WyZkQgQnG+KAow7/c5Ti4vL7VYLFo9+L1er3Md+pog2DK6YZgn5pPnWAeRtPtcudjhO5H4jwsoLu74dXUJDvzu681Jv7cxeIuDtybEcEOOE3+P5/W2GRfYfEwuzPB5cscCr/HPjbeaIFyRixLdCXFucEkwz12tHw8YL+27OJH4KOGq2ekX/cZ/Wl/7wz+lTDtJfMjI7+FEIvHK4oMICgeS/j5Jv6Fpmr9YSvm3dW3lelcopXxK0qck6fDwUJIqCXD7tffxe4gehJMwRSchECEAEXHCBymH4Drh8P/m/X4sCK2PMfZ2Y8X2qj1k1o+DmBCzBGIPN6+j6krFm+tCvIhbU0L0nfy5gEHfPeORVHeG8NYPSZVgOyGLrQKMnXP6DhwQfeYYQo+TAiI/Ho9rQGTMDuC+cD5CLqlMeyigOzNcAIh2d3ag4MfnLdr+o0OBuXYS6hV1qR1eyFx5MKAf2+FCjnQrRCCkeECjB316Jd8FAV/rLrr5ZyS6ePz++zV2jbtrrrpEmzgvUVCJnyUfY7wmb5mIYp7nKkSxw90kLlz4Z67rnjxQvLTv4qHGX5oRJj5SOPjEx/WT/+zP0Nf1fkh64Gvi6L/5vC7/zuc+7GEkEvk9nEgkXll8EEHhs5I+2zTNX7z5/Y/o+svzC6WUT9wosZ+Q9MWuNzdN82lJn5akj3/8440T7CgoRGK+t7en6XRatxL0SqNbmG/OU0mMCxRO4mOQn9SuskIyIOz0/2ORJgzQ2wP29/c1Go0q+UMsgQhRwacPvotAcV5/rRM/etghuTzv9n+3fUOqIetUzJ1kewBkJIKMxYUGb0dx8umkzgk1u0p4i8ZqtdJisdB6vW65Rrxn34+LGEDmAoGe7vCgXSQSTBc6WBPkNvAeHCxeEWeeeC/rzsks957rAzETwJ0yLhZE8sya4D77ThysPcQfnCaxLcDdIBFRUOAz4O+JZN8R3QlRPIi/dwkZUaDwde9ZDP76rrwLd+u4mCCp5Tbi+B6aGbf49Fanj0LLg17id/FhefyRsWUkvnS4+urX9RO/9nfrIYsJp7u1/vTq49LlRyM4NfEVj/weTiQSryzet6DQNM3nSyl/u5TydzdN8xOSvkHSj938fJuk77759/tfdCyq5vywCwLV9ul02tqacDQa6ejoSKPRSHt7e7Wy7UQAsgjpgkxCBiFwnMszACRVYolgAHGmf72UUqvZWPZpETg4ONB4PK65DrgmnFBKam3TSO8210D1GWJ7cHCgJ0+eVPFhtVrVuWPsHmDHWBjzYDBQv9/XcDisJAqiheNCUu0f59gxW8BJdJftXWqH3lFBdhcADgRyJ05PT7XZbNQ0jZ48eaJHjx61xsN5ubfD4bB13MVi0SKZ3He/Pt+GE7Lp72erUq7dwz25Ngg9QZa+jSPvgcxyPcxjJNfR7UElXboNhOQYiECcl/VJW1Dc3pA14XPS1RLkbQQRfp99/r0NxMfDef0+cS0uFnS5MLrCFmMbRnQ1xPn0def5Fr7zBeNHTPD5dniLxWAw0GKxuDM/Dwkv87s4kfio4He+8z/RD/28vq55XCLx4SK/hxOJxKuMD7rLw2+Q9AfLdZrt35T0ayXtSfq+Usq3S/qMpG950UFKKZVcewUfgcFJBe4EWiPc6iypEujFYlEJLP3o3hYA6ZSuieJsNtNkMqmtDPP5vNWL3+v1dHh4qNlspvF4rMvLS52dnWm5XLZ2YoBwxfR+r8ojIsQt61w0gdSwy8FwONRkMpGkumViKbchilT0cRdwbZBpsibILHCyjRCBoMH4pNut+lzo8Eq8izBuZ/ffLy4utFwuKzEjCPPg4KC2Okiq4Zr9fr/VxoAYga0fQeTi4qI6C6RbMSG2CLg7wXM41uu1Tk5OdHZ2pvV6XdcdWRVOYl0skG7DBD2jAcHBq908ztwxJ1y/E3J3HPguBcwLc3l+fl6zMfxeSHcJOuN3Z4Q7daJrwKv2MdODa3ExIsIdKbE1Anh7TBfcZeHnY06jkBVbE/wxrgXEHTO8HQQHCsf1NfARwEv5Lk4kPgr4Gd//Kf3sf+dE0n/3YQ8lkXDk93AikXgl8YEEhaZp/oqkn9/x1De812PFHm4nW/4vggHVRyffnrHg/eUc223QUbhgK0Mqz1K7Ggopp0UBR4IH3kFC3FIfSZC3VTAu314R+3psdUBw8d5vzgfZpfrqZBQnAK/xnnPEGHd0+BwhxvhrAeSabRudqEVC50n+tDRAjgmORPAYDAYtC7vvtuDVcuYVYcTXiLdTeJuMt4psNpvqTPBdIFgnsfrNMTyU0P91t4mvCe653xfm2F04cc35/eXeIGAgGnXlHriTII793SKS7fs+ox526WuIY8TWARfQ/PPn5/V/o6OHuWFOPTOEdefHQNTwdRudEJzH1+vzBJOHipf5XZxIPHT0397X1Y+lmJB4WMjv4UQi8arigzoUXhqcOEDInZBAPiAlENRoNyes0IMFnVB76CLW7fF4XNsqIGIxwNF3Y2iaphUCyLghIpBtd1BIt9VdxuBZABBoFynIaxgOh62ef8i7V905F2NiTvy6vSKNeOHtGDHwz7MY/Ng4EwaDgXq9XisIkXlwguvbOTIeHAIexIiDgnvHfLg7IVajuY+xmuy5Dv4c9w4xAXeJz0HMbuAYvJ/55XeuS2rv9OE7PcRdMjzXgvXsaw9XDONmLlxwQpiJbQf3nS+Ou0s0iI9HUcIJvDt8GIPPs5Nzd3e4g8Hf52IE72P8LuT48dzVE8/tc3kfotDhc/gRcickEq8M/l9nTzR4lp/NRCKRSCQeCh6MoACBoProtmtJ1dLvDgKINe4BSB1EkYr4dDqtrQEQeH4fDAb1eeCkkffEnIH5fF7JDaTl/Py8ZbGP9nsP+qONwck6jgAcEf1+vzoiJLUs9qUUjcfjOl7Pi3BBwcUO5tR3NODasNUPBoO6TSNbOXIdtBZA/vv9fs1zgOR6C4SklighqeZPrNdrLZdLzedzHR4e1vfRxsAYyHTwira3kwyHw9bWmZFEOzlkjpbLZT0H23l67kNEDCr0lhD/3bMPEJ+4P7xub2+vuhn8fev1ul6rhwRyTF8fcT3FMFEPwEQg2tvbqzkj/hPbDry9hePxL+NnPGR8dJ2f+z0ej1vCSST33s7g54vHi2JCPG8X/HPs6yc6J/isutuEVqD7Ai0TicSHg+/95f+wPvHjP/RhDyORSCQSicQNHoSgAFnhx/v0qcJ6bzPJ/NI1sTo8PNRkMqk5AJeXl+r3+xqNRjU8DhJCdV1SbQcg5A8yhztgMBi0yDvEw4k/FVaq3FixyTNwgusOBXaA8NYMrodWB0QSiBh2d9oUqOa7a4HHmVfIHde/3W4rkffMAEQVr4Izfo6/2+00nU41mUw0nU41GAz01ltvtdwHLvxIt20THj7I7hL+PkIJ5/O5VqtVywESq/nSbbK/u1qYJyehzLs7HthV4vz8vM4BxBIiyfx5uCDHQkjxIFDPmohk11tBfG6495vNptVewpxz/Ohy4HqZa2/H8DwRMkGiAOLX1kXgmT93CiCA4frhnjr59gwIiHlshfDruy9DwYU4qd0CEVsdmD/mn8+Yf5bdhRDbclx0Atw7D6VMJF4p/JWf0C/5hm/RP/8n/qi+YZSfgUQikUgkEvfjwQgKkASvpPK4kzCv3B4cHGg0GlXhwC38CAAQcgjjYDDQbDa7k7IPqe9Ktve+dIi9P0a1lmsg2FG6beWIgsZ0Om314HO9vAYyxvX6tXF8Kru+baVbyb2qjsMAi7+kKrrgONjb26uuACr3fo8ODg5q1kQppb5OuiX0ED53bki3Qglkj7EhJOC+wEHAXJdyGzzJMdxu76QXMF885y0ZXZkMkHNcBYhazBvXzw/z5DkJTkhj2KKPix9v2XGSzlgjkXVBJlr+GZ+TcBdh/Ny8FtHDP1txnJyXYzFuz+jgfvB4FGn8Hnm7zX2Vf1/D/hll7n37WO6zCzvMg38O2Io2tj+4O4LXsx65/nQoJF5FNBfnuvrxv67lbiBp9WEPR5L0w5sr/Zr/4DfoZ37xv/2wh5JIJBKJRMLwoAQFr7Lyxz2VUa+YErQ4GAw0Go0qYYCMeaUcAkvlHgLtNnyvnkJ2IDRUyKV20KNX/yGEkC/PfGDMjAniOh6PtVwuW3Zud2m4M8FzDJxAMmYInQsAkWAhhBBAiEtiOp3WHQeurq5au0S43Z1qNDsgXF1dtY6FkEDF2skjpLDf77fGLN22E9CKgcuE8XM8t/cz11wnx/dzeuYC8+ftBNE1wJwzRqz9MUMgZnhEW3ysdseMAr8X/LeLQf57DAb0dhlvqehCFBN8ziHo7vqJ443uBJ9HX1u8h8+CO3eiyMH1uwMhzldXaCLH68q4cPHFnRyM3wW+eDx3u3gbBOKeC3KJxKuIT/+dX6QfefS39In+iT519LkPdSx/ZfPT9NN/+w8p/RKJRCKRSDwsPAhBAbKPzZtefMh3F2lDTKCyTpVeko6Pj3VwcNCykg+Hw7o1JLs0QDohZu4UoLVht9tpNBrV550gswsBVXpvDXAyTkbB4eFhdQNI0unpaWuLR3IJIE2+cwL5Bd4732XH3t/fr8TZ7f9enael4vj4WNPptJLnzWZTAy2ZF+89R0zA1r5er3V1dVVdIog1kurcMGbuMWN2kiipCgpOOGl54f0IF8yZXyO4vLzUer1utc0wnq7wSISO8XhcRRx3dTBeAihpd3CRgHvhRFy6Gw7oFXu2qfR1HbMN7iPUvg2mv9fdCxzHBQDuo7fgPA/ersNnLD7mAoCLIBB7z0fwLAwfj7sEfEcGFz3cKSGpijI4InxnFXfF9Pv9Klh5Cw0/XbkOfj8TiVcZF1//pn5Ife1+0S/Wt/+Hv/fDHUvzIP5cSSQSiUQiEfAg/g/tpA8S6i6DGKwWq5pOIMbjsfb39zWfz2vonj/uRASC4wQTErFcLiv59q37JFUxwbMUeL/vgADpIsfh6OiokvL1el2P5ePzwDnGQJ5ADP9br9darVZVAIhVdar7PkdkNxBkKUmr1armCmw2m+r+YM4ZZ7/fbxFzWksQdgiQ9CBGjsU1QejcSeAtCxwbMogjgXvjAgnvHQ6HVXQh3DBmcDip9XaaXq+nyWRSz+Xk2OGOCM9m4DoQlbifoOtYvpuD40UOgtjmwPH9c8RcevsBz/FvdD7cB3fmsMYiXOxzZw/jdzEjzq3PlQsfcZwuJnA+7nXTNNXdhIvChRNvx0Dg8DYP387T8yPezfwkEq8K9n/oR/VNv/CXfbiDuLiU9OG6JBKJRCKRSNzFgxEUYu947MF2YgRpj2QE0oEdn7A2D9pDUOBcfj7ItwfLOanx8fh2htE+7yTY2yy8DcN7tt2+DpHiGnzLRK6Vf1erVWe13K/Hq+7MG+S/1+tVZwC7HjAGyBnH8qA6dw+wGwXVYd9pguuHsHloXmw38F58b+24uLio99p3GWAeyJrAtcCYaZPg/IDzuWvCq95O9L0tg/G5SyUS6UhWuxwkXb35HMst/U6k3Z0BUfb7HBHbD/jxrAcXWfx3FzW4H27/Z9zuFrhPhPFr5jUulDD33B/mkPH4HHjQJZ9f6VZk8fvgrRruGuK4UZD03z0bIpFIXKO5ONflT33mwx5GIpFIJBKJB4gHIShIt5XfWAWNRCWSK17jZCS2IjhZ8DYCz0twi7+LBH4+Fz4g+u4IcOEBAu9uAMiiW/p91wC3gkcnhV8nrSHurIBEeZsCgoKPbzKZVDHBswsQXyB8MeHeHRpO9iDuLji4C4Cfrko5goMLLB626JZ9rzh74CIChRNHbxvxXUM4L2IC80UmgiOKWH79vka5V8wvcxPXccwq8MdBbDHx+xqJcMw9AMxZzNTgvvrrvTXHH+/KD2Dt+71gnXjmgY/TBTh/3ts2HD5Gv+4oOvln010L7nzoOvd996Hr9yg6JBKJRCKRSCQSibt4MIKCEzjEAu8Dx2XgPdr8wQ95l64r94vFQmdnZ5VcuhAQ3wtBcRu+b0HnrRdYrWlFiLszePq8dJ2JQGgkx4nEzIl9FAtwQfBa3heD+7wf3ivNjAvyNRgM6lj29va02Wy0WCy0WCzqeRgjZO3y8rIVgte1raLPXUzwj7s8cEyufTAY1GvmutlO0wkm5ydYknvueQGSWu0VnN9JpZNT1oHb7Z2MequBX4+TWto2XKCAaLvwErMV/Jrc+u8CBeNxcg4i2WUNufvG14K/v0sE8XXMPfRMBN7n1+SvcxHEt/iMa4JrRUgjh0NSzTvwlgm/X5JqGxLrlPvHZ4LjMLfRneBCZBR9onAU118ikUgkEolEIpFo48EICpA6nALSbQhi0zQ1sBChAbJERRtScX5+rqdPn9YgxslkUoMYqUbzeg8CJB8AwurOBMZCnoGTecAODjzmbQ5eRZduA/TYvcLD6AhHPDs7qwGJvpNDtIFT5cflEEMNPYSOeeBY8/lcJycnrawJB3PMMZx8ejXaK8YuMDB2b/UgCwKxRlIlldGJQLsDYY7b7VbL5bISeHcsSLfbP3If3KnC/HrLQ8xxgAh3uWRimwPnZS3E++8ijLs14vGiCMHxmXPe46918Yz3sGsEiKKIu05Y+6PR6I5YgFCG+OLXgMjGYx6yGMUEjhvbTfg80Jp0X1YFZJ61wzl5jbcGufsA8YFr9RDQLncHx/X17M4I1mgikUgkEolEIpG4iwcjKDgx8YrkbrerOzpgj0cEoIoN0YEo7e/v16BA/iWgENLkZAwS4e0PkirphaC46CG1K56QHkiQtzg4aYy93O6KkFTbD7D1Q3jdnu7Ex/MF2AGB8UGmyGlgJw0CHefzuVarVSXkiBPe8w64Vg+wc4t+FHnYftKr1RzHcxQQHdxlcH5+Xt0LvV6vte2jj5X14ddJ5ZvjxtA97o90KyoherAOCSH06/eqPqKKC2Bx14X7bPXMlQsEBHi6W6Krh9/n0lsbuE4/z33uCq6BdeOfMz+e1HYMSLdE3uc+tlW4+8M/T+56cZEuzk8k9LHVxNcSj3F8BB1v6XBnSBfiOuc6fXeRRCKRSCQSiUQi0Y0HISj4H/VUBSHfe3t7tW0AAks11jMHnBRARofDYRUTvNKJeEB108P+YhsD5CbmO8Q2A88UoLXAxQbv9QZOlCGStDnwu1vGESmcuDFX3mrhFv/YtuEuDIQL5pnxxowJP75b4Z0cQ9o8+4ExO2l1YSVa8+O95H2bzaaTNMd+endIeEsKr/X7EZ0h3HO3yTsZdfKLsMJ7nCT7PY73m+P4+6JI4OvLz+etPi56+Jp18utVfIQKhBU+Y94a4AIJ72ctuEvC596FNRcBWBsxOyG2T3Rda8wviPMX16JfL8/F/Ih4bM4fBRHWEa6YrvuXSCQSiUQikUgkbvFgBAUs4Gzjx84GpZQaJOhkIVqdvXK52+00m81qhZuqNc/5OSXVY0O0o6Xerd3SLYGKpKXf72s8Hms2m9Xq7sHBQRU24jWv1+u6zSHnXq/XLTLshGw6nbbs39HNgUjANbLDBKJK0zT1HOv1+o7bgDG6KODWdyfaLnb4GHAnkLcwGAxaGQW+FSjbbno/PPMLMcVpAJzgM05JrTE44Y7uBwSW7XZb7yk/nMedCE4qvcWjK3MBuIDi8LlzNwViVpcQ4e4H1tzV1dWde+1kn//Gru+fF+71dDptuXqYIxf0/Bp8vcfPgrcH4HDxlgN3ZNyXXwA8syB+zuPuC/54FCFiroOLHr5+fBx8/yDc7Xa7KmIlEolEIpFIJBKJu3gwggJtArPZrJIXev8hKZ5h4BVR3ACQXFokaHPwqvTFxYXOzs60Wq1ahINtByGibudnfPTaS2qF0knSdDrV4eFhDRlcrVa1TWM8Ht8h1peXl3UcEF/CHpum0WAwaGUIkAcRSZp0u7MCwgRCA+KMb7e3Wq3qz2azqVkO4/FYo9GoklTEBo7j2QKR/EO+1uu1FouFmqapYgLj9Z731WpViSyiAesAcUdq9+57j7tv+Ykg4bsAzOfzmguBaMH59/f36/ldOPCKurtleB/zzLi8cs8x3HLfRUS9Ih7zCboq4e5y4bWsz81m03JmAD4z5HMg8FxcXKjf72s0GlWRycUE1rSTc3cWMD84Ovb29uq9YgzcBz+mP++uIxB3KokkH0TRxh007mrw1iTe5y02cU15NgTzMxwO63fNZrO5M5ZEIpFIJBKJRCJxjQchKEiqRAcS6uF2kCeviLvYMBqNqiDg+Qfez41l3ivTblWncg+BoMXCben01Xul3glcKaWKA71eT9PpVEdHRxqPx5WQM86zszOt12stl8tKei8uLu60fCCIuMOC8xJsB8H0MElcERBwAg1xYNB+gDNhMBjU8dGuwNzS2uG5Ak5k2aFhuVzWXRo8Z8AzDrzNQ7p1LLjbhMp6zLTgWr31ASLI+dxlQlYGAofb8aW7uy0AxoBg5e4Fz4vwXQh8FwtvpXgeeF2XIMB/ezsIZNkFkggEIObDHR7D4VDT6VSDwaAKOVFAYV59Tvx3rts/W94u4y4AbwvxnBGum3Xmn+cuNxD/umPEX+PzGZ1L7jSKrR0u7tACgvDHPN/npEgkEolEIpFIJBIPRFAopbR2Rdhuty3iEKvMHtjHj1eEXSjwqjBCAMfyfn4q2vE5yIZbzr0CCnnHmSBdk87JZKLpdKrJZKJ+v1/HgZOAQEQ/b+zf9twH2gRihdvFBK7dnRlUtHEPQLIltUjUwcFBK7+BivtgMGjNnWcmQPYg7zg4IJyxiuw7DHANHB+C12WNd2GCajvE2UMzPQwy5mw4oe1CtOV7C4W3XHAsJ7iekxHdGxzLK/Gs7S5XQnQIxB5//8x09fjHLAvWKk4ZBKIYwMj6ivBz4Fhw0cOJv8+vE3efG9aEB6j6nHHM2IrgLQsxmyHmIvhjvo66chOk9meGz0HXDhSJRCKRSCQSiUSijQ8kKJRS/jlJ/5SkRtJflfRrJY0l/SFJXyvppyT9yqZpnr3gOJrNZhqNRiqlVNu9W7xxFOBiICNhf3+/EgAP6PNK8eXlZSX8EAUPpdtut3XrQog044L0QqzcUs0x6LnGYTAYDPTo0SMdHh5WdwLZCBD7k5MTnZyc1MDBUorG43ElNZJa2006GXJxA2fFxcVF63yeP+D2bd9ekPBIdyB4JsF4PNbBwUElplTTIZSIBDzv18C4uSeQON/FANu87z7gZJ33sB4QDWhrwYXh14hA49Vxrse3FARONBnTcDhsORO6MhzibgOx999f02Xx9/P6Mb3twO9VdAN0Vc7jlo58Lvb39zWdTqs7IX6uYiXfx8Xj3F8XXTznhLlhfp2Q+xah3mbBjhucl+NF0u85DZJax3cXh897dDjch1JK/RzQWuXnf9H7Hwpe1ndxIpFIJN4f8ns4kUi8qnjfe6KVUj4p6TdK+vlN0/xcSfuSvlXSd0r6gaZpvk7SD9z8/lxQPS2lVMLNv/P5XIvForY6jEYjHR8f6/DwUKPRSHt7e1osFjUIkMq+W69xIHjg4uHhoXq9nq6urjSfz2uPOVkInivQ6/V0eXmp1WrVyjlAuDg4OKikt9/v6/Hjx/qar/kaHR4e1jBEquar1UpnZ2dVUDg5OdFyudTe3p6Oj49bpA/i5wGEXiF+9uxZnZvxeKzHjx9XgrbdbnV6eqp33nlHT58+1cnJSRVNJNW5HA6Hapqmtl94q0O/369E3R0gTjTdYUGVV1IltFw3rQjStfX+6OhIjx8/bgUOSreWf4IHyZjYbDZaLpdaLpe1PQbhx3Mh1ut1q7K82+2q+4X3eN6G99CzhSP33lspELQGg4Emk0kVTZhLd8S4MEUgpu8C0VWR5zmuv8vB4G0GXUQXB4wLZP1+X5PJpG6huttd7ySyWq202+3q44gRMXAyEnVvl1iv1/V1vD9+DhGYeI414M9B4jl/dE/4ThisBdYc1+1im2efsF4Rh6LzgfuN0wXBKo7hIeNlfhcnEolE4r0jv4cTicSrjA/a8nAgaVRKudC1Cvs5Sd8l6etvnv8eST8o6bc87yBY/SGdEA/+uIdAQXSpJlKxZlcEr7RCOCAZkBxaFKS2M2E8HldiQTYBx3Kng1v2PQiwaRo9evRIjx8/1uuvv16JOm0Em81GJycnevvtt/X222/X4ECI/dHRUW2NICeAvIFYBb66uqoCCU6CR48eaTAY1OMyj7gHnHxhQYfoeW8+BBhyhcjgYIxebY4Vbn+O6jY/s9msnme321WSieMDEQO3BGLKbrfTYDCoRJT3ejaEbxkIqR0MBnVXA9ZUV/sI80KeBD+Mu6sNgjUX+/cRu5hb1ov38eMe4L76evM5j60aTsAdfo85NnZ+XBfeDuJhpr6uHbHFwYm2t8V0tbh4uwGPs4Ur7hsECG8J8uBHb5Xgsx6zHbrgrobo5vD7yn3hHpLt4EGgHxG8lO/iRCKRSLxv5PdwIpF4JfG+HQpN0/wdSf+GpM9IelPSadM0f0bSG03TvHnzmjclfeyFg9i73WkBd4JvnchrvNdZuiW2TjAgMfH9fi4q4BBeqqWIFTG4j7A/D/njfJwTUeDRo0c6OjqqfeqICYgXuC68Wk/WAhVYRAgIspNSxkIlnor5eDyu171er7VareoxPETSbesx1wDRhjncbDat6wWQYZwaYV3U8zF2CCYBkJPJRKPRqIbwOQGljcOvn3sMgYW8Qv6iiOD988wPOxIwbif/uA8QWVwgcOLsxDMG/0WBArLuQoEHF/p8Se1tL3nc2x+68h+6hB7upzto+MyQQeEChwsYXW0UHjxJ6wP31Z0Dfi3enhHdA4iBcStSd4w44ee8vNZ35ojnBTHTIh7XBZs4B7Fd43m5Gw8FL/O7OJFIJBLvHfk9nEgkXmV8kJaHR5K+WdLPkPRVkiallH/iPbz/U6WUv1RK+UsnJye6vLzUcrnUyclJtbl7Xzvkgn5nSZVsSnft4k5u7JyV6HguAwGKZCE4KYa4YqnnfE70er1edSewqwPuBDIOPEOBnR3Igjg+PtZ4PK4Vd6z7nsIPkXLBYH9/v9r/Dw4O6hiXy2UVFLpImu92wBxeXl62tofkPMxbTOmP5M6JvOcqUCmnXx7xBKs723dKqnPmOQjeb489HSHJd6zguiC57kZB4MHujxDi2RSsLdwZnJs1gqDg7RKsA19zXtH36jbvvU+U8HEzF1GIcCIcsxmYd3cPkA9A1gTOFQ/FdGEtZij42BAT3AWCm4dx+Nj4cbHC80b4/HJuBKgoJiDwuBDgolh0kjBe3ynFBSRvfSilVLdSDLHkedpqHjJe5nfxhbZfqmEmEonEVyzyeziRSLzK+CAtD/+IpP++aZq3JKmU8kcl/QOSvlBK+UTTNG+WUj4h6Ytdb26a5tOSPi1JP+tn/azm7bff1ltvvaX5fF6J183rqgOAlgSIj3Sb0O6VX98+0iuREBbIMu/1QDYEA++pXq1WNa+AYyNsjMdjzWYzfexjH9PR0dGd1g3aMp49e6bPf/7zevr0qdbrtYbDoR49elTJ9Waz0dtvv11DGqODgFYF303htdde0+uvv669vb3aUjGfz3V5edkKpXTCLt1a+6+urrRYLFruBEh9nAfIGm0ILipAKj0/wZ0jvV6v9uo/efJEvV6vZkms1+vavrDb7bRcLu+INtwn7jNuEdwchGFCYtm6cjgc1vYK31Uj5hcgPJCX4W0B+/v7NejS3SNeAccFApFF9OA42+39fxx4Dgf3ytt3XDS4z+rveQG8PuYDkHlAsCatJQgM7oBBLJlOp3VNONnm3jhh5zPmWz+66IKYxBrGveNCAesJoYI1yvhYF+5a8JYgd4BwPBdQosBDvok7gYCP4SOAl/ZdfFge5z6ZiUQi8d6R38OJROKVxQf5a/kzkv7+UspY0lrSN0j6S5KWkr5N0nff/Pv9LzrQbrfT2dlZrVbHbAJaErCtU6WEIPA7/+0VWu/tl1TzB3y7R4gwFW+IC4IAbgHICURjPB7XEEeCFCFXkBSCGBeLhU5PT3VxcVFJ52uvvVbJz9nZWa2cQ9Ygy4wdhwSV59lsVvvQF4tFnT+fC694S2pViF04YL5xBjix4xhR4HDXCBVhrh8iKl3vJjEajTSbzdQ0TQ3anM/nrawLCKVb1t1WD/nzdgrplmDiuKAVBBEK4szYqMxzXayD2BLh46BdYL1eV5ELdOUJeMtGvCfujuH6vNIe2wjcMeD3kvXtohmPS7eCwG53uy0quLy8rAID1xPFAlwzCAC+K4S3c8S5cPcKgavMCzkIft89f4I58e8AXDZdgZQ4iqJjI95HP487Wdy54N8lrCfWzAPHS/suTiQSicT7Qn4PJxKJVxbvW1BomuYvllL+iKT/RtKlpB/Rtbo6lfR9pZRv1/UX7Le86FgQHsgyhMHzCUjo7+qbdsLmZIt/IQfep00Fmwo8BNUFBYgrLQuMj9wDD4iEKDpBwWI/n881n891fn5er2c6narf71eiBtnzkLy4u4KH6TF2SO5qtWpVYp34MRbvSYecQ7BcdOF1EEu3tMftI3u9XqsnPtr6ET/Y6WC73bZaMjzjATipROyBWEKAYwiiw1sUJLXcIk6cqWr7Lgxdgomkui5i6j9zzv3wlpHYshFbFroEr/vwvOe5Js7trTiM0cUUridW5ZkfRCLfMpTXcz4n/fddA2Nw0cTnxD8nrNcoIj2vzcNbK5gjXydcn2eiRBHEn/fWCRe4Hjpe5ndxIpFIJN478ns4kUi8yvhAft6maX67pN8eHt7qWpl917i8vKxWfycIWLNns1m1o0eBwHu9Yx97tLZ7+CCEPooJVE8hFJ6DwG4Qh4eHevToUR2TpCoIeDV/t9tptVrp5OREZ2dnVQxg1wFJ1cGw3W5bveXL5bJWkDnu+fl5tf5PJhNJquQcK79XwiF0sV/f5yKKCbEv3/MWXGzhOcg4540CDdkHtGBsNhudnZ213CBOSt2ZwP1xgrjdblsEFnHD7zW7RTC/iEHRWQC55DyIQhBe7993Au47Hvg5mQfW82azaYldfl6f2/ick19/rVfS47G8bUJSa3tMWi+YJ4QuyDKfIxfaRqORpFuBhWq/hzQiFsSxMEacOL67hQtuUTBgvfr97QrAjA4lPw6fYw9X9HvgO1YwVhc2XJjxMNSHjpf1XZxIJBKJ94f8Hk4kEq8qHkSDMH/Me2K+b6c4Ho9bwYxOilarVWsnAeluEKN03S4AKYLUu4iwWq2qiwDHgLsHLi8vdXh4qMPDQx0fH2s4HFaSf3FxUQkYRO7q6krkQrzzzjtaLpd1q0RECNoU2PHBLfdshegkCvILSSNkjzYA+tcl1R0VJNXrxB7uuyf4HNHm4FZ65glnwdXVVbX2+xaTsXrMcSG1q9Wq1drCmGkdgVyXUjQejytRxX3hIZ0uklxcXNTrlG4t9pBYdtTw6jWtJRBe5o15Yv4gnuQmeDaAt1tg6ZduBSK/p4zFxQBvE2HN+44HsfrP/fHQRcCcxFYAtvz0c/MZkG5bPxBmEBIQY3xLTs9J8DYYF6X8vneFUMbdNXg/Y3GniIscno/hopALGNy7GKrImo/OpdjO4vc1zlkikUgkEolEIpHoxoMQFCAbiAKHh4eazWY1o4CtHKns4yLw4LxYBQbkAkDwIIBXV1e1su8iAhZviKFb2l977bU6rqZpdHZ2Vi39bIMIeVoul3r77bdrNgKECaJM5dwroFTwN5tNvS6uAaLtBNi3V4zbM9Ie4s+R/wCBlNoWcEipV85pU4DYcx8Yi/fTA9wAEEBEH+YYNwruBbbMpIe+1+tVRwI7V0AkB4NBJdWIAh5ECHkn3HG73VaCjhDFdXkrh88146DizRrhvf4ahJtSSr0fq9Wqjof54TwRUSzwPAAPICUDwR057upgztw94Y4AxCon16x7chsQqnBl8Dz3CgHGRTG/Bo7LemDrTN9JwrcSjaGNvoMHhN53zIgODReJPI8hwkUZ1oJvP8r3CYIVggJzm0gkEolEIpFIJLrxIAQFJwK9Xq8G+JFRwPaIbmO/L71dunUoQFyoLntvNtsrengexASyfn5+XjMTjo6O6taSkiphdceAW8xPT0+1XC5bIY6ICR5c57swYE3Hxh9zBbz/nevysRMM6Pb3mDXgafouxkAYvRrMuRgXBN4zESJh9nnkMVwU3toCEZ9MJpXYcZ3uDIlWew/pY734mGk5iLsSxPfFMEFe4z8ugnjlW9Idgu1uF3cYeHhhJMQuaMR2ndjW4eIW8+1OAL8Wt/BHMEfcK3d9OMl2wY7rcMcB5/GWh5jB4SKAX6Ovf0Sg6NTwUEzPAXEnUlzPnnfgrpn75t3beDzTIZ0JiUQikUgkEonEu8ODEhQgmeycQJXd+/AJSYSk+jGkW8IEWWd3BkhsKaUSfm8X8H5rtopsmqZW0B8/fqzxeFyr/mdnZ61QQsZKhfrZs2fabre1UutZAP6v94k7cfUWAu/zd+LklV9eh2tAUos0xuqrkzYIYOx39+otgZRkODiJ9zR+XuvvR/xBbKEtwd0egPlF0HHS6WPjeruCIxETYuAgcx0JeCSs/PjuEC5IQMARV/b29qqY4LtmuJjgQkt0RHAfeW0Un3B1eLWe/0ZQcas+5/fPg3S7C4QHFnL97vRAkOGeO+H38ErpNjPD1xiv43H/bMX1xzz69XrbCY/7ffFr8+vm2plH5ggXhn+uEGpYK6xBFxRSXEgkEolEIpFIJJ6PByEoQPZoafjkJz9Ze9IvLy+rxbppGm02m0rWPazNq8eQJVoattttJa70hT99+rTVF97r9Wp//WKxqLkIvjWkdNtXvl6v63aRECKEiGfPnun09LS6KxAxnNi4IILbwImmZwwwvmjvhhRB+siG8BYS35XB0+shUQgJnltABXuz2dQMAul6G8LZbNbq1/cdLrD8c14EAXdK7O3tVQfK4eGh9vf3tVgs6n0kq8F7/UejUSWRfs+wyjuhdUEDxKp2zB9gm0cPf0QE4Yd1ResFW01Kqk6UmM3AuXmOayqltHIgOAfknPWEoEELRQxB9C1APYjQib+LGswfbTXMLdeyv79fPy/MswsjcecFP787Rjifz2dXPgFiG84j7v1udxsOiVjj98E/5115B74tJNdA+4S3viBexDYKR5fLI5FIJBKJRCKRSFzjQQgKkvTo0SM9efJEb7zxhmazWYv09nq9SoQWi4WWy2UruT1WJyVpPp/X3RPoLYfUn56e1lwDr6Q6Ke71eppOp3r06JEeP35cswAWi4XOzs6qc4FAPpwJZ2dnOj09rWTXCRgOC0QFCA2EyIkx5BS4q4H3UH3G1TEYDFohk15lph3Dt1DEKUAug1d83W0g3RJLHBwQXyzjbh3nv9n5AiLY6/U0m810dHRUhYDtdlvHhqDj2296BZzrhyzG5/zHLexepWd+IZf9fr+6Qzx80avo3hqAAEObg7dFxN58d0VA0jkG8+J5DC4YXF5earFY1PEMh8NW+GR0bCAsMa8872uIajzvR9hgbjx4U7rNmfAf1p2HM7oQBvyeeMXfHTUeish6k2634GQ9eluPtyt0uRIk1TmQ1BKXuE7ENnctgOiWSYdCIpFIJBKJRCJxPx6EoLC/v6/j42O99tprevToUa32e+8/hH2xWNzZys1D4SAt6/W6bhdIlRPBYL1et/rUIdqeZk8FnbBFzr1er7Xb7TSZTGquQ7TpS9eVX8iSExoIN8Q5VkCdxHrYIeTHq7XkTUBwpXYOg4sBkuq2i5BPqtKQX87jlve464ETdG8tgSjyHm83gCQfHBzUHAoq2MxXJO+si5g7wfV05Qxwbj8Gx/E59PYY5oz331f19qBEJ6y+lWRXnoETYkg5wpKvY38voo2TaNwAnjXh1+6Ch4dTxh/PgPBzsjY8xDFmTLizwB0AzE88Z3yfi4SM0deQX4OHh3p7RlyrMRshZnr458/H4hkTXYGP94W8JhKJRCKRSCQSiVs8GEHh0aNHOj4+rrs4OCmlVQGRANs4pMD750nlx7pNdZddFdhBwUnh1dVVDWikKj6bzTSZTOquAvP5vNqxed4JuVveqVRzbAgU5Mh3k/DKr4sNVOIBx3HyhTuBii6iiG9x6NvtucgQ2yi6chOYD3dyONmklYP3Oyl3cuZtGwgtuDCYM3dtsCaixV5qk8b4vJ8fQhirz/y4I8PJe5eYwHX7dfj9lG7bEeJuEdzvSKL9vRzXd3zwcEfcLqxx5sBbYHxuPDjxvnwBzusBjb7Vpa9Lrod/PcOB8/I+z0jw+Y/OGndqeDsE8+jjchHivhYEzwJhnIwjupleJBa4oyUdColEIpFIJBKJxP14EILCwcGBXn/9dc1ms0pS6RsfDofVDg1RhoB4Yj1Ee7vd6uzsrEWyPCW/lKLJZFKD7M7Pz3V2dtayrE8mk7qVIQR9sVjo6upKg8FAR0dHNaARwoIIQoAiVWjIL2NzJ4Qn3CNI8FwkRk7UIFfkO0A2l8tl3X0C0uzBeJeXl63dBxAwYs87wguhkk7efcyxwguh94q0b61Ie4VvH+luEUmtY/r4gbsT3P7u7QXSbXYA8PYCzylArPLMhuiAYTxOggn6xEEQtwSNjofY6rDZbFq7fwyHw5ZgxBogP4T59vYDb+1AdHAxwT8D/lnykETmzZ0WkHOuObo94q4aPsfeKuLj8GwLrmkwGLQcNYSvemgimRx+b30t+Dj9s+aumSggxFaG6Fjh/CkmJBKJRCKRSCQSz8eDEBT6/X7d1QGCT7Wy1+u1bM/0o8feeKrq3icuqZJmbOOQFm+LWK/XLdJL8CBCxNnZmUopGo/HVWyQ1HJKIDZAQtzCD7lcLpc122Bvb6+KFjggTk5OWtkIXvHmuiF9k8lEh4eHNcfg7OysBk1Cxt0lQZ+7V+5xQ0Qy5q0YXjF20h+D/jxvwXMKII+ed8Dr1+t13fXBBYQoBuBWcVLvFXrfPtPbJLwtATCvXk2PlvgIxuQVdcQZAg0JWXQyyxrlPvA4YoEHaeLa4NisVxen3I3jwZF8hmLWgYNj+jw7med6EC8c3A//zPFY1zafnrcR1wYhjLhjcKiwVjxPI4pEUTxgLlxY4HuiSyTwFhn/cXdIV85DIpFIJBKJRCKR6MaDEBQgBuQksEUehBq7dNzCEPj2j5CuSCrcJk+P+nq9rs6Ffr9fd3WgfWC5XNbq9WQyqeSxlNLaZQLS7cGJEEqEi8Vioc1mo6ZpKkmkQgsZc9dFJNZcEwSVVgcq7PP5vOUooNIrqZImSS2i5vMPwXNyLrUD7nwunZx5r7rfAwintwNAhOO2n26bd7Lo4/W5ieeOFvvY/+/PPe9xHAxRPHEXhbcq0G7ibStu0Uf48HltmqYlFvAa38JwMBhUAYxx+Ji8ZcJdI349MZOC9cMxEGq4Rg+F7Krg+7kiAY85EcxTbL/xcfq5+bzH9hfPbfD7EB0qPi/+npj54Z+j6DpxMcGfTyQSiUQikUgkEt14EIIC1WKI8cXFRa1W0lZAe4ITb+k2Dd/t4JJapBkS41vsec4ClnWqxU3TaLlc6vT0tJIkr7IjcDi5QlCIQXJY+xEuINhsOUgrh1dqqRJ7aB3wce7t7VVyjljhNnnIGUTMCa9nFXiWANZ/xsIYIGfecuBkHhLXRXI968B30iBYMtrnvSIe8xgi2fdreTfwdcB8ODmO4oFnNwCyDfhBpIqBj10tEF6N9x0Z3NnwPHLP+TlWFHjcru/iBp8JP4bPnRNrnwtHbC2QVK/LMx84Fw4In8MYJunrzNfofYKCX6u3LvDarrXgr/dr8jXq98/FoBflLSQSiUQikUgkEq8yHoygQE7BfD5vWcH39vZqBR9yDgFw2zzkDHIMwYas9Ho9SbcBjKenp1VMODw81Mc+9jGNRiPtdjvN53Odnp5qs9lU63mv19PV1ZVWq5VKKdWp4OIAdnZ2G8DhgMuBXSEg/Gxr6ZkKEHBeh/MCMWI0GtUdJlarlU5OTmqYHi4KiNbFxUXLlYGrAvFAUr0O5iy2KkQyFo+P0yCGDPp1Sqqkk50y6LGPQhBw+z9rJJI8RCheE3dYiH3wCAD9fr9FXF0A4n6744D/hnTu7e21dvhgPn0sCFPkYpAVgfMA9wFjZkcShIjpdFrnDfHA5xF3Abs/OMn3VpsoyDAvvvtBrNJ7mwGEmznnXPzO5492E5/P5XJZBTk+g7E1BPHMz8G957rjfffXef5DV+ZBvDbfjhUhkXnlOF3iQyKRSCQSiUQikbiLByEo7Ha7Gow4GAw0m800Go0kXROWL37xi3r27FkNwtvtdnVXBkLeyEUgp0C6JZhxJwZCBxEGptOp9vf3K7FfLpdar9etSrGH4Emq20m6nR1yBQlEMCAngF0jsP7P53PN53OtVqtWIB7kK4YwsuXiwcFBzZpYLpf1vf1+v0UWcTuQWwCx5Zij0aj2nUOo2BbRq9XSbUgijgJezzVCXCHaEPvNZlPH5aIDJNJt/dItYfYKO69nrUTHiosewAMHcZggLuEy8fVAKwqk18E9llQFB+4jzzs5d4GGn91up+l0Wrf59FYe8jGYX9Yy64L59/BPSTV7weHhpB5iyueE8cb7wJwAnzOfVw+WZIzu8vD1Tygn5yDvIwZJxvYVz0FhHO7A8GvoytfgeXeL+PFdsOv1etWp5KGRUZxKJBKJRCKRSCQSd/EgBAUIIkQa4kMLxGq1qsQBEsauC/zhDxElg8HD5SBibvN2dwGWc3dBNE1Tx0JWgVu0ITgccz6fa71et1odvJrtjgucDlj/cSeQ4wCh8VA6CL2k2paAO4DnokUcIo/Dw0ka5Nqr2VTQuT6uGVLp599sNlosFi2RwMUXFxBild+rzpEgciwPzYuVYndEuJjgrgIn4jgTOBdryQkpwYouhnD+6IAgQFHSnX89HNDJ/3g8rmIC7487Ini+AOIWQIRyUuxZGy6S+Px4/oRnDcS5jXkjcSvL+FqyQTwE1M+NoOWZB5Hkd4VjuuDg1+aCkYtm3qbCD6+JbTieeeIBkAgYHrIa3S2JRCKRSCQSiUTiLh6EoMAf/lSH9/f3q4UcJ4LvmkD+gdvgIXBu8YaQOBFz8cJJPpVqT6SHoBAW55Z+yCvHXi6XVbSA8Eiq10SrAO9BTHBbN04LbxNw0iTd9op77gJz4BV9xojQgh2fOfNzQGgZq5MqT7tnnn3Lx5iZEHdC8OqxdDfgz7Mw3AHi68IrzAgkHugXw/OckHKffX5o/YAAS7e7D3jF3++vX6Ofg2sFng/AWqRVBTGB98TASRepuF/cW5/POH8+h+QW+Bxx/5j/LrJ8n6AQ1wBjR3xDOOD8Pi8uBvhnwj+3PM5Y43zHFhbm3vMvogDiY+D1PmfuvHA3RZd4laJCIpFIJBKJRCJxPx6EoCDpDhmdz+c1gyC6E05OTmpuAoTCe8Y9mHB/f78KEl65djcA50OQIFyuq+LpRIjj0iYBAYSsULGPYY44L2jziGJKKaU1Fkgb74cU00PvzgHm0sn/arXSer2udm6IF4SaMbtbwwkp89wVqrjdbus1MhZvgXDXAPc25iZ4hVi6DUBknj3LAAGAxz3AEdLtc49Iw5i8558xTiaTuruHuwdwglxcXLRCEsnx8MfchUH7C3M3mUw0m83qscn+AB7gyDyQ38GxpVuBiffw34gstLPEoExEB3+MY/B+foece3sEz3l2BoICbTNcFwJCzERAxPDPA+vc11pXFoKLUtwzF43cVSOp9Xl3sC58Vw7fbcRdM10CWCKRSCQSiUQikWjjQQgKkFn+wD87O6suhMVi0dpakd0SILBkBHAcAu88T4A2Ba9e4oKAoPuWfgcHB5VkUlVeLpetqjeEytsJ3N4NcfLqre/4QE8+jgDfftD7yLG3Oxll3J5p4GOHiJ+enlYXQdM0rfmCMEtqbZfJtXBurOG0jXirBmIE4g3jcLIe7fkeaAk5JRtDkobDoaR2BoILChDvroBGyLO7T9iak/XkIZI4Bw4PD+t95hq4v7hZmqaphJ1xYplnPKwj5pWQzNFoVOfWCbR0S+p9pwcnuAAnSNfjHMtdPFE8iEKCk34XEhCV3PXj1+dtOmQiuCOI3UUQB6J45HkUPmYXnVzoiG4D1oVnergLgvmL7/PvB4QpPovREeHtOT7viUQikUgkEolEoo0Xpo6VUn5fKeWLpZS/Zo89LqX82VLKX7/595E9912llJ8spfxEKeUXv5tBePUbyzakxUkav3vPNNZ9J0SQWyzU0VYNYaGqu1gsKnn0JP7RaNRqd/CWC0gnbQ5kLUCuIZy8l3A+iC1EjRwHD/ODSNOKwHMufFBtldS6rhjKB+FzgcMdAJ7Z4ETOWx5omSDw0vMY3AnCWIBfh9vgvX3DcynIL3ABAnHFCbLb8L09g+OzDmh3OT091WKxaIV69vt9jcfjGgDqa8bnjXNw72hF8EwGdxJ4n77/IMiwDlxU8DXGOvPje5sH5wHMRRRy4s99OxawvuIWoZ4tANln3IgEnsvgLouYleCPITTEjAde6+0QsfXG17lnTkQXET8+DtY/bQ58dpkDz2Dw8z0kh8KX47s4kUgkEvcjv4cTiUTiLt5NjPnvl/SN4bHvlPQDTdN8naQfuPldpZS/R9K3Svo5N+/5XaWUfb0LYC33bfG8H9y3dfOeaciEiwwcL5JQr5i6ddtzDBApsLNjy4bUxtA7zz8g7C3aqr1NwBPseb23IfB6r/ry46SSsUrtXQakdi89BMzbKSB53uYQgwi9Qsu9YGtDJ8Lx/Y7Yqx8rzx7CGKvNklokkvd3ZQB4hdmPI92KRp6vwbhdNIpOEie7POZkmvc48fX2FNwRkGzWgLeLOJwId302Yj6Bv89dCV2kmrnze++/e3gic+Drm2P5Yy5QuBAQRYw4N1EU8vHFEEfWit97zhO3muyaJ18n3DM+99El4nkUPt4Hht+vL8N3cSKRSCTuxe9Xfg8nEolECy8UFJqm+fOSnoaHv1nS99z89/dI+mX2+Pc2TbNtmua/l/STkn7BuxmIk2Cq67gHnMBTHcYNwHsdkF8IdSS7ni9A6wAVWnc+QD7IIPD2CHaCoLLurRYe7ucBdlTI9/f3NZ1OqyUel4ITZifttDu48OHbGzp58twEEvghz9ItAYVEeXZDPIdX3r0lJLpB7mvziGIC1xfFHnr2yTugSsw54zy4y8QJJ8JOv9+vFXV2onBRYjAYtLZvhGgiauFW4f751o8HBwcaj8d3hCCvZtNKwfzsdru6FakLE8Cv1R93Eu/BgTGEEyLt70GI89e7mOAVeSfx3Gtaizwsscv94OSe88f7zvsZTxQfGI+Hknp7Evce4crHHI9PdgXr3Nc67gTEQRcOokB1X0jjh4kv13dxIpFIJLqR38OJRCJxF+83Q+GNpmnelKSmad4spXzs5vFPSvphe91nbx57LiAx/GG/3W51dnZW+/X5A1+6DVN0Ag6ZghQiOvC8EwgXCSAMCAmeFN80TbXJY/OPAoKTG8iuhzbS6sD7ITcx/E+6Fjk8N2G73VYRgONAaH3bO0iaOwqcpCMaQKqYb3IoptNpaxcBWjo4V6zSxuo8j/l9pAK/2+1aOxtwLX7N3h7iLR9+HA8I7LoOxgP5Wy6XLbeLdL2Lg3RNcBFzcJNwPtabB2Oen59XUYK1N5lMWgTaCT8hgZwPcWexWNQMhnKTmcE1ufPGr83DIxm7k2gnwfv7+1VEYA1w/5nXeAzO764dtqskE4StRfmJa8EJN58zHt/b26vr/r7WgdjmwHy4EyS2lPiadFeCi0C8hs+aX5vPg7eXMK8PUUx4Dl7qd3EikUgk3jPyeziRSLzSeNmhjF1/gXcyiVLKpyR9SpLeeOONVmWVnAEquk5ipdsAOwgGIXbSrf3dXQtu03YBIlZmIUOIGj4OqqhdlVKq9H4OiCQ99zzn7gXGihCy3W5rCKWPx4kzQoKkFuFEnIgkH1J5M+ct0jebzeouF1dXV/VaGa+PMd4DnnP3h4sSiC8epOi2fB6fTCYtqz3uD3cmOKGMJDZW3/29zLeLGC4a+dx7SwQ7arAWIZ0ePsl4PKfDxSUXRXC4eJign5v/9jF5xgCODK/KQ4Yh2JwvtsT4WGM+Qfy8QLhdfOAz5iTbWye6Wgt4zl0VHM9f6y4ZxkVgo3++XNBwwcKFyNiiwGs8n6Kr/SOurxiW+RHG+/ouHmr8pRxTIpFIvErI7+FEIvFK4N1kKHThC6WUT0jSzb9fvHn8s5K+xl731ZI+13WApmk+3TTNz2+a5ucfHR21iN16vW61GXi10skp5NPzFez4d/q03eLsNn2e8150BAWO77Z83hP7t/04npsQr4FjuDhBRZofxhwzC3y3Cg/N8+q9iwoeuifdEkuq7VSv2frSiXXscfdKLoi2cxdyvI3E54bnmE/EGK6J+XIXRKxwu13eK9vPEw9ckIk5DS76lFJahN5dJU5AXUBxws76pM2FNcA8Mt64u4HPkbeF+LX4vWT8sSXB731X1kEURDwbJIoAvg58PXVlI/hnIooQcSyM0eeV97l45/fIXUb+mGcm+LWyfroEB18/97U+cO4Hjpf6XdzT4Es62EQikfgKRH4PJxKJVxrvV1D445K+7ea/v03S99vj31pKGZRSfoakr5P0X73oYLQlkDWwWCx0enqq1WpVtyaUbgkRBIjkfSfgfkweg1g4AYHcQ4b95+LiQsvlUvP5vG4XydaK9Pg7iWHsTs68Mk27hAsStC04OY2BfT4mXu+VWSf/UUyI7RQ8ztZ5bBPJPC6XS52dnbXaFZhzSKyLKRzXK/ZR3PDQRklV+Nnb26tj8AqybyHZZXcHcdcIb9nw3AjIqqSWgBPt/jFgE0HJwzMHg0EVI2LLBddERZ38Bn7cMdFF5hEjXGRwokwbBRkdTsxZCzHIM+7a4feSOfQWG0SwGP7oY/D5i+P3z1+8Ll9/Pg6yUNzh4/eUccbdILy1JooJcQ44hq9LP27XXEfR4oHjpX4XJxKJROI9I7+HE4nEK40XtjyUUv4jSV8v6Ukp5bOSfruk75b0faWUb5f0GUnfIklN0/xoKeX7JP2YpEtJ/0zTNC/8ixy7/XK51DvvvKO33npLq9WqVtL9dRAJQhHpR/dqJMTM+7IjWeW4EPnLy0sNh0OVUmruwcXFhXq9no6OjjSbzSp5dvcAgHRy7vl8Xt0NiAmQeK/IQ+bm87lOT08rCYOUUlUnswFbOlV8KrG9Xu9Oej1BkdItMYQYD4dDNU2jk5MTnZ6e1vG6o8BbGqIdnHNCqplX5gIHxHA4rMSVfILJZKLxeKzhcNjKLmA+h8Nhq5edc7r7AcFgf3+/OitwNXguBO0qsV3DnSHR5h5dFlTLveWB9URPvmdvXF1d1dwMv0fe/89reQ5RQlKLXLurJd4LRBjGGwWPmLWAGOdtP+4kgFBzvbyGx3zdch3+3wgO3tbiz3O90e0RhRl37DCHwD9/7rjwcUVBgnsQRZumaVquG5+vKEA8BHw5vosTiUQicT/yeziRSCTu4oWCQtM0v+qep77hntf/Dkm/470MomkaLZdLrVarFrmEeEDGEBLcYg7hc+J8fn7eslDjfIDkQB5wBGw2m9aOCVT/nRRzbBcrIBtUxBE8lstlPSeiyGQyafWKc7zNZqOzszMtl8s7NnWvCu/t7bXaKC4vL1VKqVV+no8VZeDzJV3nLyBiEGII2ePc3hrC7zznlVyOz+shdBBlWlc4PuTYW1Y4Nkn/cScEXyvuPGArTs7thJ88AJ9DyLnU3oEDUcFbSaTb1gwPl3SiG+cn7tbglXtvqYhk1cUOf7+LGdFFg1jFfHPvutocYiXexQPmAjLO+HxrRncl8H5vcfFsBxcbfI24WBFJvxN/RLG46wWv5bq89YLH3DHjAo67DmJ7BvPm1+dukuh++rDw5fguTiQSicT9yO/hRCKRuIuXHcr4vuDVyEgwIQ1x+zzpNsEdK37soaby6YQR8udOB6/Eez+9H5vj+fH515/fbrd1i0BaFXxLSemW6HB+rtnJEf9ChKl6s52fpNp+4SKFtxt0ESK3qrPzAEQOou/igFe747V39a5LtyRYuibffn1OzGlRiFtDOpnz8fN4bP2ACHO/EIU8r4F770TWRQcnky6M+Li45kikvaLetStDzBHwa3PRiMo+/9Iag3OG8zsBj1so+nH9/njVPc5FbIngOBB/Fwh8/casCxcj/MePHV/rWRV+fZ5f4WsuioJRnPHX+bl9Dvz6fe59fT80MSGRSCQSiUQikXiIeBCCgnQbsugE0wkDlWSvHO/v72swGNRwQciIE0Yq2ByPf8k28Mo9pPL8/LwVGOeWauBBiTgPqMbP53MtFovaIz6dTluZBQQvzufzuqsC1XwPsqOVQ1LdSpMUfHdvQHYhYNGd4NfOHF5cXOjs7KySZ9/GkH+96hz74LtIKk4SnzNvT2FXB98FAeIPsaMS7+0OgCwBtnrEYSCptnL4c7R4RKINkWVsHqjJOD3XAFcFc8x6Au4a8CwGd6KwxqIw4+vMPwPcfzIGOAev4ZisP3cQcI3uaECo4D7RHhHzBXyMMS8hEnPyTfwamPvosnBngp+D9h3mzK+Pxxy8190J8d8ukcvvE+06/NAK4nPKsbz9JZFIJBKJRCKRSLTxIAQFKsqIBtItUd/f37+Tlk/YH4SLPn1Px+f1PA5RkG4t65BOyJVXR2ezWXUHQIwdu92uhixi0X/77bdr1X9/f1/Hx8d69OiRjo+Pa14AogGtHdLt1o4ufAwGA02nU0nSer3WO++8U9siIEK0YzA+rsVdGHGeF4tFa/s9iLKTYqm9bZ8LKRB2CJ8Tbd/JYLfb1d06IOmj0Ui9Xq+SSK6XMTPfhGwyTn++1+tVond1daXBYFBFBuYKUu3ZA4g2tJmwNvx6vTKNo4JzRmcCooMHGvqOENENwLww1xwbl4lnLuBKQAzhvIzXsyaYe6ntDOF++04UCHBO/nmdj9PbQhCguNcci88D7SD9fr9+rtxxgMMHIYC5YQ3FYEXEFEQD5i26JhA1mPMobnG8rufIO0FMYB16dsR9LTeJRCKRSCQSiUTiFg9CUJBurfGeOwB5pNfeyRxCwmAwaFWDY188Vdf4GumWRDop9jBH3AG+jSKgiok4gOMAYj8ajfT48WPNZrMaqOhtFsvlUrvdrpJoDyUkc4F2CFodJFWyOZlM7rgKyHGQVCux3u++WCwqWafaPxgMqpAAufMdEXw+/PjMgTs7ooMDtwkVYY7nQXuQRe4Rc80YaZHwvvt4/7xdgHF4bgJEluNC/t3+7pkb5FN4y4sTUtaECwrMRwwi7NqiEpEEwcC3avQWCMiwtwC4WEKbTwyV5DpiexCfKdYFY3KHiWcqeOAj94awUkQRhJzY2oLo5S0UCAbcJ3fkeKsH1+LOGBcZutoq7nO1+Oede8TOIy6g+Gu5/9y7KMwlEolEIpFIJBKJazwIQQGiwR/uVApxB1AV9eA934JRupt8L91WXJubgLnYZw2BgvjwXOwFj5VcXudkksR/BIrZbKbZbFZbHWhzYKtLSKWkVi+6756w2Wyq4+Hy8rIKAC6kuKUdOFFm/jj31dVVJeZUx8Hl5WWr9YA56RJXnPC5Rd0rwvG1fq0cNwbkAY7tYoK3tfj9dUu/H9vJrL/PMwj8tT53LkjEOXWLfOzpd1HD5425c3cC9ywKWVGo8Qo78+DZGr6WmYfYfoGgw5qI68azGBiTO04Yv4sJHMtdGhwLQSFmFzj5j1tU+vz6eGKriAtYLkj4+ouI7SXR/RA/Sy50paCQSCQSiUQikUh040EICtjjqWZHgheJB5ZlrwhjBafFwQkDRIzX8j4nPlK7Usm5IYbS3cR+r3S7s2I4HOrJkyeaTCYaDAaSVLdHpNUBlwVCw+XlZaunm9ezJeL+/r5Go1Ftc3BXBfPjFV+uXbqtHkfRgm0ufWeC0WjU6q+nLQLy6qSR+UTwYZ69os44YssA44hVZRcgYisEx+D9wF0N3EevbrM+3AXg6Ao0dDEjuimYC87nbSOeHYAwwBrxIEWO62sskufouvA2FBe8mA93NNAexH3yMfpYPe+hy0nhTgl202COcIb4tSH0+U4eXe6VuFaZX79vnr3gooSfz0Wr6Fbxe8ZxcIXE87rQ4Y/7OkskEolEIpFIJBJtPBhBIRJViHVM1O/3+xqPx1VQaJrrLSch3pAaSCzV5FgtpTd+MBhoMplotVq1KpUuaPB6r5B7QCREhjaM6XSq4+Njjcfj6jQ4PT2tosN0OlWv16vHQDAgzf/y8lLL5VInJyfVyYDbwbefxBXh+QdOZqVbR4AHGkKuSilV4Li6utJ4PNZwOKyET5Km02kl0O6U8CwFJ3VSe/cGFxO4h3EuId6SWqSf8ECvRLM2qI4T6OdE0Fssmqap445rjvFAMjmPOws4Nr/vdrtWKwev9WtmDdKSUkrRYrG400rjpNYJvwsx7qbxxxB3IL3MMaLa+fl5bReJpJhzRLcB4oeLCcyTrwkn/uQP8Nn0nUfcWcT7fFeHLicBa5dxs85cPIkOGBchojhFfoe7mdxV4g4eb/Hw9opEIpFIJBKJRCLRjQchKMReaIiBVyUh/9PptJJeJwFkEnjLgvdIs8OC2+XJIfBqK+9ztwLEwokY7Q1eSSUokZ0MyHIgcC+2V3guhDsOCAxEfBgMBlVEcTLp22HiDnC47R1y7tVoXB08j2MBcWA6nerg4KCeq4u8x6o/DhHpbk//brdr5T549oB0S/J9R4DoBmD+XGSIpA8y3zTXIZSbzablOuA4Xrn28/vYm6ZpndPDAVkbHnzo55duxRXG6VtQeuXdq/gx08HXoc8lx2O9LxaLKlL5Tg6O6Ghx0cJzGjifi1WXl5d31o/PK204nIf3cI7oMImfcT5LHhzJ+kXkcEEC8cddFNFVwNp0YShmRXDN/v3BcflcJhKJRCKRSCQSibt4EIIC8Mqn91xLt2GEtBB4Sj/E3W3qklqEw4nQ3t5ebR/o9/st27gfI/ZXQ2YgSi46QESwezNGFwcgXNjHPYPBWwqw53teQtzCzyvU/hOrtG7v5xjSrSvEK/KIFYTqITA4kfN+fu4P56DfvCvXIVbB45hiNoJnAniFO7Yr+HUybt/9wJ0R3qbh9zpmIvgxvV2A+xWDFl2o4pq4n5GoekuPE3bv3ffnfP1xvq5WHEQuHseJ4k6bSMy5lhhsyLXzuF9fFAGcoDNudzm4CONilWdOxLYExu5z7lkSPle+plkj/q/PYWzt8PlwMcmv6771lkgkEolEIpFIJB6QoOCE2AkVBIDcAOzl6/W6Vs2Xy6UkVcLuuxNI7aR9fp/NZq1t+XjcBQgfFyICIgaWcOm2799T9N1pQJXb8xRcOIDMIFbgBED0oJruZBJ7vVfyY4ge8xjn2F0WWMJpCcGuT5WYdgjfehDRAfh5nER7H7v3r/t9wEng4krXjg4uJnglmnNw32gJ8WyKmD0QMxIiyQbMi+cdMAYs/V25Ce6giC0c0QHDPDFOD4N0Es1rowjFulmv13VLVUJLY2uFV/b5byf2UVDxrAJ3gkDSPSvB700UAfyn6zPPnJAh4iJPl5DlwgsBpjznrQy+/nwNME4Xg+L4PBg2kUgkEolEIpFIdONBCQrSLUkaj8dqmkbb7VaTyaTa7yVptVpV8k2OwHg8rgQHMu/99hBoMgCm02kVCjabTa1uexCfk6LLy8tKrhErnACzAwP97BA86bZdY7fbVdcC4+M8HJ9zDIdDHR0d1Uqxv95JppM6zwmAWMWAOubAXRDSbSW41+tpPB5rNBrV/AFs9O5KcCIfBQGIsW/zCdH1+83jvo2kZ0n4McHFxUUrD4PWl+FwqNFopMPDw0qw1+u1mqbp7J93sSCSSgQsRBXcHO5yQGDivbgYvIruAgUEn+uW1Ho/8/a8qriHk3qbAiIUY44BjE7Go3AS72Ns+3AXBWSccfrWl3t7e9UhwRrjtb67Bcf1jILoTHDRA9GLsfGZ4vXxe8MdF77uXQzx3TAYK+OlbcnvVyKRSCQSiUQikejGgxEUpNtK92w2qxV5iAsk7Pz8XKvVqlWB9jA4Sa1qr1e6aTs4PDzUwcFBbTvwDASIie8KAPlwknJ+ft7aYnE6ndYAQXZxiBbr8/PzVhYBBMwrsYQ7jkYj7e/vt4L+pDY5JATSLftO1ni9CyP+3x5cSI4CTpBSijabjbbbbf3Xj8/9km7FII7lve/MK8fkeYikhwP6vfb5jrZ47+m/uroOkyRbY7fb6eTkRMvlsrUNZmyfiL30Xgn3HAzuJ9fLuvQATM4b7f2cx0kz63Gz2bTWmLfZODhOV75DFIYmk0nLteDtMZDz6ELw+eE80aXAffR5cxcBr+tqH/AtRbsIugdo9nq9lnvHQxKjiMVaip91zunfJ/G8/pn21g/yG3wniChoJRKJRCKRSCQSiVs8GEEhkk8PY4Scu8vA3QGQVUnVlu4EHNLG8T2gESLLeaTbYEGvcPK7OxZwB9Bq4cn/jD2KCQghHigJGaN6zRy4mOBVfwQDyDc99JJa5/de9mhdj2F2UnsHBidb3naAOyO2VXRVgX3c3l/vWxz69ZF/wOu6CJ1nE3D/CddEBFmv13UMnqcBWAMQUN+RotfraTKZ1DXoYYRcHyQ+VvDjeo4ZEt5e4AKG3zcEC44REe8tc0DOhgsC3EPPRnCRhrUW3Ql+H7scCz4X3uLS9ZnxtePX4DtkuAiC4BZ3gmB8fv4oMPg1+3rkvS5Idc2/b9vK9aegkEgkEolEIpFI3I8HIyhAFEajUd1ZQLqtoHoYIqTYg+fcTu2/O8Fy8QFSyOOIAl0949FCDYHieIQARlLv1nbEBNod2OHBiZMLKmRFeL+6CyWS6raAvjUkIZMuJOCIcLLH3PnxnNC6HZzn/No9S8Ct67RV8JxX3jmXE1jGzjwSBMm8d8FzCQaDQWvNsA2mjymCrAvujedc0O5xcHCg9Xpd75PPa9wmk7HG6nt0cjhxdpu9BxqCKAL4ffJ2CuaX9eutOjErwYUa6Vasi58HP090BvjnzR0vflxfK+4uAe7W8HtKq5K7P+JnMH7efd58XhgrY3QxhNfxufAWGHeydLXcJBKJRCKRSCQSiVs8CEEB+z67GkThQLolJ54dQOUbAgvB98qqEwrIiO9fL90SJXcNjEajSnghW+6QGA6Hms1m1Rp/fn5eq71e6SQXYb1ea7Va1V0p1ut1i4RJqnOAG4PWiX6/r/F4XEkogkCv12u5Dzy80au9Pg/kOfDa7XbbEmPogY+7BgAnZ5Awr/ZHgQTnAPfQAw4Zu+9kAZwQQ5qbptFyudT5+XnNChiNRpJU2zLW63VdC972we8uKnn7DK0m4/G4hlGu1+u6tmhR8fXkY3Wxxtcp5BehxHM//Pn4eYiBhHwWXOyBmOPqcAGAvI5YmefeMHfRDeLE23/HPeMOCXcK8TxCmLs4ojuBa/T2Ic8R4XhdwgTv5TVkXLiDyF0GvN5bH1jbjM/DICXVzyafo0QikUgkEolEItGNByEoEIIHESAAD9t6JGnsfAA5k1Rt6nt7ezVE0C3pkZxwXkmVoEXnA8QIYgm56Pf7VUiAJELUPRRvtVppuVzWqrm7LLwCCxkbj8dV8Fiv17VijniyXC5bWQPSba88ZM7DAqnASqruBd+C0u3q0jXxQoRwUQdATr0q7js3cE53SwyHw5bAUEpptZuQF+HBjcw3pNvdGggMzDehjrgJNptNazcFSS0xgawN7slms6mtKy4Czefzes84h69XhBF3kXQ5FrhfrElfs4gwTsYRWWiL6BITqMCPRqM6BwgC3jLAWsURstls6n0gjDO6Jbwtw9do3IISAYD59a0yvSXF56SrZcLPjwjhbRjxGBEu+Pg8uaOB9cX63m63LSEERxDfA11jTyQSiUQikUgkEnfxIAQFqvqQf6rq0i3BgfhSbYy7NsQkf6/Uxl722Pfu1WfGQ6WearJbow8ODipJkdrBdRCh8/NznZ2dtYgrr3WhJM4BRMcDEmn58Gqztw1wHV3p+H7NCACMA5Lr1wypc2Lrc0ZVnDn3yrdvQ+kV4Ui0GRMtHm6BR6Dx3nbPHJDUEp+8ko+Q4XkFzBXncUu7uwjcBcH9ijtb+Fz6vWScPBZfL6mVC8DYYpigCy3x/vEY98SFIa7dtzSlUu9BhcyPi3QuALiThGtAAPB2GF/vfu/ctdCVH+HzwfFdUHDhL7YZdb3XXweiYEgLEfPr7iTmnzXHHMY2i0QikUgkEolEItGNF26yXkr5faWUL5ZS/po99q+XUv7bUsr/r5Tyx0opx/bcd5VSfrKU8hOllF/8bgfixMd7qKV2bzS/Q/QhTh4wGC31TjC8AhtzBtw5QGuCV3s944DWBMbjRPPi4kKLxUJnZ2daLBbVVn/fFoHeAy+p9vNTgYY0OhGiah/JVFfF2c/heQZejZVU58HnDSLJebn+2FLAfZNuQw/Z3tEBSXMS733x7nJwMcmdGN6y4VkPEFKO6bt38OOtAYD5ZA58bXWRy3iMWHXnXvAenAOM0cfmRN1FB17LMbyFhfURMzqovDO/Xun3x12Mip8PrtXFlq5MElwV3AvPb7iPiHe1driYwGfM59szTbrWUlxXUeTBkcK5fB4QQ/gsuGDjwslDwZfruziRSCQS3cjv4UQikbiLFwoKkn6/pG8Mj/1ZST+3aZr/kaT/TtJ3SVIp5e+R9K2Sfs7Ne35XKeVuKl4HIFTkDHgFkooxZAznwG63q/kChOxBDCBfEBIncbRVeEXVCfj5+bnW67WWy6XW63WrGht7sSFDCAI4Ez73uc/p5OREi8Wi2rId3urgeQiMixYIJ43uUOAx6Zb0udDCOeiVZ1tLyD8WfieK9NxzveQNQNAjgaTn3YP0EB889JH3ehZD3KYTOJnm/iNU0GqCM4LrdgGK43n1nDH7lpPuvoBUbrfb6iiJx4trtYvkcu20JCAkcDzO5/ed4/vOHy4+ebYAu03g0OBaaMthPSBGuRgTrfwuMvg8eGtDDEB0oQGy7uGW8T64GOE//nn39/hnzMfn8+3H8HvI7xcXF611z5aeZGLwvB/HW5Fii9VDEhT0ZfouTiQSicS9+P3K7+FEIpFo4YUtD03T/PlSyteGx/6M/frDkv7xm//+Zknf2zTNVtJ/X0r5SUm/QNJfeNF56Jv3kMDLy8uaQ3B1dVUJ4Wq1qsGI/EC63Kru1WkqlRwTkurOArdtn56eVmLuFVi3xkuqBK/c9N4vFgudnp62hBHaDZxMQfQgcv1+X8vlUpJq9gACBYTdt0Hk2IwFQhrt3DgKcAuw24QLFE5cI7FkThg3JJXffQcJsh28jYHzck8uLy9rdd1FAcg395r5pUWAHS1YA16RdgcFr+F+u4jEmFerlVarVSWj3F/Pjog2f29ViNkCPM6cQmCdKN8nTMR/vSXGnR+EfvpOBHGnkK45Qjzi3sa2ASfq7giQVN0s/h7myndf4T0+X/75iIJCXG/Mpb+XsfhzrAf/vHI83kdIJS05zBPuA79f7k5iDnyNP7SWhy/Xd3EikUgkupHfw4lEInEXLyND4ddJ+kM3//1JXX+Zgs/ePPZcQHQhJ75XvAeoOcmAdLNlI2JCzDuAzHlmwHa7bVU2m6ap5IPXMQ6IcSSZTpgI7SOAcblctuztvnuBX7N0S4ogNU7E3UGBa8HfD7ljTpyAMba4A4P/dM2rV5Z9q0RINa+JgY6QNK9oR5IIGeS+OEns6r+P99FzFjg2/+2E3e3snnNBpX6z2dRKNc97FoPPgVfKo2Xfr5nzIu507XAQ73/cLcLPdV/Wg7fVeHXf235ipsaL2he4FheZOE90FcTPVKziOxGP1+5tEX6f/d7xfh+zh2z6/XbhkWN5WCdiAvPk7TYuSPl68xagjyA+8HdxIpFIJD4Q8ns4kUi8cvhAgkIp5bdJupT0B3mo42WdJb5SyqckfUqSDg8PqyWbP+6xIWPNp1LOH/wICmwT6YF0klp99FQjIWHsIuEVVUgG1WDOCUmTbgmZk1rpmois12udnJxUBwDvf56g4JVrCK63B/iODSC2FfCYE1S31XMsno8967ES7GQc4cDfyzxE4sW1cpyYiwD59Ko38+eBeDHQz0URr3b7fPA6H4tfB9dM+4FXq30OGKOH9fmuCrzW14OLJk6WfT67RAUP3/RdLLwqHq3+PgavyjNHUZxwgSbeE1837k7gurySHwU0jhHXWyTkPh6ejy6I+Dxj9/mLn1UXcmLbBg4Z5ji6cXyM/t/+Wb5vXA8ZL+u7eKjxl2R8iUQi8ZWO/B5OJBKvKt63oFBK+TZJv1TSNzS3f3F/VtLX2Mu+WtLnut7fNM2nJX1akt54442GXRAgwavVqvb0x2oxtmbfNx73AZV7SCiEwDMVsIcDD21DcKCNASFCUt1eEEcB/dnL5VInJyc6PT2tBA/BA2IOGXfCCEGErMdtHb23GzAftHPQdgBZ5/xu+/fqfyTgnu8AMfWtBmNYJeO9WQMtEcHWRnVZxCp2F7l2x4S3okAQnfj7dbt45O0F3H9vB2FryeVy2eqjl9Sq9EPwOX5sR+A57iviiu8IstvtKql9N8A94RkZ/pikltMkigQu5jBP7vrpEh08n8AJOZ8/Dzn1e+1VfuYdou/jij9cpwshjtgiEVtZutwevj4ZD9kRHrTKmuJYLt5wz/k8REdIr9erO7Q8VLzM7+LD8vjhqyeJRCLxwJDfw4lE4lXG+xIUSinfKOm3SPpFTdOs7Kk/Luk/LKX8m5K+StLXSfqvXnQ8iAYW/vl8rvV6XUmFb3XoJNYdB9JtzzfbxPEaXA70tfM6iApZBV657vf7reDGyWTSylKIYXqnp6e6uLiohBzhwSv7sfIuqToaIMKM7fz8XIvFolq2IX8Q7PF4rH6/X8mOV5S9wuxWf1wcN/ewEmR+9/58hBcPCIwhkF3OCxdF3P7PuTx0DxEnCie73a72wONAYYxcm6Q7hN8dJL5Gnj17VjMtWAvj8bhFJLmvPmc+Ju49pJs1yRx17TTBPYfcutsFeB8/42DdxEq+i2rMhztTnBQTQMj7mJPogHCBwLfjdIEAuMsBkBdBm1AX6effLkeACwWse3cLdLkVokDmQhhZHN7awzHiDhTRaeLj6xJqHiJe9ndxIpFIJN4b8ns4kUi86nihoFBK+Y8kfb2kJ6WUz0r67bpOsB1I+rM3f5T/cNM0v75pmh8tpXyfpB/Tte3rn2ma5urdDMRJ1Hq9rk4Er7LzOiq4MfzNrfruNvAKOIQw2tHdPu52f6+U+mtdhICs+q4IkDLpNgtAuq3uM0YcAlT0ndA62cZ5MRwONZlMqoOC40OWGGeX6EIIXpc13Umik33PN7i8vKxz4+0UPv+4A7gORBnm3e9ltO4zLj92zHaImQdR6HDLO/eGnTacfMZ7FNsJXCBgLj3PgdfSSuFOgC50iQmsJX+vE+zYZsFccM+6yLsLIS7A8NngfNxX1opfl4sJkXz7Ob3VKG5hynh8PTG37jpwJwcOFM+RiC0yMVcktnL4Z53vCG+3iK0bUcDhcxbDPB8CvlzfxYlEIpHoRn4PJxKJxF28m10eflXHw7/3Oa//HZJ+x3sdCGSSKjKkbzAYtPrTnZgAFxM8gJDqP0TLXQAuEHBuJ3IQF684x354bO6bzUZN07Ts4k5e/Br5F9LK8WOFGbHCK/xsg0d2BONzMgTBgkR5H73PWVcLgpMujhsrvS4mQO4ZO2IClXTPf+iab7+XTvSYa17jIgZ5A769oocFsg5YR4vFohXs6bsgMHafA79mJ7aMzavZ3BcPuPTWgPvm2TMoYk5CfB2v8TYAn0cXu1yIYtxRaIufJQ8BdQdEl3jh189cxZaYuJ667rfPk69VF5r8NX48xubrPd4TF6m6hBfmlvP7+uM7wo/5UPDl+i5OJBKJRDfyeziRSCTu4mXs8vBSABmi2jsajao7wSvskBInS7QoOIleLpetyvH+/n4l5JJaffj8OKnyXnsnuW6fdqt3dCdEUuckzomf2/SdYF9cXFSxgrFNJhONx+O6LR5ig/eEe6sDc+YOAQQWB3MWbfoc1+cdkQcXgvev+/aUjN8FAUktwst993+pDnM95F0MBoPq6liv1630fncv8N71eq35fK6zs7N6bR6Q6eP2SjQWfoi333Mnp7hLXExwdD0mtYUVD8j0MSDcdJHZ+Fh0bbhTxVtM/Lr5PHXlTcQWDD4TuD9wObC+cKD4uJyIu0DF+vQdOOIuHNHpEbMNfMcGSXdCR5kHfx4Hgrcz+JrkWvke8R1fPL8kkUgkEolEIpFItPEgBAUn8Ofn5zo+PtZkMtHBwUEl7r4LBMQOEutkc7fbabVaVSIuXROFw8PDGpLo1UwIFsfynnDOBUmmFaNpmiokUB2fzWatHu7z8/N6vEiWmuY6WwAi1+/3NRqNtLe3V0WE9XpdifPBwYHG47Fms5kePXqkwWCgy8vLOk4npZzP7d6QwPV6fad1I8JbEqQ2OWOczLcTNIipE82maWrAYzyet4NIalXQfceL6XTaOt9ms9HJyUnr3tIKgsgxn8/19OnTug68zcWFAn4YF+GNkUT+/9s7uxC7riqO/9ZMJ3fyMWPSaSKhrU0iVeiTDeKLti+KNkEbP0AiPgQqiKBgEcFIQPpaRV8tisUi1RbRYl6Eiog++dHGpE1JY5I2YmxMtBKa+XSS2T6cvW7WPbk3kyE9HzP3/4NL7ux75u6119lnZdY6a61TLleJeyee0376LOPzl59q4sT0fp+7XEbh53p8fLzns9jE1AMEMahQDlB5YMizAMp9F8pZH56542uP/T2i7HEt5UwCDzrFTCG/jrwcojxnDNyUgxc+j+sl2ocYYOxX0rS0tNTtqRGvRQ+UxV4pQgghhBBCiOtpTUDB7wqPjo4yMTHRdYLn5+d7HjvoDnx0eDyY4E6O/w7QdcbLTfjcGYrd9WMKO1xzVjudTk8AITo07vCNjY31pOJD713q+EhEd55iKr1nKCwuLjI7O8vly5eZn5/vOtVTU1Ns27aNDRs2dI+L9fJe++3zxkZ9fsc5lhHEhnblBo7uMLqD7XeSY6aAr8Pv6rpDFmvcozMcAwjR8Y6Ovv9uTMP3IIGfL3cu4/mJ2SmLi4tcunSJ6enpbhZC+XMPMJSzJuJ3O35svMMfszfKGRbL7XNfZ/zdcj2/Hxv7XZRLY+J5cHlivwH/jrhGD2LEOeN+8eBAzJqJTTR9neV953oaVFoQS3H8fMV+Gn5e/ZqI5UVRzzGYEMswon7LMsRrwbNrPFPH5Y+BFc+IupnzKYQQQgghxLDTmoCCO39+pzne6e7nUMRgAlzrO+CPh3THqHz32ueK3x1rtd05K9dflx8dF2v+/bu9bv/KlSvdrAaXOQYUylkW/vsLCwvMz88zOzvLzMwMS0tLbNy4kcnJSbZs2cLExASjo6PdRnjRKXIHsNyPwNcUgyH9mk16sCHecY9ZAJ1Oh/Hx8Z7SDA9ixEdNRiezXIceHWO41nshOs1+bmPjRF9rvCMeAznRafaATAwojY2N9ZS2xAaJfm5i3wRfc2xq6MfGYECUOVIOovg5KAcU4jpcV/0aLcZsk9grJAYTrl692g2c+HxRjtgTohzo8WvNHfqyHLH3gZ+LGHwZFEyIn8XeG7GJYr8g0aCeCOW+F+UAjH8WZS73RoglFktLS929W376SNv6JwghhBBCCNFGWhFQcEen0+kwOTnZLXNwJ8cdIncoOp3OdenaHkzwMgC/ox6DCT7XzMxMT2ZCdDo9MBFrwBcWFpibm+upw/c7/u6QeG2/O7zxbqc7w7Hzvt+l9Z4IIyMj3br/6elp5ubmWL9+PZs3b2ZqaoqtW7fS6XR69OGOs5l1ncmYsr5u3Trm5uZ6UvNjCnrssO8Orjt27lh5SYkHFGJpiZl1sxZiuUV09Dz7wL/Tsxr8mJju7kGlco8GLwHxIJCvze82u+yLi4vd0pmY5QD0PAKy7KzGYI8TMxNiqUTcizHbwh34eNfcj3HZooMbHeDY28E/iyn70fn1/eZrcv25wxz7FcQMBt/TMUji+vVATGy86HL43X1foz/RJAZ2BgUToi77NUT18iDvteHnNOo6BkyizlzOfvqM+xfo6e8BdEuXRkZG2LRpU7c8JJZd+P5WUEEIIYQQQojBWBv+YDazfwMzwH8aFuUOySAZJINkKHFPSmlrQ3PXipldBk42LMaw7zfJIBkkw/UMkx3W38SSQTJIhrbK0NcWtyKgAGBmL6SU3i8ZJINkkAxtlGEYaIOeJYNkkAySYdhpg64lg2SQDJLhZlELcyGEEEIIIYQQQqwYBRSEEEIIIYQQQgixYtoUUPhB0wIgGRzJUCAZCiTD8NAGPUuGAslQIBkKJMNw0QZdS4YCyVAgGQokQx9a00NBCCGEEEIIIYQQq4c2ZSgIIYQQQgghhBBildB4QMHMHjKzk2Z22swO1jTn3Wb2OzM7YWavmNlX8/hjZvZPMzuaX3srluOsmb2c53ohj91uZr8xs1P53y0Vzv/esNajZvaWmT1atR7M7Ekzu2hmx8PYwHWb2Tfz/jhpZh+rUIbvmNmrZvaSmT1nZpvz+A4zmwv6eKJCGQbqvkY9PBvmP2tmR/N4VXoYdD3WuieGHdli2eI8JlvM8Nli2eF2IDssO5zHZIcZPjucv3d12uKUUmMvYBQ4A+wC1gHHgPtqmHc7sDu/nwD+BtwHPAZ8vcb1nwXuKI19GziY3x8EHq/xXPwLuKdqPQAPAruB48utO5+XY0AH2Jn3y2hFMnwUuC2/fzzIsCMeV7Ee+uq+Tj2UPv8u8K2K9TDoeqx1TwzzS7ZYtni5dcsWd8fXpC2WHW7+JTssO7zcumWHu+Nr0g7n712VtrjpDIUPAKdTSq+llP4HPAPsq3rSlNL5lNKR/P4ycAK4s+p5b5J9wFP5/VPAJ2ua98PAmZTS36ueKKX0B+C/peFB694HPJNSWkgpvQ6cptg3b7sMKaXnU0pX8o9/BO661XlWKsMNqE0PjpkZ8FngZ7c6zzIyDLoea90TQ45s8fXIFssW92NN2mLZ4VYgO3w9ssOyw/1Yk3Y4y7AqbXHTAYU7gX+En89RsxEzsx3A/cCf8tBXcnrPk1WmVmUS8LyZvWhmX8xj70wpnYdiUwHbKpbB2U/vRVKnHmDwupvaI48Avw4/7zSzv5rZ783sgYrn7qf7JvTwAHAhpXQqjFWqh9L12LY9sZZpXKeyxV1ki3uRLa7ZFssON0bjOpUd7iI73IvssP4mviFNBxSsz1htj50ws03AL4BHU0pvAd8H3g28DzhPkdpSJR9MKe0G9gBfNrMHK56vL2a2DngY+HkeqlsPN6L2PWJmh4ArwNN56DzwrpTS/cDXgJ+a2WRF0w/SfRPXyufo/Q+1Uj30uR4HHtpnTI+ruTVki2WLl0O2OIvV59g1Y4tlhxtFdlh2eDlkh7NYfY5dM3YYVp8tbjqgcA64O/x8F/BGHROb2RjFiXo6pfRLgJTShZTS1ZTSEvBDKk4ZSSm9kf+9CDyX57tgZtuzjNuBi1XKkNkDHEkpXcjy1KqHzKB117pHzOwA8HHg8ykVxUk5jejN/P5Fivqk91Qx/w10X7cebgM+DTwbZKtMD/2uR1qyJ4YE2WJkizOtuO5kiwvqtMWyw40jO4zscKYV153scIH+Jl6epgMKfwHuNbOdOSK4Hzhc9aS5DuZHwImU0vfC+PZw2KeA4+XffRtl2GhmE/6eovnJcYr1H8iHHQB+VZUMgZ6oW516CAxa92Fgv5l1zGwncC/w5yoEMLOHgG8AD6eUZsP4VjMbze93ZRleq0iGQbqvTQ+ZjwCvppTOBdkq0cOg65EW7IkhQrYY2eJM49edbHEPtdhi2eFWIDuM7HCm8etOdrgH/U28HKnmLpDlF7CXooPlGeBQTXN+iCId5CXgaH7tBX4CvJzHDwPbK5RhF0VXzmPAK752YAr4LXAq/3t7xbrYALwJvCOMVaoHCkN9HlikiKx94UbrBg7l/XES2FOhDKcp6pB8TzyRj/1MPkfHgCPAJyqUYaDu69JDHv8x8KXSsVXpYdD1WOueGPaXbLFssWzx8Npi2eF2vGSHZYdlh4fXDufvXZW22LIgQgghhBBCCCGEEDdN0yUPQgghhBBCCCGEWIUooCCEEEIIIYQQQogVo4CCEEIIIYQQQgghVowCCkIIIYQQQgghhFgxCigIIYQQQgghhBBixSigIIQQQgghhBBCiBWjgIIQQgghhBBCCCFWjAIKQgghhBBCCCGEWDH/B6VNJI7THS++AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 0 0\n", + " Min thresh = 1000\n", + " Not Sliding\n", + "\n", + "\n", + "237s_iimage_24164968068436_CLEAN_ClassS_38-166.roi.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADYCAYAAABberBAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADhT0lEQVR4nOz9e5xt2V3WCz9j3W9VtXd3OvdgCCFcTwCBKIIQ3yAiAkEUXhFeLiJBUeQIykWPoLxe4hERVIwGjIAimCAe9HiHY0QggEQuEkgwXBNy6U567121LnOtVavm+aPqO+qZo1b17t29u/favX/P51Of3rXWXHOOOcaYq+t5xvN7RqrrWoFAIBAIBAKBQCAQCAQCt4LWnW5AIBAIBAKBQCAQCAQCgbsPISgEAoFAIBAIBAKBQCAQuGWEoBAIBAKBQCAQCAQCgUDglhGCQiAQCAQCgUAgEAgEAoFbRggKgUAgEAgEAoFAIBAIBG4ZISgEAoFAIBAIBAKBQCAQuGWEoBB40pFSelNK6aV3uh2BQCAQOEdK6ddTSp/4KI+tU0ovfIzXecyfDQQCgUAgsFsIQSHwpKOu6w+p6/r1d7odjxYppX8SfwAHAoHAk4eU0n0ppYdSSj96p9sSCAQCu4bb/XfprZwv/i4OlAhBIRB4BKSUPk7S+93pdgQCgcA9hr8p6ZfudCMCgUAgcI74uziwDSEoBJ50uK02pfSXU0qvSyn9s5TSUUrpf6aUXpRS+rqU0oMppbellD7JPvtFKaVfOjv2V1NKX1qc+6tTSu9MKb0jpfTHXUFNKfVTSt+UUvrNlNK7U0r/MKU0fIR2diT9PUl/+onpiUAgENhNpJReklJ6Q0rp+tl36t9PKfWKwz7l7Hv4PSmlv5VSatnn/9jZd/W1lNJ/TCn9tlu49sdI+lBJ/+Q23U4gEAjsHFJKH5RSev3Z9+ybUkqfbu+9PqX0x+33L8SxlVL6kbOXfy6lNE0p/X9TSi9NKb09pfQXzr6Tfz2l9LmP9XyXtDf+Lg5sRQgKgV3Ap0n6p5KuSvoZSf9Rp3PzOZK+UdI/smMflPSpkvYlfZGkv5NS+u2SlFL6ZElfKekTJb1Q0icU1/mbkl4k6cPP3n+OpK9/hHb9WUk/Utf1zz/2WwsEAoG7Ehudfgc+TdLHSHqZpC8rjvmDkj5K0m+X9HJJf0ySUkqfIekvSPpMSQ9I+m+SvvfRXDSl1Jb0bTr9g7V+nPcQCAQCO4mUUlfSv5H0nyQ9XdKXS/qelNIH3OyzdV1//Nk/P6yu60ld1//i7Pdn6vQ7+zmSvkDSqx/n+UrE38WBrQhBIbAL+G91Xf/Huq6PJb1Op3+AvrKu67Wk75P0/JTSFUmq6/rf1nX9K/Up/qtOv4h/99l5PlvSP6nr+k11Xc8l/RUukFJKkr5E0p+t6/rhuq6PJP11SX9kW4NSSs+T9KV6ZMEhEAgEnpKo6/qNdV3/RF3Xx3Vd/7pOhd0LIu3Z9+lvSvoWSZ9z9vqXSvobdV3/0tn3+l+X9OGP0qXwZyT9ZF3Xb7wtNxIIBAK7id8paaLTv3dXdV3/P5L+b51/jz5W/KW6rpdnfyP/W53+bfy4EX8XBx4JnTvdgEBA0rvt3wtJ76nremO/S6dfutdTSr9f0jfo1GnQkjSS9D/Pjnm2pJ+2c73N/v3A2bFvPNUWJElJUvuSNn2LpG+s6/rGrd5MIBAI3O1IKb1I0jfr1IEw0unfCyXJ9+/Y39Dpd7Ak/TZJ35pS+tt+Sp2umv3GI1zz2ToVFD7ycTU+EAgEdh/PlvS2uq5P7LXf0On35GPFtbquZ8X5nn3ZwbeIb1H8XRy4BOFQCNw1SCn1Jf1LSd8k6Rl1XV+R9O90+oeqJL1T0nPtI8+zf79Hp+LEh9R1feXs56Cu68kll3uZpL+VUnpXSuldZ6+9IaX0R2/T7QQCgcAu41WS3izp/eu63tdpCUMqjvHv2PeR9I6zf79N0pfad+2Vuq6HdV3/+E2u+RJJz5L0i2ffu98q6SVn38OXib+BQCBwN+Idkp7n2TM6/R79rbN/z3Qq5oJnPopzXk0pjYvz8b38WM7niL+LA5ciBIXA3YSepL6khyQdn7kVPsnef62kLzoLuRnJbFlnCvC36zRz4emSlFJ6Tkrp911yrRdJ+jCd5i18+NlrnybpX922uwkEAoHdxZ6kQ0nTlNIHSvqTW4758ymlq2dW2K+QRN3tP5T0dSmlD5GklNJBSumzHsU1/72k5+v8e/frdZqr8+HmWgsEAoGnAn5SpyT/q1NK3ZTSS3X6d+b3nb3/s5I+M6U0OgsX/+Li8++W9IIt5/0rKaVeSul36zRz7HWP83wg/i4OXIoQFAJ3Dc5yD/6MToWDa5L+qKR/be//e0l/V9J/kfRWSW84e2t59t+vOXv9J1JKh5J+SNLWsJq6rh+s6/pd/Jy9/J66rhfbjg8EAoGnGP6cTr9jj3Qqxm4L6fpBnZZB/KxOa3X/sSTVdf2vdBqC+31n37W/IOn33+yCZ3W//r17Q9LavoMDgUDgKYG6rleSPl2n343vkfQPJH1+XddvPjvk70ha6ZTof5ek7ylO8ZclfdfZDhHkJLxLp38fv+Ps+D/xOM/n7Y2/iwOXItV1hCgHnppIKX2QTv+Q7Z8FgwUCgUAgEAgEAk8pnDkc/lld18+9yaGBwG1HOBQCTymklP7gmdXrqk5XyP5NiAmBQCAQCAQCgUAgcPsRgkLgqYYv1WnGwq/odB/1bXW/gUAgEAgEAoFAIBB4nHjCBIWU0ienlN6SUnprSulrn6jrBAKOuq4/+Wz3hvvquv6DdV2/8063KRC4U4jv4UAgELjziO/iwBONuq5fH+UOgTuFJyRD4Wx7p1+W9HslvV3Sf5f0OXVd/+Jtv1ggEAgELiC+hwOBQODOI76LA4HAUx1PlEPhJZLeWtf1r56lmH6fpJc/QdcKBAKBwEXE93AgEAjcecR3cSAQeEqj8wSd9zmS3ma/v13S77js4G63W/d6PUlSSkntdlspJUlSXdeq61qtVkudTif/SNLJyYmOj4+1XC6F04LPAXdg+L/9OL/WyclJfq3VajU+W9d1Prb8PO/zO5/n3xxzcnKizWaz9Tq8VrbT21e+dnJycmnbyr7g2PIcfu5Wq9X4KfvS3/P79vvgPr1t/Gw2mwt95f27bTzKdpaumsvG3Nu6bex5jXN6m7kf7mmz2b4F+s3aclmby9d8PMr5VL5G+3hOfH55vx0fH1849yNh2zVvdnzZBu8Tfw54fbVaXejnbe3j93KulfPB57SPtfeTj+8j3V/Zl/aZ99R1/cBNO3D3cEvfw5LUnozr93l+0oPLPbXfunykQwOBQOBJQ6WZVvXy5v8j203c0ndxfA8HAoFdxZGubf2b+IkSFLZ96TcYVUrpFZJeIUm9Xk8vfvGLJZ0ShMFgoPF4rG63K0mqqkrtdluDwUAHBwd64IEH1Ov1tFqtNJ1O9Vu/9Vs6PDzMhLfb7WYSA2mAxEMyOp1Og0D1ej2t12utViutVivVda1+v69+v69ut5uJEOfsdrv5d+mUzKzX63yNbrerbrerTqejXq+nbrerzWaj1Wql5XKpo6MjHR8fq9fr5etsNpvchuVymdvFeXide5hMJpmkr9fr3A4ImKTcFycnJ1qv16qqqiHSNAaorjUejzUejzUajTQej9Xv9/N7ENRer6der6fBYJAFAgjuaDTK7VksFprP51lEWa/Xmk6nmk6nWq1WWq/Xeby4xnq9bhDM5XKp1WrVuLfj42MdHx9nYorAxDG0qdVqqd/vazAY5H7gNeba8fGxqqrSZrPJbWQudbvd3A/r9Tpfk/ZIym2RpHa7rXa7vVWIok202T+/XC7znOx0Onn8jo+P8+c6nY5SSlqv11oul9psNur3+xqPxxoOhxoMBo32rNdr3bhxI8/ldrutXq+X5ycCSSlO0Q8nJyfq9/tqt9t57DebTX5uOJa52+v1NBqNGu1GBGS+tFotHR4e6vDwUNPpVLPZTMfHx+p0Ornf6AfGqtvtajAY5L5ZrVZ5HOjf+XyuzWajlJIGg4EGg0GjjZLyc1VVVZ53LnjweylCHR8f68aNG7+huxM3/R6Wmt/Fg+6BnvP+f1EvuL5W61d+5oluXyAQCDwq/GT9w3e6CY8Ht/Q3cXwPBwKBXcUP1d+/9W/iJ0pQeLuk59nvz5X0Dj+grutXS3q1JE0mkxriAtmBvOBcgAxIukCmfRXZyZekBrn2VVx+t/ZkAuMrqRCeTqej9Xp9YUUeYsNn1+u11ut1JjgAElqSeXcscE7OAzmEbNGG5XKZSVG/32+sAjtR4rO8DnGDkG1bjaX9kGTIHffpxJvP897x8XGDuLvTBBGm3+83SCHt4NhOp9Mg3N1uNxNUyKGTWhc6tgkkCDOQavoX8i+dCgG0AwI7n891fHys1WqVCbuTbX7oTweihs8zruXOAe6Z87pDhvfa7XbjeeA1hBAn4ZB2+t5FBu9r2uS/l+4Sfyb82SmfGZ8Hm80m9y3zj+cIgYZ+pC8Q1uhLxCVvo4tlnU7nQl/R3zyf9B/XoH2cv3TN+L3RVn8e72Lc9HtYan4X76f76uEP/tST07pAIBC4N3BLfxPH93AgELjb8EQJCv9d0vunlN5X0m9J+iOS/ugjfaC0TK9Wq0yKxuNxfu3w8FBVVen+++/P5BOyWBI9iIGTbV8lLldnOabX62UyD6nq9XoN8trpdNTtdjORks6JaUl2+Uxpe5fUIOeQXMjQ4eFhFgVSSur3+5mQzmYz3bhxQ3t7e3klGXHFSVBJbH0l1snhZrPJ12q325m4cV+0idc2m42Wy2Wjnzl2OBzmf7darbwCD6Gjf90R4ivZEFUXlaqqysLCYDBoCDpODktCLp0Sal997nQ6GgwGF8aaMZpMJllUqapK/X5fo9FIw+Gw4VJwhwRzhX4uCa/PNRwVXi6wWCwukFj6VjoVpBAKJGVhaT6fZzdNr9drjOloNFKr1VJVVXllvtfr5fO6k8PLCuhXBCJEAu/vUjCQpOFwmI+n310YGwwG6vf7Gg6H+Vrz+TwLTAh3Xgrh4p6kLKAxR/zZd7cJbfa532638+eZS4wbwhnncufNXYxb/h4OBAKBwG1HfBcHAoGnNJ4QQaGu6+OU0p+W9B8ltSW9pq7rN112vNveN5uNZrOZpFNCtV6vNRwOG+SI1ePBYJBJFEQAa7eTBGtXg0S4W8Drz6VT4sJxuAsgVbglIISUO0CY+/2+ptOpjo+PG2StXHl3wcFLM0C/39dyucxlDogHnOv69euZHELm/J4QINzJsY1A0m/uPqiqSkdHR+p0OhqNRhdWjiH6lHFAHFlNhjxyHhwbtIv7powDgjeZTPJKPG3mc8vlUovFQlVVNbI0GCcXRSTlYzi3A4GGuQep5biDgwMtl0tVVaXr16/n8gKEiPl8nssxBoOBFotFw9lBiUu5Gs589zZwzqqqGoIY84uyFxw69C+kejqdZrKMYMJc49yIILSB9rljwd0NtMeFvb29vSxO8LqPuTtqKD/o9Xqaz+dZEKqqSr1eT51OR5PJRPP5XLPZLLtuUkoaDoeNkgeuQf/ixJDOy6G8XzkXwhjzhLnuohbPqc/rbrfbmJN3K271ezgQCAQCtx/xXRwIBJ7qeKIcCqrr+t9J+neP8tjGijm10vybsgcnwqxOOhmA9ELsSzIPwaekAECi3PbPOf01yHy73VZVVXmF3sPc+BkOh3nVWWoSTK45HA4bNnq3gpflF8vlMhMhXAAIKzgARqPRBceAr5r7Kjl9K6nhuuBY6dy1UFr6/fy0hzGhPRBcVqwRDxCAyIXACeElDffdd18WiMqcBZwL3ia3t9NuX+kfDAYNxwnE/Pj4OK/sI474ajr9NZ1Odf369Uwwx+PxBSfKcDjMBBs3AXMP0cXFLQ8PJHvCV86BPxPkhrizgH5ZrVaazWZZVPBxbbfbmkwmms1m+bM+Lsw9hByeB+/zqqo0Ho81mUyySMDc5Bw3btxoZIYgviFweD4JDoL9/f18zfl8nl0UXrbEHFmv11lsbLVaeVxdKOFZ9+fJnU+4DhAb9vb2NJ1OG98P/X6/8Sz4d8Xdhlv5Hg4EAoHAE4P4Lg4EAk9lPGGCwq2gXB3dbDbZCr1YLDQcDvMf+E7SfAW7XGndFpAHSZXOa9m9dp7PlyGHTki8pMDt0iVh9+yBsgzD67z9nj2FHis972NxdzLEKqufs8xFcFJV1sOfnJxkgu819P5fBAJvD23FDcJ9UcLAijKZDRB+r5Wnj3ifc0JeKSfxOcJKOddwa7yLQpBmzumhf9wLbfQyAtri7YTc4krpdDp5PiL4sLJOOwnn9HOWtfhloKeX0Pg48r6kHAS6rcb/5OQk50WUgaOsvON4YT66xd/JdtmfiAHL5TK7NJhDlBgcHx9rPp9rPB7neYJgRAimCyvuvBgOh1kcxMlQPu+0jXFAkEAcLMMuuR/Gxuc3zwRt5DnyZ5X3vWwiEAgEAoFAIBAINLEzgoKH8rGyuV6vM0lxogXKjAQnQ5wLcsX7nqHAajDEGmGg0+losVg07N9uD/eMAS+RKOutvR4bd4Fb8yXla0JwXfDwnAfKKiTl1eXRaKT5fH6hP+kPDxD0fqYN3kfcC+UX/NBOD/CDgFZVlUsb3AXi5R+QNs51fHycMxY8ZI/PHh8f6/DwMJ+XlXxI4GQy0XK51Gw2a6wc++4IzA0XnTwAkTnAirQ7ZDqdTibdOABGo5EODw8zmV0sFo1yG5+H3veAnTy8BAJize/uxPH56kKEOwgQVXzM+R23gRNnAhERbVxoYew8M2Cb0DWdTnOJxmAwULvd1mKxyGM+n8+1WCwaQoLv3kCb/TnBycLco9TAxT7P76jrWrPZLO8ygtPFRRHgzxD36q/TL8wzf16Y/yEoBAKBQCAQCAQCl2MnBAUP8oNcXb16NddX37hxo5EeX7oHvP5fUiZmvkrMucs6dklaLBZarVaZXFCe4IIBq8e+tR/b1VEO4eQDsuoEnrY4yYLo9Pv9XMIAsZLUEEXckg9pJ8kfN4T/F8ILCS7LNiBQkMOUTsMBpXPxga0GPS8AIoybgJIB3AqMj4dEIsKwAk0/UBrCPfg2f5QSOLFrt9va29tTp9PRbDbTfD7P14CUHx4eNuYHgg7BioeHh/l16u3dZeIr1r1eT+PxOGd7PPzww1qtVnra057WCCCkjAIRxfMQvNQD4ozrwVfDmQulW6B8VjgXogjPjDtFSrGB93FXUFLkfVs6H8psAkoOKNEYj8dqtVp6z3veo2vXrunGjRu6fv16I0CRUhBEkMVikXNBqqrSZDJpCB6DwSA7XXAOuWDYbrdz6cRisdDVq1fzPZGvwr3wHeAiEnPFRSXEL+buZd8TgUAgEAgEAoFAoImdEBRarZYmk0kmypvNJte0s5pK2j4Ei7ppCDdEg5VSX6n2UgfpfFUUwgmphFhi6fYEekgPxNgD4Fi5hgC5xd9Xrb12nPsEhB8iJLg9HXGgXOF10gNBdzLkdnNJms1mDRcI5JYV7dFo1Ci78Bp9J6+8J53vNkBN+2QyaQgEHoxHuz1UETIH+WbFmfvj/t16P5lMGkR1Op1mlwHjBzH0WnraQ7igzwkn4L46vtlsMhHfbDY5lPDw8FDj8TgLSe6A4J5dGKAvcYa4IMB5EWsQHspSCUQlzo1w5sJX6dBgHvA5+pa+ZH4iRF0G5g2ZBYvFQgcHB7p69WruWwQm5hnCB+M8GAw0HA6zQEVf8Sz2+/1G1gMlEowtYgptIJByPB5n4aGu65xd4pka3IM7MNyxQp/Td2UJUyAQCAQCgUAgELiInRAUUjoNFKQO28Pq+v1+FhVIeGc10lPhWb3E0g0x9+A8iB3nhshCQHEG4FTwwDlWlbfV/7Pa78e4iOGZBhAsf72safcdIFwcKMl+aR0vsxN827+Tk5Ocpu/ChteNU8fvZQ5OjvmsZ16wIk67cQn4vVPuwXnK++p0OjnPwEskaIOTO+7LyxFwB3j5iZc8+O4DjK2LV04cvT/cnYKo43kC3L+voktqkP4yYJGx51r+b88OKOcEAgTn9ywN7t3HhmPpb3fGIDCULgb619tblhhJauzOgVuBZ5dnBrcA5R6IARzLs0YuCCJXr9fLzy/H8LzSD/7MIU4xv0ajUUOIKMsgyueHfnWniM/dEBQCgUAgEAgEAoHLsROCgqS8cimd71/PqncJygMgL5PJJBNk6tM9/A1rv7sFIFeQnOl0mq36bFWJSwLxwgmNr75Dtn1lu6x/L8kNq8u++wDE1MPmPLvB8yC8rrxcTS1LLNw67lZ3wvDoH4gdn4WIstJM+YTUJGQQOFahXdxwQYGx9CwBBAV3QnhJCKKAk0hKCLgeq9YQeZwA0vkWgggAEE9EFl+h5vrcO6/hXPFzQ5q9ZIR+9bHyfIJSUOJ4ynjcgl+GeXr4on/W8yl8jrsDBUeAhyX6Z/icZ2w4PF/DXQrz+Vyj0Ui9Xk/7+/t5i1DmNLtO8MziQOB9tp/keSCk0d1JCAoerOklGbQDRwSCAn1V9pePNf2HmIhw8UglJ4FAIBAIBAKBQOAcOyEoQKT6/b6uXLmSSQIEH1ICmRiNRjo6Osp12A899JAeeOCBTEog99TrO5FutVoajUaSzoP8hsNhrtuGfEGAWbGczWYNgsLKbKfT0Xw+z7X81H4jGLizgLKIuq5zVgNEjdpvhBECHBeLRSM40m3akDQHZJ5+JRui0+lof38/9zUEczgcZrHBt1ukTYvFIte3Q1I9X8G34ETEcSs+baI/Kd2gHdTk+xaFjJMHA/r9OVFutVra39/P88Wt/by/Xq9zO2ezmfb29jQajfLYluUwiFlS013iZQsuBGHXLx0j/NdFCu5t264lzFX6ji0XKSXx0hnPX+B+EU8g/rSJcp7FYpGFK86LQATKsgDmM32OiNJutxsiDs9uVVWaTqc5t2M6nWYB4vj4WHt7e7py5UrOcSgzMNyZJClvz8p1vF/B8fFxLrOZTCY5xBWhz50IzAfmOeGf3I9vQVleJxAIBAKBQCAQCDSxE4ICZIXU9slkoul0mm3VXlvOquJwOMzvHx0dqdvtajweZ4s129mxgiydb/MIcRgMBnm1llVRJydY5yHcED7IpNfGe/4A71EbLp2vlroVm6BHSDI7SyAUeOkEJJfjfUvEbXCy7Gn5vu2i34OTOknZjUCNursmIJT9fj+v+Lto4ivejC/k7erVq/k4CHaZBeHlBk7oOA/tk9TY4tMJvZcOzOfz3C5eZ+wnk4muXbuWxxYXgof2cW7mHkSccfR7dneAr6S7CFJmcnBMuf2hk3jEGw9QdBEFMY2+Y65JymKNbwHKveA4uGwOsTME7ebflAaNRqOG22QymWTnB3kK/H5ycpLnzMHBgU5OTvTggw82gkYRAngO3EHjLgLPmvD7RUDjO+Pw8LCxUwXPFH242Wyy0EVWC+NJ/wcCgUAgEAgEAoHt2AlBQTpPYyfpndp4UuGdfLPijXBAQJvXYzvZ8NA1VlUhJZBMyCTtwBngpREQcAgMbgBWaCG2kB9f6fWtGSFOEM4yH4DjCB50cluWUTi4H79n2gPR9aA8L41wMsxnsJQTGIibAeLrWQzbdqBw+zwEGtEIYYVcjFLYcDKOe2KbUOGiSQkPhJTOwxa5x16vl8eGuVOWxji5dzBXeJ+SDyfqHEeb3Z3BPANliYzb9gkaHY1G2V0AgYdks5OFl4l4f3EsLhRcDN433Cf96nkg3Athlzh6cDAgOCG2kIVA+xkz7gNnELt80B8uGHkehPeX9xVzrMxD8OeSsgm/P//O8W1dvYTnsnkVCAQCgUAgEAgETrFTgoKLCqPRKJcSOCGAtPX7fQ0Gg7ziCqFlJR8C5UTF69l9ZVs6D96jtp4VdN/Ozu3htAdyUxJ0J+qQSQg3q6nkCzhBIkySEgcnfE5Anfg5EfcVam8nbfXyBvrOCRif8XBFhB3KNOg3RBPcHZIyESvbxzVYSUcEcneBCx1lDgXncnLs91cKC4hK3IevrnNNLz1hpZ/VcVwG3q8O31LRnQfuqPB78fwLhJRy9XtbToKTXsQVygEg7cyNci55PgTigPcBgg1AnCjzGxAMaKO7FCjjYZWf55Lx9dIQxCPp1P3T6XTylpxeauBioLtOeL7cxeCZELTNc0f6/f6FZ9LPzfcAfcf8RJAJQSEQCAQCgUAgELgcOyMoUNMP4R2Px7nu2/MNWq2WqqrK9v2SmLkrQDonohDLlJIWi0VjyzzECIL+WEGHqB0fH2t/fz+XTmyzQ0PGPZzPt8ZjBZQabhczfLcISY2tKslp8FIFJ0Z8Hjs3Kfo4C7wvyu0YPRdhs9loOBw2dliALDMOw+EwE0DugdIR7tFLQhxerrG3t5f7ntIWXw2HQNNmr+vH/QCp5ne2LGSOeNaDu1EkNdwUlNr4tpy4Clx8cueEC0f0v4sKZHAMh8PcFi9x4fpOWD1rgfPRFzgCjo6O8u8eXog4RNsRxXyuls6LzWaTd2FApPCyBgQWCDvn9UyL4+PjXFKAowaRgGuQoYD4RIjqaDTSYDDQeDzOohVhm7Sb8XU3yDanAiUd5f0C38WlLJHhOUWkJNjRrx8IBAKBQCAQCAS2YycEBSdi/of9wcFBI+395OQkh/hBhiGivrrp5ByCJJ3b7t2hwGomWwmyaotVmuMIg4Q0Q47cmu6rpRAVCI6/DjmGZEHUEEhwMCCcbEua9/r+kjxSEuKBdpIaAYxu7/fz0Z+EQrr7YbVaNcIkDw8PJUn33Xdfzotw2z7tIhjQSTj199ynZwF40j4ZGry22Ww0m81ymB4uCkjgdDrVfD7XeDzOW2Z64CHzAoJJDgGlBD6WzBkXibaVW3hOAu8RslmKPvybchJfKd8mUEGal8tlQwTzTAw/BiGinDN+Tw4voyFXwkMz3fHjoYm0kYyH0pFDucF8Ps/zkn4/OjrKZTSMm/ezB1a6kEj/0/eIeuXuD+5Q8AwGftwtwrPmIhGuJJ6RQCAQCAQCgUAgsB07IShI56vGkCZIwmQy0ZUrV3KwHvXkkvKqOOQM8FnfHs8t9JAHfiApWJ4RHlyMcDJdZjRAhp0QlaQeRwDtk3SB5PT7fa1Wqwsr2E6aWD3nmr4jgYsXnvyPWAMBl06JKs4APn+Zs8BXpnEE8N58Pm/cVylQeG172ec4L8qVccL4fEWaPATmCCvHvsLOZxAJIN3uzPCMDc984H0v0QBu+ef3sr6fY/xeKWsh3ND79LJSCuZUmRHgZT2+BaaXdXipiZ/Pz+tCg1+/nGOcj/vgmfTPeyAoxNzLUXynCRffSkeRE/eylIGxxgXhgaQ8xx62WAonft+03wUJjve+9ZIKdz8EAoFAIBAIBAKBJnZCUCj/wIfoQcSuXLmSifx0OtVsNsuuAl8V9wBAyIOLBVjOpfPdASA35CU4qXL7vecfeE28ExtJmRxB6Fmdh4jjEKA0wGvjWXHGAk5f8J6XBCBk8L7Xj1MOgFjAKjIOBa4HaXLHhJM9t+BDHr3cAkGBJH/C9ujzsm0IBu4YwWqP5d1Xk732nXvvdru5ZIXafO6LNvgKO33gVn0vg2DsyK7YRvTLQEYn5n5e70v6k3EoV9n9WCf9nnvg+RySsmjmIYfcn5eA0C/lub2Uxd0WTuY99NFDQt0t4+dxgu+OGeYHThcvESrv0/vC5wbPg98DbXDRDXh+BMd79oZ/lueU92iTi0CeKxIIBAKBQCAQCAQuYif+WvZVRFbVJeU6a6lJ1o6OjnR4eKher5dt2tK5SOC2bOk8yBEiyU4Ds9ks2+ql0wT64+NjjUajxnaIknJegNuhy9VcSC7klve73a7m83kmhC4MQHBOTk5y/bYkLRaL7Mhwyz0ECKKG8CCdE1dW3BEvIEtVVV3YqtAdBd5+zyEgYwBBplxFx8JeVZWuXr2aa/vZBQBXBPfh5N1LEhBe3DEAEaVNw+FQR0dHmehCABFwqMmfz+dZdHFbvYsujM9sNsu2fUiwr/jjtHDhyktsHO6KoJwDd8re3l4+nj6gjQ5ELN+FwkUoPodw4qICeRKs7NNW2otQ5u128cbFN0k5nHSz2WRHSbntooswvuuECwZljoWXVNAmf94oaUJgw0XAeVy88PBV5qn3pZfe+L9d+PI+dXHRv0cCgUAgEAgEAoFAEzshKEjKRBJSAXkfjUYaj8eZcLAq/t73vjcHNu7t7eXPLRYLdbvdTBi9pAACISmXJJycnOSyAICVXDpfAXbRwgMcWdX1VXVW2tkqEsI0nU6zwODEByGE4waDga5evar3vve9uS8gi74ajthC+70en7YgQEinIgVEzVdspXNi7OUbkDfCHff29hpiCf0ynU6zMEPJgqT839IyT18xDm7bh4wyPowhWRCDwUD7+/uaTqd5S9Gjo6O8st5ut/N2m6zWQ9i3rYTjenC3CWPipTFlSUAZygix5ty+yk84ISUAnoPA8YwTfVGKO+zoUM4BLzVwsYB+Zjz9Hsqxp0xmuVzmcFQPYUQYQQTh/dINwL2UWQYuRDFPXfTzkg6eYUSR0Wikvb29RkCrC2IIMp5n4YIA4H0XORDNvByDkg1cIOFQCAQCgUAgEAgELsfO/LXshMKJEuFtiAuSss2e1VPIOGQFolkS2HLFkd9ZQYecLBaLRimFW6DLVU4nky4QlLX5ECyIKtfnnB7+KJ2TNt9yr7TUO1ljtdoJoxN37sVt//SzkyyvT+c4zxooywVo+2q1ytsI4vDw7IVtZSHcE4SyREk8IcgQbFwXuABOTk6y8MK2hLS77AvIrpevuEhQklyfp77iD7H1vqXfvBxmuVxmRwxiFO3jWOaRj4WX39B3XMvbxT26QOQr/n4/nM8FAbBNQOH58JIY2uzj65+R1Picl8LQPi9Hoh8Ra3j+PUOCa/J55g5iJPODPA3Gx+dqCT+/iw7eb4FAIBAIBAKBQGA7LjKKR4mU0vNSSv8lpfRLKaU3pZS+4uz1+1JK/zml9L/O/nv10Z7TiT9EgYA9nACTyUT7+/saj8d5RZuVU8g04WoQHbdiS03bNyvUTtq8lr+450yGnRj5ir/vOoHtHJGE1wkWdHLkmQgeWuh139vC9lhJhkDzOVa2gQsKHjhX5jN4cB3XKW3l9DW7KEinhHY2m+nw8FCHh4eazWaN0gY/p68M42pwyz3zgDFzccfLOShL8aBG3sfxgMDg5/RsAOabB1n61pk+Lz1U0D9flo/QP+5EYFtLymrc4VGWnpR9X2Y/uIDh91VuK1qev7yP8r4Rgcq8DNwwLux4ngjHMn993Pz8l2WduOOAOYWgQtmMC4I8hwhHCDS0zUUxH5vSGeJtKAU32um/7yqeiO/iQCAQCDx6xPdwIBC4l/F4HArHkr6qruv/kVLak/TGlNJ/lvSFkn64rutXppS+VtLXSvqam53MyYuXEFALD3HodDo6ODjINnxIFEQDm7yvskLWIRQ4Hrx23QUFiKmvgvr2etjDfWs/CA73wDVZ8eV1CA/b6bFzBCu9rADTTlaZIaWel1AKGdi9S7KPk4NzcQ5KA6SLK+++mu+ZD/QLIsbe3p4ODw81n8+zZR6hoKoq7e3t5TFxxwGkrtzm0Mmql0m42IPFn/KHhx9+OJPYsgbfV70RpsqdLBhDxpO5wfzw47kHXz13ElwGinJNFxMkaTKZXGhfuQ0o84VtUxFHPDDRSzSAO3N8biOyIT7gIHBxw8WJ6XTa+Lw7cObzeRZ1+Oy2nUlwAHkpkwt1lBdxTy5yeRAquRaUg/jxo9EoP4PHx8f52RqNRhoOh43gVcQ6xtzhLoVHcs7sIG7rd3EgEAgEbhnxPRwIBO5ZPGZBoa7rd0p659m/j1JKvyTpOZJeLumlZ4d9l6TX6yZfnm6B97prCPmNGzeyoMAq6mQyyWICuz74aqyXGEjn2QDY9iEgUlPMcCt6md7vZQBu2XeLupcDcG4yADx8zsmSr1i7I8D7h+tCiCFskEzeh9yxe4J0Sgg9XI//tlot7e/vZ/GjqqrGNn/Y8yFy0rl7w4P69vf3Mwk9PDzMK8te81/WtLMi7kSYtvuqNIGIiCvj8Viz2SwHXPIevx8fH2uxWGSiX65ccz4XV1y0oa/39vbyfVy7di0LUl5Tzzgg1pQOEh8f5l5VVfk4yDTnZWxLEku7ndiX1vxer9eYU+5I4HnimYLYe7kF/UCJgzs/2OEBss/YUGrC8aUoxvjhUNjb25OknIVQltuUz0m/388uF473LBSeb9wLHiaKc4nzMA6eN1J+B/Ese7+RxbHLuJ3fxYFAIBC4dcT3cCAQuJdxWzIUUkrPl/QRkn5S0jPOvlhV1/U7U0pPv9nnsSa7td/JJyu0bpVmhXo0GmUiDyGESHrQnjsGbty4kYMcB4NB3lYRcgNpgVzyugsQTv49X8FLA7gPz0Og/dwfq/ms9vJZ7skdBW5Hh+jxOvfrgoSn3bvzgFwBr9HnWAggbfByEC/NgMhRfuLOC46RpMPDw7yto69me3mLt9Ht+b5jh9v3IZruBigJvSf3l6vvPoYQZMbPiTir68PhsJEXgejCeRhr5g3tYi6xe8dsNsuEm7GjDe5u8ZV+vx/PL9iWf0D7vS/59/Hx8YWgUgJM3Z3jAlm/32/MZxcc/N4RGLi2XwNsNpvcl61WK7tZEAmY17goOB/n4j58jruowjjTD4wPY8tzWJZEuFvBMx3KZ/5uweP9Lg4EAoHA40N8DwcCgXsNj1tQSClNJP1LSf97XdeHj/YP8JTSKyS9QlLerUA6rxtntRFCwYqqkya2cCwt7E4gpXMHgpMJnA4QJMiNlwxsy0ngfL6q7cdxHSelEFOugRjhtvX1ep2v6SvPTsxK4QQxgtIJjocMQSB9TDy8btuqu29D6au0Lpr4Ci5EcTKZ6Pj4WNeuXcsuBjIwaN9ms2lsAwrZ9np8Fw4QkjznAvEDsYG2uoAknQsK3n53h7j44GGRiCnuRun3+zkfgOM8+M9X+L28gDZxn7goIOGU97irhvmCaOMCkZfwlIKX5xl4vsa2FXcXlRw+D2ibOycYa4514Yln1p8XHwsf21KQ8HwDL02h/0tw78w/Hy8XZxgbru8ZFGWJj5+3fO1uwW35LtboiWtgIBAIPMUR38OBQOBexOMSFFJKXZ1+cX5PXdc/cPbyu1NKzzpTYp8l6cFtn63r+tWSXi1JBwcHdRlK5+FznU5Hh4eH2TLuK9vdblfj8bixaglphwxh96cuez6fq91uazQaNerfIXwnJyfa29trrF56SKP/l+tCxjyHAeKaUtJ4PG7U2EvnVvbSqu5igf/PiDp6yB5b+WHv57ru9hgOh43Qvel0mt+jXwaDQbaFI7pAriG+ThBp+2Zzuh3ieDxWv9/X1atXdf36dU2n04YDgn8TwOilKYgoEDkIvJcozOfzRhkJ21dCzM/mkyRdILLbiK7/28tPAOfw+cf13MaPjd5FGO6JnUYg8rgU2JVisVjkOTQYDBoke5vbxTNBaL8TeknZ4QJ5Zm4jyPnnaHcZVspn+b3caQRBC3cPThF3tLhAwj3wnLhLxUsa6LvhcJi3jES4Y87Tfj8/x3nphGdv+A4UjCnPqo+7P2fbnA67jtv1Xbyf7ottLQKBQOAxIL6HA4HAvYrHLCik07+0/7GkX6rr+pvtrX8t6QskvfLsvz/4KM6VCWVJDPiDfn9/P5MqauRZeXTLvxMsLNq8R5Ber9fTfD6XpEymR6NRrhmXlC3fLhT4iigWcs80KHcHkM6zGwaDgSaTSSZ38/k8f94t4zgNnCy7fZs2dbvdnFkAoSPoD6IPUWSl2UP1pFM3wuHhoU5OTgPsJpOJDg4Osu1ckg4ODnK/QoLdRcFKPDsqPOc5z9H169c1n88z0aZ/cJlARskQKO3miAq8NpvNNJ1OG/3c6XQ0HA4lSUdHRxfKAzzEkTIF5oOXPhCeSG4Dc8TLPegz7tfdBV6m4m3r9XqZsB8fH+vKlSsajUaNYE7OQzu4FvX/LpDRtqqqskDhjgPO6eUQ7prwnAnmVCkI8Dx4KYDvrEAmhmc54IBwtwxwxwNziPniggzXQWxotVqaz+d5zBEwcKYglAyHQ52cnOSwSy+dcsHIt28ty2y8NMnDR++G3R3A7fwuDgQCgcCtI76HA4HAvYzH41D4WEn/P0n/M6X0s2ev/QWdfmm+NqX0xZJ+U9Jn3exEbqV3KzZ/+EOUgJc5eGkBJIhzQCoob3AbNaQZgjIcDjMhgjj5aiy/eykF/3WrOccPh0OllDKhnc1mjVBGyJwHQLJ7Acn1kFdfwSfQDiEEouiOANri2RME5w0Gg4bdmzR/yKeXgnjqPvfKCrun9btw0+/3NR6Pc9/7WLgI5LtueM19aV2nrIV7qqpK169f12g0Uq/XyzspeKaCjwVtYFxoL2DVnHHERbFYLBrEl3kFKWas+PESDBcHPGcA0UVS4/iyPMMdChBxFwkQGOi3svQBcF4XOTz00d0Ifk4Iu5fy+PNZEnb6mvch9n6d8vMudnCd4+NjDYfDPB4uHrrY6GUuk8kkzwvfMtTLPbhGKVj6zhPu0uj1ehd2aNlx3Lbv4kAgEAg8JsT3cCAQuGfxeHZ5+FFJl/mBX3Yr5/Kaa1ay3ULux3nQHK9tq5N3m7VvoViSV6//hkhQSgAp4TNupS7bIJ1nK3iwIG2A9HoiPm3Flu518pBpBAm3kLOiyg4MnjHhq/4e/ueuDw8PpN3L5TKXFvh9eggfx1J+gFBAGQPCAltK+jH0EcSPc3twJH3qmQBl4CJOCeYFTgcfU6+B5zO+4u6uFfoGAu1lKKvVquHuIEsBkcZDLX2sPQeCc9G3ENZ+v58DAz0nw/vc5xljxTgzD/xe6TMXvCDwiEp+LeaRf56Qy23ZBd6XXnZAu+kTfzb8+aC9LpB49gV9yDzi2eSauA+87MRDM/lxoUpqPvP0kc8HH4OyROZuwO38Lg4EAoHArSO+hwOBwL2M27LLw+0Af/RTP401mtXp0g3gpBiiAVn3LfpYZR+Px9k2ThYBq8SQEyeCrEA7wfX6b19Jx4ngtn13MvC+HwOxcSv+bDbLLgm2SfRr0WYEAIgpgsJ6vW6UabDS7kRuPB5ngsxrEP/Dw8Pc52UIoofm4VDAreC1926Hxzniwkld15rP5w17vK+Sl6vC9KVnHHj5BS4N6WKpgMMFF9rrhJE2+w4ArNj7PXlAIyvi9BXiD/PC8xmm06kk5bwJyh981d0FjrLkx/sE0aJ0JJTw7ARcOOQRuPOF+/PsCc8w4X7oY/8vwgfzzh0XknIfeF+7kOeZBow/4h5CFjkL7lhiHo5Go9yXknL5g+8M4tf0LJQya4Hx9LDMy4SVQCCwm2iNx1Lr4i44gR3GZqOTszLUQCAQCNx92AlBgTp2as4PDw8z4RuPx7py5YqOjo6yrd0JCKvAvhMBNnlWm2ezmUajUV7Vh1hQp+/kn7IAJ+GQMieYECiING4CL9egRtxXWyGd1Gp7CQSEylf1nZR6yj4161xHUkNAQZBwF0JKKe+6UNd1DqWkn9brtWazWb6nwWDQWNGn77wOfT6fN1b1GRfOwXnKVXh2mZCURY52u50JIcdR0sB5nSSuVqu8BaiHELKTBXPLSTdBl74qTYkLYgMuCqz0vV5Pe3t7GgwGmRizPSb9jYDitn93Pkyn0+yswKq/bfeIcvXcwRzudDqaz+eNsgdJWfCS1Ojf+iy0E0GFuefPX0n4Ea5oB+1m/Ckl8M/0ej1duXLlwlzgGUVMcycRPxB7n+vtdlsHBwfZseTBj+4iQVTgOWYMCF7lOfC+9iBHLzuifTglSgdNIBDYXaROR3/2535KH96/fqebErgFfOXb/oAe+l0hKAQCgcDdip0QFCQ1/nCH0M3nc81mM913330ajU630YEUsCpN+J10Tnz8p91u589A1i6zfjux8lVsVjA9gLGuaw2Hw0yEPEyRfAB/D0LjK6WQJq5N6r2vLLsF3MsVpHOCzb3TP6Xl3u3gkDNI93g8zlkEy+VSVVXlfkDogKy3222Nx2NJ5xZ3t9dDzB3Y2wnwe9rTnqZOp6PZbJbFDYQRVubLUgTaU+6cAfGtqip/3nMCytVy+rNc7SeIsd/v53ZKyu4XyDXtYZwYP19pL0Uoyhcg8m7hJ6+CNpZlBNwTJJd5Can2eblcLvO1ONZJ8nK51HA4zOLHZDLJAhTn9ZwG+tCfGY6nH7g/xorn2PuB/vUyHA9AdGGO83Edyg8Q+LycgueM54j5OplMNJ1O8xhUVaXJZNLYscLLi7w9HhzpeQuBQGB38Y5/9cF69v7h6S+p1u8aHGnSGt/ZRgVuCV/37H+vr/zh02iB+bc9R6Mf+Mk73KJAIBAI3Ap2SlAo8xEQFfb29vJqoQfgeXggf/xDwKTzlVdIgpc1+Ep2GfoIsS3hJNbbXAbZQa69DZAZ3vdVYGrBIaW+Osw5Svj5vM0QLA+fgyixgusBjrTbQ+zoL3ZRcNEDlwL34a6MMhTR+0pSFi729vaykEApCGPjmRW+gsw9brP4cw1cEYgKtJO+dAGGNnIPvlLOv4GveNOeskzASb/nUzB+g8HgQl2/k3VfEffMDhePPB/ERQjPHvA56WPhApoTaBc+PCCT8fScBdrO/BiPxxcyRegfzy2gLQh/fv8+t9wB4eGRXIN28Ey3220tFov8b4QORBfmGFui8uzjAOIeaYNnNrgAGQgEdg/tZzxd7375++m1H/G39UG9kb0zuGNtCjw2fEhvqP/4Qf+3JOkFL/9jeu7mJRr+4E/d4VYFAoFA4NFiJwQFxAG3nSMaLBYLzWYz7e/vN0oZIMiQKLdibwvlY5tHyhC2BfldVo/uK7JlhgEkzFdmnfC5U6K0jLPKykq4k0y/NufhvFzLV+vLwDp2r4B8nZycZBcF15/P53mVHDeC5z3gFPGgx3JlWpKm02kuR8FtwDXILoBY9vv9vKOGh056OQPjj0DBCr+TVJ87visHQpH3pVvovcSF85DbwTj5dpGMEwGNkHpEACe/TpIp1eDeWGWnDYyZ504gKpFxUJaJMH+4vjsIaK9vqejhkaXYRhu9f3yMyYQga4E5joBEucFwOMxiVJmLwPnK0o5y/riwJSk7QNja1YUHvivoB3+GeFYQlHgOcLAg6nBOF9AYQ+4BsfGRMioCgcCdQWs00uyjn683/uVXSRrd9PjA3YNf/b2v0ee/6OP1nh+9T5v3PnynmxMIBAKBR4GdEBRIwd/b29NkMsn2dgIUH374YXU6p1sx7u/vZwLgZG0+n2fCVAavpZQaNmbq11utVl4lZ8XeV4EBJE9SFg0IJJSa1nwIqa/+QhYh+C5elCUULoZ4Ar6vAkPaRqNRFl4gq761oVvJpfNVbkhYacsfDoc54I4gQSd+o9EoXwdxgt+rqtJsNmvs0FGKCmRADAYDTSaTTFjLNH/61AUY71vGEhIIuXeSDiDaZD1wjJeoHB4eajqdZmJ69erVhnC1XC5zKYrv+gDp9FIBFxUYQxeYEAPod+YA89szDubzecPWD/Gmz333De4T4s3cSCnlVXwCNL3kgC1YPSTT57RnQhCWiHgwnU5zSQxt8VBNQiCl81BM2kKbyxIlHDAurHg5Av2KMIX4sFgsLpQ+IUwtFot8j7id/HmmjYg97g7yfwcCgd3Am7/5Q/WmT/37kno3PTZw9+GfvM/r9c6fmesVH/Zp2ly7dqebEwgEAoGbYCcEhc1mo4ceeiiTQ3ZkgDy4dXkwGGg8HmuxWGRyTnifB695wBo7IUBC1+t13m6w3+9rNpvlum0nplIzGM/LCxAW/JoQMI71Ov4yxM7BeSC8ECjgFniO97pxVmfdUi+dp+PTJlZq3dpeVZUODw8zWT44OFC7fbrLxWw202w2yyvzHjIpnZI6FwEIAnRBRzoXTXBi7O3tqdVqaTQaaT6f55VoxsjFILZpRLDx/gAeTohw4ztzlO4S3CoIPPQ9pRO9Xk+j0Sj3qZdQsDJe5kfQLoh4KW7hKEAUIGCxLMlgzkHcEdXKkERW6ZmPZVlMSklXr17N57px40buRy/bkM7zS3gGEC+8fIH7wBVACYOLFJe5eJg7V65cyfPBHSmeX0KJDmIHfURJh5f04FhyB9BsNmv0KRkVnrfhIgjPpwtWnuMRCAR2EK1ao1aICU9VtFNLz2qP9Jz/sNJb/nqUPwQCgcCuYycEBbYShCCwiggx8ER3rNGejO9E38/Ja6xqQ0ZYRWd10gm95y/w+ctqqV0wgJQAJ0dlDb7X3tNWyHS5wu2Wd471uvqShHndvLfRj/f7Y+UaMkZpibtEFotFJluEY9ImVtwRVBAByvHFgcA44wRhhdnv0fuRe2IMIIoICIRu+jVL4cZLBNyqD7kfj8e5vAPS6WGQfg/etxBd+tbnDETY8xQgvV7iwJiUpRNeWkIbvCyhdGIgojCHcO6MRqMsHLHdJ4KRC0v00Ta3iGeReHkR/UVZDAGL/jzhkijLXUoRjPuh/T6GpUsAZ81ms8mhot5GLyuiv8F6vc6/e6lSWRZTjm8gEAgEnjy0U0vf/rwf0wv+0Afo2d3fIb3uh+90kwKBQCBwCXZCUICEsl0kxNXJCyuiKSWNRqNsc3frexnCB1ildgs+uxn0+32Nx+O8CuxCBf914lWuBHsWAkS8DBJ0kgNxKol+KUa4Zb4M1XOLvYdRXhYgV7aZzwL69ujoSPfff3/u3/F4nC3j5YqypEzAPAzQQxWBk3G2YWTl2h0EXMMJu+ccOLyPIKglwaeNkvKKPPb4wWCQd2wYjUaazWZ5brCS7yUjfv5t/Ul7t/2XcfTARHeK0C8IGbTXczVog/cDx27L3eDalLJUVZW3mmR+umjBj4sEuDFKQcHFOkoJKNlwR0Hp+vAtWfmsz11/5lwo4zUfVxcFma/upkA8wR3CZ71N9AG7sHgGBH1Y7hISCAQCgScPv/qJr9Hvfc6nSa+70y0JBAKBwGXYCUEBS/R6vdZ0OtV8Ps8rpmz55tsubgvo8xA/7NZuIWclk7r96XSaidXBwUG23lPnXSbmc55tQMjApeCiAsSXGm8nkU6YSkfEIzklnGA+lhpvzu2r/bgHrl27ppOTE41Go1wWwKr+4eFhXvWWlF0fvA8QOhgXJ9hkM7CijUjhxM3LG/r9vo6OjlRVVcPlASid8PBH7z8IojsCptOpptNpPmY0GuUyjNls1tg60MWRsrTAwzxdiOr3+xcIMHPcMxhAp9PJ5QZeloKLgnnHPZZChYs8LoB5OQG5Hwhns9kslwq5uEFZS0pJVVU1SoBw89DvvpsCbhaEGnI1vJSIe0WUQKTweyzzS7gW8K1VmRO0DXGBMeZ59r4onxdcCmxD62LfI5UpBQKBQCAQCAQCgR0RFDqdjsbjsWazmdbrta5du5Zr7QeDQV5hhbhdu3ZN4/H5PtOssLMCCeGAxLASCsGH2OJ4KAmYpJxu7yvoHEvYm3ROzln59e0vnbAT4gcBLVeft6XJe4081y6zEiBVTtocLrwQiEgf0E+eeM/OD6wmY4P38gffNnE6nebkf0QFnBoIFb76y/lYPYbA+so3JJn7ZfwIcITIuyW/bKcLL95vrEazsu7H+Y4hHqLo85TxpSYfgu9Bf+wy4U4SX/0ejUaZ+Ho452KxyI4QCLKLIYPBoJEzUboSXMhgDDj/YDDQwcFBzlLAKcK9MGf9c+78Yd4zXp5bwT2ywwd94WKU5z9wLhd+XJzhfjivixoejNlqtVRVla5du6bJZKLxeKxWq5XFgU6nkwMZ3WFTPicebrlYLPJ4BgKBQODO4+++37/Q/+eD7nQrAoFAIHAZduKv5pRS3uHAySmZCVjkfRs46Zx4eqmDlxcAtzFDlEnQB2XyPiRq244RZV09x3mYXelmcFv/ZXXZ5fl9ddvFB/rM3RNe6lFmEThpY/UfMgv55V4IQXQLOedZrVaaz+fZWcB5fKcMbx82eIQLJ4sehufOC7e4Q6ZdPOI6bo93kuiuDY7hPJzTySKEF4LrYYW+ewb9CVH2VWzmn5euuODBvEY0YSXd+91LBFw08DISRBNEM+9rVvn5N+OM4OH5BQhq/HhfMkaIJ4hELoJBzMtQSs9McHGGe1oul40QRc8NoZ/8Or5rCddxUY/24erwsgvmqKTstODcPi6MK46oUvy4rIwoEAjcOTztJzp6yXM+Sz/1EeGDvxfwQb2Rntd9751uRiAQCAQuwU4JCq1WKxMEVpCpAfc6bkQHt817fXRJ2iFKEBV2hMCSfXx8rPF43PiMbzG4Wq0aq5glIYGUeZidh+RJyoTVt4l0eBYCIEDOxQMPBvSV95KEejs53p0afs2SEFITz7W5xnK51HQ61XA4zIQO0upEzFfPR6NRFhRwaPguCRBWdzSUooIHQZbjSt9S71+WBSAIuLODOcO1IMHSuUjl9+B9UJJpxp9yDEkXSCvvsysG5QyQa+ZmVVV5hbwE7UaI4V5L14q30UsFeMZw3jAmpTjjootnmLhYBtn3vvDnz58z2u4uFT5fhif6c8v5eZ7pb8+Y6Pf7OUwTUcG3b/USFeYnfefwAFREihATAoHdxX2veYPqN3+YXv9PW/rYwVrdtL0cMRAIBAKBwBOPnRAUIBnD4TA7EiAOEERILMTr6Ogov+d2d99eD7DyDXEkcJDdHyBx5YopbeN1bPAeDMdqsKQG+RkMBpn0cV2OuyzsjdC7lFI+F/+l3d4uHAeck1VrX+323TJYKWf7zU6no+l02iDg1NYjPLC9IQRruVxqNpvlkhRKADabTd4NwkWO8Xisq1ev5pKFckcHdyk4GWQM+N1X9F284TjIupdT8HmuCVHG6u9EmO0PS8GF/2Kz93wDruX9xr0RGsr5EAs6nY729vbUbre1v7+fsyquXLmizWaja9eu5VKcbSCwdLPZ5LFjhw3uz0tSyKdYrVYaj8cNVwGlAL4ziJdTeMnOI5FrBATPXKCfJpNJFqnm83keMwQH3zK03+/nc/IcEuLou7R4ZgJ9T0YEpSF+jW63q8Vi0dii1J1I5a4bvvWpfxcEAoHdQfrxn9PfeP+P0F986xv18YM73ZpAIBAIBO5d7IygAOmDLEBieQ+RYTKZ5FBFyDbEhxVIwtR8pZUyCVbFyQdw+z0CRVnSwKqmlzP4quZ6vc6hj3ymJNflLgQuMEAKt/ULx3p9OW1zazaCCzseQJaxykP4CLyEQJV2c+rjZ7NZg9iD9Xqto6OjPFYQfsYKgQcRZb1eq9/va39/X3Vd68aNG5lk4/4A5AD4SjvXwfHBf8vVbG/DbDZrzAPcCE6KEWcQQhhHLzdBWEGA8M+zGk5OANfEEbHZbHLZCG1GCOt0OnrGM56hpz/96drf39fBwYGe/vSnq9vt6l3vepcefPBBzWazHBaIMEXmg5NhSDr3VzpLaANjh5jG79vcEGVopxNrz8Bg7jKPBoNBDn5kfu/v7+dnjfnprh0vMzg+Ps6uBheEEMXKshoXAUqRz8t+ut1uFiu73W4eK67ju42Qm0K/BgKBHUZ9MXsoEAgEAoG7Cavf91H6lL/9Xx7TZ//zKz5O6cd/7ja36NaxE4IC7gEnLU72nUxR5tDv9/M2eIDcBQgFZM7dDrgYsKhDWDyADiLhxNXD4Zy4cS4vkYBIcw5JW50TZWmCE1Yn1Jf1GaTIa/v5nVV67pN7paSEfvEsBD4LYayqKu8CwD1DmhkTBADPswC4JCBsk8kkCx7ej9vEFCf2Jbn011ygYX5Q0uL377s+4DbgnGR2ePifj5GXFHi76FdWxCHFzAnmcTn+q9UqO2xSOt1pAZIPOX/Xu96V+5VnwfsWYQDxisBMF3i8j/v9fs5xoG3ch7sSXExzsaEspXEXigce0q88S4g6OG8kNcbGx9PzG3xs3WXjuSKIFv55n8ucg/5wdwffFThTeH74fuH5CVEhENhh1LW++HV/Up/3yf9V3/DAL97p1gQCgUAg0MD8M3+H3v2SR3a7pved6c/f9yuP6fyv+hOfoM6nf8yF17s3kp77N378MZ3zsWAnBAVWh9227av3hNA5aWH7OA/8Y6Wf991N4I4CVjqdsEE8IYNOYreRLtrq7SMQDpu9ux04p5P7ss4b0G5q2MsVVyfTLnRAxDiWNkjnIXsk/FPO4Fv/lS4IwhZxjFDDj2MCgsr5cSYA+oW+Gg6HGg6H2XbugYruMnFHBrkT3BOE2MfTrfmED5KNwbygT71/6cvSfUB/+9jQVo717QhZgUc0wOnCubxUBVfA0dFRFgJarZb29/ezy0U6F8dcvPLSBElZUNhsNprNZrnsgrnj8wlxgwBK5orvgMA90//8l/FhrFxY85IJL0Pw93y3irqucyDqZrPJDgx3nNCWMl+BueohpQgKZT6Du4tcEONcjP10Os3buUrKJRK+Q0UgENhdvOBr3qB/+tzfoW/4PSEoBAKBQODOof0BL1Tdb1Lrd3/2Qr/88d/9hF3zVz/xNVtf/w/zvr713/7B/Huq1tr88mMTLR4NdkJQAE7gEBaooabOHUIBOajrOlvWIRVsISkpJ797ECCr7O4qQITgOrQB8uIkFtI2HA6zG8GD+SDXHjonKbsjpCZxgexQwkF7hsNhI0jRSwC4Nz4DcfNt/xBbaDO1/NwfK+NY0efzeb4+rhFf9WalHOBA4PzbnBbuLOl2uxqPxxd2xICgMi5OxoETexdXer1eFk4oiRgMBppMJmq1Wjo8PGyU03j5A2PFuLtTgv528YcVbIQnLxNh5ZtrOcEdDAYajUbq9XpZ6FgsFnrPe96jyWSi+++/X91uVwcHB3mbVEl617vele+LYEpyEyTlEiDuiTFk7lKCQ9sHg0F26bhI4ffuwYztdjs/c5IagYYcU7oNeM7KzAWes8FgkMUEnkF3SzBOPGu0jdfKnAWfbwhKLkgtl8s8VnVdazgc6urVq1kEYo64eMBzVwpsgUAgEAgEAoHANnz2D/6IvnD/wTvdDEnSJ4+W+uT/8H359394/Tn6Vx/8wBN2vcctKKSU2pJ+WtJv1XX9qSml+yT9C0nPl/Trkj67rutrj/JcjeA7VhYhKL7ijUUZezJEFHLJ+91uN9fGQ7IgGU62pXOC6tsUAoiM15MjCmCdpj6ca/pqKiuwkLPFYpGviQBBW0o7OYBklcGETuxLN4HXyUO4aMuNGzcajo+SVPuYsMLtmQtOoOk7d5pIyv3CvbCqTPspGeDajCH3yEq7Oxh83BArnMAiQkmnJHg+n2exp9yto9Pp5JV+yH5ZSuIr4p5J4eLUcDhsZFCUq+YQf0j9ycmJDg8P9eCDD+rg4EDPeMYz1O/3NZlMsmOm3+/r4Ycfzs4DgilbrZauXbuWxSZ2QqHsgfYjFrEqj6BD3zMHeTa8PMCFlzK3gTZ4qZCLCV4y5H0NEDrcReKZJ15e4uKAO4f8GXG3in8/cA52gCDbwsMwOXaxWOQwTPqN/r5bcDu/iwOBQCBw64jv4UDgqYvZf3iBXvH8H7n0/c+cvF3SbqYEf97+r2j05mXjtRO19LpP/Ggdv/23Hvf5b4dD4Ssk/ZKk/bPfv1bSD9d1/cqU0tee/f41NzuJrzxLukDkPCCOreIkZSLitc4nJyeaz+eNEEV3ImD9d5u1dJ4s70Fwbu2GCLvtm3p8yI2vvHqJAyvMHpro5RjcrxNvX6n1f3N+2sk9k/aPAODthLR5CYZ0mpDP6jlkl3tAkOB3t9K7mOA2e+6lJJ0cX25FydjwOcbAa+UhdWXGBa/5+3zeQxO5Bn1L/zmJhhCXIo6kRikO/QfpdwGCsXT3DPMLIcPnKw6Thx9+WNevX9fBwUF25TzwwAOZ4ELu3WkwGAw0nU7zPONeKbdg/tP29Xqtvb29RlYAVn/uiXH2EhqENBemnOT7ODM/ORcikfeDl9f4NTmvzx1+97ILFxW2BUr6Nfyc/lkyWNrt0502uDd2fEGkKctV7gLclu/iQCAQCDxmxPdwIHCXIfX7+l+v/AjVne1/V4Jvf//v0MuGj5SttZtigiRNWgN9/v57Lrz+V77xWUqz5zZee7/vX6n1X3/mls7/uASFlNJzJf0BSX9N0leevfxySS89+/d3SXq9bvLlWRJ3JwoQFS9TqKqqkfjuAXQAq710TsYJz/Pk/23bw0EKnZRAVJ1M1XXdqA/HHu5bPTqh9KwH33ISko6g4PkBENNtGQp8xsmWuzMIJ/QVd9oEkSOg0evq6VtKNCjpkJRT+D2Zn3OT5O+lD07Sy1ITjnFSi3XeV/khmNK5aOCElGt6lgJzx+vhOR6Bw3M0vASgvIa7EiDNJXnmWM+UoL2cgwBL2gpZnc1mun79uh544IG8an5wcKDZbJbn5/Xr1/O44oggg8HdF/Qz4g1CBG1GYOC/HmbItTxLwTMKtoVnej/72DOWzB0XUjz3w/uuzHHwwEXf3tHHpgxO5bqgFBQkZaFmMBhkVwhzczqd5rIRLzPaddyu7+JAIBAIPDbE93AgsLtIH/Whqjvb/6Y7Hnb003/4m3W1PXqSW3Xn8Wuf/B0XXnvR7E/qfZcv3v6BN3z/1pcfr0PhWyR9taQ9e+0ZdV2/U5Lqun5nSunp2z6YUnqFpFdI5+UEHnhHEr0Hqnl9PTX+rC5CRlj1lU5XVWezWSYaV65cySFwo9Eo5wlgsfdzYMN3MuWkRmoSF2q3IXhkDzjR9Ppvatkhfr5DA69jx3bnQ7li6vXuXgeOvd5r1su6doDTYDweN9wZbB8JKe/3+xqPxw3XwOHhYUP8YOXbA/LIoCBosMyicFcA5N5FEogqRJgSF+8DJ+e4DiTlrQxdWKEkxR0FXvLhpNqv4aGMLl546YUTeC9LoYSB91arVc6VkKSHH35Y7373u7PwwBy9cuVKHgsfw9FopMVikZ02x8fHORSUlfb5fN4QQh566CEdHBxkN8pgMMi5Gb7qjzOF+VfOL3d++DPgW1xWVaXFYqHpdCrpVHQZjUaNPqnrOve7P8+IKghBvlMHQaWICC7suGC2bc4zbkdHR/m8o9EoZ6H0+30dHx/n7wXfpeMuwLfoNnwXD3Tv/c80EAgEbhO+RfE9HAjsHFKno//z+79DL+49koMgnjvwy5//Kunzt7/Xftb21x+zoJBS+lRJD9Z1/caU0ktv9fN1Xb9a0qslaW9vr4YcjMfjhpWcmma3Y7sLgM9BOCEfs9lMknKtOOQIYuNlAcfHxzo6OmrU/vuqOSv5EFnEAxL9IZcugMxms0zuWf0mcI/shfl83hBKEBO4dxcQUkpaLpcNEswxrVYriwHkQ0jKOx5AMiHz7gJxAsk2kZR28Nrh4WG+zt7eXl6NbrfbjZBA2guZWy6XOd+AvnT3BmM2GAxyG1yc4N8esOnt5hqMB2IImQlcE1cFq+LMA7YqRRxxB4KjtOX7Cjmfw4nhjgt/nd0ymAf+WUSSw8PDvE3n1atXG9sYjsdjHR0dZWcFLgauce3atSxmDIdDtVqtRqAi8+Xw8DATZSfzXkbiq/0IUwh13q/0l7s/JpNJDqE8PDzUtWvXtFgs8vzBJcS4Mp/p0/l83niefQcIXB08H4RLOlqtVg5hZUcTn1M8t2w5u1wuc2ZKp9PR/v5+4/vnbghlvJ3fxfvpvkf2+wUCO4gP+Kp36KN//5/Uf/9rr7rTTQnco4jv4UDgzqD14R+sP/39P/CIx7RV64Ns97PA7cfjcSh8rKRPTyl9ik6LRvZTSv9M0rtTSs86U2KfJelRxV1CwHy7O0iD1AzI43gPa/PP+wolxA8y7lZniA3En+M9GA5A9t0mL6khcPiODaz+SmqsAPOen8tr2L3UwIkQ77NC7KUgtI9gQD6/XC4b2/L56jnnc5Q2f1Zs1+u1ptNpJlz9fj+TUt+i0WvpfQx8fFmtd8Lo5LysufdMBvqPMfasBy9dIDOA+8A5UeYvuAuC65S2fdrkuw3wmpdGeHu9zfRFGZDpJR+9Xi9nbFRVpaOjo0ycvW/c7VAGWlZVpel02hDZPK/CsynK/BEcG7zvQpoTdp5NBDDOz+cQ1xij0WjUKI1Zr9dZdMNpQB94eVDpVCi3zOTeXBTyPvJ7d2cK1+J5oDSEcePcbK/JON8FuK3fxYHA3YZ3f9oL1PqMi7WhgcCTiPgeDgQeB972f/wuLd731rfqHl9d6A+Mqkdx5MUFw8Dtw2MWFOq6/jpJXydJZ2rsn6vr+vNSSn9L0hdIeuXZf3/wZufyVV0IGQSc0gAPLvQVb8iNf5bVV3cPYGVmpdXT7t2W7zXctI0f3l8ul3lrP2+DkxuuD9mCHEJ2KCHwfAQIEiTILdsQHt8BwQUFt2zjqKiqKgsnEGpJOaCRzznKoD36a7lc6vDwULPZTJPJJAfbDQaD7GaQzoUf+tbFHkpAlstlIzjRV4HLWv2SoPNaSUJdoIBsesClE2Oux/t+z4hCTlIRR3yOUNpSYpugABCJylV1RCbm/XK51HQ6bRBiJ+UuRvFZSiD8nl184zoIDj4uLir4fPC+RWDis15+RF8yT+jvbrebBacyr8QzKxhPd5+s12utVqssiHkmBZ93QcGfIc9Joc0u+DCnaRNOIfrL3T93A27nd3EgcLfh5OM+XP0/9G792IsfeYUqEHgiEd/DgcCjREravPQjVBf847M+67/qrzzwpjvUqMDjxe3Y5aHEKyW9NqX0xZJ+U9Jn3ewDTgDYxo/dECBXrMQCJ3388U9ZA/vIS2oQS0jQfD7PRGUwGGgymej69euaz+cX7OxuyeZ85CPQdogfCfG0DxLEdT1gkNIAFwcgOYgKnuFA/bk7L3hNOidabu+n/MFr9RFVIJEunpRgBZw+ns1meu9735tXmREV+v2+qqrSbDZruEwowSiJLYQRMgmZBp6L4YF/9KeLI04UvayCPncHhxNqJ/tu78fB4vOn1WrlFWvIOoGIdV1nUQUHhgtfCFx+HfoChwSlKOPxOB/LHEO48LwPym98tf/KlStarVY6OjpqBIY6Mebc9AvCjqTs+riMSKeUsojmZTXcF0LI4eGhNptNJvK0z10BhHeSb+ECFvPet2D1HAh3+jBeXrpCmCfPA3PF3TKc078PvB2c/24od7gJbvm7OBC4m5A6Hf2l7/5OffzuBmsHAvE9HAhIEgukB/v6nu/+e3pae3yHGxS4nbgtgkJd16/XaXKt6rp+r6SX3crnIZUQgr29PY1Go0x6qqpqkK9tq9Gs/vL6lStXNJ/PtVgsGgIA58D1ALFBjIDAUT7gBJ9Vd+qyCfPz8ETs7W4Fl5SD6iBZfqzXsPs1aQvEFeECou7J+u6ggCyt1+scuoeA4qF2oBQUnFB6icZisdD169cbxJ5cCEIAl8tlXk0nhNHDCMsVYg/Ac2GGYyGF/N5ut7OQwrXK/vMSCL83382Dfqam3lfKWa138cHnRlnGsFgsNBqN8r15W8t+ZWwZN4JDcbOQeUGNP64ERISqqvK8pq3MA/JHuB93v/iz5rZ+7sPng/enCwLD4TBnf8xms0a5AM8i4+LBqMxPBBfEjjJQ0UUFfo6OjnI5iD/DfAcghDCPR6NRQ0T0XTd8FwjfnQXxrcxMcJfK3YLH+10cCNwtqD/2w/X//2ffro/otRRW1sAuIb6HA4GL+M3Xfqi+66Neo7bqEBOegngiHAq3DFY/3fI9mUwykZnNZpnUO1mBUPR6PS0Wi0yiSG6HNEJQfTXehQnKBVjNZJUTlCu2WN8h9oTkDQaD7HCAkHodvZcF+HZ4vkLufSKd13BXVdVYUefcBEw62XILP7sAnJycXLB/+3XK8eA60vlqMNdg94fZbJbfg5zhDijzLdxlQN97WURJwLmPdrt9IYeBYwnRLIk7xNVt/+54KB0rvI/g4sF/tM/dJi4CQeDJtvBreR6IhyXyee5/s9nk3UgQhFilp4yAa5Q7k5DdQeAjZS8ISX7/Pi+4DmPh8IBM72sX8lx0YXzdCVMKcYhD5bVwanhQp4c9LhaLRlmDlw55HzNXmRPu7mE8/DiuiWCGuEO/+rGBQGD3cNJt6SX9CNkKBAKBXUbqdPTLr3mx/taHfX98Zz+FsTOCAsQAe/d4PM7kAAJV1o9TVkBOAIRrtVppMpnksgIPdSsFBV/B9CA3LOXASaCXWnC8pAvWd67n1mwPRoR4Q3p43e8N8uuBfsBr/r2cgOM6nU6uq6ftTva9bf5Zr2XnOhBJSDYhgIgU9F9VNYNRvB+cVPI7bdkWEAmZdxu+k1rGxc/jY+z/9iwMz7RwUaF0vpTCSBlC6CGJnr/hBJbzrtfrLCi44MFxzFvmNo4NiLnnCuBcQMxwKz/kn7yKcsyduHvWhI8/91sKCh5c2ev1skPB8yfYGnXbLgkIhh4Q6uPGnHVA8mmHjxWCgIs8Ljhx/bKsh2eO1134cbcT5wwEAruF1os/UO/4qKhzCAQCgV1G+xlP1+Hvfl/9xO/5Zj09XAlPaeyMoOAlDQgCkBi2gCtXDj1zgb3lsZBfuXIlJ80vFgtNp1NJukAgIVEQc+k8L8AD9iBnkE4PD3SS6SukHnKH8MAqMUTGSS11+l7f7wTfgxpxSczn87ydHsKKOwO8TKMkViWZ8l0MpPNcAtpThuFdv369kX/hRNvb7jskuKPAHRpl7X4pKLhjgSBHrklflASyFC4ApNUJr4sDEHRfFecY3wXCBYHSceIuD4gubhIvkfHPHx0d5RISShmw49NeRAXENYSOskzBybqLUy4UcI/8cA4ELs9ZoN1eZsCz6nOEXAfagkjCvVLa4ePiroNy/L1fS3BfzEmOoT8858TFPw+TpPShzDvxOREIBHYDqXsq8r/5z0z0a5/yD+5wawKBQCBwKVptXX/pC/Tjf+cfSgox4amOnRAUpNNdEdz+/e53v1vz+Vz7+/sNS78TBQhxq9XSeDzO2xseHR3p2rVrua4dp4GTW5wQkJvhcKjBYJBJl3TuQGi1WppMJnmlFJLmQW+Qdu4FUuhChNvAJWXyxbUozZCU2+1iCyvVrO56W2lHr9fLr0NEIWVsR+gOiHKFuAynI//Aw+ogX1VV6fr16xqNRpkwspLu9824UhoyGo1yNobfLz+0n/v0LT89s4KVZEoUWLn38EFJjZ0kIPr0gZeE8DrX9BVqdx8wB5kbLqhss/Uz98jy8F1IvKRlOp028hA4P6UrrNYvFovcd/TDarVquGzKbAFEORcAmAsuBnl+AUKAr+j7Np8epsm1cSqMRiNNJhMNBgMdHh42xtoJfekaQfDgul5+4cGmuCFK1wtlRYyBi5L+XHNenh36nfBX/64IBAJ3HukjP0R/9wdeLUl6oPV6SaM72p5AIBAIXI5f+Wf/m17/cd8kaXKnmxJ4ErATgoKvoOIUYNs8SIMHrbHiCLnjuOFw2Mgw8KwFBAu38/vKqRNF6vwJX6QNvluBixq+Is/KK0THVzld2HDxgWv6ubhXD12UlNvqgCAhJkCKOZc7Ajx8sLTne4Aeq7nU5uNkwEVBGyC57mzwEg4XRrzvIIEc6yUYtNdXyxFU2LKTOeM7fNDnN27caGRXbBsP7xPcL7zvq+zswOD9wn0gbHhJCH1VlqFs+93nwtHRkcbjsfr9vm7cuNEg0E6wvS84pztD3PXgc5Q2uggmKY+rz2nHyclJHvPpdNoYS3eJuCDkLgxEuX6/n/udZ8Tb7G1njLzMx10TXJtx57nis2QuePaDCwiIT2XZCZ+njMrneSAQuMNotfSibqxyBQKBwE6j1davfc+H6m9+5A/ouZ0QE+4V7ISgIJ1bryFzEPrZbJZ3GXC7spcCQGIIpIM0+RZypRjgVurSpo6gwAqlEySuDfGQzretdIs9Oxl46QFigJcueKghnylzDNwe7kKBE0AIk1vZS5u/W/xpu+dRlCvy3Kdb2V2I4V4gcJA+FwgQJHzMtvUHhN93FShXyF28QGgpP9dqtXIZCP0inQo3jC/zwvMLGEN3a3gpBkTa3QeQY/rbBRQfp3KO037PRiDkkntgPHy7Sh8fd1yUggPziv7x9jLm5bz0ecvc5DqISwhsfk53B5TzkRX/8n6B/5u+5nyerVEKHe7MoZSHeeDOFencoeClS+5K4buAa3JPHi4ZCATuLFof/sF6++/Zu9PNCAQCgcBNkFpJ3/8x/0gv7kXOzb2EnRAUnABJyquDm81G169f12QyybZuD2hz8us2aMi1r1T6NSDXkGCECiftTmghJ76nvaQGefddBSBSTv4gSpwD0UQ632EAO7m7LzjWrfXA3QyScrsgpVzDr106DFw0wFrvRJg+HAwGOeiSbQ4hbk56/Z5PTk40HA4bggKih6+a+/aF4/E4l57gYOBclIWklPJWn7Qbwt9un+6mICmXFNC/ngHgAZlsX+nihc8Ltr70Ocr90K++yt3pdDSZTPI5PLyQQEPEL9pYVVWe98Db4df0TA3OW4ozPg98DiJ0VFWVyTIOHBwu23INGGfGxAUE5i7Pj+9w0uv18j17oCTnRKwgk8HJPOIAcPcK9z+dTrXZbDQYDPJ9IETwPeBbRDKn/fl2hxJzgmMHg/gfYiBwJ9EaDPSWP76nX/3MyEwIBAKBnUZKak3GaivcnfcadkJQkJorvPfff78Wi4Xm87kWi0UjrBAxwFcOnVh5HTTkH3t4r9fL5A9SWbZBUk6IR8Dg+hBVrulhbp634OUEkBvfJQA3BSLJycmJ9vb28rkgWRBkrwenndTI0xdeF+627bKswQkS2QKlGFJVVaMuf29vT61WS1euXMlEfjab6ejoKLsSaGO5XaDX9ntphRNcD2CEvFOm4rX37i7xfAR/v9vtam9vL+cgsPpP/9Mv8/k83yO7cyBcYJOnf6uq0nw+z31PZgPXhLDye0pJo9Eo9y9uGy8P6Ha7Go/HmdwTHOrlIC5osH2iO2rod1/J99IOtpTknJJy6QH3zj2yq0q52u/ikhN8F6m8H7ys5vj4OG8H6/kKzA/uhWeaTAueQc/u4DnwuUY7XJCiBALBAJGAvkHMcSeHl5cwh7mnUuQJBAJPLl7639+r1139Vkkh7gUCgcAuY/VJH6l//u3fomdFqcM9h50RFNxODkl0O3iZc+CEvQyf47PltnVuDfesA1ZIWT13ccOJrm/HB9mDoLIS76UG1KyXtv5ut6vhcJhXa1n1dUs813fCWlq/fcXc69C5f9/1gWP8HE4cnaTRlwQJzmYzzefzvPsG7dtsNprP5w37ve84wKqzb7fIdcpdGejncstQRAnePz4+Vrfbbbg4IPiIE91uN4sEkFRyEnA3eDvL7RMRDXycIeCQUhd/eM3nFa4O5gBjwyo9RJu5Q/vW67UWi0VuH2ICZRmeOVGSfa7vrhzu0Z+BTqej4XDYCCdtt9va29trBC2W5Tdcm3+7G2C5XGYCzn2enJxosVhk90BZNuIOAYQAylU8i8H7NaXUKJ3wc9GHCCOUWXiAJW4J31WEtq3Xa83n80Y5SPlcBAKBJwed57+PVv+41ucefK8mrfjjNBAIBHYddTuFmHCPYqcEBULc+MOfn/l83iC+XmMuNW3gTuikc1u1r0BDSn01Fzix99wBVofd6k1bpXPbt19HOid6ZT04OQHAyw68rttXvoGv2rr7AALpWQBeHuI5Ee6iKPuzzEogu2C1Wung4EDD4TDvxuGlAk7AIOPL5TLfKz+eTVAKPl6KgNukHEcnkX4vXJcx4loQS0ivl8sgKHkfupsCBwHiD6vrkFauUzol3ImCG4W5xLnoj8Fg0LhPz4rAJYOg46vufv981u+/fDb8fUQR+nu5XGo0GmUHD1kDZSikiwrluFCy4CKcpHxu37GFH3e4MP89jJIATg989HuhraUjqRxDv3e25KR//Bnz0Eq/z0Ag8OQhfeSH6Nc/6UBv+qB/oEgIDwQCgUBgt7ETgkIZBMi/IRBOity+DcrAOhcQnJxKatj7/fO+wiudBz26dd4DGiGibr93AsNqqd9XWQvvbgq/52336W1DfNi2iur/ZgtFv6cyKLAMFvRzeogfK730Z7/f12g00mw2u5A1QRuxx/tOEePxOJNOiLWLRazSQ4pxWXhNv5NB3wkC8YD3PFeDMg7cApSDuMDiNn4XpUajUb6+r+jTPx7a6f2Ac4H2Uu8P2fZ7xIYPyfY6f1bOl8tlnnNlsKKHfLpwxLG4HcoQS8aX7SiHw2Huc888oL0+z7zvXIDg2auqSsvlUrPZTIvFIm/56XMOAk+fDQaD7BKgD1y8YdzK3BPmO+NDeZMLTWwPyetsXeqCBuVSZYBkIBB48vCrf2hfv/yFkZkQCAQCdwtao5HW44u7hQXuDeyEoAAJ8xVGD0iUzuvuHf4HP0TLX4MQskruZQRut/c96kty5ivHXubQ7XYbNdeURPA7ZMct3SXxdsu4t9mFFXc3+HaMEEfaLCkTXQg6AZYliWKl28PqfLXYwXWWy6WOjo5048aNHDjp2QE+Nh7Qt1gsNBqNssXfAxKxmfsqt/ef173j/vDVZUQORAhKHTgWgj4YDDIZJ1ByOBw2Slhc1GEMcBiMx+NGgKKLSKxqU6bBOHhNPgQdku6hgVxvMBg0BCf/N4QaUQsCjJWftuI4oJ/cpeB5CZDn0WiU58N6vdZ0OpV0mhUyHA5zGQfAceBz1XfPINyS/oTcS9JisdByudTznvc8jUajPO8oCfHwTHIZyJ7gWXGBkXvDFUGZCu4OnjN3QvCDY6Z8tvwZZ+zcRRQIBAKBQCAQuIi3vOoD9Qsv+3uSene6KYE7gJ34a7mua81ms2xvhmi57d5XPp28QoZLC7+vwroN3EsKnHSUtne3QUMqeA1S7wGHCBFlbTfXJaBPOq8dd2IknZNIFww8/8Bt51jtS3gmAavEvrLPNn6QSPqMe/NVXXcPSMor5W6p5zjfXcD7mpwFCCFCAvcxn88zsStLVVz08DIUhAnaiVhAv+CiYKxOTk7U6/UyaWc1HqdCWR6A04F+7HQ6Go1Ged74ijrjCRl2B4uXoHS73RzUSDs5v9fze9+6+ID4xI+TeHfb+DNFH3sAIuf3EhXOXdd1IwTT5/a2f7sg56JWmefBv4+OjvTggw/qvvvuawg65Xk9SNJLTXguuAf62EMXec4QwVJKOeTTXU4cm1LS0dFRDr2kD1zgCAQCgUAgEAhcjlan1qgVYsK9ip34a5nwNg/7g/Q4ofXVUggRK4kQBg+s89VmXvMVda9D5zUXAtyaLTVzDzx7wNvoRLMUN3x1tdwOzzMOnGB721wAYTcEruuBh14z71vxQcYRK1gZBmW+gF8bUurbdrpDw0MSPVuAa7At4nq9znX6vkLt13QxwLMOEBYoBShr5KVzJ4s7PLg3yD4ChAsUTv69Nr8sD3Dy7+NH3+Gg8DIO2s/c8XnjfYw4UK6c089+Pv83nyvLX/x58LwKHye/B4QRRJey3MgdNS6EuChRltV4xsFqtdJ0Om3kTbiLwD8jqVEG4n3iQgilR4yxO05c0PCx9XZtC1rl3kr3UCAQCAQCgUAgEGhiZwQFVrEHg0FDEICksVrLajN/8Je2f88qcDIJgaRGHpJTJtn7ZzgOYszqvl8XAgm58Zp1bxfWfe6X//oKra8qc33fJtMdCogFOArKXAnvh1JQgEi7ICMpB9mVu0ewUwM7HdBev1dEBd/a0lf5KU9wO7m7GLzvfVXYCaALIn5f9AtlAfyXz/uKPLX1lH2s1+u8gs3xZaYFn0NcYNw41nd88K0XPfjTsylcYPJSinLe0G9Y+F2cwuLv7hA/Lyjnhs8ff93bx5i7OEc/eiiiux4QHxB7ShcN56J0pixPcoeRux6YH+6a8TlcPh/0P6BPy59y3jP+vjOMl7YEAoFAIBAIBC6i/Yynq9uLv5fuZeyEoCApW63JO4DkQZxYVYbQUjfPH/xelkAJgxM9asWdAJKgD5wgORmUdKHmHqLHtd0pwLkckCRfWff6bz8Hn4f0QVA9lZ+MBD7j+Q60w1e7PU+hdAdAXBF0IOrtdjsLORBByDhtJKgREupuBc+goPRksVhkEcTJu6/ELxaLXJ7R7/fzeLMS7yQWgk+AIJZ17rMM/5OUxQFfgaadtJ9z8HnGisBGFzror8FgoNFopH6/n0UYBInS1eEr6JDi+Xye+6rMEUBU8KBMwjFdlKK0w0uHvB/KkgXawpym/MVdLnzOS2Pq+nxLS/pgMpk0zkcoaK/Xa5QgMH+Oj481Ho8bQov3uY+viw/uSmL7S8ZNUt660u/TnRpe6uNZKu4I4pkMQSEQCAQCgUDgEqSk//3H/oteNlxKilDGexU7IyiwWiyd5xFAcMfjcSaukFh3CkDeJDWIva/oQjh8X3oAmXabOuQGYu2r9nVdN1L3IVVe/uAlDJIarglfNfaV55Lg+Yp/uXrLZ/m8278RJ0is95IRyFRpA6fPq6rKpQGDwUDtdjuTWSftHqCJmEGbPbkfZ0QZ3Ee/s/sCQPjg8y7qSMrhl05wO51OHgvpVPxhTL3/vaTE50pKScPhMJ/fyxoQEXxXBneb0K+MXbvd1mQyyce7qEC7fTcEJ8oQY0QciDhkvHQLeGhi6W7AueFBoP6+z9Oy7MfvxcsoSpGB8a6qKl/Ts0LcKeH36yKYCxIIW+RWEIpZOnT8WZVOd+HodDo5F8TdFy6ibRP7cN144KmPa2QoBAKBQCAQCFyOQWutdgox4V7G4/prOaV0RdJ3SPpQSbWkPybpLZL+haTnS/p1SZ9d1/W1m53Lrf5uK2eVG3LsAW1lfbiTcki12+ghSx6Kh1XbV3JdlIDUeIDcyclJ3t4OUg2BdBLrRL4kkE7SXBTwMgIntWWeg/cbx/g5XXxwocRzD5xYOTH183W73cZ2fLPZLJ8HMaHMLKD97qzwvmOF2sUIvyY7EUAsEXXKOSKpcX7a5JkHwMl1SaydpErKzpNyhZ/ruyuBvnDBh/b6NQCuAr9GucMAn2O+Q3jdUeGigrsRXPRwYu1Bku5WoC+9NAQwDtsyDrhXHzu2a/R5x1zk2SznPwIY5/P57zs7tFqtLFSV89pLSsqx9Dni7g760OegO0DcJXE34HZ+FwcCgUDg1hHfw4FA4F7F45WTvlXSf6jr+gMlfZikX5L0tZJ+uK7r95f0w2e/PyIgAh7+5yv8CAqQesIBy9VIJ7XuTnCHgYsQrDSzRR6ropAfiAvXH41G+ce3CWRVmTa5JdtXY52sAbdq93q9Cyv69E9Zi+6rxRAht6NDICHkZficb9XnK9gQOt81gWtXVaXDw0PNZjNVVZXt+L7CK6lB8Pg8Nn53Orhrw9uAMFBVlebz+YW6dhdMOK+HbZLY70GRPr98xdtX5BnrcvtP7qmcd+6g8fklKZc+IC54zkOv18ulCj5WzCP6dTqdajabNeaV95U7SShVKUWF0mHg98w8deHHS1F8dwjEBT+WeeE7ZyAWlTsyMA88UwL4fHanwmKx0GbT3OnDx43ngjnA88OzsO2H6/p3TbnLhudRlMLUDuO2fBcHAoFA4DEjvocD9xRSt6f2+z1fg7S++cGBpzQe8/JbSmlf0sdL+kJJqut6JWmVUnq5pJeeHfZdkl4v6Wtucq4LJNproPnDnm3/fH96X70uLdFOINhdwN0D1NK3Wi3NZrMG4XfrM+3j85AcauWrqlJVVQ3iUgoYEMXS/QDBPT4+zmSW+3GyedbHF/pGOq0Zp3YeMg5hh/jRful8O0L+zf16GQmEHpJGqcJisciii68oO7nz8gYntR5C6ER+G2njvfV6rel0Kkk5G4BzMsZkLSDqsJqN2OTbOErK5TPMAfqfex0Ohzo6OmqQaO6HfvXr7u3t5THdbE63wrzvvvvyfeCaWC6XeQwnk0nOTaA9ZWClBx+W89K3GC0dMev1Oo+Rl4dMp9OGSOIuD+asCza03x00zGsXy7zfy/d83no5hF+DeV46NTgn80o6dY9QMkI/4pTguWHel24DxtwFlbIkxMXIUvjYVdzO7+JAIBAI3DriezhwL+L4Yz9UP/TPXyPprll8CTxBeDx+3hdIekjSP0kpfZikN0r6CknPqOv6nZJU1/U7U0pPv2kjjJw7CWS13lPePRvAV6l9xdXt8U7g+S/n91IG34HBCTcoMw5YFWUHCrf+12eBdZ74X+4i4PXh6/Va8/k8E1S3eDtx99VniJffE+TLV+Spvfd2eN4C/b3Nmu/lC5zbhQAvA/DPbQuYdHLnZJLxL8UkP2dZyuDbTPb7fQ0GgxzO5yGTPv6ldd1LDRCqWPUfDAY5dHPbjgXL5VKz2Uyj0UiTyaQRHslYTafT7FzAoUAI5mazyc4YgjY9RLIskeH+PU8jpfMdLehzBDIINnNJOne/bCsRQizw8gh32tBf5fPgpRIIZtL5zic+H32++lxzwYTn0sUk3BmMy/HxsabTaRZj+v2+RqNRLiVx1wXfDf480GfAHRTulPD7vAtw276LA4FAIPCYEN/DgUDgnsXj+Wu5I+m3S3pVXdcfIWmmW7BypZRekVL66ZTST1dVpclk0igj8BXRsrYbMcBdAG7rdpJSkgS3bWOTxrY+Go0alnfO5//mB7HDSxE4dptV2gl1SQJZufdVdWzxHkC3zS7uq6ysmiNk+Gqvh8/RHu6/zJoo+9xLF8p+pL9ZUS6FHncxlNt5+rnKMYeUQjC9f8oSjbKsglV7b5uXTZRiByvs21wdnjfgW2+yEs49TSYTTSYTDYdDtVqt7DZgrP1+EANw01CyQLvLrAfmsbff8wC4jpf++Go7fToYDPJ9eT96OYZvzem5IdvgrhT6qjznZYGP7jBxMYNz0g7P6pCURUDpXNjxHTC8PIK+8AwIv9cyiNXn4l2G2/ZdvNby5h8IBAKBQIn4Hg4EAvcsHo+g8HZJb6/r+ifPfv9+nX6Zvjul9CxJOvvvg9s+XNf1q+u6/qi6rj9qMplof39fe3t7Gg6HjZV4Xwl1QsWKq9QUDbzmu6yh95V4yB1kjh8npCWcKNGGMuwNokJNO3DiVNZ+Q/B8VRixgfaUq8gOr3HnM5zTg/1IwcchMRwOG6vYrNA7mfba9pKAleUATty9NIF7c1JfuhR8bLh3ShW8jMOFIheOIO0uNHEdrsu1y3p66v8Xi0XeQaScA14WwJh4HT65GqPRqBFk6Q4Ad91g3a/rOrssPGDR+8fHwcWwbaKC/+7EGUcM7XPnQHmtMn+kHHN3Uvh88awIdwW4u6EUL3wXDN73vpKaO2+4KFPXdR4zdgopy43KbR+9hKgULcsslrsIt+27uKv+k9LgQCAQeIohvocDgcA9i8dc8lDX9btSSm9LKX1AXddvkfQySb949vMFkl559t8ffDTnu++++7KtnTwC6eKKpZcyOAn1un9JuYRCupiHAMpVXye0pfXaLdsAculWa64H6XNyx3V8VwLIEyQTZwBuDQQAt4VzP7znoY79fl/D4TD3o9fL++4JvmpNeQXwvi2dHqVdvOzPxWKRX3OhwssY3JbuK9neN05ecRGU5Jx7K8sZfE5Aar3/ymPX67Vms1n+nXnGGJJ9wX159gDOiZSSxuNx/vx0OtViscjHMTYnJ6fbQT788MNaLpf5nKPRSMPhMAsb6/U6i2u0RTp154zH4/x7eR0EAN+1gGdos9loPB5nscbFE+Aig5/ThQnmKCU5nkXhc4HzuvvgsjIUtpDElcN79A/lDz5nyfTwOedlUu5ocbHA8zIQQUoxoRTMdhm3+7s4EAgEAreG+B4OBAL3Mh7vnmhfLul7Uko9Sb8q6Yt06np4bUrpiyX9pqTPutlJ6rrWYDDQ/v6+xuOxbty4oZOTk8ZqZL/fz8ShJCQQB1ZFfVs43AQe6Ock1VcmqYWHZLC1H4GEvtKKyEFdN3XrbK/I+RAmqqpqkGTpYvYBn4UE7e3tZau97wRAO1iJLUk+RI5cAV89ns1m+XrU8LtDYrVaZcLuuRKlG8AD+MpxmM/nmWQ6WWVMCNDj2nyO9/1eAIIOTgsvqXDyz7lKIYQV/MsIIudkvpRbP0LKS6dAv99v5GJQJoBzgdV16vxbrZb6/b4mk4kODw8bW0J6+cByuczzij4vHRGj0SjPK4QN3xXB5wJEHhELUcIFlnIL0FJ8KcsV2PXCxTQv2WCelWKOzyWeD88N4X49o4HPcZwLYsw9BCo+Tz+WgpCfv9frNZwU9IE7Pu4S3Jbv4kAgEAg8ZsT3cOCewa/9jY/R//mH/+mdbkZgR/C4BIW6rn9W0kdteetlt3IeghARFSQ1VuulcwLgq54QQF/hhlRsszo7SfTXISMQ0/F4nIP1eM+37fN6a3cYeLjbarW6sNpaVdWl5NbbVZJDrlXW1ZdW9LMxyaQKQcCJo9e4e3+4I8Gv5Su1pT2e63sAn2/B504E7293hdBHZQlEeR3ui7INr7F3oYZ7peyCe/aymbIkgGPIgZjP55lwe/mHOx64DoTZnSCIMdT2e+CjizDtdjuXgnjQJPd/fHzc2AbR21nXtXq9Xp6rXMv7ir5zUYH3KIEoS1YAr29zdLjI4f3H+94X5fPmc9SFIO6hdOSUn/M+2iZWbWun79bBj89DHEYuqpXn23Xcru/iQCAQCDw2xPdw4F7C+v5jfcZ4eqebEdgRPF6Hwm0BZKKuaw2Hw7wq6cTPa7p95fX4+DiTKIiauwl4b7PZNBwDfm1f3WTVGZJcVVUmsb6SzrldVADYwX0VttVq5fOUxM+t6ZzfrfTb4KKG9wdE2ld2WV33lWxWusuSD8gXrgVW5RFsvP0liYeoOTkuV3rdZeGrxKX7wkkx90i/sgUon/H7LAUWHxPa5GGKCDYuBK1Wq5xn4FtOOhG+zJ2ByMAOHggAiAPuiHHCW2ZM4CQoSy+4Fn0wGo0afeWCFXOBNnoGBffuop3PKeBjW4pZvO+OEB9nF35om4+Fl0W4W8WFHn9G/HMcwzzw+Vjez7bdUDzM1MtRcIaU/RAIBAKBQCAQCAQuYicEBc8B6Ha7Go1GucwAYu6hg4gIvEeJAe+3Wq2GFRuCJ53Xs+NYKFe/qa8ejUbq9/uaTqe6ceOGqqrKQXoIA5PJJBPIyWQi6dzxQNuxVJO3wDG0e7FY5LKEcjV5Op3msgScAL666qvsEEgn2FLTxTAYDDIZg+Ry/+VqLETUxRpfzeY8fq2UkiaTSSbIZDi43Zw24i7g35BzCDGr8JRHcH7e8znBNVx0Kh0q3kbawT3Qrw4XMxg3J7S+m0C73c6r69J5qQljPJ/PNRwOs0ghnYsCHggJ4XdRhnFhrvH+dDrVZDLJjprVaqXFYtFwY3hA5mAwyEIb4oe7fnBaeK6IlwgxBr6lKs+S9ydzrq7rnBHhu31A/mkHuQgEalJ6wvlLZxBzxN0rvhsKn0FcIGvDHRi81m63G9ejhMLvsXRoBAKBQCAQCAQCgXPsjKDA1n1uT4aU4BKA8ENQyFiYzWZ5NRQCCCkgl2A0GmWS4Nv/QX7cCr1arXT16lVJ56F9JycnGgwG+X2CIz2TwYPdIJkcMx6Pc0mAuw98NwbfstGJpXQxt0A6J27SOQHmdW8b70PaOLf3pwf5MR6+uu2CAyQVoleuTiMItVotzefzxjjzX0iedEqWEYK2rYh76US5s4cLQmRlcCyEdrVaNcodILRkMuBeKbMHnGxLyiIHRNV3+WBcOf9wOMz9s16vdXR0lNsHkV0sFprP56qqStPpNM9ZCDbjz/ggpvHD/JKUt6ssy0w8R6Tf7+e5XFVVI+vAj/Xx8t/pex9vXuNYruXiD6+V5NzHzUUQnkfOwzzlWMbPBSfPJSHXwkNIKQlhbnsplc9LBE2eu3ApBAKBQCAQCAQCl2MnBAVJms1m+YeyBEjvbDbLq90QNK9Hh3yW1mbpnHhWVaV+v58t0sBJsxNN6XwXh+FwqOVy2RAiWIH3LeogfrSfH9+q0W3dpcXd24KVnPZAuhADnFjxA4mTzsm7ZzBATj3IDqeG19TTZ7TTHQZO9P3awFevB4NB4z6diHr5AcTfV8QhlJyzLO1wAlvmKEDGed/r+hlnX/0urflersI5aQt9QplLv9/PW1WyUwGikIcsspPEZrNpEF6ENJwvHnzpwZI4Z+ib2WzWcJF4loUDUu95EBzjzwu/c79eQkEfu7hE/5bhhhBxzzPx59DHyY+jv3y3CG9vufWnZ1Mgtrgo5EKJO3poH/3Cc+335SJCCAqBwJOLX/+rH6NPeNnP3+lmBAKBQOAS/Mo3/U597kt+7E43I7BD2BlBgVXawWCgwWCQLeHr9TrvNe8E3FdDnbyw6ul19DgdKFXw1PdtSe+siPr7vloNQWRFGhu2h+1RdsH1cQhwXi87KFeFpXPS6zZ7P4aVbI7l3qXzFeRyxZ22QqD82qzsQr4hYdtIpve/t9nzAiCHrAhDEhkbgOBCn/l4ltdyR4b3S2mJp+8QFnxulNtSeomFj5vvRIAzwvMp6DPKY7wkYD6fZzGFvkeAKsUYRDPmumeGlGUizD1/ZniNsS6DChEtvGzE79tJ/7YQTY7z/Ax3HrgYUD6b3HcpOvkY+095fy6W4OphHL30BRcM4p6Lct5/nMPnqrthXIQq+yEQCDyxSP2+jj/mQ/QX//Dr9Pn777nTzQkEAoHAJfjml3+3Pn08v/mBgXsGOyMonJycbmlY13VewaXGGpIGgSnrm8fjsSQ1AhTdtk7ZA6u6x8fHOVPBV2w593w+bzglAMRyOBxKOg/i87IEiHSv19N8Ps+kbb1e51KAfr+v2WzWCH/DOQH5c9u7pEYduGcPsGpNOzxPwMmz1BQreN8DA91VwPnm83ljl4JyzMrfIWXD4VCDwUCj0aiRvSCp4RJBWMGCL+lCv/u1mAP0wbaVaxwDfk1s7tTJ48hwcsr5nTyTNeCuGVa6vYRmf38/E1jmoedFMO+4HpkLXr6AAMVcojyFMXdr/2g00nvf+948J3HSuIjEM+MCG6JF6XyBtLtrodPp5CBISTnvwMNS3aHg+R/eN6VwxjVdyGNOkskgnT+b9P1yudR0Or0w95inKSWNx+P8TGyb+54h4SVOpWhXilqBQOCJRet5z9YP/fPX3OlmBAKBQCAQuEXshKDACuF8PtfR0VEmcFjKB4PBBUu4dG7Z9tVor5P341jJREwYDoeZJDuphFg89NBD2tvbU6vVunBdSRfKGrgO5+h0OhqNRo0acg8zZMXaiZSXNPgqLySROnAnhJBBD6tjVRrSvK1+3UsDpHPC5bkStLt0HvjqMufiHAhDkDaEGz+e6/C7E1nfoaN0PpTuBu7T28v9+5aZ3BNik3SaOcB7rHAj6PR6PV27di0T3clkkucKORoczzFXrlzJAsW1a9d0/fr1C2PvIZL0m4tQXtbjW3pCgheLhQaDgXq9nvb393P+AuKFf6bdbmsymeR75pounpRjwtzy8hafk4gLLhDRB5B4LwGiHR5GyTkYfyfu7lChnZTnIJrwPeH3BCgfGQwGjXvz8hTfIrZ8HryEKBAIBAKBQCAQCNwcOyEoOLndbDaazWY5wG4ymTRs7m7Ldus/YXcQG4ijdEqUSMDndV9pdVINefXAO37nOEiyr3I6ufLVWz7vGQJO4vw1D2mE3HpZg6/o4t7gc5BJSKuknA1QrraWdeyQXPq0tKB7lgH/dYGidHGwgr9YLBrXcIKMSNLtdjMhZhWa+3X7uV+HHANIZxkMWOYelPfgO1zQrjIIkP5ndw9cDd6XvhUnWRS9Xk/dbldVVen69etZIPH2uCDB9b323/MvIPS4C3it1+s1nDlO+Llet9vN56KP/RmiTZD7shSi3P3CRSYvrXBhBfeJZya4AMVzJzWDRp38cy36qhQouL4LioxFCS+TcYGknLNlFkuICoHAk4wH36sP/dYv0zd/ybfrk0brmx8fCAQCgUBgJ7BTggJ/xFNrzqqrE7my3AGCQeCiB+p5DkFpQaee2pPuyxyFcgXdywnK7QylZvgbNe+0oaw7d+LEPXlmgocW8h4En3aUtf+suJeOCa+t9xVYJ424JsqVY69jL/u+dG34PVDGwJZ+HjLo446zwt0hLoo4sXMyCIlHwNjWDvqC/maMnVAyHvSH/zAPvLzBrf3MTeaXdCo2TSYTXbt2TUdHR1lY6fV62S2yjXD7PPHSAJ9fnjWBy8Z3kvCMAVbky3DPbRkBtMFLFrYFFDIezA0XHHiuEDwYy20Cj5eSXFaWQDtxG3m7vb9cANvmPPDzlWPsr5Xt23aeQCDwxKFerfS0X1jr4c1E0rU73ZxAIBAIBAKPEjshKJQrl7wGKWFF1reVRIRgVRjixJZ80jmh3mw2WWzwFX62ouRzbq3HVg2x9J0EvMQCOPFBrHBy7qUM0jkZZQWbFW4PiYN4rdfrRk04K8/8eGaEr/ZS8+61925353qQZW8jjgeO81Vov0+3nbtIAmlndR9wPSeIlCc4OS7t+BD3sj8RTDwzAxGh3ILTHRZefuKijWcSQJi5Tw/nTCnlchx2JqDd+/v7euYzn6nFYqHFYqEbN25k8crb5M4b7pF+oJ2gruvsREAYwKXQbrfzTiiICp1OR+PxOLs33AnCvfocQqQgQNPnsJN7779SIGB8y3nv8/YylGUuLi7wX559fwbc/eNlJaWrhvEunRguCrpIWbpjAoHAE4vWs5+pf/ePvk2jVu/mBwcCgUAgENgZ7IygAEEvLc9uc5dOSddisdB6vc5kjlIAyMJkMskEitwBFxmoWfdVaK7pK/WQFV5jlZnAvLI+HRC656Tcyyt8O0ZKHHxVHgLm2QQID5Ay8hFoI/fAZ1xA8Lpx371COnc+cA7a1263NRwOG84RzunE0N0FnhnAffsWn25V9x0GEGhSSvk+t61IIxJ4HzE3vD9brVZDfHJHwDZ46KSXICD6IOrQL4PBQP1+X+PxOIdPdrtdrddrHR0d5ZDGBx54QMvlUg8//LCm02nOGvDyBncP+Io+Y0MfuygCSWfeMxcYQ7ZadVFhOBw28il41rwMot/v534j44NxcfEMYYmx87IKxDtKjxCz3AHhQkZVVfm8nNPLh+h/z37weUiOBkII/YDw498jjCF9W/Yvr/tuJ146FQgEnjgc/9pv6A9/5Kfq9/8/b9GXX/2NO92cQCAQCAQCjxI7IShIyoKC29KdxLgdG2LB9o2S8u4EbtP2mnwIjp8PArNcLi+sGjsZLXc5cKLkdnfOBwEjh6EsN+AYdzmUq6M4NlxU8LbjzoDE0S9O3rknL98og/ToF8QYyikk5cBD7y8fC0l55Z378DH0fkBcIX/CV7vdYUBwHvAV6hIIQ7hJGCvGw10IHnTJaxB7yjM8X6F0gXiAIuUECEyTyaQhHM3nc41GI41GIx0cHOjKlSvZXbBYLBquEc5djrPX9Psc5BoEOLp1n7H3DAvEBnJGGGPmnJcbpHS62whziT71khV3EtA2d5OUJT8uJHkAqjuFSsGKc4DSLeDtRshh3GezmebzeQ5FRcApHQvuVHBBgfP7d0UgEHgSUNfavPtBVfXO/FkSCAQCgUDgUWAn/s/tdnUn36xkO5mEDPr7kENJmUSXIW0QGs7BjxN/Jy5ecuD1/b5qvo2oAEi8b4Pn54XAOemiL/i9rusL5N37C5cF5I/t7zivr8xvE0joK8ir97GkCySL//qxTrwgZtu2l/SSEc/DoM/9Pb9n8iqcwPqKN6KME1W3xvO6zyWuTT+yc4O7URBAcGN47T3zifcJBOX6y+VS/X5f3W5X4/FY+/v7unbtWhYVvAwAlP3vOQT0n89PH2v63sfCS3qYK6ze+/3zWe9bRIgyMNSfTRe7yjngLgPP4HAHjh9T5kYwVsxBzlnOOUQ5L39ASBkOh7l0x8NFXZgosxRoD2IPz1AgEAgEAoFAIBDYjp0QFCBDvV4vkzPqwbFdO+ko3QFec3+ZrR0CCGFhZRTLdbkq6cSoXCWWzskMZQez2axBgnAOnJyc5Hsqgx89B+IyuHBR3puTXa+x950AWI2GfJYEyQmuYxvZd7Gi7FdIIO/5cU70nQy6M4JrecjkthV6d6dwLraAZC54zgB97QTc3RaQ53b7dFvOcvcMvx/ax/14ngZzlB1BqqpSSkmDwUD33XefHnzwwVxO4IINwoj3oxN23AYe6IkY4PkX3Is7G7x8h7kqKZcHlK4VSkc8s8RLFkphj3IW5gF9WooN5fzxczA3XTjk2aT/3SnibhbO4RkdPIvj8VibzSaXpOBgYLcXzuf5IDwLiC+lMBYIBJ543DgeaX6yiiyFQCAQCATuEuzMX8yenD8ejzP5mk6nDfu81FyhdNJIyGCv17tg8+fcrFYiRvDD50ri7iunkrI9nvO6sLBYLBq7QbijgfA8HAVY1n1F3lfm/d+cYzgcNsiQl2HUdZ1XlT20z1fOy9ILiLDXmjvczu5lFKXzwx0W28a1FFHY7YB2+0o1/0ZIwUHAijv9Sz+0Wq2cmdHtdjWbzXIfewmDW/cZO9pFqQXX9EBJSTo8PNRoNMqkeblcarlcajwe53tHvKFdR0dHuRZ/f39f+/v7ORSxqqosQLmQ4OTc+4HfPVATocH7HUEO0Yz5RR+7OODPk5N1zu/jQ78sl8vG1pT8uFvDz8n8LLMKGEu2YnXXUSku8GwiCHAuRCBJjW1jcShcv35d0rlQiHBEloQLiLiIjo+PtVgsNJ/Pc3+EqBAIPLl44+++ohd//VforZ/7qjvdlEAgEAgEAo8CO/PXspPevb09LZdLLRaLXHfOMZ6RsG31lFXNbcGGfJbjCWkjDNBLENzu7/CAOCd8EEpWsVkBZptHdwpwHkgkTgVeL2vIIU6eTeArvh4kuK00w1eLPUTSP+/96WUFDrfFO7zc5DKHSCkqlKF4fM5r8T1Az4ldKRZwDMKOlwxwLoffM7/7Fp+eC7FerzWfz7VYLHIYo48xpJnwQoQI7pW2TSYTzefzTJbZGhUC7CUcZIP4HCvbDFjNd+LMLhWQf/piWy7BZaUc3LuXqiBWeOkMQgXj7y6YsoSAMa2q6sJ2nMwd3/qSsXYHD9cty2YYQ75HVquV5vN5FnYkZcGtnG+MHcKOl89s6/NAIPDE4eToSC/854f60Pd+mX7hz/yDO92cQCAQCAQCN8HOJI852ez1etmqDElgddoJSPnHfklmy5p8J4HSuUBRliiU8FwFr8kHECbIoK+Cu0Dgdnm/Z+7HX7usLe4WACUZdXcDBNO3iPTr0odOKl2MKQUZJ2NOYgl4RJC5jIhxnjJ0swT95YIBK/C4CbwshXtw8s24eH/46y5ecD/Y3d3dAvl1glmWInjZgpNn+sx3JGFLSo6rqiqXq0jnTgPfJaQUFbztPldYiR+NRhqPx/k8XiLC57yUoJxLPo6ejUHb3RnjfetzpiwPSSllEY++YWyZv5fNOeaZ1MyHcFcL7fdxYztN/24pg0hpt+/+wucRZQKBwJOH+mfepN/2vW/TS3/hM/T24+mdbk4gEAgEDH/upz9L3334tDvdjMAO4XEJCimlP5tSelNK6RdSSt+bUhqklO5LKf3nlNL/Ovvv1Zudx0kmBHI4HOZt+batZJ9dX+12+wI5gjCzaukBjVinnayXq/pOjJxcu5hQEhnpfJXctwb0DACyG1hhdYLnBNzvo7Sj+3tOhlidJwyQcztZK4WIR1p9dVJOv5WiCKUCEEyvPS9dDE7Ey7DNkog6vK6fHRVI7y+Jq487xB5rPD8e0OclKMw7QhYRLVwYYD4xrqy2k7ngc43PIYQ5GWesIMiU9rijgLlP2QrtLd0d5Zxgd4P9/X0dHBxof39fk8mkIZI4ylBEJ9fuuvCyoX6/n8U+P4ek3AfucvD8B3/WXQTw58ZLmTg/YykpZyHMZrNchkEZSikEzWYzTafTXF6BqMC94Tbh3ulvsjBwR+06btd3cSCwKzj+jbep/0m/ru++/pGanlQ3/0AgcIcR38OBewXv+zk/p2/4kT94p5sR2CE85pKHlNJzJP0ZSR9c1/UipfRaSX9E0gdL+uG6rl+ZUvpaSV8r6Wse6Vx1Xec/+CH71EXzB78TEakZzDifz3MNdWndhpwR9Eg2AwQKBwTw0gGpuW2hCxEQNLdd83mIIATHSakT5PF43Fj19lV37xtvL6UUrKReVqLhogMEGiu+oyxhKIP3fJcKXxFGPPDcCf+sCwdOhCFqBP4Nh8NMFCXlxH6IvnRO9Lhn5oeT1fLenQB3u91cYsB9QYgJPqRfaWuv12u4RZbLpebzuYbDofb29nIOxnw+z6SVFfhtgkmn09He3l5DnHKbP0IXQgP9CjnnnsuMCS8B8muxRaRnU0jn23zyupcO8FlKDOgzxoHdK3CL+FavZemPlzcwvzykE5fCcDjMYgLXQlhxkcdzEmazWc474LyIA+Sb0DfeP/S5u1PoF9rprgXPS9ll3M7v4kBg1/AjH31F3/G3v0K/+pn/6E43JRC4FPE9HAgE7mU83gyFjqRhSmktaSTpHZK+TtJLz97/Lkmv102+PJ10s7uDByyORqNG4GC5K4H/4e/k1Fdze71eTrz32m2Oc1Lmyf6lC8Ft9qxmQmSclCE40F7O5avhvkrufeFE139oO3ARhc85EC9KZ4cD94SXnHgZCASXFXFIHLXt9K2vcCO+eFnINtAfbsl3cQWCXpZYkJPA9bwMgPYzFnVd51Vzv0f/HG0BzCEvQ3F4GcLx8bEODw+zwIKYQaAj52m32xqNRheuu1qtGuUPZe4Ax5bCAG3mfG7NT2e5AHweok4eBOPHPbjTh38jKrg44HkNdV1rNBo1+oaQSJ8LVVU1dp7gde7Jy2+YR1ynFMkQUegrf7Z89wd29OA97xsEMr93L8tw58e2sd9h3Jbv4kBg11Avl/qAV9/Qi3/ty/TzXxWZCoGdRnwPB+4ZfMCr5vqQX/syvenL43s58DgEhbqufyul9E2SflPSQtJ/quv6P6WUnlHX9TvPjnlnSunpj/J8eeXSa579xwPjvLQBQcFr+iEIfK6uT7eIg5CXq5Sl08Bt8bzu70vnLghfbc4de0bCPbehtM9vq4v31VwPxiu3TXRXAvftjgKOfSRBwS3oZUjfNnLrZI73yy0v2YZPOietLhJwLdruOyO4KOKk0+eI50V42QegnQgRTji33T/3wzxgXP19+qnMGqCPp9Op+v1+Dvik9t7dCL4lKkLEcrls2Py5XxfM+CxzwfvHiTckupybtIFdGgaDQRbf3FXD+XzMcY8gJriY5/PBSy54vhgr5r/fk4+ZZ5pQ1jIYDLJ44udGVCt36ijFAN8lg7bzGmNcllSU8wzcDYLC7f4uDgR2DSc//2Y9d/6+evHv/hxJ0pe+6Ef1p6687Q63KhA4R3wPB+411D/zJj3r4LdLX36nWxLYBTyekoerkl4u6X0lXZf0upTS593C518h6RWSdHBw0CC3EBvIHOS83NUBsoL92evMz67RSPt3kuXk1Wv+Ibe+swCiAiUDLlbwOdoEGef6rNZDbH1ngG0r5X7PtBtyRMkFn6GfOBckz6/LPXGeMoOC972evcyj4PVSUHDnAOdilV46zzbYRuZ538kmToWyLMDb6CJRuU0m4zYcDiWpsaNFmWnhwpG3BTLtxN1X173v6rrOfdzpdPJq/MnJiebzecMdg7OCcpiqqrRYLHLuRbkrhe/Ykc5KPiQ1yDMCDUKDi0P+3OBYoDyIfAh3kDCGvupPe9frdS5J8rlP0CTzjW1TS/HFxafyuXEnDOM/HA7zvfPMIcAgyjAX3WlR5nDgysDxRF/xnguF3ta7Dbfzu3ig0RPRxEDgcWPz1l/Tsz7j9N/f9OpP1p/61G+/o+0JBBzxPRy4F9Fan+hNq4U+sNtXO+1Mzv+lePvxVDdOtnOSx4IXdjvqp+7ND7wH8HhKHj5R0q/Vdf2QJKWUfkDS75L07pTSs86U2GdJenDbh+u6frWkV0vSs5/97Nq3u6PsITfyrITACZKvoPNfVnIlZdLkq/4erOhbHW4LA/RSBP5bEmNItqRGEKJ0Tqb9x4UO4ITVyaKv/kK6IEEcX1VVJqjuFHBBgf7xQEja4kSUa3sZhW/P5231unsCB2mzCwoQUcbQd6JYLBZ5pRwS5+UJEEW/H+9L2lK6DHxlXzolrFVVaTweN8YGRwt5Be6qqKoql1V49gD9D7knEPDo6Eiz2Uzj8TiLA+QPUGoxHo9znsNwOMztms1m+XUXVrwEATeKi2ql48HFCJ977uio61rD4VCz2awhyrn4QMnBcrnMIshoNNJms8nZBRDxqqryM0sfzmaz/L4/H+586Ha7Wq1WOQ+BZ4tdKRCKPLPERR3Pt5jP5zo+Pm4EojIPeCYIx+RZ5x75jvFnwJ//cseUHcZt+y7eT/dtr40KBAKBwCMhvocD9xzSj/2svur9P0F/6S0/oY8d3OnW3Bx/4O98tZ71937qtp3vk372YX3lfb962853N+PxCAq/Kel3ppRGOrV3vUzST0uaSfoCSa88++8PPtoTQg4hAr4yj23Zf7zkAYK8Wq0aCfSS8iryNleBr+q7U8FLJ1jJdYs0bYM4+Wo/ZK20yHPMZXkGvgIM8SZVH3s7K8Alwea6ECC3ntMur0/fJqJAIMmGkM6D8ZzMeWmAt6nsXwL2PA/ACZ+7OUpC584NX0mGLANyJVxs8Xp6xmK5XGaxApEGQYN+o22IL17jT3/jgkhn+QCr1Urz+bwhKrDCDlnfbDaaTCYaj8e5DXt7e7mkwIMXyzIfL2tgTPz94XCY+9H7EtHM5xyuAjJJ5vN5niftdluDwSCPd1VVua3uGnGXDS4GL4nhvnFZ+C4VCCzdbjfnL1RVlUWcxWKh0WjU2OqUOeHCEc9qv99viGb0kTtXeBYYU8bOSyq4fxcrt5XT7DBu+3dxILDL+KBvPdSL3/xl+vk/F7W7gZ1BfA8H7knU65X+0iu+RCdf/V69/kP/rzvdHH3n4dP1nV/18q3vPffnf/Om+W63gn//pz5B/3ryssZr7/7CSr/0sf/0tl3jbsHjyVD4yZTS90v6H5KOJf2MTtXViaTXppS+WKdfsJ91C+fMhM3rr1mdRziA/Pkf/ZAor8l2klNVVWNFm/dZDeY9FwIgecBLB7BPe7095MOT5f11J7nbSh68lIBVaN+O0QMdvb8g2+6q8BVojvWVa3doeBkAbcSm73X1XoLAZ+l7J7SsdLNyzbFeSkC7F4tFg7A7EXYyzI+3hfZK546Qbe4P74eyZIYyBe4XC7+7XxhrL9Eorf6lCwSXBeO6WCwyeUe0QTSiX9xRwDwhl8Hv1+cT4hvXYP6VuQB8hvmEu8H710UvF4PcwYCYAxknVJIxIzekFIhoI30sne/AwVhQMuHPpmdKuMOH57rX6+X8CBebOIb783nuuSilYOHPPPe163givosDgV3G5k1v0dMf+O13uhmBQEZ8DwfuZXR/6I168AN+l174ni9UK9X6yY97la62n9jSnY/+H5+ta4cXr5HePtQL/u0btn7m9kkJp2j9159Rv3ht//6P0QvXX5h//5L/7cf0Nff/r9t85d3D4/prua7rb5D0DcXLS50qs7cEXwmGdLht38kChBUC40GNEAR/vyTboCS57kCQzgnpNsJfbgMJIYFYliKCkyJ3Q5SCiBO24XCYiRW7VLioUK6gluTenRTbVvclZav9Nrt3ua0iYo/3H8JPKYawgsyqt1vvGR/G190H6/V6q4vByxzcLeAr1zhRXPhwMl4SypOT09C+2WyWybmXjtBftIvtLlerVRYUpNPSB7YkpVzHd0BYr9c6OjrSwcFBvr6viNNed3KUJSJu+feyDhdBENjKbVbLuUjZBSv5LqR5oOFyucz9QSmSZ5R4/gHuABwsHpzqJRl8lr7u9/t5K1fKYOiDbre7NedBUp6fXhaBQOSCVBmwSZ95H7qoUAptg8Fd4OHT7f0uDgTuBrRWG/1YdaKX9Gt1011RmhR4iiO+hwP3Mp7+bT+up3+blDodve5/vlAf0n+7JKmtWh/dT1szFt6zmekt6+Fjut7T/kJL9/38zz6eJj8huPLdb9CV7z7//dXf/DJ93Ge8RZKe0v+/2onlt81mk8PX+GOfWvyUUk7DL0P8WMHHfUBwGzXVkAqOQwg4Pj7OK7T8IAyUK7sQY0mN1efBYJBXnH1nCl/Zls5Jd1kDv60sAhLHait195IyWYM0e9q9w8mz1Ayf8xwHPu9ZARAo6tgRM9ixgHvl33ye0MnNZqPpdNogrdS505e02cfaV4x9VdzvgX/7qnPpGEGUwG5fWtfLMD8XV+bzeXaCEB7otvnlcqnFYqHpdKrpdCrpdAtNwgpdeEA0oJ1VVenGjRva29vLc5Hj2MqROQwYd+bfcDhshGwiugCfC5zfyfZ6vdZgMMiEutvtam9vL2ceQNbp+9VqpdlslsfMRT6cA5QseL8xny5b/UcooPyi7Idr167p4OAgl0r4/PX7c/GFzAr6v3QVeMApcw5HCq6IUijDMXI3OBQCgXsR6cd/Tt/4wo/WX3zrG/Xxd4fuFwgEAk951MfH+pcf/Az9Sz1DktQaDvWP3vyf9D6dyYVjf//PfZHu+7THuHpfv/nxNPNJwwu/8if0jV/1kVJqPaX/f7UTfy1j1y5XFH0l3wkJBBf79t7eXrZ7S6cEFMLgq7OeMVCWRThpWa1WeTWWFeJ+v59JLsKFB+dhEYfYenlFr9drkKuytMIJOiQKkaVcrR6Px422bys5cDLnpQys6vpnvSyEEg53E3hftlqthgsAp0hZkoDowPXKLR7LPAQXcHxsWHF2gr4NkHnGwAUSr+X3jAyH5x143/iKe1VVOjo6Ur/f1/Xr1/N16WccK8wBMgmYP7PZTDdu3GjM79VqlV0Nh4eHuRQC0H+MCXOQbAHGjz6FBHP/TsZLtwXHj8fjhrvHhRe2v/QSHcQILz8pd2rgWr6VJW11lw5bWHrZw3w+12AwyNcZjUaN3AZ/XiRlkYSAR+61dCR5X/muMT4HfUcQPnOXhDIGAvcm6rtvV5ZAIBB4ysMXSxcLffEf/dOqOxf//n7goZk2RXnsUxJ1LdUb/dXP+wKd9Np66CMG+rk//9TKANoZQWG1Wl2onXeC52Fq/kc+xA1C4KFwXrIAkfGQOeBkw8sbXLiAZEHG+PHgPQis18K79Z42ejCgix60D/iqLMc44XTnQSko8BkXEModHTzPwT9flid4loHXtXtphZcQrNfrBnksyZ3nXfi2iy62lOUppehw2TzyPAhQEtlttf1eVuGiiQszuBRms1kWiZbLZRYTPDMBEYZ5g1OBXR3Y6YISCnaFoLSlnL8u9LiDw0UaBB7a4ISfPndxAaEGt0x5z5Ly/PacBV/l95KJcv7466VrweHPH6Ul9JuLUe6U4Vwu+iBA8b5npbigWLqXyPHwUhH6pJyHgUBgh1DX+qL/60/oiz/xv+gvPO0td7o1gUAgEChR12r96M9ufWuz9dWnLtKP/5zakp7z4Iv0vh/0JZKkr/zY/6Qvv/obd7ZhtwE7ISjwRzzYtiroq8ZOGlNKuYbbxQQnoJADX6nmuk6USrGBlXZICMKCE0eOLXMInKxBZiiR8M9zD9w3Vm8nlH4fToYoE4FMlTZ4VrNphwcauvXcQwH9Wr5SyxghqmwTFOh/VrVpq9v/vX8QH9xqz3s+Pj7+vF4KQj6PtpFAF1n8vCXJRSTw87mjAlGAkhxcBj6m2O4JpaQ97AhB30+nU81msywqIERUVdXIiGD+sCMEApDfK/Pb3Sq02cM4mde85nPUV+m9nKQUVpirjAt5A6XLgzlXBmnyUwpglKKQ3UB/lMKZjxvPGSVRCH4+nqU7wu+52+3mUE3PP7lMfAoEAruFF37lT+g7/v5L9XGf8panrJU0EAgEAk8dbH7xl/WiV5z++5u/4/fqeZ/wfWrpRH9gNN2aNXE3YCcEBVb4IQ4EBbo93Vcsu92u1ut1JstOENzd4ERQOifkbMMIQTw+Pla329VgMNBwOMyrlpAbygE4h5c1ACfV7oaAqAEndg6/P3YIuGx1FALOzg+QS4hsWbMOKYKk4T7w3QYgc/S550BsI2SSLmyt6P0NuaO/QEnQeK/MRvDzkHdRhhH6ijxEm/O5GFAm/3uGhWdd+Io4Yo2HYCKWTKfT3F5/33eEODo6yn2LbZ/yDbIHHnzwQV2/fl2z2SyHCTL35vN5vh9W4pn7BCd6sCdj77tLINgQPOluCbZiBfSHj2W3283iBmGJ9C0lE5Q/0GceHspz4+6Y8lmhNMJLK3gumaPkefizzHn8efM8j5OT81wI/26grfxOXgb9hFPKXUmBQGC38f5/+if19Z/yJXr9d3z7nW5KIBAIBAKPGi/64z+tV+mFag0G+vBf/qGtWRN3A3bir2W3T2M3J6SOVVgnUxwDgZtMJpksehkB5AHi22q1NBwOG4SK991CDpEqE+ap13Y3gpMWJ1yXiQG+QlrawJ1sQ9qxeUPCXHTwbe3oK/7d6XQ0mUwy4UUs4DOsntOvrVZLe3t7ue2QWKm56wWE2+vjfdWYvmB8SkHHyR218ZIyId4mgpQ7C1A24i4Kavd9m0w/jzsnPEuhXPnmWpBafnAFtNttDYdDHR0d5fmFu8CFHYIbpdNtIq9cuZKJ+Waz0Xw+140bN3R4eKijo6MsINHOxWKRnSqeH4CQRJ+5e4HP8uOlGCcnJ/mczBW39UP++YwTdfrP5/W2EgJEBb+mjxnPq4s5LkTRv+SHMD64PHAXeR5EKToiRvrzVs5JHBD+Wb57EBXcsRQIBHYfw//2Zn3yp39e47WTfkff9b1/X8+6S/9ACwQCgcC9gZPlUq94+ZdK7TPn+7Cr1/7zb3vCt9+8XdiJv5YpWyCEEILmK9CSGquL/hqrqZLyqivExI+BIGOjdtJTBgQ6AZGUA/ZwM3h9dukoKK37nNdXPbfZwUu4K8Lvl2s42dm2GsvOAF7S4CvdHlTIj1veOb6sW3ci724FSCefvcwF4H3kNeuIJNvGzl0FXIdVcizviBJOiOl/L4VBGPJze4ChByG64EAbWcVm3jgJ97IPMhdcnEKAODo6yuUOLoJAeNl9wecgYpjfG2POnPR57aVBTtp9jnj2gx+3zSGDiOROIC9rQRAp5zPE311FDj/WMxnW63XON7hMhKOd3g88N/SnX4/z+tx1ccl3kdlWRhQIBHYTJ0dH0k//QuO1Vqejj/++P6+T3sX/vz7zAx/Uj734B56s5gUCgUAgcDnqWvXPvCn/2u729NH/4itVd+6O/1/tjKBAyF1VVY0tJCXl97x0oCRJTq5ddPBVaielpd1baq6kch5IP8nzbvPm/GX2grfNLffuKmi323kVlmt5e8syC88Q8OuWgYd+TwQDck/Yz92l4JkM5a4NZWikuw22XdfLL1hdp/+2uTa8vMJr50uHA7Z0J5qICtjh6VvIvfcT2wriTGEsnMj6inlZZ+8CCcKFu2Tcss+5EA6qqtJ8Ps8ixGaz0WKx0NHRkebzeUNQ8PNNp9OGc6bdbms0GuWxK4m1z0OIsgtWPi8ZP0kNMYTnjLEvMyu8b90ZUopLfMb7lj7yoE8XAsr20ef0s7slPKeBOce1uX/PVOGaXIOcBdpeulV8l5JAIHD3oj4+1gu++g1b37vxub9T//j/eOaT3KLAY8V7Nu+6000IBAKBJw31eqX3+3M/IWn7/68GrbU+d++9d6JpW7ETfzFjpYdA+4o2xJTjWFWFHEOCvb7fxYJyJwEPkQOsmkJ8IIAe8sZKPyQTez3uBA8e9NID4O2DzHvNOsdAIN09QRt9BV9qhjjyGkSbz1BK4tZ8yBKCg9ei+5aEwAmyn59rUAYB0b7M2s4xkHncEpBq+tVDB+kLz1igTYwt4gZtQZDaVvZQ17Xm87mGw2EeizKHgsBF7yPuHYHABS+s8lyPsaBsh+0ZmavL5bLhUHASTxsODw+zuOL35qUBfq3y3zgCEJO8rMbLJ+hLjuV3fw79dxc56FN/LlxI43rcI78jjNA3lHDggPBzer+6eOKlMKVLwec04BwusPgzVzpSPFMiEAg89XDwPT+h135PCAp3Cx6uuzc/KBAIBJ6C2Pb/q85znq3P/ql/o27aje3Nd0JQkM7JMauJiAC4F9zO78GGEEFIBiTEA/D8XFzLCX673dZ4PM7n9zp0CDLHUgfvK6e+OloSOF+J9Xt1lwP36yTV8wW4r8lk0nAVIDD0ej31+32dnJxoNpvl/uB9J76+g4ATKO7R2829+XZ6iDW8z3lc1OB83GNpg4cQDwYDTSaTRngg4X+luwOC7w6O4+NjLRaLRhAlWQJVVWWS7CUdviUjpBZbO6KFr1APBgONRqNGf9FGxpT+hHwiREinhPvo6EgPPfRQdgAQ2ojwgZjmTo35fN4gtQgSrNoPh8NMhHEv0BbasVwu83PAfPKx7/f7DSHNgxeZi14Kg1jnYg3PgecfOBH3ceSeq6rScDjUcDjM7hLcQX5+2ukCIc8Dzx7wEFDgbhmeGw98pU9Kt89lomAgEAgEAoFAIHCncfzOd+vlv/dzpOLv1M/4/v+mVxy840lvz84ICk5gy5V96VwE4DUnDv6+k3dfLSUwznc0gGhBrtze7iFyWLX5HPXxZCqUWQNeg+5J/L5K62TwsowEzgW5YccAVrpLkYIVd17v9XqNHRIgZogkfk1fmfVxKK31TrbKUgwvSfB2lePhjozBYKDB4HSvL8iuk1Sv+XcnCiiJn9vfGUevlacsgB/PHrisxGE8HjdKYbiO9x9tpZ2IKQgQ169fb9wnxJk+wpXh90X7mau+owKiEbsgcD4PZKRNvkuFO0x8fpblIvSD32Mpjrng4W4SF/x8bLi2i2a+dSnilY+rt6F8r9z5w0Ur2kAmBSUdXqLh7gTPNuHe/dkLBAKBQCAQCAR2AicbbX7xly+8/G2v/gz97ac98pbnH/ey/6l//D4/elubsxOCgluVXRiQmm4CyJqHwPkxTiqdXOBqgOA5eeNcg8EgH+f70nMcq9YQFMhZSVql83C3sl68XMl2IuNZBp754ISKlW/a77X3ZT26dC4oYA93Elvu0uCEmPNxL2W+g2ciuDOBz7hNvYSvbkOICUlESNhmvS9JKKIKZNuJpV/X8wDc2UG/U0rg2RF+zm63q+Fw2HClOMqsAMYMtwrnm8/n+T4QFJy8M389P4I+odwCpw7Cgbtc3IHhzhofW8+0YKy5JiTby198/rkTpRR2vKylDBotSwZwj9Bmf75phwsH5facXmpBKYwLOowBr5WOofJZo/9d3HOhxJ+xQCAQCAQCgUBgV/HMv/PjNz3mxzYfo7/6Ge95jFd469ZXd0ZQ8F0IIL9YlFmVl85JJivxnshfrixCajwg0AkC5LPT6ejg4ECdTicLB9PptBFSCJn01Xos+pCykrTRXl/lhExCCH2F3Ffv2+3z7QHLfvL8Bdq0TVzodDoaDofq9/sX+vfw8FBVVeW+gTw5Maf9bj/nPU/CB6z6u8ji5I7rMyYQyvl8nj9PXyHaOGHkGD8v41C6JSQ1fvc6ed8uE9HFsysIS/Q5NhqNMmF3Yk2/OXF2BwaODXc9IEo5iWbMXRBiy0qeBbIdqqrK97BcLnNpR7vdbpTq8J47Sii58EBQDx9EDKJMwEG5AM8Nwo5nJ7j7wkU9+ou2Ul5B2Cni27bMgm07R/hzxXwrnzUX/XwO8zy4c4LPM4fL5zEQCAQCgUAgELjb8du+/g36b18/uK3n3BlBwe310vk2jYPBIFuRfQWdz21bKYXoQyAg4eQUzGazTHogloPBIFvHt4kHkO1yNZYSCH/PcwnKun+OWSwWkpTJ1GQyyW13IuS1+KxUe5r/crnM5BFLPST5/vvvzwF4ED8nrAgo21ZhPauCVV9ILKILZNpXfCG59B+CBTXuVVVlAs+40m7G0Ekc1/VxdiLpLhJ3J0DOESRKoYHcCXaJKMtIEJE4h1viyV7wwFAntORs+JwowwBZbacfSmcA7eQ+1+u1bty4ocVi0cjNYN4g1iAWzGaz/AwwLvQjY3t4eJhDKN3tAPEvUboaSpGvdHn4NpMunPDcIJj4+CJ6+HPkTiAv4XFBx0s+fJcHnmeeKa7PXCZHgfFwF4sLGIFAIBAIBAKBQOAidkJQkM4t3k4wWWEnzM7Jov+x7yvYZX06K5IQOsgFtfYQs263m1cuq6pqEGd3ILgwsG3FtNwFwVd6ETQgNpQveFq9l2n4a74KXK4GQyYlZcI1GAw0HA7zyjrnJLyP1xaLRUOo8RIMSY2QPBclygwGzsn9biuf4N6Xy2Wj5IBASb8nrg8RBpBOSHS5TaQ7FVyIcnGINpW2923z0ecV5/f7oc8QXTx3o8zGuMw+XxJXLwVw0u6lIO4U8LGDyCOauTOjPJ7Sg81mo36/nx0NHOe5EYx/CXfiuCBRvl+OD1itVg2hy90SnsvgogJ5J+Uz4ZkTtMOfF9wn7sjxXT68LGJbuU4gEAgEAoFAIBBoYicEBcgAJBRBAecAVmuO9ZVMXvOVUf4N6SjDD73+H4cC29ednJzk9Hsnar5yvY1seJkDq7GQYVZgIS5lWUaZMO8rwL7a6hkGbtHnB1s8df+j0UjD4bCx4os44/X5bt/nmmUOgfeZ97+Pg5da0MZynF00IBOg1+vle3AS7H1YXqNcuXaUuzbQT54p4CUxUjNHwgkq4+bXoA88W6LMHFitVo3ruxDFObxf/L9+PvrCj/Fww3a7nctuXFDAtcIxuBT8eWAc/LzcJ8+KCzaMVzmupYBXOodw99CfLnAxb12schEF4u95FJ6JUAqLLsBxDlCWfrjg5A6S8nkPBAKBQCAQCAQC27ETgoKkvG0gdmR+IEFOxqQm+Spt8hAXJxV+DHZmiDzXokYdgcGJk5M6rsn7JRlpt9saDoeaTCY5w4DyBLeHO3mF3EC8PC2f370fnFhxnuVyqf39fQ0GA+3v7+vq1avqdrt5S0DOAbkcDAaaTqcN4uqr46VjQlJ2FNBOL+fg/sswv/IcTuwJZoTAOwmmH3FV+Mo8JLZ0KACElW63m8tcvPQA8YL24lzZ5nooHSceosh7iEZSM0DQV9+9Ty5bufdaf/qAa5YlBrQVlwkiAdfHgYCwQekLmRDsfuDuIEAfUbbAD+con0WO83IWX/n3gEUHAgZjxXPmrhsXY0rHAfPK8xBcUPB8Bi+n8EBMd8CUYkk4FQKBQCAQCAQCgcuxE4LCycmJDg8Pc+39fffdp+FwmN0JdV1rOp1KOk9+Z2u8qqq0XC41Ho9zyQKlBO5aICvAiQQr4L7bAqRoMBhoPp9fyBjgnIPBQHt7e1nwkM4t5O12W6PRSPv7+1mY6Ha7Go/HOTiPcD8nUvQF4oKLCWXZg3S+euxkkHKHvb29XO7gRNV3KvDgRwQP+sbdEL4Sz2c8fJH7gaB7ezwwr7S7QxARKY6Pj7VYLPKKNls2DgaD3Bf0i69cu3vFyTjuBkQq5gECC1kUHspHucI2J4qvvns/+fuck3kDYfXsAtpbOkG4B3cJQIadCLvTg90cKLHw+/B8B54VQkApBULkcpLuIlBJ4p2oe8mEtw+hjt07EH/cLcE9cQ1KLXBB0IdlmQb3Q7+6wMPPbDbL86Df7+fvAxeBPEjTnxF3/NDmQCAQCAQCgUAgsB03/Ws5pfSalNKDKaVfsNfuSyn955TS/zr771V77+tSSm9NKb0lpfT7Hk0j3MrMqjeBeWQosOrtf+w7OSQNn9V+fiCgXk+9zbbtwYJOUMrt5JxQIV4gfPhn2A4RQoPIMB6PNRwOG0TFbd5SszYf54STUuvrRkAj4gREejQaNbYaLJ0Nft8luVsul41dAtzdgRDjifieaQDxxILvwY5lwj6r3l7ewrhxT75S72S+nEO+Ou+EkfH00hKfS36/CC7lHPA2lyUpHqLIa7SJPi1dHNt2R3AnDUS/zFPw620LgkRgo5TBSzE8nJDSHu7LA0G3hUi6A4CSCg9u5N5c/HJRxwMZveyE1xgHn5vb8i08q8RLGLYJVbSDcibcLjiSyq0yuW4593cFT8Z3cSAQCAQuR3wPBwKBwEU8muW375T0ycVrXyvph+u6fn9JP3z2u1JKHyzpj0j6kLPP/IOU0sUkty0oyxK8FAGy7qugEBNEBQgAJMzDDst6eSfmJXmBsDiR89V/J/6loOC7ASAoePsJSvQyiJIk0iZWWF0gcGHAV1fdleECg6/Mlihrz+kfT98vyWVd143QRu6LfnNS5uUbngHhggFw4cRLFbgO/VOKKV6qUc4jnyf0pQsEft/MIQg3Y1v2ZykouADlc6js57Jftn3G3ShOrhFnXNBy+7+Tclwiy+WykVfgggGOBp/PpRvlsrGk1MGv5XkO/vzQbu/D8n3vo/Key+wCf15dNPLjStHP28+89XnmGRdlKUzpaNoRfKeehO/iQCAQCFyK71R8DwcCgUADNy15qOv6R1JKzy9efrmkl579+7skvV7S15y9/n11XS8l/VpK6a2SXiLpDbfaMP7op77Zt3iDeJT17k7wW61WI3AO5wNkdhuhdkLjOzBwHncvlGKCpBweSHnDeDy+YPl2cQBb/7b0fGriSzs2hJDPeHsgSU7CPdzw+Pg4t5X2OJF1gigpW+j5t/efX9t/x52xzXGBoFB+zkn+eDxukHq/TxdU/L4ZQ4ithzUydu6Q8M8hoJDdwBiVQZmORxPa559z0cpLJvw9n8tO0EsnC/NguVxm1wrZCYhAgHvlPr09zDs+v20Him2lGT4GLrx59gFOIc8u4Brbwht5nVIXchi2ORA87BOBi7Idfy59d5JyzpS5LO7a8W1bS7HqTuNOfRcHAoFA4BTxPRwIBAIX8VgzFJ5R1/U7Jamu63emlJ5+9vpzJP2EHff2s9duCkQAt06TAE+uACKD12wjHPjKJlkBy+VSi8VCs9nsQl06q+LkJUB4qqrSbDbTYrHQcrnMZLOsp4aMdTqdfA7IkZNG2uO15eQPIBpsI63SaSYD14VgQSjdtVGu3nNdQvdSSrme3UmWt/Hk5CQ7EyBfiDlud/fSkNL5QKkKJR2bzSZnYPjxHg7oYZQppRwWyNiW5/fyGEmNpH7uCbJMH5TzDKIrnZNmzov4MhqNGuGU0+m0kV9BqQBClJNsiKg7CMqyFr+nktBzPeYlQg7zrsx98F0UaONlAYheCuDCCn0gNXdX4D59pxK/LuKBz2NKBnAYARfn+AzPAH2BaEZ7PfOEz9M+hBQvvfB55X1VVdWFbA93SfCaiwtlKcWO4rZ/FwcCgUDglhDfw4FA4J7G7Q5l3BaJvnUJN6X0CkmvkKS9vT0Nh8O8iu6W6pRSIxgRF4DX6Z+dL5M7CIavukvnK5iICpQgcE6uSy29k4qyHMNXagEEifatVqtMKj3b4eTkRMPh8NKdBBqdV7xOn0hquA0gf27ZhnRB6heLRcPKLp0TY87p/e7ZAfSdrxx7GQShinzOy0Sc3NFH9GtJzD25n2uURNz7lNVxXB/MEV9VZ67wU4pSfj3a7PdOG2ibf8ZdA27V9z4t+5z55CiJ/cnJiRaLRe5L30WCc9MOBAXuldfYutKFEW+jX3Nb6Qht4X13p/h1+Gy73c4uCXeleD+4eFaKYC6+cG6/Nx97dx24WIV7x8tS+NxyuWy4Ivxns9lkIcTdDHcxHtN38UCjJ7JNgUAgcC8hvocDgcA9gccqKLw7pfSsMyX2WZIePHv97ZKeZ8c9V9I7tp2grutXS3q1JD3zmc+ssZk7WStrmiF2vV5PVVU1auHLcDvPXMDuDUmUzuv23V3gNexloJ9jG1l0C7Wn7nOMfw63ha+GumPAzw+cyEEKy3px+stJEnZwzul9Rbu9RMJJtq9Qe9/RjnIHCFb3ve1Oht0ZUBJBt6bbHLlAvLm296mvtLOjAyvjkH3pnEDTb5BVzlH2rY972c9ePuC5Ftss/fSV7zTg88LbRv+74OEuDu9XnxNe8kF7nYx7PzM/mRs+J2izB2riBPDSAv8cbShzEpg/3k4f93KO+3gxl30OeJ/781bOGZ8nXiojqSE2Mn9pq7tcvJRjx3Fbv4v3033blc1AIBAIXIb4Hg4EAvc0HusS3L+W9AVn//4CST9or/+RlFI/pfS+kt5f0k/d7GSQgG63q8lkoslk0iCIWPEhN26Vl85X6D38zwmHk36EBASMfr+v8XjcIENuofZzSecr7k6OnZR4qcVischBf2Uyve/I4Cv4vsPBthVSFyyqqspp+568z0r/yclJdmKQa1Ba1V0sKHMDaGsZjsmY+a4O9JW7NyDDiDaIDdtWj7etOnOdR8opKJ0QHnxJLT7nQWjhsy6WeF9fFgzo912KVduOddLvx9AmD46k7ZSDlOd0scgFj9LCj3DjO6Pw4ztVeB6HO3lK54/f5zY3h/+7JPY4dErS77uEcA7PYWAu43ZwwcPH3eePfwfwPJRjwzG+o0cZPEp5B+Gg20SPHcNt/S4OBAKBwC0jvocDgcA9jZs6FFJK36vTsJmnpZTeLukbJL1S0mtTSl8s6TclfZYk1XX9ppTSayX9oqRjSX+qruubxqRvNhvN53ONRqO8M0Kn02lkITjRcXLh9mgPVHOyCDkqV5zdFr9er7MIsF6vcxmEEzZIELZ5J35cHzLkroOUTsMIyTTgXmjHZQStdA94f3nbPLzRCRUr9+7K8LKQkkgNBoMcJAnZhPzxQ7/7ecrt9RaLReNeut1uDowkowGSR7858XQy62PpQku3222IM3zO79X7tlytZlzKGn8n+eUKNSKEpJzNgJXehRXmmpc2uGCyLd/AP+dt3iYq+bxwUcfnlJc4eKmPO3Gqqsr9gRg1GAzynOn1eo2SBnItfGWfZ8D7kHsonTf8uxT5SlHC5xPve99f1jec04VFL3+g7T7vPKiUYxAUcHnsCp6M7+JAIBAIXI74Hg4EAoGLeDS7PHzOJW+97JLj/5qkv3YrjTg5OdF8Ple73c6CgpPOMjwOIugrkpA1SIKTg+FwmAn2ttVhRIDZbKb5fJ7DB8k7wLFQhghCeBeLRQ7Sg1w6mSzt2WXJAb+XK6sQ6HIl3W30nJ9VaXd20A8ebEmmAm2BfNHP/X7/QsidCwI4GzwJ350LrVarcQ/D4TCTcq4F6XNxgh/O5S4BxoP2MC4QTfoFUYGxoT0QRvrbx09qZi5AIhGFPDvBr8v5vI3cjzsBynnOvTMm20o6SlwmKpTYltXAHIeQuwC2WCxyP/iWkjyDJRF3oYLxJUDR7/uyXSMu6w8XbcrPlvfuZSMuvNCv/jxJp8GmvlUpOSP0F64FruPbtF5WlnGn8GR8FwcCgUDgcsT3cCAQCFzE7Q5lfEyo61pVVanX62m1WjVS+lkV9Zp46ZQEQjpxMUjN3SGkczECElfW7LNSudlstFgsVFVVdihAIH0rxrI0wIUAD4TcVrZQWsI98d5LFTz/wIMLfQW+XOHlOC9ZQDAoCbbXhyMSeDkIoYXuOnCHgAPSBVn1TIhytZ8+cAt6VVUXxpXVcEg6RJEfBAJvX9ke+sfv20moE0UXRCQ1xrHMReA8Lo64UOTnZw47QfZdIB5t6B99X4oPpYBQkl8XPsr3vdTCBSLvL+nc6eH34gQegaF0Gnh76Rd3FXCd0m3DObbdL+1xZxFt2ja2fN5dFI8kdjC+7up5JDdJIBAIBAKBQCBwr2Mn/lqGWPrWkL6S72F/rBA7WfEVcQSCkkT4yqY7A0h3r6pK8/k8bxPpTgSu73X6EBPPT4BgtVqtRm4B7QRcl3b7PXlNO6QTUkMeAu2nFKQUOyBjCB0l6aVPyEag7fQJDhFKF7zdTszLkpK6Pt+m0TMWyhV+t7xzXalJYn1nAuCCQqvVym4J3xqSY1ww4twIImWegbs+aAPndncD985/WdHfBoi6dFH48PIM+uCRsM3y77X/JSHfJjT4TykI0CYXkdghgpV6hCe/pn/O5wPXBC68UMLi91GWJOEicDfItnvh3JcJCn7dcvcHdx/43PBniL4MBAKBQCAQCAQC27ETgoLUDFasqiqTcezHJMxjR2erQq/JXi6XmYx7qBoEBpICWfUtGD3/gOtj14cIY8/mNcgXIgBklzaDy1ZbuZ63yZ0ZZVChdG75JuMBQoZAQA5Fq9XSfD7XYrHI5ylr0xEovP9OTk7y5yVlIYUxWiwWOjo60mKx0MnJiSaTicbjsbrdbhYP3KmwXq91eHiY+wUhxlfD/d68zyjN4D7L1WP6HtLoLg6v8y/7zUl36VIpfzzzwAUNrseY0Y/efm+viwbcm7sDnOhSNkL/uAjkDhEXW8o+8bZ5hkLp3LgMpeDic9I/6wGVZZt83kjnIgV9wHX4LH09GAwa75UukdKF404EF2rcGcE4z+fzCy4S4MJNmbkQCAQCgUAgEAgELmJnBAXgRI4/9rH8l/Z16Xzl2F0IwAmYr2CWZQisTPsODuv1OpNBX/V2ouLEVVJje0S/VrklINddrVaZ8He7XY1GoyyE+Iow9ns+i3gwmUy0XC4bBNV3jJAurgB7KcG2lWtvM6KIr0B72r8fh1hA+8vadHdAOOjHMjyTPiwJbF3X+T7JAYBY3owwcy0CHV3UKFfovc3MwW2r7B6M6HO3nIPuDilzH9yi76vnPscRMjyPgrbQLnfllFs2Ogn3XAUfQ+acpDz/aZdjW/aDX8fHw8cfgQlhzp9jL58oAzV9XMp562OHYOHCgM93fhizy0QVd20EAoFAIBAIBAKBy7EzgoLX53vdPfZ2SIMHMPpqu3++rOV24uKWdbfdu5iAawCS44ICRM5XkzmnpEyOJTUEEOmc+HBd36oPEoUosV6vNZvNGrZ9v64LCJ4PQZ/5tny0wYUZiNk2gu/5EH7PKaXGdpO+Ak4/QKB95ddJu9fAewZEaUX3rAIPiXR3Bv1dorwnF5B8nkAYXUwoyyGcVNL/CEC+xWdZAuHlE9wPr7mgIJ2LEuU4+LziOMYQVwP36+N62Xjyvt+j2/z9eeC8nguxTagp53/ZBn8WncR7mQa/uyOkzEnwz/n9lp9nntOniDll2/zZ5DUPmsTJEggEAoFAIBAIBC7HTggKEGnIEgTP7f4QS/aPxxLu5LZc6ZbOyZan6pckh+uycs0Wj76iKalBPFz8gLy4yLCNfFF2ABnygDvpPCMBUQMi7VkN9BeElmtzX+zI4NtvQl69j534ls4LJ8nsWkFf0u9OirdlEpQr4lzLCS4oU/c5D2NZ3h8lKHyWNmxDWSvv5J65VoZhlqUYfi6fV36fLnq5UOGf8/nhboxSfJCaQon3NePnW2n69Vy84bO+kr/tHl1MKwML/Xlx0YPSlbJsgM+7gOdigI+1l/jQdsQSrlHe1zYxbBvxp2/cZeLzqxRemOPeX+74CAQCgUAgEAgEAhexU4ICP9I5UYQ8kp2wWCzySjBp/L5iDGmoqkonJyd5u0MyGSAnVVVlUrPZbDQajXLZgaRGmCBAYIB8IEBATH1lv7R8t9vt7HwApZOBrIh+v6/RaJQzC5bLpZbLZbaK9/t91XXd6C9J6vf7OdOAn36/n4WETqeja9euablc5q0uEWcQLbzevtVqqaoqVVXVcG34vbl9HmHByTDZDIyTr0y7EOGCCYGWkELPGMCB4ecaj8eNbRvd8g5cWGCecF+4XhiPbbsAeNlKCSe2jH9VVVkQ8UBPb4d/thQrSmwTN0phpkSZLeAiGfdLaYSLClJTPPDtWb0UxkM/6TsEM+abh1MybswFn7vcN6ULj3Q/XqrCv10IKM/JfPXn0kW9slQFgSocCoFAIBAIBAKBwCNjZwSF0jUAqSOgTTonnfP5PJcMeGmChy0iKEC8IcrlCifECcIOcSUHAEA+nPhBjhA4fCW8zFrguqUd3AWHVquVwyBTSur3+1osFvl+ED6ckO3v7zfs3aPRSKPRSMPhUMPh8IJLYTgcqt/vazqdZqLP+Xwc3DWCEOMkmXav12stFotGZgNEH8GhDODz+2a8EHDcmQJh7vf7DYu/k0DpfNtHnw/Atxv1UhMXOJxwQoJ5HzHL28xrtI8sB8IdIbvuKPF+LbfY9H9zjFv1uWe/LnPG55Z0XnLjIZil8OCOHs7NeLkA4P22rZTCnQuMOe0rjy9Fl/KZ92t4adNlpN53VWH8fa7SpzhPymuWJUs+Pzab051fwqEQCAQCgUAgEAg8MnZKUOCPeSdXbosuMwCk5rZ1HO8uAUj9YDBoWJn7/X4WEaTzVenLLOhe1+8EZJsdm9dcDOF97s1X0Wm/5xFwLQiRr9ryHsGMZArUdd1wJWwr/XAC5aSZ85ZlGy4ecA13XvjqPu0t69RLgrdarTLZLYkl73t5gmcMMN6+U4Q7Ebw8oyTyZYmDuyuYFxzrooDPo21jicthW9CfiygQXp87nLsMyqQdLkogVpQr7fQTpNpDFsuSBy87KcNC/bre1z7PtwkD/jx6+2j7tjnmpRKl+MBnfCxKQYf2uAjEcd7uspzHyx+Y315W4++VAZuBQCAQCAQCgUCgiZ0RFKRmNoELCr4C7aGHToLK8/nqMlvReXAhgIBybEnS3CbvxLV0GpSrtdt2J3CiwyqydJ7AX5J3L7GgrIP2I4qMx2ONRqO8Okx+gif0Q85KYaAsE/BVXj7rfVGKPLRtvV5nougujJJcsvLs/V+G77m13t0QuB0gkrhCEDgu25GgxMnJSf4sokI5h5z0+zXpJ7+34+PjRs6EH+PtQQAp3RoukHh/e794WCAEugRODuaph3JuI8cIDj4/yn7w0g8fS3cOeH+UQgT37HPCsx98Tm1zAuC6KfvVRQ7GygWKsu/9Hsp/80yVYoP3WyAQCAQCgUAgENiOnRAUAH/AewAduQIQiKqqJJ0HEyI0QLogA9jWT05OtFwuc+AheQrUs1dV1XAqQEwoN2AlGBeAr7o6MXILf0kIOZ524i5wa3i3282uATCbzVRVVRYUXEgYjUba29vTfffdp9Fo1Mho8KA7rss9uCuB1VzvS+9Pfrivsv4fks/9SU37PL/7PUA0OQ9CT7vdzsewFSQCCeMiKa/SL5fL3LbJZJL7kLF3Usg8cIfFfD5v7LDBscCJvRNuFwTInihX4NnSsgQCRCkyEDbqJTL+vtv26Y9yi1TpPCvBSx7oM+ZSOZ6MyWq1aggC3uZy3EuBwF+nVIj557khXqqBKLVcLhvXLO+Jee/zeRvceVPen6N0WLhAVzowAoFAIBAIBAKBwCNjZwSFxWKRycNwONSVK1e0v7+vZzzjGbr//vsz8ZhOp+r3+5kkkjvAvyHyiAeQH4QISRqPx5nAS+cEyUP/EBMQKlyEcOLZ6XQ0HA4zkSozADjea/63kZWyPn+1Wmk6nTZCKKXzuvler6fhcKjRaKT9/f2cM+DkfbVaNcpE2CHDAxiHw2FjO0LPhZjP541wSvqMz1Ju4OUDOEJ81wDe8/C7krTy3nw+z2GBg8Egk1Tunfp2siV4nRKKfr+f+4p+J3PD+9jHg3H1XTecWPZ6vdwv9BH96H1Z1ui7+0M6t/67o4L3vXTH+xiii4DiYYeUwbiogzDk56UdzIuStNNPlJq4EICTwYUS3+mjXNX3MghECt+ZgmOYPy6yXEbiXRQo544f4yKLiwXurHDhgv5xkZHn/ZHKMQKBQCAQCAQCgcApdkJQYBXZCU+rdZrev7+/r4ODA81mMy2XyywU+Cq7b90Hiec8TmIRFdbrtQaDQeN4SVtD7GgbbXJbtX+OYyEwHnLobXMi5o6HstbdMwJ81dkJKwGO4/FYw+Ewk0D/rKRGn7jNvyyhKO/Zd0Cg3dss6p6PUNbKe2lHWXNfrji7gOM5Ck7w/POMK8dyvFv9vY9Lgl+6SRifMscD4omwUjoNtsHJsQsKPm/og5KkM2YIYoghZZZBeX0fQwQCnB4ufmzLQuA4v46XFrjoUt5L2Q7uDxFGUp67XppSbtVZjkd5jz73PC+Ba/qWrO5U4PvCX/f5yz24U6XMnwgEAoFAIBAIBAIXsROCgnROgCD7vV4vr75PJhPVda35fJ5XTH01FQLjlm93HaSUcgq/dLqjA9sSetmCb+3nW0BCwMkqkJqWaQiXEz23iXN+VvhLouLkBqKGOECpQrm7gnRaBz8YDLKo0G63tVgslFLauurr5E06X5kvLe2eZeBEbNuKtK/2O8nkp9frZaLqCfwQShcUuA7ve75Fr9drCBO8TsmAZwZsy9jwMgMXEPx8Di9ZKFf6vRTkMjzSOV0ocbKPcOK5ED6PHe7CAJ5L4AKC7z7BnHDCzXlKQYGxRQxgDH1XEIcLJS7mcb9sc+pCAufyPvN73Zat4PPEr1fmOnifcNwjwUtaSldFIBAIBAKBQCAQuIid+GvZSR8kcjwe6+DgQAcHB5pMJjkHwck1gARBCKgfhxhPp9NGsv98PtdwOLywCr2NlPiKNeSo3W7n7Qghgm7jhoC6A8JX6hEhfOXcbfS02a+Ho4ItMDneydi2EMPLtlt0kuqrtgQM+spv6QShzfy3dCZwLGPVap1mVVDW4uUDjKkH67kg4U4UCB7igvcffUg/c0+eEeDk0oUUxpjzMA7SeUYA47ytht/70fv1MqHG5487CnyV3sMxKXFwm/4267/PZe4ZYQpRxoNHHZeVoADENuYTAgRig5+vDARlHjOOZb7BNtFg2z2Vr3vmiD9jPmeGw2Fuy81EIM6DmFPmoAQCgUAgEAgEAoEmdkJQkJpb9ZGjcHBwoPvvv1/D4VCz2SyXJAwGg1xL7+FvrO6ycu+k2lcpqcHnd0m5rEE6J4iXWZ6dVHvoIavkJfkmqwBBgTZAcCDRiB6r1UrL5VLtdluj0SgTaHY/KPMO+OFc5W4RXmNPKYMTTSeqODlarZYGg0HexcBdDU7WvfTA74V+QgDh/EdHRw0bPJ8hc6Hf7zdKMNyiT5uqqtJoNMoE1zMJPJyTvixzA8rMA3cIPNIqtq+Ml+KHb+vppRUc50LOtr70cgayIJjvXmqwrRSAa7r4xTh76QskuXSUMA/KkgKHzyE/zt0nzHXgghDPobsffGxpu9/btlwFF2zcbeGCoPdlVVVZjOl2u/m5K0XJ8r45R3lMIBAIBAKBQCAQOMfOCApSM0htMBjkLREhl5Czfr+fCbGvVEIAWMXmMxD9bcSjtHe7M6HMFyiJlx/rOQPUbEP6KYkYDAaSzlfN3XYP0fMdK8hIgJS7aEH+geciONn1nQZoN+4DdhWgbS4ClCGMkFl3ALiLw8MXt9Xlex9y7ycnJ1k8cKFls9nkUhRHSW4RD+hnX0l3kuzWevoYlwckc1uWgzsZ/Hqci5V52nazlXYvL/Bj6D/PfOD1UhjyPAXmjs9F2lf2Q3ktzoXgUF7XxSAXClysKEtTSpHDhTh3gCDwuLvCS2nK0hI+X/ajt8/FprIkZ5uLw8+z7RjuB+HikdwTgUAgEAgEAoHAvY7WzQ5IKb0mpfRgSukX7LW/lVJ6c0rp51NK/yqldMXe+7qU0ltTSm9JKf2+W2mMr/oOh0MNBgP1+/0LxMFXb1lhLkMdWY31/+JccEIpNcPxnDT59nvlsQBS4qv0rMwDyAn3w/W5X9roBJHjvb3UoPf7/bySzyoxQoCXHrj1/P9t7+xiK7uuOv5f4xnb99pjO0MKGZLQJCggBYRohPoCLUhFkESl4UsoFQ+RihRVKhIVQmqqSNCXPhREH6EKapUKpU1AUJEXpEQI0RdCaUPSJqRpJm0QQ4YEipL6416P7Wwe7vkf/8/yufa4M/dj5v5/0tVcH5+PtdfeZ4/X2mutvbOzg36/Xxt2/JnRCrqdJK9nOoK2n7/TqAKek2s88Ny21AL2I9vHD++jIef6Ud1wl4vFxcVG9Ic6E3LdAjqk8jVtaRuaQpPHixquWq+gjbb7AvsODo6F/C5o6kfWa9szc9pMhqkW7E91DOg7o++LOtQ0LUSvzU4N7eOspzzOVM+q36MMeXV4aFpRm2Mh32tYGzTyRh0m08I452JjjDEH8TxsjDEHOdKhAOARAHelY08B+MlSyk8B+BaAjwNARNwB4D4AP1Fd82cRcWTMsKY60ODJeeP6Bz+3amTu/cbGBjY3N9Hr9dDv91FKqY1xGqjdbhdLS0s4ffo0VldX65B5Pl9TJ/r9fh1V0Ol0sLy8XEcX0HnALRhpjPO7plzkqvHZQUAjTo1p/tztdtHpdGoHBFf0l5eX6w+3fNzb20Ov16trFAD7Rj/QTHWgQafX8Lj2w6lTp7C8vFzrSgsiLiwsoNvt1nLQwaP1Ddhv2SDf29urdUFnAPuJRmU2EHkOdcEP78EoFrZVHUzsR0ZDUFZ1XPCabPirQamytY3NS0mZyI4BjVBQh4VGPaixrTLRCaKOJI0CGFYvoM3w5jjn1ol0FGl/akRHNtLVKdDmYNNnamqDXqdOgBwx0qZDfuhgUwejOuwYjaP6oIONx9UJQtocEVPAIxjxXGyMMeZQHoHnYWOMaXBkykMp5csRcUs69qT8+DSA36y+3wvgsVLKNoDvRMQ5AO8G8M9HPKNRBG9tbQ2rq6vodDqN/PFsTGgaBI0INSx4DVfRAWBxcRHLy8t13rvWJKAsNCxy/v/29vaB8Gg+IxuAWqGfhokWsKOcGsbOlWKNZqAhxqJ6uqpPhwgdBjSUeC86Pfr9Pvr9PjY2NtDv9+tz6ZChDnLRPF0FzikANEC16CLrWGgfqSE3Pz+PlZUVnDhxonYE6M4ZGlHA/tDIEj6Pefu8Tg1DGtoaBq96V8N3d3e3lpt9qXUNeD9Nw2DfqjNK00R0LGVHGK/X1ILsxKFjhLUrcmTCMEop2NzcrNtNB5COSY2CYDs0EofRPhy3umuKvmsszKhjnYUwNQ2C52u7s8NF3zeNzsnn8HfDHDZt96YMbY4evq/DHC/q3JgWxjEXG2OMGY7nYWOMOciVqKHwIQCPV99vxGAyJeerY4dCA4ari2trazh9+nS9Ap8Nc10BZT4+8/s1KoDn0sDU1VdgP+Rc6xHkQm+5eFveTlDboOjqt65s89400jQnnvdkDYnsHKFRrREAeg86PHKxRqY3qDOBMnGFWg1ZDSNvC0nPhiQdE9lYpl74s+5uwGfqyr86Wfg7rSPBFA8WddT+VUOYaBi/FhNkO/U6jRbR7Sq5ek0HgvYl79MWvZANVXVo6NhVmak/LfSp2xZmw5jP1Boeapzn/lM02ofRLxFRRzfo7iC5zkF+J3j/nEbAZ+bIkzzu9byc+qH9fFy0zbkQpeqT7VM5+MxL2RliirjsudgYY8xl4XnYGDNzXJZDISIeArAL4FEeajmtNW44Ih4A8AAwMJRp8C8sLGBlZaVOM1BDhWghQobg06HA1WeG8GuRQzUw1ajOe82rM0FXowHU12YDNYdH01DnNboKzLbqKjV3cKDRzVBzdTTweI6o0KJ3/K4fOhW440FuHw0+OjqA5kp6dirkvHUtQpkjPdTIpU74szqS2p5FZ8XS0lLD4aH3VGdTzstnagVX1fNOC2pgcuzplpMkR0ToyruOK61BoAZzNlipI+2jbPDv7u7W44er79mo1kiQPAZzpEmOiuCHbVFnTq4Roc9Vh49GtKgjgPdteyf0Q8dLdkCwbfz3sKKX6owh+m5Sd5rWouOU99D3UceaOq+mmSs2F6M7EvmMMeZax/OwMWZW+b4dChFxP4D3A3hf2f9L/zyAm+W0mwC81nZ9KeVhAA8DwOrqaqExy+0iV1ZW6joHuRicbnvI+gjqJNjZ2cFbb71VG3Vc7VUDWg0RGumsv8Awd+5AkA0dNVD4r7SrPk9X4FkvoNJdvSqsOzQAqI1ohvdroUka2WwDf6cGqvRPfYx607oCGmFAudmOnH7B+1HXjJ5Qo40GqRp//GgaxsmTJ+v+6/V6OHXqVL09pRbzY191Oh0sLS3VcvE+usuHbr9J6EygM4IOFW7HqavjWpOD/T0/P1/XxGBqjEZ1aFQMn6WFKefm5hqpFJSJ+tQiont7ewf0qQUMgWakB8eXbtmYC3pqUUu9hvdqi9zRcUOy40YjIlSH6vgaFmWQC2QyskWdYRoBQeeT1ohogzIxukPTjyi7RqNkZ4v2GX/HSA3dDnRauZJz8UqcmbrCEcYYM+14HjbGzDLfl0MhIu4C8DEAP19K2ZJfPQHgCxHxaQA/DOB2AF856n40XjudDs6cOYMbbrgBa2trtQGuhhf/yNfwfRpPNGBpjOnqPY0sGmsM6abx0u/395Uixei02F/euWF9fb2+nrtSMDS/0lN9LxYvpEwsMEg56FDJaRlq/GiBPADo9/vY2tpqPFe3F9T28RncLpLtlD6t26Gh+FrQjhESNEyz8aaGJO/HFV41wmmQbm9vY2tLhw/q+2rkhOohrx7rijp1w+0nWVAzIrC+vt7oX40w0DQP6opbk+bV8ey8oWHMaBI1UmngEo5RdUSpod5WL4G6Z8SC1imgfjRihe+DOjc0yke3JmVfcBydOHGi7m9N86BT4eLFi3UkC8dD1qdGZ1BvGtGizh/dhlQjEXKkix7jz1pXQdGUGL3vsPoK+Rj7gPPMtEcoXOm52BhjzPHwPGyMmXWOdChExBcB/AKA6yPiPIA/wqCC7QKAp6o/yp8upXy4lPJCRPwVgH/HIOzrI6WU9mXFBAvvcTtANeaB5k4MLFhHg0wLK+rqKVc9q3bURQt5Lo0xNfBoQCwuLjbCo/U5NFJUvpyqoFEQQHMrPBq//FBm3YJRw+RztIFGHNAYpfOF7YmIegcH6k+NcOpKDTRd7eYWhHnXCPYL76eGKe+Ra15ov2nhxVJK7QSg8a0OFOpNjVM+S1fwNQVBowaoX03HYPQH5aUjSVM52J9abJDnUF6Vi84f7as87toMWE2dyU6Ot99+u9F3PJYNa96HziDVn+pQ76FRK/wwCqOt76hXjSDJ41v1o4a8Ppf30feJaLuyvPw9nRA5xUWv13QNTa/I9RtUl/w9+4Dj87CoiEkwrrnYGGNMO56HjTHmIJeyy8MHWw5/9pDzPwngk8cRQg09Fh5UIzPnydMoZUi6phcA+9X5ARxwCtBIoGOABpPelwarOh50xV9Xz3lvhu4zD18Ny1x8Lxt9vKduEcnztOZAvheP06FAg5ih9sN2HFCjLqdJ0IDWmgv6HI124L2y0ZVlVL1nJwv7kffkWNBokp2dnVpedUrklXT2TzbQcyQFdapRCdofHDMa8aHRI0zb4Njh79RhkMdsWxqAjgeNssl6o14oh16vBrEa8zT8833aildqZA/7iHpVefRd0VobvAewH/XSVvskjz0AB94VTf/JTrscuZAjFPSY1gDhHEE95ucobY6faWEcc7ExxpjheB42xpiDXIldHi6biECn00G328Xy8jI6nU6jir6GtnPllikPuvqo2wMyzaFtdViNLl2V1nztfr9fOw70WkY18DuNf25HqVsb8p7ZMFTUsOp2uwdSJtRgY/soJ5/FlXjWnOBuDzRy9UNjUWtBqMNCawVsb2/XW0+qEUmDLEc8sG1qtA5baWbbuHUj9UmnEu/FVXr2ab/fR6/Xa9RloLNAHQNqoPf7/UbqBp+lzhw1XHWcMPKETi4dKzyH9TAUykfDfhjUg6aS0MmSiwsq6sRhJMXS0lJtMPMeGhGSHTGqM3UO0anGtCFtr45hjYLINSlY3yFHUnBMqDMut03rfGiakeqrzZmg8mnEiUZe8Bwdm1oQVe87zc4FY4wxxhhjpoGpcCjMzc1haWkJy8vL6Ha7jVxvGoM8xrz7jY2NxvZ+NK4ZIZAjGtbX1+t6BgBqA47P6PV6jYrzvV6vNh5Zo4Dh7rw/DZeFhQWsra3huuuuq50Nm5ubDbl7vR7m5+frVXe2QQ1mNaYpD50FNGjpBMhh7xqOX0rB4uJiwyGiBhYNR9Yv0N/pantE1PqhEQjsG2TcipJGJHfbUCOWzhUWYqScGhGgq+CM8gBQjwFtLw1ArcWQnRXsY+bAv/nmm9ja2qrz+be2tho7X6iTRtMpdCcRtkWLWNIxw5V0tkV3lMiGLyMwLl68WBuw1J+mEWQnjUaHkBw5oKv/WguBY0ajayifpvFkXfIZ/JcOBl7T6XQaqS+7u7sNBwD7I0dVEOpQHVU5QiNfr5FBbHPWh+62kR1FGqmi6ToaRaPy26FgjDHGGGPMcKbCoaBh7hqZwBVy/WN/Z2cH29vb6Pf7jbBuNQ5oEPM6GodqHOWVTDoKuBKuK8Oaj88aAprqcPLkSXS73fp6GtMaybC7u4vNzc36+TTG1RilDgjvQ/1oQUbeUyMMdNUXaK7YZ9QQ5XV5NVsjNtRo1dVs9oGmC+RiirmvswNDaxxo3YMcPUFnhRZnVMeR6kHbsLW1VTsO6CTRMaFjjhEwdD6wH9WZooY9xxdrEKisWnhRdaLOFo3YULSN1JlGrOhquj4vF2DUOiI52objKjuKclRCjrDJTgheq+ODest9QocMj+Xn5R0aSNa5OjZY90N3rdDIkxzNoe3XFAgW58xRNMYYY4wxxph2psahkAvaMcy+3+/XK83c9o+GeNuqeQ5rzoUDNS9cjQbuDgCgseqsKQV5hwNgf0cINSY1rJvtY5QCZez1eg2DXA1tHtcaETR8GeWgRqMWv1N95lXtbLxqmLquzPO+aqzz/mp8qZOGeuP9siGmdQJU57luAaMXtHZGrtmgdQPU6aFGL+XWOhC5pgLvzfsw+kG3MFQDlDKooUnnAKNlsuxtq/7sU027aEulUMdQ1ivHca4pkJ0AatDrNXTMqP61+GU23vO4UieLGv9qvOdxkI37nF6gz8iwn7T/Od60kKb2qY71tjZoW3V85VQhY4wxxhhjTDtT41AADtYwOHHiBLa2trC5uYmNjY36wxx6NRrUoNQw77zSrUYy0NzdgKu+NEiYgsD8dJ5P5wawX5AP2Dcu1cgmTNegwcrIC7af8upKL50qagBqHQU1XOkMoJHFSAotVpmLDzJ3nPrQZ2bnjH7aoke0H9VA5+90K0PuQgE0jU7qUmsA0LGT0wc0/UOdSbpqTzkBNNIsdMWe92K9AaZTaHoDj2lagKZJMDWFOtD7M5JEx4TuTEG9UC41rDUahbLq99zunF6hfaPRLcOcAcPIzg1GBnDb0zbd8Hx1IrG2gkYbZScJ25jbkuXR6Aj9WaMOVJ9t7WlLh9CtOS9VP8YYY4wxxswqcdgf7mMTIuJ/AGwC+N8Ji3K9ZbAMlsEyJN5ZSnnHhJ49ViJiHcBLExZj1sebZbAMluEgszQP+29iy2AZLMO0ytA6F0+FQwEAIuKrpZSfsQyWwTJYhmmUYRaYBj1bBstgGSzDrDMNurYMlsEyWIZLxRXHjDHGGGOMMcYYc2zsUDDGGGOMMcYYY8yxmSaHwsOTFgCWgViGAZZhgGWYHaZBz5ZhgGUYYBkGWIbZYhp0bRkGWIYBlmGAZWhhamooGGOMMcYYY4wx5uphmiIUjDHGGGOMMcYYc5UwcYdCRNwVES9FxLmIeHBMz7w5Iv4xIl6MiBci4veq45+IiP+KiGerzz0jluPViPhG9ayvVsfORMRTEfFy9e91I3z+j0tbn42I70XER0eth4j4XES8ERHPy7Gh7Y6Ij1fj46WI+OURyvAnEfHNiPh6RHwpItaq47dERE/08ZkRyjBU92PUw+Py/Fcj4tnq+Kj0MOx9HOuYmHU8F3suro55LsbszcWeh6cDz8Oeh6tjnocxe/Nwdd+rcy4upUzsA2AOwCsAbgMwD+A5AHeM4blnAdxZfT8N4FsA7gDwCQB/MMb2vwrg+nTsjwE8WH1/EMCnxtgX/w3gnaPWA4D3ArgTwPNHtbvql+cALAC4tRovcyOS4ZcAnKy+f0pkuEXPG7EeWnU/Tj2k3/8pgD8csR6GvY9jHROz/PFc7Ln4qHZ7Lq6PX5NzsefhyX88D3sePqrdnofr49fkPFzd96qciycdofBuAOdKKd8upVwE8BiAe0f90FLKhVLKM9X3dQAvArhx1M+9RO4F8Pnq++cB/OqYnvs+AK+UUv5j1A8qpXwZwP+lw8PafS+Ax0op26WU7wA4h8G4ueIylFKeLKXsVj8+DeCmy33OcWU4hLHpgUREAPgtAF+83OccIcOw93GsY2LG8Vx8EM/FnovbuCbnYs/DU4Hn4YN4HvY83MY1OQ9XMlyVc/GkHQo3AvhP+fk8xjyJRcQtAN4F4F+qQ79bhfd8bpShVRUFwJMR8bWIeKA69kOllAvAYFAB+MERy0DuQ/MlGacegOHtntQY+RCAv5efb42If4uIf4qI94z42W26n4Qe3gPg9VLKy3JspHpI7+O0jYlrmYnr1HNxjefiJp6LxzwXex6eGBPXqefhGs/DTTwP+2/iQ5m0QyFajo1t24mIWAbwNwA+Wkr5HoA/B/CjAH4awAUMQltGyc+WUu4EcDeAj0TEe0f8vFYiYh7ABwD8dXVo3Ho4jLGPkYh4CMAugEerQxcA/Egp5V0Afh/AFyJiZUSPH6b7SbwrH0TzP9SR6qHlfRx6assxb1dzeXgu9lx8FJ6LK7Fazr1m5mLPwxPF87Dn4aPwPFyJ1XLuNTMPA1ffXDxph8J5ADfLzzcBeG0cD46IUxh01KOllL8FgFLK66WUvVLK2wD+AiMOGSmlvFb9+waAL1XPez0izlYyngXwxihlqLgbwDOllNcrecaqh4ph7R7rGImI+wG8H8BvlzJITqrCiL5bff8aBvlJPzaK5x+i+3Hr4SSAXwfwuMg2Mj20vY+YkjExI3guhufiiql47zwXDxjnXOx5eOJ4Hobn4YqpeO88Dw/w38RHM2mHwr8CuD0ibq08gvcBeGLUD63yYD4L4MVSyqfl+Fk57dcAPJ+vvYIyLEXEaX7HoPjJ8xi0//7qtPsB/N2oZBAaXrdx6kEY1u4nANwXEQsRcSuA2wF8ZRQCRMRdAD4G4AOllC05/o6ImKu+31bJ8O0RyTBM92PTQ8UvAvhmKeW8yDYSPQx7HzEFY2KG8FwMz8UVE3/vPBc3GMtc7Hl4KvA8DM/DFRN/7zwPN/DfxEdRxlwFMn8A3INBBctXADw0pmf+HAbhIF8H8Gz1uQfAXwL4RnX8CQBnRyjDbRhU5XwOwAtsO4AfAPAPAF6u/j0zYl10AXwXwKocG6keMJioLwDYwcCz9juHtRvAQ9X4eAnA3SOU4RwGeUgcE5+pzv2Nqo+eA/AMgF8ZoQxDdT8uPVTHHwHw4XTuqPQw7H0c65iY9Y/nYs/Fnotndy72PDwdH8/Dnoc9D8/uPFzd96qci6MSxBhjjDHGGGOMMeaSmXTKgzHGGGOMMcYYY65C7FAwxhhjjDHGGGPMsbFDwRhjjDHGGGOMMcfGDgVjjDHGGGOMMcYcGzsUjDHGGGOMMcYYc2zsUDDGGGOMMcYYY8yxsUPBGGOMMcYYY4wxx8YOBWOMMcYYY4wxxhyb/wfR4bXXBrG5kwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 0 267636\n", + " Min thresh = 1000\n", + " Sliding\n", + "\n", + "\n", + " Winner = Not Sliding\n", + " FP Patient = 237s_iimage_24164968068436_CLEAN_ClassS_38-166.roi.nii.gz\n", + "\n", + "\n", + "247ns_image_2734882394424_CLEAN_ClassN_83-211.roi.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADYCAYAAABberBAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADVOklEQVR4nOz9e5S163rWBd7vrKp5rKpv7bVXsrPZCSQh4ZCAIGok0rYZHURQNIIEg9odILihPdH0ARI8oN1ix5ah0KNb7d0eklZaEhBHQGkBY6c9kESNIiYEcj7v7J2913eomqc6vf1H1e+p33vXrHX81l71rXVfY9So9c35zud9Tu9cdV33dd9P1/d9FAqFQqFQKBQKhUKhUCi8GYze7Q4UCoVCoVAoFAqFQqFQePFQgkKhUCgUCoVCoVAoFAqFN40SFAqFQqFQKBQKhUKhUCi8aZSgUCgUCoVCoVAoFAqFQuFNowSFQqFQKBQKhUKhUCgUCm8aJSgUCoVCoVAoFAqFQqFQeNMoQaHwGUfXdd/Xdd1XvNv9KBQKhcItuq77sa7rfu0bvLbvuu6L3uJ93vJnC4VCoVAoPCyUoFD4jKPv+y/t+/473u1+vBa6rvuKruuuuq471c/Xvtv9KhQKhfcyuq77pq7rztJ379673a9CoVB4SHjewuzrtVd/FxdeC/vvdgcKhQeMn+n7/nPf7U4UCoXC+wz/l77v/5l3uxOFQqFQGKD+Li7sRDkUCp9x2Fbbdd0/33Xdn+y67t/vuu6k67r/qeu6X9R13Td0XffJrut+suu6X6fP/o6u677/5tof6brud6e2f3/XdR/vuu5nuq77XVZcu66bdF33R7qu+4mu6z7Rdd2/2XXd7DM7+kKhUHj46Lruy7qu+86u657cfKf+37quG6fL/u6b7+FPdV33r3RdN9Lnf+fNd/Xjruv+fNd1v+AzPIRCoVB40Oi67pd2XfcdN9+z39d13d+n976j67rfpX//9q7r/qub//4vbl7+H2+cAv/gjYPgp7qu+4M338k/1nXdP/xW23snx11476EEhcJDwN8bEf9eRHwgIv6HiPjzcb03PxIR/8eI+H/o2k9GxG+MiOOI+B0R8a91XferIiK6rvv1EfG/jYhfGxFfFBF/R7rPvxwRvygifuXN+x+JiH/uNfr12TfCw492XfevdV23eBtjLBQKhRcJlxHx+yLilYj48oj4yoj4x9I1vyki/uaI+FUR8VUR8TsjIrqu+/sj4g9GxG+OiM+KiP8yIv6DN3Hvf6zrule7rvueruv+gbcxhkKhUHiQ6LruICL+bET8hYj47Ij4JyPij3dd94tf77N93//Pb/7zV/R9f9j3/bfc/Ptz4vo7+yMR8bUR8bG32V5G/V1c2IkSFAoPAf9l3/d/vu/7i4j4k3H9B+g39n1/HhF/IiI+v+u6lyIi+r7/T/q+/+H+Gv+/uP4i/ttv2vmtEfHv9n3/fX3fryLiX+AGXdd1EfGPRsTv6/v+1b7vTyLiX4qIr7mnT38troWHD0fE/yIi/qaI+Fef56ALhULhoaLv++/p+/67+r6/6Pv+x+Ja2L0j0t58n/5ERPzRiPhtN6//7oj4P/d9//033+v/UkT8yjfoUvi/RsQXx/Uf2P9sRHxT13W/5u2PqFAoFB4UfnVEHMb137tnfd//5xHxH8ft9+hbxT/b9/325m/k/ySu/zZ+Hqi/iwv3ogSFwkPAJ/Tf64j4VN/3l/p3xPWXbnRd9xu6rvuum+jVk4j4u+NajY2I+HkR8ZNqy//9WRExj4jvubGWPYmI//Tm9Tvo+/5n+77/q33fX/V9/6MR8fsj4re81QEWCoXCi4Sb1LP/uOu6n+267llciwKvpMv8Hfvjcf0dHBHxCyLij+m79tWI6OI6avaa6Pv+v+/7/tM3Qsafi4g/HtdOh0KhUHgv4edFxE/2fX+l13483sD35Gvgcd/3y9Tez7vv4jeD+ru48FooQaHwwqDruklE/IcR8Uci4kN9378UEX8urv9QjYj4eES4WMzn6b8/FdfixJf2ff/Szc+jvu8P3+Dte92nUCgU3uv4N+I6IvXFfd8fx3UKQ/4O9Hfsz4+In7n575+MiN+t79qX+r6f9X3/l95CP+q7t1AovBfxMxHxea49E9ffoz9989/LuA6Egc95A21+IKUh+Hv5rbT3Wqjv5kJDCQqFFwnjiJhExM9FxEXXdb8hIn6d3v/WiPgdN0Vu5qH6CDcK8P8zrmsufHZERNd1H+m67u/adaOb4jY/v7vG50XEN0bEt70joyoUCoWHh6OIeBYRp13X/ZKI+F/vuOb/0HXdB26+I39vRJB3+29GxDd0XfelERFd1z3quu6r38hNu677LV3XHXZdN7opyPuPRMSfebuDKRQKhQeG745rkv/7u6476LruK+K6ptifuHn/L0fEb+66bn5TXPzr0uc/ERFfuKPdf6HrunHXdX97XNcc+5Nvs72IqL+LC6+NEhQKLwxu6h78U3EtHDyOiH8o9Idm3/f/n7jOv/3/RsQPRcR33ry1vfn9B25e/64bC+9/FhH3Fav5VTefX0bEX4qI7725d6FQKLwf8L+P6+/Yk7gWY3cV6fq2iPieuP5D9T+JiH87IqLv+/8orovg/omb79rvjYjf8Abv+3vjOkL3JCL+lYj4R/u+/463OIZCoVB4kOj7/iwi/r64/m78VET86xHxv+r7/q/dXPKvRcRZXBP9b47r9C/jn4+Ib75JLaNOws/G9d/HP3Nz/e95m+0Z9Xdx4V50fd+/230oFN4RdF33S+P6C29yUxisUCgUCoVCoVB4T+HG4fDv933/ua9zaaHw3FEOhcJ7Cl3X/aYbq9cH4jpC9mdLTCgUCoVCoVAoFAqF548SFArvNfzuuK6x8MNxfY76rrzfQqFQKBQKhUKhUCi8TbxjgkLXdb++67q/3nXdD3Vd9/Xv1H0KBaPv+19/c3rDy33f/6a+7z/+bvepUHi3UN/DhUKh8O6jvosL7zT6vv+OSncovFt4R2oodF23FxE/EBF/Z0T8VET8txHx2/q+/6vP/WaFQqFQuIP6Hi4UCoV3H/VdXCgU3ut4pxwKXxYRP9T3/Y/cVDH9ExHxVe/QvQqFQqFwF/U9XCgUCu8+6ru4UCi8p7H/DrX7kYj4Sf37pyLib73v4oODg348Hkff99H3fXRd197jv3nP4DW/3vd9XF1dRUTEaDQatOU2u67b+fncPtePRqPWXtd1cXV1FVdXV+2a0Wg0aIvrcp92ve42eD+P++rqavB+RAw+63lzXz1GPpvHQhu+h8F9+H3fvEdE7O3tDdrI44mIuLi4uDNufvK48pp5Xvye5yqv26653DVvbs/v7/qc55Ax5+s9B/n3rr3scd73OV/v9WA/Gnt7e4P1oE+j0SgODg5if//28e+6Li4vL+Pi4iIuLy/j6upqMDbauLi4GIyRfc/9fS1z4j7ncd+3p3btH8bgz+zt7e3cY3nN8jrm5zG37fuv1+tP9X3/WfHi4U19D0dE7B0u+p//+V18cnsUez+0fa1LC4VC4TOGTSzjrN/e/YPuxcCb+i6u7+FCofBQcRKPd/5N/E4JCru+9AdMouu6j0bERyMiJpNJfMmXfEmcn5/HdruN/f39AcHc39+Pq6uruLi4iLOzs+j7Pvb39+Pi4iK22+2A5FxeXsZqtYqrq6tGmvb39wdkm9f7vm9tXlxc3CFOEKTxeBzz+TxGo1EjMBcXF7HZbOLi4voAgcVi0QjZ+fl5jEajmM1mrd+bzSYuLy9jf3+/3Z/+n52dxdnZWezt7cV4PI7xeByz2Swmk0lst9vYbDaxWq1iMpnE4eFhjMfjGI1GsV6v4+zsbEAAIyLG43FMp9M4ODhoY4QoTqfTmM/nMZvN2r0gUufn5wNyxdggYFdXV3F2djZYC+YeIrZYLGI2m7V5j7gmtox5b28vHj9+HKvVqs3fdDptnzs4OIjLy8vWNvPt36PRKM7Pz9uaHxwcNJGHuby8vIyu62I6ncZsNmufYS6Zk4uLi9jf34/JZNL613VdnJ+fx+XlZVvTi4uLWC6XsV6v4/LyMmazWft59OhRLBaLGI1Gd/aFSf14PG7/pr/g/Py87Tf2gYUWnglwdXUVm80mzs/P4+zsLLbbbTx9+rStx97eXkyn0zg+Po7FYhHT6TQuLy8jImI2m8Urr7wSjx49ioODg8Hz8OTJkzg5OYmnT5/GZrNpa3N4eBgHBwfx9OnTtnZd18VkMom+7+P8/DyWy2WMRqOYTCYxnU7bXjWJZ07ZQzzzrDfrwTzw/B8cHMRkMmn7frvdxna7jdFoFPP5fDCOy8vLtn7Mj9eb+11eXra9ube31+Z0s9k0UWF/fz++93u/98ffxnfhu4nX/R6OGH4XTw8exUe++J+OL3xyHqMf/h/e6f4VCoXCG8J399/+bnfh7eBN/U1c38OFQuGh4j/r/9TOv4nfKUHhpyLi8/Tvz42In/EFfd9/LCI+FhFxdHTUO5JsogW5Nbk6Oztr10Ja7RiwWwASY4Ei4proQTp5nf+GyPA5R2nV//YZfkNKRqPRnYgxr/FZ7gUBGo1GjWzxQ7s5+grRgXxDTvmNsEK/GStE3YTNUWXmDbIOOfX7RLL5NySN+YaU85tx2CExHo/bXCAQXV5etjlFIGBtdzk3mK88/wg1tA9pPTg4aIIDZJPrzs/PW3+9Jna6MN/MTXaouA97e3ttTvjNmNlbeT/R14zXcuuwftzTzwL7zWKShaP1eh3j8bi9f3BwEIvFIo6OjiIimvhydnbW7r1YLOL8/Ly9B2FnvdgPgNfdZ+/v8/Pztj4m/t5vjCEiBkILa0X/EByYZ8bldu2qsGhp1w6ve/1eYLzu93DE8Lv4uHu5n33bf/OZ6V2hUCi8P/Cm/iau7+FCofCi4Z0SFP7biPjiruu+ICJ+OiK+JiL+odfsiIi1yTHE0USVKLlJJ2Ql4pbIZIGC14gQ81nIA++Nx+N2Hz6XxQR/BpiYQFi53qAfdklYhHAUNyIGZD+TXAg0JOv8/Dwiov2eTqft2uVy2SLhkP+Dg4MBgWNcEDE+y9yzTvSd6+gXzgiImYUE5mE2mw0i97hMzs/PG2G0JZ99ADw3/Ntri6MF0kr/ucd6vW7rwpzaUcF/cw9+HxwcxGw225mGA7GnD/TL62sBx+kn7AmPyXs/4lYAY59YcGIeieBzX/oBwaav5+fnsVqtYjweN4Fpf38/jo+Pm2vh6uoqnj171taWObI75fT0NMbjcSwWi5jP5wOBgvmyYMWc2C1gMQH3B+LAwcFBu5fXmD05mUxitVrFdruNyWQyeOZY+81mE9vtdvDc+dn3vmHt6beFqRcUb/p7uFAoFArPHfVdXCgU3tN4RwSFvu8vuq77JyLiz0fEXkT8O33ff99rXN8I2Xg8bnbqXAcg4pZIY4d3BD7bxbne+eMR12RjMpkMyLmjvJBhR7sh1xHXBA2SEnEbObZA4dQHExlHQvnMwcFBRNxG64kiE0mn75AriO3h4WFExMBiz/0RJRgPBAyb/HK5vBPxhUghzhBBnkwmra/ME6QWIgxpnkwmjQxaWEF8YL655uDgIE5OTuLy8rKtO6kPtJGjxHZ6sG+4fxYVmMe9vb0Boc6CkOeJ+9mxkkULxuWoOp/Z39+P8Xjc1sJCUU6/YW+SokD6AuuMsGLXAXslu1Emk0nbJzwfTpXwWq3X6+YW2d/fj+l0Guv1uvXjlVdeiU996lPN0XF1dRWvvvpqc6j0fR9nZ2dt711dXcVisWguDsh8FsC8N+10YC02m81gv5rcr1arJoQ5zYZ+PH36NObz+UBI8TPE9ex1Uh3spJjP57FYLOLk5CSWy2Usl8v7vrYePN7s93ChUCgUnj/qu7hQKLzX8U45FKLv+z8XEX/uDV47iKBCCCJuUx6IyEZEIxS2+kcMiSZtQAqxOtsaHhEDgm+BAjLbdV1st9tBH2yXh2Ca9EKIHFmlX5A7E/OI67oHkEHGgiBBP4nM5wi9x74rxYH8/cViMbDrr1argVvA0V/bxvlvhBj6xLoxVkguEWbcDMvlsn3edShwIiwWi9hut41gkiIwnU6bQLHLsWFCnVNQvLfOz88b2fZ+oE0LBI5Kc63vi/gDieez2+12QFItTCA82Kq/a497/dhztvy7JgZE32Cd6ZeFOPaanxUELMSvV199Na6urpqAhLuFugN+DzGKegqA8ZnMGwgE3sdOHeFZWq/Xsb+/H/P5vM0P/Z1MJoM0JM/RarUaOFtYG9rn93Q6bf2xyAOm02kb94uMN/M9XCgUCoV3BvVdXCgU3st4xwSFNwPnKru+gCOru9IL7sMuV4BTGkzkTcwzAXPfnG5g4SL3y6kIRHZN5LLbwmIHZNJiSR6TyT2v0yeEFNp31X6KF06n00G/HME32WUMtGc7OYIA999lC4fcQgQtxlhYgSQ7RYE1QwhA3HFdBJNSSD3vWzCyRd9W+exycAHG+2zuOWWGH+aROXEaiQk2rgH2n9MfclqOx8ln8nhcRNMiDW1eXFzc2ZtO0fCajEajWK1WbT1cT4L147qu65pLxvO22WyacOP9Byz6mOD7mUPMIgVilwDhugdOG3H9D+ACjVxjMYu96Hkaj8eDwpGFQqFQKBQKhUJhNx6MoGDSbXJkcmKiAIk0oXe9BZMrCF3+dyamboN70C+Ik4UJ26j5LH3Gap4FBRelm06ng6KCtGFSCXYRJ+fz0zcLH4gJPuFhOp3G3t5ecxM4lcMRdgQIF/XLrgzu54ixCTnpHK6RcHZ2NoiiR8SdQnoWAFzfgLERNbZDgTV0zQZAewgks9msra8r/vv+doZYAPAagUw86S9pD547SD7zRXusq/e4r/caEznnnk6fyU4T70H3244XrueUhr7v28kYTsugHgVpEovFIiKi9YXaFAgq7rOfLzsCfH/GwJrgdrGDxM83+4g1stCWn5csSCD4IZL4GXThzEKhUCgUCoVCoXA/HoSgAAF0Trwj5hG3RJwor1MN7CDY5RbgvyOiRaixcJskm+Q4Got9fVctB0daLRYwDhd8M6nMFncIjvP26Ys/k/vp+zMmR7xt44foHhwctFoVRJavrq5iPB430th1XbOFr1arltLgUyIgjj7V4eTkZFCocX9/P2azWYs4857JG21MJpNYr9exWq3i8vKyRcwRQphvE04TVdJTttvtwKlBege1AsiZhxhH3BaxxBlh27zXm8KDrDNz7BQb0lf8ubyOTjPxexBwLPc4SJbLZTsm8erq9shI9hfzw/4gNSEXjXRUn+g917BXNptNzOfzlnLDaSIWb1xPY7PZxHq9bn2KiDa3OCXs9EEIMLjWtTvOzs7i8ePHg3W3eyenc/Ce5x/4iM2Li4tWoHTX/CEoIb4VCoVCoVAoFAqF3XgQgkKukcBruS5AjuBGDAvN8e9cXNFFG02Ac/42ogZEzqTXdQUgVERz6X9Oa8hWbgrWQWioNRARreK+o8Yu7OfUAciWo637+/utSr5t8Hl+TZAsiCAWkGLgIpWIMdzXAgKuBNbJpz8wRoj8+fl5i2a7bad8uEYAbgSnMxwcHMR8Pm/rRlE/+oNYxHhtoWcMiEqTySSm02mMx+M4PT1tNSfW63UcHh7udIkgtDhiHnF70gRtuGYDn/V1nGjh9WDfOQpPzQYIMOvpdIhcR8LiGe07ncSCHX2hhoX7BPlmn+XTU5hH+sQYeK64HoLuNBPA+BA5Dg8P25yS1uHCqE6N8j3sPnKdDvb8aHR9mgiiE+KJhUnGbodFuRQKhUKhUCgUCoX78SAEhYhhbrPtyhG3tmg7GSKGxzS6noFz3G2tN0HMxRnpA4DU8TlHdx0Ndbs5Lzy7ECBVrkngIxkZh+31ft154LTtWgcR0eohWEzJ7g+LKvl0CI+dVAYfo4igQDHFTLqJFkNgOa1gPB43ccHpIxY9cINQKNKnQ/BZ7m3bvF0rtO819WkdkFu3hSji1Aw7ZajTkIkre4wof65P4PXPopXTNLIwhahApJ37+ghH13nwM5H3MvOEk8BA/KGvHCeJYIE4wnx4r9N3hDLmjc9ZFGPuWPdM9GmX1yeTyWAv5mdr1wkreQ9aCMupKk5tWa/XsVwu4+rqqjlh/F1UKBQKhUKhUCgU7seDERQME+SIuBMBNwl24TiIVq6gn4mFr+F9E8L7RAPnkzulYRfclsflNnelUACTINd84PNZQIFAEYl3FfxdKRI5tYLXObYPdwRWcI6cJF0BgcF5+tzP67bdbts1uAFIafBn7EDg/tvtNtbr9aD+ASkLdqBkgSULChG3xywi4jBHtOsUCsimxSinwHicEHFEB/aGHTNO23H6C46DfCqB61pYKPEe9xgtLnhvOgWAe7pmgQUFUiBOT08H0XuLBOwp7oG4hDBE/QPGyti8xrgEvEczWPv8jDCfdinklAQLU3l83Is0Ehwuy+Xyzh7KdS4KhUKhUCgUCoXCXTwYQcEEaVdU08DWDoiSup3sEjCxN6mEOBwdHQ0il84Vd4TZJNyAHPPfzusm4gtRhryZXHFE3mazGViyuT9jNLniaD1Iou3njpKbGFlUgSCb/EHgqdhvQntwcBBnZ2dNJFiv13F0dDQQLSD09JNK/TgabFvnvlTVRygxaSd1wrUXjo+PW9oDhNfCz3Q6HUTxiaRDqHM0f39/Pw4PD2N/fz9Wq1Wcnp4OTr7AVg+y+OPUB9aadvltRwPzc3p62mpEsH+pj3BxcdHST3AqcBSn96nhKH8WqzgCknoZEdFSRGazWVs3Uj4uLy/j8PCwEXJEHQt6CATj8TjG43E79YF6BavVqtUhyGKEUxMsuCCAUENis9kM6lEw3y6eyTzbxZPdSxHRUnlog7387Nmz9t8XFxeDI2PvEwwLhUKhUCgUCoXCAxEU7nMe8Htvb29gQ0cEMDnhxAQij44SE3GEyEMwbaN2P0zGc/63723rPPUNTH7cx4hbIcMRaV6DOOYUDosfYJcdGwLkWhO2snddF4eHh/fOLxFoV7/HIWCXAkT9/Pw8nj17NiCKFn88fiLxe3vXJyzgUODnPrGDegknJyfNecFr1GXgB1JvAkhfneuPAMG6OFrPaRMU//NeYY7cbk4p8f5gX1losdOGCD/iDfuX/uLuQNhC1HAqC3uF/WPHTE7DiYhWZJPxMzYElfV63QQXp9zQhk9FoBaB70db7CEKbCJM7e3tNfEImLxzDwsQTneykMca4NrI5J+xeTx2L1A/AzHK6SZuJ4tPhUKhUCgUCoVC4RYPQlAg+kouO3/8Oy3BxyLmqCFkIueE2x5uUm6Sm9uJiIHwEHFrOzexcY49pA7Rg+uojk//LXBAlnLlf8gOtuwc7QaMK6dg5BoMXMucmrwxNtvBiVYzlpyr7/QLqvtDhk0uGUuu/TAajVoBSvrGnGcBhmi1o/LL5TJeeumllvbA72yN96kcXrdcJyKLQHa7OErtsbt/Ju6sPZ/3ftsF9jrX8Dn2gJ0A9NcRea5nrhGkgFN0+r5v77O3LCrt798eA+maCbtSCjyvFl4satHn9Xo9SLvglAwLMhZlXFTUwp4dDcyJnx/Gwl5BALJ7wfdknQ8ODgZCVq5RUYJCoVAoFAqFQqFwPx6MoOAIbY42Q/xM1k2cIONZcMjXmCQ4t9/IjggAkTHBcoQ4iyERt/UAnIfuz0KgnKNO+466+76Z0GVxAPEiW/t3fcb3A4eHh62OAscU5vmJiBYd3mw2gxoOJpWQORdhZE5oIzs6nIJBugGpHhBUjoV0wcgc/bew5FQKCzP5ZA4+j1MBZwKfswDgFBdHwCOikedd9Q78WRworBc1JhBRNpvNwEXjMbA/eH00GjUnAGPLNS1wCBwcHDQ3gp8ximxi/Xe6jAUZzxV9h9SzJhad/HmcJxa43Ec7FmjfxUstIPGea6dwXxcfdQHM7Erx3smOoBITCoVCoVAoFAqF18aDEBQibusmjEajOD09jdPT00Z+ID0unId9OyIa+TP5dGTWUXJIhYkHhd5Mlk3MHcmFpEB8XNwOZ4FrEvCb3HinBDgCC4knbx4RZbVaDaLqJnRZXIG0ZfGDzyAQmChnez659uTMOxfdRMzpIev1ut3XrpK+79vcMFbSHgxHjg8ODhqhjbgWVhaLRYxGo/b6ZrNpe2M6ncZsNhsUErSQgXDEnLNvPO5Mksfjcet7FkCYT9rgHjheSF1h/c7Pz1vdAn/O9Su22+3gGND5fN4s+RzpaHEBN4KPr+RzPqrRaTkWDhgPtSkQATw37g/FMPmM62DYTUBbFg0YH33HBeH0EfYV+xF3BvUZ7OJhffmMXS20SdoTz5aPv/RzacEhIz8fhUKhUCgUCoVC4S4ejKAAaXVU17Z+571fXFzEarVqJCnXH3Dxtmy5h0A6EulIpSPCFhhcIJFIr/sdcRuJh+RBsK+urprN3ykJFj4scNCf8XjcCtxB1pwTvlqt2hGLIBcSdCqAHSCM24XquG4ymQxOO7B13hF+iwUQPN8XkgnZZn3n8/kgKm0nBvdi7WnT64IrgroIiAu26TtlhmMnLaaYhEKcmXdEDe/NXa4YPusoOGM5Ojpqe2IymbSif3ZfuGYFRxiyr2azWSvSuV6vW7tE7dnz3s/z+Txms1mbC4pYkuLj2gs4EajjwNriciA1gvH7qE6cKefn5wOXD64LxoeLws8s68Y+smOGfllEoGCixTeeG6fv+Bnyc2gng/egYcGMdtgnJSgUCoVCoVAoFAr348EICvmPfFvBTVS41tXcXczOEVjbmX29nQsRd0msSVHEbuszlffdJgTEpCbn59sh4YKEZ2dng9x7SJfTAEyg6C9k3ikGJmaZuAMLG44OW6ThaEPfh/lFVPE85rQK/p3TL+xyoF3PfS4s6Zx3yDfF83KRQkehIcEQZs+NRSZb/7PDwWTT4L2ca59rQrCHOAoxi03Ms4Wi7I7AtUOk3YKQ59uFKiOipTUgepgkm/DjpMCdQju5VoTXPNflcPqHBR3qiHgPOkWGz+T6G7hPjo+Po+/7dvoIYor3KvNuESzX/7A4Sb/zHvaes5BWKBQKhUKhUCgUduPBCAoRMSCmLqzoSvMRdwUFW/5N5Lhm1/F63MfRe+ff2+7sCDwkIxMi7PYWFTIpyQR0VzG5nN8NiYYUuy2LH47s2qkBSey6bpBy4d8eT+5vRLRoPSSMfk2n02YpdzE7R/T9uvP9GR+RdPdpV7Q4uwsQFCwmeH5JXcAdcF8+vOcv4rbAoUWOfJ/72rHrwZ/pui5ms1kjxPz2GiNAmaQ75YdxeD69J51+41oKCDDMnfuEA4JrLMr5ueJ6u1BwA7Bns4hk8Yk5sXuHPe9niN8ex9HR0SA9wutlAc1OJqc4OK0hnyLTdV17vizoIGIhXhQKhUKhUCgUCoXdeBCCAgQx4pY0QAhMslwQz9FTyALHGxLBxNngiGrEMIc6uxvojwWLHGE3sYq4PU4PIgVBtJXcOdwWQLJzYrPZNBv6Sy+91I56JCpv4pjJv8mu7f/k9I9Go2afZ45pM0eaTbjsuKBOBbULSA84OzsbWORdqJLaB5C+R48eNcJoscHpIfTP7fV931JHnIbiyLvJKu1x0gDzzLxYTIG88zmi9xaFuBcCiKPpFi2YV+/Dw8PDRnBdD2E0ui6mSI2LiGjrv1gs2nwfHh62eSSVZFeKCe+TVnJyctIEAxP+g4ODmM1mzYnAvnDtAAQqCwY4Zyy+2UmSnxFEJ1wQ1JvguWa+PZ+u+2Bxr+/7VlOEz3A6jPcLThBSMuwI4j4W0HY5oHwcZaFQKBQKhUKhUNiNByEoRMSA5EJGnIfvvGnII69R0BGYPELaTficDmDyG3FbQJFTJygCuFwu70Tb7WCwqwJynk+rcPSesTrtwYKJI8aQ29VqNehzxNBpQPvA0V6fPJCr5NOnrrsuyuiINGKIK+QjKBwdHcXBwUFMJpPYbrftBAbubXcBa0xRv/l83tqG+LM2zG0mwayb0xVsgaffFl4gzogPEHTXs6AAop0QCAzcw8QScYX7OWLPWJgv+ul5i4jYbDYRMczfzzUKzs7OBukrdr5sNptWcJJUmu1228ZHbQ3vNYOaEuwt1ykwLChklwf/Zj5YvywI0J++7+PTn/50E1xwadhRYRcO+9d9tLhhQY2xjkajtgf5TH4mcgFW1wUBLmpZKBQKhUKhUCgUduPBCAoRw6KGEcOz450rnv/I90kQ/pwdAXYdOGrvyLajxrkyPpFQHAuQbNvgXQcgOwYiYkCG6LdJUSY2Z2dnzYLPCRK2uZt8vRayHZ5+Yr0nmot1nDly7jwRfdvmiehbUHHxSpN6ijNCJi225AJ9Jq5c7/SUXX2zKwRyzDpPJpN2H58Ewp6jwCEiU3arcDqGP+NoPmu13W7bv11Dg7nx3Lp9rxH73WTYaSauwcE6MiZOg+AeR0dH7d4c34hQxTPjtu028Bj4b+9z9p7rFngsfd8354X3oYtQWjiws8jigvcQbge/bmHBrgWuyXUUaJd5Rlyzy8LPaa7tUigUCoVCoVAoFG7xlgWFrus+LyL+XxHxORFxFREf6/v+j3Vd93JEfEtEfH5E/FhE/Na+7x+/VluOoDqXOv+A7EZwFHxXG7vytCHXFg7S+AYExW3bjRAxTJ3wa1jGdxF/ovA5dx/nBSQfQBoB5N/ugnwPOzUgphzJB9ky8bXLgehxdoU4XYM+20bv0y9sn3dxSdIjbHmH5Jns0UfPg8mkx85cQ6hNtBFRWE+EBtwMXIMLwAJVTnfhNZN9XAW8x28IanavsGcteuWikhHRTvZgr7B2/JydnTXHA64LnBeMifXldYg/ghrzube31wSmLILgUnAf/RzYccBYIm4Lq7q4ZXZNcH+uI90l72XSUPKc7drn+ehYO2zYQ57n7Hh40VwJz/O7uFAoFApvHvU9XCgU3s94Ow6Fi4j43/V9/993XXcUEd/Tdd1fjIjfHhHf3vf9N3Zd9/UR8fUR8Qdeq6FdlmyTZJPNiBiQVqLJFg1MAG0lp50cmYVgOtc/Ihq5xBIPebJdnuuchuH70ifIJZF6HAFcRySdvvqEBcSJxWIxiFA7mm8ClmsrgFwZ/76CdBBY11HY5R7Y29uL2Ww26LPvl0+mAETzifw7Uu3jQfmdT2nIDgjm3akg7IO9vb2Yz+et7fPz85hMJoN1px4ErzuSH3F7jCaw88U1AMbjcXMu5Gg/UXnPn9ux68RRf8QU+kq/ODJ0Mpm0lAFELdJPSC9hLqlfwLO2WCzafXAx2IVCMVD6wHNjos41FlS8FxCRzs/Pm4jj1BTux7xdXFwMUiC813ApWGACzBtziuOE9BAXaEVQzClC4EUTFOI5fhcXCoVC4S2hvocLhcL7Fm9ZUOj7/uMR8fGb/z7puu77I+IjEfFVEfEVN5d9c0R8R7zOlycEyYTQlmM7DSCYXOdIY3YiOP98sVg0wgJhI4qdUx8gLC586HQMcv8RIPx52+GdwuBxRQzz8CNuRQm7AmwLJ/IKWWPsuBayuOG0DVu7+Sz3peiirfG2/Oeo73a7vVMjgD5cXl7GcrkcpDIg2jjVAoLpopAWEHgP8Ybr+exisWg1DyCnjG8ymcR6vR6IEuPxuKVN5GKATotAUNjf32+F/Vxnwj98PqcLkOfPmtgBwGs+JjK7aDwWUlzoL44L11BAJKCY5fn5eWw2m1iv1634o6+PiHY9NRiY881m08aK2OSCmycnJ3F0dNRSSM7Oztp9KIDo4qT0fT6fN+dBTk9BVGKOWGvmFpHFa5m/F7gn+9iiIu1wf+8t6pMgJvI887ztSlt6iHie38WFQqFQePOo7+FCofB+xnOpodB13edHxN8YEd8dER+6+WKNvu8/3nXdZ7+RNlw8jQjldrttJDaTCGzdJmS2Lvs6SIyJzk3/WuQSsgbhs2UaEmrxIbsZIJkWKyJiIHxguzfBt8CQbdj0kf/26RQ+Fi9i96kFjsTTZnYL2CHg/H2TOMg7a8D8QvZdV8Gfz1Z3BAaIHeJDTgsg6g3xc99Ja+DfHptrOzjn3ycWQFidr4+YwA8WfOYgiwBeG9bMY/M6ew0tMNnp4qg9sFOBf7NPEQPsDnDRyfPz81iv1/Hs2bM2Z65DkYUKRLrVajV4FpzO4HQKTvdgPhAeENsAggbzPZ1OY7FYDMZsJwgCAk4dO152pSmMRqNBHRDWzL8Rq3BOWCTIwiPX+hSJFw3P47u4UCgUCm8d9T1cKBTeb3jbgkLXdYcR8R9GxP+m7/tnmbC+xuc+GhEfjYhGHsDh4eGA5OIYyKkPjuZmOOKLS8GfRyzgNVvpLVxk4sd1kBR/3sXhbJF3QT/67KJ+TscwwWb8rieQiZaJdXYzICrYps5n+G87F3IOuYmYTzRgLezmcCQ+p6lktwKOD59iAOwKwK7vOYRMQ9jpj9fGqQeeH5P8iFuhAaGI3xwNyXq4MKT3htNO7FABu0iwCw4yXkQY981iFmvhMSJ6OC3Bromu62K9Xg/6QZsm1HYt4OxAlDEZZz34HGIVfSTyT00H+ozQgXvCrhLXyMh70M+bax94Hu1YsojFtRYU/Cx6v/nZ90kzfv9FwfP4Lp7G/J3rYKFQKLzHUd/DhULh/Yi3JSh0XXcQ11+cf7zv+z998/Inuq778I0S++GI+OSuz/Z9/7GI+FhExHQ67Z2/P5/PG6m2VZkovk9S8GuuSeDcdkghZDYTZkjDdDqN6XTa8schSQcHB7FerwcRfhesuxnP9YTeiA1OfbiZq4H1Pef6k0KR38tRVQsM/U0ueCbKAEEhR8pzfxkXEWanEVCo0CkczuOnjoILWDJ2SJ3XgUr9jIV1ZZxEzh0Zh/RTS2Kz2bTii4gH+RQOO0csSrjwon9Mcn28I2Qdcs78Oe2EFAALP06VYL7570xyfSqF15K5scsjW/E9V0T2Kd7I0ZM+rQHhZDQaxXq9HjwDpDxwHXPA+4hAvJb7akHMY0RMIF3F8wX8HOb0IObbIhG/6TN78r66CCDvM9aF75nVatXSeliPFwHP67v4uHv5rjpbKBQKhddFfQ8XCoX3K97OKQ9dRPzbEfH9fd//q3rrz0TE10bEN978/rbXa+vg4CBeeumlOD09bQQu1wAAjiBCpCjURiQW0hRxG5GcTqfNDg4Jjbit2A8hWywW7Wg7yBpkEsIfMSRJJjIme0TvOY4w4rYwIgTGxBvCdh8pMlm2cwBSTC445J8xuz/825FyyBMRZH6cAsBc8dmLi4u2XuShM+cWHuxagKDaco9oY9LvaLxrPuC2gCRvNps4ODiI2WzWxko/7GThv03yuY7PuKgh6TSuj+HaAKwF639xcdFOTYCYsw4Wa/xZ9reLJDp9h3uyNrg5+BmPx+3eFGBEMGPfdjd1DvIJDJ5vp3Xw77ynAf04OztrYoVTHEjDYM5433vMLgh+54KszJXnnbFy/KVFAMQ/Pzv0ge8DXmM/sNdyqhHfEU6deOh4nt/FhUKhUHjzqO/hQqHwfsbbcSj8moj4X0bE/9R13V++ee0PxvWX5rd2Xfd1EfETEfHVr9cQBJtieCbFuZgggPBQGI6c76urq0Zc76sZkIH1Gyv38fHxIDfcxNbkYzqdDlIinA7BbwisTybgniaSEEF/hnbot90YfA7y6chtxG2OPmQ54tZVkVMTXDXfhQYpppj763kjYg2pZowuaJmFlgzm1wTWTgCcGDgu5vN5Wy/s9p5/Hz1IvQuLFxZivM9cONFzwTggmDmVwZF1rjHxzSkNOQXF42S+spvE+yLPMfPAXkWQYZyIY7RBH032GYPTDFhbuzdceHS1WsXh4WHbL7gFLADww8ksuI8srmS4HgNz7xQo9glzhBCH0OTjVf388BkLZBmsuVNbXgA8t+/iQqFQKLwl1PdwoVB43+LtnPLwX0XEfclhX/lm2hqNRjGdTpuVHTIMkSB3/76oM84B3oNIR8SgHoFhQmfr/Wg0akXnKFSH5d3uAN+P9lwY0fUFIOLZqZCJjdt32oNrGQCTe5P1bIV3HQO/71oOwA4EV8d35J4+Mk4ECfqIgOE+eSxOCUAYgawy9iwquEAizguTYJNhp2xQI8EnReRCiBY9dqWz5JST7FRgXIwtzz9rjZABic9WevayI/73pQU4rYfP+pnJ0XWvn/cv11oggXSzx2jbAgzzwHxGDIuaes9yPwQM9qQdGxk+rcFCj8UW10jwv5lnz1uum0D7eZ0s0HnOHjqe53dxoVAoFN486nu4UCi8n/FcTnl4uxiNRnF4eNiOrsMyDkF1MT8qxxMNzrnqERGnp6cRcZsvngsFRsSgeF5EDE4W2Nvba5FUHA+QJQiSI8oQQffHbgJH3yGCmTjbdeDItAUKW7Z31Wew8OJj+fy6T2QgAgzJJv/dUXtSAjx2rndEH9s5dRL4XHaJEDEH3JP2scy7xgNg7WazWYxGoyZk0L7dFYgh1MSg3xxxyF5wFJq5x5li4uuoOtdZCOG67BLJogeCyH0R+iwqAKeAsFb0JSJaTQm3kx0luAW4p8UX3yfXJ4i4JeWkwODqIdViPB7H0dFRG2tOoYiIwckdFsD4b/Y4IhX1S5yG49oMFk4sjDhlI4sEjMF9YU6YB2pQ7JrDQqFQKBQKhUKhcIsHIShERIuATiaTRhT5ox/HwP7+fjt2DlJtISAiGvk+PT1txCDbpnO6AYTn6dOncXx8HNvtNl555ZU4PDyM2WwWEdHcCqRkWBSwBZso8Xx+XaUXYuQcdqK5CAkuoMcY/DtiaMPPdvl8DaQQAs3YIfiZeEOKnbJg8cNihSPC5LGzDjg5HCGeTCaDSDl59XYjcA9H7T0+RCW3SY0D6kJkAWQ6nbb0CB95yTpikXc9AO673W4Hxf543+Q0uxxcDyOfFJEFAAs6zGWuG5JJLiINToTVatUIOKKJnQGIGa7XYCeO3Sl2VdilMp1Om0OHsZjcO82ANTo6Omr3Xy6XA7J/dnbWxD4+g9uCvWsiz1qMx+OYzWaxWCwG+496Fcwd+5j5w6HC9XatMC/b7TZWq9WgLkMWEAuFQqFQKBQKhcJuPAhBAVJBjvx2u22EAtIQcRtRtT3b+c4mG5BBQPuQIbsI6AMEFTLnvO/5fD6IVrt2gFMUqAPR9337vIUBW+YRFficI7u8BvwexNnk1Q4N28kd9TeRcuE6xu5cd9cw8KkPdiUwBlf1d2E+Cgc6OkwKgvvrtonCQ2Cn02krujidTmM+nw+OKyTdBWcF4oLHSVSdPucUEx9PyZiXy2Xbh647AJwuwf08L7kIIOKB94Lft3uG/4YgMye5HgDCG/2ipkfex66B4H3mMVtUsPvE13M/7r9YLJpo4AKNEHPa8rNM33Lqj4szulaDXT6Xl5eDtXQ6htManP7AXvS8u332ZU79yCebFAqFQqFQKBQKhbt4EH8tO2pLhDliWFsAm7yj99kdYDgP24QOwpftzCayFIWLuLWoY5Pm3jntwNFm+gux4hqTNh9J5+iyxYBMZnKtAKcw5LadjgGxYl4917kOhIswutaB7+PIOf/mGqLtzrl3GoDb8Pr7Gveb/TCbzWI+n8dsNmvjIMrNCR12KuQcetr20YwWU1hbCyOIIxawLFS4z7tqETAfJvJGTqPIBTMRMXJKD3Nk54NTaUzcc7qMhQ+LEezpLDKYfDuVADfRdrttLgW7TeiTT2rwOPOYcq0KXiM9xakpEH3u6T3pGh3eh/THbVsweK21KRQKhUKhUCgUCrvxIAQFwB//0+l0UJPAlmsi/znv278hHiZAtG/iAtnhs9jbV6tVbDabdkwhggKihp0Btv9D5klpwAkB0eLzXEeE3/fnffeX1xAwXNAxkynXE7Bb4+zsLObz+WDsWbBw2oNrJbiQHmNx/joCB+1dXFy02g2MbZeowLhy5N9RcK5HVDg+Pm5CiNNi5vN5s6r71Avm7bXIIRF239f59Sauu+beaQ2219sdMJvN2jV2MdAWfWD/5Mg8c5XnlNe913nPRJ596GKYee7t6vGpHYwjixA4iuyG2CUoZMEvi24gi0276ksgEuT6D/Rxb28vNpvNoK6F97RdTPSX8dIHfpeoUCgUCoVCoVAovDYejKBgSza5+s5htqPA5NRwlDfbwXN0mdx/F86DHFIU0pbxfHqBj+zD1ZDrCziyOhqN2tGWRIxNuBAWlstlSwmYz+dNPPFJExAqovJOFWCMjnJH3Lo8crQZRwJzNJ/PYzKZRNddF+V7+vTpoBCgyWXEbSE9kzOvRSbbJuD0i3ub3DmNgrz/iOv6CbmOxnq9bv3OfcCZAVFkTjwHEdc1MtgzWfggj585R6zx503qmSf2gOtPcK3ngr4yBy5KyX1yfQ2nTzDmfHLC3t7ewG3jdSPFwLURENRo06kurAXjMyH3iSi4F+iT01O8LvRjtVq115gD2rUDiOeS61yDhLWy2IMQ03VdTKfTO2kROYXIQoL35a7vmUKhUCgUCoVCoXCNByUoOB/dxBCy7UKKzjs3WbEVHOKTiTcCAQUDaRfSd3l5Gaenp3FwcBCz2WxAarivCxpG3JI5W7PdV8glIgaOAYoGQuIjbgmiCexsNmsOB1wTEGvgonl8DtLt3HWTKZNefjNHzBuk1GOHzJkcZxFjNBq1cfqeRLQt5EDeHZln3nIKg4tDImjk0zzYL1jmERuyGIT7xdZ9pwcgPuE6Yd84rYDUCAsK3itE1i0q5Ch8dnDkGgKbzabNEXuUPeL1Zh9QawBxzSlAXINwxbyzV/lvRAXaZa9yfY7ee//bpcH9cloSa2TBibEwBxaTeM58xCtFNdkvLhLq+cvruqtPTpnA0bGrz4VCoVAoFAqFQuEaD0ZQiLh1Ebi4m6OVPs0hR8BNTiOGEUjbofmsxQsEC35fXl7Ger1uJH86nbbPZQu8LfI5DzvXCqANCAsV6OnLZDJptQic3kA/5vN5I13UFCCq7uKHPuWAqLPzyi0CuMgdr9vVQZFJfxbi5TFaFIAc0ibCAGkdLojpHH5+WzCyY4V7uvAidQLcD6+/CwIiBuRUEgQBCyfsBYhtdqcQTY+IwTGU950KkGss2IGwa8/gQoHUWzzJcP+cfpPrNjj1ww6KnCrBvHhdEBJymob7netJWNwBvgdjsqBweXnZ1pu0p/xZ+opQwH7iuXQakfcCop+/X3KxTe+/XFOiUCgUCoVCoVAoDPFgBAVHxl3Ij9+QepMR/8EPMfE1EFmTQeeCR9xWmee/eX+1WjWr/C4bvfuGAIBd3qSQvvi0hNx/iLPrHzifHgJ9fHzc7sHJBxxxaJEDQWE+nzcBhhMREAUY/2azafc2QQOQRI6FpO/Od3e9gOl0OiDPtMf62i3hlIGI24KIuU3SDXiNOhu0t4sU0k+EEMbtqDvk8fz8fJDmkgUjE2X66bQSxIjXimabZLMfXu9ZyHUCfCqB++PXIm7rbbhApZ00jCHXD/B657oW3ut+vvx6FiXymuRnwiKCHUXUUEEcs1vF82n3gY/DxEGDYGDHAeKM3RyeEwshdi8VCoVCoVAoFAqFu3gQggJR4lwozQSEPGhIMeSW6xz9tt0acgEBhVxQ82A8Hg+Ok4RwYIWnTRO8iGgWdO5vUuR6DU7XyEUiN5tNs9EjXiAGcNwdYgIFB125HscChNgpD/P5PI6Pj5swEXGdr06xRESLnN+PDT7XnmAMWUyIuHV8HBwcxKNHj2I6nbY0Ash2RAwILDULuq6Ls7OzgXiDU4O9wJGRnPAwmUya/Z612Ww2gxMBiGQjuBCtn06nLYXBtQfoL+vEfmNfMe9OGWB9F4vFwN0ATFotUDFnTsHxPLJ3nAZzeno62OsWsS4uLlp/LawhYrGPqOFhYSODdd2VCpDFAqddUCvBqUB2pgA7EJw2YYHAtQ18GkSue8Dn+N33fWy32+ZCYT5ynxEreN8nyNBnp6sUCoVCoVAoFAqF3XgQggI54sC27Ewg/B4/l5e359NHRCOwEECnGBBJhSBC6HIk11F0UgwgGaQRQH4QAsjBhyhHxEBU2FVMzgSYOgAHBweNDCI2QEZdYG86nbY+mLhbTOF+ECsX7uM+LoaH0OKUgXx0n637Tn3Y29uLxWLRjnLcbDaxXq/bnJjIsg6Q+fPz85jNZq0+Afnzk8kkPvjBD8bx8XEcHh7G4eHh4IhIxgfptRvBtn36wOkd9MFFA73mLgwJLDS5mOZoNIrFYjEYT04bsSOF+YX0cgQjNS6yq2Y0GrUaD4DP84xsNpu2H7L7xX1l3r0WjJ/nwyQa0YI5Pjw8HIgF3o8UEPVzxPx7nwAffepn4ezsrIl3FqFcYNSCDseIeu3Zz66dwtxcXFw00YHrPGYfv1k1FAqFQqFQKBQKhfvxIAQFiNqumgMWEFys0Ln+2e7tIyZ5DZLlExEgkBDXTIRM9OfzeZydncXZ2Vms1+sBQclW7l151xA1rnPdBgsnjgRDliCctOP5GI/Hsd1uW6V9CxmO1FJDAFK6yz4eEW0dIFhE/l10MhfkM3nH7eHCiY4+QxKZN9aKMe3t7Q3cB/v7+7FYLOLRo0dxfHwci8ViQPRxYzi6T99NbhEUcCw45cVWfgQAj4/1sejAaxBpXCU+KYH2EFhMaFkPSLHdMf4se34+n7e1wgXjU09cj+C+/H/XFmAtvPaeD8SkiBjsc9aEteU9Cwa70mHs2vFz5rm2YGVXSIYFBfZTTnuxYMIzxmedfsSey58vFAqFQqFQKBQKr48HIShExMDanMmJyR0kKxNURxg5Xs4kwlXesToTtac+w677QewXi0UjjBwjuN1um1jh+gxEyjOhgrCYcNN/p2rQR+z9iAo53xsSCiHNLg5qLRCFn06njUyb2DlKC8Gnb8vlss0VsJhjIYRihtkJQTqAi+ZB5GjD5I+xc8/ZbBZHR0fx0ksvxdHRUVtfgHuEfcM6mcBy/Xa7jfV6fSetxicluPaA1w4imt0tCAqkcjAmn8AQEW0OTPgdZR+PxwOHi4UqxkgfdlnxfZIDZJ/9iTuGddoF+myxyak6XJNFCO8BCzPswSyC+R6ujYEw4r3oegiubcD80aafi3z6iNNbSG1hf+Z6GoB7VlHGQqFQKBQKhULhfjwYQcFHwUEAIAyOPpuAE2HtuusTEBAYNpvNgMRABrFkm3BBznxfBIH1et3cC8fHxzGfz+Po6CjG43E8ffp0UEjO5BWCsytHPOKa9FATwYTL7URcE2VSCEhH8HxA4BAVILURt0UYqTuwWCxiPp/HarW6E92FtFEzAts4c8A8Mj8udujIOFF72qMWAuPOooKLQTqnfj6fN2J4dnYWk8kkptNpHB0dxWd/9mfH6elprFar1l9IPfNP6olJpwsAIgQxVwgvCAfMFySUOXMNAcbO5/v+9shDO0F4n7Xhxw6JyWTS7o8oYbcJ/Yu4TcVZrVZ30nRc6JL2WR/mmL661oLHwf5kXyyXy0FKiI/ptEOB1+0kioh2HSBdhfV12oGfAcSy7XZ752QLO1D4QaiwkOJ0KR+ryfz7dA7u7YKcu07UKBQKhUKhUCgUCrd4EH8xm6iZuEE2shWZaD3CALZyiDo1GXIuOAUHHeHFVRARdwgXeesXFxeNAF9eXsbx8XEjRhY2bP2eTCYDUgls/zcJdt52Tr2gb46W73IyuLL/+fl5nJycNPJ3dXUVh4eHsVqtWvQeMcI5++v1uhFHp3f46EY7FPK4TCwdwYcsO78dImh3CiSffH6i1IxrNpvdSdHwnJmMInCY5JJe48gzDgGno+BaiYiYTqd38uw9bggs77MvfD/GMB6PB9eyDggRzOF2u43lcjmw4iPU7BICEKcohMnrdshwP7s1vL+cBsHnmQeflrCrsKMLHtIebbAPuL/3d372vXdyWo1To3a5ZGjv8PDwjpDitez7volKbo/nz4VacwpWoVAoFAqFQqFQuMWDERSILkIuIUgRMYhym5BYeDA5hjQ4EuyaCY5e2mUAsYdw+KQCiBInDvhkCJOWXPDOY+S3o+OMlYr+tsPTZ0dxc1qI58AFCq+urpq1n6J1EHI7CvI8ul6AixNaIMgkld/MW7bN5zWzGIFQQZteDxNt33c2mw0K9OUihPSFceAewAWRbezZlu+CiMBuGa8nRNo/tOnreM3iEe26FgNtcg0FK/OxqAgA/NuFPz3vHrfXhfF5LnbVuiC6n8dtt5CfKbscPLd8nvvuqo1AfyyyWTRwEVTvmV3t5FQI2oiI9rodHbvuk90WhUKhUCgUCoVCYYgH89cykWrIEoICf+gTSXTxw4i7BApiBiEgSunj4Uw0nCPuqv8R0aznCAr0Bws+ln4isxYVduVgezx8DtICIXQkGLu/yWkWAUz0fPzj1dVVKw5oQu6TITI5M0zenOJg0cLRaK7DUWB3ietMsCZeMxcLJGqMK4T6EYz18vL6SEfaZI0sgjA21h2CzBq4ZoQdDZmwW0jxullscNqMha8sKDCXrv+RRQ/XwyAFYrVaxWq1arUv7A4woR6NRq1Wg9fSY7MI5b5kAQwhA9GM54z5sqhAFJ85pw+eazuCvH931YJgbncJHlkI2uVk4DrEENwieQ/6cxYU/G87LgqFQqFQKBQKhcJdPKi/lh25tVWe4wd3HScHkbNLgc/t7+/HdruN1WrV8qWzLdvWaJPkg4ODAUGkjsF4PI75fB4f/OAHWwoF0WKISyY+kEkLEBHRyDekeTQaNUcE5JECfc7pdsTfAgJuBMZEDQSKSNKGq/g7uo+o46MkaY/5AhBLOwxoixoW3Achh3l1mokj5xA8yPPFxUU8evRoUPtgvV63tWAf+LhOi0D8IGBMJpPmeIi4da14PIzT/zbx9hrnnHyEJIi03RPe4+xbuwe2220cHh7GbDaL4+Pj2Nvbi6Ojozg5OYknT560eh701TUoWFPGttlsGsl3XRDvR4i2xZ2IW+Hg4uIiTk9PB06C6XR6bzpOJva76hHYBZBfs7hil4374zSnfF+LE76O93g9P6O7nldSThB5CoVCoVAoFAqFwm68bUGh67q9iPjvIuKn+77/jV3XvRwR3xIRnx8RPxYRv7Xv+8ev146jpxHDqCFkIedwR0QjG5Cm6XTaCCC/R6NRI5bn5+et6F62rdPm/v5+S5uAHJ6fn7cjCy8vL2M2m8V0Oh2kRFDHwK4HkxpIfcRtAT1SBHAPQFqpXwCxiog4PDwcRMb5beEDIYCoPoTx/Pw8ptNpi7pDQn2EolNEmBvcACbUvM+PxYqcVsL6OKXEJC9b6N0P8tmJcu/t7cXp6WkcHh4OnANOTaF2hufDfclklPv5NTsrEIt2pXzkNAj6SjFJiwo+ApF96lMXuB8FGHGV4C549dVX29iYc+bNpJp9OJlMBqdRMBeAZykLUhZkLAzlVAmeS4sDvOb++OQJ9qs/Z9HAbgWeG9fmoF+4iJxCwvVXV1exWq3ac4zDx3sA8SnXg3C/QRZcHjKe13dxoVAoFN4a6nu4UCi8HzF6/UteF783Ir5f//76iPj2vu+/OCK+/ebfrwtHFf3jyKcr4EM+TArPzs5is9m01Aki9q7PQNQaQLrdZsRtoTtSGyCT/PZRfz4tgShxtmFDfKjoP5/PB+kM9MVRV1v2XVvA0dxcXwJCNJlMYj6fD4rLmdj5+ohhLQALC1jHncLgfuUTCyDKXhOuhcQheFDY0u3bQo+ogmBg4cCCDW3b3eEItQUCE1fXgcipL3avcG/GaYJupwdtZkcA8DVObzCph9jPZrM4PDyM4+PjODo6avuFz9jZgnhkAYu96R+fCoHARTt2b+RUB6/vrnnhPdeesHiS0zPy3rU45v3pOXFtA+Z8u90OBC4LH+w9joi0KGZkQctCDn16gfBcvosLhUKh8JZR38OFQuF9h7clKHRd97kR8fdExL+ll78qIr755r+/OSL+/tdrx2Tvtf7oh2RSoT1iKChst9smKPBeLu7oAnd+HXLiyDYCAK4HkybECtp3LQQInl0X2NQhbxR3hOTdV7QuE6n7iL9Bvw8PD2OxWAxOENgl2GRCaxLJWD1O+rCLoFOw0ukOFkMg7OPxeHAtY7b4cXl5Gev1OjabTVtbagp4vXAEQHB3RZ09l77GY3fqi/dVJq9u03PBPRFhdokKroPBdU6D4BoEocViEUdHR3F4eDgoBso+87o4xcPrxjXsYe5h5wf72SIFY8gnNbgmSU4bsSDmsZqkew/b+ZLTQ7jWLhN/3kdweu65xkJh3tfuW65D4aMtd63hQ8Tz+i4uFAqFwltDfQ8XCoX3K95uysMfjYjfHxFHeu1Dfd9/PCKi7/uPd1332bs+2HXdRyPioxHRagtE3Nqos7Dg3P+IW/Ll8+chhBBqIuWupwBhdL47ZAxywvs5Eoz9nM8hCuA0uM8B4Dxy1wvAhRARrTbA3t5ezOfz9lrEMP2DPmabPiSL1xj/3t7tUYIcE8gYmW8XwMvCw+XlZZuDvu9bG85Xt2Awn8/j4uJicGwnc8Y9EROoU+HaAPQdAr/dbuP09LT9N5Z5TsVgPk5PT2O5XLb0E0fhvSbb7XZg388klb1AccG+79tRmuwVCLgdL33fD4g7tT9Id8hzwNyZQNvR4bSGi4uLmM/nMZvNBtezT51WwfsHBwcxn88HNSvYN13XxXq9bmtrQYHxuU4JIIXB87XLDWISnkl8drlERHv2zs7OBsKH58zuCDtDnJZhBwbPVnYYOIXBNVvYD7iSuP8L5FD4o/EcvounMX+Hu1koFArvWfzRqO/hQqHwPsRbFhS6rvuNEfHJvu+/p+u6r3izn+/7/mMR8bGIiKOjo94RR9v9IY1YxHMuO0QCZ4Lzwp3bbuHBJALSsNlsYrlcxmKxuHN6ARFjIu6bzablwR8dHUXf9/H48eNBKoCjn5Bk54w7amsC5Ouxk0Pat9ttIzrZhk7uPoTJNnbSRCDm7qfJN/eC9G42m0HhSdeB8PpYMJlOpxERbbyOmvd930QYyG5ENMeJBRlEGkgh5BziiyDBvDlFwvZ+1tLtX1xcxMnJyYDg8xtHhSPzBwcHA4GEPUfbOCiurq4GDhXvV8iy9673IO1Z3GIOILmc0OHaAnZduKAmxTwROoi4OxVhs9kM6iwgYCDYZMK9t7d3p/ClUz58vKTFGvYsz4xrdvhZGI1GA9cJc2QHh2tY8BmTfq+7hQcXsLQoyHxbqJrP54Pn4aHjeX4XH3cv969zeaFQKBQS6nu4UCi8n/F2HAq/JiL+vq7r/u6ImEbEcdd1/35EfKLrug/fKLEfjohPvtEG+ePf5M9RXJPniGhkEjJGoTeIiq3l4/F4kE/tdIGrq+uTCSj4x5F9tuGPx+OdReNMhnbVNUA0cLoApN+1AyJuj8Z0nQbIplMIIG2QRMYPMYKkEcW3I4O+O/rqmg/UNnC9Cs83BNtpGhZ2ZrNZ60vXdXfy2Bmf6yVE3KYWQOw8fu7R931sNpt4+vRprNfr1le7TTw+5p/XnNaAGBIxLDToYoUu9MkYXATUqRSOfHu+fJ0j7gcHB4OijnYZrNfrWC6XbQysJ8KA6wrkQpoWWDjtwWtHn5gXBAL6bKEu73E7ahi33R852u8+AQs8rDskH9cHgk7ed9PpdOCQsJhll00uqmhh0Pf0M+k9TLpHRDRR74HjuX8XFwqFQuFNob6HC4XC+xZvOUG47/tv6Pv+c/u+//yI+JqI+M/7vv9HIuLPRMTX3lz2tRHxbW+oI6NhoTsLCpBkF5KDIDhazGsWIXIuuS3XtIvtfrPZDIo65vxxFyh0JNYEzX2OuCXbJmRE3C18QCadtuDCfQgKFJ7kWDvnvtM+kWPPl6Pi9NH1DSJuC1Ha9o2tn+uy0OLfro3g/H+cCFkcciFLE2+LQFj9SQe5uLiI9XodJycncXJyEsvlskWzXYOB+/leuQZELhLp+g18DpcHjotdJwRE3Aoifs/zlPesnSleE9b49PQ0VqvVYD/mvW5Bym3Sn+12Oyhm6cKSEGauo/hlLoxoUS4LYPTb12WSbzGBOXV6gv+NoyO7L1hfF1n15923XX3Ooorn3n1gf2TR66HjeX8XFwqFQuHNob6HC4XC+xnvxF/L3xgR39p13ddFxE9ExFe/3gccsYXQQPT6vm9EyLn82YrNz65j3pyX71MHciE4yOLl5WUjkCYd9BFrN6kQXde1ExVWq9XgeMoME3kcCYBIbY7gQ7aohcB8cE/miRoCWP+Pjo4GogTOgYi4k3PPGkD+SU9YLpet33nN6HsuQOgCfNQ0wC6/2WzaNdzP80HbjBu3iIUN9gTzsItAQiJN7C0C8R7rSD0H+sZ11OOYz+cDIcbrwxiYp7Ozs4HA5fnw3NF3RDDvj/V63e5jgcME2uITa0btj137jefD+9oCiVMkmHP6i6CXhQLWKZ8Kkd0Lns+cMuP0A9eq8Poh+nAPXBhd17U0G/pjV4L3E33wGOi/x5nFwhcYb/q7uFAoFArPFfU9XCgU3vN4Ln8t933/HRHxHTf//emI+Mo33ZEbgkSBRoiOUwQg24vFokX5N5tNExt2FWGjbcgDRGK73Q4s6aRMQHRyBPjy8vLOkXoAO/Z8Pm/ugfV6PYiqYt937jfkxwUOIaNE5UkTwH3g6PpyuYyjo6PBiRGIJkScZ7NZI++QU4/TdRtcnwBHxGq1GlT1txODvHvcA4zBJPr8/LzNCwJGJpyOGtuWz7zZYUIqRkS0UyC4n0+zQLxYrVZNUCJFwGk1JqU4LLIrhtoFFjHycYUuLMrr3m+QXgtUdjm4wCFk/uzsbCBieM7tDMiuFp924tQW7207TbzvWEf2q9feR4Jyb1Jb7ABhf5isex/bbWHRhOfIzxVt5dcQYXaJb4y77/sYj8d3REYXXMyiB983rFN+/6HjeXwXFwqFQuGto76HC4XC+w0PKvzmInfOEfeJBpA8F12DYNq94Fx4OwwODg6aS4GTBCAYLiAIwYWomABDihzN9JF+tnSbLPNZF4ZzXjcCA0QzV8ePiPa6C/Ex9tls1ooDIrbY4m/ru90ZFmIyecviiSPDPl4QIsr7CBjMy3g8butqwYXaBC6GmO39jsaTygGZ5LMWRTwexslnIceeOx+tuLe3NxANEEG6rmtiA/sl1/RAqHBaDUTZ4hR7wmtvcYf+eG5cFBJ3A6QfV4JPsMjCmOeFPkYM00EsslhMABcXF80RYwfGfekBdmW4hofTSpwa5CKQzI/rRPhZdUqT+8A9c40Mt8m+8f19nb87CoXCexN7X/QF8alf8znvdjcKbxCXf/a73u0uFAqFQuEePBhBIdvWI25t9iY6joDbLh8RLSUBUs1PJqkQCpM9oq0mhZDMiCHRNsHndU5VwC3AcXaOunM/SCnvmSA5em/il+9JJJWxY83HqYFLAVKFWEKU3YLCLnu67eBOd0CAMIFzPrvb4zWcBqwP/bDNnXs4PcPE1fPheYuIQX2HPE8m6hZsLCi4CKTz8C1WMMeksbgoIPvHRHWXCyPn/uc6AV7L6XQ6cBewN3ftQe7n2hGeY+6LaPZaYof3nk9N4b+d5sF6er8wn7kWgeeC/btrz2XBhf3n+dxVt4H7Mtd7e3s73Uq5r+6P1y3PaaFQeLExOjqK7vM+3P598os/EJ/+lS+WA+n9jItvf7d7UCgUCoX78GAEhYjbc+AhMPxxj40ZokR0FrJE5BIC4Jxw4OrtWPHtCoiIwVF4ETEgmJl0009HVA8PDwckhn65GKCv51hAot0QvFwjIiJabruFCFu2TfIuL6+PmDw5OWn3IkXExflMHr0GEFUKJkbEnYiureuO8LNGdn2YtJr0ek3pp10PmeBnksr4TcyZK5NQH43IGJy+YDEB8g2RJqLvdaMApn+8F7fbbRujyavH5XQX73f2wvHxcUyn05hMJnFychKr1aqNLdcdcNoD5BgBCXcIe3U0Gg1EOB/daJt/Tg2JuK2Hwb5gD/Pc9H3fXt9VqDS7N7IDwkBM4GQHrwFjJJXE97J4l0WdXd8JEbeOKI/dQkWhUHjB0XXR/5LPjx/4hxbvdk8KhUKh8H7EaO/1r7kP/VXEA0/BfVCCAoSGs+pt0Qbn5+ex3W5bND7iluxDxi4uLlrxP0AhxYjbgoQ+pnA0GsXp6WnM5/M4OTlpRBPxgWh/Tn2AGEP4p9NpLBaLQaoG92R8Hg9CAOkartlg2zW587PZ7N6I6nQ6jaOjoxiNRu2EAEdrERSctuD0CUgoJHy9XrfaBxExIOUmyZzS4BSEvu8HqQquM0D7zMVmsxnMDydDcLqCnQkR0WoLAKccsK4Qe5NQ1s4E1XsBYWE8Hg/2Ry4mSRoHcAFK0m9cL8KFD3MU3e4HyPpsNouXXnqp1TXo+z5OTk7uHIdqh4Lbs8BAXYnpdBqr1aq9v16vB0KWXSdOX7ADgXlkzLPZrDlxvJ8tzDiVgvFbzMhFOnPaglMbaCcTfYtPFhT97NmRwf08JtZqvV63NktQKBTeG3j1t//qePJLIiIe9h9khUKhUHjvYf/zf3784O/5yFv+/EvfH/GBb/7O59ij548HJShEDK3ckJOIaEXmIKCz2exOQUXIBsX7crsu7mfXABZ4/9hCT8Qf8oX1G8t3TsOYTCaxWCza0Y593zei6ciy7fBEdk12sdsjVlh8cLqDyf1sNhuIHJnYZqu58/I3m02z2kPOHc3OxJGxmMwiXPg9R9XtFHH0HuLI/ZgHhAj6T9FBRAuP0f3mN6TZKQZeBwSOs7OzRqaZY/q2Wq3i9PS0RcxxKewCQkp2Yjgqb2HLc2nybEdH13VxenoaEbeOAkfl2Svst4jbeiJOIWLMEH67GhAuWOddgkVOFUDksojk1A6cEfTR97Dg4D2YU4Toj58z7/lca4S+ZwGEPrC3cDawjn7u+O4oUaFQeHGx/ws+Lz7xd35uREScfl4XV+Or1/lEoVAoFApvH3sffDk++Zt+cfv35bSLy8lb/3/QyReM4up3fflrXrO/7uPRH3/3as08CEEhR9whE47EmhhD+E1mDUiTCXvE7UkS5PTb+m8LtiP4WNM5PjHimvTiRoC8uGaCbe2QLcZgm7xzySHOEcPCi77nbDZrIgYiSI64Qqo3m02bp+yq8A9zTnQdwmvLu4kcc22xgHZJt3Ak3YTR6+W8fu5rYceikJ0oo9GoHY/p0z/oKykd7JfLy8u2FjgovD+yqESfHKHnfdbG8801AJLs9cAB4roEFhCy44DrJpNJc6TMZrOBwJMFBYtW7PlcMDPXc7D7hXvuqtnBHs9CCeuBkOZ+8ZoJeRZu3DcLThm+Zx4Pa8MeceoGn7MryO4I9uN0Oh2IUOyRXW6IQqHw8LH/Cz4vTn/5h+PxlyIoljOhUCgUCu8MuoNxdF/yC9u/z16e6f8/EW/3/0Fnj67i7NFrX7O37uIDv/JL7k2N6M4u4vL7f/Bt9eO18CAEhYhhtXUTH8iJo5Y5JztHNHOEMhPoiGiRfOevZ0Cgzs7O4smTJ82lQGQWpwDk/fT0dBC593jsesiRZQsotOmIPUTvpZdeGhQFjLglWxB6RJP1ej2oB+EaAJ4HCL/JvImvT9jgHhYGHCFmXK47QP+JXrtOAm1ZwFiv17Fer9u6+6SCrutiMpnEarVqwo8FE8awWq0GaRdOAYBosyYWHvg8LhOIKMdicg/WCvJr14HJMuS37/t48uTJQFxwW47M933fTsHg1JDpdBqz2ayRcZ4Bi0kR0Y5C9f5lvVlT+urCj6S0uE6D3QbsLwsx1KVgHXnNp5x4fbNwR5vMMW37evfF/7ZgwHx6j1Cs1YIC42Cfuf/ck/UpFAovLrr9/fjEr/3cePzLSkQoFAqFwjuHbn8/ohvF3oc+K/7a1z6KeBdjUJezPn7ga4/vfX/y6VH8/H/5x99QW/3F+Zuu2fBgBAXn9EcMI6QQlFwgjvd2RXozOYDoEzU9PDxsr6/X6wEpBD5u79mzZ3FyctLIyUsvvRRHR0fRdddHH65Wq1itVgPSZFu2yZwdChCtTPQjYkCkIL4QYo7wy3UNnMPuvPNM4mwPh2StVquB88AuDdrknqyVSSz1BUajUXMKmJg6pcCEmzU5Pz+P1WrV+tT3fSwWizg6Ohpcd3h42FwdTrPg89Qb6Lqu1TsgP9+iFKIAkX/2VNd1zQ2CM2C5XA6OM3W9C9Y4IlrE2zUBrq6uYrFYtPkgbYf7IVBRi4J5Xa/XLfI+n88bcWZv+QQMTvUwKXcNg/V6PTgG04SfOgs5BcR7JaeusKcQMyDzPjqVfeN9xHjZKxYE7CShdgnrscsx4Pap+WHXjPvuPfjs2bP2TDp9ibYsUhYKhRcIXRc/9s/9LXGxKDGhUCgUCu8sfvr3fVlsXumvhYTuYf9/Z/vyVfzwv/g3vaFrv+DPrKP7r//ym2r/wQgKhm3oEcOcbkcmI24rt+ej+zJ5j7hNfYAwuugeBNa2Z5wC+/v7g2MGx+NxfOADH2ikcX9/P46OjmK1Wt1pz0cWWrCA+OQTDoikOvcf8Bp9cFFBpz9kAufCgJxAwLUWJSDmtuvb6cH9PI9EviHk8/l8UH8Acur6Bdl1koUg92E2mzU3CcR3PB7H4eFhq3VA7YDtdnvHrWLSeB9MZhE2SJWgXgKnDfh0ENeDcNpGrpcA8aWuQUS0gpEINdPpNObzeaulgajgfbArVcZuGAizHTkWcXYVCjX5nkwmzdnh9ATed60MXsuCFWvuegS+3v1ibLhusovI8HvMmYUG1tqFSBFnLA6Mx+NYLBZtfUhzYe4Wi0UJCYXCC4yr/Yh+9PrXFQqFQqHwZnDyD/7qWH/w9n8wmw/2cTV+2EJCQxdvuK8/87fP4+BX/G273/y//6mdLz8YQSETF0cKbUmOGLoSgAmHhQX+bSIEeR+Px41QmIxbUIBAm2g6DYF2Dg8PmxWfH1IcgGsR0D8XG9xsNoNCdkRV3Qd+Q0ZN6B0t35X/bZGEdlwHwhFsSKrFgyyImDSenZ3F3t5ecxPgZmBsEFWvTya/rDNt7e/vx3K5jNPT04Fbw5F1UiC2221zIkAk3X+TXs97TkPxWrnY5mQyaVF+5jeLBJB1uxhow/1gDviNE2KxWMRsNmuCjMfs5yCffsB7/u19zpg9ttwHxsK65lNG/IzlPe25Ynyeb/roe/q+XO+2/XxbTHQalB1Eue4Iz2Zui7VE5GKcdvW4D7tSoQqFQqFQKBQK733sfeiz4/IXfCgiIp78olFsX37v/124/tBVrD/05j7zIAQFSFVEDMg9VnBs5yah2LNdQNFkw6KETxTgZzKZxGazaaQkiwquA+BoJ6SSYyQ5vvLo6GhQdJGTIVwoz4SW3y7Sh0BAXrrFBcaEwEC/EDjoN8JHLsRosYHrIyKOj4/bvCIMuFBkjvJmgoXows92u43pdNrW1C4LR9XdJ6L9Od9/u93G6elpO8aRfj969Kg5DiiQiajgk0CYI9wHrrPg4yVxPpjE++QC9iWFB02WSWugL6w943AxwOwaYI8fHBzE4eFhHB8fD0QFO0WYJ1wk2+22RdNt6WfN+r5vbg4LUDklxgKX3RF26nD/vKfyXPkUB+8Ni1MWMXb9zmKh54z95NNa2Bt8FyBg+Zn3SSX+rnEhVh/biXuiaioUCoVCoVAovI8w2ovR+KD9c/PLPy9+/O/h3+99MeGt4kEICuSdmzC7WF3XdTGfz1vOtWsSZDJBMT0TE/LJHYF0wUBXdo+IJhisVqsmCDjyS079drttp0a4cN52u205+Cbytn9n14Qj2lTLn81mg2shVIxpPB7HarWK5XLZUjMQAMip90kIJou8fnZ2NjhCz7UqIMFOI4DUu+K/iaOPe3Qk2QKPSSeEFUL76NGj1t+Li4v41Kc+FcvlMqbTaSwWi/jQhz4UR0dHzY2A8PPo0aPouusc/vl83tbGNSgQEiwm+P6sF4IMRSqdvw85p+3RaBSPHj2K6XTa6h4ghnhfUtwxO3EQU46Pj+OVV16Jo6OjdiQq84AwYVHH4+v761Mg2CO87joOHJXoYpWcKsIzYLKNu8RrxHx5L5K6wT1wNfjfdqzwfPrUFosUToXxPvCza0HBR7fSV/a4BRk7c9jnFtdynRFeKxQKhUKhUCi8T/BlXxo/+A8sbv89qr8F3wgehKAQEY1sQRCwokMgptNpRNzmSTsXHOLrEwkgDBAFR8t5H1JFfQSTr5OTk3j69GkcHx/H2dlZI7Dkoi+Xyzg5OYnpdNps9uTZ08fHjx+3nG7s+e4DfcoFISHuROKdXpAj3RG31mxIE+4IyJ7bzXnw2dpOhXzIFYQWIcDHFjqthLWxWOH8dpNw0kzsGCGP3rUOEHZwG0REnJ6eDiz7kNDpdNrcHQgBiAc+VYH94b6xHyCa4/G4ndzB2D1Oij8iIn3wgx9se4f7+shOxpXTPJzrP5vN4vj4eCAoIEZwIoGj8+xr5tuk3Edfcl/6utls2vq5LgPzDUajUczn8zZeF4LMTginGnjPsK/pm2uEuF2nlrAPPCb2Uj5hxG4L35++5pQnxsV6IATaReRCkP5dKBQKhUKhUHjvodvfj0/8ni+Lq72Ii3lEv19OhDeLByEojEajQYSV4xl5D6IBMXAU1OQiW6wjbm3NJjYR0YiiSZpJMqcFnJ6eNhs/FmsitVjPnYdvooKAQLs5+mobvQspEoXe39+PxWJxp0if4Wgq0V76l4vwuY9Emu1EoD236SKMjpbb0cHndlnVnevP510oEaIMIcepgvDgFIXtdhvL5bKReacVICpQ08DX5+i57f4Wl1gPUlss9NihQDE/RBvWknadKuD7eO0z6P98Po/FYhH7+/utzz6u1NF55pV9nlNcsmBCeg7X5LoLroVAJB9XTW6fH8adiz2yzn7u2NN+/iyS5eeE1BWnObl4Ju4Dpyd4vXb1lflgfFlMcXtup1AoFAqFQqHw3sHel/yiOH95Hv3BKE4+/yr6vdf/TGE3HoSgsLe3F8fHx43s5iJ+kCjne/PbR/NB9GzRp8gf0WfbxiGJiAAQjb7vY7lctqMiN5tNPHr0qNnATbIguz7yzvZu2jW5dGQdQcGnPUDUDw4OWqpHRMSnPvWpO4RnVyTVhM4RVx8jyL1eC4gxjI3PEvmFkHmuLfI4zYHX7GLAls46es4QbFzvYLPZxOnpaTx58qTNW0S0oyupGUBePccu2vJugQnhxcdYmhzvEltcawJBgSM8WV/aZb/l+hyO3tuuj1Ph6OioCVvUDvERm1xDus0ulwvr50KWzK1FHkg2zxxjJ/3BaSAWl9gPrmViIcpuFPYNx2LSBvsPQY69wnr0fR/r9bo5CHjPyPsJ0YJn298htEE7rpdAH/18VUHGQuHFw96mi6uDiH6/xMBCoVAo7MZosYiPf8Ur8eyL62+954EHISjgUHDudcSQEDmCuV6vW64/7oSzs7OWCgEBgdiYBEVEy3Xn+q7rBvUK+r6Pp0+fttMbnj59Gh/4wAeajfzo6KiRjvPz83bMIWMh/QGXgsmmo9T3RXgzgbWzIVvBI6JF5U2gPIf0y8dZ+t5c71MsnDLhdA1HmHEpeExEfk38JpNJI3ychMERj9mCbgGFnH9SOPr++kjJZ8+etdQG+o4YMZvN2ufYLxBNiyJ8DiIOYXfajWsoTCaTgXV+vV63fm+323j55ZdbTYHJZBInJyeDvUC0n7FHREvFID3CtRyYP2obMD7XCrAgY0cC7eQTGFzXwqSefUO6gYuZHh4etvnjeULYsEuC9XAaA+8xNupL5EKoPB/sG2o7RMSgoKbXCcJPLYac+sE4uY4+z+fzJpawlqQ9bLfbtj+rjkKh8AKi7+Pn/5++M179Hb86Xv3l73ZnCoVCofAQ0e3vxw//s39DXI5LTHheeBCCAoTeBQpt+eY15+ZDeCBPEJ29vb2Wcw+pmUwmg6ij7fSOyEbcFoEbjUZxcnISz549i+Vy2fLYIWq4HIiEk0YA8XJUmc9BlNyOrfQAkoe1n5QP5sQkKuLWsUE0vu/7RlrzPOfUBsgVZDEXL6QuAfdxP3nP6SdcZ5ILmZtMJnci2S7gSFHGo6OjJhKB09PTdpLDq6++2lwnjOWzPuuzmoCDqMC4FovF4D64B+xqcVqCXQQuMglxZg0Qk9brdXt/Pp8PRJGIGBQIRCDyHLr+RUTccZIwRjs9LNhkl0peI54nnA3sI0Ql2tputwNHi/cw4ovdFV3XtSKLzJtPGLGgERF3Th/xfXI6g58DBAU7EOwWcWoHxS/ZC4wTwYK94efm8vKyiVDUz7AIVSgUXhB0XXzin/jyWH9OCYGFQqFQuIu9L/qC+Mnf9OG4OriKqD/xnhvelqDQdd1LEfFvRcQvi4g+In5nRPz1iPiWiPj8iPixiPitfd8/fp12BlZoR+v5d64xEHFLOJyuEBGxXC4HRDAXjvMpEbb/Q1wQHCIinj17FqvV6o7TwWTUUdmct+7j7SA/JjJ2YLgexP7+fjupgfuZ3OT6CI7cuuYBv02K83wwpxA0iwm5AKJdFnY5OMIP2XTuOzn8rnmQo8CILvP5vJHYzWbTCgki3pyenrYimvTh0aNHA/GCMToNgj3hXH7WNaeQ5BQFXBDeJ3Zy9H3f0hGOj49jtVq1OXTqQl6TiNsTKHxiAuvvNA3vrywaZLHI7yFo4HKweJHXiT7mFB1EEO8LRBkI/sHBQWw2m8H4PF4XAHUqBm14D7EGpD/w7LDu9MfFKumXU2gsvPAsuk6H0x0sJrE3XhSHwvP6Li4UXnSsPtzH5ezFeG4L7y3U93Ch8PDRTyex+nnlTHjeeLsOhT8WEf9p3/e/peu6cUTMI+IPRsS3933/jV3XfX1EfH1E/IHXa8hkJkdwIdR+DdLq1ALIw6uvvrrz5ARb3CFqEIlM1snfx6GA9d192G637VQEH0NoUkO6AKdJmGD5ehMqR9JPT0/vHQv34XqnPHBdLjBnMpcdFbgC+AHcw6IP8w9Jc+HMXOOBueAzRI2ZTxNPUgSokXB8fBzr9bqlqUREc4y4RgHFMbmnBRoX3oQwslfoay4q6D3B+54DXluv17Fer5tIMp/P44Mf/GCs1+t2tCgijR04EGxqRSyXy7bPmFfqFiDweL2c7+8xu9AmfbeIwz5zf/g8c2WxifW3UOVnwNf4JIssgDAOapxwT9YEAcDzTqHK7XY7SGeiFoP3ltNY7OTIRSBpk+fAIpMFha7rBjUlXgA8t+/iQqFQKLwl1PdwofCAMZrP4/Jo8voXFt403rKg0HXdcUT8zyPit0dE9H1/FhFnXdd9VUR8xc1l3xwR3xFv4MsT0gwxxRpPjjnRWluuHf2HUFxdXcV0Oo3NZjNwPuQovyOaXMfnI25dEpAZcuMhQ/SHz+SUCsSOxWLRnAYR0cghJDnitu7AbDZrwggpF5BOovfOF3cxwGwzh/AiWriGQy48B5myewHy7wg/EV9y/iOipSrwHoQ0CxPkv0M2b/bQwC3CujAPrJXrPlxdXcXjx49jtVq1NsbjcSveBwnkWvaUxQXXpchrCbFGBLJt30QdISAi4smTJ61QJHUHPvjBD8be3l4sl8vYbDatv6wfzgsI99OnT+P09LSl60CYcTewB+3WsaBgQYc1or+IAZB+P18Gn3fai50pk8mkiSfMA88EQhH3cdveU8yZU0joM7Um7IzguYiIVqvE4onTJHxCjOs8sL/Y/+wzu1DYZz5e1ikgDxnP+7u4UCgUCm8O9T1cKDx8fOof/BXx6i8vB9s7gbfjUPjCiPi5iPh3u677FRHxPRHxeyPiQ33ffzwiou/7j3dd99mv1xA5/z7lAWKaI++2x5sgOlpukYGId8Qwogpppy0EBke+IcZPnjyJk5OTRqopMDcajVotBqcU0B73Jq/exfdyyoELODJmOyKwzHMvSLYFDEgdVnyu8z1dAO/q6qpFfomIQ1ohkNPpNGazWcxms0Y4+Wzf9414QwgjbosNMp+eD8iso+YeC5F4E/vZbBbz+Tw2m01Mp9OBo4A6GhQ7pLAec7Zer2O1WjVCTjFIz61PKWDuue8u10dExHw+b0R9s9nEyclJW+fJZNJOYWDf0QdSG3A2IC588pOfjJdeeileeeWVWC6XcXh42MSn7E5gryOaOG3H1wDmFcFjPB4PnAI8AxRgRFA4OTkZpK/wWQt7/Eb8cH9wDji9w0D84zm2KMW6TKfTwf62kOI0DZ5f6pRw9Ove3l4ba54fXCr0zSlXu4qfPmA8t+/iQqFQKLwl1PdwofDQ0UXVTXiH8HYEhf2I+FUR8U/2ff/dXdf9sbi2cr0hdF330Yj4aETE0dHRwHrMiQ8uZJfrDTgH36+5erxFh4ihoGBXgoWAnFpxdnYWy+Uynj59GrPZrJEMiCkR8M1m0+7rfmO1hyzlyCgkCeHBkWn+20X6IL8Rwwr0OSKcf9sFkKPKRLIhrm2BbwQROxAiohXARBDIqQDuJ8UsvUZc49MDnAJg0YgCe/P5PLbbbSwWi0E9BFIRIOknJydNbDg/P4/lctmO/iTqzvznI0dttYc8283hOgBOM0GIsTvC6w7J9bzQDoIBBUCp2YH4sd1um4OCfttdkYl9bt97BaeKRTYfmYlYgMDEfPmeFvC4Z04t8XNq0Yv9Aizo2dVg8cDPFM+r97bbw7XEfJE+AtiziCtOr3LqiPuQ0zweKJ7bd/E05u9MDwuFQuG9jfoeLhQK71u8HUHhpyLip/q+/+6bf/+puP7y/ETXdR++UWI/HBGf3PXhvu8/FhEfi4j4nM/5nN51AXyEpIkG5A+i4kKMLtLmiKXdDjf3bW05z340GjWLt0nGxcVFnJ6exuPHj2OxWLT7IihwT06SoE2cAFivEQV8VCMYjUaNNEPKz87OBp+xdduEjfu54B9wRNfk2zZxSC057o52k2+OAwFBgfl0qkQmuCbMrBnCEEIDBNx9d969rfCz2SzOzs7i6OgoxuNxi6JzH5wJnAYB0V8ul7FarZqTxMU1cbAQkc6OFR+jaOJuF0pE3BmrbfW4Wiy2ZBHl6uqqiVZPnz6NZ8+eDWpHQOp92gb9dfoL7hKnfiCusJctDNnhY5EBMYs0HdeU8DNJm8wDbhE/V1lgYk97b/Lf3Mv3c1uulcBvRDc/2/kUFK6hv2dnZ4Nn0ve1E+QFcig8t+/i4+7lF2bQhUKh8IBQ38OFQuF9i7csKPR9/7Nd1/1k13W/uO/7vx4RXxkRf/Xm52sj4htvfn/b67UFcbB93wIB4gARSwokOnpoAmAXAITEhIKoLaSCIm/r9TouLy/j4OAgjo+PGwFbrVbxyU9e/z/g6OgoZrNZbLfb5iSAoPkUBxePc/2BfJSkx29ixVj9OYi/CXcmUy7uCIjWks5BsUjmlSi4i+ZxXW7PRM72dFvEEYZwGziyHxGD4xZJm1gsFi2H3rZ5k1jqSBweHra2IdE4FCjYCJnmPk43QVBh3tbrdXNSWPDh37gXLLaQAhIRMZ1OByKKTz3gVAXSRTwv0+l0ULPg1VdfjZ/92Z+Nn/zJn2xz4EKEi8Wi7W0f7UmNjtPT08GpIwg3tEW/JpNJHB8fx3Q6bWO1cAfxR5hxSoDdP+wH0mBYL4i/3R/8Zs/QLjU2aC+7buwe8l7I3w98djQaxXq9bikuuBH4sbhlIAghStnp8dDxPL+LC4VCofDmUd/DhULh/Yy3e8rDPxkRf7y7rmb7IxHxOyJiFBHf2nXd10XET0TEV7+RhnKkMGJYed7pCCbijmgDEw8IogsT2uWwK33Cn+Ozm80mnj17FpeXl+1EAZOayWRyh0C//PLLA9s+FnuK0VFtnroCEH7GAOEzmbfY4hx9CxJOQTApsmiTSS4k/+LiIiaTySCKbKL5WnARRObRRJH7QPTsGslz7jXxb+ZrMpkM+uyjF1er1SB1wKdrdF3XjqVkDTmWkn7zGX5c3NIOEdb9pZdeamvp1A1fh8uC99jTl5eXA3Hg2bNn8YlPfGJQT2B/fz9eeeWVmM1mrY8nJyd3jq1krhE27IhAhENAm81mcXh4OFhnfzYiBo4F2nKtDIMaDI7y87qFEdbAdTBo26klfB5xyM4Pix+MyS4mxINcyBUhxkKFxUD2EWN+UQSFGzy37+JCoVAovCXU93ChUHhf4m0JCn3f/+WI+Jt3vPWVb7ojIs4WECAKjlrr/oNK9rtIgEl2Jt7+yUJGxDBqahs9BSQRCMjpN5nC7cC4IIf35Y0jKEAM+75vpNJRYkdXHWW3lT/byC2W2HLvfgDSGygOaeLnthmXC9kRnXYBvJwKkcUBCyB2PdhVkslmFilsqTeB5nQF59JDIkkZyBZ3yK/rF7gooiPcrj3AOtni7wKAFLj0Hs2FR9lfq9UqlstlLBaLdp/FYhGz2WyQXuACnJPJJJ4+fdr2CQIC6TNOy0D08YkirKHrbniteN3pEvSBgooUscw1E5zu4LoZ7Cv2idNe+EF8Yn/7+eF3drHYRWExwYU3SSnCacS6e51foJSH5/pdXCgUCoU3j/oeLhQK71e8XYfCc4MLGboAXEQMyF5EDMi1c6UtLpgYRdwSZ+6TCbFJTCYSCApE2M/Ozlq0GRs+9Rd8YgAkCpLjNAS3Tbt8zqSd6CtjdHTVdQ8sipgYWlBx4UtHz90/0g7G43Ejr7m4H/OeUwcARI6+Q2IhnxG3ee2IEP6xwOH+3vfDuDIQFjiek/1lp4AFi12f81GNXO/INuvk9A+u9QkbEG7uB6HNbpnLy8tm2Scl4uDgIObzeTsRISLa6QdE/qfTaTx+/LiJBbhoWBvXWmBfZkHBhN4uA88P42R/bLfb5r6h2CfPoeeTZ4X5dM0KX+eTGHCg4BpwXYaMXa6knA7h/WJh0MLZrholhUKhUCgUCoVCYTcejKAQcUsKfNKBC8tFxEAwILJJtNfkkIg55BeCQQ69T4Nwvj3RXFvucRxsNpuYTCYt4g15W61WcXJyMoh4HxwcxGazuROJz+3y4xMkeM0uBvruOdrb24unT5/ujKL7tARIb8St6ML1EEtIFLUB8vF9/iyCAVHuXGQSEtx13SBtgDYouglICXHtCxM8iD32981m03LksbVbOMr1KiyydF3X2sonDvikA+5LOkREDMQb9td8Pm8pGPSftIv1et3mifQC5opjR10LIuI63YJTKa6uro/5PDw8jKOjo9Y+e8BrOZlM4sMf/nBMp9M4PT1tDpknT57E48eP275mDhFG2I92gNipkU/+wL2S5xlRwelF7C8/t07FMCwS2E1h8cGOB/fRIiT9ms1mrT0LhTkFCHHEKS28/gKlOxQKhUKhUCgUXgv9zU/Fip47HoSgADmwM8EOA1vnTeYibqOnFhIghMDReEQGk3VHuXO0GrJlkkS+u4/Zo48WEHIhwkzyXRfCqQyMOx9PaBcHhN/H+1FPAHA/SB1H5TnXHjIPsTo+Ph6kOxAd9nrknHb+23npJr+QcsbqiDtEHiHDzouu69pJB5vNpp228ezZs1gul+097rFarWI+nzfSSrtOQbFjw+4K7wunVnByAesO8Z/P500YcYoIyKkezM14PI75fD7Yn14P7wdO/pjP5wMngR02JtvHx8dNPLMwwo+PNmVveswQeFw4PiWBseEiwc3CySQWGhzZz2kICAR2yfj59DPva1kzxs/nqTtikQLXEPD9PB8urGqXiF1Au1xFhUKhUCgUCoUXC6/8qe+ND/z1L4wf/urZ619ceFN4UIKCyVROWTDxAdmaHXFbrd0w6QLOeUcgiLg9+s59s2PBxeAcwV8ulwPCPxqNml376uoqTk9PG7HO6Rz0h2KIEdEs646sOwoLaYdccS0FCBnXfbUSnIvPWDi9APKa3SGeE9p3CoMLSjIPFgksBBHVdj+YS6LpEdGEguVy2UQEFzFkPiHBy+WykX/anc/nTYjKNn6Iq0UsF9nMjg/+becFbbB3nFrAGlAA00VGndoyHo/bCRtcN5lMWmpBJrYm0N5zEHv2LcUgId6QbQi1a28wpuxi8H61uOXimU4fyk4H7we/v2tfvda/89iZX4stFh0sCPnZ5f7eJ7m2x64UmkKh8MDR9/F5334Wn/ybJrH6cD3DhUKhULjF1clJ7D3bRkQJCs8bD0JQiIiBlf4+InFfFB+i6n9H3EZ+Xfwt4jZ/35FarsmR6xw19gkK/PR9H8vl8k49AKLZZ2dn8ezZs9hut4NUBu7BfX2UI/d2lJjP+DQE+upx0OfsnHDdAkeQIdPOq0eocOTW4o5Jmd0JjMlCSY7Wex4hv9yPYoKuJ3B6ehonJycDQcGEl2u3220sl8vB2E3g8+kcJr3MIRF+1tB1EHLdhhxtp0+5uJ/H7R+7IIioOzLudbZzgrk0sbYgh7CAeMCpDqy/Ty7xvrKg4HoRdt24RgH/zZ5gDbNQQ5+y0ODnym3c9+x7D1lsy7UY/FxlNwrrTB8sujE3Tg+677uoUCg8TOx/+/fES4/+1ric7MX25RIVCoVCoXCLbnsWs0+MYvNZV9Hf/fOx8BbxIAQFR68hHpm47yqUZlLgdiJuI94UeXOROnLec554Ti0wISK9wPZ2k2WO7ssFIiHFjx8/bv0iOv/s2bOBvZ6IPSTG+et2SHBvz4Ej7zgVfEwfZMlzyX3tdiCaTx9wC0AUs+PBPxZ16BcRdvrL/fihz3aJQL4vLi7i2bNn8elPfzqePHkSz549i8ePH8fp6WlzftjCjzsBsIecHkIhPt/H64Wbhc+R5sBaMg+Z4PpoykxSfS/PPeuGEIWTIZ96gRPAKTMWNc7Pz2O9XjfBxVF3jnn0PuN5OD09HaQpsAYWFHIagPvF+gGnDjCXTvngGu7hOWNv7EpD4Tmj3ewO8VzO5/OByMJ3CevPuJwm5HHRD6dGFAqFFwvzP/3dcfgDvyR+4Oteere7UigUCoUHhMsf/JH43D/yE/Ej/+LfEpfjvuopPCc8GEGB/P+Li4tBXv/h4WFcXFw0EukCgY5sO0oLATHJ9Xn2CAWun2AhwjnqWYTI+eMIAKenpwPrufPdIajY4m3zh/TjJOC9TPoj7p6EgavA0fTxeBwRQ7Lsz0TcnsJg9wVuASLlJoKQXmA7+C7XA2OBLDLm7E5gfqn8b8KI62C5XMZqtWpiwtOnT2O73Q6KArrP6/V6UGeC+0wmkzb/JswWsbh3RLT9YgKb54F7bjabWC6XjZzn/H+cFxHRjqRkX9E/iP9sNovDw8PBCRp2NEDEqSux2Wyai2Oz2bT1dQrNfD5v6RTM0c/93M/F6enpQCCgb66hgMCRU34g63alOPWGtrz/rq6u4uTkpBWN3G63A5HO9RecWmSQRkQfcaF43PkZzI6UXIjS4gH7s5wJhUKhUCgUCu899BcX8UXf+Ffj4//wl8azLyon2/PAgxAUgCPTOTIaMSzQaBu2yYwj+iDb0y8uLhrx4N+G23Rk17UGTOT7vm9RYOeV0xbk18TeKQK2xrtt6hjYyu70Alv6+Zwj7JPJZBBNt3si2/SBr6ffRHSZX8+HibvFEKdb+B620fNzcXERq9WqpSy4rbOzs3b6ht0CJuHUH3DKhOfIDo0cvbYjBacEIgeEHRLr63Ntg1zwj+steuHeYO5N5hFQSHvJ+f6uGXB+fh6r1SpOT09bbYnT09O2D6m9QFvj8XhQVJSoP/2+r8aAx5WJvp+xPDb32fVM+r5v9TCY1/l8PiDw7o+LK3p+ERMQaRBL/GNxI6dKsbcRy3JdDadElEOhUCgUCoVC4b2FyydP43P+y1fj5e9fRL/fxU/8uv3oqw73W8aDERQgFK4DAHJU1ARoFwkyYTVZMHngFAFb9I1sTc8wiY+IRrx9uoEt29PpNCJiIDi4OJ8jpJDMvu9b9D4LKcwLBIp2LTp4/Mxtrhng4/J4L5PGnBbAf9tpkMm1a0VkwcLWdvqIBb/vb4/15LNEy5124BoMBwcHO2sJeF0tTtnSngUahACOCeW33Rwebxa1cn9NkHeljTAGSLVFKgthpLFg0z89PY2nT5/GyclJi/qTMsOJGdPpdLDvEXcoZLjLweK96zW3IORUDYt93l9OBTFRJy0DQQF3gp87u2bchywo4DhBwNpsNncEBa+ZRQU/O97z7n8JCoVCoVAoFArvTVz9lb8W+xHR7e/H4pd+WfT7EReziO0Hy7XwZvEgBAVIGESNSLTTD0AmCo48R8SATPt6FzuMuC3M5sKHJsA5YmqCYTLFvSBojMFuBcZkIQQHAYKByTBR/9ls1sboYoXMmfthIYHIa44gE932+Bg/Jza4/9mlYVJJv3x/SHE+mYJrbUFnbtyP9Xod6/V6cDTh/v7+nTnyeDMRtosFYp7TRlgP7w36AFk9OTmJzWYT2+221cewm8GElDm2AwYy7T67NgX9I81hMpkMxKHtdhsnJydNMImIVifh5OQkXn311Xj11VfjyZMnrWDl53zO58RisWht44phTvb29tr4LCjscuHQlyw24QzZ29tr0X+nCbggKM4T12XAVYHrYzabDeYE+Lm384i2XB+BZ5b7kUrDD+N1LQ+nP3h/uu9VQ6FQKBQKhULhvY3+4iI+54/9pev//vJfET/yW4anQFTxxtfHgxEU/Ac8dvKI2yglZMORfNdJcLHBTKRN9HmdtiDTJnuOynLNer0ekKqcg+/0AhM110UYjUYtR51o9HQ6bTUdeM/1FBBbOEXCogLkMCJaDjwkyVFfiDIkDviYw81m02z4JmLr9boRZYQT7kG7FhOcl46o4n5TfJKUDqz+q9Uqnj59GqvVamDZRxxhjg8PD6PrusGJGESrWUuu3yWGeC85xYFxMe7VatXy/FkrPgNBRWwgBcPFDbMAxX0tRkD6ERVMyLfbbauNQCqL6yU8ffo0Hj9+HM+ePWsE3YUKWUPIv8U0pzwwpuyAycdmOp2B5w/xJ9dYyPOIIOQaDT5W0yJErpng5961E1zzxCIBLgULii7aavcBz2sWV7bbbRODsnOpUCgUCoVCofDeRPfd3xtf/Fem7d/bX/NL48d/w4Ogyw8aD2aGXJl+Pp+36GdE3KktkIkB15i48ZqLu9l1kMUFriEi7KMJId2Q99Fo1HK4IcvY53cd5UgE1eTMtR5Mwm3rN/GC8FnowMlhIuniiwC7va39jIOxQRAnk8kgDQEyGHFbXyFH5VmbnBri6DH9sAjkH8aLQGFHSbbYu9gin/X6W0Cw2ORUjkw4vY9Ya8bOmjrdBvHCxT59HKnburwcHtFIbQqOdJxMJu10DUSczWYTT58+bWsNMef909PT9hp9oO7DarVqRQ7ZlzmliP7muhrsLz8rPkrSc8HcuI6HRSIEEPpN+6xjnnO7AXKNEfa7hQ3m2mtDGxYV2McRMXg+uY/rqfi5y/u5UCi8OOh++hPxhX96Fj/2907j6qCEwUKhUCi8AVxdxtVy2f45+ys/Gb9w+eGdl/7Er5vH+XH9rRjxQAQFW+shiER9c858zpXPEUe7BCDrECqTWb8HwYDImmhFRCOQAOs40WvawhUA0XUqhQmaI7O8n/O2Iay2X9u+7mgt19GWQT9yoULeY84g1T5hASKYo/sQOUglIsbZ2dnAjcHrFmaYg/vW0VFh1oXx230BOXd7OfKc+7lr30F8EWNoz3NvW7zH4OM5nQqTRSi3gyjGKSakd5Dy0Pe39RsQCdbrdRPZ2Be87zoN1Fbw3FBXwXvPIlHEbfSfGgtuE4HLa0BbPpaU58YiD2ICfWVd+Ax9ZEw+6tVCkPeFhSOvo91E+RlgfRFR+HHKSt4T3keFQuHFw+XjxzH6r5/F0S/7slh+pIuLRYkKhUKhUHhzuPjZT0T3s5/Y+d6jL/zy2L40/Dty+4GIsw+8/0SGByEoAJMV4DQGF6sz6XPhN2CrtF9DpHAtA6dXQLx9Zr0dAYgQ2LkhMIgR/o1oYOJiZ0GOytqqngUDBBau44dIOvOEqGGbuos2OjJvAYfUCo4ehGhTQd/RZ9cDYO4h005n8Dr4ntzHqRXMQ3YhWDyBEM5ms0ExQNpEALH9PiIG8+wIOntnuVw2MYS6A7xPFN6RcO7L5ykwaCHJr7OGiCFE+n1Upwnu1dVVqz3AfCwWi0F03WkoCBWbzSZeffXVdr/z8/M4PDxs4gX9om2IPGNBFDJ5Zy+yjyxokQ7joo6M4+rqqtVL8D50LQsEDO8xfjzH3u9Or9nl/GEdXXzTx36SzkG6CW3ZDeM0mRIUCoUXGFeX8Vn/xnfG6Hd9eTz5xTdpTXt17nihUCgU3j5e+ve+885r66/6sviZ/5mc4qP+fVGD4UEJCrYw29buaD4RXnLXc9E0R6Zfz7JsEhQRg7x+ctxtg6ZtiBgkhc/66MjJZDI4HSBH7iNuUyIiokWo7RJYr9eDegvkekMkbVcnr99ODN7bFdXl/iaom80mljc2H8gZY/a1LtoHYYasjcfjAXl0xNpiCi4D5oY6ApeXl43w7e/vx3q9bgTZa+Q6G4zZe8BjZB08/468E0kfj8eDkwPyXrGThbZXq1WcnJzE4eHhYE4sJEC+WTccMC+//HLs7+/HfD5vQhBtn5+fNzIecX004mQyaYJNxG0NDKcgrFarJmbgDpjP53FwcDDoy2q1asKCHSE+GcPCT3aNMO9OQfDeiIhB/yHyvgft4o6A5LPP/X3AXuKZpF1+73KnZIEO0cTCmNN2GI/TMrKDoVAovHh45Zv+23hlby9Gk0n84D/zpZUCUSgUCoV3BLM/+z3xRf/pLb1++pv/xvjkl72LHfoM4UEICvzxDnw6giPoYG9vrxVBzFXoI2Jge3a+PqCtXPndfbAbAALEbwoXEhGPiFYs0CcluOYBfcn1A3xKhG3kjgojNszn80GagfP7I4YFK/m3C+JlkgzZhpBC9uyQgMQR5Yb4MXcR0fLTIcx5nI5qO/LPfOKg4GjN2WzWiPN2ux2sHW1bNLHF3y4XpwZwH/qNIERKAv227T67K0xUvUbr9TqePXs2KK4JsWc+Pf9Os7Ajw84baiEgnF1cXMTh4WFcXV0NiLnra3heee3y8vr0jPF43NaU9one+9QEt7crBcX7lj2baw4Q3berAEeG+0WbXi8LGrxul5KFF+8l99V7zmvgYpEIFHYReY+y9uVQKBRefPQXFxEXF3F5dha/8FueRZRQ+MLh059+/1mIC4XCC4iry+i3t8Hul//ST8ejH3opIiJ+5DcfxuX0vSloPwhBIWKYm29CGjFMgTDx8zWZhOyKqOb72T7t/HfXBTBZNVmHfPie9MMkCKJigSPXIeBe3APbuVMpxuNxLBaLgVsCazzRZ8PkifYcpXeRPsPRXNp03QLED2z6+ShKCzs4G2wlp2+5aCJjpBYFIsp965dfN9nlfowNwuwCmC546bQWO2Gc6sHnPb+e49VqNSDLPinAlnyuoU+5sKBdHDgdGIedIbgcaJ896L23Wq2a8ECqhesw2DWCsGCrv8fr+Xa6kEWsXevl9d3f32+CGchzmveJf9MO/XZ9Be9t5sIioPud7+fvl/wcFQqF9xD6Pvrv+b53uxeFt4J+/W73oFAoFN40Ln78JyN+/CcjIuKlL/3yuJh2cTnr4vTnv7dE0rclKHRd9/si4ndFRB8R/1NE/I6ImEfEt0TE50fEj0XEb+37/vHrtDNIdcCKDEkwQY24TVXIufK8Z8J6H66urpq9OuKWdOaaA/TLudUmYu4XRJU6BPTHufE5ypvHYys4JHs6ncZ8Po/5fN4EBca+Wq0GfXEbRGghpbaRMweOxloMoA36Rj8iovWLiL+PJTSRh3RaNEGksVBDtJt0CXLbvVZeTwtA3h8GewdyTw0Kp7A4om2Cyhgh7Xl/0QdEABwJvgdCjvvNPbuua33y/XPtBQsKXdftzP23Q4d+sQ+pJ5GdKPnZIg0inxbC82G3ifcsgoKfDdaZveN0hbzv8pxmsr/LGWEh0O4PkGtnIA6yD1/rfm4rH1f70PG8vosLhUKh8NZQ38OFQuG18IFvuq65sPfFXxg/+Ls+dPtGFy98Kt5bFhS6rvtIRPxTEfElfd+vu6771oj4moj4koj49r7vv7Hruq+PiK+PiD/wWm2ZjJjw2gKeRQUXcLMN3WQi4q67weQfAogI4VoNtHt+ft6KL1pQwEYOucb+TYX+/f39ODw8HJCyXcc5kj5ANX4I2vn5eYzH4xiPxzGfz+Oll16KR48etXoJq9UqJpNJI25937cieG6DOSRK7VQBiwDuj6P2CBsIGgBhwKdQ2H3B/BIld+rGdDptAgXrwfGHWfCIGB71x7o4N369Xg/ED0f6OWbx4uIiptPpYF6yxd55+Igl7CX2oOtW2Cp/enoap6enbX5yqg1zlO31PuZxu93G6elpvPrqq/GpT30qTk9Pm3AynU4HosOu4p2ueYELgr3IWOiP3QW0eXp6OnjWDg8PW30DC0GIQex5xhtxWxTUKTP+jE8O2dvbi9ls1tY1Ilo/LXjsEhac1uO6CQgBjH29Xrd+eV+5QCmiEOvM94mPtnzIeJ7fxYVCoVB486jv4UKh8EZx+YM/Er/wn/6J9u/ul/2i+IGvPX4Xe/T28XZTHvYjYtZ13Xlcq7A/ExHfEBFfcfP+N0fEd8Qb+PLMlnnXLSCP3hFKoqg5nz4iBgLDLnu9I9ImLpDjiGhig19zqgVEzFFOR4shzpBhR9N9HX2iEJ3b4nXI92w2G9RxQIxwgUOizIw9t29yDpFy4UjXMrADgzY8l/x3dih4Lagr4PmDZJrU0R9+Mz9c6+iy19f1CbJAYjcCe4m6Ex6HSaMdBbmGAq957yE65Rx+F41kLp164XQUjh+lkCI/zL9riexKV2D8tMP96Rv9Zr+YtNMvjqd0SgLiUk69YfyMI7tH/MxZYGKsPDeuqeB9j6uA/jsNwy4LYDHBKUwWh+gvKSB2O/EdwL7zmueUoAeM5/ZdXCgUCoW3hPoeLhQKbwi93bU//JPxi/7dj7R/L7/gOH76Kz7zDtnuKuIXfssyRpv7039/7J7X37Kg0Pf9T3dd90ci4iciYh0Rf6Hv+7/Qdd2H+r7/+M01H++67rPfSHu2m/voOpPA7DDIpMK/c168LfKQCMgS7xOpjYiBmOBIOeQHKzoE0dFh6gDYdbGLOJuUOjIPsmjgUxw8Xj6LoODjLbkPY8pHIHLkJD+OJjsFhHvxui3ivpfH6lQR4FoRmUyyBtwDeLy2ztvyngtz5vx676VcENDrkkWmLFJ4v+2y1+e1df0Nk++rq6vYbDZxenra1naz2cSzZ8+ay8XFRe3E4WhExm5RIO8r11jADQDsmkDgYAw+AcFjoO+4E3aNK6c0WNjJ9Sxcl8Riot0EXof7XvN8W1BgT+9Kv/C+8jOxS7R4yHje38WFQqFQeHOo7+FCofBWcXVyEvFX/lr799HJL4iXP/jz7r1+83IXq4+89b9RZz87itnP7Uix6CO6//EH4uqGT7wZvJ2Uhw9ExFdFxBdExJOI+JNd1/0jb+LzH42Ij0ZEzOfzO86AfBY9ufpEGJ0Df9PewMFg8sJvIsY5tSDi9phE2s3HHbpuABZ3isxdXV3F4eFhbLfb1vdMYJxXblLTKS+d/6ZmwWQyab8RFkzAstPBNvrLy8t2GgA1Ciwo0B+PsbvJ08elsLe3F5vNZnDiBaKGC/lBEGk714vIEWaIMPMFLFL42jxHFhxcZNAklv76iEJEol1E0ZF11tTkGIJNJDyT9iw+eQ97rSJu63ysVqt4/PhxSw04Pz+Px48fx+npaaxWq+j7fuAsYc0schD155jKfG+nMPjYUY/N7bn+Bc9Wdg1YIHJ6zK55t8CTj6Dkde8/i3Ssc3YRZbEIsdEpLzmVxylHdir5u+NFxfP8Lp7G/HWuLhQKhUJGfQ8XCoXnhYsf/fF4+Ud//N73+1/zK+PHfuPs3vdfD5/9Pds4+M++Z3fbb7HNt5Py8Gsj4kf7vv+5iIiu6/50RPxtEfGJrus+fKPEfjgiPrnrw33ffywiPhYR8fLLL/eO7t5XcPHmc4NoasRt3nXEsMo715EXHRGDaKVdEdmqbXGCAnVYtC8uLuLk5CT29vZaXj5HHSIAuA0fgTmbzQaiQHdTt8CCiEUFxpMjppeXly2SDZk02YIATiaTOwIHY4GMRcSASOJScHFIF1S0oOH1olZEjvZaQLm4uGhHJpKfb9EHsYJ1yK4CCCOAJPq3r8fqb7cH5N1k1YQ6j4//zsQ171GnbLAHed/7DGw2m3jy5Eksl8s7a5r3YEQ0oQORLac9MF5cNxaXSFlwnQoLM8yNnwn/9t5yuornwLUIeJacHkR6jdMPLLR0XddOLeEe+dn0HOEKYt09T9RqoHYI1+Sx+Tm0yPCC4bl9Fx93L7/YVYEKhULh3UF9DxcKhc8Iuv/6L8cX/KW38fdq//y/Yt6OoPATEfGru66bx7W96ysj4r+LiGVEfG1EfOPN7297I405NSETYHLeIR753HtHJd2W6yTkqDLRXgApylH2iGgkPOI2ogqZwba/XC6bCECRRbsqGNN8Pm9ChKPHkK/pdNqcCY4yr9fr6Lqu2eSfPHkSr776ajx79ixWq1Wzu2c7N6TWefAmdBYymD8TutlsFvP5PKbTaRNMMul3Tr3b4R6ZQOLusKvBLgdEBJwHCBDMk4tDIsiYzCMqQDAd5afQpWsYIHwwFrtWTMDtPjGyfT4LEk47MHG1QMAetdPCTgLG5nlxWgrjdD+cEsH9srDEvCEiZTHH9R4QajwH3ucWi2hzlxMCWBjxXG6320Hqjefbp2D4tBOP2+IHsOMhz61TQ+xieIHwXL+LC4VCofCmUd/DhULhM4d3QBR4O3g7NRS+u+u6PxUR/31EXETE/xDX6uphRHxr13VfF9dfsF/9BtoaWJg57s4RSlurnTMfcXvEW8Sw0Fy+LmJ43B3XQ1hcJM72cl4z+SOSTdTd4oMLJe5KbbDzAVEBN4EFBfqOoMDv5XIZz549a9Z4290jhqTVEXSTLubbQgCwMHJ1dRWTyaT1CdLKb6ePdN1tET2TVvrEWrI2fB6HycHBQUwmk8HpC7k2gOfec25RJBN7iKIdFjnXPxNIOyPsarGIxJizeyST+kxuaQNBg/3jwpp9+qLwiSc+ecHPEP1j7zoVA0HBIp2FLtbcp6PsSi/AXUMbdiu4QCbjJI3B4p6dCXYoeO6om+IUoYhojiOPy/11TY0sYNA+88V3icVFPzsWMR8ynud3caFQKBTePOp7uFAovJ/xtk556Pv+D0XEH0ovb+NamX2zbTVScHZ21kgmxM0k0qTKxMYkzUQNOP3AJM5pErwGocA5YIKRizzSttvPYkJ2P0QMayDgWkBQODg4aMcdmqitVqtYrVZxcnISp6enTUygHeYjIgZRXkgfYzAZp89gb2+v9eHq6qoJJLyGYwShgbkmeoxQgaiSo9IWHSwmULsBazzrTISdNXYKSybq9N/zzLzkKDXz6vQFrrXjhTnNdT0swmRXhoUGk1sXpWSucCU4/cRC19XV7QkOnP7g8UCC6SugzgV9tYvFn2H9OZoyIlrKAHPh11k7HCt+hiz+sQZ2VrhOg0U6YNeAnQ605SKU5+fnzZ1isc9CUV4fp374WbbbyeJXFiQeKp7nd3GhUCgU3jzqe7hQKLxf8XaPjXxuMLFw8UKfIpDztIluEwU3aTFpJvJNlN2EOyJahBLy6wi388Rd7A0CvFgs4vDwMBaLRaujMJ1OW2pDxJDM8NvjoU4Bx0NOJpM2bojd2dlZPHnypDkSOFrQUWQs4PP5fCAiML+4PwDjg9QTyR+Px3F4eBiHh4eD9Ady0D2u8XgcZ2dnsVqtWj+Zy5x6wD1NOrN7gPX0cZPcC/KNJT4iGjG0kwSiep+Yw17L6QbsCa8LffYeyNFxjlKkn1zjPUk7AGeKTxahD+7frpoJJsJ2G3j/I9wgKOzt7TWBgHvkVAG7gpwqwXveR8AOBT+/9NluIK8lc4LIYiEs19igHQuB7pPngzSS+0Q8+szz5fWhPafdkP5SKBQKhUKhUCgU7uJBCAp7e3txfHzcIty5qJ3JHSQMkmGruwkXZIL2MyGMuCV4zkXns77OJMyV5Q8PD2M+n8disWiChU9kIMoKEd6VcmDSSD9NuCOuSdfZ2VlLcYC0u88Uoou4jfYzfgshjswiEEDq7fbY39+PyWQS8/l8QBpzGgXrZULr8e06eYA1ZJx2d9gx4ZoFHoNTWSCYpAmMx+M76QZ2JfAZF4H0eCx0mLATCXcqgWsNeG09Rq+v78M19Asb/64cfo/Z6TyIL8yZ6wIAO08MOwXol9OKECQYv+ckt2NXAOvJta6HYXeJHQ1uy84Oz1luy8Ifa+BUGd8ju4Vco8ICDJ9z31+ElIdCoVAoFAqFQuHdwoMQFLqua0ccEpWPuE2DMBHzH/r+Y9+E0yTFYoKvBbtIPtdAunf1FycCroScZ2+y63x8R1VNNvOPiTUCgo+19GfpdyZZjBviSIFDW+ztxqD/PhHBAskupwZkmvHaTeJUFe7h+WSuIYMQP6cP+LhE39eRe4h2xO2RoKyfSTpk2M4O9oD3RrbsO6XG6RLeo04j4JpMfi0WZaLvFAfX3MjpMd77XJPdA7kmQd7j3jd2LdjVk8UPOxBcQ8F7wELRrlQB73Xmx8j3zK9ZBOG9iBikQNiZktfU67PrucvX5PorhUKhUCgUCoVCYYgHJShExIAcZnIRcUvgsPc70g0xNbnORdYQKHxvYEJkmARDpBAUyCPPOeREzE1uIObYuB1RNsnLxN5WeMMOBRM1Ez/ng5+dnbXijk5LgJhysgRjpAjjbDYb5Mrbqu9xm6BzX1vbbc/3XJu0Oz1kb2+vCRmQvTzuXKCPfWHBwetMv5l/C0Dsv9wv1iATYFvlEQRyO9yHExUsSOR9lp0FrgWR90gmxN6/Tmew3Z/2mTvPU3YgWNTw/PnfCCTUxLCIFnGbCuJ9yXOZBUCLSN6/eX7cBu+7UKMFFLtO7LLYVQySe+LKcP8KhUKhUCgUCoXCbjwIQWFvby8Wi0WMRrdV/CNuCcRoNGoFAi8urs+zx2oP8To/P28FCzebTUTcFnOzHdw25l05+pBAOxucGuGotesL4AQg//vy8jImk8mAcJMacXBwMLhXJjoQSQg94/u5n/u51nd+O4UhYkicIXou/Md97AogPYN+Mjc+rYLrmEvGm+fUcw7uE05ycUbSFRy9n06ng5x612Qw6bOogvjgezFeiljmgp1eB9JpKETJ0Yhcx2+cIxZ9PId2mmTYlp8JPyKOazcw37vcKZlkQ9i995164nXxvPn4TdbBBRddbwNkR49dAuwr7z/aZVxO32Eu7ejIIlYWe7gve3IymdxxbDg9imfGwoufx+12G1dXw2KthUKhUCgUCoVCYTcehKDQdV2Mx+MWHTSxibg9rcAkOSIGJJPq9zkXnWglRAcQTc2nG/hzFgwcOc/H2dFfSAp9QSSJuI2iHh4exmQyicvLy2a9d60FCCI1DLj3YrGIV155pQkmy+UyTk5OBmQeAsc9SR2B0OFC4BpOU/AJCwbX41BAXLi8vD6hwEdWXl1dDU5sYEyM2+6C7XYb6/U6NptNI425roPn2ikHOUffe4jfFpAcebebYRcBNzm3aJQLf+ZTJEw8c5SfPeJxQY4d7WdMFqpyKobvtcsRk4tf5lQBR/ApfJnn0OkMOIWcbuFx8W/eZ34RDSx6Mefe107h8Jyx13aJH1zj4pE5/cPpKRaJ+GwuapkLVfLf96VuFAqFQqFQKBQKhWs8GEHBVmXIm6PlRo46E3E2IXeU2NbziNsijJAik7TpdLpTPMh56RHDavx937dI+mg0arUKXE8gR7LpU464MyfcyycvQH5Xq9Ug0uprQe4fRI/7bLfbgevCBNhrwv1xTGT3g9tmvfi83SA+FtEFHA1IXRZWvL7Ml0m6BQWvnd0Q+dQD+sx+gOQyXhfZzFb6nDZDG74/jg4i4F4T5+vnufaxo3zGtSiw5GdXieeCyDvrRBt5jbNQcV+6jNOF+J0LFnpM9NHpBbggXCCR9rxXLeAxLgturonie+Iq8bgspEQMa2xk5LUtQaFQKBQKhUKhUHhtPAhBwX+4Q3ayDdxiAeQCG7gFhUyu+O9d5B1idHZ2NojeQ3KcR57Jk1MoIMar1ar1gQgvY4Hc+TVbtT0X9N1iwP7+fszn8+ZscKS1729PiMhuCZN+5tZjzz8WFnjNRzriQrBLAGJOYc2IW2Lv0xqYx5xaYmKdiy9CEncVUsyk1vPoOg44MexSyUcVsqZeL0QFp784os09c/+5v0/bwCXjdTYsxmRXhse2a81MoLnGbhvvKT9PFih29SnvS8QW10DI4/HJHKxzdn7YRcO/ed+OEp7BnO5gwQHHCnvfp3HwfnYivRayWFQ1FAqFQqFQKBQKhfvxYAQFR4595CEEmugypMz58rzvSLkjmI4Im+gCR5MdncwRYH8egmOrOdZ+yE0+MtF9Oj8/j+1229rM5AsXgFM85vN5nJ+fx3q9bkQdAmVC5bZybQZbyZ0jn10ikDwTRL9/dXUVm80mLi8vm3shIuLp06dtLemzRR7n2p+fnw/qN7gmA+s4Ho9jOp0O6h7YVeDTEQBr4H/zm8+a6DtNwdF9F9H0HnCaRkQ0VwtzDHEGrjtxX5+AT9awU8N1DPiMf7z/LGTsqgWAY4O9T7vMgck7e5FaB3ZjWMDzc8W8uhaKx+02vK9yPQYXXPWeoo/ZxZNdF7SVHUekT+W0FYtx/FgEKhQKhUKhUCgUCkM8CEEBcmpXAK9Dhs/OzmKz2cR6vW5EPeI2+mqCYrLnfHnaJpqe3QCQRRM59yHboYl8Q04gmibBETGI7iMeIJDQFgKDCaxPiiBinn+72B2CAWQ9W+RtF2eeGOcueB78k3PQbWO/vLyMk5OT9nkTYwgac27C63oLFIt0dX4TeY/HzhRH7O2kQLjhNA7b4ukL+4H1yITecwZhxpFBTQxOHcmFE+2uYV4snDkNgbmkHxaX+Ax7z8UNuY+Juesx8DkLBVl8815n/+xyITCvfMZ1GXYVp/QpHayp3S2M17+5N0USvc4WKFz8lLm0MHV+ft4KXNLfLPjkPe/+Z2dSoVAoFAqFQqFQuMWDERQsEkTcnlKw3W7bqQ6OUju6CJmDjHddF9vtdmCLjogB6YdIORoKicy53Y6Eu2o+JNP2ce7jega78tZdTBHCyWtEgyHCEENHYg8ODmI6ncZ6vR6kPlgIuQ8mtI702ibP/c/Ozga1FlgbF4J0nYH1ej0YKwTTLgUTSQsETkugXzkKnlNWsvU+R53pIw4K5tJFBhFDLFJ47e3YoA8cichaEJG3fZ9ilV4P5gPhyfe1aMMa2KXivWkxgflwwUjPhU9CyXZ+z60LK+IEcfsQcYt+fNaOCKem4Nhgfix48NtCnp1BeR28f3J/LHD4mixQej3y2ro/hUKhUCgUCoVC4fXxYAQFyI7t/5wG4HQHV4sHEAcipLSXI+kRMSDkjsDSLtfYuWCiAaE0KckRfkeAud6WbAQKos6OYENCIbY+pi8LCnYzQCidd29kkgQJdE0CFwJk/lerVYuaQw59OoVPgdjb24snT560dl1XwGviddjlODBZZK48B8yxx5kFC9vcIf8m4og1diNkQYb+ZCu9hRLmLUf/nT4AXLfBc+3nwHvBaS92WHhunUbDXrUw5pQGr73Hyns8ZxYDnIZgAu+2WMdcENSpDbQHfLKDT7vw3Htc2SHDdbhN7huXBZaczuCxZzEnC1WFQqFQKBQKhULhLh6EoIDlH2JBVBxHgq3yJurAUXx+O1Kcc7UPDg5iNpvdqS+wq19ZUDCZgnA66u1+Qfhznxwdj4gmEFxcXMSzZ89azvr+/n48evSoEUnamU6nsVgs4tmzZ42Qn52dtc/sIkJ5vixOUAOBVArW4+zsLE5PTwenDVBsEis6/XE6wcHBQSOFXIsYdHZ21oSfrutiNpsNClYSjWetLBrsIqwR0fqEy8UFES1c0C5klnXFvUC+vMUEBBGnIeS+OK0hR8FdS4C5JyUD4cpCGXPP5xDS2HfMG64R+pv3bUYWvpwOww8uIItzdl6wb+x8YE8gcOCuYf/7XhZMvKYWHnAl2LWTSf9rCXm0nR0wTp3CXeS+ed7yOhYKhUKhUCgUCoXdeDCCgiORpDhgrbd7wPZqPgspzhZtbPuOVmdLPCQTMkIU3ZFOgLix2Wxiu93GZDJp1nVHqXPk11H6iFvCEnEbqUcwgRhvNps4PDxsYogLyeEKWCwWMR6PY71eD2zlEKccbYdUQbapAUDNh+Pj45jP5y0P/fT0tNn6Ly8vY7PZxHQ6beNxBNiE0OvG5xjvdDod1H2gPRNJr2E+wcPuh729vZhMJhFxW+3fQgPEHbLLfLgeBnMeEU38gFR73/iz7E3IcE7JiYiBoME4nAridB1b++1g2Ww27V7T6bTNifvEazlVwnVHECyy4AWcbuP2c9pP3rsRMXjmuB8iA3PAnOyqZ2IHBNewP5hz3C/MtR0rLjqZhRXuw7PFnPg9xmj4OS4UCoVCoVAoFAr340EIChHDYyFNGEwuI26JlCPGzpPOtmXD6Qog1zuAMNkqjkWe6CZkg/dwGLjwHBH8vb29mE6nMZlM2vGUtq+bjF9dXTV3xna7jcPDwza23GfXLnDfIZMWRSCLnMhAv3EYICjM5/OYTqdtjiDY+UQMBABHdCGBiC2kRXBf5tIpDjm/HXLt+xHxZn9AYBFZEBIYE24ChI6cppIJ633I4sauGgsgCwJOayA6nosAmqDnMfB6PnLRJzPcR54BrgaLCXkNTea9Z/IcWFjLggKf9xz4PrzviL/TNiyKRNx+D/iedtTYLcF77kdOW3Gfvea7nCqe/11OlEKhUCgUCoVCoTDEgxEUIm6JhwmELcz+7Ugn5CC/t6tugO9jAkYbOXfaBeKIQkPMLSbk4oM+FjHi9shHSAuRdQCpcYTf/cgii/PWHWl1YT0Xv/Pxk8wtY0WcmE6nrb98Bmu900p43yQTUkndi1xAE3LtCL0Jp4mgBSH64bFbhMGhAnJ6iwWB7Njw2u8iwpB6u012kVPP9a6aAo6G5xoLLhhqx4fn1/PAeL1+/OQ0DPaB+7fLoZPrJHjPWVDIIgvz4f/2/Huu8hz5+vtSdCw6WfjzemVHEv3Ooo/v4/lnjnbVm/D+KRQKhUKhUCgUCnfxIAQFyCqkmJx4CFQmHLbMO3cbOzOiBO8TtYaUYEE3KTP5sVjh6DD57FdXV7FYLAa2dkfVIVW2/mfyRN0At09/DFu1XUQxEyDniXNPyLBrNkDKnKKBSwHHA/PLGthlQI0FjwdCdn5+fsehEBEtNQPCaxt8nn9HkFlX2ncxTRM9z0t2HtjdYSKJwMFnnVIB6KPFHObT0e/sWMnHJ/q/3Q/vbT8DmcReXV0fq4poMBqNWgoE7zvVg73H2rD/s1PC9SHcD+87i1uO6Od78WPBgj64PgaCEuuy3W7bfb2+7D+LCP5vn6CShQpEP+aEvZ73wS6hjd85PapQKBQKhUKhUCjcxYMRFLDumyDkXGkTLRe6g5jYpgxZjLhNEXAhvM1mMyAL2SJtG/rl5WWs1+tYrVaNNE0mkzg6OorDw8OYz+cxn89bEb31eh0nJyct5YE6C0RcIZz7+/stR97OBsbmHHwTn/tg8QDhg7nyCRA5Sp7TSVwM0ERzPB7H2dnZncg47a/X69hsNo2AEkmfTCbtJIirq6t4+vRp+yztIdg4VYN53263zUXB+ppkWvCwM8JCioUKuxeyG4XXEVJcLJF2bM9n/kxGc/rMLsHJgk9ExGw2GxBYC2bsE/YEgpvhdBI+TzFMxk6aDXsi732Ivl05+R4ZFuJYO9eyYF1zigx9pEAia2rBgbW2E4c5sBsD0YP3cchcXV21OiH03+Kbx27k/VUoFAqFQqFQKBR243X/Wu667t/puu6TXdd9r157ueu6v9h13Q/e/P6A3vuGrut+qOu6v9513d/1RjuCnZ5ItiOS+/v7MZvNWo4/JwkgEJiA5jzp/f39VsMAUSKnBeT6DTli6cgshGkymcRkMmmnI0Ca+SF9wMc75joPuwo4Al6z3Z0fR87tYHBKBiIKc5iPaKTNnB+Pw4D3LDCs1+s4PT1thI3PQBrX6/VgLSGHuZ4B48rFG2/2z2DeKUyYUyhMOikwmY8CBYyd/YWgk48UzFFs9gDzRR9IBUEUQGxhn0Xcklw+6/uQGuI0BHBfjQJ+sx65VgbjpI38XPFj0QF4L3i+PI5cg8HXZMcFc0XdET9jzJ0LTuZ0BK+fUx74t58lH62JSyk/27v2lZ87ixnZCfGQ8Jn6Li4UCoXCbtT3cKFQKNzFG/mL+Zsi4ten174+Ir697/svjohvv/l3dF33JRHxNRHxpTef+de7rntDVc2wO0PSTYKm0+mArPN+jlS2QSkVgHYd+cy53f63Pxdxl2jyPn3zkYsWGTwW2/0tfjjP2yQmR4khZ0TrTZoy6c959nZrWNDIRe+YF9ow2YVwbjab5kLYJThgUTd5zaKIjwKFDLpQouf56upqMF7Pmdckk07g94nsW1y4LwJtYSnn6rvvRN3ZY65BkcWpPPe7ihhm54f3G/vXLhoTeN/HhBvnQhbqEEo8lojbVBALIPft0XyNnyOnCNnlwVo7fcg/eV0thO1yFFk8yGlLeR7z3kcczK4Vi3uv5wr6DOOb4jPwXVwoFAqFe/FNUd/DhUKhMMDrpjz0ff9fdF33+enlr4qIr7j572+OiO+IiD9w8/qf6Pt+GxE/2nXdD0XEl0XEd77WPSDokHLIDkQtIgbH5hFZhJRBZB3FhDQ4Um/RwCQpE7t8LCWgfUf83W9wdnbWCJyFBrsjXGwQ4uS8dMZLdB5SSb8g2y6YR466CTOW+yw+ZDu+58dEeTQatQhwRLTxMpbRaNRI/9XVVXMJcBQm9RT4/Ha7jeVy2SLX5PZzHevKGCGge3t7zYWBQ4R7ca0j9uyRXMjP17mWA/sQASTXc8jHgua9y09ENFEHgpqLRtIGa35f/QLjvpSf7PrI6Rwehz/v9Bbu5+NEOdmEaxEm7PTxmDz3pDsgdhjZkRAxFNlyqoefLdcccZ0Qngk/Px6zHTgWLrjWa+kx+fdDwGfiu7hQKBQK96O+hwuFQuEu3moNhQ/1ff/xiIi+7z/edd1n37z+kYj4Ll33UzevvS78Bz5F/CCZl5eXMZ1OG4k9ODgYFP8bjUaN0DofPyLuRGYjohFUR1vPzs7aNS4MB3E5ODiIxWJxPWk6utAkJqdL2MFgwrTdbhuRxj1B6oZPtsAxAEHKKQvr9fqOU6Hv+2bpn0wmg5oK5OGTNjCfz2M2m8XR0VFMJpNGUiG6tr0zp4z94OBg4CBAhJjNZu2em82miQeMCau7o8QIBdRKYD9kJwP3Yk0h68wT70dEExyYC9aHdfVnXH8DQYM59fGP1M+gf7gSptNpvPTSS4O5Aswj621Rx2O4z/Lv4oMWRBin3QaIFOxrngXWBpGJdvlv1sY1O0jLQBxA3HMbTgFxoVRH+Xf9NnHPbhyegXyCidvYJZS4oCPz7/nyuC1asH+yu8H3euB47t/FhUKhUHhTqO/hQqHwvsbzLsq464y1nX+Rd1330Yj4aEQ0ok5UkiioiQtEyekFEFEfj3dxcRGvvvpqIxs5EkoUNyIGkeuMHFmNuK3WT7Q6536n8Q0i0CapED9SIkjjYJyQHYQDuypMSG0ldx69Le7YyneJHbPZLI6Pj1tdCvrtuguO7pLawEkQFJq05fzw8DAioq1LRAwIp10ZEN5cmNKiUK4fsNlsBukKrIHnCTKKeOBoOX1ASCCVxK4UpxbQntMmEGQQFI6OjpoQggDg8SBYMe4sAvh0BKcYWGTKKRgZrJvTEbzfEEfyHmftINCu++C0F1J4LDhQs8CujSyIWMjjmXAf/QxlV4hBn7z3LQy6oCNr4TW4L63BrhC7K14gQeE+vKXv4mnM38k+FQqFwvsJ9T1cKBTeF3irgsInuq778I0S++GI+OTN6z8VEZ+n6z43In5mVwN9338sIj4WEfHBD36w5w94iihib4ZYmujm6OXBwUEjQJvNphFIR0INt7ULEMb7yBGkMv/k4nXZ9u1icIwT8o/9nj45Us9viJwt35mEOYXBZMnj5p5E1x11znOc7esuDgnht4UfYcKpBCbyV1dX7RrSNFxIEzLv6y2ibDabRmwhurRjsu15d9oHBQERE3BLcG9SKzzuiFvxifnb29tr84cbwqkWu06IyPuIvtm5YIJtYmtByO2xV+8rILgrmo9bI4tM7D367jlBTPHYXHTRyCkhHo8JPf3IY6cfmdhb6OBzrothZ43b9PO+S0hw+1yf+/6A8Vy/i4+7lx/8gAuFQuGBob6HC4XC+xpvtYz5n4mIr73576+NiG/T61/Tdd2k67oviIgvjoj/5vUagzj4mEFIWq5c7+uwOUOOXb0/E4d8P9vmTSYcCfVrJpNEeh3htVsiR8V3VaCnTRM1E347FXaRKpPsiGEUmXlg3kyomC9OzcgFI03OHPXlvi4QuVqtYrVaNWHBhTIhnhBs+uA0kHz6Bb93Vem31Z+aDDgN7MJgXix60NfT09M4PT2Nk5OT9t/r9fpO5Nyk1WQ577vZbNbScyw44KDJp06Y+OeCleyPXSkPfgZMvB3Z99hzTQIEH7tmeJ975P6QJuBilibhPlXEJJx9lJ0j9O8+UdCfyw4CuxLcFnPquiG5XTs3XE8jp2b4+WJu7HB4wHiu38WFQqFQeNOo7+FCofC+xus6FLqu+w/iutjMK13X/VRE/KGI+MaI+Nau674uIn4iIr46IqLv++/ruu5bI+KvRsRFRPzjfd/fzR24e49BTnf+I5/fjs5DVh15JH8aYk0kfjweD04m4F4u7Jbv58KAEKHxeNxIFtc6as89sPVDEF0TwekEEGqTFpM6iwp2C0B6sXyb3E6n02Z3z7Z75/xnQYU+OvVhf3+/5dETkaZdrO4Um8wCCvUdXKww4rY+w9nZWaxWq+i6rjk1ssMAMcJpBLgUvObMtd0OFOtzjvzZ2Vksl8s7dR3YL5BXnDHA/814jo6O2nzv7+/fSUmwY8IuAfYf44HU24HivWFintNsXBvAxSj5bx+3yT7j37zHmtDnTNZzkUcEHKc7mKhnEk5/LJY5DSiLHx6f596OiCyS3VdvIYtiFgoskPi+FiFy6su7jc/Ed3GhUCgU7kd9DxcKhcJdvJFTHn7bPW995T3X/+GI+MNvphOOnN60MYi2+hQCHzEI8XLhOpMMn3Zg4cCWe0f5eY0+RNwSNbfJPYgsQ9YoIAlJ9PGLEbdpDERSGROEa1f0OefFk8POZ/b392M2m7VxUjeBH5Mjp3Fw3+VyOSC2V1dXTXRwAcJdefXMY7bvu5J/Ln5JioLFIIim8/chdxSWdBoEggK4uLiI5XLZBB32Bevlzy2Xy1itVo2U5hMxXPwRQIIRqCxYOQXA62eC7Ai7nTY5Gn55eTmoHWLCm0+j2EV0XQvB6STey96XJs/Mo/ed3QnsA4i9XSG70hq8L7yPLaDY2ZBdBFmgsohlYSWnHTFOOyKyeJHdHTnNBOxKV3k38Zn4Li4UCoXC/ajv4UKhULiL512U8S1hl7Xff+ibsEJo+NyutlyU0BFqSCpw+kBuy3UPnPJgh8LFxcWAwOXidBYUMlnKhCnnk3NvxmBiZ6cCfXGRQpPUXfUUTNAhh4yFYzs9d5l8UY8g14vgBAaP25FiRAiflpD3gAlwRAzy4bOwwLgcvUbgMYjIr9frJjpkEctulewC4L990gGCBWud61m4r7kgJ+vlcRlu12SYPmfXC2O06JBTBHDv4FKwa8BiVk4NoB+0Can3+vLb+9rPrYWLTOhN5C0M5ufDqUL+sZjAHLtIqOfZ8889vb459eYhiQmFQqFQKBQKhcJDxIMQFCKGZ93niCFRRpOFiN1H6kXcFnbkPT5jQcFk4T5bs0mIbfsRt9Fg92uXWOGIbCZMOBwuLy8HhSWzVZ5+21lhQSETTRNcA0K5v7/fjoD0MY4R0Sz8ju5b2IHc4YTI40Ns4F4mk3YqmBSCTOgsDGQSyXwzVsQExkW0n/ddUwGhhXnLQkUWNbgONwOFGGnfVnwLEa6vkdNPTKx3kV3WGWHAkX+LCICinsCkmjnw66Sj8Gxl4WzX/ahf4eePz+Rn18+aaxZkQSHPsa/32u0SEyxKMEessQWXXGODfljg8L7L+61QKBQKhUKhUCjsxoMQFGzhzlHO7FowUbL7wDnrED0+k08AsLWcyL/z5DMpms/nLSIN0VqtVgPXAlHrnNvvNp0HTyQdF4Jz4O0IgNRR4M8/Ebeiiu9hV8QuCzzE//T0NJ4+fdpIlq3vWP6vrq5itVq1mgguSrnZbJqw4loKmcC7lkLf94OCjjgkXDTSroTtdjuYl5z3zmkNmbTTZsQ1ET49PW3iCfehcCLjJd0BgcXWe/ZmFkWurq6PslytVm0d6KtdE6x3tvOb9Lv+A2Mxmc77yULA5eVlE9EYfxZHTLb9nDl1YRdIF/Fn2Qd2T3he2JsuDuo9zv70nF1dXbWUkpxKwvxblKANO3t8Msiu1AgEEMbB3OXnyn0qFAqFQqFQKBQKu/EgBIWIGFj6c243gLhH3B4FyH/zPukOETGITLr4ocmpSYTb4d+O2Doav9lsBpF8YIs/1n6TEpMtCCN99EkBObpLf/z58XjcyJALVULk8hGTETGISkP8aQ/Cn23k2eLOWkHmSZPgeM+c8+5UkfF4HM+ePYvT09NYLpfNnZFrSni8JqxONcgpBT7q8LVIssUhf9bzy9GUiET0A/Lq9IEnT560NArW2FZ9uyK89ibXTrFh3u00cUFD9goEn35bOLMI4TW1U8f3oMCm9zD9QGyx8ENf8nPjNAeuyY4Kp1VYPHGaDdfvchA4hQYHUh6bBUU/dyCnjBjeM/k7qFAoFAqFQqFQKNziwQgKJvb+499/0Dvv3Xn4OWKZ89Mdlczt8+9MLHKOvQmIyast4+PxeGDvz2R2l70/567fBzs0IPg5oprrFjgi7Tx9E1WEGVfDp18QYcaKiIGjYrPZtIr5FjAQFBAsPCe4BdbrdRMgLBIwDkfOGZPrYjgq7Si83R15/XPBTrdj8YWx+rhEpyTQJrUZXJeBfWahItd1sHhAny1YIJKY7LtIpvc9PxYIvF/z/nGU3vdC2HHEHuHE68lJJ54X2nfaAnORhbxd71lY8Vy7eKTHbsGRcbtWhL9HdqVW5HQJuyq4ht/3uTYKhUKhUCgUCoXCAxEU/Md8JhiQF0gQr7savskerzlC7Ah3vq+jzruKyNE+KQCOPnM/F2p0rQDIpYvb5bHaVbBrTkwQycd36oKJdyZPFCtkfKQSQMAsivgEAz7LuHF4UEMA0WC1Wg0cERBnF+6zayDimqgjRPR9PziNg3F6THZWODJu8p0L61nksb0dh8N4PG7rRR0Jr4XX1aQ3CzOkAlhYgeBaVDg/P2/Rf7sD8n73frR7gv7n9bZAYDHE+ya7JiwAWEzIqQ+5/oNFLBfttMPCz4z7m/f+fbUK/OO0G1w1/ozX2ak+9I373Cfi5WcxCwf3uaQKhUKhUCgUCoXCLR6EoBAxFADIx3cOdnYR+A99kz/IF2To7OyskR/aMUF0BH48HjeyacLlSLsjwq6Eb4IHfMQjZM82+NlsdqcQncfi17vu+hSF5XLZBIXpdNqcAqvVahBtJx1hvV638T169CgihqQdMo9Ak8dtouh0BmogeP04fcOiBe3SJhb1iOu0gul0GkdHR218Ebc1HKhBgH2e9XEdDQowUpTPkeqIu6Qyp83YAcFvk2XWveu6Nr7JZBJnZ2exXq9jvV7H6enpoO6D99QuAckuC+Ccfrfhegd2Rlj48DgtDiD++CeTeY+dz/G6I/9Z4HPRzizmOH3Fx3Cen58PHA52c9A3vgcYv8fHb/YraTcIQqzdeDwezCNzmMdsJ1MWQvLpKIVCoVAoFAqFQuEuHpSgANkkKh4RjeBjK+eEAezvOcWASHG2d0cMUyNcvC3ilmiSO++Cdo5+QlIihmkI9J28cABJh/BZOHAfM/lj7I4+r1arVjAwR+lzIT/EFMhZxO1RgiZJFMCjryaRV1dXMZ1OB4UEIdFE5WnXBNHiSq6LwbyZuOdI9/n5+SAlYjabDU5WOD09HTg69vf3Y7lcDmoKWFiws8GpKxYU2EOO0Ft0oS4HwgnzagFpV5pFtt8zlz6BIpPa3B57yoIF+9GCyWazaXOd12O9Xre0HKd7sM9dMNHig+/hqD19Ze14z0Q81z/YlQLEHLOncdRYhMuCBmIG98kndbjvOWXF65XHmx0sJSYUCoVCoVAoFAqvjQchKJhUENWMGJK8iNuIMoSI3045gNT4tAXnTe8igL5Xjh7bOm+YNNFWdj/4Wl5zX0zk7GZwf2z9X6/X7dQDjplEPICIQVJNyui/UztcIyKndpiU0ZeIaE4NIs4WWRg/98iENK8lr0HeXMjRQsh4PG5OBqzvOcXk6ur6tAcEDtv6TY4RIVyjwHOfP2N3QU4tMMl1kchMWhkrhJUx5wKY7Ds7RbzPLN7QPvsjpzx4TZ0SQF8R43Bc5PF63B6Dn6ld6UG+BuHDwpyfx124L5XD88n8ZPeA++E+5DoVXGvwHeLnPz/fhUKhUCgUCoVC4S4ejKBgh0KOPnINJAPihfXZUXYs0a4Yb8cBBANya6KX0w6MXL+Be0UMUwgsHEBGLGp4vJB/R1ABEVI+R5oBUXs+g+UbEp6jvpkcmozmavkICogOHid9RrxgPqkNwLiA7e9+z4XziAjvsscjiuzt7cVkMmkkmPVnjhina2p4Pzn9gXUkHYR5mEwmg2i4P+N94Nd3ORs8547qA+6F08KugIgYpJ54nnwaAkKIjyi1kJP7nF0wCDTMQxZOvK+ZSz+HOb2I11gDu4NwFGWn0H3wvs2veU/lFA33I5+6ksWSLETw/eA0DKdIlaBQKBQKhUKhUCjcjwchKETckjUi7ePxeBBpdhG/8Xgci8WiETPbskmHgCS6qF6OQtuunW3UzrVH6EDscO47sJAREYPce5MYR/tdTwAiA8G2WIGYsF6vW248c4aQwO+I2yMgsem7SKDvxZi5F/dhbqbTaRsfqRTO38/R3BxZdzpDJonMmWtAkEqx2WyamIAzwfUF5vN5uyepILsK9+WUhL7vmyCSjzAErIn3CpF2X59rXyCwWFRy/YvpdBqHh4cxnU4H6+K0inwyiE+jWC6XLd2FtWOPI0q5eKnTV5iD2WzWxJmc4sB6sOcMj4f3eV5N6HOqkd0hFgHY+7tcDhaFnGLE+FzLpO/7lgrlce9yWtznirBAwjM/nU7b3nL6UqFQKBQKhUKhUBjiQQgKEApIDpHNg4ODRv4o2Le/vx+LxSLm8/mggKLtzY6+Y+022cuEDwLOTxYAsOQTwUdYMFzTISLi7OystQfRY2yQn5wyYWLDaxRYpPAcZBLRxG0juPAzmUx2Fge09dyRWOYd0DdHxx2B97whxkAqAY4K94H59ykJ6/U6lstlW+8c0c79dTvuV66LYAs8161WqyYAZVcDRNlzCgH2/XOU3Hb/7XY7WM/9/f04Pj6OR48exXQ6bXN1cHAQm82mOSboA2uG+wbHAnMC6fV+y7Ux8vPFGt3ngNiVJrEr9cH70vd1bQjElbOzs7ZnaXu73Q4EqCzQ+Z5eA9rgGcJJw/MIPA9+XrJjxyKka1i8VkpGoVAoFAqFQqFQGOLBCAouSmgS7NMGICCOru/v798hzZBpE49czT/i1u5sZwDIufqZtEKqc4STdn0PiJCJE4UMfS+LHRAnxASi9iaFOVUjj405cW46beRrXQzTRzRa4IGs+X67cuhpE4Lu2gUmo5kYEm02eaYtzzfik9fc/51TDRx5x8nhGgx5X9jO7/nz0ZA5rSCnmgDSHObzeSwWiyYEILw4rQXRzJ81+fZecT/8XNAmfd/lwGEteD33w8/KLoeBr8kpA54z1tB985o4DYjXTP4Zr1NILAw4hcnP331iyX1uCe8f/+yqh1EoFAqFQqFQKBRu8aAEBUebTSpxB7gQo+3gfM7RzOl0GtvtdlAI8L58eAheJqGIFbui2KPRbUFB13HIpMekxWkQtGEnBfdgPBcXF7FcLlvtBBwIdj74x7Ub3FefEGCLe8Rtjj22fqde+CQAH7/HvORI9q5UDX/OxNw1B1w80qdS5GKJrAsE0SLPrqi6BRfui2CR8+zdfxNTrzsEFdJLfywYuQAh8zibzQaCgvc6n6Omw67+eE+aJFuQ4lkwLMQ4vcV9RzTyXvD9Dc9z7lfuK234mWVddwkU2bHA+9kt4lQNFxnNz5BrImSxyN8ZOX3J93DhzUKhUCgUCoVCoXAXD0JQGI1GsVgsWrE/k0OTBuf+Q+Yj4g4JGo/HrZI+JCOTMLCrbkFENPKOVd5uAaL43Id7IRRwbd/3A2K+2WwGkWLSJEy67MqwmHB+fh6Hh4cDYhoRzYnhooIQQ3LugQklqQiuE+HaC5BmUi0syuSIP5+l7oVPnnCRTVffx+a/Wq0G+yDbzxkTawIsOnEyhE+3cFoBaQiuQ2ESzXwzRxExIL9OVeG18XjcCDD3QgyhBsh4PI75fB6Hh4dxfHwcR0dHMZ/PWyqK02C4J+NwnQyn/GQibxKdBQOusXvAEXnWOEfm7fCwu4W9CVF3BH9/fz+m0+mg3oQdLJmg+/WczmK3gR0vtO1Cj4zZYpAFhl01MlxnYRfsTqn0h0KhUCgUCoVC4X48CEEBRwGRz5yXDnlx1NKExwTRRIX37GaATGTikduG0NGuo+d937fidk4fsLsA4uP8cfpiws496SsEbrvdxpMnT1o+/v7+/kBMmEwmLcKMkOEIvF0JkH2i0ZBTUhi4v/uJGMDrLljJWCHZEEXGQ00ETmxgrlxP4vz8PJbL5cC1sctNgjjBfCGEcL+zs7NYr9eDXHrILekFFxcXg7SRnCaBWwTkFACnQADmI88b11PjYjwex3Q6jfl83ooisg52Nri4JnuC/tnpYSGF6+gL9TZ2WfZZU/Z6Jsp+1vh3diTYlcP+cWoC68XeId3D+zOnBu0SMJw+gyBkN4qf4+zSySewWDyw4GChhT64roJdJoVCoVAoFAqFQmE3HoSgAIGHGNltsEtMiNh9rnyOxvIa7dtFYNKY89FNWEzofK1dDbbEZ2cFn7OoYZHE1nBIk4sVmpghJsxms8Gxg04TgZy6iKXrRDi9ALJIfyDzPhXi4uKiFX8EvheCBm1tNptYLpd3SL7nLh8Nma33Jn05NYD3LbxwbCbIxQd9TSa1iAkWdPLe2VVnwdc43cH5+4hHPq4RUQXXAcUoKc5ouz/jdo0QC1wWyXLtBAttdnpYAMnChAtOdl03EDeckmBBIAsK+ZnOtUEMn0Dh+/g5zs6DLBwyt36u3C7z6TXPaTF5nSNi8J1QKBQKhUKhUCgUduN1/1ruuu7f6bruk13Xfa9e+1e6rvtrXdf9la7r/qOu617Se9/Qdd0PdV3317uu+7veSCccHc1/4DsdgD/yM2FyOzl1IeK2SGNOhdiVo+4+OPXC0W8fVxkxJNiOIOMYgKBnN4SdDKQAQH5Xq9XgtAAi3eTgQ9Z21UtAUMDZgAiRayJwTcRtvQLEDJNwCxC5LkOOpK9Wq1itVk0QQTywTZ1I/H056pnwc72j+P4htYOItesFXF5etuMouWd2sXg8OaffaQ0mrcBkOddQ8Odd6NL9Oj09bYKC++D9YVGGe+a5MlnOqQvsZ6+d61g4Gu/6HPn59Dh8r3x/p8/kZ8TjyHPlOfP3wK4f32MymTTXDg4F9iqijF0Znp9dz73HyxGfDwGfie/iQqFQKNyP+h4uFAqFu3gj4bdviohfn177ixHxy/q+/xsi4gci4hsiIrqu+5KI+JqI+NKbz/zrXde9rmfYRAGy4qMRHd0lkm1CFDHM7cfijp1+sVjE0dFRLBaLZjs3YYJ4uC92JkBKsiAAmV2tVu3zJt7ZEk4kNSKaLXyz2cTp6WmcnJzEs2fP4tOf/nR8+tOfjk996lOxWq0GJNmEx5HnXfUAiMTv7+/HbDaLw8PDGI1GA9HCNQd4fblctr6QkuC6DJ5bxkXk+OzsLE5PTwfpEi7CaDs8fWZN6b/b5LX1eh0nJydxcnLS3A/UQ1iv14MaEnYn0Kf1en2HlDMWaj04nYDilIhHTtmwmGMnisk5YzAJd42M8/PzePLkSbz66qvx+PHjePbsWRM6IMgUDsRVgSDldrJoYWQxLottOGGYu9FoNBCsch2DyWQSx8fHLeXBZJ65cFqGCbzFv11igfuaiX8WavguQCTjmXaB1CyMZbdGFhYsYrg2CiLFA8I3xTv8XVwoFAqF18Q3RX0PFwqFwgCvm/LQ9/1/0XXd56fX/oL++V0R8Vtu/vurIuJP9H2/jYgf7bruhyLiyyLiO1/nHoN6Ao4EQxJsaYcMRdzmSEMIHKWHREI4+KyJTI5Kc18XzYuIVlOBPhLd52c8HjfyjzMAUu8aBibKLjB3eXkZy+VyEIW3lRt3AfcdjUaNNNk2zz0REV566aXmTthsNgPyNp1OW+qE3RImmRExEEeoQ8DcO/KdLfWOpDvFgTz/fHRjFhTcN+Dign7PRTedsuIaELSdyTft5boErJfz8l040zUcIK8el0/L6Pu+iSnL5TI++clPxquvvhqnp6et1gZEnpQI5pn9w5zynsdnZwD7ltMk6GculhgRjTwjmvjUg+wgsZvHex0CzzpbPHBahNOOXN/D9Q/8PPr5Yx7YK+wR1wah8CnPlMeRxZTXcscsFos7NVQeAj4T38WFQqFQuB/1PVwoFAp38TxqKPzOiPiWm//+SFx/mYKfunntNeH8eJwJOSrvaGnEbdTT0c6IGNQQ4H0ir45UOsoOgTRhyZZwruO/ETgcKebf7lvOBc8RYp+E4Ii3o+wU26OoHn0w+aefTmGAwNkGHjGMXjuVIB/ZeXV1FQcHBwNxhWh/13UxmUzuROkt1jCvThmx44M5NfnzPPozea9YzPE9TRxNBpkDE2be35UikOcOcsza0ZbJvefX4hFrhTPk6dOn8clPfrKJCZBzE3ZH5enXLqJtIY1/2xHhEyLoe05hwIWxy5kD6c9iAv9mvj03u54XX+v+54Kpu9bIQpPrPNAvP6t5b9m9s8sx4bbt5sh75AXB2/4uLhQKhcLbQn0PFwqF9x3elqDQdd0/HREXEfHHeWnHZTv/Iu+67qMR8dGIiA984AN3CEYmhyYSEcMCdRExcCcQqY+4jopOp9MW4bVwYSJrQrOLaGbQviPYTnVwEUfaNdG2vZ7rEQtMRHmPWgSOnHLMJuPIhJY0kRwpNnnC8m9HRyZkLvbIMZK0b2LmtALIn0mq7eteNxM4z2OuC+D3TLTtOMjz7b2za239uoUJ9iH7BIeIhQynt9hh4/mNiObsIL3l6dOn8eqrrza3h+/rvrnGQCbH3Isx8nn2uXP/uYfnjHmzcJKJudfJa5Tv6zl0akF+fnYRdbs4GJvHukuo4b+z+Mez57m8LwXD7bNXLWLuqtHykPG8vounMX9H+lcoFArvddT3cKFQeL/iLQsKXdd9bUT8xoj4yv72r+6fiojP02WfGxE/s+vzfd9/LCI+FhHxuZ/7uX3+wz7nfJugmFABCwpEfrH1ZwvzwcFBLJfLiBha3Xn/PgKUiW0u7EjaAFF/or67it0xDogQhNUwodnf3x+kSFxdXcXp6WmLPkMKcTfMZrM4Pj5u484iB9efnp7eOSXBFnUiwES6qUvhHP9si7f1PiIGoondBhZOchu5xkV+32KNxSFb4klFYdx2j5j8uj/edxYm8l7IdSFwpPjoQtq+uLiIJ0+exHK5bILCs2fP7ow1p8NYtGIdcTS4v9xrOp1GRAz6wP3dH8QEagRwf4thFrYs0nhdLab4uFLuYaLP84JrIgs3JvGur5BTI3KdhV2pOtR18HjoE3OY3UNOvbBo5P36UPE8v4uPu5dfDAWlUCgUHhDqe7hQKLyf8ZYEha7rfn1E/IGI+Dv6vl/prT8TEf/vruv+1Yj4eRHxxRHx37yRNieTSSMnkCeEBRNAiEImg0TxKdS3t7cXs9ksjo6O4vDwcECaiLDTlskI9yVia9KcSagJ0fn5eTsqkbacusFPxC0hdeFESH5EtHtuNpvrRbr53Gp1O9VEvbP13dXpGY+t4Cb81IrwiQ25PkLf9829ABF0HxmDLeiOUt/slzsCg+faQsr5+XlMp9MmsuwilSa3tt7nCDzjY869V3YdmUitgsViEfP5vM1pdmH4lATPK5+fz+eN3LN3EBQ42WG9Xg/qauAmQZBar9cD0SqfrLFL5PA+Yy3tdHDaBjBxt+Oj67oYj8eDtCJeB3ZmsHauG5Ln3WIga5ZrIGRn0q4UFTtnqCPiueE+Fhgs5uWTG1xzg89k58lDxTvxXVwoFAqFN476Hi4UCu93vK6g0HXdfxARXxERr3Rd91MR8YfiuoLtJCL+4s0f/t/V9/3v6fv++7qu+9aI+Ktxbfv6x/u+v9zd8uAedwgSf+RDgiBu1Bsgf5/P51MExuNxzGazRu4omghhmE6nrYaCya3vGxGDaGW2l9vW7uMRIbHZBg9x8/GFFgJsq3caBCCdI+JWlIDouQ4DJI374y7IYgFj30Wa6JOL5HlMOCUsqnRdN0idyDnzdmVYmMn57YyFNtw/OwcMp3RQzDG7WSCJPn3DaRF2kngP+HMIV94XLghJkUOneTBXpJe4JoVTD1g/j2dX6gB94x7MkVMYWAu7Obz+wP1gLH7ueM2nKLCG7md/k4LjObVQscuBwlp6LlkLxm2hwO4Br0uu25DTFfKYch89D/nUjuwaejfxmfguLhQKhcL9qO/hQqFQuIs3csrDb9vx8r/9Gtf/4Yj4w2+2I44s3rQz+CPfufcICCYgtj1HXDseZrNZOyaSiD1R34ODg0bqI25J2n1iAvcl0r7LAp8j34YLzkEoc4TdbXpenCsOdpFsOzvsyDCJdgSYqDXk1OTa1/gEB9/38vJycIwh9nPXqdhFGL2+eRwZu9wOu8ggfczFE92+ax+4LfYDxQmdLpDJJYKRBQtEAcQE5sN71GkSro3AvcfjcYxGo0FKi58BE+ZcCNFCQ07DsWvFY8/OATsYckqJXTZ2muQ5sqskE3WvsfdZTo3I7hnatgPF/d5V6yDPR3a22HWR58BOlIfmUPhMfRcXCoVCYTfqe7hQKBTu4nmc8vC2Ydu1I/NER3M1fR8vR4TcZO/g4CAODw9jPp/HbDYbWLXvEy0yiSKijEARcZs/Tj9t6+beJn4ZkCOTSRejy+TR+eUUUHStA0ioBQXXoMiRdQQArmcuiWjzGYsYuXo+1zDGLDwQpTapzmttIKzwGbs2sPrTb19jIGRYSMj3YH4tJkCUJ5NJzOfzGI/H7ShN2vHnfBIGtQz4QRQYj8cD0uw2cG/YSYHwhauBOXTdB+8/px5ksWWXeMLz4RoM2Qng/ZwLjLI+Ttnx/GdXEdfy3PrZ4oe1xZGRU2CyqOcUhF31VbKDyHU08ikSCBU8KzznuwTChyYoFAqFQqFQKBQKDw0PQlCIiFiv17FarWK1Wg0iiBAakzfn/Ufc5s+Tf47tezabxXQ6HYgSEGNHnE2caGuz2bT+UIjQBAaCCHJFfJNy2suRXK7NQgKACJnguu6CT3BwhJm+QbTsHPB9IacINyZPFjrsurBd3u1H3BZ+zEdgui9uw5Z/uxl8jxxR9zzTNwpsMi+5kN7l5eWAzDtibWeBxYQcreaUBlJHvP9cO4H8fL9PH7zOe3t7TchYLBYxm81a3QTmcTqdNueEnRe7jsC0I4X7k5rBvbx/SGHw57OrxeIS8+T1johBeghuCwsVfha4p+d/tVoNXA15T7OHmOPJZNLuzZ63sEdfLS7wGdrLhSiziJVTKgqFQqFQKBQKhcJuPBhBgeg7FdgjhmkAEBkIpyPNPlax7/tB7QTIresbEKWFOPmevlcmVRG3ZGu73d6x1wNIDqkZiBiuLg9BzrZ/t2Fb/eXlZazX64i4JbCAaDv9sNjhdAVHfukTIgPkkhoNwPMAKXRdizz2LJSwrpkM0w+Iquc3r0MeZ3YNnJ2dNSKZhQv2B5/JEe6u6wbk2iSWz2y321b4z/OZCTeiiMfn9XSNhNFoNKjvkYsYWkxyn922Ty+wA4eaGcy73RjMDffc5T6x0OZ+ObXALhX30fve+8XCkcWjDDsvdrksLK75O4N7z2azODg4GDiP6K8FrJzqZAdDFhgKhUKhUCgUCoXCbjwIQQESRA0E7NkRd/PksWY7au6IakS04/AgH24758PzmnO0M2nKxMIkPxMXrssEz9FTR+J31RWwUyG7AEzeTPJMwGzXtnXdzgDP2a689Rwhvrq6GtjHnQphQNZMTEkPsPDBXO06NjCP3XZ03mcveP18DaTWggL3tKDgyDl7wGKLiavnwtH3nJry/2/v/kLluqo4jn9/SdMQTbXWVrm0tUlKFfpkg/ii7YuiTdDGPyARHwIKIihYRDASkL5W0VeLYrFItUW0mBehIqJP/mlj0qakMUmNGHtNtD60qBmtLh/O3uOak5l7c0nPOXPv/D4w3Lm709nrrNln5Z49+5xTx1yeOKrbWsfGli1bxpMJdXIob39+z/a1O+pBd3uFzrTVIrW/PPEBjE/NyJ9zPXWo5rU9ZvK4buewfV2L2lb7yadr5BUMOb6svZojT0bkbc9juK7myCtkpr1XXgXRvoVljj1P4piZmZmZ2aXmZkJhNBqNzx3PV3PPS5PrgXJeQp/Pd64HFvU2cfVgYDQaTVzsTtJ4tUK+tkD7ALx9XYW8mqD2C5NL+NunLeRv3PM30dPkg9V2P/kb03wAnida8gRJvl1i+1vv2lddxZC/pc23y2xfmyAva5fExYsXxwfZ9b3rLR9rLPUzhclbRLbPc6/yZFFeWdGe5Mnx5djqpEje9vbBcJWvPZG/+c4TNPlb8DyhUL+9r/nIB/95DOQLEOZvyOvpDtu2bWPTpk3jlRb1ALd9LYH2QXe+iGH9vY6TnJ88bvK1KvJtWnO+6+qG0Wg03r48GRTx/9tT1rup1Pdvn9pSt7Od7/akQ/5ca17zaTztCYX2/p9XMNTTGfJEVF6psXXrVrZv3z4x/vOkUM2dVyeYmZmZma1O7QPgQYKQ/gL8HfjrwKFc7xgcg2NwDC23RMQNA/XdK0kvAScHDmPRx5tjcAyO4VKLVIf9N7FjcAyOYV5jmFqL52JCAUDSExHxNsfgGByDY5jHGBbBPOTZMTgGx+AYFt085NoxOAbH4Bgul9f0mpmZmZmZmdmaeULBzMzMzMzMzNZsniYUvjF0ADiGyjE0HEPDMSyOecizY2g4hoZjaDiGxTIPuXYMDcfQcAwNxzDF3FxDwczMzMzMzMzWj3laoWBmZmZmZmZm68TgEwqS7pZ0UtJpSQd76vNmST+TdELSM5I+W9rvk/QnSUfLY2/HcZyV9HTp64nSdp2kn0g6VX6+rsP+35K29aikFyXd23UeJD0o6YKk46lt5nZL+mIZHyclvbfDGL4i6VlJT0l6TNK1pX2HpH+mfDzQYQwzc99jHh5N/Z+VdLS0d5WHWftjr2Ni0bkWuxaXNtdiFq8Wuw7PB9dh1+HS5jrM4tXh8r7rsxZHxGAPYDNwBtgFXA0cA27vod8lYHd5fg3wO+B24D7g8z1u/1ng+lbbl4GD5flB4P4eP4s/A7d0nQfgLmA3cHy17S6fyzFgK7CzjJfNHcXwHuCq8vz+FMOO/LqO8zA1933mofXfvwp8qeM8zNofex0Ti/xwLXYtXm27XYvH7RuyFrsOD/9wHXYdXm27XYfH7RuyDpf3XZe1eOgVCm8HTkfEcxHxL+ARYF/XnUbEckQcKc9fAk4AN3bd72XaBzxUnj8EfKCnft8FnImIP3TdUUT8Avhbq3nWdu8DHomIUUT8HjhNM25e8Rgi4vGIeLn8+kvgpivtZ60xrKC3PFSSBHwE+N6V9rNKDLP2x17HxIJzLb6Ua7Fr8TQbsha7Ds8F1+FLuQ67Dk+zIetwiWFd1uKhJxRuBP6Yfj9Hz0VM0g7gDuBXpekzZXnPg10urSoCeFzSk5I+WdreGBHL0Awq4A0dx1DtZ3In6TMPMHu7hxojHwd+nH7fKem3kn4u6c6O+56W+yHycCdwPiJOpbZO89DaH+dtTGxkg+fUtXjMtXiSa3HPtdh1eDCD59R1eMx1eJLrsP8mXtHQEwqa0tbbbSckbQd+ANwbES8CXwduBd4KLNMsbenSOyJiN7AH+LSkuzrubypJVwP3AN8vTX3nYSW9jxFJh4CXgYdL0zLwpoi4A/gc8F1Jr+mo+1m5H2Jf+SiT/6B2mocp++PMl05p8+1qroxrsWvxalyLS1hTXrtharHr8KBch12HV+M6XMKa8toNU4dh/dXioScUzgE3p99vAp7vo2NJW2g+qIcj4ocAEXE+Iv4TEf8FvknHS0Yi4vny8wLwWOnvvKSlEuMScKHLGIo9wJGIOF/i6TUPxazt7nWMSDoAvA/4WERzclJZRvRCef4kzflJb+6i/xVy33cergI+BDyaYussD9P2R+ZkTCwI12Jci4u52O9cixt91mLX4cG5DuM6XMzFfuc63PDfxKsbekLhN8BtknaWGcH9wOGuOy3nwXwLOBERX0vtS+llHwSOt//fVzCGV0u6pj6nufjJcZrtP1BedgD4UVcxJBOzbn3mIZm13YeB/ZK2StoJ3Ab8uosAJN0NfAG4JyL+kdpvkLS5PN9VYniuoxhm5b63PBTvBp6NiHMptk7yMGt/ZA7GxAJxLca1uBh8v3MtntBLLXYdnguuw7gOF4Pvd67DE/w38Wqi56tAth/AXporWJ4BDvXU5ztploM8BRwtj73Ad4CnS/thYKnDGHbRXJXzGPBM3Xbg9cBPgVPl53Ud5+JVwAvAa1Nbp3mgKdTLwL9pZtY+sdJ2A4fK+DgJ7OkwhtM05yHVMfFAee2Hy2d0DDgCvL/DGGbmvq88lPZvA59qvbarPMzaH3sdE4v+cC12LXYtXtxa7Do8Hw/XYddh1+HFrcPlfddlLVYJxMzMzMzMzMzssg19yoOZmZmZmZmZrUOeUDAzMzMzMzOzNfOEgpmZmZmZmZmtmScUzMzMzMzMzGzNPKFgZmZmZmZmZmvmCQUzMzMzMzMzWzNPKJiZmZmZmZnZmnlCwczMzMzMzMzW7H9gTvnWdUNXIwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 99431 0\n", + " Min thresh = 1000\n", + " Not Sliding\n", + "\n", + "\n", + " Winner = Not Sliding\n", + "\n", + "\n", + "247ns_image_2743083265515_CLEAN_ClassN_126-254.roi.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADYCAYAAABberBAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADdqUlEQVR4nOz9eZyt/VrWB16/mtZYq3bt/Q5nhAPhADJIAAXETwxpaAc0HFGh0dZGxT704JgYAdMdNbYJaTXBJG2b061CWgyg0cZE49AoMWkEEXE+DAc4cA7nnPc97x6qao21qtaTP6q+v7qeu1a9097v2Wu/+74+n/rU3ms9w296nr2v677u+1eaplEikUgkEolEIpFIJBKJxGvB1uNuQCKRSCQSiUQikUgkEoknDykoJBKJRCKRSCQSiUQikXjNSEEhkUgkEolEIpFIJBKJxGtGCgqJRCKRSCQSiUQikUgkXjNSUEgkEolEIpFIJBKJRCLxmpGCQiKRSCQSiUQikUgkEonXjBQUEp9wlFL+ZSnlyx53OxKJRCJxhVLKB0spX/Eqj21KKZ/2Ou/zus9NJBKJRCKxWUhBIfEJR9M0n900zfc/7na8Ekopz5ZS/mIp5UEp5X4p5Tsfd5sSiUTizY5SyleUUv5xKWVSSvlQKeVrH3ebEolEYpPwqIXZV3O9/H9x4ibsPO4GJBIbjL8i6YclfbKkqaTPebzNSSQSiTc3SimfJekvSvp6SX9H0oGkW4+zTYlEIpGQlP8vTtyAdCgkPuFwW20p5Q+XUv5SKeUvlFJOSin/vJTy6aWUbymlvHgZnfrldu5vK6W8//LYny6lfGO49h8opXy0lPKRUsrvcMW1lNIppfyJUsrPlVJeKKX8mVJK74Y2/nJJ75T07zVNc9Q0zbJpmh9940YlkUgkNgellC8qpfyDy0jUR0sp/2UpZS8c9pWX7+GXSil/vJSyZef/9st39f1Syt8qpXzyq7z1/0XSf9U0zf/QNM1Z0zR3m6b5qUfWsUQikdgQlFJ+QSnl+y/fs/+ylPJV9t33l1J+h/39t5ZS/ufLP//9y4//aSllXEr535RSvqyU8uFSyh+8fCd/sJTyv32911vT1vx/ceJGpKCQ2AT825L+P5IOJf2opL+li7X5dkn/oaT/yo59UdKvkTSS9Nsk/WellC+QpFLKr5T070j6CkmfJunfDPf5TyR9uqR//fL7t0v6D25o05dI+nFJ31FKuVtK+eFSSrxeIpFIvFlxLun3SXpG0i+R9OWS/k/hmK+W9IskfYGk90j67ZJUSvm1kv6gpF8n6VlJ/5Ok/+ZV3vdLLq/xzy+FjL9QSrn9UD1JJBKJDUMpZVfSfyfpb0t6TtLvkvSdpZTPeKVzm6b5ZZd//LymaYZN03z35d/foot39tt14fJ630Nez5H/L07ciBQUEpuA/6lpmr/VNM2ZpL+ki/+AfmvTNEtJ3yXpXaWUW5LUNM1fb5rmp5oL/I+6eBH/G5fX+VpJf75pmn/ZNM1U0h/hBqWUIul/L+n3NU1zr2maE0n/kaSvu6FN75D0yyX9PV28oP+kpO8tpTzzSHueSCQSG4imaX6kaZofvHQJfFAXwu41kfbyffpzkr5N0m+8/PwbJf3HTdO8//K9/h9J+tdfpUvhHZJ+i6RfL+ndknqS/ouH7lAikUhsFr5E0lAX/989bZrm70r673X1Hn29+L82TbO4/D/yX9fF/40fBfL/xYkbkYJCYhPwgv15JumlpmnO7e/SxUtXpZRfVUr5wVLKvVLKA0lfqQs1VpLeJulDdi3/87OS+pJ+5NJa9kDS37z8fB1mkj7YNM2fvbR1fdfl9X7p6+lgIpFIPEm4TD3770spHyulHOtCFIj/cfR37M/q4h0sXeTX/il7196TVHQRNXslzHQhDP9E0zTjy/t+5UN0JZFIJDYRb5P0oaZpVvbZz+rVvSdvwv2maSbhem+76eDXiPx/ceJGpKCQeGJQSulI+m8l/QlJzzdNc0vS39DFf1Ql6aO6UFDBO+3PL+niZfjZTdPcuvw5aJpmeMPt/pmk5lG2P5FIJJ4g/D8l/ZikdzdNM9JFCkMJx/g79pMkfeTyzx+S9I32rr3VNE2vaZofeBX3zXdvIpF4GvARSe/02jO6eI/+/OWfJ7oIhIG3vIprHpZSBuF6vJdfz/Uc+W5O3IgUFBJPEvYkdSR9XNJZKeVX6cJ+Bb5H0m+7LHLTl9VHuFSA/1+6qLnwnCSVUt5eSvkVN9zrr+rixfz1pZTtUspv0IVq/P9/5L1KJBKJzcO+pGNJ41LKZ0r6P6455t8rpRyWUt4p6fdIIu/2z0j6llLKZ0tSKeWglPI1r/K+f14X7/FPvXyPf5MubMCJRCLxZsIP6YLk/4FSym4p5ct0UVPsuy6//yeSfl0ppX9ZXPwbwvkvSPrUNdf9I6WUvVLKv6GLmmN/6SGvB/L/xYkbkYJC4onBZd2D360L4eC+pN8k6a/Z9/+DpP9cF/ldH5D0Dy6/Wlz+/qbLz3/w0sL7/5O0tlhN0zT3JH2VpN8v6UjSN0t6T9M0Lz3aXiUSicRG4vfr4h17ogsxdl2Rru+V9CO6+I/qX5f0ZyWpaZq/qosiuN91+a79F5J+1au5adM0f07Sf62L/2z/rC7e37/7IfqRSCQSG4emaU518f/MX6ULF+2flvS/a5rmxy4P+c8kneqC6H+HpO8Ml/jDuiiQ+KCUQp2Ej+ni/8cfuTz+//CQ1/P25v+LEzeiNE26VxJvTpRSfoEu/iPbuSwMlkgkEolEIpFIvKlw6XD4C03TvOMVDk0kHjnSoZB4U6GU8tWXVq9DXUTI/rsUExKJRCKRSCQSiUTi0SMFhcSbDd+oixoLP6WLfdTX5f0mEolEIpFIJBKJROIh8YYJCqWUX1lK+fFSygdKKd/8Rt0nkXA0TfMrL3dvuN00zVc3TfPRx92mROJxId/DiUQi8fiR7+LEG42mab4/0x0SjwtvSA2FUsq2pJ+Q9L+W9GFJPyzpNzZN868e+c0SiUQicQ35Hk4kEonHj3wXJxKJNzveKIfCF0n6QNM0P31ZxfS7JL3nDbpXIpFIJK4j38OJRCLx+JHv4kQi8abGzht03bdL+pD9/cOSvvimg7vdbjMcDuvfm6apP6CUUj9brVZarVbXvi+lSJK2trbqMavVSufn5/V7jvH7+PlbW1va2trS9va2tre3VUqp1/Hzz8/PW/fgXL/+arWqf+Y72nN+fq6maer99vb2tLOzU48rpdRjOOfs7ExN06iUUtu3tbWlpmnq93y3u7ur3d3d1pidnZ21xs77w3E+zoxN7Bd93d7ervfmunEu4vXi+HMdrsk1fJ65PtjZ2an3WLdO/Pe69RP7zly93Lnr1hntjN/5PPrccF+f43gNbyv9bpqmNd+S6hryY3Z3d7Wzs1Pnfnd3t9U/1hNz6vPeNI329va0u7vbWqtxDnyO/Rq0wZ9L/nzTc0x74rMZz3m5cfc1ddO8+Nitu4e308eI3+Px+KWmaZ7Vk4fX9B6WpO3hoPmkdxW9uNjX9gcWL3doIpF4DTh/ZqCz3uNuxZOLs3v3dD6elFc+ciPxmt7F+R5OJJ5enD070Hn3cbfiZpx+6MNr/0/8RgkK6176LYZQSnmvpPdK0mAw0Fd91Vdpe3tbkrRYLLRcLnV2dqbz83NtbW1pZ2dHTdNouVxqPp9rPp9rsVhosbh42TqZGgwGms/nmk6nGo/Hunv3biV6Ozs76na7lWA7se/3+9rb21O329X+/r5Go5G2trZ0fn6uxWKhra2tStTm87lOTk40nU41m81abaCtk8mkEtVOp6O9vT2dnp5qMpnowYMHOjs70/b2tvr9vt7+9rfrmWee0XA4VLfbVbfb1WKx0GQy0XQ61fHxsT7+8Y9ruVyqlKJ+v6+DgwP1+32tVivN53Pdv39fTdNoOBzq9u3beuaZZyRJZ2dnms1munv3rmazmebzuU5PT7VardTtdiuRPz09Va/Xq2SSMd7d3a1k8+zsrI7haDTSarXSeDyux0pqCQR7e3taLpd1nHd3d1tjv7Ozo36/X8cekrxcLnV6eqrxeFyvjyBy+/Ztdbtd7ezs1P6dnbU3cqANOzs79c9guVy2iLWfjxjjRJVrQKD5u3RBOjmX/o5GIx0cHGhnZ0dnZ2caj8d68cUXtVwu6zrZ3d3VcDis4gP9c6FmOp1qOp1quVxqMBjo1q1b6vf72t7e1ng81tHRUV2Dp6enGo1GeuaZZ/Tcc8/pne98p972trdpb29PkjSbzXR0dKT5fK5SigaDgba3t7VYLOrzdOfOHT3//PMajUbq9XqazWY6Pj7WZDKp88AYsUYlaT6fazab1R/mluvyLDdNo36/X+dgNptpOp3WMd3b26tCmgtg/r3PF+Pe7XarIEefeIesVisNBgPt7+9rOBzWMaeNrLXFYqHZbKYHDx7o9PS0tT7+3t/7ez+75n32JOAV38NS+13c3T3Q29/97+tTHyy19VM/+ka3L5F4anDvPb9E9z43t+l+vfjIn/y2x92Eh8Fr+j9xvocTiacXL/36X6IHn7m5/1Z88Pf+/rX/J36jBIUPS3qn/f0dkj7iBzRN8z5J75OkO3fuNFLbJbDuzxDE3d3dSgQkVWIKPEoP0YDUSKqkmGtzvkddIbQQYL/21taWut1udT5wTUhmBBFqiDv9WK1W1WEACUJ4QISA9HQ6HXU6nXpN2knbILNcE4HAnQ4eoSXaTLuJLpdSamSb7/kzbWF8EDf4cSGB9jmpl1RFA4jh5VpouRDcDbK9vV1FGsaZ6/t9IgGV1FoTjJHPV4xS+3nRUeHuF28j37mThJ+bHA/L5bJeB6HCnSaA/jN/tHV7e1udTkfdbreSZr82RP7s7KwlvJyentbx9vvSvtPTU83nc3U6nUq63R2zWq0qsee5KqWsXfvuEIjuBvqAAOfigAtyW1tbLTGKsXFBinFE7ONZRxRjPFiD/gy508bfBZyPs+EJxiu+h6X2u3hUbje97/2Hn5jWJRJPCcov/lwtbhWt0fMSTwde0/+J8z2cSCSeNLxRgsIPS3p3KeVTJP28pK+T9JtuOtit0tFeL7WJIP/J94hxTIWALOJs6HQ6lRCdnZ1puVxWJ4KTZrd5z+fzlpgQbdBEfiFAHqHnGhB7otiQaLewcz5kbnd3txUB5nzaDMGJgoIkdTqdKgjQBz/OSez29nbtO23z/kCSfdyc+JdSdHp6WtvD9Rhz5otoP21m3IgKcy2IK+3g+O3t7dY5DkifdEGGPe0Dgu5zBiGGYHsagFv5Ia5ux3fiCcnneO4FyXUHhKc5sB5ceHFiT5tcyPC5cmGo1+tdS5uBQOOAee655zQajWoE//z8XNvb23WMotUfEQ1Xij9XnhrkaUFRMFqXohLTN7jG7u6uOp1OHTtcQMyRu054BjwtwcU21m6n09Hp6WkVDRG+5vN5S1CIaSee5rFYLKpg4mkjTyBe03s4kUi8AShFP/3VQ533Vq98bOLNinwXJxKJNzXeEEGhaZqzUsrvlPS3JG1L+nNN0/zLlzm+khyIwunpaSUG29vb6vV6lWgQfY/1BjgvkgwIkEd6IQySqnvBRYrValXt5p5XzvlEWJ0UQpKJGkOyPCruYsdwOKw2blIHIGjL5VL9fr+mGXQ6HfX7fS0Wi0oMffwguLRnZ2enFVl26ziODMQVANlE1CD9AffEYrGorgcI22AwaJFE2sxYufgDWeRc2uJug5hvHx0iHvmn7/4d0X/GgHu6UIQw4+sClwZzHwkx64VruovCrw+p9zmiXy64dLvdGlGH6J6enlZSz3zghqFdzCdz444BBKSzszNNJhPdu3dPw+GwppSw7lhDrFP+7G4HH2PGkva6kBedG7Q/ijI8P6TOSKrPN0KMu1j29vZqe6fTaSvNwecn1pEghYh15zUsptNpnTt/L9BHdyREUeRJxGt9DycSiUTi0SPfxYlE4s2ON8qhoKZp/oakv/Eqj9V0Om3VGYCYQwYgAJAsj4LHYmpOYiEYTuaB59bHQngeFYbsOCH0gnJ7e3tVkCDKeXp62or0S1fRZwgN1nLOoY24HTydAYJPdJy2QLyki1x2SBgE2CP3EK5Op1MFEMgcY0Ab6AuEnsgtbXIiyGe4CRBaQK/Xa5Fnr80A2XT3iIslns4S0wQY07Ozs0pOERxi6oE7WHBWuEvAo+HMk7sXEHViW5wsY9VnLqLzgB+P8scUFHc4eF0AHw/mEmHCU0OYf2oYIFLwbCFi4abhN3OKaMS4IZzhJHBHA8fwTCBE+TPFNRhT0pAYQ76n1sbW1lZN5/D5mM/ndXxeDjyTXJN6Ku5eQkRjXJnTbrerfr+v6XTaSn96kvFa3sOJROINQNPo077j4/rIL39OJ5/6ZIuUidePfBcnEolXg7f8jQ9p+PNv04e//Mn6P+gbJii8FnhKgJNaj3S6gOD/2Y9552495++QxnWR50gq/XqcA8GDhEPUvX4ARInoMuTH2wrRA5BABAXpiqjHaLHbr71/HlGN7dne3m4JChwPwXbC5PZ2Lx6INR0Cy/2JhLsY4eTTSTz9hCBD1CH2XieA/HUXD9yaf1NOuwsG/ll0NKyrsUD7PFXFz3ci62MMYpTexSmHu0huin4jeNAOd1J4WgHzEck8jg+EJtaSrxdqkMQovR/vjh3O8bUBOfe++/X4nHb4XCCSIID4OPn9PK1mXYoCY+0CE9/5dby2hveB832N9no9dTqd+tkTnvKQSCQ2AOc//gHt/tIncaOYRCKRSHwicfahD6v33IGk/cfdlNeEjRMUIFtuw/Yos6T6n3wIuhf3K6XUNAW/fswF97x5t69DbGNdBf7MjwsVVO3Hto5TwIvVQZAcTsKcVDkJ9Bx+Irs3kdl1dSboKy4LT4VwkQZAuNxaT9u5v9vIua7Xq6CoZKxPsa4WAW2PAofDx90Fhpj6ECPYfv9YoNFTEDwVg3s4eXVbPe1hnXqbvZ4E1/d+0yZ3T7A2GYfz83NNp9MWyUUgcjfD+fl5TQ2QVNdfLG5IGlB8RnZ3d6uLhjWMoEPaAjuAuNjiAouPkffTRYV1tRgQqWiDr1d3Ofga9mu7U8KfIX9HsL7Oz89baTOIFA5/jvv9vgaDQW0X45tIJBIPg+1Fo53pZfpjr1lf9z+RSCQSTz3K2Urbs6Lz7pPzb8VGCAoQASKzThQRFhaLRSWs0lWU18m/k+q4jWAkPh7RJgUB8oI7gGtDRiBHseI9ZASCB/mjEBzkDnK4rgaA26+3trbq9pJOhBEVuCZV/D3qzDZ91ArwyG4ke1jJaUOn02kVHFytVpWosr0jKRk+Bx5Fhyi6q4B+8uNpFJ6q4qKO/8R6ER4Zd+cJ13cbv7sBmC/65oC8esQbMu45/G6pj5F97sEcumjF36kNwnlExH2N4lJgnbl4wr2c8EN8aTPHU3eEeiCenuHOBtYUO0OwlST38/XvYhft87kgdcEFK8bKn3Ffi74+mHNPT3IhbB1chIj1Lba3Lwqc+lp0YcTbvbOzo9u3b+v8/Fyz2ayu/0QikXhYHHznD+qgFJWdXf3UH/1CrTq540MikUgkrmP1T9+vT/2xjn7qj36BVrtPxr8VGyMouBAAgcV67Dn8Hj32FAkIC9eT2kXjIBeQkhjJdkLikWmu49vUcU+vqQBp6nQ6Go1GlcAghjhhRQzwlAAAqSJK7H1gq0rf1g4iiQjB8b5NpUdxETtI8UBEKKVoMBjUgpDk3s/n81bU3km517Xw4oC+KwP2cre8e6qJbxno8+HE3cUIJ4UuZni9Cgijb38pXRFHd50wz6RTOMGm/97GUoq63W5rS8XFYlHb684Vj6jj3GD+ptNpbQvuDxeeqCFCrQlEByfw3q+trYuCmB6p9zQV0na8xkZM32ANISi4w4X+uSDntTz8GvTf02AQuxaLhWazWW2vr33mBcGF8/z5dfga8fFe5wpxwcnfE74WWc+DwaCO2ZuhjkIikdgQNI2a5ak+/X0f1Yf/7bdp/K6sqZBIJBKJ62hOT/Xpf+aj+tBXv02Td2z+vxUbIyh4Hr3nj3tVfSKzRCSdFDoxhyB41JPPQfwMkgGcIEY3QyQoXM/t3L1eT5PJpFWXwQsMevTWAelmVwWipFzXyZtbvnd3d1uRY4+Cx34yPrgJ+G5vb68WbMS94PUcONfFiWhX5wcgWDBHvpsHn7mLIaZgRGdJdJdIV5Z1J8Drrufij883ggCiCJF9COV8PtdsNruWUuJCCCKPrz8no058ESN8pxKOZS4RhRBlvAZGjO77fHIPxCxfLwggnlrkKQKM7XK51Gw20zrEQpysQZ636N6IaS6+haPX0wCeTiNdPQ/r2oxLyEF7WCu+/STnevqDv0M4p9PpXNv5I5FIJB4Vzn76g3runxyq/2JHzZb00hdITWqXiUQikQBNo7Of/qCe/dE7GnxkV8229NLnb+6/FRsjKGDXdjuykxMI8unpqfb29q6RIb8W0dGYo86x7kCItutY1M/JC1H/+H1Mj8Cp0Ol0Ksn3tnhU3XPUETkg8LPZrN4fshiJH+czJpyLW4FrO6l0OzikCfJFQUVImBfpY3yJohPNj3/3Ggkx5QGC6OPs9vYoBvGZu0e8dgHED4IaSaCvIcbKizFyf0n1/G6329p1gDQS+sEYcH/SLDxCHiPvLry4QOZihrtcENhwKXhxSR9fd4m4Y4V16SIH8++f+7PGZzgoXDRwuJjj6QvuVqD90UGAA4Jz/Llwd0lcrwiIOC38GXT4muE9sC71xo/1+/tz4I6mRCKReJTY+h9/VCNJZXdPR//aL1Kzvt5w4hIlX8WJROIpxM7f/RGNJG11uzr6175Ay2GjZmfzgl0bIyhgMYdgxPxr6Wp3AXcyUJndC+pBJKR2hDPCbdkIEC5URHhEmvx17nF6elqj2BC94XBYSSO2+bj9pZNQL4a4vb1dSV0karSVonpsd3d+fl5/e1FHqb3lotQmli4S0C/SIdzhwXm0udvtqtvtVldCt9ttba3I/Zgv2hXz49nWj3Z6dNsRiaQLAS4yebFBXw+MX7/fr9tYeq0Enw+vqdHr9equHi4C+Dr0dnkqAuuD/riQBHkmxQR3iO/YgPDgbos49qwl6jFsb29Xhwvnkm7BZ7RlNptpNpvVuhPc4+zsTEdHRy3CTx0NT3mg8KjXB6HWiM8ZaRakcvj64Ddr0oU70mfcyeA7oNAuXxsuvNFPUnhiEVfa6oVKPYUmOogSiUTiUaJZnuqT/sMfeNzN2Hh8rJk87iYkEonEY8NqPtcn/ZEf0Md+35dq/EkpKNyIaBGP7gKIxnw+rwXppKtt8JxsecoEgJDhSpCuou1e0A7i70Tf2wg8OowYAFEiWg85JOeee7rg4deGYEIk79+/r729PXW7XS2XSw0Gg5r7DjHjunt7ezo4OKjk1Ek6BIs2OUl1EoeYEYvwuUCA8wHRAycGtRN83CBsHun19A8izr6todd4YHy9revWjNeJ8PP5s0ffAeIJqSIPHjy4NsdOhrHnU6yQ9YfA4G3zGgLuzHA3QKfTaW0DOh6PbywmGdvDnLpDhLXs7gXmS7qy+zOOrFXqGpBKxBptmqY6M7zGhBfEJM3Daz942g/PG/1hHTMOi8WibivpaRvR/YKQQ3FJr2kR6zxI10VE1hJj7wIZ944uI9oc100ikUgkEolEIvE48Pa/+AEV24Hsg7/5kzR/7vHXWNgYQcHBf/y9ngKfIyqsSxnwqCU/63LZ4y4BXMPv4ddfly7AtTxdIhZahMj4loSeM+9tlnTtWu40wMEBAYspFhCvbrer2Wymvb29uvUdBNNz893B4eTeHRKMCUKEdH33DGoOuKDg/UEQoF/SVbE738mBcfA0FE+b8PHz9cA8eK5+dGY4KYypFUTdiWCTSgKcEHvtAz7zPH4XEjxtI9bbKOWqCCOfIxD5+f7j7WcdOpGP/eQakSAjmiGM4GTw2iS+Nl1Q8KKkOEFwPyCc+Rg7XLxz4crXRkxLcXeSrwdvA2vD1zkCga8J7sG13a3gz9e6VJtEIpFIJBKJROJx4/yFF1t/f8s/fF6LwzadP3nHtsaf/IkVGTZGUIjFDteRIye1blGPJCjmm/s2fm6dhpjErf6o0+BwC7dHvbmPE/zz8/PqJPD70xfP3cfq7bZ8SS17OoSHdnGvSBaJuiMqeOTXbekuvPjWjLgbPD2AaDrt5L6MOQ4Kov1EgP3eCCpOvN0274KCj4ELBETHI8GOx8XvXZDydUb7SIE4OzvTdDqt5NodFb4eiax7sUwItaTWtqHuAHGSynojTYPvEVqiqMC4+Xh5vznGyXBMjWHXC0QqtgtlG8vT01Pt7++30kBYK57agdiCsML6xI3iY+bPLmDMXCyLz/g6pwWCA8KYP28ukDEuDneLIJpw75gGQXs8JSmRSCQSiUQikdg07Hzfj1wj853/1RfqdNRpfdZsS8vRGycybISg4FFcJ5aAyDtEjL3sIakeEfWoJ0TCtw+kyCDXpZCdR0M5NuaBcz8nPBBgJzikQCBQSGoJCjG9wtMZ3BYfK/zfu3evig9EtCF1ktTv91tECRLOfaMFH2EAkGvuRNiLFEbbOyKCE2QnmFtbW61tKRmT3d3da4UVPQpOW1yQwAnAfZyI4sbw8YYQu4jBvJIyg1BAZJ1jxuNxnQdfTy4ecR/s+V7o8abdASK5dsI6nU7rupbUGtetra3qKGCdeR0B+s28xM9PT081mUyqSIYg5wU3PYUFwj6bzTSdTlt9YG14bRDuxfVd3POaGwht3k6eRcaB+fVxdAGIQqeMNQKPj4mLMqUU7e/vt1JxXLSiDdH14mJlIpFIJBKJRCLxJGDn7/6IPunvhs/e8Xb92L/7zjfunm/YlV8DPOLuRNEJnBdvc3IrXUUV/XqxGBxR7mj1dzIL2cW6H90COADYCcHbjl0agkUley9AGK381DlwEcVTL+L3s9msEj7fvo/fpB9Mp9PqRvDxYbcA347QSStWcCeY7laQLgoUEukdDofq9/s15YF2cW2i7t1ut7YFIooTwLekdAGHfiE+cEysjcB8QQwjWeQaLl54rQos+6vVqub4j8fjWhDTRY5Y0wCx5fDwsK4xxBwcIn4fj/4zFvx2J4dH0pmfUkrLEcD4uXjBGPqOCMwHLgXaRGFJX5eMJWPO9qcIcrTDd1rw9QeZ51n21BCu3+126xqkT17rAzCPXsgTkYjilaenpxqPx1WA8zQjF/B89xGeX9Ye7gwvVhrHJZFIJBKJRCKReFJx9pGP6TP/k3baukrRB37np+is//BFHjdKUIBoeN60E1q3kjsZc3fAy5ETj157ocG4HWQkER5tjsTXUyiA12GgfUReIWwIGJ6r7mkSbv2mf9PptBIkIrNuBY9F7Jywe9v4PNaK8PZ6pNyju17wLvbJI8rurqBPfE5hTUjuujQXd0k4YUR0gZR7HQHGLc6Xz1tsm68XJ6QQZQfX9hoTkG4i74vFohY69HQBX5P+OesSdwCCg4sJpHPgPnHhx2ta0DbW72Kx0HQ61WQyaYkPMS2IZ4Q+urPHhSkcCLgLEJB8bfFMMM/0m3XkIhXX8TnweZJ0bR17KoU/a/R/sVhce9551nEzcV/mn7b5GvRjEolEIpFIJBKJJxarc5197IVrH7/t779Dq91XHzz74A2fb4yg4FFoj9i7uABp9Xx/J51OOOK13DrN9Tjupgi0fxbTIfgdCazf18kSxf9IE8DC77Z6L2qICOHbBxI1dxfDTZFZCu8RTXa3gqdKeCqJF7Pz6zvJom2MCWKCE0/6w/2ZN+li1wHs/dGVwjFONNe5N7xOAyT1ppz3WFQP10Ss3RDdI36dSGJpK4IKu1wQvfd0ABdmHG7199oATta97oWn6kT3gZNkhIJSSt0Skm0hvR6BpyLEsfU2xS1AfZ3P5/O6driuO3Zw2LDeY7qB1zWhPYhF9Im16tug+vPFOvK0Gl8/uD1wNtBGd0UxNogoLnZ4gc5EIpFIJBKJROLNgr2/9Y8eyXU2RlCQrkQDJx+R6PX7/SooQCAktYi7EwZcAOuKvzn5jnnpDic7XlDR3QRS204f79XtdqugQB0I+uq7LDi58iJ1tHE+n9c2+BZ7Ht3F6TGdTmuUmLHxwpFE2nEZQNC8X175n7mKAo7/uNiCA4E2Nk2j6XSqBw8e1PQLajJE634k7y4seT98rbhrwKP8pIlEB4S7TXy+dnZ2dHBwUPsBMXZ3gG+X6e4GxI7JZNJyFLh7AlGD6DdtRKBwIY35xNVBO3FC+HG+3iRVIg4p59zoTHCByq+DWOCReuaJ9B/g7eDZOz4+rgIYZB4Bw9cQdTu4h9cfYQ0xXl4Hwgto4vKItTJ4T5ydnanX69X6I17Q0Xe4iCJKIpFIJBKJRCKRuBkb8z9nSApkMRIl6SqaS6E/SCPwqCoESrruPIC4Oblx0sLxkBEXNLwWAGTRC8o5KfZK9dQ36Ha7lZRRGJC2em66R17pGyQJIjYcDlsuhZiKAVlywuUiQBQkYr0EbPikUtAOrjuZTGo+Osd5Hv729nZNbeC+p6entYYC47cuZSSmOviuEp1Op1ULgt0dyNGn/14XgPbHHSXciQC53t3dbbkqer2eZrNZJeeMjTs2IKdE5ufzeSt9ZD6f1+g6bUDs4Z4IH+5MceLr9Tgg03FevPYH4zyfzzWbzVqiC8IHa3lnZ0eTyUSDwaCuV9Yb8zefz2v9Enf7ABfGFouFZrNZdTEgKLijgWN9TXv73IHA2JLS4E4b1kl0I7HDhT+zvF/8usyNpFa9j0QikUgkEolEIvHy2BhBwXPkPY3AUwh8ezfOcVLof3fSMpvNWjZ0jvGcdr5ze7unCXg9B6m95aNHc90l4AJHp9NRv9+vhAzS6FZ5j/JH0ubWd36IxEuqufcQM8gvufyr1arey/sI+cctgdASUwF8bvh+Pp/r6OhIi8VC/X6/9o+tJBlTxjVa3T3qTXsYW783n7sTgHljfoh+M75x+z+POiOuuPjhnxF5d+JNEUCi3u5WgZwiJHhdCNoJsaVtvqa4VqzjwPFuv+fvvg5ifQtf074tIvPo14zi02KxqG4OL+iIqEGffPtK5iymPHA9r1XgQh/X8L5wHP1xsYF1wbj42nIxwZ0njAP3821X/XnxgpruOMqUh0QikUgkEolE4ma8bkGhlPJOSf+1pLdIWkl6X9M0f6qUclvSd0t6ly5qN3xt0zT3X+5aTnAhtpCLWKDNUwKsLfU6EEOvPUCU1okqx3APL3AHeeYaMRJLW5x4QwI9Ak3bfLtDyCt5274DgZMtF1bchu3EB8LofYhRbSfXRIBjAT635LugsM6d4Rb45XKpyWTSEh/oIzsmeIV+jom2e3cg+Jpwsufkmr7E1AsEEp977hm3j3R3Bnn79K3b7bZSTqLA4Q4Oj5a7BT+6YrjGOveFF1/0OgM+VowD4+JFGV1QYOwQCGJ7WAN+HGPngoKkVp+I7seUFh977u9FP732AZ97e9194WKY3wPwvY9pfA593bhzxEUDxBIXflywRHRxR8om41G+ixOJRCLx2pHv4UQi8TTjYRwKZ5L+3aZp/nEpZV/Sj5RS/o6k3yrp+5qm+dZSyjdL+mZJ3/RKF3PXwLooIyKC7zUP2fLIKNdiGz9IEXnwiBaQuOh6qAMTChz6rg0epfeccoiYbxPoFnrSAhAUsOJDcmKKhXQltrigACEkIk7RPVwDkMQY6fZoP4gOh+hQcBs++fCMMYKGR9qxzHvqwcnJSXWGMP4IKzs7O+r1ei03gBfZ8xQNF0l82z/qSuCM2Nvba9UOIE3GnQ6kn5DaQL+jyBNFCZ9zjmNNeg2MuK4Za19vMb0iiip+DX8OEMnG43H93Neep17QJnci8HxA2FkDpClIau3GQS0OUkhoz3w+b4mBXq+Eugg+HohMrF9fe14vgb74c0c/Pa3HRTtPfaK/MX0IYcHFjLjzBjunsNa8BskG45G+ixOJRCLxmpHv4UQi8dTidQsKTdN8VNJHL/98Ukp5v6S3S3qPpC+7POw7JH2/XuXL08muR08l1WgoRfx8VwGp7V6Q1MqBh/jE73ybxrOzM81ms0rYKZ5IG4j4QpqIhLvY4bs3eNv5DWmMBeQkVWLtJMmjvhBw356Q+0P+IECQxrh7gxeLdNs8YgSkENLorgqus7e31yp2N51Oq6W8lKLhcKher1dJfK/Xq2kRPm8uVPT7/SqiQOoYtyiwuJ2ettMW2tftdtXpdFoRct9yFCeFiy3ci8/cieH358+cv1qtdHx8XPsHKfbIP8KOpxasViv1+/06FqSKEBn3MeAnOiQQU3gOPL2BvntNEHd7+N9dpFksFlU0cqeBCxJOuKM7iDlEUHBBhW0sGVMXubgmz6LPNXNC2om7GXh24g4WXs8BMSSKYnzGuYgdLkAwD5uMN+JdnEgkEolXj3wPJxKJpxmPpIZCKeVdkj5f0g9Jev7yxaqmaT5aSnnuVZy/thCaR8ohMB4Vj+Q7nhtTEvwY/7zT6ajb7dbIODUPcDmsVhdbNkay4vfhWlSh9zQKotjUPYCwRhfCuv5DSKmXgEhAxB0iOJ1OtbOzU8UBFwEgb7TJ2xzTStx+704OJ9kgRvLdVu4EHEfGfD6vzgXGGQHDHQpO8uMYIxw5uY1Rci/C6EITQkTcmcN398BB4WkTOFO8doU7XLgOx7POPFLuLg/EHHdfeBqACwqMra8ZrkNRRhdjaCPpDj5e3jbGxoUmJ9+IU4gKHrnnnJdLB/D1xLMhqQouLiQgXHnKhotxUViiHZ7eRL+8wCkij9dFiL8BgomnRPhOHE8KHvZdnEgkEomHQ76HE4nE04aHFhRKKUNJ/62k39s0zfE6YeCG894r6b2SWjnr6+DRSI9aOgkkcut1ATyqG6/vJN63TiSKTsE+0gAgZ94mJ7KQG+Dkjnafnp5WZwPj5GKI/xni5IIC/aF9sUAiVn9IGsfSBq+vELeCtHlp1RegTRzv47hcLqsrgzGBsPuuE54bH+fD6wbQZhcUIMFeSyCKCPy4e4A1BfnFfYIo4333PH0n6PQL8uw7SrjNnrnytcj5LsDw+U3PCKTWi2l6O3xOGVd/HpwUezFFrxXgaUEcS9tjqgRuF6+F4T84Q3iGfA3Rvlhwk2t5moyvaXf2OHzN+Pj5Z96/WDfBHSieUuNiGo4fT4nw+dt0PJJ3sfpvXAMTiUTiTY58DycSiacRDyUolFJ2dfHi/M6maf7K5ccvlFLeeqnEvlXSi+vObZrmfZLeJ0m3bt1qSDEgMuxWasB/8L3IH8dAEL1uAed2Op1r5CCSkm63W4mlixOlFPV6vUqgICa0B3LEfSE4Z2dn1d7tEXpqKXjbPRJP2zwa66TJHRREdiXVdnhhyU6n0yJ90lVxwCiGeNpGr9erbfSif4gNEDO3yWPVn06nlUh6SoiTVtpMOyB40lWxRLfVk4ZC/30csNYz/t1ut/7gVKB+Brt9+P3dneDkF1JJpJ4tECPJ96KW7gbxVBP66WkoXouC47z+ANF1X6uMKWPEGvS1iXDlAoCvMa8j4PfkXLbzlNQSJqbTaXU9IK4xdmzl6YKdE39/lr2mg6RaP4Nnbp0I488sc0c71gmFXpshpkLE9cicMJb+d2/7puNRvYtH5fZ6u1QikUgkXhb5Hk4kEk8rHmaXhyLpz0p6f9M0/6l99dckfb2kb738/b2v4lrVwr+OIHidAifAnqfu1upo6Y/1CtaRhO3tbQ0Gg7oPPYRUUiXYXvDQo/b+ZyLzMV+ea56fn6vf79d7SmpFpaXrkWjGAUSXgnQlFMQ6El7MMUZbnUAT2ecHYcdt/56mgMUeV4TnnHu0ep1LJM4PueteRJJ+IiZQy8Gjx7gNSil128put6ter1e3sGReqDeA0ORW/+l0WsWSuFOCR+Mh1cvlstaJoM2kzHA+IpTPne+m4S6O5XLZqp9AHQkveuhbXPruFJ66wTpyR4ILJp7eQlFGFx0g6KwZ1js7PSAuxN07OAYBJzoJXFCIzh0KMLpjwcfdBQLGkHF0YcjXuBeEdGGGz9whxNz68xCfs03Ho3wXJxKJROK1I9/DiUTiacbD/G/5l0r6LZL+eSnln1x+9gd18dL8nlLKN0j6OUlf82ouBkl3m7IX34skOlZy9/x0j45LV1b/WCQuWqu9QJsLExAwyCznRov5Ous7x0JIIUHRUu8uhZuEFU95oK0uatAWb6OnA/jOCxAyruMRfuYBkQOyzU4I1BhACIik1msokArS6XSujalHi5mjKDZwPveHeHs9iLOzM3W7XQ0GA41GI41GozrORPw9XYF2eWTe70f7vBbBYrGoJH9ra0uz2ayOBfPGmovpN6xpny8XdzwtwcUAFz18TXBPXxtOwGkP3yFq8cNYemoQRUm9ngNpFwgK7CoS61i4c8TFg5iW4uudsSdVhzGJOzLgGooFUOmjF4nkGE938DQlf4aYf58LxgHhyp+/DccjfRcnEolE4jUj38OJROKpxcPs8vA/S7rJD/zlr/V60RbvhMVzyL1avxdGdCFgHSmLbgYnFJGESWoRIK7LfS/7XwvMuQji9vSY2z2fzzWZTKolnvs4+fLxgDjGvgJIOscgXHi+v7cFAkZfvGijk2CpbXd3ocWjzx6NdngKhUfYfZ6c/EbXic8P44CogJMFwWO5XKrT6dTCmoPBQIPBoIpOy+Wypis4uXTxwtcKfWQNspWik2nfqhIRKwoVHm13Mu/iTRRTGHdff7SL4z0NJBbJdIEmXjumGrAOXPBAVPB6B6xzF1e4Dm3h3tQcuUlU8C0ao4jkz4kLArE/LtjQD7+2z4Gf72IHx/iYuSDhaU1PQsrDo34XJxKJROK1Id/DiUTiacZG+Hk9SsyfPYrZNFdV8j3f2SOOThgggaWUVm45ZIRrQMAhEG7Z5hzP149tjm6KmP7A34ny8ufZbFZrIHCsOx48vSPCHRgUHmQ8PP+eqLJ05bw4PT2tRRSjgAApdoGEyLZ0vVaAf+ZY1+4oQrh4wn1dWHGr+9nZmXq9XsulQDvdOdHtdtXv96ugIF1Z9k9OTnRyctJKP2FsPNrPPEHgcSTE88/PzzUej9U0Td0NxNNPmGv6HtMJcBlAzk9PT1v1F1jTpET4mLpzwt0svha5BscihvicuYgWt4mMYkEk+uvIudc+8N9eENHXi4sALkpEIdA/cxHEt3qkP74jibcrrkGAeONiJvfjOE+3SCQSiUQikUgkEm1shKAAmYRcQeSdAHjeOJHfGImVrpwD4/G4Rpoh+7GwH8dDVDwCynf+W7oiJpDIyWTSsvpDDt0VIV0QE0gd1/HINkTIiQ3HIVjQNkg00XovnDebzWreOO30IpWeRtDv968JEtRxgFAiAuzu7rbGH9IVt9WLhC+6PtwdEcebcSI/3wUgaiPgyiCFgN0IEBW63W49huuPx2MdHx9XO/vOzk6N2HNudEl44cHxeFx3iaD9q9VKk8lEy+WyjiPnQsqjayHujODOBE/lYHzox2q1qkUyPT0hrlNqLjBuXjfDxSovfOqiFgKHOwT82XRhgB/WgIsgjM9NOza4COXH+Zj52nG3jTtquA9CBWKTXx8XUnTSeN0Vd0GBKKokEolEIpFIJBKJ69gYQUFSLe7mRATi6ZZmt2g78fbIKMTeLeOQDYiHpBbh9+iskw+P0juhxzlBMT+P4Hrdh5ir7VFQr3EQ7e8x0ouLYnd3V+yK4XZ2igZC/rg/KQNeyI5+eKqECzjRqh63WqQP3m+uFR0I3hdIKf31MYiuj3VODXd0QGCj2OG7BjjB9RQQvwfFHN2ZMZ1Oq1AzmUwqgUf4QWxxIgqJj2PgEXZ3hrh1f52rgyKe9NVdAOvqZXgRRx/PmBbhxRtJIfLaDl4U0VOInNQ7iee6LtRxnDtgaCfjwL14FphLTxfxteG7gXBNT7Fw5wx9j23y59vFCXdsRLEvkUgkEolEIpFIrMdGCApSOyIIAYJkuAXZSacTWT9HurIqR3LthR3dlu756R5p5Z6eVsG1ECqctHqOOu1xcgRuIpYeHT49Pa3V+BFVIHFE1RFg4pZ/niJAf6mHwPeIHVyfHRqckBOV97QEH3+IqV8HYSSSYCd5jE10f/iY0M6YlhFJa4yYO6l2QYVUGi/85yQZoWA2m2kymdSxnc1mOj09rS4Bn2uP9Ht/fb3gpPAikhDnSIajkOa1E2K030m+Pw+sS64XRZv47Dh5dvHDayUwv/4M+JytI+DRTRAdOF7rwMfCRQOEQc5xl0tcD1EEi6lUUdyKqVKx7ZnukEgkEolEIpFIvDw2SlBwi3aM3K9zFLhdOubir1arFtn1qvaeZx1TICBkMbrpJKWUUmsREB3f2tqq289JV4JCFAsgvk50cQv4uYvFolUjgf75bgcuPFA7QVJNh+j3++r1eq1tAGlTTIMg3YFrd7td7e7uajabra0f4feFoLuY4L9pv6eQROHHRR7mCkLtYkEkvtG27yRSuiDmbCm5Wq3W7lRAuxBQptOpxuNxFR1ms1mrWGQUjba2tjSfz1trhbbSdmoz+FqN6ysSXe+Pry0fT3dEuKDgY4wzhe0UETXcRcOYMifubvA/8+y4i8dFA8bQP/faEdSuiG33fnmh0Sgg+bOAIMax61KTYs0OdyjE9Rg/89+JRCKRSCQSiUTiOjZCUMByT6TSo9KA6CSExMksBB8CAYFzkuHkDlIRo62kPEiqaQxOYKO9PUY3XRSBsEJsut1udQB4jQF3BLjd36/lbcehQB0AagiQ6oAgMBgM1O/3W0UM6bsXWKRvbBE5HA5r/v7e3l5NhZDUEnw43rdkJKrrdQLWRcGl64QYQH45J6an+HhzbXc0eL0J1spgMKhk2rci9fQSn2ccCvRr3daDXiPDnS2ejuLpAKSjeG0KjoskWlKrAGnTNBqPx1U8cRHFz/ExcecFLpV+v98SfhBBOAexhX7zjLhzxF1E7mJg7n1MeI4QzlxEYj36s+Ri37oUBBcx/FmOAogfg/Dn4xIFDH/2FotFdaKwlhKJRCKRSCQSicR6bISgQHE8t+s7mfKcbuDEJlrroxgR7fB+nFvsV6tVJcmQLc/J9+vt7u62trxzUrOuCr9HPNcRYXam8F0n3J0Q7fE4Gnx3ge3tbfV6PY1GI41GI/X7/Tq+OC486u+kP5JrHAydTqcVwS/lqggkOfvr3AOei0+bPaINQXRyub19sXOFzw2CgjtBfI5dGGJ8EVcQXLa3t6tjg3lhXKKwgUDjdTwojggxd1HD0z1YswgFPuc7OztV4HDi7SKBW+x97Tix9/mJkXvuybjHuUa4wPHAb+aL8Ypt87QcjqetXgMhpgh4EVSeM47HyeDuF99hxdMsPN3D55t0KBfheDa9z17E1dvgRTZZo5LqPLkolUgkEolEIpFIJK5jIwQF/uMOSYhV9znGo65Sm5w7+ZLW7y7gtngnyZ6zDSGNxdrcus9v//EieW4T9wiw1xLwe3t0l3MgjOucEJ5GQQoEhMpTFijqx73c6cD53u4YuZVUbeU+dn6Ot9EFkiisuHU9ugxoH4Sd9hHtRzRyYcev4W2AGOOciGkg3W63zj9OCieQTsZdUHJnyE1rOMJt91HAwQXgRNn7406ddWvZ2+E2/iiucA5tcCHAizOyvSSpGawt2u+7ckQnTkxhWefc8fXBcxrrlHB+FBT83HUpCO5OcHeMH889fTxZB57ORJ+Yk3XzmkgkEolEIpFIJC6wMYIC+ftExSPJ9aguxNgJjqQasYy1FDxqKV2RKa4DeWdrQK/j4HABATISLfB+Pu2mj7EiPVH3KIx4ZNdJqdQmqV6gkfvwd4+mR+IPuXRi6/2LLg5+x6ixj7mTNSfJkDNP8Yjj6gUkqZ/Q6XRargKfd49SM44uzDTNRYFJfuhzt9utEXYfa67n69FFqLiLRBR3PC3FnQlcwx0YjJ87AzwNwcmw2/9xFniKhK9Dn6uIdU4bxBfElLOzs5qWwVjTZ19LnuYQt1tcF/XHxeMimD8DjBfPTyTzPu+MH312gc5TceKaXScyulDpYhcimH+fSCQSiUQikUgk1mMjBAW3lh8cHGhvb0/T6bQSB8iQkwmPkEpqVcN34gucTPG97/ogtYvIxUKA6yLsHon1iDOEj10XnChClIfDofr9fq1v0O12azQfEuUkkDbTDsgrLgTItBPzfr9f2+BRbwg4uxiQZjEYDNTtdmtag6Q6Tk6WuU6n06nHemQfMejs7EwnJydarVa1rkO3220R652dHQ0GAx0eHmo0GlXhhD7s7++3hA9ILfOOAEURSenCsj4ej2v6igsCjAspCN5PF1a63W7L6eH5+rHugqeIMF/0z8Ucd1n0ej2tVhdFImM6CmkeMSUlCmhxLcbUINrjRJ7nhHHi+hBpBAXWPu0h7YMaC6ynde4JJ+c+Dp6eILV3cwBe3DI+6+6QYd7WORc8pcVTFta1OToefKwTiUQikUgkEonEy2MjBIVSSq3E3+v1JKmVr00UWroiKdL1HRk8Wu4/MXILKfYotNc0cCHBo9LRnh37wG8XAOKOAxTHG41GGg6H2traqtZ8iiBG8hhrPnQ6HfV6vZri4MQY4u/1BmiXW9ijS4Dre9qBR3fd0s4cIE44gVznGom2fhd79vb21Ov1NBwOtb+/X1NOvD38mRx/L6rIPWJKASKEb6WJgOHF+iDPzD/Xc6GCNAmKKTKGPj4+DtzP+828IZjw29NkfL36tb1uAa4Ed7s46WasYkpOTBPycYKgx3UdUz5KKep0Oq3UnFjTgOfUHQx+T/rM99Q34IeaF97P2LeYsuDiC64eX2fuGHFx0B1GvnbW1f1IJBKJRCKRSCQS17ExggKRdQhL/M9+rHPgBCxaoKMtH/Lg93MrN+QyOhb4u++KsM5qHusHRLLuFvper6f9/X3t7++r3+/XtrgoIF3tOAEZpT2xFoQTXBcEPMWDtnKekzUXV3xMcBFEUokbIea280NBRD/GI/c+T+wmgbhCegN9xnYfazcQJfdUA++nz78XAfSUD58j5t8FJBcUvEaFC1ROOL0uxbp6GfG+UZzySLrfIwo6XNtrBfhxse6C1wzxNevPUlzHseYBx/k68aKpINZE8Dnw7+NzG4m/t9X7z/jGlKY4xggyjIuvVU9z8Tb49Vw4Wie8JRKJRCKRSCQSiQtsrKDgNumYcuAV+J08SFfb5vln0VoNsfN6A6QLOFkin99Jtkc/nWTF4nkO2rqzs6N+v6+DgwONRqMafSfajf3dLf5uwyfCTSTY6wFAhtnuMW4L6YUVnWh720ih8KKY0lVawfb2dk1Fof8uJkiqOyR49J+xo5+kUezt7Wk0GunWrVva39+vrgtSO9z+DymleCC58t7WmNvvxNtrZbjjpGkutkv0NBcEGR9LUkqcaPra88KLXrCSufNUA8YtFvB0d4ITWSf4zCe1CRw+D9wPJ4e3Jz57Xv/B7+fPjT+LsSikn0P7/IfzcSREMXBdH6NY4O8A74evw5hyEdMl/DmN7wyEDh8rd60kEolEIpFIJBKJ69gYQcGJgkcLIQPsDY/t3Qly/Im57lJ7u7nVaqVer3et4ByRaciak8tol6adCA6eYw8Roq1N09TaCVjovSCjR3khgZ6njnvC29jpdFppFavVqpU2sru7q8Viofl8XlMEcF6cn5/X+gLuwOh0OtfqR6xWqzpGzAkkzgtbMhez2azu2EF6B0KIpwSwg8NwONTBwUHdLpLxi7tKsE3ldDrVZDKRpDp/5P9D5hEc3FVA1BkRhzFHxGIc3cXAcaQEIOC4UMNvF7G4t9fAIJXHxTDGmLY5EJIguKyz6Lzw2gxezHNnZ6eme7CWOGads4b+elHGKJK50OD3Q8RZV1DR7+OpEX6cA7K/Lv1iXboDf3YRxoWNl6uF4GJFFCHoWzoUEolEIpFIJBKJm7ERgoKka+TELdwQW77zqD0RbP4eI5vg5arcR8s/pNF/IpGJOeellJar4OzsrEW8iP57BHU+n7fy4TudTmsbP4+60wcvkCe1SRm1Ffjet05EWJCuKtmzRaDvsuDFBSGZ3W63pju4aOMpGvRhsVhoNpvVY/r9vvb392sBx/l8ru3tbQ2HQx0eHur555/XwcGBVquLnT5cLFqtVprNZrW443g81nQ6rQILYoYXlmROnXAjguB0iE4B0ircju9igbs1IPaIF9yb6+GK4FjGlXu4ewIS7pZ8X2MxOu/fef9Yn4hkrDFfS34PF9uchHc6nZbItbe3d+1etIcCnXGXDHdOkEri38Xx9FQc1pG7DtYVbvT3Amt43fjxZ/rHfWgz7xG/D84f1oKLkolEIpFIJBKJRKKNjRAUPGrpBNqtyb6rg5NCj65K7dxt/7sTCkgV0Vu/htcj8Px9j6RC9L1d7hZYZw/3nQakq+KS3r51Tgvvv9QuQBht4Ovyvt1V4GkD1DqgzxDlWITP89JjtDYSb+8P94Ewcj2cCYPBQIPBoAogRMad0J+dnbW2f6QgozsqIH7UdvACg55/H9eGW/Q9lSCuHf8NbrLNuzOGa7uo5AKHC0beHo+ux3uuSytwcu5r19cUx8ZdHXw+/RmAkDtBj84RBAV2X2G+45h6n7xeAc+juyGkqwKU3qb4TLsA4IKIO2D8PeKiYHQY+fqWrlJXvK5CIpFIJBKJRCKRWI+NERQgTL4lX7QhEw32qKEXw4uI6QSIBNvb2zXy7d9Hgu0uAD8uXtfb5xXp6ZvXJoDg+V7368aC6vfcn++iayLmzTsJdKGBsXVyyDW5J6KH1zxwccOP937TRnd2cLwLDex0MBgMahFG0iF8JwNPP2iapjosPJWAtBEn6IgOkdh69NoJvI8d945W/XXz73Pl6ya6U+IaQFDAzcF5jKWv+XWix7r14u1wEu9CE84IX3NRFHG3j6ez+Dw6IUfUQihyt0JML1pHzF1Q8GOjO8FrT7hribZwz7g2fUy5jj8ffjxCij97r5QukUgkEolEIpFIJDZEUJDa28wRPec/9O5K8Gr4Hk2P1+K3R6QhzWy1SEoARFVq7wBB+sN8Pr+2fR2AgLgFHrJDxN+3RuSaJycnlfhSE8GvR66/R83dPu8V77kP5DySwhiphhx6JLrT6ejg4ED7+/utlAcIG6kTPuZeVwHi5rUhJFUxgPEcDoe6c+eORqNR3emCe8znc81mM81ms9pX2o1Q0DSNer1erROBGDGZTHR6eqrZbFYj504gXbBi3CGarAMEqzhuklrpHQDy6ttYkgrS6/WuEWDmh3Xs12QNcV+voSFd1XqgPdyPflLHQ7oSTVjLu7u7tW4Gffdr0Rcfb0QAd+C404R+rYOLN1zbP6NdXqDRHSVeeJS2O7zgKGkVfl+fiygmIFzQLt4diBvdbreuN38HJRKJRCKRSCQSiet4aEGhlLIt6R9J+vmmaX5NKeW2pO+W9C5JH5T0tU3T3H+Fa1SS5fnjnvMtqUU4YnqAk6+zs7NKyN3m76kSOAD8M98dAbLK+TFC76TTyalHcL2A4v7+vobDYSXA0+m0Fif0/HT6vL29rW632yI2HpVFQOh0Oq2x8ig3x3m/PDLMD+kOuAY41nPxGQMnib5rBN/1er0aESf9APGm3+/XdAeKR0LgOB8xiXH1QpGMOaILBF1SS3jg78yz1+dwAWSda4O2eOR8Han0Qo2LxULj8biOOevDXTUQfndv+PzElBZ36zAOpIcgSnn6hxebdDHJ01diCgrX8TH1cfPnkT6fnp5ec8XQVkSZdS4AwPi7E8mdEoganirCn32dc83FYtES12iTrwkX9hiH+E7xNe3CShQzNhmP4l2cSCQSidePfA8nEomnEY9iT7TfI+n99vdvlvR9TdO8W9L3Xf79FeFpA07mnJxIVwTEP482bifeRL+9GJ5bstdFU51MA08zcHLKd9QGIJJMFJ0fvoMssmsBuy3EdAl3KnhRP095iNtZul3eRQjIN8cjlvDnbrerXq+nfr9f2899ffxIS3BXBT/8fTgc1v4inlDTYGtrqzo1YsoDohL3QVigjTE1wR0jTpzdkeDEOaZIsOaYe3duRAHCj6UNiBez2Uzj8bhulxndEVxnXZ2ESJydLCOkMX44CNgpxNcF8+n3QizzKLuLVZzvW5Guq1UQU4+4pm8N6uLJuhonvm69jdHtw3MUj8NJQN/ZdSUKP+4+8PF0Z4U7L7zd/NnnJb5nngA8kndxIpFIJF438j2cSCSeOjyUQ6GU8g5Jv1rSH5P071x+/B5JX3b55++Q9P2SvunVXA+y6KSOv0vtwnRELKNzwPOi3UrtJCsKCusKvjmRcseB28qlqzxtJ2eeWuFEyCPRRHu5J9XlaQv3isTZSRJEMtrUvd+ewgExjeh2u9U9EN0MjBfRZ78mY7NcLuuYQfaoURFdIb1er1WQ0QvzxTUg6ZqDg7YQKY9uEObdre4xRcTdIJJaEWvECebWSbMX6iO1YbFYaDqdXttyEjFmncPB58bdAd5ur9/h7aLNpJW4MMRYe+pGJPe+3jythjFwIS2Kd07Gt7e3a59dSPDijVHk8TW6TlRg7NxV5C4F3ymD8ff0Be7h68LrUPh9fU597lyguCmlYxPxqN/FicRTgVK08/a3SWv+XUxsFsrHdh93E14R+R5OJBJPKx425eHbJP0BSfv22fNN03xUkpqm+Wgp5bl1J5ZS3ivpvZJaefSr1apGIT2XmT97rjcEJhIliLjn10+n01bUf3f34h8nLPJxG73L9l8NVIg6+/dO0PgMEcFz3CFEMYWAKDSRfHc8OJGn3+si3B519wi6CxCQQ0912N3drSkIOA2imHIT+WN7Sieebn/n3ggJ1E2Ijg230bsw4MTa70txQcaFNA2cIWdnZ/UaCCTxGk6cEROiw8Gj2OwGwvqC1PqWinzf7/db7gvpqo6Cz/k64chTD9zmj6PAUyEQsvg5OjrSbDarW4S6I8fXN+LXcDiUpJo+MR6Pr7k06Fen02ntFEJaiosYiEG+A4MXelwsFtdSIECsz+DX83EH7maKbiLGhr7Ftetj4qIkKRHrxIgnAN+mR/Au7qr/BjczkdgcbPV6+vHf+041T452+NRi/if3HncTXg2+TfkeTiQSTyFet6BQSvk1kl5smuZHSilf9lrPb5rmfZLeJ0l37txpXFDwwn6lFHW73VaEGMIDSVgX5XRiwm+K9g0Gg0rCIL7z+fxa7QGuHesQXLa/Rb5oI591u92WoOBEnTQBctSpqSCppg4MBoMqKPDD+W7V9hQACBvtJm2A8z0VgrG8deuWDg4ONBqN1Ov16lh5hJYdFCaTSW2HFwF04SWSXYjr/v6+9vf3NRgMqnCBqONjtLe3V3dJWJfusru7q/l8fq0OAd87CXYy6PURfCcL6ap2Bk4JCgEyXog6vu0nY+iOBk8rQRTw4oK+xj03H8LNnzkHUcwdIb7OWcMuwM3nc43H45YbJabmxMKeLrDEdnEebcEN43POGLgLZGdnR/1+v85xLHrq6UjMFe1lvZ6dnVUXi+P09LSmCpF+486hdXPvO3h4bQ/G0cfVHT9PQsrDo3wXj8rtrEKZeNPj3m//JTr55CKVRs1WLvnEwyPfw4lE4mnGwzgUfqmkryqlfKWkrqRRKeUvSHqhlPLWSyX2rZJefKULbW1tqd/vVzdCr9erBApC4hHWmN/sBAe7NSQoRjWJTHLdra2tWtxOahPFmBoR6yd4FB8SBfFCNPCIsx/PZ1EMgBxBuqMwwr2xmLuDwYvmIXg4kYpkFjJKuoOTxWjvd1u8uwkYV3co+Lx6EUYnboxDTCthnFwocVt7TEnw3R+cDAKEFf/thf4YcwQFX3P0nXY4qfe2ENn22hMIQ1y72+3WiL6nurgTgXnhXNwsjL87M7wNCAFOxBF+PHrvaQj8xHSMWEvipvXqu5m4s4T7ecqPb/PqzhPa721wx4ALDTzrnl4RUyJoa7xeFCN9Xa1zTPj6eRIEBT3Cd3Ei8WbFzjvfofu/9B2SpPE7i5aj9dvwJhKvE/keTiQSTy1et6DQNM23SPoWSbpUY39/0zS/uZTyxyV9vaRvvfz9va90LcgY1v1ut1stx5A4dkXwqHDcyi/WVFjT5hYZgoTs7u5WkhcLxXkbPeILGeE7r2mAY6HT6dTzOCZuSQgxoh2SWgUXpbaY4FFzoqy4DzxCDCmPxShj4UcvkCipRb7iuLrYwvjxdxcBvA+SqmCB4BJFCx9fFzG8qGB0JHANLw4Y5z1a8V0Y4Ee62gnC78Fa8fb49SHZvr2luxM8bcPrFTixxbXiuzDwdy9qSR8Wi0VLePD16OIKAosfE+tMxBQMF+cibko/4Tt/NlirUbTguogMLiR44UgfnygaeuFHdwNFR5GLMMw5qRHxflGwWNeOTcejfBcnEm9G7LzleU0/+6164Yv5JMWExKNFvocTicTTjIfeNnINvlXS95RSvkHSz0n6mlfVEKv0L7ULyDkBisTHCQDHO3H2AnJOSkhl8GuvgxMPJ0CQFr7DTQBRHA6H1+oVRIs5xBUiyGfdbrduMcl2hO4yODs703w+13w+13Q61XQ6vUaEJNXrAs6lvf1+X88//7zu3LmjXq9Xt3eEqEUyCBirdbZyUgoQWHq9nvb396u44gTZBR4XGpwQewV+z5cnncNTGTxi7wTXt94E3vZ4Dn9GAOFzd0dI7d09nNS6q4GxYHtM1h1/d9cAf6c2hbtQTk5OWiktHt33egaxuCTjxT1xUfiuDsyfp1bwnddzcAGJv1PX4fz8XJ1OR4vFoj5zvk0j44WDg+eU9RgdGl500h05LihwLOKLdLGNJDtu+Hsg1oTwefQUFRe6XHR8QvG63sWJxJsNH3vPp+rBZ6aLPPFYkO/hRCLxpscjERSapvl+XVSuVdM0dyV9+Ws8v2Vbh2TznVuopStyD7FdLBbVSg6JgXC4QMF9XAwgstzr9apNPEZDiXoCyCIkxSvzQ5p6vV6LJHmOOoTIhYXotlhnwyZHHmK9Lp3BCSJ1IWK6hYseo9FIw+GwujS8UJ3XqXCC7Q4DxiN+Fu31UruOhY8dTguKCVJbYrVaVWcKfYOckw7ghQJps68BBBfOhazG3H0IPYIH3yG8nJ6etlIEuNZqtVKn02k5N5hb3+aR+hQ3Fdbc29trFXeULnbfgKAjoDBmzLGvMfrIc8I4kZbhW0TGmgwcxziw7hkvBCFPdYDI81z5WuUYXz+MM+SdlAUXhGiL98+FoJiSQRv8uXU3jcNTWlw08MKdvEtimtKTgod9FycSiUTi4ZDv4UQi8bThjXAovGY4IUEs8P/Ix+gyZMGJv6RKeGNU3e3R3GuxWFTSsC4SGcmMX3NdtJvzEQjc8QDho62kKHBvCvBB3rDCu0gAmXPhIUbm6YePi+e/S20B5c6dO7p165b6/X6L+NFvzzOnLoSnJbgI5CKP10KI6Rcx8k4/3K7v9SsQG2i794V5IXLvqSgQ+7h1JWTSo9xu+ec7ryfB/Pp96SfCiIs6CBvsOsEWmbSNgpx+XdrlVn/GzB0P7nKJrpoYhd/a2qp1HGiDuwFwo8Sin14Pg/N91wPa7WkqOHQQuiTVQqX+LCMo8Nl8Pq/9ieKTp7J4n2mn16+IrqSY0hDFBXdZ+JryPnFcIpF4QlGKjn7TF2v6liIpHQqJRCKRSLwR2EhBAfBnz3+P1v9Y5I7j/e9+PbfZE4mU1IrYen63EzeISqyED5FyQujExAlnzHEnwosVHbLl7XSBxf/u7gdJa4UI2uX92d7eVr/f18HBgQaDgXZ3d6trw/PyozuByHfcIjCKKBBQxsHJtkeffQtCj4o7IfYtKKPo424PFwSimONEn2MYO7e4rxMGmGMvbsiYuCCAeOPiFQUv2dkiptq4K4A2u3uAazI23k+Hk2HWkztncEj4Lh6ICP4s+Lr1uXQHgIs9UdTgMxdvYsFJj/zHNB2vuRDfCYw9fSIdAuHI0yI4h7b5jhdRFPK0J39+XSxKJBJPJsr2tu5+btGqkzUTEolEIpF4o7AxggKiAIQk2vcpPkhUFUs/dQQWi0W1ZkfC4UQUscAt7E4MnXw7wXJ3AtHcaF2X1CIinU5HkmrNA6/C72Td0wMgWqQfICC4zZ3zvKYA0WicDNwj7l7RXNY46PV66vf7rUJ1EFY/1slep9Opx9Fn3xEBouqF93wuaSOf49QgzQEyyLiR+sLOFS6q8DkpAYyf29e5PkSR8xFDfE14vQEI/MsRS8bJr+mulm63q/39fd26datVTyNG9b1IoqRaOLFpmpqq4eveaxywDlzccCcB48E9qHdA/xEUXASJ6zo6Cm4S6ViXLjCxBajXLfE1FYUv7ufpE3zm4+wioAtvy+Xy2m4pwMeedsZ3BGNAjYkUFBKJRCKRSCQSiZfHRggKq9VKJycnLbu4R4rdoeApA7PZTLPZrNrHIUb9fl/9fr/asOOWi54yAcEm0ukugmit93NcBNje3q7WbdpJYT3OlVRdAE54pStC2+v1KumjdgB9hTwtl8tW9N/P5z4+bm7dPz8/13A41K1bt3T79m3dunVLkjSbzTQej3V6elrHwkWJdTnuEC9PIXC4UILg4RFldycsFotWAUkXVhAMnIDOZrNapJA+MrYeYfaUCyeksV5FtNC7uEW7/Rq+PSJtc6EFV4A7FHDS+G4LbKXp7hi+o2aC13TwVAQXRXxnDiffCGwU+dzb29NsNtNisdB4PK5rNs6tCxB+PfrAM+LkHGGJ+XBHixck9edJUhWLYsoJayIWTSVtJrp3YnqKp0/4c8vfuSY7nHB9nCSckykPiUQikUgkEonEzdgIQaFpmlpsUFKNFkKmPKffK70T9XebM6QVUiSpkjOuHUmZkyNJLfIGqeQeXiPArdweQaZIH32j4CDiAG11Gz/EDwLnYoKTWa4J2YmRdulKUOBYfsjrR3DxrSLd0eCCToyqu9WdQpm0UboifC4gOBGOfWCefX68qKKTSXdu+HaZwIsSxjoXft+Yl899IcH9fr+6PeinpxVwPNfxXSjceeD1FZifSMLZ9cCv7ePjz0QUSLzGBcdIV9uP0ga39EPWWY/uzqENrGEEueiGiOPJdy4MrBtzF50Q+qKDRboS3uL9ePbiuK8TrfyHd4untTDXiGLxnRCLuiYSiUQikUgkEonr2BhBwXdeIAIKafSaAS4ouKXdI6xu83bSEm3bnsfvUX+3j3MccFLHd7Sfe3g/aLNb+v0a/PZ0DUk35oPHcXNCBrHy9jqBhmwTOUcMwJZOhB/xwUmyj51H2T3/H9LodQDY1WBdMUXaGbc7pL/uOHCHgqe9eF+Xy2VrBwcXU+J4+b1c2IFQO/n1KD2/fc3xd+Brx/vpc4mAxFaO7oBhLcUaFi6YsTuG33ddekJcq4w1a9PJuJ/jOz7Qj3g92saz488Vv71fnkria4HnxsUlv5+DdRmFjbijiM+VjzvXczHHhRNErHXrK5FIJBKJRCLxJsfWtrY+99M/Ybcrk7nOP/Azn7D7vRHYGEHBCxVSgZ7IvqTWdnYQSogFJAuCMBqN6raNTmg8yst9uKbnspdSKhH2yKpHjIHXVojRb2omuKXf7+Ek1kUQiBXpDf65k/coZHje+M7OTsuZIamKCYPBQPv7++r1eppMJi2Xh7dJars7GEPIGLsG+HguFosaRd7e3lav16vnkAbiefeMrxPX6LpwUulbKPL9umvxZy9m6CkKXiOAiL7XUoi7DLg7Q7oqTOl2e28zbXX3Bcd3Oh0NBgONRqPqhli3VhgToulRmPH6B5Ja20Iyli6KuaAQUwNwdfjnsf4GfYuuAR9DL4IZ7+sCEteOc+vuG65NGxDNfFtR1pWLW/P5vDV/XMMLOrIDR6/XU7fbrddzwYj3TCKReHKxdS41K6nJ7KVEIpFIXKLs7Ehl/T8MW72ufuK3HKjZXvv1I8fwZw/11v/Hz7+qY5vl6RvcmteHjRMUiLy6pT1GXKUrcuZV8on6chwExa3xRJ/n8/m1/GyPYlKwcLVaVYICsaI9i8Wi1iiYz+eVVDkZn81mmk6nVRhxQka9hJ2dHQ0Gg1rTYD6fV6JPtNur3wNIE2LAYrGoRQ+dSLoVn5z+brfbIoFN09SIuefmA3dt4HTADYDIM5/PNZvNasoCokO3261iD2PKvHsdDMhoTGPpdrv1eD+X8Yw7hMTdIyJJ9fQVX1fuAlgsFi1XCYIVEXK/XnSFuCMAAcTTQLa3t9XtdnXr1q1KhmezWRUfGAvuCeGlbfTRhRTEm3VpM8vlUvfu3Ws5ZWJBSK7r6RrrwDpgXgaDQb3f2dlZrf3Buo5pOQ6OiaSd9cJcUSPFRTXEHS8wiijiDgzGkWeC8en3+3X3C3+nICYhJlBPI5FIPHlozs70KX/4R/TiN3yhjj4jt41MJBKJxIWY8DN/+BdrtXvTAVKz9Yn7N2PyzpV+6v/2ha/q2Hd/+0s6f/9PvsEteu3YCEFBalfJ58+eVw/hcSIHSfDccS+Wxy4AkUA6EfP0BCcd3NMt2h6h9kKBTvZ8dwPuT0QVQhqj7hAcItUeafc+LhaLKqT4jgSQH3cyULDQ29bv9zUajTQajTQcDlspIe7wcEcGBQw9Uu+kk/6Rl+91ByB6vV6vtq2UUgWeSPi9WKOPt+9O4OkALiqwTnxc3T3B+RBx5ojj+E1BxWh5Z1tPn3NPJfHdFTiGegW4EhBidnZ2NBqNdHh4WItaeiFICnR6EdKYYuHpDRDhTqdzLW3GxSHazVwzPp7uw7qKKQU+li68+W4ICCKsGdaiz2t8RhCLGC9cPLSPfjj8eaTgJAVNpStXjRe0xCXjhSr9HE+jcDEiBYVE4slGszxVSS0hkUgknkhs7e/rhd/8OWrC/0sfCkU67602xrnWbEnN3qv7h+rDX/mstv+tZ699vjNrdPvP/4NH3bRXjY0SFJzoO9lzogzZcZJA9N4JFmTCiw3GnGrP//bIOz/rIthY8mNU1WsKrDuO63uNAOD9gAx5BXvOcWIV60B4ZNYdHt4/t3mTigDBpBAfDoKbSGXsh6dnnJ+fa3d3t5I1xIRer9caF1wjtN/nPPYbgkybvG6Gj5+vB8bHRR5Pb6EvgDZ5Kopfs2mallgVxyWmAQDWH7tnQPj7/b4ODw81GAzqvHpb3eGxXC5bNRYYM+aL8fA15HUU6DvEGjLvaQAuqCDGeaFS/72utoanCbjAxmc+Ti5AxGdKUmsLUIRCXxPxWfe0BT7b29ur4pavb57Rvb29KhD52mKMXNyIYkYikUgkEolE4tFj+/nndP7Jz7c+Ww52dfTuRqkMX2DyjvWpuNvzottf9Lk3nre1ONPqn77/jWrW5ggK0hX5cGeCpGrjj9v9QZKJtLt7ANIat4yUrqLAEAon3PwQFYdo0hau7RX2nUQ7maONXsU/RtURHDzHn4i/iwkc63nx/lncUtMr1dN+IrNewd/JFuPs8+EE0Qm1j7W7DajPsL+/r+Fw2Nq9gmg81/XiirTXi/LhFkEkiO4NF5Zwf7iFnvNxALAemP/YB86BhEKemZ/ofuC3E22fU/7M56ScHB4e6vDwUFLbRcCao19xdxJPcfGaB36OCynUl/A6IMyr94t2eqrIfD6vY+91KtyN4df3tA8XYzx1A9HD3SeIJazbmI6xbgxdsKDAKOvZ17s/676rA894FJ94/nyMsoZCIvFkY6vb3ZgoVCKRSCSuY+vSrTr/3HfqZ3/1TXkIiZfDebfRB37j4MbvO3e39Mk/3n1d116dLqXV+vRlsBGCghN9Sa0IKvbvuOuBW+s919qLOEKwJdU8bIiNpx5gQYdAQY6c9HjU0oUKyMpgMKjX9vMguE6a+XskMjgLIJIePXbSBumhz6RCLJfLOhakPEDoB4OBDg4OtL+/r8FgUIkc47e1taXBYNAqoiepJVRwPO3xCDz3Rkzw+8Qif05iPTVgMpno5OSkZeH34n4+dk6isa57eoOnV3hKAfONmCRd1KzgukSq3e3APDuRBowba8Lz/x29Xk/D4VCj0Uj7+/va29urqTB879HzyWRSnQjdblfT6VSz2UyLxaLOg8+Ru0UA9US4rqcBSFdFHFl/4/G4JTwgkLEO6R/iHuIXggrfudAzn8+roOBrFzBWrMPValXXrLuFXEyJxUzd8eCuI0Qy38nCXS9eINSfMX8nxXlMJBJPDsrOjn7qP/h8rToZ2UokEolNxFa/rw/8oc+7EH4/gXULnjYsbq/0k3/081/XuZ/2PWM1P/zPX/aYjRAU1lmpfbcFopJOVmKk3snmcrmsZDFa2yGNvmWcuwuc5Hs03a3bTl6o2H9wcNBqD+TF3QOz2azlSIBEITpQvBHrNWSc/nkuenQGUDfB6xF4vQmP+tJ2J8eQzvl8XvvtP953j+xPp9NKjLe3tythJjc+7n7hRJ76Cx6Fp11uP/c+xvx9CPi6egIxbYCxxDEhqYoZXlNBur6jR0xrYI0yruwqQmFLL/i5u7urwWDQKobp7hAId9M0tSDnYrFokW13IvCsQOpddPH2srbp52w2axX7jPUWGAPWDXPC2BLtZx36GqSv9N13o/BUDS/K6YKAO0sYw263Wx0LiFqz2Wyt28Lnj2dn3W4S3jaeT68NEa/B+CQSiScLO5/yyfrwe96uVWdz8mQTiUQicYHJb/hinbx9W9qSVrsr6RGWSEisQZGandcn2HzoK/a186VfevGXb/vLa4/ZmP8tx0i8RxrdjUBkHTLmJD6Saa67TgyQ2lvekbfu9nD+7sX53OrOuRA3J1AuFLi93PvmOzh48TrPiWcM3OXAGEGmvGAh9+eebvmORE+6Ioz0A0EhEmqu5ekXkHHGC2INeWcsGQ/fOpK++A4cMbUjOjp8zjwVxaPNkHPm4+zs7JrDBfIOSaXGQVyHsW6BiwruohkMBvUcL97oogOfIw7ELRr9nkT1PbIeXROxnoPXHeH77e1t9fv96iig4CG1Llxk8eciFpz09JAY1Yfwk/rjBTtxNXCeu3wYT87lfOYHlwL9xmkiXYlrklppLL4GEARoI3AxKqbvuCjhwlsikXiysP0Zn6YHv/COxp+cKUuJRCKxUShFzZd+nu6/e1vz5/Id/STg1czTxggKr4RI+Cjets6BADGAGEG6Od8jkVjKd3d3K6Enav5y0UkIkNclcKLlQsFisWidBwF2suZ2dK4dbfyIBp7+4AUN3e4eHR3cK+bWe34520D6dR2xngNbHeIc8HoJ9InrkLrS7Xbrd6RKxPu4M8RrDDBfsc6BpyYgarigwLi4uDGfz2sb2NbR14cLGj6vLgIwl7TLhSSOReBwdwjj62IIpNnFHo+kxx+fByL0Pk+4N9ixhM/c5eDCj6e/eAFEBAK/NnMUHQr9fl/9fr/2ifGjLQhQjKWvR98iNdYyIV3FC5Yyl8yfO25oe0zf8TUcxQTgaSYxvSWRSGw+tgYDvfjLntX9z0rrbCKRSGwUtra1fXign/i1PTU7KSa8mbBRggJkSbpe2M4j01FIgJy5hXxra6tlt/dIt0dNI/F38cGPh8DwHa6Efr+v4XBYo94AEuY7L3hRO1IsIF2TyaSSVyzyfo3lcqn5fK7ZbNYq4ie1I/ue5uDiAfd2IYIxZwwisfcie9JVbQIIID+QUUg8RA+3w8HBgTqdjobDYXVBnJyc6OTkpI45osTu7q6Wy2UlhRBFz7Hv9XqVZLqlHTKKoMDY0DYi4z4nFL/0+gWQewQHt+M70XanS5yH09PT6lTg2l4TY7VatQpkkj4ymUx0dHSk2WzWElZ8nGg76TGsN4pgUvxxOBy2Uh7cEeACEy4Axi9uswp8/cdaBfwmVYH6CdPptCW2cC5zSjoT10LIIyUJQYq0GtZcLMLKOuQa9EVSnePoslgHd0esExwSicQGoxT99B/8hTrrpZiQSCQSm4by+Z+pn/hN+2pyx4Y3HTZKUIjpCW69h5QQPYUg8dsJztbWRYV8FwJiRNfTB2Kk3wUFdw44ccLeHiPP9AOidnZ2pvl8XgkhRCnWf6BNXhfAo7xOgBEeYgRbUstuHiPaLtaww4ITQq8bQT+wqsex8Si+jz87BCAsMD6MFeR4Op3q5OSkRqY9TSXa0rmfE3j/nM8gotyLtAYXTLz4pTsfouvAx8GdFtzTxRz+ToFMijziYPFaBx6d9xQBhISjoyONx+MqZDHv1D6Iwhhz2O12dXBwUIsZemFDxqHT6VS3DGPltQS63W6rzsE6y78LUJ5OE90WNxVK9HXk4+OpPj7/PCe028fQBQbmwVN9fO27U4dz/b3ANRlLfyclEonNxuIrf7HuftalAN/JXNxEIpHYVGRNmzcnHkpQKKXckvT/lvQ5khpJv13Sj0v6bknvkvRBSV/bNM39l7uO53/HqOA6+/26SDrRV0gEBMUjo/z2PG4ISaxPwH1iPjlEiSio13mIbYO8uiDh+f42jvUHokkKBYKCk1WPwHrUWWrbyH18YhqBCxDRQu9kywUF/4kEG7LmRQ6p/O/F7XBZzOfz1tgzRohHCCtxfBkPhIy4drz/64Sj2A/mlWKRcex8zXkqAI4K+u62excUKArphSd9jhmX09NTTSaTWuSylFLHh0KN9JF1xZr2wpCk75BmQUqDr9VYf8GvgZjiAo4DIYLniHPjur5pjfjz5Wk23q4okkVhY907wtcl4p7XVfD+r5tTFxQ81Sm+azYVj+pdnEg8aVj9m5+ve5+5q+nb0z6beLzI93AicTO2Pu8X6P4v2H/czUi8QXhYnehPSfqbTdN8pqTPk/R+Sd8s6fuapnm3pO+7/PvLwlMSIFyQCAiw57RDkJy87Ozs1Bxu6UqIkNS6pqRWMT6i/tjHISTSzQUYnXx5UT3vC9HTxWJRyZ+TPBDrG3iRSFIeuM5sNtN0OtV0Oq0kleJz9J3zIKuQLN8lwgsURqIVnQL+fYwwOznkNwQYC3q/32+5LU5OTjQej2sxR58Hxt8t755agLOCuYo7X8TCkx7B9lQWb7ekOpf8xBz7mCYSxySS6OVyWdMXEAjcDcI2nqQG+BrEWYNogJOD9BB2xvBUB8bKd0dw9wHz6L/Xrb91dRoikff2M7fu0vFngH5zrp/v69VdDS4kxPtHoctTYnx+PF2KMfc0FdZGXMtRhHjC3AmP5F2cSDxp+Lmv6GryzhQTEhuBfA8nEjfgxS+5pY9/4eNuReKNwut2KJRSRpJ+maTfKklN05xKOi2lvEfSl10e9h2Svl/SN72K69X/yLs9HcKIrRlC4ZFMBAYnGJB4z5t2wuO2fOmqJgKRaq5DhBeSTvTTCRy58uT1UxsBYu154d4GJ3m0FYLY6/WqzRvLOteTrirXc00nWi6cuAUcQo4dnu0yfcxiuoMLEpFgMQ+ce35+XoUMxms0GtWdBhaLhcbjsabTaas4n28fiUDigoIXcJxMJhqPx3WcGTui5qwJT60g4s/4sq0o0XHmkJ/YR+m6M8IJpwsVvp3jzs5Oq+4Fa3tvb08HBwdqmqYKTpPJpEXAF4uFjo+PNR6PNR6PNZlMWmkm8/m8rtter6f9/f26XaeLMNJVoUGEMN8lAUQSH0UGdxH4M+FbMyL8sV7YBtXHyq9NoUYKa3a73bXrzAUxnmV+e1oF69DTNXDzuAjIXOFeiu4kF5C8oOOm4lG/ixOJRCLx2pDv4UQi8TTjYVIePlXSxyX9+VLK50n6EUm/R9LzTdN8VJKapvloKeW5V3tBt6K7HVu6sldvb29rMBhUskC0nUhnJH5eOM6j14gUkD92J3Aiwt+x/UdngW8HCNmBtDfNVQV6CKzb8ymcR/SeiL2T8VjV3h0U3pfYLojQYrGobYsOD08tQLDweg3Ao7VOnLmHF1/sdDpVVCCn/86dO5XEn5yc6KWXXqq1JPr9viaTSa0PEN0JLuzQH+pRxDoKnk4iqYoQ7EThjg+O87SM4XBYI+bstuDiDwSTKLa7NdzxwVgtFgt1Op1amJA+DwYD7e/v1zHxde/EmHHFkTKbzVrPCls/uiNlXQoOayLWJfB0INY7zx0uGtwHNz2rjIWvN/qPoEBRS9b1Ta4PFwf9HvTVU1TclUB7EQr82SftxefF3S7xN2PCM+A7hGw4Hvm7OJHYdOy84+364G/5ZJ330p2Q2AjkeziRSDy1eBhBYUfSF0j6XU3T/FAp5U/pNVi5SinvlfReSbWAnv+nPuYue846UXlIHNFS6bpl30nUOrLFcZ5C4dvdQYZcMIA0DwYDDQYD9Xo9TSaTVqE8j8ZT8d+JMpFlttlzIutui0hyvG8ugDAOtM9rSNBuCCQRW5wVXnTRxYRI/ogeQ/xcgPAoNDUJ+v2+BoNBra1AegMCAGKGR5/XkV8fey+y6fPqAgEOFFIIqGfgggL9iCkmPtfr7Paeo8+Y+Pg5+fVjPEXGxQgXebgPbhTa77Um4jjTB1/bcX3TnphS4ATd5xyxbF0NBci8t/cmEYDUFNadH+P9js4H2uPvAj/e03Vi/Q8fS+7l13fE58Nrbbgz6gnAI3sXd9V/Y1qYSDxCbH/2Z+j+5x7mHuaJTUK+hxOJdShFp7/8CzW/XXRRWiTxZsTDCAoflvThpml+6PLvf1kXL88XSilvvVRi3yrpxXUnN03zPknvk6R+v99A4J2oOLy2AeSPqD7uASczTiLWkSwnoJ7/DclYLpc1okr0010CbIO4v7+vvb09TafT6k4gWsv2f2dnZzW9AGLZ6/VqVNy377PxaZEd+kUUP+Z6Q4K8netIn9vNsfdHMSESTSdYTsq8poB0VTzP8+R9K0mfK8bfiaJHkH1uiNgDCC+ulLi7wGq10mw2q2OPmMCOB27l9wKQnmMfyXQUW1xMcbHHyTtjuLW11drZI7pOGBfuc3Z2VgtXsp6oMUHbcCT4rh4xcu9td2Id3R0c41H8mCLEuLtTA6LPb09NQlDwdQe8CKrPYxTHXEDwcfLnxNvPMT53nhrF9WMf/Nlyh1N062wwHtm7eFRu57/2iY3Hg8851Atf/LhbkUi0kO/hRGINyva2Pvxv7WrVeSL+P5V4nXjdgkLTNB8rpXyolPIZTdP8uKQvl/SvLn++XtK3Xv7+3ldxrfofd8i7/6ffsbW1VdMTIP4QCCdq66zVECIINTsQRGILCXVgoYfU9Pt97e/v1/oAnq5BKsDJyUmNkJMOsLu7q+FwqNu3b+uZZ55Rv9/X9va2jo+PNZlMWrs6sKODE3wvwOckMhK7dSTXHR7k2uM68Fx0J2nSVRFLFzM4Hls8Fnm39TM+HmmHuJdS6nXdcRDTGLxwYbfb1enpaSvnHsHCI9C+VWfTNBoOh9Up4fUU6G+/31ev16uODcQtxAqEFBdGfC244LO9vV2v1e/3NRwOdXBwoFJKLVgpqW7R6EIQWK1W1wo0Ovml3b415M7OTl1rLjC4yBDTBiDytMFraNDPKLr5dqykk7hrxp1C69IdYgFOPo9r1wubkjrkwgoCgpN/ilZ2Op3WeEZh0ectOqNcVPAx32Q8yndxIpFIJF478j2cSCSeZjzUtpGSfpek7yyl7En6aUm/TRc7R3xPKeUbJP2cpK95pYtgUfddE6KgQISRQnqRYMWUACcKHkX2HRm4H4QuWrkXi0Ul3BRE3NraUq/X0zPPPKNbt25ds+RDGsfjcasSP6Sq2+1qf39fzzzzjA4PDyv54TzaiaAAySOaLqklghC5j8THaylAxra3t2vdBgii1wSgjRBTSCbkNhJfrseYQ3JxXtA3xBxcC/fu3atEkf74GJIX3+12NRqNKjFFAKImhacOICrNZjPdvXtXd+/erQUoYzE+CKPXPVhH2GN6gc8xY7SOdJKSc3BwoNu3b+vOnTva2tqqhUCZY4pGPnjwQCcnJ600B7ffN01ThRMI/t7enobDYRUvcHF40ciYBuGil9csYJ7d1eKFGOOPpFZNC67X7XbreqUdzBlCA7uV4GTo9/s1pQOXD/3xNIR1ghNjwXzgSGHLVS/e6M+0iyu01efR0y7WpX1sKB7JuziR2HR87Pd+qWbPN0rrbGIDke/hRCLxVOKhBIWmaf6JpF+05qsvf43XaZGzGPmV2v+xj9HJmBJAlDmmAUAc/TqQ8kjAaAfnz2azGjX3egiQMidbkFWuSQQf6/tgMNBoNNJoNKo5+x5lJvpLQb75fK7VaqVeryfpiiCR3x3zw4kkQ35xItD2mB/vtnAfF8QIUkuic4GtOn0eEAIguk4KuYdHgbk/Y45oxHWw9vucuS0ecYG/n5+f13SB1WpVibgLTfSL8fMifH6sk1Z3uhAp97XH/GLhZ4eL0WikwWBQhQTatVwuNZvNNJlMdHx8rOPj45aQENMPfG2SMkMKDaIWu4JwLgIR53pqhRdj9OKkjBHHMB4xdcjFKkktR487guLYIZow1u4+4FruFqA/Xv/BxQ6cH8xnFAu8H/55dCfc5IZ6QlIeHtm7OJHYdNx+/6nubu9p8o4UFBKbhXwPJxKJpxUP61B4JIgRXo8ee+6z1C6eFou0QYiwqa8jA5E4e266F86DrPpxpAkQ4XeS57ns9InPIMhE8D0lYGvrYjtFt9QTuZ5MJrWoo3Rhk/exOj09rc4CLzQIwfJIPO4MJ5iRuHrE2ndwQFiJhSKpwQAhRbzo9XqtlAp+GJuXy0+HPPq2kZ67T2QcAuzpKRwDSY0iD31DJGFXAq7jjgfa4nUdXGhx8uqEl/5TXwNRAULvrhJ2uBiPxzo5OalrzseF9RMLSfoYM67rRA52riCSjyDDWnXRyB0orH13BvlzKF3V6nDBx0m612FwQYF7bW9v1xQQ1izPXhQTPO3C6194WoQLIi4QuBDi68Dn1M/1OU8kEpuF/j/7sCZv/RRN3vG4W5JIJBKJRELaEEFButq1AJLjeevUC5Cu8vlJi3CbssOtzBAP6YrYQOxixFa6Ih2QL/LNIYqHh4fXaid4ygAR6tu3b1dSDAEnes+1/HxPdYBsQr4YB3de+DiREkCbJNVxYmvEXq/XKgzo5NL7TbQbsuupAT5fvV6vJezgUOj1eq20DLfSr5srhAJIqHRVPJIfjiH9ZDqdVgFjf3+/klWcHT6n7ng5PT3VeDyuW1WSioC4wI4UMV3GHStRTHCC2+l0qpBw69Yt3bp1S88884yWy6UWi0WNpFNj4/j4WEdHRy37PtZ9nBcICsyDO01ccEFIYV17bYKtra26fSXCFs8TbWLeva5Gt9ut88FWl4hKs9lMp6en1SmBW4D59voI3Ac3QnNZuDIKXy6cRMcKa5m2M16+m0QppdbOoBgq4gnigzsVfP0CFwZTWEgkNgs//Y2fqtPRk+EcSiQSiUTiacBGCAqQU7dHg1htHlLpkWIimx7BhRBAvqS2lZrrQET4jHxvt2xD1iGKWNhj/rxbrPf29rS/v19JFVF1Ir8UMIREI3BEGzzthFh7Tjz9ozgf5AkCKakWB9zf368pE4ydR789t9+j1uScQ+q5Ni4CyBwkezAY1DSFSHIRS8i9p6/uRvFaBS7osA5wi3gxR9aOp7hAtBlXHALT6VQnJyctArpcLlsCw2q10nQ6rXPGvMbaC16rgC1A+/2+bt++XQWF0WhUawswpogeL7zwgsbjca0RgbuEtADIe7TeU2eAflM/wQUpxCTENPrP8+FiD2NGG72GgJN7CPl0OtXx8XFdy36MF1RE5HFnCOPuRReZd9axuy54rhHqBoNBTRuhzf7cSarzwzp0cRGxxFMfXByKhSyflJSHROJpwaf8Fz+mu7/6M/TS52fKQyKRSCQSm4CNEBQgDJJa/+n3KHUsgkftgUjw+O2uBMgw1+e3uxY8h5tzJFWiQ5FB2kkBRenK8s/ft7e3NRgMWoSP73ExkHoAXFCgdgJk3qvT00fGzMUTyJfb77vdbk2xgFRC4rz4nRNGahBQOyEW73MRgvM8t596EIwNYgIRev/xrf5injtEmDYS5XdXBoUJJbWi8y5OUCNjsVjo+Pi4OgB860qi2twv7kYgqTVWnlaAK4NdHfb396uogMiD64QUlul0qtls1qpPwfj62LCevT/+XHiNA68zAEgR4Tii/C6msZ68j7Euh9d9wJkgqeWS8LoF7o7gJ9YqQSCkPzxn7hCIhD6ej9PBHUwxDYNxjAIgY0u/fRxiKkQikdgMnN+9p+1FigmJRCKRSGwKNkJQ2NraqpX+IeqQJc/bd9IuXVn0neC5qOB53OsIihMvJxBE4TudjjqdTs1Xd3FgMpnUbQYRI7i2b6PI91EgccIjXVnPidzPZrNW7QEEhFisz/vgZIv7UwByMBjUtiyXy9qXmAoC6Sc67+PF+RBI+uBRb7Yx9C0c3e3guwN4xNqJeqy674UQiaD7jhmdTqda9X17S8YG8judTjUej2vkH5eFR9DdLeJz6oUFPXJN5Jw0FlwKo9FI/X6/ul1cUGBbSy/ASD+9wCAOAElVpHHHRrTmR1HB64swH6w/6WpXE09l8Wcj1o7wGgiefuHCjD9X7iTy+ibc24Uk0oG8n8DXB33xlKR1/fVzvaAo7eI3goQ7FDzVJV4vkUg8fnSOztW5u6vFnXQQJRKJRCLxuLERggLk163MTpggBUTsPUIZSYWklrjgefF8BoFx0unkjPZQK8H3tceOLkm9Xq+SJncsYIEnpYH2ONmO9R+wuiMmEAV2R4VvgRgjqZIqOZYuyNJwONSzzz6rw8PDWq/h9PS0uiwYHyfsuBPcEeI2cd/hAjCOu7u7lUTHFAOI/nK51MnJiU5OTjQejyWpCi9N02g2m6nb7bZINUILZBbrOz+7u7utFAXGNI6vF2KkWCE1Aoji42Zxwh93//DCh4gbCE+IChTulFR37aBeAOs1unL4zVrwwojMG+f5GqBdLjR4Cgj96na7Gg6H2t7e1mw2u0bSubZfx901pDu4oBDravhuD5KuuTyoh+LOFHfRUG/Ewdr0NBdP+0EE4nr+PWvb61x4CtS6teLpVCkoJBKbh72/+cP6lJ94l37sd73lcTclkUgkEomnHhshKLjDwOsFQAg8L9wFBghvFB/6/X5NecDO7sQAB4GnCCAwEG1mF4Zut6udnZ0aVfeCfKenp3XrSEmt6HCn02kRRcgvaRCQs+VyqePjY929e1cf+chH9PGPf1wPHjyokXjGJVqv6at05RDodDo1dx4r+nA4rHUN3AXgpI2IPLnxFC3Ekk9RSsap2+2q3+/XAolcC8s6pHyxWNQdDCCliAn0nQKOTgi9/sF4PNZ0OtXR0ZFOTk40n89rscNer1fTYdzx4KRaUl1Dni5B4UwXV9ztAYEmDQKBhOu4I8DXy/7+fsuZQPFF2s56xWHBdWkna9DFEYpqIlKw5lgjXmCUuYCwcx41HSisiAPG1w+Clz+XiDCA9c88URySsWY8cWHgTqDAI9uMQuK5b7/f12AwkKTWjhO+hSprjfnAheQ1PHg2XCB0wYCxR4h0NxTvFT92nXsjkUg8Xsx+7RfpY1+0LSlTHxKJRCKReNzYCEFBuiJAvj0hpJ3vHFGE8GgtkWGIC+QMouHRSLeQO7np9/stlwFRY0hcv99vCQaQbqLPkEJJtbbAwcGBhsNhJTSQVhwJHkV3uzv98uKR9A8hgeKCEEuKMQ4Gg1axRi9G6EUOZ7NZ3dGBH4i6bzdJJB7i6YQcscTHnTFDUKCGAGPmZNRFDtpFmoLn7SNCMI5Er1k/ng6CeIMAdX5+XsUjCCNrhr8jHDHXCAceKYfUQ6o9HYEoudfFoBCkrzV3ErBmEBwoKMgYQ/YZL3c0+FrysYCwM2e+8wZj7C6ewWDQSvth/TqB5+/uSvEdGLiut4nxpe3+3CHsuIDIGscdgVjgKTY+zrwj6I+7N3ATsRZiKgUCg6+7KC4lEonNweQ3fLHuv3tb571Md0gkEolEYhOwEYICkUHPs/ZCgBBJjzx6xB4CAFlAUJDUIseeEhGLEXolea8276TbbddOfiFukaBS6I/igaRQ+DaIXjeB+gWQI8+Pp+1O+M7Pz2ttBHYIIC2E9APvh1v1/XpsEXl0dFTFDN/ekH4RHWd8zs/PK0ktpVRhg77RFq5DtBmxhGtBMj2NhbEhbYJoN+4PXwesHReYnEA66fbx9J9IiFk3sbAgawYBwNeKzz9r+vT0tNZO8JQCX7Osa9YuwgKpNghd9Ju5dkGBte5ryC3+XijT11WEbx8ZSbqnQ3A+4+bj54IXa5FnC2HGnzmvweDPGs8+f/bUE0/58R8Xkxgf3ifuWvHUIE9niakoiURis3D3c7Z1epDPZiKRSDwJaFaNBh8pmr5FOu+lq+zNio0SFNzODHGDyBF1jAXZnBBIqlFPyCnEyIkxkU8n7ZBCosBObl14ABzHsZwvqXUObWY7wV6vV8kTEXxSDbDFe70HL07pwgukvN/v1zZBviC7WO+dKEciNp/PdXR0pJdeekkf/ehHdf/+/ZpmgC3exRbqBOzt7Wm5XFYRwYkm402E3wsxst0gwsBwOKx9crs+YsRqtdJkMmk5QxhzhAqvXUG6jO+AsFqtam0I0gq8jgE/5Pa7oEDqBtdijeFkGQ6HrQKMvrvFdDrVgwcP9OKLL+rs7Kzlaoh1AhCZ2DGCtUQ7cWR4rQnGhL4jDFH/gVQXHACsO3fV8Ex439iNIQoKXlcB0u5FGdl5xQk+7grGKm7fyJpxgQQXC/PLs+CpRbw3EBsQlmiDryWegbg9KnD3g48390gkEhuE5vIns5ESiURi87E61/P/+Q/opW/8JXrwmY+7MYk3ChshKHjhNK9J4LsA+I4G5FgTuZVUxQgv2Oi7FTh5xDLuRd08dx9CzLEQXtriUVUI0+HhoTqdTo3C379/v5IgSDg57F4DwomukxxPoQD0I6Z6nJ2daTwetyz45PO7zd2JFmPGjhUPHjzQyclJFWAQU7hmr9fT7du3a+E8j/zjXmC3BUg+39HP4+NjHR0dtYimW+ARYdjWcXd3t7X7AgIE6R2+qwPk1AtXIgYg1nhxPheW3FUAkSX1hLFD5EFUIS2G4o5RqFksFrp3755eeuklHR0dSWrvsODHEn0nJQJBAVHBd7vw4oiexiOp5dRgjBG+mC/cMKenp9cKO7ow54KYiwm0iecvOnO4Ds8VThkKVS4Wi1YdAxwcpFdMJhNNJpMqmA2Hw+psYK17H0mpifUgGA/EAp9zd6u4mMLfu91uS8xMJBKbg3f98X+i+1/9C/XxX/S4W5JIJBKJRELaEEEBQI7IKwexCJu7BRAj1uVHe+0FyJVbv2NROAQFSa3UBggiuf+QE67Z7XZ1cHCg3d3da3n3XugRAu3EmaKFiApuBYcUQ4BcEHASDOnm+kSlPcWDc2LE1QmZR3ohUlTgHwwGVTSgXTENQFKtYeDzhOOAtA7paicNnBeMOfcnpYLzmS9Jrb97eoPfF7KKQOCpCu4+4XoIB4hQHMv6c4eMpxE42XVSPplMdHJyUslyrDMQxxqhAFGNtcWxHIfQMZvNWuRdutgWk20pOZ++Eu3nXHcE+TzRDk8zcneAuxp8HXAdgCuHde9CoYNni3VBAUaeIa7lKVCsC9rqKULuxqFf/HhtD9YOv9e1y9OtEonEZmA1nWorN19JJBKJJwrP//2X1HlwRy98yeNuSeKNwEYICk6SIzm7qTiaR1L9M9wHXvPACbpHft32DjGMJFy62gUBcuEWewre9fv9Vh68553HongU94PcxTQHxIi9vb1WkURP86BPtJV2k9OPQOKRf8QM+kbE2us2OBFjdwEvUIkYg5AT6xb4tT1aT8rD+fl5HROux3hCfKUr0YA/c23GLpJAJ9dO0GNKhI8ZjgDSJyDuMZ3GawT4evHxiEIKKSO4AaLbxMfH20v7WKcu9CAIMGeeAkFhTQQtdieRdK0mgW9f6eQc4YefSLZdwAGsPU8PYqw9PcbTFLwoqq8jxo014M4IxszTY3CURMeOuxBov/eTvvmuLF6bAScETqVEIrE52P6sT9fiVlHu8JBIJBJPDs7f/5O6db7S5C3Pa/JJKzVZ+/pNhY0QFDzyu+4/95Ja0Umvk+A1FSAn5+fndWcAFxSwwztp4zoeaaZN0hXxhPjzHRFaUhkGg0HLUs81u92uhsOhhsOher1eq99ODqUrwsu9Yx0AHy+s5IwN7RkMBtrf39doNKoklnHzLQEhl/P5vOVSgOzhRhgMBrW4I3nlLth40T3EAd9RgXQMtookck1+v8/zuogxxA4xxAtsRhEDOHlmq0HSVJgD6gSwhjy332tfeP0CdyzQ362tq+0bifiTRoKoMJ/PW7UuPLXC6zSwVn09eqSc+gi+/SWCEQIVqQi4P6hJgJgTx8rJ9+npqcbjcRWY6CvPXnzWuFZ0hvCZ1yPxdRfvGdcK88U1dnZ2WnU5fAcUr/Pgu3HQBtYJ/fcdRjzlw59bT3tKQSGR2Cx88Nc/o9NbWZQxkUgknjSc/8RP6a0/8yH99B/9Qq12mxQV3kTYCEEBwuKCgudzx3oHkIF4DQDp8oJy5Oz7doOcF+9PZBTyQ6QbcoFNn9oCEO7pdFqvSR+63a5Go5EODw/V7XYrcTw6OtK9e/d0dHSkyWTS2jKTNkqq+eSQYa/f0O12q00ecQOyjkPBXQQe9SclwKPDHEdufK/X0/7+fs1/91oM8/lck8mkldoBmYb448Aget/tdrVarWr0HGLNNo3S1TaUXhzR18JyudR4PG4VX/Q58t84E3ATQDrdiYE45euI9UVKjFvpo9AFYUfkocDm8fFxjbZ7CgZt8noVuC5czCilVCFgOp3q6OhIJycn9bjBYNAqTIl4gdjBjhC+HSntZ76w//s1vIaGpxm5UBR/PP3Ix9BFIp4xnk3Wia9HxC3WL/UyEPSOj49rHzmH9cU88a7wdwnbobobxEUb6UpQ4Dq4QRi3RCKxGfik//uP6OjXfb5e/KLH3ZJEIpFIvFY0y1N96h/6x/rYN36hTj4lxeE3CzZCUAAQL492e7SU/+xTIwDCOZ/PW5F8CJF0lULgtuwYffUoJSTVHQqemuAR6+FwqP39fQ2Hw1YtA0ifF/AbDAba3d2thA2ywrFETYnIdrvdWowQkQEi7pF1F01wFAyHw7qdpJM8t50T1fY6CLSB6+GwoE1uBefcWP2fHH4s+EdHR60CmswLRI1I8E3F87woIPPhRR+B5//Hgo1eqK9pmhqt5tqIFi6qSFfiQawPwP0QkHyHD3dGuOvDdytg7J2gQ3K5F2ICRRQRXVi7kGfW5mQy0fn5eRXNuA8uGEQpF+LYPYOxpM2MAcKbFzBcNw4c4+uEsXY3AsKGiz3MG/flGu4SQDhAoHEXT7wHQh9tRYzwNY5Q5GKavxt8HcX+JhKJx4tmsVDJ/4MmEonEE4tmsdDb/uYLevD5z2ZNhQ1GOZc+9a/MtLW8+kf3gzccuzGCgv9nPzoUnOSRFuD1BTgGEuIV36WrSu4QF49ExnoNbrd3UhJrHEDwIdxeIM4FBcQPIuQe3ScizPHupiB/HmKPkBLbR7upuQChRHDx470mBWNN5NnJt/fRt51kDBBEzs7OWlsSEvH24n9eYM8LBHpRQi+cyRg5cY7FDCk6yHqgTYy/iwkeLffjGNtYvM+L/sWaB4y3j9l8Pm9tMwoYH3e5MB9eIJB173OD68FFBdIZGBOfB2o1IOywjt2273UkEDh8O05J12p5uPjGZ07kvXgjY+BpQ+5qoK0+R7FYogtq9I8CkoyB999rr/j4eeFTL7IJ3JEUnUou9rgzKpFIbAa2Pu8XaH47aygkEonEk4zzn/gp3dre0vzwGUnS+JOk816+198obC2K9j/42s4pK2nrh9+vZvnK6b8PJSiUUn6fpN+hi3/Z/7mk3yapL+m7Jb1LF0LG1zZNc/+VrgXpiKkMfOfF3iAvXiAO4g8g55A1orWc1+v1WqKCEzGuByD7EHUs2Z5b7/UIIH+dTqcWNKSdi8VCJycnunv3rh48eFCPJ6ffCwAiInjhPy9A530tpVRxg9x10ghigUH6hwBAuyH+iBODwUDdbreSUwgxJNVJP6KN7+YQrwuZJmLuxB/hZHt7uzoImG/s+7gTIMGQe8it/zBWXs2fiL4XdfR6Hcx5FBQgme6S8POjK4a16FHxSKL9WPpJG0jXGY/Hmk6nLdeA74KCoDGdTjWZTGqKANeNYoK7IRaLRasAYilFs9msPi97e3vXxBbSKRgjdrBgXHwLV0mVmDMeCGh+jDsgeLbpH+3heXIHA2sBwcl33OB8+hhrKvA8uyMlignMv9d/2GQ8yndxIrHJ+OBXH+r0IC0Kic1DvocTideG8/f/pJ59/09Kkprf+aUav/MxNyig2XmMdR4aaWv56IJanftFz/6ZH3g9zXhVeN2CQinl7ZJ+t6TPappmVkr5HklfJ+mzJH1f0zTfWkr5ZknfLOmbXsu11+VlS2qRbb5zEcGPIy8ekuCF3La2tmoKAkUTIa3xnpApiDXbKPb7ffX7/eoeODk50dHRUS0GeX5+rn6/r8PDQz3zzDPq9XrVVn58fKwHDx60yJw7L7wgHbUcJGk8HrfcF17McW9vT6PRSLdv39ZoNGo5FMjvH41GtbYCJJydAdwBEbdF5FjP7feaBwgO8/lc4/FY4/G4CiUnJye1T76jA/MiqaZDMGeLxaKOCbsE4ByYzWaSrgpDIgQRjUfA8JoEkGQi5uvqdLhDZp1jwNvsqSbuOvAtKiH6bAdKUUPmDrLKmEJiEQFOT0/r3HAuLhf6wtaUFFL0GiFE5REyINqMIwUefT25CwMng4sgca5xOHiaRUxN8foLuDZc2PDtKb2NvhOK1zygMChtZl3xg5CGyDIej6so5yk7rDt3VDBvvq7ozybjjXwXJxKJROKVke/hROLh8Nyf/iE9v7VZrtCP/O4v0uSdj0fA3jor+rQ/8k/VPKLi4M3qjXV/PGzKw46kXillqQsV9iOSvkXSl11+/x2Svl+v8uXpZCnmMLud2q3pLj54QT0nCX68E0mIM4QUsulRWKLnt27dqjUR2EHBd2GYTqeVTEPmSIngepBMBAcnTpA+T9OgnU5qIHiSanSYOg0UUESQoO9exJGxgThDKuk348JWl7u7uzW33m3u9I/rQbZxLkDwPXcfYaPb7VYHCd8jXnA+RHfd9SH0zC8E19vpNQtYG6yPSJb9OD5jrXlKhddTiPU2sNYjBiAmuLPDo+/ck7mgJgJrwusZuPuE+7OWOIY0GU9pgTh77QSIvu8uIqkluPna53ru+PHzl8tlvba7I3iGfY1Pp9NrNTt8HD0dw50ukqrgF505fM51cLhQe4ItO2MKi8PdK+wy4duEPiF4pO/iRCKRSLxm5Hs4kXi9WJ2r2TDz2Tv/vx/Rati98fsPfvXtR7LrUO+FLb3zb9xrf7iSVrOZ9ITU8nrdgkLTND9fSvkTkn5O0kzS326a5m+XUp5vmuajl8d8tJTy3Ku5nkdtIaNEbZ2QSu2t5zw1Idr6Y4E9iA9igAsUbt/3LQqJ2mL/h7h73vzZ2VmrJsLZ2VmrngHX4xii1l7DgHsD2u7pDpdjWo9fLBb1+r1er7YRuzpth2w6IYW0ukvA6xIQ+YXkQQ45xwlXjEBHoYT55RzcHggFcVtGr3vg68EFCluHrag+9+e+wMUDH18vzujrycUEdxgwRz4+sX4G4pKLCTcV9/P0By9e6DUXmBuvLYB44SkKLoRJakXauY+fizjjzxJz4mKE1xxxJ0gsEslaYP5xV/Bn3AbuUkBc8i0f3Z0QU1Zi+oK7SZgbzvW0E8Y6AiHHBSmORWjbdDzqd3EikUgkXhvyPZxIvPlw9tMffNnv73z6F2sxevj/J/ZfPNPqn/3YQ1/nceJhUh4OJb1H0qdIeiDpL5VSfvNrOP+9kt4rqUb6PRoco9SQOQhgPCbWH3BC6XZ+yBepChAbJ2+SasTSI8TD4VC9Xq/WX/Dj2NYP4hlTKZbLpY6Pj3VycnLNoeCkyCPnRG6lq10aIDgQQ4jmYDCoDoWtra0aHUccQGgopVTCBenlunzvjoFYowKi5o4GcvnZopC58b7hBoH0uiPAt+9zAYLPvDihE0rpahcO3yqUMaQvcS1AoN2NAKJjIToZIL6INMytCx4Uo3Srfiz46ffyiL2nXriLBsEFcs5Y4zzBTYLAwnz5GkIoYP69NomneyCAeYqF1wBh14l1WyoyBqwJr3vBmmANSaqCAuPhbfS1Q9/n83ntk6dmANIo/N3goJ++vlhbCILuErpJCNokPMp3cVf9N6KJiUQi8aZGvocTiacPg7/8Qxo87kZsCB4m5eErJP1M0zQfl6RSyl+R9KWSXiilvPVSiX2rpBfXndw0zfskvU+Ser1eA6mFOHiE3q3hkAqP7EpXRM+FBwgJ+d38kKsPMZba20sSZZYuItEUY2RnB0QCqutT/M13kOj1evU4SM7Jycm1yv0eiXZXwdbWVku4aJqm5o9zLM6Jg4MD3b59W7du3aq1E5yQ4k5gXCC9k8mkVcQRIra3t1edGJPJpJUHz329TgUEFcLP2JdSalFK0jKcXLu1nDGazWatSDkCjFfe53zaBXkHPvekSvj39NNJtDtgPC3BayrQdndUuAAgXbkMvLCjp9Y4aIOPLech1vi6Zf37Fou0ly0eYxFIfy6ay4KPrFsfE3cCUC+D3Um8r+5umM/n6nQ6dYxw4CAo4DCif03TXKsLwfPNvEUhKoo9PLN8H0UZr2XhxTfpK/fm2l7vAoEEpwT9egLwyN7Fo3J78xWURCKR2DzkeziRSDy1eBhB4eckfUkppa8Le9eXS/pHkiaSvl7St17+/t5XczGP3rJHvH8eLdl8BiAJnveNbZ4oqBM6iI6Tm263W0kLOfOSKil2Inl+fq7xeFwJyWw2a5HH/f39SpSn06kePHig+/fv6/j4uBJkd0RAEj3P323uRFV9PLa2tjQcDnVwcKDRaHQtR9/t6l5HAvK/XC5rpJ1rllJqrYhOp1MJPm2jvsJwOFS3260CT9wistfr1dQGT8XwAnoQYu7t6QFOtJ38ci59wUpPn0nxQHBiflwwQmRgja2LxMfotrsSmH93sESXAW1lDtetPfrtKRPrtitE5EK4YvcDxDOeCYprOomHJLuzhYKKtD06J9hZg/XkpNzTTxhv5gHRzOfC150/s9zDRZmzs7NaYJL1Fp95xtJrhABPyfD58xQL1jDnIz7w24Uqn8sNxyN9FycSiUTiNSPfw4lE4qnFw9RQ+KFSyl+W9I8lnUn6UV2oq0NJ31NK+QZdvGC/5tVcz6ORThIioYAI8F20sxO1dOLitm+IQsyp94JyHt0lSstv2uhFConMx90RJNXCkmwBiCvBrfZu+fZ++BZ4tIWaBwgKnuqAI8LTAmKhvJiO4KSO6C/9jUXwiFrjONjd3W3lx8cChJzj9Qa4phN8xtvJXWwrc4nTIkbrEVxcUPLCgA6PZnsUP7pEaCcCT3TKICysI7c+j05gfX0xj14zBBLLvTiOKDoOF2/LOoHNRRNvlxdU9FSbCO+7r02fFz5D9EEQAO6KYT2648CfSeoYrHOPxPb5WvV3gYuBtM3FMHej8J2vXdYQ93hCxIRH/i5OJDYZd/7FuZa9q3fCvc+VVrsZ0E08XuR7OJFIPM14qF0emqb5Q5L+UPh4oQtl9jXBizK6fZzvnNA4iXMC5gIDpNBrI/AddQMktcgi5zk5hBATmYZgQaAgaJIqEe/1epXYEzWdTCbV7u3b1nnBPIQDfnxMsNqTisGxg8FAo9FIo9GoOjFoo0eIEWa8aCLWes9dx5kAGeQ6/HQ6HQ0Gg9pHLPBO3D19gPnzwnkxKu7jiNuBeabtUaghz95TRhiry7XZmk8nsjFNwQk3RJw1gyAQdxiBKEfBJfbP/wzhhehzDZwEiEWsCXcGUPOCdUdNEF87seaFE2WuA4Gm4GGM+Pu6c3APrxXh64YUmri7hl8/rg2IPSKSp8x4LQtPcYlFGX3efF373Lqg5DUiPP3HU3k4zwWGTcejfBcnEpuMwV/+odbfx9/ypTrLJNY3Pcr1kjgbh3wPJxKJpxUPu23kIwHECEAWIBw7Ozu1wBvHQwpjHngkIzgUIHMQMyz4fA9BwxJOHQHfNQEiyNZ0ni+/tbVVLeKSNJlMdPfuXZVStFgs9OEPf1h3796t4sNgMFAppWW1dot8t9utffXUCLdt7+zs6PDwUIeHhzXlAXs8ZNXrGUAIseojerh9n+siNMR6Ft1uV3fu3FG/39dqtdLx8XHLqu+pDLHK/rqot6dMOKH0KDU1KdiGk2OJsnv7GCeudXZ21qohwVjEsaQWAPdnLH2XBHdS7O3t1Wt7qgmCwenpaZ1L1g4Elj/zQ80Oiiy6+AFIU/G++twwX/5MMQe+Q4fPSSTkXNfbvVgsWvPFuLtwx5p2l4r3o9PptLaG5HnZ2dmp4oYX3eT59xQV+kItCNrkzg/axDHuIGJMEDSYBwQQ3gV85zVdEonE5uId//EPPO4mJD4BeKGZPO4mJBKJROIGbISgEOEkMZIeUgU8Gh3zup28QDwo+AchcsJIfrx0VasAWz9E06PK/DiBo4geNmpvOwQMIkWaQYym0m4KQHoFexcfIP5e8JDo/c7OTk3HkHSN0BNZJrWBGg+My7PPPtvaLQCSBmm+c+eOhsNhFXli4TqIqJNnikn6eEAi3cbPeDC+zAvFHH2LxpjGwHx7nxELut1udajESPb29rb6/b52dnZaKQKeKuPbNXo/vO+IF7PZTCcnJ5WII0B4xDzWDXCnhbsnvI98DyDgklrk13dK4ZnxHRdcYPKtRDk2igd+fe6LmyLuyuLbPPJDUUcfR3d60DYXWnwHB0+JYd78GMbQhTf67u4NdxsgOiIS0SZ3QkXHSyKRSCQSiUQikbiOjREU/D/+nkMe7fMQFid56/KdvTihdGWrJuUg5sVDJra2Lrbh86h2tNW768HFhZgX71Fir5kgXZF7zuFeHvGO4wOhki4IPttYkqIQixzGfHKvRYHYQmX+2Wwm6cqSDuFiTBA6+v1+FV+8vgFzwjaKXvhxMBi0SDLfky7hrhKvr+D1F9yV4qkBPieMN+O6Wq1aYxlTDhAsEG7c8QJBd9dLTI3wsYX4RgcCbXUhjH7GeXXhx58HP19qb424bsvLuGZc0Iq1RbxNfOfEnefIxTu+i+lJ7hDwrUddTAC0BSGLZ4xnymtIuKAQnwvWhPeHNRnHxdeKi0GeYkQaSxQtE4lEIpFIJBKJxHVsjKAQUxggsZ6D7XUGSEPwomxSO/rpuxcQFXci5g6FSExxMEhXtnHpqtp/zJF3Czjgeh7lhxi75Z3aBBBgftYV2UPY6HQ62t/fbwkKFEl04u7F5tz1AVki930+n6vb7V7LIef43d3dmv5Bf7G4My4cS9R5MplouVzq8PCwEmbO4wfhxesseFqEk2gEAUinR8jXRbNZQ7SXdpHeAeFF3FknvnCui1zuMPD1ipjAeDM2/GZ8va6CuxJwtqx7Lth1gfbhevBaDzEFyNeACwqs+VislHkn1UFqu33cHRLFtJiyhDOEuh70xQVALxDpz4KnGvC8RqcM8PXngpY/g+424Jn3ueY8xjCux0QikUgkEolEIrEeGyMoIBhAyCKhjHny/Ec/RnyjECGpbmkIgfUib05ksH9DCJ0IzWazKiY4OXdyBMn1LfH4u6QqEnhVfK6DuwBnxGAwqIQcIk1Bxm63q/39fR0eHlZRgfOinZt6Cj4+LtBgnXfCTH9oI2PZ6/UkqdrbSXnw/kEAuTfiBiSV60L6+v1+JaqIPtKVEwURxnd8iM4VFw28pgBk1wWMyeQiD3MwGKjf72swGFSRwy33EOuYeuO1KRhXhCA/33esIPWCaL0LUBH0m2eBNUUdgug68ZoH/vl8Ptfx8XFdQ7GOhac7xLQNdwf5s4cAgCjR6/VaqSRNc1Hkk8KkLuj5c8J9PDUIIo97wB1FrE3a7DVRzs7Oaj/ie4Hnz102vi78eXAXVHRuJBKJRCKRSCQSifXYGEEhEnTfohGS6e4BjoWseX67W5jd+s/3TpQ84i2pRSRjkTi3QBPlBrGqPdFvL9aH/ZwCfJAvor/URVi3NaITMBwaOBNIR+h2uzWP3Qka/YKUMS7k+UOybt261SJcjAv36Xa79bzFYqHz8/PqrKA439HRkY6Pj+v4MFdEocfjcbWu00/6xTghdrjA5IS11+tVIu/baLoA4E4VUi8QRxCGIKa+s4QLW5HMew6+2/MRB2K6A+vWUzNA3P0AsMZiCgRjiMuiaZpaG4I2cf+zszMdHx9rOp1eW9+0Jz4HXiMEkYhx4PqsLYg9c+/XZZ2QNiSpJSBMp9MqEgBPc6AGh9e6cMeA99fdN+5WYe0j3rCmYwoSY7vOucGxNwk/iUQikUgkEolEYoMEhUh63L4dt4rz42J9BaKZnrPtled9F4JIDD2HvJRSSbG7DSCAHn2W2tZwiJXb9d16Hsk9cCJG24jSugXd6wpgLcc94LUAYj0KSDxj4rtT7O7uan9/vyVAlFJqmgP3Q0zwFBC/XiyuSATbdwLADYLY4ukmkWCvK5Lnufu+Xjwn3sfd6zQw/+58iEUeIdVOQmNdCXexeDqOE+HYHoenPOAgWLe1JWMLCSdlg7HwSD3jjoOEPsX0HE8P8BoFtMGdF7TFaxi4AygSeK+bwLnePn8GOCbOsZ+zWq1a23e6W8VTJBgnwGe+nmJqho91dDp5uxKJRCKRSCQSicR6bIygsO4/9JCqSBSi+MCx/I654U5MID1Ewj1S6pXkvTAgLgInvFj3PbebrSA9+k4BQq/iL10VgnP7NU4AiBpEkrSEdYX0qG3Q7XZbYoLfi/shHDj5JSedbTI9su+CAm3yFAnGmMg4TgCfH9wjnsNPZN3z3aNY5C4L//EtAb0gIMIQY+LEHuGH8fN6BAg9jnXE02t1xHZ5G3wNOUH3Y9YJHgg/wNM7pKttMBljBCQX3aIjxyP/9N9TByDvzDfzwNqkD/49gpY7b9wNg9jlYkMUE7gPboSXExR83qPjweukII55igr38PodPo++1vy3PzdxbSQSiUQikUgkEokrbIyg4OQ65q+7Q0FqkygnTxCITqfTij5jdfcq8E48PLVgsVhoNptpa2tLt27dqoSafHFJ1fY/Ho/rvcnJx51APQHqN3hE3/e892htr9erUeP5fK6TkxONx+PWVpf0wWsFuBvDdzjwNIxOp6PBYFCLB0LkhsNhJWsILT4niBxN07S23YSwnZ2daTKZ6OTkRCcnJ9re3la325V0RRARICStTQWJ8Fx+xlK6IvqM2bqdFBjLeCzt8boYpKDQV45zkYO16IhCgaez3FTsz+tZcI3ZbKbxeKzpdFqj+qytWNeCcXdxxItDMo4uhkQRzAUy0lfcCRQFKxeHvPYC1yN9gXMRiugDYI5ms1mdH9bcfD6vaQmeukTbYmqIF4Wkny48MAY4JjyFwsUgjnOBL9aNYM4SiUQikUgkEonEemyEoACh8AJ6HiH27eIQCtZtHwecaERrPkSE+gWkGECCZrOZTk9Pa0V+J2RO3iDXkMSDg4NKviFjk8mk7qAQr0X6AOfjDiBXfTweV7JJfyFz9AERgx0vjo+PdXR0pMlk0ipe6LsZeK49tngvAsi9dnZ2NBgMtL+/X/vrqReMB3n9jClElTYiqkiqbWEMIchOsmOqAOIQIgnt9bkEEF7m3gUGXzusL3eTuKPBCy5G5wy/IfNN07QKH7rQ444LRBgXzNiyc7lctgQW1qynFvgOEpBfPx5BLaY3RCePF970woTu/GAOIPRRvGAuIPeIAZ1Op469OzFwYUiqYtPW1lYVBlwo87bzZ9rsTolYa8KPYb2T1uJbU/JM0JfoDAEuMCYSiUQikUgkEon12BhBgegkRANSBbFwQcB/O2JxNicb0c4ci7R5oUHpans6348eQoPw4NZ/t4JLFwQSMWG5XLZSNSB0kPqtrS0Nh8NK1ohQEwGGLNJvahCMRiP1+/0qiIzHY00mk9YuCvQBwsq1EQggWZBTJ6UeXfe0Dcgl7gvGADLPbhrL5bIKIk6OY1qA59K7JX5dCoQXToT88lkUbHy8+HMklp5GwbpzIs168Xx9PneXg69Xd0JAmheLRas+AS4U3xbRLfnc3101XgvDx8TdOT6GvnZ93ftzF8fK58brJbBGmNso/LiQ5vUomCOvOcG4MA++40QUjHxMY6oLn+Fq4DhqnvA987NuBw8XIxgnhC6f10QikUgkEolEInEdGyMoQDbWRV0hqpJaJMbhud9euM0JcCzoCIHyreyIAK/bNg4RALLhqRiICU68KKC3DogJ8/m8tfMCUVHOhUg6dnd3NRqNdHh4qG63e80R4c4DJ+Yuhkyn0yp20AdIKWMb00GYEwgZ7UTgYNtKrw0wHo9r/9YV1WP+IXdeoJD2e4FJj6z7vYhGr6uxQF9YVwg8sY4Fa+/8/LzlWvC6GowPxzNfEHDawDrlmswRogdj5ykq9NOdJS56cF+vwYCF3+39Trhpw00FCf2ZcAfOcrlUv99v7XrA8+HbZrqQ4+IB1/PCp74OEamGw2FdO95mb2tsn39Oez3NxOGuExcjXYyJDhkvPJq7PCQSiUQikUgkEjdjIwQF6WpbOqLybsV/OXjkkr9zPel6wT7pinQgJng9BVIhPNoLUYJo+Y4LOzs7Gg6HLWu+5+I7YZGuIrbj8VgPHjxoEaHz8/OaVz+ZTGp7PHo6HA71zDPP6F3vepfe8pa3aHt7W9PpVIvFQsfHxzo5OanbCkIEvd6BCwrHx8daLpfqdru13RT7c9LqBSK9fgHj4BZzPvf0CmomUB/CI8ZsAdk0V9s3uiPDC/TxZyeNPvcQVsQMF3x8XXhKA+4OF4m8cJ/X6fDtI5kr2iyp1TaPhHvBRNwUs9lsbeSeNvV6vVoMFPHGHSLuIKB+gTssnNT72kfc8RQGjkEYcZHCI/1ev4BreBoOYwt4ttxB4c6M8/PzWiDTxURvsws+UViK4iNr3YtCzufzlnAV02X82vR7sVi03kGJRCKRSCQSiURiPTZGUCAq6BZ/J9JuB4fQSVe2b7dm+3f8hkxAbKV2bjeFF2NUlz97UbzT09N6v263q+FwqK2trVqJ390TnkPf6XRqTQFSDnynBNIknGy61Z/CjaPRSAcHBzo8PNT29rZms5nu3bunF154QdPptEWUnNAeHR3pox/9qB48eKDj42MdHx9rNBpVou8kzvPmp9OpTk5OanqDk9G9vT11u91Kfo+Pj2u6xmw2a9V+QGyYTCaSVImf1w+gXoaTbHdJ+P2dQOO0cKLvrgK+g2hS72JnZ6fuXOEpGC4OcQ+vQ0E6ixdPdKKPSIEYwbnShfBAKgjr2YuGegoN94+7RXAO9Qcg63EnA/+hX7GGgjsxePbWFVn0Whi02x053jZ/hvxZHo/Hlawzz54m5EUn3ZXhLoS4LtzZQYoDc0mNCu4TRQcXKZgbhBPEnUQikUgkEolEIrEeGyEoeCQ4Og1i7nzMw4aYOLmK9m7IRkyJ8OMowhjJkJNVihZCOiHTe3t7LaHBCXmM8HLcYrHQarWqhQzj9RkDt6v3+30988wzevbZZ3Xnzh31+/2a6nDv3j2dnJxUIgQRdJI1m82qi4EdJHq9Xiuq7O12Czgk3d0DEC7vszsKSinq9XrVZeGRXx9rT5HwApzMgwtJjIVb2f1Ydydwf6L30sX2i74V5jrLfHSneKSaNYcrxHcliOfHaDtr0Qk+5yBueGqI99/rLMSChZ5ysC4twPvmEX/f6tPnhPXjwghj6m1zAcKj/w7m0t0pvoOHp2l4QUx317hg42vAxR7uwbPNs4NAQft8XBFf4nNCAU1qQyQSiUQikUgkEon12AhBQWpb150EedE+hwsOHtWluKNHXIku+xZ0Ttw9Ouz1CqKg4OfgaCD6TvSctnQ6nZoGIV3lu5My4UUTiUR7oUKpvZNAKUWDwUCHh4e6c+eObt26pU6no9lspslkoqOjo1rPwO32PrbsGkFKhQsE9DsWQ4R0ej0IxgkxIdZaQPyhrgRzcnp6WtvowoWnVDhZhPQx37HYYcyB93QK1kWn06nCy3K5rGvJt66MFn8fd67PebQVxwr3cfcDhJk+0F8ns6w7SXWnEXds+LwRNfeaIOueB68L4BF7xi6KAV4QUlJdh54KEu/tcEeJixExzcfXh7syIOvrHCgu7AHu4SJSFDX8e9ruu3x4ilQUX3g+o0iZSCQSiUQikUgk1mNjBAWpvdWdR3fd/hyLtkEysGdTEd/JC4IBooITX9IWIHWQH+7BNaQrckOOO6RUUmu3A5wLUSjY2rra/g8ixPex2j+FDj2Fo9/vazQa6datWzo4ONDu7m5NIRiPxzo7O2sRIFIMIEof//jH9eDBAx0dHWk2m6mUUrfORPyIUebT09MqQlBAUrqy6bsrYT6fazwe13GN2/bhUKAKv1vdcQl4Tr8LCj7XEHmO3d3drevF8+kRFJzw03bP+5fUEn/8c4+kE8H23TfWpeVQJNKt+KRYSGqty+iu8dQciDx1GqhN4bti8Nzw29MQXBiK6QVev8HFHRdQfHcPov4+bsxbLIgZaw8wNrPZ7NozIqmKVV600l0Z9CMW0HTxyUUqd6qcn5/X9kXXhztHfN49nSQdColEIpFIJBKJxM3YGEEBAiOpJSZEW7d0RfSxJCMKQHYWi8W16LIXuMMm3el0ak2CwWBQCdR8Plen05Gketw6l4RHUb24oxNH/8EqT52E4XDYIsnk40tXEWdI6c7Ojg4PD7W/v6/BYKDBYCBJNX0Bwu4iCJZ8yN+DBw/qsZKqi8Lz1Ek/aJpGR0dHunv3ru7du1cFE4ov8pv8edrvqSlS2+EAMWUHBe7nhSRJRfDUEndcuBDjoosLDKWUKhJBWvm80+nUyDVry2sFQOAlVZLPfPq2nO7QYK6d9Mbihk7kEQcgrezU4UKW19QYj8etnTsY106n0yLWwN09zIXXDKAdTp69LgbnxGKH0U2yzm3ioE+M9+npaa3N4GKC76bgtSDitpJ8544GqV3zw50OPKOxGKMLPcwf4+hpKD5viUQikUgkEolE4jque6cDSil/rpTyYinlX9hnt0spf6eU8pOXvw/tu28ppXyglPLjpZRf8VoaA4mAeDZNo93dXQ0Gg0r6pCvCRPTY0xmkq1oEfgwkjeKPkDl+cDZgmfd2QHB8p4dY9FC6IiFEmt1a7dtEEpH1egrcJ+4yQF93d3d1+/ZtPfPMM9rf32+5HTjXCxVyL3ZzePDgQYvw005JVUjh/rPZrIoJ9+/fr8X42AGDyvyMNbtGYC8nIrxcLnVyclILUHpue8zhJ1ruc+ykEDjxc3HDI/s+p7gK4lxyv729vSqqcP04l+5AYPy63a76/f612huSWik4HjV3lwaOFcbf20c7OBYy7u4WT2NwscDrAvj4uWDAGqOdXhPDx9nTTSDm/hysczisq1XgbiHmhWeCAqQ+bk76mU9P1/D17mIH37n7wNvja8qv67tZMF7+HG8KPpHv4kQikUhcR76HE4lE4jpeUVCQ9O2SfmX47JslfV/TNO+W9H2Xf1cp5bMkfZ2kz74850+XUl4xxBfJuZMJL3zo5I7otNcqgKR4obZYYNBz3D2NAqIEYYNQubvA/ww8quvkRLrK8/cIrW//xzV9G0V+uLZH4g8ODjQajdTv9yWpRTBpByTt5OSkVYBxMpms3VUgFjLk/PF4XAs9ch7pEe4i8B0VJFUyj6BANB4C6iKGzxWR6Fg/wO38Dgih5+5DLn2t4M7wtArWGi4D+uOE03dawHHAvOzt7anf79etHZ1AezucZHt9B7fxewR/XRpMXBtRKIhpQL52vT5ATFNgzB2+7mK9BF/TPhaxAKk/0zyTrGMXjEiBQEzye8S6FrFYqotCLnawrvz+cW747YKCj2Gcu3X1Kh4jvl1v8Ls4kUgkEi+Lb1e+hxOJRKKFV0x5aJrm75dS3hU+fo+kL7v883dI+n5J33T5+Xc1TbOQ9DOllA9I+iJJ/+AV7lEj6nEbx8FgUNMPvCgdzgTqGBD5JxruxA5S75FPJ3tEyz266RZyJzCSWlF0SCjk09MynPy4M8EjzNLVtpSQNUnXbP+dTkfD4bAWgoSQxaJ58/m8JSK4tRsiJanWF/Cikzs7O5pOp/XaL774opqmUa/XU6/XU7/f12AwqPNFCgDXQ+BhDnEoEA337SOd+HHv7e3tWvOBMVi3BaeLQT4vEFZ3HFBjwsWX8/PzKjpwLO1B9PC6Bh5hR+Bylwhtc4t8JNcu/CAQsaa9BoALay4oeL0AxnudKBGdFL6G3d1A2omnWvja87a728ZdMdGJEY9lbcf0As5fLpfq9/stocHHhHQQvouCHO3zceB58ba7SLCuJoun6cQUiSisPE58It7FiUQikbgZ+R5OJBKJ63i9NRSeb5rmo5LUNM1HSynPXX7+dkk/aMd9+PKzlwUEFbJA0cPhcFjrGxApd0EBIuN5+hBzCIOkVrQWsuPFFvlcukqR8LoCHjWnXgNkFrLp0fWzszNNp9PWtnu0DXINaYHoIXwArxewu7urw8NDPfvss+r3+yqlXLPPn52d1fz+yWTS2hYSUnZ2dlZJNBF8F18Wi4WOj49bKQoQ6MFgoH6/r52dnVrsjt+IP8PhsOWQODo60mQyad3PBRVEDU9JoX4BZDUiVt4nCs58lXJRBJLxRFCIgoG7DBB6SMngHrgPcLQw7xTcdDGD9ca1XQBomkbz+bwlNsRovK9V6ji4COH38JQOzmcteGQ/pkF4YUVPr2GteXoGjhG/hrtJ6CcuDZ6HdYIc88j8u4jiAhxCFgTft4H12gj+rPgzx729IKWLBKwXFxn8eXPXCp/F98QG4pG+ixOJRCLxmpHv4UQi8VTjURdlXJdw3Kz5TKWU90p6r6RWlf5yWVCv3+/XHPVItj3/f7lcajKZaDqdVrIKgXX7uFutPXrr0UqixhALr3/gJMQj4349SJK39fT0tFq7neh4ZNnJFQSJSHCn09FgMNDt27drVJkaCRB/BAt2Y+DHUxuIwntkW7oickTBuSYEc39/X/v7+1VMcMs7JJufnZ2dVi2GuDMAggFCAj/uxnCS7lFiTweoC8ss/jGFgu/cXQAQBSDkTt5dIPCUANZGjKb7mvQijrg0vMgh6RMAgSmmB0CePf2H+0anB9/HQqQx7cbTiKSrgqGeksCadGePiwkxlcgdOfZc19+esuKOHXcscL6vY9+VxZ9ZFwyigyj23cfZBTzaxjPvLiOvCYHY5+lNTxhe17u4q/4b2aZEIpF4mpDv4UQi8VTg9QoKL5RS3nqpxL5V0ouXn39Y0jvtuHdI+si6CzRN8z5J75OkbrfbeNQa6zzF9pz8OLGSVPP/IcGSasTUP7u8ZyXxHOPbw0FSiIQ6CfLIpYsBTkIjIEge/XZrO31eR7C4LqkOo9Go1jwgkjudTjWbzaoIMJ/Pq7hyenqqfr9fI9kxj9yJlBNHUg6wxSPqeBFGt+57tByS60U1PT2Euer1enWe2VrTxQGfLyfEALLr84mggKDhRFm6IpW0yYk168RTDzzVwklmjKpD0kspVchyUsvvWKwzFg6lLfTV2+TRehfTvPiiiwLMs9fkQCDiPHcc0AZfx37dWNvDx8jHAsS0B76PaQqIfowFzwnr6abdPeLcuvsoOhFijQlvH+tk3a4Q/H2TUh5uwCN9F4/K7fUvs0QikUjchHwPJxKJpxqvt+LYX5P09Zd//npJ32uff10ppVNK+RRJ75b0D1/pYhAFiJMX9vPibVjDERogA26F9iKNXNsjv0RaIcOIF06cI2nx6Gcs4uikz10GW1tbLdKPOyBa1V0siYSplKLhcKjDw0MdHh5Wh8B8Pm/twjCZTLRYLDSdTquYAHF28uwiiY8b5JI0itVqpd3d3VqzASLsefrSFfmCqDVN00rvcBu92/h9nl1A8VoQgJQF6mv4Dhy++4HX0KAQpNcM8Kg3rggEFC8qyTHrtgyM0W/miZ1I4q4PXosBcQfizjizrrxwJ+1hDURHB+kWXiQ0knV3nrg7BgHG6414TY/4vLgzALjAEaP+Hu3331GYI60IBw9tQaCJO5B4yoq3x0UE4OkQbG3qwghjwNoiJcadIowvNTI2GI/0XZxIJBKJ14x8DycSiacar+hQKKX8N7ooNvNMKeXDkv6QpG+V9D2llG+Q9HOSvkaSmqb5l6WU75H0rySdSfo/N03zqjzDRMR3dnbqLgYQAPKqOc4JsZNUijTu7u62LOOkKEBYndD6LhLY1CEr0Trt0WUs5m5BZ7cACLRXw4cIesTVhRDa4CLD/v6+RqORRqOR9vf3a0rCdDqtdRIQEcbjcf1zKaUWUKROAqSb/nukmzYienDuwcGBhsNhK12BY91hIammYjAvCBrlsiAhbUAQQlRhXugXBB0XAtdzy7oLGU5ImV/66ATc0xRoU3SZIDwgSLndn/oT3N9JK3OPi8PHeF0KAvMV6xkA1h/ncx+ENMbeI+64V/hxlwgil689RDXfepN2xEh+fCZcPItpHJ66wRi7AIA7hbHwHUZ4TngPSGqlsKzrN2vPBUDmhH4hSKxWq5ZQwS4lLhSy1tel2DxufKLexYlEIpFYj3wPJxKJxHW8ml0efuMNX335Dcf/MUl/7LU2xAvOxQr4kKLL61cy5CTEt2z0SvQQdogwhMgt29zXCasfI7W3tvRCipyDQCGpJRZ41BNyxJ8hcJ4CwfnL5bKKHYgNFFw8Pj7W3bt39eKLL+r+/fs6OTlpRZshidzbRRgnxuyqwLhSf8Ij0NJVcTrGEjLG/CAOlMuCiE5kJVXxhXtyTW+Tn0NUGTeGby0oqaanuOAAMXXXAPPK+uCa9Jl+MX+MW0zD8JoRvk4QFdx5wPrBRcDfPS0jCjN+HiKMixFgXVpC/NwJfDzf1x8OHVw5zKGnJoCY6uHPDGPlEX2veUCb3DnBfTxViT73ej1JarlRfJy8b8BdRE3TVBfKzs5OXRe0wZ1KLvzENAi/3qbgE/UuTiQSicR65Hs4kUgkruNRF2V83UAQYItI6SrXe10+MwTAhQivq+DFDmP9gJgfD5mR2pFYj5QDBA3ItQsPTlppm0fx+dyJVvztokXMmZ/NZnrw4IEePHigu3fv1h0ZIKhEYN2u7+TOBRrG07ckXK1WrXQRzvcoPnZ5dhWIWy7GfHQnu05K/dpeY8IFByeVXkOB9rmwAQlcV5cCR4QTSSfBjBfpCZ6CQE0GXyte08HXF2Td++oCkosetN+j6i70ONwpwH3i+l0nKMTzfW3Ggp1+T9ZDLODJn1348wKlnhITRQ0vZsl68lolXhuFNevFQel3dCdE4s+c4zhAsPL5cLGRPsbx8XlNJBKJRCKRSCQS67ERgoJbr9027hFDJ4yeW+4WbIgWhIRjvLibW5u5t5MKzkWggIiuI6yIDrgIuIZH4337yXhPj7z7ufQxVpw/OTnRvXv3dP/+fT148EDj8bgVwcXmT8TVc+GdyIJYPd9JFOOFu4DjSLWAaLNVpDsOnFTz28eZe3M8aRrMfyxm6RZ0tr+ULggm20yuE5+8dgIuFXdbuPDhu33QLtog6VrBTBesGCvvt68l2hnH29cE4pWLCu5i4LcLBeuKbbr9n3bE8/258DmJQkAsAOnE310wjCl1K3z9IHJxntcx8f57ikisdRIdIVGUcqGBOeSZYZ1yDukufizvG+bHj01RIZFIJBKJRCKRuBkbJSj4f+4hCJAQL6jmUVKIGLZmbPKe7w6xjIRSUi14BwFBdOj1ejVnXdK1yGuv19NgMFCv11O/329FQ92VEFMm3A1wenraSi0gXSMSfyL/L730ku7evavJZKLZbKZut9uq5+A2+ZhisLe3p+l0KulKSODaPhaeO0703gmeCxmIALR5uVzWOgiQMc9fdycIwgN1FSCvTdPUooqeDuGOENYIP4gA9Cc6ISTV4osUrXQiTu0Nr+sAOXbXR0xV4X5xa8pOp1PnbF1hP8QNX+O9Xq+Vy+9Rc39OfJ44DkdFFK2k6/UFPH3BhQS/B9eM2zaWUtTr9Vp1Dtxt4G4XnkUXLph3d5ywhrxmAkVM6StCBuKHz7ULBoh7fO7POe2hPy4gevFJ1qivs0QikUgkEolEIrEeGyEoeCReav/nX7oij5APih9CNjx3HuLpkUW3+HsdAa+YPx6Pa2E/qR2Rjs6BpmnqDgjkoHthORwCe3t7lfC6vZs+DwaDSvLYHYDrzOfz1rgsl8tWG8kTn8/n1yzhnoIBPGLNnxlb2iCpJSj4LgE4Ce7fv6/pdKqmudjSEnLOscwbczGdTuuY0h9IuxNViJ3vPrFuLXhqijtSYvTdCSGFG32OpCunSLwPaS1eO8FFl7j94nw+r+uO8z29YrVaVdEJ4Wm1uqrz4BZ9J/vc1901wMk+7oDYp5ji4mPkP7523E3i88j8RbLtbgM/njbHbUMRALiXC4msH08pYsxZO/TR0074jPeDp334euA873cUrHiuGNt0KCQSiUQikUgkEjdjIwQF6bpN3CP5Hq0kWuzk2ImTExEXGKLdnHx5UhrYejGSICcnfr24e0Ak5k6+ICzL5bKSR65D9JUdHjzH21MxnIzhqnDiGGsXMFaxgKK3UVKLlEFiY20Drj+dTmsaAJFcnAoetfecegQH3wUjpidwDkKK1yxgbXiOvTtWfJ7cyg9IN/AI+k3rzs9xognZ90g7Ik9cF5LqXHmhyVijA4eNp2REcN1YF4IfxoC2enFIFxF8/a67R1y/7pBwJwXjG0UYT0vylAkveOgCEnMbnSSsGRfeOMafhZhi4vUvXIThOxcY6YNfw9eOi4zxWUkkEolEIpFIJBJtbIygADmJ0WlIhm9vty4NwgkT30MMY7HEra2LbRqx2C8Wi9YuCV6h323uRDfZWtELHyIAOAFhKz7IJ1v/dTqdWo9AuiKXCAY4AhA8aCPkfGdnR91ut1U4EHLr0dwY+fccf3ckSG0Rwq3kjBvOAU/pYG6cxLnIgzDiFnmvdQFZ5HhIv9vxmU/fiSOKJMyLp7fE3HjffcCLC3KME3b6xXpBZPJoulv3Y25/3FaUtev3ZgePWIgwpjC4qOH1COI4e1pAdKNEBwdjT7v9GCfwkXB7vRLSjFxIiCkXCCasQXeqrHMlxbXhbgkXMbxf0tUOKwhWvqa9KKivuehu8GfT3RnrhJ5EIpFIJBKJRCJxgY0QFDznOUaLgddN8LznKCRA/MbjcSuf26OtHEe0fbFY1PoCkBOvqbCOfED2/BjIv6QaMY4RVdrnUWPI19HRUU1p2Nra0q1bt9TpdHR+fq579+5VUYL2TafTenwppRZkpEgkLgOEAHcJSGrVEvAClMxHrB3gNQV8FwxJrWv6No4uArl4wFhyDttD+m4ZwO3u3ha/jkennah6tNrnULoSUxg/xsHdGczXcDhsiVmQeK7h/UNM6HQ66vV6Gg6Hdb2tVqv6OWkLTqI9rx+Bi3b53C2XS00mk9oO2hbTVdyVE0k71+F+Po7urIHYI6j4PPIM0Q536GxtbbWEKXcteHqIzyvCnKckcX8XK9xFQQ0MF61cNJvNZrVN3W639pv5ZX2xxSjryp0liUQikUgkEolE4jo24n/LWPrdNi+1Cyr2er1Wxflo4/Z0CK+V4IAM9Xq9ll0dckE9hFiTwCOdTjKIuEK6vOgb93NLuhe0i2kHs9lM4/G4EqrhcKjd3d1KUCeTSR0LSZpMJrp//34VLihIB0EiVx9B4fz8XN1ut5V7L12JMJw/n89rPyG9TuRwXXikGrLntQMQWCDBzAXk3dNSKKgJoXOrv1fd53gXlHzeaSPjxI8XRfSdHBAmSGFxIg7ZHAwGunPnjg4PD+t51JBwgSiKJd1ut9bYoHgmhJv5QgBwUcprNnjqgteFkNQi8VFwWTdu7jLwmhfuLkAwiDUK3G3gqRvrRA8n8hzjqSjrBDZPgWGNdTqdSv4dCBSIHRRFdTGBeWJs6Zenw+CcwJHEuf6OSSQSiUQikUgkEi+PjRAUIM382SOdkBgIledsS1e7GPgxiAmeEw7JgFQQgZZUSYdvFSm1q+p7Pr8XdIO0uDuBcyB9p6enklRJD9f3SLqT8G63q9FoVCO8jA9kh0KAkHN3DNAOouyQRid1Mf/co8bMA9Fcj/rzuY+pF7tjTGL+OdZ45s6LENJG2o8AAMldR+yihd3dAcAFheiI8JSC5XJZCybS7ul0WudhOBzq4OCgFtBkLn3teeFM5nlvb0/9fr+6RnwLRHL1PerO2ndngLsKvEjjTekhXsvA1z5AeHCXgddY8LmNtR5cCIsFJ/25iEKZi3CeihTrLfj67PV6rXoQLj55e0spVVBAEOA4F1UQfbymic+hF3mNqR+Z8pBIJBKJRCKRSNyMjRAUIGqRkADPvfdophdbc6KOtVxqF/STrkiV34+IqEebnUh4FJ5zIB5ES90ZADlihwOEAo+EuvOBaxClHwwGunXrliTVLfSIpBJZh6R7VNWJJWkEHj1eR5A8ass88Nm6wnn82Y9xUuzFACVVYcNt7x7Bns/ntc4Cgohvt0gU22serHOlcD/EISzzW1tb13L3vf4AqQmsL9JfhsOh+v2+9vf3tb+/r36/X0m8ryPG3+sokCIRXTVe32F3d7e2FxEI0Yvj4xp2IYtx4zqRoCMYONF3cc7rNrh44HODyINbwFM0omjn7eMYJ/ReUNOdRd4+nBtsoUl/YhFFn//BYKDBYNCqGeG7NkhqORgktUQhF7LotwscrLlEIpFIJBKJRCJxHRsjKEA++A8+JAfi5rnhW1tbGg6HrboITvSJ3Dp5cgJIlBViB/EjKuoE1sWExWLRipbGXH4vHBnTLhAsuCY7PjhJIire7/fV7XZr0UZJVeyABEJsIZTSVXFIxATqRTiJ9wJ8fv75+Xkl/rQTWzj9hLB5wUcv+OfWfT/Ha1C4Hd0t7tjSGTccJKyHXq9XXR9OYj39hPvs7e1pNBppe3u7tsHHie03GR+EGmpSzGYzHR4eVkFhOBzWVAx3qkCwpat6FFzPxQSP5PO9O1p8/XqNBPrPXECyIeXuRlmtVq3166kNtNuLIboIQl/iPRBlvEbBdDptCQkxjYG1tFqtqrDizhrGnXnlGSft5ODgoLVOWTO+nSp973a72t/fr6kR0dHC+trf36/z4YKQ98HvydjQ/0QikUgkEolEIrEeGyEoSO1IJYKACwGQC8+1h3R5cT3fQs9zvl1YcELqUVlIjtdRkK62HvQ2QdohOtwPQjybzTSfz1VKqdZ5FxA8gg/pJd8eojWfz2uRxX6/Xx0E1BxAGIEwOhknChvz6NdZ9hl/dxsgBLBVJGPrUWDOiUX+ptNpHRdPM3ABwC3uTi7n83k9H1eG7+5AW9xtQbRe0jWSiXCD1R3HhN9/NpvVe3LfXq+nW7du6c6dO+r3+610kOiO8TXouzcgrLCDCH2nT8y7r0eu78UGEaM83cfHneNZO74uvHAmApqLGXxHsVPWZymltTsHgguuEVIFSGPgfl7XodPpVELOuNMO5hxnwt7ennq9Xq1v4sSf9cb9B4OBhsOhRqORbt26VZ0PuH08/Ybnx4Uzrwni7wh3VfA8r6vjkEgkEolEIpFIJC6wUYJC/LsX0HMSABGRrqLywImu/3jU1qu4u8XbRQa3WUe3xO7urk5PTzWZTCq5dys9xJ5oJ+d6pN6JEsTPi0pSM4EdAdi1wbfLdILJd6R7MH7eJs9Hl9q1IWJk169FeoVX5L+pWKDn1q+7ts+vzzGRdoi9pErocHQgVvi1aad0Rebdmu/2fwQVT9GQrnam8N0wvKiik3lEFf9x94Gn3rjoxJyw1py8+7hDap3sQoZ9/ln7jKW7X1hrvu5Zc76DCed6HQzu7YKBrwnfktEdEN5+npFut9uqV0GbomsIIY1aCNEp4DUbdnd31e/3q5jQ7XZb7iavu4Crh5QWT1Na53LhXqTfpKCQSCQSiUQikUi8PDZCUFgnJrh7AKLipEG6IjCkL3ghtpg7TkG5GKGUrhf5c1Lm1mu3q5Nrz1aHkbj7bgYQWo+se+E4otGkVpBe4dXuETEgRNRRgLxTqJEaCB49dkeBp3FApiKpldpRf7fGS1fWck8ZiHZ8nyeizU5eXUzAlTKfz1uWePqPEDCdTltpINxvNpvV2hfUTXDSzhyTDhIFDgpD0i+PljsBZ8xdzOHaTupp73w+r+MYdyCIbfO1DKn3LTd9vTgx9jmNjpx1uy9wLRfJXJzzdAQXihAFfP64hu8WwT0QZOgPKSk8i17QEkEBIYhnnzZRu6JpGvV6PR0cHOjWrVt1W9XZbNZqM8JDKaXuVOJCXExR8joUp6enVVBCFEkkEolEIpFIJBLrsRGCgtQm9xCjWECPzyAZXhiOnHui/X5dSIzvygBJxC7NtV2s8Gr63W63VZnfCx6uEzm4NiQaQua1GqSrtAMXIxBP+v2++v1+tcdPp9NKqo+PjyuR9vHgmhBbIvvn5+e1/T4uXlthuVzWOgpcx9uKaACB9PoW1GBASOFc/h7n2lMs2BaT/HyEBMQbvuN7L05JSgbV/qm14JFtxoZUEHdqMMcIBYz7aDSqggIuCNYbIgbj1Ol06i4QuEtwryBgeNG/6N7wIprcB1EDoYTr8OMijRen9LnyOUbsiGkNINr9IdLuTonuIEQad24MBoPq7IDsk6YiqVVTwes0QOAR3VhrCHdnZxfbrr7tbW/TW97yFh0eHmo4HOro6Kg+g7SNOhs7Ozva39+vaSeTyUQPHjxQ0zS1aCbbs5KSgbAXnTeJRCKRSCQSiUTiOjZGUPD8fSc6kfC6xd1JDlZrznEyT3E+yCUElOu6lZ+oMRFxt0ZDnCGfEHSvqwC8ej9kxZ0BCBOQlp2dnVY0G5KK3Z88/5OTE00mk0o8idzilCDf3qP+7hhgXLyeBH2dz+c1z5020U/G1reFxGnh22NScZ/xjHPpEXFILDUGINou3lBTAQEHB8JisajtdWs/80O0mXFaLBatbTRjDQYvcjkajaooxRg+ePBAJycnGo/HGo/HdTvPmIPPXPl93AHj65T+LxaLWgwSUo8zAZJM0UfWPc8M5J86Dy5KMeZeFNFFFq8FQa0PL5CJSOBz56A9tHFvb0/7+/u1bsJ4PK5iwNbWVhUavA+j0UiDwaA+w/6DcHN6eqpOp6M7d+7oHe94h5555pla8wF3EoIJdUdw6ezu7lYxYTwe11oWfL+/v996/j3dxN0LiUQikUgkEolE4jo2QlCIZCUWEvRaBkQuY30E3AkQZS9cB6Enusyx7iaIlmh+KALpn2OL9pQG6XqtANpNJBvSRB85z63zuAuIms5ms0qOT05OdHx8XAlwHBeKVZK3TvFBFxA8z76UUiP/XghRUqtwH/Ax4Bi3u69WK3W73ZZDgFSLKBb5ThAIKZ7mABHHNYE4gdvDxRRcFByPC8FrI/huFJ5qgODjxT7J5ffUhfF4rMlkUiPuEFnG0l0QXmvA3Ri+LiD2Lpj4GPiuC4yX18xw541vR8qx62pmeC2CuA5jCooXi3Rxjt/uqIGc93q9Kij5M8da8YKQiDE4MKJrgjXPGu73+3ruued0+/bt1i4qkmqdDU/tIV3k7OxMx8fHGo/HtbCqbwfKc/ZyLppEIpFIJBKJRCKxHq/4v+VSyp8rpbxYSvkX9tkfL6X8WCnln5VS/mop5ZZ99y2llA+UUn68lPIrXk0jIEcekQWe8hCL0q0rOuf53RwPcYOIu+3bo7b8eDQbIkoUGfIHGYLIxar5IEZd6S8Ey9sPgYPIEO2ezWZaLBY1Qk4EPBYEpD0QYYiS2+GJziLMkELBPbyNLkD4eHpEF3IfI8WRmHq/cXowJ9wXd4JvS+k1BXy3BuYmuhPm83lNkfAdMbi/rysXSGLuP+kBXO/k5KS6Q7zIItF/0hwoZOlr23fTkK52PKD/vnuCuxM4z8ee9cj68WKe7mCgDbGGhM8h88U1onOCdeVFFCHufm0XE7yOAekzLn64wBX76EVLWVfs9DEYDHT79m3t7+9LuiqkyXgx/6TE0A6EOBwuOzs7Gg6H2t/f12AwaN3fBTTWfpy7x4lPxLs4kUgkEjcj38OJRCJxHa8m/Pbtkn5l+OzvSPqcpml+oaSfkPQtklRK+SxJXyfpsy/P+dOllFf8HzkRyH6/Xwnluqr1kIhSSs27JjrpbgUvXOc7B0DYsWRDYiDTCA9HR0d66aWXKtHlGicnJ9Ux0Ov1anoBQoaTLwcEz7fUk64i/usIr1vnPdLuEWYvBjgYDOpWmggfTtyIvkM86ffJyUmruCSRXX4zvlJ7e0TpSlCg/RBbF0lc8KAmAf0j+k++u6dWuLDDub59I26UWLgRwYVUB8bVawvEgn+sFYjr/v6+VquVJpOJ7t27p49//ON68cUX9fGPf1z37t3TZDJp1UHA4cH8RueKi2Kz2Uzj8VhHR0d68OCBxuNx7YuPX9zm1An69vZ2fVa81oQXdXRRA4Eg7sBB4Ul/jtw9QRqDb0UZdxXZ29tTv9/XcDiszy7zirsgCh7MNVuhIuSxjjxVZWdnR6PRSHfu3NGtW7eqCIZA0O/3tVqtalrDarWq67xpGk0mk1YRxuFwqDt37mg4HLbcETyLjJs/CxuEb9cb/C5OJBKJxMvi25Xv4UQikWjhFVMemqb5+6WUd4XP/rb99Qcl/YbLP79H0nc1TbOQ9DOllA9I+iJJ/+Dl7uGRXkmtnRqIdkKCfF95z12/oe31t0eyuSa1GCBziA5+PYjG0dFRvTeRVi8EiX061mTwiHK/36/Rd98Nwa3q3h+2xFsulzo6OtJ0Om1FfD1PnBoMvjuD9z+2abFY6MGDB9VmT6SXyK5b4b1KP0SLz13IYV6kq10BFotFJbyMP3nxkHnIM6TYxQTa5+MCiWbu3LXg6TBeU8NdIe5GoQjgaDTS4eGhDg8PW8UEJ5OJ7t+/r+Pj40p6PS2DdYQgA3n23QQ8HSOmjbCGWVOexuDpHdS2oL5BdJ3s7Oy00noQKWJKD2uRugteGwNwzYODg5azATHPhSrECFJtjo+PNZlMNJlMqrvAXTG4L14ulQDBqNPpaH9/X88995zu3Lmj7e3tmvLD3HM8rpFOp1PFoOl0qpdeekmlFI1GI/X7fR0eHtY6D1tbW1X48HQfxEqO2RR8It7FiUQikbgZ+R5OJBKJ63gUNRR+u6Tvvvzz23XxMgUfvvzsZYHVHceAW6Mhwr7NnJNFz712O3Ys/ufRX3Zp8Pxuz+P2KDxR7LOzq/3p9/b2WnZ6zy93+I4StJlIuhdjhEQTFYaAQQKJ2Hq73PaOg2MymdQK994expKx4F6+u4Xfl2PXOROcYHm/3KYPQSOiTsSY+zuhhrySgoEbBPLNGHEuf0ckYX24iBIr9PuxXqCSfuLe8HaSCuJFGHFSsD65dqxH4FHvmPLCmuBajJlvK7nO2bC1tdVyxNBuj/77eHAdb4OLP/6M+by6qMG4ukPG28y1eE4ktVw0tINzvP2+zhw+logat2/fVrfbrUIT193b26ufUVST54ZnhvVCWgYCCOvN3RTMCcIYxzxBeOh3cSKRSCQeCvkeTiQSTx0eSlAopfz7ks4kfScfrTmsWfOZSinvlfReSZXMQb49sh6JrJMtJ2exgKALEk6iiPr68dEG75X4ieZLV5Z+Ipuewx/z82kbhMtFC49Ok54ByUcg8Bx+t+97AT3aQo2HmLqwTuDwehGS6ph4moaT7VjI0Gs88OcYdYbk+TaW7sJwkubOkdVqpfl8rtlsVufIrfguwriA4PUpvF3+vc+1HwNRh0RCSHEnUF9iuVy2HAFxbDxFwYGI4HZ6RCgXBLgmbWP9IGZ5rQCu69F/ngN3EMS5Yx5uIvVeEJRCpO4Uwc3h8+bCXix6yj2i68KLPDInjMt8Pq9ram9vTwcHBxoOh/9Le+cWI1lVheF/9b2qenoEGc0IyMWgCU9CjC8KmmAUCIKXxEB8mEQTQ4KJxJiAIVFeeEAjrxIMRGK4aZTIiwnEGH1CBOQyCCMDYhwZQZlAz0x3mh56+1DnP/2fXaemp2FOVXXX/yWV6T5Vdfbal7Om19prrV2JbNH1lp8QwjXGcQPWHUa8JwsxampFXhBTn9etwMnSxXNoNyKfMcZsd6yHjTHjyrt2KETEHgBXALgkrVvnBwCcKR87A8Crdd9PKd0B4A4AWFhYSDQ2gPWoAxrbACqG+draWrmjqH/wq5OAnwN6izfW5f3TiMt3mxlGz1QHGlAszKg7+3QM6G4uDWENLc8jKrSaPSMg2LY6FDgGrIkwPT1dGkUsCKiyq0GpefQ09nUnmuNezG0lokELI2q1fjWu+R3WE6AsjOpgmgfHBkDFMGRKwNLSUqVIYx4Roc4ELQ7Iwop1O/yEBqMWtIyIsuJ/p9MpTwagkanzReNY0RoBmpOvdS60fS3myLHR9aPrWAuJsr4E51Lb43fytajRM4zc0OdBHSN0JqhMb775ZuX0D+7Y52uKThg9rUIjMLT4aH5ihDr+VldXsbi4iImJCczPz2Pnzp3YtWtXJU2F8vM7Gp2g64hzx3Gmo4DPMItissgmn6s81WErOBROqi6OU2v/2DXGGNMf62FjzDjzrhwKEXEpgBsAfCaltCRvPQTg3oi4DcCHAJwH4LETuF/lmMK6cGktnKhh67nBSKNKd3lpOHEnM8+1pyGiRyaqHAyXZkRBHkqtTgYazCxYp2fZs13m4bNNtsNwbO4O6/GQTI3QXeSZmZlyXJaXl8u+aj2C/IQJ7jbznkDVaNIaD4wU0L62Wq2K4arRIZp2wf7QuGW/V1ZWKqH3rDvBonpLS0uVIoW6U6wpAPk80WDNxzqPRmDtC113+WkbjFDgfGoKidZn0CKDeX0OjivHRp0v/I7WjshTdtSApow6l3kRxaNHj1aKe9Lxoo4lYN1ZocVD1WlHJxiLRzISRx0hdPRx7WsEhqaV6BGcuTNFIxQ4p4xOYGHMnTt3lmuKTgJGk/B5e+uttyrRI3mxUq7DTqeDTqdTrl866xh1oc6EPLpplDnZutgYY8zmsB42xow7GzoUIuI+AJ8FcFpEHADwQ3Qr2M4CeKQwqh5NKV2bUnouIn4J4G/ohn1dl1J6p/7OvejOroZLa/QAjTXumJYdEYObxpSmQ6jxnjslaEBrfQbd1aXhy3ZXV1d7dtdZL0BD+jXMn/nsep07vywmRwNNw8fzsHUNNafxpwbh3NxcORbskxZKzMPDtZbB3NxcGTHByIe1tbXSMaInChCOsRrCjLRQJxGNTqCa+89xYJRGbrzn46g774TOEcqlR0WqU0EjGiKi3PVX5w4NTD2mkTLkJzFQFp0XDd9XYzSPJtDxy/uia0i/kxcn5TV1HHDMGcWga1/lZERQHpXCPnFO1BnFz2mEA7+TH7/J9aj9AtYdGepM0KKRGrkBrBdo5Lph0UWeULK8vFxpU+G8a5HFycnJMopInw+eaMLoBI3SGRUGqYuNMcb0Yj1sjDG9nMgpD9fUXL7zOJ+/BcAtmxFCjTA9/UCjB9TAo3GY73KqAacGOR0GucEPrBtsWjyR99P6C1oxnwZsbhSxkCBlUSOa6M6wGqyMTNC+aiE/NYzzkxZorNEQo/OCxr1GEKgxy/vTUJ6dnS1D3Bm6rjv4erKGjrHuTOuYsg3OLfuvEQGagqFzyvfZR3Wy6DypwZ/Pna6tPJ2GRi0NSDVsuYOtqTF5cUF1cgDV3f08moGRE1y3uWOD45w7Fvi7RnmwLxwXvrR/muag6Qm8lzrDtI/qzMhTNnjP/IQJXf/aRp52U1e7gbJplI6uDT31RNcfI1kOHz6MlZWVssii1nPQlCY9XpPOEj7v09PTZTqTHqvK8RilCIVB6GJjjDH9sR42xpheTsYpD+8ZjT5gmLfmiOfHDGo4shrLuqvIavNqQGt7dUapGpY0vrW2gxZs1B1noNeo0voLNJh4L03H4GeJOk7ooMhrSXBHVSMYGGGgtRzYpkYQsP/MNWdeeavVwvT0NFZWVsp6DFNTU2i32+h0OpW6CeyT1kNQpwfHg/OpxijrGNAg1sJ4GhKvx2HSycHxyKNWNDohL37If9UIp0NI6xdwLVEGjh/vRcO03W5jZmamcmQonQwcexrT7CeNcN3xpyMBQE8kB9EQfk09oeNCDee8iKDWcuD7AMq1w7oH2kddy/yeGupaj0CPtczXpz4vPOVjdnYWrVarxxmj383XGCNNeI1rmekYy8vLFYeYRuJoFEq73S6fDRaZjIgy/YFjos4E9t0YY4wxxhjTn5FwKADA4cOHy+PbmOvM1AWtPUDjirucamxwF1Jzv2kw0IlAA0wjB7h7rDu7ACrGE4vP1e3UA73GkUZRqJwawk6ZKBcdJzTSmKJAJwsNH+6k0qDSHWPmhi8vL5ftUB46PGiYRwQWFhbKsWaRupRSmXe+sLBQOk9oQNKRsLTUTRWkIcbx01QOYN3Y1ToBPJXiyJEjldMgOO40DpeXl7G0tNRTnJO/cyzUEaPGuUYjqCMpT7vQCAj2EVhPEeh0OmXdAnWkTE9Pl+OntRD0lA2VTyNn2LaG2HNd0OBXx5OmC7CophraTNeg80bHAABarVY5lzzBQVNe6tDimxMTE6VziX1iJIvW99DImlarhXa7XR7ZqBETfD40hSZ3Fk1MTJR1GI4dO4bFxUUcOnSoPNFkbm6udIbRCcGTTmZmZsr1zdoZfMa0YGRd3zXixhhjjDHGGFPPSDgU1JijYcLQZO4o0kDRHHqNYtBQejUqtRgf0Fv5n5/JC/xpaDfl0SPwCO9Hp4eGuhOVjcaSOjQ0QkOPkOSLbWu0QL6LrOOo0RXaBzoSuGPP92mM0gnBEHEa0VqokdXx9SQGNb5yQ1WP4OM48x6MPGAf+L7OFR05nB9GD3D+2bf85Ie8ZoCefKARDWyHbdGRw+8B67vuec0OTRXRegVMpdD1xXoU/YxUnUPKQJk0LUHbr6tRwHvR+aORCXnhyTyaI08Z0aKR3MHXyAQWBOU4axrG2lr3WMv5+fkyMoFzr+sln3P2ifPLdISUUhk9o3VAWq1W6aRaXV3FkSNHMDU1hVarhR07duCUU04p5eX6Z3/U6ZM7EFQnGWOMMcYYY+oZCYcCDVoN16axw91ufo7OhHyHWYsAau2Eugr6/dIgaGwAKCMBuFOuheho0Otua27Aav67hvtr+2pEAugx2LUew+TkZOXoShqoauTS+NSdX42M0F1hGms00N9++20cPXoUAMrQ/k6nUzkJQOWj0a257gAqtQfywop8aZQDHUi5vJr3r+OZh/7nRjXHNnfuqCz57+wfv6d90/VD6CDSEzcYkcL3c0M1T1GoW4P5mqoriEhZaODr2mF0AO+l64BzTseK1uhQZ4/KR+eZpqBoKgUdR3mRTq2HoMeGcj2zTd5LHXAaEcFCiVNTU6UzQOefbWhayLFjx9But9Fut0tnRl7bRIu95nOkziU6TYwxxhhjjDH1jIxDQSvYA6gYPERz8RkGzc/qUXLcPVejMzfe1fBk+2rYzM/Po9PpVHLdNcdb8/G5O6rtqeGUGzDsC+XgvVi5XmsY6O4wjSt1mlBeRjLkRQK1HfZ3ZmamNLoAVNrtdDqlMUaHA8PIWQhPjToNb+e9ND1EUxTU4UPHgxrs6vjhi/fRYoE0jhkZoA4nOnc0EkFPPsjnIC/WqMX8NCpB39MTOfR9dSjod9TZpPOgMqtjqp9DQSNkuDY1gkGdAXnx0bp1p4VIucaYXgOgYtBzvDlvTM3JU0oYIcNnlE4IRhioA4Frg3KrU0FPZgBQRitx/NkXRt7oaRdcv3SI0QGWUiodI0TnRyOg6Mykk80YY4wxxhjTS4xCnnBE/BfAUQD/G7Iop1kGy2AZLEPGWSmlXUNqe6BExGEA+4YsxrivN8tgGSxDL+Okh/03sWWwDJZhVGWo1cUj4VAAgIh4PKX0CctgGSyDZRhFGcaBURhny2AZLINlGHdGYawtg2WwDJbhRBmdQ9aNMcYYY4wxxhizZbBDwRhjjDHGGGOMMZtmlBwKdwxbAFgGYhm6WIYulmF8GIVxtgxdLEMXy9DFMowXozDWlqGLZehiGbpYhhpGpoaCMcYYY4wxxhhjtg6jFKFgjDHGGGOMMcaYLcLQHQoRcWlE7IuI/RFx44DaPDMi/hARz0fEcxHxneL6zRHx74h4qnhd3rAcr0TEs0VbjxfXTo2IRyLixeLfUxps/2PS16ciYjEirm96HCLiroh4PSL2yrW+/Y6I7xfrY19EfKFBGX4cES9ExDMR8WBEvK+4fnZELMt43N6gDH3HfoDj8IC0/0pEPFVcb2oc+j2PA10T4451sXVxcc26GOOni62HRwPrYevh4pr1MMZPDxf33Zq6OKU0tBeASQAvATgXwAyApwGcP4B2dwO4sPh5B4C/AzgfwM0AvjfA/r8C4LTs2o8A3Fj8fCOAWwc4F/8BcFbT4wDgYgAXAti7Ub+LeXkawCyAc4r1MtmQDJ8HMFX8fKvIcLZ+ruFxqB37QY5D9v5PAPyg4XHo9zwOdE2M88u62Lp4o35bF5fXt6Uuth4e/st62Hp4o35bD5fXt6UeLu67JXXxsCMUPglgf0rp5ZTS2wDuB3BV042mlA6mlJ4sfj4M4HkApzfd7glyFYC7i5/vBvClAbV7CYCXUkr/bLqhlNKfABzKLvfr91UA7k8praSU/gFgP7rr5qTLkFJ6OKV0rPj1UQBnvNd2NivDcRjYOJCICABfA3Dfe21nAxn6PY8DXRNjjnVxL9bF1sV1bEtdbD08ElgP92I9bD1cx7bUw4UMW1IXD9uhcDqAf8nvBzBgJRYRZwO4AMCfi0vfLsJ77moytKogAXg4Ip6IiG8V1z6YUjoIdBcVgA80LAO5GtWHZJDjAPTv97DWyDcA/E5+Pyci/hoRf4yIixpuu27shzEOFwF4LaX0olxrdByy53HU1sR2Zuhjal1cYl1cxbp4wLrYenhoDH1MrYdLrIerWA/7b+LjMmyHQtRcG9ixExExD+DXAK5PKS0C+CmAjwD4OICD6Ia2NMmnUkoXArgMwHURcXHD7dUSETMArgTwq+LSoMfheAx8jUTETQCOAbinuHQQwIdTShcA+C6AeyNioaHm+439MJ6Va1D9D7XRcah5Hvt+tOaaj6t5b1gXWxdvhHVxIVbNZ7eNLrYeHirWw9bDG2E9XIhV89lto4eBraeLh+1QOADgTPn9DACvDqLhiJhGd6LuSSn9BgBSSq+llN5JKa0B+BkaDhlJKb1a/Ps6gAeL9l6LiN2FjLsBvN6kDAWXAXgypfRaIc9Ax6GgX78HukYiYg+AKwB8PaVuclIRRvRG8fMT6OYnfbSJ9o8z9oMehykAXwHwgMjW2DjUPY8YkTUxJlgXw7q4YCSeO+viLoPUxdbDQ8d6GNbDBSPx3FkPd/HfxBszbIfCXwCcFxHnFB7BqwE81HSjRR7MnQCeTyndJtd3y8e+DGBv/t2TKEMnInbwZ3SLn+xFt/97io/tAfDbpmQQKl63QY6D0K/fDwG4OiJmI+IcAOcBeKwJASLiUgA3ALgypbQk13dFxGTx87mFDC83JEO/sR/YOBR8DsALKaUDIlsj49DvecQIrIkxwroY1sUFQ3/urIsrDEQXWw+PBNbDsB4uGPpzZz1cwX8Tb0QacBXI/AXgcnQrWL4E4KYBtflpdMNBngHwVPG6HMAvADxbXH8IwO4GZTgX3aqcTwN4jn0H8H4AvwfwYvHvqQ2PRRvAGwB2yrVGxwFdRX0QwCq6nrVvHq/fAG4q1sc+AJc1KMN+dPOQuCZuLz771WKOngbwJIAvNihD37Ef1DgU138O4Nrss02NQ7/ncaBrYtxf1sXWxdbF46uLrYdH42U9bD1sPTy+eri475bUxVEIYowxxhhjjDHGGHPCDDvlwRhjjDHGGGOMMVsQOxSMMcYYY4wxxhizaexQMMYYY4wxxhhjzKaxQ8EYY4wxxhhjjDGbxg4FY4wxxhhjjDHGbBo7FIwxxhhjjDHGGLNp7FAwxhhjjDHGGGPMprFDwRhjjDHGGGOMMZvm/0bumthfj5pbAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 170877 0\n", + " Min thresh = 1000\n", + " Not Sliding\n", + "\n", + "\n", + "247ns_image_2743083265515_CLEAN_ClassN_60-188.roi.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADYCAYAAABberBAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADIYklEQVR4nO39e5RtbVrVCc43Yse+R5xzviQTksyETCBBQRtFRWwbCxtbkUJSbaGgSjpLsRO7KQutsovbqBKrhha29x7VpZ1VIlhSAt4G2KUlSomX0YACgtwhuSf5kdfvfBGxr3FZ/UfE7425nlhxrhHn7HPOM8fY40TsvfZa722tE3M+83ne0jSNEolEIpFIJBKJRCKRSCQeBltPuwGJRCKRSCQSiUQikUgknj2koJBIJBKJRCKRSCQSiUTioZGCQiKRSCQSiUQikUgkEomHRgoKiUQikUgkEolEIpFIJB4aKSgkEolEIpFIJBKJRCKReGikoJBIJBKJRCKRSCQSiUTioZGCQuKJo5TyI6WUz3ja7UgkEonEBUopP1dK+W0PeGxTSvm4R7zOI383kUgkEonEZiEFhcQTR9M0n9Q0zXc+7XbcC6WUryqlHNprUUo5LaV82NNuWyKRSDyvOBec/dl7XEr5B0+7XYlEIrFJuG5h9n7ny7+LE/dCCgqJRAeapvnTTdNMeUn6M5K+s2maDzzttiUSicTzinPBmefurqRfkPS3n3KzEolE4oVG/l2cuBdSUEg8cbittpTyNaWUv11K+ZullINSyg+VUj6+lPKVpZT3lVJ+sZTy2+27f6CU8mPnx/5MKeVLwrn/i1LKy6WU95RS/pArrqWUQSnlz5VSfqGU8t5Syl8tpYweoL1F0hdJ+obrHYlEIpHYTJRSPrWU8l2llLvnz9T/rpTSD4d99vlz+AOllD9bStmy7//B82f1K6WUf1xK+ehHaMZvkfQ6SX/3cfqSSCQSm4hSyq8spXzn+XP2R0opn2uffWcp5Q/Z7/9xKeVfnf/8L87f/sFzt8B/UEr5jFLKu8+dBB84/1v7P3rU892n3fl3caKFFBQSm4DfJel/knRH0r+V9I91tjbfIOm/lvT/sWPfJ+lzJO1J+gOS/mIp5VMkqZTyWZL+M0m/TdLHSfr3wnX+jKSPl/Rrzj9/g6T/6gHa9+mSPlz5R20ikXhxcCLpj0n6MEm/SdJnSvq/h2N+j6RfL+lTJL1N0h+UpFLK75b0VZJ+r6TXSvqXkv7WI7Th7ZL+TtM0s0f4biKRSGwsSik7kv6BpG/XmXD6RyR9YynlE+733aZpfsv5j5987hj45vPfP0Jnz+w36Oz5+c7HPN9VyL+LEy2koJDYBPzLpmn+cdM0xzqztr5W0tc2TXMk6ZskvbmUcluSmqb5X5qm+enmDP9cZw/iTz8/z+dL+utN0/xI0zRzSX+SC5yrqf9XSX+saZoPNU1zIOlPS/qCB2gff9QeXktvE4lEYsPRNM33NU3z3U3THDdN83M6E3YvibTnz9NfkPSXJH3h+ftfIum/bZrmx86f639a0q95GJdCKWUs6fdJ+vrH60kikUhsJD5N0lRnf++um6b53yT9f3XxHH1U/JdN06zO/0b+X3T2t/F1I/8uTrTQe9oNSCQkvdd+Xkj6QNM0J/a7dPbQvVtK+Z2S/oTOnAZbksaSfuj8mI+U9L12rl+0n197fuz3nWkLkqQiafteDTtPifg8nUXfEolE4oVAKeXjJf0FnTkQxjr7e+H7wmH+jP15nT2DJemjJf3lUsqf91PqLGr28w/YhN8r6UOS/vnDtTyRSCSeCXykpF9smubU3vt5nT0nHxWvBEeXP5evBfl3caIL6VBIPDMopQx0Zq/6c5I+vGma25L+oc7+UJWklyW90b7yJvv5AzoTJz6paZrb569b54Vl7gX+qP3Ox+9BIpFIPDP4K5J+XNJbm6bZ01kKQwnH+DP2oyS95/znX5T0Jfasvd00zahpmv/fQ1z/7ZL+RtM0zSO2P5FIJDYZ75H0Jq89o7Pn6C+d/zzTmZgLPuIBznmnlDIJ5+O5/Cjn60L+XZy4hBQUEs8S+pIGkt4v6fjcrfDb7fNvkfQHzovcjGX1Ec4V4P9BZzUXXidJpZQ3lFJ+x32umX/UJhKJFxG7kvYlHZZSfoWk/1vHMf+PUsqdUsqbJH2ZJPJu/6qkryylfJIklVJulVI+70EvXEp5o6Tfqiz4lUgknl98j85I/n9RStkppXyGzmqKfdP55z8g6feWUsbnxcW/OHz/vZI+puO8f7KU0i+lfLrOao6xS86jni8i/y5OXEIKColnBud1D/5TnQkHr0j6DyV9m33+jyT9vyT9M0nvkvRd5x+tzv/98vP3v7uUsi/pn0q6slhNKeUNkv6Pkv7GtXYkkUgkNh9/XGfP2AOdibFdRbq+VWdpED+gs1zdvyZJTdP8fZ0Vwf2m82ftD0v6nQ9x7S+S9F1N0/z0ozY+kUgkNhlN06wlfa7Ono0fkPTfS/q/NE3z4+eH/EVJa50R/W+Q9I3hFF8j6RvOd4igTsIv6+zv4/ecH/+HH/N8LeTfxYmrUFJgSjyvKKX8Sp39ITs4LwyWSCQSiUQikUg8Vzh3OPzNpmneeJ9DE4lrRzoUEs8VSim/59zqdUdnEbJ/kGJCIpFIJBKJRCKRSFw/UlBIPG/4Ep3VWPhpne2j3pX3m0gkEolEIpFIJBKJx8SNCQqllM8qpfxEKeVdpZSvuKnrJBKOpmk+63z3hpeapvk9TdO8/LTblEg8LeRzOJFIJJ4+8lmcuGk0TfOdme6QeFq4kRoKpZRtST8p6f8k6d2S/o2kL2ya5kev/WKJRCKRuIR8DicSicTTRz6LE4nE846bcih8qqR3NU3zM+dVTL9J0ttu6FqJRCKRuIx8DicSicTTRz6LE4nEc43eDZ33DZJ+0X5/t6TfeNXBpZSmlCJJehDHRClFHO/f47u5c0UikQD+rOBn6eKZ8QDPiw80TfPam2vhjeGhnsOStD2dNB/15qL3rXa1/a7VvQ5NJBKJJ4alZlo3q3L/IzcSD/UszudwIpHYVBzolc6/iW9KUOh66Lf+ai+lvEPSO/h9OByqaRqdnp7q+Pi4/pEfSUApRdvb29ra2rr0/unpqU5OTur3+S7n9WMfBN6GR8V1nONFAvP2sL/fa5zjd54WnLhuQnseFjc1jg9zjzxoG3yst7a21Ov1tLOzo16vp+3t7XqO4+NjrVYrHR0d6eTkpPXcAKenpz//sH3aENz3OSy1n8XDnVt6w1u/Wh9z90hbP/1vb7p9iUQi8UD4nuY7nnYTHgcP9TdxPocTicSm4p82f6fzb+KbEhTeLelN9vsbJb3HD2ia5p2S3ilJW1tbzfm/nSdzEuFRxUgaSimtc6RT4frxtMn5s0jEuxDX5tPo17Modj1KW09PT6vYuLW1demFgLBer3VyctK6FkLlM4r7Poel9rN4r7zUjL71Xz+Z1iUSicSLgYf6mzifw4lE4lnDTQkK/0bSW0spb5H0S5K+QNJ/eK8vQFT5Az8SLv6od8dBl3shEo7HIU3XQbSeJbL2oLhJUSGe937Xiakv4CqHy9NEdFZsCh50Pp/UnF/3OZumabme+Hx7e1u9Xk+9Xq+uk9VqVUWFKFA+g3jo53AikUgkrh35LE4kEs81bkRQaJrmuJTyn0j6x5K2JX1d0zQ/co/jdXx8rO3tbe3s7LRSFbqObZqmZVv292MdhfsRzieJJx0Rvgnivynk/H7YxHY+CVfCw6yxpzVGT/o+4DqkU/GeuxQmk4kGg4Fms1kVFR6wvsLG4mGfw4lEIpG4fuSzOJFIPO+4KYeCmqb5h5L+4UMcX23JvV6vRhSdfLhYcHp6WqOHng7hzgW+z8/RzfCkycJ1E6j7CQaPcr1NsOJ7O27q+vH8T6IGg7slYrQ8jvujXvNe37lfDYeHveb9jr+q3sXj1iR5nO8fHx/X1Ider9d6xmxvb2s8HleB09MfnlU87HM4kUgkEtePfBYnEonnGRvh53WSgVBwVeFF6cKNEHOb7xdRfJajjdeNTRmLq1wozzKuav+9dht4Wm3alPPdNEKRRR0fH+vo6EjHx8c6PT2tQkW/39d4PNZwONRgMFCvd2OaayKRSCQSiUQi8cxjY/5axm3g0UJ+74reIjx0Vfl/kGjzs0aIuvCokdp79X2TUgVusi0PU6vhcdsR3TKsW2z1D9uem8J1736yCX2KYC6Oj49bNVuks2fQzs6OdnZ2tF6v62s+nz/lVicSiUQikUgkEpuJjRAUnFw1TVPzmhEVSGPw492l8LBE6F626Ue12l9HxPlRrv04qQGbkAbShYex0W8q4rzs7Oy0HDWx2B9R8oc5/8OMQ9fcDgaDeu2Tk5MH3s3gWdvlw8UcXrG/Ozs79efBYKDxeKzBYKDVaqVXXnnlWtqeSCQSiUQikUg8b9gIQUFqiwTHx8eX0h04Jh7v9RG6ctQfliRfV668k5UHPefT2oniUc/zIKT2uus8PEjNg02Apzdsb2/XIqJur0cwk1RdC4hk91uzXes6vnfV2PgYevuOjo4uFTe9Fx5U1LiJuXrY4pPeL+//er2WpNa8nJ6e1t0ffI4SiUQikUgkEolEGxsjKDh8i0i3iEc4AcPRcK/jEw+Hp+EGeFYcCA+D09PT1prmPZw4kqozx0kv3+kizw9K5K9KO/D7hhdi3r0EhZsUBR5m7q/LTUM9BQTMra2t+nsKColEIpFIJBKJxL2xMYJCV8FFz3H2dAXghRk9TcILrfm5bxLPEhG+qrbEdZznUY55FGzyWHel57AtKp+Rw9+VduIiw1VpCF27JXj6T1d6Tzz+5OSk1Ybt7e2HSr14HOfNdYgBD5vy4deNworXVPB5Ii0kkUgkEolEIpFIXMbGCAqe4uC279PTU21vb3faleO/vNh20j+/Ltyv4OMm4FGFlC5y+6RxXSkNm5YS4duZSmftchLrBUa9ICn/xrWFLZ/7ppSio6OjBxYEEC1wJJRStLOzU+sLnJyc1BQI2ntd4Jz029MNHvR6D3IfXiXYeJ0W5oFxoF1+nkQikUgkEolEItGNjRAUvP6B5ztLl6O0kAH/naKOEATyn50k3ESb3aLelc9+r35e1x73j2qH7/p+JPMRV523K+r7sO140Gs96PmfpJBw1Zq8yhHAMY6Y5uO1DVjfUSzgfH489w/rK7olHJ5+cXR01IrQS2rdP1199H8fdC6iKOhiysPcEw96va41yRi5yONOBcRIhJVEIpFIJBKJRCLRjY0RFNjv3esfeJ53LDbHe5AsfvbIrRN+x6MQ3qtIdmyHH38/UaGLlMV+Pkz7oijQ1c975dU/LJ5Emse9xvGq4+/1eTzuQY59EMTUgq41d9X7XQU8XSDw9vk6c1KMM8d3bIiuiNhvB9/zdeS7rACP3kfh737j2LU2OWfsk4syXc6k65ozb1tMf7iu6yQSiUQikUgkEs8rNkJQkNQqqHhyclLzuWMEUbogWxACCIhHgK+KfD4I6X8QREL0IFvuOUmin9ftoOiKgMd+RvJ7Xde86vfrxv3EBH5+0i4FqS0YdR1zVfS8y/IPeXdyL3WLCtLZ1odecyTeP7FNTdPU+8gFBc7hqUbeRs6DK6hLtHtYxPSHrvNFEe5h5vdea8b7FIs0PuhWmolEIpFIJBKJxIuIjREUIgmLKQWQq1j53omIk6LBYFC3wvMq+xH3IiaR3HkbPALsVnBv/1X9jKSv63td0eyr2uff7RJavJ9XEV1J6vV6LVHmqut09fG6I/5+ri4ieb/0jAc573WDtsUtIruO6fV6tV/urvHj1uu1tre31e/3NRgM1DSNjo6OtF6vq0iGLZ9zbm9v11oInJP7x69JioOv7eg6kC47cBAhuA7Xv5c4dpU44J/F+/iq+/VBdnB5lLUY1xRpD+lQSCQSiUQikUgkrsZGCAoQHIhKl9Xa/9h3Is/x6/W6EgnO5YXXus5zP0TC7BFfCNvDRjE5z4OKEPciR/F3d3m4mHI/eMT5Xp8/yDkiIb0ua3p0H9yrDdeBe1nru5wG3iaI/fHxcYtwR/ja9CKk7qo5OTnRarXS1taW+v1+FQsWi8WluYUEc0/0+32t1+t6nDsKaDPvdYkg0RnhdRlIKyKif3R01Lnl5P3SbY6OjqojaWdnR71er/Yx1nCI53zQdRCdFhHuborCwnU7iBKJRCKRSCQSiecJGyEoSO0/3t3qDYnx6K8Tmxjt93853rfDuxdBiLnqXQT+cVMFIC/elsch4E7+ou2enPoH6fv9rv8g3422fX/vcfAgbo3HOf5e53kUuCPgqui/p764C8BdNu7G8fUsqXVOwHcltcS5rrQF+ndVOoP/yzWpzYBAsr29XfuIqLder2ub7zWusd1xvO8l5HhbrxII4rlcQLmX4OHvubCTSCQSiUQikUgkLmPjBIUoKnSlBEQSAXnzSvhsN8mra8eHqwSDSPri5/7dhyWuHO9CyXXBnQ8utvj1HhX3I+ldwsZ1Iaa/PKhj4nHaca9r3O/6XJe1R72Mrloe7g7w9AV+Z/176oKLZA4XIBgzip36FpBxDP2+i1F6J/Be7BFiTlvcsRAFs6vGLwpPfI/UjHvN4f3WQRRO+PdBttXsEhkSiUQikUgkEonEZWyUoABhcSLcRSqcWHoBOQiDEzOs4icnJzo+Pr5U96CLTMXicJHcOMH1tjseJ7r9ON+LokyX0+Je1+yy+t9rLuIxkN6udsVjHwTRdu9R+KuOj3PzJMFaODk5qUUScYqsVqualsA4+cvbXkrRer3W0dFRrZvQ6/XU7/db54x1MnyHgp2dnfrq9XparVaXRIcoPEkXY44YwfGk0XCM3x+kKmxvb2u5XLZql8T7hp+ldp0Pr53g9/RV6QoPOreMdSnlUhpI17HuhEhBIZFIJBKJRCKRuBobIShAbPgj/+joqEYp4w4K/JHPex4F5hzL5bIlTrj1PBIc/uWcRIAHg0EVICKxuCrX+lHIx/3I9VWfXxXlxZnhxHRra0s7OzuXaircL8L7KLhqbB8VjCvz57sSOHxOukjo46RdPEg0PCKmDPT7/Xoe3DL0gX55hF9SrSXAdxAkOLbf79fr8x1IOcf5y10GXUUHY0Sf63DeeJ/SNz+ONpVStFwuW2NDPx04LVxM8PH2+/9B1lHXXPFs4EUbutaGC0IugCQSiUQikUgkEonL2AhBQWqLCv7HPATACZN0QTRxHlAIj5enP3ihNyd0fg2vu+DtcUQXQBeJfdKI12X83IHh/3Z9PwojEd7Xq851L2fAo6aH8B13WVzVjq5IP8T5Sc2LizcQeN6DTDM/LlR5BN3XuQthfCeKWR7xZx37i77jljg5OanpDzEFIzpLnFB7qoU7YLyGifdf0iVB7uTkpPYpCgZe3NHvRe9rl2vgQYQirsu5er1eK8UiIt5PiUQikUgkEolEohuPHH4rpbyplPLPSik/Vkr5kVLKl52//1Ip5Z+UUn7q/N87D9SQUPGeKGFMUYjkwlMZOI9vm+dOhRhN5fiu3SC4Rpeo0FXosOvYm4QTuEgEGZMHJdJ+nkftA+dwt0j8/FHHyIl3l0W/qw0ITNcxLw/iInHxoNfrVeLs7fKXpNY68vXp56IvMYretSUkwhkvb9/29raGw2F9RWIv6VIbfG3Tjn6/X1++I4uD49i61QWg2K9er6fBYKDBYFDP6f1zceFB1mfX5zGV4kHX+rOS8nDdz+JEIpFIPBzyOZxIJF5kPI6f91jSf940za+U9GmSvrSU8omSvkLSdzRN81ZJ33H++z1B1BDyQaSSV5ejADJwcnLSyone2trSYDCQpBr1XC6XVZiIKRKc14UGJ2ldhMnTLiJZuR+BfRxifa9zRacEgkyX9f+q60d7dzyWPkeSFQm1k+ar3AwPOgYelfZouxNVSS0B6irxyM95L/j1HoZU+rG+bamkS4JCjLZH+z1zGAUHvss9gssAQj4YDDQcDjUajTQYDFouh36/r9FopPF4rPF4rH6/f0m8gNzv7Ox01jRwIcB3eHAhpJSinZ0dTadTjUajS/PFvbWzs1PbPBqNNJ1ONZlMau2GOP5+T95PEPDvufuhSwC81zw/C4KCrvFZnEgkEolHQj6HE4nEC4tHTnlomuZlSS+f/3xQSvkxSW+Q9DZJn3F+2DdI+k5JX/4A52uRK8gw5MmJWFeF+/V63SJFe3t7ms/nWi6XWq/Xrdxz6WLbPa7n+d1cg58hq/dKI/A23Y+ExHoO0dbvY0IbunCvegguKvB71zWiA6Tr+pw/ErAuocHJ41XbVTohjAXyrnIeOOmVVG3rFCGkDfTX5/mqIo73G9+rwNrxddAlkpBmQNt9BxLGnd8ZF17r9bq1ywNj6vfBarWqbhTWvbdjOBxe6iPCAsQcwQ6Xj9cd8Xk9PT2t/WH+IP7+fcdwOFQpRYvFQqvVSovFQuv1uo7dzs6OmvOUpO3t7ZazSLq8M4U7ImJKR0TXOvd+xK0q41w+I0KCpOt/FicSiUTi4ZDP4UQi8SLjWmoolFLeLOnXSvoeSR9+/mBV0zQvl1Je9xDnuRTVPT/PJRLr3wEcg707bnHnRA7CBPH260e3AltSXhXBdMIbC0h2He9R7Ghf7yK3VxHfeHy83lXnu+pc/r7/7iT2KiLn0WAQiTfn83P72F6Vr+6R/RgJ55ouzLjI4OKNCydR/LnXOMb3WGP8fL8tORGoKFjoRRH5vhdRhPD6mo+1Evr9fqsPR0dHNWUgOkR8HbgoNxqN1Ov1avTe55r+ucuF2iacJ7oOEEEcvV6vCgunp6dVQOJc7FbBtXE+IFI40Xe3Bsc/6HaovlbYqeIZdyV04rqexYlEIpF4NORzOJFIvGh4bEGhlDKV9Hcl/dGmafYfNNpbSnmHpHec/8x7l9IaYlS84zyt70JSIF1HR0c1khujkk4y2B0BsuX9iLni3pZ4fT6/V/TUhQ8/Tzz+YSOlXd/3tt1LYLjquy4mOLHtEgD8va758/O6qOJR6avmmJcTZr4HGWZccbT492L7pcsF9+K6uKo9Lih45Dt+N56bdAGKBHqfcZN4WoGfG3GGfnhKgjt6mDMXPLrmhNQg2kUhU69vwHdoG0KN36OIAC7cRVcB7+GGkHRpFwX65sVVo0DHONxrnK8ae5+7Bym0eL81sIm4jmfxUOOba2AikUg858jncCKReBHxWIJCKWVHZw/Ob2ya5u+dv/3eUsrrz5XY10t6X9d3m6Z5p6R3StL29nYTCeb5+VtR8S7LPsc5EcF2f3x8XG3aRCWdeEZy6WKC27mxiZ+3uxXl9HZCdCFPVwEC6NHgrm38uojPvSzeXQIEpI7xiaSv6/xOTJ3Uea78VekMXsuCf2NBPHcTMK4QTI8ed8Hnggg2RBewk0Gst+HjxDW6yLY7Yvx7Lor4y/vc5Q7gOu5UcJcCY8LcbG1taTgctubEHSyeHkAkP+6oQB9d+HD3jadQIAas1+tOYY7vr1ar1n0Y5485jOkTnGswGFRRgf57n2L/fMcHXz9RlHLcSzTjHPH3q8S0qz7fRFzXs3ivvLT5nU0kEokNRD6HE4nEi4pHFhTK2V/df03SjzVN8xfso2+T9HZJX3v+77fe71xOCiPZofDbfD5vWaD9j/6uInzYrJum0eHhYasmAtfku1isPVIMMeT6q9WqFXmN5yDaC1HynPkuIEpADLe2tur3PGJ8PwHAhQy30fu/9Gc0Gmm1Wun4+PhSCoeTOie2kF1IpxPmrjQNjoV0RmIax01Si0x2OSncPeKiD/MNGfYihggK7gLh2p5W4MX6+IwaBlcRTcZiZ2fn0vrw8/s1GTt3F8T6Ck7qJ5NJLS7KHEZ7P4UYGW+ENNIGGFu+724H2uG1P4bD4aVdU3w3CNrH53zG/MYCpjE9ht0nXIRxlwZzzxzQN++3pydxTf/8KsHR5y6ue6+n8iziOp/FiUQikXh45HM4kUi8yHgch8JvlvRFkn6olPID5+99lc4emt9SSvliSb8g6fMe5GSeR+1k3kkLxCwW8esi3E44XGiIxNa/G6PAbq2PRRzdReFRWCdKXfUG/Gcn6dJFhBtCyvtOoh6kEJ2TJyfpED+PansRw9jHOF4x6uxELUb4XVTw46OFnfNtbW1VEh6L8XX1z630FB+M8+nChRf5ZK7cpRLrLuzs7LQEnQhve7/fryJGdCP4HPpYx7QaHzdEDl/3nNvH06P1klpCQkxTYd7juPjcSWqJWRzv64M1Sx8Zf9Yr4o/fU97HKHC40MGuFdzzzAHH03Z3Kj2sEND1Pb+f7yXebTCu9VmcSCQSiYdGPocTicQLi8fZ5eFfSbrKW/yZj3C+ShZ8FwAn2BzjBJvv+r985tHaSHydmDv5ccu2H+857ZDOqwgeUVYnqVehy9LthDMSsy5hw4ljPJePh4s0Tn7jMd4uP1/sS5eg4LsD8Irz7N93Yt5VpLLLwu5Emj55zn0kiy6WeJ/itpL+PY+2dxX+czHI1yeCAPUQ+Hy9XrfSYHytcG2I+tHRkdbrtfr9fmvOrnLneN0Ddzz4OLn7pGu+fS4pEOniAddiPEhv8J0p4nqL1/Q1GoUBxqDL3eL3UVyT98JVboWu+/EZFBEqrvtZnEgkEomHQz6HE4nEi4xr2eXhukAk1iOcEErs35GoulXayYZHOPv9vmaz2SWbuRMbb0MX0R4MBi1Lfcz/9lQA6SLNwNvHubzdTtaIzLrjge9Et0NX7n9MHYBYRps7BDwSRo8gRzdI7J9fO44T7Ts+Pq4Wfs551by7MyBe26P3jK2PZUwTiaDf3l8s+z4evrMA5Nyv7WKUCwpN02gwGGhra6uKAcvlshVppxijk3EfPxcjfCtNhCUcAO6Y8LVOX7zGRazNEMfb51tSKx3h+Pi4FjP1FBjmlnF2MYH16uPurpiutRNTUryNwPvh32d9d6FLHONcXeLYVULcsyw0JBKJRCKRSCQSN42NEBQgTNisvQo+P0M+3AbtwsBVhNtJvXTZ3sx5YiQcYUNSiyhBbDwyD6GF4ECkIGhuH49R0y6rtUdnPeo/n88vtdsJEv3GIeGF+2hDv9+vBfIYY08xcHcIfXWho2u8vM6DiwouutDumFbSBa7v6SMuGnl/IexOLJ2Q+3g6WfQxZLtFUg28/gJ9X6/Xl+YsrgdINUUh1+u1er2e+v2+bt26VUk6hQm9Xb6mqFWwvb2twWCgnZ2dViFKHw9+39o6K+SIOMI4uDDlYhk7Y+CCcFEG4YJ6G4yJj2XTNPVzXru7u6258Z0j/N5wccjnxefGHSou7kTBqMt54s6JUkpdD34+F4h8bFx48PspkUgkEolEIpFIXMZGCApSO587klws2B69j9Fx4JFUzgtp8mhrLBToJLmrDZ6zH23ZUjtq2yUOxIhozH/nvUjupIuIPGQVAnkveMQ/Fp2EaA2HQ41Go0r8YsTYxyAS064xcCIIsfXoNOeJ0Wqu1WV3J12A70PWo13e6w1Eh0kcWxdiGFev1xH7xdqLZJPPKeDoxQRx2yyXS21tbWk6nVaBp9frabFYdK4/3+3C3RAIQKxj1gWfM0++5aN0IUBEIYb36CvnweXggpR/7mIQ95M7MmKhRsh7FPx8Xuh/TAOJBUldEIr3ThSb3AHRJTrE87jjyefkXi6IRCKRSCQSiUTiRcfGCAoeVSSi6NvQxSJzkTxIl4sqdkXdQdf3aYcTqFiAzl/epmjPj+giJvdLIfD3IItOiuJ1/Fg+c5eE74QgnRFpdsOApEdhJxbyg6zGdAh3E/i4+3abXf86iXSCG7fvhER7ukvM//d0jUiYvdaCp4bQTn5mu0IfU8a+qyCot4m+kE7i9RCOj481GAzq9aOoQv95H+EE+A4OjB0OAa/b4GNKm1jHvl7c/eMCEqkgW1tbdRcJFzec3PtYHx0d1Z0uKK7pzgRPweg6jztOfI3cS1Dw8ff7Lt7PLjRxfd81xNeC9yueK5FIJBKJRCKRSLSxMYKCR5Ahbk6CuqrXO5H0avFO6rwegRMu4CTFRQePjkbnQZcDwaPiMVrq5+2KgPK+n8eJs0fsPXqL28DP52QWpwDb70FYEWh6vZ5Go1E9PzZ7xgLC6ZFwTw8gjcL7wfm9WJ/XNkBgoD2RdDIWiEk4LNgBIBJDH1N3IHA+Ty3AreKFI/27rDHqZfg8+lpwkcIFrmi5Zw0vl0uNx+PqMvAx5XjGh7nxNXh6elrniXMwNsvlUsvlss6H117gfN523xbSnQS018Wy0Wik5XJZ14U7dqLzxre8ZD7jFpHHx8c6PDxsCQwgugeiYOGCgx/jc8Tx0cnU7/eraEbfPSXCa2Ew7olEIpFIJBKJROL+2BhBAcIM4SSaDmEgrz0SmlhkLboUdnZ2NB6P6/c5L991Qut53FtbW60IsFfx9yg16QlO1KKjwfsXiZOnNTiZ9Ii/EzCK83EOCHNXYcjlclmLBfb7ffX7/RapJGpO/j0RZl5EqpfLZYt8E+k/OTnR4eHhJaeH98Wj9u4U8AKIHi0mMu/fJbIPIXSRwAkw4zkYDCrJxXLP2LHFIZ97ZJ92RsGhK0rt14WwEqlnPDnu9PRUi8WiHre9va3hcNhyKXjbdnZ2NJ/PNZ/PqyiyWCyq4LG9va3xeNwSk2J9DeaOMWNeXFja2tpqiUsugnDvjEajSy4I+joYDOr5EE78PiClhjVJ/12k80KSUYjzefV7hvfpPy4m+sgYuzPJU5ziPePz5OPEuROJRCKRSCQSiUQ3NkJQiFF8Fwn43P/g95oAkANJ9fdYDR6SBpGM1eidyHiEmwKQHvG/yoYdo78QMt86z3PzowDg7gyP9kqXt5aM7YyRXT7Heo4wQ5Tbxwfixdh6QUNSImgPOxDQr+Fw2Fmwz90lPlbeRo+aexv4LvNCGzm/dBHFj0IG5/QCmd6WWD/Bz+ciFDUQ3DUQ14sTTchtXCOss9PTU63X6yoQDIfD6vTwc/IZa8Z3fFiv11osFnU8dnd3NZlMqgDCsQgDFHMcDAY6Pj6uopCvF08L8fuH4yaTSRUUjo6ONJ/PtVqtahvcTeRjTc0LUia8HgNCSnTQMC9+/Ujs4/p2xwnrkDHwGh7uKGGemD/Gz69HO9KpkEgkEolEIpFI3BsbIShI7Zxot5GDLkLtUXyO9+i7n49dF5xQxZQGP7fUriAf0xm8bd5GPxbiHY/xSHhX/yE3TmicFMdr+3UhUZA4Pj85OdF4PJaklvWbfnrKggsU/X7/UrV/j2p70b0ux4iPtY+tt92/41HjrvmQVMkx89olLrjzhDGNn/k6imIW4+Aigc+VrwOfTyL5UXBysuuR9zgW7tJpmkaLxaKO/3q9rkIRaRD0bTAY1ON8rbCjB4UjoxPm5OSkCm2cyx04CCwIAz7Gns7CeuLapRStVistl8u6+wSiHgKIbz3pBSvdveIFOBEEomgWU138vo/bUsa16U4c5j3Wlei61xOJRCKRSCQSicSGCAox8u8k0i3Q/C5dRK0hSTENYLVatSzmEBpIipN36YKwS+08bRcIuF7X77GNbpf3tjkRdsLvEW/IFvZtzuc1E6JLwscGouXn5322dOScp6cXRfi2t7crWQe009MNnNiSRsE5OY+LMZGQuf08ujYQKWIqBCSbop24Bvx6XePQ9S9jhgDgaRFc4yoXiBNS1h19irUUXOBBaFiv13UOfBycxDZNU50KOzs7ms1mOjw8rJF/0j+8YKWnUPhuJu5SIeXH7y3/lzazBjmf3z/uZkFsoF/MC+ebzWatYpL+ckcKwgdtRbgqpdTaGb6uXfzh/C4I+Hx5GkdMm0BYQZRwQYJ70oW3RCKRSCQSiUQi0cZGCAqRpHketHQRCYUERIu/1I78u5WbCC0Ecrlc6uDgoBJASdWy70IAW01COtzN4EUjY463p0A4YXLbfjw2EuFo7ZcutnD0WgFdKRmQM6LKvOdjBIEmau1kGpLqRIr8fsb/6OhIOzs7mkwmlRRTvI8Uk9ivLhcFogH9jOkG7jrwfq1WKy0Wi0pkh8PhpVQKxtHTDoCPK4TSd1TAmUG6AZb6KCx4xN/XAo6E6IggHWCxWGg4HLYKNSISsL5Yf/1+Xzs7O1qtVq1UgOVyqcViUefm9u3b9RiugajEubiXOM5TR3ws6NN8Pq/fHQ6HmkwmVdigvx7dB7SRrTH5fTKZaDKZtFJIPBWINUuKBnPlAgl9cHcJrgfmejab1f5536LjCXERMYM16AJldJEkEolEIpFIJBKJC2yEoCC1yTzwNAOikDGfXlIlyNLFFoa+JR6EGbJKNNVFCCLfEBfftjC6GXq9XmtrS9/O0dsPcYKUQlK5doy4uvvARYmu8XGbt6dsuGhA21306CK5HiWPWxr6+bDaSxdRcN6HhDIGkE3PtfddC9y67+977Qn65GLA1tZWrQXhFn8KN7qDJDo/fByZN8YsuhiYlygOxDmGlDIWuEB8m0n6xfHr9Vqr1arWOvBCkYvFohLxfr+v0Wik8XhcizSynqJTJEb9fQcOPh+Px7UGAg4EzoXwxtz4fQS8ICiCA3USEEai6EdBSdpFXQcXwXAkME7uZGCNI1gdHx9XocTTnFxwQmzinF6joWma1i4eLqzwHIjAGZJIJBKJRCKRSCTa2BhBAXTlLHuk2omZR/ghR078IMsQEyKYTmCccHN9jzj7NTwS6zb/WEQwugKchPKzb9/o6RL019vDe34OyNdVEVTO68TMrf1u8e6qEwA8Iu+pDJGUQwRjJBmBIDoWYjti6khXmgIgiu3FALmeu0pidNpdEk6Uo6UdMo0o0CW0MCZ8H8HE14oLQt4eH3O27mRXCNbocrmsYsFoNNJkMmmtWRwrjC3fpV+0x4URF3BiWkq09ne5S+J8IY55wVPEFxe52LljtVrVsSRVhj5RYwKXAgVBXaDwteXzFMU2hBWvJxHXlIsRcT12jUMikUgkEolEIpG4jI0SFDytwO3jTgyBRyUhtbFCvKc/eKT29PRUs9nsUvE8iBLRTezeTvrdFQAZ8Sg/iG3nOCdApDC4fZvvuuuhK8rOy3eL8N0KXEzwlwsZMaLdNc4xhYB2emTbo7s+pu5uiG4K6aJ+gn/PyW4UWnxsqangkfboDnBwLkQBb6ef1+cZwu+1Ijwlh/OyHmm7OzlcxIiuEvo/Go3q9opE+ZfLZatOxHQ61WKxuFT/4+joqOW0YX66tsPEKeP3jB/jqSBOwH0NMM98d7Va1ZSTfr9ff6ZdTt7X63XtZ7/fbwlC7CLB8aRysK45xsfZ16jfi14o1O9/n19/ZtBWd/+kkJBIJBKJRCKRSNwfGyMoeP6758wTdfXdBdwW7VF6J+UxEo3tmYjuwcGB5vN5Z0V+ijrGHQQ4xok35MSJmdvm3QmwWq1qGyB82NKj1dqdAJ6WEQlq3BrPSbKLDT5mCBlN01Rhhc89/SJG9D1yC5n0Y4HvAhHTGhgj5uhe68Hb7y/6jsWdyPhyuWztGOAijo8J7/luIL6G3HmBSOEE1etVROcI54DU0gavCeH5/tJFSgzpA9R0ODg4qG3Z3d3VcrmsQoPXAOEc8bVerzUej1trlPmgFgX3FoUdXUTznSuYE1IWEN58h4fxeFxrNFxVzJCaBVtbZ3UZ2AqT+aBuA+Kf39M4ItwRwli5ywJRxsVBF0L8fhoMBvXZ4sIj89nVh0QikUgkEolEInGGjRAUXEzgdyeQkdR6pJefIR8QDciSR7IhJ9ipsVs7YeIF0SKXvSvqLrW3J6SdtNFJcbRfuxsi9rnLKQDR8TZH10QkQPGcECUvQud1CEopdQcCFyhidJfPIXecV7q8+wafI/74TgBuVWeeaS/nYBzitfnM55dig77FId9n7J3se9qApxJ4KoDXQMCl4DsgeLTbxRhPvXABw8l9XNfUInjppZc0HA71i7/4izo8PNRqtdJgMNB0Om0JQr6zhNewiJF5hBd3aOzt7dXPqR2CUOHrimvs7OzUbS99xw3GjZoOzDUFKBlP5k1SFUl6vZ729vbqvFFscn9/v7afMTk+Pq7bnvqY0w7WL+IY7SDVwteLP1tI1+Ae4J6n79HpkkgkEolEIpFIJC6wEYKCdOEucBLoUUWvsg/pidF4SS1iCEkhvxvS4bUT3BkQc8SdYLn1Okao3VLufYhuC3dDxAJwLkI4uY7Rdfoh6dIYRJJK+12scVFBUhVWsIpHt4SnYXg+e1e6AG2mbT4fcfvELjGBPkYHw72ixC46xToaHsX3AonuxPAUGx+XKBCRXgIB9Tb5mokuhTgfrAnf3tAFEoonSqopAPv7+9VBwBg58XeHhYsXzKuLSW7lHw6HdS0R5ecYxo57ZGtrq9Z6oO1ePwOXCOva0y8YZx8bJ/Q+HowTbgQEABcJGCdEKn6PLh0vCOp96xKAaFesudBVpDGRSCQSiUQikUicYSMEBQiME3JISSw05/n+HkX2LSalCwt4V/FEJ/lOQAEkyK36HjWPrgZJrfZHAuzEjDY44Yx1HKJDwckmZMcJfYymE0GPkXQfH9oymUyqjd6JqQsC/IuwA+lzohYdI+60iG4Bb3PstxNRJ9veXyfgnJN+x8KIEFDvT5xzJ5HxOr6OIOZeFNL77v1CxOL8cW3gCvD+IVr0+33dunWrbp1ItB8hI46xrxmEFXcesH4h7xyLcEGaAoiFNJmX4XCo4XBYXSa4dxg3UnpInYj3RHTVeFoFa5UdUBAUPFWEY7kXXDCij9TjoO2eNsVxfj7WBm3FrRDXTyKRSCQSiUQikbiMjfhrGaLWldbgueySWuSOF9sWci4iuZAHr7PAcYgQECd3EUDcITdx20AvACepkjUIsBfTcyLd7/cvRY2jQEGfY46+k1QvuEef3dlwcnJSc9P5HjnztKPX62kymdTrHh0dteaE8fEIPq/VaqXlcqn5fN4i4n4MbY+RfF5eHNJfnkrC2MfUEHLepQvHBceTwoEbgF0DmAc+Zz1EF4ikugZ8dwdIpqRaUJAxY3xZm279Z8156kPTNLV+h69xF4Cm02kl8b1eT/P5vK5HdwAwVzh4SPlh/larVV1zo9Go5bwZj8eVuC8WC33oQx9qfT4YDFpzMx6PNZ1OW2IVZJxrIYJIF4KFz4c7BPgXEs940E+vidElNPr946IA9ydrkvvOBUYXuSS11h3bXEaBKZFIJBKJRCKRSLTx2IJCKWVb0vdK+qWmaT6nlPKSpG+W9GZJPyfp85umeeV+53GS5IQOsu4EgMJunprg59naOiv45kTRSb61vV7H0yKOj481m81aVnoAKXILuYsGiBGeJ07bvVBfjM57+z0KDoEmGozo4dX9QawN4IUcJdVCk4ybuys8agzW63W9DmNJ/vzp6WmroF50eTBWEFzGgXx4j/y7eMQ4+txxjOfgM4aQeubEnQiMEwITOfqMjVvmow2ediBQuZDjAhLHuTMG4WY4HFZhgTW1Xq9rTv9isWjl95PDf3R0pMlkoslkUtvy/ve/v5L1uEuDk2cvosgYICowDhxHLRHqEzTNWZFOn1PWCqkiu7u79XqvvPJKdTZwrsPDwzrunsbj88jxiCP87mkQzKnPBTVEPB0BQZB6DZLq3Lhbg+t4MVG+y3HeNl+Xzwqu61mcSCQSiUdDPocTicSLiOv4a/nLJP2Y/f4Vkr6jaZq3SvqO89/vCc959j/yY96zkza3cUOaPQK5tbVVq+ZDoDyPP+aLQ4jG47GGw2EldFT490hvdD50tdOJFMTMo95O9J24OUml2r2T3sFgUNtG9B3SihDBuSF2vIgC87tbyl1Y8fNBin3saV/XzhT0J6Y9+PjErQu70jV8HOI1ECq8voF/7kQQgcivy9h42oLPJ+KF1+xwUctFH6/H4N9lbJk3n3eOWa1WdV3RBsaYMdjZ2dFkMtHu7q4Gg0GdH7Zo9NQE1gPtknRpDfja6vf7Go1G2t3d1d7ennZ3d+uaR9jzdAVI93A41HQ6baU7MI6ML9dDUOI+99QG37WBfrvbwMeWc/taRERiXGJBSRfOWK+Mve9O4alUXMfvh2cIj/0sTiQSicRjIZ/DiUTihcNjCQqllDdK+vcl/Y/29tskfcP5z98g6Xc/xPlaEfSYo+82ehcUurYJhEBArpzASu0dBDjOiZoLCtJFtN5rBzhJof2RTMf3nLDH2gBeM4CIsG+fR7R8PB5rNBrVCvi+3SD/euTV283Lo8hcM7bdBQV3P8S5it+L6QsOz5uP4pETVxeGIiGM4lEULZxQShfuFM/Bd4eECzsuRnAd+uJt8LnhWL7rxNnFJyeqpNSwFaSn8biAJZ25QnZ3d+ucs9NCnHvmizmjXb4GnLBDxkejkfb29jSdTjWdTjUcDmuRURcVGMd+v6/JZKLpdFrvPRea/JqeYsS/CAoucsVr0MaYDsOacUeJu5m67jn/2Z0KPke+FvycOHI2Hdf9LE4kEonEwyGfw4lE4kXF46Y8/CVJ/4WkXXvvw5umeVmSmqZ5uZTyuq4vllLeIekd0sXuBU5q3crtkWMne5JaBI2tIiEKTrScUEntnQMgxpDDWOCRooVOPiW1HBCLxaJGWz3P3QmodEGoieC6qED+PePAdpXb29s1n9wJpUf4SSvwdBGv19BVrf7k5ESz2aySYcgl7Savn3aQMhCt5ZHsEUXusosT4aaNkEi3xZ+vjzo3kHp+Z/7j+uD7TtydQHIs6SR+fEw7cXGKMY9bakJimS/WLuMDqWYumQsf+7t372oymejOnTs17cBrR3De27dv65VXXqnrHEFhOBxqNBrVPhwfH1dR4fDwsLZjuVxWkYF16w6YUoru3LlTr+l1GRC3eB9h6yM+4iMkSYvFoh7rc8e96IKbpwRxT/k8IUZwTwyHwyoKuKuHeeC8CDZbW1uX0iKiq8hdCfTNny3+HHiGUh7+kq7hWTzU+IabmUgkEs8t/pLyOZxIJF5APLKgUEr5HEnva5rm+0opn/Gw32+a5p2S3ilJ/X6/8cgiRRYhDJ7zTO4+xGYwGGg6nWoymejVV1/VwcFBtfO7oABiAT6Ix3A4rFZvrwlQysWWlR7l53eIDKTbo7IQGsiSF+HzHSyc4Ph2ghBZSJdbwgeDwSUHAMIHEWBy7BEd6A9EiXHxGhEUyINIeVQfQsm54zhCup3Mu93djyNtoNfr6fDwsOWiYJ5cHHDhhTa6+MCYeuFDPuN8jBvE26PSvh1mTNWAdDIWnjrA2Po8018XfGIRQebo4OBAH/zgB7W3t6fRaKTJZNKqu+BR+93d3dYuFogBkG5qCSACMYeeYgGZd4GOtTAcDnXr1q0qknzoQx+qfWWNexHTfr+vO3fu1Dn03RUkXRKzYsqRF3DkGqxjUi5iDRIfU8aSexhhgLkkRchFCK/Tgqjh145FRJ8Fh8J1Pov3yktZhTKRSCQeEvkcTiQSLzIex6HwmyV9binlsyUNJe2VUv6mpPeWUl5/rsS+XtL77neiLtuy/9FPxDFGIr2Y2nA4rATz8PCw2sk97zoWWnNSIrXrArhlfDQa1S3x3Jbu36ddTmZjLQVJNdruUVfGQLqI0ONWAE7+3f3gtQ0osIfLwe3jHrF1cusk18fTo78ekXeC5QKHk0x3KCCI0Hbec5GDdnragztQ/DPajLDj5Jo2XbWlJf3xaLgTUAiwE1lvE9/1ceV7Ps6ISzGP38eEcVkulzo4ONArr7yi3d1d7e7uVgfAarWqrpeTk5NK+hF1fI0hnPGd5XLZWgP0l74dHR111oXAwYGYhZjmUX/6urW1VV0V0plTIabt+DgzF/6vC4ech+uxjqnX4H2NaS8uIrBmWQPxvvRnjIuHfBZTe54BXNuzOJFIJBKPhHwOJxKJFxaPLCg0TfOVkr5Sks7V2D/eNM3vL6X8WUlvl/S15/9+6/3OFaOPDggDkVGi4JACiESv16tV8clJh1yPRqNLEVknzTEfH4IFGSRXHWLEuZ0UexTdRQYXKSB3TsI5zsWKSLQltYQDrxMRxQI/DkLmEVonj5Kqjd/b5ikYDo/Y0k4n2y4MRbu4nxNBSDrLx2d7Qe+bX9PXBd/v9/uVVLtI5GKC19rwdrh9PooCCDYu+LgFPwoSTp593Xj7mR/Ghx1A2IHh4OBAd+/e1e3bt6v7BicFrhfmm9QJF6a8MCe7SODmmc/nl1J1fDcJzuHuGXea8Bnfi/1ku0zgzg9cJ13FEmm/iwku1nm6BePp9RM8NcNdPdwD/I4Qg1uHe4l+xt1fOI5jcUdtMq7zWZxIJBKJh0c+hxOJxIuMx942sgNfK+lbSilfLOkXJH3eg3zJCXysLn96etqqbg8ZxnWAxXt7e1uj0UiDwaCSGSrpU5Heq987mYHAQJZcZKB4nX8PIgNpibne2LmJ9nIs1f8hRF5wju0wIVQegXdXA2MUCwTSVhcwnCzHVICdnZ0a/fXaE54GwBaIRMcpDOh1D4iGR3HBRZ9Y/NCj4BDLOCdcF3ItqZJxJ5acE3LtlnjO6dtderFErzfhKS2QYI+k+1qlnx7N5jMXQfz7nkbiwtTR0ZFGo5Hu3Lmj+Xxe3QMuvLz66quXrPxe4LPX69WUiKOjI43H49oGnAOci/UFWWatM0asqfF43Eq7WK/XGgwGnQ4ZJ+iIGrhsuD+pncF8OZl351Gv19Nqtaq1GZjjrl01gNf14F7lHkK8oH0IarTBhTvpwhXDWD7DeKRncSKRSCSuDfkcTiQSzz2uRVBomuY7JX3n+c8flPSZD3sOJ/v84d8VXXcSCnE9PDzU1tbFNpG3b9/WarWq51itVi2RgMg9gHh5TrVHKYfDoSRVMcDrAnhEnbx1Jyhe+A3XgJNW6YLADYfDFpH3yLiTrljAjp8h6bQVogkBgzwdHR3V4zx66/nlEEFIGQ4MiCrjEkUL2uqOCxdxIJrMF+3jXFzfLeeMD7974UrmkzXBDgfeLtJVnKBzfsg5hTJJMUBIcVHA++fn8Eh5r9drFUn0NdKVMoBT4P3vf38l8R/2YR+m17/+9XXHhX6/r7t379Yii9wjXtfBo+6M1e7ubi0WulwuW/PO3PpaikUPy3nNCV/77uBx1xApN8wH9TyYK+49rhHTYRg/3seBslgs6hpHRHH3C/e1z4kLI9x/nmri48e64xqMx2KxaO208azgOp7FiUQikXh05HM4kUi8aLgJh8JDgwJtLhZ4BDrmP0PcPWrNMZBTiCdkYbVateoeeE49bXDy4ekL0sVuA06o/Npe3M2/7ykZblP3a/E9SLt0Qf5jCkgk2BznhesgSrguvBYD7XJhxPvk7fIUjKOjo1qTgvFnpwG3nzMWXgjTCTnjMZ/PJUnj8bhFjHGjAHL6Ge8oePh4udvDo+XY/iHnkehDVBlbRIV7rVdPM5Eup2t46oO7StxR4kUSF4uFDg4OamHRxWKhyWRSBQp3hkDsva6Ar2s+I1WHXU5in3yNM8d+v3Ed1qWvRRwupFa464bxGI1GNf3Iz+d1DnyN+/2CmMHvOCqc4Pv4eipTvCfc6eQ1PHzNx7oh9Cu6FxKJRCKRSCQSicQFNkZQiH+4O0kA/E5E2SPv7lroyut2Uh23JqQNXkjOSYhfn5oHnm4AgXGiubOz0xI03PIOAYz98joMkFBIjwsobqnHQcAYUF9iMBjU69MfFww43vsex953LSDyvF6vW6Td3QDMI7tAxHoCXkehlFKr+Y/H41akO+bcuyujlNLKa+ecPm5+XVwHsU++bSCE0qPnPveIHV07VvBijGNqB9+nX7QzzunR0ZHm83mtpzCbzbS3t1evPZlMNJlMWusRh4CTZl9j0bkQhYdYfNDXQfyc9CJfI4g9iFY+xp6exLl9veMuYQ0CTzVifbHGERTcoeCpK/zuxUO5/zz1xZ8rzHdMqfHipYlEIpFIJBKJRKIbGyEoSLoUDXRy4rnaEBkir9GWDnnxbfOwd3tk2nPcPRKPC4GcekiWOwncLeHt9xoMvu2fEy7vQ4ysOrnyqDARU8/r74r0QoCw/Y/H49omF128XoG/vIYA7fRK/4xjdJH4Dgsu3CDuQLJ93Kgngfgiqe6OgFgRI8mMAzn6LuJEQcRFiNj+GKlfLpc1rYVrURfC5wNS7Q4Oxtyj+p6y4evTBQVIL2NPccYPfvCD+uVf/mW9733v03Q6rXVBSONh3Kl54EKAp1bQD3/F1I0uku9rymtQxHWOQDIYDOr8eloE14xFP/1+o29xp4arhIwozrngxRwhVDBOPvfABUfEHcQkL/SJ0yeRSCQSiUQikUh0Y6MEBYgMpBZC6n/UQ4I8Choj7djmERaOj491eHjYisZitfZoJe9FC7YXR3SXgJ9PUiu3n3oIFMDzdnuuu0eSnXDSr640DQjXYDDQdDrVcrnU4eGhFotFJbjj8biOgXSx80Ucc9qHgBKdGRBChAUXZqSLGgwQ0eVy2UoZgDx7+kqM5HuqC+IC/YgRbI5nfCH+PjfY3be3tzWZTNSc19E4OTmpqRZcn/nHLcF5opDiIoePD24QxjNGvt0lAFwUoi8HBwdarVZaLpdaLBba39/XwcFBrQsyHo91586deq79/f065rz29/frNRhHCDsijgtYLn55PQS+v7Oz0yqMyH1DugvH+VplHZH2whafjJULUO7WwEEjqQonkjSZTDQajeq9Qz0M1hUuHM4xGAxqDYter6f5fF6/w3OFtAkXiVyUZI0nEolEIpFIJBKJe2NjBAUnRtG+Hkmlb//mld+9+JtHxAeDQS0SByG6lxU/1hlwckyb4vaGnnuOMOKCBTZ9z0uH9HsOv1vTIWNO/lxYgIwRKfb8cr4D4fOoshencxEGazl9B+4O8TnwVAE+R3SIue4u3NAX2ul2edpEv68qpOgOBoiypzrwHsR3e3u7JZhEkYYx8F0aouvAz+9z7/Uv3DHijhQn66w3X9dE+o+Pj/Xqq6/qAx/4gG7fvl1J7+7ubq2L4TVBIvF1h42Pte/G4MTexxJhgb6/9NJLVVTxeg+M43Q6rcQeNwDbXtIOF5NiWxAEfF7pI+OEKOapLb5WPaWBdvg2sYwPQpd0IRhExwZt8JSa6IJIJBKJRCKRSCRuEqXX0we/6DeoecA/Q3uLRre+8btvtlH3uv5Tu/IV4A/9mK8e8/m9XkEsTAf4eTgcarVaVULhx0GKYw0FP4+T0PtFLvm+52J7NN5rNFA4z4UEXpApJ6UeheccCAY+HhxPhJg6B7FOhY8zJNhdBIxNTMeI9vmYnkJEmxSDwWDQIuDu8vB0DKLkEMWrCCntwcEQi1I6kaTdCBRdVfs5Jkb8Y30C0gyiwIHTwOtVuDglqeW2YC25wOAFCGezmV599VXt7+9rPB7X+gmkELBbA8Q3rvuuWgoUz/RUFWocsA4RFbjX9vb2dHh42BIxvF7IYrGoxS5xKLBdqt8DvnaYI1/Xvh5xqbB+aIvfm+54QNxgHbk4EZ8liFdePyO2g/XlYlIikUgkEolEInHT6L3lo3W6N1azs61XPlFqes39vyRpe1F059d8otS0j29+/GfUWKDsprBRgoJHpCHhMa0AxBx1/9wt1aUU7e7uqpRSt4JbLpetHHmPgnNuFxZ8a0ZIYtya0MkLaRKQGkiKOyeiI8Aj5G6Fp50x4upj48XviDyTo08dBYggdQvcVUDbuwgUWzJCDGOfvC2QZLe541aIgkQURvi+F470mgFei8AdF8PhUIvFohX9jmvFnQrRleA59JHc+vE+LogYRO/ZVQQi6uKMu2IYdwo8ukiGQ4F1enBwoP39fd26dauuE0QiyD9pHPSjSxgrpdTj49zu7OxoOp220opcUJlOp7p9+3ZdF15XRJIODg60XC41nU6r4MG9MZ/PK4F354YLT9EpxLiTQuLrjDb4v7zv8+RuBRczer2elstlHV/fItbdMvwc64kkEonETaH0elK57JhKGI4yDS2RSDzfKL2eXv4dH6lXPwFR4MHEBEk6GTX6ybfvXXr/V/yl1+nkPe/t/lJzquaadjPbCEEhRp7dQn1yclJJi5NSz/nnd3czOKnCSu2RdK/87vUUPKoaLeVORKWLrSQBu08QyfYaCP1+/9J2hGxpiE3br0kkl1oB0mWSizhAW0ajUSsNgpQKIv+z2axa5aWLXQK4LrUEupwQXCPOm0eAIbx8B3KLO4Tv0zdIH5H21WpViS1kzu35cfcHd3NEBwdtOjw8rEUT6UPM4feIPqCtkOKuWgq+pSHz5CIC/eO7jDeCiLtKcDUcHR3p8PBQL7/8sm7dulVrKOAkYLeD4+PjWhcjkmNP//F58boerFfcC+PxWKPRqCVy7e3tteoveNrDycmJZrNZFT1IleC+ZFcQhAbWP3NEf6bTaXVBMA/MNe3we9XdPu6coY1xtxXuLRdiXABzkBJE3YkuV08ikUhcJ8pOXz/zJ3/dA9taX1Ss/vK/eNpNSCQSiRtD6fX0s1/zG3QyenAR4UHwk1/6Rql545Wfv/W//VGd3H31sa+zEYIC8Cg9f/jH7RajHZmI8HK5rGR5PB63ChySGuBRbCL/HrF26zTEx3dsAF4DgO9JqqKFA4LVZfGOBQo9/aKUs8KOTqTcOcF4ubhBrQhPe4Cgr1ar2m/fXYGUCyLDi8XiUo5/dFAwJl19QixgjiCXnMcJeb/fr+KPEzgnejgB3KHgbfD33clAm4nsRyIa564rWu4pGO5Y4doQfBczuhwkkqoo4akZp6en1YIvXQhhTXO228Dh4aH29/d19+5d3blzp64DF4VwnazX61b6gotjni7ibgPvO0Qa5w3pQQgRo9Gopjb4rgucZ3t7u25zybqSztwziAmsO8afXR7or+/OwOderJG15OlDzAN9cHEpuiE8VcXTNxgDXxfuWkgkEombwPZbP0Yv//aP0OngVE0+au6NHJ9EIvGcovfmj9J7/v036mR0/f8XnO7cQ6BopPd80SepPIwZ9//9dzrf3ihBwYvXub05Wt4ltUgo0XoKL3phQ7fSez49tvyuXHvaAhnBLu8R365aCkRpPSpNHnhMV5DaZMVJkhNqiE2scQA8PxwS52KHR6DdPXB0dKTValWFAY/2urMDxwXvn5yctKLCsb0uQhDJdvHHr0Uk2oUS0gOAiy4uYDhZ9HoHXNvrQETbOnPrQhJijufSu+Ml7vThbhKvM0HbXYDytBnOh2vCdx1gTDl+Npvp4OBAs9msOkeYO9+Bgm00GX/WAn3yrRxpM99n/vgONRpKKZrNZrVfCBWxxoALIuzGwHiQiuLzhajE+7g1vL6FC0KscfpKu/1zd7xwfYf/Tq2K6HZgXPze6jpXIpFIXBdO90ba/7jT+x+YSCQSiecS2x/3Fu3/6tc9nf8LinTwMddz3Y0RFCDuw+Gw5SaQ2tvsxTx1CIZvfUi0VlKLyLrjgCguUU8v6sZ3hsOhtra2apSfzyFHbsn3qD7tn8/nNb3CI+feZ4+aRiIchQt3Kfj1IHS+hSbnhHQ3TaPhcFiLB7KVnrfX7fKIAETpvX1OUGPdBS9ayHyQjkLU2y3vEErEoaOjoyr2OHH0NvmagOx2jZ8LOl07LPjYX+W2kC5qcpDC4NFwyLPvjuBwAYx/Y0oM4xRrUiwWCy0WCx0eHmq5XNbzex0Q1j3FEBEqmFNP2WCcfD35OONAQJR79dVXa/+4N51g45ZACGCtcMz+/n6rgKqPGevMx5YtIKOgxPfd8eKOEdap71zhc+tz4TtJeMqUj0cUjhKJRCKRSCQSievE1nCo933GR+iVT7reNIengY36axmSOh6PayG/7e3tmn8P+aUKPDnbLihgZeY4CL1H2YmSShcRYQgf5AhRAuKL+IBLwAkueeduucb2zTG0HwLG9Zz40T6/DtFcL6oI8Zba9SEGg4FGo1G10vu1B4OBbt++3UlEsY5LaqWKePSddvEvoO981/+FxHpRQcCOBaPRqEa+aTfn4Fo4T5gP2oUdnzGFEMYdQuK1fb1FW3xMlfHjWH++o4OLDu4QYftE6cKt4HUcPN1gZ2enkn7ajCtmtVrVAo30/fT0VPP5XLPZrHVOCDcCCe3xMXDXzXw+b9UnmEwm2t3drbU0Dg4ONJ/Pa5+8joWvR+7BUorG43HdBpXvxvsOIQrxCBEEl1GEt50xiek/XvgSsSi6UDydxmtKuBDlooa7fhKJRCKRSCQSiWtBKfqZr/61Ohk/+2KCtCGCguc9U0yQCv9SO8oIIEaxCrxvcec2foiz5/ZHgsF1PEf8+Pi4lZeOM8GrwHtNB3cRRIJD9JeCdRCqSFzpt+8e4ePEsZ7SAeFiC0ms7hAmitM5YaS9kCjpguDyM9dzYcGj6p6HHrcnhCjHegfME8UMaXeMoLtbBFGJuYBce+FK5t3Juu9K4aKCiyaQZN/FgroN0gW55/rUtqAmAHMNOR6Px1UEYXx97qKNPood/jsi2Xw+1+7ubu07n7ljgzWBUOTpD/45a5hdT3q9nhaLRasPW1tb2t3d1auvvlodEYhA9Ae3xGKxqOIBY3hyclILLnIvxjHmvqVdLkTF+iC4VtxNxHdoi4tR7mpycYh7l3Hg+rzvQgXvJxKJRCKRSCQS14Hem96od//ej7qRmglPCxshKACPnnpk0d0KsZ6C25MBxNJztd0uHa3TEBvP8Y4F4GiTixaefy5d2K/jNoneRq+nAGF2C7f3hagq54+2/JgOwLW8foTXoCDCHFMKvNZBrJ8QxQ4Q3Rm8x7jFOYL4MT/MEWkYkFX6zXUROzwqzjm9wKHPs5NAxAwnsvTHU0LcqUC/PRWCazrpZocKL3DI+mUN4axghwRPefFxdbHK5x5B4fDwsG5/6oKTO1W83oa7Qrxv0RlDKgpFSnFa7Ozs6NatW7p7966Wy6UWi0UrLYnrS2fCxmKxqLUXGCPO404j3DAusHkqkqS6HaaLZZx3PB631gXiirtnfNeWeM8wpp7q5Ltx+JyzphOJRCKRSCQSicfF9ls/Rvu/+rU6fPPzVT9nYwQFJ3NO8iBHkfRJ7Tx4J47knUMMYl0BIqvuJOAcMYoM6fT0CSL8blH3QoySWtF2FwkgUm7Ph+BEwokgwDm4Puiy5nu0HbLpbaTivo8jJNzFAHd3ME6+VaILFi4oHB0d1YKAMcXBhRBqOBANJ3WDOac97EoBscQxIrVrG7gDIhb1w8VAG1ywQECiDV6TIY4Hx7CNI2tiNptVooqDYjgcXnKhePFFXxdxG0onxrgTXnnllbojAsILa6dpmipi+NxQP4J7h/Fi7DwFB0GAnRe2trb0mte8RgcHB1qtVprNZnWOPN2IXSGo97C3t1fPzVgyTqwPv5djUVHaiGDg9xguG36O24wijFCgsktwxMnA+Zn7KOp0CZWJRCKRSCQSicSjYGsy0Qd+84frg5/8/AWrNkJQ4A/3KABQKA5CGSPTbmmGNEK4Dw8PKyHb3d2tBAsy4ZFlL+ImXSa/2PMhSW7Xhph6Pvbx8bHm83mLwHEur6/gBes8D93TFyC1Tg7duUCagee3M0a0j/5gxaf/bjOXVOtPuIvCLeVe+8GJtqd5UPXfo9DuTmAcqOUAaaQP1Meg4N98Pq/pGcwNv0MIvV6FpPq5k0jGGTLu4+pR8+iCYX3675Jqe0kxoWYCa3Y8HrfWGnUVurZrREAppbQIMa4BSbp79251luzt7bXWKeuaMfC58LUwnU7rGlosFpIuUiqaptFsNqvOhu3tbU2nU925c0fL5VLz+Vwf+tCHtLe3p/F4rJOTkzqHtPXg4EB37typY+XpE+5eARRgdaeM7zLBfYEQwz3qQhJCidcwYQ2uVqu6cwXz2u/36/pgfhA+WEuMrf+eSCQSiUQikUg8Kn72y/93Opo+f2KCtCGCQgRV6iVVWzM57fyh70XanKRABsmnls7InxNGHApewA6yybkhQrHKe7RQ+zVisbpYjC/m7UOEcB7QbxdNiJYjIsRoq7sJsG77OHjag4sNHpV18cDdEu52YBy8ACPXYp5cvPBzE31nDNzVsFwua9FLt717XQWq8ns6AO30QpgUp9za2qp9cDHAo878zvVYT5524+vRx8GdCl6I0QscEnH3MSKqDqF1xw1FAmezWXVRMK6LxUJ3795tFa7EzcFaiPU83KHga5A2+RaiuCs8ck97dnd3NZ/PNZ/Pdffu3brG6c/BwUEl/mxxGcUX+impOlP8ngGIJ11zhIuCtec7msRirThDfC4QJDmWc7oLqNfraTKZ6NVXX01nQiKRSCQSiUTisdF7w0fqF77wzToen0rP6Z+XjyUolFJuS/ofJf0qSY2kPyjpJyR9s6Q3S/o5SZ/fNM0r9zuXOwTcwu9ReSfzEG+pnefsudJEoLGguw0eYuvR61g4zosJRpIE3HWA8IELIBaThOi51d1FEd/i0N0XfM/TLGKV+ygWMKZeG8HrKDjRlS4IvBev9KKVUVjwPnlhO8bNc+lxNnhqBC9s6i4meM0IdzgwHnGNQIA5HtLsrgYi5H5+rzfh7pcouGDxv8rJMh6Pa1+i2MW4uGCCQ8OJMKkBrF3f9YHUhvl83qoX4WvJx9SLWdIGr/fBdekb0XzfLYM+D4dDTSYTTadTTafTStTpo9drODw8rM6cWKfDXT04J5g3v3+9bonXi/Aiqlw7piq5iMMYkJohXTgaBoNB3ekENwPwNX7VPb+JuM5ncSKRSCQeHvkcTiQSnejvaP6G56tmQsTjOhT+sqT/tWma31dK6UsaS/oqSd/RNM3XllK+QtJXSPrye50kWso9b9pt935sLELn0WfIJJFX33kgWu8hPRA/6YKAup3eyaV/HxDRdcII+eFYFxROTk40HA5bZIaIuwsafNcj1h7BdoHERQonY5ArJ64QMs9Ppzgi8O9xTJwLn0Ov4cB4IWBAquMuDuv1WvP5vJ7bI+/uDOAa3l+fwy4i721FUPAx9mJ8UUjwNsZ16r977Qfmhj5zzGAwaO1O4W1m3eBGYY4lVes/65nCiBwL+Y7j6uvF61x4AUdcIVyP80O0uadcUNjd3a2iA+thPB5rPp/XeTw8PKx98uKH0sV2mczrer2u9RpcxIqCoq81xsTvT7/vSaNwN4unv0TXi9cEoR2kI8W1sOG4lmdxIpFIJB4Z+RxOJBItbA2HOt0dPe1m3DgeWVAopexJ+i2S/mNJappmLWldSnmbpM84P+wbJH2n7vPw9MgixAaSJ6nmoztp9ih+LJznAsXx8XG1ZXttBv71lAAAaYMYkXvuuwxwDYgX54AUL5dLzWYzH68aLYWQOamTLohkr3e2daa7ELa2zgrSIQpIqjnvXn8B0oozw10GXZHfKCjs7u5Wl0JXdDbWl4jncBHD0zSwmDvZZfwg++v1uuVKkdQid9vb27W+QExlYG3EVAa/DvO3v7+v4XBYXwgs0ZXibaPfTmK5JiSVtpM605Xi4o4UajcwpxBf34nEHSmHh4fVAeMpKT5PUbhBVDs9PdV8PtdkMqmCh6eakI7BC7cF1xmPx7pz506r5gLzQPHM/f19ffCDH1QpRbu7uy3hAXFpZ2en1omYz+e6fft2rUMBwXewprnPSFXi3uRecJfQ7u7uJVGBMaTdOFni9q+IZ+7U2XRc57M4kUgkEg+PfA4nEokuvPq2X6P3/san3Yqbx+M4FD5G0vsl/fVSyidL+j5JXybpw5umeVmSmqZ5uZTyuvudCLLstQMgwhBUj/i6Jd6jmJ4PTX42lnov/AeR5FwIGJAKrNJcA8LnxQAlXYrmS6pW8ul02iJzTdO0SA4ReBcUnNxRd8Dt+dPptLYFckVkfD6fV4FhMBhoPB5Xizr1JHxXANrgffYoLteEVHq7XcjhM4g1ZFq6qNTvJK5pmtYOGFyH9vk5GVd3XFBMjzZ4TY2r1hYCAbt/HB4e1rZRTyCmzXjev6dqRKGEzyHMXvuB7zH+tKM5L+Lobgl3wXgdDk9ZIbUA8g6hpp6Arx8ED+aXGiTUCSilaG9vr9ZjoF/USyBFyB08iGXcnwhAzFPTNDo8PKwCASIc88DahcSzXj39gj5y73hNkNFoVB0SXH80GrUEIEl1Rw/WE+kjXsyU+UAc4jOvneI1KDYc1/YsTiQSicQjIZ/DiUSiG89G9uxj4XEEhZ6kT5H0R5qm+Z5Syl/WmZXrgVBKeYekd0gXFfOli+0XpQsbvzsPuohjfN/dCpAar3jPdSANEF2IHGQxRuD52SPPHrH3IolxxwJECgh3JNT+8jxuL+y4s7Oj6XSqra2tSgQ5Zr1ea7FYVPLkxec8AuvXjE4Fdxp4CoAT6Vj40YstMg9OZler1SUxyIUVvx79dPi2gpBadhbwMfM+eN6+rw+ugcjh9R1iKkNMO/Hzx+KQjAvRdAiu737BOkHAYA24eMG8ew0CX1dcm91LfA69vT4u9BFh7fDwUNKZ62dnZ0fj8bi2hX/ZmcJ3YIi1C/x+dGEF5wFrnXny9CGvEbFcLltiivfT14h0IQC46ATp93sPgcWLMnrqhQsv3sa4/p6hdIdrexYPNb6ZFiYSicTzjXwOJxKJFxaPIyi8W9K7m6b5nvPf/47OHp7vLaW8/lyJfb2k93V9uWmad0p6pyTdunWr8W3/3JosXdjxIaqehx2JoP/s4gTfcbs9JI5oZsyzh9Twexe5chLu5ydiH9MrEAEghHwXC7rb0d32DnEbj8fa3t7Wer3WdDqtWy8uFov62t3drcQVN0C0fDvB5nffDYJIeymlVagP8k3fo0vD5wNyKqlFqPmdvmOrj6ICUWOvCzEYDHR4eNgaa9qC08JJP/PoEXzpwq1BKk0E4xej1C68IBiwUwXClDsuILLMsZNyP5eLLZzL++X1IDiv72QSd5+IhT1JM2AXBs4/Ho/rPOPq8ai+C2gR8d7je9R6iOu7aZq6tWtzXpyRHRm4d6PbKK5X6o4g5Lhgw7+Ik6TL7OzsXNom1tMbXHyKIkZXvzcQ1/Ys3isvPRMdTiQSiQ1DPocTicQLi0cWFJqm+eVSyi+WUj6haZqfkPSZkn70/PV2SV97/u+33u9ckBnIExZkjzRH0k8UGZJG3rdvv0hEE0IFiGR6nYYoOLhgAHGDHEKcffcB8sj93J7Lz3sxqgux81x6ividnra3tzw+Pq5b+VEA8r3vfW9Nd/jQhz6kO3fu6NatW+r1erpz505tB+fid9IiDg4OWuOCJTwKNpB0J2M+B17wj+iwpyfQV+kiLYTx4bsuCHG9o6OjVqFHCkciBnTVS/AUBaz+zCtijacCMCbuSmHdeG6/H8O1/RxeC4H14rsTcH1fW6yb0Wh0T/KKQOVju1gs6jiUUnTr1q1KqBljJ+psvYhwwZiwC8p0Oq1rumubzrh7Ce313SvYFpLUFtrOOvGdH2j7fD6voo+LCKSGuABCyhIpP9QpcTeOp33s7u62Ujlw1Li45YICv1/lkthEXOezOJFIJBIPj3wOJxKJFxmPu8vDH5H0jeWsmu3PSPoDkrYkfUsp5Ysl/YKkz7vfSSCKscI78Nx/Fxk893+5XNZoPQTTCZPnRksXdQIgghBG8sRv3bpVSTP53rTF87FpK8fRLncyQIa8yJ4X+UNEoLYDNRI86u7FJckRv337tmazWSVls9lMs9msEk0vutfr9TSfz1sR3+FwWEUY+sU4QNiwhMeUEiLh2NydOPM5JM8r6XtNCsgh8+vkjflmBwHGhrmEeLqoENMfGGuEDchmjPa76OCpAwgNPo6QZU9FgdBzzHQ6rf1CMPDPGQMXoiDOnubj4+Juk62trUqOvVDoYrGo4zoejzUen9kmWXeHh4eV9B8cHNTxQUyg3UTuKb7IcaRaxDQXTyFgPWxtbVXnBmuHdc+rlFLdJtwDXId1xH3lJD+KjNQ28R1ZHPRpNBrVeik4PLwGh9dS4F5+RhwK0jU9ixOJRCLxyMjncCKReCHxWIJC0zQ/IOnXd3z0mQ9zHoh1tMvzB35MdfA/+D1loeu8HCO1dyiItRg8Rx9CBmGmqCNtcMRUgK6cbW+DF9pz279vK+gRVrfPz+fzSrDY8QE3w3w+12q10v7+vg4ODqpbwp0XFLrzXHKPYnuqAdfxiHHXnMW8fRwFnN8j6jFFxV0ZvouGt8FFJp83d6zgcHCbv89zJKJRaHHhRlIlwnEdOTH2Yom0L9bgoB+INYgfEHZvG9H6KKgxZghPXAfXhI8PxRS9wCntZV3RZsaMn71wZHTtuDOI1IGYvuJbMbJe49apvO/ndZcQbXXhze/9uBY9TcHvddKTYm0FL/iK8EjhR+5hL7jq87jpuK5ncSKReDJoftMn64OfNJb0zIiWifsgn8OJROJFxeM6FK4NTqKd8ECo3AYNsZEutn9z0ulFFt1q7oKCkxMnHG6r7vf7Nc9buqjt4ETZiSg2cieTEC8nMy6KeBoAgoJH2z0qjsOAvlJQD/fF0dGRDg4OdHBwUPPYEQXYXpK0B7er4wbw/H+P7PNerHjvdQGYO5wRzB21ILwopJNDJ/gQUI7hul4rgOvGKL6TQsilC01eBwDSCbn3MWXdxBQI+gO6CK67Sfx4BABcCVyHY7zQon9G/+mLk2UcOdwrx8fHOjw81HQ6bYlt9I37K6Yr8P3FYtESwLxdCA4Ua4RoUw+Ee7BpGs1msyoY+FavjCfr3sUQBAra5iIdcKeEjx3H02YvsuoiH/cVa9RFBdZRFLOeoaKMiUTiGUAZDLT92g+TJP3Sr5/o4GM2f1vaRCKRSCTuh40QFCADThSc2EIcEBa8InssmucCg+eYA0jm4eFhy1pN3jnElEJ6g8GgEnHaAHmnDRCa2BYXOYjC7+zsVIs7/UJMwBXhIgE/r9dr7e/v16J3y+VSd+7cqeceDof1/cPDQ+3v79fvefE738rRnQWMNWOMmEBk3LdmdBHFC1v6docQtfF4fMk+jkixXC4r0WPuXLRhp4Dlcqmjo6MagUdIYW3guvCCkp7CQP/cNcJuDOTdk/bAOUhTYFzot4tbvOfjAjkfjUataDy2/NVqpclkUvsHifX15Wve15fv/sF803ccAThgEGpYg+ym4Oeib6T0HB4e1sKM/X6/ps8cHBzo7t27NT3BU3UYT9rA/eK1JaIAAKH3cfdUkijIeIqTjzfrz4/1WiaMqxf0ZNtLXogJ/n0EGK/NkUgkEo+L8ta36Me/+Pb5bykmJBKJROL5wMb8xex/vJOTDiHjD38nu9KFJZvvkz/d7/dbhBCyBrBC+8ut+5IqGSLfnUJwfpyTJcienyMifhcSjBMiEi/PN6fNOAy2t7crwZ5Opy2r+OHhoX75l39Z0sWWkl5UjwKWiBVcEyIJ2SOdwMWEiJgOgMgThRrpQrBATOBFkUlEFHeWQOy84CbzjADkZPCqNnKcpxR4n9zy3+v1NJvN6jFewNDPxe/upvAChqzbfr+v/f391q4PzCliDeSa8/f7/SoIeNtYh1zDI/7uRPGdJRDRfF4g1ltbW3V9zGYzTSaTKsKwBSTXkS5cE6wd1oY7iKhJcnx8XGtguBsl7qzhfed3L37KOmAtefqRO4C8jgN95Zo+3jhoGEcXQfx54jVXEolE4nFw8AWfpg/+qqJMcUgkEonE84aN+WvZibhHIt2+Dnnr9XoajUatnR28HgGkw90JOAqctDspdELikVI/r9vOibzHPsTcd7fBeyFGLxzpuenY/ykix3fX63WLjHm1fE/T4JzL5VLz+VzSRdSVa/kLMPZehJDvcj2vh+AV8Bk7+hTFh5jLz5i49R2SHXFVegnCRFedCIgo4+1riEKUwOsDIGZ4LQzGM9ZP8HnmfZ9rXzteK4F5Y34h/LTdxShPA/Lx8Pkm2k87+T0SY985xMUY2k1hz8Vi0UqhQYAi1YH54Hz0nfQBzum1P+ibtwdyD5FnbDzFyVNRGEMfZ9YC9xPnRiAhlcddKi4K0nYXJzz1wdduIpFIPA6OxkXHkxQTEolE4kXC7R/6kKSX9N5Pe9otuVlsjKDgedZOFJ34Q3a9qBuF7CCknm9ONNK3JpTaRI3ordvdicwTxY9FAbe3tyvZB7GAmxNNJ1z0A8s+/YS0UZwR8uvbL3qk3M8NaXJLu+8u0JXrH8cMOGGV1Krb4H2BuHrF/a7ilx4lPz09be3qwFy7SOHt5Lu83J3iaTEILbTRc+OdOPrvTho9pSH+62k2XuODn104ioJCFB1iMcLRaFTHCiIc+w/5dSEsFkFEcIqFE3GyxF0bmCN31UiqjhHSQZhnT5Xx+4rzsj6j64Ox9T67qwCHgxemdGGPdRwdCS5GcU13THAuT0HhvJ7yEMeYuXVhIx0KiUTicdH76DfpeJTuhEQikXjRcPKjP6k7i4/Wez/t9U+7KTeKjfhrORbCk9pWeieCRFc9muuEw4kpOfiDwaBVAG5ra6tau72yO21hRwVPCYjF4EajUbXDk2Lhke+u3Hrs2BA9ov7b29taLpeazWaV5LFFopNdxBHGAXIFIEsUGmQrQtrvLgtIvOeYM2a+wwGigRM73w0By3tMz/C5irsBSKp1HWIOvhci5LxsXbm9vX0pfYUtJCG8OANiAUIXp4jAu2OAlxf08+h4l9gVP3M3SYx8+3G+pj2qzji4OwJS6+u61+tpOp3WNmxvb9dtTdkS8oMf/KBe85rXaHd3V6PRqK4lUlqcrHvxRQQF1mcshOiCU3TcuHPGhS+uEQtE9vt9jUajWiPj6OhIo9Gobot6cnKixWJRxSIEPhdtWKM4JnA90J+mOdsmkzHHGeK1Q1ycohYF97XfC4lEIvHQKEU/9SVv1MkoayYkEonECwv05Gdj87CHxsYICp4W0DRNi3CWUmohPidhkQh4ZLLf77ci5xAUyBFRWMg+5N5FgNls1irWSATTc7MhVETayTePxSSli6KAkEJ3UDRNU0WMXq+nyWTS2hpyuVxqMpnUKLNHgt1B4BFXT/OA4EVRwYmZ74rgxRJJLfEdL6h5MB6PW1Fv2ux955r8C2Fm/JmnWPAQ8u+iCX13B4j3ERLpaTJOyI+Pj6ugwHncccA8+ZhJF7uE0DfP+Ufg8rSLKI542xGMWFeshfV6XYUpF1S85gfzNRwOtbe311pHFCNkx4dXXnmlCgrj8biOtRfmpJ8QcF9Hnl7SVTPB58Jrj3DfRtGF+84dE35dX3vsDsL5uUdd2OI+dWGIdKiuZ8N8Pq/Pl1gzxcUvF0Ci4yKRSCQSiUQikXhQHP/8u/UJ/82+fvo//xXPberbRggK5PyTW86uCkQmnbx7qoLnm3uUmc94Qbi82J9Hm/ldUstSL104EzwqG68lXeziIKm1JV0ERIW8do+W+xZ9bk93EuouB3cjuNPCC9ER+YVo4xKApHm+Pe2DDHOs59lzrNc+cEGBsYZ0llIukWecDZ72wHh6YULmNdZm8Lx2F6M8D99FhJhywDl8HXU5GtyN4fUivC18150NCGKxzkOs/8DP3hevA+HOjFhfRFKrboafM0b3uW6/39dkMtHOzo5Wq9WlnSy8gKePIy/mlXZwjAt3XWkhPgaIBS4KlVKquODpHN6u6CZx4cmBWEd6EM8W5tDvBV9f9I/tYrvSNxKJROKh0TT66H+01C//xpHmb0iXQiKRSLxwOD3RySuv6KP+14Xe9xvGOvyo5+//go0QFCBgHo10YiOpRoY94u2OAbdUY40GXTn40cItte3929sXW/rxmaT6PpHOmA/Odb0qPv26qj6Aw0mduwqokYBVPRJcT7Hw/HgvqoigAJwcch3IeYzcuujDGHm0mOMhZj63uCw8Zz5a/0lbQFDwuY5zGdeOF4mkLzhOPG8/WvHdNeGEnWszxi66RNdJ7AffPzo6qpF4ENdqFBNoN2kd7rBwB4fPPekJkHkXTFyk8noK7pjx2hB+PGucc5MywbURFGJqhteEcGEnrmUXQHzMEMMg9dQOYb35fes/R7jzwws4IirE9cTYeHpIFC0TiUTiUbD1L/+thm/9TZq/4Wm3JJFIJBJPC1v/6gd0Z+836Hi4o+Xrni9RYSMEBUktIunpCx6pPz4+rhFWJ+kxrx7S7fA8cEmXyKXXGoAsUXsBckEbOcZFgcFgoNFo1BIznJS5EwHEdAxAYb1YHA6i7pFTr1fgZJedGhgLtn9k7IjMRsKEcMCOE9Ry2No620bw8PCwjq0TT9rI8Vwj7iQR3SPeh66K+pGwe4FCP6+LHIyTF+7rcjV4dB0Hi7tO3LUSRQWuGefCx9SvwfGeEuGRdl/7i8WiJRown94e0nro62g00mg0agkKuH2Wy2WN+HMtF8C8oCZi3nq9ro4Y1l7TNFVUcjdMnFsXg1xU4d7Z2jrbtrJpmiq80CfukygmefqH12Jw8Yw1F+fDhSxJdetVF7YoMjmdTjWbzWrNEx+3RCKReFSU07OXJDVFz20ebSKRSCSuxuAf/ht99Ls+Vj/5Ja99rv4v2BhBAbu7F7GLjgOinZBij/YCz4N3OPHz73oxPt+ekM/JSSeFgPepHA9xh3QNBoMqcEC4fUs7iFEs+uekmmgtRRoB1/O8eid91HCgsr1b5p3I02YK0HENhAMnvZAx6iVwDdrtKSa0DxLpLgvpQtSBBHuuuhNrJ/Ce8iBd1CtwAhst8Iw/fXRLPuPs0XWOpV1OTlerlRaLRStC7ukN9MsFAC9E6WkOrHHqUDRNUyPiHMN3qHMQiS/tXq1WtXghTgUKNSJ2Uc/i9PRUi8Wi5RzAPeB1PKjfQJ+9b4gQiFPMEW3zuiLMe6zXwfnH43GdS+4F7gcvEunuARc9aJe7LjyFhfddvOA7vu58ndB2RMTFYlHdNYlEIvG4eOlvfb9e87d7Kjs9/dRXfKJOB89nHm0ikUgk7o2Tn/oZvfVr3qef/qpfpZPh8/F/wUYICk6yncS6XRnHAoXn+J7U3rIxFlZ0uCXcc+vdfu41EtxO7yKAF/fz46mLMJlMdHx8rFdffbVVFyHm6nNtj3QTaec7tI2Cdh5194gutQogTWzB52kZHjHe2tqqUWicF+PxuEa1IbSr1aolhEDgGGsn9ggPcZcI+sWYu1Xd6zD4GPjaAD5uXZZ7vsvceU0E2kuk32tl+PxxDI4UF5k4njGnDRBs5snTCDgOoYX+LpfLFslnLBE9EHXW63V1ijBGtAXxDTLN7gU+du6WiaIHwoLXC+Ca7rSJBRh9PmPqhrsLfF3QP2o3RJGN7+JaiCkq7mjxe9b7H9eCrwc/lwtBLmByHgQPT/1JJBKJx0GzWqlZraRS9JZvnevlT59o/vrny/KaSCQSiQdA0+j04EBv+daZmu1z/rJV9HO/a6jTnWdTYNgYQcFdAxA2opKQC0iyRzaJQkM4PNINnPQ48YQwQMy9LRzjwoIXooOIeJ4+5x8MBhqPx5rP560t7rx4IW2O1+OapHtwTsQAvtNl+/bq+hDDmPvvdRbiNpQUpPNoOuKGjzdEkHngZ38BvitdiAA+79KF6OCfxbmIcNGHMeA6vo6iM8XFAG8jc0nqCoLC1taWlstlK62GftNeH/dY/8HTNdwFw/xw3Hg8bh3HuFBEMKZPxH7hUmBuIOZeH4Hxd/HDwbhA+n2teY0HLz7pxRd9zmLfWSeIVIhPzBffZe1yn0ZBIYqEfg3vB59xn/u66Sro6O0dDofVGZVIJBLXiqZR+a4f1J3Xfaq2Fz01W9Lso07VpHaZSCQSLxa++9/VjIeyta3dX/WpOu0hMDxb/zdsjKDg1mfIt0dsPWcbB4NHXJ2U+NZ2XpCNzyW1SJVbtmP0EkDGiB7Hegxx+0VqCfhOCl2V82OxPQja6emp5vN5K7odI7EQL0g8Y4e13K3f9ImaB4yjOxYoSufXhwC6oECNBC+06MX73MEQ3RjurgBU3feoc5wvSKOLN14Q0vPoHTEf3wthMo4HBwcth8VoNKrbOG5vb7d2SmB+3doPCY/1FFy88rXMeoawujuCtTObzeoxq9WqtfuFCw/uBohFF53s+7rFVRFdBqzD4+Nj7e/vX1mHxNd/FPPohwss7lZYLpeaz+d1/H3uaUtMefG59y09o2shzrk7Ovx+7drJxYUL6kX4MyaRSCSuE6Nv/dcaSSo7ff3Mf/PrdHq5hFDC8WwG7RKJROLBcHqi1/6V76q/XvV/Q7PdbGTdhY0SFNz+7qSPaLFvDyhdbBE3Go0q+XGS3rVNZNy6zyPJHsHtAteGUJL7TiFD8s4hdru7u5W8+VaSXdFrIsqelz4YDFqkChHACdf29narIB9pEpzLU0Fom4stvAcR9K0pfctIJ320bTQaaTgctog4v3MNIvnunIjz4mPubYltjNFp+jkYDGo6iKQaAXfy7WtgPB63ClQ2TdNK7SDtgXlCoGEdLpfLmo7j0fu4pq9yAcRaDqQYcD1SLnzXBU8JQXRgO07W1Hg8rrs+sO0qogftXS6Xrd0d5vO5FotFyw1Du+7evdsSFba3tzUej1vrxwuP+vg5+XcHBdtD+r3i4+LrdjAY1BQVzuVimaTqssGR4ve2dFEXhDQe36mEe9pTmTz1xNuXSCQSN4HmaK2P+RPf/7SbsfH4wGr+tJuQSCQSTwxX/d/wni/9dZq9afPS5TZGUPDItBNJAEGBkFBozf/4ly7cCpBwzu95+x7VhMBBHCFJ0cYdEW32pChAInEUQE7jbgcxsur2bEjY3bt3NRgMNBwOdXJycmmHC0QFCspNp9Ma0YZkuQXdtxZ0UcYjw54vDzH09ka3B1tCIrD4XDIOfN+v4/UHYvFGCKikWlQQEhnnwt0l7j7wCL5/x4UZUgQQYeiriwTuHsCJMJvNal+Y964ij7H+gxdYRAhgTHGDeIpKtP17qgGOEsSHmFrA+CFUeBsYz1JKTeeIW60isjDuLg7FNYSA5iIgopKvF4Qf2rBcLusWje4i8dQZBDDOhVB4P6GJ9voxnj7lAo3fB3EOUlBIJBI3jSbsVJXoQIdwn0gkEs8zuv5veOM/er9Opxc7kP3CZ+1q9dLTFxg2QlCIiAX1+MPfo56SWtHELhIotQvTea0GCIanHkCecBJclcNPmyLR9ki829Ld+u+R3Kui25AlyDZRYCdniA+cF6cG5J4xcRcE5N6dIL6TgLsHXFBw+34kXL61JNf1NIU4fi4KMA9+Tr7nVn7qMBC57poTyB/95treFq7P76RoTCaTWoSSProVn+M9Ss41IbmMkf/sfYznQgygPcwzZB1hzEUr2u8ih6dReJ/5GdGG9kKc6QOiAYICfYgFJ2mTjz3nRfShv/TR55Q++PacXCOmK3mffD35uPr1/Fxem8TvQxcZEOMktUQuT8HwdZJIJBKJRCKRSDxtnPzYT7V+v/OWT9PipTYvWr1UtHztkxUZHktQKKX8MUl/SGfZbT8k6Q9IGkv6ZklvlvRzkj6/aZpX7ncuz892i3+MJBIlhqAQZfbdBDgP5Mot5kRnISpO/CEhXowNAuKWaOt/qw8QJQijEyQvkOeuBs7pEWkIDtFl3yoQW7enUtBO0h88/cL7iH3cBRev7bBararLgj5gl4eUea0IbOmTyaTlUIhR9igCREHD8+3ZPUNq103wQn0uSHDuewkOPq6xNsb29ram02m14VOQ0Itv+jncIs+8UcRPUktU8fXsUXEvoOjRevroYlYk1d5+r5vgBSlpL+PJOoPMr9frWscAR8t6vdZkMqnndBcJfW6aplX3gdoSCCNOvl1A8b54OgcpGRzj6S4uKvj9huOHe4A2uQsJcK+6U4Wx4t5BSEIAYW27y+NZwHU+ixOJRCLx8MjncCKReNKYfst3axreW3/Wb9C7f2ug+EU3uoPEIwsKpZQ3SPpPJX1i0zSLUsq3SPoCSZ8o6TuapvnaUspXSPoKSV9+r3NBoCExEVtbW61c/dVq1Yr6EpF2KzREHaLr5Mj6oK2trUruXHSIxQT9/VgQz/sAqUVAkC7s9/SFtkKojo6OajqDF4xzh8Lp6ak+9KEP1RoOFOrzPk+n01atgtls1iKy7opAkIgRWAgjfdnZ2akOBB9nxAsINOPs7fUtGJ0Qe0Tdr8X48C8E0tMkEBt8HrludHAw5x69h8j69bwIn6Q6brGmBiQTgce3yYy1AHzd+Dr28XbnzGKxqATdhShcJQhEPne+Vki/8DkmfQOxAiLuRNp3qKCGBgU+F4tFdTIAd7OQfoSYgGDl7fR0Bq/lgBMAMYB+sGY8PYdx9NolzCX9Pjk50Wq1qsciVGxtbWl3d/dS2g9C3enpab0PYvHXZ0VUuM5ncSKRSCQeHvkcTiQSm4L+P/5efew/bf/9uv3Gj9SPf9lH3tg1HzfloSdpVEo50pkK+x5JXynpM84//wZJ36kHFBQ8kiu13QEQASfnnoPuAkBMeSDS7gTaxQgnjLEgH+c/Ojqq14OYcS0XRDgXRMmj8W5H39nZ0XK5bFniPSLtNR0kaT6faz6ftxwZvCIh9Lx6HxuEGIQMUjt8nDhnzCOHWI1Go0q+p9NpLcRIu7wA5XK5rJ8Br5sQr+XRd18LHuXHKQFItYBYemSeteOuhSgUUOdhMBhUkjybzbRYLC7Z8n1tMjaDwUC3b9++JHz43HpqgOfwu+2edeEpLLE2gdczYA7dMQMYI4Qa30LUBQl3XziZ535BTGLucUp42pHftwhN9A1xyus7UDyTc7ImXWhhvhgrX+cuXKzXay0Wi+ow8PFycanf79d7mp9dzItbm7orqmt8NxTX8ixOJBKJxCMjn8OJROLpo2nUhJ3aTl5+rz7+r4/r7+vXTvRzn7NzbZd85L+Wm6b5pVLKn5P0C5IWkr69aZpvL6V8eNM0L58f83Ip5XUPcK4aZfRia25ddyHBRQCITSR80W7t53IxwYkd14mRZOmC9HUVgHNHg5/Tc7URESA8kBb/PiTSLfVETY+PjzWfz+s5sLLTR5wWpCxAxIgEc5wLERBAyBhRX4/sx5x8xpjIPITebffuAnCCTHtIrfBjYjS/y7XiRfY8J9/nzK3vMb3BCT4ElXn1ehfR7RJFBNrAGLC7AjsJzOfzlqBA/zyf3+31TpQRgWJ9j1gjwHc9iWuba5C+MZ/PK2mO1/a14YId6w9HCGMNumoq0BdEK9wN9MOv4e10VxHuCBf7KHrp9Uk8BcV3eGE3Dgftpi++TtklBDeHp1khWmw6rvNZnEgkEomHRz6HE4nEJqNZrdT8ux+vvw9e+1q99NEfd+Xx692iwzc/eB2Gx0l5uCPpbZLeIumupL9dSvn9D/H9d0h6h6S65aHvsAA8n9+3AoSYQphjOkOXVTna4KWLGgL8DKJw4DnqHkXn3/hdzkk0t9fraTKZ1DQBSCORYq/rAFGDiEGk5vN5JWKcm7a5VRyBZrFYVNHhfMwriWLssLhzTd9q0MUYF2XcQULlfq8bwDWw8TN/kNzZbFbFBBcdYg6+OwR8HUgX+fMQcUSMrlz6KDDEa7stvytv36PVPuYICswp4+vpLIwj5+R8XN9z+xkDJ/O0B7ECuMMDAuy1Jkopms/nms1mms1mdecPX7Muwngk3sfaxwJiznggbPm9JKn2nS0aEcE4h4tUUTByt4On/SCguKjFPUCqh6Sa9uBChYsi7nrhu/P5vNUn+ujukk3GdT6Lhxrf5+hEIpFIRORzOJFIPEs4ef/79dLXvf/Kz7c/8eP1ri96zQOf73H8vL9N0s82TfN+SSql/D1J/3tJ7y2lvP5ciX29pPd1fblpmndKeqck3bp1q4EoQw4hNZH0jEajSrCifZxjPRLN726Bji4Et4W7KOGuA8QM3w6PaGgscIjd30nqcDjUeDyuBH69XtetL4mGQ5ogS1FQoHAg5AdnAMTPBRNqKECwIJiemoGwgg0cK72TSBcbGAuPuvvvTuaJLC8Wi0q+T09PNZvN9Morr9S8fkg6JLPLYo4YIV2kpXjKwvn6awkrEGZ2ciDdwNZffTkg0rdv367HQYwh+sfHZ9uWks7BdSG8R0dHOjg4qIICefy+Nqk/wDzTRlwKtMXnnbQF6SIFppTS6q8XwVwul5Xcs5NDhNcO8ZoMnv6DQ8DH//T0tK5f3me8WNN3796tgoLX4OD+Yf5Yo4gj3k5IP/96HYjFYqHFYlHFOV+3rD+eE6vVqj47vP4I971v8xrdSc8Aru1ZvFdeyr3ZEolE4uGRz+FEIvHc4ORHf1Jv+arLu+r99BXHP46g8AuSPq2UMtaZveszJX2vpJmkt0v62vN/v/V+J3KySC67kz9+dms/Ud7lctn6nIiu59C7eyDWSZAutqP0iK+kVrTXC/tJqs4IyLYTXYgqx0JSERSIxFKEkesRDXWRBJLtKQD8PJ1OWxFwJ8ccS9E9yBznhxy7zZ/+OHl00QKyR5T/8PBQw+GwEj3SD3BKeGSdMcEdQUoAfXEhwXP9EWQgy1yH/iHCcBw1HniPtiNouBjiqRz0150HvD8YDCo5j0UjfTwZb9I5WCNbW2c7dLiDgzHkd67proQ4hzgqIhFm7UOeeZFawq4frCUvSugFJtnlwkUZd1osl8vWVpcu5sSov1+X1BhJrZQfP96dIi7aOfFnLdF2b5vPC+fmHkJ4Yc274+Hk5KQ+Q0o527Ejpkg9A7i2Z3EikUgkHgn5HE4kEs8XmgfXNh+nhsL3lFL+jqTvl3Qs6d/qTF2dSvqWUsoX6+wB+3kPcj7InedYS22LshNBjyQ6MeQzFxGIsPKvX4trxB0TnCxK7RSKmIfu7gUv4Bej5hRM5Dueo+7Wb0imCy3ArfoQTY7xsYKMuesiRv8hb7QPYs85PAWA8WXcIJgHBwc1Yo+Tg74ul8vO3Rf49yrhyMmlV9338XQ3hKdguNjAWqAPvh1iTKWhJkAsyum1DcjR52dfP5B3J8Deb4+6Iw501S/wbSC3t7drGocLCk6I3Znj7hquSTv8uEi6XeBga1LO59fyeyrWmOB+iIIHThTI/HR6sbmNr1Ovn8I9QZv8/nSHg98LrFvaE2swICh4gVb6wLrwNBSfp03HdT+LE4lEIvFwyOdwIpF4kfFYJcybpvkTkv5EeHulM2X2oQGhI7LtQoJ0YX+O9Q0ktYgpLgZIOZFXCIQXu4PYQjD4vhNnJ6Hg+Pi4ZcWPgoJXnoekjkajSl6p0O8RbE8jcHAerguBjQ4HLzQYc8+9ToCfl+gx+fBE5j2C7y4BTzdYr9d69dVXW2O3t7dXBYXJZNKqU+CiAKQQy763y8UjRIcuZ4DPhddTgAx7H7xGQdNcFJXETUEtANruQgpRfKL3iAPMCU6D5XJZ11mcQ6/v4MUU3dHhNUK8TYyJX9eFCxdKWD/Hx8dV4HCy7nPhaQYcv1wua3oIghRCnIsIrLEoMkiq32P9cQypPqwDT71ZrVb1vIhuvq7cXRLHMX4utUUOTykaDod1fbA23WHi9RhY488CrvtZnEgkEomHQz6HE4nEi4qN2RPNyaa7E6QL+z7F64gqerTVUw3G47H6/X7Lfk2utacnEK3sIg1O4imY6FFP0hZ4D4LqLoFouWdHBAQFJ7Ox2BztZAx8hwtI4GKx0Hw+r4LJ6elpzbWX1Ip2Q8Q4p0dhuZ6kWhOA69Jmru9kEwfCfD6v1xuPx+r1ehqPx7W9+/v7LbEGgSV+h/bgFvAxgfRBUL0uwHK5rPOJC4ToPI4C70MppVUgkxoGnu7g7oPlctlyD/AZKR6QUy8SGte21HaXMJa+80esx8F3vSAo628+n2t/f7+ODX2DRHu6g4sGLpa5a0dSXU+S6j3DLhFE+b1oJVtrMo/ci9xzkHSvLUFdk+g+4T6j7YyXr1X67mNB310scwGF88bCji5C+X3lwh79SCQSiUQikUgkEt3YGEFBalfUd+u+pEq6sfl7ugOfOyHHFi+pFtXz70FA4/chs8PhsJJ9SJrXMYB0uj0fN4Lbpp1ceqTfyaOnHDiRhPi4uAH59DxziCMkH6Lm7eHYOGaQKE+vYFxwengKAAQa4kX+OaR7b2+vHjccDquLAbJIuyHj7H7hrgUvPugEWLqIjLtYRP8QAxAVOIYaBRBeT3Xw1AnaDXF2J4nX6fB6EU3T6PDwsLYjRvN9jlnT9M/H1wtjesTeHTIuukmq/S+l1G0rY8qBryn646klHuVHpGH+IeKcj2NY134uRCyvfcBYM8ZHR0eazWbVVRFdP4yXpywg5rlTo+teZ978u7SbAqmsf99xw51KjDvjloJCIpFIJBKJRCJxb2yUoCC1c+wdkAFIDtFrqZ3uwO8eMZUuIuN+HSfNFIOE7ED0IFSIEpIqMfbrSarpDB5J9hzxGHWOooMLKvwMEfYaB157gbFZLBbVjt+V1uFWdRdjolXchREv2Mi/TtxwAkCUiQLTZnecIHZQnI9IN31hPD0a7+NLm2OePqSYa3raA9f1WgEQYu+HE1QXTpzI+zh57Ql3TsQ6A3zmzgi308dxp9+RyDJ3PhfShQDgjgMEAtwb9N/bjjgQ28D5IPsuKHAsTqCYHuD3FOfyfvl8+L1H3Q1e3l8XB3z8mH9fRzGFI+7iwDrkXxdmOKfXmvC0jUQikUgkEolEItGNjRAUIApdhDranfkj38k7BNDz9Pme78IQo6F8TjQdOzaR7sFgUCP8HqWV1CKCtJl8eMjNfD5vRXZJc/B0DQhr15h4tBzyjpvBXRBHR0daLBY1R11SSwzw8YgpGU7aIFxuxXfxw8cPQSGKKF7YjvmAcEOSfT68oCWk2F0DHpnnd08b6BozUi4gzzgpsPC7mOM1KGJxRK81AEH3dBvqSXjaDWuCc0PEfXcPju/qgztOfKzjWDHWkGXmwQUF3BLucuB8XMtdQD5HpLKwbr0GCXPsgoKvDZ8/RAJfq14Xg/FmTXO/dI0P7hgfF7/fXdjxuiixzog7J1hTfk4fR0+dSCQSiUQikUgkEm1shKCwtbWl6XR6actHSS2yyu9HR0c10s17RBuJeLPvvSQNh8N6HITOhYqtrS2NRqOWhdxt1BQX9EJ/kqqbwSPWLhRg7z45Oam56LgfHO6icFu7iyLuKuj1ejUlg3MhJEC4XBRwckwtCY/OQoYRUyaTSd21AYIPaUMwgUwyZkSFDw8Pq4MDgcDnEFHF5472uJjhrgd3BUhquQGYC69TQX0EnA+r1Up3796t6SAu+vguFDENhij8fD7XfD6vLhWvbeF1KugvUffogPD6HZ7GwhrgWASiuMOAR/LjTghO2D26HusJeB0BFzwQajxlBgFvuVxqNptVkQKiTuoG4puLCy4C+VyTKsP4TSaTerzXKelyH5HaQT9Wq1Udz+j88HuFa3tNB19LLm54vRQXHRKJRCKRSCQSicRlbISgEAm811HwgnyxgJrvvhCt+ZzH86896t/VBor0QVwgipD35XJZCWNss1uvcTUQbUbw+OAHP6iTkxNNJpOW7dudF05uINYe8fXxoq3ShZDgZI32S+osFugiBcSYftMud0LEtAfSQtzBgQOA42MU2V+4FyDEtMH76cUho+XfieFoNNJ4PNZoNNJgMKiFHukL6RaMqRcLXCwWdbxcXIgReQpeHh8fazQatephsKsIczUajVrRds4Z1wlzx7ry6D/rjT4jkPiuED6OHlWPjhHawZh5vQYED3c7lFJqXQ5EBNYoY4DYg/BC+6KbRVKriKnfu/1+v86577riIqLX/qB9ca34sQgd9MmFGRxCwHeh8DQmBCB/L5FIJBKJRCKRSLSxcX8tu4jgZE5SKxrpVm0+izZqSS3yEolDLJgIAXfiAhkeDof1ul7nwcmpCyJeC4DILLZ72hgJp5PvmO7htnwnVBA4SS1y6IIFggaEmbbS31jPgO/4LglOhrmmR+aldhTY7ekeWfZ0Arfge7viWoA8IyrgPuH8x8fHGgwGGo1Gmkwm2t3d1WAwqKkFTrI9zYM+eqFB2ugpBbzYOQGy7cUx43z7uLrlnnHztespCV6jwAsmuruh657xeyW6aLzWBAVFcRT4GmFLR/pCygR9Xy6XVeRwsSUSb8QDh9dv8AKosZijn5ufGdOmaaqDhHZyDPeen9/HI84NbfJ1xvGs71g0MpFIJBKJRCKRSLSxEYJCzJf2HGjs1R6l5Y99J2mQQI+6O5GAZDiZ5V+vgdBVfV662C7Rz0n0k7a6oBALGBLhJqrq0fuYp91VT4L2OoGPhN6dArHgH23yNIZYzwGRweseELV2Ozv5+i7AMCZO1uk7OfIQNRcDvFgk8+xzRFFDouoQYcgo7RwOhxqPx5pOp9rd3a1kExGHGgBxjXmaAtfzHR6w/CMmYIlHUCB9w4Ubzut9wRnAeLsgxrW8LbzvohV9cgeCr98Y2fe0EU9/wEHBnLjo5Wufgps4ExgHF+gQY7x/Ph4OruXtR1BwEYsXzge+4+vB1zxwYctFCe4hv784jn9d8IjnSyQSiUQikUgkEt3YCEFBush9JiocC8ZB3jz/nRdRX4jBfD6vpAMiBTkimild3irSt2SE7ESbNYi53h7p9tQACPRyudTBwYGOj481m80qmYOQO2GCEBLVd+IIyaHug9dAgBR6NFm6EB4ghk76XGzwnQ1I12C83NHg6SSevy6pNUYgpnF4jQy/ttvdPQWAlJOdnZ3qFCEVgPWCO2Fvb0+7u7uSzrYLPTw81P7+vvb391uEmboPLhS5GEOBy8Viof39fb366qv1O8fHxzo4ONDJyUndopKxOT4+roUNGSuIN+uBop/UZOB4SDXrsYuUQ3i5D9xhEO8ZF7K4FnPmRUkBAop/l3vTnT7+PRcwaHusz4BwRvSfefex8Tlwd4LXd3Bh0QUF1o7vFEF73JniNRHcleBiHe91uZgSiUQikUgkEolEGxsnKCAmSO0IYdwNwB0G/pIudj2QLog+BCjuWBBTIZxAOFECHsn3QnwuVHQRsNPT09omSa2Ifyml0wHBcZ4XDqGifsH29naNQC8WC83n89Z2d5BXXAWIFKWcFZt0QcIjwp5q4sUSfbtE5iqmjjjhi4XtcEY0TVP/dTdGrM6PcDEYDDQcDmsqA6SbfvN5POb09LSKCszRYDBoCU1Oqpmn/f39KqocHh5qNpvV8WdOFouFjo6ONJ1OL6VXOJqmaTlYnIw7+XdHCQIaIo8XPaSNnhIjqQomjHNM9/GCkV4jgD55TQS+G10RXelAvnOCE/G4NugbL+5hr2MQ7zPWZKyj4PPg65O2eRv8mr4OEWM8LaJr3hKJRCKRSCQSiUQ3NkJQ8ArtkGP+wPeK65GIxYru4PT0bJtAJy2+G4MXM+R8REFph6ckRGeDF7VjC8tIupyMR6JFm5x0O8lyy7aLFBBARAKi/URZ2YnAo+zurtja2qrt9qJ2TiI9gkvbcCjECC/tdMLq3/XxjY4SCJ0LCnzmuzhAwmNBR2+bi01erDCmWEAce71edaxIqiIE8+kFGI+OjjSbzTq3m3RHTHzfBSHG2FMs4tqPIE3E0yXciRIt/VJbUIAoxzlxF5CnD7ibAlHH++h1KLyeAykfV9Ub8BQk1ren8Hgqis8d5/T1hjjA7wgKLsTRJ372lBwXz1zc8XO74JNIJBKJRCKRSCTujY0UFJzYuqAAugQFqZ237bnQHtn3Ogx+fY8WdxEjLwSHo+Dk5KS1NaETPIgORNcJt7e3K+XAi+jRfogSOzEQsfacc6rye7TYd22IzgH6AGGMtR9otwsKnuoRi+hFx0icM7fHu+Xda0ZEMucknnZHx0MsUOnRZyepLizEWgDukJjP5zo8PKzFGHEiSBdpKD7PrFMXhNx1Abw2CI4UJ9yMU9f5nPS668XXCCJBHCfINz9HwarLNeGChacGcG7mhbXhok9sg88J48BxuFz8fnfRyNMh7nV/Olxo8ucAYB3GWiW+pkB0TiQSiUQikUgkEokLbISgILWJDICIuKAAUeVYiA7HeiTXyTZ5+ERV/dwOFyqc7EGCIOcuKHghQ87n1fmd2HgtAS+K2O/3L23Nh3Dg5+n3+9Xaj+2eYoHk4vd6PQ2Hw7qVIhFbikj69SGhbv/nuhQfpH/ME4SU3Hza7GID/XWnQ7TAQ1QRaGgn1/a8+OhOcFIYRQMIu3RWa2A6nWo2m6lpGi0WC81ms1Y6gOfZn56eajab6eDgoI4XQo3vXuBkvpSzrSdjLQnfFcPTOPxzJ+A+Vk7yvc6CryGvm8Da9fQDd9RQE8TXJ32KYkLXHHItXwteT8H7Q1tc1KE99MOFEhd0opvHRRcXo/yavh743NeFv+/X6zqvI+snJBKJRCKRSCQS98ZGCAoUZuMP/RiVli7nZFN40O3SvpMABQkhrR6t7spX96itw6OjkFQnt5AQ8vljETmvAbBarVqFGGM+ukeEnXB5rrvninMdSP3JycWWgKPRSNPptLUrgrfbxxgSvlwuaz0AajS4zfz4+Li+R2oKYgYpIUSdXQDysY5j6yIM4+i1FRB/aGeX68Hngbaxppqm0WQy0a1btyRdFB704xAacHwgOpBCENcE/YpFA317S/rh54+7lgyHw1Y9DhcHeM/XvqOrIKa3zf9FrBmPxy2RgLQgbP/MpdfGcNeKrznWEwIG69eLaiKUxWKJnhbi7oZ4XLzXXETieJ9D2uzrhGKtLorE9eZrh7UstQutJhKJRCKRSCQSicvYGEHBizH6jgrRueDWdK9t4CQ8pjS41Z/rSRcEF0IK2SCvO5Jvj2R6XQKvmeA56BzrpIU+8RltwGGAqBFTMuK/iBtuOS+laDAYaDwe6/bt2xqPxy2iByFkfDxi6wKGW8ad4EFgIeW+O0GcM9/6L6Y1xLx4rPdeXI824OJwV4mPY5fIgNABed/e3tZwONRqtdJwOGytgehS8O96+gHiRqz+z3dcpKIoJOICbeQYdoPwOhddtnt3IrjjwOc/1htwcuxz6cKAO3fYBtMFBZ8zL2LqgoHX3fD6BT4Pfv94jYboLonri3N5Soq7X+h33JVEUuu+418cQp724k4nH2fu3y7HVCKRSCQSiUQikWhjYwQF32qvqzCbkwsvpCa16xVIahErqV1YkHNyHJ/zu9dxgGgQ9QdO9jx6HwsUOgF2wcFJkQsScYeLq2oLuC2c6DPED0FhMploNBq1CgE68Ye8eS2EWI8Cgu/uBidakDe36EenAFtvuuDgY+Y1ByDgEGaEACLZvBdrAsT0gJg6whySKgI59XoKTiZjLQJPlfFtDwHrz1NoaGfTNK0dQbqIeJfLwMczCjFdkXyOdwdCLDTorhTG3skzY+ZpGXHNOCH37wNfA36fdfUnCim+vlxIiJ97n10UI62jy+WE+BCFtC5xzwWiLndKIpFIJBKJRCKROMPGCArk6pP7H+3TXqXf6xt4BNHJphNOUgUgYZAmSAd54aRQeKqC57hDOiAkHjGNFnje41+3xUsXRRHdFs/xHBML1PE9J9dsgejRcXaAINK/Wq1qu30nBLd4x3xxJ8b0GzLplnW3zMe2eh7+6enppd01gBebxJHANpDj8bjm/ntU2gUXTw9AyFgul1qtVlqtVvWY8XjcIoiIIl4/wQtr+lixfnAGOOg3xDuSVJ8vxm+5XNZ1TuqAr2N/+TFeH8DH2R0FXUSc9UDfEFEQXdbrtQ4PD7VaraqAQ/0N1hPn5nu+7lycikKbj4+Py+np2Tamsd4J52RdeoFFT2uI95en23gaBteMNSVY5+7u8HshpkckEolEIpFIJBKJNjZGUMBSvre3p8FgoPl8Lkk1wuspDhwfibCLD04ynOzhcPCIPVvfuT2c4z2azzFup/aUhUgKPfLtBGowGGgymWg8Hte2uAAAunYocHdEv9+vpBTyhEjBNdjNgD553YZY2HI6nWo8Htf+SBdbaLpDgf4NBgPdunWrOjrovzsYDg4OdHJyUp0Tt27dqtdmLsbjsV566SXdunWrEnYEht3d3SoSeD/5meOGw2GtvbBer+tWj6vVqpXH3+/367i7g8JTTUopdStJzu0OiFi0k/b6ThMeZQcuUo1GI0nScrlsFXR0wSmm/TAXEZ5O4aTb2+PrEiGNOiPR1cH1JpNJLfCJ0EOBSgi4u3t8bTJP3AO+a0QUzvw5wLqj36z7mDbi7hja4EIO14g1EFwcc3HSUx5SSEgkEolEIpFIJB4M995/TVIp5etKKe8rpfywvfdSKeWflFJ+6vzfO/bZV5ZS3lVK+YlSyu94kEZ47j+7MUSS4FFiJwSeouBEIOZecx3PSUdQgAB5FJ/jnYDFNl0Fzxd30s71RqORJpNJfY1GoxYhBR6F9faTGsCYeNqDR9Q9ik+7PFoOuEasYeCW72gVx+Hh13fnRrTzMxc+LpKqc2AymWg6nVYXA33FtcL2lwgGbs2PTg7O74UjIaU+PnHsPD0AIWE0Gmk0GrVqOLjzwNdQvL6vP+YMck5fPDJPe1nHEHAXJ9zNEgsNujPBU3JcnHBA4BnPrvvFXRo+3/1+v+WE4T2/R6NQ4cKTXze+vL9RmHFBz2tosPZjygXjd1U9j3gvXyV+bAKexLM4kUgkElcjn8OJRCJxGfcVFCR9vaTPCu99haTvaJrmrZK+4/x3lVI+UdIXSPqk8+/896WUy0wmAHcCee6RNEht+zmk1AsKOpHtyo9uddrEBHciOCF3d4ATRj9XzB13h4OLD26rxjmwt7dXxQReiASIChBmj+hGwYBrRjEhFkmkjV1ijY+L29v9/VgD4Coi58UYvfBeLNhIe9iNAseGb6WJoOCpEES9XVCIYo8X6vOdKJgDTwFwwcgFG3d6ICa4oODpMl11PyLx97SbmErTZfl3Uuyk1q39PtZetNTbEwUcFwyi+BYdBr6efZ13iTK+faq31d0qvkWpiwqRwPt97aTe16GLW/TbP/d+PYgo4W2OqRcbhK/XDT+LE4lEInFPfL3yOZxIJBIt3DfloWmaf1FKeXN4+22SPuP852+Q9J2Svvz8/W9qmmYl6WdLKe+S9KmSvute18C6TtG82WzWiiq6XV+6TLSBkxUXFLqINWSRqLGnHXBeCCBiRyRpfj7IrvfJj8OCvre3p5deekkvvfRSTbWADGK/p5YD5AZSh3uDl/czRvMRBhiv09PTFpF10gQRI4UCl8DR0VHtP7b/+XzeInnu7JBU585dDLFuA9cjZeKll16qu1IsFotWmspwOKzjSPoGbZAudlRw4ugpL1jovbYBdSsgnkTOnSi7O8FrIzAfMQUkil2kp0gXgoevQxcMaAPvM5++rn2MPeUD0A4XmlxcOTo66nQp0D7mydvHuvOip+5auAouCPj65zpdjgq/ZjyHj2EU9a4SUoCnp7ijBMeKC348b0jpiIUdnzaexLM4kUgkElcjn8OJRCJxGY9aQ+HDm6Z5WZKapnm5lPK68/ffIOm77bh3n793TziRkNo54eTZuz0dwtjr9VrHQHjcSg4h8agvFnS3bUuq77mIESPZTgRpNyTO2+OR9KZpqoBBoUFPb/AIadxBgf64C4FzRQHFd3fo9XpaLpdaLpc1EoyA4RX9IWCe6uCOjJOTk9YYuc0+FtwjL3+5XNZzksZC+z0FYDwea3d3V7dv3641BVzk8Cj+arXScrnUbDbTbDaTpNomxgtCuFgsWqkDTdNUkujCFOPvxTiduDLP7h5gLpgbJ71+LQQKH4f5fH4p2u9rydN4nHT7PeBt8nFyMs01F4tFq7aFCx6+fv3cXqSS83nBS77jApunFdA+Tz/y8WQOXHCIzwIXGuIzoktEif9ubW1dEhW7EB1M/tzx9m44rvVZnEgkEomHRj6HE4nEC43rLsrY9dd351/0pZR3SHqHdBFl5o94iJtbsKULIuVWZ7dZewQ3EgknXJybaKRXf6cS/lV52SAWhITEePFIFyG87gHnIm8dosaODRB9+uJ9gMjFSC5pI+To93q9VgV/rOU4D9gJgUJ/pBZ4GgjV8Klf4FF35gLQBwohQgypF8F2kMvlUr1eT9PpVLdv39ZrX/ta3bp1S5Ja9ncKaCJ8ICQsFotK6lkbsSAkTgYn6i6AeHSccVsuly0bvc9ttNaz5lg/HMu6wxVBCgnpGqSEuOjkApivMXcguGjjzhUXFCTVWhxeC4JzN01Tt2aNc8d1mGf6D/H3YqAcH2s0+Di7QOjk3Neyj633ge8wN127auD+YQ48XYPv+/n9WdLlOvD2ugvJ03OeQTzSs3io8U22KZFIJF4k5HM4kUi8EHhUQeG9pZTXnyuxr5f0vvP33y3pTXbcGyW9p+sETdO8U9I7JWlvb6/pSiWANEgX1mWioZJqBNsr49v5L0U/neBHKzjv+64O5M53tP1STrpHsp0gEv3FWdC1W4Db5j1FIBaFc9dEJGFeq8AFEHdr8LsXx3Oruef4e2FKHBoILcDb59Z233ZTUnVUQNL6/X4twoijgloHsSAfAoW7Ldx2z1x6igwk30UAn7e4NjxFIDoO/F+OhZQibPg40BbGySP9iA1e0yDOr7c1ttHJudca4L0oBPmxjKWvWR8b2snxXUKA3yPAU324jqeCdPWJ9zguuiBizQTvL+d0l0iEpzL4/Hq6hLfLRQRPb4nzs6G43mdxeSm3t0gkEomHQz6HE4nEC41HTRD+NklvP//57ZK+1d7/glLKoJTyFklvlfSv79uIczLjEUH/4x/i75XhPe2hi0RHGzrkBGu/pFoYDiILifDjIBcx39st27GongseELzhcFiFAE+HiNsVxkiqX8PP2fVvdHNEMudj52IC13SHgtcRcFeFA4Lu5/RIsaccuBtgd3dXu7u7mkwm1VERCT3nnc/ndQtIUht8FwaI5Xq9rikRi8Wiig+SLrUpCjmMV6zs72kIXYiijTtBvPCk7/BAjQvP9Y/pAbQnrqUomPl69NQHn3cX5BBlWO9x3fjOFmyt6deiLS7oULzS0yNYy3Fteps8zcbXlzt/uA9dwOF9F9783vE5dpdDLFRKO7wvXmOhy5W0objWZ3EikUgkHhr5HE4kEi807utQKKX8LZ0Vm/mwUsq7Jf0JSV8r6VtKKV8s6RckfZ4kNU3zI6WUb5H0o5KOJX1p0zSXfc4dgEDG2gN85qQdAs4f/9QGAOSccz4vzAYBcgII0T7vb6u+ggsGXakUHoGOUVRIzHA4rDs79Pt9NU2j/f391laSg8FA0gUBpU9e2M53PHBXhl/Ho+GMk7ePc3k9Ay+QeOvWrZZTgdQDHASMH0UsES4gqIPBoI739va2lsulFotFTdfY3d3Va17zGu3t7dWdLrjGarXSfD7XfD5vpQowj+v1Wk3TaHd3two0pHbM5/NKmLHru9vELfleT2F7e7uuBVJB3EIPiXdxIoJaBX7+0WjUElK2t7drm6lLwVqXLuobcD3WI3PMeHhaEGuaGhd8hsDh98fp6WlNcUHY8b74OoriijsWINouYHTVQWBcObffm37vuiPEnRAuVnjaBWPlqUR8390MnrbhYgHrgHZF98JwOKzr/X41GJ40ntSzOJFIJBLdyOdwIpFIXMaD7PLwhVd89JlXHP+nJP2pR2kMIkK0mMfcay8+FyOy0gWh8foKXryQc3C94+NjrVarStjirgTn/Wqd36PYHtmM10cEmEwmmkwmNQ9+NptVwuNOCPpMxLhre0R3WwwGg0s54j523pdIqGKRPRwDcTtFyG1MI3AXBZ8Ph0NJam1nuFqt6vuDwUDj8bgWa6T9OCjW63X9nqegIHx4VJlIP311h4sLBk5eIYrebifNMdXAx8vhLgpqPPi4Iy5wjM+dtxlBwIUe+usFGamPwZpBBGFeEaD8uh59d8ErCg3eLp93X/eMifclFomMjgrGj9+5vqdIMMeIXwgjXr/E20efmBeO5R7wdc99GgUy36aSYzzlgedATDl62niSz+JEIpFIXEY+hxOJROIyrrso4yMBcgCBcmLQlcfuUVIXEngf0uNR+Bht5brSBbGGSEcSRltcuPAccwiMR4lxEUD6Ic+0D2s8kWJIjl/Pz+8RYl5EpiH8MRIc20ZUnPHkRRtHo1EtzOfjh6iBIOO1HLzAX9M0Go1GrT7iNuF7uDXG43HdotK/T1oDRNMLC3KM12tg3mPKixNEhCXaynfdXdGVdhDHCdLq5NrTLBB5fK34tWLevwsdbtHn+9Fd4+LRYrGo54AwxxSZGGF3t4Tv3OFtAnG9s6bcfeIClYsKUUxwIchFGx8T7nVPBfG28J6nYcT7JYqKvoZiXZCutCgQ0yISiUQikUgkEolENzZCUJAuosTHx8eV2INIFJxgONHzF1FeiAPkrGs7OycUniLA+SW1csUhewCrvxNuz9tmq0giwtQcwJ5Pe6ODAjJEuz1P3SP0sYicR4A9pcJz+308x+OxptOpxuNx65y4EzwS7+ILbUEcYRx6vZ4Wi0UrjYV6F5PJRLu7u9rb26v1GRaLRR1v+rper+sYQh5Xq1WrnoYLS4givgsE3/fUCVIXHE6+6VsknS5EsTaPjo60WCx0cHBQ0xxYI1wzri/g0XUvhujz7kIKfWR9I0R5P90B4DuIxHbTPgQKF1q8oKTXD0Gs8M8Ze9YV69r71bVrgt/rnMtFChdF3GXB2MR15WuZ7To9HcIdF36PcJ94bQgXdbgnE4nE84utcVbUfxZQFo9a8iuRSCQSN42NEBQgcVTwpxYA0XEnRh6RhcQAJzFE/9frtQ4PDytpJTrrW1VCVL09EU5oJF0SIYj+Q04owMf3yIGHDHEOigySww/R5HiIvEdvXVSJ6RIe/Y2FAd2x4VZ6dlzw9oJo3/f33Y6OoMCx/A7pHY/HunXrVq2bMBqNNBwOKwn0Y2mX13BgXkopWq1Wdew4FzUKRqNRre/gIpAjikaQ6e3tbY1Go3qMp23gesHxEF0bHgmfTqe1f5BbJ8ukgfj3mOOuVA3cCdSn8Mg/xTP7/b5effXVWkuCMXLnAP3iO5PJpIpjR0dHOjg4qOPstScQj1wMYNxcUIiiC+2mvdzfvoa77i938NBmjmGNM/bMG8d5+gKIworXZOH5Mh6PWylS8RyJROL5w9Z4rHd9zSer2dqcWimJbiz/4v/2tJuQSCQSiSuwMYKCW+wh4BAsouvSRSSzK/2gKw3CSSMWfHL4IZ2lFC2Xy/o9SFTMN/fCee6MgDg5Me4SFGgLRJdoOdZ58r13dnY0mUw0GAwqsUJ4oL+eB+5RabfLu7sAwuc7L5RStLu7q1u3blUSzFhJFwQOArxYLKozwIUHt477Tg/0ezqd1i0icUEgCjFHkGNEF3eh+Brp9Xq1kCFtdCs7P8eotAtAseI/ooyTYRdmqOvgbgLOhVjg8+rk2B0EXMNTEVwc8GvgbIk7ZzBevBAacCgsl8sqKnj0n2u4c8aFFq7jjgyu604Xr4EQnQqMG32gHoevKdrN2MQ+UUuDtev1UgCCA6kxXmASwcWfAe684B5wMZL6Ey7UeWpPIpF4vnD4+Z+mgzduqdmSTnunUmqHm4+co0QikdhYbMRfyxAjSBVEBHICKYawQhY9r55/PU/c6xz4LhFug8bW764B6SIa7iTDSROEw8kUFmscBvTJryVdOAa2traqKLBaraqQ4Y4GF038Zy+Cx78uKLjIEOtHQGh3dnaquELtAx+DWKiQc7mbgDmi3z4Hnu5BEUbPzY9jHGshdBVJ9HQAUiPYISOKSbSFOfeIthPq6PKgGKdb7+k3iPNO5J/aBPzLuYnUQ9wRq5zA0k/SN6QL9wSODE+D8PGTLog2IlQk4t5vF1T4jDFn7LpEDK8j4XUKOGcUk/ye4Dxcu8sBEOtj+HjHte/PglifwuEFPjmHF2X09RIR6zkkEolnE9uvfa3Wv+pNkqS7H7ul5es2p+BqIpFIJBLPMjZCUCCPHxI3mUxa0dWutATPb44E2HPrpQtSABmjTgME1KPlToi9NgPn4f1IeiBK/EyBQ4iYOxvcyu7550Rz3fJPv9gyMUZYvehhdBbE4nz8zHHsuEDaAO2JxCoW+qONkHAn8l4kD0GB+gxE0bsKIEZ3iRNHF3CIstMWTwnhPD6PXhsA4aVLUPAChXH3gthmF0zYfWFra6sW3kQMclGBbSTdDcMagIjjQiF9o9frtdwl1NxA/PIov9cwiLstMK5RTPAUGB937iFPyaCduAI8ncbvQV+DuHLc/cC6dqLu7iNfF54qwjUQS+ij1xVh/mPhTcQVxCQvgBpFFxd2fH0mEolnF1vjsY4+4Q362c9li+kUExKJRCKRuC5sjKDgOeYeTSTyC2kgKhkJLvCcf4iYR1choZAlz1eX2lFKJxceRT49PdVqtarEMxbh29nZ0XQ6bUXsnbh4ZNdJ0nQ6rXn8e3t76vV6Ojg40Gq1alX8Pzo6qrb22Wym+Xxer+PpIZ6HDlkjjx13whve8Aa95jWv0Xg81nq9vlQoMjoEGItIxLzeBfMFkd7b26uke7VaVULnAo8LH6SCeFSe492C7iSfcY1Rfy8mybExZcZdEvzskXV3lnhhRPo4Ho+rKwXBiXUKgaf+AfUdRqNRqyaIp/sgRDEu1AHxVA/agJUfIu2CD4TeHQOIHjiA3IVCW+JWqXyf73idB9IFcNkg/HEuT6PwNAgfJ19Dx8fHGgwGre9wv7FWSEFhvVPcU5JWq1Vd9111FrhHmSvuhZj2wrGZ8pBIPPt43+//ZN39FVknIZFIJBKJm8BG/LUMsXGngbsPyJOGHEBGIAkQWYoYQiadDENsiOR6RBui5VXnPaLNzxC3+H13HDhxcyeDp1f4bhAIJTgQOGe0bnMeSCX2doQV2hxFD84HnDBPp1Pt7u5qMpnUopgQNRdDpAthx8fV54vvRQeDOwGIVC+Xy1ZkGZv+crlspWg0TVN3bfBUFcSJmALAmnDC6oILRJJ+eBqJb4FJO1kb3h8XJfgOAgjfYY2S+kCdA67D2DKukHWIOIIHNTQQFVw8oL+MP/8yT03T1HHyXR0gzl2Rd58TFz88/QYXBXVCuBbzwxrgur6DgosbLjTEtB53J0W3jD8DaBfnc4EkftfHCpHC17WvUd8pIh0KicRzgKLMwU8kEolE4oawMYKC54VD6IATj64ceSzgMdrpx3juN7UFIJ6ernBV/r6TFY92x/x/t4hzHoiSpytADiPxdseE94Fz0VePuntBP3dS+BZ+wAWU27dv1+0b43jTXsYNAs3vcdeHrroACBcu5uAy8Z0HcCB4RJn34/aAXo8CUcEdDbTP00kQazzK7m2P887cRHLs5NJrB3hkm7FHvGDnCVIeaDM1FTg3bhAXFDxNBdEs1j7w9e7j7rss4KJAYOD4KJi5K4V2IMDEnRRi2oSnBXktCF+PzAFrwu+DLleDixTRTcK1Y0HGKCRsbW1d2p2Ef+lDnEM/NgWFROIZRik6+sxP0fKlIikdColEIpFI3AQ2UlCIBMCJhb8gHev1uhIgJ/wxjcHz6tfrdY1MetTUybtHkaULwtJltXdLNWQuugwgbhBcrguRGQwGLcLoaR2QLIilj5NHfhkDTyvw+g0IA9PpVK95zWu0t7enwWBQhQqPfruQgxXfx5Oidt7faLWPRN1/Jh/fa0JAMOmXCwYeNXbC7Tsa0CZ+9+0MvW8+Pnzm53Tbf6zv4IQ7kn8ILOM1mUxqjQrO6STdCS3z40VHSUFxoSMWIPQUjOiWIb2CdtB3duzwYqWsX86JKEL7fL65Zrx2FBS8NgVz6ClIuGz4rN/vXxIT/FnAeLk4EZ8H7orgvvGx8nuac/j6xQmTYkIi8WyjbG/rF39bX6eDrJmQSCQSicRNYWMEBUij1N5dQFIln2z7CHmYz+eazWaazWZaLpctCzSEwwvKSRepD6vV6pL1+SqbPwSTF7bvGBGW2oICdnmIIX3wiDtkPeZxU2zRI9OQ75j2QRuGw2G1pcedCVyIIWI9nU5blnV3NHhag9dDwOLPGMUIMc4P+uK1H7a2tmqUnPN47j2ixnA4rG2m8KQTeraxXC6XNSUCoolF39eSCwBOzvk8igMu4jiBdbBWvO+Mb7/f12g00u3bt3Xnzp1aT4NijF5/IW5h6aR6Pp/XtUBtgi53gp/TC4MyHrgUvG4Ca9GLTrLG3HUTUyTcOcO1/Z5xl85wOKzr18fc4Y6O6KYBOB0YZ4SV6MYhbcaFFUlaLpe17S4ocO+5oIODJ9ZWSSQSiUQikUgkEpexEYLC6empDg8PWxXiPRfaax945f/5fF6LsCEUnJ6e1m0Q3Voddy8gouzV6LtSEqS2a4JrQASJbkJaIJaeX851vUAcrgDPt/fvIEBwjDsP3IrtKQnuxIBIx2j7eDzWrVu3dOfOHd26dUuSanFHXBtE2bl2tIJDvF28QQwAHrWGmEE06Qfj6kX0mH8+oyAlY886QETyviEcdFnko+jh8Mi315Jw0ul9j7Z9/kWEwJ1AusNkMqntZgwQaHArANrgO3dEZ4CvQxcyoqBAysVwONRkMtFgMNByudR6va73DufxcXehgxQE1u96va6Cld+v7qph3lnLXW4d1icuFf/c73VPreAzfz4gIMSdQ/ze9D6yVjgnW5py/+zs7LSeFbHdiUQikUgkEolE4gIbIShAoPmj31MLvMq/F81zcuPpEpAuyJB0YXvnGK7pdRF4DyLsNngv+BbTI2gnDouu+gd87sUcIVmQL8ifbyEYt//z8XKXAj/HWg0c632jKj6iC+PjOzRwfFf+uUd4YzFBn7tIUuO4u1BBX90N4WPj33W3CsQW8cGdIV2RZR8L0NUfnwfP0/djfWxif2ItDL8W50BUIM3Fz+try2tH+PfdSeE1CLwIprsFeI/xcyHOHTaxdoKvfxc0vN++Pvk3pmVwbZ/XuE59m8xYn8PH3sUF1jvHuQAR2+ugj7zcncQ68/4lEolEIpFIJBKJy9gIQQELNtF3/91zrIloxu3jvCCedBHlJZLpUV4nJC5aRPLalRPuxM0JEe09OTmp9vIuK3ZX5NPt78PhsNU2r2gfCbKng3j+fiwuF0kfgsJoNKo7UXjOuo+RW//juDghI8rM/Dixd2Lu5M7JsotCsQZFzLmPYoITzy5HRtdacwLqBB9nSa/XaxX4dGLtcPHI2+HRceYofg8xwXeA8D7EdjKOnu/vu3twXSfyTqoh3rhe/H7z77mw4ukyPl7uBuJ9d83gPvC1xxrzNeT1LegH6TeIS1GQYX27OBT77G31FAq/b333Ci8eyZj4cyWRSCQSiUQikUh0YyMEhVicbWtrq5JwIv8Qty4hAcIHWb5z506tqs/WiW6Dh2QQlSfv30ngYDBoEUKPogPa5MKCkxCIL2LC0dFRa6cBrk0KxGAwqISJvrtF3sk9ZM0LGVI7AOIZCRsuiN3dXd2+fVvj8Viz2Uyr1epSuomnezDu1HKAiI3H41a6BXUREBu2t7c1mUwuRePdQs88OPGM0WmvYUBNASfRzItvCepz5nMSI90+bt53zulrMtrynQizxjiWY1arVauYJXUkptOp9vb2NB6Pa/oLxzvhp12sRxcUFotFy+pPqoKTcC8a6akEXnMBUu2pFb7m4jg4/ByMhRN+TyHy6H/XuDLm3KtxVw6u5QUbmT/Eq62trTounrrk7g2Eo9FoVOuIMD/b29taLBb1dxeWEonEM4pGuW1kIpFIJBI3hI0QFKQLgra9va31et3Kq4f8eJQ42suJvmNP97xqt8ZLqrn5kTx79J28asi9V7kHWMZJ2fBce0m1cCD5/rSbfhAF7vV6lWDyvdlsVsUGiKKTGyLU/loul7UwI21xl8POzo4mk0ndQhByBcEbDocaDAYtMubXg7y5O4Frr9drLRYLLRaLem3qCHBevgvJY2ypF9HlWCilVCeFE1uvGwCcyMeaGNFx4mIU33M3BcTeo/Bea8OdKi7wcCxzjcjijotSikajkW7dulVrfSwWi0vbXHqtBa6HQOCCB0LPeDxupSr4Dg4f+tCHqmBBHYL4Yjy6dmdwcL8Nh0ONx+P6O7tHcC8ztj42MV2nq+Ala5Ox9l0+omOBfg+Hw7oefe3yTPHaFowpL3dWbG9v15QQv3YikXj20Bwf661//l16+T94q/Y/Nh1HiUQikUjcBDZCUIj54l5sTroohMexbrGGLJA24LnivhWhAxLM95zwQOIgWU5GvfBhdCPwXd8VAHeC1ydwEsq1IThUxZcuBJYuO3msSeDnd4LvYgJV96fTqabTqSaTiXq9XisPH9IPmWeMnAQyzvQF8YeXjyEuBsieE8+uehnMmVvr3aHAmPvacFHBaxZEtwDfZXy7Iu3M8WAwqMcTCYeI0uc47y40uSMAMcEdBtvb29rb29Pt27drZN/rGXjUHYGAnS9Ygy4CQIS9DgdryNMIfNwR3jylpKsv0ZHjwp5H/b3uB2PM+vI0FB/nk5OTKhZ5O3E8IOx42pGnMiCCUQ+k3+9Xt5PXWqGfvusF9xvj4Of3dKVYwDORSDxbOHn/+7V19HFPuxmJRCKRSDy3uO+eaKWUryulvK+U8sP23p8tpfx4KeXflVL+finltn32laWUd5VSfqKU8jsetCExlz9anyEYUUyAbDlhlVRJNRHZrhz46HqAILHbghd3c4s80V8nne4k8PSMuAWhiwmck/757gaeR04bfQvG87Fu1Wlw8hbt/vRrMplUl4LXW4CQelG7OGZOIj1S7nUNfE4gevzLPPFdJ+xOev18OCtiTr+7FRhD/qXNbt/3Wgdd+fFXFfZj/F1k8jawbnxeOZ8XkMRFMBwOtbe3pzt37tSUB5wPtLff71dxB5cHKTHeDsQGJ8tu//c0nigIxfMxr4ghzIsTeHd5eKqCuzSigOBz7MSeucLBQv0QT3Xw+ynW1eD7Xg+ENUf/ub6PK2NE/+m7r3l3tmxSysOTehYnEolEohv5HE4kEonLeBCHwtdL+u8k/Q17759I+sqmaY5LKX9G0ldK+vJSyidK+gJJnyTpIyX901LKxzdNc3kD+gAXEDw6T2Tdo4jSBfGDFOEkkC5y2olUdkWtncRDkMirhpx0OSQg8B7Zx3Y9Go06c9i9tgHtgBwTmaUNx8fHl2pHcG2PlsbijbTJSTk1GyBL3j9ILNFwovBxrNzG7yKD2/pdvGBbSl4QPt9i0s/rBNSLbnp+PPb7UkqtRxG3UoQcksZCFJ+dLFgLjKEX6/Ocf8i3CwpOOEGM1HsUPTptuGa/39d0OtWdO3d0586degxrnVoL7vzw1AyvD4G9n0h/bC/1DwD3hLsvuJavI0l1Dfk64Rw4JEhbYS79/vR2+Bouljbi9zbX5ryQfheQuI+9eOTp6akmk4mm02mrsKSLgYw74oQLGIPBoD5vaLO7czbQofD1egLP4kQikUhcia9XPocTiUSihfsKCk3T/ItSypvDe99uv363pN93/vPbJH1T0zQrST9bSnmXpE+V9F0P0hhIqpOGra0tjUajzmgh0fDt7e2aH75cLmtEmSg3hMUruruQsLOzo+l0WgUBqb3FHeSNugzSRUFBzjWZTCpZcvLkaQVevNG3OYQcIQJAZqKFn+vTFqLfjM1qtarWc7bhhLRNJhPdunVLu7u7mkwmGgwGNd2CsZxOp5dSA1yc8ONj4UPatLe3p729vXqd6HrweWYsaPt8Ptf+/n7ta9z9IKY8QOgnk0nLwQDhllTrEXiqg4tJkrRYLKoAwRiztoA7T7xWxtbWlsbjcXXCeK0Id0oMBgNNJpM6Nl6IUVItyInDYDab6eTkpIpm8/lc8/m8ld7idSY8zQJg5+e8Pl/r9bqVHnF6eqrDw8NLNSfoN8R7OBy20hC4HiLA3t5ey8nC/djv91uOHtYcbfT0GlI3PO0jbh/L2Lt4EN0UpK+4w4H7we//6MJhvUm6VBflaeJJPosTiecCW9v6xa/+jTraze1fE9eDfA4nEonEZVzHX8t/UNI3n//8Bp09TMG7z9+7L2KetNuwqfTupMCj+lK77gJWec7F59GhQNSSnGrIiZMMt7b7+bhuv9/XaDTS7u5uSwDwyD+E23cncHs+UfXFYlFrLkhqkTkIte8oEFMb6LcLGIyX2+M9BQBSBslmVwyu4eNG/10QwE3BtUipcFeJuxwYd4r3eY0LzuuElu+7jR7hoMsaT2oB0Wci+wgMkmpKC+2jfgEpIMz5Vf2O/WENkNOPfZ8+4GCZTCbVreH2fdZL0zRVFFqv1606B6wBzulz37XG6Tt1LBCZFotF7S+uDuYSZ4Snk8R0A+p0eJ0Br+vgdUQYT6+X4efmfAiCCDKIMhB/apng3on3YFyjrHfuB587b5vfq4yvu5J8fJ4RXMuzOJF4HtB7w0fqg7/1o7S+dapm+/7HJxLXhHwOJxKJFw6P9ddyKeWrJR1L+kbe6jisMzRQSnmHpHdIF1s0uqggtQu4QQQgF1K7CF+92Dn5vE+7W9Xt3f4stQsudpFLAGEjd9vbwjVoD7sG8JnXT/BoL7UQIMvuUCB6LF04JLyeAFFcL3LHOPn4xZQMr/+wWq2u7HMk1QgK2NVxakSnh+fvE21H+Ik7KbhY4a8ugkvbPX0Dksqaoo2kf0iqW4oy3qvVqopWPt5d/Y/zy7HuNPD2eE0JL+zImNAHHCOICXzXBSfmRrrY8cBdM7GuA9fFzcK68SKc9IFrsv49LQHxxaP/HBdrhHg9B9wyjKun53gbOaenZSDMcC+w88JyuWyteXfsuNDohSzjMyWKhrzvaRvRIbPpuK5n8VDjG2lfIvEk0fuID9fikz5S7/91T7sliRcJ+RxOJBIvKh5ZUCilvF3S50j6zOaCeb1b0pvssDdKek/X95umeaekd0rS7u5u40TV/9AHTmo8Eg2JkC4IDj/HnHbPd/cccaKiRH3ZUjIW4IMIShcOBL5LRJ7jIVcQfd8BwT+nD1yb9hNl9zxyJ3DSBemmfRBOryEAefKiffSDFAai7L4N5FXOBBddFotFtfqTmkIEHjLJPLjY8Oqrr9aimbgbvLaCz5unBbAOILQuhNA23zGDeSaK7luT4hZh20rIu5N0CDCuD47xVBscADggYqoEYgGuCG+T2/UhzawTHASMAe1yoSGu8xilp4YEqQez2awewzjhIuA9/92dLb4G/F47PT2t63Q6nWo8HrdcB9KZi4fUHEQBCniyVhhXdgVBpMNBwne80KV0lq5COgXrwPuPSAYQDphr7xP92t7erqJT17No03Cdz+K98lJ6wxPPNkrR+z77Y/ShX51LOfHkkM/hRCLxIuORBIVSymdJ+nJJ/17TNHP76Nsk/c+llL+gswI0b5X0r+93Pifs0VYuXRSDgxjjUsCmTITSCYKfx6u2e5E8SAUF7Ki5EMktBNDbSRR8PB5rd3e3pjdwXmzqnBNyTT/YZUE6K7Y4n89bEVpIqtvyqTPAcV3FHr1YYYwmR3ECwsSY+pi708O/R2Sc6L4XOcTq3zRNtc43TVNrBkynU+3s7NRaCQcHB5XYO9H1c9J/hJCTkxONx+Nq2/c5h7wjKJRyVsSRuULg8YJ7iCEuqng0HfcC4+XijI+hzwPzxfz5LhXuDkHg4VyLxUKHh4fa39/XfD5vzQPOFXejuDuk3+/X2hiMwe7urkajUa1/wLqVLtJFvK/uRpDaW2tyr/nvrHFP7RiNRnWsl8ul5vN5y4nAd3FyeA0H1pXPBWPMmvC6If58cJGJc7EG4lah0Z3AODMnLhBuuqBw3c/iROKZRin6hf/yN2XNhMQTRT6HE4nEi477CgqllL8l6TMkfVgp5d2S/oTOKtgOJP2T8z+4v7tpmj/cNM2PlFK+RdKP6sz29aXNNVSzdbHByb7b6SVVwug52QgEUWBwe3iM/vO+b8HoogVkBTIIeXeCSdE8yCvE2SvYe70DrgW5J+rr7YpkCnLvxMe3dIyEyMWFKHB05ZFD0p3IOqn06LjvsEDRPgQISBoE8ejoqJJnou8QY67pYgFtcdLIz05+3TVCCoNvMehkPKZSRDcH64J+xnQCr8kAEUc4IiJOHn/cCpXveHHIg4MD7e/v6/DwsBZH5HV8fKz5fF5FGndPcG8Mh0Pt7u7WdUmU3wUEdxvEdBtSf3wnB3dCeF/dJcF4eW0C33GBe4N2ev0F7gWvA+Hr0b/LmMY0FN+JwVMWWLe0w9ezCz8uljG3pEpsmpiwCc/iRGITcfrpv1Z3P+7svj3abdT0UlBI3AzyOZxIJBKX8SC7PHxhx9t/7R7H/ylJf+phGuE2d/8jnvfJ0fbPnex5hJRjfGtHtzhLF1vCOeHvIsyeq+0pFpAwL3IYyQfHuAjgDguP/vo1PVq+tbVVhQi3ixPFReRwi308f1ckFpGkaS62ivRx5cWYQeqiCMPLSSbtdIIPaSZaTJrBarXSer2uhf4QLjgfY+ACwlXCRszfdyGEcXDBxIs8+rxcVZfDxSKPtLsYgzMB4k8efyw8ybV829LVaqXDw0PNZrPWbh2cz9MVopjGuSiG6c4HF9m8UGJMn/CtFRnTLkJNmgJCl5+3qzaBj72k1lplbbjg5+2KApKvP46lHfSz61xd5+Q4f474WthEPIlncSLxrGH7Ez5O7/vVI+2/9fT+BycSj4l8DicSicRlbMRfzk3TVMs1xJMofHQOQKSc9Dm5d9Lq0WfpMsknmuwRbD/e4QTQc+q91gJ9oc2kKVBIzneSiIQdYue7ThCZJUI9n891cHBQhQAK/dE2J7iQ9JjyQaqCp0W4SOJReyLvLh54hNz7AJFEPCHiTfoBAgipDuzywLkoWulzGbdgZDwQVSDHXo+A+eB45iDWm3C46OGWf3dJRHdBV2oNY4NYwnzu7e3VVBSv8YCtnjbOZjMtFotaX2C9Xms+n2s2m2l/f7+VosAOBqR5sNMEgoKLIxznoo/Da0NwfBQG3HmDAIEo5U4djo01Qfy8CEUu/DB38dj4nPB7mnXXJTL5/LkbpCsdKooM7lC5X4HXRCLxdPHTv/+1Op6mmJBIJBKJxNPCRggKgD/2sZP7dogQKCKnXVZ/iACE0xGJMwQOEuLb1EGa/DPyvvm+28r5nEJxkGeIJe4GiJR0UbiRF/At87B5e5oAbgq+4yQzRmEhdBAl+s2OFr7FIXnqbv120cFt6Y6tra0qzjAuLgjcvn277oCxWq20v7+v2WxWizG6wOPFAT2lxAs4IqowzowDfXLxgeO93sLOzo7W63Wdj6ZpWmkCLiiwJlmLiBhx7UW3BPUO2B6TuheQ1cFgoFu3bklSLThI+gfre7lc6tVXX60pEIeHhy2r/mKx0OnpqcbjsUajkfb29mrNBK9twPG4D3AXxPvDRRRPeXB3gIsOjD/rDhHQRamDgwMtl8vWeuJn2oKY4K6HKCREoYv73B1JiHy+3ruEP7+3ESb9/HzP05ASiUQikUgkEolENzZKUABuP4asQeaoBM9xkKNYTA9yALnybSLJ2UeogOy5BRybOO9HV4RXwIcY0SbImqc7eNqApBrBj6kNEN3BYFAJZiRqnrvuDgcfM88tj6kbTsxwIHjOfozGEwkGXS4Mjj85OamFAafTqW7fvl3rScxmM73yyivVwTAajXR6eqrZbFYJO4TbHSfeH4/+u+jj4+AiB7sD4HSg326DZ6cG5iMKBz5uPv4xfcLTBBiX1WpVyT8ugslkUq/j4+Z9wj2DIAExZ/wZK9+9w1MPYopQtP+zViHY3n7Og8DGGMQ1gEOE9iOO+A4a6/W6Ne4x/Yjvs9ZiylFcv/E5gThBvxBzuEa8t13Q45yIIZ7+EAu4JhKJzcL2h79O733bx+r02dndNZFIJBKJ5xIbJSh02dGBk2BIuOfrd+VZQ148QukR7C7i7ATWi/R5pNLz46lqT1oDYgLRcUgVpJo28P3xeKxer1frCfjnXAsiC+mLqQouvEBwIUSkcnhfGS/IZCTMfpyPv5Mz2sV1HNjwJ5OJptNpte8vl0stFos6j05mvcCg989rIXiBQxd7YhE/XA/uEPEx9XQABAXEBK7nDgRfm5HkxuKOTkohpHEnia5xZ72yhkjtYF3g4HDRwcfIRZIuJ0lc4yD2kzlH0HF3QhQB3DFBv9mdAkGBNR9dHcy3Ozf42dd91xj7574G3FXg6RcxLcfnj3NyLT9H3LI0kUhsBnpvfIPmn/R63f2VWXwxkUgkEomnjY0RFCK5iHBrNRHs5XJZiQZkEYLrroQueKQU8kQ7IKRe3I4IOoR2Mpno1q1bmk6nNT0BEgKZvXv3biVV1DsYjUaVwE6nU00mk0o0464VTvTcqcA4xOKOkCLf5tL7BAn1dA3/nGOuEhTI7WesvOihuyQQFMbjcRVMcGq4qNJlN48uEGz1TkSl9q4F7jwhyj2bzWpqhdv9pYs0EU8b8fN0pXdEQcHrUjjx9bQF/y5rFiHBdyHhO772aD81NDjOxSDGxyP0XK+LmLuI4uKbuxi4L1xMiMf5WnMxAZcCfeT+9BQdjuMVx92dEMy173bB+LAGoovEi196LYar3AnRleCuJ16JRGKz8MpvfpPe+2lPuxWJRCKRSCQkqVzlCHiijSjl/ZJmkj7wlJvyYdmGbEO2IdsQ8NFN07z2KV37iaKUciDpJ55yM1709ZZtyDZkGy7jRXoO59/E2YZsQ7ZhU9vQ+SzeCEFBkkop39s0za/PNmQbsg3Zhk1sw4uATRjnbEO2IduQbXjRsQljnW3INmQbsg0Piq37H5JIJBKJRCKRSCQSiUQi0UYKColEIpFIJBKJRCKRSCQeGpskKLzzaTdA2QaQbThDtuEM2YYXB5swztmGM2QbzpBtOEO24cXCJox1tuEM2YYzZBvOkG3owMbUUEgkEolEIpFIJBKJRCLx7GCTHAqJRCKRSCQSiUQikUgknhE8dUGhlPJZpZSfKKW8q5TyFU/omm8qpfyzUsqPlVJ+pJTyZefvf00p5ZdKKT9w/vrsG27Hz5VSfuj8Wt97/t5LpZR/Ukr5qfN/79zg9T/B+voDpZT9UsofvelxKKV8XSnlfaWUH7b3rux3KeUrz9fHT5RSfscNtuHPllJ+vJTy70opf7+Ucvv8/TeXUhY2Hn/1Bttw5dg/wXH4Zrv+z5VSfuD8/Zsah6vuxye6Jl505LM4n8Xn7+WzWC/eszifw5uBfA7nc/j8vXwO68V7Dp+f99l8FjdN89RekrYl/bSkj5HUl/SDkj7xCVz39ZI+5fznXUk/KekTJX2NpD/+BPv/c5I+LLz3/5T0Fec/f4WkP/ME5+KXJX30TY+DpN8i6VMk/fD9+n0+Lz8oaSDpLefrZfuG2vDbJfXOf/4z1oY3+3E3PA6dY/8kxyF8/ucl/Vc3PA5X3Y9PdE28yK98Fuez+H79zmdxff+5fBbnc/jpv/I5nM/h+/U7n8P1/efyOXx+3mfyWfy0HQqfKuldTdP8TNM0a0nfJOltN33Rpmlebprm+89/PpD0Y5LecNPXfUC8TdI3nP/8DZJ+9xO67mdK+ummaX7+pi/UNM2/kPSh8PZV/X6bpG9qmmbVNM3PSnqXztbNtbehaZpvb5rm+PzX75b0xse9zsO24R54YuMASilF0udL+luPe537tOGq+/GJrokXHPksvox8FuezuAvP5bM4n8MbgXwOX0Y+h/M53IXn8jl83oZn8ln8tAWFN0j6Rfv93XrCD7FSypsl/VpJ33P+1n9ybu/5upu0Vp2jkfTtpZTvK6W84/y9D2+a5mXpbFFJet0NtwF8gdo3yZMcB+nqfj+tNfIHJf0j+/0tpZR/W0r556WUT7/ha3eN/dMYh0+X9N6maX7K3rvRcQj346atiecZT31M81lckc/iNvJZ/ISfxfkcfmp46mOaz+GKfA63kc/h/Jv4nnjagkLpeO+JbTtRSplK+ruS/mjTNPuS/oqkj5X0ayS9rDNry03iNzdN8ymSfqekLy2l/JYbvl4nSil9SZ8r6W+fv/Wkx+FeeOJrpJTy1ZKOJX3j+VsvS/qopml+raT/TNL/XErZu6HLXzX2T+Ne+UK1/0O90XHouB+vPLTjvdyu5vGQz+J8Ft8P+Sw+b1bHsc/Nszifw08V+RzO5/D9kM/h82Z1HPvcPIelZ+9Z/LQFhXdLepP9/kZJ73kSFy6l7Ohsor6xaZq/J0lN07y3aZqTpmlOJf0PumHLSNM07zn/932S/v759d5bSnn9eRtfL+l9N9mGc/xOSd/fNM17z9vzRMfhHFf1+4mukVLK2yV9jqT/qGnOkpPObUQfPP/5+3SWn/TxN3H9e4z9kx6HnqTfK+mbrW03Ng5d96M2ZE28IMhnsfJZfI6NuO/yWXyGJ/kszufwU0c+h5XP4XNsxH2Xz+Ez5N/E98fTFhT+jaS3llLecq4IfoGkb7vpi57nwfw1ST/WNM1fsPdfb4f9Hkk/HL97jW2YlFJ2+VlnxU9+WGf9f/v5YW+X9K031QZDS3V7kuNguKrf3ybpC0opg1LKWyS9VdK/vokGlFI+S9KXS/rcpmnm9v5rSynb5z9/zHkbfuaG2nDV2D+xcTjHb5P0403TvNvadiPjcNX9qA1YEy8Q8lmsfBaf46nfd/ksbuGJPIvzObwRyOew8jl8jqd+3+VzuIX8m/h+aJ5wFcj4kvTZOqtg+dOSvvoJXfP/oDM7yL+T9APnr8+W9D9J+qHz979N0utvsA0fo7OqnD8o6Ufou6TXSPoOST91/u9LNzwWY0kflHTL3rvRcdDZg/plSUc6U9a++F79lvTV5+vjJyT9zhtsw7t0lofEmvir58f+n8/n6Aclfb+k33WDbbhy7J/UOJy///WS/nA49qbG4ar78YmuiRf9lc/ifBbns/jFfRbnc3gzXvkczudwPodf3Ofw+XmfyWdxOW9IIpFIJBKJRCKRSCQSicQD42mnPCQSiUQikUgkEolEIpF4BpGCQiKRSCQSiUQikUgkEomHRgoKiUQikUgkEolEIpFIJB4aKSgkEolEIpFIJBKJRCKReGikoJBIJBKJRCKRSCQSiUTioZGCQiKRSCQSiUQikUgkEomHRgoKiUQikUgkEolEIpFIJB4aKSgkEolEIpFIJBKJRCKReGj8/wFeM74vmfh/owAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 70488 0\n", + " Min thresh = 1000\n", + " Not Sliding\n", + "\n", + "\n", + " Winner = Not Sliding\n", + "\n", + "\n", + " VFOLD = 1 of 15\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsIAAAGDCAYAAAAh/naNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAACIXUlEQVR4nO3dd5gkZbU/8O+pqg6T086m2bzssiwsLLBklCxBEMwgmBW5itd4FfSqqNefV696zSJXERNiQkRBAZWcl7DLssvmHGdmd/J0fn9/VL3V1T3VYWZ7pntmvp/n2Yfp7urqt3qamtOnznteUUqBiIiIiGiyMco9ACIiIiKicmAgTERERESTEgNhIiIiIpqUGAgTERER0aTEQJiIiIiIJiUGwkREREQ0KTEQplElIkpEjij3OIiIaPgm4jlcRF4WkbPLPQ6qDAyEJxER2SYigyLS5/n3/XKPK5uIvMs5+b6l3GM5XCIyzzkWq9xjIaLJR0TuE5Ev+dx/uYjsO5xzk4g85Jzfjsu6/y7n/rNHuu8Rjkefb/Xft/0i8lcRucC7nVLqaKXUQ2M5NqpcDIQnn8uUUrWef9eXe0A+3gngoPPfkmNQSkSTyG0A3i4iknX/2wH8WimVOMz9bwDwDn1DRFoAnAqg/TD3ezgalVK1AI4D8ACAP4nIu8o4HqpgDIQJgJuFfVxEvici3SLyioic53l8pojcLSIHRWSTiLzf85gpIp8Rkc0i0isiz4nIbM/uzxeRjSJySER+4HNC9o5jLoCzAFwL4EIRmebcf7OIfCNr2z+LyMc94/ujiLSLyFYR+XfPdjeJyB9E5Fci0gPgXSJysog8KSJdIrJXRL4vIkHPc14jIuud9+KHIvKwiLzP8/h7RGSdc0z3OeMe7nue7z09WURWikiPk9X4lnN/2DmOTmfsz+r3iIjIx10AmgG8St8hIk0ALgXwi0LnwiL8GsBbRcR0bl8F4E8AYp7XM0TkBudvRKeI/E5Emj2P/97JTneLyCMicrTnsducvxv3OH9fnhaRhcUMTCm1Tyn1HQA3AfiaiBjOPreJyPnOzzn/fonIEhF5wDlHr5cJcJWShmIgTF6nANgCYAqALwC403Oy+g2AXQBmAngTgP/nCZQ/DvvkdwmAegDvATDg2e+lAE6C/e38LQAuzDOGdwBYqZT6I4B1AK527r8d9slWAPdE/hoAdzgnt78AWAWgDcB5AD4qIt7XuRzAHwA0wj5xJwF8zDnW05znfNDZ9xRn2xsBtABYD+B0vSMRuQLAZwC8AUArgEed92e48r2n3wHwHaVUPYCFAH7n3P9OAA0AZjtjuw7A4Ahem4gmAaXUIOzzxzs8d78FwCtKqVXIcy4s0h4Aa2Gfj+G8zi+ytvl3AFfATnLMBHAIwA88j/8NwCIAUwE8D/sc7XUVgC8CaAKwCcBXhjE+ALjT2feRPo/5/v0SkRrY2eTbnedeBeCH3iCdJgilFP9Nkn8AtgHoA9Dl+fd+57F3wT6hiWf7Z2BfPpsN+2RZ53nsqwBuc35eD+DyHK+pAJzpuf07ADfkGeNGAB91fr4RwCrnZwGwA8CrndvvB/Av5+dTAOzI2s+NAH7m/HwTgEcKvDcfBfAn5+d3AHjS85gA2Angfc7tvwF4r+dxA3bgP9dnv/Oc98DKur/Qe/oI7BP/lKznvQfAEwCOLffnif/4j//Gxz8AZwLoBlDl3H4cwMdybOueC53bCsARObZ9CMD7AFwD+4v9kQA2OI/tAnC28/M6AOd5njcDQDz7vOg81ui8ZoNz+zYAP/E8fgnsIN5vPLnOt2Hn/jOc29sAnO/87Pv3C8BbATyadd+PAXyh3L9P/ivtP2aEJ58rlFKNnn//53lst3L+b3dsh/3tfSaAg0qp3qzH2pyfZwPYnOc193l+HgBQ67eRiJwBYD6AO5y7bgewTESWO+O6A/a3cgB4G9JZg7kAZjqX9rpEpAt2xtZbMrAz67UWiz2JYp9TLvH/YGdE4Byvu73z2rs8T58L4Due1zoIO1huQ/EKvafvBbAYwCtO+cOlzv2/BHAf7Ez4HhH5uogEhvG6RDTJKKUeg12ze7mILIB9he52oOC5sFh3AjgXwIdhn6OyzYVdp6vPmetgJwKmOaUJ/+2UJvTADlKRNYai/obkoc+rB30ey/X3ay6AU7L+rlwNYPowX5sqHANh8mrTpQeOObCzxHsANItIXdZju52fd8K+fH+43gk7oHxRRPYBeNq5X1/S+w2ANzn1uKcA+KPn9bdmBfh1SqlLPPv2BvgA8CMArwBYpOzyg884rw0AewHM0hs678ksz3N3AvhA1utVKaWeGMax5n1PlVIblVJXwb4k9zUAfxCRGqVUXCn1RaXUUtjlGpci85InEZGfX8A+V7wdwP1Kqf3O/fnOhUVRSg3AvlL2b/APhHcCuDjrnBlWSu2GndS4HMD5sMu+5jnPGdYYCng9gAOws79+Y/P7+7UTwMNZY65VSv1bCcdFFYCBMHlNBfDvIhIQkTcDOArAvUqpnbAvx3/Vmax1LOyMpc7I/gTAl0VkkdiOFXvmcNFEJAy7bu1aAMs9/z4M4GoRsZRSL8DOavwEwH1KqS7n6c8A6BGRT4tIlZNhOEZETsrzknUAegD0icgS2Cdw7R7YmegrxO4w8SFkZgFuBnCjrhUTkQbn/con5Lx3YedYdyPPeyoi14hIq1IqBbuEBQCSInKOiCxzJqb0wL68mCzw2kREv4AdbL4fwM899+c7Fw7HZwCcpZTa5vPYzQC+4iQxICKtInK55/WjADoBVMPOSJeEiEwTkethz3m50TmfZsv19+uvABaLyNudv4kBETlJRI4q1fioMjAQnnz+Ipl9hP/keexp2BMWOmBPRniTUqrTeewq2N/U98CeEfwFpdQDzmPfgl37ez/sE+pPAVQNc1xXwJ709Qtlz/Tdp5Ta5+zLBHCRs91vYJ/Mb9dPVEolAVwGO3De6oz/J7CzC7l8EnYmohfA/wH4rWd/HQDeDODrsE/OSwGshH2yhlLqT7CztHc4l/LWALi4wPH1Ocen/52L/O/pRQBeFpE+2BPnrlRKRWAH5H+A/T6vA/AwgF8VeG0imuScAPUJADUA7vY8lPNcOMz973FKMPx8x3nN+0WkF8BTsK/qAXaAvh12cmCt89jh6hKRfgAvwa4pfrNS6tYc2/r+/XLK1l4D4ErY5+h9sM/7oRKMjyqIZJaE0mQldo/F9ymlziz3WCqN05ViF4CrlVIPlns8REREVBrMCBP5EJELRaRRREJI18yVIlNBREREFaKoQFhELnKaSW8SkRt8Hm8Qkb+IyCqx1/B+d+mHSjSmToM9k7gDdtnFFcrux0lU8XjOJiIqTsHSCGdSzgYAF8C+PPwsgKuUUms923wGds+/T4tIK+yZmdOVUjG/fRIR0ejgOZuIqHjFZIRPBrBJKbXFOUneAbvViZcCUOe0maqF3avvcNcvJyKi4eM5m4ioSMUEwm3IXIxgF4YuHPB92K229sCepfmRHG1KiIhodPGcTURUJKuIbfyaWmfXU1wI4EXYLaEWAnhARB5VSvVk7EjkWth9YlFTU3PikiVLhj1gIqJK8Nxzz3UopVrLPQ4fPGcTEWXJdc4uJhDeBXsJQm0W7CyC17sB/LezFO0mEdkKYAnshQ5cSqlbANwCACtWrFArV64s/giIiCqIiGwv9xhy4DmbiChLrnN2MaURzwJYJCLzRSQIu7n03Vnb7ABwnvNC0wAcCWDLyIdLREQjxHM2EVGRCmaElVIJZ4nC+2Cv8HWrUuplEbnOefxmAF8GcJuIvAT7stynndW5iIhoDPGcTURUvGJKI6CUuhfAvVn33ez5eQ/spQiJiKjMeM4mIioOV5YjIiIiokmJgTARERERTUoMhImIiIhoUmIgTERERESTEgNhIiIiIpqUGAgTERER0aTEQJiIiIiIJiUGwkREREQ0KTEQJiIiIqJJiYEwEREREU1KDISJiIiIaFJiIExEREREkxIDYSIiIiKalBgIExEREdGkxECYiIiIiCYlBsJERERENCkxECYiIiKiSYmBMBERERFNSgyEiYiIiGhSYiBMRERERJMSA2EiIiIimpQYCBMRERHRpMRAmIiIiIgmJQbCRERERDQpMRAmIiIiokmJgTARERERTUoMhImIiIhoUmIgTEREREST0rgKhHsjcezpGiz3MIiIiIhoAhhXgfAHfvkcrr/9+XIPg4iIiIgmgHEVCLc1VmFPV6TcwyAiIiKiCWBcBcIzG6uwvzeCWCJV7qEQERER0Tg3rgLhtsYqKAXs72FWmIiIiIgOz/gKhJuqAAC7OWGOiIiIiA7TuAqEZzmB8I6DA2UeCRERERGNd+MqEG5rrELAFGxp7y/3UIiIiIhonBtXgbBlGpjbUoMt7X3lHgoRERERjXPjKhAGgAVTarClgxlhIiIiIjo84y8Qbq3F9s5+JJJsoUZEREREIzcOA+EaxJMKuw6xcwQRERERjdy4C4QXttYAALZ0sE6YiIiIaDyJxJP46t/WYSCWKPdQAIzDQHjBlFoAYOcIIiIionFm1c4u/PjhLXhm68FyDwXAOAyEG6sDqAtZ2MlewkRERETjSjypAADRRGXM9Rp3gbCIYHZzNRfVICIiIhpn4k6zAwbCh2F2cxV2crIcERHRmLrkO4/iPbc9W+5h0DimA+BoPFnmkdjGZSA8p7kaOw8OQClV7qEQEREN25rd3bj4O4+iNxIv91CGZe3eHvzrlQMl3+9z2w/iZ49vLfl+/fx9zT6s39c7Jq9FQ43LjLCIXCQi60Vkk4jc4PP4f4jIi86/NSKSFJHm0g/XNru5GtFECu290dF6CSKicavSztk01Mt7urFubw/L/Bx/fH43/veBDWPyWtf96jlc+O1HxuS1xrtIPIm7Xthd0sTjuAuERcQE8AMAFwNYCuAqEVnq3UYp9T9KqeVKqeUAbgTwsFJq1KYDzm6uBgCeQIiIslTiOZuG0kFA9+D4ygiPlkg8iVgJF8pq741ize7uku2vGJF4En3RymgJVipf/MtafPS3L+LZbYdKtk8dCMfGSyAM4GQAm5RSW5RSMQB3ALg8z/ZXAfhNKQaXy+wmOxDeeYiBMBFRloo7Z9NQ0bgdBPQMMxC+5ZHN2Nox8dqHRuOpkgZGNz+8Ge/9ef5a5lIHrTfd/TKu/cXKku6z3LY6azbES/glJeZ2jchfI3ygN4LXff+xUe8SVkwg3AZgp+f2Lue+IUSkGsBFAP6Y4/FrRWSliKxsb28f7lhds5qqAAA7OjlhjogoS8Wds2koHQQMJyPcH03g/937Cl7/w8dHa1gl8ecXd2Pd3p5hPScSTyKlgMQIAq5Uauhl++7BOAai+QOt9fuGN8ZC9vdEsLc7UtJ9lttgzH4PwwGzZPuMJ4orjVi/rxerd3Xj2W2je7GqmEBYfO7LVSxyGYDHc11iU0rdopRaoZRa0draWuwYhwgHTEyrDzEjTEQ0VMWds2koHQT0DBaflYw4s+y7BspfTpGrZvRQfwwfuePFYXeWiDhfDIZbHtE9EMeym+7DE5s7MvcXTyJZoK517Z7SBsLxpHIDx4licBQ6O7g1wvH8v+t+J2O/a5S7hBUTCO8CMNtzexaAPTm2vRJjdIltdhN7CRMR+ajIczZl0kHtcDLCoxGUjFSubN4/1u0HADRUBYa1v0i8uLrRWCKV8Z7t742gP5bEjk47Hth5cAD7eyKIxFNI+mSKASBo2aHPyyUPhFMV9TsqBX08I8nU55KeLJf/vepzMvqVUBrxLIBFIjJfRIKwT5x3Z28kIg0AzgLw59IO0d+c5mrsYiBMRJStIs/ZlGkkk+UingyaXznAWOrPUV9738v7AABHTq8b1v70FwNvIHygJzIk8/zBXz+P4754v3tbZ2B1cPXR376Im+5+GdFEEqkcGWH93j25pbPk3RAiEy0Qjtnva6KEn7dYkSvL6c+Yvvr/0PoD2NzeV7JxaAUDYaVUAsD1AO4DsA7A75RSL4vIdSJynWfT1wO4Xyk1JlX8s5qrsbcnUvAbBRHRZFKp52zKpC8LDy8QTv+929dTfC3qL5/aXvLWZP0+9bfxZAqPbLRLFBLJdOCUSKbwy6e241N/WJXzb7YbCDsB7d7uQZzxtX/hH+syexbrjPOh/hgAYCCmn2e/XkdfFIcGYojEkzmDt5RSaKkJYnvnADbsL11glUgpRBOpsn9JKeSJTR245idPF5XlHYzZwWhJJ8sVWSOsJzPuPGiXRnz6j6vxk0e3lGwcWlF9hJVS9yqlFiulFiqlvuLcd7NS6mbPNrcppa4s+QhzmNNcDaVGv3aEiGi8qcRz9ni3rzuCm+5+uWSXiEcyWc4bCG/rLP77y4OvHMDf1+wrfnBF8Ou40NEXdYMcb63vb57dic/dtQa/W7kLG/b5B57ZpRHr9/UinlTYlTUXaEptCACw1Tl+/Z7oQK03ksBgLIlIPAWlhtYyK6WQUsBrjp4GAHhg7T6s29uDr9yz1jeAfW77Iby8p7g2bHrskRIm6Dr7St8G7qktnXhsUwfa+wqvxZAujRiFPsIFsuc6I7yvJ4JEMoWBaLJgXfFIjMuV5QBg/hS7hdr2YZwMiIiIRuKRje247Ylt2F6ikrzDLY3Y1lF4HB/69fP4/cqdSKZUSXv0AsBAbGgg7F3kyptB3Nqe/judK5MdzZost81pEdcbyXydOc1VGY/rjLDuRNAXSWAwnnQD5Ow6YX1zen0VjpvdiAfXt+NvL+3F/z261ffLxU13v4z//tsrvmPOpo95MJbEK/t68MYfPXHYLdr+5771uOqWp0qaZe5yPnP7e/wD4b+s2uNmXvXLJlKjUSNcXGlEMqWwtzuCaCJV8s8xMI4D4XktNQCKOxkQEREdDjfTWaJetzpQG04f4cFhZoTveWkv/uMPq5FSquSLF/gFeAecwMoyJCMQPtgfRciZoJYrEM7OCG9zJr9lvz8zG+1AWPdSHvRkhKMJe1GOwXjSzcpmd47QgbFpAIum1mJP1yAODthlFi/5ZF67B+PucRWiSzEiiRQe3dCB57YfcgP2Yjy4/sCQGuPndxxCbzRRVHOAgVgCq3d1FdzukNN15ECO38XvVu7EzQ9nliDERyMjXORkOQDY3jmAWDJV0sy0Nm4D4eaaIOpC1rAuDxEREY1EqQPhkWWE04GBrpHNxVsSkEiqgtm3a37yND7/5zVFj2XAp02YvtTe1lSFeCL9+p39MRw5vQ6mIdifo89u9mQ5Hej2RDLfH0Mk43FdwxpLKvQ52ePBWMoNrJMplRFw6Ql0hiFoqQmisz+Gg8576VeC0B9NoKOIEgIgnZUejCWx/aD/+LOt2d2N8775EF7YcQjv/tmz+Oyf0r+DvmgCGw/YpSSv5Oh5rJRys8W/eHI73vDDJ9Cb9Zq9kXjG57bLCfwP9PofV0dfDB190Yz9eDPCF337EXzvnxvzHlc+sUTmZLlXf/1BfP3vQ7PufdE4qpz+xboUppS1ytq4DYRFBPOm1EzIFXaIiKiyuMvClqxGOB0IF9u5QGc/Q5aBfp/SBC9vBi+pFGIFsm+PberAL57cXtQ4AP+MsC6NmF4fRtwTOHX0xTC1LoTW2pBvRjiRTLnZ1HRG2Akks/os64yuftybEdZjGowl3MD6zud348j//Du2ON0G3IywCFpqg4glUm62dfWudCD81JZOdA/E0RdN4OBArKja8LjOCMeT2OFM8PLrE+1divmFHYewub3fHcPTWzvd7Vbv6oL+aLyyr9f3Na/95XO44c7VAIAN+3qRSCnsz3qPl910P9592zPubd2HOlcg3OkE/hv2p19Tf56UUnhlXy++eRiTL719hJVS2HFwAD98aPOQ7fqjSUytt2vC9Rc/lkZkmTelBts7WRpBRESjq/QZYWcSUkr5Zld9n+MEd1NqQ75dG7y8ZRSplMp7aXski0D4tU9r742isTqA2pA1pDSiuSaIafWhIUEaYJcSaD2ROO59aa/7t703mpnd1JnJre39UEq57b3iyZRbTzwYT0+qevAVu+vEc9sPAUhnhE1D0FJjB1mbnKzry3t6kEop9EUTuPonT+PnT25DNGFPujtYIAOvx6Bff0dn7ozwF/+SXoq5o8/erx67twxj1U47MJ9SG8T6HIHwur09eGKzHTxvcRKD+7rT+9AB/OOb0gF216D9mu29Q38XqZRyj1W/vr0f+33rLcGy1N7SiP48n72+aAItNUF7zE7wztKILPNbqrHr0EDJa5+IiIi8dCaqZIGwZ+JbseUROrhtqQ3m7OPrbusJMBIFJsuNZJVWv+D9QG8EU+tCCJiGWxqhlEJnXwwttSFMqw9jn09phLfk4y+r9+KDv37evZ0rI9wfs7OqA/F0ey+dZU2p9O+ryQmkdMCpE9UigubaoPP6KVQHTfRFE9jU3oftnf1IplRGXW4xHRbcCXvRhNvRyq8GfG93einmzn57vzpg1uNWSuHBVw5gbks1TprX7JsRVkqhoy+KXYcG0RuJu1lvb9ZdH7dXV7/9Wk9vOYiTv/IPdzESPQ6dnffWG+vgtcOTRT7QGxnRYhfeqysdObLSgP1lq8XpEqL/H2FpRJa5LTVIqZH9T0xERFSsdO/T0rTGiiSSCAfsP8HFBsK67rWlJpg3kwZkZYSVQjKlcq60pgMhveJaPoazgHeu0ojWuhACluEGLD2DCSRSdt/e6Q1h39IIb/3yQSdwCwcMLJ/dOCSj6u0N3B9NIqL7CCfSNcJeTdX2Cne6zldPnjMFmOJkhAHggqV2O7XHN3W478fe7nR7Vm9HjFzvoy6N2NLe747TLxCOJVJu142OXvt4sz8D96/dj2e2HcR7zpiPI6fXYVtn/5CJdANOmzgAeGrLQfQ4x+/Numdn4OPJlJvV3dLRjwO9Ubc3M5AZOHtLRdxA2Hm8sTqAr977Cq4cQUcL/fuOxlPuF4GAOXRl+P5oAvXhAAKmoNvJYjMQzrKg1e4c4W3NQkREVGox93Ju6TLCrXV2IFZs54jBeBIBU1BfFSg6I2xIOnDLlc3WyaQ2pyOD1j0Yxyd/vwrdA+nx6ZjHtzSiL4rW2hAChrjvlw50WmqDmFYfRm8kMaT1mjfA0wHhs589H8vaGtz35u9r9uKJTR0ZQWhfNJ5un+bJCHuFLHuyla57TXeNsGuEtWNnNWJuSzUe29jhtsjb2z00s/rE5g4c84X7sKdr6BoGOkjb4Mne9vgE57FEyv39uBlhT+a7eyCOnzy6BQtaa3D1KXMwf0oNlBq61LB3Et/f1ux1f/YLhBudLwT6/RVP3FkdNN2f9fsUtAy31AJIfwHRXwiaq4PojcSxu2sQL+zsGnKM+Xjbp+n3tT48dEnuvmgCtSET4YDplkaUsnuFNs4D4VoAwJaO0i+5R0REpI1G14iGqoD7czEi8STClomakOXbx9dr0CkZCFpGwUBYlwDUV2UGIyu3HcQfntuFldsPAshc1jm7RlkphfbeKKbWh+3SCDcQtgOdlpoQpteHAQztX+sXCFcFTNRXWeiJJJBKKXzmT2vwf49uyQqEkxmT5fzqV7Mzmd6uEc016UC4uSaAM4+Ygqe2dGKzUzO8tysdUOoAcO2eHgzGk3h0Y3vG6yRTyp3Ytt6ZZBa0DN8vOdFEuqtFpzMu73Y7Dw3gQG8Uy9oaYJkG5jTrdRPs35NSCn94bldGxlYvmFIdNDPKT/Y749afNR1Q6n0C6XZqQPr3dfzsxowxJ9z30d5fY3XADUrvfWkvhiPuLrGcdI8/+7OnlEJ/LImakIVwwGRpRC4NVQFMqQ1h8wFmhImIaPT4rZh2OKKJJGpDFoDi/ri/sq/HDoSDJmqcetZ89CSyoJkOhKNJ/3IKvYRt9iVuHfzpyVPenrzZGeHeaAKReMrOCFviBjs6w9hSa5dGABhSJxzJqpcOmgYs00B9OIBkSuH5HYdwsD+GREohkVJueUZ/NOFmVuPJlG9phP6SoQM4d7KcCMIB0/0dNNeE8KpFU9AfS+K+l+2g0lteop+vx/7UloMZr+P9HW7v7IcIsGBKje9kuZizMEQimXL36y2N2HFwAF0DcTd4neusm6Az1Q+uP4BP/n4VPvG7VQCA2pCFgZh9tWD57EY3+AXSvYL1cerWaYum1rnb6PuA9O/rw+cuyjq+9BLWAFDn/G4A4G8v7c1bHrHr0EBWBwpvRljvz8p4TjSRQjKlUBOyUBUw3UVAci2bfTjGdSAMAAtba7C5nRlhIiIaPW5pRAmWeFVKIRJPuZeDC2WZV+3swkXffhRPbTmIcMBATchCJJ7KWasKpFd+C1qmG8DmuqysL7lnBxk6ED7kBEre18tu37bLCaanN2RmhHUmtqXGniwHAHu6BvGWm5/EP53aVO9Su33RhFs7Xee8P/e+ZAemiaRd56wDxL5owg1WY0mFvqhP0Jk1Dn0Muh+xzgo3Vwdx1uKpqAtbvuUM+r3QQeZTWzoz2t55A+FDA3E0VgXQVB30rf/WY+qNJNzX8gbM2zsH0BNJB8JN1QHUhSzs6OxHIpnCf/11XcZ+brh4Ca5YPhOfv+xozGysyujVrEsj9Ph0Rvg1R0/DcbMbEbQM9z79PokApy5oxkKn/BRId+vQgavy3LenO4IXPRPrEskUzvvmQ3j7T5/G/p4IvnLPOnz0jhfTx5/QEwIzy0+89Be92pCFcMBwy3NGoznC+A+Ep9YyECYiolFVyj7Ceh860Cu0Tx0sbOvsR1XARE3Qzp7l6yXs7TmcKlAasd9pozUkI9ynM8J2EOJtd5ydEV6zx75Mv3RmPYKeQFhnk3X7NMBewe2ZbQfx/A67pVkkawJilVOzWl9lH6fO0CZSdvCvL6P3RxMZSyz7ZoTj6QDOXnzCvt9w0sq6Tri5NoiqoIk3HN82ZB9TakNuAKiDzL3dkYz2rdlfMppqgnZph08fYf172O2pM/aWRmzt6INS6XIGEcGclmpsPziAnYcGM2p3AeCtJ83Gt688Hm8/dS6m14fR3hd1A35dhhJNpPC7lTvx2bteAgCctqAFf/7QGZjfUuN+0QHsmuWm6iAs08BfP/wq3PnB0xGyDLdtWXuv/kJh/y6OaatHwBTcuzpdHrGlox+b2/vx6MYOfOefG7GnO5LxGt4vDbrWOvuzqT9fOiOs/x9haYSPha21ODQQL6rHHxER0UiUskZYX67Xl4ML7VNnC5UCwgG7RhgABvL0EtZ1t0HLGLJYRTa9H+/qYYAnI9wfw88e35oxH8ebRQTsFdJqQxbmt9Q4GWH7Nfd2R9BQFUDQMlAXDqAmaLoBsA5cI1lZ9mon0NcZcx0wJpzOF42ejHCkyBphwJ6Q5naNcKIf3Uu4udoOiK8+dS4sQ3DE1Fr3eQum1LjdLvb3RtxM6ct70qu9ZQdoLTVB1IcDvqURuvOId/Kbzgw3VQewxWkA0OCpm53TXI0dnQNuwLysrQGAXasbMNOh3LT6EJIp5ZY46IxwJJ7Ep/6w2g2MG5zJc43VAbfsALBrlnXv3qqgiRPmNGX8PvWXo0TS7k3dVB3Eqxa14m9r9rkZ8nV77fclaBnYfWgQHb3RjC8p3i8NbiDsef+e2XoQ1/z0aQBAbchEKJCezMfSCB/6A8msMBERjZZoKQPheFYgXCDL5c0W2pPl7MAgX52wzpQGzfwZ4UQy5b5+dqmFzoJuONCLL/5lLa79xXMA7I4Lu7sGM0oDXtrdjaUz62EYgoBTl5xMKazcdhDHeSZeTWsIY60TQPa6gXBmQB8O6IxwOhAMmIKkUyNc71MaoWuEs1vAeY95f29kSGnElNogqgKmm4VePK0OT9xwLt584iz3eUfNqMOug4NIphT2dUdw6oIWAHbmVssOhJuqg6ivCri/u3+s3e9+sdCfJW/rV11CMbOxyl0xNyMQbqnGrkODbtB6/Bz7PW3xTPgD7FpnID0BTgfC0UQKS6an64LrnC9TjdUBt0Y4Ek9i04G+jEmEAGCZki6N6E1330imFAKmgdMWtGB316Cb/V63txcBU3Daghbs74mgvS+KvljC/bzEkym3a4UOhL3v392rdrt16zoj7L7PLI0YaqHTOULP8iQiIiq1Uk6W0xlBd7JcwYxwOuC1J8s5GeEiSiOCluFmQWM+k+UGPEForhphneHTgcyc5uqM1leJZApr9/S4WUrL6Qm7t3sQGw/04TQncATs5Zf16+gM7tCMsB346C8KhgDHz2lCPKmQTKVQE7RgGpJRGmHXCCcwtS6UsS/v76ujN5qxshwAvOO0efjK64/JeM7U+rAbhJqGYPH0OsSSKazf14toIoX5U2owvT6cUaKQXRrRUmtnhPtjSXQNxPD+X67Er5+2l7DWnyW96AZgB5amIZhaF3I7N3gD4bnNNYglU9joTDrTgfCU2szjrQoaznuaRDKl3IA4Ek+6meMT5jRCnEi0qTqIQwNxRBNJvPPWZ7CpvQ9vPWl2xj4tw84I6wU8ALgTF01D0lco4joQ7sERU+vQ1mQH9TFndT73d5VIodYt79GlLd4vVelMe41TI6xxiWUfbY1VCFkGM8JERDRq3Jnu8dzlCA9vaMc1P3k67yS2ZEq52b9ia4R7I96MsIHqIjLCeqEJy8mkAv5t2rwr0OXqGqED1VZnsttsp/WWLlnY1N6HaCLlBsJBJ+B6dGMHAOC0hZmBcPZx6Yyw7gahM4C6NGLZrEa01ASRTKXs4MsU1ATNjAU1dB/hIYGw55gH48mMrhGAXdP8hhNmIZvOOtcETcxttq88P7vN7hQxrT6M+VNqsM3bZzfrd9hcE0SDU+O8dk8PlLLLDpRKr/KnA2EdlIcsw11JDUiXLwBwj0sH38fNaoQIMCXreMNO3+TBeNL9zFqGIJpIoT+WwGuXzcCdHzzD3b6xOojugTg+d9caPL31IP73LcuHvB8BUxBPptDZH3M/Q3ZGOAXLEPcKhQ501+3twVEz6jCtLpzxmdOf11gyhdqsLhGxZAp/X7MPP354s/vFCwAaqwLuFQJgdEojrMKbVDbDEMyfUuPW1BAREZWau8RynqD1xR1deGxTB3ojcTRWB323+d6/NuLb/9gIYBg1wp4JV1XBdMuvfDXCOihJeVaU8+saobcLeWqJAXuyUvbqdToYm9NsL7yx+9Agls9uxMb9diJq8TT70rteJeyxjR2oDVk4Zma9u49pDelAWAdGerJcXTiA7sF4xmS5kGXgrMWt2NLeh0RSIaUULENQFw7Yi3NklEYoLJqWru0FMt9b3ZILgJsRzUUH4bUhC3Nb7MD/ma12IDy9IYz5rTX4m6d/bvbnQpdGAOmJhIcGYk5m1d5mX3cEpiFoqg6ioy+KcMDMKHVorEr/rJeK1qveTa0P44KjprllGlrYee8i8aT7+6wJWegejKPH8966r1EdQCyZwu9W7sL7zpyPK3wmC1qmIJFMuSUbuu5cZ4T1F5eBaBLr9vbgQG8US2fUu5lirS+awDTYv6taz2OtdSFEYklc96vn3Pu+9ZbjMLelBgtaazNKI3RJhv7yUArjPiMMsHMEERGVXjSRdLOV6SWWcwetuo7Sr1OA5u00UOvWCOfPcvVEMmuEq4fRNSLhCYT9Am5dXlFfFcjIZOtL4N7V5nTJgl6MYZdT46ozo/Om2PcHnDrdLR39WNBaA8szmSszI5xZGqGDIx34hCwT9/z7mfjg2QsRMI2sy/EmugZi6SA/YU+Wa64JZgRJUU+AGokn3a4RhQIp3bGiOmRhZmMVAqbgaScQnlYXxoIpNTg0EMehfr30r39pBACscS71dw3EMwLm/T0R1IfTl/5DlpFRn+stjdBLRW/r7Ichdqb6lneswNtPnZvxujojHIknkXTGpN/XQwPxjFXkvPsFgEuOneH7XgQMA/GUclfxXTS11s7OJ+0aYR3w7u+J4L23PYupdSFcdtxMt0uIpifMxZMqo2/wsrYGRJMpLJiSbtd27KxGnDi3yT6mQOaYS905YmIEwq212HFwoGRrwBMREX3hzy+7WapiukboIMevU4DW6633tUwETaOIjHB6f96McPbqbl46EE4WCIR1aURd2MrICOuyiMWeDKsOQBqqAqgLW25pxNbOfkyrD7kBuq5F7RmMZ2TzALi9hIF0YBSNJxGyDIScgNAbrB0xtQ7hgAnTEPdYLKcu1bvEcCypMBBNoDqYOblqSEY4q2tELjqIrQnZ9cizmqqdrK2BaQ0hzHMWudjaaQeH2aURTdVBN4v73Ha7S8ahgVjGeDr7Y2ioCiBkpQNhXRoRNI2M2tgm5wrDnq5B1IUDOTPaOuM7GE8i7kT9unQhmVLu70jzXrk4ZmaD7z51RnhLRz8CpmBuS7X7Bcs0xH3NZ7YdxJ7uCL7y+mWYVh/G1Lpwxn76ogn3d1jrWVJ58bQ6xJMp9/1qqg5kBMXZgXCpyyMmSCBcg5TK/KZNRER0OHYeGvDMas/fggyA22s1XyDsXfQhFDDc+ksA+MTvVuGXT24b8hzvZLlQIF0jnHeynC6NUCr/ZDkdCIesjBphHeTqcgcgfeyGCNoaq7DbqXHd3jngBoZAuka4Z3BoBlJnCYOmkdE1Ihww3edlBz6AXecaTzo1woaB2pDlBuv2l4kkBuJJ1ATNjOfHEkm3Q4GeQKaPIR9d1lDrvNe6r+27z5iPkGVinhOo6Wy4/hKkj7elJoSjZ9bbLcSc97JrID7k82MHwukMuC6NqK/KDHbrqwIwBEipoauweekvAd4FV7wlCtm/j0ZP1jm744YWMO0+wls7+jC3pcZdrTCha4SD6YwwAMxwyl+mZmeEown3s17nGVNN0IRS9nt86oJm3H39mW6fZwAZXwiA0neOmCCBMDtHEBFRaQ3GkkNKIvKVRug/8r0+Czto3gluIctA0EpnhP/4/C587s8vD3lORkbYs6BG9mQ53a4slVIZpRG6HMC/NCJdn6szbUop3PbENkyvD+Okec3utrqEQ2dI9WSvbR39mO/J4OmuEb1OhtbriKm1OHpmPc5dMhWxZMopP0khHDDczGh2sKb3mUwppFIKpgHUBC23a0V9VQB90QSUAqqCVsbzY8l0h4JoIuV2vihUGqGDTf1eX7LMLhu47qyFANIlI3qxE/0lSD+vqcae5HXinCZ3n4cGYkOuXNdXBdxALxxIl0Y0ekoW9Hh1qUR9OPMxL72vwVh6slxtnkBYB8m6DtqPZdqlEVva7d+zaRjuKn+mIe4+dSCsx9dSE8p4n7sH424WX48pYIpbStMbsUtb9GRMLfuqAksjfCxsrYVlCFbv7i73UIiIaIIYjKc8JRGZtcJ+dNa4x2dZXc27sEDIMjMC4fR+Mm/3ROJuLacuEwgHDDeIBezg9V0/ewZvuvlJvLDzUDojnPJmhIdeUh50Wl7VhS03g/i3Nfvwwo4ufPyCxZjumdymM3GmITh6Zj3W7+/FjXeuRmd/zM2QAshY4CE7u1sXDuCef38VTj/CnuTVG0kgkkgiZJnu87IDH0C38LIzwpZhoDZsuVnY+ioLOpldHTSHlEZUeSaQFZsRDpgGqgLpMpTPvvYorL7pNW4wWhU00VgdwL7uCAZjSfeLhzcIBNIdMwyxv3Rkf0mqz84IOyvdeeuDNV0ekS8jrN/vQc+x1gS9gXDmcxdNq8XFx0zHT96xIvd7YQii8SS2dw7YNd9OmUo8aZep6Pf3gJOh17XvpiGYUht068Jve3wbzvzagwDSX5YWT6vLuIKga5z9jkmLszRiKL36yWNOqxYiIqLDFYknh3SLyNc1Iu7WCBeXEQ4HDGfVrsx9ettHpVJ2f9y5TumBDvJqQ1bGvh5a3+62K+uLJocxWS5dI5xUCv3RBP7rr2uxZHod3nBCG+a2VGORs8qaHqeI4EPnHIFrTp2D3zyzEwB8SyMA/+yuHj9gfzGwSyMM99J8dmcDAG7wpbOQ3iynN0NaFTTdzgn6mAOmgaBpZNQIFwqEAeCcJa1Y4WTEA6YxJBM7vT6Mvd0RHPX5v+MDv7RryeurAhkLdJzuBMK6xOSAs5y11lAVcGujQwHDDaB9A2FP2UQuIcuAiF13rb+Y5SuNCFkmfnTNiVjkKYHJZpn2AiqxZApzm2tgmuJ+rizTcAPtAz2Z2V7A/lwc7XQNWev5XB81ox7vPmMefvz2E92McF8skbGKnDYkI8zSCH+nLmzBmj3dQ1aoISIiGonBWNIthSiuRliXRgzNCPc7ywH3+GSEo1mBsJ5cBdjlBUrBLT0IuxPKLAx4AuF2z8SxeCLlZoQTnixwvslytSG7a8RtT2zDnu4I/uuKY2CZ9rLID3z8LLQ1VrlfAkwRBC0DX778GHe1Mu+SxN6MsF9QC6R7KPdGEuiLJlAbsvIGwjr4SmT1rgWQsWJaTdBCdVZG2DIFIcsYVtcIAPjh1SfibafMyfn49IYwNh3ozbjvnadnLtBxwpwmfOnyo/HO0+cBAPZ1RzO2rw8H3CxoyDJQ5WS0/TPC9n35MsIigrBlZmSEaz3vVa7fRz4B00C3szBHfZXlfClJub+LcMAOvvuiCbfcR/vB1SfgG28+zm2pp4UDJr5w2dGY1VSNoPOYvYT40LA0lF0jXOLSiHHfR1hbMKUGStntXI6YmvubDRERUTH0ogTezgv5uhOlSyOGZoSP/sJ9qAtbGcFoKGBnKnWGS8QOBp7bfgjvPmM+gHRQvXx2Izr6ojjBqTltqQ3isU0deGpLJ05d0JIR8CZSKc+Ka+nX8wuEdecJHVxt7+zHlNqgmwnVDCP9fB3nigju+tAZeGbrwaxAOB30+JU5AOmsYW80ju7BOKbUhtxMsm+NsGEHwoYgYzWzeS3VWNCazkZXB80hNcKmCEIB055AVmTXiGLMaAjjofXtGfcd29aQUSZiGIJ3nDYPT2y2s/W6jlbLyAg7AfE1p85xf89eusNDvhphwA52vQtq5MsIF8MyxF0FsDpol+Z4u0aICKoDJvpjySFBul75rjZkuavcAZmfEW/g7DdRcmiNMEsjfM1xCr3ZOYKIiEohErcny3kDyPw1wrkzwvb9mQFyWNcIJ1NIpdILLazelZ7vooPqafUh/PK9p7iXsP/rimMQskx85Z51ANI9jAG7Fji7/7F9v98SywkEzXTrsqhTSpDNMgw3qPaWFYQDJl69uDVj24BVuDRCB0y9kQR6BhNoqAqkM8I5aoSTnj7CusPFKfNbhmSgP3DWQvzHhUcCsIMm07AzwtFEemW5YkojCpleXzXkPsv036+eBJddGqEXDQHSmc/PvnYpLl42tKev3kd9nowwYL9/ubtGDD//6e0DXRWwM8KJZLpGGLAnKQKZZRFe2SvJectnMmrKi6kR5mQ5f3OdWYbbGAgTEdFhSqUUookUUirdkxcoLhDW7dO6B+KYd8M9uGf13oztvvqGZXj0U+cgaDkZYWcSGGAHEjsODriXovW+srOAR89swMnzm93lmr1Zsngi5Y65UEZ4MJZEVdB0lxyOxJO+wZxppNu8FQoig0WURujj6Ysk0D0YzwyEfYI1HXApBSewtfd70THTMwKp6qCJk+c348Kjp2eMPRwwEI2n3AC6FCuTzWgID7kvmCPVrCe67e/JLI1o8CwhHPIJAr10J4l8NcKAHVAPxpPul6N8XSOK4c3e2hnhdF27lZXFzw54tdpQ5pgDuQJhn9II/RnSj3m/9JXChAmEm2uCqAtZ2NHJpZaJiOjwRDwlEN5OD/kmy+lgVmdxf/3MdgDA3at2Z2zXVJ1uERVwFtTQ2bvj5zQCAF5yuiDpDhR+wU910HR7CXsXdIgnPYFwwnu//xLL+nI3YPefDRhDQwNTxFMakT+ItIopjXACpp5IHD2ReMbCEr4ZYU+wZBmCd54+D3dceyrOWTI1a3JeumOBO3ZDEA6YiCaK7xpRjGk+gbCVIxDWQew+p91ajRPcZS+okU8xXSMA+/2LxpNuuczhl0akx1UTMt0yFSD9Puv91oX8g3RvnTKQedWgUGmEzhLrYDqWYGmELxHBnJZqbD/IjDARER2eQU9rMt2doSZo5u0jrAPF3mgc8WQKv3jCDoSPnF6fsZ03kNHt03SW67hZjQDSgbD72j6XnGtCllvj611tS/fUzeY3dp0R1hnXwXjStzTCzgg7QWSBQDjgE5hm01nKvd0RKGUHhIVqhNNjsSdknbrA7sgQsDIzltnbW4aeLJcqaWmEX0Y4e1KYFrLs2mVdI+yt93Xbp/lkQ730ZLmCNcIB08kIl2ayXMYXm6CV8SXDygqEc2eEc5dGBAtkhPV9+v8blkbkMbelGjtYGkFERIfJWw6hg9HasJU3EPZmhDcd6MM+J+hJZl3K9QYFAdNALJmejNdSG8Sc5mq8tLsLQPqPvt+qX9XBdHcAb3Cgg2MrK2D1b5+WsDPCZrpG2K80wjIl3Ud4WKUR/mFG0LIX0NCr09V7SiP8soKZGd7Mx7JLI4DMYD0zIzx0fyM13TcQzh1WNVUH0dmfXgQE0KURznEXKI2Y1WRfRZjROLQ22SscMDEYSwfCNRmruA2/Rth7haA6YGZ9KZGM16jLWSOcGbwHPV9e8vWd9t6n/79haUQec5prsPPQgHtCISIiGolIRiBslyfUhuyuD8ov3YrMyXJ6cQEgM1sLZGbNQpa9PLDexjIER06vw+YD/c4+7fsDPoGbDmoGPZfBgfTSy9klBn5lHQOxJKoDlhvcRuNJ38v7hojb5s2nciJDIGtyVS4NVQFsP9jv/hzIkxH2ZlrNrAH4tWvzBuuWYbgZ4VJ2jagPB/DVNyzDG45v8x1LtqaadDDYUGU5/y0+I3xMWwMe/OTZWD67Me92YXeynF72Of07yFWqkk9mRtiEaQ7NCLv9rfNkhEWAOU5JkLfcwvslz69OOjsQZmlEHkum1yGeVPjr6j3lHgoREY1jg7F00NjnZFh1VitX+ya3fVokgQOeNlmJrO29pREB0y45SLo1lwaaqgPuJLhE1qQkr2rnkvdANIF4KgUd++kMdjgroIxltX77+5q9ODQQQ3UoneWLxJO+Qbc1jMly2ZOrcpnRWIUN+/sAoGDXCG/wm53p1hloyxD3Z2+sbBhwM8KqhKURAHDVyXNwpNPHWLd2y0XX+ALpBTPqwtaQ9mn5eJeyziUcsHsm689jyDLcfr+Fylr86ODekPS+tOzJcrnql89dMhVXnzIHrXV2OzXvlRXv5yXfZLlalkYUdumxMzB/Sg3+9MLuwhsTERHl4C2N6HcCS33ZN9eEOf0HOplSbivPoGUMuUrpnVCka4TdWfiGoLE6iK5B+xK6myn2KVfQGeH+mJ0R1gGk7iE8JCPsCT42t/fhul89jw37+zImyw3m6BphGOLWHRcqK/BOhMpXk9rWGHbHVB8OYEZDGPVhy7ce2jKHXo53X08vzRw0IU6Aa2UEzp6McAkny2l6vLkmymmNnkB4Sm0IDVUBWKaRsaBGKegaYX2sAdNAOGCOqCzCfr6uA7YgIr5fSqpDun2af/3yBUun4b+uWIbXLJ0GIF3vDGQet/9kOXu566lOEF3q0ogJs6AGYH8IF02txdYOdo4gIqKRy6gRdrpGpC/NpoDQ0Od4OzdsOtCHOme1tHgy5Qa8upWXpvsIJz2z8BuqAojEUxlZPb9ODjoL1x9NIJG0+/8GzJQbuOdbiEDX5trbWW6gmbuPcDpwHFb7tDyX4ts8ta4N1QG86cTZuPDo6b710NmT37zSgVr6tbylEX5dI0pRI6zpz0Wu1mmaN/j70DlH4HXHzQQAT0a4RIFw0HQ+O+kuH3rVupGwPF80gOyJi857X6A0Qrv21QtwybIZbtcUoHCNsGUa+MuHzwAA/PrpHYizNCK/WU3V2N01mLOGi4iIqBBv14jerM4NuVaXiycVWpxFD17YeQit9SFYptjBl/Mnya6VzJwoFE+kMjK/+rJ5z2DcDWb8uhHo8QzEkoin7MUNLMNAfyxXaUQ6UNdtvAB7Qpvh6SOcq2uE389+vIFSvtKImd5AuCoA08mG+/G+ZvblfZ2B9tbCer836EAwo2tECQPhdEY4/z71sQVNAzMbq3CK0/UilGeS4EiEh2SE7S8CI2mdBqTr0/XzM7pGmJkZ4UKLfYhIRhBsjy9/1wgAOGJqndstI18Lw5GYgIFwFQZiyYyl/IiIiHLp6Ivi3T97BoecGf1A5mQ5tzQi7MkI+4gnU1g6026Vtr8niql1IViGgURKIe6zuAFgZ4SjnoywZRhuINw9GHezzH7Bp5sRjtkZYcsUBExxa5qrswKrqCeA2OsJhPd1Rz01wqkhGdfs1y8UQ9rL7to/58tC6kDYNMTtq5uLN1jKVSOckRH26RoRiXu6RpS0NMIcMkY/OiOcnfEOBUpbGqEnyw3NCI+sCCBdB+wE/BnZ+awFNXJ0jcgno49wnjpp/f4mGAjnp79psDyCiIiK8X+PbMGD69txx7M73ft8a4SLCITntlS7Qd3UujBMQ5xOE/Y22Qtj6JXlvEGLXnyhazCOeEohYEpGFllzM8JRu0bYcvrrDujJclnZtYyMcM+gG6y290UzAsfDLY0QEXcf+QIbXRrRUBXwPT6vfBlpv24T2b1u7SWW010jCnW+GI5iSyP0EsnZAW96ieXSZIR1OUq6jZ6BUMAs+GUjF8vMkxHO7iM8gkC4UGmEu53zPuWarDpSE6pGGACOm90AAHhu+0GcOLepzKMhIqJKp0sJajwLD+QvjfAPhBNJhaBpYtG0Ory4s8vOCJvillK89tgZePfp8zKeEzQNKJXep2WkSyO6B+yMsJUjavNmhHXAnFJGerKcJ/AJmkZG14i93REsnVGP84+ahtceOwO7DqV78OdaYtnv51yCpgFTJG8JgjcQLiRgDs1CZj/mzXh6M76GIW6QGXW+4JQ2IzzM0oisQHhZWwPecHwbljuLqRwu/QWo16ltt0zBa5ZOK7giXS6BrKyv38RFnS0uVCPsp9CCGpoOulkaUcDUujAWTKnBk5s7yz0UIiIaB3TmzDurPt9kuVyBcCyZQsAUHDnNbqc1tT4EyxBE4vb2y9oasGJec8ZzdFCkA2/TUyPcNRhHPKlyBlh6vANRXRphwDLFbZ/m7eEbDhgZAcS+7ghmNITxsQsWY/G0uows7+HWCNv7kIKTsxqrA6gKmL7LRw99fcPzc46McCB/RhhI/65L2TVCfy5GWhpRFw7gW29djobqwu9DMXRGWPe/tgzBxy5YjPe9asGI9qc/f3q/GV0jnMdOW9iC1x/fhoWttcPef6EllrV0aQQnyxX06sWteGJzp3s5i4iIKBc3cPQEbtERlEYkUgoB08Bip6/s1LowLMNw6439am/1H3cdCFuGoLHKzhx2D8aRSPl3cQDSfYT7Y3Z3CcuwSxL0ghre7Fp10MqYbb+vJ5KxMpo3y+o3Mc8b/BQTRAZMo+DiDSKCtqYqNBYRCPt1KtCCVmbGUu9bD1PXCAPAQNx+b0ZlslyBfTZ5JsuNJv051p/rQm3dCsnuFZy93DVgZ/f/963LRzThzzQEhgAi+eukTUOcpb6ZES7oNUdPQzSRYlaYiIgK0oFjytNtyG+JZX3512/10lTKXhTDMgXHzrJL9Oa2VDulEemyh2w6iBvQl+wNQV3YXoWreyDm1P76B1hB017cYCCWcANmu+bYHp83EK0Kmm6JxmAsia6BOGY0pLs2ZGZQfTLCniEUE0MGTKOoLgVfvvwYfOI1iwtul799mhOohTJfT5c/mJLOCA9E0+9zqehMtF/bN6/GHBnhUtMLc7ilEYd5rLprhC49yagnL9H7qJfcLlQrbo1CIDzhaoQBuJeldhwcKLAlERFNdrrLgveSqzcQ1gGFDuyyG/p//Lcvul0YAqaBk+Y14/6PvRqLp9XBNMRT9jA0AAq6GWEdtNirf9WH7dXl4kmVMyMsIqgOmujXk+VMgYJ/67LqoIl93fa49zmr3k2v92SEvTW4BTLCpSqNAOxL6sXIv6BGZp2qd7uE8+XEzQjHSl8jbDhdLwoFnLUhCwFTStYdIpchGeHDDFbzZ4RL8z4GTKPo2nNOlitCc00QIcvAnq7BwhsTEdGkprsseDNNg7EU6sIWeiMJ9DjLHbuBcNYf4js9q5nqoGyxk5AJGAa6EulazWxuRjiWmalsqAqgazAOpfxLFbSakIWBWALxZGrIohvePsI1IQsRZ4lhvfzz1Pr0qiCFaoSH0zVC76NQacRw5Fti2V1ZLuv19HvpLY0YdEsjSjY0APb7W6hGWMTukzzaGeGwlTlZ7nCD1ewFS/z6CB+uoGkUfP/067E0oggigrbGqow+iURERH50DXDCU/IQiSfdSWu90QRqQ5Z7yTnhUxqhZf8xNw1xa4T9AhJ3spyzjQ46GqsD6Bqwa4Tz1XhWB017iWUn8+l9fW9gWBM0oZQ9oU+Xangf9waXfoG3McwsYHXQRF24NJO/gPxZyHDAxGcuWYLXLZ+Zcb9vaUSs9JPlADvbW0yA21QdQDBPS7lS8Ga/LcO/9d5wpNvT6Vpo79WB0oSRQcvI2zHCOxYusVykmY1V2M2MMBERFdAf06URnoxwPOmsZGX/HakPp5ch9tYI92VNys4OWr01wn4BZvZkOW9GuHswjqBl5L20XROy3K4RNSELhqTH5g109cpfkXjKneznDdwK1QgP93L4f12xDFXB0uXa8pVGAMC1r1445D7DzQgb6eAwWvrSCACY3hB2VxXM58PnLhpRr93h0Es290cTJSldyO4V7NdH+HAFTKOoiXYB00CsHEssi8hFIrJeRDaJyA05tjlbRF4UkZdF5OGSjnIEZjVVYXtnP5daJqJJZzyes0vpn+v245LvPOpOgiuk3y2N8NQIx5KoDVnuH/16ZwlgILNGePehzIRLMCvYtTIywj41wlmZSh2E6kA4kczdNQJIZ4TjSYWAIRkBo7dGVy+mEI0nPcs2D22DZd+fv49wMTHkslkNOGJqXeENi2QNs0bZfo69neWpyx2NrhEA8IO3nYAvXXFMwe0uO24mzlkytaSvnU1fuRiIJYoqNyjELT3x6SNcqtKIgClFLSgSKEdphIiYAH4A4GIASwFcJSJLs7ZpBPBDAK9TSh0N4M0lHeUILJ1Zj0MDcZZHENGkMl7P2aX0q6e2Y+3eHtzxzM6C2yql3FIHb4A7GE8iHDTdyWx1YcutwfXWCHsXogCGZlPNgu3TxH09e/t04N0zGHdLHnKpCVpu14js0gjvpKwab0bYJxD2Zkj9SjEy+giXOJtaDL9lfQtJZ4QlIyNcyo4RWlNN0LmCUH76995XqoxwESvLHa6gZbq1zfmMRmlEMZ+mkwFsUkptUUrFANwB4PKsbd4G4E6l1A4AUEodKOkoR+BoZ733l/f0lHkkRERjalyes0tpVlM1AOCWR7bk7PmrDXhWkPNmhNt7o2isCrgZ2/pwAKZPacTOrO5Egaw/5vZqb/bPfkFDKGtBDb1NVcBENGEvvZw3Ixyy0kssO+3TAGdlN0/AqBffiCSS7nsSylEaUWiy3GgEkoUMd0EPwL9GuD+WKEsgP5b0sUbiqbwTLYtlZa8s59NH+HBNqQ1iqqeLSS7lKo1oA+D9Wr3Luc9rMYAmEXlIRJ4TkXf47UhErhWRlSKysr29fWQjLtKS6fUQAV7e0z2qr0NEVGHG5Tm7lHojdpeGfT2RgnNFupyOEEA609vRF8XurkEsa2tIB8JVATcAiHsyUruySiOy+6oWmmEfNJ1uBlk1wkHLQDRhB7h5u0YETfRFE4inUggY4m6bXVuse+xG4kk34M8ojSiwoIa3lKDUZQXFyFXGkY+3a4T+PUYTqZJ3jKg0oRwr7I3Ukul1eNWiKTimrWHIPkuVEf7ulcfjv4ooLRmN0ohiKrb9jjI7HLcAnAjgPABVAJ4UkaeUUhsynqTULQBuAYAVK1aMavFuTcjC/Ck1WLObGWEimlTG5Tm7lHTbKCD3KnBa10DM/TmRSuGZrQfdPrvHzmpwM6z1Ycv9o+/NCA8JhM3sjHD+GfYBy96nXlBDB3khy+6XGk2k3LIGP+GAicG4fbnfW9IQMCUjYHUzwvGUp0bYk9nz1n0WmCxX6o4LxTBH8Pr6OZYnEB6MjU5pRCXxZvqLLSPJp6kmiF++9xTffZaqRripiImGAPC1Nx1bkrpnr2IC4V0AZntuzwKwx2ebDqVUP4B+EXkEwHEANqCMjpnZgJXbDpZzCEREY23cnrNLxRsIF8oedXsywv3RJN7y4ycB2BPCjm5rcIMKOyOcWSM8EEtg1a6ujP1ll0YUyp7pQFv3Mtbb6wlP/bEEpnn6/WYLB0xE4ymELJ059s8Ip2uE05PlMrpGZNQI558sV47SgoA5/CykHrNhpGuno4kU6ka5a0O5Wc6SxSlVukDVayRlKqWyZHp9yfdZTFj9LIBFIjJfRIIArgRwd9Y2fwbwKhGxRKQawCkA1pV2qMO3Yl4T9nRHsHF/b7mHQkQ0VsbtObtUeiJxN8CMFQqEB9KBcF80/fMRrbXOSmDpyXI6qNCTdb72t1ewtzuCfzs73boruzSiUACXq2uEvr8/msib1QsHDMSSKcQSSViG4XatCFpGRuZUd42IxJOedm65aoR9AmHPvspRWjCS4EtvZhnifh6A8pR2jCURcb9IjUagOpKJi5Ws4BEopRIArgdwH+wT5e+UUi+LyHUicp2zzToAfwewGsAzAH6ilFozesMuzkXHTIcI8Pc1+8o9FCKiMTGez9ml0htJoKXWvtRaqDTikCcQ9k6cWz67EQAyJ8u57dMUlFL4w3O78Ibj23Cupx1W3oywX41w1oIa3tIIwO5ykC+rp7sh9MeSGV0jspesdfsIJ9KlEcGMGuH8k+W8pRPl6RpRmhph7/0TmT7e7NUGS6GcGeHRUNT1AaXUvQDuzbrv5qzb/wPgf0o3tMM3tS6MtsYqbGrvK/dQiIjGzHg9Z5dKbySO2c3V2NsdyVka8cTmDqzZ3Y1I3H68LmS5gfDbTpmDj56/CAB8J8slkgp90QT6Y0ksmVGXc4U2+3b+GmFvz1fv890WWLFERsCaTb92MqUQMNNZ4GBWIFybMVkuZV8+9wY0w6gRLkfwU2hBDT/6/TYNgekpFyhHjfNY05+fUckIF+g5Pd6M/5x2AbObqoe0tyEioolJKTtIbam162pzZYRvfWwrvnn/BnT0RVEftlAVNN2FNU6a14SpdXYrp/RkucyM8H5nQt20+rDbVgoYmk3NvIycu32au+KZp2uEfTz5M6DeZWntEoB0IJ2REXYmy0Xjdvu0IUtBS/7gxhs8Hu6SvSOREYgXPVku87n6mCdAErMgvbrcaASqEy0jPPED4eYq7DzEpZaJiCa6tXt68OjGDqQUMMWZhe6XEVZKYdWubkQTKWzt6MeU2hACpuGWJ3iDRB2Q1oUtiAgsQ5BMpbC/JwpAB8Lpi6tDAswCq3C5k+XimTXCOlNsPy9fjXDmdhmlERk1wt6uEUNbsmWWcOTOCJcr8BERTxeI4kIXt49wVt31RAjeChndGuHSdqUot4k9dRJ2Rri9N4rBWDJjuUkiIppYvnH/ejzrdApqdgLhqE9GeF9PBO29diD78p4eHNFai/29ETcjHPQJhOur7FXDTEOQSCrs605nhKsyMsJZk+WMzIxtNsPp/at7++pNQp5Mb/YEPC9vwBwwxK1RDmZnhD2lEbFkCkEr8+9hRo2wz+u59bZlLCswDUEypTK+XOSTXlnOvh10M8KTIRC2jzXfl6iRymxlV/Ldj7nxH8oXML+1BgCwpYN1wkREE8G2jn4s/9L92NGZWfbWPRh3W6fp0gjvanHa6l3d7s8H+2NoqQ3CMsRd1MI74c3bRxjQS7wq7O/VgXAob2lE5mVk/z+5+jUsQ9yyg1DGAhL5u0Z4t7M8pRXe19alEnpluWCejHD2hD/v2MuZALTcjHBx0Vc6i53Oktu3J0D0VoAbCI9i14iAKWUpkym1CR8I655zr+xlCzUioolg04E+dA3EsSNr/kefp39wS1ZpxI7OAUQTdqC7Oqv3ry6N6HcC4ZBvaUQ6I5xMKRzoiaIubKE6aLdY05ng4dYIA+mVwDIC14wAN3ew4Z2oFzDT3RGyu0aYhiBsGe6CGtnBrohktBvLZlVARliPodiMrt7O++UAmCyBsLMc8ihmhCfK+zjhA+F5LdUImgZuvPMld1YuERGNX/3OuTyWTGbc3xf1BMKe9ml90QQu+N+H8ZundwAA1u/rw9yW6oxtLTOdEQ5mZYTDAcO9zzLsJV73dUcwvT7sbqfrhLODVsssHNB6M8Kat+QhX9eIcNZyujoQz84IGyIIB0y3a4TfPq2szKmXMcwgdDRYPu9TPtkBm/6yMgGSmAXpL1KjmRGeCPXBwCQIhC3TwOlHtCCWTOGJTZ3lHg4REQ3T/7t3HT56xwvubR3wxhKZZQ+9kXRP4GZPRnjD/l5EEynsdTo9DMQSmFoXQmO1neWdUhuCZRju4hveQHD5nEa8elGre9sy7Yzw/t4IpmUEwuaQ5wLFtR3zy1R6g/H8C2pkTpZz269lTZazDB0Ip3y7Rnhf3y9gd7OxZcwC2qUjxY8hOxDWddHlzGqPldEsjWBGeBz64dUnwBDgpd3dhTcmIqKK8sq+XqzZ0+Pe1pPavKvG6bZpWkuNXSMcTaTc1UV7Bu3HB+NJhAMmpjkt0qbUBjMmuXmD0KtOnoNb3rHCvW0ZTo1wdwRTPUsfV7mBcHZG2DsJzf9PbsgamokNWYUzyUBmjXDAyCqNyOq9GwoYdo1wUvnWAefL9FVC8GMZMqzAzpCsQNgs/zGMlXRpROmPVXfwGI0guxwmRSBcHbSwaGodA2EionEokUy5ZQsA0O/03PX2CB6MJ5HyJIh1aYSdEbYnS/c4GeNIPIVwwHQDWZ0R1oI+QaJmmXZpxIHeaFZpRBEZ4VylET4Z4YxuEEWsLGePzcgsjZB0KYCIIGyZiMaTiCdSGXXQmuEGjLkD4XKWRpimDCuIzZ5cl+4jPDECuHzSGeHRCfNMQ0YlyC6HSREIA8CC1hps7+wv9zCIiGiYEkmVMcdDZ4S9PYK9E+UsQ1AdNN163g1uRlgHwklUBUw3kG2pDWX8Uc9Xk2sagt5IAomUQoPTUg0AqgOW+9qZ2+dvnwb4X8YOjaA0ImBm1gjrp+n9hgP2ZLlYMoWAlbv8wS/ASQfCOYcy6gKGMayyBreueTJOlhvFGmG9X9YIjzMzG6uwub0fH7r9+XIPhYiIhiGeSrnLHwOeyXKejHCvExzXhiw01QQhYgeFsYQnEHaC5cFYEuGAgekN3tKIIjPChrhBuXe7qqDp206qmKWB3QAtR3lG/oxwZsBsebpX6EBFZ0C9k+WGWyNsZpUZlINeKrno7SVHRngyBMKjWBoBDP93Uckm/IIa2szGKgDAPav34r/fEHdb4RARUWVLJBWiiZS9mIIh6HNKI+LJFNbv68Xclmo3I3zjJUtw9MwGAHYw2dkXc1eB69UZ4YSdEb7q5DmY01yNunAgI3OWLyNsGYZvd4nqoOkbXGYuVJGrRth0952+r7g+wkHTgEh6KeagT2mEaaQD4Z5IHImkytE1QnKOUwfp5e4aMZx2YEO7RkyiJZbd7Pfo5DuHW69dySZNRri1Lj2p4YUdXeUbCBERDYsugdCZWF0a0RtJ4MJvP4IP/vp5976FrbVYPrsRgB347Do0CMBeEEPXCA/GkggHTcxsrMKbV8x2t9X8JpJpliluv2FvMFnllGIM3d7eJl+3A79L9panD7BfgK3p2l97u3RpRMhKT5Yz3YywtzQid41wvol05Z4sN6yMcFbvYzc4nBQ1wvrL1WhlhA3WCI83bY3pSQ3r9vbk2ZKIiCpJwpkFpzOxujtEt5Ph/dcrBzJKI7SgKegajAEApjeE0TOYQCplZ5fD2UsMD6NG2C8jPLupGjMaqoZsX8xqaMEcra70OPKVRgDp8gjL8C7sIemMsHNf2DIxGMvXRzj3WCulNGI4gV12qYd+byZFaYT+TIxSsGp/KZkYIeTEOIoinDi3GX/98JmoC1vY3TVY7uEQEVGREm5G2A5AvRlhTZdG1IU9gbBluMHytPowYskUupzbVcGsQNjzRz1f4BkwDAzGh2aErz/3CNz5wdOHbF/M4gOhHJO4Qp4ANx+9upzlnSxnpifLuRnRgIloIol4QvkeY74MtH6snMnUgCnDKs1It0/LWmJ5UmSER3eyHNunjVPHtDVgVlO1e6mMiIgqXzxpZ4SHBsLpBTT6fDLCATMzEAaAA732ohrepYntbdOtw7InvHmZhrivnzmhzUBNaOi0G52Ryxc05Apa3PsLZoTTrdvSXSPM9GQ5n64RfhMCLcOuN/bL+lpZZRblMNyWXWbWF4FJ1TViFJdYtvfLyXLjVltjFXZmrU9PRESVK5GyM8KDcTsA1ZPlvBlhHRTXZmWEI3H7ubpVmp445+22AKQDvXwdI/R2UadbRaFtgXQ2MlcPYSB30JJeHCN/wBEKpOtBvaUROk4xs7pGCHIvo5xrQl/24hTlEDCNYdYIZwa+AU+99kTHjHDxJlVGGABmNVVh56EBJFOq8MZERFR2iVwZ4Wg6I7ynO4KgaWQtRJH+EzetQQfCdkY4HPAvjSgYCBfZXcIdwzBqhIeURvh0k/Cjg/qAaWBuSw2uO2shzjqyFSJ2MOx2jbBMJFIKg/FkzhrhXEF3diu2chh+jbD93+wvORMlk5lPsWU1I2VxQY3x66R5zRiIJfH01s5yD4WIiIoQ99QIJ51ADshcRGPj/t6MbDCQGdTqjHB7r50RzlUaUSj7aha5Al16+8I1wjoozVUaka9rBAB34p++XH3DxUsw1Vk+2jLSWdSakL1dIqV8x26XHuTICBuZ/y2HqoA55AtMPtkT/IKTqkZ4tPsIG6MWZI+1SVcacc6SVtQETfz8iW04feGUcg+HiIgK0DXCg7Gku5gGkFkasWF/X8ZKb0BmxjZdGpEjI2wWlxH2BsrFBMJ6v/mykLkmyxVbGqEn/vkFJoaR3m9TddC9P1fP40IZ4XIGkZ+88MiMpbYL0bXResyTa0GN0S2NCFpGwc/leDHpAuHqoIX3njkf3/3XJhzojbjfmomIqDLpGuGBWNItiwAyA+HuwTjaGjPbl3n/UE+tt3vJ60A4u2tEIKuONBdzmKUR+ZYtdvdTcLJcsaURPpPcPBnhxur0F4VcNcK5snzuEstlDCIXttYOa/vs3sfBSdVHeHTLQD5z8ZJhZecr2aQLhAHgxHnNAIBtHQMMhImIKphSytM1IoH+aDojGEumMrbNngCnA59wwHCzxQdylEa4GeECQWdGjfCwSiOKyQgbWfcXtyhCOE+HAEPSgZ83EPbvGpG77jN7cYrxwMj6EqK/KEyOGuF0J5HRcMqCllHZbzlMjAKPYZrbXA0A2N7ZX+aREBFRPt6JzdkZYe2MI+w/ykOyvE4QUB20EA6YCFoGDhToGhEq2DVieDXCAbf+N0+NcI6AN1hkjbAb9PgthGGIGxA2ekojgjn6COf6ImBVQEZ4uNwa4az2aeMolh+x0c4ITySTMiPc1lQF0xBs72QbNSKiSpbIEQgbAuiHvvHm47C1o9/tFazpwEdnfxurAjlrhANGcUHncLtGmEbhLKR7yT4rOC2+j3DuEgrTMNzuCY1V+UsjiskIj6e4Kvu9DxZRrz1RhIqsL6dJmhEOmAYWttbgnpf2+mYXiIioMsQ95Q+DsYS7cIY3uxmyTJy+cMqQGtKgmxG2g97WupAbWA8tjSi+j7C7/6IywoVrhHMvqGGPsVDA7V1ZLptppEsuvJMJ/cbeUhvClNqQ72sUE9BXmuyOHZNpZbkpdSE01wQxt6Wm3EOpeJMyEAaAm153NLZ29OPHj2wp91CIiCgH3UMYsDPCeoJck6feNVc5gw58qjyBsDbSrhHWiNunDb+PcLDojLAujfDJCItAP92bMfbLCN/0uqPxo6tP9H2NdEZ4/ASROuDVb0vAmjxdI+rDATz/uQtw6gSq5R0tkzYQPn3hFJxzZCv++NwuKMXFNYiIKlE8lc4ID8ST2LC/F0HTwPwp6exvrkA4uzRiap5AePS6RhSuEXYvYw+ZLFfcoggXHzMd/37eoiF1z4BdbuGXxfU7ztqQhYbqwJD7gaE9eccDK6s+ezL1EabiTcoaYe3cJVPx4Pp2bO8cwLwpvHxARFRpvBnhwVgSL+3uxpIZde7iEFaeRSACPqURgB0gZwd0RWeEPR0IpIiAyiqiU0HOGuE8bdG8Fk2rw8cvqPN9zBTxzeIWmhQ4ZD/6OMZREHn58plorA64VwSCVmaGmAiYxBlhADhzUSsA4NFNHWUeCRER+fEGwv3RBF7a3Y1j2hrc7F6+gE4HmNVBO+ej22WGfZ6jg81QkZPliskGe7c/nBrhQn2E8zGyJsB5l2MeDj22YoL/SjGzsQpXnTzHve0uqDGOjoFG36QOhOe1VKOtsQqPb2QgTERUad556zP4w/O73Nuv7OtFbySBY9sa3HrPfE39dYuw7Brh7DZrwNAJVbnoiWfF1AcD3svz+QJh09l35jb1YQtB0yg66PZ9fSMzI1zjfCkYbjcBwy2NGPFQym4ydY2g4k3q0ggRwdlHtuLO53ejezA+ZHlOIiIqj50HB/DwhnY8vKEdgN37tXswDgA4pq0Br+zrBZA/I+xOlgtkBcI+wXOxXSN0LXHRgbDbbaFw5jo7WL7y5Dk4eX5z0a/lx5DMGuHqkInO/uLHr2Wv0jYeuZPlmBEmj3H83a40rjp5DgbjSfzhuV2FNyYiojHxuFOypuMuPad5al0Ii6fVuYFcKF9G2C2NyJws55dFDhQZCJtFbqdZRXSNyLWyXG3IwrGzGot6nVxmN1djdlO1e1tnhAtNwMs2HrtGZGNGmPxM+kD4mLYGnDi3Cb96aju7RxARVYjHnEB4RkMVAODUBc2oC1u4/f2nImgZRdUIZ7dP0z1y/QLhYksjhlsjbBZRI5wrI1wKP77mRHzp8qPd2/pLQSSRzPUUXyICQ8Z5IMzV1sjHpA+EAXtm6daOfuw8OFjuoRARTXpKKTyxuRMA3AU0Pnj2EVj9hdfgiKl227SRZIRrQhZqguZhlUYUGzBr4pQm5O0jPIqZSsPI7G6h+8qOpBTQMoZ22xhP9O9sHMfyNAomdY2wdvL8ZgDAM9sOYk5LdYGtiYhoNPXHkjjYH7N/dgJhK6tdWaCYrhFuRjj9p25qfdi3367eX7DAJDIdMA+n/ZhlSN4aYR3Mj0ZGONsnXnMkLj5mBhZP82+3lo9hTJCM8Dg+Bio9BsIAFk+tw9S6EL7817U4bWEL2hqryj0kIqJJK5ZIL6Khl0TOzsC6GeEi2qd5M8CffM2RvtlQq8hJcNYwu0bofecLcqsDJk6e34xjZjUUvc+RMg3BshG+jp0RLvGAxlCgiJ7ONPmM44906RiG4J2nz0P3YBw33vlSuYdDRDSpeQNhLTuQ1JnbfO3TshfUAIDXHjsDZy6aknPbQrW/xQbMGc8xjbw1woYh+N0HTsM5R04tep/lYBr+q9SNF0H2ESYfDIQdH3j1Apx/1DQ8trEdHX3Rcg+HiGjSivpM5BpJRjiQ1Uc4H3fFuEJdI4Y5WQ4A3nBCG169uLXo7StV0DKGvRBHJeFkOfIzfj/RJWaZBj554WKkFPCjhzazgwQRUZnojLA32MwOwNI1wrmD3LbGKpiGYHZT4XI3t+ShUEZ4mO3TAOALlx2NC4+eXvT2leqbbz4O7z1zfrmHMWIhy8TUuhBmsvyRPFgj7HHktDrMbq7CTx/bivOOmorTFw69fEZERKMjlkghaBmIOoFwfZWFjj570lx2aUG6a0TugHTRtDq8dNNr3CWW85nVVIVzl0zFCXOb8m6XrhEunGWeaMZ7Vts0BE/eeB6YECYvZoQ9RATfu+oEAMDG/X1lHg0R0eTxyIZ2LP7Pv+HB9QfSgXA4PaktYPhnhMMFAtJigmDArjW+9V0nYWFrbd7t9GX14S5RTJXBzGonR8RAOMtxsxoQDhh4aP0BvLDjULmHQ0Q0KWxpt5MP7/7Zs9jXHQEA1Hm6O4wkIzwaAiNon0ZElYv/J2cRESRTCg+ub8frf/gEa4WJiMaAN0u3elcXAKA+nM7mZgfCoSL6CI+GkUyWI6LKxf+TfXgvx+mm7kRENHriyXTLtO7BOIDM1c+GlEY4AXC+9mmjwW2zxoww0YTA/5N93P7+U/HO0+YCAPY6l+iIiGj0RBNDA+G6cJ7SiHJnhBkIE00IRf2fLCIXich6EdkkIjf4PH62iHSLyIvOv8+Xfqhj58jpdXjjibMApANhvwbvRESVaDyes2M+gXB9Vbo0YiTt00aDu6CGOfm6RhBNRAWn04qICeAHAC4AsAvAsyJyt1JqbdamjyqlLh2FMZbF9IYwAGDltoN4bGM7fv7kdvz1w2fimLbRXwKTiGikxus5O+ZTGuEtU8teWS4cMDL+O1YsJwAPWOw8QDQRFNNX5mQAm5RSWwBARO4AcDmA7JPqhDKlJoS6kIUfP7LFve/FnV0MhImo0o3Lc7Z/RjgdCGevBjZ/Sg3+87VH4byjpo3NAB0WJ8sRTSjF/J/cBmCn5/Yu575sp4nIKhH5m4gcXZLRlZFhCH5z7anubcsQPLmlE49ubC/jqIiIChqX5+x4MoXakJ2bSWeE7dsBc2jvVxHB+161IGNC3VjQATnbpxFNDMX8n+x3/Se7p9jzAOYqpY4D8D0Ad/nuSORaEVkpIivb2ys/oDymrQGfv3QpfvGek7GwtRb3rN6Lt//0GaRSbKlGRBVrXJ6zY4kUqoMmTEPQG0kASGeELaNygs7ACJZYJqLKVcz/ybsAzPbcngVgj3cDpVSPUqrP+fleAAERGbI+sVLqFqXUCqXUitbW8bFU43vOnI9XL27FvCnV7n37e9lJgogq1rg8Z+vllcNOgGkI3AxxdseIcqoPB2AI0FITKvdQiKgEigmEnwWwSETmi0gQwJUA7vZuICLTxbluJSInO/vtLPVgy+m8Jek6tJ0HB8s4EiKivMblOTuatAPhqqDdjSFoGW75QXbHiHKaWh/GPz9xNs5dMrXcQyGiEih4dlFKJQBcD+A+AOsA/E4p9bKIXCci1zmbvQnAGhFZBeC7AK5UE2xJttctn4mT5zUDALZ39pd5NERE/sbrOTueSCFoGm47tJBluotlZHeMKLf5U2pgVNiYiGhkiukaoS+d3Zt1382en78P4PulHVplCQdM/PJ9J+O4L96Pb9y/HpcdN3PMVzQiIirGeDxnx5yMsG6HZpdJ2OfYSsoIE9HEwrPLMIQsE5+/9Gjs74ni8U0d5R4OEdGEEXMywro0ImQZCDlBcSXVCBPRxMJAeJjedOIs1Ict/OLJ7VBKYW/3ICZYFQgR0ZhLT5ZL1wjrnyutNIKIJg4GwsMUtAz8+3mL8PCGdvz331/BaV/9F37w4KZyD4uIaFyLZU2WC1mmmxFmaQQRjRaeXUbgHafNw/T6MH78sL3q3E8f21rmERERjW+xRAoBz2S5Su0aQUQTC88uIxC0DNz+/lPc24cG4vjiX14u44iIiMa37MlyIdOAiCBoGawRJqJRU1TXCBpqQWstPnb+Yuw4OAAFhZ89vg1VARNHTq/D5cv9VjMlIqJcYokUQqaRXsLYCYjDloFABa0sR0QTCwPhw/CR8xcBAJ7fcQh3Pr8bP3xoMwDg8uVt+NMLu/CFP7+Mlf95AZfiJCIqQE+W02UQQee/4YDJjDARjRpGaCWwdEZ9xm2lFG66ey16IglsOtCHgViiTCMjIhofhkyW0yUSAQMWa4SJaJTw7FIC4YCJ685a6N7e3TXoXt675LuP4tLvPVauoRERjQtxZ7Jc2MrKCFsmAmyfRkSjhIFwidxw8RLcce2pAIAzv/YgDvbH3Me2tPfjv//2SrmGRkRU8XRGOBRIt08DgEuWzcA5S6aWc2hENIExEC6hk+c14xtvPs73sZsf3syFN4iIfKRSCvGksleWC6TbpwHAxy5YjGtOnVvO4RHRBMZAuIQMQ/CmE2fhHx9/te/j//ar5/HYRi7NTETkFUumADiryQXSSywTEY02nmlGwcLWWrzvzPn4y/Vn4jtXLnfv//vL+3DNT5/GIU/ZBBHRZKcD4ZBloCro1AgzECaiMcD2aaNARPCfly4FABzTVo+gaeBva/ZhQWsNvv2Pjfjr6j14+2nzyjtIIqIKEU/YgbA9WS6zNIKIaDQxEB5lIoKLl83AxctmQCmFu1ftwQPrDuCy42YinlRorQuVe4hERGXlXxphlnNIRDRJ8Cv3GBIRvHpRK57a0onlX3oAp331n+UeEhFR2cWcjHDQTAfCzAgT0VjgmWaMvW75TPekn0ixiwQRkRsIWwbCeiENBsJENAZ4phljJ8xpwt3Xn+HeHowlAQDdA3F87q416I3EyzU0IqKy8CuNYEaYiMYCzzRlcOysRnz7rcsBAHu6BwEAP318K3751Hbc/vSOMo6MiGjseUsjZjZUobUuhCOm1pZ5VEQ0GTAQLpMZDWEAwHnffBgPb2h3M8GdbK1GRJOMtzSioTqAZz97Pk6Y01TmURHRZMCuEWWyaFod6sIWeiMJvPPWZ9z7b3lkC8IBEx+/YHEZR0dENHa8pRFERGOJZ50yaa4J4tnPno93nT5vyGPf/edGfO6uNbhn9d6xHxgR0RjzlkYQEY0lnnXKKBwwceMlS3DSPPsS4GXHzXQf++VT2/Gh25/HpgO95RoeEdGYiDMjTERlwrNOmYUsEz+65kR8+qIl+Mrrj8Glx87Avz5xljtR5NbHt+Gf6/aXeZRERKMn6llZjohoLPGsUwGm1Ibwb2cvRH04gO+/7QQsaK3FPf9+JkxDcPvTO/Den69EfzSBaCKJG+9cjd88k9lZYmtHP9p7o2UaPRHR4dGlEewdTERjjZPlKlTIMtHWWIUdBwcAAD97fCue2nIQj23qwIOvtOOtK2bDMAQAcM43HgIAvPLli9wenERE4wUnyxFRufCsU8HOP2qa+/M37t+AJzZ34IKl07CvJ4LHN3cAAKKJpLvNW3785JiPkYjocHGyHBGVC886FexTFx2Jr7/pWHzqoiMBADdcvATfu+p4zGgI4zv/2AilFHYdGnS3X72rG9/950b0RRPlGjIR0bBxshwRlQtLIypYOGDiLStmAwCuPnku6qssiAg+dM4R+M+71uAzf1qDUxc0AwDee+Z83P70DnzrgQ0wDXsbIqLxIMbJckRUJjzrjBMN1QGI2DXBb1kxGwFT8JtnduAjd7wIEeD6c47AvR95FQBg1c6uIc+/4Y+r8ciG9rEcMhFRUdKBsJR5JEQ02TAQHoeCloE7rj3VvX3CnCY01QQxf0oNXnfcTKze1Y2dBwfwvp8/i66BGPqiCdzx7E6849ZncM1Pnkb3QLyMoyciyhRNphC0DPfLPhHRWGFpxDh14txmPPIf5+Brf38Fb1oxy73/5PnNuHvVHrzq6w8CAL7/r02oDqY7STy2qQMPrj+AK45vG/MxExH5iSVSCLEsgojKgGeecWxOSzV+cPUJOOfIqe593k4TAPCTx7biu//alHFfR1+65/De7kH0RPwzxKmUwg8e3IQDvZESjpqIKFPcyQgTEY01nnkmmOkNYXz3quPxiQsWY1lbg+826/b2Yu2eHrzt/57CaV/9F95y85Po9QmG1+7twf/ctx6f+N2q0R42EU1isUSKE+WIqCxYGjEBve64mQCAK45vwwd++RzW7u0BAHzu0qW4b80+/PH5Xfj7mr3oj9k9iF/Z14tlN92Pr71xGQwRNFQFcP5R09Dl1BJv7egvz4EQ0aQQSzAjTETlwUB4ApvdXI17P/IqPLvtIB5e3473njkfFx0zHWf897/cINjr0398yf35gqXT3JKLXYcG8ZdVe3CZE2ATEZVSjKURRFQmDIQngZPmNeOkeXa/4bbGKtSFLfRGErjzg6fj/92zDuv396I3Yi/C8YGzFmB/dwR3vbgHD6zd7+7jw795Ae29URw3uwEnzm3O2H80kUQqBVQFCy/vvLd7ENPrw5wdTkSuWCLFVeWIqCwYCE9Cf7n+TBwciOGEOU34w7+dDgDY1x1BTySOxdPqEIkncdeLe4Y870t/XQsA+L93rMCxsxpwyyNbsHx2I773r43Y3N6Pxz99LqY3hH1fUymFPzy3C//xh9X4wmVL8e4z5o9o7H9+cTdOXzgFrXWhET2fiCpPLKkQYEaYiMqAgfAkNG9KDeahJuO+6Q1hN4gNB0y854z5uPXxrZhSG8roMgEA7//FSt/9nvrVf+LFz1+AxurgkMd+v3IXPvXH1QCA+17eN6JA+EBvBB+540UAwLb/fu2wn09ElSmWSLJ9GhGVBQNh8vX5y5bic5ceBQD46+q9WDGvCbUhC8u/9ACSKZXzecu/9ADWfPFC/OLJbegejOOSY2bgzy/uyehKcaA3ilRKwTCGVx6xZne3+3MknkQ4ULgUg4gqXyyRQnWQf46IaOzxzEM56Tpe7yS5xz59DiLxFHojcTy77RAaqgL41v3rsac73Wv4H2v34+t/Xw8A+PVTO9AXTWBhazoDvaW9H++67Vm01obwldcfU1RA+9KubrzntnQmumsgjukNDISJJoJYMoVGlkYQURkwEKZhmdFQ5f587KxGAMB5S6bi+C8/4N7/0d++6P7cF7Un4W1uz2zB9siGdgDAG09sw+kLp+R8vUQyhXte2uuWRGgH+2M565GJaHyJJxQnyxFRWfDMQ4etqSaIbf/9Wnz58qPRUBUAAJxzZCuuO2uhu01tyP871ws7unDP6r345v12Bvmzf3oJNz+82X38Rw9tHhIEA0DXQKyER5Dp8U0diMSHtpcjotERS6Y4WY6IyoIZYSqZt582D92DcXzj/g14/6sW4PQjpuCj5y9CyDIgIph3wz0AgMdvOBfPbj2IHz60Cd/5x0bEkikAwJ9f3IMdBwcAAO9/1QKYhmDVrm7f1zroBMLtvVFMqQ0inlQImHLYbdlW7+rC1T95Gu9/1Xx89rVL3fu7BmJo741i0bS6w9o/EQ3F9mlEVC4MhKmkrjtrIV69uNUtm/Cr/21rrELb8W2oCpr4wC+fc+/XQTAAvOGHj+OP/3Y64k6QnO3621/AP9bux10v7sEly6bjxR1daGuqwuuOmwnLNHDVyXN8n5dKKfTFEqgPB3wf39zeBwDY3jmQcf8bf/QENrf3Y+tXL2EPZKISi3JlOSIqEwbCVFKWabhBcLZ/fuIsROPpwPbCo6dj1Rdeg+qgiU/+fhX+7OldvGpXN5bddD8G40lceuwMfP9tJwAA4skUFn32bwDg9jq+96V9AIA93RE8u+0QAOD1x7ehJxLH1LowvnHferyyrxffuXI5fvrYVnzrgQ1Y9fnXoKF6aDC8+YBdy1yXFSjrGueewYTv87wSyRR6Igk01wxtI0dEQ8USSYQYCBNRGRR15hGRi0RkvYhsEpEb8mx3kogkReRNpRsiTRQLW2uxdGZ9xn0NVQEETAPfufJ4vP3UuQDs1e3+/dwjsKC1Bm2NVTjvqKnu9gEn23vVyXOwrK0Bx85q8H2t1373UZz8lX/iQG8E339wE/6xbj/uX7sPf3huFwBgU3vvkOf88sltuPXxrQCA7kH/GuRdXXam+CePbsFH7njBt5b4c39+GSd8+QHEEv7ZbKLRNt7O2fGkYkaYiMqiYEZYREwAPwBwAYBdAJ4VkbuVUmt9tvsagPtGY6A08X3+sqV484pZbkb546850ne7r75hGQA7OywAugbj6BqI4/xvPQwAqAmabgb35K/8033ed/+5yQ1O3/ijJ3HxMdPxo2tOhFIKr/nfR7DxgF0WURuy8I91B3D8l+7H5y9biuaa9Cp219/+Am64eAm+/+AmdA3EcfzsRrzz9HkZ5RK/fXYHAHsBkFlN1SV4Z4iKNx7P2bFkCgGTJUdENPaKKY04GcAmpdQWABCROwBcDmBt1nYfBvBHACeVdIQ0aQTylFXk2h4AptSGMKU2hNvffwpaa0N4eutB3P3iHiyeXotfPbXD3X5rR2YLt7+t2YdLvvMo4smUGwTfdNlS/PKp7ehrT+DQQBwf++2qjOds7ejHB375HKbU2sHxTX9ZiwO9Ufzb2Qtx+9M78I7T5kGvN7K/p7SB8LaOfjTXBnPWNxM5xtU5O5lSSKYUgib7ghPR2CsmEG4DsNNzexeAU7wbiEgbgNcDOBd5Tqoici2AawFgzhz/yUxEI6X7ES+aVodrnDKLU+a34MO/eQEXHT0df39535DnrN3bk3F7yYx6/M+bj8MbfvhE3tfyLjv9w4c24+5Ve7Dr0CC88+ge29iJGQ1VmNlY5bOH3La09+EXT27Hf772KFimgWRK4a4XduMTv1+Fs49sxW3vPnlY+6NJZ1yds/VVGpZGEFE5FBMI+12vyl5j99sAPq2USuabUa+UugXALQCwYsWK3Ov0EpXIZcfNxIVHT0fQMpBKKTy04QCWz25CddBEwDTwlXvWuXXBN19zAk6Z3wwRwfr/ugjX/uI5POws/AEA93/s1Xh6Syd+/MgW7Do0iMuOm4k9XYN4bvsh7Do0CAD4+RPb3e3/9x8b8ONHNuPZz56Po79wH95wQhuuO8vOHH/0/EV4ZGMHlkyvw1NbOnHNKXNhGIIH1x/Au3/2LADgtie24YdXn4Cv//0VbHO6WDy0vh03/HE19vdE8LMxCoiP++L9uPKk2bjxkqPG5PXosI2rczYDYSIqp2IC4V0AZntuzwKwJ2ubFQDucE6oUwBcIiIJpdRdpRgk0eHQf2ANQ3DukmkZj/3HhUfi1se34rXLZuCiY2a494csE9972/G464XdOH1hC/qjSSyeVofF0+pw5PR6vOXHT+Ij5x2BI6bW4Ut/WYtbH98KQ4DdXYMZ+x+IJfF/j24BANz5/G7c+fxuAMCD6w9ktGg7clodjm5rwP8+sCHj+R/89fNDjueOZ+1k397uwYyV/gDg7lV7cPzsRiRTCqYhmN18eKUZkXgS3YNx/PiRLQyEx49xdc7WfcQZCBNRORQTCD8LYJGIzAewG8CVAN7m3UApNV//LCK3Afgrg2AaD6qCJh791DmYWh8a8lh9OIB3nDZvyP0nz2/O6Cd8xhEtuPXxrfjo+YvxLSeQ/fIVx6A+bOG/7lmHb/9j45B9ZPcpfustT+Uc4wVLp+GBtfvxxhNm4c8v7kbCKUI+7av/wub/dwlMQ/D4pg5s2N+LL/5lLabUBtHRF0NVwMTaL10IEUEskUJ7XxQf+vXz+M6VyzG3pSbjNZ7bfhALW2vRWJ3Z8m3XocxxjkQskcKdz+/Cm1fMhmkIugfjqAmasIpYQCEST8IypKhtyTWuztluIMzJckRUBgUDYaVUQkSuhz2z2ARwq1LqZRG5znn85lEeI9GoGknW1Hs5+byjpmHdly5CVdDEslkNeHl3t9sKbmZjFT5z50s4cW4T2nuj+OcrB7BibhPedcY8XH/7CwCAN5zQ5maKAeBj5y/G//4jnRlurArg+c9dgNqQhY0HerHas9re2j09WDarAVf/5Gn3vo4+u/XbYDyJS7/3GP78oTOw7Kb7EHUuQZ/1Pw/hV+89BWcusmuqH9nQjnfc+gzaGqvw+A3nuvvZ3tmP//UJ4ofr5oc341sPbEA4YOLsI1ux/EsP4AOvXlBUhnnJ5/6OUxc0445rTzvscUwW4+2czdIIIiqnohbUUErdC+DerPt8T6ZKqXcd/rCIxpeqoD3j/Zwjp+KcI9N9j0+a14wHPn6We3v9vl7UV1mY0VCFxdPq8MiGdrz3zPm49NgZ6I0kEE8qXHDUNJy/dCpSKeAr967FB885wl2c47Z3n4xVu7owu6kK53/rEVz2/cdw7pKpyHb6whY8sbkTL+/pwY13vuQGwdo1P30arz++DX96IR2A7+4axNn/8yA6+mL4+puOxb0v7cU9q/e6jz+1pRMLW2vRWhfCnc/vwlEz6hEwBbGEGtIf2mtbp92t4+EN7djidO64f+3+IYFwMqXw0PoDEAHOXTINKSfz/dSWg+42sUQKmw705X09Gl/nbDcQZtcIIioDrixHNIaOnF7n/qxrjgEMqV1uqLYXCsnOhDbXBHHOkVOhlEJd2EJvJIF/vXIAbz91LmKJFAbiSXzigsWY21KNnz2+DV/661r83llEBACWz27Eizu7AMANgoOWgc9fuhT/edcad1LeB3/9PAKmoC5sIRww0d4bxZW3PIUptUF87tKl+PjvVrklGACwdEY9pjeEceqCZrz++FlorbNLTZ7ZehCPb+rIeD0AQ1YRu+uF3fjob190b3/+0qUZfWU7+6LojybxrQfW464X9+ChT56NeVMyyzuG6/6X9+HxTR344uXHHNZ+6PAwI0xE5SRKlad5w4oVK9TKlSvL8tpEE8V7bnsWR82ow39cuMT38Z0HBxCyDARMA79+ejve/+oFSCQV9vdEsLc7AkME86fUwDQEJ33lHwCAI6bWYpPTV/nzly7FGUdMwWf/9BJOnt+MWx/fikg8/4p586fU4LqzFuDmh7cM6d2siQDvOn0eNu7vw/ffdjyuvOUpvLJv6Gp/Wn3YQk8k4d7+4NkL8amLlmDTgV68tLsbrz9+1pDnJJIpdA3GYRmC+nAAH/z187j61Dl41aJWAMC8G+4BADx547lDJh0WQ0SeU0qtGPYTx6nROmc/t/0Q3vijJ/Dz95yMsxa3lnz/RERA7nM2M8JE49it78q/FoK3/vn6cxcBAEIWsKC1Fgtaa93HlFK48eIlOOvIVvRHE3jjj57EKfOb8ZaTZqM2ZOEP/3Y6AOCSZTPws8e34bXHTse6vb2orwrgc3etAQD83ztW4P2/WImtHf349B9fcvd9+fKZ+POLmU0LlAJ+9vg2AMD7fr7SDZgXtta4qwJ6eYPg0xa04IcPbYYI8NPH7MD810/twCcvPBI/eHATbnrd0egaiOP625/H3u4IAOCsxa14eEM7/v7yPtz30VfjH+v2u/t7dEMH3nLS7CGvSWNDZ4S5shwRlQMDYSKCiOADZy10bz/9mfMwrT48ZLtj2hrwzbccB8Au50gkU+iNxHHVSXPQVBPEmi9eiOVfvB+JlMJrl83AeUdNxRtOmIXmmiC6BuK44vg2HDOzHjf9ZS3+ssoOjlduP4SjZ9bj1nedhLqwhc/c+RLamqrcIDdkGW6N840XL8HVp87Fp/6wCj94cLM7rpXbD+FKp/PGB3/1PDYc6IX3Ype3H/SF334k45h0fTeVh+4akV0uQ0Q0FlgaQUQl1ROJI55IoaV2aEs6LZVSeGFnF0KWgRd3duENJ7ShOpj5vbw/mkA0kUJ/NIFtnf04cW6Tu00skcKfXtiFqqCFU+Y3Y3vnAN7y4yfd585rqcY33nwc/vXKARwxtRYf/116qewFrTX48LlH4GO/XYX/uPBIfOicI0Z0nCyNKI0H1u7H+3+xEn+5/kwsm9VQ8v0TEQEsjSCiMVIfDhTcxjAEJ85tAmBnmf3UhCzUhOwJgtkt7oKWgbeelF7yd1p9GCvmNqGhKoCj2xrw+uPbMH9KDVbMa0YimcL/u/cVdPRF0VoXwjfffByOn9OEWU3VOJaBV9lxshwRlRMDYSKaEHQdczbLNPD4DeegayCeUe5x0rzmsRoa5RHnynJEVEYMhIlowgtZJqbVsxa4EnGyHBGVE7+CExFR2USZESaiMuKZh4iIykZnhENcWY6IyoCBMBERlQ1rhImonHjmISKismHXCCIqJ555iIiobGKJFAwBTIOT5Yho7DEQJiKisoklU8wGE1HZ8OxDRERlE0ukEDT5p4iIyoNnHyIiKotIPIknNndgSp7luImIRhMX1CAiorL49j82YsP+Pvz8PSeXeyhENEkxI0xERGXx9NZOnDK/GWctbi33UIhokmIgTEREZbGnaxBzmqvLPQwimsQYCBMR0ZiLJVI40BvFzMaqcg+FiCYxBsJERDTm9vdEoBTQxkCYiMqIgTAREY253V2DAMCMMBGVFQNhIiIac3vcQDhc5pEQ0WTGQJiIiMbcHmaEiagCMBAmIqIxt7srgim1QYQDZrmHQkSTGANhIiIac3u6BpkNJqKyYyBMRERjbl93BNPrWR9MROXFQJiIiMZcZ38MLbWhcg+DiCY5BsJERDSmUimFQwMxNNcEyj0UIprkGAgTEdGY6o0kkEwpNNcwI0xE5cVAmIiIxlRnfxQAmBEmorJjIExERGPq0EAMAJgRJqKyYyBMRERjqrPPCYSrg2UeCRFNdgyEiYhoTOmMcBNLI4iozBgIExHRmOrstwPhFpZGEFGZMRAmIqIxdag/hnDAQFWQyysTUXkxECYiojHV2R9jNpiIKgIDYSIiGlOH+mOsDyaiisBAmIiIxtTB/hhbpxFRRWAgTEREY+rgQAzN1cwIE1H5MRAmIqIxk0wp7O+JorWOGWEiKj8GwkRENGZ2HRpALJHCwtbacg+FiIiBMBERjZ1NB/oAAEdMZSBMROXHQJiIiMYMA2EiqiQMhImIaMxsOtCHKbVBNFYHyz0UIqLiAmERuUhE1ovIJhG5wefxy0VktYi8KCIrReTM0g+ViIiKUcnn7E3tfawPJqKKUTAQFhETwA8AXAxgKYCrRGRp1mb/BHCcUmo5gPcA+EmJx0lEREWo5HO2UgqbDvSxLIKIKkYxGeGTAWxSSm1RSsUA3AHgcu8GSqk+pZRybtYAUCAionKo2HN2TySB3kgC81pqxuLliIgKKiYQbgOw03N7l3NfBhF5vYi8AuAe2BmGIUTkWucy3Mr29vaRjJeIiPKr2HN290AcANBUw/pgIqoMxQTC4nPfkOyBUupPSqklAK4A8GW/HSmlblFKrVBKrWhtbR3WQImIqCgVe84+NBADADRWcVU5IqoMxQTCuwDM9tyeBWBPro2VUo8AWCgiUw5zbERENHwVe87WgXBTDQNhIqoMxQTCzwJYJCLzRSQI4EoAd3s3EJEjREScn08AEATQWerBEhFRQRV7zu4etEsj2DqNiCqFVWgDpVRCRK4HcB8AE8CtSqmXReQ65/GbAbwRwDtEJA5gEMBbPRMxiIhojFTyOftQP0sjiKiyFAyEAUApdS+Ae7Puu9nz89cAfK20QyMiopGo1HP2IWeyXAMDYSKqEFxZjoiIxkT3YBx1YQuWyT89RFQZeDYiIqIxcWgghibWBxNRBWEgTEREY+LQQBxN1SyLIKLKwUCYiIjGRPdADA3MCBNRBWEgTEREY4IZYSKqNAyEiYhoTHQNxNg6jYgqCgNhIiIadYlkCj2RBBfTIKKKwkCYiIhGnV5VjqURRFRJGAgTEdGo04tpMCNMRJWEgTAREY269t4oAGBqXajMIyEiSmMgTEREo+5AbwQA0MpAmIgqCANhIiIademMcLjMIyEiSmMgTEREo669N4qgZaC+yir3UIiIXAyEiYho1B3ojaK1NgQRKfdQiIhcDISJiGjUtfdGMbWe9cFEVFkYCBMR0ag70BtBay0DYSKqLAyEiYho1DEjTESViIEwERGNqlgihUMDcXaMIKKKw0CYiIhGVUef3TqNPYSJqNIwECYiolGzo3MAn/z9KgBcVY6IKg8DYSIiGjVPbunAE5s7ceLcJhw3u7HcwyEiysDO5kRENGoi8RQA4Ja3n4gWdo0gogrDjDAREY2aSDwJAAgHzDKPhIhoKAbCREQ0aqIJOyMcsvjnhogqD89MREQ0aiLxJCxDYJn8c0NElYdnJiIiGjWReIplEURUsRgIExHRqIkmkggH+KeGiCoTz05ERDRqIvEUQhYzwkRUmRgIExHRqIkkkggxI0xEFYpnJyIiGjXReAphZoSJqEIxECYiolETZUaYiCoYz05ERDRqIvEkM8JEVLEYCBMR0aiJJlLsGkFEFYtnJyIiGjWReJJ9hImoYjEQJiKiUWO3T+OfGiKqTDw7ERHRqGFGmIgqGQNhIiIaNXaNMANhIqpMDISJiGjUROJJlkYQUcXi2YmIiEaFUgrRRAohZoSJqEIxECYiolERTaQAgO3TiKhi8exERESjIhq3A+EQF9QgogrFQJiIiEZFJJEEwIwwEVUunp2IiGhU6Iwwl1gmokrFQJiIiEaFzgiHmBEmogrFsxMREY2KSNwpjWBGmIgqVFGBsIhcJCLrRWSTiNzg8/jVIrLa+feEiBxX+qESEVExKuWcne4awUCYiCpTwUBYREwAPwBwMYClAK4SkaVZm20FcJZS6lgAXwZwS6kHSkREhVXSOVtnhFkaQUSVqpiz08kANimltiilYgDuAHC5dwOl1BNKqUPOzacAzCrtMImIqEgVc86OcLIcEVW4YgLhNgA7Pbd3Offl8l4AfzucQRER0YhVzDk7yvZpRFThrCK2EZ/7lO+GIufAPqmemePxawFc69zsE5H1xQzSYwqAjmE+ZzyZyMc3kY8NmNjHN5GPDRj58c0t9UBKpOLO2Yu/NsxnjR8T+f+NiXxswMQ+vol8bECJz9nFBMK7AMz23J4FYE/2RiJyLICfALhYKdXptyOl1C04jFo0EVmplFox0udXuol8fBP52ICJfXwT+diACXl8PGePkYl8fBP52ICJfXwT+diA0h9fMderngWwSETmi0gQwJUA7s4a1BwAdwJ4u1JqQ6kGR0REw8ZzNhFRkQpmhJVSCRG5HsB9AEwAtyqlXhaR65zHbwbweQAtAH4oIgCQmMjfRoiIKhXP2URExSumNAJKqXsB3Jt1382en98H4H2lHZqvid6WbSIf30Q+NmBiH99EPjZgAh4fz9ljZiIf30Q+NmBiH99EPjagxMcnSvnOoSAiIiIimtDY04aIiIiIJqVxEwgXWjK00onIrSJyQETWeO5rFpEHRGSj898mz2M3Ose6XkQuLM+oiycis0XkQRFZJyIvi8hHnPvH/TGKSFhEnhGRVc6xfdG5f9wfmyYipoi8ICJ/dW5PpGPbJiIviciLIrLSuW/CHF+l4jm7ck3k8zXAc/YEOLaxPWcrpSr+H+wJH5sBLAAQBLAKwNJyj2uYx/BqACcAWOO57+sAbnB+vgHA15yflzrHGAIw3zl2s9zHUOD4ZgA4wfm5DsAG5zjG/THC7sta6/wcAPA0gFMnwrF5jvHjAG4H8NcJ+NncBmBK1n0T5vgq8R/P2ZX9uZnI52tnvDxnj+9jG9Nz9njJCBdcMrTSKaUeAXAw6+7LAfzc+fnnAK7w3H+HUiqqlNoKYBPs96BiKaX2KqWed37uBbAO9mpW4/4Yla3PuRlw/ilMgGMDABGZBeC1sHvKahPi2PKY6MdXbjxnV/DnZiKfrwGeszGOjy2PUTu+8RIID3fJ0PFimlJqL2CfmABMde4f18crIvMAHA/7W/iEOEbnMtSLAA4AeEApNWGODcC3AXwKQMpz30Q5NsD+A3i/iDwn9kppwMQ6vko0Ud/HCfe5mYjna4DnbIzfYwPG+JxdVPu0ClD0kqETxLg9XhGpBfBHAB9VSvWI+B2KvanPfRV7jEqpJIDlItII4E8ickyezcfNsYnIpQAOKKWeE5Gzi3mKz30VeWweZyil9ojIVAAPiMgrebYdj8dXiSbb+zguj3einq8BnrO9T/G5ryKPzWNMz9njJSNc1JKh49B+EZkBAM5/Dzj3j8vjFZEA7JPqr5VSdzp3T6hjVEp1AXgIwEWYGMd2BoDXicg22JevzxWRX2FiHBsAQCm1x/nvAQB/gn3ZbMIcX4WaqO/jhPncTIbzNcBzNsbXsQEY+3P2eAmECy4ZOk7dDeCdzs/vBPBnz/1XikhIROYDWATgmTKMr2hipxJ+CmCdUupbnofG/TGKSKuTVYCIVAE4H8ArmADHppS6USk1Syk1D/b/V/9SSl2DCXBsACAiNSJSp38G8BoAazBBjq+C8ZxdwZ+biXy+BnjOxjg9NqBM5+zRmvVX6n8ALoE9s3UzgM+WezwjGP9vAOwFEIf9Dea9sJc4/SeAjc5/mz3bf9Y51vUALi73+Is4vjNhX45YDeBF598lE+EYARwL4AXn2NYA+Lxz/7g/tqzjPBvpGcgT4thgdy1Y5fx7WZ87JsrxVfI/nrPLfwx5jm3Cnq+dsfKcPU6PrRznbK4sR0REREST0ngpjSAiIiIiKikGwkREREQ0KTEQJiIiIqJJiYEwEREREU1KDISJiIiIaFJiIEyTloicLSJ/Lfc4iIioMJ6zaTQwECYiIiKiSYmBMFU8EblGRJ4RkRdF5MciYopIn4h8U0SeF5F/ikirs+1yEXlKRFaLyJ9EpMm5/wgR+YeIrHKes9DZfa2I/EFEXhGRXzsrLhER0QjxnE3jCQNhqmgichSAtwI4Qym1HEASwNUAagA8r5Q6AcDDAL7gPOUXAD6tlDoWwEue+38N4AdKqeMAnA57xSgAOB7ARwEshb2izRmjfEhERBMWz9k03ljlHgBRAecBOBHAs84X/yoABwCkAPzW2eZXAO4UkQYAjUqph537fw7g98665W1KqT8BgFIqAgDO/p5RSu1ybr8IYB6Ax0b9qIiIJiaes2lcYSBMlU4A/FwpdWPGnSKfy9ou31rh+S6dRT0/J8H/J4iIDgfP2TSusDSCKt0/AbxJRKYCgIg0i8hc2J/dNznbvA3AY0qpbgCHRORVzv1vB/CwUqoHwC4RucLZR0hEqsfyIIiIJgmes2lc4TcpqmhKqbUi8p8A7hcRA0AcwIcA9AM4WkSeA9ANuyYNAN4J4GbnpLkFwLud+98O4Mci8iVnH28ew8MgIpoUeM6m8UaUynd1gqgyiUifUqq23OMgIqLCeM6mSsXSCCIiIiKalJgRJiIiIqJJiRlhIiIiIpqUGAgTERER0aTEQJiIiIiIJiUGwkREREQ0KTEQJiIiIqJJiYEwEREREU1K/x9znR9QKY/RAQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "004s_iimage_73815992352100_clean_ClassS_178-306.roi.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADYCAYAAABberBAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADb0klEQVR4nOy9eZxkeVnlfW5kZuy5VFWvNEuD0Io4wLiwyKAoDCIquOHgjKKCoqI46IDAuI3OOyOv+o4wKjo4KrgCKuDCKCqKOrLKIsi+yA7ddHctmRmRa9z3j8xz83ufvFnV3bVkVNVzPp/4VGbEXX7bjcpznvM8v6IsSyUSiUQikUgkEolEIpFI3B60DrsBiUQikUgkEolEIpFIJC4+pKCQSCQSiUQikUgkEolE4nYjBYVEIpFIJBKJRCKRSCQStxspKCQSiUQikUgkEolEIpG43UhBIZFIJBKJRCKRSCQSicTtRgoKiUQikUgkEolEIpFIJG43UlBIXHAURfHOoigedtjtSCQSicQeiqL4cFEUj7iNx5ZFUdzzDt7nDp+bSCQSiURiupCCQuKCoyzL+5Rl+ZrDbseZUBTFvy+K4iNFUawWRfGKoiiOHnabEolE4lJGURSdoih+vSiKU0VRfLooih867DYlEonEtOFcC7O35Xr5d3HiIKSgkEg0oCiK+0j6X5K+VdLVkkaSnn+ojUokEolLH/9F0r0k3U3Sl0n64aIoHnWoLUokEonLHPl3ceJ0SEEhccFBW21RFP+lKIrfL4rit4uiWC6K4h1FUdxQFMWzi6K4qSiKjxVF8Uic+x1FUbx799gPFUXx3eHaP1wUxaeKovhkURTfScV1N/L1c0VRfLQoihuLoviVoih6BzTzP0j6k7Is/64syxVJPybp64uimD8/o5JIJBLTg6IoHlAUxeuKojix+536i0VRtMNhj979Hr65KIqfLYqihfOfuPtdfbwoilcVRXG323jrJ0j6r2VZHi/L8t2SflXSt5+bXiUSicT0oCiKexdF8Zrd79l3FkXxGHz2mqIovhO/f3tRFP939+e/2337n4qiWCmK4t8VRfGwoig+XhTFf979Tv5wURT/4Y5er6G5+Xdx4kCkoJCYBnyNpN+SdETSWyW9Sjtr8zpJP6UdRdS4SdJXS1qQ9B2Sfr4ois+XpN0o1g9JeoSke0r60nCf/1fSDZLuv/v5dZJ+/IA23UfSP/mXsiw/KGlj9/xEIpG41LEt6QclXSHpwZIeLukp4Zivk/SFkj5f0mMlPVGSiqL4Wkn/WdLXS7pS0t9L+r0z3bAoiiOS7iR89+7+fJ873o1EIpGYPhRFMSfpTyT9haSrJD1V0u8URfHZZzq3LMsv2f3xfmVZDsuyfMnu79do5zv7OknfJukFZ3k9Iv8uThyIFBQS04C/L8vyVWVZbkn6fe38Afqcsiw3Jb1Y0vVFUSxJUlmWryzL8oPlDv5WO1/ED929zjdJ+o2yLN9ZluVI0k/6BkVRFJK+S9IPlmV5a1mWy5L+u6THH9CmoaST4b2TklKJTSQSlzzKsnxzWZavL8tyqyzLD2tH2N0n0u5+n35U0nMlffPu+98t6afLsnz37vf6f5d0/9vgUhju/svv3vzeTSQSlyIepJ3vvOeUZblRluVfS/pT7X2P3lH8WFmW67t/I79SO38bnwvk38WJA5GCQmIacCN+Hku6uSzLbfwu7f6hWRTFVxZF8fqiKG4tiuKEpEdrR42VdiJbH8O1+POVkvqS3rxrLTsh6c9332/CinZcEMSCpOXb2qlEIpG4WLGbevanu4URT2lHFLgiHMbv2I9o5ztY2ql/8Dx8194qqdBO1Ox0WNn9l9+9+b2bSCQuRdxJ0sfKspzgvY/ozN+Tp8PxsixXw/XudNDBtxP5d3HiQKSgkLhoUBRFR9IfSvo5SVeXZbkk6f9o5w9VSfqUpDvjlLvg55u1I07cpyzLpd3XYlmWQzXjnZLuh3vfQ1JH0vvORV8SiURiyvHLkt4j6V5lWS5oJ4WhCMfwO/aukj65+/PHJH03vmuXyrLslWX52tPdsCzL49r5Hr8f3r6fdr6PE4lE4lLCJyXdhbVntPM9+ondn1e1EwgzrrkN1zxSFMUgXM/fy3fkekT+XZw4ECkoJC4mtLXz5fUZSVtFUXylpEfi85dK+o7dIjd9oT7CrgL8q9qpuXCVJBVFcV1RFF9xwL1+R9LXFEXx0N0v55+S9LLdVIlEIpG41DEv6ZSklaIoPkfS9zYc84yiKI4URXEXSf9RkvNuf0XSs3ergqsoisWiKB53G+/7m5J+dPe6n6OdVLUXnkU/EolEYhrxBu2Q/B8uimKuKIqHaaem2It3P3+bdooe9neLiz8pnH+jpHs0XPcni6JoF0XxUO3UHPv9s7yekX8XJw5ECgqJiwa7X1o/oB3h4Likfy/pj/H5n0n6n5L+RtIHJL1u96P13X+fufv+63ctvH8lqbFYTVmW75T0Pdr5Ar1JO39cx4JkiUQicani6dr5jl3WjhjbVKTrjyS9WTt/qL5S0q9JUlmWL9dOEdwX737X/rOkr7yN9/0JSR/UjlX3byX9bFmWf36He5FIJBJTiLIsNyQ9RjvfjTdrZwvGJ5Rl+Z7dQ35eO0UPb5T0Iu38PUr8F0kv2k0tc52ET2vn7+NP7h7/PWd5PbY3/y5OHIiiLMvDbkMicV5QFMW9tfOHbGe3MFgikUgkEolEInFJYdfh8NtlWd75DIcmEucc6VBIXFIoiuLrdq1eR7QTIfuTFBMSiUQikUgkEolE4twjBYXEpYbv1k6NhQ9qZx/1przfRCKRSCQSiUQikUicJc6boFAUxaOKonhvURQfKIriWefrPokEUZblo3Z3bzhaluXXlWX5qcNuUyJxWMjv4UQikTh85Hdx4nyjLMvXZLpD4rBwXmooFEUxo51tRP6tpI9LepOkby7L8l3n/GaJRCKR2If8Hk4kEonDR34XJxKJSx3ny6HwAEkfKMvyQ7tVTF8s6bHn6V6JRCKR2I/8Hk4kEonDR34XJxKJSxqz5+m610n6GH7/uKQHHnRwURQ1m8TS0pLm5uZUFIXKshRdFP651WqpKApJ0mQy0dbWlra3tzWZTPYdz9fu/apz/V78zPeeTCbVNefm5jQ7O1u9Wq1W1Q5fz9eaTCa168b2uN08pqntfq8sS7Va+/WfpvZzbOL4sX9xfHyvpvFp6ov7z+tsb2/vux/7QLAtTfdrQtN4xms2feb3D7pn04vnHjT2Tf1qQlwjTecf1K6ma8T2xDXnn9nvOC5Naza2IZ5z0LViG/38NI1DBNdwvM9B49v0zJ3u2INw0HVC+24uy/LKAy8yvbhd38OSNDMclHe9vtBN6/Oa+cD66Q5NJBKJC4Y1rWqjXD/4y3y6cbu+i/N7OJFITCuWdbzxb+LzJSg0fenX/koviuLJkp68r0Gzs3rEIx6h6667Tu12W5ubm1pfX99HNGZmZiRJ29vbWl5e1i233KLl5WWtra2pLEvNzMxoe3tb29vb2tjY0Gg0qq5hQWB7e1tbW1sVEW61WpqdnVWv19Pc3Fx13tramoqi0NVXX60rr7yy+rff72tubk4zMzPV/SaTSXVPChJ++Z5+mTRtbW1pdXVV4/FY6+vrmkwmVd99XKfT0czMTE3s2Nraqq7darU0Nzenubk5dTqd6l7+3H23MCJJ4/G4agvHrtVq1e7la21ubqooCs3Ozqrf76vb7VZtXVtb08rKira3t2tzur29rc3NTW1ublZzMDMzo9nZWXU6HbXb7Yogs0/SDnEmUSbh83Xdv6IoqvnwOnHbfc+ZmRn1ej3Nzs5WRHJ9fV2bm5u1PlK4arfb1VgQcR4pBJCce115XN32jY2NmhDmuZubm6va5bGYmZmpCVoeM4+X58/X29zcrNrvsfZ9fT+3x2PkZ8DHt1qt6nr8jP2kgOS1ZaHJ50VE0cHjdZAY5THwfd0+z/XW1pY2NjaqOYxwm5uEEj8zHgfPv/snSRsbGx/Zd9GLA2f8Hpbq38XduUVdd68f0T1ObKr1wbee7/YlEonEbcIbylcfdhPOBrfrb+L8Hk4kEtOKvyr/oPFv4vMlKHxc0l3w+50lfZIHlGX5AkkvkPYcCnNzc1pcXFS/36/Is6SK6El1ZwKJqsmZI+y796gIUQSJvcmMSRRJDR0J3W5X/X6/ItKdTqd2DgUEkklfX1LtMxNVSVUf1tbWNJlMKjJpkhUj7DGSahJn4ur+894Y+5pI4BedEk0ReToY4nsHOUEMjoV/dns9hpKqeW5qL38+6J7b29uV4OSxcv/Zdr63ublZI850aUS3B9tA98pBLgv2lW4WEmTOa7wPxSK2KbbLRLiJxEdXjNschZrYX68dCxBsN9dWE1GngBZdLnRZRIcMr8V2sg9e3/Fe7s/txemcKRc5zvg9LNW/ixeKo2Xvj954YVqXSCQSlwdu19/E+T2cSCQuNpwvQeFNku5VFMXdJX1C0uMl/fsznTQYDHS3u91NS0tL6vV6arVaWltb08zMTM3CXRRFRYJNxGNUmW6AJkFBqhMmR2D5ma/VbrfV7/e1uLio4XBYCQqObLo9JFGO5jaRXX9mJ8HMzIzW19e1urpaEf2NjY0aWSXRc/uiVb7dbtfIOSPPvo6j33Q4UFBw2zgWJHy3BbS7c05mZ2f3zaM/8/0iUXbbSWrZ/iheRALOe/k9n+drxnQZkvcYkSeRjvPNdsR55vteF2xbE5nni+uAcHs2NjYqZwuvyzY3kfMmEYjODrYhCgB0DrD/UbCKaEgp2CfisG8xFYh94DPO9dkkcjSB12la4xe5qHCHvocTiUQicU6R38WJROKSxnkRFMqy3CqK4vslvUrSjKRfL8vynac7pygKLSws6IYbbtDS0pLa7XZly264fuVOWF9f1/LycpViYDJsIm2yHBHJtNvg8/mam5urBAS3h587ym1C5+swrcK2bJMh2/0tnJjIWEzY2NiQVLdrMy3ABIz2fhJBiyg+z6SXToC1tbWqTRRQaM+n+8NW8Kacc44T3SLug0WhSPpMTCkoxHURSXwkiySC7qst/k7P4LGM5EeizvmLNnmndkSRiuuG65P3pGvE/bDg4Pfj+uRYsY9eWxRGKFYZFEO83qOrhZ9RUPG65niw7RQn6PpwO3xdP5e8Lj+n+BTFloPgeaAYGPsVn5mD4PXH9Ape42LGHfkeTiQSicS5RX4XJxKJSx3ny6Ggsiz/j6T/czuOr/3eVGCRtnnn7K+urla545Iq4koibJLDKCTzrre2tqr0g7m5uSo/ndFYkmxGuU38nK4g7aRJ8FzmyzOiazcBSRUjwhYwKAR4HCgeREQi1eQKiOe6Pd1ud1/+vMWEra2tmuuCQoD73W63a7Up2BaT/RhhJoGncODzSRhJYN0nkluLCaez4kuqOVpcT8Ft5T1i9Dq6JWZmZtRutzU3N9cY4eYacXsPmi87XtzO6ByIhFzSPmGkyX3AdlDk4Tr2ODSNVRP4XNIpwLUaUyuarhef79N9zveaxice4+MoMDTNUSwsetB9L0bc3u/hRCKRSJx75HdxIpG4lHHeBIWzASPStOLHyClFAxMHk6tY8I5E0NddX1+vjne0mAXpSDw6nU5VQJDFCqX6LhOGo54mfCbkk8mkRmApDPAYpyc0FQOU9hcr9D0l1aLzTL1oSmVgHy0IsHaF+8cCjxR2tra2avfjGEaCaZjIxvQQtylGv09HOkmiOR+MlDetLToamtI7mmz5tN9zzVhsiq4Fn9fkHoh9YMHDJqLcJIzEgptsq4+JKRSxbfHFdcnjmuaB88hxp9sm9jG2kdeK92gi/zyX7Y3nHXS829k0vlFQuNgdColEIpFIJBKJxPnG1AoKTBOQVHMIHBT5l3aIgQs1Mgec4gKPMcFv2g6SLxZjZE48iSbJlMm0o/t+Mdec4sjW1la1w8P29rZmZmZqhSl9DxKgKCj4Z/9OF0RZlpVAQWEl2tEtCETHREx5YAoDnQhOMWgi7HwvzokFD1rkoyXe945rJYKCgq8b5yqKSHSGRJGEpJxzTEEhuiY4t0asb8G2ux1xnA6a3zh+EYzOHzRWUVxhf2PKA8+J16QoFp0xJP18dgmuHYobMZUhtv10ayG2mWN3kGBzkBCRSCQSiUQikUgkmjF1ggKJjP+g91Z6juBaLOAOD4zYx5oJZVnWov+uDWBy5C3oOp2Out2uer2eJFUOA5P7brdbvfw5SSjz0Ofm5irBY319vapVEHPaHfkfj8cajUbVMayvwONN2F3I0ds+xuiyyW7Mu2+C+88ik6ezznNLzH6/X3NceA55LwoNdpFYzKEwZPEo5uh73mMEn6JInG9+Rqt7FECYIkMHBkm2tybk1pfewtHj5jngOPEaUeiJRQCZfuBrRUeEU07Y7igqsN+cA48/1wdrbdCd4vmi0MKUoqY1wlSS0yE+39EdET9rEga4pg4SFprWRHQqNM0T5+J0rpJEIpFIJBKJRCIxRYJCtFkbdg2Y7Jowra+v14i6I+EkaCROjEhGktrpdCpBwQTRQoKLJx45ckQLCwsaDoeVcyBGeOk+kKT19fWKhJqQRRI4mUwqYcDuhNnZWfV6PfV6vaq9W1tbFYkl8TKBcxtIct2mpgr8HjOLEx5nSbWtNH2eyeX6+no1lnYU8Fy6S0jUTILdFkazI8FjxNrHcj4pGJH0USzwGDOdItZIIHmPdRoo/nDrRJ8b+8L55BogOfbvdDpQLIjH0M7vNnpdNqX08D7RadJEojnWrh1CoYVpPH62OA+TSb1oarxXk2MgijURTa4AfidQOGlKzYjXaXIeNAkQB6U3nK6tiUQikUgkEonE5Y6pERRIAGKk2+4EkiqT1liUkNHVGKkkQaPd3WKCiTFJVqvVqlwJFhxMJmPKga9H4SO2MaYQUBzxNVqtVtUeX9/3sADg9y0omBTRzeF0Do4BayF4TDxmjMbGXSKayBv7QvLN9AFfg/A1SVI5PpEcx/tbFOC1/HMks03vxXs13TOumyb7vvvrdcljeCzbwXGjiNH0c4zO8/w4Vp6HOOZNhNrncvyYunGQuBfBmiZsR1OaStNYxLmhK4k4SGTgq0k0aDqPbfe1m74nDrpvIpFIJBKJRCKR2MPUCArSni2bueYWFCTVtuwjgWP1e0aQpf02ab9n4m4CTiLuYy029Hq92raRMSrrNtAV0JRvTwLuNA3a/VutltrtduWK4I4J7IPHyETWdRFYM8HjGfPWGRGX9kSQph0nSIr9YrS/iRxT6OH2jXGeGQXnWNLmbzTtdMFChyTfkSA2Ecs4HrHWQBRDeA0KLAcReYpNvG6TGMNIOwWOJiHC891Ui4DrhAJME3wu5yHWgqBY1iRmRKGJ4tBBRPwgUahp3uLYN73flI7QJAw0tcNtjw6S23qNRCKRSCQSiUQiMUWCggsfXnXVVer1erX8eoOkKqYN+PODLMoxUk/CxQKIJHKuYzAcDjUYDDQYDNRutyXtr9Pgc01W4raFtuozoi3tEDdvX+lrtNvt6t5Og7Al3gUhnZYRCyV6+8JYYZ/9snDjdsWUEooCa2trtTx7XtMCCKP17KPz8ily2DlCJ4nbZqdDkwjC6D/JenRNsOCk20mnB0UdkupYq4KCBYUqjxfJLl0aUdjgeFE84DhFtwPPo8CyublZE3aiSOQxoTgQXTQ8PhL8mB7jOhd8FqObhAJDdAVx7cdxoWjUVMOAqSqxPoXPadoy9bYitvFMxyUSiUQikUgkEon9mBpB4UEPepDufe97a2FhobLrk3CQkDhVwMQ35uuTAEUCKe1FjZuIoSPAnU5H/X5fw+FQw+FQ/X6/ciCQRMYUAn9O1wTbxWJ8s7Oz1fkzMzPq9XqVO2EwGFTtcloEo7om7BYQ3B9Gx9lXSTVXggkbbfZNBQ7tIvB1O51OdV0LGNEiTnGD6Sox/53tZXqGCx/6mpGMsvBfdFXEyHUksxRMPE+xLsVBkfMYkW8io4zwU/hgMUK6VyhCxGh5vH7T/eOc0uFDgeIgG39MK/IOHfG4mF7g9XdQZD+eQzfA6eC14/5RGDIoYtxeN0EUX5rakyJC4kJg5m/upEde9a7DbsZZ43d/5it15EWvO+xmJBKJRCKROCRMjaBg4m77PiPIBh0KsaCdQSJCsYFkhtc9iAB6V4d2u11F79mOg4rwRZDgUrQoiqIqcOjfuXMAawzEHQF4XRbfi6kfLHzYJDI0pWa4nfHnmO7g+zZZ/E1oXe8hzmEcF6YczMzMVIJCjErzGpGs8rq8dpNjIFr3IwH3vEYHBB0VcS1FQeKgOgisreH+nq4f7D9dBNGu735QHGly5ERST3cCC002CWKcf7oP2O8mUeF0aBKD4n1Ptw5i/5o+awLXQAoIifOJmSNH9P5nfs6+93//+ufq/rsC7cWMF/+7z+hD936wion0WT/1Vk3W1g67SYlEIpFIJC4gpkZQIFjIMBJSfx5JL3PLTZzoHoiEMhJOigN2C7AIo4+hHT8W4mN7miKnJJQ+JxI4iwqM3PvF2g2+Lp0GJvFR5GgiTiTz3D4w3iOKGPHesT0mthQceO+mlBTe0+MQBRtfv4lExnbFtlEkiGISrfU+li8fU5ZlLXLOY+N92E+OM69L1w2FC7b/IOLPFAkKBB53rs2mMYmCSrwv54HgM9PUzjhX8ZmI7/H92E6LggelMPE+HENfk/824bY4JW7rsYlEDa0ZtT7vXtLuGhrdaaj3P+GXGw68+MUESXr9/f9Aur+0MlnT1/2f79Hs8rpap0ba+pePHHbTEolEIpFIXABMjaAQrd8mCJ1OpyItFA14nrSfCPs6JssxEkrXAXOxTeo7nU5VGJG1A6JdmoSuKQ/fuzk4TYPH0UrvWgQWFBypZ62ImDcfd2JgeoHHky4F1lzwmK2vr+8TaCwGONWB922ynpOcdrvdWiTftSOaSBlJK0mkx+Wg1AZez+IR10MUMmKuva36PpbFCD1eFka8TjimnOdYv4MOBdYA4JxLqhX4JFH3vT1usV++pufSglmT2BDrejSNv7eL9KtJEPF4Nbkl4vgzBcdoWjvx2aFgwrFtEhSigEShJzqWzoTb66hIJM6E2Wuv1iv+7Hc0V+z/P+lSxrDV1V++9IWSpH/77q9R6+GH255EIpFIJBIXBlMjKJi4spgct3P0TghOY/A5sY6AtN/OTFu7CQhdCiYytoyb7MWIJ4+1SOEUDd8nEn7WeWA/m0QIaa/Owfb2tsbjcUVwu93uvqhxTOVg+oN/39jYqO2KQaLo90hKXSeCY8YCgqyZwDSFSAg5VhSKWOyQ6REel83NzVoRR46ZBYeYgnA6h4HnIEayfQ+vOa8HF+hkm9z2uMai64V1KHzdJocNRQOuMb7vNRDH0u+zDkQUP7g+LCi4LgndKOwL3TwWwSyEuF10DsX6D7GNBtMvOH6nSxXyWEeXR5yHKCbE5y86hw663+mQ7oTE7cEt3/VgPfsZl5+YEPGb9/o9/fV773bYzdDydld//MX31PaJk4fdlEQikUgkLllMjaAg1QmiyabJncmO8+tN9kzcmrYfZOE7Hu90AooIJmSO1MbcdhIzEqeDCIcjpSR+cbeBJoJKG/vGxkaNMFLs4HlSsx2dJC46NNiOpnk4aH4OImkUMqS6yMAoOaPpHHvWJvDvkfz7cxJvz+lBBQ1jSoM/iyQ0Rso5z01zTFGD5/J3j3Ek3gc5BppEGV5X2k+22UeOIcfcL4oATU4OOmsi4edxTf2jGNWUlsJ7NIkRREw54XjFNdYkWB3kkGhqU/w8CoOJxG3FJ5/xxbrLoz+sbxieOuymHDqunR3qP8zfctjN0Hq5qf/3Zx6tYrP+nXrDr6+ofPM7D6lViUQikUhcWpgqQcHEh8UJow2b0XSKCXEHAYoKjDaTKPIa/pdbHfLYSM6k/TZ3E9cYHWd73Ubm0Ps9/jyZ7GwnyXHhFo0xDz6OY2wfCb5xe0kT70Mxh0KJx8FCgKR9QkqTkMP0AKYi+HwTYrpLYrrCQRZ6n0vyGwlq0+d0ozSNg6/LOYrFLSMxbhJ8KApFUYIiSlOkn+JMdNSwL02CBp0gvHYsNsrniWPMdkcnx+n61CSysG1NYgIFM/aBx8f2nc6N4GtHYS+RuD2YufJKbd3rTpKkr/n3/1f//eq3H3KLEkSnmNO/fPWv7nv/Ph9/iq7r3O8QWrQfxaSU3vAOKb+HEolEInGRYmoEBZJ2uwS808L6+rokVdH+KBCQvBZFUcu9N7hzgo9lJHpmZqa6p7c7NNnlbg+xjoHbRMJEJwUt/SanW1tb+1wVPs9ChM838en1ejXBgvUYIskzIZdUI+oWZ0i8SPaNaBuPZNuCC7codPspGLAd/nx7e3ufmODIdtzdg0IPCWN0p7h/3KWBxN2FKk2SnSJDF4vXzulSNjwu3u6TpNb9ixH9JkQxgwJFnF+6dngsnRQWwUiQI2mPc2jhJ4pkXAMcD65Nt5XPDsl9UzvdtoPGguPBa7CGBdvk63PODxIGDnIcHOQyiXORgkPiIHz6G+6pt/x4U8HFxDTjnU99vvTUw27FDm7aXtW3fe6jNFlePuymJBKJRCJxhzAVgsLi4qLufe97a2lpSVtbW5qbm1O/36+RCRYoNDGPBJQF7iLJIHGi5ZtRdufPHz16VEeOHKlIMS39vt9kMtHa2prW19e1vb1dExvoWDBBIfFttVq1/pjUzs3N1QiuybaLQzaRJkbGaVm3GCOp5sIYjUaVYBFTJ+ioKIqi0T5OgYT1FOI4M7LMopZ8L+5oYVgE8MttI9mjqLGxsVGz9McdJkjG3U6Ps9cLa2K02+3auJB8M7pPwaUpdcL/xteZ0BRxL8tyXyqOx6+pjkhTqoJ/jw6dmC7Be7ItLIbp99ge1miIwlJTOzymFOKiuMNn2nPEFx0iTeQ/zofdHr4fx8vnR+dGk0CZSCQS5wLHWj09/W2v1XbZ0ve+/lt0z29562E3KZFIJBKJ24WpEBT8x7wJi4mESe36+nq1U8L6+rrW1taqXROi7Z/pBpFckGRxa0Pv6NDv9zU/P6/BYKB+v99oYfc9NzY29tnCSVhJ0GL76BJgIT+7Eny8ya2FlUiAGGmX6ttpFkVRRa3pUtja2qpqM0iqSCGL7VmgiUUcDRLRptoFHGeSxslksi+9JFrZDTosfJ1YkDHa4Xkuo+9x3NiPg/rnsWhaL16XHB9/FnciaUp38PsRPpbzwHFkrQnflykjJNxNEfY4RxaFWHyT65LtYi2SpvmK6zoKE1EMo1DnzzxuB7k84lzHY6OgQEGkaazjuPg6TSkxiYRRdDp67y/eV8XcRPe9+4cOuzmJixwzRUsP721L2taPfeEr9VMv/Jrqs8U3dXTVL7328BqXSCQSicRtwB0WFIqiuIuk35R0jaSJpBeUZfm8oiiOSnqJpOslfVjSN5VlefxM1/MODpGATyYTra+vV7s8bGxs1AQFH8soJqOk0v5dGiTtI7adTkeDwaB69Xq9mi0+igkk/02kNtYVkPbqA7hfbGuTTZ1R/Ibx30fAIkiATeabyHdT1X8KFU2knKQ0ns+xZrqBo9bcRYPzFvvnf2Mti1h/oqnPdFI07WzAMWR7/S/nio4Juh3o5mBEnUID7xVrbBxEdHkMz+V8xnVMQSGmacTnwO2lC0Sqr8nYfhN+jnsUR6KzgfdvEtfYDwpZdKJEVwevE9vBz3ivg1wL8ed4rYsF5/q7OHF6FO223vSo5+qKmcFhNyVxieHbF27Stz/y16rfH37nx2jzvV8gSer+4wdyt4opRn4PJxKJyxln41DYkvSfyrJ8S1EU85LeXBTFX0r6dkmvLsvyOUVRPEvSsyQ983QXsjvBL0ZIvX3iaDSqUgx8THQD+Hw7GpgO0RTtZcS32+2q3+9X7gTm9Ut7OfrcUi9GNiMJZO6/r0P7uNvqvnQ6ndq5TnmIOyjwniaS3LpSqpNjk3oKE9ECT1IZCTHJns9hXyL5cpSehJFEOBZS5H0sOsQIeVPUmKSeaQgUFDwGnh/uosG1ENsQx9gpFhRXSJ4Z2fZ8UXjhlo50z8Q1xDFxm5ucGEwdcb95Dc4n7+n5Yp0QryGvSf9MEcdiCEU8/svx4M+xvkfcmSE6N3wc13G8NxHdH5ybJkExrtUmweEixDn7Lk6cGcXM/h1aEonzgVd/7h/vUFRJX/bE71L7L94ilZMs4DidyO/hRCJx2eIOCwplWX5K0qd2f14uiuLdkq6T9FhJD9s97EWSXqPb8OVJor66uipJFbH0+3YGbG5uVsSItQksTFh0iIKDwbzsmZmZSkwYDocaDAZV3QLfpyx3tnCkU8IErYkcMZ8/EivWKWDaBtsTd0/gtWOxPv7s35us/Dye42CSJ+3UbPBYu41sA1MJ4rU8Bmw7CzO67bGIo7TfVRI/pwDR5DiwU4MCQrTGcxzinFEUcRt8D9drcL0Ito19m5ubq4ptbmxs1EQFRtp53yYRiPfgv51OpzbfFIG8zmOtCgsubq+FB7oTPHYU8spyr1hnTHGIDheS8SikeNyb6lkc5NLw/Htsu91u1UbPDXd1oYOH/eDYR/C5jCIga4NQlJhmnOvv4sTBWH78g/T8n35euhMSFxzP/5XnaVTO6m9XP0ev+ryFw25OIiC/hxOJxOWMc1JDoSiK6yX9a0lvkHT17heryrL8VFEUV92Wa5gwmNC6aKBJjgn95uZmLRptOLK6ublZEX5JtQg0SYkJ1tzcnAaDgebn5/cVgjQmk4nG47HG43ElApC0kig2kRAKCSTPMVpuEuWdJdw+CwQkR9vb2zVSb5IYyTHTMjwejkhH14FdGU359z7XBSJZbI+V/1lIj84A982fM42EBSp9HUa1ea6kan45znEsiEjkKQRwjj3GHkNv0+m5iPBYmjib7M7OzlbFOmN0nPPkc1ifwGPWbrdr57NQpKR9wkwUJkjkm6L/3KozjmMUTeIY8lr8LD4Tvh4/j8+ihb/o6HD7WYOD4hdFFDqBmhwTfI+Cn9vANcq1Fus+XAw4F9/FiYOx3S50/10nWSJxIXHvdl+SdKeZt+sFL/1e3eNHR9p+3wcPuVWJJuT3cCKRuNxw1oJCURRDSX8o6WllWZ6KpOM05z1Z0pMlqd/f+Y8ykm5JFUlzjYUYwaYDwMe56KAJDgkJ4Wik3QkmylI9l92Cxng8rtploh9JaSTwJoyO+luQoJiwOx5Ve1wk0qSvSeCgVTtG6JlmEUUDEj9a62nV39jYqO1iYESbfFPUOo7JmaK8HBu6L2Jkn/ULGHWX9jtQIpgyEiPgHEeOhz/zFqZcQxxrHu9reA15rhktj7speM3TZcLUCopfXCsxpcFkm+PVFJ2ns4ciDNNGfD223e3neohCANvAtRlFgrgumkQXpnPYReL3osDQlBIU56ppTbF4ZGyjjzuoPsg04lx8F3fVP38NvNjxoPvq1s897EYkLndcOzvUe/7Nb+m+X/0ULX3omGbGE7Vf9Y+H3azELvJ7OJFIXI44K0GhKIo57Xxx/k5Zli/bffvGoiiu3VVir5V0U9O5ZVm+QNILJOnKK68sZ2ZmaoSb2zPadWDiFSPO/nw8Hmt1dVUbGxuSdKCYYKI1OzurbrerwWCg4XCoTqezj4SZ8Poek8mkEhO4bSKLNKKP+9rPKvgYxypPv9vtqtvtVmICyRJFCBMf2tjdXh5r0B0QLfi0wHsLTEbLae9n+oGkimy7vyww6fO87R7TMnw8/zVh3NraqrWTxSkteFCwiQJHU3FPjg2JJYtSeq2QcFtE8ZjyWK4xRsrpQPCc+1oUC1inwI4TC0kehygMURDyGHs9MC2D48NUGIsx7IPXJN08k0l9J5PoCmpyFbgddFbEdAev54PcBLyX3TBuD8fK/eY1YwpDdOXwe8PHxRQJprdwV5Fpx7n6Ll4ojl5clowLiJX/sqL33/c3D7sZiYQk6e1Pf74k6Q9XFvSr/+rekqRyc0uaXDwi6KWG/B5OJBKXK85ml4dC0q9JendZlv8DH/2xpG+T9Jzdf//otlyPZM9/2EvS+vp6JRKQODNyaPJDMYLkwekT3W63ijh3u10Nh0MtLi7q2LFjWlpaqrZZNKGl48EWdpMauhlI3EmmJ5OdHSpce4FRWRMmEzynOfjldpr0NBFZjhcLRrodHieSPJNzE/MoNHQ6nUoEcd9ok6egQCLpe5Jgc8eDeJwJddwKku4JCh0+n9F+j7/njYUFucsDybnH258z2u/P3B7e22Poz01Qm+pKxDXk2hFRfGExRBJo35cimrQnCkVBgq4L98XX9u8WA1h/4KCaCbGfTKGgiGHE9eBrRZGrab1w3mMxTwoBvE6T44ViQiyqGetFUPji+FH04THTjnP9XZxIJC4efO3ghO7/vldLkr7yd5+huz/7dYfcossT+T2cSCQuZ5yNQ+Ehkr5V0juKonjb7nv/WTtfmi8tiuJJkj4q6XG3qSG7RLfdbqvX61UkkNFICgrMwyeJIGGJxMjRZt9jcXFRR48e1dGjRzUYDGpCAOscRHdEJB604NPGzfQN5smbaJOAttttdTqdSlDodDqVO4DiCcmrjzE5NRgdJkGLL0mNxM3nOtLucY91CkjyDV7P14yuD+5K4Wtxe0n2gXNKokgCz+NNErmLB8UYFo2MuwfQuRLHKha5ZPoCx9htoHOE68W/+xgLCpLU6XRqbgv3g+vO71NQ8Dkkzj6eY2rCzt9jcUumAcS142eySQCS9gQKv0/xwWs0OgmYRuF59jPKlB/3N6636CCgA8F9oiOHc8J2UlRzX/h9M+U4p9/FiUTi4sFM0dJnzQ0lSU95zJ/pd+/7RdVnxYuv0NJvpcBwgZDfw4lE4rLF2ezy8H8lHfTX9sNvz7WKoqhF513R/iDLNxF3W4iWZlql7QJot9saDodaWFjQ4uKiFhcXNTc3VyvYaLJFUcNtJaEiOYpbHdox4HSISGxIvkw4LSzMzc3VyKBUL3BHQSPax30fE7JIpBhxjoICr8PCj5HAx/GP5Nn3dvSdLoUoKDAizGKFHEsS+kj8oghB4YD9j+kMMR2G40LSGSPevAbXAusDxFSUSPbjWuLOGHQXsL5CnB8KUhwTuglYi8TnxvH1ewbJdHQncKw8DnSU8HqxRgifzZh+4vt57DhebG8Ur+LzzjZQ7InPrH/2OPLF610MOJffxYkGFIWWv+mBuv+xtx12SxKJ0+JpRz6spx35cPX7Z688QcXkQfuOK0pp8Q/fqnJ9/QK27tJGfg8nEonLGedkl4ezRVEUWlhYUL/fV7/fr1W0Z2E6HyvtFXCkhZvRyKYCfxYUBoNBJSQsLi5qYWFBs7OzGo/HNceBax9w+0iDBLjJAr65uam1tbWauyHuIMHouaOyJLvcntIuBhI9983397VcG8IRb4NEzZb8SLw9ttHubaHAbXbEmGkErVZL8/PzGg6H1TVXV1erSDznkkIILfKOotMdwZoKFhycLmLBh1FwOhQc4fc13M4YyY5uiibxhATedRX4GYkxibZTZOLa4T2cDsFinyzwyHnk2FFEoADAtdFq1Wsn+Hj3xb9zHGM/pL06IRYw+Fm8nnGQgyMKE3yfbouYPsFrWuho2i2FbYzn8l52RHi92tXhYxKJVqejF//sz+mus8PDbkoicbvw3of+pvTQ/e+vl5v6ujd+k8obb669P1kdZQ2GRCKRSNxuTIWgMDMzo16vp16vp263W4uGuo4BHQeO+sfoOMFaBb1eT8PhUMPhUL1eT/1+X0tLS5WgMBgMqmu63oHJPGsgxEgwCXJMv+A1LAb0+/2KsLTb7aoPHgM7M3y+ybKJe+yjianHaHNzU91uV/1+v3JfWDxggT3DxJtbCNJWTrs9yZ0FAqmeP9/pdKodM0y4TfpjpJqEj9djX0lk7XRwWxnR9nWbHBzMnWdtBRLpzu42cJGUMx2Bzg4WafT9OYYUZiwKUExi6gFrHrBdkQgzJcT3ZDoBxRn33de3oLW5ubkvtYT34bVjaoz7FQWtmCrjfrF2BtcanTnsM507LIzodsUtUCkUUnjyWuNaoROF5zWJML6Xn6coxCQSicTFjk4xpxf+zW/ve/+rfvzpOvobmSKRSCQSiduHqRAUSABZqM6FEH0MwTQD/+EfK947hcBFGFmj4OjRozp27FjlTrCbYDwea21trbo2i0K6+F+MtDLiGkUPR1xdcI8Ei+4CRpRNrBz9Z9/4PlMyXHiy0+loMBhofn5enU6nJgxEV4W05zxggUlG1ieTSdV2Fq2k88LEvdfraTAY1Oo/RFcHyajnyuMxMzNTkUkTO4suMTXDYOSe8067/Obm5j4hI5JgXp8CR3RpuI2ep2jr5/EWEWil5/FuexRbmLLCteXPSciZNhOLOtI9ElNseD1+HneBoHgWn8M4nhQ64hrzOPD6B5F77oYR793keHD7PbZRqIhOg5jO0FQ7wfdrcqokEonExY6rZgb73vuK//h/9aZvuZtWN9ua/9pParK2dggtSyQuLnzoOQ/WPb7oY4fahtEvXaf+y95wqG1IXN6YCkFB2h8RNZE2oaQTgLUVeBwj4SzAaILF3R3m5+c1Pz+vfr9fRaPtUPB16FiIKRQkkyQzjm5SDGFNgUjm6GyQ6ukG7GvTy+3kfQaDQW0bTI+do/rr6+uV+OAorgmcbfhMnTCB9tg50m0xgCTboo0j+N6+0/2NEe8It9FCBlMquD5icUba4j3OTVZ35vozV541F3yej4vR+JgeYjilgaSd121qd6zv4HY2CRCec0fbWcOAbfB8sq9NYlKsLeDP2+12tQZjjQgfd9BYNIl+UUBrmnPOLccljo2vE3+O4xfTPqLgx3/5PLPdnItEIpG4HPD/XPUO6ap36ORkrIc96T9pZmP3u3BLOvrC10uZBpa4zHDiWx+s7e7pj3nMv32D/r9r33JhGnQA7vHYJ+rosQfve7/Ylo6+8I2ZypQ475gaQcFEwJZ/1y8wobdosLa2VokIfvk4iw+0frvIof/t9/taXFzUcDjUYDBQt9utxAPXSnB77FCg9TmSVJM9SZWYMBqNNB6PNZlMKoLrf02WTMa4E0RZllVqQhQr6Fbw8bSNO09/YWFBR44c0eLiYi2twuScUXNJ1Y4a0v5oPPPK5+bm1Ol0aqSeTgC7P7idJnfG8Hm2vRt0eLh9digw/cFjxoizx9KOCK6jKPr4M/eHZJQ1F5hD73NIoBk5pxtmbm5u3/phu6PwFN0WTH2JwlNMH3AfozvD65wk2GKS7xEJOmFRhDs5xBocvH+sn8DaAzG9hu1h+oH7QdGGokJMw+DuHJKq7U3pWGhK13C72PcmMYHHpaCQSCQuRyy2enrrjzy/+v1fNlf0/X/+jdr+zM0qMw0scSmiNaOZI4v194pCz/vJX9SDutP/d8CH/u2vS/92//s3ba/qO/7y36kcjWrvT06eymc5cU4xFYKCyYDzoLe3t7W2tlalH6ytrVW1DByVN+Hc3NzU6uqq1tfXa8UZKSb0ej3Nz89XdRq8w8NgMFC73dba2lpFvNrtdnXdjY0Nra2taXl5uVYkkMTOJGttba06h7tCkAQ1FfKjNdztIPEkWFNiY2OjRvTn5uZ09OhRLS4uqtfr1WoNmKSygKGkmjtB2iNnMW/eY2mHggmnx9l1GzzGkioRiCJBJM/uE0UCFlFstVpVMUU6DBjt9pzxPY8n54vpAyab/oxOjVarpfXdytceB5P0SKDpziABds0P37fT6ewTimIU3X23cGGRy+Ka5yKS4Dg/bKdFp7Isq/XgZ8n1JFjfwWPLmiVMHYlpPU2gcBKf7aYdQQwLVBQYKKREscCgI4RiHV0ZTc4IXyum+7jtHsd2u63jx483np9IJBKXA+4+N9RL3vQKPfr7fkC9P3rjYTcnkTjnKL7gc/XSl//qvveHrTPYE6YcV80M9JLX/cG+9/NZTpxrTI2gQFLD9IPRaFQj6rRu01nAlAQTLO6a4J0Put1uVZiRbgiTBxPw0Wik0Wik1dXVKkXA12/KLbc7wURaqu86Qfg9H+c+x9QOWtuZTkHC6r65doJ3drD4EO9tEYLRdY97JHvMVY+7IHDOLNS4ZgNTUEiASSzZHo6rr8lCkk22fzoHGOl3+2MeP0k4+0CHAp0HMf+fAkaMpJN0xzXCttApwXXg63KtsoYDRSyfz/mgsBRrD1h4i2kYFnv83tzcXG2LTxZt9OugIoV0JrB9brfbznu6/55/1q+goMD1EtcgRTv2zfeO7eLa4Pqja8a/W+Dg7hyJRCJxuWLY6uqR//Xv9FsP+DJd/yNZuDFxcWP27nfTsd/dCxZc3fnni148OAhN/Xrkf/07ve9ZV53x3H/+zLW68jHvPR/NOhR86DkP1oO/9J1nPO6m8bz0yBvTxXE7MDWCAtMHnMJgd4JFA0fYjbhtIy3UJHmOWjqK660pGRk3qaLzwYUaKVaQBLLNPj6SLn/OvHSCRJnE2X2L4kW0bLvdnU6n2iXCx5pgUZggsWyylsc8/3hOzEFn7QSTQM4TSTbPMzhP0cYf60pwi9CYv8/UCY4px4r98hjFiH+TcEHSG1MZWHchRs8jsW+qBRDTGBiZd7+JKIZQVKJTguTeIlm8Dgl4k/BUFEUlylnkKYpiX5siDkolYD9jvz2eTF85aHyMptSUeE+6Vrg22H8LCD6Oa5HrMZFIJC5n/OgV79FHHnFM//iJL9ZVz3/tYTcnkbjdOP7tD9b6kUJrV5R65d3+6LCbc2j40SveI13xnjMe9+ZrNvTEH3zaHbrHnf76uCb/9O47dO7ZYPbaa/Txx9+j8bOvePib9YvXnbl45c3bq/qyH3yGWkFPuPPvf0RbH//EuWjmJYep+Gs5/tHPdAfXUOBODqe7DusVMMJu0u2UBxNtRiY7nY4mk4lWVlaqe8e8+AhH5N1m1lqgOLCxsVErFGhyHqO63LYxWsSjmODr2H1BMkahxIg55XQ/HJRbHyPbrmHhtrl2gsfcxSiZwkBCbaEkphpwvkhY3R/uvGGia5JM98pB6SJxXJhCwbnyfPGYWHiwqe0UtCKxpbgRHQc8jw6JWNNDqgsaJOVeA9y60uNB0YRj4bbbEeJzmGbglCGP05nAtkWnA4WguCb53PoZjC6Rg5xB8Zng/FtIi6kaFlj83DBNhCk2KSgkEolEHb96l3/Q23/41Xr2Kx+n7U/eqHJz48wnJRKHjdaMZq+9Wt/6jP+jpx75yGG35qLBF3Ta+qdnPP/MBzbgPr2n6Pqb73Tg59s336JyN8X4tqI1P6/Wwvxpjzn1wLvc4TYbV8wM9I4f3H+Nh3zie7T0DyEdfXlF26dOndX9LgVMzV/LJHSO9rN+AtMJ/Ec+iW60b7PQGwUFR1ydly7tkBOnOxRFUdVlsOOABN+RcpMnF2FcXl6uaiDQjm+41gCt7E5dYGSeZDbuVMBIM49zHn+/369t2RjH1znxJom8J3fM8GeRuE4mk0pQaLVaGgwGVVHHsiwrVwmt6BYIuM1ltOqb1BVFsc/d4JoWJJ60tTs1xsezrxyf6EAgkZf26kdQYIrpDhwPRvddkJH39udNrgWOJ69nQux0jzjH/Lnb7VZz5LXC/rNvnk+TaI6tj+eOKix2SccE+xDXF10mTLXwfMb0BK5rpihxHcS0k/gZHRoUreLcR4HB4qHH0M8A6zXErSsTiUQisYP7trt6xWtfoa/4tidr7q/efNjNSSTOiNnr76KX/f3vq1PMnfngxDnB27/vFzX5voN3hvmSp3+fFn7v9bfrmh961ufpn7/9F097TEuFpPPzt9vf/fzzNVG9Tzf88ffqhu/NehRTIygYFhRMPjc3NzUej6tCctvb2/ty1V0TIEaIoxWchMciRTzHKRcrKyuVmOBz3bbxeFydx3oBTFWIUetoySfxIRnz7470N+X2x6h1t9vVwsKC5ufnNTs7Wxsnk0YTXwsnEYycexxIZD0uvhYjyv6c23bScUHySCu900+4y4TbwDoQvB7bFPsR8/MNRuj9MyP4biOvx3z+KErEQoBef0wfaBrj2GaTfEbH4xpyX+KapquD4kashcHIvkkyI/YUkrxumsSUg9IceH/XYaDLwT9zzVDcscjltennjM8Gi27SwRPbwfQd9j2Oe6x7QbHDn0chKHF5YuvhX6DP/9m36NqZ3mE3JZGYKswVM3rM816tX/nDr9TdfjxrKiSmFzc/+cF6zPf9bYoJFxgzRUun2x/jO378j/Xep19zu675A4u/obni8HbdaOrTbzzyf+tP3nz/A8/5619/kK76pUs/RWxqBAVGjk2qTHJi4UWmIMQ8dxIBWtNJIFz0MQoSW1tbWl9fr9wJcWtGSbVcfhIytt3vuz1xd4dozW9qfyTA/pljZZLWbrerQpPSDiFyxJxEOEb3Y80E3uOguXF/6GKIOf+RjEYy52s4Ku1jTPJj3znfzHk/iOQ29SFa/g8ipmVZVi4WWt5pfY8OhaZUEo5rUw2F6EqINTS4hpnawOKNJL6xz7FfTOnxZ1y3XAv+3L/TYcD33aY4VnGLVY8HBRSmrzTVw/B5/jcKA1EwiD9HMeGg7wT2w+IGnUCJyxcrj3ugPvVVW3r1NW+VTvtnUSJxeeJpRz6sf3rkP+stx79Y1/z8pf8Hc+Liwy3f9WDNfe1n9BNXvuuwm5IIePLiJ6XFTx52M84aD+tN9LDeWw78/Eseczd9bOmL971flNJdn/s2TcKWnhcrpkZQMJheQEHBFf9JqqT61oDxRaLj6ChdBbTQ27XgnR3W19dr7gQLEayEL6lqYySEhsm7QZLGSHe73d5X2T8SxUg8fYzTHXq9XnVd95PRf9rrm3LRo00+krKyLGsRZkaTLdJI+4tsUoyI7gZukUhBweeb6BkxZSBGl9lmH8M1wb5QqPD93Md2u12rL0CCSXLMtBQKFAelWbitFBO4FnhMFAlM3u1OoJgxMzOzr44E57Isd+pdsNAj1xHXMNdn/DnOhceJ6Re8P4Uyi3rRvcOUBqZ5NLlRON9243Bu4lz7HLqA6D4h/J3B/t2W2hGJSw+zd7+bJk+8WR+63x8edlMSianGb9z17/Xq73+tfubn/9UdvkbR6ah1l4NzrSWp+GjuuJO4HWjNaPb6u+hrn/o3OwUIE4lDwt/9q5dLDV+P6+WmHvPXT9LMzcv7PitWx9r61KcvQOvOHaZGUKCQsL6+Xqub4F0fJFUR+abzCZMG734QiagFBUekKTTEooAmOt7OjznuTsWgjdwkhGSLUVk7IRwRNfk0KXeqBdMdfE7cXtL3WVhY0LFjx7SxsVHVniB5I6GL4+AxllRzU9DqXxR723EyNWQ8HlfnSqqIpfsSayp4604W/PNcx+0No/PB4BhQKPHL23ySrLpdZVlWBR45Z3RftNttLS4u1s5xe9wv7iQSXQMx997Xp0PEc0o3TtMcUaDgNqgWFZrcGD7ec8/CiL626114W1a7CujkYR0DzznngePF2gwUNVj4MYozfqa8DvxedO5wLCwiGE5nspjCNRTFN89BkzuB4HiloHD5oZid1U//zUt03/aluYVYIjFtWHv4ffWa//2rpz3mAV9x4sI0JnFJYPbaq7NmQmKq0Snm9KqX/WbjZw9/12M0+4gL3KCzxFQICjHNgSKCd1qI4B/6zBn377Q2Rwu+SbtJmgsZkgjZtWAwKm/SajJugsPigxYyut2uer1eLT/cfeQ1vRMEt8d0Trp3kTA593263a4WFxe1tLSk4XCobrdbI/fuOyPXJNImTO6n6yHwGKZLmIj5HPef42Li6T6aBPrV6XSqdrFwHwmkt++0c8HXcZspKJjcMwIdXQqeG/eNu1Aw596E3nPGQohuix0M7BNJPslqTGGILgkKJTGFhGNqsNZAkzOC89aU/+95i8IZnQR0BFhQoBjgNez2Mj3EfeX4c25iu2Itgygm8JrRmUABMQqAHn/PG0Uq9pXg2mEhyRQUEolE4vR4cGesR/zzsl79rQ9S+dYz7/EuSSoKXfkPi7rfwsd0p7mXnd8GJi5LtM5TYb5E4nzjf9/rd/UH/3y/6vfn/9+H64bvme7Cj1MhKEiqSI6Js4l6tLTTKk5S2ES+GEVmtJm5/iYQrCsg7ZBxpw4wfcLtMPGP5IORbm/lSKLofq6vr1fExrtOmOSxoJ2P9biwz3NzcxoOhxoOhxoMBvvSGIxIXv0eyXzMUyc5ZNoH0xwi8SXxJhk16bSQwHF0uxw9ZgE+v8+2WyBhXn+0zh9EAn2teB7XTL/fr8QZjmcUIOg2oGAVCW/cqYFjyPlwKkl02tD6z4KMFC2iiyNa/n0cC53SCcM6Bm7zQWSa5DyKBRF+vnxcrNHg+faYxs/9M8ffa8prM7YtroHosonCDs+NY9ckTCUubczc6x56/3derWtm/vawm5JIXDTot9p6xtEP6vlP/TLd+U8eqP7LD97nffT1D9SND9j5Xv3VO/+s7jo7vFDNTFwmmPyb++vdj+vuVvtPJC4+3H1uqGcc/WD1++QhLf3ac3YsC/f8jc9o+70fOKymHYipEBTKsqxcCePxuLLRm6yTFLCSO6OxdChIqkWOTX4sGphMmejEnHKpvm0gI7EkXY7CRyGgKIrKneDzSOBjWoPrNzBqbEGDYgK3mex0Our1epqfn9fCwoKGw2HVB79imgULEfI9j6HJOp0GJJBN+emRUEbXgUljtMXzeN/H42wHiD+n6EA3CwWcpi3+IjmPjozYH9eiGAwG6na7NRGIx7s2BcfF/XI/4n2ii4JrzesqOmJIgikocB1yTJw24WO5kwXdHgfNvcfdnze5ftgmuiSaUBRFlZLg9jjVyM8Y3SgU9HzPOGfxnvGcJvdBrJVwuvYaB4kWiUsbo3sd0/u/9ZclDQ67KYnERYd/edT/1t03nqwbXl5/v+h0VHz23SVJN37TWO/7Ett8U0xInHvc+MC+PvS45+t8bR2YSFxoPPPY+/XMJ7xfkvSvP/oUXdOZVbE10fa73nfILdvDVAgKk8lEo9FI6+vrGo/HWllZ0erqai0tgQQsbiXo2gZ+LzoK/B53ZDCxcmTYZMtE1pHyGIl2e533T7Lv87rdrpaWlirbvImpj/O9Y14/C0+2Wq1KYPHYSKos93Nzc7ryyit17bXX6tixY+p2u1pbW6u5Opxvzq0tPcbeipPOAkbVTdhjQUv3n/UbYnE/ixLtdrsW7aeLw32JdnSmhXhsLb743rGPniu33cf5+twW0uexZkCn09H8/Hzl9uj1ejWRituSSvWtEn0t39fk1eKP293tdqt2WShiTr+FLY+7iXgk8E2iFgUqw2216MW6H26rxRuuc6ZcsK/+OQpMJN2cW2lvRw86OOj0iNtExvM5XmwnnQN0nHh8uD58Dbc/9oPjFduY7oREIpE4B7jvDfqzP/qtw25FIpFIXPR4648+X5L0tvV1PfOzvliaNO94d6Fx1oJCURQzkv5R0ifKsvzqoiiOSnqJpOslfVjSN5Vlefx015hMJjp16lRVJM5bNkp1wtpkxaYlnEIC3Qkmh47SSvVdD0y0TV4lVYXiItFylJXOBJPNTqdTCQosTsicdZJPE3D3zdFbCx4rKyuVSMBz3K75+Xn1er2qBoQLREp7ro21tTWtrq5qeXlZq6urtToN7qtt9CSGFjbitogkW3Q08DOnNnQ6HfX7/VoKQCSMdmmw0CB39nCbKT64j9ztw9eKKQCsieHjWXNjZmZGw+FQi4uLGgwG6vf7arfbtS0VSTZ9f/c5FslkfQmOIXcT8Xwy1SSmF0Q3gHfFsNBApw1rQvCZooDTlB5EwY3PCFMPKCC4vfE+p4vie217rJocJXS1sOCiVBd+6CaJ4gPTdQ6CBTKKJFFsoCB5umtNI87Fd/HljA8890H6pa/+jcNuRiJxUeP/POq5etN77lp7b2lmeqJo5xv5PZxIJC4E7tOe1X9410ckST/1p9+oz3r66w+1PefCofAfJb1b0sLu78+S9OqyLJ9TFMWzdn9/5ukuMJlMqoi5dzJgbrcJHskOEUkud1ZgJNNRYZIpSVU0nM4Bf0Zngskjc9BJHGNRPlbxp0Wf9nFG9dkfEqwooFgAGA6HlZhgkkvC6T7ZTeH2svaDrxlzz0n6KDDEtBCPC8k8CbCFili7wP/Ga9n1YWeG201S63OjU6CJANJZQJLu/rbbbfV6vVp6SnRBRHJP8mrxgKSeqRgeR7sQ/Bm3TvR9/C+dCWwvBTKm2cRzPCexxkX8mW2MQgkJNhFTXiKpj88nU2ziuFg8iq+YthDbQnEq1sOIggivQVdC0/cIzzmo1sKU46y/iy9X/MtzHqxv+bK/06P664fdlETiosa9233du33zYTfjMJHfw4eITz79i3Xdoz9y2M1IJM475ooZPWFh57v2PQ9/rV78Cw+uPrvmHwrNv/jCCgxnJSgURXFnSV8l6b9J+qHdtx8r6WG7P79I0mt0GwQFuwNM5EyiJFV51vGPe5JYaY8EM2+booEj8j7OIOl2NLuJUJkYWXiwmMCoq4mdj/XLkdZIAGnRP6hf0UZusu7dI3yd2dlZ9Xq96p4m5NGVQFHB12RdAo8RyacLVLo9JmfRWk4HBUl0FFPo4OD5GxsbGo1GGo1GGo/HtS05Ser5c6z94HsybSESboseUUyIqTEkohQUaNMnWabg4rZ5TcZ+xDQMfm5EASSuLY53dJjwGXJ0Ps4XHThcDxROmtrGHTDc14Oez3i/KPTF9XhQegnXn+eHc+R7UNyxcNOUvuD1SCGCz72dThcDztV38eWG1mCg7fveU7/3756nL+jkPveJROKOI7+HDx9f+I3v0G/c9e8PuxmJxAXFf7/67frv3/D26vfPvuoJmv/wfavfZz9+i7Y+/onz2oaz/Wv5uZJ+WNI83ru6LMtPSVJZlp8qiuKqphOLoniypCdLUr/f35c+wMJ20V7ObRpJYmkLJ1lzFNlkgfZ+bstoUuqceRJ556DbReHPSVhJ+kyUuQ0mLfCRAJmwxyjr7lhVP8/NzWkwGGhxcXHflpj9fr+ywo/H433E07835d2TqJpIeRwojJCwM2XDUXdJNWu+x8DiS6zHEEWXra2tSkywW4WOEhLZ+DPXzszMTHVPjpPb4xQV75DhfP4YTWd+vueL4pRTNjwW7hOFgHa7XdsCNDoSorvD8Nqni8DtW19frz73VpdeSwbXIvvu/lE0itF+uwe4Ln1sTINxW5k2wWeHa7nT6VTPCtM2LOg1kXiKQRadOF7sm8ff58VilweB7hLPN+tVXAR4rs7Bd3FX/fPczOnC5hd9tv7qd39dUooJiUTirPFc5fdwIpE4ZLz3ob8pPXTv93v+3vfos/7TlAoKRVF8taSbyrJ8c1EUD7u955dl+QJJL5CkY8eOlSSWTbZ2EmLWEzCxcITZL0ajedz29ra63W5FmPyet2Q0QaMAYFLG4ouMMkv1CC3z5OkMYEE5X5Nb9zlKTBu9r22SZZJEkmxC2el0qnPW1tYkqeaa2NzcrGpUuF3RRs7dLFqtVkVcLRi02+3qeI6fx9jnRtJo8tvtdqsdLOxG8NzEFJFWq1Ud7/46PcZj0Ov1KkJvMthUo4CpFyb4HjNu2cgdKihoWeBif7g7A2tJcD1YfHEtDKd0bGxs1ObSoJBhUafX66nf71dpCdwJhC/Pp10RJNpeA3ar0AHjf/0ZxSH3L6YMMO3A/XXbPV50bFCI8Fr2+l9bW6tEOq5zPw9co3T0UPxjX+JzFhFFGz7P3OK0ydUwjTiX38ULxdGLq3BEIpFITAHyeziRSEwrXvWNP6f3PPaKfe9vly39ry//cm197ONnfY+zcSg8RNJjiqJ4tKSupIWiKH5b0o1FUVy7q8ReK+mm23IxRn5JsCVV7zHSLqkmLrCiPB0ATaTGkU6pXqGfEXVGi01+LTLQst9EPg1f2xFh11cwaYrbTbq90YlBYmT7vNMd6CYYDAaVWEDXhMl4dBuQwBkUIFhMUlI1bnxR/IlpBe4PP/c8+doWcjhXbofhIpceM/eH4gXnIVre6eLwe91uV/1+vypq6TXYlMrg67NPca3F9Ufi6/H21qAWpeI5FjQsTriPca1Je4UvvQZiig53UPC/sUhpk0vG641rks9TnF+ezzXAde/3vf79ucUVuiBM5GNqhe8T3Q9NIk6TiBAdCLyez/FzxHbyXlOMc/pdfLng+Lc9WJtfn7XREonEOUF+DycSianEZ80N9Vlza42fPf1njmlzdM2+9/sfaOvOP/3a23yPOywolGX5bEnPlqRdNfbpZVl+S1EUPyvp2yQ9Z/ffP7ot1zMpMWmKEX8TAboTmAPNPGuS85g+EK32vrYj0CZbbJcjy76OyZGvHesjxD5FC7YJW3QotFqtmvU/5nRLO0Sy3W6r0+lU0XW/ut1uRc5MkEg2fT8SPdq6HT1uah8LH8YCkzFqHSPZ/pnk2NZ1OylYe4LHSqptO7m1tVW1mX0jGWfqTEwxMbntdrvqdrvV1p6McMc+8n1ew/fn+5xHrl2LJ26bz6c4QocGxaemgpkWE5xC4DHw/Z32E2tBRMLt+7kuCEUIPm+xpgYFCf/OOYztpVjg58a7kvh4rg8j3uOgVCC6CbgmmAJyEPj94Wcp9n+aca6/iy8HlA+5v9a+7oTe/kUvPuymJBKJSwD5PZxIJC5GvO9LX9T4/jNvvL/+8Q1fsP+DV/9B4/Hno+LYcyS9tCiKJ0n6qKTHnemEsiyrHGpbwU0WSLBjZJI1EUi+IglkykQkjCZUzJEnaSnLUhsbG7WCdd5ZgZFsHxsJOd0JJo7Sjr18PB7XIvKst8ACdYZJJIsIum7EYDCokSqKBbbp22rPGgLdbreW68/aFVEIiWSPBNZz1TS3bodTDcbjsdbW1io3hc+nsEF7PB0lHAePtQmx8/ENnx/z4GO9DY6z565pDfhzixG29ccaEBS//L5TRzw3MzMzlTsi1gsxsXW6B1MrOC7D4bAiv7G45+zs7D5HT5PLgKknHHuLEZwbF0eNog1TXLze/K9/drst/LCmRpMbgaBzpGmNNbkSopPBxzEdyk4Ju34s0Hg+KAZepLjd38WXBVoz+o8verG+qt+s1icSicQ5RH4PXyg0uBMTicQdw/979duk337bvvdnrm0+/pwICmVZvkY7lWtVluUtkh5+O8+vrODcOYF57ZF4M4e62+1qOBzWIsaOtpr4OG/fBG91dbW6hwUCt4XpECb4GxsbFSGem5ur2mkSaWIl7eV3k5CTFDpiHUUSR4nZVxM6X7Pdbqvf72thYUHz8/NVHQBW8DfhNqnb2NjQ8vKyxuOxpD2i3ev1ND8/X3NBuG2eDzoGTOIt/nCO3C+Ov10dtLFzrj1u0fZvkcNtjYUkXXMgCgluQ0xzIPl1ashgMKhqaTTVP/B6oUPFkX8KNXR9xDXtzxyJ97hzdwm7TOzUoEhmwcMilEUzi0p0L1DI4vgzpcckm/U9XNshuksoJPg9Ck0Uk/yv3TO+B1NZfBy3h+Q4H4SYYnNbwWct9ovCCtOHPBdMv7KQdLHgbL+LL3UU//o++qmXvVD/ut2SdNEU3EwkEhcR8nv4wmPm2FH9pzf+rR7YWdVOxkkikbiQmJo90aLF3mTEOzC44r+PpU2aOfaMrE8mk0oEYHqCCQ+jsdHizgJ4jnpTGCCBJWmmAMCos18mexQumsQMFwpkf2jTd3Tblndfm06M9fX12tiRVNPpwJz36AixI4Nuhq2trVohQ9YdMKF3f1hvwP1pipgbsZCeBQi/tre3q5oGnqO1tbXaWJLoei48f3RKUMRg6oykqkggiTnH2uPpcWK6hs9jcciYnx/nje4GpqtYMPDYsGZGdF94/lgINNaFoHvH9/TxXsOs7cBUCYsqFmFimoHbQ4GGDhY+6xwrXiP+zGNvDzyGBAtC8hg/Bx5LPgOJSwyzLT2gM3fm4xKJRCJx8aAo9MDOqoatFBMSicPA1AgKkfCYHLEqvskWSaqtyjE6S0GCedt0BjjSzZxr3oNki5F0RmtjXruJlMkhyVDMzY+EmpFcW7Md3ZZUS3GgM4GCCEmiBQU7H9hOiwrRts9ov1RPs4hbE9KCTjHD7/Ge/DxGwyNxNclnpPigSDt3JnDEmcUhKRY02fMPEjOcMsAaGW6rVK+P0UR44/pgrQs6KHwsxQd+HiPqsRglnR+uS+Ex4RpkgU23PaZocC7YV7pFPP4G28S6F7x3rKnB+hscd96HAk1TXYbTga6K2I8obnBO6KC4PW6IRCKRSCQSiUTicsVUCAr+Q99kpNVqVaSIufYkILZ+9/v9yoFAMcHRcJPzJht2UxFHIxJGRrUpXrj9sUAgo8KSqmKCMVc+3o8RaEkaj8e1yLUFFLsUbO12CsL6+rpGo1GV4kAxRtrLheduDiSZJKImY51OR/1+X8PhsBIbfKx/Zr/ocHB/vHWhtCc0MI0ikmPujBBTQexa4M4JnAPWeqCYQPIY3RwksxSVfF8KFbFGQnSH0JHCFAauHxJbFpP0HLGIofsRo/50OGxvb2s0Gmk0GlVj4rXBHTWYcsDn4SBXQiz4yPv7PQpUdihwfIgml5ER3SlMtfD9DgKfRc4xwet5XdLd5DHx83JHnBGJRCKRSCQSicTlhKkRFPr9vlqtVo1AO4eZpIQEiDUTTAJi/QETMzoHTAJdkM+k2p9RTDC5ZLQ4RpQjuYv55dF6H4snsl883mIKHQoLCws6duyYFhcXKyGFuwNYTDh58qRuvfVWjUajikA5P9yCQqvVqtIhNjY2alX3jV6vV9Vr6HQ6Go1G+6LiHC+nI8RxaEqD8LxwbGdnZ6s5Z7TdYJHGmObgdWExhgQyCgqcg6ZCnpxbj5c/X19fr7WZAghJNNdfr9erjZnHwsKI1y8LBLKIpz+joMU6HqPRSCdOnNB4PNb6+no1Vm6bnScUEyhs0V3gtsdaEZ4vukXsXnFajK/L2iJc36yFwdojrAXR9Jyb6MdnJf7ONBDW9YiOFKagMBWH942iXyKRSCQSiUQikahjagSFbrdbyz03TAZicTUSB9refU7TnvLMe7eYIO3fcpCRekacJdWOYdTW12CfaPX3MSayLKLYBJJMaYe4DYdDHTlyREtLSxoMBjUCaIK5srKiU6dOaWVlpSLiJra28bsNLHboOgEeRxcgdPHAXq9X7dBACz0Fnygy+N6MOlvMicKA70nC25ROQCHAn3muWWCPc+Bx4FzRRdJqtWqpKLHuRUxPiA4Vpjc0CSbMz+fnFM1Y5JLzRUGBzgbPwfr6usbjsVZWVrSyslLtJkFhx4JPTDnx2PlevnasQcH3YuSfu20w5cKpRtG1w3Giu+F020XSbUShimvAa8q1KfhsxR1gPJYcR16L4lYKCpcObvmuB+uKb/7oYTcjkUgkEucQ61/5RVr/gVvVK9pnPjiRSJwXTI2g0JQ3zhxokkvuVx8LqDkS7Sgv7c9NBQFN6kh4YkE7t43H0zURCYwRBYWYD09yzHQP1g/w/fv9vhYXF7W4uKj5+Xn1+/191n5vRelCjCRe8Z4UBWIqiH9ut9u1HRE83h5zk0eOA8eZdQzoYnBbKNJE4sn59nVJUHm859u1JWLuf5zfKAZ4/pry+7kO3dZo1W+yx3MNW9hi/9lPEnCmSjANga4H33N7e1tra2v7Uh3iXNBt05Sm4/vEPh+UysEaBXR9NKXMcH0yPYbCIIWT2E+fG9cSj2EKlN0pTYICnz0jFpfk2NAhkrj4cfw+pf7xc1552M1IJBKJxDnEqbvN6i33+0NJrTMem0gkzg+m5q/lSPj8Rz3/sI/pDLRWm3T4HG+55zx05m7T+mxSZkJlUsRIL4mFP3ekPe5eEPPnY1+YoiDVI7/+nWS/1Wqp0+locXGxcicsLi5WDgW22ykSdg2QdHNnCQsD7o+kWh9tr+/1elpcXNTCwoLa7XaVfuH7mMDGlAZa6RmJj1XzY7Tc/SepL8uyRqy9ZSfJIR0K3gI0pqYc5EaIKQhchyTWtP5vbGzU1qBrOdC1Qps9twz1fSxy0F1DZ4JdDZ1Op3JZsD0WdCwojMfjKuXE12F/4hh4vrhGNjc3K+IdHRU+lj+7QKifsfF4XNv61eudYg3XvQt+0gFCoa6pbkJcG0wR4VgZrBUS3Qas5UGxxM9DTI1JXLxodbsqZ7MmRiKRSCQSicS5xlQICmVZVjsSrK2tVe8zgkmbskkD6x1Ie0KDySVzvnnNGG02kXAk18SZhJCkmBF9ChMkk7S52/ZuIm+yG8mfUxIYBW+321pYWNBVV12lO93pTlpaWqqi8CxWZ3eCI92dTqdG9ufm5rS2tlYjVazN4DZJO3UT5ufndfXVV+vYsWPqdDra3t7W6uqqVlZWqiKZ7oPHnfnpJNSSasKK58y59IxWe7yik8PXp3Dj+9hBwa07fe2NjY3KtRLn3euB65ACAwmlx5g1ONwWbnUao+4eBwsAPpfpJpHoe76Gw2E1JhQAiqLQeDyuziW55zjFsWXahNvGFB7WbvBzQxHDYpfBZ2xjY0Oj0ajawtP9YIHDKAxy7VlEsxDmtsbaJp4/rmvXcXBNEdcC8TPMdA+vxfiMxdSS+EwkLm487E236PePPE+5P3kikUgkEonEucXUCAokqAatzSQZrVarchDQIk3yxCg8yRqt3K6E73s5ok2xgHn+jPTG9vsa0YYdd38wmM7BHHHfZ2NjoxITjh07pmPHjlVOAUkVUeaOBc7DJ+jiYPSXbg8TbkaN+/2+BoNBVcjR0XDvuuBxYt49o7uMgnPeOJeGiabdBwavSULre5tQOkpuUkhC6ZQIj3MUF2L6AhHTC2KNiZhyQ7JOscjiCdNK/C/TUHxup9NRr9erxsQCkefZQgGj6rHYJMUKplrQwcM1Y0cB3TsRFIUsYlCIs3jAvrugIp9fz6c/p4jDZ57pKTFVhTUTLCa4oCePs2vDoEDRarXU7Xb3zT8FlIPGInFx4eq5k7k/eSKRSFxi+MD/eJC+5eF/d9jNSCQue0yFoCDV89Cbct0jIbX9nGQ1piYQtJ5L9arzzPOO94s54LFGgP8lQWZbWMMh1huIqREkribCvV5Pw+FQ8/PztToGW1tbmpubq+2IwfoETDcgiWJfGOX12MzMzKjb7Va1E+bm5qpaCU6n4LXoIIgiickm8+mjjZ1RZjsLmiz2nB+mB8QtMDkW0THAvP9osW+6NtcmiydSlPJndLqQUHte2a8InsfUDe7G4TXE3Rk4/l5nbq/7RAcC16XdMETTeo8ODh9HAcfiBe/BNrtNTAmi8NLkIOA9KeL5GI5V3IWDjoYo1lnc4XNK4cht5JpIJBKJRCIxfbj3539EP3nlOw+7GYnEZY+pERQYDaT92SSFRQtNECIRM7EweW8qHEcieLroY8yfpjshpjcwwup2mbQximuCEqP5Ps9RXpPWTqej4XCo4XCowWCgdru9r26Ec9Ydjfa9HcGPOfTc8cDR/U6nU7PWD4fDqvijI+xra2u1XQR8rF8xWk57fIzcc0eDubk5DQaDRtcCxz2uFV+v2+3W7OkWPmJtBbaVggKFHM8P2+/3R6NRlbLgdBMWqIwFDinmeH4MriumiVhI8I4aJOYsKshtOTkP7o+fH5N8p7ZQPIrijZ87/uyx4bNAAcmixObmZpXqEAm+55kuCYpPPobpJlxfngf2lzu4WHiR9twHsa5KdCaxT9HNxP57/hOJRCKRSEwXZo4cUXdm88wHJhKJ846pERRIxGyrN7kgGZV2LO0kiJJqedDc355El4SCdRUiGZtMJjUBIu76QCLn86R6tXkTdQsOrPlgUIxwjj0r5Pd6PS0tLeno0aNaWFioFQZ0+004vatDtJG77a5RYYHGhIw585KqLSKdWrGysqKTJ0/q1KlTVW2JSDIlVUUc/b6JJkk2xQ2PXywsKalWCyGSQ88l6xT4cxP37e1tDQYD9fv9ajeMJrIfnTBcJ9wBYzweV0KKx8lz5fGwKON7WOjh9pesF8BUC/ej2+3WagFwjrnbgOfTRTEtHpkYr6+va3l5uSL5vpfn23UMWEDR9zGYGsI6IRYLvGuFd5ewmNDv96tnx+MVCy36X6YWuL8bGxu1Z5WgkEQBkc+F++R17volnnOmNBn8nUJIOhQSiUQikZg+tObn9Qtv+xNdP9tX7u6QSBw+pkpQMAmJFmpuKyftWa6Z/sCoZ5PzwAXaSFSYZ90UUfcxtGKTzPtY2sNNxOKuDk2RTpJbk32KCcPhsCJD0RXB1I6NjQ2tr69X40ibPa36Flqii4IpCnQrWNhxsUy6IAz210Sf9RUYITbpNwmP17Irw9dwoUnmzUfHCS39fnU6nUpQYI48hRM6EyhwmIB73NbX17W6ulrb1pFjK6kmdvmaHnNf2/PI/voz1y9g2oIFtaIoKpHBAoLbxrQTPzfj8Virq6vVjguGXRe+XywwGgUijzXrD3CteIxcr8J9dD+9ZjnWnEe6LZxKw51V+GzT0cN2UFCkmOBjLNJ0Op19dUS8/t0GChsUmuLOJIlEIpFIJA4fi61CM0WKCYnENGBqBAWCFvSmz6S9SCKt2BEkz01R2BgpjufxGJIM2r5JSlmTIAoBJK7RWm6iw10XmB/OSD7TO3yuX+5fzBdnTQETKZI/ksdIGL0lIaPhTN2wuGHrOYUZkj63lZF399+CjsUJzlckob6eo/3uO8lzdCe4LYy0sx/uC+faBNeuDLYhOk0omHguSfhjWgj75Dmju0FS5TixU4RpDBaHfK7n2u1l0UwKO1yHFHYo+vA58/yyXgPHkNufug8xlcRCwkGpFRR2mO7AGhw+joIf2+b+sCik17gFJe6mEfvL+YhCU6Y8JBKJRCIxPZi54bP0scderW7xl4fdlEQisYupERSYr06y5s+iRZ1uBBZSixb2KChIqkU7fX3ioBSJaNX3/UzgHKl3ugPPI6n3PSgIkIBSUDAx6vf76nQ6lRDgKv0kmIzkkthyq0Nfu9vtVltZst8cx/X1dZ06dUrLy8sajUY1+77Hza4GR9FZo8Ftd3sk1cg4o/0zMzM1O350D1C8sBASbe6tVkv9fl8LCwuan5+v+mcHgAnkeDyuEVTD75GYm6Q2pWY05eF73DzesV8RTHtgtN1j4mtS4GAdC8NuDrc7CnJMPaBDwXNox08UIejWYaFDjkN0MlC4iPPt+/vaTTVJoqvloDQlC1UeG4owfFY8Hny+ON4UFijGpaBwCaA1o9mrr1S3+MhhtySRSCQS5wC3POgqveMHn6/cBjiRmB5MhaAQo9aSamSKEXipHtmV9lIWmLNtssJCbozEx3uSTLMOQVORNxMepwKsrq6qLEstLS1VFmtHz2nlNtm2IGHCQuJqUaLb7Wp+fl4LCwsaDodVbYOlpaVqS0G7B8bjsTY3N6tUgfF4rFOnTunWW2/VeDyuxAYKCR47F7TjuLrI3ubmZo2kxuhxp9NRv9+v2uPPfE2Pufvna5CklWVZXcP1HFy0kdv7xar+XBsWE7rdrhYWFqo8/iY3AAmz+8N/XYByNBpV68nt8vmeQ9ZzcMTeaQDuf0xPYcFBpun4WAsSrFXgtWSniMeSNSk8Z3QvbG9v13a4oBPAKRwsbhjrC7DmQ0z1kVSr9+FxXVtbq30e3SCee//LVASuUd+bhSU3Njb2FTvd2NjQyspK5SSxK8GpM15/dtdEMSGujZiSk7i4MXPve+plf/Hb6hRzZz44kUgkEolEInG7MTWCAomf95NndJK2a5NiSfuinyYtjgiT9DEaTGGBQoFUTxvwNZmHzyJwtlKbFNNiTbJksint2cVNmOgwcP6/iXGv19NgMKh2XhgOh5XYYoJpIri9va3V1VWtrq5WuxIwCm0yxW0JmQpg4uo+RSHH8LXooiDhZvoESbbTJjzWjH5zLUQRh4X4TO5JjCVVRJRigq8Xrfi8v+fYxJU7FrgP0Rrf7XZrDgCmtfh6FD98feb3sw2eF/fHIgbbvLW1VXNO+F5eZ+vr6zVnzfb2di3NYjKZaDwe76tD0e12q/W8trZWSwmI6Th0AjGFxWPq3S7i5xQEnJrCMaXoYjFB2tuOMrqDnErk+h4U6rzVqq/Bugpel3z++R3icaaYwNotiYsPZVGkmJBIJBKXCN7/Sw/Us778jw67GYlEIuCs/louimJJ0v+W9HmSSklPlPReSS+RdL2kD0v6prIsj9+Ga+0jl7RCS3tEnwQsRhFZHJHV4GM02BFR1jWg+8CkhS4HRpVjNDimEFBEMJEimfY9SeAdKfa1nD5hd8JgMFCn05G0V+mfkX9JGo1GVVE+W+9j7QTu8GDC25RWwsgy54l1HEhapTpZLoqisui7rdz5Ic6r5y9a5T3mvm9cK+4b01Q8v/68qfYD1w5t+k2RbNZ5aEoBiGBRQboWuAY5lkyhifUWIiE3wfYrCi9+Bri23VamaZi8U8ThfLDWQlPhSjoaOH8c05g+0CQAUlyiMOW+sX/8PBan9PMe02HcJwoJnDP3JzpIuK6nHefyu/hSwfbDPl8f/Or2YTcjkUhcJsjv4fOI1ow++Z8eqCc+9K/15MVPHnZrEolEwNmWR32epD8vy/JzJN1P0rslPUvSq8uyvJekV+/+fuaGgFSaiLCuAo8zEWLUnYhRbeZK+xwW9+PnjJYyl59Rd0lVVNif2WJtImeys7a2VqUlmByZYI5GoyrCWpalBoNBZf13u2zh7vf7laDQarWq6vgm6069WFlZ0crKilZXV6udIyRV17KIEK3hsZgehRzDhNRigsk9iTtFC0lVWogFmLh9ZrwHP/c8kmy6rTyPW0h6bujOYL9435gGwb67DgbdDnS7RMRjWB+C205yXfoebDtrg7jd3HGCIgJTCtg27rrBdpAs253AdApek6k4LOzpCD5dJBTOoshFIYFiQ0xHochCMcHPBp0cHBeLIEyJkfbqUFjA4lau/k7gnLPfFCUvIpyz7+JLAbN3vk4f+oY5feDf/8phNyWRSFw+yO/h84RWe06vfOrP6EeveM9hNyWRSDTgDjsUiqJYkPQlkr5dksqy3JC0URTFYyU9bPewF0l6jaRnnuFaVVTRpCTmc5sUMN1BUmXtZl6+34vbRJLs+X4mVPw82u5N8kySTap8j7m5Oc3Pz2tubq5GUFZXV7W8vFwVASSBNeE1CXSaQ7fbrV6DwaCqo7C0tKSFhYUqbWBtbU0nT57UyspKLWf+1KlT1ctF6ixI2N7ua/d6vSotwf2Krgy+J6lGyJpIvsfPRDqKJrby08kg1YkzI+IutOh59/U9h3aFODK9vb2z24HXiOc3FmGkk4SE0u4ECzfR2cC1xvSCKIJIqgivybwLBdpxQheC01LimHo9uSimSbLn1m1yGgZrKsR+UUTy+Fj0shDg9cBnhqIe0xxYUNHHxnQOtsV99NhHscA7l9DVwwKOUXDgGol1FVgLIablsO3RjSOpllZjZ8k041x+F18q+JI/e59eeeyVh92MRCJxmSC/hxOJxOWMs0l5uIekz0j6jaIo7ifpzZL+o6Sry7L8lCSVZfmpoiiuOtOFmOdNm7UJiEk7dxNwrjmt6yYFjpDTcm4yQTu+VLdoG46OWtiQ9qrwm3QwH96RXubUr6ysVMUSLRy4jxYqHAk1IXT/TPw7nY6OHj2qq666SseOHauRHF/fAoOj8ibwdE74ZZeCI9gsPhmFBI+NBR7u3kCQBHP8SApJlhll5phEq7xfdKK43bSxuwBm3CGB6RTREWGHh8kwI/CS9tUvkFRzKnhNkIzG1BhH+H0P18OIgoyv43uTlJM4u41uN9Mk+BzxuYm1AOxKsKDgtWQxIZLrJocK58btYkoN59CFEtk3zq+FPyPuTMKUFzpA/DNTkLyeKV5Jqvrq4zwfFBUseFDIcY2SlZUVXQQ4Z9/FFztm73JnPeSV79eTlt4maXDYzUkkEpcP8nv4PGHjK75Qj/7//kbXzvQOuymJROIAnI2gMCvp8yU9tSzLNxRF8TzdDitXURRPlvRkSRoMBjUrN3PTGZ20nZ5RYYPCQoxGSntbRZpoRBJomHBQTKANnZHN3X5U9zZ5ZsV95sST5JmEuYic3Qkm/J1OR0eOHNGRI0eqLRB9D6dQ0JJOYlRNEGowOOJugSY6CyJZpF2dRNl99r8xF97uDkaY3f+mIpAeXyO6STznjjL785gLT/IbSW9T2gxFHRZM9HW9tjieTMPhfWIdBb/ndnkeLAJ43OlAcCFRzpGvw3SCKHBxzE/nHGB6j58fk+9Ya8F95TPFmhDxPv6cjovobPExbJvdCXxWY0FOv+92xy1Dva58HFMWWJ+CTpD4XRPrbXBNcNeKKcY5+y7uqn9+WngBsP2wz9f7v35Or7ziT5ViQiKRuMDI7+HzhM35GT3j6AclzZzx2EQicTg4mxoKH5f08bIs37D7+x9o58v0xqIorpWk3X9vajq5LMsXlGX5hWVZfmGn06nlRDMvnGSILgESxBip5A4QFCciEYo59T6Hlf4tGDCaTOLOAn0bGxtVmoPJGiOfkYDPzs6q1+tVOzi4fkK73dZgMNBVV12lpaUlDQYDFUVRkcr19fWaoGBiTBIZ88Zt447j2UTEmbZBQYbjEOayVqOAuxE4VaTX66nf71fChgkoaySwLZxLRvU57mwTx5ZzyTQBj5cj8kwRoEBVFEXNtUCBhe4Zwm1hKoXH2uPv9Rv7G0USH0MXgOedNQO49ph2QXEpCgJcq1yjfF7cP4oCpxNW2HZJNaLOuhGR1Ht83C7WvohpCJ5fujtYWyOKDHTjRCcIhQu6GSz+WGzheE85ztl38Zw6F6TB5wOffGhXH/rG/3XYzUgkEpcn8nv4PGD2ztdp9ZoUEhKJaccddiiUZfnpoig+VhTFZ5dl+V5JD5f0rt3Xt0l6zu6/Z9zfxY4AW4xdt4COBBZEZFSVdRGkPeJkUmSrNy3k/swRUkds7QAYjUaaTCY1uz3Pj2KC28T0A9ZZcJTUpJZ27KWlJR09erTKqe90OlpcXNR1112nY8eOaTgcVikeLrq4vLys1dXVqkgfCZ4JXLvdVr/fV7/frxF1FuybmZnZJ+KYbJHYeUxtk7cQ4H47um+QqPb7/VpE3jnpFItIDC0k+X0XLZTqW4TSKt9kz+dcRwEgptjY5cF1QgLdFO33PJJI0w3hNTk7O6t+v18JOu4HibpTGOhQiSlA4/G4RpZjPQ+ngbAGRRQqSLqZxuL3xuNxbfzjXNOx4HH1enJBRD5HZVnWBAAKDRxXv8fnx3NgQarT6VTbQfIZiuugLMuaAGURyvewkOJruH98zkejUZVO1CSgTRvO5XdxIpFIJG4/8nv4/OCjv7Codzzw+YfdjEQicQac7SbrT5X0O0VRtCV9SNJ3aMf18NKiKJ4k6aOSHnemi0wmk2p3ApPRdrtdIxUxmmuYEHDHgVjcjgXfSMCZGkGi4foDJGEmao5yS3uCAlMPWM+BheKc325S1e12dezYscqBYEI5Pz+vK664Qtddd52uvPJKzc3NVVH1lZUVnTp1SisrK7Wie4zomry7AJ/TBFgLwP1mbj4L2VEUIZmkPZzRes+D3/f42G3ByvvRWRIj1HaGREGBfYjuBs4pU2UoMjC9ZXZ2trbbhrSz7aev56g1Lf0Ex8EikNeBP3fBS7fTIpgJLlNufA3uXsLxsHi0tbVVOR1M2um4YHs91nShUAwjmfdYeB49Xp4j7urBNBavJwshFAWY0sNUB68Xk//RaFSbo5i243XstB2mO8V0B2l/0VD3iztRxHoVTEPhFqwe54sE5+S7+GLFqT/7LP36Z/+C0hKbSCQOEZf19/A5RWtG9/3HiZ5/7AWShofdmkQicQaclaBQluXbJH1hw0cPv53XqYQEWoxtu2YxxCZQQCDZ5PZ8Uj2CzHxy2uJJVCIRiwXmaBXnv/6cRepI/Hx/V/t3BLvb7Wo4HGphYUGLi4vVrhGOHo9GoxrhodU9Em4TJBJjjo3Pd5vcd1rVJTVukWgi6gi970nSbnIeo+0cPwsf0f3Ba3p+jFjjoEmkiPUFYrQ+jh3vRUGIQkUUtSh6+D7uEx0K/t1FRKODwdZ8poOU5d4uGePxWKurqxqPx9VcMBWC2zr6M7+isMKaBNH6H+tAcA1zi1A6NSgmME3E1+JOFdH14XawVkNMrbBDyfcw4bdwwzQiCxyxfgpdNyxsybXSVJeFz8nFgHP1XXyx4t9c/SE9qJtiQiKRODxc7t/D5xJFq9C3Hn2dPmsuxYRE4mLA2ToUzglYBI3EJuZbx6iztEdcaeP3+7Zhz83N1QiztBep571JLknepL2dH5jbbZLeRDyYhuEdI1z13iTSgoIJk+spzM/PazgcVuc6DWM0GlVjRDs/i9yZ/JI4k7j5fbefdRhiLYTYN48Fay2Y1JF8U9BhcUFGllkvgGSO9+UuEHGuSfjjOcyb9xjyfPeVEfNIdlmPQFJFjnnsQXUQpDohpehDAcLroNfrVY4Giwnr6+sajUaVmLC+vl6rH2KHArdHjOkaTfUxOG7ufxRluIajo8XjXewWSOx2u1UfvY54bnQ8cO15rVAgM1iElULL+vp6Nd9eH3yx+Kqvx2fcjhQ6eShYcq1QMEtMJ4rZWelf31tXtV972E1JJBKJxDlAa35e2593D3WLvz3spiQSiduIqREUmD9NUlCWZWXzJjlhBNbEjKRvZmZG/X5f3W5Xk8mktp0cSUp0DriIHokEI7kk8m6jibVBG7+JzOrqqkajUeVMGAwGOnr0qAaDQdWexcVFHTt2TEeOHKnqJtj2zrzutbW1qmgcLdxGHKcY+XXE3CkeFEqk5q0WCeby+3ffI27x6DHw2LHWBWsjNBXxo+U8igmcE0bSnTpAd4IdKu67+2xxhlH0SCw9n/yM42LiyeM4NhaTotDiqL9FJFv3vV6c3jIajWq5/BYcLDI1iXBN9SQ8T3Q30HFDMc7Hu42cRz8jrVar2t7Uotd4PK6lZcRCjHT8eHy73W5NYLCI4HsPh8NKdPDal+oCD8UQ94cFRS12WEzgriFO1WCBxvi8JKYXM1dfpVe84oWaK9KdkEgkEpcCxg/9HL3mf/+qcreeROLiwVQICia4MRXBEcRer1cRDEdKTVZYEM6R6bIsazZpWsJnZ2crEu/3/Rlz/knCHNlkwTvaun0fqV4w0EKAxQBJFYE8cuRIJXj0ej0NBgPNz89XfZVU5c3H3QYYceV2hwaLTkZHgMeaVndpz1HBCC374/vG9ILoaqDrwKSf9SUmk0mtrkS0unssm9wAJpEUd9wOR8tdc4FiByP/W1tbGo/HtS0TYxuYPsOif14LFiEowDAiHlNNPI5OEeh2u9XcO+ffjoO1tbUqzWFlZaUS2iyKuJ1chxbhoujm+0ZXCuffohzXj/vtuWB6CGtXTCaTarcRiyYUA5gi4fUYUw5Y6NHX9W4nnkvvcOF0H4oJ/A6JrhKPA59bp5dwO0mKK3F8TpdqlUgkEolE4tzh/b/4QP3Wo39ZZ7cJXSKRuNCYCkFB2oum00Yeo7km2ia5tlWzoJ1JjH+2O4HWdTsQSBAP2mbO5H08Hte2mJPqBQ6l/WkOdhK40KAJpckko+rug0kULem0tcdovlRPRWAU2O8xsu7zmc/vMW2qZRDrCvj6rFEQI7q8rseP6SYEo/smlKy5YOGGRJlCCN0QXC8+1uuIIgBz6Zsi0byW+xhre/i6TGHgWvY40E1j4Yvz7fXG9eLaCU3uE1/T6zamuLCeg9vof+MWo5xjig6x7oLnmOvMbeD6ZN0EjovvFwsixrobdu9YDKQAxpQjg8+pP+d693ixwCjXS1xn3DGDz1tiOrH5yC/UB56wrZaKMx+cSCQSianGB37+QfruL321HtJNMSGRuNgwFYJCzPumNbzT6VSuARMQpjqQpJGksBieBYUYPWXqgj9jhN0EiHUGpL0IbrT2sxicbel2GdhtQcJEd4W3xYvbJDJqelDee7S4RzCqzEg6I8WMXjPfnwXz+F6sH2Ai6jGnMEBSGfP6eZ1IMk30okuAroroJvC8xK1BY5pEk5jg8zudTi1thRZ9g0Q8kti4rj02nG//7HvYyWFXC7cEpXjDKD/rEET7P0UBfsZnjbUnfDwFjCYxwed5XGKqSnRKxHHncRxfP+92J/gZiAJIXNfRdRHB9+lyiTVGmA5y0PpITBdu/ldtffDLn6+MZCUSicRFjqLQbzz2V/Ql3cNuSCKRuCOYCkFB0j5iaZLNdAaDUXJG+Em6Wq2W1tfXNR6PK7LQ6XTU7/ervexNyhwZpRXfQoLt59wqkgTRL5K+zc3NKtpsUaLb7WpxcVGDwaByItD23u/3qy0ko9WcBNDiBnd7iCSdvzPazrz+uNsAnQTRFeDrNpHViEiCWUSS4kAUOSgkWYShaBJTPnx9zgHFndhek1rOiftpsYcviizRCeJ1wF0MLJZY6IrHci37PDoY3C47FJxCwOKEdItwjqJ4wz752M3NzX3t47g3zSdrG7gf0SlDcccOHIpQriHBqD/nbHNzsyYmWGzzc2RhxW1oGr8mccVjwS0suQOI++fzm1KE4pwnpghFoTKNCYlEInFpoEhhOJG4mDEVggKj5o5cMh0g5mP7d9vGh8Ohut1ulcLgKKNz9yVpMBjU6hOMRqPKpu17OLJq4sSCjY66S/UK9BY7WC/AdnXnts/NzWkwGKjf72swGFSiAusnuKYCC1C6/d4ykjUVuCuFtD8izZoJrKHAMTe5c9tN/n09aS9C7OMt3HDeTB5jvQWmVXjsmFYSI+iSGm30JLReFyTCFExcM8Mk0df2OLouAd0RdsJ4TtyHWITT5JQpNlJ9BwOP/fr6eo3cxnQAzgO3iDSBZlrP7Ozsvgg63QWuK+Lx8jm+dhQauG5ie5haQiLuubTzhtdzGzyvnn8WWvV7HgOmZjjdyM+h++JdUXycBRLWSmHaktdXTF/wM0sxxWKd2xdfnjPfMzFdGP/59XrF5/yMcn/yRCKRuLhRfvH99BO//Rt6QKeUlAV2E4mLEVMjKDDiSqJoomKSZzLAwnHeuo4WbUbbIwF0JNiRbooJhsUEpiwYjGizbZHsMy2j1+vVHAlOcbDQYIcEo95up0UNV/Y30TLY7pgGQDeFVE+jYN0E7hbAtAaSZbbPqQ0xSu45iBF6to3toGBQlmVtzGmtZ30KH0tQAGExPaa9mODG9cX6GSzmSILp9kt75NQkP5Jrn8/oeNxCkXUQLByx+CZTKXz/WD8j2vYpJrh90XFCdwHTe3x9jm1832KC2xPdL7ynnwXOpZ8bttt95RajFJTcDopjHAs6dbjTCseF69nXY3qOxyQKQ2dKJUpceLQGA73vV27Qr93zRbk/eSKRSFzkuOU7H6zON96YdRMSiYscUyMoSPU/9CXVCJ/z4ukSYFTZUdNYZ8AkxoTOJMTOBW6XZ8S6CbHIXavV2relHtMRoqDg6KvFBO9c4RedCSRb3ibPjgcWeXT7SXo4Xn6RUJlAMdXD92LRRF/HBJTkm8XsOB4GHQ6suWBwZ4hY6NDjbrGHRDEKD/6XfaOTgmMTtwblvDNVglb4WB/Ac+k+R+EkiiqsuxCdCXGdxt1DOH50ClBQoKDCPse59jVJtuPzRafJQVb/SN7jOmEtCEb+OScUlHxN1nDg+ozPHR04sS4D1z1FmOjkiPdqKhQaxZTE9GD2ztfp+EPuond9+S+oU8yd+YREIpFITC22Hv4FKh97i/7hvi877KYkEomzxFQIClJ9ezsSSUfvpT17uCOag8FAS0tLmpubq6LBjI76Go48m2isrq5WRRpNMJyeYGHAJL4sy1r9BgoZ3HbOdnWmSDCv3PnhdiUsLS2p3+9X77MYo8WE5eVljUajihCfOnVK4/G4FoEn0TJBpv2fxNDXoUjQROAoRkh1ESVek8cyj50EO1rqSdZj8TtHwS3KsOAlCS+JtseMkXg6DaLIw5oLHDMSTTpOYp0BCioEhY5Yo4FtZt4+tyQ1uWWffHysuRCFFK83Rt1t9+c1owhi0A1Ap4nb7XmhqyembkQiz9SB6B7w8RRa3Aam80SXjH/nfegwssuFaUoUj3w+C1sSFGuiKyZxuPjUV99Vb/nxX5aUYkIicTlhu5xooqxncymhmGvrh/7X7+ir+muH3ZREInEOMDWCggmBScVwONTCwoIGg4E6nU4th312dlYLCwtaWFjQcDis2bkj0TBRZ9RUUlU8jvf0uSbebJekihjFXHHvImGyJ6kmeridg8FAR48e1RVXXKH5+fmaY8Gkx+LE8vJyVTuB+fVxu0OSQ5Mmux1MKtlOFpe06GLy5ZxxWuZ9rFM8Yv49YfIYxQ7mu9POTgeJ589pHRRNLOhEwcnEVlKtXd1utyYOmLiyKB8j1v6ddRNcy4BroMmVwDlwu9g+tzHWnWDuPteN4WKGFGiYXuG+xHv5/pxTixEk+NyuMoozTB3yPHjeuI2r7+X+sO0cC4o87v9BoLOHY2tYYPP1+/1+1ZayLGufuz+xcOrKykrtGlFUi0JJIpFIJA4PX/eBR+uD73rJYTcjcY5QfMF99PN/+Ku6Ya6r3KUnkbg0MBWCgqPfJhODwaAi4CYMrL5O54KJr8k23Q0kciSxMYLNHHUTOUc3LTrQ9u9tBWmJZ/TZbbA7wS8XZHSByLg9IcUMCwiOrjudglFdkjVpT/BgugJrATiVwH3iZ3QjxLQTRnYZfWdEncQrWuCletTe9QLcfgsLZVnuSzMh2XUbmAvvc3jfOBeMOMf6Cv7czg33i04AWumJKK4wmu01Fl0aFBQYDY+pEqxVwN05vK6YauNruD1MT+BacDv9L0UEgyIEC3XaLcI6E75XHE+2Kzo5OI6sncBx8rkxrYOFGv2dYZcRx4z3pCOlKIpaKlNM8fD8U5hJQWE68OH/9mA9/JFvPexmJBKJC4y7//l36i5/3FK5tX9b4MTFh1u+88E69s0f073b/cNuSiKROANGkw098LlP0+yY7/5Q47FTISgwejkzM1OJCY7gE61Wq0o5cJTVYkLc9cCIeeexmJ2JWnQxkHxJexFxpiZYpIjiQlEUlfvANROY4sAijLS4WzygG4F1D2L03yQsFsejTd0EfmNjoyYYkNi7n7EeAaP5B9UWaCJdJJYUbHxP5r8zmkyhgUIJCSfn1teM7WSdgkgwI8llYT6mbfCeTVF13yOmdZCo2jkQaxvE7Qw5tnGnAd87iikk7fzX64jjx/43pT/4+i7W6PXI69pJQxIeUyOYosC5j+D4ULSLcxvHzP3yendtFTpf6Oo4yLnh+ea6poCQQsJ04V4P+bCef93rD7sZiUTiAmG7nOhbP/xw3fVlLXX/9I2H3ZzEOcLxzyv1j/f+08NuRiKROADf8uGHabS1uyPiVlt3/l/v0GR5+YznTY2gQJKwtLRUiQqdTqeKHkuq0ghcw2AymdQ+Z062CYLzy6MzIRYjJNmIuz441YLRYpK/aHu3LdyCAl0XvV5Pw+GwtoWer+mihKPRaJ+gECO27q+JVa/Xqwjo5uamVlZWqjQHW9Jdj4I1AnwdbvlIQSHWIyBJp0DBF4UVvkfHxebmZq0+Bd0IcU0wRYFjEAURpgdwnHhOjJ5baKFIQvcII+aOYFM88rpk/2P7LUJxPh1l57mbm5u1XTx4X67vKEBYDKB7hESa48Nx8LqiyGIhIaaLMLUgOgGkPfEkphDFOXC7mILi55MChYUWi2usi+JCqx4z1y9xm+xM6HQ6tZQP7vTBdR0FBl8jpvUkLjxa/b5mi/01SxKJxKWJ7XKij26NdOKrpe7xFBMuFbS6XZWzKdYnEtOEk5OxJrt/966VEx3/+o62Pn1j9fltfWKnRlBwKkG/39fRo0c1Pz+vubm5Wh0AE4SlpSV1Op1a/raJBMlArIYfbeUkhCaSLMTm47e2tioSQyu/yZJrH/h3iw+9Xk/z8/NaWlrS/Py8FhYWdMUVV+iKK65Qv9+v2fpNhlZWVrS6ulqlPTgn3H1hNJZFBV37QNoj/uPxWKurq/scFyZQzLM3edvY2Ki5HiRVqRbb29taXV2txoqCCEm858tjw36S1FF0MGnd3t6unCcm495mk4UA6UBwHQaPgz93egudH01Oj7hGut1uRTZN8KO4QkeDa0D4/Vjg0rt8eI2sra1V9SrosuGLApXH0vVAojuBqSTuG8UPCxpRAPAYW1CjmyDOi//ldqxN14ppNlx7BwktrFFBEcrrmCLWzMxMJSbOzs5WxUuZIuLnNLpxfAydPO63xQTPr9tIwStx4dGan9dPv/2vdO92S1mMMZG4PPAdH32Ybv7KQtsnjh92UxLnEA9943H9/tHnSeoedlMSiYR2xNvHP/o7VHz0U3vvnbjxNGccjKkQFKS9iL7TAkjoGM3tdrtqt9sV0SKRl/ZXqWekloiR2mh1p3U+FnWTVCPAtExzJwH3ZTAYaH5+XldffbWOHj2q4XCoubm5irz75W0i/fJOE7S8x7QKRnktCFiIGI1GtcJ+sZgkbfwWK9g3OxbcP0Z3Y3FDijuMXtMiz0ixx81tim4NbulI23u04/NYk2ZG7JnuQUHBoEWf6QnRZk8hQ6oXHuT7BAsYevwszvT7fXU6HRVFUYkMsVhlFDooykQnCd0JPt5jEusTcL45Hn5umC5AZ0iTOMefKRh5DfN6BufWAlBc2xQT6ALh1qoeN9bd8DMaBR6KG1FM4DqwIyM6SxKHhzvPbqlTDA67GYlE4gLg7n/+nbrbHxbqnHjTYTclcY5xp/ZxDVspJiQSh43Pfe23aPDKeUnSFR/4J22PRmd9zan4a9lEwOkBLDjHyKR3bTDRdYpAE0FscieQ1JBc0eoec/d9rIkt3yPRj0S13W6r3+9rOBxqOBxqcXGxSuVwH2JE2ERsPB5rbW2t2mmAxfbc1lg3gYKCr8OtEuP2jv4sRnIjeLx3vojb8HkOm6LSvDYFII+3Lf881u8zgs+0A9/PbaHYQ1JucsttI3l+JLkUoywmmNAyzSCmCPB3ilJ2Jjiyb1eGXRdcx25zjPyzfZ4Prm+6EeJ6p5gTxSOKEESsyxFrJhyE6ChgjQjOK9eO597rgUJJXEt0NXAcnB7CZ4JiAh1MFBwobrGdRrxW4sJj9u5306e+4k7qFn952E1JJBLnGdvlRF/zvq/Wnf9kRp1XvuGwm5NIJBKXJL72/V+h4Z/O68gLXydJOlcJpWclKBRF8YOSvlM7KRbvkPQdkvqSXiLpekkflvRNZVme0bfGvGhJNbJve7iLHLZarVrhwt22VI6BKBxEoYAkK9rDTSRI9lkIj0UP6W5gMUc7LVw34ciRI7rmmmu0sLCgXq9XRWXpknDNg5WVFY1GI62urla7F7itJqWO7PPFSDfrJphEmbSzfsFkMlGv16vl95NQSnt1JUiGORduu8mpjycZddoBXQImh0wv8Ji4GCe3NqRIQSu+j2sSmZyu4Eg559YElMSb9niLM9z1gK6AmBZDsm3BwHNdlmW1tWir1ara7DGPdQZi3n4kyVyzFDLoGIh1CVifwscfVDDR94wpHpFcR5ePxTCLI3xe6CLxy2NDAYEpSRY7YlqN15rn1y4kOhg8HrEAI51F0dHh59pzeDG5E87ld/G04OaH3klv+fFfVtpjE4lLG5vltj66NVbxzdvqf/riFRMuxe/hc4Ki0MziguaKjx12SxKJyxIrkzWdmOz8zb/xXUMded/rzvk97vBfzEVRXCfpByR9blmW46IoXirp8ZI+V9Kry7J8TlEUz5L0LEnPPMO1aiQ1RmptD/fnri/ACDxJv4lzE0kzubH1vCnqbPLh85jnTRIl7RBCCgDtdrtyJczPz+vo0aNVTYjFxUV1u91KELFLwcTo+PHjOn78uEaj0T73ggUHtsdRbh+zvLxctcNkjERLUs1G3u12K0HBBNqk0+NCp4PJ8GAwqJwkLh7JQpIeZ96XdSIkVePUbrdrUWinifg8iyheE8yPp1jhY+IuEhaKCLpTfF+mD1hUoAV+PB5X825hhdZ7rxkXDe31etV9TLQ9Jt65hHUuPDbRLUIST/GAoLDAug0xvcXj4Ll1++lusIgQBQnPBcUPij3cgYEuAL4sIlho8bjSjRDTMKIrwWKDHTPul8VIC2sUKbzePGfcQcXz63EpiqKaH54/zTiX38WJRCJxofGMTz9Q733IrCZrdyx3dxqQ38MHY+Zzb9DvveqFGhYdSVnoOJG40LjfHzxNNzzrbZKkydoHz8s9zjYENyupVxTFpnZU2E9Kerakh+1+/iJJr9FtEBRiNNVR41i4zcSF1nkTDpMYv0/i0yQ6SPUK7z7eEW9G69k+FrGLWyB2u91KPDh69KgWFxcrccG1IUgAfZ2TJ0/q5MmTWllZqVILXMXe0f0Ynac93/Z+pm4YrPFAx4K3sPQ4RHeC+8fCh3ZZmKyywr6Pc3qK2+8UDH/utA+TPJJZb6lpUr++vl4THDzfsZ4AdzzgODXZ5Emm/b6FkIPqFlCgct85zqyXQMcEdyewKCapcpGw4GZcw/EZYY2DWHPAxJgpIJ7XJuJsUJShKyG6AmKaB9cu0zk85h7XOBeugeJ5p7vFazi2Ld6Xz6CvFYtVUpSk+BTTKXh9H8dUJrqEphzn5Ls4kUgkLgS2y4ke8FPfp+7xUp1bNzW39ubDbtK5QH4PN6AsCi22eofdjETissT9fvYpuuHVt2qytnZe73OHBYWyLD9RFMXPSfqopLGkvyjL8i+Kori6LMtP7R7zqaIorrot12OuNvOlTc5YpJERa1q5mYJAkkB7+m67aqSDOek+hqQq5lIzUsotGV03YX5+XkeOHNFwOKxIe6zQb1gs4O4OTNugBZxjE7e/5E4XmKPqGJJJj6fHNro8fJzFEgs+7IdUT4fgNXxdkzOOM9MUfB2PL7dQ9HmxvgUJq7QXReZa8PG021t4oSjgueR5Jt5x/Fm4MAo2dh10u91KUPBaJXGlQMFaA3GdNokafDb8eawVEsenaUz4HETXjp85igkcA14rPgu+HucmPkseG6ck+PlpchRwtwXDQgvrPvg7IraH64bfLbGOR1OdhPjdMO0419/F04DxYx+gmx46/e6QRCJx+/HOjbEe/9Yn6S4v+4C2P/OZw27OOcGl+D2cSCQuXnx8a0WPfst36S4v/7i2PvzR836/s0l5OCLpsZLuLumEpN8viuJbbsf5T5b0ZEmVdZ/2aJNLkwVGF+PWdSxOZ3Jt4hxJDgk6xYRIXJt2dWAOvckgixXanXDkyBFdeeWVlX3fRLNJoNjY2NBoNKpqJ1CcIIHyfWPlfkaITSxJjt2n6NiIRSalPUeE+2dxw+kow+GwujfrRpjUUgCKpNYvk0r3z0KE3yuKorqvyWWMqEd3SYzmWxhyKg0L/5GMG+yDzzfp5fXpvsA6rtwe/X6/2oGEfSAB9u+uZeG2cq0xfYHPhD+zo4Bz7bbFWhBNwpqkakcMf07xpcndwhohfp8FK3mN6GhwqgwdOix66THxfeLWjTFVI9Y5oAgV6yawP0yXiGkjcV1ZfLoYBIVz+V3cVf98NPF2Y/t7b9a/3Pdlh92MRCJxjnHT9qp+7tOP0p2+7l3aPvPhFw0uxe/hRCJx8eGDmytaK2f08lNfqGu/9t26UKGZs0l5eISkfynL8jOSVBTFyyR9saQbi6K4dleJvVbSTU0nl2X5AkkvkKTFxcXSEd5er6fhcFj7A9/kJRIbRlgZDaZ9v6nSfYya+x7elpI5/JFouF4Arf5bW1vqdDpaWlrSNddco+uuu07z8/MaDofq9/uVjd+RcmN7e1vj8VinTp3SqVOntL6+XhNTpHpaRazIz1xwRqCjc8JjxOr6dHwYrj3h6LmkqmaCybLrPnj3hK2trX1V+z2eW1tbWl1drQSgmZkZzc/P12oaMHrt3RBIMFncz7t8+NomkHGOYh2Asiw1Go2q9pJwegx4Ha6rSLjdFhYLPXbsmIbDYUX0PS8xFYHiFeeS65wOCYpPtOK7bVFwYE0Nr1WDaUF0DlgQcKFQj4XJdFwPRkwT8hpoSp3xM9XtdiuxhTtomMCTxDPdyWCqA102/JyiEPvq74xYMNKuodgnv6J7YUpxzr6LF4qjB2/lkUgkEmeJh/7m03X9j73xsJtxPpDfw4lE4tDxPU94qmb+4R27v104p+fZCAoflfSgoij62rF3PVzSP0palfRtkp6z++8fnelCjFCTFPEPe+Za04rtaHrccs5EkpFckgNGc01gnONuN0LMIzf5cYHE5eVlbW1taXZ2VvPz87ruuut0zTXXaGlpqWbrJzEiUVtbW9PKyopOnjypEydOVKkJJlO0gm9ubu5LdfC4sG/c2WBra6si6jF1xG1gzryFG5PhuDUkI+8eczoSuJOExYS1tbVaqgPbENMP6Kww4ZO0bzvRg2pkRBLpY7wNJ50cnksTZTtSmAbiMaczwX11IUAXYHShz6bUE89XTNFhvymisN5BFBWiOGZCbMcHnTp+BphuwReFHPfZ7THJ9zqKqQh8dknK/ez4vi7EaLEouou4DtwuPjus8cCxie6EppoTbg/dRU2pKzE1xODzNuU4Z9/FiUQica7xitWhnvu0b5YkfdZ7P63tyaXkTaiQ38OJROLQ8Ob1Df3QU79fg7e+R9uHUFD8bGoovKEoij+Q9BbtSCBv1Y66OpT00qIonqSdL9jHnelaJkR+0aLvP/L5Iilm/QCSTF93t637rN8xX92Ekbs5xG0PTYg2NjZqRQa73a6OHTtWRapNoEzIuR0mC9DZnbC8vKy13WIZLKjnPsaUDpMz9ovpDx6LGME2+eI4Mh2EqSAek+g4YB9I/DlOdDBsbm5WxI/jSxEkkmS+5+i5x7TpGAo+FJG8juim8JzRIs/xYZFIX4OFFn2ua0rYzWLhp6kehcfT9/P5/JzjznHxzxRYOLdeM26DP2f6DlMZmJ7gsfVnPJ+uATsHomjDtRWfJ9/T14/rhmIK59PzEIUnigEUE6Jzg/PGNeJ+UcyhUMb14/GJz+K04lx+Fx86WjP61NMeqG+49jWH3ZJEInEO8J9vvK9e8pov1j1f+XpJuqTSHIhL6ns4kUhcVHju8ev1vL9/pG740zce2nfsWe3yUJblT0j6ifD2unaU2duMoiiqgn/RGr57n5ogYDjKzgrzjJjSnh7PpT3axIqEN26bx+0dbdl2NHU4HOqaa67R4uJiRTBNWpw7bsJHAWR5eVknTpzQyZMnq7SJWJiQQokj6q5XwPGjUyNauk2MWq1WbbtM1zTweDASHYlirAPAgnccU2+F6HGK9vV4vNtPizkj8tKeyEI3Cd0mMbee5NbiBtvieWAfmggs15J3Z/C9LCRxG1CTZaa2RBs++8zrRXEoigl+jwITRQJeLwoiXMvSnphAEY1uF6bZUMiLW6eerp2S9hVhpNDjNRYdFC76GZ89r23PiV8stGmwPkRMJ3H/6aqIYoLvwdSgace5+i4+bLTac/rTp/2M7jo7POymJBKJs8Tb1tf1sj95iO754+d+z/NpxKXyPZxIJC4evH1jTf/zb75CN3z/Gw61HWe7beQ5ga3XjrI7t1qqR58pEJhc02JO0YGOAEbSTRAYdW2321pcXFSn06nuZ9Jh8rm2tqbxeFy9TOrn5+d19dVX6+jRo1pYWKhqJUjSYDDQcDjUYDDQ3Nxc5WrY3NzU6uqqPvnJT+rmm2/WysqKJFV1CjwOvOfa2lotRcPFEn0sc9NJ3EwYPW4spOe8eRazIxm2wOBCg05n4DhT/HAhRzsCNjY2qvu32+2KfBsUBUgqpf2Rbhbt8719HGtnSKqlLIzH4yqtIQpKsR1eY/7XhLLdbtcI98zMjBYWFjQYDKqxYaE/uhW4jj1WJLfRFeL1x2KVnj/WCTloTbM2BN0jFIiigGYhiGIZUwRi5J7PGgUeixQWA5yGcVAtCZN2ryOPEeci7gTh1BcWd4xiVBS74ncAn3MKFe4HxzyKFYlEIpG4bXjWNz5Rd3vz5SEmJBKJxGHgP3739+terzpcMUGaEkGBRMJ/4Pt9qU7+LC444kwSQfJksmwyQyKxvr5e5YYXRVErwuj7+ppbW1taWVmpyD0JuXdxcME5WrNnZ2erYoYuJGiStr6+rk9/+tM6fvy41tbWVJZlRfDoCLAjwgUFmVrg4ogmwE7FoJhg8uVIMGsPuA+04ce8dv8eXQskcCxwaTcAazD0er2KeLP9nPdoWY82eF6fhTV9jbg+fH/WJTC5ZH0MH+++mpz6WBNe99M/z83Nqd/v17aHlFQj9q7ZEEUOimOxT26b28X17LVMwYCkl+4SX4s7pMQ6DEyD4M4pJv2xToULYnrsPW7RteAxaBKG/LnvTyLvOWFfvZ62trZqqS9eE+4z+0MXiu/L9eUdV+zoYYqKhQ3fg+1OJBKJxG3Dq8cz+uknfZvm3v0epSSb0Ac+rEf8+yfqB371xXrMYHTYrUkkLgm8e2Ok73/iU9X7x/dNRSrZ1AgKJlom7CT4BusI8HdJNVJhqzXJBa3XzKWfnZ2thAbDpMoRd0du45Z1jrp3Op2KhJgku1if0zh8X9dNOH78uFZWViphhPn5JsGO9jsyfVDKBnPeORZNVngSLYsb7DfngsTbiKSWhJ/v2+FhEs758Xkef0axpTph9T253SJJaeyf1wbz/91figiMvrOPbldME/BnFIpi0UPfn4UHIyGlQ4E7PjC1JUbF/Rl3tnD7KIbE9XsQGWZ76XqwiOAx5FwyBcFzRNLN+/H92AZfI7pT6L7xOFFosUDCehWcW16v6RrSXu0Ft59rmGk5Hj9fI5FIJBK3Dc+88f562V88WPd4zes0/ZvuJi4EJmtrmnnNW3Tr9lBSCgqJxNnif9x6D/3SXz1S9/ybN2h7Sv5OnQpBQdqrh+AoMXcXkOp5zoykG7RcOzJP27ajtdyHnsUCI6mUVNnA19bWqtoDJnG+j3emIBFxCoUj804V2Nra0vLysm699VadOHFCKysr2tjYqEWaPQ4UMphmEO350SXQJCTQnu5jTCYZlbYIwK0DfU+/uB0iyVaT1T7moDMSzHtGYYSE32Pn+25sbNTs+uwj2xCvQULM6LbdJBxbt93rwFFsi0/eDjSmiTgFx+4XgqkDFAFo2Y9CDcUdrlu30WPm63B8LbrEZ4XHeK1x9wWmO3CNReGm6bmjwBKfpSZhJbYtikgU70jyPY7eYaVprbO2QlmWtfoonHuOVXQnNLU7kUgkEs14zbill7/qwbrHszLNIZFIJM4H/mFtol/4v4/QDU97/WE3pYapEBT8Rz6LHUZSZFu5VN9ukDUP7BRot9s1F4MJu4nE+vp6RSBMNOgA2N7e1ng81mg0qqzrvJ/b1+l0qrQHSVXl/4WFBS0tLenIkSPqdruSdmzxp06d0okTJ3T8+HGdPHmyqovg69qCvb6+rpMnT2p5eblyRjDPnJFXn2NiTDJkC7iJGoUJixZ0VrAeQxPZM1mOiPdksUBvB8rCkBQvfG2SfM+B33NbTd5j0U0TeDoCTGy5daevazJqEs2CmNzNQdoTbpzW0u/3NRwO1el0KhJvsWhjY0Oj0Uij0ahak466R9GAxTH9DNBBwfSSpmi8nwmKSdxqkWPta3DNz83NVW22cBXJvMcwbs9IYc9jTPdAFL8iXG+D6U0E79/tdmuiAefaa8EuGa+R6Njx3DoNimkmTg2io8brMTocEolEInEw/vsTnqC7/0OKCYlEInG+8Owf+h7d8Io3HnYz9mEqBAVar8uyrNIETMj4R30sEmcSZtLAc0x4THRMYhyx9PExKsxifhQa2Ja5ubkqUm2HQrvd1mAw0OLioo4cOVKlUjDV4eTJkzpx4oRuueWWquBhq9WqSKMdEePxeF9Ve9Y8iFsVMvefDgWOW7TW06JOUYBWdxck9H02NjZqUW4e7/s2VfP3sc6FpzDCaLjHwvcajUZVWojXCklrLLhH2zzbFIt50kXQ6/XU7/cr8sqcfs9ru93W/Px8lcrittBF4WKUsY0+ln1uqhvBceA69nMRo/3xPhYR6K6INRp8rsUhCmas62CxgqlHLJhqQS3ujuL16vtw3bnNsT6D58H3YioMd36hCOExogjo9vF+FFncFoo43DHCL48HRYlEIpFINOP1a9v6L//u2zXzzvdlmkPiQLzkG79c//WZPX3w4b9x2E1JJC46fHRrRd/5+O/T4B3vnsrv2daZDzn/oFXZhJPiAHO+SURMKlh8UNI+wiLtkQMX6Ivig+Hopu3ltFqTqDiP3kXe3O5er6f5+XnNz8/XIqdra2taXV2tBIW1tbUaKdre3q6i29yZgDUh3D63MeaBx1x2Hs+aAZHAM+rP6GzMRbfDIe5eYNC9YbDeQYyYxwr+bKeLTNKOTxGEY8B5blojrE3huhQksVxv0e7u9dXv92vzzRQK19pg7QT3gYUZY+0GimOxzV5v7B9dDlFYi84Et40uCM+x2xbTaeJzwjXkvnBHijh2XANN6y/OEUVEttPrMW7d2FQTgykfLMLptUJnj+/t54X3iaKdr0dnVCKRSCT2Y7Vsq3zTOzQZZX584mBM/vk9utPL2/qsV3/HYTclkbio8Nzj1+vhv/cMFa//Z02Wlw+7OY2YCoeCpBp5t0Ag6UAyRkIQLeq0KjO/3dFLk3RGyB2JdwTbqRckyCShjlTbLu2Ui8FgoIWFBfX7fUmq3A6j0ahKeTh16lRlsycpck0FkzzWG2BaBgmmVLfLR+JE6zYj44wmxxoOPp8ijseF79sp4fdIJtl2fsaaD7EugMfBBJ1iA1MH/C9rPUTxKOb5k0Q7yu51EAUpjv3c3Jy63a6Gw6G63W413xxf7hpi8uy2NQliHk+DBQB5POsAGFzf8VloKlRJNwprEFDsmEwm1fry76wNwfnysUydiFs98pmOboym63m9eD1xTXoXEAoGTJnxs+1rMR2C4+J7c4yjoMBnkd8XiUQikUgkzh79l71BN3zgc/RrX3iNvnn+o+q32ofdpERiKrFdTvRby9dou2zpea97hG545nSnk02NoMBosKOSJGAmgi6Qx4h3tLmz5oF/5zaT3O6P1yOZlfbIz2QyqeodeMvAhYWF6jq2hi8sLOiKK67QVVddpbm5ucpav7KyouPHj+sTn/iEbr311qqGg63c29vblYPBYoK36YtCCckpCVIcixj9NvGlK8JE2ueYaHrsTBQZqfX53JWCc+j7+RiPI+skmABym0YT0Y2Njdr2nFEc8Pnu9/b2ds29wVoRFgXsdmBKAotq9vv9ioz7Gi62ORwOtbCwUIkJFLpYf4Dk3OuFzg+fE9vv993eaOX3MU7Z4Frnv1G4oNPEwhHdF6yHwe0jTaTpQGHNCbsShsOh5ufna84WzvdBThY6N9ge1ndg+pKkqiiqx433sOOkyZnQ5EBquhdrKzDtKDo1EolEIpFInB0mb3+PXnrva3Tl+0/lNpKJxAG4ZTLWS77gXpqsruoG/eNhN+eMmBpBwXn1zMU2aTNpsKBgom1yFfP5uX2iCV7MQ2ftAUYmTT59jN+zA2F+fl5LS0sVCZF2CNn8/Lzuete76tprr9VwONRkMtHKyopGo5GWl5f1iU98QsePH9d4PNb29nbliDARZa0AkyESZalO2KU9IsqUDDoSaAH3+4wqM7Ls/nrc/CJZ9vkmanFrPRNPukZibYAYyffYc4vOaOd330iSHamOu3nYRm+xxjUxTEhdA8LpC91ut5aKYTFnMBjUXCisS+D2rq6uanl5WaPRqHZ9E3WTb4sBJOueS4+bazGQCHvrU84lyTodKjHdhS4ICg0sxOi+snaC54f1RDgP3umi1+tV55LEc658HaZg0AXBtkWngI+3w8ftio4hixN0zLDwJ8HvF89pr9erCnv6Xq5fQpEykUgkEvtxn9f9B93t2WuSPnjYTUlcZPiVr/pKPf2nBnrfl/zmYTclkTh0rEzW9PWP+27Nntotfj+ZaDL6wOE26nZgagQF/6FPC7XB/O1IXqR6pDbWY2ARONqxmdtu4saIpKP1jqY7h77X69XaNzs7q16vp2uuuUZHjhxRv9/XzMyMlpeXtba2puXlZR0/flwnTpyoRd5Zr4Bb9zHFwTZ0EkimJMSfYxE/ugCkej0GEn4TPNr0KQbwfEbRCebp08FAgksBhdZ8ugdMrDmvTGFhhJ5FIOO2h/6cohLTajwOXm8cT35m0kwBa2tra1+9C1ryPVYk+FxL/pxz57Zx/Jx2wzFmTQI7Y7irhsfNn3MOKJjx2hZILDIQjPrbncOdF2JKBtsb14qFOtYl4XprqufBmhcWoChM0EFA51J0LbHGA9M16OiheyT2JXFhMNnY1Ff82g/riY97lZ5xNAlKIjHtGC93tf2+dx52MxIXIbbf90Fd/ZIH6rM/+L3Ve1/5qDfpuddOfzQ2kTgbvGJ1qGe+9Ftr7xXb0vVveYu2d13yFxumQlCgzTta6UkeWFDNiLUC4jF8zz9HxwIt/yQhJl6Sqlx6RmVNAAeDga655hotLCxUW1Z6y8lTp07p1ltvrW0BaaLnNASTvJgfzj7EaHMT8XNEOebCM00hXp/jYXcBx6QpTz+KCUSTmCDtCQq0+1swsZjgsWbBQ85xTK8gWecWkHSiUDDxuojCSkwPcLpDLDbo9cPtIR3ZtlhAQSGKEG5jdEQ4ks/5YZTe/WD9BM4/HSV0MHA+LeawhgRdA7b587q+hqSKhMfUD84HnzGnQLAfnIOYCuH54rPtdlGEcrssgEWnA9tBBxOfAQoKFm5Y2DGus8QFxGRbd/3J1+oVD75fCgqJxJTjhaeu0uynMgc+ccfRf/kbdP3L935/5dyDdcWjVs7qmv+6/2F9VX//FueJxNnihaeu0sc3jp71dX7v/V+g639kf02EsuHYiwVTKShIqpEtkwluAce8ccJk0kUXTeToYjCBiDZ2E4rJZKLxeFzbOq/f79dqCkh7Oz0cOXJE1157rebn5ysxYTwea3V1tdoi8tSpUxU5Min07yakJrq24jO1wUSUEV3+a6LbFKn3mEWRwu1gSgTJPF0cjCI3zR+jy5y/KHzQKUIiaxLndBYWHWTEuNVqVWSfaTEszOdCfkx34Xpx7QRHwm2ndz0FF2Bk/QPPw8bGhk6dOlWJCY6gj0ajmtPA2x1Ke4U5uUOBr+c1Z+s9d/2g64EiEck5Cwt6fC1Ucc2UZVmrDeD0ANaC4BaJdMV43fT7/ZoIE90FkeS7P00pLK1Wq5YS4fd477W1NZ08ebISxbzFqp8Z1zqJO3TwXk7R8Bh57fBZcPuYqpEuhcPFpMxxTySmHb/5A4/R3f9iuguFJS4u3OOHX6e//+HuWV3jpT/0RD3qP/2iJGmmmIrN7BIXGbbL5pTX3/yBx2juL87eQXNnXXqurqkQFKR6RJdV4FmIkdvIMQIebfC0sJPU0gpuItbpdCTtbTVJwUHaIyR+3wJDt9vV4uKi7na3u+k+97mP5ufnq+uY7Hz605/WZz7zGZ04cUInTpyoiiLSEUHBZGZmphITZmdnq3xu2+pJHuN1PF6MtlKEof2eQgLdD7EWA3PpaeEnoTUYaWaUPBbXZGQ85vm7b55zR5e5k4Qj5F4nJvQmsk2R8uiuMDH2nK6trdWKDfr6TBuwYDEej3XLLbfolltuqUQF133wvZyf7/Xr40yeTZYpcrDuhO/tubGrg04dzm3TdodeU7HegD+fmZmppUBYOPDY8RoW1Pr9fkXO3UY6Nzwnfp/bVPpzihFeDxQJPY/r6+uVqOc1YPGH68PnRkcK16zTlFibIqbLuH6Hx8KCQtZROBwc+fZl3e/xT9E/PfP5h92URCKRSFxEuO5X36HHvPzrJEkPeMX79RNXvuuQW5S4mPBl73ys+k9u/qz9yXdc1C6C84mpEBRMPvi7tBfNZn51U5TcpJRRexZUjIKCpCpKzXuRSDN1gkX1HCXt9Xq69tprdd111+nKK69Ut9utIr2rq6u6+eabdcstt+j48eNV4b5o+WbNAhNdR7YZUY6594w8U+iIOw2QRDVFWhmVZdQ8CgYxSh/BeYliBceX0XU6Qjh3TdF4WvotKLntJslxbBklpyjiIonuCwt9Mnef+fquMTAej7W8vKxTp05pdXW1RkInk0lF8C1WeD04+k8XAesJWEA6KGJO4SzWLaCAEh0ZLOpp8cXjzX5xtw3Pndem0z88bp4jt51riYKRn8MmdwLXh9vin5nmsLGxUTlRfF7TfNPhwOeEKRr8DvG4MA0kpszEVIzEhcX2jTfpur9c0r0Xn6I3Pfl/aNg6u4hVIpFIJC4PTJaXNVleliT9yf/8Ur30qodpc7HU+57wy4fcssQ04FdOXKdf+K3HHvj50ge21f6XN1zAFl0amBpBgdZsRhdp1Y/kmGSVpDEWWouCgollJHAxT50pBUy7mJub0+Lioq655hpdeeWVWlhYqKLYo9Goqptw/PhxnTx5UsvLy9XuArH+AdM9XKPBxIhbEjJiejoxIdYL4DhFeHw4/k22+hg1J6nlnDBFg3Z4tp2uCIs9dE+w1oCkiujyxWtxBwqmf7CdFgqaovmskeFrO4Ifa26srq5WYoJdIya4HgO7SHj99fX1fSkmdn9EZwKPIRFvGk+OBQUxEnR/7jQBvheJeXQOOHXDaQI8xmAbvE79rLpNdKKwtkdMyeC68Jg5dSm6L9zmWJDS42QXEXfxsCBlxwt3FuFc8rnJlIfDw/a73qfrf+7jespXPlLPvvbPde92/7CblEgkJI0mG3rWpx+iuRMXZ/GwxOWDY7+2k5Ize+fr9P0Pf6B+5OpX69rZ4SG3KnEQXr+2rd++5YvP6z1e+c+fpxt++rXn9R6XI6ZCUJD2it6RYLPSPkmnCQSJOcmZCQtTF0jCvP+8tBelphvCsOhgQuPrD4dD3eUud6l2duh2u1XdhJMnT+qmm26q3AknTpzQqVOnqq0nKVA4Ym3i1u12q/avrq5qdXW1lvLBFAKpXoywSQBwvyMJJHkzgYquBPaZEXuPmeeBc0fBwONscYTt4K4WsQgkK+1TIKJTxdeg9T32l+dQmDLZt1Dj+gV2KHhcTWTtFLFQtLq6qpWVFY3H46pOgaQqiu/od7TQc9xY64ERdpJur1uLCvw9Cmq+Jkl3dIbQEeB7eHtLCzV2MPhejPB7m1TOPUWbpnmgAMB+xC0ZfQ53oHC7LNQxXcPnMH2BqTtOU7Kg4GeC87O5uanRaFRt7WpXBNe5+5E4PExGI934YOkH//px+pPP/mPNFQcXhE0kEucf2+VEb9+Y0XsfMJEm7zjs5iQStwlbH/+E3v9F0q+9/Qv1jGPvUEut/P/kELFZbmui/SmlT3jjk3T3x7/9vN77Br35vF7/csXUCAokou12u1awzeQ/RiKZp09ngivZ+3q+vq/d7/dr1vhYtM8RTtr0t7e3NRgMND8/r2PHjumud72rrrnmGg0GA21sbGh5eVm33HKLPvOZz+jGG2/UjTfeqE984hM6efKkVldXJamWgmCwj7Ozs1Xu+Orq6j7i5XaYpEeSGIkQCXmM7tMJwDH05yTBFByiiONzfU+/z0KBrIcxGo1qaROxmCAFDo+TxQnfx2SdhQdpi2e6h+fZ93EaglMOvO0nx44F/iw+uLCm01dcA8GCBVMCJpNJJUI40j47O1sTfyh2MJWBa44Eu0k8Y+SfxQ85ZnQEeJzpQIj9tJOm2+1qOBxWKTi8BtvN6/kzPlNMI7CgwDZSBLTIxLbxeWZdE6eWtNvtfePgopqufSKpEhNmZ2c1Go0qwc5CYKwjwrWcOHy0HjfW53/HU/WOH8qaConEYeLz3/QfdN133yJNbjrspiQStxuv/fLr9PVz12v9s++kv/rdXz/s5lyWuGl7Vd/+Zd+iYnW877N7jj+i/YnViYsBZxQUiqL4dUlfLemmsiw/b/e9o5JeIul6SR+W9E1lWR7f/ezZkp4kaVvSD5Rl+aoz3YMRcBIM/x6JjLS30wLaKWkvP512ZdvqTUAsWLign0mptEdWSOxsvR4MBjp27Jjudre76YorrlCn01FZllVuvYv1nThxQjfddJOWl5cra7xJvfvBFA2LCS4QyLz8CJJnpiH4M4+nP2fahj+zGMGosgkVbfEWVlggMYoWtqjTJk5XgAkxBQDa0j0/TGFg22MhSEfWmQoSdwZhzQU7XXgNplqwdkEcYxPjkydP1iLZTVt8sv6CXS+RSNPmz3oL7KOkfX2k4yCmkMTtG7m+WKeCtTW8rrjO6WxgwdKmwoqcZ/fR64hOBI8zU45iG5kCQhHR40FHg9Mp3Da6JqJTxGtCUjXWRVFUz/14PK7EBNYy4dqLjqXDxoX4Lp5WbN9yq+7yZ7fo82aeojf/wPPUKeYOu0mJxGWJ9Y1Zbd94+YoJl/P38KWA7ZtvkSS119Z1/+c8Rb/0tF/UQ7rT8//8pYjRZEMP+IWnaXZXPyi2pas//EaVgcclLm7cFofCCyX9oqTfxHvPkvTqsiyfUxTFs3Z/f2ZRFJ8r6fGS7iPpTpL+qiiKG8qyPK3gZEJCpwEt7iRTTBkwonMhOhNMXp0+IakiFo4a0zrta5EMdbtdLS0t6aqrrtLVV1+txcXFijCvra3p+PHjVZrDyZMndeLEiZqV2qkKsV8WUJjT7W0Q3R+CQgmFg6Zj4xgzRz5Gy03gWCyQufAmqHRX+FoeMxNlRq89Pu4XhZQmt0m0nLM+g1+OZJMAcyxYJJIiCPst7UXxiVjLwK4Kuw3iDgqs9eF7cPtO1oKgo8T3thjBMfDa5BaP7leTyMSUFro6SNQpQkiq7sl+OsXFwhtFEp7L8eGacvvYD4oJ7Lv7xNoPLlzJnUFYaNRjwJ1LmNbENBuuU/bD65FiQlzXce1NEV6o8/xdPM3Yfud7ddePLejfPfqr1Z3d1EOPvF/ft/Sxw25WInHZ4Cc+cx+V773s889fqMv4e/hSwfbx47r6f75WT/7Sb9VP/Ks/1TcNTx52ky4pPOmj/0ar2ztBn9FWW3d5/juqQpmScqeESxBnlOXKsvw7SbeGtx8r6UW7P79I0tfi/ReXZbleluW/SPqApAfcpoYEcsY/5GMuffwjP6Y80EptgtTtdtXv99Vut6v8aZMVRozpajAhmpmZ0WAw0HXXXac73elOOnr0qAaDgTY3N7WysqJbbrlFH/3oR3XjjTdW9RNYvM+2d/Y1OijoTjBxpUPCpJ0pEzHiS+JNUYVknVtxOjJr8ub7mrCTSPpeMeLN4zc3N2sE38TNOyLQ6h5JOKPP7kuMDpus06LutnOd0DVAMklLvdeEtxT0GLKOwmg0qlwmFhR8L5Jan+NCml5bvmZZltW57hfTX9wHixerq6vVWiChJujaocvCv8daFZF4u10WLywkdTod9Xq9fdF/ikfR1cDaD07T8PW49lh/wW6BWOvE1+FapaPE4872e1w559FxJO2ku6yurlZpK17v/M6hODdt9RMu1HfxNGP71CmNv/RGHX/IrXrBC75GJyfj2mtlsnbYTUwkLkmcnIz1mh99iK7/sdcddlMOFfk9fGnhzt/wTv3nP/nm6v+QxO3DdjnZ9//wTdur+vTXDnT8Ibfq+ENu1fqXfromJiQuTdzRGgpXl2X5KUkqy/JTRVFctfv+dZJej+M+vvveGWFS7zQCwn/cM5Iu7RHTTqejVqtVkThbuf1vWZZVtXcTFW/j2Grtbdtn4m9yJ+3kXs/Pz+uqq67Stddeq6uuukrD4bBWhPEzn/mMPv3pT+vWW2/VzTffrJtuuqnKz7Y13gXkTHApkmxvb2s8HlcE0ikWjMzOzs6q3+9XEXXWDqAoQOJpgs9jGD2X6tFmjw2L3K2trVWuA6ZD0CnCOg0uZOmI88rKSuVMIMH3vJpgNxE4ihgmqSzE6HZsb2/Xdu1weyNxNnl13QRb+rkjgMn4+vp6tUXkiRMn9okJFLcsoHh3Aka+KQx5Tbbb7WpHD7eTVny/KMB4zlkTILopDF8rbsvJlCG7ElizwFtEUiCJjhT2nXPva9L1Q3DOWVOD65VrwELG+vp69Ux3Oh0NBoPquaZw4bXHNI5Wa2d7V8/NeDzWrbfequXl5Zoo5ucrPk8XCc75d/HFgmt/6R/1zS96dO29yfV30p+/8ncOqUWJxKWJf9lc0fc/8BvUu/ktGVlsxmX7PXwp4F4/8jZ98/+z83/JD7zptXpUP3cvua34uVs/W3/7JXfe9/728RsPoTWJw8S5LsrY5A9u/P+nKIonS3qyJM3Pz9dcBiTHJmO0sptMx0i2STur5Et7ZMrEwiSXDgbmV7MKv1Md7nznO2thYaG6vh0IFhFOnDihm2++WbfccouWl5e1trZWFeMjgTRxcb9M6FzPgdF2/+t+xfGR1CgmHJT/bRcELf90QLiQZcyzp82fKQhSXdjgLhVra2s6efJkNc4ea14j9pEgCacLgnPLqDJFJoo1HmPXNHA7SeY9L+6P6yZYFOKuEz7G9zKxtQjhaDtrVLDgqIk7HQom9yw22dRHiigkwJ5rj5mdAiT1Mb3E7SShtqDCfvLZ8niyoGen06nuz9ofFApYz4BpGAYFQx/jOfMa9PaV3PLR92LBRa8dP3etVqsm1EQHUEyR8XxMYbrD7cUd+i7u6uLZmrHc3ND28Y3ae62NDX3Rj37vIbUokbg00dqSlm58vXTxCK3Tgkv+e/hSwGRtTdrd9eonf+w79GO9QqfuLr33Sb98yC2bLnzBm79JrZcfq73XOTnR4PgbDqlFiWnCHRUUbiyK4tpdJfZaSa7Q83FJd8Fxd5b0yaYLlGX5AkkvkKSrr766jHZj2qnpTiAJjUUC+bPJo6OytHe7Qn8s1hat4d4RYmlpSUtLSxV5Mtk5ceJEtTWk/zUB9f1NbEyGYkSXOfMkgCZltPFHgsPINIUAE6SYVsCosK/JiLFJOfPb3U5pj6yTZDoSbIJuYs2dEJq2/YyRb1rq3SbPvdcCCwDGIpBGTI+hNV9SbStSigoky05xcB9iAVBG0enuYEoFx5QCGC35PNeCEgUJEnETXdaFiM+D1318bggKNHRAuG18Bn28ny23gevOffHaYp/9ebw35zK6ATxurJHBmg6SaltIMn3E7aY7ZTKZVGKCU2885k6zaUp1aEormlKc0+/iheLoRc0YJqurOvrrl7clO5FIXHDk9/AlgoXf2zGUXHHfz9GXPeixkqTvv9vf6BuGpy5YGx7/L1+uG0fzF+x+txXlK4/l/6+JA3FHBYU/lvRtkp6z++8f4f3fLYrif2inAM29JL3xtlyQdRMY2Y1/0NNibuLA/GypHhGlpXxtba2qaeBIsVMIVlZWqgirbfGDwUCLi4s6evRolVbh9ISVlRXdeOONlZhw880369SpU7Wq8Y5+dzqdWkFI1iyIhNefk5BRGPDnkmpF75qcBXYF0N7uvvsYR4Obds2w0BLTEihSWDRxMTwLLd7dIua8R4LrPtCR4PFzu5kr77XCuhdxHfnFSLz72+12q50+PEbeetBEPO7q4HZHAmyCHXcqYKoDXSMWE5h2YCLunH6LCo6yx20MfS2mL9CJYTLu9w2mj1gQ8xplNN/38lxEIcv9ciFTvxdTaZrmmmk1FIzcVheStDAxmUyqVBS3z0UVvUb8OceUY7a2tqYTJ05U59j1EF08Hh+uMTqBphjn/Ls4kUgkErcL+T18iWHy9veo/W93fn76r3+TvvgRz71g9z75lKvV/qd3X7D73VZcqY8cdhMSU4zbsm3k70l6mKQriqL4uKSf0M6X5kuLoniSpI9KepwklWX5zqIoXirpXZK2JH1feRuq2ZKwMleeBemYnrC5uVmLLpvYslgcSZFdBS50J6m2tZzv5+glLeDD4VDD4VBFUVR57TMzM/rMZz6jW265RSdPntTJkyd1/Pjxqligo6pzc3Pq9/vq9/vq9Xq12gJ0Q5CEMVJvwkwC7PN9L6ZyeHtKpoJYMHCRQY+3tFfYj2TTxE7a2wnAbdva2tLc3FyNZNmK7ii1XRoududreB5Z1yJa46X9EWqSc6kuFlHgiAU9vX5cc8HEczgcVtZ+EnaT+bW1NZ06dUrLy8v7ovxsiwULv09RhO01XAOj0+nUUiW8Lp2G43uyAKfrg9je7/aQDHt83YYI34+FRulkcWoLhaUo1qysrFTj4fFjbQrPGV0D0R0U00G8s4P7QjHOBSK73W4tJYmpEN1ud58AZ6HHqQ6rq6u1XU08dkyF4pj5e6hpfR4mLsR3cSKRSCQORn4PX3747O9+u57Y/ooLdr/J6D0X7F6JxLnCGQWFsiy/+YCPHn7A8f9N0n+7vQ0xmTVx4MvE2lHwSLYk7Yuioj1VZJ656SykZyJkUjE7O6v5+XktLS1pfn5+H0nZ3t7WzTffrFtvvbVKdWiKfDqyamLFKDYj0TG1gOkdJMkmOj6XIopJpYUHFtYz4WOeve/DNAOmkbiuhMdQ0r5oLgUDj6PTHPwZnRWxuCAJOV0XUUwgiXe7m+z5/txE3ecy7YRClNvinSNGo5FWVlZ06tSpfQUoSYQjYpoGo++eQxcFlfZIM4s4Ml3Aa5DCj2tRNIHrKrp6KLL5vm6T55jFSrk2eA2Lbh57SZU4R1cE05D8zDAFhHPLlAPfh/UmnOrgMfMz7Oef4las0+HnZGVlZd89OW8ePwpcFNGmCRfquziRSCQSzcjv4csP5eaGys2NMx+YSFzGONdFGe8wTMhMQkgATB5MqEiGfB4j+yRU/pzk3STGx9OqbQI/Pz+vwWBQq3pvC713dzh+/LhOnjyp5eVlbW5u1rYQbLVaNQLbRKqi7dtuCqlO6Ay6DWztJpH1ebFGA8clkqQ4Zh5b2t99XQoKFHZMRl1vgHUfeDydCk2k121mm9g33pdjEl0LsSjhmWomcLtGb/XpObTA5RQBjhXbwfl1m30+7+02mqDbNUNXA8eaKQY+n2PA+zL1h2PNdkUnh8UEzyH7HV1DXuOx9obP59i6rWyXnx//HNcUr2MxivUZYipITNGw2GHBznMZRbQoKvDeXJexPkcikUgkEolEIpGoYyoEBVqWWfhN0r6q+H7fkUu7Bkg+TVZItlmM0J9FImUSNDc3pyNHjqjf79dyy7e2drabdKrDLbfcopWVFa2vr6soin1bF7IYoUnZ6fLs3YaDChbGXHWSYlrHmVNPO3e0dje9R+IbBRiSMZO3mZmZWrpAURSVrd9k0NciCfXcWtjhMSTBTAnx/Me2GD6f2wnamdDpdKrUEToFRqORNjc3tby8XBVitG3fYBFBr7lYE4JODwoDrNvAdcfUHrs6mK7i+8QCi7GIIEWqmDpD8m4xgWTcKTGs5eA15Ei/00YsslhA8rW9xpg6wTFhGyik+RyPldex58wum+3t7ar+gdNoYtFFOnokVfPoXR2i04cuE7p7ojsjBYVEIpFIJBKJROL0mApBQVJF4kxYpL295V1/wH/wu6YBI/YUB0yoaPdncT0XaYxOCBPOwWCg+fn5Kud9dna2Ip8nT57UjTfeWBVhdLt7vV5VpE6q1ymwmOFo6WQyqUgkEaP4HI/Nzc19Vny/72Pj9ocUEhhVb4oMxzoE/syI7fJ17M7wWPd6vX0V8inesP1NAsfs7KxWV1dr2wLyfkxVYH9MCr0eJFU5+L1er5pL1+CwK2B7e1vHjx+vEVC3w222EEQyH10CMec+1hpggUmvJYsZTuvh9RnVn0wmtZ0O7M7xGqIzgWki3IaULh+mhlDgYr/KsqxEothGP2NcU74u28FtSCl80HlEUcHPDYWPmJJkwYK1KlxjQVKVsuI0EguS0V1DoYVikMeKrqFEIpFIJBKJRCLRjKkQFJhLbVLDIowmHYxO2plg8hlt7ibAzKPmdoIkDyZbc3Nz6na71RaRJm4ugnjy5EmdOHFCJ06c0K233lrlczdV43chPRMpEzPDNRB8rKR9pJVRaF7LZJXOipimwPQRkqama3LcmULS5Gbg7gIukLe+vi5JNUEjOhJIWjlWvL+kWuSeTgY6JWhxN+HzGvB9XMzPDgVfwyTZ23t6i8vl5eVqbFlIMI4R2+9+ur0cN5Jik3PWWvB6OKgmgyP/7r+FJYtRrl3RZNmneOF2cF7czlhXIBaqtDuBIp3PZTqJa1QURVHVKaG4QjGJayCuFbqRPGaxCKPXrtcDt5N06gp3gYjiD8/3vDYVZuSzkEgkEolEIpFIJJoxFYKCpBqRlvaK0rEmgcm7yToJX6xyb8JsQmLCIu1FzEnYHAH2rgwkOyZVJ0+e1KlTp6r97KX99RykPXeC22jLOO3ZJnssLEjS7/ubXDKaHNMO6AiIEX0Wt3RfozWeZJkRdgoQMe/c4+3dJuLWlo6UO8Ls6zla7/66rSZ43rqTwomP47W5ZliXoizLai798jX8shuBggLdEFK9OKTHOta1oIOBkXdG7KV6LQumFzCVgWPLn6O45L67XST6TCeIrpM4b3Q1eCy5vWd0//h8igsshGjnAtNUeC3WC+H6ZBFJijVcP5wXOin4rNGJFItPsv8cA459nNv4HZFIJBKJRCKRSCT2YyoEBUYsTTSYyy3tER6nFVgsYDSUJIlV4dfX12tb4NEub9LliHa/368q8vvaMzMz1faQFhQk1YirSSsFAwsBFhRIcJqipnYoRDGBUXD213UkfKzfZwX8uFVgtJeTSDXll8etI+kQcIFK5tz7PAopjBTHooy24W9vb1c7LTjtwMfH3SLYPotLPsc7Kthhwl0oTGrtWHH7VldXa3UT7GyhYyEWfvS/TKuhAMBaHXamcCtLHs/r+pyYxx/TUNx3CmhMcfBYRIJOV4Ij9HT+WKCJu6JQlPHvrLdhF453QbGwQ3HCBTuZVuExjukeXLsUtVxHgeMW61GwXyyKSkHHY+Bn1n0ymDKUSCQSiUQikUgkmjE1goLznEniTKIoJszNzWl1dVXHjx+vosqS9hElR55NFn195mz7ut1ut6qZwEJwPqYoCh0/frzmTmBEN0ZQ3R4TXUejbSkniTbJseMhEmdfx2TJn8edL1jF32Owurqq0WhUHd9qtSr7uGEiyV0GIlgo0PNje7kkDQaDqm9lWVbE0nUKGPm29Z/Rc2+d6NQDrwmDYpD7yRx7j53nstfrVYUhTUKdBuC2raysVDsseEw8buPxuLZbBd0qbIevbRLt9eUUC4+TBRgKChZrfF1v68nChhTXSKybRAa3wZ8xzcNCgteh++Ex9Ny1Wq1qPJxO5LlyG1iDg86EjY0NLS8v11KTSOBZA8HvU3jwy4UgSfxZU4KpJJ7/JqGGz5nnlg4e1mKgs6kp1SeRSCQSiUQikUg0Y2oEBRLhSKqdo20C4e3gTLKYM27iZuJvEhTrA5i8dToddbvdyvlAQYBW/PF4XJFhFl+kOOG+xHxzf27iZlIV0xF8HEk+xQTXXfA1YgE/j6EJq4v20cbP1AcfT0s7wag8d8tg5f5Iflls0O2lg8S1LDyGJrA+L6amcFwkVW4TXtMEkg4WRrlNuL0eLLQ4am4S7LGIkXsKVUxVMZHe2Nio5oLiSTyPKRR0izSlNrC+htcKnxc+M3SmRPeLo/yes1iXgfUVYm0Jj0PTs0oBgik5rFPi8WGaDp0BXrPsO1M3/PNBrg+LB55XrkmLDkyJYe0Fri8+R6xtkuJCIpFIJBKJRCJxekyNoOA/6KMNXKoXLbRNnbndMXec6QEkV5EgmIBarIipEyzkx/v5fdql+X7MZzfR9H0c2SbJM2Fi4UET+Cg6ELShk8DS3m7EnHmf47HhfHg8mOdOAs3rsIifo/6sgeB5cR+i48DnkMB6rqKrJBJTknGmRjAKTkHGPzMVhKTf148FPD2fBtMdOA4cD4ooTfPBfjSldMQ59dw0pY/Q1ePxsvjD+hI838dzrfF4ixQHiR0UvCyqcP021fzgM+Zx9jlcx547/x5raLAWAsUECm7RoRGfV84lBSCmtKSgkEgkEolEIpFIHIypERSa/qCX9giHiZkL6pGcsVo+c7lp15bqlnXudW9rNK3hJke+HgvLxbQJ/8sIKyOizjd39NzkjWkOJkLcFjHm58f7ebw8hh4LRnhj7ntTPYKYl2/Rw9FdtiVu5ejrReLOOhWeK6eeRKI+Go1qufR0TVAMIunnMSSQ7JPHh5X/uTPFQRX8m4plOnLdNMcksdFi75QIuhiiaBLFHNZRcD8YqacbJkbd3Xev27gW6IDhOqZw5nN4v1jrgc4Ap1Jwp5GYsmCwICLTdigoMhUoIhaVjOkKdF64vobb57mNIkHTtRKJRCKRSCQSicSZMTWCAiu60zrNLQqdY+/cfUYfpf1E3YjpDiZTc3NzVfE+F45zlNZtcrssYvi+FhZcBNDkhU6J6IZwfrjrC6ytrVWuBbfDIIlnmgYjrxsbG/u20oyFG1nsjvZ23yOmPUTnAq/HrRxJ4Gk9X1lZqa4fI/s+h6kZp06dqooWenycFhG3FZRUCT8xlcQCB4UKOibsSvAck9hznGirjwUkOTYmqUVRqNPpqNPp7Os32+BaEr4+0w8oJvneMbpOwu52s4aIx8Hj57XoZ8rXphA0MzNTGxOnyPjFNvFZMvnnVqicL7aZoEjgdnANctzi+NDhQmGQa7cpdYKpQn4/pvLQ4RCvnUgkEolEIpFIJA7GVAgKk8mkIuxMeTCpK4pCa2trVR0DE5NoJaeDgBH8WIiw0+lUuzq4eB/3vGeElAXiIhmy64D1H1gXIUZFSWxHo1HVRtYUcL8dMfaYmOA54kv7uY+1kyIKCozgs7CeCZbvGS3rJqwUEzg/7JfJGyPebEMs4kfxgzn1JvssGBgt8pFsek78s4tqmsx7V4cYNec6s9ARUxy8nhhBj+4XijQUKXi/ps/iHPo+Lk7otd5EmDnGPn80GlX3ZA0EjhF3fvBaZIqQ4fUdBQW33WPEVJ0mYh77HNMo6BigiMP7xfUe02g8F05fYr0KbjvJOWZ7msQEtj2FhUQikUgkEolEohlTIyi4qGIkeiZ1JvsmCCzaZmIRo8n+2ddhhXjvBGD3QkwVoIhAC79hMsTCbyYwzEGnZZ/RYGlvVwK7FEzUfH8SGVraWXPBv0fCzHGIhDhG3N0fRuBJ1ui64Jx5XiiiUFCgi8BjxbGmeMPz4xaUrJUQSR/HyGPMegCsz0CyGgkqI/gxSs5aEB7j6IrwtUh0Y40MtjcKOE698fqMzhReP64Rpj6wn/EeJNRe17FYI8UVEn+jqW5Dk2jQVIuA4+Drcj6aHAJMZfB7Mc2B8+n3D6qbwDniePE6KSAkEolEIpFIJBK3DVMjKHjbPEd7SWBjIT2SfRP9JqJDocFkZnZ2tnIoWFAw+eM1o5hAMiTtWcxNQJgu4cgywXQMR4Lb7ba63a663W51HAkpRYyY00+CZXLun5kewO03IwFjG6Po4DEgeY1iDUkznQbsCwsVksjGsY4FDv2KrggTY44Bx4GOCW5dyXVgEcnXM5GPogHJbkyBiGIC2xH7FAkx7+3+xG0ODxKF6F5h9J5Emus93iOmhHCd+TOOSSTXXAtuF9sb61zwxbVMAcCgAOjjKQgw9aFp7UqqUjBYB6KpZgiFwygyJRKJRCKRSCQSiduGqREUHPWVtI9UMVWA1nhGKSkm8LomsE5vGA6HuuKKKzQ/P19Fgl3Ekc4CE2WTQ6keBW232xVRcQoDiaS0V7shktuy3Nl6stvt1qLx7LNJKKOnJkgeJ1rim8STJos3XQ10EBBNJN9E2T/TwcBxp/jCyLjvQYLv6zH1wW4NCh4xeux0Eb8s6EjaN59++XxGwk2cKSzROeExcq0BEnwW/qOQ4rZYOIoReB8TyTuLGfJfuif8PotBeuxdJ8AEmefxZ/fdaQ7sp9M73Lfoqohj6fbEaH9cSwRFjphiQxHB15NUE8WcbsI2+JwmEYP1Eii+RbcOj0kkEolEIpFIJBK3DVMhKEiqkRjml29vb1e1E7hzAol3zLuWVKVGmJg7v7rf72t+fl6dTqdWN4EEkDn+JJExqh2dCU11BqKjwOe32211Op1KHGA9iJi2wPNi4Tvfj8SepCgWsmOUmu97rBlhd7HFg/LMGe2noOD5ZKE+z53HKgoldJDEwpCMxJMA08Xg9zc3N7W8vFwThDx2XBsxCs+UFdaukFS5P2ItCI+BwXUZxQcfG/vJWhFOe/HajTUT6CowsY9E3OPg61PQ4dqmKME12m63qxoOUUCK4oDHzT/HzyNYb4HiHAWv6Gjgzhnc7SSmRvHf+NycyUXB/sRrpmshkUgkEolEIpE4GFMjKPAPeRIME7wYjWdUNaYGkACbvM/NzWkwGKjf76vdblekzASXBeVi/jvJI9MyTPxicUjCv1P0mJ2drbZP9DHRYUCHAsmp29FULyG6G6Jjo6nAHt0d8doUGCKhbLKzR6JPIsz5jDn7JL1RTIi58by/r2nyG+eU80fhw5FrFijkHDRF2rm+DiKzXD8UBNh+9pUpKZ5rjjvPpXPiIKGEvzc5VCwARHHIfaCwEddmrCfB+eY1iJjmEMcv3iM+27H+R3y2iCh0Nc2T5ygKCYlEIpFIJBKJROKOoXWmA4qi+PWiKG4qiuKf8d7PFkXxnqIo3l4UxcuLoljCZ88uiuIDRVG8tyiKr7gtjWiKAvqPf9ZNiHUSIuFtitTSDdDtdtXr9dRqtaq6DBYrYk4/CwZG8sE8dAoSTSTY//pzkzZb+6O7oIk481/3rUnAiMQvEtRYcyAKE0wRiPUTKHY0EcA45iRydFMw8u/PHbmOtnwKAE2RZbfPxRdHo5FWV1druxbE86ODgqkGsdZCnItIUt1+XtvXiKkeXBtNgkIUM6JQ4T5xrTVF2dk+/hxrBsT5s2Mjik5cA3HemkSl+Dmfh6bnnGMXaxrEuhNNa+ugdvDenKOm55lj1zSO04IL8V2cSCQSiYOR38OJRCKxH2cUFCS9UNKjwnt/KenzyrK8r6T3SXq2JBVF8bmSHi/pPrvnPL8oihndTpAEuXYCiSFz9038YzTX15mdnVWv11O/369y1ctyJw+fL+bPs56CrxNJlqPhJN+xFgGxtbVVuRvsTohtJmlzUUnDFnY6KA6KCvt9EuiY728BwUTVfSZp5ThH8SBa8iP5chtM7H3tpigzt19sIrokmh4jOh5Go5HG43FVa6NpC9Lo3mD0u4mwk5g2pTKQALuPLATodAo6RTz3Ju6sccBio74/0zDshonOAs43P7NQEQUjOg54bKfTqbZQPYiER3fCQThITGhaI3QH+RyKLXQAnUm4MCzaUPijmye2bxrFgwPwQl3g7+JEIpFI1PBC5fdwIpFI1HDGlIeyLP+uKIrrw3t/gV9fL+kbd39+rKQXl2W5LulfiqL4gKQHSHrdGe6xz6pvB8Ha2to+MmRyYAI4Ozu7L//fuzl4JwWnKfh6p06dqhXuk1Q5FbytY6fTqfLJSaJJcnw/k5emvjFqbbIzOztbcwFES7ZB8ktC5Gv7vhQPfIzrRrBWgAkiyXO0/tNpcJDVvKkfJJsUfhi9Z5E898/n0MbPvPkYsZ9MJhVZlvbIPUULn7+9vb0v3YG7KTSlvjTtyMB+e06b0gbcJ/Z7MplU8xB3a/CYswCmBQa3n2NA8YA1EqJQEt0vJNJ0HFh0m5ub2zfHTI/g/JKw87pNjo645WUULOL4sfYD5yAKFAfhIGEr/nwx4kJ8FycSiUTiYOT3cCKRSOzHuaih8ERJL9n9+TrtfJkaH9997zajLMvaNpH+nSkIjOJub29X5MlEiU4ApxZIe7n8FiridRjJbLfbtUr3JD90UDCaTUJlssWq8r5mrKBP23e0bZMgUUw5yOZtIhqj8CRwMYXE53oc4z19D35ushhdC3RBRKJJ0SI6NHhNpgnENlJE8SvWsGhKSYjkmaSfBT/PtDab0j4457Ht7nfcEpJCkI9lFD66DiIx9rxGm35TW6N4QfLudjUVLozCQ1O6QVNNAh4b32f7msSzKDg1XTt+frr54rNBXCSOhNuLc/pdnEgkEonbjfweTiQSlx3OSlAoiuJHJG1J+h2/1XBY41/8RVE8WdKTJWkwGNQICAsxmvBxizuTr93r1EhQWZaVO4EV5Ul8bFEnWYsRZ0dK6QwgKSO5N5Hmz74nI88WE2iFj9c2mn6PIoC0P4/cn8VtFXluzNWPJNbjyvdNlm3p9yvm5P//7Z1djGRVEcf/xXyCgoqLZgWExaAJT0KMLwqaYBQIgh+JgfiwiSaGBBOJMQFDorzwgEZeJRiIxPClUeK+mECM0SdEWHdhEVYWxLiyLooPkMWZ/Sof+lTPv2vO7Zne3Xu7Z/r/Szrbffvee+rUuV07VadOHXYiszOf0+Vrs88xg53rZXD/clYDjyfPnsc58T52+4jACAd8asGE3P8848/ycVYFO8sRxOCZ+Xy/HODJwYPaGOV+Zuc9nhe+TxyPgAQvy+DxyoG2puUK/JvjNnJAId7nAph5mQMHv7jvTdk/0VaNpus2aSDhlNniRZzRinxCCLHZkR0WQkwrJxxQMLPtAK4FcKWv/NW+H8D5dNp5AF6rXe/u9wK4FwC2bNniPOvP69mj4B7PILPTPDMzM7CN3szMDBYXFzE/Pz8wWx5OPYD+koa8nV44pJFJEI4Wr43PmQUhC8+Qx/Z7ucAcBxRi2QTXasj3zTO6tRlslj++j8KPvA1ntBHnRrs8Q81OIAceOGugjH21NkEOSsR98ix6yMwZJXNzc/3Mgbw96LDZdl6ykmVjGUInkdrPtR2OHDky4JzHdXE/Hvtok+UBsCqb5dixY/325ufnB3TFmRy8HIQd7NpzxmOR5eW+s7OfCUebCzByUI6DG9xeDgaFHuIYB51qu6LEspqmmgn5Ov6X9VGjprNRaLp+owQfTqUtPsvO3tjrQoQQYgzIDgshppkTCiiY2VUAbgXwKXd/m77aAeAhM7sbwAcAXAzgqfXe9+jRo/1K/VyfIJYncACA96cPR3p2dhaLi4uYm5sbcNLDMSL5AawEJtgBifT0ubm5VTP6UYehtvQg2uMq+exwnn766QO1HDidn2erY5kHO6i5QGKQ094PHz7cP5a3tmRHkAMW7DCyY5mXKXBwgHdG4EKLud+cHZD1npch8FhG1kCtNkWehefaFCEb1w+IMVlYWOjrlLeV5EBLLVDCfWYd8DiEjHGvGD/OhuAlDRGkyIUmcyZHyNEUmMn6yHLVMh14u0zOCODgRrw4Y4Tvl4NIcV7OdDh+/PhAbYa8QwWP2SjBgLWyDkYNBJzs9eOkLVsshBBifcgOCyGmnTUDCmb2MIBPA9hiZvsBfB+9CrYLAJ4of3w/6e43ufvzZvZzAH9BL+3rZncfvjAdKw5ZZCPwrG0UShwQusy+AyvOBadwsxOW24m2ooI8nxfOUziBvNVhOEzseNVmzHkbwDiHsxOAlVoO3C+eUc6OLTvHOa08zol7chp73gkiHM6QiR3GPDtfc+zy0o5csI+XWLDTGY583DNk5fZ4zHM9hOzsN83As3NaS+0H0M9I4CU0rIPcHs/41xx61k1NjrhfBIp4HGrLHGrZBxwMaNqKctizEu9r2QYsdy7CmJ+N0He+rqarHBzh/vLzksc19zmTA0zTRBe2WAghRDOyw0IIsZr17PJwY+XwfUPOvxPAnaMKwtsWclp+fGZHiJ12TjnP6++DOJdnW2uzkDzTyssIYtcIYLAif5zH7WTnLo7X1tfH5xyYyDO9HGiIc2tF9EL+nLlRqymQndN8/+zQ5dn5mnPIzjwHHCJAE/fhQEq0GfeqzWLXAgq5oF92alkuHru81We+tvZc5GyL7Ozzv3wO941rfgAY0B8/K3xOLROAs3QyOaDAcuV+8pjGOU01HLIeuI2mjAoOSPDznYM1WaesZw4Kie5ssRBCiDqyw0IIsZpTscvDSePuOHToUD/N3d2xvLyMpaUlLC8vAxgMGMzMzAyki0cRxggmhBMX6+bDIQnHPhwWDjTkddy1+gbhGPKafXbs2anmQoyx9WQuYBjkIEXohNeaZ8cMWFnfHwEH7i+3kR3zuDbv2tA0c81LMyLrIa+xz+nzHOTIfQ15ua/seMcyBv6O+1Jzknns4vpY6hByc80EniGvpdxn5zkHCvK58V3AWS68LCQIPWbnnHXODn5T3YSsv9p3rCsO+mT98vX8vDYFWlgfHGgCsCrAVMs4yP3O2RU5aJGfyy6Y1mwIIYQQQggh1sNEBBSOHz/e39EBwKrZby6SGI4OsFLocG5uru9shAOXgwd5jXdcf9ppp/XP52DAoUOHsLS01C+wCGCgWCBnAsQxri0QTmvUY5idnR3YFSIvf/CyNCD0wQ5iOFPLy8sDjmDUMAhdLS4urqofEIUOQy6e7Q2HNzua4dizg8izzjyLHf2Oz6Ej1jEHPWKcWA4uBJgzB7K8TDiauR5A9DuCUBGk4AARBxN4mQy3xdkgsWyDZartcBBBHQ4S5Zn/WgYIw7P5Md4clOKsk1pWQU1H8XtoymzgZy1kyEGEpkwKDkrkTJFaIVG+hu8T45JrSmTd1K5bixO5Js5XUEEIIYQQQog6ExFQCMcjHPXazCw7cTGTX9vJIO7DRQ2DcGR5r3t2dqPNpaWlgSBDBB1iHTzP7vN6c2DQOV5YWOjfd2lpaZVTw04jp8Kz08RLO/KSBHZ2cpp4fM8OOddAYKc1L8fINSJ4nHjHg9xmXmrC8tVmnHkM2PFuSqGvObPcDo9NBBnyDgocOKplVrBznFPu+XnI2QA8HnEt9yn0FufWyA56ljePSW25AMvDus7LTvK/+VhNpibyuNSWhAxjPW03jX2TDJlRAwlCCCGEEEKItZmYgEIuDpcd4uycAoMOHs8Ix3d8bsDOMO/iwCn9satEVOkHVrYZBNDPluDZV57d5yUR4WjzLhBxT3Zaa/rIwYDs9PLSjZoeOXCSU9xrzn+ufRDns+5zPQtuN87lGerarHxkNMT57HizPPm6/B23z8d57X7uTwSUckFAbiun6HOfatfkMeQaE7U6CMNgfTUtJ4g21jN7PmyJxlrLB2rj2CTzWtkE66V2vjIEhBBCCCGEmEwmIqDAzigwmEqez4sU/chOiOUOtQKKPKPOTmQEISINnmeU+Rg7Y7G0gLc4jDZyMCRk5DT/w4cPV69leHab+1xz9OP+tUr50ceFhYVVwQNedhF1JnKK+rA0+hwkyDPnvFUiB4Y4MMCOcf48bK1+E1kPs7OzA/1mneW6GqHzpgBGzmTgvvBzw1ke7r5qu07ub+4LZ3owuchlvs8weKlD3KMmSxO8Y0ft3nx9U4bBeuQcRaZhDHs+csBpPZzINUIIIYQQQkwbNgmzf2b2bwCHAPxnzKJskQySQTJIhsQF7n7OmNruFDN7C8DeMYsx7c+bZJAMkmE102SH9TexZJAMkmFSZaja4okIKACAmT3t7h+TDJJBMkiGSZRhGpgEPUsGySAZJMO0Mwm6lgySQTJIhvWiDd6FEEIIIYQQQggxMgooCCGEEEIIIYQQYmQmKaBw77gFgGQIJEMPydBDMkwPk6BnydBDMvSQDD0kw3QxCbqWDD0kQw/J0EMyVJiYGgpCCCGEEEIIIYTYOExShoIQQgghhBBCCCE2CGMPKJjZVWa218z2mdltHbV5vpn9zsxeMLPnzexb5fgdZvZPM9tVXte0LMerZvZcaevpcuxsM3vCzF4q/76nxfY/Qn3dZWZvmtktbevBzO43s9fNbA8da+y3mX23PB97zexzLcrwQzN70cyeNbPHzOzd5fiFZvY/0sc9LcrQqPsO9fAotf+qme0qx9vSQ9PvsdNnYtqRLZYtLsdkizF9tlh2eDKQHZYdLsdkhzF9drjcd2PaYncf2wvADICXAVwEYB7AbgCXdNDuVgCXlfdnAvgrgEsA3AHgOx32/1UAW9KxHwC4rby/DcBdHY7FvwBc0LYeAFwB4DIAe9bqdxmX3QAWAGwrz8tMSzJ8FsBseX8XyXAhn9eyHqq671IP6fsfAfhey3po+j12+kxM80u2WLZ4rX7LFvePb0pbLDs8/pfssOzwWv2WHe4f35R2uNx3Q9ricWcofBzAPnd/xd0PA3gEwPVtN+ruB9x9Z3n/FoAXAJzbdrvr5HoAD5T3DwD4QkftXgngZXf/e9sNufsfAPw3HW7q9/UAHnH3ZXf/G4B96D03p1wGd3/c3Y+Wj08COO9k2xlVhiF0pofAzAzAVwA8fLLtrCFD0++x02diypEtXo1ssWxxjU1pi2WHJwLZ4dXIDssO19iUdrjIsCFt8bgDCucC+Ad93o+OjZiZXQjgUgB/LIe+WdJ77m8ztargAB43s2fM7Bvl2Pvd/QDQe6gAvK9lGYIbMPgj6VIPQHO/x/WMfA3Ab+jzNjP7s5n93swub7ntmu7HoYfLARx095foWKt6SL/HSXsmNjNj16lscR/Z4kFkizu2xbLDY2PsOpUd7iM7PIjssP4mHsq4AwpWOdbZthNm9k4AvwRwi7u/CeDHAD4E4KMADqCX2tImn3D3ywBcDeBmM7ui5faqmNk8gOsA/KIc6loPw+j8GTGz2wEcBfBgOXQAwAfd/VIA3wbwkJmd1VLzTbofx2/lRgz+h9qqHiq/x8ZTK8e0Xc3JIVssW7wWssVFrMq5m8YWyw6PFdlh2eG1kB0uYlXO3TR2GNh4tnjcAYX9AM6nz+cBeK2Lhs1sDr2BetDdfwUA7n7Q3Y+5+3EAP0HLKSPu/lr593UAj5X2DprZ1iLjVgCvtylD4WoAO939YJGnUz0Umvrd6TNiZtsBXAvgq+69xUkljeiN8v4Z9NYnfbiN9ofovms9zAL4EoBHSbbW9FD7PWJCnokpQbYYssWFifjdyRb36NIWyw6PHdlhyA4XJuJ3JzvcQ38Tr824Awp/AnCxmW0rEcEbAOxou9GyDuY+AC+4+910fCud9kUAe/K1p1CGd5jZmfEeveIne9Dr//Zy2nYAv25LBmIg6talHoimfu8AcIOZLZjZNgAXA3iqDQHM7CoAtwK4zt3fpuPnmNlMeX9RkeGVlmRo0n1neih8BsCL7r6fZGtFD02/R0zAMzFFyBZDtrgw9t+dbPEAndhi2eGJQHYYssOFsf/uZIcH0N/Ea+EdV4HMLwDXoFfB8mUAt3fU5ifRSwd5FsCu8roGwM8APFeO7wCwtUUZLkKvKuduAM9H3wG8F8BvAbxU/j27ZV2cAeANAO+iY63qAT1DfQDAEfQia18f1m8At5fnYy+Aq1uUYR9665DimbinnPvlMka7AewE8PkWZWjUfVd6KMd/CuCmdG5bemj6PXb6TEz7S7ZYtli2eHptsezwZLxkh2WHZYen1w6X+25IW2xFECGEEEIIIYQQQoh1M+4lD0IIIYQQQgghhNiAKKAghBBCCCGEEEKIkVFAQQghhBBCCCGEECOjgIIQQgghhBBCCCFGRgEFIYQQQgghhBBCjIwCCkIIIYQQQgghhBgZBRSEEEIIIYQQQggxMgooCCGEEEIIIYQQYmT+D//ZY4XjHq/MAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 2647 626564\n", + " Min thresh = 1000\n", + " Sliding\n", + "\n", + "\n", + "004s_iimage_73815992352100_clean_ClassS_70-198.roi.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADYCAYAAABberBAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADX/ElEQVR4nOy9eZxteVndvfY5dcaqe3uigYZuaGYQBFRkDAkRw4sDwQkiUSOIImqcjYB5o8ZXI4lG0RhQnNCIChoRnHDGiXkQEGQem6Eb6OHeqjPWOfv9o2rt+u6ndt2x7q269z7r86lPV52z92//pnP6rvWs5/kVZVkqkUgkEolEIpFIJBKJROJ00DroDiQSiUQikUgkEolEIpG48JCCQiKRSCQSiUQikUgkEonTRgoKiUQikUgkEolEIpFIJE4bKSgkEolEIpFIJBKJRCKROG2koJBIJBKJRCKRSCQSiUTitJGCQiKRSCQSiUQikUgkEonTRgoKifOOoijeURTFYw66H4lEIpHYQVEUHyqK4gtP8dqyKIp7nuFzzvjeRCKRSCQShwspKCTOO8qyvH9Zlq866H6cCEVRXFMUxSuKovj49j9+rz/oPiUSicTFjqIonlwUxauLohgVRfGqg+5PIpFIHEbstzB7svby38WJEyEFhUSiGUtJr5T0lQfdkUQikbiEcLOk50l67gH3I5FIJBI7yH8XJ/ZECgqJ8w7aaoui+OGiKH6nKIrfKIrieFEUby+K4t5FUTynKIqbiqL4aFEUj8O9TyuK4p+3r/1AURTfHNr+/qIoPrGtoH4jFdeiKHpFUfxkURQfKYrixqIofr4oikFTH8uyvLEsy+dLesM5nIpEIpE4lCiK4qFFUbymKIpbt79Tf64oim647Iu3v4c/XRTFTxRF0cL937D9XX1LURR/WhTFXU/luWVZ/kVZli+V9PH9HE8ikUgcNhRFcb+iKF61/T37jqIo/i3ee1VRFN+Iv59aFMXfb//+t9svv7UoivWiKP5dURSPKYrihqIofmD7O/lDRVF8zZm2F/ua/y5OnAgpKCQOA54g6f9IukLSWyT9qbb25p0l/YikX8C1N0n6UklHJT1N0k8XRfG5klQUxeMlfY+kL5R0T0n/Kjznv0u6t6QHb79/Z0k/eC4GlEgkEhc4FpK+W9LtJD1C0mMlfWu45sslPUTS50p6oqRvkKSiKL5M0g9I+gpJV0v6O0m/dT46nUgkEhcCiqLoSPoDSX8m6faSvl3Si4uiuM/J7i3L8l9u//qgsizXyrJ8yfbfd9TWd/adJX29pBeeZXuJxCkhBYXEYcDflWX5p2VZbkr6HW39A/S5ZVnOJf22pOuLorhcksqy/KOyLN9fbuFvtPVF/Ojtdp4s6VfLsnxHWZYjSf/VDyiKopD0TZK+uyzLm8uyPC7pv0n66vM0xkQikbhgUJblm8qyfG1ZlptlWX5IW8LuLpF2+/v0I9pKU3jK9uvfLOnHy7L85+3v9f8m6cGn6lJIJBKJSwAPl7SmrX/vzsqy/CtJf6id79EzxX8py3K6/W/kP9LWv40TiXOKFBQShwE34vexpE+XZbnA39LWl66KoviioiheWxTFzUVR3Crpi7WlxkrSnSR9FG3x96slDSW9adtadqu2csGu3s+BJBKJxMWA7dSzPyyK4pNFURzTlihwu3AZv2M/rK3vYEm6q6SfwXftzZIKbUXNEolEIrH9b9ayLJd47cM6u+/JW8qy3Ajt3WmvixOJ/UIKCokLBkVR9CT9X0k/KekOZVleLumPtfUPVUn6hKRrcct1+P3T2hIn7l+W5eXbP5eVZbl27nueSCQSFxxeIOldku5VluVRbaUwFOEafsfeRTt1Dz4q6ZvxXXt5WZaDsixffc57nUgkEhcGPi7pOtae0db36Me2f9/QViDMuOMptHlFURSroT1/L59Je4nEKSEFhcSFhK6knqRPSdosiuKLJD0O779U0tO2i9wMhfoI2wrwL2qr5sLtJakoijsXRfH/7PWwoij628+TpN7234lEInEp4IikY5LWi6K4r6RvabjmPxVFcUVRFNdJ+k5Jzrv9eUnPKYri/pJUFMVlRVE86VQeWhRFe/u7dkVSqyiK/naucSKRSFxMeJ22SP73F0XRKYriMdqqKfbb2+//o6SvKIpiuF1c/Onh/hsl3b2h3f9aFEW3KIpHa6vm2O+cZXsV8t/Fib2QgkLigsF23YPv0JZwcIukfy/pFXj/TyT9rKS/lvQ+Sa/Zfmu6/d9nbb/+2m0L719IOlGxmrGk9e3f36Wd9ItEIpG42PF92vqOPa4tMbapSNfLJb1JW/9Q/SNJvyxJZVm+TFtFcH97+7v2nyR90Sk+9+u09V37Am3VxxlvPz+RSCQuGpRlOZP0b7X13fhpSc+X9B/KsnzX9iU/LWmmLaL/a5JeHJr4YUm/tp1a5joJn9TWv48/vn39M8+yvYj8d3GiEUVZlgfdh0TinKAoivtp6x+yve3CYIlEIpFIJBKJxEWFbYfDb5Rlee1JLk0k9h3pUEhcVCiK4su3rV5XaCtC9gcpJiQSiUQikUgkEonE/iMFhcTFhm/WVo2F92vrHPWmvN9EIpFIJBKJRCKRSJwlzpmgUBTF44uieHdRFO8riuLZ5+o5iQRRluXjt09vuLIsyy8vy/ITB92nROKgkN/DiUQicfDI7+LEuUZZlq/KdIfEQeGc1FAoiqIt6T2S/o2kGyS9QdJTyrJ8574/LJFIJBK7kN/DiUQicfDI7+JEInGx41w5FB4q6X1lWX5gu4rpb0t64jl6ViKRSCR2I7+HE4lE4uCR38WJROKixso5avfOkj6Kv2+Q9LA9O7GyUq6s7O5KURS1v+2mWC6XorOC15VlqeVyWbve/+V1RVFUP/67LMvaD+89Xbht3n+qbRVFoVarVf2X98c+8x4+Y7lc1uZpr2fH+/iMVqu16/mcW98b18N993VNaxXn+WTzwXHvdS+vMdzf00FsY68++L+nMybObexv0/6L77Edr81en5PYz73GwmubPlvcy6eyn/Za+wsYny7L8uqD7sQZ4LS+hyWpvbZa3uX6QjdNj6j9vumJLk0kEonzhok2NCunu//nfGHgtL6L83s4kUgcVhzXLY3/Jj5XgkLTl36NWRRF8QxJz5CkTqeja6+9VovFQu12W+12u5E0G5PJRPP5vCI/rVZL7XZbZVlqsVhoNBpV7y8Wi4pUsq1Op6Nut6uVlRW12+2KnC2XS21ubmo6nWpzc7MijG7biG3y73a7rZWVFbVarV0kbHNzs9YO0el01Gq1tLKyok6no16vp36/X/Vvc3OzmhtfZ9Lv/vsZ0+lUo9FI0+m06pvni/2J5H+xWFRjGAwGGg6HNVFhMploc3OzNvecs9lspk6nU/0sFovq+qIoqjlfLpeaz+eaz+fa3Nw5hIHr5fns9Xq1dSrLsnZvWZbVvvHceT9sbm5qc3Oz2g8nExhMiFdWVnaJN36G58N9XS6X6nQ6FSGfz+daLBZaLBY1MYtiQqfT0XA4VK/XU7fbreZxPp9rOp1qOp1W9zftm3a7rV6vV+19C3Le877We9f3ez97fbl/5vO5ZrNZNWfeb96LrVarWs/NzU3NZrPafLZarWq/Sqqu43ObxI6mzzjfj2sTxY1zjbIsP3xeHrT/OOn3sFT/Lu53LtOd7/Wfdfdb52q9/y3nun+JRCJxSnhd+ZcH3YWzwWn9mzi/hxOJxGHFX5S/2/hv4nMlKNwg6Tr8fa2kj/OCsixfKOmFkjQYDOIX6y6SYZJSlqVWVlYq8rtcLmuE2mQpCgkkMyZ+JrIkeibskYRHN0AUBZqit03kicJFvIaRa8L98ria5oh99Bx0Op1qjCb//t3tmOhzDjg/FhgoYtAFYfLt+0weLQ5FscP3+D23HSPjcR55n/9r8hyv41zy+ZyL+Awizn8UjTiX8Tr3bz6f77knPPfz+by257hu3H9egyaBiiKQr29yGXi+OEdRdLDQ4Tlz+xRNOKcWKuiq8DpFh41fb1rn00F0FCVOiJN+D0v17+KjxZXl4OWvPz+9SyQSiUsDp/Vv4vweTiQSFxrOlaDwBkn3KoribpI+JumrJf37vS42UZV2CEMkbCQSvJZEk+9vbm7W2iJBYgSXUVJf5+i2tBNllVQjwf4vyVQTmfYzooPBEekmi3sUQDw/FBHoVCB8jyPYjMxTbImCDOfO79sBwIh9t9vdRR4tMng9TDIXi0UVfZd2yPFyuawcBx6PxQu6EChquH92I8R0DM5lp9OpzTUJs90KnCv3PUbA497jnFEEcH8jiSbZ537z2GazWWP6gfvvefH4vGe41l6D2WxW2wdNwsrKykoldNgNQXD/e5/MZrPKlWD3AZ0adjT4M2WHCt0zdGtwLk8XXk9+nhInxGl9DycSiUTinCC/ixOJxEWNcyIolGW5WRTFf5T0p5Lakn6lLMt3nOiewWBQ2b2lejTY5MUkZT6fV7Z5EzOS4n6/X7PlS3WHg7RjV2fEOJJVkxf/MErf7XZraRedTqcijk3pERQHGI1m1Nj3xOeTuNPa7mv9ugkiCXl0XMT0Dv+XQoWfYYJIu7/b73Q6VfqD+9Dv99XtdrWxsVHNjZ/PSLaf47SIlZUVjcdjTSYTLRaLWvoASbzdKRYjHDUnMbYI4f46taXdbms2m9WEBc59FANijQM6IShY+f35fF7bH5wv7mWKGJ47r7VTNfj86XRa7S+LE5wXilxNApV/tyDk17jn/dwoVnW73ar/ToeIaRae/9lspvF4XF1blmU1754n7k/OaZN4E393X+3q2Mtlslf6RGznRM84lTYuBJzJ93AikUgk9hf5XZxIJC52nCuHgsqy/GNJf3wq11oEMOkhiYyW75WVFfV6vSp/m5FK/80o63ZfauKAI+qMdJrMkrRLO+kGJMTL5bIiS6wf4LH4mSSdTMMwafGzfO0J5rJGkhl5dx+lncg2++joMesIREcIbfImqYzUO8LsNj1n/t1rZHJrVwLH6X7Rnu+1sOtBUkWguYbT6bTm0pBUI+2O0FMY8ZhbrVatTkFRFJpMJrW9RxLv3/1ek7U+Cj/RiRLTRCjo+Dq3SxcG+yHtiC6SqvGRgFO06vV61ZhjWgwJOMWmxWJR9d97NaYOUdSaTCbV+lrc4zgsLnidvW5eI6dyUCTzfPiZe+1/gmk6J3M6NAkETc+5WNMnTud7OJFIJBLnBvldnEgkLmacM0HhdEDS2ev1duVlm2yZUJLIS6rcCkSM8JP0kURH0YJ9YpSa6Q1MH3B7TI3gcxgpZtqFf0zo3KeYSuF7ScZJ5txXRsOju8Pk22TPY6OrItab8I/nZj6fVxFrk3sT9ujAMHk3SeU6xDFR+HFfWNuCYgPnM0a+SZpJmDc3N6v+mJzHAodslzUA2BbnhvfF/eEx0ungdY3ugZiysbm5WX0OYq0I9yUi7km+Fh0WMU3ELg0LRpxTpkrEFBQ6GVhXgyIgxQ+PI4or3NNnSui5HherKJBIJBKJRCKRSBxWHApBwaAzgCTXNmoTF0bYSeIZsY/RY/5uMsnc7ph2cKJINcmw3zfp5jUkO47gsjidawlYKIm1AqKoQOxlzafQYFeDn0GSLKl2ugCFCJJOWv2dH+9xu03n75s4WqigeBFTNUi8bZ1fWVnZFYl3W/GUBgtGrVZLk8mklqYRnQKu5UABgqKFHSisjxBdBHEP8W+24T7SPdEkUPg1j4Frz7X1HEWRKe5HCwY83YIiSVM6DcU01tNw26y9wPoTvqfb7db2g9uJ6UYUz/h54ueK/z0VUDA5kSBxuikQbDuRSCQSiUQikUicGIdGUCBZdBSeUVFHoW2RJ3mKpzowGh2Juglvq9XSdDqtjh+01d5kj6QiWsdt/7Zl332xu4JFHw2TS6Y40Hbe7/clqUbCm4QRRsEpevgZTM8gWe90Our3+zWXgo8OpO2e4gKj465V4fnzuO0OsaDCon39fr8STSTVCDej1ozGt9tt3XzzzRqNRjUBw6Q7Ev9Op6PBYLBrP5lkl2VZiVHeO14fH+/IuSMJZ1sUOeK8U8TxvbEIIfdRjPAzyu+1Y1qBC2XG+hx0JMzn82rPu02OIQoWFpoo1LjAYlPqA+tuWOCLn4/BYFDVqvBPU50EIqY9nAqi++JUrj0RmlwOJ0vDSCQSiUQikUgkEodIUCAJZwFB/217vf+OUXS6BfYCI78kayRpbp/tMBJtsD/dble9Xq+W+mCiFp/PNuJ4XUyStn6S9zgfFihYeJGiik95cDTZJJrpAK5d4XoI7juLKjKK7VoR0o5DwWNaLpeaTqeVGyA6RHq9nsqy1Hg8rvXFpNXtWeSYTqdV3YZIDL3mnU5Ha2trarfbGo/HVWFAknePycS41+tV1/gZe+0VCzPRxm/CzxMPKErEFBieeuC19XN4H0U07y3PCQUZ9tHz0USyKdJ5XzGtwmOkQyHuU1/D8ceUFs8BT6iIIkjsH9NU/Az31X/HdY+uh+jciDiZIBCfGQWOTKNIJBKJRCKRSCT2xqERFEjEImFiAUETG0Zh/d9YeNEEiHnbdB/4etcDiLnyJHgxl5wih6Pwdj7ElIWYh++xRTLlaDwj4YxgN+XTRxs+I/MkSxYfLKBI9SKWHF9MtzBiZNyIkXI/K46zKIqqcB/dEH7PYxwOh9W9FDaacvC9PyxWONJO0EFhocPpJzFVJZLXaKsnsWY6B1Mc4gkSkVCTtEcHCtMQ7K6hMycewUihIBa8jGtI4adpn5NER4LdtNYcl9eZ+5enoPizTbGiKV0hug9OJBScbWrCido+mVCRSCQSiUQikUgkDomg0Gq1aqcH0IHA/HtGig1G7SNhY446I/+Mbrbb7eoISJKbaBn3a4Sj/CaTjELHWgk88cE/FE5MxnhUH0mnnQocB2GxwSS2KeWCpJQuhThfUVRwX00K3T9HqknAOI8WWNwnppy4DdZocB9WV1er348dO1arScDIOMUe11rw+rJGAiP+ZVmq1+vVUjViikpTRNxr2iQqeN0oAvBaE2/OlQUUzjufzf7zGXY+RHLuVJC9BAWmMTTtH4pMJPRNKRu8lm1TYJF2jtekSyG6R06Epj6f6J7TERj2ao97muucSCQSiUQikUgkduPQCAq2rZdlWdnqo0PBYGTdxGwv23qss2ASPZvNKjJnMmj7u9tkpN+kwsSc9nNX53ek2v1mpNp99fuMKrN9H0fpfvoeOipIchi9J5kj4WXBwqZCkhRsPJcmWk39dVFDp1J4fJ1OR9PptJY7z1x8X+/0EKZRkGDbbeBxzGazWn8k1fpjh4jfM9mmGEJRweIMUzPW19erPrOYoueFdSZiPQsKOEwfiRHuJscLRQbWmuC17LdFBc8N5yUSds87hTaCe8vrsVdU3v1kcUe6BKLLxcKR54tzxGfEPvl97uUoou3VxzNxKzQJCzHlKZFIJBKJRCKRSDTjUAgKRVFURQkXi0VV8DDayqXdZCKmPUQ7N4kB3Qx7kTvmykcC7x+LCibORVFURfHcjiPmJKKx8v9exMXzQXLIegoWG0hopZ0jN5kS4PH1er3qNZJsCin9fr8am6/lEYuMUPNeRsUj2ZZUEzlms1nt1AmLE/5hHQXXKTh27FhtDX0fCTRrSbjuAEUNEmBG8ukAcbpCPGKRa8B9FcUmCjPRqUA3hkUb1k/gvHt+/Dng8ahM76Drwv3jWvn0EO6rmCJDNDkOmLLh93itx+g6FVG0YqFLv9YU+fczKQyyD7x+LxdGkzgQ1z46nGK6UGzH+yiRSCQSiUQikUjsxqERFFyDoNfrqdPpVGSdpyOQWDAtIsInHUTSSKLNKLC042YwOSIRZYQ+2un9t2sTkLTR1RBTGOiMiAKH72GbTRHdSFh9j+sDsIAiCSZJdExvkHYKCBIkf4w0N+XF0xHANSQZJVn3tRZD6ObodrsaDoc1oYS1JOyYYH9Zc4MOEb8W3RMm6RYrZrNZTdDiHop/8zVf77m2k6XJMdDUvsfG/eo5nM/ntf0d147rTELclLLA6+iQiLUhvN+abP9xP1CE833xs0DRzvuA4BpFMafp2Rxr7F8UFZrmPLYXXRCxnUQikUgkEolEIlHHoRIUHCXn8YaLxaJGcE1WY6SRMLGmcyHWNqCgwAivn2mC7telHeLE2gesR8DXY849yTxdF/GYSUaJGdn3MzgXTAtYLBZVUcder1fVGmB01SRXUiWCeD48bhJavs9aBzzG0M9uigSXZVk7SjJGtz1XMcLtufez+v1+daSha1YYrANhhwgLT5ook/i7z6zLYEGBe8NjJ+mOAhRTXKJzxu9TdCFBjmKA+xkLcHp+eL/TCbjHSH6jyOD/xj5E4YD3sE3uy6ZUDq5HkwgTnxfvjQ6QKChER0icxybi3zRufiecTJBJJBKJRCKRSCQSJ8ahERRMBtvttkajUeVQMPElYbB13rnzJtkkRM7tZ70Fk+nZbKb5fF49w+kKJjWDwUDT6bRGXhkVZl67CYmPWuRxlOxPrMdg0YO57xRNLEKY3HAueEyk+2GCb+dDp9PZFdUvikLD4VCz2ayaP7otSMwtaDRFat020x1oD/d/3edI6A3WPGA/VldXq4g253M2m1VHTtK5QUeB0x083iaCK6lKtfAe4v5gGkh0qri/PM7T7TMtwPMY3RoUqJoEBa+XxSE/Y319vaol4TYo7FhI8rgoEEVnRXRFGLFWSZPTIfaZr7nv3n/RbWFwLuOJFTx2ks4GP6cppYPiFvtLMcNt7FV0lIjfNYlEIpFIJBKJRKIZh0ZQYNR5OBxqPB7Xis9J9UioiZMJZAQt/S7CaMKyurqqdrut9fX1mnXeJNFkZTqd1k5ycE5/t9utxAg7AUwYKWA0RdKj/d5kxyIDLeImO8zNZz69bfCOuPuEBdZNYJV9F0ScTqcaj8fa2NiozR/rB7DIodtsIoWeI4PuiGjX73Q6Va0MpmlwfWezWVW0kevaarXU7/er2gJ2NPBUDKc+eEzeV0zR4H6jM8QiCiP/XmO6P+iE4HoZHhfTKihWUSAy4ScZp5vBYlm/368EHB/FGPvjZxqxsCM/Y/F3ilxNKTAcH50SJPAWX/iZtaDgeaATiPdHZwSPX6VwF1MXXOSTaHIduF3PqduMR9RSGEqXQiKRSCQSiUQicXIcCkEhEpdut1uRKEZ4ea3/8c9IeSRBdAFYgDBRtePAxJT3+IfOgxgB7fV6ms1mknaqwpMYSjuuAEkV2eeYSUYpQpjcOMVBUq2GhMkbo7luk04Hklk/jwJCPDYyFtDzc+044PzROs7xkFzG/+6Vl84ItIWBvSzyFnRMXptOofB6uA2LB/zb/aCI4vXqdDpVqkbMr99LSOC4uA9ihJxpKk3El+tCh0I82jQWyrQQxjk3MfZaxX41pXLsRca5Vu4fx8F2mLZC14PFBM9frB1CsY3rwTltSkmgU8RCSnQp8PnGicSTTH1IJBKJRCKRSCROjkMhKBgmO4zKmvCbwEg7ZMNRXpNFEloTLL5Gy7mj8I70kuCbvJP8MeJr0snILvPuSU5IYnn8ndvxNSZYzPfea46Y/+/XmsiR+0nrv8crqapT4efTAeE2KHD4Nbo4YhScjgrWlnCfKZK4j7HgZjwm0s9usvoz+s2+kDhG272fafLo9Aa6GrgH2H86BzxPMW2B/aXwEMlxU3+5f/yc6Iqhs8Lrw3k60Z7gs72HuU85FhJ8fvaiU4DzzHWMe5xinv+mUBf3LoWHKBLxeqYXcf7c371SOzj/RLw+hYVEIpFIJBKJRKIZh0ZQiMST9vj19fVaOkG3261IyXw+r+odkIDFv0no+Xqv19tVhFGqp0yQvEaHgEkOiThrIri9brdbO3nCIgUjtnYLMDJN8NnsJ0kX8+ZjTjxft2uDEX23x3FIu6Ps7hvz5F2Xwm17fjc2NmoOE9Yj6Ha7u8icx+E17ff7VT98D2s8+Dr3mUUSCTpBDBLcWGuDaQTRTUDRiXPn9/ya+21HBZ+7sbGhxWJR1X+goOA15Fyura3V1no0GtX2gj8T7P/GxkbN1u854jh8P0k2r4skngJBFHMI/x3rflBAYVqQ9z/TDTwuiiR2E/Fz6T3ptlgfxKkyvMepM3aiWFiLwhDHkUgkEolEIpFIJHbj0AgKhv/RT+IbI7Sz2UydTkfdbrci6iaWjGz6Z3V1tUY6TVRNel2Ez2C0c2VlRcPhsPaeUx1cc0GqH53HQoTSjjvBBIZihLRDlI0mch+jxSZLJIAmV7ak93q96vQCk2YTvFarpcFgUCvix9oHERQTGHnvdrsqikKTyUSTyWSX2DEYDGo5/BZfmF7CPHa7GDyu6XRacxcsFgsNBoOqH2VZVqeCsB3OicfLdjivZVlW82CRiQ4MuhO8PrTze85Y+4CvT6fT2lGWXjcW6nSdBvaNdTm8D10PxKdecL947H6G+xRPJ+FeZuFEz2/THmT7FKvo3GEqBO+nKyIWsox1FppSkDwvZVlqMpns2pvSzmfR/fN+4PrRtUKnRXQgxXlKJBKJRCKRSCQSzTgUgoIjj4w6krTRQk+iZeFgMBjUjh2kk8BkpNfrVW0YJkZOrzCiFduRUt/PHwoXtMiTuLM+gt+Pufh+BvtHh4Ej1yTFkSSSUHvcJIyz2azW316vVwkqnA9JFXHlEYZNxLvdbtciwBZm3AemUXicrGcQ+9/kMOB8u28skmnBwqSwyf7v5zc5Ffw69x/Xi0UeKeAwyt7kYODzfA/rHVCE8jMpWrigJeek2+1qOByqLMua+4MnlXBcPFEiIqZEsFhiPAqUe9CuBbZNtwTdDVzrWMzSbXru/RqLeVK081rYgUARw8+NR51GxwPX0ClA0k6RVzogmpwXiUQikUgkEolEYgdnLCgURXGdpF+XdEdJS0kvLMvyZ4qiuFLSSyRdL+lDkp5cluUtJ2rLDgFGlrefUSO5JtwktU6N4NGBMRfbbUR7v0mRiWm0PJNosxYBi0X6/UhWWS8hXsNoPfPL3ceYR+454vNi3jlzx+P4TW5d1I9E08/k6REWbeJcmsB5/mgzl3YKZLqPfj77wv5Fsub55Zww+u1+ObWC60+LvefN91pIYR+iW4F2fJJpilkGo9iMiMcjDbnm3jOsweBn2XYf9ybFAqYz2PXhNBN/JkjUTeibajPstRbRqcB9arBuRRRn6L7gGOhaifuPx0Z6T1G8ssPEn79er1cTIPm73Sp00cS9FoUMf/49Ho+bYzjsosJ+fhcnEolE4vSR38OJROJSxtk4FDYlfW9Zlm8uiuKIpDcVRfHnkp4q6S/LsnxuURTPlvRsSc86UUOObDuCGeEIuVMfTIB9bKRfN1kjqWQU2WQ55ow7z9qkj+TVJG84HNYK5I1Goxr5twOCRfNYLJJHPzoSL9XrE3BsJot0aTDPnIICBQFpJ8JLeMwUQuwyiJF8OjIieaZbwXPpoyJNjOPz42kUngPWlCDBjZF/t0Whxtevrq5qbW2tupf9inPvcVAEYV0Krr3ny2k1TKmIlnivnSPnfq3T6VRHd06n06rYJOfdr1G0aZojOkpMfOfzucbjsWazWXXSCV0G8UQDronnz3uUKRksmujneU5icdIInroRRS46SJoKd9phQBcSXQpObfEaWUhwKhRFArqDmPLh2hjc155Xp9u4Xx6nXQuHGPv2XZxIJBKJM0J+DycSiUsWZywolGX5CUmf2P79eFEU/yzpzpKeKOkx25f9mqRX6SRfnsvlUpPJpCIPMcfa/6WVfzKZaHNzU5PJRP1+X6urq5rP51Vu+XA4rFmsLTg44smihyYo8bQBkxpaz90fE0Vfa+Lp/PbpdFqlBDAqawHDJImk1Q4MEkEWqVxZWakVPyQhtyhjQuZUBOasF9u1DkyUWNfBKREmlCatMRXE2Nzc1Hg8Vrvd1mAwUFEUlSgznU5rkfGm/H2/h/1UkU+eBGHybSIZc/ydAnDkyBF1u11tbGzUahaYXJrMsg2pfgoA3RCsveAINsUSk0w6DjwvnltHvfv9vgaDQbVnLVJxD7Rareq0CUnVGrutyWRS7ZtOp6PV1dWacGJSTcHCjhS6SuhccG0PzzlTPeie4ThdsySKM97XJup8BoU3EnmLVtPptPZ8flZms1n1jG63W33u3JbHaBFlNptVAoGdCvycOl2G4pOFCIuT6+vrtYKlh11Q2M/v4kQikUicPvJ7OJFIXMrYlxoKRVFcL+lzJL1O0h22v1hVluUniqK4/SncX4sGNhUo5DF5Lk7H6LzFA6ZHmFgwml8NPFS1p7XbxMSnPDg6TcJmsmeyzPQIEytWuI+WexacNHGji4FRWxI0Ezc/jxFspmTY5cCjDk3w4jxYVHD/3FfWfPB7sT6B58tj6XQ6jSLEXpb7JviZsfaC/8tUAAs3JugknASjzyaVbtPrTDGJfTXZNCwoeD5inj+dLuy796PFBrZtoYIFPemy8HNNtv1cpwBQJPHngukGTDPg70z14BrFVAff588Za5XwOgoH/Cy4jxQjLLb4d6ctcY8wHcrzbHcH96Wf6XVhPQ6n9URBinuJp2TYccOaChcKzva7OJFIJBJnh/weTiQSlxrOWlAoimJN0v+V9F1lWR47EVEM9z1D0jMkqd/vV8SGEVGTEv/DX9oiOr1er2Z/ZkTbBII/JpgmTIy8GjEn3MSYxIyIdnwSKJNXE/uYTy+pinqzMKMjqm7bNnbMWXUN54R9cn9JoNye2+Z4SDZPNCfsA4UGklnOueeENvSYrmCwLzEyHosnej1NBH26h4+w9H85xlhzIrbpueN4KCp4Hvy+19V99DM9Bvfbc+82mLpDscQOGh6byM8BRTW2YQFnsVhUzhxG3uMYuHfcDk/ZoIAV62Nw/3iNPBcnEhU4Bs4d0276/X7VHoUtt2F3ULfbVb/fr5w8/Gzyhw4GCyDcr54PP8MCk1/jcbDxc3+YsS/fxRqe5OpEIpFI7IX8Hk4kEpcizkpQKIqio60vzheXZfl72y/fWBTFNdtK7DWSbmq6tyzLF0p6oSRddtllZYxCN5F7RlxXV1ervPQYXSVRZ8qEVHc62A5NQmzEWgXod0VAeAKC++p0A15rUYE1HLrdbq22AMUIR0mPHTtWEXJeQ5JpUcNEjNF5ixqOaDsKGwUSj4VOEQs3bpNz7OczhYKE3n1wKgURazt4DG6PaSK83mIKC+2xjoCf3e/3q/QZFhCM6+g++j4/o8maz31kguv0migasJ0YRXc03ik+tPhbFGi321XfPVb3N4oD3W63eo7TBvy3+0JSz3FaFLIIRccBRRb3Ie4lOj68VjH9wOvqfe/Pg8dpgcDPc7oQhSX3bTabaTKZVAKBRUjPFT8TnmPPFQUzCy/8LMWTKCgAnuo/Bg8a+/VdfLS48sJRUBKJROIQIb+HE4nEpYqzOeWhkPTLkv65LMufwluvkPT1kp67/d+Xn6wt25lp7bfF3ERmZWWldrpDrKdAmPxGiz/rJjAiuVwuK1s1C8b52TESahLCCK7H4TEwEuw2WU3e5H57Lnfl/LstE0WPySKGia37YeJHomeRgekafpaFDj+fZNz3MIWENn4KL37P4ozFEs9f2DO7TrHwvNFZMhgMqteLotB0Oq2dhGALu7SVf2+3itfPogat/27PTgmvE/P5vVa03vtanjRAIassy6pAZ7/fr9aCc+4IO9vhPvVc01HAOYpCDcdDpwJPPmAqDKP2rhNA8YS1MijkkWgbFN/6/X5NTOv3+xqPx5WgE6P8TC1hvROvi2tw+DV+vr0m3h8W3Y4eParxeFwTRPjjz4T3WKfT0Xg8ruaKzg3OKVM/Djv287s4kUgkEqeP/B5OJBKXMs7GofAoSV8n6e1FUfzj9ms/oK0vzZcWRfF0SR+R9KSTNWQSSnJFYhNhEu1/7DMqT2s77f4mCnY8xDxyg5HfyWRS5Wuz+rvvMWkjwWbKQ0wliM4J1nfgs01uSXyj/Z6IFvkY4Xc/J5PJrtMwSGLpBCFxdH9JVtkHE0+LPdJOagpz0E2oY/Te/XbfTRbtehiNRtrY2KjWweN1/+1QkHZSSWixp5vD88noP4m+3RY+apJrZOLZ7/crd4TJcbvd1mQyqe0p5+Hzb+6T2A/PF103XHOejMD6HNzPTTUg+Lw439xDfFa8lmkf7oP3DO9nn/m55B61wDGZTKrTU7j2sX2m8IxGo5ojhiej8DrOAeeKbhymeHgP89SNpnk8pNi37+JEIpFInBHyeziRSFyyOJtTHv5e0l5+4MeeTluOkDNSSoK8/bwaEY1R7ViIj/nwJvckuyZhrVarFt2mQ8EF/pi7bvh5bNP/ZXSVJEnaiYBSXIj2cL/f6/V2CRnRfk8CaYu4CSBz/j2XTBuQdiLOFF3obPAzfQ0jwb6mKUfdz2pKG+Fcen0994wkO+Jv8h6dBSattsNzTtzvphQLEm+6Nkw6TSijCODreEQk14D9M0H2e55Xpqxwj1vQ4NGpJ6oDQQdDjLLH/8bfo2gn7YglFL/i31FQaJojpmbEMcR0ErsRPOcUCfk5Z7oSCb+LJ1IgsAuGrp6mYpa+zv1jUVUW4LwQsJ/fxYlEIpE4feT3cCKRuJSxL6c87AdYCI1kxaCF2bb7pvxmk4/lclnZpJkfTcJqwmeSTFLr4whjBNNYX1+vWcl5WoOjqn4WHQl+hk8mcF9pOffY7I5wXr3fJ3niMZt+LokeRRWSKCOeyEA3Am3fHh+Ju8dPAhxFCK4fc9ctBlCIYRV/RqBns1lF+GOKgMcwGo0q8Ye1KfzsSOApktgh4z0YCWYci0WFGOH2fmLf/LuPfaRrhevk9ev1elVKBWsX0CnDk008Hqb2cN1OFGWPYg77YtDt4rb9eXGaB0UHu3sskjitgZ8ztuXjMS2ocG641n6GHRzuv9fN4pU/v5PJpEoXovjoPWWxiYUw+XfTd0sikUgkEolEIpGo41AICiYGdhqYhEi7i6vFyLjFAZJAugxMxE0CTYybrPx+Dsmr+0ci7v86d9u298FgUKvT4HttkzdhNdxvE2231Wq1tLa2VuV587QGt8Fcc/fXdSA8jn6/X5FTz+vGxkatfoO0E1VmugRTBpjjLqnWnu/zOGjLl1QVdmSkOhbKpEOApwt4XXwEqMfMYoCuHWAByfMY01Q8L0xRIfH1PjKpt3OFhJTzSrB9jt1z6Gf5vabTH7rdblU7wteZOFOE8NrHIomdTkdra2vVqRfx5JMmtwLdM1E0oTPIf3stJVWOkfl8XgkBsfaAxR33laeyeH2YJiKpdizkZDKp1p+nh3huLDj0+/1dJ1i4P06R4OkRTvvhvFAcms1mleiQSCQSiUQikUgk9sahEBT8D3kWAIwnC7DQmrQTDSdRMkEw+YpR0Zir7ei+hQwWLux0OtVRfq5KT0v2sWPHqvx8kmX3g7/TPh4j1FKdYJvQmtAMBoMaOY7Enw4ME13OHUlerH9ASzhz1knMaB2nUONxW/RgdJwR62iRN9HlPFhEoDshHlvo91dWVqpof4xmc0weF8Fnua/st9M+aHuProYoTDDdhsU03R5rUXD+Y+qOxzccDtVqtSpxxKD9nzUIvCfpmGC/43i4N7gWfIbnm7UEDIoxJPZMpaE7hmksFkOYljCbzWrOIX/mOJfsq+tMeC6n02nVJ68tP8e+zns1fhbpbvBzmAKVSCQSiUQikUgk9sahERQioZPqJNQwISDJif/wj7b9ePpALIxoouKIMEk73QqOxLZaLQ2HQy0WC43HY02n09qz+bufw/9GAudn8R6THVv+XU+BhDamh/B0gyiiSFsnIsQUDkbQY05/rH1ggujrWfPCYDpBk9gTo8h0WNj2bjLpezhHvsftWDCJRxhGmz8JIl0KFK38t/vB/RcFI+8NE3mKPEw1MThfTMvxfpzNZtURij5O0dd4nTxuE2CuNW397jfnj06EuOZcU/fH8+z22VfXhKCTaK9oPtc87gkSeAp2/DHR92fe620BkPfH/SeplipCUYEpShYi/D6fmakPiUQikUgkEonE3jgUgoL/Ic9/3Psf8rS4M4c+RmClndMGnFdN4kHyHcUESZXdnOSRpHEymdReX11drf52+yTIJPW000eLdSR0JLjdblfT6VS9Xq8idE1FEf0Mkm/PCSPyJkoWWEgaCfaf5Iw56ky9OJG449c8LySYzGunmECyR+GA11DcsNjC+Y7OFNvcTUo5JybFFCVcC4CiAkWOKDh4D7iftNh7nXgNHSesCeBo/XA4rPY/19v71e/52RRh2u32rpNP6HDwaxTmmshzk3OBwpMj/03XRLeEx0aBw/2iC4hpKExnoRsnzoHvZXFG7zsfRel1ovhAoc/PdqpLHFMikUgkEolEIpHYjUMjKBw7dkxra2s6cuRILWWBdnKSF0brTSZIDhm19Wu2RzMHnnbwsiyrQm6uD8A0C97Tbrcre3q/3991PCJPW2iKbtP+zXFIqhHPwWBQy/Uej8eNx/HFXPj5fF6L/DqFwiTQBKtJVKCY0JROQLGi3+/XIt6eY/Y5OgliJJxiwV656xQd+v1+tT7uBwkqUyocRY9OCAofk8mk2juuQ+H7YypB3DOe67hXYq0L/00y7DoE3m8ucmgnjMkwaw9YSHH0nuOm6EB3BJ0TFoOYfsH1MYH3/RZwCAoz0aHCfUJBwek87rcLaY5Go+qzPp1Oa3vJ683UIu9Zt+M95dMfXP+CcG0Tiw9MiXC7FiO8d9x2FNsSiUQikUgkEonEDg6FoGAiM5vNqpxs/26b/l7WYxMPEwa35cKDto+b8Pk5JiomlyZvJi0UBOiCMOyA8A+dBqw7YIJER4BBaznt5bTf+16TOp8OEe30zMdnpJhuBLflthlxN1iToCmdgacfeN4oFNAiT2eC72FtAIsWFib8I9XraPjZvV5P7XZb4/G4IpS2qjPq7ec52u+TKfyseMKGia7/nk6n1QkK3FuRKLNNv0/xgmksdGX4OSxQSDs+03r4LI+X82YBwOKRx0XBgek73Ffci6zxwCKgJNoxRaZJ/IkpPUSsj2HibsEkumK47zlmzpHXxHPHtTRc1JHzR0eG2/D8cS+koJA4X7j5D++t+131yYPuxqHEW3/7Abrjz7xa0v7O003jI9LjblTZIIwmEolEIpE4NRwaQcHRw+l0Wv2jn6SLtQB8T6wfwCiuCYgj2nYQOJppMuRrYyFAkw/mxks7RFDaITyOPpOsNBHQproAUQQgoY9RXrfB4pCei/iMpuixybfH4XZjjjt/p3DBvsWcdqY/+G+6J1jMkc+hG8AOBY6Ljgavs9NTYr2EOJ9+ncdV+jm+L7onPDd0YpAgM+UmPi+Sa5JTtkPXh/cg59bHZFJwiO2yloC0k67hvRr3WEw1oVOF/XM/7CKIxRa5ft7vTN+gO4SpBhYrnHrizwwFJK533O90HPlvSVVahNcnCnJNLol4LCTXm2vWlA6USOw32ldfrRu+7l76jQf8lB7Y7Z/8hksQj/mSK/XJ1iNVFtrXefr0YkP/+rv/k1qb0hXvmav3R2/Yl3YTiUQikbiUcCgEBUlVhHUymVQkg8SGhILv0Zrta00kYmE5FmabTCYVeVgul7Xz7IuiqFWEZzRUqtd1MFmOgkIsakhyHSPYjCqb0JnMcYwGrdls3+8xGu1nRpt4rOEQHSB+vcmlIO2kZcSINH9YD8Mkvil6zYi158Q1DOxY8b2tVkurq6tqtVqaTqeV+4COCDoB7Gzw/mFf6Oyg4MQ6E3GOeVSj++saDU2IUfYo/vC/HgfdDjHKb1JPMu818n+5r/wTXTR+FsWruJZ06rg9EmwKFPzMeS6YylEUReVO8TGPFr38Hl0p7DsJvufe1/goS/crpujEYp0UTbiu3AsUbFJQSJxLtI8e1egh1+tt3/d8SSkm7IVXPeD3pQf4r/2bp9u1V/X2736+JOlz3vDVutOb76jNT6RLJJFIJBKJ08GhEBQcCac1nRXcR6ORer1ejXiaXERruMmhc+Gd+kAhYjqdVkTIEU4eE+hrmRtPYUFSVUiPBeBoAV9ZWdGxY8d2pRW4T032bBJVt2+SZbLoe9rttjY2NirC1mq1Kis/CaePoPRznEISXRYWRVjh3iKL60pYJGAxPebn+0g/95X1BFjMkWQ17gOPLR6bSOJLAr9cLqt905QS4DZZ9JO5/FFI8LWMktMtY3CuPb9xPCTafobbI3nnf+kQiCIPQUGHRT1jhD/Cr3sd45g8x/w8skAlr2ftEb7ueW/6HNF50263q2dSEItEPgpO/Nz4c+71m0wm1dpEQSH+nAynel0icaZ493/9LL3ryf9bUh5RetB4y+f/tl77Dwv90D0fKi0XJ78hkUgkEomEpEMiKEg7pMS1E6SdQnzRPk1S3kQ6TS7oWCDpYrTUEVMf2UdiTet0JCJsM1bat7jgkyBISvzMbrdbI2QkmXZVuLCi00GWy2UV3XX9gul0WjtRgIRQ2iJ9g8FA3W63cmbQqRHTRhz9ZdS22+3WBADWiDBR9/2uc9AkFnhubLn3mrrwoMdKwUhSjeBTUPH+iKkGXneTfUaxGZ32c3hKx2KxqAg0x+kxSKrcI6wN4XmKY+Z8+Xe/F4slxs8DU0kivE9j2oMFF0bYWXyzqX9Os+Dedbv83EVyTbcAT+vwunkNJpNJtU9c+HK5XFbEv0ncoJhDZ4LFG7p67HSIRRc9Nq8RnRYRFDW4jtEhkkjsF479yT30gnv9sjpFigmHBQ/sLvSAN5SSWvqjP3qY7vqDrznoLiUSiUQicehxaAQFEgCSym63W9mhSexJKmlTJmE1yTdM/GjrNgmJOeUkN0251MxL9/Xut4kPSRJPGGBhOWmHPHIsFBRcSJLE0IKC3RishB8jvhZK7CJgGkm0ljt1hETaqRcWILhePCmARD1GmqOLJNYt8O+uoUELvvtjh4PXmoUDoxV/Lys/HSFM64hpArHKfySWXDPPEcceUzu8d3kd+9UUDWcKQxRo/OwousU9ZXgvNj2HKTDum9v166wpwv7FIz75maTTiOvhtuimoDDgPhAUpOiA8PpalLIQwudxb+7lOohrHZ+fSOwX2lddqQ8987560X1/Rg/tdQ66Owlg2Orqf17zZknSzY9b1ZtveaTu+NOvPuBeJRKJRCJxuHEoBAVGKVk/wDnSjDySePvHOfGOmFsAiMXWSPToBHAxSGknyhsJ+V71EBj1ZpV+14EwCbdN3xF8t805YM0HE3geLWjxwIKFT1hYWVnReDyuuQ7soIiCwng8rtrlNZIqC7qfF8WXyWRSHc9HokY3Q4yExyMuOY8kd3So+HQGzhFdJybQro1AJ4rX1vfM53N1Op1dNRyMWHeBAkhcdyKOmeN2/9w31ttgqg5dM5yPSNrj3ov1L1gU1KAAYYHGohNFNoovJvru68rKSvW587O5Xu4fj/3kuvn0Dn9u7Uzg/o6C1l6gS8HPsfDj0y64fj45IooDngvOJ+eCdSUSif1G+4orNH7I3fXOb3u+pBQTDjN+9S5/p3/49r/Rj/3BV2r54Y+pnM8OukuJRCKRSBxKHBpBweTQRNfR1LIstba2Vln7J5NJ9T5JhomCSbekmh2egoIt8LTwO1+cBRcNCwQmhyZDJKImMCRGJj5OSYiFB6PrYbFYVJZ+R+BJLk2cTQx5tGGv16tSRTg2qV7F3uTaZJH9Molk2oOr8jvdYmNjoxI5TIw9Ps9zJO1cT88xyT8t8ibyfiYdJJ5b1qrweEwuDZPC2WxWs827P+wbLf3RwUAwDYFig9Md6D5h4UDWjfCzfIQiRZloz6e4EY/QZF+d2hEFNPaZdSsoaMRxcA+wdoevYd0Sf868B9mG97I/1+7LxsZGta48wjOKbN6PHrf7ZVHO88z36XLyM6Jg4GfxGr4XU48Sif3E+/7TffWep77goLuROEU8qt/SH//ty/S4Jz1VxT/840F3J5FIJBKJQ4lDIShI9cJ0LgLoKKcJkwlIdBmYvPT7/SpnW1KtAJ+jowYLEZqYmMRKqrkhaJtnbr1FDRInvm/SYzfBYDCoCFmMpsfIvUWSmAtuIuTI+GAwqEWc7YzwtbzfboZut1s71jKSJxNdHvNXFEU1v6PRqFobp0jQEcJxUEwgKTWRZRqL590ncFAEMtnzs0ggYy0DCwucKztgTO6jFV6qn/rQ5CBocq14Xi1cxDWwoGDBiSkwrAfAfRP3gdea5N5CC/dzTDXhHFokiH1g6gnnay8yHV00rIPBFBCvpcdg58toNKo5LOKz6EDymLzmFjg4VtbRiJ8lrm9MxeD+995hv91OigqJRCKRSCQSicTeOBSCAm3YzIk2iTDp8jW2kxvMTy/LUsPhsDHVgfZ8RqwlVfZr94d565FImgiRDLtwIUmLibkdDibnMb+dAgmfw2MXGWkmaWZuueeq0+nUUjA8Bs8JayVw3EwpsBDCPkg77oKi2ClsaZLuPHb3i+vDSDiLWZpc0sIf7eax3kJM5+AYDY/XdQW47iaptPsTcX1imgBBoaepCGjsV1Pf2A+3Z8HBc+1r+ZyYfsDPBdv0Xmrqg0W1vcbl36OLwXPC1+M4/Z7XlkdF+n3OgfvNfep0BjuHWOskpkvYUcO+u5gpPz8sHEmRisJR3LOJxNniE9/7SN33UR846G4kzgDvffqKOk94xGndc5dXTtV+1ZvPTYcSiUQikThEOFSCQowWMvJNGzLFB0bAHQ1eXV2tIsYkKpJ2kSwTmMlkUiP0TicwGH11OgL7xTx2Eydb8xnNZ7+l3WkQ7kMsOOk++P5IeEmaKa6QbJuQW1CgKOJrYhtOjzBct4H55iavfK2JXLqPbI9j8TyyXoZfZ1TafWV6BduhKMGoO/eBr/M1EXx2FJ+iCBGfZWGJwgERc/UpFHDP0nlBUs0UDfaB5Dq6EQw+i/shFn5sGiOf5zWJBRA5r3ZlsHik040sDLAAa3QDFEVRS0+KLgVfw/7E9bAg4TmjOOnPl4uaUrCiEJlI7Ae+7ml/qv905fsPuhuJM8AHH/9Lp33PPdvfonvdfN/q7+KjN2pxyy372a1EIpFIJA4FDo2gwIghCbJUJzM+3YD1DHwN6ynEyGuMSPsaw0TLZMOpFYzIktBGQsQTHJx+YUeCo/3OF6dwEh0AHLPH6xQFR/8pDpD4uKihySfbMSk2qfLReI5+08LOkwMsjHiuPC4LFkx/8HsmaG7LBJaknkQ9Ojs8r15fujA4R+4zix5KWykbnrNOp1OlwHCvzOfz2twzl54nEEiqUlb8/Ol0uiuFJjoNuDZ+ZhRZCNYs8LUsdNjv9ytXAoWiOLdeM6dZNNn+WTvE5NwCE48pjTChl1T77DSNpSiK2tpYHHABVH/WTuYAcFpIu92u6neMRqPqOXbjeA145ONisaiOS43ilOeVR1t6fNxzJxpnIpFI7IX3fc0LpK/Z+fvBz/1W3eFn88SIRCKRSFx8OOt/LRdF0Zb0RkkfK8vyS4uiuFLSSyRdL+lDkp5cluVJZXnmZZs8mlwyImtS55xsHqvIKvNN1m8SHDoMTPxofSbpJSEz6CgwwTPRNqH1iQ7uE+3dw+GwNk5arw2nUTCNwCTQ42aNA4+bhDCmC7jPbotE1gQqRvM9F55ft+daFxRzWCjS47Ht3CSy1WpVgo1rJtBJ4D573fxf9qcpWs60CQtKZVlqfX29KuzIopasIYD9XHMJEH5ur9er+hVrUXB/kFjzhAOuUxyLtCM++GdlZUWrq6uVYBTdCbH/FIT8XK6pSXJ0TtApYIdFdGe4fzyisimSzzQgOi9cX4KiDEUYCgwWurynvFcouq2urtY+814/78V47Cw/Y9E5xL3tnzhHhxn79V2c2F+s3PU6PelPX6cvX/uwpMFBdydxQPjf3/Vzev+33r76++d/+Kt05Ldfe4A9SpwL5PdwIpG4FLEf4bfvlPTPko5u//1sSX9ZluVzi6J49vbfzzpZIySPdChEW7evOVFUv+l3EwQSVxILExEW/TMisTZJjISK0U8TGr8X0zNMdkx8SXSYR+/2er2eJpNJLQ2Ec2VXhG3mFBFow+eYOp3Orhx23ut7WHxyZWVFw+Gwti4mfiaRtNv7dUd+3Qaj4oyyRxcDbfWeH54qEd0KTDdhysh4PNZ0OlVRFFXEmukIURSwsGIhg2KF54LPbkpHYYoM3RceH4Uu/22hgXvQY4gOFwsM7LvnlSdLkExHccDPs1hEscGE26JCTO1o+oz4dwpuMb3C8+f+G5w7P6PpdA+/blGN4hE/q3TX8DvArgx/Ru0+4Zp4j5zIVXIIsS/fxYn9RdlZ0VOP3qQUEy5tPKrf0qP6n67+/oWn3qT3Puphp9XG1a9v6fL/85r97lpif5Hfw4lE4pLDWQkKRVFcK+lLJP2YpO/ZfvmJkh6z/fuvSXqVTlFQ2G6zVg/AINE1yeOJCVFckOqkhPnnJOR+ZozwO8Is7RA6EytHb33Epa8xWWZ0mhHwmNPuUxMiGfM9LLJnMkhBJEad7dpwX2mRpxuDoEMjzhsJneeZJ0u0Wq3Kws60AwsKFD08/0xJMXm1C8P/jRFkCg52PJhwk1y77zFVg2khHgf3kfvne0n0ueeigBMJdhQYIqm1EMJ6Aaz/wbQTFiO1+GPS7347tSTuHYtVMcrOMbgfFmFiGhD3IOeB6THcO3uldvBzRVHBz2BRUPeHYs9sNqs+U91uV51Op3I22JkUP8N0WbAQJOfD4pZTqOhyoABzoWA/v4sTicS5xz888PekB57ePQ+67inSe3duWvnELdr88Ef3uWeJM0V+DycSiUsVZ+tQeJ6k75d0BK/doSzLT0hSWZafKIri9k03FkXxDEnPkKTBYFCRF5Itk2BGiZfLpWazWRUlpx2ekVFWky/LUuPxuJb/bWLhqKyPfZxOp7uO4zOZcXqBiSSfzRQHFvszMZR2BAWP1UTcpM2R016vp8FgUEVPnTvufpt4MUJrgr26ulo5GmLqg8kmyR2JIgtE+hkULpjO4HXx2pFoSjukznZ9RpVNjL1+nlcTbgsGJOUmePP5vJovFmr0Nd47Xg8KOr4+nuhBN4uFItZ18DUmy0yxiPfwbx4L6WKT3jMm8FI99WAvQSymxzCiHqPo3o/eG+6rSTgdMF7nzc3NWooO9673DIsXes3pXvBe83GjvV6v5pTgZ4o1DAzPtQn9bDbTZDKp9ke73daRI0eq/vp53hNOO6IIx/om0Z3EfeHnU7ByPy4QPE/78F3c1/AcdzORSJwp3vrQ35J+b+fvu73iGbr3M1NQOER4nvJ7OJFIXII4Y0GhKIovlXRTWZZvKoriMad7f1mWL5T0Qkm64oorSkZpJdWKq5kEOnq9ubmp6XRaEbZ48oCjvoxMbj+zysM2YaetnZZ2ihgWFBiZH41Gu1wKFEBM5vzc6CgwKSIpnM1m1d+dTkeDwaASMjzWY8eO1fLXWZDP7TiabfJuEmzLuOeKBfNMLKNl3G1GAcPCx9raWo1sTqfTihgyQuxx+ahJpgB4TldWVmoF+xghp0uC0WaPyfuE19CSb0LpdSQxptPB11o84fiZBuI5cpSb9T4MukJcJJLpMp5j95mihFRP7WhyzLiPnBvft76+XokOPkrRezXuV66R24snjNBtEQUwFrf0Z8Lz6naaihtaMNtLVJjP55pMJlXBTzuAVldXa+4MOn8oLjDVyHve80TR0A4SumY2NjZ2OUAOK/bzu/hoceUFleORSFzK+Ksv+im98323q/7+vt/4Bt3lh7Pw40Egv4cTicSljLNxKDxK0r8tiuKLJfUlHS2K4jck3VgUxTXbSuw1km46WUMkYZHImJiwgCAj503pEVI9TWEwGNTIPJ8b7eq+JkYxaaN3ZNWih6PNdFZIqkXCm6LI/J3RbkbCSfim06mknQg+SaBJL+9zhNht06LusdHGzzXweEl+/RzOC0kj6yGQMFNQoOWe6xtJrW3/0o7bhOkJJLquVcG1M8mkwEBhJbbFCDZdMhawZrNZFa3nXuK6xxodTD+hq4ERcc8b9yvFCaZnsG6H18kODxd+pFvEzgGusT8v0c7P9fScUwSIn8em9AKDtRu41kxp8PyzaKhTSVxI0W1ZaON+Y98oksTPGcVCt0FHTkxnWVlZqb4vnFZyAWDfvosTicSFg7t11nS3zqT6+8+f8Hq9/LqHSJLu9wMf0eLG/MifR+T38CWCm/7jI3Xr5+w+CWsv3PdnN7R86z+fwx4lEgePMxYUyrJ8jqTnSNK2Gvt9ZVl+bVEUPyHp6yU9d/u/Lz/VNpvy+f0PfR5359dJuCJ8D+ssRGs7c7VJQn1/U3vMybagwMKGFCJIqEjEGKEnETbZczTZZNEkeDKZqCiKqjij7zMhI6ky0TbBonOD4gXnV9oRdKKwE/P+3U+/Z3gOOVYT/hi959+cE2lLjKFrIgoTnHeTS+4dEnC6CyTV3AcUEdwPugFo72cdCI7bgpIFCrfNvnuO45i5PiS+nNPocKHLxNdyn1OA4P6NAgbFND+f+5h98HO5V+Lr8XPLYysp/HEcbJOuCz97MpnUjvT06SDR/UORKwoIHJfnmik0FDfa7bZ6vd6uPX6YcS6+ixOJxIWH513zRj3vmjdKkh7+18/U6sev08r6THr92w+4Zxc/8nv44kb78ss0/dx7SpKu+coP6S33+eNTvvcB7/lW3eGqz6v+7r3xvVocO7bvfUwkDhLn4pD150p6aVEUT5f0EUlPOtkNjPT6H/4kfyZiJgCSapFOqe4GkHbyw5kD7jZZ+M7EitXwGf2PpMrEY3V1VUVRaDQaaTweV32QVLPqx0gqq/BzzIw+27I+GAzU7/erKvS9Xk+33XabRqORRqNR7ShEaScXn+SYJItjn8/nu663BZ3Hb5roMX+fqSckrZxHRq1tKfd6UQhyXzzn7XZbw+GwKrjnIyUt5vR6varv7gOFI4oPrFHA0y9IRinEuA2nmrDSf6zhEMWRSJL9OufZffOzKKp4PNxnkaTHdfQzfJ+FriZxjI4R7zFe6xMk9nL72JXjZzc5bliTwY4Jii1RGHEqBvsYhSWukUWmKChEwdD3cu44T943FhP90+/3deTIkdraXEiFGRtw2t/Fif1HsSw1LxfqFO2TX5xI7BNe+z9+XpL0o5++r/7uQeGEkfD9nTinyO/hCxX4N8ToUffWq37xF8+omX/6zufX/v7XT/tGdf/sTVt/5GcxcZFgXwSFsixfpa3KtSrL8jOSHns695sgMBou1V0Bg8HW/xAZKWa0mMUAGal1dH8wGNTyrH0Pi/yRXJqQOs3BkVNfQ+u8j18cjUa1Qm4mJTxyb3uOdqUJ0NVggjybzaoot4UFSVUu+Xg81mQyqdpnbr/7ZfJLUh2jryZaFjp4UkW/368RdM7VbDarTnnwuEkESXSZluBaDIyKuz90NPjHKR4slOhx0UZPVwXJIB0GcZ54dCbTF0iCx+Nx1cZ0Oq32KuswRNJOt0pM0XEdApJZOg5I/CmMeB3cRxcQ9T7x2JrcPPyseN69n/l5YkqLhTjOi/tFIYt7mPvH+4tiWbvdrtaeDgbufz6LbgG6PprEGa8vRSWml8xmM43H41qag99rtbbqtIzH42p9LLBdSDjb7+LE/mPzQx/Vlz38ifriP32rvu3yLKCXOL/4nivfpsd9YIcY/fCHnqjFv/74Afbo4kd+D1/4KB/1YP3ob+wICEeKf5D2qVjm83/hZ3W87OhvNu6rv3jAkZPfkEhcADgXDoXTBskkxQTaoU2+TepIREwGSfaZauD2TFAi4efvvM6CgkkSCQot7CTOFA6YZiBpV79ilNevm2COx+NagTsLKyZWJFDRsRFPdPB/TT5JqtwPF5907QW7Inj8osfltbA4QCElRpqdF891sHgxmUxqpzp4PH7fQo7TR9zHOF66WxjF9vOj28Bz6vebcvD9Xq/Xq2oo0J1AEuz5o9DhuXINBu5lEn+TWa6Dn810BhJgrzlFifiZ4WeLDg73K+47jokiAAUq703fT1HB13r/uc/c826LAgBTJih2RHeNtHPMJoWjeK3f9/rTjUT3gcdhgcPiCQWZ6FBKJE4by4U2P3qDRsvuya9NJPYZw1ZXD+3t/P2Dd/0Dff1LniZJuuZFPfX+5A3n7Nnv/bmHqXP1eF/amj07i00mzg1u+fpH6LYv3qi9ds0Vt+qhvQ5e6Wi/cL/uljBxXfut+qWXfKvu8f+ua/HeD+xb+4nEQeBQCQrSzhn1fp2igau9M/JMYhgt1QbbpjjhNkxATFZMWh2lZNTVpIf3MoJsokRiyj6SaEbxw2TIZH88HldpDW7fgogr4NN+Hp/T6XR2ORIYzWZkmSTMjgySf9dyYFTZhHY2m1XuBxNCzx3FA4/BfeIpBuyTpOp5FgMmk0lFCBm15txJ9XSPvdY7igYuAhgFFs9Hr9ertRlrBVCY8vpZWKCtnvUEeBQiBTGKDPF5sW8ku/5McJ9yjE63oWuA+5fuiCiEsR3Wn7CLhkJSUyHHvcDiiDGNQaqnksT0BYKiGe+XdoqpOh3E+y+KCpKqNBt/bpoEv0QikbiQ8fB+W+9+9K9Lku7+qW/Wtd2HqlhIg1e+WeUpnmpTdLoaP/7BKk+itz7/8S/S44f7U9j2oWuf2Zd2Eon2ve+h9ftdVf298W+P6d2PePF578c1K2t696N/XQ/60m/Vnf68q+U/veu89yGR2C8cCkFB0i4CE49rI8E3OTAhcCQy2vhZfE2q12qIJJpF44qi2HVMJMUEPkfaIbG0R8cK97RoS81596zb4Mj/dDqtUgqKYqsoXVluHb/IeeD9kVxzzEwZYd8YWbZDwYJHFAVMBMty67jIyWRSuRRcN8J28X6/Xx17yZoOJtqOwls4caTeEXELHL1er9ZvCjEWgyL5ZPqBr6Pl3qCNnwUcWX+DbZiUMhoeRS46NtwXrhUdAO6jn0sXAZ9tgcTigOt4SFvHHLpQqB0lXFsKLRyzBRqntjQ5D+hQYCrQ5uamJpNJdT2FDO+dKN74maxn4s8w54pzGEUjilbciwRFnm63WxMnLWZFx4fvm0wme4qTicSZoOh01VYKVInDhQ98xS9IXyHdthzrKZ/3RC1vvlXlYiEtGwpdd3YcNu0731F/8fMvyLogiQsOxcqK3vcNt9d7/sMLDrorFd76n56vu933m3Sfb1s5ZVHvUKDVVtE+te+Acn7qp2IkLkwcCkFhsVhoMplUJNb55ST9LGDoqDhz52k1j3nUfI1WcpNVOxK63W5NyDCh5H8d5TeRYioEo9Q8CYDpGTEa6+spKiyXy0qccF73eDzWcDisxtHtdtXv9yvhgdXq/Vw6FJrgSLmfOxwOKzLq9ldXVysiScu4UwA2Nzc1Ho81nU5rZNj59Kurq7UxU1ghAWY9BrbT6XQ0GAwqYYXrxvx4qZ6K4f+aMHtsnU6nqj3B1ASexOA96X54X1Kw8Hz4h6KV93AUUPysxWKh8XhccwW4XoXndjQa7RJPnOrj/ew19jpNJpOK8NvZwVoHXutWa+tI0V6vV+1d1gnxHIzH410uGr/farU0HA41mUyqNfPY+BmwMENRg59prpv3jQUfzwWfG90aFgz3Iv/er15HOjN4vKb7FWugRGEzkThdrNztrvrJv/4t3bPTk5QELHH4cFlroOe9/mWSpKe87Wm63RPeU3u/fdWV+v/e+EodaW25Ctsq1SnWzns/E4mzxT1f09Zv3PEnJa0edFdqePMX/4xe+JYH6a8++3D160R47/Meolc+8adOet2ty65++HMfp8Utt5yHXiUOCodCUJBUy3GPOdTSzqkNft3ksizLqkJ9TCmIEUi2ZwJucmUxgUXuaCM32TIc6XT7tIPTVk6Sw6KC0a7OCLBfc9R+Op1qfX29qutgEkWiF58Vo/dRWPC9JpmMVPf7fQ0GAw0GAw2Hw9rcL5fLWn0D2uRN/hxB97iiQ4HCAsUGt+ciiBRhODdNefLcG3Z22NUR6194bj2PsZhlUzoI0w0oeJAs8x7WrWgqkMh1YK0Kt+lTEnw9CyN6jplaYrJs9wCvZz9I6pkOQCcHhSnuZxNst+89UhTFrgKLJuesa8J9ZxEj9ivOE+eL7dB5RLeSn+E2ZrNZzRnh9BV+RtmvWF8lHQqJs8Hxr364ut/wySpnNpE4rLh3Z4vI/Pj9XqZnv+Irau/1Opt6cHdF7SLrgCQuPBz/6odr8u+3yOz/uv2v6Hbtw0far2gP9TWXvUUvecXTdc13TrT5wQ8fdJd24TPf9Agtn3Bz9ff33/MPq++NE2FeLnTLb16p6fz2tdev+omhWn/3ln3vZ+JgcCgEBRa2M0gwiqKocptZSM3EZz6f186vj7nUfo3EMebJ9/v9imTyOEaTGBa58++0Wvd6vZrDgEQykhLmrZtwLRaLyi1hgswo7cbGRnWko5/ttvwMRnM9N7amx5xw1kdgioJFBAsLPrLSc+ZTMVyskGIDUwZWVlaq+TR5tLvEjhL3g1Ft2uhZPJFuExJy982uE4+LxJCEnAU2+dwoGsR7SS79X6aoEDFq3pTzz7boUvDasy4FnS+8330mQacLh32lUMc9QJeFxxkFBfY77h/Xs2i6lrUKOGd0hdhlI9WdJrENv+b1jrVW6DzgiSJ+j2kb3p/sFwUifn+koJA4G9x6r5be+YDfP+huJBKnjMcN53rcQ17S8E4WqE1ceJg9/vN145dO9f5qTx8+McG4dmVNb37IS/TAr/hW3fkvhlq+9Z8PuktqHTmi277k/pKkxZfeorc0fjecGJ2irdc86P/uev2e//ZbdPs7P/ys+9hZX6r/h68/63YSZ4dDISg4Mhjzx1m3gHnvLDQoqbLfsz0SCv5tAsscchMZW9t98oAJne/z9TwWzyTaFnLWW7AoYNCi7TZ8wsF8Ple/39/ltDDBXi6XVRSb9SIYyTcxo5We9nG/57myMDAYDCrb/NGjRzUYDCpXwerqavU8Ej+KCibztvJ7TtfX16tiiiaSdAwwTcW/83QAj4/uCYtKBPvjkwgc9bYwxCg8++I54ZxG4t4kMvh3knGuc9yjcS8QdEJ4f3nP8+hQ7lW/5j5SILE4ZOFmOm0uitVUQ4D7z3s8XkPXBE9N4XrE51g05Br4x23Ez4rbYn0O73/D+8Z9invMIpU/k3weBUHuC65v3GuJRCKRSCQOP1rDoR7x46/TX9/hbQfdldPC2773+br7XZ6p+zyrr+V2gO18o9XvS+22yvter1f/1M+fk2e872teIH3N2bfzwtvupJf99d12XlgsDmzeLmUcCkFBUi1tgVZnEwGeJhDznGPqgY+IY6pDjECTvJvEmTDZij0ej6s6A/5xW5HYmNQxHSHmk5tUkdDb5u5aBG6HLgbfd9ttt1Wk0kJLnAvPmx0M7kc82lDaiRAPh0MdPXpUV1xxRVUA0f/t9/s1IcRtMR2k3+9rMpmo2+1W6Qp2VdjtYfLN+haOFtvJwB8eTzgYDKp6DIvFQsePH6/64fmiaDEcDtVqtTSZTKofP4cuAM+rhQySR0fGuV5eS6+XhSGvhfvrVIWTEe24ZykqWCChg4VjdFoEHQlMH3ENDgsq8ehMI4omTU6W2F8KC96/KysrmkwmtZoN3DN0UvDkEL/n1B46lfzZo8jjMcf9FFN/fB3TXPw7nU5OiWhaG39eEolEIpFIXDhYufOd9ILXvFTXtAe6EGvXvO0rn6f/+ZjP1asfdDBpRg949VTfc7u/U7sodJhdHZL09KM36An/vFP35cdv+td690MOsEOXKA6NoMDIeSxg6Ar//uFRdb6eJJEE08Sf5JsRfEZm2d50Oq2ID/PtfZ1JWyTqHoOL/pH0GSz4Z+LInP/FYlGRSdYLcNSaeeoWDJps9XYnmDyZDMaaA/673+/ryJEjFTllOoIr4zMdpCzLXUdDMsXCxQWn02l1ioC0QzR9j+tX0IkSC+Y5HcTjolBhFwfFnsFg0EgGo3PAY+T6MyXG/eV7fJ+Cg8dFMSEWH2T0m8R4NptVYgyPzHR/2bb3GV0PdNBQNLEIxna4H9xH7o2Y0kEXDGsiMB2F80S3gecpnpJCccRzElMQfM9wOKw+9xTK3F9+RlwDha4X7gP21cU6LUCyj+5zInGmeM8LP1/f/shXHnQ3EolE4pLENe3BBXsSyVqrr6dd8Xr9/V8+RZJ0629cqyt/9TXn9Jm3ft0jdPSpN0iSvvWq39I1KxdG4dV20ar19Tuv/ms9c3vejM1lS4MnH8vCkOcQh0ZQ2AskwCQ3sTgbSTtz7k0SnFoQC9NJqrVpcmKiylMUSMRJpEjy6Ihg2yRy0W5tmCzxdacTMKLuH5MuOhAIRohNAmn3p2XeBNanIThdwvf7tAkfE8m0Av+weKWJuk/EGA6HVUE8g6JRU5oBCTBTJEaj0a7IOgsw2tnilAwSchLzWDuhSVxyn/haLJDIuY7WfZJeo6nmgMUUt82TGliI0z/x5ASma3CPNhUBtWgQ167JjeC+UQyJezzWYogOB57OENuPLh+6L6QdAcDXUkykw8gnjsQTPjgfFILcLwsufo2nr+QJD4mzwVc95I36nis/cNDdSCQSiUsK7fvfRzc87iq1tPvfHRcS7rKypj+/3x9Ikh7whK/RxvGHafV3X7cvbY+f+FCNrq6LLeuPW9frtp8nXRhiQhPu0dmZN2NeLvSQr/92ddab01iLhXTlr72+8cjcxKnh0AgKseia4d9JWPwP/5j2wIg3izQyahyj0zHKy0iltHOkpdMfSCaZvx2LKTYRKEZ5HW1l1JanSzCKGy3djma7zoTb5jPcP5Nc1z+IwgLJn4+OtF1+NBppfX1do9FI4/FYGxsbOnbsWK1YICPxzN33fE6nU21sbGh1dbWqx0CiyihwJIfuX7TLe+yeM86rBQ+ntLDeBUUIzlN0JHDfuZ8kpu12u5oj7qu4v7gnvIZMF6GowZQYX+8aBUxjobDFopCeS84t55XChveW59rz2nRPUw0Jfq5iwUruVRJ5ujF4DUU5/013A2sf2J0T0yK8h6ITiTVF4vcHHT4s9MiikfxuSCQSiUQicfhxw+Ov0tu+9/m6mAqJ/tPDX6z/fq976W/+8tqdFxcLLY4d23Vt+4orTtre/f7z2/UL155bx8NhQqdo663f//w9379psaGn/cW/U7m+oXI203Jj4zz27uLAoREUDFqU42kAjNyydoCJFo9AtKgQjwqUdki1o/8mIb633+9Xudu02Pset2uCaGHAJMWFDtfX1xsj4CZFo9GoImQWLtyH+Xxe1Q7wXLRarepIREf+I2h59+92cNAuLqlK2XBdCqcwuLhkWZaVoHDLLbfo5ptv1vHjx6tnkci65oLny+OdTCY6fvy4BoNBVZOBjpJI5k2iTSxJ/t3mYDCojcVr4Dn0nuBRnzF1ZC/7f5NLIboRWPsijrcsS00mk9oeZiFA1ouwKMCUCO9DCknxiMXpdKrlclkTb1h3xJ8LF/P0Gg0Gg12pOxF0Qkg7hUpjtN7tUkzzfJCEx1ojUVDyPdwDdg3QiSSpVsiU9TY8RxQevB/G43EtBYrz7TbdL4ocFF4SiUQikUgkDhLfd+W79cy37xSY/K4bHqePh0MSWv2+/tubX6m7dU4cDFkrerqYBJezxe3bq/rN1/yOJOnRb/wGXfNlB3/CxoWGQyEo+B/yJCLMZzZBYOE6RxSlnUrwPlrShNiiQqu1VR/Aln2SpvhsCwrD4bC61lF2Rldd2I3RZROsoiiqUx9Yy4BWdzsUnF4wnU6rcUo7NQPsuGA0meICj4+0eGDRg2kZzA33nDFiy3mmSOD+MfrPqDDb4zGUngcXUXSfL7/88qrQI9efYtFwOKylarDgIIsx8n6P3QSQJ3QwvYTCjkUmi1HRfWJEB0skxRSNpB3iy5MMnIrB31l3g3va6+H5cF9J1ikUuV/eZx6fr6FjgnvIYkBT1D+6dwgLFxRj9qo34OfFz5nvtSvHwlb8fFP4oKuAe5gOA19nuPYCnQcxXYZpDp4bHz2ZdRQSp4v27a7S8GWFnnnV7+tCto0mEonEhYb3/OLn6/se9Qcnv/ACRLto6bJiUP39nGteqR/8hyfUrlkplrpft6Ve0Yu3J06Cy1pbc/uCB75Y/+sfvlCS9Jln3UWtv//HA+zVhYNDIyiYvMR8dUlVBXhGJOleIFGIVertKojHG/pZJlIm4u4LCwWaTDsiTBHBz/J1JJskRDG3PqYgmAD7iD/b+fv9fo380Hng/ps4m7w1ESXeQ2IcbfKxKB6JGEWRmKfvH9dJ8NzM53ONRqMqHYJRda4BiSnrRjAXPqZY+Idr7j7aUcI9E6PnvJ71AeKYKcawJobR5KJg/7gn7AJhDQOmAPgaj9v7l320Y4CngTTVOeD4LFDwM0NnDU9miOkLdEr4M+Z+en5iXQo/g/dKqj2HJzxQMKQ7oykVhe3y88i5cD9Zj4Fr7r57Hvl5oJiQgkLidFH0evqtu/+BOkWKCYlEInE+8ZjPfpe+7fKPHnQ3zgvu3VnVb9/trxre6TS8ljhVPKrf0qO25/XuT/lm3eXI56v3J2844F4dfhwaQSFGF2lBNskx8WQE3u/H6x11lnYs6t1utzqFwESGpMX5+Ix6uk+OdJLoRmLJ6H4kMU1pD7ZuO72ANm5py7I+GAyqCK7JFE+vsNhiQcTj29zcrI7iNBjF94/vIWn3/DuCzSg66w6YiJn8Ovrue13M0Q6PXq+ntbW1GqGmE4H7gGtJcrlcLqv+mnDTfi/tnEjBead1nesQn1OWZeXKoIjAtkjauS+jaORr4n5yfQfOJVMxmPZDgYspE47ocz8x3cHr7L1jIs/UAK8TRZJ4ikh0A3EuvKdiWk/TXqLzgvPk/RqPg43iBUUKpqfQ/eA5pDjgPnG8FkA8LzyK0/vYrpgUFBKng9ZwqOXVlx90NxKJRCKRSJwlPvDlv6D7Xv11uuufHHRP9kZrOJT269+qy+UZ1484FIKCUxJMLKSdaHvMvzZRYm62o5r+ncdL0oZvIcJFFkl4er1eRdZcb4BRX0eJ42kPJJl+zwSGkVCOIVrUJdWcBcvlsqoFQMu7j0I0aTOBcrrHfD6vjrl0HjoLA1pQcb0D14pwwUSncZhseUzso388l+6Pn8F6BCbys9lM7Xa7qhvhPngNeTpCURQVobfDQaqfLMB0gViY0P/1SRR2BFiAMvnsdDpaXV2tpRVEd4nXws/3D0+48NrYuu924t7l2vvHR11Gku52ptNpNcesB+H1Ian39YT3n9fUc+MofnRSTCaTXakmdATQ2eM9HsUzfg79Oh00UfiRtoQ8p9MsFosqVYnr4jXw3DL1yKlFFE4oULmvTmsx3A/vsfhd472eSJwqPvbMB+tN3/u/LtijyhKJRCKRSFw4uOFbH6zxNftUQHxZ6F4//LYzEhUOzb+WGT03ATBxNXHgEYaMmJKwxyirpKqmAo81ZGG3aJV2uxEUGKbTaS3CLO1ESIti68jFyWRS1UaQ6tFhCw7M82f6gcc5mUxq5NTF/dgniyckYTH67Qhsr9dTt9tVv9/XYDDQYDDQcDjU2tpadWSkpOrZGxsblTuCbgfPlefNYkR0FFhUYN5+jOKbfFIscr+97kztkFQjmyzK6B/m5MdoOp0AJuxMm2BUnEUPud+ikBQt/3R1NL1npwWFGxar9Jz7mb7X6+j7uM52MXhe+GyvGecwrqn7zPHRKUEBLqaeeB9SwOKaRZeR55TFT5v6SXcB97JBoaDVamk6nVZioR0dTC2h88bz6v7Q6dLkNkkkTopCKSYkEolEInGR4Nc//1f0o3/zBE0fc6PUwA3PB1oPvK9ueNyVje9Nbleq3K/6mkWpG77tQdJSWvv4Ukd/87WnfOtZCQpFUVwu6ZckPUBSKekbJL1b0kskXS/pQ5KeXJblLSdpp5a+wP9SCDCBYz2FSPwtKJhM2glgImYy7wg2n8e29sqTp2Wb98ficyweSFJlmOC4zRjpdxvxNAeSLvbTZM5jdht0FZh0umBkr9fTcDjU6upqdVwkyeFkMtFkMqlF32OBPRNkzw+L+znVhPUWSGC5/ow+8xQNk8SYIsBIswUIriMt/CbqdrI02e6ZckCnASPxsU3m/jMKTyHA1/vkh1gzgaIE95IJua+JKQcWX2zZJ5F3370+BPcg3+MaxHWKKQzeY963UWCgG4RpLU3pC1GY8POa9ggLWrJvdjSwTgjThHwvC4ZGMZApNJ6nKMAcZuzXd3EikUgkzgz5PZxIXHx4aK+jH7nLy/Ws4pFSeR7/Tdhqa/MxD1bZktbv3NXozuchyFVIo223w6Lf0uALP696q/fpsZb/+M49bz1bh8LPSHplWZZfVRRFV9JQ0g9I+suyLJ9bFMWzJT1b0rNOtUFbuU3QJe2qdl8URWXxj64CRqjdznQ63XXyA/O5mU/vn73y52nlpsvB0X8TKR5dR4JrkLiY+JAUmVQ5wsr5YUoBx0+iTEs4x2yHgoskDofD6scFFd13Cwp2WpiQ83l0ILh/XrNYwLIpBcARY7friLPXm+vg8foew64Kz6XXwBFq2vYdgee6sPYE95D3D48XjekgdEaQCFOoYjoG60z4/Xhah/eXRbHFYrGr2CX74hQXpi/w80BxIO6ZCM+P+8J19L7iulPooCBAgcxCk+eAxF1Sbe3t3IhCCNNk3Jbv8Z5223TtuB887jWKldwfdNcwreUCwL5/FycSiUTitJDfw4nERYhOsVT7HnfV8iMfUxnSi/cbrdVVFd2u1O3o/V/UVblSakufPL+YXrXUh79kJ936yAd7utOHr5Bubr7+jAWFoiiOSvqXkp4qSWVZziTNiqJ4oqTHbF/2a5JepZN8eUZruXPnTeaOHDmi4XBYkdb19XVtbGw05tk7Z98EuN1uazKZVISaJIlF2kgkt8fT6Fpw/6bTaa3Ogq35FgVMyB3BZhSfbVFkoBWeEW9pR7yw26IsyyoHn/Pn9+NxkrHInOfGTgWT5rLcKhY5Go30mc98RrfddptGo1H1fM6FyTQJskmd59fvMdLLPls4oIhD8t/tdqtx0hHg62LOvufUEWnWl4juAO4/klET+UiAPS6nU8RIPkUcOhpc28AndnhvUwBiukN0qnCPk8y75gCdDRbinEpAkSGmnvBoTffd+8Gk3ISbQlp0nMT0Cgp0/DumNHW73cp9wr3ntumyca2EXq+3q6AiXQbSVjrMYDCoxuC+uC1f07QH3E/2+bBjP7+LE4lEInH6yO/hROLixf27A/3x3/yevuCp36jOn73xnD7rpq95oG69r7nnwaRYNOH49Uu9+7/cR/ru5vfPxqFwd0mfkvSrRVE8SNKbJH2npDuUZfkJSSrL8hNFUdz+VBrjP+hNwEysHTk2Ibr88svV6XQ0Ho81Go0qwmkwDWA6nVZHPrINE64Y0Y4RXZISE0U+gwUFnZZhsmjiJtUdCSZyTCWQdupIkFAyquqx+Pmj0agimr6O6Q0mvu6XSRtdHEwRMPHe2NjQ+vq6jh8/rmPHjlUpJByrx0WhwQTW/WdRPxNAzhnHHWFyTDeJ54yCgiPPg8GgIsUxom8Cy3VlSkCr1apIdLvd1mw2qzlDvGc85l6vV4kpPO3D/bJjINroPUfSjhPHJJzCjAUephkwt9/iSty3njcKMvwMcV+xvgPTAmI9AjozTOYJfya8R11zw84PpoBIOwKXnzkcDmsCjdfM895qbRVsZWHV2J7nzvf5M9DtdjUYDDSfzysnQ6/X21UvJQo5/hxeQCkP+/pdnEgkEonTRn4PJxKJ08bGVz5Mt9x7hwfNLyul3dnhB4+T9OlsBIUVSZ8r6dvLsnxdURQ/oy0r16n1qyieIekZkrS2tlaLopIU4fpaxJtEy//4Z6TUBHKxWGg8Hld59iz8Z8u02zbZd7sxlYAWaJM7Ej33l30hoWJ0mtF0E0eT30isPH6TWD+Xx07abeD54XhM8KJQwnQC92djY0Pj8bhWUJI1A/xMCxQWRWIknBF9P09S1RbXjO9LqqUQcO4YmfacSDs1ELrdbuUS8bjiiQwGaw5YuKD44DoddGF4PePz43wyVYfPjakKTIPx3naKCp0XvI7OCd8Xn0FCHlNoKMK0Wq3KjeH+8ic6Cyiaef2joOD9YaEkzi9FPbom/FnkfvDzfD+LjsY9w8+J+7VYLDQcDqvTXlw/xGJinEcKChSMLgDs23dxX8Nz08NLAJ965iM0fOxNB92NRCJxMMjv4UQicUpoX3WlRg+7hyTp1nu2Nbn9hV8E/GwEhRsk3VCW5eu2//5dbX153lgUxTXbSuw1khr/hVWW5QslvVCSrr766pLkzhFGEjIKCiys56g17d20aJdlqfF4XCNVkipC5WuiPTpWw2dOtaPCUVDYHlctAkxhhNfGegckgm4nugEWi0XN5k6LuU9uIBGVVFn+OZ4o1ph4T6dTHT9+vIrQ+z6KNrTJO5pPN0GTxZ52eUejLRpEu7z74poGnDOmPFAg4bO63W5NFOLRf3EvxUi+3zNpdVSf5DjWHuB+4BpLO1Z95vV7/O6j26CYQOLsPRDrcUQiHPeNr2Gag/eaU0miS4EpE5wfOhz8fDtxoqDAYqcUyXytXSD+jHgfeX/HootRnIp1KijeMeWE3xd2WtilMBgMau4E/5f7iet1AWDfvouPFlceHn/dBYYHPfWf9Kt3+buD7kYikTgY5PdwIpFoRLGyotZVO6c0LO56B3303/jfsxe+mCCdhaBQluUni6L4aFEU9ynL8t2SHivpnds/Xy/pudv/ffnJ2uI/5E3sHEk08WFUu91uazAYVKTKBM339/v9qhjjbDbTeDyuHavISH673dZ8Pq+i8SaGjIyaGLFWA1MGDNZgkFT1g7Zxg4KIx247v0UAuxIYhSapdxTfRJ7pDhQ5nC7hwoueh36/X43F7oT19fVqvvxjYhWFCUm7CJcLJFJM4RGZnjOPcTKZVCkRJswWiDx+p3pMJhONx+NKiIhRd0a4Pe5+v+/9WpFbj5uijx0sJMmx8CLbiS4akne3Q6FAUs3dwdQW38+xrK6u7nKFxKMio5sgCnB+zUSdz6HQYpeCI/gUUeL8RvizZHGJDqL5fF61RyGA7hDPAQUrHsNJ0BFBkS+KJG7P82cRriiK6pjUmGbTlP5AIewwYz+/ixOJRCJx+sjv4UQisRfa191Z7/r2aw66G+cUZ3vKw7dLenGxVc32A5KeJqkl6aVFUTxd0kckPelUGnKUs9frVZF2W79NDJwuwKirI/PR3WBCbeJqwmRy5fvpRmANBZNPkjJGiKODgGSO5FnSnuSEhGmxWGg0GlX3F0VR9dsRVqZEsA4BI+ex4GSr1armlNFv2uotGIxGo6ouA9ME6Kbw8zwvFgBIGhn99vgZZbYLwWIPBQdJ1TGZnrONjQ0dP35cGxsbGo1GJzyKMqZceJw8gpHCSyT07XZbw+FQGxsbtbEb7ieLGUqq9hPrFnBNiqKouRLoWuEa0nXj/ef3KEg4Es/nUgyhEObnWJzy/DP1IabzsE6DP4sWyEi+LSDE9BPOl+dgMBjsGj8/A71eryYmxfmJ+9pjHwwGGgwGNQHP90+n0yr9QdoS+VZXV2uuCO5T1mmwoHSBYN++ixOnh/YVV+iL/v4D+ndH/0HS6kF3J5FIHBzyeziRSFT45Hc9UvM1qVyRVFwcToS9cFaCQlmW/yjpIQ1vPfZ02mFUkFFtRuZNQKX6cYO+1kIBjxwkIXZk20SfFnf+d3tcu/pHKzmJqK+P1n2LH2z3RKkNtpQz6i6pVmuAkWiKFfzhsyi4mHB5flhjgoINo+AcZ5NgEZ0XtPv7HlreLRh5fIvFojotI1rs6ZDY2NjQxsZGdYQlBQOmL/hvE2WTURbtY+4/1zWmrNBGz/QS7gPuh1gTgO1bxIg1FSgEMLVhOp3uStXg+vp5bJPjdl/suIn1QLiWnjc7f1iwkEKKhal4OgI/Y1xnjonzQrJv0cLP8bj4bM4XnxkdDu67iy56b/p1FopkP/w761/4+FenzFwI2K/v4sQZoN3S0y57t9ZaKSYkEpcy8nv44NAaDvWeH32gvuWq3zjoriQuQnxic13/4ne/T/f5wI06mW+1ff/76Pi9L5ckje9YatG7NDKYDs2/lkkMpHpEUqpb62NxNpMpkwenSpCg+hhJkkITPrZjAsn6BtJOZNpEuOk+I6ZI2MHA6/1fR+EdkfbY2Bc/P9rrSaQ8VhM4E2Pb2B3FZVTbc0M7fczTj4Qu2s6ZCmAwf5458yRn7qPdF3ZNeIzz+bxyTIxGoyolxeKHiSvnhLUQTCBp23c//TxJtfF7rqNYY6cLBRTuJa5JU1FDE1OSYO7jlZWV6qjT+XxezavbiOkM0k7KQiTVFIu8t2KqhKTa/PHzwJQJfka8N03Yuc9Zf4SCglMp3H86KDz3UYxyn6I4xT1GEYR71O1TzPH73g9cH64HnRRM77hQBIXEwaB9u6s0fdD1amm38JVIJBKJ84NiONBbn/w8rbX6B92VxEWIGxcd3fP73qDFcg85odXWyp3uKEn6zIOv0KcqWfHSEBOkQyIoMDJpIsAILEkHTzqgrd3uBZMXW75dKG48Htfy5k2AGME1oWJkmwUJ/Zr7wKMaaQU3nLIg1XO06URwlHY8HktSlb4xGAyqIowksZ4nRtmjoEEi6JoSw+FQw+FwV9FGj8WpIfEEA8+vySmFHkZxPXee91jQ0PBccT2ZmtLv96v+TKdTjUaj6jhLVt53P2zdpyjhFApGwiOZd599rUUL14kwgTbpdRqGx8x0BB5ZyNf9O488NPldWVmpBB7PEwUL9yFG4KMbgc9hyoX3NWsSUCxwqoCJeUw1iO1YPPD8Wljj54HP73Q6VZusS3LkyJFq/b3fvEf8X6bGuC908Xg/+hrWbeDa8LPgeaaDyeBn3w4Fi1sXUMpD4gDwya+6t978gy+Q1D3oriQSiUQikTgHWJzkzMT21VfpXd9z3eE87vE84VAICtJOJLAoitpRhJIqUYH55Yyw0ppNYueCcNGiLqlWz8Cvub3hcKhWq1XZ8WNOP/PL6aige4HR3lh7gC4IwmkdJJJ8rkHC5Khxv9+v0gmYi+/racU3OXNKQSSeFFYoCNClwVQAWssjcY4ukGh/P378uMbjcUX6PS/eAy7cyFoVjCLHkxFMMqPDxX2hkOA5l7YcEU6p4Bh9/Xg8rqVFuG2nAUTxiA4DOmf6/b6OHDlSCVJ0ekyn06ovJrKsSxGFL5L7GN33WnKtDRNqF1T0fPEEDooITAvxcy3m8IQVk3eT8uVyqxgoBSivl9HtdmuiElNY6D7wnuI43QfPoZ9nN4nX0CkMFtc8Vo7Te9N9p0iVSCQSiUQikbj08NC3PEm3+66FtPxA4/ubj/08ffhfdaXi0nEjNOHQCAq0MUv14ncmMLRXm8D5dRMtv09CMBgMagRiPp9rY2OjRqDpeKDVXNqxdvt3P5+E0WOgDTtGS32/n+nxmbR7zCZ2zPt3+yTofna3260cCDxakWgSKGLUPxaSZB68X/N9Hptt7ZJq+ekUHXi/14SnbEg7xN5OjXj0IMcfxQsWJqSAEB0jUSRgagvXgq4Lpqd4XxoxrcECjiPpjoz7Wlry3X/3l/2OIogj65ynOHamVXD8nEOLFisrK9XxjixwGYUyu004r0yH4f6MghfvZzoKHSr+3TVQ7AiJKRyeP4pB3kcWNLg23MM+0cNChlM2+DmhCNgkgCUSTfj49z9S133Rhw66G4lEInFJY/mvPkfvfXqhXpEBgMT+49hGX1e89+2111rDoW57wgOlQlq/U0vzIxd3wcVTwaERFBwxjukNJKi08rM6u0mg/zYZZVTUKQTO2z9+/HgVjY6FEB0JjWKAYUHBBClGOSkyMAc9FrmLpIbE1qSI6R1N/WGxw9XV1SpVwO/tldNPESGSaVrPYw0Hr4/n35F0zp2fxci258JzRqLIPo3H48rpQUcAbf1sI7oTvHYUn6IAE4WVuAaMqHOe6fgg6WUKDdeOufusseA9EwsCRvGCz+H8LpfLXeMmYpoNHSbeH9PptBqP7/e+8TpFt4fXlKKCx8MTJNxvFpWMYhM/K3TQeOx01PB9t2H3kaSa+8Lj9H71fy28NYlZvsdz5b241+c/cYmjKLT8Fw/Wo5/0Zj3/zq896N4kEonEJY3P3K+vD3zhCyS1T3ptInE6eNGx22t+w07B5ZU730nqdrQ8OtSND9N2ikOKCdIhEhRo33YuuyOmLLZnUiTV//HPooYmiCSETgdgNLIsy8ql4FQApkgwDcAkk6IALf8kz44o27ZvYcSkrNXaqsA/Ho+rPHJGyx3hpssgkltJNbJq0cSkyRb5tbU1ra6uVgTMc8pTHUjAPZd2ITSRa6YERNLqvkbrvftNcu3rTEQ9374uRo5pSe/3+1WaR6xF4B+nMczn88qCT6s8xZu9ivZ5nT3HJposPuj1Nvn0OEx8Wf/CIoDH5fliioRUTwFiegvrBnj8TN/gWCI4Hs830yi8jv7b7gWmqfj+5XJZ9YculSio+R4WOowpShR8uMddXNVr0W63q/oGXiMKAf5vdBXQodDv92tz7j3Ozyq/O6JYk0i0LzuqF//mz+l27TzVIZFIJA4cqfsn9hmLcuvflr/y7C/TPX9/J3Dwka+5XqNrUkBowqERFJzb7EJ8JKGuE2CCaru2I5YkJSYYJPqz2azKiyZZsojAvHQTDZNtt8eCeIy685g/Fi+UdgicxQGTF9cI8DP8E+337C+PwnS7tJC3220Nh8PKNTCZTLSysqLLL79cg8FAw+GwsogT0TXh8VvUYb2CJqLmsfnafr9fs/PzGEDPDV0PTBvxaQcEayFwL6yurmo4HGowGKjX61VtTyYTra+v69ixY9rY2ND6+nq1Rt1ut/ov13kymVTjleqnL7jvsegmxRBH6OlSsOhicu+IvYk460LEmg+sCUABg2tGEu69EVMP3JYJuPcpjw+li8P9jDUf6PSx+OP96fcoSLkdilj+rLh//lxaOKR7hW4OpolYFKBLhfPh/Uj3UtyvURgpiqJW/8LpUKzNkEgYx//dw/VTP/6/U0xIJBKJQ4BPveI++u0H/aSk/E5O7A/+9TueqOE3bf2bcPiJt6qU1DpyRB/4/gdoMUgxYS8cGkHBBKbVamk4HNaIHKPFjLKSSDCXm+SOeeEmFCQvjExTLDDZYc66be+dTqcW3TUpZTTZhJViB2HiQ2eC+0vS5WtNwBhBZw79XvUfBoOBLr/8cq2urqrdbmt9fb3mguCzKWjYwcCIL4/Qi+TM99sNEPvO8bh9v0exxu34vaajEZ0Lb5cC3SBeOxdYtMXfxJEndHgeKBx530k7DpBY3JLXcR8a/p2CDwUZnqjBdAdG9SkS+FlMESDR5TV8fuyz584Ck8UCzgOvs2DTlG7D53EeWFCSIpuvd1qF12k6nVbzZ9EijpE1MyjSef/1+/2aMMY0JAtsLg5JAY4iD2uZOB2EezKRkKRFr9DD++laSSQSicOAOx09pnt3UkxInB3WlxM99Oe/R61N6fL3LbT42Ft065M/V2XrzpKk5Yq0uVqmG+YEOFSCgi3U/X6/Zhun5Z25+YyqktSRMFtQIElhfQXmxsdccxI+RpAdZWZEejabVQQnFrAj2Yk4UQE4RnulLSJKgsc+scYASdBwONTa2pqOHj1aSyUwsYtzyT5TCCCBprgTx0qnhQky1ymuh9vjOJi/TvJHh4J/fPSh2/V/ma7CCDxz55myQsQcfKZKeDysN8H9R7cLSTDrO/D3SIRZK4BpCO6XpNrr0ZXg97kHKAhZjBkMBur3+7UUGKddWNDwHDOlguk9LHLKFBLPl5/pvpvYs36HRSvWOeAYo5jA/R3XhN8FXnMLF0wbsXDJdeKaUBSJn8lEIpFIJBKJxMWBt80meu7Hvkh3/ck3q3X17VQO+yo/6x769OdKZevSPrnhdHAoBAVHop3W0O/3NZ1Oa9F9kiIT+RgZlXYi4oyeOrrvqCNFApJBR4VJmphX7zx5X+eijn6+22ZBu3g0XSw85+fF9xxRJ7nmdTEP3+25Yr6j8IPBQGtra7r88surugqbm5tV8UPPfyR3tvvbYi7tOAscRY51Bkg0mS5AwmsxI9aHoPOCxwfyiMCVlRWtrq7uSnewKBTJpUFBwn2gSBVhYkkRguKJ3Sl+lueNxNjP9X89RgoyUbwhmY/HFUYHRIz2MyXGe8DraCGAaQNOG+EpCRYRLGi4hoFTG5waQifQdDrVxsZG5Qbx3uXcM71kPB5XKUuSKveQn+kjWz1O103gqRYG55LigIU4Cko8vcOiBdfHnw3uUX9fJBKJRCKROFwoVlbUusSP6kucOabl1r9Zv+M9X63e4z4kFYU++cS76Ng9Mq3hTHAoBIXFYqHRaFSRV5MYpi8wktvv96u8ZxZojDUOSJSlnQhwLCoYCzhaIHCklfn7vp/H30n1/HC3QSu123dutq8xOfQRfiRjJr0knbR5S6rmYTabaTQa1e43eer3+zpy5Ij6/X5FCkejUc3277mmFT/a5ZnGEB0e0R1Cx4HnzO1Lu90NnLeYA89ikybCLuJpEcJpFq6XwX4zss++e39wXHQH+PUm4cTiEYUro8lpwjWlwBHz/72+jqKbFMdTByhSmSyz1oVrW7iGhIUgihYk8ibqFD+8NhTDxuNxNWcm3t5PFid8vVM7PE6v/3g8rmpW0JVEUclj8Hs8HtPj4UkrFEHsSKBrxaKPr1ksFtUcx8+X55TFJhOJRCKRSBwOtI4c0XPe+nd6SHcmqXvQ3UlcYLhtOdZTvuBrpduOazi9RctOVx/8wc/LGglngUMhKJRlqclkovF4XJ3G4Nddn0Cq5/AzikzCxagvK/4bsd6AyR2t49GKbiJnomkiZpJNMcOELwohJCq0iZvwsG33h24FEiy7OXhUnwkWiZkj0c6Xd4V8R6od3fc8u78m/yapFBOcyhDdEX6Pp1owLYA1DnhqBsfL+ea8x7oJcc0obnhc/X6/saimibT7YTcERQPvgbj+XOt4HOWJaht43VnfwmvE/sf7KIo5uu72Y5oDj1hkGg/BFJooesTXLBZEoY1EXVIlUDEdwj/j8bhWONUCg2snWCwZDAbVGvHkjKIo1O/3NRgMqrFzH3ENWBuFIl0UYabTaVXvxPNG4YvpKelOSBAf+aFH6uFf9PaTX5hIJBKJc47P6mxo2Mr6CYm9cb9/+Dr1X3Vk1+vFstTtP/gmTb/ggTp+bUdqSYthqTL/2XfGOBSCgrRFTBhZlnYKKlpQcEQxgvn9JK2xQCPJHMmso7kEnxMJvR0KbiNar6V6fn4kZc7rjoJDJKUWLmKk3MRZUi39w6KArzWxNhmPFfRj1X7WP4h1FPyMmE7g37kG0Z3BmgZuh6KOC+N5zHHufQ3t95xjR65j7QLWs7AwEu/lfRRN4lpEkYfuBD8nkvVY64B7yw6AJuJKQSumzLA9iiXcQ3wG17tpzXgtx886GHHMrEvh00pYR4EiiFMHJNWKYnoMdPaQ1PMnFqlkCgNFNc+F9xfH5fed7uO2ePqL7/f+aRLNEpcurnzEJ/Wrd/m7g+5GIpFIJBIJSS8+fpX+742fu+f7l718VZf9xqtrr7WOHJHufq30WffQZ+7f1cZ16UrYDxwKQcEOhX6/X8sdjykDzqmOZ8XzetqcSYCkHbLgZ0q7o8+OQJNkMIIZCZtJl9tvIpwmqO47j75kHxh5p+uhyTHhsXB8i8Wicnn4BASKCh43c/0Z6fe8Mk2Bz/VYoh2eBJRr6qi07e2OLpPcO+3CbXt8nBfm89ul4ufO5/OKNFII4ZoxpYC1LeIzOAaSSboJWL/Aa8R9RbeFHQNNp300uQS4vyRVEfwoSnmtSaZjVJ2pDSTe7p9dAkwVoLOHz+Qes3jgdADvZxZb5L6wiOC94M+yCTuLOca1j2KLxSQKZ3bDFEVRvU/3URSgnBrEvnrN/Xer1ar2WroUEpLUGg7VaeU/OhKJRCKROChMy7lGy3n19w///rfo7s96zZ7XX6ZP1V9otaV7XKf3fP3R7Rfy/+v7hUMhKEiqrMgmwdJO1N2EyWQ2VpMniTchpuMgRkj931ibwWCE03AkNkaDSU59r/tGR4Er6rs/tNvT5h3z+t02RQlfG1MfmI/vfHqSItZKsP2cJNLzLNVFC/fDhDCmnniMfi7TKGxt9/zxNAHXzIhHfDLXvd/vazgcajgcVtdzDCbs/q+JPkUKk12nYTBNhrUy3AeSXqeHxHoSvN6k1vNCNwP3Ed0WrKPB+1kHIboGeIqFCzJGMu0+eX84RaQsdwpstlpbBRY3NjYqwYGFCL2PLDJ43S1E7OUC8n6Ka8m/WSzS68H54FpKWwKG59/teNz+XMZUk+hUcW0SjtN70qAw5r3peU1c2mj1+3rOP71aD+vNJeV+SCQSiUTiIHDfP/kW3e/73lv9fY/xm3U6la5u/dqH6uYHSDqtuxKngkMjKMQovLRDzp3y4JMUTPhoTTZI7plGQBLJqKhJtAlHU/TeZGk6nVZpGdEuTpcAXQAsfCepRp5JOKO1OqZrcD6YHsAccJN5Vut3W3ZFjEYjjUYjra+va319vUpD8BjYj5j6wEiu59VCRpMd3sQwjsWCjZ9n8kZnhsdmp4XTHbwPmLPPaDVPEWDOPh0CHCfb9BhM8KW6sEKhx+Pgmse0FUa6494kgeV+ZVTddRNiigCLLJJosy23U5ZlLXLPOfMpJZ67yWRSc4nQxcP5pXuDqQncM4ZFH84XBTG33+v1qv0SnT4WADyv3P/cHxS6KCpQTLBI6fWgmOfX9kq/SVx6WP6LB2vzh2/WQ7oz9Yos/JVIJBKJxPnEO2ZjPfVHvkcqpXu9a6TFrbedcVvLFWnZSTHhXOBQCAokQzG/W9qJzpLQshJ+BOsIMDWAkXjauCVVwkTMgyeRm81mlU2ffTeZZDSZkVgWi2PdBUk1QYGvkzx6LByDo+o8LtAF7OzyMAmeTqdVZf3xeFyJCuPxeNfpFDHay7oJJIu+zhFuv+8THjzWJrcF54vRf0aI7QyIJxdYGKLt3nNj0WQ8Htdy+00g3W//l0KO53Wv+g2xToLv8dyzTa+XHQeO9HsuYjHBpnoHFlq8/hZmLM7EMXj+KWg40m7Hh9MF3M50Oq3EHa6x+8W2mBbje0zG6YLhesfUErfLdATWLIj1DjzHdmPE+WIqjE+CiEKIxxYdFe6b18f3Mv3C65i4dDG+Y09//1mvUFYRTyQSiUTi/OFpH3m0PnjsKn3y1iO666/sndZwqig+5/6aHS2U7oRzg7MSFIqi+G5J36it1Xm7pKdJGkp6iaTrJX1I0pPLsrzlVNskGYkRa0mVY8HRSJKSWMDOpMpHUDoKTQu3VCcNzLdnBJlR9mh5Z745CS/Fh6bK+yRGPBaPfYnkisRSUmVpX1lZqU5zsLDQarWqnHH36/jx41pfX68EBVfoZ2qF++Z7mmpR+BoTT1/DtBD2l+Pi7ya1hE+jYME8ugpMhn1MYVEUlXBgQcFRbf+QHDM9wP+lSORncX3iqRFN+4VCjNe+1+tVKTzefya0HlssQuhncswcD+tc8BQFOgAk1VIJ7JZot9tVKgpPT+GRi+5TTMWJa2hngSP9TFGSVEtd4Lg4N/G4SAojBouFuq8++WFtba0SnmI6lJ/LVB/+t91uazweV4KE97zfp0h42HEuvosvdbSGQ80H6VBJJBKnhvweTiT2BzdsrusjP3Bv9f7qTbrrfjRYFPrAk47msZDnEGcsKBRFcWdJ3yHps8qyHBdF8VJJXy3psyT9ZVmWzy2K4tmSni3pWSdqK4oH4Tm13Hnmb/u/0ersCC7bMuExofLvTEeIudUmNxYHbKM38SPBZJoEibUFDbcn7Tgu+BrrFUg79Q7cV4+HEVXWOzC5GgwGteJ1x48f12QyUbvd1nQ61U033aRPf/rT+sxnPqPbbrutaj+mKJic2zkQ59ukdG1trVYokTUsYi0Lj93OBaaJkNjH2gNeDxPNyWRSEWs/0wLJZDKp3AkWS+hEoADktfe4GeFn2sXq6qo6nU7VboTnhdH2TqdTs+N7zZ2CYZGi2+1Wz2b0vtfrVaKJyb/Hy4KWFKPi54ZiR7fbrUi4Ux1arVYl2nQ6nWpvs14H586ihOfGc2KS7iMk6TSJjhzvTTogWBeE3wecX9/f7Xa1urqqwWCg4XBY7XfPLwU3ClrezxSivJfpPloul9WY/OzDjv38Lk7s4IMvuofe+MifltQ/6K4kEolDjvweTiT2B/84neo5D/wiray/+aC7kjgNnG3Kw4qkQVEUc22psB+X9BxJj9l+/9ckvUqn8OVpEsHaBiZCJidSvW4ASRXvpc2admoSebdl8tbUBxKZWCOgKcLdVESPTgjWGjCBpN3dxJyOBwoW8bQD3+P6AiZmbtNk1M/b2NjQrbfeqltvvVW33HKLjh8/XkXvbY9nbQITLBJT98ljomODJyiYlMbil6yVwPoHnAumO0g77hA/l9Z1k/yNjQ2Nx+Mq3YHXu81YZJECANMxfB9t+Fw3wutCIcEkn2tjQYBzYXJelmXlDKAIZYJP4k2hheve9HliJN7XS6rWutVqaTgcVn1mvQIe8ek1WC6XlbjnHwtHXNtYa4J750QiiBEdP94fnU6nKtBpIYSuCK9PPP6UziWm1ywWW6ei9Pv96hl0MPH5FwD27bs4sYVOZ6G1VooJiUTilJHfw4nEGeI+v/wtut3bS7VnSw2Ov37f2l257lp97MvvomX38AeILmScsaBQluXHiqL4SUkfkTSW9GdlWf5ZURR3KMvyE9vXfKIoitufSnsxb1/aKSxHgYBWbxMqEkITiZhXHu3btLSb2JgUmviRzGyPpyLQvt7vu7CgbeoxXSDWP7B924SR/Yi5/AbJNomd5yWKICaHJt4bGxtaX1/XxsaGJpNJFemnSMPihBQBCJJIz6X7YRIbhRja4CkoMI0i5tlz3lmQczqd1twkFk4cyXcEmnsr5vz7OYyWO6c+nvxAcagpYh0dDx5LU40GimUUTTyv3FNsJ6ZEON2Aogc/I4RFBX6uvH9YpyLuUwo+Xq+YohNrILCmQ9PeMTwOzl90kcRaCBSE7CyJnymuCYUn7jOmZ8xms1rqBwWrCwX7/V2cSCQSidNDfg+fZ8znevRrn6mf+9zf1GMHF87/rxN1/P7Gmn7wHU+QJN3tFesq3/D2fX9GOezr+N1STDjXOJuUhyskPVHS3STdKul3iqL42tO4/xmSniFJw+GwRkZouY754SYdzrF3tJ6kaS9Hg59hQmdRgjnnJPMk+n6+yS1JNPPg4zicJhFPlohiQiz8N5/Pq79JuJh7Ho+EtJXeosZoNKqOGPQxgU4NcBTaVm/fQzeApKr6fowAm7gyZYOuBZIy95EOBs+l18LvM+0guiLc342NjVodDBZptLhAIs62eOIB95PfK8uySjdwHz1eFjQ03C+Pk0IIHS1RWGm321XKg9ebQpfBPUIBzCkVdhrEdAjfw7QSumJ4hCSFOs9FTEvxXLhdOyMopPR6vZqYQ7HLiKKJ90CTUOM14djZX6+9UxSik4a1NjwOHpNp4Wg8HlffKXSk7NWvw4b9/C7ua3guuphIJBIXNfJ7+PxiOZnoLk96u376VY/TY+/9JwfdncRp4p9nIy1V6Flv/g+6/t+9TVKWSrzQcTYpD18o6YNlWX5Kkoqi+D1Jj5R0Y1EU12wrsddIuqnp5rIsXyjphZJ05ZVXljESu31NjchTLHCU3oSj1+tpc3Ozsu3HegPRUs9aCCYRdC1YcNgeW+3UANZjiJFWkyAX8bOwMJlMKuHBJzDEPH7atSVVY3EBP/e91+tVRRc5PyZQ0hZxO3bsWCUiOA2A5NsFLk1Em1IaDBPJfr9fI40mzIaFDRNYEziKJXu5B2L6R7fb1XA4VKvVqo68dEqDxxNrUNBG72d5zJ7Dfr9fEVCSX0bBvVZOR3Ab0+m0eiaj2ePxuOZycDqAj2L087wvXQfAqSneg3QPUOzwXueRoE5hoKXf97nAokUFClk80cRihsk19zmP+ZS2xKW9nAedTkeXX365er2ejh07Vp0gciLwM+16BhQQo/i0WCw0Go0kqRob94Kkav1i/QRJtZoRXteNjY1q/jY3N6vvEc7PBYB9+y4+Wlx5QQw4kUgkDhnyeziROAXctNjQ9z74i7Vc39D1y3ccdHcS+4SzERQ+IunhRVEMtWXveqykN0rakPT1kp67/d+Xn6whRj4ZVeU/6CPJMGGIEV1GUFlfIboemCJBASJa1A0TrPl8rvF4rNXV1SrNweKDiYgJGN0DMRLPtAkLA6534Oe6foS0ReacP766uqrV1VVJ9bQGHwlpErWxsVGlApgIN9UfMJlzEUbaz5mDb9AeHwtHNtUaYCE/W8wZMSZp8+uu5H/kyJEqGu371tfXNZ1OKzeJo+lcf/aVjgE+i/n+FCSiw8Bj9O8u1Nhut6vUkfF4XJFUOwfifJjo+1hPi0juE2sv2E3AvcwUB/aTa8I0iV6vVxOd+v1+JXbQceH+MQ2GR5ZyzixseN742WXdCBbNpHPF/aRzg/VAWGCV+8guDO6b6BqxOBJTnppSnCg0un4FT89oSh05xNi37+JEIpFInBHye/gAMH/21brnk56p9z3l5w+6K4lTwLd+7OF65w9+tnrH3iwtM1XlYsLZ1FB4XVEUvyvpzZI2Jb1FW+rqmqSXFkXxdG19wT7pVNpryoE22ZdUIzAmSY4AdzqdGnmxS8AFDJm3T+GCz2H+vqOcMf3CBNTCgttpiuZbyDBYyNHki6SHUX0STB9n5zQHp3k4956F/tw3Ch8UDjxeX8PikzwS0/MQCVWM/puEOVWBEWcKKHRxOC0h2uJjbr6J92AwqEQNzxfHRBLq53DumWfPH+bee395zn3ygucspqtYfKI7gyeDeJ3tcIhpLiykGEUNE1oScc6HBRR+VtwmXTNMX4ifCT+bAphTB1yDgkdyuh2f6sDxsQCj55pgqhI/h0yHIdlnYVL+UJTwf5uutcjEvRpTizgXKysrlcPBTiQKixcC9vu7OLGF1t9ersdf9iV65X3/6KC7kkgkDjnye/iA8Nq36eiDH3HQvThwfO2HHqPXfuj6k17X6Sz0tke+SJ2iuSj2ucC8XOiBr36q5vO2ev801LV/8urz9uzE+cNZnfJQluUPSfqh8PJUW8rs6bRTK4Tov2m7ZlE8uxgc0TcBYB55zDE3aWAUci9rtckH0wkME83ZbFYRTxM8t9VqtdTv93cRWWmnEKAryzvC6mPt/HxH6J0e0ev1Kru2BQ8XUfQ8+JhEzx1dCRwnST2dHrEYJFNP6Fyw+BHH1ORO8PteHx7bZ9LXZOWngOLov9fBdQtIxKUdd4LXxetrwcVpCDwVgO2aRDKdwGvE6yxYuJaGtCMouB3vOc+tpNp+pAuC/aNjxfO4srKi4XBYCQp+XhQVWCPB93FPe994vpweQ/EuFrb02pl4e4+6vzxRg8IW14p7xPPo6+zU8GfWfabo475YlPH7/jxwDF4XCjt0QLgfTJmyq8EiHPf+hYL9+i5O7OCOP/1qrX/0YdLPHnRPEonEhYD8Hj4YrEyk104Wenj//JHkw4D15URvnW39W/WfX3Q/3eOFrznpPe2rrtRfv66v1dZUd2yPdI/O2jnr3/vn6/rkYqhbl6u62zd9RItbbztnzzohFgutbBTaHJbShRMruuBwtsdG7gtoM5Z2rOYmvhEmaSTLFhli5NnEgOfQO/Ls50WHAe3kfoaJcKxD4H6QoJPk7tVv1kxgtXlHhV0ngeTalnUWdHQf5/O5RqNRjWi7XzzpIZ78YBGBtR/8N+fX8DhJ5ilYULDhPSaTtNL7GYxOmzjThUFXCPtSlmUt9cHE1yktXicSXlf0j1F+ph/E9BtG5C0G0YHBtXc/LfZwvd2W55gpKE0pORbKyrKsBCXuG9aQYA0SFm6kdZ8FDilgMLLvz4qJNUk+XS9Oj6Hw58+XhS2KCh4fRUKvmcUb70HfFwtvUvjjfBkUNZxKwXF6DWLaAx0ZTtewWNH0OU4kEolEInE4cMWLXqMf+aPH66Vv+YNL6qjfH/jko/Xuz9/699TtypOLCZK0+MzN+p/3eoAk6ePf+wi9/Xuef8769xU/9f26489u96s8IDFB0uJ9H9T1P/gRffBHH6rFIMuTnCscGkHBpMWE11FGaSfC6uscjY91D5iXTRITbf0mfG6T9ntG4iPpZH9pv/czWT/hRGTE0VKP0eSeUeeyLCtybYeC0wEk1Qi8xzSZTGpEjq4LR58pKDDC3pTiwLoEnGOeSMAfzrnFBjojKDzQHcAIerfb1WAw0NraWlWnwIIOiaoJOQtlem5MFB3RNpH19RZ2SOB5cgUj2R4zHQr+L4tHekxOA5jNZjWBzO3aucL9SvcNBRzWE4j1QAzu3XiqgsfH2h0UoSj8MKJvIYo1RKT6SSLum/vP/cV9wJoo7pPH6M+X52UwGOyqRcI52tzcrFI7KKBQPJpOp1XtCIsr0WnksfG7wvvI7ozhcFgTUxKXJo7+9Xv1BU/9Rr34l56na1bOXSQnkUgkEmeOxWdu1pd/zbfoYT/zRv3o7ff/6MHDhrv/3jfr3r+6LpVnUNRw+99Cd3nxB/SFb/wGSdKX/u+/0ndd8aGz7td//8y99Off/mhJ0rXv/oA2y0NC4MvDf2LXhY5D869lEx1GMP16JPWsPeBc6ljcj7najFRHsmJixRx3nvrgH0Z+3R/+lxb1mL9OME+cY2D9Aakujvj5jFhHskXRhH3gfDAFg4UiLSZwPt2HCAoB8ZSLaHPn3+y354aE23126oNTOkzOacWnMGGxZLFYVEKCo/MmyX7fgoL7zHEzT5+/c305hljjwEKX4ZoZ8TWmA3CODPfNxR+9Fyn4+PeYdsL+0/XAlJSma7weUUyjkOLrLJTQ6UBBIRbH5OfLe8pOE/eZz/Y1/KFrxNfxc0rXEO+jK4H732kOFAIpeBnpUEgsPnOzun91TI96xffqB7/wZXrq0cYC7YlEIpE4SCwXav3NW/SylzxaL77bw9UabOo9X/DLahcXVvriifDayUJP+YtnSpLu+kdLlW86uxMSNj/xSbU/8UlJ0i+85Iv1M9fO1V6b632PedFpt3XPv36aFhsrGnyko+tetVUj4cTnfJ1nlKXu8Malbr5vW5OrU1w4FzgUggKJZbS275WWcKK2SExMMuwAIEkmYfHznWfP9twm7fQkWSQ1McId+23xg+Ml0YxtMoWCEWaLAkxpiITR7VDwoGgRx2gSzEh8LLpHghdTVfxfihoUC3id54kEnS4FpkhYUIhpJx6Lo+Z0KFBgMhFl4UnWMOD4KGCRTHNOKMwwZYPpA14jrmkULihYeY64b+L8xftYFJLz6/G5zofvYY0SiyvR4cCTJmJ6wWKxqNX5cOoHXTKxLQor3u/+HDqFI7pcmOIS63RE4cN71A4DHgdrUcRrEfdo3Ef8DHl+UlBIlJubutd/fJ1+9MVfossf+jvqFJt6/GB0Uf1DNZFIJC4GXPvjW2R25Y530P/92yvULRa6V+dTun93cMA9Ozu8YzbWj3z4K3XvZ7zhnLR/lx/Znre7Xqff/4vTc+Mtypbu8+xPafOjN5yLru0bhr/3Ok2+4RGaXH3QPbk4cWgEBdusTRCbouORfNF6Hu3NJBwkecxRZ7TUZIbRXD+DBJz59bHOgPPQGXWNggIJqusm+MfR31hPws/3qRV2EFgkoajAcdrqb0JuwYPuBUZ5WbSS80x4riL59thI0JiawHG5IKW0RfRGo1HlKrj88strzgH33+TcRJOFJT1mCzkuZOm573a7tYKBngcLSE1HMTLSzbHF971P7KiQVCPNHsNisdBgMKilxHg/cc86vSOKNBQwTH65/5g6YkLuz0Ov16vaYBTfc8bTSvr9vqbTqUajUS39yDUhRqNRbe0o+Jl8c05J6r1P/ZmzeGQByMdwUiCLYksUwyRVqQ6u7+B96vorXiPWxWCqEves0x6ajuZMXNq4x9e8RS/QPdU6ckQPe+crdbv26kF3KZFIJBIN2Pzkjfrle99NkvTR//If9M5vOXe1As4HvuL/fI+u/y+nVifhbLD54Y/qBfe65xncebjFhMS5x6EQFMqy1GQyqUXKpboV3v8lkW+KtDtn3oTG7bFugskCj4pjJJ/F6ZpSCehY8LMMv87UBpMikyZXx6eQ4MKFJjG+lscnrq2tVbUUSGwpKpjYRSJKpwNTGnwPRRFGgR2lpcjgNXN6BE/i4HrFegueL0Z9uQZMd3GfnOpAkhn3Dvvl55OwsxihrfBep1jI0NfQceKx+DU7K2Kaiq+1YMVoN4/EdE0MP5vj8u++1u2zmGR0UcTUAH8+mM7R7XZrtQLsHHDhT5P7plQQt+0aHR7jfD7fVfiR+5+ve+9R2PJedK0Cf1ajSOa5jSIhnUEUzbxeFMssbrnwZxSi6GhhPYZEImK5vq6v/bJnSEWhDz3hqN71TRf2P1QTiUTiYsb1L3yfHv8nX3vW7ZQrLf2vl7xA9+6cXzH50f/xm3XPV3/gcKUQXKC4+mXv0uXvv14f+LLeQXflosOhERRiRXxas0kaWUwxCgsmsrS/+/0Y6fR1khpJIWsNRKu6tGMrN2mhNZskyVFwWrE9XroKTCKZWuF2fNKDj1c0WaNN2+IHxYSY5mBiy6grXRoev+eVFnkTumgBjykjBm35dASYOPKHEWM6SuywYL2CpoixxQqefkF3SLS3M93B8+0oufPruTfd5yg0MP/e/Yg1JTwe7gueYOHX+EyuKyPnrKsQ0yUofnAtKMa5zoH3nYtJxpQeClt+rk9x8HzE+We6RRR4KFAxvaVJzPG6xXQkrhddGpJ2OVboNoopK/xu8DM8ds8v02NONdUqcQmhLKvc1bt0H6R7XPbM6q27f/bH9Of3+4OD6lkikUgkAhY33iTduA/1b4pCX/pb36dFfzsFtl3qLV/+PF3WOjfpFG+azvTkl3+H7vN379fmpz51Tp5xqWFxyy3qvrurO/3t9ZKkz3xWW9PbXRw1FVrTQnd83bkZy6nM06EQFKR6AUAWLSRRl1SRgZjr79cYeZZ2Eysep+foeJOgQDIYc60N5nKb/Lh9CwpNqRusDRAL9bn/vV6vIp4WFFh0kP1qitx77FFQoKASr+F7tNJzDinoeN0YLfccm6i5n3625zhGsKN443tI6uhQcTv+cbSbhN7CBKPdbpOii+91hL5p3L6WR45S/PB9sRYA6yz4GV5L7zGeVGJQzGEKhQWIfr9fmz/uTfbTfe92uzW3B9M3mAbj/cu0G86h55qfsyjWURB0HzmHFFhioUXuveh4oSMk7hE6Cvx55J6MDh1+7r1nOp1OrW5ECgqJk6F49Vt1z1fv/P2Zb3yEfvl773hwHUokLlJ8evHJg+5C4lJHWepuz95JOyh6PT3vX36eru3eLElqF0t93ZFP7kt9nX+cTvVDH/4y3fO7XqvdLCJxNtj85I0avuzGrd8HD9dtRUsqpOkVS6k4yc0HhNa0UGf9xJ1bGUnDl73unDy/mqcTPf+cPPkMYPu8SbQj5yZS/X6/FkH1PY5Ixsh7JGgkQc6x9zNMQKLVW1KNvNDCbrs3I6wxJz8SIZJm2rr9bN/b6/U0HA51+eWX6+jRo9URip4DP982bwoTMYIfo/skZTyeM9Ye8LzaRm5y6IKJTGsgfI376UivwUi60xGYNuL5sADgeWJ9iF6vVxOTmL9Pgcf58ExdIVm1/b3dbqvf71ck35F8pl9QXGL0m2KQx1aWZW1dZrNZdSRit9vVcDhUr9fbJeQwxYCpKpubmxqNRlosFlUKjC36FBW4R1kbpNVqVWKC6wwsl0sNBoNqHSikSaodDckjSU3GKQjE1A//10KL2+WcOu2j3+/vOtWD4h0dJV5f7ymn23iu6UjhnFCc8H6j04YpUDHNo0kQTCT2wlW/9Bq99JdSUEgk9hs3l52D7kIiUUM5nerVD+pK2vrObx05oi995wf3pb7OV/3ed+oe3/vas24ncWIc/c3X6qikotPV+3/s87RcOYsg0on4/lnGpi57v3TVL7765BeeI3ieJOnde1xzaAQFaYeMdjodjcfjWhG5aItmBXiT+RixjSQp1gGI0XpGLxmJH41GlQhgwsF6CAaJZpPte7lcVgX3ptNpzRXBSLYj0PwxSbcQcOzYMd1888269dZbNR6PKzs6I+aslO85cOTaf9t6zz7G6DwFBUfJOWceu/+mS8AFEZnOYMLH9ATXi6D9f7lcamNjQxsbG9Xcs6+0rvv3oigq8jufz6v7J5NJTVAoiqIqkmhC6/mhgOEfk2FGrFl3wnNkgYZ1H6Qtgt7v9zUcDjUYDNTv96s9ziKkTG/w/R4H0wqaov9M7WBahu93FN/1E6KbgKkbdHxwfflMFoNsiuTTKeE5oYsjOk64f/kTRTL3Le5tixasA+G1ZCpVdDHxM0uhLKZcJBKJRCKRSDRhub6u//D/PE0K//6/36+/V//zmjef9P5Xjnr62Sd+mSTp3je9P50J5xHlfKZ7/cT7pNYZWhSuvEzv/qar9hQV+p9u6a6//L4z7+B4cuj3w6ETFFi4TqofJWkiYgeDRQMKBoz0kihF4kNbvskRSY5FAxJiEgzavZl/TUFD0i4Cyn7yxAmLEbbE9/v9ypVAR8Xm5qY2NjZ066236uabb9b6+npFXv1cE+x4nCTzzqXd9QhI3hjp5+kZnluPk4UnY1qD22ERSM4LSTHrHlB84EkDzIV3GyTQHp8j1tHiz7oYdlDQTUL3ifccj0SM5JX7VtopSklnBUH3Cl0UPMWCgobH5tc4p7PZrFZ40vPre7mfYtTdolXTZ4zpPXSq+HNFws1jFenw4dpwTljUksVVuZ5ea6ad0CVAlw3Xc6/UnrjnJVWuG/fBzhSLhky1aEolSiQSiUQikaihLLV453t2vfzXv/gI3ee6h5309u5the70joOLQl/qWJxFnYrW8XVd9xeX7/l+5/h0q5bHRYxDIShEWz7z65kq4Ki7tFMMMNqXSeijTT2KD3Q20FUQC8a5JkLM52e6g/scUwH2IqC0jDvi3FSE0WKCpKow3vr6um655RYdO3ZMo9GoIqQcu0lnPEGA4gWj1O5zfC+KCUwToYuDAo7HS9EkEsO47oxUUwixOLBXkT4TVa+nT8uYTqe7ToggAfXzPOfcaybwfq5P5Giy4EcRy8ScxNSCSpxTOwY4RgsiHqvbY9FGjpP7nP2WVAlvTCFwf3nMZXwOxQWKOLEYKN0NFIi8l7w2TLHhvNHFw89qFH9I6judTk0gsdDEe93XmIrhvnuu6cJw/yiCRAdTIpFIJBKJxOng6p9/ja4+6E4kzimWo5F6f/yGg+7GgeLQCAokPfyHfiyIx5xsggQ3tsdrTeh4TRNxiSKHiSfbiJZx95OWc7bB9j1Gk23XTuARelLdgj8ajbSxsaHbbrtNt956q2677bZaXnqv16s5KVgDIOa3e16j9ZtFB7vdbtUPRs1jtNrw2Bml9tyR2PGkh7Isa9FySVU6yGw202g00vr6epXy4HsZAXeKA6P8FgJGo5FGo1GtDoL75jz+Xq9XzbVFCB/nyai1CTlFl+iEsSDgFBSKUk7pcBqN1/HYsWNVOkCMtJOYe11iOosFj9FoVAkoZVlWxyMyXcciin84l66x4BQa/26Bgo4GnjoRUwc8Dtc14N8xxcjzLtWLP3otmNoU3S5xX7rWg9t2vQWvF4U5Fpj086NgyP8mEolEIpFIJBKJ3TgUggIj6yQ9tv67EKBJkO3/Up3s8x//JHNFUVRE2M+JUUmSTUkVGTWxZB0AaSeav1f+OIsERteC/+aJE5Kq3HqfNsCxmFixJgBJr8lTjBJzXj1WXxvrPFB8oWhCME2E0V2mWnguo+2dEXpjPp9Xa+32jx8/XqUsjEYjHTt2rCaELJfLauyLxaK6lzUDWMyRYk9MLXFKgIWL2267TceOHaulWdBZ4d/pLuGpGyyGyFQbik9eh/X1dR07dky33XabxuNx7fhOuiZi1F6Sjh8/XhM4PCej0aha236/X0szoLjR7/er9fFazefzSrSKtSvoZuCep1uFn68TfTZi5N9jcqoIhRWLRXZVcK/awRILk3ovuL9M0fE97oefy3n2nqCAkUgkEolEIpFIJHbjUPxrmTnRdAq0Wi31+31Jqp3ywLoIFh+63a6kOmlnagEjjpH4kEibWJjQmqxEsu3+MveeZN5OC0bGmcNOh4DHMBgMNBgMKqcC89NtuV9fX9fGxoZGo1GtrgAj7xyXEf/mHPl91qXgNTFtgcUxTZI5H+4HXRKce8+ZpF3PH4/HVWFF/vB+ujbYD9Z94LzE9BMey2lxajweV2R6fX29Rk4NpjcQ0Wbv/RkLfHqc7v+xY8e0vr5e/XDfOwWGqR4muXRC+PnepxaefAoE19WFPS2+ea9z7i2sbGxsaDweazqd1j5nXEvucfedrpiYkkTxiSLXZDKpUnQ8Bv7uFJXYZ7seJpPJrmKT/Cz7M8fPuPtI8Y170t81/l5JJBKJRCKRSCQSu3EoBAWpTu4ZBbZNfDgcViSbREFSrficVE9/MHlknYRIen2PiSBt5I6EM+ebjoNY8d6gk4FCicmXI9y0n7sAI63xbsPk3Hb6GMllsTrazGOktmneI/E0SfRYecIGU1GacuBj+oej5e5nLIDIe21zL8uyirabVLJwo8mj22P6Cdcx1lvwOptUeyx2Qlio2djYqJF71ncgvJ+4h7j3OGfSjtXeY/PzRqNRdZxjU1ScgpXXyXPisbL4pNM5uA89Fu87vxfTQ5zm4LQHixbuE+ciOoLifvP1nhuKhRReLNj5eSyiSWGHYp/3FN0J7hNTUbj//Hn1eywI6r5wj6SgkEgkEolEIpFInBiHSlCIv5ucDQYDra6uVhFl5nA7+ujTGKQd0sO0CUf0TXSYc0+S5NfX19d1/Pjx6mg/W8VJ9twHR8X9bMKkzcTY7djC7ee22231+/2qAGQ8jpGE39c7dUHaiVLTwWGCF6vpuw2TxSisxHUxOY5HZBK+hjUUTHzpGuHJBIzaOzWCdRHoRKDAQcGpKIpdVniS1SYRhVF6P+PWW2/V8ePHq1MzfJ0JeHRucK6YguP5tKPDBHdzc1Pj8bhK37CIYRJNaz/3GH+nU8GFGT1mi18UWZpEEEbwWUDSR0uORqPKmWNyz3Wyy4HCnMdM0YPinfektJVKxBMeXGdhc3NzlzuErh4KfRSs3H+mlVBAsGuGYobnjXNNJ4XXdK85TCQSiUQikUgkEls4FIICI4nx3Ph+v1/VFXBE2aSVeeHOCZ/P5+r1epXl3KICC/Yx6hkJlkmwfxw9pXWfBMvY3NxUv9+vRYHZlqRaJJ01CmIOOueFRw9Op9OK9Jn0xj65n7aD83hLg8/y3LPqPaPejtAy5YPHHzalqRB+3/dR5HC/Pb8WOBgt9/x7rlzl388y8WOaA1MCSB5Z+8HP8X9vu+22yjWwublZI5p0xDTZ5P0sWvGb1sYigtfVa2k3jK39y+WyGqcFL7s6WNjQpzjMZrNKCLHTxXvKe97rSKeK97cFjePHj+vWW2+tXBMk6jGdhfUcPL+M5jONZ2VlpfbZorjF0yVcG4Q1S+L6W+CziMe9R/HM4+R3iZ03Fm7smrC7qelzGNNeEolEIpFIJBKJxA5OKigURfErkr5U0k1lWT5g+7UrJb1E0vWSPiTpyWVZ3rL93nMkPV3SQtJ3lGX5pyd7BvP+TXBMFhlt3m5/l72ZkWIew0hLM8EodkxNYFTdpIg53FEEIIE04bXzIKYZsB6Bf/aaj1jxPzoUaKtnjQBGdFmIMhZYdJskZJzvpvQNRn0d4WdBO6ZykKA50ttkw+da0KbOSv++x/dzDbx2TN2IBTS5x0gkHdUfj8fVSRIUZKJlnvdzvllMsClC7+dZeHC7rBcQ+zyfz6s5jmkcJMo8GSEKGf48SVuiSb/frwlqdkpMp9OqfkJMO2hKYYluDRJxHpHJkySaxDL2PQosTeINRbR4TCsFI7oeKCgZMY2HnynWWmiqo3GQOB/fxYlEIpHYG/k9nEgkErtxKmeivUjS48Nrz5b0l2VZ3kvSX27/raIoPkvSV0u6//Y9zy+Koq2TgCTWJJIRX5M2E03WI4h2/Xa7XavgT9JOZ0ET+eJz2F7Muae1mqCg4TbZPxKZvQobej5IVB3B5gkC7ANrOpj0cZ48Fj4vCgqcD9rNI+GPQkeMVkf3BVNFGOFmLQBGo02uKSj4/ZjC4PmnoySeztC01l4bOwYc3ac7huIJyT7b8t9RFKCbgyTVgoKJe0zziM8kkafwxXv47KY9zXnwvSx6yGMyY5pJFLQo1vBzyjU0LCg0uXk8d15z15RwMUgWl6Tzxn2OLqb4WeI8NQk20RXEtKKmeTpEeJHO8XdxIpFIJE6IFym/hxOJRKKGkzoUyrL826Iorg8vP1HSY7Z//zVJr5L0rO3Xf7ssy6mkDxZF8T5JD5X0mpM9h8RhNBrVIp0+WpDR2VgszbZo30PyyqKKJNOxboBJC6Pt0k5EnM6Cdrtdi17bneD3YzFG9os1CejO8DgiqaVDg24C9sHEiCTdYyTBJyln9LWpWJ/HRdGA5JTF84wmJ0ST4yHmyLuf7qOJ93g8rh0L2VQzwfUxnObiyLxJJE/S8JpSeDGZ5lrZmcK14RyxDZNciz0suEmxh4TbfTRppXjjvejXPCcm4XRjxPsMP4+nn7jGRtPzTeYtrLjWAdfLc8D9w/oiTh1gmg1FP4oKnjuLKxYUfMoHP2sUNJw+5P3gfc9CnxzXdDqtHDWdTqc6QYVrGUWnKJYdFpyv7+JEIpFINCO/hxOJRGI3zrSGwh3KsvyEJJVl+YmiKG6//fqdJb0W192w/drJO7L9D3yTe/6jvyiKikj4H/smlSRaJDImGJHMMxfd9zdFeS1gRFGBFn5pJ8eezoO96hXwfvbPZNrwGE1SDbfNFI9Op1OR6RjRXy6X1bGbbt/3srihEcWBfr+/y8lAgSHWo4hFGSlmuH1Htb1uJowe22KxqJ184JoGg8GgIppu24LAsWPHKps7x0dy73sslph0uj8uaEhXQNyfHgvTPHi8KJ0jTB8x6HxxnQinGFAciNfb2UDXjtMoLBx43v3MmBbE9AKun9MdnPphx4GfwfSNbrdbc8S4LT/Xn0EKMTGth+Kdj4tcX1+v6ldYoIgpEnRvuC6D55guA4+JdSA8lpi25H7QDWIxcC9nyyHEvn8XJxKJROK0kN/DiUTiksZ+F2VsKoleNrymoiieIekZkmoRaEbxWXNA2ol2m0w4x1xSjaCbQLE4n0k3878ZiTThIInytfF995VgqkMk2SbNdEnEHP8oOrBvJMqYv12vkQi5/xROOF9NFnQTbbsxGAU38YpCSEyr4NijA2SxWFTklTUGGM2OxyqapNJu7/YtPjiq7rVnSknDvqvupRjg+92v6N7gvPLo0phawvs5177W13lP+r9eJ9Yc2MvdwDoing8TcQsFXuto43d/6FCgoGahx8/lGrKOA0UjOoe8Xu4b2+K+lFTtg3jkJYU3fybo5vEzmOLjOSjLskqb4JoYsQ88hcSgSHOBiApNOKPv4r6G57JPiUQicSkhv4cTicQlgTMVFG4siuKabSX2Gkk3bb9+g6TrcN21kj7e1EBZli+U9EJJOnLkSHmiIm+0WTtSylMfSPwZWWUEmYTFoOXe0WySZRNmR39J4mnDDuOq3o959FEEIFkjgfJ7TakCTakafI8EkukenFv3j6BoYOHEYgyj57ECfiSgJL4eu++lM0CqH4lIIm7LvSPgfL6JeXRJ0EHB9BEXjvTrTQ4F3u8+U8jhvXRsxNoOJxJ9PH4KAXR4MHXF15PQci9wznm/n2kXhT83nie2Q4cC6xI0uTSaUhf4Wlwfry0/R02fF6+NP58WE+j0iJ8d1qNwAUZ/ti1gcF69hk2fXc4f9zX31GFKedgD+/pdfLS4svEfu4lEIpHYE/k9nEgkLmmcqaDwCklfL+m52/99OV7/zaIofkrSnSTdS9LrT9ZYjMgy7cCpD4we9/t99Xq9WoFBqZ7rTdLn/Hi/TnLIaCWLyPHaJlJBx4NB4WGvdAuOl2BBOQoCjAb7NZI+PjsSY88B60lE0uvXTHhZXNHRe4ORf6eh8Hk8cYL9ajrZgGtnMu3+xAKDTRF2tx1PI4hRbosKUWhwVJz2/Bh55xgcEZd2Iu8k4SStkcDG2hXuA+s8uG33004RzxMdN011FObzebWvuAbuK+fPf7MoY3QnxD1ixP1N0SAW3rSTw+Plvva68IQK38P0IgqLkmpuJR63SZcCP/t0NHk9KFSxUCPnniLFIce+fhcnEolE4rSR38OJROKSxqkcG/lb2io2c7uiKG6Q9EPa+tJ8aVEUT5f0EUlPkqSyLN9RFMVLJb1T0qakbyvL8qQhPpJIkwrn70u7ixmurKyo2+3WopUkFZ1Op5aLv7GxIWl3HQRGNVlEzwTOJA1zUT3TxSLZP0k1AsU8ehZzdD/cvt0Abo/2crfvPnmeSKIjOWJbjgJbMCDpI8mO60EC6La63W5VsyGeqBBJq9vvdru1GgZNUV9HlU0wY5SbRI9zwIh40xjoqrADxYSbzoLoRmDBTO8NaSff3nNKASYWD/RrFCI47uVyWUu3YMrCdDqtuVU8l+x3PH2AEXzWjaCLJDogvH78/ERnDQUmCyduw/3lM/z54z7z8/zfKNRRzGlKWeFaeL19rwtJxrQTCnpxn7HPFrMoJvJElcOU8nA+vosTiUQisTfyeziRSCR241ROeXjKHm89do/rf0zSj51OJ5xHbQLR6/Vqx8ZZPIgky6TExIz/+GeqA0mjyUkTYn59U341ryNRdR8Z4WYk3q8xbYC5+k31B/hsvx9dCCTOJtiMhrtavwlnp9OpFafj82Jdh0iQ3X8WgfQ9FBU8N7Smew4ctWYKhPvi1xmRpoOCY4xR81h3wq/771iHg/fTbh8JedwrFjaYox/3ZXQ6eD0oAtDhQGcFxaSmCD9THJgK4H3on5iSEMfstliYkikO3pu+h+kWcc9wf1CAa9r7FMQo+PiHrgumIcX18r0uahnrPbDPMS0j7iXPs+/jZyw6eg4S5+O7OJFIJBJ7I7+HE4lEYjf2uyjjGWG5XFZHRZqcSztE0akPLFJHgmLxgISGUVD/ROJnxIhmLKC3V248XRPxBAa3677wuLum50eibEJoksWIKvtGe3dT9NdjM2GLaRkUAaLNP97vufEzWEGfrgYKJnSFRIJmUcKkMUbBm1IoYsQ4tt00Nka/mwQS9ium3/CZnlfvOT/f0Xg6Rtw+xQSSVPaN6829yH1OB0C8j33mHo/En3Npwcv9ovDGa/h7HB/75edR6KCgwPejq8F9tohBESHuad7v+gvxNJT4XH62KZzF1ykoxrlIJBKJRCKRSCQSu3EoBIXFYqH19XV1u10Nh8Mqku5Isa3zJm2+x0TIPyYFLPZn0jqbzdTpdGoEhsRI2iF1jnhKqhFLWsFtZSd5IYmKEWqD75OcRVt8PKXAJIoWdfedEXOSTo7JKRgk+yRNTdFdEi73m3n/TE2glZ6R/k6nUx1daWGFpN7knKSc/WhCk3jAPsa1Z7vM8W+yxfvZbJtCBOsYkDgzxSAKNSa+fC+OtWmfRZHI91qo4bMpbDklg31yH+I8eo4oUu01n0wvIdmns8IpBHaFxM9BFBM4Z36m22A6UHS1uA2nO8T1bfoMUpBogj8TFBRirZNEIpFIJBKJRCKxg0MjKDjlodVqaTAYVIUXnYNvomRSYVJnMu1//FuEiIX9pHqk0sTB97umASPvkRyatLg/nU5HUp38RpdCjBybcMfor8URv76yslIrPCntWLGZisFj/1hk0PeRwLrPPMWhiVDHKLvbmUwmu1wfzHMvikK9Xq9aA47Bcx0t6hYHlstlLc2B8x5rWXiem0g46x14bHSncP4jOWcR0LieJpjRrh/X22DhP0fR/Tw/0/vDsEPHffDa+lnedzyiNIpErOnAvTUej3e5ZCiS+HNFUYynnnD80eURYdI+n89r9Q8o4NlZw7X0PrWLhikS/t3pGezzyUQoCwlNrhX3jyIGXSuHKeUhkUgkEolEIpE4bDgUgoKJxHA41OWXX66rrrpKl112mVZXV7W2tqbV1dXKXWBiJu1Y6h3dpv3dpKTT6ajX60naITImaZPJpCK5sYgc+8aIJclgFBxY7ND/JTExgYqnFZjQ+HWPqdPpVCTRue4m9STLsbYCc+qZcuCI8YnIIEkvnQ0GLfa+nuTcIgKLULKPnLNIUDkvdAOcqK+RIPp1kmCKF3s5Enh6BdfOoAPD5JRReYtY3Ct0KEQSy/a8/2O6DueM6T/cq1GciLZ9Olim0+kuEcYilMU0v++14zqZvHO9Y2qB+8o59P6zw4WijPc7xRp+DvgahbOmmgl77WW6O2LfOWaKJr7/AjjlIZFIJBKJRCKRODAcCkHBke3hcKgjR47o6NGjWltb03A41GAwqFwKjNISMXWBaLVa1ckEJEZMhXB08lT6SRIVc/VjmgJTCkhm6Q5wn5rSC6LdnEX8+Ixo0zbJZLX9aF9vGlsEiztKu4sPNt0TaxAsFltFM00IY9HIKCpQqCARjM8jASVpjSLOXqkNJJcx55/pBL6G896UqsD3GOFmPz2HdI+wP0RMdYh9ZN+jhT+6AXiaA/cwRYs4pr3qEDTNW5OwEOcpzk0cO+cpEnwWouRngG2wH3Ff8nlxnj2XFHP2WpNEIpFIJBKJRCJRx6ERFAaDgdbW1nT06FEdOXJEq6urGgwGGgwGtdQCR+4ZvaSdPdr+HZVn7r4JFo/sayLxJyItkmqEkwSQtnoSIbfliHYsfMh0jJj/TTJlMLefpMnpDd1ut4o0W8SI42EkvumZTG9wscy9SL6fSzGBee6ec/cjii92YzDHnhFlrgv7QQcGc/Aj+Mxow2cqQsz9Z9oBBZvoauB8kPRTcKJgEccRr4+1BZqIOZ/FY085nxRzuE5+jwIMhRmLFU394zj3IvLSjoBCpwj3XtO+856M8+DP7l4uk72EszjP8b6m3/laCguJRCKRSCQSiUQzDoWg0Gq1tLa2piNHjuiKK67QFVdcoSNHjtTy2Wnp5xGA/ps524vFosrdl1TlXM/n8yrNwakOJp8+RSKmBNA1wNMc2B8Tjpij7noBPF6RpNY56swTj5b0WIiRJJIEzX2kO6Hb7VbuDveZFfFNGJnCQTTly3ueLPL4uEFG5FmYbzQa1fpP+77ndC8HAQk8hQC2URRFJZw0gfd6TB4rC/SRjHu+KOSwRgUJNfse14hj87xRrKBjw3uYpJnrQYLt95pqInBuOYexLbpimlI76GJgGsJewsHJwPnay3FC4h9TFeI+ZLsUQGLfKIg09SkKP/G9mPqSSCQSiUQikUgkdnAoBIV2u62rrrqqqp2wtrZW5eE74sxTDuxUILlkpLrdbldFHdvtdiUiSNJsNtN4PK6R26ZIcyTXbo9iBou9uU+832ICT6BggUZGbZtIS7SGRzB63e12a7Z6v26HgtvzfU2uCqIpRz1a0v0MP9PX2Y3hQoxcv6ZIOPtEwuz5pUOFVnu6VWIfvE/oJvB7dEHQOcC14fpMJhNtbGzscgzQpu92SYLpQPE9HoOdMZx/ktsovpDIM1WhaT80Wfi5//wcFpc0WDch1r4gTlVUiPMRSTv3Pgl+031NbpUzQRSoUjBIJBKJRCKRSCTODIdCUGi1WtWJDiw6R+s8T0FgwTipHukty7Ky+/f7/eo6FmuMUXrmy0v1YyQdUaYI0BRNj4SPEW2TMQoeMT+faRps1/d5TCbr7gf7Rhs622c7Bp/leYmRd/+XbUSRg/MnqSYeNOW6R0s9Sb6JciTmJMIxPYO/N1nxPQ9cnyYLP9uKZDM6UaLNn+IM++z+xjoI8Xo+iyIF9xnf89/RsbJXWojBPbzX+CkkUPjg2LluJ3IssL/e55yb6AZqWp+m/p4MTWkKfu1U5snXN72eSCQSiUQikUgkdnAoBAWnHJAYO2psC7it9Yxus2gbK7/b7m9Hga3hLMTo9iNBMmlhhfoY7TUisSLpda2AeDQeCyX6GtZGaCJRFja63W6NdEuqRecZsWYUuolI+Ro/ywS2iXCR+MZaDYQJKFM4WFPB/eDc817PBaPhrFXAPu+FSHwjwY9zy7/pUqBTgvsurr3XOx7ByWu5Btxb0e3g66JNn44NzqVTI9xmdGFQJGsSXZrAsVBYaBp3XH/Of9PvPL3BfTpVkeBE1zW5F7wuFH2aPgN79Zf9SyQSiUQikUgkEs04FIKCiTZz12kjH4/HGo/HknbqDjB67JQGEzoXcqQoQdK8ublZOSGYEiDtiBkmdSZBi8Wist7HKvS816/TAeHUg7W1tSqX3nUdfBSk+2QL/mw2q7kPOp2OhsPhLqs7iZ3njk4Muiw8Dka/IxFmuxQlGEmODhLD15roMg3EwoBFmhil9+8kzisrK9UpH9wT8XnRvRDnpiiKqqYGRQKS7ShceB3jEZFN9vwoyHi+2WeugfvehEicWVuDYgzTJXxdhJ+9l4ugqQ/RCdEk/Pg+pot4/uMaRVeEn0FRJbo9+DtPpmhyp7ht7hum+DTtmVPBqQodiUQikUgkEonEpYxDISi02+3qqMjBYFArEsjaCSY67XZbvV5Pm5ubmk6nGo/Hms1mtaJ3JNCz2UzHjx/XeDzWfD5Xt9vV2tpada3bJXGhXV3aOSGAUWyeNtHtdtXpdGrkhsTf+f6xzoIFgslkoqIoqvGTDPkeE2Npp0YA58pklu1aMFlZWalEDJPkJhv/yRDXIqYHmOh6LVhU089mJJ0iDNNWLDJ1Op1dLhA+z2PgaRaRXDONhkIP02E4H95X0S1hUMhw39lvvsY9xFMeuGbcg3S9sLjl5uZmVUTT93LdVlZWanvV4J7lvo6iShwfx9J0TXR7cE2iK+JEaHIBxbSf0yH3FAETiUQikUgkEonEucWhEBRMpPv9vrrdbo2IROt1WZZVxNrEz+kOMe/ZBJUuAEm1+gp+homuyQ3JJAkq7d50BlAoaKozYMIb7e683rUXfD2jrSTVdmlEd0IkjS5oSZJrRJLGkwH8fhPhNJl2f+KJG4wix7oKFDJ8v8UTp61YMLII0Ol0dhU3jL/H2gWx/xx/tPBHIcRR9yhYxDZ9TbT/0y3Ba+mGYRHI6GaJzgdpJ2WCAkMTyY7rd6I5idH+6LSJgg/bZSpAFBTi39HdEMUTiktcS95zuoJCIpFIJBKJRCKROD84FIJCq9XSYDDQYDCorOkkW4z0mlyYgLKgodMS6BLwUZGTyaSKKvd6vVrBRlrsSXJM8N3HaDtvOu0gEiDXPrAbIhI6g7n4k8mkIp484YDPIQlj32nRJ6Hn3LGfJLHsn+eF0Wa/TvcE6xQ02fPpPLAQwX7Yvu91LMuycn74JwoKcY7pKuG+iTb7GJnnOP3D8fE1P5ciAdeOTgA7CbgH+v1+rSgnnQLuhwWnpjG4nyf7HEUBpEk8iUJLnNuYfhARxZx4P9G0z3ltU9rMXsLXqTge9gsH8cxEIpFIJBKJROJCw6EQFFZWVnTVVVfpyJEjFdE3mSdxJUmeTqfVDwsfUmjgkX+j0Ujz+Vztdltra2taW1ur2cndD0aXp9NpRdT9vl0UJFKsu0BS3e12a9Z9qfnIPwsCTkkoy7IqREmRw31l3QOKB27HUX6+L+1Y7FkrwKkT7gdJK8ULk1+LFnY+eFy+jm27rkUTKWefWFCT4ojbiEcX0h5PAh3rMPi92WxWOSlY14DtUEBwmgxPnIipC3S3RNIe6ym4QKjvpfjje9wfOh54hONeYgrHwfeb0PRe09pTcGhyMESRqak9XruXKBELhjalqzTVhjgVnK0gkEJCIpFIJBKJRCJxchwKQcE1ERyZZqTVxKbf70vaicLO5/NaqoOJqom4I98WFFZWVjQcDtXpdLS2tqZut1sTE6R6nQMSWj+j2+3WCDMLREqq9ct9dXtNx06aNPqEBgsaJncsrOhCjT6OcrFY1I7PbBIWmJpAuz/7TAu+tJUO4uvoxLBzIPa/KUJNUSK6EprI8F6Wf64xo/2sF2HQIWLHA239PEHB10eS7vs4LotUPq6zyZnSZNHn+vrUkSayTdcA58QCFde3yaHANadTIkb5WViTiOtHUYh7h/89Edl2X7iHmxwNTQJCdK+wX7ymSeRompdEIpFIJBKJRCJxbnEoBAULBj7mkcSJUWtfGwu/OdobCyE6Oj2fzyuSY3LX7/ernH1a6v2sXq9XFR80yWI03s/mf0lwLA50u90amWRUnfn8jlx7jCR2JLu8hzn5FAVICEmO3dcYNebfcV6biiDynpjq0VTsj84PrxMj8VFgaRIHmlIyOCa7QmKKDMUmuiNiGo1raPi/HJOvoXOAqR5NggLHF8fFvvD3GFWnMEEhJ469Sajg701r5vuYcmHsVcfgdNFUL6Spj2fznL0cEIlEIpFIJBKJROLc46SCQlEUvyLpSyXdVJblA7Zf+wlJT5A0k/R+SU8ry/LW7feeI+npkhaSvqMsyz89hWfUCjJGkhNJkF+LpJRRaadNMJpfFFunJPR6vVraAnPnpR2nAgsCmvDHSDHJn/vDugd2XfgangBBazwFC4saPmLSfaQwwGMvY4FIt8eTDUyU6RgwmiL57sdeBR35PlMiWHxR0q5TGlhLgaScZJ0uBYoAJNbxPs8Rn8H1iekRFCdifYUotvh6Fld0m00kOAoKFhOiUNHk2vDzuUbc65x7/5d7MLYXP0ccC8cQ+382qQanKgyciUhxNvdd6Dgf38UXC4rPub+Ww87JLzzk6Hzgk9r8xCcPuhuJRGIb+T2cSCQSu3EqDoUXSfo5Sb+O1/5c0nPKstwsiuK/S3qOpGcVRfFZkr5a0v0l3UnSXxRFce+yLE9YTc4pDySDseBivL6pOryJ7GQyqcQA100YDoeVM+Ho0aMVOWWKBCO5JvR+zcIAySoJIuswUHygABHJW3QBsHAfBQPfK9Vt9CwsGaPXJvKO7vu9WM+A8ydplyuDjgaKFe4LhQzPg9uw84TOgabIt90FFChi1JmEmq4S9tGvszDliQQF9oVj4QkOZVnWCmRa5PEYfS/Hw33qe7yWXgOOj6KA22FxxrhWnI/oejgRvHaeM7p5YnpDnJ9TcQHs5daI1zT160R9PhEuMXfCi3SOv4svFjz2/7xW/+nK9x90N84a9/9f36prfzwFhUTiEOFFyu/hRCKRqOGkgkJZln9bFMX14bU/w5+vlfRV278/UdJvl2U5lfTBoijeJ+mhkl5zsucwT9uuAosJsRI8C/iRUFlAYPRa2on4O/2AEW0/i5FxEsvoGjD5Y5oEo+7x+EjWACAR9710RURHRhx3sZ1C4dQNRpk9TzGNgOSYc8yfvcisI+uc7yjkeB7poPA42u22ut1u9UwLDu6rxRfPm10kdCFwPPEYzyaRwfUO3CZPimC/OPesZeE1ZoFMO1vcV68p+0GxKToL2L7na2VlpTpBpCzLmqvF88t6Ip63KK7FZ0WRJDosLDQ1pVrEduloiKLJicSL6CJpwl4uEP7ddO2ljPP1XXwhYeWOd9C3//2r1Ck2a68/ojeW1D2YTu0jXvbMn9BHv/GoJmVH//tR/1KLG2866C4lEpc08ns4kUgkdmM/aih8g6SXbP9+Z219mRo3bL92UpB8mESR7JDQ8JhICg/Rzm6CbRLO4xvtgHA7MSfer5lMMcLMPpOQ87QJR7EpKPh1EjSKBnw/giKCUymYo95EDN1fEtSY3sFnR5t8bDcKHXGN/Az3kXUhOH73zeNZLpeNaQEUKPgsrw3Hw/0TxYEmoSimrbDfrFfBlBT3jU6NuGbuB9NWeMrHqYhGbDOmuVAsi2kRXMemdWMfm8QJ3s9++Cc6XPZCkwMmPmOvv0/WduKE2Jfv4sOM1uqq3vVz91XR3nZi9Tb1bwZjtYtWuPLCFxMk6d6dVd27s9CinOu7f+aO2pxdq/57+7ru/3v1QXctkUg046L/Hk4kEomIsxIUiqL4z5I2Jb3YLzVc1sgQiqJ4hqRnSNJVV11VI5yRZDNqS6LLIyJJ/AgTu0hwGWWOVe35DIOCgkmPSanboaDQbrdrgoKkWhSaqQJGU/Sf47CIwB9HuSM5jETaY59Op7WTKHgtSWhTpJvE1O9H4sooOB0InmeSfQoKXGu3GwUFiiFNLg+34XZZPJF7iw4T9ttt8phKOjOiw4RzS5LOmg90ejQVjPSeivMY0xl4LRHdOHyN+4sChIUB1mvgmtPZw59Trauw1x5Op8G5w359F/c1PCf92w+s3PlOuu3h1+ldj/s59QrWR4hiwsWHdtHSe/7llsP6Bz77gXrN6x96wD2SilLq/tU/qtzcPPnFicQlgEvheziRSCSacMaCQlEUX6+twjSPLXdYzg2SrsNl10r6eNP9ZVm+UNILJenud797SQLmAoImnrGQoMk7HQrSTmQ6EiOnNPgYxs3NTY3H4+o5/X5/F6mM0ffYtvs5m81q/fE42DeeHFBN/DbZppU9ElY/N9YWiITP5Hg+n1fEk0SWx3Eyas/2LYDQJh9PtmDKAVMMSFqdWkIRg6TcqQMxBYBkNc59rI3A+hKRpJpcs7aCn0/BKdYPiGkwrMPA2gmcC6+F9yjnguA+8J7xtV4PPjOmCuzlZqCrhuJLdJoQdLS4DTpsuL+5h+IcRxHD/TwdnKobIX6e93rtUsV+fhcfLa48nBaRotDHn3i93vL/Pl/ShV9s8Wzw3+7wNulX33bQ3dC0nOsrHvZl2vx4qPGwzPTwxKWHS+J7OJFIJPbAGQkKRVE8XtKzJP2rsixHeOsVkn6zKIqf0lYBmntJev2ptEkCOplMaikNJNvSznGQ4/FY0+lU0lZBQ2lHbGC9AMOEmIUDTRh9ykSTBd2uBkaOTQQd7fUYfF2TNdzjaCJijD4vl8tdboRYI4FHMS6XS62srFT/dfTfKR58Zq/Xqwitr4lEjXZ9pp/EmgGsT+DXKX54zklAvcZ0LjS5KziPnAe6FGLtC65PJOYkyHFd7JKIqRV0XDAV42RzQOHEc0BBgfvFogf3uv+mCOR+N43J8+g2PGexPgbXkvdHh0p087DtSOTjXEYXSzwClsLgXjgVkSCFhC2ci+/iw4hb/vCeevln/w9JawfdlcQ2ekVH/+Pvf1fzsv7/zG/+oe/S5b+eKeKJSweXyvdwIpFI7IVTOTbytyQ9RtLtiqK4QdIPaauCbU/Sn2//w/61ZVk+syzLdxRF8VJJ79SW7evbylOoZkubusGUBpIXCgaOvpsA+T26DOJ/y7KspSHYocDn0+oeI750KpiEbW5uVmIEI8bRLRGJOwvXUSiIooD75P4y35+5+RYU6O7g0ZGxeCQdCBQLKCgURVERYaYPSDsiEIlm7I9/9/Wci3hCg8fHlAGmQMSjIN02HRJNxN/Pjs+iKMC9GNMVvAZu18/0TywgyX1C9wP3IF+PKR1RHGGaRkzv4HV7CTOcD85LdKuwLY6LIkuTgND0ml/n+3xOxKm6FS5lnI/v4sOE5b/6HH38O7ZSun76Pi/VXVZSTDhsuH93sOu1+3zLO/SmJ97/AHqzG5ubbd39G96v5cbGQXclcZHgUvseTiQSiVPBqZzy8JSGl3/5BNf/mKQfO51OxKgmI7YxXSDmqPtIPhPf7T7ssoCzXV/n+320Ie8lCWbUmGTcgsFisVC/369s6ywaaJIfrelNDgoKCr1eryJ8HAfnis+3Q8EiAY8q5LxJO6cv0GXBtfB93W63RiTdBu33/L0sy+qoTUamucZNqRu01XscXGdJtSKZJKSRDO9FWklyYyHJJpHA6+u5NKFvelYUYywoMGXABN3PIyJppxAR5zeSevYjildN93Ffc3+xnkLTXJ0s7aDp/SbEfsU58O/pQNiN8/FdfJhw7K59veMRv3rQ3UicJn79rn8r3fWge7GF0XKmL/jy79DKuNTgxqlaf/+PB92lxAWOS+17OJFIJE4F+3HKw1mD9mgTq+l0qul0qtlsVhH+Jqu7pIo0swifXQguPriyslJLhbCQ0Ov11O/3a/nj0g5RZmTfgoFdDX6m+7K+vl7lw5uIdTqdSsRwnxj9JSxU0B0QyRxJtUkhYRJMQYLk3u/7GYx6m+hRkPCY/UymKzTl9UuqzbP77fbZX4+LdSKiy4PCC6P7FA6ahIYmRGId7f/RFUCnSCTx/i/bi6KJBQXu1UjSKZ75GXGcFst4okl0E0Shwf3nWGNqCoWcOI/eo3SlRAdEnBO7ejyGOF/+PDRd42fwOFbem7h0UPR6kqTlofi/U+JCxrDV1Wv/x89Lkh7/ri+Rvqi38+ZikQUlE4lEIpHYBxyaf7KZ2M5mM62vr9dORqA1vigK9fv9XVXxfa/t+T7JwEJBE6m2oBBt+7TymyBOp9OKMLVaLQ0Gg1ohQxfbk+oRbwoVkSCTgPk1k3ZG+tkvksFer1cJFO4rxQKjKVpP4cLzQ8FD2hFhSDqZkmGxIroRPMeei8ViUdVqYGqK/+71erWUE7/vdXRfo/We60/S3tQfEvQoolhUiuIMnRouvskUgRhVd3vet/1+vxKeJpNJbV+yX3vV1uD7FBNI9OMxoFEQ8VjpnGA/fQ/XJs5tdH3w/Sa3RZOTwnsiCi7RSRRTKGIbKTBc3Gj1+3rWO16vu64c02rrr/7/9s4t1K6rCsPfaNITSUy1tVVCkjaJJEJfbIOIt/bFW5NoWy9IRDCgIBUFiwiNBKSCPtSirymKxSLVhtoG81KoFNGnaNqYtClpbjVibEy0gimanJOa4cOa83TsedY+F5J1OWf/H2zO3jNrrznmWHP92WOsseYClnVtklggPLlhN2eOTkx+3rLvHlZ/9lCHFgkhhBALg94kFC5dusTFixcnkwKx7Lm8AhuvvsbbEcpqgrivHNDmgCYHsWUQGfvMQWxdSXysEBgbGxtYiyAGd2UlQQz+MnGsw+71j9vGq+G5bcmSJZjZ5BXg+J3ylo3YFisPYDDoi5UGORAtEwqxnL8MRnM1Q7Yx9xsD/uy/uPBgTmLEwDMGybFiohxz+USQ8rjWXckvb+GIx7+cHzmZA4OPDY37zWtfxGRVuShjrAgoKyzKoLkM4MuqhrqKhmxr/l7dlf+yiiG3l8mEuL84d+J+6+yuOw4lcZuyKqHu9oph+5hpm7ky277FlWfd1ee0XoK44iy9aoy1V72xHs6Dt/yK7z21BYBrvrsM9nb/5AwhhBBiPtKLhEK+RWFiYoLx8fEpq8kPu8Ket8lPbMivGLzFdRXiQnsxKK67IloGeHVBTg6wcll7eT96DthiiXp89GIM2GJpfBmIlXaUQXD2RQyAy9L6unUh8vsYTMfHKdZVAOQ+4roW+X0eX5mciPuLCzyWFQ9lVUgsyy8rE6Iv4tX9eGtMmZTKiY/4VIa4lkAM7OPil9kPeZzxOJXJjfzd8ukZOZFQJpPq5lbdfI/bDgvU43Gom8elP7Lf47woK3licirOoVj1MN25Ws7jck2IuF257bCKDbEwWbxqJWc/eiNvsme6NkWMAFuWXmDLu58AYMPdX+Xa9e9n0YSzfNfeji0TQggh5he9SSicP3+eiYkJLly4MBl4xavwwwL8/P1YGh4D17zeArxxdTknFMr9xWApEwPX/Lksb49XmSNl8DQ+Pj4l6ZAD6XIBv5IYAMaFKGMwndvz+HM/8Wp2DDphMOjPbfGKe0w+xOqFPKZom7tPVmrEq/hxH8CURTFjIiQnYGIlQEwuRDvL4xP/llUucV9lhcLY2NiUNTliYia3xe/EOZNvLcjt8Xjm8cbbE+I44tyKSZp87DL5doT8vbyfeDzy7SvxfIiUiZhcQZGPc6y4yPuLfohPR6nzZbRtWIIgz9tYaVEmi2JyJ/thuiqE2SQZ6hJ0s91etMO/37eKfd/fiW5zEG1z9Is7ATgwPs59j38ALmkhfiGEEGK2WB9+OJvZP4D/AP/s2JTrZYNskA2yoeAmd7+ho75bxcxeA450bMaozzfZIBtkw1RGSYf1m1g2yAbZ0FcbarW4FwkFADN71t3fIxtkg2yQDX20YRTog59lg2yQDbJh1OmDr2WDbJANsmG2TH3mnxBCCCGEEEIIIcQMKKEghBBCCCGEEEKIOdOnhMKPuzYA2ZCRDRWyoUI2jA598LNsqJANFbKhQjaMFn3wtWyokA0VsqFCNtTQmzUUhBBCCCGEEEIIMX/oU4WCEEIIIYQQQggh5gmdJxTM7A4zO2Jmx81se0t9rjaz35rZYTN70cy+kdrvN7O/mdmB9NrcsB0nzeyF1Nezqe06M/uNmR1Lf69tsP93hbEeMLNzZnZv034ws4fN7KyZHQptQ8dtZt9O8+OImX28QRseNLOXzOx5M9ttZm9N7WvM7Hzwx0MN2jDU9y36YVfo/6SZHUjtTflh2PnY6pwYdaTF0uLUJi1m9LRYOtwPpMPS4dQmHWb0dDjtd35qsbt39gIWASeAdcAYcBC4uYV+VwAb0/vlwFHgZuB+4Fstjv8kcH3R9gNge3q/HXigxWPxd+Cmpv0A3A5sBA7NNO50XA4CS4C1ab4sasiGjwGL0/sHgg1r4nYN+6HW9236ofj3HwLfadgPw87HVufEKL+kxdLimcYtLZ5sX5BaLB3u/iUdlg7PNG7p8GT7gtThtN95qcVdVyi8Fzju7i+7+wTwGHBX0526+2l335/evwYcBlY23e8suQt4JL1/BLi7pX4/DJxw97803ZG7/x74V9E8bNx3AY+5+7i7/xk4TjVvrrgN7v60u7+ePu4FVl1uP3O1YRpa80PGzAz4HPDLy+1nBhuGnY+tzokRR1o8FWmxtLiOBanF0uFeIB2einRYOlzHgtThZMO81OKuEworgb+Gz6doWcTMbA1wK/CH1PT1VN7zcJOlVQkHnjaz58zsK6ntHe5+GqpJBby9YRsyWxk8Sdr0Awwfd1dz5EvAU+HzWjP7k5n9zsxua7jvOt934YfbgDPufiy0NeqH4nzs25xYyHTuU2nxJNLiQaTFLWuxdLgzOvepdHgS6fAg0mH9Jp6WrhMKVtPW2mMnzOzNwBPAve5+DtgJvBO4BThNVdrSJB90943AJuBrZnZ7w/3VYmZjwJ3A46mpbT9MR+tzxMx2AK8Dj6am08CN7n4r8E3gF2Z2TUPdD/N9F+fK5xn8D7VRP9Scj0M3rWnT42ouD2mxtHgmpMXJrJptF4wWS4c7RTosHZ4J6XAyq2bbBaPDMP+0uOuEwilgdfi8CniljY7N7GqqA/Wouz8J4O5n3P1/7n4J+AkNl4y4+yvp71lgd+rvjJmtSDauAM42aUNiE7Df3c8ke1r1Q2LYuFudI2a2DfgE8AX36uakVEb0anr/HNX9SRua6H8a37fth8XAp4FdwbbG/FB3PtKTOTEiSIuRFid6cd5Jiyva1GLpcOdIh5EOJ3px3kmHK/SbeGa6TijsA9ab2dqUEdwK7Gm603QfzE+Bw+7+o9C+Imz2KeBQ+d0raMMyM1ue31MtfnKIavzb0mbbgF83ZUNgIOvWph8Cw8a9B9hqZkvMbC2wHvhjEwaY2R3AfcCd7v7f0H6DmS1K79clG15uyIZhvm/ND4mPAC+5+6lgWyN+GHY+0oM5MUJIi5EWJzo/76TFA7SixdLhXiAdRjqc6Py8kw4PoN/EM+EtrwJZvoDNVCtYngB2tNTnh6jKQZ4HDqTXZuDnwAupfQ+wokEb1lGtynkQeDGPHXgb8AxwLP29rmFfLAVeBd4S2hr1A5VQnwYuUmXWvjzduIEdaX4cATY1aMNxqvuQ8px4KG37mXSMDgL7gU82aMNQ37flh9T+M+CeYtum/DDsfGx1Toz6S1osLZYWj64WS4f78ZIOS4elw6Orw2m/81KLLRkihBBCCCGEEEIIMWu6vuVBCCGEEEIIIYQQ8xAlFIQQQgghhBBCCDFnlFAQQgghhBBCCCHEnFFCQQghhBBCCCGEEHNGCQUhhBBCCCGEEELMGSUUhBBCCCGEEEIIMWeUUBBCCCGEEEIIIcScUUJBCCGEEEIIIYQQc+b/5/sIlvql7u0AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 120260 250123\n", + " Min thresh = 1000\n", + " Sliding\n", + "\n", + "\n", + " Winner = Sliding\n", + "\n", + "\n", + "004s_iimage_74132233134844_clean_ClassS_0-128.roi.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADYCAYAAABberBAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADXWElEQVR4nOz9eZxt61nVi4+5Vq2+au99Ts5J30MSmiiNGpOgGAUBlVYF4V4vvUG8V9AfahK9is2FixeksQkYRIlK313ADgSNwIUEJAmEEBLSkRxySHJyztm1a7XVzN8fVd+3xnxq1u73rrXPfsbnU59Ttdac73y7tc4e4xnP81Z1XSuRSCQSiUQikUgkEolE4lrQOesOJBKJRCKRSCQSiUQikbjzkIJCIpFIJBKJRCKRSCQSiWtGCgqJRCKRSCQSiUQikUgkrhkpKCQSiUQikUgkEolEIpG4ZqSgkEgkEolEIpFIJBKJROKakYJCIpFIJBKJRCKRSCQSiWtGCgqJ246qqt5cVdVLzrofiUQikThGVVXvrqrqk6/y2rqqqg+/zudc972JRCKRSCTWCykoJG476rr+6LquX3PW/bgcqqr6M1VV/UJVVY9WVfV7VVV9Z1VVW2fdr0QikXgso6qqb6qq6rerqrpUVdVvVVX1hWfdp0QikVg33Gxh9krt5b+LE5dDCgqJRDvOS/q/JD1Z0kdKeqqkbzzTHiUSicRjH1NJn6HD7+AvkvRtVVW9+Gy7lEgkEnc98t/FiVORgkLitsNttVVV/f2qqn6oqqp/fxSRelNVVc+tquoVVVV9oKqq91ZV9Sl275dUVfWWo2vfWVXVV4S2/1ZVVQ9WVfW+qqq+3BXXqqoGR9Gv91RV9f6qqr6jqqpRWx/ruv7euq7/S13Xs7quH5H0nZI+4dbNSiKRSKwPqqp6QVVVv3QUjXqwqqp/XlVVP1z2p4++hx+qquobq6rq2P1fevRd/UhVVT9VVdUzrua5dV1/bV3Xv1XX9UFd16+T9POSXnQTh5ZIJBJrgaqqPrKqqtccfc++uaqqz7T3XlNV1Zfb319cVdUvHP3+c0cv/1pVVTtVVf2FqqpeUlXVA1VV/e2j7+R3V1X1v15ve7Gv+e/ixOWQgkJiHfAZkv6dpHskvUHST+lwbz5F0j+U9C/t2g9I+nRJ5yR9iaRvqarq4yWpqqpPk/T/k/TJkj5c0h8Lz/nHkp4r6WOP3n+KpL93lX38RElvvrZhJRKJxB2LfUl/XdJ9OiT0nyTpr4RrPkfSH5T08ZI+S9KXSlJVVZ8t6W9L+rOS7tehKPB919qBI8H3Dym/exOJxGMMVVX1JP2kpJ+W9HhJf1XS91RV9bwr3VvX9Sce/foxdV1v1nX9A0d/P1GH39lP0aHD61U32N7lkP8uThSkoJBYB/x8Xdc/Vdf1nqQf0uE/QL+hrutdSd8v6ZlVVV2QpLqu/2Nd1++oD/E/dPhF/EeP2vk8Sf+mrus313U9k/QPeEBVVZWkvyTpr9d1/XBd15ckfb2kz79S56qq+pM6/GK+WvEhkUgk7mjUdf2rdV2/tq7rvbqu361DYfeESHv0ffoeSd8q6QuOXv8KSf93XddvOfpe/3pJH3u1LgXDd0j6NR2KzIlEIvFYwgslberw37uruq7/m6T/oOPv0evF363renn0b+T/qMN/G99U5L+LExEbZ92BRELS++33uaSH6rret7+lwy/dR6uq+lOSvlaHToOOpLGkNx1d82RJ/9Paeq/9fv/Rtb96qC1IkipJ3ct1rKqqF0r6Xkl/vq7rt13DmBKJROKORVVVz5X0zTp0IIx1+O+FXw2X+Xfs7+jwO1iSnqHD2gf/xJvUYdTsd67y+d8o6fmS/nhd1/U1DyCRSCTWG0+W9N66rg/std/R4ffk9eKRuq6nob0nn3bx9SD/XZxoQzoUEncMqqoaSPoRSd8k6Ql1XV+Q9J90+A9VSXpQh0ViwNPs94d0KE58dF3XF45+ztd1vXmZ532cpJ+Q9KV1Xf/szRtJIpFIrD2+XdJvSXpOXdfndJjCUIVr/Dv26ZLed/T7eyV9hX3XXqjrelTX9S9ezYOrqvoHkv6UpE+p63r7hkaRSCQS64n3SXqa157R4ffo7x79PtWhmAueeBVt3lNV1SS0x/fy9bTXQP67OHEaUlBI3EnoSxpI+qCkvSO3wqfY+z8o6UuOityMZVasIwX4O3VYc+HxklRV1VOqqvrUtgdVVfV8Sf9F0l+t6/onb8loEolEYn2xJWlb0k5VVR8h6StbrvmbVVXdU1XV0yR9tSTybr9D0iuqqvpoSaqq6nxVVZ97NQ+tquoVkv4XSX+yrusP3eggEolEYk3xOh2S/L9VVVWvqqqX6LCm2Pcfvf9GSX+2qqrxUXHxLwv3v1/Ss1va/QdVVfWrqvqjOqw59kM32J6k/Hdx4vJIQSFxx+Co7sFX6VA4eESH/+j8CXv/P0v6p5L+u6S3S/qlo7eWR/992dHrr62qalvSz0g6rVjN1+gwTeK7jire7lRVlcVnEonE3YK/ocPv2Es6FGPbinT9uA7TIN6ow1zd75Kkuq5/TIdFcL//6Lv2N3ToOLgafL0Oo2q/bd+9f/sGxpFIJBJrh7quV5I+U4ffjQ9JeqWkL6zr+reOLvkWSSsdEv1XS/qe0MTfl/TqoxMiqJPwezr89/H7jq7/yzfYniP/XZw4FVWmJiYeq6iq6iN1+A/ZwVFhsEQikUgkEolE4jGFI4fDv6/r+qlXuDSRuOlIh0LiMYWqqj7nyOp1jw4jZD+ZYkIikUgkEolEIpFI3HykoJB4rOErdFhj4R06PEe9Le83kUgkEolEIpFIJBI3iFsmKFRV9WlVVb21qqq3V1X18lv1nETCUdf1px2d3nBvXdefU9f1g2fdp0TirJDfw4lEInH2yO/ixK1GXdevyXSHxFnhltRQqKqqK+ltkv6kpAck/YqkL6jr+jdv+sMSiUQicQL5PZxIJBJnj/wuTiQSj3XcKofCCyS9va7rdx5VMf1+SZ91i56VSCQSiZPI7+FEIpE4e+R3cSKReExj4xa1+xRJ77W/H5D0h0+7uKqq23bURFVV5fdutytJ2tvbU6dzqK2c5tioqqr8xHb8b/5b13Vpq67rxvsbGxsaDofa2NhQXdc6ODjQwcFB47q2Nvx3f417HX59VVXqdDqNMXKft9c2xk6nU/72fl5uni7XF54Z59XvZR6YK3/df3zcPkZ+9/XgWp5P+9zT7XZPrB3X7+/vq67r0nZc+zivcezc78+MY/Lr29bP+3bas3y8p61LfKbPmbffto6dTqd1fG399X7Ha+JaXW6sXO/7J35OfIx8pr3PbXPne8f74vuu2+2q2+3qwQcffKiu6/tbJ3a9cU3fw5LU3ZzUT39mpQ8st9R9+/Jyl64lqkFfz3neo2fdjavGmx6+X4MHpmfdjUTipuDcR+/rid1b873x7vfu6qGH99v/B7f+uKbv4jv9eziRSDx2cUmPtP6b+FYJCm1f+g0mUlXVSyW91P4+tbFIKi53D9edO3dOu7u72tvb02AwUK/X02AwUL/fV1VVOjg4UL/flyStVivt7u5qtVppb2+vQZohhJCLXq+nfr+vfr/fINiQ0o2NDXU6HR0cHGi1Wml/f79xTb/f13g81hOe8AQ9+9nP1tbWljqdjh555BHNZrMyBvq4t7en/f390rf9/X3t7++Xfu7t7Wl3d1fL5VK7u7uNeXIi2+/3NRqN1Ov1tLe3V+6jzYODg0Kker2eNjY2tLGxocFgUMiVJM1mM81mMy2XS+3t7TXWwYmeEznvM/fRx16vp16vVwh9Xdfa3d2VJG1sbGgymWgymZR2mIfVaqXVaqXFYlGupe+j0UjD4VD9fl+9Xk9VVZUxLxYLrVarxlg3Nzc1mUzU7/eLgMHczOdzbW9va7FYlPUbjUaNcTKviA/cy/6gnwhXGxsbGo/H6nQ6jTnxeVwsFg0RwgUP5s/Xjr5EgSASdNaCPc88DQaDsm99Tff398tnazwel728v7+vjY2Nxj5cLpeNzwqfBcdqtVJd1+p2uxoOh402d3d3yxxzH/3hGuaR17vdbkN42NzcLGPpdDplP7C3WJ/FYlE+N51OR+PxWJPJROPxWJK0ubmpzc1NnT9/Xt/6rd/6Oye+aO4MXPF7WGp+Fw975/WU5/wdPfvRXXXe8YZb3b+bju7Tn6X/9FM/dtbduGp8+Pf9ZX3Y17z2rLuRSNwUfPIPXtLfvPcdt6TtF3zqe6980frimv5NfKd/DycSiccufqb+4dZ/E98qQeEBSU+zv58q6X1+QV3Xr5L0KqndoXA5AQHCQaRxb29P3W63EW0+f/68dnd3tbu7WwgyggL30t5wONRsNlOn0yn3QPBidN3J29E4yutVVRWCF4mUixOLxUIXL17Uzs6OJpOJhsOhtra2VNe1VqtV4xndbvdEVN/7wbx4tBdA+Lhnd3e3CAO0vb+/f1l3BgTx4OCgiCkuuvhY6Rd94T6fC0SOGGFnDAgvvrZOtqN7gjFwLWTVHQq+NzY2NopgwdgglnG9JBVizNzSn16vV8a8v79fRKb9/f2yD5jnfr9fxosIsLGxUcQtxhAFBF9jnsG6tu2J6Nbw+fLXfb0QehDL2q53Ug+BdzcAf7MOUZTwuZek3d1dHRwcaLlcFiEI0BfuY97pM/POPPqceZtRzOr1eidcOrzPZ365XGo0GhXhoqqq8rw7FFf8Hpaa38Xnqnvr0Y//8u3pXSKRSNwduKZ/E+f3cCKRuNNwqwSFX5H0nKqqniXpdyV9vqT/5WpvdjLktmT+e88995So82q10mw2K9HoXq+nra2tQtC5RlIhGhAzJ+6QVsgnf1/Oak6fnERCoInO+n2QHhcVzp07p8lkovvuu0+dTkePPvpoibo7mYs2b96LfQFxnETKIeEezY5z7WNEBGF8tMkcxfWCSDsZ9WiyE3Eng/7T6/UKWcRJAdlFAPD0AXeBuKDBazgg6MPGxkbpJ2vhqRExUs/9OE5YX3cMHBwcFJGAPnqqxHA4LBF8HBJR7KBP3kdP0+AZ3n/6SOTfX/O9wmvudoBM0x8n/W3ihLfBazh1XHxzQS72YzgcljlbrVbFTeD7xect9n04HJ5IY6DP7vjwZ7MHWUcXHjudjra3t0t/FouFer1emRNcQ3cobuh7OHHrcTCs1b3nHu0/8shZdyWRSNw65HdxIpF4TOOWCAp1Xe9VVfV/SPopSV1J/7qu6zef2gmzmXe7XT35yU/WBz/4QXU6HZ0/f75YsiGIW1tbDQs7pFc6jmpGskZUVFKD9B/1t0FU9vf3NRqNCrnhHifZ9BtS7BZ3SCeCgkdYvT8ICpubm7rvvvsKuXrkkUc0n88bfWS8tOEkHfs+Vm76hpWb6D027xgthmzHSH+v1ysEkag67fb7fW1ubhaxxoUDn4soajiZdQeC99kj9E4QnTi6AOHCRbfb1d7enmazWUlDQFzg+sFgUCLXgHnwuQAQfPrqLgPu9Wj7cDhUVVXa2dnRfD4vAgh7eLlcFkcMe7vf72t3d7fsZcYURS32Lq4GQCqLixLMFfMPSAWQ1BDm2sQBFwTcyeDP7/V6Gg6Hms/njfmMAhspFuPxuAg5ly5dKqknuIfcpRDrMiDaMAfML39LKp+B4XBYrnFhyL8f/B4+I5ubm2XeHn30Ud2puNbv4cTtx1s/+5X6Z3/sOfqp5587664kEolbhPwuTiQSj3XcKoeC6rr+T5L+09Vc2+129YxnPKP8Q7/f75e8eenYNu457pCXwWCg0WikxWJRbP0Qs2gLB3t7eyds405m2+zUkCyesVqtChlx0gVc4PCaCk7Ulsul5vO5ZrOZFouFLly4UCKp73//+xttQBg9xQIizjXMDaIGBBthhWcjAuDo8D4hBhC9RjRh3qhHQQqJOxgQTpzYsmYuzrjA4pF4r0XhaRWICh6Nji4K1hIyzn2z2ayQeY9KMzfuVOAZiCCMzYWc05whngrR6XQ0GAyKiIWIgAgxHo81nU61vb2twWBQ5tVTBHAjME7aYR6dDHtaidfDQFDxNh0QedogFSS6XXyP4TxAPPH0h8lkciI9xFN9SCsZDofluXGOfX1ZI/72sXqqBPPs6Ts+Hva1pz8xloODA41Go8YaLhaLIka0fbbvJFzL93Di9qNXdTXuZNG1ROKxjvwuTiQSj2XcMkHhWlAdFVPD1k5k20koJAAi4rnNXOtkGNEAOOmkOJ5Hfz1HG5Lnuf4euaV9iJ0TTS9aR7tu6XaCUtd1iVYvFgt1u12dO3euRLdns9mJ8Xu02kkYBNLrJngRQN7nPXdRxKJ+LiA4vAijF96jvegY8HXwqLBb89vSLLg2noJBn5nz09JRIgnHvu7F/py0g5gWEtvx69w1QT8hpLg7cCQgbACKXC6Xy7Jf3N7vaEu7iXMdU2NcdPA229JinJTHtJ9Ipj1NBRHEXRK+F+q61nw+b4hgOFOYH9I8YnHJ2EffG7RDHz2Fwvvic+CpM15PwVN0YgoMboZ4akQikUgkEolEIpE4xloICtJxhJ38ZYiHdFzJnaijV+8n+iypWPq5ziPhnu7AfyELRNDpw2g0OnHaQ7Sdu2Ue4kGfY8Qeggrh8hz0xWKhnZ0dXbp0Sfv7+xqPx9rY2NClS5d0cHBQUjo83YB+YKX3iC3RdWzsPB+xYT6fFxIXyVp0Y0AGPQrPPEDOYz6/k1ZcDsyf2/id0EWRJM6VR6Ahejy3jXDzDF5DUKB/9DGSRUgtEWpfb37nGcwt+8dTdkiZ4XSBg4MD7ezslHHQf07mQHSh/gLz73PWlrrQBvqImOQinY/X9y7v4yCA8LcJCn4fUXyfF6+x4fUQvA3GwBxzYofvFUSDtvFJx2II1+Au8doX7CVvj3mJbhMEysViUdafNIxEIpFIJBKJRCLRjrUQFIhmSsfFBL3InEdiJRUiDZnZ3NxsHAfphNnhYgIuCBcTnMR4/QAiyZ4GgWjh0XpPH3DHgqQT0U5IL0cTPvroo3r00Uc1Go10/vx5Pfe5z9U73vEOfehDH9J0Oi12eQoW8my34+PUkI7dBG5jhyR5VDjWnHCCuVgsynNxLkyn05LusLm5Wdr24nlO1DyS7+SY8XNqhFvjEY0QSRgnPxxlyfg8dcFFEdafFA/WgQg11/t7rDkiTjwxwlNf3P7P2u7u7mo2m2k4HJY0hoODA50/f14XL17UYrEo9RYGg0E5xnJnZ6fs42i1j66Ktr0cP0+sf13XDQEmOkS8zgF1KxA+EI3oS3Tp7O7uFjHPBR/qkeBAYA96vQL6QD0UhDX6G51DPMPHxp5F2Oh2u+WzwpgYF2NCPBiPx2WPIYyxTxAVut1uGV8ikUgkEolEIpE4ibUQFCAPXi3fc8ajHRxiJKnxj/7Nzc0S+XWyDBn23Hfa9kisRy79LHv66MICZMlt+H6KgadVeOTd3QmMd3d3V/P5XNvb27pw4YJGo5HG47HOnTtXjpFcrVaFuPLjtRRcOMBuT9TW3Qo+X7Tt4/b+uUDiUXoEgP39fQ2Hwwap9ei6Cy/Aj53kHnL93fnh6Rye+uDzSD0Cj8q7mMTzPZUBd4tH/aPw5G25qMD8IV44sSXazrMQCAaDQSG0zBv3eWFEhCuff9pjXV3wchHhNFs+88XcsWej3T86VHyNKTBJH7zd5XLZEGe87gafn729veLO4BmehsAc4+aAyHs6ia+JzyHiAEIbn/PZbHbCFYEYs1wuNZ1OJUmj0agIP8DHP51OG+0kErcCf37rbXrXG+7Xb3zO07X37vecdXcSiUQikUgkrglrIShAcCBj4/G4RA39H/SR8EaLPq95qgKAAEciRtQVAkQbXqzOiTttx//SPyedXo+Attpy2rHlU6BxMploNBrpnnvuKUUmOR4TkuURfx8TAokfvSipHFdI1NxJqKdxOLn2lAgXCZhLT3XwMfm13r7PU3wG1/vpD1zLOvFcr8uALT3WUXDXCXMfT2OI6xFz/bkP94vvD3cIsC/oL2uG+DEYDDSZTEoOP/Z+9qDXYPAjHJlLHw8/OA7aamD4PDBn3oa7AOL6xvVirmP9BcYda5XEQqKTyaRRT8H3F/czB55mgqDgJz+48EgfvFYEbbgDJ/Yf1wx7wx0KAIcULp1E4lbivu5E//gJb9SfHj3nrLuSSNwQvvMnP0Xv+uQ36JVPee1ZdyWRSCQStxFrIyj4sXwQW4/CuzU/2tQBRAwCLh2TExcF/LVut6vFYlEIKhFpr/QPKfOIvb8H+aJfbYTQRQ8fN0RntVoV2/d4PNY999yjxz3ucaUuBLZworEQJaLfEB8nV+4GgHh5aoCnJng//XjGmLYR7/GIcoz4xxQBF3T8Gp4FXKyRDnPtEQBWq1UhlPSH0yZYEz8i1PtMeklMK4gODN8v9M1THyC4wGsWdLvdIhjgKomCwt7eni5evNjYw/QBIktaRxTHWP94SomLWb43fV7cTcPny10Kvifc2VHXdRFVIqKTxFNpEMZoe2dnp3VfIHDgFHCxxR0IfKajkIUIRAqNCwHMuYsG1IpASOQZ9Alhg89dIpFIJK6MZ73il/Qz9YukL05BIZFIJO4mrI2gcM8992g+n2uxWGg+n2s0GhWLOkTCya4TfUmNquweiQV+33w+P0G+PM+eaz1q6fZ2J5uec+6FBCFsbhOntkKM9krHdvHZbKbpdKrZbKZz587p/PnzpfI8hRs9dYEClpIaEfhYt4D+UntBUuNow+jmcMLfJtpEhwbXR/t9FBQg3v4sdy70er3GcYvMIf/l+EEEFZwk8bQGflyYIlKP0wNXSqxBwH38PpvNyhGbbsf32g8cI0pb8/m8CD6DwUDD4VDnz59vpAfMZrPGfNA/T5fheX5Kwf7+vgaDQSHPpEy4iEV7Tt4RWxCZIPDRlcLfzDVziXAT6ztEMcgdEZPJROPxuIhxXisF8cXTjHxf0D7inheYZAyMF8GM9JNOp1PcHr6W7BM/UvT8+fON1Bp+onCUSCQSiUQikUgkmlgbQcHtzpAniLF0nC5AVJFot+foQ3a9RoBHTCEMfoqEEwevbeCiQl3XJWIMofH7+XFbttvnY148hNSjzwcHB9re3la/31e/3y+53Z76cPHixQaphFB7RJY+xGJyUWDxvvBfF2ncZh7vc5dBjBa3uTF8jiJ5j/NFtN5rKZCrzzi81gLE1AUjF3m8ZoC/N5/PS+Q9pgnEsbLX6vr49APP7/ejOH0cs9ms/H7hwoVSjwAXjaRSlBGxwlM7GB/PYj48HURSY86YHxfhXFTgvwgFiE6INbTrDggXg/x6xuoCjK+P163odrva3NxsHBHp6R4IIriDGCeFHxF0vP+ICohYjB9hit+9QKV0fMwsok6n09FoNCrCj+/NNldGIpFIJBKJRCKROMRaCApuVabCPlFIFxWc8HnE2ok71zlRdqJR13WJLkey4GkR0nHU20kO91D4ked5H/hxy/xpeegQRyLz8/lcOzs7Go1G2tnZKVH04XCo8XisxWJR5sVt5n5spTs3vABfG9GHkPs99I1r/O+4bjEPn9cjXFC4ElHz97zIotv1vZI/hNVTZ5wMuwDCOCGwvi4+P1FY8OKGg8GgUdPAUwd43fs8n881mUyKhX80Gmlzc7Mxpy6KRaGKPev1JRBZPH2Bz9De3l4RmoDvA+YkrldMVXHRy0Us76cLce5OcWGjqqoiCIxGoyLosY9pPx7p6KkqzB2CG32PDgLfF9LxkZ5RQHThgyKN7orwNJREIpFIJBKJRCLRjrUQFKRjuzunBjgxcAs2RN0r5MeouB/jR40EFxsgGbTtz3DHgxMbqvV7GgP57l7ngWfQlv/Oc6NjwUUA6igMBgNdvHhRW1tbpQo+UVRs6wgKTippz/vj+fI+T7GegfcHREIVSagLGVwfCWq8Nx5X2fYcfz7k3NMfcGrQB9bLx+qiQrTy8z59AaeJCi7+xH3je4tr3SHQ6/W0WCxKGk+v1yvRek8doW/eHn97TQXaZ596YUEXhVxY4bqYshP3I8+LaQxt+9zJfnRLMBculHDU6Gw2K8dnxv4yP35aShQU/EQNr4niAmMU8/isuiDZ7Xa1XC7LWnGPH0uaKQ+JRCKRSCQSicTpWAtBwfPcOQqQM+kj0XQbdBvxkY4j79jZyUGHTEDKPepNtNfbcks9/YTseZ421u6IWB/g4OCg9Am7t0dQERSk4+r/+/v72tzcVLfb1WQy0c7OjpbLpZbLZSFX2MuJBkdCRd9j7QMn3FwT5zvWGGhzFkAoozuiDRBS2oSAxnl3Uu9RcC82idPALe1ed8D3lfeP51Do0kmxF2tsGzPHCcbaAS6sxJSR+XxeijAiCtF3B8dGthV85IQOaoo8+uijunTpksbjcSlaST9ow+s84Dign5Eo+2fptDQJ5o35bDuu0u91h8FisSjkHmGlqqpGaorvM/a/uxzY77g9pObRp9Ra2NnZKePmWQiVCBT0fzgclj1ATYvHPe5xrY6iRCKRSCQSiUQi0cRaCApS02YtHRJ2L7wGqIGwu7tbcqqjEOBEyPPBPQJJaoWkBrnnGV6s0PPYPdXCn+HtAa9bAIn3eg6kM1BlHjK6Wq20s7NThI79/f1CGvv9fiOP38UJovZ+SkMb3JER+xzTIq5k+YY0RgLq7Xl0Px5X6WkjfhSlzxc2dcQHjgcknWA6nZZ5QaDxNA4XLTw9wfvhBNudJD6P9Kmua126dKkQfObb9xj9ZA5Yz7quNZlMNBwOS2TcBavFYlHm0x0Y7kgZDAY6d+6ctre3iyjhuf+SGjU0PGrvnxfmhv3Dc1gH6pj45yCmJLjzxWtA+FyxB3BpQOQlFRKPmOhrwD7f39/XfD7X/v5+WWc/iWE2m5U1RHDAATGbzTQej8tnhVQQai8gTCJMUbBzc3PzhMiYSNxKvPQn/rP+7r/8Qj35m37xrLuSSCQSiUQicdVYG0EBQEAgE21EnWMS67ouBdsi8fUaAk6gIYfkm0MsYmE/iGw8/cFFCs+TbzviT2rWGUBMgPj6EYDRabFcLjWfz7W9vV3a8b66mwBxwUWCOGdc5wIAv0eSHUUF2vQCeD6X7jhoq4/g7oCYGuICkNvqo4vCo+p+TKWnP7AOTn55ro+J++M8+fM94k/b3o7n/DsRph1PDSGNhhM4INScmnBwcKDRaNRow489pd4DIMoP8XdBxB0WzAV9oj9+nX8uoluE+9w94GsbhSmcHrTrbgbmzlM6/JQRT+VwZ5Kv02q1KgIBczgej4vrgB9qLNT14bGmHLfqBTh9XIh1HN06nU4baSaJxO3AZ0929LLzJ7+3E4k7CU/5uT0963F/Se/6jO88664kEolE4jZhbf61HHPpnbi6NRw7N3URPJLpRMbJaptNv9/vn5oTLx3nbkPuPUecAniQIbeKOwnmNSehHrWmHfovHZ8UAAHd3t5upG/QBxcUIIOxMONpc4wA4OTqNFEhpkn4WB2Xs4fHOXB7PaTcI9o+Bo/Wx+KTzCHr5KkSbruPooLviSg2OIGPQlSsjeHih5NxX3+fPz/5gFMIEJQo9AgY02mpKTgQiMT73ERHBuOKa+K1J3jNxR7fJ16PoS3dwd0g3qaLCp7OgbCCA4drY60DRBGePZ1Oi5jQ6/U0Ho+1XC6LoLG3t9cQZ3Az0R4nbXj9h9Fo1EgH4WjL3d1dTSYTJe4MbDzpibr4MY8/624kEnc1+v/lV/QRD3yE9Bln3ZNEIpFI3C6sjaDQZsOHJEsn7eRuF6dYm5MKrsfC7QTVhQbcARBSnAq9Xu9Up0Kb3TuSMl53Ms0zyO+mYj22eQgVEXdy6nkWOeKennGaMyBGh7nGxxCdCvS7DVzn+edtToa2e5zUQ/68cKavjwsLTsT9+RTs4xnUJJBUjmCEMPPstnE5qfRreZ2+sza8zykFrOdyuSwE34m0CztEwJ1400/EBEg8JHo6nTbm110LnBTBPDKv/kzffz7P8bPG3CBuuIDBWruo4PuGtjzlwZ/t1/M8d1OwpxHQmAd3//geRVBgjIPBQOPxuNzDHHu9CequIOixX1i7fr+v8XhcxL3FYqHZbFbaStwZeNeXP1u/+ZWvPOtuJBKJRCKRSNxVWBtBwd0GROXJlYa4+6kKkkrOM5HeWN/A7dVucY62by8eJzUJO2SEwnBOhj1tgnujS8LHR592d3dL1BQrNsSq1+tptVppPp+X4wEhS+fOnWtE0L3uAgIFOK1IZCTWkXS6aBPb4hr/rzslYmSeazxK7qIC6+anHXhfYzoCcxYj4RTY9DHE9BXmyp0ILvLEecKV4tFwd0z4yQBxnf3oSj8icTgcajgcljoCWPcRsaip4fPFiQju0oHc9/v90havefHRuFb+2WmrZbFcLkttCgQQr+/Q7XbLZ3C1WjWKirqoxrz4M/gsIr74XvS18joOfAfw+eRzdvHixeIOunDhgra2tsozd3Z2yrGrw+FQ9957r7rdrqbTaalNwjOrqirfHxSDnUwmetzjHleKn166dEmJRCKRSCQSiUSiHWsjKHgkOBZ3c9LlFf0hT5AxjnaE6LdZ0D1S6hFWz5WOhNSdBbwGgfI+ReLtUXZ/n9McIJsuiPiReRyrR+TWXRH+d1tKB2MDVxNp5R6fL7erOymH3EHM2nLvPXrtkW7m0h0i3OOCD695Hn0ULXyuPZ3B14g1aXNBsI9iX71ugJ8CEdfW2/WUFH/NRSDeh6z7caS+VyjE6S6bWLPD/+a0Ap9HX3f65E6ImPrhRVDdqcD9XicEgcfFtyjquLjCPO7u7pY96585nuluHvoUi14i7nktCk47QXxhTgeDQak3wVz6cZsUM10ulyX9YWtrS53OYcHP2Wx2xc9NIpFIJBKJRCJxt+K6z0WrquppVVX996qq3lJV1Zurqvrqo9fvrarqv1ZV9dtH/73nSm1Fgu71AiB7pAXEKCj1FCASCAyx4KETQiesbtemL+5C4D7puDCg55NDtJy4Vkc1D7xKfLSac8yjV/KH/BAphUghKszn8yIyeBHCmP6AMBD7dNrct0W0W9a7zElMTWmLUDs8RcRTEIgyu+DgVnqe4ekFrIG7TaJYEME68nz/vTqqzxDz9t1R4qdPeEqM7w2fe99Tnm7A3lkul+VUAfaSzwHtO1lGcMDWz389TcfTZ2IthDhPl6vz4evt1yDWsaf9JJS49ow9fj4g9O6kcCEJUY01aHO9MIcQfhwoo9Go1EZZLpdFYGEOqZ/gKTYIdHyH7O3taTAYaDKZlNM41h0387s4kUgkEteO/B5OJBJ3M27EobAn6Wvqun59VVVbkn61qqr/KumLJf1sXdffUFXVyyW9XNLLrtQYxKjf75dCaJAPjgmEYAwGAy2XS0mHhGmxWBSi48XeIErz+bwR2XcgZngEd3d3t+TEx4gwZIRnQrx4H5KERR4ShIU+RoQhV0RbGePGxobm83npD8IJbXoeuhNXFxPiuLw/ba4NH28kcjENxAl0bI85jW0yL7FmgtcO6PV6JcWE98h/px2ve8Ca04c4Vp8b5sMLO5JKs1wuizvEc+/jaSEuUGHPd5eDz1cUnnzNptNpo8+IaE6svVDj3t6e5vN5o89+mgGim6//YrForCX9Zk+5eAPRdlHO02oAKQiIIbgF2gQIUhvYE/x4gU1OaKE9Tm3Z2Ngo1+GaoP9cywkovV6v1Ew4f/58Gd98PtfGxobOnz9fXECsJ/sJ1wXiA59DTn44TSRbM9zU7+JEIpFIXDPyeziRSNy1uG5Boa7rByU9ePT7paqq3iLpKZI+S9JLji57taTX6Cq+PEl1IH0B8gRZIyLsBewgGxAbPx6OSC0EgWfwX4/UupuBtra3twtBI4VCUiM6Lh0TaogarxM1RXSIJJt+ICoQLeX6Xq+n5XKpixcvSjo+3cIJv58yMRgMCtHySLw/C9LUBtqM1fttvQvRjJHlWNiS69vaYz6Zx8ViUWoHuADgbgXm3VMM3LkyHA6L6MA8exSeuYU4Y49n/qnDwJz6nuEUBfaSE3f2K5FtSSccAi7+uLvA59CFDhec6rouc1PXdSnYSTscoejCAKk/pAq4E8IdIpdzFdCHWKODfnGtpw8ghFHHg7YR5rwNT+FwB4CncbjrwoEowNouFgs99NBD2traKq4C9jmiwnA4LOvCkbMu9vCMvb09Xbp0qYgQo9Go9H+dcbO/ixOJRCJxbcjv4UQicTfjptRQqKrqmZI+TtLrJD3h6ItVdV0/WFXVFc/xgixJahAJ8qW5xokGhMkt8KvVStPptNjFIYFbW1sncuJjnQBPu4AEenTao68QRG8zFvaDTEdS7ETXbfwxXYGCe5AfIqoxz96t/zFC7OSQNIw4difvRKndLg8YHzn/nl4QxRJ/3V0ZPj53TkTHAvuAe33Mfg/z4ikIPpcuHLkLgnuolcAxgb4/WDecJl6EkdcZC44V5om9yXsuLiDC4B6IaQ5cB2FHqOIkgsViUZ6xWCzKPMV6BO7c8LSL6M5wIclTODw9wufdX3MBwB077upxN4fPnzt0YloRQobvXd9PPJcf5rKqqpKm4OIFdRD6/b42NzcbQtPBwUGj4CbpFNPptJz8cCfhRr+LE4lEInFjyO/hRCJxt+GGBYWqqjYl/Yikv1bX9XaMwl/mvpdKeqmkUjQNgoj1HMLhOdYuKvBatJ1jB4dkj8djzWaz0g6khv9KxwIAJA9ycdTXBgmO9m0bU2tE3usoOGF3ouzXk15ADj05923XuyvAC0l6CoSvibsovN9t1m53BEhqiBfMURyTv04b3raTcI+WO1klf57rncS6UwGLvtczqKqqOD78PndLuMsAgYH2fH/wflsxPyfMnMzBXPge8LmlTXL8WWci575/PF2F/T4ejyWp1AuB/PrzECBcUPB9Qn+Ycyf4MUXExS/QdvwmnxOfZxepvIYD1/i9PNuFLP+MnjaftMU8sK64nHCcILyQYuGns9CmzwsFM+McrjtuxnfxUONb18FEIpF4jCO/hxOJxN2IG/rXclVVPR1+cX5PXdc/evTy+6uqetKREvskSR9ou7eu61dJepUkXbhwoXbShkMBAudV3SEe5F5D0BAjyL/neDrI5mg0KqSK9qRj0uzEl/9SANH6XNIRPNIf3QUQFMgs7gDP3/Y2Y1E6SBEW91i93kUCFzb8ecBJIqSZPnukFvHFSR33uoPAyWMcgz+TuSYlwqPNkWhGckd/mGuHi0KeY48bBYHAUx/oI3sEBwqiwubmZjl1g2MRvZ8udlDLIBZ49HoK7myJ45GaogjzDul1cD9rQo2NTqej2WxW+ut71n9350I8dpK59oKT0rEzJApXzANz2ebIQeRAJMFZ4WlD1I5g7LgM+Iz4s3FouHuIe6NLBqfCfD4vn5/RaFTmiXsnk4lGo5GqqioiEN8nLlLhOIn7b11xs76Lz1X3Xvk4mDVEtbGhuj1bK5FIJG4L7vbv4UQicffiugWF6pAdfZekt9R1/c321k9I+iJJ33D03x+/2jb39/c1m82KCEChRSzNRK8hNE7APUWBCCMkod/vl7PqpUNCNJ1OC/Hl2QgCEDGI8nw+L69F6zZCSEwjcFINMR6NRup2uw0S6HZ02qWt4XCo5XKp8XjcOBXCTxyA8PhrLlx4fQJJjXHFFANPm4BwMceQd9agLTWE9t3az7PayL6TRXc7eOqJpIaV3useQAAhjB7xZ50huj7X7A+35pMi0+v1GjURmBsfz+7ubjldgJoFvg6QUoQUdw0wRuZyuVw2xBbcObH+hb/P54TnrVYr7ezsaDweNwg964lIgBDGurMPAUURXRBgvpkPF6+i84U97YVG/TPlKSR+UonvfeqfcK9/huI+RZBgHuq61sWLFzWZTMqa3HvvvaV4I+Kcj8/3kp8wQR+5d51xK76L7zTc93Ob+vdP+0ZJk7PuSiKRuAuR38OJROJuxo04FD5B0v8m6U1VVb3x6LW/rcMvzR+squrLJL1H0udebYP8I94r0EOq/YhB6WTdA0QFSBrkBSKL6wHyv1wuS2SUKLJHYD2PHdJCJJxCgE7uvTjdaXCRY39/v0RSPVLskWEIJKQV1waRf498x1MFgNdyYB6c1HptBvrIHLiY4AJCdHT43EWhwt9vczdEu3m8h+f4UY6c8OGuC9rudDqNQoBOXF2k8DZiDQLm2NetLf0jrjltOWl3Jwn9Q3xwxwJR8Rj5jy4OxkmdAI/Qk+rjwg+fAU9lYA0Rm3zvIQRIKqT7NPEoOjFYf+aYPrl7pNvtlnlzRw1CDZ8x2uU65rJtfnzv4SDZ39/XaDQqTgXaXiwWGg6HjTX3eWT/8FlyZ8ca46Z/F99peNLwou7rppiQSKwDqgce1B/4B1+pb3nZt+sT1//k3ZuFu/57OJFI3L24kVMefkHSaez5k66xrcbvblEmYrhYLAqhgIB4dN0j1hA0yMxoNCpEjgivV3b3iHok5JJOvOcRYHcjSMek0v8L3Ebvlnl3KcQ0BI+8k+bhKQgR3h+3wfMM+kTefqw1QH/I3fcce16HkEI4vY3Yp+hAiPPhr8V1dQLP82KV/7Y18mKARMydlPoY4lqwvtHeHwUPJ7e+hr6WPv+OtqKWpLOwRpKK+MSaQXJZG9bH2/G5iWPzYxPjnvH0A0QnhASfV3cqtNUg4HeuiSKS708n8e5Q8dQef88Fxba9D3DWMG6cMQgEXgPD++Hrwxq2iWDrhpv5XXyn4odf/wf09Bc9rL96z++cdVcSibse+49e1H3/8pf0zr/+eH3isNXh/5hDfg8nEom7GWtxyLqTPaz2kEC3gHsE1f/R7yTVo+GkCNC2Fzr0yC2AUMWcfk9toF1Jpb3hcNio+u8E6zRS6QQUohyJIYTQTwGI5NuJdTz2DxIcSZOnP0D2KSbozyOn3YUQItUINj4WJ35RaPC1cZHA59jJ4mmE0S38PNPH4E4FivO5dd7TQTh6cTqdlnoZuF38qEEvlEjbzDUFFr2AZ1VVWi6XZf/5GGOxQvriNUCo5wCpjxZ9H6PDBQW/lj6wV/0EFBwwROvpg7sP6IMfienrE+tlDAaD8gz64O4Dd8HE+iOcujGfzxuOIMQTxtMmKjmYR1JKmHfcSe5CanMpefpDYv3x3C//n/r27/8zZ92NRCKRSCQSibsOa/OvZSKj5LB7pDkewedWfKK7kAOIDpHI5XKp2WymyWTSIO9YxonMQhwgLW1EnH5Kh1HQ8Xhc7OvYqdui8DESf6V5wFkBYex2uxoOhxqNRo20jogYzac9CLpXt/d59GePx+MTx/ZRw4LK+S7aeC0Cf8/HHwUCJ6RxTiCVkON4UkFVNY+/9NQMF1CcuHJSBmTZUygODg60s7NT9g6kmfYRdgaDQYPIRjLv8+riF2Pweeb5uGP4YcySSt0O7kPc4USDNvhnJdYGcbLvApnXzHCXh5++wBrSfkw/YH25jzXy/crYfL9QABPiPhwOy2ef9A+vb4FTif3hroZYJ4SxX7p0SZPJpNE+QhgiIHvfU3l4704pyphIJBKJRCKRSJwF1kZQ8PoBHgXn70jsyZOXVGoucC2AfJE37eTWT2pwhwTEFFIP6Yskk8grkczRaFSeCZwg7u3taTgcNorNneasQORgXvxZLgr4ddLJ0yZ47eDg4EQBvngtc+zCzubmZiNHH5HGBQO39vs6ubgQj/1jvPyX+z3FgfshdZBQF4+8He5nTrjGhSOcL07kIZGz2axRhyDOlRdYxD3gzhl3BvhYXFhoEyGie8NFEU6TQJAYDAbFGcKeb3NyMDbmCFLvglpM7/GTVdgvEHnG48coulDWJizs7++fKHDoKUOM310cOIcQf+q61mKxUL/fL8c9Smoc0cl3hNdR8P1ATQVcRKR9uJjh+9LXxoWZxPrjmT/6IX3M9l/Rr73slWfdlUQiIem7XvE5+mdf+oh+9Q/84Fl3JZFIJBK3EGuR8tAWoYVcE1GM0W8vOBftyk6od3d3S1FHiJ1HW2NFfUiXF5Lj9xgFhzjRH7eEeyTWr3fru9RMA4jW/dVq1bCtRwu898nb8nnwdASfR5/7mLLAPFBx34tHehTco9cuBl3uvZiW4WJOTHsg593nLdZVYH79OV60EiLuaS5+Pc9ZLpeaz+fFJn9abj0/beOi3/TN6yn4OroTwAtH+v04b9i/MQUmihjRGcL+YE95qoTb+V3M8Xt8/8X59s9FrJ3Q9rkgrYLrvI14j6+p94G2RqNRSdHwE1c87SLub2+HOfT5bRN2/CdxZ2D/zW/VU3/gHXrhG/+83rY7PevuJBJ3PcY/9jo9+o57z7obiUQikbjFWBtBgaMBncBAKONxibwPMSK/2tvz/HTSHhaLRSEQ0rEI4ESW+72WgB/B5xbpaIt3kuTXRzu51Cze5/nqjI+xe0SaqDTW9XjEoBPXSIacVMb8d0fso+fbe00BL5rna+Jk0fvlOeteRDO6Q4ho88Nxmb5mbU6AWNDSr4nCCNf7PlutVg1RIRLpmF7BHiBC7icGeN9cLHOxyJ0Z7Ek/dYNxrVYrLRaLkk7jgo7XXvC1r+v6hOjjz8W5wV4FsV7BbDYrtSBcfHFhI4oEvodIccBhMBgMTtTjcMHDj1OlD35calVVGo/Hpb0omPh8+PcAKRQxjWR/f78ISDHNKQo9iTsDe7/3fp3/02/XKx/6Y3pkf3bW3UkkEolEIpF4zGMtUh42NjZ04cIFTadT7ezsNKLcpBp4ETypWViw3+8X0gPZ8RMRVquVHn300UahPSd74/FYs9ms2JyJqlIYcjg8PPcoEp8Y9XervKdrMAbSKLzAIrZtiCOpE5AZyI5Ht6XjEwAWi4Ukld+x80uHFnIneavVqhHddtIcCxBi849z2e12G5FexuhR6VifgfnxVAQXgZgDz/N3R8nOzo7qutZoNFK/3y/z4kIO7UOmASd6kCITI/oQXp7FCQEugEhNoYACmggKCC/eN58/P1HD54n0ld3dXe3s7JRikOxpT5nwdIjo7vCx0D77lj1DlJ/+jkYjbW5uajablei9C2b0i3QBF4BcjPH6Jr73KK4oSZPJpLEGFEU8ODgon13m3kWAqqoa3wec1jKZTMr1XvTRU5govjocDhupFdPptKQeISjwWSF1yYs4tqWUJNYfv/XCjl7wj75Gv/2F337WXUkkEolEIpF4TGMtBAVJGo/HhSitVqtCht1K7WkBEA6OhBsOhw2C7PeS8iAdEiXs17H4mlvvJZVotnRIiiAv5GE72fN7vd6CkznPo/cor6TiQECUgAR5HQie6TZ+6big3HA4bNQJ8Ai0Ez2360s6QRKj/RxBAbLtBR+xlCOAELV2MQKhAxLoJ2Jwf0yZ4Bk+BzhZRqOR6rpu5Nq7Zd1FhVioD6LMmiAcsFcQBKgX4XUAWDfaxS3hp0vEeeVa9pen9ECgmWf2CkTc14bx+3hcdJEOhQ7ELneJ8Ls7aiDzvk+ZC/aVp1vs7+8XhwH7Ph7t6H3hOt/jOAv4HMVaItHdgVDEaRx8br2Y4mg0aghT8bQNHEiINy58MD/z+Vx7e3vFneHuh1hbIXFnoN5dqcpslUTizPG873xEH/Puv6Jf+1tZ2ySRSCQeq1gbQQEbdsy/hlgQSYyF7Ty9QFIjgguR8ePr3FrvtnAvNhjrCniRO368yCH9hYTGYov+e8zvjikRTkyJvPoPRA2yC2EiKruzs1P6FgsxOukGTuAg507weA+i1XYygbfvook7EdpSPNw27ykhTvCJJHsUmmgyzoZYk8EFEcizp224IBSf5+JVnCvWjDnydfZxs988fcH3re8D5t9dFrThLg5PV4juHbfpkwoRU2RcyOK5XqSQzwf7N5J/3C20QV/9M+TuFZ7hLg5PAYppRu5+aBPBlsulptOpRqNR2Tc4CrzvOHpckHCHje9xLzKJQwbxgWekoHDn4nG/UetFv/bn9Esf8yNn3ZVE4q7F/pvfqieNf99ZdyORSCQStxBrISh4lXdJms1mJdoNsXLyF0UF6diR4BZwL7o4n88bQgXX+3+BP8N/x1buf/vPYrHQYDAoJL+toJtHYT16zDz4qQ1E9InSLxaLRuTeRRFJJSWAyPJ0Om2ILSDOk5No7xs1LfgbFwj3QLaczONi8HQIr1Ph9Qli+kM8/o++7+7uFlLJHLO28/m84TJgXZh/RB7e99MM3FVBX32NXFhw4ccdFL6uvl9IcWD+2NsulPj+gIy7AMK8ea0FyDKkN9Zn8Kg+e4Q9j2gWRQV+99NEOp2ONjc3tbOzU/ZTFCZI7UB8wC3k+wgnBn3wYznbhAV3xvA6gga1JLzw6Wg0KukMBwcHRVDwOeWEF9bJBSH6zTNwO+EoafuuSdwZOPe9r1X3Dc/RG//TUh/d31Cv6l75pkQicfOxd6A3LvNzmEgkEo9VrI2gsFqtNBqNNBwONR6PGxZ/CBSkYX9/v9ieI5GTmpF1rvHK/F6LAOLsxMSJBKQQMgqR9XYiGYvRaycxfi39pp+xcB73uk3di0piT+90OsXdMZ/PC7GCCBKlHQ6H5W/mh7FIapBGJ60uxIzH49Ivt7dD3ngu4oDXcYDoel0I8uK9CJ+P30klc+CnFGxubpYxs0ZugWdOfK03NjY0HA5LP6N44PU6aNfXi7QZP3Ehwsm1iwqIWayjp+/4WpCiE6PkzA9E3o9SdEHKXT2MDbEL+FyORqNGAVRqWUgqRH46nZbPna85n71Yr8AFj5jKQT92dnYanxdP63EXDPUOKKzoKRiTyaR8tmazWbl+Pp8XxwU1Lph7d9HQb9p/6KGHGqlOiTsX+2/5bb3sw16sL/jN9+qLz33grLuTSNyVqN/wZr3sw16sr3rbm/Vnxouz7k4ikUgkbjLWQlCo61rT6bQQNYrJScfuBb/Wc7ghiG7Vl9SIom9sbDSK7blo4D/c59Zn2vXjC7HOE4WGfLjNXTp5tj0kG8IbrddtOeU+Xv87igLSscAwHA41HA5LwT2u81z90yz9y+Wy0W/mlnmRVJ4XHRVuUYfM0gb3UYTPhRgnqFLTfu71ELDyz2YzjUajMmeewuDP8z2DeOBOFH8/rpe7CDwvP+4Hd6x4ZN3FKxcVfL+54yamUXjxTPYb93sNAtY/nkrBddQH8IKYFPT0Zw4GA43H48aJEexLai1Qn4Mxu3OIVBQvYOoOEK5ZLBYNUQNRwuedNXGhjbnAdcO17iTo9/vFVYFwhdDh9SRo3/cLP+zdixcvnnAuJe5QHOzre/7Sn9Grx11dfFZPr/9761mo8QV/+yv14T/3oPaufGkicefhYF/f8uX/i/7Pvz7TG/7Q9591bxKJRCJxE7E2gsJ8Pi//gIfIOIl1eJ0FJzbSSRIP2YMEe6SbtnEdeHHBWFAPqz/PaMt59/E46XEy7797DYW2OgD+46+78AAxZHyMZTAYaLFYNEg7RNL75W3yDIifz7fXJYAgugXe25Sa6RrScT0L0gUg5KQk+FrFXHcn3bggvD3e8+sjXJjydYz3+z7yOge8x9y7wOMpEL43XGjiv20iliO6W0BMs/B5hUzjPnGxzNeT1AQviunP5T3Iu3/GBoNBEWbYey6eMCden8T3jM8xQoyfKsJz/Bqfd9bQj1JlDO6g4QexjzQZ9ippJKwrffPClexbhKvEnY/Oz79BfUlPeubT9ewXf6le85J/qqdvbJ51txq473UPae+d7z7rbiQStwzd17xeG89+kV6w8bn65Y/7obPuTiKRSCRuEtZCUJBUrMpEsREWvIo/RANigzXao8TAiYpH8SUVW74LChAvCCunOXhk06vY+9GTOA+8MGTsSyz4yPX0PQoKnofOa27ll45JJXMCwfKcdj/RwJ8ZHQruCOCeSK6ZE68D4ISSa2nXTydwQDYhbqwjbULaiW47IZWOTx+QVPLj/X3G6ojzSV+jeBXnnOu8JkAkvdGlEB0SLlB52kYUlnyPxL7Hdt014adu+DgRBxBudnZ2Gqdv+MkHuBSoceEpPD4+dw7xGeAZy+WypElAzul/myPGj3z1dj2VJopsXuSRNphT9pGLCtQScRcM/fa2XcjkGaRAJB472Hv3e/ScL3yP/sUb/og+5dybJEld1fqE4W7mdicStwH3/utf0v47P1763rPuSSKRSCRuFtZGUCCKur29rc3NzUb0EkIDkYhE2sn05aK7kFxJms/nJVLrx8UhVCwWi0b0dzQalWKRXtFfOibPHv2HIHoNAvrMveS0+zF4TgghUE5IHbgAiKpiN6fPfgoAJMnn01NAYhqEpzNAwLy+gxMyr/HgDgbqFyAUeWoG5A1rukeX/XQBovrMK6kmuC8ggm6/9z3Rth9oi31HcUKvneD7xYkxY2QeGI+nIFDUz+fII+pcjztjOBw2BAX6F9fcRavBYNDYF6PRqPTV0xm8NsXOzk75PUbraYNCi3weXVDo9Xra3NxsFAql34gWjM9FOPpEtN9TOQaDQZlfXDGkGsV0J/9MMK/RieHiQLfb1Ww20/b2dtkXCCnu0PHjM3kGYsSjjz7aun8Sdzbe+HHSG3VUeb7T1d95+6/qE4dn26dEIpFIJBKJOxFrIyhACEl9gFTE9AZJjcgoRMJJgtSMhCIAuGjgRzKuVittbW2V+1arlba3txvWe4rUOdlwm3vbWGjPre/ueCA3HkEjjtVTJyLaLP7uKkBQcMLoogd9hKTGOgG0N51OSwFCyBxzfVqk1x0D0RLP3046XQTATQI5J2/fU1B8/SGxPk9O/OP8uaOA+9zhwbxAxhFC5vN5qcPga+7PYnzz+bzk7btA4eTcbfer1aoUbHR43+Nec2cBQMTwVBLa3djY0Gw2KzUoBoOBRqNRKepJ2+fOnSvzz9zT/36/X8bFEY0AYYHjJd0VhNjkopePcTwet+5/Fyu41kWTqqo0m80adREQMFgThKHValWKSnraB8/FzYHAwLMR4RKPYRzs6+s+/3/T/9U72kcblb7j3/4zfVhvvVIiEonHCnq/8lb9yc/7Yn3jv/uX+tgjV1sikUgk7lyshaAQ7dwxf9/z/ImUOmGnyJ+TRE+TcEFBUoM8eGV7CD4EGvKC1d/bgLw4nFDH/kvNYwkZt1u0vYK/3xfbi4jRXK7BTu7tusDh9/OcSMwh85BjqXnygJ8K4WsZx9FG8Bk/v3t+PcKB11IAUSTxFAL63TamOHbWE4Ep2vtdrPE9F8HYIMTL5bKknPDj4o+nxnjBwbh34hoxFp9v3+cuZLlrhGcOh8Oy16fTaXEMeGoPaRCQ/9lsdqI+AgIYBD+Kez5W/2z7WvmY6B8nucRUE69XEQWF+Dl0QYH2qb3AyRfRLcIae1qEi2qJuwC//CbxyauqSp/6w39D+6Oj79qO9MZP/zad79yaehpvXC71Of/5r+ojH3rXLWk/kVg3HEyn6vzCG/W5P/jX9Bc/7X/oa+//zbPuUiKRSCRuAGsnKEBi/Wi3KCo4QYP8QF49Ku92fn/Pc8dJFyDyzvGKkBucDG7zh4RGeB/bUh08usy4GbtX6vext5F/T5vw19wRQFTZLfZu5fdrXfCI1nsvVOnFE30uyVf3tXRyGQUFFx+cXEKCfQ0jkXeXhe8Nn89IqtsEDndSRIdEdLl4nQXfV45YgBA3iu833oupEgg+TrCjcBTHGB0SEPXojKGdbrdbjujkmdvb26qqw2MXmW/GioPBa4og5iGS4CDx/cWeoX8c7eh9ldSYT/YBxzciCHhtES+m6u3HNBHEg1h8lXHMZrPiiODHhSP65UJN4i5DXevDvua15c9qMNCr/sjz9bTew7fkcT/8gT+g5/6VX9bJBJ9E4rGNZ7/sl/Tq0R/V8z71wSte+/DB+25DjxKJRCJxPVgLQUFScQDwj39IAyTW85shNRABz2GHALjo4BHojY2NRi63pEKwIMqj0Ujj8bgUivTjICH/VNSXThLZKFpgp48kkRxyhAwXEmazWePYSqL1kDYniowFEgu4z2sAMA7eQ/hwoub3MSZEHuaTiDfpKU4oGe9gMCg5+U7CYxTe585dCl7M0gUTLzboRxy62OQCh/+XvTUcDhukksh9XdelpoH3D/s+4/cTM4CTe99T9M377McrklrgiPslCinuEOA6T7NwQYH3+dwgkpEGwPMQCrymA3vHa3VIahwRSR/Ye+wVQLuspzsCPEXC3S5ej4L1XC6XpR9t885/3aHgwuNyudT+/n5J2ZEO60a4U8hTHmJxzMTdiXq51M88f0vS1i16wkO3qN1EYv3xnK96nf6NnnHF6x6q334bepNIJBKJ68ENCwpVVXUl/U9Jv1vX9adXVXWvpB+Q9ExJ75b0eXVdP3KFNhp58/zj36PxEFLSF8iDjgUCY/Tbi9I5oSUaKh3XE3BiQv68E3hIxmAw0Hw+Lznk7kaA5EkqFe89mk0bEGF/1nA4bBRPpOJ+dDQ4OYfIYUOPJNJt/C6MeA0FL6KI9d7hQkF0NUA+OVbQo/TuIPG1blt/J9DeR6954VF+9gRFHRE2uKdNbHB3yWq1KuIQ40VskNSoa+GFBkFbBLvNhk87rK0LDuxdXB7uoPCouY8FsK7MF3vGhTbGJOnE54UxuLtHksbjcfk89vv9Es3nZBTffy4qSCqfB+bZ51NSSSVyos5nx9M+ogMk1uXwk0s8FYd58jWhH+52QEhxIUFqnsASPwN3Am7Gd3EikUgkrh/5PZxIJO5G3IwQ3FdLeov9/XJJP1vX9XMk/ezR35eFpxL0er1CPKJVPkYN+Yc/UX4nS7E9LxDnhM2JRkxB8CMWneiRa952EgXPhxBBWNqinU5+aJPnSscE1x0EjE1qRsT9Gi86ebm8/0hePc0CsaEtCs/pEjESfbl0gRjxjyJQ271O+NrqT3g9DSLYLjhBNj0tAiLu+fiSGkd4umXe58KPXPTrI2LEvC09IhZ49Pax+HuEnfvi6Rdu2/c1jfUB3P4vHTuCED84IhFHCSLIZDLRaDTScDhsOCA8zYK6I7EWgbt7XBSLnzvvn39u/DPldRa8323Hm8Y0mJjegKBEPYXoHHLcYS6FG/4uTiQSicQNIb+HE4nEXYcb+tdyVVVPlfRnJP0re/mzJL366PdXS/rsq2yrIQK4pTvm+DcGcJReQDV7J8BejA7C00Y4Yj8gH6cJAZ1Op5Ar+hkL6nmfvTgfZAzwu7sueC4Ey39cIIi2didZXmzS7/GotxO4OLfeRy9SKKn0xY8PlJrpF06GIzl0Iulr3+ZekE4WfvR1ghhjx4cgIgoxjzFfn37GVBYi5vx4bQT2hP/XybP3jfZ9bfw9F4t43dMjYrTd2/TIv++vtntOi95zD21SX2A+nxdHyXA41Gg0KqdBIMx5/1j3mCbAc3weceO4oOCiTNtcRYHQP+cIM762IAoKvve4D3eLixL0407DzfwuTiQSicS1I7+HE4nE3YobTXn4Vkl/S83k0ifUdf2gJNV1/WBVVY9vu7GqqpdKeqkkTSaTBimDoFAxH8IH4SBSi+tAUrG5QxI9+u41EzyVQtIJogp4vpNRLxS3sbGhyWTSOEXBSR/2cKlJ3iCCnjvvaQLuqIjkEThZ86gs+eYuKkAiIavxVASvO+FpB7zuc3W0bmWOcSf4kZ3+PhZ2r/IfaylEAcifwXzThpNT5gqCyJGIdV03HCZY3L3+BCQzuigQSWLNB/pOhJz187lx0SGS5jaCyjp5H5gDBJRo1XcBgHEC0jM83cLJOO1xbXyudJhiw/MQEMbjsSSVuWWPsMe5vtfraTKZNIQLnuGpPdTd8DlnPr12io/XgaiA04CCqV4DwdcnOmOk4zSJvb29cuykp4qQJnGH4Vt1E76Lhxrf4m4mEonEYxbfqvweTiQSdyGuW1CoqurTJX2grutfrarqJdd6f13Xr5L0Kkl63OMeVzvpxAHg+dJOFKixEC3fntZAgUIimqPRqJARirt5BDnWKWgjctGSD/mLtvZoN5dUIrhO5hjHfD7XeDzWcDgsUXKIHn2JwgZtRKLnz3VyZutWouv0xcfIXLuwwDM9eo8zgX45IfPx+Xz5vDnh5D2IqBNn5tjH6/sAl8JoNCp7xW37iACsEfPlAoivcxREosOD9nxu2W+niSgUQvSaDETW41x5nQ5PGXChAXFgsViU/vDjaQAurlEgkj7H5zNuBDxJ2traKrUUNjc3tb29XcbnY6fd4XBYnoeg5ikny+Wy8bn1vei1LDg2luKZUrMIZaz7sVgsirvHP8Mu8kUHFHOOS4G9FoWkOwE387v4XHVvHmuRSCQS14j8Hk4kEnczbsSh8AmSPrOqqj8taSjpXFVV/17S+6uqetKREvskSR+4UkPRhu7/8KcoH6SEHye30jFJbbPuE3F1UhadDFFU4DqIC8+Ifa7rutjAY664CxDejqQGaYag47Lw6LZHhJ2gexQ4RskdjF9qRqO9b5CvOF6IqTs1oliCPZ61Yh54NmKD3xfTLVzEievAvFMjo9vtNgoJ4gaIBSkRO7yqv0efXVRgXzCOTqejxWJxYr69kCJ9dfGJ5y+Xy7J/3aHg6QfRnk+/o6DF9V6c0wUO4POLyOX1Afz4U0nFaREdKJ4u43OAyEHhRdrgGcyp1zqgbcaB2INIwZ50QWu5XDZOJsGlIR1/Zny9EFwQitrSG3zPtzlivI6Gfze0zfOa4qZ9FycSiUTiupDfw4lE4q7FdddQqOv6FXVdP7Wu62dK+nxJ/62u678o6SckfdHRZV8k6cev1JZHib2wG6kPkkr02YmiR5DbnAVODKhYPx6PS144UVHPCXebfSQn7oaIEU+P+sc8ckDk2os5SsdF+tyqHos82rwXchtrMbjA4IX6PO0hCi4xvSBa9XnPSRuEDtu411Jw0tuWfhJTAtr2gN/vufdefFNSQ8Dx1Ajmg775CRFeZ8Mj2B7pp+YG4kIcT4TPGa4aJ6SeinDakYcuhHhtBe5HIHDizrNdLGF/MRYfrxfsZL1j31jn3d1dLRaLUmOAOXJxCGEAEh6v87oivE97npJAigrFH3EVMfY2QcvrWDBvjK1NlPE1jPPvhS798+L7a51xM7+LE4lEInHtyO/hRCJxN+OGj41swTdI+sGqqr5M0nskfe6VbvB/6ENkIQ2Qfk99IB3CreZ+tjzRaq7Z3d0tZAUi1Ov1tLOzo8ViUYQJcsJ5diTgHnEmZcJJi1vJJTUi8NLhsXlOpLzAXSy051X4XRCIKQkeLQe4N2IdBMQZj/xLTcJLekFMMWkTWzY2NhqFEA8Ojus40D730s84p15DAsLPeD333iPZvV6vvMfxj7Qfj/rc398vqQHcS6Q9kkYXBiQVAu9zHklpdAVwjbtnGKevt4szkHL2TIzskyLhdn8Xw7xGB2uEiNbpdBp1IeIY2FM4ASDki8WiCCReO4L1Yc74TNB3dwzRP/+skm7EuvmepTbCdDrVdDrVzs5OYz5daGMf93q9crqHOzxcnIqpJbTDXLnI45/dO8ihcBqu+bs4kUgkEjcV+T2cSCQe87gpgkJd16+R9Jqj3z8k6ZOutQ2PKDrRgDjxj/tYW8CdCB6NhHxBKCE+FJoj2j2bzXTx4sVG7rdb7LFfOxGBsJPPD7Ghr4vFonFkI+87aZIOq+g7QXIiHKPpEDAXJOLcQVb5fTweF5GDaL2fUiCpQaZWq1Uj99wj5/x4DYJer6fhcNgQJMiR93XwuYOgMm6i4cxVPH3AU0KIjiN6eN0Cn2t/Fi4Kd0lw8oenV/A8J8oRLsDwt4/NxR3SI+iTFxyk/+7ecCELd4C7EFzMYm+zpyD8vtbMpa/DcrlsrB8CG+0uFosiVkwmkzKH7mhwxwpryFxRu8LFLuo6eM2O+XzeSIfh2ihISWp8lhBVcF7w+R6Px6U+w2KxKJ9d/1y5CMLnyt05jJN6GzFN5U7BzfguTiQSicT1I7+HE4nE3YZb4VC4LnjU2iPunc5hgUZORJCa/8iP/+B30kcbEBEi8KQoACKc8fg4FxDccu2Wbu+nR3Tpq3Qy9cEFAC825ydAOEEGXujutPlztwRzR5vUO/Aot6eP8J5H/N2y3tYv+g/558ej6xBsF0mYQwr5uQMlphC46OFig9vTHTHX3iPkvn5etyDCxQeP6MfxRQeGR8L9dRdWIOPsnYODg8apFMxZTOdwt0mbmBJrC/i8UYskppLEVCP6jKsDYu7FF/nba0ogluGG8H75HnGnBIUlnejTju9hdxGxHxgrwgeiTUwdcoGS51KvxOu2sCaeKtSWIpFIJBKJRCKRSCSOsZaCQhQM+v1+4wQHjwg7gfO6BLwOuaAYnNdU8Og/0VWIE+IDz4pWdAia57tDXIjKevqD2+G9/9Ga7c4AnwtPSTht7twZIOmE5Zz8dQgqlnjPGeeZkKuYB9+WHhDrDES3AGNz2z/Cy2AwaNQc4DhQbxfy6Wvr7gXm1Mm+p2bEVIQoFvj4PWLve9Cf58Sd/rWNl/lkX/r6R7JKwcQ4bsbr70VRIAo9FJ6MgoQLFdFlgMjiwl0stOlrTnFM32ekkrD3EYf4bPqcuqBAHynk6HPLuHCo8DllDv17wYu3npZqw3P9u8YFEPZM3O+JRCKRSCQSiUTiJNZGUPBChbHwHYTIibuT5TbCy9/Soagwn88LGaJAoxcI3N3d1aVLl4oF30mIpxpIKqkTbqWnH4gfVVVpe3u7kDfPU3dyGMUEH0ccJ1F+jxo7IaRPLgwgGpBLjzVcUkn7YM495YP3d3d3S948P1Hw8XG0rZ27IDi+kD5T08Cjy/v7+8XS7n2Lx4dGV0QUDBAN/JhAF2aiC4K5Jc3FCb+33UaQnXBDzN314ekC9MXrHiAo+L6L43WBh9e9iOJpLh/WiXb4TLAfIfMQfNr09BPcLAgMzB37gf03Ho8be57PK/BjPxEJ6HtVVRqPx8Wt4eviR3W6IMJrpG9I0mw2a6SYcMKL7wPEB3eqsL6e7pKCQiKRSCQSiUQicTrWRlDgH/yQe9ILPM3AiaXbmOfzuSaTSaMtjwJjbz44ODzSbzqdajAYlNMeIJDdblfT6bTkeEPySA+A6Epq2K2n02kjSk201kWQuq5LdFU6eWxfXdclWuvEnWf3er1GkUDcE8wP4x6NRoUQussAQvjwww+XWgeLxULj8bikHtA2kWcIos/rbDZrRIEhZDFq7yILAgttO/EeDoclb12SptNpoz6Fux+ia8PTA1zkIN+efmKhdweKOwGc7EOq25wG/O6Rf/7re9ZdDswDjhiINM/kWlIFOJ2B/rnTAMHNo+uQbo/0A++7zw/j9PfZ08PhUIvFQovFQo8++mhjHfkMeVqAnxqBOOQiiLtD6KuTdJwM7Mnd3V1tbW2Vz6wfLxnTOag1wakQLvz56RTL5bKxZ3zMsZYC17pLIZFIJBKJRCKRSLRjbQQFJ2lu6QZeDNHz8yEInq8NQXUbsx+hBxHiNcQF8rmdkPIct/77iQcUJpzP5w0RAHIm6QQ5hjDHUxd4pvfdrfsQTEmN/PWY3x+fRZR+c3NTe3t7mk6nxa0A4e92u2UcROOJIA+Hw4bFPKYWAObaHQOR/Ltogajg46MooZN+TwHheid6Hpl3u7v30fdMhNc48LX19nx+IcUxHYR9HJ/JOrj9njGxNvzt+y6OP865n47hRTcdsTZHmxjkx0G6I4YChzyDYofsS9qJ67OxsaHRaNQ4ipF5QTzxdaKfOG4QR/h88nmk/bgO7Bf2sNdaQbCIoox/VlwgQfDx1JxEIpFIJBKJRCLRjrUQFCCwMcec96RmIUO3/UOuKFjIaxACSYX0e90CIqtEVYfDoSaTSSEqbjf3HHYnjpCYXq9XxAh+sJHHVAngkW4AOeI9J6cQNYgycwbBI+ocI7H8TbG78XjcSF/wiKwXmoxFLCU1CCLwOhAx/9/nL0btvRAj7zFGJ6FRXHKy733gNU+b8XE4wW8jiT4nPvc80++LwkPsj4/X++/zDKnmWnc5SCeFD/9stLkNmAcXcXgv7mX6Q3Tfn+f7ANGJ/eciSxQ7mAte5zOHq8ZTQviMxX2MSwGBy51FiAqIILTnqQuMI7okfE2ZJ58L9p5//tKhkEgkEolEIpFIXBlrISjs7++XI+sgsEQpPYrI+3Vdl+uoDQChd9cB0c/JZFJqJng0d7lclgj8aDQq5ALrNZFO+gCxdnIGSYQQQZQgx0SfES9ivQGvgwDRgtQAxsOxjn4igvcnCinueEAUIbWhrutGrjlz42TXSWyv19NoNDoRQee5TmLdORLt5f1+vxGVXiwWRexxZ0lMT4jCgtv+mQN3ksTouYszzDNzS7/pL+/5UYce0eZ63wMgXuevuTgU3SgQez8NIu41HyNjpw13rnCvCzO+BjyHWho8g9SBfr+v4XBY6m24EBLrdiAI+LyR7oObheeynn4EpguIdX2YvoRo0uv1Gi4e9ifPiSc/+GfORSbqQvjaxHnlXoQLdz0lEolEIpFIJBKJdqyFoIDNmBQBSY36A07qJGk+n5fXKTq4WCwKESYvH+Lc7/d14cKFIgjs7u5qe3u7QYYQFpyIIj5AhCBSkUBCktzG7eTJyS8/RENpg2fTJ8geBBmS53PmwgN1DyBU9JXigPv7+xqNRqUAIqIKcwpR9Jx7ngFB29jYKGkTkEG360fxxy3nngYAqadfHFFI38fjcTltwC36btX3Y/+YK6l54gXXu3uljfCzBqwdz3UBwNMLiMw7+W9zDbQ5F/hhrhGJvEZAvN+f6ekWuAYQDPyoSFJH4nGc9CMW2GR+aZPiorgGDg6Oj7ZkbZl/PiNO9PlcujDiDpTYN9Z1b2+vUadja2ur8Zn0zyI/flSlf3/weWG8FGf1+Ubo4O/xeFxqosQCpIlEIpFIJBKJRKKJtRAUpEORwFMTnMRB2iBcsWYC1me3Njvh9PPtPcJJu0SIIcfkokNcnGh6hNWJMoJCtNo7iXQyxvMhu4gdTk5j3rdHUT01A8xms0ahQM+1h8Qytzg5IHXACaC/zlw4CWNMAPGgLULPf2P6h1vTIb3MvUfyXVTwNmJaibcdn+ntuLsC4uvOBt973je/LqY7tIlNTob9WvbVwcFxIUBcNNLxcacuxPictZFdn4N4AkmcI9pG1IguBlIH3D1AigTzR+FPd0kgkHgagrsFmCf2sY/J12e1Wmk6nZa9yufJRQNqX/hnjrHzWWlzvbjDJs4Neyqm9iQSiUQikUgkEomTWBtBYbValai0F+iDsEBIiE7HdAMinu4ucOsz/yXyWtd1I7IJ4e73++U4RaKz0nHUGMLX7/cbhCjWEnAhAQIYCZafWoFV3e/x0yyizRwy7/3f3d0tYog7I3i+FzvkNAHmzI8QjH1j3qVmbj8kzE9p4FkutkSbuc+Z1BSIeIaT9SgoxPu9toTD59JFGpwnrJXn6Xs/29Ic4nrH65080yd3fbTNCfsMEuwk3efECTDOhLjf6KeD99vmPj7D3SV8ThDG2P9eu4Ox8f5isTiRWhBFFSf0jJU18b1POozPp7sg4lp7ag/P5zPD5xl3hLs02O/+veP7OZFIJBKJRCKRSLRjLQQFyA21EDg33o+Cc8LLtdxLusB8Pi9F4NxiDbzQG+QPZ8Pe3l5xR+zv72tra6txhKJ0XCUfccAJq0eyXTBwcuWV/p0IOnmKgoKkBtH0vHXmxq3gi8WizJ07MhiLOzf6/X6powCh8mJ0zLmPAYeCCz1RAPBUDK+g7+24MyDa73lGp9PRcDhs5Mo7kaY9J6mnwcUVJ4vUtmB92VPuQPE9Gq9hbLTHPd6mOx7aRCfEG1w0/rwoVrRF1L2mgheL9H6yjqcJXsyjpOLWYa9Jx44HhJg43+5QQNw7d+6cJDU+k20pBKyfp8LQPukwbXuLveInOcQ9i0CA++k0p4I7hzxlJgWFRCKRSCQSiUTidKyNoADxn8/nmkwmhdBQRNCjutj1nYhMJhNJzar3kOpIZLnWay94cUI/9YH2onCws7Oj4XBYyK+/10ZuvV9t0XvIWIw6u3PBc8KZEyf4kK35fK69vT1duHDhRF7+YrEoc8s4sd3v7OwUIgw8yr67u6vRaHTCwk5UmGd5qoQXpYynUHguvhNv7PKeJ9/WJxdweI67IyIp91QaF4Doz2n3e6FH5oF9iOslOiF4nT3qpzrUdV3u8X4g7pBq0PYDvLaHpxcwBj+pwIt++vNc8EKM2NzcbMwvnyOvG+H71ttAmENQYH/GdWsTFSJIB9rd3S2igq8TfYsFQRFu2opuAv98eX0NXvejMhOJRCKRSCQSicTpWBtBwQmdn4gQc6jrum7kdnvk3U8icELhjgGimxBpJydOeGiPFAgv/Ad5ou4Dz3AC4gX7iJJ6ETraZwwuODAn0jE5J3LttRogdy46OElGICGVA8HBnQD8QN78OE7mjDEjPFB5XzomcSCmZYBo5YfA4bJwW74/kwJ/HonHRcIc+7N4hosQbs13lwd9gVR6Wy58tKU0kKYAsaePXBdTVLy4oUf6ff9Tz4A1gshD4J2cQ4bZW+5EYO29gCFrwx6Mogw/nIgQ3T2+J/ndj+j0taDt7e1tjUajch3jdnLvopILA1xDfQlSlfwUkugy8BQa359x3zlohza9Hf8sJRKJRCKRSCQSiZNYK0HhtNSBWGCQOgEeZYTAOeE+jexJKmKBk4k2Sz6EzC3jHk33NoFHvV1QoP8ePYZ0LpfLRntt9Q+8WGEb4YuOBvoYT6fwehDUW4DI0ncn/T4+J+fMiR9hGYm4Ez7vg//Xi+Axv5EQuzDEsyHhfpSl18uIQoXvN6/PEOsntI3FI/xxr/Jc5pl26TOiVDzVoK3You99rvG90uZegTR7YU/2Gn/H4xSptxHX1D8LcW+17Y24nj5Pq9XqhEvB59tJPoKJzy1OAxwh/pmkDU+loE+eguKpC9zjffTPiYtzvh6JRCKRSCQSiUSiHWsjKEAS3HYOUfDoJVFU0g2I/Ds55v7ValWK3UWSQD41hQ89HcHJFH0jkg7cxo+joo20AMQAotTL5bLY4nERuEPCXzs4ONBsNmsck+nRa4/GR5eEHyPoxRa9X71erzggIqH1Nl3UidFwCKDXYHCi5m044aMPPDumPkCGvSgkNTCiU4C2PGIfXQAOj/7H9Ie4B+L6R7LpKQ4QYfo9GAy0v394PKbn+3t/fI5oH3LLfLMnIkF2J4zXTvDPkdcSODg4aByz6u4C1sFrMfg6Mxe+f7zPsV++N5hX3xsubPln1K9z4cRdH36yi8+hj4l2Xcg4rc/0xwWLFBQSiUQikUgkEonTsRaCgnRo6Scq7bUE3KIco+zSIXFaLBalDYoOOjGFJBDNXi6XpX4Ar1N3wG3PTkI9lx9yN51OG2kETkjbKvs72cORANlj/H403rlz5wrxI5ecVBAcFpBqiLR0TNTplxM6z4H3HHlqI0AAnex5lDlG8j3SDIFri9Yzh7znhSBdjKCPPg9ONiHp+/v76vV62tzcbBQDXC6XmkwmDUHAyaGvoT8zRuQ9su1HOPo4eH9/f7+sp9dAYB8j2oxGI0mHNn6EBXc/+J7z1AEn0zw/XuepAX4SCo4YL3ba6XRKapCTaXfIeEqFp1X4HkBEQWxZLpelH2C5XJYxkObD/CFs8F6n0ylCIYKgzwv739fOT3hBeHBxEhdGFGz8uyWm2LgQk4JCIpFIJBKJRCJxOtZCUIi2b8jBYDBonMwgHZNTSB5kiOPqnHhBBp28eY49RH5zc7MQUt7zVAWiupIKmef3xWJRxAgfD8930ujV6omgeh4897hLI6Y1zOfzRv88Ass8egpCjKIT8fX+8OzxeNwowjidTsu49vb2ioABEEMi+W5zIbSt9f7+vmazWWnDrfke6fZItR+lyRyQUgAJjUX8ou3dU05OgxNZ5jHm3ztBbROwfN49TSTa9nm9jfC6gOPpK07wmUvcL8wH+5R5m81mGo/HhZSPx+OG+ORjYj/5qQguELH27pTBHeT99XoN9J++u4jG5xRBgfkm1cdPe6GPPI/6Jv55i+sUhbC4ftFZEa9NJBKJRCKRSCQSJ3FDgkJVVRck/StJz5dUS/pSSW+V9AOSninp3ZI+r67rR67QTsPyD7kglSCe6sA/+N3GTJ41UVrI0Gq1akRuvbgjpJNoN9FUj6h75B9Anpx8xWPxeFYkOF4DgXsgSe5kYDzcE9MLXFQAkD4/WtJJVnR9uMsDoufPoVijz3ck1cxTW5E/hzsaeCZrhJMizoELE1Fc8H6QsuFCTJtrJPbF0zCYHxeAXCzx+fL+0x7/9Wg/7cQ8/yge+Nh4L9ZLaJtbFyV8zL6e3sZqtSqfDT8dhHV3kc73GO2TbuGpA6wFnxFPDWnru1+PGMR7nqLj6+91R9zlEwUovgeieMBcR8EmziHP8rW9U3CzvosTiUQicX3I7+FEInG34iQ7vDZ8m6T/Utf1R0j6GElvkfRyST9b1/VzJP3s0d9XhEfviTL78XwIAp7O4BFeyAg2c0juYrHQbDbTcrlsHA/JNYPBQIPBoNQykJqk3XPynSRzpOV4PNZoNDohdmDh5t5I3t1Z4MUQncz4cZUxGu2ui0h+eK4TSl53supz6ASNn1hI0usxxLoNjIdrY8Qbwhj76ITOSXwcg9vRff1JKej3+xoOhyWNxfP36UebGEJf6GNcDxdzotjkpD/e75H9SJJPEwtiqkdMgXBiHt+TjoUtaoe4gIRzxT8DPi8IJ96HOM+0T0FH2qE/7lZwB008wcHFFU+DiO6Z01JgmGv/HLojw/c1c8b8xnmNdRf8++EOcyjctO/iRCKRSFwX8ns4kUjclbhuh0JVVeckfaKkL5akuq5XklZVVX2WpJccXfZqSa+R9LIrtUeUcXd3V7PZTNPptOSdQxTJlfboPSDSL0mj0ahEPiFAuBQghG5BHwwGGo1Gmk6npWaBF2mMpJYaDOSk1/VhochLly41CFN0ETjxR1RwwknuPYTKbezc76kVtMOz3KVRVYd56Z7+4NFyxu/tOYGXmkc9eu2FtrF4NB5XA/0CTjq90J63yYkPXvGf4wJ5vgstCAq83+/3NZ1OS50CxhnTWFhbnhuj71E8cmcL17uIxLO8mKQ/g3QRF2NOc3HEqL87eIjUuwDnDhkXB5wwU7eCYyGHw2E5/tMJNv1gHlx4cEHFybk7FnwczJ3PaXSqDIfDsndxFPnng3FTeNVrrTCvFCut61rz+bwhsrB/fZwRvq+jW+ZOEBRu9ndxIpFIJK4N+T2cSCTuZtxIysOzJX1Q0r+pqupjJP2qpK+W9IS6rh+UpLquH6yq6vFX1ZEjAkmu997enubzuebzucbjsbrdbhEVFotFiSJ6ob2Y/oCrgesRI5y4VVVVnAbD4VCLxaIQUu+b5/VDfCB0WO5Xq1UhRFIziu1HV0ai4mSN//r4Yl56jJo70YuWcidRfgoGJE1SI9UEUsq4xuOx5vN5SUGh6F6syh+FE9pzEu8RbIignwJBu7gMvNCez5eLIJB5F2I2NzfV7XaLK6XtWEknxO56iY4KFw+i08Tv9/WTjo9fZB9ybVybNsJK/6Krgj1BKlDbfqIPrJOnV0QnDIhReuApM1wH+WbeV6tV6/zwDBfWXJxgvlkzXndXCc9kPXieCw0UdWR/D4dDzefzRrqRrykpULFoaPwMsafaBIg1xE39Lk4kEonENSO/hxOJxF2LGxEUNiR9vKS/Wtf166qq+jZdg5WrqqqXSnqpJE0mE0kqkUYvwAYhhMxAikNbDeIRjxCUpNlsdqJIHGTdLfNEkp2ExgguwgTt0ycXHdxK7hZ+CJtb6yMZjFFc3oNseZuOaJ/3oyeBOwaIpvvxlPQd0uXzHY/WjEQcQYC/Y4oAr7ndnGKKELw4VzFtI6aAREcIfcbtQb89rSI6J+I6+br48/hpcyDEuhSQcy/S6OP2daGNOC7vs7fp0Xe/l/v5HbLfFm2PkfuYThTHwt8uYjC3/LSlhriTguKmcS19LL4P477mPZ7vdR+4zp/nbo8ovPk4vFaHj9fnYM1x076Lhxrfmh4mEonEYxv5PZxIJO5a3Iig8ICkB+q6ft3R3z+swy/P91dV9aQjJfZJkj7QdnNd16+S9CpJuv/++2vpuNihkwui1F5EjoivE3AnnZAuSL6kEo3HqeDEBVGBoyQpmEiU2XPCaRuyxkkU/X6/PCtG3b1mglurPXXDCbhHTJ0ItQkKkWzzX4/QRsIE4XJi67UMnMgT9SXiT99joUqehfWc/hJpj+QU8u9RcY80c2Slz4+vuUeOve26rjUcDk+sBU4HnuWF/KL446Tdx+aCghNj+ufE3ecAN4unMPjatRFsd6P4/vAx+Xy2/R73i89fdIe4+BQj9j73sc8+RtYuCgIgnkzhY/E5ccEv1j5wp4mPNdZm8HQUXxOfQx9bnGNv9w7ATfsuPlfdu/45HolEIrF+yO/hRCJx1+K6BYW6rn+vqqr3VlX1vLqu3yrpkyT95tHPF0n6hqP//vjVtllVVUkfAMvlskQ/IQw4CebzeTkuMha6Wy6X2t/f13g8LvZ6Cj0uFgstFouShsD9uBQ4MYBaCpAtj7BiKa/ruogJ4/G4uBe8wBzCQ1VVxXHhgol0nEuO/RvCdFohQvobo89eG8KFGEmNGguIN7Ql6URaR0xTqKqquEVArA+B2AOhpf9O9iWV+ZRUCmk6yXNiGgmx2/m9cB9uAOoqMEdux/ejJ73oZHQNMAZ3CfA+QpOTUbf9x6KMLgAwBnceOHGPzhT/O0baY/8icfax8JxImn1/tDle/L++Fi4IUa9id3e3HEXJ2F0s4TUXbpi7KBh5+pKfgoIzCCdTv98v6+Fz7UUeXQBhfdgPvn+j08kdH+uMW/FdnEgkEomrR34PJxKJuxk3dGykpL8q6XuqqupLeqekL9HhyRE/WFXVl0l6j6TPvVIjREj5R/1oNGpEuPf29hpV3CENm5ubJWc6RhL9/s3NzUIyqAMwm80audsQUEjKYDDQzs5OESYoEOmgNsNqtSoFGmNtAPqxu7tbIue0x2kWECePFvf7fS0WC0nNSGmMgPvcuQuDsUCKEFSwhUvHAoKfjOEE0E8n8OMAnaBHEkq7uD6c5DsZpK0oKpC77jUE4gkg0SrvJ0y4MBHTGxAodnd3Sw0CrzHA/EaRBHEpOgi8ZgJRf18PJ8eLxaKRt0/7/gx/3deXcfo1cb2coDucmDtp5n4nzT6eiDaxw+eL+d/Z2WmIe+7C4Rn+XP+sME6/1n/3VCKpWegyiizsAxcxfK7cRREFB0/9uEMcCtJN+i5OJBKJxHUjv4cTicRdiRsSFOq6fqOkP9jy1iddSztEyyErg8FAy+WyQcZGo1GDkLkl36vDQ0A9Uuy5+pyawNF6ENyj8TTSFyA3OA6Iyjrh8BMN4pho0yOlpFYQYe10OoWszmYzScckO9raY+pCrB8wHA4bNRpcEIinSkSyFEk0bpEYzfb+8N9IjFnPwWDQsK975NxTTVzsiekLsX9eWBK4aMCa0wZzzljcyeD2/VjjwMcYxxt/9+toI4oKuFKiqNCG06z30a3g6xUJeOxXjLjTp0i2T+uH/9fTaXx9eC8KF23CSRSjonvC18YFD8Q5P5GEfel7nj65yODj9Ply91ObW6NNqFk33Kzv4kQikUhcH/J7OJFI3K24UYfCTQGRfYgKZJuUgPl8rnPnzhVCAIGAUAyHw4b1m1MCJDXa5BqOhozHUEIq+v1+6YMLE4gP0aKN2BDz4v2oP05QIDLuR2EyzuVyWUiQV/H3vkWSBCmCYEFcJTXs/1xDf+gT7zEWryVA2oSTvZh64WTe2yDNw4tbRkGBPnEftRO8LQfX9vv9xjiZb/rjz0NIobaD9wFhyHP4Pf/e594RHQ0+Nl7zveC1JCIu17a/31bAUdIJMcD70Na+t+e1HbzAo5NqnzNvI46HeY+1DHxe/Rp3AvAsF3JclHBHASkrOHoQpGjPnU5R5IoiSJwTF+fcCXEnCAqJRCKRSCQSicRZYC0EBUg8xIuUA8j2dDrVbDbTeDwuBIOiiNiePTpJPQN3GFAbAWJBLQWPXkN4ut1uOUZyPp9rY2Oj1Gs4ODgohRs94k1b/HhEfHd3V7PZTP1+v9R0OHfunKbTaaPOAATPrecQIAhwW+E66dg9QI0C+krqAqkOWOMjSXISDVFzlwYEMjogSEehJoELDJ6+ElMA+N2fA4GjXSe5LlJsbGyU+hYuMHE/qR08y50Wnk7h10hqkFE/GSISaI+aS01CGl0V3EMtEBegTksxiGQ7vhf/dtId3QhtYgP/hZR7ek6bc+W0frIn29wR7LsoJnCP16twIcD7SrsugtFX1gTxj+f2er3ibkK4igKDz91paxjrhiQSiUQikUgkEomTWAtBQTo+Xg4iubm52UhRePTRR3VwcKCtra0GWen1eoWoU3RROq6LgNOB6L+nSezt7Wk+nzeEBEhMv9/X+fPnC9GHwELASDHgegrTQUwQRUivODg40Pb2tg4ODjSZTNTv93XhwgVJx3UAEBSk5hF9Lgx4ET13PjAXsYAj8Kg89ztx99cAdSuYF9bHiSJzi7CA2OIpE/TRxQ+EBP4LMfR+8cMcEGlGvPA2/ZoYbWduIJUuzjA3wAURj+Z7tJ7ruCZa92PtBsbsQop0LDjEUzb8GVGkiM92EchTcU67r63/LgbEFAN3AHh/YtpEPLWDfdjr9cr97AXG684Rd3H4/kZQcMLvjqJYI4ExIPi5iHWa8BPX319rczQkEolEIpFIJBKJQ6yNoAApgxRDMIfDoXZ2drRarTSfzxtWfEklau2nB0DmqFdANNQtzU7mEA3c/k+7k8mkpEhQp4G26AuvQYqkw+gv6RG9Xk+z2axRt4HXieA7aZKOUwD8xAsXGZysQry8FoWLDU6kIjmLAgFEDEAI67ouAoD3h+d7bQZSDZy0R0LJGFhn+o/bg/slNSL7XMdctNWZQDCK0XpIdyT7Dre8x8i8Ozsi2Y+igtcIiHb+y5HV+J6LAG3XthHl064/7Zn0+bSUgNPSJ7jP4Z8JFytcpPA+umARx8HnIo4tpsXElCOex5qfli5yGmLdh0QikUgkEolEItGOtRAUnBgCivoNh8OSGrBYLFRVVaPYH4SB6DZ/u0MBMhdJKHDy7YSEPiAqSCfJCESGoo+c+gD5huRvbGxod3e3karhLgeOx4sFBTlOUtIJ63Uku6SO1HVdjtOLue5RYICcMV9EmflhfHVdl/mMz3dhwV0UCCIQQ8bopJlrPKWCdAonsm55jzUKJDXGEdMF/HkxP74tOu0WefZYdEPEdYgRb99v0snUgTZSexrRPU1UaBMPLtfGaWjrk889c3Ha+KPw4mQ+Ohqi6BFdCTFto+0nijouKLhQdDWiTNt7UYhKJBKJRCKRSCQS7VgbQYHIuJMbHArD4VCLxUKLxaJBLCGHs9lMvV6vnI5A6sPe3l55PaYBOPGAvEa7+sbGRjk5YblcSjq2v7vTgRQNdxosFgsNBoMytvF4rOl0WtIiOp2OLly4UBwIiAqIADgU4jGWbk+n35Ast517wUXEkW63q9lsViL+sQ4D4L7VaqV+v98gxe5kQLSgmCKiAbUq3B3iNS6kJglljSgq6adcsC/8WEn6xBrEKDb3RsLtToE4Znc0tKUs+KkQHnVve04ULNwh4VH2q8np9/fa4MT8Ste39fW0e+hzW0HC08SN6LJhDtucE8wB7hjgopq7RCLJ9/3ktRV8jaLb47SxRyGJa91lkkgkEolEIpFIJE5iLQSFTqdTyKmTNSL5g8GgiARE6Z2ozGYzjUaj4mjY29vTdDptEAocDBARP7JQ0onot6cQDIfDIhi4IOD9dNcEVegpxAgx9mj6YrEoQghR+slkIumQyHtdB8g7xN3FEuaLWg04Gk4jQqQDxGJ39AsRhf6yBsyLz6MkbW1tlZSRnZ0d7e3tablcFlGANphHJ5FVVZ342x0Q7I3RaKROp1NSTxBPmJdYPNH3EWizwLsLwREj7j6fbeQ1WvmZxyuR0dNOfgCRELfB37tcagLjutyz2tq60jPbnhHnxdMgPA0HoQgnjNeucAHwcg4QX0v2hDtaLjc3bc6d6H653JwlEolEIpFIJBJ3O9ZCUIBIOoFoy7WXjm31fi9HLkLiqLEwn88bVn2v3A75jwXdnIx4XjmFAyHBwF0PXlxwPp+XKvpE4J3skBrhqQZu/SeC7eSZwo3dbrfMj5Nf3AG05TnlTpYQFRAovMAhgosXyXNCCLl2okj/JWlnZ6chquAiof9eONCLNfr8O2FkjXmOp4bEgoxxXmMefCShV9qTfl8kom0OAncXuBiAiBEj9W25+rHtaxEMrvRenJO2KP7VoM3J4M/2/7qQEwUd+tBW68P34+VSDzytxB0SbULE1QgmcY0uN5+JRCKRSCQSicTdjrUQFCQ1TgSQ1CD10nFk3YmGuwkgsE4USJEYDoclfYJ2iGJH4krb/vwYnfeItBNZSC9R9vg6BSd53Qk37UPivX+IHogSkDRPNaAvRMe9gn6bDd2PuGTOfS69Xbfwc/1pEXyObHSiGIUHnscz+Nsj/H5aRSyg6Kke3m+fVyewMf0gRr7jNZFsRpIZI9dO1Lnf++ZCVmzX4fe34XK1ANraa0OsPRHdGDcLbQKB1H7kZqwb4vdEcYI2eC0+r+017rnc3F6u74lEIpFIJBKJRKIdayEoYHnu9/snjgr0YonY6KkB4GkHWO2d6PupCpBxUigkNY55lI5zzOmDE/roooDwQyx3d3cbRRghwV5gMB6fR5FJSRoOh6WwIwSUQpDRGu/iBgQtphr0ej1tbW0VVwNz6nUPmA/6LzXFASzpg8GgXD8cDsuYmSP6QBHL3d3dkh5C3z1FgfuoGeEpCi4OQTS93gPz4UQU14OvGSdykO4S0w/oo9vt3aLvcx1z7N1N4dfG93mN9Wqz8Eexh/ZOs9qf5gbw905DFFDaSLhfezlXQFtfTnsm6+I1PeK97kTwfsU+XMll0CbSnHbN5dpKISGRSCQSiUQikbgy1kJQkI5FheFwWCL30jHRcJu9R6whHqvV6sTxczgRPvShDzVcCpPJRFtbW5pOp1oul4WY+jF/uBtiZLTN7u3OCkmN9AaPBEfgqKjrunEyAiC/3AUMSCdzANlHPJlOpyXtAtcHxQ7pI0dBAoQSSLy7LOq6Lv2EiELAvWYEQsTm5qbm83kjrSGe+uDEfz6flz6Q4sHa+ZzyHOpoMK+eGhML+IFYLJC15B6v4eDpJpDuNkt9W0pF3BvUe+j1eg3rv7ti4l66lUCEwfXRJoDEsVwN+T4N8XNz2vqcJh5crl0XHq4FV3O9i1W3ek0SiUQikUgkEok7GWshKHikONY7kJpOAoQF7iOFgHQCro2FB7e3tzUcDjUej3VwcFCOa+TkAydOkHWIsZNdP2UhRsw9akxqRYxgQ94B90HknbgTzY/FE6uqKqKLz5UXtYPke1TY58/FE57huf7cA/mlPRd1/AQH5o1CkU4cYy0M+se9y+WynKIhqZHuQR98DmLhPxeY4gkNkeQzntMi4uwrd5T4vJ6WdhD3j/fJHSaXI/FXIruR3F+rCOH30afT0griPTcCn1f/+0ZxNQ6J0+5xnObySDEhkUgkEolEIpG4PNZGUIBsODmORQX9fScnXveA15z87+/vaz6faz6fF0cChQsh55H0SSoRcQoh0pYT0EiW+D2S3Dg2rwNBnxmXR7O5lmc73HLvNnafAye3RIkRRxAbEBX891jpnvucbLs4wnO9uKQXW/S0CPrNvCMCeSpFjFr7OiNqeLveN9IXfO59zny/+Xr7+96ev+f3uEPB0wDcieBt8n6s6RCj9afhcoLGteJ6ovvr9Dxf+1sxjhQTEolEIpFIJBKJK2MtBAUi1l5w0KPgvV5Py+WyQSK4z3PuPTIPaSXqTjrAzs5Oya+n3sBoNNJ8Pi8k0gnfcrksNQewrkeXgpPUNms717tIglsB63nbnLgoQdqDAxGAdj0vnhQGfxZigZM7L5goHUfYfY6j04C5jUdIxjx5+uYijKd10Cb1DFhL75cf1+j3OKF394WvayT87nRwC76LVH5dbAP42NzF4fPkax0FBd7zeTmtZkLbvrgWXEsU/0ZJ9JUcE5H8X+/zrtWZcaW2IlJMSCQSiUQikUgkrg5rIyjMZjNJh8UJERKwyHvhQI8auysBEQEC6xFyP65xuVzqkUce0Xg8LkUQydd3IhELK87n80bk3gtGAs/5d2dBLOzn73mKQ3Rp+O8xiu1pA4xxOBw2ClP6+/TJXQ/0150Ky+WyUZfAUxFIZ/A8fIo8+ikLpFq0OQxcUHH3ghfRZO1jOkfbPFJwkbnjiE6fK38u1ywWi0YBUG+zqqpS54F+RadD7I+vCz/03/eYCxguXLHPbjZOI8xt/b5RXA0Rv5lCwO3qcyKRSCQSiUQikWjHWggK0nF6gUfb/Qfi6G4EhAOKF/pJDk48eQ3ivLe3V4oBQh5pwyP6g8GgFImMx1hKJy3wMXLqFfudPDoh530vfEhqAI4EHAQe7Yag0u/ofqBvLnrgsqBN+oroEJ0K/iw/+tBrU/hRmp6SwbWxtoOnLbijI6abxJM1aJOUCkSHKBjF50tquFukY7HH+xPdJg5Pg2BMUSziNXcp7O3tFWEqFmOMgkJMZ7lZYO1PS91o+/tKdQbuJtyt404kEolEIpFIJK4GayMotBUe9Ci9E0+PusfcdUimkzUIOsQOAs81pDVwLW30er1yWgKRbM9jjyTY0whi1DnWGvAIK/UM2nL0vU+AKDfpAj5vfv+VCLw/w0UJ5psxIyggagBcDk6kcXEwDxFxjLTrJ0X4vbFYJfPkeyIWmuR+T91wMQiRgnvd1eHrclp+vs+Zi1A+N6yJCx8xjcRTIjxd5XbgRp9zOYEikUgkEolEIpFI3B24IUGhqqq/LunLJdWS3iTpSySNJf2ApGdKerekz6vr+pErtRXz250QumsAMuhOBcjgUZ+KGOAkHvu5CxHz+bw4HBaLRSF2nhowGAw0mUxOOBScUJFm4QKD5/zHdAUQiwi6mBLrNDB+J6WM1dMv2qL9zJX314+ndILrxRa9Hz7H3MsJDT4eL8ToNSwiAWd+mbfBYHBCyIiCBGkdPqce6fc0BfYObgaOzTw4OChOlr29vXI8KGkecR8xB7EvbW4QxuV7Obo7fA/EvR1rMYAbseXH/XI1uJJAEMWTq7nnTsVpotK64WZ+FycSiUTi2pHfw4lE4m7FdQsKVVU9RdJXSfqouq7nVVX9oKTPl/RRkn62rutvqKrq5ZJeLulll2vLI+m7u7vFGUDEGzLoroHFYlH+sT+fzzUcDiUdkuXhcFis+MBz8uu6Ls+BeHL6A9e6y6Db7Wo0GpVaAV5/oC23PxL96B5w0h5J92l2e0iyE2hcCzgsJJVCj17rwMn8bDZTr9fTYDBoHG3prg7vv5NsBJyYHuFHdDK3jI36Az4uT2Whr57y4bUNomPBj6aMNQykY1GDo0QRFRgTNSK8yKakcgIIfXcSSZpIm4gRHQ1tDg5EIxdiTksruBV1FOjbzcKVnBSnCQ53AjG/E3Ezv4sTiUQice3I7+FEInE340ZTHjYkjaqq2tWhCvs+Sa+Q9JKj918t6TW6wpenpzK4/d5t+NKxjTySWo4pJI1hOBxqOBw20hw6nY4Gg0F5zY9TJPLtgoFX+4cIeb0ABAhPteA97vUINvUhpGM7vo/do+yey+/k1ufGi1b6+57ygSvB8/r52x0Vjkj+Af3x+UfgqapKq9WqVThhXYCLAVzD3HqNDNwLrE9sl/+2uRV2d3eLcwIBwmsxIFb4GHzv4VjgGk9NYB587lxM8iKa7oZx0YHXPCXD3Q0+/6cJATczch6dE/x+vSJEW7+ulDri/bjZaBvLrX7mGeCmfBcnEolE4rqR38OJROKuxHULCnVd/25VVd8k6T2S5pJ+uq7rn66q6gl1XT94dM2DVVU9/kptOaEm2u01BTwaHMkW9yI2UKgQ0upHM/J7WyoFlvvd3d3GMYb8xOfhnvA0ABdFohU+5ttLxw4Dm9PGM6NrwU8voA2vQQAB92h+dE9IaggV8b3Yvv8d00tIQSG9gX6A6OaItQ7cEUGtBObB58lf5z7vH+373uC5y+Wysb9wTXif2QPeX5937o9pKLwX3Smx1oTPoYsgMdUkRvYvJybcbCt+7NeNYt3dCHdKKsPV4GZ+FycSiUTi2pHfw4lE4m7GjaQ83CPpsyQ9S9Kjkn6oqqq/eA33v1TSSyXp/PnzhTy5fd6Jt1fRPw2QwcVioeVyWWz9bq93x4ITbiLGvEahPqlJjuJJA340o7spYnoAhM2voc9OXl1M8Kg5/fDrPK0DMu/Pw7nhhRL9GYwnrEsROtpqQ8Q+eOoDr4FInCN55tm0g5DktSV4rvcPEcNTMXxcLkCtVqsiILEezK8LOjgZ3L0RU0ZiOoOLOvzX90FM8/B1pJ6Dt4EwdjlEUetyn4erdRnEtbhVaRcRt8slcDlh5rGAm/ldPNT4VnQxkUgkHtPI7+FEInE340ZSHj5Z0rvquv6gJFVV9aOSXizp/VVVPelIiX2SpA+03VzX9askvUqSnvzkJ9dO3nEJOJF1y/pqtWqcLiAdE2py5D3iu7m5qX6/r8FgoH6/r+FwWKLrEEnEAezyvV6v9IN0iMVi0SC7iAs8z6PcpF84YXQSTxuIBk4kPVLtroDFYtG4l7Yier2ehsNhic73ej0tFgutVquSCuDpE21uBFJOIOCnrGGZe/rlhTKj04JxesFNTyOAaMe58LnjCFA/YcL3js+Lp0D4NV6noa7rE6dIDAaDxhijI6DNMcNecmGgrZCnk3ffwy5ySc00ibg28brT1udqCbOLKDcStb8aASNe48+7FQT/RlI37iDctO/ic9W9jw3bRiKRSNxe5PdwIpG4a3EjgsJ7JL2wqqqxDu1dnyTpf0qaSvoiSd9w9N8fv1JDTtQgADFX36+N1nOP/O/v72s+n2s6nTZqKFAUj2vH43EjKisdCxdutUdYgDB6wcFINj2NQlLDuTAcDhvP8VoHkM5Yv8FTCLymA8+D9Dsp4/dut6utrS1tbGxoNpuV1yDT9I/6Asw5/aOPXlgyjhf3Q7/fb8w/Jyc4wXfiGx0IXAvB5jXG4+KKj5X58ZQPd4UgdHgqgzsYfL4c7oKIz41iD/sRIcUFKn+Gzx3CE+vO/uIzwHM8fcTFlyhsxM8F1/v4IqluI9rXIia03X8acW+bu9NwI6LGtfTpWtq8A3DTvosTiUQicV3I7+FEInHX4kZqKLyuqqoflvR6SXuS3qBDdXVT0g9WVfVlOvyC/dyraKtx4oGnN2CD92sjQfGoL7/v7u5qPp8XUgnhhSgiEOCIABA+ouA4GXBMVNXxiRAeDW+r7eCOhFgvwW3rkhpOBR9fPE2grfChX+MRcYoNxmg3dQScgLfZ9Hm+CyS87uvmZLnf7zdSBlzsoe2YyuBEOaZMxPFGgcHnILpAPL3ChZk2YutuGHcB+JrE+6LDwmtF+H5kL7jY4W17io8/4zRyHeepDetEhK9FJIhrm7gybuZ3cSKRSCSuHfk9nEgk7mbc0CkPdV1/raSvDS8vdajMXks72tvbK1F7j1xDANui9W7NJ8p+cHCgwWCg5XKp+Xx+IqLrpwzwO6SVdv2Iv7quyzGV9Gm1WpWUBq65nBDg9RkiCY5HLjqBdmLq/fNijV5oEpGDNr0ugDsXaMtFBU/fiE4Kj5RHUYEx8jciBm4OP92Ca9sIN+/5/J02J5FsunjA2NwNIKmR4uBHZfrzWZ+YRuKCl/fViTJzzly506VtfF6fwvvka+3wZ53m0mlLJTgtQn8tkfu2tq418n9a3240zeK0Z9ws3Mz+3UrcrO/iRCKRSFwf8ns4kUjcrbjRYyNvGnAAYBd34snvkGCIm1vYXYzY398vggK1AyCl3W5X9957byMNQpJms9mJfHeAqCCpWPo99QHCjNOBSL2nL8QCh5BCFyJcQHF3gNvveY+x7+7unjjloN/vl7oO4/G4caSlCyXz+Vzz+bzhyuA9Fz76/b56vZ6Wy2VJn/BoO+A5g8GgUVfCo/vuRKH94XBY1g/hhrH7mvBcX58oALEGFKisqkqDwaDURWDfkOrBfqPegYtX7q7wtfPTNNifXjMh9tELY7Lu7lDx+yNivQmvSxELM8Y1uRoXg7ssTsPNJuqXS0uIfY4OnZuBK4ktiUQikUgkEolE4uqwFoJCXdel4GFd16W+gRNqTl3g6ERIGlF6J3/D4bAhJMzn80IqR6ORdnZ2SoFDiKXb8nFLgEjmIHS4FLD5xzz58XhcCCx9dvEgpkE4aXURAVDTwN0EUtOxwd8UmOSkCxcZIK/D4bC04QKOE2N3i/R6vdKO9ymSXncGMCbaxhXCM2kDUh2PnuRvXvMikp5uQP8Hg0HrCRZRpImCjc8Bz43pB6y9uw/oQ3Q1IBp4/7g/OhdOgzsofD6jiwQwnz6/l3vGldwLbeLNzcBp7bb1J6aoXGsf2uYghYREIpFIJBKJROLmYC0EhYODAy2Xy4YTYTAYFJLmpHaxWDQIoFvMnWwTkSZiDRHjtIZo3Xei6iQGwoh9n8g1z247ZYH+9nq9xukHThD5iSIB90dXgkefmaOYw3/akZS0gVhA+6RDAPrkBRGjQ8Tz/7nHj98ELo64W8FP63CCTnqGpznQZ09biLZ7t6TznqdT0Jc2EnulqDzj8hSDmM7Ca37Ch6chxHQEdyiA0/oR187nOBZsbOt/bDc+s+39y6Vp3MzUhLjvroSrffaVRJREIpFIJBKJRCJx87AWggIOBYjrZDIphBdAaJfLpfr9vjY2NrRarQrZj6czDAaDEyQEV4GnQNAudQicqNG31WpVjlwk1QFBAXKEIOFkKRY0dJKKkMAz/FQCIvle28FJJYQ+nlzA82L9Bp8HCBcEnrFHEhaJsP/XBY4Y7Y9km7QM5tnFICfq9MHdEYzfi3LGOgbMbUS00cfikbTvjom411yE8ee6kONt0vc254jvCz8l5EpE2a9hj/u6nkbMfS3i+1cSUm4HIb+WZ9yIkJHiQiKRSCQSiUQiceuwFoLCwcGBLl68WI5o7Pf7Go1GGo/HmkwmxVEAqZtOp8V5cHBw0Ehv4IhGUh/c6r+3t6fFYlGux21AOoSnJkDGOA5wNpuVOgu8xvO5LxJH4KTbI/WSSnTe8+LdNSEdF33kiET65teTekGKA9d4SoOLHt1ut9RMQEzhOq5hvuJpCV6PwiPYvV6vpAZw/XK5LH3o9/tFBKINdyJIx2Ten1NVh3UQWFf2g6egeF0GRAKEAncoeL0F5sdPnYgCEfPkgoGPj/GuVqsTBN4LbjLHMT3FXTHR5eHClQtOPs+e7sHcAh8n/Yn7EtBGFIlcuOBv4MILbbThSjULLvf+1QovbWNKJBKJRCKRSCQStxZrIyhMp1N1Oh0tl0sNBgNNJhONRiN1Oh097nGPKwUWJenee+9t5JVzrGM8IhESR/qDdEggd3Z2tLOzU57R7XZLvQOIE+4ICCxFHnlOdBHEVAa3ttNXJ8+QQkkajUaltkOMaEMaIcJenLKqqlKkUjok0ogokG/p5JGTThi5zkUIz/lfrVaNEzSi+8LJJBF/xgqRJ90DAcILavr8sD6850QzRtwRWFxk4b+RDHt7sZ3oMnD3Ac+hBgVz7Y4Wr8NASoyTfX8Oa8R+ZI69IGNb2gG/x7QZT8lgDDFNAmHEBQtfA38W1/j9vN7mApEOC3DSBp+NiCuR/Lb343pc7f1ceyURI5FIJBKJRCKRSNw41kJQkI5rHdR1rel0qvl8ruVyqf39fQ0Gg0a1/eFwqPF4fCLaC6GDKBFZhuRy/e7urqbTaTmtQTrOmYc8OxHr9/uFoFJLgfoIRLdjtDYe6xdt9TFSznMRNSKJQ+jwooHAHQOQX5wP9MXvZbxeo8KLUjrJ9Yi8R6hPi6i7qNOWEuHpFRBQHAxOjr3woNdd4DoXPxAV/D1En1ivgGscXiDTxxjJaUxVYR7d3cF/ffycIuFkHcGKsToZj+IUpDoKRJH0+/zxvu+DKCzFdBgfg88V8+fHXPrYea1NkGkj+9dC8mMKRluah4tabf1IUSGRSCQSiUQikbg1WBtBwdMGSEuYz+clEj8ejwvhHgwGGo/Hko4JoBNRcvZ5n0j8arWSdEiMSGGYTCalLoJHtp0McrQg99JXFzoYQ6xXwH/ddt9GrqXjEw12d3dLTQmIop9c4JFpUjCc9HNNJLJtqQ0+Ry6G+GkC3AcJ9oKQrBm/ew2KmN7hz/LnuCDiogTrxTPi+NvIv6cv+PWeHhEj/zHtgr5xP3PoPy72uMPCxxXHGftJX7m3rfAjz/OUA/aFz4M7QGIqRNy/jJd+OUn3fUHqB32Kopj3lWed5mS4HrhoEvsY+9CWFnE17obE3Y3OeKz6I5911t1InDGqt71HB5cunXU3EolEIpG4I7EWgkJbFHe5XGqxWGg2m2mxWKjX62lzc7MIA04UqIdAW5Bh6ibw+9bWVnltuVxqOp1qOByWIo4esSUn3lMcnHBTYBCy5oUEIUJ+CoQfEemR6HhCAs+t67pY7D0yDEmnTgBpBh7ld6u7k26i1RSmdOLr0W8XaBh/zMcH0W7v64Jjwk+sYN7ooxdpREjgOncqME5EHNrEPeLE09eAcSG6sCZxzKwHbghOHXHyDlh/amn0+/2yD1hPT+mIx4PyTPrHWDxNBGdMXGu/3/eQFzB1lwt96Pf7jeM5cdisVqvi7Ilr6n30+g/0kVNTaJs+uLvkSohug7Z95U4b3ycxJYbPXLz+tGckErsv+Aj9zPf+67PuRuKM8Yl/5aUa/b+/fNbdSCQSiUTijsRaCAqdTkej0aiRI+6pCdPpVKPRqNj5z58/r8ViUQr3jcfjExHh2WxWSHO/39fBwYF6vV4jHYBjKHd2dkrxQRBz+SnONxwOyzWQKIjUdDptRHz9JAm3hks6QYa4DoLd7/cbUW13ANCnmI8fc94RRNx9wTNjgT3apIgi9/jJEz4eqZkqAFws6fV6On/+fCm2CQF18WMwGLQ6BDy1wCPmwAWO3d3dQuQhyvG0Drfte90F5sELJ8ZaA4ggkfAyVi/IyHp6TQpELi8kSVqOuwvYR16wknn3eW7bQ51Op4grzLOnziAKucizsbFRUotYF3fSIKS48MHzYmoO17Ttdd/jbSTf1ydib2+vrCnCSkxj8Pap33G5VIe2/ZS4O9D5mI/Ul//Qfyx/P67762fYm8S64P/65lfpg//PufL3d3zZn1Pn599whj1KJBKJROLOwVoIChAwJ6PSIaFarVaaTqfa2toq5J2K/xA5CBnCAWkAkoowAeEeDAYnRAU/IcKjm0Ty+aGfnI5A9JhaDQgYRH0hiNznJNdJTVtOPv1zkQBAdHmuOxwi6fUoNaSQtrw2BGOG7EYhwq333jYk2a+jH/zOfDlBdzIHYWdOKRTpxNX3RKwL4ISW+eM5MY0Awu3ugzhfpwkubWkezBeRcYQQT2fxvnltCk9r4L/x5IzT3ALRreDuFe8b+x/BwgtYeu0DR1xj/u71eifScHyP0bc4ZzHNxeefcbeJbXFNYgpEm2jhcxZdEvGzcdp7ESk83Pl419e/SLv37mtw71x/bnP7rLuTWDN84lCSjvfFP/iahS79ry9oXPOEn+/o/Pe89vZ2LJFIJBKJOwBrJSi0RUj9qEeEgH6/X373yCQRTD8CkiKKbj9HkPCTBTxy6qcRkBqxXC7LcyAtHvGFpHmVf6lZnyASSKl5lB9tx2iv12ZwAhUJUyRi/uNzTdt+eoPn3btQ4H11wub9jwUHfQxSk4jiEPAIv7fvkXos+dRS8LF43QLItBNyr5sQCTsCRBQZInH1a2JKhxNQxoSIQPQ/1s3w+3y/+TVRUPDntpFpJ/jMH+95+oQfw+n7jOf4/opFGz31IO5nF8ZYB9+DLka5UBPnMu6ttjEyR9533/e8Ho/njKLJaQJBpkM8trDxjKdp9cz7JEnf9Lmv1mdOZmfco8Sdgl9/wfedeO2j7vuL2nrg4xqvdWd7qn/lTberW4lEIpFIrCXWRlDwOgBOxLDhb29vFxeCOwycSEJGR6NRgzxhAYf4jkYjTSaTRp6+kwnP7Y9kzEkUfYDEeX9i0b42UsN4PRLsEV5EEhwXngLhbgHgwoiTSeCkzN0YTv5xfdC+EzN+95MwvMifk0dv36P1CBWMxZ0k/NfFAu+7uyeGw2Ej6u7R8MFg0HB20DZiEgTcrf+k0LAmLg60FRrk2jaRI5J4d79wPSIXa+IOG2/D94v/l7G5vd9PqmCckVh7P/16P9WEdXJxwPcJ/2Vc0WHgf3sKkLs3uN9dSfFzc5pTgtfaXAh8dt1Fcbl6DlE8ahPfbmahycTtw2//5afqbV/07WfdjcRjBL/54n8vvbj52nc8+hT92Ec//uTF6WpKJBKJxF2EtREUIM+QmtVqVdIJ5vN5KfzW6RwWV/R0Ayd/tCcdRsaXy6Xm87n29/dLoUdIsRfB80gsRCJWx/dorEf2seE7ySNlwu91G32MDiMaQHQhn052oqAAifSoNkUH/XrpOEIO8eZ3j9Z7TQgInJ+0EK/1iDmpI6RRABwWLsQA5tzTAIbDYdkH9AXCj9uENaEY4nK51HK5bBBsCm1KatQT2NjY0Gg0agggg8FAGxsbpc6DCwNOMGN6gzskmGMEiuFwWE4pcfeDz3208XubXnMhCgI8y+cvOmYYv68NIhafHZw1/O6fAQQW31uspxeAdMQaFDhM4jWMhX3iz0VA81SaCH8tuiT888U+jesYRQP/HPkaxfsSdw7u/8UL+o6nfKOkzbPuSuIxjC85/2591Dt+t/HaQd3RN77kT2vvvQ+cUa8SiUQikbi9WAtBQZLG47E6nY4Wi4WkY/K2XC7V6XQ0m80a6Q5OvCM8Qu6F93Z3d4uoAMn1yvcenfa0AIrCxaiok2WIoFuyiUS7gwFEazkRaz8RIUZ8uZb3PI3DiZjb72nDnQtOEj1CHNtiDTwVgjmAtLr7gPZjOgERYwisiymxhoO7CSCc7lbwwobuNPA5jDUMEGrcWcLzJTWECwQD72tVVY3ijG3Hg3qfaJO14xhQnxPIvQsG7hTwFCAXFvivC0RxX9I30noQaOK+QjCjLXfyREcOZN+LTfrnLX7mnPRHdwH3+Nz5s1wo8es9RcnXL97jQhx73d0aEW2CTlsfEuuP7v33663f8lR945O/Xc/qpZiQuLUYVL2j+guOA/0f33Zei/n9t7Uvz/vbD2nvd957W5+ZSCQSiYS0RoICBQYhb0TYqV3AP/gHg4Emk0nD1RBFhUhoJRXXw2KxKJXtKf7HUYpEuCHVtAGJisfhOdmgTgCIAoQTM3/P3QmR3EtNiztwAcRPN1gsFoXQ+9GKfl8kSZEEe+qIW/O530kZz439cjInqSEo0F8n/PTD00ac6Hp6h6c+QOxxmzip93G4cBGf68IUz8Sez9+Q+/jsOG4XR5hPnoVQxthYU3cvOKltczT4nnEhJZ4gwX3MOe6Z6BTx+e33+6XQZ2zH3TBxH7C3o4DnLhbvm5N9d/XQD/+cuHjiTpzo1vB1YK58bNFl4Z8/v8/73JZmkVhvbDzrGfrgJz5Z7/gT3y7pBMtLJG4bfuOF33Pbn/nxf+orde49T7yue6sDqf/Tr5cOUkBNJBKJxLVjLQQFSGGv19NwONR0Oi3EgqKMEJxer6fNzU2Nx2P1+32NRqPiIACQFT9ubzabFYIwHA41Ho9VVVXJxYcoQiZGo1EhEx6VdSICmXMBRDqOrjv5dHt57KuLB7QVI6ue+gDRl46j0Nj/mauDg4Pi+oht+/OJ7DtxcqLnJ1i428LXzufF0z448s+FGT+JI5I86ls4wYY0I1wgDDEHi8WirKGvi++D4XBYHAK85q4Hdyx0Oh0Nh8MiELAv2Q+IXOwnvz86BNgL0clBHwBr6X1wIYPxRiLPXup2uyeO+yTdgOdMJpPieOAz4ekIzJPXOFgul2UenGR7/0+rn+EFU71IIm4Rd2rEtAY+N7TvIoh/tthj7Gv/LDGXvh7uUHGBw507LvjEPZpYY3S6eucXPkVv+YpXnnVPEokzwev/3vXXC7l4MNcXfNxn6uCRRyRJ9UGd4kIisS5oSf28buS/aRK3CGshKEjHkWLIAyRKOiQYjzzyiGazmebzuTY3N8t1g8FAm5ubmk6njWiuR3z7/b4Wi0UhUA8//HAhod1uV6PRSKPRSLPZrBDn1WrVIKnR8g9x9sg1JMrdCpCmxWLRIJfk8bvbwKO39J2jKJ20ec0BiNfGxoa2trbK3B0cHGixWDRcAUSKPSIPEBac6DIWnk0qBIRyMBiciLI7wQSkqXhaBu8TGXfbP+JBXdeFFNPXzc3NBhHe29vTfD5v7CP6zj2j0ag4TNyd4RF1T5dg7ZnX4XBYxnpwcKD5fF7my4UHd0h42gl71IUBF6ncZcDriBqeQuARc+4hDYFaEvSJPUx7sc4IfXQXD/UlEH78dBP64EIBnxV3EsRn4ZJx4S2mzrgzwVNZosDm+8Db88+EuwzcpeBpEb6/4qkj+/v7Za2jsyGxvjj/cxf0357+/yhrJiQS147znZG+8Vd+Qvs6/G7/vb0tfcvv/0M6mOXJKInEWeOBl79Iu1s3/m+RC2+V7nn1L92EHiUSJ3FFQaGqqn8t6dMlfaCu6+cfvXavpB+Q9ExJ75b0eXVdP3L03iskfZmkfUlfVdf1T13pGdHGTTE9j85DnHd2dvShD31Iw+GwFPDr9/saDoelaJ9HJJ2EQKJWq5Vms1mJ7g8Gg0JYIGPL5bIRqY8RWkgQZJooMzZ7iCCOgbZILsQGkkthwZhq4STKayHs7u6esH87uYUwMhfMNYQNq3uM4MZIOMKCkz+eEy35cfy04fUvvPgmwoa7O3xM3O9Rb653J0K0zTsR98i195f2iXh7+oc/n3nyudzf3y+1OKRjF4u7UmIRzVh/wdfKI/XufKDviBy+LnGP41SA6EOWcZZ4ekpMY0FooC2udVIdnQS+f2MdBOaK9aTQJ+IN0f82B4fv67hubS4E37cuTHnajwtw7vTxvYOA4akxLrCdNW7Hd/GdimeMH9aTNlJMSCSuFx/dH5Xfn9eb6WXf93TtHXR08CsX9NSv/8Uz7Nl6Ib+HE7cFL/h9evj5h/9PW12oddC/cUHh0jM7qr/0RZKkx//0e7T3wO9e4Y5E4upxNf9a/m5J/1zSv7XXXi7pZ+u6/oaqql5+9PfLqqr6KEmfL+mjJT1Z0s9UVfXcuq4v652DkPf7fUk6tdI70ePt7W097nGPK8X0BoOBBoNBI0ILWSEiSRQTArVarcrpAFjzIXxU+5ea+fsAouE2dC/y2O12S30Gj9RHcu/EHPLjdQFoyy3qEFW3fUOQuM4j38DHEOsgOFGNRM7TLRAD2og6846Y4AS7LRfe60VA3vxZMd3DayJIzVMQfDxRtPH2nYhyrws2viaRtPJsn6+qqopg5PUa9vb2NJvNTjgiuDe+Fvvre8xt+k5uvTAh4pSTcsbnooK356JEt9staTkuAOCQYBxtNQfYK/G0FOY2OgZ8T3pB0+gqcEdBrOcQ0yviurrzxOufIDZGB40LdZ5CEffGGuC7dYu/i+80VIOBdj7jY/Wc0U+edVcSiccMBlVPb/hD3y9J+sInfqLe+bY/LEk69/Pv0v77P3CWXVsHfLfyezhxC1D1+qqe92xJ0kPP39TDv+/mOiRXFw708IXD3ycPPlmjC1uqDg60/5tvu6nPSdyduKKgUNf1z1VV9czw8mdJesnR76+W9BpJLzt6/fvrul5KeldVVW+X9AJJl/XYHBwcaDqdNqLbHrmVjiOl+/v72tnZ0fb2dnEm8LNarRo2bEmFCCMAOCkhyr+3t1fcDl4I0skPbTmRcaKDKIJjYjwel3QLiCYnVjggytSDgJgTNYaEQYrm83mDsB2tUYO0S02i6tfwXrTTMwaP7pNaQF+YZ4cTYSLLXijT8+FjJNpTA5hf4Pnx3Es/6QMEkJQH1hc3AT+4V2iL+5h/t/z7vMYTDfr9fnHPuGuEugCIUpLKaQk8jzSYaL934u3OBNpiTthP7CGvu8A9njLEZ4U5dtHJSXw80cHFoKqqNJ/Py9xF4Yb/MpcUBUXo88+u72UQP19RAGB+gfe9TfA6bV+7CObuHL/HU5eWy+WJfbwOuB3fxXcauvc9Tv/9216pXrU+65RIPJbwb5/xc9I//TlJ0id89Vfo3E9ul/cOlsu7Lic7v4cTtwRVpe7j79NvfekFHWYe3drP1Xs/pSvpgrrzSs/+2r7q3dUV70kkLofr9fM+oa7rByWprusHq6p6/NHrT5H0WrvugaPXLgvy/XEaUF/gqP2SlkDEldoCFOQbDAZFXOB1L8JHUT0nrtH1QP46TgfqEDhRp6BgVR3mxUPs5vN5idBC4jxiLR3m/nMPrgdvl5x5BBFOoaAooqdDeE2EGC120gexc6eAk1yPxLqoAKHlNA2vWQCxlVQIP84Sj1BDsEkxwXaPuIPbYm9vr6Sc8CxcF5IaaQTk+LMOdX18LKevl5NB5nswGBTi6CQat4dH5iPhhBAjFvX7/cY6LxaLhgOEehaxBoZb/L1uhLsD/KQNSQ1hxmsP8BnxMeKMoa+z2axRcwFhwOtDxM+hO17oC+uEA4h+s54uwvm84rJAOGDtB4NB+XxGp4SnwTAnuED8Wq73Yqcuxvna0Q93iPh3AGKlf+cwTgSkNcZN/S5OJBKJ0/Bj3/zNWvyT4//XfckXf7U2/tuvnmGP1gb5PZy4Iaw+9Q/qnX98Q6pur0C3P6z1jn/0B/TcVz2ovXe++7Y+O/HYws1OEG4rRdr66aiq6qWSXiodEg3SD4jyH13TiFpDuKJ7AUK+XC4LCfLif+TvSyqE0lMjpOZxfogKTuBivQEvdkgUezqdFlEA1wPw6vpSM1+bsU4mk8bxj16XYDweN4gS4oXPkRMvSBSihkfDGZMXyfN55n4ItJN71sHJF6JPv98vLgWPGkPY6LOTRdYjuhOiZR3yi4ART2bgvmh5d7GkDXV9WPjRxRcXI5y08l6/39e5c+fKqSQ7OzuFvLu7gboBsfghEfjVanVif/sxj/z4PuZ+hAgfJ8+s67q4NFzQiPuFfvrzfW8yH36ig8NTbGiT5/latokK7AmECF93xAqeC8H3QpeIDj4WXDKxnoO7KZhbF+LiKR1x7u9QXNd38VDjW9mnRCJxB+Px3Unj76d83W/r3dvPOnHd+x66oA/7X99wQ8+qen29/4efra3hkWP0f+/fUHtnhPweTlwV6q5uSp2Ea0YlHQxqPfCZT9b9b7xX3de8/vb3IfGYwPUKCu+vqupJR0rskySRVPeApKfZdU+V9L62Buq6fpWkV0nSZDKpERMgDv6PeuC2cifGkFmP7kJevciaE08vXOfWbOnwKEZy4NvytyHbbekTkBAinPTFo86SGhZr+uBHI1LbAUJGrQiv4k+fnWB63r67D5g/xs9zIOGeH+8iihOwSOC4HoLHnMRTJJiTWImfSD3tt5F+FxXos6+n3wPB9vWKwgb7BiCoYNVnTn0MbcUove4F8xDJp4tCTmZ9blxocCeEpwhA8P0eH4PvSy+uGIsg+h7wz050g/gecKdEW4FCr33gboi4Ri6m+OfMi2H63vD9hzDTtke4Hrho1raXfGx+v7ftaxLTMtYQN/W7+Fx17x3jX+5+5HP0u598vzqt/2ZPJBK3Gv/2GT/X+vprF/v6qi/+P26o7YMN6b9+/DfpviMR4wWjR2+ovVuMu/Z7OHHj6H708zR9/IZudZrD5bDzjAN1dod6ws7zJUnVb74zT3lJXBOuV1D4CUlfJOkbjv774/b691ZV9c06LEDzHEm/fKXGINCICX6sIMTIBQZSBwBkG1HBT2eA1Lm7gAr9g8GgYbF30uTHAErNwnxtxyWOx4eKMlZ2XApO9DxfnmuJVHtBSumwyOHFixcbNn6EE+4hGu9jJurr/Ybou9BA36JNPNZawNLOnHCNizWQPxwZLrRABr1ehc8l6yGdjHg7eed1RAnGFAmvF1v0PQKJjwKLE10noe4W8JoCzKenP7BunPpAdD/ucU8jIPrPnNAP9vBoNCp7hP4gLvkaeVTf+85cMTZPW/H3GCf7w1MrEMj8sygdiycugPjejnUWYi0K9gWCAnPmdS7cVRTXn3G7aOTPiAUiXQxj7tpcC/6Z8XGuOW7qd/GdhAf+9P369a95paTOFa9NJBK3Dy8cdvXLX//tN6GlyZUvWQ/ctd/DiRvH73zm47R4/NkHL7Y//EDbH354ssTzXvlE6R2/Ix2s/b+BEmuCqzk28vt0WGzmvqqqHpD0tTr80vzBqqq+TNJ7JH2uJNV1/eaqqn5Q0m9K2pP0v9dXUc22rmvN5/NChGMhNoolArfEAwrmYanu9XqNIo0QD0gKf8f8fEgH+f/ScSQfUoqg4acubGxsaDwel/oHq9VK0+lUg8GgUQDP73HizeuQ1OFwqEuXLhUi7lFUiDZt81PXdSG18RQEJ96MAeJFigXvOyC+th/K3CFGsEbD4fCEswRyu7u7q8ViodlsVsgn67pYLE4800UNT9ugZoULKV5LwesjsLdiCoR0nLLi4/U0B3e7RNeFR84pVDmdTjWfz7VYLLSzs9Poe6/X03K5bKTO0CY1P7zuhteUkI5FKta/qg4LU3pUPVr/O52OJpOJhsNhEaA8HcGdENH54MIenwUXduJzfS2oOYCo5m6O6PQBXgQ1Fn90R4OLeH69uwlYI3fh8Dn3dAp3KURBwT/zfAesA27Hd3EikUgkTkd+DyfuBrztpU/QE197vyY/8rqz7kriDsHVnPLwBae89UmnXP91kr7uWjpB1BAyDul3wuc5+G254KPRSMvlsuFUkFQKxkHgIlGE4HgEeTgcanNzs1HEz6OdCAjeh+hCYDxOyCFEuDF4Xkzf4LrRaFTIJKIIZJbChG3RaR+fW8ldNODHyWMkYZ76QP9ZK0/V4D1qPXi9A0klr388Hms4HGqxWBSCCyHkWYzJixZ6X3wvUEDSCSYE1NfLo+/c50TRRQRfL9a6baxu8/dIuhedXCwWjag9hBeC7f32OfQUEAQITrLwPedCi7srSJGIaRDsy9NSRrxN7zP7J6ZARHeE7ytJDTHNo/7uGvD1o4/MP66KmJLkAktMSWAOmV/fR/45bbufz52LYnF+zhK347s4kUgkEqcjv4cTNwudrS393hf9Pq3Or1+GS71R60PP72p57kW699/koSSJK+NmF2W8LhDN3N3dLf+FqDk58PzuiOhQgDBBKvyYvZgP71FqCNxoNNJ8Pi+F8/x0hPhfJ5q06ySdsaxWq0L2vBgd4ofXC+DEC69z4FZ9dyVAjJyERiEmkm4ndF534rQ8dZ5LG21rwFhICfGiktKxsyS2zTr5GJ1U+/i8Pz4XXisjuhQ895+UELezx/SGWCuCNWsTFdwxQlvdbrcIAOy76ErxugAu4MTovTsAXFSC/NJ2vNfX0utVeBqPfw6iqMGYvS2/x9fO/3Y3iM+HiwTuMqDNthoNce+6WBGdTN6Wr42vM/2Tmmk2LlC6iNAmuCTWB+ffua8/8ut/Vr/w+3/0rLuSSCQSicQ1oer3tP3sg/bSnWuA1YUD7aije8+6IzcDVaUPfekLtT+4+ZN935vm6vz8jRWhfSxgrQQFTnpYLBaFXCAQOCFuExUgXaPRqFEpHyLjpzaQ709E2vPdiWAOh0ONRqNi1Y9RUa8J4IRFOs5Z9xoF3e7hEXuz2axxzJ5HqukLY+e0CX9GG0mE/Hn+uc+V54wjsJD+gWsDshzTBXxe4n+pWeCvM04vKkhbVOD3lAaIMeNw27p0fHJDrI3gkWgv0klk3m3yTvwlaTabFXLOerkIFaP31PggfSAKKvzO+pGy4MKCi1rMkTsqSDvxfnr/2aOsP3vU00UimeY1dw60OW14jq99W3Te5zw6AdzN4gUrPUWk0+loOp2qOkqXcYHDyb7PLevO6zgouMdFHtbK58DFwrgPvMYE97mjxMWwxPph/GOv08Zrn6hf/6WFntfralD1rnxTIpFIJBKJq0MldcZjHczn0imBxHVGZ2tL1XCoqt/Tq//uN+uj+6Ob/oxn/Zcv10f+1v1Xde3+Qw/dkfN4NVgbQWE2mzVSFSBcVVXpwoULJRrvFnR3AOACmEwmuueee4owMZ/PG5Z3TpIYjUaNHHdJms/nqutak8mk1DHwQnHcT/0BnAZeRwFxZH9/X9vb2+Xe0WjUKB7pY4C49Pt9bW5uFuJ68eLFQt4i0Ycsea43Px6BBrHgnBc3dGcDpP/g4KDkwJPzf5rFnP86kYRUS83ovKTiQPE+tVniAXPENTH/n/lsGztkvNfraT6f6+DgQKPRqAgcpJl4XQTWyee2qqqyp0jLiWQzppq48ASx93miUOju7m45cpM6B/x47Q8n107Y2YPMlbtkPF2AeUIAcGcMa8+c8PppkX4cQYh91AfxPRdFhao6LF4aHRZx//ieQIjxZ3tKDdf4vLiLxJ0M3jZg7C7Y8b3jJ2Ak1hN7D/6e/tZzPlEf88sr/eMnvPGsu5NIJBKJxGMGq3MH+u1/+Pv1vH/ybu09+Htn3Z1rxlv/xXP0G3/iOyRJ487NFxMk6e2f+iotP+XK9bYOdKC/8Ec+T3vvfs8t6cdZY20EheVyqdlspuFw2Cic2O12S9TZLf5Ont3ujrNgNBppMploNptpsVg0Irmr1Uo7OzvlWsgSAgHklXoKsZCiH90ICfRTD3id38mn7/f7J9IVwMbGhjY3N7W5uVn6dN999xVys1wuW2sWOMn0iDrzyvseVXZS5lF5L04XLe6QLkhgjIB77QIXK5g/6mNAJj1q7RHj6Kjw8TBPnpbg1nraaCP63MvpDBBvdwXQd4g2pNZPetjb2ytryT5hf+CSGQ6HjWetVquGK8OLLyIWIVbQJ085YJ4RfxiLz7+nsHiqTxRjqCHCPPt6uMgTo/NtNQVwojDvzEVcv7gO7s6IqUO+V6PA4K4Bd+m44OAOBebH4akgzJMLQe608M9JYn1R7670+q/6OD3rS/6g3vVp/+qsu5NIJBKJxGMDlVTfiUbNqtLqp5+u7/6wf61xp39LH9WtOhpXV/eMj/iRB7Szf3lh4y1f//s0+n/vvMNg1uJfyx4BdeLpkVaioZIa13raAUSNkxIGg0ERKCDDEIb5fF5+KObo/fCj8CBhDndIEEX1KL7XboDwxMKAbsvGCYAQUlWVtra2NJvNGkdRRrLf1i9EjxjlRzDwnHYXBJyMek0G1ojxAV+jGM0GLgIhstCeF/iLBf1iakt8rrsUnBA7XKhw54Ln6/u4XZCJ/fQ5i8X+WGOIOtexprgZfG5p209PYE+4eEWE3es0+Ly6mMM8OCHnWZ7e4HUW3OZPm1GYAu4i4T3mn7a9kGI8jYW54XPqn+e411wo4rPvc+4OFK7zdeG6mPYQ63QwV96O9yEKEon1ROfn36Cn3v+H9TH3foF+7QXfd9bdSSQSiUTiMYNLL3i6tt401N47333WXbkiNp7yZP3OX3ymfvy5/48+rLd51t1p4J886fVXvObDP/cjNHrui29Db47x5Ndckn75TTfUxtoIChATahbwD3us2MPhsPzjnxMCqLuwWq1K9B8CApHz1AVI7d7enubzuWazmabTaXErEBWuqqpY3j1vP1qpvZ4CBReBH/eIu4AfiDWEEIJFdHsymajT6Whra0vT6bRhRY9R5+g8kI4LAeK2gMjFH09RcOLux006nBTTrrsMvB9OOhFnvF5EjCIzB9QrYF49ck3/6LOnPbgln2NAnUwz57EOgKe8xFQaFxkiwXR7v6c1MHekfLD/XDSIdTc8dcWdJ14Xw50TrEVMs4lr5TUumDsn7j6+OFaeGdNcYu0L9gDzSVqJ17NwsYl9d3Bw0Egp8HoS3gd3YPieiIUlmVfWxj+3zJF/Zmk3pshwygfXpEPhzsH4R1+nc69/uv6//3agj+vv3fKoRCKRSCQS1439fW3MKu2PatVrHrv43Zd09JTq8RqtuaDQveceXXzR0/QbX/1KSeslJlwt3v7H/430x2/vM593/iv14e9/2tVd/O72l9fiX8seNY/R0Zjv7FF0xIfpdFruHQwGGo/HJbqPcADhh2AhAiwWC81ms1IQEtI1mUwkHZOwfr9/oiCf5/vTnhNCxrG3t6ft7e1S5JFrERxIC/BxjkYj3XvvvaWd2WzWmI9Y2Z/nUsiRwoOkekCq2iL7XqyPPnv/eW6n0ymFJXm+F2Gk77Ggoqcp0KYTQCf6Tj49whwLIfLc0Wikbrd5/CWikD/PC2tS0JBx9Xq9RtHEKNC4WwPRwFNofF+5GEDtCfYkRJcUBz9WMY5jtVqdKIDoVnzm2ufbT1BgjRHCuDcSahdsXBjwcSCSMK/MyWw2awhK3W5Xk8nkhCDkxRfdEdDv9zUej7Wzs1Oe4cIgwhT7h5MuXPBysYPUKU8biYJDFC4Ar7P+bXVIEuuPvXe/R//ww/6APvlN2/qb977jrLuTSCQSiUQr9h+9qGf+n7+kB17xYi0ef3DlGxJXxFu+4cP19k//dkn5b7drwVu/5Nu1/8VXtwf7T25/fS0EBek4+i2dPF0AsgapkFSI187OzgmrO0UBx+OxNjc3denSpSIaOPmLJ0tITbLrNnwnuNG27tF2TxeAkK1Wq1Lw0aPly+WyiAA4Jaj2j6iwtbVVajs89NBDjag9BM+Jt5P5+Xx+okidpzg46fb+n5ZTLx0LBl4/gn5MJpOyRk7kuDcKBi68xJx7X1Pag1x6nQbWCXAd4g71OBgbwo1HxyHfGxsbDVLujgQIMu4H+hjTQxCL6Av3D4dDjcdjSSrixu7ubnkuToZut1vEL18r6nR4egwuHUmlpkNMEXEBwvt9GqjT4A4NT8PwVB2EFcZJXQhJ5RQTXAqevgE89YH19H1CX9254eP0ufb1l9Soq+CuA++DuzVcQIoCUeIOQ13rZ770xXrlV75E7/rU7zrr3iQSiUQikbjF6P73J+v7nvEd6lb577brQbe6MRFmLQQFz4n2qD/vxWuJWONSmM/n2tnZaaQO+O9ujedZiAa4FObz+QlBw23z7ozw/knNavgxks5zIJCeKgDx5fnz+bw4F0gDoRbEaDTSYDAoRDnCCSTHZ9Kekzjm0KPc3lfpmER5dNmj3JBa3vPaF3t7e+VEi+g68fWNfY/pIk7oomXdxY+2+gi0QaSa92J03+/x/xLl9hQPSUW8uFzhR57h8+pk2E8t4HdSPbiOfed9Zq49dQDy78KG/7hodFr6RjxpwX98DKw91yPcRKGBvvPZjGsa0x8Qwfz4Sk814HmQfHe6eCqEzzN7hDnzOhWkPXnqhIsJrHcU2hJ3GH75Tep99ovOuheJRCKRSFwW9//6rh5+Xk/Tp6VL4Ubwl5/6Gr1wmGLCWWHtBIVoZXaS4HUHPD9+uVzq0qVLhbRxNJ3n2scotHRMmEl7aCu+KDULtblDgX47QQf0zwUFj1j3er1Ceng+KRqIAJBGRAWO1fQigm7rp4+8PxqNtFgsWgm8gz65K4PXlstlw2bOHJLT72kSRN5JjfD59PlxQhnt6xBRSOHGxkY54tMj4u4AYV9E0QDBwZ0mTkZ93Xx/xLoC0b7vroqYe+97xl0akGSfPxeavG9OqHl+m/W+Lb+fNl1E8n3igofPo6+RfwaicwX43y7qxJoc0rGTw9cVwS+6Dtxpw++eGsPnn7F46kwUjHDQ8B2AGMTnztNY4njdxZC4M9G7VOk1845eMsp/pCUSiURiPTH4j7+ie/WHNH1akuHrQdXrq/Psp2vSubGigokbw1oIClIzVQDSMBwOC6mGWEF6PeJI0UMwHA4bxIQq++RkR5KAdRpiES30tIN7wCOvUpMsQzoZE21SA4F+UDCSyO329rY++MEPajwelzQISNBoNNLm5qa2t7eLJR9RxN0akCQEFEi95817NJv+Oql00A9PMYC0kXpCm24152/6QHqKpDJuQIqHr7/n229sbGg8HheLvdcCYM2cuLcJUNKxgEM7MYWFeRsOh8W270IFKSukn1D/wNNwXCihFoC3w7xR8FNSEZToI0IEc0SxR9pinahbwTNpn+t9//rnwo8GxQnD3Lmbwwsngl6vV4QQ3zv87qLNYDAo+5TPC2NlTilcybNIJ/EaC6ypO2GicOAiibtnSCnxtXfBI4opLrIw1zGlInHn4Kn/9y/qH//k5+klP/39Z92VRCKRSCQStwIf+zz9px//d2fdi7seayEoeO4ydQ6obeD/oI+F1SCtRGSpGXDx4sVSdA9S69Zqz/eGDDo5glB5lN0r5uOKiOScPjrxQZzwkw4geePxuJA6b3dnZ0cPPfSQLly4UAQI6kLgVnCXBCLLfD5v2OE3NzfLiRbMI+QTUugiS4z2RrIci+1B+kjhgER7zQTmzUUXotOQe19Xnu19Y/yedgIgqR5td9LsooDn0ruoRE0L7sUR4XUqFotFcWqwtuwP1sWFKNaNvvo6x1x9r5vgQpjvKeC1A5xIe5FN1iKmqzC3MZXC97X3mb4y74yL1JbozImuCBedSJfgs83acUQq60u7PA/hxmuPuKjgKR0uNPrpH/TB242OGwfz0PZe4s5C/dvv0qf+2S/UV/67H9VnT3bOujuJRCKRSJzA6Od+S89971P0ti++IK1hpuVzX72t6p0P6GToMZE4xFr9a9nzmokwEt32QoQHBweNCG2/39d0Oi3FD0l/cDIZCxG6DRri6kTKBYhIdiA3sY4CiEQ2EkQnyZAtiIufXDEajRp1HNxxEYsdSmqcPFBVlYbDoUajUelfVVUl+t5WkyCmbcSaCbgUvFCeR6Yh7E6YadfTQzwKTQ0Bdw8w18yl95F++GsIKvSrjZi70CIdHy1I/90F4FFsUi0g6F4zwPcLBNbHz3M9Rz/Or6+Fz2mb5R7L/sHBYUFPryfAHuVeClD60ZMxlcjJ8mmCUhSCeI/5A14zwVMWfF/xmaVPHPfqqQ9tYgZpD17/gH6408TXl/e8HoevMaJkdDu5myfOUeLOQ71cSq/9dT26P5aUgkIikUgk1g8Hly6p84736sm/cF7v/4Md7Y/WK92y8/6Htbe9fdbdSKwx1uZfy265hpxwCsNqtdJoNGqkPUjHUdB+v6+dnZ1CaDiiERIiNcmE57NHQSEW+IMoxwi5V/J3QgOcTPuzPVpMOoILCkSfqaeAA4B+4XTwZyBuxNx3ijlKxxFz7ndRhDF4G06s2oiXpyfwfhRofKxO/JyY0geizp7K4PUyXEDwOY7WdQQFd4L4fyGc0nG9AXdhxL3i6SkQdB9/tMz7UY3s5dNqIHgdAu6hbU9FYP3cHeJCG2NFmKFfuAIQ5zxlyNfT+xkdHT6PCAy9Xq8UEvW1oG9+9KOLTC7MsP+occDzPJ0IQs/au5OFOYr7gv3naTC4P3yeec8FINoD7jBK3Nn4Dx/8/fr44X/Q7+8Pz7oriUQikUicwMF0qvGPvk7jp75YsydqLUSFal/qX+yoPshaRInLY20EBQiGV7+HFM9mM21ubhay4JXp3XqOO2G5XJa8e65FeBgOhyVfHpcCRKmNAEMqIEIQEWz2iBJEhT2yG491jM+JkXvpmJgtl0s9/PDD5ShBJ2sQNcgnxHA0GjVs3NzLHBL99yg2xNMt4ogaTrTcrQFB42QH5pf18LYgj+4aIFeeuZ3NZmU+eZ7XS5CaKQNS83hPiDTz5w4Qr9dA/yCJRK/b6kdwLc9n70gqdQBcfHL7P4TdxYHBYFAItO8v5pvoPX/7Hvd95SkMzD37gRQehAQ/VYJTRNpSS1xc8PfdOULNg9FopN3dXc1ms7JO9NFTEki5QZRgPsbj8YmaH3E/uFuFfngKCcU/mTcXYzydg3Vjr0eRzOc/pm94PY7EnY9Lf/Qhfc63/jW94/O+46y7kkgkEonEqXjCP/1FzT7nD+t9f7Q68/SH3qWOnvaPfjFTHRJXxFoICk66peNaCRypSOE+6fj4RgoxevSa+yMZl5opDJCbNgFBaq/s7vdKKicOeOoC/UC8iFHrGGGPEXS3o0PM/IhC7y8iA+0PBgMNh8NCMrnPRYHVatW4D+JJHxA8IIY80yPXrAHPINWEdpkjF38gf1VVNQosSirF+2iXKDU/kex7WoynJEQQ6WYtfF1xHSCoELWHQBL194i1F5eMNnh3DiBQUBgUICh4X1kr4CIDAgp7ytN2ut1uY418bjx9gHnwmgWkKnibcQ8jhFHU0B0qfh3pOd5fFxY8DQRhazQalc8t7hR3cbgjBXcBe5W1ZE+5E4P1Rcxog38e/ZSN01JSEolEIpFIJG43Nn/6N/TcdzxNb/uSC2fdlbXGe/7+i/Vtf/E7z7obCa2JoNDpdDQcDhvn2UMWsFY76fSCcxTli/ncq9WqYbemgj8RWwQJPz5Oah4b50Q6OgqkZs613++1GvidyCrXcBKDI9rOvTYAbXhfHJBCT/PwyDYEk/45uWYsnjPu4kGbHd7TRngWhNvrAbBGHu1l3H40Jn2JZNet6sAdFp6aEtMKXHiI0ecYyY4pLfHoRQQFnhsFBz8Fw58RU1w4xYPXfb7Yr6SC+PO9MCLtxxQNXycv0uhz5HPqln9/jTH6UZhe3wABi+Kg3k8fL8KCu0L4DPK5Zc+0OXVYP08r8R+e433HRRQdR9HBgGjkYhdzyZ7OlIfHDt79dS/Sn/qE1591NxKJRCKRuCIOplN13vW7etrPbOl9f2RD+8Pbn/6w+Z6O7vu148DXzue9UO/7E7cu9eEjXrmtg1//rau+/t1f9yL9yU/5VX3KePfKFyduOa4oKFRV9a8lfbqkD9R1/fyj175R0mdIWkl6h6Qvqev60aP3XiHpyyTtS/qquq5/6krP6Ha7hWhIx8Qa6/98Pm8UfCMK67UAYv5zWz0ETkhYLBZFUIhF27gX0uM2c+DW/Jb5KsTcSSfiCGNocyw4iXJ7tr/X5p7gfY/wSocRaY7moxYDr/uzXaSA4NMHorle5A8rPCTc59Hz4nEi4JZg3TzdgmfQh3hMX0wroL8u+LjI4+Ta94HPI/9lreiX7yuvl+D1AHgua+0pCi40OMn2uaQtv6dNrHH3SBSnWEPe89QM/+y4cMS+c4GqTZjiXj9Jwu9HZECgc1HO91P8DDEG7uHz4CdseP0D74uLiVFU8HWtqqq4Mdzt5C4Idyzx3ygSuWNhnQSF2/Fd/FjFK/7cj+iLz33grLuRSCTucOT3cOJ24eDSJQ3+469o/OwXa/5EaW98+0SFwcMd3fuWXfX+v9/QwSd8rCTp/Z+90Lte8t237Jm//21/RU/c+lhV+wfSa3/91OuqwUAHf/Aj9Y2f92p95mR2y/qTuDZcjUPhuyX9c0n/1l77r5JeUdf1XlVV/1jSKyS9rKqqj5L0+ZI+WtKTJf1MVVXPrev6suk3nU5H99xzjzY2NkquN8cyYqsm7cFPQ1itVo18f8//dis/0WWij6QGQHo8tcAt25BKPzLSj6GMtRy82CD2faLQ2M2l4whvjNxLzRMipGMSKB0fZ+fPhJTTN08D8Sh+JFhOxJyAxvQBJ1eehsC8ItCQ07+zs1Ps/kSBpWOhhToPfgSj581HYszvuDXos4N9wVzGIz5Xq5UGg8GJMTsxZb1IuXBC7IKDzxdjdJeL1x9g3DzThQlcCOw/7ncnAe1D4Hk+bXNMqJ9EgijjtQ3YB+4mYW2cxMd18M8C8zUcDouA4WvJXLGHEAIQ0YbDYanzwDg9Hcb3m+8ZT23wve2OA58r2mQckhpFGf2zipjggoLPiTt21gTfrVv8XZxIJBKJy+K7ld/DiduIJ/yzX9Slv/BCvf8P69bWVLB/Wj/r3z2gvXe/R9XzP0I//UPffQsfeoxf/xuvlCS9cbnUy5/zCaqNYzmq5zzrtvUpcfW44r+W67r+uaqqnhle+2n787WS/vzR758l6fvrul5KeldVVW+X9AJJv3S5Z3Q6HU0mk0Z01dMfcCqQ/w2RbYvox/QAyIEXZITIRrLiRJO2IcmICJEYQjoGg0Ej8h7mqxTGkw7t45AxItEesZaaLgb+2+/3S1Q3njgAwfUcc65xkuQEiT6flroBmaQvzBXXO5Hf29srYtBsNivPGw6HhUxCpCG/VXVc1wGwdhB65oPnsV/cOUHbpHa4+8BdBNHhwPMi+a+qqtj5IfysgafcOAF11wrt+3gh+R7d39zcLPcQsUcw8KKOrCdCTbfb1XK5bLgTcKKwF3D1uDjl13s6DH2mvgECB4UipeM0ou3t7fL5Yy4QB0glYq947QV3kCCMbG5uNmo8xHQbPgcu7rlA4tf658Dvd5HHf6cv9M/FHOaFz/i64HZ8FycSiUTidOT3cOIscP4nf13nf+sZetsXn79lz3jcr1W67z+89fD3/7CnL3r8mzSpflXS7XVqfnR/Qy9/6+v1dV/6Rer8jzeU1+/5/+7VX3ri/ziTPiWujJsRfvtSST9w9PtTdPhlCh44eu2ygNR5DrmTQRwKi8WiYYmPOc5ER52E7e/vazQaNazWy+WyEW32yKaTUQj2xsaGlstl48g7SKNHU4kQew62R8o9wkp0mef1+/3iyvAodiSs0fZO9JXnOkFCNIH4QxAhsF4zQFKJYrtAg0ODcXoxTMQGT3tYLBaazWZFNIBwchKHpEY/GYd0khx6FDra2/21wWBQ2vdaAn5PLLzH3DsJddeB1x7gdV7jehcR4vogQsRinl5fw09+8JQR2owCSBQp2G++/3xtcJS428XTI6LINBwOG+4RL8BIH3ADsS8RpdhX3A+iWOX1N4bDYTkO1tNw/L/c42kLzGObEMZnza+L9TdiX+K+YGwIP3cQbvi7OJFIJBI3hPweTtx0HMxm6r7rd/WM/zzRA3+ip/3BzUl/6KwqPe1nd6WDWsPf3ZY6Xf3WNz1NP/rEb9fHDgY6C+Leq7p6yehAr3j5tlbPe5Ge8GNvP+zTk8+uT4kr44YEhaqq/o6kPUnfw0stl7Xu+qqqXirppZI0mUwatm23XBOdnM1mms/n5XhBiHgsggepIWJKJNkj94PBoLgdIDIemXUSg3MAaz5/e+0FiJ2nLzgJkpqnJbgVnPeHw2GjiB1FFL1KvosE3mcIb4yyYqsH8dQLz0mnjx7Zl1TGCsHq9/tF1PEoNM9yQcGLEHIv44upHLTn//W+uK3dXRuIFkTMO51O42hGt/S3Eda2FAbe9wJ+3g93QbiwEa337n5w4YnrENF4j73hc+qk2dNV3LLvwovPJ3sVwcbrRMR5Yc/x/Fjc0OsZ4Ejw9B/6wX50x4+vK/1EUEDE8PeBCza+L9y94a/758xFH05cie1EIYJnuRA0GAx0J+BmfRcPNb4l/Ttr/Mt3/VE9+Tk/kcWbEonELUN+DyduJfa3t9X76f+pyXNerL1xpYOetLj/+oskbswqjX6vUu+n/6ckqXrm0/XQp3243vknv13S2f/b55c+5kf0wvrP60Pz9elT4nRct6BQVdUX6bAwzSfVx/+if0DS0+yyp0p6X9v9dV2/StKrJOn++++vIaCQcy9WN5vNtL29reFweCIXnug+dnJJ2tnZKdFUyBTXIA5A3iHmXAd5hoi4xdpz3hE63CINeeRv+hhzuCGcs9msQf4Wi0VxSWC5d4JDf7jfBQ+eC2GEsGITx/kASeQIv/l8XsQVyL4X89vb2yvOCSr78zokzVM2XCjpdDo6d+5ciWQPh8PizHCC56STdfTouItFkM44L+6+cLcBbcX5d7IuqSHUtAlELiq4i4MxsHcZA3O6v7+vwWBQ1oU+sx6k4nBSCSIRz/Y19jSgSPaXy2Wpb+BuAcboZN4j9sytf5Z8D3iKgNcnYV/5OtCWC3VRVACM3Y8NRYiINRXiHvC94/snPoM59GNbfc+5E4nreSbi5joVZTwNN/O7+Fx17+0vJX0bcO5PvUNf+a1fpnd83necdVcSicRjEPk9nLhdePy/+EVJUve5H6a3fcX9kqS60pXrK9RSZTvrwlulC//2F8vf7/rfnqrf/MpX3uTe3hhe+7E/LH3sWfcicTW4LkGhqqpPk/QySX+srmsvsfkTkr63qqpv1mEBmudI+uWraRMCvVqt9PDDDzdy6Pf397Wzs6PJZKLpdKpz584VYutReaKjRFqXy6Wm06nOnz9fhAjIBXZmJ8hesd5JaF3Xmk6nJ+zd0jF5JDI+HA41mUx0/vz5QirbwFhxECA8uFCAhZ3XKGrH/dSdWC6XjSMNIxn25/EsSBwiSCTZHumVmoXscAPwTK73QovUUlgsFiUaPR6PG5HvTqejzc1NTafThtPCo95ExN1h4KIPwgnkD7KM2yQW2eN+5sTTY3yufE7ceu9ENhLYeH8smOlODfYugsxsNiv7gfVEoIBUMxfulPDnkJbDHE4mk1J7xNfe6yfQXyfkvOdpCO7+cYGD/vFMUgTa9qSkhgjH2njqixN+Phukebjrw0UM33dRNGFfuKODNB7fh57242uz7rgV38WJRCKRuHrk93DiLLD/9nfrOX//8PSiD37+8/XIR11ehzr/tkpP+J7fKH/Xq1W7XSaRuA5czbGR3yfpJZLuq6rqAUlfq8MKtgNJ//XoH92vrev6L9d1/eaqqn5Q0m/q0Pb1v9dXUc0WAgzJH4/HhZBA9FarVSFHTnKjW8EJiqRSMwFS5oTFiyxyLQRTUiFnbkknsukWfsg0r9PmaDQq5MWJukfR3SrOD2Pk+EYnvt1utxTnWy6XJ4gwIoZb7T36DyH0yv8xChtdGbYXSvE/Tw8gBcBFGUQF1pB5o9aBk7x4NGdbZX2PJnuEnb54xNn753vEyTFrEYt/ukDkdRR8vzG3Xq/Aj3GMogwiAUKJi2CIDIgiHqV3ESO260dQ+ut+9CqCCv2Nx4X6ekPOfb7j71zjrgk/qQRXTxS26BfzzD3Uo+AZnhbiRTSZe1woLiYxF7iA+By62MTcugjhe8VdEH4EJu2vC27Hd3EikUgkTkd+DyfWBgf7Orh0SZL0+F94SPf81uZlL+99aKr9o+sj3vFPXqjP+eNZKzRx/biaUx6+oOXl77rM9V8n6euutSNERQeDgSaTiWazWbHaQ0i8cCL3uK3aLe4gFmEETni4x4sYtokWTpQgKn49ZAliRq2Gtur19MFFDMQExJTRaFSeyw9W7E6no/F43EhTIIWCMXn/nfhGIu2pAh7tjekUe3t7jXx0iDmRclwhfsoExTSXy6VGo1GjboPnqvvcOoln3lw4ggBLapBtj5jHIozAxQbW30m4H3/otnfvL8+ExDJPLnp4AUH2r7te2gQFBCQft6dauIuAdfPaD+4WcaLu+49xuCjjn8G2tAEX65hTF8RccGE8UVCI8+HiQkyJ8PoljIe2/dhK1swFP74zGLenPCBE0I/YX/+cec2KdcHt+i5+rGLzdzr6mgc/Xv/kSa8/664kEok7FPk9nFhH7L/lt3XyX3Xhmsu89zl//HX6xie+4TJXJBKXx9ocso44wHF65PZTV8DJrZMqyIQX4uM4R4gB0eFIrL2NNiLkRSKdJOIAILLOPS4MIDqQ3x+t1VIzwk1kHPKNq4JUDsj6cDgs/brvvvs0GAw0m81K2oCniRAtZr48RcFrJvAcT5/AJg9RjsJJJLasy3Q6LZHn1WqlS5cu6dFHHy3pJayLdJxH74X8PHrcRnq9gKNHxuP6sN4xyuzk1MfAe8yfn/iBk8MFEK8VQFTcCbTXzfDIvu85P250PB43imvSJvA+QqI94u4nMPhnxN0Znu7gc8jfXgfB6xh4n+lfW/TeBSp/pv83rnV8jt/nxSQRB9zlIakIdi6c8V3gtRA8XcXFBl6Lwh7vuwMocWfjid/yi3rzL/w+6cdTUEgkEolEIpG4WVgLQQFLOMXrtra2/v/tnV2MXVUVx39rprR05rZqAU0DCMWACU9AjC8KLxj5CIIfianxAaOJMdFEYkysaWJ4RaOvEo1EMCjEKJEXE4wxmmj8AGyhpJS2iBGpRZCUmc6911K3D2evO+vuuXeGSTnn3Jn7/yUnPbPn3LvXXmef1VnrrLX3YIvIfr8/tMVirAcf5XDC8s4I7th7+r2/IY5vlOPb1RggiG893QEqt/QrHTpv9+/bunUrc3Nz7Ny5k06nw+Li4lDKeMwigKruvNfr0e126ff7g9/Nzs7S7/dZWFhgy5Yt7Nixg+3btw/G6SUEvm5BfNNa1r6XenIH2wMnMZDhxIyG+EbZx+plDGfPnh1sA+i68qBCp9Oh0+kMyjW8D8+0cDm73e5A7vJNujuwMSBSnvu4fJFMvz+xVCY6+DHA43qI2RLxO+OuDF6P7w7y0tJy2WQM1JRz1EsgPNjku1RAtVbA6dOnWVxcpNvtrsi6iTpzp9hljDuUxACYX1t+Nq5HEJ+Dcs6X892vn5mZGaznEYNWXmbhMruOY0CwJOo5Bjdi+VBc96TMTvB+PBCwsLAwmH9xrYk4Ph+zl/D4Qqsxa2iSshOEEEIIIYSYRCYioADLi6G5ozI3NzdIlweGMgX8LWJ0cOLbx7K0wbd8LN+qR2fSiXXX8fPuPEZH1xeuiwEKd6D87b4HFjzdv3Rg3TF1h863XvQMDe8rpUSv12Pbtm2Dxe/cGXIHy53QXq83yDKIzqA7TbHvWJPuv/N2fxtcriMQHS/XWdSd2fLOG+6sLS4u8tprrzE/Pz+UKeH31tej6Pf7Q2/gY3p8zAIZF0yIqfIuU7nWRlxDYRRl5oKfl4cHLWZmZuh2uyt224jO/ajvLBdpjPLGdQFiyYdfU657EbMiYnlBlDdm4Pj9G7XGhP8+ylwGJdxRj7LH+eDzfmZmZhAYjLto+Lwvyw1itgcwlOXjRyyJiIGDGAT0AFKc4x7oirqJsgADe1POBSGEEEKIzcTsBbt45YEL+MyuB4DtbYsjNjATE1CIjpY7VL5Pvdefw3Jaer/fH3LsSwc/Ok2esu7Et+vusI1KSYfhFfvdUYtOeMwAiNkKcRtCdxzLVPv4xtidurjuwJkzZ4bWLIjf7WUXUc75+flBiUjcuSA62/Hcncy4a0XUfyyZGOV4+vfEMoh4P8pSioWwGEzMcnDd+DoNvV5vxdoVcZ2AcgFBl2lU/X984+06jLKPCyyU9zgSyy38ulgmEe9z/O6Y1RIddNenB6z8nvp8joGKMqARyw9iKU+8VzGo4nMoBh7KjJMYoIv4d8RASMxSiOUq/vY/ZhP4+KJ8sLwNpWcfxUyaGPiKO7T4fYw7O7guPVASd/rw58jvXxyLBzFXy6IQm4OZU0vcdPg2HrzqYS6cnW9bHCGEEKI17Pzz+f01D3GeKZggzo2JCCiMqoV3p8W3GoTlVPVerzf0Bjg6Bu5QlOnL7oDFN/FlMCEuAueU6yP456KTFhf6ixkUXt8dx+dOTcws8MCDLyC5tLQ0KHvwz5cOoTvW8S2+rz0RF0QsV/b36/3csxx8rGWpQ3Roo9MenX3/rGcOuH4908OsWsBwcXFxEDzw++IL7fn4Z2dnOXXq1JBz6o56SmmwJajLV47JdVvODR9LrM2PwZWYeRKzVNzpjwGqeL0HXqI+YilFOU/Kmn7vC6DT6Qx+7xkpPo/K7TZdr17W4OPyORLHG518l72cR7EMoAw2xCAGMFj7YW5ubrDDhwe5PKsmrnkQ54ffLx+nf8aDDZ6hUpabxOyIuEaDZzT48x1LavxZiGukxICGyxh3U3F9R9skNg9nnzsON8Ifjl7E7fNLa39ACCGEEEKsik1CSq+Z/Rs4DbzSsigXSgbJIBkkQ8FlKaWLWuq7UcxsATjSshjTPt8kg2SQDCuZJjusv4klg2SQDJMqw0hbPBEBBQAzezyl9D7JIBkkg2SYRBmmgUnQs2SQDJJBMkw7k6BrySAZJINkeLOstW2pEEIIIYQQQgghxAoUUBBCCCGEEEIIIcS6maSAwvfaFgDJ4EiGCslQIRmmh0nQs2SokAwVkqFCMkwXk6BryVAhGSokQ4VkGMHErKEghBBCCCGEEEKIjcMkZSgIIYQQQgghhBBig9B6QMHMbjazI2Z2zMz2NdTnpWb2GzM7bGbPmNmXc/vdZvZPMzuQj1trluMFM3s69/V4bttlZr8ys6P533fU2P97w1gPmNnrZnZX3Xows/vM7GUzOxTaxo7bzL6e58cRM7upRhm+ZWbPmtlTZvaImb09t19uZt2gj3trlGGs7hvUw8Oh/xfM7EBur0sP457HRufEtCNbLFuc22SLmT5bLDs8GcgOyw7nNtlhps8O5+/dmLY4pdTaAcwCx4ErgK3AQeDqBvrdDVyXz3cAzwFXA3cDX21w/C8AFxZt3wT25fN9wD0N3ot/AZfVrQfgBuA64NBa48735SCwDdiT58tsTTJ8GNiSz+8JMlwer6tZDyN136Qeit9/G/hGzXoY9zw2Oiem+ZAtli1ea9yyxYP2TWmLZYfbP2SHZYfXGrfs8KB9U9rh/L0b0ha3naHwfuBYSun5lNJ/gYeAO+ruNKV0IqX0ZD5fAA4DF9fd75vkDuD+fH4/8NGG+r0ROJ5S+nvdHaWUfgf8p2geN+47gIdSSv2U0t+AY1Tz5i2XIaX0WErpjfzjH4FLzrWf9cqwCo3pwTEzAz4J/ORc+1lDhnHPY6NzYsqRLV6JbLFs8Sg2pS2WHZ4IZIdXIjssOzyKTWmHswwb0ha3HVC4GPhH+PlFGjZiZnY5cC3wp9z0pZzec1+dqVWZBDxmZk+Y2edz27tSSiegmlTAO2uWwdnL8EPSpB5g/LjbmiOfBX4Zft5jZn81s9+a2fU19z1K923o4XrgZErpaGirVQ/F8zhpc2Iz07pOZYsHyBYPI1vcsC2WHW6N1nUqOzxAdngY2WH9TbwqbQcUbERbY9tOmFkH+BlwV0rpdeC7wHuAa4ATVKktdfKBlNJ1wC3AF83shpr7G4mZbQVuB36am5rWw2o0PkfMbD/wBvBgbjoBvDuldC3wFeDHZrazpu7H6b6NZ+VTDP+HWqseRjyPYy8d0abtas4N2WLZ4rWQLc5ijbh209hi2eFWkR2WHV4L2eEs1ohrN40dho1ni9sOKLwIXBp+vgR4qYmOzew8qhv1YErp5wAppZMppbMppf8B36fmlJGU0kv535eBR3J/J81sd5ZxN/BynTJkbgGeTCmdzPI0qofMuHE3OkfM7E7gNuDTKVXFSTmN6NV8/gRVfdJVdfS/iu6b1sMW4OPAw0G22vQw6nlkQubElCBbjGxxZiKeO9niiiZtsexw68gOIzucmYjnTna4Qn8Tr03bAYW/AFea2Z4cEdwLPFp3p7kO5gfA4ZTSd0L77nDZx4BD5WffQhnmzWyHn1MtfnKIavx35svuBH5RlwyBoahbk3oIjBv3o8BeM9tmZnuAK4E/1yGAmd0MfA24PaW0FNovMrPZfH5FluH5mmQYp/vG9JD5EPBsSunFIFstehj3PDIBc2KKkC1GtjjT+nMnWzxEI7ZYdngikB1GdjjT+nMnOzyE/iZei9TwKpDlAdxKtYLlcWB/Q31+kCod5CngQD5uBX4EPJ3bHwV21yjDFVSrch4EnvGxAxcAvwaO5n931ayLOeBV4G2hrVY9UBnqE8AZqsja51YbN7A/z48jwC01ynCMqg7J58S9+dpP5Ht0EHgS+EiNMozVfVN6yO0/BL5QXFuXHsY9j43OiWk/ZItli2WLp9cWyw5PxiE7LDssOzy9djh/74a0xZYFEUIIIYQQQgghhHjTtF3yIIQQQgghhBBCiA2IAgpCCCGEEEIIIYRYNwooCCGEEEIIIYQQYt0ooCCEEEIIIYQQQoh1o4CCEEIIIYQQQggh1o0CCkIIIYQQQgghhFg3CigIIYQQQgghhBBi3SigIIQQQgghhBBCiHXzf4aAA8hfdU9QAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 62962 102490\n", + " Min thresh = 1000\n", + " Sliding\n", + "\n", + "\n", + "004s_iimage_74132233134844_clean_ClassS_192-320.roi.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADYCAYAAABberBAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADKcElEQVR4nO29eZikZ1k1fp7aq7p7ZjIEkhASsgcSBER2FFFUVgH5hA9c2IUA4vpTQFTUb0MEhe9TwCjITgBlB0FFERECJhAgIWQjkIRsZJmZ7tq76vn90XXePu/dT/U23VPV0/e5rrqmu+p9n73e6XOec99PiDHC4XA4HA6Hw+FwOBwOh2MjKEy6AQ6Hw+FwOBwOh8PhcDh2HlxQcDgcDofD4XA4HA6Hw7FhuKDgcDgcDofD4XA4HA6HY8NwQcHhcDgcDofD4XA4HA7HhuGCgsPhcDgcDofD4XA4HI4NwwUFh8PhcDgcDofD4XA4HBuGCwqOI44QwmUhhEdNuh0Oh8PhWEYI4bshhJ9a57UxhHDGJuvZ9L0Oh8PhcDimCy4oOI44Yoznxhg/N+l2rIYQwk+EEL4ZQjgQQrg9hPDhEMKJk26Xw+FwHM0IIbw2hHB9COFQCOF7IYRXTbpNDofDMW3YamF2rfL872LHanBBweFI41sAHhNj3Afg7gCuAvDmibbI4XA4jn68FcC9Yox7ADwcwC+EEJ464TY5HA7Hbof/XewYCxcUHEccaqsNIfxRCOGDIYR3hxDmR+rnWSGEV4YQbh3tVP2M3PvcEMLlo2u/E0J4kSn7d0MIN4UQbgwhvEAV1xBCNYTwuhDCdSGEW0IIbwkh1FNtjDHeEmO8Ud4aAHCLrsPh2BUIITw4hPCl0W7UTSGEvwwhVMxljx89h28LIfxZCKEg9z9v9Ky+M4TwmRDCPddTb4zxihhjU94awp+9DofjKEQI4d4hhM+NnrOXhRCeJJ99LoTwAvn9OSGEL4x+/vzo7a+HEBZCCP89hPCoEMINIYTfGz2TvxtC+MXNlmfb6n8XO1aDCwqOacDPAngXgGMAfA3AZ7C0Nk8E8CcA/lquvRXAEwHsAfBcAH8RQngAAIQQHgvgtwD8FJYecj9u6vlTAGcBuP/o8xMB/OG4RoUQTg4hHADQBvD/AXjt5rvocDgcOwoDAL8J4FgADwPwaAAvMdf8HIAHAngAgCcDeB4AhBCeAuD3ADwVwF0B/AeA96234hDCK0IICwBuADAD4L2H0Q+Hw+GYOoQQygA+DuCfANwNwMsAvCeEcPZa98YYHzn68X4xxtkY4/tHvx+PpWf2iQCeDeD8wyzPttn/LnYk4YKCYxrwHzHGz8QYFwF8EEt/gL4mxtgHcAGAU0II+wAgxvjJGOM1cQn/jqUH8Y+Nynk6gL+LMV4WY2wB+GNWEEIIAH4FwG/GGO+IMc4D+N8AnjGuUTHG60bWrmMB/D6Ab29prx0Oh2NKEWO8OMZ4YYxxMcb4XSwJuytE2tHz9DoAbwDwzNH7LwLwf2KMl4+e6/8bwP034FJ4DYA5LAkV7wJw8LA75HA4HNOFhwKYxdLfu70Y478C+ASWn6ObxR/EGLujv5E/iaW/jbcE/nexYxxcUHBMA26Rn9sAbosxDuR3YOmhixDC40IIF4YQ7hippI/H0oMNWIrpul7K0p/vCqAB4OKRtewAgE+P3l8VMcY7ALwDwEdDCKWNdMzhcDh2IkahZ58IIdwcQjiEJVHgWHOZPmO/h6VnMADcE8Ab5Vl7B4CApV2zdWEkGn8NS/8H/PFa1zscDscOw90BXB9jHMp738MGnpMJ3GlCxvS5vGXwv4sdFi4oOHYMQghVAP8A4HUAjhuppJ/C0h+qAHATgHvILSfJz7dh6Q/Tc2OM+0avvTHG2XVWX8KSJW3PYXTB4XA4dgrejKXdpzNHCRJ/D8vPWkKfsScDYHzt9QBeJM/afTHGeozxi5toRwnA6Zu4z+FwOKYZNwI4SXPPYOk5+v3Rz00sbYQRx6+jzGNCCDOmPD6XN1PeavC/ix0ZXFBw7CRUAFQB/ADAYgjhcQB+Rj7/AIDnjpLcNCD5EUYK8N9gKefC3QAghHBiCOExqYpCCE8NIZwdQiiEEO4K4M8BfG2kyjocDsfRjjkAhwAshBDuBeDFiWt+J4RwTAjhJAC/DoBxt28B8MoQwrkAEELYG0J42loVjp63LxqVGUIIDwbwUgCf3YoOORwOxxThy1gi+b8bQiiHEB6FpZxiF4w+vwTAU0MIjVFy8eeb+28BcFqi3D8OIVRCCD+GpZxjHzzM8gD438WO1eGCgmPHYJT34NewJBzcCeAXAHxMPv9HAP8XwL8BuBrAl0YfdUf/vnz0/oUjC++/ABiXrOZELIVEzAP4JpYyjf/cFnbH4XA4phn/H5aesfNYEmNTSbo+CuBiLP2h+kksHfmIGOOHsZQE94LRs/ZSAI9bZ70/B+CaUb3vBvD/Ri+Hw+E4ahBj7AF4EpaejbcBeBOAZ8UYmZfgLwD0sET03wHgPaaIPwLwjlFoGfMk3Iylv49vHF1/3mGWp/C/ix1jEWKMk26Dw7EtCCHcG0t/yFZHicEcDofD4XA4HI6jCiOHw7tjjPdY41KHY8vhDgXHUYUQws+NrF7HYGmH7OMuJjgcDofD4XA4HA7H1sMFBcfRhhdhKcfCNVg6Rz0V9+twOBwOh8PhcDgcjsPEtgkKIYTHhhCuCCFcHUJ4xXbV43AoYoyPHZ3esD/G+HMxxpsm3SaHY1Lw57DD4XBMHv4sdmw3Yoyf83AHx6SwLTkUQghFAFcC+GkANwD4LwDPjDF+a8srczgcDscK+HPY4XA4Jg9/FjscjqMd2+VQeDCAq2OM3xllMb0AwJO3qS6Hw+FwrIQ/hx0Oh2Py8Gexw+E4qlHapnJPBHC9/H4DgIeMuziEEKvVKkqlEorFIt9DoVBAoVBACAExRsQYMRwOMRwO9V5bVvbi7zHGrCwtU68fDocYDAZYXFxEv99Hv99fUS6A7P5isbiiLrZtOByCzg9tt/arXC6jUqmgWCyiWCxmZWq5McZc/3q9HrrdLhYXFzEcDrOy7BjYurX92mY7tuw/f2ebeB37ruPKcbN16Yvjodek5phtHgwGK8q0fdP+8H3WY/unfeT7WhbHUuvgGPMerk2dIx1nnXPbXl0T2g7bp9WQGgtde9qW1cbJjrWdF7s+9Dq7rse1ayNIrV3bJ0K/Q3q9LS+1nnTc9X5dG3Zt8rpOp3NbjPGum+7k5LCh5zAAFGdn4smnBNzanUPx6u5ql+54dO/ZwA/tvW3SzXA4HOvAd6/v47Y7BmHtK6cSG3oW76bn8FYhFAro3L0O7NQV4lgTtVt6iL3+2hc6thXzuDP5N/F2CQqpr3TuL/8QwgsBvJC/n3TSSTjuuOOwZ88eAEClUkG1WkWj0UCtVkO/30en00Gr1UKn08mRRZLSUqmEUqmEcrmcEx1ijJibm8Ps7Czq9XpWdqlUyghFt9vFnXfeiTvuuAM333wz7rjjDgwGg1z55XIZtVoNc3NzaDQaOTEAANrtNlqtVvYiQSehCSGgXq9jdnYWxx13HO5yl7tkbZqdncWxxx6LY445BjMzMyiXywCAUqmE4XCIhYUFXHXVVbj++utx8OBBdDodNBoNVCoVlEqlHPkjIe92l/4jUhJcLpdRLpdRKpVQq9UQQkCv10On08GhQ4dw8OBB9Pt9DIdDVKvVrK+1Wg2VSiVX32AwyPrc6/UyYs46yuUyCoUC2u12JtJQqOF81et1zMzMZHPR6/Vw6NAhLCwsoN1uo9fr5eaR/3Lui8UiFhcX0e12s/LL5TLm5uZQq9VQq9VQKpVyAgHXR7/fR6/Xy4lH7Nf8/Hw2DqVSCccccwz27duHPXv2ZGu01+tlr263i8FgkM0Z563X66HZbGJ+fh6dTie3FjhnFBz4O4BsDkffFQDI+jAcDlEsFrM1omUo+VeRikId555jwnHj/FHoqtVqqFarGA6HWFxcRK/Xy+ZRyTf7MxgMVoh9KaggVSwWUalUsvu0fwoV+3Q8FFzf7BvXSbfbzb6L7H+1Ws0JDhTpKKYVi8VsjZdKJVx66aXfW7VT04s1n8NA/llcK+/FiWe+Cqcd6KNwzde2u30TxZW//yB85Yl/M+lmOByOdeDBj7l+7YumFxv6m3g3PYe3AsVzzsKNP3Us5k8ZuqBwFONeb/g+Fr+3o58DRwX+Jf598m/i7RIUbgBwkvx+DwA36gUxxvMBnA8AxWIx1mo1FIvFjMDZHWZgmYSUy+UcqSgUCqhUKhmJBZCRKxIrFQasG0B35XV3niC5oBDB+kl8WE+v18scDiSqJFwkOmxnqVRCjBH9fh/FYjEjdKPxyAkeJKtKWlXIsLuvhUIh12+9VseU9ZFMkcQqMeV7i4uLOUeDjj/npN/vJ0mskn+KNByPlNND+8H5ZLvYN4LjrYRQ10m5XM76z36QIKsQoOuCogPHrFgsZuIE55/l9Pt9dLtd9Hq9jIyy3RQq1KWgrgfd8be76tbpwnVqYR0wOr/jHCwpt4L9XOc6JVawfIozIYQVrp4UdI7V6ZMC55qCggo21mWkoiLHhfOtzgbWp2KOfjdUGNFnwA7Fms9hIP8s3hP2x/pHv3JkWjdBHHjWw3D2GddNuhkOx67E5b0WnnXpc9Z9/f3v+n0sRQnsWGzob+Ld8hzeChTPOQt33m8/5k9dfTPD4XBsL7ZLUPgvAGeGEE4F8H0AzwDwC+MuLpfLmJ2dzQgnSaASH0sKSMhJ/qvVarZ7Tss6ybzuOCrZJOFVssQ6WC//JcknoSwUCplgQCKiLop2u50jQYVCISOklUolayMFBd25LpVKmJubQ7lczgkTWhbHh23XPgLIfk+ReWCZtCrJ1p1iAFmf+v1+dt9gMMjZ/zn2/NkKOJboDgaDHNmvVCo52znng6ScZagAwvcosrCNvJ8uFesg4VjRVUEhgGIRx49zpWR/dnYWjUYDjUYD1Wo1Ey8oTtANQheLklEVZjjPHEuWX6lUcteyf0qodX3Ydbu4uJjNi3WspMISKJykxAuOPedLRSZ1EFAY4/wsLi5m5VoxRJ0JSv5tSIauH2BZ7OJL58iKEXQ86JpWVwPr0/tUFNE1dJRgQ8/h3YRX/cE78KSZ1qSb4XAc1bhucQGduFIw/vNbfgb7n3jlusu59JkPRSe+dyubdqThz+Jtwk0/eSwOne5iwlGNCBR7ARgeVX+fHXXYFkEhxrgYQvhVAJ8BUATwthjjZeOuJ1nkH/S6E0mCwOuq1SpqtVomGPT7/YxAkuCQAJNAqEChgoQSXiVA3JFmvWxLo9FAvV5HuVzOCJ66G5rNJprNZhaWQbdFpVLJQiR4T7fbzd1fr9ez62u1GmZmZjLHhoZcVCqVjPyzDHU0sP2lUimzrJOQ2h1pEuput5sJIUCesLMekjQSXyXrtmwVDwBkwgDFIroTSLx1HCgQqHhAcBxSbhCSWo41xR+KN2x/r9fLwg9IOG1+DVritY979uzBvn370Gg0svXCeaTboVQqZSJHCAGdTgedTge9Xi/n9NA54Vhqfgol73RfcPefIR7WqUOhh+PEz/g94T06jjou/X4f9Xo9C28pFouZUMMy+B0cfcdz5FvFHP5O1wb7ZEUFjjE/V7D/bJt+FzW8Sd9TEULDGPi94veC3ysdTx0LtmmnY6PPYYfD4dhK/MrPvxjha1es/CBuLC/Angu+jMvj3Ba16sjDn8UOx+ZRagac8uqvYHE4WPtix8SwXQ4FxBg/BeBT67w2I3b8Y54kS2Oc1b6vO+kUDSypVvu7EiHdMdXYbJalhCXlaACWiS7DFuhOILllnDvLYV/UbVCv1wEs50lgvcwdoURdXRjdbheFQiEjxewrgGynneOk9aV2r9l23QHXUJBms5m5Mhi6wbHmeCsxV9s7Cb4VNTTcAUBuzDjPKjRoUj0SPwohbL8NZ9Edb84NX5a8Ujhgu9ThQHJOkYKige7WUwgjMSU4rhruoBZ8FTM4j9b+z3v4uYbZ6PcHQC6ngkJ343VtaB84bhR8GMLA8bcuHm2bioCcf+2ziiUqwDFnhvZR3Rx8X4UXDTui6KGuCQo6KsJYASOV50H7aNu7k7GR57DD4XCshSde+TgcesNJa18IYObyyzHs99a+cC3EuPTawfBn8dYilEq4+SUPRuv4nb0uHGsjRAAuJkw9tk1Q2CiU0KqjgC4E7jKm4tN5D09NoDVa4/5JTnRXM5UMTvMdAMgRVSVJrJtEWUk5gGwHXgk+SScJHtsILLsi6vV6lkhQY9V1dzUlhpAQEWyHxtcrsdQdWRI4m8uAfeN7mqeC4635JNhOkjISVC2HjgqdX0tatQ0a6qH2fgoJdCro2Kh4pLkO+LPujKsTQZ0CGjJBkq2ODB1jjhXHVEMarKig13DMtG82BEDL1t8pQig4DjZ0h+vYrlldM9pPrnUVFKyAoe1XwUfXoDottI1sm4aA2DI0zIPtp9uHITYWHBMVInSMOSdWcLInimh4TUp8cDgcjt2CDyzsxR9e8qTs98qFczjhI19c173+9HRsG0IBzXtEDMsuKDgc04CpEBR0h7NYLGYnMahlW5PAkUwoCSC5LRaL6HQ6OcLBcpTwavy7WrvVKaBkT8k7SbESRT3KkeRzbm4OlUolI6FK4JSY0pWgJ1GQ2GpyPUv4VCiwxFR3wZVYsX+puH7bX92B53jQJcEXd4l5rya909MOWG61Ws1Z+zXWXXfKlXxz3DlmOmc8OYHjqPkYtAwNMeB1dBuoA0VdDuwfQzZ0fHTclYBrvzTHhbaJjgYVD3QOLVnWz4hUiICKQ7xP2wsgJ+xoaAlzPzCkhWINc0Nw/FUkUDGB/+o1WrcKKirM6RzZsmzeELaxWq1ma1u/TyoSqINJ8zroWrKCVsp94YKCw+HYTTg4bOPq/vL/Qb9/8VNw6jO/PsEWORx5hFIJhb1zSKTncBxlKPQDim2f6J2AqRAUbII06yqwiQCVbOjOuRJFtdQrKSA56/f7aDabaLfbaLfbAPK7p3pahMbrc8edu6GaZwBYzvtQLBYxMzOTI29K9ChuMCdEo9HAvn37MDc3h3q9nttB11AQFVE0uSHbSxKkoSEESTVJnNrJlUiTGNPhwRCASqWCer2euShsOAPba0+0oOBgiW2/388dA0phpdfrZWNkd/0ZAqMnK4wTVEh6rVAEICOlilSSTjpH9ChPlk+SW61WszwT/X4f7XY7E154vd5nEyyyXTaPAsfTCgx2Xq17gHXoGuBY2JAQFcD0ONDUkZqpsA4Vtuw6Y4gL1wZdRvyZ82dzS9g50XGyc6xgWRQHVbSxCRo5pvZ6ts8mQnU4HI7dgKdf8TTgp2/Kfj81fmOCrXE4Erjf2bjyF+YQg7sTjnYce0nEnvd+adLNcKwDUyMokIBRUNCki0wGqGTL7u6r3Z2kSW3kfI+788z03+l0spwESp4ZjsBdV7YTyDsWSDqYyE9f4xLOAcs7riTp+/fvx549ezIxQXdw1TpPcsWEhlo2d+2B5bwAbLfGzJMYMgcBYcNBmJxvZmYGMzMz2Lt3LxqNRjZHMUZ0Op1cOIGGQ+gpE1ouBRbWby36enICST2wHOKhjga9T+vQ3XcVc7gG7K41x9nmT9CcErrzrW1Wx4ceH2lDVDRGn2ueY2UTJQ4GA7Tb7Vx+Ch1Prs+UsGCv1T6og8NeDyATEej80OtsCIOuv5RoYsUHLUeTbVpnha5f7R/HiPOpCRdZrjqBNPREwXHmZ9ZFon1Yz1GYjp2D4rln4/7vvhw/Xr8dQH3SzXE4JorTLzgP9/xU/hlXva2N4fCGCbXI4Vgf4o4/1dmxFk77SBflb90A39bZGZgaQUHj2JVIa5I+3e0nMaMNWo+wA/Ix6Syf18QYs8z83OkmaeXOuiVq3OFlG5Tw8z6Nw+d7aoW3YQXAcqI57virC0PHwNq7lUTZF9/nLrUlxLoDrf3SF8sn4aXV3JZlTwKwZFxdEUrG1XVgx81Ciau6VlJCjdreUyEGNs8C50LDauyaTLkfrAiisDvoOgbq5FBXAEmuhuPozrnm8rChFrpGU23i7zq+9vux2pymcguwX1oWsJzzQh0BCh0T/qxrQsdc22tFGa5hO4/qdNC1rWNh263zSbFDv3+OowO9xz4I33tiAZ867htwMcGx23DW55+FfjufuPfUT/VR/peLc+95kJfD4ZgkCv2AYy+JS2LCD34w6eY41ompEBTURcC4ZpLAGGNuR1xJDsk4j3IkEVGSwN1oPZWApEmt8/xMiTqAHNkClokNiYvuwKq7gW1R6zT7w76wbbxP7egkzpp80JI7Hqmp5M/u8mqbKcaQ7NEBoDv26sagCKP5KTg2JHUcv1RIhwo3enyhEjXWp4KRguuB7U85FPRaHTt1Y6Ts/uyLnqKgZWmoiV2vuqut0ISZPEoyRU5V2LCEXtenkn61/bMuTURoxyLVNitoKeHWNcd50zbbUyR0HbA8jqXmQdA+c2zs5+pw0HFPCQbq4lAXgw2dSAkKHAfrSGD5KhamwiocOxfXPbaI7zz1LZNuhsNxRLEw7ODfO/tw5u/cgcXr3XngcDimF4VeQOVAwJ73XYhB9JCWnYSpEBSA5V1ikhhLojSB4HA4zO3s06GgO5edTie7X3MskIBQTOAuqiX13W4352gA8m4AgsTDEjUVJkgWu93uip1vJXlsO3ee6aDodDpZeAZzPvR6vRx5JbnXMAEKLTbUQZMajktKSGKnx16yLvaTeShoj9c+kRQfPHgwRyrZP0KJowpG6kLQRH+WrHLslTyr4MC6GYrBeziPvV4vO0qSopINk+FcKuFU4sz51jAEdUeo/V/dLhqio+uJeRjobNHjS22OBf6rxylqQlFChRuOp+YZYK4JCgnabm2jbas6Lyyht84eK3hZwUHzOfB7yvq1P6mxZ91c19Z1oKLBOIGBbVDRzYoyDofDsZPw+tsfgC/erwLAxQSHwzHdOOZbwDHvWN8pMo7pwtQICiQzSm41DpwkQePJlfByN7zVaqHZbKLX62UCAeP5geVdTMa6A/l8BkqeVKCoVCq5EyesW0BJn7ZJj3VUMm5jvZUMUUDpdrtotVpYWFjA/Px8JiRorgSWradUENYmru3QF/tAws2X7vbr8Yskm91uN2sTyWOv18PCwgKApXj8ZrOZlU/ixvHiz7rbTzJtEwKqcKPtYX4NS/bVFZAihXRN9Ho9tNvtrH023IVg+RxrjjfFKz09QOdYbfgpAq190zG289JoNLJEkhpCouE16vLQ+WZ/KN6oO4f38l9Nxkgyz/XMz7VfFOVUVNDvUCo8xIZt6PdQv8sq9nFM1YljRSZ7RKeOs84fxTIVOlS00D6mQlocOxP3ev0NeMhXX4wvv+bNk26Kw3FEcOrHfwX3+qt5AN+edFMcDodjBfZcU8DdP3pd9ntstTxnwg7F1AgKSl41gRyJuu5+Ass7rSQbSu40Zp4OBd2ZVYLF67ROlqtkjKIDj4tk/LYNEVDypbvhbCOQt8zrzmq73UatVsuFC5D4MYGh2tE1T4ESbiVHrIt9TxFsJaCW0NJSr2SX88TEltyFBpA5JAaDQSbuAMs7+ExemYrnZ/ssAef7mshRSZ+uB1smy9A6NYcEx5b368kVtgwKJkq47W68tduriGCFCt01T/Xd7tjrUaWp8AktV4m1zreO5WAwyOaXyQ51TAaDwYq8Hlqu5krguqB7yK5BvlKiguatsAIM500FChWMKEJR4FIHiw1t0VALTbipIRBcHxry5Dg6sHj9DTj234DTPvwi/PMTX4/Ty7OTbpLDsW047V+eh5M/HjD8hosJjqMLxVsO4PgvzeGWBwNxZVSqY8oRBsBxXwHCMKJxY9NDsY4STIWgYG3/mpytXC7n7OIkA8DyrqySPRIbdR1QUFACB6yMY1dizHJ5vc3CT8KlifJokVfhwcbzW3JJi3un00Gz2cxOeeBOPEMeNIEkf9YQDiJFwFRIsTHjvEZdExxHjouGi6gI0mq10G63s/HRneVOp4OFhQU0m02EELLjMcvl8oodbP6rRFlzCZC8MzxBc0ZomMY4QcGOvQozFCl4vx5lqOSd88G5suRV59oKX+Pi8FPt49hyffM1Ln/BuDKVPHNdWAFrcXExm1e22TpglPRr37SvGmagdaljwuY0SOU2sKeb6PdKxSAVBbUdmqtD285rNISD5afyKagg4YLC0YXF62/AmS+9Aa954GPwqH3fxl2KC3hsozvpZjkcW4aFYQcfbZ6Ie//RHVj8zncn3RyHY8uxeMP3MffhH+DWB/4IYtHDEqceEagcLACjqSosAnMf+gpiInG3Y+diKgQF7hRyd1Lj/2nztiEKdC7wnhiXjjDsdDoAgNnZWczNzWFmZgb1ej23ox1jzB2rqKEJwHLMOj8jqVZSRjILIBdnryAB7na7K5wVLI/hHHfccUd2LKM6HNrtNprNZrbbT3GB/aHdX0++0PboTq9au5U4sa1KKHmthjJ0u90VSfBIyIGlPAVK1pn3gbv+JHIcVyu22Fh8DStg7ggKCir2cA1xfPV3JajWMq/hLwQTXbJeFT44DpxTFRyUkLL/XEvMY2HdKpwz62YhQaZjgsd3qrMidYKCjqsSabaDv2v+EF7HvCEM3xgMBrnvgZbFeqzDgkkoCSvK8HvH9g0GS6eC6JqwoUHabnXLcK45p5r804oZfJ/t0NM1OBcq0OiaSiXldOx8XPeQJt6JkzB41APw2Pe+bdLNcTi2DO8+dDo+fM5dAXx30k1xOBwOhEHAKX/6VQxH/AzItAXHUYSpERS4AxpjRL1ez52UYO3k/X4/I2GaP4Ckg2LC3NxcJkzwc2txB5ARKWDZ9aDEiDvsJIsAMpLIa5UoDYfDjHAq8QKWCOvMzAz27duHPXv2ZISJsfwkPyEELCwsZCS63W7nTlRg7gDdQaVjQsm12sPZdrurTHFFRQCS6V6vh5mZmYwYFovFnN2f/6pThOPJxIIqdpD8KVFVkFSSuLMcjos6E+hO4JGbdKKo20FdGCqmsI9MeEnxiuN08OBBtFqtbL7q9Xo2T5wXzm2320Wz2cw5SPRIQw03seKJzQ+g4zkzM5PlAWF7dXdeQwX0+8HvRafTyTl6OMdajoY9tFqtTLjTNauinbadc8v1oOuQ9Y7LYWFB4p9yJ3D+1DnB9yloUeRRUY31c82oqKRrTfN4EEziWalU1my7Y+eifOG38LjHPRMAcPOfRHztQRdMuEUOx+Zx6qdfgHv/6QEAV0+6KQ7HtiL2ezjrz7+DG555OhZO9tOYTvrnAWa+et3aF64T177gdHTvsrlxDUPg7L+6GWi1s/cWRUxwHJ2YCkFBQTdAtVrNCKLuVitBIuEgWeCObr1ex8zMTGaxB/Ix1CSkJBKaEwFAFuevcd82hMDmX9DQB7XBayw3+6QnU3CXlcSIxJkx7STVPP3CWr51ZxxAFnLBfrNsa1fXXXstl8LFcDjMuSR4vz3JgHPCeH+GO/ClO9PlcjlzOVC4sW2xc6VWdnV5UBxQYUHDZtSJoOEOwHICUA0n0dM8uHvPJIQE1wl38VkuyazOn4oFKrykLP2pfBfMXQAgN3/af4pYbAfHX50SFAwIFRT0GEfNT8E6NMQnFUZhv1O6HvQ7wvL4nbVCiJZt20vHkuZrYL/pqmC7WbeufZsPwboqNImmfofsmnIcnRh2OsDXLwcA1C54KM68/MVAAfjPZ74OdyvOTLh1Dsf6ceonfwUnfzRgcIWLCY7dgcWbb0Ghf/qkm3FkEYETvhhR7OQ3amYuuxmLN9+yZdXc/T9PRH9m8xRxcP2NiP3e2hc6jhpMhaCgf7QXi8Us3p478JoUEMhbkpUkkLRSUGDsv5I/LUN37pXIWFeEOhZowyYBJXEC8qcqKEEm2S4UClnfKCioC0N3fEMI2e682tCV0NnYb2DZYk9XhtrclfzbMjgO9jqODYmyOjdsbLyWoU4KOh3oOiAhtHkU2BbN2m93lzUXhq4BbY899o91qfuBYgKPjNQwDrpVeOqF7nZruID2V8UEOjKsjV5Js2275h3gWgaWj0hUlwfXnwooHEcNA2IoyrgcBKkx4Y49v3s2p4UKDLp2dC3Y7/W4nAlK+NXBYfOaWIGJAhVdDRqmQ0GBbUuNtbbRfg849hoS5dgd2PO+C7HnfQAKRfzRTzwaZ9RvBQAUwhAv3XcNysHXg2P6sDDs4PwD5+Def34Ag8uvmnRzHI4jiuqBIcqHCujvOUpdChGo3lFAkKMP9vzTpRgcOpS7bKuzERT/7as4nP/xPKRh92EqBAUlw6VSCfV6HdVqNSNx42zTesoBiZY6FPQse7XLa+gCyRR35EnwSVJI4nTHllZo3TFXksaX5k4g0a/Vamg0Gll+B7VWs0yennDHHXdkx0Wq6KFEkiSS77MeCh5qCadIYGPDdYwItbSzjey7OjEIElwlgCxPRQ0eKWlPL+C97LvNlaBzTmg/SKIZlmDj4lPx9taqT4Hg0OhBXSqVsvwFDDtotVoZqWWf2GYVrtTyT1GMfaG4ZOfSJiBUgYIngFBoo1Cm86a79LT/62677vLze6XJJpn3gd8bhr1wPjnmOv46dimog4fQsAkVi1I5C7gG1GmgTggVryj+2LZo3bx/3O90SKl7yLHLMBzgmgcNcA32AAAKtRqefMWlONVPhXBMIT7VOg6fuc8eAC4mOHYf9r77Qux52P1wzdPqy29Oo7HwMP6UOOUtV2Bw2+3Z736somMaMRWCAolECAGzs7O4y13ugr1792IwGGBhYSF3tFuhUECj0cjFl9P+XKvVUK/XMTc3l8XDk6womez3+zmxodPp5Mg4sEyQ1F3Al+5eKnnRazQ0gkIHCWG9Xs8EBA2DKJVK2S4xiS3j2gFkFu9x4grdHWyvJUqW2JGU8mcgT66Yy4E/6312t5nChu4k6/graaR4w3FhYsler4f5+flMUGCYh01AqMINd6qVTGvSQhJpikMM4dCjEVWU0Dh9OhQKhQKazWbOOUHhgq4LG1LB8dByNTSEuTNI2pVQkzxzDJjXwIbVtFqtnOiiDhJ1D6hopmE46trRUAmuNTuP/G6oa0JzPtgQAn4v1W1gw1HULaOntljRQcUwFW40R4dNNqqhSroG9WVDm9SdxH8duxvDTge/+hO/hFgsrH2xw3GEEfqLALYudtrh2GkoXHQ5zr5ySfC9/rn3QuvE6ft/+5jLA+72oSs2de/gjju3uDUOx9ZjKgQFYHlnUMMBCBIm7rxzh1ZDDUhM+Zm1mjPOmi+1Wg+Hw4zQK7lknaxXyQVFBbVWKylhGUog2T7d5dd8AiR+TPxHdwKJNevXdjN2XsUCtYLrfVZQSO3kkpDyOpscT50Q6iDRsAf+rs4ShnCwDRxXjhVzE/CoSc3YT9Jtd5o5Btyl5nscExVDbBiKklYNByBh5TxSbNJ4f5alx0dq6IoVfDh+KjJxjHgf5433sv8aaqLtXFxczHJbqChi54z3UGCxITMaIqJt4NhrH2wuBRtOYN0LOh4cMxUhtHyKKhqmYNvLftlQC9Y3Dlq/fkf5Yn10dHAdqZPJsbvhx+85HA7HdCL2exjcfgcA4O6fn0d/XxWDSgE3/GRhW90KYQjc47MDFBbXth9Ub1zI2uhwHI3YtKAQQjgJwDsBHA9gCOD8GOMbQwj7AbwfwClYOrfo6THGdclrdBkwIZ0SQZLdarWKarWaI+VK2vU4Sd6rlm61dqvrgfdqXL9a8kkIR33P3mf5qd1MkjoVE1iHhikQSvrUnaAx6yomWHeE7tDaa0guKbbYvAW2vRyDxLznxkoJoG2flsG+8YQHjZdn6ECn08mOyFRCu9ousc2tQUeB5ragm0D7YPuk7SdBZ7nz8/O567XNmuDQOjE0TEbbo+KTTbRoSb6dH/bHJr1URwTnR49iJVK5ECzB588UVuxa1zAFtp39sdC2qTtBv0t6n87BauNpxQ51G7AcWybLsuEm2hZdR3bdTCu241nscDgcjvXDn8NTgq98E2UA1UYDjXvfPxMUhkWgc9fhugWGQi+gdvvqF4cBUPvs1xBH+apWw/R5JhyOrcXhOBQWAfx2jPGrIYQ5ABeHEP4ZwHMAfDbG+JoQwisAvALAy1criH/o07LPo9pI2lQAqNfrqNVqWY4Fgjv9Sv5VRKArQbPZc5ecDgRLypk00e6MA8u2fxUHdGeb15DMME9CKtkeSTqTAfb7fbRarSwHg+72ary4FQd0LADkiCyFAhVG1N5vySBdBHYXWsM61LVgHQAks3Rd8PdKpZIRYbXrc140H4GOsxVH2CZ7egUA1Gq1nDuBLw1H4fiwDrXmVyqVXCiAlq0OB84NnRbqYOBJISqwsG4Vh3S8tX1coxRIdBy4PlqtVkakq9VqTjjgMad63Cb7aftmwwG0v6yX48mQG/5uc1hYqAPA5jHRNaVhCOq+0TFXN4m6RuzaT4kJKWHGuhz0PQ232AHYsmexw+FwODYFfw5PEYatFu7+Z1/Mfi8ecwyu/P2z153LoHpHwN1f+8U1r/MsSw7HEjYtKMQYbwJw0+jn+RDC5QBOBPBkAI8aXfYOAJ/DOh6edB8wv4CKAMAywa1UKmg0GtmOqZIMQnfF9WjA+fl5LCwsoNfrZeEVrJPHTALIiL3uYHJ3lrvRbJMSTJt5n0IByRN3nXldq9XK2qxJA0kYGTvP8mxOAXVTsF1KYFmW7khrOIK6BHQHPWVF5+c80pPElPVrTLw6RwDkdspbrVYWPsJyGe7QarWwsLCQS4ZpQ0i035qMkP3gGuH16kAhNP7fhicQOk4s34ZxMNRG118IAbVaLRd+wpAbnRsl1BxDFa84z+rA0Tll/gdgmfSre6dYLGaJLTWJpJ78kcrNoH3WuVWBSF03ekwmRUHtkyXt1t2g88LPOY4UV1Tsss4aO3/2eaBigroXrICiop2KSKu5Y6YFW/0sdjgcDsfG4M/h6cbgwAGc9cffWvf1cTBwV4HDsQFsSQ6FEMIpAH4YwJcBHDd6sCLGeFMI4W5r3U9So7v4JGAxxmxnlZ+ThJBoKBFQAs0dbwoJFBYWFxezkAkmRmQ2f7sTbePwSZzszjmJDIlQuVzO3Acsk2SJZdRqtRWCAY/va7VaubJJukm21VHB9na73ZwooGEHbLuGKWgfdSx1TjScwMbls2ybhR9Y3rkm6SR5I1HVtrPPevIC67LrRMdTCeu4daVCEK/TUyBo6bfx/3pkpQoK6jix42/B+9UlYdvC+ijYaFw/Cbq6FjhO7XYbw+HyySTaB84Hx5X9VGFJQzU01EJdBDrHug7UGcP+sB+cZ7ueeG9KCLCikQoOqXAILcteYz9LjXVKZBi3XnaCoKA43Gexw+FwOA4P/hyeQsS44qhFh8OxdThsQSGEMAvgHwD8RozxUCqOesx9LwTwQgCZSKAhAfrHvuYyYGiDJSeaGI+kmfb5druNdrudCQrAcgJCFSoArCAzSnTUIq4kTO/RXAWaKI9ELkW+9DN7DB7Jn4ohbJeN+e71eitIuLW2a6w/SWJKUBg3FvZzTdBHEYLjQPKmWfkBZLvtvEeJsiYrtMKFukNUpNHdft1l1/7rGFsSnCKtTLaoYomSWU0aquEMBOdNx5/90/FiGzT/B++3ITjquOFJJVzvFNm0fF1DXJd8T0NA2HYbCkFhI+UaUPHBhhRwjHQ92e+rnTP9PqXEAnUXrCYm6Nqwa9h+bsUPFdpSfZp2bMWzuIbG9jXQ4XA4jnL4c9jhcOxGHJagEEIoY+nB+Z4Y44dGb98SQjhhpMSeAODW1L0xxvMBnA8AMzMzkeEHTIanu+F291gJKYCcE4BEKcaYOROYj0Ct8VakUHeCWqAJPRli1P6cfZu7xdzxVvLO6zWEA8iHOShpJJGlsNDpdDA/P49Op5Oz9stYZhZ2m9zP2vrVwQEgtyuuY5z6T1Dt+PxX7fycLz16k/OhxF/B3XY9xpHOEZZj8zxoO9Q5QbGJ5F3nU3MJaEgF82coIbeijnWt6Jq0JyzwOp7AoKJEKoyC/dJ6+K/mXFCxiY4Pm+PDkvxUjgQVbRjiY4UCvijcab4IHvHJtcqx5D1WJFBiboUUFd/sGKwGKyiMEwx0reg91h1h39PvaKr8acRWPYv3hP3T31mHw+GYQvhz2OFw7FYczikPAcBbAVweY/xz+ehjAJ4N4DWjfz+6VlkkkCQVALIEjfV6HfPz87ldUd4DLP3xT/dBtVpFqVTKdpe5q8/kjCSRepIEySHJI4UHje0mmbMJ8gDkjvZjHyw5191rDYuwBI6Er9PpZO4K/VlDNYD8EX/M+p9yRWjeBSV/hUIBe/bsyUi1Ej4eSwhgRTJH9rfb7WJhYSE3l0rwbXgExSAl8SS9evqGPUqR7hO6STgnrEsTcvJ6JfAabsDcHEzGqUIWd//5sgkEtU86x7qLr+KOjr26HCgqaMgFr+H60RAIuji4ngeDQeaq4Xpg39SdoAk5Y4xoNpuZOGOPVuV8UoBi/7S9/J5Yp4sKBjo27IcVkSiEcC2oq8Q6D5TQW3eCfj/1e6ffj42GLOwUAUGxlc9ih8PhcGwc/hx2OBy7GYfjUHgEgF8G8M0QwiWj934PSw/ND4QQng/gOgBPW6sgJWtMzsjddu7shxBWHG9nrfskyYwd111vdSfYBHQk6myLkhMSMLomWC8T45GoKklmW5WYKMnh79YOTjGh0+nkTjzgexyncrm8IpRAxQW7G6yCBT8vFJZOzLDt0GuVJGr5JK8UOwBkZJ/XcWwpPvAajpHdXdekkOoWUAHJJqFUUSEVmqKhBkq2dZ45tyo2UNxQB4qGFygJVheGtkudIPzMhqNoOINde6xTQzuU7KdOv9AwDQoVLEuTM6bCJHRdpJwkdo0QOt/2Pfu5JeqcK72O603HZ7XQg1S5ayHVvx2OLXsWOxwOh2NT8Oeww+HYtTicUx6+gPEnuj56I2WR/JCU88g7EiYKCroLDCBHWnltsVhcQcw1PMLa19U5QEI1LvO89D2XcA9AtuOt8ehKdJRsap4ImyiR5NaKItylV3LGf7Uu3ZW3u+J8X8mxJYp2V93WR8s9x1gTQTK0QUMi1NbPPBl0BHBcrIWd7WGdumNv22lJuvZVf6egYAUIYDkMREUFFWS0fooiOma6prRt7I/utmu9liynklCqoMCf2Q59ny4aCgOaOFH7b0OJdN3ZNqbI/FqCgnUU6Pjo/Or6t6IDxzwlQIz7fatEhZ3mTgC29lnscDgcjo3Dn8MOh2M3Y0tOeThchLB01F69Xsfc3FzmUODOqroVSCpJRnq9HhYWFrJ4cL2Hu/x8n8IFiXG1WgWAbMfcEiW7K6w75JoPoVgsolKpoFKp5Mi8kuRU5nza0oG8g4GCgiZiVDcGQwXU/s961J1Ad4UmCNQTMviyIoImMtT28v1ms5klBlTojrPep/b2Wq2WnW7BPAd6ogLnRwUfe5ylFTtUnLDttm2PMa7IP6FrzSaH5PzqcYw2iSGv15wY6hDgvKTEEs4F/7UhFSrmcK3ypW3gmtfcBZq7geuI4SvWnWBFM7bTknxts35GMU4FiXF5M1IiljpBdK61LeMEhI24DXaiYOBwOBwOh8PhcEwrpkJQKBQK2LdvH/bv34+5ubmcM4EnNNCeTzKlCQsJ3amdn59Hu93OJfRT2zxJJQlipVLJOSD0qMPhcJjbldbkenRW8NhJDa+wMeWE7tzqznCr1cqSSKqYwDFie1lGt9vNfma7SIqZA0ChIgLHgn1WV4SeJsFxta4JOgdIskmatU8AciEOvNbWpwKB3SknmddQEntKg86bChGaFFGv59wzZwZ/5thp0kbWX6vVcnk71EnSbrdXzLUKRXzZHX87F6mjQNX9YMNxWL8moGSd6mBIOSaYD0GPxNT1pcKYHTcda61X535cqEIq/4d1aehaSn1/2J71wo63w+FwOBwOh8Ph2BpMhaBQKpWwd+9ezM7Ool6v5042YEJGjbsnieTOtsbmA8iS1ZEYWgs+XQ6Mh280GpkYAKy03QPIPlfiSes5j5y0oQJK6vi+xocTSsTVdq/EWZNBcjdd+0IhhWEILItkVcMc2CaKMrrTzRfnRV0ZSsBV3NE22PZSsFExQUUPihM63pY8a7lq8Wc9mk+B96roo+OQ2vm3Dg0KGXqkqLpMNCTChpWwTbqbr+tHw2E0QaeGO1gybsM0KLZpbgjWoeJFaj0yrIjzwHFQJ0VKTLBCQEosWIv4qyPG9pWfW5EiJcaNw7gwBhcRHA6Hw+FwOByO7cFUCAqFQgGNRiPbiaYrgac3UFCgqAAsH+NIosRTG1ieJgkkGVRiQcKrBCsFTYCnLgDaxzWxoBJM3qukcFz8ue7Oa9iBkk57PKCWzzL0aEzea8UEJb9KUO3usu60kwRbAadSqWRjx/JYF9vLMeLvPE2AOS6sg8SGARBsm4oshCX0fE/DHFSgsITYHg/JMVPBRPtPR4C1/Gu7x+Ui0HAOHSedC73HlsXP7FpTqIimzgP2RcNcbLtVhLFlatvXEhRsezm/q4kROjech1TfHA6Hw+FwOBwOx3RgKgQF2soZP9/tdjPbf7/fzwSDarWKSqWShSSQ2FUqFdRqtYwo2eR5zFWgcei8h+VpHLeSMEvilXgr6SRZ1phwe4QjiZWSS+6IA8u2e02gxzZobgG9V3ei1dVAIUSPYKQrgX3RhIpKFlUE0D4zDIR9t4IC+6wkWY8uZO6KhYWF3BGIQD5EQNsMICd0cGyt9Z/QIxTVbaHk3s4n+6WCCENYGBZCRwDL1N10tsmKP9ZVYB0YKviwbSqMWJHGhnSkduStcKXCmZL2lBhBUcsmFOXPqTwLq4ECgv6u64yw4ot9b71Y7XornKwGHVcXMBwOh8PhcDgcjvGYCkGBpIqE9+DBg5ifn0en00GxWMTMzAz279+Pffv2oVarZVZ5nv6wd+9e1Ot1AEviQbVaxdzcHMrlcmYLJ2ksFAqo1WqoVquZAEHhQok3hQkSul6vl31G4qyE3SaX01hwJSX2Oj3ykoSVRE/dEyTJJDvM4s+cB+wn+6BiB+vTcVAHg+4Es920+lOAIJmcmZnJiTsW1oGhZF/7aENAOKaVSiXXHo6HvjT8w9ar48v+WBLLdvFaJv1kWAbnleuJ4gfFHgCZEGXDYpgrwro/uHZ0bWgfUn3kXLOdGs5gEylScLJhCioOsSx1WSis4MH3+O9aZNyGKvA7rd+rFKwrwYoQKUeDxVoCwEbECeu0cFHB4XA4HA6Hw+FIYyoEBWCZuPX7fSwsLKDdbmex77Ozs5iZmclcDCTRwPIJDTYvQrVazRG0Wq2W7fjqrnO73Uav18vlC4gxZkSehIZknKSIZJ/kw57IwPI0yz7rJ7G2OQrUYcDPNMxiYWEh57zguPEe3fkmSMbU/k+CpKc+qEPAOhv0VAAKDZpbgO0nobT9YBnaRyuysI56vZ7rA0+7ULKq7geN97e78/p7yo6vwgrnk/V2u93M+cGfU+Eq6mahmMATGHRetH3qFGB7UoKUro1USAfbQWFMy7fuGVtHKk9IijhbIp4SGsZdq2KC1rUaQbdzpa4NW6cNL+H3LVX+RhwKDofD4XA4HA6HY32YGkGBpxIw3IEEvFQqZfkVKBqQ2HMnvVwur4i/V0s5T3DQBHqdTifbYdeEgQoldHQIKIHUnVf7uRI4JZZaXqfTyUQJKzrQtUGyzJwDJOg8OlL7lRITtA12V9sSL9ZpQw7YX46VzR3Be1kfx0JDAZT8a7tVBNHTMjhOdC5YEULrsvkAVLixbdCkmKzX5qigAKNhEzbEwO6qc9xseIKG0Yyz8yth1jbZ+6yjQMdCy7bzqKKPDctZz+77aqLBavesV0xQkQVYFozYZg0X0TZYQYHljBNG3GngcDgcDofD4XBsLaZCUBgOh2i1WpkLgD8DyHataYXnNSSatN6TQLI8goRdTz4goSJxVTEhlRiQZF8t69ZCrgSawoc9tjBFqkjwefIByS9t87TZM6dErVbLwhgA5Ij2uJ1djf+3UKJNYmZJI8ekUqmgXq/n8iso2GeGYCwuLmaijYZu6LjEGLNcDNVqFY1GIwvnIKHXuH9rn0+dVMC2qKBCol2pVLLEkpZkWoFIRSJr/VcCqwRehRUrJijJ1nZqmIOGNdgEm6mwAxtWo0KaEvPUerTlpGBJuP19LYFBx20154CWpcKOdZvwOq13o2ERDofD4XA4HA6HY2swFYLCYDDAwYMHMwI5Pz+fCQp0HzAe2yYdpPuAYQTcyae7QY977Ha7aLfb6Pf7mJuby3b8G43GCpcCiagldsCyO0GPpVSyrrvbegSktcgrQVbrPXMJMG6/3W6j1Wpl92m/7K64PS6RfQHyx/9xV56nZij0RAVg+fhIdSdw3nScFhcXsbCwgGazmc0R3QUkzakkjJVKBY1GA7Ozs5idnc3mtNvtIsaITqeT6x/v01ACjqHd6eYaqVarK8I6SEI12aTmGLBHJ/KlbgSCzgquF3Vf0E2i487kkWxDKgmmdSdY0pwSFzQhpJJxW+Z6yfXhkPBxjopU+VqPhm9YWOFLx2U99TkcDofD4XA4HI6tw1QICiSjPE6QMeskryS9Sl7r9XoWxw8gI+7MxaC5AAaDAZrNJubn57PcC8ASUa7VahmJZflqk7fOAhIZCh7qSrD300lB4mht+3YHWXeXGZZBZ0KMMRdqwPtYr44jibaGJGgsvdZDskvCr1Zz3elWIYL90yMu+aIIQCLNudF+MscAx5bzMDMzg9nZ2UyEAJZyKNjTNuxxh5pTQUMdKNLQxaKilE1iqEjlLFAngh5HqgKDklrtv5bLMbBhDnSkaFjORtwAbBfXCO/letxIiMMksFY4xLjrrcBiw1IcDofD4XA4HA7H9mFqBAXa5DudTm5XmA4FJQd6LKSGHfR6vUyM0PdbrRba7XaWp6FaraJaraJer2fhFEpElXQyIaJNMJeKQ9fwAnUuaLkE2647tCoUMMeC9keT7CnBpwChhFVhcx1oyAavt/kVNBGjvqd9oYNC3RB0MnCegOXwBHUI8F+GPPDF0ze4a69iAUUAFUQ4BoR1fHANae4JzpXNa6A73ZbI2tAGtp/vW7eETaqoYRKcX9bBMlP5FlLQclTU0KSS2sdUHgKO0TSHAVjnib6n86XfIRcRHA6Hw+FwOByOI4epERToTuBJDyRZegQfkN/51dhp5iAgAVdCf+DAASwsLKDX62UEc3Z2FnNzc2g0GrmcB8yVoMSZIQ/Wlq3HOPI9iiKp69j+1M4/+0PSTnGEIgFzDDDfgI6H3a0lwVSCpbZ6FQvUZUAnAa8FkDk3gOUddu2n9hVAJgjovGrohM1bEULIxAQNO1FbO9urIox1oLAOdUco0eb4qmCjfaKgpL8rUbXzpmIH+6nhLBpeYkMxuDbZNq7xlDPCIhXmoO1hnzTEJJUzYdqRyt1gBYPV8io4HA6Hw+FwOByO7cdUCArD4TBzECj51nwBSuaYlJBCgu728ui4hYWFTCCYn5/H/Pw8AKBer2Pv3r3Ys2cPGo1G5k6gi0FPamDbbCgA6wSWd9sZ829PUbC2eRLjWq2WC6kIIeSS5nHnn5b9QqGQay/bobA2eyWnSsjZbp4eof1RR4V1ZPBfjqsKCuwTRQGW3W63s7aR+KbGw+ZI4OcqHlSr1ZwDwDog1ClCVwLbw7FgWIYNnbBuAhvmogJCCAHVajWrW5NHqnPG7pwrsdcEl8DSMZV63Cbvs/Nr3QnqmrBOmVQi0JSbY6NIlbXZe9dyFFgRQUUae+9OE00cDofD4XA4HI6djqkQFGKMaDabWb6AQqGAubm5nMWfhI75CvSoQLWKLy4uotlsZjvj3OkHlsSEPXv2YG5uDjMzM1ksf7PZzAQNklPWk9r5ZV0keKVSKSNwSm7t0Yizs7M5UQRYDiPQ4w815IIOAT1BQJM9KpiIkmPW6XRyu+BMREhiSwKr46jHKFrCqKEOJMCss1qtYnZ2FtVqdUU+C9bP8bHuDP1ZXRIMn6CQoCdwpMQETQSpfdbQE7ZBhSvmRFDYHW+Wy/YUi8XcsZIWSv75L9cOE1Gqi8SGX6TCLWzYgraZAlAqrMH+zjI3i3H3pvIZ6PUp8WA97UgJW6tdZ8fd4XA4HA6Hw+FwbA+mQlDQBIS9Xi/bhVfyrRnwNZxBQx6Yv0B3e3kNSW+9Xs8y8mtIg+YDGGef1t1eku9xO8CWXDFUgf3QcuzvLJv5I5SwajgH76UIoGIC61WCXa1WcwkieZKBjbPXuH7bd4ofmnOhXC5nCTJDCCtO20jtJrN9KtZQKGF9rIPt0fFScUHngHPNsbKhBDZXhBJ6JfXWsWDDHexasOOkIRvqhGCdmjxRjzNVd44VD8atM5tLYNx4Hw5S4Qb62WrQtm0lbJ9TbVsPXHhwOBwOh8PhcDg2h6kQFGKMuZCHSqWSI2+aoV8JGEkYSTdzKOhuv55WUKvVUKvVcmEDJNYUE0hC2QaF2uRtxv5UnDx3o0MIWb38TEMrrECgSfo01j9FYIH8cYG6c2/fp0tARQErJBA2Ll/FBD1SUY9mLBQK6Pf7aLVaudMpVgMJN/NbWIJPgYFzaEMJVFRSy78VCNh2mydB59WGQOj8qaBgRYpxu+YqOKkQYo92pBimYpaGadj+WWjZKWyE/KdgQy1sO7ZLMFgNqbE4HFHARQWHw+FwOBwOh2PjmApBYTAY4Pbbb8fi4mImHnC3XXfd9ThGSw419wCwnDOAYgV3/HmSgBI5TRxIqO0/lSmfL+522x1mYPmkARLucrmcayOJJgm1hlnwpAQg78rg79pezTPAz/kvnRH8l0IG67MhDtVqNXfEJMvhi+4DTbTI0JFOp4NDhw5hYWEhc4loQkV1mSj55bXtdhv1eh3AsgNBQxPUlcB1o6KSih+apJG/r0bQrfigJNm6Slie5p5QqIuB823XJUUwnm5iwzW43seRXL6/2gka67nfikjaT36uIocKaKshJTpsJTQXyOGW70KCw+FwOBwOh8OxORy2oBBCKAK4CMD3Y4xPDCHsB/B+AKcA+C6Ap8cY71ytDD1hgMn9+KIIACwRvW63mzkKQghZ0j2eDMH4dgC5XWe6BEqlUnYko+7UA+kYcCWnCiXHenykCg0k0+yLuix4PfvOPA96CoOeIsGxUSLP63VHW09sUKfHcLiU+HJhYSHLFcEx0b7b3Akq2DAsha4AFT5Ijpm/guII548k2e7ma/gByyHYdo6n/qv3Ms+E9p8E3R6lqP1SMULnO0XGNT8G14d1pGiYiIpFXB+6ZrjudI55P+eA+R/UgTDOJZCCjh2xHrfCWokbV3MjrLbTv57QiHEuC36+HqTEkt2ArXgWOxwOh2Pz8Oeww+HYjRj/1/v68esALpffXwHgszHGMwF8dvT7qiCRUwJqjzfkzjjdCRQTeJRiuVxeIUSQTNo8DIPBIAux6Ha7Yy3lNoYdyJ88oNfpZ7p7Wq1WV+RsUKdBymqvpF53h4Hlky+YE4H9ZOiAhn3ojjs/U7LNsbZHNlrBg/kQ1BnCtnI8GerQ6/UyYlitVtFoNFaEmejYau4EJnHUZJEaZmKP8+T9OlZ2XFO76Vqmzq+GWrA8O882h0QqmSL7mcpzoeOl864JQMeFWVgBw9ZpCfS491OfWyJvPxv3smWvJiak7l3va1yZa9W1nnKOIhz2s9jhcDgchwV/Djscjl2HwxIUQgj3APAEAH8rbz8ZwDtGP78DwFPWKodkjiRXhQCSs263m5FazTWgpLpSqaBWq62w7WuCQ2BJnKCgYImhEkwlfGqBX4uc8Fpm869Wq0mSacmpEiAljFYU0RAK7v4DyEi5Jh5Ul0Uq7wHHTsM7lLhrgkUVKZQ4a/4K1kvBo9FoZMdeAsiVraEUdBboqRMqbOj1uvufEgxUTLC5FHRMgGWir/XRvZEi8tYFMS6Hgv1MT3QYJyhYEmzJt4Z1KNZajxsh7VZY03GwiSlTOS3WqluFE/vZau6E1fps+8/2ccx3g6CwVc9ih8PhcGwO/hx2OBy7FYcb8vAGAL8LYE7eOy7GeBMAxBhvCiHcLXVjCOGFAF4IIIsnpxCgpCPGpSMlebRjq9VCu93G7Oxs7rpKpZJzACgZVSITY0Sr1cJwOMzqYjJBtqVSqWT3KVlUp4CKAry21+vlHAi6O0+CS+JEkq/HWtZqtYx0aky9TQRoXRPMQaBHOVoCCyAnCCgx1HL1Goo3epQlsEx+6brgdRqGwhM1Go1GRr5Ztjo0lMgOBoMVLokQQhZCobv91umRymugddHFwRdFGL1fwxossWd5NgSG96iAxbaq6MD3bbiGFS7UoWLXHu9TYqwC1HpELiXW9iQJnROuPSXtKbcG26RC0ziXgt5v50DLWyu0YZxAoPkj+LO2J+VCsmLIesMqphBvwBY8i2tobHMzHQ6H46jFG+DPYYfDsQuxaUEhhPBEALfGGC8OITxqo/fHGM8HcD4AlEqlyB1t2vl19113yXu9XuZM4PW6o61EnaERMzMzmeXekkH+q7kJSPxI9CyhJhmyeQtkbLIQDHvcJcGwC4Yh2CMl1cmgwoKC+SQoSpB4k0SxXCW4evoDx4RkjmOmjhHupAPIOT3YVu13uVxGCCELo2DOB33pSQYUPmxCSfZTHRxsl86hCkp6GkYqHEXDP9gXvphPQ0NBSKaVmNp55vvsbyp3h72Wc2vFIo6BdakoadY1ntqVT7kpFPbUDraJ16qYkBIt6I5RsUQ/V8KuZYwLj9DyLVjWRlwLQF44Ytk2lCWFHSwkbOmzeE/Yv3MHwuFwOCYEfw47HI7djMNxKDwCwJNCCI8HUAOwJ4TwbgC3hBBOGCmxJwC4dT2FkRxSTCA51USMJJX8nORBd5hTFveUqwBAtrOs5FF37pUkkViTVKuYwLKA/IkL2kYVJ5grwJ6WkHIi6Liw7UosKSio2KEET4m27qaTcCnRt1ACzTHhvADLu94a4qEnc+i4a7stWbU/K/FTMUEFI+6u6/yPI4Vano7pOBLMfioBt4kNLWG25dmQFXWy2DWmZN0Sfi0vla/BwpJ72w79fNy9KVcC26ht0/bZcmz/UmPHubPtsWKArTPVVvu+lmN/Pgqxpc9ih8PhcGwY/hx2OBy7FpvOoRBjfGWM8R4xxlMAPAPAv8YYfwnAxwA8e3TZswF8dK2ylFDpbi93o0mY7c7uqB0rdh9TJMfG1FsbvmbYV6gDQcMnVNSw1nAbv23t3Ex0yDJ1d1rdAuoM0FAQLdPa/JU4WjJqx4dhCioo6L2WBNtjPHX+dA5XO3ZSxR87R9Z6b8WEVN4EFRRS60rvtSKN3f0mCdZ1qAkr1T3DFz8fl6QzlRxQ69d1p4KWzlPKsq/EOdV3O8apZIh2rKzoYJMo6ndjNaKv19vcEFrXOCdEag3bOmxdKmDoNXYdHI3Yymexw+FwODYOfw47HI7djMM+NjKB1wD4QAjh+QCuA/C0tW4IIWS5BphYsVQqZaRIkxLydwoNtJArcbLEp9fr5ciLdQUwb4JeYwUA5lzQUyi0bZ1OJ9encrmcEXbWqaSYxFgTNxYKhexIzF6vl4V0WLs+20h3AkUBHSNex2sZfkDRggkcU64OJbIcI+ZF0KMMddeehFt3sTk3HD/+rtb6lKVdExbaxJgajkJBR8vX8VHozjgdGixP39PQG7sjzxwPjUYjKY7wlRIGbJ9twkB7XKcVE+hy4PxpuwitU+dHxR4VV1Kigl03VohIEXN9zyZd1HbaHAn2X/ZN62G/bZtSbgrOkRW7NiMkaNkp984OwYafxQ6Hw+HYUvhz2OFwHPXYEkEhxvg5AJ8b/Xw7gEdv5P4QluLW6/U6ZmZmVuzC63WjOrJ/laCSTJMEc4dbyR8Jh+5qNhqNLKRAyZEmedTTJEhoSDgpCqirQAkhRQk6AZjIsFAoZMdekhhTTCDszquGTFhhRMeJYoAm+FNxRIkb79H+FIvFnHtDSbgSNJafIsQULCh4kBDbo0HZLj3pQUM0lKCWSqXsJA8NVVHxyQovOi50GajToVwuZ31hfg7tB+/jdVxbStq1zZwTjlcqmaUlwjaJpgpmuhOvYTuWaOt3Q8eFY27BJJp2jFT0YIgL51gFCRsqY78fXK+EzaPAsUkJA6xPTz9RoTDlcGAdOg5sw0ZEhVS5OwWH+yx2OBwOx+HBn8MOh2O3YTscChuGEjbNI2B3r1VgUEu8JjC0lv2UdZ4CAMljrVbL3AEk/HQgAMgRX5JIa8umU4AEPEVgmFyy3W6vcDyoAMK2ViqV3P0k53o8JMePfbfjoMRIBRJ1V+j9itRuOEmuElcb9qG75HoMJD+z4SCa9FLFBx1DtdBrSIySeCuQ2DXG/mqfdB6tu4VzryRXRaxx5N2GLOg1GgKQGmu7m79WqIIdU5ah93Pcxh2laUMQVEzQ/lt3zbj5UeEvNUb8TNehXTsqEOn91nHAOdTfLcaJCXY8U46ZzbgbHA6Hw+FwOByO3YKpEBQA5Czm9o9860zQnV+1wOt16gbQow2BZUcByake68gylVwokWQb7JF3qV1QdSiwDTzVgcIDY/EB5HbogZW5B6zgoDZ+FTH4O19qy1dSmdrdVYKuAoWON4mezamgZE+FH51TS4zVvUFBQcdSd/W5A876NAdGapd7XL2WUKugoHOnIgRhQ0N0vHkd3R16fKmtJxUSYMUAvdaKIbZPKqLZUAlL8tWhkiLUnFubgJPrU09V0Tq0PanQCCt4aDlWWOD19nuowou6l+y8rQXrcNC67Fg5HA6Hw+FwOByONKZCUNBdbrsjbEkUsEykaP/XWHcmNNRdfP5O+zVJKcMNisUiWq0Wut1u5j7gNQCyJIp0LrANdDGozR1YeTzfYDBAt9tFq9XKHWfJ+tWdwM/1FIlU6EAIS8cV8lpeZwmhxt7bcVVSxX5ZscISd82VoEkplSQS7Dvr5LhoAkoKLeybFQjYT4ac0LXBe7rdbiYoAfkTHXS3XYmu9tMSSwocliTzM/5rd94tidUcEBoGw7r0hBLOnR1DK0DomHG9advHOQe0ffq5HpGqfeF3g3lA2CaO+Th3goZlcM2wXK1bXQ5sd8p9oKEOViyyeSsU44Qy/cw6MvQe/d0eE+pwOBwOh8PhcDiWMTWCAglMuVzOkjLyD/tOp5Pt4uuOPp0GJJNKyCks0JmguRNmZ2cxMzODer2OQqGAZrOZkX0AWRgEy+T9JKFMbqe7tiS+llypyMHjL1kHk/8BS6Sq3W7nHArWak4yx76rCKCOA0vs1FVQKBRyIRuEJXkkciqYAMglLSSh5bjYHWfdzbY71yxTxQS7c27FEY7v/Pz8CmKr+ScsCWV/KBaMcxYQhUIhlzuA46MOD50fHXPOl46pFRK4tjS5pSXHNs+FhvdQ2FFXCutSd4q6fvjd0GvYB64l5vJQMUqdNRQ9tJ0qKmkCUSX5StrZBp07daHouI4ThPR0FM2bwfdSoRwWVmjRuth+K5w4HA6Hw+FwOByOPKZGUOBRfdy1tyRAd4srlUqO1BSLxYxgDgaD3JGMCq2jXC4jxuXTDtrtdiYWWLJmd3FJcCxh1P6QXJKQdTqd7MQH7u6znxQLVLQgbJLHceDn1trPz2xMvr1P+8oymLxQSaKSO16vIkiqrXaHX10MNgeCdU6kLPcqQOhnmsRRd9vZfw11sO4DDXPRnXHtj45FahdcYUkzhQSSdnUa6LiNa6Ot2+Ya4LzZIynZt5TrwY4zvx8sw7p77LxrOfzXziWArB02/4IVwHifknwbSqEOGr1eQyFse/R9vcfWpWtN14vD4XA4HA6Hw+FIYyoEBQAZ+VPHAbBMPjUTvx6NCCyRAQ0L0PAGJTzMl8CyuONL5wCJqNrRU21UgjQuRwCwTHS5c67hFDylwOZHULKku6SpnV/+nhIbNDxDyddquR9Yl4oKfLEskk3WwR1jdUiMiz3XJHu2L0oMU9DTFGzSRs0LoeWpjZ6k2rbLEnIl5dpua8XXcmybNRcHP9e1xxM97Lzqy1rxrZCRGidtO4m4Ji21Nn99cW1o2BEFHJsDQp0T4wQgKzao6GOFEesUsIKCJfs6x1ZMsGOXCocY115dD+5QcDgcDofD4XA41sbUCApq0dbdfZIZfq6EmFBSSEeAkne1sNMdQCcD/40xol6vZ3VorDdJih53qCEIdE2omwBAFuNPuzjbw7AO3XW3uQsoNjCcgjvWFrrrS1Jkj+ojVFAgKaZwos4I3f3We0mI2R5NOjgcDnPH/Nn7FUrI1VlhTypQoUOTNlqip2KBzrmSxFSZbAPdFST7KYt86j2FihsqanHdNBqNLFSEO+2p9hF6soi6GZSAax4I9pnfE65xJcZWUGBYg373dG5tckw9WcM6JlQMSokt9rQP3qeCwThBwo69FbpUNGJbU98Fe7+dP7umXExwOBwOh8PhcDhWx1QICiEE1Gq17FUsFrN8AsPhMGfFBpCRMSWm6k7gNRQP5ubmsmsGgwFarRba7XZOuKjX61koBK9VdwCdE0qWLQmxSR81/wLdDY1GI8vdMBwO0el0cokamXTQJswjySNxZH0qRljypNeyPn1PT21gn61oQcJJwqbEUEmuujssodTEjGy3ChFKhmOMuRM5aL0nrCNE50BPzbA7zJbwqvijYRJss+axYB80Vt8SdXVBUPTgnDPUoVarZUKAdVrY3XvWqfOjYgfFCqJcLucECzpH2E8VDVJ5I1RoUVFEXQgUufS7p64I+52kwKR5TXSMdS0q1Lmgc6zzrG6S1DX2PR2rcUKFzqt1BjkcDofD4XA4HI6VmBpBQfMaNJvNFcc8Wqu6EhjNn2DzEJBILS4uZkc2ksTqTrbdnQWWia8melP3gRJybR/JHK9hOQxzYH/opODnSrDGhVyQ6GqbCG2HCgPsk7W4awiCJcohhCwMhO3hmKTi/HX3WufMOi9sezmHOv5sM+8ZF8duCSbrTYVVWOJpx4pCBB0cOrZ2njlnViixa4GJDikoWDfIarZ7FRvUtaKuBTt+5XI5J7rZfAV0JXCd2YSRqfbreuS/dtz1Om2zFU4IXYPW5WBfLIewY6bztJrYN04YsNdYZ0IqbMLhcDgcDofD4XAsYSoEBcaYcwdUiT+Jjw1/UEJid3tTZI1CA4UKtYmnYu2VyCg5UbKk7dI4fGDZpm9DJhhOwbwKmrHehnNYIq2789Z2rpZvhbZdibs6B/RaHXPrVkjtzNu8EtrWlItA3+f8qLDD+lOOi3Fjo3WPC01IiS/WvWBFE71XXRWWJOvOvAoqGqZD9wXXoUVKTLEk3Io2avu3pD6Vr4ChEFpOqk7tQ4qU63ilBBx9rZU3IbVmdd2oeGXzLWib1HWgzwFdeylHghUQrMDB8XTsTBT37MGtTz930s3YMtztP2/D4PKrJt0Mh8PhcDgcjgxTISgUi0XUarXMbcDdfQArSBiJEUkkT2jQHVmWqaEHDC3gsY2NRiN3BCWwTMRUxNCddZIMDTXQOpWM6E423QeMWY8xZu3hvcz+rzvfbBOhNnebcG8c6bHOBLaBLg17TB5/tiRbCT4/1+SSSirtjjShYo8mAqSgoGECWk+qHEvmU/3g50oc1cKv93Osbdv5M/tOZ4kl3qybv6tjgGtGhQmLlPiin7EsrYMhKlzrGk7B7w+hLozV8gfYHX9r/R+X50DL0rGz5Wq4gu2jdWqoaDZOKNL7U+ETtnw7zjaxqn05dg5CtYpCo5F7b/HeJ+OiP3nzhFq09bjPG1+Ck2++DQAwuPPOCbfG4XA4HA6HY0oEhVKphLm5OYQQ0Ol00G63M+IPANVqFdVqNXMy1Go1lEqlTCCwyenq9To6nU7meuB1GurArPs2+SGQPzVCCRzJGBPuMWSBIKnhPWwbsJzwT0MdAOROnVCHAHeeVbjgWMUYc8f5WaLKfvT7/VziPZJ/dQuwn8ByGInuImv+BN6ju++cFw1x4HW2XSRxGl5gCTuFErX4EyyPZVpxwOaLsD/rXPLoUY6pFRWUUGroirpXrPNEhQUSeM1XoW1IQYk7haDVkpHacWH7rSOAc6/Hsaau47UKexrFau22IhrLVfeAtkFFQpZD8UXLHhcWYl0LNjyB9+qaV/B5YUMqrEji2Bm4/rd/BF98yetz7xURANQm06BtwFde9gb0XzbAweEA593vZ11UcDgcDofDMXFMhaBA4sgTEZQsk/wPh8OMiJKk9Xq9nDtBdz6ZEE5JLnfkNXEfd3M1FIEEUgkJs+aThCnRJ4Fk/Xqd3a3mZ+ybhkFoTL51RbD9wHL4hu5Cp3ImqHiS2hVWUsl+qgNEExWyXCXqSrwoTmj+Ck0ISGj5FEa0vNWgIQcsi++zDeOg/dO28TMb4mDHR+c0NQZWzNFxU7EktePP8bEkn24NihUqqKiAkCLAbKNdAzqOa603rgvr0rHjlNrtJyzh16SnXAM2xCPl0LBOEm2L1mHDkHTcUxhXl2Nn4ap3PgCvetCHsLdQn3RTthWNwlLS3tkwxLGfGqA33A8AONSrIT7uDgw7nUk2b8ehuGcPKh+vo1bqr32x4NBz9mFw1Xe2qVUOh8PhcOwsTIWgoCECFBKYYR5YjrvXXd9Op5O9eK0SEiW2JF2WoAHLxy6SdJCU8JhH3a0nSSGhT+3y2jbT1UBRhO0DkB1DybK1HXaX3SbSo5hhCboVMuiA0D5oGIkSKg1BsGOUckFYQSEVt85r2Q8NT9B5Zp3jyJySzrV2y7XOVBtsMkUtX0nyOEFBnRGpHAK2PVwLNpTCjqVtpz1G1Y6v3f23Y67zqWOuORZSrhQbJqJl2jAYK5Bo3fY+ALmTIsaNl3VNaB9XG2edJxXK1Dmk4+Riws5G4f7n4KZH7gMA/O+HvA/PmNs9u/XFUMA77/n57PeDwzZ+9Fd/G8WRsa/Qj7jrWy4EVnlW7kaEUgm3vOjBiCONe7EOXHzGG1EN5dVvNDj7OS9G/Zbjs9/v/s7LMDhwcCub6nA4HA7HjsFUCArAkq1c3QncuSZpsTkRDh06lB3/yHAGzW3Q7XZzu7S8n2EOaoO2O+pqe6cgYEUPJeMkMio6kCSzrmKxiG63m5EatkVJtIoJJIBq4weWs/ezfnVdsO+8nk4Mzf7PhJf818b0q6DAkAtLtinu8BprUVeSaZ0B/DmVg0J36y1J1V11EtIUweT4WSjpVkGBRFMFBIK/p3JCaF4KW58l/tZFoPWknAEqfinht2KCzoN1SegJDJqE0YbQKFnXvth51DAcvUadPDo2+rs9LcLOq45DSpjQ/ttx4HimBAVbhtZpnSCOnYXiXfbjuz+7D9968Zsm3ZSpwN5CHd/8reWxuLa/gF/91DOBXh+x3d71ZLd4zDEItSribAP/+orX4Zii5trYmJgAAFc8N5+X46e/+hxUrrkZsd/H4LbbD7O1DofD4XDsLEyFoDAcDtHpdNDtdtHpdFYQVIKk6LbbbsOhQ4eyHAUUFDqdDlqtFprNZi4umgTUWvl1J5+kTF0IDDEgESORZ/vUeq+29RiXQyA04SCw8ohCS7DURWB3hDWEgyTVtltdDUrSKHhQTFBRhDkFrItD26Aih4oOlUolG38rUGh4ipJCzhnnz57ywFAOukW0b5rfQEkukTptgmVxLJSk8xolmGyjuhNSO/nWmaBjP26d6xyp0LK4uJjLWUFnic69rrXBYJATjHTtUWjSOjjXKo6oqKbEO5ULgfNpczno90wdROPGQE/LsMKADaNR8cSKdqnvnBWLWIZtiz09JJWfwgpajunC/o8P8fF7/iUAF4NSOLU8iw998UMAgB/6j+fj1Gd8Y8ItmizueM9d8O/3ex8KKKAcGmvfsEF86v1vxRBD/I8fPAD/df/i2jc4HA6Hw3EUYeoEBboUgJXkezAYYGFhIXMnKOnr9XrZ/QByO/UWSiDofuBONWF3VVkWd+0ZmsH3lGSSdCphtEdE8mXdEazPOgIIJV9MTsn3dRddwxWUtGqySRJKdRGkxkLbRdcG3RVKPi3R4/VKOklqNXu/tdnr3PBfG8qhY6xl6+69jpfOIUUJu+OvY69lj7PhqwiSck5Yl4KOo64Nlq1rTk+IsG3gqSgUwjhfOm8pd4f2leWnQkj0evY1dcSqunRsrgRb3jhYZwavT4VV6GcqUFlBSKHiIa+1rpDU98vDH6YTxX17cdI/9fC7x30CxTA76eZMNWjjf/dD3or3XvwwAMDlLz0HuHB3iAuLj/4R/NBrvw4AeN5d3o1q2L7knOVQBFDES/d/CX968aOy9z95xX1w2i9csm31OhwOh8MxDTgsQSGEsA/A3wK4D4AI4HkArgDwfgCnAPgugKfHGFcNbqWgwHwIJMFq2+Y1/X4frVYrEw6UmKfiudWBwCSI1p5NkpHarbW70dZSb4UELds6C/Q9S3Is6VxlzDNyp7kT7JGOOrbMU2DDDJTYWjdEikyFEDIhQWPyU2NOWNJu8zCsliNAoaEf2mZ1GWi54wQZ/q6ENfW5FZ1SVnz93d5v+28/s2VwPgmOC6/R0Bi2T+dP10BqLJX46xrSMbBuGV5vnSuaC0TXjc3TkRIqxu38p0SIlJjCa1Uws2KJ/f5S9Bk3DxY7UVTYqmfxNKNw/3PwnafuxUdP/EuUXUxYNx5cLePBJ1wEADj1OQ9A4ycfjlILOP4NX5xwy7YPzZ9/CL7/hEV8dtTvI3XSxwmlWbwhqxN46Ow1+B+vfCZOfuMlGLZaR6QNjslhNzyHHQ6HI4XD9Yu+EcCnY4z3AnA/AJcDeAWAz8YYzwTw2dHvq2I4HOZyIaRs0IuLi+h0Omg2m2i1WpktfrUj9TQXAI+JpD0cWJk93kJJkuZCAJDbHbbkRYkLd6+VpFAAUTJkQYHBto3Eju4EJZSppH/M+aAhBko81WFhRQ/tL3+nW0R371Uw0bECkHMvWAu9EmMrgqTCAygIaRtUTNL+W9eEHcNxopHdkU/tYrPtVlSwJFV31S3ptetGT/yge0Cv4fqtVCqoVqsol8uo1WrZPbrWdU61HQBy5VOQ0Lq0rbr2C4VCri7ti85NKu+DrmkrKowj7CnXAN+3YUD2KFHrING6dQ3YMbb1sm87BFvyLJ5WlI4/Dtc9bh++/YI3j3aDHZvBtU86H5f96pvwpl/7S5ROOwWhXJl0k7YMoVpF6bRTUDrtFAyefxuufcxbJ90kPGPuTnz1V9+I4X1OX2rbCcevfZNjJ+Oofg47HA7HOGzaoRBC2APgkQCeAwAxxh6AXgjhyQAeNbrsHQA+B+Dlq5U1HA6zhIUaJ69/zDPuni4FigMMhVALfQgB1Wo1Izr1eh31ej0nJiiZ111+TehIwkEi1+v1MoI+HA5RrVZXnE5gCZSekKDv61GWuiPOMA49fUJ34W2ohAoSmiuC46L3pmL87c+r2exjjBmJBZA7YlMTUer46mkddsedIAFkG1Njacmvjq2SdVtfihDqOtEydeed8zNuR11dK1yvKXFkLeKsYTU2tt+SfuvCqNWWdt24XjjuWraKLHat2mMjNXSD16vDR0Uk3mP7rCJDyjGRSsSpZJ5zO27MrXOj0+msEBHG5dGwY65QUUrzm+wEbOWzeFoRLijgsrM8AeNW4RG1Aj75hY/gZ572HIT/vGTSzdkSdH7yvvjcW/9m0s1YgWoo4zMfeRcA4OnfeTQO/uiEG+TYFuyG57DD4XCMw+GEPJwG4AcA/i6EcD8AFwP4dQDHxRhvAoAY400hhLutVVCMMXMnkIRWq9WMbJDckRhUq9XcCQnMuUCCU61WMzJeLpdRr9dRq9UygsVcAgSJg+7ks3wmmdO8CXQ86I6wxnFbghVjRLVazfpGUYLhF/bECRVVNJTBkkPNTcBdbAohSkL1pTvvqTALJVF6agRFGt2d1vt1p5ekkQIMP+e/2g5NMsldcdsmTaTJMpQMW4eCtb7btcb7NGxEx1iv0bGzjgbdgV+NfKY+U0GCdWvfNcSA61rbqffaHAJan/axUqnk+qlrlPOg93HctW6tZ5xYo4KA/mudOqn5SLk8dB5t3gp+z8c5DtYDFTf0yNSdIihgC5/F04ZCo4H7/mcL5+3/IAAPc9hq/Pe//TRe9/6n4uQ/2nz4w1X/7yF40aP+dUP3nP8vj8YZv3nhpuu0+M5rH4Y/eNIHt6y87cLrTv4o3vK1h+OSH9+HwaFDk26OY2tx1D6HHQ6HYy0cjqBQAvAAAC+LMX45hPBGbMDKFUJ4IYAXAksCAR0KltQolOAoIdVdUSWFapHXXW0lsMDyDi9DAugEUIJij9pTMUHLYFu4A69OC92lTcVzE2ynJdd2PEjCbBlaP8eDbgW2nWRYx0IJtN7LsbdChN1lVmFFj5u0MfbWjq5jY3eprYtA69M2pohpilhqO/Q4Ue2rOmRS5ViXiJ07ul60rZYU2zFIkWMNMbAChK47FdyU7Ks4wTJtckhL/LWtOkYq6Nj1lhoDm0hxXF4FFRC0XmLcGlNRRNs4Lnwp1Ub9ObVG7XVTjC17Ftew9RnwN4vC/e6Nq39hH/7hrm9Eo+Biwnbg+Xtvxr8/5lJ8rfVw3P216xMVFp7+UNx2v+Xv/y8/8vN4+V2u2lC9dzxqBh/5X0uJIs/42xuxeO33NnS/4oZXPhxPePRX8Kw9t226jCOFk0uzePXdLsa5f/BrOOOCQ4gXXzbpJjm2Dkflc9jhcDjWg8MRFG4AcEOM8cuj3/8eSw/PW0IIJ4yU2BMA3Jq6OcZ4PoDzAWBmZibq0YPWDk9oHDfJkZJ8EiAe+Vgul7Nd9UKhgF6vl7PpqyVbHQg2oz3JHtuj+RNGfclEADoEsgGWLPwMlbD5BnTHXfuUIu0yftl4sCwVEki8Op3OClGC9WpIBJ0XVmDQsknaVPQBkCPedDXYckjWlJiOyx+hJFOJoiW1Ova8nteldrYVPCaT7dex1jHX+Um5OfQ9JdBW1LBignVcaJgGj+O0uSL0fq5LOxd2bLQd1gFBQj7OfaHjqeO31s69ijMqPqVENOsm4RrWdtnvuJZH4UVDYVKixTjxR69JhVTsEEFhy57Fe8L+qehw6aR74LqfPgZX/fKbABw9cf7TiHfe8/P4wAu+jre+9tSx1xRqNYTT7wkAWPiFg7jiwe87rDr/9LhL8KfPvQQA8OCrXoxjGzWgv4jBldesu4xCrQaccQr+7oVvxIOr5bVvmBJUQxlX/+Kbce4dL8Ept52Exe9dP+kmObYGR91z2OFwONaLTQsKMcabQwjXhxDOjjFeAeDRAL41ej0bwGtG/350rbKGwyEWFhYyQqG5CXTHUB0KJOh2N3VxcTEj9Mx9wMz0vV4PzWYzI9lKBknMbJy+DT1gPQzJYG6Hfr+Pbreb2/WmM0LGLEccbay2knGN4We7NMlgqVRCo9HIrikWi6jX61ldFC94L4AV46q5J5Q0W4cG+1OtVlc4CzQJH4AVAgaw7Jig5V53mJV8ci51jLRsih5K/lTE4StFFHm9vp8SN3TMdF5sgkq2JyX6hLAUfpLadVexhH3k+OjJDVy7KjBYcaLT6WROEAo4OlZK1tl2FRV0rKwQo4kYORaLi4vZ/SouqdPHhsNYMWE10q/hFSlBy94bwvIRptpvi7UEEBVtdK52iJiwpc/iacGBv6ngm/f1nAnTgv5Dz8G/vPdt21L2V/73mwEAn20X8drTf2gTbdo5YoLispe9CT/9Uz+LwqMn3RLHVuBofA47HA7HenFYx0YCeBmA94QQKgC+A+C5WDo54gMhhOcDuA7A09YqhIRI7fi6QzgcDjNhQMMWlJypxb9UKmFmZiYjKIPBAPPz87kcCd1uN0cqLVElgQKWSRA/V4GBpLzT6WRtUSKmORYsYVFy3u12cycxWCs6x4djVKvVsjFhTgZLyHkP66pUKqjVarm+aZiIFVlYl7XmKznUudJwB17HZJgcU4ofGtJhLe46znpMobaDZZHsawJBbSPFEtsP6xhgedadwDZZoqrEmeWk3BQ2lIDvp04m4ed01tTr9ZzIYMUV/S7oOtU6LTRcQ+eN61jr4vriNSxTRQmdN4oa9jPtnx1DjpeeEqE5K/Q+9lddDDouq+UDSY2FrgEbUqNreYdgS57Fjt2JJzZ+gPnL6/iH//ZIDL51Ze6za//Pw/Dan3/XtrfhR2sdfPfym/HBX3r0mqEAR6pN242/O/N9eM83fxife8hd/VjJowP+HHY4tgiH/vF0vOCU/zysMv7q//4c7vrmL21Rixyr4bAEhRjjJQAemPhow5q7EgiCJIwEi3/oW3JnSTAJLIBcgsBut5sdP8nQBt5DgkLCpUTCZny3YgfJmBIxktzUjnHKtaA5GEhmlJTqrrKSTo7RatZ73seTL7QcmzNBx0MdIhrikQrD0JAPdVVYB4OdN7urrTb91LizDXpKhs4f69W+cKc/FZtP0qhhGiwjRWg5h0rclRTrv1zTvMeOp5ap465HnKZyKGj+AD0eMyUk2PWm5bCNtt+pPCXrEQlS4Sd6n643FVjUBaNt1ZwS2mcV/ugCsrkhUu20YS86JvZeddDsBGzls9ix+9AoVPD8vTfjgyZ04Ht/8jA89qcvwlNmFra9DdVQxvP33oz/89tlHPeRh2L2A+OTNvbvsnhE2rTduEdpFi875jL89WtfhrPeuoD4Nc+psJPhz2GHY+MoNBq48n/ed0l6E5x/1t/g0fWVrtON4B+e/j1ccfZDc+/NfreA49+w+UTEjjQO16GwJbAkhCDh4FGF+se9Em97DB3zCpDkttvtLHcCnQBA/shGS17pgFBRY1zbSYI11IEnOADLLgYb16+E0zoS2Bd9T3fvafXWMAhtj7WZk3yxPhsyoPUoqaWwYUMd1PrOcdaySI6VmOuuuB1Dm2/BWtB1LrQekm4VO1SMocCjn+t4DofLJ29YQcMS1dQ8KbllOzhuOmcakqGCgoaY8F6uH65LFUTs7j3Xqq5/hY6dih18X0MmtD82REShY5M6bURFFHVD2PJ0fWibtL2cDxVz+J3lOK2Wi8POU0oksuO2lsvD4ThacfBec9j/gxMxvO12DO97Jt7yi3+NR9XTYuJ24epHvR1nF5+FPVfcG8OvX77i88L9z0HtmM4RbdN2olGo4DtP/Wvc5/qX4OT5UzG4+tpJN8nhcDi2DyEg/Mi5wOjvq96eCr759P+LRmHr8yV96uxPAWfn3/uNmx6Ib//ncnhd4WBrQ/l7HGlMhaBA2N3wUqmEer2ORqOREUkSoH6/j1arhWaziX6/nyNqvI65DZg/odvtZufW251YzXcwGAzQ7XZzooASS+6cKpmsVCqZTZ25Bih2MOGjJT4qKLBf46zkvV4P1WoVwBKJZkgHy9cQEOvisDv41uqtRLpQKGThFGoBV5KooQAcb81BoHZ0DVlIkXT9Xe9hG5mkU23tHCvrpGCbNAeElsWx15M+1CGhY5Ii00pqeS3brceI6twByK0zrlMebUoxRnNv6M8qMLDtPPKUa0rrVGeOjrmGU2gYDuu3zoVxIRkKOnlUiFKBTOdOy7DODit68DqGOGkdNrRkHHTN6u+cx9X6pYLWTnEoOBxbgS+9/i04433n4fT378dnPjK5kIIrfuyd+MAH9+KtZ61MFPniD34ET5o5+sIDLv31N+FBP/Z07H/ipFvicDgc24fC7Cze9eG/xrHFGXn3yCVffsMJFwEfvSj7/acv91w2W4GpExSq1Sqq1WoW7z8zM5PtQqrNu9vtotvtot/vryDMzJVAoktCrySLO/DVahW1Wg21Wi0TKobDYS48QHM2UHhgQjqSsnK5nJVTq9VyBJu795Z4qwU8tYtLIYSCAdvaaDRyBHNxcTFLCMn7VCCwR/+RJFUqlVxceqPRyMI1gJXHJxLaTpJiTSSZOplA51jLYu4HK16wH7xHSX+tVsvuJ0kGlh0pKiRoiIQ9PUNdBDr+DCXRuklq7c45X3oPy1VhQB0M6mRQ14EKJI1GA41GY8VOPMdYk4Ry7VFwUQdDKkcI67HuCK7r1K68OiTUeaNCgA0X0Dr5viXoVhRIJVVMCT6pUJqUCyIFe08Kur4djt2ET/3863HjU+Ym3Qw8eeY21K7q480/9yQML/02Cvc/By/+4EfwmMZB7NREjGvhY/d9G/7+snPxyfsfh9jvTbo5DofDsWW45r33x58/6AOohIEREyaL95x1AS686q4AgD/73V9G48NfXuMORwpTIyioJZwnCpDcWqLS7/fR6XTQ6/Vy9n0gv/tswweUMKkzoVaroVQqZeKEhjdoaIXujlpSwpwGJIm2HSyHxFRt5nqNdQAQqZ1ZjoGeCKGWcTuu2l6bP8ImC1TyzPo0gaOKNxQTdKddd8FZ53ps5SpCaF+U4CsJtkKJ7uyzz3pcpxUT7PiOyx1g26JhDCkynXIFaCiDjiuFI657ilJ6KgcFAHVZAHnRAkBO2NEx1LlWQaHX6+U+t/Oka4b1KZgUU4UBFYLs+za8xgoM9ncNRdF5SoUssP0aQmPDjFLQe9XFMy5Ex+E4mnFWeQZnlY9smEMK1VDGk2ZaePmryzjm7x+KPd9pjpwJR6eYAAAnlGbx+NnL8MnC8ZNuisPhcBw2wg+fiyteunQC3asf8LGpdJfdrTiTtet1592KK5/wQIRuEWe+7CJg6JtK68XUCApqM+aOL0mhEoThcJi5E0hsSdjGkUWtQ8UEOhR47Bx35HWnXwkay9AdV2A58R8JIHeKNYSBu+cqUKg93CaVowOC5fNf3XHvdDoZWR5HBu3uMctRAm6hpE7FBI6xkm0dIw0lsTvPqXCH1I4160qJGXxPTwTR99l/ijsqzKijZFx9muRPEzvqOGi7VITREAJeb8NqqtVqlvvCChYUG6rVKhqNRraWuLY1V4ENGVDXhI63zi2FN+uw0XWmfbOuEhVxCM2hwd+1HHUvcJ3oNamcFCoA2FwgbIuuZSv4UMzjd1DHIxXyoPfp90I/dxxBhIDhI+6Hk+aum3RLHFOCyx/xLpxx3XnY851Jt+TIoBqA3o/dB7WLv4PBnXdOujkOh8OxKRTPOQvXPWYvrn38zjkC+vM/9GHgh4AbFhfwrA//uj+HN4CpERSAZRKkGe6VqGn4AoCMcM3MzGRHN6oVnNBYb5Izhg7UarWchV2JB8tjXgArPuguMXeWSbr1GEdC+0GHgt211V1r7Yc6DmKMaLVaufYByGzxvC8lFmi+gcXFxYzIqtDBsbInX/A6dV7YXXy2XYUH2weOW4rg8X11OmgeBvZTbfyVSiW7r1AoYO/evTmBSUUHEmjbJo6NjfnnNXb3Wp0DHEsNb2H4CMd7ZmZmRX4EJgplyEy9Xs9eDOtQxwTr0NASfldCCGg2mxkh51zpGPPalJ3fij12bHR89TrmOVCBTIU71k3HjnVz2GNS9T5eo2VaQcG2zQoJ9nMKDly/NiTECh3rCaFwbB0K1Sr+5r1/iZNLs5NuimOKEAMQi7tD3LtHaRb/+s634pEveSHqH/nKpJvjcDgcG0cIuP5/lXDpQ3aOmKDgc/jHXvoiD4FYJ6ZGUKBQMBgMMuKu5E6TMDJfAEWBQqGAZrOZS1in5KfX66HTWcoKzUSP3C224QUkF3RAaMI5dUx0u93c+/V6PUegCoVCzmrP99SyTqIFINuRVtKo/7K/FE40mZ7GlDMEQcUOtlHHk5+rA0TfV9LGXfVyuZzNEa8luU0Rr3HWd96bqotuD750x5jjkaqLa4ZOEQ2P0V13ElYVPTSEgc4H7nJb0MWgQoL2lfPEHCDqMFCRQUlyv99Ho9HAzMxMFupAcYrXqOhEIszy2V6Wa8faziMFMevASc2TdUUoWec8WIeN5mnQhKQ61yoy2BAN9lG/H+Pap7D32oSMVozQ9205Wp7D4Zgs/v3nX4fbfq4MoDrppjgcDodjFYRSCU/95o146uwXAExProTN4C1/8QY88Ykvw1nPv2jti3c5pkZQAJZ3J9WhACyLDRQGSDpJ3EigSdIB5HYiNSyAbgISeN2tV3C3mQTN7kZr8j+21/aF/+oOP4mVJvlj2Wrz1rAIK2awXbqDzx35FGFSwgwgN07sq7WXqyOCRFRt9xwf6zKwO8p2x39cmAPHSMUE3alWYsmdbhUDOEYk4ipWlMvlnNPEuj+A5VwEmm9CBQeGCqR20G2yT65LXR8UCjiePJmEdVerVczMzGRCVyqXg7pH7DV0O+j8qluH60/nQkUdXmeP2LRhN/xZ15p1b9j8EKkQAop/emKHvS+1HleDih68l+veJiTlXGo+BvvdWW+9jq1BeNAP4ZrfDthf+Nykm+KYMtyjNIt7TNVfK9uP6stuws33fDiOf6Ofl+5wOHYGCve9F655ZRVPm/08jpmixIubxbmVOqpz3Uk3Y0dg/HbfBDAu3EEFBe44qyjAa1JE2Z4+oLZvJUkknGpb5y6uja+24RNKwhQaa692d5J3OgzYVxsyAORFFu5Uq11bE/0BKzPia9v5OetQqCCjZai1P3UCgLbZ7gorkVtt91ivt/UpEbRHPbKPNh+GnjKhIoGWZ8UETdJp4//1cysm6FGmbL+6EtTBQqFE80xoqAOTMbIPepSpigkAsnwLrEtDOmwOCn0/JRboOlORQkMDeA3vT+3qq8tDRRl1b6irQUU1dRCk8oqkkPrcri+2Rb8DOq82zGktF4RjexB++Fx87/FzuPKR78Rsobb2DQ7HUY5/vvfH0X3E/KSb4XA4HOtC4X73xnVP2I8rf/wdOKbYmHRztgynHHsH+j/zwEk3Y+oxNZo/iRd3aUm8FxcX0ev10Gw2M6s/wxZI7nq9Xi4Wm+SAYsLi4uKKDPoMP+DnzHmgVnm7C6ukmWRQ3QVAfkeW7SPRUtu67rJTGGi1WtlRmCqC6OkRvJ/1sy8UBBiqASDnLGAMvt2l1Z1vSx6tEML3LayYwLaStPEaiijqELBhB1wH6shotVqZmKRhHupq4DGLGuPPvmo+C/aL5VhXjK4Lvd72W0UsOhjoQuC4UxyoVqvZeuU6Yv4Khi5oIkYVYeg86HQ62RzRCaHzzhNPbGiBFVa07RquwjI1HITfAR1rJd86FrreU6EQvF+/b+yLCgrqxhiHca6FlJigYhvrs8ksU3BR4cghlEq48dVDXP7gnRlr6XA4HA7HbsdVv1vD1T9x9P0//ul7fRKX/HUXLz/94X7qwyqYCkEhhIB9+/bhmGOOwezsbG63HVgOMSBx5e4sAHS73ey0A2vhJnkhwVMbvSZwU6u4dSeQjGv+A8bJ624y72c7SJJIGjudDkIIGfkrFAqo1Wqo1+uZJV+PXyRR1l1jjfunm4Nx86xfd3w5hsw7YEMNisUi2u02ut1uLhEjCVelUsHc3FwWzsG+KeGzCRpTu/m8T3M72Ph13d0nWaYDgGRa14AKKnv37s3Wg80hYEMxNMxEd/GV8DM/hlrmdT31esvng7MdKiRwXigqMAxDd/dVSKLQRSGNnzFhIwWFbrebra1KpZITaCwJV0cGy2M+kX6/j3a7nY0V+8gyFxcX0W63s6MstV/qHqAAoKddqGtDcyfod1K/p9VqNSfG6fdXoTlDbIiFzq+KJBoOpOtA3QjjkBJOHFuPUCrhed+6Co9p/AeA+qSb43A4HA6Hw+HYIKZCUCgUCtizZw/m5uYygqE7wxoPXiqVMDMzgxBCjrSoEGCJKusA8lZ8Tfxmwx+Y+JFQEkUiqDux/FeT5lGMICkkSeP1KQu6tWprfgR1NZD8kqBxJ5u5Haz1neOjMfT9fj8nJuj41Gq17GQC687gePM+kjSSThJojqWOn4aQsN8cC4Zv6L10a2gySIoVJOI85YD1KNlcLcxCRQzNp6HQ3BIUFNgHzhPv5Vjpbr+Wqw6VVCiMOi90fjqdDnq9Xs4NAeRzi6iwo6KJrgGWocc3akgHczGoqGXFISXjSritK0EdEPodVkFIQyNU7Erl2NDPtF6dWzoQUiEe6oBQx4ldFyqMrCfswrF5hB8+F7f+8SIe0/gP7C24mOBwOBwOx07E1e/6YfzBj3xy0s1wTBBT4estFotZhnsSSrVokwyTqJFQqSNARQVr/baWbY3V1t11QkkGgJw7QYUOkhJ1F6j9W0l/r9fLwhmU9LM+dReQaCpxsqRfhQomq7Q754TuYGsOBU2KpySUIRYk6pYkKinVNulOvYZnjBtnFXdUqFF3AsmyPQ1A8ybY/A4qXlghRMeH9dVqtRXE3yYTHJf40xJyDaPQ93TMSNZ5r+b00DXFNUMHjgoRnA+Oj+a/0P4pkWb7bX4OrjcrFHGMrTCi3yGtR78Ldq1Zh4oKbjpv+h1kXeNeur5sv3VdqRvGOhd0LVoRxrG96JzQwFcf+H4XExwOh8Ph2KkIAX/3iL/Dc/bcOumWbBvmCn0c+u8PQvHYu0y6KVOLqREUZmdnM/u/2r8B5E5pqFarGUGiFZy780rYLHFVSziJhpJqgvdrwkVLPGzSOR5p2W63s6SRarVeXFxEs9nMyJ+2AVgiq7TZ6661xvNr1nq+KKh0u93MacA2sm0kndydVnJHkqokj6IAQwiAZeGGwoUeh8n6VIgAlkUSdY5wXG08vhJUjpnOrxJRADkLPteMuh54v+bVIGx8PfMbMMxCcyNYIqztsGIA51uTZKYcKFYYsEIC62y32+h0Otmr1+tlY2VDQSyBtyRfnTz6vbCJL1mWdZwo+eY460vr4TpkPTr/Nm8DhUHrMtD5srkvUiKE9tuKOSou6P0qKuoa1nGziSsdW4dQrmBYcdHG4VgNxeIQhZonKXU4HI5J4vTyLL70+reg84BTJ92UqcVUhDwUi0XU6/WMyNIyr3ZuJT7D4RDtdjsLIWg2m2i1WhkR0uRuwPLxfzMzM5idnUW1Ws2FCKjFXJMh6q6s7iqzHSRLJIma1yCEpYR68/PzmJ+fx8LCQi5h4nA4zJJMkrymktMByyRYhQ0SZooJnU4n9znvYx32fgoVliBblwjHScUETdY3HA6zXBIkiJp8z5J6DeFg3znOLIPtJqnm2HKd7NmzB7Ozs2g0Gln+iVSCPo4xx8c6HDQXB8dDwwI0gaDmA9AwCSXbeqoD55D9V8EDyO/y65yy7kOHDmVrhvWriKVtZF9t2IR17mhoBLCcPJNrn5+HEHKnqADIBA1L9jXcR9ujTgXONfugApCOt82voWOjoSXW7aLjSGHAjjev4782/MWebqF9cWw9rvjr++K/fvovsNPPqHY4thP/9ZC/w798cx/+6ux7ezIwh8PhcEwtpkJQUOu7EjTu/NtdQt0x73a7aLfbOdHBJiBcXFzMyBN3YjV3gI2HV/ECQEbW2Fabu4A773QzaJhDp9NBs9nM7XoTassnseb7ts8aHqFEjURZY8tJ6EhE9TMrUrBstbdrqAnHSkm5kjHdxVbxhRZ8e/Sg9pvXkbiS6HFulGCqo0CPSkzFuXNcNFyC88s5Zp0UqDhXGmKgc6buFnsSg+aFYJs4R3Yt2nAZ3Z1ne7vdLprNJhYWFnLOG15nQxf0e2THWJOV2lANXRN2zdn1koK6W1RQYDnWccA5tDkvbIiRda5ovgm2ifdYUYYY50LQtqvIpevXjrdja3HdB38Ir7vfB3DsUXBGtcOxnWgUKji5dOekm+FwOBwOx6qYKkGBZA9ARvBIYjXMwFrwGS6Q2tkE8mfR6060JRq6q2kT+qk1XS35JHY2CVy/38+cE0oKST5tnL8VA9QaniKKALJ+aJJAJYAaD68hBayHfbbx5TaOX49s1Pt0zLTfbIclvjYkQZMsquuDbgCbx0IdAWr9t/kT2GYVjTRHBEMmdD2xj3oEqfbXElz+rO2zBF3Xt4UVFUjEu90uWq1Wtq71eEWuCVu+bR+vsTkvFDZfhK5B/a6o+8M6XNRlYh0K6lwgKLpxrFJik/bHhixo6JKG/9h+2WSUKVGE608dDWyTzr3nUthihIC//pF34ZHu4nY4HA6Hw7EDcHDYxlMufwaqP2jDt5nSOCxBIYTwmwBeACAC+CaA5wJoAHg/gFMAfBfA02OMa0rsShBijFmYAHeLG41GzspN4tVqtXI7xOokIOlRoYLEvtfr5eL5FSQX3N3X3VBg+Tx73bXmzivb1263ceDAgdxut7Vq68/qbOD1KlLotfy30+nk2mLLJsnjPXpUohJJdWWoy4CknLZ0jqvMfy6BpHVPrMcybsMGKJBQjOD80IJfLBazPBqsT3Mv6BGL9qQB3ptK7Ml+qkhj14SKGrb/1tHCedH1owRYxS+G8PAkkGazmYXzkNhqmAjHNCVa8F+KIxQkFhcXM2eAFXY4ZzYRqApB+h2xYhjHmesxBdZbrVazeUsJR/Z6zXsALH9/dQxV9LGCAvuh7R+XPJVjqzlbuE6mHVv5LHY4HA7HxuHPYYfj6MS1/QIqj7kB0UPPxmLTSRlDCCcC+DUAD4wx3gdAEcAzALwCwGdjjGcC+Ozo91WhBJJhDgcOHMCBAwfQbrczAqghCyRLSiit/Zm7j5VKJSMxGiKhO9AacqEJFdXyrjv11kbPWHyKCbfccgsWFhZyZJxtouhgkyGqO4K7uXqkoe4KK+m1hIzj2Wq10O12M2Ku42jDPJjgkEKKnkihIQraXoY7qHjD6zRHhXWOkOxrLgMVizhmmteBoQ61Wi1HSDmHzLnQarVWhDqEEFCr1bLki9yJ1pAZOhM6nQ4A5HatVUzQkAW+lPDqmmHdOkeaC4BrrNvtYn5+HgcPHsxENBUUUrvkmheBuQk0CWiv18tEuVarlTsFQkWTlHBC2HWljhPNj6Higg3jobBSKpWy9cU1Oi7UQb+LDKdh/eos0jZxzjSHiQpqLF/bpXPKspjnRE8RmXZs5bPY4XA4HBuHP4cdDsduxuGGPJQA1EMIfSypsDcCeCWAR40+fweAzwF4+VoFqdX9wIEDWe6EGGMubl4t7XrsoRI/3TXVnVfd4de8CCSOSv7sEY9A3lauJE9zPnQ6nUxIGEfYSGQ0lKNSqWShG7xOLebFYnGFbV2dGUoEtf8kRkx0advCz3XHXsUdCjYkXuoa0LnTJIxqgyc4XjYxYqPRyBFGS1Dt8YucG7ZJy1ayq2NFAUR34NWNoO4ECi/W/q79SO2oqxOEO9vj3AlcP+wj6+e/mgDSEnx1Fej60TXY6/Uy0Yz91/XPslInGGhYTGqtqytBQ2/0d3XyqDDANbaai0HdMvaUDIbTqKgTY8zWSErYsf1PJSLVz+gGYXt3ikMBW/gsdjgcDsem4M9hh8OxK7Fph0KM8fsAXgfgOgA3ATgYY/wnAMfFGG8aXXMTgLuto6yMjDebTRw6dAi9Xg8Asl1C3XXUHXQNGdAd5dRuqYYTAMiJEAq1waeSA6Z2nblLTrs6d5atKKBCgToi7C60fqb5D1K5ErQNmkjQCgZ6r5Iq7VMqw70KKTang+ZZ0PHS8ItUvgGSbtrw1X2hxNRm7FcyawUiLUPnx46xnlxhCbz2U+vVnWxexzayLiXVBNtky7WJRbmeLeFNlaV957qgAKJl2lAALWNcKMo41wBhx1/Xm+Y64D1WTEj1QetRIcHmTOCY2NARK0DYPugaUZGFL83lEGPMHf1p52AasZXPYofDMT14z/xd8N/+8zwgjk+O65gO+HPYsWsRI57zhefh7YeOzqXtz+H14XBCHo4B8GQApwK4O4CZEMIvbeD+F4YQLgohXMSYd4oJnU4nO/VgdnY2Z2NW0qQJCZXsW4s9gJwQQfJgQw2A5Z1QEk0VIJTo2B3ZwWCQiQm0zdujBS2x1bABtpH1aPJA3q/Z8WUcc84MJXwMEbAnGqhNXMUR7uqSJHLHWPMG8FrWw1MRmCvCEjklmRpmQZLJ3ABslw0NsIKCTQ5pkXpfxzyVM8HG5auIw7ZoH6yYwHVDKHnX96xwwxALHoGqJzKk+qVzx3XPNTkcLp9swe+FHQsbjpGCEn3tBwUTTfSoAhbH2SZE1JAWG0KksO4EDVnQ0A+bU0TnJiX08Vqb6FS/i+pO0LWZEvqmEVv5LO6ju/YNm0QolVA6/jhU4DGIDsd68D++/nic8UtfA9bIReSYPHbKc9jh2A6c+ayv4n9e/IRJN2Nb4M/h9eFwQh5+CsC1McYfAEAI4UMAHg7glhDCCTHGm0IIJwC4NXVzjPF8AOcDwL59+2Kz2czyFJA81+t11Go1lMvljBCQhGkOAWt5tg4E7p5q0rVGo5Fl+mc4AR0MPFmi2+2iVCphZmYGs7OzqNfrAJCJDKyPZI5iQowRtVotE0BoedcTFpRs0cbf6XRWxHWrYELypon6eC3bwc8KhUI2fkq2lJAyFILEieNmk9opyeU1JObWWaDHJKrAoxZ0G5+uoQ4MqeD9rFNzLnBcdZfZ5sJIhReoGKViEdutu90M3aC7wApWunvd6/VyeSB09zzlLFFHB9tAocuC86/jQHJNgYllHjp0KBkuwbHXcBWOZcrtoFBxg98LwobVsDyOKevQnB9sh7pgVDRim1UcsOE1GuJkxSqOGcHnAe9jTg7207pxVADR78SUY8uexXvC/m37H3PwiB/CR997Pqphx4SROBwOx3qxI57DDofDsR04HEHhOgAPDSE0ALQBPBrARQCaAJ4N4DWjfz+6VkHD4VKWexKwarWKubm57A9/ugZ4ssP8/HxGUHS3UYkAQyYsGVMRgp8xMZ/Gpnc6nYx81Ot1VKvV7HPuJCtZZZiGnkKgO++8VsmQEjBmyCdJokXc7nZb27a1s5MUcodVd3RJpFmuklwlwUro9bQEFRD0PbWLE0rwdOxtbggg7zpQ0YFjyLZxPHWMOI5qW7fuC97H3AJ0JrAvJMRcfzbWPiXuaGhGyr1AcEw47iGEXMgFx29cqIS2n2PI7wjt+jyiNJXHQHMl2J177Rdhwxs0b4M9/YJiAnOcaFmaSFQdJTbkQUNLVLDh3KdgRZFxJ2xwLnWOVNTjmKqjSd08FDB3ALbsWbydiCHsaDHhzHe/GGEAXPnsN0+6KQ6HY/qwI57DDsd24czXdnDupS/BZS9706SbsmU4500vwamfOAAPdlgbmxYUYoxfDiH8PYCvAlgE8DUsqauzAD4QQng+lh6wT1tHWej3+zmbv9qkSVzpTuBOKQmIigkUIGzIg+7s05lA0qLWd03oxx18kk3uLJNo6m6rng7A8AAlroTunOuuuboDrDXekniWo6RQibTmJ7CWb4ob1iZO2JhxFVGUmKp9XUmn9k0FC36uIRyaAFJJphJBtl8JoyWh2lYVHfR960ggVJCyZWgOAi1L28KxVHdCKoyEO+VczwzrsWKCOj7si+OhO/88mYDlWdh5SY1bav55jwo96g4gOdfvqoYN6DjZEyb09Aebk4Nt4Pq2QgTnzOa40O+Yzr91i9j+8TMrONjv2zRjK5/FjpXoxwHu+8Xn4J6f6iIsDnH2ac/CN370rTtaHCEe9vX/hoff7Vq8/oSvTropDseOhj+HHbsdw69fjpPjvXDWfZ+NL//om3FMsTHpJm0aC8MOHvCFF+K0Tx7E8JJvTbo5OwKHdcpDjPHVAF5t3u5iSZndSDk5skDCD+ST/jGsgEchkgBo7DYFhRRIuBqNRhZqQEKmx0HSGk1BoVarZbZ07igXi8WMpDKjvjoClISTPCmR5/0qOtikjXxfE0pquIRmr7dhEAwpIIHTEzEUasm39nzew3/ZR0t0LSFUQqcEGcgnNxwOh9nJFnrdaiKHugRsOAXHQfvGzyhCKZFlmyqVSo5oWtfAuDh6u1Ou5JV9UrFF22h3+7V/2g/tjyXS6nRQ4mtdFNYVY48hTY0zoeuPP6sLplarrci1wLLYdnVYaA6HVLiCzqsKSyrucKx5nzqAUqIK79MkjGyrCg98aUjGThAUgK17FjvyODhs4wudY3Dqr1yHwYGDAIDTvjaDf7zkGNy1eAh3LbZxVnlmwq3cPOb+5xw+/oSH4PXPcUFh2nBZr43u/PQfW+tYhj+HHbsdw298G6f9cgkf/OYZeOrsVTi2uPP+f7xt0MSnmvfEab/8bcT+jnCpTgUO99jILQNDBRjTz91MErxWq4WFhQUcOHAgI2Pcha9Wq2g0lpQwkgG7+9lutwEgZ29X+7s9zWF2dhZ79+7N4vybzWZuF7hUKoHJJBcXF1GtVrNQh8XFRczPz2dkJLWTqkcFanvZ51KplBM5+v0+QggZ+eUYKQHl59VqFSEEtFotAMis9cw7oMSJoR1MDqljTxJOMsmx0B18S6JZhyWrJLEUfLRcJYG6K627/UrqmTiP7bXijbYRWBZmlPAqKeXLhnbY0AwlwppwU08EUJJL8UPr1nwRCnUCaDiGtlGFsxhj5tbR8B4NHUglIUy1UUUAJdrWuaNzTjGBCUVVrFFHja4VzhH7Yt0C+r6G3ej3SAUprhsVOqwgpS4SrnkbnsP1peFR7Ps4gcKxO/Ci7z0Bd/7onUA8mL03bDbx5rPOBAD84LyH4qt/4CEQjq3Heb/5Gzjrw1+edDMcDodjQ4iLi/iHc47D//vQo/DNh7x30s3ZMB739edi/89eBUQXEzaCqRAUSFBIztReT9Kj4Q4AMucALdckFb1eD81mM7eLTRIzMzOT2bObzWYuI76SJZZNct1qtbIcCST7i4uLWFhYyAjH7Oxs1t5er4dWq7UiyZ3Gkw+Hy1n56YjQ61qtVnYNx6JWq+VIqhIqJbk2iaLduec9qfAB5lrgeNt8DTYGXssjLFlWVwZJGkmz3f1nHgrWxfVBpIixlsk+aR/VnUEhQcUmzifFBFsn6+C1FL64ljTfhe6qsw0k5+pU0LGyLxVjVFBgfQAyMUtdK0qcObZcV+NCQ1LkWsNcbI6MQqGQiWd0J6goofOg92kSTx1768yh2KfzR2j/UqE2ukZSIoWKXjZsRfvNxKqpdeDYPTjjvefhzHcfAuIdKz8crY/jP3QNfvz6F+If3/KXaBQqR7iFm8dXun383nNfhPIlVwBPuO+km+NIIJjnssPhcOwYxIiTXrWI+zzpJbj016Y/p8Kdgxae+iu/jmJngLv+oImBP383jKkQFIBlwqNkWAnhwsJCljjR7lCTQND+zfLU1s7ruKPKay0x1t1cdUfwWD+SGbXrk7RpQsder5fbBdc6eJ1a1dWurTv4JHSWECrBU9Kp/dGYdUJzBaQs++rWYB0kcaVSaYUAQygxtQTV7tDrSQRsj3UQWAu6rhENC9GdcN6nJFf7wvKUZHM+td9WEGCbuDZI7nW33ELHgnNsx0zFAw1Hsc6PlLOAzhbtlxJ1zdVhybOuDx1vDR3hWKgAxvmyTgmKJOpmUIFBwz20PTpfWq4Nc7DOC/ZlnNtAxy/lgtB/+bOKKLqWVOhz7A4M4hBnfvYFOPVT/TVjJwe33IrGvy7g3E/8KlCIuN/Z1+EjZ37mCLV0c/jjH5yDd/3LI3H65y7EEMBxFw1x1mnPwpWPfOekm+ZwOByOowSDb12Je1TLOPXMF+Cbj/lLzBZqk25SEhfMH4NXfvaFOPuzlyD2e36w9SYxVX8ta/w6sLyj3+l0cPDgwewkBDoZ9Kg+PYqPhI9lcGdajxzUOHlLYkngOp1OJig0m82snbrjbIkt8zwoQVbCo6KDEi8bBkByozHrVjBQMYCx4Zo4UX/n9fzMElaSQ82XoKEYSr41zIL1EpYwa5v12EYgf3qCnQftF4UbXq95HpT46jU61jq39mhHjjXXj46fjiPHiSKWugVWg/YrtettcyZomAeAHHlnXgIebcoQAz0qU9cT26flWRFI69S22HbxOpuvhGPG75OGawB5x4IKYOoO0TFVwYDQezgGKtRYaGiPCijsY2reuFa63W7O3eGCwtah0B3gY80GHteYRzms/d2ZBO4ctPCZ1om41+/cgMEtydPdVmDYauGs874CALj+RQ/Dp3+nisc2pvcc+Xd87WE487cvzH5vfOjLOP3KewH/NMFGOTIM4hCfbM2i2Pa84g6HY2cjfu0ynP2SKv7uq2fj5+cuwwml2Uk3KcMnWzX0YwmvvuRncdZLvgL3JBwepuKvZRIhHg2pO7eMFScRKBaLmJmZyUIdKpVKlo+ABINJHdVar7u7ekqEJo+j66FYLKLT6aDVamUCwcLCQo60MREc8woMBgMcPHgwOwVCBQ21WKtooGKDOh5UUOCueK1Wy8WAa74EtovjoDHrOsbVajUXsgAsk3OOM23uFBbUQaDuC5I2m+TO7u5bUUHj4emISLVHBYPFxcWsjxSSOBa0/RP29AgNVSDB1DnUPBUa8mDDMfQI0UajsaaYYHM+2M9YN+u313FsVSyg4KbfEc3foCdm2DawP7rebPiBzpGKMZzbRqOBPXv2ZN8RjheFPM1jYYWy4XCYEwE5FzxyUt/Tezku/NzmNlCBRPMg8D4VamwOBpZPMUm/u5pXw7E1CF/6Ov7qrLOx75qv4ZHTuVGBP7j5J3DVg7oYc1T8mjj2r7+E//fJn8Kjv/yxqRVNHNON7y628Kb7PAyV7kWTborD4XAcNmK3i0+cewwu+PSz8J/3/dCkmwNgKeHyXz3kJzG4/Q6cgm9MujlHBaZCUCCZVbLM9ykAaIy4HhEZQshis4E8UVXCY+OklVjqzinrXVhYwKFDh9But9FutzNCZwkL23Hw4EG0Wq1MaLD2bIZLKFlju8eFCOiOuroHKA4wx0O3282ODtSxAPJH4pGQcQyZRJJElGSVJFdDC1RQ0J1tGyqgYSY65upCYFtSIoSSSnVwMHcB82Boe9VKT3HAnnxgxQRewzFLJd/TOZiZmUG9XketVsvmPBW/r7Dx9zrXDKHhmudY6U486+G9XMvqXFHnDduiITEaOqKw1n+Wr2tH26ZJGNl37uhzDOnaGefu4PdWXQ4k74SGT3BeWZ8KPzbXhP1e6niwDPudVFeR5t/wvAm7E6e//zycff7tAK46rHIGN9+Cn33ys/Hot38Jv7P/mq1p3BbhR/7oxbj3Z27ATpDJPt2q4g3PeBrOe99H8JSZhUk3x+FwOByHgb2/GnHu016Cy1422ZwKv3bjg3Dli85CvPPbE23H0YapEBQAZMSQIQ0aB29j3i0Bt3H0Skr0+D17mgCw0gJOwtJsNnNHVCqBVJs5gIyUUDRQwkxSZAkRCbG2wcaWp6zu3JW28fR0DmhcPYkU26AigU1SZ8MsrE1fd/u1nazTWvstSbSwDgAgn6OA17DNtMaXy+UVu+halzowdBde144Nv7C2fttH1qu723YN2twAtjxtF+fMhq/wenVpaJmcH4pK/F6k6lVxzroQtC4VdXRs2DZNlkgxhfNi17MVE/iyTgv+rMkSLdHXNcz3VbiyolnqZ50bm3eDfdXnhjohbLJJxxYhRvzK+16Mpz3hC/jR2Svx0k88N/uocc9DRzwj9Oc7wHM/dh4A4JRP9DG4/PDEBGApwzUuuhS39vYcdllbhVsHTTz0Q7+Ne/3bLVj83vUrPg8/uAOnf+A8fPgpb8B9K9NhHzk0rCFedCkODBoAdoeg8IY7T8FffeJxOK3/lUk3xeFwOLYUg6uvxUn/PIPTj1v6P/fVj/17PGvPbUem7jjEGR8/D4VOAbPfLeD4i794ROrdTZgKQSHGmBE7Eg5gOVkawwp47WAwyFnx1UoPIAsdUEKghJhHLyqh4/Ukewx3sMnygDzpo0NAM9jbTPuEFRO0zeqSsLkReK9N9Mi61XJuCarNU8D2644+x5AWfF6j5E7DAbQ/GlbCfqREHyJFbJVU2hMaOC7c4VZxRZ0U2kcVRFg+x0uT73HsCM3RoLv7dINYYp7ql4Xa91m3dU/ouKUEHxJzCiAUUTTGn/1TgYDinF2HOvYcKyXq6g6hi4AOBd6juTZSY57qk4oIVjDR76k6I6xYlHKSqKtjPePJevT7qN8Jddm4oLD1OOVVX8L7Go/AP55xb5zxG8ux/N3HPQhvvdfxAICfnrkaJ29DrOXBYRt/P39q9vu7rn9org1biS/cchou3HcRHlqbbOjDNf0FvOm2R+LM3/wvDIbpdFODW27FGb9xK7762JNx38rmwj22Epf12vjID34CwJ2TbsoRwz+1ynjjl34KZ738S5NuisPhcGwL4kWX4oxRNNf/vODxOPlB78aj6tuTL+aC+WPQHC7xx04s495/cC0GP/jBttTlmBJBYTgc5pIc6tF+mudASa1a1zXeG8AKoj4YDHKnP7BOvZfEa3FxEa1WK8tFQOiubqFQyI63o+1bY8RT2f816Z/ujKtIYY9EJKnX9rP84XDpSMmFhYXsCEHNM6EEScmjuhtIUknieCSn3gsg1172S0ML7I6yFQ1SdnvdAdedYXvKRwghdzyodZ/QRs/3Uzky2BaKJu12O5cLQtuo4SGWTHNdrgfqUtGddQ3T0OtUSLLhD5xrhkkAQLVaxdzcXG4e1TmQyjFghQV1IqiYYPN0zMzM5HJ4cN7p4LF5MAgKGnospO2jriV1OKigpmOnQg+vs+tOBYKUyKBJODmedh26kLC9OOM3V5L46j/+Fz7wj0uCwts+/fBtibV836Ez8OFz7rpcJ7675XUQex53DZ73By/Dt148WXvnE778Ytzz6d+caBs2iid++tezRJe7Ba/+w+fjrPduj7jlcDgc04ZTn/EN/NZ5L8JX//DNW172IA7xrsc+EovXfk/edTFhOzEVgoLdhVZBgWRR45zVFs/wBJaTimsnGed9pVIpIykqRjD5IwmVhjUAyJFM1m2PQCQB7Ha7mThCwUSTR+ousvaV97AOTUJXqVRybdYkipp8kmUSmvBQyR3rJ7ki4dLM9u12O1e2tborydMdXrtjrFCynyJ9nB8S2tnZWVSrVYQQMiFA+6RtIVm0IRfqDtA5UJKtQgLHgScQbDS2Xok6XyTfKeg64xioM+TAgQNZSE21WkW9Xs/qoTCiyQWB/Hqk2KTtUxcI50XDhBqNRk5IoXuHbhgrJlgSzlAJPbJV55tCiN5rwx9sPXYO9Hd1x6hIo0KGXQchhOyZo2Njw3gcRxb7fqWHx+/579nvx/7tTXjnPT+/4XI+3ari/z75KctvdHsArj38Bq4Tp7zp2/jJL78A//r2vz1idSoe8Ccvxukf/966cyZ84Gd/FH/8e8fg2se8dVvbtRoe/lvn4ZzPXbsj8jw4HA6HY/M4/oJv4fH/sfx//dW/uB9XPmf9AsOpn3oB7v0X8ys/iBHD67+zFU10rBNTISjwj3omCmQWf77UWk2SqdZ3IG/pV5A0UUwgkSZJYbk2uaDmAdDcCYQ9Do+kyxIakjO1uqfCD0i67FGYSvBIiEioNas+28kyta28T8Ey1UYPIEesdMeY5eoOtYap2DpTuQiUwFriSNBuTgJPZ4LWrZn7lXRzDi3pVPKcipvnvzaPgQpQ2u7UGFviqc6PVL1sl3VwaDlc3xTTdDw0lwHXhP2eaB28NiWMpJwNVtyzjh5N3pn63lGQ0XAHdYvY/qozQa+zJ2GomKhzOM5NZOtVAU6FPMW4kzIcRw6L19+Q+/1bb30Yzj713A2XUzkYcPfLJhcrObj9DtS+MsDZb3sxMIGldPq//QCL379x3dcPrvoO7vn3D8LZN754G1u1Os74wnVYvPmW7PfX/+3P4/8cc/QLe6d94074QZEOh2M3YXDgIHDgYPb7KZ+4H86O6///555fWMTgsiu2o2mODWKqBAUe22jty5p9nju0Gg6QAq3S/NnmIyCxULKpBFDj7pVYa7uUgI2zSmvMvgoQmjNBrfXWfaHuAJJq21brEEgRfJv8jkScSSeVLKvLw5I/JWUcP46rjYdXaP6CVFt4DwUfCizMX8C2sE4NB7Dx/Kn4fBWANOeDtcvb0BZdM0rGbWJDS6p1fDhHqaSgOj4KFW54sga/I3SvqFNEXyoiaLu4fqwjhOtJXR+sS3NwKBlPJeJUsUWdAZa0qzPEtodzwXapm4TiDttjoUKKhjDo53rMqLpxdD2Me6Y4Joe7/O2XcJdJN2KTGBw4iFN+fzJx8ZtZydVP/hdO+eSWN2XdsM6Eu79udyTPcjHB4XDsdoQvfh2n7I5H/lGHqRAUCoUCZmdnMwKiZJYkRglFsVjMiQHcreW9StQHg0FmDyep05wDKVuzEhebJE7zCqhzwIoJSna5m2/FBBvioHVqbgYSH82mz/HRz+1Otw0B4U6/7jZrbgmt30JDI5S8qhig9SlZUwGE86Xl2mScwLJdvl6vZ2ENJNcUnQDkRAIVLFRA0vAWPfaS82RhnR7sjwo3uh70fa4Nujc49nZMKcSkLPwMBWCOgm63i1KphFqtljsulDkAOCcM2WEf1F2hbhu6UbgeNXSHQg5DHXRMtC6OiRXdNLzAnuSg60MFCB0LnddWq4V2u70iHEqdCZqPg2WOE+e4fri+2FaOhxV9HA6Hw+FwOBwOx+qYGkGByQLVAUACoCSxUqkkT0nQXXklHro7TNLFpHx2V59t0d1dkkI9NlJ3WHX31RIdEj620+7gany+km91DqjIosnrtL02vIKEWAk8r9MdfZbH9uqJAXq/DXPQEyUsYWT96gTQIwU5hyps2N3tWq2WJUIsl8u5fBEERSYlw/pSh4rNnWDt7DbfAvuk5FtJsgo6Ogd8j7kGOBYqdul6VYLNOtkXnjICLJFfhgKxHAptKvCoeGRt/BwHBUUCrnGKCJwjbb+GbYxzKXD9cE3bo1V1PRH8DqgAxe99q9XKylNnho55u93OJWHkdz91QoqKZyqG8BrrQnI4HA6Hw+FwOByrY2oEhWq1miOEGnsOLJMUJcRKAJTo6e6jJbb6smKCihK662pjsccRdbXYU0xYLc5bd1E1zpvtU5Jq3Qnjwht0V1yTHipZS+VxSB3XaJMvamZ8DTvgfal8CfY4Qc4h26pkUIkp7fa0qasQoES22+0mRYtxYzduXlN5FzR8gCdMqFijfeKaUTeEjovey/7qeuC6ZhlMksmdeU0EavvEe23oCsul2ERhg9C1QhLOlwpUnEcVEjTcRvtkj4dUkWvc7r+GJnC+Oee1Wi1Xnq5bHW/Ne6H9pxjFdrM+OhP0WWNdSKzD4XA4HA6Hw+FwpDEVgoISWiVJlhgDy5ZttdqTuJDg6ikRKlBYAqF2dW0LYV0IJFkpMcLaysflN9D+armE7rjrmOjufKrdSuA5HrZsuyMN5I9JJFTY0XwTdodf+5sKt2Db2WZ1MmgOCIpBNvZeXR5KllUQUbFI14rWryKNtcenchnQtaFuB7ZLibwVU7Secac5cMytIKMiBHfUKaJxF1+vsy+OkRWYVLTgPGi7+Z4e76hzqMKSJprU7xDHkcKVugOs2KPrRueZ46dOErqN6GhRF0zqGWAdQ1YEURFQ1884ocPFBIfD4XA4HA6HY3VMhaAAYAXR1911TUKnu+pKBknA9Hg6dQ3YnV2tR0kjkCcSJFua6T9FBjUUwlrbCZZPcmrJne7OcndaBZFxjgCStm63m3RcsI0qKJBcaXtsrLuGbNgEkTpv9ncbKqJ1qPBBoqriCnfjKYpYO78SXCWFBK361l2h897v93NzwLFl2SpwqCijhFrXJ3e7Oa7qntFxUSeDrhHmBNG8Htyd51gwhENzUahrhHb+1ZBa3xQq7KkROpcqLNj1qG4gzbkAIDfmXI9WyNI8B71eDwsLC9nxmPV6HfV6PStXw3TYBgArwhxUSOx0OjkBiN8pXT/qcFCnENvscDgcDofD4XA40pgKQUHJIrBMPhlbrvHag8Egi69XIsJdXJ4UwZ1sJa4kyNztt7unPI6PJFNzCvB+a1PXXVO+p7urbCNFApv7gHV3u10sLCzkCBeAFbkigJWhGUqQ2Ad7tCB3a1VIUcJs7fq0iuuOsRLpVIgASaYlnioYxBjRbrez+dajBcvlcpaEkbb/VMI8FUU4l9Y2r31mskIVOmy+DoW6KoAlwkrbPNuhBFbXGOuxCQ3VQaGCAteHtrFQKGBmZiZHpJXcDwaDbG44L7om1KWRWm+6jlIuFv0+qhjDPBa6RjW3BMvid8WKYHR+EBrGwLwJ7XY7C11gTgd1Iuh6sw4JilHM8UHBheIZnyk2YaaGOlDIUveGw+FwOBwOh8PhSKOw1gUhhLeFEG4NIVwq7+0PIfxzCOGq0b/HyGevDCFcHUK4IoTwmPU0QkkQLd7WMaAx0ExQp2RI7fK620iCqzvVhI2nV7KsBMbuqmtIhpIR/Vzjvu31tm6Nn2dfgDyxtVZ2/qztUpKsZZPg2bwTbJsSSI6zii8a5pAaOysg2DpU3NCwCR3vQmE5SSWFAHVH8Gf7nobGAMunUfBzJZcUItRZoKKMzo+Oo+aOoIuAddn2KUnVz3U3XMUHjfG3Y8I1kLo3lcdA252aC0vK7drUclWIsm6PcetS26duDv3uqpilOU5Yr+aMsCet2Gs5Xhpi0e12s1NcKGBQ/NG8CTpuvJ990DGbJkHhSDyLHQ6HwzEe/hx2OByOlVhTUADwdgCPNe+9AsBnY4xnAvjs6HeEEM4B8AwA547ueVMIYWW6+VRDRsSzWq1mGd01FnpUPorFYmYF1zhtKwjoDr5apS2x0dhvFSHsrq21f1vSDCyHFdidX3uPQsUKjoN1L6TEBNsufV8/1xwIep2Wp6EcVkwYF/9u67fX6XwpWbPt0CR+uiOfCrdQoqrENxVywd3p1IkENlzBEnY7PxpWYMUTbZf2X0mwFQV0nPVIUbueWJadH0v8dc613Ra2DbYfKgCk3tNkqCmRi+OuQocV7TQfhboZWBfFBE3KqeKGjieA3PrStaPhOVactKKB3m+/T6nTMiaIt+MIPIsdDofDMRZvhz+HHQ6HI4c1Qx5ijJ8PIZxi3n4ygEeNfn4HgM8BePno/QtijF0A14YQrgbwYABfWrMhkv+ANnb+yzh77l7OzMwAWNqNtJZmWudHbc8RNxIi3TWnmKDH0inZUsKvu9ncQdWQAZIUzTavRCjlDtAEfmqTJ9HV38285IiV5ozQ8pVIkxylxAmSU7XSW3I1ztVAWFIbwnKCTCWFWhat7ZVKBcPhMBdaoOOl5FZDBnSsWUcIISkm2Hm3fVfSS1jBgCKEtiMlLmkbdX5s6AXv1WNT2V/ex77RIaHuDF1zSoq1HeN22TXRp15nBQJ1e7AutktPVbDCiK4Djo11DrXb7cz1EUJApVJBtVpdkaSV/WcdrFtPSdEQDa1P14Y6LLge2BYVcOyzZBpwpJ7FDofD4UjDn8MOh8OxEpvNoXBcjPEmAIgx3hRCuNvo/RMBXCjX3TB6b1UUCgXMzc1lJL3VaqHT6WR/4DOWul6vo9FooFqtZjkJSGD0yDvGtXc6HSwsLKDZbGYx6iSxmuyOeRcAZLH7/X4/51pYXFzMCBV3T3XnnUnxNH8B7fa9Xg/dbjd3+gSA3G4uoWEEei37qmKAPf1Ak9IpCScssdM6B4NBjqymQhfsjj7rtcKCxtYDy/Z7EnttA8eS16kAwLJ0h5/XsV2cM/6ru/falxQJtnka1B1Cws6QBK4xFYkU2gfr4tA2skyWwTGoVqvZfQzL0HVB8m3rtqKPzW/BzzQXhRJnC2071wSdGeznOJeBXZ923ahgYsU0/R5yTWkfVEThHKpLiW3odDqZyKQiizou9LtiXUQUNexpFVOMLX0WOxwOh2PD8Oeww+HY1djqpIyprdDk2WshhBcCeCEAzM7OYmZmZkXCuhBCZoFmIsZ6vQ4AOWJVr9dzoRIAMiLPHW+WxV1J/quigZItJbp6JJ8SYRIfOih01xRYPgJSwyw0DCMVBmHDC5Soanw+CdlqoReaL8KGcqgVXS344xwVdtfaklGWY0914Fyp28MmjuQ16ighVESw9nnWq24KEkcNT1B3i+6o25AR9tWGFZDEElx3bAd3uQnNVaHza0MKuGboeOAa4/rTttEhoOWqS4FrTkUezrmGDaTWWkqAAJCJLXxZwULzGuj3w4oKfPG7xrZQhBiX6JNza0M87GkOLCfVBr6vzwt1b9g1rjkXdoCYsBo29SyuobGdbXI4HI7dBH8OOxyOXYHNCgq3hBBOGCmxJwC4dfT+DQBOkuvuAeDGVAExxvMBnA8Axx9/fKzValm8uu648whI5lcol8s5+7nGXJOg0p3QbrczQYEEl2Vay7TazLlLqWRM47Ht0XQkRdYdYJPHqTiQin1PxXbbEAPdxVZCaEm//czuDpMkj4vLT5FNALlrUuIEgBw5tPZ+hl7YEzVYju2XdW9oyATLT+UDsCRX543l2nFiHToeGlLCz7XPlgirIGMFHD0xgcTYzifXpfaN91p3gXWG2PXE6+zasvPF+2w/bA4NdRrwGvv9sOXYtalrQnOjqBhmr7P5MjQngs1foW3kXGo7ta5U/zWZ6g7Blj6L94T9yT92HQ6HwzEW/hx2OBy7Gpv9q/ljAJ49+vnZAD4q7z8jhFANIZwK4EwAX1mzEaMM/0qeS6USqtVqFuZQr9dzrgGNv9ckjSTzhw4dwsGDB9FqtdDv93PWck3+qOSBhMPunqvN2oZHqDVfTzPodrtZCIFatIH8DjZB8qS73uyv7kYrGUs5CCgWKKlVAqbXWBJuy+U4qwhhY/f5fuoeXq/J9DjXdAsogdewCCW92l4KTurS0OSGmmdA5ybl0KCYYvui96rgwPrsGOmOPYm4FSU0OSb7YPMjaHu5jvVkCZuwU8USbUsq3ERDODjWKnCocMDPNJ+FJs9UQUbzU9iEqFZI4Bjp+HK98KVuE81/ou3Q76uuL3UXsO8pYc8KYRw39o/32u/olGJLn8UOh8Ph2DD8OexwOHY11nQohBDeh6VkM8eGEG4A8GoArwHwgRDC8wFcB+BpABBjvCyE8AEA3wKwCOClMcZBsmABhQQe+UaSX61Wlxs6Ip9q8eYf/xpisLi4iIMHD+LAgQNotVoYDAao1+s54cEShVKplCWoCyGgVquhWCxm5MZaqYF8Ajq6JJSMKWm0cflsP23taoW3xE2PPNRkgOoGsNZ2whJpugF0B5djZEUCwjoEUjvZHDeSW4oE1mVQKBTQaDRWxL6zHhJA687QXX9tF8UE/V3zIXAMNO6fJFSPNeT7KpxYB4Dtt93JtuScbWD/mUeDIg/DJDhWrINjwjbacrSfdsfdWvTt6RY6txxXHR8VdzRvAvteLpdX5LPQfBm2fuvCYdv5niY8VAcOy+f3iN8LClHqPNBwJs2fot9FXX8p54GuN9bN758VRCaJI/EsdjgcDsd4+HPY4XA4VmI9pzw8c8xHjx5z/f8C8L822hC1NJfL5VzMPZC3cnOXm++rzb3dbqPVamUJFMvlcpZjQRPfKSki+QCWk8NZa7+16fM+JR26K88wCxUitDzdlVbCrK4J7k6rpVuFBDsufF939VM76dYVMC4Ew9ribWgAx1DDKji2vIb/cvdYwxw0UaCSZfZBc2qwjRRV1IWhJNcKKkr62S6Nqbe71jqPLC8VS6/kE1gWAVimCmA2aSHJaipJpZbHtqjrxCZl1PWr68yOiXV62DLYZ3Wr6HrQz9W1YV0f+rO2D8ifKpEi6rxOBTYAK8KStG8cT3vKhRV3NFcK66Kwt5pwME2hD0fqWexwOByONPw57HA4HCux1UkZNw3+ga9EOSUmAMgEB5IF/kyHA3fdKQLwlAjdQVfCY8mL7vYrYbZ2byVQ2g7uHq/mHrA770osSaS5O5sifykCZMUAklEVC8aFD4ybE50bAEmSr6RT79OfbeiFjofa3O29VhzR8ILVQkDsSQSsU8lmyn2QEmP0M2uZt2VqPgjdJdfcD3YMNKGi9kmFDF1bKRFERTGOj84f61JRgqII/9U+qBvEhnTYMdNr7PzbueS1KTcMf1fRAFgZdqOihj0CVAU9XqdrQWHn0vaD5TkcDofD4XA4HI40pkJQIAkAkNwtVhIPLNvYQwgZ6aaY0G630Ww2MRwOs1MhGMIwbldUd6qB/BFzJBpqmVcxQwkobepqu1eio/3Rctg3dUBo7LyOhf3ZvqfkkWUpmdNdc3v6hCV6umNs37ck3+ah0PHlWKi4wnpTSffsuHL8bB+UJOtOPMUju7usNnp1Tdj8EkpmdfzYL82tQZLNMnVONI+CFZjYBxXQVBDQ+dO26zjYsnRuFDqONgSCn2t4hBJ562zgONjvU0pMsuOf+v5Zwq6Cgb3Hzo1N0Mj28Ts4HC6f8GG/C+oe0j7r6Q7jhDaHw+FwOBwOh8OxhKkRFDTkAMjvsNvda570oLuqtJWThGveBJJGlqO7vWo717r1MzodtL16VCSwRNQ6nU4ueaIlo/xdrfr8jAkjKSZQYNE2WZJr22zJIMtXZ4WOlwXH1463EitLXC2ZGxcekCLRbAdDOjQ8ROtIOQq0nalEknZ92ZMsKEox+aXu3DMvgyXMusutiRdTO/r21Awd41QiSHUvaPgDy1DBQstSoYDrUcdHx1DdLjrObKM91YKf64kZVuRQEUwFP/YjJcpRPOn1eisSSOrYWNcI26pzoUIBXTdcTzpvXG+aAJLvqeNjOBxmjhGHw+FwOBwOh8OxOqbiL2cSidSusroTdLea4gH/pUOBJzow6aGKCURqh53EhJnm1UavJE2FCJarO+0qUNjdYiX9SsDZViV1Wgb7rO9pm62Dw0Lt8DwBwfZL67EkWD+3c6NtXC0WXcUCTZqnyS25I665FVK75jqHVrCxYgSAHOnntTx1g0n+uAYtcbfuC3UcpHI3aP223Xa33ZJemxdDk4LatUhinZoXu87GCS/qilBhQ9s3LqmjXqeOHHU1MGEiYV0WVhji5/Y5oOM5GAxWOFA4F+pMoOBAMU3nQOdIc0/oKQ9APsTD4XA4HA6Hw+FwrMRUCAr6hz2QJxgAVuwAk4hyN1KzwXP3WY+S1HqUoPFnJS8kllq/kicSF5IiJWuWtNpda0t0SWL4srvd9h5L5ix5twKGuhdYrhJEa+1WcqxEfbNgudbqz/bYsAu2wYobdjy0rUr4rECi821t7TwVgAKSdRuowGR38ukesaKBtk/HWXfQUyKMjhVh223FIivipPptc1Ok5tSuGf3Mjhuv1/WnfU+Futh1qw4E5jMZJ3joXOv4pUJHrAPDjklKTGCdqXbr98XhcDgcDofD4XCkMRWCgkJt3krOdHeW+QXUpUBBAVgijAx1AJYJhT3jXh0PhGbrZ53Wos/2kOhosjzWp2TSkj1CxQTuFrN91sqd2jVP5RtQYq716rimoIR5o0g5HdgmPWlB+2OdHur2UALJf7WvSrJ5Pz9LWf6VVDO8RAUFikQ67+r+sG2yBN2KUlxHOt9WAABWHmNonTDWAZFyvWh4AfvM63W96xjqnOvP4xJOatusQKCf6/eN7+k8pkQNFeM0EaWOm96vR4Cyfn5nOeb2JBYLjo3ONd9nG+hW0ZMpHA6Hw+FwOBwORx5TISjoriCwUlTodrvZMXyDwSBLvkgi0Wq1srhpJtpTaIy4rYPkfTAYZOEALJcJ2kqlUnYkpZ5rrwKCugBUoFCyPO6zEEKW+4GECVh5+oGSR1rLNeO9jqcls+PyJljL+2Zgd41TwoRa9dVNokRXx0fbY/uXOolgHHHkvLONpVIpCzFhWe12O8ubkIrN52cpoUPrVeJr22F/ppCh9nwlyKvNLfutVn3u/lMU0bARXpsaH2KcmJC6z7aD48XvqIpbKhjoPLD/to2W3BPq5uFYs2yGzVjRTYUFrj+uPa3T9pFHtep1DofD4XA4HA6HYyWmQlAAls+o13hxFQBIUvr9Pubn59HpdHLknzuLmrmfpIOEQwm12u1JbigoWHJid7CtbT1lq9c2KygEpISGcTvU6pSw16hdm5+lTi1IORNS5F2x3nAH22ZtryWqFIisuGGJuQop9rSMcacAWOu6XktxiM4ETeTJ9WET9o3bJbduA10HKUFhXB85Riog2foUdkysEDPuBIfVRAU7NylHR2p8CQoJFPHsvGpeEbbBhh3YPqacGHZu1OVi14MNv9B12ev1cgkmK5VKLqSFzxgNnXA4HA6Hw+FwOBxpTJWgoDvKwDKRp4OABLDT6eTCHDR7O8mNEiwNhyCUYJPk8rpU7HyKrOmOspIwfmaRImf2eh2DlE1eryEJ1s/1XyWHqbYrYd4sxlnkU5+rO4Fk1ZJHG1KQqmNcO2y4g+6y6y46sHxKg54IoOVYMcHWa8dOXQvaZnu91pMSW3SsbN9t/+1JDLpGrfixHoxbK9pm+++4vCfaD52HlIBhxyn13UjNrQpuKdjx5PeYAlPqtAeuCStgOBwOh8PhcDgcjpWYGkGBtnLdneUf9wByyRfpTuCpDhQRNNyB9+qpBkD+1Ahg2TFAQUF3qolUuIDugI8jNpbo291sm/mf76ujIJUwzhJGKzjoNdo2HYOUmLCZ3dhxu80pEsiwERuXr04LazO35DJF7FOCi93Np5jA4xgpbKSOKbRlpESSFCHeCHlXB4feq+vKjp/+q3kpOLZ2HaYEGbsete12rdj8DvY+S8jtyRO2zNXEEa3DijLqvFlLJLPQRJp6AoQ6Qzh+fGYMh8NsfB0Oh8PhcDgcDsd4TIWgMBwO0el0cr+rsNDv97P8BXQp8KhI/eNfxYTFxcXsKEl1MDDWnCDp0dwIJBsUNdQyrUTIErgUibbQ+5lQUIm1xtWTLLJ8G7agu6jar9TOsYoPGyG+48g239OjAdVar7kKOL4a6mDbkQoXUBI5LmGkJeQa5sD39PhADXPQpJA2OaaS4XFjsl5BITWGmqNhtfu0fl2fXOtMHLiW8KHjpbkFFFbo4f36u65XOoE45uyXtqXf72fhBSrmreYKsQJISlSxYo+KHPrsiDGuSNo6Nze3Ik8JQyFijCiXy7kwKIfD4XA4HA6Hw5HG1AgKdCioVV8/V3dCs9nM/tDXc+a520ziSpJAgq7OBxIVLRvIZ81XtwDJhpKnlC2f7bXvKSFW4q2fa04HEiNCd3gJe3yejp89iSJ1f+o9+/lG3yN5ZL4CCjupEyZUMLHCjIo3dtfbjrUm8rMks1AooFqtZkKB7kazPUqy1dmRsuOP6/963R1KjrXdKcdD6l4Vu1I5P8bdz7W2miNmnNvFtoEvDU2yIpt1AamQYIU3KyzZzwkV1saNlX7XAeSeAxRBdA4oOGiuDWA5BGtciI3D4XA4HA6Hw+GYEkGBBBhIJ44j2ebpDq1WK+lM0GstibWx5bqDT0KhRwXyM43V1pfdvWU/LMnRz+wOsL5vHQSrkUxrAbd12zLtWCtRGxf+kOrDWu8By+ScbVMrviWLa9VLrEXqUuVQ2GCYgybwUwJskwSuNnZrYTXhQ9tqRbPVhAqFOinUQbEeISJF4u3atuuCxDxF8O142e+XFdpsOIzt37g5TH1PUuFFdu3zZw3FYBJGdTFoXgVtayrJqsPhcDgcDofD4chjagQFjaNPZXOnbbndbqPT6WRkUU914M6z7krGGDNCqWKCOhCYO0EFBSVLJBd2Z5Ski/bocaTOEj5LXlKfrUVkbEy51pMSIlYTBVYLg7D3jSPJQJ7wcnw5tqv1x5LPjSJVNttSLpczYYPZ+9WZkBIU7OkZawkLloin7rHlpcIRxpFk7VPqiM31tIv3a/vUmWDv47V6T6pvKmqMy2lg53c9QlKqznHOEYUKHDpGfF6Uy2UAy+PHcBH93tvvvMPhcDgcDofD4UhjKgQFAFmeA5IFjfPWUIdms4l+v49yuZwdAag2dl7LkAgSotTRcrxPdzC5ow0sky5r12e7VICwu+7EOHKfIq5a9lpigK3D2t4taVOCZl0YG3EmjAPHj4RNnQkbLUuvp1izUXAeY4xot9u5kziA5dAWjfm3JD1F+jeL1Yh26hq9Vq/nbroKSbbccUi5E/R9e2JIqkxto47ZODfNuPZtdExtf1dz7qSEP82RoSEvNr9KCCHLzcL7XFRwOBwOh8PhcDjSmApBQQkSE6LpDne73cbCwgLa7XaW64CEkc4EEn8SRxIFIB9zrURaE9oxbEJJkpIOthNYJih8b9xOpiXTqxHU9dr/9Xoll6ld77V2clM7x5txCWhySCXuNi/CesZhLazmkNB6VEjiPOo42bCW1YSVzWI1UWicu2DcPRTAxhFpiieap4CfcTxY72pjr2OXWk/6HsOU7BrcyLjYuu3vawl0qbARu67L5XJOTKBgEONKt5KGwmj5DofD4XA4HA6HYyWmQlBQkByR0PNEB419V/eCFQB4vCShxEdDFHgdr1WixLp4qgTL4XWp2O7V+qNtsdgsiWffLYkat8utdWmdGyHRer+Wa9uUOv3CtmO99aZi71eDPQ4wdaSnlmN32G1/9d/NztNaZYwbC71nrfFKuVR0rdL9s5qTQHfqgfQRnfb+tQQy63gY56rQdWnvsXWpmJASErQczeehCVZV7LOihA0tcTgcDofD4XA4HGmsedB6COFtIYRbQwiXynt/FkL4dgjhGyGED4cQ9slnrwwhXB1CuCKE8JgNNcacesCjITWbPZA/co/v6znyKgIoiVDQnWDdBypMaJ2jvq0QE9ba7U39bLGZnXElkOPEBEvM1qrzcAgzy7TEdtw1GylztX4oSJw1aaE9+nHc/K21E8731otxbR4nWqyF1cZtPevQrpdxrg7rZLD12FNPUkLNetq5VptTZabEhHFjoIKCPis0FGc963WacCSfxQ6Hw+FYCX8OOxwOx0qsKSgAeDuAx5r3/hnAfWKM9wVwJYBXAkAI4RwAzwBw7uieN4UQimtVoMJAjEvHuLVaLTSbTSwsLKDb7aLT6WRHuZFk6FGLdDPYGHNNpkiS0e/3M9cD61dCQedCKhbbWsE3QzLXS5BXG6/NEKBUnRtpj72Gu7lK2DhH467fKKFe7zgpIQ6jUAebwE8FB0uy19um9Y79ONK+kXnX40PXWm/2NAYrEKi4khoTJjbl9yUVwqPfh42swXHXrzUW+h1mu/mdX48gYJ8TKiCuJirpGEyZ0PB2bPOz2OFwOByr4u3w57DD4XDksKagEGP8PIA7zHv/FGNcHP16IYB7jH5+MoALYozdGOO1AK4G8OC16hgMBmi1WlmOBIoJnU4nExKUDADI5UtgXDRdBTanQowxi6MGkJ0AYYkIs75bZwKAFSKCvX/KiMeWINWncTvSKtikiLN1UowTHTaDEAJKpVKWB4PCkt2JZp2aVyGV52Gtfq1XfNmoiGDvsWR5nGti3Odr5YbQkACKCeMEFs2NcThrfbUxobihn6loMM5dMA5WkFgNdn1QTEgdYzspHIlnscPhcDjGw5/DDofDsRJb8dfy8wD84+jnEwFcL5/dMHpvVagdud/vZ0ICiSETJ1oiYfMsaBiDJRJhFCvd7/ezowxtGyxZGdfWje6yH41IOTUsMbfYrLNiLajjYFz+Bq1/Pc6ErZ7j1Uj9emDDZzbilEj1Vcn7ONcN793KnfrVykkJOjbEYj3lqGtmvadQjBNrdtgJD4f9LHY4HA7HYcGfww6HY9fhsJIyhhBeBWARwHv4VuKy5F/wIYQXAnghgCwJY4wxI/z2xIaU3Zp/7FNUUNKRSuanokWKcGpyttWwmr36aMK4XWTFWiRvrbj6rYDWsdYO+mbmdruxEccDf15vO8fNiRUUdOzsd2izQtB6vxPqAqEjYD1iwHrmcjWB0I6jfSZslwC2HdiqZ3ENjW1pn8PhcBzt8Oeww+HYrdi0oBBCeDaAJwJ4dFz+q/sGACfJZfcAcGPq/hjj+QDOB4BKpRIXFxez0xeY34ACAF+jelfEVLfb7RWOAz1HvlAoYDAYoNfrZcLDOLKzGbFgu8QEEq1phe5kEymyaz/fjnasdVLDespIQUn84cDeb6306zlNQI+GtGWmxjglmtlcE3qdDSHYLJlebazWk8dDnRFAemxSfdPPrNNiXDtSnzH8Y9q/f8RWPov3hP07Q0FxOByOKYI/hx0Ox27GpkIeQgiPBfByAE+KMbbko48BeEYIoRpCOBXAmQC+so7yEONyMkY6CDS3groPbPgCP1M3g54nXywWkxn/Fal8CBtNomdxuDuc00JmxpGzcf0bFwKxXTu/qXwY64Ud48Od8/XUt5m4fD0CU2HH0joZxvWF7eD3LJU3ZCvDHFYTbCj6AViRPBHAirwKvG81UVDX60bCb+zcTLtDYaufxQ6Hw+HYGPw57HA4djvWdCiEEN4H4FEAjg0h3ADg1VjKYFsF8M+jP9YvjDGeF2O8LITwAQDfwpLt66UxxjWDkEMIWZ4E/kHfbrezXAo2gz2AXOLFcSIBr2WuhSN9pvy0CAKbhVrR7fspWEv+amR2M+1Y65q1yrY79auVs5k2rIVxxHajOFyRSvNNWKFutTo2Owa2XF0nFDX42eLi4prjtJ653ixWczVMGkfiWexwOByO8fDnsMPhcKxEmIY/nKvVaty/fz8AZCcxNJvNLNEiQxSKxSJKpRIqlUruNAfdzVSSwcz/IYQsEeM09HenIEUgNxMSsh3tSF0zri0bud9CXRVbJSikQg3Wi9XCS9bTPiawBLAiTMSS+1TdhzsGOk+pEx1WC0dKlbHRetd7n+n/xTHGB667sh2MPWF/fEh49KSb4XA4HDl8OX4Wh+IdO3uXZp3w57DD4ZhW/Ev8++TfxIeVlHGr0Ov1cPvtt68IT7C7p+pO0NMcFHZXnVZx5mAgtooEb+du6aRxOLkjtnJc1lPGepwJ49q0HrK5ERK6mvthLRfAap+tFcJg7xuXt4Eiwmq5CVarYy2sNc7aD4oY6znaUdvBPqy3Teudk9T1LkI6HA6Hw+FwOBxpTIWgACCXdDEVFw7kd1TXc5yb2roVKYK5FXZuW+Z2Ypx7YCuI72o4XAI3SayHjG/32Gw2f8RWjbvNb6FIuQM2Mx7ruZbiYao9WyXwrAfTuE4dDofD4XA4HI6dgqkRFIjVdjdXs9unPksdHZm6d9znm8GRIihr9Wej96awFRb3rcKREGo2Gy6xGWx1uesJRdFwhtR4agiFDc/YCtCZwFAHeyzkVtd3OJi29jgcDofD4XA4HNOIqRMUVsORTmDn2N042tbOduVFWC801GG1sAuHw+FwOBwOh8OxM7CjBAViE0nVthzbscO8FeVtde6C9ZQ3KffAdmKjfdrqMdju0BJL7LfDkTCuzq10JWyXIOLOBIfD4XA4HA6HY21MxSkPIYQfAGgCuG3CTTnW2+Bt8DZ4GwzuGWO864TqPqIIIcwDuGLCzdjt683b4G3wNqzEbnoO+9/E3gZvg7dhWtuQfBZPhaAAACGEiyZ9NJu3wdvgbfA27GZMwzh7G7wN3gZvw27HNIy1t8Hb4G3wNqwXhUk3wOFwOBwOh8PhcDgcDsfOgwsKDofD4XA4HA6Hw+FwODaMaRIUzp90A+BtILwNS/A2LMHbsHswDePsbViCt2EJ3oYleBt2F6ZhrL0NS/A2LMHbsARvQwJTk0PB4XA4HA6Hw+FwOBwOx87BNDkUHA6Hw+FwOBwOh8PhcOwQTFxQCCE8NoRwRQjh6hDCK45QnSeFEP4thHB5COGyEMKvj97/oxDC90MIl4xej9/mdnw3hPDNUV0Xjd7bH0L45xDCVaN/j9nG+s+Wvl4SQjgUQviN7R6HEMLbQgi3hhAulffG9juE8MrR+rgihPCYbWzDn4UQvh1C+EYI4cMhhH2j908JIbRlPN6yjW0YO/ZHcBzeL/V/N4Rwyej97RqHcd/HI7omdjv8WezP4tF7/izG7nsW+3N4OuDPYX8Oj97z5zB233N4VO7OfBbHGCf2AlAEcA2A0wBUAHwdwDlHoN4TADxg9PMcgCsBnAPgjwD8f0ew/98FcKx577UAXjH6+RUA/vQIzsXNAO653eMA4JEAHgDg0rX6PZqXrwOoAjh1tF6K29SGnwFQGv38p9KGU/S6bR6H5NgfyXEwn78ewB9u8ziM+z4e0TWxm1/+LPZn8Vr99mdx9v5R+Sz25/DkX/4c9ufwWv3253D2/lH5HB6VuyOfxZN2KDwYwNUxxu/EGHsALgDw5O2uNMZ4U4zxq6Of5wFcDuDE7a53nXgygHeMfn4HgKccoXofDeCaGOP3truiGOPnAdxh3h7X7ycDuCDG2I0xXgvgaiytmy1vQ4zxn2KMi6NfLwRwj8OtZ6NtWAVHbByIEEIA8HQA7zvcetZow7jv4xFdE7sc/ixeCX8W+7M4haPyWezP4amAP4dXwp/D/hxO4ah8Do/asCOfxZMWFE4EcL38fgOO8EMshHAKgB8G8OXRW786sve8bTutVSNEAP8UQrg4hPDC0XvHxRhvApYWFYC7bXMbiGcg/yU5kuMAjO/3pNbI8wD8o/x+agjhayGEfw8h/Ng2150a+0mMw48BuCXGeJW8t63jYL6P07YmjmZMfEz9WZzBn8V5+LP4CD+L/Tk8MUx8TP05nMGfw3n4c9j/Jl4VkxYUQuK9I3bsRAhhFsA/APiNGOMhAG8GcDqA+wO4CUvWlu3EI2KMDwDwOAAvDSE8cpvrSyKEUAHwJAAfHL11pMdhNRzxNRJCeBWARQDvGb11E4CTY4w/DOC3ALw3hLBnm6ofN/aT+K48E/n/ULd1HBLfx7GXJt7z42oOD/4s9mfxWvBn8ahZiWuPmmexP4cnCn8O+3N4LfhzeNSsxLVHzXMY2HnP4kkLCjcAOEl+vweAG49ExSGEMpYm6j0xxg8BQIzxlhjjIMY4BPA32GbLSIzxxtG/twL48Ki+W0IIJ4zaeAKAW7ezDSM8DsBXY4y3jNpzRMdhhHH9PqJrJITwbABPBPCLMS4FJ41sRLePfr4YS/FJZ21H/auM/ZEehxKApwJ4v7Rt28Yh9X3ElKyJXQJ/FsOfxSNMxffOn8VLOJLPYn8OTxz+HIY/h0eYiu+dP4eX4H8Tr41JCwr/BeDMEMKpI0XwGQA+tt2VjuJg3grg8hjjn8v7J8hlPwfgUnvvFrZhJoQwx5+xlPzkUiz1/9mjy54N4KPb1QZBTnU7kuMgGNfvjwF4RgihGkI4FcCZAL6yHQ0IITwWwMsBPCnG2JL37xpCKI5+Pm3Uhu9sUxvGjf0RG4cRfgrAt2OMN0jbtmUcxn0fMQVrYhfBn8XwZ/EIE//e+bM4hyPyLPbn8FTAn8Pw5/AIE//e+XM4B/+beC3EI5wF0r4APB5LGSyvAfCqI1Tnj2LJDvINAJeMXo8H8C4A3xy9/zEAJ2xjG07DUlbOrwO4jH0HcBcAnwVw1ejf/ds8Fg0AtwPYK+9t6zhg6UF9E4A+lpS156/WbwCvGq2PKwA8bhvbcDWW4pC4Jt4yuva/jebo6wC+CuBnt7ENY8f+SI3D6P23AzjPXLtd4zDu+3hE18Ruf/mz2J/F/izevc9ifw5Px8ufw/4c9ufw7n0Oj8rdkc/iMGqIw+FwOBwOh8PhcDgcDse6MemQB4fD4XA4HA6Hw+FwOBw7EC4oOBwOh8PhcDgcDofD4dgwXFBwOBwOh8PhcDgcDofDsWG4oOBwOBwOh8PhcDgcDodjw3BBweFwOBwOh8PhcDgcDseG4YKCw+FwOBwOh8PhcDgcjg3DBQWHw+FwOBwOh8PhcDgcG4YLCg6Hw+FwOBwOh8PhcDg2jP8fhLsQbGd2cSsAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 72333 76052\n", + " Min thresh = 1000\n", + " Sliding\n", + "\n", + "\n", + "004s_iimage_74132233134844_clean_ClassS_85-213.roi.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADYCAYAAABberBAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADYVElEQVR4nOy9eZyleVneff1O1VmrumdhmBlmWAYQECGgoghoFMUFI0r0jURNXtBo0GjUmLzGJW9iFjXkNTGQxA1jRKOJkmiiURMXDG6AGMSFnWGdYZlhYJauOlvVOc/7R9X11Pe566np7unuqVPd9/X5nE9VnfMsv+053dd1X/f9K1VVKZFIJBKJRCKRSCQSiUTifNA57gYkEolEIpFIJBKJRCKROHlIQSGRSCQSiUQikUgkEonEeSMFhUQikUgkEolEIpFIJBLnjRQUEolEIpFIJBKJRCKRSJw3UlBIJBKJRCKRSCQSiUQicd5IQSGRSCQSiUQikUgkEonEeSMFhcSDjlLKm0spzz7udiQSiUTiAKWU95ZSPvccj61KKR/3AO/zgM9NJBKJRCKxWkhBIfGgo6qqJ1VV9erjbse5opTyk/kf4EQikXjwUEq5tpTykVLK7x93WxKJRGLVcLH/X3o+18v/FyciUlBIJO4HpZTPkPTY425HIpFIXGH4F5LeetyNSCQSicQB8v/FiTakoJB40EFbbSnlH5dS/ksp5WdKKWdKKX9eSnl8KeW7Sil3llJuK6V8Ps79mlLKW/ePfXcp5evDtf9+KeVDpZQPllK+jgpqKaVfSvmXpZT3l1LuKKX8aClleD/tXJf0byX97UszEolEIrGaKKU8vZTy2lLKPfvfqf+ulNILh/2l/e/hu0opP1BK6eD8v7H/XX13KeXXSymPOo97P1PSkyX95EXqTiKRSKwcSilPLKW8ev979s2llC/BZ68upXwd/v5qO7ZKKb+7//afllK2Sil/tZTy7FLK7aWU797/Tn5vKeWvPdDrHdHe/H9xohUpKCRWAV8s6T9KukbSGyX9uvbW5s2S/qmkH8Oxd0p6nqTTkr5G0r8upXyyJJVSnivp70r6XEkfJ+mzwn3+haTHS/rE/c9vlvSP7qdd3ybpd6uq+rMH3rVEIpE4kVho7zvwOknPlPQcSd8YjvlSSZ8i6ZMlPV/S35CkUspflvTdkr5M0kMl/Z6k/3wuNy2lrEn6Ie39h7W6wD4kEonESqKU0pX0PyT9hqTrJX2zpJ8tpTzhbOdWVfWZ+78+taqqzaqqfn7/7xu19519s6QXSXr5BV4vIv9fnGhFCgqJVcDvVVX161VV7Ur6L9r7D+hLqqrakfRzkm4ppVwtSVVV/WpVVe+q9vA72vsi/ov713mBpJ+squrNVVWNJf0T36CUUiT9TUnfVlXVx6qqOiPp+yV9RVuDSimPkPT1un/BIZFIJC5LVFX1hqqqXldV1W5VVe/VnrB7SKTd/z59v6SXSvrK/fe/XtI/r6rqrfvf698v6RPP0aXwLZL+sKqqN1yUjiQSicRq4hmSNrX3/915VVW/LelXdPA9+kDxD6uqmu3/H/lXtfd/4wtG/r84cX9YP+4GJBKS7sDvE0l3VVW1wN/S3pfuPaWUL5T0PdpzGnQkjST9+f4xN0n6P7jWbfj9ofvHvmFPW5AkFUlrR7TppZL+aVVV955vZxKJROKko5TyeEk/qD0Hwkh7/1+IJJ/fse/T3newJD1K0stKKf+Kl9Re1Ox993PPm7QnKDztghqfSCQSq4+bJN1WVdUS771Pe9+TDxR3V1W1Ha5301EHnydeqvx/ceIIpEMhcWJQSulL+gVJ/1LSDVVVXS3p17T3H1VJ+pCkh+OUR+D3u7QnTjypqqqr919XVVW1ecTtniPpB0opHy6lfHj/vdeWUr7qInUnkUgkVhk/Iultkh5XVdVp7aUwlHAMv2MfKemD+7/fJunr8V17dVVVw6qqXnOWez5d0sMkvWX/e/dlkp6+/z18lPibSCQSJxEflPQI1p7R3vfoB/Z/39aemGvceA7XvKaUshGu5+/lB3I9Iv9fnDgSKSgkThJ6kvqSPiJpd9+t8Pn4/JWSvma/yM1IsGXtK8A/rr2aC9dLUinl5lLKFxxxr8dLeqr26i184v57Xyzpv1203iQSicTq4pSk+yRtlVI+XtLfajnm20sp1+xbYb9VkvNuf1TSd5VSniRJpZSrSilffg73/J+SbtHB9+4/0l5dnU+Eay2RSCQuB/yh9kj+3y+ldEspz9be/zN/bv/zP5H0ZaWU0X5x8a8N598h6TEt1/0npZReKeUvaq/m2H+5wOsZ+f/ixJFIQSFxYrBf9+BbtCcc3C3pqyT9Mj7/n5L+jaT/LelWSa/d/2i2//M79t9/XSnlPkm/Jam1WE1VVXdWVfVhv/bfvquqqknb8YlEInGZ4f/R3nfsGe2JsW1Fun5Je2kQf6K9XN2fkKSqqv6b9org/tz+d+2bJH3h2W64n/fL7917Je3gOziRSCQuC1RVNZf0Jdr7brxL0g9LemFVVW/bP+RfS5prj+j/lKSfDZf4x5J+an+HCNdJ+LD2/n/8wf3jv+ECr8f25v+LE0eiVFUWUU5cniilPFF7/5Ht7xcGSyQSiUQikUgkLivsOxx+pqqqh5/l0ETioiMdConLCqWUL923el2jvQjZ/0gxIZFIJBKJRCKRSCQuPlJQSFxu+Hrt1Vh4l/b2UW/L+00kEolEIpFIJBKJxAXikgkKpZTnllLeXkq5tZTynZfqPokEUVXVc/d3b7i2qqovrarqQ8fdpkTiuJDfw4lEInH8yO/ixKVGVVWvznSHxHHhktRQ2N/e6R2SPk/S7ZL+SNJXVlX1lot+s0QikUgcQn4PJxKJxPEjv4sTicTljkvlUHi6pFurqnr3fhXTn5P0/Et0r0QikUgcRn4PJxKJxPEjv4sTicRljfVLdN2bJd2Gv2+X9GlHHdzv96vNzU2VUtTpdNTpNHWOUoqqqtJyudRyudTu7q6Wy6WqqlJVVSql1C9jsVg0Pu90OlpbW9Pa2pq63a56vZ46nU59zu7ubn2870n4M7fB1/d96fTwuX7fnx3lBvF12+7N3+O12q7HMVxbW6vP9z0k1ffyzzjubX3xe74G2xrHip/HNh41Vm3jYPCebfc6G+IYxDVz1DyxHXzvqLVxfzhqro76rO24+7tW4pLirqqqHnrcjXgAOK/vYUla29yoHnlL0Z2zU1q7dXZ/hyYSicSDhqm2Na9m5/8fgNXAeX0X5/dwIpFYVZzR3a3/J75UgkLbl36DBZVSXizpxZI0HA71uZ/7uer1eur3+zp9+rQGg0FNcDudjnZ3dzWdTnXmzBnddddduvfee7Wzs6Pd3b0C/sPhUOvr6zWJnk6nms1mjc83Nzd1+vRpXX/99XrUox6lU6dOqdvtqqoqnTlzRpPJRPP5XFVV1depqkqLxUI7Ozuaz+eazWaaTCa67777tLOzo1KK1tfX63b65/r6unq9nhaLhRaLhebzuRaLRU0O19bWVFWVdnd3tbu7q9lsVl9vbW1N6+vrNZGWVLeDLwsrPm5tba0ew+FwqNOnT6vf76uqKu3s7Gg6ndb329nZ0Xg81nw+V7fb1WAw0HA4rMfa1x4MBpJUCznz+bweU0laX1/X+vp6Q5xx+zxmu7u79Th5vP2ywOOxmM1mms/ndb84/ovFohY+SKoXi8WRC5HHuz3z+bwe416vp/X19Xo8KUQZy+WyXhf7a7eeE4pMfPFzziFFLr8XBY3Yfo8x22kBjIhCTZuYE9sSPz9KDGu73ioiCj4PVIQK13zfhbbrmHDW72Gp+V086F6lmx/3D/SYe3bUedcbL3X7EolE4pzwh9WrjrsJF4Lz+j9xfg8nEolVxW9V/7X1/8SXSlC4XdIj8PfDJX2QB1RV9XJJL5ekq6++uprNZloulyql1IS12+1qbW1Ny+VSnU6nJri9Xk+9Xq/hViCppBPBRKiUouVyWZPK6DDwOevr6zUBpqBgIrqzs1MTxnhPv09SZuHA16N7gIKBCaI/J0FvI38cEwsZa2trjfN8XBspNFFdLpcNJ0PE/ZFWwn2LUXcT4CikcKw8724/2+0xWV9fr+/h448i4G198FxFR8W5EGvfs82dwbmNY3SUE4PtP5sIwLGg04Zj6M+isPJAiXR0bsR+nSRcqJhwwnHW72Gp+V18ulxbDX/p9Q9O6xKJROLKwHn9nzi/hxOJxEnDpRIU/kjS40opj5b0AUlfIemrjjq4qiptb29rfX1dVVWp3+9rNBppbW1Nw+GwdiI4Wj4ajbSzs9OI8M/n85og93o9lVLU7Xbr6LQJ187OTn09EzCnQPiakZRXVaX5fN6I8McINknYYrGoo+7SYYJq8cIvCgO+d1sU3BF9tov9s4hiIUY6ED1iW3i82xH7slwuNZvNajLvvpnI0ing6/leJr8cZ0n1HDHtgukWviZFAAsKns/ZbFYLQpFsux0UUnj/2E67Hvg5ryepPp7iVRRPdnZ2WsUM9zW2i+uhbQ3FuY/X4dxTMOO65FrxPeJaOGptuP/RVXGUSMLrRMT7nc/n5+uMuMIFhIjz+h5OJBKJxCVBfhcnEonLGpdEUKiqareU8rcl/bqkNUn/oaqqNx91/HK51Hg8rlMV1tfXNRwO1e/3tbm5qVOnTmkymWg2m6mUomuuuaZ2E1g4sLWebgWnQJDo7e7uant7W1tbWxoOhxoMBlpfX9dgMKidEcvlsk5j2NnZ0Ww203Q6rVMETK56vV4jii7pEBHzeybSJmsk/cvlUsPhUNvb2w2CzboOVVXVjgs7LUyufZ9+v99wcPg6jPYbrCnh39lnk20SYBLLNkdCFFJ8PlM5PD92LnjcPJcWICwYcD44j3an7O7u1ukAnGu3l3UjIiF3uw2/TyJP8YWfcQw9v26P2x+eCUl74lW/36/fY00Ot5tzRNA5w3oXkfBbeKJjhfPosXMKThQW4jpuq2thWLyzuNeWfnI2kn/U53SH3J+ocH/ukCtZYDjf7+FEIpFIXHzkd3EikbjccakcCqqq6tck/dq5Hm8yX1WVxuOxJpNJ7U5YX1/XqVOnakLa6/U0HA5ru/69996rUkojJYHEstfrqdvt1mTHosLGxoYGg4EGg0EtCpjkk1D5fOmAyDKqb9JGMhUdDBY72gi8j19bW2uQbUbz6Qpw7r/JEtM3mLrBOgx+P0br+ZnJpgku0zB8DMmrz2Uf6N6gRd/E1e2az+f1XHjumVrg8ZLU6IfvaTLsY32fOBdMEWC/STQ91hQ9OIdsX3Q/RHLvn3ENuo0+hkTcKTW8Dx0MPi6mg1DUYaFQHuPxpqjgtrlWBcG59T07nU5rbQneP54X1xjfPx+SH9Mv2toQP4vvXeGiwnl9DycSiUTi4iO/ixOJxOWMSyYonC8YSXYKg4sgOjo/Go1UVVWdemBiYRGB0W8TYpNJEmJJms1mtfPAqRTSAal1W6L93QSQLgM6EkjQHOE+qq+0+Ut7RJkEO5JzH0txwGkcJH8k8IzyWozwtZkucZTNfrFYNEQWI0aMI5F1fxy5NygsRPdAvB4Jsvtup4LHqo18x3txHli7IfY5EnT2i6koJOcUcnxdrhGPcRQdeE50ArAtsQglXQacX5L+trZ73tk2C0DRAcB7URSJTpej2no2R0Gb+ND2nLQ9e22Oibgu499HHZtIrD/sRt32VY857mYkjhmP+MUPaPc9J7X2aiKRSCQSx4uVEBRMrpjP7lQDiwquc7C+vq7JZNLY4cC7FjCibHs4r8sijd5RwKkMLvJoMubzY/FGqZl7T9LMCLLPpWgQc9olHYreezyiM4FRYO5Q4HtE+3qsA+F7sU4DyScJN1+RpEZEItomALg2hrTnpuCuGExliH32OPs9p5jQhcE0BoNzRvEhEv02QcHtopgRP/ffFkradrrwenT7PAaMnPteJuFxlwmfxyKMcZ5J5rl2YzSfjhquS7snKPrEuaTgRaHHY+DaFpzno9bLUWgTAoyY6uKf8Zi4luN1Eomyvq61G2+o/77v6Q/Xn/29Hz7GFiVWAU//6N/SQ3cOvgMXd3xE1c78GFuUSCQSicTJwUoICp1OR4PBoM61N4HY3d3VeDzWeDyuUxPW19d1+vTpujDfcrlUv9/XxsZGfd5isahdDMvlUt1ut87DHwwGNYn3cevr65pOp43dDhj5N4k1gTdYBLHX69U1FqTDhMy280i4Ijk02XabmQridplcdrvdRhvbXBR0OTAtwFHvnZ2duj2R1DKyTXdHtJQTrAXQ7XbrrTlZDNPiS6fTqYUct88/uQ4iYfZ7rkXA2gIm4EyZ4LXdtzgO8/m8FiboUvAr7oRBQk0xiYUhSdpZF4JiBI/3WHsMKSCwrRQ6OB+9Xq/uu2t9+Bpe/0yH8d/uO90KPtciBGuWcF1FkYPkP7o7OP4RRzkHKFhQeGlzorhwZxRH2u6VQsMVik96ov77f39F/WdHRdLhYqqJKwuv/b4f0vL7Dr4TvuBFL1b3t95wjC1KJBKJROLkYCUEBZOBSDZc0G97e7ve9aHf76vX66nf79cuBkk14Y+RWZNFH2Py3+1264jqfD5vOBkcofYWk3YySGoIAxQTpIPIsM/z+yRUrKPgvxn5pqhAohrHJRLNo2z/dBfEYx1VJ4G022NnZ6e+B8m37892kHT62vzd9Sc8Nm3pDb6HC3K6zkKMnrvwo0m6x5iE121jfQWPjQk3702CSVcBx5TrKjoNXCDTL9aviCkBTMmJKS8xvaHNQUExjH3g2uEYuH0ULfiT1+x0Og2nj8fC7XPBzShu8LgoynFcfC+vgSg48L7se1wvTNWJaRdeCxz7tvGMuL9UiBQfTj62/9dj9Ok3vFs3dP9A3XLYKZa4srFWOuKq+L/+zW/o/bOHNI75H7/wLD3ie1/z4DYskUgkEokTgJURFFgXgMXjlstlTehN4Gkxj+eb4LMOAa37jooPBoOaNDJq7euZtDja6+vRWs+tH2mjJ4mJZD9a7WPNgRh5NUnj9o8k7TyWqQK0psexdvti0cc20YDXi8TO97TwwD5EK36Mlre1z+dRVGEbOGbRYs85cf9cdJBpEe5zJLp0BbAuht+L5J5j5HtwTVIg45x5XPgZxQIfwzGJ8+73o/jBOeDa4rFSU1iK9Rb4rESS3bbGoyOBa+go4s415vvE54bnxrbHceG8UCCJ77chzk3bejzf9I3EamD3c56mD37Gnovpp57wMj293z3mFiVOCr7p6tsk3dZ4731feK3+tPOsxnv9e6Qb/k2KDIlEIpG4srESgoKkBokjaXNxxfF4XIsFJPIk89wFgtZ7R939nrdVlNQguT6eDgITX16PxI+vSKYiKfI5vC+PJUFjygHJbiRtvD5FGJJ43/co8s7ILt0I8ToscMlrOhIdo/GxjoMdJybUnt8ItsvCAms67O7u1vU0WCOB1n/ek2Pg8fR5FhmcQhOj/RxDklfuMsF2e/wsWtCNwLmlU4NzynUcCTnXVBQJPM7RTXDUOqTLgL9zJ5Sj5uWoNW9QrGCKju9B0YnzH9NaorjQJuzEvvm6XqM8J6LteWjrb+LkYf2WR+qdX7aud3+Z6yOkmJC4MPzco39b+obfbrz30/ddp5/7X5/VPLCqtHjX+6Tl4X/bEolEIpG4HLESgkIppVEzwNvo2ZEwm800Ho9rIuItJO1WICGOEfz5fK7JZKLlclnvHOFoMvPFSdRMbGLBwLZocVuOvUkUSTOv6/tIza0STbZZQI/kjeSLUXeSNu7ewDz9eJ77Eckui0ySjEsHKRhtRNJtM5HlWLaJC4bb4Hn3NUzo3RbPndtgQcH59e6bt4D0+vC4MsWg3+830gy8W4fbEKPosa07OzuNFAu6BPz+YDDQeDyurxmLKfocjhVdGZGMHyUI+XO3iSKJhRU/TxxrunwoCFVVVYsrdJMYrKURd+/w2qWLwTU6eD6FKI8rx4D1JtrWTBvx55j6J4WxuObiOLLdUdiMfUisPp79K2/Wr177y8fdjMRljheevksvfPUvNN5bVEt9yWd8ae4akUgkEokrBishKEiqayS4VoG0R1j8NyPWvV6vQbyj/dkEIRbe8/Umk0l9PxNWk1YSdddlsKgRrf8kNsPhsP6dIgHFBooEvo9Jm3PXTYSl5vaSJE3uq393O6fTaU0Yo4jg40isJTXIrsm12xRdCnZ7uE8krb4PSabH3iID8/EN7jxA4kcxx66UTqej6XTaaJPP9/yyAKHJIseDNQY8F15PXAcWNTx3FFhYSNL9pojkdToajerdRCaTSYPk8pp0dtDhQKGF5N79bnOR8CdFl1g7wqKM22uSzy1Yve2q2+y5dk0Gpj20iQkeV7aR4x7rQUTRKT7Pdoy4VklbqgRFLwsUfM6YAkL4WK4nih6Jk4H1Rzxcn/e/3qQXnX6LpNFxNydxBWKtdPT8X/sjjZe9sx98EfEbX/50Ld7yjgf1nolEIpFISCskKPg//p1Op47Um+DQpt3r9eqifSa0rCVgRDv/zs5OvZPDZDLRdDqtd41woTjm9Pf7/Yb13YQzRuylPfLBfH7e1wQotodgqoLJT1ueOY93pNxtY7TZ97MwYTCCy2u5Hz7eoob7RTLdFi33ddgX3ocCja/n8YjHmPzGcXR7uLuABYBYt4ECiteWI/ht7gr/bYcAc/FZLJJEm2uBpJvzxJQVklze29eJ5/F6Hm++fB26V1jTwYKF+9Dv9xvCVnSfeOy97t0Oz0Nbv2Jb3B7Oh9tDsYNCgMUpX5diG9OA2Fe6JNgPrsH7S1WgA4Hr1/diu+M6T6wudj/naXrHX1nTr17zK0oxIXGcePFVH3zQ7/myb/s8rX/0mQ/o3LKUHvtP36glAjqJRCKRSJwrVkJQYL2AbrdbR3P92WQykXQgKJw6daohKJiEMtJJ0kjrdafTqbeijA4GRoJj20gCSTJICEnE/De3FfT9GMnl8bH+QSQ9bSIFXQCMsnMcfB+e43HhfehUMPE32aMzwddjn6Og4PvblcD5pXODWwBacGibQxPYfr9f98+iSmyzwfd9zyge8NpGFDQcafc4UOTy8Uz1IHyvWHAxRsK5dpgWEEm5EZ0Bkg6Jb95yUVLdB16TY2WXi9+jUEFxgGJLnGuuR64TrukortFpYPB58pxRhPBnrC3C8W4D7xdTGijoxfmP6RKJ1cTa4x6jW7+kq/f85R897qYkEseC93zRjz/gc7eWU33pr32D1s/s7ZqlRaXlm98upaCaSCQSiXPASggKJH4mDM75lvaI43333afJZKLZbKbNzc2asPR6PY1GI21vbzcIDK9pG//Ozk4tJNCdMBwO68isnQwk074mSQcFABMSt9+kmefOZrOaMHc6nXqXCUmNiDfJOnP0KUJY9Ij58Jubm9ra2qo/n81mtdBApwYj7xwzX4vzwvMtELht/sxzxbYT3J2DAoukBomVDqckkNA6DYGW98ViUW8dKh2Oqnuu6d7gsX7RhTGfzxvODxfx9FxMJhNV1cEuEiwoGosQuv/D4bBxD8+Zx95z5vHt9/utdRf4THhMvK7otLHw4X5wXNxWugU8Hn4uLOx5bCkY8HinZLQ5FdxHOkrcD+nA2ROdGBQULEDw2eEz7j6x7kJMMWKaQ1VVjW1MeR6FLq/1dCicDDzp59+jX7vxF4+7GYnEicRmZ6DffOUr6r/vXGzrRR//+Vpubx9foxKJRCJxYrASggJz9mMFeJN8E6Tt7W195CMfqbd+tE17OBzWRMokwCSEVnYLC1tbWzVB4VaUJncWABhFpcXbVna3cz6fH7pnp9PRbDarSVAkZc5J9/1dDM/XYbv8GW3tjNR7/Np2RSBIBmldJyiU+Hy3g66OaLk3WaMTw0TNEfB+v1/Pp4k1dzWIaQsUTCz+zOfzOtc/OiTYNq8lu1NidJ5jQELvY0lumYrBVArPO10IXqteizGFgFH96Mrw5ybbFn/ocvGcez49Pq714QKWrKdhkYLRfboD3AZfy8e6XgTXvvtjYt7mzonuG1/LoofHxuuczgJuQxodB9GpYKGIogvn3wKVhY/owOBzvVzu1TJx3ylKJBKJxJWCh3SGetEfv0ULdfT//sGX6vF/4/8cd5MSiUQiscJYCUGhqqqawPMVLdImQk5ZcDV9byfpaDdrITB6G8m1hYDFYlEXsDM5IZmWDm+zaKLEQoCLxaJRrDBGh1ljwT+Zd+4IPkUL6YBU7ezs1G4Ak26S00hc4xj7J4/1uNBi32b5ZnoJHQS021MMoaOBqRRxPGKkORJLH8O2ca74YpvowOh2uzWxpiBDsYOOFo9hJMYWFUykt7a26naSGLOwJd0rTO/gumLU3/eKYk+v16ufBxNyXsNCAFMT3E8T6VjbgEKAhRvOz2AwaDgeeF2f75+eAzp7uLZ9XQosMf0h/s41wrHi+rFAYVBQ8PHsd0yh4Bj5d6ZHpaCw2lg7fVpv+/4n6ruueuB270Qi0cRa6egrTt0tSbrnGb+uf/VDf0mS9IQfuVfLN73tOJuWSCQSiRXESgkKdhuQDDKv2eRiPp9rOp1qOBxqMBjUYkKv16tJN0kIXQokbozik9RHyz3RRopZjd8kh/0wkZ3P54cIClMbKIiYpJpY2l4uqRZBeK2jiFckq2054/w8kmgKMYxcR5Syl6bC6LCjx1Fo4Pj7/fie58VzE6P67od37iA5pqAg7UXSScJj7n/cZSA6SjhPTH1glJ9FJyU1dqPwteyAYX84fj7Ox1LssZvF/YwOEd7bfbQ4xdSJKLb4czpxfO3BYNBYT2dbM5zr6FrwfblDRiym6DF2/6Tm80eBIgonFAyiQBHrOfBaFgVZT4GujhQUVhvl1Kbe/qU/rG7JeUokLgW+6erb9E1f+mOSpKfe+o264fRT68/W/vzdWp45c1xNSyQSicSKYCUEBef72w5PAiCptnMzN9227p2dnTpHv9fr1RZ07xThiDEL6zHy6Iiko8i2mvs96YC0OErs3zudTl0Ij9vtOeptoaCqKg2HwwaZc18c9XfOvInvfD6vRRL3hwTW7SKhojV9uVzW/fZnJIQUUkgYTea87SFTBkopdY69pFr8cFvcvuh0cJ8cxTfBt0OEO3XEgodsFy3yXAsWW1iDIAoxdik4VcTHxvSIuGNDfM/uCLfTaS2cl/X1dW1sbNTrNAodzN338e5rdAnQqcDikv1+/1A7Sym1kLW2tlbXeuD8eN77/X49pwbFB993Y2OjFsz8zLldfrY8t3F92fXgNljYY6oI1ytFDYqAFtB4PMUfCiVRIIwiREyR8LzwWbKo4H4mEolEQvrTb//hxt+f89Vfp+5vZDpEIpFIXOlYGUFhOp2q3+83yCWjiizKxpoI0t4Wj7ZnW3wYj8c1ETZh97V2d3drRwSjqBYAaPWOqRO+L2sl2Ap/5syZ+trOxabTgts40qpvErW5uan5fK7ZbNYgvSbhJkbj8biOCJPwTKfTmuja6k9RI9ZVYJG8KFL4XrbxkzCT7HpufP2Y3uBrxs88diTWMSrNOWcKjMfbn9sZ4TGjQyI6Lkh6ufYs3lg08LlMJeDOIldffbUGg4E2Nja0vb1dpz/EFAlJtTOFIgvFI9YT4P1i1N1z4TEhcWZqT1VVtfBDMu71ElNeYiqEx5l1IeI6iYS8TWSik8PXYV2QUoqm+9uUkcRT/KOoxboXXGO+lgU+n0vBgUIF3RMeV7pGeF50KCUSiURiDy/5sR/RPYvDW7T+2r1P1Vuftttyxrmj9Pv68j95nx7R/agk6VueP7mg6yUSiUTi0mElBAVH+E0aGEE0QZLUILms4G5Sz+J9kg4JAiSUs9msLhIYbdCDwUDj8bg1f9+khFFNpwKwaKIdC4xyuw+Gj2efLXL0+33NZrNDroFer9coPhnz05kDzjHz/Xx/5ozHYo++lkmxCZr7z0guo8seS1rcOe4xRcC1BjguMd0gEl6PFcUCRvjbBA1Gq13gkPfiOuTxkajzfiyW6XMoAlnA8phKargPuB44R17HTi3hPFm8kQ52x+Aa4/WYsuDjKArFFBKOQRR4OJ4UpzjGvobTjWIqCMfaog3rj7DeRKznQJcD3Stsm3/nMxvnlH3neNGhwrXHsUisHubP/VS956tn6uhwClYikbj0eHq/K2nn0PuP7b5an/eKb72ga5e1pf7qqd/RZmfv37HTndxxJ5FIJFYVD1hQKKU8QtJPS7pR0lLSy6uqelkp5VpJPy/pFknvlfSCqqruvr9rWVCIVnTpoGggEVMiTHxZFZ/EORaSi3UPTDCiSBGj2Sb8TiPgjhIsmmdSZMeESQsJHdvnKDX74m372vLw/XLEltvzmdBRJCDpYl94HIkpCVcb0fIY0e0QSXJML+GYsJ8eA84lBYJI9jx3tMT7WN+DtQDYHrafBJPz4d8pKES3g0UGC1sWX7i7AhEJuEUj3mdnZ6cWK5wGw/XKdnuu+ZwQHi+LGhTqPFY8lkIRXSt2g9BVwrXCe0Wi3ybOcB1ZgPI9/WIaTpuoyNQHCyyca7aHogJFAjo0+NxHYYLXWGVczO/ik4SPPqmrd3zmj0vKtJREYpXw2O6m3v35P3ERrjS4CNd4cHClfg8nEomEdGEOhV1Jf6+qqj8upZyS9IZSym9K+mpJr6qq6iWllO+U9J2SvuP+LlRVVb3dHUmq1CxmZ5B0GCb6rMTvCL+Jt6QGSYyWbG6rF0ksnQIWFGyzN5ziYLeFrfQWOkjs4tZ4ft+OANu+3X6Tch/vAncmqP7cUX/WM4g1CSickITTmu7xIokk4fL5tOpzuz32zX13ocLouHCU32D9CooBdJfQlWLRKRZwdBt5jTbngkGrexQSYm0FrzGvuclkoul0qul0qu39vbtZz8DW/ui4oHuEKQ/sMwmu2+h5ZsoOYcLuGgdekx4b1vjgeEShyWuAzh86Aejc8Zp0W6PTgCKTn1mKJUwDsnBCMYPPieeW3xVeV3TrtDkV/DndSzxGOnrb1RXFRfsuTiQSicQDQn4PJxKJKxYPWFCoqupDkj60//uZUspbJd0s6fmSnr1/2E9JerXOQVCwVd9kUTogX5IapDfavCVpOBxqZ2dHk8mksWXjYrGoyZyjvibttDuz7oAknTp1qr4f87xNNJx6EKP3JiF2HpBQOQrrGgmS6qKLtqf7+OVyqdFoVJNAFpm0+EEyFnPiPUYkRaxNYBIYiamvZRGDJC1GsaPlfm1tTRsbG3UEnfcbDofa3NzUbDbTZDJpFNW0aEGBwvNNYu22+dp2kkhqEE/u5uDr+RiPCYUgujxiOo3bRTcKhYdSSkPYcT2P2Wym2WzWINJRNGDxz7aI/3K5rPsXXRvSgYvAc+z37VSJKTquWWHw+TLcfxeTjKSaYxNreLD2A8eWzhCmNrD2go/hvEShiePg68T0F69Dtj0WH6WgwLawzoePpTi1qriY38WJRCKROH/k93AikbiScVFqKJRSbpH0SZL+UNIN+1+sqqrqQ6WU6892vgkQdzcwaTfpILlrsyE7Otrv9xs5776+ixVaTIjRYPRF6+vrGgwGdZFDklSpuaVhW2qB7e9MqaBFf7FYNHLvLWIwX9/9J2E02H4SNEaUObYk92wrU0RMFE1u21IkIlmMzhG3zQTb9/bvboPnwvPotrMuBO9j8aCtaB6j3yTWsV1uu90wUfCgI4HOBK4fzwWvyd/pjvH17LzhVoQ81mAxzegEYRoI+2Ixqm1Xg5jWwPvS7cBj2be2VKPoqqDbhedFVwffo5gWn53oFIguA4pG8ZngMTyW3xVcN23bW0Yhoe05WHVc6HfxScJNv32vnrjxjXrT1/87rZWTNU+JROLyxZX0PZxIJBLSRRAUSimbkn5B0t+pquo+kqyznPdiSS+WVKcJeIcD7k5gW7yjjvFl0HbvGgSMmMYIs0mvo9LSQdSTdna7JuJe9SymGKvaS3vRe7e/2+3WVfdNmrgDBW3obnen09H29nbD5h3JD0l7bAcJYXQykOi7fbGOgsfD1ztiDg+RLhNICzcUMkzkfD/a/emIaOsb0y6YfuA+RPt7JJbsUxSIKCbQBeLxiq6T6OiI1+HuIdFpIKleB7wXx8qIpD+6AXwMxzf237/7HnR6tM1tm/uH7WF6g6/JZ8JjzTSJ2EemRPiebCfHluk70oHjgefyu8DPCAWw2JfoPmgTENrW9qrjYnwXD3S4Yvuqonrjm/Xo2x6iFz33c/TPbv4VPbq7edxNSiQSVziutO/hKwHrD7tR1TWnj+3+y3e8W9Xuhe2akkhcalyQoFBK6Wrvi/Nnq6r6xf237yilPGxfiX2YpDvbzq2q6uWSXi5Ja2tr1Ww203g8rsUDRu1dm8D/8SfJZBTTzoLNzU1NJhNNJhONx2NNJpNGpH93d1fD4bAmMNzvXtrbqs5Cxnw+12AwqO/JwpFORTDpMRnyMd4potPpaDQaNaLX0kFk3v3s9XoaDof1jhH33HNPI6IaCbOdDMz3biO7kXD5PRc3ZMTaFny/WJSvzR1C4s4CeSwUybb3+/3GPQz/flRBQ5LEWAfD96GgQwIad/5wuor7RGJvgcWiB1Ns7KDZ2dmp1ynvGYmz1wtdAzFyLx3UKGCNjegioOjj9WLhyW3jOFpQMvn2/SjMce58rtez+0NCHgsmWvzic0US3ib+DAaD+vOjdiOJbXJtFYPPj+9LsN4Hx+QocYDve71xPZ8EXKzv4tPl2tWvQgks7vqoPvIs6V/90XP0r296jbpl7ewnJRKJxCXAlfo9fNmhFAmut7s+99G665OPaUoq6eP/v3u1e+ddRx+zPBG1nhKXOS5kl4ci6SckvbWqqh/ER78s6UWSXrL/85fO5XrT6bQWD5jr3el0NBwOG6kPJPdMK1hbW9NgMNBwONRwONTGxkadyy4dkMzd3V1tbW3VOe++nm3nzHUfjUYNAcPkjeTSlf2Zh+12+XMXaCQRI6FaX1/XxsaGTp06VQsYk8nevstbW1v1vaRmWgLTCUjC6JRgBNYklLb1WEciuhgo5ng3AhItEkff304E17ZwTr7bSaJvImpBh9F2Wt59L0a+Y95+W10At8tCgeecRQq9PiyykIRaBLKwM51Oa4JvEcbj3Ov1NBgMavHIa8FjIB2kRwwGg/qadueY0DOCT9dMTIvg/LHQIsUQ98Xt4pqhaMDipR5LgmNdSqmfVekgjcfpJG2g+GOhgE4OX4cihM+LwgEdH9yqkn1qQxQbuD7aHEAnARf7u/gk4t2fN9CTv/1v6+1f8yPH3ZREInEFIr+HLx9sf9nTdeenIiixfrz6zjv+zmNU9Jj2Dyvpsd/7Z1ruFwNPJI4LF+JQ+HRJ/7ekPy+l/Mn+e9+tvS/NV5ZSvlbS+yV9+dkuxAi4dwOQDsiS6xiY0JCkmYSx4r8r77umgiP+LOw4mUw0GAw0Ho+1vb3dIDreLo+R8UiuSGBMCEmCfT+ncMS6C4zmmiyaZG5sbKiUojNnztRbR5Lkk/zFYn0UPNxfpgp4vBntpyWftQja5oiky2S7LVVAOqi6T6cCx9SRfKYudLvdhoOBdnqPL4+lkEH7P8lgrHXBdrrvzLd3+gXvx/GVmjtRWDjiNUyevfa8pt0P9y+m3Hj+PEYUsmIBSqZT0G0Q3Txcs6ynEAsQxna07XBgocNz5zlwG7jmvMYNpkOwLb4u1xjP8bPtdRThWiN8Nng+z4sOBD7fXD8U004ALtp38UnF4p579Zj/cq+efOYb9aZv+eHjbk4ikbjycMV/D59YPOMp+uhf2Kj/HN9QtOivSEHmIi379yNoVNId//dT1DnCpFAW0rWveH26GBKXHBeyy8PvSzrKD/yc87kW7cUmIiTgJIKMrpo0e0s8f97r9WpRgbUQTIaqqqojwrPZTNPpVKPRqEFEmU7he7elEvhYEhq/52ir2yipETXm9X0PpkWMRiNtbGzUwgTP87iZcMV8e/aVx8figxQV4jViXr7Hl8JAtMWTEPretN+3EUISOh/LceF4k+iZjLutfEWrvtcKx5kpCJ4Lpkz4GjEn38IX60N4/Xlc7EZhXQyfG4UV39+E3mNM54Df93j5WSFZ5ppi0c6YWtIm/kgHjoRYsDCuU44pBRmTfqZfsB+sscACpFEAiO4ECylM+6BA4OuxzkhM22DqDNdd/J3fQ21C4iriYn4Xn2Qs/+QtetQdN+q5n/9F+pHH/nzWVEgkEg8a8nv4ZKF0e9KTHydJuuvJG7r7E/h/0xOUcVKke59wdHvLbtFDnvYJ0u79CyTl7e/Rcjy+2K1LXEG4KLs8XAzEyKQJTBuhpZ3f6QQmynYlOO1hMpnUwgJz+U24aTWPUWcSKrojDLoGTDJJ6H2MHRF0J/i1tram6XR6iFT1ej2dOnWqJq5bW1v1PUiSSHRjnryt+GwviRyvw3NjbQrWADBh5I4MnC8SVe5wwZoHkaRS8PDP6KKgO0NSY75dJ8Btcp95P++04P54hwQTVgoO7kecZx9vAYGfe72w/oHrT1jUMiHmbiZsD4mx59n3ZFoPaxD4Hqyj0UbK2Sf3xXPN93gOxSM/bxRpnPrh9rPeCc/jPdiu6EjxeuIaimuW4l2bWOJ58bEUCPw6ynXANcf3EicHux/6sPQ50o++8TP0PQ99vUad3nE3KZFIJBKrhM6a1m54qN72f5/al4BOkIBwnqjWK73zqzbOetwTXn6zyq3vOzhvZ34pm3Us6GxsSMflOl0sVkawaRuHajK54MKfKyEomEhFwmNwxwRHK00At7a2GhFfR4f7/b5Go5Hm87m2trY0nU4PRS8tJliUkA6ivDs7O3WbTNpi5J3tJ9Hy9RklHY/HdTsd2Z3NZiplb8eJ8Xisra0tnT59Wru7uxqNRhoOh9rc3KyJ4kc/+tFDVfKjoEDRxbtTUJyhcCCpji47taStfgH7GwmtaztUVaXhcFiLDhYhTHDjOHlcGA1325xbz5QJEkSmmuzu7tbigK9pAYE2fpNK1zFgCoMFJ7pdGMknWXeNBa+DNlLrmh0er1KKBoNBPRbT6bSRtmNhxPNCQcQCgx0qHg+7btwfb3PKdvD+baJCG1m224XuGroR2Lblclnf0+vYdSFcV4SpPXQi+Ros7Bjb7Hay7obnymPP7Ve9nu3qcFv7/f4hd0h0otBps7u720gvSZw8/NlnbOip3/Oteudfz5oKiUQikTjA7As+We/+7HWpXL5CwvniHX/jOpXquvrvx//b27R72+3H2KKLi7K+rm/709frE/v3HMv9v/eOZ+vtn3Istz6Ev/J/3qUv3nxX473n/Jtv100/8JoLuu5KCApSM50hRsdpSfex3OFgOp3qzJkzNWFx1NrHOQViPp/XhNjnWkwYj8eHqrozYmqiYuJNd0CbLZqEjdtLmpj3ej1NJhPt7OxoMploe3tb0+m0sUWlCZfb7z5EISGSdGlvpwo7FGIuO8H0Bua4m4C11WKIlf19nJ0Ww+GwngOmJHhcfN8oXPCaJJfD4bA1Lz+mxNAFwYi070cxhAUGKbJwnqMjxvfnMVy70VXBSLjn0gICxQT3g2vWjhreI6YdMN0hEmYW6YxEnn3mdqrsg59Frvfo2vA40z3C4qm+l4/nWuRao3OD6SgWnFikkjt2RKcL0yPoAvI5Fri4U4vnhs+D5yRxcrHc3lbJXbYSiUQiAdz3Vc/QvY/uaNldkRoJK4JqvWr4NG7/K4/U9X/8UHV+543H1qYLxQf/2yfoptP37f1RKj1rcEabnbO7NS4FvvWh/1vf+KqvOJZ7Rzx/8w903VpzHF74ol/Xbz33ied2gc9pf3slBIUYjWwr3sdIOS3wdhNMJpOanDhSTpIYSZ/vZ5v0fD5vbOlIYuWoPYUOkjsSJF5XOogUmzwarMbvQpTj8bje5tLOBIoKjuYy4h/Hwucw6h2JKAlgJJP+neTRBDXm37PSvvtoyzlt8BRXSNZJRknw4tz3+/36/el0Wq8HEnwSWDofHGn3ODi6HddCW58YzTep5j1pqY/Xo+hAIcyigkkyt5aM82pEcaKNQLttjrBTIOKcxrXKeeD8RjcOBQq2Ia4nOz7cPp9LscPH2VnSJkJ4PnwsU4h8jM812kQejh/rh3C9eT2xfyzSmjiZuPod0vPe8YX6lcf/z+NuSiKRSCSOEaXbU/W0j9c9j+9oflX+u342bD1yqbXpQDfc+wla/slbjrs554W1G67XHc9/rF75Sf9KT+yN8Mng2Nr02O6mfv2Jv3Js92/isKjy7de+S99+7btajj2MoyqLrYSgYDAqyK37mAvPbeFof5/NZjVhGI32FpBJBSOU0mFSYlJHcmgwYsqUBV6H1yKBii4Fiwomgr1erz52Op3qvvvu0+bmZp2uYfHAuz/YpcAijx4nuyBMsCxEmEC3RZSjEBHha7FIJovVORWE0WuSNObIe4xYrT+KCfFvz6fvY7GJNRo87/6cc8YifCSeJMck/L4fj3V/6YRwfQMLUCTQJNUUPvy5z6Pg4bQFrtPoymF7/NP38Lx6rkiMKSBYkPL5rBnhtev+kph7vpzGEOeLzwHrZdgBZJdDp9NpbLHqMfc9/Ay63azzwR1a6GZqE4V4TQoTvq5rV8Tx5XU9N3GMEicH17zitVq+/vF6z//c0iPXR1orx5Q7mUgkEonjQ2dNa9dfp7e9YCSVFBPOFfc+vtLkhqt1y9sGWs5mUrX6KSKd0Ujbn3qL3vCPf0TS6KzHJy4eVkJQILH3f+Zns5n6/X5NtqQDEkQLt8nZ7u6uxvsFLwaDQZ3Lze0FSTYY9ZeadRGYKmGCtL6+3iCBs9mslZSQ3DMa73u4v7byuz+2dM9mM21vb+ujH/2orrrqqgY56vf7ms1mDcFCOhArJpNJw3Y+Go3qVAQTOxOmNjLJIooUBCTVooCP8ziZnLEgH8fR40aSS9I4GAzq8fN1Y2Sa80ihyee4Pob/jpZ4Cx5sDyPe8/m84YoYDocNscqpKHaSeHy4k0i/36/v6zH07ybEMT2FYkWs2xCdJ3GePJ8eR277SbGKKRD+nOvSx3hMYtHCePx4PK7TcihW8FnwGqTw43UxmUzqopSuFcLjvS79bPd6vXo8mX5DJ0V0IHgNxdQZjr/HhCkUnBdJjZotiZOJxVveob/1+Ofoq/70XXrh6buOuzmJRCKReJCx8zmfqHc9t3vczTiRmJ9e6p3f+4l6wr96717R4xXH237wyXrz8/6dpCzI/GBjZf63HAulmXTYRm9iYeJjcmki62PH47HOnDlT50GTfJCAUGjwPWNE2+TMLxMjRpWlZu65rxWr7UdRwRFm38dV/i0AjMdj9fv9RjQ/knwKCpIaIoe0J6x45wlb8H0uSSbJexRHaEdvKzgZ2xWdIExd8BgwBWV3d1f9fr8WYdwPEm8Saqa/uO2xzTHKzj66LyTFHnvfiykGJLbMvff4LRaL2kERo+EeJ6bMRHGAf8daErT6myyzbkV0NDD9wSIF63fE1AqSZTpQfE+PS0wv6Ha7mk6nh1wKFkWYZkQxxWPl53I2m9XiB1Nb6Diww4ZbUcZxI7y+PV4UwHxNih5eu5wPCju+XuLkoprNtFS6ExKJROKKRKeoWv0doFcTRarWpPf/9cfoxtc9TJ3fW92aCh/7lcfr3338T+fuTseElRIUGDkuZa9SvF+ui2ByQXu5iYGJ1pkzZ+rIN6PeMf8/WtyPKuLHY30cI7QkYW5TG5mNKRcxr53jMJvNNJlM6jxz9sMEjOkFjIqTYA6Hw0ZOPsUBChW+dhup9TVJQJkXH/P0KZ5wbNhWj61JJOfPOyKYNHPMeC0SRQoiFJEYfebfFnwoQET7vGGxxMUDo0MkznOce4oUFBs83zEFJ84rCTBTHjxevqfXhefFUXo7WNh2ChG+Hms7MD2FQtza2lpd3NSOGJ/fJkhQYInOCc+DCTxTjpjSwPVkocSIAg7HXjrYtSKmncQaENE9ctT1EicT/+S3/7I++Bm/o+++7u3H3ZREIpFIPEgoT3uS7ntEV5fz1pAPBsY3LTV7SFfD425IwOLZn6yPfNJAVZF+5sk/qKf0jq9OwpWOlREUGAFnlHAymRyypLdtNbi2tlZb0heLhTY2NuoIpXRQ+M2kMOZbR5BIM8fbRMeRf0aOfTxJGu39tIfHe0Tb+M7Ojra3t+vcc39GIkjyvFwuaxdHdD3Q3m5BgXZ3EndG3qNo4Wt6W0cTVboEoqjAnHu3m/b74XBY/+4xGI1GDaLp6xDuOy3yXkec8xhhdtssWrA2QtvcU4jx2mFUnuIQ70Hhwo4au204H+6L7+XnwGstClzsN1NrPNcU17wVpsUvPxt+jujkoFPHx7Ovjtb3+/3aiUJRI7o2LHDRReH0Eu7AQDeP54xz7L57ffL6cdw47xQxmN5DkYKpNlHsYapE4uTj8d/4ev3ESz9b3/2CFBQSiUTiSsEHPucqjW/KugmXA9ZuuF4lpKG+4yvX9J4v/uH9v1JMOE6shKAQo7omPTs7O5rNZrW9mgTelvXoalgu9/amv+eeezQYDGoiQnJDN0Ak90fZqSlAWNSYz+c12aGV2tHsGCWPEdAYDTfZ8e+OGFtwiAXkfJxdC4PBQLPZrO5bFBVcFNJE0CkS0a7P3HP+9Li4b7u7u7XgQ+cB89I9R76OHRO+HmsseHx7vV5t149kn4KTxyGKDZIahQ5d54Hj7pQZFrNkZDyuR5LzGBX3+PBlt4DhPnGOLczENcH1abBGgtsa0ydYE8DOFqcO+XePq+/lVBifN51O68+8mwXXPncZsZPG64mOCo/haDRqiFHD4bAhisQ0AzpNlsu9oo6DwaCRfsR1wbQa97FNtDN8Ha8ZtzvOQdvviUQikUgkEokHH5/xm+/Ttz+kueNER0XKlMaVwEoICq6DYAJhsJ7Azs6OBoNBHXU2KXKEnJFiRjFp33YaxHK5t/2gyUSM5Es6dI02gnJ/Nuk2+//29nb9OQtCGpGUsgaERYz7y8E36XObTZTtSmizhpPA0bHha5t8kSjSAcHt9RyB5xaZjrZ73kzOKZa4BgHz/d1GRqk5BtEqz5QCChaMZHPMfGwkzHZQ2BVj2P1BIYOuEtvw3T86PnyMRQY6Z5yKYPLO4oRH1QBxP2K6ie/neWcKBu9Lh0L8PTokuC45TnZ4MK2I67KtgKIdKe6X05n8LFuoimKBx4b95HGeX35/eA1HQczj1ZbmFNNA+PwmTjbu+5+P1Y887ieOuxmJRCKRSJxI3PlJ69p86DP1kB9/7UW53jt+4lP0ZZ/4x+d8/Ndd88fqlsNbHiZWAyshKJRS6q0eTRrpUnDBRVqvme/Ngm1tBIKEytZ1R1ZJ3KXDedq+H69lAtwmLpCURNLSdk2fa0RL/VGiBd+j1ZvRc0beTfwNkkCS7OgIoCBCi31MBfHnJom00PNaFjxMWk1UKQawXRQUfA0KPXSuxDkwySTBjmPGuWLNAKYHuG2eN7bJbWBNAKblcF59PseAa93984tWfc6t+8WxcxvpFnA7fKwFBaY6cMwpVvBafs+ikOfRrguKWBxbP0ccP+8+IqnesSSuQbcltqEt/SCmEvlYCoN0QvAzf04Bgw4mtzdx8vH1j/49ff5o5+wHJhKJRCKROISd00uNr+/oIedxztrjH6v3fvkNrZ/93Wf8qr75mvedx9VSTFhlrMT/lm2NNjmYTqeNaKlFBVu6O51OHUE24YgkjjUN7GgwWXBKggktSZcJq+8tqY6su620x5OckaQ6+k3C6egpi/sxB5wkmWMTo7IxxYOWcZIu7jBAUSG2me/5upIaZNpky0IOxRnfxzUsZrPZoWiv7+eifJy/SCIpqLgdvuf9geIARZUoWMRoNceHNSbYV784d0acL4sEbWKQx01SvRUliwyyPXTe+N52jPAeXJNuj9MpYgoC0zootkWBwcewzoOdRD6m2+3WO4lQGInPrufDu2W4ndPptJGCwTnkWHKNRsHLxxl2RvA9PjMcX1+f94/jkTUUEolEIpFIJM6O0u+r84ib6r/v+Ozr9ZZv+uH7OSNxuWAlBIVSiobDYU1CmG5gocAuBRMb54izYGO0c0sHuzswIr5cLjUYDBpF4SxW0D5tW/Z4PK7JnImZj/X7JpqMqBLMZa+qvZ0MTHJo9Y+WehI96SCq6/Hw9dxuR5Apwri9jN5LqkUVjh1dCjs7O3X/SDB5PIsATqdTTadTTSaTus39fr8u5BfTCzqdjmazWaN/jL67bQbFAY//crlsbFlp50dbSkcUFPy5x8aw6MTigW4vCz2yJgfP91rjmEsHwkOv11O/39fGxkbjHK9lzyFFJm+vGVM1KNQ4XWOxWNRknQIVBRPWW/B1nBLk5yTWgdjZ2dHW1lYtJNCxQFePx9x9pyjmtvd6PW1sbNTneS1xnDwXcT20FdL0c0CXAs/371H047NBJxNdK4lEIpFIJBKJ+8f0OU/Rq//9jx93MxLHgJX437IJka3yjJC63sF4PK6j30xBYASR0W0T+H6/r9FoVOfA8zNGYLmDg8mGP1tbW2sUtqMAQCJEsmswBYNOiO3t7fo99r+q9uoWOBIc6wOwar8j0ZEwmiA5+utjTQJNAP27z6cDxKTMZJrvU5jx/Uz4JpNJnRLCqLpJpNtJshYj9IyqM7IeHQV+9fv9mlC7/gBdGJ5Dkkg6O1h8UGruBMCikYxYR9EiuiAssFBwomvBc+xCiYyUR5cA1w+dFKzF4HF1myw4sYChz6XjJTo6POd2jvCZsgullFIXS3TtE/eN691rKqauWPja2NioUyJiegfH1eNNJ47vQbGozclAMYPj6HZEBwnn2cJJIpFIJBKJRKIFpeihf3CVnnr6Nt3U/cXjbk3imLASgoLU3IXBMEGYz+eaTCba3t7WcDjU5uZmIx+aUWjXXTBBM6G21d7kkZX/mattB4QJccx1p5PAIoQJdbRLS2q4CEh+TMxoKbcDQ1Ij0h4t2nRbxCKGHJP19fXGTgJsq8fA6SVuo0msrxWt9Y7Os90kbZ4r32s4HNaCSa/Xq+eDAgHvTwHB40+ibvAYp7B43pjOQCEhChJM82ANhDiOJKQcQ445ibnnkmCfeX0KQCS7dIW0peXEdU/CThLO9AyOC/vk8yx8eF4jPHcWmbyO3B73O9YkoejBNjoFgiIEj48pOG63n9H4XdH2k/MYx4aIIoPXVjoULg/88//yf+n1z32jfvjm1x13UxKJRCKROPEYf9mn6Y6n7/2f6scf/gN65PrmMbcocZxYmf8t0z4tNQm4SerW1pZGo1EdvTdM8EwSbPW3k8DHuJijiS1JkwUCkpRI6KKgwKKQjPJGmzsjze6b+0Xi6XZ7PAwSHAoKUUghkWN6Qxuh83jHgnoxYst8dO9MEfPRKbDs7u5qe3u7jkKboHe7XfX7/YYDpC0CbUGBbafAYUeIz4/FFKOtPebB81o8lik2jPxH14Lf8zFsB+/vdeHrOH2AQonXJNMGPI4cI4oNse8WEzz3FC44l3QM0FnBsee6oxDGY7g9JMfILgO6B/wzrn2uwZiGEcWINpcEi6LG9c91GdMuOB5su9vKNJ6YqpE42bjlH75Wv37qGdILUlBIJBKJKwXdM5XWJkWL4eHt4BPnh7VpUe/M/u9PfJzueMFE7/jMn97/NMWEKx0rIyjYXjwajXTPPfc0iPtkMmm8Tp061bDV8z/+Jmq2kk8mk0bVexMyW84dgYwV92Pagqv+08Hgz+w28NaWo9FIp06dOrT1IFFVVV2Uz3B0l+kEsU1OG/D5JlF2N5C80Z5v54bBgpMkXySXbof753E2OXZb6SRxe2ezmabTaZ3G0u/36wJ+FBOGw2Gj73aT0I0hNSPqnANG82nnd18oTvB89o9jHAUYrq1ISmm/j3PrMfbvTP2wC8DnOlXEWyiaHMf0H7eT0XO+P5/P6/l05L/T6bQWfmT0vc0ZYPGN4+Cxcd0DOld8T+6ywBoOvrbPY7pF3BLSIpWfW1/f8865piPJ65Fzxq04LR7QXUK3CufO7UgkEolEInEy8dAffa2u/vxP0fu+cGXozonFjX+40PC/v16S9A2//Kv6ko3xMbcosUq44CeslLIm6f9I+kBVVc8rpVwr6ecl3SLpvZJeUFXV3fd3DRO/brdbpzTYXWBSM5vN6i0JF4tFXaDO5zMaacLGXHYSTBMWklE7FixEVFVVR459Pd7HKRQmjcwFN6nZ2NhQVVWaTqcN67l04Ijw+SZg7udisWgUevQ919bW6loI3ErTfbLIYJJGUSHWDfBxttwzCmxyxqKXJPsc436/X/dpe3u7rlExmUxq0cREczgc1u+TUPLebZHhGPnmfLvtdopwxwO6Rhi1Z6qAr+X+er1EwstUGM61ya9dCySlnt/ZbNYYQ9d68Fiy6CcdKHQbcIzcNhJkikZM33H/KRB4vUSRJKLNCcR7zWazek0wlYjiBFMh/Ex6LCi6MJ0krgGmt1BMsqPA68t9pPDA4pMeP7fN8xtdTRTaTgouxndxIpFIJB448ns4cTmj89Qn6it//jf1ucN7JPWOuzmJFcLF8PN+q6S34u/vlPSqqqoeJ+lV+3+fFf7Pfa/X02g00mAwqP9TL6kRgZTUKLrXlm5AQuDILyOx0eYfi9NF+7ikhgBAIs7ILUUGEkXpcN66z6ETwLsz0BXAqDDdFadOndLm5qY2Nze1sbHRONakjOTL12CeO/tuQmxRhcUnTbZiaoLv0ev1NBgMGlFvbyPpgpombZFA0pLuPrPAJF0odIZw7UQhhI6KSJpJJOOcM3WDxSdj2yw2mSBzzOLfdHIYFCucDuLdMCiI3N/zwvH3vLG+Rltfo1sjXpM/4/u+V6xDQEcL7+e1b1HBa8LCINdErAPh61mE4/cDC136Pe+cwd1E6OTgGuIc8qekRlvokDkhuCjfxZcrbv7fSz36f33dcTcjkUhc3sjv4RXD4N0f1Y2vqaSTEx9YSdz+2R298zv6euHpuzTqpJiQaOKCBIVSysMlfZGkf4+3ny/pp/Z//ylJf/lcr+f//Nsez//omyjHCGNbNDtGJEmi22zuUnOHBlqhI7kxafP1GSHntd0figqRqEXrPcnWzs5Og2i7D47I9no9bW5u6tSpUzp16pQ2NjYaIgqjvG7j7u5uwzHAceSuAbFmBPsVCwR67EjwHBVfLBZ1MU27ErgDg+/LXR9I3Ok2OIoIk9yy3W0ikY+LkX8KCqwV0FbskHn/FE8sIli8ooBFIcxw30mGvWuCxzH2M/af69TjTTdIW7uPciTEZylG5uOctI0rx9b94rrnOqJwxvXka7g/sTaEnyde2397DKMA1fY761dQhOAzHuusrDIu9nfx5YjhL71eT/iR2XE3I5FIXKbI7+HVxOLW9+iq337ncTfjRGN59Y6+4jNfo1uf/YrjbkpiRXGhKQ8vlfT3JZ3CezdUVfUhSaqq6kOllOvbTiylvFjSiyWp3+/XWzx2u11tbm7WxJpWcYsD8/lcm5ubRxIjkwwS4NlsVlvK/Z7PJ6E1mSSxis6DSE4YRWU71tfXNRgMtLm5qeFwqK2trUMF53ie8+D9cr/d9/F4XJNN755A279rTDDXnvnnkRzZMs9ouWseUKShiEOXgtvNooJOf2Bth/F4rPF4rI2NDQ0Gg7pPFjBcZNPtZOHA2A7OCZ0mfNHu7j7GGhOxboDvxWKa7Dct9/6dtQRM4uPxcY16fZnEct1RVPHuG3RFUPwgwfbfPD4W6IzCm1MqvP7b5ptiitczBR/X8+C6cj/cl6MEPCK6hTx+rgPBvrIgq5+h+NyeOXOmbhPdSvFenU6nvl4Uy5z2cILwUl2E7+KBRpe4mYlEInHZ4qXK7+HVRiUpyyOdN37ps39IT+nlNtqJo/GABYVSyvMk3VlV1RtKKc8+3/Orqnq5pJdL0qlTp2qWUcpeTv5oNKqjrSRaJjuz2V6kiRXfSb6lpmXabgXfw4KDQfJkWzWv4aiz1BQgHMWcz+cNwcLReN9rOBw2ajG4TS4I52i3aw+Mx+MGua/2azGY0NIib5HB9Q7sQpjP5w3xw+RXOrDc02LPMTB5o0PAbaajwv0xYXN9ABOz9fV17ezsaGtrqxZCGI32HPo67gNFDZNKCwCRnDKvn8e6LyTB7oOk+yW4bWkSfM8E2+O3vb3diKZbWPFYt5FmE/k4zt1uV5PJpBZB3CfD68Z1PNyfWJyQ/aZgw/mLY8VxbBMk6FKwS8CgsEaxg7VP6BDw9ZlSE3eXsGPJLoS2NCgLCxSr7BRxO7x+PaYcm9FoVM/bdDptrIWTUEPhYn4Xny7Xrn6HE4lEYsWQ38OrjcXH7tYTvv+deu/XP0Gz606G83AVsDy1q9/6vJfqkevD425KYsVxIQ6FT5f0JaWUvyRpIOl0KeVnJN1RSnnYvhL7MEl3nu1CUQwwQTCJYLV3R/Fns9khEiupkbMeUxBMJGJElakHbBPf43WkAzIYI79RgGjL4yehNEH2ua474OKMjqBGpwHTLqqq0mAw0MbGRu1s8Dixn1Iz4m/hgGKNibLH1dcnIeec8dpHpZBIe0Rue3u7QeZN3E1MTUBN6nwPbpHJlIpIhHlfEkbek+kH0S0S8/UjGWUqCZ0DsU6ARRemLbSlC7B9FtFYBNKCVUyziQIPnxu3gz+53tzGmJIR22QRhOBn3pWFtQdi2gPTHegq4RzZWeBnhe1i/zhu3LqUjoa1tTWNRqP6b4tTbQ4Pzt3a2l6hU4pV7PMJwEX7Lr7csXbbnXriy79Rv/jV/1JP7GUUMJFIXDTk9/Aqo6q0uOujuvl3xrrrKSPd97gUFc6G4aPO6Cs+7g16bDe3hEycHQ9YUKiq6rskfZck7aux/09VVX+9lPIDkl4k6SX7P3/pfK9NEtDv9+uoJQkIo+8kalKTONqi789IlEyAaG+PNngfx+MZ1SXJYzqFHQImydEqz3oFtKm7cr5FBRMhkkiKLsZisah3UPA13H+OXQRrATiCXFUH22bSkcAIPwWg6AohqXQ/PYceBx5n0h6dBvHaVVUdcpZEJwH7yih3nGvOK8/z9dqKGNL94PdjakNsexQSoqDAaP5wOGy4RVxjwE4drnWvC4pRTuPhOox949jHFJDYJopJJONuhx0DJuJcJ2ynx8Vrke4YP6t2S3jdcm5YS8N/c/2yTVEI4bixCGcUhDxeFuROEi7ld/Hlht0P36FH/uM79M6/dp2e2MstrxKJxMVBfg+fDHR+/090Xfkkza8aanp9igpH4rqZvvCWt+j/ve5tx92SxAnBpdiY9SWSXllK+VpJ75f05edyEp0CBokJo6m2djsCH0mCpEYBwhhp9jWZrsB7kFCYXDK/2u21OOBoMEUFOw1ogR+NRtre3m5EV0mWnK4wHo915swZ3XvvvQ3Lt3TgxoiR+MFgoOVyqclkUqdNsHZAdIGQHJJIk0xy20r3i/n2fo8Rb0ahWQySx9j5YFLqHSLcBgtGHms6B0o52LoyEk8KTqx7EQWLiChIxPXk31lXwEQ6ulr8MoF1/1hgMwoULJhogtvpdOq0l16vVwsyHDfe023znLlOQ3Rj+Bz2JY4F01/iGEWxhDUIeB+On1M6JNXFRl1AUVI9307bodMlpoLE1Aufb7GA28lKqrcA9dhRBPFaoujhwqfu61Fr5oTgAX0XJxKJROKiIb+HVwyd33ujHvWO6/X273hM1lM4Aj/76f9ezxisnf3ARGIfF0VQqKrq1ZJevf/7RyU953zOn0wm+vCHP6xrrrmmJpaMYjJKTiIvHaQ4bG5uHrJf8xwTGV7T5FU6IHf7fdDu7m5dOX44HNaRU0eLKVL0+/1G3jojxLSTm/TYNUFS5DZYKNne3tb29rY2NjYa9vu4zR2Jl7eStCji7Rrdthhx53hQjDEZtIgRo8+0sjMNhRFyiz9t6SoeV7tPPB7dblfXXXeder1evSuE0x8sRrC9dE14LCw4TafTem6ZErNYLOprUhCINn2musR6Dhx3jwGdEz7f69DCQnR20Nbvfvnle3it25Lv4+kg8bjTQcL1xDG+P3dHFFD4XLDNJNpuC3cY8bj7Mz+DPobuBdeB8DNJZ01VVbUAEFNQfC+Oq9+32BLnzGuejhWPvXeHsNBgIY7jdRJwod/FiUQikbgw5PdwIpG40nApHArnjcViofF4rM3NzbqYHQmCdJAbLx0QYenA0uyfPI4CASOmtGLbZm2CQTu8yZQjxv4s1lIwWbIbgtFYt30+nzcIm0Gixui60xZms1mj8CKjs76ez3XNCRN2R19J/jgOjDSTRBq8Hy310Rovqbbsu90+34ICr0+3AJ0Lnc5eYT0KEx5TjpuJqgkhBQwjXtNkljUdOAckqTHVIo5LhK/LgoEGBR+6UTh/JspcDyyKaUGHIkZM3aBzI9Yn8Nr0uvIabou+e+16zcfdMaLY4Jf75jXn4ykuuC9Mt2AqwnK51GAwqJ1HdlzEXSjcjpiS4ftEYYX1VtzH6NjwHPb7/brN0a2UuHzwj3/wRfoHG0Xjhy/1rhf86HE3J5FIJBIPIqp779Ojf3mu2z63r92N/HfeWPaXeuGn/4E+rjuVtHHczUmcIKyEoFBVVV2EMJLWNiLBFAGTTm716OPieRQUSERns1nDZs2fJq2OpPo+jBab8MeIuYmJf+f9YzSfaQUs6ugK+b4X+8L3nI5gIkpRwdekG4Ln0zbva0VSRnEmnk+y7xz0WKeibU4YQbcY4K027Wbodrs1IYyuAP+MqSrM6edOIRw7Cka00btdfEUxhCkjFF0sVnAcY/8pCPkck2q6JbyemJrjvlmEoXOEDhjOBwk7d1CIxQc5rnEcogDA+WO7/CxQHOMcxVQZ7sDitWtHgvsY03siyWdfo/shiheckzaniNdfr9drtD9x+eGhP/JaSdLi2Z8sveCYG5NIJBKJBxXL6VRrr/5jrf3FZ6WgQHQr/ZOHvlkpJiTOFyshKEhqkGcST5KzmK9OUuiibpEAteW5k9T5NZ1OD1m5ncogqRG9dH4/r2WbNWspxIKIJlxMryDx9X1Yl4CFGW2Lp9ARBRcLCYPBQKPRqC5eaaJPIYQEzyTT2+253Zubm60WeLeVxNhbRHr7PxNQuiBiEUj3j9v8eWcPpy6wjYzmk6hboGEtDB9DlwTXh+cqrgduYxhTIjyXXKNRJGLKg4tzDofDxrEmrhSBLCJx3cbIPtvOHRF8HfbH7fSYM9WHKSkeI+6EYFGD4kwUSvw7xTzPjXTgdojPro+fzWb1uHg9eSy8dqJA4vvRVeJ7+vmIu5aUcrCNpAuPej757Bl2SfnzxOWLUlUaL+cadXrH3ZREIpFIPNhYSmUpVZ2zH3pFoKS4knhgWBlBwcRrPp8fGek1lstl7WbY2dmpt9djSkS3221Yl3d2dupt7mjJpihAsmySags/z40ktNPZ2+7OooSFABedi84AR7lJOF3A0eTQ7YukmpFX2stNDqO1m84JEjs6PSTV5zvNQjpwXzD1hIj1BEopdV0Ebn1IospUBZO+6XSq8Xisfr+vjY0NjUajmuj5fJL7mDrg+Z3NZo2dBEga6QjheX6f4oiJtMURuhTo1KBYRfdJdEpMp1P1er1D1nqnCAwGg7q4ofsxmUwaTgLWQWDqjYmyBQETah9ngYVz6LVtYSy6ZBjpp4Dh9c1jTNL93mg0ahSYZDqRx8TPiNvc7/fr9WKXgvsXhRy6BiiOeZ1wvbGvrJXi8XA7LH55bjiP6VK4vLH2B3+uL/+UL9Y/fM2vZQGqRCKRuMLwqH/1x7rvi5+qDz8rqzN+3FNu1889/pWSckvlxPljZQQFSTWJNAlhocOYay0dRPdNaqQDy3IppX7fKQ1S0/JOUs+UB5NQkw23x9cfDAYN+ziFCJ/nz3xPuhhMVNgGkvjBYFATLqY+LJd7OyQ4qstaEu4Tx4nW79hGt4NiBHdHkA5EHo8nyZjvabEippS47yyqRxHD7Z1MJrWQYcJKtwD7EiPudGy4Ld4twG1xVN79po3foMhgUu7xtUjB9cGxo9OhLaXEP7nVqR0YHlf2k8SZhJZFFT1XFhn88k4fbh/rJLiNLLTpNRXdD57/WOeBa8DbWdIF4HYyVSlev81tYDcF6zf4ulF8imkkHHMjpm3wOeFuFHSScB17LlJQuPxR7e5q9447NVeKCYlEInGlYTmdqpP/zEuSumsLXbOWYkLigWGlBAX/B95Eh5FlWpz5WSQIjvoul8vGPve8h3+SQJG4ON/cBNVuCOmgAB8jnrwuCRnTJ0jITMSiaOCccW93yegzCbPJpdvqdtEmzih+TG/gWHC3DLbZv5MgMhpPEmmQRNMtYneHx4LzyH5S2CHRjgUP3TfXrvBYMv2CKSKSGnPCMWB7o6BANwJFK4I1DNwvX4+pEVGgsqjg9lCQWC6XjdQXXo/r3m3y3MV6EdHRwPG3EyDuiBL7yP4wVcKCBJ/NuH6IOOYcV44b20iBz8dHh4Q/57NGYYZzGNMbKBxGMC0ikUgkEonE5YnBR2bauG2k7UdkimMi8UCxMoICiQ8j5SZXJoqdTqdRd2CxWGg0GtX/+TcBdR42o/C+D3PCKSawUr3UTANwpP6oaCcjwW77aLSn9Lkeg+s80ArPF0WL6XRaCwuscs/ItHRQx4CuAhJxpga4LSRmjHx7HHyMr+fzJDV2EqBQ4r6bxPn4Tqej0WjU2FYwRrQ9dibbLkLZ7XY1GAw0GAzqdABHkpl64jx6W+jZBkaqY5ScYgwLA1qk8HFeAyT4Po8uFAodJPMWT5iSQvGCO5u4/Z77KFB4TXoNUDBjuhAj7F6TXA+uteF5t2jme7gfFBOY4mCHAkWbNpGJNS3izhJuHx0unA/PSZw//00RKRa55BqnABPFA6597vzCficSiUQikbg80fn9P9Ej3nuz3vb3HnHcTTk2VGuV1ksKKokHjpURFD74wQ9qe3tbN910U11M0KQsEuSdnR1NJpO60ODa2ppOnTrVsI0zV106iPpGQcGfkUiRTFXVXo7/9vZ27ZbwOW0RXemAGPr6TsOw/do1F9qs9yZKFBRcdZ4iRNxOkfn/zqNnxXoTY0bE3VaScosmJu7SgUhhohbFHbabLgZGmFmvgaS83+/XY2l3Cgltv9/XcDis+2ZySEcBSetyuaxTVHwPttFt4y4KHDePnc9huylQ8X3On9ee23qU42M+n9dbgtopYCGrLTLONcs0C993d3e3rruwu7urfr9/qD6GBZdo7fda9fzRTUEhw+MjqVG8kmQ+pjpwXVsAjM8HnQruP5+z6PDheLI2CO/nl4UPuoC8VpyK47Vg8H6Z8pBIJBKJROJyxg9+4c/qi0b3Spn+l3iAWBlBgSSJ5IYpDoxOzufzmqA4hSDaqhnlJIlmTrekhh3fx/gc33s2m9XEicXwaL/2vaJVnZFXih20VUcC6WKM4/G4EYWlbd73Z5tNAmNNAxNBRnpJuk2C7aRoI2eLxUL9fr8mYh4LRs19jsfTfzsqTueJdLDtItMqYp0Gzh/rTfA+TkOh8NGW2uDjfT1eg/NDUssiih4/2urjHLudhh0HFEMowpj0uqaCx4X3iPPmY7zePD+eA88n56GtYCXTYjzmbBvXreedz5extrZWb1PqNkenkeeybU7olqHYFQU8uk/oFqIQQiGJ9SaYTkNXCh1M7BtFm8RljKrSd37XN+i6b3yvfvlx/+u4W5NIJBKJxIOKUZmpW1JMSDxwrIygIB22TDNqyIgmCaxJhEkLCZeJPomIiU0swui8e+b+xwiqybqjoSRv0XrNPkQi6HPaCB1FD7sRTJpc4JB297Y6DbTft0WC2TYSYZ8TnRsxKs+0EBb2iwSUZNhjytQFz4nbSEHBx8c2ua8cy5iuQBLblrsf19pR+f28Pms4eCw49m0iBK/F6Lh0kNZDQcHRfreP59OhEEUkuhZi8VGSc85/LGbIFBAKd/FZougR17OFFwqC7HMUzrjW+ZOfe01QWDzKycC6Dn7P71Pka6vNYTEjzn8KClcGTv386/TuW56lF/7lz9RPP+p3j7s5iUQikUgkEicGKyMoxOi9CZvTGhyBNhllHQHWLYg282ivlpqESVKDyDPaTPu2pAZZcTt4HHO3WfzNxIqugJiu4C0m7VzY3d2t3QlOBXBxQxPQGHWlMGErvesRMAWBY+D2M4Icx8fn89omYk4vMGGm8GDiaweJib//5s4cvKej+HZMOLrP8aZIQsLv8xnVZ//9PseeqSzMqfecOl2G5NxryqIA3Shx/XAXC9YscM0DFqakU8PtYbspwjBFhykBJMOsg+DrcRcSjk8U1Gj5Nwl3Sow/IxG3S4Ftj22mqEA3koUHrxvPjdvFlBaKVbyPx5FCBIUluhJ6vV7jxZ08KKglrhzc/C9eo/f/+adK/z4FhUQikUhcGah6lXrlcPp2InE+WBlBgZHp9fV1DYfDBrn2MS7iZoHBZJu50iasBqOxdC34b0k1OafI4J/cNpF2cBaUM7E14fZxJjgxwu6aCr1er7E9I8mM6zZMJhMNh0OdOnVKvV5Pg8FA4/G4LhTodlp4YWFKbnnJyG0ppbGN5XK51HQ6bRBLjj3b7YJ+kuq+kljT7eFrWzzw1oallAaJJkk0uXM/DPaDJNFt89ivr6/XQhTFKJ/HsfB6c1tj4T6mY8Q2cKz9HoUijzXXk9e5xSKfNxqN6uKTFjna8v75vPhYp2N4PA0LMyTpjNrTxRLnvdPpaD6fazKZ1K6Afr+v0WhUf+5tPqPLheNmsYbPEV05Xnceez8vrG3h9RXTSjzXdG64kGVMb3KboivI24paCPH3QBQXEolEIpFIJC4nLIdLvfl5/06jTu+4m5I44VgZQUFqEoUYUSVpNdH1f/xda8D5/SQeUjNdgtFRkjxGbVkbgVFNRkF9TJud20SNFfbdfhNrEiVGvulkYBR7PB5rsVhoMBjo9OnTDaIUx89Wbhbd81gwx9xEM0aS/T6FFxNCphaQQHpuSK5j5Hg+n2s4HDai5ialFmRi2gPJHtMFTI5d3JACUJsl3/UEJB0SnDh3bWkDXAck5B5fXttt8JhEx4CFH+nA8WKnh9d0bAtrEMRUBa8jim90WXBbRo9Jm0OH13OfvA7stiHJ5zqn+yOux/h80OVg94r7yToTFjE8Fk71iTUY2A+uEfeV65rtjMIQvyvsJGEaT+LKwOiP3qtnfds36Gf/v3+pR3c3j7s5iUQikUhcUvTLSlHBxAnFyq0iExaTDkl1BNNRShMnVqVv20aPJJBEIkbQaVM3TBhp9TdBiscabWTc7Y51A1i3gX1n3yxcOFpsYWEymdTbK8YIKslvWwpDLCZI10UcC16H1npGeU2qabtnygMjzx4DkkKTNgoKjPDzenRhkHhyO0na7d3nOCZ+32NOss10Fc4T00IoBFmw4T05pxareLxBt0sUiPwZbfuc3+i2sHuEKRxxLNgmuoE8xkw18HNo8YYOnJgW5N8Z2Wc6AueSQhdTQuz0oKMmPhcswsiiphExJaLtvZgSQyeK559CY+LKwOIjH9HpX7hbZ/7Fyv3TmEgkEolEIrGSWKn/NZm8DQaDxnZujAz7P/gUE2h5lpq5zxQSTLR6vV7DCm5i4+OjdZ3RVUl1pDSmPMSop9tEwkxiG+3ftKS7rxYNLCjcd999OnXqlLa2tjQejw8Vk/P93QYKG8vlsiaJzFcnueJYSDokJMT70LHgopUk4CT90+lUu7u7GgwG9RxExwRrFfgeJLLM0+cYcWvNOB5RYHKEnQ4Trh0WEmRagK/lfnH+OHdML+COIDEdhOuA6873YeHN2Ac6ajjfFL+444fHl/NhxPoQHgvPLZ03FEWiWMDnM7oFfL6FA64nriGvybb1zL7Fden1zDGNaRwWTaJYE8eexUATVyb+fHazHrV+u67qDI+7KYlEIpFIJBIrjZUSFEiCnd/vrejG43GDpNiRYHJAMrG2ttaIMpKk+edoNJJ0IEz4nBh5jWID20qyySh0jJxSzKCQQOdEWwqGCbhFia2tLU2nU00mE43HY21vb2s6ndZbDrp9LvLoNAOPEUmZwXoQsVhfVVV1YUQTardLUn1Pz9disVC3261rAZhM++dkMtHW1pY6nY4Gg4FGo5HW1tYO1XkgsbRFnlsuen645d9kMqnPp9shFup0hNzrIAoq8Xq03Hu86HKINRk8Vx6rWHDQ64Vils+hcODfXRvExTVJell/gs8PjyOpZ+HSWBCT1+CzwhoRLHxJNwNJO10ibhsdR55PrieP43Q61XA4bMwvHRQWw9x/rxM6RyJ8LoUcOoem02lD2GDR0cViUX8PJa4cVLu7+ukn3qJ/8Yufrz97+n8+7uYkEolEIpFIrDRWSlCQDvLMHUlmFJKFEBmZZbV211EgieRPEiJa9n1fpzoMh8MGyfJ9Y+FGkijnq/PabZFkRqQN2/ilg+g0q+ib9Mznc43HY21tbenMmTPa3t6u6xLECD2jtbyP/yaZM8lsS5kgCfd5jn77Ppw32sr9c2dnR+Px+FBtBzsO6PDwdX3eZDLRZDKp56Df79fHuH4GUxs8154rCk/ukwtg2uLuNcHdQ5gC4SKGMZ2B+f4UFTyHdEDEVBK+xznw8UyX8X2iq4HPDd0ydIlEsSK2nykPvA/rPdAdwOM4nsPhsCF4+Jlkm6Pzh84GP7deG14rbqPnh+NmUS+uY7pZ2lKgYqoGtzyVVLcl1sdIXCFYLlRV7altiUQikUgkEokDXJCgUEq5WtK/l/RkSZWkvyHp7ZJ+XtItkt4r6QVVVd19LtebTqf68Ic/rNOnTzeK/pEER+JFlwD3lneqQCTuBiPi3J4ukmOmLdhGzvz7WJSOFuroaIjH87M2u3tbkTl/RqfCZDKpI8CMDpvoWZhoI8PcQcD1DSgMcExLKbXjYGdnpyGexNz6GC02GZzNZprNZhoMBvXuBP6cbo3YXxJ3rwe3j+PUlpoRhRpG12MuPdsSQYeEjzMZdjsstjAVhVH+KPIw9Ya1NqLzwcIGyfhR9SH8022iEMZCkawP4D57XNvSFTi3PtZrw04ipgJxZwfW2ojCAncl4XhZjOAOItzJIs55WxFMupeYxsDvBa69+L3QVgRyFXGxv4sTiUQicX7I7+FEInGlonP2Q+4XL5P0v6qq+nhJT5X0VknfKelVVVU9TtKr9v8+K0op2t7e1rvf/W5tbW0d2m6O6QAmtZIaRIHEgXnhJECOiJIwkSyZ7DCSTjJswhdJEUl5tJWTdJssMfobUxFMHklKSSx3d3c1m800nU61vb2t8Xis8XjcKNLocTNxp82e9QcY/SZhZ4SYL7s4WEjQbgzm27vf/N1z54KSnMMYuSbJZvs4P355XDjuFIr4OesccP3ENBWPeawfwbx7XysWBHWqiefC5JiOm7Y0A+6GwfXp9cVr+5gorHHN+95MM4huHjoOfC++R1dDJN2+ntcY14vb4vv4/rGAp8ffosTm5qZGo5E2NjY0Go3q7TT9YgFMOo1izYOYxsK0ibgbDPtFIeckCQq6iN/FiUQikXhAyO/hRCJxReIB/2+5lHJa0mdK+mpJqqpqLmleSnm+pGfvH/ZTkl4t6TvO5Zr+T72JrgmqI5XSgd2eUdgIkgITI0e1/R4j1ZG8S9JgMKiPY4S8zZ3AnGxfw1sZRiHB7SWpZV98TVrKSbbtTnDag2spONfbpNXkyQ4F5+IzDcCihPvHNkhqkEn32e/bzUCS6CKaJHPsr++7tbVV9/nUqVOHiuVF+zlTBDgmzLGn5Z3OEkfAmcbgopoWWRxFj6kh7rPHto1gcy36GLpVpINihBQxfJzH2kKN5yg6YZhm4H6xjgSFLY83BTa3yVZ+R/ot7Ozu7jaeszgPJOccl36/r36/Xxfa9LhQYHL/TeTpKopFSe3C8LU9NnaBVFWlM2fO1KkPcfeM6BSKwgi3rLTjgeKQ297mUFlVXIrv4kQikUicO/J7OJFIXMm4kPDbYyR9RNJPllKeKukNkr5V0g1VVX1Ikqqq+lAp5foHcnH+J19SgwBKahAAH28ixl0caA0nYkE+qVnhnpb4mDduMs1icCSQbo9rKpisug/+zAKB88ZJQAeDQaO9botJoOsKeAtJEytGXUs5KIg3GAwO7RoxHo81m81aa0J4jGg351jTKRKLHvpc7oJx1Fx5LH1MnKdOp1PXiLDzwNekUMMUF88frxFrR3huKDSR2PpeJsJ0Ipj0e4zn83ljjcSaDV6/sW8WFKLQRBcEP48pKya/dmx0Oge7P8TaDT7GpN9jsL29XfeHNTG8Htgef+bxoqDg+9O9wd0SfCznzuPN3VzojvFaorvAsFuIAoefJ35vWBjxOCyXy3otVVVVCwrur/sWBaYVxyX9Lk4kEonEWZHfwycUu895mm57Zl/S8qzHXk646u1FD/3jiZZfXCn3tEpcKC5EUFiX9MmSvrmqqj8spbxM52HlKqW8WNKL/Tcjgsz5J2E4qgYBi9E5+hqjqdGKb7IbSSij4X6P1ze5OooAHkVCTE7djjaRwm2ls4DtcN/oUPBODyaE0brPdARHhz3G8/m83g0jWuU91m4fI8I+pi0v3/eO8+UxjVFjRtcpztCmbpJJccn357yQRHOufR2OI+9Pa7sJp9vvseO1ueWi+zKbzVrnnfNAR4vXNy3/XNsUOHiM1ywFpOjk4HqN88l7WBAyEffY+jqxjgLbG9NOfB4LUfp4pntITeEqvpjCQIEjpq6433RR+Fy6KZhaE0UZrxvXA6Erpe1ZWmFctO/igUaXpoWJRCJxeSO/h08o5qfXNXvIlSUmSNL6RFr/wEePuxmJywQXIijcLun2qqr+cP/v/6q9L887SikP21diHybpzraTq6p6uaSXS1IppWaAtj1HKzmjmZHskHyYIOzfo75mG6El8TCJiwTCZJSRfyMW+3OUtY3kuY3cps/kMtYSoKAQ8/Xn83lN0s6cOaMzZ840dkAgmYx9IKmjS8Bih9+z8LG+vt6w3sddC9j/Nos4SbRBZwkLLXo8KLC4DbTsuz8mlb4mnSasT+G/se5qQYlFC/2ZSWUUM3g+x4QiCwnoUWvX40VhyePNGhqRaK+vr2swGByqz2GSbJfLUZF1zz9raaytrdXiGwk5RSE+Z1H8iPUS6NCwO4OCA58Nrg2OdZvAxLFyDQR/Pp1OGwJGFP4s3nBevTZYd4OCFZ+jEyIoXLTv4tPl2pOT65FIJBKrg/weTiQSVywesKBQVdWHSym3lVKeUFXV2yU9R9Jb9l8vkvSS/Z+/dL7Xpl2e+da9Xk/z+bzeSk46iKz7d5OrSHAjMSAh9eeMsjtSLekQKfb5++NwSJwwSYw7K7BY5M7OTr2lne367m+v19Pm5qakA7eGbek+fnt7W3fffbfuvfdejcfjmhQxAs1xiDnvLGYY7fkej1ifwIg1I0jEKBAYTFdx1JhklSKRnRC0obvGAYlinGPWnKCgQIt9TNPwuA4Gg0MCkNttcYfvcy78ohPDc88x87W8ZhiNN9pEIBP4wWCg4XBY999tp1uEuza46CBFABaF9P2Gw2FjTj0OFGE8jqyD4DmjCOS6HJwHFmP0sezrUSknca7ZFxcZdT0EzqnrLVDYcP9cf8QpD9z+tM1ZwblZZVzK7+JEIpFInB35PZxIJK5kXGgJ82+W9LOllJ6kd0v6Gu3tHPHKUsrXSnq/pC8/lwuRRDCCbMRdHEhmbDc36YlF7Zw3buLi83wNEwdGVnd3dw/tQc+IpUmvSY8jvbSCO5Ia0zR8TL/fbxThY7TWxMn3cmV/SXXfPvaxj+mee+7R1taWZrNZw9rvYyJJ5RZ/vV6vQQANk7VSSi3imAgy8uu/3SfPG4mt545jQMEhCkMUMNrcI7Sps1aBCaXz+BlhbkuT4TlR+GGbud6qqqoFBqY+kPBaOGDbPb5+sZZG3J2Ax7i+BOsJGK6jQXHD64/CVJtbxmMdC2lyniXV68/3mM/njR0b7GBxgUfWYoi7Tvhz94mpKJ5vCjAeX4sDse1xPN1Hp/HQ3cNr+hnnM9c270z1OSG4aN/FiUQikXhAyO/hE4Y7vvlZGj+s0t4un1cOHvMLU3Xf9B7t3relL/6SF+qzX/F6fcdD3nnczUqcYFyQoFBV1Z9I+pSWj55zIdeVmjZx/qeeNvD9Nhwq0CipQVBINg0SQNYViNcjGaP4wHvEiHlsi883mCfe7XZr8YTRYeay837uD3du8DaMFAYcdY39NTl1XnvcASGmiZBwMroci/5FazwFAAopHFOKAXYosIie20HCHSPPMd+d8x5t8x5zz5Wv5ftTAGDNBZ/n95me4HXDPkerfFxnbWkpvq/badHC59GyL6mxE0FM+YjRfo4dUwrY/5haQFHAx1hw8Bz6eF/Ha5A1FdxP7ijBVBc6cLgOmWZjIc3j6D6z2GJMEeG6j2MXRbE4JxzPWEdiVXEpv4sTiUQicXbk9/DJw/xqaTG8ssQESep+bKzFPfdKkqo3vFl37Wwec4sSJx0rucm6SaSjs6UUjcdjSc0tIY0Y0SZMHEliGB1ljjwjtIws85okK4za+z60gFP0iG1qa4OP87XoxKBIQdLjCLGjwx6btsg000eY/862k8hzS0gSMF8vki23iW6SNnEmEmmmjZDkMiWCtQLoPuH2g2x/bCvHwOPJdcH2uz0WGTzvTJ9we0z66SyJtQz4GdcNXQxMwbHQRCdNJOillHre3R+KSW3jTDeIr23ni+/P1I222iQxlYPXNsFnUUv3l4KE22pRwMIY64DwukwJimk4dH9wjrg+Yw2UuBNErJfANUvHRiKRSCQSicsAnTWt33SjqtzeIJG4KFgZQSESWe9tH4mUQbInNaOOzGM3mdnZ2WmkULAQntMkGHmm3ZlbK/reblN0AbgvJnqMZJtA+ZomYIy8kjAy/cPHxPQEEzKTS14vWr5JvmhJj6kfJlQklewHhYJYT4HFKVkvwuPifsXots/1doAUD6qqqm327rPv62KFtv9zLhhldt8tpHB7RQoKsRaB+8p0mEh6PZasUUH3Cq8lqSF+cJ24fRZQDIoabmesveA221Hi9RsdAnGtOl3BQgCfC7fH93KahfsZi122FYb0M2jRwPeOqRBev3GMPB8efwo5Xk98dqKY4vFkKlB0wLDGh6/NuiiJRCKRSCQuH6w99CF62999hFROhgsxkVh1rIygQDiH37Z8kmja12nTZrTR5NMkxYIAt6KMxeFMgElUGOUkwSCJsRWe5/r6JPgmeCY0Js7SHqlxvjrv1e126yKUJP386es67cHtI/Hl+ePxuFE8L27nF+sGOFrusTKJN0z2WJjP97dI4wizCafv5fQLt3tnZ0eTyaQmvr7fZDLRaDTSYDA4FP2uqkobGxv11n+z2axeGzF9wmNANwhJpPvi+hlskwUaE2DPm4UEjl+329VwOGwIWiw0SoJPUcFFBr3uGc2P0fnFYlHXwPA8MGXD4+Excq0REukoAHk8YsqKsbOzUxc1tIPCiA4NCwLup5/FWOyRc+5CpSzg6fPdzrg9p+eJ225SNGPah1N4/Jmvy7UWU6MSiUQikUgkLie866seouv+7BnafOXrJElv+bJH6OO++dN061f+6DG3LHFSsZKCQrTmM2IaSYx0EEU2me71eofy8ZmXbULG1AGT5rYIPiPKJGT+SVcDrfu+Fu31Jqy0mZMsuj++nsk789uZpkGSS8cDrxvt/bSt09bOPhmxfkCbTZxReJK4trQIihUeU2/9F3eziM4Cn2dS6Hb2+30Nh8ND5Jfzy36xPgV3mKAAQ1u9hRC6HQwKE16z3r3DRQspLJjss+5GnBOmi3AuKHRZuCB5Z587nc4hAY31Ejg2XsMs/BiFNK4hrmMTf65LPg9e6+4zHQZMd/A4tRW05LFca157fGY5PxTWmPbgdRQdP7wnn+VEIpFIJBKXB9ae9ATd9SnX6korxEjsblS65+M66nzZp2n0i3+o3fe+X717Hn7czUqcYKykoMDoOiOeJCtMDZAOiI8dCiY7UrPYoKRDUckYjSVBoSPC55CYGEwD4D0odpgUOd2BaQV0Cvj6jlzHKCtTJGwXt+OhzaFAEhZTFSgmtNm747VIvEkmOW9xF45o2Wd/qqqqHQzM0afDg9F6EmBfw0UmSdBj7jvXS1xTnFtGx1kA0u/FvkSRidubUqxhKgVdHY6IM40jigjxxXGOOylQAKHoYnLPFBP3K64x1pKg+yQKYzENKNayoNBlVwej/3SEUOzgGuV9LUxwTj3/FE5iahTHyGMa6yZw3XjdppiQSCQSicTlhfEtp/XRT7xyxQRj+tCl7tjs6NH/rUhVpcFdlX7wY4/R37323cfdtMQJxMoICiS0JpfMxfd2hybPJHIkSRYUTLxiJNaIue2OVpLQRIJN4kgiZpJDN4Dt7CwC6VSD6XTaqIhPCzlFE94/CgomSLahT6fTRgTZxDamdjAqbLJOAkiizHQBtoERYFrypWYBxbZIcQSt5rEmQ8xjZzoLc+zX1tY0GAwaUeroFInR/ihaRfGFwtBkMjm0fqJ1nyIF3Qp0Dxgm95PJpG5ft9uthaaYKsHUh7Y++D2mvHicokvGUX6SZa43v8+0HYoddDrM5/OGs4dpOKzjYCGF4yypTsPg9f2+f49bQPp7wXNNUcafs/hkdBexZgTXNt0UUQhLJBKJRCKReNBw1H8/yhHvXwQ89Edeq9/6zafq7/5uCgqJ88fKCAoEI6SdTkfD4VAbGxuN6Oh4PK7Jwfb2trrdrra3t2tiTdJi0JZt8uX7te1JTxIfo/AxYh0/i+TZx8Xcfh/ropEk2BYK3FZG030NixRbW1va3t7WfD4/lIdOq/329rYmk0ktythi7nGKogTngn0hKfVnJNG8pgmzawMw3cH1EqLoQ5cIa0AYLLZpa7+v7ZoHLvIXHREWqphO4b/bBIW1tbVagOFc35+TwIJOFHA8LnSUMN3F65v1P2azWS0SkDx7fFxvhOIWi4xSHOC88fx+v1+LA1wDbge3aPS8WSTj+NL9wPQKPkfRTRCFpOjq8ZjMZrNa3HG6Cgtgxrnls83njoIH5zB+zuKciUQikUgkTjY+/HeepfGNlVY93eHG10lX/cZbG+9Vj3yY3vE1V1/U+ywGld77z56hj/uJD2r3Pe+7qNdOXFlYKUGBEXBuDdjr9TQYDGpC0UYS4372zFH3tWl9drFHSTXZouuAggAt3oy0M++f6Qq01bONEayhQOJOQmPRpC3q6uv65cKMu7u7NcGMY8qIs+8dI9NtOfNM5yDx5+ecxyhEcPx9D6YheExN3jkHFCD8mefcEW4fF9cTUwMYqaZzJa4nt8NzYKGibf7aXC2MoNv9wgKArHtBUcugE8AvijZRLOO96EaIW5HSdWJ3TEwtimuBYgBdBz6WW4tSlPGr7Xni/MR6Grw/3RBt65Cfc23FNcPxpJDIdsR7c50kEolEIpE4+dgdSsv+av+7fvOrlzr153dq9557G+93Fkvd8j82dNvn97S4WH0oe/UUPvQFN+m6P71a+sh9F+e6iSsOK1nO/L777tN4PK5dA055iEXoaOcmYTZ5ayt0Z6IRazI4emuCG8l227aBJIYUL0iw2og/UzFIikhKGZllHv/95X67mj7b6mMsmtAS3uaoIDluExYoJkQiHcFrxM9J3jw/LLwYazH4etxmkLUjmBZA8soxi2Pndvi4WOiQ687bmA6HQw2Hw0PbF1IYiGuB7eGc8xXz9dvmgIJQFIfcBwo9bePPtcBxd7859nzG/PK5Fq/8k04Gzk98NigwtdWB4Hpj8co2MSEKDr4uX1w3bg9FxzjOcR5SUEgkEolE4mSjrK9r7Qkfp2X37MceN069/v3affd7D72/PHNG67/9BpWdw+dcKO59QqUzjx6qTOf6+tufqQ/tbl38myQua6yMQ4GE49Zbb9X6+ro2NzclHZAeEh9b2iMxpy3an8fc7TZXgBEt8HyRbEkHUX9HPRkhjdb9SDyZNuDUA9vI3XYKI4vFoo4ouyAj7dnz+VyTyUTj8Vij0UjD4bDuk9s5nU4bgoLJHNNCYmoGx5ZWeV47EkYSM6cjeL6Yr08yz6g7RQ7WQnAbnCbhtBBfl7tfRPGFf8d58NzGSLXn1Ns5el0sFguNx+PG+LCN0+m0Ps5jE234PlZSnWpAgu3jmAriNeNrOnXF9TjahB6D5JmODj5XTtHweDjyb6eB1yXn22kxUcyww4hpPJLq7VF9vEVDv1gvIYoGHD+vLT8jvk+cR7oTLCZQbDjKmeJxjGlQiUQikUgkThY6V53W27/+OqmscLHlSirHGMOoirT7gQ/qvU+v9DNveqq+/dp3HV9jEicOKyMoGIygWhzg3vEmWyY5LGoo7RWm29raakRhTZpMDvw+o+QxYupoebTzG8vlsq5xYFJn4unrxUgpc8bdT4PF61gbgKTVxFxSXY+A6Q/uUxRIaPf2e+4DnRBun+sGmATzGM8DrxHTQ/yazWYNUuz3+v1+XTTQY0Zi7/F3W01OTdS51SNdF3RQ+NoUKzyPJI1uG2sPkIB6DtxeOlwi2fTYcSzcHopXFDnoqIhE1yS5zZLv+XSRz9ls1ljHnve4Bum48Ty7hgJFND83rrHhsXafXNfB8+r7Ulyhs8KFMweDQS2OxZQlX5NjG9emx4Y/ud7X1tYaRRejIyLWFbGAZUElij/pUEgkEolEInGp0buvo1t+4E+1Ox4fy/3v+sSi+255ph7xfa85lvsnTjZWRlCI5Mzkczwe15FTE3AST5/rQoTSQfoCc8/biC/vzer8R6UrRCGAwkfM+ZfUuKZJ5Xw+r4UI1m1YLpc1KfRxba4IX9eE2UTXfWe0eX19vSa4R9nip9Npg/STcJro+3y3J9rXY/48yTjTN+bzuQaDQX2OUwzcFh8bCwB6Ptu2eXTb+Lv76fZzzkjgYy0CEmemI/Az3u8osk5xg2S4jdwa7PtisagFI7ppuP4ssnj9uQ+cH0mNnTuOSj9hCk6bK4Xt5rkxhYQCCoU/CmnRZcD0CLaVzwzb4DHxPeOOKJyT2NajakRYKHO7XV8lxYREIpFIJE42Ok99oj78zKu16oUYVUnL7e3ju/16peWeiVS/8M8/Tz/3FU/TG572ymNrT+JkYWUEhQja9KfTaYOskRSYzLLGAqPMPoYksA0kq3RCRPJssm2i60ixyXsUFmKxvJhbTnu5o+Tuu6/BFAfpsJsi5r5bVIiF8GIdCaYPxFQMt4nEjIID36fwwBz1WITQ7fFuBaxTEYkyCXhMHSBi+oLnmASShL7N6h5z9GOqiR0PnitG4D0fHEN/xkKhbIP74b7T7cHrcttHjqOvYTLuMWd7OC5RVKKgEZ+VWNuBQoULZhpRGIl1DKIYMJ/PG2uhlNKo+eHzuXbj8xprqFBcis83x7qqmlu4xvkymErVVtsikUgkEonEycHshg3d+4QVFxNWDFf97Ov0nic9U3racbckcVKwUoICo4x2KGxtbdXpByR6zANnigLt5b5mGylos587OsktF0nMeF0Webu/yC+JqwlKjMIzpYE53+4fUynsRmAKh+8V0zVIRn0tChExOus+Mk2CpJbtY/+4m4DUTNnw32wDo/7sry38vrbbw/OjVb7NKeD7mJjS+VFVVR2B9hhFESQW7XN/mGJCIkz3iscv1sDgjg50xJjwRiLsNAuvSQsIXkc7OzuNGgpuY0yNiM4GryGPkVNJPNfut0UQpmW0CVR0jFBk8jgwZUaSptNpo24H2+9rUiRj6hGfUwptcS3wb9Z3YLpKXOt+xXlgCksikUgkEolEIpFoYmUEBRLSqqpqMUHaI1BOeyCJcg0FV9834WOUWlKdGuCCcM7X9nGu4O+0CUaOTd59f+4kYas5yQoJlImgpEPEs430cUs/aa+AXb/frwme22NSG3PvnergcSDaiKFJVJwHt5F9isTQpM9t9Huum8Brk7CZtPrlbR9dC2A6nbYKMe4Po+pMT2CfIgl1v3jfwWBQH2cxw2vLYx3TJSKR5VxGp4hTPNwvCkRMZaD44j557EnWLV4wPaatfgSdFnHspaYg1ev16muzXgfPZz0D1jfw2I1Go0ZdAv9kmzz2Xh+em6qqNB6P6/Se9fX1xnNo4abb7TbWT7/fbxQUjSlBBB0dfkY8hh5/insUf44SIxOJRCKRSCQSicQeVkZQiDZkE1iTd7/HFwk1o44xn9pEm9FHH0eCZHcC2+TzmYce0yksSrANJId8uQieCSfb4oixf5pUsQ4DST4j6B4DCg4UaaKDgoSWfzPK67oFzKtnVJcpF547X4N28bgFIfPpabn3XDMKHV0fJM0WIkwqWcjRxzI1wGIHrxGdDTE9w+9Np9OGM6Qtku3dPljI0P2zSMEUHV4ruhTaUnO8ZiaTiba3tzWZTBqCFgUTWvyPeiZY5yBuKVpVVT2ebSkGdk7Q9ULhoo2Ie85cP8T39nj0+32NRqNG24bD4SFRgOuchStZG8Hry+uN645OBRdipOBDUSauv0QikUgkEicDWy94hu55bEdSBgcSiUuJlRMUJDUIOOsmkBQZJNvSYUGB1ve4RSIt+3wRJLe+PvPVTahMDmOUmNF1SQ0SIzWL5vlaFExIwiO5YV0Bk0TuRBDPiUX3fH/fm+dQMIlpH3w/pofEwnuel1jAL0Z/eY+YQsC5iCkSnotYt8J9ceTfTghG7iNh5HqLooHn0vPDgqBukwWiKITE1BluE+lr0OHA83h/1xQZj8e164Ekm+1k2+K1WEvDbXcKRVx3bivbH8WtWCeE94vpKHx+eD2Lfi4m6uNdGyWmOfHecVcHCnlxHPw379tWKyTWs0gkEolEInGycN+jOppefzL+HV92K5VP/QvSn71D1X6qbiJxUnBBgkIp5dskfZ32Sqf+uaSvkTSS9POSbpH0XkkvqKrq7vO8bv07yUMsRBij94yMxzxsW51NwCkEcMcEkyzbnn2tSL4cHSVhppgQiyyaKJogOT/eUXPatkmOOR62qEeibeLnyK7bG4UYpmzQFUCnht0Hvg9t7vGavh+j4ySLFB/YJ0Z/o5jCApqxn3QXsD6Bx8/t9e8mr04PsIPAY0FSSzEkElGPC50YdGPQMRKLXDLNpI3ce/31+/3WbUANuzEmk4kmk4nG43Et2MS0BI9xmwhFMGrv3Uc8XxYSODYU49raSbGK/Y81Gygquc9cvzGdh7VBOJ587iPxb3MYxJQfH2dRjOuW6RsnAZfquziRSCQS54b8Hl4tlH5fVefsx60KdjcqvfOrNvTxt1+j3Q99+Libk0icFx6woFBKuVnSt0j6hKqqJqWUV0r6CkmfIOlVVVW9pJTynZK+U9J3nO16JgS0NDNqaRu5iZzJR7/fV6fTaWyj5/oFm5ubGg6HjTz/TqdTb11oIj0YDBrpDiaqJoqMgBokJj4mEmkXm3N6gKOvJs0+x3Z4kkL2l0TUx9HybULEnHuCUX2mGLAIoq9H4SWSyOjKcHstJLi2hZ0D3PXCZLAtNcWODY413SMUHljY0vdymyjcsC7CeDyuhRvPqSPTMS3D5NpEMxa4tNjEOfP4cm1anGIdDaYD8Pr9fr+uARJJuudrPp9rPB5ra2tLZ86c0fb2tjqdg4KdkcD7Hqyx4Gi+P4/rmAKY15b/ZqFGC3fe9tTPCp8dry3OJZ0Mkupx8vPJ2glc714HvV7v0Hakng/WWPB8MV0nCjt0MlC8oEB0UtwJF/u7OJFIJBLnh/weXi10Tp3Srf/wyVqun4x/xxOJk44LTXlYlzQspexoT4X9oKTvkvTs/c9/StKrdR5fnv6PPglIjLhLhy30JhomFyQHMZpKEkW3gwlGrOAfLdVuJ/PKafVmFN7v0ZVgQmci7f6ZhJqkMdecbgo6LDY2NmpBhFF2kldH56fTaR2t9zGTyWRvIveJnMeY5Nz358+23HTWNIhV8xlppv2dee4eW9ruPVYkrNwqkSklnGOnB2xvb2tra6smvRah2A4fawGIaQMWC5hK4jGiO8VrhWvC57oftNWb2HsNck79OV034/G4FhJcOyGOocU1CxAUuKIzIIpjrFtgt4D7TBHK40LBiM8bi0wyRcFtZQoEhab47Md1zLHj+9x+1WM1GAwaKTyx3xwXulz43UDh44Tgon8XJxKJROK8kN/DK4RqrZJO1D/je7jtqx6jzs5j1Lu30jU/9dr6/fUbb9AHXvBYLQZZ2ymxenjAgkJVVR8opfxLSe+XNJH0G1VV/UYp5Yaqqj60f8yHSinXP4BrS2palCke8DOD5CBWy28TEyKZi+kKMZrP6x7VBreDv5PIURDx+SSbdjDEsaCIwloPJoK0ikfLtttAscXXjBZ9pz+4nzGqHK37bfMWhZfYT0aQmT7i43xutKezXXF3A1rg6YCwa2I6nTb642u3kWA6MrjzgcefgoLvG9MLoiBh0SgKNnEcY9oFnQHeAcO1INrWh+9BF0ckxUc5bSh0RfcN02P8OVN6eI+41uKzx58UFnwux4bPIceLO0jQsVBVVb2LSCwEGkULX9PiIcVHOn5OQsrDpfwuTiQSicTZkd/DiYuF7Yfv/Z+ze6boqs/4xPr9rWt6OvPodFwkVhMXkvJwjaTnS3q0pHsk/ZdSyl8/j/NfLOnFZzmmETEk2SFRIYEiASGZiOSNtmhGYU0yTDRMXqfT6aHc8Ei8oluBVe9plY9b3FlMcOTckVaTS5JhCwi2h3O3AN+Hu1DQLUBiRuLGtpmIt1n+fZ9Ye6ANJI1MA6D44WKJdmow4k+iK6mxXWfsEwmgUyRIbC2U0O1AlwSFI7pK6E4hfA3WGeB69HkcH+6I4PGl+ETBhG2w6DOdTjWZTOr+e5w8HxRUvAZns1nDIcL2kMiT2EcCzvQSumWiaOBrRQGOIlfb7iPsv+fCopWfRYoGFDh8D8+v4b/9fMd6EJ5vPtvuF78XOF6rjIv5XTzQ6FI0MZFIJC5r5Pfw6qCsr6uzcfLHcOdUpXf/X4NjuffadQ9JJ0TivHAhKQ+fK+k9VVV9RJJKKb8o6VmS7iilPGxfiX2YpDvbTq6q6uWSXr5/7v2u2mjJNuEg6TbpMZHr9XoNC7tJGnPmGX2PueHSQW0AR4dNbNyGGKGO0Uzeu9PpaD6fq9frNcim7z8cDrW5uVlHRf0ZxqsmR6PRSIPBoHY0DAYDra2t1W1l3v729ra2t7c1Ho9rQsoXI+Kup2BC1u/3GztSkJxSqIkCBXd+sJAwGAw0Go3q47jrwnA4rMd7sVjUwoNJuAmkUxiYm+/+e4xMwGezWZ3eQdHB13NfKUC1kXy/PFaGa3K4P/7da6ltDVO8MHGm5Z6fz2azuuaBBQWvGwsndDtIB6KFawesr6/Xa9lt8Lk+lvdnKg7H3uQ7psF4/LjemerAdWOhh+tobW2tdo+4fgRTPZjuIKkWGDwWdBFxXfp7gg6DeE0+sxRKKIBY6DsBuGjfxafLtfk/iEQikTh/5PfwimDx6X9Bt35JX9UJTHdYFTzrtz+g//GQ35R0gqpaJo4VFyIovF/SM0opI+3Zu54j6f9I2pb0Ikkv2f/5S+dz0U6no2uuuUbD4bBRPM4CgAmPxQKTPRMMRzKdE8/PHM1tqw9gMSFW/ze5s6BgosFjvB2liYiJ62AwaBCfyWRSE8tYGM9F56JVm4KFdEAmGe0ngac93WPDQolRTIhigEHBZnd391CNBo4NXQ2uBWFy7YKDg8FA/X6/seUmySrz3Zlq4eO4i0Qs3MjjFouFxuNxY2tF6YCUWnDwFom9Xq/uu8eS5/jFdJGYAkJRhu3i/MY0FAoK7J+FoW63W4+r58qRdq83puBw3LhO2Ce6aVxQkfZ/r0v3jztkUCQxaffY8NmL8JrinHkuLGz4uEj+2X8+m1zjsZ4FU4b8Ptd4XPOLxULT6bSeVwtifKZOAC7Jd3EikUgkzhn5PbwiqEo5Ubs7rAquflvRDa/6sBaS+p0drZUcxMS540JqKPxhKeW/SvpjSbuS3qg9dXVT0itLKV+rvS/YLz/faw+Hw7pAocE8fEevSTxibjTt7vP5vFGxniIFyRH61iAStMRLOhSldfsIiwS037tN8X4kWb5/JIp+n+/ZsWDi6NSF+XxeX5PRetrHmYfONtD6ztQM29ejoEDbuQmpx4nto0OA8+DihNF+TwGABRijG8BgxHkymTSKQ/pzzg0JMe9t0Yq1JtgurgumEUQyzc/ojqELIRJ6CwoUqNhv1v5w25j+wHbGuhKxLoHvFQWoOJ5sf1yvMS2Ca5v95+8c0yhgeUx8TbeNggLXcUxtOqpuAsfY7eFccOy91jimq45L+V2cSCQSibMjv4cTJx29M5UWt77nuJuROKG4oF0eqqr6HknfE96eaU+ZPS/QTm8xIZJuE6TBYFATTRbUM2IU05FWOhH6/X5NQmIdhf2+NdpAS3y0b0cxge+TsErNmgZRMGF+N/vjdpOMsSCjSbst4RYX1tfXa3fFZDKpXRt0HnBsIwFljr7HJY4zBQpH+TmXdBvweiaIJsmx+KPHwmIICybGXH+6KXZ2durUDpLkGNF3Px3BZ1spttB1wnu7/xyfeJzXESPjFGG4rSGdCia2bYKCf0a3CO8RnxmPE10Gno9YZ4J9juv6qDVPcSM+t/GZ4JjE8/ny+rAgxufY68HiAHeDiXU/JDXWaBSNKDRQvOJzdxJwMb+LE4lEInH+yO/h40dnY0PzwdrZD0w0sDYpWptlwcfEA8eFbht5yRBt5dJBLvbm5qaGw2Edsdze3m6cZxeDc/W3t7cbxJ6iAPPKTSxo32f0nE4It4eEhmTK75uw+KfzummHNxnyvV3NnySS16UQwu39WGDO95rNZppMJvV2g5PJpB431xHgtV2PQTrYlcLpJSTLJu8UYGK0nP2jm4QFEJmm4na4D743003ogPC4uX27u3vbK25tbTXuxb4sl8tDhNJjHyPrJpOs32FQeIg7GsQdN5huQ7Iex8VuDelwoVHOk4Ujjj/npKqqev1wDjzvJtje4YNzFd05sVYIhRK6g9qcG1FY4A4cFEN8PYpcrJlx5syZOu2j7XmiyBaFKboaPA+uuWF43NwO103wukgkEolEIrH6+ODffKq2HpnE+HzxcT95hxbvfPdxNyNxgrGSgoIJD3cVMJnpdDoajUb1cS48Nx6PGwTAIkGbw4B/m0hagDBJmc/njWuRVLWlXrBOAwmNQUIebfbMfY9pBNJB6sBgMGi8NjY21Ov16poF0+m0JliLxULdbldbW1va2tqqizKyuCRdGNwpgTUJ2H7XOvAxMeovNSP4TrnwvNCizrniOTEXnzUXTPi73W59LddJcPvG43F9Tx/LwoS025PAkhxHIuy/OZ9MYZnP57VjhKkiJvxeSxyXmMfv9e6/GVX3XHkMudMFx57pDCbRHDsjOhmiIMDnjWB7Y3T/KMRrtIkNFKNYENUCmJ01rJdAtwTdJjHVgePsv6fTaf29wh0h4ngwJShxBaGzppteM9IP3PgfJB1Phe1EIpFIPACU/VcikXhQsXKCwlF52yQ5LOQWregmvCwux8KGJkQWA0xwTVJpy/c9Yk42nRPxff/kK0aKY6pDtNFHB4Ot3P1+X/1+vy5w6D5QjGCBQxPu+KKln/USWLeC1nOTquVy2SjOSDeHx4lF8dh3F3Z0O0nWOC+OvPs8ihrSQdSYn8dXFCo4/5wnX8ekkmskEmwWWfR96RLgODLSz+04Of/RsUAwlYMiAV90JkRBioUM2wj8USkJ0VFBoh8dPk7NYFoPt1psu0ecF16Ta8DjFoutxpSXOGa8j68dU1c41u4Hn/UoLKWgcOWhdIq+7cbf1FN6KSYkEolEIpFInA0rJygYJB3MzzYJJhklKTDhNAmPhNvkxNsZUqRYLBaNonf+SXEgCgLM+5YOb13H/kQ7dsxxlw7nwvt+cbcEFmMkKSOJdMqHXxYUSJLaagmYZJMMe9y5jR7t/nFeDLs3uDNFFCFI7Jnu4XElWSeJ9bqgDd6pB/f3YkoCo/8eQ16PfY01IJhvz7GM7g2vOYtcdjJQJOPaigITnRC+J8m114GP5S4edOlwfcY54lr2XFCIsVjkufazxOfrbG4FXz+2gUKG1wb7ySKibG/sR3Ra8NpRqOTa8d/xZ9v1Epc3OqOR9HGP1KD8znE3JZFIJBKJBwXLq0bqbGxoiRTyROJ8sHKCAomVSa6kBnFjfQRG3iXVkfyNjQ1tbm7WaQEs8uZUieFweCifXWpG+iO5NxhNdVtofW+LipO4xbz4SI5MNNfW1jQajXTttdfW22n2+/1GNLiNDJmQsf6Ar8u0A4oJ7kdV7eXgb21t1ePgftEZwPGkMEPSZrcI7fFtAozH0QUVOXaM+rvfcRePWMWfJJ1FDknk/R6JpdsdUwVivr/b6RoM0bXiOWaU3X2pqqoWFTjXdJxw/biegF+8HsUkz7dTBPhMcU64DtpqIsTnsJS9Qqkscsm58fHc2jGmOrAtHGPWTHB9B4ownCN+BzBVh/2JfaHQRPcPxQ22jalIbe6RxOWNybOfpFf/+x+XtHHcTUkkEolE4kHBO79qU9f/n7+g0//pdcfdlMQJxcoJCpLqaHav16uJboxAS9J8Pq+LDErNrfNM0Hq9ntbW1urK8G0WZ0mt0c9ooY9pE/6bNnMfFwkJCbyLxbnNvl4sire2tqbhcKiNjY3aneD+tFnKo1uBuee+F9vk65j0S6oFCBdDtLWdUXDa0r09o8lZrFfgFAm+RxGn2+3WjgTv+sB28lyPM0ms1BSbomuDBSA9tk5XiIUMOe8Ga2cYdC8cZYvn+vD6jWtPUuM9pur4Pt7lwIU1TbhJfn09pn3QqeLjmDZgcaaNMMf3PJ69Xq+xluj04FgdlSrRlmoymUwaLqPo7IguAZ8b630QFK18XV47pll4PHmuv2diyk0ikUgkEonEZYWsO5G4QKykoEAbN4m9o9kmSySKBHPZGS12obtSSiMazKh1W54187CdFkFibqI7nU5rshtt4ExtiHZ6X8MEz8d7i8zRaKThcNioceDzl8tlLbz0+/06JYF55201ATjWtOmzoB8LA7JoHt0OjAYz4kuCbocCCRqj8CaOvi5z32NhPIoFdH3EFBK3gaIQxR9G2lmY0f2ikNAW3fc9CYpNbWPvv3ldknym1dCdwF053HamTVDgYaoAyT6fF7c9ig5RpKJ457GPY+5rx1QNjhNdI7EOQ1stjba1xb85Vm3CmkUwrsujnEZ8jiLOlsKRSCQSiUTi+FHW1zX5wk/W/PRxt+TywCv+0xfoDV/0Nv3co3/7uJuSOCFYSUGBuyqYCDmyyN9JzGk7l9QQE0zwTJDtXPBLau6uQCITC/5Jh/Osmd9ucuyIfywSaOISSWwkPS6SaHfCaDSqd3Pw+cxhty3ddSHYXzoqDLedbgcKL7bqO/rvcZ3NZg2yTdu+RREj5skzzYOkzu8vlwdbOsZots9jnQsj1iDgeVEQ8f1i1DuS17izB48xQY7kn+JDFBQYtafrhu+TLHs83AfXReAYklBbKLGY0BZZ5/ac8bmJjoUoDvnvWBskOhTinMd+ebtNpiC5H0xfiHPSJiYcBY5tdKd4xxQfx+8Inn9/QkMikUgkEonVQen19IHP6qhay3+zHyh2B0XrN96g3Q/foYd//2v0x5vPlFJQSJwjVlJQkJq54bSoS83Ip9TM47azwceZ0DvlgaTCtQ5osyapZ0SaWxnSaeB7mMyZhJooMSrNaPlisVC/32+4GyiWuAjjaDTSxsaGRqNRg4zZ+u++su6EydN4PNZ4PK53dnCfYiT9/lIMGMV2pJw7aHCcfY7nwKIICZyjx9xKMtabcB0GWt5NaE3GoxXeZJVbShrRyULBINYraFuHTuUwAXVqgvsdSb1rNtAlEgk+1xrH39dw3QRvnWgxoS2VwOdtb28f2iUjigL+na4Qigo83u9x/DlGXtP82+dSXIl1Cvw8T6fT+tmw+6YthSEKCPw7ulK8ZpnywCKWfGbi+HD83d8UFBKJRCKRSFzu+NhfqHTmlsfoUf/ojuNuSuIEYmUEhaOsxSbybRXymQYRHQoxosx0h06nU0f819bWaqLMn75GW8qAYaLoOgWRXDH675xxRqV9bwofPnd9fV2j0Uij0Uj9fr9BYH2shQfv/FBKqXPut7e3azHBVnneg6IIaxBwPigoeBxM2iMxs9jBIo/dbleDwaDuv+8b01FI2kjiSPZiET5GuWOk3veLZJBEl6LCUfb5KCT5Gp4jFnz0vauqahSJpHuBffdPpj/wfq4PMplMNB6PG7Uq4vpbLg9qLfhv1gpgu6NLxWIJhRIKFXQCkaj7OhxDtocCVuyfj/OatIBEwYPrnGuDdUhiLQ2O/VGuD7pKojPHYhif46yhkEgkEolE4krDx/3gO/RZr32xfufHXn7cTUmcAKyMoBBBcmcS6Yj32traoSr2jK4aJsskqWtra3WtAW4nGfPP22zuhEkIX4xWm2TRMRBJDu3xdgqwAJ6FAkdvScacVuHtI709oAmcCyZaVGD1f9/X/XZ720QTEjL3gZHrmG5gMYTklGSR7gUSV5JUWtVjZDmmA7TZ49lu9y0SacJiSLTrc96jqBTTIWLaQ5vrJZLauBa8BiwQWCSw64BOAbaRtS6YmtCWfnAU3Ha3wW1sc+7E/vhebXUjeF8KE3F8osslHhuFML/ic8U6EWfrN9cMhT46XM42bolEIpFIJBKXGxZ3fVQbr+voCT/5t/Sfvuplelq/d/aTElcsVkZQOConmhFkE+hoveb5JBuMvpswunhhjMS6bgB3RSCxiSSK9mjb0RlZj/b8GLFtS6uQDgi3nQcuuEhXhs9xzQSnbvh6bBcj3BZM3A/2LxJojiGdCCTtHGvWrrDIwa0tfTx3jGCBSTpOKMCQIMcinSTSFIzORgLZ5ij8HNVPk063mY4YzinHPzpK4tjGFAGnzCyXy9pZYkGBY8G1zvXFqHubaHHUWHDduI/uVxQEuE6iaOH5iOPs81grg4Sd6Qbsj9MVYvpEWzFMP1+sj0EhMYpOnBumf1hEodiYSCQSiUQicbmjWpPWH/0oLW7/kKqduRYf+Yhu+Qcf0d//tL+if/qY/65PH7RvCZ5IrIygQIIdc8UtJJj8xRx6kzBug0gyyyi3bfiM+nNrvigokISbaDiCzJ/SHsHv9/utO0iwZoD7FRFTBYbDYd1vEiHfy/UV+v1+o10mos7BNznlvTk+jH6TnMf8dM4TEVMH6E7g3PhYCkPuk6PwPsbkzmIKSaT7YwHI17fN344WijUk4naCMO0gpqvQxeFrxb5TXCAp5bmMfnMs4/xTVCilaHt7W2fOnKkdJtxS0+fzGnwmYgTfx7svvEYUttyONoHO8+P7eEtQX4c1QLjNqKRGscjoAiDBt0vCYoLrLPD5dh+iGGJRj2MTd7ZwW1h81G2jy8Z9jwVAE4lEIpFIJC5H7I4qve1bHqaPf+lSu++7rX5//XPfrxf+62/Uu/7qjx5j6xKrjJX73zIjw5IaxM8ENBJknksSTGLR7XbV7/e1ubmp06dP17nSLn63tbXVyH2XVIsJ0crdlqdvkYKiAu3cBOsBkGB7i8jRaKSrrrpKGxsbNfE2AXJkuN/vazQaaTAY1ATIjoTt7W3dd999OnPmTF1LYT6fq6qqup0WV6JV3+PosR8MBg0iTdGAu2Swb5xDkjmncnD7S9esMLEjuTe55BaAjljH4oMmqRYgiG63W/efaRnR9UBiy2KNFpZ8XkzRYHsfiEXeog5TL5yeYsGkreCh129ct5IaRDi6YOguiG4QPkNxXpm+4zXJ2hUWVSw0sD6EP6fbhmPnflq42N3drcUwulTsMKK75aidLehCiOKAn+0otMV+x10tEolEIpFIJK40POGfvl2f9dtZUyHRjpUSFNbW1jQcDjUYDBp1AaTDluVoIff7JOkmQCTATndgND5GTo2YCnEUYTNJ9XaUcVcD1gOw7ZvExUR1OBxqY2NDm5ubtfOApMxE0O4FbrO3WCwaKQ6TyaROc/D5FgNYWNFtdN9p5SeJ9DjHNAf31e1wf5gaQgGFThPf0+LAzs5Ow5HBOXU7SQLbHAOeV4oKba4LpjsclS8fhaC2+g2+Pgk5hYXoFDCiI8DClteFXQnsF68fa4NQHPD7UTBwFD66G9i3ts/iWMTruh8Wf9rWAB0EnJdYc4Frmsdb/PH6jK4I7sLBz1jUlWPPZ5PtpTvhqF0nEolEIpFIJK4kLO6+Wxuvf6+e9G+/UZL0pC96u175mFc9aPd/zH/9eg0/dP5BnvEtO3rPF//4JWhRglgpQWF9fV2bm5t1McJIAkiMIsGRmsSelnqTBef2swChyQ7he7k2AmskMILLnRyik8JR57Yc+khgTbbtoDh16pQ2NzfV7XYP1Qiw08LOBH9me7hfTgkgaXI7WSGfOf+OKvtYCx2xnUwVYH/dtygCeW7aCjUywhzPcXuZGsE0E64BtqMt99/Xi2kccU3Fa0a7vM+JO4FE50BcnyTpMYWFLgNpj2hzq0+2lSKGHQ3sa0x74HmsE9CGtgg9+xEFoygoxGvF+7e5CCiAtI3hUek3nGc+Z16jLJbK553zzXnis+y/U0y4stB5ysfrrqd0z35gIpFIJFYGnVOnpEffLLWXYktcRCzuuFMP/+d3SpLetPYs/e3nb6lTlvr+G39Pm53BeV3rh+55hN66fdM5H/+En7hPyz9963ndQ5KqZz1Vf/uTP63x3npnoR+48Q/VLelCvVhYGUGhlKJer6errrpKw+GwLkbIqKxfzPlnkT9fgzs4MFobUyd4bebe04Jv+zWj/IxmknibuFgEMKE30SFJigRrfX1dg8FAp0+f1tVXX62NjY3G7hFVVdXHcBtJR+0tKLB2gl0KPD+SeuaSSwd1HDyWjOByjFg3gS4Gii4G3Ru9Xu+QOBCLKjL3nlZ1j2kcNwoJbYT5qDx434MOFNrr3fboWlksFppMJnX/GUn3mPL6UcihXZ9km6kdMaXDa5auGrtD2sQqjgHXGseWz17bFoxnS99oS0+iKEER0GPL9cR0As8hnzsWomy7JwUpFoP0+35++D3iNWT3jnRQ1yPW1WhzaiQuU3TW9M7vHOjWZ//wcbckkUgkEueBxZMfo3e9YHjczbji8IjvfY3e+b2SStFr3nlKnzUcn9f5P/PPvkin//PrzuOM8xcTJKm85k/1zk9tvtcZDPSet0/1qPW9tO2OOisrLuxUCy21PPuB54h+uTSBk5URFAham0nUaFOOuwWQCPozE4g25wCLBI5Go0Y01PZz53DTNs2oPYkNyQsLwplsskAhya/7u7m5qeuvv17XXHNN7dIYj8cNgtPtdrWxsaHBYKBut9vYBWA+n2s8Htd1E86cOVMLL1L77hcmYnYmkOwSHmfXPiDRZOFECy5tkWUSyN3d3boIpm34LizJlBGPq0l9TEs5irhGG3sUN0yqmT5gcuk2sB8UKigMRUdE3LqR9SZcP4K1C7imuT6ZhsL+sVgh+8N0hSgMRFDcYkSewhDXZnSsUPTwK7p1Yh0Nj/dRYpPvwWN8nteH103bfMcUFF6H7Y/PpcfAbp8owvBn4jJGKfrSN31Yf/XU70kaHXdrEolEIpE4OagqvfTTP1svO09X51Ufe6OOa2Pu5XSqb/u0L5McRNsc6Wd/+2d0zdrq/R/gGf/0b+vGX37PRbvet/7eq/T5o52zH3ieOKugUEr5D5KeJ+nOqqqevP/etZJ+XtItkt4r6QVVVd29/9l3SfpaSQtJ31JV1a8/kIa54Fu0KpvAuA6AyazJBnOt21IM6DQwwfB1WCAwFn70/YxorSf5MzGxCBAt54ym9no9DYdDnTp1SldffbVOnTp1KJ2B97dzw/dkjYfZbNYQFbiFnsFc85i/TiJsUuhaC763iW0c2/25PzSPsVaB28p0DLoffB/DfZ3P5416EiT8UQShjT7mxvteXAuOhrfl0MffOVbR8k8RIKbCMPot6dBOJh7TuJ78+f2NLdvj4+OWnTyHx0enjee00+k0HBKcC9Yp4PhQuGMfYroC54n38zltzgiTf+404bmLQg5FO86F78VaJnRJRPGA87sKOK7v4ssZa5/weN32fev6K6d+X9esbRx3cxKJxIojv4cTlzPWpkWP+rWplnd97LzOW9xx5yVq0aXD7ofvqH8v6+v6nJf8P6r2/0u4O5Te8C0vu2TRfOJxr/5qbbzuaCHjpld9SLsf+vBFu993//Ov09/fuBAH7t9tffdcHAqvkPTvJP003vtOSa+qquolpZTv3P/7O0opnyDpKyQ9SdJNkn6rlPL4qqrO63/l/k8/CV0kcCYwjp6bIFBk8Hltede+hqQG0aMLwscy/9/Xifn2bhtzsHk86xSwD91ut97Vwc4E7iRA54WLNNJlQIu4hRAT9khKmW/OsXZbIjH0Zx5j56bfHziOJIYe1+VyWbsqYpqDBQUKN74nLf8cF7pY2E//TvGojdjGVIl4LZ8T5zpG6SU1SC3XneePpDZuZ0iSy/PbhAGKFSTvPOYock3QPUL3gcUm9rWtTzyfY8vxjcIMx4DXojvI941ikceNfWZtE44n1xadCRT0PCYsJslxY3tWBK/Qg/xdfLljfv2m/vzT/oOkFBMSicQ54RXK7+HEZYrOjtT5vTdeRIP9yUC1u6vrf+g19d9rp0/rr/6l52mwvhfE2lib6yce+fsXfJ+/edun68xuv/He9f99oM1XvuaIM/aUyIuJh/zEay/o/D8/4v2zCgpVVf1uKeWW8PbzJT17//efkvRqSd+x//7PVVU1k/SeUsqtkp4u6Zxbzyi+K/77P/ux+JpJuyPatpf7b5JOf+73/XdblJfki7Z12tUjKfHvLAzH3P1SyiGSb7v1xsZGvU2kxQSmI7gNHg8LCE7JcLR/PB7Xf7dF7u0QkJo57CaCJvRMI1kul4e2V+RYt9nmSRp9DQsf3P7SYo3TDJzu4IKaJO5tpDjOk3+2Hee20d0R0wUoHsR1E4ltFJSY4sGfcRy8duy4cPva6lhEQcpz5THz/Pm6PIZrPTpK/JnvQ1Ehui74MvGOtTOiO4Gimu8XHR5eS3Ebzpj2wPG38OJrsXYC+9smMPk4uy7oBLHYF+/FeV0FPNjfxZc7yvq6lr0svJlIJM4d+T2cSFz+WNx3nyafdZ8m+3+fufkm3fW6bXXLA/8/w7Kq9MG/+hDtvvf9jfc3dT51JFYXD7SGwg1VVX1Ikqqq+lAp5fr992+WGiNz+/5754WYb81q9pE0mQTRsWCYXDjiHUkCI9eMjjutgPnoMRoc7+HPTQS73a6Gw2HdvvH4cLES10Q4ffp0vauDrzebzVRVVcMuz0KMk8mkkTYwnU5rQcHkyQTdpMppHCaITmXwOLrYI2sdkCySDLKvrBtB0udxMqGlzZ9ikMc3bmdJW3skmXEnBRJjjxPTIyiKcC14HKKIQCt8m+2da4nrzms0ilNsDwsr8h4ky0zb4fW4zknC4xaIbhfHjEIAxQSuMYoJFIbYV65fIzpDPBdtLo42cKzcZ5/HrSSjGMA1EFNi6Mqh6MJz2tI62gpXrjAu6Xfx5Yx3vPRpet3zf1DpTkgkEheI/B5OJC5j7H7gg3rhU553wddZ3HPbRWjNauJiF2VsS8porblRSnmxpBfzPaYWMCJ81DaRUtMV0JYfzh0NfK7JHFMj7BYwWYnRdIIpFiTjFiLaosu0uJvEjkYjjUYjDYdDdbvd+jhGXukikFQTbDsUmO5AsuW+9/v9Rp9Z0K/X69VpFNGp4Z8x8sv6FcPhsEHSjWhBN+Fl4UOLLh4nk12mZXjsvBWmI/i+JkUnt60tV5/j57GneEDhx2vw/iLUJOxMB/E69VzwHiTq3N3BP7mNofsTBQjOB9tBosyxoCDH5yk6MwzehyKGwTmN7Thq/llI09djnQm6UHwPCk+8JtvBn0fNtfvEXTfifLo9LALLsWtbSycED+i7eHAFFSWsektdn3UTEonEpUN+DydODE7f2tGNf3DPFZfucK5Y3H33cTdhpfFABYU7SikP21diHybJ1Thul/QIHPdwSR9su0BVVS+X9HJJKqVU0h4RoDuAdmXm8xPRkr9/7UY0l5FXkjXf0+TWxMe7NVA4kNQgHdxFopS9LRYHg0FjVwa3JVrefd9+v18LEcyjj/n1brf7y+PitpYGxRn3f2dnR91utx4ziiBMMYhtjfnudnEMBoND4xnTBNjeowoWkigzMu25Zz+PSnM4V/he0dFC0Sq6HOI9Yx+73a76/X6jj0wt8RjG9I02UYGuAh7DdUjCzGNMhukQiOJbW/pPbNdR0XkKDV4vsV6Bj/M9KJRQWPD5sZ4Hd/GgWORrtc31UcKCrxnFpzh2nEvfz+N8AgSFi/pdfLpce1xFlxOJROKkIr+HjxHr94x1+tYN3ffYZbuEkzgrNt/f0UPeMtXyT95y3E1JnFA80GSQX5b0ov3fXyTpl/D+V5RS+qWUR0t6nKTXn8sFTVRHo1FjO0hHfElGSdIYmY0WbZJqWvlpN3cUfzAY1ASfFv7Yxri7hG37vo5JeiRsMcpsQu4tIH2scRT5IcE0geVP98nuA/bLdQr8tx0SPoaReZJc/nT/fT2PBUWgKPAwSh3TTaK1noUmmdLBQpleB6w10JaSwpSW6JrwGHn8XZ8iEvEorvh6TNngWMZxcbSbpJ+iia/ZBs7BbDarnRvsS0wp4BpjGg/7xGfIa9OCTRzn6PyJbgq6b9iv2Ne2opFc11FM4HFxjVNAi+IHxTyPR5swxP5RBKSwxmdqhXHRv4sTiUQicV7I7+FjxOKt79SNP/knKhlaP39UUmde9PBf+qDW/vcfH3drEicY57Jt5H/WXrGZ60opt0v6HkkvkfTKUsrXSnq/pC+XpKqq3lxKeaWkt0jalfRN1TlWs33MYx6j6667Tpubm43/0JvsMD3BBMskwRF+EhNHoE2suLuBr0Xiy5QARin3+9UgRCZmtLufPn26LgZJ4kziZyJkJwZFBZMa5s1HIlRKqaP13uLSKQ8ejxg1Z/657f78fDgc1p+bTLntJINMc/DWlr1er1Fska6CuJ2fXxQPXLHfBJA1F/ziFpNSs0YDEUUb1gsgUXR7uGuGz/caYi2L6Gbxeloul/UcDodD9fv9RpHB2KbpdNqYR9a2cCqIBQivca5JX9NjFh0dHA+uATp9YioJSX2by4AuE8+Z0bY2Lc7E8XYf2uoztKWCkPhTHPIccL3GOhEG00Hatoh0+zhebofHO4oTx40H67s4kUgkEu3I7+HE5YS1adFj/skfa3c2O+6mJE44zmWXh6884qPnHHH890n6vgtplKS6doEry5MY2U4e8675N9rTiNqyGB3BCKmJMMlXm+W63++r2+3WOzV0Op36XJLztkhq2zaU0gG5WVtbq0UC6aDugN0aJtuM6pqoxl0CIilmEb62XRkYdSaxsghhEaTT6dRzcVTEnH3yvTnenoe2In6MfNMqT9s+02JISC0WUByg0MCChL6/SX6v16uLW3qMOQY+znPvsfAa6fV6DXHD9419sPjg60eXja8XCTOj+EwbYD0KPh/xOfDf/t1jF0WYNmLPa1EgcyHDeI+4luJz0JZywbbzWkTsY3Qc0JnC4qq8r6TGeowCBJ/LVcBxfRcnEolEYg/5PZy4XHDq3R097H9/TMsUExIXARe7KOMFI4oBbQUDGeGMZITCgT/n9ossumfCQyJ7FPGK6RSSGoSy1+s1CEiMtBIktNJB4TjuuNAWcTZpozPBsIjAPnJ8GMVmQUTWT3C0lykhrDHh2gmMfPMeHmeKI4wK+3qG2xUJoD+LQlG8ThQhomWekfLoMmDOPK9nOKrOaDXHmekOTllZLpeNFJu28eB8trWDIEl2zQ4KXNFJE8eF96aoRnCcKbBQrOEzwucsCgRsl9vvtR2P5/XORtrjObGGBOc8bmPaNrbRaeS2W7xhe+L6TSQSiUQisVqodnZ1zVuK7nuMtLuRJSja0Lu3o43bD8bmqnfPtHzT246xRYnLCSsnKBAkwCS7Rpt9XtKRUXcTYdZnMJEyKWnLuY7Wb5NsR+u9SwPzrR1hdnuY0sAaEdJehHg2mzUKUroPjBpLqtMbZrOZptNp3Sfm6jNazvoBrDtAcUBSg0yxLoWJM+sNkKT5PibgvpbnzeMVnQgkq/GanFMSvSjSxOKJtM+7bbS2cy4jGad13s6E2Wym+XxeuxG4JajFJI8/147TQ9gW3p+km+9F4cFz6b6yFkUkyW3kmWva1+BaiU6QeKzbELevjIIb++30GKZZRPcBx8rgnLnfUUjg+PB+sc5BrIESnS8UCXzNWNcikUgkEonEyUC1M9e1/+G12v2mZ2nrUdKye4WKCpW0Nm+vy3XqPZWu+anXPsgNSlwpWDlBwUTWxNPEXVIjam6YtMzn80Z01kTV5zGi7JoLPj9a/Z23z0KQJjFRTGANBEZKTYwYQWUhv1OnTqnX62l3d7cWBlyDgW4DRsHH47G2t7d177336r777tNyuWwICszBd2oILfOsKUGXBseetQ8objAqL6kmoT6WOfK+l8efDghGpummINF1ukHcatJtlHTICeD7uH+uH8GUhuj+YH/9maP1rA1hIm5RZTgcqtfrNYr5tY217+s+x609uf6iINDmtIgFCylKxbodk8mkMSZ0UZiwH+WiIfFm7RKKNm3pA9Pp9FBE/1wJeqxp4H63XYOpMnTqeJ4sarANXk9xVxGOifsXay0kEolEIpFYfVz/w6/VQ579SXrPl/SOuynHgrIoeuw/+zMtJ9PDH1YZMElcOqyMoMDq7SYGJtm9Xq9BKmK+OVMjYuTfJM859XQvxOuZeFhQiJFuk9/hcKjNzc3GlotS090QCww6t77T6Wg0GjUKSbLQIkn85uZmLRhUVaXxeKzxeFwT7lgLwvUC2iL5dHs4yu6xYpX/GAk2ibaowc/d9ljgj/UZGA2P7WJNC6d7xCh9TK0waLv3cax1wPf9mdfJ2tpao0bHfD5vpMi4CCTdABSShsNhoz4Fd6RwP2NKC9MQYrTf1+e4RHId55OfxTQS37PNtUCXjIk428H7cItWP5d0BnCc4/05T21g22NaStsxfjbjvejiaBOPYjrOUQJKFGQsTGXKQyKRSCQSJwRVpd4b36XH3fdwvfOvnbqstpHsf6yjW/7rR+7/oGWlxXgsHfF/r0TiUmFlBIUIkrj19fXaPUD7P8lSjKRLB+RmuVxqMBi05s2TRLEgo9vAqLaj1H7FLSxp/zZBsaDg+3ELR6lprx8MBo0aECSus9lMk8mk3t3BxJ3CCsknaz+wH7EYI50ZJMScB96DYxOJmN9nekd0BtCtQdGB88KoOIm+z2NfOd4kjFw7nU6nlYyyFgXTCChG+CcdEU7R8HkWFEhwvWbbCHZbrY2YBhEJdux3HIO21Aq6fJg64XH3uHHsY9oMo/kUjTg+sU/sQ0QUN9qe1Xh8FMliugqdSW1pM23Hckxjm9nndCgkEolEInFysLjnXpU3TXXdGz9Z93y8tDs6XnJ9+p0d9bYuvA39e3e1eOs7L0KLEomLj5URFEjODYoKjFzHwmuOJjq33QQyEl06Gxh9jITM0dgoKKyvr9fRep5LYk6XA7fpc7u5U4Jt8L6+t8zsdDp1PxxN393d1Xg8PrTrQFsufSSddGbE87izBQUFjwcJu8mz++PPKLiwnywSSUGBUXKKDtGxwLoMblPcJtDjzuJ/Xk9O0eAa8hx5TJmqwKi259dODotIXmPuu8UgFv7kGiVR5s4PFLLaaj601QxoEw58Po+PNTg431Fg4vu8fltKQFu7XCySfTsXuF121USXC0k915/7R1EwviTV82HnSEyx4dgd1b7E5Yv1m29SZ7R79gMTicRFx3g515/Nz939de1ai307kbgfVLOZrv6Pr9Xsm5+lyQ0H7y+Glapz+Oe9LPa2VLwYeNhv3aHFO951Ua6VSKwqVkJQ6PV6uvrqq9XtdrWzs1Nvw8eoLImiLeUmOGtra3WBPL9PizPt/SQyJhYmySRT0ULvVAdb/0spddTbZGc6ndZpCZPJpCFqsICj3QkmzJ1Op07rcL776dOn1e1268g3yTXJO6PiFGVMoNlnCiUk4kx3oEPDn1E84TaedG14S0vPES3+brOJuCP9a2tr6vf7h6z2dgswZSJuj8n2Md0giksUNdw3z49TW9w2Oj6Gw2Gj7Zubm/Wr3+9rOp02xKPZbFbf2+PhdeX549i6/Rwbigkk6V5DbVuokuhTqPE6aEuBMXgM70NBi1uT0glC8SeKaryv5+soAaDNXUPBw3Prl+cz1gvxOf1+v9FW1teITg2fS7eQ+8rvn8Tlh7/56t/VX97YOu5mJBJXJH7wY0/R7z11eM7H3/3CZ0j67kvXoMRlixv+7Wsaf9/+Xc/S9Pqz1xIY3NXRzS95zVmPOxcszn5IInHisRKCQiml/s+/ibxdACYsjNw7qslUAtYFiKkRJq9Mj4hFCUm8SDBJ1FyAkVsy0mrvtITpdKrZbFYXNnTuvduzWCxq8m0CZgJrkj0cDg+JACTKVVU1ChZyt4EY5ZcOnBSMPHt3CRPi6fQgCkCS6XoSu7u7daTewofHn0SyrYCiyXfcKYFj4j6x3gFJLh0EJrosIuk59zaeUWDy8Z4jpjpQkDG55/unTp3S5uZmY15iykR834IFiSrTILx+TZLjWDAyb4GMtTPodHCNDj9PdIR4Hknq/ZxRRPLOFV6rrP9BV4Lv15YOwGeDjpG2Z57t8DkEnTNMWYkODF+PjobouKEAxroIUVRhwcfE5YuOsjhVInGp8an/4G/pqvce3uN+fWtHqv78nK9z3a/dqtdMrruYTUtcobjlP75P6nXPfuB8R+lhSyTOHSshKEgHtuY2azZ3EDAxMJk2WEPBZDTWEDBIRGLudySXPpcuBxb5I+ljNJVRzlgoUjooNOdrkxBbgHA/fLwJssmUt+SL5IrRWzspaPn2cSRsJo0+xv2ymOBIbhR2HPn3NWMOvPvOY+LWmCR+bXUHaLmPEX8WhTwq+u0Uh7biiRw/j7Pb7HH0fFik4LkUCUyIvdWk1y3TFfy7Sa/H+qj6A+ynx9PCG9d07AvnP65tvs9UAws9FjjaUkkiYioGUzzonPD9vca83jl2sa4Ex4pzQ4cLU0jieNEhFPse+0NnSEz3SCQSicQeXnr3LXrZ6z73nI79hN+6Tbu33X7o/fPNJl985CNSNT7PsxKJw9i9/QPH3YRE4rLESggKbUSSdnfb/kn2mFtvUm6ruYmVyQuLx7VFWmMF+Jgewai1r2OYVE6n00a+tnR4RwVJNcn0cS7e5/uSvNppYTJEUcNE3OTSfWqL2LrNbUSbpDxew1takmjZocHx5vaOFjlijrxFGM+H+8EIOYUBEjwSVqZpUMBhoU4TYs+vj/UcxXocFA7cLkfp/b7FBKfc8BV3CDA8z1FMYEQ+vsf5M2j35zjwXqzXEMkyrxXnn8fYBeOx9Lxy/CPxZ/s5V3H+uGa91u1i4Pl01FCM4XqisDabzRp95phz3cZngaBwwefEY5BIJBJXKu5cbOuPZg+p/37Z73+eHv/1f3RO5+a3ZyKRSFwZWDlBYW1trd6S0VFekhCTdEbOXYPAW0Pu7OzURFdSfR1axG2vjy+TX9/fILGgYMH8fkZSB4OBrrrqqpqskhwxSut++firr75aw+GwQcAjmTJ5jKSS4+n3Gak1IXW/SORJLmP03WPoGhDcqYIFMy2Q0OVhwSQW1CPhN8mnAMS0AM6jU0s8X+PxWMvlsi6+yLoSJLskvCajXHPuC+tC0PVCIh5rA/ieFol6vV4tsHDO3RaKLlEE8hid6zPDv+Na8brjGnEbncridvZ6PW1sbDTqCTgtJEbt3S+DY8t5ii86M3gcxYT4k8f2ej2NRiMNBoPGfenkcdu8bqJARYeQrxFdFn4/1rxIJBKJKw1f9Kdfo2uf947678fr3MSERCKRSFw5WAlBgUSKxfFM+k36TPYYvYzntaUZtEVsd3Z2NJ1O6xcjq6wPwIi4fzd5ZaqAayK4xoBFDjoTGG01+bMjYTAY6NSpUxqNRnWePglrW1/Yb7bXZMwOAEaXSaBI9D1uJvXRrcEdKigocNw8tqzhEB0Mhsmdd67wed1ut5EeQYLpv7mLRpslPQo3JMUep0iQ29Jg6FbgFp4ksZ4/Ok/m83lj7jlnsT9RAGiz5Pu+bZ+3CUruO50rPJbiiOecwonXO0U23zPunsKUhOieiGScTgNfi8JBW+qH28rn2cdQ7OI9YgqPj42iltvsfnLM6JxIJBKJKwUvfN9n6o5vu6X++6Ef3cqicolEIpG4X6yMoBDz6k0ITDYYJY551SZjkYSTNMT6AS5E6KKEJky8Dh0Ivg6t3LSzcys6SQ2Sb6LFCC6Jd6/X0+bmpkaj0SEiGl+xzoLHgAKMjyHxZDTYbWH9AY4P+ympFjm4ywUt4SRwjOrHWg7sUySRdC5Q7DAJpesgpmm4fwQ/Y6Q7ugIoiPgcprdEcSqKWbEegdvF4n/su0mu13zcOtP3YD8Zpaf4dlSKA9e5x87nUzThemJBSKY6RBdEJPxRUPJxHHO+z9SMeGwUptje+Fxy/caUpug4oLAQ0SaS0KGTKQ+XF9Zvvklv/zuP0sf3/kDSxnE3J5E4Vnz2m5+v9731xsZ7V71jTde/7qC6fYoJiUQikTgbVkpQcMRXOogosiYBiZsJgAk5SR8JFW30rMuws7NTCwom4YySM4JqUhlJMQkMrf6+N0laG6Kg4C0lnV9OJwFJD0WUSIh5THxF2zl3OYgke7lc1u6H4XCo0WhUW+K5i4Oju6xlQDGBYHSeW1V6bjm+0T3h+0Uh5yjQhh/XENeBpEPihO9JkcPtOiqKHucgulF8Ps/hThR0HnjOWSMi7lQSiTl/j6JaFNg4lj6ez4V3p/A1Y39J1KP45LHnGBB8hg0KW5wjPgfxXH43tM0PxYn4/cF+tIkhUfRKXB5Yf9iN+thnPlK3/rUfUYoJiSsNr9y6SuNlv/He1n+6SY/7ydceU4sSiUQicblgJQQFI1quTQyc3y41I+LeYnE0GtX1E9pIn48zgTNZc7rDzs5OI3XA+fUk44ZJCVMYfA9uhyiprufQRshMYiwoRHJp4mzC7m0ofV0TrhjJjgSdFn+KE7u7u3VBO6aSxB0jmOLgOfC8mHzSMu7r+fxYPJH1DJiGwHPaHCb+SfGiTaiJxfTc56qqGg4YugF8LRNZt8FzGhFJKNdGvD8t9EcJPnRm+OWUHLpHvDYIkvH7W2e+J+sbcKylJlH3/XlNpnzwHhQn3B6OP/vgY44i/yyOGWtKtKVJWHTwvbydKJ03beuI4xPTgqIjJnF54G3fcYve9YIfPe5mJBIPOhbVUj/1Bc/W7nve13j/WqWYkEgkEokLx0oICiQEbVFz/wefxfscBXf9ARcHNJmYTqc1ObEgER0KJqcmm7a6m4xY4Ijvk1C1Rcotgvhz11tgrYBInkmS3F8LCRY++LtdFdKBTd2RZemgMCTbRGcCiZfFBLaJtSii5d9kcWdnR9vb27XYEdMWdnd3debMmUOEk6SY9ySZ5lahJMEk0B4zug08t7HYnufQc+FxI3G3oGNXi/tPkSeKMhSGuHMFiWrM62e/3T/OkwsicieQ6H6JRDfufhDdIXyevJZjyojHg/Up2uoUxFoTkeSz7xQumPIRBQWKB2y/1wvFDApTbrfXI4U1fq9wfKMoE1ODfJ1Y0DKRSCROGv7t3Y/S/3zBM7S87V3H3ZREIpFIXKZYCUFBOiCq8/m8USDOJJVERWruSU8LvmsjkAj5WiaeMYWA+ez+2/cwqWJ0nqTIx5OsMRprxGgn89/ZJkddSe5ms5kmk0kj0h93nYiENZJUEywfE1MkKGpEMsaXiZzb65QRXtOiRoyyWzTwnLZt50lRKRZj5DFsA3eakJqWe9Yf8JxaVPDLQk9MI4jzx3ZwvujOiPZ7SQ3hgdfiGonCQ4ywWyyIbZEOSHhMy/FYRYcAhSWf7+eF49L2DHHdeo1SSLi/mgtM14jPj3/yWfY4xGfPn1G04LpsS7WIqRl0LkSBgUJH4vLBw39rqUeP/qbe87wfP+6mJBIPCp77ti/Sh375Ubrxza85+8GJRCKRSDxAdM52QCnlP5RS7iylvAnv/UAp5W2llD8rpfy3UsrV+Oy7Sim3llLeXkr5gnNtCEkaCQFJECOHjPSb6JgcRkGhLZWAxIeELO5qwL/biBvrNvha3KlCapIZEn9GsBmZdz/jThSOHEfSxzGLBC7auuN9YzQ5igacF9rh5/O5JpNJXdTSn7vN4/FY29vbGo/HtbvCDhOKLjHFgvfivU1cPX9tkWj2ly9ek9eLdTRiOsZR65P3dp+jaMBUlHjNNkdLFEFiCgBdNlE0aKuRcH8uAQtBUSRi3+gUijUx4lh4XfonxRCS/bj2owgX3S1t9Qvi+o1tj0JDFIJ4zlHHcc6i2HCceLC+iy9XDH7l9fr4f3NGP/Cxx2prOT3u5iQSlxQ/es/N+tAvPUo3vjTFhIuJ/B5OJBKJwziroCDpFZKeG977TUlPrqrqKZLeIem7JKmU8gmSvkLSk/bP+eFSytrZbmBxgP+ZtwWfkdHoUHA6ggmIUwIoOLg+AfPPTRRYW4GF9dqKMJZS1Ov1NBgMNBgMGjnwttObeNl+7muafMaINiP6s9lMW1tbNQGnO4FiggmwLfHRlk2RRTrY/k5qRu4jmFLA+hIm235/MploOp1qMpnozJkz2traqttrq/729rbuvfde3Xnnnbrrrrt011136Z577tHW1lZ976NIKmtT2HEymUw0mUy0vb2t7e3thujiPvNabYICI+pMH3F//J7FKBJXj4vHn0IKhakoCsXaElzvPt7t9VxRrPAY+cX1yHmNdT7oQKALhc+X1xfFrJheQ1HDtU3YxijMUFCgcMQ2tdX5oNuoTaBp24WC48712iYscG2x5gefwyg8HfWcHDNeoUv8XXy5Y/mmt+m3nnxKvz259ribkkhcMiyqpX75S5+pG1+WYsIlwCuU38OJRCLRwFlTHqqq+t1Syi3hvd/An6+T9Ff2f3++pJ+rqmom6T2llFslPV26/8o/jEz6P/WDwaAm8LbQk2AwhcHkw4RIkjY2NuqdCQaDwaHoswUCX5c52SSmBndVMBFxdDUKEAZJWnQOMFVjd3dXd999t06dOlUXlzS5MpH2T4oLtIN7DDwuLCbougzun/sW0whIiJnWUVVVLW6w8j5rN3iM3K75fF6LI71er753WypFJP8kxCaIFAFYX6Etws31xP5FcYeOAOfqW6Da2dlpbL3pYp4UJKKTg8KAa1x4LjhenBNJ9ed0sXh9dbtdDQaDRgFOiikRvkYJdRJMyikCUJChqGBSTSHD7efccQ1xzLzGScz94naX7nt00XBu/flisWikqjBtwg4Z/+R3ij+n44VCpaRD80chxf1ZBTwY38VXCn7s8z5XP7q+pnuedoNe86+zUGPi8sFP33edfu55f1HL9773uJtyWSK/hxOJROIwLkYNhb8h6ef3f79Ze1+mxu37790vTLxMmFj1P25lGO3hTCMwSev3+/VWhy7Y6HNMppgqYQLsdjhlge1j/npVVTWxju2kZbutqNv6+roGg0HdNhacpPW+0+nUf8fPfO22HPxY7M/kjRbyGAV2v+3yMKmkeECSxZx5Rot9THRWuA3O1ee4kFzGSDFTK0iC3Xe7TEx8Y/FIIqYjxLQSkvrd3V1NJpN6XQyHQ/X7/Xqe2C8TVr/HOhdeNzHaHcfUbaKbwIKXnwVus8noPM+nmOA+0rYf0zAM/841RnIdCT/bG2s+8Hp0FsXnIILCBN0NbW031tbW6nXBrS69nr1Wo+jDMWR/otPH6UsnCBf8XXylYPe975ckXTOd6xN+6BslSX/x+W/Ujz08/5+fOLl47tu+SHf8wqN0/a3pTDhG5PdwIpG44nBBgkIp5R9I2pX0s36r5bBWJlFKebGkF0tqOAWqqqrTBhwhjlFOVvVnTrSkOs1hOBzWLgeTEtYbiFsbOqLM4oxoayOSyhQNRzHdJt8r5vdLqsWOwWCg4XCoXq/XiDwzOtzpdGqSxK0Xox0/Rv3pmvB7bdFxkkCODx0VvhbnxiSOaQRsx3K5rEUJ98d97/V6NYmPcxvJtceEJJ2kNdrlo5gQRSef48/tevDcx/s6raHX6zWIqAUIuzLY39hWz20ky8vlspWokvSyFgfnj66SuGUiyXhVVYcEBc8d0wnoqnDbff1ut9sQEtyOeM9I1rlmuE7vD3QJeb1wPTBlJaZgxJ0p4q4cbeuLDgY6cbxOuK5OAi7Wd/FAo0vSvlXF7u0f0CO+7wOSpP+98Uz9vS+YqVMqfe8Nr1e/nCgxKXGF4/vveoI++KuP0sN+KMWE40J+DycSiSsVD1hQKKW8SNLzJD2nOvjf+u2SHoHDHi7pg23nV1X1ckkvl6TNzc36C9bbHToqXEppEGtJjf/ks8K/o9UbGxva3NysayfQ5m5CFCveO6IcXREUEAySVwoKJDFtOe6j0aghdjj6LKkWFNxP93s8Hms8Hjei8212c9/LBfxs0TexNFkksYqpBjs7O5pMJvVxHjuTb0fyfa7HiDUrSimNnHoS0PX1dU0mE0lq1Jhw2z3WMfpNAYRiCd0hjGZzS8wYjabLwMKAXTE+Zjqd1iKS14X7yqKfvja38vR4kZySjEchh6JNXF9OG2DtAaa0RMdHTBtwHQQSZo6nBQkKSUz9sJjBF0WkOMZcjyTjFDSImBbh352O4M8l1feyc8ZrjaIQ1y2fbY+B11YUU7g2mI4Ud2pZVVzM7+LT5dordmuLR3/3a/Wm75bK+rre9M5KT+kduHi6mfacWGHsVAv97os+RQ97Y4oJx4X8Hk4kElcyHpCgUEp5rqTvkPRZVVWN8dEvS/pPpZQflHSTpMdJev05XrMWBCwmMFUhWqZJYE0Yut1uXXdhY2OjUeiRhM6RZukgKm8iY9JjkmKCwhoJzmsnwWWE09F4FuSz88GpGJubm9rY2KjfpwjgXRI+9rGP6cyZM7WgwEh7rBHgVA2+JNXbTbqPjOzHKK7HRNojY+PxWPP5vG6jx5LbPXI+mO4RSabHeWtrqx7TuMvDcrnUZDLReDxuFINkH0m+Yz98LHPmea6PoUAV+7yzs6N77723nmfXtDB5Nen2tSzCOEWCxNv3JImX1Ogzo/lup99n8cPJZFIXELWzhSTbwpF/t/3f4kObOOH1wFoYdkf4ekwL8pgbHPujUhqiSOe+so0U7vgsuQ1RNPHY+xp0Vri9xNmEgdj+WFR1lXEpvouvdFS7u/pHz/xiyQJYv6cfe/XP6OHrm8fbsESiBb+8PdKPPfvZqj70tuNuyhWL/B5OJBJXOs4qKJRS/rOkZ0u6rpRyu6Tv0V4F276k39wnGK+rquobqqp6cynllZLeoj3b1zdVVXU44bv9PnXeuMm2tEeIaeM3cbb7wDCJd30CE2oWknMU3ikFjMxTOPDxbhcLuFnIOIpskByzzSwyaXeCUztIEnd3dzUej7VYLOqihpHMkVi57wYjwzzOBJf9YJqGBRm6HyIRi7n7sV4B3QUUFEzaSymaTCaNKLDJ2/0VX4wEkWPNKLvbHmsEWCjwMW0klGuEqSFVtVeQ0SIFRQ47PzhHPM/zZXGATg2mMvgVd6mI7aQ7w06K6DqJ65dzF90s/klXBQWm6B5gmgpFErogKDhwbdEd0OYccdt9nfjcco1RqIqpMHS8+PgoevAnU4bisW1C5nHiwfouTki7H77j4I/Omr74X/x9LTMDIrGC6G5VesgHsvbHg4X8Hk4kEonDOJddHr6y5e2fuJ/jv0/S951PI0xCGMG3A8C7NkgHZLnf79dbNZoAmJyanDPSSeJh8mTST7IUyThzqSkgkNhJTULNYo9+z9e1qGA7OQsKWhwxYZ3NZtre3q4j6SRrRxGduL0gxQEKIexfdC3QLs4q9yZ5/pvRacx9Te5MUO3i4BxbvLDrQVJdANEiCom0r+H7RuIaawLESv/Rth8JM+eSOzRIOpTmQZIdazC0CT5HEVyPsdsax9Hr1OuBxJztZM2NOEfxPpwfEmfW+2CboysgiiAUJyiexP5wTChEeO35PB4TxSmOXRQ++FyyvTye7WA7Y1s5Zky5WAU8GN/FiRYsF7o+89ITiYTyeziRSCTacDF2ebgoMLk26WbBOZOk6E4guaXVP6YgOPLN7eUi2eC50gGhsFDhInCxvW7fUZF0k2e320TawgNFDJPqxWKhe++9V1tbW3W6A8ms2+cXt8HjcdwC0uNEgSC2120lcY31CZi/b8JF+3xbBJrRb6deUBRyWyeTic6cOaOtra0G0TahNqElaWUhP0a2nTLj+8e6BpFA+zj/JOG87777/v/2zi7ErquK47+VxDaJ1o/aKqGtTSJV6JMN4ou2L4o2QRs/QFJ8CCiIoGARwUhA+lpFXy2KxSLVFtFiXoSKiD750cakTUljkhoxNiZaH9qYydWa7cPZ62bdNefOZEjPuWfm/n9wmTv7nnv22mvvvWbWOmvvPda5933c8yKu+4/p+/EVAz1+okbcgDC2KWZRePt8DLrsFy5cmNjvIu4r4TLGbJk8bqK+8ukJHoCIG2rGzUNj/+ZAh+s3zi/vs7gcJWcJ5D6NAQO/Z15i0RYIyMGDKENcihLHdQ6KRD355ptCCCGEEEKIxQwioODOiS8H8HXrMQUeGqd/06ZN400NowPgTntMy/bggae75xT1mB0Qj6p0ZyLvnRCJDjxcdhLz03hvn9eRnVy/fv369eMNC33Zw8WLF8cOkDtQ3oZLly5NHOvo9bgsTj6NIi4RyHsI+D1cpnjCgd83Ona+jt/ri46iBx7iUoNSlw94f/tSB2/zaDQab0Lp94qOeHTAXSfx/t5+38wz6tnriYGq3JcxaOXjx4M50QnPSxi8X2OQx7NkgImgjsuUAzp5nwFfzhAzRXyMXbp0ea8J7y8/QcPv4eMsZnrkzQrbshBiRo/rCy4v24gbPeaxlseSfy8GBuOeD3kJR1tQyj+LY9PvG4MBTpwTeXlEW3ZCzuLxwGEMtgghhBBCCCHaGURAAZhYsuCOZnQq3KnyDRHjkXzZ4Y+p0+40+3F/vtGgO44bNmwYH+XoR0xGxzinYuenwZ4KHjcrjE53PIkgpp6bGaPRaOyYx6ML/ZSEvK49n/KQn2r79/P18WluXksfsz/iiRN5iYe31wMw+cjCaQ5ydBp9CUs8mcOdZA/0eP9k8tPomI0QnfuchRFlceK+BTm44ET9RAczOt6xrihbDCb4PWJGQptz6+Moyxjb5DJ5oCPureF69syMeERkDGDEcRgDAHksxayP2LcxWyTP0zg3cpAiz6G8LCHqvW1O53HQlqUQP29b9pO/m99H3ecghBBCCCGEEGIxgwgouDMVswzcYYopynHPgZxeHh0fd4b8ab5v8hc3+9u4cePEEgpfRhEdjSxjdgTzOuxYlvcrgEnH25/4RocTGDvXfjThtIBCdJLbnKucOh4d8JxOHtsTn/zG9sXAiLctytf21DlmEnj9MTgRAz6j0WjiqMkYlIn92xZEyZkL0ZnP6f5xuUFbRkd0nGPfxHv5mMyp+jG7I/Z3XFYQ75P3HYjZMHE5S862iFkqsc2ezREDLnlpRdxLJOo5tj+OxxiI8M9j4Gwpxz5mGLS94tiL34t9nfs8X5O/n+8TAwr5s9jfee+EPHaEEEIIIYQQixlEQAEuP/2O6+rj0oN169YtcvzdWfWf/vTUHV0PIJw/f56FhYVxMMGdhnjKgqfJR0cqO9jx5adIuOPmjlZ08PwJcAwIREdm8+bNE86up5SPRiMWFhYmHHH/zO/pdcXlAH7MXyQGWeITZP8sE1PU8z3ik/C2telx+YP3Zw7EePaD69nbFo9y9GyP3BYn75kw7Sly1ruPkbhMImZSxIBIvC5mKfjLs1nycoyIBwD8u/k4y6hTPyLVf8/7E8Qx4IEXl9UDbTHDBC4ffRr7JQYUgPF8c13GNmd9+z1ywCK2IzvvbeOxLQARgwZtwYIclJv2/XyPnGXgczkGJ/L+Dd5mBROEEEIIIYRYGhtCSq+Z/QP4N/DPGYtyg2SQDJJBMiRuLaXcOKO6e8XMXgaOzViMeR9vkkEySIbFzJMd1v/EkkEySIahytBqiwcRUAAwsydLKe+WDJJBMkiGIcowDwxBz5JBMkgGyTDvDEHXkkEySAbJcKW055QLIYQQQgghhBBCLIECCkIIIYQQQgghhFgxQwoofGfWAiAZHMnQIBkaJMP8MAQ9S4YGydAgGRokw3wxBF1LhgbJ0CAZGiRDC4PZQ0EIIYQQQgghhBCrhyFlKAghhBBCCCGEEGKVMPOAgpndbWbHzOyEme3rqc5bzOxXZnbUzJ41sy/W8vvN7G9mdqi+dnUsxykze6bW9WQtu97MfmFmx+vPN3VY/ztDWw+Z2Utmdl/XejCzh8zsnJkdCWVT221mX63j45iZfahDGb5hZs+Z2dNm9riZvbGWbzWzhaCPBzuUYarue9TDY6H+U2Z2qJZ3pYdp87HXMTHvyBbLFtcy2WLmzxbLDg8D2WHZ4VomO8z82eF639Vpi0spM3sB64GTwHbgGuAwcHsP9W4BdtT31wF/Am4H7ge+3GP7TwE3pLKvA/vq+33AAz32xd+BW7vWA3AXsAM4sly7a78cBq4FttXxsr4jGT4IbKjvHwgybI3XdayHVt33qYf0+TeBr3Wsh2nzsdcxMc8v2WLZ4uXaLVs8Ll+Ttlh2ePYv2WHZ4eXaLTs8Ll+Tdrjed1Xa4llnKLwHOFFKeb6U8h/gUWB315WWUs6UUg7W9y8DR4Gbuq73CtkNPFzfPwx8tKd63w+cLKX8peuKSim/Af6Viqe1ezfwaCllVEr5M3CCZty86jKUUp4opbxSf/0tcPPV1rNSGZagNz04ZmbAJ4EfXW09y8gwbT72OibmHNnixcgWyxa3sSZtsezwIJAdXozssOxwG2vSDlcZVqUtnnVA4Sbgr+H30/RsxMxsK3AH8Lta9IWa3vNQl6lVlQI8YWZPmdlna9lbSylnoBlUwFs6lsHZw+Qk6VMPML3dsxojnwZ+Hn7fZmZ/NLNfm9mdHdfdpvtZ6OFO4Gwp5Xgo61QPaT4ObUysZWauU9niMbLFk8gW92yLZYdnxsx1Kjs8RnZ4Etlh/U+8JLMOKFhLWW/HTpjZ64CfAPeVUl4Cvg28HXgXcIYmtaVL3ltK2QHsBD5vZnd1XF8rZnYNcA/w41rUtx6WovcxYmb7gVeAR2rRGeBtpZQ7gC8BPzSz13dU/TTdz2Ku3MvkH9RO9dAyH6de2lKm42quDtli2eLlkC2uYrVcu2ZssezwTJEdlh1eDtnhKlbLtWvGDsPqs8WzDiicBm4Jv98MvNBHxWb2GpqOeqSU8lOAUsrZUsr/SimXgO/SccpIKeWF+vMc8Hit76yZbakybgHOdSlDZSdwsJRytsrTqx4q09rd6xgxs73Ah4FPldIsTqppRC/W90/RrE96Rxf1L6H7vvWwAfg48FiQrTM9tM1HBjIm5gTZYmSLK4OYd7LFDX3aYtnhmSM7jOxwZRDzTna4Qf8TL8+sAwp/AG4zs201IrgHONB1pXUdzPeAo6WUb4XyLeGyjwFH8ndfRRlea2bX+XuazU+O0LR/b71sL/CzrmQITETd+tRDYFq7DwB7zOxaM9sG3Ab8vgsBzOxu4CvAPaWUC6H8RjNbX99vrzI835EM03Tfmx4qHwCeK6WcDrJ1oodp85EBjIk5QrYY2eLKzOedbPEEvdhi2eFBIDuM7HBl5vNOdngC/U+8HKXnXSDzC9hFs4PlSWB/T3W+jyYd5GngUH3tAn4APFPLDwBbOpRhO82unIeBZ73twJuBXwLH68/rO9bFZuBF4A2hrFM90BjqM8B/aSJrn1mq3cD+Oj6OATs7lOEEzTokHxMP1ms/UfvoMHAQ+EiHMkzVfV96qOXfBz6Xru1KD9PmY69jYt5fssWyxbLF82uLZYeH8ZIdlh2WHZ5fO1zvuyptsVVBhBBCCCGEEEIIIa6YWS95EEIIIYQQQgghxCpEAQUhhBBCCCGEEEKsGAUUhBBCCCGEEEIIsWIUUBBCCCGEEEIIIcSKUUBBCCGEEEIIIYQQK0YBBSGEEEIIIYQQQqwYBRSEEEIIIYQQQgixYhRQEEIIIYQQQgghxIr5P2gBF6ICJ9BHAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 264287 422349\n", + " Min thresh = 1000\n", + " Sliding\n", + "\n", + "\n", + " Winner = Sliding\n", + "\n", + "\n", + "025ns_Image_262499828648_clean_ClassN_125-253.roi.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADYCAYAAABberBAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADrfklEQVR4nOz9eZRlWX7Vh+/75nffEENmVXV1dasnWhIIBBZyI4kfshYSSAw/CRASAgMtIWhsg8DYgCR+trF/LLCwZSRsY3AzWPoZFpIYrAYzCCzcgNGIBkBTS63uVneru7qqMjMi3vwi3ru/PyI+J/Y9+bKysjKzMrLqu9eKVZnx3rv33HPPfZV7n/3d36KqKgUCgUAgEAgEAoFAIBAI3Asaj3oAgUAgEAgEAoFAIBAIBB4/hKAQCAQCgUAgEAgEAoFA4J4RgkIgEAgEAoFAIBAIBAKBe0YICoFAIBAIBAKBQCAQCATuGSEoBAKBQCAQCAQCgUAgELhnhKAQCAQCgUAgEAgEAoFA4J4RgkLgFUdRFD9eFMXnPepxBAKBQOASRVF8qCiKL3iJ762KovgFL/M8L/uzgUAgEAgErhZCUAi84qiq6tOqqnrvox7Hi6Eois8rimJbFMXUft75qMcVCAQCr2YURfEtRVGss+/e5qMeVyAQCFwlPGhh9m7Hi38XB14MrUc9gEDgCuNjVVW94VEPIhAIBF5j+O+qqvovHvUgAoFAIFBD/Ls4sBPhUAi84nBbbVEU/3VRFH+rKIq/XhTFpCiKf1cUxScXRfH1RVE8VxTFR4qi+LX22a8qiuInL977gaIofn927D9eFMXHi6L4WFEUv9cV16IoukVRfGNRFB8uiuITRVH8paIo+q/s1QcCgcDVR1EU7yiK4nuLoji6+E79n4ui6GRv+/UX38MvFEXx3xdF0bDP/56L7+pbRVF8V1EUb3qFLyEQCASuNIqi+IVFUbz34nv2x4ui+GJ77b1FUfxe+/tXFkXx/1z8+V9c/PrfXDgFftuFg+CjRVH8iYvv5A8VRfEfvtzjPczrDrz6EIJC4Crg/y3pf5d0IOlHJH2XztfmM5L+v5L+V3vvc5J+o6SxpK+S9E1FUXyGJBVF8UWS/jNJXyDpF0j6D7Lz/FlJnyzpl128/oyk/+pFxvXkhfDwwaIovqkoisF9XGMgEAg8TthI+iOSrkv6bEmfL+k/yd7zmyV9pqTPkPQlkn6PJBVF8Zsk/QlJv0XSE5L+paS/eQ/n/k+KorhZFMUPFUXxpfdxDYFAIHAlURRFW9Lfl/RPJD0p6Wsk/Y2iKD7lbp+tqupzL/74S6uqGlZV9e0Xf3+dzr+zn5H0Tknvvs/j5Yh/Fwd2IgSFwFXAv6yq6ruqqjqT9Ld0/g/Qb6iq6lTSt0l6c1EU+5JUVdU/qKrqZ6tz/HOdfxH/qovjfLmk/62qqh+vqmou6b/hBEVRFJJ+n6Q/UlXVzaqqJpL+jKSvuMOYfkrnwsPTkn61pF8u6c89yIsOBAKBq4qqqn6oqqrvq6rqrKqqD+lc2L1NpL34Pv2wpG+W9Nsvfv/7Jf23VVX95MX3+p+R9Mteokvhf5T0dp3/A/u/lPQtRVH8yvu/okAgELhS+CxJQ53/e3ddVdU/k/R/6vJ79OXiv6yqanXxb+R/oPN/Gz8IxL+LA3dECAqBq4BP2J8Xkl6oqmpjf5fOv3RVFMWvK4ri+y52r44k/Xqdq7GS9HpJH7Fj+Z+fkFRK+qELa9mRpH988fvbUFXVs1VV/URVVduqqj4o6Y9L+q0v9wIDgUDgccJF6dn/WRTFs0VRnOhcFLievc2/Y39O59/BkvQmSX/evmtvSip0vmv2oqiq6oerqrpxIWT8Q0l/Q+dOh0AgEHg14fWSPlJV1dZ+93N6Cd+TL4JbVVXNsuO9/k5vvhfEv4sDL4YQFAKPDYqi6Er6O5K+UdJTVVXtS/qHOv+HqiR9XJKHxbzR/vyCzsWJT6uqav/iZ6+qquFLPH1l5wkEAoFXO/6iznek3l5V1VjnJQz5d6B/x36SpI9d/Pkjkn6/fdfuV1XVr6rqe17GOOK7NxAIvBrxMUlv9OwZnX+P/vzFn2c63wgDr3sJxzzIyhD8e/nlHO/FEN/NgYQQFAKPEzqSupKel3RWFMWvk/Rr7fXvkPRVFyE3pSwf4UIB/ss6z1x4UpKKonimKIov3HWii3CbTyrO8UZJ3yDpPQ/lqgKBQODqYSTpRNK0KIpPlfQf73jPHyuK4uDiO/IPS6Lu9i9J+vqiKD5Nkoqi2CuK4steykmLovitRVEMi6JoXATy/k5Jf+9+LyYQCASuGL5f5yT/jxdF0S6K4vN0nin2bRev/6ik31IURXkRLv7V2ec/IemtO4773xRF0SmK4lfpPHPsb93n8STFv4sDL44QFAKPDS5yD/6QzoWDW5J+h+wfmlVV/SOd19/+35LeL+l7L15aXfz3ay9+/30XFt7/S9Kdwmo+4+LzM0nfI+nHLs4dCAQCrwX8UZ1/x050LsbuCul6j6Qf0vk/VP+BpL8qSVVV/R86D8H9tovv2h+T9Ote4nn/sM536I4k/feSfl9VVe99mdcQCAQCVxJVVa0lfbHOvxtfkPS/SPrdVVX91MVbvknSWudE/1t1Xv7l+K8lfetFaRk5Cc/q/N/HH7t4/390n8dzxL+LA3dEUVXVox5DIPBQUBTFL9T5F173IhgsEAgEAoFAIBB4VeHC4fDXq6p6w13eGgg8cIRDIfCqQlEUv/nC6nWg8x2yvx9iQiAQCAQCgUAgEAg8eISgEHi14ffrPGPhZ3XeR31X3W8gEAgEAoFAIBAIBO4TD01QKIrii4qieF9RFO8viuLrHtZ5AgFHVVVfdNG94bCqqt9cVdXHH/WYAoFHhfgeDgQCgUeP+C4OPGxUVfXeKHcIPCo8lAyFoiiakn5a0q+R9FFJPyjpt1dV9RMP/GSBQCAQuA3xPRwIBAKPHvFdHAgEXu14WA6Fd0h6f1VVH7hIMf02SV/ykM4VCAQCgdsR38OBQCDw6BHfxYFA4FWN1kM67jOSPmJ//6ikX3GnN/d6varT6Wiz2Wi73aooChVFoaqqhIOi2Wyq0Wikn7OzM223W7nDgj8XRVH7e1VV6Xf5e3mt0ahrK+12W91uN513u92m8+Xvr6pKrVarNr5Go6FWq5XOe3Z2puVyqbOzM202m3Rt2+02jbnb7arRaKgoijQXvMZ7OX+z2UzH3263Ojs70+npaTouY2w2m2mMXEM+DxyXz/HZTqejdrudxsS5GJuPz39Afg/582azSe9hrvxe+P3jh/dxPfmYm81m7XNcAz/+GmPn5+zsLN0XxtZut9VsNmv336+r1WrVXvdr5Lp8jvO5Yf36uvJ7Lind311zy7hZS5zzTu/Px7PLmZTfK7/eO/33bsfy8eWv+X3y/+bv9XHk72Me/LsgX0P8ztdZPhZfT/k1HR8fv1BV1RO3XeTVxz19D0tSczioPunNhZ5bjdR8/+rF3hoIPDBU41LrveLubwy8ZnF286Y209njukju6bs4vocDgcC9omg1tXxdT3rI35Lrj3x057+JH5agsOtyaqyiKIp3SXqXJA2HQ/3qX/2rdXR0pOl0mkgd5BUC1+v11Ov1dO3aNU2nU81mMy2XS63X6xoxdZIIQYPwN5tNVVWl9XqdxtJqtTQcDs8HeUGC9vf39ba3vU1PPPGExuOxVquV5vO5ttutGo2GyrKsEc3Dw0ONx2O12+1ENq9fv57ed3R0pA984AN69tlndXR0lIjkcrnU6empzs7O9NRTT+ng4EDdblfb7Vaz2Swdv9FoaLVaaTKZqKoqdbtdve51r1On09Hp6amOj4/1kY98RNPpVNvtVq1WS6PRSKPRSM1mU5vNRovFIp3PRY3T01Odnp5quVxqs9mo0+loPB7rrW99q97whjeka2Cc6/Vaq9VKi8VCi8WiRtoQYnq9XroO7tFqtdJyuUzzWBSF+v2+er1emsuqqtRsNhOhX6/XOj09VbfbVVmWunbtmprNppbLpZbLpRaLhTabjbrdrtrtdiK5vV5P/X5fw+FQ4/FYrVYrrY3FYqHZbKbFYqH5fK7j42PduHFDR0dHOj4+1mq10mAw0MHBga5du6bBYKCzs7NEgNvttg4ODrS3t6fxeKzhcJjmEFHHhY/NZqNms6nBYJAEmps3b2oymWi1Wmm9XmuxWOjk5ESr1SodYzgcajAYpM8hXkjScrnUjRs3dHJyotlsprOzM/V6PZVlqV6vp3a7XbsvrVZLrVYrre+zs7OaCLPZbLRer9O64HlywabT6SQRhd+xJpgf1ivHm06n6bh8hnu6Xq/VbDbTmPv9fho3zwdrtdFoqN1up/fyPLP2F4uFVqtVui5Eh9PTU0mXAhH3hLnh/vBcMDbOK0n/6B/9o5976V99Vwp3/R6W6t/Fvfaennn7/0dvPTpV42d/5GGPLxDQ5Cs+S8dvbWj5xPbubw68ZvGx/+GbH/UQ7gf39G/i+B4OBAL3iub+od73n3/yQxcUPvSf/tGd/yZ+WILCRyW90f7+Bkkf8zdUVfVuSe+WpKeeeqoqyzIRD0giRAhADpbLZSI90uVOqaRETCE5TnQ6nY6yMaRzdDqd9DlJWq/XWq/XyX0A0UGIcIIGgex0Oup0Omo0Gmm3e7vdJjdBp9NRt9tVp9PR2dlZcjGsVivNZrN0To7d6/USqeG6nMQtFgtJSuTcSTOkCQEEgtVsNmuv5w4QxnB6epqECYg6hK3RaCQRgDlxQopo404K7p3vJiPw+O55Tmh5j+9cM5eMBbHCySS79+6i8OP5nxEwOp2Oer1eIpTr9VrL5bLm0nDRyh0NiDZcw2q1qjkgILNlWdaIPWPMd823221tLexycTAvuevCd925fkQZjuHn8rGw/h3uSEAsc3HO7x3HzB0/rGEX/vIxAOYW1w3rO3cvId71+/3asTiGuxg4jq+x/DOMkffkbp7HEHf9Hpbq38Xj4rDqv+cHXpnRBQKSJm8MMSHwqsc9/Zs4vocDgcDjhoclKPygpLcXRfEWST8v6Ssk/Y4X+8BwOKztmEv1UgVeOzs703Q6TSSr0+moqiqtVpe2MIguhAQS6+93Ig3JhxBBJvkcO7+87qSa90vnRJcyieVymYgRpLzf76dzbbdbdbvd2869Wq0Swe31ejULOju6kJ3lclmbw06nk8iqpBrJ5BiQUBwPEEgIojsnEG4g1NPpVKenp2q324mAN5vN5BTheLgUmBPmQKoLBhzHnR5cp5PY3OLOWNl15jMINIgYThxdDPBSBf9dt9tNQg2EfrFYpJ1x5q4oippgJUndbrdW3oIwg7Dhgk+3260RZkQvro8/I0wgHviYmQdHXlrAOViHXGdeCpOLCogg7mxw8cCFItYOJD8X93h/Xq6Ql6jsGjfj8ecyF8p4Nr1UCDEndyFwr/yZcIEon0s/92OKe/4eDgQCgcADR3wXBwKBh4ttpea60LZdqXpoPRzvjIciKFRVdVYUxR+U9F2SmpL+WlVVP/5in+n1eolgnJyc1OzTrVarRnw3m00ire12u+ZIgGRD6rDYQ3AbjUYidBy71+slW/t8PtdisUifp7zg4OBA2+1W7XZbs9lMjUZD/X4/2aoRQiC5buN3t0Ov19NwOKxlLHAdZCxMp1MVRaHBYJDs3dKl0FEURdqVh5xJUr/fT3MFoYKsbjYbzefzRAQRPhBHuE7mrigKTadTLRYL7e/vp3maz+eSlK4R5wb3Z7FYJAcBFnYnwk6OGQt/ZpxY+HF8QNaZY1wQLqCwBpgTRAtEGSfUiCHcEwg2Qs9wOEzznJcyIICsVqtUrrDdbtXv9zUYDJKDhXXI/cddwprudDoqyzLNnRNaF364luVyWXMr5BkWTqB9nhA1GLuXAyC4bDabdI0ubrDmmLP8XKw7zyzgv5yDtZsLPLwnz7jgPvlxXOjYlffB/cSJ4O6QPN8CccFFRXeJ3Mm58Dji5XwPBwKBQODBIr6LA4HAw8bm1i295U/8gD76tb9Cyydfedffw3IoqKqqfyjpH97LZ5rNpvr9vvb29lI9OcQFwgkxczLS7/drO5qQJHc8IAaw84+7wMMUIU4epsi4BoNBOg7Ei513yhaWy2UiyRyfcVDGgUvCa8ohRe5sWC6XSZSAlPmurpNN/k5uge+ee+Cf275xF/B+6VyQ6Pf7iQAvl0u98MIL6vV6Go1GNbLpu9eQa0ijhxzmIY7Mj5cYOJnu9XopywFHxunpaSqbWCwW6vf7icxCGHPCibOAsfhuOPcAQYJ1w30oyzKVeXgpg7sk8tIRBAnOyZjJmPAyFUQkxC0PWOQ6cHB48CbrifvK8+FOC47B+H0Ncj2IIi4kQMK9jMIdAhzj7Ows3XcPAeW5cLcCazafs7z0xOc1d9X4c+jr2Ms+fO4pmeK+4IrI14h/P3i4JUJLPo7HFS/nezgQCAQCDxbxXRwIBB46to/OVfvQBIV7ge9w4zxwUiOpRnRcBICcYbdvtVqJELud223oktLOdU5mnIS4VZyShdVqVQua8y4A8/k8fT7fDeb90mUGgNeE8zsnjL7r7An+wEmyk0WyIiB6WPQ5JtcHMWReCVNcLBYpR+Ho6EhlWSYng9vH+Z3PoZ83LzuBtLnzAEeFXxskns+6dR4CnM9DTp49V8Gvm3H6bnlu9/dSCs9ZYA36zndeToAoRv6F76ZLqmVfcA+63W4SIDg+c7vr/D6/fv2+o+5uCJ8nBB2ODUHnueh0OreVJHi+gn8mzzTIw1FZ17zOevDyGuDk3d0FzFPu4HA3godFcm0IAz4/vn5dMHDBxJ+V3LEQCAQCgUAgEAgE6rgSggL/qHdLvFSvpWY3GeIgXZJsr+nHYu5kAHIBGZWUgtwgDnzG8xYQIBhbv99PLgTGxm5vVVWaTCYpLR5hxDMNODZj9ppwD27Md0mBBwN6Xbp0ac9mx9t3xfPda9899p1snAMcbzKZ6OjoSK1WS8vlUoPBIL3mO/054XS4kMN7+v1+EhQou4DM5bvfeR07gYu4NpgPJ6hOkr2enuPRScGFp7xDg68x7xBSFEXKuWDd8jnG4sGbzLNnVrgjhNIRSZpOp8mhwrW4owDizD3wdZCvd9ao/9nFKS+d8JILz6jw9ZaX0CB8+HF4Ntw95PkLvtZz99CuQEjO7aJVLh5R1uTZIC5isFbyQMi8/CEvkdj1/AUCgQeP5lJqrAttOyHeBQKBQCBwP2g9ov+nXglBAUIP+fDd3Ol0msg8reWazWYiqPyjH7vzdrutkTlJtZR+dwBwPicm/OB8ODk5Sa0acSh0u91EhrCuS0ptHmezmVqtlg4ODmo15LnjwAmadLnD7zuzvMfnxUmr75RLqnWroK0jn4W8Q6SLokghlez4QugRCk5OTiQp1eS7myIPWszhAYKMCecDNf2IB04o/b64y2S73ab2gLgIsLpLl44NWmBSQrJer5NrA8GJMg0vh3ABhm4MXCt5EU5uOR45HbgNPBiS6+x0OppMJprP5ymHQlK6j7zHCS3X5+URiDCNRiOdE8KMuOHdTBA+EAAIL+U4jNVLefh8WZa1bILZbFZzW5D1wXik81BRJ+/uhHFCz7phDjebTRJTeGa5r7hYeL45Fs8U5+S9OD5c7MmFARc43FnjIh/iUyAQeHh46n/6Hq2/8DP14S+6Ev8cCQQCgUDgscXrvul7tPoN/74+8gXNV/S8V+L/4FVVpZ1kJ2/uVJAugwAbjcZtoXPsLkIAEQW81tqt2RAnduXpVLBcLlP9PSn/OA8gdHRrcEu6pESW1+u1Tk5ONJvNUmYDSfSQMyfZEG1IkRNJH7eTdndmQITm83kSCzqdjobDYa3cwEs6HIwJwYDz+XkhV5C8RqOh2WxWuweMHaHAnQWQNhcVNpuNyrJM1nXenxNPh58P8pgHBrI+1ut1CtkkF4FjU07BfPFDLoG3amy1WhoMBrUASC+hYP1SykCWBdeDwwWHB+Gh7gDAcZCTb29Z6n9HYGP9kD1BzgRrG1fDrtIXSk8YDyILJJxMDeaD15hr1iNZIu6eyDMVCKFkLfjayPM+eA95FpJqz4yXZbgjyYM8KTlxccCfIX5HeCb3AedQlDsEAq8c+t//M/rkTzyjn/7d44feQzsQCAQCgVczyu95v97+iWf0M79j+Ir9P/VKCArsPPOPfogQxNR3EXeFtHkNvtvTnZR5TXZeQ8/vvO89u5vL5TKJDaPRKIkaEDUXLSD26/Vak8lEJycn6X3sQENYXVBATMnDCr3DQ54JIV2GWEI25/N52uWFxEHsnJBhCfdSiDzjgfvAf/O2hVyrdFnKkYdaOnkFuCQYE5/xXAa3+zM+J+9eBsH9hbR71gD3j+4ZucOAe+ztBBkH3SJyYs/nEDT8XOyUM08eJupiEuuReXDhxgUwLwFi/XJciDOiku/GIyrQOcVLOJxIc16INM4fxK3T01MNBoM0lk6nk4QgHyvXlud8cJ9Yh15OgXDC/fZSEBd8fPyMyUuH3JnBZ5kf7hMhny4wuFDmYiT31MWeQCDwcLE5OlbzI01J40c9lEAgEAgEHmtsbt1S431nevIHP003Pr3QpvfwN8iujKAwn8+T/X88HtdC+zxTwIlAnjzvoXP88DlIaW65dlu+HxOislqtklUdgoNTwXf0IZaQm+l0quPj43QNWNu9ftyD5ehoMBwOUzgitfUQLhcipMuWl5CoyWRSC6fE6cHOMsILZMlLFnyHnbISXmc8uDJ8Vx1nge9S8zkIopN/LzHx+YTk4qaQLu36HubnYXuQWrfcQ46Xy6Wq6rzbA0ILogDvRThwmzs73syFZzOwVigJgMxzTdjj3eHhgkS+k8+53MlAxoCTdeYaMGcuKJDbgVBDWQUCD6UtnA/BxI+HEAEJJ6gRQt/tdjWfz2vPUy74cY88k4H14aTfcxy4ly48eX6Krx0XyBC7eCYobWENdrvddC+9JSbj889xT5gv71gSCAQCgUAgEAg8LthOJhr/ze/T7OnP0eJJadt9uKLClREUZrNZIph7e3sqyzKRztwe7iTFrcyQjsFgUOsqICm164NMsFMsXZJGt1xD1qqq0mw2061btzQajVIZAlZxyCMExknxbDbT8fGxGo2GDg4OajufTpQRLSB4kKJ+v1+re5fOCQ8Cg5d4UObx3HPPJcJFOUCv19NqtUoksyiK5H7wgEJKPdiJl85Fi+FwmO6JpJqLALIOUdvb26s5C3ZZx9kdx5bObjLz4GGJ+c61t3lEEJJ02zkkpXm4efOmOp2O1uu1hsPhbeIB5Jn303aQ+c6JrYcNerYFJQOz2ey2NeWukX6/r5s3b9YcDZB9zukOAI4P8WWt9Xq95BjwEgJEF+z8npNA5sNisdByuUylEQglrC/e5xkQ5ChwT7guX4MeVklpCnkW3W43jW/Xzr+LQjwjHpqIsMKzzNrE6cC9c4GG++jj8Xai7iwht4Jng+ySQCAQCAQCgUDgccPTf+57NP/Nv0If+9yHW/twJQQFdxzwj/x2u63hcChJiaB5uYOXJECuPdyO383nczWbzVTP7QF2uQ0bslgUhcqy1Gg0Su0lZ7OZTk5ONBgM0o4uZA9STAgj46Vcgvpx72KASOCtGyH17oagJIC/Uz9OuQDkErv6eDxO5Pzs7ExlWSZiPp1OtVqt0m69Cy4IF+z8UnYBEX6xenLun2dA5KUJTuC5v5BtCB4BjR7Ox+6/ZxbkgsKuchCs/6enp5pMJrV5YK44ppdFSJeiDWNBKPBSkV3dMSCplLUwDkm1wMVOp6PBYKDZbFbLk/CSD3e8uFvAMzC8fMPFJUlJhLtT5oOHgXIP/DlARMlbd3LOXCjKy018XTGXPJO7Spj4L88V75vNZuk4nIMcjul0msg/r+GY8SBSjs3683Ijz1jw54p14EJNIBB4eNjcOtanftNH9cGv/CStDqO7SiAQCAQCDwKj7/5Jfeq/viwpfO4L3qibn/5gHQtXQlAA/g9/6TLgD3s3hM53L32nkd14zxaAOEC0PEfBbfQQIFwLlFxABNnF9x1dFzh6vZ729/drdnr+SxcAyIl/jusjBNKFFYi5l1VAoLBmQ6Q4TlmWaZeW17rdrs7OztTtdhPZZWeWuchrzBuNRgr9k5Te7+TLxRDfiXc4afVSDxcBGCfzAtl18ukOAe45DhG3r+euCC9h4LPY5J0s8n5EJb8PCAqsBb/3nMvLFDabTXI5+GsQVe4JQgZCjgs8XhbhGRjMe16KwVphfd1JAMpLezzPgXDDPF/D8x1ceMvzMfI54TpyIYhryZ8FL8VxV0YuXPi68HInrhvHgc8DIgqCAuNhPjimlznk1xcIBB4ithudfeSjKs4+6VGPJBAIBAKBVw02JyfSRdc+Sbr+I2N1J6OXdawP3eH3V0ZQgChAVADlBd62D3iYm3+OdHjIAYQaIuxWeidOkDh2/fmh/jwnG75b7C0tq6pKLfUQFGazWSIt+a4y53GCz7X7zrK/30MGPeiu3++na0dkgBj1+31Np9M0b3RtcPLtIXWDwSDV2kOSvbUjPwCy6CUTHDe3/jvhy639EDwnm3kJRN4KMi+BAew6LxaLRDbZSc/r/n2H3nexIf24EshNcBeGE31JyWXi5NoD/7w8gAwNJ+EufEmqrVfcB5734e4bH5vPqz8v7sbgWIQXMiceWuiCgosnjlzo82vmviKaMTe74KIBThvmxdeKi2B+fi+RysMovZuIz6/fb8/qiAyFQOCVRedEOh0V2vSjy0ogEAgEAg8a2x/9CQ1+9MEe88oJCpBwiAi7wt71gJKD2WxWs7EjGjjhA5QUQELYxYS4QRQhyf1+X8PhUMPhUIPBINX5Yz2XLndiG42Gut1uev9oNNKzzz6rW7duJZGg1+ul1oOUZvguMe0ovZsAddy5WOI71LzGtdMu0ksh2BHu9/s10uckn797PoKHT0I4Kefg2Lgr3CmSCzW8BpHz1ptukX+xsgrmm3Hw2cFgUCtfyR0KEEOIJCTYHR6UIOBCaTabyWrP+U5OThIR5tyEZlK2QGtKnB3T6fQ214nff0SF09NTnZyc1Mp2OAfZCggifq8pB0EM4TlwAp+LEzhNIN2IMpzHW4CSceHdT3IhIc85YK65bnfz4PRwIQB3Dc+xC1Iu/vFfF5oQubybBuIRzw+hkS6akeng1+HfI/w9HAqBwCuPJ//Co+mhHQgEAoFA4OXhSgkKeb0zP5AvCALEBiLhAXl0N4Doeo02uQbekm673SbRguMTeFeWpcbjscbjcarthtRCIiFEhO1BBBeLhU5OTlJLyLIsU8YCNnjOjRhCLbsLC/5+t3JzTW77J0WfORiNRimXoN1up1aCzDdZAE5uKRGA/EH2PJMAYYDPQEwh75BydyQwd7wXgajRaNTOl4cL5l0x8sA+z5pwApi7ECDi3D9yARB2/N5zTMaDu4ROGIPBoCYOSfUAwFarpcFgIEmJXLPT7q4C1hlz7KJI7rTw3A9IOyGH7lDZtTPP/CMY8EOgorsgGD/3yzMv3AWy3W5TGYlnfeSOCM/WIADTHR0uJjGO9XpdK6XxNefXiPskdzswz4vFotZxxN/jjiTmyV1IedZDIBAIBAKBQCAQuB1XQlDIA/wAxMS7I3gQnu/mQ4x9t99rwz18bT6f18LZOJ7XjntNPcfGDcAOr+84e3275z34tUH8ttutut1urV7dk/JpNcn5EUzyMg3miGMjKDBfOAwgjsvlUnt7e4mcshNO+QMEFVGAcgd2b30nGqLHtTMWiBjzxzHZsXYhyG31vhOeBzm6Dd9dJT4HzC1zwXVDfhEJuD4EBUQhF1ggmo1GQ4vFQuv1OnWfWC6X6bPcQ3cFMBeeDeGdDxgrIhZCAMIRYMysI2+PyPl93C5KMXYn6z6/Hv5ILgZrIs+I4JpdIHJRxu9B3iXC75uXj7CG+/1+ulYXZDxDw+fDMxOYN38/AgRuDa4ZMQXBxHMt3LnAf/19gUDglcX6Cz9Tt97elhRiXiAQCAQCjwOujKDgyf/SJQnJCaSXGSAoOJGH1GDXZpcdMgzJ8XA2FxPynW7ffYV0YRvnWP5+r2X38SI4IIAwPj5PSYXvNEP6PSgQEudiBX/3WnNIK6SN0Mf9/X1JSvNCF4vT09Nk+2dMENr8PH5tENM8G4G5oMwCsg8Z3OVE8Zp9hBIXTHICzX+5Ziz0XLuLSd6pwOviEUW63W7NpQKBPjs703w+TyIShJgSFhcUuCdeBgAQaVwQc0HJS1i4l4ggjMlFMNaSuwLyXA8XFZgLLz/x9eTz58KQlwb5GnSXA+dkDvN7yvgQFHCwUNLkglKeneFr3UUCBBnmlufPxSi/PoQqf679v8CdPoFA4JXHc5/R0fLJEBMCgUAgEHhccCUEBenS5tzv92uZAZ6pwD/2cRhISrZ56vndur5erxMRwjXQbDY1nU51fHxcEyx8h9lt3RAl7xrhu+i5xdtr1t0yTVYCO+C0n9xVSuAOAY4F0UPIgKxSUiHVU/J9F5e2laenp7p27Zra7XbqWkDdP+NeLBbJueDXAHFm3JzLE/t9p545Lcsy3QtEDS+hcMeF18K7LZ4yEuaAe0mpRh6sxzpiLqfTacoMcEeJd3CA+FLqwjwTRDmdTtM6qqpKe3t76VrccQGxh8BzHwl2ZEzSpTWf+cIhgXMCocuFFHcXuAAHWec6vAyI+ZxMJppOp+mayL7gPvtzB+gYwvsnk4lOTk5SOQ9CRFVV6vV6tV1/zutrlRIKLytgnpbLpSSlFqsOBAUvY/BQTncw4CLhx7MhPCfBRctAIHCFUEl6uC2zA4FAIBAIPCBcCUHBySWEEGImXZJpCMFsNkvkqdfraTgc1hLgCQ6ElGH951hOmNmd7vf7aQzT6TSR4V6vp729PY1Go0REIC2QU7e2e90+QKTgM+12W+PxWO12OxEez2WAwBE45zXxTo46nY7m83kihZ1OR6PRqLZz7Zb669ev6+zsTIPBQLPZLL1vs9mk3InlcplIO4TNbfEIONwziHruHCAnYTQaqd/vp/Genp5qMpmk++jChQsS3EvyCDxroKoq9ft99Xq9mhMBkM/Ajrl3p2g0GirLMmUA4DrwHAYEFsQrhAXmv9VqpTWIi8B3593FQpAlBBz7Pdfs7gsXDxgfzwRknc8RLsi9RRzh/QRNeplEnoEgqRb+yPFyYYjrabfbmk6nmkwm6R7S2QTBAlEAdxAiDuITa5x7LCmto8VikZwXLkx4Zw9cEZR4+HEQFHg+ER4RjTxs0p1OrHcXB90tEwgEXjm86S/+uE4+/1P18f9XKAqBQCAQCDwOuBKCgnRJIPMabg+oy+uwIecICtjEl8tl2r1l15ljEVjILijtHgkvhJC0Wi1Np1MNh0PNZrNE/Lwm3ckzpRZuM+daqFWfTqeJsBHySHo/JAoxARLk5Q+QSK7Fd67ZaUVA8J1yRA8EBH5oiekBdYPBoCYMUJ8OCSSIEcLITjO7xpA96bzMAjEAxwG79B54yLlarZbKskzBfdxfQhAROBCK/Po9Q8EdAy5ksMYoO6GkhJwEdtC5BhdVcGKwU467wK39rAvIMT+z2SxlMHg9P6IFcyXVXSbMg5cN8FwgHHg5wGw2q2UIcDze79kWPHP5n/OcDi/5QRyZz+dJ0CO3BMLvLhvWqo/bSbrnWHBe1obDSyIQY1wcyYMd3QXBXOf5FHkApZeJMCbcE4FA4JXD5uhYez/yCRXbp/SxX1WEUyEQCAQCgSuOly0oFEXxRkn/P0mv03l60rurqvrzRVEcSvp2SW+W9CFJX15V1a27HKu2k+5kxgkHRMBT3REI6ILAzrBnEVDHzw4s9e+QasoZpMsaanauIYVulZYuCY106XqAnAAnvLSzY2c9b+HoO9O4FXwH2p0LkNmyLGuuCd/hZoxeSuFCjedOIJa4VR6S5iUWuEc8Z8JJrR8b0YLOF3l2xWQy0Ww2SxZ2WoKWZVnbxW632yrLUqPRKO3SL5fLdF4Xorh+zk9wYqfTqZFbBIfNZpN2pr37AUKDt290Esp8cC+8bMB3xxeLhebzuebzuWazWbomzuM78ThFnNiy5vk9whhENw+0pNUl4hFuC9bZi+22e8lPniHSarVq51gsFukZ9ABG/x2CkwetenkEY3IxgXlEePESEg9uZCyeu+CCQh4+6WPgGt3dkAsrnJfjX3U8yO/iQOAq4OwDH9Lo+ETl2z9ViycqVa0ISA1cbcT3cCAQeC3jfhwKZ5L+86qqfrgoipGkHyqK4p9K+kpJ311V1TcURfF1kr5O0tfe7WC00MOq7uFo7A77rmRe9+zOAHbOy7LUYDDQaDRSt9vVyclJIuJum2+32+k1JzeQehwR2NrZWYbYOZlHmMjD9iQl14GH7UG2ncjjaKAswbMYEEwgSjgGOKcfgw4G2PQhfXntvqMsyySMMM9ul3eSmwdXIlB0u90kAiB68P7RaJQI3Hq91snJSZqz4XCo8XhcE5EajYaGw6H29/fTsbDWOwH33ff8mnLhBFcJ13h0dJTuNbvv/X4/hVriYHFySTkDYpPb7heLhabTqabTqebzuabTaU1QwP0A8ccFwXUwr7gm2HXf399P95axetigdy9pt9s6ODhILU9zZ4XnHDjceQHcSTCdTpMgwjx42QVz5E4BfyZcdHNBhGecz/F+ng8fs7t4/J64Q8FLg3yNukjAdXrAI+/N78UVxwP9Lg4ErgI2N27q9f/d9+gj/8XnaHVYhVMhcNUR38OBQOA1i5ctKFRV9XFJH7/486Qoip+U9IykL5H0eRdv+1ZJ79VdvjwbjYYGg4HG47GuX7+u0WikxWJRs5NDDiAo7giAkEuXifDSJXEbj8dqtVqJ/LTbbY1GIw2Hw7QzPp/PJdUD87weGzKICCAp2fXpjoBt3ZPxXWRg19aT7j3scDweJ2K1XC51fHysVquVSjo8PBGyw+9xA1Afvl6vUwYDu+Gr1Sp1LICkeYCdt94EBDc2Go1EWH0HOHdFFEWhfr+v4XCovb29NFeSbutYsVwuE/GGbCIeOCmkxn08HqfSh+Pj47RbDnF10QWyirPE14t3SaCcwktKPBuh0+loOBxqOByy7msdBRB+jo6OJCld0/PPP6+Tk5N0LCe4Xp5CBogTZ44/nU5rDhOcOMwdQoiTco4Pzs7OUu4Fa5j1Q2YB8N1/L6lwoQ5xjXXL8wEx5xnwsEgPTOx2u+leIJz5mF0Q9LBRbxPr5RnknYB8/Dyz3lmEe4Ig1O/3b1v3HvR51fEgv4sDgauGN33Tv9HJb/glevazH/VIAoE7I76HA4HAaxkPJEOhKIo3S/r3JH2/pKcuvlhVVdXHi6J48qUcA+JalmUKSHQ7P6QXMuNOgeVymdwNTi5wOxAcR3eAizGn13ATOHwnNa+vzkkNu8WQV8ixfwawU+z2cM5XlmUK+4Ns+U49O+1OmCBZXC/Wec7lu7aQZV73bgSMx0sXIFyMwzMs2DGGROKAwAXQ7XZTWQmkF2Lp5S2QeO7PcDhMuQvkTni2BusEcs4OPmNnfiHY7KhzD/KdaC9r8JIFcjQg/b1er1YSsV6vNZvN1Ov1NJvNNJ1O05xNJhMdHR1pNpslxwDjyYUYdyO4C2e73abuFIwJYQQxwB0KeflDVVWazWapjKbT6dREGq4DQQ5xwMfpoais9V2lAu4SyFs5smYYm69XrttFEyf+PhdeKuHhp8fHx+m83C9f/36v/TWeQc7D88o8Pq54EN/FgcBVwnY20/4Pflz9565Jkj78a7va9KMEInB1Ed/DgUDgtYb7FhSKohhK+juS/tOqqk58x/Mun3uXpHdJSuF3kEXIJMFveZ21W9fzYDvIPruhWPARAhAK8haC3qVButzV5H2UVDihkVQLXFwsFqnO3dscOnwXGDLHTjCdEdyO7zvW2OOdwHnuAW0zpXpegmcyQFzdos8OOn9nF3+9XqddcoQJr5FnTnEhsLPM7jXj4ZwuBiEoSEqEv9vt1kIkuTcu7nDcbrebHCdSnQhChnFpkKnhc8IYcbs4oUZAgRyzhrxFJW6PTqej6XSa2lQul0udnJyk8EIXb/IuBy4o5GUlm82m1uLR23k2Go2a88EdE6wXHDC4C3JRA1GBMeSiARkN7vjxcEMXFLwcwUtuXAzgPYg23gbTBQXuiwsR/pxwbs47n8+T44PvEBfqvBSG5z4fE+IRx0Xo4jl6XPAgvot7Kh/eAAOBl4mzD/6cmh/8OUnS+O2frdNhQ5uOtHjd1XcQBV5biO/hQCDwWsR9CQpFUbR1/sX5N6qq+rsXv/5EURRPXyixT0t6btdnq6p6t6R3S9JwOKy63a6Gw2FqMwhJhwznhIuQPVovSpfhiBBFbxkJYUVwcJEAcguhlZTCBCEp7lbwjgnUzB8dHenmzZsaj8e1LgMOxg6hgwTnWQRcA2SKH8IkG41GKmPgc5Q88F7GDmmDXCMcOIFiPp24edkF4+AzEE3mjC4OtGFElPD3Q2ZdyKHcBAEAN4N0manh18h/+ax3wfAuC9JlXgVlGsyRE0rpUkDxnXW6PbgzBbGLteXBnzdv3kxiy3K51AsvvJAyOfi8OwNwVfB7rh0hA/cA43ARgrIW7tOuHXXIOGTbBQYXFWhjifjGvHlpRqvVus35wbN28RzXwhlzEcPfi1jhxN2zHex7JV0Dv8+DGwFj9c4WXqbA2uW+eQmHOyi4Dy5EcO8eBzyo7+JxcRhbv4ErjWt/+XslSa23vEnv+wNPP+LRBF4xPAbfTPE9HAgEXqu4ny4PhaS/Kuknq6r6c/bS35P0TknfcPHf97yU43k9ObuXuBO8HR070uy2Y78/PDzUYDDQcDis7VJC/hEUKIuA5LDTDlGFRFHX7q0VsZ1vNhv1+/1EcE5PT/Xss8+qLEutVqtEPLHJ5+n0EBi3j+dt+mgryfnphIDoAclkniTVSiCcYEEeyRxwN0ZeI+67t4gEq9WqVt6AWACx73a7aSz5TjwODhwn2+1WZVnWdu4hfVwX6wHnhaRa+0ZECe6PO0E4v5fHIBq48IRI0Gg0UhtRsh1YF15KwfmYb+Z3Op3q6OgoiQzz+TxlGzAuBBsEHa6R+YLounMAoYU1TvkG14ejIncReOtQSakshAwFjs+98GeMYzrx9ywEL9fASeBrhnnyZ8vXUu50cMeRiy8u5DB2F+P8niLQ8Mx4UKcLCYyDcXmJDGKl51rwPHoJ1VXFg/4uDgQeB5x96MN6+3/1/KMeRuAVwo3F4lEP4UUR38OBQOC1jPtxKPxKSb9L0r8riuJHL373J3T+pfkdRVF8taQPS/qyux3IbfC4AdgtJ0DQSxBowUhLvmazWUv9h/jlPeQ9wNB3zSFOEGUPyiPkEGLDjjgdALyWn53q8XicbPLsJnMe6TIBnz8Ddksl1T7vxI08CGrsIULAhQnKDTy0LydcXv4BUXShBDGCz0O2IKzMqaTkMIDAQeDzDIxdxH0X8fS2mz4HvlYQW5y8u6OCME7WGZkbHI/1MBgMUqcCD+jz8hTufW6nXy6XySmDeOJlOZJq5RceduiCipNe7g/iANftc+GdJ/JyAP8Mr+P24TOIIlwj14w4wDUCJ/4ICggsHBthjmNzLneQkLeRH9/dDj5GF17y+ckFMQQWn3t3I3Bs1qKvQc7jeQwv1a76iPHAvosDgccGVaXtRZhy4NWPqrry5S3xPRwIBF6zuJ8uD/+P7tzI6fPveSC24wx58B1JLzOQlMjj2dlZCjLkvZAwCCTwNn1e1y9ddneAhHrJQ3XRNQGyxE69OyHYQebzEO1Op5OyBZycYCnftVvKOCgJuJjv2k45v5/P5zvJH9fr2Qd5Cz8+40QVYoiA4LX3LnY4yeNcODy4d4gmXrfv5N4t9A4nhDk5RJDwa+R+3+k9LuQwj74LjqDQ6/WSA4J15vPn43B7PCIF18k1+XmdxDrp3ZVL4Lv8kGjO7/fV/5xb8/l9nnXgWRYQcs878NBS4CUPuQCG8Mf9Zl0gaHiGgd/3vPTEXRa5KwIBjfPwZ87hY0UQyH+HaOPPis8BrzHfzKd3friqeNDfxYFAIBC4N8T3cCAQeC3jyvxrmd14SJ2TWBcJcBdAIClFmM/ntR1gyJ8TKwg+rgFPx3c7vGcDYPEnbR+yRFcCPu8lGJQ9IICwc8+uOjvLeegiv6MWvdPp1HbmJdXEDizfnvTvZM13/3Py72TXf8c1ejmJk04ntVj5PUQR4nZ6eqrZbJZKHhaLhabTaU1cwc3gLQG5bhePOB9uAL9vm82m5jxh95t14yUBkGlvfdhqtTQYDLS3t1cjzZQc+Drx/AyOhZhEeKLX7OftDJ2Me8YA686DPz3jwssB3IHiTo58p96RC0053BmRCwr5Dr2LGy7cMHcEqbo7ws+zaywu7ri45muez3soq4sud7pmnm2/f5zTx+fn5bp8jgOBQCAQCAQCgcDtuBKCAmTf2whCzF1c8PR1dvD582w2082bN9PvyRGghMLJJcTVbfZgl/XeBQd2oSGVHBNnBdb2g4ODVLaADR7BhE4Nm80muRAajYZms1mtXZ90aeGGoBIsCYl2Qud17ZRpQHTZhfXPO2FyEYA/72oR6MGYzAsdCJrNpvr9fjr3ZDJJY5hMJppMJprP5+maGTOOC8SEfr+v0WiksizTnHqZwcnJSQoPnE6nOjs7S3NDaQq5D5JqogzXSAeGTqej173udRqPx0mIcdcHYkm+44/Yw9qh3IFddcIzQbvdVq/Xq+UHuFDgQZzcR8bNWvX7wLp38QRxhVwI7zLhQgHncWs/n3UynXfQgMT7+uSZ5He4W3InDXBHjjsi/Dj5mvTOLIyF9+KQ4NjuwMjFMJ8H1t8uhwzrJA+ADAQCgUAgEAgEAnVcKUEBxwEBftSi5+8tikJled5WB5LD7igOBXcPeO00u+O5pdvh7/VwQCd5OBIgUIQGQoCpSffuEXkmQFmWqayCDg50SuA6IF3s2ue1/czJnRwGfhzpsqQDMsl8uEjg5SZu30eE8HnA6l5VVa1MYL1eazKZpPISRCLGxP0uikL9fl+tVktlWSby2Ov1UscMWld6GOVisUhz5Wuo3++njgl54J/b5SGNOAooZWGelstlzY3hpH6XUwAhyMsCmC/uH8R9u92mgEbEBO86kndD8PsLEfdMhzwrg3vgxJ/1x/1jfE7M3QngWRv+PLijhbXk68uftzzQ0Ak8z5xnN+x6FnPSn5c48DtJKViSeebHBUXcFYzN76P/5KUagUAgEAgEAoFA4HZcGUHBOwSwow+JdLeApLSTnddzQ3wgl2735z153oDXqDuo+YfgOhGH9DFGJ09+DYRDdjqd5HDw2mzKF8qyVFmWyb2AQOJuBUQHSGBO8DzIkrHxAyB/kC4nqowdEceFAr9HkF/EEZ9zjuUlCe5k8JA+xtFut5NrgsBH7i+CCyUniCPcH67PBR/fFWcevOzB14s7UVwwQpDwEpFdaf++a+4iQ/66r1d3WvBZ78rgxNwFAx83c5h/Li+j8fIE5shFJPID3JHgu/KQd3cO8F7PrcgFDxcLHHci6Z5pwd/z1/2/uaDAWsPR4KLGLrFQqudQMBdcg4tOgUAgEAgEAoFA4M64MoKC12CThQAJzcmRdJ65AHiPk+t2u31bLb2TBMiGW6KdeLKLDlGhRp82dJvNeUvFfJcbsjabzVL7SNoqIhDgoOj3+xoOh6ndJS0vJWk2myVCz479YDBIxyEE0McNmfcARHba2b1nVxziJKm2y+0tH13QYV4h3U4gc7u8Oye8VMVr67kn/X4/lUAwv176MBgMakGFCBEu3DAuxBtyNpgn3BO+q+7tB92GD5yUM0e+64+Y4vX/fIYwShdhXABjDXMdOaEGngPCOnZLP+4O5gvHjJcJ4XBx1wA7+J63sev8Ul0E8FIPFzNccHNCj4iWH3tXYKJ3VNgl+vnncvGB1/Nn2d+TC2deSuQiiZf77BIaA4FAIBAIBAKBwCWuhKAg1Xf2Ictu3yfwD9KIhbvZbGo2m6XjUEowHo8TsXNhIXc17HIaICDwHieVbmOnXSUkfbPZpM/NZjPt7e0lO3+r1dJ8Pk9kkmDFsiw1GAzU7/fTHCwWi0QkPchRumw/SGcLdujJcFitVprNZppOp1oulzUBBcLubRz9etrtdi1okBIFxkJ5hhM/uiK4RX82m6Ud9r29veRC4F54SF673dZwOEy73Qg2vI6w4G4AnAzuQPHddL+//CAocH/Ozs6S42O9Xqf8Cq5ls9kkUcaJOHCRxXMI3NWAkODrG3LrmRscywUHfiC6iFvkSTCPOEa4PoQ5LxeqqirdR4SAXq9XC92UVHN2vNjuvIs/gOtdXPQKz50UeQiiw0Up/u7z6O/bJXzsEhp4f/77vLOIO1MQ5VzEDAQCgUAgEAgEAnfGlRAUIIcE+U2nU81ms5pTYblcqtfrqaqqRLAhIAgHEB1CGf01diUhXE6qqbf3XUzPTiATAEIGUYTseN4Cn3UbNX/HcXB2dpYcD5Q5lGVZs1tzPbTSxI4+n891cnKi4+PjRFCZD0orlstlcjg42YJ0IkpAZhlnt9tNGRY+T5BFvx7pkvgh9ECoPUuAa2XeCFV0Ys2utx/77OwsCSt0ZfC2lw7G6GGH+e4264w1Qu4FQY6z2Uyr1UrNZjOJOr4uXMTASePrhEwPxrMra4H764Tf73cugLDGuIfcL4i6B2Teiaz7+uNz7mhhbA7uK+IFP36sHAg6/prv+ufn8vkAPg8uHrCmqqqqldv4XPs4/DOSkqDlJUFepuLZCb5m8jKZQCAQCAQCgUAgUMeVEBT4hz4dCdh9x76d5wWQ0J7nAXhwoSfwu7WdY+VlEljDIeaQzTxML6/LdgLtAgSv+Y8fYz6fpwwF2lgyDi/d8B1UMgMWi4Xm83lNLIE0eanDer1OZN47CeTlAL4TzvV6OKBnHEDMgBO4nLzze78OxnR6elrb3ffdbsa3WCy02WzSOPl9TvK8CwNz7OdkzXBPEU48mJL2lwg/uGQ848CJvbedZJ0gTjm5d4HKgwI9X8KFGMbKeD0k0AUi4OJFvm78WNx31mo+xjwDwp0kdyLVuwi4nye/P/nYcxHkxTIW8vnhs15Cw98ZQy4IMA5fs56d4OKPl/QEAoFAIBAIBAKB3bgSgoJ0TmBo14ddH1Kc1zJ7DTr/zdPyndB6OYW3IHRxwAMCy7JM9fsQbN8l9dA2dz348Vy84FyNRiO5IriObrerfr9/m90eUsyuMIQ075jgc9BqtVIZBNdKiQjE1x0XjJPPu/vCgwAJhBwOh8lJkafoO5zggV2ihrsmmFd2rdfrtebzuebzeXIqeH6FE1YEEL8PHJuyhm63q16vl+6ruyiYV8QV5pjfucXfyTtiA4KCCzh59gDlJKwFXx9eHoAAgIPFXRGAe+O5DR626K0Rfdy+tnh9V+cHBJO8I8ouUcDvhztZPJfCsyt2iQ0u1Pmc3SlXwgUefxYZT36PeM+uLAe+K9x5QZ7InXIlAoFAIBAIBAKBwDmuhKAA+YdsY9eHJHhyve9Ss9MKKR8OhymbwMMFsc9DUL1uHVKBK4Ef35EnK8FFCpwAEHPECP8MgYGUX9B5AnFDUvrMcDhMVnwnaJAnygUWi4Wm06lOTk6SK4LddknJ3ZHv1rugAAGVLmvKyZ4guHG5XKY6/36/r729Pe3v76eyE7pAsCPvDgHpUqDwUgTIHUTZwyHzHXKOv9lsNJvNaiSSvAvIqpNKLwGA6HueAd00KFHx8EnWIn/n+AgRzHVVXYY8clzWDASefAJKK/LOGO5EyZ8F1gzXyxzxd++acbdnykUD7xyyXq81Go2SY4OMEu7VruPl98hFI+4h68fDFv3HXUOsS97LvdtVLgIQvVzwchcH4oWvRZ4jjuf3gHWTv+7PeiAQCAQCgUAgENiNKyEoQBgoe5hMJmnHnvwAbyGIWAAh6/f7Go/H2t/f18HBgYbDYY3gckzINmTRz+/uBg+Tg/DnzgdJaYe60WgkMg5Bg7hDkCgn4LzU51OeQP0+48lruyGVXJMTYEkpXX+xWKSf3H2BqMAcSkrvoxzAd2yx3ZdlqdFopIODgxTqeHZ2ltwbnJtzcT+9vMMt/9y7RqOhxWKRzkVYIPPgu+++O+5lKZ5dgVjD/YTcu2Dhu/1eNsM5eN0dA7hW3JnB5yXViLrvlO8K/4P4soY5j+dguADBvc9LPbi23Anja8LvPX/28pyiKGqCAs8c68/LeLg/XBvOitwtBKn3+fB58bXLuX0t5/fiTqIAbgYXrZgrBAV/Zlijfjx/xhxcq481EAgEAoFAIBAI3I4rIyhg36a2H6IHAe73+8lOjR0doo7wwE4yBApC4O30IDp5fXS+ow4xwqngO+L5jii72JB230l2GzrkDuLrY/RWgHcKisudGr7z60Q4t4/nTgdIuucTbLfbROYZL44J5rXf76vRaKTPSErH2ZWIDynMybOTtFx0Ia/BBRzui+/U4wzwtpQcz+8nO+/MLwKEk00vpfDwRy8BccLMXLorwlt4Ai+T8R1+F1z8nue5HS7O+HpgPnaJG77L7sdm597HwTm8w4Y/B7m7wOcXePlF7ijIcxjy/BGuBYfNriyHPIOD8+Vz7fPkn/dyGp/v/H0OFyWi00MgEAgEAoFAIHBnXAlBwS3zEH7pcrebXXJs5pQtQMKwoEPGvFbbSx8gfS4o5JZmJ+5OKKmnzwkeooMTYciX16BDhnJ7NWP0tpUcx+vQEQv4HaQHMsi4vQbd/+yWfEoCKL3wuXJiivjQ6/VUlqXKskz3yHMgvGbdCVjunsg/43kJkmpdLzxDwIk4Y0ZActeG31O/L8ybi0kQ2bxsgvVCdoI7N/LcBrfpc789GNHXE/fc13qew4AYhvsA8ryLAHMMP4c/S/zexQIXFHzt+A697/K7sMHnPESS+XbC7+fHzcLcsqYZp2dS5HABgLF6DkMupOwSFHieclEgFz44Bo4Lz6EIBAKBQCAQCAQCd8aV+Fcz/4DPCVNuu/fdffrdr9drlWWZxIXBYKDBYJDaTc7ncx0fH+uFF15Iv/N6bq/fJieh0WhoOBzWyB67qOQnkAXQbrdVlqXG43GNVPmuK/kE8/k8XW+73U5OC/Id9vf31e12NRgMVJalZrOZqqpKLQYpi8AqDjH0QEKf0zvtilN2QKYERO309FQnJycp1FE6LydBTOj3+0nMWa1WteDI3Dbuu+uQdI5JjkGv16uFBUrnO96j0Si1aUT8cJLKeuD+kFdAuQPHces68BIDP66PcbFYpNe9Q4ILUO564XNeQoHbA8HEww8bjUaaC8o8Dg8Pa61I8x1/dwJ4aQ4CD/PkpQl+DzzPgXWaOwcoB/JxAV/3TvZz4cPhgoek5DDa5SzwcXhJCsdHsONeeUtTxy6RxMsXcreIdLtLhmO4OBgIBAKBQCAQCARux5UQFKQ6oWCHGlGB3WgPlvOWiex85zv/EAUEiPx9WPpPTk4SGUWYcHs0YyBJ310Dbg/P67vdps8OupOdXfkIXkfPmBEn+G+n01G/308EkGN6qYcTa+ZtNpsl8WIymdTCKb0DgJMr3zGHtHuGBaUeu3av891yh4cs8hkvEfEgQeYSMEdObs/OzmqOBv+9u0A4l+cU0DaSn81mk0IwHX4c1hUCRO5IYH3gnuHaeI2dds8nyAk39zW39/szQ0kPeQfe4cF3810oYC7X63WaR9aACyJ5e1Vf+4zHXS3u+mDNu8MAks7n89IP/pwLi+7+8bwF/3GHSX6MO8FdFzz/LpIx3kAgEAgEAoFAILAbV+Jfy5Aot4vnFnHek9fr+46u74h71oCn/0v15HsI1GKxSNZ0H5eTdUiRlyJAhHblCEDwpTqhzq8rt147oXFCCIlnfiC4iCPeuQGS5aUkODBwauTkyV0AkmrdC/IwQT7v2RHb7Ta5Kdym75kTPmcQTQixrwP+7r8Hbpv3dozeSQGyTWnHnc69yxLPnLtw4PcYhwdODtwGuTjEPLi7xXf2nfg6weZY/N67Efg8eskFY0RY8GPka4u/52GSnMsdET5v+Rz6617u4mIC88a8kGmRiy4+Nhf+CDj159IFl7xbCU6LvAsEjgy+Y/x7Iy9VybMeAoFAIBAIBAKBwG5cCUFBugx783/w50TUE/ohGO4OgAwsFosawclLAiBykIxOpyNJaUfWnQNeU84OOIGQOZlyIuJ5CY5cTHBbO8QzJz0cHyHAyZik5CLwNH8/Prb75XKZduSdlEOsfU45N84M8guw+kOiKf3wmn638+cuBXdrMGYcCIg87Bbz59yNkOdscP98l9/XSp4twTXz3nwOfEeeefNd8FxQ8K4Vvm45ht/HfDcfOJl3R4aTcxdq+Axrljnj7/nOOuvT/869ysUD7gXPBK8Bz07Iywb4DNeal1WwViTVnC7+rHlAaV7CwLE954H7xbjooILDhrnOSzLytZk7K/wZDAQCgUAgEAgEArfjyggKkmqkESIGsYAQQWD5vTsHeN9kMpGkGgGDLECuCexzQpqPxXepscjvCmxjZ54yDGza/X6/5ibgNYgONe10siBTAdGAmvrtdptaS5J7sFgsEtGVlDoxMC9uIcfSf3Z2pl6vl8hkr9dLmRI4EbyO33MgmAfOy7Wu1+taa0EvJbnTTi9ElB1oSCEEbz6fa7VapWtHnKHNJqGJ3FNs9KwFSCng+nCX8B4nsqwBHBzs/DPH5Hd4cCMtP72FqWclMC4yFHIXC6Sddet5Ee5qcBFDUrqP+dwiLHC9+XjdEeHiTC60edCni2UIVi48uBBICY2LJrnwV5ZlciBA/Fk/vV4vlY/khD4vu3BnjQsbfp3cZ8aJkOaikQOBJhd+AoFAIBAIBAKBwG7ct6BQFEVT0r+W9PNVVf3GoigOJX27pDdL+pCkL6+q6tZLOVZuq3aS6cRm1640pHO5XGqxWKjVaqV6eOnS8eA7kF6fD/mXlMiaE8ayLGtExJP7q6rSYrFIZRONRkP7+/s1cuUkyHeEPVQRIkudPgF6To5BLrBA2CCes9lMzWZT/X6/9n7IW7/f1/7+fm13V5L29vYSwaV9pxMt3AHcn1zU8A4bENx8x5dSCu9swG7zaDRKgkBum0fQmM1mNZcB48I94WGbZ2dn6vf7tYBCjsPu9cU6TuuK8hDf1UfEQmTALYKLgbXhQgBihQsJzLcLDLhPuI+M08M4F4tFEhxw1vjabjTOW5d6YCdrgR+eF3/ePMjSnRHMk5ck+Bzyd8/d8OBDXt8FzxvZFazopTJejuH5HB7YiiOG+c3dCIwLQYrAScbhAgL3mHM9Tg6FB/ldHAgEAoF7R3wPBwKB1yIexL+W/7Ckn7S/f52k766q6u2Svvvi7y8JeZmBW/fdNl0UReoSwM4z5IPuBYvFomZHd3jdObukELLhcKjhcKiiKJLdfbVa1QLkPFXfbfqcz4PqPAMh31HmmJ5PgI3exRRPuoeMe2tFT/1nzOQSuPXc59VbNDpR9BIS5sqP5bvCdNHAUSCpRtKdSPsusl9Tr9fTYDDQeDzW3t6eBoNBKrNw2z3dMCaTiSaTSQqY9M4MuCcQMXzefUfbnRZePuFjhlTmJQ4EN3qXB8+i8GOwZn1teKig5xH43HgGBOsBocJzH3KRBkGBe+DCjpPmvCyDNeplHvn6AYwhL5PZteOfu1R4Pc+L2PUd4GUX7hSS6vkXvr5B/vfcpcF73BXipST5/X+M8MC+iwOBQCDwshDfw4FA4DWH+xIUiqJ4g6TfIOmv2K+/RNK3Xvz5WyX9ppdwnMsBZYTFBQV+vHWi12Q7cYD45anvvtvu5BuRghaJOAYgnpzbCbaLHu6gcDip3CUo+I607/Q6IIz9fl/9fj9du89BURS18fpOPedyUo2NP2+NlztEnFhB8hAhqqpK4s2uThueW5DnOvD3Vqulfr+v4XCo0WiU2lT2+/20i+y79NPpVJPJRNPpNIkZy+Wy9mfPOth1T5yoe0aAlwE4Gc7zFBCZXFDAaeIk3Ulrfr4cef6CdJkxwNzmRJp1wj3JRTbWlJdN+FoAXrbATv4uEcLH6WVGu0Qrf2Z3PQ+7SmFywckFBQ+e5DWcLLlQ4T/5dbnQt2vM7ljwOb7qeFDfxYFAIBB4eYjv4UAg8FrF/ZY8fLOkPy5pZL97qqqqj0tSVVUfL4riyV0fLIriXZLeJZ3b7HOSa++r2fuLokhkEwFBUo1ErtdrNRqNtNPqln63m3stvDsAms1mSopvt9uplCF3NZCrwJgZN3kGkO6cCOXkjLHhHPDda0hOt9vVeDxO5DBv1ydJs9lMJycnms1mqWSCkgQnZ942s9vt1sQQ7xaQW78RLphj8gFI7gdeJkAXBoQgv0aEhm63q7IsNRgMEhmm7KAoCt26dSuVsqxWKx0fH6soCnW7XQ2HQ7VaLc1ms3TdLmQwHifNWOKdZHNfd7kWeB0XhAsXfh+53/l5EBQk1dYJc+BtFfOSA8pfeB9rjXEjMLTbbY1Go/R31p0/F/yee3HxjN4W8un30OfRS3Z2lSzscrnwGtfsbUfz0ibAOvEODnlpDmPPSyw8z4PP73IxAO6Rv9fLdh4jfLMewHdxT+VDHmYgEAi8avHNiu/hQCDwGsTLFhSKoviNkp6rquqHiqL4vHv9fFVV75b0bkl6/etfX0F4BoNBbfeR3WBIB2UJXkMOEA8Wi0Wt3n25XGoymWg+n+vs7Ezdbvc2a3ev16sRIN9d9hp0dprdtg8BQmDgWL7LXVXn3STc7u1iAnkKvV5PUp3AQhj7/X7asWY80iVhnk6n6feURbCbjWNBukz4n81mtVKFXq9XC/LzwDzIJOPbbDY6OjqquQ8k1RwdOD7W67Wm02mtPMCJIXkKvB8RghyDyWRSI7Gez8D9dOcAc53X0ec70sz7fD7XdDpNwZV0CICUupjE3OclLO6GcAHD8yD4M+D+eygo69wzIAi+JEQ0d/QgsjF3PAtcX54FAIFmPO428E4NBDsC7/jhTh8v+ch3+z2kUlK6p+7uyK89/wyv4ZLh+WOcLtCRf4LwwTg5ngsVnB8RK58jX9dXGQ/yu3hcHEa/zEAgELhHxPdwIBB4LeN+HAq/UtIXF0Xx6yX1JI2Lovjrkj5RFMXTF0rs05Keu9uB3GbOTji/hwxLqtWHe5K7k0fIm9uc88C+Vqt1m6XbLdC55d/JrdvW/fN0asiJkFun+ZwLCm5HdzHCa+e9ft7JGkGULlpAPCFVLrxArBgr84EY4i34GB+uBIC4gQhAICHXjMMBgWJ/fz8JHV7yANHzkgSODRGE/LkDhPE4mWWeOUZVVWmd5OUwkF/mBUEF9wP3iDXl6yovZfA52QVfRy4U+HV71oEf09fhrr9zf3zeXAxjzXvWgjsN+LwLRnnpAuMFuRDj5Qu7RAsX3PJ8gl2ZCy8VuZOC54K5dBeFZ1bk5TisQRerGHvuurjieGDfxYFAIBB4WYjv4UAg8JrFy95+q6rq66uqekNVVW+W9BWS/llVVb9T0t+T9M6Lt71T0nvudqx8Bx3iCKHBxu47q/y50+mkDgwcK68J91aMnMNJE7vQTjrzEgrPW/CdaI5H+QC7n7vS731nOw/fQzSgFh5C66F+vqObl0tAlCHynj/gggolHn4du0pNuA9ujZcuySv5DU74nYC2222VZanhcJiEoJy8suPvu/1e4uIZAe4YcNeFlyjwHi/n6Pf7NcEpF4s8aNFbQOZulVz88Dlh3C6Y5O/xY3HufI15iYIT9Vzk8jXgc8K68/vta82JPb8n3NODMHP3TX4t+Th8Dlzw8nIO72xyt3KC/F7lpQo+hz5XnNdLkTwzxHM8/Ph+Xj9O7qS5qniQ38WBQCAQuHfE93AgEHgt477bRu7AN0j6jqIovlrShyV92d0+4GUK0uXuprdp9J1HqR4Ot7e3l+r4XZSAoBEaiL3cW85BTOfzebLK+44lBG21WqnT6dSyBSSlMUJWPCHed88hzv1+X4PBIBH++Xxes8NzTb4TT8tAdyS02+00Nq4b4g4BJvvBiZPbwxExIE93qjH3WnXmxrtNeDaEZ2GUZZlaSTLnHI+SDnIPmFcIPQTfcxEghZxTUsq6oFVit9tNc4GVfblc1q4Jh4G7DRBsmBMnk14CkrtN8ut2ocidDJ5fwJrPiTXXxLr017lfLvDg5PHfeUcMSbWWnByTteRiEM6V3EXjTgXGzvV7ICLigTsu/DisnfzZcNdGjl1OIM4P+CzPoXTZvlRSLZsiz2rwdZwLPrz+OAgKL4J7/i4OBAKBwANFfA8HAoFXPR6IoFBV1Xslvffizzckff69fJ7dai9x6Ha7ki6D/TwMEMLa7/c1Ho91cHBQs6uzw+878jnBd8LE+fPdWQihJ+1DLPNgPwhLHvrHsefzuYqi0Gh0ntVTlqW2223NLcCOMjurzWYziR2EK1IS0W63E9HmvBAjzumBlH6dEO/BYJD+Ll2KB76DjlgC3BrvnRr4MzkM7njAOVGW50FDXh5B2OJisahlBHh2BS6EqqpUlqWuXbuWSlmm02ktZDLPsyiKIrkQWCPegtDXFSUhIHcPuOjAGoJIE8LpApivPc7F/HF81r90mQfg7Q2dKHNv3AnhIgGiA+vO52Cz2aSMCM652Wxq+QHMmwsFDu6LOxU4nxP+/LNO6Hf9jh/G6ms4P3+eN8E1Iba4y4Z1xjPja9fXZa/Xq62D/JyPE+73uzgQCAQC94f4Hg4EAq81PAyHwj0D8iUp1T2z0wlZ9DrzvMMCIgREyEmUd3oAToi9PALyndfEu00fsgY5hFQ5Ycpt6Hx2vV4nAnN6elojP7kV310Gk8lEs9ksvb/f79euHYLsln8nvFxTXvbhoY24BpgHygEIBOT13CIOAXSSS1mEXz/dHPw6IelejkELz11tC7lmBCd26N0F4CLGrtIGAj65Z81m87ad9pz8Oon23fl8jbAmWU90wEAY8rXnIoEfMy9J8FKBHL52GZuXIlDO4M6ZfA270yfvjADcweK5CbtKAlxsyNeGH89FPYf/Li978eeK6/F7lbs/3NXiHSMQKhCDcPX45x83ISEQCOxAUej4d/wKbVvxPD/u2Pz973vUQwgEAoHAHXBlBAUPDvRdVuBiAjvZnsJPPf6uYDocAE4W/ScPrnPLO0SRz+WCglS3YEuXOQPurMgD+dxaD+nh+gkKZPyUBjSbTZVlWauLZ24QKJyIekYEwoGLAswfpN5t+pQkUFLAPOc1/syZ/9fr170EhS4Xbntn9z8PPdxV5pLX/efOCVwKvma8O4M7DNz+nndscAErr7PPLfqIReyeIypsNptagCjj93KZXc8AY/LOGpwzJ/C5K8DHmneFgDy7eOKOnJx4s0Z3hUbm4oY/U/nrLmrdCYgLiHw+PzzTfg15tsOuufDn3bNXuDbG5ms7n9sQFQKBxw/NT36b1LooA2s0dOOXFtq2IzT/ccfZdz/qEQQCgUDgTrgSgoJ0SQI2m02qgfYuDRA4rPTU52MRz63KEEjIcm5n5/iQvDxADut8r9dTv99Xo9FIx4K80y3B7dkeCtjv99OxvcME1wupJYgRe74HREIA85aFiAcutLgw4kICeQKQVhcA2D13ksx5aKVIO0ecA3kJgdv8mUeIHEJFs9lUv9+XpFTCAVlkTIgwTggJDISYe76G18P79XgZAK4LxuliBjvTfDYfe35ciKd0WR7izhVKSbyLhosLrEkXk7iHfhzu3y5XQr6D7yUQLqpw3134YQ3kAgViQh5amJ8vD8/MRQocAy523Q1+/bsyC9xN5OUsfu0upNBy1J1OHurp4a15hgTHQ0QJQSEQeLxQtFp6/1c9qU3PvztDTAgEAoFA4GHiyggKdwLEEHLATjDp/VVV6eTkRMvlMu0Ob7dbHR8f6/j4WJPJpCY2QGBWq1UiDByb7ggIFZ1OR4PBILkCcArMZjMNBoNawCDnL8tSZVlqPB5rOBym/ASv8fbAOEgO4sPJyYmky51vSA87t9TlF0Wh2WyWiDnklfyIZrOp8XhcS/anzaO7NxAxvMsG4oV3lXDCCyH37AAIpDszyEHw8gIEDEibdzdgTiTV3r/ZbFLAJPfOj+sdJLx8ZpfTBbg7RLrcrWf8gPewJiDk7lCgjILrHw6H6vf7Kf+hLEtNJhMtl8s0N8vlMhFhL3Nw94Q7Cbh/uzIeEDIYt2d/ONnGOVMURS0LJHciIHxwPQgf3k2DOfe2i96iMQ+2dLibIn9PURRJCEHE83G54MKzgdCRix+sQRcKc4eJi0G4aHK3TCAQuPpovv2tev9XP6VNJ57ZQCAQCAReSVwJQcFLHrwunF16dtApPSjLUoPBIJEJCKZb/SH/3umA8gOOCdmGmPDjNmneM51OU5YB4gFEj+BEugu0Wi0NBoOUdbDdbtXv92s7yE5kOY+7DCDTEDeuq6qq5Axwkg0xa7fbqSQg3wn38yLUSJcCAu9nrpiP0WiksixTJw0vPUBY4DxeioBYwFwyN/P5PI3DSxAgcFw3x6A0graOs9kskXiuVap3BXDnhu+qM495yYykGvH00gTWVW6L37V+m81mEhTI+oDAs/a4Prfe5/cEQu2lCJB75sNLX5h3FyWcaHO/wK654jOIVr5W87aPnlEAvKxgl8vB3+sij5dFsI5wIgwGg+Q4cPeKf5ZnjHH6Gvdzc9z8vrko4mMMMSEQeDyw+bzP0Cc+vadN987taAOBQCAQCDwcXAlBwckFlnUn/jn5Hw6HGg6H6bM4GJyQUy+f156zg03JgLfqczLin0EwQEzw8zkJc7IKeXaXAaQHkpb/QOx959Z36hEG2IH3doqEPfZ6vVTi4HkJuZ2b40BOIZ++c9/r9ZKgMBgM0pz5OREhnPxKl60WuX5v7ejWenafvQbfre/cy+Vyqfl8njIluDbumztZuBYn106s864QnneAuENpQlVVNaK8Cy4+0M0CQYH5ns/n6f4i+rB+8gwCrsHnzAUs4GUHvj6437kzw0UFD5b0+c/bQe4i2XnoIe/z9/A+fz3Posh/764cSckB4+VEjJH7wT3LBYr8/Nx7z3lAIPKyEH9GeF8gELjamL6ho8lbQkwIBAKBQOBR4EoICl7/TE09JJKfsixTdsLe3p729/e1Wq20WCxqWQseYiddhtO5bTqv96ZUwGupIRUICNT9O+FyEgYphSx6rTbEDfLrGQ1eu44NPSc/EEHfUeXYiBdFUWh/f197e3uJhHrbQie8EOX5fF7LFMgFDnbbx+NxcoQsFotajoHv7LrTwkszmJNer5fmPQ8AdDHId5jX67Umk4mOj4+1XC5T+QOCAufH4g9pZ952dexwd4ITZrfqI7T4OspzIlgL2PJZa7sEheFwmK6PdUjZA/eS+8/PYDBI80eOB+PyucfF4s4BJ8k5+eZ65/N57dycn89TVsRaykEORZ5n4R0rcqeCOx14zTM4vDyD58CfBdaLX7tfLwKFCwcukvF7F5rcoYGggdiwK0AzEAgEAoFAIBAInOPKCApuO99sNmlHejqdJrLb6/U0HA51cHCg/f19HR0d6fT0VLPZrFbTLim1aCzLMpFoJ4hYqgldpEbecwzctUBNOeUMw+EwWdmxsHMsQgSdIEFqcA+4Pd1JJkSLMg6s/RBYdxP0er1E9MlM6Pf7qQSg3W7r6OgoXTdjhzx6BgO7/b1er5ZdMBgMktvCd2shh96ZIL+n7sgg2BEnB2GL7hJYLpdaLBZpvqjlp3yFspLJZJLEEMQNCDpiA/dvMBgkwksOgP/d7w0/CBweisn98awJSC9EnWuk3AU3AuvPsz/4PHOft3JkTXW73bQ+88BBxp47KLwMwEUFL7NhDHmJEWPgWcMJRKkKYgb31Dua8Nz5vff1yD3y83If8s4buIcos/HX3ZHhnUNydwXvy91HdwPzF+6EQCAQCAQCgUDgxXElBAXpsqZbUiLNZAVIqpEYCDsklF14SbVdR8IOsbDjTsgtznlQG7vlkCf/geR1u90kBlRVpf39fR0cHGg4HKrb7Uq6DM3L7dRe1sHvPUCOMUwmE52cnKTrg+Sye0oIJEJAbosnwBASh9PBiaWPzedWumy96Q4MiCpz6V0PmEPGiDhCzoHnM0DAmRPu5WQyScSRQEvuMSLLfD5P+RGQaXcnzGaz5DJAtPByEYQDL8eAoPq1cX1OaHkNEuzlHC4m4HjhuAhQiBncQ67P1zhz7+0xvVSmqqpaS0gPVOSzLjRw3wkXJYSROXYhwcUw74DAMbzMgrnNuydwDe4EQfDwAM482yIPVvRng+cjf43PuzjHfcmP52UgjJfj5mVX7vYIBAJXFze/6rM1fVMhKUoeAoFAIBB4FLgygsKuOm4nz07mIaDsYEP82InP6/Hb7XZt59TbMnr4HOSD1yBViAC+ow4h85IJwvgYnxMmr8/3XXD+DFHk5/T0VNPpVLPZLJFgHAqSkogwGAySmAD8Ot1+nof3OREsiiKJE34/XBRpNM67CeDW4NheJuHnx67vHQi4n55hgdNjPp+n+cD9gLjEPcFR4RZ1XAOeo8G5clcFv2cePVvBnSI+l94NIc/qkJS6A+A+gWT7McqyrI3BOwlAsvN8DReIvHzD2x36emKN837gJTaIZ565wA9jZoweUkrAJOh0OjXBA/A8cN4838FLD7ykgfF6eQ7H83IcFyNcBHCRx++3Z3H4Z/KAxl35HXwuEAhcPTQGA21/ydt0/MnSphdiQiAQCAQCjwpXSlBwh4CH63l5QlmWKooiZSt4AJ9/RrokEdIlMYEUcj52/yFoXkPvtm3fcfadYUiX5wxI5zuxbrnOcwMgfznpgVDNZjOdnJxoMpkkwYFsiWazqbIsNRwOtb+/nzIUlstlui63sAPGwu+YUwg8wYt5S0HIGuQR5wPvw46P2ONOC4i2E1MXcLhHi8UiuQ+Wy2W6JsQDF4EQJSChfq2eweDzyn11d4h3SsjFLOmy/IaxMda8ewXOGbfWs0Y4v48tz3VACPMsEV8zgOvCHcD1+O49639XKcp2e9kpJSfg7jxg/SCQ8BqCAsISpTCehcB9Z63xeeaB+Ud0cwdLUZx3Z8nFApDfc8bCvLFGEGJcMHM3kX8f7BJDXmppRCAQeHRoPHldP/3bSkkh+gUCgUAg8ChxJQQFSJqTsHynczgcpnp+7PHT6TSJCt5CcRchwMnA8dydUFWVBoOByrK8LbRvOBzq8PAwEW8I2Onpqbrdbsp0GI/HNUFAqpdpuOWbjhGSEmnjmiGwN2/e1GQyqeU+4DTgmIyZ3X6Irlvzh8NhrduFuyYoOZCURBHvaDGdTmvkFvGEud5sNrXcgMFgUNtFZqzcR+acceZ5EYgNe3t7KstS3W43jdt32O8EL3FBJIKUE2oIvFyDsTih5374OSG6CFFu+6dcBGKMC4SddfI8WDPebQFxxssMer1ejVgjiLhI5fePgEXcGs1mM7kwPGTTRa3lclkTANzBUVVVanvKvWYeWQdeHsO85K4XBAfml7nlXO5S8IBKv3bPM3DhZVfWBcf0EiXvDsHxfM0gvuAKabfbqdzK3SqBQCAQCAQCgUCgjishKPCPfbfke0mAhyeST0BY32KxqOUjQKzzdHZ3FbjtnGOxW+oBhJ1OR6PRSOPxWJ1Op5bV0Ol0UgeE8XisXq+XxI3T09PkBIBgdbvdVLIAAfKd9H6/r6qqNJ1OtV6vtVwuazvX/BA0uL+/r9FolAgsx5zP52knuN/vS1I6JwSdYzrRZqedc+JQYEfZyaGXlFDqQekF1nl3l7jYsVgs0jxJ5+Sda4XEQbIhtAgPkMRer1e7x7ldH2HGwxK5v15O484GF4GYD3897+zhJSFSvQ0iazrP63A3Ac4NxBg6PkBqEc7c2YADAqGEZ8HdCdzvPEfAhQ3uT1464YKYX6+XdniJj3ce4Ty9Xi/NA3kKrBmOkZcR+Pm5z+6c4FieL8LxfI48M8HXC8Bp4edykYb5YH7pGhMIBAKBQCAQCAR240oICtIlAdtlCe/3+zWHgqRU8gDJ911N0vilS6cDpIEdd0gupNCD7CBF7Dr7ZyHVeQgfdeyeOeCEzHdh+T3kBbGEUgdcDHkInaTUKYDyijwXgut2O75buXOru5PMvKY+t57nrzNH3oXAa+MhbYwPAYhuDZBrchHISHBXQKfTSeIE1wTZl3TbdUAWIcweTogdPv88BNWzA3zHnOP7LrmLMggFuQNil6jA+3AZ9Pv9JJR5GQVj5tp35TSwjikDQZDxkEXOyVyynl00kS537T1bwteqE3TKHeg64YQ+LxtwoYLX8rnwUpo8TNFFAHdD+H/9Hvn4KH3w8fsa9rnxlq9e/hQZCoFAIBAIBAKBwJ1xpQQFkJOI4XCovb097e3taTQaabPZpMBCShmc/EJeIWcQC7ej02rSLc0QHurTneh4/TvvoeSg1+slASC3ZHN8LzlgnN5OcTgcarVa1QIKPfBQUtqdR8TwQD/vQuCkFKcE5C8XDNwO75ZxL4/I75M7FiDEZEwgFPi9hPBSRjGZTGrdO9wRQSmBiwN5q0Z22HEiSKqRbebAyTtiFXOSiwN5qUxOPHfV1ruzw8P8cjK+CzgMEMum02kqe+CYvosO2UXkgtCzBs7OzjSbzdLcsO58HrhXbu8HeaYF99GdPpD1Xq+XWkYi3uTlGRBzz/FARGHtkGHgzhfEPC9L8O8Dnqu8MwOv45jxINDlcple97wMFy5YOz5uSTtFvUAgEAgEAoFA4Kqj+cQTKlrNu7/xpeJju399ZQQFt4xDFH33mdKDwWCgmzdv6uTkJO3m8x53CZyeniZSCol0QcDLI1qtViL1w+EwkRpP0HdHASRwf38/2fwJRORz7lbId1uxhpdlqdFolDIDbty4kez+ZCz4bmmj0aiNEaLNtXgWAPMCiYO0HR8f14QO5s5LQnzXXaqHHlJKQP08QgLv9faNm80mtb08PT3VZDLR888/r+l0mkgopNqJ83a7TfclFwY8C4Bj4JJwUozogesBcK/pVjGfz2vz6N0GuJ8QeOYMsYbz5aUsZ2dnifwyj+7UYM4pSdlsNjo+Pk7ZFMylO3VwM4xGo5QTIakmHuS76r7me72e9vb2UtkLggzCAEIEWSbuJMBdgJDgZN3XC3/nOfH8Au6ll2rkggsZC4hf7hxxMcdba67X65oLaTweazQapfOt1+vbQhrzgEbGybl5VhGKAoFAIBAIBAKBxw1f/M9/Ql+196EHdrzy9bt/fyUEBa9jllQLWYN4ebbBfD5P1nnIYm7Fx0XAZzk2BGu1WqUdyW63q+vXr6cuBxByxkX4HbvE7GYifBA26MSHHXfOlxOwnHQ5GYTweKkGTo3xeJzCIz3MDyLNmCC4g8EgjbnZbKaOBW4B91py3/12+zrXj6Dgteacb7PZaD6fa7VapVyEZrOZSlMmk4lms1lyX7C7TcAf5Q1elpGXDuyCCyJ+7RDz1WpVKw1xa3uj0UidBbzcBueHpCQwIVCxPrk3jM07REBIWZuNRqMWRumlFz7n3PO8XMPLfliPCFmeQcBa5D65i4JzeAihn8dDE7lOd9bkQYz83h0U3v3BnSSIR5zHRS/myO8xY2cNIRi6CwShwstjhsNhan/K5z0voqqqWmmIP9fuYsLJkJdfBQKBq4HNx57Vp/zFlt7/lU9q04/SpEAgEAg8vii6XR3+s1JP9iYP9Li/dfTT6haDB3rMXbgvQaEoin1Jf0XSL9Z576bfI+l9kr5d0pslfUjSl1dVdesux7ktKNFruyEIklJ3h8ViUSM8/hmIKaQNsulBe+xY+q6/tyqkA4R0WaefZwNAqDwF38+Rd3twi7eTOizi7GLnAYB8hk4KuCKcwHodf27p9t1Z/y+CDZ/jNbfvI2b4Tq0TXeaAnfLFYqHZbJbCMiFoBE3iXnAHBaTOMyEk1cSVF6tld/HB/+vuAR+7t7f0sD9e9/n3a2U9Qqx93eZlHi5yeDgl4yX0zwky9475h8wianl+Qv6sMP/+THhmCGTfHQy+s891504Qd8D4Pc/LELhWF0V8PTLHnnPCumHOfK35s+VuGY7pzhU+S0kIgZG8jojkziQvgfDcBD//4xTK+KC+iwOBxwXVaqXNT/+sis2Tj3oogYCk+B4OBAL3gKLQx/+zz9bm3LSrqin9zU/6Rh00ywd8oocvJkj371D485L+cVVVv7Uoio6kUtKfkPTdVVV9Q1EUXyfp6yR97YsdBHKQkweIFLvsZCccHx/XrOp5KjzigxMbJzS+I49gMR6P0+4tO+x8hhwCiKp3lOCY0mW5htvbnWRBUPx9Tm68vEK6LDVgnAgK5AT47uuucg4vD8jLBXyX2V0TuBf83kCq3A3hxMs7Icxms1SOsl6v0+4+JNJDK5kzSC9zxJxCPu8WjEeZCJ/zTA2Iu8/PYDBIDg8cEtwzF0e4bm8j6Tkb/C6fx5wc87oLF8yFn88zLDg25TqUlvj64nN0yPAuJBBlFxNciPBje3mAE3V/ZjxLwQUFfzaYq5zwu2jFtUuqHdOvl9+76OZwcYFnnzwSfhi7f5e42Mea5DvGnTgukjwugoIe0HdxIPDYoNFU82BPemwe0cBrAPE9HAgE7ojWm94oXfwbs2o19e1f8436hR0XEB60mPDK4WULCkVRjCV9rqSvlKSqqtaS1kVRfImkz7t427dKeq9ewpenW+DJCOj1eqktY7vd1unpqabTqV544YUkKvgure+uQkgh3G7VxgIP6cKhAElbLpdaLBbq9/vJOi1dtuNjjLgYsK0Ph8MUCOldALBT5zvKCALYr9nBz+3qtIo8ODhQWZ4vtryTBa0R6VxBYGJZlolIIQhAdr1en7lYLpe1eeR6Tk5Oak4CyOl6vdZ6vU4E/vj4ON2b5XKp4XBYC+/LXRvj8TjtnLvDwF0FbjvnPS4yUPrh18IacGHH7zfvyQWUi7VcExRyOz5WfukyWNO7NTBvOZHOx8f1uCPGCS7n8lIBz7/gc96K0wUshAh3J/j8e2kAz48LCXkXCZ8fnh8XDnLkYoCLaIgh3Bt3avj99XvP+uPcktLz7eVBlKZ4KQeCwenpaXommV/PT+B8nvtw1fGgv4sDgccBrTe9QT/1NU/rfCM4EHi0iO/hQCDwoigK/bF/9g/0eX0v3358BYQc9+NQeKuk5yX9b0VR/FJJPyTpD0t6qqqqj0tSVVUfL4rirn7EPPug0+kkIeHw8FBPPPGEut1uIvrsRkNUIUPsdPsOpO/WQyK8VIBzQujpHnF2dqZut5uOn7ehHI/HqZYdEtjv97VcLmuhkG6j9kwA7+iAK4IuCIvFokYOyXgYjUZp/KvVqmZpp56e+nwIo79fUq3kgGNw/Z59gDPCw/8QSpxI+u46goYfx50e3DPug3dyIGdhPp8nMsd85fkSfl8hp+4I4PqZW++W4a4Vz51AJPByFc8+YJ2yBnAi4ACg2wfndidMHgTobg7KQ+hwAPnPswRYz4hQrCHEFAQ53utdC1zQ8ufhxYQAhIy8BSpzSSmOu4N8vDhXOBdzxlqFqLt7xMn7LkGBuXTxYxf4LmCcPi8cx11KuDfyEg6e68cAD+y7OBB4rHD19b7AawfxPRwI3AduvfOzNXv9nb/U3/wtH9DZx599BUd0/+j/86f02YcfSH9/R3cpqXPnDzzGuB9BoSXpMyR9TVVV318UxZ/XuZXrJaEoindJepd0Seghe+zIj0YjDYfDlPq+XC41m80ScfYdSIikp9PbuWrOBa+jhlQhVuAS8F1TiBzngcRSq36nxH92f/PdcoiZ/3k+n+vo6EhHR0dph58dZDpQePkA8wZZ3G63yV1AR4But5uyJhivCwrsdCOwLBYLTSaT9BnpcldZumzXR6kAAXd+HQgJnA9hJC8NcGJNhwx22/0asff7jrS/5k4LJ5L8jmM7scwdA7m138/B3/11X0+sWQQl3ASIFcx5nu9A3gTikWcdeDmKlwMtl8taLgPuEA8XZJzeAtEFGZ4NrsGdDx6Eyg9r3Mm+3w/PSZBUEwa4fi9R8HIgxuJhmz5Gdwv4s5w7Rlzg8vvqz5y7TXyced6Dv8fHcMXxwL6Le68itTwQCAReQcT3cCBwj2i94RnNPv28bcDkTYXWB7vD1yXp1ue+WZ3JG9VabNT8v3/4lRriy0Lr6dfp/X/wLfrON/0PWUnDq1NMkO5PUPiopI9WVfX9F3//2zr/8vxEURRPXyixT0t6bteHq6p6t6R3S1Kv16ucJPf7fQ0Gg5TYLp1b62ezmSaTSdoxzrMAIAe5ld8DGJ0gOhmicwTWcULdJNXIP0TEyQyEBLINSQS+ew95h5C75f3GjRu6ceOGbt26lQSFXq+XhBVvXejXxfysVisNh8PUEaDZbGo+n6fyCCeh/Pi4z87OdHx8nEQVn2N3CFAy4k4PxAHECM+X4MddAexq49RAiMH6nws6bpf3tcJnmQvfjed6/V7k5Jjj+JrxQExbr7VjOAnNyx7YhfcyEz+uOzkQGyjxyV03rDfvSuDrEheGiymSahb+O+UQ+DOBYJGTd79+J/senAl2lRu5q8MdLf6az41nH7izg2cvP2e+VtzNkZfZ+Gdx/zBnPj+e2/E4lDzoAX4Xj4vD8I8HAoHAvSO+hwOBl4jmE09IjUKLX/S0PvJr2Li5s5ggSZ/4LElqqn3S1lt/4tzoU02m2s7nD3Ws94rmU0/q+Fe+Se/7qr+oV1NJw93wsgWFqqqeLYriI0VRfEpVVe+T9PmSfuLi552SvuHiv+95CcdSo9FI4Yh7e3sajUaJnEHSj4+PdePGDZ2entZqpnO3Qb7L6jXkEN/tdluzRWO5h3ySO7BcLhPRKorz9n0k7pdlmdL+q6rSZDJJgYTeZWA2m+n09DS5D6bTaY1QnZ6e6ubNm3r++ed18+ZNTafTtMt8cHCgJ554QtevX0/17JChXq+Xdvjn8/ltu+e4BXwnezabJas8oYmnp6daLpe6detWykrwXXecFjgSpMsyinw3WLosRfGdeieB3o1AUiL9CEV06ZCUnCt+PynnwIEAqWy32+r3+2o2m2kOfUysGcbAeSHX7krgzy6YsN6azWaaT+5TWZYqy1KDwUD9fr9W9nF6eqrhcJiOt91uNZ1OU3nLdrtNn0ewQdTiXkLCcweAtxj1tpu7iHDuzqGcY7lc6uTkRNPpVM1mM5X6cE4EB66F9bGLeLv4xjrzLAd/D/cyvxZ3GjCO/DryNcU9poyI5wuB0IUN7/5CuGY+R4wxP8dVxIP8Lg4EAoHAvSO+hwOBl4ai3dHP/LFfoG3r5f376nS01fu+9q2SpGf+xVb97/yBBzm8+8b7vv6t+tkv/0uPehivOO63y8PXSPobxXma7QckfZXOM5e/oyiKr5b0YUlfdreDFEWRdmgpdRgMBqnrAEGMJycnyfYNqffkekgPP+za9vv91LaRkEGv8/YyCrfFswNPyUO3202CAqUYkOz5fF7LX/A2l9I5UeF1yOhyudRkMtFqtdJkMtF0Ok07zu12W6PRSOPxOLkTyBeQLvMH2OXmepkLxjSZTGqiiO8QQ+gQJI6OjrRer1N5RW6V95IJF2Yghcy/dGkV9/C7oii0Wq1qOQXY//kzRNedIAgXfj9ZH71eT5PJJM1Jr9dL4oLnD1CW0mg00tzQKcQ7Ffj15eURiBKMC7LZ7XaT+MK6hMh6pwLez/1h7hC7cnEIQaHZbCbnB/fRswog0QRycp783J47UVWVFotFEjaOj491enqqfr9fI/W+ZvKdfnfsMEesLVw3CDKIF5yb60IwdCeHr6cczIOX8Xj3C0m19clxuL+UJiEuITb4GvfSHQ8HveJ4IN/FgUAgEHjZiO/hQOBF0Py0T9GHfss1bVvbl5+BY5979h1NtX7x50iS3vwXflKbW4+mI2vzk9+mL33Pv5Ik/fLen5fUffEPvApxX4JCVVU/Kukzd7z0+fdyHP6Bn7c4hKDeunVLR0dHNQJIzTk7jBA0bO7S7S0Jd5EExAKIBj++M53XdSNQsHvqxIxxuEUfeztOBQgPZRy85m0mc3eABwV6Xb3b6CGqkGAPRnSSlVvkyXBYLBa1nXzvTMG1u9XdrxFhwMMBvb2i75j7uPMgRAQizsE98F15xuiCgY/bMxbcoeLtEReLRa0jBiIB94fP7ioX4DoZQ55XwL3hXuWhnHyeMUKgEX7W63Vt597FDs85cIeOl9IAP4d0mRXBfCNoIahxnVyzl5i4ayO/n+608VaW/N3Lavwe7jqWH8+dFHnZyC7nQF5e44LBrs4RHAfhwkUzntnHRVB4UN/FgUAgEHh5iO/hQODFse21tDp88dKGe8GmX2nTr6RKuvVFn6KDH35Bm/e9/4Ed/6Vg+RvfoQ9/6UZfvUdg5GtPTJDu36HwQFAURSJkHnpYVZVms1kqIyAA0Ikc9mzq+iEE0uWutBNnSIKTI9o0el28B/NVVXVbKz7INkGRs9ksOQi8nhvRgZKK3OrP9fNZ3BfsdEMYIWhOttg19pp1SJtbzvMARgg/5RqIImQwMG+IBH5O4KTM3SFeMtLtdtP9yT/vO8KICczZriA8F3Z8N9pr7z2jgfvAPUNQYN59Pj0fAhLMmvHWgZTHeL4E7gTWL/crb4/JWBF+/HoZL2sEd4KPix8vaXCnhJe1MF7cA06K3cWCGwI3BevBMwn8Hvkx8gBDz51A2PB8B0paXiyTwM/Jf/Px7IK7L9yx4OvGM098XnNBwV0zuCwCgcAVxOmZui80tD7cqtrd8CUQCAQCVwTNa4daHjykzlmF9Nw7pO7Rgbrvezin2IXGL/5UffiLK33wC//qK3fSK4orIShISk4Cav89VA/rNIRqNptpf38/BTiyC89Oq3QpJkAmIVDsTPtuLK4IhAonYZDKwWCg/f197e/vq9frJVECdwJBjJAgT/SH7M/n85qd3AMO2bWF1HnmA2UfvM8Jj5dlQEohdWRPQFI9xNHHwNwRDsh9oAsBpJiSDx8bpNF30NmRHwwGKfCQefA2l8DLTLwzhgfzebcIroHjQrC5p074KY/wcMPpdJrKChiHhyQyP156wbyzjhBMKHMgu8EzCgj29OwOfvw6INuIMaxZXDAIBbmrg3FStjOfz9OYsfcDLzdwFwHj5XNOtvmcux4QZlz4A34/fK16hxTvqOGfwZnjAgv3lfWSn+9O2CU+sJ5cIOL5RFhyQQFxx4XHQCBwdXD20Z/XG//0z+tDf+qzdTa8+lkngUAg8FrGJ37rp+joU19d39W/+tt+UP/o8Gcf9TCuBK6EoOBk7fT0NJFn3811+zlkjl18D45jh5KgvMFgkOq0sZRvNptamz8IHAQQ8g2JJjCv1+upLEtVVZW6JzgJlS4JEqSOHWtq9t3i7tkAkFbvGoALIrfAQ2q9dIIdd8IKz87OUgtISBnE1sskINKQfQ+aRLxhzrnOXq+XyB8tPb0swEMwpcuSFkm1evc8INDn3EsuuHbeQ/tMRBVcI+RkeCtFWpC6UwTByh0o7lagRMavyfM5EF5Go5H29/dTEKOT1bIsa+UciDYuZvj7fZcdcu3PhK/xPBuAe4hAwn1BKHNrv7t4EN94L2U/vo69jIW1m+crcI99bbnLIC8tAP55D5/08oq89CLv6pDD8yXy8bDOXOwjZJLPujCWd6IIBAJXB603vkE/+3s/SZsyRL9AIBAISB/73JYGb/scPfk/f8+jHsprDldCUHA4meAf/W4bJ8AREtfpdGohixB4Sh1arZaqiwA66tM5RlmWiQg6mYKQYNnnPJ5nwO6l76zmAYO+U5vbpyFInuTvYkNe1w9JhNi6i4P/cs2IARBrHzsOBidUnK+qqjSe/B5A5larVSKqiDlO8lwQYHfdbeZ+jZA+D1xEHIDQN5vNWqtMrsO7CbCbDyFFHGi1WkkgwXHiO98QVci4h/V5PgOCgJcbdDqdWntTD1D0dYwgwP13AcrP4TvoLuh46YCvKyffeS5GXj7k6405YI6YB8bipSx5Rgf5FC60MIe54+BOzgd/JpgfD/70fAlfNxyf43legueueDmMf6fw+dPT0+R6cYHFr9lLicKhEAhcUbSaOh3H8xkIBAJXGkWh2Ze+Q4snC0kPd5Nm06t0Onz47b6b16/pJ//bt+rPDP6CpM5DP9/jgCslKPguJGQBkgVZaDabGg6HGg6HKsuyVuuOvR6XAqTcQwfZ0e73+0lQcBIIKS7Lsha452TF69RdUNjVFcFJpZcnEEDoFnInX17z764HCA+OBObNx+o7sJJuG5un4/uOtgsKfC6H1/8zPidxzDukn/nOiWdO/CC1uBuc2LozhTEzt41GI4lCEOXVapXEFcQJCLSXCjAmJ7A+/jyoketmjDhg6DiBEMG43AXi98zFC+ChpJ75wY+7BTi+ZypIl8GUjCUXFFhLvmPvrgMXtvJ8C0Iod4H3+1rlHIzJxRkvL8izTDzfhHvNsV3wc+fALkEkz0PgeF4y4uJS/qy6QyIQCAQCgUAgcO8omk194jMb2nZfGQF425Jab3mTzn7uo9L29m5hDwT7Y33wN/xlhZhwiSsjKOS7l14TDyGBgNBKEdLfarVSrkHe3k5Saom4XC5VFIWGw6H29/fT7nWz2UwdGNgh3t/fr5ET/uvkxskQu+d5ACJOAY5PHsTZ2Zn29vZSDgSuCemcMO3v72s0Gt1G8D1DgevBRTEcDiUp5TlAPCn/mM/nqfRDUtoJh3gjLLhAQqiiB/F5iUKz2UylHN51gLp5SakGPt9l97lzMu2dEiDfZDt0u91UooEA0ev1UmYEJQXj8biW1wChdxu7u0I8RwM3jJeX4C7hPYPBQOPxWIeHh7p27VoSFZgn7oFnM7g44CGguClYi7Ru9GdD0s61zT1hzPlufS4iAS+14e/cP0k1MeHFdunzIEX+7OUJrGHvQuHPkYsNfs/zEgt//hB+ut1uKnPwcg2etel0qvV6XRPnWP+S0rxwX9xF5G6aQCAQCAQCgcDVxuraVj/1NU/rU/7UycNrI/kiQeGvVVwJQcF3RUmbd1JETbt0Tipo2wj5JP/ALf+4FwjhWywWqcRgNBrp4OBAg8EglQFge4dcHx4ephBHggnLskwEFtIsXQZAch2NRiOVJUiXwXZeW95ut1PQ42g00tnZmYbDYcoCODw8TKQ4D3mEPM9mszSma9euaTQaJScGxIjXN5tNarvJmCFh7NJS4gE5bTQaKcvBHRruqPBQRBc/+H2/30+79XST8Lp5iKeXC/h1UtLAHLNG+AyuDC8rcFeDj4V5c1KOWJITbFoObreXQZeQXHIZ9vb2dHBwoOvXryfBA0cM46TMgawDiKsLJx7iuItcbzabFCbqBDwPouScHsropSZu/WcOvGzAHSAIVlx33sYyF3xcYOP9OHA4H/ctf97dqXKnzAJ3FLBuPfASMMdeKsL5KXnadWwXFtxNEyUPgUAgEAgEAgFJ+tgf/Rx9yx/4ZoU7oY4rISjkhMUzASA5EJ2iKG4LwPMafsgGNebL5VK3bt3SarVK4gMBi5RI0A2BHW2IPXXzq9VKZVnWLNUQRXaXfXe61WrViKRb6hlfWZba39/XeDzWYDDQcrlMQX4cz4Mi2Sn3hH7OTcBkp9PRbDZLrgO6LBRFkQh3TuCd1CMeAIivl304wc8DEHFaQMoYB2ST9+a70y4OSart5uPgYGxct++Ac4+YHwQPL4FANFoul7cFDDrJRaRgzjycD2GFMVHugMAF4SX4EQKb52m4RZ81n2cduJiACJGTbXcX5JkKlLT4/czJd54nkedvcN2e85BjlwDAvHq5SS42sCa8iwaf9evzc3qpSC6suItDunQH3c1hwTX4ffYSiBAUAoEriHf8Ej377w31sOtxA4FAIBBwbPrSL++GmJDjyggKkAMIuNvsIRD85On4TihcnFiv16mtI/kAdGygCwFOguVymVwOOBAg7uv1OtnQITVeOgAJhKBDSBAUPLwRIjkcDjUajdJYIOruBoDMcw6vqWe3l24XlCxIl+UXXioCsWWOfIeX9/Z6vbTzTPkIjgyyJgi1g5xyjV4e4efq9/vpeHnLPxeBnPx6Z4Fms6nBYJDuV1VVWi6XtZA/7hGk28UpXvNOGARV7grxY71BzBm3r8Vut5vCGOkiIimJPYhJq9UqZQK4IOC5Ah566K4B32V3d0u+7r38hPdyXNaQpCT67ArbxE2AuOSlDl5K4GudP/t//Vmm0wqvc/2Mmbl2MSX/LuDvDg/M9KyH/Dy5EMM5dgkEzLc7VzxnIRAIXB00f8Fb9NynD1917ccCgUAgEHhccSUEBekyJwEiD/LgPghvTgD8H/4QI8gdhGk0GqX8BTIXaI24XC61v7+fCNhkMtFkMtF0Ok07rFjAq6pKJRTsqkO+pEsiO5vNaqGHuAgg72VZJnGEdohY16XLdn5crwf7VVWlbrer0Wik0WiUcgQQLsqyTGOl/IFddOlytxn3B38mwJLdfgQYMgJou8lxmd9ut6vxeJz+DoEdj8ep1MJ35QGCCNfqZBrB5ODgIB0Tgs4ccW2sBd/x9raaTvCxvbOe8rDIqqrSHDAPuDQGg4EODw91/fp1Xb9+Xfv7+6lsxjMzKJWhQwdCBuTfnRsuRDAG3DXkLyBKsb5wj/jvmJddbga/54gGZHC4C4WWlrnDgeN5m0gn9b5mERS4Zy5SeDmN38d8jNxL/72HmDImFwo88JL58CBUF2WYJz8+68HLJe5UghEIBB4BGk194Hc9Hd0dAoFA4DFCUencUPZqiB7YSqvqVN2i/ahHcqVwZQQFdvfz8DiIoSfFk20gXSa3Q8CWy2WyWXu9/HA41Hg81v7+fgpk9Jp2QvYGg4GKotDx8bEmk0kSDpbLZbLcb7dbzefzlMHg9m3q3Y+Pj1MZBfX1nBcCze8hsWQdIEIgrJyenmo2m2k+n6caea5lb29P7XY7EU926Hu9XspNcOLmrf8IAJSUSj9u3bqVRAPKGBBhXMyBWO7t7SVnh98LSij6/b5OT09TWQNtJL18ZTgc1twJvKfb7eratWt6+umntdlsNJlMNJvN0njznX8cHtxzr4tnbaxWq9vcIg7WW17u0Gq1NBwOdf36dT3zzDN65plndP36dQ0GA0nSbDarOSEQopgvF2I834H5QnTBgeMBnozFybuXKeTXynpdLBbpfG7hR/Q4PT1Na7HRqHeV8GdyF/F3RxCiBqIH18bztVwudXp6WnsfwYn+XxdcKPvBecF1eMtIF0bc4eH5Dn5NLup4zkMe+ujlQRHKGAhcDbSeeb1+5g++SZtXKCk8EAgEAveP6uxMb/tT/0bPfuUv08nbH//v7zd904/qi//p79F3fef//qiHcqVwJQSFnOD5biwEyevFKTdAZIAcQRrcSg1BYyfcOztAHorivPMDtfAQPAgopAqrPYTcgw0Zq3dgcBLlY6C7gqRabT3HhMBSUkAAI2SYrg4HBwepi4GLI8xT7u7wvATp0noP8ZpOp5pOp8kd4O05OY9bzHu9XrL8Q7zIcCBnICfsbq8n6JLgPnaNec9gMEhlIdxfD33MnRyQWXIWuL84EyCJXoOfW+c9jwFHCo4PF6Q8QDMvj/H1iCDhu+eS0jrFzYDDATLM+32t+S4799lJNceAJHvIJffMOyB4LgSZEb5+fE5djJAu80B4bZdjKA+iRDDkXnvHExcsduWp8Czj4vBSkXxMfCYXFNzN4MGOgUDgiuMdv0Qf+8yRNr3H/x+jgUAg8FrDdj5XY/PKOD47xw298Z/OtZ3OHsrxt/O5mjenD+XYjzOujKDgKf/eug/i0G63a7Z2JxO0Q/TafbdDQ1DJGoDQs4vZbDYTQYSQOKEkh8AD9SDRebs6L03ILdXs0jN+z1fwGn3psjzBd6oJquz1ehqPxyrLMhEn//Fae89LoOsFv2dcEK7ZbKbFYpFEC+YL4YRrk5Ts/6PRKI3VcxIQUHaVFORlHt5WEpEDsWI4HKaQRFwQ3gmBOWHtOEF00umlHtjm85aEzLeHXvJ+Mi9wsXiZhq/FXTvjkHiOh8BAaQUdHBByJCXxw8ft99evHzHI23fmgpU7Org+X3deepHnNeTzyniYPz82bh3m1AMZ83F4pgVz4+vFBRT/vL/u6y0Xhzyg0q/B3RVciwsuLpoFAoFHj/kz5atiZysQCAReqxg8u9HqoKXFUw/3u7y5lIp/9aMPNbK3mC30m37mC/U/vuXv6JNaw4d4pscHV0JQyEE9t9eYe0s9yCABfTdv3tTx8XFyBHjuAHXb7DJDDCkfYMcagt5oNLRYLHRyclIjF/luMTb/PIXeBQBPoYfouY0cAs1Or+/0u6AA+ez3++r3+ynToNPpJCcEO845AfOQPHZm+a+Xa5D5QEcLzoMogE1+uVwmgn3t2jUNh8NUWkG7Su5Bt9u9LYjR8xoQLLwdJGMeDofa29vT/v5+EhwQKfLuCH4tWNqdwDP3CACIR1w7x4FQu5uArh+MZW9vL2VWeOglx8nFBdwuvja5P8vlUrPZTNPptOaGgOAiSLmA4i4CRA9KVRaLRVrDCEW810svEC88BPTs7KzWbtTLUvLSEnd2MF/8ABc9gAsaXobAdXiOBoSeY3KP8rnmWWGd5/eA8fracLfCLkHQxxwOhkAgEAgEAoH7Q/89P6A3fPTT9DO/c/TQzlFszn8eNs4+/qzO/gPp23/sl+qPHf7swz/hY4ArIyh4xwHgO7vr9TqVLLBrDZE9OjqqkWds5JCRdruta9eu6cknn9S1a9fUaDT0wgsvaLPZJHEAIkYGAgTPiagLCl57zjk8w2A4HCaCeDdwTHIK+N1kMkliBC0k9/b20s49JG46nWoymWi73SahA6LI+SGGBC9CvGiZiTDhbSgpAWH+p9NpmsuDgwPt7++rqipNJhPN53PdvHlT8/lcw+Ewkby81MDzInAK8DoEkPICyDvZC8yLuzK4Pq7XSafXyfv9IkiRbAp3AjBXCA6UbiCusF7yVpruRuBntVppPp9rOp3e5lYhh2M2m2kymWi5XKb8DndUcF2+m894Kc2YTCY6OTlJ681DEN2p4C0sfW3QSnM6ndZcC7u6crgLgPN7JwrOlV8r73dnASIUzw+dSrxEZLFY1Ei/h1d2Op20RnkOXRTyOUS8y3Me/Nrc1cNazd8XCAQCgUAgELh6eOa9W/W/64ejofAjwJUQFCCBkEzIOTXhEH9JqVsChJAAP9/ZJXMAgWIwGGhvb09lWaYAQ8go3Qt6vZ4kJYLt6ffY8qVLq7f/2WvN2UXvdDq1evFd1+viAU4ACJW3KsTq72UInU4nlXmQs4DzwMmQkydaPjq5deKFVd6dEk5gJaXwSoj+0dGRbty4oRdeeEG3bt1KnSFOT0+1WCxSWKETOa7HO2QwJkST0WiU3AgIS3lOATvOHnDITrq332R+uUbaguYknx/mkB9Iq48f1wRjwsHBvYD4MgdkJgDEBj6Li4Y5p2VnnhnBWsq7SXj2BLv8q9Wq5ubwe+kZE34dnqvhu/MIdj4OF3byQEfmMXf55O9HxJIu3QCLxaIWopi32PTQSHdv4OjJWz4iEOQCCS4ajsncevlEOBQCgUAgEAgE7h+ND3xMb/uOT9IHvrSv6iFkXhebStXp+sEf+A54z5/8An3rf/hZ+rHP+huv2DmvKq6MoADhhMR5TfNyuUwEznMGJNVCBn3n9OzsLO20Hx4epg4L2LTZMfc8BLft55kHTjidGHr4nXRJpLxFo9eje224H9eDBXO7NteLUAG5JUAQAgsBghR6uJ2XVviucR5c6WQ8HztdIWh/KUnT6VS3bt3S0dGRptNpundY6GnJCUF1t0Cr1arV8uMMIAiy2+2muciFBLff590DckHB/8z6QrDxgEifP9p7IkD4cbwjxXa7TQ4PfhjnYrFILgQvgcFZs1wu07pB0OI6WFv5muHvOCBY68wFn+O5ye+55zB4ToOXeeSdVnxt58fgerw8x4McGW9eiuCk3+8LbhjWtGep+OcQ3vLz+3t2wZ0rnqOxS1DwexEIBAKBQCAQePnY3Lqlxg9OtP+L/31tm9LpuND86Qfw76xKGn2wod7z01fUnTD4O9+v1d5n67dc/zX6u7/gn76CZ35w+OKf+SKdrHp3f2PCN+787X0JCkVR/BFJv1fn3UX/naSvklRK+nZJb5b0IUlfXlXVrRc7ju8WOzmEHLATn5Nb3+GXLnd25/O5pHMCvr+/r2eeeUZPPvlkIpKQUogDlnqs4xAxSE7uQmB8+TU4yfXxuY3cyaELGpRWeP4BAgrH7Pf7KTgSQukdAhAb6AIBsfRQxjx/ALGiqioNBoNUWgDxcvLV7XY1GAzSbj+1+2RYUMOPqLNarVLrTco22u22hsNhqt+fTCbp3rfb7eR+IPgQgs51eitEz1TYRXR9/C4o8Bo71LhhXNzBhcB/3YHSbDZrQs58Pk/XydpaLBZpPXGNCF6cj9/5NbDuc3EpX2/eucKzOPw5gJCzvjx/gPwRLxORlO6/u2j8WfDnknXp5/PQT3eguIDm4NiMcb1eJ+eGpCRc4drx7i75nPFdkT+PLpqs1+vac9Jut1N5kz+T/j30OOBBfRcHAoFA4OUhvocDgbujOjvTtb/8ved/eccv0Qe+9DzUsGpVqu6xyvQ8M+H832uv/5vv0+aFGw9yqC8Jh3/te7X8vk/WR//xeeeH/UZLw8a9EPQHi+c2M62rlyarbCVt3tlR90Mfuu/zvmxBoSiKZyT9IUm/qKqqRVEU3yHpKyT9IknfXVXVNxRF8XWSvk7S177YsRqNRuq+AHHxNHqs7XcD5A53QlmW2t/fT+GBkEAILmSpKAodHx/r6OgoZS9QCoF93LsnQPwhZ7zGzio71U582Un3XVnKKSCUebq9k1hq9iGCOYk9PT1NQYH8MHd5aJ6XbPT7/USkIHHS5a6416lL0ng8TuUWn/jEJ/SRj3xEL7zwQnJ1IHhISjv1kEnOSaCkdG7dZ7zdbjcFHm42G81mMzWbTc1mM83nc52cnKTMA18rvjuOhZ9z5S4FJ7oX6ziNAVJOgKe/r9vtJgJaVZVu3bpVaxF5cnJSK2E4OzvT8fFxcmh4voC3PWVenRxLl0GDeVAg10pLU19LXi50fHycroH8BAQZ1nju7PAcCg8sdaHLhQzf3fdSA+aZ9ZZ3V0AA2Gw2KZ+CEiEEPUSVvBwhFyD4jmDufJ75DK9Ll91JcJ3wncB7dgkeVx0P8rs4EAgEAveO+B4OBF4GfvDH9LYfPv931sf+0Ds0e+O9beI8/a8qDf7+v5YkbbKy1lcSm5/4af2+T/4CSdL7vvGX6gO/5X99ZGP57e/8Q+p8z4+/5Pdvlx9+IOe935KHlqR+URSnOldhPybp6yV93sXr3yrpvbrLl6eXKkjn5ApLOMSCHUVIE4QEEg/ZhwDQWnF/f1/D4bn65W4Ht65D8Jy40UbRWyZ6WBuk0ckTAXVu9fZr9LA93wll19pLFCB2LnwgWrBTC9GGWEK0GO/JyYkWi0VNoHCyTdkBv+v3+7Uwv1arVQvBZDedcobJZKLZbJbIKOSQ62EHH0HB20RSXrHZbBKhpKSD+eX+0hKR2nrfMfcdcj7jHTi4Hs+X8I4CkErmjnIJ74DA+xEYILFc33K51I0bN2rtPT0jAUDsfS15doKvfwItvdzDywa4Xg8jZWxOqp2Qcxwn6KzN/PPuinCBCMGOz3lXBs9LYN3mZRiMi+MipHBMnkM/b34dLh7k5RN5toPPjztM/H7kZSO5u+ExwQP5Lg4EAoHAy0Z8DwcC94KqUnXx7683fufHtB1e7uz/3BcfanXt9n+DtaaF3vq3zk0+jedu3ZaP9aiwvShj/pR3H+tX/ov/SJL0TX/2f9I7uncP578bfvfPfa5+9pt+0Ut6796PvE8bK6l+pfCyBYWqqn6+KIpvlPRhSQtJ/6Sqqn9SFMVTVVV9/OI9Hy+K4smXcKxEptglZOe9qqoURgjhdMs5LfmkS5s17y/LstYlYD6fp/ezA8yOsXcGYIdWUiKw0mWZBcQlJzZOMp2USErkOA98czKV5wE4mWFnWroktJBDFwC8vt/n0MsvnOx5JkS3203lIpRilGWZCD/jQMzALcB5y7JUr9dLY8+7LfCDGMBcIwB4sKafi91/D570uXIrv2diONHNy2MQFnYRTsQDd7DgiGg0GqlcgftAVgK/Z9zs5LPGvRyDc/guP+PMrfx+fV4C4SKazxvXh3OAOUDw8vUAfN27oIDDwUUMhwc9esilz7WLCvnrvJYHKebPWu7e4bnMn0PWjeeQcC+5v1wrY3eBxeeV+3bV8SC/iwOBQCBw74jv4UDg/nD2gQ/V/n7tbb9Cy4Pb3enteaXtv/0pSeeW/auG7b/9KQ3/7fmff9sX/ccaHc4kSYWk7/7lf0XXm4OdnzutNvqcH/ntWp3d7ow9+8EDvfE7vuclnf8V6Jq5E/dT8nAg6UskvUXSkaS/VRTF77yHz79L0rukcyLL7jO7/pAf6byzwGg0Sl0aJKVODiTok9wPGej3+6kWvygKTSYTHR0d6fj4OCXoS5dEH4eAkycnmwQG5kIBhAQCj62csfv7SPr3WnKIFLv37Krn4XOQUU/HR8TYbrepVp7PI2xwzjxIMif5lHJIl+n3g8Eg/WAvn0wmmk6nOjk50XQ6VaPRSIID+QqIQwARwTMcsOkjAHlmgNfHLxYL3bx5M5UN5GICc4irA0FB0m3tDBkL1+piDi4YSUmQ4N5zb/gMrgzuBcINaxZhifO6cIToka8DiL+XHHhGAr9zl4uLSO4AYE68xIUgSHfIsP7zcEOEKn/PnZxAuUPA1xhikpcSeGimO35Ys9xj7q8LGAgBLir4MX1NuFOC9cKcu2DoY+b3noHyOAgKD/K7uKfyYQwxEAgEXjaKjVRcReZgiO/hQODBovw/vv+xfxI++ff868u/FIX+9o9/sn5V+f6d7z3advXE73pem1uPZ8TK/ZQ8fIGkD1ZV9bwkFUXxdyV9jqRPFEXx9IUS+7Sk53Z9uKqqd0t6tySVZVlBGCHPEOFut6tr167p4OBAZXm+tCaTiV544QWdnJyktnPUea/X6xT85zvriAnz+by2+whhgDxxLJL5czLqhDQPg8zb+JFpADnPO0ZwrZQfdDqdWq07hCibt9qOrO+4U+pA/sAys7x4SYeTJndLFEWRsieY80ajofV6rePjY928eVNHR0ep1h2hBQeJZzaQwUDHBrIYOLeLIIyBOZpOp5pMJrpx44Zu3ryZ5sjvnTtFPGtiMBhosVik97k7Ic9T4Lq9RaN0STQ9A8PLZLwUgewOr//3Y7B2OJ6fgzXmaz7vIsGPt6jknnPfKRNhPXrHBD6LaObn8PXrIgjv8c9Kl2UOTvjv1FmBc3jXBO4XYNwIFu7gydc9ZQx8Lu+GgmjgAa8eSunPq187Qg9rJXc7PAZ4YN/F4+Lw6isogUDgNYXRBxrq/PzsUQ/jbojv4UAgcGdUlb7z05/Wd+rpO7/l7PEUE6T7ExQ+LOmziqIodW7v+nxJ/1rSTNI7JX3DxX/fc7cDuR0f8kow3sHBgV7/+tenmnuI23Q6TVkIThLJWtjb26vtrBPot16vUwcECASkv9PppJ1SdnUZkyf/O0GWLksQcEzQCpFrGI/HtZA/SNVyuUy785A3QiMpJ2Bn3Gvtfec3z2TgGNTvu3Xcd8ghWP76drtN4x2NRur3++l+zOdz3bp1K4kyPvfutsjLMTz3Ireeu4jC75jT6XSq1Wql6XR6m+Xdsyt23R/PTeD+uiPDAyEh394ilPIAxCZED793EFEyFLxdpGcIAO6Nw+v9+RzHxaHBe7x8Ihc3WIMQZe8Cwr1FrHBRy8sVPLdj1/GZR5BnGLg4564A7nsupPifcRh42YbnL+TCjAdoMn/+fkQGFxNcBOEz/l4XqCjzyAMarzAe2HdxIBAIPEq8/l9WGv14Pam9mC30wUc0nntAfA8HAoEXRXV2NfIeHgbuJ0Ph+4ui+NuSfljSmaQf0bm6OpT0HUVRfLXOv2C/7G7HYpeb3euiKNTpdDQcDlOHhrxe3a3qToS63a7Ksqx1EpjNZppOp6nl4MX4b8svkC4zHJyAIgywEw9JYReYsEcnlRA3shwgypAWSCMkDXeBt4JkXrgu6uIJQYQIU+PvBMtJHudyQQHCS2kH/x2NRhqNRimI0dsiEvJI9wgEGeaSe+TlIggKdKlwh4bPM0JQWZbJncHx8vp5wOe9swVEmfMTJulEmfIAD6B00YBj561MmUsvPYG4c93s1LtI5kTcnp+0Hvivk2nGnN9PX58uOrjQwnrynXjyEPis7/i7AOPnz4HA4NkD7ipiHO5M4Mef9TwnIw9P9LnLrzOfHwfH5PcudrnYkjuUcvcD9+wxcSc80O/iQOAqYvDhqa7/8FiSdPPTpG03NnAfe1TS4Y8VatSrQzX6see1+emffTRjug/E93AgEHgt4766PFRV9Scl/cns1yudK7MvGY3GeStBhAG6C+zt7enw8FDtdruW9J/br6VLIQAHAYJCVVU6OTnRZDJJO/aQRXZ1IYBO8iDDHG88HtdaFbqQISntUmMbZ8e71+ulHALS5N3e7qUW7FRzLASRVqtVy1eAHDI2MiNoGZhnPEj1cgfmjowCn4O9vT2Nx2MNBgM1m03N53MdHx/r+Pg4zaHvhl+sg1p3AydvvV5P/X4/uRQQFXyHGcGGshByMby+P7+enLB7i0/Wh++Me1mEdOkq4Rx8nnu5K5yPuUXsgOj7vXdizRzkgoKLWowtz+bw6/Xf7wo49LIIz0Pw9+ddRTyHg7WBUMWc5uPJXRPMgTsd8ut2ocZzRdxN4PPlIoKLMX4v+C9ihL++6zjuQvB1wb3ya0BwyzMZrjoe1HdxIHAVUf3Qj2v/h87/PPvaz9HqUNp2QlR4rFBJrUUhVZd/f+Lv/oQ2R8e1tz2qQLEHgfgeDgQCr1Xcb9vIB4JWq6XhcJhIxmg00pNPPplaPq5WK926dUuTySQFMJZlmQidW6Y7nU56Pa8jdwJHNwMAQYIwY9ceDAZ68sknNRgMajvlkI3VaqWjoyM999xzunnzZiKn7PQfHBxof38/nQMiB3mTLuvVKROgnt1Fg8FgkHbDG41GIuqSUstGHAUILVy/hzx6dwG36Lfbbe3v7+v69esqyzK9fnJykroseCmD5y1AJGnx6CIBwZgusIzHYw2HwzR+rrHX69WIeVEUGo1GieAxfx7kCAFmLquqSq4EyDNzhgjEOTwbAJIJIUU8QOjBmeHvQ0w4OTlJQZSef+Dr5U5whwFrIRcNcveAhwvmrztBxvnhJR1elsKYc0LP+nBRwkUBL3PwteXPs7t5GCM/7hpwhwJjdlGDOfVrdafErvn00hoPN3VxyOfXMyC8zCMQCFw9PPNnv0eT3/ZZ+sRnPeqRBO4Vb/vm92vz/PPp74+zeBAIBAKBS1wJQaHZbOrw8FCSEmEcj8cp6+Do6CiVOeAcwP7Pjj7W+M1mo263m9wDdF9w4ubZBb7byQ+kZzAYpB37fr9/W796kvOPj49TOYC3RXQi52IBf4ZsSZdtHsmHgBhDyhgnJBF7O8GP/X6/tpsrqeZYgPD5Tj4iAWUJdNKATHo7RBcSPIMBws59WK1W6Zpp30k5C44FrslFBhd/aAk4Go202Wx08+bNJAB4Db0HY3oOAEIMx3Nw3ThJqqpKTpRGo5Hmy2vs5/N5up8e8Ed+Qt5KMRcQWFc+1na7XevewLx6SGbuEOCaIb0ulLFu89wGxiyp1kklz+HgufMfz33IMxf8Or1UxAM6XdDa1XLSj0HZSZ63wD1zEY/f7XJ05KUKfm3Mg+clMG8uyrgg8biUPQQCryXs/18/rYMfGD3qYQTuEWc3bj7qIQQCgUDgIeBKCArsdFPTnxO8yWSSdq2dqEuXhMTJJsfM68QhJV4r7TX1Ti6ky51W8gScdCASEBwIsfQwOkhVvhMK8fMdZNwHvqOKMOI1/7lLwom5k2rcCjgWPGjPSayPFWLPvOJI8PlgbF46wvs5JgIH4Y69Xi+9H8LpQkO+i821n52daTAYpI4b7r4gk4E14kKPW9qdyHN8rgtbu3cJ4VqcbHJfCQb1HXKv//cgzxyef+AOABcvPLeDZ8FLL7jXfm2+XvOdd3cWUKaBs4D76U4KPuMtMx15+YWfj8+4AOZ5IbmIwfwxJ/zwLPh43H3hf85LR/zPnu3AcfI8hl0OJ+4NxwgEAlcPmxs3pSCngUAgEAhcCVwZQYGMAK+zh/zRAtFT4wkjdNLiRJvXIDMQJ7eTQ/b9955vQCkBtvvFYlELEjw7O9NisUgdJyQlMt9ut1OugXRZ7uA1+x7wCIGHYCESePCj283Z0YZYt1qtVMbRbDYT+eXzTvrcheH2dM9pcLLl2QNnZ2e1TgFuRYfUd7tdDYdDHR4eajwe1xwW/X4//SBguKDj19/r9XR6eqpOp5Pm3q+P8TpJZqxcY04KmUNKHZhjJ7KsKSfbLlR55oYTYq/j35X/4OPLOxiw3hCZGCtrx3fwmW/PTchr/j0MkfvoORpe9sL9RsDaJSTw3zw7gznxZzcXcFz48HwG5i+/bhd7OFaedZCPAbizhHPwzHqugjuGuJ+e+ZC7MAKBQCAQCAQCgcDtuBKCAsQYcuC1+nQYwHaOe6HX69VaLG42mxSASI3+arVK7/HOC07CvTQC8kJ443g81hNPPKFr166lFnwQwrOzMz3//PO6ceOGptNpKseACO/t7Wk0GtWs93lYIaUUeU044yIHgt1qrgOyxA6/76q6GAG5dYLkO/mdTicJJoyV90BmmSt+z3E5phN0Xj88PNRTTz2l69ev6/r165Iubf952YDXurs7w0sb3GGBy2E4HCYXA+DaJSV3Rp4v4KTbSTDz74QZQWuz2dTaD+Ly8BA/FwhykYD/eukHRNafAe9UwXg5npN1D1GU6g4Bdx+428RbZLoDwp01fn4+4/A15NePwFeWZZp7F1TcieEBlcydl2aQ6+BZCZ7X4MiJfy5guOjm4gR/RqhjvvhecUEkL5kJBAKBQCAQCAQCl7gSggL/wIfgQCr4Ozv3ACKxWq2S2MAOOx0VaHc4nU61Wq0SoRsMBqktIjvj5DN4S8rRaKTxeKzxeJxaGToxoQ3lbDZLXQnYce/1eukc1Mrn1niEB8jldDq9TZjw3XevQ3cSh+DgdnRIMyQPMomDAXJK5wUnsYgDBEMyb41GQ/P5PBFJ3oc7o9FoaDgcajQa6YknntATTzyhp556St1uV6vVquYgyC3qXgrCHHk3Aq4dcodggkvE6/C5huVyWQu/3FVqgKjitf4ICHlYoodjttvtWggj95zrwEHhAhRzzhpiXDhA8l108kG433nZDHkIzKELLl464dfhr0tKjgEXPpgHv0esDV5HgFsul7etQ5wQfr+83MadHrmIkYs9gPvMeuD6EKjcweP3Lj8O18vccq8RExAr/Rp2BT8GAoFAIBAIBAKBc1wZQcFJ43q9Tv/wh1DmhNnb9UlKzoTxeJxIPGGBklJXBLoJdDqddGxv1YjdGkEBl4AnxeMW8G4B7CIT5HhwcKButytJiQB6zgPkhVBDchggmL47C8GHTPF5LOpnZ2fpWv09EDnmyslrHmoI6WQuGK87F7xEhPl1J0O73U5dLfb29jQcDiWptsvrwZd50J7vpPM6ORUQyk6nk9wJCCneRhSy650IPJdAqhNpd6gwhy5QcB881yNfu56T4WIO2DXffo78s06QWVv9fr9W3uN5Gl5GwfHcsZCHJ3oQo3d1cIFjl9Wf++LBou6MYb2yLnjdr9/FGz7n2R5eduIdF1x4wiWDGOHtK31d+b3y63ERiucRkcozFqLcIRAIBAKBQCAQeHFcCUEBsuDkkX/Y50Fw0jk5gPQul8tUHoB1v9lspnIHShlwBPBD/ThEkm4GnBtC3Ov1JF2WI0By6RTgu+BY8Q8ODnR4eJh2sjk+Y2E8rVZLq9VKy+Uy5URIShkSkOXN5rzjAmUd3v1BUm3HlV1bXA4IFuQBSHUSl9epI5awA+4kmOuHVDJfELt+v6+Dg4MUxtjv95OY4GQvDzvkdXc++C43a4LwTkIyIZiMAXHACa2XVTB+3/WHRC+XS83n89T5gnniuF6u4EGJOXH18zkphbRTLuNZH3mII2vMd8j9eC4q8BrHdkHBsyV4H8fnx1s05iUKXjLB7z2TxIUKdycgKng5SJ5PsGtcXq6Qfz94SQPPDm4P1n2er5CLVR7QyXkJJOWZ8zUeCAQCgUAgEAgEXhxXQlCQVCOPkmo96DudTnIOVFWVyhxo1ehdBIBbwrGaY8kfDoeJEEE8schDHgkT3G63iWRClhAUsEx7B4PxeJyyAzg+Y3ES5aGRCA6r1SqRLhcUEBw4B9fT7/eT0MD7fMd1MBjUginzXV8CD7Hjt1qtNLeEIDoJ5RyUhpycnGi73aosyyToXL9+XdeuXUtdO3A8eMAgxBMimwsUHnY5mUy0WCwknbtMODbzNpvNaqGay+VSJycntTwKz3zIwztbrZYWi4WOj4+1WCxSNxHWHoGhlK9IdXFEuizB8W4bHgRaFEUqL2EO8kBDd0+w5vxZcPcGa9fDIXmfi0PeVpJzMfe4PRyUrnh5iOcm7CpNybs65M4QL61x5w1rmbXl88rcO8F3QQABgE4mPJu4Kzi+iz25M8SzHHgv52Adcg2BQCAQCAQCgUBgN66EoFBVVS07ARcB//gn7R9yCPEriiJ1C/DOELPZLBF+SJeTGyc/7AKfnZ3VbPsHBwepdILj8Bl2sD1Ir6oqHR4e6vr169rf39dgMNDzzz+vyWSSCC6kETLlJJddeHbCG41GrRRjuVym8gN+IPm4IFarVSqDgFy6i8IFFwhnWZaJCG82Gz377LPJKTEajZJrYb1ep8yIk5OTJCzQsWE8HidnxmAwULPZTOQep4Dv8DMexJT5fK7ZbJbKDqbTqW7dupVEC8Sa0WhUy8dA+HBRwvMN8iwGSj+4Z9PpVCcnJ2mcODw8vLDX69UIv7smIMDY8D3vYrVaqdFoaDAYJNErd2q4YwOhg+vwgMq8y0GeuZCDe+5lGy5qeVmMj8HXKevEXSPucun3+zViDhCnKM3x4FAvsfB58LIcrjV3PSCCIJg1m82UO8L9xsnhrg0PY2RcPueS0prhu4j3BwKBQCAQCAQCgTvjSggKWLy9rhm7PuQJMQFySqBeu93WaDRKxFjSbTvNhOa5fd/JhO8093o97e/vpx1232mG/DBGR7fbTaR6f38/EXaIp1QnKJAqCJsn0ufXsVqtaiTSxwzhwsEBqYKMUb4AQfVxQ/ggd275904AkOizszNNp9O0e447A/s598B3eQl2dNECZweOEC832W63yZ0wm82SyDIcDjUYDFLJgJd4SLe3g3TwGnPFtXGc4+NjTafT24ILnYD6faJ8Bfj73Z7PHOclLHn7T1+HiAkc39cr99RLA1hDwEWJvKvFrjwFfwY9w8EFBgi/5z54GKM7CXAWcM9dQMgzOFygy0MQKdng2hmzH9fdFsy1r20XD0DufMjzKLycxZ0kgUAgEAgEAoFA4HZcGUEhrxeHpHm4IO/N6/8JT/R6eAiV12/7Tq/nM0A42u122m3v9Xq13VknG4zRCUmn09FoNNL+/r729/dTqQP2dCd+jJ/f+Y6qB9eRrwBp2iUo5CUEXvpBaQbtJjk/hIlcCUoTbt26pcViUSNgCAcQeI6HY4Qxe3tJBBDcEb1eT91uV61WKwkWXoYwn89rBJNzLJfL5EIpy1LdbjcJNd4BgXNB0iXV5olrhyQjehCGOZlM0q40Iks+l74WKDNxMp2LCTgdEFK4H2QjePgk69sJtjtypMt2n358J7y+jn0e/DN3yibYRZr9My5+eOCjj4+x8HvcQP4Z7wTBD4IZx+dZQSxx+FpjPrlOL6fwMSAc8Xm/TwhezItfSwgKgUAgEAgEAoHA3XFlBAWILP/oz3dLIdNez+7J+3QzYKed3W/fFfUab28PeHp6mjIH6BTR7XYT6eG9bm+XLnMf1uu1+v2+rl27pv39ffX7fT333HOpZWVVVWq32ykLIK8lx23BD7Zt37V1J0CerM+1dbvdWlgj+QMedAkI3cM1sFwuU4kGoY+Qv9VqpcVioZOTk+QK4Br8nEVRpLwHiCjdNRgTpRCQNcbnwgCtO9lhdveJiw04QPL2it59wF+j7MLFhKOjo5TDgIDgFnkXJij5oF3iru4ErC9COr18h+wJrP1O+inb8MDDPFTQxSPG62vb1zSCRu4CyK8vXxOci+N6e0WQf87dPi4m8AxxXzg37yUrA1LvmQUuKrgAR9tORBl/Hvks65qyIX/mvCzKc1ZcxGQOuLZAIBAIBAKBQCCwG1dCUMhLGzwPASLS6/USUeh2uxoMBur3+4kgQi4hmm5f99ICCI2HQHIexIqyLCXVQ+Kky51PPn9ycqLZbKaiKFJ+QKfT0XQ61XPPPafZbCZJ6vf7NcLlLSM9HNDD4RBHEFnoYOGugDz8r9/vazAYJGJ/fHysyWSSXoeAIp5QmjGdTvXCCy+kvAKIvHTZQQIy7C6S3PZeVVUSAxBRKFVAuFgsFqlOHYLuRNc/68GcTpS9wwfdGZwQ5uUsuBKYt/l8nuZmOp3WbPZe0w+2220q9UAU8u4C3Dt3HEiX3TrIe2D+PDDR3QnkSCBY5MKadzPwLAXukztp/NpdhMhLdlyo8OPhkHExhvfnz64fFycJpTT5GFlPOBMoxWFO/Xlz0YI12Wg00n3nXiBmMQ7KpXIxifUxmUxSXgdOE2/z6esgBIVAIBAIBAKBQODOuBKCgnRZ2+ytEAlqgwh3u91EmsuyTKSLf/h7eJtb1t2+nFutscMjUhCgB2Hn+JISUYGE07Ky2+1qf39fo9FIRVGkUMizs7NEjLHUe5AjLgp3H0iXtd0uNiCeuM3ca+XpYtHtdlOYI+UFTgg5D7vIuBMoi5Aud3O93t0FDsZEKYPXtEN6sfpT6uCuCndfeDmCtzz03X5KJPjxEEp3MzAnXhLgZBWS7LvTXlPvAYYe2sccIVaR48BaQKzxXXbPoOCclIIwDt/p53c5Yec1Mic8CJL55Hnhfdxn7ifiijswfA35/c3vu9v+WZc8X95hgvnbBXdJePkMpUn5fWeMrBUPM62qKolQXFN+Xi8PyUtCeC4oJeJeeQ6Gr58IZgwEAoFAIBAIBO6MKyMoeL05DgC3+0NOsZB7qzqpbrt2Z4ITTd+lpRsA5KPX66ksy2TPdyHCCY10nhEwmUwSYaNlIiIBrRfZ/WScXksO8vpyr8OHnFKC4In1TswYP04AhBIPc4R4uXhBeQAlDezke6Cdk1e3ryMokLrvggJzlwsK+U43JNZJG2OF0Pk1Qv74Xd7BwjMB/L8+Z2Q0QGS513lYIX9nHZIbwXgpS9iVYcAcI/iw1vg818X7PDDSx+vHdUHBS4N4jzs4gJdNeOeP3DHgeQ6cn2Pm4Y25YOfHd0cF5+da6cyBUIQgxDk8EyUXAV14wdWwq+SD97u7xOcRgdIzVjyo1cedr4dAIBAIBAKBQCBwO66EoEDwnucH+G54v9+vtZ/z3UvIlocaet21OxO8dpsdY3YpR6ORhsOh+v1+bZfaCRqW/OPjY928eVOLxSKR6uFwqNlsptPTUx0fH+vWrVvq9XrJDUFOA+TaU/MB7/VzI3QgKLhjAJdEs9lM2Q+cix1YL01griFhp6enyYrP7juug7IsNRgMkgsAQkb2gjs6sLc7gSdfYTAY1MSfnAj7GnBhBcJJW0Dmrdls1lpl5p0AuJ+5VZ/777vi3lHDO0Yw/xB4b0UpqbZucGdwDQ4XPvIAyeVymXIqEHa8fGAX8cfN4Tv6jDXvcMF6c7eEh0x6roKHLrJeWGd+v7wrhTscuLe7MgjW63Wtjas/k+4eYc3wjHEeroFrIu/Cr8cDOXEM5eB8OFN8rH7P/b1kmwQCgUAgEAgEAoHduBKCAiTAa/w9iBBi6DuY0mX9Nq+z2+hJ8ewwQxw3m42Ojo5S3T1tJ73UAYLku8sQwclkolu3bmk+n6vX62lvb0+Hh4fabre6deuWZrOZjo6OtF6vNRwOa7vfvhvqwgBj9F1vXscNgJCC+wDLOKSr0+nU3BFeduC7rB5OV1VVaisJyd7b29PBwYH29vbU6XTStUPYEQkQYAgchKiv1+uU4wCxp2TBHSSdTkf9fr8mUkAeCbOkAwMuB88kIPxxPp/XbOusE8ZNOKLnD/T7/ZpLhHIUAKFkJz1vRZnnELC7z3r1LAx251k/3DvvYOClOF5CwbERNfLyDelSbGD98Fmep10hpzhJOKY7Lfz6OBf3bBfy4Epvecmz5s6OTqeTxEJ/JhhnXlrjZQg8j4hr5Fh4tkdZljWXCcKAfxfwWQQhxElEM+5lp9PRYDDYed2BQCAQCAQCgUBAuquftyiKv1YUxXNFUfyY/e6wKIp/WhTFz1z898Be+/qiKN5fFMX7iqL4wpcyCPIR2DF2EuSEZVfdt9dSQ+jyOngnIx7IBhn3toSQD3bmfXcZkntycqKzs7NUikAHhxs3bqTXPGEfB4WXP0hKr0FgPSiS8fn1E+7HDw4Gxo04QK06rg7flfawOeYEAjgej3VwcJCyGHI7OR0XRqORxuOxBoNBIpGz2Sw5JiBnq9UqBVd6CCGdH1zAkZRcE/P5PAkjHtiYB0Wy04+7AlIJgYVA+jWSR8Fa20WUcSb4zrcTbv+zdEn6/b55Hb4LE142kgsS3n2B9esZBruEARc/3IXjjpF8jbHOXEzwsgJHXkIC+ffgVMQJD9qkgwYOGESlXHSB1Pu9dWGFNcGxXVRkjXnLWRdqfC7zEiJ/Nljn3GuEj06nszPT4lHhlfguDgQCgcCdEd/DgUAgcDteSoHwt0j6oux3Xyfpu6uqeruk7774u4qi+EWSvkLSp1185n8piqKpuwCyuGtH1a3JbpP2XX0nOp5RkJM6SA/lAJISSYZkQsQ8tBHC4m3/JCXSURRFIsHs+uJMcCLmO6dO6rheiGxuX4dUTSaTJIgsl8ua7RsRxEWWnDDltnSI+XZ73qlgPB5rNBqlHfzcVdDtdjUajbS3t5fyGpjX+XyenBFc32w2S2Nll57d85zQQ3wRbRBz3L3AnDop9jaLgHvHe7wzhZ/XLe/+ZxcEcjGBsbqLJA9MdMHGx5J3DdkFX+uebcBrubjm4/S6f+aK3/v7PIuBY3kQot93F+9YxzhmcBS4sMMzMpvN0vPA/fFzuEjk2SAuKHANnpfhY/QQ0PweMg/577wzCef1+8ga9dKkK4Rv0UP+Lg4EAoHAi+JbFN/DgUAgUMNdSx6qqvoXRVG8Ofv1l0j6vIs/f6uk90r62ovff1tVVStJHyyK4v2S3iHpe1/sHE6iKHFwEpfvnEL4ITnspnMsSALvdUGBdoPes54dd4g0BN4FCzIL2DV3d4IkTafTGkmCvEFMEDk4FqGOCApe6++WcH53fHycSgFwdED8INZOxPLAOnbAEUFarVZq4Qi52t/f12AwuC05HzGh0+mkbhbtdjsR9ul0mq6l3+9rs9mkFouNRiOJNThCIKIIIRB0dqJPTk7Srjbj5XOQS28JSDkEAYeTySS1FMQNQVmIn9/Jus8/9wkgVOU5HMwvP14u48LIbDarCQk5yQW5myAns6zN/JnxcEsEJtaPE3kCLVnXvk7y58ufQY7lJJysA8plXMzgOnAl8Ller5eeTY7hDhXEH3dw4IBh/SIGIIZ5mQf3yK+J3zFn3ooUUcKfueKi5IpnmEDQq4BX4rs4EAgEAndGfA8HAoHA7Xi5GQpPVVX1cUmqqurjRVE8efH7ZyR9n73voxe/e1G4xTtPvJdUI56SEkGDIBDmmDsSvMUeO+fsQPb7fe3t7en69et64okn9NRTT9UIzHq91tHRUep+0Gw2dXJyktoGHhwcJGLNWJ1QOrH3cDx3EvjOO8SFMSJEbLfbtMtPMCAlDuwOOyF0+7ek2rwNBoNEriGtvls7Go1qdeeMjfc3Gg2VZZnC7ahfJ60fKzlzz/X6rjfX5C0jPQMApwPzwTE9hNMzDBAKJKUylclkkjpsUGLhZTDuHsnr9S/WdM1C78Qb5whOFndeuPPj5OQklYB4i0jOQ36FOw3cDbFrZ9zLLxAXyGRgzeQWfxcDGC/EnVBIDz30EggXVXgfjhwEA8+I4BrdrUFnFsI7/blkXlnH8/lcRVEk4YF1Ru4BZTL+fLszietgjvlOcHEkdzAhYnnGA88W77nieKDfxYFAIBC4Z8T3cCAQeE3jQYcy7tp6rXb8TkVRvEvSuyRpb2/vttp+J3FOciET7Jp3u131+30tFouamMAOtqRE9CFTRVGoLEtdu3ZNTzzxhK5fv67RaCRJNZu6BzIyNkQMJ+JOaBgvhMZ3jCHep6en6vf7KbwQgQGySrtFQhh9p9QzJiChjMPt7RA2SLyPmd+zG+tE0TMLIKcIC14S4j8QseFwmAI1nYDmY4KIQkZxSng4IHNGsCQtLH3n2QP9pHq2gtf65yGeXpbAvfLr2VUmkWcocN2S0jh97R0fH6f76vkIgHkGXkbh47l4VpIY4Lvt3p3BXS5+Dsg1a4hr85BT5oE15qKH/927MHCd7trgnvnfyfigparPLWvDHRZkG/gz761H8xIOzpOXSPlc+L1y0YdnHcHQQ2DvVEbxGOFlfRf3VD7MMQUCgcBrCfE9HAgEXhN4uYLCJ4qiePpCiX1a0nMXv/+opDfa+94g6WO7DlBV1bslvVuSXv/616cvWLftQw7yMDvpcufad5/zunbpkng6GW00GhqNRtrf39fh4aH29vbU7XYT2ScvwV0BHJsde28BmbcP5BxOZL0WHcGAcbtFHVLDrnu+K+316znp9N1fSCYCAuSaEg0+xzUgUHi5iIsAXLd/FnBsWm5ynxirz4E7UDi+E2knhOQtMEZ/D5Z0J/U4H87OzlInAG8j6u9ljlxQYFwQaxe18nHuIpouiNGe0EMNuU9ejrPrOD7/uWuC43jAJmO903s9iwDRyh0fLlY4GfdrdWHM5zkXHdzhQHtR78jg4ZiIGZ5d4FkZLpR4xsKu63ZXAveCOXSRgzG66Mj15d8jjwke6HfxuDh8bC48EAgErgjiezgQCLym8VJCGXfh70l658Wf3ynpPfb7ryiKolsUxVskvV3SD9ztYE6wnAhDRDxsEPdCv99PFmgnDW5DhwTzHu9+sL+/r2vXrunw8FDj8bhmxacbBJ0GnIS5zd7JP8QVcDwXKbwjgXRJ5gFCQ55ADzHz3V7O4YTXd8Qhh2QI0MnCOwtUVZWcCYQo5iTdu2h4yYELIIwZVwUEjbE6Qc3FIRwU/jkEg16vl7IRnDh6HoKPE4LI53kPa4k5zXMqcBdwj/JcAI4PgXYBycUidrwpjXGBx9/n697n00lsfs58jfux8jBFSgg8ywDHjTsKOIcHhObPpecZeBtQf38unvE7Oqc4iacUBUHIc0q4X36N7pbg/VyD3wd/n4sOefcLnx/myF0/Lsjl9+uK4oF+FwcCgUDgnhHfw4FA4DWNuzoUiqL4mzoPm7leFMVHJf1JSd8g6TuKovhqSR+W9GWSVFXVjxdF8R2SfkLSmaQ/UFXVXf9FXlVV6o5QVVXqIADBg1SxS7+/v68nnngi1ejTqhDyNJ1OVVVV2jGnrp5Wi294wxv0lre8RW94wxt0/fp1tdvtVLt/cnKiGzduaDqdJlKJXRtyjSuCwECIkOcZOKn364QAjUajZP/3to357jfiAX/2ZHwXJHIi5GTYCTXE18sOXHwYDAapvGA2myXiJp1nFPh5i6LQcrlM15+XNuT1/Ow8Q1ARUHwXf7Vapd93Op3aPCGYeOCkH19SEpxycQZBhPUCieUaTk5OtFgskiPFCSqOA5ALGfkapDuFOxTye8nn+YzvkPta4X1e8uM76Hkng10765yD97vbAFcG88r73SXEe3kWfa35XHFfWR8ITO5oQOBh3glIJeSUsebX72URLjDlYO353Ltzg++HvD2kCxXcJ3+OrgJeie/iQCAQCNwZ8T0cCAQCt+OldHn47Xd46fPv8P4/LelP3+tA+Md/nkWAVXu73SYbO90YIG+0UIT0LJfLWi20t1kcDAY6PDzUtWvXVJZlCpFbLpeaTqepLSPiQd59wYkTJMhJsROZvKacMg1IO0QJ0u9dIXA45G4AFwec9PqusxNVfkciv+9845Zg1x9RAHLFaxAtiK+TWifCfA4SCjFjDnk9r/n3efJwvLIs0z1CVLoTwXOHAu6E3DlydnaWuk/47vd0OtXJyUmqpyeskHvujheul7EiznAN7H57qCIkOl/rTsq9e0JOZBFIPPvByxGcMDtyBwRj97KSXWULXhrE+/3+5YKCA8KPG4R5cPdJntng693Hw3Pn58tLixzcU8aVl5RwTi9z4LnLA1zvNKePEq/Ud3EgEAgEdiO+hwOBQOB2POhQxpcNFxSkes29k5Jut6uyPA+s8TIG6bztHN0HvF0cO6vdblej0UgHBwepPSI70AgTHsTopMLD7zw3AZFgPp8nAgqpdqs7DgDIFtfM+7lGJ8P5bjDE1EkyxNeJo+8cg5wcM3fsGkNmmbM8/I9z7ApH9Gtx0udZCMyhuwnymnde97n1jhTe+QP4uL2zgLfrpKRjtVolF4LfW9wplEswVl733X231eflDHeq7Xfngd8PLyfx7gOIF7lbhXvhAhO/v5PYkjsZcuHC35PPqd9bLwHYdR9zh8KunA/g5UvuNsnLOng2c5Ehn5dd15vDnzW/Rs7LORjLnY4fCAQCgUAgEAgELnElBAUncHl7O9wJkEyyALxLgHTZMnA6nWq1WqnX66VjYEEfDod68sknde3atRSKCMlGTPAgRh+b97t3Sz11/icnJ6keXFJyPkCQvJbfd2m9Jh2XANkQuAggVQgN7uBgjDnhxkHhAg1z4W4KL2Hw+wCphUh6e0Suj/Mg6vi5IWUessdOvoPr8A4AOD8oWUH4yLsKuGDh9e7MIz+Nxnm3jNlspul0muaa85KZ4CUUPq9VVaVWhrzueRV5mYukFKrpyDsPABeJEKP4ff45L33w9odO3t0d4/PEuvWQxF1EHXcJDgMXP3ApuFvH7wFrzoUiFwv9eKw/d/H4/PA8nZ6eJjEkF1hcRNklAvg6Zo165oRnnPicXiVnQiAQCAQCgUAgcFVxJQQFqb5L6ySfbguj0SgRzdlslqzrpOkfHR3p1q1bmkwmNfs5BOLg4ECHh4c6PDzUYDCQdFl7D6lEoID0QPQ9vI2d88FgoL29PbVaLa1WK33iE5/QcrlUu93WYDBIgoYTTEodIEcEw+ESODg40HA4TEF27tjwkEEnmIgg0+k01fFDGsuyTLva7M5Ll60nIf2QKwi/16ezs++CCkJBHjwJuWP8EE3mdb1eq9frSbokmszBarVKzpLxeKy9vb1U7jCZTG4rI2g2m0nMOT4+lnTZprAsyxRE2Wg0NJ/PdXx8nEpfGCfCAKUdYDqdpuNxTHciuNuC9YULRlIaF9fo4/Y8AUo7cFTk7pVcSPBykrybgZdCsKa5Bs+rwD1CeZCLMF6+knfhAO5OYPx8jrXhWQ/5uNy5w1p2gcivxeeX11y8yQU0L53wedvVGSIXGPKOK/mYAoFAIBAIBAKBwO24MoKC7z66U2Cz2agsSx0cHGh/f19lWdbs1x7ESE02oYlOcsqy1Hg8Tp0OXHSAWCEe+H+Xy6Xm87m2221Kre/1etrf31e73dZyudTNmzc1m80kKbkLPNCx1WppMBjcRt4Xi4Vms5lOT09TAGFZlmnXdrvdpnwG6bIOHbcB9n0n4/1+PwkfXg6BGEDYId0d+DzheLmrwHMPpHorQf4OIXPSx7XmnQUg1+7McMGCshSug3uAsMTxvWMDQpN0KTTgKPCSBif9OF9wXeTj8tIAfg8p9hKDPNSQkpxWq5WcFXkpAvfQxYFer5fKO7zMx+FzLV06KRx5LgP3G0GB9/Bs7SrN8DwOL+fg9y5G+bXlYZlexuDrxcl67jbJyyp4zedgV/kCQChhfO6+yc/JHOV5Cf68haAQCAQCgUAgEAjcGVdGUPCdRwgupArC2Ol0UilB3hoOwoOt24lAo9GoESu3irMD78QcUgmRnc/najQaGo1G6vV6ifAiZBwdHen09DQdm1156bKtoofyVVWVzgWpQ6yAyCIAuMUdMkWLR0IVIeyQceaJ0g2EDeah3++r2+3WsiH4L10SdtXk76qH5/fcQ1wm3hkAe7zXrWNld1cIBNjbZiI65CTbCagLCpBz5tu7Q0BEdwVe3mlNso7y8ELm1TMWEBMGg0Ht+AhEvh4ZnzsTOp3ObWGHEH5Ieb6DnpcLMB7uBeISxJnyHfIiPKTR7/GuwM9dGQNeZuFz4+vVryUvUXBRIy+/QCjIr2/X+5gjd4S4+2EXduVUuAASgkIgEAgEAoFAIPDiuBKCghMlHAPkHhBm6JkHTjDzXVBvpei76hBdt+pT179YLDSdTlMtPbuj8/lcs9lMq9UqORPG47EODg7UbDY1nU5169Yt3bx5U6enp2lnmp1zxuMiAdfInyF74/E4CSFuD/dwSYQI2ls6yW02m9rb29P+/n7N9u2185JSKQQZDScnJ2kuPHCQOcw7TjjRctLIa51OpzYHi8UiXYvXpyPY5OGE/X6/lv3AWnCHAGB+vCShKIq0Viip8DIHSGpei8/68/wArjMvW4D4s8YIgkRM6PV6SSjxEgLgIY1kXTBmxuO1/j5O76ixSwxBYMgDEhkzApq3cHQXhrseclLtc+a7+A7PmfDXXUzynzz/gff6n7kmFzJ4zdciYiTrLRd+8nPk1+UlLSEkBAKBQCAQCAQCd8eVEBS81p7WjdIl2RoMBimgzwPUPFiN9/J7LO2+Y+1WcbIXyBZgx993/Qnx22w2euKJJ7S3t6fxeKxer6ebN2/qhRde0K1bt2oOBkoUIGvsuHvNu5MtSOje3p6k+m4s5Ii5WC6XKQtgPp/XdqAHg0EqC6mqKpUwcD04KPb399N4jo+Pd5ZT+O42DgHew3xDvrwNn9fpMwZINb9j/t0ZgYDgQZfr9VqTySSVk3A/OR476x4OyXEoOeH+3qmzhM83hNSDAvm9t6OEnEtK1vrtdqt+v59KVpygeltCdy3MZrN0vQg8ODfI7ECA4doISeTcHozowhrnxdWDaDCfz2vHpj0m5/WASS/r8NIHkAsyzCvZDax1njvcEYxNqossuaPBXUTce79/7njx8pnNZpPOeadyFXcweVZIHjbJNQQCgUAgEAgEAoHduBKCwna71WQySeUFs9msVgbgCfvsoEP+2Kl10gOJ9BaMw+EwkTLO6RkJEG9+57kIw+FQr3vd65Iz4fj4WB/+8Id1fHycygqo+Wd3OXdDrNdrdbvdNG6EDsSO5XJZ2y3290HGFouFJpNJLXxxMBioLEvt7e3piSeeSAQW8oR4gbhBhsRms0mZBJB56dKOD6kmsJDjIgJwbK9j91IH//HWj36PvE0jpJnz4izICWpO8Jgfd7A4EXbngrdm5BpcnEA4YV7cAcP14ZYh82Gz2ajdbms4HKZSEh+vlxVAjOmuwDVD/BFOPHfBcxa63W4tPNTFEXIomAueHXd6IIrgWGm327WWqawpf0Z27dTnZRHA3Q2NRiMJPP58epBnnuGQ31PWvbt83MUhKQWqMmf+jLv7heN5IKl/n3jXDgQ3dzEEAoFAIBAIBAKB23FlBAUPQoRouB3cbdGQAN/5dZu0t5r0nVoPDvTwNy+h4O8EMbbbbY1GI43HYzWbzeRmuHXrViKekHXpss48t6t7nbi3qPPfQXT8+tyFAeH1oEfEhIODg9RO00sMEAokJZeHOwukugXfd5S9bl+6JGhOxvw9XjLhZRu8h+txlwZtQrlXRVEkUccDHfNyB97v5S0+Lv7rDg8vF5BUExQk1bI4GDuf5x6zliDf0nkI6HA4VFmWSTxhPv7/7Z1fjGTbedXXnq6urn9dXVXTPfeO/xDbyCAZhIiF8gIJSEHEtkLMPyFHPFgKkhUpSEQIKbYsQV7yECLyCJFRLEfIiQ0CC78g2UKIvMSExNjONfaNrxMjLvdy78x0V1fXn+6e7j48dP12r3Om+s5M7q3umtvfkkrTXXXqnL332WdPr7W/b30ecUCbuA73x0UOL5/qzwDkn77SJ+6TjyfHV8U3nzsQbxcwXLyoRiMs8iKoCgHVdALmmo9n1QCx+n2fS4vO6e3xZwnRy+ehX5u54saTi+ZLGDIGAoFAIBAIBAJPjpUQFDzkGgIEceNf6WKHmmMIa3ciQli8dGGI6JUdqqZxEHUMAtmtJUqi0WjkEoanp6caj8d6/fXXc1oGERCYHEKcXFDwnd8qaaFffiy54NUcfLwN1tfXM4klXYISltPptGRK5/4NlDLEN4Jdet8BdlImXRBbdr89NB7i5k75HrXgaRReohPQFw+NL4qiFDHi40Sf2F333Wb6sojksjPNWCMEcY+oyOA751yXttXr9VzBY319Pc/RjY0NdTqdbNjp0RiMD4KCp1VIKvXBoy/Y3cdIlOvs7e3l7yOoeDQG40mkh5d+ZOcdscEjBVw0QdxY5JHgogJih/sNLPKluKwagx/n5N4FLRcL/F9A+11M8GtW+8YaUK18sqiPISYEAoFAIBAIBAKPx0oICpA8Ug5SSmq32+p2u9ra2tLGxkbpc1IdEAEgP4gDRVGo2WzmV6PRKIVdS+dkDo+Cs7MzTadT7e7uajgcam9vT7du3VK/39dgMNBzzz0nSZpOpxoOh3rw4IFOT0/VbrdzO9vttiQ9IiZAgGu1mmazmaQLocPDvr06xGw202g0KhFG+gm57XQ6un37tgaDQfYt2N/fL0UoeKg/IgGpJez+k6rhVQA8CgHy7GKO56d7nz1FAnLrO+hFUeQUD/c+aDabpdQOUh0g1i5gUGKTdkvKxo+cDzB2Vf8KN5es1WrZgJPr8jlpM1T2aLfb+ZrMK9rfaDTUarUyYceTwwUwwuqJLiFNYn19vSQWIWRh8IjpJAaVktRqtSQpPw8ezYAoQOqPpNwPxATGDWFpfX1dzWbzkZKNi0QA7reX21w09h6ZcVnqhJsyVsUE93uoioHuw1F95lgbeLaazWYpGqia7uJpUy7sVaNiAoFAIBAIBAKBQBkrISj4H/e82u22Njc3tbm5maMRIAnVnVXgud2NRiMLCnwGke92uyqKQsPhMFdNODg40HQ61cOHD1Wr1TQYDLLJYbPZzGkO4/E4Ez5M+MhVr+Zds7PMDjjmjZQ4pD3NZlOtVit7SJBu4f1yg8lWq6Ver6ft7e1sAjmdTkuCheeaQ9Lxi+BcRDV4jr8LNHhXTCaTLOJAoukjAgTkbX19PRPrer2eTS8RKchPh9BD6AD3tVrxwAkfRJv0CHfmZ2ceuKcERJT0Esgs5L8afeEpM61WK5sneiQE4+cCA0KXv7xSRfW+NxoNTadT1ev1THo3NjZyP2/duqXZbFYSn+r1ek4PkpTPwz0hfag6H7h3pGIg2iCsVCN+vK/uecC8dDLPveK+8S9jyXyopgQhTrh5o88pn29FUZRKjdJ+TzHhnCmdVx0hQolzV80iq2KHC06BQCAQCAQCgUDgcqyMoFCr1bLRXbPZzP4AtVpN4/E4f+alB6sl3hAaIGyQeekijBziB7E+OjrKhJLdfXaQ3bUfgrbIzI8+ONlyoiYp74ATkk6fCXuHNOLEX/VgkC7y+BFKNjY2sucDEQfskEMQIV/j8Vjj8TinX2Do6GMHiaN/zWbzkR3odrudox88moH+Q77pE+0iJJ9zc81FopATdcaW81P1g/65M7/fD8+9d5HBS3B6H3wuMtakG1QFBSejjAvHShciC6TdUx7oG/eRqAHSUYj04LqkJhDtwPer5/M0B4QT75N7GtBGxhNUqykwxz1toQru861bt0qRLf5MVEUBwPPiYgRCAX31e+pz1PvuaRrMNa6J4Ofz7TKxoPoMBwKBQCAQCAQCgTfGyggKvqPZ7XbV6XQyEWD3GCIMaWHXmt1TL0uHmAAhwUsBkcIJn4enS8q77Oy0Sxeh5U5I/OVmcB7yz4411+AY2kQ7T05O8jHk53vOuIe0IxpIyp4P7PzyOe0hMmE0GmkymajT6eTwdgQDCKMLKrTNSSJh+JIeiRAhOgFfB+6Jpxg4+fSIgar3AeHp1aoOXKPdbudzL9rJ9hQNT8dAQKjOH/dMgLwSmUDJUlIUPG3A0wIQGrwSBj4Y1aoNHvVABALtI8ffUzqIcPDrubGnpJKHB/33Z8vnJ+PmVTl8XFyAqEYkLLofVQ8C/92jDy4TG2gXggLXcFNR+uafezlNvu/jQpQSAswiQcGjmnwOhagQCAQCgUAgEAg8HishKEgXO8eNRkO9Xi+TUtISUkrZAG93d7dEDo6Pj3VwcJDDySGBEL9ms6mdnR3t7Oyo0+no+PhYk8lE4/FY0+k07+Kze7/IfwGi4cRFuvAAIAQdEst3KWs3HA5Lef7NZlODwUCtVktnZ2e6f/++ptOpJOXdaw/1X1tbyyID+eWj0SgT1pRSbodHcezt7ZVKYGLiiDDA7je+ClzbyzAS9bG5uZk9FUhBgYRxb7rdbilygmNcpIA4sntPGoRHfUBy3TuCazQaDY3H45KnAOTTiWOVrHqZUSfXAGLKPHRvBNJfPGKFcyFA0V58OCjx6XOVsUB48RQKSaXKEVR28B152k3/mOMeDeIeGu6Fwf308ojMARfjqrv+HvXhwh/HuZjnPgp+rKQcCeIk3qNVeFZcOENY4t75OHhkg3/ukSUILS6EuNDIWLmxqLc5PBQCgUAgEAgEAoHLsRKCAmSC6AQ3nDs6OtLa2lo2sMOPAEDiJJWICBEJm5ub6vV6unPnjhqNhk5OTnL6Ad4J+/v72aCRc/T7/Rze72UMvSQlZQSrIdVuWDcajXT//n0dHR1lEtnr9TQYDFSv1zWdTnPlCEwL2fV14iUpEyaIoYsJCAHs2J6cnOjevXu6f/9+Fh7u3r2rVquV+ySplGYhKadLYBB5eHiYyTwihKQcuUHOOrv5lFREcEA8cQM8jyIgJJ3rQvLoK8Sdyhb1ej1Hc0yn07yb32g0VBRFfs+JIFU7qIDhZLu6437r1i11Op1sBornxvb2do7u8HEnOiGlc8PL0Wikg4ODPJ8k5f4yL/v9vu7cuaNut5t3z71EaK1WywIFJHs2m+X5hSDCvWauuYiC6FWNaPEUDzeKRBjx+y+pZKzoJRf5/mw2KwkHLj4s8jrxVAZ/hr2KCdUoGDeEm2pEDKKHV3Rw4Yo56pEyLibQzmq7Xbjx+REIBAKBQCAQCATKWBlBwR31a7VaJjKE/0PaDg8PS4QG0uthzu12u2R6RySApJI4wA43/ggQKq5HegUO+6Q91Go1NZvNLBCsr6+XdtIRPo6OjkreBXg4VI0aIcFebYH0A3/5brEb5gEPCT86OtJwONRkMsk5+YyB56F7OD6El35DNr1ig18bMuy71ZBA2uz5/qQ30FZEBlJLXChhXlA1gnsjKUeVYF5IhIObdhLl8PDhw5IQ5P4PThgRM+r1ejbiZKe70+nkyAj6R18RIfb39zUcDrW/v5+Fi+ruNnODihEu/jjJxuvATR197LgmhJpnwftTJdeSHkm/cLJPtIOLCe6R4X4eTu5dNKlWSPC2ePSHz1kv4bgoNcMjTvy71Wgh91RwccoNHhnby6IoItUhEAgEAoFAIBB4OjxaE66ClNJnU0qvp5ResPd+JaX03ZTSt1JKX0op9eyzT6WUXkopvZhS+oknaYSTZS95xy46BJxqBhANohOcdEKcPW3Bd4IRFNj1hTQfHx+X3PchqUVR5EgJwvep8LC5uZl3333XGHO+g4MDTSaTHGXhu8VFUTxiwkiaAcKAE/Oq2VzV6A7yTNTF3t6eRqORjo+Ps8lkNV2Ba0gXFSfoN2IN/gQQ9GquOcIARNTbyrFV4letdsD9QsyQlNuJ74QbBDIHiH6g7KSLEdV7V23PInM/0hw6nU720CDKxdNJ6D8iSlEUJUGB61WjHxCUNjc3c7SFGxN6BABz0p8DD/Xn2ow5Y+wRDOzS80whiFVJuhuIeqUJ9yvw9tFG2sS/fv+dyC8SBXhVIw98PlfNIKuk300YaSPjwnz16AUXgKp9qJ57kfhx3biKtTgQCAQClyPW4UAgEHgUjxUUJH1O0ocq731V0p8viuIvSPpDSZ+SpJTSByR9TNKfm3/nX6WU1vQYQMQJ3cbb4OzsLBNGwrMRAFwQYJe73W5n/4Rer5fz3huNRjYmHA6HOSpgNBppf39fs9ksh5l3Oh1tbm7m3OvZbKbRaJR36tvttra3t7Wzs6Nut5tD4M/OznJlirW1Ne3v7+vevXuaTCZaW1vL+fcIG7PZTLu7uzo4ONDx8XEms1LZhI+wdyIo2C0ntYBjiHZ48OCBXn31Vb3yyis6ODhQo9HQ1taWut1uNnBkt56oAwiltw/hBRD1gKiR0kXlC8h1Shcl/zgOYcJNLb2axObmZk4lQBQhlB5BBpBCMpvNclrKYDDIESKz2SwLKNXoFTerhMS6pwVCEpU9SHsYDAbqdrs5cqZKMBmX+/fva29vLwtI7MozVvV6PZ+z2+0+4nfhOD091Xg81nA4zP2VLowi/Xs+R3wnnv5UTROlcsoCbSM6BbLNHCRyoerNAUH3KiU+5jxjGKouithg7KuVFdzzglQQruPpHItEGxfkEMQWCRbej8sqO3i60Yrgc1ryWhwIBAKBN8TnFOtwIBAIlPDYlIeiKH47pfSeyntfsV+/JunvzX/+qKQvFEVxJOmPU0ovSfoRSb/zuOtAZCAl7n8AQYcwshN/eHiok5OTTHj4Tr/fV7fbVa/X0+bmpqQLrwA8C3Z3d7W3t6f9/X2Nx2P1+/1SDvn6+nom4PgINBoNdbtdDQYD7ezs5LSAs7OzvLt+cnKiw8PD7JtAVQLyuX23njQHCDkmfuS4e+56u93W7du3c6SBpEzcIU8utBweHmaBxf0O2MElWsGN+Pw4oj5Iv+C7XOfo6EjT6TT7F1CtAANNiB9CB+STnXMiAXZ2dnK7IaLHx8c5VYSxcbLc6/VyNMfx8XFJGIJgQ2Rv3bqlXq+X36P90kVpSKJGIPxbW1s5EoU5hUjh1RMYg9deey2bh3okiZdMXF9f19bWVha5EEF8jrmXACIMfh3MHZ4VzDT9eEQv+uPpJ5JK53Mhw6M/IP8IdR6F4YaWPCfMQ69q4WIN7X4ac0OPMiF9yP0eaHPV98ANHhetLRxLugzrjZuL+j1eNVzVWhwIBAKBxYh1OBAIBB7FW+Gh8DOSvjj/+Z06X0zBy/P33hDVXcA0r1jQaDS0trZWIsmHh4fZ9I5wfDdH5Ge+X6vVNJvNcklGQv3xF8CFv5qSAEGCxGxsbGhzc1NbW1vq9XrZUBGSiyEg1QsePnyY28TuO2ICu6+QoDT3hqBPEDbC+tndZgeZ77vA4lUTzs7OVK/XtbW1lc0K2a31HW6iHnxnl/MheLhZ49raWr4GpI8IEkQOxgJhiDZyj4kGQPDZ2NjIAgbHck8g9bQRMYIokIcPH+ZUg8lkksmsl5Kkv94nr2QAmXYxodPplMQeD+Xn5ekl4/G4tAPvBJaxI/Kl3W6XjBjdJ8FLeHqJSBcHJJXmEAIAO/mLSj1WvSJcQPDnjznvggs+BJ6y4j4Efn1PI+G8l3kT8Lt7KHjahosZ9NkrWHj6Cufz7/s1+Yx7WJ2n3qYVi0h4WrzptTgQCAQCbwqxDgcCgRuHNyUopJQ+LelE0ud5a8FhC7cmU0qfkPQJSdkssEoaKTE4mUxKgsJ4PC5VdiBXnAgDjzRwrwI3YTw4OCi5/rNbjV9DdZcYc75ut6vNzc1M8CBqVB5AFCANA+LlfgiQIw8Vn81mJZGBtrtJpIe50zYIIDvwEGa8I4gaoJ1eZpDoBCfNCAqcE+EAkgf5l5SjQkhXoYIDZPfo6Cj3i7bjewCB9zB5hAquST4/40SUSKvVyn0n4oQ0A67vcwlC6ekAnu5BGUfuLYKSiw6ICLQRHw43iPQ57IIAlSMwdiS1h7EmdcQNExmrapTBIlEBAcAjIh55COf32v0vXHhwbw1P1+C71cgLxtTFBE9BcL+HKlFfRNyd8LvpJM8izwzf9+/4udy4lGOq16h6MFTFB/r2LOGtWosbai2lfYFAIPB2R6zDgUDgpuJPLCiklD4u6Scl/Xhx8df3y5LebYe9S9Iri75fFMVnJH1Gkvr9fiFdiAPb29vq9XqSpMlkkn0PIGCHh4eZGCECeHQBO9OkJBChwM+7u7s5/eH4+Dh/zyMdxuNxqUwjhnqtVkuNRiOTdEjKeDzWaDTKfgREB7jPQJVEuV/BdDrNogGEiNQAjwBg99p3s/nZK1D0ej212+0smiBy4PjvQgnkGk8KxAoI5vHxcS416SIHu/lEUxByj5gwmUzyd4mywNuC8SHCgKgTT/OA3CEQbWxsqNfr6fT0VJPJRKPRSLu7u3k+4OGAQAIhxUeB+8jcIHy/2Wzq9u3b2traUrPZ1Gw2K5lUcg7Gh9QMIl6o7uG75JB8HyvMHZnXiCicm9B7UnioXGHPnKRHQ/pdGOJ3RAGH+yB4xALRLtPpNJ/L/SY8MgFvEZ971SoKLiowny8TFBBvXJwgzYH2u9ABXLxAIEOcc1HB24ZI4dUfGCfO7ZVAnjZV47rwVq7F3TRY/Q4HAoHAiiHW4UAgcJPxJxIUUkofkvQLkv5qURRT++jLkn4zpfSrkt4h6f2SfvcJzperJrhvwnQ61XA4zJEJEF12xCFrkE8Ij+8yIxwQ8n50dJTN8yBra2treXcaY0J252lbv99Xv99Xo9HQw4cPs+CAwDEcDkvmhngwsLvqaRiIH+4dcOvWrRwODzGGRNNfCK3vqvoOMyKLR0VA6qVzgcIjGhAwiBKA1DNmk8kkl52EKHY6nUy+8TGAVOMLQESJm2pyX59//nltb2/nlIsHDx5oOByWCLjn+Lfb7fw+n02nU+3v72tvb0/T6XRh7ry/BylGaEL0kM5J5vPPP6/bt29nsuwGm61WK6fIEAHiO/bMO49MgMBCzLvdrvr9filaxCNMmEcIGBhuMvb8beImnE6IfXfdRQSvzOERGV4VgUgJni8ie/DTcHHA0ySIaPBzgapho7/P/CSShO971A7PR71eLz1Dfl+5T9XqGDwTHjGBsOFigt+/qnDglUlWXVB4q9fiQCAQCDwdYh0OBAI3HY8VFFJKvyXpr0naTim9LOmf69zBdkPSV+dk5mtFUfxsURTfTin9O0n/S+dhXz9XFMXp4jNfAEIPiZPOd3APDg5yjjq742tra9kA0MP1IaHuDwA5hrQ5Sfbd842NjWzk2Gq1MhFBIHCRQLrY9URMQBAg/N/NGSVlE0Qn+kQIsKNOFAJkBsEEEofw4KTZzfic2HEOF00gipBiiNfp6WnecZ9MJrlfEGMMFRFEiB5pNBol4gbZdWM+BB8qOXS73VwZg+oI+/v7+d56isF87uVjETRGo5Hu3buXRSEvSVgl30603YQQUaBer6vdbmtraysLK4yXt4NoC/wkqrn73G8n+Nw/0jvoh99/xgoijdiE2WSVrHu6DN9zwsxxnjYD+Kw6VswhIliYJ4vC/j3NwaMWGA9PSfA2+VgxrswdxsOfNy/tSZv9+tXzeWSIe5qwtrjgU42U8GOrWDVPhatYiwOBQCBwOWIdDgQCgUfxJFUefnrB27/+Bsf/kqRfeppGsDtPKT38CCgfSch6tYSd52lXS9t5jju7+hBDyLl0Thzb7XaOjqjX63l3HXLurvlUVSCCAWIH4aZdpAxA0Dwf3r0GINJ8t7or6iaAR0dHJZLmu7C+2wu5gii6uR2k2MfJBRa+69UjEFW2tra0vb1dEhPcVI82urEkVRJ4tdvtnD6BkOGVB6omjL4TfnJyooODA+3t7eWKGLTT8+NdZJIuCDbHuJBEGoKbHPp4kY7CnFhEQt1TAHh6hZdjdPHF7zVzjDZ7OD6AMHuagRsU0ld+d78DF384h88hT3Xw8phVQu3X9ut6ioDfA/++pxy4uOLRBy6MVA0WPXKA36sRC4gQ/rlHSQAXC6o+DNU2rwquYi0OBAKBwOWIdTgQCAQexVtR5eFNAwNDQuin06lGo5FGo5Emk0mpNKT/C4mr1WrZ24CqDp4XDnnC0BFX/lqtpm63q+eeey57DuAl4FEKno8NcfZqBOxEu7Eh5RPxXiBv30UAhBBSGySVjPYgPWdnZ6XKB9Ucb89phywiergJI+KH/+6Glew4SxdVK0jX6PV6esc73qHBYCBJJcNKrulVJiDUXjmBlBLEnuFwmAk840QEA/eWyAA30xyNRtlzgHZCCokm4X4QDeDGiqRiUAJ0fX09n09SLrVJZMje3l4uHeo76O6h4SA6o7rbD7HFQJLPINqS8j06PDwspQbgbeGlL91c0T0RarVaNqOULgQPr+BRrdxAFE3V/NPP79EM3n4n4ERbIKI5+cfvBBGBecp1iM7wdB73Q6C9zGG/hj8D9LlqUun36bJoBb5Lu1cpQiEQCAQCgUAgEFg1rJSgICmnJlBCEMM7r+LgkQh8t9/vq9lsqigK7e3tlXbPJWXTRKo74Ozf7/d19+7dTCwhXb5b7076iAKEq0NsNjY2MkHiHN1uV81mM5M72sOr3+/n3X8M/iB6KaXSzntRFLlKQEop55YTJQHBdGPKTqeTSRg77RCks7OzbGwIoYOMupElaQ537txRt9vN1/aXt9uJXrPZVLvdVrvdVqfTUavV0unpaTZT3Nvbk3RhPolnAWUbEYb29/c1Ho9zGgypHA8fPsyRLJyj3W7rzp07uUIIcwkSD+F0gUNSvr+MH6LHeDzWcDgsGX9C8J0sE13CHHFyDKl1ot5sNjPJ93QWSC9iE/eOPvj8oC2+k+/XQshg3rkYwBzgexiSIkC5UFIl/x6p4bv87uHhEThECfAcuIcEgpx/z8/pYwyazWa+Fm1zQcUFEq/24uuBwyM6PBLC+xcIBAKBQCAQCAQexUoICm74BgF2J/1qCPba2lo2MMSIkR1338n1EGv8FIh4QFBgBx0xgZD68XiciZDniBNi73nfECL3VsAAEJJGnyA/7FY7IaLqBKSXY+iHn0sqEy7IU7vdzpEeXv2B9kJq2W3mPb4PYZ/NZlpfX9f29rZ2dnY0GAzyGPurSlIhhJBa0h64R9PpVLu7uxqNRjmKwyMUSDthLCgLiRCEwSbeFdznZrOpra0t9ft9bW5uqiiKLEhUozbwdWi321k8QAyBpCKo4Cvhpn5HR0daX18vjX91PvuOPKkPlMHEB4T5zVyH3HOvnTAz59wbgPnjZTw9VYTPOYYIG+aU3y/vH+9X02l4Nl1EqUbLeOpHdWw4xj0R3CySyIDqXKrCvVMQgqpj76kYjEW1Hf6dRS8+CwQCgUAgEAgEAouxUoICf+T7Lj8h1OxIQuC9pB/kil1PdnUhcEVxUT4SU0J2s6nuwM47u/aIAl7yzn0FuI5XH+CYk5MTbWxs5N1RPAN4ScoiiRM/UiVcMHB/CPcuqJa9I1wdLwY3qavuKrvnwaIyhUQdQNK73a4ajUYp2oGXEzonY0RtYDbJbjwpC0QZeNtJVWCciS7wF+NPuUXuM+IQlThI4fCxggx3Op2c1kC0gZs5Mg8QNaSL6hOMIXOR7ywiqG7K2Ol0St8hugKhC2GEsaJt7plQJdvumyGpRKSZGxDqakUIjvfvVc0fmcte2aLqkUBbPAXEz8ExzDs+4xyLIh38d093cKGqGs1QXU+qQobP++q9ql4vxIRAIBAIBAKBQODJsBKCAru5Hk7PbrLn/CMq4JeAoOCCAQQQwzpC+D30HRPFbrerXq+nbrebS0ySFkGoNsQFEuLRE3zO7jMk1s3yeBG2Tn943wm/+yDwHXa4IfWQaPpDhAbiCDnqHAcJJAycPkDM2ZmmVCYRHpKymIDYUK1sQdi/VxOQlHfYIfl+D+7fv6/9/f08FhsbGznNodPpqF6vZ8GBCh+kHyAGISZwL1utlgaDgba3t9XtdksEmDbjj9BoNLSzs5NFJOYEpRq5TwcHB6WoDrwFIMlumOhRJuyQp5RyJMRgMFCv18sRLfV6XQ8ePNDh4WGuZMKc9PnEGCHceMh+rVbLfWKecx88msYFhyq5JwKm6iWAAMH8cc8DT62oXo/zLiL6CAyMDWNIHzhm0drgAoT3c1H6Aufxc1W9RryvRDlwX8M3IRAIBAKBQCAQeHKkRX/EX3kjUronaSLp/jU3ZTvaEG2INkQbKvihoih2runaV4qU0oGkF6+5GTd9vkUbog3Rhkdxk9bh+Js42hBtiDasahsWrsUrIShIUkrp94qi+EvRhmhDtCHasIptuAlYhXGONkQbog3RhpuOVRjraEO0IdoQbXhSrE6R9UAgEAgEAoFAIBAIBALPDEJQCAQCgUAgEAgEAoFAIPDUWCVB4TPX3QBFG0C04RzRhnNEG24OVmGcow3niDacI9pwjmjDzcIqjHW04RzRhnNEG84RbViAlfFQCAQCgUAgEAgEAoFAIPDsYJUiFAKBQCAQCAQCgUAgEAg8I7h2QSGl9KGU0osppZdSSp+8omu+O6X0X1NK30kpfTul9I/n7/9iSun/ppS+MX99ZMnt+EFK6Q/m1/q9+XuDlNJXU0rfm//bX+L1/6z19RsppVFK6eeXPQ4ppc+mlF5PKb1g713a75TSp+bz48WU0k8ssQ2/klL6bkrpWymlL6WUevP335NSmtl4/NoS23Dp2F/hOHzRrv+DlNI35u8vaxwuex6vdE7cdMRaHGvx/L1Yi3Xz1uJYh1cDsQ7HOjx/L9Zh3bx1eH7eZ3MtLori2l6S1iR9X9L7JNUlfVPSB67gunclfXD+86akP5T0AUm/KOmfXmH/fyBpu/Lev5D0yfnPn5T0y1d4L/6fpB9a9jhI+jFJH5T0wuP6Pb8v35S0Iem98/mytqQ2/A1JtfnPv2xteI8ft+RxWDj2VzkOlc//paR/tuRxuOx5vNI5cZNfsRbHWvy4fsdanN9/W67FsQ5f/yvW4ViHH9fvWIfz+2/LdXh+3mdyLb7uCIUfkfRSURR/VBTFsaQvSProsi9aFMWrRVF8ff7zgaTvSHrnsq/7hPiopN+Y//wbkv7WFV33xyV9vyiK/73sCxVF8duSditvX9bvj0r6QlEUR0VR/LGkl3Q+b97yNhRF8ZWiKE7mv35N0rve7HWetg1vgCsbB5BSSpL+vqTferPXeUwbLnser3RO3HDEWvwoYi2OtXgR3pZrcazDK4FYhx9FrMOxDi/C23IdnrfhmVyLr1tQeKek/2O/v6wrXsRSSu+R9MOS/vv8rX80D+/57DJDq+YoJH0lpfT7KaVPzN97riiKV6XzSSXpzpLbAD6m8kNyleMgXd7v65ojPyPpP9vv700p/c+U0n9LKf3okq+9aOyvYxx+VNJrRVF8z95b6jhUnsdVmxNvZ1z7mMZanBFrcRmxFl/xWhzr8LXh2sc01uGMWIfLiHU4/iZ+Q1y3oJAWvHdlZSdSSh1J/0HSzxdFMZL0ryX9aUl/UdKrOg9tWSb+clEUH5T0YUk/l1L6sSVfbyFSSnVJPyXp38/fuupxeCNc+RxJKX1a0omkz8/felXSnyqK4ocl/RNJv5lS6i7p8peN/XU8Kz+t8n+oSx2HBc/jpYcueC/K1bw5xFoca/HjEGvxvFkLjn3brMWxDl8rYh2OdfhxiHV43qwFx75t1mHp2VuLr1tQeFnSu+33d0l65SounFJa1/mN+nxRFP9RkoqieK0oitOiKM4k/RstOWSkKIpX5v++LulL8+u9llK6O2/jXUmvL7MNc3xY0teLonht3p4rHYc5Luv3lc6RlNLHJf2kpH9QFOfJSfMwogfzn39f5/lJf2YZ13+Dsb/qcahJ+juSvmhtW9o4LHoetSJz4oYg1mLFWjzHSjx3sRaf4yrX4liHrx2xDivW4TlW4rmLdfgc8Tfx43HdgsL/kPT+lNJ754rgxyR9edkXnefB/Lqk7xRF8av2/l077G9LeqH63bewDe2U0iY/69z85AWd9//j88M+Luk/LasNhpLqdpXjYLis31+W9LGU0kZK6b2S3i/pd5fRgJTShyT9gqSfKopiau/vpJTW5j+/b96GP1pSGy4b+ysbhzn+uqTvFkXxsrVtKeNw2fOoFZgTNwixFivW4jmu/bmLtbiEK1mLYx1eCcQ6rFiH57j25y7W4RLib+LHobhiF8jqS9JHdO5g+X1Jn76ia/4VnYeDfEvSN+avj0j6t5L+YP7+lyXdXWIb3qdzV85vSvo2fZd0W9J/kfS9+b+DJY9FS9IDSVv23lLHQecL9auSHupcWfuHb9RvSZ+ez48XJX14iW14Sed5SMyJX5sf+3fn9+ibkr4u6W8usQ2Xjv1VjcP8/c9J+tnKscsah8uexyudEzf9FWtxrMWxFt/ctTjW4dV4xToc63Cswzd3HZ6f95lci9O8IYFAIBAIBAKBQCAQCAQCT4zrTnkIBAKBQCAQCAQCgUAg8AwiBIVAIBAIBAKBQCAQCAQCT40QFAKBQCAQCAQCgUAgEAg8NUJQCAQCgUAgEAgEAoFAIPDUCEEhEAgEAoFAIBAIBAKBwFMjBIVAIBAIBAKBQCAQCAQCT40QFAKBQCAQCAQCgUAgEAg8NUJQCAQCgUAgEAgEAoFAIPDU+P/LgdcVmSMfFwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 69223 62895\n", + " Min thresh = 1000\n", + " Not Sliding\n", + "\n", + "\n", + " FN ROI = 025ns_Image_262499828648_clean_ClassN_57-185.roi.nii.gz\n", + "025ns_Image_262499828648_clean_ClassN_57-185.roi.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADYCAYAAABberBAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADtSElEQVR4nOz9eZxle1rWiT4rdsSe947IzDPXQBVagBS0DIqAt+3qD4jihENDO/VFREuxG237ooDa125bu/GjrWh3q12iSAvKJIoDCorWVWQQmUQmKaCoqlNnypMRsYe19hB7r/tHxPcXz/rlzjNl5jmR57zP5xOfE7mHtX7T3iee533f5y3qulYgEAgEAoFAIBAIBAKBwMvB3ms9gEAgEAgEAoFAIBAIBAIPHkJQCAQCgUAgEAgEAoFAIPCyEYJCIBAIBAKBQCAQCAQCgZeNEBQCgUAgEAgEAoFAIBAIvGyEoBAIBAKBQCAQCAQCgUDgZSMEhUAgEAgEAoFAIBAIBAIvGyEoBF51FEXxY0VRvOu1HkcgEAgELlEUxfuLovjMl/jauiiKX/gK7/OK3xsIBAKBQOBqIQSFwKuOuq7fWdf1e1/rcbwYiqJ4uCiKv1MUxUlRFMdFUXzdaz2mQCAQeL2jKIrPLIriB4uimBdF8cGiKD7vtR5TIBAIXCXca2H2pVwv/i4O3An7r/UAAoErjG+R9P2SPkJSKenjXtvhBAKBwOsbRVF8rKS/I+nzJf1zSYeSjl7LMQUCgUBAUvxdHLgDIkMh8KrD02qLovifiqL4pqIovrYoimlRFD9aFMVHFUXx5UVRPHsRnfose+8XFEXxExev/dmiKH5fdu0/WhTFU0VRfLgoit/jimtRFJ2iKP58URQfKIrimaIo/lpRFL07jPGzJL1F0h+p6/q0rut1Xdc/dP9WJRAIBK4OiqL4lKIovuciEvVUURT/Z1EU7exlv+bie/hmURR/riiKPXv/7774rj4uiuLbi6L4iJd46z8h6f+u6/qf1nV9Vtf183Vd/8w9m1ggEAhcERRF8YuKonjvxffsjxVF8RvsufcWRfF77N+/qyiK77r4/V9fPPwjRVHMiqL4r4uieFdRFB8qiuKPXXwnv78oit/xSq+3Y6zxd3HgjghBIXAV8Osl/W1J1yT9kKRv1/nZfJOkPyXp/7bXPivp10kaS/oCSX+xKIpPkqSiKH61pP9B0mdK+oWS/ovsPn9W0kdJ+oSL598k6f97hzF9qqSfkvQ1RVE8XxTF9xdFkV8vEAgEXq/YSPrDkh6S9GmSPkPSH8he85sk/RJJnyTpcyT9bkkqiuI3Svpjkn6zpIcl/RtJf/cl3vdTL67xoxdCxtcWRXH9rmYSCAQCVwxFURxI+keSvkPSI5K+WNLXFUXx0S/23rquf8XFr7+4ruthXdffcPHvx3T+nf0mnWd5vecur+eIv4sDd0QICoGrgH9T1/W313V9JumbdP4H6FfUdb2W9PWS3lYUxZEk1XX9T+q6/pn6HP8/nX8R/+cX1/k8SV9d1/WP1XVdSvqfuUFRFIWk3yvpD9d1fauu66mk/1XSb73DmN4s6bMk/Sudf0H/75K+tSiKh+7pzAOBQOAKoq7rH6jr+nsvsgTer3Nh9zaR9uL79AOSvlLSb7t4/PdJ+t/quv6Ji+/1/1XSJ7zELIU3S/pvJP0WSe+Q1JP0f9z1hAKBQOBq4VMlDXX+9+6qrut/Kekf6/J79JXif6zrennxN/I/0fnfxvcC8Xdx4I4IQSFwFfCM/V5JulnX9cb+LZ1/6aoois8uiuJ7i6K4VRTFiaRfo3M1VpKekPRBu5b//rCkvqQfuEgtO5H0zy4e34VK0vvruv4bF2ldX39xvV/+SiYYCAQCDxIuSs/+cVEUTxdFMdG5KJD/4ejfsT+v8+9g6by+9i/Zd+0tSYXOo2YvhkrnwvB/qut6dnHfX3MXUwkEAoGriCckfbCu66099vN6ad+Td8JxXdfz7HpP3OnFLxPxd3HgjghBIfDAoCiKjqS/J+nPS3q0rusjSd+m8z9UJekpnSuo4C32+02dfxm+s67ro4ufw7quh3e43X+QVN/L8QcCgcADhL8q6SclvaOu67HOSxiK7DX+HftWSR+++P2Dkn6ffdce1XXdq+v6u1/CfeO7NxAIvBHwYUlvce8ZnX+PPnnx+1zngTDw2Eu45rWiKAbZ9fhefiXXc8R3c+COCEEh8CChLakj6TlJZ0VRfLbO06/AN0r6gguTm77MH+FCAf7rOvdceESSiqJ4U1EUv+oO9/r7Ov9i/vyiKFpFUfxXOleN/+09n1UgEAhcPYwkTSTNiqL4GElftOM1f6QoimtFUbxF0h+SRN3tX5P05UVRvFOSiqI4LIric1/ifb9a59/jH3nxPf6lOk8DDgQCgdcTvk/nJP+PFkVxUBTFu3TuKfb1F8//sKTfXBRF/8Jc/Auz9z8j6SN3XPd/LoqiXRTFf65zz7Fvusvrgfi7OHBHhKAQeGBw4XvwB3UuHBxL+u2S/qE9/08l/WWd13e9T9L3XDy1vPjvl148/r0XKbz/QtJOs5q6rm9J+g2SvkTSqaQvk/Q5dV3fvLezCgQCgSuJL9H5d+xU52LsLpOub5X0Azr/Q/WfSPobklTX9d/XuQnu11981/5HSZ/9Um5a1/XflPT/6PyP7Z/X+ff3H7yLeQQCgcCVQ13XK53/nfnZOs+i/SuS/t91Xf/kxUv+oqSVzon+10j6uuwS/5PODRJPiqLAJ+Fpnf99/OGL1//+u7yejzf+Lg7cEUVdR/ZK4PWJoih+kc7/kO1cGIMFAoFAIBAIBAKvK1xkOHxtXddvfpGXBgL3HJGhEHhdoSiK33SR6nVN5xGyfxRiQiAQCAQCgUAgEAjce4SgEHi94ffp3GPhZ3TeR31X3W8gEAgEAoFAIBAIBO4S901QKIriVxdF8VNFUbyvKIovu1/3CQQcdV3/6ovuDdfruv5NdV0/9VqPKRB4rRDfw4FAIPDaI76LA/cbdV2/N8odAq8V7ouHQlEULUn/SdKvlPQhSd8v6bfVdf3j9/xmgUAgELgN8T0cCAQCrz3iuzgQCLzecb8yFD5F0vvquv7ZCxfTr5f0OffpXoFAIBC4HfE9HAgEAq894rs4EAi8rrF/n677JkkftH9/SNIvu9OL2+123el0VNd1+pGUft9ut5Kkvb299CNJRVGoKArt7++rKIrG+3muKAptt1vVdZ3et9ls0jWLotDe3p5arVZ6nntuNpvG/R17e3tqt9va399PP9vtVmdnZzo7O9NqtUr3ZRy75sMY+O/BwYFarZZarVZjDeq6TuPJrykp3cuRryf38+e3221jTc/Ozhqvb7fb2tvbS2Pcbrfph3FwLf7ra5+j1Wrd9ryP0feHH99r5szvXI+55Ovhr/V5+9q/2DrxWD4fHtv1evbP55efg11j9bn6edm1v/lr8/ttt9vb1tr3bW9vr3Ff1hLke7xrnrvm54/lyOfq6+jv3bUm+f14767zueu1+Rrl99/1nCStVqubdV0/vHPyVxsv63tYklrDQf3WtxV6djlS633LF3ppIBAIvGpYaK5Vvbz9j4oHAy/ruzi+hwOBwFXFVMc7/ya+X4LCri/9xl/pRVG8W9K7JanT6eiTPumTtFqttFqttNlskhCwWq1UlqW226329/fV7XZ148YNdbvdRIo6nY663a7qutZ6vVZZltrf31e/31e73dZms9FqtUqkYbPZ6OTkRGdnZ9rb21Ov19O1a9fU7/eTODGbzVSWpZbLpRaLhaqqapCYbrerhx56SI8++qieeOIJPfbYY9putzo9PdWzzz6r97///ZpOp4mgt1otbbdbrdfr9JOTYkm6ceOGrl+/rkceeUTtdjsJFOv1WsvlMq2PkyTEj7Ozs8bv6/U6vZ7163Q6aW3X67WqqtL+/r4ODg7U7XY1n881n8+1XC7V7/f1ER/xEbp+/br6/b6kc8GhqiotFgstFgstl8tEaM/OztLecc39/X1tNpu078PhMAkxkMH1et2YD3s4m820WCzS80VRqNfrJZLIHg+HwzR35svcq6qSpHQ/5u5CUFEUaY24dqvVahDzTqeTrnFwcKBOp6NWq5Xm2W63G8IQr5WUhCYnv1yf8zWZTLRardJYDw4O0losl0vN53OtVqvbCDZCGOeMz8Rms9FisUiPtdttdTodrVYrrddrnZ2dpTEiVrXbbbXb7XTN1Wqls7OzdOY5O6zLwcGBiqJI+841Dg4OtLe3l+bm549zyXuYA3Nm7MzbX8fauLjWarXU7/fTfrDnvAdxj9fv7e2l/eCzsr+/n84k8/G9/9CHPvTzL/mb72rhRb+HpeZ3cffgUG96xx/XR56stfczP3S/xxcIBAIvCd9Xf+drPYS7wcv6mzi+hwOBwFXFv6i/eeffxPdLUPiQpLfYv98s6cP+grqu3yPpPZI0HA5rCIBHCiFekADPAPAo/sX10u/5azyKDcFqtVrpdcvlMpEcv+fBwUEiHU6uJDXEjqqqtFwu1e121ev1NBqNNBgMEkEkYurjhfT785vNRpPJRHt7exqNRolcQarIGHDRQNJtEVr+m0ddz87OEvH1CDWEnewInlutVloulymLwZ/f399Xq9VqZE1AkvNoOPvn4/N19Me4NuKRdE4iIYXsK2uwWCzU7XYTeWcM7Dtk2zMxXISRlOblWRqcA9aRcXrE36PqCCm+F3nWBfdDxCIjhX2EyDJWvwb7B9gH5sH4WGuybpj72dlZIuyMkTH754bHybhxcAY9Y4a98nmzdu12O4lnjJ3zwZpzRnz9dmUYeNYCnyPmz5nws+NZG6yBZ5MgdPEa//7xe+7KsniA8KLfw1Lzu3hcXK973/rvXp3RBQKBwBsDL+tv4vgeDgQCDxrul6Dw/ZLeURTF2yU9Kem3Svrtd3oxRBEi4n/oO0mDPCwWCw2Hw0RaIErSOVGQpNVqlcjTeDxukNJWq6Vut5uEAsQCsgYgZ0ROIUYewUZQqKpKJycnKfLe6XQ0Ho91eHiYouO811O7ETM8Wsr4JOno6EidTqdRQgERK4oijXW9XktSIpCe3XFwcLCzbAPixe8ubDiRJzOD8g3ujbjA9Ykkg5ykufjj5R5ErJ1o89PpdCSdk/3VaqVWq6X1et14LWLIarVSu91O92KPGSNrtEsEQPDIBSp/zMUH5gCxzYUVsgF43KPpnolB9gZnOC+ZYT454XdBzDNDeB5Aqhkvnwfuy2Ncy99P1kh+HYg7WK/XaZ24LtcoikKdTkfL5TKNYbFYpH3388r5Wq/Xt50T1jovteGc8D6/p2dOcB/2gTn5tfN13FWq84DiZX0PBwKBQOC+IL6LA4HA6xr3RVCo6/qsKIr/TtK3S2pJ+pt1Xf/YC7xe8/k8kXcncJAHT9MnBVxSImSDwUDSJRE5OTnRdrtVVVXq9Xq3eS8Mh8P0/uVyqclk0qgV94hyu93WcrlsECbAe09OTjQYDDQYDDQajXT9+nXN5/M0F8itlz04WYfcUFpxcHAgSRqNRg0xBQGFMUHI3RcA0trpdFLZxGq1SunnkMh+v99IbV+tVhqNRklUmM1mqfyg2+2mkhDfj6Ojo1T6sFgsGuOR1CDirIGvc7fbTeQWwYDofVEUWiwW6vV6SRjgPpBM7tftdhOZdDEKYs79IJdOWCGknAeuAQnt9XppjLzeSwW83Ia97Pf7SejiXmVZarFYaLVa6eTkRL1eL+1nv9/XZDJJ4lKv10tkvt1uq9vtqqqq284fAk8uKuTeB07MeQ8ZDE7IyXbwcbtXBFkKvJ7xcibzDBjmx/ni883YyFQg2wRh0TMDcv8IJ/67RDMXDCjtcCHPRQ3OqAtuefnLg4qX+z0cCAQCgXuP+C4OBAKvd9yvDAXVdf1tkr7tpby2KIpGSQFkmj/sIRmekr5arRIpIOLa7XYTGSbzAOJLxNujlOPxWN1uV2VZaj6fJzLf6XRuy5IYDoeJ1C4WixS5BovFQrPZTK1WS4PBQNeuXVNZlo2U9eFwmCKhzJnredr2crnU888/nwg/Kf2UZxRFoW63q8FgkEg3deNOFr1sgzXNo9j4D5D5wbU7nU4iknVdp/UkewFwD/YBbwWP2EMgIeAILBBCBB/eR/YF18yzARgvr4EQQwKZKwSZqDdrgq+GE1VPec+j5Ov1OvkmIBAxF8bDPFnjxWKRBB33KoD4VlWl9XqtTqeTxIN2u62qqlRVlVqtVjpz+Fv0+32VZZnux5l2scPLg/LMlHzfdsH3DJHE9yIXGhyUQHgWS7/fTwJaXddaLBYNvwKuw7lbLBZpjT0bJd8v9spLUzabjaqqanxX8DoXUPgMsOaUJvn+uDnpg4yX8z0cCAQCgfuD+C4OBAKvZ9w3QeHlwjMQ+LenHnsNO/92DwQip0S3y7JM5Ati4AQZQgNhxfDOzeo8ctlqtZLxG5FOXg9hQiBAwBgMBikLAVIKsSyKc+PHqqoaJI3xLJdLlWWpwWDQqO/31HWIv2c9ADf/gyDTSUO6JI485unszJGsD8ZNNJr98XuxpkSgPfNiF7l17wSi2nt7e5rP54kwc22IO4LCYrGQdCmOQD69zIV5s56cHa5BKj7nxs9VXhrhUW6PzrOOuecB4+FaZEnkAhTnlr2hbECSqqpK6848ELp8/7x0BWLsngouivnnysfvr/H9dULv1/XHmLtnEvnZ4JySgUCWBWvqJRR8rvgs+rh8/Lt8Jchy8GvlogKfBy81ykUS5uZrEQgEAoFAIBAIBHbjSggKEGR35c9N29xYz9P7PVWaaP7BwYEeeughTafTVHbg4gGRVEiIixOArAcnVogK+/v76bqeYeAdGfb399Xr9dTv95N5I94AEO+Tk5NU6uEkDDKDqEDWA0Zyi8UiETWIJkJGTgI9XZ11dOJFW8i6rlMZBWTVxYw8ag854748xtwgh2RUuFcE16Fmnm4cdCEgyuwE0MUAMjOkppGhiz/8F8LNOLykATPOvCPDdrtN3Q64x3K5vK2lpxs8ImS4mOBeC/1+P+3D3t6eZrNZuj/3Ixvh4OBA8/m8IShw9riuZ9qwR0Vx6amRR9jzaHsuiPCYE+k8wyTP2nEynpN/HmfuktLe8hlxIcnPkwtK/h3h5Sq5WSP77YKLnwUX7HyPyLzwvfeymbzEJBAIBAKBQCAQCFziSggK+/v7unHjhmazmY6PjxOpdUd6TzUnrZ20fEmptn69Xuvo6ChFzGkzCFHxFne0m0TMcBJLKvrZ2Vlq2QcZhRwSTSdNnWvjqH94eJjEkmeffVbtdlv9fj+VZDzxxBNpjkT0IcH7+/tar9eaTqeSlIgZKeGUIORj8jm2Wi31er1Eqih/KMsykbvBYJDI/P7+vk5PTzWbzRIxGw6HjRaP3DMXGbw2Pzfyg9ySki4pRe0hdqTB37hxQzdv3kwGlZRxeCSfDhh7e3sqyzKVonBGvEUovhcQXLwwcp8EqRnFZ57M1bM/8kwFfndijyDgrS1z4ttqtTSdTjWdTlO2yGAw0NnZmabTqWazWSL17APrVpZlGo+Pk/+ydj4/SlooCQGeDZB3IvHxQrzZMxdDGGeeoeCZMPht4CXB55iMGMxS9/b2Gp4cnvWRl1l4VhHv95aTPM71GRvfB8vlsvE9wjlGzMmFjUAgEAgEAoFAIHCJKyEoQDggDU5o3UwR8kCdvte1u6njtWvXUhQbYj4cDlM2wXQ6bUQ62+22er1eEgNWq5WGw6GGw2EitLPZLI13f39fo9FIkpKIMZ/PVZal+v2+BoNBEjSIOPd6vcZ8BoNBo0NCXrrhpBd/Bkg/ZG4+n6cMA+myVMEJI9F/zBmZM8S7LMvkO4FnAxH0xWKRBBCEF8bIugyHw5S+D/nj+pAzIsvSZakK2SeII3gbUCYiKbWs9KizewogFDF31spFD0mNsg4EIDIQOp3ObWaVrVarkXYPufSUfzcgdOGLjATOGmOlFIdx7O3tpcg9pR4upJEtQiaM+1RIl2SfveD6rDFGiLlZIySb+SOWIWghAOTCAvdlH7hv7m2QE/6ckCPScU/v/OCfDz//PjYvP2H/+Szz+eX5s7OzJLwwZ888yct4POPBfSACgUAgEAgEAoHAblwJQUFSIt2QBCdv/gc/ZHq5XKboOwSOEgGIsJv6QSS8ThsQ5ec6RC8PDg40GAwS8SvLMo3FywwgM6Swezo6Dv1kJeQZEOPxOPkvnJ6eNsblBJFrE8nPCZ2bV3ptPVkadCrAf6Cua00mk0SuWcter5fGgw+Fk3iM88iCQNTBt8K9E3yMHsl3QgoBdKKOkOMCCISVMgkniFyD1+X+DV7mwPnxEgovrXFy7MaSeXcIRAGILUTYzyrZLUVRpAwSLzVgDKypnyeyZhBMKLkAnAEItbf05JznPgle2sPauTDhrSJ9n/hdagoGXI+sGcQs9zngHDMGPg+S0vzc+DH3YXAfA89U8tf73iFWuWjgviwITb53IBcU8myLQCAQCAQCgUAg0MSVERRIV5aUiJhHDwF/8ENqJaXWg7Q4nM1mDad//uumiGQcuHEeRMyj5sPhMDnVk4a/Xq/V7XYbhIz6dbpVQHgoc/CWf9yv2+1qPB5LOidXbhTocK8GiKB0btzH+pBxICml2kOcvCSCCPp2u9VsNkuCARkUjJfWhnSu2N/fT+URkF5Peff5e7SYLAMv5QCsJddkbKPRKAlETprJQPDuHggFbsYIIP1u0Ijw48KLZ294Wr2LE6wPj3s2BqIK94HwIgKR8dLv9xtiRe7NUZZlEqS8xGSz2Wg+nyeRTLqMrrsoQ7aOf6Z87SDckHhKXRDxWBfEDp+n+1g4vJSIs8Z+7zI7xOfEzwAiF+vn4/bvAPdA8f3OhR4XirrdbroGYlS3273NtNHFOBewAoFAIBAIBAKBwJ1xJQQFCMHBwYGOjo7SH/Z4E+SO7xCOqqpUlqWGw6F6vZ6Wy6Vms5mef/75FDUnxZ1adsg1ooSTFtrwLZfLRPAhzI8//rgWi4VOT09TBkSv10tlAJ7GDwmUlIwTmQskeTAY6PDwMJFjUt75r7dC5GcymSQSiGEihA6itVwuUxkEGR/SORk7PDzUaDTSwcGBNpuNyrLUrVu3UhR9PB7rxo0bDRO9mzdvqizLFGW/du1aImSQQdZ6MBiksXvpAxFoyFye3g6hLIpCvV4vlYxI0nPPPdcwu+R13W43XQ8/AjIRJKW2jB6RxxQToYPHEYeo218ul4m8IypAstkTCClnhHIUyOx8Pk+kfzab6YMf/KAODw8bXTDm83mK7vM+MkO8XGSz2ej5559PWQq5R8V2u9WtW7eS/8Cd4CKIpOR9gBCQd0rgs4nIUdd1anFJKZGbfFKKRPcRBA73Z0C0QeBBgOOz2O/30z4i5uTdOzgD/BuhxMUrN1zEV8E7gfC5Yz8QPzjX3oEjEAgEAoFAIBAI7MaVEBT4A97T6judjk5PTyVdRug9/ZyIOPX2kOeqqnR8fKzxeJyIb13XyW+A60vS6empyrJMtevSZccJIsxlWWo0Gmk4HOrGjRuSpOPjY1VVpV6vl0gJpQXuaeCk5ujoSFVVaTKZaD6f66mnntLDDz+ciD6k+/nnn09jytPq8X+ASOHDQPYCRJT5rNfrVMrQ6XR048YNjUajFD2G1FZVpZOTEz311FNJcHE/Awwcb968mQgae8X7WTdMBYn4Iiq4dwAlFKydG2uy3uPxOBHemzdvar1epzG7uID3BsSWTBT3DPBMBUSLsiyTSaRncnAW3djRM1o4I+63gBg2Go1SpgIlLkTOb926lbJB2u12WlMEGMQLxs/4vGMCZRHsH+SbPWdsjHlXlB2SjHiFIWGn02m0dPT5sb74EXgGDGtE6c3JyUk6A5TEIBgyRj8TzNs/32QJ+Y+LRu6fkGcpsH8u7jBOfDDct8FLRby0BSGJMQcCgUAgEAgEAoHbcSUEBQQDyEy329VgMEgEwV3bpUuyRGSzqiodHR01jPpo0+gmhhA8T/P260P+IDUQ9fl8rsPDw9RloSzLRicFSJx7JhAphyTRQhJfguPjY3W73eTePxqNEqHzjAaIl0dhMaDkfu5hwHsof3BRg7R5PApms5mee+65RJxOT09VVVUijHgveKYH2QqIAvv7+8nUkPWD0HsKPUSWdeO1OSEku4OI/40bN1RVlWazWWP/IdusA8STsgkeo7QAwsp+QSR5jv3yyLsbgrKW3IP3+9q4uOBZBAhdTnQ5X54t4eUE/l723k0JW61WY30RnJwcu7eAezuwdrnQQrcMBATGwTosl8t0vlwI8uuScZILGj4GX0fON9dgf1zg85KG/J7e1tGFCD8rvM/FCc9IYN1Zc4Sl/PqBQCAQCAQCgUCgiSshKEDuiT5LSjXr1I97NBgQjZzP5zo6OkrR1slkorIsU2Qegl1VVYrqYj5IxDKPiHq9PZFcz6CYTqdprF7XjqCAaCFddrGgY8JsNtOtW7dShsNgMEgmjZBVSCdRaUjQcrlMhJHMBx8XxBvSCDGq61rXrl1Lwsv169dVlqWefPLJlBExm800m80a7S1J/ceRn0h9r9dL0XhJyegSQkj0l+dZC8ieE0nv+ID4wxreuHEjmVXmEW7e6ySafXAhyUsw/Hki0l4/z3NuDOoZJx7Bd1RVldZ7MBik88n7/GwjeHBv1pYxOWl2QYmxuLeBdzxwQ8+8xaOTef5LhN/XhHXzsXppAcJbXdepRCgfK6IQZzQXlfKsFUS3vLOLl5l4BoJ7HXgmTG7k6NcGzA1BwbMXyJhotVrJp8TbhQYCgUAgEAgEAoEmroSgIF0SMoh3v99PpGgymaQ/7D0tWroUHEjv73Q6arfbmkwmqZ3e/v5+qmU/ODjQQw89pPF4nMgoEXCIkBvzrddrTafTVJ+ON8HJyUlquQixhrRiPEeKNSRoPB4nMn3z5k09/fTTKstSR0dHaUwIEngkkAHg6e6r1Ur7+/uazWZJkOj1ehqNRqn2m/kzv8VioaOjIx0eHiYfhGvXrulNb3pTGtPx8bGefPJJnZ2d6dq1axoOh8nzgHvfvHlTs9lMg8FA4/E4pb4TIUf4YQ2m02kjjR2C610e2GtIHgJOt9vV0dGRHnvssSTuTCaTVC4BqJtHIPDHicTzb8QiFxXcxwFC6SaNOc7OzjSdTlOtP5kx3MNJv3dqyA0MIa0ICrzXswYQc7zOP89W8D3AKJPPDvdzEu0eEL43rAmvX61WKUMF407OYU7UEQl4r4tiuZEjcyQ7wwUbjEd5jDPMfCmjcKEhL+1wEc09HFxg8lISL6NywYHynkAgEAgEAoFAILAbV0JQIPpZlmUiKhCuXq+nw8PDRN5Jp3ejuMlkoueff17Xr1/XYDBItf9kH0D48AyYTCaJ8GMed3h4KOkyjRqiA0GdzWaJ2CAiuHt8URSaz+fJHJLSCsgppRyHh4cpBf5DH/pQElIoIcAbgSg39f7T6TTVsHu5B2uxv7+v8XicCNRisdDx8bEkJePID33oQ0kceOihhzQajfTEE0+kiC4tN09PTxvRftaJOSKy1HWdxsnrKDVh7YbDobbbbfJicHjGAMaI1Lfjp7C/v69HHnkkkT5KMzyajGgAicQsE8KIqaLUbEMoKQk9CDWcK4/U7+rIwB7zeu9qcXZ2ptFo1CCwXn7ghJ0xSpfkn9R/b32KuOEk2ck0pJ17Iu54ZN/FEc6IpFTy4dklnFsyfRAt+Pxx/rgHQDBiT3Z1anFBQFJjf9gHxA7WyY1H2fc8s4W5cyZ8ri4s8Fjup+D+E/7fQCAQCAQCgUAgsBtXQlBAQDg7O0t1/nQawOCu3+83CEoedSQKT/tHWsw5UeEe0+lUh4eHicR3u11VVdUw+MNAz1vzOZGTLgkHZI0oelmWWq1WSbQgUos3wGg00kMPPZRINgLDarVKpn0HBwcaj8eNSGtRFA3He8gyYgcZHsPhUFVVaTqdpsh3Xdc6OTnRc889l3wX6BYxHo91eHiow8PD1FUDA0ii8O6Kj6jAmhBp99R7ItPupA+8JIK5eqmIewDQ3rDf7+vo6Ejj8TiVm0A0MW9kD4jQIySxH7tq+iHiCCaemu9k3s8qc3Mii7hDNoF7AeDT4NkCiAweaQeeJePmh14q4AIF5wrsisx7+QZzoBSI63pLUM9ccPECIScvL/D9R/Dixwl+niXinUrwn3Ahz9eY+bB2nrWRCy6eeZDveb7WiEPue+ElOYFAIBAIBAKBQGA3rpSgICkZKlKrPxgMkqCwWq0azvkAUoAo4C3/8tRu6TISDzGnGwQmh4wB4peLCm4qKF2KGmQC0A6QNpVOjuiiQNYF5RyQTsgsHRPy9HLm5Z0uGNPBwYGuXbumXq+n8XisW7duJaJLKcHx8XEyiBwMBomsj8djXbt2rVHPPp/PJSkRfcof3LBSkobDYZqn18IzTtYV4spjiBoIO/hIcA3WRFKK2I/H42QkCYGnhSRiBlFqUucnk8nOSLl0aRJJ1Dyv63eDR97v5QS+/5BnfDAQWrz0gXFzX/Z017jwVXAjR/cN4L9eruBnErjYAlnnM+HZEy6Q8bl0gs5juc+DP+73JnPG5+ieDu12u+GHQKYPZ8U/ay6qsZeIAC46cH+fQ+7D4IIge+fn1ccZCAQCgUAgEAgE7owrISjs7++nrg6r1UrHx8eNGnG6IUBi86gl/eyrqlK73U5Rb6KpTnYhUZPJRNJlCzzICkQeAoioQPtFj2gCSB1tGyXp2rVriSBDUjy9nTILatYp3fB2kdevX2/4FECU89RtMirIPkC0oENCWZZJJMGDgHW/fv26er2eHnrooVQf79F8HqOTg0fNadG5Xq+Tj0On00kkDZNG1sgNACG2/X4/va/T6ejatWtqt9spHf25555LXhF1XevGjRuaz+d6/vnnk1/EarVq+FggFpGJcf36dW2329si0V6mgKDBHtPNggwNShWcvPNahC72jXOD0MGZy8WEvP4fAQRRi24enU5H4/H4tqwB1pLMFR8jIoJnDXgmDZk8PE5XEc8+yH0I3MAwN6WULs0mvRSIs+aCAmKN+2fw2ffnMUaVml0iOAuOXADwbKZcoHATThcf3DvFfR0CgUAgEAgEAoHAblwJQaEoCvX7/UQK6DYAqbhx40aKpOfpzk5wV6uVTk9Ptbe3p8PDw9S+MXejr+tap6enSWhot9saDoc6OTmRdC4yjEYjTafTlM5O1wPKE/A+gLRCcsgEePrpp1UUhQ4PDzUcDhNRhMisViv1+/1EwLfbrbrdrk5OTlI3BTICut1uIkjePpOMByLgq9VKTz75pIbDYSoRIGuDbAJ8KuiYAGHFAJEOGS7ccN+qqjQYDFIk1431IGftdjuVmyC+uKO+l1BQ9oCogPgyGAxS676iKPTMM8+kjJFWq6XRaJRMNquqUrfbTddHjEBEGQwGyc9gMpmkPXWy72IUJTAuJvneeelAXtogNYkta+xwsu9lBE6WyZohQ4PMFc6xeyr4+zxy75F3PmOcfUSQO3VgYJyeMcP+eoYCGRiezYEowpnkM+IZIGCz2aRMJK5Ba03vhJFniHD+d3VgYHy5hwL/9cwKBER/HYKLzykQCAQCgUAgEAjsxpUQFOhU4P4FkLzZbKZ+v5/++IeweKSYrAQnuRjGQV69fSEkDQNBOkF4BgHX9QippCRs0J7Ro6CQxfV6rVu3bjVaVnrnBubsqecQJwQT5u8kMo/YetYFxJj1w5zQTRMhYvguHB8f6+TkJPlJ0CkCrNfrFNVnbmQFeKo8//Y5MR/WXFKD5DnwySDLwdP8r127pvl8nsg92RPsD8SaaLib+XFGRqNRyhZh/F7H7y0pIcrdblfL5fI2Up2n+nMd9sY9BBAaEAw8nZ7/erYBGR0ILW4M6eadngXg44D056UCnK+9vb3bWjfuKvXIyw2YuxN15uoGi6xP3kqU++XdGUBezoMQwV74mlIC5O/bda07Pc96+J743Pz5PIMkEAgEAoFAIBAINPGKBYWiKN4i6f+R9JikraT31HX9l4qiuC7pGyS9TdL7JX1eXdfHL3QtSD1lBhAmouKz2Uy9Xi+VL/C8pBQVHQwGDZd20th3GSPuImneipBIOJ0cnFjt7++nzAJIHSnURNUxlzw5OUnixng8TgSJ+ziRImIOgffIf05i89IBfiQlEiydex94S0Mn06vVSpPJRLdu3UpRf0i3k9XcmM+JPQSU8Xq2CHslXbb+Y2+AR+YRalzckZREkbIsU9aBR+VZc4i0ZwxAZillQCjwbiLsO+PndZ1OpzE3J+8uPHEGua/X+0vNjARIv2PXazlnXBfBBENOL1fII/4uCHipwq57+vN5SYI/z3vyyD/EPyflCAreOcPXyeFrwvv5PJGdwx67h4qTfx/nLkFhl99D/u87iV0PAu7ld3EgEAgEXj7iezgQCLyRcTcZCmeS/j91Xf9gURQjST9QFMU/l/S7JH1nXddfURTFl0n6Mklf+kIXarVaSVDYbDbq9/sqy1KbzUaTySQRPiLBtCKULsslDg8PG2aCEDB33ZeahLaqqpT+Tmr2/v5+EjA6nU6qZ5cuswqIqHsN/9nZmYbDYaqXn81munXrlqbTaSonkJTS+SGqRNv39vaSmSTGhKenp4lESpep3l7HjlDiJJyI+3K5bJgi8prFYqHFYpHEBESTa9eupXR/bzOIkMBesbZcH8EgJ/BOiD3qDQH11H9JqbMFRJQ5MH58Mbybg2dsuLBDxgDGkqwt5p6e5t/pdFSWZdpPMl64LuNg/qyjk1iyCiSlbA1+vOWhE2/2jkwXBAlEE9bR95UxIbzkgleeYeDR+NyMkLPlgkAuJuSiRW5wSukEAog/510jvJ2jE3zWyoUJ9oUsI9YKscuNWT0rg/0B+dgZm5c5+OO7XvuACA337Ls4EAgEAq8I8T0cCATesHjFgkJd109Jeuri92lRFD8h6U2SPkfSuy5e9jWS3qsX+fI8ODjQjRs3tN1uVVVVqnmnQ0FZlpLOo9Xdble9Xi8RwKqqkjs8mQODwUC3bt1Kqf14Cng02KOhk8kk+SA4GeX3brd7vlhGmm7cuKGiKFJ5hmcw0IKQVpaLxSKJG9euXdNoNEoCCkTy4OBA169fT4RosVikVpKexu7GdUTSncx6GcZisWhkaJydnTV8I6qq0mQyadTku0CCQaWktM7cC6+IqqrSviA2MDYe81p7CKSXodDVYzAY6IknnlCv19NisVBdn7e6nM/nDUNIzwhweESaUhG8Fki5Z60h+ZKSjwVrXte1+v2+Wq2WhsNhEl1cpGJuXobiGRp5qcTBwUF6zAUFz/zgtV66w3sxxXRTQbpvIA4gfPk1XBTwVH4XchBrKEnwtcm7JeQ+Crwm3x/PFspFBb+ee1JQoiQp7Qf7xZwoI2IOLuzkpSUuFOReFX7+/By5SPSAiAn39Ls4EAgEAi8f8T0cCATeyLgnHgpFUbxN0idK+j5Jj158saqu66eKonjkxd6/t7en8Xisqqp0enqqxWLRiG5SW+6Ev91ua7VaabFYaDKZJJJOJJPMAgQJjBH9nl5XTlSYTAX3CEBE8PdCmCUlMubPe7nEcrlMpNbhrQPxdYBAUq7A/D3F3lPo81R9IsYQOIwO3Z8BUQCSW9e1ZrNZKsfgdWQHuIggXZoCMj4ni3lXh8FgkEg2pBCRBkJMl4HpdKrpdKrRaKR+v6/tdttoxVlV1W1GhHT4yFP03V9jsVikUhJMOv1sYbjIGBEz3DySubJniCvuFWGfh0YnBy+r8cwPnmfdPMvAS0R4DftClB5xyFsz+pnwM+ulDXmZCnPPybm/1+e263nEBp/zrucRK9xrA5HEPR+8bCUv22DMLpT4+Hwvuf+uDA0vz8jfn//+oOBuv4sDgUAgcHeI7+FAIPBGw10LCkVRDCX9PUn/fV3Xk5f6B3hRFO+W9G5JunHjhobDYWpDCLnFy4DoMJFlMhEgfrj9e3Q8FyQggJ7qDoEmQgzh8Ej7xVgToSECmmcuOIGBQDIHxIL5fJ5IqkdipUtBgWisGxO6uAHx86wFIrWMi2wEIuKMpaqqtKZkN0B8EV54Lx4Ofl0i4wg77reAcOIdNRinR8x5L2ICpBhR4fT0VI899ljq/oAHBCaVROp37YuXVOTGkJQL+Di8TILxIij4ujFOv5e3HmTNuQZiBnvDeXDymosfu0pyIM2sn3s5sEfcm5IWxsWZyP0FmKufHRd6/PWOXOTwsfm4XRTw+/qaIQRQ8uHP50II4/PHc7EgJ/55BoV7LvCeXFDYJZo8aLgX38Vd9e/fAAOBQOB1jvgeDgQCb0TclaBQFMWBzr84v66u62+5ePiZoigev1BiH5f07K731nX9HknvkaS3v/3t9eHhoeq61nQ61cnJiaqqatRrbzabVFM9HA4b3RuIbg8Gg8YPYoLXqNd13UilRgwg6gzylPqc5GCkSIQcgzrpUnQg1X9vby95QlDTT/Se1yOIeJq6CxUIIR4V92g5xNbT9+lkMRqNkrkdKf1FUejatWsptR5RgZIKzCQhfQgFXqve6/XSvRiHk2ZKUiDZeE/gTcF/6Syx2Wz03HPP6bHHHkt+DkdHR0lUIBuF+bKOLgqxDuyZiy/sEeQeUs25ks6zTWibiY8DWR9kqpC9wf2ZF6KQpNTqE1GHMglEnNwHgDG734TvPXODeHMNzij7i8BAlsQuQ0nvLpJnv7gg8ELwEoK89CTPvNjld8FnLjdD9bEwBje09OwU9tBFBc9a8P335/N5uOCw6/kHAffqu3hcXH8wJhwIBAJXDPE9HAgE3qi4my4PhaS/Iekn6rr+C/bUP5T0+ZK+4uK/3/pi16I0YTAY6PHHH9ezzz6ryWRyW5o/qfXL5VLdblf9fj/5ADz33HOMKxE3Ivueog5JWa/XSVg4PDxM5A9ynUdKIYYejcZp343tvBacLAZMFj16PJ/Pk+mej6fT6SQfCAwpHXk0G6EBgku0utPpaDKZpDkWF74PlJTM53Pt7+/rxo0bqUPGbDbT888/38h6cGNGSbcROEwmMS6EnHtZCuvEdRFKyFTAj4LOG08++aTqutb169c1Go00Ho81GAw0nU4lqVHiwHosl8tGhomLDJDvojg3zBwMBjtNHrkWxo2ctdVqlUoz3BuANe92uxoOh+nMlWXZELOqqtJ8Ptd2u02ZBLu6UwAECEpnvLUj43IRiDIVMiP8jFZV1ejuAcnPiTwZHPcizd+FNfdAwE+ENWDtX8o9PZsjN4b0+3pJh38e/T6MxwUKB1k8+XfAVcW9/C4OBAKBwMtHfA8HAoE3Mu4mQ+GXS/pvJP1oURQ/fPHYH9P5l+Y3FkXxhZI+IOlzX+xCpLtDzEajUaMcAUDSFotFeg1ZAsvlUmVZaj6faz6fp/cTxYSAuR+A1257FN0N3zzCLSmVRkDIigvPBSL70iWh8haRGElyTb8W/yYi7iUC/O5jhhR1u90klhBRZ70QXLxTQq/X03g8TiZ/tORE+BiPx4kQLxaL26K+bmrn82R8rCdrikjA47xnFzmkLSikfzqdJlGi3+9rNBppNptpOp2m7hycCd9nr+F3k0Anr5QKMHbOINfysg2v+3dyyb99bt794ezsrOExAal3QYXreITcU/X9HHKeWEPPuMgFLfYtbxnKWDx6j6jlJT/c2398rXm/k/pc+OIajNfPkp973peP/YWIPPvp++3gPp4VcaeyCN8D//HP/wOAe/ZdHAgEAoFXhPgeDgQCb1jcTZeH75J0p7/6P+PlXGu73aosyxQ9HQwGqetCTnIgZ5j9IShQXw/pPDw8lKTbouOe8u0GdwgNnkXgngFE5t2oketDhLgHY26324nodTqdRh1/bsIn6bb0eoz8KG9w0uzlDcyR0gNS6Hu9npbLpdbrderG0Ov1UgeDk5MTlWWZujR0Op1khpi3MnRBIRcVnNQ63EDR95o1InotKZklesbFbDbTeDxO4ki/31ev19NsNmuQP8bhLTBd7Gi32ymbwMUl7xbB3m02m3T28tIS1sLPo9RM1Uf4wX+Bc+Qmmnk5jIssTnRdQHJvBkkNg0ayb3i/i2NuBIkviAsD3uoxz0bJ/5uPk+dyoSX3bfBx8RxnIPcz8FKjXFTISxnyThb5a3397gQXzPIzlWeOXFXcy+/iQCAQCLx8xPdwIBB4I+OedHm4W2w2G52cnEiS+v1+avNI+0WPjJNqTtS93++r3W5rNpulNH7KBpy4Q6icSPEYxJUU+E6no7Is0315rXRJQNzfgIwBshQgbkTdIZmYSEL0IFaQmKqq0nXH47FGo1FKm1+v1+r3+5rNZun6jBVPAFLhIZ69Xk/T6TR1OajrWo888kjD1HKxWGg6narVaunGjRvq9y/NgHbVrRMZd2GDUhI3QfQsC/YB0z/e79kAZHp0u93UJrIsS/X7/TSX4XCYuoFwFiDWiADSpQGjlzCw/u6pwT541weyZRg/bTc9+8NBxH29XqeMFDIriMQjKnj5AfeGsFKakvsZcO7c9JFyAYQMzDwZD2INYhuZLH7WvKyH/WEtc0HgTt4DLjgwbhfV8u4XTv798+wiAx03dokALoa4uOLzysfnokCe7cTc74Q8IycQCAQCgUAgEAg0cSUEhbqu9fTTT2s+n+vGjRva39/XYDDQaDRKpHe5XDZSz2kv2Ov19MQTT6TMhfl8rul0queeey5lCBAN9hRyz1yYz+fJC6Db7erw8DDdFyKJAODkC9LD+yCNPDebzVK2BZkGEC3v8kDNfF3XiVRTbw8ZhmS1Wq1U2vH000/r4YcfTuaGvV5P8/k8kc2DgwMdHh4mo8HZbKbhcJiMEN/0pjfpySef1OnpqU5PT1WWpQ4PD7W3t5eIPD4CkhomgHSBkNSYH89D1BEveI10SSyLokgeCe12O61vr9dLXgHHx8cNUo2/BCSUcg9EHdpElmXZGEen00lZD9620bM5Wq1WMrN0oul75SUuLiitViv1+/2GoOCklbFzrhizdwuB0DO23FeBteMMUvqBGSTCF6IWXTdYUx7nNZ5BQ9TfMzUQODzLwjMgPHOFMfE5yzNFPAPAyzr8mpyrXd4Fu0ovEBRc8KK7hosifG+4AMKc3ax1F0JQCAQCgUAgEAgE7owrIShISkSP8gDaEtKakHR2fAZ6vV6KChO9ls5J72QykSQNh0P1ej1JSqZ6nuYN6VitVppOp40o+cHBQSJfLmT4DyURlCZ4dJ/MBwgZc/GSCCdb7oXgxnqQTvdjgPgtFgudnp6m9oqeos/rILZ1XaeyENpDjsdj9fv9dN9nn31W6/U6zZ/2m5KS74BnGniXCdYHUumGlJRTQG5pRwmRHA6HaT+chJONkvsUIN6Q7TCfz1O5B1khXIsx+hohTjEv9oA1477cD7EkLwnw6D4CC/uVeyQwbkQQsgpyE0VEgcVikc5S7tfAmfOWoqvVKgkfrCW+CQhelPRA+BmjCxdemsB6+GNO1t0s0k0PERy8JeeusgTWyp9zQ0ovgcivk4sI7Buv9fKFO3k5sK7uYREIBAKBQCAQCAReOq6EoACp5w97CCYkFHKVu9JD+DudTiKZXAsDRN5HtwGIg9d2E5kmRZxSCoilR1spoXCifqeaeW8l6aRxF3GB/FLKgVDCWBEXIMyk2VNGkdeu+9yI/jMuSkakc/PGsiyTqSXX7vV6SVxBjGENERQgg040WXPm2+l01Ov1UhaF+0MASluYE/Nwsiqp0T2C9ouUTPA+J6GsKfvFmu7v76fsExcJ8pR4zhprzz44PLpOSU1u5JeT3vV63WjPyXx8zOwX4/LoOj+sP58D9gR4CYObNjK/vE0q8+G/uYjmHRQ8M4F7uJeDZyDkZ9LXxa/ppQ/87n4KLgK694KXSDBm34N8b3NRwb8P8jEGAoFAIBAIBAKBO+NKCAqSGh0CJKWIKp0KnKyuVquUqQBRHA6HKap5cnKSosUQGgiVpNtq/tvtdupsQLbBeDxulBdQkkBq+XA4TISG8gKi0NynqqqGX8BwOEylE3m9vHRJSFutljqdTiLuTpq8dGC5XGo6nSaCSlaFEyTvRgHxJwJOhgdtEquqStdbLBYpqo94gscD5A+fAOkyywLRgP9SosB+kn7vAguv32w2Oj4+VlVVab+IquNFQbtHfqdUAYJeFOetLJ3oIqJQ/oAvQlEUqWzAxSEnnET/PWMkL4FgHkTkya6QmoKDZy5MJpNGlxGyJ/ClaLfbms/nSSzgPnfKEHATTRfeOBvcw+fmGQTS7Z0adpFw9sM7VnA91tjFi7wdpQsWXnrkGQKereAlSrzfDR39h8+TlwflpRkuknAPF+J2lVsEAoFAIBAIBAKB3bgSggIEerlcpvryTqej4XCobrerqqpUlmUiVbyWTASIGCZ/bmZIrXq/328Yxm23W/V6vUbdPcZ4bmTnxniLxSKRSEoTJKVIL+TbiSfjnM1myeRvV5QbN36I/2q1arQd5D4QHwQMyDTlDNJlnT1zJFKddxaYTCYaDAYaDAaSlEo/ZrNZysxACGB+Hu2mzt9FCi9VGQwGOjw8TD4ORKM9+4F1pZNDWZaaTCZJXPH5U8KRZ4McHR1pb28veW34HFlXLyfB18Ifp7QiF3nYf/bFBR/OBcAU0ztySM32oPv7+xqNRknkYN29tMLnS3tPJ7z+uWE8VVU1xt9ut5OYgLeHpDQOzqbPwTN4mDvn0/0i8lIF9sXLX8gUYf3dvySfh5dJMEZfUxcCyaTITRh9v/y67leSv4bx5/vIewOBQCAQCAQCgcAL40oICggBEF+i451OR4eHh3r00Uf17LPPJtLk3Rsof4AAuKGgY7FYJBM6TBUlNUorKDmYTCYajUaSLg0XPbrvUWvuS7o3xBmC5dFRxgmxcpd9qZl27vX/EKDcrZ775TX3Hkkmkr3LBI+1RiQg64LX0PGAe/PT7/fTNSGsbnTI2pI9gogCWSWzgOwCT3mHCEN2PZrOv11MoTzFRR8yRjgPHkHP6+k9c8VT472FqJNO1s2zA5g3GSxVVaWMA9YOsYH74afhLSedxCJMMU9MJv28MB7GhHiF0OBeF3xOcgNCL1nJH3cgpngGB14evD73U0D48fPh1/fP8q6SHZB7mLivQ55V4p8XxuNZOn4ecr+OfP556UQgEAgEAoFAIBBo4koICkVRqNvtJiJJtgCkbDweazKZJL8ASY3WeWQWQAogMtIlcYG8uYkdpIfac/cY8LR2SNuu9nN5erYT77z23Ou2PT29KIo03jwV3Mm2kxv3GeDfkDbug0hCVJ/MDsbMWnh5BCaYXN+JvKeRQ1YPDg52+jh4DXze1YL5QcqJpHunAM6BdEniWWceYyxeAkGJgK+Nk2iyObxrh6e5u3iTZ0i40R9n0M0AWTcyD5zIeoo9QoiLXi50AM4E42YuedkA54f7+9nyNc5FAyfkjGGXuOJnjuf87HJPfx2imZ//3A8C7BIocl8E93xw4c1LOHaJHH5mcp8IF2NyH4U7rUEgEAgEAoFAIBC4xJURFIbDYYriTyYTlWWpdrutwWCQTP28htwzFIiyQxBoiwhZIMru0VpS6vFjIBKM8OARf+nSWM/hJD83isvnR/o1QoF3LYDscx8ngvl1IWdkAngGhGddYFZJtD6PFruRHuR5b28vmVv69YnU+/q6CCFdZj74e5mjmzB6Tb37GLiZn3c6cF+CPALtZN1Jel4v7+Z/CEZ+XnLSj1ACAfXMFD9zXg6SgwwLunPkBpbsPfdz0DWCc0HpA1kwZHv4+3gtGSOeMeMtUll71s/9CPy5XUQ69x/gTPuZyoUl1of9c+HBPRP8un5t1t/Poe+9f/5cIPSxuCDmP7lItwshKAQCgUAgEAgEAnfGlRAUJCXxgAjyfD5PpRA3btzQaDTSYrHQfD5XVVUNYkHGgaQUOcf8DzJL1Ji0c0kpSwG/Boi3pAb5gkRDyImmgzxzwYmavwbSy/NVVSUSPxgM1O/3U1kGY4BIQdDp8sD9nJzSuQAyxhoyJso3vLbeWx0yNsSMPL0ccuqRXggzQgzrz/zKskyGkW5K6CD7hHWAMK9WK52enjYyPwD7QDaLCw1ubglx9Ll5+QrIx8W5gdR6FgbrhjiVdzbgPCIMMC83Sczv62eHUhTOf6/X09HRkY6Pj9Oe554gkpL4wLogFjEfLynw0gnWg3Xyz5Yj/7eX7hwcHKTOK5B7P5suhLj4gAjmWUC5rwOPMS8vB3FRgPPovh5cY5fI5+aZ+d6DXT4NgUAgEAgEAoFA4BxXQlBwY7der6fhcKj5fK7lcqnj4+NEEkjd90gnRIQoqZNkSGGn02kQtjyFHpGB60tKnR0gSIzBo8Oevi9dlhpAmIhM76rZpvyALIBut5tMKMkAgBBRCsKY3UPAa/4xOXRCt1gsUgZCv99P4gDZHnt7e0ms8A4SnpLvXgHuDbC3t5dMHdfrdfpx4urlK3gvsNbuAbHZbFL7Shc8ME0ELrLwM5lM0l6RccLaeGYCBB1RgB8vz/DMl7wUxDMfOp1OEkswe8TM00sjED48G4GyiDza7nvKXIjyc23OPdF4yhkwL/Q5cmbyaL+LCvl6cB3ODK/zzyrz8FKevLzhTu9zkcdLE7yUyYEQxP0QSlhHLy3yciHWlXvuEg5YF7qjeObLC3k6BAKBQCAQCAQCgXNcCUHB687phEDUmWyFdrudzBO9Jlu6jOrmdfaeCu+t7Igce0o00VkIda/Xk6RUhuG1761WK43PkafX55FeJ7ZcCzI4m81StwJS6d3Tgai1pET8nQBLlyJAHhmGMN6pJt7/7QZ3Xj5AXT7CCiIDmRXueeAkk2g9NfxkejAH1tONA5fLZRIWvNzAibY/h2jB+8lQYA0QnCCalM9Anilx8BIIJ9R1XTeyEBBhGBPZCnnZiD9OJgPEO98jb7fID2UTm80mGVtyhnL/Bx5HwMpbTPr5zP/tJSXugeHmhu5VAPx3BA7PmvCx5dfybI789T4OzpKPj7PsXhl+Te6TfzZ9zD53kIth+RwDgUAgEAgEAoFAE1dCUNhsNprP54nwQTQh0/gp7O/vq9fraX9/v+F6Dxnx6LXUrLOGlLipIMTEnfadUAKIvZstQhbJcMhNFd3cz0kJRBJCjTAxn89VlmUit8PhMJFmPCBWq1WD9LufgRNWSFa3200CDMTNfQI8k4Kx82+fh9fZu9cD4ySbw6PHThAh18vlUt1uN/14ij57sF6vNZ1OU/QfwcWN+RAvWB9EBroc+JwoySDjwNtOOol3L4CcUHpmiJdCuIBFZgRiCcSa8+EdHnJySytUzyJgXfi3p/Lnwk9O3Nkb7yLhxNzn5aIbnyH3znCSvyvjwAl6u91Oe8QcOGt+LxfeEOtcHPQsiNzoVFLjs+dCBeKaf3YZYy6IuLjon1EXD3MBJRAIBAKBQCAQCDRxJQQForyQCfwP6rpWWZaqqioR9m63m4gKZJOsAggAEevBYCDpsiYaQu0Emgi3EzWyFbgn2QFEgEnZJyoOOYJYEtGGkJNazrUhbQcHBxoMBtrb29NkMtFzzz2XCHCn01G/39fZ2ZkGg4FGo5Emk0nDUNCNJCFM7XY7EajBYNDIYCA1H5IEOWc+brboQoun77vvw8HBgY6OjtKebTYbPfXUUyrLUt1uNwkQ7O9sNtNwOFS/39doNEp77NkGpPGvVitNp1OdnJwkQYF1oQ3jbDZL44GUMk7G7GUczNkj/sw9J//ecpF95iy51wZn6ebNm0kY6XQ6Go1GSajgPOZlEbPZLN0PIYJ1XywWyfuDkhHPOMEfgR+ft4sp7AvvyaP+nF3OKGIZLVp3ZQAgUHhGBBkKkpKY4Z0lcj8RF+5c0POyD+bipUV4iHgWS555kQsQd4LPic8dJSReSpRnIgUCgUAgEAgEAoFzXAlBgfp5N27DDwDCTwSXuv2qqhq130RZISZkHxBNLssyvTZPh/aoKmRisVgkwcEzCSAwpMiT0s818GwYjUaSmo76/A5hpHsFkdqqqnTz5s1EoJ544olE3hEenNxCyCUlXwYvT9jf30/v80wHj0pPp9NE1vBHIALMvJwQzmYzSc2a+H6/r9VqpdlslsaEgSbjh6y6WeB4PE7iwXq9Tt0eer2e+v2+ZrNZyt6QLg03B4NBInmLxSKJUayz76tnRXAWXDRwzwMvr6DkZb1eazKZ6OTkpHHeyCpgLaqqSiR8Pp/rxo0bGo/H6nQ6SfjgnLrfBZF2zhl7hQCDEIAY4yTZSTdE3L09nOx7yQi/u9cAQp0bZ/IZ48x4GQ/rRVaGP87rvFWol9e4AOCGiV4K5N4XzJXrcpY8e8SzNFxQcjHJM5lcQPR18jXMhZBAIBAIBAKBQCDQxJUQFLbb89aOdGWQLtsp4h5PxDY3Usud+iFFXmvv6fVer+1RbU+9hhDn3ge04qOln5M1TxOH8LtfQn5PruVkfrFYqKoqTSYTHR8fazQapUjrru4P0mX2hde+e6o2a5hHqHmO17ox4y7yyfpCdpl7v99PKfa9Xk/dbjeVK5Rl2Yj2ehYH96OzBc8hhvR6PY3HYx0fH2s6naaSgu12q36/nzIg6ATBPgGEI8il+0K4Bwcp8pwd1opIOOSS1qTug+HXw/NCUpofooN3HEA4oDyAiDhzc08FN/RcLpcpi8TbQHJGIeJ5loKTdwSZ3CPB58JZcpHNX+PeEogK3lbUr537FOQEHdEhF91yQ0gvZfLPOGvr/iB5WYZ3ovDPRS5wcH+6gOSCRSAQCAQCgUAgELgdV0pQgBQR+YVI4/5PirWb5nmdv7enIwtgsVio3+8n40CEA4d7IUAw3U1fuvR5IHuCcgpIk6fMez09ZNmju1yP10CgIXBlWer4+Fjj8Vjj8VjSpTCQZ1d4hwnEDa5PKQTRa/woIJUuzNBNgYwGjzhLl9FjxBev/4fA0smBaPxisdBsNtNoNGp0riB7gQ4RbrhHlkKn00nzv3nzZhqjdJ41kBNrCLnX6Hudv5dT+JnJ58eZorSCtfQz6MQWuCEmc0Rs6XQ6jXNHKQbj844TeDtgQEorUEQ1r/vfZT7qIhnw0htKJnLzQebgIhr3RQxzwcXXkOdyocFFAQi6/3Cuc7NKL7HwjBn3oSAjh/nuMnbkev45zsUN3uP+Km5mGeUOgUAgEAgEAoHAnXElBIXNZqPT09OGdwEGeL1er2HQB6Fz4uTkCRKPlwBEDnJXFEWDVEOyIIGk3DvBJ1o7n89Tuv4jjzySiLob+rlZYL/fT6SYGngnW1yLOVMbvtls9OyzzyayT9aAt9TzaKp06Y9A2QIRddpGspbz+TyJJe12W0dHR5rNZimjwFPn/V6QfKLlkDwnqXt7e8kLgBKOZ555RsPhUJ1OJ4kHlDdMp9NUcgAhx1wR4aLf72s4HKZ6+bIsNZ1ONRqNkuiwt7enqqqS3wAknrORt2j01p+SUqkKewGhJ13+7OwslUB4O0tJKW2f9/Jvzh73bbfbjcwV6dwPxMtgKBHhDI5Go3TeZ7NZQ1Dwtp7My8l0HmXfFZF3fwwIvn/22GPey+MuFCA4ILKwJggrXsKQd1ZxkQIBh8+aE/39/f20t56JwDqR5eFZEZ6B4sKaC0oOFyHw1PBMj0AgEAgEAoFAIHA77lpQKIqiJenfS3qyrutfVxTFdUnfIOltkt4v6fPquj5+oWvUda3ZbJaIIMSUiHK/30+kBaLihMHTmM/OzhKplpRS9OkS0el0ErHjmk66IIseUYc8Qk5x3R8Oh7e1avTIKDXw2+02iRyICk6AuDelD5gfnpycqN/v32YkyTg8yk1pCHPE98FbObbb7UapwGq1SkIHBo1cwwm3GxH2er0UNec9HhF348vtdqv5fK6bN282RAn8FiCWrVar0dEAvwtKARg3e0E2BR4ZlLQsl0tNJpNEtNmL+XyeSjgQTRALvBQEQYb1dFLrJTa58SOvJ7rNuBEA3GgQYouABGGuqiplaEhKZwWBxs8gJTe56SBlFJxr6VJo4Jyzt3kpA+CcHRwcpM+dlz6wprzGzy+eBZB4FwY4E2QaMK7VapXOKz4OiEd4VXiW0K4MHTq/8P3AOP37hefwX/DyI/dVyTMcXszY8SrhXnwXBwKBQOCVI76HA4HAGxH3Ivz2hyT9hP37yyR9Z13X75D0nRf/flGcnZ2l6DMRc28/52nxebq6pEa5QR59zOvGnSi4fwA/kBJItKfRS+dRalolelRUuoyAuxs/xoGSEmntdruJNHrtOteAwJJqj7BC54mqqrRardJrKdNAqIAE07KxLMtGhJf7Id5QruCCh4seRJG9QwPkz9P5Ic8QM+Ywn881n88bwgPZCB4Fd08KzoBHsVkrN+lD6BiPxzo6OkoEk8cRZcggYS3Yd8h/VVWNbBgfl7cRdAHLRRHIPwaQXiKC8MIcIdS8DzJNVonvLfN2wct9IfLsC/fGyD0L/J5Ontk7L1/gbHjpjo8bMcTLBRizl/rw49kKnAEXIxBQ+Gz458NFmF3wsfmcfI1YEy8RYR/57LtAmYsXDwDuyXdxIBAIBF4x4ns4EAi84XBXgkJRFG+W9GslfZU9/DmSvubi96+R9BtfdBB7l20gZ7OZ5vN5IuFErr1GOydJPJYTFK+hdyGC90FevV2gl1PkdfV+f0gf13PRAVJHVBo/AYg+pNNJkxMliBzkkiyD0WjUiOJC0CFxkHRvcQihraqq0SEij0ojFkDaWD8ngggho9FI4/E4iSasGdF3NxTk/pB4osGQu9xQz9PxvbQAss46Oyknuj0cDnXt2jUNBoO0rrTmdKGErgtem++iAtkbeWSecbnww3lwIs3+Qlhd6Mrr9T0LgawJxBRJjRIgX5e8tt/HlJetMD73HyGjwom3CwR+jvlxrwPu5S0aeY5MFM8u8LPh4qCXRzBfzzpx4YIx598Bfo7zOeU/LgDy42Pgs/+g4V59FwcCgUDglSG+hwOBwBsVd1vy8JWS/qikkT32aF3XT0lSXddPFUXxyK43FkXxbknvli59D0j1h/z1er1G6YOTCzdflNQgsJ7B4B4IOVGApJH+DFGjpMAND3OShUgA2cJIEhIMEYTIIAx0Op1Gmz0nSng0YDBJaUJZlup2u7p27ZpOTk5SxP/4+DiVSUD4fJ7e2YJ6fggU80Iw4P10m1gsFppMJo3UeUQH/BAk6amnnmqY2x0dHUlSivSzlm4seO3atUSgSYOHkOdEl31hDNS3O3HlWq1WS8PhUEVR6NatWykrhNR91pMIPwIJ2QvcCzGCMbD3CCDeoYM1ZHycGVLr8ewg48B9Nzzrgb3jx0UaxBIvP9hsNo3WqhBl36s884PnGBdnlvPtZQ74cLA3iCF51N4/G1yfx/Hs8HIXrsN5YC74aiAkeNaNf7Y9i8AFQv9u8Han7pfgBp6svRtZ8l9vZZlnO11hfKXuwXdxV/37PMxAIBB43eIrFd/DgUDgDYhXLCgURfHrJD1b1/UPFEXxrpf7/rqu3yPpPZI0HA7rbrebouuLxSKRO1pJeibC3t5e8gLAJJBId3FhFEengaqqEmHL0+WlS38ASY3Xc18ICQQMQgnhowYcos11IGJOHKuqSoQZLwHGA4mdTqcNk0B8CiaTicbjsa5fv57I1GQySSaLRHUpa8AL4WKvdqa/u2cAQgwkG2Hi+Pi4YdjnvhHj8ViTySQRTzIwxuOxOp1OKmGBMELWB4OBhsNhytKA4I7H44a3gJtKIoYcHBxoOp02Sg1Go1Eja2E4HKaMED9DkP3j4+P0PHsLCcUAkfWnPKDdbqvf7yefg1xo4bUu0gyHwySYICiw1qx/LupAkjEplS7LZNhnN4IEEHQvW/CuE8BLFpyQQ6YpIYGY+1nm3O0qKeAc+/nKxyidizsIMoDzgfEiJp7tdjv5KeBDwjlyEcu+UyRd+l94Rw7G7u9lzREufK1c0LrquJffxePi+oOXnhEIBAKvMeJ7OBAIvJFxNxkKv1zSbyiK4tdI6koaF0XxtZKeKYri8Qsl9nFJz77YhSAG+AMQCfaU9/z1Hnklo8Gj0EVRJAI2m81SVN0JhBM2fnY59HvLOsjder1upO0TTYZE8binVjtx8hp7N7QbDAaNlnsurnjbyvF4nMoYIFJuEOniCESR8XpbPOkyqszjkPrRaKSyLCVdptpLl+Udh4eHWiwWmk6nqYRAUkr996i7+wjgbUDXB0QWxglhXy6X6Xdq7D1tHbLKNdgv/CAQJDwCz+tYI/YR0so6OnFlTghKTr4RMfxs+n5wVujo4SU0wPeG57rdbmP/iPAzZy+TYdysEwKIk2GP5Lsxo7+XNUC4wYCzruvGWBhzbsro5QJeZuGPe9mFZxx4JhFCm3fOYL9yAcONGr20wfcnL1Ph+8OzKfxxz/Z4QHDPvosDgUAg8IoQ38OBQOANi1csKNR1/eWSvlySLtTYL6nr+ncWRfHnJH2+pK+4+O+3vpTrOcnyaK50e9qxCwruc5A73ENCIGRe7+2khCg0xBbyz7UQACB6khLR8ddQYuAdJiBMEBsn2NwfoQHSCsHxDgDL5VLT6TQ93u/3E1klstrr9VLGhpdtOAkDEExPZXeiTCYBaepuoEiZAd0HnKTSIYM1Xy6XqfxgPp8n0QGBByHJuyBQIoCngZN4xKOcELqQg6ABqXZymwtKiDfuTYAhposKZIC4gOT39jamfqYpI2DeuReH74vPh4wE7u/RdDJBPJ2fPXWjzfweLnqRWeGlPmQkIN6QrYLY4IIDnwHmzjl00YE15zHG4sId2SbuZcL5xS8EUYKsBu7p4pKXdLCG3M8zE/yzzT29YwaP7frMXFXc6+/iQCAQCLw8xPdwIBB4I+Ou20buwFdI+saiKL5Q0gckfe5LeZOTFEiEG8Q5IDwQ9F3GeaSZQ1rIVsAwj/IEiBImckRdIbTL5TIRaQj2YDBIHQFoS+nj4ofsAggpRJVor5ci8DpIHMaCEJ3VaqVbt24l8rO/v58yBHLCeXBw0Iju50Z1kEfPRvB19jKQTqeTOlpgluldFK5du9boRHByciLpMkvh7OxMJycnqqpKt27d0rPPPqu3v/3tKQMC8cEj8RBSRBEILetIBoFH193szwUEfDZYfzInvOuGd+SgbGCxWCRRYjgcJkPMXq+Xsl/yDBc3d+Tssoa9Xq9hygi8TID9KYoiZVhw/hB5XADKBQXWQrr0JaHkIi97cZ8IzjmZPP5ZJCvDSwb8nnmmhJ9l/zx5FxY/Py4WuY8FYyWLhftQ1uPZKfka5mvJ63y9mQ/X4vq7RKEHGK/ouzgQCAQC9wzxPRwIBF73uCeCQl3X75X03ovfn5f0GS/n/XnUMo+kXly3UfuMoED0Mk9VhnRSl+1k9eGHH06Rd35Wq1USDKjBdmJBCQHp9Lj40xVguVwmwkPpgqf6E2GFDHJtIqLz+VxVVWk4HEpSGgvEcbPZqKqqJEYATAUxZ3Ri69Fn4Knlk8kkkVKIMoQVEnx0dNQQWKbTaRI6Dg4Okl8CZJd7u5/BeDzW6empptOpPvCBD+ixxx5LJQ9vectbGuuAuDMajVK7S8guc8Ksk30jK8IzQ/K5e+lCu93WbDZL5Q5eLrHdbjWdThOx3t/f12AwSO0oKZthz8g0gcAjxHh3Eu6BiMP4PNXeSbskHR0daTgcpuuWZdnYd8YGyKBAKHGRjD32tov8m0wEznFVVWlc+Ft45wXWt67rZEqKoFIUhebzeaN0gPXmMT/7GI2WZZn2CuHIP9+MGU8FxsA18vaeXtKDqJALZi6QkBHBmfZuDw+QKaOku/8uDgQCgcDdIb6HA4HAGw33I0PhZcPr4fm3w6P4/nqPcnp3AxccuG5VVTo9PdX+/n6KNrsRnkdIIYZe+819AKnsEMbJZJIEDCLZ/f65Uy+Gee5Yn9fxk16fezR46YN0WetOqj5j5TWQxFarpcFgkCL8kDVPDV+v17p165ZWq5VGo1GKBnu9fb/fT6aL6/VaZVkmQo+A0el0UoSfiDolHIgOmEhOJhN98IMf1Gg00o0bN/T444+n9HxP1+/3+xoOh8m8saqq9BpJSTjJa/jd6DCvsWctWTMvaaAUgX2BLENiV6uVhsOher2eer1eKvWYz+fJHNI9HNzTw8+0p9pzL+AdLThHjIsx5F4ADvccQKSgVIdsETds9LPP54Uzht+FE3XPWGCc6/U6lXZgrOr75MKHj5f7cj3PtnAfBEqJ3AcjLxlBVPR7uE+CZypwbnivlzrweduVqRAIBAKBQCAQCARux5URFCAQ/ke8ZyV4WrR0mWbuUUbeA4khQkq2wnw+V6fTSQ7/ed20EyVIuZOcnJB7xFZSivLSWQASR4kBqfBEsaVLw0ei+vgGEDWF9PBf5stYPPoKYeb1nrFAVoLfW1IixKwHnSU2m03KUmDNEBTI0KDDBURzOBzq9PQ0ETLuh7M/wspzzz2np59+Wo899pje+ta36tq1a7elp1NG0e/31e/3UwYHoo+Xw+Sme7syW1yMciHK9xzS7L4Z7XY77QelCIPBoFHOslgsGuvPviJycSY54wgh3NOzI/gpyzJlXZA14wacu9L8c88CjETzbAY3RmRNXFDhTHtZCevmBN3NFBElyGrwrh/e7cEFCv5LNgjrwpi5jndKyffWx5avrcPPF7/nZSO+Vy+0zoFAIBAIBAKBBxyf8vGqHu/d9WX2q60OvuPf34MBPbi4EoKC1MxKcFLP407+3PwQI8L5fH7bNb2GfDKZJB+A2Wymo6Mj9fv9FK2mveEuF38IS17fDzknq2E6naZ69OvXr6cyBEmazWY6OTlpRIeB143PZjMVRaHBYHCbOaUTLX+fGz86USJyTMkF4waYKuK1gEcBxB/hoN/vp3R4vCPwkmB+XI8IPgIK+4gvxHQ61cnJiZ588kmNRiM9+uijyTfCI8OUtvT7fY3H42TUeHp6mrIkWI/czwARieeJ7HuU2lsQVlWVyjakS1+NqqrUarV0cnKi69evJxHn6OgoZX5ISmPIyfZisUglGU5oGW9dn7cLxc/DSfRkMlG73U5+A3Rc8KwZF5ncG0FSErY4u2SuMH8IOufRzQz9vwgcXmpERgACh2eH4C/inUoQiPJMBe5Bhg2ZHnzuXSzytWUM3orUfR+Wy2Uja8Hv5WIj8PXj+owzBIVAIBAIBAKB1wH2WiosI372p+b6rv/sb9/1Zf/ebKy//s6PedHX1evVXd/rquJKCAoQIwgF5BbCANyo0UEE1Nv88XoeX61W6X3T6VSz2SxlGXS73VSTLym1GkRU8HpyIv1EpREN+v2+Tk9PE+l+7rnn9PDDDyci5++DRJJ+L112e5CUMgFWq1Wj9IKafe9MAHmTLgUUUunvRIjcb8I7FKxWK81ms0TEIe2k+ONnUJZlI72dfUIA8RIN5sY6EfU+PT3Vz//8z+uRRx7Rww8/rGvXrqU9oB0mpprdblfXr1+XdC7MuFDB/dkzsiXG43Ei0sfHx7e1gOz1eo0SAz8z3W43relyudRkMtHzzz+fsiUeeeQRPfHEE2kfi6LQbDZrdJTo9XrpbPNf9poxk5XiwgH7OZ/PNZ1Otd1u1e/301kmg8KzDsicYC5kC+BN4KadnkmRiwj5GnCOfA5eVtFqtdKe89lgn/f29hrmiXyWWC8eyzMK8rIISUkQckGEdSBDwjORcrNK/2zt6jzhr3UxzgXEQCAQCAQCgcCDi5/52o/Xt/3y/yv9+4lWS+ddXu8Ov2FwrI9/3796wdes6z390f/i83T28x+86/tdRVwJQUFSQySAgHttvJMZjwJ7ZNFTlZ00EzmVlEjrYrFIBop5SrhHXSFC3IPILiUAiBmj0UgnJyeJ8E+nU41Go0TeqNmnfSIRcQgoLfy4D2TJ3fghYMyLGnh/PeQI4u9E2g35SGlnvSGYTrLwEYAI9nq9JByUZZnIG9kLlCVwTQi0+12QMbFerzWbzfT000/r6aefTpF/1t+zL/b39zUcDrXdbnVycqLT09NUlsH4PFODsXrEn7IF9sfFBwg4ayzptpKG6XSafpbLpUajka5fv54MM3kPgglz9owC91XwEp71et3I9thsNirLUmVZpjPJOciJMSDLAUDAuTd+Cp4p4eDzxBkhuyVvr+klGnnJAECAy8fjWRmsN54bu8j9neCCCOfEM3lcsOAzu0s48LVwgc33zrMcAoHA/cfsc3+ZlocPdHeVwH3A2d//3td6CIFA4EHFXks/93Ufpz/7yd+ijzoY3PPLHxStl3Td+V9vabL46Nsen/7EdX3kl37PPR/Xq4krIShATBxOKCGuEESPekJU3CsA4i0pvQ/CBSEiYwACSL26k1k3KMzfi6eCdNk5AAND0v1Xq1XDKR8CROcHFygQNri2l1/kHSEYm2dr8LjXg1N+scsF3yO0kFN+vPOA1/r3er1GG0f3CNhut6lVpZsrsr+Mn1IDXn96eqrnn38+Eepde8v+DYdDHR0dabFYpJaduW8B++6dGxgnLT59TZ1A++/sO/tVlqXm83kSTQ4PD9Xv91XXdRIrAJkbngHCOFkDzp8bR7rpIan7y+UykVwXERjvLhNB9g4PDyfSTsa9vGSXyOClBczHz6zvqwsn3Id5+vllP/3z4CU/dwLeIbmAyOcRUSEXPPy7JTdz9PKGXSaSfKcEAoH7i9bDD6t+4iFJ0q2PbWl1FIaogSY2/+y1HkEgELjXaF27pvqtj6V/753M7nkEv/XoI7r1mR+pb//0P6+3Hwzv6bVfLt77cf9g5+N/+m0fo2/7oXftfO7ad31QZx968v4N6h7hSggKHkEnMgr5I6Is6TYS6CURRHcxXHRTuNxXgAwIyJp3RvAWeB7d9PFxDQg/4+n1ehoOh9psNppMJsmh3uv6IeCIDdJlBB9wPaL9HtGmJh/C7GZ/RLu5FkTYPSm8gwXCBdegM4U76buogJcC6f2ICqyZpEYLPrpcQBy9IwcZEPP5XLdu3dJ4PE5tGZ2EMv+iODeZfPTRR1N2BFkE3W63sa6sLSUgLhKRReAlFb7Xbh5I9gWvR1SYTCZ66KGH1G63NRqN0lpwNpjfLj8LRAWPokuXPhyMeTabJYGEdqWcO/cDYMxukMiZyg0GXYRCEMvFFTcj9LH758ij+JwRhIlcvLhTFoN/nsAuUQOwf5xZzjP3dmHRBRPWjPG7AaoLaN5BwzOhouQhELi/KPb3VX3y2/SBX0WWYogJgUAg8LpD5l8gSet3foR+9rdclhxc/w9HuvG1z6R/15uNtH3lmaLFQVvTT3+7vvfP/TVJr62Y8EL4Ew/9pP7EX/jJnc99ypd/kW5888ntT9S1tpbJ/FrjyggKEDLIgNd4QwQhD4eHhynyu91uU0SY0gYnj0SOqVHHu4D7uUeCG9XlWROQPUiGCx25R4AT1qqqklcDZQ2QorIsGwaNHmHfbrfJKLKu6+Rf4AQUQSQ3eZSUhBLuRbkF64SwMJ/P0+OMDWK3q36e0hFJKSV/OByq3W5rsVgk80sn6i7CeLeHvb29JCjQavGRRx7ZaRDI+x9++GFVVaWiKDSdTlMqP4SWMg32hL07PDxMJHo6naYsESL5CDSe2cA+sNesIUScUomjo6MGmV2v1zo9PU1jyssTJCWBiag7poaIXYeHh4n8Iiq4+SDX9cwdhBtP9ScLwssCPDNBuozK043DP5f558Gj/ZSXuPml35vPKKKV7wlr69k5CAa5aWNevuTg3DCHTqeTflg7BEOfv7dG5XvFMyAoU8r9WgKBwL3FU1/8KZq/KUSEQCAQeD3j+S/4FJ1+VPOxek+SLgM3xx9X6+RPf3L698M/WGv0Da+83Omn3vPx+sHP/IuS+q/4Gq81vv1P/+9a/C+3/z/yB1cP6S9/1DvvSnC5l7gSgoKk5IRPu0BPva+qKhH1+XyeXO/dP8BLBzqdTiJ+RMwpS3CvBQgMhNSzDaRmKUa321Wv10v387pv0q6ly1RvRA/3eiAF3VsKkuWAOOL/Za4QxTz66+UROdFizAcHB2n9IPGDwUCdTidFvXkOI0gnXggtiDyeRu/eDa1WS8PhMHXdgOR5mjuiC9kkrONsNtN0Ok0dIjz7wwGhHA6HqcMAxoWMl3WD7EuXZQvMxzMF8vNBJgHryt55OYz7JPCe8XjcKJOgc4ZnEzj598g4wgaGnZxJMkkkNcQJxi5dEl8XbNgf95fwc8P+eplCniHjpRKM18UCrsM54Hfu5UIEnwHP2gD+uWG+eSaS+y+4sOBZEi5asSYYh/KYZ5/4uWSv67pudETZJWAEAoF7i+2+VIduFwgEAq877L/trfrwr3mzJKl8vNa2/cJZn/WeVNtrjj9mT9Uf+HRJ0uPf9NPaPPfcS773k9/yTv3Fj/8GXWs9uGKCpDuO//+1d6y//M8f11a3Z/c++4/eose+8rvv99AauDJ/LTt5JOIOMWi320kgWCwWiYzlHgJOLjzS7DXeHi2GAEE2c+T12n5NouBOdri+d1vwlPu8HR5kh/ERUebfs9lM3W43Eeyc5Hk0170MPP0bAo2oUJZlIsL8eGo9zvx5lobPmzp/SQ1zxH6/n1pROoll7Rk7+8f64xWABwMCD9dhbZgvXRGWy2Xq+MD1eb1Hvt1fgn301oCesi9d+kx4V5G8tMRN/HxMiFjHx8cNwu4ZBZBbJ9tcG6GCTguQXM8QcKEGkk+GCs+TtcM54DkvT9l1Dc/S8fVwQYO14Dkv9fCsB2+rmu9jjlxo8Hu7qWJuwOjwrALmlpcGuUjhAoWbV4K8JCMQCAQCgUAg8OJo/cK3a/Lxj2jyjleegbY62mp1dP774S95mzrPP6a91UbbH/7xF35jUeivfMLX6VfcfQOHK4vDvZ6+/Rf9453P/Zfbz9Hzs0+743sf+oGJ6h/6sXs6nisjKEiXKf9FUSRSTi0+RoekrENgIUmkN0uXhLXdbqd0dTe+a7fbDZJJyQVtEj0Nmut5pwmM9RizR60hUrTHg1Tm6dzSZTq9dE5eOp1OEhMw5qNUoqqqRocC3pOLGi7M7O3tNYg3LRdpi0h7xe12q7IsNZvNNJvNbvOR8HWgKwJRbDwreA/ZIZ5tAdF0MUS6FEHcgJPrsaZlWSZi6GtHBLrf76ssy3R99oEMBa/zZzy+R9TO52UAgD3nd4+28xjEE2PO9Xqta9euJaJONsuuEoVcVODHz7cLHJ49wZlvtVopzd/LJvDa4AwizpEFwT5wBr2lI/vjool/tvyMsQ6+R4wJkQyhxe/LWjA+79zA58MzMFwYzD0ZWE+MPV2AyM+wZyqwjj6uO5lUBgKBQCAQCAReGHvdrp5912M6fue986H64Ge1JA3UPt3T236yq+1FQDFwO/7VO79V+lN3fv4df/uL9I73X9v53Ob4+BXd80oICpBporH4DlD7THp+WZba29tLtfpnZ2epft9LCJwguAEhpBWSJimVH5At4FF2SgCorYY4Q8wgT050II5uwnh2dqb5fJ6i6bnDPWQHocI9Fo6Pj9XpdBKBhyBxD39v3uYOAcKzMjwjYDQa6dFHH01rQUtG/o2g4eaR4/E4kUxEnuVymUoZjo6OGuUmjMmJfl6/7uaAnpmwXC6TjwQCgHfr6Ha7t/lr+ByZN8IS+8w6Q9jn87kkNfbPyaV02ckDoQV/DMinnxOEHM6Rl8VwD8D1WBPG7CUVnF3G5ZF4zuVms1Gv10sZKcwLTwSuyz5RDnDr1q10VoqiSOUoni2BCIMowTjYK65PNo1/Btz3gbImwPX53ffAS16Yq+8j7+O/fKZpGQpcoHKxg/96a02usVgsQlAIBAKBQCAQeLkoCv3sH/9Ebfr3x9R6Nd7qp/+XT9RH/4Wf09lTT9+Xe7ze8R9/51/W4nfc3sVsWW/1Bb/0N+vs6Wd2vOuFcSUEBekytRkCU1VViqJ73bm309vf308lEBjuEXEkounRRo9aEumFnEP82u22xuNxIi1lWSZhYT6fJ+LlpoM5iDaT8cA4JpNJo7zB0+k9jZ7HN5tN6mTQbrdTqUHeBtIJnnsXuHM914X4skaj0UjSZd38YrHQdDpVXdcaDoeN6Dzvh3gVRaH5fK6Tk5O0jog/Xq7g65KnsvuekUnh7QYRmRijR8ghwAcHBw2jRAg+QhLCgxtCemmBZ2P4XLkur2XeCDnsjWeVeAcCfD7c38CJs3tRuLmhG216lwnWwMsT/Fy78OLn0A1EGX+/308EPT8r/nnyc+6ZQ5JS5gHj8ut5eYV/5qRmeRPvdRGHM+4tQLmni2OM1T8HIC958kylPAOBuXEtzzoJBAL3F2/5+0+p7na0GXX0M5/b045y0EAgEAg8ANh/y5v1od/8Vm162wvDxfuAQqr37yxW7H3Cx+rw/3pav7hdSerd8XVvZHSKA3WKg53PPfYP5ppvrt/5zZ++++ErISi4IRvRbEimdEkO8vpvsgocdV3f5k3gz0H6vCsCAgbmeN4NArGBaDzPO9nY5b/g4gCkFgPBPCK6i8x6RoITO68B92wFB0TVo/7SJenylPGDgwMNBgOdnZ3p5ORE0+k0+Si4lwV7g2u+CzF0IIBsuvjBXkLQPKuDCDsZBbRH9FII5uNEkvXi/QgYrK37angGB/voxoHMM0/j99aIeGz4PruXApkJ/PA+N7D00gWP7DM2hAAnxqvVKokK3iKRseek2cdOWUt+Btg3z9xAHMnPinSZVeDimxsZck/gZQ9e2pGLH35NH5f/l7Phvgn+mck/P/lnwctVPJuDcbBu/uPCQggKgcD9x+Z9P6f9N79Jizdd3ZZegUAgEHhhtN7xkZp8/MOave3V6doz/8S3aNBp6+z9H2g8vj7q6uvf/i8VYsIrw99463e94PPfdIfHr4SgAOHOI715Cr+TPwiNR27did+jtp5yDsmF+HhngNlslmr2x+Nxin6fnZ3pueeeS0Sb+n0nke5tIClFlkmT92t5ZNqj5F6O0W631e12U1YEGRmQQSdaEB8nTKxhnjrOOH1t2u22hsOhBoOByrLU2dlZKi9h/F6O4FFhSh/m83laFwwKt9vLLgrsc+4B4W02y7JMQgSEMq93dyLpqf6Qdu7DXMnGYO99PTzaz5jcb8MFGD+TiAEIGFVVpfVAHEPk4D3sqZd/eMtI9zhgHuwzj3Om3AiTezJ/xo2gkBtksj5FUaSSD0nJQ8P9O5yEu2dBLn55KYd/rthDXotI5mKBZ8D4fiCi5f4jlBLRBSMXEHidjzfPjMmzRHxNfQ5R9hAI3H/s9fua/+In9MHPjFYPgUAg8KDi1i97RM998ou/7l7hg7+ypTe1H1PPBIW90UjV0ZWgtm84XJlV9wwE76BApkKn00nRdAgABMLbvLlpHQTFCQnR2DzST5eDsiyTQaOklJZ/enqq+XyuqqqSAIKoQLaE97GHyELISTMnSk5JBcSFNHXmRC14u91WWZapDMEzMvKUc6LMkDTm5zXtCBnSOYk8PT3VYDBQt9vVo48+qrOzM81ms2R+6eNnXREh8L1AgDg7O9NgMEgiB10P3NzPDRA9gwTxgTVmTv1+X8PhsPF+zy6BrHtk3LMVKHGQlAQKovb8mzMCmZaUBC6/D6IHJpDsBfvp/hpeisIe+T54JoKLTHgRMA/KPzabjZbLZZoPopi3Q2QtEJ0Gg0Eji4IxIHJw5g4PD9M1Xwh5hwbPKvLsDJ8r7/OsAuACk3+O2fvc/4SzxPniDHJ+3H8jv66LCoC1cLGIz623nwwEAvcPH/oDn6DyiVcnohUIBAKB1y9+8s/9Iv2nX/9XJYVA/WrjSggK/DHvJCJPKUdQ2NvbS675EC1PhSfiTxo90XiPUvPfPArr0XIilXgC5C3wpGadtv/earVUVVWDnBwcHCS/ArwfIJKdTqdBjpy0kZoOefcIPY9JSkKAt/HziDVE3FPAl8ulZrNZKhtot9s6PDyUJM3n84aBI8QW0z8ixfv7+6l7xGQy0Xw+T4aE3vWAMbrYw/wgf0TU67pukHDWBYGg1+s15odpJONZrVYNP47pdJrWk/ex9hBhJ6Tss0f+EU4woVytVkmI6Xa7ae3JTqDbAP4YJycnaZ6QYo/k56n3jAGQdeAeC5w7N9FEVKMEhcyIvb29dBZdyGDt6rpO2TmcGc/auBO8BMn32DMKGD9iDp9j1pQz7OUZXi7kJRDslZtn5hkrXqLCtXeVrHjpha+zCzwvNPdAIHAPUCh8EwKBQOABxrP/7aerfLyWdH+MGO9430/c1/ChT9ONr/oeLb/jbfrqX/BVOihCTHgtcFeCQlEUR5K+StLH6fwU/W5JPyXpGyS9TdL7JX1eXdcv2IMCwu9E2N3b8zr0brebovHA66k9YuskFpJItNNB5JcOBURwIYj87uUUHnnHLR4SSVQ8Fy9oDZmnvEuXbft4DHLN/KRmLXheB75YLJIYQoaAEy5EAQD5Yt0oVUB8wRizqiq1Wq2UtYHI4Sn8kG3IHK/zVpOeiu5p8m7IJzVNBququs07g0g8P6zvxZlsnB/G5an33Iv7eMkI92StPW0fgaiqKlVVpfF4nNbVzwIknTPnXUl8vvlYXORwrwv/t/tH8F9+326b7TuZL2One4rPi8+TJB0dHaksy52eF4yR/3rZCgKen+Xck4JxOUHP/R8cCCMunngWAeIDYomLi4hKnEUvm/Ex+Xnhv4gMLmg+CLhX38WBQCAQeGWI7+HAGxXlY7XOBq+umCBJ6/FW5aN7uiHpf3j7d+hdvQfjb7bXI+42Q+EvSfpndV3/V0VRtCX1Jf0xSd9Z1/VXFEXxZZK+TNKXvtBFIMNE+b0eXGpmMEjnxBsC7676TtTcmwCi4ICseX05hDx39u/1ehoMBg2/BjfB8wgpWRZ5W0nIDWQPIu/CAqKDR1p5P3Mn4utCBRF9H7906U3h0WGPgpPmntfee5tM96no9/up7p2SDEo9eJ23UsQHAkHB/QO4NuvlpI6xb7dblWWZav1Zd7It3OcAcA2PxFPGsisbwMWJvLsAEXJJDYFiNptpOp3q6Ogo7Vuv10vE3/1A1ut1KgPhMbI8PAuAPXTxzB/L58+Y8nXjfCFq+PURo3YZG+7t7enw8DCdC5/znYi/r7uLCrlwxH7Q3pXx+JzcU8G9FPzzRgYJZSQuoHgXC++o4eVQPp5dYqQLYQ9ghsI9+S4OBAKBwCtGfA8HAq8y6n1p/yPfpm7xY6/1UN7QeMWCQlEUY0m/QtLvkqS6rleSVkVRfI6kd1287GskvVcvQVCgRMDTsflDH2IBecNHYT6fJ7LrUVci0hDquq41m80aIgVkAYJB5LksS83n8xTthGj2ej11u910TTwQuC/ZBRC6wWCQfA8Akf+iOG8pSbTVhQ0niPP5vFGi4GsiKaXAe+q4iwCr1SqVa7gA46QZ0socut1uykRgLYny37p1S9evX9eNGzdS5gY+D5A6ygHKsmykvuflLJ4lkkfbWQfpUuTxSDLXYC0goZ6Zwvpg8siecrZ8zZzEMm+EEkivk9v1eq3JZKLj4+NkSuhCD2cSwsu6kvnA2CC9iEHL5TKtEcISz7lg5cIZ/87hXgrsP5kIPO8tM/lcseeUCzEeOqC4mOE+CZ7R4KaT+J9wfxfXpMsyJfYGwcVbTrqIgjBEOQ5r5fD14bV+dny87KePhXV1A86rjHv5XRwIBAKBl4/4Hg4EXhssf8FC/+S7/sFrPYw3PO4mQ+EjJT0n6auLovjFkn5A0h+S9Ghd109JUl3XTxVF8chLuZiTg7zOntZ5lC+46z3E5+J+DY8DruXmiTzO66XLFoaSkhnhbDbT4eGhut1uIoWYGuINwPgQRNx9vtfrNSKdeQkEpnJEdCHhZBT4nJyMI0h4NwDmxriYI6IK0WH3JgAuLHimBOSzKIpU+jCfz3Xz5k2NRiN1Oh0dHh42skqqqkqRev7txA6CjehBZoM77EPqGA/tOj0dnQg/GRBuiIkwAgFvt9uJkEOKOVO0daTWn0wYxC0n5U5Eybgoy1K3bt1KgpOvhUfAMROtqqpRfsG5RAAiK4UOGy6oMXfv7kFZDqKA+wT4niOOUW7je+LZPLQPzctDWDPm5MTbSwR2GWOSRcN59hIFrueim4/dhRLOjpeG4O/BunumkHuO5PfZlWnBHDDCdP+MBwD39Ls4EAgEAi8b8T0cCATesLgbQWFf0idJ+uK6rr+vKIq/pPNUrpeEoijeLendklJ6trf0k3Rb9NdFgU6nc1u7N0/fhnSRZSBdkhyQCwweESZKC7n1SDgEHwKXp2cjFpBVQAYAZNLJtTvQ81o3poMo0Uovj+SS/s1c+/1+yh5YLpe31YozFsbK2nvNPmtP60Gi7rSHLMsyZVuwDogprBHXytfcu3jU9WXLRSeVXsMO2YZAeyYFgkJVVUmk4DoQ8VarpdFolN7rBpGQXbJNPGLv6e65GEWJhpNa/s05Y00gpnhO5GUN+FZQTsI58PKZPPXe6/uZl5dUuJDE76yLlwa4JwOfHT4vLuDgC+FinWcmcO28LMfba/I+H5d3+ACeoYIPhHsZdLtdlWXZ+Lzm7SeZB58Pzqp7P7igkn8nMG/PerniuGffxV31788IA4FA4PWN+B4OBAJvWNyNoPAhSR+q6/r7Lv79zTr/8nymKIrHL5TYxyU9u+vNdV2/R9J7JGkwGNT8Yb9cLs8HdmHEBsHLI7AQsfV6ndzpvTbco6lEHIm2+nXIhnA/g+VymYz3PFsAssK4nMB6RBTSxPjIopjP5w1y4/XfiA+e2o844b4Ly+UyvX8wGKR75VFo0vI9wkpE3skp0V3uh3jimQIQVUpCyrJMXg15uYKnvjsx9/R43w/MOD0jw9+HoMDeISiQidHpdFJZA6/3zIL9/X2Nx+OGLwB77maOngXSbrdv6ySSiyIuQuVmgavVqpE9gHDAdRGGXARar9fJf8JLMdyU0MsdXJjKx5mXJbCe7AH/daEBeNmJizNeLpBf3x/zz4h06X/inw32mnkhCLAmzBlBgfUk8yBvC+oZCHwe8rG4cOd7mQtZvNY/hw8A7tl38bi4/uq7KgXe0DiY1WpVhTa9OHqBBxrxPRwIvMrYdrcaDJev9TACugtBoa7rp4ui+GBRFB9d1/VPSfoMST9+8fP5kr7i4r/f+mLXgvSTuk6KOuUGuSHder1OhBLjPhcI3LAPcuKRVI/SS5c19URF8QsgatzpdBLJuJh7I4pL+z0XEyCLfh9SypfLpRaLRUqT7/f7KaPBuzsQYe92u6m84NatW0ns4BoeoWbO1M2TPo+AAfnG68Br7CGpkHIyAJgPY5tOpzo9PdV8Pk9tJoFHtSHeiCD8eGmIG2CyVp52z/6yxszBS2R6vV5aU+rze71eWovRaJSyCBCJvNQAQO7Zu13mjKw1rSERDfLae6Lo0nlUvd/vazwep7R69s49Qty00AUlMiLI2OGscGbdABHS7FkjnKXZbNaI1COiuejjIlkOL7/gM8DjuT+Ff659XLzeP59SM7vBW5JC6vnMbrdbDYfDRimRlz145geCBF1h8APhfnwuGJeLaW4WedVxL7+LA4FXGw//1e/R0Wf9Ev38Z1+JLtaBwCtCfA8HAq8+3vWJP6Gvfuu/ea2HEdDdd3n4YklfV5y72f6spC+QtCfpG4ui+EJJH5D0uS/lQh6ZRDSQlEgBJobuEs/7IPwQP94DGXHyD4mECIL1ep2MGReLhcqy1Gw2U1EUKaqcEw1PzSdSCiHJBQ1PgSfaS+YCJo6YQzIWoqlEvnldceFrsFqtGoZ7eB0AzzLwWnoIKsTWo/lEciFsDz30UOroIEknJyepDeLx8bHG43ESU9zTwTNJyC7wDAx+nOyzNh5tR/TgvWdnZzo5OUkkfblcJvIIuUSU2tvb03A41P7+vg4PD9McEaC4D6UcjBexgEwCRBDmVlz4cgyHwyQqIHZIl2aZiFuUlQyHQ0nnxP/09LThP8A5yUsQEAQQmVw0IuvCMxX4jHAemTMlMIgzbubo58PFBSfTnpnDc15qIykJPL5unEMvkchNNCWlMh32knVD2GJOeYmHe2P4GULYc/Fqf38/CVF5BgJreHBw0CiXeoC6PNyz7+JA4NXEzXd/mmZvlV7t/uWBwH1AfA8HAoE3JO5KUKjr+ocl/ZIdT33Gy7lOXs7gJN1r9b0UwKOgTuyJFnuauDvB52Z3XMO7LZApQbmCjwVBw2vxeT3kBVNAT+/mvx6pX6/XjQiyG9Hl5omke3tLQtLjEQ4gQx5ZRbygnASPBdL76STBulGT7qIIHSyGw6Fms1kqM5nNZslngrXN5+zp897VwvcAYuqk1lP67byprutUkjKfz1VVlQaDQSLZThABUX5KPvhhPSHbEHvKE9wwkmg7Z81NISHB3jEBYcTXwLscQII9K4DXuhDhHhgICL623haRKL3U9B3g/pz3vLsF58tLJnYRafdV4J4uSnjZDp9bz+yRLtu7uqDhIgPZOnze/T5+febu82UcefmOr8sufwT22QUEPg+s2VXHvfouDgRebawOC50Nond44MFHfA8H3qh4/LvP9PzHH6h8PL7L36i4MjmGXmvtpQS43+ep/VKTNEI2eT+ZDv6c1Ewlh4S2Wq1kmOgCgf9elmWD+DkxJZuAen5aNea16MBTwH3OuSu/k+Ozs7NEfvl33nLSSVZOxMnMGAwGiSxtt+edGBBBMCiEuELKmEtZloloLxYLzWYzLRaLNG5f2zy1niwDosxOJnNSuyvN3K/L/RE1OBuQ8dxfgPVlnmR2uChA5J6MEVL1c8HIPQgQHrz0QVIqy/Bafye0g8EgiSLuqcH5hMg6qZa0MzuHvc0FBc6H7wvPc34QtPwz6GdzlxjGOfPnWOtdUX+uy2NeUuCkH9CK1Ds68F7PVOGs55/xvGyH93EN9sTLVLiPf5Y48w+IKWMgEAgEAoHAa4LOP/1+DW58qsrHX+uRBF4rXBlBgQyAoiiS1wCRw+VyqaOjo0Rcqf930ixdEiK6E/C65XLZiOx77beXSVDrDxHzaG1ZlsmEEONDr9tvtVrq9/vJjJESAVLVnRjyO2MkCwLS5+71vI6afNzrj46OGpFujO18zMzFxQfEAuaN4eF2u03lB6wt5R6DwUCDwUBPPPGETk5OUpbCfD7XdDpt1LvT4tOJP+UAvi/sg3slsF6+TpBqzzphfWazWfKX4PX7+/tJAPASGS9ZoLzBMzPySPTR0VHai/l8rvl8nvaRs0G5DfvuqfzsA4IEr+f9TpTd0BGwXmSYSEqZFL4/fq5cIKN8p9/vJyFqMBikc+xr4wKQm0x61gdr7lkYe3uXnS34t3dfoTTHSzW8zMjPIffp9Xo6PDxMnzHW3b8nXPhyEYQ18QyF1WqVhB/fFxducvHRy4BCUAgEAoFAIBB4CaglvVpe1lEld6VwJQQFCItHXnu9XiLJXg9OiQCPuajg3gukL0Oc/LUe4SeiSvRzuz1vkVhVVarPpxTAxQEXJZx4QUTwcWD87vjPOFxYWCwWun79enoN4opHnMuyVL/fT1kQ4/FYs9ksEd6qqhqEl3mBzWaj6XSaxkDE2j0HWEOILCQSkeTGjRuSlASF5557TmdnZ8lgMDfeY81Yr6IoVJZlGpv7DeRngv3meozXSzim06lms9lt6fiUqbDurDm1+m4i6HvMmeG1Ht32Ug3I7J3OsxNbzpYbByKqsN74dPB+rr3rfLGGZMbk2SFcg7IQfz9rSokHr80FL89C8HID/4zmZBvBwM0l+ax69w0eZz19nrlJaLfbbdyXspXVapVau7oI4mfJvxvyEifWjj3xtpic+chQCAQCgUAgEHhxXPv7P6qjn/pI/fRvH7wq9/vor7ql9/Z/kRSmjFcCV0JQIH0cQg/p8zRkJ/cQV0QBCCOkgowB6TJd2zMavKTCa9zdjwHC5+USkD8is16ugJGcEyPMIski8BR7ouiSGlFsN5JzkYV7k6lA+j5Cx3w+TyaPzIUIP5FZ76DhwoeTWifBkGnm2Wqdd0ygfeTZ2Znm83lqmQkJdPd8bzXo6eX81yP67I3Pgb3NiTXkD4NISkH8J0/f5/5+LtyXQ7rMGkEIQfRg/dxUkzWjPIKx5dkibk7o0X33kYDku6kipNx9FQDZKbn/AkC4QGRib7y0SGqWA/m+e3kD48RLw4WeXaIE5w7hhjVh7dgbPn9+5n1vOTd+fT8HiGW7xBEXqHyOfG64Ty6a+PMu6AUCgfuDx//tXDf/s75OPzrCTYFAIPCgYjufqzWpJL06gkJxPNHe4vqrcq/Ai+NKCQoQb0mNSH0uKECWPMsAEoQYQCYDhITrcr+cxHNPiAekMo+sekmE1GwjSGq/PyYpkUXM++ia4O0UmScCAKn7EDBIGQS90+kk4sZ7EGCYI6+B4C8WixR9ddKHTwVCDPPwzgWQr16vp36/n4g32RyQbzcJBB719/R+SLCbHVJWwjWcIPpr2Qu8HIh25z4AeVmMX9fJsgsKdL+gNSlil2el+PlbrVa3CSFkqPh5yc1E+S/7zfi9XCcnvKDX6yVxyY0E/fpkQriIkZcK+e9eBsB1XPzgPEHoPSPERRs/f2QH+eu8LIdzyHnzs8b4/P2+XpiQ7vo85p9XFwhy4cvhYl5+jgOBwL1H8d0/oqPhL9HpR1+JP0cCgUAgEAi8TFyJ/4NT4kCfeEi+R+erqkq/93q920wNnShAMpxc5q7yklJ6M74NeRvJnMBDgoioYgxX17V6vZ4Gg0EiXZvNJkU7Icr9fj/V/SMYVFWVBJPVapVKAPIUdzeMZH0oM0BUkJRSuUnj5jqsj0d/i6JIogdiDuSt0+loPB5rOBwmgklnBNofMv/T09Nk2OiCCj/uqeCRda7hZBNxiPGxluzbcDjUZrNJhoabzUaTySSNjX0lC8UzFNyY0csN3FARQl9VlaqqarSEZJyeIeNtLT3yz7pyzVw4yTMLvMsGQgkeCpJS9N7LATCl9EwIz2qh3MCFt/x5NzZk7z2rZZfwgqCwt7fXKCdycs787lQWAlwI8NaliApcn7G7AMH7yJTZVfrhxq75dchS8HIP6dL88aWMPxAI3D3q0O0CgUDgwUddX3ob3K/v9Uhmu5K4MoLCcDhslABAKiAOiA0407th2nK5bPwb4uqRcTcOdEBk8ojyfD5P90TwcILhjvmSNBgMEvkmW8DH2u/3k0HeYrHQwcGBer1eMoNcrVaaTqfpcaLjrAlE7vT0VJvNRrPZTKPRKKVnE90lq4LoLWtIFohnQ5AKDtmFpHPfg4ODJJIURZFEB4SMdrut+XyeBB9EBeaJmMIeUSLgrSN9j7gv4gDEmTITyGSv19PBwUG652KxSCQcss++eotEF1Y8zb7X66Xzh5gwmUzSa0ajUSNi7RF2N/Ck/GS73absAV7XarU0HA4brSBzEu4CymKx0HQ6TWP3jgTSpScAr/fME8i+Z4twJhgPJRpuxMjac318BRAV3AeEe5Dts4uAs2ZO5j37IS9L8f/yHje09Owdz6YYDAYqiiJl4Ph6cn9fO8bopTHM2X1WQkwIBO4/nv3vPl2zN9eKvxIDgUDgwcbmfe/XR/+ZY73vSz5am+79+U5vT/b09q/8MZ2dTiS97b7cI/DycSUEhaIoNBwOE6GYzWbJG8EBuSzLshE99fpwiI6npG82m0S4/ZqQtbxNoKQGOSQqTzkFBIfaesZCSYOXJ+RmgJRGQABJ9Z5OpynVHYGD60OQPcIKafX6cDIScg8Bj8J6ZJf5SZeCxWKxkKTUfYL37O3tqaqqRO65F2uFSd5isWikr7M/CDOsiRNCJ9ieUcI4nUx7FgPj8ki8dx/wjAGPXOceBi4q9Xq9RpkNbTUhs4gSCAicFzqQcEYQTrxjAmOlPIcz5in7nEvWdblcpmi6R9ZdJAF5eQfz53GyJrw0wc+KCwqcGY/2+zlxDwOux3t3+VSwb/6T+xz4uP3H/VGYJ6VDiHXs73w+b3zu/HNwJyEnF3V8DHlJRCAQuLc460nbTnzOAoFA4IHHdqPNreP7qw/X0ubk9D7eIPBKcCUEBUmpjIEU5ZyUeHSRCD9RSzIS/I9/roW5HYQiJ2Fcg2gsZMPJVbvd1nA4TAQbUu3lDIzVBQ4nM6SS08KurutEVCHckhKR5XFIEKTZ67udbDLOnKi5COFlBlwToi8pZXn42lFe4WaIkHLEEwQe1sJJshN4SDHkz1st+t55S8WcfHr5A+9HTHLS7WUIwL0TXBxgTSiH8Eg+2SNkpDh5dtGCDBeEGj97jI2SB16bR+jZL18LPCX8PLCfDheW/N+79iJfcyfsuQjjGQE+NvbQBSzOBv/Oyw98vf33HL4ufm5z4YV1cTHHW0n6/Pzs7Mo8yMUDz5QIBAKBQCAQCLw0DD5cqHxcOuvfW2XhYFqo/1QI0FcRV0ZQ8JKDk5OTRCYkpYiup8lDJNyYzVv5UXKwXC5TKj7kiA4SEKZut6ter5fei68BTv/tdluHh4eJfM/n8xSl5xqQN+rt8VIgEo3g0W63NRgM0rzc64CodlmWarVaqdwAgWK5XCYRA7Lqre3wZqCkwNO2EWK8tR818JC/g4ODZLgoSWVZqqoqbbfblH0xn88lKa0bPgqILYvFIr2WzBAXBTwzwL0ouCbjZP0pnXAfCaLzZA04AXUjw/39/TS/PKPFvQjycgp8HhBQOFsIQPhCeCtRshvykgfOxXa71Ww2a5RjUEbDNQDzk5TmjbjjhohO7l1QYJ0ohfCuGpw5FwgQEnKDQz5HlL94dgT7lQt/LgTlAtudSjxcXHBvCa6zS+zgOfcQ2Ww26nQ6qQSG74tcaOQ6LlL6942vYyAQCAQCgUDgJaKu9cj/+d06/l2fplsfL9V7L/6Wl4JiKz30H7YafPP3XT64lZb1Wp3i4M5vDLwquBKCAn+4Uw9948YN3bp1KxGDO5U1EPkcDAaJMLkBoEctIVMQ4X6/34i+QzzyNHzpnJhiBihdihUQrf39/ZQeTxS41+tJukydns/nqVMApQzSpSlht9tNBH6z2agsy0SkPS3fiZtHg/F5INMDskspB+SSOSBidDqdlB1B2QkmdlVV6ZlnnlG73dZoNGoQX8+48NaVLqDkqevMHwJIWYe3FHSvBgwPORtFUaQ2lZhQevZFTgwPDg40Go2SL4SvFR0IIKJkEXAGEYsgtE56OZOeXcC+Ivhst1vN5/MkwCBAUKaCD4WbfXrWQ1Gcd9Tw7ADOE6/h8wGx9ue9G4aTdBeT8MxAQOGs8z7Oi4t1iFiIZk6+vV2rl9J4Vo2XUnimiH9WcrHE4dkr7CV+D5R0kOHkWRIunPg5ccGH1+86S4FAIBAIBAKBl4brf/cHdf0/vkM//TuG9+R6H/Wem9r+7Aca1RQf9T/+qD77n32R/uXf+qp7co/AK8eVERRy80Eehwx5+j+RaRcVILcQYgiFRyEhT5LU7/cTgSDF30kGae2QjVarlVo97u/v39aCcbvdajqdJqGhKAr1+/2GEOJdFCixAE68PKoOofF0+13p4owZgg+4HyTJfRPIpoBweTbBYrHQcrnU8fFxMmz08hL3QHBC7EIMZI2yAV7n7TPJPmFOCDQ+XjIpWCeECfbWxQjWzO/rZ4FxukeGCzCcNc8QcBNHBAb36fCxIRIg1CA2kHVBBgpn1jMVyrJM5N4zaBiPjwuvC+btZx1Rywm1l5pwLRcJ/PPHnPk3++a+EV5GxGvIgPEz6oIWcPNDz5LISxOYq5d4+NmnPAoB0IUKrrPZbBomji4g5B4NLigwrshSCAQCgUAgEHh5qJdLtX7mSX3kt7xN7//1XW0PXv7fU6Of3dMjP3iR8fuhp1SvV43nt/O52sfLezLewN3hyggKRD4hPZJSKj0EDQLsTv7SpfGfE16uKzXTpiFORLi91pz38hrM9SC1RKC9BIMsByeEZ2dn6na7GgwGDeLrYgWkCvLk7vl5hoVHa/nJDfM8y4OoN2Nxwsm/iSZ7JwQIPUS5LMvUeeLs7KzRLpIxs093qjf3DBHIa6/Xa7j2exq9Z2S4qALRg/h7e0qv40dwIEsCIcPXksd5jjkg+HhbRBcUvHuCX4+zw1kg+4O15H1lWaZx+bXZMzfVJEuB54nCM29EDT8TXhLgvhMe0fd19rPjJQJ8NhC93J/C9xixhOv43vjYWD/u4Z8J1s1FIvaRs+D+Gy70SGpksuRGmz7nXIhzsZIfFzly/4ZAIHB/MHxyq017T8uHIhsoEAgEXk/YHB9r799ONPq4T9F2f09nA6l69IW/64uNNPzAnlRL139iqeLf/rAk6U7v2ptU+s3v+5V6z9v/gR5qDe7tBAIvGVdKUJDUIANEIPEdIEX+4OCg0X6QqDKCAtFXkNeN8z4er+tLZ34vXej3+5rNZqnHPXXyEC6PQEtKfgNVVanb7erhhx9Oz0Eu87p3j4w6GeS/vIb38Dgk1Ik394EcV1WlxWJxmzkekXhIqkfuIa9cZzabNSLcEER8LHKzPkdupuhp/eyLR8o9Mu31+k74EHgg1+6FwFkiM4Esi9Vq1fDogNQzFj9v/HswGKRIP14dlBHkNfnciwwPFyCI0LvXw3K5TPuCkOCdJNgPNwylTMO7a8xms3Qv95hgfVlL9i73mHDDTNbFBRwybHiO8g3utV6vG6SfNfTMBV+PPHvFu0KwLl6Sw3q76OXnzr1F+N5gzfHwyP0p/P7sn58dz1Jyb5BAIHB/MP4736veZ36yPvCr2qpb9f3rXR4IBAKBVx/bjR7+q98jSSo+8Z16328fv+DL9yvp0f/je6SXmCG6+an3af4rpG/7yY/Qfz166nXvpzDbLrSuX74Av1cUOtzr3YcRnePKCAq0Y2y32+r3+ykTQLqsAafsAFM8/uD3lHNqu6lZ90gspIpyBUgL5QqLxUJlWabWh1VVqSxLTSYTlWWp69evp8wDDAmdqDuRHQwGmk6nKaWdbAXGm6eQLxaL2wgYhC4XDZiL17Evl0vNZrNUV9/pdDQej1OqPWTNMztAnvbO/SCakCtIM6+hvSeRaUkNku/EFjAWCP1gMGiMT9Jt6+rnhHEgLNGGsyiKRB45H6xJVVVJCOLansEACcY3wj0REBTG4/FtHQ3cU6GqqvR8r9dLJQ9kDnhkHY8MN6p0LwTECH4QfdwDYbvdqt/vp7F3u10tFoskpHG2pUuRiTVCVGPtOH/8sBe9Xk/9fl/SZWvQXQSb+fF55aySidHr9VKnlDz7iDOR+xUgDA6Hw1R+5CUz7m9BpgnCEWKCC1H8m3uwh1VVpe8OjFa9TCYQCNx/HPzLH9ZH/9jD+sk/8rbXeiiBQCAQuE+of/jH9Qt/vP3ir3sFf399/ad8rP7kX/oc/dyv+huvZGgPDH7lH/nvde2f/sTLft/qE3+B/sXX/c37MKJzXAlBgUg4BBGiQxQ69xPwlGRIuRsXQhohORAKJ6me0pxHdznIRPlPTk5UlqXG43EiSGQHQGzcyG6xWOj09FS3bt1qjKvb7aYsCAgNr4dAkYXBj0d+83WgK4GkJIDQoQJR4uDgIPkJ8D6vKefaiCw45fM6SY2SEzfSgxh76Qd185RV5K0bERoQFYi855kDkhrRekkNMuqPkTHhBn3MBVFoNBql8bNfjMMj5Z7dwfWJ2LMe3W5Xq9UqZRbQTYKsA8/kgJhyDj2jglIaP9dSs+yD33MzQz4j3k3DfSdms1kS31hj9tqzGBAyMMdkD6RzgWwwGCQhBqHOS2Q8i8YzFfLPGKUJvmfeqhWRA+zt7aX7u4EjIhBnjPPtWS+MlXHN5/N0HlwQ8vuSDeKZTqx5IBC4z9huVK9WL/66QCAQCDy4qGvV9ynzczOZ6B1//Uwf88Ev0k/+nr96X+5xL7GuN/qlX/HFOpi9PPHkkX/98zo7OX3Z92v/8M/pl/7xL3rB19R70rf8yT+nt+6/fCPNKyEokDXAH/D9fj+5tuPcLjVrwJ2seN21R8ghr94e0NPonaR5+YF0SabX67WqqtJ8Pk+tBElPh2jy+jz6CqmjHaO/xsdACjylFBB4SKCPy9cC4uREGoIEifV7esYGhNdFGdpVOoEjLZ+9cMKMCOMGfd5a0UUf6TIKDLkkqwFSyHN5nb57T7BX/pP7BbhoxN6RQcCa8jwE1Y348Jdgr70OP88icFPLvJsEUXXgrTK5v2dmOCn2uewyXvRSDEpUXHSiDIC9cPHIBQWuy+fGyxmYD+OmE4l3ovB9zT0KOLu83kWgXIjL/R1y8cz3nrEhqnjJhs/L/VZyg1UXFTh7nEU//yEoBAKBQCAQCFx9FN/9I3r75GP0rk/9jZKkL37bv9RvGU7u2/1++8/9l/rw/PAVvfdsu6cnvvYntDk+fnnve0V3O/ezuP7V3/PCL9pr6df9+t+r6/3qBV7053c+eleCQlEUf1jS75FUS/pRSV8gqS/pGyS9TdL7JX1eXdcvuFoQP6KcRVGk1o6Q7Yv7NVznXUzgee/G4IQE8ppnI7hBol/LU8YXi4Vms5lms1nKGoDAcT3IKiUGTma9Dt4N5nwc+B2QAeGReyel3gHBa8ZpkUgLSxcVGNdsNpN06c3QarXS/cliQMhw48Ver6fhcJjS350okyYP4R6NRg2X/Tx13Am7l7mQjeKdKHyfGbfP3yPIu9KjiKafnp6mdpqDwSCtPeILJRsQUlLxOYfu1eHjyAkn10C8yM0gESgQNTxDAWLLmvN6FxMwPHQTR9pfkqXgHiEugHmby9Vqpaqq0n5DoL3DBvsEAScb5uDgoFESkJtLOoHnDGCa6Hu0i6gjLrgpp4sknFvEktyklSwRPrcuxLEuCIyezUGmDBkku8qZrjru1XdxIPCaYVtrb1WoPqjvWd/yQODVRHwPBwKvPbb/8SfV+azz37/kb36eftlnfmV67vpeW/293SUXHzqbvex73fySt6rzPT/ySoapjqQrZ/u93ejx3/jyyymkuxAUiqJ4k6Q/KOlj67quiqL4Rkm/VdLHSvrOuq6/oiiKL5P0ZZK+9MWu5ySRlObRaKSiKFSWZUqnBxABUvWpf/aWfZCc+XyeSCwRSCKnTpzdSK7X62k0GqWWftPpVJPJJBEbiBip/51OR9evX1e73dZ8Ptfe3l4i8fgheAYFpNXN/shSIKXeBQPEC0otGDuvJxvj8PAwpfqv12sNBueOp9vtVvP5PLUs3Nvb09HRUSOSvFgs0ny5rpeEABc4pEuDPV9LLx/gNV7WQBo/JA6zPQi5d7/gdQgxuaDgxN3LB8iEmEwmSVDg3pDloihSBgOE3om5ewsgGnk5AmOkzILx50KXlzp0Oh0Nh0NNp9PkqYGYkZeP0G2DbAEXadzA1P1DJKXyC88ScfEFEYL5ejmFZ4oguHgGSJ4twf2J6uf74HvhJUy8j+vyGZYuy10QwXgtggYZQJ1OpyFkkG3iJo3udYGIlQtXCDiUT/HZzM/6VcS9/i4OBF4LbI6P9Qv+xPfrg3/kU7R45Op/7gIBR3wPBwJXDx/9+/6Dfm/rM9O/P/z1b9ePfMrfve11z27mevcn/ybV0+nLun6x/A93PcbXC+625GFfUq8oirXOVdgPS/pySe+6eP5rJL1XL/HL01PVcxM6hAIncpAd70cPeaPFIWQGouzv9dppfodc0SLSyTpkGFHCQZkGQgPRYQjmZDK5jYQxVsoJ3DAPTwX3EGi1Wsmw0s3pSEnH+A6PBsQKyBYZH17i4BFyz/ooLjodQGQROBgf5LrdbqcMBdaU0g2Qe17kGQvua8De+HnwchTW1I0gvXuER6U5K6vVKnXqILotqZER4OUMEGpIMFkyvM7FLSfrGIkWRaHpdHqbF4QbL3a73eTvgJiRe03wHi8b8DF6ZxT3xfDODbmnga+TizmsDSKLl0h42YEbRnIN//x6KYGkxmeF0ib3ydgF3uNZElzfS1o4r14iUtd16tLCNbxUAo8RhEDGisjo5Q+5r8MVxz39Lg4EXgvUD87nLRDYhfgeDgSuEOr1SvX68t+P/tm2fvlbfv9trys2tQbP/3tpe+VyBh4YvGJBoa7rJ4ui+POSPiCpkvQddV1/R1EUj9Z1/dTFa54qiuKRl3I9Ion8Ye+p1PgpuEu/p9UTRYcYUffu9eJONp1YeXo1Ud5d5ohcHzKSE+NOp5M6OUjS6elpuo93GYCsQXLIWPB6eI86Q6IZn7v++zrw+na7naLxzAPShCDjJNXbWfKYG/UxVqK7ZFb4eD1TI6+v9/ICT5PP5+rZJ9zfH3NfAnwP8raV7qkBiPIj8JDejn8EZ8/LDLzMBI8LyhiYe37+OHcQe4irk3HEEy8vQBhwE0j3vmBfEM6cVO/yluAa7LmvsV+LrANEKdYGUctFnNwHwztW5OKQ+xXwegi6C4C+Nl4GhKDh58ev5f8l4yRfK/aaue86H+7FwbU4K+5x4SLPVcW9/i4OBF5LXPvpjU7q1ov2Kg8ErhLiezgQuPoovudHNHwRG4HAK8PdlDxck/Q5kt4u6UTSNxVF8TtfxvvfLendkhpt4CAAEBH+uMfsL+/m4On2TqIg1Z4KD5mBVEHcIDCQSmrU+/2+BoOBBoNBIw0+JyMQedpJIkA8//zzibhBgN3QDyASkL7NnCG9TtxysslzkDEMILkm0fbtdpsEgjtlCkhqkEfWHNJMmjnrhFFfHtVnP5xgOoEks8Gj154Gn52Txhi9Vt7NMXPhwt/L3nuGipN/hJdWq5X2yzMqlsulphdpUJvNJmWt4Kfh3TEYE1kipOC7kMG92EfKGjhHiEzsMYJIXdepLShzQLxx/wFJqVzFfR68hAHSTYmBpAbZZ73Ze+/skO+HG1q6L4Hfn8+At+nks8pnlzH6/vn1fZ68drlcNrJw3APDhSI/3y4kAtY0b335gJQ83LPv4q7692OIgcBLxuCbv0/7v/aX6oOPtl78xYHAFUF8DwcCgTcy7qbk4TMl/Vxd189JUlEU3yLp0yU9UxTF4xdK7OOSnt315rqu3yPpPZI0GAxqIp/8kQ+JODs7S6Z9TnA9Rd3TsPErcMIKGaEW3lvInZ2dpU4SvAdRYDAY6PDwUOPxOJFHj5KTHk35AYZ/BwcHqqpKp6enyaSx3+/r2rVrKapOCn5OqBg/c5WUiBd18ZIaJJ718hT4Tqej8XicjBfb7baqqkrCSG6m54Z8eFNgcOeCDKQT4YVxIAoxDubjRJDIcKfTUa/XS+aT3M9bOEqX0XAXCzxzgbESjXYCiPDimQaMhyg05wb/BvaeLBRaW06n00TmEZiGw2HKnvHzKp0T/cFgkM4c83PiTdkDnQqcwBIZ95IFzzrwFozsN4Saz4V3p7j4fKbyDW9d6t1KvATESw7W63VDWGIceVcQz3aQLktXGBv35fPrXSV875bLZaNsgzPn2T2cA/dmyMuZPEPDBS1EirwcxN/L6x4EQUH38Lt4XFx/+c2fA4FAIBDfw4FA4A2LuxEUPiDpU4ui6Os8veszJP17SXNJny/pKy7++60vdiGIC6RE0m2CQZ4CT5kAUXgiv0S/8VAgigm2261ms1ki+k7kISqQNk+Jh/xAYObzeYOIQrJ5LZFij9J7univ12ukubfb7XQ9yju4HsSXrAovMXASyTwRCSCsZCfQ8eD09FRnZ2eJ2EvnRAoDPKK8CBgQSE//Zo0QD7wTA0Ss1WppMBgkMulj9VITL5Uggu2Rdciz+wcA7uc+Bfv7+2lcnpECUXRnf86cnzP2uizLZGR5enra8Dwgut/r9W5rBcmcGJ8TYxeEfC2c2LPm7tfhmRhcByGBsecdEbw0gDl7+Q9GnGQS4Efg64sfAZ9JxuCZDi6SUGLj4oeT//l8nh7DMNQNIDHM5Hrcl8wUBDv/rvDPKnPx84SY4qKPl0P4mUY48u+mBwD37Ls4EHitcesLPk2zjygkPRBiXiAA4ns4EAi8YXE3HgrfVxTFN0v6QZ23xfwhnaurQ0nfWBTFF+r8C/ZzX8K1Gh4HXiPuf/Q7+fRot/sQ+O9eQgD5IFXfU7jJUPDoMEIAkdQ8Ag+J8RRpXp87ywOIn6RkEsmcECVyog0Z89Z4XhPvEX0nS/wguBwcHGixWOjw8LxfKi0DmTsdIrwm3YmhR999PE7SXCiA0HqbTUkNL4JdkWLmAQHlOp4679kFRKb9WhBbj+YjIDhh5/m6rhtlCKwd5Q4Qb7Io6rrWcDjUcDhseFl4KYyvmxN6FxR83XxszD2fv4tIkhpn2jNUJDWEJ57PM3SkS2PKPBLvvhkufCA0lWXZIN58FhEmfB1Ye0QIz4SQbjfVRJRgbvkct9ttyibi/S7k5EKSr38uELhI6WfvQcK9/C4OBF5rlI8VWh2GmBB4sBDfw4FA4I2Mu+ryUNf1n5T0J7OHlzpXZl8WPE3ZRQRPiYaolGXZaPHn5BliBzH0FHBI1snJSSIgRDshudwnz14gLT1P6WeMDvcF8NptxrW3t5cyA/LocU5AuRZz8VZ3pOXnxDQnxphaLpdLXbt2LZVPtNtt9fv9Rop7WZZJjHHhwrMlnPg6ieX+Pg66ZSCElGXZyNpwV33PPvB0f4Qi1oC9dK8BMiKIYPu5onTBM1nwPnCiyf3xoCD1Ho8DSSmTBmLOfZ3A50LGYrFQVVVJUPAuA7530mWHA18bF1NYN7J6XHxhHowhNyt0UQQRi+dcaAEuuPBZmc1mmkwmqeUlwhLrxl64GMVngPIJ1oEMGB7LzRTz88ccOIO0yHQBx30a+C+tOb1Thn92PYvkQcW9/C4OBF5L7FfS3rLQtvNAZAcFAgnxPRwIBN6ouNu2kfcEkCNq3j3q7JFbRIf5fJ6io91uN9WzS0r+BF4iQBReuvQXcN8ECLe3IyyKQv1+X71eL/kouLM/xMYj1B7ZdkCwqqpK4sR4PNbBwUEiU0SDPZ28LMtGdFhSKmvAFwFxBYI1Go1S9BZyBvF+6KGHtNlsNBgMNJ/P0+NnZ+dtNdvtdoN4ewTY6/69vp51cBGBFP5er5f8Jxjv2dmZJpNJKrEgg8L9JNhHxIPhcJjKQCCovV4v+Q+whoBSD0QR0uwlJTEH8QSyz1phuEjafFVV2mw2SVBYr9dqtVrpDJJF4MIGgtRqtVJVVZrNZomAE8n30hrPQHBPDTpFbDYb9Xq9BsHebrfJmJKxQpylpo8D98k9ECSlsZDq75kf7ANns9PpaDabpfm4QSX76lkHiC/uYwDh59qsKZ00OHt8/rkW80MM4Z5+HRfj2FdEFPdGIHuFs8c523WtB1lkCAQeRDz2ld+t5a/9pfrgZ4YpYyAQCAQCDwKuhKAgXbbLy9O7PZUZYgTJoxvD4eFhqr1eLpfJLA4y3u+fO+ZCPPv9vobDYUrJp90jmQdEUCeTifr9viaTiW7cuCHpksx5vXm3202EHOLkBBmydnp6moh3r9dLkW7KMIhMI6pAsJgbRAnS5AScyKt3L+B1XofvwgeeE2RdeOq9Z0SQCVHXderqQKtDxAY3QeQ6LgaQOUCNe1mWWq1Wmkwmki67LoxGo0R+IXqj0UjD4TAJBHkk230EEHjIathutzo5OWmQT66DKFJVlZbLpQ4ODpK44+1K9/b20uObzUbD4bDhK0EHCbIH5vO5ptOpqqpSVVWaTqc6PT1NRBqDTDeN9K4MrEdZlo1SIDceJPpelmUi3HhgIOj49bwdJHDS7qT/7OwsCXZ8LjmPs9lM8/lcVVU19hTC72aniDBcxz8bkhoiiHtc8JkgA8FLIhBM3HeBeXiJBeuza96cLUmNNWWcfA69Y0QgEHj10P+3/0nvePrN+unfMZIerAqkQCAQCATecLgSgoLXxUMEIQiQOfdPcN8Afy/p2pgmEqknhb2qKq3Xa3W7XY1Go2Rc2O/3Eyl04kJElAgnUX/8BXiPdOkf4Mhr9km9xyvBOyx4DT6vhXRC2qTL1n5ETxELuE9eN++p3h519cwKJ1SUjXANT+339HeEFebvmRROxskU4P6DwSDNhUwPzBsx03TiSFnGaDRKUXpINOn9+VnKsyU4H57xghhFi0+i5+w5+4IPh3SZacJ/Ia5e78+cIN+LxSIZOzInhC3fO/begcCFmNPv99P+Qd69VAijUMScs7OzRqtQ9zYAvn/5HIF3w0BMQBxBsPIsCPY2/6y6d4Z02QXC/RP4/Pp58rPrgh7vY+zMzzON8rISruHjIqvCz4+vRSAQeHWxOTnV3n/a6tHve6dufkKhTTfKHwKBQCAQuKq4EoKCpEYrQXe0ly5d3J0Yex00xBISDAGWlNo5QhzxDhiNRur3+ymV/vT09LbUcIifk0ZIDuSaVodORJzcexQakQIyw3OIKF7zTgaA14lLl6nkrA9p29KlGSOCB2UkiAr+4+Z+PlZS2LmGz5G98Dp+f79nPiDU0BqyKIokDvB+uiZQooL4wz6wrpS1kFVCZkcucORE2U0qEZx8rpy5/f39FClHQEGoYi602wR+NnwcRLUpDSBDgfaRZK64WWbuV+HEOO+iQOYJopmTZrI+yGbYbDYaj8eN1pae9bNr7SDqPldECs4ka895IFvGBR4v3clNO/2z650nONMuslCe4J4qfu3clNT9R/x59/3ITTM5IzznGQ9R8hAIvDbYTqcafcP3av74p6t6TNqEp0IgEAgEAlcSV0JQoCxhPB7rxo0bGg6HKQoN+YEgeI046co5OfY0bsQDuhwQ8SeNntID0sU9ego5cUINYZaUSismk4nW63UyboQ0QaDciwDSSn05UfPBYJAep36eeUJumbMbM3IvPAu63e5tBnb4DODOz3yIfkO8PGMCQPLJDEAI4D1eqsL6kwFyeHioTqeT1nR/f1+DwSCllC8WC02nU83n81SmMB6PdXR01MgQcS8FMhlOTk40n881n88bhpbsHevNOpMlASF1gWMwGDTWw0UFvAgom3ESyhrP53Odnp5KUprTzZs3NZlMEvn27BRKESiXGY1GqeQBQi8pzc3LIvAOoISGz4WkhnDEXniWAq9DtMI7AuSRfy+ZcM8ML+lhbnVdJz8SrsWYEOPw0fByFHwiAAIWn30XgNwUlOvNZrOdWQW+T97WU1LKRKG0gnIlXueZRyEoBAKvLR77yu9W+Zt+mT78K6L2IRAIBAKBq4grIShAQiF3pMXnKeJO7D0LYLFYqNfrpYyDdrudDOOIbhPtdLLMPSU1oqbSZW21u80TxcQrgbGVZanJZJJS5SHHXooAvAOAl2ns7+9rOBwmUQHiD2HkmqSyQ9S8pSXzywkaxLcsy+R7AKn0OnYyQxBlyrLUbDZrpI8jTHAPNz/0rIJOp5Oi426KhwiCOOLiCYLD4eFhSut33wnWfjAYNMoBiOLz490EptOpyrJsCB/sNWei1+slAYv9XK1WqfzDRQcXfE5PT9VqtXTt2rXUtWOxWGgymejWrVuazWaJfDNW9g7vB88u8LKe7XaryWSSCLcbCUrSdDpNe+OE3TssTKfTtMeYjnKmXBggw4B7u1Gof848G8PPNff1xxmDlxGROeGZJJ6FwXvdQ4Xz5Pd108ybN2+mzyZiWJ6F4Z9phBIXJ/31CAieVREIBF5bjL7zJ/Qx/24oSXrf7/8InQ0jWyEQCAQCgauCKyEoSOelCb1eT4PBQL1eT8vlUvP5vEEQc9IIufCsBU+5Jp0cwotXgZMSN8EjQo/bP495WYFHTCHly+UyEbxer9dI23YxwQmjkxkIoRNtru2ZF2QL5B0RiNwSiZYu696djFH7nkee3XzOiRjRdidcvIcxsMZ0HWCfvPMBRI1xsH6sK3uJz4CbKtZ13dhXnut0OklgAZ7y7j4UEGZvD+geEDzOXriIAwnmnoBrz+dzTSaTlJ2yWCz0/PPPJ/8ESDD77l0OuCdCQV6SMpvN0utns1naYyf3ntGQ+wsg1HjE3v0FyN7AhFK6FO8YB2cx92Dw8gHPBvA1zh93/wkXVLiXiz3+nH9O8jINP8+cL88qyP/N9b20BE8T5uNnKvfoCAQCrz42k4l0YeD7+He/SZvunlbDPd38pBAWAoFAIBB4rXFlBAUMEgeDQYq0Q3a8TtxN6SSl+ncnuG7AhzBAdJtovmcgSJfRaghMv99PhBWC4QTf77NcLjWZTHRycpLImbfLA3lKuaTbIr6IA5BZSBbj6/f7iVB6GjdzhzBhIulr6G0F3QiQiC1p6JCw9Xqd6vTzdn6MlYwQ5kFk2+vp/R7ut8D48lID1rfT6TREE4Dwg+jg4ouLAovFolHe4feDhLLGEFLmDclkrTCZ9Bp8sj4mk0ki0VVV6fnnn1dZlo26fyfxXmLi5ROekYJoxppQUkPJB+/Lo/B+1igXAd69AKGCcSOWsF7uaeD+EIhfvrcuznj5C2c8L0fISwpcUOAzlZs8urcJ9y6KomFySvZLXqbg83B/BL8PpTB+xv0MBwKBq4HOP/1+SdL4zW/S9CM+4jUeTeDVQnH24q8JBAKBwGuDKyEoQEQQFJzsevq1dJm2DFkkCvzwww9rOBymsgc3eIPkYLDnxnCk/3sGAKn3ZDdQCrBcLhMB6/V6jZr1Z555RsPhUKvVKvkEdLvdRNA8FR3C6+UbngFBzb8LInmbRyeEnjnAPMhMkC6jzpQ8UCsOuXawboyTlopeI++GhZ4BssswD5GBiL6kZLzI/bwzAIKCGxdKSqKOE0/G48INZyYXoSD1XNuvn3d7YCxOpr2MhXVGcKH1JS1Lj4+PG1FvxAd+uIcLZIhEnjnA2eI9tGEk48LFKM5AbnzIXiA+cW64pmcA5RkD7CfXcSEM8u7EnM4VCDH5WXLjRxd/csKfl1mwr8yF+7Ffy+Wy0T7VBQfPouCc7RJKGD/rynrlnVsCgcDVwNmHntRb/vSTr/UwAq8SPlzPX+shBAKBQOAOuBKCgnQZBSZSCllYLBYpukxWAMRtsVgkM8WyLHV4eJgIYqvVanRnkC5JKhFeIrWQPohyt9tNhoKUMFRVldKhIfeDwSARtOVyqWeeeUbL5VKHh4dJ2IAAES32evo8hVtSel23200mi06WhsOhDg4OVNe1ptNpEhWAE3D3L8i7Q/i6e7aAp8UjerAHy+UydW1gDG462el0Uj089zs4OGhE5Z0QOpnzsgAv80Aw8DXg/vg3cC4Yr2dUcH/pMmrPOrGfBwcHGo/H6f1cn/t514c8iwOvCTeaZA08hZ+zukscY3xSs42jl7LQXtOj+LyfufE+1hLSz/Pul+HvZ8081T8vb8kzFBCKWA+fR54J4tfabDbpPV7+4OKFiwK+V3nZBeKew8uBPIvDS27cJyIXMNg3vi8iQyEQCAQCgUAgELgzroyggJiA271HuqWm6ZqTCUz0iKRDsCBfnrrMNSBovJ+oNu/z1odE5InSb7fb5LZP3Tz+AYvFIrV6hOi22+1E4jxbwlO4PVpPujvih3sdSEoEE/I3mUwa0VbIude2e+26E1auC5mCiCIAuNu+p6UTqXdzSMg/c6HFoJdbsEf+Gghc3hkDMi2pQcwhrb5uvNbbXbpw4r4avg6sFeadHoH3doXutUAGiEe8ifjnGRZ36jzg0XUvq+CH9fV7k3XCGIBntgA33cznn3sK+LogmuTX43cXCPLsBP8s8vngfHlJxq6sCu7h/gZuLMq1fH05i3eaC/BreYmQr7mXX/B65py/JxAIBAKBQCAQCFziyvy1TOYAggHkwQkIZNNT9nlNVVWqqioRO0m3EQ5PlYfMSk1yCnl1g0YEB8YB4WMs7pZPxgL12PxA1oimO8nkuv7vvEWedBm1pp5/s9kk40oXFaTbyXMurDjJ5NrSZZs/r+V3fwL3QfA98jWDLNO5gNKUvMuER8p9PRFiEGycgHopA2OE5HMm8gwCN2J000NJydyx1+s1ovDeZtH3iOwFhBDGh/jCnFxQ8HXmjHnU3veWfcCXgn10bwLfrzud810eB/78rlIXL9PwsoH8XHnpgpcE+DUpg8nXwMU7n0tulolg5aKDlwzl1/a15Hf/DPgaswZ8tn2dyJTgx4WNQCAQCAQCgUAg0MSVEBQgo5BBWgHmTvZO/Knh5/eyLHVycpKM6/AggOA6cXP/AO+yIDXr2p1E5WniCB+8BvJLNF5Sgxh7xwlaO242G3U6nTQeDBB9PD5uyK8LFB7V9XRtJ/Lci2t4twu/PiIAv7uBYx6l5oc2kl4KQjr8fD5P0fv5fJ5+vEUl0XcXW/DSoKOFl67Uda35fJ7OyHw+TwIF67y3t5cySjhfENazszPN5/MkdvR6PfV6PY3H44axIvfzVpNe4082hmdbeMkF+8TznAU3wsyj8JxJ7sMakd3i+yBd1ve78ICQgdeGCwW+lxByyicQB5i3l7L42cpND718gXWAxHO2HXn2COfQszkYj4tGvgecZRfi/Nre7SHPCPG1c7HBwTV2PRcIBAKBQCAQCAQucSUEBY/6k20wn88bBnb+2larpeFwmEiP+y1QyoAxo4sRRNPzumiPbEqXAgL+BJA9J+JlWTai+H4/nPkhyWQTkMrv0XzS7Xu9nqqqUlmWae6QIV7nHSec8EM2ifrjd0DGhgsfZExwLcgZkXvEEGriPduD8XtrSwQFxgnRo7Sh3W43DCGZo6/lYDBIhphco9/v69q1azo4OEheEdxruVxqNpul+XGddrut4XCo6XSaykwg28zJSSReEZLS+pLRwP5Kl2UwuUCRnx/OTb5mm80mlc9AVmnhiXBAaQ0Rckg093fy7CUmEGx8PHLjwTzjxa/lAgb76oaJfN44a96dwQUcP19u3ujilmeMOPBU8LVkfP559OyFXFjx6/q82Gv3LnEhxX0bXGjxewYCgUAgEAgEAoE748oICtJl67zFYtEw8stLA4jAeup17ujvkdNdhMYf88wHgOEcxIOIM4QMAWO1WqVruqnhfD5P0XLaUfp4KL0gEs9/XVghyk5mQa/XSwQPEumEEMKJGMJasmb4BHhqvZeSeNcK90fw+XlLTDfLQ6jhMcZPFolnmnjKPUSejBMvS+n3++r1epKUBBKi8Agey+WysTdkYEhK2SK8x30QnHDnpNLnxfq7ASLgWk6mParta+v+EryXM5qn33v5jXejYFwIHS5McX/2jPPBWfdMC8opfJxOpvNyjLxcxsuCeJ+3SWXt8tKGXWKBZz/kj+8q12C8+fu9ZMj31AUMz4Lw/eG/uzwvcgEkEAgEAoFAIBAIXOJKCAqSGiR0V7nDrjp2/tgnqu7Et91uN9LKPQVaahrU+T08rfpOZBpCg18C2QfuQ0DU3lP5EQgQABAJEBS63W5aB1oRSs0OGKwL65QTQwQFnifSnUfBuY+vaS5IeFeGO60B6+c18E54pUtju9x4r67rtAZEyJ2s4m3A9aVm3T5Rc/eb8GwCSLVH1bmPr1tem+/zyrMNmIevOfPivHppBGfRMxe8bCDvauFww8U86s7ZYu5e/8+9/OxvNptGVkir1UrtFn19cuSE2v1L/PWsD2PgfOV+DLuujyDgj/ma5Otzp+u4CJT7KeSCBdfhcfeOyDuRBAKBQCAQCAQCgd24coICZNgj5fxA+Ol+APn0qHCr1VK329VwOEzlCLw/j3bynHczkC59FniNR4ydJHtGgqf9S1JVVansgdcSnS+KQr1eL5kr9nq91FWAiDvkxgUJ6bJ7AmURZFLwfn/eWxRCQFkv1gQixTh9zSghYb785HvGukAq8SCAvOMjIV1moXjkv9/vNzIfPJJNuQf7Qm3+rnR6T2FnzhB8xAoXI7rdrvb29lJJhptFskas4Z3KHHZ5cvjcmLuLMwg8eQlGfs44K55x4a0/8aLwEhTEAy9/QOTxNfbOCdzXW0DmWQF51gTiBEAEys9GTtZ3wT0cfE9ZX3/drmvcSWjYdY08i8RLeRgj3xXhoRAIBAKBQCAQCLwwroSgQHQbo7zJZKLpdJpIMV4GlDngV4DDPxkKRPH7/X5ymW+326kTAsSTcgrvygDhgny4d0Jd143SAUiyk1OP2EJScrJC+r2TW65FOYMTTMg05nbr9VrT6VSnp6eaTCaJoHY6nRQJhxxPJhMtFosGMSV1nqh9VVWNdG8yJBhnbojnooF0GV2GiLOPLlis12uNx+Nktri3t6fT09P0HjwkWC/P8pjNZmntueauiLG3EPQsgV3nzD0tEHQWi0XyXSBCjXEj8x8MBmlsy+VSZVlKUqN0hX12kWVXqQVGlZ6BI11mSvhZ9v1DUPHX52cvh58/ShDIxHghIs458NT/FxIGEHRc4PPPQX4v94vwkifPJHLRyP1E8NngnCCk+NxcPMTMdG9vL7V2ZXy+tnnJB2cqEAgEAoFAIBAI7MaLCgpFUfxNSb9O0rN1XX/cxWPXJX2DpLdJer+kz6vr+vjiuS+X9IWSNpL+YF3X3/4S7pGM6iB3/E7qfV7ywB/7EH/IohMYJxZuLLerRprreBkCmQNuPEfkMvdmgNhBtvMOEhAiSCRkq9PppK4GThjz8o5Wq5WED1owYurn68C6UTZC9Jq5eWcAjwR7vT6CB+t0cHCgXq+nwWDQINZueiddppa76AByQ0eP1Pv1uC/CCPMFeZcArg359PWlswYeFIgXeEkwVrJUuD/eDKyRZ5lwXp1ks2b8eBkBr8eDwcsW8haYntnA2Hf5OXi2BJkkeYcGSn7cB4TXS0pnx8sqfB+9ZesLfW7ZNx87+8S1vBSFx3i/k/YXykzwrBXPhuDzyHOcK66Rlzrl48/9H/w8XbUMhVfjuzgQCAQCd0Z8DwcCgcDt2B3WbOJvSfrV2WNfJuk767p+h6TvvPi3iqL4WEm/VdI7L97zV4qiaOlFAEGDKNMWMC93uFNNMwSKn7xcAcIPyYaA5IZt3nmB6DW/cz2PhHq6uEeh3aPA3fFdbGCuCABupreLPFJeAcH2H/wS6BzghpZO6LyFpY+F+3n2hfsZILIMh8PbhBbEnNxXwGvqdz3uP7lZHoSWtpBkq/g65dfkDDl5ZC97vV6jm8ZwONRoNEoZE5wP/0HIgiTT8pNot//X1yIv2/Cz5R4DXu7gQpPU7MThrUGdTLtow3u9iwF7yY+fYeaH8OL38u4HnunhpQsOFzvye7Ivfg8vVfLzwLVysYHffb+9/MavxTX8TPj3QA6/l//k17xC+Fu6z9/FgUAgEHhB/C3F93AgEAg08KIZCnVd/+uiKN6WPfw5kt518fvXSHqvpC+9ePzr67peSvq5oijeJ+lTJH3PC93Do6f4EXh0NHdt9yivE95+v5+6BnjaPQSeH7IUuDfXcDLkJLLVaqXyAcYAKSONnNR33rO3t6flcplIFq9x08P5fJ7GTTaBR+BdTCCqj3AwnU6TL4J0mb5NVN/XCTIIoTs7O7uthp50cubNOp6dnaUMiuFwqF6vlwgw5ousodede6YI4gqEkTVxISD3KPAIflVVDePFPGPFiTnEmnt49grzwtOA+3Ef5pGbK3a7XfX7/YZPAtf1FpxOciHseAO4oODnOhfIWBMXapgjohBrm3edcCBq5L4XrN16vdZoNErX9E4keXcG9thJPp8DwB7yeWENXTTy0gTPaMhFOuadCzPMK5+Ti3jsSS4W5iVJeYZR/rxf86rg1fguDgQCgcCdEd/DgUAgcDteqYfCo3VdPyVJdV0/VRTFIxePv0nS99rrPnTx2AvCBYWyLHV8fJzq2fEQGA6HKaJMpgGkpNfr6ejoSDdu3NBDDz2k8XjcILjz+Vynp6eaTqepLj5PSc8Jt3Rp8EhEnscAhH5/fz9F74lcY3AH6eZazJUODGQqkLbOeHLfAk+z92i0R6lPT09TjTh14tybrAP8CiD+s9lMkhoZHhAwSj2Gw6GOjo700EMPJSJ7dnamTqfTKEvhXnlkGL8BCL+bMlZV1SD/GDRKuo28c10XezCW5PX4bRCRd3LpPgs+PubKGpOlUBRFo9yDe3h6PWuPgOAmmHmXEObgnTjcM4E9wjPDM20kNQQZfCDcRBN4xodfZ39/P4l13g6VzxhCF+cP08fckNNLIrxrhJch8Tn1DiCsH2NF4HFPCNbKu1qQ3ePZGnwOXAjIyy48a8Vb0Pp4vdQDIA7eSVy5Yrin38WBQCAQeNmI7+FAIPCGxr02ZdyVI7wzxFcUxbslvVtSipTmrRAx8mu1WhoMBonUk9oP4cuJERkBEC7IRE4qcg+FvO0dxALylpc1eA12nvYuKaXMS0qRZSLaTmoZm6eg55HgnBSxPlwzT/d3wuulDBAlhJPFYpHIWa/XS0STudcXJpj9fl/9fj+JABBHjz7nEXfKNHJzPx8jIgCvJ4MAUYa9dFFlvV4nMsqakQWRE1BEBy91Yd/4N5kjXmrB+ro5or/34OCg4YHAfnsavdfv+1rl5SaeQeFzd0HBMzi8fAZBgTHkPh7uD+Amoy4SuJDFeWbueZtIj+x7dol/hvivd1bxHy/DycsLPNuFn/xM5mvN+3wMwD9nrJ3faxfYD95zfHy883VXHK/ou7ir/v0cUyAQCLyREN/DgUDgDYFXKig8UxTF4xdK7OOSnr14/EOS3mKve7OkD++6QF3X75H0Hkl67LHHaojOLnJEZB1yiWleTrAgZS4o4DmACOEO9E6OPC2ftHr3HoD0OlxMgIznkVyfixND7u8lELyOFHoyKZiHt87kx9sFOqF3QSGPyDI21obHESyclHupgAsr7JMLK1KzvaBnniCa8JwTWc8GQMBxL4ychPvrvNwhPw9OQHMxCRGG9fEyDrIcPHNiV/o7e+P75Pvt5R7ue+ARe8aCz4OLUr6G7jnAf93w0zs3uPdA7gvA5yw3IvRyFSfveYaM/3iZAfd0D4ZcVPAxvVjHCMbEWvpny71G3BshFwo4Z7te5+vkpQ+Az/UDgHv6XTwurl+dGo9AIBB4MBDfw4FA4A2Nl2LKuAv/UNLnX/z++ZK+1R7/rUVRdIqieLukd0j6dy92MSc8/BsSQf1+t9tNBBNXflr7EaV2I0VEgcViodlsptPT02T2yLWlSyLlr5vNZikt30k1Hg0QeB+fmxVCqnxeRLmZH0SHiDhR8V33Wa1Wmk6nqZME4/EIr2c05GuaCwmknXu5AsR3NpslHwbGw5pCsCDeCAG7iKE/xn7hYSFdZp9Arnm+1WqltfR2kj4PCHi/39dgMEjig6+D1+772ChDQYDgHFB+wjjwWMhNFiGdedvRsixTpwhEKC+xcDEFjwXG2W63NRqNUllPLih4Wj/z9/Pr2Td+D//MQKoRCigp8BIaN7z0DAXPAPEfhD33JPEsBPdL4Jpe0sF8eI1nsLjRI8IO58XPYG626BkS7C8iDffxfXVhDzHNM4keAFHhnn4XBwKBQOBlI76HA4HAGxovpW3k39W52cxDRVF8SNKflPQVkr6xKIovlPQBSZ8rSXVd/1hRFN8o6cclnUn6b+u6fkm917zmnFpyj1r3ej1JapA4iArkzCPZThJWq5Vms1mjfpoIJKZ/eZq7ExovafB2eOv1ulF24OSI9zIWMh52RZ09/Z75djqdlFWxXq+TdwFj6ff7ms/njTp2MjMYm6S0juv1WtPpVHt758aN+C1AQr3LBOvkHQIgoJBISiX6/X4inrmZ4S6hA7hvAYIGpJbnGbeXmrBHnU6nQUApe+G+vv+eBYL3A2tDFH25XCZR4OzsLPlHOPw6/BeTzIvPSiNTgbG7EOZlFr4OEFii+34+3IvB4SUajJnz76IDAgCPe4mG+18wbkpPDg4OkrDm7UxdLHA/kl0ihZdXIPp52QOfD67hWS+sgWes+Gc9z/bxjjB3OncOPtuIMZ7x40LGVcGr9V0cCAQCgd2I7+FAIBC4HS+ly8Nvu8NTn3GH1/8ZSX/m5QzCiXgaWNYSzgmnp097RJLXQZTzkgbvyODkBnNBJ15Sk7QgcuwiVv6Yz8md6B0+L//JPRA8JZvyBDejJNrunQYgV0TVWZPVapW6JXgXDdbOySgk39sjkmKPmEN0OG+rScSa+ecp86yXCxYQ4jz6LCllZbiQ46SRKHJRFKlThkfUuV6ecu8GlGS4eDmBlz+QVeEiBUKCiyu818mxmxJ6FB6zSPYnj+hznl3kce8P6dLgMC+Z8ei/j8U/a54dk2cxeEkCn4ldZQH5Z9eFCf/8uY8BIh7XXCwWt42NuZCJknubeNmKfyZZ57IsG98JuVFo/hlk/FzXz+JVwqvxXRwIBAKBOyO+hwOBQOB23GtTxleM3FRQUoNoee2+pAZp8vTw7XabTAMhMhArJyRSs/uBdOkyz/v8/p6FkBMR3uOR5DzC7VFcCL+nXkNk/P5O9NxHwU0mGQeZBNT/e4QX4QEC7pFohAR30Sc1XlIi3QgykGz3DchTyr22Pi+HYB28Tj9fX29HCblj/1gHb4lJ1J1IOETca/E9W2KXoMNasFYQYUSKXdkHvhYIHMzVjQG5vp+PvBTDWyYyZvdI4J48z/nyz42XI3i2Cs/5Z4vPAvvon63c34DnXeTyufG580wTFwlcLMEkU1LD04R9zDs77CL9gIwC7sEcOeue9eHnz//t83FRYdfzgUAgEAgEAoFAoIkrIygAFxX4Y57WgZANT0N2QgyRnM1mieQ4MXJiRhq/kxKHZx6QJu/p5C4WEJl3IgzJgUw6keaenllQFEWK7iNOOMFn3LSZJDru5I/oL2Piv26MR6kAqeSr1SqRecopfN25NuvAPMn2YC2lSyM7yLPXwjtYA0/399p17/TBejMP95tgTr6ePnZ/P4IHnQ98j8mW8HGyB0Tw2XMvefDf88i3lzX4vfJWkv68X8MzGvIsBeacZ8Tkr8lFBi8F8OcZk5fpeEaA+y8wVl7jYgRlMz6/XMThfG2320YLSxfVPLPCBZb/f3tnFyNbdl/1tau7qqvqVPfte3PH1mA78RhNEOaB2MqHBCRBCsIfCnEICDkCyVKQLEtBIooi2YOlJC95cKLkCYnIyJYDcmKDwMIvSDYIkReckBjbGeMZPP6ATDx4TGbu7a7P/jo8dP12rbO7+t65nqnqutP/JZW6b9Wpc/bZe599e63//7+2z2WfQ4wX85H7cJGHPuC5KsXLZdfgHgOBQCAQCAQCgcBybJSg4FkETha9Rtr3nkdcQFQgO2E4HDZS6aXmtoMQLq/xdsM3ouaktVdVpcFg0CAieBdA7CaTicbjcX6f9pS14W4EKDWzEGgvRBVTQsi7E0jaTjQaUozB5Gg00tbWVvae8MwDauRv3bqV+wHitL+/n1P+J5NJIyLvJSe8ZrNZJoC9Xi+LPXynJJlkSVBOUVVVwwCvqqrsneDEmPNNJhONRqPcj4yVl2I4qT4+Pla/389iAwLAeDzOopK0iJAjGrinBKIQ/c5Ycy6EHcaDsS8j6z6/GSteCBcekUdgYh66UaRH63nPt06llINzeBmBP29kudA2N6AkG6TMXPDfuWf6C+HC+8zhWTmSlpYXeBaQjz99x1j5rg9+T2WWgbeRLUwppXDxxvuE8YoMhUAgEAgEAoFA4HJslKBQeiKU3gjSor6cqHhJ9pyEsZNBmUru0UoIeKvVysSz1+up1Wplo77xeKxbt25lsuK7AEACyRgoyyq8hvwyTwXIj7eb97m/TqejwWDQEDS4FsS4zF7odDo5Iut96+UMl22JSdvJYJAWZLDdbmfyfufOHQ0GA0nKgoLX+EPu+C6CENkIvqvFzs5OzqCA1EPu8IA4ODjQaDTKAgSCyHQ61eHhYRZ1yp0HmEetVivX7eMTwVzyrBQMN72vEVSm02nj5+npaaMtHmV34WdZFoxnsbhnhxtgQurdANRLGPD4qKoqZ3xsb283ylKcuJdZCt4eF1J4z+H9SOTfMyl8PrsRqV+vPCdwDwtp8bxwrwgVvp2lZ1f4GlFmm/BscQ4XHspsD9YG2hwIBAKBQCAQCASWYyMEBScRkGfecyHA/Qnc5d8JAnXvW1tbjS0Rgdd4Q1yJsnPeTqeTxQgXCiCXkC4vFfD78B0MnFSWngKlYZz3h/9On/T7/UamAKSHrADaC9G9LLWb85Ld4aTMBRHvJx8bSKuXAHi03K/Bcdy7E2f+7aIC5L7cjhHzw8lkosPDwyxq0F6EFI+oO8F0uB+Bl0IgNLmvAC/fJtH72O/bySp9SSnC0dHRhTnt41v2i7QgwrTH55sLJggIvhuCtEj/L+eA+2vQH/SBZ9Q4fO56hkEpPJTz20USjnfBYhm4lo8NbVsmaLhfg2dAeGnLMvHEx4isEr+HEBMCgUAgEAgEAoF7YyMEBUA6vBN0SY1oPLX/RN+9HMCjyJC4kmA6YfKMANLn2SUAd392VoDUQCxPT09zZoAbGhItJorqRIZzg9L8ju+6MR2CSbvdzoICXgKl1wTlAL7LBbtAQOC8ZATS5mTKjfW8HbQhpZS9FzjeTfjK+4VQQwYlNVL7GfNut6uqqnKfkgFAGYv7FYxGoxyp5n7G43Em+SW59TZ5pNvvzwWDUoTiPslYGY1GjXnFuNOP7nsA6fUdRiDKfM/7w/0+PFuCOcbLs14QsMhQYN5hTur3zH1xDp6pUlRaJkAwZ90bweHz2LOLfI66aOMeDeVzUYo95T0sE0H8OfR+9mfJ2+mCAnORbBZ/PxAIBAKBQCAQCCzHRggKENitrS1VVZWJCKTejdYgnl5WACD6EClS4T1V/vT0VN1u94K5Hh4KpWGfu/lzjdlslo+F0BFpJ40fkubmdkSPPYLr5Ma9HCDOlGN0Oh31er1G3T7fg2wdHh7mdpJp4Wn7h4eHjfT74XCYz8O1OdbT/l346Ha7ks5J2p07dy5E3afTqWazmeq6zmN1dHSU27aMqFHqgIeCe0EcHx/r8PCwQWLdM4FyA88mkRa7U0i6QJidvJLdQF8wHxA6EGN8rvByIlwaLnrZCgKXlwhIC0HJTUbde8FFLPqpJOkIEVVVqd/v53MxBsvumWtzvbOzswueI5SDuLDQ7XYbJL0sRfD2eDaDlyVxDX76+elPBCyfIzzPlCK52Og7vjA/aYv7RPizyndPTxe7lJSZRp45FQgEAoFAIBAIBC5iIwQF9z6AyBFB5jMc4vnDHwEipZQ9DziXkyLIN8IAJoae9VAa0ZXnon6fn5zfI7mQOSKcwFPm3SBSUsPID68DBBWyI5xUOvGEIHlmAX3k5/e28j3INsSYDAEIJIS3FEC8nGNnZ0fdbjd7NfhOFZJyGcOtW7d09+7dnCkBaSR7gn5hHNxgk7b6i/vzWn/6mO+7rwQlF+VuDPQ74tNoNMqGfZD8svxgWUlAOd4Oz3Lw+3ZfDTdY9H7w6L3/LCPtROTLEhtKRModC5yo++4ovhOJZ6R4ny2Dt4t5x/k9owL4mH23JQVlNgX3wnU8iwIxocx68ufSt9jkGMSIEBQCgUAgEAgEAoHLsRGCQl3XmTxLi+giBAyS59Fc0pqJznp6NJ/zb8hkSXr4PpHjMrrtJRQQYkoO+AwiRnsgTIgj0qK8YjweZ+LONTiXkyEi9LQfUaPT6eTUeUQVTwdn9waEDYgXpMr7hag95+LlWR9lajjXcILv0V2/BuaWvV5P4/H4wjFuOujiDj89MwSC61khCE6z2SyLEBBrIu6874aILhzRty5oEbEuyw/K7RWXkWjPbnFvD/rYxQDfFhMhxs9VEuaydMNLSLxffXtPnhuf594+9xtgLtIvZQkG3+Onl4vQPhdggJfX+DxaVn5Qzjva4cczHmUZE88i1+SembNuwOht9PKMcuyi5CEQCAQCgUAgELg3NkJQgFyW9cylIaP/4Q9R6nQ62t3dzWTeI5aQGE/l9rRnyIokjcfj3B4IpdSs+aatkHXO52QHcjOdTvN7ROPdnJEtIYnS05aSNGMOWZosIjpwXt7jGDwIvE8oq6DdkC0nfBzn9wLBd1M8tnp0Mu/p5GQx8Ln3OWIAGR+INF5b7+aHXuvvpSXsgDCbzXLmAoICYgdk0u/JxRaff74tqRNdN2x0MYl56H4BPq+8LIeIdzlXPIPAib+3j+uU3gZOoJln7h3COcuxdKGBF9H8MtvCvQUuE2NoJ/1QCiHABbRSKFkGF128PaW4wJgtEyT5jHZ5exAoPSumzAAJQSEQCAQCgUAgELgcGyEoOGGVlAmitEibdhIKcez1erpx44Zu3rzZKEXo9XrqdDqZcDpZhJCU0WBIPdF1J0ZO0HyXBy/LgDBC4CEzZCsgWJAtUFVVjiQTTabuHYJDRoR7KSBElG2ERLuxHO10csX12+22BoNBI3vBU9HdbLH0ffBSkZJQd7vdXL7h5oOYSjKmjDlGh5PJJIsCtN0FA+ZHr9fTzZs3c78Nh8OGGSbXRFwh+o+3g++cIC0yPRA1nEAyfswf5kFp/MhcLMejNAWVmtF1CDDX5XocR/tcEGJueX0/fcnvjBvCC2OGwaiLKswZNxf16zvci4JreVaJ32P5vTL7xTOQeCFscI7SI8VLUfgOghPz3MuCeJbZNYbz+th1Oh11u90s3pVbqIagEAgEAoFAIBAIXI6NEBQgX5LyH/ZOjJ2sQwiJQFMG4OaNkCJMHcfjccMbwQlMSe5KouYkxuu/iV56Pbwf74SW70yn01yWQAkF1wSQW+r+h8Oh7ty5o+FwqO3tbd26dUv9fj9vbUk2Altl8mL7RSf8CAVclz70tH/65uTkROPxOGdGVFWlqqouJYtOEPE68OwNSiBcsDg+Ps7eFAgEZIeUpN2zG05OTtTv9zUcDvN4OnmkXcwZ37ED8YbItZsLen95eYO3xdsOEFcwLYTAc93t7e2cscJ4lSn7brTJOSDInklTPjc+DqWgxRwkM4AXx/h8oe/c64HfOb9nDHg2kcMFEc8UKDMVymwBh5N/90DgeXezxWV9w/rBT3/OeFb4N5k23p/8DP+EQOAhR2tL3/qlH9HZRvylE3g5OP7I5666CYFAIBC4BBvz36wTdUivRy/dJZ8MBIz3PGtgmaFiSRjdCNAFgbKmHFLmWxlSYuAeDpBMT8tntwfeJ6PAiZ9vj+dEmu0SiZq7saSTUTfh8/RzJ/mc280Jva6f9tN/9AelFtPpNO8YgRhAO1xgkZqCCud288GdnZ3cBq7B795uF2wgkp5Z4mUWDv++zwFEGi+t8DT9UkwoS238M98hwL+PqECZB9F/N5j0MfWMD+DlCKWJIL+Xx3tmgLfT5y1tKw0S/Z785VH8UoS7V/bBycnJhXa/lLIB95soMxlK7wMyUbyN7nvAv73PXVTwz71PPPMjshICgYcXs3f8kM4687WglTR5pFa9Xd/nW4FNx1n7/scEAoFA4GqwMYKC13h7nbqn3xM5Jtq9s7OjlFJOQ5cWBAgSTpq7ewmQBg/JLmvKvaRgZ2dHvV4vk2OIqZsMQqY84kkqtW/55/X5TmparVYm20TQy2iy71yB4OJ+DnzHiRHEG0GA73odugsc7hPhUX3e87IT2ulp7/StE28EEO6bc3BOhAmpaUhJX9GXkMPLzPLce8O9Ari+C1OQUe7dz+E7H5T34x4RXq7g/U75A+IQkfJ2u62jo6M8j1w0cEJNG0uxxEk1KL0ISuLt/gmSGsKVk3bvUyfl/jn3WhJvF1+8/MeFmXvByX9J6H3MGS/ui3tH6PM5yFyVlM/p48ec9fIm5p+LfiEsBAIPD1K7o63XPqJv/Pi2TndcQAgxIRAIBAKBVWJjBIXL4BF4iB7bHCIIDIfDnC6PKd/du3d1cHCg4XDYqItGsPDIOOQVEaDb7eZIaL/fV6/Xy/Xa4/FY4/FYVVVlUuY7OPT7fW1vb2t3dzd7FFBW4EKFtEhtJ13+9PRUh4eHkhZkyk3jnMy3Wi2Nx+PGlphbW1u5lp82uEkgvhLeB61WKwsyLlr4NouQMhcvJDWuB3mkvdJFs82dnR1tbW1pNptlklhmkHiKvJN3FwMob6FtROI9FZ7v+bkdJSHm+2RzOOhP+hHRgvN41gheEf1+X8fHx+r3++p2uzo4OMglL5KyIMM5fK572QHXx1tjmceDZ8X4OJX3zrhwDgQXJ9qenSIpizku9CH0bG9vXygrKMdwGSl388PyGHwN8A+ZTqcXfD38Gp5hUIotlEu4+aQLgBxX9iHnW5YBEggENhOtN32vnnrfbYWAEAgEAoHAerERgoIbsEGAfPu7yWSSiUar1dLe3l7e2YFjIECQpuFwqMPDwywoeP29k2kvT/Cac8glJO7g4EAvvviiRqNR9j+AwBwfH2s4HOrk5CT7Euzt7anX62VSA3HzlH1JDRLjuxzwHhF6voMXA/eMKAI53tnZaWwdyfsICh4V57tkIkBkST1n28fBYKDd3d0sehDdJavCSxzcGHEymeRoMb4K7XZb4/E4t8MNMyFwvhMHn0+nU00mk2zEOJlMdHZ2lstfGAcvP4FwezmNb3PJWLifAGPuJSCMkUe+SxNC31Xhxo0b6vf7jfIczzRh3pVlD9525ov3BfeJUFNG7RHYyowT5pkLEp7dQB9xfTJ7GDfGij7nfFxfWhD8Ep5VsSybgGP8HIgAnuXCPSJC8R3G1LMwaBvZTH4NFz7cDwOvCjd1DEEhEHg4MP6ZH9Hzb2kpxIRAIBAIBNaPjRAUltX0Q/qJwEP0u92udnd3tbe3p7Ozs0zk3bDRo7NOxKQFeQKQNcgu5Ntr5YfDYd6JwM/vEX2PcroQ4ZFYiDfXca8GN86DpLtQAJly8uqlGq1WS7u7u6qqKmcNlF4RHEv0lW0l8YVw8QHitbOzc0HAIXvAtxz09HEnanVdZ4PGbreb+9zvu8x8cLKIOeRoNNJ4PNbJyUkeBxcf/PvukVCm7pdtdc8F/8xNPqXm9qDcP/3IeHhWCxkKHIe4xNyhHMbbx/WYT2ThuOFj6eng88jLT9xjwAm9Cwq0m2uSpUJfMm6XlS64oOHiyLKsEH+uvMSDeezHcE2yWji3lzoAF1F87ngbfcxcuPQyGB9P5nkpfAQCgc3EcT/pZBBiQiAQCAQCV4H7FjmnlD6aUno+pfSkvfcbKaWnUkpfSil9KqW0b589kVJ6JqX0dErpbS+lESWh89R+trqTlEkpgsLOzk7DUNBFCN9GDgPHMnWfdGsc7hER+JyUa8onIN60lbYTyXYDRCduXMvb4qTaa9Td5NBJIeSdvqGUALLZ7/e1t7eXBQXIoLRIbZfUyCbw7RQhsxBqRJHBYJDLPiBdPlbchxNcj3QjQLTb7VzyUKaXe1mLiz1E6l1QmEwmDbLPGEKQR6ORhsOhRqNRzpAo5vMFTwSyJ3xs6DM3kHQfDh9/N97Ec6Pb7TZ+VlWVhQbGCxGrNJksr0OJj2fRePaCZ4WURoWOcmzLOYwQ4OaXnh1T+jTw7DC23W43t8UFo1JAKoW3ZcIF5+feeX55Lvx+XIAo+09So+2gFF1cYPC2bFKGwjrW4kAgEAhcjliHA4FA4CJeSobCxyT9c0n/yt77rKQn6ro+SSl9SNITkt6fUnqzpHdL+iuS/oKk/5RS+v66rk91D3jdO6QZIkmaNSn2VVXpxo0b2tvby5FUtoWUFtFYosMQYSLynrJNvTsEvNVqZRFBUoPosKUfpntVVTWug9gB8fPIN+1y8kpEGQHB091TSlk0wPPASyI4DmIKCd7b28seDmQ53LlzJwssRM/xR0BQ8Eh8t9ttEG0IsIsJ3M+y2nUfUy9hgHDi9YCI41tyeukK9+tbf45GI52enmo0GuV2lwIUWQyM1WAwaETwMeN0g0UnyNTYexYKxNN3t2AOlaSaMhHPUMAPgH7wKL0bkHqWCP3W6XQaAhHX9u0xXYxgbCjlcLGO+/OsHc9qcIPETqeTxSTmY7fb1Ww2y88OWRPcf6vVylkv3F+/379g0Ck1RQHPWPCSEvqOZ8N3bHDzTO6R+QI4zkuZLsMy8eVex18RPqYVr8WBQCAQuCc+pliHA4FAoIH7Cgp1Xf9+SumNxXufsX9+TtLfn//+LkmfqOt6JukbKaVnJP2wpP92v+uQaXB2dqbJZNIwBpSUSRBRX1L6MSaEcPh2hpQdkMLu2Qml8R5EzVPOp9Npg5QgBkCOPfp9+/ZtPfLII7px40ZO7ff6fWlBwmk7hBiix+4NeC688MILOjw8zKICIgDEqtvtajAYNAhnmUo+Ho8bJJ2+QyTxchOyGyBSkHnvA7bCJHIPaeZeId2IFGRQEGGGsCLmeObFZDLR3bt38zmPjo5yuQk+D7PZTIeHh1loQjyhb/hOSin3ixsL0jZJuXaesWUekv3hpTfcn5tIutcFY0HZCT4WEO39/f0L2TJbW1s584LxQWyS1Og3ynLcH4LPPCsEgcA9ExAmmJfcY7vdbjw7jBWCjAs+XN/LD/we3UDTS3G8xAfBrixH4dhlcGJPuxwuKpCZUJZW+BrDOVwM8/IlPttErGstDgQeJjz7xF/T0X6t8E8IrAOxDgcCgcBFvBJ/Of+cpE/Of3+dzhdT8Oz8vfvCo9+QvnI7PtLHW61WjkhjTkctu0f8nVwRyUYsYAs/CAgZEE48pYWQAWH39G+vb6+qSru7u/kcEJSypKKM1pZRWSexGEtSNkD2RKvVylFwBAwi+vSlG+1xDcgdbSjbRRq+R4Q5FxFzIspScwtLJ45eVuAp69LC9wGyS3/PZjMdHBzkMgM34POMAS87KUtF3NyT/vSftMtd/iXl+cT9uicC/c54lf4Z9CPCBf1b+hV41J4sCAgt4pWn25dlOLTHSxG8jeV9l/fMsT72ntnjYhZk28UPDEc5jxuZcg2IvJdkeKlCWTbhGQfcG4KN3zPH8bs/K75+uB8C893LmJb5OpRZCD5uDyFekbU4EHgYsHX7e/TC2x7X0X6ts06ICYGNQazDgUDg2uFlCQoppQ9KOpH0cd5actjS/+lTSu+V9F7pPBLKtoqQAicAkBdekrLjPxHP+xnylUQEYopwQKmC19d7JN0/c4JE2/b29hrGeU60S88EMinc1M7rw09OTrIXADs5QIS5z+3tbfX7fVVVlUUMJ1VOWCFXkDeOI+INkSU9nRIJ+qbX6zUEFN+W0Y0vSeenvZIuRLAhi/Ql48F4kp3iJSguDvl9+di6cMIYOFkkk8DnGIAwQ/rLrQmZL3zm23RSWgK5do8IzsEcod2+C8HZ2cVtMNPcjNDnhXsWSGr4UdCv+Ia4eOGCFSIBGSXuWeEiEPPXtwB1o07GGwHFgYhEn5fmpG4syXXdd8TFnrLExseTz/zcZdaIP1s+h3x86Bv6ne8+bHil1uKu+itpXyDwSiPtDvSdH5QiMyGwKYh1OBAIXFd81385p5TeI+knJf1EvWAIz0p6gx32eknfWvb9uq4/LOnDktTv92vPRpCahBPfAt+CD48F9wPwbfJKkPEgLbavm81m+XqDwSCTDaKq29vbGgwG2t/fz6ngLlwQ1b9582bedcKj6S44uLcD3hDSRWLoRpCj0ahRd14aHNIn1MtDwN1gr6qqxhaSkCpIq6ewDwaDHCGeTCYaDodZaKCufmtrK0e22QmAbAmO87R8SDztZ5zcLwKCTgnIdDrNIg7HQAzvFT3GMwMCCakki0RSI4OF390ngf71OVga9JUZDqT/Q7DLCDxziRIBhBtKRijp8Gwc7t2Js/eDm1zWdZ0NKNmm1P0QXCRzM8zpdJq/T4aOtBBoKI9x4ag0U/QMALKBvNzAzSJLQcEzNjzzxT+jfz3rwseBe3YjRs7nwgLzj/O5KIgQw7PPGJaZKJuKV3It3ku3gp0FAoHAAyLW4UAgcJ3xXQkKKaW3S3q/pB+v63psH31a0u+mlH5L5wY0j0v6w/udj4g9aeNEjCHQTlp7vZ4kZaO+4XDYKH1wMu1YlooOqUWkwJeg0+morut8TerfqTeXzjMa9vb2tL+/r5s3b6rT6Wg8Hmdy7I78kEmv88cnQFoQYVL8p9OpRqNRw+MAgtjr9bS3t6fbt29rf3+/Uft/fHys4XCYiVtVVdmLgIizZ4AgiLjw4dkJvp0ekXX3oZCkqqrytpK9Xi8TeTcuPDs7y4aLvvsChLMUhmazWTYE9GwDIt6IO+4Z4BFpSCLH0y7PAsGLwueLZ3K02+1GpodfD2GpLDWYPxuSFtkbnmnjpTf4gdB/XmZBJo6XrOBhQOkN5QSSshBzdnam0WiU5wpk3rNU+L7PB3ZmoD+coLsHCCUtkG5ED8+IIEuHfvYMB8QaFxI4L+PMXCTLpcxM8OfWDR7L8qGy5MH7gbHgPfqT+UJ/IIBtMl7ptTgQCAQCD4ZYhwOBwHXHfQWFlNLvSfqbkm6nlJ6V9Cs6d7DdkfTZ+R/on6vr+n11XX85pfRvJP1Pnad9/Xz9Et1sy63yvNabLIEbN26oqirVdZ23BnTfBK/tdyNCIvGQGUk5yu7ig6enI2T4d1yQwDcBAz5PIS8j2e5kLy2iuZAyovsnJyc6PDzMUWtIK3DvhKqqMjmF8OIN4ffiuyh4On/prQDxdyyrO3cxgfZglAkJh7h5pJ4xQQTyaDGCR2kCCbFn5wDGgDGB3EuL0gpIMhki9AOCEX3iIgH36YTTf+e6zC1pEUH3KDjHeNvKuennQyirqqrRJ26oSPvKrRl54feBD0On08klGmQqcD/sQkKfI0j4/fkuCT5f3IODdnAez/pAuKOEwQUoz1hwzwb3LqH9TvhdECnbBfgcIY35iDDgY1X6L0hqbOGJwOh+HZuAda3FgUAgEFiOWIcDgUDgIl7KLg8/u+Ttj9zj+F+T9GvfbYNKMiqd/7G/u7ubdzQ4OjrSeDzOke2SsBHp94i110U7yfWUcKK+LkB4/bWnfLNlI0SEyL63o9wGsCw58FKOfr+fyyAoOXDSxXkQILrd7tK0fRcMpIUIAgmDvHs9+bJa/TIq7HXq9CHkkj4oTfO4Jpkd+EJgNCktHPU9G4AtMz26Xd4PWQhlW9rttsbjcUPA8XF3QcLHoyT8fg+c/7LzlWn9ywgrfct1OGev19N0Os1bMnppgWdV+E4NzFEXcHxHBh9LovxkwXS73Twf/ZnwrALEFx9L5qvvVEEbvSzAvR48I8YFPfrMRRmEB0QO99ooBQWyKWgb1yUTCF8RjnNxyctBvCSF/vPshLKPrhrrXosDgUAg0ESsw4FAIHARG/PXstfIe+Sdz4jK93o9jcdjjUajC2Z2ZWYABMvN4fi3mxFub283SiqoJfcUf6KvkLrd3V3t7u6q2+1mAcPb6wS5JOtEZX13iH6/n0WJo6OjLC5IyoTLMxTa7XbDiwBRwbM0uAePot+5c+eC14SXM0Bm3a/AU8rdhBGBw8tIaBPReXwgKMd48cUXNRwOsyklO3c4EaV8A1HIRR/IIder67oRMS/9A8h8APgpIAJJyv4FLiy4iAGRxt+C+UQmBV4I3HM5d31OlBkDZBh0u12Nx+MscvGdZSIWvhmSLmytSttpN2PJtpaYQ5LB4GU5lE54mQvPE2PA3INolz4TCCV+DH3CvZNZUWYa8GzSp16K4gKXCxLMEeYj5TfMBYQpfwbKrBFvL/3Kc+8lE4FAYLOQTqW6peXWd4FAIBAIBNaCjRAUPBtAWmwbSR08QgIRztFolF+QQsgJZIpoZb/fz1FHCDPnJWLb7Xb1mte8RoPBIEd9MbfjPJAWjne3/Ol0qul0eoEQn56eZo8CIq+QPHfJJ7qOKOLbNPruBLu7u7p586YGg0HejYEMDQgQhMm9CLjXVqulyWSS/Rs8gs0YQM7ZnpJxoc2z2ayx6wY+ApgtYjDIrg2Qzel0quFwqIODg0ycIYQ+FvQb/eC1/JelnzupZTtRNyekXxEJXAzpdDpZvGH8SoHIzSbb7XZDjHLBiXnLuRhzovJkXtBmRJ/ZbJbbUo457cdrYTAYqNvtNrIdEFkQlTzTgTHEs8H9CfiM47xvuE8EDsQf37GD97lXRBLfTtJ3/OAz+qscUy894doIOOVcRRDw+dlut3NZFO1EcHGfCEpovAzG+77VWuwuUmalBAKBzcDJN/+PHv/l7+jr/+yv6qQKD7tAIBAIBK4KGyEoQBQ8fdqN6DyyOhwOdffuXY3H4xzR9+wEorHSoi66jKBCIiDgu7u7edtHSZmUesSXCDbZD1zPI9qQkZRS3u5RWkRAaavvyuCRecQAL1+AkHnZB2Z4vjMC34cQe1TZI91OWP0YorOcD0DUPGsEYYZzQ6YxBWR8vE4fw0XuiT70NHpPkadvPVPgMnKHyWLpFZFSatwP/YzIQ5YEZBg4kaZvfE5S5196Lnj5CIJAKWpwrGeWIGCV9+mknx1OfIcCzwbB9NK3I/XyBMg8z5mPLefknuknLw9xgcLv10sfXBj0/uBa9MVlxqm0mWwJRDV/Tri2/+7Gp2S8eAaFZyAwBmz76UaV/pwwDyJDIRDYUNS1zsbj2DUyEAgEAoErxkYICpIaRMPN9EjxhwAT5SaVvvQM4Hu+pZ2kBikkirzsGqTIE4l3Iugu+LQXQg1xkdQgi1wDAcPJkKddcx6P2joB7XQ6jUwNovAQZ8ifm+R5an6ZRs/1nPhBIoGXPHjk2wUF78/T09NsuohhJuUMTprdENLJnl/ba9+9L5Z5HiDceLYAx3Ie9zvo9/v5niGWpWjkQo1nA9Bf7gewTETwYxlz3zXDPRx8HrsABFlGFHChx9tJ5oNH1ZkP+C1A/Lmuf15mq/hPxtUzCUoy734LXi7jvgde7uPiSdmvHO9bOfp987vfp891vyfaw64azFeeRReIfOw4J1lHgUBg89Dq91X/5cdUb8xfMYFAIBAIXE9szH/FHlkmCo9XQVVVmewPh0PduXMneyhAqD3i77sAQIY8VRtiQYQVQcFr94l4SwsC5YSYunnIVLvdVr/fb2wX6JHi0pMAMuh19xgmejTY6+fxbJCUr8/9QKKm02mOslJGAEHy8ojy3jy67ISWcobRaNTYSYG+pA2Q9+FwqOFwmEsfIG2k45e7NZCeTj96+YB7OoBlhof0WxnZ9zng2QaUf0jKu4E4aCtjVmZKlDsHeAYA2Q4uGpR9vWwu4AWAGIYA5uKYCyQ+Byh98Z0UINheVkMGB/1P6Y6LYk7e8Trg+fT+WSaalHBBwe/byxrKsgIv+eE7/n3fdQUB0ueJv/zZ5N88s4h/nrHj85qyqBAUAoHNROu1j+ipf7SrSFEIBAKBQOBqkZa526+9ESl9R9JI0v+74qbcjjZEG6IN0YYC31fX9SNXdO21IqV0KOnpK27GdZ9v0YZoQ7ThIq7TOhx/E0cbog3Rhk1tw9K1eCMEBUlKKf1RXdc/GG2INkQbog2b2IbrgE3o52hDtCHaEG247tiEvo42RBuiDdGGl4rW/Q8JBAKBQCAQCAQCgUAgEGgiBIVAIBAIBAKBQCAQCAQCD4xNEhQ+fNUNULQBRBvOEW04R7Th+mAT+jnacI5owzmiDeeINlwvbEJfRxvOEW04R7ThHNGGJdgYD4VAIBAIBAKBQCAQCAQCDw82KUMhEAgEAoFAIBAIBAKBwEOCKxcUUkpvTyk9nVJ6JqX0gTVd8w0ppf+SUvpKSunLKaV/On//V1NKf5ZS+sL89c4Vt+ObKaU/mV/rj+bv3UopfTal9NX5z5srvP5fsnv9QkrpIKX0C6vuh5TSR1NKz6eUnrT3Lr3vlNIT8/nxdErpbStsw2+klJ5KKX0ppfSplNL+/P03ppQm1h+/vcI2XNr3a+yHT9r1v5lS+sL8/VX1w2XP41rnxHVHrMWxFs/fi7VY128tjnV4MxDrcKzD8/diHdb1W4fn53041+K6rq/sJWlL0tckvUlSR9IXJb15Ddd9VNJb57/vSvpfkt4s6Vcl/dIa7/+bkm4X7/26pA/Mf/+ApA+tcSz+r6TvW3U/SPoxSW+V9OT97ns+Ll+UtCPpsfl82VpRG/62pO357x+yNrzRj1txPyzt+3X2Q/H5b0r65RX3w2XP41rnxHV+xVoca/H97jvW4vz+q3ItjnX46l+xDsc6fL/7jnU4v/+qXIfn530o1+KrzlD4YUnP1HX99bqujyR9QtK7Vn3Ruq6fq+v68/PfDyV9RdLrVn3dl4h3Sfqd+e+/I+mn13Tdn5D0tbqu//eqL1TX9e9LeqF4+7L7fpekT9R1Pavr+huSntH5vHnF21DX9Wfquj6Z//Nzkl7/cq/zoG24B9bWDyCllCT9A0m/93Kvc582XPY8rnVOXHPEWnwRsRbHWrwMr8q1ONbhjUCswxcR63Csw8vwqlyH5214KNfiqxYUXifpT+3fz2rNi1hK6Y2S3iLpD+Zv/ZN5es9HV5laNUct6TMppT9OKb13/t5r67p+TjqfVJJes+I2gHer+ZCssx+ky+/7qubIz0n6j/bvx1JK/yOl9F9TSj+64msv6/ur6IcflfTtuq6/au+ttB+K53HT5sSrGVfep7EWZ8Ra3ESsxWtei2MdvjJceZ/GOpwR63ATsQ7H38T3xFULCmnJe2vbdiKlNJD07yT9Ql3XB5L+haS/KOkHJD2n89SWVeKv13X9VknvkPTzKaUfW/H1liKl1JH0U5L+7fytdffDvbD2OZJS+qCkE0kfn7/1nKTvrev6LZJ+UdLvppT2VnT5y/r+Kp6Vn1XzP9SV9sOS5/HSQ5e8F9vVvDzEWhxr8f0Qa/G8WUuOfdWsxbEOXyliHY51+H6IdXjerCXHvmrWYenhW4uvWlB4VtIb7N+vl/StdVw4pdTW+UB9vK7rfy9JdV1/u67r07quzyT9S604ZaSu62/Nfz4v6VPz6307pfTovI2PSnp+lW2Y4x2SPl/X9bfn7VlrP8xx2X2vdY6klN4j6Scl/cO6Pi9OmqcR/fn89z/WeX3S96/i+vfo+3X3w7akn5H0SWvbyvph2fOoDZkT1wSxFivW4jk24rmLtfgc61yLYx2+csQ6rFiH59iI5y7W4XPE38T3x1ULCv9d0uMppcfmiuC7JX161Red18F8RNJX6rr+LXv/UTvs70p6svzuK9iGKqW0y+86Nz95Uuf3/575Ye+R9B9W1QZDQ3VbZz8YLrvvT0t6d0ppJ6X0mKTHJf3hKhqQUnq7pPdL+qm6rsf2/iMppa3572+at+HrK2rDZX2/tn6Y429Jeqqu62etbSvph8ueR23AnLhGiLVYsRbPceXPXazFDaxlLY51eCMQ67BiHZ7jyp+7WIcbiL+J74d6zS6Q5UvSO3XuYPk1SR9c0zX/hs7TQb4k6Qvz1zsl/WtJfzJ//9OSHl1hG96kc1fOL0r6Mvcu6Xsk/WdJX53/vLXivuhL+nNJN+y9lfaDzhfq5yQd61xZ+8f3um9JH5zPj6clvWOFbXhG53VIzInfnh/79+Zj9EVJn5f0d1bYhkv7fl39MH//Y5LeVxy7qn647Hlc65y47q9Yi2MtjrX4+q7FsQ5vxivW4ViHYx2+vuvw/LwP5Vqc5g0JBAKBQCAQCAQCgUAgEHjJuOqSh0AgEAgEAoFAIBAIBAIPIUJQCAQCgUAgEAgEAoFAIPDACEEhEAgEAoFAIBAIBAKBwAMjBIVAIBAIBAKBQCAQCAQCD4wQFAKBQCAQCAQCgUAgEAg8MEJQCAQCgUAgEAgEAoFAIPDACEEhEAgEAoFAIBAIBAKBwAMjBIVAIBAIBAKBQCAQCAQCD4z/D4yd1HNaczzTAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 72550 95203\n", + " Min thresh = 1000\n", + " Sliding\n", + "\n", + "\n", + " Winner = Not Sliding\n", + "\n", + "\n", + "025ns_image_267456908021_clean_ClassN_0-128.roi.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADYCAYAAABberBAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAD7+0lEQVR4nOz9e5Rt+X7dhc1VVfv9rHNOnz59b1+hq1iykUTwA4x52Cg2ITY4FnawIggghIgcGBhCCFgyIcbJCIjEAZswCLmAsRxMLNnAkHkEE2Quj2FLNpIthG3ZvpKu+j66z+k+VbXfr9p75Y+qz7fmWqf69u3u07frdH/nGDX6VNXea/3Wb/3W7przN7/zW5RlqUQikUgkEolEIpFIJBKJd4OjD3sAiUQikUgkEolEIpFIJF48pKCQSCQSiUQikUgkEolE4l0jBYVEIpFIJBKJRCKRSCQS7xopKCQSiUQikUgkEolEIpF410hBIZFIJBKJRCKRSCQSicS7RgoKiUQikUgkEolEIpFIJN41UlBIfM1RFMWfL4ri2z7scSQSiUTiBkVRfL4oir/tq3xtWRTFL3qP53nP700kEolEInG3kIJC4muOsiy/pSzLz37Y4/hKKIridxZFMbevVVEUh6IoHnzYY0skEomPKq4FZ//svSyK4j/6sMeVSCQSdwnPW5h9p+Pl38WJr4QUFBKJW1CW5b9QlmWfL0n/kqTPlmX51oc9tkQikfio4lpw5nN3IOk1SX/kQx5WIpFIfKyRfxcnvhJSUEh8zeG22qIo/vmiKP5IURT/blEUs6Iofrooim8qiuL7i6J4UhTFF4qi+Nvtvd9dFMVfvH7tzxVF8dtqx/5niqJ4vSiKLxdF8Q+74loURasoit9TFMVrRVE8Lori3yiKovNVjLeQ9PdL+sHnOxOJRCJxN1EUxa8siuJPFUVxcf2Z+q8VRdGsvezvuP4cfqsoiv9bURRH9v5/6Pqz+rwoij9eFMVf9R6G8WskPZT077+fa0kkEom7iKIo/uqiKD57/Tn754ui+E32u88WRfEP2/f/YFEU/+31v//r6x//1LVb4H9ZFMW3FUXxxWsnwVvXf2v/r97r8d5h3Pl3caKCFBQSdwH/c0n/b0mnkv6spD+uq7X5SUn/J0n/L3vtE0m/UdJQ0ndL+leKovjlklQUxa+X9L+T9LdJ+kWS/tbaef4lSd8k6Zde//6Tkv6PX8X4frWkl5V/1CYSiY8P9pL+SUkPJP2Nkn6dpH+09prfLOmvk/TLJX27pH9Ikoqi+Lsk/U5Jv0XSS5L+G0n/n/cwhu+S9EfLsly8h/cmEonEnUVRFA1J/5Gk/1xXwulvl/SHiqL4xe/03rIsf831P//aa8fAD11//0hXn9mf1NXn52fe5/HeDvl3caKCFBQSdwH/TVmWf7wsy0tdWVtfkvQDZVnuJP1hSV9fFMVYksqy/E/KsvzZ8gr/la4+iH/19XG+Q9K/U5blny/Lcinpd3OCazX1fy3pnyzL8qwsy5mkf0HSd34V4+OP2vlzudpEIpG44yjL8ifKsvyxsiwvy7L8vK6E3WdE2uvP09ck/V5Jf8/1z3+bpH+xLMu/eP25/i9I+qXvxqVQFEVX0t8t6Q+8vytJJBKJO4lfJamvq793t2VZ/glJ/7FuPkffK/65siw3138j/ye6+tv4eSP/Lk5UcPJhDyCRkPTY/r2S9FZZlnv7Xrr60L0oiuI3SPpdunIaHEnqSvrp69d8QtJ/Z8f6gv37pevX/sSVtiBJKiQdf6WBXZdE/FZd7b4lEonExwJFUXyTpH9ZVw6Erq7+XviJ2sv8M/YXdPUZLEl/laTfVxTF/90Pqatds1/4KofwWySdSfqv3t3IE4lE4oXAJyR9oSzLg/3sF3T1OflecV5zdPnn8nNB/l2cuA3pUEi8MCiKoqUre9XvkfRyWZZjSf+prv5QlaTXJb1qb/mU/fstXYkT31KW5fj6a3QdLPOVwB+1n33/V5BIJBIvDP6fkn5G0jeWZTnUVQlDUXuNf8Z+naQvX//7C5J+m33Wjsuy7JRl+Sffxfm/S9IfLMuyfI/jTyQSibuML0v6lGfP6Opz9EvX/17oSswFj76KY54WRdGrHY/P5fdyvNuQfxcnnkEKCokXCU1JLUlvSrq8div87fb7H5b03dchN11ZPsK1Avxv6ipz4aEkFUXxyaIo/mfvcM78ozaRSHwcMZA0lTQviuKXSPpHbnnNP10UxWlRFJ+S9E9Iou7235D0/UVRfIskFUUxKorit361Jy6K4lVJ/xNl4Fcikfjo4sd1RfL/maIoGkVRfJuuMsX+8PXv/5yk31IURfc6XPx7au9/LOkbbjnu7y6KolkUxa/WVeYYXXLe6/HqyL+LE88gBYXEC4Pr3IN/XFfCwbmkv1fSH7Pf/38l/auS/ktJn5P0p65/tbn+7++4/vmPFUUxlfRfSHrbsJqiKD4p6ddK+oPP9UISiUTi7uN/r6vP2JmuxNjbQrp+RFdlEH9OV7W6/7YklWX5H+oqBPcPX3/W/g+SfsO7OPffL+lPlWX5s+918IlEInGXUZblVtJv0tVn41uS/nVJ/0BZlj9z/ZJ/RdJWV0T/ByX9odoh/nlJP3jdIYKchDd09ffxl69f/795n8erIP8uTrwdihSYEh9VFEXxV+vqD9nWdTBYIpFIJBKJRCLxkcK1w+HfLcvy1Xd4aSLx3JEOhcRHCkVR/OZrq9eprnbI/qMUExKJRCKRSCQSiUTi+SMFhcRHDb9NVxkLP6urPuq31f0mEolEIpFIJBKJROJ94gMTFIqi+PVFUfyloig+VxTF931Q50kkHGVZ/vrr7g33yrL8zWVZvv5hjymR+LCQn8OJRCLx4SM/ixMfNMqy/GyWOyQ+LHwgGQpFURxL+suS/qeSvijpz0j6e8qy/AvP/WSJRCKReAb5OZxIJBIfPvKzOJFIfNTxQTkUfqWkz5Vl+XPXKaZ/WNK3f0DnSiQSicSzyM/hRCKR+PCRn8WJROIjjZMP6LiflPQF+/6Lkv6Gt3vx8fFx2Ww2VRSFJKksy/jie1CWpYqi0PHxsY6Pj3V0dKSiKHR5ean9fq/D4cAxdXR0pZfs93vtdrs4Bu/x8xwdHcXri6LQ4XCI8UjS4XCIY3N+f/3R0ZHKsozX+WuKoqiMsSzLyvsBv+MaT05OKmPl+m5zlXBuHzNj47/+b3+fz0Gr1Yrr3+12z1wzY/Jrr5/v5OQkxnw4HHR5eRnn4Lr5OhwOcSy/Rs77dtfJXDH39XnyueLecB/r6+f4+Lhy7v1+X5kvjuPn8mtnTPUx8j5fy8DH62uWY+73+8p982eBsfjvuUaO59ddfw/HYRz1+fX/1n/u5yuKIu7D290vcNvaqx/fz+H31OfS319/huvzUH/9beO5bS79d5J0eXn5VlmWL33FC7ybeFefw5J03O+VX/f1hZ5sBjr+3OYrvTSRSCS+ZlhroW25uf0D/e7j3f1NnJ/DiUTijmKm81v/Jv6gBIXbPvQrDKUoiu+V9L3SFal5+PCh2u22Go2GTk5OKuRus9lUiM7JyYkajYba7bZ6vZ5Go5Gm06kmk4nm87k2m416vZ76/b7a7ba2261ef/11LRYLXV5eqtVqqd/va7fbabfbabvdqigKdTodtVotNZvNCpmG+G63W+12O+33e41GI/X7fTUajQpB3W632m63Wi6XMb5er6dWq6XVaqXlcqnlcilJarfbFRJ5eXmp9Xqt3W6nsiw1HA7V6/XUbDbVaDS03W41m820Xq+DpDspZXzX8ytJIQCcnJzEFzg6Oor5vby81NHRkV555RX1+32dnJxoPp/r6dOnQfpPTk50enqq8XisbrerZrOpw+GgTqejZrOp4+Nj7fd79Xo9tdtttdttXV5e6vz8XIvFQqvVKl7f7XbVbrcrosLR0ZF2u128lnG5MLPf77VYLGIettttzDNiyHq91mq10nq91nK5DJLoc9RqtdTtdjUYDOJamIuLiwvt9/sQUCRpNpvpcDjo+PhYg8FAjUajIizsdrsYLyLKer3WZrPRZrOJcV1eXjWc4J5CgFerlRqNhlqtVszbZrOJuWm1WpKk3W4X53BhptFoxP24vLzUYrGI9cF1Hw6HWA9lWcbc8uUCCuKXE2zGzrx0Oh1J0mq1invrIgpjrAtr/Ns+C2I82+1Wx8fHajQa6nQ6Gg6HMZfz+byyHvivzwlilotKJycnlc8Pf15dRGAuu91u3NvLy0t9+ctf/oWv7mPvzuEdP4el6mdxuzHSJ7/xn9U3XOx09LN/9oMeXyKRSHxV+PHyRz/sIbwfvKu/ifNzOJFI3FX8F+UfvfVv4g9KUPiipE/Z969K+rK/oCzLz0j6jHTlUFgulzocDmq325Kqu5SSguDzc1wH6/VanU5HJycnQcT863A4qNlsqtfrab/fV0hdq9UKsrHdbp9xOECOIJKcZ7PZxGvZkd/tdpUd/O12G6SQMZ+cnATpW6/XWq/XQfK5Ts4L8d1srtTpo6MjNZtNdTodFUURwoUTpGazGTvt9R3523aRfbce8WYymagoiiDZJycnMV8Q33a7rZOTk9jZZwytVqtyDsjZfr+P60ME4PtWqxViBkST4+z3+yC2/A6y2Wq1Yg1st9sQNBCkmGfmEKLJ9fgYttuthsNh3L92u63VahVEE/GKtbPdbkP08rXKPDJf3PPLy8vKPHMMxDHm0l/HzxGwXOCARHNuRAPWj6RYp9w3XwP+bLnjxQk2Y/Xrw2XDvLLmTk5O1Gq1gtjf5sr4apwzzAdzxHPG/Wy32yGU+Lrjmn2eGLNfnwsdfs9c7ECM4N8uwL2AeMfPYan6WTws7pWdH/nTX5vRJRKJxMcD7+pv4vwcTiQSLxo+qL+W/4ykbyyK4tOSviTpOyX9vW/3YogqZKUsS7VarfiDX7qxgDsuLy+1XC6DBDabTXW73SDjEL/hcKjRaCTpisDMZjPt93t1u90gM07cnNggHLCj3Gq1wi2ArbzdbofgAeE7HA5aLpdBQo+Pj0PA6Ha7kqT5fB4EBwLsZA8xgjnq9XrqdrtqNBpBeCGNkoL84Lxg19dt3V5iACBOh8NBq9VKR0dHury81GAwiHFBLufzeZwHQum72YPBIO7Vfr9Xu93WcDhUo9FQo9HQdDrVfD7Xer2ulC24yNNoNGJsiC8cn934Xq8XgsZyuQyBwElineSzKw3JR9RBiMFp0el0KiU0uBKKotBisdByuQxnCvPA9UkKcYq5daEEwopjgPXugsVyuQxnCs4GHC+sQea3Xj6CEOGOC0i2E2zWMy6I28oJcJzU1xfPyWq1ip8jdNUdCqxd1rafw4m/v4fnbrvdarVaaTAYPOPQ4LheRnN8fBzPjJeK3FYK5GUh9TIe7j3z+ALjXX0OJxKJROIDQX4WJxKJjzQ+EEGhLMvLoij+MUl/XNKxpN9fluWff9tBXJMg7OHssmOJb7VaQRYgE9LNLudyudTl5WWQOgg+ZPvk5ES9Xi/Iy2Kx0HQ6DQL88OHDIK4IC51OJ3aCIZ4Q716vF7/bbrfqdru6d++elstl7Ib2ej3tdjutVivN53Ntt1udnp6GUNLtdmOnGtLXaDQqdvbruQwyvFgsgmRCeus1+BBJzo1T4nA4qNVqabPZBAGr14/jrMDJgSDjY6EUgjl59OhREE/mjd12jkUpSbvdDhFhs9nE79vtdhA83AS4SjwHw0UBJ+oQUOYfgQB3AXMNeWy1WpV52W63evr0qXq9XpBX5hfhodPpRInLfD7XbDaL3XncArggIL2IYWVZxusRBWazWbxuvV6r3++HeLPdbjWfzzUcDkMoWywWFRGL9cV1uK0fAQTBZbVaabfbxfFZU51Op+Ly4F5JV8S90WhU3Cu73S6IO8dmTDx3Xl7hAgbE34UthMP6Gmw0GvEZMJ1OQ4Tr9/shCPKcSopxsm44P+f0Z8TnCdHCrwmx8PLyslL29CLi3X4OJxKJROL5Iz+LE4nERx0fmJ+3LMv/VNJ/+tW89ujoKIjMer2OrAMIrFTdRYesQEAk3VpXDrlZr9dR0w9pfvr0qdbrtY6Pj9Xr9fTo0SOdnZ1F3Ts1+U7K2M1ut9vqdrvhqlitVup0OhXCXBSF+v2+pCvytNlsNJvNQvjATYETwYUS31GHjHn4HRkSEG4vfWCXnP/6eyFh9UBInzN3hMzn88rOraTYiZaucgVOTk40Ho/jnLvdLtwDiDHsEDebTY1Go9j99tp7hAuI3G63C/I/GAxCxEAYka6IM46U9XpdyQyoE1PfpWbXmdIZRADO0e/3w5FwdHSk9XotSSE0cD8h5icnJ1qtVrHrPxgMJF05FVib3GfGxTXgppnNZup2u5VyDXbbKTE5Pz8PIYYMCkpG7LmLeWA9SlfOEsoUuJ8+Ht6LaIBgxutxdfAzxAGeO+7LYDCIZ4jr5/n1EoV6pgLk310bPMPz+VyHwyHuC88jghnH5BysY77n+WIuvLSD+8OzJinmzd/zouLdfA4nEolE4oNBfhYnEomPMu5EgTA1+5DB3W5XqXF2S7LXizsJhjQ6OZFuLPPsuDabTY3H49i13Ww2Wq/Xun//fpDt5XIZr8favtlsoozg6OhIo9EoyBs7vF5nLil2bSFiEESOgUjyduQFAcFr0dk95fiNRiMECI7rBNBJLS4CzzRwgudETLpxBdTryV10WCwWkQGAAwJ7PzkHkO7j4+MIyYQ4emlGvRYesu8WfnaNfQ7J3ajPH2QZksz1kkeBgMGuNfO1XC7DfcDcMD7EAM9KQLRAOPCARBcdcDy48OPXi9OBsEaOiQhFWQRribWJ0OZrhvuJawAxBlLPOnRXg3fGuC1DodFoVIQtFwZc7HLXAeuvXk7hzzM/Y33VMw88RwRhkN8jSPk5XCDjdfWsifq5fS7qmQqJRCKRSCQSiUTidtwJQUFS2Mkl6fz8PIjmfr+P3Xy3S0MCJFV+7oF4kqLWm8yBZrOpfr+v09NTnZ+fa7vdajqd6uHDhxqNRhW7PuSFDg2z2SxS6KWrsgbfYfbddwhvPdAPcgSp5DWe6A+cjHNN2LQvLy81Ho9jF54dbe/qgJsCMumdMwDE0cUbJ/ZuX+dnnm/hwZJOeHu9njqdTpReXF5eBklvt9uV0EhKFXgNBBshZjQahbtkMpnELjn3vdfrVUpmACTViTDvI8/C24kiLtFRgG4VzWYzdt33+304ELguju1CDw4E7hllOIRp0kkDscIFFEmV8gGcOrhDELg2m03MKXMJYT4cDvE8dTqduC6A8FYPc3TBgLHxegIvuQ4X3KQrd1Gv14sShPo5JD1D3PmeNcuz48IczprLy0v1+/1wDrEmebY8oJH7704m8ih8vbNGXBRhnXiXj0QikUgkEolEIvEs7sRfyxDdwWAQlmbKHug8wO42oX/UfO/3+yBn7F47sYLsnJ+fByHpdDoajUY6OjrScrnUarXSm2++qfv370d449OnTyNDoNvt6tGjR5KurOMEEz58+FC9Xi/a9C0WiyCgkHbItzscIEiQWumqtnu5XFacAp6YD2nv9XrabDZaLBY6OzvTcDiM3XZ+jjW/2+1WCCPiitefex6BdxfgC3Flt9tFu0tCBCG9hCJut1sNBgOtVqvIBHj55Zf15ptvRpghQgfXBRFnfjygEjGiLMvoOtHv9zWfz2P8kErmstFoBHGGfFNO4+SYchMs9bQpvLy81MXFRQhHOCBuc7qUZVkh6pRBbLdbPXjwIFqTsmvvAZLb7TZaV7pgwXzglmGHvizLSovLyWQSAgfCUf2ZYm6azWYIaBzL3TEQfAI2EXK8o8RqtYoyIF8XkG/W8Xw+DxEOwYx5w9WAUMg5GQ/rnJIUL0Vg/h8/fqwHDx5EecXJyYmm02mUNZARwlpgHHxfFEXFIUPrVncbuQjhAkUikUgkEolEIpGo4k4ICtSwY0V/+eWXdX5+rtVqFUQBggM5IPmfNHbyBChZcAcD9foIEffu3QuhANK1Wq20WCzCvQBhwqnQ6/V0enqq4+NjzefzIPSDwUC9Xi+IpBMV77AwHA41nU4rYgdkjnHjNsC9gEiCvZ3zQwTn83kQZgIFZ7NZzBmEy+333vqS3AFIkwccMi/uJri8vNRsNovXQJRxhkwmEz1+/Fjj8ViDwUCXl5cajUa6d++ejo6OdHZ2FuUs7oaou08glqyLs7OzyKnodrvRotDr7YELFh4IWHckMMcIN+RpSNJ4PNZyuQzCLinuzWaz0XK5jB1s5gexgnUznU7DdcNuO8GgvvtO6KjvyvPFOHEKQNbJz/BwQubMrfzuvmCd+Ll5Nph35o9j8Hzxc0o6WKvcH9YD6we3DWUv3B9EGr9frH8HDgRJlS4crPnD4RCdW8i0wOWDWwFHw+FwiOfcy2P8Gay3bvXf18eWSCQSiUQikUgkbnAnBAXppo4c8gfJhNhgsfY//rH+N5vNSp28dx2o14ivVitNp1ONRqOw32MtJ9xvOBxGa0d+58LB5eWlptOp1ut17IJ6pwInTpRneJ6Chwfe5qbgv17OgFjRbDbVarXU7/dj5xey1+l0IgMAEaK+w4q1HILGHHkJAudEGKmLEljevWMEjoLz83NNJhMNBgMNh0Odnp5qMBjEDvNkMgmxgPH5seuWdFpk4lRAhPCQRZwfzJ3b5qnrrxNpXuvCUr1jghNTz4lwgYsxIsLUXR28h3OwRr0jCK/BDeC5BC6MITQgvLHuWR/STWtH7omD+1gvZfDzeP5Avf0lc+K79y7aeMYJ10FZhD8Lnm3gc1sPCmVd4GDicwInDt0scBlwzb5+Cfj01pLeTcWFA56VejeKRCKRSCQSiUQicTvuhKAAWYHgQr4hKHRH8M4P7LJDbMlHcLuydBPwRjgfeQeUBWCvxgp9dHSkfr8fpQyIDOx0SgpCQxeDRqOhl156qSJMeMgcwgiCAmA8kBtEDwDZ9vaSlFR4lwSI/Xg8jlaAdJ+AzPlcQ7Ah+XV4O0XOxfxJN9kKhBdCxHa7nabTqc7OztTr9TQcDrXf72Nnfrfb6eLiokJKIePsQntmAx04KBNYrVYhANRT/V2oqQfqudBE9wmv46dkhrnEteFtGd0h49Z4RCl3A0DGEXVwuJB34GKFd8Dg+KwJ7xji94YMCBwHXv7D+eu1/17mwL338EFJFcJfLw/w4yCe4DKBmPNe1p+kEAsQBzyPA2eLP68upPBsegkLzwMCE+UeHojKcREjuA8Ikf5M1DMe6rkJ/uwkEolEIpFIJBKJKu6MoID1nDp7LOrslkLqsEB3u90gtgQDQmx9l9XrqiG1m81GT58+Dcs0FmsC/abTqe7fvx/1+svlUrPZTKenp2Fjp9Z+uVxqv99HbTvX4+GLPh52USGZi8Ui6vBdTICgMQdkFSCCtNttFUWhJ0+ehA2fHABIomcNcEwPouMYkC/mDlcIrS65F3RoYDyEF3rY4n6/19OnT9VqtaLMo9vtxrxdXFzoyZMnkq5EHm+/KSk6RYB2u63xeBzzdHFxESGHvqO8Xq/DFQAZZl3Vy18gkYgEtPfkPXSuYEd/vV5rtVqFsIII4uUQ3W43hAB31czn88icOD4+jjwH7g//9nBFumcgFCCi1UU1jtlsNiN01Dtg+I6/79qXZRn5Bl4i4cT96OgoMhP8Wnm/OxfcXYDjga4VlIew5uodXI6Pj0OEazabIT75esX9wz3js2KxWOhwOOj+/fvhpCEHg3n0chTcT7gfvGsIQgdjr3c0SSQSiUQikUgkEs/izggK7KzvdrsIPfSANmrFIbTkJhRFETvYkp4Jp4MYYBV3a/lisYjXeK07ZOXo6ChcBZB+wggJaYQMT6dT3bt3r5J877ubbjFnTI1GI3IOcCF4iOLhcAiBgHA7xkzaPWTbyxyYG0QYD2DEzeHtOCF0OAU8pA6hw++FZz9QL48Fn3yHxWKhp0+fajabaTAYqN/vq91u61Of+pRms1lkPXQ6nSDZ5Bh4boOkKBcguJJ7DZn2+8w8MWcuNHkpibs4yrKMDA5vEwpx73a7FZJMYCKij+cPODxwknFyDtwuuFTclUFZi3ed8HNxTAQQ1i8hhrgEKPfw1pfuJOAesx4QhLwTSLPZfCZPwcsQ3BXCNd8mZCBC8d96WQvPNu4Lb0nppRVcG+fYbDaaTqe6vLwM946HftYFEC9nQFhw1wWdMbyNaSKRSCQSiUQikbgdd0JQkBRWbElBoJyoQoi8nppdWoiS12S7tZrvAZZnduEJKoR8YXVHfPB2iAgG7XY7OkWwe77ZbMKp4PZ9h5Mk30Vmd126sZUTCEkIH6IDRIxzcQ7IJmIBxNzzGnid9GyHB6/R57oh8F5z7jvg3onCj3k4HCp5FQgdo9EoykPOz8+jwwJzgkAh3QgAkGzuL+uAeWPt+K5ynfBCDusEuN4ZwEUkbzXZbDYj7JLxsS65h5Tr+E63pFhPvJ6yB88FYG4954CMCS9r4HXMg495tVrFNXpZAeBe+1rw9eYE+rYxeeYHIpjfe47lmQw+13WRzcswvGSBfA1v58j7mV+Oy9xyDp4Xv/8uLvj6rgshvB4BwzNYEolEIpFIJBKJxLO4E4IChM8t0L6b2ul0gkhgK4c402WAjgWENPouKOTHhQjfcaZkotVqVYgKJAuxwXduT05ONBwOJd2QUjILcDFwDhc3gGc9FEWhbrcb5RP1xH9KPGitiDUdcQOC5KUDHgIp3ZBMCBrX4sIG5+RndFOAtFEi4ON38u5WcUnhApnNZjEnnU5Hjx49ik4IlEQ46fcsACed/I72lfVAPc9kQJjwe+jBgL721ut15EE0m80gs34vvEMExFNSZSfdgxARA9jZx6Xg7g/vRuHik4cuQrbdqcC69c4oCEK4HSDjLsC5YODz4KTZhZf6GiG/ADBmrpFnx4UnXyvcP9Ygv3dBaLFYxL3j2a1nHHAe1u1ms4n3+DpAQAA8j7cJHfz+8vKyUtJSf24TiUQikUgkEonEDe6MoOA12JBrb+fnoWoe+tZsNjUYDEIEgJxxrLprAdJB60myECB63oHAiRiWdY5BaQUlC48fP478h0ajoX6/Hy4FD+xzQFjIKJCk8/PzCHykHAHb+UsvvaTz83Ot12tNp9MYA2RPuirB8Fpzrtt3oeuOBUlxvWQRMBetViuuAdLtoguvgzSzW05wIuQXMaTVaunevXuRfUFZBOQZ0opDgFBH7oG302SHnK4a/hrGBuH1vAhKPBCkjo+vWo0uFgstFouox+fYfp8khVuF8Q2Hw6jJ58uFGm9N6e0rWWeIaO52gBTTIWK9Xuv8/PzWnAafcxwlh8Mhxlvv5OFlBE7MPfC02WxqsVjEech5IACRZw/xj/vlgomTcuYBNwFrlGez0WhE1wruz+Fw0GAwiLXNObzMA7cRoZ08k9xb1h/n5xlmjh2MyZ0h9c4giUQikUgkEolE4gZ3QlCArLGbSms+SUEAIV/YwZfLZRCSbrdbKQnw4EAve4Ak7nY7dTqdsNjjLpD0TGtKqWohp/Ukr2u1WirLUvfv39disYj8hVarFeRb0jOigte3u9MCkjedTkMIgBSTmbBcLjWZTHR2dhZZCozX51FSkDHGjmvh7YgSogKEnJaYwK36vAYCxn1ZLpdBbhm7d4Vot9t6+PChjo+PdX5+rtdff13L5bJi84eQ4v6A5JNpgMjBsbkmRAsnuzgeCOC8uLioiBzdbjdKBlarVZS7sDYRHyCy7lbY7/cRFIrjgHUL8ef1XA+vrTteAGOGNOPuoBMF3S7I08C1gvDiggfn59ngOuq5Eh6ECMgTQGygBMe7JTQajch6AAhOfmzPaeC6XRRhHfX7/cgDoRSFLhzcU96L86HT6VSyQObzeeQpDAYDTafTmHt3n1BSxX308EuusZ6LkUgkEolEIpFIJG5wJ/5a9pA46YZsexo/r2PX3S3NENjbbNmICnX7cp0IHw4HbTabSgAhhMJJmQsEEBrvcACRpIyC3zvJ51rqifKtVisIPMeACHptOQGWk8kkrN7kPfjuK0IIJJJzcc1us8cGzjFwHEA8EU88mJB7w3k49mq10nw+V6fTifH5vZVunCWf+tSntN1udX5+HiKRpMp84Tjx3XN3STBHXobg//V6/na7rXv37oVoQ/gmxyVQ8nA4VMQlt8nzPV+MwbtdeCCmZwq4kwPCztidhHv9P/NFcCTXhvuG+4DohNjgzwEuCXcMcN/rzgWeO9ZlXSThOfOMA7+/9ewKfudlN9xPfu4uCMQc5rYe/Ml6YMyewYHDxp9NnA8ezOjX7qGPvu5ceEkkEolEIpFIJBLP4k4ICtKz9mPv7kCiPTX8rVYr6pw9A4GveutB6Sa1HdLGbr3nD1AuAUlzUaG+U1nPE8CeLikCCdk5rWc41MmcB90hTHAOLxmgXIPzEBJYn8O6db5OVL3mvy501N0BbsVHrMHK7oQWUsZctlqtKCFwwuyhjt1uV5/4xCc0n8+juwf3kvmhbIJrJU/DSSq7yYgb7MT7tXv5yunpafwMRwWlK+12O0I2IZReQuGhil5KgFWe8gPs/y7aMG/s9DPXHNuzAQCiGS4F6aYtKesVtwZuHV5Hy0q/796twdcg81gvC/A1ylj9mXDhj7l3QQGBivlygYuxeQaDVBUaCDvl53VHgZdsIJowJ/5s1kUN/s37Pb/Dc08yQyGRSCQSiUQikXh73AlBAUJK6zvpJr2/0+kE4XbLuJP3+XyuyWSiTqcThIrXQhokVYiU27kpG6CVIaKCd3pAHHCBQ7qxc+N4kBTkDlGBXWOIM9fD6yGfhC9ChnEoQELX67W63W6ldnw+n2uz2UTJgJdRILpQJgCBrocZOjmu51Rg/3ayR8kBIgwEjPluNpsRIvj06VM9evQoBAEIJuM7PT3Vpz71qbgvn//857VarWIOGOdtO8c+Lggj1+eBhl42UpY3LSK5b5///OdjrdGK9MmTJ9E6stfrVYInPWvDQwn9d71eLzI1EIbIs/DsCcbBXEqKkEUn9eQvsJYo61itVloul7q4uKi8BtGENQRB9rngey9jcXLtQoFnIkDWIfc4BHg/6x/xgWNRcuBEnbIjPzY5GDxbhFFyTgQTd2ZwDrIyfJzcU851eXkZoiTPn2dZuOun3+9/FZ9giUQikUgkEonExxN3RlCAvLt9md3OdrsdRJysg16vF4QG+/p6vdZ+v4/d5nqIG4AoQ5YhaZCX2WwWNeH1dpAQ3bdLiseCzU49Y6CdHcQbAuPEGdJHm0hP9peuRBbe12w2NRwOo8RgtVpFJoDXgPscQ/QhmHUrf7023ckmP4MkMmez2azyus1mE2UEjUZDs9lMT548UbvdVr/fD9Lr4sf9+/djZ3+73erJkych6vhueFmWURbhQg019pBwchAQaobDYdx/SObp6an6/b5Go1GUXCAU9fv9CrHEIeBz5+0h6bjgXTk4r7sIWJ9kLUBocU1cXFzEmvcuD97GECGGNd1qtULsInugKAr1ej2Nx2OtViut1+vIW5BUEXU4NkIeP6NMx0M9vVyB64Hcc48ozXFRgufCy5e8xIRnEhGA6yevwTtYkMPhOQ5cA9d0dHQUwiDPD8chZBTXTLfbrThOCGvlvvF5k0gkEolEIpFIJJ7FnREU6ObADr1bkN2hQAlA3XqNuwFngVTdged7t/dDpHa7nZrNpjqdThBPzgGZOjs704MHD4IEQjQYq1u4JVXI0na7DQLsu9wQL9859iC4TqcTO7sQfsYr3bSG5DXMjXSzu+y73AgRjMGzKbwkwrMC3NZff02j0VC3260Qas9eODk50XQ61dnZmXq9ngaDQbhIuC84RBjPJz/5yWgpCYHnvMyVt28kO4Nrg/h7poALIh7Kyf3+5Cc/GUSS60RogHhS/kKdvnRjzfd8BF9fvj4pr8GdgEPB1xCBnxBhz7vg957H4Nfd6/XifhNk2el0KsGghCcyp176wrgRcXxd8/t6CQNlP1yHi1i+fli7PM+MB0Gonm/CNSA6cC53MbjLBccDY/T7gCOBsXueCR0lECY9e4O17GGTiUQikUgkEolEoor3LCgURfEpSX9Q0iNJB0mfKcvy9xVFcU/SD0n6ekmfl/QdZVmev9PxKHFgx9DJK+KBkx4cDZAKJ8qbzaZCbjg2xKOeXUBtPiSY3V4nMBcXF+r1ekEOIWZSNbMA8DNvqUepgpN5J5NOfBELIGCM2Qk2hJPjsnsO4fPcBs7lbRlpLem7yBA/F2M8VJFrYpxuP6fkwXMtJpNJzN1gMNB4PA7BAYJHa8TtdquHDx9qOp2GqLFarSqWe3ajIebsOnOsdrutVqtVKceoh3QyTu73o0ePVJalLi4utFwuY54IAGT9IFwVRRGiFcTZRY7b5lxSZAxwfi8HYF34+mYdcxzPP2D+IcG4eLybhO/Mcx5/hnh/vSTI1wPn93XF8VmzPpeezeFhpvzMsxQ8k4Ix8V+eO9a2l5fUszvqeSE4DiRVBBzEGC9DWa/Xz+Q6uCPEAyDvKp73Z3EikUgk3h3ycziRSHyc8X4cCpeS/qmyLH+yKIqBpJ8oiuL/J+kflPSjZVn+QFEU3yfp+yT9jq90IGrEyQ2g/R07w/WdckkRFki9OkSJMgF2nxEisK2zo4mt2R0QEEbyGR4/fhwZBfP5XG+99ZaOjo706NEjDYfDaO2IVdrr+b3sAAeGt2BkRx+rP3NAeCRlD55PACkDkCPmIG5MzanBvBGsyBgokfCdat4v6Zl6d87ngkU9IJO5pE3kW2+9pcFgEGUA7vLguOQXMAevvvqq+v2+zs/P9dZbb2m1WlXuP+IJu8/dbjeyMxCWKF+BlHsbT4gibQzv378fbobZbFax1fPF+kDoWCwWQVZ5re/cc33MK6IX7gPf+WaNnJ6exnw+ffq00kqT++vdI1zEOjk50WAwCCGCc1A20O12K0KBn9vFNg8vRYzw19PCldfWSzF4Vrlf3GvWFIIC8HagCCKIBzzjPMv8zPMc6oGsrEXGyJpyIYQ5Zc2uVqv4bHBBoizLZ8Jd7yie22dxIpFIJN4T8nM4kUh8bPGeBYWyLF+X9Pr1v2dFUfxFSZ+U9O2Svu36ZT8o6bP6Kj48vb0gVmcIHyRJUmQrOCkZDAYajUYRUufdD5w8kF0wHA7Dfu7dDCBcELiXXnpJnU5H0+k0sgHOz8/VaDQ0Ho81GAyiVpudaHavIdbsAkNi2UUntBEiNBwOK+n9uAew9M/n84poAWmFACJM+A40//YMBuaw3W5HHgHj9KwCH6+fF/eEZ1DgEiBDgfcvFgsdHx+r3++HANHpdDSfz/Xyyy/r4cOHGgwGQUa73a7u378f1wRBfPr0abQD9NA+hBZaJHY6HfX7fQ0Gg3B7MB5aQR4dHcVcQ6KPjo50enqqTqej4XCop0+fxhzSvYG15O4RFwY8YJE59117D4pEtPLcBd/dPzk5ifp9SmtarVZcF2uRHXwcEJ7NgUBz/XxW1ifjhFy70OQOCy97kFSZdw/y5Po47/HxsZbLpebzufb7fQg+m80m3CeSnul4wbr2ThPL5TLm3AUOXCmsC64d4QdnhDsr6kIK50C44Nn3YEr/nLmreN6fxYlEIpF4d8jP4UQi8XHGc8lQKIri6yX9Mkk/Lunl6w9WlWX5elEUD7+aY7CzS2q9pGd2srGMAwglQXeQGYiOkw+S5CGr/X4/QhMhmtKN3RpyxPknk0nsdk4mk3BRsCPLTri3GaxfH8TR684hjuywI0ggmkCmOp1ORSSRblrnMf56rXi9/pvxQ34JafSWiAgLjINjeqilB+UhpnC/XJgpy1Kr1UpnZ2esE335y18OMujkFsLY6/XU6XRCFILQrddrrVYrTafTmANIImIBYpTfOxwJvr5ms5n6/X6FaCI8IeBwDzx3wAUInwv/HeuS7yHlbrmnVAdxjHWHkHZ0dKT79+9rMplES8jJZBJlGIgFXpbjIYfMmT8L3B8cFS48eUcUdukZL2IV14JTANHLy0n8meXZxMFAkGen06m0EeU+eqcTBC7ga4pyBN7r3V5YMx54SgaDryVcJp7J4e4Hng93WLwoeB6fxYlEIpF478jP4cTHAeXf+Nfq4pu67/p9R/tSo3/vz0iHu79hk/jq8b4FhaIo+pL+fUn/27Isp04E3uF93yvpeyUFgYWYs3MvqUIOPKxNuqkJh/Rin2ZXGtLgxMq7LkiqZCFICgIE6SNAEHItKXaOETA8bM/rxiEujNWJHg4BT+UfDodBgOqky4krx3QxhPmrOxPq9eWe5u9Wc0/JR4ipk0J+7mF97nCok2fGiLuCtpjY9w+HQ4gotHJEPPHWnQgOOCMI8GR+XdRZLBZRYsG8e2bDfr/XfD7XcrmMtcW9Zg76/b42m00QeLIc/H5SRuEZCRBx5pE58gwDxotwUC8zQegZj8c6HK5aotKpgeuGmHPN3O96SCTXx73gNYfDoeLw8OwGzyzALXCbOOL33I/huRjcK567drsdz50HpzIvPMO4NrgO5qYoimgj6/NMKYlnk3CtLoAwTz7vdSGR87jo8KLgeXwWt/Xu/zhIJBKJxBXyczjxUcXxyw+l++P4/sm3dnX+zeXbv+FtUFwWOv3vv1HF5XXe2P6g/V/63HMaZeLDwvsSFIqiaOjqg/MPlWX5H1z/+HFRFK9cK7GvSHpy23vLsvyMpM9IUqfTKSH9u91O8/m8snPN7rWk2O303WByFyCjkqLsAHGg3W7HDuZyuVS321W/31er1dJkMoksAekmgwAXAnX27FZvt1u99dZbeumll4K08T5P5b+eI663sks9Ho+1XC41mUw0nU7V6XTifK1WK+bCRQO3m0MGpWoAJAQOEukWcOYFizeZA176ASFkzr1VIudyYsxYcTj4GLn+7Xar2WwmSUGk5/O5ptNpfM8c0Q6Tsc/n89g1pqzi4uIiCK23r9ztdprNZmo2m2q1WrF7Xc8DWK1WeuONN7Rer3X//n29/PLLsTOO+OCZBexS4xbgmHWBhTFT3sDPIehOuqnZp1OCO1K8/IB52e12FWGE8FIyHwgp9YwIxAnml5wSxCJEIm81yvNGloO7OJgHL4Hwriv2ufCM28PDT1mvOGh4Xvg54pmXLCCeuCPhcDjEOHkv6xuwvusiQj0bwp0slPq4gHTX8bw+i4fFvXf/10EikUgk8nM48dHE0RWfmf4tn9brf4v/TfTelml5Uuovf/c4vj/eFPqG3/UFlbuq4zUdDC8W3k+Xh0LSvy3pL5Zl+S/br/6YpO+S9APX//2Rr+JYlV1RD8VjJx0b/GKx0Gw2q7TEw8rObuVoNIogRXa4fRdauiKHvV4vCNdyuawk31P/zzi63W7sWEPgzs/P1el0Ki0BuR7Ir+90OtFvNBp6+PChiqLQ+fm5vvCFL+jy8lL379+P8gevU/cgPncPQMog9hAxLOzSzS4sdnmEFUL7EAIIP5SqHSQ4H0KGH9d3h8uyDMcB+QNcP0LRdDqtEEbOBSkdDAaV8oPhcBi1+KwFSXEPJKnf7+vo6CjKZSaTiQaDQQhJiCA4A3idOzAGg0FkZ/i97/f76vf7Go/Hevr0qc7Pz7VeryuknPlnzrw8wLsQuKvCMyIg6tPpNO4LwgriwtnZWZB3z5Fgx5555edeCsMaZ94p9cGBQPAnHTUQoZg7L6PwPA3WsXcOQZTy9YLYJd1kf5CbQFlFfe5wKtQ7vJC5wLhWq1VcW7/fj9BL6UbgQ2gpiiLCWF3A4N7Uu1e8KHien8WJRCKRePfIz+HERxHHL72kz/1Tv0iSdDiW3quI8JWwb5b6ud/9y5/5+Td+5nVd/tznn/v5Eh8M3o9D4W+W9PdL+umiKP7c9c9+p64+NH+4KIrvkfSapN/6TgdyyzN/4NN6kN1HgvC63a5Wq1VlFxLCAtnqdDphm/fgOOzPkio7tF7XzU479f+Xl5dB6iAn7LDTaQAS5CQEsuS13l4zXpalut2uxuOxiqLQ2dmZJpNJCBOUb0De2aF1sgoJ2+12WiwWFXu3EzvO22631el0YpfereSQW88/kFTpsuE2dCeejM/r5b1sguPtdjudnZ3FHDBPr732Wjg/cCKwU9/pdKIFJALH6elpjNszMXAFzOfzIJXMoztbRqNR7JovFotYD4hUEG/uaa/XqwgvZ2dn4biQqh1HnNQ7aXUxhvvB2kY4IoSQuUAI6PV64Y5gzXkAIi0juQ/uFGHucZz467zkwQk7zx1iga8rf+b4wlnB2uDfuB48oNJbRvoxee4QCRFd3FlUD1gkbJVjkSXR7XYroaj1MiQXuihXkW6CNfk9x30B8Nw+ixOJRCLxnpCfw4mPFIq/7lv1+t8w1L55kD5Is2Yh7VvPChVf+o2f0MnqlQ/wxFfof/lSrf/kz3zg5/mo4/10efhv9fZL7Ne9m2Ox4+mlAxBYUvYhG+wEO2nGrs4uN7XaEBFvhec15R7kR6AgBAJCVA/780DC9Xr9jBVbuiJr7Ow7uA6IS6vVCnv/arXSfD7XfD6Pc0LmGKu3v/OxIL5AjthNrpdHOLHz7ASp2g3j+v4+E8rnmQye3cD18F6v3ccpwThI//dygMePHwfJ7vf78W/G5C0Z2Yn2PAvOyVyxC005gWccUI5AmQGuF+aDjgQQVNYT3UEo4UCAossHJB/RyR02vvvtDg/ug+/gu/vEMzdwInB/3Q2AU4H7yTzVSbgHa3IMf0a4RwSMIszxPne98CyxBvhy1wb3GLHAs1B4nT9v/hnAOiOA0gUI1j9rmevkfruIw7klhZvGMxpcFAMucrwIgsLz/CxOJBKJxLtHfg4nPko4/qu/UW9960DTX/Th/Q00+/TX5tybcUOf/PK3fMXXFPu9Dv/9z3xNxvOi4rl0eXi/gEBC9iQFQaA1HkQBsQDS6ASY97DbDHEgDd8t1R5uyA6uCxlOPtjp7HQ6sWvb7XZj173eTcGt3IyR+nHeT40/pMvD99h1HQ6HlZKP7XarxWJR6f7QaDSCFBIkCIljN5g5YtebMSKauO2b+eAeuGX/NuLFPPrr3HKPS4Sv8ro7gaTIt3jrrbdiDVCGwrm4dkh3cR3cNxqN4jWEeDYaDfX7/Qgw3O/3UdbhO87cC9bUarXS+fm5FotFOB0QMXBHjMfjCEtkjU2n0xAVCAKFoA6HwxAicJrgCoFIuzMEZwYui8ViESUIkkKw8vn0zA6uh9/72uM+eZYG4Yi4HsjK4Jmg7IhsEl9rXvLC8+QdPvgvohr3jmeCc7Je6lkFflzP0yD41Ltq0FbWO6OQq4CQwzwT2OpdLRCxvJuDi4kvgqCQSCQSiUQi8TxQNJr6hd/8ktYvfTz+/ll+4qC/8g8MvuJrjleFvuEvtaRD1UlR7rZv846PH+6EoIDLgF1a/s0OInXUWKD7/X4lSNB35yVFG8FGo6HRaBTdAiBWkGAnLhA7t5RLN+JAPUG+3W4HUYfQe002gMAS7kfZAaSVXeyXX35Z2+1W0+m0kozf7/cjPHE8Huvy8lKz2Uzb7VbdbjeOuV6vdX5+XnFTcH7IJcIH+QT7/V6TySTugSfae4q+k1EnxN6e03eBOR+E17tIQPC22210f+D80k2exnA4DBLtu+L8l4wKHAKsnXa7rQcPHujNN9+sdEfw8D6updPpqN/v6+LiQovFQtvtVhcXF5Kk09PTmPf9fq/pdBqk+tGjR+r1enr8+LGePn2qsix1fn4eZNWzJFhblM0gknGPJUXWA2uj1+vpjTfeiLaeiGfusMG5AyDN0k33D8/g4N54GQP3huePa+G5W61WWiwWz1wHx+O8LtS548XXPeUOPFOUJ3Dv/Fn0wERKjVyUYV17WCfZK3ROYT7JPuF5olTKRThyIXguKC9xB08ikUgkEonERxnHp6f6K9/3S3Ro5N8+jn271M/+n5/Nefim/8cXdPmFL34II7p7uDOCQrfbDbJalmXFtu4CQ1EU6na7QR5wMPCHP+TGsw9OT091fn4e53K4XdvJCXkFAIKMEOE755KCmACIFCSddpjtdrtSkw/a7baGw2F0KlgsFtpsNmHD7/V6QYDLstTZ2Znm87n6/X6UAfjOPCSKnXmvYWcecEkgziC4OGFEROFaIKL1Ugrm3ueHMgK3nxOSyb8vLi4i7LLZbGqxWOitt96KXW/uJ+TY7zElI7geGE+73dZgcKU2TqfTEJi4XieWrVYr3AfkF1CSgROA8/M+ylHu378f43bRar1eR1YE4YYIXu5YcBcH95+Si/1+r+VyGVkN7vZAnIHw1gMrPUQT5w/vx5XhGQUcAxeMlyHQqpKcCnef1PM2uFYXxFy84zooCSIIFFGIzwGEBRdCBoOBjo+P9fjx43AXICgidHAOMjQQxHB+4AjivnAvEQsRqshJYbyJRCKRSCQSH2UUv+Jb9OW/eXQlJrwYDa6+diikQ+PZnIcv/t1fp6PN18X3r/zQz2j/9OxrObI7gzshKPCHvNeSQ5icNLBr6bu97IJ6PTY7pRAqD7WrZwTUMwSwam82m4ql34mb5wtAJnk9x/ISC6/XX6/X2mw2klRpwweRZKfcW0B6NgECQKPRCOKEEEKZB20D3TkgKQQF5qpeg46rw+3n9br1ekCfuxogqQgLENzbdq65P+5UaDQaWi6Xuri4CNGF4EFJlXvsog5rwC3vdAlYLBbRlcHHh3uC+02tPteGmwPxgH8jhrTb7QiP9N389XodZTDz+TwcJMw/ggwEn/cz93zRFcOJtZfgMB8egljPuHABjPORQeKiD64Fxum5F4gQzBFzwTH5N2PwYE8vc0AkwJlAaUin04lnnGcUIanuSJEUXThczHKXEbkrlKFwDgQqPgt4D8KSf87w5SVViUQikUgkEh9FHH3rL9HTbx1+zXILPiqYf111vk5/xTeoMX218rOTL7ylyy99+Ws5rA8Fd0JQkBS1/1I1mI3dS3Yg+er3+5WdWmzO7Ci7vZ6dbAiflyE4+WVnH9LhQXlO1DwYkV3e2WxWCUOkJZ8Tt81mo+Vyqel0qnv37kWLRMjVdDqN68Jmv1gsKnZ+iGyn09FkMtF8Po8ykPF4rLIsI4+BHVm/BurDPaSxXloC4WSXmXlkfpzIQeKAz6eHbHI/JUWLTu7fxcVFnOPevXvR3QEy7t0QuC9kBvBadsO5v7TR7PV6evr0aaWkgpaczDOWf8a4Wq0q5S28lzFvNpvISGi327p//772+70uLi40m800m83CaSIpMhUoOYAce2AhBN6JfafTqeyuU1LhgaWsMcQJziHd5COwZsnY8F17XoMIw3UizngHC38/65zrcLHPyx9cdOB54VovLy81GAxUlqUWi4WWy6UWi0UINYgTrA3KfiSF8EbpC4IBz9R0OtV8PtdisdDR0VVnD57V09PTSngj88N1I07cVsKUSCQSiUQi8VHBUbutL/yd97R6lGLC+8Uv/IYT1an1q3/iVXWvXQuHWubeRwl3QlCAJLE7vt/vo3Zaumll5zuqkJ/j42OdnZ1ptVoFGYOgIzRst9sIODw+PtZsNqsQaHZhPayR2nnIjO/+QpAhHq1WS4PBII7LTickDys3u8STyURvvPFG5CNwnHv37sWcUOONJZz5oQsCNnrKHMqyVKvVUq/Xk3QjakD0cAZ0u10dHx/HDq50E3wI0fO2fICxdzqdIOQuQDBXnIt5JDSPOTs5OdF4PI55ms/nIbJQJsLX8fGxRqNRBDAeHx/ryZMnEZToBB1iDgkmuJHwzMlkUhGn+v1+3M/dbhdWd8/SYKedYEeAe4HyimazqYcPH8YaePPNN6P1I20pR6ORpBtRqNfrhbhDpxCyDSinQFBAQKIMB/JNSCEizmazqdj2vW0q95RnAgEPdwLXwrrlHroYNp1OQ+AhfwG4cMVz3Gq1osXrdruNgEecK3X3wna71Ww2i7FxL/iMKIpCw+Ew3ETz+bwieiAqdLvdeL93TtlsNrEmBoOBWq2WLi4u4jlgnRPO6SGWiUQikUgkEh8lHA0G+iv/x29VeZxiwgeFL33bkfS3/lKpLPRN/5e/oP3F5MMe0geCO/HX8n6/13w+r5BVdo7Z/fTWdpAQiAdp/hDwXq8Xu5zU10M2KJWYz+eRWF8vDWCnU7pJ1UeMkBRWcv57cnKi0WgUVncEhXoQIVb2zWaj8/NznZ2d6fT0NMIVyYbA6u+p9jgWIL+UW0BcfSzMIV0IGAf/Jn/AQ+fYvWXeIZOAe+Jkk5wGz2dwC747SiD7EH8PgcRZMJ/P9YUvfCF2mVutlubzue7fvx9Cyna71VtvvRX3RVLkGDDXWOI9Z4H2kKvVStPpNMiid8Xw/AfPkvD8gXrApRN6xCHI7nQ6jXFeXFxUOhN43T/iCgKNi0B0FNnv93r48KFOTk709OnTENikm8wExoWTxEs16sGlzBu/x62DcOWlLKyPy8tLXVxcRK6Hl+x4mQyvRwRB3IKos1583rmG2WwWLhNJ4Szwa0QwoBsGzoKjo6Moy/DPDQRJ5vjBgweVfJX5fF7JZNhut1qtVhU3SSKRSCQSicRHDkdlZiZ8gCihl2WpL37Pt6jYS90nBw3/vR/7UMf1vHEnBIXD4RB/1EMCIV+QHQ+Cg4RAenAlsAuPbdmPz+6tE0YIhFv2pZs2kux8k7BfzxZAKMBCjguBNpVup+a1HH+1Wuni4iJ2uNmdZncZUueZBhB6xudCiDsuEAeoSa+H6PE+siKYC+abuWfHvt414Lbkfq/V96BL6cax4HPm7RIZP3Py+uuvh2CCs6DT6Wg4HFZyEQjTc4HJwwpxqvT7fa1WqxAbFotFpP97CB/X74IIglVdaGFumSfKMtzyLymILBkaLlBxLBd7bhMVcGxQiuPdQDw0ENcI94D5pbThNmGJQFNKGSDvXtbgJT8Qd+/uAPw+1zMSWLur1Spe5/ef9c1ccZ8p8eE83AeeTdYAooykeGZw7UiK53y9Xms2m6nb7cZ963Q6sTbr7WgTiUQikUgkPmo4eeWRVn/NqypTTPjaoJAWr179zb4bHKn/q3+Zjv/UT6uscdAXFXdGUMDyvt/v9dJLL1UC/eo74JCcerq879J6CQOk2FvEeegayfb1cDuOSX0+58Luzc8hOYPBINrXedcHLyVwW/7FxYX6/X7sqkKicSB4cr/Plbcn5Bq9xAGBotfrhS3ciSfXSccDT+v3gDsnfLguyDFgLjj3bfXmTkw5vodXUrLghPXNN9/Ul770pbgfDx8+1CuvvKJOp6PBYKBGo6HpdBpWdcQj5g8Ci0thv99Hm1HWxnq91mKxqGQwOAlFtGEuuGeQca/tZ/fbnRi4Y46Pj7VeryOTgZaRuB3cxSEpQkM9UNOdE7gVdrtdrDW/b6xVLz3hPMwJ50Yk8vtLmU/9HvozRHkGjgzvGuGvY9yU0tSdI8wP4+P9rC3I/3w+D/HBBb2Tk5MQ8CiB4QsBoixLdTqdKPVgfieTSbRdpewIFwqfOQhWKSwkEolEIpH4qGHziz9xXfOf+Fpjc++gn/+7WvrGP9dReZ239qLjTqwk6r89aG48Hkd9N7vsTlgh8d7OEKLq5N3bSHprRAckjnwBiKhbwiFiCAqQFEoOILP37t3TyclJ1NF7TbkT08vLS02nUz158iR2UtmJbrfbGo/HWi6XFdFEUmUn1eECh+8A0wqQsbKT7oSMDAaItIsAkG3ev1wuKwF8vpN9dHTVUcNbG/p98GwLxt/v90NUIZDy4uJCjx8/jt9/3dd9ncbjsfr9vh48eBABnGdnZ7q4uKhkKiCkEIC5Xq/V7/cr1vmLi4sgt5wDpwhraTabxZohy8CvBzFmv99rtVrFXEFkEUvITOA1iApY/5k77gv3lw4RrFVIOMekxSitU1mb3uUAcn1ycqJerxfrDsHNQz5PTk60Wq1C9EFgYIxlWYYzg+wLMi7cPeCuBdY8osJ6vdbTp08rTptutxvXd3R0FCVAiD7z+TzEi3a7HWUMvKfX68XYabOJEMaxeX46nY4kabVaRbbCfD7Xw4cPK6IUc73dbrVcLr/yh1cikUgkEolEIvExxp0QFCAdgIBFbOnYsvlDH2t3vVXkbfZpSbET7W0ifVdyvV6H7RkSx84kRMPzELwUwZP/IWb9fj8s2zgjCAF0FwR1/VzraDQKhwEp/OyaSqqQzkajodVqFWKA7xKz++st+viiXAGXBqSLuYEkI1BQisHx+O9ut9NqtarcN97LOb1Lhrfjo8sDxBbhqNls6hOf+ESQz9dff13NZlOf/vSnY07G47EePXoU68bLZbjnR0dHEcZI1wVyNQiEnM1mEZDpHRiOj48jMJHSCvIFvATHa+u5xy4m+A48BBm7P7Z+nAze7YE1hsMFcs7csi5ZHwQKcq+8KwauFe4JZTCIBty/TqejXq+n0WgUzhBKLwCOA1wM3H+yPxDf/PngPjIXtHzEJbLZbKKrh4c6eseX5XKp1WpVyZhwMA++frkuykQQfbh2fkdo5he/+EUNh8P4eb3MKJFIJBKJRCKReF4oC+kL/+hfo0/98Qsd/txf+LCH875xJwSFoijU6/UqIXhYlL10ATEA672LBh7wJ90EzUFm2SV32zS7rZ6lUO9Dj8XdBQyC6xg75Hu73QY5HgwGlePSeYC2eYTcrVarIHtOrDy0jzm5zXUBmfJyEMbFNbD7CyH1nADEEt5D+QfnhIxKVyIMQgBjr6f2Q76Zaz+fpDifh+T5fR0Oh1H+stls9Oabb+rzn/+8BoOBer2eXnrppXBwsE4gnH4cMjComWcdUeKw2Wxijc3n8wgZxClCQGU9P8HLQ3w3nl135tHbULrToJ6pUc8J4T2QcS9VYS3V1zVrmWuAEDPH3APmAAePl1/Q+QLS7YIaY6q7e3CaeHkO18B7uO84BMiBoKTg+PhY/X6/EhiJqEH3CZ4v7wLiwqLnhiBUcI8QqriPu90u1iziGMICbhSOjzCSSCQSiUQikUg8NxTS6tFBl/2mPgoNyu+MoIBdHJJ4W094yBV/8CMI8HOImCfIQ+rZgWYXGjICUcEmTq061nxs5pAPFyogPBB5CCVtAbGkQ3rJRqDEwzMFiqKoECtEhpOTkyiroFQBolN3HtRJtaTYsfeUfCeLnpngoXrSTV4DYZGULXAuSLmTbbffs4PutelOwiGVkF52lOnKsNvtNJlM9HM/93MaDAYaDAb65Cc/qUePHkUniP1+r6dPn2o+n0dpDGQQV8N0OtVisQihgDaMOEywwCM2eLeRemCoCwNukV8sFpVARO4zr0f44R55zoAHGfI8sEYQstwZws88GNGFG9+151756z3McLlcxnV1u92K48bvLcKZlx4hKCDgsJa85MhLNgjWZD1TBoJrwEk+76ddJ+eiw4TPGeduNBra7/fhgLm8vIzcjXoAK894WZaaz+dx7P1+r+Fw+MxzlEgkEolEIpFIJJ7FnfhrmT/eCSekSwK/gwhBhvf7fZQXNBoNXVxcVIICIQsQjtvaI3pyvHRjW/cAPEj2brdTv98P0sGuNlZ5argRGiBC/X5fkuJ3kGbGTnjjbrfT2dmZGo2GxuNxpfyi1WpFBsJyudThcIia/tFoJEkVe7jvwtL60kUQCL9nRngZhrsx2L1FjBkMBkFayRmAbDMPiDIQPOrenRjjvKB1paQ4X7vd1ssvvxz39ktf+pJee+21cCjcu3dPw+EwcgSOjo40n8/1pS99SZPJJFprUorBjvN8PtdqtdJqtdJwOIwSFHa0Z7NZCCs4JRCgvASBdcNOvqRwMyAS4KxxNwxzwVpjDUH+EV+4f5B+ygN8Nx0yTumFi1SINmQO4Koha8GFNVwuEHu6lZCLcHFxURGfEBp8jSOW4dhwIcW7TSDeUXZydHSkp0+farFYRNcThBxEjcPhEOuFefO2mIhqPFeMn5yKyWSi3W6n4XAYJRcEqrLWX3rpJfX7fZ2dnWk+n0dwJc9GvQNMIpFIJBKJRCKRuMGdEBQgXvyRPxgMQiCAmLJbTGAcu/TsMp6fnz+z2+3lD+ykuvX7/v376nQ6mkwmeuutt4Kw8T7PGqAcAgIDIaRUwVtXImJIV2TTd7C5ThwZbk2fTCZBqiGkng3h9fUQul6vFzvxEC5Eg7Isg8R6NwvePxgMQryA7CHWcD7eQ83/aDQKQgoRRKxgrF6C0O/3Y/wQPYQjD9z0Vp6QTkkRzvfaa69Jkrrdrl566SU9ePAgavcfPXoUxPdLX/pS/BsHQbfb1Xw+j9wAxsm9QSRaLBaVDAqEp+FwGOSaFpZY4SG93W43hB/mX1Ls2N8WUOkZE57R4FkJzD1ikYdy0l2iKAp1u13NZrMQnTyEUJI2m03FEXI4HCJngrWxXC4rJTdkLjBWhCgX9VjvdC0ZjUaxfupdQNxhRPmDCyce5OmCAvODK8VdL8wZgoY/i+SYSIpSFrrFMLc8I+PxWK1WK7I1GH86FBKJRCKRSCQSibfHnfhrGUEBcgHhl1TZcZUUAWvUUxPgRsr75eWllstl/Jw6ft9lhtBC3CXFTjW7+W5fZ3z10EN3P3i2gXTjuuAaPGgOYgixIgDQiaNnE1DqwA64W9lxZBRFodFoFHMIgcRKTn05TgHEB5wFTiC5VnaXuRbINDXpvV4vSLHfO69vZ7ceAu52fbe4e6gkYsloNIr7slgs9PjxY33uc5/Tpz/96ZjLbrerXq+n8XgcToPJZBJhlZQ3+G76bDYLhwJuCW+J6K0gKYNgHMy7dz/AeYF4gNsD4uqdMyDZnnshqdKyEfLNvSZzwvMtWKO83rMCcNsQRMn73XXipTyeScJ4WeOsc1/LXkrk+SZ0EWH9+PhvK7dpt9sxp5zXW2HyrACeMxfYvJSH54Hnjeulo0i9xARhkM8C5pU8BX/2E4lEIpFIJBKJxLO4E4ICqJMCJwAQVYjLbreLXcdms1lJgmfH3zs2kIdACzqs5hCgzWYT/enZcefc3tXBQ+YkBWmmhV09Hd53Tz20brfbhS0dC73b3Rk/ZJtUeo7JOSB9uAfYhUdYobyCa3ZBot5Nw3eRuVbfecflQZ0+3QsghOwoA+amXl/PNUkKZ4WfU7rpaPHgwQNdXFxos9no4uJCn//85/WzP/uz4Qzhy9sozmazSjZFq9WKkhU6PCAssYYgnaxBygd4f6fTifVFwCZwWzz3GRcAaxgRyQNCPfQRAsvr3dXAObyNqAtlHkrojhIEM8pvDodDkGUPGeWeO/nnHNKNwAGh5+e4TZgnwg25j97KlbEyL2SQeGtWrvO27hI8v3Uhx0UL3o8Yx9pi7fr8c689pJFyC0RC7kkikUgkEolEIpG4HXdGUGAXG2IC+MMe8g+RhKweDgcNBoNo1YiDgbpzXsvuM+URh8MhWsX1+/3o5jCdTjWdTrXZbEJscGEDccHT/SGgkirdGiBskBR/L++DmFPnXm/fyPkRTiB13rmBkoHhcBitEufzuZbLZcWRMRgMdHx8HCIAQgFkzS3q3sWAVoSSoj0mAgrWe4gi94pr8PsAaYPsI1C4O4HzMNenp6f61Kc+pbOzMy0WC52fn+unfuqnKiLFeDxWu93W6elphDQ+fvxYi8VCm81G4/E43BTb7Tbq5SG1dEdwK7zfU3bzKQnB6QLZpNYecsvcQazLstRyuYxjUSLh5RBeksPa8CwL6UagkRTZCYhDy+VSp6en4UjwDg4ELiL48Nzc5h5wtxDzxbhZ797JwQUvdwNQ7iLddKfg9Yge3pLVszncLQG8wwbjcacCYyYPAteGCxrMsTt/mFc+X3D54Jxwd0YikUgkEolEIpGo4n0LCkVRHEv67yR9qSzL31gUxT1JPyTp6yV9XtJ3lGV5/pWO4aTG660hORA0EvhPTk50dnamw+Gg1WoVHQC8BhsycHJyon6/HxkLbpuGUGCb991kdlqvr7GSrSBdlUi4RZ/QOT++28U5JqnzvAdSS+Ch7xwzHknPhBh65wrpZoeXWvCTkxOdn58HeZcUNfWQPy8t8d1u4C6RRqOhfr+vyWRSCf8bDAbRiQILfL2cwQWiVqsVc0wOBbXxkir5D5Bxchvm87nOzs70+c9/Xo1GQ4vFQqvVSt/8zd8cu92j0Uif+MQnIuiS+356ehprhI4es9ks8izYncbyTjlAo9EIAQFRwYWSo6OjSqgh9wuxCAK7Wq3ChcJ1eokMwZbMDWKPuwg2m03cTzIMyLNAgPAOF76GuIeIULgEvPzCs0r82cS140Ia1+vfsxZwk9CRwbMfvAzJHRi+hpnHeskE65QsCl//7h7xTArPWuG9rNN6ZgNz2e12YzwvUijj8/gsTiQSicR7R34OJ14UNH7sL+gXf/EV/eV/5GWVH4W+hYkPFc/DofBPSPqLkobX33+fpB8ty/IHiqL4vuvvf8dXOgC7855RIFVt0OwutlqtCG2EqFJygDWd3UWIAqUF9Tp0SC8ErNlsRrtHJ3N1CzpkmGMwZsjqer2OYDpIjbf9gwzxHrdp8x4XWJgHD4hjPMwZQHjh2ITSea2476i7pZtrczeGA1s94oGPC+u6l4pIN0IFXzg1mDO3mHswoY8JkgcRXa/XevLkSZzv9PRU4/E4yjYGg0FkKsznc00mk3B4EGTJ/G23W202m3BQ0C3BOyL4umTNeMCmpCCynqVB1wZEBdYU5/QMA9YBQNxgnjmuCw6+fj1LwMsumCPG4KTd15sLG/5fhACOxTGYP79nHmCK68LH7WuaY/N7HDlcj4/f4c8iogxjIAsDx059fnlvXTxzUYXXI7rVnRJ3HO/7sziRSCQS7wv5OZx4IXBYr3X0+C1JL3/YQ0l8BPC+NKmiKF6V9HdK+rfsx98u6Qev//2Dkv6udzoOgsJqtaq0eHRhgVA8dpT7/X7Ub5M74O3yID6QHog0x5rP59EmjkwGXtfv94Mgv12NOUTYuxRAcuotJD1Ijt1xSZXdVc9tgPzVd4R9V9br05204Xjo9/s6PT2NbhKII4gnHNtJsO8cc1wnm4g2zK0TPnd9cFyveYeYeigfx+L667kTfLG73u12w9Y/n8/15S9/WZ/73Of02muv6cmTJ5rNZpGtgWuFNqSTySTKDnq9Xjhd2Plnh5pyFXa7PcQSYu95HggwCEmIVogGtKr08geyBrw0hS9ef5uo5a4aHDFSVdBhznycvKbeypLuIIgpLjAxVl/3nLOeh+DCF2NBQCEMknH5vxmnzw1rgLXj4hRk34U45og1KCmcHPzOn8F6cGp9/DyHzNeL0uXheX0WJxKJROK9IT+HEy8cDge13jrS0S7zohLvD+/3r+XfK+mfkTSwn71cluXrklSW5etFUTy87Y1FUXyvpO+VrojAYrGo7Fh620RJYY+XpEePHmk0GgVZhNhJN7vobt8mABHyB3nzULbrMUVmAE4FiEm73a5YxCUFcSQAD7LILjrkFEJIxwRq03mPk2kv8/DgP3bE6/kN2+02XssOfd1hAFGl5KJuVWds7XZbs9mssovLGOtOCYQZFxy85MHzBbjHToYRRerBfTgDfCea0hUIf1mW0Ybzy1/+sv70n/7T+qZv+ia9+uqrevTokQ6HQwQxnp6eajqd6uLiIq4fQYFSFsoRyLM4Pj7WbDbTarWqiEFcA3kE3qEAEcJzIbybxWAwiGMURVGp9acMhHaevMe7TrgDgrmCMOPiqAsGzC1CEuUHntFACY7fPyfc7s7A3cO9gXwjRHi5D2NEUPCg1XpJj6+BzWaj4joIsy6mAVwjdO3wXJFutxtdPgiNpHWpO5O8pIpnizmQquUXLwh+r57DZ3Fb3Q94mIlEIvGRxe9Vfg4nXiAcFgu9+i/+SX35n/6btHyllFJXSLxHvGdBoSiK3yjpSVmWP1EUxbe92/eXZfkZSZ+RpFarVULILi4uVJalOp1O1DRTLgBh3263QfyOj4+j1WLd2QDJgHDgUjgcDppOp9FmsigKvfrqqxUizC73ycmJ5vN5tMRD7ICcQSIlVVom0rKRa6i3ofTdWumGvEH4IDucU7op7eBnCBPspI/H49j5bzabcW3sGENipZvSCHaJuWZIIITP2wIifCDYkJ3AXEMYHX4NfPnOMQKJ1+172QUBedjbCc4bDAZar9e6uLjQa6+9FnX7+/1e4/E48gTI3ZhOp5G5cHp6Wgl19I4XOFS4PzgNKJOgC0mv19Px8XFlbJ4ZQUcNwh1ZP7hMWq1WCBleznP9bMQ9Yt5xO1DCg8jiJTPexcPXFuvNMy8mk4mm06mK4qqTB3kMCCFHR0fqdDrhSnC3EM8A9xsRrS4Q+RwwXi+Z8Bai3AvOx/r0jA8H56f8xktNOp1O5D748YDnJjBP9XIHd2rcdTzPz+Jhca98h5cnEolEoob8HE68yPjUv/nnNf9bf7G+9G0ZppB4b3g/DoW/WdJvKori75DUljQsiuLflfS4KIpXrpXYVyQ9eacDQbKwvq9WqyAHkGGIzmaz0XQ6jcyDwWBQCbFzUaFeX8656DTADjO795RKeB02JBsy5+THXwvR9OR5FwC87SPjc/LtifK+awqpoluFlxlwLp83r7fHdeB2bs8vqNe1Q/45P3OK08LHyfziuuB3OCaYJ9+NdlGHMXOdLiBA7vw8viMvXe1SEzK5Xq81mUxCPHn11VdjXLgv3EUxn8/jmiDAvmvfarUiK8LbREIuIbA4Qo6Ortp+eocK5sBzH3gPXSXoOuIikmeI3FbS4qUCCDt1hw2vkW7KFbj3XHdRFDo7O4t1XZal+v1+RThgPTMmXzusa+8YsV6vK04eMg1Y014iggPD3QGcj/mlfMLnXVLluebaOYeX3Phz6G4ndwW5+OK5Iu6IeAHw3D6LE4lEIvGekJ/DiRcW+4uJBj/1hj5ZPNKXfs1ROhUS7xrv+a/msiy/vyzLV8uy/HpJ3ynpT5Rl+fdJ+mOSvuv6Zd8l6UfecRDX5AiCzK4wFut6jf9yuQxrtHd+uB5X5dhOxCA+kFHqzjebTbgcgNu32fGHrHlNu9d0Q8KcNHuXCieEt+3ke5YAoXbU93Mef52LFVjm2Q3n99j4e71ezHGdGEKmXACBaPsucr0rAXPAGLztpFRtNcicNZvNmHts627dr+8c1zMLKFFgR7zf76vb7Wq32+n8/Fy/8Au/oDfeeEOz2Szmzq+X9UN2hudjsO5YIwgRLlY5GcUNwrxCgLk2X7ebzUaLxSLOy7pnTbiAw3yQzyGpEtoJsaYExLMVmPd60KKT91arFS1Td7tdzAfHZc499LEefsi9d8GuXgLiggTjrmdR3PZM8Vpv28kz6c+Hizr+3NbDSr1tpYtWfiy+99yM257Tu4jn+VmcSCQSiXeP/BxOvOi4/Pxr6v+Jn1H3jcxUSLx7fBCJYz8g6YeLovgeSa9J+q3v9IaiKNRut3V0dJOMj2DgIW9u/2c3tNPpaDQaRemB12hjycaaDilsNBoaDoeRp8AONzkE3W5X0+m00n2g2+3G2Pi5Ey8XK7DDYwUnkd8DCGkr6ITFCaQHAR4OBw2HQ7Xb7TgmOQHenYC6cY7R7Xaj7IIxejkDO+OQ5OVyqeFwWNnR951uRIV6CB/3UFJYzd1u76/3MEgP9pMUYoZUDcP0bADKVCC3rVZL4/E4rv/NN99Uu93WarWK3XLfucY1wXpZrVYhcNBNZLlcqt/vx3XPZrMQobiHm80m5h+Lvd9Ld3QgVCFYcHzEHs7LfDDPXDMlFswJ5Q/dbjcCNrkvdQIMsXaSTEbIvXv3QlC4uLjQ8fGxxuNxpWUmbTJZmy66efcKfzYYN6KMd/jAyeFCFGuGYyJKQe5dzOK1CAl1wRDRxLMcECI8r4J7S0tQFxlwqbxgLoXb8K4/ixOJRCLxXJGfw4kXBvvpVJ/4v/5JffH7/yatX7r+ezK1hcRXgeciKJRl+VlJn73+91NJv+7dHsNDBdlhp76cgD3vMOCp891uV/1+v0K4nFhBSMgbWC6Xun//fpB0WlZOp1MdDgfdv39frVYrSA2iAsGOCB/uSCDkUboiUv1+v2LrhwTjXFgsFlGz32q1QvRgV5TxukOBgERJIQBwvm63Gxbzw+EQJHE4HIbLgvc7uaScgF3axWIRRI8dbK4Zkmn3XZIqv6NVo9fUQ649GBKyfzgcNJvNgnh75oOkIO6ITn6czWajTqejhw8fajwea71ea7FY6I033tB6vdZgMIh1wa44ggblDIhDTlDpyuDrZ7FYBBn3kML9fq9utxttKunSsNls4n632211u1chS3SCOBwOkWdA3b87VCih8RIHcjsOh0N0KfHSlrq7g3vDNeDuwMlCaOXJyYlms5mePn0a2R+9Xq/igCEM07MIyuusE3c6ICz4Oqk/s+v1Ou4zTgYvOfBQSIQTF5UQJi4vLyvPD9fLs+ilE4gUCBSe9cBnDGKRt4T163gR8Dw+ixOJRCLx3pGfw4kXHV/3r/6UiuNjFQ/u6Wf+sUcpKiTeEXeqJxqlD5KCdDnJgtB4jTQ7pgTd+W6tdJNV4GGIHsJ3cnIS4YSS4ncIHIyB42FzL4qiknJf381stVpqtVpBflyYaDQacU1OclerVZAh6sO5/uVyGaTKyzvq9ebUprP7ipMDQQIC7cF07NzzHnaU2c1nHr/SF2QcYuxhfp7uz3goDfBdbOa/XgJDeUFxnf7PsblXs9ksiGmv1wvnAfCcCO4hmRTuVODnOAacpHpHAe6/ZwIgeDEOz7s4OjpSr9er2Ooh98yBuxIoBQEuMiFqcW7fVa+3OvVOCvXMg+VyGYJHt9tVWZaaTqdRTrLf7yOIkvVF+OTbjYt75euHa6vnKiD8OWnnWlhvrD/O6w4Zfu6lHaypeumSl0H4PfFQTsp9+N3blSYlEomPDopGU+ff+StUvvBmpLuF5uKg3h/98Q97GIlE4j3isFhIko62W336j92Ln29HJxncmLgVd0JQ8N1gdtMhHfyx7+0dfdcQ0uTkFJLg4YP1IEIPyYOEIA6Q0g/5x3rtuQOQN8aA+OAky3MFnGRBsCE6kNBOpxPlHlwn5AhhAlHBa88hPYzByWa9FSGCA8d1QYGU/Xr6PkTMd47fzlpPWQbiRH2Hl51l5gUSj+Dix3bXg68PWoJyHbPZLHaquZeIApzDsxK8tMKzExAZvBTDRSgvX2AMkH9ED/ITcK14gCPX6R06nGh7TkFd8OFcuFFc4KDVJjv9XBfzwzG9K8N2u40gUgSB+Xwe9wdHjZejeAipC3q4ULj3OIxwaXAvvTzBS3r82nEQ8MXar5fXeD4CwoILdoyZIFS/Do7N84ALCCeQP9f17hKJROIFRlHo+Jf8Iomyp+aJnv7SMgWF54zmxbF6f/TDHkUikXi/OKzXOv7sT8b3/ZdeUv8bvlGStBlLu+Hh9jcmPna4E4JCHVi4ISaUB0AWIaOQYy8JwJJeJw5kJyAMQHYh/U6MqPeG5CAqQGwhpL6DLSlC6XBX4Jigvp9j834PhqOu3YUNarl5j3eJAE6+6Ojgzg6I+uXlZXSMcJcHZBmijs0ckkYrQ84Fwbpt55bdbk/2d/LJ7jQlBXQpuC3wEULL9fs8I/ZwjYvFQtvtVp1OR4PBoDK3y+UySgVc7OF6IM1eXuOlA9jkmUf+2+/3Kx0TfI02m03dv39fZVlGy1HWAi4RrolxMvccj/XP63BFuBPEwzsRMuq76h5IiIuAezydTiPXghIELwXhvID7564Fzod7hE4RhE96Z4l65gHPVL2FJ8+sC3He3YTzeYgr10U7We6vO4xYPy4S1O8Jr0NMQohIJBIvPo5aLf2V736gQyOdR4lEIvFusX/zTT36V96UJM2/41fp8a+8+nl5pCyL+JjjzggKHuIH8YFYbjabqLO/vLxUv9/XYDCoWJMhn71eT4PBoEJAJAXZRijg2Ov1Ourb2QklvwCiBamCuO52u3BS1EsdcAXMZrMIRKSG3oMNsZ5juYeMeemDCyIQM291B8H33VdaKdLNgGti59dDIZkj/k2tOqSPwErGD1l25whkEEGH7xFrvAUoQs5isYjXkO1AqQW78G6tHwwGQfI5L/MCOSV08/LyUqPRqHI/3EECIWZHH0LrmR3L5TLOyf3hOBDhsixj7P1+P8iwl9oMBgNJV0GS8/k8rtfFCl7LevcSE0otEMFYH7ze58hDSCHg7krw0gHW0nQ6jTBSAk5Xq1Wlw4I7HHBaMCYEL64HEYDnZTabRfcU7qk7TFzI8VIirsdLJnhWPYAR1wLrlXHzucAz4Y4PL7vwsElfX5QPuciVSCRebBz90m/Wz37nSIeTFBMSiUTi/WLwH/6khv/xiVQU+rnv/x/rspefrR9n3AlBAUIIQYCMQriXy2XsardarUjJ99Z+kA8nRp4XIN2UU0CKODfEBuLlDgInbxAewvjcqo1gwHE5v5c33FaTjRtis9lEtgDjcvLj33stPgKI18t7XTouDy+D8F1fH5OTKZwT7oo4Pj5Wr9eLOYHEeXtBCCa/d3eCW9W5r71eLwgmu9PeCYI59NIL76pRJ9UIAJBK5smD/XyuWAvMD6GF/X4/CLI7FLjHtFnEHUNnj7IstV6vY212u10NBgOdnZ3FPBN4SftIxABfj4565kG9JEC6KSXxkgLPAfBMBsaAY4ZxIAhBthEVOG+9xAYBB3GB8gnEgJOTEy2XyxgPv8cR5G4FL6Xg2TocDuE44vwIOu7EQdirl/P4M1Nfi96e0h0XLrQhRCUSiRcf5XGhfSv/4E0kEonngXK3Vbm74gif/pG5Do3rDZii0M//po4Ozfy8/TjhTggKkiqkF9JPlsJyuaxY8Nk5911EiCqiAtZ1CEJdVHCCBdGARFMP7sTZSQjgvCcnJ2Grh/TiZKhb+Z3MAog7JI/ddM7tAZAeHIcYARGqixweSOlt/5yMMS7O4WUeOCkQFZhbn3OO63PkDhMve4A0czwIKfOKCOBz5tfo4YJ+HYgn3GcyMCCnEHxyNjwfgjEjKngGgItbdHlwAUpSuFlcUKh39ej1eprP58+IZvXcCN8N904NkOjlchndCNypwDpnvfnc+785PvPrBJrnycuCeOa8rMGfFxemGC9ikF+Pr03P8+BZ417Wczr8Z7yHvAPPWPESidtKI9yh4LkU3srVn2l3LiQSiUQikUgk3h7ln/npm4qHotDwW36V9q2bv2nnX3/IrJo6Sqn/C0c6uVjro1BceycEBQgRJKLZbEa5wPHxsabTaQTJzedzdTqd2JWk9aKkIBbdbje6JXhone9KO/EiTBAiMZlM4rgQFV4LMfbMBQ9pbDQaYZGfzWYVe72TRC9lkBQ70OQDdDqdqOP23X3vYoFowa4+LRL5np183suOs1vu64n4XC+768w75I/SB8gypQouBLCr7GTTQyq5n5B93CZlWUZ3BoQUHAe8ny4HkHbPHUDg4JqlK4I4m810OFy1aRyNRrEW+KLkwjMZPPeg0+lEyY2kiiOEnXzWrWcqsFY6nY76/b42m01lLrn3CErMG44d1i/3bjabab+/alPp69AJuc8dDhZeS8kDRJp7jbDhpQcurEiK19fFD3fL0OKTeaAshFyG+Xwe5UUIX2Q/8Ox5YCdj4tzepYLrdSHDcxKA5zy4SMczibOI+XYRxN0KiUTiBcbRscrj/Gs2kUgkPnCUpR585k/Ft8XJiX7+d//1OtzShbs8KlUeP/vzjwOKUvrE7/9pHWazD3sozwV3QlBgtxACQxs/etw/ePBA8/k8CMFyudRkMgnS+ODBg0rdPYQal8J+v9fFxUVl973f70fGwGKxCPK42+2ia4Ak9Xq9IKDSjfghKQgy5MR3vdfrdYTe9Xo9SVeE/TbiIl11aPC2hJBQiB3XDlkmrBBhYTqdajAYqNPpxHj5r+9mu9UbQu+lEkVRaDgcxphXq1XM4Waz0WQyUa/Xi7aYw+GwspPb6XQqte/Y9SG1vV4vhIr1eh1kk+NBnnk9OQz1cEEIKfOIiMMuPc6FTqejzWaji4uLsN3fv3+/4iThmIyFe4c7ATFgPp/HfEiquFwuLi40HA5DCGMtsdvf6/VC5EKEcUGBForcA64XcQChajqdaj6fV0QU7i1iBfcYgg7hJkeE8gjWKk6U1Wql4XCobrcb4gzrw50nHljoLqDZbBaiBePyrIj9fh/5Gb72vYyDte65IFwDz4lfA6IDggQinTsSPAzSy5D4jEDQovSINcgzkkgkXmw8/e5fqYtfIknpOkokEomvJcrLS336n/8J6ejZ1Mb9r/xm/dxvad3yrsSLhjshKLAr6rXb2NRbrZYGg0HFZi4pSDS76oQ5Uq5Aiz7ImHdpgLj5Ob313Xq91tnZWdi02ZV3O7YTNYSP5XJZcTN4NgSOAwe7phBIL90gsd7Py/ERYHAYQK4mk0klFBHbdj2YrtlsqtfrRZChdNPxAEGH3eVer1cJIkRcgChCihkL3SQ8w4D3QBoJM+x2u5pMJhWnBWKBJ/N7m0gIK2ujvmtNiQbzQKYGhPnJkyc6OjrS6elpvH+9XlcyEiSFgOACFPPu7RA9FJK8gE6nUwkXZI69C4eXoPA61rfnWHjLRFwGCBUuZuEQYS0BL6nw7AUXgbyLAs8duRDcV5wCdFFgTXHtkiq5C16awvc+Jv+vl8t4CYSLCjhevFwDUQ0hyQNLfa268MRxPGsB4ZFr4Hy4cxKJxIuNh//VG+qcP9SXf3XGkCcSicTXGmQt1NH4C7+gb1y+UvnZod3Qz/4v2h/prhGtt470df/ZRIfF8sMeynPDnRAUIJIQNYjjZrOJuu5Op1Opu4aAzedzXVxcRB09ZQrYpp2osOMIEfacAbesDwYDnZ+fB0mkRSDEze3WkBd3DEDQ3AXAbq2HIDq5gzw5+fZ0fGrz2fn1Nnw+H3RlQAAAXCvHZsfZ3Q+AXVxe42SbY3jNPl/stNOeEncAbfkYD/eDAEes/E7wGEedkDK/uAA8R4A5QChhp96DOBeLhWazWexKQyYZC8dhDeJaYIcfeLaABxt6uYWLIP4+RBAnznXBDFLPGmKteI0/QhJCGq9jnuvXw5rzEhon97gk9vt9PHd8zzlxQDC3HlzKc1HPLfH1V1/vfm8Zn4/dn3d/PfPIc+95DvW1wj3hyz8LWOeeqcD6qgsviUTixcT+cz+v3qgr/erBhz2URCKRSFxj//RMenpW+dlxu63xt/wyqZDW9wqtH34UEgZu0Hl8pPFf2av8iT//YQ/lueLOCArdbrdCWgihk6TxeKxer1cJu4OcbzYbPX36NIiFZyQ4caL23sk+r+G9/BtxgDFMp9NorecWezoVHB8f6969e8+EBZIJQO28dNMek11n/s3PIUvs9rJD3uv1wtLOeyBZ3umA9y2Xy6hX5zWNRqOSecCc+u4uY2D8lF9IqlwDO9rs8ruoQdnG8fFxCBYemOflDNwrWnIScMicsOvvu8YuyHj5g6RwInhrSdwQdAtZLBZaLpeRk0F+BoQT2zsCyWq1qnTOcGcBYoJ3O5BUcRi4A0NSJSOAL1+bu91Oo9EoxA4PJ+Ray7KM83qugt8/P2ZdVIBIO8ivcHcIzxAuFcpRuHesLY633W61Wq3iXrqI4O0i60GRUrX1JfeS++C/Z93j0KA8w0UpXo97wcUEhDGeT7IcXGRzR0cikUgkvjoUe+kojV2JROI94rBeRwbD5a/9FXrtb7/ptlUeS+WL2vq3lI52hR792FrHn/3JD3s0zx13RlBwG7PXhB8Oh+jawM42tn3I2nQ6Dat3WZYajUbROpKOEB5OhxDgx+RYRVGo3+/r5Zdf1vn5udbrtc7PzzUcDuP1HuS33+/j/B445+0TJUXKv3RD7iHjh8NBq9VKq9UqCCPERlKQ3uFwWAk05Fy+I82uupN8fs/csbN9cnKi4XBYsfxDriFjOAkAxNBbKuJI4J7hSiBjwa3tzB9j98yBi4sLLZfLSjvQw+GgyWQSr2d3ebvdxhi81SZCEKR2Pp9Xwjgh4hcXF7EeRqNRJUPCuyFwTV5iwFxLChGB+7dYLLRYLDQajWL+WW/cM+6vpJh7D1b0LABEDMi+78wvFouK3R+BiOeHufLdeHfQeJtS5o+8CvImuGau9/LyMuaWe4x7g/nmWZ7P53FeRCgPOfVSC9YHjgcvpWG9Ag+/5Jn0bAUvl3AXkh+P8yF8kH+BeMb9qIsuiUQikXh7PPwz0uCP/PiHPYxEIvERwMl/+ZP6H/3XN5umq9/wy/XFX/viBux+4+/5nPZvvfVhD+MDwZ34a9l3Lfmv12lDTJrN5jPuA+km1G4+n4dtudvtqtPphMuAnXKOzU7+5eVlkHrIBzuVRVFoNptpuVzq/Pw86sd9R5ad/fPz8+gm4aIA4XW0HfQOBR4s6DuhCBKeaSCp0g6T3V13ObCbyzV7PXq9hp5xsDMLyUPQ8R1uSC1ZBbg7IOAe6ggpheT1+/1wY6zX68qYIcJ0lODYCC+Uukyn0xCFut1u5byIIN42EDEHUknpjNv0mdflchmCCGN2xwZEmJ35OsF2kQbHAOGa3H93TUCYye/wkgOv/5/P5+G+wBHgDgNCLBEkJFWukRIZzxhgjXsmh4dDegCil6dwz7yUAeGDdpmUuOAG4nnjnnu2COPACVR3UABcEogGXrLk4N6xzrzsApdDvcyI+cZRQmBmr9erBIrWz5VIJF5MHP2VL+gb/+Cn9Lm/d/ji7nDdcXz6j23V+pkv6/KQYbaJROI5oCxV2oZS78d+Xt/08/clST//HafaDe7+Z/mDnyx078+eS5IO5+fSR7SU9s4ICvWQOHct+K4ihMVb2FGfv91utVgsKq0N2YXFOu/npLYasiUpCEmv14tOBxBKdxC4zR7itFwuYxcWMshuMiQY4kS5hocucu2QOogZIgGuA0+y984SvssNweU6PXugLip4Cj7nYKyIGYgIfjzf1WdXmeOyq9/tdqPchPsF6fXAQklRguAlCzgQcIOQ2+Dg+2azGXkJ9d1vyKmLJ5wfUclbKrpTgdf6GnFy3+12tVqtomsF4hE5DU7AWWsIQqxJDwpknnCD1AUnLzlg/Mw3a9NbKrpY4feKrgZe/lDP8HCRzcti+D3iEWUDrGfKU9yd4v9lHhGG+PJsB47jz5y7Ofg84P575wu/b/Xr5pzu7mDucNd46GkikXjxsZ9OVfz0X9K9/+GvV3l8nXNzJJ1/c/mRDv/6WqL1c2/q8vU3PuxhJBKJjyj2b74pvfmmJOn+N/8qbfuF9i1p8k13i6QfbwqN/vLVv+/99ESH/+FnPtwBfQ1wpwSF+q5h3R7NH/2E0EE8vAsApI4dfkgqxI7zQVgQIpzIn5yc6PT0NJL9sawvFgtJioBISDXWaKzgkCr+S3kDuQuM1Xe9PXAPGza7+2QwUNvPbrWTbq8153eLxaJic1+v1xoMBjG3nMdJK8cnM4D5RyjxHW+/R07+Iber1Uq9Xi8EFgQKrhfhgfwC5pZ5PByuOl10u91oYUg5h68ZxiFdtfnEKSDdlNO4hd1FFemmfIESA29B6g6S+rnYaW82mxqNRiEqISwdDodwPzi5Z3zs6CNiIZogoCEAeRmQl2O0Wq24hzguGL+LQbgscLwgmng4oQdMMm88j57rwRgYMzknx8fHIcLhKECw4fgeAsn8ey5FPWMD4IDgPvgxXXh0MQFB0V0frG0cJtyjugul7tpJJBIfDZSXlzr9wZv+6Efttmb/h1+mMh/154PD3fqjPpFIfHTR/+EfkySdvPJI89/+aUlSeSIdGh/e59DxppAOUuus0L3f/yclSR8Xn+udEBQkBdHzum8IoKfrIxZACuvdDhqNRuQjtFotHR0daTweB0klK8EJjKQgrLvdLnbJe72eut1uEF8Ive/oMgbq15fLpS4uLjSfz/Xo0aMYF6GA3vbv+Pg4yCDWbg/hIycAcnh+fh7iCGKFZwb4bj8/d5s/19fpdGIOsXpDfr0shLKR1WoVLTrpoIDQwS48wg2ZCLvdThcXF5KuQjV95xrRBvFhOp0GkaWlJOfAPUBJBISdecWJAYltt9vq9Xra7/dB7N3p4uvNSy/cLcDvfYfcwfjdWdNutzUYDIK8Pn78OHIKGI+va0oC6KbQarWiBAcXA2sR8Uu6IdeS4n3uUliv15VyAhdXmGPmFGKNgIEIhxjk4oqLQIwNYQf3jmc50O4V5waCBvPHGsfJw3zP5/MYr98z7i3P5nq9jpasODlwI/lzTSaCtxbls4b7yNp2pxLrKUMZE4mPLg7rtb7+n/uxD3sYHxlcfkStvIlE4u7i8vU39Ol/9rEkafYdf4Me/6oPbyzf+K+9pssvffnDG8CHiDsjKECaIDHsvC6Xywr5g8DgUvD3O9maz+dRosCuY7/fjyA2SCRExgnd+fl5JfW93+/H7jhlFe12u+KqODk5CfIC8T07OwuSBpHx+n7fUa0LABBEyD8iBKTH2yZyHXRVcPLmu7AEEvJvBAQnmt5NgO4B/j2iyeXlZcwD9wchwrMj5vO5pJtuEJBYhBnKBRBsXADwNoDci06nUykfqHfsgFxyHhwRXsPPbjXwdYNA5BkVOAnc7eFlJzgsBoNBCCWbzSbWjHRFiOutIhGAWPedTidEFHcDkJngrhCs+zgkcHQgmPlaw4XjoYfMgZftuL2fcgaeA88MQexxt8x2u9VsNotnZDAYqNFoqN/vS1LkYnhHBi/jwRUjKdYw7gLPV+l0OrG+iqLQfD4Pl4/PJe+nRIrQVsQTRIXhcCip2qIUscdDOBOJxEcUSYITiUTixcb15/j4T/ysxn92GD9+49c+1OQXf3Cf8d/w76/VeDKL7/eP3/zY/j/lfQkKRVGMJf1bkr5VUinpH5L0lyT9kKSvl/R5Sd9RluX5VzoOJAqyg51aUqUjwfU5g2TUgxm9/aOHvfEeLPnNZrOSDeAWcN/x32w2QdwhdPVSBcZP5wmImTsGINsQVIieOyycNHlQH69jHAgKkHcvS4BQu+jgFnb//dHRkbrd7jPhgFyPE2Uv8ZjNZnF85gnXBHPsGQWLxSICCjmOlxvgJFkul3FcLP5Y933e2u127GJ7mB/zxDzQ0YG1wbiYO37ubhFIuq8P7rNfk5do+H3ivN1uV/fv39fTp08roYll7UOGNY6jgOwH3DLe8cHLM7ydKGPkeAhRCA1OsH2O3F3heSJeQrNeryvlO06u6zkGrC26URwOBw0GgxinCyje9QFRgeePLiM+X36fvbMH5/PyH9aOn8Pngvvk5RzugGJePP/hRcDz+ixOJBKJxHtDfg4nEh8uPGNBkh486Ks563xg52v8xde0f3r2gR3/RcL7dSj8Pkn/WVmWf3dRFE1JXUm/U9KPlmX5A0VRfJ+k75P0O77SQSC57DhLqtRbQ+LqO81SNbXdCY4H4bE7yvu73W603HNLNTv+iAYQKn4HMeLYEFDf8XXSxevqqfneocDdF5RiIBZIqrQrhPwjvjQaDfV6vbDNI1wsFosglR56x/Hc3u3dJOr3BCIH6T8+PtbZ2VmUPXinBC9NcXv8ZDKp3FsCM5k3HADkU6zXaxVFEc4HHw8/pzuB7/i7swJRgHOsVqsQblys4j5z7rp4xHm9ZALBycfEz7384f79+zHHlCHUcxv44n4zh5eXl5rP53FdCCKNRiPm3oUlz5NgzQN3r9wmwnkmBjZ/6SaIdLFYVAQFdwWxXiWFS4JuKy5aMeeMmeNRksExuEZaUDLPLrwsl8twzeB6Qfwjc4NnljWIgwjRw69fUsXJgfvC1/8LgufyWZxIJBKJ94z8HE4k7hCKP/lTGv3JD+74Gdt9g/csKBRFMZT0ayT9g5JUluVW0rYoim+X9G3XL/tBSZ/VVyEosCPrNd/sSvvuIuSrHqTnbSApE5AUtfS0SISw3Lt3T4vFIt4jqZJSj51auiGabu+G6LtVG1Lb7XaD6AAXFyQF+Wb87M562Uen06nshEOkVquVFotFJOxDGO/fvx/jOT+/EsCZBydtEKX5fK4HDx5EPbkTPhL1KRtptVrqdrt69OhRxbZPBgJCx2g0ivc3m011Op2Yf8gc9fp8jUaj2K0+OzvTarWKXWZyMCh14R6yiz+fz4MI43Cpd8DwMEnumTtCuE+UsbDTzb8RQrheyD6iB7kDPi/NZlP37t3TyclJOBVwFEiqdC3hfbQlHQwG2u12ms1m4XZptVqVdY1ThLXF+nNXC0IPa6zetpIyDJ6d3W4XQaQEPuIAYA4Q3Ri7CwKU/JBv8PTp03juvATH31+WpZbLpTabTdxrHAUIX94+FaEC0WA0GsXnx2q10ptvvqnT09NwwzQajXCbIOpwbu/8wLPH+OslSXcZz/OzOJFIJBLvHvk5nEgkPs54Pw6Fb5D0pqR/pyiKv1bST0j6JyS9XJbl65JUluXrRVE8fKcDQQhwE2A3hixD9H1X2hPevetBvbUgO7+r1SpcDuxY+m41jgOv6YZ8T6fTsFhT111P/XfiASFDBIGQERjH2D34j/Hwb79mL6mQFK4DrpedVmrFse+fnZ1VrvXk5ETdblebzSbmebvdqtfrxXV7SCOZDJxvMBhoNBppsVhEFwnIFwTsyZMnun//fhA6dtw9y8FdJjggRqOR9vt91OFTVuJdPRBaII+e4+COB+bUCTw7/b7jzLjprsA4EYg8N8BB6Qc5FN5NwNemW+nfeOONZ8o3OD+iAWuEL4I+Oae3ZoTs10tkPAej2+3Gz1mXvGaz2UTopj+DiBAQdoh8WZY6OzvTcDislPAgPNFi0stsIPKUxPAcIkAwv9wbSjncVeOCGqISYg6iCMIb64aQRdwK3H/WqDsYOG4drNUXJJTxuX0WJxKJROI9IT+HE4nExxbvR1A4kfTLJf32six/vCiK36crK9dXhaIovlfS90oKsu62cSfiHkJIzoF0Y5F2K7Nb9yGutGzkWOyaQlR997zehk5ShbQ7CXGixjggrZB67yDgTgav63YC7DXsXDP2a89t4DoI4YN4EiAoqdKmUlKQcwIo6a5A+QSCh5d0+C4x80Z6P+Tey1ToRME1+5wxb14mcnl5GS6UbrcbAZgQR3ajvdvAYDCIUgZCMjkHu+GIQb6WWGN+vxmnlzEgULD+uGfeXQPBA+LKOeprCacJrS8h4nRhYFx0LGC+EGOYd8QjiDllARBf1udtbgVfr3zvbTQJg8SlUM9GwMUxmUzCIVEXhTzvwUtVGAtzUnfCMIec30syWB8+L7eVHCGA8HN3kVBywfE8T8PbebIWbitLeQHw3D6L2+p+MCNMJBKJjzbycziRSHxs8X4EhS9K+mJZlj9+/f0f1dWH5+OiKF65VmJfkfTktjeXZfkZSZ+RpH6/X9kihKzUBQV2QL17AyQPogYx9J16SbEj7ySOkD927N0CzX99V9fJvqfPMw5KLzxIzwULJ0YIBt72EiLDuNlJ9fA5D2EknJDx+67s8fGx5vO5JpNJEDPvXEG3BEo+cAogEmy322c6G9AmEuLfbrdjp/7y8jJI53A4jPfVCZmTbUlhuT86OlKn01G/39fZ2VmIIZQAQByLoohkft7vLgnaNzL3EEgnvsyVp/gjKrjV3cWt5XKp0WgUc7Tf7ytZFZLi3ntnCtZGv9+P7hiSKmUm7jZh/bKrz3PAcRGmBoNBrOfbav29SwLX4OSZ58DPs1qtYozMJeUGdHGgUwrz5qUj6/U63AI4RVyUw4lA0KqkyLqoiwfA3SFeguDPpDuZWIfci6K46r6B4MC5gJdP8b2v1Xq2yB3Fc/ssHhb3Pp7xxIlEIvH+kJ/DiUTiY4v3LCiUZflGURRfKIriF5dl+Zck/TpJf+H667sk/cD1f3/kqzkeBOv62JUyhsVioeFwqMFgoF6vF7+HsEGgef18Pq9Y5Nm9hyjXe9JDwj38za4zyAviRVEUYfvfbDY6OTmJsgFs7k7mOPfFxUXssrp4AXEHTnrYLZeuBAQyJLrdrkajkS4uLrTdboOAQ64IFizLUvP5PMLyDoeDhsOhut2u7t27p7feeivmjHFLioyF9Xqt8Xisk5OTiiW93+/r0aNHUaIA+Voul3HM4XAY889YTk5ONBwOY6cfuz8Evt/vazgcRn3+arXSbDYLIafVaoXtHgHn4uJCq9UqRJeiKOJ+ID54iQTrgPvlGQyINy4aLRaLEIRGo5GGw6Fms5lms1kEfg6Hw5gD1h/3FpcFBNjJOrkOlF0gHLA2eDa4R6ybwWBQeU+9rIGAROZZuhEmOKcLcv1+P4QE5lxShayvViudn59ru91W8hS4bi994D3MAXDnCyU33MtWqxXPVT1AkmtDCMM5s9/vIzDUnU6bzSbKdyRFeCmiIwIkwofnb7hocVs5xF3D8/4sTiQSicS7Q34OJxKJjzPeb5eH3y7pDxVXabY/J+m7JR1J+uGiKL5H0muSfus7DuI6XG21Wmk+n4dFGcI+m82CWDebTY3H4yBDkBd2KnEdsLsNKWG3EqGCnWvIjIcVSjet7bw2HqdEp9NRo9HQdruNMgtvfwdB8e8Z/3Q6DcIKqYRkeoeI3W6nyWQSgsdwONR+vw9XQlEUlTwE3Ai9Xk+DwUCdTkfj8Thq1t2STzvM4XCozWYTLS7n83nsVmNBv7y81Gw2q9jHIXm4ASCHjBuRY7fb6d69e5VOApI0nU7V6/ViTlx8oaRCugn9Wy6XFXv7ycmJ+v1+uDcg8ZvNRm+99ZaKotB4PNZwOAxHhQf6eReP+XyuwWAQu9js3gPcCezc7/d7jUajcGfM53Mtl8sg8nzxM89M4Pje1hPhgXvLnLsYwHV7S0ZEAHb+3WlCyQ33pN4tw4MoJUWWAvPO69frdYWsk3FBmY23AXXnDveT8E3CJBHb/Dlj3jwcleeuTui9Y0W9jIbjUUpCpgJC3n6/V7/fr4S1umMDMQGxst5V5gXAc/ksTiQSicR7Rn4OJxKJjyXel6BQluWfk/TX3fKrX/dujnN0dKRerxfkgjA3ADFYrVZar9eRRO8uBYgGBMBr0rHzQ848twB3gJdOsMsKWYMAQjQpG4DQQoh81xdS5qUNCA+QJ7fFc2x2pSF9kLp2u10hxuzscs04ORaLRQT3dTod9Xq9KPdgXrkWgvvchSHd1NdD1tmhRwThGHy/Xq8rJQK0A5zNZur1epV7ifgBPDiR9zJn3mkBQYLr5tzj8Tju9Ww202q10sXFRawDdtEZp9fTY7FfLBYx72RQOJGEnF5cXMQ64Z5K0nK51Gw2C0HIuz6wXup2ewi3tzJlPJ4fwvqAQOOIQKCg+8Z8Po/nh+vzrhN+f/g97SwZM8fi/vm53O3DzyVFKQFr3Y9fJ+zdbjeus14O48+XZxh43gbv8Zag/nO/Rp5phDEXB1jr/NdFMlB3Dd11PK/P4kQikUi8N+TncCKR+Lji/ToUnguwqLNDWK9bZheeGm8cAm5RRlSAzGP5Z1eZXUs/p3+5NdwDHiHhHsyIS4EOBuzG81qEAv6NyIC9vtlsRvcEz3moB0OyO0+AJDu9iAMQLggs7SS9JaO7GNih51zldZcCF04gWlyrd2igu4DXnbfb7RAtXJAgY4DxMBeMnXmhFabvSnNNEEcPGkTcQUzp9/sh0tD5AIEA0YGcgHa7HTZ8d0Ysl8tYN94BgK9GoxHr7/z8XL1eLyz/tF7EdVHPPWAeKfdgDXrXC0SKdrtdyatwogwoKzg5OdF4PI4ykHpmAWO47RisL1/f3gkEAQs3DOuZsg2EDwQMjk3HBuaV1wJECX9ufEy3deHgXvk68JwTD3J1hwOfBwgKLlKenJxUchzcKeRZJ3URJpFIJBKJRCKRSFRxJwQFSZFjgEPBw+56vV7Fpu7EXVIQPkmRL9BqtcKq7k4F/gsh8rIJL1GQFKnz0lV+AWQOogixxApOGz8IGDvT1GwXRREWcCeGEN3FYhE15pCh8/PzKEl4+PChRqNRuB1ms1mQq06nE4RXuiJdL730Utjid7udZrNZCBiQMer76YRRD/lDHIBYQtABFnPEAu4FuQlPnz6NecI5gTUe9wVgx5icCElRvoKtH6KIqHR0dKTxeKzlcllxsRAWWZalHjx4EDvWw+Ew1pcTUXax3U7Pf5mfy8vLKEN59dVX1Wq11O/3dXFxoadPn0YLS0Qjz0RgXXD/mVuuGYGKeai3i+SLsU4mk0oWw2AwiHsEUYfQe7cOnhF+hhPB3QhHR0caDAZREkJpz2AwCKELUci/PHSU+0eYI9kI9+7dC3cPx+I6EfG8HWrdLeKlM9x/Xzd1Z4Q7FRDhWHMEcVJeggjIGrstJDKRSCQSiUQikUjc4E4ICuyiNhoNDQYDTafTZ9od4lzARk+QHWQCYgFx6Pf7GgwGUeteb+1HkCCignRDJLCuO1mCpDnZJ6cBm/xkMolaeFo0SjduAIhcu92O3XvpiiQxVreCHx8fB1HGmk13hX6/HyKGB1OSOUFQJOSWvAPCJf17z3tgTpgndzTM53M9ffo0nBLuEqHW3ueNeYaYeytExoSYArFzsYe5brfbWq1WISh5GCBOhNFoFOvpzTffjFINxn56ehpCBOUjBDFC+CHVh8NB4/E4xA9IKNexXC6jxAABazabhUPCnQpu3+cLAUG6ypzgeBBddvKZs7qYwO4+gZGQc1w+EHXIOePknnheBcLWer3W2dlZiHGsH0ocVquVOp1O3DsCOCXF6/3Y7h5yUU5SjBN3jIsZXK93LvE8FBcUEOg4p5cmuePF81A8OJI8C4RDngv/LKl3z0gkEolEIpFIJBI3uDOCwmq1ClIKkanvUvKHfn3X3Fs6SgrSBcnG3uyWfUnxfqmaXYC4wXggaLzWSSLkBVIN0XMSxDG9pr7T6QRp4ee4BLz+Hcs2O+ivvPJKCAqdTidIF20emcuyvGqLef/+/RAilsulFotFheBz7bgqnPhKijBL7PTkKfhr6qF/WPuZB0g01wBhbrVaQb4RKOjC4PfdwyrpPIGzhDE0Gg11u12Nx2MtFosIUVwulyESIQrgHuEeUh7jghQ755RLeBkMohEZDwgcXgqA4FSfT+kmJwKiy/ywjn0uEdU8KJASFzIhPLASccl31nleECW4bu4dY6crwuXlZax9QkwRMRBZcGz4mHgWeSY8h4DjzufzaFfJPfHyCEQkgLCIg4F5qbfK5P74Nfv94Nnl54yXOebzhhIXUM9WSCQSiUQikUgkEje4U4ICZIidSqlaDw2cfEC8PaANyz3heV7W0Gq1Km0B3Y7OWNjF97r0fr8f53Zi42QNIscuqNd313duO51O7LTyGoiZ193z39VqpcePH6vT6ej09FTNZlPdbjccDJBUrh/yR4J/r9dTv98PgcDb5vlOMiSQOYVkMW7KDiBizK1nA3BcduF9XplrRAQcA9j3i6KITgIu7nB/lstluBk8qwLnR7/fD0GKtoTkUHiLQRcJvASA+0YXBNYN/0UkoZQGgYTj83sXv+rdCig1cNcDbgLWCO/18gHWGCQboYw5qIsL3imBNY2o4NkK3GcyFXi+2K33No9ezuPOIX7GexEu6ATh2RC3rXkXVCD1OHRcBPGyBhfoANfjr2HMLvS4qMPrEb38OIlEIpFIJBKJROLtcWcEBd8592BC34Hm927zZrfWcXx8rNVqFe+BtJDR0Ol0Iq+AtH2IK44AOgOwQ97v94Os10UFCBXv93BFXuPlG+4G2Gw2MQZaKUKkPBhQki4uLvSFL3xBi8VC9+7d02AwiFKMxWIR4+acT548Ub/f1/HxsYbDoe7fvx9iC69xx4DvWkO0cExwzXRFgJTRvtFzGSCAiAoILk5GKXkgOJIAxl6vp9lsFjb7siw1Ho9DZKI1JAR3MBhUBJB+v6/xeFxpJYk4sN1uIwTS1x73hfwA6v65RsYMwWe3Hss9woivJSfWHiboZRNe+lGWpabTabye9U3gJy4Yyg3Y6ZcUeRU8D4gfrDFfp4h20o1TgrWOWONijIsszBfru9FoREnLer3WcDhUq9WKe+PPUV1UoNRgOBxWRLf9fh95BpTrEA7ppQxe0sC1cy2sM8QDn1Puo5c/Mb7b8hkSiUQikUgkEonE2+NOCAqSIv0fcgjJZdcT8sNrIYmSKrvL0hUZwOruie3sjHe7XfV6vSAjtGJk99pJKESZ90GeIPJOtiCL7jJgbJBsyCfjQVCAbEKcIe4cg3INwv9ms5k+9alPBRkty7JyzZDbN954I8Zy//593bt3LwQBXByUakAQPfF/Pp9HfsFmswmL+mq1qpSV+C66kzjaV3pmAtkOft8QN8bjsb7hG75BzWZTjx8/1nw+12Qy0Wg0Urvd1v379yMokPILxAjPNBiPxzo5OYnyB0pD9vt93Efu33q9DjcFRJ5MAHIxHj58GPdhtVqF6NFutzUajSLDYbFYhAPG1zZz5aGfno3BusU5wLOAOIAog/DR6XSCaHMdrFnWOeUJnM9dKKxjDyr18hx3k3hpDufz6+Nn2+02XCb8nmfXHUL8jDXkrgLKFDg3zhNve+qiGSVMnJO1wHPAfeSciCpehoLwwXPupRDpUkgkEolEIpFIJN4ed0JQgFDUbd6QIic9wNsuQsggznR38OR2T2yn7aPb6iF9nJdjQFIgSBBtJ4Ps+Lr1GkBu3G3BMREW6DjgFmxqzL2tH46Ew+Gg6XSqN998M8ImvY7fd8LX67Wm06larZYGg0EIApRR8D6EhdlsVhED6GJxeXlZEXE4B+SZOfKyDe4npLDX62kwGMROdn1nmF34drut8Xgcu9i0gex2uzo+PtZoNIoQxM1mE8TPSyAYE4KPlyNQ9uHEFOeJOyj4GQGaOFYajUYICmRlIFJ5CYMLTC6K+Xrwdce4WeteMsEaqO/A+zy7GwEgQvj65f5xTod3SeBZgVw7GXfRjPf5WqWjh4sG7hBgjnCWeC6JixZ+P71MxecHVwEZDjhNCFmUbjpq+Nx4mZS7olx0SSQSiUQikUgkEm+POyEo+I4mZAUy0Wg0Kv3qeQ1kAvu5B9zhMICwej25dNNtAFEAeze7yPXSh/pOJdZ+z0kgBLFup/esAsgMIkOn0wkiU7esS6rUvBOER8jkdrvVxcVFRUwgF0KqdlpgR325XIbzgxyA9Xod18x8YfXn2Lgj2BGWbkIs2UmXVAk9hOh5ZgIZB8PhMMIO/V76DjVdKM7OzqKbQFmWGgwGUX4iKSz6XDMdK3z9ELLn9v36XLOGPAyS+0zLTRwk7sJAUEAA4jyLxaJSUsDYvATH3QD+va9VF9E8TBBxwZ0DngXCubhmF7t8R78eGOlOAb7nOF724o4gfsZ9YB24S4H7w88946DuIvLnxD8PGHf9y3NU+C/3HUHSO1C4qMD3HqbpSFEhkUgkEolEIpF4e9wJQUG6ITluNXZiDynhtW6Tlqq5C9IV0aVNHbvsdYcAYYCQUsgsu+1eD+/hfRBkdrs9/d4t7Z6AT+27lzbgUJD0TMBhURTqdrtarVYxNsQRukFQEgGZhWRCgnwXfLFY6OLiQqPRqGLthqw3m00NBgPN5/PIHqCzBY6O9XodnQD4Oedz4cRT8v1+NptN9Xo9jUajCOtjBxuCSjkJYkav19N8Po9MA0QJdwpwDK4Z8UVSCCD1EgeEBN81534eDofo4EC2ARgOh7EO5vN53Bu6bmD5X61WlbIXBAVIN/eKOWJ334m6h13yHNQDRnE+UNLh5SoQdgQr37FHgIPQu5sCpwvPjLdY3O12cY8RVrxrBsICzwuuAY7ja8MFFa7ZS37q8NIL7jWZDV7S4KUcPGc8r8yTf2b4vOOS4bMkBYVEIpFIJBKJROLtcWcEBemG9LGLC1Ht9/uVgLt6OrsHxUk3XRHc6u07sRCgdrsdRB0iwi79gwcPdHZ2Fm0MIaoIBOxmQ34ZF0IFTgKIcd3mvtvt1O/3o57fd1Yhe2QP4DTY7/caj8fh2nj99dc1nU41nU7V6XSi/KEuKkhXwX3n5+chbkD42L2VrhwRhOSR4eDiwWAwCEeHBw9SdkAXhU6nE4F6EE7Qbrej8wRzulwug5hvNpvIBqAzQbfbjZwLOl0goJAhQfkBTgPm0Imu76y7O4FxcE6vy2eXez6f63A4aLlcajQaxfnX67XOz8/V6/V07969KMu4d++eVquVVqtViDZO1JkL1iZr28sLmHvPDqnDSwTcWYDrxJ8bCDPlJggcdecE3UpWq1VlPlmnrF/uLx03EAOcpHNNlI5wzZRFIOKxfnDM3Fau5OPlWeQZ9vvr88C6dscC99JFC9wJ3GMXZhKJRCKRSCQSicTtuBN/LXtqO/DsAUnRzs2FAQiAt8TjfZ6NACnjfbzO0/AhKtTl04HAU+8lxc4wJNtrsyFs9YA7xA7O5SF57KSzQ41Ygk2dIEPIKWIF3REWi0W0qURA8Z3VeoAd81hvo8druC6+KAtBqMBC7vXz0k0oINfR7XaDuHJMLwdx4ur3npBHjkX5g6Qo3yD8j9d6yCIEl9+57d3LJHwcThoho/P5PHbTEXBoYehulZOTEy2XS81mszgnY6sTVtwdiFcuZLgdnzVTJ/O8HrGE1/Nc+BokZJQxsUZwD3DvOXe9pIc15qUX9fvuToD6uHxd+P317AaeO47NsVwgQRTy8fkzRftRHEUIS/UwSH8ePGiSn/lzctu4E4lEIpFIJBKJxLO4E4KCdNPCzuG7s6Bup/Y68Xq7PIgVpRNOWFx88PA+0uTZZYecrNfrIBkQZMgeY5JurNOQFg/cg8TXxQ1IrxOp+u/oPkF5hWceUCZAC0Pmrm7Xxo1QD+NjnpwcYmt3QcEt9cBLNKSbbh2USZA5wFg5twssTqI5r9fGQ265/+Q57Pd79Xq9yGLAqeA19Z6V4CTc8x3IPvC1yP32nXJyNo6OjtTtduP6pasgUNpf+u42wgLuBO5xPfvDd9QZI69n3fj11DuLOAH2/ArItGeO8Pzc5vBxscvvTb1lI2P0khYXAT1nxI9PuY+HLXoeQl2YqzttPCMCtwXrhTnj2l2U8Xnw9QpccKi7WRKJRCKRSCQSicTtuBOCAkSXP/gdZAnUCTLk1IkEr/F2k173XXctIA5Qiy4p8gYGg0Hsrpdlqfl8XhEd6IrgQoUTInaFIZyesSDd7KRDuDudTuxg+y6pl1oQxrjdbtXtdoOwIiqQqcD11+3a1PFTsgDRhrjiVGB+GTNzxvx5az0XBiBtZBRQ3tDtdtVutyNjwAkgBJRyB0om1ut1uBQYJ+4MXBmMt9frRRkHYZMQRzIxvO6ezAEvcajPFWUcCA7spiPe4CBB9Fmv1xHciNiDo6MuAhwOV20hPcsB54gHLvp6Y/06fPe8HqJYL+FhDtjF57p4Znj+PIeDa+H+17s6uOjDaxBVvJzGHS7MKaIGLhB/dtwNwbONE4GAUH8O/fOB8gfPluCZqDso6hksnmfiLqhEIpFIJBKJRCJxO+6EoCDdtNnz4DkPioPcS4okf17nYWzsIlNbDzmBdLCLTStF3AY4BPb7vebzuS4uLtTv93V8fKzBYBCE0dP9IcaIB5ApAuAYGwIDIgXnZdx0fGB3H1IEYW632xoOh5IUxA2y2Ov1tN1utVqtgoT5TrAHRULIOY7v/O/3++hM4KJGp9OpENF6JwuOUe+mgLBwONy0nxwMBhoMBur1erFLjRCEK2C5XKrT6ajT6VQcJU7UG42GLi4uIr+AEgiEGeaI0gacCJDydrsd2RisF4QdLy2AkDYajQiC5H3z+TyEDI632Wy0XC5jLO5aoe0n83RxcRH2fLfbM/+IFQge7hJBIKu3Y/TSFXc4cD2IHAgjdQdAPYek3srz6OioEqLpc8o6p0wFUcFzEDwwkWfO80UkPROayHF57ignwf0znU5DuKFEw50Xh8MhXCucky4UOF04F+N18SxDGROJRCKRSCQSibfHnRAU2KksyzLs8uyeSgpSA6FcLpex6wu5cALlgX4QnnqmAC0hPU/Bd0YXi0UlwLDT6cQu8GazeWYHW1LFMcC4ITZ0TaAswUMbuTYPvluv1xVyxfv42Xa7jflgR99t85zT51FSjBVhhR1sSKx3J3B3BDvDnlfBtTtRYxcYAYD3QPoQFhAmmGcXe5gDiKznS0BG+/1+5BdAVBEDEDZc/IE88hqEEogzc+f2eCfJuCskRZ4C+Q6ERLpY5XkZiDzM136/V6fTqYQvIhDUbfa+8+4lQIgPPmZ/H/ef17EuvbsDogDn4T5RduKigpfr8AyxFvi5l/kgKvjvXBBkPjxTgefNhQwXBnD81NckjguEOS/L8M8G/o3rgrF42Y6XenD/E4lEIpFIJBKJxO24E4ICu+kEI/of8pAUyFC9ntxroyUFcYRMSQqC4O3o3ErOsf3cq9UqiCmkmdR83/2GREPYEDq8VptdZXav2WWXFCUZANLFeep5ChBBr5HHCu4kDRLqIXSUUDA+SJO7NDg388W5fY64Z747jiWdMhAHAg/HhJxDYt31wHVLNyGR3vGDeWWXGeLMHLptvy4Sud0eMaaeD+D3gHXiY+92u1oul1GSIamya344HLRarTSfz0OsQQzgnuPqQMRw0upOBCfiuGc8n8OfE9aml0XwGlwQdTdCPXTQS4dY7zyTzJ0LB7zfw0AZgx+nvuZcJPD15OvXn4d6NgTuB8QZ72RBhwh3c3hOxG63i2NyzfUMCf+cqGdbJBKJRCKRSCQSiRu8L0GhKIp/UtI/LKmU9NOSvltSV9IPSfp6SZ+X9B1lWZ5/peOwY4yl2ssJpGqIotv0+X2n06mQEXakISy9Xu+ZkD5C9yA8EDIP7HNCzW45O9bslvruO69jxxX7N2SITgDs5nNtEDbfYfcMCAg0RInro1OA7yjf1rmCOvLZbKbRaBQiCPPt19doNMIi7iQSwQG3APPvO9rcQ0nPkEBcHdKVCNPr9WJ+z87OnhEzpBtCzHwyHsgqooKXBXiug2dW4DhgV535cnKLQOG77h6miGgyGo00mUxC+Oh2u+r1enF8XAqsL47hZQDunuEZ4J5w7V5+wVzyLNQDCNmx5975tfsa8LKOesAi1+/uHlwmiG/uGuDYrB+u1YVBL2dgnoF3l2CufTw4K3gtIiDnwpXB+BAZvB1n3fHhwZT10gjmwINDX5QMhef1WZxIJBKJ94b8HE4kEh9XvGdBoSiKT0r6xyV9c1mWq6IofljSd0r6Zkk/WpblDxRF8X2Svk/S73iHYwXBhDDxR74n8EMCIFG+C+2J+vUdeMQFdqb7/X4IAxAtzg+BQnBgPOyoQ2ZoX8gxfYfVd7gZN0T47OxMy+UysgIgcLPZTI1GI9otsmt/dnYWAX4QZUSF1WoVJLXf72s+n1fIKpbww+EQpQFPnjzRaDRSv99Xu90OAgr56/f78fo60SKXoh6o56JIp9ORVN3tdicBcwbx2+12EdpIxwy3trurgnPh3EBUGAwGEeBIxgG5DhB4xnJbzoSvN8IevVTk8vIy8iUo2RgOh5rP59put5G30W63Y6ecjAR3Kbibo95pQ1JFBOC+8fOjo6NnyjZuc5+wa+/PD2IK64UxcB53aHAvD4dDpYNGvUTCxT7uN04NBBR3AXnAYz0YUbopTeD6PMARZw5ChZdhMI/M19HRUWR0SKp08+A8dZcDAqGfj2vi33cZz/OzOJFIJBLvHvk5nEgkPs54vyUPJ5I6RVHsdKXCflnS90v6tuvf/6Ckz+odPjwhEs1mU6PRSKvVqmJ99nA3CAd1825PhoiwI+m75JKCcLEzz+/cCs1Ou5Owoig0GAwqmQKUaHCeejkGP4fYeTjdZrPRZDIJouMhgpDyXq+nBw8e6HA4aDKZhL2e8x8dHYUYgBWf40Au2cH31pdPnjzRcrnUcDjUgwcPKiGNHmZJ5wjmqe6EcKGAnfqjo6MIivSSC4jvfr8PYcPD/tjhR9Txtn+ebVAPDGTcLuS46OIlH4gGjNN3pz0zoSiKcMnwmvI624Pr7nQ6Go/HEeC5WCx0cXGh8Xisk5OTyPmYz+dR+gBx9XICd2I4UXcBynf0/T5JN3kYiDUQZJ8frt3bjrLmGRcijZd/IKRB2lutVqUEx8sfmDtyPd5OLGG9uIBRFxC85EOq5i3wzCEKeKcNhIbpdFrJfKC0xIUYjsuarj8DXnLxAuG5fBYnEolE4j0jP4cTicTHEu9ZUCjL8ktFUfweSa9JWkn6z8uy/M+Loni5LMvXr1/zelEUD7+KY0UIH8GDTsydZEmqhAdSP1+vtXZbNuTDd9YRDSDbvEe6CYeDQBEUya6n5w24LZpx+ridHLl1n44JngHhrf+63a6Gw2EQHGrz+TfH8Q4IkCcIl+8Y8z6I8eFwqAQNcjwIMdeFM8KJH/PIdUImIeOdTieuDXDtOBC4HzgVWq1WlFxAGoGXJPg5vYNGPQ/A55zxer2+B2DeVnaAoOHElsDIbrerTqcTTpfFYqHValVp5Un5AeUSzDNCga9Z7n29raHfl3rpA8/L24UdUg7AvHBtPm+IL9KzWQF1UcLFHOaw7sThmtxBUb8eHyvH87XlbhTujV9rXaxDmOJ73EXeeYTr5jxe6uLzyty6m+FFKHl4np/FiUQikXj3yM/hRCLxccb7KXk4lfTtkj4t6ULSHymK4u97F+//XknfKymyCbxzAPA/6PlDH5IM4cHK7burHtKHKwBi0mg0ooXfarUKO3udZEk3xJUdYHbpsWGD+k6y79LyO7dSQ37cceDCRq/X08OHDyM8kBIHxBGujeNhz4Y8QdppbQjhXy6XMRe00qwTKj/ObDa79do8GZ/SEF5Pe0yECR8vLQsZHyISJL3Vamm9XleCKuskmrnzcpX6rjcChOdkOAH2a8CFwXu844IDoWM2m+nBgwcajUYhPtDFo9lsqtfrqdPpxFzX8zo8B8DXSD0/oD7nLgY4eUeUQgCjtMIFEZ4rBCWOg0jGGnEnB8fzbAfuI6KMr2dECXb9XbDx97irweed43GvmG9+79fja497ifuBtc7ceGtLF0JcQKgLCnWB6i7juX4Wq/tBDDGRSCQ+0sjP4UQi8XHG+yl5+Nsk/XxZlm9KUlEU/4Gkv0nS46IoXrlWYl+R9OS2N5dl+RlJn5Gk8XhcIgR4zbR0s0vpNvlutxut+7bbrWazWdjs3Srvdd/8W7pJ5ffOEYvFokK+IMSIEfVadXbyfdcTsMuKUAI58W4FvmsMCYVsXl5eajqdarfbRR375eVlWOh9953zIh5QX44dHwdAt9tVt9sNUrnf7zWZTHR5eRkCAMeB0FG+QC6Bh1YSmOfXiQNiNptFN4fBYFAh59vtNsoEEDskRX7EYDDQcrkM5wi5Cn5fKcXgOriPzCdk+3qdVdYV4oyXY7DOvPQGUYHzSTfdKiaTiTqdjjqdjk5PT3U4HDSfzyOM0cs5bnOTMM8+duC/Z20hPDipZ6y81zuAIF7wM9YDIgYlDpvNptLeko4j9Y4SnM9xm4PI80o8A8PPzbr1XAjmxdtyuoPBhTOfF3cS+NwhhCCYuLOD19QFEuBOoNtcGHcUz+2zeFjcezFUlEQikbhbyM/hRCLxscX7ERRek/SriqLo6sre9esk/XeSFpK+S9IPXP/3R97pQJAJ/rB3+zVkwMPfqGP3HUlJlVR7P/bhcAhbOuF4gFIByDAdCQg2hKTWdyzdMs3v2Rn1rgmMF3LGLjUkyIl3s9nU+fm5VquVNpuNZrNZHL/f72s0GgU597IBrz8nIPL4+Fiz2Uzz+VzS1Q40Fv2iKCJ/YTabVUogGBvH6HQ6FVIKcYSAQ769a8V6vY7QydFopF6vV9l9xqWAw8A7NEA2ES4gqPzed+8pN/AyDQSi+g4/c318fByBk263v80Gz7W5vR53AJkWzCvk2Ncv95Ydch+/f885PX/g+Pi4EsJINoJnDNQdCLgYcEy4YOI5AqxX7gPlAQRUulOm7j5wMu/PEc9avU1j3UXjpUW8h99fXl6q0+k8U7ri+SS4hXivt8t0JwNrleeBNUE2BnPGuR3+/W3r6A7iuX0WJxKJROI9IT+HE4nExxbvJ0Phx4ui+KOSflLSpaQ/qyt1tS/ph4ui+B5dfcD+1nc6FoTJg+ggPQgClC6wy++lB+yY83pvPQhI7/csBemGiEEGy7Ks5DLwGsbAeJ24ODF1azfBe9jRIWFe3w5Zgsx7bT27yJAiWkeyY17fcfWyEY4FUdtut5FVAAlFQGFH1scBEAs8r8Kt7PXuBd5NAWdBs9mslFFwrOVyKUmxK14vM+AYEFQvC/DdY3IeEGsIGqwTV3bVvfuF308/r4cOdjqdGBtjoQSGOaqXd3iZh5dbcM66kwbRgdfikHARwANIXYiQqiUcbu/3n/n33jWjXsJQFx3cUeMiFusUsN593O7e8efZ7yPzgRjCM85z62Pye4cTg2PfJgwwbhc/6mISr63Df3+X8Tw/ixOJRCLx7pGfw4lE4uOM99XloSzL3yXpd9V+vNGVMvtVA7Lsdm/p5g9/J98OAvDqZBPS6qQLwsrPETAgKqPRKM7pNmwXALz+20sgGIsTFXb3ERaWy+UzCf/13AiOAWmCeLs9HueEk1d3O3A+rm+9XlccDW6fp5yD17RarRAUOD7nRBTw9nzuFiBRn7aR7jLgup3or9drTSaTEE6w23t5gzsC6oQRAYHwQ9YOool3enASLEmtVqtSuuGhfr7+mFNvneg7+15mwby6yOOBj/UuJcyj76w7ufcSBn7vbhh/L4SZ7+tz5nPp7gJe720YXaDwOXHBgftbDzt0J89t3RJ4Lupjr5eBeMtOXBrc+3a7XcngqJc7vJ3bwB1H9cyM+vvqwuGLgOf1WZxIJBKJ94b8HE4kEh9XvN+2kc8VkG1IAzvXwHd3PaDR29lJN9ZrzxqQFAnw7HR6fTu19ZRQkKkAWfJuCNINgcZFQDAkO9mQQnaW2+32M2R/uVxWAg37/X6EFBIUCeFnPlzkcEcH112WZbRgHI/HWiwW0S7w/Pw8zkG2AiUK8/k8du/JbXBnBkGWzKuLIcwx3TOkGyLuO9JFUVQcENvtVhcXF1oul5rNZpGJwXjJyai7DRgb56ObgocdkutA3gJjcJdCURQRUsgxy7KslERQRkKJja9DL13gmj0ng9f6OmQteS4Fc4o7AfLrYhnjgMivVqtnQj0946PT6UTGBNftJN/zJliDXvbghNtJfx110k3pC/PDNdXLDBC5cCQwb4hDXL+HLfJ9v9/XarXScrnUarUKscbPwb1br9fhHkG482fOS0bqZSMuqCQSiUQikUgkEolncacEBbc1n5ychAAwm80k3RCy20oNnFRDULx0AfJ0m7X+8vJSzWYzyLA7D/ie8/M95IT3+846jgs6FUCOfDefFokIJpvN5pkcgHrpw2QyCdINQYK0e0kB9f3j8TiyGSCwq9Uq7PEEWR4fH1fKH3AjsIvNmJlXr/NHIOHeSDfCEOUo2+023uu74DgkFotFBDWuVqtK4GL9XjP/ENBOp1PpBgAhZWw4BxAl/L47Wfb5hLCzXnBv9Hq9IK8IEe6AYJ4QDTgfAoW3MkTMgdwyT15G4WKFCzeSIpiU8eHM8KyDbrdbIc5e5uNlBfUgRsQg1gnH88wBL++pg+etTsZ5dt0lgRjkP0cc4TW4EXa7XTiZvPTEx+FCAHPnQZGMz8s1/LnkmfYyqkQikUgkEolEInE77oyg4JZs6vYhFpArJy9u+5ZugvAgM5AVSJLvOiIyQJBwJWD77nQ6sQNcL6cAnIf31y32dVLDDjEEUlLsBvv1+3n4mZNlz4JAQHBSD8HktTgCIL/Y2yWFSwEy54LLbrd7pi2g7/Bz/bgt+N4zHJyAItJw7dxLshT4QgQiHJN76LkO7LS7K4I5Yecbck6HCzpHuCjhdfx+n3q9XqV8gPvirhCug2uqt1Z0FwxiAa/DEVM/hreC5DrrWQNcN8+Grykvm2F91EsR6q4DdwB49oKPw0uHvLMI13nbsT0nBNSvAcHJ1wfPopeiABdGcAN5e1HPdXDRwctV6uKjC0G+jsmLeEFCGROJRCKRSCQSiQ8Fd0pQgCBRAw/JJaDOd0XrOQuQM69rd8LvhIlAPRwCZVmGdZrdZW+F6OdhrE7sJEVnA17L66RqWzoXEzqdTuyIQmB8PiBLLpogKEDeuE52vj0bYbVaaTQaVUosILYQRm/lt1gsKufxuv86qWTMnutwm6BAXoSLIrxXutoJXi6Xms/nms1m4ZTAnbJer+O1HkqIyOBZFbyHNp/8zjMp/J7eJihIqpS/uHjA9Q4GgyhXcJEEeFYD98OPt9vt1O12K606ua9O5iHbfp+YCy8l4ZgIHkdHR5Vj1QMJ3UnD7xBi/DlEtHCBwgUEBCYXvtztgeDFeP13/MwdCk78XRDxZ+Ly8lLtdjtcP5vNpnLeujPCRYHbsio4hwsJOGkQgxKJRCKRSCQSicTtuBOCAsSFXWXIxMnJibrdboVYQqzYuYYknJycxK429nIIG4GIEDeIIGS32WxGmQDEvNvtxjkkBVGB+ECgcTQcHx/rrbfeip1sJ9i8H2Fkt9tpsVhoMBio2+1WbPlOPqmRdyu6pLB/c1zG3ev1dHl5Gbvx8/lc8/lcg8FAnU5H4/E4iCudHdrtdrgbKJ9AsDkcDpUsC+rsOb+XhnjpAGQPG750YzunrES6cWBMp1M9ffpUFxcX4VDwOnffWYb4QeKbzWbszCPOnJ+fh8uhLEuNx2N1u10dHx8HgfXdf5/jzWajVqsV3TA8YBDnDK00z87OIpODOfOSB8poWA+USTBnjLcsy3Bj+DnrO+sIQ9yrVqul5XJZETc8s2C73YbI5DkL7uypP38uALhwALn247jYAiln/AQwugvARQJez/PtpRr1/AIXqjivpHB58OwyR+7q4d56RkU9cNXLH3CP+PsTiUQikUgkEonE7bgzggJE1YPy+GOfP/B9R5mdUgIP+f1+v9d8Po+cAUiBW+7ZAYcc9nq9OCekxDMObitjqO9m7vf72Lk+HA5arVZBPJ2cQGim02mcg/9Cun2XmHPTPg+hAmEEQYTfNZvNCkGdTCYxTggu5HGz2VR2tT28jvnC1eDkiuPhZKDeHmHECSOEur5TjCBSL3ngPnAeF0+Ya7Df77VYLNTr9So5Dh52OJ1OI+iSbg1OkgHuh8PhoMViEeIKc0uuBER0PB7rcDhoPp/fGhyK+OKlD9wXd4AgUvT7/Uo+iO/Mk4vhrVKZB+7FfD4PQYJ7wdwxFq6FteXk3ksImJ+63d+FAifq7qqou0Dc5VK/lzhIEAPr68w/H1i/fu0uAvjnAqKCt4l1x4yPc71eP5MBgoPJ3RSJRCKRSCQSiUTiWdwJQcED99zSjtXbCQLwnU+cDF7jDQHnWJBYvhAIPAQSgcJDBQkHxM3gu7W+O8+OsZclYO/H3eDEmk4Sg8FAvV5PnU6nsivtO+j1XV8PO4QE1i3ukMz5fK5ms6lWqxWEDLLEdUCauAbmgsA7z3dgjr2+3kUAnAB+Hu4f7gOEB8o6yDzAieKZGe7w4F7V1wnkFbI5Go00m80qrgMvhakHNe52u0pHAeYV1NcEa6/f70uSVqtVrAXmijkkoJPfueDhAo0HNdbvu7/OS228tKcsS81ms4qA4KVAXIfnWrij4rbyFMQJrsXLErzUgWO42ONlENxD1pyXqzhxx1Xh99dzF3xtc/94HyKJC2T83D8LGCdz42PkPVynO4wSiUQikUgkEonEs7gzggJiASKCkxp3Lzg5cGAxh7wul8sgcF6jThtGiLhbn11QYEe7vhMLSaErg5dE1DsbrNdrSTdtDiFZHI+2d1wTZM9t3fzcw+PYraXtpOcqQKq5ntVqpfl8HrkQjBHiSlkF56Y+3UUGhBG/HxCt7XYbHREOh4Pu3bsX46M1o7c/dFu9BygSIkmbP4i0Zzy4GOCOFNYGv4cQbjabeI0TeBcsIJZeTsD982M6meV1dMmQFPfCHSkuirk7womsi2KIFW7/9+yBes0/X3Q+oItHXZTwa3W4S4FrwnnCGHES+Fw7PI/BBSCuk/vo1+DuEBczEHQ848IFBebJSb6/z9eCi4suOvn9r5dW8L56VkoikUgkEolEIpG4HXdCUDgcDtEakl10SUE0O51OkC1Jms/nz9SXuwV8u91qOp1WiDZlBtLVLvrLL78cRNF33CEVw+FQ0+k0iPl2u1Wv1wsCQmtDJ+NOnCeTic7OztTtdiMrAdHk6OgoXouDwMssCIdkdxtC7G0mec9isVBZllosFlosFnGMbrerbrer2WwWoYej0Ui9Xq9ik5cU5FG6ChIkMPDk5CSuEzu6hz8WRaH5fB417Ov1Wvfu3dODBw/Ubrc1HA4rJLzZbOr8/DwcA9zj5XIZ40eEwTFA5gKCgoslnuFAmCfZGY1Go3K8ehCfCwV8OamfTqcVAl1voUk5B2Mib4L3kNsB2fc2kTg1vAwGQJjd8eBuDAg6693bO3J+cgVcmFuv1+GCgGgjrtXdBdxbRBgENi+zcTHExQYEHa7LhRV3AUDcOQfuk0ajEaKICxp+31zo4XWr1SpEKbqnUOrimR+scYQ/zsU98FBHFyESiUQikUgkEonEs7gTgsJ+v9dsNqtYrLvdbpCa/X4fVvyjoyNNJpMgir7D6hkCu91OFxcXUVvuu6XL5VKTyUTtdjtIH0IE5IhshcViEYTRydzhcND5+XkQbohao9HQYDBQWZaVcULaPGjOXQQXFxfq9/sV0ua79O12W51ORxcXF5E30Ol04lpXq5WWy2UEIXY6HY1GozjeZDJRp9PRvXv31O12Q5CgGwSOjYuLiyCKiALs1u92uyBjkLpWqxXBjYvFIvIrCNxrt9uV2vh2u11pyQlZrtvLnYx7qQJtMCHOtzlWOp1O5BLM53MtFosQlRhbPZ+D+4EbBvcJghWdMw6HQ8ydOzXIy0Dw8QyMsiyj7IGxP336tOIQoBwGAcDDDx2+g4/4xPX0+/0433Q6reQhIIoxp4zd3RI+9+QacAx3nLjQ4sen1ag7Syib4R7yLNTdDF7SQxtQynFYGxwbN4kkDYfDOCblNzxztAyVVCkP8lIeFz04jpe1pKiQSCQSiUQikUi8Pe6EoAAgPev1Oki+pKhxh+iww+ok3xPu6bzAriSkHaJMJ4T1eh3kk9aCkE52W2k7iKVdUpAqAhi9np0d2G63G6S53qUB0QIRQrrZqef47KzyPTkP1MjTEaPValVKG9iVRoDwbhXz+Vz9fj8EBxwIXA8lGIgSlEmQFeAdDdhFxzEAkV6tVrFbjDDjFnN/PWICzgIXKpzgQ/qYA8j35eVluES8TMPD+dhZZ0cdog9hJKOD1/quPpkWkuI+OvlkTXa7XS2Xy0o5Dbvv/Axy3Gw2NRgMNJvNolTERQHm0dcz5/fMCwQKDw5kzeNQqJcneCkH14oQUG996edlrpl7xCXEBn9+PZMDoaQuKHjGgb8XeFikl4y4M4ZjlGWpXq8X73Whg2fTBUEvAWEsnknBOf0aEolEIpFIJBKJxO24M4KCiwSUKnibRFrOuVXdyR0ETLoh4OxO8jq3k6/X67CeS4oWfJBUiDBkF0HBbd68FwHEg9woHYBYY8nnvZ6Oz7UQSAjh81wJXBsQVt+dx7K9XC7j/bga6B5A1wd2qen4QMjhbrfTZDIJAsxuPOf1unLOId3U/nsAIqICooc7CuqdGnAJIGLgROHLQxghmsw1AY8+j7y2XpvP79ilhmx6BwjmjDXDsVhfHprJWvLuGYvFItaXh4DiYuE8XK+XKLjbwe3+rA1vpQmhxzHg88g5EcycSLM7zzW7KOHOB+B5B1768XZhhx7eybhcgPKyJCfunjnBe7wMxO9PXYgoikKdTid+hijo1113f9QDYD2w08XBRCKRSCQSiUQi8ZVxZwQFD7u7vLzUYrEI4ivdEDxcA5Djero+JILdbMoa2IGFeOx2u8gGkK5yFdjVXa/XUerAjvJ0Og0yx462pNjxHQ6HlQ4TEDzIPGIBRIl2iWQn4D6AALVaLQ0GgwhElK6Iz0svvaRutxsdJShzIBNhuVwGUXv48GHkGMzn80oAXaPRUL/f13A4jJ3q+Xyu8/PzuPbRaBTnkqrCDnPqQZTcg9VqVclEqJdIuFug3W5rMBhEGYeXW3h2hgtHZVlGTgQihhNdvvf7DZFk7IzBuwLgVmANcj7/3n+OwNRutzUajUIIWCwW4Vjwev/hcBj3fzAY6HC4alFJBgXrirG7tZ9zM8/r9boi9PAM0RaUzBB3VSwWi2hXiajhpQf18FGuu07OEc4IQGWenex7UCOiE9fjgZqe3+COEL83zIvPTd2BgBB0eXmpi4uLEOPIfwCskXqnFwQizuEtUBOJRCKRSCQSicTtuBOCQlEU6vV6lbR26YZgEL7GTjwE2mvz6/Zu6WbX9t69e89Y3dnFJayw2+1qOByqKK7S8qfTaXQbaLVaGg6H4TZAeIDg8d9er1fpQiDdhEy6TR0S7C0mIUQQRHZd2ennHNTKn5ychNiAVR4yvdlsIs8AooTjwYkzZSWQPydZ2PUpkXBnh48TEukOE8QSBI5erxfj8E4NkEMI3uFw0HQ6DRfC8fFxiEYuQnBejuX3HgKOUOSCk1vw6fDBDrc7RRArjo6OQhTwMot65sB+v1e3262IDY8fP44d8c1mo+l0+kzZhgducv+c1NbbKuIKIHT06OhI/X4/QiglVdwxvs68YwnjuXfvXhB1b1vKF+ID1+xtGRmXB1t6WQhzy/pHwOC55ljeFhOxgiwTwGsQGBmPixmICuRI8KyS+8EadRcRv2fMfk3e9SORSCQSiUQikUjcjjshKLBLyO4wpMlD7lxQ8B1FOkFgxZdudhXZjWbn1gk4u6+Q3+FwGMTKgwYh4OwGMy7fwd3v90FgvfWe725C4N2qT3kAZAjbOMSc0MWiKMLC7i0Mx+NxkHy3z0NisdlDvJzoucUbooclnu4P1PhzXxAlvBWfE2svD+C+OOnz3WjvZNDv96PMgnvpwYe+owxxZQ6YU9/Jd2KL4FPPCPA8AgSFejtCD+3zNpLcE3c7sJPe6/U0Ho81m81ivUF+uUeEKbJ7Tn4Fc8ia4988G95FhNIcFx4Ac4PYwu+bzWasa9p9UtrjpS/+3LmY4rkFrAfOVy/NwIXgjgWeUcaHcFUHv+M43saSeebnq9Wqch6eJbpYcJ1eGsL6Z+4Ql1hDLpKloJBIJBKJRCKRSLw97oSgIN0QF3aQfecWez3/9uR3dpshLE5avXab9oO+Qyld7WTP5/Mg35AryLTv6Hv9OmQEIlXvJMGOsXSTO+DkFwt63aXgdnAPXYRwQ0iPj4+jFSUkDfLEXBFYyBi4fu8g4fXju90ubPKMya8VMcNLJ5hnvqQbYQLy6nZ4FzMg/t1uN0SF5XKp7XYbZJtuC4vFokIwXeRwx4DnBbADDRl1G7504xRB4GGMCC++q49zwdcZ5/MOBZSS9Pv9ZwQXhCjWqJNyD6n0OWVMdUGB9YZzxe+NdCNs8R6+ZzyIWYgbngnhpRXSDcFnXF7+4MJK3VXg8GBSD0osiuIZUYHfeVmJd8zw8FN/Tl1k8rnxcqN63sZtY88yh0QikUgkEolE4qvDnRAU2KmEeLtLwcPt6gFvkAR+7/XXvtt4cnKiXq8XBNPfe3l5qbOzM/V6vahxd5s3hJJSAwQAt39TBjGbzeL82LO9HAPyJils6r7T76QbkuXt98h8cEJN8CQ/I6jPd3iZY3ZtV6tVOC7Ymea6scoT6LfdbuNc5D1wXzw8ERJIrkOz2dRsNtN8PtdLL70UNn7yDepEnHFut1tNJpPoRIFzA7j7AAJPWKU7NFwQ4b77dTYajVhjiEmMEcs9a60oiiiBcBeJW/cRInB8nJ6eRtAm5+VY3Fsn8ZK0XC4ru/asH8bBvXWRiLwOju+Bn55NwProdrsxXnbwuR9cP4IF88mcMf/MMePAfVMPLXXxiuvCYcCYPSyTOeF7xDqeOdqz4qpgXKxV1gNjITi1vl7dreC5LfVsh3QnJBKJRCKRSCQSXxl3RlBgF9HT7iUFcUFQwCrvO87szkMcD4eDut1ukHNIAtjvr1o2Utu/3+81mUxiF1q66TrB+LyNIcSYczC2+XweBOj+/ftBxCFmvovNzjSdJRaLRRBBDzzEvo1rw7MBOIa3SBwMBiE6MH+IMpBbdsYp82CXlpKPo6OjaMUHoa2H77nLg7nB5o87YjKZ6K233tIrr7yi8Xis0WhUcS24TZ259TlHmHn48KG63W6EPPruvI/dMwMoEWHePfPB6+Mh/YRPQlRxREg3xB7HxHw+12KxqJTaeEtCyDm5IO50gSRLCrHEyxIg+S5YcR+Zf+4Z+Q718gd/fV20cELN88J7PUuC8RGUyf3BuYBQ02w24/liXHy5y8FFQ8g9gakuIuCo4HsXkHxNe+gqY+F+ca9cUOB97jBx0YV7x3zymeKdLBKJRCKRSCQSiUQV7ygoFEXx+yX9RklPyrL81uuf3ZP0Q5K+XtLnJX1HWZbn17/7fknfI2kv6R8vy/KPv9M52DmHrGNzd4IGEfFMBW9lxw40pNt3Hzmu74ZSvsDvsNV7ivz19VTIR50Q+Q471yFdOQvu3bsXx/fdat7PGNkthgziaoAUQXJ8d9jzECTFdbbb7UrgHO+hDIEOCc1mU/1+P1wHLhxwDn4OfBcXdLvdSvkI9wcyN51ONZlMNB6Pdf/+fY3H49gx5nWQyqIoInthuVxWgi17vV5FyEBAgoy7W8R/Vw/48zln3HSSQCzBveAuBOYVl4HfCwg568/dMtxv7hGv45o9f8C7EUBmPbywXmbCsZjHem6Hv9YzK1wgcEcB72decKMwj15CgfsD8o1Y4tkLrB1fpx4SyTn82fT7hBjiwhBuBYTCemAmz2NRFPE54qGu3DPcHgiHntuASOXiz13A1+KzOJFIJBJvj/wcTiQSiWdx9M4v0R+Q9OtrP/s+ST9aluU3SvrR6+9VFMU3S/pOSd9y/Z5/vSiKr8o3jM2eDAB3IbBLCTGGyDgZ9d1fdiWpj3eSgU3c30+3Ax+Dk0LPGnDrOudmtxRCTttJt3hT3kDwoNf1IxBwjZQ3rFar2LH2bhJcHz/39nfsone73Qhb9GA7yDpEn/nm/ZA2rt9JdL0uXlKIGJ1O55lww8PhoOVyqclkEnb+Tqejbrcb4/PSBlL6+/1+2NqZf9wTvL/T6VRKStw5IVUt98yZ5yngfKHtpZeb+M/c3eLj6PV6QUpZZ34v6vf0+vmoZFG44IXIw1rhmeBeeNChCxSsS+bbnRj810s1/L2Mg7Exb5zLSwQ8w6SedeIuhHpIp68fxujrl/vgohLfe5tJz1TxkEZ3KTFn9XIYglZdmHHBsD4HwH93R/AH9DX4LE4kEonE2+IPKD+HE4lEooJ3dCiUZflfF0Xx9bUff7ukb7v+9w9K+qyk33H98z9cluVG0s8XRfE5Sb9S0p/6SuegpAHSgLUaMoW1HcLnpM2JvaQoQeBnm80m2sZJN0F8y+VS/X5fvV4vduLZCa27HOoBfdfzEsQEUeL/3965x9h2nuX9+faemX3fM+fiYxzHSexgAilFJCIpMeUiwiWklJReUFD/iARVhLiIqK0UoqDCP5FKoyIhVS1KBQpUQEgvEVErpKQUwR8kJASSkJA4NyexHTvH9nhm3/eey+ofs3/fPHudmXOxPTP7eN5HGp3jPWuv9a3v+9byeZ73fZ/XxzwajXLWBOnklDUQ/UZcoGQCsYP7InrrnhIQfb7v2Rukw3O/9Xpd29vb12QqQHbr9Xoue/ByDsbh6fWQYe9ywLVXV1ezR8X29nYm4pQebG5uamtrS5PJRBsbG9mcsiwaQTY5l3QohkAwi6LIae6TyURbW1saj8cLJQGeds9Y+D2+GN4BBCLvxJcsBSeZ7DUyUyqVShZMMEZ08QXijEeDk1iyWtxXwwUDOj84uXew3n4f7Ev2q5d7IBQgbriHgbey9PIQ5sF9KdxPg3vzciTGwBjJEHBxgCwDMgXKHg3+rJZ9UiaTyYK3hPshlLMwWCu6W0iHXg3lTBvG7e+gchbIWeM03sWBQCAQOB7xHg4EAoFr8Uz/tXxnURSPSVJRFI+llK7MP79b0oftuEfmn10Xboy2s7Oj4XCo+bnzP/DdcI7febq/Gyl61BbSQOSe7ITNzc0cecVTwUUDLy2oVquZ3Hu0GEJcLg9wDwEILUQfkufZBS5SQDSHw+E1BnR0pNjd3VWtVlsgcRCosqjAOPEEgMhVq1UNh0ONRiM1Go0cJW82mzkzYjAY5HIDj2ZD3FwIkJR9KSTl800mEz311FN6+OGHcxYCx0CoPXpNlgLEcjwe57R7yCjkt9lsZhGC8TCHbjYpacF3YW9vL98zZL3VamVxCQGIiDlmmIyXFPlye0KyYch8aDQaeS8Mh8N8TtbMxQL3JWA8+BCwR66Xgu8mhuwLSijYzwhmLlC4Z0JZeEAcgcCPx2MNBoP8XS//cIHDu0lwHOSevY2owH5H1PBSB/YEwhTzhdh3VEaBX9eFI/5EUKQ05SjPlslkco1Qs8R4Tt/FgUAgELhlxHs4EAicazzX/1o+qt/atXnyklJKb5b0ZumwDt/r3iFzHrkk4k9KOBHKtbW1TOYgVp4CDUmD0DjJhvh56cTq6mrOHNjdPeh13+l0ciTbI5hOqBkn5HJ7eztHqzudTr6fcoo2UVyIqLv5Q/I8gkz02jMvMDDknBBvj5ojjHj6u8+H3z/u+V4n7/PN9718g7X0iDUlAb1eT08++aS2trauiahDciXlMRAB97IP7y6AoMKajEajTBTdpZ+af/wZvKRDUp5jL90gI8S9PLhfsha4PzonuKiB6aZnq3j5DPOHiDCZTK6JtkPA3R/Aswuc8HtZgMOzNFjP6XSaSXO59MJLJ9yTgPt3Lw/GS5cRxuDZLuwfByKQpPx7zwRxHwae2W63K0kaj8cL8+NZMsCfGRcdvZSFOSiXcXBf3Dsizm2KZ/Qurqt5kmMKBAKB84R4DwcCgXOBZyoofD2ldNdcib1L0tX5549IuseOe6Gkrx11gqIo3iXpXZJ08eLFwj7PXQAg0p6d4PXyZTLkEVYnaO7Wz3/3+/0FzwRECghqs9nMUVFID8JHrVbLbQaJXPtYySYYjUaZxEDS/U9JCxFlCKqTIY+6IyoQsYd4MW/SothyVI0+5/U5dUHEx+hzyu+YW8buLvhE8KXD7hCkqw+HQ21ubuqpp57K5B2BxH0NJC2Mme87GUaMYJwuOrkJo5suljNXPMOk7KdRrrXHe6I8V9wnvgcIGswvokK9Xl8wTCzX+9PK1OeNcXvJhrdAPMrE0LsZ+OeIWLVabaGs56iUfn+euB//nc/BURF8F6/KpB7BjPlmDPydjBFJCwaRjUZjwS+BH5+b8rqUS4Gkww4ZZCp4xovfu2eyHJcRskR4Tt/F3XTxyH/sBgJniZW7X6C9uy6e9TACzxaf+JyKnedl55x4DwcCgXONZyoovF/SmyT9+/mff2Sf/35K6dclvUDS/ZI+cqOTuTM/hNFb7TmJ5hjIlkfhIRjT6VTtdjuTDqKqtVotE17IFxkIHqFsNBq6fPmytre3NRwONR6PNRqNst9ApXLQVrHdbi+Yw5HpUBQHbTCJAjM+DP2cMOO9AKl08uNp/JBdSCrj944Oe3t7uX2idEhOEUggzxA1Sfl7HA9Bp0TECSIZER6ldtd/IrpkWPC93d1d9ft9pZT0yCOPaGVlRd1uN3sheD27exwggkjKvhc7OztqNBoLJpHufeD3wg8CFfPqtf6UAkC0K5WKGo1GPi/CSr/fzxF17t2FFiLvGGqSYeAlLFyTfT2ZTPLcuTEgY3aDRu6NbAb2rhNsv39p0WeBvYa4gTjh5/d58ywdxsxcOIHnM/cv8G4WLj7wp+8rMi14brgHvsdzQgkI+55jeb5dJOG6btDo98ezzvq7YOfCkLe9XGI8p+/iQGCZkOZZd9uvuUePfddRwd7AbYNC+ubHLmvvyaek/WJRWEhJaf7/+mMxXer1j/dwIBA417iZtpF/oAOzmcsppUck/YoOXprvTSn9tKSvSvoXklQUxadTSu+V9HeSdiX9XFEUe0ee2FAURTbW83RmiAr17USqIRVeb+2dFiAYkBqIE0S52WzmqDWEYzKZLJD3K1euqNFoaGdnR4PBQP1+PxsKNptN3XHHHRqNRrm8AaytranT6WSCSpo2QoWb5nW73ZwyzrGeEQDJ8tp6Si4gZlyb0gLvBIGBIQQZ8iwpE93xeJwJNcQLDwZq1d0xv9VqZZEFYYdIb9njwCPO+/v76vf7euihh7S6uqrxeJy9Ejzy7FkFbhZIxJv1n06neZzcD2SX2vhyFJ89dRRJZy0rlYq63W42ZcQkstlsqt/vazAY5I4VXhrg94+gQGvO9fV1bW5uajqdZrEAs0DvRgIp96wF7tG/12w2tb29vZCNwbPAODxyTyYLLUKdgLuAwBxLyj4O+H3wZ1m8YA9QguLP9Orqqtrtdv5v1teFq+l0mkUJz1agLAMwny5MsK8Q2BAn/IdrI0Z6GQyCHcIfokKtVsvH+xjOGqfxLg4ElgXVO6/o8//mpZKkorr0wl7gRkjSg295sVLxYtWfSHrBO/8i/6p6/336/L+6cp0vS9Pf+LOTHuFNId7DgUAgcC1upsvDTx7zq9cec/w7JL3jVgaBCEAkmZZ83tmhnOo8v9Y1rezIbigbrkE8vD7dr48fwnQ6VUopEyHvsoBRIt0hut1ujliPRqNMaNbW1nTp0qVMuqnf9w4A0mG0lnE62YOAlYmWEysvu4DweaYH30UMKKfEQ6ZGo1E2TPQIvxNE0uPJUqhUKtkg0r0XPMXcU/Mh2k8//bSefPLJPN8QTK5XXueyWMQe8XIQ9g8oZ2jgA+FEm3uSlA0o+/2++v2+Ll26pHa7vZDB4BkOlEAAiLtHs91XotFo6NKlSznDgnORyeE1+y6w+Nx7W1TWhe4S0oGgQpmOR9a9rIDnxPeZex7QfYP9yv6sVA46oJTLHxgjwgeGlS5mlEuR+K7vL/YWgoiv12QyycIgwoNfv9xKEoHDu2d4xxCEBxebWGfmEUHBn9VlwGm8iwOBpcB3fpsefU1b+yv7R1ehB25LFCuFCkmTS9LXf+GB/PleXdpfvUF52ZLsg3gPBwKBwLVYCgtz6ru9pRskwyPPHr13wkXKMlFt6t29RIKIr0djncxCyDmWVn9ELSHrpJnXajW1Wq2FCL+n4Hc6nYVWkggaZUGBvzsh864P3GvZS0FSJtlOtN0cEDLuaeOkckNEuVd+IF3lVHE3/WMMfi+sl5NO9yHg++PxWP1+X81mU81mM6+tr6eTVaLaEE4XVyDO/hljZfw+d76HfOyepTAcDjWbzbS+vp7vfzgcLmRREKn3OfeoOGKJR/ARBModI9zA0UsJfNw+x+4DQWSekgnECX5Xni/vKOJ7iOeM9XMhgPIANwRlLIyHv/sx/vujvE8YF8+8iwqsPc8Oe87FxKPMEstr7HuJcbnwxN7zPc575HrXCQQCJ4fKt79cT3xrS4MXLb1/SeAZYr9WqH/f8oi1gUAgEHh2WApBAQIuHZC3siO+RyKPqpGXDskWpopOViTlNPRyGzmiq15TDcEkS4IuAk5w8ENoNpsaDoc5UwDQ1QGiTjRfOoyIlkmzu+5DgJxIQfq8NAPSS+YAQoF7UeztHbTFXF9fz2UOpNBTatHv9zPJ5Due3YHJpGcQOFmUlDMUIHO+BpBluh64wSL3Ul5TJ6KsEx09nDh7RgTkke9iwHdcpBmhZzqdajgcZq8ESlvYIy7mIAawtpTUlNs7+j5utVqZMPd6vSxw4b8wHo+vGaeLAF7CIymPzVtWMufcV5m8u8milwtxjJecuKGhl1P4sd7qkXP62L1VYzm7wsuaXEShRSl7xJ8pv5Y/O4zNSzG8e4pnIFWr1YUSJZ9T9gxeKy5MBAKBk0el2dRXX7+hyR0hJgQCgUAgcLtgKQSFSqWy0FbRzeecRBNNJ3IKoaZUwVscSsptByFHfjznlBazHfb2DvrUQ4YwsiPFH3J1+fLlnO2A6MH3uU69Xs9GikVR5M4SEHz8GcgY6HQ6C2QYHwYi2cxHOYW8nKFBXT6AsF24cEHr6+taW1vL1+VevTae4zFzhIz1+33NZrNslMixTvDJ/sBok+i+p/FDgIuiyES7HPGGALPuZIV0Oh31er0Fcckj+aypZ2qwx1xsQrhyk0C+B5FtNBq5RICWowDSC5n1a3tGDONrNBqZgDOXnoXTaDSuiZZLh6Ui+/v72fuD/e1rPR6PF8g39+6lJMw75p3tdnvBHBGfDjIdXChwQ0Y+87KbcsYK4PysVflPHyt7HaFudXVVV69eveaaDjd/RBzycg72FD8cQ6lSufSBlrWsi69JIBA4OVQvXNDn3v4yFZV45gKBQCAQuJ2wFIJCURTZzJBsAEnZG6BM2EjLdqd5J1OIAR6Bl7SQYu6eCl5OQKR5MplknwVPB5/NZur1etnVn/p2DOwgZkSUG42GWq1WFhW8/SBjcCM8uiKQ1eB1761Wa4H4lyPa5RIO2jVSHrC/v587UUAER6NR9n/wVHcINhFjrjcejzPBdwKHUELmhnRAzsfjsba2tvL6tFqtLJjgc1Hu2oBg5HNebhsoHUbhIfButAfRZHzSYUtQxCQi9i4EICiNx+MsNLjvgvtvQEbJUmCt+MyzYdh/jUYjd6zwTBPEJM7l13SzROnQU8HFJ3w12F/4AED0y2Uqs9kst+6kjWe57KQMj+b7HkLIQkg6rnzFyyVYZzJa2A+02WSNRqPRgsklbSfLJTiIXG4kyv70bIlms5kzUrzcouyDwf4LQSEQOCVUkoqKlqZWPhAIBALPE6Skqz/7Gu3Vbu1r97zvUe0+9JWTGdPzDEshKPCPeW//CImEXHnNd9nEDkIDISlHriEQiARuSsi53LcBgQKDRm/fhwEj0WnpsCNBvV7P5nUudkAIiUK7aR7HkT7vJBphBWLjZpQcU241iaDg6d1cE+LEecrCC0TUSww4DmNKhAM3+vMyA9aK70AAmRfO42vlqfacw8sffL3BUfXynrXhmQ6INsw1xF5SFlMQFjiO/eKdFzw1n/acZfPPlFLu3OFzw1xIyoTZvQe8hSbXY0zuQ8G9sqf8Gp5xUy4FclHBy1A8+8BFBN9T3AvH8j0/51HZA/6c+fgZT/l3ZEqw571Nqs8VpT3eApXfe1kRY+Ba7ElKnPx58HeAizcuogQCgUAgEAgElgeVVks7r37ZdY8pUtLgRYX2126tjHXrVXep8ZJL1z1m7ZEt7X3+S7d03ucjluJfyxCzRqOR08sHg4HG43HulCAplxFIyhF4oqu0ZIQMOiAgkPay4z8me6ST05qRaG9RFAuCAqn8rVYrH49QQfSXazBuxglpLJP/3d1dDYfDnD1BuQZRZgCh4z49m8Aj4hAtj7gzPiLvkDAIO2MjOsw9QMKI+jq5Lrfgc88DHPN9/tfW1vK6TiYTDYdDNRqNPHayEJgb5t27X7Bu/Ld3QABukEiaP+NO6bCFJ8JBWaRivMDJMXuFMXCPzDnCEYSfOUVImM1mmSi7l4HX/kOOuVeuxV7wvYP45Z0OOMbJO8KXCy9lA8xyWYNnaLhBavn5cgHIyb1nUfCc12q1I0UIJ/Lub8LzzD70e2T/88Mzw3r6s8F52bMOLyMqZ6QEAoFAIBAIBE4H1Y31mz/4zjv00I+t3fg43bon1uOvkaTrn/vKR6/owhNP3fQ594djFTuzGx94m2EpBIX9/X0NBoNM9Lrdbv6HPGR4d3c3dwbw1HDIWqvVUrPZzAQIbwD3ZKCMgHp2IsuQao9gQq4h+s1mM9dkczwZDBCqZrN5TUcI0uohN9TlS8oZAPweQ0BJmSR6hH0ymWTyzT1Op9NMFAER9GazqXq9rvF4rMFgoF6vl/0baKu3s7OTxwupom2n174zl5gq+nw5oSZyTOnD5cuXNRgMMpns9Xq6evVqnuf19fVsMEhZCAIAZobNZnOB+COmIPh0u92FUggIISSe+fQoOa00JeV1Go1GGgwGWXTixw0zPWtjOp2qUqlkQ0uPtHv6P8ICZQUrKyva3t5Wr9fL30GU4tyUlsxms5y5AsGndIc1ossE/iLMJeOAuJPxsrq6mjtD8PzhX+DiAAKSR/g5nnHjkeHiAPfIWniJCqUe+CSwL/ie+20gFOIh4T4hPAOUM/l+ZZ/zHPj6e/aGiyO8C1hzL6EKBAKBQCAQCJw8Kp2OPvfL33JQAncb4Op3SFe/41tu+viX/O8drfy/j53giM4GSyEoENXkH/IQWuqdPdWeCLtH1SllgEB2u93c/o8IPzXmu7u7Go1G+b8hLhA2Uq1TSgv+A9Sc+/c8vdqJHGUTHuWfTCZZXCDCLSnfAwRmNptlMsqfECD8IBjreDzWdDrN912OUEPqGcvW1paGw2GOqpMR4IQTwlWtVtVqtfL6MIesgZva4RGxtram4XCY50RS9pBgHL1eT/1+P39+9erV7KFA9oWXIbRaLV2+fDlHuSH4pO5TTkEqPB4YPge1Wi0LNBB0BIi1tTW1Wq0sVozHY/V6PQ2Hw0xofa4g0k6419fXtbm5mYmspCxAlEky+6fb7S54T3gJBAQcoo2wRDS+VqstCFNk6vh1vFTHO5owB4hh7qvgGRXSoYDAHnCBxJ8/RIJ2u50JvJdjsF/JNODPWq2WxUPEQdbOy0QQ6cpzxZgQR9z3AKNT5psxeTkU2R2spWcv+LMbCAQCgUAgEHjmGPzEd2r73hurBEVFB+a8t4ufzi2O89HvrWnlVQ/c0nc2vrin1v/4y1u70CljaQQF/uHvEUsXArx+HPLgafaeik59vKScJg4J5Bqk3yMgOHniM0gMhI3fIWiQhUBUHqLjpIR7mUwmuezgqBaRCAoQMtL9yaBw7wiP+nKPRKfxZ0BEgAxLylFvrz33NWCczDuCiQsKlHbQNcCj4NJhJNjJH1kGjUYjt98cjUba3t7W1taWLly4oGazmcfKd1mzTqeTzflYN+aeNWKemE9AVohHsN00k/X0mnrEH86NUOQRet976+vrarfbudMCGRrMHdf1aDgiBuSaNfaxu2dE+XnBTHF/f1/1el3NZlP9fj+vLZF8jmPPuTmj7wEEBfdi8HFxH57VwJ9keLh3hn+f8dTr9Sz0sdfIOkI0QAzguece3OeCOXChgL1CZxXGhRAIXHDxMhs/Z6126NoTgkIgcDooxhPd+RHpyW9L2mtEu9ZAIBC4nVD51m/W5IWdY3+/9dKKJlfi31Q73X3tdG/xS6mq1de96qYPb3xlS3uf+fwtXuTZYWkEhXq9nqOCw+FwgcCTok10tByJ9DpnIriSFkitpztD4CHPeAogAnh012vTIZcICpQ9kHkAAfJSC34mk0mO5EKuiCojmGAw6ant0iGpI+rqZQjeopF75h6I5kPKBoNBbl3JPHr6N6n2ZEF47brX30PAvEUnpJEMAYSYZrOpVqulbrerwWCgwWCg/f39nAlA6j8lJZB7F5Da7baGw2GeQ4/su88B43DBBZNEvjOZTPIcesmGk1LWFFEhpZQNAkmLp3wAdLtd9fv9XJ7DPoCIY0TJHDWbzZwpgejkooh7Jbh44/fpniIIMpLyHvNsGfYae9OfPS9tcX+Msp8Fe4TjJGUhC1GL7B4n+3wP0YMSm+FwqG63mzN/WFsydshO8GuWfSTKZTmINe6FwTl8/jgH4pI/Z27EGaUPgcDpYH80Uuc9H9b2vQ+EoBAIBAK3AypVVS9uSJKeePUFbf796727Q0x4phjfua+v/nD1xgfOccfHLuniE5vH/r4YDLVf4k/PFkshKKysrKjT6WTyDsHid91uN5MvSQtkG1IFEYcIEBmXDp38PW2c9HbOQdQWoorAQdTaa/uJekNGiEqXU9u9Dh8Bg+83m818HOQewcHb4HmJBATYST3EjvMitOCx4KJCu93O/gCj0WjB96FSqeQMAtr0DQaDfG+SsmFmmSQjpripH4SXdqDT6VSDwUCbm5sLJojD4VBbW1uZrHe73Wu6GayururixYv5Pj2Vn/n1Ov0y3OCxUqlkEsx8UpLBvSJ2NBoNtdttScoEnewT73QgSRsbG3m+vObfMzfG47GKoshrDvk+quUpIgD32e/3FzIInOjXarUs2nBtiDGkHAJNO8lGo6Fer7dQ5sMzgUDGfPq+8vmE6FP+4vfA73zPNxoNXbp0KT+T4/E4l5bgL7G9vZ3niWe8VqvlfUZJkJddeAbTysqK1tfXs/iA4OTz4J1R2u12Fit533A8axwIBAKBQCAQWMTKi1+oz/7CXfP/CiF4WfDEK6UnXnn/sb+/54N7qv3xR5/Tay6FoFCtVtXpdFStVjUYDHKGAoTII8hEdMup4R6VRpAgm4DIKCQJwQCxoNxqcDabqdFo5Nr+3d3dHFnnx9sMSod96z2N2n0SHJjZkZ5N9J/oa61WU6fTySn0jI9MCjIVGDNj8OtB9j0rgkwFyL4LNJQ0ED3mu71eL6f0429BhoaLKpKycSQmgZQrrKysqNFoqNPpZOLuXRogfhhzlrtaQJoRRLybwGw20+bmZiatHMt9IERB0BFq+HxtbU0bGxvZX4O6eUSXfr+fO1GwX7i2Cx/cn3tl+N6kowXzxZx5+YtH0NknLtK4fwXCBPuRTBuOddLP+vLfPCv4XSC2IHKxhzxTwfcwYybrBHEAIIDhjeCCTqfTyfux1+vlMhbEp9XV1dwyNaWkTqeTfTAQJ7y8iVKJ6XSaS2bq9bo6nYO0O3/umWMXpFZWVnJnCD8GePlUIBA4OVS7XX3l579V0wvxj9JAIBBYdkxf/yp99VWrUorMg6XDDXwdHvuuFa284tDH4e4/HSp96BPP6pJLIShIyhkBkAkXBSC7XrftZE7SQuTW/9szGIhqUqMNKfToJqScUgkIPlFTbydYjhRDcI7yfCDa7NkDpHUzRohhuY4bAsl5uDYkyLMBKI2AIJMqz7HcD2Nz8kTGAoIIfgJ0xqjX62q32/leuIabFVJPDzFEJIFwU77ANdxcjzkuk3/GTQcQT6kfjUZ6+umn8/Vd0GGtWW9KKpgjUuIh55RrQJ4paRkMBrkjBHuKEgpEC0nZ4NHbdLJnmZOyQOAGj14m4PftYgprSVSdzAHP2uF7PCvMjZe4kBVAhD+lw1aaCAhuhOr7hLGTacM+IlPExTUyH/yZolML+5Q1wmeD8ZKVwDl5B3hZiK8lwgJ7p9FoLGQpcC7psIUmwpoLi74GZZEnEAicEFZXNLl8GxlxBQKBwDlDpdPR8PsPOhpsfeOKZhshJtyO2G0V2m0dco0nXtFS58qr8393Pv6Ydr/y8C2dcykEBQiddOgA7/4IRCghe27aByBvEAQnBGQpQDrcqA3Dt6MEBXd+x4cBwQPC5uUSkGyu6275ZBdAwo/qTgFZgjBB+CDH5cwCIv2IDZAuRIrBYJAJMyTZ0745J/dK/TmEeXV1NZclQMYvXLiQr8VxrKEbHjKfkHnEgE6no62trQWiCsHGt8CJqpc+0PnDv9Pr9fI4fM2dlFLbj3cF2SD8HtEDHw32Hfc0nU41HA4X0uJ3dnZyK0s6Z7Bm3e6B24qXvDAORCHEF99D7J1yuQFGoy4i+XoSdWdv4PngZS+sJ9dbXV1Vu93WaDTK+5TvIFh4KYaLZJS44BXBvhwMBnmP+173Dg7uceKGprPZTO12O4sN/h0XzBBSmKvV1dVc5sGaeJcLniveG3zX5xwx00Uez1oKBAKBQCAQOM+odDrSS+/Ro99HKWiICc8X9O7fV+/+wxLfe3a+Qc3BUHtPHe/DUMZSCAqQSwhAtVrVbDZbyBCQlMmRlwFAiPEKcAM5iEVKSa1WKxNv92mAwEIIyWRgXB71JuW6Uqmo3W4vZAxwPq7H9yVlgtxutxdqvyFgRVFk8QCCBRGHfJbrub1O3b0jqMv3VG6P9rrfg3QgSlDTz/fc/FLSAumEMDOXLuy4mSCtDsfjsdrtthqNhiqVii5duqR+v587EuBngOhBJ4p2u53LKhB/IKOQfY5rNBr5Xt1bAhJJeQmCQqfTWTBpHI/HObW+2WzmdfMSkb29PY1Go9zNIKWUBQU+J0LfaDQWWhcSOYfsut9HOdrue8+zbRCdvPSAfYM4hIcDIhoCA2UYk8kkt5tEPEJsYA28Q4J7I5CB4J0YJpOJOp1ONn9kzOwj1nw6neb9590YiqJQr9fL+2A0Gml9fX0ha8HNNV38cxHEx8ma8vxzHdaHveHZI7wvPKuD44/rtBEIBAKBQCBwXjD4gZfra98TKWTnAQ//YFXt+79Z3/Abf3HT31kKQWF3d1f9fl+tViuTaDwLaEPomQP9fv8aYz0yG6RFYzWiyR7th5DwnZ2dHV25cmXBgA5CQ7SSzyCWg8Egk1tS2Z3o+J+ICJ4KzvUHg0Ees0epIchkGFBmQPTWBQCvlff68na7nbMU+PEuB24MSAQYQikt1vdDzLe2tnImBEILxI9MBK4zmUz0xBNPaH9/P6/thQsX9PTTT+dyCo/+I4IgGCEorK+v5zaC+Dfgn1Cr1bII4GUy7Cv2lgsTCFdEtgeDgdrt9kKphafES4tCEcQU0r23t6ft7e0sKCBMTKfTLH6wbjs7O1lk8XPv7e3lfcRe8/O7wMTaeKlOp9PRxYsXtbW1lUk/JSqURSBo8Gy0Wq0sOFCqQotNygW4Vkop+yQwJsQ15s27UfjYEBG8/EI6EAO63W4Wnzivm2FOp9MFgs98eTaGZxG4vwjPlT8n7guxv7+fx819elcMxKZAIBAIBAKB84rH3/KAxncWCuPF84PR3YUe/uUH9KJ3fkyFcezjsBSCwmw20+OPP66LFy9mQgNBd/PDshEjUcadnZ1MhL0rAoKCpAXXe0iwm7xBZPf39zN5LUcyPWLsPgzegs49GdyLwL0WIGEQL2ruua7D068hk559UW53WfZ0oGzBo84eLZaUy02O8y2AoM1mM/X7fdXr9dxBo0zS8CqAoA6Hwxy9brfbqtfrWl9fz+uE+SOZKJ5NISn7aVCywJxOJpP8305oiaQjrniHDU/FJ/ODDILBYJCFEsoi3BMDc1DIK8TZU+fLZTe+3ozT0/kZr+9t7o+19/2HD4JnMyCaYOTJWpXLHBAofB+Q3YEg5x0mWEcXqxCWeC5p/dhoNLKwI2lBKOHZ4Npcn3kiOwbhDPGM9eZ3lJV4SYOvJ88NHVx8DnkflM0l+T6CjotxCCbRNjIQOB0Uw5Hu+ZM9PfadK9ptxz9aA4FAYFmw05H26vFePk/YXy00u1Co9+Ov0IUPPXpDT4Ub9kRLKf12SulqSulT9tk7U0qfTSl9MqX0vpTShv3ubSmlL6SUHkwp/fDNDHpnZ0ePP/64Njc3cwo+PgD5xoyoe0kBhNAzASANXuvvddOQJc7v7fK89MHby3E+HzNj4bxuCHjEPC4QIYgrJRiIG9Jh60DGVm6lyTm4NmN1IufeD0543ecAPwmv/6/Vavmn0Wio2Wzm1pIQO1z9IWtef46hJHPHd+jeUa1W1W631el0cmbBeDzOgk7Z+4ASCLJRmDcIJ/eKGMLvXLBhj5D5gMcAwgHlAsPhcKHN4FGCgrfOZE/xOy/F8D1QJr9loupRexciykIakX4ySaTDLAnKaujCwe/cQ8SNSD2bgvtizrhfF0IQDLxFK50w2JvMJ3PmBo3lto3sVe9CwVww/81mUxcuXNDGxkbeLwhe7q3hHRuYY3/e/LqeBcQz7c8bn5XfEcuA03gXBwJnhf3JRLX/81GtjCKlNrC8iPdw4FyhUtXKi+9RsTz/FAqcIoqK9PV/IA1f/g2q3nHHdY+9mQyFd0v6T5J+1z77oKS3FUWxm1L6NUlvk/TWlNLLJb1R0t+T9AJJ/zel9E1FUVy3EHl/f1+bm5uZEFKnD+mRDokT4gFEgPpo3N0hOl7/DMGEtHgtOjXe4/E4p8a32+0cjSaSDYkkso/4AIHycgTuCfLu8Hr5RqOxYJqHGSBCgX++t7eXDRMl5faR/J2oqhP7tbW13LbRyb3XwkOwII2000Rg4P6kg2wByj0gqp7GPp1OM2nFrwCxgHup1+u53SQlLd71gag4hBEBg/R8zDndgNJLFaipx9cAEYHruyiBweZ4PNZgMMhz1u12F7JliPLToWB/f1/j8TjPG1kXknIbRXwUfB+wrggY3AeeIW5wWKvVFgxK+RySj6DgWQqUKfAZ7RgRh/CoYM1YL+8cAgmHuLMnESzKmQYcM51OM+l3ccRFCva0C2KeRYEBJtkU1Wo1CyTsU7JefE5977v3ByIUf3eRh3vg+5Rm8F3WwjMalgDv1gm/iwOBQCBwXbxb8R4OnBNU77ikz/7i3dEa8pzj4R+qqnvv/bryn5849pgbCgpFUfx5Suklpc8+YP/5YUn/fP73N0h6T1EUU0kPpZS+IOnVkj50vWuklDQYDPTkk0+qXq/rrrvuUr1ez8SCY+bXzmRD0gIx9XRz6uNns9kCyeFcFy9eVK1W03A41HA4zOeC4EKcvIMCqdGMaTQaZaIE6SFaTS07EXyIkqQsfHQ6HbVarXyfkB7II6QOQ0jGQjSVrAZIkYsM3moSgz4M69zEzkm5E2bGgbEepSCUGyDcQMzIdIAcMibmlTFTvkDUHE+E0Wikvb29bPLnHgbD4VDNZnNBPPAMAowGPYthY2Mj7xc3OGQ+uTaiB74c/X5fs9ksrykCy2w2yyJCq9VSp9NRtVrN40bsYc08hb5arS4YBbqogBjkXT7cJ4H1duHGMxUg9l4yw9wyZhdypMPyA8QFovsQarIYOp1ONs8cj8daX1/X+vp6nsvRaJSfQwQMzyzychgvp/BMoslkkjNTeDY8k8DLH+gk4a1lvUzI15i9TxYL88SxtVotZyF4u03OgxhCGccy4DTexYFAIBA4HvEeDgQCgWvxXHgo/JSkP5z//W4dvEzBI/PPrguIVpnweiq916U78fYMBrISVlZWNJ1Os0BQ9kOAjHn6P6RxOBxmwzrIB0QPskXk0qPDnlpNVBiy6W0uIU5OfldXV3PJhWc1ME7/O6n1kHAXB7yEwueCMdPhwO8bMun+CT7vEGB+vA6fefByAq4pKRsNEk1njZkfUtiZJ+bUfQwotRiNRnmMrDlk3Akhf6eDAWUTvgbux0BLRjpZcC8Y9rVarQVDzul0msUjCD1lDpD/vb099Xq9hdIc9hF7HR8P9paX9EjKGSNey+8ZD0TiWauyNwP35Z0XmHf2ugtcrAvrROYFGTRct1arqdVq5bGw3xFJ/P4QK9yngP0F8NfwUiaO4d6Y61arpY2NDQ0Gg5xVhOeCt6nkHsplJrwn3G/DxTgH12cv3yZ41u/iQCAQCDwrxHs4EAicOzyrfy2nlN4uaVfS7/HREYcd6eKRUnqzpDdLh1FJSBEtI72eHoJA5NJbH0qHgoI7yvM9yI50raGhmwjiwO9132QYSMrX9pR8J8JeD95oNDQYDBba3Dkh5BycE0IOMYXse/aDt9UkY4Dv0bHBMwY8gsv9tlqtTFInk8kCIfT0cM/6mK9XFlhccGDeKTvxa3qEWTpMM+dz/A6IlHMtyLD7BDBWavjL6eoQUkQR0vNHo9GCCOJ7BLGl2Wxqa2trwbCQ9aQ7BN0yGAclMQhT7C2EAjonsEd8D7KXvIuI/8m9ICiQ/XFUCQWk2U0XIfJk+XiWgJs5enkOZRQuQLjIhHiEPwP7w7MoOC97jT/dt4DzeBZAOZvD9xhj9xKeZrOpwWCQM3/K+4B5djGMc7qfit+nj5E5vp3wXL2L61qejIxAIBC4nRDv4cDzCdULF7T/ojvPehiBJcFeXaref5/0uaN//4wFhZTSmyT9qKTXFofM/hFJ99hhL5T0taO+XxTFuyS9S5KazWbhqdZkFcyPyw70kNDV1dUczXey5GSCdHQi1KSuextE9zOAZBD5J9UfQcFFiHILOrIBIHEcQ5mCkxOIX0oHbficCHlmBiCajg8E4gK+DpRnuGcExBiC7+aUGxsbmUhvbW0tRGrJKPDMi/F4nOeWcUFkWSMI/3A4zN4Evl5HpaX775ljzk80mrR9MgPIsiBCjiBTNqOsVCo5Os98I3iwlu4VQZ0+ZTLMpUfq+Ww4HGp7e1tXrlzJ90WmAnNPeQEGj5Do0WiUI+qNRkMppezzgGjgHRDcaBKxjbWhnSIZB/v7+wvGnsyjdFh+4R4BZCfQ2tI7m3BtfBcQsMrknjIP90OgDSrPk681wp2bULI3GaeTeuaDMVCC0263s5fH9vZ2Pg/PiIs5iD6e/cB+Z4xukMo8e9eRZcdz+S7upoth4xwIBAK3iHgPB55vGD3wjXr4B8KNMXCA4T37evBnr0hvOfr3z0hQSCm9TtJbJX1vURQj+9X7Jf1+SunXdWBAc7+kj9zofJA6SO1oNMoRYEg+ZLder6vdbufSCBzuJeXj3FAO8lWuu4e8kwINoUWk8EgvZARhA4LkQgNEjrICWhW6QZ53G0gpZTJUq9UyYSW6TceBTqejdrutdrt9DTFvt9saDocL0e1arZaJORFozxaQDqLjmAhub2/n681ms0xQ+X6v18vkF/NA5spLMph7jvfadUh5pVLRcDjUzs5OXodWq5WNFMnCcI8F/CgwOyyKIos2CDgQek9xd4GKOeJnPB5ra2trocsD5/RyFkoEKHvAP2I8HmtzczMLEZBS1tpJsaTs8UD2AnPJvCKOkDVApoX/yR5DHGCNWVeyWvAkYN5Zh9lslvevdOidgQiBQaNn2bA2Xh7kJUOIMAheiGLui4B455kqLoy4IOhlQ9wPxpTeweHixYv53cHYER4QOXiePHOFefB5QzjgfeOZR7eJmPCcvosDgUAgcGuI93AgEDjvuKGgkFL6A0nfJ+lySukRSb+iAwfbmqQPzsnnh4ui+JmiKD6dUnqvpL/TQdrXz92Mmy0EEFIwmUwWRAUAkYJ0eoq3/5AuXqvVcrTSyxsgK9TFQx7dFwHDRIgI0W2EA8iak0dvS4jw4a71tE2ERBKdJjIM+fJSAkhZt9u9puUdhBchwr0l3KSRcxOB9ZIDsgnIRoD0eSo9RE46jHp7jTvHeymE17V7hJpjIN5EwplLF2w4B9F31rvVaqndbud1xkjSyzIghzs7O7mbBkQWcg7xJloPaXUxhLlrNBpZwIIwc8+sgc+FpCwg7ezsqNPpSFIeh+97N68ko4TxQLIp4fDMHC8TgOT7vvHsE79P5hVCzZ4jW8FLAtrt9kInirKQ4b4JlNRIyu0+fU68BMGzUrgm94p3BgKAezVw3/hbtNvtvPbcc6PRWPCI8PH6/ZY9QjxTwoWeZcFpvIsDgUAgcDziPRwIBALX4ma6PPzkER//1nWOf4ekd9zKICAwkHYc6yHmEGkIPU72RCFJb4YAkArvJokQB8gUpMy9GJyMka7O9yFyEGIIsJMQxANIZqvV0mQy0WQyWYgAz+dpwTSybACHESGp3F537pkUEDB+5/OJIMCY+ZP5WF1dXXCxZ/yMg2i9j9Fr5d0Er7yWCAJOFEkh7/f7CwZ91PpzTf9xUz1KEra3t/MeIJLudfNePkKnBgQrL01wbwUn59y/k3AXP5rNpvr9fs42YN49c4Dv0t2h2+3mLA1+7z4Cvj7elYLxMEek5Pu9uNiDKOClD2Xxh2vyLKSUsnDEuDBg5Pyc0wm2e1kwVsokuPfrRfnL+9W9S9g37jPB3mNN1tbWcmmJZxa5OOXXZ339vVH2l+DvyyQkgNN4FwcCZ432o4X2VyuaXVj+DKHA+UO8hwPnBWubMzUfbWn0gv2j3UACAcNSWJi7cRrEHUJBajZEERLdaDTyP/oh3tJhpgDR6rW1tYXacggoxAzi590KyFDwtHE8GdxFnog7qeykle/s7GhjY0PdbjeXPhD95z4hMp7SjeEd4+r3+xqPxxoMBur1emo2mwslFKPRQWYdc+QeB54R4ITZ59zbSfp53QeC8XvdOYRzZ2dnoQuAew5QTlDOUmAdvGuBE2r3ZeB3+EhQN//UU09l0letVrW+vp5JIgKBo91uZ4NMouyQc0ir1+lDpN0s0TsrNJvNnK2A2OKlOWSq8F06EjAnrDuiTFmQYJ9DnFkrX0P2GftobW0ti0E+hxxfNo4kY8fFOgg312dNPYLvppZu0OiCnWfY+LrwuZciuH+JZ9bwuWcTcE9uFspeo6RoOp2q3W6r2WzmteX5d5GF/eteKl4W4QJPIBA4PWz87ofUeP2r9Mj3V1VE+W4gEAicCdKHPqF7vnRFD771vrMeSuA2wFIICqurq1pfX8/ETlImsqTmezTWo86QAL63s7OjwWCQCQRkxYkNqdmQQtrP4SMwnU7VbDY1HA7VbrezESTnh8h5nTkkFdK7vr6eyXWr1dJ4PFaz2VxI43djw2q1mn0SMHiklWS/39fW1lbufEAGBRkdfN8jsrVaTZ1O5xpyWm6xR2q5j1866JLQ6XQycYWAsybMBSIMYgAR/FarpfX19ZxmLilnbnAP3nqS67uw4yn4iCbMB8S80+nkbBC/B8/S6Ha7uUsD5QaeWeJ7pQyEJ7/XSqWSSxAoQ+A+GD8dCVZWVrJvRKPRyN4DW1tbC8aPZKLgWUD0n3ugXIffbW5uajqdajKZZM8JFyecLCO8eHtQMh5YHy814TjPqOC5g5xzTjKF3MMCEQgBjnUs5garlIzgXUFGgQtPjMk9EhCLWA+yKry9JuvEXLnQ4x08AOcl+4TjyyUbgUDg9FD/wN/oZZ++S5/9xbsjMhYIBAKBwJJjKQQFyDQEBLJCtFfSAvmCKHj9OURYOjR9gyhTN40pnZsMuqeBZzn0ej09/fTTC6Z/ZX+DcrSVa2Ag6OQMUzqc6N3/gah02ZG+3+9rNBppb29Pg8EgCx+e9i5pgUiSzcH9jcfja9oD4tngUWnmk889Iu/z6tF6CBxr6MIN84yxomeZYPwIwWO98JWALOInALEmnR5hYzgcamVlRd1uN58foYS58Zp/LxnxLAY3IyQqTmR7NBotRLshs8wN+4e58XaMZHow5+4bQamJlxN4yj/ZIZ51gv8HZUFOkr2EhEwT1sGFEjfobDab2ZvCfUYQHbwNI/vLSzwkLexnzwLi+4yJ58czMFyY8EwFxuiZE7wD/Dnk+zyfnJtMBe5zdXU1zyVzxr0xv+V59uczEAicLordXe09flXf+N4L+vI/amm3vXwlSIFAIBAInBc0Hq/o7j8b6MvH/H4pBAW8EiAnkhYilG52KOka4iIpEwmOn81mC7XYknIpBO0avf6bcUBKJ5OJBoOBBoNBLn8o1917xNrHQItC9x0gkso9ug8BaeaeBk7bRI96u5mfR1md5EHOIGZu+Od+EV5n754HLj5A5J2oeUcJ/u5lDZ7WTlSbyC+ii3tPMH7mlNR1F28YI5F1zk+2RLPZXBBF3BvAiSJ7wb0E3E/AxRbWcTwe5+uUx+RGg743jxMcuEfmmwwAxAbvQuLilvtluL+Bp/mT3eGihptjuneHP3NuNikpiwnsG8bs2Q7ucYGQI2lBVOAe2XMuJvDD8S5q+bMEXAjwTCMvgSKzx59JN3sse4/4OVhXL9spCzGBQOB0UUyn0oc/qeoPPqBdhaAQCAQCgcBZYbUv6cOfPPb3SyEoSMoRfIiMt0iEoEFu+cc/qfAcAxF08zpPnyb9ut/v55Rvd3KHWBIpH4/HmVC61wAki4wBatcbjcaC8ODmebjPN5vNnPJeNvxzUoPhnAsJkNFy1B2y6NFnou5kPJTbZLqhYrl0xAkc8wcR9zaVHOfRZTwsODflD5zb69ghpNKhqSVdENy5HwECIkr7yNlspsFgkOcdIsz9OZHlemX3/rKg4CUD0+lUo9FI4/H4GgPPMmn1Egovq2D+mBfGwz5grWaz2UI2C/fP+tdqNbXb7bymjUZDo9EoC1e03mT+WG+EFPfugEBTKsJnOzs7ObOA48teA4g3zJ1n+DBvoF6vL7TsdONM9rM/24gCbpToYyObomwOWTb9LHsmcB7PYnARAUGGe/RymUAgEAgEAoFAIHA80jK4maeUnpA0lPTkGQ/lcowhxhBjiDGU8OKiKO44o2ufKlJKfUkPnvEwzvt+izHEGGIM1+I8vYfj38QxhhhDjGFZx3Dku3gpBAVJSin9VVEU3xFjiDHEGGIMyziG84BlmOcYQ4whxhBjOO9YhrmOMcQYYgwxhptFFAkHAoFAIBAIBAKBQCAQuGWEoBAIBAKBQCAQCAQCgUDglrFMgsK7znoAijGAGMMBYgwHiDGcHyzDPMcYDhBjOECM4QAxhvOFZZjrGMMBYgwHiDEcIMZwBJbGQyEQCAQCgUAgEAgEAoHA7YNlylAIBAKBQCAQCAQCgUAgcJvgzAWFlNLrUkoPppS+kFL6pVO65j0ppT9NKX0mpfTplNIvzj//1ZTSoymlj89/Xn/C4/hySulv59f6q/lnF1NKH0wpfX7+54UTvP7L7F4/nlLqpZTectLzkFL67ZTS1ZTSp+yzY+87pfS2+f54MKX0wyc4hnemlD6bUvpkSul9KaWN+ecvSSmNbT5+8wTHcOzcn+I8/KFd/8sppY/PPz+peTjueTzVPXHeEe/ieBfPP4t3sc7fuzjew8uBeA/He3j+WbyHdf7ew/Pz3p7v4qIozuxHUlXSFyXdJ2lN0ickvfwUrnuXpFfO/96R9DlJL5f0q5L+7Sne/5clXS599h8k/dL8778k6ddOcS0el/Tik54HSd8j6ZWSPnWj+56vyyck1STdO98v1RMaww9JWpn//ddsDC/x4054Ho6c+9Och9Lv/6Okf3fC83Dc83iqe+I8/8S7ON7FN7rveBfnz5+X7+J4D5/9T7yH4z18o/uO93D+/Hn5Hp6f97Z8F591hsKrJX2hKIovFUUxk/QeSW846YsWRfFYURR/Pf97X9JnJN190te9SbxB0u/M//47kv7JKV33tZK+WBTFV076QkVR/LmkzdLHx933GyS9pyiKaVEUD0n6gg72zXM+hqIoPlAUxe78Pz8s6YXP9jq3Oobr4NTmAaSUkqSfkPQHz/Y6NxjDcc/jqe6Jc454F1+LeBfHu/goPC/fxfEeXgrEe/haxHs43sNH4Xn5Hp6P4bZ8F5+1oHC3pIftvx/RKb/EUkovkfQKSX85/+jn5+k9v32SqVVzFJI+kFL6WErpzfPP7iyK4jHpYFNJunLCYwBv1OJDcprzIB1/32e1R35K0h/bf9+bUvqblNKfpZS++4SvfdTcn8U8fLekrxdF8Xn77ETnofQ8LtueeD7jzOc03sUZ8S5eRLyLT/ldHO/hM8OZz2m8hzPiPbyIeA/Hv4mvi7MWFNIRn51a24mUUlvS/5T0lqIoepL+i6SXSvp2SY/pILXlJPFdRVG8UtKPSPq5lNL3nPD1jkRKaU3Sj0n67/OPTnserodT3yMppbdL2pX0e/OPHpP0oqIoXiHpX0v6/ZRS94Quf9zcn8Wz8pNa/B/qic7DEc/jsYce8Vm0q3l2iHdxvItvhHgXz4d1xLHPm3dxvIfPFPEejvfwjRDv4fmwjjj2efMelm6/d/FZCwqPSLrH/vuFkr52GhdOKa3qYKF+ryiK/yVJRVF8vSiKvaIo9iX9V51wykhRFF+b/3lV0vvm1/t6Sumu+RjvknT1JMcwx49I+uuiKL4+H8+pzsMcx933qe6RlNKbJP2opH9ZFAfFSfM0oqfmf/+YDuqTvukkrn+duT/teViR9E8l/aGN7cTm4ajnUUuyJ84J4l2seBfPsRTPXbyLD3Ca7+J4D5854j2seA/PsRTPXbyHDxD/Jr4xzlpQ+Kik+1NK984VwTdKev9JX3ReB/Nbkj5TFMWv2+d32WE/LulT5e8+h2NopZQ6/F0H5ief0sH9v2l+2Jsk/dFJjcGwoLqd5jwYjrvv90t6Y0qpllK6V9L9kj5yEgNIKb1O0lsl/VhRFCP7/I6UUnX+9/vmY/jSCY3huLk/tXmY4wckfbYoikdsbCcyD8c9j1qCPXGOEO9ixbt4jjN/7uJdvIBTeRfHe3gpEO9hxXt4jjN/7uI9vID4N/GNUJyyC2T5R9LrdeBg+UVJbz+la/5DHaSDfFLSx+c/r5f03yT97fzz90u66wTHcJ8OXDk/IenT3LukS5L+RNLn539ePOG5aEp6StK6fXai86CDF/VjknZ0oKz99PXuW9Lb5/vjQUk/coJj+IIO6pDYE785P/afzdfoE5L+WtI/PsExHDv3pzUP88/fLelnSsee1Dwc9zye6p447z/xLo53cbyLz++7ON7Dy/ET7+F4D8d7+Py+h+fnvS3fxWk+kEAgEAgEAoFAIBAIBAKBm8ZZlzwEAoFAIBAIBAKBQCAQuA0RgkIgEAgEAoFAIBAIBAKBW0YICoFAIBAIBAKBQCAQCARuGSEoBAKBQCAQCAQCgUAgELhlhKAQCAQCgUAgEAgEAoFA4JYRgkIgEAgEAoFAIBAIBAKBW0YICoFAIBAIBAKBQCAQCARuGSEoBAKBQCAQCAQCgUAgELhl/H928U/BOB688QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 215145 21042\n", + " Min thresh = 1000\n", + " Not Sliding\n", + "\n", + "\n", + "025ns_image_267456908021_clean_ClassN_131-259.roi.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADYCAYAAABberBAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADvlklEQVR4nOz9e5RleX7VB+5z4z7PfUXkq7q6uqVWo5ZAYiGshZ6MjdZIGPEwMhhhgRkLEG5mGGMM9iCJWR7ksfH0LDM2eIwt94wxYtAgCWEsXgZszfTYGD2QBAIJIdTqlvpVXVWZGRH3fW/ce8/8EfH5xT6/jKxXZlVGVn73WrEy68a95/xe51bu/d3f77eoqkqBQCAQCAQCgUAgEAgEAm8EjSc9gEAgEAgEAoFAIBAIBAJPH0JQCAQCgUAgEAgEAoFAIPCGEYJCIBAIBAKBQCAQCAQCgTeMEBQCgUAgEAgEAoFAIBAIvGGEoBAIBAKBQCAQCAQCgUDgDSMEhUAgEAgEAoFAIBAIBAJvGCEoBN52FEXx00VRfM2THkcgEAgELlEUxS8URfF1r/O9VVEUn/8m7/OmPxsIBAKBQOB6IQSFwNuOqqq+uKqqjzzpcbwWiqL4g0VRfLwoiklRFD9WFMX/6kmPKRAIBN7JKIriRlEU31sUxd2Ln+8uimL0pMcVCAQC1wmPW5h9PdeLfxcHHoYQFAKBK1AUxVdI+pCk3yZpLOm/lvRXiqI4eKIDCwQCgXc2/kNJR5LeL+mXSHpO0nc8yQEFAoHAs474d3Hg1RCCQuBth9tqi6L4jqIo/lJRFH+hKIppURT/uCiKLyiK4tuLoni5KIpPFkXxL9pnf09RFD9z8d6PFUXx+7Nr/9GiKF4siuIzRVH8Pldci6LoFEXxJ4ui+ERRFC8VRfGdRVH0HjLM90n66aqqfryqqkrSn5d0S9Kdt2JNAoFA4DqhKIovL4rih4qiOLn4Tv3Pi6JoZ2/7DRffw3eLoviPi6Jo2Od/78V39XFRFH+7KIrPfZ23/jxJ/11VVZOqqk4l/RVJX/yYphUIBALXBkVR/LKiKD5y8T3700VR/Gb73UeKovh99t+/uyiKv3vx9//p4uWfLIpiVhTFv1oUxdcURfGpoij+2MV38i8URfGvvdnrXTHc9yn+XRx4CEJQCFwH/EuS/l86j0r9A0l/W+dn8wVJ/2dJ/5W992VJv0nSSNLvkfSfFkXxpZJUFMXXS/ojkr5O0udL+jXZff6vkr5A0q+8+P0Lkv5PDxnTfy/poCiKr7hQX3+vpH8o6bNvfpqBQCDw1GAn6Q/r/B+MXyXpayX9gew9v0XSr5L0pZK+QeffkyqK4l+W9Mck/VZJtyX9z5L+4uu875+R9JuKojgqiuJI0r+i8+/jQCAQeMegKIqWpL8m6e/onJT/QUnfXRTFF77WZ6uq+hcu/volVVUNqqr63ov/fpfOv7NfkPTNkj78iNdzxL+LAw9FCAqB64D/uaqqv11V1VbSX9L5P0A/VFXVmaTvkfS+oigOJamqqr9RVdXPV+f4/+n8i/ifv7jOb5f031RV9dNVVS0k/fvcoCiKQtK/IekPV1V1v6qqqaT/SNI3PWRMU0l/WdLflbSW9MclffBClQ0EAoF3NC6iUD9cVdW2qqpf0Lmw+4BIe/F9+glJf0rS77h4/fdL+r9UVfUzF9/r/5GkX/k6XQo/Iakt6d7Fz07Sf/HIEwoEAoHrha+UNND5v3c3VVX9fyT9dV1+j75Z/HtVVa0v/o38N3T+b+PHgfh3ceChCEEhcB3wkv19KeluVVU7+2/p/EtXRVH8+qIofrgoivtFUZxI+g06V2Ml6d2SPmnX8r/fllRK+vELa9mJpL918fpV+H06V1+/WOf/uP1dkv56URTvfuPTCwQCgacLF6lnf70ois8WRTHRuShwK3ubf8f+os6/gyXpcyX9afuuvS+p0HnU7LXwlyT9M0lDnTvRfl7SX3jTEwkEAoHriXdL+mRVVXt77Rf1+r4nH4bjqqrm2fUe179b49/FgYciBIXAU4OiKDo6V0f/pKTnqqo6lPQ3df4PVUl6UdJ77CPvtb/f1bk48cVVVR1e/Iyrqho85HZfIumvVVX1z6qq2ldV9bcurv/Vj29GgUAgcG3xX0r6p5I+UFXVSOcpDEX2Hv+O/RxJn7n4+ycl/X77rj2sqqpXVdXfex33/RJJ/1VVVfOqqmaSvlPnwnEgEAi8k/AZSe/12jM6/x799MXf5zoPhIF3vY5rHhVF0c+ux/fym7meI/5dHHgoQlAIPE1oS+pIekXStiiKXy/pX7Tff5+k33NR5KaU1Ue4UID/HzqvuXBHkoqieKEoil/3kHv9fUm/sSiK9xfn+LU6r7/wU499VoFAIHD9MJQ0kTQriuKXSvrfXfGe/8NFrYP3SvpDksi7/U5J314UxRdLUlEU46IovvF13vfvS/p9RVH0LormflDSTz7KRAKBQOAa4kd0TvL/aFEUraIovkbnNcW+5+L3/1DSby2KorwoLv4t2edf0nk3nBz/flEU7aIo/nmd1xz7S494PRD/Lg48FCEoBJ4aXNQ9+Ld0LhwcS/qdkv6q/f6/l/SfSfr/SvqopB+6+NX64s9vvXj9hy8svP+jpIcVq/nzOv9S/4jO/1H9n+k84vZPH9+MAoFA4Nri39X5d+xU52LsVUW6fkDSj+v8H6p/Q+dtxFRV1V/ReRHc77n4rv0pSb/+dd739+q8mvindB6pe7+k3/3mphAIBALXE1VVbST9Zp1/N97Vea2Yf93+nfmfStronOh/l6Tvzi7xHZK+6yK1jDoJn9X5v48/c/H+/+0jXs8R/y4OPBRF1NIIvFNRFMUv0/k/ZDsXhcECgUAgEAgEAoF3FC4cDn+hqqr3vMZbA4HHjnAoBN5RKIrit1xYvY50HiH7ayEmBAKBQCAQCAQCgcDjRwgKgXcafr/Oayz8vM7bjV2V9xsIBAKBQCAQCAQCgUfEWyYoFEXx9UVR/GxRFB8tiuLb3qr7BAKOqqq+/qJ7w42qqn5LVVUvPukxBQJPCvE9HAgEAk8e8V0ceKtRVdVHIt0h8KTwltRQKIriQOd9pH+tzgsr/X1Jv6Oqqn/y2G8WCAQCgQcQ38OBQCDw5BHfxYFA4J2Ot8qh8OWSPlpV1ccuqph+j6RveIvuFQgEAoEHEd/DgUAg8OQR38WBQOAdjeZbdN0XJH3S/vtTkr7iYW/u9/vVcDjUbrfTbreTJBVFoUajoUajoaqqtNvtVFWV9vu9iqJI7ymKQs1mU41GQ/v9XrvdTtvtVlVVqdFo6ODgQK1WS0VRpM/v93vlzoz9fi9J6XU+12w2dXBwoKqqtN1u0xgZG2OQVPtvxsXvdrudzs7O0r2ZJ59jnv7DnHlPs3m5XVy/1Wqp0TjXhdbrde0efs2r5s3vWGvm6mvr8+MzPq78d9yL3/d6PfV6PbVarbSOm81G2+22Nk7WiNcZTz4m7vOwfWTv/JpnZ2fa7XbpM/nnDg4O0hnyvTw4OEi/4/z4nvm88zXgnPg6+f0lpbn5Gvp1fKxck//2ffHz5M+Njzl/ZpgD87hqXfhv//NhyK+ZX/eq61/13OTn56rz5+Pw3/Fezr3f86rnjve32+20F5wdP8uf/vSn71ZVdfuhk7++eEPfw5J0MOhXn/O+Qi+vhzr46PrV3hoIvC3YPN9X9Vb9SyXw1GB7/752s/mD/7N8OvCGvovjezgQCFxXTHV85b+J36r/TV/1pV9jfkVRfFDSByXp8PBQf+AP/AFNp1MdHx9rOp3q4OBAnU5HvV5PkrRYLLRYLLRarRJhabVa6vV6Ojo60mg00mq10unpqT772c9qNpup2+1qNBrpXe96l4bDoc7OzrTZbBKhhWhCHCDj+/1eg8FA73nPe3Tr1i3duHFD2+1WL7/8sk5OTjSbzXRwcKDBYKB2u612u50EiIODA7XbbVVVpbIs1W631Wg0NJ1O9fLLL2u9Xmu9Xmuz2Wi326nb7arX66nb7Wqz2SRRYL1e6/T0VKvVSpLUbrd169attH4HBwd64YUX9J73vEf9fl9FUehjH/uYPv7xj2s6nWqz2ajX6yUhhPsy591up9Vqpc1mk9bx5s2bGgwGSagYDAZpHxBX5vO5JpOJVquVdrudOp3O+eZerOFqtdJisdB2u1Wj0dAHPvABfdEXfZHe/e536/bt8/P32c9+Vnfv3tXx8bEWi4X6/b4ajYa2263u3bune/fuqd1uazAY6M6dOxqPx4k4NptNbbdbrVYrLZdLrVardEZAWZbqdrtpPK+88ooWi0V6P69zBrrdrg4PD9P+nZ2daTAY6MaNG7p165bu3Lmjbrdbu0en00lCB0IWf56dnWk6nWo2m2m1Wuns7EwHBwdp3LPZTMvlUuPxWGVZpjWXLsn1arXSfD7X2dlZGud0OtVyudR6ff4PDNZtt9vp+PhYs9lMjUZDnU5HR0dHKssykej1eq2DgwN1u9300+v11Gw201k4Pj5WVVWJWLPG6/W6tt6QcifgjJt96/f7arfb2m63ms1mWiwWmkwmms1maZ6tViudIZ4jxsI5bbfb6nQ66fr7/V6bzSZdA/LPfzNHSdput5pMJmncrOlut0tn/ODgQLdv39bt27d1eHio8XicPn92dqblcqlv//Zv/8VX/ba7vnjN72Gp/l3cbY31wgf+j3r/yZkaP/8P3urxBQKviU/+G1+t9Y2Hi5mBZwOf+b/9qSc9hEfBG/o3cXwPBwKB64r/sfr+K/9N/FYJCp+S9F777/dI+oy/oaqqD0v6sCS95z3vqbrdbopQQvwhUs1m84HIKX9CjiE5kIztdqvNZpOIRKfTSaSPqLBHfon4424ARVEk4tTpdNTpdGqEptlsJtGg1Wol4u2OBEmJJG235x0MIaNE4VutVi2Sut1u0+94jfvy+fV6XZu3uwC4PySMzzA3j/JyXwQNXAKdTqcW5WbMeQTeo+EegZeU9gAxw+cLeUfUYA5FUdREg7Isa/f2aD2uEXcZ4FZh3ZrNZiKlTmIZF/vH9WazmaqqUqfT0WAwqLkm/Fwwbye7rANngfGx1xBnF8eYcx6x9/POuW232yqKQrvdLp21/X6vbrerk5OT9Ez0ej2VZZkEBz+zfA4xiLVEqHBXjzsOmKO7PXJwhlxoc6cOe+diDLhq3pwzX5t2u53+7tfInR6IHS568Oy7OyQX3NyRcpV75CnCa34PS/Xv4lFxo+r9wI++PaMLBAKBZwNv6N/E8T0cCASeNrxVgsLfl/SBoig+T9KnJX2TpN/5sDfv93u12211u121221tNhsdHx8nUgyJlOr2bumcVCyXS7Xb7Ro54XNE1Z2suMVfUiLGiAe5LRoSRmQX0u2vQ0Db7XYikpArSDXk0tMM/AdnA2sC+YZQEWWWlIjvcrlMkWbuj3CQEyLI3dnZmaRz8gfRPjg4SC4NCCOka7vd1qz5kLyzs7N0b/YmFyrW67Xm87nm87kWi4UQjtgPSCwuiFarVdu/5XJZI5TsDYSWiDbkGfs6v+MMED3vdDpJ2OF+rVZLnU4n7dlsNku/73a7Ojo6eiAtwlMPOIdu28/TDqqqSmIA679cLiVdpj74OrJfm80miS64D4j8c9Zww+AqWK/XajabGo1GaT1xKRRFkcQCPotgwn04S4g+vG+z2aTnw9M2fN/9OuyJiwn8fbvdJnGNz7IPCAbuHkLQYdz8Pf8ucAGM1CTWFiELcQZBwoXH9XqdBBfO6VOMN/Q9HAgEAoG3BPFdHAgE3tF4SwSFqqq2RVH8m5L+tqQDSX+2qqqfftj7ITvD4VA3btxIBHI+nyfSAZmDyALeB2nwqKZ0ThYWi0UtitlsNtXv92vEKIfXboD0QhQhUZCxs7MzlWWpTqej4XCo4XCozWaj+/fvazqdar1ea7FYJDu5z1tSisZDLCGe2PNJj8gFlul0qpOTk1p0n/G5uIA4ACDRRGchekRnEQ9Wq1W6Bm6Ffr+v+XyebOSS1O12EwHDAcDakuoBgbt582ZybjD/5XJZEwggrRDG9Xpdq7WQ137gdfa22WymdI7NZqOiKNTtdtO8zs7Oaukum80mRej5+2Kx0PHxsVqtlsbjcVo39qvZbKaUFq77sDoECFCIAqzFarVKa1aWZU1s8nodiCbupJEunQSNRkNnZ2c1MWY6neru3bspbQWi7Wk1nAvEPM4k+9Lr9ZJ4QeoDApfXueBMI37w3Ph1/Vz5M4Cw4M8hY8KthEiBKMSc81QHhDQ/X75mCCOkoLjAhig5HA7TWBBwnla80e/hQCAQCDx+xHdxIBB4p+MtK3VUVdXflPQ3X897d7ud5vO5er1eTVRot9tJVHBrP6TLo67dbreWgoBrgOtPp9NEFNwy7UXvgJMTCI+TPO4PcfcfXBZcxx0CTuol1QgOhBBi7kUh3W7vKSG9Xi8RZ6KuWN0RLzyfHEs+Fu+qqmrOCQijW/kh6Ny/2WxqMBjUCmC6GHJwcJDIMWLLbDbT6empyrJM83PiyfqScsDYEZDW63VyH/BaTtw9nYC99TVjPxBTcD7gjiGavd1u1ev1kmBycnKiu3fvpui5uyrW63Xad78fZ459Wi6XKbrv12FuuTPFCwL6OiOuIWjgomBtxuNxShWaz+fJ5cOzwHmHQC+Xy1RrgjPnqQyeStLpdFSWZRK5nKR7Wg3XPzg40HK5TLUm8gKb+R7lhUnZL9Ywf/Y9jcKLMbpgtF6vtVwua8KDP0/sAYIJ1+31ejVHytOMN/I9HAgEAoG3BvFdHAgE3sm4FrWTPUpM5Lcsy0R0l8tlIqAQrIdVuYe0dbvdZNWvqkqLxSJdg64DORnimh5N9Xx9rPIQXiz0FFV0ksO4IGqdTqeWtsGfXM+7HkBk2u221ut1zV7PGBAFcC9Il/nxrVYrRXKHw6EkJXIvKUV73UkAsfJruagBGZWU1rfX66V6A6wt64CzgtoRFMTr9/vJxZCTUD7jBDeP/DsB9ZoTV9UyyHPynajiMmG+WOERFNiP1WqlyWSi0WiUaiMgKkGc3bHCfbiWFwL1uhn+Pu/M4ZH1XMBy67906SZApCjLUr1eL9VnWC6XaWyIMTwPWPxZD8QnBDxPf8ifDa+N4GkTXtOAug159wnfB0lpXL5H/N5FJvYU4Yzfcxb4MxcKeH5cvMiFPfbSC0+6sBcIBJ4cbvzMTieff6Dlc1GYMRAIBAKB64hrIyh44UBJiahDTjztAKFAUo3U8HkiqdjaJSWSBQnzqK10mX/Nn55jDYGHIO33+xqJo9sD1yZKzPXJ6+e1vLAgRGmz2aR5IFYQEWaupAMgwjxMBKBzw3g8Tpb4xWKRos7c07sIAHcnuGvC89W5PtFut4njivB8+/V6rdlslgSOvJAea0ehSe7r5Bshh9oCfm7yYn68xro7sSU1wGtGDAaDZG8vyzJFud1h4Tn6EGwnnS6QuDjA3iLMsNb53D2lxwuTspZebBLCzL3YD8StxWKRBB13vHh6Aq6dbreb0i4mk0mtEwkOCMaIkMaYOPeIXU7cOVcuPvgcJGkwGKT3exFT9tyfP58r90dgYG15RhhznmqS1xhhH9ij5XKp2WyWzl0uPgQCgbcX/e//ETV/45fpM+Omdt0H2wQHAoFAIBB4srg2/1r2qCYRfci2OwmIqrodHxKF/fzGjRtqtVopCkv9Au9gQKQccpIXb+t0OolMkB4AoaUQIfckxQLyRy65dElIID/M1QWPPOfbo9BerM8L1lFAbjKZ6OjoqBatB4gdWPkhsBD8qqo0n89rlnG35UPAuP9yudRisUjXobUk4oaLIe12W2VZSrpsv0e6BGuBowIRIXea8MP6YPWnUCQRaLfC87vcMQC5JbWEWgJY4nF10PZwu90mUj6bzXR8fJyIKgULKdLJ+jhR5r6+H1780CPt1UXxSfYPEsz7iqJIaRU+j+Vymc4Hz8xwOExpKF5gU1JNAGHvOTf9fr8m4DB/T//xebH/3W43iSE4VLxTip87f44RS6g9wn3ye7jA4uIK65eLi95iks/jnvCCjQ5PfVosFjo5Oak9c4FA4Mmi8zf+vj7wj96jf/pH3vOkhxIIBAKBQCDDtREUPF8ZsuwFGRELsPJD/rDe5y3kvKp7r9dLAoHbyPOIJj9uHye/3Ws1YNPmut5ZwF0MeZs6t+Q3Go0kdED0iCa7eMF1JaXoqiTNZrMHqtNzX8+B96r4XtOh0WhoOBwm8sR7mF9RFDWrPv9NZwIngF4kD1GA9SX6ze+JfDsBxplANNuLEXr0f7PZaD6fJ3eJpx1wVthDj+IjHrAetBClYCdCBakBnDXm4S1IN5uNBoOBBoNBKspIuoS7ESC6Lnx56oy7Y6jL4KkSuEncLcK5Y94+Nyft3W5X/X5f0+m01kHCO3IwjsVikT5H2gMpH+5ccTEKAcHFCRekvAUsZB6himvzO9bEiyS686TX66VnY7lcpjH5PnPW8+KOjDd3i3hqkhdG5dlZrVaaTqfabrfJbRMIBJ4sdp99WV/4Z1r6+d/9Lm374VQIBAKBQOC64FoICk5W+Id9Tvy9oj8EHmGBIne5Ld8/kxfpIzruogGvQwTdOu2fKcsy3Zt7OqnySCpkxtMpqFbvdm3mz7j9epCsq9ZAUsr/ziPizFW6zDPn7y7KIN5A8t2av9lsakSWa0IquRbrlP/eC+ghFnAvbxMIgeU6nsLAWIhWk+LCfSDXeW0Nd314ZwN3kiA0eOV/Pyd83lMgIKV+pnzu7hbJBQXOt6fasIcQWtadNfR0BeZG0UHEmbw+AWeIcbj7hs8zZpwaiD9+tvK6DVyfs+qCGGfeC2/iXMFV4KkiCCN+NnExuGDAPBC4PI3C99lTjfjJU2G85obvlTs5VqtV+k4JBALXA9XZRruPflx3fvyOjr8waioEAoFAIHBdcC0EBekyjxyy50Xp8orukCuIFJXquYZHyfPCbbyGmDAYDNTr9RKBy0kI93TyjNXdyZ33rYc4e60CLyzH/auqSsKIpBopZqxcz5GnJRBVhfS7G+EqGz7j5BoUrpMu3QZ8DgIH0WNuHl3P6xxAwBmPR8l9PKScQHSJhjMHxIWcOPp8IOBuiXcy7R0sEA9YY4928z7GwPmDeDuZ9Wi2n1v/b84T69NsNtP91+t1Ld2GM8RnEFdwTuRr0mg0kghAW0yeB9aHsTNP9tu7lzAHziMOGMbm72EMTshzgs5zlgtS1DDgMw46ODA/zos/A5wp2oG6qITriPl6WtNV6Q1er4JnDiGC+ZBKE4JCIHD9UP6VH1HxDV+ul3tNqai07Veqnu5mLIFAIBAIPNW4FoKC28qJmhI9hsRAEPxHqvegh8RAtPgcEVavVI+YMBqNUnV7Wii65RoivF6v09+xlDt5Wy6XNQs8qQGQTEkpJ93TMbygHLn0EGOPNnvUvSiKVLASGzvk1Z0UrIdHhCF1TkIZD3PxCC7RWohsv99P45MuO0Z494C8UwNrclU+PmuM24M18HNBaomT6rxLBxF+F3Sc0FJLA7Lv1vq8jaOTU1JKOAPMjb3gtfl8XnOYQFoh5rT4RPyh7SdOFbfue6tE1jF3UHihTOpIHBwcpPF6F4eyLNMau5PEU2RwvUDSe72eTk9Pa04Jd2mwb8yXPSD9yOtf5GTdUxx2u116Xrluv99Pe+KpNDnR9zEjKvj3B2vpbgjSTVgLd4RI5ykWnGMXmAKBwPVB7wd+VJ/7A+d//4X/4Ku0HUQKRCAQCAQCTwrXQlDY7/c6PT1NXQPG43Gy8FM0z+3gENq8YJ1b2oncursgJ/JEx3EreHQZko5d28e62WxSbjXvJ9JNkTkfDxFWz+t3sg3Bduu6W7j3+30ipu5CoBMGZNzTNLg/oowTQk8PYQ29VSX3571U++c+jAViLF2KHldFdT3FAiLMvBgfv/cUAEmJ/HnOu4s9pEvwXv6E5E8mkyQQOHkkGs+fTi6Xy6Umk4lOT081nU5TRLzf79dcBB513+12SZDiTCLMeF0I0lNYM+aenxV3PnixTvYbhwz35EwioLhok0frIdcIHOwJ6+9pGVc5EpjvfD7XbrdL4pXvj59B2r66gyMHz5rXUqHgpb/GeBAQer1eTUAC3iXDU5Cucu24o2G9XtfSHTwdIxAIXD98/nf+otRo6Oxzbunnf1vUPAkEAoFA4O3GtREUiCLvdrtUFwGXAkSYiDFigVutiXw7AYFAOMnFYUC+OCkD7gZgTJAR/3zumICsOimGmHnLuTwS6qSLcXlahtdd8BoSXnwPsYPXPX2Acc3n8yQIMB8vaOgFAhk7RAximqdrQMpII3ARA9HAyRv75HvjRREZHwIJRQndLYEbwZ0Yvu9O7N1B4KkE7ijx9fTOBrS3nM/nWi6XybFAUUBeI1LutRTc4SFdktE8BYM1J2VFunR6eO6/f6bRaNQKZHqBR09ZcdeBn1UvWOidIrzGwmq1Ss+Dv5c5eNcIT21hvJ6uwfjX63XaYz8LufuAz/t68Vx4PZX82eT+jId19/3m7OK0cEHP6yjgnEAcRPgKBALXF9tPf0aS1Fyt9fz/8v4nPJrAW4VXZk96BIFAIBB4GK6FoIDFGMLiuf1YzckZp6OBE0npss4BYoQXDfRK9c1mM7kInEh6QbfcIp1H3z3SiuUd8oS9X7rshACJabVaNULmIoaLBU6WfX4+BkiQiw0IGswXQYb1dGeAR9QhUhBcRBzcA048pUv3AnvmwoYLKpJSFBzRwlMr1uu15vN5Isy0lYTEezFMF4k8yu2CEPvI6xBLhKq8AJ87CFib1Wql2WxWExOY62Kx0HQ61Xw+12AwSHvhQgnj4HXgYgIOBVwG/M7rJbDOfLYoinTuObOsIfuYR/Eh2byPtAnvEOFChKcTcA32XlISLjy1g2eWtfaijL7H3h2EtfLuGJ7WwPw4Vy4K+fPH8+ZrhhjgwpI/M5yPfJ392i46RR2FQODpwO6VV9T//lee9DACbxEa1fxJDyEQCAQCD8G1EBT2+72m06mGw2Gyow8GA0lKaQ9EjieTiZbLpfb7vYbDYbKsExWXLnPGpcto5WAwSE4IbyEJKZ7NZg+kOHh0069/dnam6XSaSBquCo+sHxwcJHs64ohUL/Do9Qwk1SL9jN0t154SwT1YI4/8enpAnjbBvCC23nGh2+2mOeEYcQIPIVsul1osFlosFg+kk2DHd+ILAXSyx/Xn8/N/JECu2+12Si3wTgS4L0iFwamAo2K5XKY0kH6/X1sPd1hAUPMUEQg2Zw0RgnWnlWCz2dS9e/cSkfXOGF5gk3PC3Ln2crnUfD5P4+v1eup2u7W9RmBjrpwTbz3pbh32mPu7nR+XCilFnFMEEu7Z6XRSjQl3eJCu4EKIt4D0c8YZR+xDBJxOp5rNzsNL/X4/1VngnHoaEyIOa4WzhjPuqTz7/b6WDuN1G1zocPcEa8q+cEbdWULxTK/JEAgEAoFAIBAIBB7EtRAUJCVrNNHhPCrtJHc2m6koCg2Hw0RyqFsAmV0ul4k0StJsNqu5CKTLrgqr1UonJyeJsEBuIS6ICR7JZrwIEL1eL+VzE+GE7HiFf8gaOfZ5tB1C6FF/STVCxXvdSbBcLtXv91ORP65NfrsLE16FnzSRbrer4XCYiONsNtNqtdLh4eED7SlPTk40nU612Ww0GAzU6XTU6XRqbTxJUYDAMU4XOSCS5MKzxxD/vJsHUW3fV3eEQBjZL1pSQiAh5+TmuwPE0wIQHLwrAuR6vz8v4ug1NBAuWHvOh9vpvTgkZxYxjPnlNSBYO4QaBCv2e7FYJFEBsYE5cU3vTiGdE/pGo5HODqBLiLsQqJ+BQwhBBQcKP7nbhDVlrogDiCKsv4sveVcKxCbG4S4bTzWiXgXz9toJPFcU4HTXEWfVBRgXmHzPAoFAIPBkcPqvfaVOf0lDmw//8JMeSiAQCAQegmsjKDhRoLOAdBmlJ8INmSqKQvP5PEVFyd336KPn31MzAQIIsd3v95pMJjo5OUnXQcxwouYdGSDzUr1IIOTdCzV6dNWJGjUQpEsnBOSScTrBgWjlKRDcix+3eSNweCQYwg45xzXAPXxMnurA3mD7x4lBlwkEHcD1Dw4OavZ6xuz59pBpBAtPRcjbJna73QfqO0DkJdWuiVvCWyCyx95xAsLMfL1tIXvsIgjCF9fp9Xo1oQMBydtZuqDEDzUROFNeCDGvhUCdCdYGos4+dDqdlNLg0X/2saoqnZycJEcKr/Nc4bLxtosIeXm3C86id39AAOGMMve8MKKnzuSuDK7H2PxzfB/gmOG66/W6Vg/F3Q5+hjgrrGX+7Pn3ECKJ3z8QCAQCbz/GPzdX57Snzyyik0cgEAhcV1wLQSGPBq9Wq0Ru884HEBxJKUIrKeXuQxwgcNjg+YFU7Pf7ZGvHEi4pkRMiwhAniIlHxBeLRY3AeP44BMnJoac7cA23XedCg1/zKqcCxMdFBezxrAn28v1+n1pjIlS02+20fi4ggLywHYICEWfm6PPOuzAgzEDGnVC7M8PFJEQExukpHe5+4P7k17u1nSg46QjcjzX2Io8UDXTy6m4Br79AusFisVC3230gnQWhwtMSqPtxVWFE1icXj3LxwesIVFWVUk44w3zG3RiMn7M+nU5r4phH4NfrdXKJeIoMzxKtHXFMcDbcybNcLtN+IWL4mDln7ggAXlOE33MdT2ng3pwV/iQlhnOKsIOTxF0tiDl+36uEJNYtEAgEAk8IP/qP1ZVUVIsnPZJAIBAIPATXQlA4ODio9Z5fLBa1Vo2SasQcMuBtCyHP0jkRpggcKQdO/sgfhwwRdZfOo/hlWWo0GtXqHEiqdXEoiiLZuD1fG+Eij5hTDNJJLXOAFHsxRkgOBJq5eKV9BBRIEITY3RkQaorYcV3Whag0a45jwUm9VG/FmNvl3UWCIEBaCa97sT3Ptad+AL9bLpfJcZCnarAGV9UcgATzd+8YwB65G4M1pbZB7mbhGggmTuw5g4yV/WbNWOv5fJ46RlDLAKGLvUakyV0wLnBwThCdSL+ggwdrxdkgIu/nb7vdajKZpBoluFMQEObzuabTaa1AKNdDLOAcu5iVi0zuQOG5ZR/c6eL75U4M32934ZB+gTuCH9aFGhbsKWePehqIkewPP7w3L6zJ/QOBQCAQCAQCgcDDcS0EBY88E2H0An5EZ91CzXshVP1+X4eHhynXGgIHcfHOA3zO7eWACDP5907UqqpSu93W4eFhLco6m82S5Rub/WAwSHMgqluWZfpMq9XSer2uRaRzckXE2lswegs+iDtpEp4zj7Xdo+YIIsyTdWFtKRborTXZAyLsiAlVVSUCLF0KBZBK1tDdJQgOvAdiS7qKOwfysbNvpHKwN9TEcIK7XC5TtJn1yUkuZJX9lS4Fo263m2oHeOcBt8PP5/NEQikCyl4jNrigAPlFoPB0Dm9NyRrwHHjKDEIW98hFFHd+uCCBAAD55hmRVLsOc5SU9tddQe6cwYFB+gn77+P29UEkcbiLh3HiKGBOD5uniwretcM7OZB64oIbZx3xgrVwMYKz4oUoA4FAIBAIBAKBwIO4FoKCpJobgMipW+Fz+72kGoHqdDoaDofqdrspX5xosJNJL4QIgZdU6wqB06Asy0TueB82eoitF5zzyKvn6XNfz7PPbe3eBtNdEdKl4MKY+VxetNCr2/N5CtAx7l6vl8gUxNPrJ0DCERQYD2vFXiA8IBqwb95tAbu6j8+LEu52O3W7XfV6vVq+Ow4FIu9uRffimLgMIJKeAsG92XcXkzz/H3jdhm63m+YImfZCjYgKdEmgGKa/TsT/9PQ0pRp4IUqPqHs9D/aGMwCxzYtyuoMj/7vP0+fHa9yHFAHgqQb+bLjjwwUvF0kQStw5UJZlqmXBuPP0Ja/74c8gc3d3Sy568Brr4ufECzcCP7sPAzU1ooZCIBAIBAKBQCDw2njTgkJRFO+V9OclvUvSXtKHq6r600VR3JD0vZLeJ+kXJP32qqqOX+t6TvScwDgx8CgkgHRgVccZQNSRqKy7DPickybIKWS13W6nyDMkDHINcck7BTB2UhUgjMzDix86WcRNkBekc6LlbgAXOPIuBd5q0Qvu0ebP6yRQFBDRBDeEpGTlz1tT5uPyFpE4P9xO74ICBN3z151QIkT0er1azQPW0WtQ8H4/Az5fd7jw3rwAoMMLKrr1HREE0SfvkCFJ8/k8iSK0IMWZMJ/PNZlMHhDDvC6Gnx0IOGfE0yxYc8bmxDqfW17U0Z8z9t4/7+eIz3htBj/H7qThrPJed3RQ6JGxebcF5uu1JXhfXhDTzx57lNe4YDysay5G+D1duON3wF1QuXvpuuJxfxcHAoFA4I0hvocDgcCzjEdxKGwl/TtVVf1EURRDST9eFMX/IOl3S/rBqqo+VBTFt0n6Nknf+moXwspPJB6SCXm6Kh0gj5hTbX8wGNQq4kMw3eoMQfW6DFitvV6BW/CvigJ7ZwCEB65HSoHP0UUF0gggVF5jgToPEB1IlLsBuI+7EdbrdSLrXsmf3PvhcKhWq5VqTyA0UL/CyShr4Nd3NwT/TYcDj+g7ocUd4Z/zfcThwfr3ej0dHh5KUm0sDyOc0qWVnbQTSCHE06PX2NxzpwciEmfDx0s9DkQi6nxI58S8LMuUQrBerzWZTHR6eppaoFJjAHHEzx9/epoA7gknwfn7vc6GpBrh9rVz9wCOBCffEHAXHjhXCF05efdUBD+nvMddRbn7wOsZ0K2CayCa5fvLdXIhyc+oC0cuOPhaeIoE+8iZqKoqnZ1c0HsK8Ni+iwOBQCDwphDfw4FA4JnFmxYUqqp6UdKLF3+fFkXxM5JekPQNkr7m4m3fJekjeh1fnljLvXAgf3o0kb9DJFarlU5PT1NhO4g5xRGbzWayoEOkIYtel+FiHpKUSI5Hzl1M4HMQePLSidAyLizf0jnxRDRh7O58aLfbunHjhqTL7hXT6fQBNwIihxcZhMCxBpBAt9I3m03dvHlTm81G0+lUs9lMi8UiFUgk1WC5XKY9wLHA77D3Ix60Wi2VZaler5fm7ESXa9Bdgxx7J4TUVCjLsibOeNcIJ6bu+mBNvFik59izBtRz4NqkcnhdDNaVugx8nntIqq2F15Q4OTmpnY3JZKLZbFbr7kDnEoQhzoN0LljMZrM0x16vp36/n4ixuwAYh3QpUjFWzpvXDPB5cD0XKRAU/Prsu4sMXNdTZXheczAPUlu4R7vdTvfwNqfsKWIK6+jFFRE5cMSwr77uLnS5IMSYuDfCkdexQAhDVHit1IjrhMf9XRwIBAKBN4b4Hg4EAs8yHksNhaIo3ifpn5P0I5Keu/hiVVVVLxZFced1XkMXn0nWfcgP5JXCjZAIIqXz+Ty1tYOgkALR7XY1mUySSEBk1OsC5NZmT7GQVCNpkA6s7NRPoIuEE+pcDPHuCIwR14EXJ6Q43WKxqKV4uK3dnRo+JiLuFF+EHBVFobIsU30AoucUkqTmA3UQqOrvNRVc0PB1RkwhwuxOBMYNCfa0BSLk+/15ez5SBfr9fnI+eMTa001YB/bLCaqkmkOBz/q9/RrUw2CMXgRUUiLCvv5+bc4g7hIEIRecvMCkdzBxdwLX9h/gxTldFHAhwOsFkOqDoIBThLVwIYVx+D091SRfP1JVEEvy/UQEokUp592dEO4w4rO4fBDL6HzC2vmzyHPGvRFevFOG76e3H+V33uLTXRkuYLko8TTgcXwXBwKBQODNI76HA4HAs4ZHFhSKohhI+suS/u2qqia5XflVPvdBSR+UpG63WyOmHpWFuEC6Ie6kIVBRn8g6xM9bPFYXhda8IF5ObrxYHeQUouYkli4CRPkhK7mg4DUEICVeLZ/IPrZySA7WeYQGxuYF/bzyv9diQNy4Kl0Ep0BRFJrP55IunRjcR1JKG4CQSpc2cifFXhsBskk9Bs9jd2LGnuBS4L1ee+D09DQVjmRN3SHixJAx50TQ614AT5fg/pBVBBNPRXFByfdfuhQUpMv0DbfL44Rhv5xs43DIC0rac1HbWxeTGLPPy0UlJ+CMBZHB9xAxBEGIeeSpAzgB/P6sEc+mp06w/74nXquBveTZ8jQPzhCuD68FwjPkz5KfP3dT+J4iVvGdwNlBlPTuKaxl9h31QPrFdcZj+S5W+dYNMBAIBN7hiO/hQCDwLOKRBIWiKFo6/+L87qqq/tuLl18qiuL5CyX2eUkvX/XZqqo+LOnDknR0dFR5mgLE4uzsTNPpNFn/u92uDg8PU/RXumxfx2u0EfSUBydLHo10MudRUXLk+Xu3202fW6/Xms/nun//vqbTqdrttkajkUajkcqyTOSO9AZJyS1wMe/kXOj1esliD+knv9+t2HxusVhosVikz+diAwQPtwD3dbLvxJLrSZepBC4ouNAAnFgi1jiZRxzCRr9er5NgUpalRqPRA20sId+TyaTm5mBdcQ/wk7cKBC6m+Lrh2uD9pB/4PHBgIBgBt8VzPelcBMvdAe5swO7vJBuBBPGCvXMhyR0eTvAdnk7CWiOaeUFE/2/2mPtwL4/8ez2PbrerdrtdE2Zwavh5QzzyM+ZiH/vAc8SZxx1TVVUi9qyJux9wzvB7d7UgDHEOfZ4ICl5XgnEgruGm4Azz3CBKsEZPAx7Xd/GouPF05HkEAoHANUN8DwcCgWcVj9LloZD0X0v6maqq/hP71V+V9M2SPnTx5w+8jmulqC1RRHLMj4+PdXp6mohXWZYaDAaJQCwWC7300kt6+eWXdXp6qs1mkwQFj1KSQuGpCxCSvHsCRA+C0e12axZyCHdxUURyOBzq8PAw5fNT/8Aj6eTs52kA5IRDrHid8Xuu+mQySQSNdAkXVDwa7KkC7mTwv/M53sc8ESUA0W9PPyHS7XnnWM4hZbhGqAfQ6XQ0Ho/TnnhOPikry+Wy5hhptVoajUYaDoepFsNsNrsyen1wcJDIpbfP5HfuaEEogGDn6Rq+Rx7Nzokt7hAXrEgn4FrMpdfrpX2FrCM+IIIgPnjnA0QDamdwL64jXaa2IHIgUrnzxVuT5lZ+F068Zgbwc+MpGggKrBMOFOB1Hs7OztL7KQJKAVXGh6jA3nshUi8GyWu9Xi+l8XiNCUQRF3dciGEvEYY4S5whP5/XHY/zuzgQCAQCbxzxPRwIBJ5lPIpD4VdL+t9I+sdFUfzDi9f+mM6/NL+vKIpvkfQJSd/4Whfy3HwIJhHr+/fv6/j4OJGjRqORCvhBPKgfQKs+SBZCgufWE4WW6i34vFOBR74h/U7sKRZHK8ayLBNBJMKNQwGy5cSUcXgXAoQCr70AacJ+70Xq3ALvn/MccuoQIGbQacCt6qwHdnnm7JFaXBdXFapzEu0RXrfbHxwcqN/vJxcAc/LoO4RxuVxqPp+r3++nFBaIpbdTJH0E4cdJPu9xEcXXCBEF8s56QB4h7/l54Wwg3HjxSObLvZwMI4aR4uHdFTzFwWsgcM5wXLCvvmZ5pH02m6V99LoEnBXWwAUYxu+uGHcE5Kkenh6QFz1kvTw1hrODYJLXQ/D18LFynTw9ifPmn2M83r6S1xD9uF+eAuJ77mv9lOGxfRcHAoFA4E0hvocDgcAzi0fp8vB3JT0sOexr3+C1alHNs7MzLRaLJBBMp9MUTaSwoEcdsdZDwiCRHj2WLgs/egSeyHXe1k66jFBju4agQsq8LoC3IkRQIEp6VcE9CJKLGjgBvMq839Mj5DnZA04UGRciDekNHr32HHrm5dX2/Z4e3eUzdM1gvdg/nBy73S6ln9BmknQVr+/AdV0Eghw62eQ97HVePJP3uhuEP9lXJ+XNZrMW9fb7ef498/d98oKafqa4hjsI8r1jrJwLxsKZ5cej7ayt7zX38ZQHJ8vcg73hTDmZ5lpcx+fhcFHpqsh9LjxB0vmsO2gYm7so3CHia8R+MkeECtaM1AZfY8bD/uCsYF99HMyVv3e73TSXXEC7jnic38WBQCAQeOOI7+FAIPAs47F0eXhUEJ31iOZkMtF0Ok3tHj13mui1pBSR9XoIXl8A0unkKCd/0mURObeak1vvnSUQAYjiIiiQfoCgMJvN1Ov1apZv716BAFKWZa2mAa/nBRhxSjjBcdKcd1HA8YEYUlWV5vN5soBjF2eMVxWpc4cBEfJ2u53GxrVI22B/mC+pIXTboMZCWZZJjCBnn/XznH9JtWr9bnvHoUDtDPbUr0U6Bmvmhf3ctcA1XUCC3EMyIeYQZvaR1pkeVWe9cGUg6HhKja835Nnnxh7hdBgMBklkYJ0h3AgBiFreKtLPCq8zRt9r0jS8uKFH+6V69xN3sfB5BA32lTV3cu61MDzFwt0SCA285o4OdyG428HrXPAMM07Wl/ob7Cmf9ddZT85Tfh4DgUAgEAgEAoHAJa6FoLDf7zWdTnV2dqZOp5MEBVrxEUWHxIzHY7Xb7eRgcNs2xInOD6QJ8HuvvO91Bnj/brfTYDBIv/dIP9ZpiBlEyOsj0G3Bax3kRR1dTCCvfrfbaTqdarFYJFcGEd12u53SKvgsNROo2QCJgnRiM4dgeqFBov/dblc3btxIa7ZardJaE/VFABgMBolgQepWq5WWy2USJtrttlarlRaLRSLF8/k8CQrUt3AhhEKFrNvp6Wkq3leWpYbDYSLldIJAaPKuHhBHhA/2qiiK1DYUkjoYDGqikQtZnmKSW+YhoOwB4gApFNyXPXdBgVQOryvhLgjEKcblKSRlWarf79fI7Xq9roldnDU+5+4SSQ+4dSjCyPq5s8WdHV400dMzIN8ukhRFkc5l7uzw91F4lXPG3iEAeOqFuywQ3dgj5pUXTuSMbjabJHZ5UU4+55/1dBY/T09DDYVAIBAIBAKBQOBJ4VoICkQ3JSVynkfoveUeBA9SkBdW9Lx+j9R65Jz/JrrrUWzG4YKB59U3m81kuceNcHh4WLPodzqdRLRpD4mgAemik0RZlkmw8NaPXoOB30PqIG1eDNAJkKcseNFEIu+73S6JAJAvb/lHYT+PKON6gMQyD+6NMODX4NreipP5sZaQcAgqHQYQUnBRIIzMZrNaRwLmIanWipKUDk85YY+9AB8OA4SS5XJZc6sg6iAsnZ2dJeeMuwlcBPD0HEmazWapqwak1btkMHZeRxhBWOn3+7UaBIvFopYukxNjBCOI+lXdItyNw/66U4c95bni/ORuH3++eHZyeEoBa+WuAs4F+8qauHOADhkuTlDQ0sfgv5eUand4bRX/jAsv7vDIU7ECgUAgEAgEAoFAHddGUPDieu4kgOTlJJHXPMIpqRaFlC7JjRNtt2275ZyIsaRaVJbrYMUuiiKlJbjjgPtA0qkdQHQesQRC6YTc21y6Nd/nTPTWSTPkyQmQiwzSpaMCsu559LgjXExAdGA9PZrLGCBkeXcDxuOpD95S0d0VkFkKRx4cHCSXBAIK7USpx+B1E1hr3BQOLwzY7/fTWNk/Pofww7W9Foe3TCTlxNNOWH8cIhBfxk4hSY+YI0LQRcEFBXdZuNMBgcH3Oye6vOY1DPKUhfz9npbg9TSAi2hcy2tAID74c5Y/14wzTzFypwNnlLPCefX2oP4MIpIgcngag68R13Wxzest+Dnx7wfWB/EuEAgEAoFAIBAIXI1rIyjgNCBFwavc5zZrJ92SEunxYoeIAZCC3P4NGXJ7tRNpT4fgv7GUQzKo+wD5hMAS1YWAepV5HyPkmM/SAg/xgHkhIPg4eQ8k0sk8xNiJpQs2AMJK/r27N6TLNBHcFF6ngIg94g9uBpwILgZB/NbrtWazWWrvKUnD4TCRa3dB9Ho99ft9DQYDtVqtlGLAn74OEEwn7ex3q9XScDhMZ4u1Jq0Cwj6bzVIKh6eRcHYYJ50znAjP5/MkEnFGSWVxqz3XRdTymgeITawBQgrjQ0Dis3lU3h0rkHxvlep1Q4CnW7gIJF0WO3QXAc+dpwSwx8ALIuYihI+Z+/HMee0F/z7gGUUg8DQKXDQ+Rj/f/jxwxq5KY/DngnPr7qRAIBAIBAKBQCBwNa6FoCDVuys4KfZWiU5wNptNqjUgXXYW8EJ8HuWUlIh9VVWJ1EI6PfqJTR14ETePhvu1qcTvOdpHR0ep6CIW9H6/XyuQh6hQVZV6vZ6Ojo4SYcI94AIGhQ63222KZEPGyrJMhJX35fn/jNfTKYjg8nvPnYdk4zLw6G9RFKkjB3UveD9RY8Y8m83UbDa1XC41mUwSmUSAYBztdlv9fr9WX2K9Xqe2oJwH3AtlWaYuAKvVSqenp1qtVrWimr7e3KPX62k4HKrf76vRaGgymWixWKRaHh6F93PgnTtwqeCY4b2kGnBevZ7Eer1Oa09NA2z+g8HgAWeCu1b8WfE6GdS2yKPp7n7wFAMvDOlnwdNOOF8IIuwXZykX23h+OEN5vQZPyUDU4b1evyB3NLA+OEj4ndd8wDnEHrgLgs8gmiGG5cICc/YzfpVrIxAIBAKBQCAQCFziWggKEAQnIkQrIU2QKyzkXuEfUihdtqdzmz0We0gyRJN7u3MAEIV2J4S7E7y+g3cH4JqSNBqNUlE4v26v10sRbS8GiE2+1+tpMBjU3A8QHQhY3o0CEcAr7a/X61qkHOIJ6fIifJA/XArUQsCxgCgCeWee2+1Wk8kkzdmdCZDSzWaj2WyWRBPv2pGvL9F9RIVWq6X5fK7FYpGEIj8LkENJtWtxPSLdTiRJ/bjqPPl8WUdSXHABcK+8vgRngTWEzLJXTng5d5w5F2YQFJgPzgxPIeFc41TxMbOnXkTRz7a7Bvgc4gG/v8oFw7XdPeD1TVhn3wNfL3+/O44QDNgz/07wvXQXBWP31pysO9fwgqle3NGfUcB1fX/yMQQCgUAgEAgEAoE6ro2gAFnyH8gzhA1CAHGAtPEPf6KcVNJHWCAK7jnR3rIOcugRWG+r59Z9Jx6e780YIYFFUSR7vINIMAQHUQFrOnn9tFbMUxr83k7W3IbPeyDfdBvY7XbJ0eGkzAtZ5s4QovWsu0eHKVBIGoILHb637hpxIcT3lPd6IUaK6XmHhN1uVyuQeNUc+G9EGAgr68t9nHAul8skpDgpdjLNtfPaALTn9FSDfA29c4TX53DCiogjnbscrqpVwbPhdSgQizi7vJ8/PV0AMs95804mCBwIDv5e39/8zPpZJhUir5nAc8R6Mx4/ryC/Nq95SoSfFZxBXtDRXRTsHUUtPbWJsbnoxLORp0YEAoFAIBAIBAKBOq6FoCBdkjQXFCA3RE+9bZ8TQIgHXQAk1Vr0QZIBhQfdgeCkLM/Lx9ruIgevt9vtRLohyFwTQpwXiaR6fqfTqZEzSakGQ1mWSQhhzFzLC0tKD1rKnZD1ej2Nx2MNBoPUacCL8Tlhxl7ujo6rIsWQL++sgcABKWZMRVHU8vtZM4igO0EQcgaDgQaDQSKKdHagjehgMEh1Bbg/e+ypDcyJ+g/sEV0haBfphTWJwrvl3t0yubjD2fGWon49J8KQe/ac88CPO144C/x4Cg/nAqEEVwO1JVhL3wt3cTgQQyDZjMvdM16Lg98hDLjbwQuksn7+d547fw78+tzb14a5IEptNptE/Lvdro6OjtTtdlNdCebsgoILMbhTQC5wsQ/hTggEAoFAIBAIBF4b10JQyKOYkCr+gU+ufKNx3hlhOp3WiubxPs+3RnCAGLutmvQE7zVPHjykTLokk1zHiRl58dQ5YB5OAj2nPC965xZsIs7eyYFUCSf7vA5JdrHBxQfIULfb1XA4TIICRMnHkXcf8Ig/KQuecuLpCW7Np94C9RDcBu/V+BFROp2O+v2+hsNhIqIUphyPx+r3+ynqT2oL82POuE8opIjw48Uut9utTk9P03qwhggZCACck3x/qUnhxUHz6L4Xt5SUik/ipPCUFR+/pzy4oMA8WXPSDrxbBNeESFNrgTWHWHMWvP4IgogXHtzv98kBgqCCEIRYxHp5VwrEPtwMPD+Mm/vl68Ya8Cy4c+FhtSDYU9aG9BgvXspZZd6ehuK1EXxsvj7cxx0MgUAgEAgEAoFA4GpcC0FBuoxGOgnnH/tEFCF+x8fHWiwWkqR+v6/xeCxJiVx2u13NZrMUkYcoQxqly7ZwiAmesw65OTk50X6/12Aw0H6/TwUAESIgyogbnhfvhMUFBS9C6F0VKNjoEV4+w1hxLXh3Crf683ciuIPBQKPRqBbt96KKXjeB+ggQbS+e564JJ7eQaRcl/LqsA/UFIMp8DsINwefvw+EwdTmg/gPrmgs7+/0+EX+cK4DfnZ6epnGXZZmIujsrpEuRJyfwnM88FQaC6+kVpDR4cUOcCl4MkNSBoijSWNw54nPnd94y010N/JRlmcbqrhx3orjg5Q4TCl+yP35ucREwdh+r19ZwwQTkqUo8E7nIwtpzZlzw8lQkTwvxFAvmwRhzF4V/hjVijt4KtdPpJGdTnr4TCAQCgUAgEAgE6riWgoIXbvOiiWdnZ8l5ANHo9/vq9Xq1YniNRkOLxSIJCh599hx7PuPRcaKz+/1e0+k0kScIP6THSYyTdCeeUj2S7rZ5IsuQ2VwoyNMkPPK6Xq8TUUPIcBu+dOnC4McFCKLFTvyluh3eI8rsAZFcru9dLyD9kDGKRbpIk0eeeZ2uC3Q2IOLMujpphFiztl5M0cUaClXmdS+IUONIgTTm6+32e7fgP6yVoK8h55jrr1ardF+/vqfe+DWd4HodAAQFF0A40/xA2nMy7CKXC2kIBnlBSq/D4akdiAH5GfWz5OvF2fOijJ6K4PUKqF/g8wB5WgyOgtwFISkVaWQd8r19rX3N5xAIBAKBQCAQCASuxrURFKR6lLLdbtdSFIhoIiZI58RhOBxqMBhIusxfPzg40GKxSK0GiRB7kTfeTxrFaDRK+fV0V+Czm81Gt27dqgkeeSTUc+ohXxBAoudeh8HbYZKSQQtCdyfwHlwUklL0GuKUkzkItdee8JxwJ21uC4f0ucWf+XmqBusAocMBUlVVrXsGzoOcGLugQeoEnS1yNwL3cPJIRH69XmuxWKQOEIyd1Iy8MCDzcts9c8vdG04k/bWHRbvZAx8v+5zXcLjKfeLXdCcEApQXy3QijjDi48+LY7rg5C0e3aGAwyQXKPz8uYPARQXehwslH5+nIjAfP7d+pnwdcKPw34hEfv68DoN/L3BOvEaD759/tyAick9PrchrTgQCgUAgEAgEAoFLXCtBIS9C59F0nAnuTsAej0PBUxAgmuTXS3Xyk98XUky0/O7du6m9oSTduXMnRdAh191uN7VldAcAJJyxELX3SDlRYa5HhJ0aAxB+7O8QT8Y3Go1q80KMoOhcWZbq9/u1sXnXDNwRHuHdbre1YpZ59D4XTcjV90KAOAT2+/PuA9RCYE9JSYBoExX3YokQaK+JgaBCTQMEpuVyqbt376b8f1JD+Axj9bWXVHMLSErpBZ66wFx9Db3DAuKIpwRAnJvNZlpH7zLB2s/n8+SOgbRCvjkDrD+pHOwJoom7YLzDgafAsM9u/0dU4NwwHwQFyLqvlbtk/LywDlwfNwbr1uv1Up2Dqqo0nU7TZ/PxSKrVP3DxwIWFg4OD1PaT9I6zs7PkbOr1ejVhhXm5IOXnPk/lQFDIBchAIBAIBAKBQCBQx7UQFBACvMgbRAjC45F3ItdezM8j/cvlUsfHx5pMJqmWgnQZCfVCd0RnParKODxfG5u8t8fzgnQQEa9uT/HE09PTRHghoHktgNw94G0vIV5cH0JVluUDpGe1Wqnf7+vGjRvJdeG1Avi828BdAJnP55pOp7U0Bu+I4c4G/u6F7cjjx+JflmVyXzih864MrC+1DZwUexV+6jhA3j3S7S1E2RuAMEM0GtKazz9fJy/k6Ck11I1wsQVyy5nwCL+ntnhNAu7j9ST48UKirJULaqTg+HWWy2WtpoI7aBiHO0QkpevSLpMxusOB8btQ4fPjT685AXg+OUu+54wDMQCxwsULRBHvIMF1eXZd3HHxirXz85oXY8znyv5wLujeEQgEAoFAIBAIBB7EtRAUPC/bCbt0SVJye7STcUk1YWC1Wunk5ETT6TQ5FSDGnl/N59wqnlujITceJYV8QB4hm5Bmr8PgEW3myutc0/PlEUacSBJR9VoIzMVt3ZDIfr+faktgU/cx5NZ9xuSpGfv9PrkvvAglpB3kQgxdLyD9zIkfrxkB2fM0BKLzdDCgsCCCRbfb1Xq9ToKSp1R4IT/IOCIBAgPr6/vN9ZkPBFRSjQy7gMK8fWysAXvP5yGljCkn/ZJSegjzYdxeO8GJrwtqnhrAHP33zMXbSLLvCAo4aDzlgrPu9Sty+Lrlzyj3cGdIXpPAiyZ6oUmeQ0/XyZ95xIj8HHFdxAF/rh2e6uIOCM5S/pwEAoFAIBAIBAKBOq6loAAxuKo+Qd7qzu34WL8nk4lOT0+ToLBcLlNUP7e681lPh8hJcH5PIqqe6w4BzlvWQfjd7cBYcTf4n54TjjsDocLFEM9r97z9oijU6/VUlmWaL8LEcrmsEaWcREPynbRi93eBxF0YvgeMCZcBRNIFIif5/Hi9BrptsHYeacc2D5HMXSKeg8+1vQAm8Eh7XijS34+QQuoEv/doPefF0wKckLKvLni5OODCg9e94Iz4vuR1Efjx6D1nF6cD70ec4f08dwhNuF9cqPHnU7p0eviY/SzwGmPhLHutDhdhnPC7IAHyazs85cJrHnAtrn1VipN0KQr6mNzF4uc8EAgEAoFAIBAIXI1rIShst1udnJyo0+mkIn25k8CJk7cGhIg6AZ/NZjo9PdVkMtFkMkldEeg6QDSYiL1HN51EQPAguRBURAqio25Hx66OyICggMsAki6dt7wkF9zFCcjScrnUZDLRarVKUWs6TUAcneBKSmkBOBSI+C6Xy9RCM4/8IsQsFosUUffaARA6t5B7fQEXf3q9nqS6AyEvysif/Hg7RFwYLmBATlmjPOWFWhbco9vt1goN7na7VCyS16nV4Pvj683eUDcDoYi1cou8E1HEEMQOr0PAf1Ovw10QfMbTK3x8rD3v4+y7aNHtdtM54Z44ZyDOnC131SB0MGY6bpAiwQ/nkM+42NJoNDQYDNL5Zd7uFmFf3OmTFwEl7cWLRrow4E6H7XabCl4Cv2ae1oP7g3Hxe4Q8frrdbhRlDAQCgUAgEAgEXgceWVAoiuJA0o9J+nRVVb+pKIobkr5X0vsk/YKk315V1fFrXcdzy91S7oQsj546+cKyP5/PdXp6WmsZKZ0T7eFwqMPDQw2Hwysjom6F5/d0dfACdMvlUvP5PNnxSasoyzKRz8VikWo4UKiOugcQt36/r8FgkAQGIuO4Caj/QKFDSBYknjXzonQ4BCDCEGhIMGQS4rdcLjWdTjWdTrXb7dTv91N0FgGGtYHEUdMCYYL3IARwX3dlQPwHg4H2+30ijS4gQPBIbcAdAvH1/Pv1eq3ZbKb5fK6iKJIAICmlglAXgPQSxnR8fJwIJULQcrlMhQ83m00SKNrtdnJ7uENFuiS6EHInwTgkrhKt2B9vAcnfEQw8gs61EICcaPMe8v0ppuhuBe7vwofXEGHdOZcU/kREc3eGiymQb3dn0OmhKIpUcBPwHORpTO4m8LakzWazVhyUGgjuGNlut+mZ4/7ufOG7guem1+ulvecscS/uTfFPBMqnBY/ruzgQCAQCbw7xPRwIBJ5FPI7w2x+S9DP2398m6QerqvqApB+8+O/XBATBc67zqvW5NZnIt9ueIZJEprF/l2WpwWCgwWCgsixrtm+ipozBC7MRAc4t1rn4gQhAu0pqOEBSpfNIaFmWSdhATIDcrddrzefz9IMggiCwWCwSic7bUDrBhxx5kUHpsqUhc0UcoBMBDgGPUDvZy+su+N+5l6ersJZU32cPyrJMRM+jy3zO50A6A695fQkcCAgpnurhP96lYbPZJAHFO1pA/pkDEW2EGRcKOGdOyBm7pywwPj+LiCisg3dA8H3M62r4mvB67u7wLhHuLAF+xrlHu92urZUTa54xiHqeGsT+QNRxcbgIhRDkNTH8GfLz4+kQ/n3gZ9zrO/j3gd8zP7NXFXX059fdCT7+/Hw+BXgs38WBQCAQeNOI7+FAIPDM4ZEcCkVRvEfSb5T0JyT9kYuXv0HS11z8/bskfUTSt77GdRJxJAoMKYDAeeE/L4KHoJBX3veaDJ1OJ4kJtFKE5EM8ckEht7JLqrWUcws5YgAdABqNRor8IwpAuFzIcBKDW4DILtZ7Fy0Wi4Wkc1JLxBwyKdXz17HnsyZeNd+t7wgKRLDzDggejeb6RP0ZvwswXmSPz7NfuB9o4+e/d4EoT3Fg/B6VdgHA3RROxlkrL8i32WySq4Gz5vUJ8voR/LCeV9XDYC+JlJP24BFu1tXrXBCBRxTh/i5icX3vNsDaeb2LPErv44SI8znmznlg/T0tiPf5PrmrxztmcN+rHD9+HjiPXvMgL7CK6JKf3/x3nLu88GTejcLn7ucHkSIv8uhC2dNUQ+FxfRcHAoFA4M0hvocDgcCzikdNefhTkv6opKG99lxVVS9KUlVVLxZFceeqDxZF8UFJH5SUIrYQBumylSTRcy+458X4eK/DLdx0Pbh586Zu3LihsixraQ1SnSw7sfGcdq/yD5HzSCruAumSxN67dy8JFwgZ1GVwguqWfgjv3bt3k3Wc96/Xa02n05p4wVic0LJWbiMvy1KHh4cphcIdFdjyiZizhggaF/uV9okIvHRuD18sFomgLZfLZLtnbz1CfHBwkMbAPnnevFfkJ+IPOfRUAwjzer1O6RHsHS0/uS9CjQtV7HF10emANA+cHS5e8R5+qB/g7oThcKjRaJTy77H+08pxOBymvffuFJJq5JY18rx+F9HYU4QZ5gFh5pqcFwg158gdEH7WvbCli0R5VwoXH/r9ftpfngN/fhuNRjrDOVl3ISEfB/VT3AmSi3sPA3vlhS9dNNjtdulcuxDFvXiPC39PCf6UHsN3cVflWzzMQCAQeMfiTym+hwOBwDOINy0oFEXxmyS9XFXVjxdF8TVv9PNVVX1Y0oclaTgcVuS/S6pFKCEHRIEREiBkECgK3kGkIBK9Xk83btzQeDxONv68Sj9kjB9v5+cuBE+pwMbvkfDpdFpzS9y7dy8VmmNeEDAIEg6D/X6frPiTyUT3799Xq9XScDhMUfrj4+NaXr6k1GbR6ytIquX1e8V9HA/8njUjZWAwGCTiWlWVFotFrXgd9/HIsZPbg4MD9Xq9NBas+ET62+126jbBmkIiieKzHpBaCm3O5/MkoDCmvFo/zgA+C1n3Io/uDnHhpCgKdbvdRO65j6dX0BUBEk1tCBcUcGDkNQ8QsdgLt+bnaT2cX9as3W5rMpnUinB6lB+3g7t83PbPuXARBGHAnwF7vnV2dpZEJ4ofIop4O1GeFU/Bkc6FIp4Vf53xQtq5Bq/lxSJ9TC4O8N/sOefQU5J47lhzCkQiqkh64Lng9dcSL64LHud38ai48dQoKIFnF8tv+HK9/KVPx/MZeG2UL1a6/Z0/9KSH8UiI7+FAIPAs41H+j/yrJf3moih+g6SupFFRFH9B0ktFUTx/ocQ+L+nl17qQW7whOrkNXrokQ+R9E1H3IoXY4KXLHO/hcFgr2udCQh4hBYgKHqEnSg55yYvDeSoBef6SEqH0HHifD9eHEC0Wi9QxAvGE+3nBPYgdRJ9K/QABgyj12dlZsvsDiJxHhyGKXrOAOeEG8BaTzMGFGi/8R7oFZJ11QvCh64aTeMQb3Bg4A/gTUohosV6va5F6CKm7SXyPPdc+j55DPNkD9gaHgoswrVZLg8FAR0dHNfFHUqrBwPr7fd12744Movmcm9zKD9l2R4OTc+7tghnPkkfreeZwHXiqB+NwUebs7CydDxeHPEWi2WymZ4/z1Ol0HhBA+Iy7KUgx8X3w9Bx3Cfn3BnPl2XFXDa6dfG0Qubgn54U9dqfGU4LH9l0cCFxXHByOdfL1v0ySNPnchs5GT1V9k8CrYN4o1P2mr5QkHf7YS9p99ONPeERvCvE9HAgEnlm8aUGhqqpvl/TtknShxv67VVX9rqIo/mNJ3yzpQxd//sBrXSsnPG7xvipK2Ol01O/3U3tErNwQH9ryEeGlrSCtAvPigR7F95zx3B4PEcwFBdwU7maQLqvwe0E+JyoQLL++1wZwJ4M7NFgviuFBjpbLZW39IHT+WSK6nl/uAoIX4XNyy3pwf3cCMO/c+UHqAfPudDpaLpc1QQdBCPHCu1GQXgJRdHGBtSXtw9tySqqJDzkJ5cfrFti5TrUP8roe3Bt3SqNx3uVgNBppPB6rLMt0b197P0u+Vt7Zwckr780FBeaDQwKy7HvIfvjeuFPiYYUMXVThvYwP4YN9coeQd+jw8SJKdLvdWqcLrs85RXDiWsyb97oY5GuY7yNng2eA/fG0lfz7xsU69sMFEe553fE4v4sDgeuG5ue+Vzo40PbOSC99Ba9e/+cy8PqxHVRpb5ur2xruTVh+6RXtL9JJrzPiezgQCDzLeCs8gx+S9H1FUXyLpE9I+sbX8yEnGV5cDxJD67+iKDQYDHT79u0kJuz3e52enibC5zUFiKr2+/1kaV6tVrWijZALKt17OgDpCkTlIfzexx54YT/PH3cXAUQM0pxHzq+yakNKEUiYW6/Xq3UJYB2dbLI+Lm54dByBwIULr+lwdnaWXAtcF1LH9aRLO/96vVav10sEFZeEd1pg7byLgqTUyQKbPGNBUJjP56lzRi4U5GOBeDNXSLvb9L14n0fAXbDwuWGnZx+azWYSFI6OjtTpdLTdbrVYLNTr9TQajdTr9bTb7XT//v0HuhXkRSBZm9VqlVwRvE7nD+btLUg5Q9SlYI8h8pwXrxHCWXE3iHfT8IKYPka6ZviZu+o59rPobhdJyd2Ao8HFAQg+n+dHUnpm2BOcMJJSesZyuVRZlg+kVfjnEBn9uyXfaxcynmK8qe/iQOA64eP/+nu1vhECwrOCT/+ahvRr3pX++/O/dyT98D96giN6ZMT3cCAQeMfjsQgKVVV9ROeVa1VV1T1JX/so1/Nq/0TtIfetVktHR0e6c+dOygs/Pj5ObRaxLHtRO0g8ZM4r6eet+Nxh4KSEKOhsNtPJyYlWq5XKsqy9X3owz9ur5+c5/FK9Y4ELFRB9/x353W4x9/cRES7LMpEqL65HwUfWyvP7Gat0GQ0nb97X0CPSnisvXUaTnQC6JZ/id9I5qRwOh6lYIQR4Pp+negysz2w203K51Gw20/379zWZTGrjIlc/jzKzbwhI7r5wYYWIPq4GHCjeNhFhJ09rYd0oULjZbJKDptlspsKMCAouIrn7BcGJ8a5WqyQWSdLp6WnaD+9cwnUQYdxRwFpzDU/R4Tx7LQwn0362GB/iD2cAFwTnxsUIhCSEqeVyWdsX/z1nZbvdJpLv9RXcVeHuGu/S4HvhNTk8nckdC4giDk9jeQqLMkp6/N/FgcCTwsHt2/r5f/vzteuGmPAs4+P/cl/Fv/RV2vyZH37SQ3ndiO/hQCDwrOFaVDWCoPEPeies/iciAPn43W43kVi3uJOOALnGyeDE2kUDt3DnBEY6JzuLxUKz2Uyr1aoWvfRcfK/cn5NpiIznykNcmTskCIINOfZUAkSOvJsDNR/8fuT6E72dzWaJnBORJlLPOmN1z/P0GT/EjzV8GOEmsn2VK0NSTcxw58fp6WkShZz8Q5pns5kmk0lySyAc5e/Ni1F6q0rODePJUzX8Oog//ppHzr1wIpb9RqOhsizVarWSmJETWnemkDrhhQNns1naO0nJneCFSBmLk17WHieOj9WFHy94mDs3fA04a5JqY3dRhM9T9NRTdXgP50C6LO5JqpB06cZxF4WfkTyVgs8hsnEecMX4ddjnqwQu5oWYg3vEU30CgcATQKPQtldJT71RKPAo2HXOv4urp6akTSAQCDx7uBaCglf7hwh4kUPP7/Z8ay/k6LUNttttEhMGg4EGg0Ei2E7Q3Y7tpN9BJFdSrcViLkA4WZSUru92fydK0mVVfASKXNggfcPJOePNhRfu50UfvXI9KQPY9t0uDpnOC/95jQWvm+BrmEd0PfedvXFyl6eK7Pd7LZfLtL6TyUTb7bbW9YH3IQwsFotaRwjs9z7+XFBg37C8e2tCT2/wfc/HyY+7W7yDBQIAIgPENCfYgD3EceC1I/xenrICmUcUcFeNrwECG88IaQ9ex4H94Uzl7hLG6IVAfW3cneNnnWvm59K7nbhA5c9FLrZwfviz2WzWCoECf4a9tkQuFnmtENbO60tclcoTCATeXhzcuqnt+59/0sMIBAKBQCDwOnAtBAUcCl5h3qOVTn68rgCEkYilE4dms6myLHV4eKjRaFQrtkfUV7qMzrq7AEKz3W61XC41mUzUbDbTZ3E/YHN3MQHyR2E+RA0i0JLS/YkSMxcnbJBnJ2zdbvfKwo4e5fX0DpwPkPDZbFZrwQmhcmLorf/2+33NCbFer9P1EDsoDgkpo/4A93fC6FFfrk9KALUH5vN5LX8/FyO8bSbjcvdJXuiQtA/Wer1e18bs4/Lz5ATV6yogFrj7pSzL1M2Az1KLA4HB0zo4y17notvtJqHHu3ewl7lYxPrnhJezRz0B6llwxtlrT+vwYo55ugrCiIsurPNms1G3201772fc7+GFHFkfv48/64zD9yEXFDjXvM46ss75GPz58O8YvjdcVGBtr6qREggE3h4svuL9+uTXHbz2GwOBQCAQCDxxXBtBATJAsbT5fJ7+QU9kk0i/E1LcCXlklUKMw+FQ3W43pSuQh05xwzx9QLqMoFIgD8s6RLcsy0SkpMu8bVIv+MECTk63F0hcrVaazWY1cpmTewg54ghz8Ui3F1jsdDrabDY16zriCykKrKUXVkTQ8Wv6ekNSuU6e++9r6UICbgDqO7BnbsufTqcpcs61nfSxp4yX4oKM24Wi5XKp+Xz+wFpuNptUX8MLBHpU3oULxoDgQhFI9qnf7+vWrVu6ceOGbt68qcFgkCLyrFtZlmnMiAqelw9Z9xaMnLF2u63xeJzO+maz0Wg0Smdyv99rPp/X1sj3Oo+uuzsCku2dUHhvnlpD0U9SZrxYpZ8dr7HgY14sFkkM8d+xL9RM4Az52eQM5mICP7TjLIoi1ZrgPZKSqOICI04QT2dxoZLP5Q6dQCAQCAQCgUAgcDWuhaAgXZIety2THw3Z6vV6DxBqSPxqtarl9fd6PQ2Hw1RpHyu9R0S5nxfEg+x4BN/t0m7Ldrs4efneak9SIo79fj85GEg/8KjwcrnUarWqWdshfETE8zSLvLggRBHhwq3wrB/uCK9678QbeAE/j/D72vs4EISI6HMfCld64UDmhUAxmUxq6849uQbz8rQX5oDgQzFFJ7wIERQGpNhjv9+vWfNd7PBIvK8vgk2329VwONTh4aEODw81HA5TFJ/xVlVVSwXhPHJW6ZyBeOaFDpkj54u2m6yJ1wkBkG7vvMCZLMtSvV6vJvZApnnO2LPValUTIdxJwBp7TQHu64ICooe7RBxeuJMx+zr4M8DzyRj409NZWq1WagnLe11opHArc8iFJD9TPIukm/g9A4HA24f+T35Gn7N9Xp/4dc2ooRAIBAKBwDXHtRIUvDuD25MhCwgKTnaxkXvEHaLE+70AImTP6xEgLhCp9wi8VCcwV4kRkCEIJcTNo7edTqdWz8AL5kEUIWyIKBAj6gl43QTg+exO5PLINesBAfcaFZ6m4Vb7ZrNZq/NAzQQvekekmXlSeI819M4W7JNHxon8e+FA3ut5+AgGPteqOu+IwDidiHJvT4WAhHuNAuAFGj2PnjQET2Ug1YH6HL1e7wHi7O4XCohybdIa2FePvPvaeAcFxoPI4WfRhSf2nn1AUOB3ryYosOaceU/jyR1ALq7580B6xFW1SNwR4OKAr4MLTn6efL9w/fDZsixrBTrZs7Ozs+RIYM9xMyHSuKiUC4W+joFA4O1DdXam5mKna/RPlEAgEAgEAg/Btfm/tVeHxwLvFnAvsEhEmKi8R07dMQAZIJ+ca0KY+eF9Hr33IogQFa/hgMDhLRqdtLhlGvKDkID9vtfrSVISGRaLRUoTQKTw/HnpwdaMgIgsUX7mWBRFitJut1tNp9PaXPm7R71ZO3LJpXpbPieyWOfztAHgzgdcAm7B53eQSHLkfR39swgDXIe5egcGJ8LexYF8fsbljgjm7+SZGhpuq+/1ehoMBimdZjweazgc1upR5FH70WhUSxmAKHtXD6lOrquq0mKxSOvorhPmmdf/IA3A61gMh8NU54Hof14ElDVnfxF2cJH4WuUOBXfN5PvuNUUg+e7AkZRcH8yZs8D9W61WTQxinXg+XLBBPKT2iNfc8HPAPuVuG67tc+p2uwoEAm8vFl/6ufrU/7opFVHHJBAIBAKB645rISh49BObshfMazQaGg6HunXrlt71rnfp1q1byaI9mUw0nU4TWSTFYDwepyj/YrFIqQD9fj+RJLdcQ5a8sJ8X5vPCixANfprNZhIFIHOeWgFhg1Q1Gg31+311u91E2pkDdQtYDyza2MndgQDxK4oi1QeAaOFm8DF4ZwQXYJw0eqoFrgVvIcl6IXasVqtaNX1PT8BazrzplgFZdPLHfLwgJLn77I13mGDs0mWXCnduOMFFlJJUE5u4rheG9PQXBAZIK9F+iHS/31e/30/FKHMXDOeXgpPU7mCf3e1yVSFGd8UwdsQ1zqfXGRmNRil9o9vtarvdqt/vJ6eOiznNZlPD4TDdC/eIC0OkSTA+FwQQMLybhYsI7iaA0HMmmA9z5vm76pwBTz3irLEm7ixAPGMMZ2dnmkwmqesF3zfuCPEOJXSIYezhUAgE3n50/vZP6At/6nn90z/8nkh5CAQCgUDgmuNaCApSPeedNAb+gd/r9WoW81arpfl8rsVioel0Wquuj/hA9J/aBJA5Iu/ki3uFd+5H1JyoMzZprOpeaBECN5/PNZvNalFoHAyQSCLsEE5cDdR+cOu7pESOclFCUro/4yfX3nPJqeKPcAJpy0k/RSTz/fBCfRA9Hx+pCQg3nkqBuOFpE1jqPRoNmWW9JaX0kfV6rcVikQiuR7o9Os/8gadOeCFGCKenUnhE38fA2jWbTY3HY924cSOJB1I9pYF98oKV7uzApUANBUi62+sh1whYFOzkXrkg5USYs+LCGHtBSgOfZw28s4R3zsC1wDrlHRBcbMjTIqh54jU1EFJcYEBQQJhjr7xOBueL55q0Fz+brDNz5npeCNPbcDJ3BDfOBONhv8uyrK1zIBB4m/Grvkif+qqhpP1rvjUQCAQCgcCTxbUQFLxAmlf0x5bc7/c1Go2SfRsSiFgg1YlOnhIBKfXIsxcYdDeER1oh1HmRRq4F4aLLgHeEQFDwtntej4DP8eP38Pxy5oZwwfVdQJGU2lRe1X6PuXk7QciZR/69oCIEMa8r4BFhiKILQR7ldhGDazFm/5xb+ElfQFDwrhVe2JHrU4jQ62h47jvEkRoCfjZ8DO7mkFQTqaiZcJUYwVwRF9w9wVmikGOj0aiNM6/74QU32QPgYgr7QNcE/29ItJ8d9tndBbhEfO/4nacEIXThiPD3IKjxTCHCMH8/h4wzn693EvEipTyXPDsOFx28XkmedoMIwdw4B+46yr+HvBBkFGQMBJ4Min2lxu613xcIBAKBdxaKZlPVl/6yR7/OT/yMKkuXfVJofu57tX3u8EkP4/HhR77/ypevhaAgXVrUvYgfhGM4HOrmzZspSnx8fKzpdKr5fJ6IsUc9PZrPn+PxOHVimM/n6b1OIPOifh5xhxx7z3veg7jhTgNqPkBC3crv0evlcvlAdwInTE58+CyEiHxvIvRO8vIuDqvVStPpVMfHxzo9PdV6vU7zYNxSvUjiYrFIv4NcIWb4vnleP0INP9JllwY6JXjqBuvCvnlHCGzqTlrZO1oaEmV3IUpSIsWbzUbD4bC2j1VV1fYLNwV7wr2I+lN4MS+gmReCxKkBuXWHgTsCOJPsPcUXnZh7TQfWxAUb72jg93FwTRcwpMtChHmKiu/tVS4Izi/nrNfr1cQCT1fiXPjvOcNeK8Wv4WKCF5v03zN+zjZpKj5mRDHviMEe4Ni4SixwEcHTIgKBwNuL6sd+Ss9/8o4m3/r+Jz2UQCAQCLxVaByo0a6nlhbDof7Zv9pX9SgG0Ur6pZ+8pf3xySMN73Hg/q9+QS9/2ZMexWPEj1z98rX41zLECBLAP+SJ8L/rXe/S7du3VZalzs7OdHJyopOTk9Qq0nPkIbIe/cctQIE37uW505AvSbX8d6+rwO8gZlzf3Qk54YJgQR4hyhBaSA9wd0ZeW2K9XqfcdfL3GR+EFVIPSSfaPZ/P9fLLL+vevXuaTqe1jg6QLk8TQOxgbbwjgJMsLP8QXMbA+4kSbzabmruD9WOs7jjwFpislxdYZO7UNHBBAXcCwoWLAtyfs+NdNYALPt1uV4eHhxqPx5KU1oPzw/t6vV6N/DcajdTFw6P5nU4npZeQCoC4wX25tjto8pofTnQ5I6wb+w2JBi4cuIvCW616TRBPE0Ec8ZoHnOvT09NaCgrCR+68QeTjnPq9/POkLLgDBpGF9BHSFrgfZ40x4Vhhj0mF4MwgprCmjIFn189DpDwEAoFAIBAIvAX48i/Wz/0r/fprRaXqMRhEf/bfeZ8ey4UeFY1no7jwtREUpHrhNYhHs9nU0dFRKgpHdNjbL0LSINC4Fg4ODmpt87iHEyrIxXw+T7USINpE/9294NZxIsnUY5AubdVY5CXVagi4AIHDwgUFyCIiCPdHsKCgoOede5RbuhQlcEas12vNZjOdnp4mUsz6eH47Y2UdERI8h541IuLrZMxTSEiZYL883cEt6e6sYN29s0Wr1ao5JTzS7Jb7PHruzg6EBbffextKj4KzF3Tv8FoCkFtSRnxuefTfC3m668TJNfdivzwKz9lzZ0Wv10vrdHBwkGqDVFWVUhi804e7GFxQIOXD9xZS7mvnzwfuBc41XUvcNcAz6s8F4gj3Q5RwUQBij4OINaHWiQs8/DAGaqN4QUvcH/P5vFZbxOtd8Fxxpn1/PD3Da3MEAoG3B9VXfYk+9dV9RQ2FQCAQeOfg4At+iT79659L/70tpar5FnzPF1J1IEnPBpm/DrgWgoJU72vvpLHb7dbaK7pNHKLvtmZJqTMA1+j3+6nQn3czcAcA14VcUend3+NWfreneyoDpBlHxH6/r7U7hPAhKHBfSCfkhy4Qbkt3IYS8c4+U5zZzJ3eLxSIR0NwNwOecTDH3PJ/cI7uSaiKBR5uZK1Fixuf1KXKS7QKB57MzFmzyHkWH9LE27LlHlnO3ByQ8J5G8zvr4PXxNECRWq1WqSeEdKtgPP8/83Uk8Y8jrKfi6sh69Xi8JFJ5WwJi9C4PX42D+LlpIl3UQeE5YW08H8JoE3kXBu3Swzi6AuKvEn2/vaJE7ARA0uAbukfV6XSvOyP57NxQ6WXiNC8ZBmo0XPHX3hz9TPm8XdwKBwNuLxmqr5jyev0AgEHjqURSqvupXqGoUmr6nq9n7Qih+J+JaCQpO2GnvhxhAlB67PoA8ePR5s9mkNosIEnQz8Jx3SMVms9F0Ok3RzFarpdFoVKtdsNvtUoSTXPm8yCLEWVKt2ByRbIgdY0ZUWK1WtQi7W8G9ngAEDfJDigiuAcbq9n+itUT5IXMQ08ViUas/4XOWVCN9HqXn79RzgMhLSsKNF4Bkf+kKkd+DcXkuPecAUUNSrUAiXRPcdUEkmuu74MCfXJ+5QiD5O2PxgpYQWrBarTSbzTSdTnV6epraNLrAxPVc6MkLCnr6jK+/E2DWpyzL2mfLsqzt+3w+r6W7OFwEYq+9+CI/3hHBHQSMiRoizM1bLPIsufuD33kdCe8Q4ftBxweeCdbTz4h/J7j4Rp0LnpOrijW6GOjOlNyN4ylOgUDgCeCnfk7Pnzyv0y94/kmPJBAIBAJvAkWno6LdVtFs6ud+c6l9J0TidzKuhaDgkfk8f9nt4YvFQovFolbYDtLgkXOIP0X7Dg4Oal0h8lxpUhC8mnxu389zzIlOe1Tac8wHg0GKsEKsEQkQAmazmWazWRoXJN+t+lx7sVikKLCkJJzM5/Nkeb+KNPMe6i+MRqNE1Pf7fcrlZ/3yDhuQLB+3E30vbAkBJK0DMcFJNfvoHQv4HW4GyJ7XZWA9iEZDfqfTaWqx2Ov1NB6PdXh4qKqqNJ/PNZ1OtVgs0pq59R94VwiILmeRsfT75zleCDVVVWmxWOj4+FitVkvD4bDWPYA15Hzkrhrm6t0mWFeIvKcIkC7DeYdgcw/qXrhrh7PvdRY497Q0ZY299gJnh+i+ixM4FRgvLRZB7rRgjDyX/gyxJwhkrVYrrQuuHt7Hc0ULT18jf84ZgxdUdZcFYgt7xHPrRRi9WGrUUAgE3n6sfu2X6FNfeyBdg/TXQCAQCLxx3PudX6rjX37+78GqCDHhnY5rISh45NSjhxAsjxQ7WZCUCIBfq9vtajQa1dwN3j4Oyzb51MvlUtJl3QZIFEQLQlmWZc2dgC2bsbm7otlsarlcajabpVxuikIiMuA8yJ0TRF1Jm2g0GoncQJwgkU56PA8fwuctDtvtdroeXRwgbpJqFnPWCQIGCYaMQwrdei7pgbx6yKdHvl0Eki7z5cm7x2UA8UMgYH0Yqzs0IKu0GEUoYY18LTxFAmKOq4Fz4Ofy4OBA4/E4pRhsNptaYcT1ep0+TySeOeNCoXgo8ybdBSHL7fakzuQuCS+qSPoBa8Sa4hCQVKsbgbMG4sx/+zPlHT0QtyDbvqfu7ICUsy7M3es4+N65+OQFMCH4LgwifvBMD4dDjcdjDQaD2vlAYGIvvJhoLsIhkvA9Q00SF8gQvPhMIBB4m1Ho0Sp8BwKBQODJoCj00r/5VVq+q4rv8WcIjyQoFEVxKOn/KemX67zyxe+V9LOSvlfS+yT9gqTfXlXV8Wtdi0iqEyvIi5N7z1GHvHtUlKipR1+95R7RXaLJkBcIltc+kC4JBfbw3BLN2IiCemQbsQBSSwQ4L8QIvKAjNRQgkf1+P5E85uwk3fPcAYTNxQonV0TNvaq+VI/C83sn4hAwxBbgYhBr7J0cfFzsqxN9xsS6ercBT7NgH6mdgZjTbreT6LNcLh+wrvMZ7PRefJKxsA5eiJB1RxDwFA9fUxeUSHNZLBYpnQahAqEhb8nJ/uX7yJrxGcQhPoPg4+0sETvYHxdMPLWCNWWfXMjz9BGEA681gODh6+X34E8XCfLz6c8uwhlnxUUaUpcosoqg4PUxvJ7KVXVS3A3htVoQxzjz/r3ytOBxfhcHAoFA4I0jvocDzzoOjo60+rJfovl7Ku3b4Up4lvCoDoU/LelvVVX124qiaEsqJf0xST9YVdWHiqL4NknfJulbX+0ibjf26vJe+M2JngsKHtXkNUglgoGnR0hK5BAC0Ww2NRgMasXe3AXBdbkfzgLG7USK/3Yhgc4AOAucvHnKAKSp3+9rOBymFoz7/V7D4TCRZumSPHkdAy/25/Z6Ty2Q6k4PJ2R5nj/iiXQZUc7t+8BrFXiHBtYhry0AGSX1AjLMOImee+oA9nRINWvrpB8Hh8+PdfYUFH+de3qtBhwFeV0PIueIT7g+IN/cnxoSk8lEs9lMZ2dnqbjoarXSYrGouWwYQy5sIOh46grnMV97IuuIPggfLtqwZ6yrPx++d951w9/vRQxZc0kpjYjX83Oa148AnAnm6QKRfx8gErqgQCqTnwXcPi4wujDm9RRwKeFw4DouejxFosJj+S4OBAKBwJtGfA8Hnlk0ylL7979bv/jrm4ruCs8e3rSgUBTFSNK/IOl3S1JVVRtJm6IovkHS11y87bskfUSv8eUJmctzyCG0RBYhbYvFIkXIvRK/dwFwggCBIw2AIo1O6CBQREmn02kiWLRvhFRDYvL2hMxlt9tpOp0mouYEn/sxbrf99/t9HR4eajweJ5IDocM1wThIV4C4Q/48BQPBBFLZbDaT/Z5IvVvYpcsCehBDF0cQRVhrOg8QHSd1hHoTfNajwqRE+J6yR+v1utaGkh/GzBoOh8MHRCREmMFgUGvniPuEyLXvhztVvPihz6Hf76d1JaLNOfSfbrersixT20tEpMViofl8nuZP3YfFYlFrZeiReXeFQLKn06kmk0kSssqyTO9Zr9eaTCbJ6t9sNtXv93V0dJSKV3rND35ceMFBkc+P58zFNdYPAc4dC6wb64zIwTnjTLG3LmZIStdkHdinwWCgGzdu6Pbt26meBWvsdUzckePijD8TeWFShBDmhRg0n8+fipSHx/ldHAgEAoE3jvgeDjzrOP6tv0KvfOmTHkXgSeFRHArvl/SKpP+mKIovkfTjkv6QpOeqqnpRkqqqerEoijuv94IQTIgq1nAIfR5J99dIcSDiCKGBrJJi4GkUXAtgj4d8eYG+qqpSzYT9fp9SEhA9iCKTr897PWoKcYWUb7fbNDe6H7it2/O/Gbt3iUDUwNkAUcM5AaFmzl7EsSgKDQYDFUWR5g3BchJFegbjpxK/F8CjFsByuXyg9Z+nDvg8EEG86j57AYlFZJhMJjVHB6C4YK/X09HRkQaDQZonLgqEAq+hkRNaH5/Pkx9JydXAWWPNERI8zWWxWOjk5KRWO0G67ICwXq+T1R7SnncqgfBzTnAn7Ha75JRA/FosFknMwaUxHA5TpxLEGE+z4PlyMs71vGgnogVnh3QYhBd3dnhahbtZcA94dwjW2tMeeN2dSawfaTa4Pzh3OD18Pz0lRVI6a7iPXDRz5HUv3EVyzfHYv4sDgUAg8IYQ38OBZxaf/UNfreVzlRTFF59ZPIqg0JT0pZL+YFVVP1IUxZ/WuZXrdaEoig9K+qCkRIYhWZAVCImT/lxUkC5rA0AADw4Oks3a6yd4FJJr8HcEB4rLXWV9dkcDkVTG4MXyuAZk0EkYzoSc7ENiERSImuZpEZ6+kNvS3dLuY3dS6CkC3ikA8g2BzosXugjg3ThwOlCwMS9+yGchgkS+PUrsdQPYI289uVqtJF26NDyVw0UFt9lDhh0QSFJP/DU/U5xF9gCS6fPwVpcIFBBnF7BYJ7flUxiQ+fv9veOD750XS+Q5wR3Cj9fgGAwGarVaSTTwApDM29fyYWvFPtJ5Yb/fJ2KeFzNEuOHMev2MPLXG55yfV18LFw69cCP1KRiTPxt5G9Jc0AJc178naLNKh5KnwaGgx/hd3FX5Gu8OBN5a7H/NP6fT97UkPRXPXiAA4ns48Mzh4HCsxVd/gRbPV9EW8hnHowgKn5L0qaqqfuTiv79f51+eLxVF8fyFEvu8pJev+nBVVR+W9GFJOjw8rNxiTjE/yC8kS7qMXjrRhRwTnZXq0U8v0gbcUu/uAxcOLsZZi7SSd0102QkdooWTacgU0f/cWs0cWq2Wer1esu1zbX4PwYNsQuSI8nP/XHDxSDFRes9Nd5cHqR+M22tV8F7EAKLn3h7Si/vlJJi1YcwuhHhRxNyGD2n06Hcu7vR6vbQOkmrRftaCNfTofh6l9gKX7G+j0ai1sqTLB+vP9UiFwZnBeyDfCEyepsG8fb2YlxNogHjhjhTGLSkVpRwMBirLMpH65XKp6XSq5XKZxBJ+56TdUxJc2CFlaD6fJ+ELYcnrS3gHkavECl8r3x/27aqzCxgfZwxBgbakDn8+vDhjfk2A28c7sFwlKl5jPLbv4lFxI/5FEHii+MxX97S6E2JC4KlDfA8HnjkUR4f65K89UNRMCLxpQaGqqs8WRfHJoii+sKqqn5X0tZL+ycXPN0v60MWfP/Ba1yInnLZwHu0lGgkRkS5FBSck2NCJPjtB81QEj/R7QTgKLULic7u511+gfkBZlolsYYl3m7inJkB4iegvFotEnCA/4/FYR0dHGg6HiYTmxeTcScCPixjdbrdmCceqTvtK5uYOA8iudO4WQSjwAnsQTazkfB6hhXUjOo9IwphxIiBaeKtJ5sNr2PNJebg4b6keggscPhfIr58dCDpRfeoRuJjAGeM6jBHSjVCAe2YwGGg8HqdUB/bJxRvSUbzAp9cJKMsypYaQJuGRfNYNEYRzR4qLd1/gfNEmFcK/3+9T+sXx8XlR6X6/X3MncA9Pv8B5wNmfTqc6Pj7WZrPRjRs3rqy74bUWeE7zopl5wUxcHy5EuEji54Zneblc1tI3eK75HGKVn4HcsYK45XuCgwdxjHOA6HWd8Ti/iwOBQCDwxhHfw4FA4FnGo3Z5+IOSvrs4r2b7MUm/R1JD0vcVRfEtkj4h6Rtf6yKNRkP9fj8VS4Q0QERms1ki495WEDIkKZEhj4CSs75YLGoWcq6BiECdAC9kKF2KDl55vtVqPVA/IY8qF0VRuyZjhNhDWiCVrVZLo9FId+7cSZFldxe4XZz3e+oApJe5Q+w2m00SEiDokCQnaHRP8EKY0mUU3a357hCh9oOTNizo7AVuCIoVQv68DgbwVAfvVkBtCUhv7qrwcwRRXCwWWiwWNXHDXQ2crYODgwdaFbIHCA3UPIDQj8djHR4eJnKcu0Eg+OwNgoLfE0cDqQT5HMqyTMUJIelegNPXqt1u69atWzUXRm7j3+12KS3E3S+ME0HHPw/pp82m1zLgTCNqNZvNJJL5OpB6gBDDM0fNBgQO7se545xtNpu0xzxT7orgOUaUy9OjWGfWMv8O4GzzDCEesg4UgHwK8Fi+iwOBQCDwphHfw4FnBuvf+GX6xJdFelrgHI8kKFRV9Q8l/aorfvW1b+Q6Lih4Tjkgegj593SBPAUAQuN53xAVj1B6jQDIsedze+E4iDFkziPEXuPAuzJAIiHNEHcIGq9D5kh1gJx5+zvPI8/JMPOCrDMfyBcOAm8L6HUlHHnbTkQayGNeoM6j0b5PrIvvL+vq5NuFG3eT8N+kl5DS4GkS3NeLF7LvpGGw9259Zxy+txBSxB93LjiZR9igCwdz8GKDec7+VTZ7BBn2hev7OUZcY+/9nHt0nTUiNcPXhvt7mgTOC0/bwNXgew/B99abXi/BzyXzzVuL5l1U8vQlniXOBW4Yr0sxnU4fEJAoVuqdPzhnnk7k++fupjzFwt1EXpSTP58GPK7v4kAgEAi8OcT3cOBZwmZwoM04xITAOR7VofBYcHBwoOFwWCty6KSFqKbb8/MIt7dhhFBjmccWDeGUVBMTuJ/0YJE4iJUTL4gZ5CPPIac6vRNwyKPXMaCuQlmWGo/HGo1GiRxK9ToPrJNHkSXVbN3Y1HMhwdM5IFxeVwJC6OMnSkyHC9aJ8Xheek7Ac8KGAEIKgcPHww+kHDcIHS8QbCC5jAWRgbNC3QXIOuTU99nz+CGzLth4DQDOl+8Vtnq/P2vgxQNZcxwcwOfqrhMXrTjPfsYZL+04GS+iVT43zg2dQ9wR4vUsiOB7rQEfc56qkteowJ2Sp5sguFD80wW8vB4H7SER63AM+DxwWORjRaRxYYCxcAY4P35eODMugLAX3C8QCLx96JxU2g4KbcvIyQ0EAoHriObz79K2VyhqJwTAtREUIFAUPmy324kcIwrwj35IpRNuSKN/htQCyDYR66qqUuSRmgtEbiXVbOKe997tdjUYDFLRO4rc5RFlxgnhJHLv5AYnQr/f19HRkW7duqXhcJiiz5AvJ23SZbFJr4HA+nS73QcKy9ECbzqdJhIKsYKQQaQROYC7QNwtwZpAxJmXW+P5XJ6DDvn1KL6LCYgtvV5P/X5fh4eH6vV6D6yBp2UwJ0jlYrFI+3dVEb48L7+qKo1Go7S3nEMnmZzR4XCo4XCYbPKsHSSfOSDqsBfz+TytE7/H9t/tdjUej2utEV0ocOHMOxH0+/1aUU6enfy/84KViEDD4bDWUSR3xUDUOWsuCrgwxJzn87mWy2U696RjeEcULzTqIhFzzmtL0DWC568sz6tfc9bcecK4FouFptNpavvIZzlT3W43vZdnBLcDzwFjdKdNIBB463H7v/whjX7jl+mTX/egWzEQCAQCTx4f+/3vD3dCoIZrIShAyiFbgP+eTCapoKCTXtwDvV4vEcD5fK779+9rPp8n0tZqtRJZcrJKnQV3Gnh0Fgs5pDW/t9c3IArvBIX7kyvPvcuy1Gg00ng8Ts6Ew8NDlWWZIqx83rtEQKi9FaG/lznT9o6xIWi4OOG57HTXoCMBZB/S6IJC3tmAuXsV/jxNI496e7tBWhl6+gBOANofcj/W3IWhoihqBR0h2xRGZF/9/RBuxAYIJ/OXLp0fXgwSYk7XCdbKzxEiAg4Z0i9yAczPPakUvl65IMWYSOVwFwnz9jVnDxABKARK6oQXcZQu239eRaDdEeOFHHH9ME8EBQSu3FmDANPpdJJDgXOEG2UwGKQaGHwXePeKVquVXD5efJVzPZ/Pa4ISrVU5T6QyeK0Fd7twPnIhLxAIvD146Q9+tRbvrhSRr0AgEAgEng5cC0FBqldZ9wgphPzs7CzZlXPrNtHV1Wql6XSaSIW7F64iSm7nxiFBpBJC5IUF80J3uaUagg+Z8f/GBcH4+/1+IlDYvIl6ey0BSCL3zvPEEQXo6gCZgox5/QTIEnPnHqwhkXvpUjBx67pb7HmP155ADGCevIc/PZ3lYQUtKUjY6/VSTQ0nzp4+ATn2ugoulOB28D3J7+V1GrwVKKLAfr9PYgJdHrzAoqdQ+JlFSGAseQoN7gSuQ3TcnQ5+BhDF2Ntms1lbP5whLgb5fCHuft5pgen38vnwXgSOfO38fHP2XMjb7/fqdru158avgbDF/rnbg/F6RxNcDt7hwVNxzs7ONJvNkhiBq6Qsy1oXGD+XfM7Py1V1LwKBwNuDs4G064aYEAgEAtcNB4djnXz9L9M2vqMDGa6NoIAgsFqtEsFCZHByD7lwggoRz4vxAY9g+mseFaddYl400ImnF9LDFeCkxsUGJ+TcC3KES4EfajK4nZw5e00HLx7JtX196Gjhefc+PrfSX0WyczdBnufvdnC3xvN5yLl3DPD3sNZO6jwqzDUQW7yjg5N3LxTp1f4RnyC0XD9PX4CwklrDPnhxQ64jSWVZpkh3XjvDI9rsM4KCR+rzAoA5kWZc7KkX72QdqVGAsMQcIfbeqQNHit/b18vPAWcZuMMhJ+AuWiAIuBvD0wf8WfNUHU9d8Xu48MfYvc4DLgfWx4Uy1n2xWKQ0CZwJw+EwnUnfJ344G6yjzzdSHgKBQCAQCASkYjDQS18hhYMskOPaCAoIAeR9u0Dgeeyea91oNLRcLh+IQkOOIE6Q2Jyc8x5IsEd/vc2hky9Iu6RaLrykB8QPiBS/h+B4HQYns27jdpKHe4C1gfiQJ849XUzhMwgMToi9QORVNRXcus/9seaXZVnLb3exAlHEBQXEFdYad4mTN29LWZZlasnImnIthCaEACeouApokYm9nnQH/2FfsdkfHh6m1ApSKiDGXIMzwbnw11kjXB9eM4G14Yx6HQEXjCSlNSfSTytQnDNu9W80GqndJGJPv9+viVr8zmswuLiAaOKpL8yDM8j7ERK8bSSuGO+m4u4EFwZdyMhTithTamVwnd1ul9wjnK3pdJpSoNxV4akmklK9i6Ojo1rhx/V6faUgx14h1HhtjkAgEAgEAoFAIHA1roWgsN1u9dJLLyWCMBgMtNlsErFarVbq9/saDoe6deuWjo6ONJ1O02e96KGk1IrOiSBkUbok6BCcVqulsiwTGaElIGSOPPS8UBzEFaLP9SGekErqBnhxuHa7rcFgkDoYIHJAjPy60jkR9MKPRMA9+j+ZTFKqh1f+94g6TobpdKrlcpmcGawhhHo2m2k6nSYRgO4DLmgwf8bX7XZTpwr2xqPmwFt/5l0kKLrnDghPxyAS7R0Z5vN5LZefNYcc8ydEljFTMJD6EU50OU/eWpG58xn2hsKLi8VCs9lMp6enWiwWNWdFHtlnT1gXzjo/pP7QccBrU3BPzmur1dLh4aGky1SW9Xp95dq7g4K/u5uAeXuHDHcOuFOEPXYRxFOAKPbIfrrTB/EHkQrCT1FF0hYQ/BqNRlrb4+PjlE7CdRFyOHM4E/r9frou9TqoG8E+MH8KRfozFzUUAoFAIBAIBAKBh+NaCAr7/V6LxSJFo72oHeRaUnImHB0dJSLD+4nMQqaxSEMG3bINiSHXHwcD+fHkajuZ8KrwEDnIOlZ+xsic+JPfIyp0Op1EXLxYoUfHIToIAbzfSa+ncnh6gtv9vbODW9yvqqngxRq9w4TvkxNz9oC1Rizxgo0IEdI5+ZzNZkn4QazwwoP+ea9f4F08vDAgZweSTNReUo0MM0+IMuuKUOA1EBhbXqDP8/k5E55SQeHD2WxWS2nw9XUrPXUzEIgQhJbLZVo/1jmvJeHn390lfh8XC/LX3HVD2gHnxUUXPufFFL0mA+euqip1Op3auWFcDhfMPN2F9dztdqkGymazSWeHNAfWyNMdvG6GpCT44HjIxQfWgD3zcbgjIWopBAKBQCAQCAQCr45rIyjwD3uijRB3osVudadYn7cedCIDAYdsdTqdmgXenQJO7CEciBAQXbdIE8kn0g8RBkTO86KKefqFk2aImeejuwXbaxfwfubJdbBtQ6C5FhFbScnynZPqvGBg3tHBuzr4Ong0mn0hJQJCTbFD7g2YV7fbfUAI8jn2er1EVPPaEi6uOFF1Z4CfEY/I5+0ZmT/kmjPB5z01ptVq1fYMsotLAcLL/XMxgflzRnGSeNtFFwk8DYdxsue+f3ltAPbG506nE67ptUK8voMLEZwVHDtXraekB54Zvzef4UzmbiHOLKIT64BgsN/vNZ1OU/vTq+pSIEB5EUc/H16vIU8rcsGGtXPnTCAQCAQCgUAgEHgQ10ZQ8Er4XiWflIejo6NapBky4JZ/iAVkldQDLM4QTS+K6EUGyRmHNHklem8r6aQfsgVZ8aJ4nkOPK8EL3m02m1Tkb7fbpeg2+eF0OiDNAYKGCOJpCsvlMkXcGZd3hfB7eH66zx/CD4GmNaJ3bfBrI2Dkbf2w80tSv99XWZYpV53x49bIixy6vf/g4ECj0UitVitF7d2Z4fZ9L4bpJBXkjou8qKJb+r1rBKkc4/E4FfeTlNwQpDucnp7q/v37Ojk5qXV3IK3CI/VE+HFfFEWh2WyWnA2sP+faHRIuJnjHBYiv11qQlM7+drtNa4ho42eDc+lCWF6YMBe3XFxyUQHBwMUuxuv757UxWFNEA1pYbrfnbWNXq1VaW9p38pyxpo1GQ8PhUMPhMBX0dEeLix1eO8HTn1hDL94YCAQCgUAgEAgErsa1EBQgWJBaahYACs4NBgP1+/0aYfLPEcmEKEMUvbZBv9/XjRs3NBqNEukgypx3LEAs4LNY73k/74MQQ9IgpbSDJO8eIoQjw6PYRKlxPXQ6HY1GoyRWeN0AcuOPj48TMaI7ghM8t2y7qMD4yrJUv9+vjc0LXxLJlpQIoq8nIsl4PE4Wcwjtfr9PbfrcXcC6ICrkZJU0APav2+2muWCv50xAKL04IfPwDgKsh0fOXXBym3tejK/T6dS6Tux2O929ezeRf1om3r9/X7PZrFacEBeCdzGQlM4o+5KnDiCC0eUBMQLCWxRFEgokJes+aRCkA3gKAiIYAgpE38fF/NlnFwI4M+7ooXaCdwvhLHPGeT/P2VWOHX99Pp8nIUyS7t+/Xys0iUAjKQljnrbBGEkj8TasXtAyd9d4Sg2/C0EhEAgEAoFAIBB4dVwLQUGqkyVIAOTXK71DvP0f+rn12ivuU5cB8gvZgKT6NZzsYAn3woxEiIlqEsXlNYhJo9FQt9tNpBKS6AUNKYjokWIvFkgnCIgUJLIsy2S596KF1B6gOwFzyqOym80mWcLH43EqiOfE3gtRIvbkheqojzAYDFIaABFhz0dvNC7bMOL0II2BQplEqtmnnOwjULDH7IV06Zhwp4HXZGC9PeLO/Bkz+5SvAet6eHioTqejzWaTCi4SycchsVgs0tpfZZNnj1k73CeSUs0A787hBQPdJZKfdd7nogJCmLtKSCnK3QWMDSGBe/jz4fvvKTFe7wNCjwvB60h4moGnmEhKnSy8cCqEn+8Bzv9Vot5VhVZdLEGA8r3y8+HipYtuXjwzEAgEAoFAIBAIXI1rISgQJZTqud6QzLIsUyvC/X5fK4aI7d+LvDmpdBLpdQu8ZoILER6hxoIPuZUui/p5DQF3JuTRdUm1iCvjvcqJARFkzhSHpA6CdxfwYnIuVuCccNLmBRTdmj4YDGoFKD2tgs9B1L14nosmpEXwOa87wNp6O0svbEhBTe/I0W63a6kWBwcHiby7VT5v58ecib5fBX7PPbwgJb934cTHilhDKo67JpgfBNev53vhohUClxf65By5VR94mou7GTx9xq/BGvFedwH4c5ALKX4WryrK6Y4V1oPrIgTghuD6nqLCfVxc8TXnfYgCOHYQHLwrCM+fp2Z4q0qvs4FLge4Zfj8vQOl/hkMhEAgEAoFA4BzVaqXhxxqav7fSvhVdsAKXuDaCQr/f18HBQYrUEmEtikKDwSBF0r09HPnr0+lU8/k8kW4nTE6EiZDnhMEjoF4zwYs34lpAXCBPHqIGQYasSqpFcrkfrR63221qaQfxgaRzb8QNRI3hcFgreogrgiiwW/8h+bmlHscHNn4vhsde+NpIl/UGJKVijRBfaiZ47r9Hz2lRSST78PAw1bDwgoK4InAvOOHnWpLSXNkPyKDXRIDUQ1a9Y4OndjiBZt24F+uOkwHhgHoVrNF2u00OA2+1yDVcIOCsuNuFNol51w7SCFy8QThgLbk2Z4waGBQm5L4QfJ+jrw/39FQRdzB43QY+e3Z2luqbeBcSujBsNpsHCkYigrjrpaqqdIb5HfOnIKuLe+12u9ae0oVBnjn+ZD2ZP+PFpcHZ99Qg9sXTZAKBwNuHYi8VO6k6eO33BgKBQODtw+7uPT33f/97+sR3fLU24xAUApe4NoJCt9t9ICLOP+4Hg4EkpSr4ECrIlUe/pUsykUdqISyLxUKj0UjSJVlqt9u16D4RZO/KAJltNBqazWa19osQ4m63m4o90gIPEeH09DQRJkm6fft2zV5flmXN7eBFHbk2uenT6TQJH7x/Pp+ntAGEitPT01pthvF4nH4Gg0GypiOWQHxZQzphQOBJQyHyvFgs1O12a3UJPDJ+cnKiu3fvpvx3jzSTIoLVH0EBcUlSyuOHXHIf9o71cXFouVymsXhNC8itd4DIQRHG9XqdiCzXlC6LG/Le7Xar4+PjtM+sjxNmXneb/X6/13w+1/379/WZz3wm7aWfX7f5O4HHFcB4EBSoW4FoglhBq04cF6QO5cTZxYTtdqvFYpGEEebAGSStYbfbaTgcpvQNr6fAOfD0nLx4JsUuPU2Ja1AbBadPVVWaz+eaTqe1drIuZOH4cHFmOp2m5zVPlXIhgWv4GMKhEAi8vXjPf/JjWvyGX6lPf82D38+BQCAQCASuH66FoOAugt1uVyObEDyItHQZ6YdcQHzyegZY51utlqbTaXInjMdjSfU2gfwO8uM2fu9C4K0CvQWhzwMi6/nmEBUICsIDqQ3NZlO9Xi9dE4s2YyEqv1gsNJ/PUwHAwWCQhJeDg4NUY4Gcf68d4FF3RAeIulvZGWdZlklQYN092o6ww1rxPt4LKfWCkhSBxDWAUMHYWBP2kb32lBYEBNYVQswa4wJgnuwDApCTfvaL/+ZaLjjgQvCUA4QO6irkBRQ9Os9eeucDunnQuYA1YN08ZYX3UwPDOxuwTnzeCyCenJxoMpkkZ4ULCS6wMU8cDjhOEBE4yy7cQLrLskzPmRNxScm14s95Xlgzr4VBu0h+ckHCUxi4j4sJfEe4WMIZ5NnzMfB5//7x918lOgUCgbcO1dlGwx/9hD7wmduSpI//5oG2g4iEBQKBwHXB+/7KsV766kOdfkF8NwfOcS0EBemS3EMsibLyGkQGUgDhwS7uUWuIKi4DyKQXqvM8ahcPQJ5r7hFnJ4hOdJy454KCW7Eh31j7vS2j14VgXoyRPH6i4Z4iQQtKt9T7nCCakD9IJz95fjzRcSL7EDk+RyFCrovgwTy5HiTV20TmqQzUjuh0OqmuA4QOcuuuE/+sX8MdFJyhbrdbi4qzvnmnAbf+s14uMkDyGQ9OmeVyqdlsVhsba8I5lZREG87GarXSZDLRfD5PY3vYcwHJdYLtXRNYJ68JgYuFzyGssb+c61wkcIcCfzIOhAzWwM8ac/R6Ju5m8c4SrFVemyQXfRgD43PRxdMUeL/vUy4yIaDwfnf/eKFIrzXi+xgIBN4+bF/8rPTiZyVJR1/wldoM4zl81vHS6kmPIBAIgP1P/oy6v/QrdfqkBxJ4bDhYFhp84s1//pEEhaIo/rCk3yepkvSPJf0eSaWk75X0Pkm/IOm3V1V1/FrX4h/47XY7dXTgdaKjno/t6Q7Y6d2lAIFttVo6OTnRarVK10QY4O+dTieRNIQDT01A1PDibi4WQO483xpi5vUa+BMhAEEBq7+kRBrJQ+/3+0l8kJQcCtvttmY132w2KdLOXLwGAtFpj+YyFwiUFzaEkCMSuHNiuVwmQk1rTLoWTKfTmitCUprfeDxObgqEGe5NjYjxeJyEE9bZo9XeAYF9yYv54azo9Xoplcavxee8ewJnwmst5HUoEBQQEWazWerugDDBufHzwzpz3thf3ANO2hmXnxcnxg+z4fs9eTYmk0mttgXPSP5M8RqOE78mP+wBY8IRw7ni8+7cwClE/QfWH3EDwQeBAkHCXQjuQvEz6OKiF5500cZ/54Ikc2SvcyHGu3646+Y643F+FwcC1wnj7/7hJz2EwDXAx6r5kx7CayK+hwPPEhq7So2zRhRnfApQ7KRi9+rCfO+lQre/8++96Xu8aUGhKIoXJP1bkr6oqqplURTfJ+mbJH2RpB+squpDRVF8m6Rvk/Str3YtCF9RFCrLUsPhUEVRJLJ7dnZWI47kb5NTTscEiNh4PNbNmzdTrjqAPEBKcTGUZan79+/XuhFIl9FqhAgKQmJv92gpkU7I18Ua1dIPPPc9b2WJ7ZroN50EWq1WSv+YTCbJ0t3r9XT79m0VxWUbzeFwqFarVas30G63U1qGd9OglSPiBGNCpGBs2P2ZU243p8Bir9dL4/dI+mAwSAQd8rhYLNIezGYzHR0daTwe67nnntOdO3c0n89TjYHFYqFXXnlFx8fHOjs7S/fx4ouMi7+3Wq1UdLLb7aZaAqydpNQxA0EGJwXr4K4Qd6kgxiAoeIFETwvg/ECA3f7PvCHgvv7uyIDUurgAQSbVJC8oyPhIi3FxZLPZ1IqeDofDdF3OAuvHOXFxyO+Vn/ftdpvWhJodPGM8C4wRsYfaKC5CSJdtLqn9wDl0YYBx4RJhTVgzF0t87byIo4uHiD5eN8JTMq4zHud3cSAQCATeOOJ7OPCsof+Xf1Qf+MnP08/+gTtPeiiB18Dz/0ul/l/7sVd9T7V/NGHoUf+13JTUK4riTOcq7Gckfbukr7n4/XdJ+ohe48vTi+u12+1UzJBoYa/Xq5ErCDMkT7qMRFZVlaz1kmpV+Ul5gGD1+/0U+fcij57KgGUbwoWF3K33kE8cAlzPiQ1khWg9tRNwURCBRkxYr9eJqLfbbZ2dnen4+DilbkDKFotFsq7TlYJodbvdrokMXrXf78V7ETfcoeFRccgyZKvRaKRxICYgAOES4XcewXdyuN1u1ev1NBqNNBwO1W6305w2m42m02naa0834SwgxHhxS15jr/OI9mg00mg0SrUcIK5e/8JJtFTvfkHXAM/vZ108BcH/9JQIXvdCjfwOcu0R8tx5gPiWW/ch5OxDs9nUYDCotehEVCHVxmsPkDbjLgBcKw53Cy0Wi3RPT1Nh/+kk4gIUQg+pH74+Tu4pJIn45O0dXXRAgOGerE3uUnBRx1Ne/FzhdiI1yGstXHM8lu/iQCAQCLxpxPdw4NlBVan65Gf0BX+uo5//pkPtuuFUeJI4WBb6Jd9ztfmp8fLxW/7v2TctKFRV9emiKP6kpE9IWkr6O1VV/Z2iKJ6rqurFi/e8WBTF65KuICnY3bH8E6X3Aolugfa0AsgkBApiRcV+iAJ/h6zjcsBy7akMXNvJnFvtnSwjINB+zwkk98AC3u/3k6hABBZHBvdA+JCk5XKpxWKROlDQSYJxdjqdB6L3rAWRWG9Zicix2+1S6kVe48DXmPX1OgFEvyFxnvPOnrIX7jDxqHe73U5OAU9zoVbEZDJJ5wCySvqKCxuMh7FJ9ToYvN5qtTQajVLxSoQLH7NHr33OuAcgz26dZ16IBNQKQHDIo+UuKvg1OHv5vPx8IDj4OiL2eKoAhT9J6WG//bqeOpTXVfBxeS0EF/GYj9cxYL6cJ1+HvGaFi3ecW54VxsJcEQRwM3hajJ9Pdx54bQUEQhci8+8Uzgj39BSQ64rH/V0cCAQCgTeG+B4OPIvYr1bST/6Mbvzyr9SuU+isX2j6/uiO9VajfdzQ4FN1Aae5qrT/R//0yve/HTvyKCkPR5K+QdLnSTqR9JeKovhdb+DzH5T0QUnJFg/5ww4OAaFtHGTOo8deu8Dt1AcHBzVbujsCiPCXZalGo5Fs2hAUyA8557Sv496QEiLuRDMhXNjLITREhtfrtY6OjlKEfDgc1sQPrwlBx4ZGo1GL1JdlmcQIj4xjIceJwDVYCydIkDjy2REoiBy7pdzFFUgahMwLSkL03Hru7SGdUPu1Op2OhsNhKsJJSsRkMtHx8bHu3r2byKV0WYAvd4TwJ/uT1zCQlBwY4/FY/X4/3cuj6nY+014yLs/z9yJ/XsOBdeX8snZunfc0CPbPBQJPYcA1gTDmBQOZN2vN+uC2GAwGSXhCqHJBgZSBxWKRCmyyhk7mGb/Xd/COCl401dN/cMfgnODceNFSd0EgvNEeFjHRx1RVVXqeXOBDyMtFDwQ0RECKtPJe34/9fp/Osztorjse53dxV+VbMcRAIBB4RyO+hwPPMqh1c/CB9+ujv/c57TqVFLV0Hw2VdLC+ehEPP7rX6P99veoLPUrKw9dJ+nhVVa9IUlEU/62kr5b0UlEUz18osc9LevmqD1dV9WFJH5ak27dvV54TfXJykiKcw+GwFjH1FAK3OhONxUo9n88TMYFcDYdDDQaDRMhbrVbKhz85OdFsNqt1YeC+p6enKb/cwXtwB/R6vVov+/l8rtPTU92/f1/z+VydTkeHh4d6/vnn9d73vjcJKdvtVtPpVLPZTEVRaDAYqNfr6datW6mTBW0LGXuz2UxzY50ajYZOT09TPYDBYJBEA1JJTk9PE7H0QoisR54egDDhtScQVrrdbhIsSAXABQFxbLVaGgwGtXQVSUkQuHXrlg4PD5M1fjqd6u7du3rxxRf1mc98JhFdz+nn8y7s5NFx9oZUFopMdjodjUYjFUWRXDCIBcyXwn6SaqKSC1p+Hr1rBSTUU2NwUzBeL0bpyK9JbY3dbqfZbKbpdJrGScFJ71ThnT9arZaOjo6SbZ8UDS9ESRrOcrnUZrOpWfxJF3HnkAsrCGTuDMkLLo7H45pI4o4VRAkKN+735+0dqWUCuefMIVThYGAdOBOIQl7A1EUbXu/1eprNZjVRg+8RbyGKWOH3ucZ4bN/Fo+JGeBYDgUDgjSO+hwPPPHY/9zG9/9/7hD72H3xZpEA8IhrbQu//jp9QdRGUu+54FEHhE5K+siiKUuf2rq+V9GOS5pK+WdKHLv78gde6kNu9IaROYt2VABEgWsx7IQudTieRnel0qvV6nX43GAzST1mWSUxAePBOE05KnGR59BuS1Gq1kpiB2DGbzXT//n1NJpOUcnF0dFT76fV6Wq1WNdEBIeXw8DDVf6CeRFmWtXoB5MjzGgTR3R2IJsvlMuXhQ5IQYSC6fI75uRsAN4Y7FprNpsqyTALKer1O6RQQTepAQFYhifyQbkERxvv37+uVV16pFWL0lqC4USCWeQHNq9IPEJS8swBCCYTdC216JBthyIm035fzANlGcOGHyDskmj1lndzhgiDC+LlW3n6z3W4n0Ym98nofrCtpKAg9rA+foeUq5zgXbfKaFFVV1Tp87Pf7dB/OhqcT4azgvogzOBsQbiDvk8lE0+k0vc75dcEo70Lh9SZwM7Xb7do1eKYRCth7fr/b7dK54buFn6ch5UGP8bs4EAgEAm8K8T0cCEiqtlt9/p99SaLWXPNAP/fNN6IbxKug99mGPue/y7TGqtLOCsZfdzxKDYUfKYri+yX9hKStpH+gc3V1IOn7iqL4Fp1/wX7j672m53DnxNBt+x5Bh9CTg0/UEdJHJJ3Ivr8Poj2bzRIZJnpLfQK3kOdtGSHV2Pr93t4S0EWCw8NDjUajWiFDRANJqZYBQoBb1T3v2/PsIYhYwd3WTqQd8cVz7j1dwWsfeM66E0pJNSLNeuQt+7gGa0OaCfZ19pfoPWu9Xq91cnKi+/fv6/T0VMvlMkWdmbOfCcbjUXC3zyOcICR4xwwvNuiCAkKC11eAACMwkFbi9QX8DCNCubjidT/cgu+1Elh/5okgggjEelHYEJGGa7uQw+e9haOkB+bs6RXekcFdEn6GvBOKOzUAc3IByt/jAhCOCVqRzufzlB7hnU+4j6cfeH0P9vKqOhouKiBm5CkPrD1/eltYf+auK96K7+JAIBAIvH7E93AgcIndz33s8j+KQrf+wVdo37zgdQ3p/q+oVDUe8uF3GMpPN1S+9OpiSvnKmXY/+9G3aURvDR6py0NVVX9c0h/PXl7rXJl93YAM8HdILtXheU26JFleQI1UBuzULiiQJjAajVLxv1arlaL1tNdbrVaJ3EFmvJ4C+fcQDEiXR2MhxdPpNDkTJKXI6eHhYWqRSDSYnHFs+VjZJV2Zr+91EyDHzIXuENjFvWq+5+gzbid9rC2CCdeEuHrrPoQU9sRt44gDkFFEC4ier6GkBwSF+/fv6/79+2lP7KzVotTupMjdCB4tp04DIg1nyoFww77mhJ7PebSfKLd0KYR5sUXWCkLM9VxMgLQzf99f1hWRiDOIOEYNCO+s4B0hEFO8e4Gv5Xq9TqkFLvCwR7wGGcfNg0iWrxHXzQsiknLAe9frdRoj16GOAy1MORNemwPBylMguLYLCl7PQlLt3CMG+XzzuSNE4YriOb3ueFzfxYFAIBB4c4jv4UDgClSVRn/xMt+/aLU1/bxfpX3zISS7kLa961ODoXFWqPEIWQd3/sFazR/88cc3oGuKa9FkHeKCeECk0IUDiIQ7A0gxuHnzZmoDSG78ZDLRwcFBEhPe9a53PdBVYTab6d69e/rsZz+rs7OzROYhMli0JaXWlRCVdrutsixTDYLRaKTVaqXlcqnT01OtVqtkg5ekTqejGzdu6MaNGxoOh9rv9zo+Ptbp6Wmq3UBtBEnJmu0pF3mNgG63m0jnYrFIdnHW1NMVnDh5hf/pdFp7DUBW86r8Tt5wUUDwvaYBLSzLsqwJCE7eKCYJWSdKPZlMUpoH8Cg5aRDMydM8SDkh+o4jhfPjgpSvk6c7NBoNLZdLNRqNVEcAuzwClLtWEG0gutJlHQSEJz/PvCbVXReealAURXKnIAa4y0ZSra4A8PQg9oZzxL76f/vzh8AEmcdZslwuk0iGoESEPy9a2Ol0Htgr77TAXDnD6/Vas9ks1Zzg2SIVRlJyD7kThb977RKeHRfiVqtVSgdCXPHOJ/n68Xme/8FgoEAgEAgEAoHAo6M62+hzvuPvPfT3B6OR/tkf/yJV10RQOPon0tGf+6EnPYxrj2shKLht30k78KgtxBfHQLfb1QsvvKDRaFRrOYdAcHh4qDt37qRIOwQS4k+dBa9NwD1yO7UTUS9mSGeEyWSi2WyWnA1EUb0mBO4HSYk0Q2g8wiqpdr987rgxEDEWi0WtBZ87OCBNHoVlfNyT17CcS5fOCrpNbLfb1Mqy2+2mdoSefkKkHGcC+ycpOTAYW6fT0dHRUSLrFMekSCDrz7zYX5+nk1pP4/Czw/w9es3riDGIJ4gCzJXPLBaLFKHHBeKpHpBvHAfurvGiok56vU4C+y2pFpXHQdDpdNTv9xPJRnzJ2yG66MTaOWGGWDNfBDR35LjDgHnznLh7gfc/LMrvxS6lyy4tnhbhnU2ky1QH9iJPsXDxhrPoQpiLFt51hHl7OhN74OeEz3v9hkAgEAgEAoHAW4/ddKov/M9ffNLDSKhmCz0V1bSeMK7Fv5Y96gggY5vNphYJlpSqtlNsD3fCfD5P9nVSHW7evKnbt2+r0+nUyDbV7SkC6eOAfBNNdks6ZIj0CSLYnnIAKfEWihBzr98Akcpb9EFu3C6O0OEuA8ivdziAzFE7wu3hOBb8vU4CXcDw7gFe0wLCTCtIyKnb+SH2dNzgMwgNXN8LMjrp85QA5p6P0ck358Gj6pwhj+LzutdYYA/YJ9bFCzgWRZGEm+Vy+UDlf6LZTqwh9E603ZXAefK0jVzgydsdunMnd2W48MKZdYGBKP1VdRN8vVjn/X6f6otA6r3+AmkTjJUUHIh87oTg/aQ0MN/5fF4r5un1SEiH8DGzZog27XY7iWCsn3eQYBwu2rEfwJ1E7iDx8xoIBAKBQCAQeItRVdp+/Bef9CgCbxDXRlAgFxwQLSd33Iumkb/e7XZTG0ivoH92dpZaNN6+fVu3b9/Wfr9PxfSIdBMJ534euWdckETG5nnsTiLJdYccQWS4Rr/f12AwqNm4qW7PdV0wyavMQzSd4DuZ91oCrGWv10tiguegc5+rBAwv6Og2eC/miKAgXbZZ5D5eVwJXCJ/hc/zd62J4RN4L6SEEICS4GMIeeZ0E6k9AUPO0AK8rAcH2egfcoyzL5D6pqirl+FMo0gWm3EkiqSYo8D6P/EPygYtCOBTymgScTWp/ILaRLoRV3yP2jEW6TAWgO4Pvr9+P9SMlhjVibb1YpXdLQBziXPj55XqkxLAn/gwiJnjLTxd8WEfeg9jjz4A7Evgcn2Wt/Bnw9XWRJxwKgUAgEAgEAoHAa+Na/GvZrfZEYq/qSuCF3Nrttsbjse7cuaNut6vT01Odnp7q7t27Wi6X+rzP+zzduXNHR0dHarfbunv3bs1aDuHx9AQKM9J60jsbQC46nU5qO+kkz9vpkYIgKYket27dSqkD2PkZD2QMwYSxQOQgOJ1OJxFBoruLxSLNAZIHCWce5P5L9aKXEHrWIS9Eh4Xfo+VEbXFl5GLQaDTSeDzWjRs3dHR0VHOAQN6YLzUYTk5OdO/ePZ2cnCRijysEguydCiCE7iZgT5rNZlp7d2wQ8WYMOEo87YR1Yc+IpJ+enurevXu19BS34EM6XbzwYoGIB1yP/ckdOb7XvC/vUICrYjabpWuyPp7WwjryfCFgEcWnMwrOgfl8nsQB3j+ZTLTZbNJ9aLfJOeN3PhcX49yl4GkW7AkCDSJUv99PbR9xOuRn010vOJg4Y4g7iHp5Oo53RfF1dcGQZ5bnzFOAAoFAIBAIBAKBQB3XQlCQLm3HHrWETBJxxOotnRd/o4jiarXSSy+9pJOTk1R07YUXXtDzzz+vGzdupM9DGiBEVVWliCXkhyguEUpIvKREpiF8notPVwJ+drudRqORBoNBKsTolvq8lR9kx50OHskm6k/NgLOzs2R7Z8x0KuC9kOHpdJrIH1Fm4I4KJ9wuHBDNRVCAQPo+ETEej8e6deuW+v1+IqtOSL3wJIUxT05OUutOzgIpFZwJr7zvLSh3u52Ojo40HA7VbDYT4XZCDTnls9vttlYbgAKM3JvCgpB8ikN6C0MvEpoTZ0ior5uTeyLnXsgRMQvHAGefsXMm2GvOrgsA7I8X0OSerC2pIexPXsPAi1q6wEadEHeKIBBwTZ4t71LhXSh2u12qocE6sTbUO+l2u0kU8LQF/vTuJaQuuXshL27JWngKj7sOEJB4Jt1R4k6UQCAQCAQCgUAg8CCujaDAP+Ah9ZAVSAGiAP/op3o/ZAlSutvtNB6PNR6P1e/3U8E/Jx1SPVcaIsLrHnmG4LnV2smGd1nwmggeiXciAwGlsB/3Pzg40NnZWXI5QIC5Lx0qIOm4IBAXIJzMsdFoJJs+OeievgDJuyrqjzPBCa3Xg+BziDsID4gv3lVBuhRMWAvpsiUiHR1yiz/wInzsO1FqyJ8XK/SWhszTBQD2mPaPuAJ87IhEHrn2ugh+hry4oztMfO7UBnBLvhNtLwToZNcJLfvghRO9pgKCwFV1J7xTiBc8xOngqS7cN38/++CpQV7ElLX39yAiMAfOhb+P1CXvrsKZxpng+89acG3/XV6H5aq6Hy7CML92u52EEtw//D5PZQkEAoFAIBAIBAKXuBaCglvDicI6qaeIIQTj4OAgpQ+s12tNp9OU691qtVLEGmfBcrmsFSB0+7vnuecF9Dwa7wIDLoGqOq8U72ICRBSRwLtGQJhwYRBx5T6ICbgTIEJE9judTooek2JBxJuIrtvWKaiHyJFHZlkLxgsJREzwmhU+N/ZiuVymopS0+sMqDsFDaPBCe+TG0yLShZjcfg4Jly5dKQgr7AmFGCGfzO0qcH9vLYj9n7FLqnU7cGHL02A8vYFOIVzfzzVRfC/m6GICbgPWjd/nNQicnLvjAXHGnRv+O39u+GH+y+UyrZkLJFJdTOB1J+3eGlNSzVWTiyG4XqR6vQi6V/A8I854y0yuxb04h3595su6e5eWXFDw88Xz5+IeY3QRIxAIBAKBQCAQCDyIayEoSErEfD6fp6JxFMZDaDg7O6tVgt/v9zo9PdWLL76o2WyWuj587ud+rm7evJlyoOlFL10Wh5P0gEjgEWbyuSUlsubiA6QLV8HZ2Vmyh3uHiFarpbIsU/HIoii0XC41nU7VaDQ0GAw0GAxSVf1chKCYY1mW6vV6ms1m6cft8nyWmgeLxUKnp6fJCeHpFiBP34B8ucjhXSQkpWt7pBwxgX2RLrthkDZChH46nabUlfl8ntIxcAuQ4w8g3aRrHB4eqizL5DqBWOZFANlf/vQUisVikeYgKe1Nr9dL4yW9BAs9XQ5wUrAmLhK4mOSuFgo7umOCswgZRpjhmrhP+D1n34s7YtPHoVKWpSTVRAHI+W63q6Vy8Lyx7xRKZM28+wOOAV9XovqelpKnB1xVIDJ3J4xGo7TupNHMZrO0R8zbi3oi5LFWXmuD9IW8/SMuiEajkeqJ+PX8rPFZnpFAIBAIBAKBQCBwNa6NoODV2KmuDwmEhEHQ+/2+pHMRYjab6eWXX9Z2u9VoNEpdHQ4ODlJqwGazScTBI95SvSAk1vfRaKSjo6NEXDwNwF0OXvkfAu2kvdlsqtfraTQa6bnnnlOz2dTp6alOTk60Xq9TbYWyLJNjodFo1Igf9RBGo1GtCKRHciHS7Xa71tWBMXjVewQDyBRRfRwCjIG8eE95YD2ky+h0p9NJxI519RoMrAnX2e12mkwm6Yf6BLgeIKkeGS7LUv1+P4kr3McLRbJ/OAzc3dHv99Nc9vt9LQ2E80RLT96fC1kuVrTb7ZSmQa0GLxTIfF0YyiPl7gbws484wHnwefi186KDLmSxht7FwlNNPOXDXRdXPZN5eoO7ALge8PaL/LfXCeG/PSUIxwACkbtq/HPencNrOJydnaWzxnkj9UdSEoi4Dy4gUiw4OwiNLpT58x4IBAKBQCAQCAQexLUSFIhaQvIgOp4CQRSStAEi3F4QsNfrPUCiIWFOXIlIOpFtt9sajUbqdDqJNCJmQDIgyRBNoqikNEBsj46OdOvWLd28eVO9Xi/Z/HFMDIdD9Xq9dD3p0soOsXeC60SJqDkEiPF5AUMni8wVYur57G6Nx21AisV6va7NSaoTdy/U5+tDVFhSWkOvmzCdTlME2kUHiLaTcmpIIDRNJpO0ly4+eGTeHRLUvfCimxBdItf5D+cO0Yg5SEpCFakCnpvPHnq3irzmgpNVT8Xx8+iCEHNgzHldB4QH4PuZ1x8gAk9kn/0E7tLxz+YpHzxPzMcdDZ7y4YIEz7HXXvB6BTyz/lpeqJL3uWjm4/PUEIQYbyXK9wFCAzVWfL18bR8mtgQCgUAgEAgEAoFrJihAAiC1RCSdJEKusERjoXdnQavVqlXeJ3LqUUjIhV/fI9oQUEi8264hd07M3MHQbDbV7/eTW+Lo6Ci5E4i+DgYDDYfDZIfPK9U7uacQIdFYCDhpAh4Fz3Pc3dWA8MIcpMtcfUQV6gkgKHi3BL+eFwOEEHuUmB8nwaSH4OrwaDDXdIeH10jAsQJpZB+Zh7sgOEecFU8l8KKXkpLw4V0oWq1WEn/oAuHpAHzex4fAwl7kTgsXXpibE3mv7cCZ5ExB1v2seu0CnhPuc1UtCn7HuXUnQQ7W0Yt8IozktRsYH88r486LnPrcXWRBXGPcnEMXEN35IdVFEYQxH5On4tAC0ruZ8FreNtU/GwgEAoFAIBAIBF4b10ZQgEBgPYc4UpyNvH4i+pvNRvP5POVDl2Wpw8ND3bhxQ51OR5PJJJEICJ53R5Au0ywgH+PxWEdHRxoMBimCTrvFojhvL0c7Rsbltnts9ZI0Go30/PPP6+bNmxoOh5KUWkvu93u12+1aFwqcAJBf3Bpen8DTFZiPdE6Kh8NhancpXTod5vN5mjcpCk6yaA+Ie2EwGGg0GqWilnkagpNz5s8YaZNJ3jnRYPY3LxSJEAPhzFtD8tl+v58s/XTUwDVA9Nkt8KwJYgxFIGlReXp6qtVqldYTJwh1Kqqq0snJSepAQeFGd1lQGwMxArcC8/E5EUF3ASsXFzx/n2v1er0kJvnvpEvxhrXKUwG4LlZ/J+R59N3FC1I8ON+cpaqqUqqRuxPYe86kw8frqQv8rtlsppQX/8xVzgAXEziTnjbB9wWiGwVCO51OraCrpCQmsG4ubjFW7vlqwksgEAgEAoFAIPCs41oICkRvpUv7ck4Q6ewwHo9TpJnuCmVZ6r3vfa/u3LmjsixTrjRkxtMjlsul1uu1ms1mzcYOcaNbwHQ61WQykSQNh0MdHh5qOByq0WikDgueh08eN2Tm5s2bOjo6Uq/XkyTdu3dPr7zyitbrdSK6kBiuhTuh0Wio1+vp8PBQo9FIZVnWKvSTa75arTQYDBJppJAf6Rer1SrNuaoqHR4e6tatWymHn/cTpR+Px3rhhRd048aNVOCPThLebm+xWNREiqOjI925c0c3btx4wDGAYIF4sdlsat0IIJX83ivzu80eIrlcLjWZTNJ5YL85C1VVaTAYaDweJ0v7dDrVfD7XbDZL3UAg0Z5WgrOFvYfsEn33dqbD4TA5B6hfQaFCWjEyD+bsYoJ3L/BODk7COVOIEewDrgjpPMKPUwdij6jkAoLvyVUdDFh3Twvifn72EBe4h6cj5EUZeW79ufY6EDw/Pg4fe07wWSNvqcp4eC8pUQiTfIb5DYfDJHpVVZWeI9bX3Q4hKAQCgUAgEAgEAq+OayEo5CTHf/gHPtHGVquVRAEipKPRKNU9qKoqOQu43nq9Tm4GqvU72XJrPEUDZ7NZikRDUjza7kX6SNPgh8gyZGu73er4+FiLxSLNiY4BEEIiq577T/V7iJik1BHB5ydd1ilwyzbRdQSK8XicUiyI2FIEEgEDEaPT6aQoPs6LRqORyDgR4n6/X3M0cD/2z1NM2C8nkYgEiCoUxpQu0wJY6+12mzoTcBY8BcJrGkA02XvEjLylY54ugvgEAfXUDS+A2Ov10jnivggFEGWH1+zwIpj5+yQlJwlrheDCWYN05/UgPFrPf/NceTFP5p+Pj7mwt15sMk93wRnB88C5zAm4n9FceLgqtcDTRfLX/Zpc19efZwfXCGIVZw9HCvdgr3xNcI5wPW/DGQgEAoFAIBAIBOq4NoICRFS6JA8epSbaLF0SqaIoNBgMdHh4mNIHIIT8HsJJ3j551wDSCDkl2g2phNghKEAGvR2j1wzwGhAUSVyv16mFI9chQjufz7VYLFKU26PyXMOJnleih6A5WYSgVlWVWnBCsobDodrtdo1kIYAMh8OUsoAYQhcAajb4vUjz8M+wPk7OSTtBkCCyLimlDyAmkHbh9R3oSOCiQV7UkAjzdrtN+yVddkzAxg+p9GKI7ojxlAZJNWHEiSZj9LVA+EDsIbKfF0NEVPBuDA7OBm0rvdYHAhXjdUGBc8z5YfzcO3cBeX0LBAfe49F/dxb4nvAeF9f8mXs1+Jy9M4SvF/fw+/u9/bvDBSqeP0/NYZ7Ue/Cz4YIC93VRLOopBAKBQCAQCAQCD8e1EBT4hz9Eki4OEDlJifATcYZ89vt9vfvd706FFPk9+fsQUs/bz6va436AzHkbxrIsU2tHSDaWf0m1gnQuTpCLP5vNUotEiiK6E2I+nycCChnMXQwIJBAgnAVEySHbWPQRMnBEkLIxGo3SeiOWUJ+g1+tpMBio3++nFArImheKxE1BvYvnnntO4/E4RdPduYEQAsHzlolE6CmuyX53u900fr+nu0GYt3Ru+Z9MJtrtdul3ZVmm1oucBS+g6G0mAdF1ItesI79jvzudjgaDQRI5IJ/NZjM5LXa7XSruyFq6I4F5AUgufycFxVMiWD9v/4h44d0uvPaEFyn0eheeKoBrw4tj+u8B1/XihZzPvLaDd7XIi0/69Vwc8LaQ7iTx6yFQ4aDgNdaN84UribNDzRJ+zs7OavVM/HsoL2rq4mMgEAgEAoFAIBCo41oIClVVJVI7HA5T9BeyDwGGHC6XS/V6PXU6HQ2HQ/X7/VrxOwgSZCevWI91HxLU6/U0Go1SXjUkDnKK+wFxghx5CAzE0esoIBiQj79YLNK99/u97t+/n3L+m82mxuNxrQUfLSghqZBCb5VHsUHGC9FC9GAO/X4/FdSDyObtIUnTgEBBrBE/uBepFu12O4kU7BdrCjHb7/fJuYAghHCw2WzS2iCokPsuKYknp6enOjs7S/UB8vaIROkhwe12OxVtRIghpcVdBswR0ukFCr1lIoTTo/5esJAx4TShUKQXp+S9nEkcE16kUFKaIySac8bZBjhGvJAl6Q0QbPaL3+eiFeTcazlwLtxh4jUNcLxAut2pI6kmZAB3GOQRf54F5rPdbjWdTpOTBKGPNeSsc5Z4jr2eA64OxCS6OninDAqDMnbWlmfc9ysQCAQCgUAgEAg8HK/p5y2K4s8WRfFyURQ/Za/dKIrifyiK4ucu/jyy3317URQfLYriZ4ui+HWvZxAUEYT8ugWdf9RTYPDk5CRZ2yEKRJAXi0WtyBo/y+Uy3cctzxRho4CbR9iJZkIOiXpCUr2VngOiRRFAiK1HO7FbMwaP4rpLgUKFzMvt9e7eAJBA5kCkm3Vymz0igre6hLy5LZ/xkgZCgUHIHlFwhBsvlulzg0xS18D3KrekQ/RZIwSBfL09VYb3NBqNVC/D01L89+wR40aUQLDJCTFCj6RUx8G7Akj14pWMFYKNmyBPv/B0GUlpjJx3aj94Rw3ODgKGd+Fgr5bLZVrbvLWot6f0Fo3SZZQfd4yLGF4gkfVDQHmYqyGHp1a4MOHnlo4rnuLEXuE0QGzzVBo/O6xNXtMBR4bX9LiqRgR7iMBwXfB2fBcHAoFA4OGI7+FAIBB4EK8nQfjPSfr67LVvk/SDVVV9QNIPXvy3iqL4IknfJOmLLz7zXxRFcaDXAFb3PDedf8wT/cYeT5QSIoag4MTQixfmFnbP98ZVAEGHZDoZp5ChEzQIDAQ1b2s3m81qLRKdLPIeiJhHcAH384KFToKdjHl+PGvWarWSM8HTLHKCDXnzNnoIMayHj8O7MEDqILzsQ143wcFe+pzYG6+R4YUISZlgj5hHPh8i3Qga3mnBo+N8ls97fYOHRdf5DGNzgo1gkI+Fs8Z6+r4hbnkhRWokSErr4+1J8zQHX2eA4EAE3tMT/Ixz/vis12BwAcj3z4sZuvji6RYOX2+ekasEB98P3Cx+vjylIhdquI+np+StSd0ZlKdUIKix7l63gf27Rvhzeou/iwOBQCDwqvhziu/hQCAQqOE1Ux6qqvqfiqJ4X/byN0j6mou/f5ekj0j61ovXv6eqqrWkjxdF8VFJXy7ph17tHo1GI3UgkFRrH9hqtZKQwOtE3J1gulXcC/VBCNz1wGdwIdCrHsJxdnaWaicMBoNkEfe2h/xAPIjaQvKJ3kL4vMAixQ4hnoyb6C9kNSfmWLkhlT4XRA4KH/Ina8p78ogsggPuBEQDSPB0OtVsNkvrjygCuSYyTzT3KgLrJJIUAyLIzI21wJI+m81SzYlOp1Mj83Sd4NqII7g6WHuum7cPdCHCySSAXDOHzWaTHA+cp7y4prc3ZR8YLzU//NqkeLBueSFB3C3eQtLdKeyBizYuMuQpGcDTgDiPPB9+BnMHhd8Dp4r/zp0oeXFFxuouHN7n55dUGsaV1+SA6Ptz7GN28cuLgDI3niFP0cBlw7Obi3RX1X94Ung7vosDgUAg8HDE93AgEAg8iDdbQ+G5qqpelKSqql4siuLOxesvSPphe9+nLl57VXgRQYi552PP53NNJhNJqjkGiEB7i0ZJiWxjMyfy6YUO6W5A8TvvIiCpFinlWlTThwhB4nFVkJfOeyiCB6F1azmt7SDS1I+ApFJMzt0HXN9t2UTLIU+Mp9Pp6PDwsGa39zoEEMHhcJjWDjEBYnZycqJ79+4lsuVpBx7tzosoMi/SUhBTyJF3OzprgUuC2gmIFBS3RETJO1lgkT84ONDZ2Zkmk4nW67WazWaqf9Hr9WpkE+cDrTRZc4+ge/qHpFTPABHGC1VOp9OUhoOA4V08yOV3oo0oBtH1jhTL5VLHx8e1CDwilMOFG54TRBPOoIte3t2Dc8g1XBjj/OMc4nfUAqGOBmfQ4SkTzMedHggCjIuxOulHHMgdEO4G8VQXzhbnHDEFkYn95RlnXjhavNCkF4G8TmLCq+CxfhcHAoFA4A0jvocDgcAzjcddlPGqf4FfmVRdFMUHJX1QkgaDQSIOEBXyoReLRSJW0mUE+Coi5BFG74qw3+/V6XQSWdrtdhqNRolUSEqE0/O0vVBfTi4g0IyZa/jvve2lkzAvvEgxRMQNPsvvicTjTnDHhbfMy69VlqUGg4Emk0lyDril3MkgRJ0oO+vH/TxH3SPPkD4njNSKQCDB4YHtnc94FX8EIS+8yT0RgHLBh3VljyCSENhut5vWFIcDYyYdpCxLlWWZItTAo/o4UzgDdP44ODhI5B/hiJSd3W5Xc3YgRAFEENYFNwguEGp++B5Dwt2anx4wO/ueuuDFOt35cvH8pTnxO9aTZ4rnkDGSRsB5824ZucuE5yl33iC8uBPC95OzlXd/4HesN/Pkufa0G0lJ2HExgTPnaU64Lfx+zOkpERQehjf1XdxV+VaOKRAIBJ4lxPdwIBB4JvBmBYWXiqJ4/kKJfV7Syxevf0rSe+1975H0masuUFXVhyV9WJLu3LlTuUAA6XUyLV0SHEQACKzXMYC4EK2E1FB0EdLVbrdrVeG9Xz2uB+9MkBe0g9TkOeH8N8IE0WMnlZAnSCgCQLvdrnUicDs+dSG864Bb83E89Pv91Pmi1WppPp8/ECHOLeCQLaLXOCG85aNH0n1fiPh62z6vPUGk3z/nhDEXNtxR4nnsXviRgpO8B7LLmP3+nCPPw+d3tAL1NAg/U06MEYMQm7zWhHTZ1hQBBGHAXS1em8CLZEKGOa+sqQsxfrY4d14bIj8XrEteVNAFIZ4FXmePvWuCdFlU0p9DzrY/s56ygUjlzyaOHuBuk1x48LSEXMRi7ggYLoi5EyRPu/BnD0GFZ9nn8GqFJa8hHut38ai48VRNPhAIBK4B4ns4EAg803g9RRmvwl+V9M0Xf/9mST9gr39TURSdoig+T9IHJP3o67kg5M0t7FI9959oNh0KIIbe6hDCQVE7t4B7pNfJqre/4z6DwSBVmncngle3z3PapcvIpgsfV+WBk79dlqVGo1FKPZCUxsl1cSfkBfjoUNHv95Pdfjgc1pwBHnkl8u5E3GsDYP+mSn5RFDo8PNTR0VGqceEk2DsXQPL7/b4Gg4EGg0Ei9E4K2Q9PV2Ass9ks1VVgHVxEwC2AeMB+z2YznZ6eptSD4XCo8XiswWCQuoBMp9MkLrFGnBv2BZJKCgv1GOjS4Z0tfN4eQSdKTvoBqSKeruCElnX08+qFBP0nB64Axstr7K8XrsyLiHotBe6Z10vgPPAjKaWxkNbhZ36326XaD6x1vo8817lrgNeuKrbJM8gzhwsGp4N3jGA8XI81zmtCuAjlKSIIjU+RQ+GxfxcHAoFA4A0hvocDgcAzjdd0KBRF8Rd1XmzmVlEUn5L0xyV9SNL3FUXxLZI+IekbJamqqp8uiuL7JP0TSVtJ//uqql5XmXQi1YPBQFVVpcJ8i8VC8/k8EQtszqPRKJEmJwaeby+dW+qHw2GKHO/3+5QD75Zy3ktePXn/0jlxJ4JMu8OqqmriBteXLgtAQmR4zfPLG42GBoOBRqNRchO47d6dAhDqPILrYooLJRBW8u6Z53K5VK/Xk6RaJwdIFvckAo293/PTfYxEoCHa4/FYh4eH6vV6teJ6OBAQbbgGbgbv4jGfzx+IYvtYXRyC6N6/f19Fcd4Kczgc6ubNm4nwLhYLnZyc6PT09IHcekjqxTlP64ZI4ekHnU4nCV3usnBRxDtx5PUN1ut1rS4HLgZvD4mbAaLMOci7UnAmmQd7wDlA1IB8e+Tdr3N2dpaeO7qasOYu5DBXr2uS1yXZ7/c6PT3VarVKY3MBytOGfBzAnTjuFKEWiRdhxPmCuwR4mgzj5PwhFHAPioPO5/O0f8zPHR6LxeJVv7feTrxd38WBQCAQuBrxPRwIBAIP4vV0efgdD/nV1z7k/X9C0p94I4PwnGycCkSdT09PawXv+v2+bty4oV6vp91up+VymQrF5dF/T42AeDiBgghJ52SEaH9ZlrXovqRETOfzuaqqSqkF3Afy4oQZIoM1m2KKnU4nfZ7UCkkPkEZvZZhHaSl6SM46eeB5VBZiSNScuUpKRQ+Zq9eQ6PV6SXihICGk1y3pkDtqNyCseH0HSQ8IEkTt2+12et0JLOP0KLGnjjgpXq1WKstS3W5XR0dHKa+e4oYnJydpbggJkFOvF8Ae0iIzbxHq7QohvoyJ1AhvVcme8jo1O9hnTyNwMuwuEt9PzjLr52ty8ewl4s0Zyd04zNGFLq+H4GJC/hlPceDH3QfL5bLmJMIdgmOHMbJGnEF3Mvje521ZPSXD55Q7hbgGdUW8IwcuClpL7vf7NH/GyB7TAvW64O34Lg4EAoHAwxHfw4FAIPAgHndRxkeCd0rAdk8LOLc5kx4ASYToegcCj1RKeoDkE5GHdEN6EAA8b927E2Db9s4EjB2C610XIP5EWrk/7Roh1pBBFzGcyPF5/2/cCZBkJ5SQXGz7pDZ4pwbWk1xyRBkXPFhjJ5luMWcter1eGiM/iBOQflIaPK2FSLCLJ04YpUsC79Frr6kAeaYWRbPZ1Hw+12w20/HxsabTaW3dnKBKqjki/Dw5ufU0AMbphSY9og8x9X3wSDrX8XoHXrvBC2Aybq+HwHu4P9fm7+5McMeK11rw9eB+rLXPnfd6OoELPS5AeEFT7/7gIgTX8yKTjMtdHy5Y5GKGi0KeBuT1IHiWXVjMU3V4ll2M8Gu7uBUIBAKBQCAQCAQexLUQFDySTmcH7ODkYnsbwuFwmFIdIAYQOQjqVbna2PgRAvjcarVKxN7z26VLC/nx8XGyv3vBP8gtEXauSRqAFwZkDr1eL9UY8LoJVxWDgzy22+2aoIDTAkLNZ73mBMLMZDLRdDpN0XGIZlmW6nQ6ms/nKSo/GAxSXYeyLFMU3YvXsa44HJiLpBT1RbAZjUZJTDg9PdVisaiRXUQPJ8yeGrLf72uCCPdmXKR+ULuBcUynU927d0+vvPKK1ut1IrrSJWlk3VmXRqORzgOiEPfz/XEXgHTZIcT3i9cRS3Li6nn6XuzQ8/y5hotErJ0/O35u+DvCEfeAjEOWXUzwFo4u7PAsuGDFe9kbJ96cB54lruEpDO5CyOsUeG2N3IHA+5kDa+YiF/DCoO7i4SxxlvnO4HnnuQoxIRAIBAKBQCAQeH24FoLCfr/XZDKRdE4aSGMgD7zRaKjf7+vmzZt697vfrcFgkCLPr7zyiqbTqcqyTNfK87Orqqq1gvSWf3QV6Pf7idytVquaOHH37t3UfrHb7SbSTZ2C2Wymk5OTRNZ7vZ5u3ryZ7PdFUWi1WqW0gMFgkAopun2fv3uFfEgwKQk4MVzM2Gw2yUa+2WwSOTw+PtZkMknOA3LbXejYbreaz+eaTqfa7XZpfMzPiw96eoIklWWp27dvp7oMnpMO6V2v17p3755OTk60WCzU7XYTcWUPJCXRxbs+7Ha7JIYgOLgYgAtkMBhoPB6r3+8nm/0rr7yil156SZPJpFZrgM976sZms6k5FxiLk1+cC3QwcKLt7UKpl+BpEdQ4QCjBpYJgBrml7gC1MXBlcH2vwdBsNlMbx6vcN91uN80nFy54zrzgoRe5ZJ1xlzA+T03wLh/sAzU33BHAuBkDqTnsBWQfIc6LSrpLyP+OyOCCBS4ahDJ+ut1uur7XrCDVgXN6VQpHVVXqdDrXqo5CIBAIBAKBQCBwnXAtBAXIsqRa5BNyd3R0lDoN9Ho9LZdLvfzyy7p//75Wq1Wy6SMAECWHJHi+PoXivPJ/nq/OZxE2jo+PtdlsamSPMS8WC02nU81mMx0cHKQOCxR2lPRAFL3f79faWDJfyCNkW7qsd+D5+YyVlBByvVutViKGjUZD8/k8ET7aUmJH54fOCAghR0dHSUxYLBa1jhbUGeCzkHhs5D4+xJG7d+9qNpslkQQSSuFMt+hTHE+67GxBoT+vj+HpChTypEBmo9HQyy+/XHOU4EzxIn95FNpTDjy6DpllrOyZF7GUlMbl1n13RED0If3M0VNDiKh7VJ01K4oi1SWQlIQNd61IqrkbOD+e/kNUnjX3Qp+5QwCxjeswJk8J8DlxXS/c6WvIXL0mBff1dAdf1/z3/He+ZwiA3o0DtwHnmOfZr+WuC1KWOMd56k0gEAgEAoFAIBCo49oICpAm/gGPENBsNlPrQi8SeP/+/Vr0XbrMtYcg54XWiEgiKBBBhohyHSfxpANI5xF5OhiQckGth7Ozs1TIcDQaJes9kdVut5sipkTMndQ6eXTHghcepCo/4oMXSpQerONA6gfrkOfCS6oReki5R61pVwmItuMMILWCMZdlmaK+OellTREfuK6LEBBGRAqEFRcU3I6PEIFotNlsNJlMUkcJr4vBZ31fvCijdy3wuhbeYcK7YLirJG+H6eeYcZBqwzi9gwcE2FMVvICit33kvLgY4rUXvI0qc3VC74IMv3chxJ9Jdzi4OwDBBAEjdyUwd9Ja3DXkNRKuEnb8vk78c0HBhRLOA2NyhwzpPC6Q8BnW3AWFPN0jEAgEAoFAIBAIXI1rIShAEpwg8I/8g4ODJChgXz4+Ptbdu3c1n8+TFR+CSkSeSvPtdjsRVK6/2Wxq0ftut1sjqJARHAi4E3AYUPQPi/9qtVJVVRoMBjo6OtLh4WFqNSmdk1UKBnqROI/aQ5a8gJ+TegQFJ4fk+7Ne3lmAa1OnAccBpNIjx8zb6z148TonoJDzsiw1HA6TqOE1IjxSjQ0d4g2545qe0kEeO4U5ERO8voULP7mgsN/vU60GrzeAQ4G18ToUPncv0sj1eD/7JCkJKi42eBcGnBZux4fos/esraf1uDDC57yuBA4RxuUC3P+/vXOLkS29r/r6+lLV1XXr7tNnzhnPDLGNDJJBiFgoL5CAFETsKMTchBzxYClIVqQgESGk2LIEeclDiMgjREaxHCEnNggs/IJkCyHyggmJsR0b2/E4sc2Z2+lb3aurb5uHrt/Xa+9TPWfGM32ZOf8ltaa7unrvb3971zdnrW/915+deY7hJB3STjZENavDxQN+5jyLykQ4HyUmfv9cgPCSBI5fJepVMQE3CGINrwM/jlR2QCC8uPNiPB5nUdDburqIxjPP+lEVuAKBQCAQCAQCgcBi3ApBQbpInecf+9Rir62t6c6dO6rVappOpxoMBvrBD36QSxVqtVomyxCYdrtdyi8Yj8elsgZ60DsJw8aOXRrLPTv0nU4nv+/o6CiXS1BesLGxofv372tzc1ONRkO9Xi+7H+hMAWF3BwDXLqkkHEjnZKvX66nX62k0GpVcB76zDjFvNpuSVErcp4UibgHpgnxCXn13HiFhOp3mQEMs7djVqfWXpIcPH+Z2m1wjhFQ6d2YQstnr9bSzs6Ojo6Ms+JB9wZjdZSIpl2o4qYcwItRsbm5qeXlZh4eH2tvby88Gzw9jglhzPZB+nBb8HicMQsF0OtXy8nJ2XyDSeAeM09PT7GBZW1vLWSA4JRBbKFUZDoelPAEX08i1QABCTCCbwYkx5LxWq+XuJzw7CBDuKoCoe66EE39/nxN1FyG4/61WK987HDO0DuV4HppaFEVJ4OIaXCg5PDzM88I4qy4GnlfmxcUQ6VyAOD4+LgWS8twuLS1pMpnkriDtdlspJY1GoyweUlrigl0gEAgEAoFAIBB4FLdGUGDXt9FoZOILSa7X6+r1eppOpxoOhzm1Xyq38YOkdrvdnAMAMfXUeAgZ5+RcEM319fUcBJhSygFvEFsvl+Bvt7a21Gq1VBSF+v2+er1eHgsiAzv33gJRurCsc1zG7PkM3u2C64E8Qo7W1tby3PF7sh4gTHRvaDQamaBzPgjU4eFhLudw8cFLH7DrLy0tZbEFcgfppyUloZX9fl+j0Sg7NXABVAmspBLp9FwLrhmxoN1uZ5KOcOFdDdx27yTVAzrr9XqpZebGxoZWV1dzhgPPCvZ4nlEnzN1uV51OJ7fPRADiXpBvcXx8nNtnunUfQQFhhaDIqhWf+w3hxWGBAOefB+miDIjzVbMUvJTDS21cFPAyGVqK4tTxrgkQfHb2PSOi6n7w8hbOx2fTxQEXUDi/Z4BwTB/jdDrNLp3JZFISbHA08Rk4OzsrlS3xfLgAFQgEAoFAIBAIBBbjVggKnhLvhJGgOtL+IbvsTlYt4eQUNBqNTCIhotJFazks6B7CB8lYX1/P7Rg96R0xwS3+nBfr9NnZWSkADjs1u7Kejg/xhehggXehAYLs11G1+UvnZJeWiU4aIaiUDxRFUQoo5FxO6rHh474g98HLQNhtlpSdIIgD7nhg57ff76vf72s4HEpSnndP//cxcz98TC4OSBdBiwgdlKfgCPD5ksqZCdwTb5vImFykoCTGz0dwondeQIRAdHJC7+0vub/etrCa2eDPKbZ9yK1fP6QcEo+DBBLM8+9fVaHFczyqrgfO4QGI3Been2puBK4H/rbqGuA+uGix6HVv+eqZDwh+iEGLShIQYxAiFj0HiBFkWXg5Ee6hEBMCgUAgEAgEAoHH41YJCpAEiBsCw+HhYXYMLC0tZfJeDcmjLSMkk99XCZun7nsNfbvdzs4GSElKqdRi0VsdspvJ7yG1g8Egkz2310MoIfkeGImDwEMDvcOCB+7V6/XseEDMwLo9Ho9LRM6FCg9o5Bo9HFFSvkbItFv4EVk88BASzW42Ygc71AcHB9rb28ttPp3IM4eUF7hY4oGIvO4tJbkOSCF5FtTKV4krcyqplBfBNVOS0Gq11Gq1NB6PJV0Q41qtlrtJLC0tqd/v54DKRqOhjY2NXNIwGo1KbRaXlpayEIWg4M8iYoZnZ+A2qHaCAJS+UFLD8+XBh9JFfoKXVvDluR3uMPC/8zmkJMjLQTyPgvms5j/4Z49zevaDC1TVjhTecYFrXSQ4AA859dBPv/8eUuplKf4sVj8XgUAgEAgEAoFA4FHcCkHBw+W8Fp2ShX6/r6IosmDQ6XQ0GAyy3brZbJaIMq97vbgDIuqp+mtra9m6T6tCavS3t7e1tramvb29nHvAWNk5ZZecnfi7d+9qa2tLnU5HKysrpVaJiB0eBgcZ9iR/SaWuC5B3SkMIxqM7Q6/XK7V4PDk50WAw0GAw0PHxse7fv58J4dHRUS7NoLbdQykRaKjLxzpPB4WVlRVtbm6WdsYRaSDPg8FA3//+97Wzs5NdHe4scJcFcwFxZuf46OhIKysr2YHhO9MQPxwh3pWDQM5GoyHpUSLrjofZbJZDJjudjiTlkg8cMbQsrdVqJcGl2WxmZ4t0kQVBbgDElrwF3/X2DgkQcM+HQHggXNOFGuaML8Q2D0mEbHtQJL8j+JLx8izhWiBME5A1gTuBcXBO3st1VwMtOQb/9UwTd5TU6/U8f2QzIGqRbVEVEVx0waXDZ4xnGqeHZ6TwnErK15VSKjmQfA4CgUAgEAgEAoFAGbdCUJCUSSphbxAqxIF2u13aLWdn3tswur3bd4B951G6IJOIDZubm3rmmWcyWRyNRhqPx6XsBHa+IUnUyEOIJ5OJdnd3NZvNcmeKVquVgyHZmWbnczabZWI8m81yHbeXfUAindwQZOihlVzbdDrNZAshBjFhZWVF7XZb3W43uz4oEfCARpwH7Ahvbm7mkonZbKbhcFjamWe3H7KNqLK/v6+HDx/mkMTq2CkdYOy4L2q1mkajUSaInIfj+649hJPwTO4RXSjIahiNRpmcQ5y53qK46M5BqORgMMjPAAGS7kCYTqclMs88cI8RD7jXXIuXQXiZhZcyAJ4R6SKYElEHdwKlNNXQQnI+XKDgeyf7nhuBWMNYvZwA0Yzn0t0/iCHAiT7XXM2z4LoRqvwzWnXCcC95zqutLN2B4dkN1QBHL9nwdcJzSSiXcMeEd5gIBAKBQCAQCAQCZdwKQQGCA4mFpEAMCDeEgELaIRVeN+1tFyWVUuwBRBDLfrPZVLPZLKX6V2ut2c11Muv5AmQnSMok2N0FjIHdXUmZgE6n00dC/Ci18Bp6dmDX19fVarXyHLADjisDssgOO6Sx0+nkTg7j8VjD4bBUYgK5h+w2m03VarWc5UCbTpwdZEt4+cBkMtHe3l4uc+BeMW7IqwsnWNg9z8Ht6f7+qqUd5wcdEDgXYZ5e+sDz5ST77OxM7XZb7XY7v388HucgzLOzs+wCcULLswhh5dnxwM2qqOV2fq7bux0A8hs8IwERyN0tPmf+zFd3173so5qzgFOkXq9nt4Ifz8skEHN8/P68urDhAoqf30UFqdzGk9IQFwXdeeTdQ7hOD6t09wLzTd4CY6z+jbuELhMjA4FAIBAIBAKBwGLcCkEBAsmOu6S8EyspW9HZQZ1Op6VdXXYzPSROUiY5kkptAiGWuCFarVZO4acjgucN0CnBxQRJuSUh9esnJyeldoi+Cy4pBxdCUmazWRYicERA1t0O7qSL47darZK1HkEBko0AcHJyokajkds6np2dZQFjMplkos94/TxYzCkrIFfA8yoQFRBd+v2+dnd3tb+/r9FoJElZeMGVgGgEofYMAXdZeFkK7606FPiC6JKFQcYEopR3aPC5ZXyURtDZgU4MCCtuxadExJ0ujMkDLV0kcEHJwxY9n4D3cR+rwZOeC1DNOuBYjkWuBxc6EBK8LSXPm4swfn/c9eDn82eV93EP/b3e0QJyX3UneAipBz16tw8X2jgP88e1eztUjsHnw58txELPhGBMnnMSCAQCgUAgEAgEyrgV/1omH6DdbucdcWr7G42G7t+/n8mhCwYQCjoTVElM1XLNTje71M1mU91uV3fu3MklAjs7O+r1epmULi8vl7IPICTY4yXl0EjpXPx46qmndPfuXdVqtUycqDP3Y0HSCV8ks4HzUg6BWMFO+vr6esk1wc74aDTK1n+yBOhAcPfuXTWbzSwmjEajXO7R7XbVbDYzWURk6HQ6ObSO8gjmjbEgOhweHmp3d1cvvPBCzkxIKanVamVBgbIF3Aaeo4BQhLsCe7oLHbSzxJHgbgDcJLg3PAvg+Pi4JGhAZDk+7hQEkZdffln9fj+X1WxsbKjRaOT7JJ27UAAizXA41HA41Hg8LuVDQFSrr3l2AM4RxCDKSng/jgnpwhmAuAC59nIDxke7SCfjnM+7j/C+avcInlt3+ni7S0n5Z78mJ/ZO6Dken1s+r9wThEE+rzhB/Pog/MxpNffBhQTGWS3z8Nabi8ocuFerq6s6ODh4A6tbIBAIBAKBQCDw9sWtEBSWl5fV6XS0tram4+Nj9Xo9HR0daX19XVtbW2q325nwuJ28Siqr4Y7uTqjX66UAPcQKRIFer6fd3V31+/0cDIgjYjgcajqdltL2t7e3tby8rOl0moUBavMhqRAh8gMoQYDQD4fDTFK9REK6IE0e1gcBhFyzm8uuOmICAsvS0pI2Nzd1584dtdttHR8fazgc5t9tb29n5wdEjhKDRqOhk5MT9Xo97e/vazAY6PT0VO12WxsbG5lkF0WhXq+ng4MDPXjwQDs7O1kcIegSx4V0sWuOAwIyT84BdfPMG/faa+Ihj8wR99HnyAUghAxKFk5PT/Nc41iYzWbq9Xp6+PChBoOBzs7O1O12tb29rVarVXLM8My4S4LMBe4l4Y78nmfQAzerLhuEI0k5hJLyFIJJIbnSRetIvqfkg2fIywc8L4DQTQ+DdKcDHTUo5XCXB4KAk3qECISgaomDOxAo5+CzLKnkrmg0GiXBwucLYc5DFt3Bg3jhZQ6eJ4Fg4FkQiDieHeEOIcYYCAQCgUAgEAgEHsWtEBQgVhAgD9ZrNpuZFEB6sZZ7EJ1UbsFXJaF0LGDHm2A76dzmvr+/r4ODA43H47xDyXho50jHATIDXEygrh77PGPwlHnei3uAoECs+G4/rwbkQeQg0oBARyz6niHhWQKIHxAkCC52fcYKYaVbxu7ubqmzA3NIC8PJZJJDGA8ODkrtKTl+NceAkhCyCchmcEu+W84hqC4Y+bPjO9FeOgAB9VDA6rElZecDXS+m02kus0E4QWjifIyVnXbyFpyse3mCE3B/LhmriwkEVJKNgXOjGt7I9fjufPU8nknB/XUxAcGDsfP58V19nqfqfaD8xEm9ZzlUwxYlZTHBRQ6/r9VciUXOBL6X9MjvvCzGRQfg4aOMo7p2VMtrAoFAIBAIBAKBwGI8tidaSumTKaWHKaWv22u/nlL6Vkrpaymlz6WUNux3H0spPZ9S+nZK6adeyyC8nppke3ICGo1GDkr0nADfUc0XYzuUTiIJX8R+DwGVzp0MlFgMh8MsGrDLzXl9F5R6e9wGhDFC4GkhCImGgHqJA8dcXl7O7gks7tWdWU+iR3DhuunWwO64j5P5W11dzfkEnNPt7pBKhBR2pvv9vvb29jQej3MgJKUeXFO/39fBwYF6vV6eB8898BZ+WNTJrWBsToo9D8BzLKo738yL18J7y81qyr/fc4QNHCCUrAyHw+yUwInh2R1eXw9Rp1QCKz1CDfffr0VSieD69XibQ2z8lD/QEaQa6lgNcnQyvCjg0sfnrUB5nrwEhWuuhh66qEEQJc8dr1XDRX2Mfk3V7Ac/vp/DhbWqqOLOAy91Yi2pimxepuGvM3c8Q9xbXCm3AdexFgcCgUDgcsQ6HAgEAo/itTRZ/5Sk91de+6Kkv1gUxV+S9MeSPiZJKaX3SvqQpL8w/5t/k1Ja1mOQKmFsrVZL9+/f1927d7W+vp6DC9lhZ5fd7d6QRN8Vpw6dfAZ+NxqNMgnCrt7r9XRycqKVlRU1m01JyvkFCAvseNfr9dzSknGxM01JhaR8DkQLbPFcBzkB7Nhjy5eUrecezOc7r16LzzjIVJAuSgrIDIDEMX52wGnLCbEjfHA4HOqFF17Qw4cPNZvNVKvV8v2AjA4GAz148EAvvviiDg4OsmDgAXlOWGmnubW1pU6nkzsLuFDE+HGC0BkCwQCRgXmBHCOEUDbBjjsuACfVhGMiVE2nU+3t7anX6+U2ms8884zu3bunVqulyWRSChoEjHc6nUq66O5Rq9VK4YaScm6A3yOv66+GAc5mMw0Gg5wzwPW6o8TLCHzHHjGBuYe4e8cEd1W4eEPehQeR8jx5wKF32uD4VbeAC2N0HSEDA6dNNUvDj4/4wPzw+eIavCWn3xc+c9VwSO+K4oKk3yMXc/hs3yJ8Sle8FgcCgUDgVfEpxTocCAQCJTy25KEoit9LKb2z8toX7McvSfoH8+8/KOkzRVHMJP1pSul5ST8m6X8+7jz8Q146Dzbsdru5rICQv2p7OCcFdGogrZ5jrays6O7du2q323nX9eTkJJP+w8ND7ezsaDKZ5J37er2ew/U88LHZbGbxYzQaaTAYZMKxtbWlp59+Wpubm1pdXdVoNCqF/bGLjwPD2/XRhcHnQFLuJABJnk6nOZBxZWVFOzs7eumll7S/v6/JZJLD6SDY9Xo970KfnZ3lzgdkFvR6vVII4+rqar7mwWCg3d3dnA3RarXUbrdz4OHJyYnG43E+NzX2CCW+A8w1djoddTqdPA5IqO8mE7BIFw4EDuA1/04kXVRCGOL4EFWAiOGZAjxf9Xpdzz77bA7VxIXCfXNAko+Pj/P9o1QAIQBXgHewcNGA5zGlVOpwwj1DFGHHnGtkzNKFXZ954L3VXIRF2Q9e5uAi1Ww2y3PnnTl8597LAbwDBM/nyspKPhalDp7FgNPFSwyq7V9xBLnggMhwWXaKixycBxGi6rjwUhLWFS+p8hDKm8Z1rcWBQCAQWIxYhwOBQOBRvBkZCj8v6bPz75/R+WIKHsxfe1WwawypwU1wfHycwwYhXZAPJ5SUDGBVzhc3JxNkHhDABimj/n06nWZCt7a2ppRSzkeACHlNNW4A3zklRE9SPh7kC4cDxARiRNcJCBNZC4y9KIpccjGZTLS0tJQDJWkLSWcHr+9nN5vrw6nBzjmdHo6OjnIWAmSKsEhKQGq1Ws4SWF9fz2ICnSSYA6ncks/LDAhf7Ha7+V5QDuH3AKcHIYsQ3EU2+EV1+JIeqXt3McEdHtX2h5SI1Go1Pfvss2o2m1kwoJTDd7g9zI85d0LqNfyIJm7ddxeNl2pwbG87Wc0BkPTIz/684b7w9osudjB3CBPe0cHJOp/L6hx6GUfVCeBuAL9XPCMczx0ni8SAasmKOzxccODaAXPgY2R+eZb8/f65ceeFuy3eQnjDa3EgEAgE3hBiHQ4EAk8c3pCgkFL6uKQTSZ/mpQVvKxa8ppTSRyR9RJK63W4OiltbW1Or1dLKyoomk0m2fXvdu4fBQbKxaXttNsej1IGdVQgSJQ1eCsAuOzkHHpQHUZOUySTn91IA2jVCJH3Hl2vAoUCbSL82CC5/B9lGsDg7O8slFIge8zkthTq6qwESR3kEQYjuimDsZAkcHx+r1Wqp0+lkkYe599ICz0BgLr1TAHkYHAMRg/uBDZ7da54FSOCirAEnlS4muP3eMzW8xGVRwGGtVtPa2po2NjZ07949rays5ABNnplquGC1c4KTdQip5yz4M+vPc5VQHx8f57F7KKLDOx8AP3eVcCPOeBAh8+yknnvrLRi9tMLzHwgJXZQL4QIHzzSfMS+9qGZLVPMSFglC1awND9x014qXXbg4419V8WvRsd8KeLPW4jWtX8n4AoFA4O2OWIcDgcCTih9aUEgpfVjSz0j6yeKC1TyQ9Jy97VlJLy76+6IoPiHpE5L03HPPFezSE4ZHyQFhf51OJ+/aj8djnZyc5JrqjY0NLS0tZbI8mUxUFEUpRNDFgFarJenC2n18fJwFgdPTUw0Gg1LIIQQHuz2W+dPTUzWbTW1tbWljYyMLGjgCvAsAJBHCD8H3loe8h3PhFKCLBELL8fGx9vf39dJLL2Vr/fyePOJs4HobjYaWl5dLnSa8Ll5SFgnYpV5dXdXGxoa63W52RvjuMcSx6vQgFBO7f7fbVbfbVbPZzPZzdvgHg4Emk0neMSfwEms6BFQ6J3s4MqbTac5m4Jqpu0co4fmQlIUjnCWtVqu0k95qtbS5uam7d+/qzp07euWVV/K5cCFAMjkX+QwQaxc6EKCY18FgkF02iBNO2Mk04LoRXezzUiK4i7oPQMarnTK8FIgxUcrgpRLcd3fScG7//PAa7+ULp4aLK56fgZOIeeM8VSGmGrbpmRwuGnDvXSzhfByjKtLhMOH5rboTEC34HQLjbcabuRZ30tbCf+wGAoFA4HLEOhwIBJ5k/FCCQkrp/ZJ+WdJfL4piYr/6vKTfSSn9hqR3SHqPpN9/LcfsdDp5p382m2l3d1cHBwc6Pj4udT/wzATev7S0lGv/IQutVisT2OXlZY3H49ztodFo5F340WiUxwCxnUwmmfC6XRsXBASo2WxqY2NDm5ubkqTRaJRdEZJyKB6k1O3+7NzjipDOd4xxNQyHQ+3t7WUiyu4ugsnOzo76/X4meTgCKLFAnNja2srZD3t7e3rllVdyHgA71Oy6E0ZH7Xyr1cptE5l7dx4Ab21I6QfkjftKDgNkczKZaG9vT3t7ezlnobqrfXZ2lsssvPwAcYBddHa2KS2pBlIeHBxoNBrlZ4PngudqdXVV73jHO3JY5NHRUZ7fw8PDkjuFQEPf3T46OtJwOJR0YaknM4FyFVwRHjbpZN67bECGERgg2i5gAHcqkCnA6zz7lAtA4N0p4OdHpJEuSkWqbgc/N0IKzx/BohB7OqbgxqGcyDtmeFcOnnNEBK6JZ5PntNr9xLNR/Bn10gq/L96VAoHPSzncuXHbcRVrcSAQCAReO2IdDgQCTzoeKyiklH5X0t+QtJ1SeiDpX+o8wbYu6Yvzf+R/qSiKXyiK4hsppf8g6f/q3Pb1i0VRPDbRzMsWUkqlQERJmRhBbtjZr9frpd1d3AbsdEOaID0Q25WVFe3t7WXCJl1Ywb3bgLd29HaJvIddd4SAasCbOyCWl5fVbDZLdftO5hkDu+i0MWQOarVaHhNCCHZ/t45LF4SL7hEE2e3t7ZXEBEgeQofv/vqOLoRvUVYBu9qcr9lsllpfkp/gu+GTySS3m+T6mD8cEAQ5Uq5AZoOXR7iIQqkLXTq47wgw3lqS54avbrerO3fu5OBO5t3LI3CpQDy9HIFyFoQiL6fx+SFY0FtZ+nV7iceiEgJ3KDAmLzfxe+SlADxb0gWB9p16z22oZgc40V5k//d5RCxi7BBzL8Op5h7wfs8y8PwFL01AZGA8CAa8xucB4caDHD1fhc8e70OQuOz6bwuuYy0OBAKBwOWIdTgQCAQexWvp8vBzC17+rVd5/69K+tXXMwh2N9M8hX04HGa3AOUDEHRKGbxTACGJkAJ2nyGx2PdxJ/huLCSEHU52VhEoOD/tC538eD6Dt6eDeCE8SCrt0M7n6RHSAjmFOOO4gBBB4H0nuRpYyBhSSvn62ZUdj8eSLjpM0AmCXXEnVdXjIlpwneyc42hg573RaOT31ut1tdvtLCgwz+Q/4NyQVAokRCjwFn5ct7ddhCxyz4qiyKKRl2Iw/7wfxwGklLKOWq2W8zO4d9zvReF8vhPv+RWScnYG8wSB9Zr+RbkEl30+Lvt9teTAhSW3+0sqEXueFa7Bux+4G8CzIDieH5/r8U4NPJdeAlENQwS4fRBkvLyhmodQPT7X4mN3IYE558uDLF3oYB6BizK3SVC4jrU4EAgEApcj1uFAIBB4FG9Gl4c3DIjH0dGRRqORDg4ONBwOdXp6mnchJWXSRMcBWheSmSCdk0x23REcDg8Pdf/+fTUaDS0tLWk4HGp3dzeTTY4NoZ1MJtnC3mq1ckYCO8+87qIGddd8EVCIhRrxwS39UjnBnzp2DwP0Nnsc00l81aHgNfqrq6t5Nx87PG4Eauj9GpwA0xnALetLS0uPODhwhFAf32g0snug0Whoe3s7l02Qc0HnDkic1+gjGDHO09PTkmOFcgOvrWeuuJ5Wq5VbPXLNuBYk5WNQGnH37l01Go0s6Eyn01w2guuhGlzobpKiKLKbAgEE8aP69+4ccPdHlbhCvp0Ie4YFZQwQcm8LyY498+pZAZzXywQuK2lwAu7ihxNuRB+uBYGOz7SHKrqDgGN7KQbj89aRl4kvPHPcfz5/VTcM7/X8Ba6TZ5v7XO3C4vchEAgEAoFAIBAIPIpbISiwO97v9/Xyyy9rOBxqNpvlXW4s+0tL5639Wq2WDg8Pc1kAFnlIE9+TgdBsNvXUU0/lLgf7+/ulkgF28XEHjEajLFxsbW3p3r176na7uRZ+ZWVF29vbuXwCZ4WHEUoXu6CUaEjlnVdv3be8vJx37bHp09YRYu/19Oy0Q66Zp/F4XCKc7r5g13Z9fT2HX66trWXng4f2+c68k2lKDxgrIgItMBFAGo2Gut2u7t27p1arlbMH9vb2tL+/X8pqQBCQzvMNOp1OdpYMBgPt7OzkcE5J2trayvPB6+vr67kjBWNEZCC0E7Ho8PAwz8G9e/e0sbGhlZUVjUYj7ezsaH9/vyQGeXAmrgdIvJd5SBfOBLfVe3kGz4LnGnjJA89OtTTAj+nlP8whwhBlNhwDQu7tH4t5eKiLJn7+apaFdCFSIOS40wMxjtc9u4BxeCmEl2kwj36drAlO6r3UgXshKWdj4Exot9uXOiE8INLP6YKG3zPcSQcHBz/kyhYIBAKBQCAQCLy9cSsEhdPTU+3t7eng4CB3WGCHHOIAKSIYEXKdUlK3232kRhoCA/kn7BF3AgQNYnF6epo7IBwdHanRaGRBodPp5OOTC0CYotuiIbWED/puNAQQVHdLOU51xxhRAgIKYXMiVq/Xtba2psPDw0yWEBmczLFrDGlvNBp5HBBDzumk0efInQncE+aC8UOyt7e3cwmECza+U+3z4NdGmcPe3p56vZ5Go5HOzs7y/EKIp9NpaTecchZJ2enAbvzh4aEGg0Emih4UiTOBa+NeUxaCuwSiCVn2e+hlAdxHXkMMQHTycgnfifdsBC+54L74vXA3Sq1Wy+UgnNNbM3qrThwmnpvg512UH+CZBYyhmr2w6JnxFppVuHi1KLPBO2swBo6NQEC3Fy+R8flEBPJrQ3xDdKyWe7irIxwKgUAgEAgEAoHA5bgVgsLZ2Zn6/b56vZ4Gg4Fms1lukQhx87p/yC+EttVqlYLpJOVyiXq9rm63q+XlZU2nU/X7fQ0Ggyw2QPZms1nOYpDOxYFOp5OJN8F6EBpICSSTHAiyFiB8XJ8HzLFD66ID73OSBhFEWOGanNh6vfhsNsvXRMmHE7rV1dVMonFXkD1RJVF+bEQdSD4kmPFxTkhbvV7PbRhp2el/6zX8wGvxee94PFa/39dkMsn3q91ua2VlJQs/tPx04QAXCfkQHs54fHyc56DdbmdRxQMU3ZnhgokLIV6G4yGN3Ee/z4vq9f15daeM52n4c+M5BT5ni0oxeH/1Pe4M4LngC7jDxl/zzAIX7FzAcFeGZ3q4aOTX7+6H6vmq4PgIH5T/8Fx7aZSjKsz45w1Rx8UEFyVDUAgEAoFAIBAIBF4dt0JQOD09zYIC2Qlew0/QIj97DTx2dKzSWOlns1neiW+32zo7O1Ov19POzk4un5AuSMRgMMghiKurq7pz54663W5ug3h4eJh3aQkfhNjQ3hBii/XcbeRkDfjuNSQS4u871icnJ7mcgI4VHlzHWAizhEwiQHhLQIjU+vq6tra21Gq1tLq6Who/JLRer2exwMMvyasYj8e5NIJ7xI45ggflFJubm6rX6xqNRppMJlnIqQb4cU0IE5zHu1kghnS73ewkIAOj1WrlHXjs7zwvZGYgVElSu93W9vZ2FjwIYiQ7gXnmXnuLR79nXpdfDf2rhhN6pxJEnGogIz9z/7lvlF7w/HA+6cJNQnkPx+Lc3sUAYYd75a4AL8vwXXp3C3h3CM/b8LIYwjd59jzsUFKpxKIqJHjugQsR/pxwDYhJiG1+T/w4Xlrh5+A1XEPulvGSCL+ngUAgEAgEAoFAoIx0G1LMU0o7ksaSdm94KNsxhhhDjCHGUMGPFEVx94bOfa1IKQ0lffuGh/GkP28xhhhDjOFRPEnrcPybOMYQY4gx3NYxLFyLb4WgIEkppT8oiuKvxBhiDDGGGMNtHMOTgNswzzGGGEOMIcbwpOM2zHWMIcYQY4gxvFYsPf4tgUAgEAgEAoFAIBAIBAJlhKAQCAQCgUAgEAgEAoFA4HXjNgkKn7jpASjGAGIM54gxnCPG8OTgNsxzjOEcMYZzxBjOEWN4snAb5jrGcI4YwzliDOeIMSzArclQCAQCgUAgEAgEAoFAIPDWwW1yKAQCgUAgEAgEAoFAIBB4i+DGBYWU0vtTSt9OKT2fUvroNZ3zuZTSf08pfTOl9I2U0j+dv/4rKaUXUkpfmX/99BWP43sppT+an+sP5q9tpZS+mFL6zvy/m1d4/j9v1/qVlNIgpfRLVz0PKaVPppQeppS+bq9det0ppY/Nn49vp5R+6grH8OsppW+llL6WUvpcSmlj/vo7U0pTm4/fvMIxXDr31zgPn7Xzfy+l9JX561c1D5d9Hq/1mXjSEWtxrMXz12It1pO3Fsc6fDsQ63Csw/PXYh3Wk7cOz4/71lyLi6K4sS9Jy5K+K+ndkmqSvirpvddw3qclvW/+fVvSH0t6r6RfkfTPr/H6vydpu/Lav5L00fn3H5X0a9d4L16W9CNXPQ+SfkLS+yR9/XHXPb8vX5VUl/Su+fOyfEVj+FuSVubf/5qN4Z3+viueh4Vzf53zUPn9v5b0L654Hi77PF7rM/Ekf8VaHGvx46471uL8+ttyLY51+Oa/Yh2Odfhx1x3rcH79bbkOz4/7llyLb9qh8GOSni+K4k+KojiS9BlJH7zqkxZF8VJRFF+efz+U9E1Jz1z1eV8jPijpt+ff/7akv3NN5/1JSd8tiuL7V32ioih+T9J+5eXLrvuDkj5TFMWsKIo/lfS8zp+bN30MRVF8oSiKk/mPX5L07Bs9z+sdw6vg2uYBpJSSpH8o6Xff6HkeM4bLPo/X+kw84Yi1+FHEWhxr8SK8LdfiWIdvBWIdfhSxDsc6vAhvy3V4Poa35Fp804LCM5L+n/38QNe8iKWU3inpRyX9r/lL/2Ru7/nkVVqr5igkfSGl9IcppY/MX7tXFMVL0vlDJempKx4D+JDKH5LrnAfp8uu+qWfk5yX9V/v5XSml/5NS+h8ppR+/4nMvmvubmIcfl/RKURTfsdeudB4qn8fb9ky8nXHjcxprcUasxWXEWnzNa3GswzeGG5/TWIczYh0uI9bh+Dfxq+KmBYW04LVrazuRUmpJ+k+SfqkoioGkfyvpz0r6y5Je0rm15SrxV4uieJ+kD0j6xZTST1zx+RYipVST9LOS/uP8peueh1fDtT8jKaWPSzqR9On5Sy9J+jNFUfyopH8m6XdSSp0rOv1lc38Tn5WfU/l/qFc6Dws+j5e+dcFr0a7mjSHW4liLH4dYi+fDWvDet81aHOvwjSLW4ViHH4dYh+fDWvDet806LL311uKbFhQeSHrOfn5W0ovXceKU0qrOb9Sni6L4z5JUFMUrRVGcFkVxJunf6YotI0VRvDj/70NJn5uf75WU0tPzMT4t6eFVjmGOD0j6clEUr8zHc63zMMdl132tz0hK6cOSfkbSPyqK8+KkuY1ob/79H+q8PunPXcX5X2Xur3seViT9PUmftbFd2Tws+jzqljwTTwhiLVasxXPcis9drMXnuM61ONbhG0esw4p1eI5b8bmLdfgc8W/ix+OmBYX/Lek9KaV3zRXBD0n6/FWfdF4H81uSvlkUxW/Y60/b2/6upK9X//ZNHEMzpdTme52Hn3xd59f/4fnbPizpv1zVGAwl1e0658Fw2XV/XtKHUkr1lNK7JL1H0u9fxQBSSu+X9MuSfrYoiom9fjeltDz//t3zMfzJFY3hsrm/tnmY429K+lZRFA9sbFcyD5d9HnULnoknCLEWK9biOW78cxdrcQnXshbHOnwrEOuwYh2e48Y/d7EOlxD/Jn4cimtOgax+SfppnSdYflfSx6/pnH9N53aQr0n6yvzrpyX9e0l/NH/985KevsIxvFvnqZxflfQNrl3SHUn/TdJ35v/duuK5WJe0J6lrr13pPOh8oX5J0rHOlbV//GrXLenj8+fj25I+cIVjeF7ndUg8E785f+/fn9+jr0r6sqS/fYVjuHTur2se5q9/StIvVN57VfNw2efxWp+JJ/0r1uJYi2MtfnLX4liHb8dXrMOxDsc6/OSuw/PjviXX4jQfSCAQCAQCgUAgEAgEAoHAa8ZNlzwEAoFAIBAIBAKBQCAQeAsiBIVAIBAIBAKBQCAQCAQCrxshKAQCgUAgEAgEAoFAIBB43QhBIRAIBAKBQCAQCAQCgcDrRggKgUAgEAgEAoFAIBAIBF43QlAIBAKBQCAQCAQCgUAg8LoRgkIgEAgEAoFAIBAIBAKB140QFAKBQCAQCAQCgUAgEAi8bvx/UlblTvQ+5doAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 172079 0\n", + " Min thresh = 1000\n", + " Not Sliding\n", + "\n", + "\n", + "025ns_image_267456908021_clean_ClassN_63-191.roi.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADYCAYAAABberBAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADuf0lEQVR4nOz9e5Rk+X7VB+4TmfE4cSIis6r7dt97W1e6kpAEEl4IYbARgy2WGPNGgz0SYGMLIbgwMwYMwyAJj41hWfh6GTCMZ4F9xzw0A0YSmFnC5iHGYi42LwECMVhIAiGu7ru7qyozI+LEO+PMH5mfX+zzq6x+Vt/K6vrutXJ1VWTEOb/zO78TXXt/93f/iqZpFAgEAoFAIBAIBAKBQCDwZtB50gMIBAKBQCAQCAQCgUAg8PQhBIVAIBAIBAKBQCAQCAQCbxohKAQCgUAgEAgEAoFAIBB40whBIRAIBAKBQCAQCAQCgcCbRggKgUAgEAgEAoFAIBAIBN40QlAIBAKBQCAQCAQCgUAg8KYRgkLgc46iKH6oKIqvedLjCAQCgcABRVF8rCiKn/8G39sURfGT3uJ53vJnA4FAIBAI3C6EoBD4nKNpmq9omuajT3ocr4XiCv9hURQfL4piWhTFdxZFMXnS4woEAoF3M4qieKkoiu8piuJBURSfLIriNz3pMQUCgcBtw+MWZl/vePHv4sBrIQSFQOBm/HuS/l1JP0fS+yWVkv6rJzqiQCAQePfjT0n6F5JelPRLJP2+oih+3pMdUiAQCDzziH8XBx6JEBQCn3O4rbYoiv+kKIo/WxTFnyqKYlYUxT8uiuJLi6L4tqIoXimK4hNFUfwb9tlvKorih6/f++NFUfzG7Ni/syiKzxRF8emiKH69K65FUfSLovj91+rqy0VR/NdFUZSPGOYvk/THmqb5RNM0c0n/uaRfWRTF8J2ZlUAgELg9KIriZxVF8beLoji//k79vxdF0cve9ouvv4fvFUXxXxRF0bHP/7rr7+qzoii+tyiKL3gD5xxJ+hpJ3940zbZpmn8k6c9J+nWP89oCgUDgNqAoip9SFMVHr79nf6goil9uv/toURS/3v7+a4ui+BvXf/6fr1/+R0VRzIui+JVFUXzNtavrd11/J3+sKIp/560e74bhxr+LA49ECAqB24BfJun/JemOpH8o6Xt1tTZfkvR7Jf039t5XJP1SSRNJ3yTpvyyK4qskqSiKXyjpt0v6+ZJ+kqR/PTvPfy7pSyV95fXvX5L0Hz9iTMX1j/+9L+lL3sL1BQKBwNOGS0m/TdLzkn62pK+V9H/M3vMrJP3Lkr5K0tfpmvgXRfG/k/S7JP2bkt4j6X+R9GfewDmL7L/8+ae+lQsIBAKB24qiKLqS/gdJf1XSC5J+s6Q/XRTFl73eZ5um+deu//jTmqYZNU3zXdd/f6+uvrNfkvSNkj7yNo/XGrLi38WBRyAEhcBtwP/SNM33Nk2zk/RndfUP0A83TbOV9J2SPlgUxakkNU3zF5um+efNFf66rr6If+71cb5B0p9omuaHmqZZSPo9nKAoikLSb5D025qmedA0zUzS75P0qx4xpr8s6dcXRfHBoihOJH3L9euhxAYCgXc9mqb5gaZp/k7TNLumaT6mK2H3IZH2+vv045L+kKRfff36b5T0nzVN88PX3+u/T9JXvp5L4fp7+W9K+o+Kohhci8X/luJ7NxAIvPvwr0oa6erfu5umaf6apP9Rh+/Rt4r/qGma9fW/kf+irv5t/DgQ/y4OPBIhKARuA162Py8l3Wua5tL+Ll196aooil9UFMXfuQ7sOpf0i3WlxkpXPV2fsGP5n9+jqy+9H7i2lp1L+ivXr9+EP66ritpHJf2QpP/v9euffFNXFggEAk8hrlvP/seiKD5bFMVUV6LA89nb/Dv2J3T1HSxJXyDpD9t37QNdVbNeegOn/nckfeH1sf+opD+t+N4NBALvPrxf0ieaptnbaz+hN/Y9+SicNU1TZ8d7/6Pe/CYR/y4OPBIhKASeGhRF0Zf030v6/ZJebJrmVNJf0sGC9RlJn2cf+YD9+Z6uxImvaJrm9PrnpGma0U3nappm3zTN726a5oNN03yerr48P3X9EwgEAu92/FFJPyLpS5qmmeiqhaHI3uPfsZ8v6dPXf/6EpN9o37WnTdOUTdP8rdc7adM0P9E0zS9tmuY9TdP8K5Kek/R33/bVBAKBwO3CpyV9wLNndPU9yr8za7Wr/+99A8e8UxRFlR2P7+W3cryE+Hdx4LUQgkLgaUJPV/1ar0raFUXxiyT9G/b775b0TdchN0NZPsK1Avz/0FXmwgtS2p7sF9x0oqIo7hZF8cXX2+R8uaQ/KOn3ZkpyIBAIvFsxljSVNC+K4idL+j/c8J7/S1EUd4qi+ICk3yqJvtv/WtK3FUXxFZJUFMVJURRf/0ZOev39PS6KolcUxa/R1Xf8H3y7FxMIBAK3DN+vK5L/O4ui6BZF8TW6yhT7zuvf/6Ckf7MoiuF1uPg3Z59/WdIX3XDc33P9/flzdZU59mff5vEkxb+LA6+NEBQCTw2u+2t/i66EgzNJ/7akv2C//8uS/m+6smH9mKS/ff2r9fV/v+X69b9zbeH9nyQ9KqzmeV25H2pd9Y398aZpPvI4rycQCARuMX6Hrr5jZ7oSY28K6foeST+gq3+o/kVJf0ySmqb5f+sqBPc7r79r/1dJv+gNnvcXSPpxXX3H/yZJv7Bpmlff8lUEAoHALUTTNBtJv1xX3433JP0RSf9e0zQ/cv2W/1LSRldE/zt01f7l+E8kfcd1axk5CZ/V1Xfnp6/f/5ve5vEc8e/iwCNRNE3zpMcQCLwjKIrip+jqH7L962CwQCAQCAQCgUDgXYVrh8Ofum5HCAQ+pwiHQuBdhaIofsW11euOripk/0OICYFAIBAIBAKBQCDw+BGCQuDdht+oq4yFf66rfdRv6vsNBAKBQCAQCAQCgcDbxDsmKBRF8QuLovjRoih+rCiKb32nzhMIOJqm+YXXuzfcbZrmVzRN85knPaZA4EkhvocDgUDgySO+iwPvNJqm+Wi0OwSeFN6RDIWiKI4k/VNJ/1td7U/69yT96qZp/sljP1kgEAgEHkJ8DwcCgcCTR3wXBwKBdzveKYfCz5L0Y03T/Ph1iul3Svq6d+hcgUAgEHgY8T0cCAQCTx7xXRwIBN7VOH6HjvuSpE/Y3z8p6V951Jv7/X4zGAy03+91eXmZXm+aRvv91famx8fH6acoCklSURTpJ8d+v2+9znFxZPB7/2maJv2ev+coikKdTqf1Xkk6OjrS0dHRQ2Ph2Fzb5eXlQ+f29/q1dzodHR8fq9PpqCiK9Hkf4263S2Ppdrvqdrs6OjpSp9PR5eWltttt63OMn/fsdrvW73weGGen00k/R0dHaXyXl5fabDZpDMDfe3x8nI7HOZirTudhPatpGu12uzRf+/2+dTyfY97LNTIG5oAf3sc8cFze78fN74mvQZ/fy8tL7XY77Xa79Dtfa3yG4/ma4bx+/fm48rHk96Pb7aZ7wFjyNcm85cfw9eU/rDHm3schqXVN+bH3+31rTv0ZzY/PsR/ljnqt3930vOfPkI/lpjXHdeSf9Tnyz+92u3tN07znxgHdbryp72FJOhpVzed/sNAr67GOfmz9Wm8NBAKBzxlWqrVp1g//Y+/pwJv6Lo7v4UAgcFsx09mN/yZ+pwSFm770WwyhKIoPSfqQJA2HQ33t136tVquVZrOZFouFJCVCXNe1xuOxTk9P9fzzz2symajX67UInqTWnzebTSIFl5eXWq/Xifxut9sWOTs+PtZgMLga5DWhgJCv12utVitdXl6qKAr1ej0Nh0MNBoN07N1up+PjY41GIw0GA/V6PR0fX00tIogkzWYz3b9/X9PpVKvVSnfu3ElElHPyXsb//PPP6+TkROPxWKvVSvfu3VNd19psNjo6OkrjW6/Xmkwmev/73687d+7o5ORETdPo5Zdf1tnZmc7OzrRYLHR8fKyyLFVVlUajkZbLZZrz9Xqto6Mj7fd77Xa7NAbmh+MiRCwWC7388su6uLjQZrNpiUF85n3ve18icRDwqqpUVVWaRyfb+/1e0+lUy+VSq9VKq9VKRVFoMBhoMBjo9PRUw+EwHXO9XuuVV17Rq6++qtlspvl8rvF4rDt37uj09FTPPfecjo6OtFwuNZ1O9eqrr+rs7Ezz+Tytg36/r8lkksZ1fHycBIb9fq/5fK7VaqXxeKy7d+/q/e9/v4qi0CuvvKJ79+5psVjo7t27GgwG6Z48ePAgiQ2dTkdVVaUxQ9pdJNtut+m6l8ulLi8v1ev1EgnebrdaLpdpbu/evauqqtLz8ZnPfEaLxSKJMZ1OR2VZqt/vJ1Fqu91qu90mcUWSyrLUcDjUeDxWWZa6vLzUfD7XgwcPdHFxoaOjI3W7XQ0GA202G63XaxVFoX6/n47vzyrChgsjw+EwnUeSptOp6rpO15MLHYyP63BB5Pj4WP1+/0YREbDOttttWpfD4TD9+HuOj4/V6/Va55jP5+m7Yr/f69Of/vRPPPJktxuv+z0stb+LB90TvfQl/6G+6Hyrzj//h+/0+AKBQOAN4fub73vSQ3g7eFP/Jo7v4UAgcFvxPzV/7sZ/E79TgsInJX3A/v55kj7tb2ia5iOSPiJJzz33XDMcDlPlFyJ7/T4dHx8ngrtarVSWZSI6VK69Etnv9xMBgjR65TGvukPkIZEca7vdJoIDueDPVIn3+30iLqvVSpLS8bx6y/v7/b56vZ5Wq5WapklVfCd5jG+z2aiu63St3W5XZVmm8202G0mHCvtqtdJ8Pk9iy2g00nA4TKLDarV6iKAxJo7nhJexr9dr7fd79Xo9lWWp4+Pj9HuIJSKDuybW67Xqula/30/zLF2RufV63XJgMB6fA4ge57q8vNRqtUqCDff65OQkCRCdTkfL5TL9vtfrJTKPyIHwBOFfr9daLpdpjt2JURSFut1uEm0uLi40Go00mUwSuZ3NZppOp0kEoLpONR5wrS6wcG1cC687ofZqPetvNpslsYHr8ufG3QDcc3dGcJ58zbJOB4OB5vN5EtJ2u5263W46JuIT18U5WVvuflksFulaENwQ4ngmeb99P7TcKe7u8Gc9dztwPOb0+Pg4iR2IU91uN82jCwvuGPE18BTjdb+HpfZ38aS425Tf83c/N6MLBAKBZwNv6t/E8T0cCASeNrxTgsLfk/QlRVF8oaRPSfpVkv7t1/rAYDBIxHqxWGiz2SRb9mAwSELDarVK1Xmqi0dHR6kS2el0EsldLBaJzDRNo+12K+lhsgIh51gQCQhIbq2HKFVVlSr6s9msRc4gp26fhiQPBoPkeuh0Ookg13WdBA9I2sXFhdbrtZqm0QsvvKCqqtQ0jTabjabTaRIf+v1+chswN1SGIVMXFxctEYXzIyowJrfeO8GdzWYajUatCjHksygKbTYbHR8fJ3Fiu93q7OwsOTcgk96GABHkXBBEyHKv10tzz3W4QNHpdDQajVRVVaruL5fL5HLx1gtElsViodVqlYgnpBKS7G0mXGO/39dut1Nd17p//77KskwCS1EUmk6nWq/XGgwGyRXgjgDWG5+RDq0R+/0+HQ+BirW63+/TmHg+GAfPzdHRkcqyTAIT/91ut0lYccKOeMC5OCaihrsK5vN5EvMmk4mKokjP4GazSSQ8Fz5YlzzPzDdzwBpAWPN74W6Vm9ouEDdyUSH/rz+LCFz7/b7lRlqvr+ykPIPeopK3TT2FeNPfw4FAIBB47Ijv4kAg8K7GOyIoNE2zK4ri35f0vZKOJP3xpml+6FHvh1R1u11NJhPNZrPkDoBcQkBns5mqqlK3200EASILGcaePplMVJalZrNZIhruKAC9Xk9SWwjg75AMKuq8BqkvyzJV6CUlssd7ECQghkdHR6lKXtd1GtdkMtFwOHyoag1BRkThmsbjsabTqRaLRbKgU0mfzWY6Pj5WVVWJxJdlqclkou12q263q16vp8lkks632WwS8UJswHEA+USsoFUBBwFiDHPgNn0s8sxzv99P72fuuJfcTxd7IPeQUtwHXDPvOz09Tef57Gc/q+12m0SF/X6vu3fvJodHv9/XcDhMFXcXFCCjd+7cSeS6aRoNBoPkdqnruiXcVFWVBIW6rjUajdKaYkye37DZbDQajSQpzdF0Ok1EFweLdGjjgZyvVqvWf2ljQQRgPhCHttttax4RxSS1hK3lcqn79++rqqq0lkajUTrXcrnUcDhMIh7z0DRNElBylw2vsX7m87n2+71Go1G6FzyvkpJ75/j4uCU0bLfbh3JBIPvcI3d1uCDGeubPCI+4kbg+nAveTuNCx9OIN/s9HAgEAoHHj/guDgQC73a8Uw4FNU3zlyT9pTfyXsgG1dbRaNRyAzix99wCryS6XXq5XGq73SbXA9Vyqt0QGI4hKZEedznQakAVdLFYpN8zbreVDwaDREoRAJxQQlIg5ZAdr9y6FR5ytt1ude/ePTVNow984AMajUYaj8dpniCliBhkLBRFofe+9706OjrSyclJaonwa0YQyEMUIVIIKYgAuCh2u12LALut3ivKOE3IAOA6cWrgeOAaZrOZlstlqpgjQnBMcgY8o4K2GAhwXdeq6zr9meuiVYbz83mq+9yf5XKZWhcQfyS1iOvFxUXr+o+Pj5MgslwuW4GJeVghJB8HC/PEevRqPOQXhwVOCXfrIBYwJ+Qa4HLg/b7GmV9aPLg/tLjwLLImOR8iTq/XS+T88vLyIQcFAhrXyDkRFRCkCGMln4G55NnF2ZCHtSKCIFiw7oC3VLC+aQNh/v35dKHFMxWecofCm/oeDgQCgcA7g/guDgQC72a8Y4LCmwEkDCKPTZvfef89bgEIf54uTy7AZrNJ5ITj4T7g757872PBUg3hoKLtafrACRXkyy3bLj54CCTVWcbvpAyCxfVKV4TzwYMHKstS+/0+Bcw5wc9t4WdnZ0l4gLxz3JvS7zkfZJeqPWNnzhBkJCWC6WRVOmQC5P3t0sH50e/3U3sK7oyjoyNNp9NWmwMZCJKSW8Or2pwPt8B4PE7tEbvdLuUjkAPhGRou5liqfwoMpNLu/fheVSevwnMBvD3GRQXv0ce54cSWub5pJwLuk4d8IrZBsHOXiOcNuKDhLS9cG/Z/HAsIRj4OyLv/uMDH8+bzwNj9dUQCAjHzdcv68IDSPEPB1xrr06/RxUd3B/lOFi42MAfb7TaN+WkXEwKBQCAQCAQCgXcat0ZQWK1WD/WuOxmnZ1q6IpXsDkBVVGqTZKqdXoGHxELEJaWAOdwCklJ1nyotAgAEG6IEuXFiBnH1SjPvyZ0AXLek5KCAoLvIwZzMZjO98sor2mw2eu6551Lrg2c8+DnPzs50cnKScg5OT0/TTgDMK8SNir2klqCDK4NrdpKMM4D71uv10g4FkDWCBiF0iDq4BBgb92owGOj8/DyJBkVR6PT0NAlIq9VKdV2n3n7Gy5wPBoO0IwZOEZwP5F7kay+/js1mo9lslsQjxutVbs8PIASUiriTbN9a0oMeWe8ueuGsYb4IpMQBw/wxFl/3ZCF4q0i+BvMWFifgZD64IALpdvu/t6TgIAAeuMiuKjh33MGAG4Pxs5ZwR3CNiH9kqngAo7cw3BSyyjOG88Tvs7uaEE78NZwdLgAFAoFAIBAIBAKBh3ErBAXpKgDRq4KQCsgHBNuD3iBEtCTwnuPjY83n80TgEAvcHVBVVXIC0BKBgICdmmMRpjgcDlUURaqS50GCXh32Sj3Xt9lskqDBeBAqpMPOBhA+RA/I+nq91v379zWfz1XXtT7wgQ+k7StpdfCq8Waz0Wc/+9mU1P+e97wn9fkzr4Qlkq0A0cViT/sABB/ijHvAgyxxNjgxHQwGGg6HyY3A35lrD9E7Pj7WycmJvviLv1i9Xk+f+cxnNJ1OdX5+nrZlvHv3btp2E/s8BNvv7+npqbrdbporzxQYjUZpnfk4ud9+HRcXF9rtdnrxxRdb4Zfz+Vzr9TrtenFycpLu4WKxaJFRzuHBf5JSe4zvlgBJ9swOSDokmXlEVIEw4z7xoE/fvcDFNUQNRAh3Rni7gOcJeDsD7gFJaX1tNhsNBoPUWsIuEbgccIFwfJ4jrjMP6kQYIPTTXSOAIE2uibXA+HArMQ6/XsaFcOVZE+7uCAQCgUAgEAgEAjfjVggKHnQIiaEai20eQAQgAW5P5ndFUaTUfA9f4zgeOCcdtiOE9Pb7fc3n8yRKeCo946rrOuUWUIWn1x54nkDetsF2hkdHR8ke70SIsDvC6brdru7evZscAw8ePEgWfwgw/flemWZ3B97r80m+AESZAEsEAci/W9X9nu33+0SemSNvf6ByTjgk2y0SLAn5o6KN06Pb7erOnTtJFJnP5+p0Omn8zz33XBIVvE3A5485GQ6HrYwNz+VACEEsYVcEnCKQ+9lsllpMWA8XFxdaLpepdWEymWg8HidCmrc0eAsAuQV5P7/DXQ032fN5Xjxvg7VPpT93EwDWh6811qa3CTRNk5wrnMvvr+8a0TRN2lHFHQYegMprrD/WGeNx1w9knzEy7zgSCGvM24MQNVhH7MLhYafuzHC3A+fhOyPEhEAgEAgEAoFA4LVxKwSF3JotHUQGSMlNaetuL4eQeRr+crlsBcs5SYE04n6A3JBwn1dkPXSQ87id+vLyMhHOfHwewMe1QiodkGLIHmNhjL49I0RXUjoWzoi8T542gbquU+sAdvXVapXEAHZAgIx6MKILFtwzyCPX7NVh5sRFn36/r6qqNJlMUtihtwm484HxDAYDzWaz5EZAGOHYCBH8nXvI2uEa/D5B4n3OudccxzM81uu1Li4uklDFPLuTgNdxcOQ7HvAZrpHsB0mtKr63IvA8uBUfh0OeA8Iz4uKEO2f8uE6YPcyUsUoHQcOfTRdlPKPBcxpc4OGzjM8dSFyXiwfuoJAOoZLcPxc9vL3JxQLuKc85zx33OJ9ff6ZZHz7OEBUCgUAgEAgEAoFH41YICtKB5EAWIKaDwSDZ810QgDTnQWxgvV63rOdedfU8BQ/v8575vKccopaH3kHuLy8vW9tNck6cB5BbgPtCOhAkzisd+vKpykKCaR/wHRvYbo85cVcEZHS1Wmk6ner09DSNn0wCb+mgFYTqv9vO2cKSa2qaRqvVquW88GuQ1CKLtCOMRqPUKuC5AX5e3zmD7TF3u52qqkrHgDhzDOAhijkxRCDwyreTUg97dCeHO2E4PvdFkk5OTtK2ilVVpXni/awt3u+ZILmg4O09TsCpxPuuD4hazKELDr7TBNfH8VxkcbLOGueY/mzyLODSwV1DawXXwVr1zAkcFu7iQUzId1jg3uTPtGchMD+0g/gx8i1hEdHIVnGxJB8L18d1BwKBQCAQCAQCgUfj1ggKklrkz8lgVVWJ3HtlUmpXOp18QXQ92BHSBumFbED41ut1qqQ+99xzevDggebzeTqWJ+17ldrPTyYBZB2hARcBhJZefnIZIHuMbb/fqyzLRDypRE8mk1a2xMXFhSSllgIXWCS1qr1nZ2fJju5Vc9okut2uxuNxmqv5fJ4EmF6vp/F4nO4BRBBSC3mlhx6RwwmapNRaQUW/0+losVik+4tQwrxiW6cl4eWXX07OBYQO7itzQl89uQzSgbRzvdwPd3NAmGmxQHjq9XrJIbFcLnVycpKI72q10tnZmYbDoZ5//vkklNy5cycJMGRhQK5phyC3gbGzdr0tw9cwn3PwXj7L/cFV4i4bfodYRbsAa5d1TdbBYrFIc8nzyH0nE8JdGjhqWMuIFqyXuq5VlqWkg0sIIYTrJiDVRRFv6+A5QKTDZZQHR7powPtY+7PZ7CGnAuAeu2gTCAQCgUAgEAgEbsatEBQgE25phpB4K4NbvHkfpIiKqZN9LNguPrhYAWEg8NBbJej7h5Atl8vkIiAVnlYKJ4NeYeY1Sa2xQVJ8VwuyErwqSwYAPf6LxSKdu9/vazKZaLFYpAp9HsInqSWybLdbLRaLdG4IIkQTuzcCCAGEVH8hwb5jAIAw1nWt09PTJJZAiNm9AiAGSEo7MNA6sF6vExmXlCr/uE4IhyTvYjQapevhXlGV9jwErpNWDw899Pu13W41nU5bO2BsNpsUTonQwe/n87mm02naAhEXCfPPWkOU2Gw26dp8rbr93wMEXVTwUEGHO3DIomB+2O2APANvUeA8/N0dDGxRypr2AE3Gkgco+rhc7PNjc69webhTQlISGS4vL1vuG3eZ8N5er5fEpfV6ncQ6b7HInQYudPg98ufV70kgEAgEAoFAIBC4GbdKUKCq7NV1r+Q66YGce3sBNny3im82m9Tb72THz0ElneqrCwoQruVy2epl9wowZNuvxc9HS4EHvlFtRdSg/YLPA36PvZztMD3FX1IaI4F0NxEpjs15uH4noswvQgsuC8+S4PiEVHr4IC0kCC9kJUAMcQbw41kFuBkQA7h/Htrp2QWMh7FC1r2KzbW4swI3As4MSLr30hPSKR3aADi2JI1Go2Tjp3VjPp+3qvwuVnheAfPpW0+u1+vWmuee+npnLNxLf1ac6PPZ3W6XhA9vf+A83pqCqJBnS0C+vSXIz+PkHmeEt0j4FqOMFbeAi4Z5poKfB6cJ84DAtd/v01phPfquF6wVzkGmiD///n3geQq5wBMIBAKBQCAQCAQexq0RFCCTnkUA3BruVXTv984tzlTfEQl8Fwn/O+QPkk0VH1t8WZbabrfJJs3nIfQQWc6dOwIgR1Sv8x51F028CiypZR337Ri9Dx+SjovBA+kYE//183LtPn9O5iCcEG13hjD33hfv4YzePkIOAq0OLngwTgi+iyWDwUDr9TplGiAc8DmEjqIo0k4XWPlxYXjAIuNlXZCb4evJgcgAifUqv1vuERQ2m40Wi0USgLydAlGB+YOcIyhAvv2e3OQecVIOWHPedoNg5WIMogqiiItxrDUP0eTYvmNH7rxxl4M/g5B81k2e3+BiBc8hY/CsFBcYEKVYL9yH9Xqd7r+ktLY9rJLvBNYn1+gCQj4XLiwEAoFAIBAIBAKBm3ErBAVJrfR9rzpKB3s8RMQJvafnO+FjK0dJms/niXTQBiEp2fCdcF1eXmqxWOjs7EyTyURHR0cajUYp1NCDGr3KCrFxizljw4LO7gaICxA7wich0JAq325vPB63KvRU0IfDYWoF8D7z/PoQLdwRgBuA+Sf40KvDtH2s12ttNptUXfYgRtwHkEPIJi6CbrerqqpUVVVqhUBY4J6TLbFYLNLv/XoghXxOkhaLhc7Pz7Xdblu7LDBH3oriu0+wvlarVcsl4G4LqtmstdFolAgou2ZUVdXaLYTx48rw/A7CGj20knvtIgGVdxdzCP10hwm5H+7WQWjiHnigKM+VpNTa4wJF3vKQC088f6wRnB7uuGFHEXcquIOGOXJRjvm4KevE14XvdEJOw26302w2S9fW6/VSRgNzxXPEnNIGwrm87YE14m0YuYATCAQCgUAgEAgEDrgVggLEloqjW+MhOjfZsyEIBKlB9ufzudbrdWsLSK/QS0rhbzel4nMMxsXuCpBucha8V90zGbzqyniXy6UWi0W6Nvry2YnCq68QPsYoKREhCNlqtdJkMtFwOEytEN56cXl5mbIEvPqK24O5hqAVRZHGA3mlso9jgOo21XzmB1cBf/b59p0Q2Dby9PQ0jWs2myXyCVmXlM5PpoJ0CDVEYOl2u6rrWrvdTnVdtzIREJ4QFsgOgARXVaWiKFIAJOTZHQaQ2NVqpeFwqLIsVRRXW2fO53Ptdru04wTZEqvVSufn50loYczMJZX24XCY1oY7Jzinj5VroaruQaDcB3Y7ADwTCBA8C94G47klnCPPCfFgURdbXBTg2vIdJdyp4D/51p2+q0K/32/tZuGtGh6OigjneRjHx8dJ+PHngLHyZ3cVcW+YA5wn3Buf00AgEAgEAoFAINDGrRAUINSEqeWWbIgPZOImSzkkFuIAiaWq6UGP0qE/HYLhW/tB6H0LR0+lh6B6FgDHyFsUpENLx3w+bxFvSa3tDj2jgN8hEngIJG0PuCBcoPDcAA/cg9xLaln48wo278srxRBtxgtp83uCWJHbxBkr5yJbga0GmV/uF+Pk/DkJhvRyLqrmwNs9vD+fHyf2HiwIfJ14Xz4hmQRksuUm23tC8nEwcD85PqTcgx7zLAtfm07gnVh7QCOk1102XnVn/Pyd//q4/PqdYOe7mXjegbfl8D4PTWXtIe7kQYgcw8fk8+/3yu8fLpk8p4EWJRcZ3Z3AMW7Ky/DWBxcXmeNAIBAIBAKBQCBwM26FoAApoyrsxAPrOWTdg/wALgQ/HhZ9yCfEIbc1Uwl32zXVe17jv54VgA0b4cOJk4sCXpldLBbJaeCEHwLm+QdeJZXUCmGEJHqPPITWMw24RqrbdV1rMpm0jr9YLFrXwOdyEspxESiYy1xU8Ov2cDzfYYBsCsIwXYzxHnrpILJA+rxaf3x8rLIsW0GMkF/uGcSTz0OEXQTJ8wG8nQNSyk4itD+cnZ0l4Wm1Wun09DTdz/V6rel0mkQIrgN3B+vN8wkguR7IyBh87Kw5FxgQATieBy/yWRwBvvNBHoDoLgkPdGQNcUx+uC4+6/eeNe3PXb4LRP77HD5/PJeMy0UuHCbuSuL8eVglrzE33q7h3wMuOAQCgUAgEAgEAoGbcWsEheFwmCqcXqH0VgcIgPdwe5gdwgLExQkmxKXb7Wo0GiUyuNlsUrAfFXMECT7vFnDvC4ekUXn2inJ+fdIVITo/P0/b27Etn7sXyrJsORju37+f2h88JI/wSMZVVVWaLwQFF06wvz948EC73U7j8Ti1E3jOA8fhxyu35Bq4MMN1QdwYTx46SS888+3Bi2RPuKAEseN+eJAjwgRW/6qqdHR0pOVy2cqXgLwjmDAuSDltCV7xR5xAIILY+xaW4/FYo9FI8/k8BXaenp62PjOdTrXb7dI4vIKetx74Oskr8tKBxLs7xIUSb6uAbLtQwe/ZfYMf5tIr+BDxPHfCnzlf0565UZZlOi7nJO8hD3jMnw2/XhdRWCscy3cpwRnBs+hZFeQksL59HlzEon2IufXAV3fCBAKBQCAQCAQCgYdxKwQFSAZWZvrhvTruhLLT6aS+eq968nvfXcErtpCFsixTr74Ht3lIISF3hB2enJy0Kvns/iCpJWh4mKRXkSEmZBvcv39fJycnraBIyM9wONRkMtH73vc+SdL5+bnqum71+FM1J1OgqipJV8QXUWY4HCYiut1uVde1NpuNLi4uNJlM9OKLL7ZcGbvdLn2m2+2m3Acnl95eAkFzMjgYDDQejxMR5H5B3thBg2shqHE8Hms8Huv+/fvpuiCyjM9t8W73v6n9wh0HvpsALg4nst6KQPCgt6I0TZMEGelKVHj++eclSRcXF5rP53rw4IHu3LmT1s9isdDFxYUkpd0nlstlErWYG67NiTqCQe7W4L2Mg4wG5gm7v3QQXZj74+PjJKAxt8PhMJF18jr8eWAdEMromR7MtYd8IuT4s+r3gLG6aOGtHS4W8nvur++mgUjoLgragHCOkO1QlmWrDcR3n+D6uNfuxOC+BwKBQCAQCAQCgUfjVggKEAcPNcyrlN7XDjncbrdarVapH99JiFudIRtOyKlqQ8w9HI/Kt3SwqnMeJ4RuVXd4Xzjj8aowY9psNur1eg9V3qn23r17Vy+88IJ6vZ5eeeUVzWazh4LinKD1er0kSmw2m9Y2jcwdwYucg3BAdyIwJvIAGBPwir9fi3S1owbnZQ6ZJ85PgCb3gy0laYNwQciv0eeUrA1cBi4gMV4+x/Vzj/PxMxbPsEDIgNC7K2Q+nyfhpGkaTadTLZdLlWWZrocQS+z47opgPXquAATXwwL9+SDLgPn27Ivj4+Pk/uBaIcrMgb/mz4c7QTz4kfBHv3f5Oslf5354yCHXk4sH/ho/3s7k69qdGr4OXSDy+42bRzrkheRbV/J5xBzGwFz5WgoEAoFAIBAIBAI34y0LCkVRfEDS/1PSeyXtJX2kaZo/XBTFXUnfJemDkj4m6Ruapjl7vePlNutH/UOe8EAcBGy16KTSQxklJQLK8REUPPDOq92eMcDnsKxTlfXWByqvDoiaExi3uXNOF1E87HG9Xqvb7erOnTupujyfz1sVandCUGmnOg9ppWKcV4iXy6Xm83nrdy7s4GzI+945r4smfBaxYrPZJEHBiTDtAO6uQKCBhPf7/eQK8bUBwfd2ClwqbvH3+cjD9jzo0+8FJJv33WTN5337/T6JJqPRqPV5evgJ3oToe+YDwgbryZ0Sfh/ytgDG7rkUzNFNO0F4FgDHpqXHP+/5IOv1upW74AKBr2N3hDDf0iH3AQGE63IHEWNlLfq94jO584Xf33RPPGPDhRFe82BJ3psLGrmgkG+detvxuL+LA4FAIPDmEN/DgUDgWcbbcSjsJP2fm6b5B0VRjCX9QFEU/x9Jv1bS9zVN8+GiKL5V0rdK+pbXOpCTWaqmniIPoYSoDAYDDYdDLZdLrddr1XWdjuMkhc9ANCA2kD4XB+q6bhFf7P2E7EHm8vwAqq5OPqi08nnGhPMCsgLJc4FjtVqlTIXdbqeqqhLZOzs703w+bxFJr+LjnOBa67pOOyrgGvBASYIDR6ORyrKU1N5Rg+0NyQpgPmkPoQ/dCRv3o9fraTgcqqqqVnWYKv9isUhbhEpK2wBWVdU6nzsLuG5EJOYKocfJopNGqvmcg+vPbfncF0g21n9vj+HeMGcnJyfpNbaT5N5w/52serUdQp/nKUCoWVsIbLkjwIm7V+Hd7cNxPHQQQYPgUVwVCBJcp7di5LkgLpa5k8jdHjyPvhtJ7hDBHcR1Skpikz9f/NnnJX+uveWJMZCRkTsO/Hpy1wK7d7hwdsvx2L6LA4FAIPCWEN/DgUDgmcVbFhSapvmMpM9c/3lWFMUPS3pJ0tdJ+prrt32HpI/qDQgKZVm2QvP4s/c8e0WxqqpEMLDlu6XcycB+v9dsNktheh4c1+/3tV6vUw84BNJ3dGAMLhpAcN1R4RVzhA/+Djnzqj3ktaoqTSYTlWWp+/fvpy0Jz8/PE9E6OTnRnTt3UoUcUuxp+zgSqDifn59rOp1Kutol4uTkJM0flfPz8/NEIGkDgaCxTSJ/r+u61XJAmwW7LRRFkQQFxI3T09MUuAloe+C+MRYnmwgX7jrxP0tXBJ+8jbIsWwLNTdv9eduJ5xPgnHBBKd/NwKvwm80mCQfHx8c6PT1NDhPew+/IKfAWirz67jsW+C4MtBywTiHsnjHg4hL3DmHHXQR8zsUwz0lAdEJwcCHCswVYP3wO8Dpj9mwLfp+PmWeQ32+325QF4hkdiB5cH1kUtOfgEOH6XIRExEPM4B5xn/3e+rXc9PptxeP8Lg4EAoHAm0d8DwcCgWcZjyVDoSiKD0r66ZK+X9KL11+saprmM0VRvPB6n+90Ool8e4AaZMP7yf0zThDzzAS3X0tKwYSQGg8MhOBDvunxh5Dxew/Og7j4lnN5PzjiQbfb1Wq1ahFHPsvxfZcDT9ZfrVbJsYGzApKUW8IhX751HtdOBkS/32/ZvNfrtRaLhSS1siUQZnBqkMvAvEhqkTYq8oyPewJJdCEFEWg6naqqqnRv/L5x77zq7lVr5hLHBfONCyHPmqCiDgllfJBQBI/cGu9ElnMjPvlcs34RAHw9Smqd0y39fr0uRLi7gPH7OHPS7g4A5ip3ELBO3PWA+Mb69CBGRB2fQ47Le71VycW/PK/A75s/J4wnf5a4X4hOXAfZFIhg+S4MPuf+OXa/4Bnz+eC9+fdO/uenAW/3uzgQCAQCbw/xPRwIBJ41vG1BoSiKkaT/XtJ/0DTN9I3+A7woig9J+pB0lZqPzdx+/1AoW/b5RGIhXh6gl3/Ot52DYPixsObTCw+59YwBSBN/hnRDhNxSTXXacxpyEYSMAt4PIaT3nooq5Inzez89RIjxUqVnC0Ps+uQW+E4Wm80mhflJSi0OXlmGfLpj46ZqM0Tdr4d7KKl1r7z1AVeDh2P6fffqsxM+F2fW63W6L17p5/O5W4F5znv7uW5/P3NelmW6z4yT++eCCmKEr0lvV/BWASffEF2fP0g/xNtFK58Trjt3BbgI4gTaXSDMUdM0iXQzJy4AMOf5PfCWBA+Z9Pf5e7xNwcUJzsUODdwndpZw1wzbwz4qTwTwOX9umJfcceTjfdpEBPA4vosHGr5zAwwEAoF3OeJ7OBAIPIt4W4JCURRdXX1x/ummaf789csvF0Xxvmsl9n2SXrnps03TfETSRyTpueeea6R2ZZa94T1c0QUDvqQhHV6NhhS6pV1SKw/BK/g4FgaDQarmQ7Lccu7gGFRxl8tlIpSSEnGHyLhbAbLv5HC322kymSRySKYDFnLGxLERYLhOro15HAwGmkwmqX1is9loOp1qNBqlsdM3T5sCrSfkNjhhpDWDuXZRxcdEFgPED0IJYRsMBul+0NJApgLXiBOCe+GuFY7t18l7EBkYR9M0WiwWicD6mDkGFXAXtNgiEsKPA8HbAKSDK8ZFJNYfYpALIYgW/X4/3V9v5/GWDUShm+z7nU4nuWh8LXi7EPPCOdxd4A4Dz0sgc8AFq1xIyJH/Y4ndT9xBkectcGwcQ9wzWibyFhC/f0dHR0n0Ys34vPNscn5aPzgv7TB+zXzG3UguBj0NeFzfxZPi7tNxwYFAIHDLEN/DgUDgWcXb2eWhkPTHJP1w0zR/0H71FyR9o6QPX//3e97EMRPp7na7Kc/g4uJC0oGQuWUa0gKRgizudjstl8tEUDqdTqpWe+sDvdsEAnpfNWSDVgKvcCIScG6Itgc/si0k1njfqaCqqiRgFEXRaidgDqj4EkJ4dnaWwgg5DqQdkWK32yWyevfuXZ2cnKjf72s2m2m1WmmxWKRrGY/H6na7ms/nWi6X2u12WiwWaf673W5qh3B3BcIGpNfbMCS1Po8LAmHFq+C4FOq61nQ61Ww2S393ISF3qvj9qKoqkWJaEVgr5EaQR5C7Vpzs8uder6dut6u6rltbPpZlqfF4nLYOres6iQa+WwPHowVCkmazWatlBXHKxQK2fLyp2k+VndclJXEHBwdbbrpQxtzkDhoXIaRDLoTvPuGhpTwPN4VH3iQ2cPz8dXcrsJ5ywYj5ox0I5wVjnEwm6T207LirgPny5xvhxPMpXCzw7AyeI5xBiHm3Ge/Ed3EgEAgE3jjiezgQCDzLeDsOhZ8j6d+V9I+LovjB69d+l66+NL+7KIpvlvRxSV//Rg7mlV8qtFQy3SovHSrAuSggHazivm0e2xh6YB3klkol9vtOp6PhcJiIu1ejXWxwEg/p8KpnXuGEAJGL0O/309aCwF0Wfk1cI2OCRGKBR7BgRwSuebVaqaqqVNF1x4N02O2C3ASu13cAcBdEXrGGtCN++Lzf1PPP3HvFHlFhPp9rPp+n6+NaPXCT6/VKO7tJQAB97LhEhsPhjW0xkE3uDfcJIp63FnBt4/G4FbLINoVOuDudTqu1xF0Um81G/X4/XYeLCqxxBCjWhFfh+TOfQ9gguJF55X35PeA4HtCI6MA1I245Qef97srwFhi/L75FJeB3/sN65POsX2//4LP83ndg4RlxUYg/M253InGtfu/5nO/64o6PpwCP9bs4EAgEAm8a8T0cCASeWbydXR7+hqRHNYd97Zs5FsTF/+EP0YGwemWT99wwphQy53kHklrkgswACDDEBiJBFZmqth+f/3pFu9O52jWB5H+uyX94jWvcbDZpBwC3gXu/O+91YcIdFhzT3QM4MSDll5eXabeGxWLR2qYPIQAiCsmCSHk7BiTzJuLMa7mQ4JVqjiMddiTA3VHXdRIUaDfgfBBbiHJ+P2khgKhDrhkD68et+H4fOYbPuztKPCjS1xRblno7AkAEw7kwGo0eyvdg7Xi7CtfsVXk+544CX1OSksDEuvTnifvC+D13gHshtQUFzyBxJxD3M1+TjMmfEX9W8zH7c+GOFxfh/P46cKcwfwSY+vXk2SmeJcEz5G0fCAuew8E15ue/jXic38WBQCAQePOI7+FAIPAs47Hs8vB24dVEiDSkwXcsgDhLSnkB3luNPb1pGg0GgxaRlg7BjF5x5vjL5VKSUhW2LMtEbqVDJdYt6BCswWDQqmY7wXYrvKfgL5fLtFUkogLEECIJgee43nLheQr8tyzL1Kaw2WxSNsF4PFa/39doNEptILg0sPB7tRrhA0dBnqrvQocLG16dhsRTpSeTgowFJ6p1Xevi4kIXFxctBwY/iBwuZvg8uUNiv7/aVhMRpNPp6PT0NF2nt6a4zZ7XWEPkJuAUYY3hLNlsNjo/P0+iDWP09eg5GtIhr8FdB4gK7sZw5wEkH3GEOSBYkrn06/UWH+6N73JAToCvTYSYXMTyH+aFz7mDwl0BjMmDLrlnzAViA+shdxHk2RMeJMl7yT3h2WXtMW/cC38u8ywJdzJx/n6/3xJ+AoFAIBAIBAKBwM24FYICQgEEAFs8/9iH2Hn10+3+w+GwZWeu6zqFLzopwFaOLb7f76dtCyFzVLx3u12ypXsF2Ake44bEYG2nhYKdAfz9tBCcn5+nKrY7FbxC61sp5q4K+uc5hqQUtCgpBUWenZ0l4tTv99OYILDMMX3/bo/fbDZpLqncS2oJI2QIQHK5P4gUZVm2Ku7SQRBh3uu6Ti4FhCLOg6NkMBikNgZ3N8xmM43H41StJi+Bn/PzcxVFkYQbrsvt/8wrY5tOp0mA8LklV6DT6eju3buSpOl0mkQsJ9RkESAEAG/pYMy9Xk+j0Sh93ttrWNNkX+BE8daSXq+n6XSa2ir4PXPnIokf0wk/a4e54f5yP5kbX8su+OQhj8wD53R3EKIEwh0uhdVqlb4D3OHAc0aLENeeixB8L7BtKAKJO5Y4N2NfLBZp3XOdPBccLxAIBAKBQCAQCNyMWyEo5HkD0iGzAIJApRiBwCufnU5Ho9FI/X5fy+VS0+k0ZSJISr3rTs69aulb0UHwvAcdMuaixWq1au3YQLUUooK4AAmFYHow5Gw202g0UlVVKssy2bVdQHALO+PzHRqw9+c7QBwfH6dz8He25yQ7glA7yGDTNIkEewig5z+4SwBSt1gs0r2BIOL8aJomVeE5n7dCQPwJnmReIZZU1hk3YYde7Yc0IppcXl7q4uIiuSJoZ/GWFu4rY4JU0jpB+wrn9vBJ5mAymejo6CgFOOZtE7SQ4JZhPuu6ThkB3rLi60d6OOfBXTF8djAYpJaV8/PztLa8nQIwlxwX67/vRML6dkeQrz8PMHSBjeM7mH9363g7g68vrg23Adeft3kglgA+j/DH31nHrBW+ZxinCyaIK3lLjf89EAgEAoFAIBAIPIxbIShgrZeUqoj+D36vfrtbwAUIqpdOCF0A2G63Wi6XWi6XqerumQBU3d2qjhhAddWrle4egHT5LghU9+mnh+C7cILosFwuVZZlIvbMiXTIKHARxVP6GQOVb84FeVyv18ktMRwOW2F/eT7Afr9P5Jfr7vV6iZBBBJkXhA8EgcvLS925cycRUa/Ac83eRsIcMA/r9TqtAyfajI/rhkA6gefe9ft9TSaT1EaAcOTn9JYU6UA0vVWAgEQn1b5WcD3weW/RgMgjWLhIdXl5ma7R16/nEziJvSmHg//6WJqmSTt1uLPA11tO0Gnl8NddcPDWIw8wdXgOBdfBuVyI4NjeWsB/EYNwpPi9zYVDv2baXfi+8M9yPO6FjzsXB729IxdPouUhEAgEAoFAIBB4NG6NoEBFGCLP64QXQiSbpkmZCBABD1hze7tvq0c19vj4WOPxWPP5XGVZps86Uet0rpL8p9NpqjRD1qnKew6BZxBQIV+tVskOPxqNWmFxiA/7/V6LxULT6VRlWbZEhbzHm3BFRBDIuhPy1WqV5qosSw0Gg7RzwmKx0J07dxIJLorD1oe0IFCppwWj0+kkEQYHhHQICITYLxaLNEdUmPv9ftqWEvKOqMI9oW3Bd3RYrVatoEXcKX4MJ55eZZYOrQmdTidlSLBWvCruAYu5Jd7dMHkfPkQU8s88cA8YC7Z5Wif6/X6y4q9WqxQg6SISx3UnQC4I4Fjw9hOuB6eI73QB4WfNepYHLRIeRMg1efsCpF16OACScUHweU5zR4KHHvJ7J+2+wwLiGC4BfyY4BgIMO3hIan2OuUHI8ddZv8fHx0ngYh6kQyist7AEAoFAIBAIBAKBh3GrBAVs4MfHx6qqStIhfI8e+k6nk8LwJLVIJoSez52fn2s6nSZhAaJQ17XOz89bZI9qPiRnOBxqOBwmcYLPU62t61oPHjxQXdcaj8epZaHb7Wo0GkmSHjx4kAit92N76wLE7uzsLBEfKtucj60Ry7LU+fl5yhxgO8j1ep1ewwJflqVOT09TDz3X+/zzz6uqKg0GgxRot1gsklWezAVJGg6HOjk5SWRrt9s9tE1kr9dLggPbPyJ6MGZ643EQEAyZE3R3gHBfvCJNWwmCgreGODjver3WbDZLLQZco1fEESw8n2C/32s4HKb7ICkJAaxF5gEinu9O4efD+eHZH6+88kpqIWFNIVpAzG8is94SwflZdzgzmqbRxcVFax3R2kF7RL/fT9fjmQfMvYtV+/2+JfS5kON5C+6mwdWxWq1ar3N8b53xMbrbBwHEBYdOp5OuwYUVd2kgag0GA1VVlZ4RF1t4v7sYOA5jCEEhEAgEAoFAIBB4bdwKQUFqV0WXy+VDVVFs9hC/PK0/zxAoyzK91ul0VNd1EiS2263m83lqBYBcQ76Xy2VK86daz3aLnqvAGLxqynVUVZUIJZbrXq/XCncksJA2jbqu03GGw2FrG0qvcHu4ZL/fV9M0SSQhT6KqKo3H49RScXl5qdlspqqqEuHmmJCquq6TA6TX66X3jMdjFcXVVol+ndLBEcA1Ea5Itfzu3buJpOOy8EwLSeke4Coh88HdBn5vyRqgVQYC65V+z1TASYKd3wk0if7MBeeDJHvwn28jSfvI0dGRxuOxlstlclggIkBeEX8QMHC/kL3A9SIicF4PinQniYtgnq+ACIJDwl0l0iGoU1Ja87Q+kAHBsXy3BkQSBCTumwdoQtB9m0/WR07+fcy4PziX55r4Mcjk8PwOfkajUSsHxI/l68ZbG/J1cpNjhd8HAoFAIBAIBAKBm3GrBAXIApVEXoc8Uo2lyu3983nGQa/XU1VVLRLpNmxIFOcZDAZaLBbJGk4PPVXxuq6TTR9ySgV4tVqlVgJJKYiQAEEImaf9IzRIB9JCqByECrILwYHcc92M3dshECXYPQKnB3kCvuUeBFFS2jEB0glph8B7Fdf79qmSMxfewuC7dXCfIM7M09HRUUvUgbjy4+0vLizQWoKg4oTyJpGHz3uWBWsOt0EuYrH+mGMPM/RWAHYL8ZYNFxRwgdBi0+12VZZlIvEedukZGt7mg6CFW2Sz2SQ3DiDYkTahxWLR2jUEgct3rgC+zaJnFkDK/f55q0L+mXyrRXcYeOXff8/ffX1B+hFPfJeN/BisEeYJoc+/N3KBxgWHvOXC8yw81DIQCAQCgUAgEAi0cWsEBaqPkABS/J1QSkoE1+3X0qGS6in7VVWl6rjvmiApkT1IXd7jvlgsEgmqqkrn5+etfm9Ik285CdnCyQDho1oMcXRBA8LiRJfPQlJBp9PR6elpEgM4L20W5CUgSFRVlSzfzJHPo/9+u91qOp3qwYMH6fohn77dImQ9dw24w4QgyLqutVqt0jxA3p2kYkuvqiq1h0iHCroH7vEZ5hoHyWq1aokctKd4n38evOhEGKLK+I6OjtJ64Z5znxAacFwgEIxGoySi0PaBKOVZChBV3ASSUsuJb0vJM+HEmfwC1lRVVS0C7+uGOcCNgajlGRa4HDiH79jA/crbJpgz7jtz4D8uBiDiILzgSPDj+Zrwz7q45rts+Fp25wOOFa5vs9kkYc+dCfkacSHhpm05A4FAIBAIBAKBwM24FYJCURSqqqrlUHAyRD81/8gnT8EJbp7kLym99/nnn0/H5Xy73U6LxUKz2Uynp6cajUaaTCbJ2j+dThMRYecAqvxUfj3zYLvdqqqqh7be88wBdwNAfHBJ+I4BklI+AteOewHySnbBgwcPkhCDW8IzFTwrgJ50CNpgMEiECTHA5361Wmk0GrWCIRExGKc7ASD+CBIICpDPvPrLcXObv4dO0ucP+fSqsjsZ/J5LSkKRCxHMp7cD4OSAWNP+wGvY+iHP3FvvrSdz4fT0NM3TZz/72SR+bDYbTafTROLdfUEegYcQQp7d1k/bCiIY7x2NRmmrTu4H7SrcC9/5ACHt/Pxczz//fCLQCBy0VkDIaVFhjN4e4P91Mcefa4QEd+z4ThTcV2+nyHdlwIGCkMhc8R7OI0mj0ShlKTBmz69wxw/zwf1kLTMWrjUQCAQCgUAgEAjcjFshKFAlpJ+fxHwIt3RoG/DdDxAVIE0QAa/YYo9fLBaJHFKBhKBNp9O0IwG7LVChh8QPh8NWj3gepIeTgHFBZvg9YYlUdNmO0bephJQjVpBdQIWcbAOIz3PPPZfS/WkvgBSuVqsU0ugWb47nPeP093N9kN+6rjWZTBK5oiUBMuctFNxHCLXfF+mw/SFZB4yzaRpNJpN0rz0EEOFjNpulY1Hh9pT/HL4DhOdYODyPgHXn7Q0QVNaJCyPSQdDwdop+v6/RaKTdbpfcIsz7fr9PJJdrw7nRNE3Ky/BdHCDbPBu+nnwnB9aQf557xppjTbLDBDkiVVUlkQOnSr71JMIH1w0QCFxQQKzzHVg8AwJxjXF58CXH8jWCq4fx4yTCdcScspb7/X4SGnnPfD5vrXt3ipCPIh22vLwpSyEQCAQCgUAgEAg8jFshKEjtSqV0yFFwq7ZXQ33rQkiukzFs3N6zDqlx8rjZbNJOAN7jDhnx3Qz4LKGIEDkI52q1SoTJq6EQTloHcit7HtrIZ3wsVFPzMTmhptrsoYB8HtIGieM8npI/HA41Go1aTgQPDfS8BLfaO1Fj3giDXK1WOjk5SffL8wI8JG+9Xqe8AebRAyPdjk8bAuQTsu2ZGu4cQWDw0EEfq+c2eG4AxJLX/PjSISzRHRuIHJPJJK1jJ6WIPrlrxbcu9HYA1qqvQekqEJHrY014pgJCAH9mTXJcnCyIG+744Jnza/W8BcbAGvbP+Zp2cA/d4QCBZx5ZS/4Z5su3fvQ2BwQFny+cDu7o8N1CvJXB14LfI/9vIBAIBAKBQCAQuBm3QlDA8o4gANmCXHm6fh6c5pXMvMdbOgSu+S4OuA4gWPP5XBcXF5IO5AsSCpkkPJCKJtVhr8iTu1AURXqvV/Eh5ZISicvt2xAdrsf7uheLRerL5zWv1lLRlw6ZEp5XQI95HpgIMeQamef8GIwFwsv5vCKMGMFuD3Vdp2vHleF99ggn7vQ4OztTr9dL219yPoIx3aHgPfXesuGE27c55DoQaMjAwBZPi0meueCiCePhuNxTPtPr9TQej5MjwAMgfVcDFwu4dq4PQcADEj2Xg3MhbrG28rBBzxfwLAcXcRCdEIxYJ8yhi3Rcs4sKvu6AZ5rk88V1cY24Unz9uxgnKYlUtDvlbRIexInwwnPhLghf735f3VXh+RguNAQCgUAgEAgEAoE2boWgICkRG98aTjqkxiMaUAl1AaHT6SRSCzEgbBDy5NVTetnJB9jtdppOpykEEiLvlUrINMSMUDwS94+PjzWfzxMhhLxRYYfo4lTALl7XtXa7neq6brUkQLzYxQAyR9uGXw9VWRcXfAcIKva0ZXgbCCSS18hVGI1G6fgepAcBQ0xhyz5EGEjoarXSdDrVvXv39NJLL+nOnTs6OTlJwo50II8egOktApDD97znPakNZblctlL8GU+/328FbfI+nwcPIHSBgPfRdjIYDDSfzxOZJNPAt9mcz+dar9ctG787FgaDQcrBgJRDpFlXkHt+zzpmDr2H3wk87QyIS8w395E1K7VbcACiBM8UnyU3gnOy84mTd9YxQo1vGUogJEIJwgw/HhCJGHaT6MG1+vvdwXF5eZnug2/pmouStD+w3rg/3Pc8EJL59ByI2OUhEAgEAoFAIBB4NG6FoEC1FDJNoNxNVUPPVIBUe5YBpNKJowsV+e4KhCZC6tlpwHcBYFx5Aj9VWdoMJKUAPkl64YUXUpL+fr9P21JS1XY3BIGJnI/3QDa9/cMFEu/79pYKCBbuDyrOXi0vyzIRSY7De5umSQSTe0Ql2KvgVVUl4us7WXCsi4sL3b9/X5PJRM8995zu3r2bKtIch7l0uz1Ci6S0OwDiB2Tae/2pTiOoMM9Oam/qo8et4M4W3Aue4zEcDpMLgHMxn2RbuEvCdxGAQPu5EFByAs+faaHx9hlvQWBtA+6zt9L4+1xUgEgjVvn99RYPdotgTXhuiGdeIOggIvh5c2cHGQ5kRLAGeTb9s4hey+UyjZHxeBsDIgT32tc3gp+vl/1+n9Zb3laCqJG3vwQCgUAgEAgEAoGHcSsEBa8KQga8OikdWgTcceDkIW+RyHvLvdILWYQs+HZ23oPvZCPPRWCsvMfD5zwsjq0PER284snfuUbG7rsseOWa9+eVVsZNFRwnhW9p6QIN5Gk0Gmk0GrV66DkebgNEhZsEFncRDIfDtF0k88OOGOfn58m94duD5i0Zl5eXKstSVVWl80PKuY+0n1DJz0P5uM95RoXD2w8gyXnrB/cLYcDvN5kNiAre1gCYc8g3rgAn2PwdMQKC7zs/8HfWHnPFOF0k8SBEFyqAixIIKswtn+F83GcEBMg4RNxbFbh3jCvPIPDn00UusjK8TcddOn4NzCO5D8xhfr/9ucAlhDiAmOGiTC7AuGjj9ykQCAQCgUAgEAg8jFsjKLjjYDAYJKJNZd6ruTkxcgLovfyeveCEiX7s1WqVKqSSkpUeMsf5vJrsLoE8tM4FAqrbEBzaESBTklqVU1osIFyQJ3Z1cJHEHQKSWqGALrwwH76FordeTKdT3blzJ4keVGb5LFkQHurHfHDfJKXe/qqqdP/+/RYJXK1WOj8/18XFhRaLhU5PTxPBYz7dgTIYDFSWZWuOc4LL+XInBmPKg//ygEHmn/fgPPA1hvDhoX1upycMs2mutij01gcnt1T3EUMYowsE2O5dZGEd5SQd5MSb6jqCi//d8yo8myN3ZfB8+Ll8DllPnl/Btp4EW/q64DjcNwQFnhNEFD8/94Xx9vv9tGWmu07czeNz6i4MXA6e78B5mRe+QxhvnovhW5IGAoFAIBAIBAKBNm7Fv5bdlUC4oXQgyuv1+qHecA9hy4mjkzreD7GA+J+fn7cIbVmWrTYEdwIURZEIrLsEPMsBMiodSMt0Ok2v9fv91OePqAEZdocCRJMtH7HadzodrdfrFExIpdirqFw3/eOIL7QQuLhA5sNisdBwOEyV4uFwmLahrOs6CQUcEzLmxMydHqPRKM1Ht9vVer3W2dmZPvWpTyX3gbsefMcLz7Zg3hmLzzfEndYYD4WE9OMI8ABC5nu73aZrgowPh0NVVaWyLFOOAoLCYrFouRxYY4gEvhUj50f0wCXj88xaZu3RrgIp3+/3Go1GaR1y3a9lwef3nI91wHncvePOH2/jycMT/ThFUWi5XKqu69Zz584cF0qciPN84sTgPjDW/X7fchL4s3R6eppyQ9zd4OMDnk/h3ysuDOKMQFy7KbOF9g6EjkAgEAgEAoFAIHAz3va/louiOJL09yV9qmmaX1oUxV1J3yXpg5I+JukbmqY5e51jpP55CBoBdpAZ75F2Ig15xH4NsXLSRsAdRBarOuQI8g2ppkJPWF9d1xqNRkmUYAcHCIyTPA9OfPDgQSJvk8mkRZYYI9eFE2EwGKRrxJIOQe/3+5rP54kU06oByrKUpOTIIEyQc0LCqURDwJl3zzPwbIder9eab9/CcLlcpsp10zSp797JHC6Fl19+We9///tbZNcJonTY+pJ7KintSuEtG7gqBoNBmhfe47tqgKOjo3Rf3OkBSUdMIWhzvV6ne+GuF4gzff+DwUCj0UhnZ2fp3ARkQp6Xy2XLRu/CjAdU+r08Pj5+KEvEMyryNg9f+xyP+cSBgcuAH37n94p74utYOmzryr3iM+PxON0T5pH7slgsUisT7yHsE4GC3Ul83L4Ty2AwSK6W2WyW3pNnS/C6uyy4v/yOdYUTSbpyCSFm5NdIy9LTgsfxXRwIBAKBt474Hg4EAs8iHkf57bdK+mFJk+u/f6uk72ua5sNFUXzr9d+/5bUO4JkI/Blbs28N58Fx/OPfyR2vbzabZNV3F4K3LUAOcUSwwwCCwcnJiebzeao8kydAX3ZZlonw0esPySbgcblcJoLstvrBYNDaEpD2At7XXO8S4OSIeeBanVw7qeI6pANJhUhBcqUD2fZ2AeYbUcHHiECR98cjBPGa294heLvdTvP5XPfu3dPLL7+cyDJZDzlh9zYEjk+oJO0v3GsP0CP7Avg2jZBg1ow7LdyCTyUd8Hms/VyrV8O5p1755jjj8TjlPfhcEiyJUMA5va2H62ddIYTg2HC43R+xQTq4KSD63ibibQp+HObV5wX3gbtSIOl524G3fORgrnIgbt0kELBuvYXC749/fwBv8XFnh4ct+ppzR4K7Qh7lCLmleNvfxYHAbUTnp/5kzb7s5EkPI/A2Mf7L/1j7awfquxjxPRwIBJ45vC1BoSiKz5P0SyR9u6Tffv3y10n6mus/f4ekj+p1vjy9+srfIQ2QW6rPklJ19XoMDwkKkAuOATGAUGFr9nPz96IoNBwONR6PE0Gp6zoF71HJraoqVeOxukPAaVkgqwHBAjEECzqkGnLn1wCJdAcENnonvwAS5MTKBQVyCXxXBP+cW9aZc5wb/Lh7g2uAeEpqveaCwuXlpZbLpR48eKDPfvazGgwGaQtJ7o33+fs4uM8ETFJR5r2+MwKv5UGDTkA9FJG1QrAiW0vi9PBr73Q6yWng7RV5ywI/nU4n7Z5xeXmZ3DC5EOPtBaw/1pC7BxDTmFsX1zxLwAk5FXpvwfCdKzyjwefKhQFfTx5cCbjfXuHnszgx3CnA6/5s3rTdpTtWEPEktYQZkAeO+jryuWXde76EzwHzxPz77247Htd3cSBwa9A50vFL75Mk3f/KU736M57weAJvD400/tHP1/HFXM1mo8uXX0m/Kro9Hb33hdf8ePHZ7js9wreN+B4OBALPKt6uQ+EPSfqdksb22otN03xGkpqm+UxRFDf+X6Ioig9J+pCkVN3lH/+0JniFkmR9KtXXx2j1XUMGnFxLSrZ9CGpZlnrhhRda5JrdEKQr4lRVlQaDQaoiz2azRIKHw6Gee+45zWazZMcH3W5XVVWlvvvVaiVJiahC2HBCEO632+1aW1byGe97d/dAURx2G2AufLtEXmfumAfGg12c8WM95/qxhntIIRkI8/k8BRG6g4SKPwQT8YZrms/n+vjHP57GXVXVjcn+jMG3WoRUM9bNZpMIMiTWMyNwo3jVmrnnOqVDiwr2+06no/F4nBwEg8EgrYXpdJpyJzww0kUZxBPuT1VVOjk50b1797TZbBJJRzDxfAevnOMeoH0CIaff76ssS02n07RmfU3lW3L68XAHkF/AOJxI+zMwHA5brUZkmXjmBWvJdxe5fvbTc+SkPN81Zb1et0I6ncjn15e7ITiPOy5o6+H4vIfvA47D2BEXfa31er30fp6XpwB/SI/ju1jDd3iYgcAbw9F7ntOP/LbPk2KjlXcHCumffvOppFOVL3f00ocPgkLniz5fP/Kbnn/Nj6/+QO81f39L8IcU38OBQOAZxFsWFIqi+KWSXmma5geKoviaN/v5pmk+IukjknRyctJ4eruHDnpvNyTCq5BUaSHaVPwhKp6lAMnGcu/H5D1UoRE1ECrW67Vms1nqmR+NRrpz504iPLPZLJHAfr+vF154IaXTS0oBdJJamQPkMSCkuOMhJ8oILswNrRdUbREMsL9zbb1eT1VVabfbaTabtSrsy+VS8/k8tUQwXs+hcEJHWOHx8bGm02kKSaRFwqvEEFauebVa6d69ezo5OWmRZgit7zzgeQ3eIgIpd4eBt7VwLqriEHFIvzs+mJ/1eq2LiwuVZanRaKS7d+9qPB4n8r9YLFrEm+wIAGl3Z4i7Rcqy1Isvvqi6rlNwqKQ0l8wFZNor+oA1st/vk3Pk4uIiCQgQadYaY+F++u4Mw+EwtYf4c1OWZVo3PIs8BwgQvj6YP9Z8v99vzTHX4w4L6RDS6E4WBBZ3eTDPCAn+PLMGXEzwDAueW+6P7xDhWRPX30VpbHw3eAjnbcfj/C6eFHeb13l7IPCOY/e1P0Mf+5qeVMRyfDdi9fxeP/F7vjr9vTlqJD3d9zq+hwOBwLOMt+NQ+DmSfnlRFL9Y0kDSpCiKPyXp5aIo3netxL5P0iuveRQptRBIBwu+W6khdjf1V/sxyApwCz5/prrqRDnfLo8sBJwFVDoRFBgbwXpVVWm5XGqxWCSHBWOZTCYaDocpgwHSAxGez+etCjrb5yEcSAei6iTbiZe3SHBsJ86+vWK3200Ben4tEH12dGAevL+eMSFWMHdHR0eJ0EpK94s54L5Jhx0ENpuN5vO5qqrSeDxO2QHeH0+bAK+zFiDVEFaEGa9sezsA4/T2BH54H8eiNYVwx+eeey45Gfiv7xRANgQE1bMJyDiAFHMfjo6OtFwutVwukzgEgc23tvT7z7X5usc9QKsG1+QClrco+PrOny8PZfR7jrCBiIKg4KGifg7uuQs2HpzoAhmgVYJ7RXuTdBDe/HO5qMjn8l04+Ml31XCxJRcq+UwuXDwFeGzfxYHAk8b6l/xMPfiyrnajp6PdKPDm0RxJ28m77v7G93AgEHhm8ZYFhaZpvk3St0nStRr7O5qm+TVFUfwXkr5R0oev//s9r3csCBIOASdWLih4mOL1eVv90fzdAwf9OJAL7ysnGwDCBPlnpwl+TyYCZJwdH/gvJJjz0d6w3W6TC8AJjRMXqrTeWw4phkT5mJ0UQ7Cx+Hu1HNs+pB0HRKfTSXZyrpWcB+YNpwGkC+HBk/TdJcAcu0CAEOG5A+x6gIsA2z8CBUSVY+f97Z7Sn4f0MQ6ugdeYD3c+eMifZyksFovkJmFHDO4j8Dmkmu9tBU6SGd9wOHyoqs51DwYD1XXdag3wPn5+3MbPf7vdbhKtyJTgur1tCNHJHRDeTgJYT+5ycTKfOxNucg34XPNcMB4n6J5lAcqyTM88WQ9+33IRAGHEdwrJnR7uaOKe5aICv0eEcJHhtuNxfhcHAk8MnSMdf/AD+sRXdbW+e/ufu0DAEd/DgcCTQdHt6egD73/Sw2hju9PuE5980qP4nOKd2GT9w5K+uyiKb5b0cUlf/3ofoG9dUiIg9O974BsZCtiave8aUkVFUzqQYK+gOxEDTnKo4Nd1nQgyFnNe6/f7ev7555MrIicgkD9aCKjwTqfTRG7pZXcbvBMr5oDP37TdpFfxIYeICL4dIXjuuedSPoCk9D6EAogbc8hWihAwxuq7PyASuKjAPWQHjZwoO6EmmJLfeRigW+WL6zC/qqoeSuB3p4GH+uUBldyrpmnSuBCMvDWDnAbaUVgDeUBhXdfqdDpp3XlYJA4Bxsc2l5Df2WzWsvGzYwjzwLX5LiKeLcIapqJPYCXnY37ddYDzhOcHB447gFhDCACMh3G6wMM98fwSX8P+Pq7F14K3YzBmWlx45rxFJHclcR84BuuC4yBscI9xlXBMb89h3rhviI1POd70d3Eg8KRwdOdEP/Lvv1cqQkwIvKsQ38OBwDuIo/e+oB/5ze990sNooX+vow98ewgKbxpN03xUV8m1aprmvqSvfZOfV6/X0+npqYbDoebzeSL2ECrpUC3ME9ip0gIqqrgNOB6ku9/vp4oyxJmKPtXq5XKpfr+fjufbF56dnaXfkS1Azz295tvtVqPRKIXy0dKBAwMCRHWb8VEZxn7P9ZVlmc4BQcu3tXP3BQRtNptps9mkPIeqqlLQJYTft8eExHc6nTR+CD95AvTXIyZAUunvR4RArLh3715yJIzH41ZwZC5a8OPkG1eI5yKwDiDD+S4X7lLxbTkh9pJax/W+f9pYyDhwp4Q7FyCd7JxAOwqtDXmLDetsNBqlYEeu6eTkJK0P3CMeepi3hPhOBT425hHBynNInPSv12sNBoP0PLhIxLEcLkwwDrItyCxASILEs6a5ThdMeO69lQlXAsdlbgm5ZJyIBi5i8Txyr719yMMnCYmkRQkxztcOx8ydJk8D3u53cSAQCATeHuJ7OBB4PLj8eV+lT/z8/mu+pymk25bBsrm718e+/We/4fePPi49/9/87XdwRO883gmHwpsGhJDAOHZd8HA2CAbEAdJOlbYsy0RQ8r593A2r1SpVufk9hFU6VGJ7vV5qA8BGTjZDcx1kSOYAY2I7R+lA9CGLCAI4FnL3AASnruuUMO/VfcgjYgJEiWpqnmvg4YaIE1wjjgfOf3R01Aq045rYDhJyDrnnupzMOZmnsu3tJE3TJAJ3fHycqum0kEBsXVTwFg+vPEPw3KGRO0wYF8fgcy7cVFWloihU13VK+fd2EXZ+8HM5eec+sfNCXddpDOzc4e0V7jJZr9epNcQdEsw3pNznmnvuopG7c9yh47kTLkCxtv2YfrybcgNycYDnxrMMWG/eGsF4PQPCXRDuiPE5dhEFZwgiAc+SHz8/r7e6sDa5BzwbZIVwXb5ucpeFiyiBQCAQCAQCgceDo5/0hbr3cx7tLli+p9Bu+PS51pqOtBu+cZGjfqnQ0Tc+WoAYf2Kj47/2A49jaO8YbsW/lqn80ybgLQYe+od4ANGi+kxFM6+YQ1ggGmw5iUjhYW3Swa5P6KGTf98Sj9wBBAHIIpZ3gvJyy72LEk7EIFqLxSJ9huo+xMjPxWc8j8GvFXJFJR6yeXFxkSq9iBSQSwQKyK8TWoi9iw9OWpkbd0xA3uiJd5Je17XqutZisVBd10lE8jBG5ozKuVebIamMA7HJ3RpOuglOlA5kmPUCGUew4Bysl9z27lkCrEHO76TVd+pgrbmg1O/3Uz4A4+T3vIdjcA4XW3z3D87nggL3IG+R4F7luQfeVuB/dncE1+73yNtMOBZE3gUI1hlZFN6y5I4FwPr1TAoXSXAYufiEo8FzOxCkfC17tgNzk7fKMH4XVwKBQCAQCAQCbw5HX/aTpKOH20hnX3ZH97/ytYj37XIevFPYjhvd/8pH/3592tdLn/3SR/6+eHCh3WdffvwDexO4FYICVX8cCqPR6KGgPP7xj+0ZYQBCORwONRgMEiFiRwJaCFarVTpWXdepKp6TJIgMhNsDCiFBklotE5BC31IRIYT/QlB4j9SufuIkgGQ6wffkfsYNQd9sNol4AYhXVVWpel7XdWr9QICB+BF+B6ny1gqvGEPE3UZOJRniRcuHdLUt4p07d3R+fp7cCLPZTA8ePEhbXt69e1ej0SgJFrhJmPOyLFVVVcoR4IfjeYieE1PPA/DPQyyZL8/foNXBt0jkvuEu8PkgjwFBxMMf3f4PkSV0s9Pp6MGDB4n848Chci4pCSGee8BxWWO4HAiRpFXCz5WLClw7a5c5YJwucHBNzG3uYKA9xF0MwPMj+DzPOfOHqwfRzh0q3qJCmxDXzf2mNYnzdbtdjUYjTafTVg6IdHA0MVbmmPd5YCvCkosdgUAgEAgEAoHXQafdMlt0j/XPvuk92vefDXHgncD8g3v96G+4+8jfv+fv39XJn7nXfrHZS5/Dtt1bISi4XZkKZlmWqRJNloIH+UHoyQeAaJdlKUmq6zoRLKrRkIW6rltBgBAULNWQfhwSeVicE1/pUIGFyHn/NeR0tVolxwFEh55x3AhOACHEEBtJSUDhPfTbI2Y4GZeUhBaquvfv31dd16ni7XkJOEKkg7sA6z7zQvaEnwcXAuSS3AfGQPZDXdeazWaaz+eaTqcaDAYaDAaaTCaJ/CLizOfzdK/H47FefPHFNMe+3SLEDzEK0cd3CiHTgTYLRCWuq9/vazQapa0c67rW+fm5nnvuOfX7/dSq4lkAEN7lcqmmaXTnzh2dnZ3p4uIirQnIMsSXz7A+Tk9PW9kPCBa+2wXiBeuYez8YDFRVVcvhMhgMNJ/PW4IGooPPDSIU6ybfUQOnBeuAeaIFhufFhRgEP+4l959js6Uma5zr6Xa7Oj09TW0w3lrCtSKW8R2A68BFG3c9sIZwnvAs8py6U4XvFs+ZyB1QLpIEAoFAIBAIBG7G0Zd8kX7sm1986PV9L8SEdxL3vrLQg3/pZ7Ve614U+rz/7G99zsZwawQFSBuVYif4kEepvaOB9z87kUJUkA691LgLqLqyLSSBbt4CwHmp5OICoB2A7RchqIgOkHQP8oN8e8iiX5eH0UlqjdPJULfbfSinwAMYfetCb82oqiodB1GDuXSHBOSPuWfOmVPmg7nF8SEdggKx8XsbxfHxscbjcbp+J+5nZ2d68OCB7ty5k3YL4P74veDzEGFaA9wBArwHnjU0Go2SUwMRgkBICLrb7QkCxB3A+vR2E99GEjLtn6Ftx1sgEBaOjo40Go3S9Xjugz8Tfg3uwLgpT2A4HKrX66VxIQCxziD1kHPuOaJB/izxrHFv3aXA2maNsZ4Wi0Uri8EdDzhFyPNYLBbq9Xop+JPcEu4NBJ9n03M+PB8jb9fgHJJSG4iP39crop2LNRzbry8QCLzz2E/n+uI/t9THf0Gl7SSEvEAgELjtOHrxBb3yy744/X03LHTZj+/vzzWa40aXGaNvTqX7v/7mXIbnf2Cq5h/+0GMdw60QFJzUedVQOgTJSQeSBUHJ0+35HTZ8J7V5pgLbA+I84Hwck7wDDzN0dwHHlA59126z99ewdXtllmowxMkFCCfo3jsOKfVAPa/UO7mi2ktVvCgKVVWV3otzApLMnDpxp6XAxwPyaq/b8T3nAIfAcDhUVVW6uLhIQgDtJ7PZTFVVaTAYaDgctpwA0lXI4Xg8TkGZHB/nRw4PDeR+dTqdJA7ku0F4Vd1bDRCLpANBZ75xJ3DfxuOxptNpco2wLlmbCFAeNsiaZx65B054ge9iwnV5GwpOCgQV8kZYj/5nzpHnBNwkKnCunMTze6/ms6bcYeEtE2VZqizLlrNku92mnA2uk3nCDeStCL67C/favwe63a6Gw2FrJxGeE29P4ofn3F/DpeB5FIFA4J1Fs92o+Fv/SEf/+ldrO3nSowkEAoHAo3D05V+qpnuk1XuGOvsK/3dS/JvptmDfa3T2FTf/7mgz0d39T2m9VizWuvxnP/6Wz3drBIWqqpKF2qu//M6JDwTB3QQQHifbEDZaF7w1AZcClmxaECByg8HgxpR93AGDwaBVAfXtByWl6jFkEUJJdXs0GqX3IUS4Fd/T+BkjpNi3s+PPvrsCBAvnBESrLEvVdZ2Ekk6nk1oimC8qyEdHR2k7SYQTtghk/iDcEHGvAkuHdhIEgdlslloSIPXL5VKz2UzD4TC1ofg8MvbJZJLG7USdrR9vCvYDngnQ6XRaFXpI7mAwSLb61Wql+Xyuqqo0Ho/TPLM9IjkSTqrH43ESPbznH7DLCA4HchO4T77ePScBIjydTh9quXChh6wJr7z7MTzvghySi4uLtGb6/X66H07ab3IEMY8IC7lLxMMccWCwvk5PT1NbCwJRWZZJ1EFokpRe6/V6re8G1jykn/WIQDQej1OoJnOezwnrxeeYvwPEkEAg8LlBEbuqBAKBwK1G0e3px3/l8+Eke4px76c3uvfTT1qvDT/V0Ut/+JOv/+HNzS/fiv97Hx0d6eTkJFWr67pO/9D33RMg12QJAK/sSweC5v3mBLVxnLIsE+HPgwc3m02qqFMZnc1mqeqe93pLSqIGwgbZDZIS+fTq+HQ6TVXqXq+XbPw4Jk5OThK5Z3xlWSbxwq+Ra/dcBrbdJIgRMaDb7aYKsCfe09JAr/t2u01tCZPJJM3HaDRquRx8O0dC93CF0K5Am8h4PFZZlq2gSv6LsCCpVU3mOP1+P4kKTpC3263u3buXKuPMHw4D7ilriXtCa0e/39edO3dS/oaPabFYaDqdajabPbQGIakQ6aqqNJlMkrvBty/E4o97gwo494/7lu8oAZn3zA4IPPkQrEOeE2+j8ZYL/2Et5i04CBKITu5YcOs/6+X09DSFfSICSAdXCGvVPzOZTNLzcn5+rsVioeFw2Apc9S1bT09PUx4FGSQekkorD38fjUbJ5XJ0dKSLi4uWA4T55lk4OjpKIgpj9xBJtpgNBALvLI7u3NE/+9afrH03/pEaCAQCtxHHL71f//S3fEF8T78LsXzfXv/8P/0Zr//G3/nf3fjyrRAUJCWCf3l5qcVi0SIwEG8syPmWjJA7r9xSuSyKIu0ogF1+vV4nMiEpHcsD7LbbbRIJBoNBaldYr9epei0dSApVXggsooN0qIR7ZZ5qO+ccDoeJGELwCEWEQEKa3EYPeXRbu7sZEB6YT/rsfb58VwR2XHD7/3Q6TZXtqqpajg5IrucmIILQpgFZvXPnThJKpDZhpjqOGME9BxD+k5OTRE6Pjo60WCx0//79dA0Qaf7OPONCYPy0j9DWAcnkGlhDm81G8/k8uV24Lirm3obh11nXdav1Y7VatdpLIOne0uLBj9wzHAiTySSFZtIyggOENYZ7hNdpRfBxc352U9lsNukzw+Gw9fzc1F7A8+IBqZwfAcfFNc+O4N5WVdVqz2GdDgYDjUajltCHW4nn0PNDEC5Yz2xLSmvKYDBIYpWLImRLkHPhDgeeWRd8AoHA5wCdQvtuI4UpKBAIBG4dmp/zlfrkzxxq3wsx4d2IpiM1byM881YIChBLKpSS0j/s3ZIMSfaqOIC4Qbbdgg859ao6lWZIJxVuiBjHg5xBetlVAjs2n+HPfl4nJVybE6XVapVECKqwedsEWQ3MB1VsxuP2cq/adjodTafTRKLcTcFnnPDyefrwIcjs3kCV/vT0NF2nV6C9l93zJDabTZp/2gLYRtLnmMo71WbElHynCRcZdrtdatnI1wPk0IMcmWcXp1gTTs4hvozLWy1Yqxyb9eBhiFVVJdLPveb6IP4QXM+eQMhxsYd5xo3AunURDCeOb5/JPOE2QQRw14LnVTB2hDAPG80dGYx9t9slIZAxeSsG94V5YH1wH9nOk6wDhB2fO58Hnk3APfO2HwQS2h9cJHJHiWcp+Baivi7c9RQIBAKBQCDwLKLz036KXvmKUvMvCDEhcDNuhaDgBBRCDMmjx5tqJz9ONiAMEF3/kZTIy03J9JJShZJKsffGez4AToGjoyNNJpNW/zmE0gmIp8+zTaKn1S8Wi+QmwK7OtbFTAIIChB94Qr+TPUgl1nWOxTldUGEufEcBBBkImXRFSs/Pz9OOCdjW6df364SIs7PFarVKKf6j0Uinp6c6Pz/XbDZL40GMoM2A1yVpNBq1jo8zAtJblqWGw2H6nN871hW2epwVw+EwzQOCw+Xlpfr9ftoaU1ISkjgf5JxrpK2CIEbIN+IQ95PcBsgulXF3VLDGIcZs0ei5H5Bj34WB52W73eri4qLV/oIAAkFnG0XW+XA4TGSe8zihx0HD2mAOuFfr9VqTySSt4VxQwNVBa4oLJb4FKedarVbJgUJuggexeo4Kr9Gqw1ziBuHZ8PYSf+bd0eJjRrRA6HCHRiAQCAQCgcCzhM5goI993R1t7sS/hwKPxq0QFOj1h3hCoiE2HmDX6/U0nU4TsYGIEbTHe6RDhX+322kwGLSCGSGkkMEXX3wxORwgaF5F963r2AJxMBgkUgNB9L5z/uuWc7btg5xBxCBRkEDaI6iU8lkIGOQNqzxjh7B1u12Nx+MUfpcn60OucCRQBfedHCB+jJ9MBcaCgAP59d0UIGUvv/yydrudRqORBoOB7t69q/Pz8+R8IABRUuqHp52A+zaZTNJck+APoaedxXMlIKEcYz6ft3ZB8OtkC8u6rhOh9PBFRBUPnPSgTQQgevVxB1B9d8s8okJd15pMJi1BCEeIt6BwzxAYEFMg6XkQ4fPPP6+zs7PUxoF74Pj4WBcXFymgkGdjNBq1xA7EH3bmYJ4R1JbLZboOdzxA6judTisE0UUpF594NrinPMuIPGVZpjBMfsd2nMxXngHCfXdxhGvPW0qkg6DAdwVj5FqWy2X6CQQCgUAgEHjWcPTiC/qnv+OL1RyFmBB4bdwKQWG9XutjH/uYnn/++UQ8nVhJBxcDRMEr0LQOeHUXUujtCL5tHhV0Wh7quk6Eqqqq1jZ2eegjr1NpzomhOwq8EurtGBByBIK6rlvkHrIEcZOUroWKNq4M5ocx8Pl+v9+ylFMJZowuVkC4mUfO59v8rddrXVxcpCwFxuLiCS0FtAkQRrjb7TQejzUYDHTnzh1J0nQ61Waz0Ww2U6fTUVmW6X5Q0SYgEEs/17ter9N2mDhbEBI8L4AwP0IYeR1BAefJxcVFEmLYdcDDH7ku372A+4BwxVrhPvOT5xp4i43UbhdxF4q3pEhXQgb9/7RH0EaB8IKowT3PBTrOT2YBLSMehIm4xXx7SwbHQZC7uLjQaDRSWZbJTeIiDCIJ4aa0E/juJXnoI/kHPA/b7TY5WhCv+PEgVJ5F3yUG8YVnl+eEuebHW2a436zFQCDwzmN/MdWX/vFzfezfuqvNafzjNRAIBJ4kmp/90/TJr66uxITo/gy8Dm6FoHB5ealXX321tTWfB7BJh554JwR8FoLild2cfHvCO9VULM0QRKrjkGyIudTeqlJSyw7ttnjPTvDcAgiN95d3u91E0AiK9LwIv579fp8IlrdzQFZ5v1dnCZ7zsESfMwQJd2b4vPV6PZVlmcSB5XKpxWKRRAKIo7s+JLUcDNvtNpF5D5t098BqtUqCgF8DYsB6vU47buTuEw/F5F77ThDcK0i02/GZO64JMYGdKXApcA7+DinnPjBPzPFms2lVvp2osiZoJ3ARJM+4QFTzNQ+JRkxhfbBTCM6C2WymzWaT7kNZlqm1g2Ny37kmjs994vju1nC3C64QhAvG4M+Ei23+bNzkYvDnm3GxK4ik1GLiYaTccz8uGRf+fLg7wUUbFwT5O8fkuyIQCLzzaHY7Nf/rj6jzy776SQ8lEAgEnnls7vZUf16Iu4E3hlshKOz3e02n07Q1YVmWqqoqVVslPVRVh3xKSv3hELRcZPBKa9M0qcrL5yGti8VCy+UyVW8hFpeXl63efbdnc05vR2C8HniXk0V62L1XG4IPUaISnLseXFDgmFw3IoQ7DyBzPjZIGRkR3vIACcOxABGu6zoJC94j7336EGkPxHOXB5b6qqpSoKHvgMD5EEXyfAJEGAg/9xYCTPAljhPIplf7GRv3FEGB+SJroCzLVtsDJFdSS1QhH4Jr5Hdu8fdwQfIzGIsLH05mV6tVusfuPHHCjziAe4GsEDIJEB8YI6003C/mm/XL8+Y7OiCUjUajlsOFNYhgg4vDswlcUMhzFlzUcPcEz66HTfK8L5dLzefz9FkEFndg+Jz6c+LuCf7ubiF/P0ICz0wgEAgEAoHAs4DOcKjLXuf13xgIXONWCApFUWg+n+uVV15Rv9/XSy+9lHZlwHLMP/SxIUO8vVIKOcn7sj2QkfM999xziUDTw0+F2QP+nHTgasCevVwuWwSQ/2KXdjJCJVdSIrLj8ThVlPPQOidF5AVQLWYuCAmESNMGwRz5zg20HSwWizRXkhLZhJxXVdUSL8qyTISPSjZ98pyL8UPEGTOkFxIpqUU8q6pKLQ1sFTqZTBKR960h5/N5mhOfa6rvuEdwDBAcyX31dhXEAklpS1ByOajsI7Dwvs1mk7a7HI/HrQyE/X6ftttEcPBdAo6OjlKLhFfQZ7NZIvNlWSaSjuUfYQJxyV06tLQw95JaAZ8IcogxtLRwD8iw8BwS2gM438nJScqGWC6XadtP5pLcCX92fFtTb4dB0PNdVHCv+Lao3HMcJ7iVaEFBKEJERABjzeXfKx4Y6QIa7h3fFYV7ieDB8xAIBAKBQCDwrOATv+UrtXwh3AmBN45bISh4OwFuAemwy4In67vNns96XziElfDB/FgQCkgbzgBs6NPpVJ1OR+PxuEUYJbV6tb0ffLvdJlLrlnqECQ/Xc9eC92rXdZ3IFYTHswGwk+OcINSR+drv92mLRd/ZAfEConl6eprmnZ0IEBMQDNxx4C0WtBN4z7tnMyDsePUcsuytIlVVJcv7dDpNmQLY1CHykNP1eq35fJ7GwP2HVFNNhgQyB9xTdrugFYb5hOCORqPkGMBWj4DCLgaQb4IguXdcF2uU8Z2fnychg+ti7bFGuG5vb/G2ETIlyAnxNexCgD8nCA/sZsF98rlBoEKIwBnju1qwhhEkcN8Mh8NWQKVnLPi2jfze8xl8LIgXZCj4/HB//Tq5T3fv3m2JUJeXl+l+eH4C1+BbaXJ+hCnGiEuDcXl2ibdDBAKBQCAQCLzb0RSK3ITAm8LbEhSKojiV9N9K+qmSGkm/TtKPSvouSR+U9DFJ39A0zdnrHCeREAg6AoM7Epz0eJXde8Ldtk1yvaQWmYDAOemA0EJUvEIO6XPLOfCMA88hIOjR2zTcno4o4aFyEFBCCXmdKqr3skN4nfAhkDBneUjg0dGRxuNxek9d160MBuCVcO9XzyvAfj2IG1R9PbOCqr336buQAZHj95BpCDuEutvtarVapVYLd3Lkqf5U6RGWfB1BYpn7sizV7XaT6MP99HwEBBZS/yHWVLolpXXFNpaAOXC3DTZ9RAXO7WuY+4045C4F1rMTYW9jwbXiggbvZ30ikDjpl9QSXchqYK27awD3CmuIMXh7kT9zzI8HK3oWhztJXGBBPDo+PlZVVRoOhynIEzcJApF0CLP0ufb154KHi3eM2Xe3eFoEhcf1XRwIBAKBt4b4Hg4EAs8q3q5D4Q9L+itN0/zvi6LoSRpK+l2Svq9pmg8XRfGtkr5V0re81kEgP1ikIQmSEgGBfFKRJmAOkuU96xABiC67BEBgIFmQDUgR4sFyuUw7PXjrg5MMJ2qMg4o5BMoFBekgPkCoEC4gWrmDAWJMHzxVcRcUIFVOojiWCxOQvKqqWsGHjvzzWN0Rd/z93tPPuVarVXJtIBiwi0BOzLjnZVnq/Py8dXxeJxCSOVssFhoMBhqNRmmuuC7pkCVBdf3y8lKTySS5OJj3PJQx393C+/OZc+aDXSne8573tHaZQNSB3PrxOAdz7PkTklIeB6ICGREuIlH9d1cMLTDu7vHdCtyRwPx6hoeklpDBtV9eXqbzlmWZnkueNXfMuMhG2wNCgLcKuTjCsbhneSgi7pV8/ZKxMRqN0lafi8Uibc/p3w1+PBcU8vBGz9NAVENk8fc/BXgs38WBQCAQeMuI7+FAIPBM4i0LCkVRTCT9a5J+rSQ1TbORtCmK4uskfc31275D0kf1Ol+enU6nZddfLpctGzOkh8roeDxOlWcqopISkTk+PtZoNEokbbVatcg4BNBt8PnnIT1ujYa4QES8VxxxgfFVVdUi2MvlMhHS9XqtTqeT2isGg0ESBXBVzOdzrddrjUajtN0iosL1/Gs8HifbN6SQajlZCZLSHHnbyGQyUdM0Oj8/T7kRhFG6w2M2m6VqPM4QyKm3oLhTYTgcJlcCTgCI6Xw+TwIRwZT9fj+JEDgccBhcXl7q7OwsEcjLy8vUXkLbCq0a7lDgv5eXl5rP5y0XCy4D3A7Y5iGU5E9A/KuqSi6W5XKp5XKps7MzVVWVBB/GgPuEa2dNdLtdXVxctHaaIDCT+YSQu7vAie5NbTNO2iHrrCXfNcRDGiUlBw4ihOcfsFaqqkpkOw9E5VnEOcK6Y/3SooEoh6DAexAK/Tq4pwhyiAr8DuHi9PS01WqCaLjdbjUajVrtJO7WcPENpw8CEN83iCYuetx2PM7v4kAgEAi8ecT3cCAQeJbxdhwKXyTpVUl/oiiKnybpByT9VkkvNk3zGUlqmuYzRVG88HoHgjCQgUDiPmTNLdUIAN5fzk9uVfegQkgDxAIC4oF2bvMfjUZpR4JOp5N66CFzOCYYG5kGkPiyLHVyctJKrScjwYkf4gLz4GOgct3pdHRycvJQeByEl2PlVX7m1G3cXjlmq0MIWF3XqerumQkIMpJalXaOy9iB3wMIqtvnmQNs/ePxOP2d8zK/iDsIHtvtVsPhMIUiss0j18c4PR8Accd78j1zgNYQCGa+JWNRFCrLUpPJJH2OYEpEHCegWOfZQrLT6eju3bvqdDpplwy38bv4AoFmtwLeMx6P0y4H7irgmt2V4W0Cnonhc358fJwq8XyG4Eh34YzH4/T+62c63W9EFJ4BhKpOp/NQ+Ke31uBq8HXM696+UBRFEjw8Z8VFw5OTkyQmea6G56f4XHO9Hq7q1+xr4ylqeXhs38WBQCAQeEuI7+FAIPDM4u0ICseSvkrSb26a5vuLovjDurJyvSEURfEhSR+S1NpJwMmDpFRx9EqukycPD5QOLgO3M1MJdTLlRDK3nkNg7969m0imb7cH0fAdF3AXQFLZApNtD6kA56FzEBdJiUghQuAcGAwGKQzQPwdZ5bguTDh58h7667lPnxsOh+maOCaODQQOzgOB5fzMmVvDmZdccOH1fr/f2gaS6jXw+WGsbs+fz+c6Pz9vtS3gRgHeukHrBFV2D0jMMxN8Xrinnn/hVn8+y9xwTNYf//WtOrmOPBuAVhsXxxgn65idMWht8ABG7r2HKvo88GcXA7gfiEa4WLiXiHe8n5YGb3tBUPB7h9vE2ze8xcZ/mG8XExiTZy7k9wn3AeKP31vamzierwW+O/x4HoLJefm+yHcHucV4bN/FAw3fmREGAm8Q7/nBrc5+clfzz386HEKBwDXiezgQCDyzeDuCwiclfbJpmu+//vuf09WX58tFUbzvWol9n6RXbvpw0zQfkfQRSXr++ecbSCVbG3prghM8wtycXEMGJSWhwPvbIcHSFelhi771ep2s11RoIVfY652osbUhJM57yGlnQFTAzl9VlRaLRWuLOsZDtZ5xshsCtmys43Vdaz6fq6qqRD75HZVsD8Hz0EPmzAkzc8UcQRyZEz5PFduT8yWlMbiLgt9D8rheiJ07D7jP3lZyUwYEYoNXyJfLpc7Pz1u7VyAoeCClrbMU8Mi85r30EEuvtLOWGIeLSWQ7IPyQ+cH7nHizvhCE2DYxn1f/8TnwoMTRaJTGxa4aXAf3i7nOCbGvf3dGsB6d4DvcVYD44A6UXKhAbGG3DHdT5OGTrCXPYXBBwck/4/Ow0aZpkvMFkQoBh51CaMFgvTJWF5SYD54HciC4p08BHtt38aS429z0nkDgc4X+X/57en79M7S+09N2HMsx8NQgvocDgcAzi7csKDRN89miKD5RFMWXNU3zo5K+VtI/uf75Rkkfvv7v97zuIK4t3ZACSakdgIA1t9aXZZnIGWIDn6OKnbsJqJpCFIbDYSIntDMQ8LbZbHRxcaG6rjUajdIuAIwLwgipJYBvu91quVxqPp/r5OQkhdrhVKBS7pZyr+APh8O0A0FRFKrrOuUYnJ2dpeumSg2xctu7Cwej0Uj7/WHLQeYaEun5E1zbYrFIxxuNRq0KNtcI4UY84Xfcm7IsNRqN0paLHrBJhV9SsuD7FpxU9dfrdcqM8BYW8iW47ycnJ8mp4PfAq9/j8Viz2SwJPqwj1hU/OZn2eYEk4yhhTSDCcCxIba/XS+4aciO4/4Q8epsGff4IMQgPrBVv4el2u3rw4EHKgMC94C4VJ8tU5j2AkNwOFyLcIcB73PXC2vNATAQEf9b4LPkeZI8glvnWnDzH/jwwHoQFhAmuyduVELD4PYGVBDS6Sydvi+Ke0e5Ci5XvtvI0OBQe53dxIHAbcPzXfkBf9EMv6Ee/5Yti67LAU4H4Hg4EAs8y3u4uD79Z0p++TrP9cUnfJKkj6buLovhmSR+X9PWvd5CjoyNNJpNE7D3MDTIM+XKyg6BwdHSk2WyWqo/r9bpFENkSkL53PgN5gTRA7vf7vc7OzvTqq68+REogNN6agLBA+OJ0OtXp6WnKX4AgQigZj1fAvf8bYrhYLFKg4Gw2SwRNUhJDJLWuwdsfCN3ztgQnUtjAfTcBJ/fsIiApVW4hbC4AuKMBolcURXJo0OpAJRxnB9eAMOI5FFT1aYvAwQHZW6/Xms/nOjo60p07d9I98B546dA6AWH2lg13anh2hLebzGazRKw9AJB5h/RSBacijjPC3RWM3cUGgi49RJH1yX3zVoz8fMy3t3KQQ0JbgItGCBi9Xi9lV/DMsf64X4gA7kBxF4WklOHBuuA54jiAc7iriPVDtgn3j/WbO2rcAcKz1zRNa0cNBDSeCd+yEzGEAFDPHPE/I1B468lTgMfyXRwI3BZcvnpfP/kPHOvHf8MHtTmJ9ofAU4H4Hg68K/AF/+0/08XP+2J99mc/6ZEEnha8LUGhaZoflPQv3/Crr30zx6HK71siOhGDcEI0qCpCgqlM84PLwEMMJSVRge0aIdXAswcgZbgW8v54yCUVYMiQV6m97xySBXniuFy/28cJG8RF4ZVZzxjISZcLCd1uN2VGIHZAzr1v39sjOK50IG/MB695OwLzkVvUPfAOV0Uelsh4GR/X52GJnNMzGGg3oLVlsVi0dqHwe+ihgL7WXFzh+r1C7m0K7OrAevGcg5z4SmqJGazP4jpc0F02VNa9lYD3u0BEhX8wGKgsS0lK62g+nyeHDS0dPAN+7T43voZpC3D3jot0vN8FGA9UZH2xLty9wzONuMc5+R3PY976wBz6vXARAfHEhQDWEedjXfizzT33e8hxeMbcZYFT4WnB4/ouDgRuDfaX2n3q0youP/ikRxIIvCHE93Dg3YLLV19Vt/6gpKcimDpwC/B2HQqPBZBorM8euCcdiAdk0MP1sCpD+j0Y0Svv3W43EZLFYtGqkOaBgh6wiD0bsQBQCeXPBBBCVHAxOInq9/saDofJ8o/owLGdSEOQqJwzDxA6z4fISR7HlNTKn4A8MdbcDo8A4hVkJ9uQNw8E5L64oMK8XV5ebc9XVVUSNTzkkPuHawDHhWcdSAehxwP9JKV7Wdd1Isjca3eb5JVm7gf/9fXGtfgWnzgOXJzwNglIaO7+QBRDaGGNNk2TtmTkPeQweGgo17jf71P7jLcVQOI9DJF16+JPfg8h6IhW3GtaNVyI89yDTudqe9eb1puvUYAzwI/jJJ/nzNeCZ1z4/fZr898xBubEW1Bob2Kd+3FZ2/6sI165KPWoNphAIBAIBAKBdyuO60v1zrra3AmHWOD1cSsEBQiNdEi1p6pNdZftE6lm40CAgOVbOFJRZScDSWkrO99OzgmM705AWCJEyIkFJMVbMgaDQRIKLi+vtojkPU7syBcYDAZp54ibKrySkl2bc0K6ITuQO8COEogEnjcBaV2tVmmuaDtwh4VXlclT8EDJuq5bAg8VeLfvL5dLHR8f6+zsTB/4wAdSq0feB+85FMxb0zTpOiC9wF0AvHe32+nBgweqqkpVVen09LRVrWatuE3eXSXM7Wg0Su0inpnAjztCPDPD1yFbmc5ms3Stnv9ABsNms0mOA28XkQ7Bly5MMYbNZpNyNshY8BwN1q1X2xETcicImR4uEEyn07Qu3PXDtXCfacvJ8yNy0YX2Dc7JXLujg2fIt2z0Z9PFEW/FcUGBteF5Cswf+Q0uSCLC0DrCfeE8/X6/td4CgUAgEAgEniUcffQf6At/OLJsAm8Mt0JQgLxQIfTWAEiR94nnLQ6e+O8ksdvttqzikJXcCo57wSvi7HFPKKP3miMOcBwIirsd8p5ySSmDAPI3HA5TEB9VbK+Ge0il99Z7T31VVS1rOpkLRVEkUYbPIUhQDacyi2WcFguHOwWo5C+XyzR/3CPmnf9ut1vN53MtFovUwsEYcIhA+LHe4wZg7nA4EJCHQwNSyHq4vLxM9v/dbqfRaJTGRl6FZxG4KOMOAxeUEEjcKu/Ci2+tyfx0u11VVaWTkxO9/PLLrTlC+HH7PiIGohmiBfkZrHVCOB88eJACKWnz8PaG4+Pj1FrBOuGaPbSTtUV4Yb/fT6/zfLiIlocZcl9Y075W8iq/7+qxXq9b8w1x5xyepeECDvfVt3t0QchDFRHPEA9xrvg2ljynzB8tHbzHxQ0X7AKBQCAQCAQCgUAbt0JQgPh4mr1b152oQ96coEBOIMsci4o7ux1AQhAApEPvtlu1SbSngovzAALqVmrOJbWD55wA8x5IEuIAwXXY2b0CS/uBOxacIDKesixTv/d8Pn+I/HJOr5Avl8t0LpwcXnnPWyr8PkESuR8QYt7HdUhqkX7uRVVVaYcBz1mAzDGPfu3cY8YAafWwSd7LWqDiz2cgsr71IaSZ87qowFr0tgWq5ryPzxKoyBxUVaXhcNhyRnB8z3BwYYsWBuaScXjPv2eDILi4QEEuhrdiuNjDGMBut0uEn+fF142LS17dZ+3kx/bnx+8b94bP+rrKMznykEnPJWFt8zt/FgDzyDg808TbJfzciDa4WfJnORAIBAKBQOBZQzOb6/P/6qU+/XOPtRvGv4cCj8atERS8mgxZ57/uIPAWAt5DFZJqrRNu7O+5HdtJsBM3SYmAU/Fkuzx6wiG0nkWQV7M3m02rAks/v6SW2MH43AWBi8FJt4/dHQOIL4gcEDecB05mfZtDD9uDRBIy6fPnhM2FGg90dFKJsOOiihN2tjn07SS5PxBVbyfgOtyBQkWd9zG3VPJ9DXg7Rt52AVxscuEBUo+bwdeI7/6RCwO0tUyn0zTHvjWjdKjmI4LkcOHG7xX3E0Lvr3sGhGeSsGY8MyK/bq49v6/+406im3aP8Gc2F7+8hYNnl3Gx5n3XD98BIn92byL5fn3kjhRFoeVy2RIjmMv8Prjw4HkQT1MwYyAQCAQCgcDjwn6xUO+v/D1VX/iztTnpaH8krZ+PTIXAw7gVgkKn09HJyUmrWgnhw1rtFdmbqqIeSkfFHoK62+0eyjhw8QAClOcX0JdP1X04HLYqzt6GAGHETk7VmvH77gdYxiG5ZBTwPoiVtzz4NnnSoVIP+eU6sI57r7lvP8ixvBLM+7HsI5Z4PoK7HbCD8zvvaeezHH82m6mu65Qb4TsZUFH3XQW2263qutZms9F8Ptf5+bkmk8lDooLUtuZTXfeefIIRyTfw8D/aNiDGefaG7xiBaEOQH4TbQ0Nzm/54PFbTNKklADcJ4/a+fcbhRJtz+Dr1TAN2dgB+Hhdt3C3ioY/5XHpoIee/Ke/AhZi81YVr9DBRzy7IRSK/5/4eX/cILt5G4Q4cPse41ut1WsN5xoQLkfydNht28nAXEs9gIBAIBAKBwLOK9/zRvy1JOv68l/Qjv/0DVy9GrkLAcCsEhaIodHJyksjd+fl5Ih3e/w0JkA72ca+MenjgYrFI7ob1ep3I1/HxsUajURIfIC6DwaC1fZ7U3kZyPB5ruVwmQuRhemQgQNYgSdPpNGUMQFpwB2A1Jy+CBH8PufPQROzujM17vBEjqGhT5QWe2wCp8tBBSBp2cf7uuwP4dpq85lVx6UBKPXfBt97k2FVVpfnwnn9aTBaLRWsHB9oJXMDgXhFUmI+D62+apuUwGQwGqapPjgCVee7ver3WeDxOY/LQQ+4b1X9eR6RirquqkqR0TFwviFx1XafQS44ntXcm4NlwRwuClaSWKLXdbnV+fp5aZbyNhrmE8Hs7D+/f7/cPiSw+Du4tuRfkFvga8WwCfx7dQcF94XnxXATWse+64BkjrHv/3oD8u+OIdUYuh4sg+XPNGh0Oh+lZ5DguPAYCgUAgEAg8y9h96tP6st8714//9i/XdhwtEIEDboWgQLK65xksFotUrffKKX+mQuk2ae8dhzAvl8tEprxv3XvGOZ63LgCvRkOQIIbeGiGp1XMPGSFsb7lcJpIEAYKM8V9aFyQlQu9ugPV63arOQ9Sp/FOVhmTh5vCeclpD+LuHE7pbAZI/HA7TmOmNp5K/2+1aZM+3vWSM6/VadV0nMcV3mIBgUh1mPrmvy+VSy+VSo9EokVbulQdkst3hTWGKkEsCKiH/tCGs1+v0WemKzNKqgLMB0cVFLNaGV/D9d1yfV8M5B4GVy+Wy5QRwGz73Rzq4W2gZcQGI9VGWpc7Pz5NIQnCju2+czOcCB/PIfUeAY30izHEP8uBG5tyfR3aD8LYHPu8OGp5rPxfrjHP5POeOHOaca/W1ynpgnXNsjsFaw6nArhCcK89oCAQCgUAgEHgm0TS6PL/Q53/vUpf9I63vHOsz/5uwKgRuiaAAARgOh62tCX27OocTGar6VG2dkEPCcSsACAbEFoLthDAHZNR3THAHBQQN0cEr3linvXLvJJT/cg7GTwXX2x78OhaLRdr+D8KU5x44seLv/N4zIBAUcCBISkTdRQ1IXE4K3X7u87jZbLRYLDSfzzUajTQcDh9qv3DC7QQYcsq95H0uFlDdxsWAqOBBf9wbxAS/Lu4nc507AIbDYdoGM59b1kXe05+HITJWyC1jdeeCh1u6CMQ807bC+7lm7hUOF9wA8/lcJycnSTRA3MnFAm8p4DxcI+GWzLMTeW87AMw5Lg+2pPT3uIuA+8O1egCmty15m1Pe4sOz4XPnY+E6fe5zF4i7dTwjxUWeQCAQCAQCgYBU/M0f1LGkwfveq+kHvyi9ftmTVi+Es/NZxK0QFDzE8OTkJJGnuq5b1XSvvHsVt67rloXZ7edsxQggncPh8DVT3L3nmqC2PCPACW1VVep2uxqNRhqNRqk9AaLCGPKKrXQgNB5CKalFcCCF3sown881m82SQwFC7n3/7kLw5HyEhnxXCe+hp3qPFV1S6pGnEl7Xdav33M8jSXVd68GDBy3STEWcc9EO4T3uEHJP3s/t97yWizKQUVwU3DOyAxAqqqpqBQ1yPBwl8/lcFxcXms1mLbEHMk9WAef1HQO88u67PTA+xlEUV2GYVVW1MhS8Ok+QJu4BF9O4x9vtNt1/XCFnZ2caj8ctl4TnMECsPevDc0rKslRZli0BxN033o7EvPjOEKwV1pxnN7hg4vkTHBM3Ac8ZwoG7HjxPxOfFnUB+XxETuA/uiPItS/Nw1kAgEAgEAoFAG7vPfFbv+wOfTX8/+tIv1j/9je95Q59tCkUOw7sIt0ZQgBhPJhO98MILKopC0+lUdV2nXAEIPWTGySa9z/Sa0/suXRGdi4uLVtAj5IzjulUf8gOR8WR9b4+g3YH+a/rTGYuTXenQJ++A4Lj13jMLsGg7SaUC3Ov1UisB11NVVcva7ttRMn9uf4dE8Rq2eoidiwVcw8nJSSJ0EDEngTgaIO7T6bQV1IcrBMLnlWgnupB0xBjaK/LKNuPiHFTdGaPnbiBsQCTZSYAK/H6/12g0ShkH9+/fV1mWqbKP0EI2w2AwaIVKcr9ZN6vVKgljRXHYBYL1SxuIE2zWootn+Raf5FlwbwaDge7evZuuaT6fJ9HC7ycCR13XGg6HiTAjBjnB97YbMka4dt7v2Q88y7gcEJu85SDfGcIDF3ORAEGB599/72vSc1TcpYE7ifcwb/zdn7+6rpMLx+9nOBQCgUAgEAgEXh+X/+zH9SX/8Wdf/42SPvPNP02zLww3w7sFt0JQ8AokBGUwGLRIJ64FJ1lUZ70FAfJTlmWrXcKFibIsE3nPQ928J9yrxZApxkQeQVmWqqqqlWrvrgLPBfDdEKSDnZ3rWS6XqXcfYk+II2PC+bBYLFrhdV6dp+Lc6/V0enoq6eCC8N53r6hD6hEd3OngyffSoXJblmUrT4HgQ2z2kE/PUmCu3DLv80CLg7ekOLgvCCDuqHCSyDh9VwCu2wM+PRCQcbGbB46Q6XSq0Wik8XicghFZt1xDnvPBumFu3IHiVXzPMGCOWWPr9To9F7mrxZ0e3G8cBYRdMueIH+4mWK1Wms1mqS2BsEyySxCtctHNtzt14Q3xyO8Bzgxfm/4cEJzo15a7O5gfD09lTN4G4SKStzIgLrhAcJNIcFPmCmMMBAJPDp//ly70ys+c6OLLIgAsEAgEbjWaRvu6fkNvff/33dfutHzd9+3KI/3EL+6+ZTdD/0FHn/fXFm/tw08QzXGhf/HL+mpep6710kf3GtzbvPabHiM+9ojXb8W/lr0nXjpUkiF4EIM8dM2JCkQCkjIajVpknEo656mq6qF+eI7pfdpO+JwEQ7apUrNtpRMgBAXaEZy0ewYB1+R2f6q52LSlQ+YBbgTyGSBbklrjHwwG6TqZP4gerxG0l+cueC87pMoFnqIo1O/3W1tUci3eo8+cEb64Wq0eEiekQxAh5/DQSheR3Pnhffj5emIuvKee11yYgvBDkCHl7KpxeXmZMiB8Zwevqjvp9h8PkPTrY13xX9YCLR5OhLk2hBG38vt2le7MGQwGWiwW6biENOYZFewygcuCzARJaW35mmPte7sA7g7Wp99Xxulk3tc6a8RblbhH/r3gu694SxBrw0WCfGcK3x41d5H4OuG5RVRABAwEAk8WzQ/8kJ4rv1K7aqj686KaFQgEAu8GXP7Qj74hjaA/Hmv8U/6lt3ye4at7FX/zB9/y558UOsfHGn/Fz3pdQWH89z+u3ac+/bkZ1GvgVggKwPub6VGn8sjv2NrOe60hRJDfyWSSetPZnlBSq6o9mUxSpTU/HlV+CBDEDkLF56jG82cIYl6Z9d9xnbgleF8eUpeH0ElKwoQ7FObzedpJIs+D6Pf7Gg6HyT7urSK4Leq6fogkewAhhFJSspC7xZwsinxLS+4fZA6b/WKxaO2SwbV5dTrvpUeI2e/3D7UrsF7cWSG1cxbciUDWgCf77/f71pajCAouhMxms3Svuf/+Ga7ByXJ+T/w6GC/33tt6uC7yA7h/rEV3ELAmWGfD4TCN2R0ivsaZI3aZkPQQ6afVJG9TAE3TpHXP9XJ/PHzUAxVxKHh2B7tX+FpwwcnvHQ4Tdw/4NqYIfLmokOdj5EIB5yOQk3udC46BQODJoPM3flAf+Bfv14/+B1+g5qiJvttAIBB4RrCfzfTif/W3nvQwPudodju98Ede/7p3r/uOzw1uhaBANZp/8C8WixT6B5miPx5SB2EdDodplwNJD1VLITaDwSAdM692euWSXvmqqjQcDlN/O5kD9J0T7Ohjcpu3h9Z5xZ8Kraff82eyCCCieYaCb9FICweCCbtIeICjz8Xx8bFWq1Wrwnx5eanz8/NE3BEICL7j+MwN1VupLXRAvpjv3W6X7ieCA0QSKz7E/eTkJL2Oc8J3+HA7/Gaz0Ww2S7kQEEAq7sylV8ddOGA+yFngejgP9xbXCaSWLAR+RqORTk5OUuuMt1UgnkCUPVzQHQYIZax/3wUE4cwdGTgIcjt/3pbAVpdVVT00hvw5oY3I11pZlukZ4b+Mkfvg42K9skZwObDOaYPguWIbUknJAeLtSi7OeCuDfyewTvi9Cw7uVnHxhjHTtuEiHvPJ5xHZNpuNyvL17XiBQOCdx+5Tn9ZP+r/e18d+18/QdhJOhUAgEAgEbgtuhaAgHYgKBMbJF5VcJyYe8jYYDNJxvFqaV/qlQ7AjgsRoNEqtFV7Jza31TuxGo1FqeZCUwgz9M+5OyHvDqaZ6lZXz5BVUJ+7AW0Ig4ITPuS3djwm81xzy7ESMCq8TQlwBXJ+TNkQZqtqcI9/aM999wbMeuI/uTPBQRcgd2Qr5bgqQTNweTha5r55/wXx74J+31bB+fEcE31bwptaVvBXBsy285YUfrpF7zXH5PI4Pv/+eK0ErBuPnuhlD3haB6wfxgYo84gVigt8T5pD7wmcQxHy9ujgGYWfOfC3k65vx8yyxFlwY8rEiKnirE9e6Xq9bz3J+Lhe7/HuHe4LIwri9PSIQCDx5NOu1vvDPn+nlrz7VxZdGpkIgEAgEArcBt0pQ4B/1UrtiCLkB7iggHNHt5r5bAMhJeu5wgPh4NZ338nkXNAhh9L53iFAeFOjX5hkJ3v/txMbhIoW/5sRPavfmM27G5vZxjuOCh1eGPXMAIs61+ridRHqlmrnwPnWIbC6M5G0m3kPv2QpOHF2U8YwLXzt54KK3CLA+3Anhuxv4jhPeeuAVexeteD9iRS6MMWfdbje5EBCgEGr4vLcCICi4uOPH88/h8EGw8XF75ohnUjhZxyHh24z2er2UQeKuF6/4e1aIiwsejMg4AONj/biYhtB2UyAn4ZPu5OC7wJ0h7FriopMfg/vuwgr3FqeF54yEoBAI3C7s/9EP67nTny41V4WE6RdLzXGIC4FAIBAIPCm8LUGhKIrfJunXS2ok/WNJ3yRpKOm7JH1QV2GQ39A0zdlrHQci5cF7/o/8RwXdSe0kf4jJo/rHIQgE2A2HwyQo5Md2ggSRcfKLJR5CslqtUovE8fFxag1wQgZJ4RgIJYxrv98nqzuftblOr2Etv7y8TG0QvO5zwjy608KP6+KGV6Q5H2P2PnV2duAYTpw7nU56P8egMk4WA+fxfAMP2uv1emmbSMbjbguIqLeQeP4E5+S+MB7aHlxEcLu/OzI8FJEWDQIoWZN55byu69bc+Vgg6JBf1pKTVT4LMWYOmR/GjJjmO5QgUHC9fJ775u09ZGhwLm+/8MwS7oM7JZgb7jnzlosT7jRxYZB74u+j9cSdFJ7h4YKcZ6iw5mg1QkQBLgK5U4cQUsQTD+Zk/bHu/Xm47Xhc38WBwNOAzl//h3rPX7/68/I//mrtKkmFtO+GsBB4cojv4UAg8KziLQsKRVG8JOm3SPrypmmWRVF8t6RfJenLJX1f0zQfLoriWyV9q6Rvea1j7fd7nZ+fq9/vazKZ6PT0NAkCbKXohATLPMQEskYYnVdnbwpb9BwGz0OA0EPM8tR5SclaTZsFdnhJrQyC4+PjRMZcpIBgOSmWrrbxq+u6RaB8B4dOp/MQQez1emkbRs7PtUJ0qTLzeXra3b3gYyGzwQkabQ+elUCbhVvuvTLtgPgx1wgdOCBwMSCOXFxctCr+TsbzlgGIvosUZCvM53PNZrNWqwFVbA/W9CBCwiOn06kuLi7S5z2s0V0w3mbAlotFUSRyjqjAZzi/r30yFnyteOsE/93v9yrLUv1+X4PBIDkLWINlWbacGE6IvVLPvBNIibiC4ODVeuacz7kLiHXgwZ2eiZA/k/7ZHL5jA3M6GAzU7XZT+wFjkA6CQVmWOjo6Sn9nbl1UQVRjTIybZ48x8/zTfpE/+7cVj/O7OBB42vAFv+/vSpI6X/pF+tHfcPcJjybwrCK+hwOBwLOMt9vycCypLIpiqysV9tOSvk3S11z//jskfVRvQFCgErzb7RJhggBDfhaLRSKxbt2HuPnuApAaqrsQkaOjI1VVlQL1qFJi3fY2BQi5EwwA8WOMVLrd2k8FF7IKQff2B36fW7ydXEHu/Hje8sFn8602mU9P43c7ONVs5gqSTZ869nLyAPzad7tdcoL4tn2Mgb/7Z7k/zMFut9N8Ptd2u033fDwe6/LyUnVdp3n1a4f8ussCkcJbEKhwcx1cJ+/x+XaRY7lcajqdaj6fa7lcJmK6XC5V17Xm87nqulZVVek8rCvuM/ProYsuhkB6ycDwMeU2ff8dAZQuOPB85G4eb09wcYrnwdctY/UtPRmDb13pwgZj8/XjQg/vZ9cE3wWEufIcBg+z9HXa7XZb65T1h7BHRgmv4/7w1hTG6v/1ucpFDs98eBoEhWs8lu/iQOBpQ3MteDYf+6S+9E/EzizvVjy491S4xeJ7OBAIPJN4y4JC0zSfKori90v6uKSlpL/aNM1fLYrixaZpPnP9ns8URfHCGzhWStCHRPT7/UQY1ut1quyyowHEx4m1pESenbx40r2kVlXaWxbclSC1gyG9bcDJjwe4QdIgv757AmTL0+m5dunRWQkuMnhuwU12bA+zkw7uCcQExBOuGcGBzyKcuFDiTgZ3LnjgnnTImnAnA2O4qZed89PiQc7CYDBo7TTgvfI3EUXPP2CNcG+5X062uT7g+Q+MibXoDhPGWtd1+uGe5TuFcI0gFwDYMQRhgZYd1idjZW5xPeAg8dYSdyTweb8+7hfXhBvCAyn5jG9dma9zxuvr1Xc2cQeNt9swb7Qq4IBBiPF2FV/TzBnj5dl0cQ4RjOP4tXtbjrsbuJa8BYjz4iZhzTwNeJzfxYHA04r9YiH9/37kSQ8j8A6haVav/6YniPgeDgQCzzLeTsvDHUlfJ+kLJZ1L+rNFUfyaN/H5D0n6kHRFQn1buKOjI5Vlmf6hT4UTG/tyuUz/8M8r19LV1o5eHcYaDTnyrf6o7s7n8xapkA4Wb16DqO52u7RtIwSXYEiqvlwDAY5OxCCHeUU6bxlwMQG4tdyJkrsrXJRwApU7IKg2Q4oRcSBwm81G3W63Rfio1i8WCy2Xy0TIIZieF0DoHkSRyi+Eze3/7mJgi0+IMq97cCPX64LTYrHQfD7XaDRqBQTiGHDhyefbSSrHwk3i2RCLxULT6VTn5+dpC0Zv1fCWEebe+/t960kcKE3TaDAYtMQI5s2r8syBh0W6rZ+1h8ACuF+z2Sxti4lQgGCEOOeBhy6keJ4E65L2Fe6FC2s4PhA7FouF6rpW0zQpt8TXqYdq0pLg4pwHlSICMj7fSpPvAcbL8VxI85wF7q23VCGMcN+eBlHhcX4XDzR8J4YYCAQCbwlFv6/i+FjF4na7T+J7OBAIPMt4Oy0PP1/Sv2ia5lVJKoriz0v6akkvF0Xxvmsl9n2SXrnpw03TfETSRySpqqpmvV4nSzmCAbZ1SAVkbD6fS7oSDiA5kFiIGhVRiNpyuUzEh0o8VfDlcqnz8/NWOJ2kVohiXvmn6kq1FaIEQdlut4lYUY11azU99nk7BlVfxoIIAMnL7eQQvW63q6qqWu4MBBcnq5AoJ05sGTiZTPTqq69qs9loPp9rtVrp9PS0tZPEarXSgwcPUkvCeDzWYDBI200ioPR6vTTvkF3PKfDAxN1ul1pcaGdhLjygz4MFIZZkYbjDgM/QwuEEmfvrx/F746QzD6skIwERwd8LyWYciAacGwJP646klrPBdwfBscP7mFdyK3Dq8GcyLjyAk2Ou12vN5/MkdFVVpU6nkwQAKvW+1aMHLLo7qK7r5ArwVhuEA9pXuAZvVUJQQDDyIE6EKpwbrIP5fJ6uiTXq7SNcEzkKiBisL3+uuCbGxD1kO09vkfK2Endx3GI8tu/iSXH39isogUDgmcGr3/hVuviyRqs/+H1Peiivh/geDgQCzyzejqDwcUn/alEUQ13Zu75W0t+XVEv6Rkkfvv7v97zegSDdVBKXy2Wq6vu2ihDaxWKhpmk0m80S6XLy6H3REL3BYJDyBaSDxfvy8lLT6VT37t1Tcb17gqRExjqdTvos5JXfeTVfUusa+B2VV694Us0H2LmdlGLv9n5zr65yLg8axJIOkaqqKoka3lYC4ez3+ym8UtJD1WnG79kD0+k0zTvOD8gZ5/FrJJyS+ZAONvd8xwVcAJA6yDbj6XQ6qqpKl5eX6ToYJ4Rws9mkUMx+v6+qqjQYDFq7MCAosK5wm+AI4F4D7idEdbFYaDabJcGB3T1YN+RQ+I4LHpTox2R9c/+BixGsVQ8iXS6Xms/nWiwWLWHopiwO7uODBw8SmZaU1i75CYPBoJVj4DtHIGAgPCBgsH4ROZjDxWKRxu1tKqxN7q+/zj10RwztHghUPiZEB7+ffi4PYpUObh1/jtwh5Jkk7lh5CvDYvosDgUDgNuG9f+njevGvl7p/b/f6b36yiO/hQCDwzOLtZCh8f1EUf07SP5C0k/QPdaWujiR9d1EU36yrL9ivf71jOfmE+OYZCd6HDgmGtEmHMECvEGOr9h0GXJzgeFjlaWdAgHBxAtEDS7+k1A7gOQsuOHiqvVdk/c/kBHgoJFZ46UCKIM/e3gAhc4IuHcgo1XhPtvc55dhuMc/zIvyczCvkmvN6q4aHPnrlnTn0OWEu+Ky7Lfzz1+utNR9OzAeDQcsWj0jhYY6IF7yG0AJxZNzF9Q4NXLP3+DNuz87IWxjcHUJ+AHPm4Yku0rgrw9tq3ClA6wJrwx0K3iqQ51X4uGezmS4vL1u7onh7i1f2WT9cRy4I+Zr1uch3e/AcDMbjrUQO1h7v90wF332Ce8nYcY2wlhEhcEP488R58hBLbzfx9/m6uq14nN/FgUAgcJuw++SnJElNc7vF3fgeDgQCzzLe1i4PTdP8bkm/O3t5rStl9g0DFwAke71ePxRQ539GUIBUSEoigGccAKrVvqsDgoMHxwEPUIQESwdbO9V4HA/uCvAdA3gd0s01InJwXU5wmA+IlQsYkhKB4ncuALi4wLGcaEGufd6p6npAovfBe4897hHPNvCdKiCfPmb/rLclcF+wv3N/nbTmIZXSQXzyc0L8/Pq9Es7vyefwPAnWAvOIYMHxEBkIB/QWBrafxCXjrS1U9dkVAjHGCTtrzbdvpL0GwYtxIRwwNwgVnp/AsRGDcrEJ1wAZIswJ73N3iLsBEAw8+JHrdLeACwqMm/G4UOAZCP5nn0Nfo7mQ6CIJIljudOF5dSELcYDP+v1l3nmvf+c8DXhc38WBQCAQeGuI7+FAIPCs4u1uG/lYQFUYkk2oGiTE0+ypqtL7DMkbDoe6c+dOciNst1vVdZ2qz96vDgmCcDj59P59BAgnXb1eT6enp+kznU4nhUau12v1+32VZanRaJQyGKj2lmUpSSkfAgLmYoATLN+1AaLjife0GriLwau2ECRIGtfEsbGS4wxAhIHo0yvvO0K4hZ1Kt6SWKOHV4Txhn+wJzs0ce2YCBNSr9sxNURQp7BKrvt8nzuHWfO6B2+tdLIGAIjqVZdlqgciFHvIUGFtZli0RaLvdJtfLTYKC7zwiKVX/3T0hqSUqsPZ8HTgpzwUIFy4Ym28jSmuPuzN4BgAEHbEgh7d0QO5dZEC4GA6Hab0DF9t4lhD+XADw9YZwwnpz0YdjMS6Od3R0lIQUPuNuIO67h4gydx4aGggEAoFAIBAIBB7GrRAUpPbWbhAV38INApVXDyEwg8FAk8kkBbddXFy0Qv+clLj9350FkhKxGA6HmkwmaQxeyYT0lGWZese9Co6LgZ52xgq59cwCxgW5pCrMZyD/hADmFXg/nosJ/J55ROiAbOGiQPRAGOD6aD3J2y2YS+aMQDxI7WKxSEQeKz/V8P1+39pCcLvdqt/vJ1u6hzpyjbgDcoHBx5z33CPuIDJwvawv1oTv+MB7uCacC5BprtnFCwQYciQg8vP5XNPpVBcXF+m/TvoRY3Ba4DS4vLxs7Vrg1wNh9iq6z4m3DPG8eLuBrx3uJQGgXDvn83NLah0nzyjBOYFQgbDAWmZefK75vItjvN/hORtcA2seQcDbazyAlPnGJeHfLZ6ZwOvueHHh4WloeQgEAoFAIBAIBJ4Ubo2gQEXTK4ROvF1MyAUFCPlgMFBVVWknB4iFkzmIiFdIIfu0EUBWqbDmpBTyIbW3bPRqqe8KwfkYsxMe397OWxi8BcIzJvIsBe9nh3zStgBpoxo9HA5bdnGuF4GEH+YeZ4BX6N0Cnmc05GSWcfhc5H31VOcRbAhS9IozRNPFE78HbolHUEEwYD591xBvY+FecR7G6uOlJcHJMZXz/X6v0WiU3Cfb7VbT6VR1XWuxWKQdDvKWFpATdF/7rN08jyAXQoBnU/h9dvGB3yEk+XiYE3dz8Pf8eeO4Llz4Ouc9zBluAb9OnDHr9Tp93ltsfG782fG2C87lbgxftz5vPr8+H6zrXEh4WjIUAoFAIBAIBAKBJ4VbIShgq0YU4B/zXo110uBVVw/T4/NlWSby7RZsSJ23GXBs2i28SgoJdbu9kx13AyAG8OOE18fK+9x5wesQfoL+PKeAXAPIjwssbgfHFXDT/Lj1HCKPK8C3XoREuYDgfeZO8GlV8SqyCzUuKDAuJ3qM2R0AVVWlYz2qTQHyKx0yC9yCv91u073ztg8npIyVtUJbjNvhJbUq7hyDSvd+v9d8Pk+Cwmaz0Ww2SzthkD9APgEtDZ67wXXSDuEih99rv2buzU1ZCY+6DzhF/PdOziHannfhQZOMx7MX8pYAdzy42MZrfgycGTyXuVDg52S8XIfPg18nr/kacUeEjynP/+B7yNsiAoFAIBAIBAKBwKNxawQFT5vP3QgQBCeU0mHrx4uLi9R2cHx8rLIsU3/+8fFxqhSzK4Rv7wgB5XiS0nudxPoWhr4VIIIAVnXIy2azSe0AXrknWM6rvFTm79y5o6IoUnWbnSLc6k1eAmPwHRLoFfekfebz+PhYd+/e1WazSZb8+XzeCkjs9XrpvNJhaz/vuR8Oh4l8dbvdJOD4bgVeHfbwSkQSr7DTMjIcDh9ya+TzxDid7EPu67puBVZ6AB/XwHEHg4Gkg5WfLAhcLS5wcA7pIDB1u91071l/vjZms5nqum7tiLFarVqZHdxL5mU6naZz4Xrw3TlwnrgLwIWI1WqVttQELg65Q8PHQNsF69idKu7kYC1wftwFj3JeePgm5+D8/jx4G4fvOMI1+/wjtDAveXsD4obvXgL8OeJ+uzjBXHFf+f4JBAKBQCAQCAQCj8atEBScrOQEynvOB4NBIgNOIqgIQ1gJHyzLUsPhMFnQl8tli4R7hdj3pqcCy+/dsk9a/mw209nZWRIyCAqkKu7OAEjYcrl8aJtLSD8CCD36o9EoZQ3c1PMNEUPAWC6Xmk6n2u/3aa6kQ7BfURSqqiq1E/icEErHbgKECSJ+ICh0Op3U+w+54+9cEy4Gn19EIMgg5Na3gFwul7q4uFBVVRoMBhoOhy3iJ6lFAN2pghjl1fJcFPBjeHUasYpgRbIjEJ/2+70Gg0FLCMmr6Yg0EFIEKbfzMy9+3RzLMx3cNeMVdsg/88pz4qIBApSkNH6vtHNersNzHLxVgTWPAOJiHiIIQgjuGn76/X5ac6xfBC3P0nBHgO9u4aTenTL8190xiEQu2tEaxHPE/fFWI5w+fo3umsndDoFAIBAIBAKBQOBm3BpBAdu9VwwRDCAm/X5fo9EoheFB3LGVO4lEVPCdI1yg4PMQBw9p7Ha7DwXxAYgOFf6madTv9zUcDluCAkRJOmyF50QRQYE2C8gtZN0r9GxB6CSR8ef5ARBKt+9LalXgGQ+k19sZ8r52/7x0sJNzDq9ic48gbNjM/fy0BiBOMJbtdqv5fK4HDx6kLA2yCTzXwKv8niGRO1p85wKfY6rxLioRBMnn+Azj9DYYXs+v3VstaONwcg7JRZxxQcKFkptaHXiPj8Ft+3zG8zNYp57/4RkSzIm3gvCMsGbdDZLnSnBsd4uwfhk7Dg4XbhAcmC+/PsbguRq+zacfh3G4swFByFtLWIPubmLt5cKiX6e3OAUCgUAgEAgEAoGbcSsEBXrxIZhFcdiBAPs4VWEEBarRVEqXy2UiIogJVLjzULucgEpqVXtpKcAC3uv1ErlDtJjP51qtVmn3BCrrLnJ4zz1wMkgYoqfWQ8ogfxyraZp03W73dlGBSqxXlp0sOTmT2oICIoC3Zrgg4fZvJ/duu0co8R0PaDEhwLGqqoeu0yvSEES36pP94GsjzxTIx3nTThkIALQfMBeIHdwr7/l3i73fRwipZxV4toCPH/GAHS3YThPRgxwLxulE91FhhZ4bwusuokCkb9pBIc/DgIQzbndT+JxyXxC5CEP1deGZI55HwHwTfuo7kXhLk4sVu92uJTrxXgf3Lm/N6Ha7SfTJW2Ryp4Z/FnHC21wCgUAgEAgEAoHAzbgVggKE1qvqZAKcn59rOp0mSzh2eIjSarXSq6++qvv372s2m2mz2bSqwBzvpn7sPDTQbc9UNbFx0y8OwYeIEyJ4cnIi6WC1n81mrWt0OzvjgEhyboicE3N68NfrtabT6UPjwnEBKc+t/dKBEEJCPaEfYQYxwSvrgGwAr15T5YWgM2e+fSFOh6qqkshzcnLSCnvken2LRq/893o9TSYTjcfjVN1mbr3Xn/vojhRP9Pc2meVymQQNsiFcUOGavaKNmMFrvmuBh/jx4/NAxgZtMThZIObslEGQpIsmLhrQEsBa9vYS2h1cXEKsgHQ7Gc9JtgsIVPcREDyzwc/B/XOC7mIQQFBAZPO1g2jg4+PayehgDTNfiBOSkhDpApM7Qpi3PBeBsXLPPSsF0YNjBQKBQCAQCAQCgZtxKwQFSS1BAdfB+fm57t27p/v370s65A6MRqNUgd3tdloul5rNZppOp5pOp4nIQUAIh/PgPBcSODaEw4kHuy9wHNoOJKUtDsfjcWvLy/l8ntoyOK+TQn9NuiItuAs8qNED5xAy3B3gOxK43R9CRRsGpGk+n6cQw7ytYrFYtBwZfjzG5b3lHs7HvLpd3AM2i6LQeDxOwoJXzz3Hgns5n881HA5TyCCVfVo2JKWsgs1m0yL5btP3uZMO2wvSQkN7SVmW2m636fi4KTg218M84BKBCCP8OPkmx4L5y/MjfM4Yr88H68xJrjsUyLBgl42qqjSdTlsCkWdjeP6DCzC+FSnPjb/fAWl3ZwjH9OP6GuV33PPFYtESLjivOybcEeJzhTjDZxA9cmEnb4koyzLNI88uz507GDxPgzkOBAKBQCAQCAQCj8atEBQgCvwD34MBCQ6ErNCHD3HCgg2h8L753PbtFXsImZN8qq8eQIfQQUUZkuEVWarvXMdyuVRd14k8uw2dP0N+OD6vOQlmPIzJLdwQ3Tyw0S3fXvltmibtArFYLNLuBlSAvQUAou2heFTwj4+PU7I/zggPufMWDFwdCALSFdEeDodpLH58b2Xg2iCY3t7hWQUePOh2dubOd0dgfrztxe31rAMP++OzkFzukzsZ8uo/1+MiCOMD3noC/NoYE+uDLUUhzF5Rx5XhVXnfMhPc1GLgbT+0XbC2eB/z7mvU8xj8GfY5z4UArttdHzxLLm7kggf3QVIKXnVXhY/Dv1N8nnFO5K0fLvD5vfNrDQQCgUAgEAgEAjfj1ggKbtenYk5aPlZw/nGPoEC13YmL27N9azpH3g8vtTMUvOINoWNsOQnxhHts1TgZqOhD3CCEbvGHvBZFkbZxpM3Bbe9HR0epcuqBffy4wOAkCtGEOaWtASJM7gPXjGOB64Ng9Xq9ZN33AEJs7BBbCKW3huDwYLeOXq/Xco7QdkCYJePg3Lngg5DgxNvH2+v1WnkAubPipi0FPTvAK9cuLjFGxgEgoF6dR1DwvAQIN24Ir+Tn7T6sW1w5bM3pz4I7HmizwGHgrTWMGceIO3O4DloM3GXhc+Y5DVwr5/PnjXuf79DAZ5lnFz24jjyb46Z1zDrye+DPqwsbnMtFjPy5B+5S4DiSWru/BAKBQCAQCAQCgTZuhaCw3+9V13UirJeXl5pOp2lLRirz/GN/NBrp+PhYdV1rsVi0MhAgZBB2SJSHzlGphLRgY18sFpKUSAhkBocCFVwIqlvs81wC33IR9wJiA2R4NBqpqqpEgLHjLxaLNB+SUoW61+slwYHrcxInqRWQCBGH3JM9AFkdDAa6c+dOy1EAOeba+/1+coUURZHOhzuBjATexzxyzrquVZalyrLUZDLRYDBo2eZxL2CHn81mKWfAwy7JFWBu2IKTarWLCZBddpQgz8G3z6SCjljk95X5g1T6+mNdrFarVgCnO2iOj49T1geCwmKx0Hq9TuGhzDHnZfwIWp5XMRgMVJZlGh9rz3fUyIUSCLLvokGrBgISwlLueOAYubDkIYysD99y0VtdyG9wccPvO0ID73FXhLdeuIDHGN2148KQiwD8DAaDhzI//HvHW0Fc9ACPEiACgUAgEAgEAoHALREUmqZJ4oF0IMUQZSq1kKjhcJjImIfu8VnfVhBADAjlgwz6lpBOfjxszqvlEBpIPURlMpkkOzoCADkAo9EotQlAnFerlU5OTjSZTJJYMBgM0jzkFVrvyZcOWwRCgG7qx4cQLhYLLZdLlWWZSNXl5aWqqtJwOEwiAYKJtzMgitDH7ztQ4DJAvCCLwJ0Y7lRYr9caDAYtKznBiAgSktKfe71eEl0gxHVdazqdtnYZIFOD+XIxhFYLCDGiiDsDqqpKORO73S6JOawj8gjIK7i8vNTFxUXKOaB9I2/LQWiRpOl0qrquVdd1y5nh7QC+xglqHI/H6YedN3q9nhaLRav1xV0c/CDE+HPgYI0wF6wNBKeiKNL80Srj7R0eQunPEAJNjnyMN7UXLJfLlqvInymEFW+rQVDMWzt8DVZV9dCuDt6iQjsEohWuJ94bCAQCgUAgEAgEbsatERQgCGyR6GICwkHeD+1/dyIttXcA4O+ci+MiELh44IKCkxQnP9LB4p0HNUI+m6bRYDBI5NgDCxk7bgXcAr51JiSPkESu0TMbqCZ7UF/e6uEtElw/43exAjKPIAC58utkXhgP8wUJ83uGaOEZFwQpsuUmZM/DEBeLRSKPw+FQo9Gola/grgTe52GWeQ7G0dFR2qrS75ELGQQwsv4QSlz4KMsyCUUcezabtXazQKCA+HLvOY63syAOSErrgXnHXYE7wbdA5Pp8Lfrz4/kObNnpa9jbGVyI4l7iXmCtuTvAWzoQaPJ2In8+fL3lzyO/y1syfL0wN54HgaMhzxtxl4Wfn/XpGSG50OghlKxT/04JBAKBQCAQCAQCN+NWCArSoT/eK/ned+7k34mRkysnyznyPmrO5+FzWLhv6rX23u48WJHXIPtlWaYEfkirdLB3A7++TqeTRIXBYKDFYpGECYidCyvuynCCxNz5No/ejuEEk/FyfWz/yPwShoeYwHmYK+Zjs9mkTAvaPZzgQ3LJR5jP56klxHemYEyeG4Arw4USbzfx3Q84B7s4uPjE9UC2aUcYDofpPbS++A4V7vzwoEsIOTsxcA7ey/tYU7nokq8jHy9CAvPgmQN5oKILaZ4j4kGKPBN51ogLTt7S4cIV6wMBhGfQn49ceAP58+VwZ0MeoOrj8xYlhBe/Jp47F0P8uKwL5te/Qzw3wefR72VsGxkIBAKBQCAQCDwat05QgEx4L7bUJlvSoXVhPp+n7eAgH7gcICUc16vw/AAXHBAAckCgvZqJeAEJdMv5ZDJJlWbaK6iGMyYnyf1+X5PJRNKhuuyBguQcQPwh1JDVwWCQsgKosvf7/RsDF/Oe+fyaPF9ivV635tGPwa4W5GD4+PzzOA82m41ms1lySFCt55zMERV+PrNcLpMdXlKrrQThg2uXlFoPaLGArNI+MxgMUjtFURQ6Pz9PLRWQ59y2D9FGLGC+IbTMGU4ID3hEdEGc8SwAsjAkpWv29hIXohB7XIjKswT8meJcTuzdxcE43ZGACISgwPs9rDIn2i56cf25S4E/+/Hy7A93NPB+no88fBPCn+8u4kIbn2FtuSiTC5MuEHJNuRASCAQCgUAgEAgEDrgVggKE1+3OVIq3222yp0MyIdbL5VKr1SqFNEpKn6VKT8XaSR6J+dIhgNGJu6TUUpA7AfiBpFJBPjo6Ur/fT5VkSUlQcFLS7/c1Go1Std7t+rgTLi8vNZlMEpl2x4EHB0IoPQeC90Feh8Nhyk7g95B9CKNbzCG+EFycB1T3ETmYy81mo/Pz8xYx85aHbrer7Xabcg/Y8QFi7tVudiogd2I0Gqnf7+vi4iIFMe73+9Sm4NtiMp7cheL3GXGHucY9gmBB1oQHHLJuWI/uJnCRi2BND4/0rR69BcQr5ZBXshvYAQLnBGSZFhGENoQb3wXDW3Y4z00uBOngWMjdCFTmad3gvR6EiBDgc8t9wDGAcML5mRfp4HDhPD6veR4DyNtaOG++pSb5KHyeOfa2n0eJBJwD0eQmp1IgEAgEAoFAIBA44HUFhaIo/rikXyrplaZpfur1a3clfZekD0r6mKRvaJrm7Pp33ybpmyVdSvotTdN87xsZCKQFq3leKXTihDuBirVX3yGEBB9CBN22v9/vE+mHtDkp995xHA+0YEBO3MJORZsxMh4IbDafOjo60nA4TAKE278J5auqqkWIPUuCczux98A7/+9gMEjBjzgHfCwcD4ECsrrZbNK4vGceksY9IWsAsndTlRkHArb2oihSNoLvUsBxcQ7g+Fgul5rNZprP52knEM+moIrNfeLauZ7lctlqe+Czvk0ja8W3dMznJ28XyIMlqaQ76XcRwJ0dNwERx50DPg5vH+EesZbdacI6zN0orC8XGPLWBuAiGtfN8fisrwfOm18D5+bzeRhi3nrha5dxcP08ax5+eXp6quFwmEQ03odg4e1T/oy5U8NDMbled2PcFnyuvosDgUAgcDPiezgQCAQexhvx8/5JSb8we+1bJX1f0zRfIun7rv+uoii+XNKvkvQV15/5I0VRvG4TsgepeRAjv4P0QGo9CNED2SCQVJohu4gCBOJRvXUBgIqsb8Xn5N2rzJAgCI5XbrGrcxyvwLsFHUu7uxQgaozFSZETe+ngBMh70R24MUajkcbjccstwbmcqPqP5wgwZubZMxT8eHkfvIfgQYIh92RGQN6ZO3ZHYOcLqvO4UWj1cKKJgwPSzvXkIZA4M/J7jODkYoSvx1xMyqvduduCNZqvubxCnocD5ufK59hFGc+l8JYJvzfuSHA3BQKCt1Z424CvpzzvwdeK5wx4eKM7RXwsN7kP3PXjc+8uA87L9XIfj4+PNR6PUx6Gh4X6j3835MGP/Jn5IXzzptyHW4A/qXf4uzgQCAQCr4k/qfgeDgQCgRZe16HQNM3/XBTFB7OXv07S11z/+TskfVTSt1y//p1N06wl/YuiKH5M0s+S9LffyGCcXEAYiqJIrQAEB87n85ZN2rdzhARj+YckQsKkg+PB+6ndGu2k3SvfTjIgsb7FnecwQFAktQiZEyXPg1itVukaIageHknvP5Vw79XPrw/0er3UPkCrAcTOWxS4Fg+9g0xyTZBPSDjXiMsCR4MTYW9DISuC+fGtFXm/CyAQOw9j9Otz0QDSzv3w9+92O02n07SOcBMwv6wZJ8h+f91Z4NV6D8bkfu33+7RWVquVFotFSwBwwuzH9HWFUMCc9/v95DZgrbnow3qWlESZPFOBMeatO74lKiKIt0LwLOG8YN4d3H8n3zh+XAzgvF7x537mTgAXHjxM0sU7rhtxiOvx54p5c4eEpPR+n3++bzzI1J+T24DP5XdxIBAIBB5GfA8HAoHAw3irGQovNk3zGUlqmuYzRVG8cP36S5L+jr3vk9evvSbcHo312okbW/XhOjg7O0tJ/uPxWKenp4kA1XWtsiw1m800m81U17U2m03KAIAw0G8OuSXcj7Hsdjs9ePBA2+02BfdBfrFEY7Om9QJyhrWe6/BMAcgvxIfXCQ+k9SJ3IjAPkJ66rh/KneAHh8PJyYlOTk40mUzU7/f14MGDNBYXDCC87gTBVQAZJfshD+0j84E2FI53vTbSMV1U4TWIPRkPOBRo0UBIcjfBarVK88M1kJGBc8VJ8mq10vn5ebpfHLff7ycBIA9y9N0ruFfSgZi7MwLBivsgqdVy4O02g8EgiQW5dT/fjcCv3Vs6fLysadw6VVUlAsz98BwAdw/wZ5wRBFIiCPkaYV2xZlkvXKNnN+QE3IMQXVRB3PJgScJLvX0jF178O8PXq78nd2fkWQjuGHJ3AkJEp9NptTndcjzW7+JAIBAIvGnE93AgEHim8bhDGW9qOL6xxFcUxYckfUhSsuJ7BZX+akmJWECeqKSyK0JVVZLUIrV1XWs2m2k6nSYSBoniHBDB1WqVtih08npxcZF64cfjcQp/9KqmV2Gd9ECivYruOw1AqDx0z7fmy9sGpCtCinACAedafAyQLSrnbjv3991UJfcqPHPvFeQ8jNDFCElJ6Ol0Oqm6flN7hFd/cVIgLEBQIew3tThQqSf7gPnzEE9vm6G1w/v+uS5+B4F2Qsq94JqckHsAZB7ySdglLTgQV47D/Pv9ZawuXHgrCdfolX0n/y5K4CqAmPucIwz47hSEUnINPifc916vdyPJ9rXkeRre2uNz4s80cAeFiw/cI87P9Xg7A9fJ8QiTdMeSX4e3V7jTxLMaOP9TvG3kW/ouHmj4To4pEAgEniXE93AgEHgm8FYFhZeLonjftRL7PkmvXL/+SUkfsPd9nqRP33SApmk+IukjknR6eto4OQfeSgBZ9L5+Et5pFfB+eiznuAecXHJsiAWEg8rw8fFxCn3ECo+DgYoxJMeJMuB32NepUruLgBYBD5qExDix90oyRI/WBzIG3AbuhNTFhOs5T8f0z3lVmXF4L71/VlKL+PmcNk2TiDxZBb71HmSNP1Pdhyz6bhS4OdwdwHm9FQXhiN76/X6fhJf8vuRz6mPPq9h5voEfizWT5y1wHObf2yY4rzsc8jYYz6dwhwrryO8NLRFOpnEy5FkIuZjCOCH1LljgDvDry9cfa9tFGHe1uIMi34mD3yO2ebtEHo7KWkFUQJBwQQvxwZ8dngvmOW9nuSlrJJ9vFz5uOR7rd/GkuHt7ejwCgUDg6UB8DwcCgWcab1VQ+AuSvlHSh6//+z32+n9XFMUflPR+SV8i6e++3sG8Gs4/7iEFECbvlceWPRgM0m4JVJLpLSfEj89xnpxoSEptBJCmsiy1WCwSSYVQQeLd2p7vGOBVVdwJVJa9kgzRpJef/n9IHONjTO48YBeI1WrVqkwjePB7gg3zHSAgcXkFNs+ecCHG549juIgBaaQ9BbFkOBwmJ4W3W7jbhHuAQwSSS5Ai95t++VyYmU6nSfzx/ADOC3HOK9WMnff6POXig2ccSG0HQO4mYc59HllfrHFcCx4qSq4HIhDX7lt5skYIVfRWGo7nIhljytdT3rbhggXCge9+4KSec/ruIKwPzzbp9XqpdQMHy2w2S/fCXT2ercGxcjcJ4Fnk/rrQwjrJsya4bn8O/Hic06/Jz3mL8Vi/iwOBQCDwphHfw4FA4JnGG9k28s/oKmzm+aIoPinpd+vqS/O7i6L4Zkkfl/T1ktQ0zQ8VRfHdkv6JpJ2k/1PTNJc3HtgAwYSY5n3sy+UykV/f7tHD/6iQUrW+f/++zs/P03aD3jeOowERAjLvPdjdbjdVSCUlAufBby4mQEQgLlROF4tFynyAeHr1/aYqP2QaAQVitV6vU6WebSCdjB0dHWm5XKqqKt29e1eTySQRQN8RA/EDMBfr9VrT6VSz2Uy73S4RwdyCD2H0ijhzUlVVS6xA+EDwkJRIHoINLS44L9w27y6GwWCgqqoe6tv3HAWux7dHJLfA8yByguqZDMx3p9NJW3+SV7BcLtXtdh9ycSBI0Nfv2xQy35B9383BhSpIMnkaiASIT4hkZEEMh8NW1kVd15IODg7mwR0Wl5eXaS1KSs/LZrNpbR2ZB2BKh20tEQK81YHf524Arp/58Z1XvO2A++bPKTkXHjbJfWVOEQw9oNUDVn2ryZsEIl/DzI8Lb+6YeNL4XHwXBwKBQODRiO/hQCAQeBhvZJeHX/2IX33tI97/7ZK+/c0MAuJ4EwGi0s8/+D08zUHFerfbJUFhOp2qrmvN5/P0ucFg8FBfuVekPR+BH0iiE2JJLfEDC7735kMiITXX85PGyTF9uzvIkPffe984gHB5tReCys4OvlMCOQOQKid8LnI4yYfcelAmGRX8eBo+pN+JJmOHxEEkEUuczLHLAwTaAw2pjvN7Kuku6nhrBYIMpLPf76fj5BVyXuezXp12Msv9zFsKIJ4uEOXrFQeFty+4a4HATdaCV/vdoeBk1/MTWF9cS95qgKjk7hR3PxB2me/QwfPgLS+cw9eRt3B4y4a3RPh8AxennNT7mnCRwV0o3vqS70ThDoX8+C4m0ULhbg7GetvwufguDgQCgcCjEd/DgUAg8DAedyjjWwIEEAdAXrl0+/ZN29/xHkjxfD7XfD5XXdep+ur9496Pz7lyouPvgyBBwvJgOghdvoUkY4Lc8Dqkjq0YERa8jYDzeHXf8xsYn5MjiO1gMFBZlikUEdKFoODHkA4VbVoovJefkEpvE8mzFPx4tIRAfiHN/Lj44VZ1jgkJdtLurhGOyXwxRn7HuJxo++4ZklptAS4msX4IgmSt5e0Q3FNfpy6aACeo3EM/t69/RACvsOfz5O4Jr+rnQZm+vri/fN5FMXeuuLjBukR8AeyWkl874/DtGrl2zu0tB+7G8efJBbk8DDR3Q3BdPNs8v7yPHwdjQhxy0cvFQ99t4ilpewgEAoFAIBAIBJ4Ibo2gUNd1sqJTdXZABlxQkA5kFmKyXq+1WCxSqwNWeAgnpLvb7aaqpjsgnCC5g6AoikSSPWeAKjo/vruAE+Y8TI4QwrzCDtnxayEsjywAKuZ5tV06ZBGwawXvQVCA3LmLgt/7dpb+k4scXg0nUd9zABgLZM+JmbcpeCAgpDB3aXj/PmTdWz+kQ68+58Aq70GXvtY2m02rzx7ijv1/tVppNBo9lG3AOnMS65V0nyvIKfeGeXVynY/LLf8+Lq+4u/DFZxhjv99PwpdX9P08CAcc29sPuN/9fl+DwaDVyoPw4C4LF8eK4mpbUxfe3J3AnPj4PZyR99P6gVDC73nOXcijDcivj/WcOwxYL9wfF/m4bzhD2N7Tvw8CgUAgEAgEAoHAw7gVgoJXFSEW/Nlt1FRfqbzydwjparXSfD7X+fm55vN5ClaUrkjm6empTk9PNRqN0vm81YE/Q0bdDu3BdYvFIhFP6WqrxLqu0y4FvV4vjWM2m6UMiLIsE3FZr9eqqkpVVSURwrMFlstl2vaS6rY7JfLWCMIqIZaMxcUEJ3ieOTGbzVJugodcQuy4R4gqHAuS5hV17g9zCDwDAdJGJdzzGbivZVmma4bA+q4P3Gu2OiSEUlLKMMBpQHsE9/Hs7CyNjblhVw/fmhHXAFtaSofdJ/gzAgOE3IMC2WHE38u8FkWRdvqQlIi6u3S8LcEdLr7bhQdC+pabLmxw/Nxx4+ude+Trh2fL59zP6S0xuSPB14nUbonIhQx/9n0HkePj49QWg7um0+mkthqEHc83QaDye8Ka4rq8FcK/W3gvzyPnDQQCgUAgEAgEAjfjVggKbkWWDpVwt6y7Fd+t5J1OR6vVKm3T5+n/TvJGo5HG47HG47GGw2EKsINQ5T34OcmSlIiK79gASWebSq5jtVqlDIf1ep2IGmSFYEEs/vv9Xov/f3vnFyNbVl73tbtud/2v7r5/GMYMYRhnbImgyGAHRUkgToxsQASS2LKw/EDkRMiSI8WKIgFCSvziB8fCj4mFZYQVYUOiBJmXSKDIsh8S4tjA4JnAmMEzNgPDkJl7b3dXVVf17e6Th67f7nV21517L0xX1Z3+llTqvtVV5+zznX32zFrf9609Huee9r29PY1Go5qQQbVBq9WqZeEhavO20yMeEH1vycA0EuHl+Pg4VxxwPC+Td58AYuTZbuk0Aw783L1eL1cCUIFSZpzLdhRiT8wg6VSEQFq9NQNiiYjgWfLJZKKdnZ08dt9tgqqT4+PjXPXg25JCVl0ocU8DbxVgK0sXX6iOQVBBPOKcXk3gvhV+37gvXjEjKc8lb9/wNgDuOcdkvFQVQMo9ji6mOfF3E04qClzg8nuPUOCiGdUw3irjlQs+x8pWD6p5ykoQb7+ZV7VTVtpwXL7r3glRlRAIBAKBQCAQCNwdVkZQIBtemrmVgoL3zpNRhGx4lQHElszkYDDIYgIZVRcFvHS7fA8Cc7vSc0lZCPAe8L29PY3HY926dSu3WZRl8eD4+MTwUJLG47F2d3drGd61tbW8/R1jIIPsJe4QJB+vGxpKyuMvzf5ol/Axlcfe2NiovQ95h2h6Rptxc35IJ1UFxN/bS4iL+xK4wMT4PRPtlRLSaQk718T1cpzxeJzvrYtPPmbO7dl8z6x7jLxUH/NHSbXMuu8sQhtNOd/8/L7FIWP3Kg4n+sQMkYZnhEoKYuJzyQULvoMg4h4UZYWBP4c+p92fxEm5z1PIPsLJPO+JsmKFe+1xKQl/6clQ+pZ4XJn3ft2cy0UIxla2TgQCgUAgEAgEAoFTrISg0Gg0crm6u8t7bz9EAvLhBLQk9y4IcOzNzc0sKDhZgiD5S6qTytKUEHLkn6fE3cnJzs7OmV0KIGEuDPCT1oXhcKgbN27UsrJUPbjQQmk/MYSMlaaGtBv0ej1Jyplx37oxpZQz8lQ3eJm5pCxKUNounZSHj8fjTOKm02nNH6CsmuA+Otn1kvXSjd99ABAGvEWGdhD3hHBSi2jAvCgrUrx0nrF4OwfX7l4ZiCbMI2/nYMtHSTmGXo3iZo/uyVCadnoW3sm6k2XfJtOrVPxavTqC+1KSeOLsPhAlMXdTR45Fu4OLgP7ccO/c/NCfea7PfTiYB8SvrE5ysaqEtyuVxqn83Q1DXbjhGeB6S9PWQCCwOlhrtZRazTt/MHBfoLp1qONZ1WggEAgE7j+shKBAhQK/QzbKfuh5hoFejs///PP5lJLa7bauXLmizc3NTIYhOZ6xdeHAy/a9l90N6ZyYkS2mzH04HOrw8FAvvPCCJOVrg1RyrjI7imfCzs6Orl+/rmazqW63m6sAvF8fNJvNWtk2WWpIsrv+l5UE7u5/6dIldTod9fv9mmAwGo3OlI6XZn9+jxqNRo4zZe6Qz2azmePDNeMbgNBSmvq5NwYtIKXnhVQn0F6i79szuijhPhJuHtlqtfLnOSbiC60RVEVIyq0s/X5fm5ubajabmkwmtWoEUFbQuMBRmjwyvzDt3NjY0O7ubo3k0waDgMK4/FqJD/OCGDF2b4Hxn5JyS8z+/n6uKnEDSJ/Hks5sbYnxabnjAm1IkHnuhc8t4kzcvGrFBTP3xuAelUaUCHJVVeXtO5nzpdGjC1T+PAUCgdXB7nt+RN/528seReDlQvdba3rwo/9z2cMIBAKBwPeIlRAUPHvqngWQDs+mSsp97Z1OJ2eFJWUignmftzsMBoNM7MfjcY1UeqbWKw685NnL4/FR8H5ziBQZUsYjqUY+PaPrJpQQGzcIpD0D4kf2nGOySwSfgVAyJt8tg/G5dwTHIQblFpaQNSewvV5PjUYjV2R49rnssaeCwne1cCGn0WjkqhFaACD8pQmm+xxAGtfW1tTpdGo99pBU7hNVFtxfYiOdttWUfgMHBwfa39+v7axxfHyyuwfHo8Wg1Wppe3tb165dy+KP/73T6eR4EEvmC5UJ8yoimHMuWHllCd4KVBUwr7x6Y95x/L2yxch35MAQkTnPfG+1Wmq1WrnFw3fXQEDgOeJ5820vy/P788/OG95uwHe8SqgU/NwEEgNUrsONKv0eEzMMHqk8ocLG52MgEFg+Gg+8Sn/1z/66JOlWv5LS2a2eA/cn9l9V6Vsf/DuSpIc+t6PqS08seUSBQCAQuBeshKAgnRIGfnrfvvsdSCcl0oPBQJ1Op+ZGz8tJCdlvtsHzz0iqCRbusO9ZfC+dd18HhA/pNPPrWWbISFnqDpHi2Fx/2WPuvg58hnggIrjLvm/lV3oeQGoZKyS6zBKX/eje8kC8IOLlfYHcedabMTNeKkC8cgHydnR0pPF4XDtOacDoOzGU1+Qmf07YnVy7COTX6NeNWALJ5zoRNTgOVRi9Xk+DwUDtdltVVWkymdQMDyGspUkm/ybGjMl9MXxMxIHM/DzBraymcRHBq39cPHMzRTc5dH8H/CiYy751KRUtXgmDgIGgxX1nDvHyee6iQemTQBzmEfy1tbUsHhF7f7Y5Vil2ET/3d/CKpHljCAQCi8XxW9+kw+4l3eqtaf/V0YL0SsTxRqX9V5/8t+qFNw/Uf+Bv5b91HvumDp/7zrKGFggEAoG7wMoICqV3AUQFAuhkoN1ua3t7O2fwDw8Ptb+/XyuT9swt2U/InrcNuDeDZ/ohWZ7d9mzoPGLjZdZUHEAovRIAUu5EHfLm5/Q+bh8vYyVDTMk78ePvToh9Fwbfss9NJCGBXCeEnDYNYupeBk7iEQD8b07e/PhcCxUWTrqp8IBAQhTZShOjSxcKPPZuoOgx5fxO3l0A4jguVvBCUKAKBMLprSIbGxu5/77Vaqnf76vZbObKGRc3IOHuFyGdilBuKikpV61gzNlut7Ng4SJK6X2AcOPiEShFLFoDvB3Hqx38GfE55/DWBOKD4Me1+XPpXhr8zUU8xsn88mfC7x1iS+m3grhQtn+434gLB2UbTSAQWBJSUuPKZf3VP2zrYCuEhIuCG2+sdOONp62CDx+8Rs1bt5RuNF7iW4FAIBBYJlZGUHA4kfOydKoNKDFHJLh+/bpGo1EmXL7bgXSaTYYYuW9AWQkBwfJxQMjo5b9586am06m63e4ZQuqZX47BuD17zNjcJ8JL4L1VgTJ8yFJ5XRC/tbU1tVottdvtvKMDBBOBYDQa5VhJqpFMFx+m02mtfNyFDMwhIeren+/Xj5DiOwFAFsns93q93NKBWDCZTPKYaHkYj8cajUZ68cUXtbu7m49NW4eX1TtxpW+e3nj3aKBahWvx+0A8uXZvf2FOuvBD28atW7fUbDbV6XRy9ns8HuvFF1+sGRty732OIHgQe46RUtLu7m5u1YHUd7vd2hyC/LthJXOSeHglQ+l5UGbnEfO4h1STUJ3gwhJxoHWGz/lcYjw+lxAUmKdedcFnPc7ureHX5mNAbHOfBn8emX8ej/JZde+LQCCweDRedU1PfvARSSEmXGQ88+516d2PavLR1p0/HAgEAoGlYCUEBQgzRIIspZeIe5aUFgYEhZRSreR5Op3m/vV+v5/9E8bjcSY4TuYgpfMIBtURe3t72tnZyUTcs9yMj60vIfhe6l9WKDBmRAT8AFqtVq6QcA+AcjeHVqtVc6gnc+3n8/730Wikmzdvand3N5sb0v/uuyiQTXajQsrT+aybMEIufXcON8xjTJBBiK/vRsF9m0wmeWcMrkOqu/dzH7y6wf0B6IXHNJDvjcfjfF8gvN5aUc4zPAOIuYsOXDP3EgGHuZJSUr/fz339xJV4eDUOx+90Ojm++/v7Go1GWeyqqkrD4TD7evA9WlzKTDpGkuw6wnfwC3CvC8Yxrz0Agk8VjJNsrsMNDpmXpWeD+2hIp0aifN9NEH0MHMfbNHz7S+a9z0+/Fsbg1SoIHv6sIyT4c+8mn4FAYImIzqOLjVT8DAQCgcDKYWUEBd+SDrh3gXR2NwYnBBAgSABEr9/vq9frZfICEfbSd+8bdzgZxfEeUke21jOppVEcHgHtdjuXk/N3SZlcex8510dmnWuvqiqTZCd37ofg2V2II2LNZDLRaDTSwcFBFmE4jx/Hs/xuFiidml66N4H31buPg2ecS28GJ2m+teL+/n7eAcLvvws3eAl4C4P7XpRtKlQWeCvGxsaGDg4OasZ/ZOW5Vvcb8IoE5kqz2cxCFD+ZU1ROMC8huWW2HFLL8dxw0GNWEmzphPCT3ffWDWKEQMNxOY+3Q3gLgV838wExiBiXfhXu0YB45vOcc3Ht/M13HmH8ZaWBX7sLDt4S4e0V8yoT3KeC+Pm5veqkbPnxNqNAILBYNH7oB3XzTdeWPYxAIBAIBAJ3gZURFMqyaSf7wHu7vcddOt0xwfvzERS63W6NjELaPKPpGU6OCYEeDoe539uFAi+b9nJ6svgQRQSFeUTfS7edVHk2Xzrd8QKC7tddtmhIdaHBCaYTqNKYkHF4Ob9XEiCueGsGGV+IIqXtJQlnTJBRxueCDT4YxMnJJd/lO27y57FAMIGk8jmvrOD+lXPLSbzvusBxEQfIxLfb7bzLCOX9nq1HkPH7x/13PwJECdo2SrNKKkEQs6TTrVGZL37vmLfMQa5vfX291nbDODwjX7arIGK5eMC8ch8O3xnBs/veNuIeDSWZd7HEKyd81wn/DJ/z9gX3XPHx8bmyFaps8WAtYI3gfgcCgcVi/OhlPR/bQgYCgUAgcF9gJQQFz4ZCpJxos/2cbwHnmX0nWpAHzPJ6vZ5arZb29vZyGfjR0VHeahKi40QFMokA4SXrkD0npBCZlFLO4JMBn9eXTVaeHQ0gqaVJIIRofX1d7XY7X4uP1VtDms1m9pCADLqZJMcqPQC4B75zA/F2Qi3pjAji13bp0qXcYsHxSwGgzKQPh8NsZuhVDy6w+Pe8GoL3vE9/PB7nWHJdtHx4W4h7aLggBFwE4Z5CSjudjra3t3XlyhVtb2+r1+vVvovgQAy4fsg988i3YfSxMN+pKLh161b2S0CsGQ6HtVYA5iHiiT9X8ypamNNexeGtEO7HwQ4bLnCVBqQYUTIGhCJIOZUDCBMQeZ4nb3FxHww3DeVZYg77OEvvBeYDn3MjSNYJxuEVEIhlzPdAILAkVIoy90AgEAgE7gOshKAgnXWQd6IKUel2u3lnB88uT6dTjcfjnFlcW1tTr9fT1taWLl++rE6no5s3b2YDOgidk336uz3jL6l2HuDZbIhKp9OpZbLdGJBtLhuNRh7rcDismUQOh8Nai4NndpvNZs6Ee4+5pJx559zEzlsAyDZ3u92aCOOZZFoOODdZXxcFyHh7thdiiLfDxsZGvheS8laKjJOxuH/CjRs3JCkTP2IynU5rgoH7aFAxMRqN8u4L3F+O7WaUVGhIUqfTOUPanWhzDL/2o6MjdToddTodbW1t6erVq7p8+bK2trbUbrdr9wXhw1+9Xk+XLl3KxJzKFcr0iafPMc4/nU6zYMG1eoUB5/VSf2Ld6/VqhpG8EJdcpCM+bqbpQoQbOM57dolD2crD+LxihfmNoILggAjg83De+RD4NjY2chzdLBIBq91uZ/GJOVK24ZTPNWP3tqpAILA4tP/gCf3w0w/pyX9xOUSFQCAQCARWHCsjKLgBmxN+SD/O+ZAHSCPVAF62z+fJsHurg1Tfn97bHZxYchypTmB8nGzbyJi8JLzcvpLebzKnlPZLJ2SNbQEhemwJ6N4ITljnCR1kf8vsO2SP1gePl5N9RBAvtcdU0EvYve2Ca00p5e8Bb92A2HvlhnRqLOjZcvdBQOApibTvmEBW3AUHzs+x+Ly3HfgOAsTAWz+oTnCC3Wq11Ol01O121ev11O/3a/eqNDpk3hJHzg8B9nlaGhPStsB43E8Dsu6eGq1WK18XpJqx8rcyTogZxNiFsvJe+k8XldznwOdl6aXAnPPjljHw+Ytg4K0JzEG+wz3xY/i2r8w9r67wahTmuRucMn+oHAoEAotFevghvfijV3RSphAIBAKBQGCVccf0W0rp4yml76aUHrf3fj2l9LWU0ldSSp9JKW3Z3z6cUnoqpfRkSumn7mYQTighJ26chh8CJA4neSeabjwHSYEkULLumXTvp4YMOVF1EunkhawtZBEy434Ebg7pBBxyTRWDl2BPp9Oc1d/Y2MjVGL4DBSTXTQ2dxDkZ9hh6K4n7OJSZeRdSiDHHdU8GJ7IuRpDVdWJNJcHBwUEmyN4Lj8jgrRIIL1RyUPGAoOB+CLxXVj94TEojyNKr4vj4ON8T9xFgHJBMb1FAKOh2u3mLTvducCGs2+3m+QhJpjqgnE/Mc6oKytYIvuOGkIhajAfhDf8Q5pGLHpDlUqya5zXgsfPnlevx73vM5z0T5XE8Dsw3zu9z1lua3JPBY0kc/B6Vcx7RzK+DODOnvWppXoXEsrCItTgQWAXcutbV3utSVCcEVg6xDgcCgcBZ3E097yckvaN47/OS3lhV1d+U9OeSPixJKaU3SHqfpL8x+85/SCnd9YbuZMsl1cgsLQzb29u6du2arl69mku4d3d3NRwOc094q9XKmWN66TEKJFPf6XQygYDIQdYpCfdspr8g6S4mNBqNWq+9E1PPoHs5PaQPUj4ajXR0dJS3u4RQsiUh5yFOwMnYPILm5A9TPG+F4HhONPmeZ3gRWXznikuXLuVY+e4BkHuOQ4WICyaQUN6fTCbZA4FqjdFopJ2dndwOwjhcOCnHD/w6nNw7Kfe2CwwrGRtzkXlV3m/uDdUJzBuPE5/p9XrqdrtZEOOniwnlvaZCwEU2Pkf8B4NB9l9AhOr3+9re3tbVq1d15coVbW1t5Weh3KWi2+3WrtW9Mcr5TgWEG0mWO514FYFXalAh4oIPx0Ts4BgYppZCjMO9HsrjIZAQo2azmato2FKWcSHUIELwXYQdb41ZEXxCC1qLA4FlYu0Pv6SHf+upKFAIrCI+oViHA4FAoIY7tjxUVfVHKaWHi/c+Z//8gqSfmf3+XkmfqqpqKunplNJTkt4i6X+91Dkg86UbPyXoCASbm5saDAZaX1/XZDLRcDjUzs5OLiWHVAwGA3W73Wxeh/khBANDROlUsKDigbYA6XQ/ejfkg0BBSiHeu7u72tvby+dqNpuZPGLQR6b9+Pg4VwBwPsquvWqBzDeCADGBSEN26Bv3bfMkZU8Fr5KAwCN8bGxsZEJfEnRJNSHEr5/YTSaTTFa5d5IyWWR3AloeIKp+fOLNcdnWEaLP/fFtP/1+cA8QSiCkVVVl/wEEJMaPAMBnfMcBYgdRh6BzPcBbGpg/XAdCRFVVarfb2t7e1vr6em23CECWHFK7tram3d3d2pio8HCBgzYbrhdxwXdyKI0S+ay3YvicJ6vvbS+IGXho8G8XrfB6QKBgjKPRqCY0uACQUqq1C3mVC2sC53EPBxeOaO3gWex0OnleETe+12g0snjg89grI9bX19Xr9W7bVrRMLGItDgRWAbfe/qN65sc3pBSKQmC1EOtwIBAInMXL4aHwC5I+Pfv9NTpZTMGzs/fuiHl97xCFbrer7e1tbW1tqdvtZjM+CLoTFDcLhChOJpMaAWNrQe/ll1QjcJAkxuLmd947DuHGF8GJN2ICZNgz+RBaSCIGe07mya57tYYTSveCQFTxcTFWyNp4PNbu7q52d3c1mUwy0YR0QRoh8fv7+7XtCT02/u/SvNBbVSRlIeDw8LBGVD3TDIFkJwDaGbyvn90x8CCgtN23qSR2CEy+vWNVVbn036sdysoMjuWZf6paJNWqEYgN99yPR7l/p9PJHhPEwQmyzy9i4iKH+1zwHtfn8eM991fg++4Nwt+8DcCJPC/uIZ/j+SnbirgWfy7KdhmO70aN3lpT7jribTscpyT5PA9ci5+XGPJ8efVO2RbjKNuuVk1UuANelrU4EFg22t94QQ/0HtC33rYWbQ+B+w2xDgcCgQuH70tQSCl9RNKhpE/y1pyPzU0xpJQ+IOkD0mmmfR7xaTab2tzc1NbWlnq9njY2NnLVAa0MTiQg2ZBLyHqv11Oz2ayZ/fluA5755FguApBd9YoGPkPG33cZcBd/FxS4PoglGWInXCWxKtsUII9UM0DyvDy8NPA7ODjIYgJbKPqOAJzXt+BkbE64SxEG0uVZaK8WkZRjg+u+myh6GwjZfxcouL+QRzeApAXBvRDcH6DRONlVg60Pq9nuC77bgbfKlL4L5X3kfvsWilREkN12McyPg9jj1RoINtxnrsPnCvB/E1uvKCl9Ify90tcDlP4X89ocOCbzT1Im5rQTcFxvo/GxcH0+pxFgaEsqd4WY54PhfycOvlaUgpC3L7kXRen54OPya/cYrDperrW4pc65jC8QuBccPv2X6o33pbc9suyhBAJ3jViHA4HARcX3LCiklN4v6d2SfqI6ZRHPSnqtfewhSd+e9/2qqj4m6WOSNBgMKkjAdDqtbRfZbDZ15coVbW9v59YBby+AcPqODG4WCJmglBvyDBGR6oRLUiblTu4hnpBG6TRTjTGkmxZ6jzleAW4oSD83mXgfi+/W4GQasg/JbbfbmWRBzshyu0EiHg3Xr1/Xzs6O9vb2couEl+G7QSSVHV5xQM+/kywqPyg5xxUfgu3X7OSaKUPsvQfeW1/4vr/wn8BngpYRyD2VBW6w1+l0cgk91SR+3WU2X1Le7rHX60lS3qkBo0nmAVUS8wi1iwkICtPptCbCeIUF//a2CEQv5iYvB2LXvO8zf7wig+w958Z3AMLNuCHeCHBueChJOzs7NUHIxSAqgRgfsfZjsG2n3zd/FrySheunZcOrMUqPEBf6GHen08n3stwRhXP5VpnEftXxsq7F6XLUmAdWAvdZdVDggiPW4UAgcJHxPQkKKaV3SPqgpL9fVdXY/vRZSb+bUvoNST8g6VFJf3yXx6xlQikxX19f19WrV3M2dH9/P/fW+8tJCT4Gvs1fu92eWwEhKRN8jgHh4XhuSujiA20V+/v7NcKDYR6kCzHBDQjZwYC/SacO9ogD3g9ONQbZ8larlYkhxJjSby8xpx1jb29PN27cyAaWjLXMWrOtI/EhDu4tAOlEjCAmkFyIHkIL8fGee+7zwcFB7v9HIKCMnRYCKioQBNxcEbJNVp97Rwbfd2dwbwHiBpnmnmLah28HJflePeBz0HcQcfLsXhHewkLcvPWmFIAQZrx6BE8OhKpGo5ErJSTl++QCjbdFIFx5pYH7a/j2i74FJEIP7QwYJdISw3iJM4IG9x5xw4UvBIHSp4HWEH8mx+Nxnq+tVivvqoGQhcCE/0Sj0dDBwYFGo5GGw6EODg5yewbnZI4iABFD7pELMf63VcR5rMWBwLJx6yd/TE//g/XwUAjcF4h1OBAIXHTcUVBIKf2epB+XdDWl9Kykf6cTB9umpM/PCMAXqqr6xaqqnkgp/WdJ/1cnZV+/VFXV0fwj1+Hl9BAcMvGICYeHh5mES/UWCcQASRqNRmo0GjXzOc/El+c7OjqqtQFAbsjQeg+5l2nPy/p6BpZsO8TKyRVEezwe1wgphBkyC6nh1W6387jJAvvOGE58MR/c39/PcSP7ynlKAcFL570NwUv4iSEEn89B1rg+SCGGj1SOIDxwDq8kgIB7+TnCh6S8iwcVEbQgQKI5jmfWuUfevmLzO4+lrCjwlhjig0iASDMcDjUcDnOsXXzi+LS8OPkmTsTUPQSYB95+QGWKCxXl2Ery7vAWmNJnwgUBPuN/R+zgmSL2ZUWKpGwe6d4b3sbAs+3tOt5e4teB8MMxfBtO38KVXTM6nU5t/ntVDIII4pE/K95iwXrgO16sCha1FgcCy0b7yef1A5derW++vREeCoGVQqzDgUAgcBZ3s8vDz815+7df4vO/KulX73Ug3hfOqzRt82oEJ7de7k6mXjolzd4KUG5fl9LJtoa0T2AC6V4BEBDf956yboigt0c4+fPKBEn581wP2W4yoRy71Wrlz5eGfMTHBQUfqxNVzk0bg5vpkeH1Y0qn5pSS8j1x8YYYEsfyxTg4L/EjZl4aX957rpdz+64Xa2trtWy0pNqWj1RUlMTU/Q6c7DuJJAZOehFRfCzEiPu3t7en3d3dXDFSeh8A9wHgcy5GcQ+9hx9Rwdt4pFNRwHecODo6qj0bJRF2kYHju0EhP93PY545IVUmHIdny58l5iRkHtCWgBDAc03sS08P/sa5EOuoZGEOU4HEjiVeReQtO4zR77nPc/+cx2BVsKi1OBBYNqrxRBs7tyTdHx4mgYuDWIcDgUDgLF6OXR5eFkDYIEleau2tBW5i6BlnJ/SQJe+1pnfdS+fnufaTuXTSgVjh2+lRYeCCgp+33W5nMsvYyY5yvvF4nM0lJ5NJJlwQK6+g8OoCiC5jqGZmg8SD8XDdVEGsra2p1+vlaz8+Ptbe3t4ZoutZY0iYt3hwnX6PEGzc/4B4M2Zi7V4EjJNjc398xwAEEC+59+qL0WgkSXk3h36/n6sIxuNxFhy4lyXphzh7VYQLGSmlvEuEZ/rZuvT69evq9/u1XTf4DPHgej0+zDkEBRfCXGTxrS69GodnpbzvHBNRiueJeJZVNNxfr3Bg/L7TAsfxvyGk+Hf8frtfBu0a7lnhxJ32onIrVUlZXOx2u9rc3MwxYQzMR0m1Z5Ixl+KgV3e4eMMYaElZJUEhELgoGL/l4ZPqhEAgEAgEAiuPlREUPAvuhN777iE9nsX2cnjphDy0221dvnw5l8ZDyPkO5MOzykdHR9m3ALLCOdfW1jQYDPLxIBtkQ/mciyIbGxvZJ2E4HObKCSoWhsNhJt0+NrKtlHBzXIgQrRh8F1NK6TQL7mXteAtIqgksVVVpNBplbwayxZ7BbzabmejiHUD2mTJzd813MYJ7iiDi4/CWFcbI9pCTySTfH0j19vb2GaKKMAPxhKyyI8hwOKz5OCBMuVkgJBaBAmGDsXkmfnNzM881ttyE0E+n01z5Qdae3vzxeKy9vb28rSJVGPT4sw0m8594eEk/cEHBqwoQG6hIYXy0IyAutNvtM60LHI/5xFi8NcHjUvorMF6EAKpP+CzPC3F0Ys+c8PYNBA3Gz3hodbl8+bL6/X5tjiA4ISIxT72Ngjj4uRCKPNZra2sajUY14SgQCAQCgUAgEAjMx0oICpAcL6/27Dg/IRy0B5BRLA3xut1uNq7z70DavRcdot/v97PZH54Nnnn1rCpiAsTLS+YhJp6hh8S674Fvd8lx8Xvo9XoaDAbqdDqZ/A4GgxpBwpvBdynwnQok5c94mwfw3QUAhMtL5r0kH/JJFte9FPjpwgpVE575ppqC8WK8iLDBZzyjDglH3EHAKXcp4P5BYj2b79+BMHopv88/svzuLeAZcN7DIJPqCQSb9fX13IpBS8Th4WFuD8A00OdxaYDo8x1xApPBqqrUbrfznCM+4/E4t5h41t/Jv4sXvJirPAtcr5uTegsC3+O6GSdznPnv7SGld4XPK3/fPUG8nYLqhE6nUxP9mIOcw59z4uMtSWUbB/fRq2x8/Vl1U8ZAIBAIBAKBQGCZWBlBwUmxiwn83fuZvYKBLCakltJoL+X2LQjpPXdjQIiRf4/MMeefl1n18XrGO6WUxQSI8HQ6zUIAxKbcAhBBwXvCnfhBsiFi5VaMThrnmQ9Clkvi5bH2zzup5XySaqS/rBggLrRvUI3Aefm39++734J06n3hhNe3AHXSTyydBJceBe7rwLG8nL5sdSBuzBPIJveW1hfEA3r5y6072aWAXS64HrwzfO65x0HpZeFCCPfA5wbx81YS4t9sNmveFN56wTi5N+6JwfV4jMpWEd/m0QUr95vgvjGXymep9PxgXpWtT2wTyi4P5XPq5qVci59rnqDg1USIj9x75peLE4FAIBAIBAKBQKCOlRAUPDMLOfMyesgW5MsJoGfjERh8P3oyp7QnkO0ku+kZdbL/lOBTek6WtjT282yyE6/j4+O83V1pvCcpEyRJtWORhe31enksCAhuFOftBx4zr+SAQLloQUsBWwi6vwEk1o3reHlJPOMg1l6Nsb+/n68Porm/v18jyhBiL71n+0VaB5xcQswhipDkcv749qBUgTAn1tfXa0Z/XtHiXhXu4YF3Q7vdzvfAhQs36OS9so0Akk8MuHfsuMH3aS0pd2LweYPfBve81+vleY+XBqaMiGODwSA/C9PpNM9Jxsf8J7ZU1/guDBBtFzf8mfVnjWeBeHMdXgnkc9SFAI7rhptc36VLl9TpdDQYDLS1taVut1t7dvzeuujh1U3AhUi/TtYSntFyO9hAIBAIBAKBQCBwFmkVeoRTSv9P0kjSC0seytUYQ4whxhBjKPC6qqquLencC0VKaU/Sk0sexkWfbzGGGEOM4Swu0joc/08cY4gxxBhWdQxz1+KVEBQkKaX0J1VV/ViMIcYQY4gxrOIYLgJWIc4xhhhDjCHGcNGxCrGOMcQYYgwxhrvF2p0/EggEAoFAIBAIBAKBQCBQRwgKgUAgEAgEAoFAIBAIBO4ZqyQofGzZA1CMAcQYThBjOEGM4eJgFeIcYzhBjOEEMYYTxBguFlYh1jGGE8QYThBjOEGMYQ5WxkMhEAgEAoFAIBAIBAKBwP2DVapQCAQCgUAgEAgEAoFAIHCfYOmCQkrpHSmlJ1NKT6WUPrSgc742pfQHKaWvppSeSCn9q9n7v5JS+lZK6cuz17vOeRzPpJT+bHauP5m9dzml9PmU0tdnP7fP8fw/bNf65ZTSbkrpl887Dimlj6eUvptSetzeu+11p5Q+PJsfT6aUfuocx/DrKaWvpZS+klL6TEppa/b+wymlfYvHb57jGG4b+wXG4dN2/mdSSl+evX9ecbjd87jQOXHREWtxrMWz92It1sVbi2MdXg3EOhzr8Oy9WId18dbh2XHvz7W4qqqlvSQ1JH1D0iOSNiQ9JukNCzjvg5LePPu9L+nPJb1B0q9I+jcLvP5nJF0t3vv3kj40+/1Dkn5tgffiO5Jed95xkPQ2SW+W9Pidrnt2Xx6T1JT0+tl8aZzTGH5S0qXZ779mY3jYP3fOcZgb+0XGofj7RyX923OOw+2ex4XOiYv8irU41uI7XXesxfn9V+RaHOvw8l+xDsc6fKfrjnU4v/+KXIdnx70v1+JlVyi8RdJTVVX9RVVVB5I+Jem9533Sqqqeq6rqi7Pf9yR9VdJrzvu8d4n3Svqd2e+/I+kfL+i8PyHpG1VV/eV5n6iqqj+SdL14+3bX/V5Jn6qqalpV1dOSntLJvHnZx1BV1eeqqjqc/fMLkh76fs9zr2N4CSwsDiCllCT9rKTf+37Pc4cx3O55XOicuOCItfgsYi2OtXgeXpFrcazDK4FYh88i1uFYh+fhFbkOz8ZwX67FyxYUXiPpm/bvZ7XgRSyl9LCkN0n637O3/uWsvOfj51laNUMl6XMppT9NKX1g9t4DVVU9J51MKkmvOucxgPep/pAsMg7S7a97WXPkFyT9d/v361NKX0op/WFK6a3nfO55sV9GHN4q6fmqqr5u751rHIrncdXmxCsZS49prMUZsRbXEWvxgtfiWIeXhqXHNNbhjFiH64h1OP6f+CWxbEEhzXlvYdtOpJR6kv6rpF+uqmpX0n+U9IOSfkTSczopbTlP/N2qqt4s6Z2Sfiml9LZzPt9cpJQ2JL1H0n+ZvbXoOLwUFj5HUkofkXQo6ZOzt56T9NeqqnqTpH8t6XdTSoNzOv3tYr+MZ+XnVP8P6rnGYc7zeNuPznkvtqv5/hBrcazFd0KsxbNhzfnsK2YtjnV4qYh1ONbhOyHW4dmw5nz2FbMOS/ffWrxsQeFZSa+1fz8k6duLOHFKaV0nN+qTVVX9N0mqqur5qqqOqqo6lvRbOueSkaqqvj37+V1Jn5md7/mU0oOzMT4o6bvnOYYZ3inpi1VVPT8bz0LjMMPtrnuhcySl9H5J75b081V10pw0KyN6cfb7n+qkP+mHzuP8LxH7RcfhkqR/KunTNrZzi8O851ErMicuCGItVqzFM6zEcxdr8QkWuRbHOrx0xDqsWIdnWInnLtbhE8T/E98ZyxYU/o+kR1NKr58pgu+T9NnzPumsD+a3JX21qqrfsPcftI/9E0mPl999GcfQTSn1+V0n5ieP6+T63z/72Psl/f55jcFQU90WGQfD7a77s5Lel1JqppReL+lRSX98HgNIKb1D0gclvaeqqrG9fy2l1Jj9/shsDH9xTmO4XewXFocZ3i7pa1VVPWtjO5c43O551ArMiQuEWIsVa/EMS3/uYi2uYSFrcazDK4FYhxXr8AxLf+5iHa4h/p/4TqgW7AJZviS9SycOlt+Q9JEFnfPv6aQc5CuSvjx7vUvSf5L0Z7P3PyvpwXMcwyM6ceV8TNITXLukK5L+h6Svz35ePudYdCS9KGnT3jvXOOhkoX5O0i2dKGv//KWuW9JHZvPjSUnvPMcxPKWTPiTmxG/OPvvTs3v0mKQvSvpH5ziG28Z+UXGYvf8JSb9YfPa84nC753Ghc+Kiv2ItjrU41uKLuxbHOrwar1iHYx2OdfjirsOz496Xa3GaDSQQCAQCgUAgEAgEAoFA4K6x7JaHQCAQCAQCgUAgEAgEAvchQlAIBAKBQCAQCAQCgUAgcM8IQSEQCAQCgUAgEAgEAoHAPSMEhUAgEAgEAoFAIBAIBAL3jBAUAoFAIBAIBAKBQCAQCNwzQlAIBAKBQCAQCAQCgUAgcM8IQSEQCAQCgUAgEAgEAoHAPSMEhUAgEAgEAoFAIBAIBAL3jP8PH2PDXLnd5bIAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 175540 0\n", + " Min thresh = 1000\n", + " Not Sliding\n", + "\n", + "\n", + " Winner = Not Sliding\n", + "\n", + "\n", + " VFOLD = 2 of 15\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsIAAAGDCAYAAAAh/naNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAACYqklEQVR4nO2dd5jcVr3+3yNN275e2+vendhxeuL0hFRIqAkQIAFCDbl0uNzfpVw6XPqFSyeE3kMukAKE9N7jFCd2bMe917W3786MpPP7QzrSkUYzO7veMrvzfp5nH+9oNNKRdq199eo936+QUoIQQgghhJBqwxjrARBCCCGEEDIWUAgTQgghhJCqhEKYEEIIIYRUJRTChBBCCCGkKqEQJoQQQgghVQmFMCGEEEIIqUoohMmIIoSQQojFYz0OQgghg2ciXsOFEKuFEOeN9ThIZUAhXEUIIbYIIfqEEN3a1w/HelxRhBDv8C6+bxzrsRwuQoj53rEkxnoshJDqQwhxuxDiSzHLLxVC7Dmca5MQ4j7v+nZ8ZPlN3vLzhrrtIY5HXW/V37e9Qoh/CCFeqq8npTxaSnnfaI6NVC4UwtXHq6WU9drXB8d6QDG8HcBB799hh6KUEFJF/BrAVUIIEVl+FYA/SCmtw9z+iwDepl4IISYDOB3A/sPc7uHQLKWsB3A8gDsB3CiEeMcYjodUMBTCBIDvwj4shPiBEKJDCLFWCHGh9v5MIcQtQoiDQogNQoj3aO+ZQoj/EkJsFEJ0CSGeEkLM0TZ/kRBivRDikBDiRzEXZH0c8wCcC+AaABcLIaZ5y68VQvxPZN2bhRAf08b3VyHEfiHEZiHEh7X1viCE+IsQ4vdCiE4A7xBCnCqEeFQI0S6E2C2E+KEQIqV95mVCiHXeufixEOJ+IcTV2vvvEkKs8Y7pdm/cgz3npc7pqUKIFUKITs/V+I63POMdR5s39ifVOSKEkBhuAtAC4By1QAgxCcCrAPx2oGthGfwBwJuEEKb3+koANwLIafszhBCf9P5GtAkhbhBCtGjv/5/nTncIIR4QQhytvfdr7+/GP72/L48LIRaVMzAp5R4p5fcAfAHAN4QQhrfNLUKIi7zvi/79EkIsFULc6V2j14kJ8JSSFEIhTHROA7AJwBQAnwfwN+1i9ScAOwDMBHA5gK9qQvljcC9+rwDQCOBdAHq17b4KwClw787fCODiEmN4G4AVUsq/AlgD4C3e8j/CvdgKwL+QvwzA9d7F7e8AVgKYBeBCAB8VQuj7uRTAXwA0w71w2wD+3TvWM7zPvN/b9hRv3U8BmAxgHYAz1YaEEJcB+C8ArwMwFcCD3vkZLKXO6fcAfE9K2QhgEYAbvOVvB9AEYI43tvcC6BvCvgkhVYCUsg/u9eNt2uI3AlgrpVyJEtfCMtkF4AW412N4+/ltZJ0PA7gMrskxE8AhAD/S3v8XgCMAtAJ4Gu41WudKAF8EMAnABgBfGcT4AOBv3raXxLwX+/dLCFEH103+o/fZKwH8WBfpZIIgpeRXlXwB2AKgG0C79vUe7713wL2gCW39J+A+PpsD92LZoL33NQC/9r5fB+DSIvuUAM7WXt8A4JMlxrgewEe97z8FYKX3vQCwDcBLvNfvAXCP9/1pALZFtvMpAL/yvv8CgAcGODcfBXCj9/3bADyqvScAbAdwtff6XwDerb1vwBX+82K2O987B4nI8oHO6QNwL/xTIp97F4BHABw31r9P/OIXv8bHF4CzAXQAqPFePwzg34us618LvdcSwOIi694H4GoAb4V7Y78EwIveezsAnOd9vwbAhdrnZgDIR6+L3nvN3j6bvNe/BvBz7f1XwBXxceMpdr3NeMvP8l5vAXCR933s3y8AbwLwYGTZTwF8fqx/nvwa3i86wtXHZVLKZu3rZ9p7O6X3v91jK9y795kADkopuyLvzfK+nwNgY4l97tG+7wVQH7eSEOIsAAsAXO8t+iOAY4UQJ3jjuh7uXTkAvBmBazAPwEzv0V67EKIdrmOrRwa2R/Z1pHAnUezx4hJfheuIwDtef31v3zu0j88D8D1tXwfhiuVZKJ+Bzum7ARwJYK0Xf3iVt/x3AG6H64TvEkJ8UwiRHMR+CSFVhpTyIbiZ3UuFEAvhPqH7IzDgtbBc/gbgAgAfgnuNijIPbk5XXTPXwDUCpnnRhK970YROuCIVkTGU9TekBOq6ejDmvWJ/v+YBOC3yd+UtAKYPct+kwqEQJjqzVPTAYy5cl3gXgBYhREPkvZ3e99vhPr4/XN4OV1A+K4TYA+Bxb7l6pPcnAJd7edzTAPxV2//miMBvkFK+Qtu2LvAB4CcA1gI4Qrrxg//y9g0AuwHMVit652S29tntAP4tsr8aKeUjgzjWkudUSrleSnkl3Edy3wDwFyFEnZQyL6X8opRyGdy4xqsQfuRJCCFx/BbuteIqAHdIKfd6y0tdC8tCStkL90nZ+xAvhLcDeHnkmpmRUu6Ea2pcCuAiuLGv+d5nBjWGAXgtgH1w3d+4scX9/doO4P7ImOullO8bxnGRCoBCmOi0AviwECIphHgDgKMA3Cql3A73cfzXvMlax8F1LJUj+3MAXxZCHCFcjhPuzOGyEUJk4ObWrgFwgvb1IQBvEUIkpJTPwHU1fg7gdillu/fxJwB0CiE+IYSo8RyGY4QQp5TYZQOATgDdQoilcC/gin/CdaIvE26FiQ8g7AJcC+BTKismhGjyzlcp0t65y3jHuhMlzqkQ4q1CiKlSSgduhAUAbCHE+UKIY72JKZ1wHy/aA+ybEEJ+C1dsvgfAb7Tlpa6Fg+G/AJwrpdwS8961AL7imRgQQkwVQlyq7T8LoA1ALVxHelgQQkwTQnwQ7pyXT3nX0yjF/n79A8CRQoirvL+JSSHEKUKIo4ZrfKQyoBCuPv4uwnWEb9TeexzuhIUDcCcjXC6lbPPeuxLunfouuDOCPy+lvNN77ztws793wL2g/gJAzSDHdRncSV+/le5M3z1Syj3etkwAl3jr/QnuxfyP6oNSShvAq+EK583e+H8O110oxv+D60R0AfgZgD9r2zsA4A0Avgn34rwMwAq4F2tIKW+E69Je7z3KWwXg5QMcX7d3fOrrApQ+p5cAWC2E6IY7ce4KKWU/XEH+F7jneQ2A+wH8foB9E0KqHE+gPgKgDsAt2ltFr4WD3P4uL4IRx/e8fd4hhOgC8Bjcp3qAK9C3wjUHXvDeO1zahRA9AJ6Hmyl+g5Tyl0XWjf375cXWXgbgCrjX6D1wr/vpYRgfqSBEOBJKqhXh1li8Wkp59liPpdLwqlLsAPAWKeW9Yz0eQgghhAwPdIQJiUEIcbEQolkIkUaQmRsOp4IQQgghFUJZQlgIcYlXTHqDEOKTMe83CSH+LoRYKdwe3u8c/qESMqqcAXcm8QG4sYvLpFuPk5CKh9dsQggpjwGjEd6knBcBvBTu4+EnAVwppXxBW+e/4Nb8+4QQYircmZnTpZS5uG0SQggZGXjNJoSQ8inHET4VwAYp5SbvInk93FInOhJAg1dmqh5urb7D7V9OCCFk8PCaTQghZVKOEJ6FcDOCHShsHPBDuKW2dsGdpfmRImVKCCGEjCy8ZhNCSJkkylgnrqh1NE9xMYBn4ZaEWgTgTiHEg1LKztCGhLgGbp1Y1NXVnbx06dJBD5gQQiqBp5566oCUcupYjyMGXrMJISRCsWt2OUJ4B9wWhIrZcF0EnXcC+LrXinaDEGIzgKVwGx34SCmvA3AdACxfvlyuWLGi/CMghJAKQgixdazHUAReswkhJEKxa3Y50YgnARwhhFgghEjBLS59S2SdbQAu9HY0DcASAJuGPlxCCCFDhNdsQggpkwEdYSml5bUovB1uh69fSilXCyHe671/LYAvA/i1EOJ5uI/lPuF15yKEEDKK8JpNCCHlU040AlLKWwHcGll2rfb9LritCAkhhIwxvGYTQkh5sLMcIYQQQgipSiiECSGEEEJIVUIhTAghhBBCqhIKYUIIIYQQUpVQCBNCCCGEkKqEQpgQQgghhFQlFMKEEEIIIaQqoRAmhBBCCCFVCYUwIYQQQgipSiiECSGEEEJIVUIhTAghhBBCqhIKYUIIIYQQUpVQCBNCCCGEkKqEQpgQQgghhFQlFMKEEEIIIaQqoRAmhBBCCCFVCYUwIYQQQgipSiiECSGEEEJIVUIhTAghhBBCqhIKYUIIIYQQUpVQCBNCCCGEkKqEQpgQQgghhFQlFMKEEEIIIaQqoRAmhBBCCCFVCYUwIYQQQgipSsaVEP74X1bi/X94aqyHQQghhBBCJgCJsR7AYOjqt7B+X/dYD4MQQgghhEwAxpUjPLk+hbbu7FgPgxBCCCGETADGlxCuS+NQbx6W7Yz1UAghhBBCyDhnfAnh+hQA4FBvfoxHQgghhBBCxjvjSwjXpQEAbT2MRxBCCCGEkMNjfAlhzxFu686N8UgIIYQQQsh4Z1wJ4SlKCPdQCBNCCCGEkMNjXAnhFhWNYOUIQgghhBBymIwrIdxck4QhGI0ghBBCCCGHz7gSwoYh0FKXZjSCEEIIIYQcNuNKCAPA5Do21SCEEEIIIYfP+BPC9Sk6woQQQgghI0zedvDwhgNjPYwRZRwK4TQOUggTQgghhIwo96zdh7f8/HFsP9g71kMZMcafEK5L4QCjEYQQQgghI0pvzgIA7Ovqx7FfuB2PTEB3eFwK4a5+C1nLHuuhEEIIIYRMWGzH/Xd/Vw5d/Ra2TUBnePwJ4Xq3lvChnvwYj4QQQggh1czaPZ3oyVpF35dS4oYV29HVPz41iyMlADcrDAB5R47lcEaEcSiE3e5yjEcQQgghZKywbAeX/ehh/OmJbUXXeXpbOz7+l+fw+VtWj+LIhg/HE745yxXCtrKIJxDjTwjXsc0yIYQQQsYWy5Hozzvo7C/uCHf0uVqlvXd8OsK25wjnPAFs0REee1Q04mAPHWFCCCGEjC7bD/bipC/fic0HegAAtlPcJe3Pu++lE+NObgEAlO7NUwhXDioasb+LQpgQQggho8v2g7042JPDFk8IW3Zxcagm9o9bIRyNRlSrEBZCXCKEWCeE2CCE+GTM+/8phHjW+1olhLCFEC3DP1ygIZ1ATdLE3k4KYUIIiaOSrtmETDTUhDEVF8iXEsK+I2yO/MBGADtyrKVE/3hlQCEshDAB/AjAywEsA3ClEGKZvo6U8ltSyhOklCcA+BSA+6WUB0dgvBBCYEZTBns6+0di84QQMq6ptGs2IUPFdiTO+vo9uPnZnaHlNz+7E6d85S7/cf1ok7fCArhUNCLrrZtOjlNHWIYdYavEsQ6Wtu4spAyEdX/eRucYVNco5ydzKoANUspNUsocgOsBXFpi/SsB/Gk4BleMaY0Z7OmgECaEkBgq7ppNyFDIWjZ2tvdha1u4du22tl7s78qiu9+C40h8964XR7WSlBKD5ZQUGyga0dGbx4/u3eBHECqNaPm04coIH+rJ4Yyv34N71u7zl332plU47gt34Kmto3tPXo4QngVgu/Z6h7esACFELYBLAPy1yPvXCCFWCCFW7N+/f7Bj9ZnRRCFMCCFFqLhrNqlespaNjiFWTCiWS1WirDdvY8ehPnz3rvW4VxNUI41ygtU47MOIRnzqxufwrdvX4fHNlflARpnuw50R7ujLI2c5oflea/d0AQA+/Kdnh2Uf5VKOEBYxy4qdiVcDeLjYIzYp5XVSyuVSyuVTp04td4wFTGvKYG9nf8XeQRFCyBhScddsUr1c9fMncPyX7hjSZ1Uu1ZERIez97e/LWX55r9GsZqAcYSUO86WqRniOcKqII7zjUB8AIFOh0YloNGK44ijq52VrP9vWBrcqWEff6MYjyjnzOwDM0V7PBrCryLpXYBQesU1vzMByJGsJE0JIIRV3zSbVyxNb3HssKQcvVJX4igphyxNjfTnHdyhHUwgHjrDKCA/sCJtG3P1pIPqKCeWxxq8aUcaxDga1Hd3QVD/n6M97pCnnzD8J4AghxAIhRAruhfOW6EpCiCYA5wK4eXiHWMj0pgwAMB5BCCGFVNw1m1Qn3VrrYTVpbDAEj+PDy5UA7c1ZvsAezY5nfjY4ppLCHx/fhqt+8bj/OjtApEAJ4UotS2YPIiNsOxK/e2xrWa6xctX141ancbTPxYBCWEppAfgggNsBrAFwg5RytRDivUKI92qrvhbAHVLKnpEZasD0Rk8Is3IEIYSEqMRrNqlOntve7n+vi+JyUYK3IBqhZYTHJBphR8VhIPzW7O7EM9va/df9eTcaUUzcqY5zlSqE1bD8qhElRO6z2w/hszetwhNl5J3VOdR/buqmZpQNYSTKWUlKeSuAWyPLro28/jWAXw/XwEoxw3eE+0Zjd4QQMq6otGs2qU6e3nbI/76738IUrzNsufjRiIhIVCKqL2dDadDRFJJKAMfV1rWl9JcDQJ8nhAd63F+xQjjSUKPUDUfOCq9bCrUd/bzYMbnh0aAyQykDMLk+DdMQdIQJIYSQCuX5nR3+9139g3eElaCMCiM1Oa03Z/tCanQny3mOsCf89PJpjiNDrmlfrrQjHN1mpRGNRpQ6DhlZt+R2lejVVq3kjHDFYRoC0xrS2M2MMCGEEFKR7OnoR8p0ZUZXdvCVAAZ2hK1ACI9ix7N8pIKC3lDDdiQcGQi9XiWEx6sjrKpGlNFZTh1jOcei4iS66FWnUcqhTa4cKuNSCANBCTVCCCGEVB77urJYOLUOgBuNGCx5v3xa/PLenK05i6M4Wc4JO5/5SDQiNEYVjYgRh8otBg7fEe7sz2Nr2/DH/QujEYXn2XEkuvrzg6rgYcVUoQiJ4lG8Lxi3Qnh6Y4aOMCGEEFKBOI7E/q4sFk2tBzC0yXJ+1YiCyXKB2zom0QiVEY6pCOFERHJfzj3uuOG19QTNJA5XyP/0/o244rrHDmsbcfgNNUpEI256difO+vo96M+X34Y5uIEpvIkARjceMX6FsNddbjTtc0IIIYQMzKHeHCxHBo7wkKpGFIlGeEKrL2/7AnOkhPDG/d3YfjDc4lntK+vHBbRohBqPJtaBeAF5UOuFcLjRjs4+C4d6h7+3QmFDjcJx7u3MorPfQl/e/RmXcyxxk+X0UzSaUZHxK4QbM+jN2egawn8uQgghhIwc+7zWuUoIH85kucKGGkEdYf9xfER8rdzejj88vnXQ+4xy4bfvxznfvDe0zI9ExFRSiDrC/SWqRuhNwcpxQDv78/jAH5/GoZhmYo6UZVVrGCxOGZPlgnXKd+eVAx537oDRLaE2boXw3JZaAMDWA70DrEkIIYQQAOjozeO6BzaO+NNUJYRnT6pFyjTQ3pvDii0D15fVKdZQI6dlhB1/glZ4pUt/9DA+feOqoQzdp9g5KtVQwxeF0clycY5wt+YIlyEeX9jViX8+tztUjUPfryNL1/kdCrYTFbnxGWF3nYFLrCl8R7hoRpiO8IAcOb0BALBub9cYj4QQQggZH9y9di++eutabG0bWRNpnzeZvbUhjfpMAj97cDMuv/ZRrNtT/t/s4o6wyt8GdYRHIhqhxHwUK9JiOR+pGgG4brGUsmQdYT3KUFalhRgx+tmbVuEHd6/3P58bZiFc2FCjcJz+BEF141JOZ7mYyXLF8sIjzbgVwvNaapFKGHiRQpgQQggpi8G4doeDEpGtDRk0ZILeXSoqUA5xk9GAYOxhR3j4j6fYzYISwHETyILJew76847/iD9ufLpoLS9XW5jT/d1jW/HtO18sEKzlkLMcXHv/xpI/E+XYZks01IjmtAfjCOuCV9e+cvSKgJTXWa4SSZgGFk+tpxAmhBBCyiQf48SNBPu7smhIJ1CTMlGfDqRGOc0WousWtlh2X/flbK1cmcTlP3kEFy2bhveeu+hwhw8Afjmy6Y2Z0PJAkMZ0lvPLjUn05oJcdNzpdoq4ocWIc1Gj2xqMEL7ugY34nzteRF3KxFVnzI9dp1RDjese2Igdh/rQmEm6+x7ETZaKsjhFXGA6wmWyYEodthwY/rp5hBBCyEQkrmzVSLC3sx+tjW5LZV0I9+YG7wgXCmFVo9fyc7y242DD/m5s3j98mmCbVy1ielNYCBdkhPVohO+OOqFjjasjrC8ajIuaj6lWoc5RdhBCeK0XU6nPFPdEo5Pl9BuZJzYfxKMb2wqampTXUKPQEWZGeAgsmFKH7Yf6BnWHSQghhFQrxVzW4WZ/VxatDa6A1KMRfYOJRhQRVpY2WU79+bccibzlhPK6h4uKRpiGCC33s8FWYcUKfeKYfqxxDmc4H1tGrtYJu7LtfUG3PjWEwQhhVRauqSZZdJ2o06yPOW9LOFIWuMblaLJANBfuC6AQLpv5U+pgO7Kgxh8hhBBCChlM96/DoTtr+U6j7gj3leEId/Xn8R83rMSBbjdnXNhZLohG6BnhvC0LsraHUx1jq6ctignxuLy1XmVBd4RLlR0r9n4Uf7Kc969eRm0o0Yht/vEVXydwuAtvSvK2A0cG2d5STTeiBNvTXe3g/VFsFDi+hfCCKW4JtS0j0FaQEEIImWjECZqhsGFfN25fvafkfpKm66Q2ZALHsRxH+PmdHfjr0zvwxGa33Fqxhhq9OVtzYCXyjlNQ3ivuMLcc6EFHbz60zHYkVkXKku1q7/O2ET9ZLxcTUdDdUX0SWpzDqS8bVDTCO8a4OsSDqRpxyDsHpX4XCmIp2vnN2w5sR2qVMsq/ybJ9d1tfNrAjfMOT23HzszsH3P5gGOdC2G3duGkYM0GEEELIeGLFloP4yPXPxOZQoyg38XAfPf/u0S340B+fKfoY3LIdJAxXYugZ1HIywmqM7V55sWItll1H2F2WtWxIWdj5zHYkNu7vxlW/eNwv6Xbe/9yHi7/7QGi9u9fsxat/+BB2d/T5y7JFSp9FIwB5XcBpDT7iJtGFx4aS70exIo6rcoTTCUObpFeeEM5apUW6/15kXLZ2TH40okR2uRhxneVkGQ75Hx7fihufoRD2mVSbRGMmQUeYEEJI1fLwhjbc/OyustxW5ZgebkvfnC2Rs52iRlTelkh4jvC0hjSEF7Mtp3yaGqNyLAujEY43Bgc5291eNh8vwvK2gwu/fT8eXH8Aq3d1+sv3eKJY0dlvQUqgW+uAF7jnhcem/xtX/zZnh91pfRv/en43fv/YVjhS+vljy5FwHImLvnM//r5yV+FJ0caj9nvQu1Fork0WtEIeCD1SWkqER9/TRX/eduA40hewVky3uGLE1hGWwVOEYtrcciRMIeLfHCLjWggLIbBgaj0dYUIIIVWLcvfKmSgV58QNBeUUvrC7sMuZux8HSc8RvuLUubjrY+fCNESopFjRMUZEUkE0wpZQ89e6s+6xq5sASxNmAHD32n3+9yUjADHZaX9iYZGMsD6BTO3Tr6kbcYT1Mb3vD0/jMzetgqPFR2zHvbHYsK8b64uUhQ0cYfdf1ZmuqSYZcsbLYYvWlbekIxx5Sz+Hlu1OlPPFf8zkwWLEV42A/xShWPk025EwDArhEEunNeCF3Z0j3i6SEEIIqUT6PTe0HBEUfbw+VJRQWbO7mGgLHOFM0sSiqfWoSZrlRSOij+NjMsIqd9yTdYW1EsJuNje4IWjXureVys/6zSA8ESel9J3XYnWMQw0xIqI9bzv+sqQp4qtGSImkafif90ugFYubFHGETWPw0YjubHBDMpiMsO64uxnhQCwPpllLXB1hxwl+Z4qJc0dKJCiEwxw3pwntvXnsONQ38MqEEELIBMN3hPMDi6DhaqihBMya3Z2x7+dtxxd5ipqUWVY0Ipo7tiM50rwt0Vjj5o5VlEFVo7BsGYqI6MKwVFkvu8Tj/aiIjTbUUPsFEMrLqvXSCbNoEwzTEDANAdsJhLOadBYlKtYPehlhRxPR5U6WK9bauNR6+hjUvqSUIfHvfqb8JxPRCXJK5BYzNy06woUcN6sZgDvLlBBCCKk2VCSinGjEcDXUUOLwhV3xT2Qtp9C5K9sRLlECTQmomqQJIBBfSmDnnYgQ1oRhqfNjR5xyXeRGDy/vu8bamJXDqXW6U9tKJQx/ebhWLmAIJYS1Emh2/DkKfnZeNKInmEw42IYaxRpZRClWMQMIohHRphvlRCPsuIywI5Hwbp6K6Xkn5vfqcBn3Qnhxq1s5YsO+7jEeCSGEEDL6KBFYVjRiEBOaSqEETFtPDvu7soX7sQNRo6hNmWXVEY6K9GguFXBdViAQuuocWLaDPi2HrLurpWIDvtsa48oWTBiLUWlRR9hyHF8w61Udwk0wJAwhkIg4wsXGGa1ScciLRuiVG8qNRoTbO5dYTxb/WQTl09Trwpw14P5eRn/ucRlhKYGkUToawclyMdSkTMxqrsHG/RTChBBCqo/BOMLllk/rzVn429M70JO1cMl3H8DzO8JPXfXPvxATj8g7jj8RTFGTMsuqbBHtDqcbjOq9TNKVL0oc+pPlbIm+XPB53V2NisS4urXq/ORDFR8KJ+tFiQq7nOX4zm0qYfgNIlSTEMAVo4ZwO9epqhFx44zuNyiflve3o7ZfrhDWBWixiWn6vvTXUnOApURB1YjoZ7709xdw9W+fDB9LzLq21B3hIhlhRxZ0+jtcxr0QBlxXmI4wIYSQakS5oeWIoHIbanzk+mfxsRtW4sH1B7B2TxfW7AmLXduRmNHktlCOCmFXLAUVABQ1yeKO8P6urC+2S0YjIo6wcm79CVtOuLWxXldYlftS6BPGLCcs5sLRiPiMcNwyvfqE2nfKNHyxGRLCXvk01xGWBY06CvcRjiD0eM63Hk8oNyMcnaRWdL2Yt/RJe7ajtVi2CmMlALCnox+7O8Ll6vyKIJGIRqKc8mkUwoUsnd6A9Xu7yy4bQgghhEwUAkfYawDhSFz9mxV4eMOBgnXLFcJ3vrAXQPHcp+0AzbUpzGquKagcoT6TiDjCtaniGeGX/u/9ePUPHwqNMdhXWMwChY6wwrJlqESbfnOQs5yQ+6kLYSdyXpSoSxiFFR+iTTvUfgGts5zlxGaE27qDKha2ozLCBixn4HiDFflZqMmRjhPst5wJk/pxRr+PEieS9Ry1K8Ld5cVaLOdsp+CY4uoIOw78knuOlDjYk8MV1z2KvVrNZ0dyslwsJ85tRs52QsWyCSGEkGrAF8J+GTUHd63Zi6e2HipYt5zyabr4UQ5utBKA62YCR81oLKgcoZcN08kki1eNaNdaHkebYsQJYd8RLogthFsb60I5ZzuhbXX1a/uMZIRzvuA2YxpqxDnCajIc/HEFYzX8c6ocYSGUqPPEtja5rljEJTpG/8YnJEbLMwR1LV8qJhMXm8h71SJUzebABY/Pn+dtp/CGJXK+1DjUzZMtJV7c24XHNh3E2j3BjZbNyXLxnDR3EgDg2W3tYzsQQgghZJTJ+pPlgo5rQHyr23zEuYxDFx7KXY1rXWwKgWUzGrBpf3dIfKr9RqMRpRxhhRJY4WXB9340QjnCEdFYUDXCe18I93td9HX1F9bStSOiLpM0CqMRsY5wYdUJdRypRBCNUI5wQzrh3kx4VSMsPRpRVAgHP1fLdnzxa5eRL44Sniw3uGiErcU+bK10m3LRo9ERy5YFvz96pvp1P34YP7p3QygjLKXUXONwvWaDk+UKmdqQRnNtEuuZEyaEEFJlRKMRSpRF3VIgEBWlxM+KrQf97/vy8eurR9Tzp9TBkcCu9qCWvxI9BZPlkgNPlsvFuIe6aNdr87r7ioouJyS2/ShFwkTWKu4IR8umKVGXTpiF0YjYjHD4BsPS3Ge3jrC7XluP6whLBF3STEN4rm7pnK8u1nXXeChVI8qdLBcXjbA0t9uRhecueqOQt52CGxZbc4+3tPVia1tPqGqE7QTnWd8ey6cVQQiBxVPrsZFCmBBCSJURdYRLNc0ImjI4+OZta2NLn+3UGlSpUmQFlRw8R1g5eE6MWI2WT6tJJWIny+lucn/eKRTd2uucL1DdbUdFo1s1onCyXE3K9CbLBeuWcoRzWqwhmqeN0416Rzq1XyUMU6FoRM5bz7uZ8MqnWU7ggBYvn+Ztu0AIY/CT5WRYXBYj9nco0j46GieJOvo5W8b+nNS+3eiEl8nWOsvF5Yg5Wa4Ei1vrsX5fF1stE0IIqSr6Ixlh39UsUe924/4e/Pi+jbj/xf0F6xzQJnQpB9eOiUYYhvBruuq7UvuIa6iR8x7r6+zrDMR4Nm8XxjBiRHbGa6hR4D464Yxw1nIghCtoo5Pl4oSwfqMAAOmkGRK+xbrTRcuBqRq7QgQtlqWU2NbW66/nOPCjEbYTxDZ0Ibyvsx9PbzsUHqPt+O5/yhPqg22oMdQ6wupYdWEb/X2LywirLnTBNgKRa2lCOaFNlvM71UUqS1AIF2HZzEYc6s1jV6REByGEEDKRUY5w1JGLr3cbrjmsC6LtB3uxfm+X//gegB8ziMYsgnyr+zpuQlu0xXJtyhWv0XjE7o7Agc5ahUJZF2NKJJeuGhGORphCIJUwYibLFZZPC4Rs4DzHHVuUws+7LmfSMGAIN/pw95p9WLe3Cw3pBGzplh0Tqo6wHV8+7cJv34/X/fiR0L4tR/o3PbUpE44z8ES7KPphlIxGxLznlnrTcrt2+PctOrFS1RuOOrtq+5YTRCd8R9jRWzbTES4LNWFuxZaDA6xJCCGEjBz9eRvfuWNd0QoJw74/3xH2RKsvmBzct24fntIyv9EJWbp795V/rsGH/vQM2rpzmNaYBlC8aoTtCRI1ccmJcfui5dMyRYTwHq08Vn/eLnAU9V37Tm2xjLBTKIQNQyBlGgWT5bqzhRnhaK3etDbRzd1/vGjUM7NqPdtxkDDdc+Q4Et+/Zz0WTKnDm0+bC8eruGAaAglTeB3avMmOmpjt0msd+4IzcGRrkyYcGcQ1BpsRNsTgoxF5W4Y67ylRHEzSjEyMU5EObbmeVdczx7ojHBXY0jtOTpYrwtLpDahPJ/DYpraxHgohhJAq5onNB/H9ezbg0Y0j//dIn5QVZIQDQfKOXz2J1//kUW19tW6hwD3Yk8O2g7040J3F9KYaAOGObTq2hD/Ry91OoWtaUDXCizNEc8J7OnQh7BRUHQhvO5oRLhRqen3gvO0gYQgkTcOPKyhC0Qhtkpt+DJmkGXqkHzdRTh+jnjHO267QNb1axNsP9uKsxZP9KhLqZiKoI+xuq3jViECsK0e4JmX67nKpz0bRu9qVcoTj3rIdGYlGRCbLFWSEw0IZ0ES9l7mOTrC0pSyIm6h/OVmuCAnTwHlLpuKO1XsHLBROCCGEjBQ9nhDb1zXyUT39UXh0slxUkLjvhaMR+jqd/Xn05mzs6ezHdM8RVu5qoUsrYQr4zQ3iXNO4FstAaUc4a9kFotuJEaJBRrhQ+OnVIHK29KMR0aoR/1q1x6+BbNthsVUsGlHMEY421LC8usBJ04tGOO4y9VpK95wKIWCKcNwgTsxKTRhatvRvZGpSpttQo0jViJuf3Rmq6KGwZeDol3SEi2SE9ZuVICNcOLkt/H64DBqgdUX0m7AE5dOiv8fqXzbUKMH5S1rR1pPDxv2sHkEIIWRsUI6kPglspAhPDIuUT4sRiVHBFOeQSglMb3TbJyv3Nq7JhalNltPFVPGqEa54jdYS3tsZdoSjk+WcGJFdLCOsHwfg1hk2DC8jHIlG7O/K4mM3rHSPR4bFlh+NSJpwpF4NorRb62iftxzHc3y92ruOg6RphFx0U7jOueUEFS2UKAyfU6nFNxz/RqYmaXoT8cKfBdzfh49c/yxuWLG9YLyuI6wm6g0uGmFFoxEFNxGRjLBVKPCDpiDh31VVPs29cVC/oyp2Qkd4QJZMbwAAbGAZNUIIIWOEcoT3d4+8EA45wvmwM6e7l0owR7uS6U6vHikoiEbETJZTQir6vv+YO6ZqBAD0R4TwoZ68L2z783YormGIyGSpgoxw6WhEzotGpCOT5d5zzgKkE4b/s4o+fg/qDyuHMnxsUXzRpgSzVw0hqUUjLNutgeufMy064TjhrK2UEm09OW37MhQ9CBzhRNE6wv0593v9xkCh38gMNhpheaJeEVdab/WuDv8mKhqdcNeJz7UnQtGI8M9EveZkuRIsmloPIYD1eymECSGEjA09ngAYqiN887M78euHNxcsdxyJT/zlOb+cFlAsGlEYe1D1gqNVI5TIkFJGhLCKRrjL9GyxytqamqgLuZd+TdiwxFBRiaio7uzPo7Uh449Lr1CR8RxZhV7fVz9Wne5+C0orFZssd+zsZlx89PQCIR99zK862AWOcXFHWGrObN5yO8uZ2mQ5y3E7p6nJXjnbgRDuZDlLK5+mYhN6tEYX8ZYtfcFb65V3i8sI93tiuTtOCHtVPwxjgGiE9p7uZOsNMqJxkazl4JXffwhv/OmjbsTBiYlG+L9P3ntW+HcmLhrhjJAQTgzr1saYmpSJOZNqsW5v58ArE0IIISNA92FmhG96Zid2d/TjHWctCC0/0JPFn1dsx4zmjF8pKTYa4XftCoTH3s5+zGmpLWjaoF735uyQ6Jne6DnCkYzw+37/NKY1pmFLGZ4sF5PjjVaNML3Jc9HH7R19eUxvzGDbwV63aoTtYMGUOhwzqwm9WQtPbNaqXvjRiPiqEYBbaaEulUBX1kLecsunBZPlvLF4jSzykRhCoSNs+suTZrhGsi7oLSecP3ZztG75NNMQ/vlOGiIk0muSph9P0AVlznKwT2t2YmlNJ1xHOJgsp94Hgt8BIPjZdecCIbxhXxfW7ulyoxGaW6245rcrMLUhja+89lj3uLX3UqaBPscOtXeO+xmojPbzOzv8yXDuMQUfKlalQ+8sF21bTUe4TI6f04xntrWP9TAIIYRUKYcbjbAcWeCaAkF1BT1jG+cIK8GhC6t9viMcduLUI2rdDQaAGU1eRjgfFte72vuwu6PfmywXlE+Lm1CWjFSNUNnOqHDq7Muj1Zuc1+9NlqtJmvjBlSdiwZS6Ig01lCMcE43ot3yBmLPdnK7KCNu+mIJftkzfbmFGOByNiDrS+jHr48zZEpa3b0MIZLXJYNFohBLV+jnMWQ72adnpUEbYdkJVI/TzoDvC6mfXo/1sL/rOA/jgH58JTZbTfxx3vLAXf3h8m/9ar5ihzkVBNKKgpXLw+vmdHdrywoxwcL7CuXJHSv/JQNQRZvm0ATh5bjN2d/THzpIkhBBCRhp9stxQup26zRgKnU4lhHVhE+2iBgSiTt+GmpAWdQ6VyNArLQDANG+yXLRqhBJkSkj50YjQhLZ4R9jPf2oiyHEkurJWEI3Ie06qt65piNiGGiojHNdSuC9voy7tPvDOWWEhrLbl5psNrdIBQmOL7kevBgG4k+jc7cA/L/qPWjm4KgrhO8JmcPOQtx2/oYY6p4qc7YSiNTnLQWxGOOKM6+cjTggrbEedg/LrCCvxXxCNKBIXAYBbn9vtfx8WwpEJdX7JPb3FcqR8GifLlcfJ81oAAE9tPTTAmoQQQsjwo4RH1nKw5DO34c4X9g7q83lbFuQugaDMWF+MI9yQSQRCWJvFrzRD1BGOVo1QE6rmT65Fa0Pad1yDbQb/WrbbHtgQ8S2WlZMXLZ+WMAozwl1ZC1ICUxs0R9hxfGfQ8CaSBecm7NQWq+IQCEQZCGFbd4SF2/rYr1UbPndBHeFwnEOdBzWJLuX9q9dzVp+3HcebHBc+B+rmIe9XlSjiCOvRCO0pgV41QnXrizr9QDApsTtb2NjFcSRMAwNOltPHlNJy2brrW6ykHABsOtATOiZ/u0VcZL+znAxPDtT3w/JpA7B0RgNqkiaFMCGEkDFBjy7kbAe/fXRL6P3tB3sLlunoncN0fEdYy3yqWfeNmWRBq+W8luVU7mJ0kpIVEcKfeeUy/PE9p0MIERKydtQR9oSUSj/EVXaINtSIywh39rlOtC+EvfJpSjQbIr5GscruFtNwdenAMTYE/Mlyfkc1TYDq50F304UIjsEvn+aEHWHlGFsRR1e1TE6YIiTcEqbhv7Zs6TvTdkQIZy0HB7Rojd4MxK0jrIR6kGEG4ifLxTrCMZPl9HyxQj+/aS0vrTu6cb+rinBN5+LRCL/Fsuos5+h1iVk+bVAkTQMnzGnG41q4nhBCCBkturOW754BwPGzm0Pv/9+K7fjczavR0ZdHHHk7eCysE5cRVu2VG2uSBRPg+vPBNtTEPb9qRD7eEZ7TUovFrfUAwkJWL8lmOc4A0Yiwu6eIywirc9Bck0Q6YSBruZP21GdNEa5zm49khItRm0r4x5cwDN8R9isPeJPl1FjV+IOMsCyo+eseWzgjHDjCMhQxyHnOeUKrtQy4LrmpRSMMbxyq1bD/ecsJNR7R4zL6ZDklhPX9KtHe55VPixPCcZPlYsus6RnhRJARDtUELimE9S5/etY7IoSdIDqi9ht0lgt/hpPlyuAlR07Fmt2dobaNhBBCyHDy1NZDsX9nerIWFk6p819H/+irSXQHtTqxOtFHz4rdcZPlPLHUVJMoKJ/Wmw9EyIHuXGgs0QoT3VlXkDZkgmJSiRKOsN+QIWayXCBqIpPlYjLCyhFuVEI478CyHV+EK/dURjO6ibAAjKIiA2obviPsBK5iwjRCLisQPLLP245b4SFSFSMfEcK6OIxOGLQc9zh04ea+dr9388tBRjgqpLPajUzejkyWs2ykEkaBO6q3K1ZCOjoRUm3fryPsbbcz5sYsLhqhKmIoikWMTUNEhHBx8RxEIwIH3oo6whTC5XP+0qkAgPvW7RvjkRBCCJmovP4nj+C8/7m3YHlP1sbRM5vwl/eegXTCKMixqpq+xYSw5cjY7Kua8BaaLKcc4UzSF7fqs8oRBNx6wLY2oUuJl6gjXK8J4ZSpO8LBRDwVAzA1oRjrCEcES1zzjU7v0XlTTRKZpIn+vO25sSoaERbPfpmtRGkxpBxhd7+uiHM0kWh41RrykcfuetWIZMLwhX60oYYS4qGMcGhSn+NHI4TuCCcM/7Xl3Uy4VSOcAkdYjyqEyqfZEtm8g3TCgH6K1c9LRRCUEM5aTozwdMvKCREce2eMIxyORgTud7Fsts6k2mRIhIcbaoTVs36DAiD0s4rGV0xWjRiYJdMaMLMpg3sphAkhhIwgevxA0Z21UJ82sXx+C2pS5qCFsF4hQCGlLOkIN9YkC3K/ekWJnqwdO7tfiVYlgupTpR1h2w4ywrojrE+YCrqERcunFWaEOzRHOJM0XdHmBI5wtE5x3pZImcaArqDKCLvbMHzBqhqEuGXLDEgJv9kFoGeE3WiEXhUiZzn+TYhyzpX4tBzpT+pTNz+x0QgjEo0wgjbH0clyWctBnVYGzp/Q50jkbAfphBnKH6tSaup3Ihv5+evkrPC+gbAjvK2tF/eu2xeJRgQZYT0aUYymmmQoI6xP5IsrDwgETxH0HHK069+YTJYTQlwihFgnhNgghPhkkXXOE0I8K4RYLYS4f1hHOUiEEDh3yVQ8sqGtZA9tQgiZiIy3a/ZEQkqJnqzll+9yGzmE/w6pmMLBnvg6w26XsUiEoN/yHb64OsKuI+yJOCvsCDakE+jNWbGz+9U+uvst1KcT4YldekZYOaWec+lWHYhvqKFETrRqhF8tQRP5nX2usGzyohH9edvvyAYEjvDnblqN79+93o1NmGJAV7BGi0aYIhBY6pwYXkc3dUxxDR5S2sS2f7/+WRz5mX9hrzfpcJpXZzmoAxw4wq4QDjrJhapGaCI+b8sgqxwVwrbtCmHv98jSKolYjuM7wvp5UHEQ9XugVxfpyoZjDznPEdbrCHdqovXXj2zBR69/Nr5qhBNf5zpKS12qaOONYp9XPxM9GuHXER6ryXJCCBPAjwC8HMAyAFcKIZZF1mkG8GMAr5FSHg3gDcM6yiFw6oIWdGUtrN3DLnOEkOphvF6zxxvFTJas11rXF8Ja9zLA/QOvHOG2YtGISAkvAH4FgakNad/VBFzXTwg30pCzHK+lbdhBa6xJojdnxz7O1usI6/lgAKEJf7bmzsXWES6jakQyJiPc0ZeHaQjUpUw/GmHZ0u8wpjTPY5vbsGLrIVdcavvV0RfVhaIRwj8WlbsNiXhNhOoZYV1wP7HFnYC/9WAPJtel/KoVfvkzbbJcJmm6UQfbLZ8WrhoRfm0I1+G07ThH2PajKnp0QtURTieNWEdYPQnoK9MR9qMR3k1JyjTQb9mhzwNaHWHbCdURLkZzbSr0Wn1GSul16iv8GSa1pwbq99WOCOKxcIRPBbBBSrlJSpkDcD2ASyPrvBnA36SU2wBASjnmmYRT5rv1hJ9k9QhCSHUxLq/Z4w390bDeNEM9OlePtJORjHBnn+VnOA92F4lGROqnAkCvJ2RaG9Loy9taySvXGdTr/kYFb3NtEkCRqgBaRjgqhHXnzbKlK7K9SWB+HeG4Fsuqs1wRRziaEW7MJCCEQCZp+HlWFatQn1Gtl3O2g6Tp5myjprCeC9Yny5mGQDriCCsnVo0n6ghbKhoRUUnPbm9Ha2PGd3ndesRGaBuZpBl2hEPRiPBrlVWOll/LWq7rW+83BgmiAlK6bm/Ka9YRPeZs5IkA4MZ1wo6zDE3UUz8LAKhNm+65johdvVRcuRlhnaAcWvEJj0Ed4cJssPqdH4vyabMAbNde7/CW6RwJYJIQ4j4hxFNCiLfFbUgIcY0QYoUQYsX+/fuHNuIymT2pFjObMnhyy6ER3Q8hhFQY4/KaPd7QRYI+IUg5b3o0Qo8k6G2Xi06WU66kJ2qf3HLQrx08tSENKYMasf15G+mE6YuKuIlRTTWuIIkr1xZUjbB80aXQqz5Yjgwm2NnKEQ6iCyFH2GsUISJKVTnE+vno6Muj0RtfOmH60YigjrDQjsstK6fGFY1H6HGImogQVo6wH40wtAYfmhurnG8luKPtfDft70FrQ9p3JU2hHOFwNAJwfzZR9zphhhts+HWEZdgRznu1gtXPRFUSUWPuyVlIJ83QtmqTCf9cqf0rerJW6ElCzgqiEYEj7P5+RH9nFSmtQkbeKXw/uq5+YwIU3uDpTxwUejk+JbajExnHYrJc3B6jZyAB4GQArwRwMYDPCiGOLPiQlNdJKZdLKZdPnTp10IMdLKcsaMHjmw8OqcUlIYSMU8btNXs8oc/o3691AFOiWAmYhCFCjQT0dQ/2Fqsa4WV9HQd3vrAXb7j2Uby4twsAMLXebTyhBPeujn5Ma0z74itr2QWZZCWES5XHau/LoSETdvB0R9eK1LG1HemLQH077roy1rVzxXEgNtWY1PgySQP9+aDagvoM4EYa8o43AS3ynqJGq6mrRyMMoQlhLzdreuXT3OOJzwjr7ZDVGAFgWmPaF2OG16Eu70hfaygR3pO13GhEpI6wfoOgnOn4yXJBq+ho3eDenO1VjSgejdAncvZkrVBmOGfZhZPlPEdYnzwIBBMCi7VYjqMmafrd//RjUp/Xt6ujbnKcuIzwGJZP2wFgjvZ6NoBdMevcJqXskVIeAPAAgOOHZ4hD55T5LTjQncWWtt6xHgohhIwW4/aaPZ7QZ8Af0CIOynVTAiYViUYoR3hWc02BI/ypvz2Hv6/c5QvZvC198br9oPt3THVgU6Jm84EeLJhS5wu97n6raDQi3hGW6OrPY+3uLiyd0RB6LxFxhKNi0dAqIOjaW1VciEPFABQdfXk0ZjRH2HKzzH4dYU/zZC03O5x3gm1HBVFtCUdYfaY/Lhphy1Akwj0GJ9RQo6UuyLtOa8z4y03hbjtvOf6kMyXCu7OWmwnWhpmIiUYoMao7+TnLnSzX4P0eKSdbRWC6s5Y7WU7beNxkObWsO2sVdDw0RbSOsOUfu15hRN0QpZMGhHBz6QNNlqtNmX6OWuHfSNnFHeFw+bRI++sxFMJPAjhCCLFACJECcAWAWyLr3AzgHCFEQghRC+A0AGuGdaRD4NQFbk74ofV8pEcIqRrG7TV7PKG7vHorXOUIF4tGHPAc4SXTG9AWyQjf9MwuPPBi8PdKd2FVtQIlhHu8usBb23qwYEo9TprbjIQh8MN7NhQ81lbRA70qgMJ2JB7Z2AbLkTjvyNbQe2FHOHDolLPntuh1349GI6Jd5RS6Awm4zqYqdZZOqoYaWh3hiDDKW44vlpSgVK8zRRzhhBaN6PejEYEjHJos5wQ3IbojrNdJbm1I+8uVyNZbIKufvSNVA41oNCI8WU6NP6v9TvXkbEgZbKvfE7EqAtObdSMxcY5wVpssN8V/ghAWwnnL7SxnGHod4bx/DvSnCknv3CUNA7VJE91Zu2RbZcB1hKNd7/Ra1O6xFHeEbS1+4TfW0NpjDycDCmEppQXggwBuh3uhvEFKuVoI8V4hxHu9ddYAuA3AcwCeAPBzKeWqYR3pEFg8tR4LptThG7etw6EiWSxCCJlIjOdr9ngiZ8ULYeXyFo1GdGeRNAUWTKkLOcJ5222p25MLNyBQ7p5qpqGETW/Ows5DfcjbEgun1GFxawPef94i/O2ZnXhuZ0dorEE0onCynGVL3LduP+rTCSyfPyn0XjQjrASMOnblZgKFk+WiFSMUCSNcTs6d7OcKJreOsNti2VR1hDWhp8agxqUEkRK5uiNcq9URNoTwH8PHTZbTRWxQR1hlhL1j0n7erZojbHgiO2c7vqDUJx3qTUcAeBPwROh9VSouZzn+BEA1sbEu4gj7sYucVRCNUMffr02Wm1yf8ta3C1o2q2iLui9RTx+siDutn++6dAI9WatoNMLUbkqibbALJsvFtMkOl08LRynGcrIcpJS3SimPlFIuklJ+xVt2rZTyWm2db0kpl0kpj5FSfndYRzlEDEPgm5cfh+6shQfoChNCqoTxes0eT+hCWOV+n9p6EJ++cRWm1Kcwa1INgMJoxLa2XsxoqsHk+hT68rYfcVDVJrqzulgJnLl93j4CIWxj04FuAMB8r53zBUdNAwDsOBiOAzYN6AgfwJmLJhe2RNarRmjlu5SwN7X8azgj7MSWxgJcoaNnhPvzti+Y3DrCbhY42llObVfvOqfGp8YdEsJFJ8sVKZ8W11lOi0boNzPhaIS7/5wVuMr6pMNkpOZxtMGG3pREVQAB4DeiqPcEfTQa0RMbjfDyxFpDjaaaJJKmQHdBRtjxf35BRtjyz0dcRtgUAvXpBLpzVtFohFq3JlXoCBdMlouJz6gbKEeiICPsR3LYWW5wnDx3EibXpXDfOgphQgghw0NcNOLOF/bBchz888Pn+GIoGo1YvasDy2Y0osWrsdrmNdVQDmBPpCWtEtx7OvqRShi+qO3J2thyoAcAsMATwkr8dWXDzu9AVSMO9uQws7mm4D1dGNt2YROFopPltMluUaIZYVX1AnBdxN6cBSkDQaS7p6p0W6KII1wsGmEamiOcC6IRSlCH8s9aG+OkVvNXz4RHoxHKEVZiuk4TwomIAxwtyaaXoMtZbjY6lTAKHWFv3Cp360jXUdXNUTVZUC+fVpM0XfHaH64akbUL6wgr8e06wlo0Qt14mIEjXCwaoX4WNRFHOJM0fBe5ZEZYqzUdbX/tO8JFfreGyoQXwoYhcNrCFjzBesKEEEKGiWxed4TdiMO+zn60NmQwrTHjv5fQGmp09eexpa0XR89sxCRv8lV7rys+lFsbFsJBCam+vI26lOmL3d6chc0HetCQTmCK9/hbd0F1mmvc94tVjcjbTqwo0YVw3iksyxaaLBcq/eX4jRGiRDPCWcvxBVMmYfqP6YPKEMFn3Yxw4AirfadiHOFi5dNUtQ/TK1sGqPxz+DF8tHyauiE5ed4ktDak/XG5sQuBvOX4Qk2PRhS0WI7UFTa1Mm7KpU2bhuYIexlh3xEOjivaYrk2pqFGTdJEfSbhOsL5iCMsEJosF46sBOv6Nx5CoC5tojdrF/wuBGPSHOFE+MYkV5ARLvx9VZVFQp3lIs7wWJRPG/ecOr8FO9v7sLO9b6yHQgghZAKQs73MZtL0Bea+riymNaZD6yU9txAA1ux2S6AdM6sJzRGXVjmA3VFHWBMctamEn33tzdnYdrAXc1pq/XJcdZG6rYqoIxyaBOdNjIqLMujOW/RxOeDGAgxPuOiTyfQSZwXb1DLCUsqQI6wL2WgdYX+sWkZYOalKfOnCKhSN0Mqn9fqOcHB8qqW1+h7QohFKCNsOzlg4GX9935muyxvnCMdEI+Imy4U7ywmY3vEoIaw7wiru0B+JRqjjLt1i2UEmZaIhnURXfz40WU6N3TB0IaxHVgozwqbhHlt31kLeliE3WhF2hMOZ7XzkZiPu5stQbZ/jMsJy7KpGjHtOWcAuc4QQQoYP5RBObUj7AnOv5wjrpLRoxOpd7iS2o2c2+u1nlSPc7QkfXaxYtgxlkevTCV8Y9eYsHOzN+5OhgPAEMZ2GTAJCBEJYF4w5y/Ha3Q7gCNuyoBqFXkIsHI1wik+W0zLCqkmHEneNNeFIARAWwnnbCdUoVvtX40yahi/oMwnTF2qmFoPQHWG9s5wSwHpEwo1GuNuQMnxjoE+W86tGyBghbIY74CWN8AQ31VlOjc00BGrTJg55NaYzSQMp0/B/L9KauExFMsLqvc6+PL5521oc6M6iJmmiIZNAZ79VIIRVPtlvWKH9fPs1R1gJVtNwm2T05NwSfdEMsL5utI5wXSqBnBV2dmMbavhjQlA1wglHKiiEh8DS6Y1oSCf8XuGEEELI4ZAtIoQLHGEziEas3tWJKfVptDZm/Nq+7X2u4OnKeoI44gjrLl1t2vRzoD1ZG+29uVB925RpxM6oTyYM1KUS/mQoXYAowRMvhMPbirbcNTQxGK0aUWyynKllhJXLqYR5o9bQw48/6BP2vKhItP2yOp5kQrgZWy+Xa2qCWcUn+rXJcnqnOzV/L6jhXNhZLuTsajcBKdNAznL8bYQywkZcZzltm1pGOOuVhqtPJ/3a1OmEiYQpgqoRusuaSoREtikE0gkD/3huN35830YArpBuyCTR2ZdHXy6cHVcTBvXScX6ERHeEtYmBftUI24ktfxY3WU4I1XY6LGjjPi8E/CcMUUfYL5/GaMTgMQ2Bk+dPYk6YEELIsOA7wvWuEO7P2+jst9DaGHaEE2ZQNWJvZz9me9UkVFxBOcLqUbguNvXJcoDrqpmGQE3SRF/exsGeHCbVBkJYCBGbE06a7vJO3xEO/vT35YrXdI26urpLCARZTVOImDrCxRtqKGETdEtz19W7t/mOq6Z5LMe9MUj5brG73BfChoGEKfxjUYJJrxkcriMcRCOijnDOCleNiJ4PQxPZKv5SrHxaqGqEGa0aEc4IG0KgIZ0I3PukgaRpxEYjZjZnInlj99h1d74maaKxJoGuOEfYi0ao1fOOg0yk3jKAUBSlPm360Yi4jK+eEVbfJ0335qSwjnB8Rtjwfp+KdZbjZLkhcuqCFmzY1120tzshhBBSLroj3Je3seOQOweltSHsCLsCwP0DrjePUHVWoxlhHX2yHBBkQOszCRzsyaGr3woJYXedwpxw0jBQl074E/J00asEz0DRCH1dhS4G1TBvW7UHezr6i9Z61TPCviPsOYeNmhBOGmExC6iqEYUtllOhaIThby/c/S1c/UF3Yi1bahnh+IYa7tjDTq4aX9pzhG2txbL6WLRucNKIVI0wIo6wKUJCOp1w4x5++TRNPM5qrgk35zAEMknTr0QCuDcJjZn4jLAbjXDFv+NISBlMxgsJYXVj4dUR7s876MlasVEcJW71jHDKNJBMCP+mTp3juJsvVUXDjUZE4iqcLHd4nLZgMgDgT09sG+OREEIIGe/oGWEA2LDPrek7LeII69GI3pyNmmQgcpprUmj3sqBxQthywpPl1CP31oY01u1xJ9611CVDn4kTJwnPEVaxAN2JUyW1SkUj1L/6BCpAF4Puo+ysZeO9v38KG/f3FG+xrGWEg/EUOsJRsavoz9ta+2UvD5w0cNkJM3H6whYkDOG7pr5jbcS0WDaEL7b10mhBfjncUAOA3/gC0G8C4GeE9YYPNZoY18+TLnzVGPXyaaYQqA8JYRNJ0wjKp2nRiJnNNZGJd66DrFd/2LivBw1e1YjeaDTCG49eqiwTKcEGACmtbrPKP2872Ftw0wfET5ZLmkGOGggqo+iC3x+T4UYj9O52nCw3TJw0txnnL5mKnz+4CVLLMhFCCCGDRQlUJYTX73WFaWskI6xHI3pzlu8IA0BzbVKLRhSWNstZjj/BCID/2emNGazz9tcccYRV5Qg9B5w0jVBFCX0Sk3JCS1WNiHMJAc1x9cSUHuMo1WLZ8qMRYXHXGBLChXWEAbeerl7X1t2mge9ecSJOW+g2BUknwp/VhbASeHr9Xr1UmOVISOmKsERBNKLQEfarRlhB1QhDi6gktUxw3ARAfbJcznarRkQd4YQp/JsGPRoxrTETzjALEbrJMQTw2pNmoSGTgCPh5471favJcmrsavt6hZCkNm51M9abszE9ctMHaDWdU6Yfs0h4Tv3KHR046ct3+r/z+o2PQoigtnG07TUnyx0mQghcsLQVh3rz2N3RP9bDIYQQMo7RM8IA8KJyhBuijrDr0Ekp0ZuzQxnesBCOc4TD0QglZqc1Zfz965PlgCA+oU+qSppGyCmOneRUoo5wTREhHIpGSBlyIou3WA4ywlFHuCEyyQwonBjVl7eDzKrmtPqfM4UvrHWh7mZPg59buJJEcI4trZtfqiAaERyTqY3P7R4ofcfSEMKvY2waQTQiGXNMhlbPWJVPq08HAjGVMJA0DK2zXLg+shkR1UrI1iRNbPraK3H6wslo8CYh7jzUVyDm1U1M3p/AFpcxDzLC+kTA6NMPwH1asWBKHZbNaAhFI9Tv18GeHLZ5nQ8bY4Sw6ZVP02+qLDrCw8eymY0AwC5zhBBCDgslWlRjjPV7u5AyDb8ahCLlT8iS6M1aoQxvc00qqBoR4whHJ8upz87QBEg0I6yEihKvhvAEjLbfONEb1+5WCSDfEbaKRSPU5Kbg/SLJCCSMoJxc1BHW3V+9KoNOXqtRrAtx/XPRyXJRR9Z9L1iuWhKnTHeimXL7UwmjaEY46ja7jjD8ZTVaLEB9LFrtQp2naPm0woxwfDTCHYf2veYI69tQ1Tg2Hej2J2uqcRie+6p+drrj7B+3FlOp126o4oRwQyaBe//feTh5Xks4GqEd8+4ON0/fHCOE3TrC4UmjBRlhCuGhc/TMJrQ2pPH1f60J3WUTQgghgyFr2UiZBpq82rcb9nVjRnPGb26hUOInZznozRd3hLuzA0+WU9GIaU2aEI5mhJUj7P2r9q/vt5TrF17mHovfurcgGqH+deMO4bbT8RPTE6bwqwZkI45w3HjijOVCR1iE3stoNwH6eilNiApRGJdIJwy3MoX3Olo1Qs8I6/uOtlg2DaDGu/HQXdtoRzz1+UCQu+XTQkI4GS6fprusavv+mIxAyOo5Y7W9vC0xSxPCKhphay2m43439H3pN3LTmwqFsBEaj/Dzwfu7gwl8O9vdp/JxjrBhuOck5NJHJs2xfNphkEma+MQlS9HZb2Hj/u6xHg4hhJAKp6MvH/v3Ime5bYnVH3PLkVg4pa5gPSW2urMWpAxXdWiqTaK9Lw8pZZGqEYWd5QCEspkFjnAq7AgrEaNnl+Ncv2SMGFVRgEyqSDRCc1wdJxyNUI+/o+h1a6OOcHQ9fR/hcYWdXl18TapNYbIXV4m+n4gIUb1aA+Bmpx0ZvHYbVhTu1/1sME7l+qsbBUMI1HrHlNCjETHi3tAae2RtB4Y2IQ0IHGGFEtPq56mfHxFyhAORqQvrWc2aI6xHI/yMcIlohAiPLVozW62jk0mYSJgGnt3W7i/b1d6H+nQiNpeuOstlYxxhfTLicFJVQhgAjp/TBABYtbNzjEdCCCGkkrEdiXf/+km8/iePYGtbDz570yrfoc3ZrhDWJ/wsnFpfsA0lklSZtJAjXJNCznLQn3fiM8LROsJqspznxEXb2AKBExw4wu7+X37MDG1MAzfP0JfVJMPNKBShyXIyHI3Y35VFHAlDb6hR6AgHMYL4qhHuuMJuqL7K9688EV96zdHe8qDagf45JUR9AapFI4CgkkbKNEIOf6iOcGSynHs8QUWK+MlyhcekRzRyfkONhP9eQssy6+fqzEWTQ+MAgoYaANAYcoSD39FZzbXB+oZXs1cCth2eLKczmIxw9MYlnTSRMgXOW9LqL1NCOO4mR+W51U2SnilnNGKYWDClHg2ZBO5/kTlhQgghxfnD41uxYushtPfmce637sPvHtuKjfu7ce+6fejO2kgnDKQTpi8eFsQ4wiqaECuEte5ynf35wk5uths3UALNnyznCZDoRDkgEMs1miMJuG2dFaUaIeiUPVnOe7yuu9dxbqEajxWpI6yLeXWMeqWCwnGFBaXuQk5tSPu5bV2oA3qHtHBmOGsrR9gdh6q3m0oYBc0wFLpjHZRmCypSZPzJcsGEO1WuraAJhnb8hhC+cE0nzFCEAwCOnNaA37/7NHz5smNC41Dfq3MZyghrrav1jLAby0CofFpsbCYRnEf1+1WbMkMC299mRKRmvIYg33nT8fjXR84B4J7f+kwiVtCqznLqBjCTNEOT5QyBgvjR4VJ1Qtg0BN64fA7+9fxutHXH37ESQgght6/eE3qUDACb9/fgnb96En9fuct3AtVkpFLRiI5eJYT1yXLu5w715NGdtTC5LiweLa/Fssp1Tq5PeftLoCZpFuSD9e0HWVJXNAgh8JbT5gII3OK4ceoooajWL9ZZTk24UtGID56/GDe+/6yC7QFuztbPCFuFjrDvZMe4vdFxKYFZTBhF4xXJmLJqQGFWuU9ziKNCU6HXEU5FPmcaQTRCzxknzMLxGtrEOrWOErGqzJ0+yW9SbQpnHzHFF6z6+REiOAY9wqC3rp4VmiwXtMe2SjjCfic/za2e2pCO/dkURCOSplfSzsT8ycH/j4ZMEUdYVY3QJu/pjvBwu8FAFQphALjshFmwHInLfvywf5dOCCGE6BzoymHZzEYsmhr8AdfLbyqBoOIRcdEI5V62K0dYm3WvnMsN+7shZeHko7ztIG9JnDJ/Em76wFk4YU4zAFdIzWjKFOSDAaCuyGQ5APjvy47Bmi9dUtL9jRu76mZWNBohVAku9/3TFrZgZuQGQhEunxbjCHtCSznZccInmhEuVqHCnyxnhI/Rd4gj5dN8Iaw5wrpW07OpelWLuGYdtSFHWH2m8Jj0msPue0YghL3xpDQHPFp7t1g0QndrVXc6IJwR9usIO7Jk2+OE5mTXJE0Ywi0bGPezif4sapKmfwPiusPuZ+rT8Y6wmjyYzcc4whTCw8fRMxsxsymD7Qf78Im/PDfWwyGEEFKBtPVkMaU+jTO8PKZaptA7otUkzdg4QDIajdBEn3pM/ciGAwCAxa1hIZ1X0YiEgRPmNIecxE+/8ih88PzFBfur9cunGd7+w5OpalJmydxt3LKBJsu53cngC+FiXeUALxrhVSmIywirR+8SxSsEKAc2Gn2IErzvOauRaES0fJoSgSoaEa0aEaojrB172s8IB9GIGj/ioUUjYqpGmEKEawOLwM1V41H7nVSbKogexLVYBsLRCOHFLRoyiZA77E+WG8ARPnZ2Iy49YSaOm90EIdxSfK4jHCNkI+P7z4uX+L+nQgh//w1FohGGISBEeCJlyBEe5lgEABT2t6sCDEPgpg+cha/euga3rd6D/rwdO1OSEEJIdWI7Egd7cphSn8IbTp4D2wH+9MQ2tGllwZRQmdtSC0OI2Ef0USGsTzaa0VSDpCnw4PpCIVyTND1H2IkVlhceNS123NGqEXGfjRMgcS6xEo5BRrjYZDmEohFxE+/0bWYtB6d/7W4I77XuWtcmg85lxcaaiGRti0Uj/Alt3tupSDQi2mI5iDhY/utiGWE9H+07wpaqGgGtxbIejYipGmGIUFTFNAy/9Jn6mShHdUp94ROAqLsc5wi7rxNIJ4xwCTgvvyxlUKIsTgs11STxvStO9F+fPH8STp43KV4IR5a95MipBeNo68mFHOGUafhRCEO457TPvzlxoxHS6zQXFdrDQVU6wgDQ2pjBpSfMQn/ewVNbD431cAghhFQQ7b05OBKYXJfC3Mm1+LeXLAQAtPUEQlgJp/9+7TH42duXx25HicJOTwiHRY/AnEm12NnuNhhYpEUralMmLFsi6znC5aKiF8qRjGt1HD8BrYQjnFSCsUgdYRWNsAZ2hE1ToLMvj/1dWezryhYIr9eeNAtA8Ag/tnxaicly4fGF14s6wlH3UYnI3lA0Ij4jrJdmUxGZ/lxhNCJhiML9R6pG6Blh03BvsFIJw88Iq0l+k2OEsH7o+sQ7vUsf4E6wnD+5LtwURK9hbAWZ3CjRn8Gv33kqrj5nYXw0YgDHVpUbrE8n/XX1mzAlzvXJcoB7Y+pIOeyl04AqdYQVpy1sQdIUeGD9fpy1eMpYD4cQQkiFoBpCTGlw4w5K2OiTrJVA1SfARSmIRkQmqs2dXItNB3owtSEd6kqXUY6wVjWiHFT0opQjnNCEmcpfxpdPG6BqRGSynHIVS0cjwjVio070lafOxaUnzPTPadym1FiVO1hMG0WjEdGMcHQ8Snj6GeGCaERYRKptKcfWd4Q1lzcRikYUVsJQ5cJSCcMrn+Y5uumE/3NXwj86mRKINufQ2lVnwr+TP7jyxFAFC33fgC6ECx3hYg0sjIgIL8exjYtGpJMmuryGMu6TFYQmywFw4xvMCA8/takETp43CT+9fxMu+e4DkFIO/CFCCCETHiV4lfhQOdmDuiNchkAtFMJhgTKvxa3rOmdSTSB8PGHUb9mQsrz9KPwWyynlJsY4fJ6Y0EVPXEONOS01aEgnsGCK61SXmixn2RI5PxpROiOsEye89HNUyr32K0sUEUeBWA1/Th9CwjC0yXIDlE+LcYRNETjCSkCbQqv8kAgy2XF1hJXj7LfE9t5zowzhm5k4R7ggGuFnhMPRiGmNGUypTxccgzpHuZgKHnH70BGeaAV0tz12VR9Vyq0hk/CPNVxHOjJZLqE5whTCI8PpC91JEGv3dGH9PnabI4QQAhzwBK/KZSqhomeEy4ksKPeymCM8zyspNbelViuX5TZR6Ml6k7YGEY1QVQXUv6oGrI4ZI0DixPa8yXV4/osXY1GrO8ZSneVsqUcjSmSEI+/FCa+4fYS2YYSd1WKOZUH5tJjJaglDaJPlItEI04DQhmdq50iPV6S8c6yXT3vpsmn4xuuPxfzJtUHd4si49e3URsrGTa5P+z9Dz7THlPpCRzja0riYI6yvr3av6ggDQ3OE9fHrJdZKoRzh+nTC/6wexzAEIuXT3PFYjhyxyXJVL4RPnDvJ//5l//sA2nvj+6MTQgipHg54ndGU+Eiabukn9QgXAMp5hqjcvPbeHFKmUeCWzpvsOsJzW2p9MZE0DCQMw+9wVsphjTKnpRa/fdepeMWxbie5qAPrLisUwuW4uAV1hLXMq6OVTyuZEY4IpfQAE9XjK1yEnd6iVSP8xhmRaIIedzBF4WQ5dd5LOMLqtJoCSJnhyYRuSbQE3nTK3JBrqgRzOFLg/htMrnPf/M4bj8fnXr0MANDZ795ExTVQ0UWqIQRmNbsTMGc0FXZ9ix6HaQSfj1bOCO2jxK9ftH11KdEMaBnhTMLfbioRzs0bRlBiT90c2rbnCA9kOQ+BqhfCp85vCc3E3EBXmBBCqgbbkdiwr6tgeVtPtqBua01EtPVkC9siRwmiEVZsIwtVKWJRa70vCpMJA8mE4TvCg5ksB7gz9WsjHdp0DN+JC8RXqUfOSjgN1GI575QTjQjvx3acImt6Y42rGhHJ+hbTXkpoRTO64c5uRkEd4d4yMsL6sSvXXa8jrBNMljO88Qa1hf1ohKo77L2eN7nOr8WsJlpOjhHC4WNxWy8/+emL0BrT/lihO+l+e2e7+GS5Ui6sOo64/HUcqvVzQyZ+spx+btzx0BEecWpSJh755IX+awphQgipHn718GZc9J0HsHJ7e2h5W3cOLXXhuq3RfG93fzlC2P18Z1/eb3ahM29yHf7xobPxquNmhjLCSUP4jnBqCC6Y6T0Cj4sp+GWrVHmuAbav3L6ik+W8pgxlRSMi9mLXAOcwTleVarGsU9BiOSajmzRFgRvqd5aLNtTQS4/p0YhIQ43omKMZ4bix+45wzLnzhXBMRlg/ncIr4dcc02hFR69eEe2uFxuNKCFuzRI3GXEEVSOCyXJKfEejLEAgkm1HwpYsnzZipBIGbvmg2w6SOWFCCKkedhxyS5c9uqnNX5a1bOzp7C/IZEYdXfXIuhRKIORsJ9YRBoBjZjX5lQPUZ5KmgZ7c0BxhRbRGryIQIMUrS4S345VPG8gRLqehRkTodQ7Q3TVOWEVFV/GqBmGxGW3NrMau3NCCznKmUeAe+9vWhKwaT1/ehiEK6xr7jrT++UhTj6gjrKPy5U01AzjCZbql+s/NnyxnF06WU9+XijsYkZuMgYSqindMqk1qWfVwu2j9OFRdbFu60YiRKJ9GIexx3OxmnHPEFNyyclfBXS8hhJCJiapX++KeIB7x6h88hPvW7S9oYKBcOyVMuwcRjQDCzTTiSGsObcIU6M0OPiOskzCMko6w2t9AE9aUeFViyd+OJkRtB1optvIzwkrsFyM2GhGpFjFw1YiIaxmJO6jIh/q59uS0hhrFohGaI6x3lotvO1zcEVaaL5oR1jl6VhMAt61xsWMs9tk49BuCUo5wbQlxHt1/UBqu9L5fumwafva25Vg4tb7AEVbb0nen/s/YthuNGCiDPBQohDXef95i7O/K4vonto31UAghhIwgt63ajS/cstoXdy9qOeEX97pPBt933qLQZ5RrN9ObiKTnh4uhC9FoxjhKUDfWQEp3hIcqhE0RWz7Nz2aW7QgHx6DrEH/CmAE4jvRLcA3UWW4wRMWsPt5AiMd/tlg0IjxZzvAbaqj21N1Zy48N6O6uPvZZk2pw+cmzcfqCyUFnubwd2+UuGh+IO66aSNUInW9dfhz++eGz0VRb+PtmFPnZlELftxpbtKkIEESBSk2Wi3bNG0iMpxMmXrpsWmgcgSNc+LNWLbctx3EdYU6WG1lOX9iCU+e34Cf3b6QrTAgh4wzLdmDZpSdfKe5btx9/fXqHP1Fq1c5OXHndY1i3pwumIfCB8xfhzEXhRkvKIZvRVIP/ecPx+HmRbnI6iUE4wipv6kYaNOE3xGhEYybp123V8Z04LYpRCv0YMpEZ/upfFY1IGPGtpv1tDVII++XF9JrHEdFVzLHUG36EPqfnfg3ht4ZWE7nae/MhMR/n6CZNA//zhuMxd3Kt7yRnLSd2LEpIhhtyhMdYyhGuTSVw9Mym2GPUP1O2I6ydN3Vuop3cgECcl4xGRErTDcaxLScj7EcjOFludBBC4AMXLMbezizuWbtvrIdDCCFkEHz6xlW45ndPlbVuznbQn7f9iVKAmxN+YstB2I4MCT6FEiu1KROXnzwbM5pqBtyP7ubO92oGl1w/YSCVCJdZG6oj/Jt3nYoPnL+4YLne0QsoY7KcJrD0qgJ6NEKVTxtIVOu1eI+a0YhPvXxpyfWViNTz1dHGFMWiEWZEgMY1tNDFrapx296bD51z03cq449NP+Y4MaqEXSJmPV8Ip4oL4YGIy9aWQj9vpeoI15Yxpug5Hsz4E4bAJUdPx2kL3H4Oavj6Yagx7O/OImfFR08Ol6pusRzHmYsmozZl4qENB/w6jIQQQiqf53d2FNS6LUbelsjbEj05CwlD4NITZuGvT+9AlzcBLm72vBIrxSa9xaGLzKNmNAy4firhOsIhITxER1iVZovid5bztpuKEf06aW9MliO9x9j50HYCR1iWLapTpoF/feScAY8hGh0AgklncQ5i3GcLmj4UmQCnmlB0Z63QRMlo97Qo+jHHrRKNZoTGpo6vhCM8EO7xyJJOvE5wQxCci7jOcn63u2HMCOsIIXDtVSfjgNfFMXpO0lpG+80/exwAcMr8SeXvoEzoCEdImgaWz2/BHx/fhnvpChNCyLhhd0dfWbV9ASDnCeZDvXlMrk/hi5ceDQDo6HVFXjqmnqpyp6Ld4UqhC5ujZjQOuH7ac4OTkcfww4nfUMM7xoHKs7kluVy3NM4RNg23xXI5jrDad1y92jgMTcRGIwpB+bbSn41GI0IRB+3DelviVFw0osiOhAgqfpSaLJeKyQir1dWNlyynS0uR7ZcronUn358s5/1/SJjCP85aPxpRfFuFQnjwQj5hRH+e6nfELMgEc7LcKPH5Vy9DTdLEf/7lOXz8Lytx3zoKYkIIqWT6cjYO9ebRmy3fEQZc4ZtJmr472u4J4fhohOsYRusJl0J36Yo5tDoqFpEYhmhEMXyhkShvshwAvzat3nlMLyHmyDKFsFno8JYz1oSXndbHO5AAjArYuO5n+mdrU6Yv+nQXPtqhLo6UWVwIJ00D33z9cXjtSbMK9qvOodpftDJHOQw0abBgfe28qc+q/SaM4IZDTR4sHY0Iu91DcrSLCGHXEQ7/PnGy3CixaGo9vviao3GgO4sbVuzAF//+AvZ19o/1sAghhBRhd4dbD7gnZ0GWYaupR8GHenPuo3/PhW3vywGId4RrUu6ywTjCOnFxiyjuWARmaJ3BVGve4SLICJc3WQ5w677qn9G3YxpuS1zLln6XteL7dj8/UAWN6D6SZhAXiYquYpEAM+IIx4lVXVglTOFPztKFsNp8sYywvn4xx/KNp8zB7Em1/utojWO/3rQ1eCGsdlluswk9MqI+k807EMJ9z3eEVTSixHbVW35JtiEI4cARDm8zkzQLXHg6wqPIG0+Zg0c/dQFec/xMbD7Qg4u/+8BYD4kQQkgRdne4ZoUjC1sBx6EcsHbPEQZch9R3hGOEmnKChyqEy+GU+S04cc4kLJsZxChS5vDuz49GKEe4jAyycoSTphGIH83VdKREznZiy7XF7bucmwIg3MJXidZoqa5iJqHuWOv71ieV6Z3uTEP4TnXcBLhSFS8G64hG2z8fliM8QPWMKL4zbujl0xzNOXfHoqqclKwjHLnJGIpQjZZNC6IRRsH5HImGGpwsV4IZTTV4zfEzccvKXTjUm8eLe7tw5LSBJzsQQggZXXa19/nf9+Qs1KRM7O3sx1+e2oGrz1kQeqQPwO+C1t6b85tqpJOBEI5rMqHEW80gohEA8NOrTsaiqQNXjACAr7z2WADAno7gKeRALutg8SfL+Rnh8h1h1zE0kLOdkKtpl1k1QgmZcqMRbttgr0uepx6jgrZoNCLaUCNR6FomjLAorksngK5syBE2yolGlNGFLW5sShCnD8MRHmjSYLF9m1pGOGc5Bef38pNn4+iZjSXL/kVjI0MpbxbNCOsd56LCdySqRtARHoALj2rF3f9xLmpTJr531/qxHg4hhJAYdmvCsSdrYU9HP0776t341u3r8OCLBwrWV4KjJ2f7j/trUoYfjYh3hAc/WQ4ALj56Oha3Ds5EmdYYVC0Y7oyw31AjoTrlDSwuJnmOcMIQWiONcDQiX0Y0ws8Il+kIq/GmEoY/gS0ZeQxfLBqhV7UAtGoTuiOsT4oTwv/Zhia2leUIl9dQotjYfEd4CELYiIjqgQi1WNYmy0XLy81qrsEbls8pa9/Bz2RwY9f3pz6rfjxxjnBPmXMABgOF8AAIIbBoaj2uOmMeblu9B/u7smM9JEIIIRFCjnDWxgMv7vdfbz3YW7B+XnsErUcjOvpKRSOGJoSHgi7uhtpQoxi1Xrcu1RlvMJPlLFv6zmGQ6RRwJMqrIzzIjLDavttkxI1lRKMKxSfLIfS+EulmxAX21y+SER6ojjCgRwPKOya9coO+v8MRwmVHI4zgRiI2GhGZXFhy39EJjENwhIUQMEShI5xJmgU/24M9uUFvfyAohMvkDSfPhu1IfOfOF8uaiEEIIWT02KU7wjkLvbmgjNq2tp6C9XXBoWIQNSnTzxeXjEYMQsQdDqqV83A7wifOacZv33Uqlns1WQczWa6zP+86iSIQ66aBIBoxgCWoypUNphazYQQZ4USMU1tMfEbFZtRJdscebCNpCv8mIVzqzP23lCPcUufeKJRbyzcaZ/Anyx1GRrjsaERospy7LGc5QfY64ryX3ha8dQeXkY4bU/TnpdcRVrRRCI8di1sb8N5zF+FPT2zDa374MHZq7gMhhJCxZV9nP6bUu2KkJ2uh1+sYt7i1HpsO9OBjf34WT2095K+vyqcBYUc4ukxHuYUDtUoeLm76wFn43hUnlD2xrFyEEHjJkVN9oVNOww7lCHdn3QYkukAxDK2hxoBVI4YWjUiaBpKGEar7GxVOUaKRhoQfjQjWUa7n8XOakU6YQTQiUSi4SzmkV5w6FwCw+UDhTVfs2CIlz9T+8kMQwv7Eu0FWjTAEijjC5cc8/Py095lybwTixhTtLJdOmiHHHgAO9gz/U3kK4UHwiUuW4KuvPRbr93Xh369/liXVCCGkQujqt/yWxz1ZG305G0IAR06rx6Mb2/C3Z3biczev8tfPhaIR7p9CvTRYXMOH5fMn4aMXHYGT500aqcMI0dqYwaUnzBp4xSES1+ihGMoR7uq3PEc4LEgdR8IagTrCgCu2kqZAwhShmIjaVdHOcpFH7SoLrQtGVXf6nCOmAggqg8RVjSglDF9xzPSyj8cdQ3jbx85qAgC848z5g9oO4Dm7g9Cf4RbLmhBWVTnKyEQrAkf7MB1hbeKeWcIRdkbggTyF8CAQQuDNp83FhUun4YktB3HqV+/Gv//52bEeFiGEVD1d/XlM82rvutEIG7VJE3Nb6mB5fz3nTwkqN+jRCOUE6y5lXEONTNLERy86ctgd2rEiaFBRxmS5uuKOsGq/nNPyw8UYUkbYywe7TTUKqzkM1FDDKHCEg/Uf39wGAHjJEVMAAHVxjnDE9YwjYRr46/vOxO/efWpZxxR1s1vqUtjy9VfiwqOmlfV5Hb1DXDno2erQZDnNCU4Yoix3N6jzPPSMsD+WmM5yanOqsstIQCE8BI6d3eR/f+MzO0OTMgghhIwuUkp0Zy2/0kJP1hXCNakE5k0Omhjo4lZ/BK2cYF3gxjXUmGhERUwpVItl25EwTRESPLqYGqgCxWDrCKtxJk2BpPevvy3v+2LaS/gCNiLWNNGo3P0T5jQDCLqphYVweH/FOHneJN9ZHggjItIPByPi0A+Enin2O8uF6giXL6yj52YoVSPUmKItsTMJE30517Gf1pjG7Ek1eP95i4a2gxKwjvAQeNdZC7BkWgOWz5+EV37/Ibztl0/gqtPn4dOvPGrCOAWEEDJe6MvbcCQw3XOEe3M2+nIWalMm5rUEQrizP+9/H+cI63GIOEd4oqEcwLKEcE0q9LnQhDOVM82PTDTi/ectwtEzm/D9u9eHxOjAjnB4vaRZKD6/f+WJ6Oq3/IliqptaKiYaMZzNHPRavsOxrcEIYb1MWjgaoW4UjLJ+J4CYiYiH4wj7Py/333TSwFEzGnH12QvwrrMXYOYIucJlHakQ4hIhxDohxAYhxCdj3j9PCNEhhHjW+/rc8A+1ckglDJy/tBUNmSS+8JplAIDfPbYV/3vXi2M8MkIIqb5rdle/WyGipT6FpCkCRzhp4qgZjb5T3OUJYceRflwCKKwGkTKNYXHqKp2kKdBUk8T0psyA64bKicVMlgNcR7jshhqDMI2uPmchzlg02c0IxwjUcjPCcY/va1MJP1IDFHOEDy//GkfgCB/+tlRr5LL3rYlw/dzp2eBySqcB4RbY+uvBoleNUP8zMwm3fNpnXrVsxEQwUIYQFkKYAH4E4OUAlgG4UgixLGbVB6WUJ3hfXxrmcVYsZy2egiNa6wEAv3lkCzbs6x7jERFCqplqvGYrIVyfTqA2lUBP1kJf3kZNysSkuhQe/6+LcOHSVn+9vBOemZ+JRCOqIRYBuLnWB/7zfLzh5Nllrf+dNx6Pf3zobLephj5ZzhM//XlnwLyxygjHTUYcCFU5wt9WmVUjfEe3DLFWF9dQo4yM8GAZaOyD2pZWcaEcEpoID2W9tcly5R6rGv/kujSEABozyfIHomGKIJNsebGl0fp/WM5eTgWwQUq5SUqZA3A9gEtHdljjh3TCxJ0fOxd/e/+ZsB2Jt/78cWz3irc/urHN/54QQkaJqrtmd2ddgduQSaA+nUBPzq0aoTe+aMgk/GhEtGlB2hfA3r9VEItQNNUmQ7V5S/G6k2bjmFlNniMcLA9KcA3sCM9tqcW/nbsQ5y9pHfRYz1syFS87OphMppcBi6OgakQZj++VIxx1ngfrug5EtELC4W5rMGMztUlx+o9LzwiXGwNRNxvnL23F3R87t6ynC7Fj0nLJqrRhZpgbyRSjnL3MArBde73DWxblDCHESiHEv4QQRw/L6MYRJ82dhD++53Ts6+rHVb94HP15G1f+7DG84vsPjvXQCCHVRdVds1XkoSGTRG3K9KMRuhBurEkGjrAdrsHkN9RIFmaFSSEJI36yXN6WZXSWE/jUy49Ca+PgBdPbzpiP/3jZktC29H+jqFJrhZPliu8jvmrE8OaDgWCC33A4wvqkt3JIaCI8HI0IMsJlRyO81UxDYOHU+rLHULidoASculEdrTlX5UyWizsb0UpuTwOYJ6XsFkK8AsBNAI4o2JAQ1wC4BgDmzp07uJGOA06Z34Kvve5YfOKvz2PpZ28D4D6y68/bnERHCBktqu6a3a1FI+qUI5x3q0YoGjIJdPVbkFIWOMKZiADm9bo0etktIL5BxWgQdJaL3+frTpyFGU0Z/+eZiJksF6WmSEON4XSDAb202+FvyxCDa2ShV6woFo0Y7GS5wz09etWIXAVGI3YAmKO9ng1gl76ClLJTStntfX8rgKQQYkp0Q1LK66SUy6WUy6dOLa/EyHjj0hNmYXJdKrTsL0/tQE/WKvIJQggZVqrumt2V1YWwcoQtvwIA4GYXbUeiN2cXdO8KhLCKRtARLkXCCDc60L8f7nbQpfBztkVUWLQhSaqMWreqe2DK1IV++ZnZconGNg5rW5GIw0DojnC0HrTa3mCjEYd7HLoQVv8/R6tySzmn7kkARwghFgghUgCuAHCLvoIQYrrwbkeEEKd6220b7sGOBzJJE//48Nn403tOx8rPvwwA8JmbVuHoz9+Ovz29Y4xHRwipAqrmmn2wJwcgmCzXmEn6k+XcOsJ6RtidxNPZnw91lQOCLGJNRBCTePQZ/kBYiJbrJA7XOIDy3chETB3hKHXp+IYaw+10D+RmD2pbg4xG6JGSSbVaWTzv/LzuxFl46+nzytvWME36M7Wbq9GORgz4GyultAB8EMDtANYAuEFKuVoI8V4hxHu91S4HsEoIsRLA9wFcIaUcgUZ444MZTTU4Y9FkNNUk8ZlXHuUv//YdL6KKTwshZBSolmv23s5+nPbVu3Dbqt1+NKIubXqT5Sz0RYRwY43r9HX1W2VEI+gIlyJhhqMRiTESwvXexLa6dHktEfw6wiVE2+xJtTh/yVScNHeSv8wwhj8jPPxVIwafETYMgbp0ws/Sq+UvP3YG3l5mq+eg9u/hCuEgN60c4dF6MlPWb4/36OzWyLJrte9/COCHwzu0icHV5yzEkukN+Ml9G/HIxjY8ve0QTp7XMtbDIoRMYKrhmr1xXzfytsSdL+xDS507SS5hGqhPJ3CoJw/LkaFohO8I9+V9t68hnUBX1vKziKpqRDU00zgcChxhoQvh0csIHze7CTf82xk40esKNxBxneWiZJImfvXOcJvkwVZlKIeBJvoNhsG2WI5WrJjakMbWtt6yq4dE9+3+O+iPhpjXUocmr3thzpvMmq6gyXLkMDnnCPfu8vSv3Y1///NKvPzY6bBsiQPdWXz7DccP6ZePEEKqmV0d/QCAhzccwHlLpvruYGtD2i+nFnKEM4Ej3OB931iTRFfW8oVvTZXVER4qiehkuTFyhIUQOHVB+cZSOmHg316yEBcsHVzpNmMEMsLGIGMdA21rMNuJTtSbUu8K4eQQBjNcgv5HbznJ/z5vVaAjTA6funQCbz51Ln76wCb89P5N/vLbV+/B3z94No6Y1jCGoyOEkPHF7vY+AMCezn48u70d9Z64DXUJC1WNCDLCSug21iSxs72vYLIcHeHSvO2M+WjvC9pVj5UQHixCCHzqFUcNvGKEEckICzcKMJhIQzFMUboSRpRE1BGudzsvDkXMqm0Mx3EoVDRitH6XKIRHkY9fshSnL5qMF3Z1YndHH9bs7sJTWw/h3373FK6/5nR09ueRtRwcPbNprIdKCCEVza6OPqRMAznbwdo9XTjeezze6rVTBhCpI+z+uevst9DsTRBSLnE0Gzxaj2THKy85MlxBJFSLdhSjEaPFiEQjIjV8D2tbxmAny4UjIlMa3P8PQ3k6LQYZyygHNZk1RUd44mEaAucvafU76vTmLPzzud343M2r8ZofPow9ne6jvi1ff+VYDpMQQiqeXe39WDK9Ab05Cxv396AhXegIh6MRQUZYTZZrqnGXKSeYDTWGhi6EouVDJwIj0VDDGKR4LcXgO8sFYwCAqfXq/8zg58uaxvB0x9NR0YjRyptTCI8htakE3rB8DlrqUnj3b1b4y3tzVuiRHiGEkDC72vuwcGodjpzWgB/cs8F3kcLRiEAIpxMGUqaBrn7Lf/R6+cmzccaiyTF1hOkIDwbd2VzcOvTuYpXK8vktmD2pdli3aQoxLM00AOB95y1GhxZVGQjl/CYijvBgtqFQ7aeHk9mTarGro3/UdBDVVgVw2sLJoddr93SFSrcQQggJs7ujH2ctnoJLjpmOH9yzAU9sPggAmFSb9CMTuhAWQqCpNomDPVnfET5iWgNedvR0f51oGTVSHrobOdyCsRJ477mLhn2bhjF80YgTyqyaoXjN8TPRkEn4QnOKlxE+1DN4ITwS0YhrrzoZT245iJZRerrA/+0VQH06gQVT6vxfxkc3jru69oQQMmp09ufRnbUwszmDZTMacdzsJnz9dccCcP8wq5xwtCD/rOYa7Gzv893j6KPXupSJhVPrsISTlweFHi0dblE0URmJSEG5zGyuwVtOCxpmTG1w/7+0D8URHsass6KlLoWLtRvUkYaOcIXwr4+cA0MIvPGnj+LvK3fh/ectGtZZmIQQMt7JWQ72dvajJ+eWR5vRVAMhBG754Nmh9aY1ZrDjUF/Bo9XZk2rw/M4OPxoRnYyTMA3c8x/njdwBTFCUEJrVXDPGIxk/ZBJmxUzKVFUj2ntzg/5sTcoc909QxvfoJxCZpIlUwsCbT5uLtXu68I/ndo/1kAghpKK49v6NuOg79+NJLwaxYEpd7HrTPEdYj0YAXvawvQ/9eU8IV3Cpr/GE5TVAKPbzIIW8+5wF+MlbTxp4xVFAPY0eyo3Mu89egJ9edfJwD2lU4VWgwrj8pNlYMKUOv3x4s+9aEEJItbL5QA92d7g1g29fvQdZy8H379mAppokjprRGPuZ1gZ3wlxNgRCuQd6W2HnI3V4l17wdT+zvzgKYmBPlRooZTTU4ZX5ldJmtSZn43btPHZKgndaYGffdcnkVqDAMQ+DdZy/AM9va8fqfPILNB3qwra3XnwhCCCHVxAf+8DQ+c+Mq7Onox+pdnQCA/V1ZnLloctE86olzmzF/ci3qYqIRALDpQDeA0atTOtF5zfEz8bYz5uFjLztyrIdChsg5R0zF5Pr0wCtOQJgRrkDeevo8tNSl8Km/PY9Xff9B9ORsAMDmr72CuWFCSNUgpcSWth609+Zw77p9AICl0xuwdk8Xzlo8pejnLj1hFi49YVbBclXRYPOBHgDDXxu2WqlLJ/ClS48Z62EQMiR4O1yhvOLYGbjy1Lm+CAaAHd7jPEIIqQY6+vLozdnY1dGP21btwcymDN5//mIkTYFzI93NykE5wlvbepFKGDQWCCEUwpXMlafOCb1evatjjEZCCCGjj37z/8D6/ThlQQtefdwMPPLJCzGnZfD1ajNJ058YxIlyhBCAQriimTe5Dhu/+gp87lXLAABPbT00xiMihJDhZ/WuDnz9X2shpUTWsvH5m1dhV3sfdrUHQlhKYPm8SRBC+HVPh8KCKa6AZj6YEAIwI1zxmIbAu85egDtf2IsH1x/wl+csB305G021yTEcHSGEHD6/eWQLblixA68+fga6+i385tGtmFyfRkPG/RNlCMCRGJbZ6SfMacaTWw5BSnnY2yKEjH94SzxOuGBpK9bu6cIl330Aezv78eofPISL/vf+IRXAJoSQSkJVxbnrhX1YtdONgD2+uQ07D/UhnTCwdHojGtIJLJl++B3fVPv6Q72D76JFCJl4UAiPEy4/eTYAYO2eLpz21buxbm8X9ndl8YfHt43xyAghZGhIKbGnox9b2noBAHet2euXSHtq6yFsaevFrOYavPm0uXjPSxYOS/veEz0hTAghAKMR44ZJdSk89Inzcf+L+/H3lbuwdHojHtvUhm/dvg4nzmnGmSVKCRFCSCXy2ZtX4fePuTfzLz9mOv61ag92d/ShNmWiN2fj7rV7cfbiKXjr6fOGbZ/TmzLDti1CyPiHjvA4YvakWrzltHm4/poz8IXXHI3LTnTrZF734KYxHhkhhAyeu9e4tYEbMwl8/tVHozZl4kB3Dq8/aTZMQ0DKoOTZcHLB0lacuWjysG+XEDL+oCM8jrnmnIV4fkcHHt/cBiklhBCwbAc9WU6iI4RUPqmEgTMWTsaXLzsa05syuPqchfj+3etxzhFT8NqTZmHN7s4h1QseiF++45Rh3yYhZHxCITyOMQyBs4+Ygn8+vxsb9nVj+6FefPrGVejN2Xjg4+ejqYZimBBSuRzszuH8Ja1Y3OpOgnv/eYswtSGN85a0IpUw/IlthBAyUjAaMc45f0krAOD6J7fjI9c/i90d/ejoy+OvT+3w15FS4pxv3oP/vfPFsRomIYSEyFo2urIWJtel/GWZpImrTp/HGr+EkFGDV5txzvSmDE5f2IJfPLQZXf0W/vWRc3DCnGb8/rGteGLzQTzw4n5sP9iH7Qf78L2718NxWDuTEDL2HOxxSz+21KcGWJMQQkYOCuEJwH9fdiwA4LjZTThqRiPedsY8bDrQgzf+9FG87ZdP4CXfutdfd9vB3rEaJiGE+LR1u0JYd4QJIWS0oRCeACxurcfKz78Mv33XqQCAVxw7o+i6D244gAu+fR/W7ekareERQkgByhGeXD/0dsmEEHK4UAhPEJpqkmiudZ2VTNLErR8+Bx+6YDGufetJofX+5/Z12LS/B7et2gMAuPo3K/Bzll8jhIwyfjSCjjAhZAxh1YgJyrKZjVg2szG0LJM00NHnthX937texPM7O3DXmr24a81eXH3OwrEYJiGkSjnQnQXAaAQhZGyhI1wFPPLJC/CLty/HcbObAQBTG9xHkXet2TuGoyKEVDMHe3JIGAKNGZZ5JISMHXSEq4CZzTWY2VyDo2c24boHNuGYWY342A0rx3pYhJAq5mBPDpPqUjAMMdZDIYRUMRTCVcT0pgw+9+plfjZP57ZVe7C/qx9XnTF/9AdGCKk6DnTnGIsghIw5FMJVSEtdClu+/kr05ix84A9P4951+/He3z8FAPjziu0QEPi/956BTNIc45ESQiYqB7qznChHCBlzmBGuYmpTCZy1eEpo2aqdnXh+ZwceeHE/enMWvvj31dja1jPgtvZ3ZbFqZ8dIDZUQMoFYt6cLK3e044Q5zWM9FEJIlUMhXOVceNQ0nLV4Mn7+tuWh5bet2oMv/2MNfvXwFvzh8W3IWjakLN6V7rIfPYxX/eAhdq4jhAzI/9yxDvXpBK55CavVEELGFkYjqpwFU+rwh6tPh+1IXHHKHHRlLaQTBv729E4AQMo0cN0Dm3DdA5uwuLUef//g2ahJmbjhye1obUzjj49vw1VnzMPO9j4AwPZDvZg3uW4sD4kQUsH05Wzcs3Yfrj57gV/7nBBCxgoKYQIAMA2Br7/+OADAoxvb8M/nduPlx0zHpSfMwjt//SQAYMO+bjyz/RCOntmEj//1Of+zd7wQlGFbu6cL8ybX4Xt3rcfujj5/m4QQAgCrd3XAdiSWz28Z66EQQgiFMCnkjEWTsfbLl0AIt6zRW0+fi98/tg0A8OKeLjTVFK/7+fyODlx89HT8710vAgCFMCEkxLPb2wEAx89uGtuBEEIImBEmRVAiGAC+8Oqj8eDHz0dTTRI3r9yFPz2xrWD9/7x4CU6a24yHNhwILVed7P761A7cu27fyA6aEFLxPLejAzObMmhtzIz1UAghhEKYDEzCNDCnpRbnHjkVz2xr993hpz/7Ulx56lwAQGtDGmcvnoJnt7fjrK/f43/27yt3oTtr4T/+byXe+asnx2T8hJDKYeWOdr/LJSGEjDUUwqRsvnfFCfjr+84EAGSSBibVJvHpVx6FD12wGK88bgbOPmIqAPgT5wDgMzetwjGfv91/3Z+38YrvPYjbV+8Z3cETQsacjr48trb14rg5jEUQQioDZoRJ2QghcPK8SfjzNadjcn0KQgjUpxP4j5ctAQCcOLc5tP60xjT2dmZDyy74n/uwq6MfNzy5HTVJE7Mn1aCz38LGfd14/cmzi+7bsh0ArjtNCBmfvLi3CwBw1PTGMR4JIYS4UAiTQXPawsmxy5Omgbs+9hK86aePoa0nh6+/7jicv7QV//l/K/F/T+0AAOzq6AcA3L12H+5eG84MX3TUNDTVxk/Ee+2PH0FXfx53fexcdPTl0ZBJIpWgKCZkPLF2jyuEl0xvGOOREEKIC5UEGVYWtzbgzo+diw9fsBinLXTLI335smPw4QuPGPCzt7+wB+29OXzt1jXo7M/7y6WUeH5nB7a09eL4L96Bk//7Lnzu5lUjdgyEkJHhxT1daMgkMKOJE+UIIZUBhTAZdlrqUvjYy5agNuU+cMgkTXzspUfilg+eBQB499kL/HW/dOnR/vffu2s9fnTvBvz0gU247IcP409PbEN/3vZdZADoydkAgOuf3I7P3PT8oMa1Zncn/vTENvzmkS14aP2BgT9ACBlW1u3pwpJpDaGqNIQQMpYwGkFGjeNmN+OhT5yPWc016O63cP7Sqbj46OlYNqMRtiNx1S+ewM8e3AwA2HSgB5/62/P4rxufx9IiecLfP7YNHzz/CEwv01169Q8eguVImIbAKfMn4ewjpgAAHt/Uhh/ftxE/e9tyxi0IGSGklFi7pxOvOn7mWA+FEEJ8+FefjCqzJ9VCCIFvXH4cLjlmBoQQWD6/BactnIzvXnECls1oxHvPXeSvL6Xr5DbVJPGn95xesL2XfPNe2I70X+dtBz++bwO6tGiFwvLWsx2Jp7e1oz/vusufv2U17n9xP57Zdmi4DxcA8OD6/fjp/RtHZNuEjBf2dWXR2W9hyTTmgwkhlUNZQlgIcYkQYp0QYoMQ4pMl1jtFCGELIS4fviGSauEVx87ArR85B5+4ZAm+eXm4I90FS1uxuLW+4DM528E7fvUEXvLNe3HXC3vxswc34Zu3rcNXb12DvFdpwnYk/uvGcIwiZzm45LsPYH9XFtO8wv4Pb2yDlBIdvXlIKQv2NVSu+sUT+Nq/1uL3j20dtm0SUopKvGbv8yrIMB9MCKkkBoxGCCFMAD8C8FIAOwA8KYS4RUr5Qsx63wBwe+FWCCkfIQTeuHwOFk6pw5T6NP729A685yUL0ZBJ4h8fOhuOlPjZg5vxrcuPw8XffQAPennfq3+7wt/Gn57YjrvW7MOfrzkdb/n549jd0Y/zlkzFfev2++tsaevFzx/ahJ6sBQD4/t3r8f271wMArn3rSThtwWSs3NGOuS21eGZbO1569DQ0Zoq3lx6Iz9y0Cq87aZafnSZkJKjUa7bqMlmqRTshhIw25fxFPhXABinlJgAQQlwP4FIAL0TW+xCAvwI4ZVhHSKqW5fPdqhMf8+oUA8Axs9xC/D+48kQAwNXnLMRnb3IrSDTXJtHeG0Qi9ndlccG37/df//Sqk/EfN6zEP57b7S+76Zmd2NuZRcIQfnQCAB7d2Iav3roW2w72ImUayNkOLny+Fb94R/Ff7/V7u7ClrRcXHdVadDJQW3cOtS0UwmREqchrdntfDgDQXJsajd0RQkhZlBONmAVgu/Z6h7fMRwgxC8BrAVxbakNCiGuEECuEECv2799falVCyuINJ8/G60+ajb++70z8/YNnAwBetmwafvKWk3Dh0lacMn8SAOCVx85AOmHiu286Aff+v/Pw5Kcvwg/ffCIMT7B+7GVHhuIYT2w5hG0HewG48QvArX183QMb8b93vojdHX14yTfvxSMbD6A/b+O2VXvwgT8+jff8dgVuWBH8d1m5vT003rae3IidC0I8KvKaTUeYEFKJlGNNxVlb0QDldwF8QkpplyqLI6W8DsB1ALB8+fLhC2GSqiWTNPHtNx7vv17335dASnf5y4+dAcCdra5+LxOmgQVT6gAArzpuJl557Ays39eNuS21SCcMLJnWgL8+vQO/fdTN886bXIutbb04orUetiPx1VvXAgBuX70H2w724s0/e7xgTNc/uR1vOmUuAOB1P3kk9F5bt5uT3NPRjztf2INbVu7Cn685Aw9vPICerI1Ljpk+nKeHVCcVec1WT2uaizTNIYSQsaAcIbwDwBzt9WwAuyLrLAdwvXdBnQLgFUIIS0p503AMkpBySSfMgmWl/tALIXCkNov9+DnNSCUMXwifuWgKtrZtw9IZjXjHmfPw+p88CiDokBVlZlMGz25vx+duXoW71+zzK1pcd9XJuOZ3T+Hdv1mBj150BL5393qo+Xg3r9yJf//zSn8bv3/3aX5pN8UfHt+K5fNa8PCGAxACeOdZC7BhXzduemYn/v2lR8I03GO0bAfbD/X5Yn+k6MvZuG/dPv9mg1QUFXnN7uzLI5UwkEkW/h8lhJCxohwh/CSAI4QQCwDsBHAFgDfrK0gp/Q4JQohfA/gHRTAZrxw1oxGffdUy/OO5XZjTUgMAaKpJ4OiZTf469ekEPv3Ko3Dzszuxta0XH7nwCKzZ3Ynzl7biHb960hfSAPCty48LCdvv3uVOyEsnDGQtJySCAeDH923A3JZa/Pc/X8BLl03DRUdNw6dvDHfSy1oOvv4v152e2VyDMxZNxpxJNfjAH5/G7av34r7/dx4sx8HCKfVwpMTO9j7Mm1znNihpd4Xyod48Nh/oRmMmiSMGWdLqS/9YjT89sR03f+AsHD+neVCfHQm6sxb+/OR2vPPM+TCMqm/WUJHX7I6+PGMRhJCKY0AhLKW0hBAfhDuz2ATwSynlaiHEe733S2bMCBmPvPvsBXj32Quw/WAvfv3wFrzjzAXIJE384MoTsbi1Hotb65E0DVx56tzQ5/K2A9MQsB2JG99/Jq5/YjtedvT0UKUI0xA4Y+Fk/OStJ+HYL9wBAPjF25ejIZPEG3/6KB7Z2IYrrnsUuzr6cccLe2PHp0QwAL803IcvWIzbV7vrv+y7DyBnOXj9SbORsx38feUuPPnpi/Cff1mJ+9btx3feeDw+e9Mqv1PfSXOb8flXH+2L2oM9OXzp76vx4QuPwMKphWXrNu7r8dfT6claMA0x6q7ft25bi988uhVzW2rx0mXTRnXflUalXrPbe/NophAmhFQYYjjrpQ6G5cuXyxUrVgy8IiHjjAPdWWzc143TFk4OLV+3pwvTGzOoS7siMWEa+O9/vICzj5iC85a0AnCbb3zqb89jx6E+/OfFSzCtMYP/93+BY/yq42aEql40pBPo8sq/AcAJc5rRkEn4JeV06lKmL3zjOHFuM258/1nI2w4+8IencccLe3Hh0lZMb8rgy5ce4zutNzy5HR//63MAgK+89hi89kS3JJzjSJzzzXsxvSmDv7z3jFFto/v+PzyFW5/fg++88Xi87qTZo7JPIcRTUsrlo7KzCuBwr9lXXvcY8raDv7zvzGEcFSGElEexazbrOBEyzEypT2NKfbpg+ZLphfGDz7xqWej1OUdMxX3/7zzsau/H3Mm1AID23hxuWbkLN/zbGTANERLCN37gLPzgnvW4/8X9aO/N4zXHz8TJ8yZhb2c/fv62U7CjvRcb93XjszevRk/OxpuWz4FhuHWWAeC7bzoBH/3zswAARwJ3rHarX+Rt9wb57rX7AABzW2rx9jPn45cPb8Y3b1vn7/8XD23G529ejdMXTsb8KbXY2d6Hne19WPKZ2/D7q0/DKfMnYX9XFq2N4SYKb7z2USyeVo+vvvbYgnNyoDuLrn4LcybVIGGW1/xSie5N+3uwq70PM5tryvocGT3a+/KY1cxmGoSQyoKOMCHjjKe2HsTqXZ04dlYTTpzrlod7dns7Vu3swBWnzIkVjy/u7cLBnhxOW9CCrOXg3rX7cO+6ffja647DpT96CKt2diKdMDC5LoVdHf2x+z1mViNW7ewsObbXnTQLtz6/G/15By11KVx2wiz89tEt+NjLjvRuEFJ4ems7fnjvBgDAhq+83B/vuj1daKxJ4BXfexCHvAoDq794MerS4fv1vO3goQ0HcN6RU30B/O5fP+mL9uh2D3RnY29MDhc6woPjrK/fg9MWtuA7bzxh+AZFCCFlUuyaTSFMSJWTsxzs7ujD63/yCGpTCXzmlUdhZnMNHli/P+T+Am6++Z7/OBe3rdqDH96zAV1ZC1ecMgfXP7kdFx3Vip+//RTsau/Dzc/uwjduW1tkj2FOW+A2Tnl880G0NqSxrysbev+D5y/G286ch0c3tuElR0zFrx/Zgu/dvR6/ePtyXLDUbV7yyu8/iNW7wiJ941dfgXvW7sN7frsCv33XqXhxbxfOOWJqrDM/FCiEB8cxn78db1w+B5979bKBVyaEkGGGQpgQUhLbkTBEuNzc3s5+TKlPozdn4Sf3bcSFR03DyfNcF3rDvi586E/P4rqrTsah3hyOnNbgT5Lry9m44mePYdGUOtzxwl50eznmhnQC//3aY/Crh7cgkzTw2KaDqEuZEEL46wyG6Y0Z/PDNJ+Ktv3gceVtiXkstNh1wJ/J98/Lj8PV/rQ1N6Js3uRb//PA5qE8nYDsStiORSpQXv4hCIVw+edvBEZ/+F/79oiPxkYuOGOaREULIwFAIE0LGhFU7O/DIxgP43WNb8e03nIBTPQdYSglHuiJpa1svvnnb2lC8QXHCnGYcN7sJcybV4iu3rgm9p0rQAcAfrz4Nx85uwkXfuR97OwNXOZUwkPPWAYCLj56G+ZPr8OcV21GXSuC2j56DhszgqxlQCJdPW3cWJ//3Xfjia47G28+cP7wDI4SQMuBkOULImHDMrCYcM6sJ17xkUWi5EAKmAEzDxJLpDfjFO07Bmt2dWL+vG7vb+/Dq42diRlMm5FCfuXgy7lu3H4um1uGsxVPwfyt24BcPbcapC1pw6oIWJEwDj//XRbjqF4/jwfUHcOWpc/ClS4/B5T95BCt3dOB95y3CT+7biIQhMHdyLTbt78FP7tuIj1+ydLRPS1XRzvbKhJAKhUKYEFIxHDWjEUfNaCz6/tEzm0KNTd519gK86+wFBev98M0n4Zlth/yydL+/+jQc7MlhzqRavOq4GVg0tR6ZpImbntmJc4+cOvwHQkJ0UAgTQioUCmFCyISjqSbpi2AAaMgk/fiDLqQvO3HWqI+tGunx8t/RCiCEEDLWDG2WCCGEEFImlleXOmlWfftrQkiFQSFMCCFkRMnb7mTFhME/OYSQyoJXJUIIISOK7biOcIKOMCGkwqAQJoQQMqLkHUYjCCGVCYUwIYSQEcViNIIQUqHwqkQIIWREUZPlGI0ghFQaFMKEEEJGlLzjOsJJk39yCCGVBa9KhBBCRhTlCJsGHWFCSGVBIUwIIWREsdRkOWaECSEVBq9KhBBCRhR/shwzwoSQCoNCmBBCyIhisY4wIaRCoRAmhBAyoqjOcoxGEEIqDV6VCCGEjCiWLWEIwOBkOUJIhUEhTAghZETJOw4SLJ1GCKlAeGUihBAyoli2RIJuMCGkAqEQJoQQMqLYDoUwIaQyoRAmhBAyouRth13lCCEVCa9MhBBCRhTLliydRgipSCiECSGEjCh5x0GCpdMIIRUIr0yEEEJGFMuWSNIRJoRUIBTChBBCRhSL5dMIIRUKr0yEEEJGlDzLpxFCKhQKYUIIISOK7XCyHCGkMqEQJoQQMqLkbU6WI4RUJrwyEUIIGVE4WY4QUqlQCBNCCBlRLJZPI4RUKLwyEUIIGVHybKhBCKlQKIQJIYSMKJbDFsuEkMqEVyZCCCEjimVLmCyfRgipQCiECSGEjCiWw8lyhJDKhEKYEELIiGKxfBohpELhlYkQQsiIwslyhJBKhUKYEELIiGI5DpJ0hAkhFQivTIQQQkYUi44wIaRCoRAmhBAyouRtlk8jhFQmvDIRQggZUSyH5dMIIZUJhTAhhJARxXIYjSCEVCZlCWEhxCVCiHVCiA1CiE/GvH+pEOI5IcSzQogVQoizh3+ohBBCyqHSrtmWzclyhJDKJDHQCkIIE8CPALwUwA4ATwohbpFSvqCtdjeAW6SUUghxHIAbACwdiQETQggpTqVdsx1HwpGgI0wIqUjKuUU/FcAGKeUmKWUOwPUALtVXkFJ2Syml97IOgAQhhJCxoKKu2XnHAQBOliOEVCTlXJlmAdiuvd7hLQshhHitEGItgH8CeFfchoQQ13iP4Vbs379/KOMlhBBSmoq6Zlu2q7ETnCxHCKlAyhHCcVevAvdASnmjlHIpgMsAfDluQ1LK66SUy6WUy6dOnTqogRJCCCmLirpm+0KYjjAhpAIp58q0A8Ac7fVsALuKrSylfADAIiHElMMcGyGEkMFTUddsFY2gI0wIqUTKEcJPAjhCCLFACJECcAWAW/QVhBCLhRDC+/4kACkAbcM9WEIIIQNSUdds21GOMIUwIaTyGLBqhJTSEkJ8EMDtAEwAv5RSrhZCvNd7/1oArwfwNiFEHkAfgDdpEzEIIYSMEpV2zc7b3mQ5lk8jhFQgAwphAJBS3grg1siya7XvvwHgG8M7NEIIIUOhkq7ZQUaYjjAhpPLgLTohhJARw1IZYU6WI4RUILwyEUIIGTHyniOc5GQ5QkgFQiFMCCFkxGD5NEJIJcMrEyGEkBGD5dMIIZUMhTAhhJARg+XTCCGVDIUwIYSQEUOVT0uwfBohpALhlYkQQsiIoTLCSTrChJAKhEKYEELIiMHyaYSQSoZXJkIIISOGKp/GyXKEkEqEQpgQQsiIwc5yhJBKhkKYEELIiOFHIzhZjhBSgfDKRAghZMTIWa4QTjEjTAipQHhlIoQQMmLs68oCAKY0pMZ4JIQQUgiFMCGEkBFjd0cfmmqSqE0lxnoohBBSAIUwIYSQEWN3ez9mNGXGehiEEBILhTAhhJARY1dHP2Y214z1MAghJBYKYUIIISPG7o4+OsKEkIqFQpgQQsiI0Jez0d6bpyNMCKlYKIQJIYSMCLs6+gCAjjAhpGKhECaEEDIi7G7vBwDMaKIjTAipTCiECSGEjAjKEZ7ZTEeYEFKZUAgTQggZEZQjPJ3RCEJIhcIK54QQQkaEK0+bg9MXtiCdMMd6KIQQEguFMCGEkBGhtSGD1ga6wYSQyoXRCEIIIYQQUpVQCBNCCCGEkKqEQpgQQgghhFQlFMKEEEIIIaQqoRAmhBBCCCFVCYUwIYQQQgipSiiECSGEEEJIVUIhTAghhBBCqhIKYUIIIYQQUpVQCBNCCCGEkKqEQpgQQgghhFQlFMKEEEIIIaQqoRAmhBBCCCFVCYUwIYQQQgipSiiECSGEEEJIVUIhTAghhBBCqhIKYUIIIYQQUpVQCBNCCCGEkKqEQpgQQgghhFQlFMKEEEIIIaQqoRAmhBBCCCFVSVlCWAhxiRBinRBigxDikzHvv0UI8Zz39YgQ4vjhHyohhJBy4DWbEELKY0AhLIQwAfwIwMsBLANwpRBiWWS1zQDOlVIeB+DLAK4b7oESQggZGF6zCSGkfMpxhE8FsEFKuUlKmQNwPYBL9RWklI9IKQ95Lx8DMHt4h0kIIaRMeM0mhJAyKUcIzwKwXXu9w1tWjHcD+NfhDIoQQsiQ4TWbEELKJFHGOiJmmYxdUYjz4V5Uzy7y/jUArvFedgsh1pUzSI0pAA4M8jPjiYl8fBP52ICJfXwT+diAoR/fvOEeyDDBa/boMZGPbyIfGzCxj28iHxswzNfscoTwDgBztNezAeyKriSEOA7AzwG8XErZFrchKeV1OIwsmhBihZRy+VA/X+lM5OObyMcGTOzjm8jHBkzI4+M1e5SYyMc3kY8NmNjHN5GPDRj+4ysnGvEkgCOEEAuEECkAVwC4JTKouQD+BuAqKeWLwzU4Qgghg4bXbEIIKZMBHWEppSWE+CCA2wGYAH4ppVwthHiv9/61AD4HYDKAHwshAMCayHcjhBBSqfCaTQgh5VNONAJSylsB3BpZdq32/dUArh7eocUy0Uv8TOTjm8jHBkzs45vIxwZMwOPjNXvUmMjHN5GPDZjYxzeRjw0Y5uMTUsbOoSCEEEIIIWRCwxbLhBBCCCGkKhk3QniglqGVjhDil0KIfUKIVdqyFiHEnUKI9d6/k7T3PuUd6zohxMVjM+ryEULMEULcK4RYI4RYLYT4iLd83B+jECIjhHhCCLHSO7YvesvH/bEphBCmEOIZIcQ/vNcT6di2CCGeF0I8K4RY4S2bMMdXqfCaXblM5Os1wGv2BDi20b1mSykr/gvuhI+NABYCSAFYCWDZWI9rkMfwEgAnAVilLfsmgE96338SwDe875d5x5gGsMA7dnOsj2GA45sB4CTv+wYAL3rHMe6PEW5d1nrv+ySAxwGcPhGOTTvGjwH4I4B/TMDfzS0ApkSWTZjjq8QvXrMr+/dmIl+vvfHymj2+j21Ur9njxREesGVopSOlfADAwcjiSwH8xvv+NwAu05ZfL6XMSik3A9gA9xxULFLK3VLKp73vuwCsgdvNatwfo3Tp9l4mvS+JCXBsACCEmA3glXBryiomxLGVYKIf31jDa3YF/95M5Os1wGs2xvGxlWDEjm+8COHBtgwdL0yTUu4G3AsTgFZv+bg+XiHEfAAnwr0LnxDH6D2GehbAPgB3SiknzLEB+C6AjwNwtGUT5dgA9w/gHUKIp4TbKQ2YWMdXiUzU8zjhfm8m4vUa4DUb4/fYgFG+ZpdVPq0CKLtl6ARh3B6vEKIewF8BfFRK2SlE3KG4q8Ysq9hjlFLaAE4QQjQDuFEIcUyJ1cfNsQkhXgVgn5TyKSHEeeV8JGZZRR6bxllSyl1CiFYAdwoh1pZYdzweXyVSbedxXB7vRL1eA7xm6x+JWVaRx6Yxqtfs8eIIl9UydByyVwgxAwC8f/d5y8fl8QohknAvqn+QUv7NWzyhjlFK2Q7gPgCXYGIc21kAXiOE2AL38fUFQojfY2IcGwBASrnL+3cfgBvhPjabMMdXoUzU8zhhfm+q4XoN8JqN8XVsAEb/mj1ehPCALUPHKbcAeLv3/dsB3Kwtv0IIkRZCLABwBIAnxmB8ZSNcK+EXANZIKb+jvTXuj1EIMdVzFSCEqAFwEYC1mADHJqX8lJRytpRyPtz/V/dIKd+KCXBsACCEqBNCNKjvAbwMwCpMkOOrYHjNruDfm4l8vQZ4zcY4PTZgjK7ZIzXrb7i/ALwC7szWjQA+PdbjGcL4/wRgN4A83DuYd8NtcXo3gPXevy3a+p/2jnUdgJeP9fjLOL6z4T6OeA7As97XKybCMQI4DsAz3rGtAvA5b/m4P7bIcZ6HYAbyhDg2uFULVnpfq9W1Y6IcXyV/8Zo99sdQ4tgm7PXaGyuv2eP02Mbims3OcoQQQgghpCoZL9EIQgghhBBChhUKYUIIIYQQUpVQCBNCCCGEkKqEQpgQQgghhFQlFMKEEEIIIaQqoRAmVYsQ4jwhxD/GehyEEEIGhtdsMhJQCBNCCCGEkKqEQphUPEKItwohnhBCPCuE+KkQwhRCdAshvi2EeFoIcbcQYqq37glCiMeEEM8JIW4UQkzyli8WQtwlhFjpfWaRt/l6IcRfhBBrhRB/8DouEUIIGSK8ZpPxBIUwqWiEEEcBeBOAs6SUJwCwAbwFQB2Ap6WUJwG4H8DnvY/8FsAnpJTHAXheW/4HAD+SUh4P4Ey4HaMA4EQAHwWwDG5Hm7NG+JAIIWTCwms2GW8kxnoAhAzAhQBOBvCkd+NfA2AfAAfAn711fg/gb0KIJgDNUsr7veW/AfB/Xt/yWVLKGwFAStkPAN72npBS7vBePwtgPoCHRvyoCCFkYsJrNhlXUAiTSkcA+I2U8lOhhUJ8NrJeqV7hpR6dZbXvbfD/BCGEHA68ZpNxBaMRpNK5G8DlQohWABBCtAgh5sH93b3cW+fNAB6SUnYAOCSEOMdbfhWA+6WUnQB2CCEu87aRFkLUjuZBEEJIlcBrNhlX8E6KVDRSyheEEJ8BcIcQwgCQB/ABAD0AjhZCPAWgA24mDQDeDuBa76K5CcA7veVXAfipEOJL3jbeMIqHQQghVQGv2WS8IaQs9XSCkMpECNEtpawf63EQQggZGF6zSaXCaAQhhBBCCKlK6AgTQgghhJCqhI4wIYQQQgipSiiECSGEEEJIVUIhTAghhBBCqhIKYUIIIYQQUpVQCBNCCCGEkKqEQpgQQgghhFQl/x9vF01L/dyO5gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "019s_iimage_10705997566592_CLEAN_ClassS_120-248.roi.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADYCAYAAABberBAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADTEElEQVR4nOz9d5hl6VndDa/nVJ1cXR00GqGISCIIC7ACydjyCyaZZC6DwdhkJIIB44CEw4vxZ7D8YRP82Zh3RDZRBhmwwSQZAS9IAsmSASGQBRKSkFCcnq6qE6tqf39UrV2/fdc+naZ76vT0va6rruk6Z+9nP+mcqbXudd9PqapKiUQikUgkEolEIpFIJBI3gs5ZdyCRSCQSiUQikUgkEonEnYcUFBKJRCKRSCQSiUQikUjcMFJQSCQSiUQikUgkEolEInHDSEEhkUgkEolEIpFIJBKJxA0jBYVEIpFIJBKJRCKRSCQSN4wUFBKJRCKRSCQSiUQikUjcMFJQSDzkKKW8upTyzLPuRyKRSCROUEp5Qynl467z2qqU8r43+ZybvjeRSCQSicR6IQWFxEOOqqqeXFXVi8+6H9dCKeVvl1L+tJSyV0r56VLKpbPuUyKRSDycUUrpl1K+r5RypZTy56WUf3DWfUokEol1w60WZq+nvfy7OLEKKSgkEi0opTxZ0v8j6e9KepSkiaTvOtNOJRKJxMMf/0LS+0l6T0l/VdLXl1I+8Ux7lEgkEnc58u/ixNWQgkLiIQdttaWUf1FK+S+llB8upeyUUn6vlPKkUso3lFLeXkp5Uynl43HvF5VSXnN87Z+UUp4d2v76UspbSylvKaV8KRXX48jXvy2lvLGU8rZSyneXUoYruvl5kv5bVVW/XlXVrqR/LukzSynnbs+sJBKJxPqglPKMUspLSimXj79T/0MppRcu++Tj7+F3llK+tZTSwf1ffPxdfX8p5RdLKe95nY/+fEn/n6qq7q+q6jWSni/pC2/NqBKJRGJ9UEr5wFLKi4+/Z19dSvk0vPfiUsqX4vcvLKX8v8f//vXjl/93KWW3lPK3SinPLKW8uZTyT46/k99QSvm8m22vpbv5d3FiJVJQSKwDPlXSf5Z0UdIrJf2ijvbmYyX9Sx0posbbJX2KpG1JXyTp20spf1GSjqNY/0DSx0l6X0l/JTzn30h6kqQPPX7/sZL+7xV9erKk/+1fqqr6Y0mL4/sTiUTi4Y4DSV8n6R5JHynpYyV9Zbjmb0h6mqS/KOnTJX2xJJVSPkPSP5H0mZIeKek3JP3YtR5YSrko6THCd+/xv59888NIJBKJ9UMppSvpv0n6JUn3SvpqST9SSnn/a91bVdVfPv7nh1RVtVVV1U8c//4eOvrOfqykL5B034Nsj8i/ixMrkYJCYh3wG1VV/WJVVfuS/ouO/gB9XlVVS0k/LumJpZQLklRV1c9VVfXH1RF+TUdfxB9z3M5nS/r+qqpeXVXVRNI3+QGllCLpyyR9XVVV766qakfSt0j6nBV92pL0QHjtAUmpxCYSiYc9qqp6RVVVL62qar+qqjfoSNg9JdIef5++UdJ3SPrc49efLelfV1X1muPv9W+R9KHX4VLYOv4vv3vzezeRSDwc8RE6+s57XlVVi6qq/qek/66T79GbxT+vqmp+/Dfyz+nob+Nbgfy7OLESKSgk1gFvw7+nkt5ZVdUBfpeO/9AspXxSKeWlpZR3l1IuS/pkHamx0lFk601oi/9+pKSRpFccW8suS/qF49fbsKsjFwSxLWnnegeVSCQSdyqOU8/++3FhxCs6EgXuCZfxO/ZPdfQdLB3VP/hOfNe+W1LRUdTsatg9/i+/e/N7N5FIPBzxGElvqqrqEK/9qa79PXk13F9V1V5o7zGrLr5B5N/FiZVIQSFxx6CU0pf0U5L+raRHVVV1QdLP6+gPVUl6q6TH4ZbH49/v1JE48eSqqi4c/5yvqmpL7Xi1pA/Bs99bUl/Sa2/FWBKJRGLN8Z8k/aGk96uqaltHKQwlXMPv2CdIesvxv98k6dn4rr1QVdWwqqrfutoDq6q6X0ff4x+Clz9ER9/HiUQi8XDCWyQ9nrVndPQ9+mfH/97TUSDMeI/raPNiKWUc2vP38s20R+TfxYmVSEEhcSehp6Mvr3dI2i+lfJKkj8f7L5D0RcdFbkZCfYRjBfj5Oqq5cK8klVIeW0r5hBXP+hFJn1pK+ZjjL+d/KemFx6kSiUQi8XDHOUlXJO2WUj5A0le0XPOPSykXSymPl/S1kpx3+92SvuG4KrhKKedLKZ91nc/9IUn/7LjdD9BRqtoPPIhxJBKJxDriZToi+V9fSumWUp6po5piP378/qt0VPRwdFxc/EvC/W+T9N4t7X5TKaVXSvkYHdUc+y8Psj0j/y5OrEQKCok7BsdfWl+jI+Hgfkl/W9LP4v3/IenfS/pVSa+T9JLjt+bH/33O8esvPbbw/oqk1mI1VVW9WtKX6+gL9O06+uM6FiRLJBKJhyv+kY6+Y3d0JMa2Fen6GUmv0NEfqj8n6Xslqaqq/6qjIrg/fvxd+/uSPuk6n/uNkv5YR1bdX5P0rVVV/cJNjyKRSCTWEFVVLSR9mo6+G9+poyMYP7+qqj88vuTbdVT08G2SflBHf48S/0LSDx6nlrlOwp/r6O/jtxxf/+UPsj32N/8uTqxEqarqrPuQSNwWlFI+UEd/yPaPC4MlEolEIpFIJBIPKxw7HH64qqrHXePSROKWIx0KiYcVSil/49jqdVFHEbL/lmJCIpFIJBKJRCKRSNx6pKCQeLjh2TqqsfDHOjpHvS3vN5FIJBKJRCKRSCQSDxK3TVAopXxiKeWPSimvK6U893Y9J5Egqqr6xOPTGy5VVfU3qqp661n3KZE4K+T3cCKRSJw98rs4cbtRVdWLM90hcVa4LTUUSikbOjpG5K9JerOk35H0uVVV/cEtf1gikUgkTiG/hxOJROLskd/FiUTi4Y7b5VB4hqTXVVX1J8dVTH9c0qffpmclEolE4jTyeziRSCTOHvldnEgkHtbYvE3tPlbSm/D7myV9+KqLe71e1ev1RLdEKUWdTkelFJVSdHh4WL/P9yTp4OCgcV9VVaqqqr6u2+3WbbidTqdTX897jcPDQx0cHNTXu62NjY36Xj+nqiodHBzU10lSp9Np9NFt+j7/myil1O24rY2NDW1sbNTjOjg40MHBgZbLpQ4PD+v56XQ6im4Tvx5fi33wa/F5njO3s7m5qc3Nzfp+98X99fzytTgPHpd/OId8zW1xnjiXbfuA+4Nj5Dj543s7nU7jeW19jPuPfWl7nWNiXzgvce5je9z/khr7MY6T/WUbq/rcNp62ufR1vP5a4zbcHvcH7/Fei/vnaq6puJ8jVt3Leeaeu9q1fv/g4OCdVVU98qoPXk/c0PewJG1sjasnPLHo7fNz2njd/GqXJhKJxEOGmfa0qObl2leuJW7ouzi/hxOJxLpiR/e3/k18uwSFti/9xl/vpZRnSXqWJA0GAz3taU/TcrnUYrE46tjmpvr9vgaDgTY3N7W/v6/FYqHlcilJGo/H2tzcVKfT0WKx0Gw2a5De/f19dTod9ft9PeIRj9BgMKiv29vbU6/XU6/X0+bmpkop2t/f1+bmpjY2NiRJi8VCe3t7mkwmWiwW6nQ6Go/HGg6HGo/H6nQ6Wi6XWi6Xms/nmk6nHldNorvdrrrdrnq9njY2NjSfz7VYLDSfzzWfH/1PIgoH8/lcs9lM0+lUBwcHOnfunMbjsUajkQ4ODjSZTLSzs6N3vvOd2t3drcfc7Xa1v79fk1XPnwUAk/xut1uPcTabaT6f18/udDra3t7WeDzWYDDQYDDQbDbTxsaGBoOBLl68qEc+8pEqpWixWOjy5ct697vfrf39/frn8uXLeuCBBzSdTrVcLtXr9bS1taXBYKBut1uvrfu8XC41m81q0t/tdnVwcFDPk+fBffR4Dg8P635tbGzURPTg4ECbm5v1v/f39zWbzWpy6HH2+/16fw2HQx0eHmo6nWp3d1c7OzsqpWgwGKjf76uqKk0mk0YfPRb3pdPpqNfr1eIEBSYLM5PJRLPZTLPZrJ5f75VIuv38Xq+nbrerw8PDej/OZrN6LCa/h4eH9fPbhCnPu/vifea91+12df78+QaZ3t/f13w+r9fInz332c/w2vR6Pc3n88Ze6/f79f5bLpeaTCZaLpfqdDoaDoe6ePFivV7z+Vy7u7taLBba398/JbqVUtTtdhuiVuMLpqrqtvlZtuDosVZVVT8jiiIej9s7ODjQ/fff/6ct32d3Aq75PSyF7+LueT32/f6p3vvyUp0/fuXt7l8ikUhcF15Wveisu/BgcGN/E+f3cCKRWFP8SvWTrX8T3y5B4c2SHo/fHyfpLbygqqr7JN0nSefPn69MKkyoGJWPxMKE6PDwsCZJx202iKPvN7E1ofDr0kk0cn9/v27DBMligAljjNBHZ0JbRNlk10Rof3//lCuChL7X69VjNPmyWEJiOBgMtFwua7LEsdtJ4blhX02WImlyX0zCSehMBi10WMQxKfUckMD7h8/0cznXFALoConReM4X3SKeK/fX93ksdAV4LNxPnnOuiccR9mu9D7xmfJ2/x352Op1a4IogOaeDhW17fmN/+Jr7HF0GbNNrcXBwUItanEfvzSiKUJRgvy1OeAxuy04DinQm8pubm3W7+/v7Wi6X9efKQlVcN86Hx0D3Q9ucuC909nA/xfbpGKG4cIfjmt/DUvO7eLtcqoY/89sPTe8SiUTi7sAN/U2c38OJROJOw+0SFH5H0vuVUt5L0p9J+hxJf3vVxRQQTL5MRPiHvUmLnQxtlmtHqEmAlstlTbY2NjbU7/dr0mmYkDp6bQHAqRiOuDLKu7+/XxM5kk0Ssv39/Xoc/X6/jr4b3W63vs9jNrmxaGKS5dSNjY0Njcdj7e/v15Fz//h+9pUEngKE/8t5bBMU3IfJZFK7Iuz2oLvA829RYTqdNqLKUYxxv/wsP8eR40j+Dc8nI/R0SZjAMgWDZN7PcVsmqTE6H68xGP1mOoX3gPcq15L7ze1zX3NduJZ8Bh0ocV5iFD6mUPBej82CgtdlPp/Xnw3vb5LqSLLpGKF44vEsFovaRcQ9TiHOz/T+6PV6DXGIa+b+M5WH+zimdXgulstlQ/ByezGdg99BbYLFHYgb+h5OJBKJxG1BfhcnEomHNW6LoFBV1X4p5e9J+kVJG5K+r6qqV1/tHhPPwWBwKhq8WCwaufAmIv693+83IvH7+/saDoc1SbFl3dfZak8y4WipSZxJsNt0JNWpEtPptL7HBMipEZubmw3rutsspdSOB/+YeJJ82hnR7Xa1WCxqQcEE0G2Z/Jl4mbwxKsxIrGseUKyJRHs2m9XpEoaJGFMP9vf3tbu7qwceeKDh0CAhNqk0sXS6BUUY/k7Sx/U2aXVfPQa/R5Lof69ybrBeggUZ7yGTSqddkFTTicC6EnR8sH2C0XLvac+nUyc4B7bk24HjsVIU8B4wgfa+8l71vXSHeE3sOHF6gMfj/evX3Aevh+fAnzW7ado+y9wPhsfha9yen9vr9TQYDOo54zxER4GfEet4WMygE8ipG94bnD9+7ozoOLpTcTPfw4lEIpG4tcjv4kQi8XDH7XIoqKqqn5f08zdwfcMJwNxw6aQGgHS6aJpdBSb3s9msEaEvpdQkiyTQbZqw2Plg4hgjvf53m52a+eTMiSeZN0xaKZqwbUaN/brTB2gx97Nisbur9Y/F6WKUV1Itkszn89qdQRK6s7PTEBR2d3fre5m24jFwLvxcX+O1iuPmePxft+U9YRLKsbhtuxR8/8HBQcPK7rVnmgDdGO4P96bXjaTYcN99f9ynkbj6uRwT3+P8cH9ShGIU3WCaAt0SHANFNO69qqrqmgpx7zldgekpdmR0u936Pe5x3++fKGz4md4fXgeLdnQARVeN/83n8neO0597vk9RJqaZxD7eyYKCdOPfw4lEIpG49cjv4kQi8XDGbRMUbhS2l9sB4OinI40mHSYZjFKaUJIk0rJvm3dbHjujySYxFiCkppDByKUFCxNFkilfz6iu26MIEglLFAUcKY+EKooKJnlXi6iSMJGM0s5Psu0ItnSSMmIi5jx4F8n0sznfFk1i4UA/x+vp+hBO/TBp57owbcTtULSgcBTFJpJJP9uCiCPWFpHa3AWE2491DZhqQmEirgX7t1gs1O/3tb+/3xDQPP/sB4kw15/t2TnB+eGejHUJmBrhz4Qj+bHuBdfMax1PQPEz4lijuCKpIRxR1OK+5uerLfWg7TPm12ObdJTE++P8MvXhanshkUgkEolEIpFIrJGg4FoAg8FA4/G4JlnRgk0ruNSeM+4ccZ7k4Fz/SKRsmyYZN4mnhZ/tm2w53zuKHIRFCtd8IKmJEfNr5eFLOvWMKAiQKLWJCzEHnW4NEnaPy1Z41jZweoDHvVwuGwTMaSV0XbjdtrnhOlogYL67o/m+xmTZ9/s95u/HZ1FUiNHyWCuA99NlwLaiY8DXxOdzb3G9uW9YaNB9ooDAfnGfRmeGBSD2zf2NRR9N6uO88fMVxTe27Xb4X4J7iXVNKDqR+LMNr3Gv16udKB5j/Dy2FbPk9RQ97DqKAhrnh+KQ+59IJBKJRCKRSCTasTaCgo+n8x/wroFgmz3z3m21dq6/89Bpc2dtAxMN/15KqespkMi6naqq6kitdDoizLQCHkMoNUUC2uNNHt0Obd/OFZfUOI7Q6Qcmiu6L32OUPaZxVMc57iR2MUpvohUj355rH4U5m80a1fcpfnBcJHa2zsfUimjF97MoGLiPnU6nzn13KsxoNGpE36MbhXPq3422KLVJNPvoteD+GAwG9Zg3NjZqgcjkPKYuUBSoqqrey7zeYoydHHSOcM8xlYQEN4pgFBK8RlzbeOyjxRumW/AzZocAiTqFkpiCY/Bz6Pe8JyjgML2C4hL73+v16nmLxTr9OeW88bNFQZBzxjQN1q2IKRRxvyQSiUQikUgkEokm1kJQIElgXruJVDySzwTBhN5HKJqg2E5tshGjyy6waBJHi3On06nFCMPR0gimJrBPJIweVySTFkXcvoUDF2QcjUb1UY1OK4juClrVOU8eZ1vaB0+YoBugzT3gdYlOBP/w5AzPfRQMTOpcVNLiDcUdrgsjyxQsKAq5Xf8ei3a2Rb5pjeexg34vRrQpULDopQm40yZI5O2Gcb8osMQ0CRJpzj37FN0IUSxgwUY/x4iCAoUm94enoVD8YBur0hi8Nl6zWEci/i6dfF7jvjToFHF/O51O47PH/rsP0d0Sn00BwyIbU0VYd4JzkUgkEolEIpFIJK6OtRAUjBhZjnZzOgOinZ8RV0cgpZNop68x2THJZZsWBkxAohU+RmLZJ+mEMJncsBYBaw0w1cJ9JDGWTk4dIKknCTKhdHuLxaJhgaeIQcLqZ60aS1wP/jveS9GFc8T185wz8m+hiITc4/P6xJx/ik08fjL2IUbTOQZG19tSGSKpjs9nvQbvIdbmMNn22nLueYyliXJMC+A6cP/HtYviUVxDttv2fhQW+FoUMKLIwPe5L+nW4WeCJJ33t33+uH7RkeFr6Kph/+hMaJu36MahG4YuihQSEolEIpFIJBKJ68daCQokKyRFJEY8GpGRaBNsiwnOSydJtZsgpgf4XpIiW9pjv0jY2W/3yW34hATfy1MaWGjOxMzigwnycDhsRMs5hlJKPU7XNvBccU7m83ljfi0C+Fluz303+Mw4Bya/7Bvfi8UJacnnUZG+1xFuCy4UYxjhp7Ditff6MWVBUkNwim2wMCft/PwvrfMm8XTNtM2X55NFCzl37H+M4Md+cZ35DDsCnELB+Y8/tPu3CRTR7RDBPpOQu123wRM14n+lE6eG142E3WNhmk8k9Hw+xQqKIlxf7rkoJvFzy/loExRSXEgkEolEIpFIJK6NtRAUSikaDAb1sXUmiSacJsAmFcPhUL1erz4ZgFFpv0ZbuF+Ldn0TcUZrTRZdM8DtSmocRel++3eS3qo6qV8Q0zZifjhJjd9fLBaaTqfq9XqtKRn+cVFI2s/jiQGssWCi7h+SZ6lZ84FuBI/VQgGL7FmkiGSN99FhYOJN0u40E65BJNPREeA++qhPz4lrY7AfHLP7zmNBTa7Zb89Z3H+ex8Fg0BCOnNLhyLfrFXicrsFAwcrP8BgtDpH8Msefp21wH8VUF68lUxa8jygScW94r7rPbI/ikgUVpj9EFw/3EwUZrpvbo0DCfcl96D5FV0Yb4Y8iF50j/E6gOBGviZ+DRCKRSCQSiUQi0Y61EBQ6nY4Gg4GkE5I4mUzqXPt4EoDrDJgYmOhZOCARs8hgYs+oq9t2SgIt1TyOUVIrCTU5cT/pFiil1IUlTShZRZ/Ezv1kbYH5fK5er6d+v1+PaT6f1/ceHh7Wc+b3Hf23C2M2m9XPYPSfZNX3s/YDQcu5CSKvZd0DEzaSWJ5kEC3pFHL4Y4HC/WJqh8fKPnitTFC9fnEd6QTg/Vxng8TebhCPZTqdamtrq+F68XjsQmC6DK32FgVY2NJrwwKTFiTo5mAKRRu8f5gGwLH1+/3GMaesZcDaEN4DTCeJ6RBtLiE6abh3/G+m7Xh/UEjqdrutcxefebUaB35OvIZ9YooK0zUoKtHllEgkEolEIpFIJNqxFoKCSZuj8/v7+5rNZg3yEEko0w9INGkbpzjAvHsSepPQg4ODhpPBkX4TCjsdTD5I7uwWiBZ5Rtt9BB6vYaTf10hqkFILGSZbkYQ7St7v9zWbzWrS5Yivn9mWO85ot0FBgfNMsrXKgeDfDdrq2V+6NbimJMFuM576wL5Jp2sTkNS2Wf0Z3W87GnGVu8OigddmNptJUsNFwpMn2Ce3SYcASavFrLh/OIecR84Hi3QyZYepApzj6A5xexScPCceDx1AMa0iCkRcV34OKPJFBwDHxd957aq0DAoOTHOhgBWFHadpUECh8ETnTCKRSCQSiUQikViNtREU+v1+g3iYHJscGP6dBDTmjZNkSM1UCD/D0Xs+Uzqp5G9iZaJjMcEEn2TMDgu3Z7GA+eUUHWihN8mj9Z0OApMaP9djZ/s+PtOuDdaSmE6nDeGAxzMyCh9PXfD8UUzwONqitiSuvM+kklZ2igRRjIjkNPbF75nwkciTlPp9/vC6uH98L+svOHWBLoRSSp1mYTJqB0x8Pvep557knO4BOhQ4X9yDFCiiuEP3B+sncB7dnu/zMa1M06FIwRNB3Gfez8+YdCJKkLhTTCLJp2MgfpZWpeRwj/G/FBXpQmLRR19PQcl9pSDDMbFfiUQikUgkEolE4jTWQlAwaPu/cuVKgxSZQDONQdIpYmOC4HbcrusVkOSbMCwWizqSPxgM1Ov16hQFk5rBYNBwKLg/JjFM2SApJCHp9/v1v02sTCiZwx7TNphiwftpSd/Y2Kht+N1utxYYnCYxnU5PkWYLI+7nYrHQ5uZmTSwpeDDaS4GH7hBfzzoT0VpvEuhn7O/vaz6fnyKbXHeKPJLqNYyOB86N54cRfL7H+gMkpBSNnA5zcHCgfr9fu0Qmk0ktCtlZEp0Sbe4PrrXhMXoOSKa5//zZ4L1MTzAsWsxmswZZb3NvRNEhFil1jQ46feJcU/SjWMK1j2ktvsZ7i/Um+Nly33h6hK+NrhvuLfeHJ2JQBHHffIyp3/O60zHTdpJJIpFIJBKJRCKROMJaCAp0IZjgOdfcBfdIBvwayS5JAF0Kh4eHmkwmGgwG6vf79XGMFgAkNfK4/bO5uanxeFwTDpNZE8xo7zaRHwwGtQMiEkL/kKy574PBoFGPgbUd/ByLJe7rbDbTYDBoCCx2K1i8mEwmdbHAqqpqEuWilrTdT6fTOtrulA+mbmxubjaOwPR6UWSR1CCfdp6woKD7ZkeFpFr48OtcD7ojYn4/XRd+ncTZYPTZfaFrwY6DqqoabpRer9codknBwG3s7+/XAkkULqQT0SCmnTBCPp/Pa8eASTA/H3QOrIrAe/0t6tDhEh0Zht+nuOR5oNPF4gwJN1MT+ON+xmKYFPMolLE9ptJEBws/6xTHomAQnRm8n+sT00D47HQnJBKJRCKRSCQS18ZaCAq0R5scm1CYjMTccOZnS2pEdUkmq+qoev5yuaxdBiaAjGRbVOD9jvJHZ0CMxtIyz0gyo5ssLGiyakLjdqXTR+7RNh8RCx0ykm+izgKWFAc81661wHQN94W57hwLI8gm3ybJHkNMkaATgu4NiihRCLBLgFb1NlGBLgk/y2vP6Hpck7h3/J5FHK4vHSR0fNDSz/3M16Jt36/zCFPuLT439sPXXY3wshaCCTNdCNHNQ8u/1ycSe44t1iqg04F7hnPDcdNp5GdQUIiCAJ8df49iQnQt+LWY+sHPXRT86M5p60cikUgkEolEIpE4wloICtIJiTPJpe1cOiE213Ij0KJN23IssNftdhsEd7FYNCK/kurUB0eh/exIOFnbgCSNhIREh9buGIWljT0SSBJrt0lBwX1xG1V1lBdvQYGki+kJjLoz6ux+chxeA88px9OWV+/1NNlnfYn9/X31+/3aCUBS3xaNjznufs/FK1lvgPPDuhfS6dMLSOTjuD0G/9dCk/dLG7GPjgTPAcfS1vaqSD/rFvhZJP4sOErxg/PBzw9PW3C7POkgugm4DyNR9/Xc//5vm4OB9UPYvvsWi0m6vTi/fC0KNnx9lZAQHRt0gVAgSUEhkUgkEolEIpFYjbUQFEwuTLCZEiBJ0+m0vm5zc1OLxaJBYkygY/664Xzp5XKpfr9f10cgmZhMJo2oqXRSe2E4HGo+n9dt8D2nGJi82GFB23dVVXVKgsfBSLHhsbtfs9mstsHPZrNTEXnWNnC//WyTIqdhjMfjRuFFihDRLRFt5naMeHwmoV4D1n6QmgKIhQSPv42o+XQLqVnfgWKLiXCbMELSzDmm28HWfT+PgkBbWyb4cSy0x0enRHw91pqIkXGKF71er06ToVMjRs2Z2jGfz1trWESLP+eHffU1rBvhNpwW4mu93ryXrhama1DAiQ4bingUzphOwc8D7/P+iLVJoouiLa2DP/FYyijcxc9lIpFIJBKJRCKRaMdaCArSCZne2NjQcDjU9vZ2nVv+rne9qy6EF6Oevpe252jDjhFhpwEsl8tavNja2qpJJgmVCYaPtXS7rgPAQnW0cg8Gg0a9gRjpjLnyMVLs1AxGz+m+cI0HkniPPdrA3R7rNpBIeg4oevg6OwdM7ubzeV1LQWqKI6vmnC4GE1y7QmiRp02ffSfh8z3R+RHXnykKXKO2iLfbjXNIEcXPIln3a3TAcL45DxSQopPCtSZYtJPpMTH67vvn83m9VkzHYMHQ2HfOG+ckinJ0KXg9LBowDSQKBzFths+mOMPPrD/3fpY/MyT3MU2Dzg6KAm3CAt+PDhw6ifw620xxIZFIJBKJRCKRWI21ERQYmTYhM2kw+ZdOjpg0mfJrrgXAExyiJd3ts+ieyYxt+SYxJoquv0AbebfbbTxfUiNVgmkH7ku0xbelOEhNy7afRwJl8uPUAc+TX1sul6eK5/k5PFmBwoSjvtHxEHPg3Y6L9dHZQCJKwcdzLp24OkwYffwi01ximkMbOSVI8j2vHIvX3c93f2JtBq4fbfv8PRJm91NSQxzxHNGhQLdEJLIWrFwwlNdwf8X0AacucE7ct+hGcZuR1EfBhoKE9xL3Z9y3JOarSD1rOERRg8JAdPGwn7Fdtk+nUZvY2CYMRLHB60NHRYoJiUQikUgkEonE1XHTgkIp5fGSfkjSe0g6lHRfVVXfWUq5JOknJD1R0hskfXZVVfdfq714fFuMoJs4m/j55IJo3WaRu2itN7lxW/xxTQXj8PCwJryz2ayuu0DS6PZNwFil3mMhySbBZfoA0xxIZphe4Ge6bzHSS2LMyDJFEqcWkAgzOuy226La8XnMuSeppwDAyLrHR6JtwcYuCNYDsOjASHVcT64zawuYFDJVgJH1eA8FDK8d+x+j4FGEsMOB+9ACVXQjcC+S9NolEusRkOxzf/o1ikMmxnRMcH/4fY+BxJ59paDglJW4N0m421IySMa5ZnxuFFlY9yGmS7StPwUBCj5XExXoeuCz/dwoftwJuNXfxYlEIpG4MeT3cCKRuJvxYBwK+5L+YVVV/6uUck7SK0opvyzpCyW9qKqq55VSnivpuZKec63GohhweHhyAsDm5qZGo1FN2k3eDJJvkzkXfovvRxu4n93tdht54AcHB3WaxWKx0NbWlra2ttTv9xtFHU2KSfhIrHw/XRfuo0k+c+5NijgXJPGllEYqRIzALpfLRkSZ88A6Bm1FCDudTsNuzuJ97h/z11kXwPPGtA/Ota+3Q4LpBbbn20UR7ekx0s4ofSmldjtY4GAuP90mvn6xWDT6EN0f3nskx4zm+36SfztoTIpJjnnMpp8XSS/3usdBF4DH6L3gvrkfXl+KXPxckSiXUhqnmlBQiO4QtkVRhukp8VQJ7luS/SiSxOvcXwtfFEYohMR7DQo9FCE851HEif3z66zT0CZgrSFu6XdxIpFIJG4Y+T2cSCTuWty0oFBV1VslvfX43zullNdIeqykT5f0zOPLflDSi3UdX56MAtPSbRLjAohVdXQMpHP5TbD6/X5NaCaTSSOCHiONJgyLxaKum+D6An7ufD6viaJz1CkIrCJGMUXAhGw+n2swGNTEazgcnhrzcrnUbDZrkJ0Y8aYTgOORTmoHMPWDAkAUBGLfXfuBpzD4PbZlEkvS7bEy557FGP2+pLoeRZyz2Je4P5hK4PYN99d9jNFn95+kkznzTK9gmgkLFnLNPZcUZmL/mUJiAk+nR4y4U1Sx24WCCIkyax54/FHEYQoHx+Fr7cBxf+0UoeOG4tjh4WHjSFfPm5/BvVxKWVlHgmvr9ee+bEsZ4meE8x3ba3MnUGxsqxXB8VD0oKNjnXGrv4sTiUQicWPI7+FEInE345bUUCilPFHSh0l6maRHHX+xqqqqt5ZS7r2O+xtpDpJqwSASKOno1AcLCI7q+qQFCwTOzTdRshMgVrQ3oej3+w1yRDu5JM1mM/V6vVMR30hYGI01Dg+PCuhNp1MNBoNaHGH+OiPdJrUm40yj8HgZRWdUva0gI63gLDbJyLKvJSGdzWaS1EjzoGBCJ4X7TJLve+gsiGIAT4hg/QPDY24TiPw8RtBNhCl0uG2LDnYYMA2A6+dnUPDhGLxH2L7vaztBwH0kWSWhtXDjtfUcsGAl9wjJb/wc0bofi5NyPllnIe5j7l+T+ejs4bO557n3OAecQ/6bbe7v79fuhCgY8Vnul++J7oMIpg6xXabTRNHBwsUd5FKQ9OC/ixOJRCLx4JDfw4lE4m7DgxYUSilbkn5K0t+vqupKjNpf5b5nSXqWpDpaz0KMjP5KqtMMJGkwGGgwGBwNABZzkwPntDsv3e4C1k6QTgju4eGhhsNhbbe3LZ8uAJMXnwzhSK3R1ofjcarT6Wg+n9epD47c075u4hft8SSC8TkWFEx6KAiYWJJw25VBEkbCL50IACTpbttgygT7FYk5r/EY+ZrXh89m2gH7Q+GDhJ1FJVnXwG2xzxQcoiPCYkVbioaf2Uay2Udf47QT1sZg9J6pEBQwOFcWewiSfzoY2gg7+0wRyP2mu4QOltgO5ymKBRQSIulm30joOedt+78tbYhrzt+9nm0FItkG+8Jnt8Hz7jHF76F1xq34Lh5odPs6mEgkEg9z5PdwIpG4G/GgBIVSSldHX5w/UlXVC49fflsp5dHHSuyjJb297d6qqu6TdJ8kXbhwofLJCyZpJFs+0tAuBB/xGHPdDaYsUEyIdRqY9jAejzUYDDQajXR4eKjZbFanHwwGA/X7/ZoEMv2BhN/X+LrjOarHxZoAft/3MursQpAmxr6HpNDjaSNPPOWBxJf1J2ytd/smqOwr1vmUnd6IhfQs4HgOnRrB+g9uZ3NzU1tbW7UgEI/JdPsWDjxW1j8wAfRpHCaZJoV+Hp0JnEfOOwWt6PRoI5VRHPLz3JavsYjACD6j4xbA6HDY2NjQYDCo7/Eak3DbdRNdD/yhWOD+eE/G/cNaFW32//D5bSX5HCOFEYpbfIY/j5w/99ft878Ufnw9a5Jwv/PzFcUhikecLwou7sedICjcqu/i7XLpzrFjJBKJxBohv4cTicTdigdzykOR9L2SXlNV1bfhrZ+V9AWSnnf835+5Vlt2J/gUBRegm8/nms/n2t7ePurscWrDbDZTv9+vI8G0y5OImEyNRiNtb29rNBrV5HM2m9X/3dnZ0Wg00mg00ng8Vq/X097envb29iSpTlNw2/P5vP59uVxqOp1KUk0s7W5g6gLTC0wmnUbhsfd6vbo+BMdjMjyZTDQYDFRKqYk7x+65pGuAZJA1EUgmTdjdB4sD/X6/nncTZBMtP9MOAxNUj5NEnmkOJr4mmCaJtvuTqPr3mIohNV0K7jOJo8nmbDZrOFFIFtsi2HQbSKqFFpN9zyPdEbGIINMMVtnl6aCoqqrup9ctOjLoiGm7LjooSJqjuNDmGqCYQOHNp6nwWe6X6y+wzSg+UFRwX9pSczwe7vvFYnFqX/uH6R9eG9/v5/LZdN5EkY9FXilIuK+xCOy64VZ+FycSiUTixpHfw4lE4m7Gg3EofLSkvyvp90oprzp+7Z/o6EvzBaWUL5H0Rkmfda2GHHE3oTURNEgeO52jmggmuyYgkXzQmUCyTJLLYyH39vZ04cIFbW5u6sKFCxqPx9rZ2akjoBsbG42jAWlhjzn3LOC3ubmp4XBYiyG2xNsB4XtZ5d+RcpMkjzOCzgBGsiM8fyZRJHOcW9rM3XcTapLSVW4FzklM1fD77o/JHQv1dTqd+iQDEmo+z8/g6QbuU6/Xq2tESKrXmKd+tFnf3Taj93QCrLL0U0ChO2FVZJ8R/Git5x6iY8VzEAWXSJjZTuwvx2tEl0Z0OHi/eE7ivvH8rnIqUKhgnz13TFXhHvT9rF3Q5ryxAEJRJq4vx+p2Yn/tMPE1dL643clkojXHLfsuTiQSicRNIb+HE4nEXYsHc8rD/ytpVXLYx95IWyaQzql31He5XDZSA+K1JvjMj3c0lykOJg10CPDHBN8EfmtrqyZ3FCpI3KOoYOHBfZSazovxeKx+v6/FYqHpdFqnA7h4JIl1JETS6WM1SZxikUISrTh3FmIsEpiYxeuYZx8JpNeA17KNeEQiU1k4P35+LMQoqbbJs504dqYTuD+uU+E90Wad51zGqDzX1s6GGOFnGyTGcQ7b1qptTWIqA8dMYcrCAYUHFumMZDlG9Vf1w2tIEk+nCa+hu4OiDqP+Bp0SMZ3C+4Jjj+Nv66P72bZnPea2eY/CA9uUTva2nSweS6xjsY64ld/FiUQikbhx5PdwIpG4m7EWfy3Tcu9aCSbyrNjv/1IoMKlhfjzJIV0NJge2pvNoPEe2O52ORqNRTV5M/pmXH0mapLouAnOzTe57vZ4uXryozc1N7e3tnSJQ7gvTIRhxZT43bedtkfZYIJAEjadbuD0/l64KzhkLBnK9GLnmuhAmuk6XiK4F2tX5uhFFDRI+jttCCWs3uCZB7K9fc5qCf29zIPhetxWFG4tUJLe8z/2l5b/NaRIj9LyXc+t0F54C4c9NVZ2cbEIRIgolRkx/iA4Cu2RYQ8B7WVLDBeK0FNc4cftxL3PNKCiwRsjVBA/PYxQZuQfjOPme++E1aROP4n68EwSFRCKRSCQSiUTirLAWfy3HyGmv19NwOJR0EkmXVNvh7UIwIXG0X1JNYE1ifb3JLlMkpJPihL7ez9/e3tZgMNDu7q4uX76syWTSiHbzGMnBYFDXfDDxcT9KOSrqOB6PGznbbdH/g4OD+jQIElG3w2Mk24gXiSBdF+6Lj8Z0IUqT0Og24DMYFWZEmnUP2kgyCa0JL/Px/brXhfUJmP5h+PnL5bK2oPMkBEbwnVritfT6MB2CwguJJEm927YlnsUg2cdSTopNkhRbAPL1FI8oPElqCFVuk8IT60Qw9YYOD//O9AC6BigacJ0oQnhO2I6vi+kdHgcFLDodohjl53hNut2u5vN5wwVCJ4j3M/clT0FZ5brga/z+YCoFHRNR9KCgEEWyRCKRSCQSiUQicYK1EBRY0d5R2V6v1yAYJtOxgJoJQcynJ7FhZX8TW0exq6qqj6E0GS/l6CQJ/z6bzWoSy8grK9Z3u93G6Qwmhj45wgLJcrmsI9s+ptKkxaTX+f6MyvI0BveDDgu6DEzkXCPC5JhiAaPDMd+elnSDpJVReP9OYk5C63lwnQj20+2YwNEp4poTFiPsprCowLUwoTUBtXAiNY8V5akZHK/B1y0EdDontSxMpiMJZ9E/z6nHdHh4WNf8oDMkRtIJzgPnkQUwmSbi6+jecH99L4sd+hm+zv2OogIFGzoauIf4uWK9DdZo4L5zu35uLFRKBwP7yWfH+WcdEe8DrmtMA+Hr8cfr43lOJBKJRCKRSCQSq7EWgoIJuVMGpBNC5CKNJCrRrk1iGV83sTaR58kJTJFgtNyCRilFy+WyLuZocmlSyxQEVo2fzWYNd8FgMGikS1hEYPqBSShdAJ4Ht+W6EhRKmLLgPrCPdiBEgYDkkZbwVUfkkeSxloRt7hQ6KLJ4rJHAxvY4JsNj8tw4rYXEj2vu5/C0CjpBnCITLfGuFUDiuaoegd9rmx/eS6GGZD3WP5DUGDPrNsSxWVTwGnvueJ+fyxoP/IzEcXFtYwpLXHf2J4pJHDfJfVsBUAoMTDvgXPs58R4+36/HkzWiMNLmzKAIwrFd7TOQSCQSiUQikUgkmlgLQcGRZdqdpWbuu8mYCTUt55PJpEHU7CyQVFv/TawpMMSaC+6LI6cmxU6JYAR2Nps1To+wIOH2Dw4ONB6P65SKjY2N2nngsTGibZEjiiVMEaDI4evpUPD7FCdMPO3wIAGNEVi3SSJmMlZVVU1OeTziYDBopJO0EWamivAkBbouTORM5kz8PR6LCRSX3LbbjeKL+8I5jOkddLPEAo4USdxvvue5ZWpGjHb7WX7PYF+87/h+FJUoaHhvsrZDJM0UmTxWu1XaovIUH9hfkv82oSFG/KMwE8Uztsl1aROdVrkn2LbTUaLzgt8ZERQlva/9PO7BROLBovT76myNz7obiVuMg/sfkA7ze+Ja2LhwXroep9dyXwdXrtz+DiUSiUTitmAtBAWnGLAwIt9riy7S3i2dRMalZoX6/f19TadTXblypSYgJtf7+/t13QPfS3LGYycHg0H9LBN52up7vV4tLJRSGmTe43FKBIvKMbJqgljKUZFBOxvcLz8zpim0zVUsLkdyRocBq/YfHh5qPp+fsu3z/ljlf7lcnnIaRKLu9iz28JhDr1d0HtCZQEeI+xMLJDKNw+kNEXZUUCjw+lHg4Vy5bgcJt2tTeA6YCsE55tqzz55Huzt8TKr3FesieJ6Y6uO2SLKjsEC3DdM32ubF11N0iqc7SCeiFJ8R6yS0CSlcI8+b64VQPGDb/D3udYoGXhcWdeT93k/RUcHr2Sbv4/uJxM3gTf/wqXrZV37btS9M3FH4rE/5Yh2+6g/Ouhtrj0/6zTfoi87/0TWv+9o3f5ze/BEPQYcSiUQicVuwNoICI8eOOjLiSRLQZnU3WSC5NNHa29vT5cuXVUrRcDhUKaUm6/P5vFEIkdFORledksGIL/vjKHa/31e/328Qc0ez7a5gJFxqHp8oqXY+RFIVHRwcr4WMSOgsdvh9wv2VTtwJLJLnlA5GelmYj2SP6Qp0A5AkS6qFmTjP/LE4wwKAMa+9rXZEmxPAz2L/XW/A/XItDfeda+J7vOaxnkUpRdPpVAcHB/X60uHCqH8b6ffzNjY2ahcG9wfniPUpuC/cb9b0KKU0hBn3nQIP9xEFGfeTdS8oDkQXCj8DbU4Ggq4X1mCINRdimkVMAeHaRmGMbpJVgiTFL+4rv8Z9nUhcD177vU/Tx3zQaxuvfe7Fn9RWZ7DijsSdig/63j/UOxbbt7TNN3/jk9T9pZff0jYfCrz7iz9SH/hlr259729t/6a2Otd26PyTR/+Cvukln9x4bbLf094nz3W4s3NL+plIJBKJ24e1EBSkphWetQ6YmhDz0o0oJJAEOco8m83q2gYm4DxhwM4BFnCUTgiJ0yuYm24iyuMXabenvZx55ew/o9qeB6cv0J1AIYLRVR4dyHY5D/HUC5I2Cjl0AsRINqP4jAgbXrtIag06FCSdOmKTkWH3y0cEUqhwaowJM4/RjETR/6X4QEIuqSbCdBREx4Wv47M9147mR1cC57ktyh33r6/xXnJ/2a4FAs4X9w9TCuhUYaQ9rg3dJF4/3+fnsQ4C19PjY18plHDfU2xYRdK5RmyvTUzgeJk6QUEhpkqsenack7bPaSLRhs4Hf4De8tcuSZK+4aN+Ws86/5Yz7lHiocC/e/T/uuVtvtdnP0nbT/6oxmsXX7tU/+d+55Y/68GgfNiT9dZnnj954a/crx96z19fcfX1pfu8T3frVBuTw4We/vf+vjZn0rk3HUj/5UU32eNEIpFI3G6slaBgIsBj+qbT6anoPMkSI8eRHDEybLJslwHFAQoOJtSR8JHksuifpIag4Kg/Tx+IQgijypG4+Dk+4YC1ENwOnQzsD9txPyg6UMTw+CkoWFRw6kWE0xXoHCCJZk0A9oVzyOM5pZOjQKPIQUGB/e73+/V6er9w7FEY8LUHBwe1SOP+x/mko8Nj439ZPJHkmPslpusQHKdFG1/DCDlPveDej84Ztk9y3Ua6OYdtKSN0blC88npRRIouGIoKXD+n0LSlf3AeDTsiOIYoBLDvUVAwmLpBV5Ffi2vC57DWQyJxNWzc8wi96ZMu6fe+7rvOuiuJhwFe/8nfIzWD9Pqw3/kcPeZVj6l/r/b2dHD5gdvWh41HXFIZXN1R8yefel6v+fLbv+dHnZ5e/dVHz/mM//MJKj/dvcYdiUQikTgrrIWgEMkkT3aQmsTbkWn/8S+prnFgkmtC7Jx5E0nb2weDgfr9vsbjsRaLhebzuabTqabTaX3sYynl1BGOPhrS/aBgQBs4xQamC9DlEE+0MEE1yfcxlrPZ7FT6ByPYLtZoUi2dFBG0yOKikI6y+5kWLZiSEN0QbekNrBlgAiidHGfIUzQcMeb4/JyYuuJ+eb1YB4Cg1d7t+pl2jdCx4TlkagoJqJ/h+XIaCNNt4vzTLRFB5wsFjTiWKChwH1BwIKH2fovCQBRWWIPB7XAtY+SeDoQ2IYLr69fpYqEowTQZCi4U+riG3g90fFgEiEdh0olAZwTX0f+NzoUorMQ59zxz72WBxsQqHL5goFe9/3+Q1H78ayLxYPHKp/+4lr998h30pF96lp70Ra+4bc9793++pN/4kJ+46jUdFT3Ue/6n3+8X9fQPvPyQPjORSCQS14+1EBRMDByZHwwGms/ndY61pAYZZX0BR837/X5d7NAkwGkNJlt0LJBs0AJvAmSnggUHkiITSeaNx2KS7gct+ySTMZIdSW7sH0+QYJqFT68YDAYNAum2Yg6858QOBhInEj6KGNGST8HBz2NxPN/vozqZKmHQSt8mrPhZtLB7LFKzYB5t+hRTJDVcFL4mOlDcD++jfr+vqqrq6Lbra5CskoSyXoef7/mkO4aiCR0PfD7TBbwfY3oMnThui4IH9xDTStiGU4tW7T3OFespuC4GhQCPqe2UCI6BfaGrwOvFGiN0KbSlXPh9ppxIqsUzzz3TRCwocv3ojOLcpUMhsQqd0UiP+Z8dPefRL9BGyRMcErcX3XLy98kP/5Xn64WveFr9+/944Ufo8d/8WzfUXvXRH6q/8O9/t/W9L3jED6tb1rPmR1EWyE0kEol1xVoICkYkS/4jP+aF+9+MdDoKaaLd6/Ua0VhG7E1k2qzNdByY9DFKSiLTdtIE2yMZ43urcto9Bs4HiTqjwiaQ7B8L07XVQSDpI+lui9wysk4LvvvP50THQryOrghf59/b5o1z5L5GW7vTBtr6xXSHtig27fOsSUAHSSSwbSDhZf8iOfVa8LQFpjbEVB22R+HCc+L36DhwWx5zjMCzkGOchygAcC/y/ra15Vyscjn491V1RNo+73T8UOiKfY1txva4z/2Z5fcH3Qj8fF1r7RN3Jzae/P76k89+hH7qcd+h0XUUm0skbiU+etDRR6N+w5s+6aJ+Xyd1F97jZXN1f+XEwTD/60/X2z+0mSowfeJSv7SyBsR6igmJRCKRWG+sjaDQVuRPOk12TcZIlkg6bOFn5X8TMVqyZ7NZg/RElwKt/4xoR0HB5K3NJs6TBFYRH47L+eYmwHRuuF/7+/t1H5hawOMLGRVn8ckoJjitI5JQ5uuzFgTFAK4bU1A4JgoKbVHr2IbbpxvAjhDuCd9DhwLFhiiseM+wDySUJJ4kmH5OBAWpmDrg91moMboh3K7fj7URvI5RUIgpCr1er3Eih9eJTgB+NmI/o8jF8XHPsGAq978RxTHPzSqxjk4aprXQrRL3P4Uefp74GW3rDz8/MZ2CAg4/8/H7JpEw3vXUS/rDL/suSb1rXptI3G684L1fJH3VSbHC93rCl+kD3/Be9e9v/rylXvfM559F1xKJRCJxF2EtBAUSL5KdWA/Bf+CbFJhsujChf0wSTVz29vYaFetJjOhyIHlipDSSaRJb2rMZ2Z/NZtrb22ukSTDaT6Ljf08mk/roRs8BnRcUTTxvtub7BAsSMpPabrer8fgomsa5871RjCHZY8oGiTZdACxW2Ov1GsTSKQQmZix86THFCLLTJTwOrpXheeFakBx6rllLw2tMMllVVf0e++IxbmxsNMbPYyPpWnGaBNNlPBYTVD/f8HWxRob3Ovdj3Gec/ygeRHGOrhymV7gPUeRyXQ6LFvyMxZQTOkncN6bDUPDjGns++Ln3/osiSLfbret9SKq/E5iO488s02P42fIcUjTwdRRIuHf9eyKRSNwJeP2nPl/61LPuRSKRSCTuNqyFoCCdOBRMEhaLRaOoHcmM1LRU86QCEkZWjDdJj5FokyfXFDAhXi6Xms/nNeljZNM1C1zsz6dRmOi49oIFkdlspt3dXUlqkNNImj0+1imIY43E2o4F5/9zLv2cXq+n4XCo0Wikvb29WiRwAUPOFefIBFFqCiCMKldVVReqNDGNR1jSZeB5MZF1vz0fcdySGn2juBSFIf/bhTU9jyTnFlJMWi12RGJq0P7vsbg9CinuGyPd8XoKCm3Hk5KEcy9yjum0ISxIsE2Ok+vm+aXTwn32OltEiIIbRSSvmYUU7tPYHp0vFOkoGvgaOj0kaTAYNOaOe4RuB4+Rnw8KGqU0C1dSkOKcRedJIiFJr33+0/Xtz/zPZ92NRCKRSCQSibXCWggKjpRLJ5Xk5/O5FotFTdIdSZdOSDSty23pBCYpFgQc5aUt3+SMRyKSpPikB/fP5JAFH93/+Xx+ikxJqt8zoWNBQooEJJWLxaIu/hgJGwmt3/M80YXh0x96vZ5Go5G2t7frvvl6t0WbfiShjCBzfmlRJ4GmrT8SYK+lybiJs4vlxeMZCaa6kOxFEuk9wlMm2gpAcq78OqPYvm6VhZ5zEYk011/SKUHB/Yl1LpjOYPJr8s55p0vB99HBEN0bHAdFlShM0BXBvnLsrtfB58c14VhYB4Qij8F18BwSdIa4326fKTfufxQB4veEpMY6RWHHr6WgkCAe8/h36TPGu2fdjUQikUgkEom1wtoICvG8+slkUkeaLSYw759knNFrWv5Nqu16iNFgRl9jTQZHfH3KA0WMGLG1oED7uEUKk9j5fF5H4ukAaJsLk2E7J6STIwzpPPC1niOPuaqqmowOBgONRiONRqP6mMzFYqHpdFo7BPwcHpHJvHkKDxRALNYw7SEe9xgt7+4z15QpESThnB8S5Ehi47rFH74fc/+Z+uAIPy3wMdrN+fL4vfeipT4S7jZBIfYnpvKQANN9QwLPMbjvUVDgPBrch0w/ocgWRQk6fLjWMZXIPxTf/DnweDhm7q9Ym6RNIHB/vPd8jfscRcMoOHHf8nhQulRWzWEikUgkEolEIpE4wtoICo5a2/buFALmo0tHJILHEZrImAzaScAChCY0jPZLpwkv89X9bNcnmM1mp1IvKGTQTSFJW1tbGgwG9fhms5kkaTgc1qS02+02jqTkcXxtVni+RzLE1ASKHN1uV6PRSMPhUMPhsD6S0+kaFi1sKXfEPBJMz/vm5uapuaPjwX2heGDQyRDX02vJ4/9IlqOAEEFyKqlRrDIS7jawsKWdBSbO8ThNOhs8RkbIWbOB5JSpBJLqugCrakHQFUEhos0J4H5ER06s88A6DXac+HUe/ckfukWimNbtduv2nQZEUcbz4P21XC41nU5PuTK4v+yU4R6JKShOXfCe4Z7kyRdMubAIdHBwoOl0quVyWbti2AfvnyhWJhKJRCKRSCQSidN40IJCKWVD0ssl/VlVVZ9SSrkk6SckPVHSGyR9dlVV91+rHRNS2vhdpJDpEKyXwD/2Seo7nY6Gw6G63a6Gw6EkNQoOxgJskawvl0tNJhMtFouarOzv72t3d7e+Z2dnpyYmjCKzqNxgMKjdA35etHQzBaCNaJFY01LP0yeitdw4ODio58EkeDAY1Hb6g4MDDQaDmvzayeFn0UVhJ0GMwpN4M+XCfbfowNQQklqKBiapPrHCP3HOGIkn0fcz4rwx597pAxZkWLuDcymdiB0+8pEOAe4hnsrAiL2vZ9oFUyyY4uF7TYLpFvBz3CePjcd5un8ejx0nFHcoeNFhwPmlW8f3eU7ZntfK71F8ogDA57CIYhR3PI+eA643144OCq+P76GrwSKPhY5er1fvUwo4FD+8ht4vbekX64xb9V2cSCQSiZtDfg8nEom7EbfCofC1kl4jafv49+dKelFVVc8rpTz3+PfnXKsRE+u2iD3zpGn5N7lhtH6xWJyq5M96BTxej1FgEigWVWTOtglZVVWaTqeN9x1dldQguG2568zR9jMjSNzpUrCQQDcDc8xNQH3ihU9ZMNlzPQWTNNaCYCTfxIouj9FoVNvWoyODDgk6PdhnRo097zGNgykQMRrvueexoFFAiBF9gykQ3Et2ZbQVKjQ4r1EgYm0Iz1lMCYh99HNo3Sep9bpw70TXQnw2jwd1XyjW0ElCp4XHSycC14Qil+/3vPd6vcbYKCjwVJX4WeDnODozKFLElAQKLp63KHyUUur1Yc0UCkLxNBOmW3Ev34EpD7fkuziRSCQSN438Hk4kEncdHpSgUEp5nKS/LumbJf2D45c/XdIzj//9g5JerOv48uQf94xImkSygBrJu6+zk4E2aUbtTdZMnKIwQYLK4yopKJhMWvwwYTH5swWcQgHJOcfJaDij+LzPbgf3l84EFo2LVfmlk9QHpzTwGEALA3F8MfWDZKzf72s8HteEzhFvOzQ8D7TCe90oEPl5TE9gvYLBYNBYWwsTXH+S9DaXgutmcB/4WgoLbttryueyUF9McbBo5Xlm/+1WcETcc9VGTikKxHQO18DwdSbaFHlYt8F7MRZvZLtcc7sauPb+vLlN9p2fs1ik0WOLaSAxbYDCna/je/6sepx2CJHsUxxhSgPbZP89fopu7pv3n1M7+J1whwkJt/S7ONGOt7zlkn7ufQf666PZWXclkUisIfJ7OJFI3K14sA6F75D09ZLO4bVHVVX1VkmqquqtpZR7224spTxL0rMk6fz5840oPIsuSiepBCZ2PpPe0WXnZttV4HtMumk9j7nyJsvD4VC9Xq+u38Cie5EMOlpKsmIhw0KDI8GEx9ZWQ4AkSDoiOrPZrEF8p9Np3Zajud1uty686Hnxs3q9ns6dO1f/kPg6Ssz5iuJGFCxYJNIpKa7FUErRYDCor6uqo0Kbkcxyvrx+jrCzOKRTQFhXg04HqVkngykGXkevNUkv+xHJqeeG0XoKBxQj3Gc/n+kAkcwyIh8j4bTpM72B7zGdgXvXe4duHt+7sbFR70GOMUb4vV9Yd8KIAgvHQLGBYhlrlUSRZlVtgpjCIJ2IiXR+0I1AcYT70nuHKRD+nHhfWmSi84jfP3dSmgPwHboF38UDjW5zN+9cPOmLX65/+flfpL/+vP901l1JJBLrie9Qfg8nEom7EDctKJRSPkXS26uqekUp5Zk3en9VVfdJuk+SHvvYx1Z0EzhCaHITc69NMk1gTL6ZpuDopq9xRNeFFl3Uzf81GTbJnc1mddt7e3u1LZpEJBI4khnpiNyYuDpqb2J8PIeN4/RIhDwOV8X3mEnwh8OhRqNR7UJwkT/P1WAw0Llz57S9va1z587VhJwOAxeLPDw8rI9vJGE34fe8mZyZ5EbBxaKG25jP56fmxff7Hhe7dFqFnSqz2awWUTY3N+u+sc4GT85geoBTACw62MlA0uy5HI/HDaECe7xRlyKKGSayJOsmqyanvj+eYkLi7We57+6zn+/+xzobTCOgOOP+eVy+l9F8r5+dEHbkkMTHdJDjz21DvPFrnh+vg4UBCgquZ+DPRnSruJ221zhHdPawqCjn3GtMNw/3Ra/Xq1OBDg8Ptbe3V3++/FyKKOuMW/ldvF0utVcuTSQSicRK5PdwInHr8edf91H6lq/6vgfdzuywp+/9mI/Qwdvefgt6lWjDg3EofLSkTyulfLKkgaTtUsoPS3pbKeXRx0rsoyVd1+r5D/7hcFiTEJPRtmi6xQC6FJjyMJlMNJlM6lMVmEbgiCQJm4kVc+TtKHCBRpI9iw1thIMWcZNW9yvm6psYRXIZawAYFF1MCBmhZcTepzv4Z39/X/P5vFGlPx51GS3yjNqa0DJqziKEJMmMQpPUcr39DEaTvQ6xfoAdAZI0m83qPUDXQJwnzrPb8Lq4D34exRz20evAiDlTTLwPKL54n1mginn+nJ9V1vpIbCPBNel3H6PIZfHAwhxJuN+jCOP72R+mqxjco9G1QxcRU3b8bBN6fwaY5sO22+aCNR/oIrA4ENOGYs0Jf8YtePlz3ul0GulLFMf29/drwW3NcUu/ixOrcelV9+v9v/8r9Mov+E6NOr1r35BIJO4W5PdwInED+LPnfJT2nrS46jUf80G/f0vSDA+qiZ7zbY/VwewJ7RcsO3r/r36VquXV+/Nwwf1f8JF6x19eXvWa0et6ety//q3rbvOmBYWqqr5B0jdI0rEa+4+qqvo7pZRvlfQFkp53/N+fue7OHJNUnyYgHQkDUtMq7vxvSTWhI2mtqkqTyUTT6VSz2Uz9fr8RfTWZYKTc/3U03v+dz+eaTqcNEm1LvV0QJuXxqDtHxf17W3SZNQH8vklSJJsxF5zF/0y0GIl1QUb/OHXChNg/0WUQiZ37xgg5hQveS3Eg5svzdRJvklQSYaZc0NnhuSfJ5lwzcm/E3Hm/RtJPFwUFJ0n1nuA+ZSFMklwLUuxL2zzEfRBTBWjPj6kZnGf/RGGFQkY8QjP2K9YbcDtxX3Ju4hxHtwU/o3yNIg1FLI8h1kygkEdBoS2liXNKkcT7ajgcNoRF6Uig8mfYKTJ3ijtBuj3fxYl2HP7uH+q9X39Ok89faqQUFBKJxBHye/guRCk6+Csfpqpz9ZpL/Vf+iQ7uv/sO9th48vtr/qitle8/82++Qv/hsS97aPpSOnrdX/3+le/ffzDR3/jZr9XGrP3vvs7yUJ3feOXt6t5tQWcw0OKjntz63uxvXNbrn/FjV73/OW/7UL38ZU89/caLfrL1+ltxykPE8yS9oJTyJZLeKOmzrvdGpwaMx+Oa3JGMmBD6D/9YnM//thDgNAgSNtZjoEOBhMq2eAsS8/m8LmbIooalFE2n01pUsJjBsfg5JGX+6Xa79fPYfwsKFEpMqngEJMUESTXh7/f7dV2Fra0tjUajxvGHFkQGg0GjRoHnifUcSPLm83lNwKXTRwdadHCuuq3v7heJtNEWlfbcMbJsscfj4JyS/ErN6LnFJx/hWVVV3bbdHRQwTCxJYLkOjJR7LiO59t6IY431APxv95NiAo+x5PuxPd/j+XDfvWe8/5h+w35aJGA6BiP9TBng3Lptrm0cu+cmui3sKIgCUPwc82QSi1+dTqf+TFM4oLDC7wwLMl6v0WhUz6/TiWazWV0LhHPAeblDcdPfxYmrY7nCTZNIJBIB+T38cEH4m64zGun5P/Tv9YTN1aRZkj7mq56t0U//9u3s2VriTf9qQ7/34d971t24LlzcGOnF3/P8le+/aj7Xc5/0Mar2rx7Vb8VD9fdCdDw/6Yl60Q/f/Pz/m0e9SvrhV516fePR7dffEkGhqqoX66hyraqqepekj73B++s0BJMHw5HESFQsJpgYmNhLqqPzJiSuFeA8cgsDbbZoE5vZbKbd3V3N5/M6x98igMmprfexKCRt8SbCfN1E2+MkoSUJI0k0UWRtAFqzWZTPpzqcP3++FhM8Nh7JyGM6pdOnIHguHa1dLpdaLBYNQj4ej2tRhKTYfYw1GPxsk3LPPe31zPO3+OGUhU6no8lkUpNkEk2CEXzmzi+Xy7rugoUXE1vfF08LiUU8mY7itYypApIaYhWJLiP0TJvhesZov+G2KABw7LGeQyTavsefLQoMTB2gC4SfU46HdRLYn0jq2S+Kd5xDXus5Go1Gms1mp+p2cI69XvysUKywOMUCpr1er96LBwcHp0Ql38sUnTsFD/a7OHFtHO7s6Es/6m/p3E9M9ePv9T/PujuJRGLNkN/DDz8sP+6pet7zv/vU64/duHYBzfu+/du1823da173cMP7bf6m9DApMPoXel39y9f+5k3d+0X3fe0NpQ7cDN7yjz9K3/uV39l4bVBeoqPsq4cGt8OhcFNgfnskRdEuTzLuAn7z+bwmo47wWzSIRwNacGAKBNMZnDKxWCxqoaOt5oGj9xY1nALRFoU36a+qk2r+JkcuqBhzynm6gdthH+gecK637zHhp/BAot7pdOrCk5HMMdXA9Sfcf7o7pJMCi15Dv27yHSPi7H9b4UQ/g+TRJLGqKo3HY124cKEuouf5pL0/pkFE2z6Pt4x1I7ynSIDpWDDp5tq63Wjfj3MbRQ+erBCFCqbHMJLvPhGsiUBRx2vFdWUNEKdBsA6Gx8TjKGNRxriOPnYx7k2mmfAe9yEe1cg59LPsRKJDh2vj6/gMOo/8b6apWLSzkOm5i2sX1y+RMPbf/GfaXa6Q6ROJRCLxsMBrn/909bbnesI9b9cz+jcnCnxg7+FBqm8cDx8RZaN09Ix+59oXtuCTP+sl+tkPfcot7lETn/A+v9OyPx/a+V8LQcFkgOScUXeDFninBPg6Wrpdh8EuhWjLNjFx+6z8T5LiNAbmnEfrN63hsXI9bdfuA9MvSCKHw2HDjRDFlFX1BtxPnyJg94Qj8CweyNMKHGFuI70UTEhSSQ79fBbFY1E+kkNGpBnptzAU55H9o4tBUp1yIh05T7zuUbSIe4uElmkjJpYxncBuFpJmzqXnKN7HvnCNOL8WBuhckU4IvefZ8+l94zajA8J72qkOscaAEcUF73mvdazF4f5xHiOJbwNFBY6Hn0/fyxNcOG++ho4Wr0Gbq4OiUXTBxJojdA7xM8DnxHSrRKJGZ0OzT36qPvjcy8+6J4lEIpG4xeg85QO0917bUpF+5q/9ez2l99BFeRMPP3zre7xS3/oed1b9hZvBWggK0ol12SSeKQWMGDofvtfr1XUSfI+JiK34FhSijd9RbRJ9t8OIO50NtFiTbLI4H+3+zDGn4OHnu68m1baXmyQzKswjJe06sGDgMUynU02n07qg5WAw0Pb2dm3p9490YuWONRgkNYQHWuY9Vr9udDqdWsQwAabFPJJyPoNzzT54rmLU33PiCPPm5mbtzKBbw3Z2RptJhJlW4ig8BaXNzc2Go8XCDAUF7lmm6NDN4mvoLPGYvGdj3Q3f6/1gMYGCDIk9ybCPZKRQRmcNybH3pAUhH73Iz4fvZ40Gt8vChRQvuN4WLZyy5Hmk68POIqYsxM+I96jnnqICP9ecE+8xOlI8VhYojekWFMGiaySRkKTOeKSf+k/frns2xmfdlUQikUjcIpTuUaHdP/yaLb3+k+87fjXFhETierA2fy0vl0vNZrOa3DviLan+d7Q2x9/9Gt8nMTcZYs68dBJBZSE8ExFX7Hf6gwmQaxE4Yr63t1eLF76Xz3QKAkm97+92uxoOh5pMJrXLgekbTAdYLpd1XQGLISSnrtMwHA41Go00Ho9rQubIrMdgp4f7wKguySCj44yQe25N0GjJN4nzmC0gSCdF9kiGKThYnPDRixSbTE6lZvFKzpPz/0kYGQl3f68mJkRyOhgM6jkqpTREHz/H82WibpJN0su9FYlsdMI4XcWvMw1IOko38fx6zBS/WFCRUX/vcYsmdA94z3pv+jMRU3koFLBgJVN0fB0/u1xnvs/PCgUZukM8R14Hf67Yt5i+0+aUoTjh9/r9fv35dl/a0ksSiUQikUg8vFCe+mT9+xceiQiP7LxYD5fc/0TiocJaCAqHh4d1HQSTE58e4D/4mdMdUxgimbA4YGJHYslIK4letMpH8uLUiel02khtsGPCBeRY6M4k2CTfEeQYbTdpvnLlyilSR4u8x0bSbLJtZ4TrMbgA3XA4bNQKMFlmtNbk35Fj1qXY399vROiZV+8++Zmbm5sNIs/oeIwY0zERyZ0j4O6LRab5fN5wengefH9bLQhG5mORwrjeMSrOfUDhI6ZQRCcHHQUGSTvnI56i0OakMTFmfRE+jyd4uG3ua84v9xELjfreKDL4HgtQrCsR653wc0SRjp8JCgoWYSy6UPSIBRaZZuJ7WR+Ec+v953mii4jrQTGErpuYipJIJBKJROLhh9d+z9N08d4d3bt1WU/qpusskbhZrIWg4DoAtM1LahBS5mNTUKDVmtfS+k6nA3PDIxFqiwCT2PvECbsc6FIw6TbRMynyc0zamH7hOgGDwaAWBIhIkimoLBaLeu5MoNwPp0Uw9cBtkezzGkbB7QSYzWaN1Axfw7QUR8mdYjKdTmsHBEmpyTOj6iaItKjHtfCcTyaTOgXGRNLrxJQGijDuL394refW8x7JqqTG2H0NCbdfi2kNXLe2lAePgw4J79NY4JApFVEIi+PzM/i58D5jWggdAxwfhSK3T4Ek7kd+XrwXKVrEfsd6ERYO+bn32P2ZiCkfbUIiBQuKj9yDTHuJwg37RrdPOhQSiUQikXh4oXPunB7460/W9/zV5+tjhwfXviGRSFwVayEokODbkt7v9yWpYbn3H/2LxUKDweCUjTwSNkfwbds2MTFZjgSIxQ339/drYu70A0aHSYKZumA4OstxmST5fZN610IgaY2Rdc6TXRIWKSwm9Ho9DYfDukgixxyj94yS+8digdM7fMSiEftvgaDf72s0GmkwGNTP44kQLITHKvvSydGFJrXRibFcLjWZTLS3t6f5fN7qQmANCwstvi5a3SluxFQLRqXtuKBAwP1HAYjCBk8i4Hvui+er0+nUjhwTWtYosIOAhSvjqR8UmLgvvVfpCPH88gQLSY3ovQW9uP88Nq8X14eE233n/HPfUCTi2lCAoVuDgor3c0xx4rV2ccT0qCgwUVSh8OA94Loc/twnEhHvOCg63zlQt2xc++JEIpFIrA3K5qaqD3iifuvbTh8DmUgkbg5r8dcyo+wk6f4j3+TW100mk5q8OsIvqXYNMBff7gcSLkkNcsroJQm1dJLD7dx61is4ODho1B8wkTNps/3f7TACSzJsIcJ9p1OA8yKdRE/39/c1GAx07ty5msyfO3dO29vbde2HK1eu1MX23DdGsk3uPV8UEkwMWfeBVnRHvX3cpWs7OO/eaSwUThjtN6GzGON1dw69162qKu3t7dVFM90+58+Esa1An99npL5NVGCtAI+bkXuPKbpd/J5fs5jjvkeS7bkopdT71iDJl05qJJjwux23bacK+8QTDJhmwpNR7PqI+5LCntsaDoeNNJvovImpI65B0OkcFYm0+8Ztz+fzeh+wOKb3dHQdMDWGQoivie6I6NjgvFJUcH+8573v48kucY0SicOdHf3Dp3yiBv+9rxe+7y+fdXcSiUQicQN4wz9/hn79i79VUqY4JBK3CmsjKBgkDNG5wEguSVSv12v8Oxb3c20Dkn3WEuB//d5yuWzknkvNIwHpnDBIYExSTOzsHuB4LSDYBWF3QRQUmH9PYut73bbTDkw+J5NJTdJYbJG594z+mrRLaggAngfa1d2OLet8z8IAo+N+Bgkv7zERl1T3gWvBmgW03zMizzZj5JrCQr/fbxyHyDQa9olpKpIa93CPzmazBvHv9XoNQcTjdjoKRQ3vLxaW9O/cX3RZeO5d64J1KTz26KShaMaiiWwvigNMLaEbom3P8x4KTt4fJu/cKxZXOE6mwDDdoW19+X0Q00wIrpfXzMVMo6BA8SdPeUiswsGVK1ocPvqsu5FIJBKJG8D/+YGn6h8+47/p3jylJ5G4pVirv5b9h76t4P631IwuSidWeRMXR1UpDLjNePSjpLpgo9QkqSw2RyLCvGv3MxI1CgoUPdzH4XDYuCbm5pNI0Ypt4tV21KDJJMkqiSPFAxc0bKsnwKizX3chSZM+1pPwuFj3gKTYa2PBg8U2OZ+cI0akY5477e8UC5juQMGIIBmngMPCgZ5bjtFz6z7QSs915E8UbliDIB47SWGG6Sd0XBhsx/2nQ4ApGhae+HzPAz8XsX06YdrcAa4fEucgpkfQ4cAjHjmHFDzcP1/jeaJbh6kgbcIB90t8nzUW3J4FBf74MxvTZBKJRCKRSNy56IzHesfnPkXf8dE/qE8bT866O4nEww5rISiYPC2XS02nU0lq1EGIhRodnWUdAxJTwySE9nMTqZhmQcGBld9pWWf+uQUJkq62YnEeS7fb1Xg8riP1h4eHDTdCLMTH/G+TOwoKUtNFQLLKSDffN9niD2s9ON3A9/b7/YarwoIASa/H6TGw7oDbkHRKrIhzy3QMOg4YxS6l1OKEx+90CboHSCzdDiPO3C+sSWGXAsdAUktyyX3m562qOyCdJsltZJ61Dtw3Ci1Ml/C6+TmuxeE59TUU4OgyoNMgphlQXLD7R1ItKFDo8n0WR+yu8Pqw/gPninNEcYbiioVC99efY/aTe8ntR3GKe9pz4TZ9VCTnJLpBEolEIpFI3Jko/b6qJz1RL/+X/+msu5JIPGyxFoKCdHKUoosikmgwSk2iZIK1v79fkw8LBSaIy+VSe3t7DWLASHR0LkgnRJCElO4ERnJdxI1H8FVVpfl83iBcPFrRYxgOh3U0eTabNZwRJox2CEjSdDptCA0WEEiu+v2+xuOxtre3deHCBZ07d06DwaDOU2fhPfefZMqpByaTg8Ggnk+/PhgMaoLsqLFdAm3HeTKqzpQHui1YT8F1EiwmWZSg1d85+C5wSBJpN4eJo4UIt+/5dy0BpqdYeHD7Tl+QVJP2KF55Tuj2YI0Iug+kE6GL73vtLGa4/gT3NGtPWPxxDZGtrS1tbm7W46CYQAGNdQLicZL8TNBhUFVVLSa0EW+mb9Dhw71pML3E8+jPjT/HFAJiqoP3LO/jGOliYcqNv0+85rPZTJPJpD6VxG2yBotFzkQikUgkEncm3vQPn6qXfeW3ScqaSInE7cJaCAomcSYQzgtnXneMfEeiEtMTTJpMhIx4rB2t6sznbnMdMM2AUdnodmB0tdM5KU5nkspcfumokN3Ozk5dw4CCB8WLaKOnu8DX93o9jUYjbW9vazweN3LYo5jAObAowLmiUOA+tLki3CbrVbBYXptLwESfKS1OsbAgI6kmzgaLP/I0EBZZjISVAlRMbyEopHAvMOefThDuQZJfr6Hb89hiSkyMyPt95vFz38Ux2KHhI0uZKmOngNfWfZrP543Cg/wMsr9+zfNkIYBODPbF88bPF6/zvDHlgvvGDo34+Y5rxJoi/izyerfvfWYhzyLDfD7XdDqtP2sUKixAWNBqS59JJDqjkTZ+/rz+1Xv+tKT+tS5PJBKJxBnh//zQX9Q/ffoLtdVJMSGRuJ1YG0GBxMR/zBsmtSTUdA7EtkxSGA2NNRCilTnmjLuAHN0RtHk7ikmS6OtMOE1K/XskVxsbG7Xl2icZOMLMPlHk4Fw42upoPCP8tJozrz7OGX/33DEi79djygn7ZvcDi9ox791Wdbfne91n/9cEmesUyaV/WDDS1/knjiPm1dMFEsdHscD3cj2YgsG5oOOCaQMUE+I+ZJvuNyPyFGMYzefngmP2WOJnxJ8F1kHgtZwDzhmdDZyrNjEhrhNrnMTPGt0SfOaq6wm6E5gmQvGD8+7Pg/eZXVCsB+Frva94+kQicQobG/qB9/lJ3ZNFvRKJRGIt0RmN9NYv+VB9y4f/mD7n3P1n3Z1E4mGPtRAUJDUIJYkX0Rb1pvBgoiOdnPDA9AFey+rtjBKT2PEYOwsK7oNzy0n+SGQcaY9OBrdlq77THfb29jSZTBqEj/nfnh+SJ+f/+9QCRnkdjZ1MJnXtAxJLii7sezwWMvaD5NVj8XyzBobHa8GEBK1N3GF02Nfw+D63Z3LP9BHPuQlzJKYkwO4rhRTa5OMcc995TpxC4h/XtzBch8HPdd/jKRFRHPB+osPCeyTWUXC/6ZKI+5D73s/279Fd4T7YLcC9HT9fnPNYp8PXU5ThPMYilnEdVs0794ThYqQ+2rHtu8BuE7s0Dg4OavGOjgvPqV0vWUMhcTX878W2Pry/l1GvRCKRWEN0Ll7Q7zz3/6du2bj2xYlE4kFjLQQFEkX/Yc8oKiPAJsImyD4m0ddGMkSnAgUKk1UXDnQ7JhGLxaK+luQxig+0kZP8O6feZMX9Z+TZJHw2m2k6ndb53M5zpwWcKQaOhFtM8PXum0loJPOuSRDdGx6jx+P8eveVdRW8XgZTHmazmXZ3d+u5dF9N8t2Ox+/nW0gYjUba2trSbDZrEDoKRSaPXmPWdnA7TKnodDoaDoeNoyuXy2Vdq8OvxwKYcR9R0PH4SLB9r9fBbfrfbcU0PUd0c3i+eOSk58Dr7/XyfvL88kQKzpE/W25zlRAR02E4dgoGFBn8ul0xi8XiVP0Tpne0pZLEzxn70iYquh2LCS5GGeudeC09R94vdgI55cF7gIKRP3d5bGQi4nBnR//f9/tQ9X/1kfrZ9/uFs+5OIpFIJBKJxJliLf5aPjw8bEQMpZMINwm5dBIJZxTXpIKRdFZub7P6MzpLcsWoOSOsdi34OhMjE3KTmXhCgJ/BSvUuGrhYLLS3t6fpdNpIXXDNAo7HY+eYWBwxOisYrfX8Om+cOfGR7MXot8mkiXobOaSF3BFuEszZbNaIwHss7qPFhOFw2CiIF1MVCBZctHgTrfdML3E7JpSeBwtKMU3Ccx7TPVhgMYpMPpqTa+a5NqF136I4E49T9P1cg/F43HA1RHGKwhqFKF5PN4L3S5uLx31wdN973sUi2TemgPg5FP/aUl4siHgNPP8k8FFMcB9M+kejUX1cqh0iFlfoZuJ3BeuqeKzcLxQoV/UhkdDhgQ6rdK8kEonEuuHy3/1Ifew/+M10JyQSDyEelKBQSrkg6XskfbCkStIXS/ojST8h6YmS3iDps6uqumoCk6PGrAUgnRyHx+MVmeYQCU+0mDPCGm32bfUXTOba3ou1F6IdmoUeMT+tNm8WJGTthLYUBEaRY5V9Ws0jQYzpDya1JK4UMDwmR3RjjrxFC86zr+XaSWoIEP6hrZynDUiqxQe3F4sqRpCksr8k0n4WBReSb4/D+8tzHB0JFJoiKCZQmLKoElM62E//sEihBbSqqurTJNyPwWBQH5HJ9Yn1QKKYQIeECb6vk06cQCbe3jtcd88Z02S4D/xfi010BHke+Jmh8MC0oLg+nCv3xQUWKSJGMdD/Zn8t4MXPItcxrs2dlO5wq76LE9dG6fb05n/wND37kT931l1JJBJrhPwePnvc/4UfqdlnXNa3POp3z7oricRdhQfrUPhOSb9QVdXfLKX0JI0k/RNJL6qq6nmllOdKeq6k51ytEQsKJsvMz3YVexJqEyqTD5IDRoZJjkjwTDJMziKZahMapJM0CSO6GPxcksTYBi3gV65c0WQyaT0y0tfyHh9v6L7HCv98jkmoI9Qm/qucHhxPFBEoLhwenhRKdIqE++X5Ifk1YXeU3fPINA0LDq65wDoSfibBkzC8dl5jnkIhqRY2uDasYRCFEiO6Q7iOFKc4V947PP2CjhOjbc/wPY/FbhY7OOg2YAFR3xcdE64zQWfLqlNOWLPB6+H7Y/0F1raIxSS9tn4O55bpGt7T0dlA8PPldiyg8fSG6Ljh/FpIYBpJTGfh8yLuIIfCLfkuTlwbZdDXi//et2ZRxkQiEZHfw2eMJ3/57+v7n/AbZ92NROKuw00LCqWUbUl/WdIXSlJVVQtJi1LKp0t65vFlPyjpxbqOL09GuRlldp60yTDJom3T0+m0JtguLMfIMK36JqJ+pnSSkkAy2u/3a8LlEx9MvEn6KVhIqq/3v02UTXg8xul0WhdhdD6/+2ISHSOsV65c0XQ6VSlFw+FQ4/FYW1tbGo/HGg6HjVoHvV5Pw+FQGxsb9VF5i8WituXPZjM98MADtYXdRJTtsIYD8/j5+2KxqGs/SKqt6MPhUJJOFZmUTtIdXD+BpNSpGRZO6OjwvdFS73tJOr1G0Z3g6L9dL6wNEdfWv3uvmAj73+6T5zveT9cJazpwHrzvLU7wuSb0g8GgHkcUf/zv6FLw/vUzvLfoALHI5Lm0GGIxwWvD2g4WRyx0cO28lz0ej5GiS6wnEYt8zufz2llBcY41LChWuf8+CtIpUB6r63rM5/O6WCb3A5013i8UWFa5ZNYJt/q7OJFIJBI3hvweTiQSdzMejEPhvSW9Q9L3l1I+RNIrJH2tpEdVVfVWSaqq6q2llHuvpzFHcpmXbXLKugQWBPzfGGU0mFPvtAgeyUiyT9JK+3Y8ctJkxETkeIw10SYxc/8iiTYp29vb0+7ubv0ck7jocHA70+m04d7o9XoaDAYaDof1D18bDAYaDAY1obcg4zZdCNKkVzp9mgNJJSPnrOmwt7dXk7WNjY06r51rxdMJIlGj9d997XSOCjjSgcD59j6JoovbMuH02sTaHDFPnvsvprZEgcHXMm3GIgOj/xFXc75wH/m53lP+4XM9r76eYgnv9xxaJDCRp+PFtUYo1tGl4L3utXG7o9FIo9GoTvGwcEECzvQgpqHENBLuJzomKGpRHKQjRDoSIbwHPV+dTqcWa/b29hqpPu4HhSnOo0UKpuWsOW7pd3FiNaaf8Qx96r96kS52hmfdlUQisV7I7+EzxMaF83r6r71TX3bxf0jaOuvuJBJ3HR6MoLAp6S9K+uqqql5WSvlOHVm5rgullGdJepak+ohFEyxbxmmXj3nNtoRThIhEhRFhXxdJDi3ZMcec6QmEiYhhAsZccwodPOXB75kEtaVmeAwWQQ4ODhpOAhNuz5FPqbCY4N89R474RyJJEuw5M1GzrTweoUh7Oomc77EAJJ1Y5OPa8XnR8h7z7Vm8sI2s+jkULfxvpsRw7vw+xYLoDohR/2jx57V0IbAGBlNW4hy0pbXwWsKiCuev7RrvLaaouB90N7gNuoIsmPGzZqGEjgKm2Vggkk4Es1WCiuc4phjQMeB+MfXC98X587Xehzyxwe3ZCTSbzRprEPvMvRFFqjvBoaBb+V2s0e3p4cME8+0N/eNLfyypc81rE4nEXYX8Hj5LbG7qHz/iFdrqpJiQSJwFHoyg8GZJb66q6mXHv/+kjr4831ZKefSxEvtoSW9vu7mqqvsk3SdJ58+frxi9ZRSe9noSCpKCSJ5i+gCL1/FaRoCZmsAotV9jbQY6DdqIZoxEU0SwHZ/RT/fLpJAuBxNVpxSYaFFwic4ER+BNqEz8PQ/z+bxRt4GEm7UreOoC54+pJiyO6Mi1HR600xuReFow4lx5nNIJkfcc2glBJwlrYvgeWu7biu9x3LFWAskn60bQ8cK1jnUDLFrQwcD24jxQDDA8trb967FEtNXsaBNy6JZh3QGmcEhqiAm+xmIVjwClM8eIggr7zOu8j1kcMjqP2DeuUVVVtVjmPvb7/Xp+/blxChLTTTwPPHaUn3WKg3cAbtl38Xa5dEcM+Cyw+fjHaXLvnVOoM5FIPKTI7+FEInHX4qYFhaqq/ryU8qZSyvtXVfVHkj5W0h8c/3yBpOcd//dnrqc9kwaTN0ZLeU23260jkfFeWpbpZIhF95iPzToBzCt3eyaczMt21N1E2ikVJm9uj2kUFg8shPD4PUZOTaTcvtMTZrNZbTdnbv1wONRoNNJ4PNZoNKprA/hIygceeKBOl/DJAZPJRDs7O5pMJg3Ca1JloWJra6thZafDYjabaW9vT/v7+7Woce7cuXpdlstl7V6Irgae7jAYDE4VlPT6cN5M9ubzeeOYxzbSx2g8xQavfzxKNDphKCB4bezUiATd+8VRcD/f+f10aFCUYhpKJOO+xnvNbXrMJOvsk8mxpPpzwjly6kJ0EsTPGZ/Nox1dbNOfTa6Z76PDgqIO04t8j9Nq2p7t9y32sX220XYiiK/he56jmKrSdkoE9/yd4FC41d/FiXZcfn5Pv/eU7zrrbiQSiTVEfg8nEom7GQ/2lIevlvQj5aia7Z9I+iIdeUFfUEr5EklvlPRZ12qEkcxIEPkeo9eMQktHBJbkIP6X929ubmo8Hjds8tIJQTThMpkwOeP7FgBitJvEj8TG7gQTJJM195F58RYoXFcgHsvoMdhFsLW1pfPnz+vcuXON+gCOzppY+YjKBx54QDs7O5rP53V/LbCUclRjYDgcqtvtNvL2TRZNoOfzeUPYGI/H6vf7ms1mdZ99UoHnngTVz+n3+w27uaPyqwQD11nw2vkeprCYtLP4n4mpiTXbJbFluoVFrHhCgMmpyacdJJ5L9tttcB8yvYN73UQ5XkNhTFLtMPDYuIc9xnit9wH3kp0UFOUoyPEUEM8Hr+NnzPPNQo0udsr19T2sj2Bhh3MhqXGkp2ugsIgi0x18Xfwcc944L6wXElNv/EPnyprjlnwXJxKJROKmkd/DZ4AHPu8j9JX//Ce11RmcdVcSibsWD0pQqKrqVZKe1vLWx95gO6fqD8T3ouW+DTFn3vfTXk4Hgd8nQZWOiAYLBPJag89h39kOhQlWvjeJiwSLTgGTGUfATYBNtN1PF64cj8d1uoOJGaOsfr5FBp6aQZLMNAqLNkzPYHE/k7WYNuLr247x4zqylkHbXMS15NyzQGS09Me5t/vA88lUDz/PY+EeiE4Tg8+zWBRPfnB70ZnA57st3sNxcDxtQlUE7+F+axuz2/RY+Vnw/HGs3Hd+jt9jHQb2LaZz+N9cZ86B58pz7xoedFSs+m6wSBX3E+ff91sQpEDCNYjHqd4JuFXfxYnVmL3wUfqw+efolU//8bPuSiKRWEPk9/DZYHGu6PO333nW3Ugk7mo8WIfCLQPFBFr/TXJYqC1W6CdxcuTfhNwEhrn8JtGRXJAUxxMeriZiSM0jKElKTYxNOBldZbTVZJG2+0hcGcV11NspDz7lgQIBBQUKGySAJlwk+nQr+J7FYlGPjekCJIB+JgWFNkJJ8uj5iaTa68jilwTJZ4yGS2qsH9eEQgWFKgofnAe7SfhcCy1uiwKBnxELHPIetkXC3jYPca4okLWlF3B8bo9jdRteM4oUFiLoMnDxRe5Rui88722CRSTkkej7/jiGTqfTSIeJwoRBIY/7IYoWrltisSCmhrQJRNf63CfuPtxz30t0efaR0tPPuieJRCKRSCQS64O1ERRIHhkhJCE2gWB+uoUDkxeTAoME1f+2jZqRdxcTpN2dUVFGOR3JZ8R7sVjU5MSvk+zOZrOGIEKSR3LOFAQ7BXq9Xn3Eo3RCuJzmYHeCbfW2hzNf3gUaJ5NJbR2PJJ/igFMbaJWXVB8zaIeDo7yub1BVVeMoSoooUYQ4ODioa0NYCPH9PO5SarpD/MxoracDhfuJaSleU9ZtcN8PDw8bbgva+wkeSUmRygKKxRc/m3MU0wX4vvcR97XHQwEsOm641zlG94OiARHFJApc+/v7dd0Q3kdRw8Ib7/NnzQSetUooAMS2FotFo9YHayfQZWO3CAU5fl4sfnh9vK88X3aTUDzkdwTTJ+K+SyQSiUQikUgkEk2shaDQFnl0FNGR4xjJJzGN0W6peQygLf4m9L1e71SOuyOibmdnZ6fhUGBBQumIQJJsm7y4jxY9SKJ4UgAj/y4aaKLqf7eRW9d/uHTpku655x5dunRJ58+fbxSNdD9N/n1MpIm6nxHrSzAKbEJu8YFrYwLqeg2+vpTSqLrveWJxPz/PRNSEk6SOgoKvowsgWu/jSRJeAxJxpwDQ6cLxHBwcNAp0ui/+rwUhijbRFk9ni2tE0Fbva1gMlILCZDJpuCSYakPnDt0bTOWIbgHa+mMtADog+DnjdfH5/LfnlK+7X26HR5tKTdHQv7sNiwX+PNqZ4Tn1HqaQ435QeLOwE+ePJ1bQvRBTNLim8Xspkbj0X39fn/jqz9OP/fTzdXEjj3ZLJBKJRCKRWAtBwUSZJHY2m9Xvu/CeyYSJKMmfdLpwI8kOo+/xVAZG590PEzFa4klqHUGOFm6KGr6HJJbOhqtFm1kwkkSp3+/XRRC3trY0Go3q2gkUL/hsklHPDcUNCjQeWzwNgK4C9tHz77mxEEDhhUX7uFa+ntfYLRBTNSKBjaSPcxdTZiKZ9EkYTDng/uH6Ufzg8zi3bCumrlC84P4l2Sahp8MgWvH5fApHJN7x3gjfF8F6FBRjovBGAYYOlzb4sxYFGvaF+zX2x2Oy8ObvBJ6+4TnkPuR3hd0qUWxkG3Fu2upBJBKSdPDB763XPXtTo0732hcnEolE4rbiLV//UXr8J73hrLuRSNz1WAtBwZFf//HuoxJNlhg1jTngPKYwig6G2zAB3tzcrEUJkiVeG6O1tKNLqlMv4rUkSUzdMPGJBJYEkuSQEWYTpm63Wxdh3Nraqo+KdCFG27lNilhDgeSIEXMKL+6TI7wkzLyH8xmJH0mt+85rovDiVBETQrsTSFbbcvQtLrhtpjBwDfgcv2ZBgSIJ7yORj+kUUVCI6SJRpNrY2KgdMSTNjuDbgUIBLe716M5x3+J13O9XA+eG/fEe9l6lqONr3B+Sb4ICH4/e5HPc/9gPujXcTwtJFqp8fZuLp20u/CwKe1E08X281q9lDYWE0fngD9AbPn6sP/n475KUgkIikUicNd7zk1+v//6k/3HW3Ugk7nqshaBg+zztzYvFQr1eryaArntgwmcy5vQB2piJWPuAIgRzx2PaRBQUSGosRoxGo9pBYJJCcYCnKYzH45r4kKSaoJKQSmqQJtrHz58/rwsXLujSpUva2tpq1E6ItSd4ogPrRcQaEXQQkCRyLijsWCTw714vixl0P7h9F8eT1HAgMMefJyZQbKEbwGPgMyzssHYC59HRbc9zdKVwrE6NocvDc9fv9+u1JdFuc8p4n/X7ffV6vUahP9ZGoBPGfaczg/NA8ceiGNfO17iPTA1h35jCEwUxnkzBPcr72/4dP2P+icJePKaSwhZ/Dg9P6h34v9GBYTGBn+eYvmNhj6IIxT3uvVhck2lMicSVf7vQa57yXWfdjUQikUgkEom1wlr8tbyxsaHhcNjIp3Z03cTEhNpRw9FoVEfRJ5NJLTSQ2MX6Ciado9GoUeDw8PDwVBFGH1dHsjybzWoSNRwOG7Zq30cSOp1OJamulE/iQnJvoYE1HFiM0A6ObrerS5cu6d5779U999yjCxcuaDgcnrJ184f1CFiEjgQrRt9JREkQY6S50+mcKvzYlkpgMMIexR0TR0bqY+pFJMgmfIPB4FS+vUUeSafuZ39c6yIKGNJJzj/dEd6jFCh8LCUj3z51IxZF9HOYBsGCg0yhoVMlCiB2PXjeJTVO5/DcERRBIjw3XkO6B/iePysWcfg+HSzcW9wz8XfOmcXBKMaxtgL/HR0wTFegg4KCDOtaeN/xc2mRizUuEolEIpFIJBKJRDvWQlBgtNsEyccsllI0HA41Ho8b9vQY1d3f31ev12sU4ltFbBnlZLQ4viedFAl0gUPpxPVgQkxyFwWDzc3NOkotnRA35n1XVdUoXkeBg3n4TnXY3t7WhQsXNB6PTxFTVqpnxJXzS5LmuSLZpK3fhN9tULBpc4O0zXkbkXc7XlOmZrAP/nfMZ2fNizg232OiGUklCTCj1J4H15XgXJG0Wrzh/XRjkJC6XyarFsq8fyJZjxHyOH4+J6Y9+Jm+j+OIYgLb8fPtrKDDg9d4nJ5vilH+3ePlerS5byIoDkTBqy2NgX3x2ngtuJf4eXNtFK6ln8WTT+h8yZSHRNnc1B89/0P0b977J8+6K4lEIpFIJBJrh7UQFKTmkXexSr2LEDpy7z/+HY2m+EDiYjDSG58lNfPHJTVIJqPHfN/38UjAaNG3s8LH4FHkoFVbUuMYuzbbuqPeW1tbOnfunM6dO1e7ExiNjcIGLfYkr3YtxIJ5Jp+0/3uMJOmeVxI9FrpjugSt6FHoobOgTdRoI5J0N5AgGm3kNYoTESSX0TLvtaQbwHMRXTBum6kU8aSKWPSRogfHGMfi9tr2uOefzyU4l54/ign+b0zdic9pE5H4Hp9LFw7HxFQRtkFBLa4T94Pnm/uN/aIjhe/FMTOthac/WEzIdIeEJKl09NT3/VM9qft2Sf2z7k0ikUgkEonEWmEt/mKuqqp2ATjv32R8MBhoPB43CttVVaXpdFrfs1wuG3UMjCgKSCcFH0niTOYjWfLzGNkkTLwsOHAMFkJ8AoOvpSOC+fptOeWz2ayRG7+9va2LFy/WP2yXP5EkOeJKe7f7aWJmMupxtOXkd7vdmqR53aIDwsSbLghG5Qm7C2LBRY8hpgn4Hp58wXWLVnWTymjzJ9nka9Gy7zHGNAD/m3uizeWxXC5rl0Csj8D+eb1IaKMbhMSdIgkLZ8bUmzbhxGkedsjEIpQcM08BoXuDa0/3AVMOOFduw2OmE4Ck36LbqrQM9981VbjWXpO2ozw9f1HY4uebnxWLgJ6fxN2NarnQzse8U1/1C5+r33zKC8+6O4lEIpFIJBJrhbUQFCQ1/qjf3NzUuXPndPHiRV26dKmuLUBrvAmxyTsr5pukMtI+m80a0XuSnJgrzeiko6F2GdBe7X6QmLj/Po2B1vdYr8CWfalpfycBJcGyO8HFINkWo+Su3+C58Xjs7qBw4z4w6uv1oA08OgtMynjaAos0ttUf8BxEISAW1aQLgBF9r63XwnNHhwlPAuBpEYbnZzab1WMlgY9R/oODA/X7/VOuBxNyOix4ogfXhqITx+I5aTtNoa3QI9NUfB/vsWjmvejXPWY7eWJRTbcdhRTf7/+y/95zba4KXmdSHj+XcZ0Nijru53w+r/eQ04cs1nkP7O/vN9aEQgCdJ742FmD0M922P48pKCQSiUQikUgkEquxFoICyZLJuFMCHIUnuZzNZprNZnXBvugeiBFbPyNGWVlVnkSGtnoWRDSxlNSINpvIuf8usMj8/hgpjVZtkz7WhphMJvXpAEydoP2e5LCU0nAYmMjRLk5yxRx3k7xItvwcE1ZGo10rguTZogWL6sVneX0joXM/pPajDTlOzhvJN0krybBhgcmE0WvMH0bqfT/Jc9wzHifJJ48k9R7hWBgtZxFSt+91ZjqIBYH42fHcxNSJVS6NtrSP6IjgfLu/nBuCe6XtZAi/xz0RT1qgy8Svs0gjRS2uVewzU5Ciu8WvLRaLxrzFOYi1LxKJRCKRSKwPOoOB/vSH31ff9fgfPeuuJBIJrZGgIDWj1yYcjPbSSt92jJwJBMmJ/0tRgu4A5uHHlAn3y4UXbYMmUaFN3W3Zkk8xIUbpaTWPFmyTHqd1eB4sbLRZ292GyWeMltMpQFHB80pBIdaDoK3c/Wd/Y5TcDgieVEGbO4lktOZH8aOtVgCv89obUXDw+yTDba6HVXUJfD/JJWtfMKWG/Yn2+kjELRS43VjokWkb0klUPToLOH6ecMDXuU+45+L8MCVBUr2H28h3bINihl/3nmKahKTGfmpL5eB7nnPusSj+uU1/rg2Oxf3i54Bt+TuANUVWpeok7jKUor3PfIY++NLvnnVPEolEIiFJ3a5+/cP/H92zMT7rniQSCa2JoGCrMY+NNIk2qbAgYJB8RxEgigptKQy2NpukM9pPK7/vH41G9fGEJuxOo7AFnj8k/SZbUUSgCECb+OHhoebzuSaTSR1F73a7Go1GjdoBvpbFKflDUYAiQxtB9JhNoji/bfPvNSBxlqTZbKa9vb26LRNSPtMk0QSwrQ6Ef3gMIkmrj8Fk++wjiTyFCa5FPOmARJi1LuwiYJFLiwp+zmw2a1xPcs99SjGmLS0kElu3RUHB+5r7mXNMohwFCyMKBXRD8LoooLGmAtfDnxWOn/vPa0XB0A6EeA8FBT87OhE4Djt2iLj+dNT4c+hnca0tirGOSOIuRinauHRRP/rt/05P2Nw6694kEolEIpFIrB3WQlDodDq6ePGier2erly5or29vcY594xStuXgS82op8mbSYvJn3PqNzY2TpFzRoRNOpg6YZeC++v7GOlmn5nPTnLt4pG2gDt1g6Td97DGwYULF3ThwgUNh8PGcXYknO4LyaSt9rSPu79+zTnq7i9rQgwGg0Zkl04Qj4sOj9lspul0Ws9hr9drEF2mdJi4k1DGEzU4xwYJbXQD+FqnxbiwJYUU1lyI+fZtp0bYdRGdMp4vizm+NwoGvo9OAu/F+Dlwao0LYDLdgfPisUfBhS4H3s+58pjaUg4Y6ffce7w8hYGfE3/WnObBz2t0A/jzFF0Vvp4uBn7+PDYKE0yb4L6neMC9EgUxg/NweHioK1eu1OuRJz3c3Zh8xjP0Y9/57/S4FBMSiUQikUgkWrEWfy13OkeF9uhMsHvAEW1GWp2jb2fA1taWRqNRg/jG6Ct/fHIEo8AkVdESH3P0pRMBgzUTSIxJqkyaGA014YnF+qQjsre3t6fFYqF+v98Yo0UQkzIXWZxOp7UoYQHEwgDbJUFkBJ1FLEm8PQbPk3T6yD3WsWA7TKVwqoPFnbbIb0zFYBQ7XmdEhwrTE6LzI66dx+L7+LvJscl/bCPOHfcbxRY/n8Tfp2xEkm3Bqd/vq9/vazKZNIoYSjolrnHcBCP0Fh7a5o738nPA/sYUirgPLIJsbm5qOp2eKgrJ/cpnx6KM/ozE0y18rwUXpinFsdDdEPsbx+E9aeHE68j9zDlO3H2oNpRiQiKRSCQSicRVsBaCgnRCHEzOTVCqqqoJHUmadET6+v2+hsOh+v1+TQhI8JhWwPSBfv/oPHFasqUTQuh/+78UHEy0KFY4kkl3gfsfBQs6AGINAZNNR9YtrGxtbWk4HDYEBV/PFAc+h3PQJrYYMS3D/Y1HBBq+zgIFT6iIz4g2fl4byS3FF18b3QLRURDTKehqoXjieYmFMt0Wx8paAiSaFJdWpTPQBUCHQiz0F59LIch9ZISfY21L9YlpHZxfCwRxr/k9/jvOTbyenyenCdEpEN0ybfUpoluA47PwQcdQr9er91TbKRxtwofXis6fKMBwLZlK434nEolEIpFIJBKJq+NBCQqllK+T9KWSKkm/J+mLJI0k/YSkJ0p6g6TPrqrq/mu0I+mkYr9FAhPy2WxWk2ZbxS0KjMdjjUajRsHE2Wwm6YQou8BhtEozmk6bOPtFYmUSF/O9TQB9HOF8Pq/FAFaj5+kMbVFvv+60AdvMR6ORLly4UB8Z6dMmGIWmtdvP8LgcgaVzwK/T2m4wLYKihGFRZz6f19fHVIaYXsDn+XVa4f1MPjsS5Eh4PVanl/B99oPzYEIaSW0sDsh7/X4sikliTyHA73E9mCJhkcHzTsElujhiOkdMQeCcRhEtOg74etzjFGMowPE67n2Kep4Tu2WcamC3RXRPrHLB+HPNz4z3CdfLa97meKB45PfdRkyRssBk8Y7pKdyndwJu1XdxIpFIJG4O+T2cSCTuVty0oFBKeaykr5H0QVVVTUspL5D0OZI+SNKLqqp6XinluZKeK+k5V2vLpN/RRLsTDg8PNZ1OtbOz04gc2hI+Go00Ho81HA5rktfr9Rr55zx+cXt7W+fOndO5c+fqZzp1gtZqR4otXpCIUQzwaQ6DwUCSamfBbDaryV6v12uc+MCihyT7h4eH2tvb03Q61WQy0XQ6rds+f/687r33Xl24cEHb29u12EJy6f6xdsB8Pm/kmEeYuNne3ul0apHgeI1PET7WBqDI4nUkkWvZM41ce5JEiwJRgGHU2mvDgodOL/C9jJS7baa7OC2Dc+C+G3ab+BkmzKzRwVQJO0a4DhxzKaWx7jxm1GJKr9drODIsTvlz4fk+PDyqvSGpdtl4HFFganuP6xprDziib9CZ4Tmh+8D73+u3u7tbiwlMA6IDgeKcQWGONSTYb983n89PpakQMRWC4gKFKbp86AjqdDoaDof1sa+r9vI64VZ+FycSiUTixpHfw4lE4m7Gg0152JQ0LKUsdaTCvkXSN0h65vH7PyjpxbrGlyejzIPBoLY4LxaLmlw7Iru5uVn/we9rGXEu5ejECBfKM7m2UDEcDtXtdutCeyymxxx7plhsbGzURRXdLxNNExO3FYvUkeAwikoXgQmg0xc81sFgoIsXL+rixYva2tqqxQQTbI+BIgLTQizQmGBbZCDxZ0HFeHRhJKnRAeEoMXPeSdr4wwKZXt+YlhDvpXOCffWeIcnm8yMJbLPXt11vkh3rZ0QRhOkubiOmP7QRUYogFDvYP4sJ8/m8Frx4cgdTJej6iOKAx2oi3VazIgplHENbugNrU1gEkZopPBTkLCa0OT4MFkWlmMD6GXQmWEyhOMM54PVMc2BKA4UCflZ8n8WMuHfWHLfkuziRSCQSN438Hk4kEnclbtrPW1XVn0n6t5LeKOmtkh6oquqXJD2qqqq3Hl/zVkn3XkdbkpoRTx/LuLe314jUOpLpyL+j6yRNtL3bTdDtdmsRwpHYWAGfxRdNrhiVJ7Ej0WA9AUZ0Gd2neMBnu48WBhyt7fV6Go/H2t7e1vnz5+u6Eozcuk8mnSagcWyxFoDniMSd6yA1Le6c21W2ef6X9zMaznmhnd3jaMu9j/uE/SG59/uRsPIe3suftroRxsbGxqlCmBxj7Ge02vs1rgPnL4oJcU1ZkyCmg5gYr6pTEPew4et5DetnrKqdwL77uVy/qjqpUWIBJooUbaCo5X3h/nH83iOeH39mOFexj3FO4nj8efE6xdSVNiFm3XArv4sTiUQicePI7+GHGMulPualX64XTduPlE4kEg8tblpQKKVclPTpkt5L0mMkjUspf+cG7n9WKeXlpZSXz2azRn2Dw8NDzedz7e3taWdnp7YjH9/XqM7elg8vnUQzndIwHA41Go3qugYWGkgkSQ5JtEj0GCm2syIWRXSuvSPsPNeehMj/ns1m2t3drfvqkyjOnTunixcvNtIcYv9YW4InGziKHN0FTCeIRJQOAf43rFtDjOCaGDHFgAKCQbLpaLwdFpEMRmGHY5JO11sgWW8jx54/rjHH53s9PxYUKAxQMDFYkyK2570SSS+v8fjm83ldhyMWhKQw4xSB+NxI3jlfcc05BzGVxe/793g0qcfkz5mFO7oT4kkbbYifv7a26dbwXnGtkSgoRMHPc8J/e54pKNgVFAt3rjtu5XfxUvNr35BIJBKJBvJ7+KHF4WymJ3zW7+nb3/TxZ92VRCKhB5fy8HGSXl9V1TskqZTyQkkfJeltpZRHV1X11lLKoyW9ve3mqqruk3SfJF26dKlyocHlcqnLly/r/vvvr4/Ni9Xv+/1+ne7AkyBoIzccybWQYDJnN4Df6/V6Dcs0CWc8Ws42axMS38eoMYkZo/skbRQXoqjiMY7H41PFGEk82YZTMSTV/ej1ejXBdPvsFwsver48h20FEyN5dW6977Ggwj5QhIjHaca6DH7f/Y2WeRLxtoJ5ntcoFtBhEImzXTG833PBtAYKAB43Uzfo6nCuP+eWa+c2OJcmtxSLOAY+l7b9mLIQ0yp8b5sIwmcdHp6cyOGipW7f4yQ4dn9ORqNR/br3YxRZLBgRTLHhHrALgcId59nzGgUlioUxnYOOD/ebKRcee5tQuaa4Zd/F2+XSHTHgRCKRWDPk93Aikbhr8WAEhTdK+ohSykjSVNLHSnq5pD1JXyDpecf//ZlrNeRCaPv7+9rb29MDDzygK1eu1MTCZN8RWRewk04IoIl9tKb7NdZaMAFiTr/J3mKx0N7enubzeU2GTCwpDPh5jKzy6EjnevN0B1rPWeTORNJtWVBw/YTt7W1tbW01ajhMJhNNJpPavRHJI10EJl/MaadIQKIcc/NJbPm6nSSeQ4+bzgT2hykOFn+ig8J9cn8tlBjss8fl4pQkmCSNVVU1yHd0rligIiFlAVCSdO8HCwEkndEdEKPyFH5MYuneIDHnPHA92hwjFA8oFLWlj8RjTGNNBCKKOEZ0GlDAcnFSCgp+z+P0WkX4Of7cef0tJrAmCE9L8fMoQHHtOL4o8HleLNTFdb2aq2LNcMu+ixOJRCJxU8jv4TPA8rmP1Pt+1pfrdZ/73WfdlUTirsZNCwpVVb2slPKTkv6XpH1Jr9SRurol6QWllC/R0RfsZ12rLZPDg4MD7ezs6PLly/XRjyZeFgWGw2EtKMTK8xYZTO5otTdZMPmIpJvChC3nJimdTqcu5Cid1EwwKVtVLyEW7aMgwUgqCaT72u12ayFhNBo1akuYENuhYKLr53lMbJdiB8mV5yTmxvuHEfNo5Y+RZwsMdC3E/pik0W0QSR7fY3Te/W+LTGNfNubb/XT/WK+BNQ5ieoWvj/UH2Ef2O7oFKELQmdLmHvB9tupToKCgRdEk7qW2PlMIWFWPIrooYvtXEzP8XK+592jcT4bbWiVe+DvAr62qc8K18j0WK5gSw30U14nz2pYG0tb/dcWt/C5OnGDymR+uP/ukO0ZUSiQSZ4j8Hj4jvPR39Z7jp+oDn/B39bsf9QPqlqypkEjcCvzSpKuv/O3Pa3nnn7Ve/6BOeaiq6hslfWN4ea4jZfa64T/ap9Op7r//fl2+fFlVVdXugVJOTmgYj8eNGgWMQvKP/zZyTCLC1xlVtq3apyGQLMV6CiZ4Jmskjcx5j1H4SKYlNU4TsKBw7tw5jcdjjUajRm0JFqMjaXbuugmWx8C++B6PJZJdguSeBJ/uj5g2QYcIx0cCG/ZQo306QSjC+BlON4miRXwWo/M+SYFrzDF6/ejG8Hp6XVgDwmkTFg4s2HAc0VpPckyxyfPEfUHSy/WlaBHHSSGgjURHEWZVBJ57wOtBMYInL8RUDIpTcS+5vfgZdTt0HbSJHUwHOjw8qUdhF437QsHMr7MdihJeW/YpuhPa0mrWEbfquzhxhM3HP07LL32XXv+hP3nWXUkkEncI8nv4bLD5olfovV51Sb/6soE+arCjrc7grLvUwKsXU10+7F/7wmM8rX+gfule9ZrXL3f1loNR/fv7d6e6Z2N8031M3N2I+0mSvvH/fJre52+/6vS1K9p4sMdG3jJcuXJF999/f12E0aTaZIVFFXmsm0m2dJL379dsL/cxhUa0cM9mM21sbGgymWh3d1e7u7uaTCbq9XoajUYajUaqqqO8+Ol0qul0WlvppZPosmEBhCSJZLDNDcBI72Aw0Pnz53XPPfdoe3u77v/u7q52dnbqPvgeRth52oSkU3NF672k2oUQLfKcW7s1SOKji8DE3ekjbcKJRSKSe68ThQ8/mwSUgoHXj2SXTgILA9KJ3Z4k36CDJZ4kwFQEOwf4rMlkUpN9CkdsI6Y9ME0jjpXPbUux2d/fV7/fb4gtMSWB5JqpDf6JqSjsVxtxvprl3++xQCrXxv1magV/J9n3vqKjh31zSoK/D1hI0QLCYrFoCFleN4pqFiQIChesq3AnOBMStwdlc1Pf/Os/pQ/tX/8fgIlEIpE4Oxy86936d+/3wfqxl2zp+5/wG2fdnQa+/Ov+vkY//dvXff3nvubP9IXbraU2anzKd3+9Hve8l9S/v+WFH6jf+/Afvek+Ju5uxP0kSdv6kxtqYy0EhaqqGvUAhsNhTVQYBeX59iQmjpIbTAWQ1LD7S6oJYozKuzjiZDJRKaU+qtHuBEZe7VogYZVOIqmsmxAjyswFN8kxQfIYz507p+FwWFedPzg4aNRNsIjiZ21ubjYKU5J8RyeCiZbH4nlYLBYNAcK1IGLUt60WhUkrawmQUJMsmnRTrPDc0TFAUSLa0Ok2iVFoE0jW3WAU2/3xTyyS6XFwvQz3YbFYNEQBight0XmLLPyviWtMT6GDwOPug9x4nCbLHi+FnLb6CY7uU4TguOI6tYHCjvsbER05bpPHtcaih/y88Fk8NYLuCMPrY1GILgnWK/HnlE4S3h/nhAJI4u5Dp2RNtERiXfAlb/xLeu3rf/msu5FYd1SV3voVT9D7fP6X64//1u2vqbB7ONOnPPurtbl39dS4c//7tTpY8TdVG37sCz9RPzy4Oj174uv+VPto8/H/dF8fd+8XX/czHiz+7+/7Pv3l9TKCJG4A7/XzX6r3+eGTv3njfroZrIWgcHBwoOl0qvl8rlJKneYgqUE4JJ0iKZLqyKXbom09pjpEW7Xb29/fr4m6SXI8/pGuApOUGEH382JknuTUUVmSZ1qyTYJ5VKFdBTy2MtYAIPkhqaJ7wcQ35vm3HcfIuWIf25wHjIBznmOKBJ0A7gtz2RlFj7UKKOYwVYCI1na210aSPXbOhVMkePwg+xHTFthWJNu+hkIMr2ddDt/j/UZxItawcJ94H+81KCgwes8THLi3+Vnhc1hfwO2y/esl3nGvlVJq10oEPwt+TlvKDOthtKVkcA5Yw4GOkriP4okWiUQikXjo8dde86l62889XtrJWoaJa6N65av1no98mt5r/GWSpB/8uOffFPF96exAn/srX371iw6LPuBXf1+Hk8lVL7vhSjwv/V1dqxJE/Avl4A9eq40/uNEH3Ty++Ke+QgfnV/yd1Kn0O5/wnZmCsUb4e3/24fq5Vz6l/v3xP1+08eKX17/fir9410ZQ8BGRtvxHK7d0Qh6Wy+UpQcGEhDnyJjqxGKPbitFaV5R3OoNJ/cbGRt2mCZCt/WxLUoMokYBKJ1FsEvAoKpj48CSLSMBNfmM+uuE+mCj5Oh6/x6g8rfMkmFFQiGKOhRMKAHE+POdsg304PDxszHOMkLMWQyS9dC3E6HWb24GiRCTjMTUhrmcUE2KNCF/LfUchxc/kfvSe8n0W0iy8eC/6d+6HttQCPo9rElMB6BDgejFdJa5jXJO2Z60CXRdxj0UhIboC6C7g87mGdGi0rS3rYFCcsmhDZ0/cW3dKDYVEIpF4uOHnJgPtfu9j9egf/S298aw7k7hj0P2ll+tJv3T072/6lU/TV7/n/7zhNu5781/Wk571O9e87rQf9e7A+/zjl6x8r2xu6r7/9Rf1QcM/a7z+4f0/16M3t2531+56vHja0eXDZj2EF/33p+pJ3/Rbt/W5ayEo+I93pxhIahBdEh1Gv9vacU0Ek0zbpRnJZASY0UnXFej1evUPo6JMu3BeNyOu0YZvmKzQOeHnmFxbpHCtCAoWJp+u4eDCioPBoH4uRQenbvikDLoc7MKgXZ5kmYKB5yYSzxidZsFEp04w8h+JKIURFhyMkW6KEBF+LzpHSC79exuJ9ho5Eu0IPutwtLkSfL2PyvRe9XzEcURXC/c7BQM6VriWh4eHjbQN98mpKJ7XNuJL14f7ycKjnNdVLoNYc4JiSdu6GHRnGHTDUEzy9dJJOlKnc3ScI2uRRJGH6+EaCzzOlOk4XnM7kfxZpNDoOfSRsCkmJBKJxNnggcOp/uOH/1/aftdLz7oriTsYmx/3Rv0nve9N3PmWW96XuwXV/r5+7SlD/VqY92/9hY/Xbz7lhWfUq7sH3/L5n6/ym69qvPYE3V4xQVoTQUFqEjTpiOCZzA2Hw4YwYPJKYiudECYTBJM058UPBoNG6oRJN4WGjY2NmsT4OtYCYMSTJNY1DVjoj1FcFkukC4Mkjo4FR+v9fIsGdGCwjoTFgslkoul0qr29vbq4pUmVxQYKCm7HYL0EPocRbubrk0BXVaXpdNqIoDMiTNeC15Gk08/1uCgc+V4ST7/P9WhLgXAUOtaC8Hqx3gLdARZPvDd57CPFJO9Xp96QrEZ4Pph2QOGLe47383qDjgY6NFZF233cKIm9EU87aOtHr9dTv98/5c6ILgV/djnHbJOugrZTQbjmMS3He9f9isU3KSb4s0mRy595unxYVHJVOksikUgkHhp8zVuertc++0mq7v/Ds+5KIpG4RTj/9yp94oW/03jtDZ+6rT/8su96SPvxNW95ul775e//kD7zapj/6x396pOvP6XrQ5/3lXqP37qy8v2NP3jtmThn1kZQYOSzqqpGXQQXP4x53JFk+n5fG+sb0A5vcm7yyMJvvocpEiTErMTPfHASEY8jpjO4f4ygMtef+d6u4UCHAesnkKDbleAjJf1fWsbn8/mpGgrMvSeZj+Mn4aJ13WOjU6ItTYKujUhE2Z7np23d/Fp0PnAPsP0oYMTfI4GO7oU4Bs8JCytGd4SviXvTr9Nm7zZYxNPrzMh72/6LKR10U/A+6aTAoIk059v997xaDOBcS81jTT1HVwNTOzzOVYIPEetu+PkWBeIJGt53dJdQhOAaet4pknAP+B5+Dq+VzpFIJBKJW4dn/v5n6P6ff4ze4xW3P6KWSCQeOhy87vSBg0/ofYje5/w1alXcYmy9oaP3ePn6fL/s/PhH6n3+wvXPwfu/6F06ePUfrXz/rEpKr42gQItxp9NpWP6ZY0/SSicASQVTFRi1JZEluTs4ODpa0uSdEU0LASQhtK9LOkUiSfbb8tmZEx6JCwUF92lzc7OOzPp0hm632yCgFhSm02ktKHgMJsF+jZZ3Cgok+LEYYxRjSBYJzjnboj1d0qliie4L89wjSNhNaHl0JN93O9LpYomr9p3vNWHlfDBybpAoUxhhCgyJsfeaia10ckqHBSa6KbgvYuS8TfxqGyOj+34mhROuB50kbDMKdW3gHMY182eKYpXnnuvcNsceN9eF8+iUEKZ2cI/ws2knD9eWbpsofmTKQyKRSDx0+JGdR2jyo4/We/zA+vyxn0gkbh/Kb/1vve9d/nF/xPe+RI+4getvuMjnQ4S1ERRIJEyipSNy4LoC/gOf6Q60LMcodYxUMuoeo/3D4VD9fr+Oyppw27lAwWBzc1P9fr8mNSTETL+Qmm4Gk1/XS2CahAWEXq+nwWBQHxtJG/x0Oq2fxyMALSjs7e3VKQ9OPWAeudMiTFgZpXcfSK7oYHAfGDG3M8J9sfDidYkk28U0SUw9hyyc1xZFJxH1ukX3CAUBHi3KlBWpKWYwRYWpARSsPCamNzA9xXvV/XKKTZtDhukOdt4wtcX7ku4Wpr14vw8Gg7pPFL4slsVUEx6pyLF7HtvEhOgaibUYDg4O6ronPPrUYMoKRTkKVLFgpK9lKpFTHOJn298VMcWIAgQFHqbxxLXj2N1em8CRSCQSiVuPebXUjz7z6br41tXF3hKJRCKxnlgLQSHa3CkQVFVVE22TDtrMGeG3s8FExG2TaEhqkGrWLOAZ9ZHMzmaz2v0wGAzqInkmTT5pgpHaUooWi0Vdx8HPcZ4+iwSS4IzHY91zzz06d+6cNjY2arGAxMqk08UaXRthb29Pe3t7mk6nqqqq7qv74GsNkjGScJMpOjF8vcdsC710kjdPQSEKMZH4RRJJmzzTMtpqMtCh4LU1ifS+iekajLZTfIpkNKYUxLSLeGRo7Ge00cdjOr3XeDRoWxoEnTSOxDOFhbUa6AYhiY6fM84X14TRfc4xUzvajtekE4jpCb6+TWQwogPG/fbnkClJdMUwbYeOH/fDtSLYX4o6/Mx73iLczzanTCKRSCRuHb7xHU/W73zuk3Xwtj8+664kEolE4iawFoKC1IxU0gptAsUccwsQzOmWToijCR2JhnRScDDmuLcdV+h2HdlnvQMX6WNtAKZr+Fl+LiPO0Z5PbG5uajgcamtrS6PRqE51mE6nmkwmp06JODg40HQ6raO4TnWwYyHm37sApftJcs10A86ZQffFwcFB/RyDUfyYRrDqx+97vaKjgPUpfC3JcnRL+D6KU9FiT+GEqRVR+OA+8vt0AXCveNwxzSVG6Cl+URjwNdFtw8KTrLXgeyhIRRGDbcZ1XPU7iT1hccCnhvi++JnhnJPI85q2NBm/3vZM1suIooznld8Xcd/wcxjH3Za+EdNw0qGQSCQStw9/6Xc/U3v/7T107x/c5b7nRCKRuIOxFoICiZSJgS3atFszwkjLOa/1e3YMOIpP2zvJIXOmSXQpGvh+HxUZo+JSM5efNnOPhwSeUW9a07vdrra2tup0Bzst7DigddtkcjKZNBwKrpHQlptuVwbJYFsuuUECzH57Lp3C4Ah5W7qB54NpIVEgiLnvjLyTlLotuiCYouL14Np7relO8DjY5ioSznY8JxExmk8xITpQYnQ8zjdP9yD5tvuGKTDuV+xTfJ2CDZ8V3RRMIyE8Dq+t+xL3C/c0j4aMcxUFnvge5zuKShRtKBzxWgoPsZ5Fm5AQ++TXVokfiUQikbh5vP1gT/fd/1RJ0uynHqV7n59iQiKRSNzJWBtBwbZ8k9LFYqFut6vhcFgTKRMeHvNmezOt/ZJqAYJ29BgdJ5ijzpxwiwkmJbZYMzrsnHaSGRdJNIF0/2K+OlMf+v2+zp8/rwsXLqjb7WoymejKlSva2dnRZDJpVKnnvy0iOA2B1nnp5BQIj5GRboPuCenEOcDIOImyXRC9Xq9B/uhQoGuDQlEkdLSy+xrWeGAqhPvm97vdbuMYQc6rx05SbtCtElNomGoQawmwzxQ0PN90F7DmQiT9TnPweHiih9Qkua7Z0ev16vuZ7889TOEsPpOCF10k8b/uH8Uu6cRFxLQU9186EeH8GWa9Al7n1+gMOjw8PFVEtE0UW+UCoZPA/Y71KOIe97V0skQxJwWFuxOHVZ7ukUjcahxUR9+n//Hdz9BLP+To/xePUNZMSCQSiTsdayEoSFK/35d0EoF2LQUXZGQEmqTcJMpR/c3NzUaUfrlcam9v71S0l5FK5mhvbGzU7gCnCLgtWvF5nJ50dLSlX3eagu33rrvg8UknhNLtbG1t6eLFi7pw4YJGo5Hm87ne+ta36sqVK7UDw892+/P5vNEfj9fk1gSPRLPf79eF7OgQMIGM7gDns3usJml0QcTid0wXYf9WEV3a7KO1ve1kAaYeuM+LxaIm/fP5vFF4kc4Iz5GfQzGHBJcE1aTVwhZrK0TRgYKSx8oCmnRd8Bk+gpRCGMUzuy7cN54SYfLt/UpxI86r4bb5fpxjX+d2Yq0Dzx3TgJwaMZvN6nmPqSL+nA0Gg3rcFqni3G9ubjZSHjxXbiuKT37Ne5QCVnQhcW39fbAqZSNx96Da39c/febf1Lu/u6eXfMhPnXV3EomHDT7+736ZBq9/p7RYSnrLWXcnkUgkErcIayEo8I95/0Hf7/c1Go107ty5mkxH27NrBzi6SzeDdFK7wCSSJy2QWEqqBQDfH3OpIyky0bIrwhFW/yyXyzqyPBwO1e12T1nATco3NjbU7/e1vb1dOx0uX76sy5cv13nrJl50TVBk4Xg8TheoJBmjyyKSzBiV91x7fVh8jykjJMur5q7NKUDCxmh7FH78mp9NFwrdF5xXX2fiH0UJijBR4KDow7oSbVF1P5/t0KnheWOBSkbVozuCa8E5YMTc80rBgM4VSY1jRSnYRJdBm/vCz+UJCFyveF/bqR0UG6LzwfUj3EfuaQp9dF94rih+sV5CTN3gPmaKkUGXi8fr191PPydx92H/T9+kje/5cD35SV+pakP6zWf/W13cGJ11txKJOxK/PpO+4vlfqfd85Wu0f//9Z92dRCKRSNxirI2gYNHAJGUwGGg8Hms4HNakjITGRG4+n9dHPvLoR7/H4yF5bCMjl4eHh5rP543aAtLpwonRNs2CkE49sHPA0fV+v1+7AmINB1riB4NBfTTmfD7Xzs6Orly50nAbxDmgiMBIqyPG3W63Ue2ehJjWbrZH0uu+RrLGqDBt73ZkcP4oJHiuGRVnJX5G2ykmxPuizZ/EWTo5VjSSdAoZdGKQfLeJCX6dqSKcc5Nn38v95jnxfHGeKYJ4PTh3bfUFSII5x1GsIun2PHlt6F5gkc44T3QdxH1isE27RUjyuQZ+jQUpLT54H3jMbc4UjyvunehY4b72tfyv/01RJM73qnoLibsH4596mcaSSrenZ3/ip+qfPe7n9JTe4Ky7lUjcMfimd3yQ3rE4p9966xP1uH/9W2t7fnoikUgkHhzWRlBg5N/uhNFoVKdCRJu9f5ekCxcu6OLFixqPxzUhL6XUxy3u7e1puVyq1+vVdn+SahMvuxhcG4A57E7BMBHqdDq1Tb6UosuXL2tnZ6e2nbtw3WAwqNMd4vOko1SJfr+vCxcuaDwe6/DwULu7u/rzP/9zvetd76oFCUZZTQSd8uDXTYroxPC47JiIJwWQKJqgxZx0E3y6JOKpBhEk2NLpEzj8PJ9G4d95cgddKzFdgqkFkUxTxIj1H7x3XHfB62RibYcKo/Mkx4b7TneE+7lYLBq1H/x+PKWD7Xt+o1gVRQavcXQEuB90FlAc8o/3L8m/9zbfj0KARRCChRHt0Nnb26vFum63q16v13D48HQW38N+uC9ea7oVYq0OpkBxPilSURhgqhPn0ns17uO45om7E9VyoQf+0rv0rJ//O/q1D/kxddRRt2xc+8ZE4i7DsjrQoU7+n/WSL/wwVa98tR6pPzrDXiUSiUTidmMtBAXpJGpvK/T29rZGo5FKKbXtn3/wV9VRIbvxeKzt7W1tbW3VtQ82Nze1XC41mUz0wAMPaG9vT71eryaXjPa7XUbcl8tlXVhPUl2bgXn2zmmfTqd64IEH9MADD2ixWNTpCz7+0feQGBpMifBYneZw+fLlWgThuE2G9/b2NJ/PG+1VVaXBYFAX8PN4TJZIrEnoGcFlZJckVFKjjoN/mOIgSbPZrBZmYmFGFtL0s/k8F7uM9Q/a5s6IhNlgusOqvRb77va8xhRaogPj4OCgTrnh+ybebU4NqSmo0JLvPchrfK+JL8WjmF5hEcOv+b9+NkUCplxIaghsFjbYlt0+UdCIp524bgI/I3RwMNXCzhqSf4/Lgg7TMijEseaCx+b2o0OCdSiY6hMdFNcjiiXublz6vHfpMwefqmprpB/5nz+cKRCJRMDHPfsrtPWKN9a/V2/7wzPsTSKRSCQeKlxTUCilfJ+kT5H09qqqPvj4tUuSfkLSEyW9QdJnV1V1//F73yDpSyQdSPqaqqp+8Tqe0UhHcM0Bk19GMaWTQm2+djweazQaqdfr1S6G2WymyWRSkxxW0DeZHAwGDaLmaCerzTPSaqJFOzyjsnZAxIr90uljA90PpiFMJpP6dAiKKI6i8j26NSLJ9Gsxek8bvNM8PKeR7HkOeLIAI+G0wTP6y0gzo+U8GjISRI/R5Jpjiu6DOEYjRvKNtkJ+7E+sT8BnxBQF5tQz758CjfsdjxGNYk2sxUGxx64G1kjgnHA9WK/Ae4vHKfJ1FlekK8Bj5v7odDr154fHjZKox1oSdiZEVwjnhCTdc8Y1ZqpDG6GPhVE5j1x7/+5xUTTgPPK/dC6sIx6K7+LEahwc536XzU39X8/7R6rSpJBINPCY33md9t/29rPuxm1Ffg8nEonEaVyPQ+EHJP0HST+E154r6UVVVT2vlPLc49+fU0r5IEmfI+nJkh4j6VdKKU+qquqaqXMstDcYDGpSZBLL0wtMZphSwCMjHT12FDQek+goqqRTRzm6D9GKzog722EhPLsDHAUlISJxNFGW1LD4z2YzzefzmsyTGDoi62tIwtxXuyZM8FgnIBJGV+Mn8fc8sOAjHRIxN91985xHwuZ2Ofcm+O5jzF0nSXVfGWEn6eMPEcllW+S/rRAjfyw0taWAOBLOuggUE2LtAO4DEt74w774WooYMQ0ligncS3yW953UdC1QHGgTcuyG4WePbheuKQtcUiDic9gnCiyrCD7rTPA6FlxcVWshzjHnhD+c39iPuNfXAD+gh+C7OHF1VPv7uvc//tZZdyORWDvcJV8uP6D8Hk4kEokGrikoVFX166WUJ4aXP13SM4///YOSXizpOcev/3hVVXNJry+lvE7SM6SrHzTMaCdTE6qqqm3lkdBZSNje3q4LMZpEszCixYB+v1+TRJL14zE2/m0i43oLjtKTDDJCXVWVer2ezp07V1+7u7t7NMFIF6Ddmv1ynrnbiwX8HK22c4CCQoziUyBxykYsNGlhYjKZNFI5pKYLgXZx37vKAu5+uA5Ct9ut61+QXLOIpP/LyHpbFf+2KDpt+yTVrH/gNvzvSDzZr3j6h/cJ7fWuIeF220iw90fsA8Wf+PwolPB9zrn3gfcx3SWs7+FrKZxRNKNAQkEhphewoGkUxtg/pgl5/9NFQHdAm7hDF45rUFC04/VRpIiCwSpEkcOvRbGH+3Ld8FB8FycSiURiNfJ7OJFIJE7jZmsoPKqqqrdKUlVVby2l3Hv8+mMlvRTXvfn4teuCyaBJMXPSo6W72+1qMBjU6RGS6kKF0+m0LqzY6/VqC7kj/6WU+kQFSXVaA235js6baG5ubjaKOjpq7rQL10yQ1KhL4PYtmjDnu9vtNtwJsaYASY0dBXYw0EVAws2jKJlOYCLo+ZlMJo1ClaWURjpFVVX16RQ+BcFts0Bir9dbGUm2zd19OTg4qMUeCjH+8dwy7YKFGr0WbYUhV4kJkcBzLUxEY5oG0w1IllmXIUbYTcTdBwtiJNYk/JIaTpZYZ8DrTwGANSEsdPh5dCew2KXHSSeN+xvHxPoEboPzRrEhChB+FkUYigF0KMTUEe7htvvi55JzxDZ9D1/3Z5RCC4Ufz3MsUMrP7prjtnwXJxKJROK6kd/DiUTirsatLsrY9td3q2e4lPIsSc+SpPF4zNdP2aBZv8AEiHUKTJRo8/fpCNIJGXc9Bdr4TVhcT8GRWZPCmO5gkmOS0uv1ajFhc3OzJv3Rbm7RgwUa6SagBTtGjU3w7NQgyYxRftrC/TzOLQsJllIa7gTPnZ/f5k4ggbebxDn2JKp2drjeBdM1opuAggHTTeLzIjlmjQvujygiGLFGAuH2/D5JNkltJK6xj47S+7QQ1v5gu+yP967Xi+R7lcDEdaKQQuGAJzq4Hd7DdmM9CI6rbV59XyTndO5IJ44jChBtggmFCtY98DxQoGsj/GzL13o/sQ3Og+cxikJMe6GT6Q7DTX0XD5SFBhOJROIWIb+HE4nEXYGb/Wv5baWURx8rsY+W5Co8b5b0eFz3OElvaWugqqr7JN0nSffcc08lNa3PjNbyWD8TDpN8Rk7pQmCagosZmswy79qkgRXrTTpYKNLXkoyazPp4S9rjmWduhwMt6oz829FgxwJt+O6T2yWZomhBshoJrmE7uduxu8NReZJIWuijmGAC6zQSp1ZEAkriaPu815UnCrAK/yoBgGkBTPfgOGPU2iSWZJiiB38nMW47lSO231aDIY6BTgoex9gWCW9LySCJjs9y2g73WHRsUBSJRJpjZ0oF58Lj5vV8j6KGwTSJWD+D8+bPayzwycKncfzR/cJrVqVyRIGSogpf8/NjG6vWYI1wS7+Lt8ultR9wIpFIrBnyeziRSNzVuNlD1n9W0hcc//sLJP0MXv+cUkq/lPJekt5P0m9fq7EY5fS/Tead4sAfkl3pKM3AFnmLEJ3O0TGHu7u72t3d1Ww2a9i+pZMikLb3W2ygmOEoayR8JtXj8biOnLsPPhnC/STxMml1KsBisdB0Oq37ZkeDhQwXmfT7BsUKiiIkV3Q0WFSxfd4nY8Rccqd39Pv9U4KChY/BYNCYF89nJJGxkGRsP66v1IyyR8u6BaMoKHDcMRLP6DlrKlCoYa2AWLuhba9GgSLWBvBesFjEfUAHSST1MeLOfUqBgGPk2LmG3jt+L4pLTitxXQ7PA49d5GkNJP6M4jPaz7oiFIs8tigA2tEQT51oQxRHuFar0ix8j9vnmNiG2+H4uR5rjFv6XZxIJBKJG0Z+DycSibsa13Ns5I/pqNjMPaWUN0v6RknPk/SCUsqXSHqjpM+SpKqqXl1KeYGkP5C0L+mrquusZktCRBLjaLoJPvPoTQS2trYakU6nOuzs7Gg6nWpnZ0eTyaSud+DIOiPbfhYt7i6YuLm5ecp6z4KHpRTt7e1pb29PBwcHpwg30w5MsLrdbk3m7Bpwgclut6v9/X1tbGzUtRWczx6Po7Td36kFJrC23pOEzudzlVI0HA7V6/VqIcT3RcLvUyNYxd9zYiFgMpk0CCTTQZym4QKZdo64X7bdWxAhcTW5o5DjfsYCnd4/3Et0SLDehNfweL/WeyievjEYDBqFGvkMj5cRdpNTikosDOr+s96EQTeOf287NSHWG6DLgmKJ0Rb9Z30Ej9t9o3PDYhrn3kIUxROmBLg+hve319ljI2H3/FggYhqT58H9c/99f5w7/zc6Vih0+XfuaYpo0Wmx6rWzxEP1XZxIJBKJduT3cCKRSJzG9Zzy8Lkr3vrYFdd/s6RvvtGOmGSxij7tx9HWb8JtEmQSZwKxv7+vnZ0dvetd79Lu7m5dL8CEmCkTkmqCFcmSo+eMgLIgXiRckk65EkhsGK2lY8BHYNIVwAKGtrh7vHQEWLRgXQWDBGqxWDTSFVgA0c4Op0GwPoXJONNNJJ2qDxAj5iRu0on4wjmLefKeX5NsFmpk0UDOZXQN+N9XI4QxvcPCAdMxYoqFnxnt8ew3RY8YpacwE2sSxLlzv1g3gqCY0BbVX5XG4X46/cRzyfoGLETqeefRkfH5vp8pPVxjzk90AfAzEutWuH3vP84d94ufSZHK47dgZUcQvyt4Lx0hFoFiytBZ46H6Lk4kEolEO/J7OJFIJE5jLSqOmbS1RWhJ3P1jYh+j0Kxh4JMMfJqBhQQ7AOhQoPU5kjkTdkalYz46LfImYozMRlLCaKtJNcUEt8lofOxrrHXAOaAdnukAkk6RdBYOtOjCIpIUaTy2aBX3exY9+LxYi8CEMdY7oIAUxRK30xaF95jYh5hf35YaQXhMfr9tTikoeA+y7gTFE5JSihW8PqYBRIIe0zV4LcfcRnjjuClU0NkTo/sxvUJSQ8SJaRacS+69uK5RDOJ/4/jbRJbYB7fdlvYS14FtuX2OP75Ot8i6CQqJRCKRSCQSicS6YW0EBVquSTBtk2fFdhMXniJQVVWdCz6fz+t0B1uk+/2+BoOBBoNBI2IpnUTaKSiw2B1rE7g9ugJs3aZtW2qPIpNcmVj2ej2dO3euUTNhuVzW9nG7JaqqahwvyXoFzBP3PPIIxUhwSym18OKIrdMRmGNO14VBEik1CxQy8t5m7bdQQseJ11BSI2WD7ZIIs3J/tKy3iT1tqQB8fpuNf3Nzs2HPj0ITay4wss0+UQiLhJvEOYorTPvxtRQHfD1PniDRbhNdKGLZnRB/OI+eJ+6pVU4IEn73xc4CCwIUFng9P2fuZ+wL748CoOcviiZG26kZsdYCRTo6GlijJZFIJBKJRCKRSJzGWggKh4eHms1mdXqBo+jOp2aBOZMhpy90u936SEi/b9ItqY64W0xgXQMS8b29vdrWHR0MFiyYh7+xsdEovNfpdDQej2uSx7oBvp+uBFf+d6rDcDhUVVV1cby9vb1G9PXw8FCTyUSz2awWNYbDoSTVp1hMp1PNZrPaaWAnAmsE+HcLCb7eaRA+ecLzwmi15yCSLEbLPW8mbMyRj6kOFlNms1k9Ts6vyd7u7m6jvgUJM10TJK1ttQ+MGIlmKonHQXu+54gFKilw0F7veWJqjdebggJdFdzjfk06EWTiPqJ7ga4Lz7Xnj6dVUMSK6QJ+LaZ5cM9TpDHYjq9xG4eHh/WpKpybWPDR4yWB5zzSleJ76JTwvykU0E3iefD+4D6isMY5oKskBYVEIpFIJBKJRGI11kJQMIlgdNjk1wUAfRKCo7fO9TeRYjTVxfy63a6Wy2VNXE2wKRQsFgvt7e3VAgAdCTGySdJiQcG1HOwwsIvBpIYWbObWS2qQfhMdCxSxBgDz3k0m3Yf5fF6LCQcHB/Ucsviko8U84pG1GVxkkZHaKCYwRz6Cc8Yxdrvd+ncKASS7PKKSpNYk2KdzcGyG14vpBCyCWVVVw/nByLTbig4AigmuccEaBE4TIbn3nHIfk1zHKL8j4V6fWBsiphX4J6YceFwULFjPItZqYFtt4L412BYj+n42U5C4djHtYBVI5uOzOadtbgIiuht8vz9PcQ/6NaYJsTjo9fY/kUgkEolEIpG4W7E2goLTBRwhNMnt9XqSVBNi1xtw1NFpDow+klRJzUglLdYmjSaIbUX+aGWP+dqMBpu0WnSIOeEmfdIR2eGRkiTrLC7p93isoQks35vP57VzgXPH+gPuP4vkxfSOeK0Jlgkxo9SrXAr83cKQCZrnIYKpB/6d13NdLeC4z23HXpJIx/6a+PL0iEjmPd/xKENa+emyiCcHcI9EMYrzxjWJ9QEYrY9Rfv7ue1kHo00Io5sgpoVw7XxNrNfQNo+8nu1F4YRttAkibfexP7yu7fPI/1IoobixSiBg/7gH052QSCQSiUQikUhcG2shKEhqkOBut6vxeFzn9Nty7lSI0WjUiCI7sn810kvSymMpXXNhuVw2hAqpeVQeiQcrybNN5tybmLCaPusYmAjTPu/+MyJrsSPWbnAk3ekes9msdhs4hcLFJElo2woHsj3m85tkMZWAiNFgk3hGyCXVtn/f4/dY9NLzSBFAajopjIODg1ps6vV6DcHB/WlLc/Da8ChPOlsoRLBGAusCkNBaSOr3+411jOSaz4/7iOPkXLallvBaC2LeW3a/xFoX/PH6x5SROD4Sf4o7flZMN4giCR0HFCf4w+cwxWOVC4PpMpHsR7Ekijm8hve0pep43lJMSCQSiUQikUgkro21EBRKKXXRxNFopHPnzmk4HKrf72tzc1OLxaJhI5ekvb29+thFEhS/P51O66j/xsZGI73A5GIymWh3d1c7Ozs1saJAQOGhLbrpWgu2+Vt8sFhgkmdSYwJsdwILIkYSVVVVLXa4DUfCTbr29vbqVAce+7i1taXRaKTNzc1aLKFN34h1DViA0eOnpX3VEYYUITwvdD2wjgILCnpNPY9sy/30vSbq3gNu//DwsHZnsCaA91V0IXivMV3G95MgR2JNQm7xiTU5YsFFOgFWpRj4Hq8n93fbnMXfGbGnSMAx+9neA5wHiw8U4JjacDUxwffHAp5tn5OYMsH1iZ+xKCTw2XTXsK9tDg7OD/sRRQXvRYNr1daXRCKRSCQSiUQicYK1ERRYKJGF0SJZODw81Nvf/nbt7Ow0ot6DwaDhCjBZl1SnUvj+qqrqIoaO/JMUO3LOtAH3k9eSSDHCzTQG59/bOeBCfbbO82hIXyepLpzIyPuqXH8TIJNcj5fRd5NXjsciBIUYjpME0qkPLO5nR4SJJ6P/Xst4GoLv4YkTniO6Fkg8mZrBkyjcR64JCSEJbExFcH953Gjck4ymM5VmOBxqOBzW/YhpBd6TsS0WB6TQ5HXhvFPcIJFuSw1pOzGB62QRxMJFFCiia4IpNW4nfk5iGoTHRPHA8890I4uDfD26DtoECaNNsODe8j5pE+hWYZUbou1ZiUQikUgkEolE4gRrIShIahBxkw2TYhZdXC6X2tnZqU8GYOTT5NFFFqUmSWeU2VFpuwpIKljHgeTfhInRa0bPSdYsFNAWPxwO6/bsHGCKBNMtouXeLgj3T2qSJKdR0IURj8LkOE2OKeQQvoeCgaSGOMC+ECTirO8QI9yeP19rwcD9m8/njeM1PZcsHhmdASaB0X0RXQu8PwoKJO1s1/uSR4NG4k67P+eDaTIkzpF8c0/Tys+TDqLQ0ZZmQdEiOiSi1d9tMS3In702sh8/bxS2WGgyjo17j/1oS0doS0lou5av8Z62NvnM+PxVboQUFBKJRCKRSCQSidVYC0GB1udoZabbwOR0Mpk0LPgmm5LqIxfn83lNPmkNNwHyaQok1gaj5CbysShiJC4kJLaYS6qdCf5hKoPTEFbl+8d8chJnzp377hoQviYKCn7P7ViAaBMFjOgSIfn2HMX6D37G/v6+ptOp9vb26vf7/X7dtgmx++bjPX1vm8sjFr+0M8SkN/bNr1GUYP/a6gpEoh1rJtCZ4L0UrfiRwG5ubjbWIs5xm6jF2hUuRhlTB5hqw1oEdufE/cIxRrIfo/ptYgTvlVSLYjElhS4KCh3RZcM9Q6GHoh3XJLoYooNp1TVta0vEdYvtJhKJRCKRSCQSidNYG0GBKQ6HhyfFEq9cuVKnN/CYxtFo1CAAJv2TyaS+PhJok57JZKLpdCpJDTEhWu4l1YUPfaykjyjsdrsNcu0xkIjYns/TKkwAWUCSjoi2uWmLbhuOlrtOBIvsxQg1rfWllAa5jxF9v2ZwHiQ1+svoP90cFnd2d3fr9ej3+43oOQtxjkYjbW1t1QUmnZbSduIHSaz7R1JL8chCEOeGhTA95ngNo/OsfSGpUY+A/fA8rKoT4LmLgpGv83z62Yz+08pv0cr7qNfr1a4CHp3qNWVqA9c8pgdw33sdme5BAYJHnFKY45GZsb8xdYKiidfF8OeDc8m5pvDEvq9KnWC7Br8jvGdiO4lEIpFIJBKJRKIdayEokNhIql0IJrGLxaImKi7UaFLGdAgT0GgPZ769SY0FAJ/OEO3RFDB2d3fre9yWiTWt3STwMYJssK8mT91uV4PBoFHcz4SfpH02m52qt8DaA+6726WY4Ai9iT2vJ5mM9QpMHE1uWbTSbosoQHjeZrOZdnZ2NJ/PG7n9TldxAcvxeKzz589rPB6r3+9rZ2enLjZZSqkLdDKVgykhHkdMReF6UjChQ6VN3ImuDAsaTv2wuBTTAfhsr4mfG4ky+9rmEPBejfUR3H+/7+dER0oUR+je4Ocups/Q6WH3DOeG+4pFGP154p7kZ4lOC7czn88b8xzJPNuO9TSuhqsJAW2pD23PS4dCIpFIJBKJRCJxbayFoCA1CwGa6LloIclZp9NRt9tt5NebKJnImvz0+32NRiP1+/1TBMJugngkIcmUiaAJdSmljrCWUmqSGVMq3IZfk05b2N0Hk1WfOmACw6MNWb+ApD5W6WeNglVk323btu/3SdgYXSaxNdxPzjfnz9dEF4Hn023HNXJagMWExWJxSmzyHMS5jISc4+E6+B46DNg/umT8uoUErm2bmHCtyDf7QvLsZ/DZbJ8uB/c3pop4bugWYJtxnLzP/aQzI9YFifNKws3PJQUKChlcK64Lr/WcRIGGz46Cw4MB22V77HsKColEIpFIJBKJxGqsjaBAV4DTCkxEGKmvqqMTHRxVjrZ1SQ2iarIa89f9DBPjGOGnWMFIrMmg0wt8H48AtL3booNhIhvrK1jw4KkOFhQ8plgM0RZ4wwSec0k7ukEBw+3G6LTnkK9ReGA/6NCI+fdcD1rc3Y9Op1MfFep0hvl8Xh8JenBwcOr0A64NSSgJtOcgRr/5b7YTHQUUIOhq4LjZJotWGrGoIveG9zbFKPabgoX3akwRODw8OS2DJyVwXVYd6cj5isQ+ug+Y5sA2uKdiyg7H7T7TqRMFhLhHuQc5R23CFRFFw+sF+7qq7UQikUgkEolEInEaayEoxAgqI7O9Xk+j0ahBVligkac9SKpJ6qVLl7S1tVUfJ+mTBqSmOyHmdFsMaLO+0xrvnHX3iadQLJdLzefz2gXgOgpOddjZ2dFyudSlS5d07tw59Xo9LRYLvfvd7244LBiNZc69dBIBN5n03LF+ga3yJkwmfjxBIwotrGnAVAjPmSP7JrReFzomSL5d+4CEuKqOijNubW1pe3tbo9Go7s+VK1fqdBe3SYeAiw2SBLJQovsYBQST5EhgoyPE/WB0PIoYLI7I9fFccd9EQcpCj0Ujr7PdGTzq0+vrH6cgeB/weE27eXwP+0FXBz8rrD/gOfa1FGq8bhQEDO4Rz1UUWmJ6ShSe6Ehgu7FYKN0K8d5ViLUh/Pnl77EPFI0SiUQikUgkEonEaqyFoGB0u12dO3dOkhonMLh4oEnN3t5eTTpd6C+So+3tbY3HY3W73botEkyesBBPRmizeh8cHDSOomSeNfPxTU58VKQj8BsbG9rb26v73ul0aveEx7u7u1u7GjY3Nxv1Ifxv107wD0max2UC3Fbk0eM0yfN8OaIdbfIkwzH9I1rre71ew9bOApCeW7s7tra2dOHCBW1vb0s6qZtx+fLlBjFuW5e4Pi6W6LQSqXmKAwWTKCh4vil6tEXCPVamlMR0Cl7LiH50VMQov1NpVhVg9Pv8TFhk8HhifQQ+l2IAyTTTZzzPHAMFizaSzdQbCyLsB8Wc2DYJfUypiG4TrgnXPzoSYopEG+iM4Gvcp1EwSWEhkUgkEolEIpFox9oICibfriXgCLlJrgmVCy/6Ghc0dLpAKUdF/EajUX36AQmZSU9bIT7DdnSCZCkeRdlG2HwEotM1Dg8PtbOzo8lkosVioa2trTrtYrFY6PLly5rP542oPy3+kaiRrPm5bUIBSVZbrj2vo1DAVAeeHBAj576fEW7Pn4URPm9zc1PD4bAutOi1nc/n9fGgJOCMese++vdIruloYDucB+8V3u+59Xy2ReJjNN1tx3QaixurIvsUY7i/WFTRrpBIyNk/rhEJe9wv3Jt+XhxHWyoLnx2JdRxDFGrcj7a+x/nw60xzaFuD+Fpc2ygocJ7axJ9r9SmRSCQSiUQikUisRudaF5RSvq+U8vZSyu/jtW8tpfxhKeV3Syn/tZRyAe99QynldaWUPyqlfML1dmQwGNS2dUaNe71eIzrOUx9cJ8H3+Z7xeFynGThSzGg/o9aOsFp8kE6TCqYQ+B5GhlnAzv1w/3hSwu7urqbTaX3s5OHhYZ0Ccfny5ZoU+vkk8ySLkfwdz3uDwPk1jpEnRkRC6bZJalmQkSdqUIjhfDCFRFK9BkwNsKDgUy0OD0+OCPXaRht6JKQknPy33/OzIsFtI6xMq2iLeLNGBPdGFGv4ehScYn0F9oeReRJ3Oka47twf3H9ttRDaCke2zQ1fY7pCfN71jIGvtz1nlTDjf/NkjFXPanMgxPfi723ukDi2dRcTHqrv4kQikUi0I7+HE4lE4jSuKShI+gFJnxhe+2VJH1xV1VMkvVbSN0hSKeWDJH2OpCcf3/NdpZQNXQNOazDJdnTWRI+k1iRpNBrp3LlzOnfuXH1tr9fTYDCoxQnpqKbA3t5eHf2O1vFodzfslnCkmUf0WeSwW8InUVhEGI/H2traahx1ePny5cZRkb1eT9PpVJcvX9a73/1uXb58uX6GI+zT6bRuP4oEjEKb/Pl1ugt8j4WaaKv3uD3HrgHB1An+RHiNOB9OzeBRi55vp4DYuUHXiethsCaEx+e++ojEGE2P0X7vI9YgYD0GCgAsbkkS6nvodHFqRxuRppgUXQVtRDquJdvxM/x+G/mnAEQizkg873Ff28SoNpLeNgb+cO2jqBbnOT4nCjptok5cI4pTfj+m6lAw4lxFN08UpIirCRdnjB/Qbf4uTiQSicRV8QPK7+FEIpFo4JopD1VV/Xop5YnhtV/Cry+V9DeP//3pkn68qqq5pNeXUl4n6RmSXnK1Z5h8zOdzLZfLOieelnqTqlJKXWzRkWDXNjAJIGm2lX5vb69hA3f03M8wmbcrwvUAWOyOroOqOjqW0cTVUfeYz247/5UrV7RYLGqyeHBwoHe+8511GsRyuaxTJDY2NupofSSG8ThJCx5+rkmS54skl+4CX8dCgD5VwTAJ8xh8DZ0JVXVSqNH/tUBjkcECTq/X03A4rNd7sVg0ilXaxUFhhXuEke8oOMSUizYngcml9wZFiBhRJ6nc39/XfD5vuBkktc473Qpu10TY7g0/u83hQHdKgQvG9T64vl4PrzP3SrT3t82ZTxfxnFAwYu0Mo9vtNn6n8OHnMd2EqSvsFwUKnuLh53LuOK8sLklxYFWKBJ0avjYizntEbPMs8VB8FycSiURiNfJ7OJFIJE7jVtRQ+GJJP3H878fq6MvUePPxa9fE/v6+ZrNZXRfBkWGpWUjPBI3HNTL/nIRmNptpd3dXOzs7DTJtYcBtmLibMDp6blLlaL7FhOhaiOKECYyvmU6nmkwmdd997KWj8vv7+xoOh9re3q5J2yoxwaQoFuEzSCQZoW+LdvOoS5JO30/C7HmOUeiYFuFn+J75fF4LFRZqKIiwpoWvNUmkcBFrXPg67h8KSTGaTnIZBQO+77lg4U2eOEHXDFMKGCV3v9pEEAodUYBY5URoEzmiA8XXG/7MRAGGrgAKFrHoJX+iA8Rtrao94bVtS/XwNW17M9Zq8DM5D21FNjlXcS7XRQx4iHBLvosTiUQicdPI7+FEInHX4UEJCqWUfyppX9KP+KWWy1r/oi+lPEvSsyTp3LlzjeioSbpJvXRCGE16TB4cGY+55I567+7uajKZtNZMkE7qFEiqSa9PXiC59ntMHbDV3K6BGGnd2NjQdDrVzs5Oo+6Do/IWDTY3NzUejzUajerIfVt6QSR1nhuSOhJmz+UqkufjMWP+PiPbjF5Hot7pdOo0Ekb9vQ4+/YIkNtrR43GbJrAk5ba1R/cJRYYoKNSbDxH/NrIaay5YqIgFLL1nXCiRIlYk3Zwfr0U8hYTHVBpehyj+xJQDvhfFFq59G6H2XLaJOrwnOgDcV/Yl1nhwe2395jVtKQwUAjgH/qy73VVpJPGZq8SEq7kU7mTcqu/igUa3pX+JRCLxcEd+DycSibsVNy0olFK+QNKnSPrY6uQv8jdLejwue5ykt7TdX1XVfZLuk6R77723oqWbxfxcUHE2m51KbaADwLZ6E6Xd3d26CKKt5iZxtmk7Kr5YLOr6C+PxWP1+X7PZrCYlLPjomgg8xtFtxrz2WBtgOBzWKQUmmK754FoQdixEokibPMUTz4fnys9vK25HMmbC7/4wFz4+izZzpqPE95h24DVzCouFFz/b/Y7FKiPRt6Okjfi73xyfXQ6M6kdyy3oMThWgGMHaD+6ra2qUUuq+rnJD8MfPZH/5bO/X+Xyu/f39un++p20cJtms68A95WdSGPAzKWSwtkAbKfdnxvdYAGJ7PF3DfbBIFMUNg24P3kMxyPNHV0kb8Y8CGNEmHjwccSu/i7fLpTtfXUkkEomHGPk9nEgk7mbclKBQSvlESc+R9FeqqprgrZ+V9KOllG+T9BhJ7yfpt6/Vngm60wkcxTeBmUwmeuCBB2rCaXLG4oGLxaImxbu7u3UKBU9UoDBg8unaAKPRqEFcSRZ9jwmQn0uCxmi7+2OSKJ04HBhxHQwGde2FXq936iSJTqfTuJ81D/b39+v7NzY26hx7R62jc4JuAz/DfWorvicdRec9R6wjweg9SSxPg3B/XDfBooLJpHSUasKjNKOYQPLt+fUPo+aHh4e1cDOfz1udCLb4U4DwWtgdwRQCui4s+niMdsTEPnIveF/7J77Hvea5Z/2KNnIf+x5dFG2pERQi6LCxi4f1JuL6x0KWFuZiigKfw3ochD+bFt/cD39G6M6gmNUmFlAouJ60hnhNFBqu9711xK3+Lk4kEonEjSG/hxOJxN2OawoKpZQfk/RMSfeUUt4s6Rt1VMG2L+mXj/8Af2lVVV9eVdWrSykvkPQHOrJ9fVVVVe3J/kC0WBuO8t9///2aTqd1jQSTWxMFFn9zpJzRXIylURDQP7TUk7jSfm+7e1vtApMzkyIXMWRKgn9MULrdbuP4RLcjNY8+5DNosd/Y2NBwOKzFkhgtb0stsCPD8HhYK4IE0rUfTKBjVX+uE2sheA1MHll7wGMzYZ/NZo1ouxFTHdy200RowZ9MJnVRx1iQsdPp1EJVrA/A9Bi7A5zSwHEw/SZGzFkLgA4PRug9Doo2FBNIpLmvo5gQ3RZtnx9fx9QTfq7oook1DqIYEV0rrG8Rnxs/N7FN/5cnZrQdeRnHzz7xM7EqrYNpGTciBtwJboaH4rs4kUgkEquR38OJRCJxGtdzysPntrz8vVe5/pslffONdCJGlB05XiwW2tvb0wMPPKDpdFoTfKlJAGLue6wU73YdpWYhQUkNcmqCw3oNbUcgMoefEX0WKCSxj4TFxRlZHM/9XCVasD6C6zGQbJPAtj2XkWxGtykQ0MlgdwJt7p6DOPf8IYlmlJtiBR0kXoM2UhdFnhgld3qF552E08+MJxFQQKEIwv3BQozx/lgUsI2sex6iK2JVjYHoJohRc77PPRFTKygkRbGCIgqFlzbweUyN4Fi4XzyXURyI/aSrhEJgm6Bwtb7Fa1c5C+IcXW2svG8d8VB8FycSiURiNfJ7OJFIJE7jVpzy8KARiZBdCDs7O3r3u9+tK1euNCK+zMcnGTYpJcEiqTPBJQG3WGCC4+fbcSCpLshn8mLixMr+0lEePGs9mIi6n3ZWWBBgTYHoLmiDr+v3+xqPx400CR61yBz1GMmNFvIoVDClgiSd9QZ8n4UQkvIqWOvdl36/XwsgPIaSKRBtsIPANRlM9D0uu0zoGrCbxD+9Xk/SyYkg7LPJP2sBeMzdbrdOv5FOnBgGRRsKCZ4j1mrg+tlpQ4LtuY/Rdu6LVfB+8r8twDAto5STwpAk4UyViMUdo5PD7fPzynGz/1H8cB9Zs8Kf6bY1533xtVUCQnzm9eJOcCckEolEIpFIJBLriLUQFCQ1yHCn09He3p7uv/9+veMd79D9999f5+O7YCOP7et0OhqPxzVh2dzcbBTuc8FF5uJXVdU4dYDXk2AxKk8iSpeAj4Fk7YDRaNSwwdOqHwURErdoU7cFXzo5OcIiiFNCGOnnkZuej1g4UTqx3Me6AYz4O82BKRv7+/uNOgqGx8DihUwH8LN8XGZbUcU2uD90PsS0AwoepZT6pA6nOkiq2/A68VhO99PP87h9hKnJOE/miC4Q1g7w3mKfXBzU+yo6DmINBL/W9jnxfLfZ/qNgQMErFnmMIgZThfg5oTAXXQptghI/z3RIWCiMNTviuNwXOoJ4XVtKEPdh23y1oc3pkEgkEolEIpFIJK4fayMokPDOZjPt7OzogQce0P33318XQOx0OrWbYD6f19ePRqNaMCDxMRmyEMHXLDr42c6RJxljWxYKGL0eDofq9/s1UZrNZjXpp/vAhEtSw9XA9knK6IyQTqL0JGur8v+ZQx8dB0YkZRYz3H+TQAslJKtRSIjtxaMQ2ZfoAjGYRuE1jadh0FEQiaDb8LMsILENHyNqYYFElfUzLC7YZeH7fZIICTj77H3E/UUiH08w4PzbYUIRINYXiOIBXTh0l0RBIX4efA/Xh2hLP4iuBH4m2HYbIY99iNe2iSLxtShStPVzVcoCRRuOlQ4LrkuKColEIpFIJBKJxPVjbQQFEqfpdKq9vb36BADaz3u9Xm2Xl1QTSKYXxCg/CyrSjh7JTbR3x/+a0NrWb9JqMh5FA1rqDUZrWe+BtQgkNdIATEYtfDDtItYgiHZ0RpojyeTcW5igC2LVCRAk7xwX6yW43TivFDZ8TbyeDgj3nfPjVA73gUSc7gzm6vskh1WRdM5HPA7Rp1xQFOC+cN9j/5kSEJ0Bvp8pAzF9gg4Boq3PJMaRFHMftzlCSKwjgY/iQ3RPRFcDhY5I0K/HmdDWb14XxRG+d724msvhav1JJBKJRCKRSCQSTayNoMA/4Hd3d/Wud72rrp2wsbGhCxcuaDAYqJRSk3fmyDNP3TZ5njJA+zWfyXx2RusJ5n0zjcIihqPfJrsWGUxCWYfAQgILAPramHvPWg4UFSgAMNXB//YYecyihZBYZ8LX2a6/sbFRpy1IJ0UiY6Q6ElqmN0TS6efHNAuDQorXy+kiXFfPAZ9BZ4TXm+ktFgQ8vraClywU6DYZhff8tBFZpjy4b3TE2H1AwYBzEyPkBh04sb4I+0ixhWvEvRxJPvtAQaAtxYLEO5JtihDRSRERXR1um5/LNsGlTfy6mpiwyiXR9vuNChGJRCKRSCQSiUSiibIOkbhSyjsk7Ul65xl35Z7sQ/Yh+5B9CHjPqqoeeUbPfkhRStmR9Edn3I27fb9lH7IP2YfTuJu+h/Nv4uxD9iH7sK59aP0uXgtBQZJKKS+vqupp2YfsQ/Yh+7COfbgbsA7znH3IPmQfsg93O9ZhrrMP2YfsQ/bhenH1EvuJRCKRSCQSiUQikUgkEi1IQSGRSCQSiUQikUgkEonEDWOdBIX7zroDyj4Y2YcjZB+OkH24e7AO85x9OEL24QjZhyNkH+4urMNcZx+OkH04QvbhCNmHFqxNDYVEIpFIJBKJRCKRSCQSdw7WyaGQSCQSiUQikUgkEolE4g7BmQsKpZRPLKX8USnldaWU5z5Ez3x8KeVXSymvKaW8upTytcev/4tSyp+VUl51/PPJt7kfbyil/N7xs15+/NqlUsovl1L+z/F/L97G578/xvqqUsqVUsrfv93zUEr5vlLK20spv4/XVo67lPINx/vjj0opn3Ab+/CtpZQ/LKX8binlv5ZSLhy//sRSyhTz8d23sQ8r5/4hnIefwPPfUEp51fHrt2seVn0eH9I9cbcjv4vzu/j4tfwu1t33XZzfw+uB/B7O7+Hj1/J7WHff9/Bxu3fmd3FVVWf2I2lD0h9Lem9JPf3/27ub0LiqMIzj/5dWC2oVtCqhVZtKXXRls3Cj7UYRU7TxAyTiIqAggi5EChYC4raCbhVEsUi1IipmIxRc6MoPGo1GqjatiqExhbpQENTq6+K+CXem92Y6pOfcyczzgyF3Tm9zzn3nnCfhcGcCM8CODP0OASNxvBH4AdgBPAfsy3j9PwGb2tqeB/bH8X7gQMbX4lfghtR1AHYDI8Bsp+uO12UG2AAMx3xZl2gMdwLr4/hAaQxby+clrkNl7XPWoe3fXwCeTVyHuvWYdU4M8kNZrCzudN3K4uX2vsxi5XDzD+WwcrjTdSuHl9v7Mofj+67JLG76DoVbgDl3P+nufwOHgbHUnbr7grtPx/EfwDFgc+p+z9MYcDCODwL3Zur3duCEu/+cuiN3/wT4ra257rrHgMPu/pe7/wjMUcybCz4Gdz/i7mfj6afAltX20+0YVpCtDkvMzIAHgbdW20+HMdStx6xzYsApi8+lLFYWV+nLLFYO9wTl8LmUw8rhKn2ZwzGGNZnFTW8obAZ+KT2fJ3OImdlWYCfwWTQ9Gbf3vJby1qrgwBEzO2pmj0Xbte6+AMWkAq5JPIYl47Qukpx1gPrrbmqOPAJ8WHo+bGZfmtnHZrYrcd9VtW+iDruARXc/XmpLWoe29dhrc6KfNV5TZfEyZXErZXHmLFYON6bxmiqHlymHWymH9TvxipreULCKtmx/dsLMLgPeBZ5y99+Bl4AbgZuBBYpbW1K61d1HgFHgCTPbnbi/SmZ2MbAXeCeactdhJdnniJlNAmeBQ9G0AFzv7juBp4E3zezyRN3X1b6JtfIQrT9Qk9ahYj3WnlrRpj9XszrKYmVxJ8riGFbFuX2TxcrhRimHlcOdKIdjWBXn9k0Ow9rL4qY3FOaB60rPtwCncnRsZhdRvFCH3P09AHdfdPd/3f0/4BUS3zLi7qfi62ng/ehv0cyGYoxDwOmUYwijwLS7L8Z4stYh1F131jliZhPA3cDD7sWbk+I2ojNxfJTi/Uk3peh/hdrnrsN64H7g7dLYktWhaj3SI3NiQCiLURaHnlh3yuJCzixWDjdOOYxyOPTEulMOF/Q7cWdNbyh8AWw3s+HYERwHplJ3Gu+DeRU45u4vltqHSqfdB8y2/98LOIZLzWzj0jHFh5/MUlz/RJw2AXyQagwlLbtuOetQUnfdU8C4mW0ws2FgO/B5igGY2V3AM8Bed/+z1H61ma2L420xhpOJxlBX+2x1CHcA37n7fGlsSepQtx7pgTkxQJTFKItD4+tOWdwiSxYrh3uCchjlcGh83SmHW+h34k4886dAtj+APRSfYHkCmMzU520Ut4N8DXwVjz3AG8A30T4FDCUcwzaKT+WcAb5dunbgKuAj4Hh8vTJxLS4BzgBXlNqS1oEiqBeAfyh21h5d6bqByZgf3wOjCccwR/E+pKU58XKc+0C8RjPANHBPwjHU1j5XHaL9deDxtnNT1aFuPWadE4P+UBYri5XFg5vFyuHeeCiHlcPK4cHN4fi+azKLLQYiIiIiIiIiInLemn7Lg4iIiIiIiIisQdpQEBEREREREZGuaUNBRERERERERLqmDQURERERERER6Zo2FERERERERESka9pQEBEREREREZGuaUNBRERERERERLqmDQURERERERER6dr/KSXiCFcAzIUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 0 407041\n", + " Min thresh = 1000\n", + " Sliding\n", + "\n", + "\n", + " FP ROI = 019s_iimage_10705997566592_CLEAN_ClassS_27-155.roi.nii.gz\n", + "019s_iimage_10705997566592_CLEAN_ClassS_27-155.roi.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADYCAYAAABberBAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADh90lEQVR4nOz9ebxt6V3Wiz7vnGs2Y8y51l61qyp9MPQKIqiIwPFgrigiqFG8cCI2AeEEm2t3rgp4j905R8Ur94gePyjBJlHxQFQ0YHMQOEYFQiOC0gZigBCSVJKq2nvNvh33j7W+73rGu+euXVV7V/baVb/n81mfWmvOMd/xdmPWfp7f8/u9qWkaBQKBQCAQCAQCgUAgEAg8E3TudwcCgUAgEAgEAoFAIBAIPHgIQSEQCAQCgUAgEAgEAoHAM0YICoFAIBAIBAKBQCAQCASeMUJQCAQCgUAgEAgEAoFAIPCMEYJCIBAIBAKBQCAQCAQCgWeMEBQCgUAgEAgEAoFAIBAIPGOEoBD4kCOl9GMppVff734EAoFA4BIppZ9NKf36p3ltk1L6qGd5n2f92UAgEAgEAlcLISgEPuRomubjm6Z56/3ux1MhpfTSlNK3pJTec/GP31fd7z4FAoHA8x0ppS9IKX1PSmmeUnrr/e5PIBAIXEXca2H2Tu3Fv4sDT4UQFAKBw9hL+r8k/Y773ZFAIBB4AeEJSV8j6avucz8CgUAgcIn4d3HgtghBIfAhh9tqU0p/PqX0T1JK/yilNEkp/UhK6WNSSl+ZUnp/SunnU0qfZZ/94pTST1xc+86U0pcVbf+plNJ7LxTUL3XFNaU0SCl9dUrpXSmlx1JKfzulVB3qY9M0jzVN87WSfuA5nIpAIBC4kkgpfUpK6W0ppRsX36l/M6XULy77nIvv4Q+mlP5qSqljn/99F9/VT6aUvi2l9Iuezn2bpvmOpmneLOk993I8gUAgcNWQUvolKaW3XnzP/lhK6bfae29NKX2p/f1FKaXvuvj9P1y8/F9SStOU0v+QUnp1SundKaU/ffGd/LMppd/1bNsr+xr/Lg48FUJQCFwF/BZJ/1DSQ5J+SNK36XxvvlzS/yLp6+za90v6zZJOJH2xpL+WUvoVkpRS+mxJ/5OkXy/poyT92uI+f0XSx0j6pIv3Xy7pzz4XAwoEAoEHHDtJf1zSI5I+TdJnSvqDxTW/XdInS/oVkl4j6fdJUkrpt0n605I+T9Kjkv6jpP/zQ9HpQCAQeBCQUupJ+lZJ/1bSiyT9YUnfkFL62Dt9tmmaz7j49RObphk3TfNNF3+/ROff2S+X9DpJb7jL9gKBp4UQFAJXAf+xaZpva5pmK+mf6PwfoF/VNM1G0jdKelVK6VSSmqb5V03T/LfmHP9e51/E//1FO18g6e83TfNjTdPMJf0FbpBSSpL+R0l/vGmaJ5qmmUj6S5Je+yEaYyAQCDwwaJrmB5um+d6mabZN0/yszoXdW0Tai+/Td+k8TeF3Xrz+ZZL+ctM0P3Hxvf6XJH3S03UpBAKBwAsAnypprPN/766bpvm/Jf1LXX6PPlv8maZpVhf/Rv5XOv+3cSDwnCIEhcBVwGP2+0LSB5um2dnf0vmXrlJKvyml9L0ppSdSSjckfY7O1VhJepmkn7e2/PdHJdWSfvDCWnZD57lgj97LgQQCgcDzARepZ/8ypfS+lNKZzkWBR4rL/Dv253T+HSxJv0jSX7fv2ickJZ1HzQKBQCBw8W/Wpmn29trP6e6+J59smmZWtPey210cCNwrhKAQeGCQUhpI+meSvlrSi5umOZX0r3X+D1VJeq+kV9hHXmm/f1Dn4sTHN01zevFzrWma8XPf80AgEHjg8Lck/aSkj26a5kTnKQypuMa/Yz9Ml3UPfl7Sl9l37WnTNFXTNN/znPc6EAgEHgy8R9IrvfaMzr9Hf+Hi95nOA2HgJU+jzYdSSqOiPb6Xn017gcDTQggKgQcJfUkDSR+QtE0p/SZJn2Xvv1nSF18Uuall9REuFOCv13nNhRdJUkrp5Sml33i7m6WUhhf3k6TBxd+BQCDwQsCxpDNJ05TSL5b0Bw5c8ydTSg+llF4p6Y9KIu/2b0v6ypTSx0tSSulaSunzn85NU0rdi+/aI0mdlNLwItc4EAgEnk/4Pp2T/D+VUuqllF6t85pi33jx/g9L+ryUUn1RXPxLis8/JukjDrT7F1JK/ZTSf6/zmmP/5C7by4h/FwduhxAUAg8MLuoe/BGdCwdPSvpCSd9i7/8bSX9D0r+T9A5Jb7t4a3Xx3y+/eP17Lyy83yHpqYrVLCRNL37/SV2mXwQCgcDzHX9C59+xE52LsYeKdL1F0g/q/B+q/0rS35Wkpmn+uc6L4H7jxXftj0r6TU/zvr9H59+1f0vn9XEWF/cPBAKB5w2apllL+q06/278oKSvlfR7m6b5yYtL/pqktc6J/pskfUPRxJ+X9KaL1DLqJLxP5/8+fs/F9b//LtsrEf8uDhxEaprmfvchEHhOkFL6JTr/h+zgojBYIBAIBAKBQCDwvMKFw+EfNU3zijtcGgjcc4RDIfC8Qkrpt19YvR7SeYTsW0NMCAQCgUAgEAgEAoF7jxAUAs83fJnOayz8N52fo34o7zcQCAQCgUAgEAgEAneJ50xQSCl9dkrp7Smld6SUvuK5uk8g4Gia5rMvTm+43jTNb2+a5r33u0+BwP1CfA8HAoHA/Ud8FweeazRN89ZIdwjcLzwnNRRSSl1JPyXpN0h6t6QfkPQ7m6b58Xt+s0AgEAjcgvgeDgQCgfuP+C4OBALPdzxXDoVPkfSOpmneeVHF9BslveY5ulcgEAgEbkV8DwcCgcD9R3wXBwKB5zWOnqN2Xy7p5+3vd0v61bftxNFRMxwO1emc6xv7/V673S6/3+l0lFLKfzdNo/1+n6/b7/dKKanT6eQ2uM4dGN7Odtuu08dneb9pGu12OzVNc/D+kpRSar3u8GsO9YX++rV+fUpJTdPke3g79Lfb7bbma7PZ5Ha73a663e4tY/Y2/f787Pf71j3KcZeOFj5T/s1rZRuH2irXzOf2dvf3/zIWv5b7+3jLOfZxlzi0tof2wKHXvW8+nkPjdLDfDrVb9ov9ATqdTms8jNvvd2hO/T7eru9/f4955r++3r4PDs2Rf4b3eXZ93/rclW16u7dzVx1a63Kct2vP70m/NpvNB5umefTgza42ntH3sCR1x6Pmw16V9P7VsbrvWD3VpYFAIPAhw1IzrZvV4X9wXX08o+/i+B4OBAJXFRM9efDfxM+VoHDoS7/1r/+U0uslvV6Ser2ePuETPkGDwUC9Xk/L5VLT6VTr9Vr7/V7D4VDD4VBHR0fqdrva7Xb5mhs3buiJJ55Qp9PRYDDQcDjUaDRSp9PRdrvNP5LU7/fV7/c1HA518+ZNLZfLLFwcHR2pqioNBgP1+301TaPZbKbNZqOmadTv93V0dD5d2+1Wu90uE6Rut9sibJCi1WqVCVOv19Nms8kk7ejoSOPx+HxiLshbSimP0UnP0dGREFyWy6X2+706nY4eeugh9ft9bbdbzWYzPfbYY1osFrntl7zkJRqNRur1eup0OlosFlqtVllYqOtao9FITdNou91qvV5rPp9rsVhovV7r6OhIg8EgjxvRgjEwzuVyqdVqpc1m0/p7vV7nuev1erkdb2+5XObXjo6OtN/v83p1u131+30NBgNJyu8x/wgpnU4nf77f76vb7Wqz2Wi9Xmu73Wq/36uua3U6nUwW6QP9dWLr9z86Omq91ul01Ov1WmSbezOm/X6f9y7XlWtbku2UUp53+l4KQ4hb3W5Xw+Ew7x3G1O12td/v8+fZiy420F6329V2u8394bVer5f7d3Z2psVikZ+R4XCY98NgMMjP2Waz0XK51GQy0Wq1ytdfkPHcv8FgoOPj4yze7Xa7/IzQ/+PjY/X7/bxW2+1Wy+WytSa73a71w95ADDs6Osr3YP0Yoz+fPn+IPbvdTrPZrLXHH3vssZ/Tg4k7fg9L7e/iYe+aXv7R/x99xI2NOv/th57r/gUCgcDTwvc133m/u3A3eEb/Jo7v4UAgcFXxHc0/Pfhv4udKUHi3pFfa36+Q9B6/oGmaN0h6gySNRqMGUg0R4KeMmPPTNI02m42Gw6F6vZ622602m406nY6qqsqkhDYgd5CoqqrUNE0mQJAXJ72DwSATJu4PIYHUSrrFTSEp35+2IZMXY29FZcvoLuST92jTxwPRol2ElOVyqc1mo/l8ruVymecnpaSqqpRSyuR/vV5nsg8RTym1Is4+dlu7TMQg08ytE2/mbrvdtiLQ/vt+v89r4NFz7s9c+GecjDOX9If1hUw6wXYHC/OKaOCCgqRMhHe7Xd4TZZ9Y99IpICmvtY/HhSOu83v2er3cDqKPu2/KdhC+fA/6uGmD/pTRfhc2/POs0WAwaPXDCXyn09F6vVZd13l/sQe836yXrwOfYbyIPuwF5oJ57/f7B+eZv7mXj8P3sjsj6Ge5lwGiSum0eUBxx+9hqf1dfJKuN9Vbvv9D07tAIBB4YeAZ/Zs4vocDgcCDhudKUPgBSR+dUvpwSb8g6bWSvvCpPlCScidQEA5JmSxK5xHT1Wqluq41nU5zZHiz2aiu60x2iaq7OFFVlaRzUjWbzTJJgxRDtJ0QllFORAWPkpYWd3dKePS3HKuPkXE6CSyj0NvtVovFQoPBIDsz6rrOUeXZbKazszONRqM8FvrOmBaLhZqm0Wg0Ul3XGgwGrXvO5/McaWcuS1s4UXOi9vP5/BYXAHO72WwyWWPsVVXlOfT3mUuEIsgnbo9DKSCSWqIQYsFyudRyucx/d7vdLKYgHCF68DknlJB0xJH9fp/b8vE53OLvUXXadRcK77sIgbuiTEPh99VqlZ0nkGtfp06no/l8nu+JYOTgvp4ewTXMC/seJwHzgbsE1w8C2nK5bD0DrBXPwGKx0HA4bDkn/FlCUPDnDXfOZrPJ79M+4ok7RnAVlXuEzwCfW3cI9Xq9W753HlA84+/hQCAQCNxzxHdxIBB4XuM5ERSaptmmlP5fkr5NUlfS32ua5sdud32321Vd15n0OyF1or9erzMRgfz2ej2t12ut1+tss79586a63a7G47H6/b5OTk50dnbWimaPx+NMxLvdbrbe+72cnK3X61tIB0IAxMwj+71eL/cRR4BbyiG+EDGILySaew8Ggxxp9cj4fr/XfD7P7Y3HY52enqppGj3++ON68skn9eSTT2o8Huf+QipdsMGqvl6vdXp6mtMLmPvpdNqKdB9yfUBCSVlBVGCd1ut1nlsXB7jPcDjMBBpiCNlbLpeZnHvKC+siqUXyiWZ7+56igIMipaTlctlyabA3EHN4fz6fazgc5n5st9tM6HFPPMWzkNeHvrLXmEvECRc1Tk5O8n6mNgZ7DrI7m82yG4c5pN3xeJzFMuYHx43UdmjwjPlzh+DBHnWCzfpst1vN53NJ5wLdaDTS9evXNZvNshjl/d7tdjklZ7/f6+TkRFVVabVa5XEh/jBu0ioQf0ijYE96nRDSHTwFp67r7Erwuh7MAWPn2aZNv9eDimf6PRwIBAKBe4/4Lg4EAs93PFcOBTVN868l/euncy326s1mk8mCvyepRbYkZXI8HA51enqaiRMR7fl8nokG5J7IJdcdHR1lIUO6jIq6MACZ8XxwFwMgR9QmgJyQbiBdknPcAXzOI9gQOyfvXM9nPGe/3+9rsVjkqC0CxHA41Hg8zsR1MplkMYFrIHgQe8SY+Xyu4+Pj7BKoqio7PyCRHhWHwPpaMS7EA8i6W8sRIoC7D0oC5/UdJOU5ZX08tcT3hgse7qzwqLWvNX8jjrDujNNz+CVlAiopiz4uhBB9J+qeUmpZ/Z0U4yDwGg60wdwwFq5hHxKx53nY7XbZVUJ9DZ4f9q2nEnkqiws67sBgz/EZfzboA+NDyPC183HwjC8WC/X7fY1Go3wfxCbmEsGC+imsCXPGNYgKzKGnIzE/nhLhaR3sSU/rYC7ZNw8ynsn3cCAQCASeG8R3cSAQeD7jORMUngkgok6o3eZdkjhIAlHEqqpUVVWOakLwiSAjKEiX0WzIFfUUPP/biaZHcSGI9NMLFnqOOe0TvXdiBvmBOPHjogNjA25r9xQMSClRfMQA0h9Wq5WWy2UuxjgcDls5/ES2pXNRYblcZpdBr9fTaDTS2dlZSyzx3H8v9ucuAiefkNYy1YMxuP3fi/WVNSbKCLoLD06QnYxzD++rz3nZD3du+Bq4wFW6IrgvqSK07WNF5ELcqOs6z7fXl/D6HUT3ed2dGy48SJeWfhcLfH/yN3PmqQ++nsyFiwRek8FrVfADoee5Q+TjefIaBl4zAdGP/ULaA33hXtRFYY5973k9BH+uypoOPMOlaMfYXQjycZb7IRAIBAKBQCAQCLRxJQQFAPmGnJT1CKTLSKsXXOv3+xqPx5mkEQUlb57ChJAEJ/8QcFISvOicwwm/F3ck+g/pIZoOOTlEmKTLqLwXEIR0lYXlXGSAVHukGws96RuMZzababVaabFYaLFYaDQatQje0dGRTk5Oct8Xi4V6vZ7qus7R4+Pj41ZtifV6nQmbR+GZL7fIO1E/RLRdoPFaA77uHjl2lwC/lznukFgn16ynk3HW04mxj4E9ho2+FBXKvpXk010v9Ik1Q7SR1KrvwT5pmkbz+bwlqOGU8Foa7GH6du3atXxPd2dIl4KRp3Q4cT7Unqf8+JhLUYH3lstlTjPi+fR6BmXNidlspl6vp6qqWmkmgDZwiPhpGt4fhBJSjLyYKukPvMfrLjTRJ8aFgEbKUSAQCAQCgUAgEDiMKyEoeGTfjyUsXQpOMG7evNmy+ROV32w2Ojs7ywSJnGyKNOJw8Iivk3C3znuU1XO4eW+xWGTydXx8nD/XNE2uuQBR9QitW8ohNJA6j+yXEVnPF9/tdhoMBpmckd4wHo9z7YLRaKT5fK7NZpPfq+u6VXjy+Pg4H+d38+ZNnZ2dabPZaDwe69q1a3r00Udb9Qw8JYC+ObEEvO7uBd4vCS2k04UFxsg6YeWfTqdZ8IDoQ0JZG2o4ML/D4TCP+VA6iZNo4GkUCD6etuHC1HK5bKWCEKn3NAUEHumcqJ+enqrTOT/Kcz6f531CocrVaqWzs7P8eaz+iGVlWgXk3OfFSfh4PG49X+zF8nQNFwt2u11OSaBwpZNx5sKPCEWgg/ivVqtM0Bk7ogjPkHR5qgN995QPvhuolVKmYnD//X6fazmwXyS15gxHjhdpPVQHw+cgEAgEAoFAIBAIHMaVEBSapmnlOjsJJRefgntEv3EiuPUbccHPtt/v97kQHGTLyTqAOLgbwI+jxJHgpwSQBgABGo1G+fPT6TSPDXILiNYSSfXaA2WRuNL9APnzonleZ4ICd7gnmMPVaqXpdJor5lPMcj6f55QR7k2OO2R8PB7nNnid+XQi5sURub8LRO5S8EJ7XjgQUu3RegQgUkjKaHW/379FhPL0lXKv+RpTB8DrQXhtC/YG+6lMl2C+qJnh9TF8zfwYSupTsKfd1UL7dV1ruVxqPp/n/Yyg5EdnusCE2EI0nn6zT1hjT39wscodIzw7iCW+X71GAeOUlOt1SMoiHzUVlstlqz6DP98Ic8yf10co19BFIX+WWAOeQ1KZut2uptNpnn++S/xZQ6QoC1biLgkEAoFAIBAIBAKHcaUEhUOkxh0BEFHcBEQ+yReHrPR6vdbxci5KYDt3QGL9mDhec8LkOf1O6uhzv9/PpM2jst6mE966rlskkTYRLPiMW8W9LfrkBM1TAEpiu1gstF6vWydHMO+ctLFerzPB4wSEfr+vuq5VVZUWi0WrBsUh0Cc/DpB1YD48JaQ8JQOxALGENfZUFdIMPOLthQJLgcLnxQnpoTa8roOTWX4v6zMwv14g0IURHwefn0wm+QQDov/0zWsXuKjCunlajPcRcuzpBWUNA07BcJHHhRh3yEjKzgPpsvikp19wre8xd4ZQn4SUGh+frwXPEPvG94M7c7zGRgn2M8KiF2lE1EGELGt2lKJX+bwFAoFAIBAIBAKBW3FlBIUy8uhWY7e/Q8AowOjRXQhC6T7ALu2nHLh44GQcIg+R5n0i/xAbPgsJgVxCujg2zwv3QaKwyR8fH98iKHgKAWTOo+X0w9uDAJUkCwKJm4L0D9wFHGnJuK5du5ZTN4goQ5KrqtJ4PNbZ2VmeI7fpS+20DfpcEjY+R3/9yESP6EOmcVK4c2Oz2eT3/fQL9gypAV6A0tfKCTP99or+kFh/jzUBvE+bRP3dGeKkHpKMM+Ds7CyT7n6/r81m09ovknKqBiIP4/WTNHwevWZBVVXq9Xqt9vxYTRcKSlGhdGQwX8PhMLsfJGVxyesPzGazvA9xKdAWIpuvCfcoU2dwHeAsYM8yn94/b8Nrp3DCCK6cTqeT3TClS4Ixu3jB+gYCgUAgEAgEAoHDuBKCgqQsDnj0l3/gE+El+uz1Csir91MdIKQQYj/akffIs4aUeRQZ8QHyNhgMsu3ciaKLHpA5SPz169dzUcRDZ9lT8wB7u4sEFJbjOMfdbqe6rrOjgdMbEEbKaLwXF/RTHFarlSaTSR4bNScWi4V2u52Gw6FGo1E+kvKJJ57QYrHIhOz09FQ3btzIuezMhd+XcTj59qKOXluAaDEiDyIKp1ZQT+DatWuaTqeaz+eaTqet4oQITKydR5kh6SVJdNcGef/utvCChogDvkc9j99rEbDOFF5EtJF0Sw2CyWSSRSwKGdI2ef2sHw4FTwvy9BH2jR/P6W4JxuSpMFzjIpyLZC7O4EiZTqcaj8e5KKf3VzoXim7evJn3Z7fb1enpaXZibDYb3bx5s1W3wR0BnpIgKZ8WAdn3IpMOd5M0TZNrajRNo7qus2jDekwmkzx2L5iKm8YLOAYCgUAgEAgEAoHb40oICmXU2POWIRHUEuB9TiMgd7yMSvtRjx5lhNRVVdWKIA8Gg/x5SDY544PBIL9fEhFPxZAuI9ZE9b0Og5M7+u1HV3r9CCKrEDZIZumQgPg5yXcCzbxBWIngUohxPB7n4wuffPJJPfroo/n64XCYq+TT5vHxcS4wSFV/t/JDwN2pAOF3yznr7i4FyD2iAmvJXDC/5N0zj6enp62Cfl7rwoUGB30ra1W48OB70av9s9c8NYE1gXh7uoMkVVUl6Tyqv1wucxFF9japOJBqxAP2FuIPwpgLHVxHHxHjELhKcsw64S7gNXcq0I4/i6w7Ysnp6WkW8xBTqLuAGMjakQrEcZF+hOUhZ5ELMYhquC9IZeC58DoQ3lcKjJ6cnLRObEBoQhChLZ6n5XKZxcTbpfUEAoFAIBAIBAKBKyIoOOHlb6ldINEJGgXcIPnk9jsZcpLvUXtJLeeCOwMGg0HOQyciDCGiRkOZ5y/dasF2C/ohQJ5Xq5Vms1kmeDgpvE4D/XPrN1Z4qvUT2S+L7XmqBCkV0rn44IQW5wfHSxJ1h9xD3BEH+BwiBhFrCGiZw++Wfy846TUR6CMFFmnLHQa8B2FFQKHPrMmhCLuTT1DWEOC9Q9F6Fxs8xYWaFy4oOVFl3tnfrBuiCO0eHx/n6xFAPCUBV4GPy58RX3OvGeHtePoN4/T3fM9QUNNFBfrmKQ3sWU9JQcyYzWa5OCn7pqqqVkFTBENEmTIdgv0tqTUvXHeoJgPPi9d0QBTkdxcvfS7dLXG7Wg2BQCAQCAQCgUDgHFdCUKAg4HK5zCRRuixmSMQZC7p0mdve6/U0Go0ygYDYuL29jNC6JdyJF8dHUm/AjxqEzPpJBl7Mj3s56Swt02Veuud713Wdx1rm6kNQOeoRSz3We8SR5XLZuqeLCfSJMS2XSy0Wi3zMJHUiptNpPioQMgwRZc4Gg4GWy2UWRSCDzCt/UzzQrfVebM9TH1w0ciEDwYL3fR0QF46OjvL8EYX2HHiO8OT1suaEC1FerI+95O+zHuV6lgIKtnuPdHtqB84PyCx2fNryNJkyAs89DqUNuHjmRTAZjwssiDx+TVn7gXl24YRnwgUc5sqLZy4WC52dneVxIM7hOEB4oN84VEqXiAsWLqp4HQTmx9cUcZC6DgglZd2Ncu3dARQIBAKBQCAQCARujyshKHQ6HY1GI0mXJMaJORZrj2RCqCDXo9GoZb12oitdkj4vfEgaQqfT0Xw+z8R1PB5rPp9n4l3Xta5duyZJ+bhK3AEQ8fV6reFw2MrH9wr2HjWm35D7xWKhmzdvtmpDSMr584gPTz75pKRz+/zx8XEmdrS7XC6z3Z4j+0qyRVR6vz8/TpO0DIjizZs3s+tjNBrl8XoRS1wSy+VSZ2dnrZQBrz/R7/dz7QAvxuduBs+n53NOSrfbbSagHu2HDG+3W83n89a8sU+8sKJHthGNgO851ou6FtQ7QEDBrYA4A9mlT4gq7J39fp9rUHg9EPYoKQAc6ckYqQFSClYu3LD+CC1c4zZ9T2lwEYfnp3QD+d+e0sPz4s8TzhBEJhd6+Dk7O8uvn56eqtfraTwe6+joSJPJ5Ja2/RmV2oUkfc/QBxdTJOVnkjmczWY5hYn5IGWClBdqdvjY3I0UCAQCgUAgEAgEDuNKCAoUb4MAzufzllUewoqoAJkr7f28L7WPJvTCfWWkV1Im0150EVFhv99rPp/r5OQkR78hc9y73+9nd4WLINJlBBSXASBajQNgPp+37NsQNhdQSFPAIj8ej1sOi/F4LEm5BoGfVFESSF6bz+e5CB3OAPLiy6MZcUmwZhB31qHf7+ccf0gfdS7K0wN87Z28cT93MpA776KCE2VcCPv9XlVV5Xx91qaqqnzCgLsogJPg/X6fT11wi3x5TCnr7EUAqcvBsaX028UE+kqUnCj62dmZttttXgtPS3C3BHvOUyBYG8QNT8lx54DPt6+Fp8M4iWZP+B6m3oi7G9ijrD/7HPGCehCsD21XVZXXtzxysqyJgQhAcVT2PHuFcblbBAeNf1ewvvSbwo/MXSmshKAQCAQCgUAgEAjcHldCUJAuq+AT7YcAeAqDF1aDGEpqiQRE5Ck26MfBQVbAoVMl+JtoueffE4VvmiZHPKVLqzTtYWv3ivqMxyPjZXTYT41wcuTXQbrIXyfX3eswQPxK4uxjoD0/ncAr3pOOUUa+vY9+5GNZdJI2IeX0jbx81syJLAKGr6NH1X2uXBzxugJ+kkJpg/e+eTFFj3pLyoTfiyZCPJ2YutWftA3fO6RaMI9lKgviEH2CiHsaAcJFr9fLhSj5vI/LST9iBOlBLtowJ+4m8P1YFq90R4/vKwQX36sumjCP3BdhgefC2+f5RgBAkCtThny/HXIQ+PPr6Rtc4yeL+HXeptdeKWtuBAKBQCAQCAQCgTaujKBAFNIJr6QWkZEuCzR6Xj8RfV4/Ojo/FpKI5iFy7p93IuLOCCcjtOvpAUTe6T8kjer6nrcNWfRIM2TdCQ7kC3JNhJb+LxaLTLioddDr9XItAY/s+hGHiAEe2aemAffGMeGpGIwNUuprQ5+YQ4788wJ9pJ54P33Mno5QFiJ0i78XTnSiXf7tdnsntwBxxyPhTiBZQ+aNvH+cF8xPWQuiPFGBvYNIRg2CUlRwh4WnFNAfJ+rsbye+3ndJLeGlFFT4vIsKPgYECD7PZ3yevfaBCyKetgKcpHu6AmMpxaGUUus58fZc6PN++LPL84MAgsjGvkdwOjQvPo5wJwQCgUAgEAgEAk8PV0JQgKB49NIt2ZA50haGw2EmA5BDTh2QLk+NIEo8mUxyex6VhpwRbXXrO3nvkAuiraRDbLdb3bhxIxNyBARJmXhC0DxijWCwWCyyg8CFFC8GKbWP1YMMIVo8+uijqus6W8dns1muQeDzAdwp4YTOj76EGFJjQbqs5g+5hTCT6kH0vYwW73Y73bhxQ9euXcvkEELo9/H+OMl0IuvXeKoLpN8JqPeHeXRiS5qBp9K4uER6A305Pj7WYDBQXdctkcDJPUdiIiT4sZ+z2SzvCcbj9TuYB/rl8yMpn2qC64YTSEgDKOsmlPUOSrFMujw9gT3p6SaIHL4WXuCTSH9Z1JO9zt+4M9iHPA+sCeIHzw/vuQOB2iqA+fX0DkfpevHCoHyOk0Pos4tY5b4MBAKBQCAQCAQCt8eVEBTKKvqcPe857x7tH41GGg6HkpQj+FK7aj8Ey23fwCPrkBpIBoRpOp223BKr1UqLxSKfBPHQQw9pv7+s1k8/ICecuIDlv9Pp5Jx6zxsHHg0/OjrSdDptRdeZHwjXarXKczAYDHR8fHyLc8Nt4R7dd7HCo/pOviVl4QMyjA0dMkp/EUFo3+eagncuRPjJAmXFfQiyR5Uh4Ag91DTw8Tn59qMmEY+8LcQXcu+Hw6GGw2GrTgKEvNvt5mg8hQfn83kWbhA4cGN4ag57cLfbaTab3ZKGgcjFyQNOtN35wf7wlB9Sg0jLOPQMIBb4XJTPm4sNy+UyF4b0WiS065F/2vFiiohdtMt8uVCCUMdaeVFO7sNe5JkqizRyHb97eoi7cG4HT6MqHTB8d9DHbrer2Wz2lO0FAoFAIBAIBAIvVFwJQQFAtpz8QAZXq1UuSrhYLDLxgYwRuXTSBBEZjUbZSeDXuD3fjzYkiu7pENPpNBOtuq41Go1a9mzy5b3vHknt9/v5aEMIT3nSAKTI87rdDo5lHgI0mUwyqRoMBvmHGgCIGvTLLfduP3c7u6cdMO/M1W63axW08xoDfsKBR7uJZvt6uPByaA+UEXr6wjpB1r2+gosY7nQp2/Fr/EhBrwfgUXtSEVh79pund3iBxPV6nfcCIgBHJZYFLb1YJXPp889cICC5OEYfPMrPf33Mvq+8WOGh4xJ9rVyk8DXgem+n3PeA59NrMDCO8jnxtXLha7FY5P3FvvU54nOHxDd+L9s9tPfKtJvb7ZtAIBAIBAKBQCBwiWctKKSUXinpH0h6iaS9pDc0TfPXU0rXJX2TpFdJ+llJX9A0zZNPs81biIkTNYj9fD5v5fRDfjyX2gs5em4473G/Q6SBqLm7JCCpCAOj0Uh1XbfEAUiokzFeGwwGOTWBfnMUoUeJGb8LJB7V9igsZItrILtE22kTYUJqF94rizbSN597SLDXDSiP5ivH4OB+rAevuWW9tOYznrKGAv2BYOL68HniXp4G4G35ejth9ZMuWAfWzkkwc+xrhzjAD+4T1gyxwPP+S5cCbZWCAvPpdRhI6XEHjz83JVlnDn0+Pf3B58QFirIGhbfF6y7olI4BSS2XRun8KEl+SeSZe0m3bZ+/PU3Bx1Pu6RIu0D2oosJz8V0cCAQCgaeP+B4OBAIvZNyNQ2Er6f/dNM1/TikdS/rBlNK3S/oiSd/ZNM1XpZS+QtJXSPryp2rIySD/iIdAYKPebre5oN9kMskkG6I0HA5zdNkj/34Pt3o7iQOIAeXxhxzD6E6Buq41HA4zwfSothNN6dItQRT86OhIs9ksf8b74FFsiDuRbh8L1v7JZJLHdHJyotFolInXYrHQdDrNkWw/dhPiCJE+RLzK3HvuWVXVLakkLtqwBh69L90LTkjdYu5pD17Y0E8xWK/XOTUE272TTObQUwzK0y6c/E+nUw2Hw3yyA9fQhqe69Ho9nZyc5BNEPPpPH6gbgADBZ0l1Wa/XGo1GrUKEpC/4GrsoxRGmiBP8sLbM2aFaCKytixy0y73KNCD6X7oUWEM/mcFPucDpwHohqHAayXK5vMUFwX7E9eFjYS19zKUg4q6mUhSgH/SJ+7LGhxwPTyVAXFHcs+/iQCAQCDwrxPdwIBB4weJZCwpN07xX0nsvfp+klH5C0sslvUbSqy8ue5Okt+oOX578g57Ia5kz7Zbn3W6nxx9/POdoS+cE1s+np81DpFa6tLtDpAaDQSaGgPQE2t/v95pOp7lP3W5XL3rRi/JpC9evX9eTTz6Z6wnQHmPZbreZXOIqIEKOU6C0pPM3hNSLJx4dHeV7LZfL3HZd1+r3+zo9Pc1RYUicdEkeO51OFkqoFeFzzFw5oYRoIgLwA5FLKeXCgbTt5BDBh2vLSv+IA+5UgCxyugIFCbkvYo4fnYm7hP7jLpDaRzIiVG2321zjoK5r9Xq9Vi2ApmlyzQVqOIxGoxxxp132FveHSJeOAupuDAaDXBSSIyFLYYD9whjZK6T8eEpDSaB9rKypC1ju1EF08Ta9FoU7FnjfUx14piicSjusC4KFF8z0lJuyBgT/Zcz+7JYuDndVuKjgtRhc7LudE8o/B1yIuqq4l9/FgUAgEHjmiO/hQCDwQsY9+ddySulVkn65pO+T9OKLL1Y1TfPelNKL7vR5CIsTF48qe+QWIjiZTDK5ctt42Z4TDK8fUJIJJ7FEMSFuEEfcEpPJJJPF0Wikfr+vqqpyTYX5fK7NZqOqqlpOCsgMn0MEKfPrpVtPXpAuj5l0ckSEmii6z19d1zo+PpYkzWazW+pEIGpAzN3izX892u/RXXeBOBkj5YJxcJylt0uaQunOoG/l3uBzEFdcChBRot/sDZwN9I15pQ1P2SBtAvGDdfc6D5BfgMDDus3n8/w6AgQCAPvEHQWeyuCOHH8NYsu8MUavRQB8L5fpCyVJZk+xr/weLh6UqQAOdxQx575eLlr5Gri45+1zfeki8mendB+wf1yAcfGIe5YpHuW8sqfKsTJfpUPjquNuv4sDgUAgcHeI7+FAIPBCw10LCimlsaR/JumPNU1z9nRzjlNKr5f0ekkajUat/G+i7U62vF2i7hBYt2G70+BQX5xoODwSCeGglsJ+v8/pFiklrVarXBBxu91qPB7naPN6vc5HNnqaAXCxA9cB0V3IsNvPnfy5Hd8JUpnnD6Hv9/v5iEus9owNMo8N3sm916OgH9zHyTr9k9q1ExA+Suu8CxZY653IMW7a8/oKTtaJPHM9BSNLYYm5cnHG6xrQH8/v56SDcs94lNxPXFiv15rP57eIPxB/Psc64m5xUo145qkbTqAZp6cTlHv2EOkviTvzUNYiKGt/uHjj1/hzVaZNICp4X/067s8eRszy9koXEc9LuZ7eJ8bDa55q5Pf3z3vdh6e6xoXGBwH34rt4qPoOVwcCgUDgdojv4UAg8ELEXQkKKaWezr84v6Fpmm++ePmxlNJLL5TYl0p6/6HPNk3zBklvkKRHH320kS6j4F50D9LqUW7s+l60DUAUIBgQOK+d4NFn2nYrNoQDccOPmIP837x5Mx8zuNvtcu0CcuWJUFOjANLrOe4c9djpdPTEE09kyzg2eArxuWW8JHJE2NfrtRaLRStPvNfrqaqq1pGQnv9OG54D77Ur/JQGyK7UdlFA7Mt+QbgXiwV7pVX8ENt/eWyg106gfcbDXOFQYC3dXQGR97nCMUA0u6qqlgsGcQO3ga+RR6ipdbDf73V6eprndz6f5/QTL9yIEMX+8v1UHutZCmOepuPjXK1WOc3iENl1Qu7jL39YPxd1mF8EPebN6yGUz5o/t6Q4uCvD9z3iCPu57H9J7t1ZcYj08z7zg8BXuj7cAYGAxBz4WEtXy6Hvl6uKe/VdfJKuP3AFJAKBQOAqIL6HA4HACxV3c8pDkvR3Jf1E0zT/u731LZJeJ+mrLv77lju15RHZ1Wqlqqp0fHyc/0EPGYSkSJdEGqJcWtsv+tiK7JcRY4eTPWoA0CfILPdPKWkymWg2m+mJJ57QfD7Xi1/84nzqA2QU1wB599I5CVutVq00Bn6fTCaZZEN03DbuRybSZ78GgrhYLNQ0Ta6nUFVVFgWosg88Cg2xpv9eLFFSriMwGAzyfHhRO6LOPl/j8TjXJ9jv9xoOh5nsdbvdLIJACimOiI19Nptlqz/uC0maTqdarVY53cDt8Z5OwR5AHIEgcx/SWlwwIX0E0uspC/SJiH5KKddTYO0QEBAIptNpduEgYiBOsF9KJwv7zus8IL5AnN3t4iQZlK6O0q3gBToRAxg3a+yCC3vHHTQlgScFx4UFdyD49YciN6Wg4OkhrHPpMjrk2HFnT3mfsoYEa+zPp/fhquNefhcHAoFA4JkjvocDgcALGXfjUPjvJP0eST+SUvrhi9f+tM6/NN+cUvoSSe+S9Pl3aggyI11GJSF5y+VSi8WiRQogjx7FdgJcFmekvbLYmtv1nZw1zWVtAtqQLgv8QeggkfP5XE888UQmURAxiiFS+NCt5k4AiZq75R2SB9GEiDpJ8ih2SilH171QI4X0OGWinEd3LNAeaRBE2uu61n6/z+Qf0WE4HLaIMfPoUWHvA3PmbgNEI/pBigSiQlVVLTs890XI8FoFLgp5xNkj4t1uN4tF0vkpFy720HdEDEnZWcFnEJ3oI24QBC4ECS9ySCFJqV0PgjGXJ3l4ygdRfvaOE2cnzMwTY/X3ERcYU5lG5A4DxsS8cJ2fEsE9XPDiNfYvPy56+fV85k4CwyGRwUUKd1n4SSL+PHt7Dk+TYtwINKzBA4B79l0cCAQCgWeF+B4OBAIvWNzNKQ/fJel2yWGf+Uza2u12ms1mLScB0eq6rlt2fS9c58KCdFmfwKONTsz8mEFJrQgtpEtSq8r/oftRI4Bo93K51Gw2ax0tyPWkRRD9dSLtlnPs8wgZkEYvTAmZc3Lt9yIyDPn0iDL9vhNB8hxz6fKUDSL6nEpBX4j8e50CryVAtB7RAXIHcYMA0m/GgKhAn120gKw7ieeeftSiE0kXFRBBuN6dL8wB+6dcCwhqmVpBnxC4VqtV6zjDsoil95OUFU+x8FNLuOch23+ZilBa+518+7r4fPia039ffx+vOz/K54/r/aSJQyJB2X//bAkXX5gvFzJ4lg6ldZTpTWW7fn//DmB8D4qgcC+/iwOBQCDwzBHfw4FA4IWMK3Em2maz0ZNPPqmqqnINgsFgoOFwqOvXr2uz2eTouKRWOoCTWshG6SJw0n6ofkJpo4YkOqHgOiK3VPn3o+k8lQGis9/vNZ/PVVVVvr8fbehOBE6FoEAjhQIZa6/Xy8Ruu92qrusc2cZKToqA286d8CKqABddIK1+DxdQqF1AVN3dE2UevqdKlAKMH4c5Go1ahLU83hLnAUQV8YCCmfTJ6wqQmuCkltcZx2KxyKkhJycn2W1AH32uvQAo/SnbRzihT366BWkeXtjRRS+cKaxneSrIoXFJaq2Zuw88FcALMbqgwPy7qEN/WIfNZtNKxfDjOUlZQbigv6ULx+foELlnPC5UHELpyKDvCBql4MK1pchQFjotHU3uvDhUoyIQCAQCgUAgEAhc4koICk3T6Mknn9RyucwnJkAaR6ORHnnkEX3wgx9sFYgjcu1pCx5xrOs6R+3Pzs603W5zJJqIOYSZ4oEeGSdXn8gyxBUiOBwOdXp6Kkk5Su4knM9A2BaLhQaDwS0RXj7rhBXSRLqEdH4SxnA4zKR3MploMpnkYysHg0EuDDmfz7O44Tb75XLZstGXJM4jumXaxGAwUFVVquta0+k0n24wHo9vIbsQaa8nAUhpQFg4Ojpq1RfAieDz7rUrWAcIJEIAhJG6FS4U+TGh3A9XAM6Sa9euZRLJ3LEWk8lEy+UyR/C5Z+nG8IKWXI9Axmdc4HLCutlsNJ1Oc70NTpBwlwLjok6Gv89zhCBE+x6tpx2IOMKWr5eLOuwbPjMYDFqpK4zXT+bwtBx3utA/+lCmLDAniDKH4EIKe8dTIg7VVvDP+VwzB2Wh0+VyqaqqWsJIIBAIBAKBQCAQOIwrIShIytH6zWajk5MTScpOBYo0zudzLRaLW1IfpEtrttujITwnJyeZREAkypQGyL10WRAPouQRXr93r9fLKRnUL6AtJ3+QpuVy2bJ1ex0FhJJyTO5yqOtax8fH2WVw48aNHD3nPUg2BRQ9V7607LsI4KkhXivA+zQcDlVVVU4ZQJRxYuzpJRDG28HdH0TnKYjJ+54q4PDTLHxdmGu3/lNrgfXEDYLIMp/PcyS+jHpzfZl24zU8XKA5OjpSVVVZJDok7NAfJ9aIJRQEpB84ALinHzvpKRnc2/ePE2t3AXjajYsLnm7jp2LgyvDnjFQNfza8f7TvLiF3dzDGUtBC/PH0GJ8PLyDp+7tMfQD87g4arsOZcahwJPP9VCkbgUAgEAgEAoHACx1XRlDwCL8fOUeu/HA4zKSgzMeX2sXbvPgfVfw9h5wotH+2JFRei6GMfLqgQATao7ZuyYd0Uz3eiZG3XUZzJbXIH2kGEKC6rrOrgp9Op5MdA03TZJGDeRwMBprP562TGWif38m7d+cHffFCjZ7qgTDB9R6JhnzyeU8v8fH7nNEOP+4wOARIrF/v7hXaQ/zwOUFcWi6XGg6HrUKKrHlJ1HkPUi9d1uMoCfp+f3lSiddbKNMxJLXW3wsiuuvA52q1WuWxHkqR8DlxB095vKJfX9aIKEUD//FaC6yDP2PseRfVfB0POTUQpPxvfx58HPzu61OKcofg7SBKeLHJ8p6BQCAQCAQCgUDgMK6MoCBdCgGLxSKTOwQG7P5Y+r2mQgks4QgKfjSj2/OxpTtZog9+NGIpXngthzI9AULKqQCIF0R9IXNlmxC4Q0dCQnjW63V2OdR1rc1mo8lkkt0Pi8VCJycnmTB5znu/39d4PM7pH5C78uQHF0ZcUPFUCSL2iBxOTCHKHql2kuruEM+/57qy/kUptPj8OMmmr4ecCu5gYA1oazAYaLlcarlc5vtzUgSihLsgGIfn5XMfX09qMOAimM1mrToaRNmd8LvbgHX3CDvzRj+9yCZz5SkK3gd3fXjfJd2yz8qxce9DqR4uaDCvkHD66LVCPBWD1/zEFRfv3KnA30dHR3neXGBxlAIgcOeGt+2OFq/HUoobgUAgEAgEAoFAoI0rJShI54SHY/eceEKUXBwg8nvIQo07AHIP0UecGA6Hms1mWVTo9Xo6Pj7OufUlIcMS7yQLssnRivQVVwWvb7dbTafTloDhZNxJN+QJMcVrBUjKYzo6OtLp6amOjo5y25PJRHVdq9/v6/T0VE3TtI7c7Pf7Ojk50WQyycUbmRfm2J0PZ2dn+V4IOqPRqJX2UaYkQJT9nn6iAW4Qt7rznq+jpyBQZwJhAfLL/Xlfujza0/cF+4G1PERecRJI5/U3KLqJG8b3VUlMneDSJjU4SA0hNYX6CMwB7hLGR593u51Go9EtYgzkvtfraTQaqdfrablctk6F8LGyD6nJwL28Hgl7oDxFhHVhzj29pdvt5mNDcavwzLKfqVXi9+Szfh+/hwsTLlSB0tGBSORpHOXauuvG15/x8Zx5Co7XdwgEAoFAIBAIBAKHcWUEBUgERNCrzXMEn3RZOBCC2+l0srW/JB+QdlINICxOkLvdrhaLRcv27zUMIDUIE07wXAxAWHC7NNFoqW2Xd9KD9bx0JpTHInr0lKMbH3744XwyxNHRkdbrtRaLhaRzUjQej9XtdlupHLg2qFdA3Qj66kcH7vd7TafTfI9er6fBYJDbg4i5pR3S6I4Qxu2kDmGh3+/nMULK/bOkupREkHvgJvA1d3LJ3Lm44EUHuQ9rSmqCC1Cr1eqWqHfZHz/BgfuxbxCHuGa73eY59Tl3gu373vvPPNI2xF1STk/wOfQ9xX8pqImg5eNyRwd7lDZwJPj17G8XyHjG2MMIc6RoIBocckMAr4niLg36x+/Mm6c0+dg9pcLb92vd0eKOl0h3CAQCgUAgEAgEnhpXRlBwEomgwD/yvViiW9o9p/9Q8T4nZ07YSWkgikxxPn6HTLi4AGmH4EHe/D0Iv9QuOFiSLkg3fYScljZ02uM9iCPuC05h8OKQXuzPybYTNq8f4Mc4+lghWqQDIKY4SYQoO7xWgdciKOsm4NTwFADmyAvt3c7m7u+z/l6X4BB8fsv6Ae4w8BMoJLXcEZBXBINDBNzv4/vIRQ3vpzsuXAxw8cAj6J4CQHteCLFME/B++P6lvoe3UTpmvBYFbdG+99vX1Y/wRIhi77toUjoFSrh44D8+52XqgouA3s9y75R7yAUbT5WJlIdAIBAIBAKBQOD2uDKCgnQZ7Swj30SOpXPS4rUKKORH1NwBGfAq8xAH0h6w5Ht1fY/oOjGEiBNld/JPoULpklS7xR9SRZseHeYz9NnvBRAUuPdqtdJkMtF4PM6nFszn81b0fTgctmoLeIG9wWCQHSBEyLmW+1MX4uzsTJJaYgK1Bzw331MUpHZdg5LI+/w48XVCz2tew4D5dts8aTCkDzj5dqLu7pDSOeK/uxjEGszn85ZQUAobLtiw/tzDiyPyOS+KyP7xCL/PlUfS/d5OeBFWuK50YTAePidJk8kkz5mkVt0PhDfuBzFnHcqCiL7OnprCXkKA8joU/jw4fHyIaF7XoBQ+GDM/nrLgziUfh6952Yaf8uDjCwQCgUAgEAgEAm1cmX8tu4BA5JwoKqkE/GMfOzhF9SBSTiSly3x6yD7kCcJz7do1DYdDHR8fa7fb6caNG7lGAeJDGQUmt5/aBdynLCyHW8Bz2I+Pj1sFFr0QH0XvuJcTI44TnM1mOj4+zkR9MplkQjYcDjUajTSZTHKtBkk5Zx9SixODtBFEA+7vIgAEcLVaaT6fazgc6uTkJF9DpN0t+8PhUNPpNK+R39uj4S6MDIfDPC+kbEAqET4gjwgYuCVwMEDIt9utZrNZ68g/1gbRAcHK18xFDXe09Pv9XDeCVBNEDCe+FOh0S7+jzP0n0k4fGI/vX997HnFnfdzNwOu0Rw0Iri1TEUglYa0o3ulz4ika/gzQH9adcfBsgs1mk0+rYL+VR126mODj5VlmjXkmSB0pHQT+7HlqT1lrw2tNuNjHPdlDpQAVCAQCgUAgEAgEbsWVEhSkdg43pHyz2dxy4oATHY9+lgTLI6s4Gdx6XVWVRqNRToGAQCMSlNHu4XCoqqoyaUWgQDjAQcGpAU42O51OJljXrl3TZDJpRawBRIffGQdkBxEFEs377p4o7+9HTfrxnFVVablcar/faz6f50KAHvWHPHL6Bu6No6Mj1XWdhRWi5KRfLJfL/Lc7E+gX6+wpICmlvD601+v1WkX9PKJOegpjZ704BQQ3hp86URLt0true8xrdrBncGY0TdMqMOl1F3DF8ONryT39tA1PW0Bc85QKr0XhTgB3MLhQQjqPp/2w5hR0vH79ujqdjmazWaumgp/wgeMDEu/z6Ok6nuJSOot8HFK7rgZr6Q4Mr2+AcMhz7A6O0snhLhYXbVwITCnl/e57jv1TVVUW+/i+CAQCgUAgEAgEAodxZQQFJwROVoieeqTSiYNHOb3Qm1ujJbXEAYrSQX6IZg4Ggxw1d3LjOfwQFEQFBI+SLHKf1WqVj3r0iDpV9z033/PfnXRLlxFWHAaICogMRJiptI+oQISW1A7IIID8IrQ4+S5z8CH1w+Ewj9PFHCffEDEvcuhE0vPvnYDyPsID0WYEG+abdWI++W9VVVosFvlUhdIGT5+Yc8/L57VD79EH5qC07DuxZ6x+0sShNAa/R5nG4aTaBQfvW1nHgbmjYGZZ28FJNkeU4hrw0xrYFzhmSAFwF4OLV37qiaeNHNrLfo3fj7lxHBIs/PjJ8vuDfepikK+hO4+8UKnfg/v42gQCgUAgEAgEAoHDuDKCgueZQxwkablc5loAkOEylxvi4AKCkwipfRQcDgKIUr/fz7UIiNRDNrgv1xP17vf7rfQCiLPb+TebTT4Ck6KGABcAhK/MV6fPkjIBRAghCs0JCbgqSsFluVy2XnOyi+vArfaQytLZ4BHxzWaTxQk+OxgM1DRN7gPvEw3GEUDUGzLLj0eEwaFcdncrEI13waLf7+faGDgUXDRyJ4MTbRex2Ddud2fd/LQC5r3st4sstF3Wi2BNy/scep+5wP3gzgSvVeAiBWILbhja82MpO52O6rrWYDDIaz+ZTLLY4oKCp4osFotWrQX6Rx/dReApTNyzdIN4DQUfM2vj+5G0ilKkKeEuBgfPjd8DQcRFhFLMCQQCgUAgEAgEAodxJQQFJydYk4m0r9drTafTTBghoE4MPcrohfDcmu2nMlBTYbfbaT6fS7pMm+h2uxqNRppOpy03gTsFJOn4+LhVRG8+n+c0BOmcKCFCNE2jhx56SJJatSHoJ0c8QhCpmUC0H3Ln+e4QO+zoENuqqvJccSwktnGfW4QVXpPOieHNmzc1GAxUVZXqus5uBK/Szxy4oADRRoQh1eHmzZv5RArGzOd9bnFaIA4wTk6yQKTwuhPMJxb27Xar0Wikk5OTTLpns1l2uOAyqOs6CwK+Bw8JABTCdDHI0x/Yf5BQFxRcNHDrfOn8kNrk2YUEJ88uirjwcahd1suFJE8hQhxjTq5du3ZL/QBSdLhmsVi0UoaYG0+rQIDzZ+5QpN+frdIRVIoKZX8Yn4/dRYlyLtwNwhqR0sNYENN4fv2EDwSxQCAQCAQCgUAg0MaVEBS63a7qus6RasgAtQck5ar5/Ejt0wjKM+a5jug7BAqyWEbdp9NpJk9VVeWccUk553y1WmWhgGKCnK6AUwH3wmg0yuRtsVjoySef1MMPP9zKQ+ceCBw4Gxy0WQob9F1qpwi4S4JjJyHmbquHKHn0npSCMkoNGYfAQvzdEs+8eToDRPXs7CwTVe/vZrPJJ210Op1sqXehBqLHnnDRhrYgyAgV4/FYVVVl0glRpl/MoxcVdFEL0sy8IxBAMkkTQJQ4VAfg2rVrGo1Ged48VYM5QhhgHKxr+VP271AkHyeAC1+lg8L3BO4VFwVwHiAOsec8lajcbx7JZy4ORfpdcGEM7oRhXkoXTenskNqnfrCvPO3JUx1KIaNM0UBo8bXnGfX+BgKBQCAQCAQCgVtxJQSFTue8Kj15+gBiAFmEDEEa+Ie/OxR4neukdjpFmbctXZ7KAFFBFPBcbCKaXL/ZbLKDoK5rzefzFpGHKENmcSt4lNmFkDJFQ1JLXCD9gGvdou9zJF0SrtLB4ekDvV4vuxQobohIQCQbdwBzgjvE89M98s+8eC76aDS6JTLua+RHRCKy8Hk/AQMy70eFMhcexeYeCCSMxx0ALkqx/3wNEDu83xBdPznE6xiUdQ0QnIjAO2n2tAUn3KVYxLX0ydMJvL/8V7oUGxhfWUfA9zyRd9+TpUjl6S3sJRfnvM8lgXfxAJSugXLP+2uH0g0OXev39HEyjy6kSWq5RcraDr6GpTMlEAgEAoFAIBAItHElBIWUkqqqUrfbzVFzzy938imdk2s/GQDy6aTGhQNOb5DaVfI9Aul2d0k5ckn+uKQcGYfAQ8JIkfDIfV3XuYAipNSr6ENOvQ4EkWu3kQM+w/193NJlKkXTNJnIMj5Pi8A2XlVVJqoQrl6vl+sPIIJ47QrAPHFqAC4QJ2N8hkKXy+VSi8Ui2/DpE8KM59KXtn8XlPz0DfYO46BNTrjwOhMuvHAP/7zfz481ZN38FBHEHRcpfG+R9oETgvVwVwP9YOwexfc97Hvaia87GkqhAPHD9/mhOg3sb09f8D3mNUMQaJzEu6vg6eBQmkf5DLqIRl8PiRT+eRcy6G+ZNuIpUDyXpaDj83LIGREIBAKBQCAQCATauDKCgtv5F4tFJjbkbjuRgFRC0CAVkEonmZKyQEGUeLFY5BoFRODLaOtoNGq5FFarlcbjcS4YiRWfiDk56PRvNBqp1+vp8ccfz3UEJpOJJKmqqty228JdpPAIM33Gfg5hJ92C/lFsEvEF0QACu1wuNR6PNR6PdXR0pOVyqcceeywTS4QGBJvVaqXFYiFJOQWAPvFzenqahRZ3hTihQ9yQlJ0aknKaA84LX1ufd07k8HoSLpCQosJc+akbw+EwE2OP7HvOvq8BrzEe0i4kZccDjoxS8GFPIEBRG4O9gevBiTMuD0Qzj4p7KkGZAsHc+lyXz5QXGnRxid+ZM18PngfaZy5xKhyq21HWL3gqlKKIF5ZEIGMeXaxirhCxEAhoo6yp4OIMNRoGg0Hei35qC33x4yVZpzg2MhAIBAKBQCAQuD3uWlBIKXUl/SdJv9A0zW9OKV2X9E2SXiXpZyV9QdM0T96pHSr4Q1wgfaQbQBYosAdxczs8hMMjj9vtVvP5vEWmOCmA61erVSbF3Ge1WuUCh35kI6kP5Jh70TvIB6kQnhawWCxadvoyEivpFpIptY/Bg9RD+CC4VVWpqio99thjuXCepFwTgnmkPgKk/fT0NIsrRMDrupZ0LiDMZrOW84F18OMSF4tFJn7UUPCouDsWBoOBjo+PswMCor/fXx7rCGH0qDGpB2WePmtF8UhJt8wvtQVY20PRbieirB8uCD8pghofiDp+jadTMDacEswdNRVK4YfUAk/9KNMHGDfX+AkfLpT4nnLrvrtBeA2BzefGRZVDIhe/8wyVkfyyD7zm6+WugEPpHT7e0j3CGjPXrDt71q9zUYGTL1JKuV6L1wvhOhcZ3RX1IOBefRcHAoFA4NkhvocDgcALEfciQfiPSvoJ+/srJH1n0zQfLek7L/6+c0cuCA7H/vlRgETNPY8b0gdZcpv6ocKGiA+SbrFEe3ST1yGPWL0hlH7cJMQQUlISp6qqdHx8rNPTUw2Hw5a1n89zmgFEzI9ERGBx94ZHYxEHqqrKkXCOv/QouEdhV6tVFl3G47GuX7+eP+NpAhScLJ0SEFNSAdxxABkro+qQb9Z3MBhkMQTHhxfkc8JJexB0BBOPkHuUm/lykclJ8iE7vK8bf7sboST2fj+ItveZyLnPD2kwVVVlp4Xn75f7B2HB8//dAeCpAi4qeO6//14el+j3LlMQiNT7+P1UDNorUz18r5WpJIdqLHhKA+P26w5dX7oR6KufLuEOmnLdvB4Gn/F5oQ+MkX30gOCefBcHAoFA4FkjvocDgcALDnclKKSUXiHpcyX9HXv5NZLedPH7myT9tmfQXiaz/GPeCxy6oHAoUlqSCI/2Olkpi7S5HR6S5PZ08uVXq5VWq1UutDifz7VYLPKxhZ7vTzQZso/bwQkWpNzv720Q1efHCRx1CXAz1HWt09NTXbt2TXVdZ1LLPDB3WO8hzQ899JBOTk5y9NyLSpJiUfaL30mJgGwiADA+XxOcIRSA5KfMkXc7ux91yZog4LhzwPvlxRiZb68/wHjonwtRbp9nb7H2vqeAk04XLZyEM98ujg0GgywqeHoL/fK0BHcG+N4p8/5vR9b5KYWPQ7UD/Jkp59BFOxcqynvfSUxw8cOFj/K6cj6Ar5XvOUSFsp3ys75PWLuyKCMpUmXxzquMe/1dHAgEAoFnhvgeDgQCL1TcbfjtayT9KUnH9tqLm6Z5ryQ1TfPelNKLDn0wpfR6Sa+XziP5bm+u61qdTicTd8gQVvndbqfRaCRJuZAjJNkjskSBU0rZfk6hQEmaz+dZNCDFwYsDktYACZzP55nA0qakVsV/7Pn8DWk5OTnJtSAgdl7537HdbjWbzXR8fJz7DPnEKi8pR8Dp30MPPdRyNVDFH1JEXQT6idgxGAyy2wLyKSm3QWoIRJuoO24H+uj3hZiTCw8phqSRloBwAkkeDAYtx4Z0XgcBezr3K+3xu90up61wYojX5JDUes0LHjIud454ET/a91QHn1dy8vmd14mIc+KD11+gL8xD6XBwMYz9731mfdj/rB1g33ltkNINUhJ8vz/9Q6xhvf29Mj2CNrwfLpTxjJef9aMeacM/XwoMPg++99jjpTPH02+8MOqh9BL2OvP1ADkUvkb34Lt4qPo57mYgEAg8b/E1iu/hQCDwAsSz/tdySuk3S3p/0zQ/mFJ69TP9fNM0b5D0Bkk6PT1tpEvSgRUeouHHGvZ6vXwMH8KAJM1msxZJhWByHURaUiaxkEh+OIHAo+K0R00ESDzkDNJIXQccC4gcHpF2u3YZGZWUBYbtdpuLMJ6enuY2ACLIfr/PBQulcyJ9cnKS7/f4449n8uVRZVIWIJtcDzFlLTzCTxuIA1y7Wq00m80knROwuq51fHyc30cI4P6sibsLnFB7rQE+C6m+2De3pDmUBQZZW1wdpJZc7FuNRqPsHGAevA/sBUj5YDDI10jKr7Fu7FOEFEm5xgFOFtI8aJN19TQOyLXPO6BQJvvHT0PhucApwtoxfp8XJ+t++gXOHU/Z8RQH9jtiGiIX6wi5L0m8C3RO1st7cj+vfcHfLlZwHfvRhZ5er6eqqrIIVooR7BV/nddKUY970N+rjHv5XXySrjd3uDwQCAQCBeJ7OBAIvJBxN+G3/07Sb00pfY6koaSTlNI/kvRYSumlF0rsSyW9/+k05sSXyKFXeCcvvrRH9/t9Xb9+XcPhULPZTIvF4mA++WAwuCW9oLRnew495Mij+ZBcUhqcfDmJ2e12mk6nLeLiUeayDgT3JAUAi/lkMslkCVEFIH5IykIHZL/X66mu6yxulJZ04GIAtSsoRueFEEt7POSeugbz+TwXI/TIPnPh9Q4QQ4ATPIh8meLhfWc9SsLt+2i5XObPs/aezsB6eLTbrfxlfQPG61Z7F2lor0xdcTKP8IOoQL+Y2/l83rLZ+z4/VGSQv7nG55u1pYAo8P5KuiUdyMfs9+ezPkbmizZLF4GjdBy4UFCmYTgOiQIucPk+4LM4FRAX6eftUNZcKb9fSqHhiuKefhcHAoFA4BkjvocDgcALFs+6hkLTNF/ZNM0rmqZ5laTXSvq/m6b53ZK+RdLrLi57naS3PJ32vOCfdGk3hvh5wUaKJEJKKHx4fHyc0yXyAK3QIMTHTwEo89e9Yr+/5oQaAg/ZoE0nH8vlUrPZTPP5vBVNZqx+tCCODAr31XWtXq/XagO7eFmkz/O+uQdpDxxdybi92J+kHOkmgu9pCzhCPGruhJP1wPGwWCy0WCxaR2lSJ4D+4kApi2A6ifN58X4c+vH+uIjhdS72+31uA6GG9fV2APPn7VNPgOvcVs8eK90FPjaEFxwdiCr0AfdCOed+ooe3x328toJH3/3oRXdyMMcQ8EPz6C6D8r5lrQF/rxQgDsGvKwti0sdDKRN+XSl2lKeFIKgdcnk8Vf9K0cKfrauOe/1dHAgEAoFnhvgeDgQCL2Q8FwnCXyXpzSmlL5H0Lkmf/3Q+5EXxxuNxi1xgeYd8E4WGmA8Gg0zC67rWE0880YqEO0FLF/nufpyiR/rdGs9niZzzNyQaxwDReU5yIKJNXrsTXiLWpHbQZhm57nQ6+sAHPpBTEFJKOj09zcSTNkryg43cRQOOfyyPZPTigcvlMgsRzP12u1Vd1y1XAESU3yHKi8VC73vf+9TpdPTwww9rOBxqNBrl+fT0Ao+kS2odvymp5bbgqEofp9vmWUtfQz/VA4KJPR/y6QUhPZ0Bwu71N1JKub4GogBz4IUsPaLtwg1HFtI/1hz0ej1du3Ytz42Pk+vLoxWZH4/A9/v91nGoHOlJP1gDHC/u4jhUl8CJfOnKSBfpBqXDpEx78DGVNQncIcKcuWOHa3zOeJb8/dKJ4OuBy+aQa8KfEy8s6mv3gONZfRcHAoFA4J4hvocDgcDzHvdEUGia5q2S3nrx++OSPvMZfr51UsOTTz6ZjyzkH/dEiSXliD8CwGq1ylFeahWQckBqACcmNE2j+XyuGzduZPJdVVXr6Dki94cs4x6FJs8e8jWfzyWdExr6QcTc6y64o8Gr/HsBQ+oUTKdTTafTTAbrur6lvsOhQnmQxuFw2DrqEScCfWTOOani5OQkzzuOEEQY6TJVgLk7Pj7O87Ver/X444/nkxEQFaRLNwT3Zy4RByD97Ad+IL3UU+h2u3lMfNYdB2UdAF+PQ0X2XBTwz5SuFq5FCKDuAU4NPsv8IHxRp4K5Z7593crTLBiT1zLw5yOllPcr6819vBgmYpSnBDA3q9Wq9Wz5XPG8kPZSPqvAiT3vuXBXike4RdyxUqY13M4dwXcE/fN7ek0R+uCOEdrhHuwb1p7n3OfYn6kHCXf7XRwIBAKBu0N8DwcCgRcarkQJc8+rhsR4JX2IIlHjqqq0WCyyrR2iyjUnJyf5JAIilNigOboPggph8nPpPQJfRrDLCC799qgq7Xk76/U6k0zGi7uijErjWDg+Pi8UDHmdTqfa7XZZKKAPjL2M5lMk0e+HMOD1AZyAQ7YgZNSOKMfIuBFxJOVjNSeTyS2kmfl3QcGJvLsf3IHgLhInh56GsVqtWqkYLtx4rj7w+gYOyKPb+/3ISq7BCeAuGK97wH9L54XPMUKFE28XGIjUu2ji/cUl4YUe3UWCg6A88QDRwVM/mJ9SmPFx+9yxNsCFFvrq/UA84Fn1o0N9Dn3ePSWC9fL1cYGkXO+yXy5Y8JnyunK87m4KBAKBQCAQCAQCh3ElBIUyJxrXgRMVficiDBnhB5s8xzz6+5Ak/zxHUFIPAUeC5607oYUkeQ6697skb5A8Sa1UBx8zxE66jPZCCj3ynVLSdDrN4oiklpuC8dN/J3Lk6G82G81ms3xqAmNzV4BH/ek/c00agUeb6TdChheohKAhfHCdH9vHuviRnl6DgH7xXyecjE1Si0hD+Eux51CbLlwAJ66+b3ztPE3AHRbuqPF9TXtOnssTDHzO2ade18CBwwUhyetK+LPCfnXhgL3Ifr3dsYie2lLCXQVlDQTG5lF+hAE/EQXRwgtdumPHhTyfxzKlwvcyf/veZJ1KeBoF4/QjJF3ICAQCgUAgEAgEAodxJQQF/lEP8SmjokTRudZTG6TLUw68UB22eArUERXlPWoDcLThcrnM9xkOh60aC05sIJFERqVLcYA8eemcSJN3TxQaAsiYcFZAlsn7d1JPisPR0ZHm83kmZdjtIYfL5TKnhUCuPLpP+gGnUdDf0knh5E5StoOT0gFB91M5mFeO54TEsY5Y8+kf68yaQOQgjhyRST/9uES31Lsw4LZ3dxawNzz67gKBzzc1JFyc4LX9fp+dItzDSTI1NDwNgf3IeCDQhwQp3Db0m+KYjIG95eIHRTB3u51Go5EGg0FOVaA4pp+wwdx5v5nLUvQ6dNqEk24cL+5a8efYCXvp3HCRD9cK4/BilByF6UdVujDiggL98mKpvvdKR0VZG4L2cJ94kdNAIBAIBAKBQCBwGFdGUDg+Ps6R9MViIUmZHPC628J7vV5OF4AcQbpKMQDrfV3XmdSSCkCEF8LvEWEn1vP5XP1+vyUk+IkGXnvB0wawpHtxRKltkXd7N+1ut1uNRqNM2I+PjzPBcpI2GAwy+ZnP59kR4OkTkGKOvZxOpy0rvUe5Pf2Az4Jer6fZbJZrWDA+t6yTjw8xhFx6HQuEDO47Go1uSW1gDKwt70OCnQgzThc3aAOy6KSVecN2j6DEGCDyrE2n08l9pB2P7PMa6TM4ZFhTxshpGtvtNosU3NPTEFgb6kcgLtA+a0/KDuIO5NmdErRHm14rpHR2MF/Mp+8vrxnhIhRtIzKVa+d1FriO++Ke4fhM6nC4+ISrxZ+P0inEa6Q8lbUZEDlcBAOlw8TdJ2WaSSAQCAQCgUAgEGjjSggKknJ0tbQ7r1Yr3bx5M5M/SBaA5HmEfTAYaD6fa7FY5NQJjzpCHCi6NxwOM6GEmJcR3TLS2ul0cvoAxBsyQ78gTmUkG+IFkZLatn3G4akAnU5HdV3ncVP4DxEAUoulHHLthH4wGGg8Hiul1CLQpDZAMiHkXqcBctbv91sOEif2zCngNb/eiTiOAwSd0m5O+xR5xOrvJ27wX8i0HxlY9sPrYHgk3AUNhBLA/LH3vJ4GbXt/aQNhw8eNOOPiCde4SIXjBPILKfZoOtcjhE0mE52cnLT2B/f11AOP8EPU/WQT1mGz2eQ9wRrhqHHy7vdyUeGQG8P3Ec+HC0B+BCRuDepE+N7w1IZDp0R4GoanyngKU9lv9mKZSuGpLoFAIBAIBAKBQKCNKyMoQK4gwZDw7XabjyUkjcCjz178z+3O1EXglAcirR5xhJRB0MqTECBNXlSuzIt3YuSkz6O2Xp8A4g9h8or3pY2bcUF8BoNBJsvkm3NP4KTLCxHy97Vr1zJJJE2EIo9EtLkWwQWS56SLe0HWuFdpMfc8eZ9rJ3UQypLsOSlmLukjNTP8s/Qb0cLbcFs/+4Z9VFVVy1nCPX1OESv6/X4WY3hPUuuzLoYwV74WZUFE7xvvQ/L9c6VAUdYmgOx7v1xo8f2L8IMoRrFPRC/6UlVVvp8TeV83d9aUtQm8QKO7BMo6BZ7GwFr7M1KuHfdxQYH7+jNUzpvvizL1oVyTSHcIBAKBQCAQCASeGldGUPDcbaLgEAEs15B2SLFb4iE4EHxSIIjyUzOB+0AgJOVo/Hq9zqdHrFarHIF1kcMJNK9zP8iV518jDHACghfmWy6X2QUgtfPNIVH8zX0gtQgqfA7hwQkY9naPwD700EP5OEiO56zrOrsfnNjSN+ouOMlFgGF+GHuZp++k0/vL3PjpCYgBXlPAI/nUXyDlQlJ2abiIAln2dAkXMpx89/t9jcdjLZfL7AogJYHPQHK73fMjK6fTaRYk2D+cKkLNBj99weeFcc9mszxHkPXhcJjng36X5NYdK5yuwdyy190V4+vj6TYuyrEnER4Yg7shSLugX8yR14zwgp++hz1FguNJfV+XdRjoO6kxfoRs0zR5P7ro6P1HhOGa0qFRuh34/qEfPPchKgQCgUAgEAgEAk+NKyEoQCCly0iyH7EIUXKbNcQJooQTgWucnM7nc1VVpcFgkO3T5LND5q9du5aJ9WAw0Gw2a6VdQMBcNHCSg4jgEVnG46TETyaAnPV6vXxf5kO6zKH3CC+uBQiaEzJedzGCIoNEYT2/HscDRSpPTk5yXj7CS1VV6vf7OX3ELe9lOgj3xUWAqMPrrJs7KkhF4H51XbfcEpPJRJvNJpPX8XicxR9Ot6AYos/VoQr/pQPG5/LatWvZfUD/SGORLmsp9Ho9Xbt2LQsCrHGv18tzxP6SzkUZT20htUc6Pw3DU1tYK/YYqR5e4JJ9KCkLHKw59/YoP/vJhRdIOWvPPC6Xyzx/7grxMTJ3iFSkJLCvXXDwWhbsO54pxsW9/LvAXR+z2SwLGn46BM8lolS5p7jvIXdMSpcFUN3dwLWleyYQCAQCgUAgEAgcxpUQFKTL3PH9fp9JkkdWPaJ9iCRCojyKThuLxUKLxSIXyyudDfv9+QkGCA4nJydKKbWitGX0szzBgKh3mdMNyvSE0WiUCQ99hwjzt3SZ5iCpVecBMsecMBZ3C0jKryFWeHQXEaKqKo3HY43H4xw99xMNmE8vcgjRXiwWrdcQQRAIIN4ucniuunTpFkFYYsyQb2pa4MDAOYGogBPCC2RCBP20B8g2tRCky9oVXv/Ca184qXShwYsqkk6DmEWhRAQrJ9xcx2c8vcCPsfTjE1l731eQasaIW8FTCg6lDzCOsvYI93IXjjtbSBviHj4f9AEngaf9OCGnDa9n4vdzVwWvU9Nkt9tloclFleVyme/pxSndBVG6DLyP5Yky9NnTVQKBQCAQCAQCgcBhXBlBAQLCP+ghYRzjJl0ST4+SSsrkFjLipy8Mh0MtFoschV2tVhoOhzmKShuz2SwTHk6PwMYuXdr8y+J2h/KtnUB7ZN5/p4K9ixBujecezEGZF07/+Vmv162CjIgptM09PQ/d8/chuZDQcq5doJDUihQzR9zXUzBKl4AXcSzrURB1rqqqNQapnRJDygaiArUzyhQB+kEfyhQRwOdciLkdmfTaAR75dtfA0dFRPtLRj4OkT+zZ8jSJsoZDOQ6ECubW+8j6+TGLnhZQOgG87y5Q8Dn+9vQFT2XxZ8BdL8yrR/vLfvoeLl0QXiuBHy8a6fPojgU/NhSByfeYOxF8f7ojgevKWgqBQCAQCAQCgUDgMK6UoOD2ZQhBVVVZZCDqC4l1ggWpcJs9jgKOovTXwX6/12KxaJHho6MjnZ6eajab5f54CgWEi99LUiKpJQR4NNjzynFieLFGouVEZz1fHtcEOe6dTieferBarfJxm/QPMQb3QFVVuR2P6HpNgcFgkMeDDf5Q5JhrcTR4QT6fX9IlcFD4sYIemfZTKrDjU1fAaxRI0vHxcRYV5vN5y7VCmoJHp1348AKajMdP2HCngpPRkpi6IMHfkHqOL10sFtrv962UGX78ZA3qaziR9mv9OUCkKOsnSMpCjNdFcOEAcs/9XXxwkYf/ulDkDpVS8PLrS4GtrFXAXLEHcQH58+ruBK6jDgmf9f1BKo50WTfDxSTaKx0e9JPPeuoSny/XORAIBAKBQCAQCFziyggKRMchBIvFIufNn5ycaD6fZ2I+m81a9QY8XQBy46cV1HWdiaqTWqLM6/U62+rn87nG47Fe9rKX6eTkpFXYj/tBniDlZTQW98Hx8XGLaEF83UqOoMDYIDNVVeW6EgByjYDA/en/ZDLJxBpiC3GkIKTXBJCkyWSS36NgI3b8yWTSsqe7EIBg4qkH/NcLGo7H41aknpQWXysn99PptGXFd6s9JBkXA6LC0dGRbty4kfcGxN6JO3DC6Q4QF1YOkXAXjPx9dwF4ms1wONSNGzc0n8+zKON1AKTLiDxr4kcnsr6Mo67rXPeDPVvXdV4bd3Ag9CAm0c/lcnnL3ud+nhpDv5gPxKvxeNyqrYDw4YKTPwsuJHjqA+1TJ8VTHxAWfF5xISAaIqq52ML3AO8xdncmcG/6w7r6M+hr6c6TQCAQCAQCgUAgcCuuhKAAwfDIKRFt6TzqPBqN8j/4vXAehM+j+WU+uEeyt9utJpNJ694QSj89YDKZqK7rHDX1CvYe7QT01/tcVVUmJLgLnAx5UUjIVRmh516M04+fRITgWM35fJ7H61Z7SZkwQ6iOjo40Go3yqRaTyUSPPfZYJr1+koO7QkqCRfV/jveE0HueOuN3MlcWaiQdg2gzc+T1GfgMhBvnBqktrAOOE+oplPnwkNjSqu8CDXPOfT1to4TvhTJ63jRNTrlBRCprSECUPV2EvVEKY36aBJ9lTH7MIpH7ctwQaGoeMN/MOQSeGha+d1ws8tQf+uEiAM8j/WfP+VyyRmUhRxdB/Jn29BW/N84S3DfupjlU06Tciy6M+FzxfiBwNzh6+cs0+qaVOqm588WBDwne/+c+XL3v+MH73Y1AIBAIBJ4XuBKCgnRJxLzSPpF9Ir9OqD2HW1Ku2O9RUY9ye50Fz8mGrPjxcxBjyCQnCJSCQkn4+Lzn2UNq9/u9ZrNZ7oN0Gel2IQJCWx7JBwHmc4gJ7pTgc17B3tMymCPGTnoAgsQTTzyhk5MTjcfjVr6/R7G9NgIkr9/v5yM3ETvKfHbW75CF3NfBj7ks6yz4j6eZQCYhkLgqvKCg7wUXq1zccIu7t0EtCuB9IMrt8+yiEuJHKcp4ugBtusvGgfuAPeyCh5/2QZ99Pr3P7ixANHDByfvO3vViqdToKNetFAy8uKSLYaWjwdNn2NcuQPgaeU2E27VbOg0OuUu4p4sR7kTw9fT6DoHA00Hnkz5O7/2M09Zrq1PpJz7ia+9LfwKH8Wkv+v3q3fmyQCAQCAQCTwNXTlAgaolb4FABxFJskNQioU5gISXY7N3+z315D+KMoDAajXKUthQPEAkgcS50eD0BIvjUGpAurfvSZdTYI6KQcq9FADEHHgl2YcLrMfi1EEInT6QTLJfLnFIyHo8lKVfsL+fbCT61CHBEuADhhff85AkIZZk24HsAwnwoSkyE3NfWBQVP0fBaCE5+S0KLcMR73W43pykQnXdBSbo89cKdI2XtAYQwakB4fyDmTpRdPPM9zbj8WEk/rcPre/jJD+Vaew0SnjMXFLyOA/PKWPhs6Szhd+7HM+CCjwtbPlafT4DYV64xKD/nYkGZpuBFJn0eXVTzzx6q/eCFMgOBg0hJRy9+kZSSfua3nOrH/0CIB1cd6+Ok7uk17W7cvN9dCQQCgUDggceVEBQ83xqCLymfXLBcLnMagNveIclE88mvlpTrFzh5c4Lnue3YuxEGFouFzs7ONBqNsjAhXZId7OIQFU+7II/7ySefzMcf9vt91XWt09PTfAIABJTCku5A2O12+YhIjrL0YoFO9J2YQ+w5JpM5ghRxCoCTq8FgoOFwqM1mo/l8rhs3buRIL20iwHgKBf0cDoe5YCCFIZ2YuT2f2hKsudcd8Jz6lFK+Zyk+eATbI+O4CPxUD0g80XrWCGJL/0gNoC/eBvuvrut8v/V63bLgIyL4vJZHQCKSMSbSDHCJuLPGRRr2h88f4ggnSTgZLh0g9IN1Ym7n83mrEKKLEqz9YDDIaTv02+t6sBdcvKAOA88Bc1DWDXGXiQsETvJZr/V63XK48Ly4aMbnSJ0pa174c+pFMukf+4sf9om3EwgcQvfh63rTD3yzjjt9HakrKdJkrjq+98/+Tf3qz/1CPfpbQ1AIBAKBQOBucSUEBUdpYZbaUXxIi//jH6FBOicP8/k8EyK/lki5H59IeoDbvyHXFH+EVFOjAJLv5JiCd5DxxWKh6XSaUwRGo1HLZeEWbWz40iU5I/feber0uzxmj3oIkExJms/nms/nrZMp5vN5Ky+eNiDki8UiuzOYP+aLefKCdQg6RMlJV3GCRjoE81SmBrjgAKkuaxo42ea+OCJYY09tcbGlTIWhRocTRQQcdyoMh8M8Xk4XgMyXNRXog5NcIv6IC75mpSDitQfYAxQ/9MKJ6/W6JXz0er0sTLhDwVN8/PQMd4ogPOEgKVNJcGUwZ/6eO0A89YL94ukSpcPAn3P64vVHaNNFCq+v4LVFpEvBhHlhHfwEC39WmCN/vUwT8TSoSHkIPBWmn/+r9Wv+9PfpoU6lbgoh4UFBL3X19z7hH+gvfdfn6OzVN9WEEykQCDwPkY6O9N4//CnaHziw6vrbtxp+6/d/6DsVeF7irgSFlNKppL8j6ZdKaiT9Pklvl/RNkl4l6WclfUHTNE8+VTsQCbedOymFZEBMISMQT7eJQx6JOjshctR1nR0CHnH2SvLz+TxHdiGxFA6EtBFddjIKWSHFQVIm8vQflDn+HmkmQs4YIJlOvCDtzBf/JUI/HA5z+8xfaTt3IuVkjPQCyCuFHp2E+Zr4cYw4AyB4Lhp4WoinEHjfIHQuJvgekdQiyl5/wMk4hNVdMGVkmsi111Y4VBTTHRouEECo+Zu96mJASUy9ZoMLFG7LdxGFNWXf+35gXQBz7WkIiBHMtYsRkrIDxlNxcAbQB55F7lGOyR0L9LUUC7zugYtr7D3vg4sO9Il9V6ZAeZoGz2RZk8GfO+CiDvuL7xCfy6uOe/VdHHj6uPm7P1U3futMf+XFP6xwJTx4+KTBQF/7i75Fn/GVf1Lp4qusu5Re+tfeJt1GCA0EngrxPRy470hJu1f/cu27F/+26SbNXr5Xc/AE7CM9uviV+a/hL5xp9xM//aHpZ+B5h7t1KPx1Sf9X0zT/z5RSX1It6U9L+s6mab4qpfQVkr5C0pc/VSOep+457pAPJ1QQVSdWHrmEFLg12/OqQVVVmSRPJpOcTw7ReeKJJ3K0vqqqnBLh6QocWejFFz2/nCMQm6bR8fFxi5w4ySmPEoQcMw/r9bpF+JyQOyllLiGX5YkAftJAKbIwh96+O0UQC7xAo4sanjpCLj73Ih3FiaG7BHzM7jqhz8yhCyCSciQdkcMLBPI7ApDf32sfuDvAaxLQJyL9LirwN2R1t9vlKL+7Npx8l/UC3DHjqS4uKJTRfU87oTaH1/EoCbOLAaQPcS9O5nBRwPeQOyy4HwIG888xlj6vfm9cCu604D6lU8f3rs8XLiDfl346h3TpwuB938dl7Y9SjPC9xD72uh4PkEPhnnwXB54+HvnSn9P3fsy/ud/dCNwFHumOWjUvfmy90J/81t+ltNurOZto98HH72PvAg8g4nv4BYLOcKjOy17ytK7dv+d92l+kMT+XSEdH6jz0kN752QPt+3cWRecv3+vnXn5Zq+3hH35Ej7z3/VFbJvCs8KwFhZTSiaTPkPRFktQ0zVrSOqX0GkmvvrjsTZLeqqf55Qkp8hx0JyYQo/l8ni3+EALIH7b/9Xqt1WqVHQinp6fZRu/Egx8XAyBbRPmn02mOepLOcOPGjVzrgVoL3s5ut9N8Ps9Ermka1XUt6ZJgOtmSlPvnxI/oMkTLK+/7yQukYHQ6nUzopcu0A3Lh3YY/GAxaDhBSL5i7Ml2k1+tpMpm0bObj8bhFJKnHwLgQWgA1Cdyq72kOfmrB0dFR6/QCSKaTPfLhXQxygYE5ZR0ORZzLowXLon1enwPhBLgY5nUVXAzwUxn4DNezZ3A5uKvBI/6MldoaLmZ1Op2csuFilDsZttutZrNZy95fpmn4aSbMu6fiuDOIPvnxpaWDI6XLAqtc50U1XUxgPlyoks5FCxcg+B7wPUlh0dVq1aqHQQpO6VJw4cX/9hQZv8dVx3PxXRwIvBDx8f1K//rff7Mk6SP+7Zfoo78oBIXA00N8D7+wMPnNn6jv+htf97Su/Yw/+HpV/+K5Ty1Iv/ij9Pbfd6pzc8wzx+Of2OjsIz9Ov+jPvu2e9ivwwsDdOBQ+QtIHJP39lNInSvpBSX9U0oubpnmvJDVN896U0oueTmOQLlIHIO9EKUkZ8AJrkjIJhkB1Oh0dHx+33ASLxSK3ATHyegCQHH54/+bNm9khsNvtclFDihfihNhsNqqqqlVvwAkRhJMoqEe/IU/lcYHl0Xu0ibiwXC6zqAHJgnDxGY/2Q0D7/X7rSEQvWuh1KDgNgwgxIDUAlwaEDjdAp9PJRRrdau/Wdk+fWK1Wqqoqt93r9Vp9XK/XuZ6Bpy2w9syVW9QRkRBTGI9H6b1P5VyX9n4/DcHFLq8l4Z91VwZrz5jcXeLjKW32rDl9ZP08HYZinew5X6MydQihx/eHpwbwvDFWTyuhxsRgMGittTtVyjoY7rxhDH7qgv+4oETb3NeFHj7LvKR0Wc+EfTWbzVrpHeyd0u3hQoLXn+CzpePoiuOefhcHnhqdutYv++65fv/1fyJpfL+7E3iO8M2/9mv1bT/ySyVJ/+73foqaH/qx+9yjwBVHfA8/39Hp6sPeNtRH1e/XL+q/+Wl/7Mv+yj/Tu//X6/nv7/yyT1f6nv9yT7s2+x2/Wo9/fFdKd5GmmaRt3ejdX/npetUb36nte9937zoYeN7jbgSFI0m/QtIfbprm+1JKf13nVq6nhZTS6yW9Xjr/R78LBU72+NujuH40ndS2+VOojxQF6ZIgO2n29zyiDKmt6zoLCRAuyHOv18tFGiF0Hk3u9XqqqiqLJAgBfgKCf8ZzyiFoEESP1lIc0E+48Fx2n0cizMxfebQigoHXAvC8/TJH3iP+zB/CBuSRtSidAWXKiacnQOS8vxBwIuD+eReSPGpd9hvy7HuFce92u1xg0feQ7wl3KbirAZeMFyksHQnMpbtrEK/KYxVdDHKhxOtdSMr95T64AZh7P+LRP+dr4wUrGSdOA09bYH8C+okbBCdDXde3reHgZB3C72N3xwb7rnQplIUVff3pK+kmiIWkuJRukDLl5JCg4c+GP5MPAO7dd7Hq56aHzyd0u/qTj3y3HumGmPB8xicNBvqkwXk+8d/+g6/WK//lp6h6SxQwC9wW8T38PEb3oz5c7/h9L9E/fNlX60Xd0TP67O86flzSpdvp617/Gep97qfpaJr0ir/8PXfdt81nfbJufFRX64fuvuZT05WWL9rryc94lU5/5ES7H/+pu24z8MLA3QgK75b07qZpvu/i73+q8y/Px1JKL71QYl8q6f2HPtw0zRskvUGSrl271kiX7gPpsrgihIBoqhcgdAECcu02aAiiCwOeO19a4yEWRITrutZqtcoEhxMfRqORFotFdiv4iQ+Q4fF4rNVqlfvZNE0+AQESXObnlwS7zPGmeCTjb5pGs9ks99Et7ET/KQ7Y7XZzgUaPxM7n87wmXhjR89nLlAT6RBtcj4iAAOApJrTvdnIINuOjXx4lL2tLuMh0O6JJFBuHhNdwoD9+igCfObQHJbXEKl8vFxJc+PF9AEhV8JSeQ0VGnWiX4olH0ksRjeeiTKPx1AIvcOiFIMs59TQMxu9FGhEc3DnigoK7HhAgKAJJW+6S8bojiB6sISk6vs7ucthsNtm9QQoSc+vuH+ai7KOnX9APF/M8XecK4559F5+k61GNLhAo8DOf+/X6qNEX6WPe8bGSpP1P/YyazfoOnwq8wBDfw89THL30JXrs1S/RT33R35L0zMSEQ3jnZ/1dSdL3Lnf6X77lC7V/x8+queALzwTp6EjdRx7Wz/y6nnaDe1tA+rFPlXb9h/XwY9e1e/yJe9p24PmJZy0oNE3zvpTSz6eUPrZpmrdL+kxJP37x8zpJX3Xx37c8jbZaNvJut6u6rnM0mdewW2Mp5x/73W43pxZAHHu9Xq5tIF3mR0O+IHaQL8gI/eEebv+HDJ+cnOR8dmoCQFxxSBCR5ThGUjOcUEmXUWP6CEklJ7yqqlZ9BOaKdrDyr9frLKJQn2C322k2m2k2m2mxWOj4+DiTQBdVPKoPuYTsQga73a6qqmqRPNJJSAcZDoetEzcAfZEu0wdwdjiplpRrTwyHw3yNX0dEn/9Cwn0OPaKOQAFxZK+wd4bDocbjsabT6S1iA3vB6wN4Xr0X06Rv7Ecs826bZ82rqtJ0Os37hj6UkXt3mkiXJ5Pg0ikLj5aFHEuizzwjnrFmXreB582dBQg/7BHgxTpJ//ExcC9SM6hNgqOBZ4R5cxGJeaYOAukqjIE+r1arnPbQ6/U0Ho/VNI2m06lms1lOFfLvC3cjuXOB/rLHqfFx1XEvv4sDgcBhvOPVb8yZ8J/9ub9LihSIgCG+h5+/ePtXv1Tv+H/8rXve7qcOu/rX3/5N+qzP/yKl7/7hZ/z5zke+Sj/5ZY9I6bnRnz74yxudfcQv1of9hbt3UQSe/7jbfy3/YUnfkM6r2b5T0hfr/PysN6eUvkTSuyR9/tNpyPOcIeReEwAy4cXYypMKvIji8fFxvpb0g9IGTq6/dClqQFTdCQHJlS4r51dV1Xrfq89DqDj1gPtSIA7CA9HxsRAlhiB7lX3y8Emh8GKF+/1eH/zgBzUcDlufp94D48XpAQkfDAYtx4OLO9vttkXuIZAUxOz3+5rP55nY4SDx+grUeICUS8pEEWIISYbwQZRpp4z8u6uhTE8gCg9BhnjizpCU+8KYmAOEEq+BUDoomFfELQQYjhIlsu9OGd/HjAHi6s4adwW4ZR94RB1BjHbpc/k8lGKLE2g/mcL3ne9h5tVrmyCyscaj0UjdbleTySQ/p55ehNDgtTx4HhGkfKy0i3Di7gHSdNyFMZvN8jUc8wp4ztylU36eZ5j5LUWqBwT37Ls4EAg8Nf7Hb/pW/Zk3/W698i/GP7QDLcT38PMJKekjv3+g/+NFf1P3wpnwnOC5/GdKkjbHe/38//zpetXX/bR2H/jAc3izwIOOuxIUmqb5YUmffOCtz3wm7UBYpMuK+25xdwsy13sBN+nSwo34QH0DPznAiZFHc8uCf2V9BiK01ETw/HD646T8UOqGpBzBx93gaQ1ee0BqH3XpRMtrD0AY6RME2Kv9Q8AXi4XOzs4yUWOu3VbvKQtE+CG8VVWpqqoc0S7rF2CJd3KLSMJaUdzPI9YuFvlclnZ8Xx+vo+EE2etYMG8IBJ7S4kIB804tAe7ppyMARAXa8uKFkGx3Y3iaCMUhWSei9Vy/Wq2y6OHjOyQGlKkwCFq4ItiDjJM9w7U+R76fXESg/+X+9rF6SkpZx6EUxfxZou2SsPs9vA84hdhDOGz4PC4hF94YD3uuTMPwfcu9ed9FrEN9uoq4V9/FgadG+uRfqrd/8Uh1+s773ZXAfcTvGJ/pX/6WH9H3pU/XK/+3EBUC54jv4ecfXvvw9+pjes+tmPDOPyS9+OWfqvGbv/c5vc+zQdOVVg/v9cRnfaSu/9BDUVMhcFtcCT8vOdle2b38hzzkiCh4mQ8NyYIkEPkkug6xheCVRdv8ODpJmTDRP0iGR6ldqHCUhBixhOh9eTwe0VrPd/cIr9TO0eda7sVrDogYxeo4tQKnAlHiUkzxCDVigrsZcB3QJ8QAP0XBxRSfd0n5SEpPDZnNZi0iC/n1tSnTEfi7jDRDcj3VhdfZBy4SOMEuaw9AUOk75L/MvXenCiIBa+InEDhZJY2DOfR6CGW9BG+7rCvBey6M0C+cHv58OFF2x47XVPA95CKD/42A5HNR1l7w/cnzWwoxpTvGP+dpLYPBILs6uNafSVKSSOPgmcPF4cVV/XuirH3h6Q/+dyAgSbMPG+krft23apCuxP86A/cRf//D/qO+8ff8qN74bb9ZktR99weiKnogEHjGeMer36gPP3u9PubpHxyh7kMPafvwh8418YFPllJzXdefeLG273vsQ3bfwIODK/GvopRSyxqPnVq6JIROvNyWznuQJo7Qo2Cg26wRDLCjr9fr7BQo4a9BLCFCbhl3t4STDz+xwIvOubWfYy0B4/D0AtqkrgGErqwtAHml7aOjI43HY52enmYCulgs9P73v1/Hx8fZpu41EagD4cIGLoXVaqXFYpEt/JB2J8z9fj9X2GctmWsIMWkpnjoiqXXihJNLPuNHcVZVlYUPCm6SGoKDgCM+PUffjw6dzWYtpwLr1Ol0tFwus+jia8+RhOwPJ+T0dblc5hSQ7XabXR3UoHAxywsSIu6UxRPdjUJaSdnfo6OjvOdZe3djeFoEQByhDXc1QOIh4n4ShdeDYIzuQuEeno5SOmo8pcnFIYo+lnULXECjRgKCl4sK1Cphf/Z6PR0fHyullIuoUgzVx+GOG593xuWFSwMvbNTf/H3659/+kfq8H/9pPfIMK30Hnn947fGTeu1b/qEk6WP/7h/Qq/5MCAqBQOC5xxOf+7H6wK/80N7z/b9KuvnhH6lX/sUQFAK34koICpCd8khCT3vAMr7ZbHIBPT/CsbSre+67dFmXwYs7LhaLnDtPFf4yf9sLFELiIVse3d/tdi3RguJ/HhWt67pVzd9rIez3+0xGIb5ldJzIt5M8RAecF4gnbil3Qjyfz3P/RqNRniPvB/CxNE2Tj4j02gdYyN1C70dRutDDaxDR1WqVx0r7h/rgxHg+n+f7IWLMZjMtl0t1Oh2NRqO8ToPBIBdm9PoY4/FYKSUtl0stl0stFotWKgQWeuAnZLioxfwy195X5soLgdJvxusng3A/SLi7WlJKWTBgX5M2AiGncCGuAd+n7M8y2r5arbII4JF7yL+fQuJihT+3XhgSHHLt8HopZLgLiPcl5boXflKGp670ej3N5/NWsVT21tnZmeq6zk4F0nRcmClFF9bBU57cxREIBAJPhX/xe/5/+unXPqK9Ovr6X/dqbX/+3fe7S4FAIHBPsX5or3f9+U/Xh/8fPxmnPwRauBKCgqRW0TbIpUf4/ZQDSCLvEQ2H1HmdBEgcUWKs9p4zvlqtMsnFBg2ZApBIj1gTEff8do+QYgvnFATP53cy5bZrFzAk5bF4tNht90SzvZo+7XsUGKcAhHm1Wmk8HmdBxu/tQg6k3avk+0kVzCHX13WdRYFSGCBVgnFDBplrn5Pyb//d+zgYDPIcQ3BZ98FgkOe9rDVAio07M/ykA8g2cyzpYOSc8Xuuv7sxEMFwJiCueCoIogBr4ITbXTVu0+d5GQwGeU59b3h9Dq8p4f+FvNMf2vG0Bn9OfD29r17bgfb5KeswsNfdneFFEP06njfaZJ4Zs9fIcDGAmgnb7TY7cXDJHALzX9ZPOCSKBAKBwCH8kn6tX9I/dzP9ib/yiHbzl6j6ub5e+b9GjYVAIPD8QNOV1id7qfNAHKkd+BDiSggKbl/20wy8Sj2RSiztTvB5XWqnFUD6IV44CLz2AeIFpxV4oUKuJ8KLJVtSy8rv1fq9D2V+vDsHPKXDxYiyACHzQ3qCk2d3BhCxh/gfygFn3IzFP1fWVJDaKQKequHE8NDa+fqUdR8g0tRbWCwWmWjzuUMF+/iskz8XiNxlga3dXQqsBcdr0g9qDXiBPpwIXlAR8DnmwV0KuEWcnPp6IgK4QMNYfb5uVxPikJPE9xTCEPvViTb3OJRCI106eHx+SxHBCbzvL56ZQ84ET2s4JDhwja8v/Sv7y2f8mV8sFnlduA/PIk4NF8c8VcX76H0o0x4CgUDgmeAdr36jJOmvPP7R+o7/8GvU/e4fUbPdPvWHAoFA4AFB8/JH1d2stbtx8353JXBFcCUEhf1+nwvzOYGDdHqBNgoNkk/uBMPTDyBt/X4/W58hWDgWIBvL5VK9Xk/L5TJH712YID2CFAkKG1L3wa36RIaJpuKAoO31ep1THxAiiBR7kb3lcqnVaqW6rlVVVSbNOAwgaH7sJAXpACKE2/c9+kzRSupO0Lb/QPS92B9CjEfLSyLN2N1NgIui3+/nVAPmhddxXJTuDdpA5HECyJgRB5xs13Wd60AwD6w7fYKEeh/L8UM0nfA72fTCn6w/a+LuDiLzvM7aEVn3dB+A6FPXdU6P8Nx/d5+Q9lAejcle9poKvuZE8yHlXnzU01y8DoOfjOGOhHJ9XChwR4O7W7xehTs7eBaZO6/ncOhkCZwcOJlu3Lihuq5vcVf4M+L7y5/DEBQCt8Ph3RQItPHlD/+0/tg//nF93qe8RttfeM/97k4gEAjcPZL0U6870Sv/7UiDf/MD97s3gSuCKyEoNE2TyXpKSScnJzln3SOORHQh1xCLqqpaR/AdsiyXNmsnj8PhUHVdtyzPRPCHw2GrVsN0OtV8Ptd+v9fDDz+cRQtqLnhahBNkL1a42+1UVVXL+cDnPPrrhIp+ObnzEyMgWOPx+JYTApgbiKfPCfZxRIy6rvM9EEI8hcAFBD7nKQ4QwzJdwR0jXoF/Pp+3ai4Mh8PWulEbgfGBkrgeqh1BSoSLLDhS3G4/GAxaaQZem4Cceye1jKlMx2C9mRffZ16Tg73oxQEXi0VLDKENF1FGo1Eez3Q6zXNIjYfj4+O8ZuxRF+M8/QAgnHgdE68F4fBnhz51u93W8aK+9jxPfM77QDs+J1yDULHdbnV2dtZyFDGPiEWSdPPmzdwOzyrPmdedYP25t7tUXGjzNfb+BgKStJ9M9MW/5rW69o+n+scf/u/ud3cCVxyD1NOf+6636A/85T+iR97wtvvdnUAgEAgE7jmuhKAAQSalAIIMwaHooosKnltNxBcS6G4ErocwYM/3GgRcRwE3yLQXT+z1ejmSu16vNZ1ONRwONRqNbsmt53ra46hEivW5sEAf3MYOASNCXtrBvaK+R/IhsYyf/rr4wJjop6cb8F+KVuKuIGKPpb4s8Oe59GVxSrfOk4ogKQsUuAqIppfpLfST+/F5T1nxfcCpEdjluac7C0qi7KS/3+9nFwoCkVvvme9SvCjFFD/xwVMpfA8iKJTpJH4/J7rsKXcR+CkK9IsCpuU4Pe2AfcDz1ul0WmkSR0dHreeuTFngXogHpLEwjy4+uPDCfz3NgH6W6TEunPnc+8kSXsvETxZxR4SfEMKY3XngDidvKxwKgdth+3M/r7PNS+93NwIPCD5l0NMv+aKf0A++7NP1YX8+aioEAg8EmkZ/5Gv+oH7lF/5X/d0P+6773ZsWrv/g4+qurut9nx61ngJXA1fiX8ueZ+0ETFLLkk4aQPkPfS+K50UEvRI+RM2r5UOkvObCYDDQeDxWVVWtz7qdfbfbaTKZ5CrzTnwhX4gcRJTd2o7TwesYuCjhBfror0evqVdQEic/BpH3IWUuYLiwQN89eo1zw/P2iXxjp3eSTF+9EKELDj4vvO5pFL7uTkjLnPpSaHKC62kOfpIGxJC94UeNMifeH/YAKS0U8ERQKSPe3N/bqOs6p1W4w4Zry1od7nagT55C46Ta96nXy/B0E1w3Xv+CueZ+Ppe85+Mo3SyH4KkK9MX/9uKlrIkLFu7i8doF3o6vows8rJvfm3ViXrnfof3pThDvD6erlC6bQKDEj/3UK/SGmy+7390IPCD4R696q37Hb/uPWn3Or1I6uhKxnEAgcAe8+G98j77rOz5Bf/WJj7zfXWlh9xM/rWv/9fH73Y1AIONK/F+t2+2qrutMeCGWEKrtdttKieC4Q4/ku8DQ6ZwfDQipImLs5Myj2S4oQKYoUugFEDkZAEGASPB4PG5FliF11GpAYFiv15rP51oul5rNZpm4cp3XOgBOpEpC5iRQUp6nwWCg0WiUT8wo3Q+MlbG5qMLcS5d1AYjwMv9O8p3Uc3+i7x49dqs/8whp85x+d0t4igr3w9bO2BE3nLB7ygcuDdYVkuhHerpg5DU8SHdgzVlf1strMDAWiHRd17lGxHQ6zevMPOHGQUhyp4OLK+xvnz9JrUKR7BPGzzPF3naBLqWU97XXRKBdd36QKoKg5VF+3w9+X3f74PJw+HWcwMHzyfyy/ggWiDIIguxB6qn4iR2eHsU9mEMft6dAlc+A98mfr0DA8TGv/wF93Ze9Rq/7s39Dg/TU4lsgIEn/24t+RDff8P36nb/yNdq9/wNSfL8EAlcer/qf36Z/9d2/Tn/k7/zkc/Jdv2o2UZgn8MDjSggKvV5PL37xiw/mO5eWZY+wu23aaypIylFaTh2gDUgiaQ0ppVsi7p1ORycnJ5lI+WkT9Aui6NbuyWSiXq+X3Q2Qo+FwmFMfILWLxUKTySQXRuTHI+cQUOkyou51JCDU7gDgCMz1eq2qqlRVVR4DpMmjx54CMRgMdOPGjVb6xGAwyGQMElmmeDBnFBak35BzjvHjqE/mq2maTIwhivP5PI+NuXaSC3H0PYLo4VFr5pA193HzGkKLp8gA5hmXBykMuDWo2QCxLQsDMvebzUaTyUSz2Ux1XbfqKfg43JFBzQ1f//l8niPoXIeg5e6PsnYD+4h9OJ1Oc9FHj767Q8LrVbhbxF0ynhbgn+ca6lp4Kod0ma7AczwcDrP7Y7FYtE7XcMHFayu48wMxkrZxMpFCg1PH5xnXDWkk/uxzPSkfh0S+QAA8+sb/rN/+H75Q//Tbv0F1p3/nDwRe8LjWqfQ13//P9Xv+zJ/Q6T+ImgqBwIOA4bf/kD7vU16j/+93/zN9fL+6p23/xtf/Qf3it/5YaAqBBxpXQlCgOCD1EqTLSCmkDni+uRMTz9PnvaOj89MYyog6xQA9L76sCUD004kU5JtChZBMCAikGTLN9fQRcaPT6eRjKr34I9FYr+3AWLgH/S1THTwKTb84HcLnGRLl+eheF8Cj/pA35pcTGZh3BAMvbucnKeAQgdhyfxd/IHBe1Z+x0Ae3vfv8unW/LDToaQOek88Y/cQD30NOeJlnnCTsMT7nrhEn5JvNJrsYPFWCvUg9DvYrJNf3LXveBSWEkdulubiV31McgEfsS0HD61+UcIHBhRsXFPzZYV8vFov8HHQ6nSyY0Rd32vAM4gRx9wTXl8+oF0H11Ad3q7irxt0YvmdIY0Lwqus679tA4KnQrFbav/Nd+u/+0h+TkjT7NTP91K990/3uVuCK42N6I/2yP/Rf9R8++tP0qj8TokIgcNXRbLfavue9et1f/J+06yfd/Lid3vnbv+6u2vyJ9Vxf+NV/Qi/9T+/QbjZ75g289/36iH821s/+lkr7fridAvcXV0ZQcHuzE1mIvdS2U0uXooOfGkBxOOkyynx0dNRKiyCi7eSI1yF3kBDvE78Ph0MtFotMHv0UAHdBOKlzgUJSrsHgxNfHRVs+Zndl0FfcE34cIILCbrdrnXLg+eOQLZwBjN+jv94XhBUiuymlvC6eMsIJA8wrtQQYD2Tb19ePraRGAyTPaye4E8HFGdrmvwgRZS0H3vfUEemSiLsoAFFlX9JHrmOey1oQ7DNqHDD/Lm4gsHiffD/Tv7I2B2vsYpWnCpQCmad+0EaZ1uF1Jg6JCmVKCIJL2XeeFfqCCIeo5PNYFl/kfv4slGvCuBAWPB3KBTFPs+A6FxTYV4yrrKfgp1X4d08gcDs0q5Ve9LXnhfYmj3+qPu/lv6H1/rX+Un//w/7j/eha4Arj61/53foNn379fncjEAg8XTSNHv76cwHw4Vf/Cn3eJ7S/6/vdnf7hq75dvXTnYMS3zGr9+Z/4H/Siv/k92t3x6sPYnZ2p893/RScf/6maviJpOw5RIXD/cGUEBSctkEFIq+efQ9acQHnBN8i9W9o9TcJz+stCj6PRqJX7Dcny6DbH802n0xYJ9iMDpcucbY/kQ1KOjo50dnamGzdu5OMC5/O5Tk5O8uchdv45otmIHogM3G+xWGT3Qbfb1XK51PHxcW7j7OysFdl1q74TTukyAuzRd1JHPIXB8+W5N06G3W6X611IagknFOTbbrcaDAY5Ms04iDRDTF3cmU6nuRYDqSVeKwLSieBTpkv4fHJPPzrRRRbGT3oB79NfSdml4UIGJBanBgKUn1DgtSKkS0HBibM7SVw0cpdKWaeAtvwITgQuFxQQXHjmmANcLJB2njM/BcJTH9xtwl509w2gmGRJ6FlbhBfqW5SpRj42H7d/D3C0qYsOLgzRHnulFPO85gZzGAg8XRx/4/dq9o3t11Yf8Sp98N/P1FUU+Ay0sdj0NLrzZYFA4Iqh+9b/rNlntF9bHB/rZ350qUc7d/6u/6P//kv1MV/6n+6+I02jR77ubeq+7tP0xCdIzYfIWJm2SSn0i4DhSggK2I2peeC2aD8CEcIGEfXK9tJl/noZfYS8eTTZCyxCYD0VgOKCpZggKRdQfOKJJzKxJvefyDRE1Yv6YfseDod6yUteohs3bmQ3w3K5zO1DhKjSjwUbwYLxQYr7/b7W67WWy2WrZgR9IPVjsVhoOp1KOifKkH0nqtRM8IKIHhV2ErvdbrMwgNBCDQccDmdnZ62UBT5LUcLhcKjxeNwiqD4OxkI/6rrOe8FPyXCByV/jGo/ee6Qe94pH+dlnZUoNtSsQENiDN2/ezJF35mm5XObIPGSVveHHYnraA31ibcuioF6I010RpPB4VJ/rva4I42T9Ic08Q+7K8dQinCmsAc8l88n8ekoF6Quz2SzPLcITrhV3aYDhcKhOp9M6VcQFF+aIvpQCAP1zIcT3Bc8+bgv2ll+/XC7zGEsxIxB4ptj+zM/p937C59zvbgSuII43j0XedCDwPMF+MtEf+8Sn913/i5c/ek+f/evf8AO6/okfq5/+3cf3sNXboJE+9q+/S9v3vO+5v1fggcGVEBSoS4AjwQsa9nq9nIsOaXaLsnRrLneZd+51GXife1E4DsIPQZcuTzmAwEEm+/1+Js/k9ONGgPCMRiPNZrMc/ZaURROK0Y1GI83n83yNR2shi4gm/X4/n0oBEYLgMgcIA5CjQwUl/WQH5phrset7bQQIHXMOEXWHx2azyYLH8fGxlstldjHQpgs89Gm/36uqKtV1nYsdIkYQCafegOe742iAjHs6yGq1ap3Y4c4C+sF6sA604ykSzCdzxZ6A1CIqMcflnqQNd9a49d4FFunSru8OBK/zwHy5MIIgg4DhJ1Gwl0ejUZ4LT2PxVAP2AWKRF6T0sZQ1KQ7Bi04eHZ2flOJ9dZEDp4C7R3juyj3trg9/vhFEGJvvbXdYlH328fM539PuaggE7gpNo92Nm/e7F4FAIBB4jnG/vuub7Vbdn/55fdQ3vUrv/LyR9r3n1j7QrNbS/tkmawSej7gy/1qGRPZ6vUwoIHLl8XKr1aoVTYZ8HcojhyQcIkCeUjCfz1u1F8rcco4ChGTgGnDbtNvS6ROR2N1up/l8ruFwmCOfLlhAnojQ8jk/Co95KdMQIGuz2axVnBKRwEmVn0bAnNP32WzWiv568T9vg9QDxuunc7B+ZTqIF8HzgoBEjFlnxBV3lODEcEcK6yK16yJ4IUfm2E818M850cXy7wX9/NhAr7vA/vB8ff5L37xQ4qFaDZ42wGsu1ng9BfYXY3PXAoIJwoUX6OR1H7vD3Qk8D75vvTCkE3uvgeDuAV7z1CIEKV9zTyNyp4eP24ta+ikv/nn/u6yF4Gtd1uHw/c1e9jQJF+zCoRAIBAKBQOCqY3d2Jn3/j+naL/0UTT8saXN870WFzirp+GclXQRqAwFwV4JCSumPS/pSSY2kH5H0xZJqSd8k6VWSflbSFzRN8+Sd2uIf8dvtNtdM8OPuIFK9Xk+LxaJFsKw/t9ibIUNE/N0STQS7PE6PaCf9wWoP8UkpqaqqTHh43SPAOAcgJNPpNLsvXAxwQWG1WmVyLV2mgkC6T09Pc7u9Xk+zi6qwCBOTySR/DiJGxJ96A06cZ7NZzpVHUEA88YJ+Pm4n1hBnTrqgH7xP/1k3CHhZEHMwGOS0Bwo6ugOjjFg76LunJmw2m1adhtI9wF6AYNZ1necfAuxOBebBBQVJrSMoSxIP2S7dHRDtqqpaEfpS9PDoOEcYegqLC3CdTkej0SinszhBxxXAs1TOhYsrXtvB19nTXCj26e/5+PivCx2emuFCEtcjVCDo4Y6p6zo7L1iTUoxwAags5OjX+Hte3JT1KNugrsqDgnv5XRwIBAKBZ474Hg7cd+x3evjvvE36kk/TzY9N99SpkHbS4MmkR//2sy8kGXj+4lkLCimll0v6I5I+rmmaRUrpzZJeK+njJH1n0zRflVL6CklfIenL79TedDrNdvWTk5NsY8elgK1+s9nkonySWhFOSCtEAtLg9nUICeQhpZTTE6h34IICqRbY8yGFpD8QjYe8U5OB/iBibLdb3bhxI/eJIwSHw6HqutZisWgRLt7HZXDjxg099NBD+Z6MEcLb7Xb16KOP5mMbIXuQVU/JWCwWuU4BJJ90ktlslt0X0nk+OX2CmFIboNPp5M+sVitNp1Ndu3ZN0iV59lMw+Bzr4Cc2sB6z2UxnZ2d5LahL4cUQSbPwVAb6QyoC8zAajTK5dWEDoYNxcQ/WjHFDdD3VgToO9Lmu63wMKSTVi4uyVymM2DSNqqpqpYSQHuHk1o9c7Pf7mczjJIEYHx0d6fr161osFrlPpOIwl8fHxy33CWIGfeM9f3akS/cEbgj2Av0lwu/Pln1HZNGAmgrlqQnMOXUkXFTApcBecFHRxQyvdcG1jAMXEd8BzIu7iBBdvJ+srwuUVxX3+rs4EAgEAs8M8T0cuEp4+O9/vx7+5I/TO37nvSv7+tLvblS/5fvuWXuB5xfuNuXhSFKVUtroXIV9j6SvlPTqi/ffJOmteppfnhTk22w22foPIcH6Dpn26KPno7uFG7h13/PFnUxRpJFIKoXbnFBASCDn9M+dERDImzdvZpIKsSHtQZKOj4+zG2A8HucoLm14nj84OzvL9Rn82D9IH/fzMZc2e6L9FJWEAFJAD/IMUfPTDLDBU+OCqLpb28uTB7iOaPVoNGqlA3hBPY7p89oBFMjDno4Q4PZ7RBGPVpMWg7DjhB0HgefeUxC02+3mgpHlPnKrvwsZkvL+8ff9b+ApMhBZxkutD6+lgbDGeiN0zGazVn0Pimx6mobb/kk98b5wX3c+0Caf8bQb9hjj4r8uPvgeLms/MLfsDy8cibBAEUfmyOfZXQXeV+8HLgzuiYjhzgZPrWAcnn6EWOVr8gDgnn4XBwKBQOAZI76HA1cD+526P/lz+uh/9Eq947Unao7uLjjyEf9ipf7b36Nt1E0I3AbPWlBomuYXUkpfLeldkhaS/m3TNP82pfTipmnee3HNe1NKL7pTWxABiCkV8ktBgeg85M2jlGU+urftJLckE9ybkxKcNELAXZDw4yD5vM1Jy1693+9bkVbIICdIQBo53QGS5eNxizYRei9CyD1d3PD+OPGGtDGny+VSk8kkE0vEEtrwowMZv6c18OO554vFouVCYFyli8Tb9MKRftIB/Uck8vcQHPibtfd7Mn8uCvme4jOkrXghRy8M6XuM+WTtmAO/l6cPcI9yTfxkB+lSOPL19D2MuOB1K3wfIlqRHlSmNpQ1Cso9S8Tef2eeff0OCXms26FoPuvI/X2t/ZlmDnBOSJd1Vcp6CPTBBR3u484c1taPi/S+s/98rX2eef+q415+FwcCgUDgmSO+hwNXDbuzM6X/8nZd/4RfpbOPeHY1FTrrpNO3S73/8k5to7hw4ClwNykPD0l6jaQPl3RD0j9JKf3uZ/D510t6vSTVdZ1JBUcwYkGGaPE+NQ8g/4eio06iIRmQHyzmRGuJ8DrRhaj4aRO0Rx45kXknUV5vwH+Gw6GqqsrvEz2v6zrb9Ck86bn4LlqUooJHaF188GMzaYcIMzUFPNVhsVhk4cDz2Jlzv8d6vc5CD1FiHCOQTuaGtfM+43agMCXE2o92pG3+9v/6e9yPdIFDwlL5vtckKGtEdLtd1XWdXQPr9bpVXJK9AyHGqeHknT0BXGxxeC0IFyYYq7sYGDtiEATZT+Vgf/R6PVVV1RKBaNNTeUrHDvfhvt5/LzTKPNoznEUd/nb3ia9fKU7Qj81mk2umpItaId4Pr0XirgcfB/ejtoPvH5630uXgc12eDMKeLp/vq4p7+V08VP1cdDEQCASe14jv4cBVRLPd6qE3vk2713+aJh9+4cocNNIdSkR1V0lqpP7NpOt/L2omBO6Mu0l5+PWSfqZpmg9IUkrpmyV9uqTHUkovvVBiXyrp/Yc+3DTNGyS9QZIeeeSRhgJskK35fJ6JBVZ4P12BvHtINGRvs9loNpvlYwuJ3DrJxv4NeXGCWBYZlJSJKSSeCHGZMgFIBXBw/CUuBYgpEVp3aCA4EMUlsurFEika59Fbag44OeVahIvxeJzn5ebNS7WxzP1fr9e3ROg3m40Wi0WLQHq0X1KuXSBdukUgZ+S3uxuB8brDgTWTLkkja4fwg8jjIpFb/emjk2tIulv/j46Och0I1hMhAIeKk2Dap2/l+BEwPLeffjg5pz0+70cqupCEg8XrAWDLx1XBnsVd4Y4fwDyzN72egp/asd/v89yXQomnKfR6vbxPGYsLBpB1Xwev5UFKRbfbzY4kxEJEAK/fgRPEU4PoC6eM8MOzSw0Pd7q4CMnY2NsuUDwIQoLhnn0Xn6TrD9TAA4FA4IogvocDVxaPfP336hFJnbrWT/+FT1DTferrP/rr3qPtz77rQ9K3wPMDdyMovEvSp6aUap3buz5T0n+SNJP0OklfdfHft9ypIcguxAXiQA79bDbLxwoOh0Odnp7mwnleO4H/QmK8iB9kqbTQS8ptL5fLbPnH3u82bLdcQ2S5v1umASKIE0W3qNNHxkweP6IF7Xp6Bv9NF4UdU0o5+k+7kC9PK+AaTk44OTlp1ShIKamu62yl51rILIKJpxC4MOBjdxJXpgtAtplDakrwPikvRIqHw2FL2CAizudZLz/i0FMm6LPXx8ARUVrmETQg7OwTF4s2m42Wy6Xq+jKCcKh2gEfCe71erg1Cm4gAvhcgwj4/9NeFAopIcj/6z31xqeBkQUBgH5ROBPrgtTEQu7zwY0myKYLoe8HXmbUoUxDYQzyf7Dlqg7CH3XXAOrjzxwUOfz79WcNl4Z9hjnwf0XdPdfB6FFcc9+y7OBAIBALPCvE9HLi6wLU8n+tjvv6Dd7x895735c8EAk8Hd1ND4ftSSv9U0n+WtJX0QzpXV8eS3pxS+hKdf8F+/p3awuosqXX0onT+D/vFYpGJJekDfpSk50c7iSCiDoEjOgz5AmUBPEn5Ws/b9+rxUtvW7VFfSbmvkCG/j3QZXYXIUF+A9yBdXhzQI6i0hfvCUyS8aKAXmFssFqrrOosKRIPdDk7qBeQP+3d5hKBH/vkspJT58+tYD7eR+/oxvwhFXrvC54Cot9fFYM9c7MtbXAPcy3/3NATGBsmlv566wbqVQpKLEvztKTaly8FFEyL0pVuAz5X1B7zuBukWXksDsYK9SFFD1oZ+ky7hY/dUEuaZvXGImHtNizJVh7G72FeKUMBTO3CGuODnAiBjLsm/r6XXivC9QOoN88m9eNZcWPJnskxXuYq4l9/FgUAgEHjmiO/hwAOBptHu7e+4370IPA9xV6c8NE3z5yT9ueLllc6V2aeNlFIuTOhEhn/kL5dLTafTTKAhwxAzIrG0JV1G5Z0AOaHg2EQnFhAkJ0lO0iCZkJqLOZCkHFH1IpLUSCjJIIQQUQRSTN6+pxL48ZkQJe4HsS77IrXt+JC7xWKRUyKwx3s6CLZ6rPEch1lGxyFybiGHtHrOO2KGHwVYFrlDcDgkVOBIcMLvNQd8f7ig4iTS00F8ndzO7/NIhJ5IOsIQ84gdn2M9XWzxMXm6B3PMcaKbzUbz+Vyj0ShHy4mGO1EvnQqk6fg80XcnwOy14XCY98TR0ZGqqsqpEjgLWDevIeDpA4eeK0/BAaQAsSfc5XE7wYVnj7EzZn8Gyj3PnLrboRT2+Ezp1imdRf6seh0JT7MpnRxXFffquzgQCAQCzw7xPRwIBF6ouNtjI+8ZINrSZe49NQPm83l2GjRNo/F4rLquswOhLBgHAXHSQTFBiORkMsnFECEwROextUPa+v2+6rrO93IBw3PjfSyDwUB1XefrSM8oLdmQUuzffN4r33OyhUe9IXSkKUwmE00mk5bAMRqNst1+vV5rsVjkAniQT88vh9wOh0Pt93vNZjNNJpN8/+FwqNFo1EoVcXcA68D7zDeW9sVi0Zon7r1cLm8RCTiykNoCEGdSUeq6zmNdLpeaz+d5DJ46Aul10ui5/Fjf3dVBmxBj34fb7TbvHXebeOqBdOm08doPvk84tpM9SHHApmlueY20naqqWqKCp4Ywjy4gsK9BafX3PeDr7+lG1JzwIzUh59yb52A6neZ7Ify4A4HPIF6QYoEYQZoNz6y3wz183/jz5yIUa+hpF4hnnU5HZ2dnWVQohRFH6WQKBAKBQCAQCAQCbVwJQYHIIMTGj6jzqu8UaoTgQXQ6nU4mI+4EgOBSlNAr85O73e12VVVVjtwPBoPWSQee3w7xoX/SZTRcaufSe8SefkH4GBcR5DJf3AUF+uBuBsgWUWdSKw5Z/8uq+YvFIvd5uVxmkYSx4A7p9/tZXMGx4OPxIxF9/XCFQB69nclkoul0quPjY1VVpaqqMllm3lg/xrJarbJDwFMJPKVkMBhoNptlkoho42kTkEacAvyOYOTX0qY7Wvy40uVyqbOzszwXnnLje8bJqJN5rmcfelqK2+/ZH9QRWa/XqqqqdSoKe8udBV5fwNeJfrgLx/dqKawwP8wDYgXt41xxcczvUz4XiAfMg5/kgkvB71O24+25UwFBgXszbq/dgHuo3++rqqqWYFiKXO56eEBqKAQCgUAgEAgEAvcFV0ZQcDixIzLvufLz+VxVVUm6JA+H6iLwX6zsHiElag/cZg1Rki4L+pWReP+bvjqhcls3hNiPGXQnQXl/jyJzDZF3/6y/B9H0YxvdDcFrnv+/XC5bzgl3LkDIERMgu5BtL9bndnsq7pOqgUDD+s3n83z8JKKQR7JZU7fKe+oCAgcknPnld4hiaV+H+Ho9AfYVc8/9EBdYeyfBzAknVhxaK+aGPpZr5uvjxSIdLk65awK4Q4K2D6VdlH97ektZ/8FrI6SUshsBwu7PUtkm9y+Fi7KOgqcScYIFn/XntxQwIPm8x+9eg6Os78BnPEXJUzvoTyla+DwGAoFAIBAIBAKB2+NKCAolceQf/C4oLBaLTHCwVkNKnNC59dmL9znpgUC6E2I0GrVSCbwIH6ceOBGE3DlB8UJ63JP2mqbJx1t6nQAXEUi78AguBAlBgXxwJ5cQ99Fo1Lo/hLdMrYBoLRYLzefzFpFjHKyD1D4OkM9yzB+k0UUfyDEOElJJ1uu15vN5y77v48QF4adr+O8IFohBbmdnHiHoZQoMe8Qj6V4Tg73h7g9EB4qC+t7w4z9ZF/pZigrubGGO2R9lAUaAYIVQ4mIJ7bDeTuK9sKGLVx7J9/ECnzOeHcQgnjv6wTXb7TbPubfn88x+81oWLlBQX6L8HihFA68T4kIMKEUFh5+6Qb/odykoIAKyJoccEoFAIBAIBAKBQOAcV0JQcPKAldtPXIC0U51+Op22HAF+fj1ky4l5p9PJpI5CdrTtJNn7Ial1HZF/riF9gXtANCFN9BVChiDgpxw4iSRa60f1SZckEbGhrmullHKEHMHh6OhI4/E4R5aZC+auqqpcmJF+zWazHO33VAcXSKjBwDGHTlad/HsBPU+B4HhFF3xwRvBZd27476SGkGtPTYzFYtFyCIzH4+xUYIxO3p1kQhi9hoCP3ws60l/a9L1JHyRlBwMnkCBeONl2scD7gIjhEXjpsv6H1x8oaxuw/3ideaMd3Cil4OPXuGhEmy7SkeqDm4fxIR5Q96EU8hg7x2D6GFwU6PV6GgwGSinlcTn5d9dB6ezwVB1P0fCaEF5g1Z00Lrr5etOGO1YCgUAgEAgEAoHAYVwJQQE4kYBo8jOfz1u51svlspUaUdd1i9wQ/ayqKhNAiCYigpOU9XqdBQEI+XA4zEQREu+ExCPcuASw5RNJh+xcu3ZNx8fHLdGCNqT20ZW4Jzy660UYcW5wXyeHuCEgXdSPYH6deOEagHD5sZdcD5gXXofMlsLN8fGx5vN5/tx+v8/RfYr6QZYRWjx3frPZtBwbpcuA8bp13h0E1B2AOLMG7BNvi70wn8/z2J0AsyYU6WSOvd5CeRoCfaAAIOu/WCxa6QKIMC7clOQWQQC3Qr/fz/OHwMX80xcXrHwfsc88su+1MPx13+PMFbUwXBghTcHv6w4X7wfOCS/USXFT7jEcDnMKjn/Wn1N3DfD8IEIw9z4udyOw78r0k6eqkxA1FAKBQCAQCAQCgdvjyggK5fF30iV5cJuyOxPKXHki2RAbovMU2PNIdxkx9jPtKdgIOKoSIkt02Ymwk19J2RKOsHByctISDcp8cG8H0uw55P4eqQTY/t3ezr2ZI48e+/yVYoHPt0eCaQ9ArhE4OEmC9RkOh5kIM0cQUvqACIMgUxJV76OLRh7Zp3+eEsAe8hQKj/JDPH3MknIE3sfpa+q5+F6bw0UF5oYaD16w0CPoPkZPHziEMl2B+/K3p+GUgpekXJATUcLbcGeE79eyQGH5mbJ/Tv75jLsM6Bv/LSP/Ps+HnAYl4XehxwUFd3xwXZlGUop53qeyn1FHIRAIBAKBQCAQuDOulKAA3KJN9BdC46kQJfHw4+WcMHmdA4/oO3ADkK5ABBiSTOE/TyXwPjgxoz9ERL2IIGPwYwXdrg5h4pjBsogjNnROt4AougWc60q7eOlU8Hl1J4SvA9fzHs6Cbreb0ycGg0Few8FgkAUHL9LnEXzuURbs875zP19vX09PU0EM2O/3rXQN7sEcEmV3scVTVG43T35SQjknDheQSPVw0A7zURJZfx8i7ac2+P1cMOGz/O31Dpj/7XabT/hgnVwcOVR/wPf7ITHnqVAet+jPBz/csxy3p3eUAlDZDxej/Nqyf15jwd8v17F8DsKhEAgEAoFAIBAI3B5XQlCAJJeRZ3L2nbBKl1X4IRxuR/cjF916XTodvBhgSRogHOv1OkfWSTUgUu55707EyogwhP7GjRs5TaHMr+f31WqVUzy4H0dl0h+i5P4+Fn/u6VZ5yD/EHAEGezinHNAviKanOHg6B+IFba9Wq5wDD1E9OTnJY3eyTjs+z6y//83auROEOSjTYphDiLUXFSS6TpqAu1n83i5KpJTymrMv2VuQXI/2lwKVp3O4EOHCjbtp/Bnw39394FF7f9/TGEjNYO0h2i7U+bGSrJWLcIgStItAwn09tYXPHMKhGgT8Thvci+ubpsl1Mcp5cfHB96+fAFOKbv4clv0ory/hbpc7CSeBQCAQCAQCgcALGVdCUJAuiQPHyCEmUPzOSSVH5hHFh0T7UY4e6Sxt1ZIyacct4NZqiJ9H/b1gIvUWIDfz+VyLxaIVlYeMcb+bN29m4k201O3kKaWcZ59SygX+EBL4ccu3p1U4eV+tVloul1osFplUer0F5oPaEMvlMueWcySk1ymAbHI9dRfm87mm02nuS5m37gTc8+TdPVBGrlljHB2AdjiVAnEBYah0pFDjgToNHvF3eNFGT3vwXH2It7sZ2GMu1NCXo6MjrVarVuFPT82AsPqJFMCFB0g/hRh5DtjLLm44AaafrAH9pLApxSRZT0QU3weexlGKMA4X01wQdEGJzzE37u5ZLpdZwDmUkuAuFn8e3WXj+4j59toKflII/budK6b8cfdEIBAIBAKBQCAQaOPKCApO5onkQ1whJhAEhAAnlG77h2BAOIguO0GAIEqXEV6s8sPhMEdmPaWBnHRSICBoHIfI553oQQA3m03L7o+rwAvkIRDw2cFgkAm4zwX9dms//URMQFAgGk3dBSLYZZSXeXAxwMkUcw/54/70FfHEo8Q+Fx5JRgjCaeJrxekY9A+LO+0QxXYcIovuSIFMA8iy7zn+67Z4bwM3S7lf+ZzX9CiPo2T/eo0ARJPytALmzu9Rfs5rC3ifGKN/3oU0nCg4GDabTUsE4Tmiv4yBsZVz4GPmvk9F1L1OggtvgH752F2QoF88r+4U8nW5XVpD+by4aFT21dc2EAgEAoFAIBAIHMaVERQgrJA3Irle6A6SSd4+RJLceMgGJwXwOwXysK9LakXtiWA6uZ3P59k6DfGDdPnxgFSlXy6XOUoMsS8Lw0HO3DLuaREUNESkGI1GrZMnPL2CiLdHpJkr8viXy2U+0hD3Bi4H6fJkCUibV8AvUw68ToVHqyGmHt13kum1MCTltYO8InZAMmkLUo7TgDnlPalNwMt0GR+f1xPwmgAuGLgzoEyNKN0tPkaIqtv32XsuKPi685qnqTC3iCxOil3cKdfeU224h7/m64mQQ7uk2LCvB4PBLYUsvQ8u1LmIcjt46gZ9YE0AzxbwmiiliMJecreSp46U/6U9FxNY46fq86FUjUAgEAgEAoFAIHArroyg4DnSHNUIaZrNZpnsOjmGHLidm3bKiDRHQPoRlF4oELEC4jUcDrMosFgsNJvNcj+Pjo40Ho9zCsR2u83HE5Kj7Tb0MucdZwCnPSAqeIFFiLbXCcDpgPug3+9rPp9rNptpPp9nws3P2dlZPjayqqpbItde08Dz9N1y3+v18mkCLir4urkLwQko4grpBG61p7BkVVV5PiD+nuay2WxyQcz1eq3FYpHdEIhB0mU+/263y2kzkvLpHH4qwHK5zCSedcDFUjo+9vt9q9YA6+AEHkLO5wDXeGFId8xQ1JL0CI45daGojKS7oOTPjaTWfiudBjhRIOysB84V9ny5F/3eFBflOSrJN3PjryPE8HyVcJfO7RwOvOYOJBw/vtY8696Gr5WLK75PfYzM31PVWAgEAoFAIBAIBALnuBKCAkQOIsNr7gbw6L7/o99JCiQc9wJtUlyR6C/ECfiRhJCyk5MTTafTHO1/4oknckR0vz8/MaCu65yj74TcCZ7f16PWCBe8BvEnSr9YLDSdTlXXdYvQzefznJKx2Ww0nU51dnamGzduZCFjtVppOp3qySef1Hw+z4R9vV7r+Pi4NX9eK4KI+aGCdIzNaxZIlwSXSDMCCYJFGcUmb97FgaZpVFVVFhWo07BYLHR2dqaHHnoo9xOnButb5ri7g4I5djLrcwHxpbYF/YOIezSbuWLty3oPTkLpq0fXJbXqHUjKLhI/YcTdED6fnu5SFkmkHy72IBrwPCEO4XqRpMVikcfGXh2Px1nwmE6nB9MJeHY8/aW8BqcGQpanvFBokuvdWcDrnqbA5xij70dcFt5WmY7ifWOOStHAnRd+fVlzIxAIBAKBQCAQCFziSggK0mUkkSg2JByBwI/DcwLo0V8n64gEbrn3lAVSGgD3I+Jc13UmG0SSZ7NZKw+7ruunPEkAEkdKhacUQLr9MxAt0gFKAgrJnkwmmRRREJJ6CRAtIvHT6TSLKBSWJA3AI7Me/YUM04eS9LFeEHZPjXASy1x53QbuCUHEacG4S4cA4oq/zv29wJ+T+ZIolmkELpawdyCl3k8n9KR0+PyAckz0p6yF4KklKaVWWorX9nDXhd8PgYO55m9fS09HID0EVw17BmeHn+awWq2yW4Q+4nhxou5Rftb4UNpDWbfA96UXUXT3AP0sU1H4mzZdtCudBYzH90MpFvnecJSuhUAgEAgEAoFAIPDUuDKCgpM4IqdErHu9Xs7vxr7tkVmP4Hruu9vC1+t1PhIRJ4KnE0BmeZ9jEqVLskpaA2Sq1+upqqpMvKV2pNOL3fk4PSXA78HrjMcL4knKc0P/ERQQFRi729bd+YBl3ck5Ag4CAvd0y7sLNQAyVooAftoGYkhZt8DnAus9JzJApl3ogHCX9Q3coeC59/55UiMglh5x9rl1x4HvxZRSTvngPuzDQ3uY/eik1T/rNRBITVmtVnkeOfWAvel7oQTOAndpuBMDMYe1oN2maXLhU+B1QkiD4BoXE7wuxKG6Ez73/jz6HivTQrx95oZ2fJ19Df058tMzWEffD2XahPexFA5cCAoEAoFAIBAIBAJPjSsjKEACIFge4aToItFJP04P2zxE1vPEy7adyHMkI1FnL97n0Vfy2qfTaY7645SQlB0PJWEujzMsnQheT8GJMaSLPH8fB/nmnlJxdnams7Mz3bx5M5Mxt51zPfPqjofSRu4R5Nv1s3QKeKTcI96SWq9xL+bF12m5XObxESXH2cG6slZel4D59jHjmPA+0n9PV8BK73NMGxwLyVwg0DAOLwrJ+OmzOzXoH/d0IO64GIZ4hsDCvTlxxCPv/JfPePtO7J3w8xrrXzpmvDYF7hu/nz9D7lQonRTuyPCjXKn/4W4K31uHHAV+ggfilKQsxkhq1cEoxTh3Q7gIwY87GZgf+k7fAoFAIBAIBAKBwGFcCUGBSDlRUqLtq9VKx8fHrXPqAUSDiLYfwQc5O2Q59xoBnnvtBKdpmlw0ELFBUhYVIGLeByc7EFqPjkNE3R5e5mw7EeQoStwZRP9dPDk6OtLNmzfzj6Q8Jk+f4F5OEL1mBYSVegIQfk+h8Dx7Ty+haCJkGrjzgzb8Na7Fls+Pk3mu9bmRlGtk+P45FC0vbfR8BhFptVplkYH3+bzvpc1mo/l8nvvhgo4LUKXl3sksRRH5vIsiTqgZv0fbIb/cx1NSttttdqz4WgEnyr7fUkrZXcPrXuyw1+tlUYF+l+kv9MUFKJ975pLPuSjDuEmZ8HVz5wXHi9Jn5pHr/XQWrjk6OmoJGay5u2nc/cHnSjcDz20gEAgEAoFAIBA4jDuG31JKfy+l9P6U0o/aa9dTSt+eUvrpi/8+ZO99ZUrpHSmlt6eUfuPT7YiTJsiJH6vn1nTICGSbHy/U54TS3Q8UweOenodeWt65BnHByb8TEScrJbnxiKuTUT/GjrEcsnb7HHDaxGw203Q61XK5zELMarXSYrFoFfrDPQHhL4skIjLgXsB9wZjKonvUifA5cCFIaosFUlsEKh0DXvwRV8ZqtcptOgn1HHoXaOg/e6Qkhh7lp59OKrmXCwBl2kmZelCeJMB6enqLR/R9jn0/H6qzISnX6zjkUmEey0i8v+d1Asr96tfh/vH0H2+L58tPdXC4KFKmRjAnpbvB56ncJy5wecpNOVbmjf3pQhxtl+KQP3eMp+xD6crxZ/cq4EP1XRwIBAKBw4jv4UAgELgVT8fP+0ZJn1289hWSvrNpmo+W9J0Xfyul9HGSXivp4y8+87Uppa6eBlxQcBt1WR8hd/yCfEP2vV6BpxtAHr291WrVSotwZ0KZKkDfDsEFCx8DOFQ3wMfrgkJ5WoF06aiAZHNcJKICwgGE2IkYkefyWES39wMXcJx4ucvDr/HP+bwecnocKmDo6+fknbVxUaG005ck1AUFj/j7NcwR81NG+5kzUPb/UJTaibOLHT43Pn7mijlEvDhEcBE6XCg5tDf8vVJAkNQap19T1hJwZ8chUcAFgDJ9wEm4CxmHrvUUlTIlyGsc+H7w+7jLxQWpsr/sLa+lUt7f05tKZ0157RXCG/Uh+C4OBAKBwG3xRsX3cCAQCLRwx5SHpmn+Q0rpVcXLr5H06ovf3yTprZK+/OL1b2yaZiXpZ1JK75D0KZLedqf7eLQWWz1pD5IyETz0AznwAnVeCJHfvcr+0dHRLYXuvPidt+/2eJuXlrXdC/XxnhdmPETsvPgcn/UUC0QC+j2bzbLFHWu6E1YIGYKM38MJtEeLuY/XOuB6yDlWfK4Zj8cttwNjL08b8Ei+z3WZl05kGqv7ITs6xHs4HLZcJIgFvE+Umnl2gQjxhv763y7AlAKT76FDgpO3U9YcoP/+WdbOCS0OFXdF+BGZ3N9dPKynpxCAdJEewPGY5ake0nkdB0Qdf0a4hvH4c+miBOuLIHNIhPLiqeV8sYd83ny/uHjg+8xPgmBc3m8+QxqS71P2iM9/mSLCvQ+5dO4nPlTfxYFAIBA4jPgeDgQCgVvxbGsovLhpmvdKUtM0700pveji9ZdL+l677t0Xr925I+Ys8OJtWN8hA+RTO8qCeE7QiIATnYa4OJnzYxk9yj8ej9XpdLIzAIJXpklAsjz67WTJhQq3cENYsG9TnNBRkmIINIUhvfAdY/ETAjyy7Dn6u92udXQg4oQXAXQCTJ+Xy2UuiskYXSxgrKVToRxPmcLg43RSTRqDR60Hg0Fur9vtZrEnpZQFB4ihF+os+8M+4Z7srdLZ4nUoeG29XmeyiQhBKgbz4e4MJ8nufPBofUmsGTfrzr19znB1uCjlUX8/yWS/37dqbPBf1srrBrg4xvNZ13VrXO64YG3cEeNCC6Ic81UWP/U58XuW+8bf97l20YI59f7RPsd/8hnmGiHEC0W6kHOFcc+/iwOBQCDwjBDfw4FA4AWNe/2v5UO5AQcPdE8pvV7S66XziDcEGbLqRMWt7E3TtEiytZd/PA0CQjWfz2/JkYY4uSCA1RwiCWl0olsKEYgOEHF3SngagfcT4u4iSEle6C8F90oHxGq1yr/TD1BGi4nEctIDRzSSCkC0ebFYtKLNJcmlTzgCnAhDTt2BkVI6mCZBn7mPW/fdwu6kWjonmcvlUqPRSFVVaTgcSmrXtEBcciGGvyW13BZ+fwgn8+VpGb4eiE5cV6Y/ePTbI+2+/oyV+fCaEWUqDn1zcQIS7nuhTE1gHlzcKveYCxUUpyzhKQ2eIoBTxt0HZdpDmVrje8D3iHTpzvH7+Nz6/nCxa7PZ3HLcaJlK5I4W5s/hfXax8VC6yQOCZ/VdPFT9XPYpEAgEXkiI7+FAIPCCwLMVFB5LKb30Qol9qaT3X7z+bkmvtOteIek9hxpomuYNkt4gSY8++mgDsYFgOJl1MgnxLm3zThC8Dcg9tnipfSSct+NkF5LnVfE9t9pJI/eBtHtUuySU3NfTIkq7ukfSnXR6Cob398Dc3jZi7YUMESrcQUHtAreMe2FAJ6aQOF5z54cTRSepRPc9f95Jqvfd18vz650sujsAgrlcLltFBolas3ec9Dp8Pp1g8p6PlTk6JID4vDv5PfT6oZSZQ6S+rOVAG94nf60UQhBRcNEciuwfSsvh3qyvOxm8ny52lAJAmdLjTg0vnsi6lqkZoHS9eB0JPoPgyBzxneHjRARxwcLnjb4c6sMVxD39Lj5J1w/+YzcQCAQCt0V8DwcCgRc0nq2g8C2SXifpqy7++xZ7/R+nlP53SS+T9NGSvv9OjWHF3+12mSASOZbUsqt7DrUTAeoulFH08mhHLwToZLa03+92Oy2Xy5xO4ZFsTyUgKswJC05gGVvZH+kyuguh596HbN6MG7hw4RZtyH9ZkNKFiENkjnullPI60GZJMkthgt+JFHc6newacGKHQOTuEPrpNTM8cl3uERwE9J2jDam7QF8OCQploU6vKeHEG5LK2nCNpwjgnOG+vj+Zb59fT3FhLrgvfS5TcErBg/HzOik9TnxLd4DPI6kh9MMFMuYJZ447Urh36Zrwft1OnPHnid9d/PDUChcT3KlRkv3SzeKFO0mHGQwGeZ6ZJ8boe7Z0ivh8lnN7hXFPv4sDgUAg8IwR38OBQOAFjTsKCiml/1PnxWYeSSm9W9Kf0/mX5ptTSl8i6V2SPl+Smqb5sZTSmyX9uKStpD/UNM3uYMOG/X6vyWTSstFDNrx4IuSeHOyyaBykYrFYtMjk8fFxJtSQD6z9pcWao/I4whASc+3aNUnSYrHIp0Rw76qqdP36dW23W81msxyBHw6HOWJeWuyJ7ruDwUkvpLIkXbxOioiTU0mt+zAu2ndCfztLuaeYEKmlX6yNV9d3Sz399RSHspI/pPZib+U1deHFrf5c64UWOf6z2+1qPB7nYzFJr3CLvlv1j46OckqD18pAjOG+ODg81YJ7u1uiJNLMRb/f13Q6zXNC+4gMg8FA/X4/18JwIYg1JdXG16wUC3xt/FlyIaoUpBhTae2nL55Cwly5w8DdOPSrBPdnDt2B4K4Y0jQg7+XJD9yD38viquxBF8p4z9OOfA68pgTvuSBU1h25SoLCh+K7OBAIBAK3R3wPBwKBwK14Oqc8/M7bvPWZt7n+L0r6i8+0I5ABoowQCMgGOd4Q/l6v10pR4PXBYKCmaTSZTLIFnloFkHwvlFgSOUmqqioTM4rvcU8+x31Xq5X6/b76/b7qum4JDQgfkjSfz1vklte9L1L7lAV3IDiJpH2vUu/53k70fI7KGhD9fv8WIubpFx6tBk6wvF5EKX44QYfEle26KOKuAY8MdzodzefzVk0A7rVarTSdTjNRdFeI14VgPhB6cESwDvv9PhcBZY3L+h0eOXehoSyqCPmlyKanO3jEn7F4HxFovKgh8+Vigs+Xz7GvSynK8OOFSQeDQWstyroQh/YrfSwdGawZrgzfd+W+QQTw4zMZQ7/fvyXFpnRIUBBUOhf43N3ihThxCpXzh4h4SJgoUzQOpRTdL3yovosDgUAgcBjxPRwIBAK34sqUMHcSkNJ5tX4/Hm6/32fBABJXWrSJ/ONScCs0BIiijx6B9vtCVCDbkrIlXdItZMOJMaLGfr+/5Zg9J5hOjr0tj1RL7Tx47u04lO/v5NWjwW7jd3JWRoMPWdr9v050acsjyIfEDBcKvJggc+cncribAHifEIwoSLlarTQYDDQcDm/pg0evPV3Dwd5yQu1iAgKRj9n3ga8hbTFPTqxdlIDEQnZZN6kdffeTCriPpwP5fV1oceeI18zw/crz5LZ/P84SsYOx305oKsWmMo3A90OZPsM9+SzPcLnv3GHgwoX31d02CBK+5j4vPBeeYuF9KlMtAoFAIBAIBAKBwGFcGUEBi/Rms8mOACKWpAcMh8PsXnBy46QPQj+ZTHI01okyYgXRUYrUlbUHPIIJ6fHUC7e+0wZ2dsgg9vFut6uzs7PsUqAf3I8IPm4KItx83gUPJ62ei+5knc+UgoWfeOD2e9IUFotFXg/Pfff7e/FJiK6TO4/oenSeH7+G97nGRR8IOX+zBsPh8JbaBLhI/FQD1suPImQsZQFDf72soeCiBOMsT93gdSegfgyo7yX+djeH/8217DNEKcQoxARPC/LUFl7jdXemHBJYfN69VgQCk9/DRRKfV2/rkJuDcZdCiKTWUazsobKWQll/wvdo6ZTgufB7lqkv3IPnxEUPv2/ZfiAQCAQCgUAgEGjjSggKLhB45faUkgaDgcbjcYsIuIUdcuSkZDAY6OTkRIvFIosUHhWGFCJUQLoQMCA+uBi4j+fEE1UmzxySh/ug1+vp+Pg4tzOZTDSdTvPY5vO56rrOzgZek85JDSkUiARlPj9HXHrUlaMyPUouqZUX74Ujq6rSaDTKxFWSptNpbnMwGNxySkVptUcAYRyIIz5fDmpilGkekEY/tpE+0X/pvBghbgRqUyyXSw0GgyxElPZ/J74uLvg+QKBYr9darVYt8umk3fvFnCI2AH7nWE5SQ1xI8VQV1o97sa98PyH8eA0Dxkc/PKpOgVNP33ChpBRF3L3gQoOLIKRSuEDCWBiDOxR835TPKOKDixtl6os7PFgLL/TphVa5h9/Li3jSjl/nKPcq61UesxkIBAKBQCAQCAQucSX+tZxSUl2fn7sLeV6v16qqSt1uV8fHxy1y0zTtHHlIlxMUj0L6kZTSpfV+MBjkPkAoIH/+Xpl7ThsQFCfdECJEBfpdVZUGg0HLfk6/vIAjbSFieDpAWWeBOYAYl+4NP5IPwcFrQKxWK63X61zUcDAYtIomegqBn6LgTgCcJZBJ7sn8QOx433Pky8KGXoCQeXUXAH3q9XoajUY6OjrSdDptFTZ0cuniFHNI8U5fs6qqWo6MMkXCx+S/ewQdgu57iLQX9o6nzaxWq9Y9mWvELPZJmf5SEnPff54+0Ov18h5iDvwH1wOCFX1woeBQTQFHKc542gr98DSTMk3C3Q3+XLqwcChdBEeQpNYcHxJXXITzPVaKH+W43NERCAQCgUAgEAgEDuNKCApEfZ0UOdmA7HqKgYsJHrU9ZK8u88oBf0NcnQj5yQNlkToXEsrCiPzgfqA96j9ALt3yLqnlmJDaNniv64AjwO3d/N7v91vkzC3u5T3ctu5j5tjO0uXAvVzA8HVyouafBxBzPlcSXF7zFBMn4Q5IMMTdbfyMpUz14HNOwstUDvrI55wol84MT5Mg5cIj4C5i+HrRN+oVlPuVOaJtJ/QuKHgqAmPEfeD7ijX2+aFtTllwkawk++UalvcuBQHGWK5D+bqvt6docJ9SUOBz7hLyNAjfR37fcj58HN4fH6s7WQKBQCAQCAQCgcDtcSUEhZTO6xq4Ndz/kd/tdlVVlSS1IpG8B2H3HG+vvi/dWlhRauf4S21C5MQXG/5ms2nd33P83fbuggLEpNfrqaqqlijhEVk/KtAJDXPg/cF67lHyQ0UMsXt7oT/SKzyaDhErBYWSUDOPvkb0l74xftahJJQQbz5D2oY7RDy6XJLKQ1Hx0v5/KGLulnrvnxNUXBxeP8DdLqV4RPR/tVppOBy23A2eouKCAnAhyN0PfmKEp/5wnQskXmuAe3pRTh9jGenf7XYtN4o/S76WwNfE18VRjrFce18TX0tfE8bhf/v4fXwuEno6hrd3CKWgcLv3A4FAIBAIBAKBwFPjSgkKkASKA5IfD+mBNJNP7q95esFqtcrkbDAYaLlcarlc3mKx9/x6Ty2QlAtDEsFdLpeZsJBjTyFASKhHwg9F6zlekmiyE13ywd3271F/BAoIuacZuBPBiVApXkCauY46DGXdBSfxfMYJarke7iSggKIX+KOfkGVSWZzsMwaObyxrBTCv3M+j6owV5wqvM29E7umTpyxI7Yi470XW5pDbxVM6FotFFks8zcZTHXBVuFvA70F/vUYApJ822JvMrwskfnwn90EI4xnzVA/mwttwUY4974KDt8VPmeri77soxZyxfqWjwF/3Ip38FyCSuZvD63L4nmDeypQJF2TKPrAf3BURCAQCgUAgEAgEDuPKCAoQA/Kh3Z6OIMAxd9QjcAKJVZ4ijB7xhZyVFf95rdPp3FJ/gNcltVIRpEsistlsMpmhUCDEdrlc5gr9TuqpzUCxRsZJhNsLQLq132sfMF/D4bBF+iDL7jzwlA1Px0gp5RoK0nnhQwQPL5pHFBsS60Ta4XPrNQ0ktepRMJ9EoqVLIkn6QNM0WeQoTwXgdb+HjxVBAJGmLPLp4gftekrI0dGR6rpuRbE91YDr/bX1ep3bhmCvVqtW3Q2Pnkvt0w0g5O7KQEzwoo6ensBaQLidvHu/y31bpk3QN0+r4T7M86FUgvL5LV0fLppwb3fV+GfcvcBa+PwzJzxrvF+mM/gaeV9LV4Q7Obx9Fy7K9gKBQCAQCAQCgcCtuBKCgtSOKHskervdaj6f5+h9v99XVVXZHQBZdIt4WUwupcucdbe1Y5WGfN4uSkn/3PbuUXwnit4X6h14HQPuJSkTUY8yS2oRHtpzIuj9gmC7pZ3PeL/4vJNHIvdcT0qEV87HNeA1B8r0A+Br4CIB8+fRYSerZd6+R6h5vUwP8CMePQUGkYe5RngpT0FwwumpNUTqEVLKfnBPdziUogI5/U7Gy3QCJ9ylc4Hx+Y+LALTpQpevq4+tTBdweOqAv8b+Rtxjn/ial5/xuSzHXrZdpnGUQkWZ4uH38/VzQcbHU6ZQlG4DFyM8rcIFhXAoBAKBQCAQCAQCd8aVERSI0nJsI0Ris9nkoww3m43qus6nEngEGji5dqJCxJcItqQciYVIS5cF60g18P552oCkljvCiS5tUI2+JNbUMXB4eoHn8DsJpK2SiJeugUOpDk68ILelcIP4gYuh0+lkoowoUhZjLMeAa8TXwdeGqD1OEq974KTVHQf0uUw/cPs+/dlsNq30FfYT/fL7HSKcfvSkCw2Mz50pfEZSa61ZX18/L0hZCgn021MvyvQE1pXP0T+EBFwdTsJ9nD7W8tkoSb0Lb6RclKLGIZLvY/OxOyn3uSzvW/aZ/VcKWf68eVpM6XiQdMt63w6H+uJukEAgEAgEAoFAIHArroSg4IQW6z3W/+VyKenyaLyUkpbLZXYylFZlSIFHwvk8BJuq/Jy84ISL+8xmsxbJgGgiPBwdHWm5XLaiok5iykJxbst3kuhw+zvRYSLlkEiPWpMawmcZrxMsTyWhb1zPa6AULw6RMCf0fuIDJA83g1v1IXhejd8dBmUKSkmuGcOhYntlG6XQ4mNxZ4OLFz5u7kcKDO2WqRxef4B2nZD7MY9eRNOPhsQ5s91utVgs8jhxneAO8JQNFzncNeOFDN1Rwb08HYUx+QkavOfCFH11Uc5rcPA52jskmDD/vrfpjx9Jyry584PPuTumFAv991I8Y0+5yOEoxS7G4PPHGgQCgUAgEAgEAoFbcSUEBchMr9fTcDjUaDTKJGm/Py+CCCjqB7n3gm8QIHcWOGlYr9eZCJ6cnLTInd+PYpCQNaLcTuAoxkg0X7p0LAwGgxZppN+0vdlstFgsWoUbORbT0ypSSllQwErvRSL9JAEvkFiCezhhQwzwefOILCSYPpFb78dzQgRxfED4yP33kzWkS9v9crnMYgmRfeaJNBZv7xBR9jadTDK2kqR6jQJJt4gbFLlEaEIsYj099YA+c/8y2u57yl0GLna4S8VrQXCd10tAvHFxxufHhSraLMUX+oPA5XNHm8ydP0Ney+TQM+WnYdBG6Vgo92E5b6VzwsVCRCJPL/K2ec1FK2/P2/D++NjdzePPc1nENRAIBAKBQCAQCLRxJQQFSbm6/2Aw0PHxcS66CPH0goEUX3RrvtSOLkvt6DO2991ul90PEAj/PL87IS7JoF9bRqOly/QN2seOjt2fowZpBwLlkXI/eaEkTU64iUI7CeLzuChog/nxGg3UGGDOuA6XhaeENE3TOtrSx+bryLxvt9t8IgcE71BtgDKyz1jKaDNz4ETvUNTfo/Ae8XfCz2dL94g7GLg/LhbWzEmtCwi+3j5mTwEoI/VO2LnG2ypRvna71JNyj5buAE8b8H3vToxD4oDPi7s8fE/RT3d4lGvpZN9FjjKdAYGprAniz4Xfp5wr78+huWSuy3SK230mEAgEAoFAIBAIXOJKCApNc35U5G63U1VVOjk50Wg0yk6ByWSiuq5zMUZs8RCO0gpeVVW+hvecTPHjxeY8cgqhhowTMXaiTA0H2mUctOXRUrd8e0QcgYTIrZ9uAYlHiPA2nez7uD3a3Ov1WpH13W53y0kWfG4wGKiua3W73ZYbxNtmHAgPXjSSMaSUWjnvbrP32hIu9Lj9nr4jWpRk1+/rufHMk7s0ymKITmhp20Ua2sbF4o4QBI6ylgJ954SP0jlQRtAP1cTwfvlnfK39RALfS2VqQflMle4NhBd3oPi+Ajwb/F7eg/UqU3q87oj3s3wmaNeFiUPpKt5nd0H42H2tua//Xs6Nv097rD2vcd2hzwcCgUAgEAgEAoFLXAlBYb/f6+bNm5nYvvjFL86iwHw+V6fTUV3XmTiSNgCJ3G63ms1mmRSQPiBdRsxxMnjRPMjufD5XVVX5uMGqqtTr9TSfz7MAgLiBXR8nhJ9K4UStrLjvEWAnu54Wwd+kfiA6cD1jQFCQLtMsOAEDcQIizPxA5p2sl0X/uN4dGfzt0X5JLXLq5I/XeY0UiKZp1Ov1smDh+fbMk6dWlPNVujW8rgDuFdpkzVmT25FC5hDBAAcLc4qg4NdxrVvkSYvxKDfXOPEtLfsuduE8cSGgqqr8Hs9BWTuEtSpTFw5F60sBjL/9Wv52Jw3OmtLRUDoLvEhp6dYhncT3kzuMfB/6WFzQcUcBIoanoDA/zH3pEinXx/taChTlvAQCgUAgEAgEAoFbcSUEBRwKy+VS/X5fr3jFK3R6epqP+/vgBz/Ysi/jHPBUBRwJUjtfnB8ECY6dXCwWms1mms/nuZAg5JToPu4AUh+cJDn5wV3gefslGfGINgSUqL7nkzMfAELF593+XebUA9rDgVESf4enH3i0vKwH4aIC7ePicKKGEAJB43QN5sDJH/PLenldDO8nRBsCWdaOYL18/krrus8TkXRI42AwyIR2vV7ndlkr+oRwgbPEo/CeZuNz7xF3dxnQzzL9gP7dTqhhnmjPxZ9SSHCSLLVPPJAuBSTeK98v03xcHPBCnI5SIPKxehpF6a4px0NNFfZ+mXrEPHpKE/OMqOLryXuHBB0XrPwED283EAgEAoFAIBAI3IorIyhADDimrq5rHR8fZ3JBlJvIKS4Aj2ZDDMrIfqfTUVVVGo1Gqus6R5M9pcEr99Onkqh5XQNPMShTLryoXRkVJYpa13UryuynBJQ2dc8Vh5RxXVmJ338nqsxrTpToi4+1FE5oj2tpy8k9JI33ERRwkRDddru6w0/ZcHt8WZeiLNQIcIo4MfY59HQNri9xSMgBvjdZu+FwmI8ghfR6DQvm0tfI3QEulpRr7vC19eKVnU4n16bw9B1P//AxIRaUe8fnmb4fSqE45DZADDrUf9+/zJs/o76OZdoDe9FTPXjGfRxlzYWyj7xenpBRpjGUQp5/vxzar4FAIBAIBAKBQOASnTtdkFL6eyml96eUftRe+6sppZ9MKf3XlNI/Tymd2ntfmVJ6R0rp7Sml3/h0O1Jajvv9vkajkU5OTnR6epodBp5X7VFiJyzr9ToTWUmZBB4fH+vatWsaj8eZhHoOdXksYBlFHQwGGg6Ht1ShdyLM34eO0HNyWdd1iwS7w8EJNtd78Unac3LnUWufU7ebcyoF93BCydjpR0nQIKqQP8+zd7FhOByqrmsNh8MWeWcs/pqnOJR1KA5FsHmdPeJtugDh0XHs+wgafv1T4VA9BBcUWJPypJDyeEvmzufvkFOk7DPjxlXjbhbmzcfsDoNSkCFSz/Pga+/99/ktnQn+nJX7rBSEXHhwp1DZvqc+ePrPobQW3+sumPn9yz17qLjlIZdI+fehIqxXAR+q7+JAIBAIHEZ8DwcCgcCtuKOgIOmNkj67eO3bJf3Spml+maSfkvSV///2zj7G8rK6498z7zM7rOuyYlHeVoNajMmCRrSt1sZahIq02iDEpFRbDUUTbWMjhMaatNZ3+wcJIqjVNCj4Uiu2NmDU1DYWLOACi4i8SO0Kgi9NYXdm7uzsPv3j/r6//d4zv7uz4+59mZnvJ7nZub/53fuc5zzP79k55znnPAAQEacBuADAc6vPXBkRhxUzrGkGrBGwadMmbNu2DccddxxmZ2drI0qNYB6ryJMKIgJzc3OYn5+vDV7WZpidncWmTZvqegnZSKMRw5Ml9PhBOjhmZ2exefPmut5CJjsBANQ79aOjo5iZmcGWLVvqkyy488rIDOCgQagGJo3hvHs7OTlZOzposOquM50JLGqp+qMDQHPbmcbQarWwf//+jr7o8ZitVgt79+6t00VofDGlZGZmpq4xQSOcbQEHjUHdvQcOOldarVadv09jXuskUNfqbNHxUAORziFNW+Dv1OmiUSHqAGDExcjISH2sKZ0KvEd3zXUMGUFBXWg7Ok7ZCFcdZcOfKTM0ojXygP3Ku/055YaOCo5LdhZpBIqOEZ87Op7Yj6aaA+q4yA6UJqdCrmXA50ZP7ch9ijiYpqROC21f3zfJld9TrjymQ8Cn0Ie12BhjTFc+Ba/DxhjTwYopD6WUb0XEKenaTfL2ZgB/UP18HoDrSiktAD+MiPsBvBDAf67QBiYnJzExMYHZ2dnauJmcnMTWrVvrEHMWRiyl1EYecDBsnoZXKaWuuzA2NtZhxM/MzABAbdyyTgPbZBHB+fn5Og1Bd5lpWKkDgMZPTnegYTw3N4dWq1U7ITSiAcAyY4rXaDCrodZUN0GL0TEyg3nnGgGgR/AxLJzfp8YTd7MjonbkUK+Li4tYXFxEq9XCwsJCnduuBh0dCDMzM7Wzh/qlUa25/RoNQAOZOtBx0f7zc2q46y59/hdA3Q+eFKJRI5yHWm9A8/M1ZWFmZqbWGceLBi7QWQNBDV4aqpoGkmXQsc9pMtSLRoSw72qgUycqkxrLOpfovJiYmKiLkGqUB/Wa5yXb13mYj5vMkQk5giBHGuQ0I96vEUGqI51P+vkciZHbz5Eg+jNRPQwL/ViLjTHGdMfrsDHGLOdo1FB4I4Drq5+fjvZiSnZX1w6JhrZryDjTDA4cOFA7HHQnVUP0WRSPhi2LsbEew/T09LICg7rjC6COaNDwcKBz9xg4aABrATkan3RUcNeau6xa1yEXeNT3anSqbtTI07x6foca9HrahBpjalCx33r6hRY95I48j6ykscbIAT02Uk+dYF/ozKAzgTKwXX4mh9A37QqrEaxOIzXgmww/zZ3PxiF/pg64866RDRp6r7LqZ9h/jgXb1d19joPKm41m3s921HGS9ap9UJm0fXUsqfGt7aketNCippM01TnIL46f9knv1WvqFFAHgqZT6HNFGdl3TUXgs5PniqZ+5NMemhwH2bGQX2uII16LjTHGHBFeh40xG44jcihExOUAlgBcy0sNtzUmIkfEmwG8GWgb4bqTWv2+NpS4w6u56JryQONU6wnQIKExojnnTUfU0ehQw5pGFT9HY4jXaGzSoNT7uIPNVz6+MBelU8NraWmpPilBP6uOFnUosL80OtV4UodJLi5IR4Tusmt4PHecta+MDMmOEaIRA4wGUCcIddoUHj82NlbvwteTRyIW+P059YO6z8aqGsf6+byDrQ4gPVFCd7vVgaJy5PHV0Hyi+fxZnmxsU3fq2FC95voLHGPdUaf8KkM2vrOjir+nc0YjENQxo84fdcpQf9on6pfzTtvMqQs6PzS1QR0LQOfJEznSII95jnjI5Gcl11tYSxy1tRgzPZFv0Bx4yelYmnGk8Xpi/Il9iG/fMWgxhp7RzZsx/+JnHda9M3fuxtIjP+mxROsXr8PGmI3KL+1QiIiLALwKwMvLwb/WdwM4UW47AcDDTZ8vpVwN4GoA2Lx5c2GufDYEmPqgRz6y8OLc3FxtzE1PT9dGLGsTMDJAK+Rzl525/0SNF0Y3MN9+amqqwxBlm0351XnHlkY5cNAo1PbU+KY8TO3I7dAJQGOW9/JoSzoHcr48jTo13jRSIBtyhPczSoEOBfaTn2ff6GjhbrI6FDRCQtMeciFBNWBp3On4cQ4wikRz+fmdo6Ojy3bodWyyU0BrdzBNJRu7rOfAz2sofd6JVweQzgsa/rmeANG5AByMlFEnAnWc6xeoQyPvxqvhz/lHpxD7RH2ocd5krCuUTR1XmsajBr9GlKju6MDo5ijITqEmveaxUIdR0zOa+6KRHtnp0+SIGDaO6locW4e/wysxstxx8Ppr/gV/tPmxAQhjesXf/Ow5+Pcdm47+Fx/Yv/I9w0jDvAeA1gtOxTf//uOH9RXPf/efYtvHf9p5sRwA1sA6OGi8DhtjNjK/lEMhIl4J4J0AfrOUMie/ugHAZyLiIwCeBuBUAN85nO/ct28f5ubmakNaQ981zHxychKLi4sdBgANXe5y8ojIvOtPw5TOC92BBjqPj8yF6Gg85ervNGY0ioLRCbojT0M457EzWmB6erp2ZrDooRaey8UU6WDRHXQA9ee17gNl3Lt3by0r6wjwsxohoG0weoQyAQePplQDUE+aAJYbbWpoa70AHWv+myMNmH7BKBOmD7CuxtLSEubm5mrd8ohR3gugQzZthxEwHHOOHecI+6dHJB44cKCjtoWG4Dc5ROhU0vQHbUN3yHPqgX5vLuioUTSc1+rMUD1mJ4ZGyKicGilEOXT8crQHf0edTE1NdcwnttW0859TMthHjZLJUQcayZDv0Tmnz7U+w/lz7Ae/UyNg8rM+jPRiLV7LjG0/Ge/5xueWXX/uxBgARyisJ/7i2LvwqgeObtHUna0T8dnTTlyTToUdt+3HhVtuWXZ9ZuRbAA7P8fKlv/wgfnHZeMe18295E7ZfcOfREHHd4nXYGLPRWdGhEBGfBfAyANsiYjeAv0K7gu0kgK9VhsLNpZSLSyl3R8TnAHwP7bCvt5RSVvyfOSR9Yc+ePR0nLHCHOIfSa/V8Gjuax05DmEazGhHZWMihzjSGtG4DDVitM6BF+3gvDVgatBMTE7WBp6H1wMHdZt6nIfwsfEj5tCggP0tDWHei1Vhv0jPl1VMbANQ73rxPdUAnBfvLCAM1FOmAyY4ajaTgdR6Zyc/q7+hw0LoPjIpYXFzE+Ph4x8kPdGzQ6ZB3sDWlJI8x+63pLzTUGeFAPbA/nGuaxpGN8pwik41dNaC1DS2yqM6BUkpHqo86yrQ/7D91MDU11ZFakGtN5J/1e9U5knft1aBvqmlAfdDhpc4b6kT1mZ0dTTUZmlIS8lzT8dNnW9M/VFalyeGhTp1hoB9r8VrlgQ+/CJOnPIFjplvYUdXTMeubyRjHjqM81CePPYQPfeEVyzbkT75sAft/8MDRbewIue+KMzH9tD31+6u2fgzbx2cb7jx8JZ00NouT0p8Q7z3jn/CuL54LADjxvYFy666GT24cvA4bY8xyDueUhwsbLn/iEPe/B8B7ViOEGpbz8/N1lAL/mG+KVKCBNT4+XoeGa6E/GujcWVbDRHeW1RhR6CRgIceFhYXayGOeve6acndWq9drBX4t6sh78vGEaoRqPj9l1pMDdPc9OxTyjq2mj7D9fCoEP6/GHR0k6pThDi6jBPSa1jZQh4JGUdCZQuOZ79XhQ2OUqQv8LPWiTgCNqlBjuml3vpsDSdMu8m69Rqeoca5joUayFu7Ueda0u89x5UuNcX5fNrxp3KsxrwZ3jhqhs4V602gXOr2ykZ4jaPJOfZ4nTY4J7Qv/pUNEjXSNDFBdsE8qU454UYeC9qMpgojj1hRxoNFO2VkzTA6FfqzFa42YnMTe392Bd5z9FVy85ceDFsescZ48OoNdL7p22fXnnXcJnvTgtvr9MTd9DweeeKInMsTYGPae+3yUFQ71ft9Z1+H82f+TK03OhCPntbOP47UvbuvkOedegm0nn4nRxYKpr2zMjXavw8YYs5yjccrDEUMHwOLiIhYWFjA3N9dh6DIygPcy3FxfamTxnpzrTqOMDgk1SOisoNHF9Aoa1TRsaVzl1AitF6A75jQwNTeeu/DsN9tZXFzsMKjoUKBcuvsNoONndVawT3paA7+H92rIvL70ezXlg7rP48Z+8LsZWUHnC2te7N+/v65boQ6i7MhR50Q+lUBrXLB/IyMj9QkfJDsVGGGR0wY4nvv27esYJ63lwHHQApQcH+qKOuf1iYkJAKgN2Gz40wmi/VejVttuim7INRPUIcRnQ2srsJ+5naYjF/mdWuxSnxN1GDA9QaMZKEeOZsj96tZv6lAjkiiLpqGozHRUZOcI9cH5z2dI5xSjPzSlSMdtmBwKJjEyitGn/Qq+ccWVGPfR7qaH3PVnV3a8P+s1f4j47r31+1JFE66GGBsDRpfP29Ftx+LGK67AzMjE6gXtMd9/U1sPO1stXPb138KB+XnXVzDGGDMcDgUaHFqFXgvktVqtOnKBhn0+mjEbKGqY01HBz9ABkXdaczV+XmvKbeduO++bn5/Hpk2baoOVhirl0OMZI6I+TpGOiGxkqkGozgHqS50GqjOtAwAcTBPQcHrdAWbKCPuUjTsa4zSE9QV0Vt1nmzQyGeHRarWW7YLnyv8atTE5OYnp6enaMB8bG6vlUD2orHoaR6530FRMkoYj9cPfae0MNeRzqDznDnVBBwrHXZ01NIp1DlB+PdZT6zywDepKT9ag/Dr2dHro7/Nuex5n1eHS0tKy9BaNHlEHk0JnCg1+jhcjfPQ+Pj9M5aEjJ8+ppkgEQkdjTmlQx4VG/NCRprUZdPw0FUPXoBzNZIaPR996Jm54xwcwHr3ZmTWmG5/43JXYJ3b0W15x0apTIh7+wqn48unXLLs+GsDMyHDP6edNjOPKe27Cn7zhbRj7xm2DFscYY8yAGQqHAlHDgQYzHQt6NJ/+oU9jRtMLclE3PQKwKXxajXgAHYa7GoWa0kCZ1JhisUjurOspE8wn1+9iOgWNW+1fNoLYR426UL1pSLumPrDfbBNAR7G9/B26I0sHBQ0tdchk8m6uRgGo04BjoGHq1A2NQTpYtJ9qhPPfvHtMI1ENdzVAOTfU+UCHFMde02o0YiP3W50+Gu3C32lxS+pca2AA6HCSUE85ZUHHky8tMpjnquqhKcJB0zj0vaYn6GfVsUZnS9Y/I2l0rCmH9oXjrLVR1IGjKRsaUZTTH/L35wibQ71XmbQ2S06hYlv5WTPDwf1/9yK87mX/gZPGhtvwMuuTE/K8+9g8Hl94JgCglMDWNzyO/Y9Wp4qMjOJH15+GLbNzHR/50Klf6FLzYPgZjRFsH5/FU//6Qew6/ddw/Ie/PWiRjDHGDJChcijkP/q7OQTyPZpnTnidRj0New0DJ0278nQYMGpAjWGt1cBr6vSgEUJnSD6uEWgbaFNTU7Vx1+RM4M43jUatB6Fh99QFj47k9/N37BsdCmosdssr5z10MmgUiRp+1J/qPxv9Om455UB3h3PERjdjTscqRytozYbsSMiRMHrKhR5fmMPnsyOA7emOOCME8lzMqRHsE3fjdex0XCiDpidkZ4c6QrJumnSvThH9XS5K2a1mAtOAVGaSHRUqD8ckpxmxTzonmtIM8vOuesv9alpD9D7OXR0Pjd7JjrimZ8MMnpe++G787VNded4MB1999lc73u943SWY/N/KwTAC3HjmB9el8+sz27+Js87ZhD0/OhOzn19+woQxxpiNwdA4FNRYUsMr77A2hSLrPWrgLS0tYWFhAXv27MGePXvqEHoab7yX38nfA23jfX5+vjYu1NhRI0/zrVutVmORO4bAT09P16H0jFqg0U4d0PjiMY0aks6aDbyXBrq2owYSjU0WjGSEBR0sPE1Dd4vp/KABrgaeOgJ03IBOB0aWSWtB0GjT71J98khL6kmdGBptoU4bOgN0TBiZkA1UyqfpLq1Wq96Vpu7VqcDda3W+qI61wKR+jkY229U2VQdNhjjbpX50B50OBY2iyEUiteClzq2cCpKfJU31yOkATEUhCwsLHc+D9jWncbBWAdvWcdEUBTrwtCZF1l8eT33ltAWNnqA8On55DtKhwrXIGGNWy85Lr0xX1p8zgdz4q/+Mr79vFB/4/PMGLYoxxpgBEcOwAxcRPwWwF8DPBizKNstgGSyDZUicXEp5yoDa7isR8QSAe1e8sbds9PlmGSyDZVjORlqH/TexZbAMlmFYZWhci4fCoQAAEXFrKeUFlsEyWAbLMIwybASGQc+WwTJYBsuw0RkGXVsGy2AZLMPh4opjxhhjjDHGGGOMWTV2KBhjjDHGGGOMMWbVDJND4epBCwDLQCxDG8vQxjJsHIZBz5ahjWVoYxnaWIaNxTDo2jK0sQxtLEMby9DA0NRQMMYYY4wxxhhjzNphmCIUjDHGGGOMMcYYs0YYuEMhIl4ZEfdGxP0RcWmf2jwxIr4ZEfdExN0R8bbq+rsj4scRsbN6ndNjOR6KiLuqtm6trm2NiK9FxH3Vv0/uYfvPlr7ujIjHI+LtvdZDRHwyIh6LiF1yrWu/I+Kyan7cGxFn9VCGD0bE9yPizoj4UkRsqa6fEhHzoo+reihDV933UQ/XS/sPRcTO6nqv9NDteezrnNjoeC32Wlxd81qMjbcWex0eDrwOex2urnkdxsZbh6vvXZtrcSllYC8AowAeAPAMABMA7gBwWh/aPR7AGdXPxwD4AYDTALwbwDv62P+HAGxL1z4A4NLq50sBvL+PY/ETACf3Wg8AXgrgDAC7Vup3NS53AJgEsL2aL6M9kuF3AIxVP79fZDhF7+uxHhp13089pN9/GMC7eqyHbs9jX+fERn55LfZavFK/vRbX19flWux1ePAvr8Neh1fqt9fh+vq6XIer712Ta/GgIxReCOD+UsqDpZRFANcBOK/XjZZSHiml3F79/ASAewA8vdftHibnAfh09fOnAfxen9p9OYAHSin/3euGSinfAvCLdLlbv88DcF0ppVVK+SGA+9GeN0ddhlLKTaWUpertzQBOONJ2VivDIeibHkhEBIDzAXz2SNtZQYZuz2Nf58QGx2vxcrwWey1uYl2uxV6HhwKvw8vxOux1uIl1uQ5XMqzJtXjQDoWnA/gfeb8bfV7EIuIUAKcDuKW69NYqvOeTvQytqigAboqI2yLizdW1p5ZSHgHakwrAcT2WgVyAzoekn3oAuvd7UHPkjQD+Vd5vj4jvRsS/RcRLetx2k+4HoYeXAHi0lHKfXOupHtLzOGxzYj0zcJ16La7xWtyJ1+I+r8VehwfGwHXqdbjG63AnXof9N/EhGbRDIRqu9e3YiYiYBfBFAG8vpTwO4KMAnglgB4BH0A5t6SW/Xko5A8DZAN4SES/tcXuNRMQEgFcD+Hx1qd96OBR9nyMRcTmAJQDXVpceAXBSKeV0AH8O4DMRsblHzXfT/SCelQvR+R9qT/XQ8Dx2vbXhmo+rOTK8FnstXgmvxZVYDfeum7XY6/BA8TrsdXglvA5XYjXcu27WYWDtrcWDdijsBnCivD8BwMP9aDgixtEeqGtLKf8IAKWUR0sp+0spBwBcgx6HjJRSHq7+fQzAl6r2Ho2I4ysZjwfwWC9lqDgbwO2llEcrefqqh4pu/e7rHImIiwC8CsDrS2knJ1VhRD+vfr4N7fykZ/Wi/UPovt96GAPwGgDXi2w900PT84ghmRMbBK/F8FpcMRTPndfiNv1ci70ODxyvw/A6XDEUz53X4Tb+m3hlBu1Q+C8Ap0bE9sojeAGAG3rdaJUH8wkA95RSPiLXj5fbfh/ArvzZoyjDpog4hj+jXfxkF9r9v6i67SIAX+6VDEKH162fehC69fsGABdExGREbAdwKoDv9EKAiHglgHcCeHUpZU6uPyUiRqufn1HJ8GCPZOim+77poeK3AXy/lLJbZOuJHro9jxiCObGB8FoMr8UVA3/uvBZ30Je12OvwUOB1GF6HKwb+3Hkd7sB/E69E6XMVyPwCcA7aFSwfAHB5n9r8DbTDQe4EsLN6nQPgHwDcVV2/AcDxPZThGWhX5bwDwN3sO4BjAXwdwH3Vv1t7rIsZAD8H8CS51lM9oL1QPwJgH9qetT8+VL8BXF7Nj3sBnN1DGe5HOw+Jc+Kq6t7XVmN0B4DbAZzbQxm66r5feqiufwrAxeneXumh2/PY1zmx0V9ei70Wey3euGux1+HheHkd9jrsdXjjrsPV967JtTgqQYwxxhhjjDHGGGMOm0GnPBhjjDHGGGOMMWYNYoeCMcYYY4wxxhhjVo0dCsYYY4wxxhhjjFk1digYY4wxxhhjjDFm1dihYIwxxhhjjDHGmFVjh4IxxhhjjDHGGGNWjR0KxhhjjDHGGGOMWTV2KBhjjDHGGGOMMWbV/D8+BOmrUJ8HEAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 30422 18820\n", + " Min thresh = 1000\n", + " Not Sliding\n", + "\n", + "\n", + " Winner = Not Sliding\n", + " FP Patient = 019s_iimage_10705997566592_CLEAN_ClassS_27-155.roi.nii.gz\n", + "\n", + "\n", + "019s_iimage_10891015221417_clean_ClassS_142-270.roi.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADYCAYAAABberBAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADwVUlEQVR4nOy9eZikWV3lf96IjD0ys5begQZkkUURVFRwAQVXFFcEdQZBGBQcFUcZ0fnNOM6MDI7L4DJsrjgiCCiiosCI4oiyCIoyLAKyNjQ0XV2VmbFnZry/PzI/N897K6qruquqM7Pqe54nn+qMeJf73nsjOs+553tuUZalAoFAIBAIBAKBQCAQCARuC2r73YBAIBAIBAKBQCAQCAQChw8hKAQCgUAgEAgEAoFAIBC4zQhBIRAIBAKBQCAQCAQCgcBtRggKgUAgEAgEAoFAIBAIBG4zQlAIBAKBQCAQCAQCgUAgcJsRgkIgEAgEAoFAIBAIBAKB24wQFAJ3OIqieFdRFA/f73YEAoFAYA9FUXy4KIpHnuOxZVEU97yd97nd5wYCgUAgEDhYCEEhcIejLMv7l2X5hv1ux62hKIpHFUXxxqIoThVF8cmiKH61KIrl/W5XIBAIXMooiuLniqJ4f1EUG0VRvLcoisfvd5sCgUDgoOFCC7Nnu178XRy4NYSgEAgsxqqk/ybpOkn3lXRnST+7ry0KBAKBSx9DSd+gne/g75b0i0VRPHR/mxQIBAKXPeLv4sAZEYJC4A6H22qLovjPRVG8vCiK39ldkXpnURT3Lorix4uiuKkoio8VRfFVdu4Ti6J4z+6xHyyK4nuza//7oihuLIriE0VRPNkV16IoWrurXx8tiuJTRVE8vyiKzqI2lmX5u2VZvqYsy1FZlicl/aqkL754vRIIBAIHB0VRfEFRFG/aXY26sSiKXymKopkd9nW738M3F0Xxs0VR1Oz879n9rj5ZFMVri6K467nctyzLnyzL8r1lWc7LsnyLpL+W9JAL+GiBQCBwIFAUxX2LonjD7vfsu4qieLS994aiKJ5svz+hKIo37v73/919+R+LohgURfHYoigeXhTFDUVR/MTud/KHi6L4rtt7vbyt8Xdx4NYQgkLgIOAbJP1vSUcl/YOk12pnbt5J0n+R9AI79iZJXy9pRdITJf3Poig+V5KKovgaSf9O0iMl3VPSw7L7/Iyke0t64O77d5L0n86xjV8m6V237bECgUDg0GJb0g9LukI7hP4Rkp6WHfPNkj5f0udK+kZJ3yNJRVF8k6SfkPQtkq7UjijwktvagF3B98GK795AIHCJoSiKhqQ/lvQ6SVdJ+gFJLy6K4jPPdm5Zll+2+5+fU5ZlvyzL39v9/RrtfGffSTsOrxee5/VuDfF3cSAhBIXAQcBfl2X52rIstyS9XDt/gD67LMtNSS+VdLeiKI5IUlmWry7L8l/KHfyVdr6Iv3T3Ot8u6TfLsnxXWZYjST/FDYqiKCT9G0k/XJblLWVZbkh6lqTHna1xRVF8pXa+mM9VfAgEAoFDjbIs316W5ZvLstwqy/LD2hF2TxNpd79PPyrpOZK+Y/f175X038uyfM/u9/qzJD3wXF0KhudL+kftiMyBQCBwKeGLJPW18/furCzLv5D0J9r7Hr29+I9lWU53/0Z+tXb+Nr6giL+LAzmW9rsBgYCkT9l/jyXdXJbltv0u7XzpniqK4msl/aR2nAY1SV1J79w95jpJb7Nrfcz++8rdY9++oy1IkgpJ9VtrWFEUXyTpdyV9W1mW77sNzxQIBAKHFkVR3FvSL2jHgdDVzt8Lb88O8+/Yj2jnO1iS7qqd7IOf90tqZ9XsI+d4/5+V9FmSvrwsy/I2P0AgEAgcbFwn6WNlWc7ttY9o53vy9uJkWZbD7HrXneng24P4uziwCOFQCBwaFEXRkvT7kn5O0tVlWR6R9Kfa+UNVkm7UTkgMuIv9983aESfuX5blkd2f1bIs+7dyvwdJ+iNJ31OW5esv3JMEAoHAgcfzJL1X0r3KslzRTglDkR3j37HXS/rE7n9/TNL32nftkbIsO2VZ/u253Lgoip+S9LWSvqosy/XzeopAIBA4mPiEpLt49ox2vkc/vvvfQ+2IueCac7jm0aIoetn1+F6+PderIP4uDpwJISgEDhOaklqSPi1pa9et8FX2/sskPXE35KYrs2LtKsC/qp3MhaskqSiKOxVF8dWLblQUxWdJeo2kHyjL8o8vytMEAoHAwcWypHVJg6Io7iPpqQuOeUZRFEeLoriLpB+SRN3t8yX9eFEU95ekoihWi6J4zLnctCiKH5f0nZK+sizLE+f7EIFAIHBA8RbtkPx/XxRFoyiKh2snU+ylu++/Q9K3FEXR3Q0Xf1J2/qckfcaC6/5UURTNoii+VDuZYy8/z+tJir+LA7eOEBQChwa7uQc/qB3h4KR2/uj8I3v/zyT9kqS/lPQBSW/afWu6+++P7b7+5qIo1iX9uaQzhdX8iHbKJH59N/F2UBRFhM8EAoHLBT+qne/YDe2IsYtCul6lnTKId2inVvfXJaksy1dqJwT3pbvftf9PO46Dc8GztLOq9n777v2J83iOQCAQOHAoy3Im6dHa+W68WdJzJT2+LMv37h7yPyXNtEP0XyTpxdkl/rOkF+3uEEFOwie18/fxJ3aP/77zvJ4j/i4OnBFFlCYGLlUURXFf7fwh29oNBgsEAoFAIBAIBC4p7Docfqcsyzuf5dBA4IIjHAqBSwpFUXzzrtXrqHZWyP44xIRAIBAIBAKBQCAQuPAIQSFwqeF7tZOx8C/a2Ud9Ud1vIBAIBAKBQCAQCATOExdNUCiK4muKovjnoig+UBTFMy/WfQIBR1mWX7O7e8Oxsiy/uSzLG/e7TYHAfiG+hwOBQGD/Ed/FgYuNsizfEOUOgf3CRclQKIqiLul9kr5S0g2S/k7Sd5Rl+e4LfrNAIBAInIb4Hg4EAoH9R3wXBwKBSx0Xy6HwBZI+UJblB3dTTF8q6Rsv0r0CgUAgcDriezgQCAT2H/FdHAgELmksXaTr3knSx+z3GyR94ZkO7vV65ZEjR1SWpebzuXLXRK22p3vkxxRFkX7m87m2t7e1ubmp+XyuWq2mWq2mpaUl1ev1dI35fJ6uwY+/z334d3t7O7WjXq+nY7kOP0tLS6rVaqktW1t7WYC0kfsVRZFed3Acz8y1eY3zt7e3NZ/PK231vvB+4v16vZ7aKCn1lbeJ97xveHa/v48B7/n9+dnc3NT29naljXk/5+Pt9+Y6/l5+j/w6+fHe32fqr3zMF40RY8Ez++vMEY7P56y/58jvveiZ/Jm9nxkHH2fO9fYtuhfnAo7P+8DPrdfrlWswrt7m/LPp/ZB/tv1+eT8t6rf8eRa9nvfFmfr+1sZkgWvr5rIsrzzt5gcft+l7WJLq/V55/d0K3TRdVv0D01s7NBAIBO4wTDTUrJye/j+Bw4Hb9F0c38OBQOCgYkMnF/5NfLEEhUVf+pW/0ouieIqkp0jS6uqqnvzkJ2s6nWo0Gmk6nSYhoNFo6MiRI6rVatra2tJ4PNb6+romk4mKolCz2VS321W73dZ4PNba2po+/vGP65ZbbknvXX311Tpy5IgajYaKotDW1pY2NjY0Go00m81UlqW63a6azaaKotD29rZms5nm87lms5nG47EkqdfraWVlRcvLyyrLMl1jOBxqMpno+PHj6vV6arVamk6n+uQnP6n5fK56va52uy1JiWBLOwTfid/29rYajYba7bb6/b4ajYbG47Gm02kSLObzuSaTiTY2NjSZTCrksNPppGO2trY0HA6TqLG0tKTV1VUdP35czWZTkjQcDvXpT386XasoCrXbbS0tLaksS02nU5Vlmcah2+1qe3tb0+lUk8lEs9lMs9lM/X5f7XZb3W5XvV4v9WNZljpx4kS6/ubmphqNhhqNRmViTCYTbW1tJSKH0LG9va1araZGo6GlpZ2pOp1OE7ldWlpK7c3FnVyQcWLLvYqi0NLSklqtlra3t7W1tVV5D6EEAWk6naY+abfbarVakqTRaKT19fU0rlwTLBLJaH8u/tTr9dQ/tInrdjodtVotNZvNNEbj8Vjj8ViDwSA959LSUjrGyTLnbG5upmehLRy/tbWV+mx7e1vb29upv1dXV9M8Zn5tbm6m92u1miaTSRIaeJZarZY+S5ubm3z+03UQxzgnFy3ycUAI4XPVbDbTsePxOAmKLnpwXRcIJVUER4RA2kg7t7a2PqLDibN+D0vV7+J2Y1V3utd/0Gec2lTtX/7hYrcvEAgEzglvKV+/3004H9ymv4njezgQCBxU/Hn5ioV/E18sQeEGSXex3+8s6RN+QFmWL5T0Qkm6053uVLq7YHNzM5GHpaWlRNBms1kifBAZSYm8QaQ4dzabqdFoJJIEgZROX630lV9JiZRDSCA0kBtIja++5yuzfo9FrgbOcdcB14YEQZYROPIV3Xyl2cUJ+orr0DeQp2azmYQY7u9kChLuroz8vdwZ4MchRvADOeWaHE//Mk75+OSr54wlY+Tj4q4Qb3vuBOAa9JWPC33mzgsnsTwXz1qv19VqtVLfuQuEZ8vHmufy63v/+JzJ2037vB3cw4UU5tOi1f1FDgxvn79/pnm2yE3hn43cJePP7cj73cfd7+XX5DWe3Z0j3geL3CeL4HMMJ473zSHFWb+Hpep38UpxrOy86q13TOsCgUDg8sBt+ps4vocDgcBhw8USFP5O0r2Kori7pI9Lepyk77y1E3w1FsHACSkOAkgXq6eID91uN620tttt1Wq19L6v0iMo+IqlkxRph3QgXkBynejkzgInWlLVHs4P7ggnsawYl2WZyL/b2LmOE2Jvg5NsJ5S0x0slWq2Wut1uWu3n+G63q9FopPF4rNFolJ6fY/z+Zyo18ef2/vBVaifLkGAnwrST8XIC6OPEa95XW1tb6ZrNZjOJL7SPMUc0cYGEa8xms9NEGPpzaWlJk8mk8oygVquleQnJZ6ydUAPa6wIXYgtumfl8nq7hQok7B7wEgmsgaDCfcCzwvIvGzkWNRS4K73d3LIBcLOCafI63trYWll4sEjPONKf8Jxc7Fs0hH9tFokcuMrgA6N8DfswhxW3+Hg4EAoHABUd8FwcCgUsaF0VQKMtyqyiKfyvptZLqkn6jLMt3nen47e1tTSYTzedzNZvNVNoAWWq1Wjpy5EgibTfddFMqXYCwYQWv1WrqdrvqdruazWaJjEEScTMsWnnMCYg7CVzwoJ0QVVwVWKm5RrvdTm1utVpqNBqpnIPVY7dlc74THSzj9Xo9iSyQ9Pl8nkQAgAjhZQLNZjOVIeDswLGwsrKizc1NzWazVJYAyaT/6Q9ItbctJ2ju2OA4ShMo26Bvvd/9+FyscTeKtJdlgbDkVnZIMNf38gAfH7+v9z8ikhNVb6c7BbzEgPnHuHM9BADIdW6np3/q9Xo6ljnt5QKUEtDGyWSiVqtVcc7kfel9kzsSXIxw0YIVel5njLk2AkEu6vi9+RchL3d7+Bj4mPP+ouN9buVOCRfT8jE7kzskP9fbnosKhxW39Xs4EAgEAhce8V0cCAQudVwsh4LKsvxTSX96jsemP+LJEBiNRmnV1leVfaV9MpmkWnB3JtRqNfX7fc1ms0QaIGkQQV8Fd2KRt4v3y7JM2QHT6TStCjvh93N8lZvjIGeQo2azWQlvXLRqnIf70ZZGo5FW81nZdrcCq/UQxKIoUl+SZdDr9ZKwkGcRbG1tpawF2kt/ut3fSwy2t7c1Go1SOyGkEGyIIDXujAFuEMaIe/iquY+fk2DEGeYIpNxXxt0Cf1vmYx7C6E4Rv79fn/7kvxEx6KdFpQ1cL3di5PPABSeul7sD/F+e40wBjV4u4Q4AFxvyPvH8AXd0eDvdUZCXsTBWnl3gc2ORcOTlR4tEPj6D7oTx58n7ift4NkNeMuJBrIcZt+V7OBAIBAIXB/FdHAgELmVcNEHhtsCJYqvV0tLSktbX11OIG0F4eRaAtLeCPRwOE0nHsXAmC7rbxxdZonP7tYsAkHi3k7td2sPgctLCSjnntlqt9N+QpbzMwNvmhJaVcIQFJ3dOCDmvLMvkMCDMDreG2+Zns9nCsUG44FkhgzkpzAMP3Snhdf0AR0Au8HhJh9fh+wq252FAVF0MoP1OjJ245kQ2FzBcXOGYXECgHAYxhnbzu49fLkA4wfWxdaeC2/k5JxckcjLu/+YZCj5HvS9z8Aw+Ti44+NxYVDqQiyOeewE88BG3Ti6qLdqdxa/v/eSf2XxMz+SCyR0xfn4+RoFAIBAIBAKBQKCKAyUo1Ot1dTodlWWZauFns1lKk3ey5lZ2jnEberPZTI4AVrRZ2WVFXNojThBHt9F7Dbnbuz1XgR9fdac0geu7td2t9+4gYPeCXFDwa+QBdIucAqzU4/aApLltnhV0XAmSKmUSTnrdZu9ZFPSrk8pcqGFsvTwhX/mFEOYijRNXX+V28cOzEXhGFxXo63y3A5A7EHIi6WOeZzJ45gXnu1DgpNgdBe6YoV/zZ8lLFXh90ecmb4OTcvqddtGP7uhwYQbhLn8mfs/FJu9Hf7a8jbznvzNOvtWqP2Oe/eB9684N+jAX4Pw6vjWqP5d/3lwkOpMQEQgEAoFAIBAIBKo4MIICluVOp5PILlsTsu0gf/Q78S2KIpFxCECv11Ov16uQVkgg9edkBeQr4QCyTPv4mc1mGo1GaQs/ShnY3tFFj5zg5fDtExe97/cGObHm/pC9fEXfCRwOCwgyLgWIXaPRUKvVqqzaluXeNoM4HCBknU4n3RuhhjYgaHgAomcY0H4yM/x938Yv74fcpu4Bk4ztdDqtlFDklnwEJMQMHy/cLPk2g/5avV6vbOeIQ8Hb6sSU6/uc8hKIzc3NM+4+wj24nrscfM7nLgEXKbx/cLPkogfPlechOPLcC3cnME9cxOC5/Zm4B21GUHE3AnOUuYBYVK/XKztX5M+EwODX9+d3l5OPTT5++dwJBAKBQCAQCAQCi3EgBAVJqeafOmhEg62tLU2nUw0Gg9PIkq+GzmazSjhep9NJ72PVd4cCJBryOp1OTytTkJTu724EX7WGCG1vb2s6nab2QMwXWc0BxIicga2trUr5hLRHMDc3N9P2jr5y7MKCEzm36rtt3FeKyUng3DwUkv53Yi3tuQq4tt/Tyb4LCe7e8Pc5h2vQBzhQcgs848br8/k8lcAsKoXxnUA4P3dKeP/wTI1GI7XBCaYLJB7giDjkLpbctcB57qZwt4uXitRqtXQNkJdo5HCRYGlpSb1eL/U/QouPHc9Pvyxy4jhJ97DKvFSBNtEG72cv+fE5losgzIdFJQeLyhO8nS4AeZvy6/gzuwPIhRrfbcY/F4FAIBAIBAKBQKCKAyUo5JZxXiMQkAC2fHUa8oINneBGzvXVUN+NAZLDlntuu89Ji6+25vZtfqcNiBv+TL4FpYsMLgz4syCC8Aw4BFxEyElWLrJIVSu/27o9uBDy7H1NH+UCDySR8+kHJ4/ePsir972vEks7VnsPlvR+zZ+JNuclChBKBIZ8lflM1nuO4R5usUc8cNIK/JoQ0LzvvaSCe+er8O588XHMz88Jci4o5OSYoE3PW8hzNvxZctKcuyM8L2LR8/gz85nJnRAuyPEez+zlEl6+4E4IjnHXj+d25NfKnzHPy8h/uL/fh34LBAKBQCAQCAQCp+NACAr5aqfbxd1lwEozK8Jui3eC12631e/3kw2bbRH5gZT6dTwvgTYBD8fzVWeOg0B7OcF8vrdFohPG3F7u+QFOnhAPcD9MJpNKqKKvxHI9J8AgFxRqtb0dLyDBuBRwSYxGo4qo0G63Uz/QBhcUfAXbBR/e41h3cPgOGcPhsCImOdyKThscvrLMs7gLBdeD9w+rzrTbSxm4h5PaXFzyc/35aY+3dVFgoN/Px53z+W8XE9y+n5N4X2H34NJWq6XZbFa5njszENn8Xk7iXYzzHRb8s+mCjwsFuUvD+99dCjmp98+0fx/4sbSTa/i2sAhVeclMLuzk/bfI8bHotUAgEAgEAoFAILCHAyMokEcA+WYnAhwErNA7WWq1WikHgJyEpaUldTqdlMXgK8Dj8biyDaUTNcgIlvo8WFBShRxxLtbyyWSi4XCYyAmlFxCr0WiUVs8h8Lw3m81SrgNtxjFBmxAUcBS488EdFHlqv1vxOd4t/xxDiQhbQxZFkcLs3MnhgYSQVd+Nw3eOqNVqKc+An1qtlraRZOy9BALi6H1D6QHXdULvAgnXg+j6uHlph+douGPCQz5920mu4Y4BX2mfTqdJkPHSDReXaBNiQLvdTnPRxyIXTADP4m4bB0IOnw8cJ1524u4E2p+7ZvJ/aZMHSLqDgzZRYuK/+zzIhYVcnHCRIhdMzgR3EdAvLia4+OclR4h9XqqzKHAyF7cCgUAgEAgEAoFAFQdGUGBl0f/gZ2UcJwHvu/0Zu77Xm+eJ+ryG7R4i43Z4SKeTVAiJb33oJIzV2Hp9Z3cKJ8ztdjuRFQ8ApF2UEiAmQHB9RRaiiqAwGo2S2EF73FbOyrs7JJaXl08TVHBLuOOh0+mo2WymIEzag5MAQi5J4/G4svODuxXy8ED6HIGkVqulLAgn5/nuEm5lR0CBJNNu+pJ+8NX3ZrNZeR/yyOuIGPl2lS70+Cp7nn/hjgZfkedenuEgKc0tADF36/6ibAN3seSOAAg8bUEUQVAgPNKfP1/Z977guNw54OUhuZDBOe4+cCHK78dcpc0+T/y4MzkIcreNl7n4OHDcImeEizw+Vi4sutBxJoEnEAgEAoFAIBAIHBBBQdqrveaH3QsgOh6450TedybwVWMnttIe2YDcQyQ8NT4nXZIqhASyxT24H8f5TgGQbwhrLirU6/VEslnhz1dEec7t7e20iwSuCOArv05MOY52uO09ryeHiNJuX0l3BwFlHRBlt7d7W3KS6GMM0eaajLGXnbiowNidadU6J/Y+Fv6s3CMnmS5keZ/mlnkvRXCxxFfvXRDJyyIWEdOc4PvrPm/ddcH44GLx83InibsNGOc8ePRM988FhbwkyduZk33PHsjLRfx58s9Wfv6ZSg7y9tNGFwkX9TN9mj9bLubkokcgEAgEAoFAIBBYjAMhKLBa6gQEm3uz2dTm5mYinu4QgJCy9WF+LQ8uzOvfWb2FzOTkRNojLrgjeM8zA7gnxBaRw1egFwkKjUZDk8kkkVFvb05WNzc3NZlMUnsXrWTTby4oONn2FHxfBV5kSffdL3gdEYNnI5cCLFpx5jgnkJyX70zhJSfeZ16+4eKGiwRO+hAkciElJ4deYpGLTlI1u8FJcO4SkJRKFzyjwMWW/HnysgN3u3gbcyJM3yOW5Mht/nn5gosC7grKSbnfO28n82dRuUL+4ziTEJF//vLyFcbQhYJFAkE+r12c9Hsy9rkzxHMdcuEjEAgEAoFAIBAILMaBEBQIHfRVZbZ+bLfbKaCQYyFwrJxiJ+d3juF44PXnCApOfmu1WiLwlAyQ5cBrtFWq1tXXarWU6dDpdNRqtVJuwqIE/XyV3x0OXNsD9SC4kCCIurfbf/x5ndy5GOO17B5Q6ATP7fBOJJ2QcxylEQ6IPfZ8yiTIRqDfKMVwYo0Ywji5YJMf41b2fMtJL5GgBIM+5bouBNTrdbVardT3eU4FeQX0Cc/oyAWqPGfAwwO5Zz5P/Pn4HTihz9+TqluF+vneb+7OcCGH5+J5+WxRpuNk3fvQhQsfu/x6vnsEn8e8xCMXLtxJ4KVIXrpBv/vnPHeK0BZ3jnjZC/3EPUNQCAQCgUAgEAgEzowDISjM5zu7B0AQJKWVYN8C0LdPZEWf7AIIRFEUms1mGgwGajabpxEudxb4Cqykyn2kanZDvV5P2QNgPB6nc+r1upaXl1ObPR8BccOJer5iC8GjjbzmYoUH7XFPJ9Qe8gd5HQwG6dny+veiKNLuC9PpNPURrg8CFr2On5BFJ6a+Uuwr5FzLXRue7+B2d8YRocUzFdwZ4r/7/ZwQuqgAUXdhxbeAzB0sPk7+HPluE/7adDo9zRmSE2TPkIBUu3hEW51Ee586eZeqK/CLrP7edl+l9/KVbreb+pUx9Z88ayCfu+4oyu+bu3loP3OX97ycJRdfcmEMgu9uG/rH2+llRv4c7n5wV08u/Ph9QlAIBAKBQCAQCATOjAMhKJTlTmggGQH8Mc9uDuwg4CULktIqJaTVA9lcNIB4uKiwublZsbC7RT1f1YdULKr1hqjnq9SUKUDAfcVaqoYIQrSdGDvBhZB7uYPb9b1NLipsbm5qPB6rKIoKqfYae/qCnTXcbdBoNCpEk2fNr0Mfef/SPhcOJKVVbpDb452MLyKPvkLtZDIP3EO0cMs+18vnXl7rT3lNnhngcHJKu/152A2D9uVE3fuNf9394WPM/fjXSyT8/k7ScT34c/p8WVpaSrujSKqMq5/jz+7BpC66+a4K3u5c4HBBAfeAO4t8nuY/Pje8rMLLX1xgWORM4r99vPJ5t0gUCgQCgUAgEAgEAotxIAQFSYnUzudztdvtSuAixNxXyp1YeIhgvtLvq6xOGj2cjpXfRSUCTka8DMBXmPPacHdSQPBzYuIJ+25f99VZF04op8jLGnifNkFki2Jv20e3stNPvksEzgCCLxFyIP95e+gD+t7bATz/gJ0T/L55aGDuCuAeXpbh18hXy/MVdcYOuFDi/bRoJd7nio9LPifcgu9iVj4P8zZC7BFI8jFx0pvX8fuqvz8bfe7zI59zPo+Z9y7S5A4Qf2bvd2+zz4NF7fb/zgMYc9cAry1ySuRumPzaPn4uMPi1b01M8J8z9X0gEAgEAoFAIBCo4sAICtPpNJFZVvshZax4Unu/iDDUajtbBXa7Xa2srCSClNetN5vNVIpAmQD3cpLiVnmIp2+hyG4HvE52Avdl5wYnkJAwVo+dRHMc151Op5WVc3djuGMjXyl3qzYuCZ6vKIrkOpjP56nUAQGhXq+r1+ulMo/hcFh5hpz8uUPB4UQwLyXwYMFms5n618WTPK/ASyGc8EMSmRMuYriV350gEGlvo1Td7tKxqFSE+3M+1/Rn29raquQLMJ6cy5zKXS+87yTaXRbu/vBVd7+WOwi8dMBJswsAjIv3E64Zz9xot9vpvO3t7UpeRu4KcBeJf469RMddQflPLgbR334td/T42PlnOC89yV09uYDirppwKAQCgUAgEAgEAreOAyEoQAxGo5Emk0mq3YeoQVwg0rPZrLIt43w+V6PRUKfT0crKio4cOaJarZaEA2zs7XZb7XZbzWZTGxsbiUwStAiJcOKDyJGvXLKzBIQXIQTbtlvzuY5b6D00UNojhZBgJ3I5YeQ1SDbXQHBx27vvZJGHCc5mM43H45RT4a4AL4vw8gPfzpPjpb0SAHcULLLPQ5DpJ8QAJ3rAbfu5I4A+RTDy8wnc9ABPBCL6djqdJrHEibsTSyfeXlIBoffX/DkRIHw1nR0vPOPCr+E7a3jJDvB25OUJLhJwT4Sy2WxWKf/J+/Jsn0kXg1xA8nwK4O4hHyvvXxcLGD/fttRdI9zX54z3k+cx5O6C3G3k/e6ODg/c9L7JnSqBQCAQCAQCgUDgdBwIQUGqkpzc4u412r76Ku1tz8fqe7PZTCupedJ8s9lMwYYQcs8FyOu3HU44pD23A+TPV3WdNC3KAnDyjf3erd6QZMQAX2n31VUXFXxrSc7lX3dXIBzkhN8dAQg0/kweULlo7PJVYMbGSbsTNT/X29hutysrz0763E2waIzcKcB9EVncSYFjJS9ncHeH94+PW14awfvujHBCzFzxPAOfZ7TBxzq/thNqb49fx+cafcrzu8DhLoVFLgCQz2FEJsQ9+od2uFiTY5Hzw8sgXEjJnTD+XC6oeXvz7IP8PXcxIMD5+PjY+RgGAvuJ9//yF0rLp3+eAnsoS+m+P/ohbZ+4Zb+bEggEAoHAZYvbLSgURXEXSb8t6RpJc0kvLMvyF4uiOCbp9yTdTdKHJX17WZYnz3KtREogVVj/fctASAJkUdojZ16O0Gq1KnX2HAvRgoBMJpNUEkAJhLsCpKqY4aICBDsnRQByw3meGeDkh5VnrwOH0EDOnKy5VZ3XpR1SNBqNKuQOm72vEuPs4F45+YKU+3P5ynxez+/bAnrbXQxyEo413sfF34ew5iJCDr+HuxNcOOF83xawVqtVVuw9w+JMDol6vZ5cEN4ebx/9mJdQeL/n2Rfeb36/Rc+ciwxLS0uazWanCQrcm2ekH/L5mAsKeZsWCWJ5PomkJGi5gOXtdJeA5xtwLZ9vLlD4mLhz5tZKELzNi+7JMf75pp1+/mETFi7kd3Fgf1H/zHtqcpdVqVboD77+l/TAXbdeYDG2y7m+5KuepmNvvEFbH7thv5sTuIwR38OBQOByxvk4FLYk/UhZln9fFMWypLcXRfF/JD1B0uvLsnx2URTPlPRMST92tovNZrO008BkMtFgMFCn01Gn00mr5RB2bPLpIXZXtvkhUBCBwUsRNjc30/VGo5GGw6FOnTqVRAoI1ObmZiKn9Xo9BSJCeHBEQIzylfu8jtsD7SDikLO8rMBX2X1lfHNzMxFO+gvCKFW3sdza2tJwOKyED0p7q/isiPv2ilyXviAU0+/vtnfPqMiDAHlWznFixzO5wMLzO9lz4YG+ob+kqnhBuxCTfL6468QFmDxQMh8nxnVpaSltq+migwtQuZjkrxdFkfIiFpUFeBvznAgXPxa5Ily48WtS6uHtYT4uyr2grT7HuY/nPDjBxzWDC4R54ETcnUXeVoSjReUm8/m8Irz4jhheAoSwd2uuolw4yAXC3JmRiwmHQVDQBf4uDuwDajvfH+/50aP60KN+dffFEBPOhnpR05t+/vm6/y8/TXf+mRv33phvn/mkQODiIL6HA4HAZYvbLSiUZXmjpBt3/3ujKIr3SLqTpG+U9PDdw14k6Q06y5dnXn6wvr6ewgGXlpa0vLxc2SYvr5mXqrZyAuMghKySQpIhChCw0WiU2uKkMa+rduu+k9tFq71sF+kr1H7N3LafJ/znBMwFESefuXUb0swuE61WS81mM+08wfUQWnB0FMVOCKOH+XW73eQUoUyAfpX2Agu9nZ6p4DkGeZBe7gShLz080h0Gi6z7AAHBXSoOL8VwIcXr8PP5yHnMEXdO5OPm2RTA54fb+F3QyUUB7u35Ge5IcVeOj31ZlhXBIy898fnuwkte7sG9XPTgORa5hCaTiUajURITaJvfm88H18+dCbTPy3pcPPHSCD67/lmkLV4StGgXEG+Lj4c/Uz4f8s/XQcWF/C4O3PEoHnR//fQf/KYk6S5L/1dSb38bdAjxZ0/9H/r0U/a+95/y7B/SFS940z62KHC5Ib6HA4HA5YwLkqFQFMXdJD1I0lskXb37xaqyLG8siuKqs52frwZubW1pY2OjsrsDZBrC4STFMxEmk0mqw/fVSCcYBCpy7cFgkIIJJVXIIdflXCdYTvScBDnZRxShDXnGgNv9KS9wMu3vs+LPuYuIlxNtT9Gn/zx4kkwJX5XnWVmZd3eIE3fu6WKDl0j4CjfvcY+c+ELy3druYg5lKfS1W9i9FINyCt99A4Eht+Lnuw5wLeZf/poTYN85wvt+0bxmHFx48Z1LfIyZG95/XrJxa3Z/7peXifhnKyfXOBL4N3d++K4PLmjhgGBbVM/JyFf8c/eB9xX/eq7HomPOVJLg/eUiCtfiPJ+LuSuI411Yyd0Shwnn+10cuGNx8gkPUfNxn9LntSDDzVs9PrAY1y/1db39NfPAJ75Tf/OIzz7rebNJQ/f+nn9SuSD7JRC4vYjv4UAgcLnhvAWFoij6kn5f0tPLslzPrf+3ct5TJD1FkjqdTnodAjWZTLSxsSGpatN3QcHD3CDDrMzXanu7GiyyYOcr2mQLcF0nODnp4zjp9N0LOMa3QcwJcn4td1rQDhc88pVm/jsnsrdWZ+519bgl/Nm9jMHLL/wZeE5fWeZ3/hsrPPfkuX1eePmD71rg93Kyn28v6H3nY8qx/joODNorqSIm5OQW+DO4mOAukPzeDi8fyMcxXz138uqr435e7shZBObEIudD/rn0eZmLLVzLBTT6gjIbdgjxHSecoPt9cqHL+4Drev+4MJF/dha5hvxzypzKj8sFP39Wbwdtc+HvsOBCfBe31b14DQxUsPlVn6/hN6zrrQ/4g/1uyiWHX7/+jdL1bzzrcTduDfSYb/oR1bZ2v5tnpVp/+ncXu3mBSxjxPRwIBC5HnJegUBRFQztfnC8uy5K/ij5VFMW1u0rstZJuWnRuWZYvlPRCSTp69GjlL/fNzU2Nx+P0O7s2uEOB3Rr8HNBqtSqrr75q6qvGu8+QLOAAwsnKKYCEs6LvZRqQH6kqKCx63beqQ7yAmNNmBA+CFb3kY5EbgbZ5e1woIHei1+ul91qtljqdjtrtdnJFkO3g5MsJo7/Ha9jncyJGqcWilV4n5vxwrJdj5E4G4E4FHCkQXrfVk3/hY+6WeNriJTONRkPD4bBCchkPb0PuwqCffMtNruHzk3NdNPFruP2fZ3WxwJGLETyzixUcl+c/8Hvu9vC5RnsoXWGsCDTlupQkUOrj4pMLNy6yuGsHuKMoL6HJd8Dgej53vD/cAZSHtLoAkpdR+HfGYXEoXKjv4pXi2OFSUQ4pilZLT/ilP9TjV27e76Zc1rh2qa83/tIL0u/vmE714/f/cpXb2yo3tyKLIXCbEN/DgUDgcsX57PJQSPp1Se8py/IX7K0/kvTdkp69+++rzvF6knQaKYCcYK/OSYyk9B7ksdvtJjIGqXACyWu+ZSQp/Fzb7ffuZuC/nQzPZrNE6HkWX93HLg4hc2LrlnAnhM1mU+PxWJPJRNPpVLPZTNKOuOJhgx5QCYliZRli7oQRIgXJI0sgt4n7vzxvbtXPCR7v5c/PvXOCyzh4qYE7AdxF4GQ6J8H5v5B+SGS+3aWPu6TkZCHQkQyKnJTSX9zf3QMIBC5O+A4Y3p+5q4G+bbfbSXxg9Z/3F+124u4BzvfPkzsxcvs/YZk8j/cPz+27UjCnKHsg9JHwU/rQRRAXLNwN4cKYfzbpX5+jXBOxyN0Lfv1Fc8tdQnlfe3/4bhk+zxYJOAcRF/q7OHBxUb/fvfXLf/Ybun6pI6l+1uMDdxw+u9nQr7zndZKkR/7Zv9O9v++t+9yiwGFBfA8HAoHLGefjUPhiSf9a0juLonjH7ms/oZ0vzZcVRfEkSR+V9JizXcgJdR7ollv4nehLO+RwPB5rOp2ethrvq5t+H+zaEHbf0cEJFPdqNpspJBLyg5DAimxemuAkSapu/cg9XBjwFWbOccs/ZMpD48gvcOLE9be3tyurw1yLlWQPE8yt4Py3Cze0zQUf+tZ3BshdFE4y3X6+yJrvlnkncvnv7lrIyw9czHCRxscOccbHzMUjSCdiVh4ombtOEIpoA2OWz3HP0nAnggOy22q1kgMm310D0F53uPg4IG54aKTvyOHZFS4cIcrkwY/uNuF4nCSc63MjF6/8OnwW8+u5Y2ORGyP/fVFZQl5a4m2gb/27wIWjM5VHHHBcsO/iwMXFye9+iI5990d1j0Z/v5sSWIB6UUtj81MP/wP9yqu/XJJ0xY9K2+95/342LXDwEd/DgUDgssX57PLwRklnWr57xG29nq8+OwlgFRUXgJMnCADEnlViQvny0gDIzGw203A4TM6GnHRCLvz+3W53YelCLhTkoXe+ku5EDlLpr7MK7K4ISZXVVidjvk0f91i0qu4uCF/VzVf5s/GtWPpzMQHila8G+3NzDtdzgu9kMXdz0F4XInye+HXz+yKYuJDjZNXJvIshi5ATUS/dcNJ5JkEmnwvuuHDBxgUhruU7lDhBz4UVD7PMywd8lf9Mu4h4WZALEi6o5M/inyvvo7wEZFGb8znkx/kzL+pDruNOmtxZ4O4NF8S8zX4fSlG8n/PyiYOOC/1dHLh4OPWZ0lvv8+r9bkbgHPD4lZv1+Ae9XJJ0v295mq5/XVvl371zn1sVOKiI7+FAIHA544Ls8nC+KIrqNoG+8sm2h3kIHnkBCAqICL6FnZNLrNrsBLGxsaHJZFIhc51OJwkOk8kkEbF2u61Op5Ns7NPpNK2MQ+rdBu7EHeLi4kO+uu87E7iDIK8Xl/bs7/y394mH1Hn5RL7S646FvF7eRQLa6GTN28859Cvj4u3iGh68R9t87KW9nALIIP3iuxwsqseHFDPmnpngmRKIQ54VAGFmHIqiSGOx6BkYs0WCgvdzLi55OQxjlYsDi+z1TtqdFLv45HPNr5W/znueJeDlIbmgkIsKHOcOIXc14OxwYcPzH/L57PMgL5FxJ487Q3y3DOYE/ZT3Eee6ewK44OBCDvPZBYtAIHB5493f/1zd/W7/Rvd5V1dz22Y6EAgEAoHAARIUIOybm5uVmmxJFVu/pCQ2QBIhPhAt6t+XlpbU7XZVFIWGw2HaBWJ9fV1ra2uJ1LltGwIEqXSrt6924zKo1Wrpuu468JVoyiMQOhBMarVaKpmYzWaphh5AgJvNZtqaz8m/1/PXajUNh0NJe+SXvvV+Bk7KvW9zYgcRlpSe2e/Bc9FfLlZA/pz0IcbQR51Op5JxANF3oQNRwK/lgGw2Gg11u1212+0KISWbIbe75yvnLlB5hgGlJN4OdzwwTrlVnnsgjHnJAOfRlwhVZ3KN5OU79Gdu0fdjclcF7fLx9NDCPHSSazCPabM7XjywMXeScG9/XsRBn6O5a2ZRG1xEWZQFkocqujsjb4fPLxfe8rbTtkAgEHjX1/4v/eYX30N/dL/j+92UQCAQCAQOFA6EoFCr1bS8vJycAb4CKUnT6TSJCvnqK+Q8T9/31f5arabxeKz5fG9ryel0msge1/EVWu5Hov1wOKy4BpyQ+7G+uwCEz50XbkH3lXsItq+I89wuRvDcECGEkHq9rtlsVnkO7ydJlZVl+sJX6YuiSDs+sLMGIZg5KXWnBGAF2VeofbycxHtbOIb+ytvlhJB+9DHwfsmt73kuh5NRHye3wM9ms0SQfQw9WBOhJx9L7x9vW15243kIkF7vOxeyvH1Ogl3gyeebi2E8t9/f74dI5lkQLh54sKmX4uAcyXNBaC8CnM8PP9ddIbkYlYsAueMnd8m4AJA7FPISBi958c+RfxZprwsNgUDg8kW31tRjlt+rP3r9YyVJn37FXXTl8960z60KBAKBQGD/cSAEBUnJKu92c0gcpQmQAEgJf/CzXR3HQ8R9xRIS4avMiA15bTv/DenBdu8rl7lYgNjB9ZxkQmjceVGv15PIgZjgtf/uanAXgbso/F5O9prNpqQ9Ugi58q3zaK9nCfA+20lyHfrMV3dz0cdX5p2ASnur62735/fc5u+1/V4ikYO+9nIJJ5w5nEy6cOPigosGuXjhz+Xijs8dn7OL2sz7Z1qBl/YcI3mJT94GrsUx9LfPyfy+/JsLNAhBUtUNwlwD/qycQ3sRBvK+XTQWLnLlgo87Dxh/XqM9PmcWnZ8/d+7s8Tnsgg2fCx+TcCgELiSOvE/6+vd9rf7k3n+2300J3A5cVe/ptff9E0nSF3z9Y3Ri6yGSpCtf+v8039jYz6YFAoFAILBvOBCCwiJrtrS3LaITMCdfkIxWq6XpdKrxeJxWlkejUSKG7jqApHtNPdsrOqHg/l477iIC/50/B2SIFU9fLWblH9s2wgflC7glPMeB5/dad1aNc2LGfekbT/53hwTHe1kHfdpsNtXpdNTr9ZKNP89/cJGEfnShwGvfPTsgx5nKDvLdMPJVc0g+zybtkV3G0AUYz5xASAJOtCl3wCWziEy6IODbifrzIzjQZp9Lvgqe1++7mOCixSK3Bdc602fH5wB9Ql/5PXxu0NcuKIC8xMDb4IJCvk1p7gxw0cOfyR0t+XNzfxd/FrkO/Id+8XmUizY+BrnrIXf3BAIXAkd/603aftt9pNftd0sC54u3Pujl0oN2/vur3/l41d9/Q3pv+5aT0gIxNRAIBAKBSxEHQlCQdsoaJpOJxuNxWkWGeOerl75Tgm+LhwAxm800Go00mUzStpCTySQRwXa7nez9/EDSPeDR7fG540DaI8xO5lutllqtlmq1WioXqNVq6vV6WllZSe0cDoeJuEHKi6JIbgz6A+cFcHHBCT7HIIxABiHPTt7deUHfcV6r1VK/39eRI0eSSyEvd3C3Rl6njgCyiLzncMdCXlIgaaE7YGtrK2VeOImHyDq5hgA7eeV8d6y4Q0Gq5ki4Y8QDIvNVcr+GE1MXIFyI8fnrooOLKbnjhVV7FwfcoeJwMQHkW0ayFSmfqdyRkDs36EvO9Z1N+Azk4oYLT36NvKTDxRUXqNji0wUEnzfMY9rrTg0XPOgPD3/1a/m1vT2LhLBAIBBwvPIVv6a5dgV1lfrOL3mstj780X1uVSAQCAQCdwwOjKBAVsFkMqmQUK/NdiLPvxzr9mvOQ1yAMHEO5L3T6ajb7arb7Wp7ezuJGYgA5AlArL3e20sEPIeBHRo8qBEC7DsrsNUlpJz7E3AIYUPc8NViaa/UILek56u9HnjofQ159f7kWTudjtrtdgq09NX6zc3N9Hx+H47LreRbW1uV9H0n7hC+vB6eZ3FHBf3mdfYIJ14X7yIH1/DgQM7J7frce3t7W41GQ61Wq7LC7oGcktRqtU5zZjAHPHTQsxP43Um1uxm8DyC2uCCc7OfW/EX39f7xfs373AUAd+d46YzPe3eQ+O4ZvtsEyJ0IXh4DuecafjzP0+l0kqjAOOX38DbzzDwX4+Zjg+jhZRn0p4t1nlsRCFwofPqpD9GXPfnv9rsZgQuMbq1Z+f3uL/+U1rdWTjvur9/5mbr3U2L8A4FAIHBp4UAICm5NhtDl4XpOOnKbPqumLj5ISiv95CFI1R0W2u12chRMp9PUFogfQgAiQV5v3W63Kyuri7Y0pO15HTyrxU7E3VHhhDEPa3QCy8ow9/DykHq9ntwSfu+cELoDw9vLLgz57gfj8TiJCP78+Wq82+I5Pu+LXFDg/hBaVpTpe+9jrsH9+DfPxKAUBuLoNv3cieJjSV8tyhFYtLUnYwRpXfRMbvtnDHyl3Puf581zGvx6uVi0qCQITCaT047zMQLeDz7nvb88SNTH1sMh/bq50EEfO/En1NTbkIs//p5fi9fz58rv5/N2UYmVP28gcKExuIv0nGvftt/NCFxk/Mqd3rLw9V9e+Yh+7YcfJUm602tv1va733dHNisQCAQCgYuCAyEoSKcn4/uKJ0SF46Tqiicr+RBDL2EYj8dppRyyQDhiq9VKln93Hkh7hM23lPTVy3q9nnIGvIaeawwGgwqpps1unc93ZRiNRpXtCslVKIqiElYp7a0aex8tLS1VhBEEBVwclH4gtEDUfNXeSxYkVVbqp9OpBoPBabtV5ATfrfCeF0C/LVod97H1XIt2u53uj9skX/XPsUh4oP9dTPAVcf9xQUtSJVNh0Yp8Ps4unNCW3GHiBJuVd4cTZv/x63h5gN8bB0ReUpELOu7ccUdF/nnL510ewsi1vMzChSX/l3a42EHWCZ9Bv647VM4kTvnz+Hv5fMjDUn0e5uUO/m8gEAhcCPzA0Y/oB57xXEnS5+hpuvPaQJK09fFP7GezAoFAIBA4LxwIQYE/5lmVZqXdSb2vagOIAQSWleN+v69Wq1UhNh7YJimtMEMwINJcE0u77yjh1+h0OlpdXU0OAEQC7ud16rQ1zxnw59ja2tJwONRgMEjbEna7XXU6nSQ4DAaDigvDQwHzBHwneJA8rOOUVWC339zcVL1eT4LBaDTS8vJyKoFgJXw8Hlf6DYeGPwP3BhBaSkOazWbKs/ASAMaIfkdQqNfr6T6IG77NIv2ek3fu6Y4MRKbpdJr6gvbmFngnqzlppn0+//L5zHE+RsxjxiK32HtZTy6cIRDRp16GkjsoeB33De4Ct/tvbm5WiDP96buQ5Kv4iE6Icnw+vV883NG33mRcKHNY9FlgvFy0mU6nqWzFS098vJifiEEuZlEu5CU07sZhDJmLnU7nNBEnEAgELjT+/kd/RfMfLXXj9ljfe9+v1nw43O8mBQKBQCBwu3AgBAUIiq8cs5LuLoJ8JVnaI14Qp1arpSuvvFKrq6uJaOThhawI+/Z80+k0rdpLp28JSK4BxKzX66nf76eAx7W1tURwcUvk9noPSAS5/Z++6Pf7Wl1dVbfbTQKLb2cIQW+1WokkIRA4MXViRXv8fpwD8cIlMZ1OVRSF+v1+6q+NjY1EphfV/hMa6EQVQcWDHyG0bpsHODJcMHFxgP7kXPobQuuCCs/vq9q8xrzL3QN5VkIuLvD8HhoKMea6Tlzd5YJYBlHPV8TzsgdfQfc2+Fjm18nnlRNw+scdHk6c6Vt3OXh5DZ+zPBzSxUDIP8KDlxn4riOeteHk3j/bzA2EDPrNsxS4H31GW730YVE/O/w9noH+iQyFwIXEvX7tRj34A0/V3/235+13UwL7jHpRU13StfWOHvDGobbmNb3ybx6se/3g4nKJQCAQCAQOKg6EoJDDt66DSDqJyK3ITlbYtQHik9d8+7UgPeQXeIq/VA2Pc4GA170kgXZzDcB5ub06r1nnXw+MXFlZScF4m5ubarVakqrbMtIOJ0QuGvgz5bkOrEqzYk5QpAsrlBywep33iZeJeD4ABBWy6eIA8NVrJ71cx90BjBP3ykUSF2Ygn5IqIgxtyklyXvLCNXxuSXtCwSLyno+nr/S7xZ8+yImtiyo8t/eD992iMgLvJ2+zw1/zeUz7fCcFz5XwcgTaxWcoF1y8LxZlGPh/ex+6+MC5Pt4cw3v+GfX7OM5UFpGX3OTj40Gfi0pqAoHbi60PflhXdNv73YzAAUKjqOtnrn6HJKn/sKn+4N8/TNf93Fuk+fatnxgIBAKBwAHBgRAUvJQAMgdZZTXUbec5efLSCFYYfVtBdyhAUljFJxtgNBppOp2m9yA//PciguGr27SbHyd/Toq8HTwDx/pWj8vLy2mbSY7tdDpJCPGVZOz07uyAkBHEhwMBQL48iwFBARECgUJSynvwvnbrPsQ+J6GLLP+0JxdGeBbvL1+VxwmQv++7QeB+YLy8lIW+hagDyLr3m7/u1n76zMd9UaBhns3h8+VMxDf/HYLtpQR5KUROuL3NOZzs+9iAfF65o4HndBHISb23191ATtZdKFmUheD35HPq4qI/vz9zHoLpz+jtYo64M4LvFr43mEsuvgUCFxLF5pZeP67rS9oTtYozb6sbuPzwU1e+S0/6t2/R9/3xE1V+6GOaW5BuIBAIBAIHFQdCUJBOFxWcZFH3P5/PUw0/hJZSgk6nk0L8vHac5HhIhJMfLPPj8TjlE0AGXZygDb6a7lZ8Vr5xKORBd9Je8j+lC2y/2Gq11G63K23rdDq66qqrtLq6WrHTe6mGl0e0Wq1UhkDbfftJ+rPT6UiqijIufND3ntPgY8L93d6OiOEEElCC4n2Zh+yxCwfXhfDnrgcn5S4+5CUAiDkQQuaNZy5wL9pIKYqXL3hOQR6ouMgtgPjFeECMnVznx0uqlPN4mQDP5v3N87HFqotB+WeHueRumXa7XQkw9XwBd2/kZSK5a4N+y3dd4Bh3jVCWw/i7MIfQ52ICfcP7vuvJojnggo3DhYS8fb5rBGUVfO59rL0kKBC4UNj+5w/of9zjs/Wx935CT1i5ab+bEzhguH6prz99/cv1ZU97ijp/+Nb9bk4gEAgEAmfFgREUIMDkJkBE2u0de6jb1H2lEzLhZHV7e1uz2awS9gcxcyIH+c2t0Yus1U54fPeEvP4eEs+P5zbwjBBHno/QwXa7ncIYjx07pm63m1wTuAVYPWUV3q3cvpJbq+2EGEKeeC4nqqzge6kFyEkpz0Nf87yMhTsuINfcz0mzC0Uu0PCer4QjCEh7JQ4cS6mJlziwou1ZEUtLS+r1eqeRX0Qh5gjX97mSCwecS2AkBNu333QSy3zG0UD4pT/7mco73KZPH+W5AzmRzjMRaDfPimiQW/0ZH8SUXMRwpwDIy0i4t39mcucQApLvMOLP76IFIpELIHxuFwkFXtbkjgT+9XwIxj8fL3cPeRsDgQuJ+r0+Q1/+yn/UN/c/Iqmz380JHFA87Wderv/w8Mfqnk9/8343JRAIBAKBW8WBEBR8ZVNSItWICp4D4D+QGl/dl/ayDCQlwgN8Jdwt0e48gEjmteJOAPP28y9tysm9b1fnlnruTZu63a76/b76/X4ljC7faUBaHGLnAgvPs4hMO+F3G7sTUS/hcKLubWHXBtrqpJ/nOpNQs4gQ+7aEkiokmufivi4GuIDj13XBw63wnnGQOxlygs898h0NFtni82d0Qs7ruZCV5wm4SOVzy/uCa9Mmr//3wEju49d3AcDHyV0ZXr7g4+DX4LPBPWg37yG44dign/l8el/wjC5a5J+hXBR0eD/n7oS8TMnFCF7jGV34CzEhcDFQtpp6xrF/UYgJgVvD45ZP6p8e9rd65X/6El3/X98kRQlWIBAIBA4oDoyg4ESQFc12u52ImxM1yK6XQuR26c3NzUTYFpFSbO7SnoXat8LzMgba5E6GvP2SKmTcyxJcpPBVWc8WgOggKHS73Ypg4KvUtM1f93vyTF4WkmccsDLtuy348zhJx3Xh5I57YvH3MoXctr9o1TwXFFyMgWz6anq+mozDo1bb20nCCTzthCzTB7gn6H8yOtzqz7hANJlj3rfMgTO5Bfx6+TPmuQo+55w00w9e/pGXA/k8clGBNvhxvMa16BsXtRCM+Hy468Pb4f28aL7hcPDsDJ9TPkbeZy4o8Lw+Xo1GI+WC5P3sbXTBgJwE+s2FOh8D+pwSnkXiYSBwPqhfeaUG91jZ72YEDgmedfU/6bu+5y360T96koRAvLmt7fe8f59bFggEAoHAHg6EoCCdvgLqddI58RyNRul4yJ67E7a2tlLIIq9BiHOLtxM7qVoPTr099nUnJRAut4J7fgG/u+2bmnVWb1llp+2UP1D64Dtb0Be0ZdEWgKzOIl4gShBMSMYC5RrkH7gNfTabaTKZaDwep2yJyWSijY2NZId3l4Jb0t1WDrHNV6Dz8SYE04muC0Au4vgY++o3ogDP744LhClWnSkhYQ5AoimTwYlAGYoTXMpIKAVwUu1CU54l4M/kv3Ms4gzXZmxYJfcdJ5hT/X6/ssWppIqw4PPBnRb+LP7jwYSeMeIOldyB4wGmzCvvg9yB4CUMzO12u11xkIzH44q44m0ja4Q5zZzx3VX4fPPjoiPlVDhcZrNZ5fPjc8BLOAKBC4UP/PA99b4nxJaRgXPH/Zsd/dmf/m76/fXjuv7HPT57H1sUCAQCgUAV5y0oFEVRl/Q2SR8vy/Lri6I4Jun3JN1N0oclfXtZlidv7Rpuv4ZI8cc+q50edEjQ4CJCBznLt0v0OncIt9dxE+Lo8NR/RAYnYXlbW61WIkaswkKG6vW6JpNJhRjn9fy0y5+RoElpzwLu9m+/BgSKVV1IEzte+Cov5Ix2FEWh9fV1TSYTjUYjbWxsaG1tTcvLy0lkwPUBqS3LMhFgz6xwy/milXp3PTCOkHvf3lNSZZcIz8TgPoyPl66wIu3k1ncX8PIOd00A7udOCHIzyALwVfa83TkZpV0QVieuiAJehuO7EbCiz/1Z+Ucs43mazaY6nU5yJ+BuYB4Xu1kY3C8Py2Qe+HzIS4zyrVcRyMgCyQUkPjdeeuHjwjPxHvOCOe6fV9rppSm5c8P72/NNfJ7njgMvZeJ+fm13Mh10XIjv4kAgcLDxJe2JPv7eGyRJP/37j9Hd/sOb9rlFAUd8DwcCgcsRF8LP+0OS3mO/P1PS68uyvJek1+/+flbkQXQIArdmjYa8+6q7HwcxmE6np6XiS3s105BGSIiTTxcd8nZ6vTViA2SG/IdOp5NWYX3Fl+tBtviXa0LgJSUBwFegPQPAiRf3wxFBPyBaIADwLFzPyT9kfzAYaDQapdVgVu59JT3PG8jzLOhHHxMfW98idFEfI4y4pd/FCheOXFTI2+B5AV4GkjsJXKChz7wNTvZ5Lt/Rgb5zp4bPaRwhHnS4qOzEAz5powccunizKIvByxTcZUB7c4eMzxHPT1gk3uRiAn2TC3Iu5rnLwkszcBJ4H+bn5JkH/p2Rl354/okLAxx/JvCezz2fQ4cEF+S7OBAIHFy0ioYev3KzHr9ys776q9+mD//Xh+x3kwJVxPdwIBC47HBegkJRFHeW9ChJv2Yvf6OkF+3+94skfdM5XqtCTCGLHt6WiwUQMMi7Ez6OYTXYr5NnDmCBdnLN+dKePd9XWnkdMsjrOVlqNpvJIeCZBH49X8XHlj8ejzWdThPppxTC7dxeFoLV24/LcxW8np3nc/Kd5xiMx2ONRqMkbLAK7qJCvirt48k9nJhCus8UtJmH5nlgoAsKPj/OtAKe35+x53c/3/MlnKDz48+a96vveuFE2McGV4OLW0568x0UKD/hei5W5X2ei224CVys8fwLhKF8LvjnLM9c8M8TxzG33QngBB6xxD9/Poae3+AiQJ5B4mN6piDM3JXg1/A5sMgxwzXcxePtOgy4kN/FgYuH1i2Ffnv9iv1uRuASwS9d93f65e/4NemLHqDarpMxsH+I7+FAIHC54nxLHp4j6d9LWrbXri7L8kZJKsvyxqIorlp0YlEUT5H0FEnqdDqJYEiqJPYDX4Gm7h1SheUakgmcTOXbADoR9eA+7gVBdzLMe9LeNo2QJggW7XIihN2dbAKyGbym3nMAptNpchtA4P2ZuL/fi3p0yKQkTafTdC9IJGQ8T7CHaPszzWYzjcdjdbvdSuCe5wdMp9PTyji4DuPE9Wk/19/c3Ew17XmfMd65M4EyEki4jw3OEko/8j5zV4jnY7hVHlHIn8fdL4wjwX0g36XEHRxlWabj8zntQorPT+YK/evj5+GDPM90OlW73U5jlI8t93axi3O9P1yQc0HD2+1uFyfwOC/I5CArgUwHdwF42RHzZdFnzT+3W1tb6fPjnxsvNcpLLrxUimdcJHzkTgfg/33A8RxdgO/itroXuZmXN677ub/VS17zSD3+dS/d76YELhF8VXdTX/UHv62vedR3Sf/wrv1uzuWO5yi+hwOBwGWI2/3XclEUXy/pprIs314UxcNv6/llWb5Q0gsl6dixY6XXKnt9em7pb7Va6na7Fes8gW3U4o/H4yQkuDjgqf6QEt+NwAmNEyXawbGdTicFPzpp8lV+J/J5/TqkbTKZVFaPZ7OZhsNheqbrr7++klkAueR8DzOUdoSZWq2WbPWshEt7Ox4gRCxarSWIkOsjKEAccUU4UXOhwFfdOT93HJCbAFFHUPCa+dz6784B7ukr+04C3eXg1/A2DgaDisWfkhnHbDZLq/hkFzDWnifgbeU58i0pyaBgzJhv3v95hka+Y0G3263MyXyVvixLTafTSrmO7/hwphyB3Knjr7lg4w4Jxi8XBXhG5h67b3jIos87xsZLM7yEw8NM+U7Iy49cCPC5iCMCUcRLQbw/XNDhmowh/x50XMjv4pXiWKRQXkTc8OMP1f968vP3uxmBSxA/8fsv1vf+9tN0/X/+2/1uymWJ+B4OBAKXM85n+e2LJT26KIqvk9SWtFIUxe9I+lRRFNfuKrHXSrrpbBeCPPhKpVvmWe2mNIGVeI5x0YFVZCe3ToadDLrjIRcT6vW6ptNpIjLz+TxZ/b2cIF+99br3POjRSSYr9RA1BIfBYKDZbKZWq5VWfCFwTpwhnvQXhIq+mM/nFRJLH/hqfW6PdzLsr7s7xImslw/kJNTb7KUG9Dt9zKo6cGHHrwshhMDiYvESFl959rIUDwd0hwXPQ1tBLhIgRtF2dzp4uYSXnrijgWNcNMmDLD2UkedmvlNqUhTFadki/hmZzWYVd4WXs+RZAouEJRe3vB+9zMQdMp6b4btAeCaEt4f56uUiPg8Rz7zcxe+LQHGmEhufI+6iycULjvH+c1EhL6E5BLhg38WBi4tr3jrV91zzFH3wMSEqBC4svqwtffU3vFV/2n6I7v7MCGrcB8T3cCAQuGxxuwuEy7L88bIs71yW5d0kPU7SX5Rl+a8k/ZGk79497Lslveps1/KVRncVQPjyuu1FwYB+DY73Gvdms5ne8y0kXVBInbJbPuA12X5vrpWTFsiUX99Jjte/+3kQcVZ2x+OxJpPJaXZz+sAJuh/jpMpdGB5Yl5OxnHR50KMTwJx00x5fTed4auZd7OB4+sJ3B0CkcWHAf7wNEEvcAoyNjwf34J6LQiD9GfLVfq5JO32O+XP4HPNnYlcIP95dBZ4L4f+dH4+g0O1205zze/I7/e8Bjj5PvM05XBTJQxz9c5gHYubPx/3JiVgUqOhBkR6I6YIVYgxCSi5uOdn3ucz5eXjmInEqdzj4+95X+T0OKi7kd3Hg4mLp9W/XZ/7qqf1uRuASxXOufZv++7e8WFtf8XmRqXAHI76HA4HA5YyLUSD8bEkvK4riSZI+Kukx53KSp9r7H/T+PiuYy8vLp61aS1UiRpaCk2wnlk5aGo2GRqNRhRy2Wq10PESn1+up1+up2WxqNBpVyEq+4luWe1sqlmWpdrutTqeTiD8ECSs9jghP5HfiJe1lS0CKcFDkOQX0ZVmWlef0/nRSTB95sJ3vhgBJ9BA/3z3DQ/eopXeRx8/x3Q8gy77TAW0H+Qo7oo1fhzIM73d3quQr4u7mWLQzgLfPSS2CiQsXnruAMEI/eZlLTprpE3fWODGfz+cVdwLPwxgigrkgwGo+4gTHLMoSyC3/7nbJRTzu6Q6XvIQGocddNf5s3Jtn4/1ctPDSg7yMyHeX8Dns85cck9zBwecuv7Y7KrhGfuwhxu36Lg5cZByOnM/AIcW39tf1rb/z6/q6R3679O737XdzAvE9HAgELgNcEEGhLMs3SHrD7n+fkPSI23oNJ4oErUHWZrNZIoFLS0vqdrsaj8cVKzZ2aGnPNu817axU+xaI0h652G175R6+Ck5AYqfTSSKAkyUXBOr1unq9Xtrq0S3XueUfAsV9vKQh344QAu9BdhBJP863m1xeXtby8rI6nU4SAXgu6sNdlHCruQfska/AeBCQNx6PNZ/PUx9D/ul/yLoLRpBqsgm8ZIBx5Jncdu7kOS/x4BxEHHc0bG9vV7ZaZM44ic2dBjhRaD/9injiIoSkiqPFx5yx9bKTvDQD8cKvR7vy8gl3eeSuHq7lxNyPdyEEUSEXXNxRwBzIhYEzOUNyd4lnWfAZdeGH8fUdQ/I2IFLgtnH3gV+L/qVUyPsH0BdcA2GP56HdCHyHaZcHcCG+iwMXDx/7/x6qlz75F7TjiA4ELh6e9er/re964Q/rzv89MhXuaMT3cCAQuNxwICLMy3IvPM13B/DVSi83oP48tyyDvCafjILcSg/y+nau6TbqVquVBIV6va7JZJLamdfW+2qplzfkhJB/PU+A1/MyDVb+WQGmzZBNJ0hcly0kaQdlFU4+OdZX533F3Ml+s9lMBGw6nWowGFRyGtrtdiLPvAZZ9xIM3/Yyd6Eg9uS7cuSWdBdSfLXZS2UgzF5agHPAV7W5JmPDWNN3iCG5M4L2nGluedkE7c3LJBA6fKy5Xl5+ks9ZL6FgzngIJv3h53CPRav7ucXfRRffBcVLDzy4kWNpby4ouIPH4SJWLhIxht5n7tLwLVv9M+hwYcr700XMPLsjELgY2OqWekAzxITAxccDWy193WPepFde8UW6x4+8eb+bEwgEAoFLGAdCUJBUIWyS0h/5kE+vtXfy76UGkk4jdG65d+QENV/RdEs7JRCspEJM3FIOSeG+nJfb0vP3uRYZAgQ5IqBAgFkZ9z7KCWS+wt3pdNTtdtNOCm7Bz1fm/Zm97ziW5+e46XSq0WhUuR79Rb9AdL2kYZE7w8tEIOCsWNPGRWTW+zJvs48z/ev3zEP/uD7kHhEJMcBLMpycLsp8WETWc0eBv567OHw3EG8zz+PP7qUlLgrwHvfykgd3CDiJz6/pO2ggrDCGnhsCXDBhPi4qs8n/O3ebuKDg4aocm5c8MP98PvtnzR0X7nbx0iKOzccwFz8CgUDgsOBnr/kH3f9RH9dvvuGb1HndP6qcTve7SYFA4ICifs+7a3D/K2/TOc31LdX/8u8vUosChwkHQlBw67UTKlaIV1dX1ev11O12k2Vc2iMXvvoP6fFAPSdki1Zhqcsmv4Efr6n2EEhfsc9t04487M5JDRZ3dzO4uNBut7WysqJarabpdKrhcKjBYJAIHe4DyCjPS9J/t9tVvV7X6upqIoC+mwP9lwszTsRYmSY8sd1up9KL4XCYyi+c1HJd/i3LspKzQDlLnk3g9fEIR77NJ/2JOOEiUU7m85BJ3BouJrh7IBdavHyBNvrOBYgmCA25mOQ/eemH39fn2Pb2tiaTSaXsx8sdEAB4XsbGMxByiz7zlPtIqogiHgTpZSM+ju7uKIoilcl4PoU7RXCYuHPAHSsIWznh93nsfedioX9evN0uejBW/l6e0UC5EHPJj/c5lbtCAoHzQbG0FPkJgTscT1i5Sf/6+c/Xo7/km7X1oY/sd3MCgcA+o2g0F77+oe+6Vu/53ufepmv9t5vvozd+3ookqdzalOJvpssWB0JQmM/nGo1GaXcDCAiuhKNHj+ro0aOJzKytraV6bIgwxN53NqBO37foc+t5vkoLYXWhwt0BEFWIPzkP8/k8tdtXZb1OnTZClDgfYugkttFoJMv9aDTSaDTS2tpaKrNot9taXV3V8ePHKyIK14KsE8gIyfKV2LyUoCzLSvkEbVheXtaRI0e0urqqdrut9fX1hVkOXDcPf/T7EjDo+QPsasG4uZiAeEM7uRYBkZBcd6lQPw9cGGBsKLvw8Emvr+cHwk6piWdT1Ov19NpkMqk4UZgfLnLlpN8dCpI0Ho81GAwS0fbMCj4juSvA33cHQk66vV30FVkfkirChB+/tbWVhC/62TMg8vBM2uX9iuOGz5zv7uBz0csRmFP8666WfMxyd06eReLnM7cGg0EaUzI7fPzoA75PAoELgXu+qa7fuebnJPX2uymBQCAQuAxRP35M//Vtr9Fy7fS/bY7U/lK39f9Pzzj+Tn37B3b+jvq2X3qGrv35yGy5XHEgBAUyFGazmSaTSfrDv9vtamVlRVdccYU6nU7lOAgHhITXIJ1umXfCuKie2omm18sTwjebzSqkF2JDWCTXhrz7ii3vdbtdDYfDiuDhu0zwzJQWdDqd5CyAwBOkCDlaXV1NYXfTXSsjYoiXVSBm5PX0vsUfRG8ymajb7UraCaI8evSojh07ptXVVdXr9SSuOPHynAXINoSMVXfaxXNKO2ID/SopCSB5qCDk/EzjCPFkDnB9J6I+1yDGbpNHTHFXixNnsidwk3gZizsoAKvwefiiZxI4eXZnDo4QjkFIYIzcfQHyXRkg2Y58K8+81MFFG3fUeOmO96M7LNyV4oKGi3W4GdwRk5eoAJwM7ljIczUkVVwWLtzRBsp9PKzTgyjdWeOCCs8WJQ+BC4W7dm7WFfUQEwJ3POpFTcMXFNr81S9U/+Vv2e/mBAKBi4yP/ueHqvO5J057vdXY0gObS6oXi10KtxWtoqF77/7N/fX/6o16zcPuq+15TXd6wie0fWrtgtwjcDhwIAQFVvhZ9abUodPpqN/va3l5ORF4iLCvxEIAfPXTiZvXjUs6rabeV3Iht4gJrEL7do3AxQgPUYTwQErdKu5ihq+Ee6kD2QeICIgbPANEiZ0oIHysOud2f7fL0zZyEDwbIF89puyi3++r0+mkUMc8x8CJLKIKx7hdnTHh/r7NIEKCb6mYr0Aveg2xAQt7HqqXr/JLOs1e7wTYRai8zp6xYy7mBN/LD7yMx10LTor9+owvfYAzwMMD/Rm5njsgeF7vG1959zwCn7vcx7es3N7eVrvdrpDtPF/A7+elFflOExznIkW+U4S3y4UjRDnmlodh+vH8nueUuBDBfRc5PLwN7vZYVMoUCAQChw1v+Kw/1P3v+TT197shgUDggmL4rV+oeaO6OPPlj/p7PfdOZwpjvTi1d8+6+p/0rKv/SZvlth7ymH+rq/7yk9r+wIcuyr0CBw8HRlDY2NhI9uNms6ler6d+v5+2XyRLwMsivI4acpfXoC8tLVVq0yVVyg0g3axuQ3TZfg4C7Wn2tNkJqK+45quuTnh8pZ7VU8grogSiAgILhHZzc1PdbrfiboBoe+ghr7HKnVvZJaXdD5wwcS/Eml6vp9XVVXW7XS0tLSWnBOSXe3npCIIA/e07HPiqPKGO4/G44g5wNwLncD1fqXaRgf7xFW93MuREMyehTvp97Nw5AIlHiOI9HCweWuiuA7fgs0ruAhCunOl0mp7Nyy38ODI+INe0g+d3Ycp3ZnDByIm6i0u4E3zXA3eJeN9CtMmm4Dq0wbfbXJTxwFjzWc+dFD5OHvbp22f6jjCMce46oJ8ow/FtJnGp8LpneTDXvJwnEAgEDjvKJanWbmu+uztTIBA4fKh1uxL8p7GkF/z8c3T/ZmefW7WHRlHX237qeXrAytN03a98IsJgLxMcCEFhe3tb4/FYtVpN/X5fx48fr6yMs+ruoY3+O7X4EDMn7pAiD6Lr9Xop/8Dt3PwLyff7ebmBHw/R2d7eTtdstVrpnHx3hlarlXIJIMp5gB2Cg68iS3s2+jy/QapuvSkpCRPujHBhgevlGQX0WafT0crKSsqu2Nra0nA41Gg0qpBLJ2/uAJF2rPuERPJs9AlBjbkI4HZ7vz5EFBcHvzthZkxc4ABeC+/Wd1/h53oIW4hLm5ubSQzId33wOeCCCA4Gd69Ajr28BJFmPp+nzJBOp5MELVwMODlcgHKxi35HFPE5g/CRh5X6bgl+DP3OM7tjIy+36PV6aaw8lNHLWnzM6X/epx0uEOF2oG18JhkT+pXreOYC93d3gotKiBCezzEajSqlP37fcCgEAoFLBW/63p/XU7/m63Tii0NQCAQOJYpCT3zHu/Sl7Y+nl65dOpi+o7/+4Z/XYx/1bdJXfPzsBwcOPQ6EoMAf7pBFrx/nfUi5p/y7rdlLA/JadUgm9e++cu/2/DxbQaqGxkl7ddp5jTkkx50KXoPP83W73eS6oOQAUSRf9fd2eLAhWxo6cfRafq8fXxQuxzmLLOFcG0EBQQfie6aSh7zG3lfbfYy9P7wGn2ccj8eaz+enZSm42OI7JrjzgLp7dxt4SQzHunPAhSGexckzbgwcAUVRpPN9/hFi6SUbgGsztySlQED+ZecLhCInwN5egCjh5Ro+53Dp+Gq+pNNKLriH78KRuwzoWw+FLMuysutJnodAP7pYAdl3sYjyJncueNu4F+KXux34QUzwPnIni7uXZrNZRSTBVZHvPOFzMhAIBC4FrNY6+g93+lM9/fXfXnl9vNnQ8mM+rfnGxj61LBAI3Bpu/HcP1dWP+pgk6Ss7f6Oj9YMpIjhWax399N1fqR96zePi++UywIEQFDzgzVcvvf7b7eeQY8gipIEfSJmTBq8b96BGJ8G85yvb/Len27vdmnb6LhCQO0g096CUgZ0ORqNReh4PiPT/dgcFrzlR8vDIPKjSHRC5CODHuBWdYEiEnUajcVregTsB8pr6vJYfwufj6feHqEt7DgwIvmcwcE3fHtDv58+VH+9J/jg5vL15CYSvhvs2m/6a5zEURZEEAVbp83YwrxhPd63Qbsi8Cwru+nBCT7s8syDPbPCcBq7hGQu+bSJ9whygTMCfw0k+z547B7xEgDZ7qQVtgPCznSefRxeQgH+GaCMijgtq+VzhdT4DOD5cCPGyJf+MeRlHIHAh8Nw3fYXqDyn17459cL+bEriMcf9mR//nvn9ceW00n+mhT3i6lsa7pYLb0rEXvVWax/dfILDfWP/OL9LVj/qYfW67+9qe24LPazX1us96qR76hKfrutd8Utvvj///Xao4EIIC8FR2ViU9P8DJj9fl52TKcw0kpeMlVYiCr1zn4YEIFdzDiTVtgDyywpsTEifclHMsLy+nHASvuS/LslJnvygw0uvI5/O5xuOxxuNxKkUglNFX66m9h1RxLv0tVV0Ynu8AYZxMJhoOhxoOh+l4SRUxIbfE81q+ak7feJ4A53EMLoB6vZ7cKFzPQzbpF+/nPGfBCSxt9HIE2pK7GPz5/Bny8gP6zN0JuXPARSBprwwBos1Yu7iSW/vdTcNPv9+vlC/4DiIQew8wdfHBBQXEKMYdQSF3yPDD5wTRgevk22ey8u9E3wk8biH62sk75yzqq263e9puITl4ZvI6vLQI0cRLNbyU6UwiRSBwPrjvj/yznvufvkr/7jufv99NCQQq6NaaeseP7+0/f9P2UE/888eqHAxVzmaa7/6/PxAI3IGo1VU/uqqf/C+/qa/pHt4cAr5fPn/8VB0PQeGSxYEQFLzmHaLjpQWSNB6PU4jfaDSSpCQkOBGs1WqJcEhKtepOGD3XAKLG9oUuREB86vV6KlHwWnQneJPJpFI6AJny8gxq5CHRvgUjxBFSVxRFEgMgr5BW+oNcAwiT9+f29rY2NjY0Go00GAw0HA6TsJH/uHgBQUVAGQwGGo1GGo1Gp+UesALt/cXKL0Ss0WikNs5mM/X7/fR8kD2IqgdC1mo7QZnD4bDiGME14avOLg75Sj+kGCLteQQ4TMhjcEHJA/z8NQiplw+4qIVjxVe4ubc7Vnwe0Uc+NzwM0MfH6/wbjYZ6vZ56vV7KuOAe/LfvHiEpOXd4Bs8M8GfgOaS9FXpEgrxExgWOPIiTOZ5nfyCAMJelqvjEvOeHMS6KIpXg8OMOHMo8/HOQO3RcSEAU4b/5HPn3SQgKgQuFB//1Cb3yil+W1DjrsYHAfuKqek+/+6aXS5K+9G3fo2u/6T373KJA4PJD8bn31Uv+8Fe1Wjs4gYuBwJlwIAQFqbqVHyTMBQa39HttNeTPV4Gx7Et7Nnrp9C0TfdU1X3H2IDjEgfX19XSdbrebzmNl1m3ansfAdT3R3kPf3DEAIULw4HXs9FtbWxoMBmlF2Z0Z3Jd7sGrs5JXrubWe3yHrntA/HA41GAy0sbGh4XCYBA4HjgqIpgsKhGX6GHlaPyGa9CtiiK/QQ7RdAPFcDXeT+HFOrt2Z4s9M27k/xDbPnPB5x5xwJwTzin7PHTS5Y8TLElxE4jq8723wedLpdCo7oPCcnnfg+SB+HW8r1/M8CIePBWIB55zpHvS7ZzcwTyhx8M+BH5OLED6/eTae0x0++XcGbaetLgbNZrN0TL7LhDs3vL8CgfNFvz5RqwgxIXA4AIl53gNerP/059+kxtd8QmXsehMI3CH45NMfqi//12+9pMSExz79dXreAx6pe/3gW/a7KYGLgAMhKOS2cCzJEE+2i/QVWs9FYFUckgcxdru1r1yTOu8rl+6QcMs4YAtHVlmlPXLiDggI8aJaft8JwJ+DY3x12l0HCApFUaQ68MlkkhL2uZfb7KU98uylADnxzu3wTvToJwIZ6QPvf3dx+PnSXv26Czp5UGNeNsG96Qdq+905AZnMwyV9lTsn2HnIH9eCUPq1ILKeR0F/unDjoYW0J3fL5FkG/LhzIi8vyOes9yd9gVtlUd4C13ABjvbngkLehw4XDHJXBvM/b69fOx93Ahg5hz7xNrrg4uPgnxHa5v8yDi4o0CZed7HKy4Pc0eLXDHdCIBC43PHF7Zpe8pkv0SN/8Bm6yx/coK0Pf3S/mxQIXPIY3G2u51z7tv1uxgXFM479i0YPa+kPv//huvoFbw2B8hLDgRAUpGr6vGcJEF7ICjnOAhcCICPsgEDooe8k4FZt6sZdoPD6dWmPVGAd39jYSK4ACPF0Ok0/XN+D5ZzskE3Audx30crydDpNmQj0jW/dWBRFIj9kHbhYkZNDJ7aILp5LwDH0E8QL+zeiCW4HL9PIXQGepcBKL8TcrfIuvuQ19oB7z+fzyjafuVvBwzF9FwnaR9/xQ//5DgMuRjA/OB+ynpdBuAiEeEI7vM+lamghK/2IYQhgPHsujrgwhE3ftwR1Ys7vnv1Am2ijuwK8vMFdGJ7FkIeQcmwuurkTwD97lPJ0Oh01m82KmOehl1tbW2nee/uZrwiMLpbgfOFYn4dc00Uin5/eRlxJXkLlYlcgEAhcrriq3tM//ehz9YU3P1XHT61p+9TafjcpELhkUb/ySs3b87MfeAjxk1e+W0995t/pCa/9V5p/7BMqp4c3GyJQxYEQFHAVsAtCr9dTv99Xt7uTZEp2gtfw8wc/hEHaC1uj/h9nQ1mWFfIoKZFzrreyspJIL+878cWF4LsMeFI/QgWiABkIHqwHAZzNZimTYDqdnkbGJaVrcd7S0pI2NjY0m81SuxqNRqobbzQaWl5erpQdcJ6HzuUCi5d2QLbdbTCZTFIGw3g8TmGUELucdGFZJ8hxPB4nAt/pdLS8vJz6hjHL28aKvgsuXm4A2WbVG6Lv92WsKAuZTCaJ8FMSg0jhQgG5DhDoWq2WxpjjcjcHrhG33SNQea2/k1f6xF0lOXmF0PPsbHfK9pKMGeIYYptnSbjrwXe7cFHJx87DKl20Ae7q8TFBrPDsB8/k4PO3tbWV5hHlLh6uyOeVfpL2XBFeKsOzeWmTixMupLh7ibFyUZLz8xIk5logEAgEpDf+91/R/b/uibr74/5pv5sSCFyyePRfvVt/vPpaSbWzHnsYcVW9p1f91Sv0ZT/6/Vp5yZv3uzmBC4QDMVtrtVplldbt0LPZTLfccosGg0Gqxc+3ovNwO4hcbjH3VUtCGCH0kBpW+71EADKLvR+CD4HzbAfaBTFyotnpdJLIgeNiMpkkUkRJA88OgcLV4GID7ZpMJlpfX9epU6d06tSptLrrAZRO+PMcALea4zhwW/p4PNb6+rqGw2ElBwEnSG5fd3eAr5IjJnQ6ndPEAcii9zfXRLThv+k/xB1EEy8pYExz4utzDeeAj5kHAObzJS9/4IfzPIPDBRzPxPDsBncYIA55u3k2SC9zDDGBHAL6hz7hfAi0W/oZY8/6WJR7wPyCmLvQ5Z8nxtr72fsYMYx5goiEKEi/uYDHHMsdNO7AceGFXBGHtxWx0MfEBQf6fTQanVYC5W6QQCAQCEiNoq7f+cJfV+uvrpFCbA0ELiiWPuNuuu/bl/Rty+9TvTgQ9OyioVHU9d3/8Y/1/l/8ov1uSuAC4bxmbFEUR4qieEVRFO8tiuI9RVE8pCiKY0VR/J+iKN6/++/Rc7jOaWTe7etutfdk+px4QBbJGCCHIK9vx9LO9Xw1Pw/o8zayMuzBbV6XjmPCwwKd3M1ms7RLBUIGmQyQRO7lBIhnRGSATI7H4+QecDHByZ/3WZ7ZkJNOdg7gGSeTSdr9ws/xtjFO3Cvfog8S7KUObmnPibe7TxaJIX5unk/gQZbebz433MGBqwEy6fMhL99YZH/30EDGh36kZId552UQ/LigkWdT+PUh6/kuIE7sXaCBxLv7IRdWOM7zJegr/nWBR1JlTtFX+Wq+zw/vA8/j8CBFniPPDPFrtFqtNId87P3z6vPE2wm4V57D4IKNl3C4cHQYcKG+iwOBQODW8AWthv7L9a+SLnHCc3sQ38OB24vth3+u/vlp1+g5175NV9R7+92cOwTfd+Tj+s6H/Y0+8YyHSrX62U8IHGic7/8RflHSa8qyvI+kz5H0HknPlPT6sizvJen1u7/feiOsPtpzEfhj37d59PR1/4PfywZms5kGg0GyVnvtNKukEBgcBAgaXovt98FeD5nzLeYWZQ9ATiCYkioCAKvglHl0u91KSr2TsTwjAmLlW0L66raTN35okxN5Vo4haJ1ORysrK+p2u0lQIBEfZwb95M8MIWSl3LeW9FXqRWUSfi1JqY380L5cUPCyDHcm4DbxvnSiDzl1Iuv9w3zwlWx3XPgKv7RH+t2Wz/M6mWcuQJQhs/mqvxN032GBOZo7VlxEYo6SVeA7WPAZYezpBw9YZExcwPK+8PIK3+3DBZgziQD0tbtLuK6XDvFZox8pheJa7t7J80gYDxcJvKQnL+HwY/PwRxe5DgkuyHdxIBAInA2NYq76Pe6qYrf0LpAQ38OB24ylO99JH/zWhj7wnc/f76bc4fhvV71Tr/6B/6H6ve6u2m4Ja+Bw4nZnKBRFsSLpyyQ9QZLKspxJmhVF8Y2SHr572IskvUHSj53lWqcFwuWhaV7zDKn1dHZIFjXahBs60UCYoNyAPAJfRedYxA1pr5RiZWVFS0tLGo/HGg6H2tzcPK3MAkHBHQCSKrb6ra0tNZtNra6uqt/vq9/vq9PpVIgMwoivrDebzUpeAG2l/xBLIFgbGxsV54Kv6kNIR6OR5vO5ms2mjh8/ruuuuy7V5xM22e12078QQvqXLSx9lRxxyFerPXvC28L4Q9jpP+Ck2Ek9/YBIM5vNVJZlJV8AV4mvSHvNPO4XSRXxgfZzT4731fG83KPdbqvb7SYxwctAXGBx4QQi6yvjuVjD/HVBy+eah4p2u90KyfbymXa7XSmboE89k4T57yJTnpfg2ReUsdAPEHbGm3bkrh3/XLjLBzHERSv6ghyMra0t9Xq9yvkuhrgw4H3tGRge0sm8oaSJueOlOwcdF/K7OBAIBM6G+zc7+tO/+gN9xROerMbrLq0k+tuL+B4O3F582Z+9T68+/ur9bsa+4fqlvv70L1+hL3vaU9T5w7fud3MCtxPnE8r4GZI+Lek3i6L4HElvl/RDkq4uy/JGSSrL8saiKK46l4stCvjjdS8xgGB4voCkCnEjBM6t7m5vnkwmleC3vA5/c3MzrbY6QUK08NVPyBquBc7v9Xpqt9tJDCGzQdpzGhw7diwdh6DhAYoetMczI5rwXAgREG/KObxOHSLO8Twvq/qtVku9Xk9XXnmlOp1OZeXenROMBwQ4F4EYm3zrPi+RoM9cRMpDHb2GnZVoJ/weAEiIH2Uz9DntaZvi6WPm5QXMk0X3gVzjrvBrchz3JReBbIPcqSLtEeDckeDz0EtzeJ8yFBcZaDOEmxV87x+pumWqiyV+fUQSXDqc58IKghyfr9XV1RQMymeGa/nniWfFecNccKHF8yF4VuaTl0nwDIxPTvi9dMFdSe6I8V1BaJsHmealNocAF/S7OBAIBAK3GfE9HLhNWLrLnfXFr36/nnTkHZIujzKHW8P3/szv64b/ekzvHV6jTzxkIB2Ov78CuzgfQWFJ0udK+oGyLN9SFMUv6jZYuYqieIqkp0g7BNtJpK++OimR9koIIABOGiAH3W63skot7a3Y+mo6K5J5Tbpb2D1gzy3+Lmq02+3K9oi4FiB4XNfrvtvtdkVMgCRxH6+td0t2njvgOxc42fayDl9Zd/EEsQKhYXl5OQkgvOfuDyfakhI5d6eBk1Bec5LuJSW4KlxU4H3+G0HBV/e9/MHbwPMxJ5zYSqoIHt4+2uZtzOGW/qWlpTQfOYcdGCQl0cqFnHx+ISbkJTc+/92h4wSd+3r7eWYvpfD+92MZOw8hXDRu9LXnEkg7pJzdWKQ9kcRzB/Lr8zqfNZ7BHRn0E6+7c8X70tvF2Pox+VzyjAsvvcGFwLFeJuOlNocAF+y7uK3uxWlhIBAIXNqI7+HAOWP74Z+r939LQ6++4k8UYsIOvmv5hKQTunH1H/Swn36G7vWrn9DWhz6y380KnCPOJ0PhBkk3lGX5lt3fX6GdL9NPFUVxrSTt/nvTopPLsnxhWZafX5bl57MqCLFhxdNX2qU9AuLkW9oRCzY2Nio7QeSkECGBGnCvS8e2zX1z9wJCgKQKCWRV2lePcxLswXqNRkPdblfLy8taWVlJK9petuFkx3eSyAWFfr+vlZWViiiB1T7vP4iTPwcuBJ6D0gtJFaJF+zzUzvsWK74LIzw3/ZSLMoydr8bnJNAFECd5jIFb231l210lOQn3a7qQ4M/l5QYOyKiXtzBfPZcBpwz5HWciwd4/7o5gHi7KNPCSmUXWfp8zfr6TZfrPMyPy7AAXFphPvtME88W3YnXBJRfxuDaOIi+t8LnvuzCAXHzxOeDlGL7DiPdJXrbg2SE8G+Oez+1DIiZIF/K7WFETHQgEzg2D6xpauvaa/W7GQUF8DwfOCUufcTd96NFNffDbXrDfTTmQuHapr/c94Xn69MOuU/3+n5l+IrPlYON2OxTKsvxkURQfK4riM8uy/GdJj5D07t2f75b07N1/X3UO19J0OpWkRIAnk0kqdRiNRol0dTqdCmlh9XRjY0OSTlsB5TyEhOFwqLW1tcrqu9dNs+KfZyPwPkSu0Wik7APaAQGBpDrBk5RqxHkGz0ZAXMAdsLa2ljIQ8l0W2IaREhAXOCirQJSYTCYVZwKklBKM48eP68orr9TVV1+t5eVlnTp1KpFH2iPtkXHPbJCqW/dBPCkp4X3cE7logEvCx4r3cY8g6jgR99V7Shzy8hbGyoM3ncw2Go3TSL0LHJ4jQNtdbPBSBXe4zGazlFuBcLG0tJSEqlxMYOwpc3H3hxNadwdwXd+OkXu7WyAXSlxsyksiAM9MRkQetNlqtdTv99Xr9dRsNjUYDBJpd+HEBQDa3O/307zkWEqWXGzxvIp8O0f6wsWi/Jjc+cD8cqGDY/lcMPdy18ZhCGa8kN/FgUAgcK5467Oep894+JN0ryd8cr+bsu+I7+HAueJ+r/iIXn3NH+53Mw483vqs51V+/6rHPEHF37xjfxoTOCvOp+RBkn5A0ouLomhK+qCkJ2rH9fCyoiieJOmjkh5ztouwYlqr1RIRhBizzSKr/k68IFw4DiDb3W5X7XY7kYJms5lW7NlisdfrJWJUFIUmk0kiwhAgdwxAxiCyrNRC6rxkw0sKcBd4aB9kB6s8r0O23E3hK+Bc390ZEKFWq6Vut5sECfqUPqLtODgkqdPp6NixY1pdXVWn06m8z3nj8Tj1O7sTcN/cieFbfCK65LkA/pOHOXJdX7GmTxxO9LwmnrnkK/C506JerydyLO1t9eir954HIe3leDDGEHIEoVarlcpumIuIRpLS3PI8C57VS1w8CBBHiZf1eL97Xka+8wmCm2dXILwRbJjnD7iLhGedz+dJeJrP5+p2uzp69KiWl5fVbDZPyxJxd0EuuCDOeQAlQhdzwZ0VzJ/ciQDhp42+QwSfSw90dBGIPqCdXtrA+Pl3UF4GcsBxQb6LAxcPf/ntn6fn/tBX6EPf8Kv73ZRAIHBxEN/DgTOifvVVevRfvkvftvw+RZnDbcfTfusVOrHVT7///rd+mbbf/b59bFHAcV6CQlmW75D0+QveesTtuJakPYIMwYIck1VALgEEAYKHcEBtd7PZTFkHEJHxeKzxeCypapPnfsCJiJMxt5o7QYXsuH0eZwKiBltD+nVzqz4CBD++2opYIKmy6oqVnPBE7uslGl63T0YCQgXiS54LkNew+33pd697z90A0t4ODZBEJ8sQSNok7W2r6IIB5/CsHqiX1+y7Pd/JKQ4DruW5EjnpzIk2fejEkvM94BBxZGtrKz0HfZ3vQuBzjWfJyxhYuXcgdOXZHByft92zFcqyTGKCzx0fWy8DoJ/YipMyG8Qv+oX70Zc+vh526J8jJ//ex/mOF5IqogXt5nj63DMScjGB/kWg8bnk85nPKX1FfxwWQeFCfhcHLg623/0+NU48ZL+bEQgELhLiezhwJmw//HP1vu+o649XX6N6EWLC7cE39QaSBun3n35mX8UtX3Re17znS0fSm//pPFsWkM7foXBBwYotFnF+IL9kFfhWcRBZ0va9pABQUuE7LeQ1904kHE46nAzmq9qIFxzPyjGZCuQMQOBYuXVRA1Llq86UXnS73coWf95fBCpSAkCZQ26h5zk4l/tDXr29/twc7wTNCTmCghNFVtLpC2+3Z1kgDNCni1L45/N5cp+cieD5+Lj1H0HBa+kRPhAuaG+eKbBoVRui7YSfOQgZRkhxYu1lIt53Pn+c7OJ6WDTn3J3gz+HiSp4HkDsZfN4zvrSF13AmFEVRyU1wocQFBZ8HtN2f00UnznG3kWcacDzCEM/vc9C3ffRx5NrAdyVxEcXHwuc653vmSCAQCAROx/KRkWoPvJ/m73j3fjclEDiQqN/3Xvrg17X0oW94ns4vui7g+OAjf+O8r3HfW56mu25/tlSWKt/+rthZ4jxwYP5a9q0ZqfXHPg/pppZe2gt8g4x1Op1K+YDX+q+vryd3wmw2U7PZTPkHbAGYr4466anX68my7qTRV8RHo1GFyOFo8HIBt1h3Oh2trKyo0+moXq+n1XoPoCPEETGiKHa20IMAITQgokyn0xQcSLmAtCcGOMnE0eGr99vb26eRYSdWeTClr+hPJpNUHsFWlpIq9feMs5cGOEl08gb5JEvDV78RUnzVn+t5loUDIsv7PiZOxv35vJ6frAdpj9gzzsPhsCKk4PZAEIO00l+UwPh1uK9nPfj8RlDxLUVns1n6zLRardPKSnxcvSwoL/Pg3l5KgPOHbI5Op6OjR4+mshfPYXAxwZ08zDMviSFg1T/37lpgLHIxxgM6KU8gX4TvBt/BRFKln3he3B3+2XZhzAUu+jYQCAQCi/GPX/ASvf736/of9/js/W5KIHAgcfVvflJ/ev3L97sZgQV4z/c9V/o+6abtob77Pl+l+XC43006tDgQggIEu9frqdVqVXYmqNVqqVSAYyEfEA6IEKv5EIPNzU2Nx+MUbjifz1NZBCQdwsBqJyv0EEMIFISI0gYndmtra1pbW0u14jgpIDqUFEBacFNwDcinB+eVZVkRPhBZsJBTruCZDO12Ox0DQaZPuIbX5xO6iFji4Y0eikg5BeTU69YRB3it2+1W+nQ4HFayKVwIcMIs7RFqrkXpB/kRbs/3viI4UNpbaXe4SLO9vV0Je6StPq70P8cj4uQZA8wXH2sIr5NkFz6kvaBKSge8bIFrEOrpAgr9wPNS2oIQ4xkMktLqPeOWi1p5iYJnNXAec4fPIIKBu4fcUeDuEAQXxsVFH+aHiziMrTtFfEcQPi+Ijf6598BNnpfMCEkVQWY0GlUcG/m4HsL8hMAhQO//XqlXXf/zUmwJFwgEApc86keP6vFvfoe+uvtxxff+wcbxWkf/9h/frmc/47vVfeVbzn5C4DQcGEHByT3kFnEA8pivunouAKu0uBNYMR+NRokQdjodlWWpfr+vI0eOqNfrqdFoaDweV0i9tOeY8HtL1dBAcgCwZXc6nUpQIaudOAuw7nu9u9fTcz0IPm4DiD/ElUBIdhdAPMn7RlLqF+7pFnFeo/1eo0//e+K/bzUIefSEfUgf7UXQ8VR/+tDdEt63ufPB54hnO7hF3i3t+Tl+D8YjDyBkzrkl3lfU3Rbv5NkFAhcnEKec3PuKva+2e/2+91H+LE6WIfNOxhHavGSDezox5z75FpUIDt53vlUmQgtE3EuEGAucKP65dJdHHsBJDkVePsRc8PHzLWKZc9yf74szCVWMt2dPeIkJIpqPrbcxELgQeMixD+q+zfijMhAIBC51zB/2IL3/SYW+tf/nahTxvX/QUS9qelR3op/5vpv0qbs8VFf/0t/ud5MOHQ6EoABJ923nIAD5H/l5zbWTdK+FH41GGo1GGo/HafUZm/ny8nJly0cIhpNq2sOKs9e9Q0ZJ7/csAMgiq6m0kdVZSOd0Ok1lDC4KcL35fJ6EAJ7JCTulEpA47gPhg8T7qrcHNvIskEkcDi7OdLvdisXcnQm8BnH2vnHyiTshr/P3MgbPDlgEX1FfVJZAPzuhZF7lNfU8n69IIyLQRl+1z3MRfGXf8yk8oJPznIzmNnsvdWDe5MGInlXhuRK0zUtQvE+cELtY4ffw1XjGk/e5h5e6EK7pLgP/vHp/ebaCC1xehsS4eV4HY+WZGp49wZzz6/t3As/Nf3M/dyf4ziI+5p65sGjcAoFAILAYy7WJth/+uWr83T+HZThw+aIoNP+SB6qsF/ro17T0wUc+T9LB33o6sIf/+9mv1Ld0vlIbf/9A1d74jv1uzqHCgRAUPCQOS7rvT+/bwvk5/HiZA7s5bGxspJV3X2VvNptaWVlRr9dLhBwLNO93u12trq6mrSd9dRmSOhwONRgMNBwONRwO0wonpLrX61VyAGgLBL5er6vf71dq5cfjcaXNKysrlcBGaS/M0csVEA82Nzc1GAw0GAw0nU6TiEK5xPr6uiSlMgxJybbvroTl5WV1u10tLy+nko7BYKBTp06l+/l4QM5xiEBWcTS4gIDYwGqx18i7oEBfOgkGLtTkYL7wTK1Wq0KwGV8XYRBUuH9OWj0QkrZ44CMij6/WS9WgQ67vghPtzZ0a7jThOn793L2BO8BLOxAIgDtnQL5Sj8BGGQvjJe3lVPjrlGD4to7uHsjHx3cE8TbmZQ/cE8HL8yy8X1xo8edwl0ZRFMmJJCnlqHCsi2s+J1xsCgQCgcCZ8QWthv78d39DX/ntT4g/wgOXJ4pC9dUVvfh3f0VX1GMXh8OMP7jn/9G/vHigf/uZj9R8t2w2cHYcCEEhXy12t4IHJS5KYYfkQVSdlHNtQgYhk8eOHavY/XEzEHDY6/XS1pMEuuUWbEoqsJ6zgk3bGo1GImbuYmCVtNfrpWviqCDcr91ua3V1VcePH0/PxKoqxI5yAhwYkFUnS+5iwK1BngNCBc/UaDTU6/W0urqq1dVVdbtdtVqtlD8xGAyS20DaKyFwC79vf8kYIBCRWSFVcw58FbwoCo1Go0QYIYt5WCP3hSR66QD95zZ6xCLPTfDtBl3QQgjxNvAe89LLLCDW1OOz1aILKV4646UTvisBwpM7LjifHAPPsGC8+YzgHnGijHOCEhkXJXCQeFs8v0BSpaRmNptpOBxWhBq2ZuWH8hAfX5+bfOZ4fdFOJDwTY+HzSNrLn6Afva95FpwJzOl2u536jZBGxg5BxF0W7kYKBAKBwLnhZ//3C/Rtr3i67vGMN+13UwKBOwwf/r0H6Dce/Fuqqwwx4RLB3Za6+sl3/42e+f3fp9af/d1+N+dQ4EAICm71zq3rOUHJg/l8NdKDGiWlcoHNzc3KNo2UGkwmE41Go0poYB52CCGCwOT2asSEfHu5fLXYSwUgiO5OYOWfcouVlRW1220NBoPKSjJhd74q7SQfQkTfeJaEByO6u4PtNrvdrvr9ftpZAjHDgxV5tryswIUbLwWB2OXZB4yhB0EylrTPSwkgmr6dZi4qSXsCEu/jBkG4gIy6OMQYOrnkdWlPiPAsgZz0+yq69wttc6KMCEF4J2SWMeT+XvsPYWfMAcdTJuPjgYjmJTx5oCl91mq1UlkDr5GfwFzz8gH6ETHDsybcBcG1vCSEfshLGvIcAwSA3AnD2CJA5GUd3te4l7zsaFGOhbuHmKv5cwQCgUDgzHhgq6Xt5e2zHxgIHEbU6nrfCx+kener8vKzHvRKfXE7FiAuJdSLmr6oLTV+9JP65L0fqmt+MTIVzoYDISgACImvOEp7Vmn/XaqG0fnKq1v4i6KouAggQ9LeqjAknffd3k67HL5KTCmFVCVJeX0/xIv3IWQebigpbX3Z7/cTwfPtB52gQv683MOdAwgKiCaQRifK3W43/fR6vbQDRr1erzgTKCPwsfLcCHdbICh47oOHHeaE3UMq81V8J3YuODiZ93ITFxToE8Z2EbFGZKENHJ+XX3gdPuPolni34/sKt5dS0D6EDQSF+XyeBB/6wcUERDFW1ymJYYzdMeE5FogCLuggarkowbP5XPfSDJwPLg4hcnib6EvawXjleSjeH7mgQBtchPO+ZAx8bFxEcTGA35k7eRCjZ664aJeHYwYCgUDg3LByzYa2vuLztPQXb9/vpgQC543NR36e5q3dssylQn/xlb+guzf6+9yqwB2F/3PfP9bXFI/S7D2fr8br3rbfzTnQODCCghNHyLWH4AEnsNj7pWoQX04ofeW/0+mo0+mk1UqIEEIDpJtreqo8cKLk5Rq+6umihqRKcKNnRFBysbm5qV6vp36/n0ouIGteMkG7/B4QsDysbjabpXIJSZUtJmu1mvr9vo4ePZqEhH6/n6zxm5ubOnHihNbW1ioWcU/y99Vm+oD8ClwNBDtKquxE4ZZ9BILcAcFzkq3BPd0RkgtPEGiug/CDO6XZbJ62OwhjD6nMV7qdlLNi7/2cO1A8QNTFBQgu8xARg+O8TzmWvqUsx4UnBAUXVxBHaLuHcnrJBHMFAc1LOfg85LkNuRvHt/ak38jscLcGnwP6HOcPfbfI5cF1CW4k94OcB8++4Po8e/7d4Z9fRBFKfyRpOBym/nCBkusEAoFA4Nzwj1/wEr3s+av69Xvffb+bEgjcPtTqKmqFVK/rv77wVzP3QYgJlxtec59X6x0vmOrH7/uwyFS4FRwYQUHaW5l0a7SvRvrqK7X20+k0kUEIKCTAiSPkGwJJnT8hbRBOrP/tdjutsrNi7G4EyBbEA5EAgkZ7fYUa+z0r0xsbG8nCjphBucV8PtdwOKzUkHvgIOUKkG0EB7eMDwYDjUajRMKpe0c8IDOh0+mksodarZZcDYPBIPWptEMgyWJAkPE6+62trSQksIoPcaZNk8mkIrb4CrznD3itflEUqZ8QCJyEF0VR2aHCV9Xn83naYpO55OUykGB3HNAuCGaz2UzBfoxBXmYCwYWUM0bulOG6iDYINAhHEH3mvZfNbGxsaLL7RebulEWfDZ7RnR0EJrqYgNCCiOZzyMcF8cyzSgg/HY1GqS3tdlu9Xq8y1i4SMYe8XMiFJUor3InC+DB33ZlBn7rbAlEPuMhWq9Uqc4GyJ3eG5G4X3EyBQCAQCAQufbz/OZ+vVz/6f0qS7t1o73NrAgcBn91s6Bfe+xf6gSf+W9X/8u/3uzkHEgdKUAA5EWcFlpVkXx2GSEESvH463zqOUgKvSaf2nFKDTqeTBIHJZKLZbKZaraZut5vaAgGBtOU2c2mP0PlKLWJFs9lMRIxn8RR+yM2iIDmIMOdIe4QRUHaA84FrQ2YhfuQl+Co1/TIejytOAndH+BaBnU4nPSvlG55hAVnlWahRp49ypwHjQa6Ck00PHXS7vBN3hAHfCtHDD3MnhzsDfFtMz3lwYcPt/+6O8OfzOv28zMPbQF9D2n013F0ZLjS4e8LLfHgWtpP0TAHmVP758hIQzve8CZ/vfn36CrFK2hFAEKb8M0e7aWceaMl7ef4E7XdHCsfjWsnzKfy/c7iDCZHAx4z33Nng5UGBQCAQODc8tP1x/fdXfa2ue/pYWx/6yH43JxA4Z7zvNz9PP/aFf6L7Nrv73ZTAAUK9qOm+za76//nj+tADIlNhEQ6UoMAf8l5DD3AXtFqttLOBVN0lwIlRXpOfB+FB0rkOZJ9VeieXtVotbQPpK9C+mu2127SbGnNKDhA95vO5BoNBRThxggixcuLpNepO2PKSD7eMe5mFh/ORkwABdIu829jzvAIXO3zVl9e5Jy4Cxiw/z0Px2CnA256viPvWgfS7CztOsqmJ98DBPFzPCT6kUlIlC8DnpAcKeu4C13U3hLtiaCfj43kavIZ44UGSedvcJZATafqEvmO8FvUT4wUYe7Iv/PPkpQ4+3ogb7nTwXIhGo1Hpf3/2/FqLkAuJnsHgfc7YkNPhgZC5COLfA94vXuLhLqYQEwIXErVuV2vf8ADdtfmS/W5KIHCH4M5Lff3Dg1+qrznyXfvdlEDgnFA/sqpTX31f/d7Df1lf0Gqc/YTAZYk/vNdr9RkPepKu2e+GHEAcCEHBVw+dNEBKsClDyCECEGWS3J2gsWIOPIQNqzO2fdwLy8vL6nQ6KssyWcx9u0kEAncuUCrAFpNe/z8cDjUcDjUajZI7YGtrS4PBQPP5PO3kABnOV+B5ThwDrCrnK8BObCH1OCAg9eQHeGmHW++97t234sOtQbuc2HvNOtsKDofDRKh9pwwntVjJEXDYLtOdA7kww5jmeQAequjuDSeVtD8vAcCZwHEIN35/yLKvsHuGBef7e4D7+fU5nl0T+HHnjR/nOQzu5vD8DJ7D54L3nWd+QJIpE/HsBBcsONeFNe9L/wz6/MLl4s/icAcHfeOOGy/b4Xkg94gKnlmB2OJign+veNiiiwku1Pm1PYsiBIXAhUBx3dX62//5/P1uRiBwh2PeXlJtaUll9v+BQOAgoVha0uZnf8bu93SICYFbR1Gfq9ZuR55ChgMhKEConGSwSliv19Xr9Srb2lFLngc0QtIajUballHacTesrKykgMDxeKzBYKDZbKZ6va6VlRVdeeWVaWcFJ/Dtdlv9fl+NRiPlNkAy2Rmh1+upXq9rMBgkUr+2tqa1tbXkpuh2u5U2NptNHTlypBJmOJvNKsTfSwsoXaBvWN0nX4BrbGxsJDEEG7qLB3nAYLvdrhBiD81zaznt9K33EHh89dnr3hkDdyzQb7gj3FUiKQkYEDrEDa7LM/sqvc8dt84DD+jMV9qZT07OmZN+TcSi7e3tipMgD1REePGSDXcTsBUn7Was3eUAyaWfeV53s9AGQjv5TOASwClAv+Lu4dn8vpIqQgDPQvnJos+rO3QYaz47OD3m83nKA3HhxUUz+oe+ZvzdlYJgxDP5VpUudHBeLgTkgqW0t62rO2G8bMaFhUAgEAjcdvzOy56rL3nxj+ruz3zTfjclEDgj/uVZD9bffMfPSertd1MChwDv/PIX6BXvuE4vvs+d97spBwoH4q/loihSejuEAcLrOxOwMint7QzAOU58cncCDgNW9xETIFYEFDpBI1fByRKBgtIOcVteXk45BJPJJK324oAgQJGVWwQJCCekdHNzU6dOnaqUCGDnhqBB9LgebgqImm/hJ6mSCQF5h0T6FpEQV0kVWzmr8E76PBwSQsnvXjrieReQTCe2vhOB29G9dt+JJoKBr5xD9ujbvMzF3Sh+H8/WYPXdBROv8ZdUed3bSTvcCbGI+OfP4sIJQk+r1dJwOKw4PqRqaYYLbPw4ud7a2kqiUZ7FgBsBMQZhhn7hM+WfP+Ye89FLR7wvcbwggHk/sSMGfepiVF4m5H3G8yDeubOA9uLE8c95LiQwdu7u8O8Gd7x4iQOCR14qEwgEAoFzx1X1nuaN2Ho3cHDxgf/9IP3Y579KV9VDTAicG7q1pu7UOCkpBAXHgRAUICYQQlbOfc95SHMeTgiJcXLiBFeqEuX5fJ4EA1bsKT2A3E8mk0p5AGTJ67FxQUAKWblmZdddFhAV316PZ4IcjUajFPwo7W1F6GKJuwoQCcbjsaQ9ezqCBf3ngow7FijTcIu8J+Q7mfO+d8Lo2QiSKjsm+PaCOSlm9Z7zIXysmLtggfjiJJ72uh0+J5YuzHiWAO3xen4XHFyUWERQvRzHCX/epjwY0a/lRJztC/MyhjwbI8+JwDXheQVu2c/P8+0jEXy8rMLnI3OSZ/L2eW4BAoh/tjyrgX5l3Jg7fi0fa4QhBA0+U15e4u3zMEo+M9zbQZ/yPMADKHOxyudnIBAIBAKBSw//8cGv1hNWbtrvZgQChx7nJSgURfHDkp4sqZT0TklPlNSV9HuS7ibpw5K+vSzLk7d2HQgwhLjRaKjX6yX7M8R60W4HTvLzFW6vsec4tlikDGF5eVnHjh1To9FIgYJbW1vq9/taXl5O2wWyGgrR8ZDIVqul2WyWBAHcCt1uNxGT9fX1ioXcwwPJZOj1eonYkNXgK7q4DvjJMwzG47HKskwiQr7l3dLSUirRoBzBiRYr15KSS4R6//F4nPIROF6q1sBzP0grq8EeyreIgDL+Lrx4aUe73U7XgvA5EcxzF5w445Cg3TlRd9HHRQk/3oUW2oXw4cIDz+xuAs934D6NRqMyht7/Xu6Qk3APHoVYe2Cj74TAONAGD8GEMLMtKvfwz9j29naaI55rkreFcfPgUMbA804QvHKRhzlB3zDvXbSgf9lZwjMdPHtEUno+/27x8FK+A1zcos/yrAWfJwcdF+q7OBAIBC4k5s1SteVlzTc29rspFx3xPXyIUBSqr66oUXxsv1sSCFwSuN2CQlEUd5L0g5LuV5bluCiKl0l6nKT7SXp9WZbPLorimZKeKenHbu1a/NFflmUizZBrSATkelHoXu5KaDQap21TuLm5qbW1NU2nU62trSUSy7aJ1LZvbm6mEgks5FzbSROCAbZ+sgkgvsePH9doNEpk/OTJk6lW31diIYWs5ubBj5AzRAW2voTs3XTTTRoOh1pfX9d8Pk819BAxhIF2u62jR49WsiQopfCVdCd3ODmm06nG47Gm02kaL57TyaXvskCfQU7dNZEHCLLzhqRUXuIlEjg/3PWBIOHig7sZOE+q5irU63VNp9MK6fdcBkmVMcbVsbKyku63vr6e+i6fg1zHBSffOQBSz7xDsGFO01ZKXXxLQ+YMIhTzG1ePZ2NwPIIAbWEu4cQhnHQ6nWowGCQiz9ai+efUP2uM9+bmZvrsuPtlaWlJp06dSkId4pj3M597SiNGo1FqN/OF67tzwdvjgoE7EHIXjQtY7m6hLb5rhQsQBx0X8rs4EAgELiTe8y2/ouc8/H76i8++tC3l8T18uFC/3731ktf+lvpFS1IEMAcC54vzLXlYktQpimJTOyrsJyT9uKSH777/Iklv0Dl+ebr13TMTfHtHxIFFK+Veh+27FZB/UJZlEiawfUMmsfiTqXDs2LFEfiGRrI464WGV2bMCNjc3UxmEr85Sq+7lCblIQptpN44BVrUha4RAbmxsaH19PT2flzBIezsq9Pt9rayspIwDQhx9BRu3ha/eTyYTDYfD5H6A3HufUx7CSjwEcjabJceHlzo4IaVEIhcoeAbInYcFsqLueRQuiLhzw3decNLvwgmkkj7z0hGyMrrdbmUXDuBCh18bZ4W7NfKQS86nDAcRyecKz0XbmTP5ZwYRAAGDZ3eXBE4DBAl2AkF880BJ5hmuGr8PQEzw0gsPNyTngPe9jzk/L13yEEscDh6gyXeAZzogyDAnXTTA7eH95js68H2S7/DB53Q0Gp3h2+rA4YJ+FwcCgcCFQKtoaLU+0mUSeBffw4cEZVFotdbZ72YEApcMbregUJblx4ui+DlJH5U0lvS6sixfVxTF1WVZ3rh7zI1FUVx1jtc7Y827W70h6U6YIV8eHseq6/b2diVFn9Vnt4izIs6K6PLystrtdhI0WJ3Hiu0rzfx4cKHbyimx8KwH2k17nKBDzCBFiAq1Wi0FQCK4sKsDToi8pp8+Y2tLQhwRPiC+kE1q+j2Y0HMcnHjnJQnu0FhE/hkbH2tJifgz9n4cx/q/0h6Jd7s8BDQPfPQVZp9P3N+JPf962zqdTiq/oR/yMMa87MFLC+gPFxw8i8FLDRZt0Uif5J8VxAWeBzHBPycIGHmGiIsA/sMzE+BJfyD+eEkRz+6ike/GUKvV0nsuutAX3i7ay7O4c8BFN/rCBYV8i03GgD7z93zeeV/mW0jStwh/Bx0X+rs4EAgEArcN8T18iPBFD9CHvra/360IBC4pnE/Jw1FJ3yjp7pJOSXp5URT/6jac/xRJT5Gk5eXligMhJ0srKyuVlVWvb89t527Xx6IPiXIC76vF3BPi3e/3VRRFWp0fDoep7GI+n6fVW4gjpRHS3mqply9gB/dVU+zuPKuvjvMsbulut9taWVlJuztI0mg00vr6etq1wsP4WCln5ZoSCbanxMq/vLycnAKUmrDTRV7D32g0TgvrIxzSV8DdqeE16Z534KUSvl2hhw7Sh04wPWfAQwh9JT4n6y4s0C++1STkkbZCPJvNpnq9npaXlxOpZdX91mz0XlrgzwXZz23/7k7wzAl3m+T/DYlH0FpeXk7BpjyLOxPc8YPYRmkF13KXg+eGcM98Rw3mCSGk7lTBdeHOB/qINuPgcFcBY+njx+edZ3HHBo4hxscFKpALSz5utNFFIi8vOQwZChfyu7it7lmODgQCgUCO+B4+PPjQo3t63xOeu9/NCAQuKZxPycMjJX2oLMtPS1JRFH8g6aGSPlUUxbW7Suy1khbGp5Zl+UJJL5Skq6++uoS4YDOGtLPqipgAwfSVx3ylHGLmAgMkEBKU2+objYaOHDmSVqNPnTqlwWCgU6dO6eabb07WZ9wBOAUQFRACZrOZNjY2tLa2pvX19eQgGI1GyW0AIcJV4GUHkEFIGcQZQaHT6agsS508eVI33HCDTpw4odFopKIo0soy/dbr9VIJSVmWKVQRUsd2mb1eL4UEes25tw8rva82d7tdraysnObQcOJNJoV0+io07hJEDs+78NVhJ7K85lkKXkZAn3m9vbsr6A/mEI4AjmWlfmVlRUePHtXq6mpFiPFVd185h7yTj4AAlrtGOA/RhfyL0WhUEVu4JnMU8DlgDjMvVlZWUnkAfYSoQb/w+cl3SOCZ3eXA8bQDx4WHnbrgQJAqO6L4tqncn88Z+RH0h5dauLMnD3pEiGMuMMf4bOeOHkkVUSDvC3eHSKo4MFyUOQS4YN/FK8Wxg6+gBAKBwMFDfA8HAoHLFufz1/JHJX1RURRd7di7HiHpbZKGkr5b0rN3/33V2S5EtoFU3Xqw1Wql3IDxeHzaKqYLCp76v729nfIPnJhhn2ZFlPPn83ki4JQFrK2t6aabbtKpU6dSCJ/vsuDbSi4tLSVyMxqNkqOBf73GnLr09fX1JBZAQt3mTfsIxzt69KiOHj2qZrOp0WikEydO6Oabb9ba2pq2trYqVnXaxnND0NfW1lSWZXI5LC8v64orrkgBlJKSGDAej08Lv4PwYmv3AEWO9VVrJ/8QbMpNuBfujXI3BNGt5r6bhgc1+hzwFXiHu1c8MwERCLLKmDl59UBASkvW1ta0sbGh8XhccRgsKrVwyz39xqo7IgbPSn/57iVeJuGfEcaSvkEQYu7gVIEI0xbmeL4NKdelL/mXttHnXo7COQhBRVEkIYI8Evo1L1+RVAmpzF0pnl3gRN/71+ez/zAOHkiZl0y5UJaLFRzjAZqHwZ2wiwv2XRy4sDjx5IfoEd//pv1uRiAQuPiI7+FAIHDZ4nwyFN5SFMUrJP29pC1J/6AddbUv6WVFUTxJO1+wjznbtSCWhODhNsCCj/0aQuC19p6lABmA5OQha24l91XfoigqWyniKFhfX9epU6eSOwHxwAMIuS4J9YPBQMPhsBKuxyrq0tJSInTj8bgSIEhmgwfIsSKLE8BXf1nVdgcD13OCPZ/Pk719PB6nkg7CBllVRohxO72v+ubhgggXTt4gmhA2zxbgefJAQsQExoG+zIkeO3dwnF/Lx9Lt715GA9mnzYwNq/2Q7rxUQFIKMGRF3lfcfQXfLfnAy1AkpTmJaEJf0ddePpHDXRf1el2dTieNu4eQSqrMT8ogPKCS13luF0m8Lz3/wfvX3SaEebIjigeN8kz0pQdD5sGqXorg1/D5x7O4IOCODp+PLsrkJSr+7LgeGE9+zjQOBw0X8rs4cGExurbQz1z9jv1uRiCwb/iJTz1Av/eGh+qeevN+N+WiIr6HDwdO/JuH6KrP/dR+NyNwiPGck3fTL/71V+neeut+N+VA4bz8vGVZ/qSkn8xenmpHmT1nQHZZ5YT0sj0iJMJrnaU927tnIWCllpRWWh15qBvEwQk7W+htbGykHQ4g3djaIU9e/7+xsZHOgShOp9N0DYg/zwv5x+ngdnVIGC4NttEcDofpHltbWxWRg9V1D5pkJXk4HGowGOiaa65JYsLKyora7XZlZZhzIJ+etk+fe/geoA9cjKBvPQ8g34Fhc3Mz/e7OEcYKMSFfMebaLip5BoKLEsyp3CXg23N6vgNj7KvtiAnMK4gsc2JRXkFe6+9z0a/rQoWPvR+Pxd/LE/r9fnLzMMfoY19lp8yBc+lHxsxX8j2U0Ek/AoWXIvg84LNLOYX3ld/TnSo4UBg/ykDcReT5GbkABTyPg3nl73Eu/3qehu8+4mIX7x0Wl8KF+i4OBAKBC4mX/cVDdc8fubTFBBDfwwcfj/2h1+kZx/5lv5sROMT4pb97hO79fSEm5DgQBcJu7z969GgSEiB1uAWGw2Glftwtzk5qPLXeV8ilPTLoK+3Ly8vq9/uq1WoajUa6+eabderUqUqYIi4BVvXr9XqFCObhjZQ1kKUwGo1SuYJvV4lg0Gg0EhnnmkePHtWxY8dSKGUewoiYACmDUPLcvIZdn+0sjx07puuuu05XXHGFms1maq+vkkOkFrlDIM64HzzwbzgcJlEEwuk5FwReQkwhvoyZl7UwNyCyrMBTMoA45DsP5GNPmQMhjJubm6kfGV+IKOSVsUFwQLzxcgAXW5zMepmN1+MT6Ok5BJSW4IDxEg5JacyYD74qzxxCeKAcA4LPs7gTw58RMce3a4RY564a2oQwQT6Ci0suHDDWno9An/kWsIxzvssCQh8CHH1I+KO7cGaz2Wkhl1yH/qFdXupB23Mngh+TO5kCgUAgEAgEAoFAFQdCUJBUIeztdrtib4b48cPqKISu1+slci1VV0N9NZzVYt6DbK6srFRyECAurN5ji3biOJ1OKyGLJ0+eTCQVskb5A5Z57OmsgOfWel/FxrUAsYXkQ/56vV6lzMBX2iFjZFMgcvT7fR07dkxXXXWVrrzySnU6ndSns9msstoPfNcA+g3yRugefeQhhe4Ukfa2NsShAfFkm0rPjUBU8VIVsg6c5PKsvqrNdbymHtFpNpslMcGDC3nOPMST69Gv9KnX7Ps8zck8181X+V3YICeg1Wqp3+8nMWMwGGg8Hmtrayv1OSv69Xo95SYgsCHsuMDhZTez2awScDqbzTQYDCo7ZjAOvusD85v7I4xIe6UIPgfcqeKuAHdY0Ebu6aUaCAhefuECF5+bXCBgntBf7tJw5BkSXN/hboVDEsoYCAQCgUAgELiIeOCzn6b7vOZT2j77oZcdDsRfy/kOBQSoQTJ8aztfxSZ7gK0LIdcQcC+HcEIsVYPeIDEICtvb2+l1CJiXSbAy79Z3L3OgDbQbEYDng+DyrNybFH6eTdrbRlLaC0NEhGi1WukcBIVut1vZRYLdCcqyVL/f15EjR1IoY1EUle0KIWt5NoQH3PlKdF7W4NZ5L3NgRZ0x8q0ocSdAZtlJAds/QgBCD7tGOJn1bAFpz5ng4ZS8T3+5eOAr5i6q4KLAjeBBi/47fcE4M3eZKwgvPn8mk0kam1qtlnbbYMU+372A1XQvAfFQR/qLchycBl7q4OUMkHi39Hu5DaJQnl3g8xF4mcCZiL6XSrhY4FkJef6EtJc5wdzjM4tg4SUMfp18LGmfl4JwjmcuSEpimDtlAoHbipu+/6G66ks/sd/NCAQCgcse9SOr+pcfuZ8e3HnBfjclcAhx8/ZQD37N03Xf196k7fdFycwiHAhBoVbbC2P0pH/+2HdrtpM/9rKH+ENGh8NhhTxQnuAEEGKGHZ4VVAQFCPetETLIo6Rk9YfE+e4OZVkmxwG7B3idPue59b1er1cInosI3BuyPR6PkzOCcyWl17GnLy8va3V1Vf1+P1nSEUK8lAHk2x66NdyFBghYfpw7QhBCfPcHzxjwvIfJZFIJXESggUR6doak1OfuTHCBykUJavARPc4U9OhE00moCyU8s/9wPd+W0fMWeM7RaJTGrNFopC1BIe2j0ajSVvrVnRH+TIyf77aQizPMJfozzwdgniBceNkGLhgXR3K3Dy4GnzP0CYKg95sLL4yZf0Zpr7tuEEs8v8TDF/MAUR/bRXCBC3gmQwgKgduLRz7pTfrZa/5hv5sRCOwbXj+uq7Ee36GBA4Arjumfn/S8/W5F4BDihq2BfuvU5+ve3/v32p6HN+FMOBCCAoSq1Wol0ghxg+jzOiunHgbHSj27LEynU62uriaLN+QJYoHtutPpnLZlorRju4Yoj8djbWxsVIjRZDLR8vJyIm2DwSBlLtBWiB4r4+12O+UvIIDUajVtbGzo5MmTydHQ7XaT5X0ymaS8Bp5zc3MzrUQPBgMNBoNUakEOBCUCt9xyS8oIaLfbWllZ0fHjx9Xr9dI9Tp06lSz0BBdihYc8kpcAYXdHgAsjTs4hdrPZLO2ewU4YjDlkFYFmOBzq5MmTms/nqR/yME7f0cLr/b12P9/GcDqdamNjQ5PJJLU5F6oomYFAspXkfD6v7ILhO3BI1SBJLxVwEoxYJillMqyvr6cyieXlZR07dkxlWaYyGeaxr5LnYZi+0wKODPp0Op0mwcKvgfiCK4Xx4ll9pxB21nDBhnMYf8a20WhU8hU4DoHIRTkPg6ScyJ+L8/MdGJhrw+GwIkwhGuVlDi42uMjBe7njwrMvuKaLIIFAIBA4d/zstz1O1//D3+53MwKBQOB245Fvfqru+u3vlKLQ4VZxIAQF30kA6z0CAETAa5oh2F5PPZvNtLGxobW1tQopkpQC6aQ9Ozc7SUCufZXSa8olJTFjPB6ne+c1+ZAcfgAE2HMeeBbCFSFQjUYjlSDM53P1er2UKdFsNjWfzxNpGw6HOnXqVCLJEMrt7e0kbIzH40SIV1dXtbq6msQSyDuiBeUB3N/LILyGn6BCcgTY7pKVbxcYXBjChcFYuoOBFfnBYJBKGniPe3npgYcdssKNuwViColETPCwSMYUUpyXCrgA5Y4AL6lgLrkrwQmr52OQhUHewWg0SuPd6XTU6/VSGcT6+rpOnjxZ2RLU54z3HTkTlEN49gjj6FkSS0tLifD7yj9jAKH3sEWIuzt1/DPrORK4Ktw5wFzOHSteHsPcQ8DLAztdVGDHEko2vF88QyNvG3PFd6GgDe7sWRSmGQgEAoFAIBC4vPDAZz9N9/jjjyuWls6OAyEouIXanQle2+xBg25pZveDtbW1RKAhKG4Ld5s8JK/T6SQSlu8MwO4HHlTH/VmxH4/HWl9fT6vNEFRWYCFWuQACyVlfX9dkMknXZMXdRQ8Il+864PkMTtAhvQgsXLfVaqnT6aQtOCFtt9xyS1rNhaC6G4BSEOzlkk4TBrz0wRP4IXeQbSd1vk2k5014ACH39NV5SZUdBWg3hNJzFbgffebbDfpKey4m+LNwLd/ZgXvm5QI8jxNmJ7o4WbwEBfGlXq8nMQG3CXPRRQSfn1zXS0BoJ3NPqhJ/ntvDMxd9Fr3sw7MPvNwDAYNx8QwQxITclbCon3y3CsbcQzs9s4N7eIjjotwFB9fCjZCXN/C8CCiU7/BZWJQZEQgEAoEz4z2zkb7+D/+d7vPJD8cf4oFA4NBi5aNb2vrQR/a7GYcCB0JQgMDkK8BuJ0dQkKrbuc3ncw0GA21sbKScBMoYPAGf8gfIPbb4RqORCCjXdocCK7TT6TSRjWazqc3NzUQANzY2KqvwLkJA+DxwErJ96tSpRJo7nY5qtVpK9oc4Q7YQAtxCDumCjHk4YF6bTnAlGROIIf1+P/Wvk65abWerTEnpWpRSOJnzYD/ulwct+ko+z0Zbc/t9vqrsK9T0oxNhxs9/nJgiVrhQ4ONC2YyPSy4u5QKCz1V+h6C7KMa5uEbYbQNXBM+KY4TtPdnJIifLLhzwGcn/xSniwZP5rg9e6pA/lweZ+naOLiYgwuCcWUT0PSzRBQrmggcgMqY4CDyIkudnbvL5oP158KILOswh+oR55rkIXk6Rz73clREInBNqdRUPuo+uaMQ+1YHLE++cXat7Pv3NISYEAoFDic1yWy/euFZLgyhzOFccCEEBYgCoX4Yc876vqlKPT+39ZDJJFnxs+IPBQLfccosmk0ki1hCsXq+XVsrzIDjEgeFwqI2NDa2vr1dWiCVpfX09lRywignZh7hxvN+bZH6uDalFtBiNRirLMmVKQJg3Nze1tramtbW1VN8PsZP2tsODFEOi3Z2wtLSkjY0NDQaDRPRxLTgJJ6dieXk5hUNyT0QTxAPyFprNZtr20FfCvX/pC2mPcBKCWa/Xk6gCqcTx4GTPSS1EcJFg4GF7CA3eLifbvnUkQghE0x0ckG3fUcLDP7mutOekYOyYG5SR+DNROjMcDjWfz1Omh6+o+xaY7qYA+Qr+eDyu5BsURZGEJBwSklLf0Udu+fedIPw95lS73U5zGZeOjy3jxNjTv8wDnoW+czENoYc2IuxRguABjWdyPyC48RnNxQEElVxMQEjId6sIBM4FS9derT/8o99WozizcyYQCAQCgcDBxEe3xnrp59xdjenb97sphwYHRlDwxHd2HfBEeq95ZzUTgjAcDrW9vZ2cB5J06tQpra+vp9VeBARW/H0bRxcpuO6pU6dSMOJsNkvn1mq1JGRApiUlMQAyLO2RXojlZDJJK9bU0edERtoho91uV6urq1paWkqEivYgJhDSCOlktRhBg7DL1dVV9Xo9bW9va21tLfW5Pzuk1Xe/oM30DUQUMgpxhZDx3L4VJc/v5SCeVUH+gaTKzhYILR6aCZyI0m+Q+rxGn9cRQjw7wPMDPJgw3yVAUir/8ADG3BWBU4R7eKAhIo7vOMB84zjPpEB88L5g7nhAJGPp5SOQ8m63m3I1JpNJmq/0OdtNkjnAONAP7hZwEYDPWa22EyqK2IRYkLt93KHgJSzdbjeJBp6b4IGd/rmiPYx/q9VaKGK4w8FdEbSJuebt4zxEs0UlLYHA2XDz9z5E/+UZvxliQuCyxT3f8ATd+yfXJX1wv5sSCAQCgTsIB0JQkPYszZIqdcys3vqWkdJe2YNbp33FkmyCZrOpTqdTISmstrpIAGnnhxVlVtBpE+TQ7dwIH5AXJ3qsbLNK7fkAkirnIDD0ej0dOXJE3W43rYgjYjjxJ5XfnRuQedwJ7N7QbDYrq83uFnDRw3do8HHJz3XxBVGEEgieDfIJQfX6e/6ljMHnga+Ee9Ag/e0CEP3uIoCXAbBKnQsMADGGcxBUGBu/Z54/4NkNjCHvce7W1pbG4/FpOzYwB5zwuijjopRvfykpfU6c9Po4+eeBZxwOh5UV+txFgNDmQt6i+eK7Z+CqcJcOwCHifQ1h910kvFSIcfRnyt0ClOJQBoPAcqbSDf/ecIGIZ+Jfz/jwcpZA4LZgs1/oUd0I8gxcnrj7q/+N7vInhbbfH2JCIBA4nHjWzZ+p//2KR+j6zbfsd1MOFQ6EoIBdm1VaXwXOU/Gd7DnJcNsyq8IEG+JOcFIJ2WVVGdLnuQvU37OyjMCBwAABdBIN6fOVa87zHIg8IBByw44QR44cSavipM1D0LzG3Z+LzACEiW63m1b4vRTB2+GhfXkWAavUuCCchDE+uXji7cQaj5XdV4e5HwTeHSouJrB1oVvZpT0hAHeCZw4syuDgvh6y6OIPjgd3jHh7ueei3UA8fJH7MW4IVT7Gfi13CPAeJDrfoYH54i4M5heE3D8P7nxhDDzXwVfyfetPzx4AeR/P5/NUQuFCl3+mmRf+efXPTr5bB/3Aa94Orucik+eGOGgjz+PwMfC2eV6ECxAuQgQCt4baA++n4Z2iTCZw+WE0n+k5t3y2PvO5I5X/8K79bk4gEAjcbrzyo5+j6/9LbHd7W3EgBAUIN4QCUWAymWhtbU3D4TARGsgE9m0s0CTO407w11utViJwEN1+v5+uRUChhxW6bR+CwTZ87XZby8vL6V7r6+up5EJSpUbdCRErp5Ap2gQhPXLkiHq9XtriUVLaAnJrayvlMGDPRzSgD9fW1tJuFL1eT8ePH9fRo0dT33gZAiUP7HaRB+MhqHgApBMxiKpb5X2XjXzVm/N8rKS9EMF8lwjEnpzcOkmEZCKYuGDAOPguH5BJz0rI8xLcieB2fS+5QVTIrfR5dgQCz2g0SsfQF1wLcYv5QHu3traSGISw5FkR7lbgeZyou7DGHHIHgN8b10G+5aOXhvi2iowZ23F6BoMTfHcO5GUd5GUg4HmpC/PNBZey3Nl1Y3V1NbltmJ8+Vi4KgbxNLnzwLHw2vG+j7CFwW3DN8z+mP7v+r/e7GYHAHY43Tnr6qwd0JIWYEAgEDjfm8aff7cKBERQ2NzfVarW0vLycwv7W19f16U9/WmVZ6ujRo+r1eup2u5Ut8ZrNprrdbsoI8O0SsYpLezsVtFotXXXVVbruuuvU7XY1m81044036uabb9ZgMEgr8l5HjS2bMoKjR49qeXm5ErK3vLycdmGg3huHg6RKKj4lFpDZZrOplZWV9Iz9fl+tVqtCBCFJkFVI4HA41Obmpm655RZ9+tOfVq1WS+f3+30tLy8nkuZEkf6jHARhhTZT9uFkHuJKpgXtkPYCBNvttlZWVpJg47kLPl6IF4w9Dohut5us8JIqfejBiKDRaKjf76dncFGETAHcBpBUts3MHQ9OJD1bYmtrK/Wzb+vp8N09cG8wD+hrr9WXVHGFzOfz1K+1Wk0rKyspVJHrubDjmQ/ML3IvcNzweaAvfDcQ+g4hBmLtQZbMO3eUIDD5/OD5ECzIsmC+ufDCZ0CSRqORBoOBptNp6g9yFHCujMfj1B5cSDh2ECIYC3cqMW5eBuI7XlCy41tdch9EhXAnBAKBwK3jPm/817rHj5yUdMN+NyUQCATOCw/66afp2pe9X1H4ettRO/shdwyazWYi07VaLSXHT6dTNRoNLS8vp9IFiAKEh6wBaW9VEQIOaS3LUp1OR0eOHNGxY8dUr9c1Go106tQpnTx5MgUeeiK82/kRJ7DxA4gO4XfYpj1Ejudz67pbvCHFy8vL6na7qW1sIShJnU4nEUmvZ5f2VuIhuo1GI20Tyb1wOUDgfTcH+mkwGKStDX21mv7m+SBerJw72UUwoFwBICZAkn1F30sSnHRD4HP7vZdFIIjgLuCaiAm4VbwMwcsNnPh6P9KG7e29rUO9P7xkwq/jZQi851tfevaCE1buybHs8OEBjova7HkgPIOX6/h4+Xm1Wi05RfJ8CB+PHO5g4d75eHrZRF4y4/fzbSaBl1b43CEPhIBJL/HIwx/z/vdjeCZ3vvgz5wiXQiAQCCzG3V/1FF3zora2PhZiQuCA46YTuv8vP02vH0dgbuB0DOYT3e95T9O1f36Ttj/96f1uzqHEgXAoSErkkJV5wt7KslS3202r7pJSTTpJ7wT/+daBnvAOgep0OlpdXdXKyorKstRoNNLJkyd16tSptDqf15BzLWq3PTtBUsVi7QTYV0Z9dwlpr8QDh0K73U7hiaz04n7A8t5sNpO4kBMzykNYWW00GoksQqw8cA6nA6vJrI7nYgJ9gTgCQZVUEUZoE44H3+7SreZY7H2XAvrZ7fEQQif/XMPvRaaGiwmsnvPj4ZcujLgLwYWBPNAvJ8VOUr0+390JtN/b7CQ5J7G+Ks45vjVknhPgooLveOFj5C4DP8/7jh0l6BvfocL7OQ/B9HmEG2BRkKGHjzL+frxncJypn+gXXvfyBH+e3P2R97G7LGh/Xkrj/4JwKQTOFX/1vnvpxUffre9aPrHfTQkELhrePNnW75x4qCTp3r85lt76zn1uUSBwdmyvr+vO//1v9fffdTc9ovMv+92cwAHDqNzWXX/hH7U9HO53Uw4tDoygAFnf3t7WyZMn01aQ7XZbx44dU7/flyQNBgNtbGyk8ogjR45oaWmpIgawau425iuuuELLy8taXV1Vv9/X1taW1tfXdeLECd10002VlHoPuYOwrKysaHl5ObkTsFpTWgGRhdC51d0Jvq8gs3qNoIBAwM4AktTr9VK+AQGE2LrZOWIwGGgwGGhzc1PLy8uVuntIGwQLx4ckraysSNoTaLDJO9mHQE4mk2T7dxLvoYi9Xk8rKyuVPAZWpjnecxE8fNBr+z0gz3c0cLs+BBHizbGTyUQbGxtJkCFrApcB4+IE1IUEXBv0AdZ+z01w0kqJQi4QIAbw3+12u2K1h0hDhn3l3AWxnPh6H/jOJtvbO1uRMt6MAe9B4iH2/nmjTIg20R/MtUXlJ4R8unC2CN5eDxN1oQjgzuCYXLzic+MupLz8hPnCnGfb2EUBjD5ei4QDz+MIBM6Gez3+7/UzP/JYfdePPHe/mxIIXDBsl3NtmQH48W99ku7+uH/a/S3EhMDhwnTe0HY5V704MAbtwAHAJNyo540DIShQ97+0tKTRaKTRaJR2aOh0Our3+ylcbn19XVtbW4m4Ui8O6XLyA6Frt9u64oordNVVV2l1dVWbm5v69Kc/rY985CO66aabtLGxUQnyI5yRNuCQYEcFJymbm5upFtyt87TJSe9kMkkCwGw2SyIFIsDS0pKGw2Hajq/f76vX66nX66VAO7d2r6+vpzBJauQpDaFsBEIIwXcHA7kJ1Klj9/dV8fF4nML3EFHc3j6fz9P1KFfJswY6nU6l5MCFF1/9zi3zlIRwT5wgvioPIWZnDkpF3BnBFqC0ybeidIGg0Wio2+2q1WppY2MjzcUczDlpTzzgXvxIe2IBq+sualCawnN46QjXWoTcncF5p06dSmUIvs0kYhFCkAdxsp0pgYf0CQKP76rC3CH/gH7Lsygo5XABxneS4LU804N52Wg0KmGgHm7KfHFHgh/nwhT3oe+ZO+5EcLEgF6xos5ftBAKBwOWGL/9/36rlJ4zT7/ccfyTqiwOHFn/7FXfSvf/Dw/Uvj33+fjclcEDw6Pd/jbYfW2o+/NR+N+VQ46yCQlEUvyHp6yXdVJblZ+2+dkzS70m6m6QPS/r2sixP7r7345KeJGlb0g+WZfnac7hHIiGQbmlvP3nEAazOkBNJp9XZ+2qstLOSSkAgduvBYKBbbrkl7eYgKZErD2SkpIJcAye5bjH34ETItp/vq7mUFcznc7VaLfV6veR8yFflIbeULnjw4GQySc8wnU5TnTnH4kSAWDpRhHDiPHAS5nZ0xI9Fte6SEjknLBOCy7Ge8O/XRlCglIB/8ywCaS8Lw4Mdpb1dEvLMBK7luQHD4bDiGGEeQC7r9XoSbtzZ4VuZstLvc4Sx8LA/dya4oODt9QwMd3owvxcFAjKGeVYArgzGiDmCSOFk3/MW8t0y8rwBjvPyHu7P+ORlEggCjAnOB3fy5PPMxQbPIfFjGHMvmWEOeLtc3PFdJ9yN4qKcz5EcvkXmQcEd8V0cCAQuP4zmM33BLz9dS+PT31v90Ja2bnzrHd+oA4r4Hj7c2L75hO7xsjvrPhtP1Xuf/Lz9bk5gn+Dfecs3bKv7ybfsd5MOPc7FofBbkn5F0m/ba8+U9PqyLJ9dFMUzd3//saIo7ifpcZLuL+k6SX9eFMW9y7K8VUHb69WxbXsNONkB2OdZ1ZWqe9g70cEdUK/X1e12E5lhZfzEiROpTAAi4lZ8bOeQJA9183tjMfegPQiOB+vlxI9SByeykGrEiZWVlQrp9NXf6XRaSchn5dmt85BW+hcbPHZ3CBuEyledERQYD9wGvnJ+pvwHxgnkY+PlFL5NIufltfGMnQtPXC93NuRWekQq+jxfcfYQS7bPHI1GldIEr+n3MEEnnO4E8b6C2HuZA+Piq/8uZHEdX+lfBM+38PIAzwpYlEOQP4+XVvAefeXZFtLeyr/PfT7DfC59bDxA03eZ4BgvXUHU877y7wg+i7VareKm8efyZ5NUmbtnEg9ycKznRxwQ/JYu8ndx4PzQ+8RcT/rol+jXr3/jfjclEDgrfvnkXfU3p+6h0VZTd3nuOzXf2NjvJh0G/Jbie/hQo3jTP+oen7yrHveIr9AvXf/Huqre2+8mBe4gxHfexcNZBYWyLP9vURR3y17+RkkP3/3vF0l6g6Qf2339pWVZTiV9qCiKD0j6AklvOtt9cCaMRqOKDd23vHPSsts2SXt10ZAYLzfwxHzqzMfjsW644YbKDgr1er0SwOchcogNBEcuLS1pMplUiJxvv7e9vZ1CHFnhXV9fr6zEkwFBiQKrsy5kXHnllWq325XVdFbiKZtglwuIsdvHcT5AaHFaeMmAly9A4rCcY9HPE/Uhyzgw2NGB+/hKupNHt7qzgu1j7oA8LtrBw4UXL9HwVXYvP3EXCqTSgxn7/X5yg7j4w+q4Cyl5hoK0R3a5tpfecC9EKl+R516z2axSUuIClqTTRBIA+WYOIu4gFjF+zCnGKQ9Z9F06IPnME54Xccd3eZhMJiqKIrlwcGLwflmWSeiizAQXhs8Tzud7wEU637aSOTEej9NckpQ+3z5WCC3u0siDWnlWd2owTw6gmHCHfRcHbj9WXvJmffL/Xqeb3zxUo6ipXSypVUTZTOBg4tdf8Chd/Ut/u9/NOFSI7+FLA1sf+ohOfrH0e++6n55y5APxPX2JYlpualLuOax/43mP0lW/Et95FwO3N0Ph6rIsb5SksixvLIriqt3X7yTpzXbcDbuv3SrKsqwQdLf9EyDn4XJuW4f8+ZZ+0+k01fSzq4Ov7H/yk59MYkK73daRI0eSJR4CAuFjpXJ1dTUFQEIAh8Nhum+j0UhkiJV7J2DU+XuuQr5VJOF/zWZTV1xxhXq9Xlq1ZTXaSSJiA30C8ev1elpdXdXq6mplRZ/V4pzgsSJMecnGxobW1tZ0yy23VEoFIFlO9rvdbiU0j7Ywdj7GvsJPPsFgMKj0O+e7awCiylh7SQwiQL6zxny+s1MGLg4IK+2cz+dpq1JCP8lGWF9fr8w/zqHvIcL+bIyJtLfNqAs1uUPAsx3YYQRyzg/3wxHBZ8AzF3z71FarlQQi332DcadfOMfdCfxLmQPzn7lLG3wXkHyLS0npGHJG2EKUEiEXDCQlwQDRJXc9uPjFZ4E563kgtLsoiiQocj/fccQFIUkVESp3Jpyro2GfcUG/iwPnj62Pf0KPf8DXS5L+5Ufuo3/+nrDVBgKXOOJ7+JDizx5yV/3Cs79aH/qmF+53UwIXAQ984Q/p7r/0nvT71YO36cD/VXdIcaFDGRct6S0cu6IoniLpKZK0urpaWRV3sgGh5I/+RWKCp/BDEJrNprrdrnq9XmUFHZcC9f+dTietekL+IBWQj6Io0rUIYvSdGnjNiZDvVkCbfEeE5eVlHT9+XMvLy2o0GolY44I4fvx4pR6d63koH6v3TgiXl5e1srKSQi69HMTzE+hDiBfW/slkklwcjIGvUDMGtNNdGTg7ONZJnLsLIIQIMR7ESEkGYkWr1UoE2QUCiCSkz0sm/D6QZ3cnuLjS6XQqO3DQz7tztOJy4H0P+ENgcWJKn7m9H3LsYsJoNFpYruB5DeRCIBp4voL3K4RaUqV/mY+SKvdBAMlzQBg/3C70vf/4Z8RLbLxciFIjF654Hvof4cTPx8XhoYi+3SrOEZ4NMcPzS3C+sJVq7jbInQdepnIQsxNuJ27Xd3Fb3YvZpssG2ydPSpI+42Un9eAPPlWS9B9//EV6dO/0kNdAIHDJIr6HDzi219d1798a68Fve6rKQnrB//eL+rxW8+wnBvYd9/tfT1PvxluXB+721lvS/48DFxe3V1D4VFEU1+4qsddKumn39Rsk3cWOu7OkTyy6QFmWL5T0Qkm65pprynwFWFJl1VWqrray+sjqrpMfVogRDBAUuD4WeMg19eZer54TxF6vl4ITWf1mVZn25PkATvSlaq4B5Q6+UwVkht0dIPi+zR2kknaxMgwJJCDRiRr3hwByvgcjegkC96QfnXDRBsixVM2xyO9BH7pDwfvZyyIgfljgWZnGdULbKBnhui7aMFfybQc9WHFrayvV9LPCzvxxB4KLIF7X7+GQEPzcoYDQQhtdaKEcIRc8eF4cF+7ayXd9yMtLcGB4vgTt8+MduVjgwZe+xaW7f3zF3lfxc9GL8fOxQLTgXM9c8F1anNh7eYZ/Dlx0cMHAs0pwXHiZh7sT/L8plfCxPQTuBOkCfxevFMcOxUMfFsz/6b06trvD3g996Xfof9755v1tUCBgWP5YlPJfIMT38GHGW9+pY7u5o9/5VU/WdcfWJEm1otQrPvOlOloPgWc/cfP2UI/95+/QvKzqc3d/ySe09cEP3+q581t9N3AhcXsFhT+S9N2Snr3776vs9d8tiuIXtBNAcy9JZ40Hns93tidkVRnbf7vdTqn70t62fI1GQ6dOndJwOExiAivuEAJW0Ak9JGyPXRawy7dardNqySGW2L47nY6OHj2qdrutwWBQWV2GAEJiIOmDwSCRGMgqBLbb7Wp1dTWVLHBeq9VKZRCsvnvbECPoj+FwWCGjXBuy7ATO+wZ3x9bWVnIiUHbiZMxr6V0cYVW4sN0JvB7eV7dpa56lQL9AHmkXuQy+6gy5JmeAnAAXlqS9jASv0XeizriWZZlKNZhnuTvB2567CPLAPlbFfUcCCLn3O8IM4oiLF76FZFEUyY3hJQ0u1ji5xrWDO0DaI/tu8aePIe5O0hFZ+Mz5nHYxBeKdOzAYY/qA+ZF/rqQ9IQ/BgWvkLgF3JiDScdyirSC3t7fTtqsIJP1+P33GF7XZ56KLGC7CHXBc0O/iwMXDvZ/49v1uQiBQQVMf2e8mXCqI7+FLBHd77D/t/VIUeu1776SHdT6WXrp2qb8Prbr8cOPWIP33X4zvqqVHfvS0Y07fey6wnziXbSNfop2wmSuKorhB0k9q50vzZUVRPEnSRyU9RpLKsnxXURQvk/Ru7Yz1959Lmq0LCmyB6LXZvhIpSRsbG2nLx/l8ruXl5WSNp9yBsMNOp6NWq1XJPWg0Gjpy5IiWl5dVr9eTOAAB5Ie8AcINsW5vbGzo1KlTFbv7eDzWiRMntLa2lmq4c9s4zoSrrrpKV111lZaWltIuCrVaLZUqUIbhZAwLuSSNx+NEnCSlvuJ5863+/AdCXZZlEmR8dwRIHSSV3ScQeyBjXr8PiUQQgbyTv+CEz/sMuL2dzAxILZkOjDWuE8ZiOByqVqulYEpcKx5GmIfxsYK+srKilZWV5M5A2EE8QMyBwLr4sUhMsM/Mwt0Z6GPPgPCQS+bKZDJJ85s56OUFLny4wOAgcNKdF7yGq8CdF2VZpnmHGAIx97IBJ/8ulkhK7eVYPs85/BwXGhAIvC/oY3dKuFvDSy0QYShLQSxy0cTLotwtwXz3MiGuf1BwR3wXBwKBQODMiO/hywhlqRc96L56UXE/SVLRWNLPvuM1un+zs88Nu7TxjulUP/E5X6eSv6vLUlKUCx50nMsuD99xhrcecYbjf1rST9+WRiAo5KF2kBvIJjXfkHBph0wjGniNe6vVSjXcBLVRB897rH6zwu4/rPj3+30dP35cq6urWltb02g00sbGhqbTqbrdbiJrvIbl2+v7IcyIEysrK+p0OhXCSugjK/MQPifrzWYzlXjwLB6ixwq0W/O5jhM72sWqv1vZPWPBw/AgiB6YCWFFAKKEA5LKWOQ7FPDcrCIz1rTX8xcQB6S9nR/KskxzYHNzM5FGD/d0YYRxhiiSh8G8kXSaoOA/UrVswlfo82fJSxO8z73cw8t4EHi8JIcgSRdEnNDTpt3PXKXcwN+jX1y44BxvA/ehHS445PdwIp5v08h/521kPvIabfE25f/molheUsI4uODAPEFMoNTD3/cx4TqIGV6a4310EHBHfBcHAoFA4MyI7+HLC/NRlch+7488XfPG7iJZo9AfP+vnYtvJ88SNWwN980/8qGq7f6LVNkv11t+yv40K3GZc6FDG2wVIOeQUggzRhPR50j9EmxVrr/n2LfJIl2c1XtoLv4O0skKd16RD/peXl1OewXA41MbGRsXmTfYApBLLN2SOa1KC0e/3U+CipHQvRA7p9PR5t/8vSsn3+nzIJ5kBkGUIL+QQ6z3EiRIQFxUYH4gm5QVea+9bA3K8E0onZpA/yDUigVvX/Z5eM899IfG+LSDX8wyOfFXf+xsXhGc0ICjkxDmv5+f1vK6fsXJBZBEQBryvcteAk1wXL5hz+bWdAHsGAse72JG31fMgeG7mjZcIOCn383gOf65c2HDQFkQOd0349fy/87wDf8/dNfQbApsLSXkbFj1HnnsSCAQCgUAgIEm9398jukWjqYc9+vvUac0WHttqbOmND3i56sXihabLHU/86JfqH2+6TqNJU3d76dtUbkURw2HGgRAUIEsQC8geVv5ut5vILD+S0k4H/X4/pcdvbW0l1wKr46PRSKdOnUoWfAisB8mx8o87odvt6oorrkjbN25tbaXtFIfDoSQlYgwZRUiACHqYHW4HSi1YdWZHA3ITIDO+mroo/E5SxaYNQcsJnYdXkgkBgSYU0MsVEDu4LqIDpQeER3IMfUVOhZeO0D7ffcHDBre3t1P5gqTTiLWLI75zRN52yCIig7QnArRarUpf1ut1dTqdlMOASDMejyuBlJ7bAUHPyyYQd5xkL6rD9ywNyL2HKrp4Qt8xVn5P4IGRfH7yUhUvK2H+0Mcu3njfMj78u7m5WSHvtI/+8M8RYkY+N8n8oDTEXQkIZTgrXGQ5F9BvucDm28z6+DhyN8StiVKBQCAQCAQCjnJzpusf884zvl8/fkzveNuWlmub532vK2vFJREOOZrPdMP2Tn+87+fvpytfviPQRArp4ceBERQgNqweu0PBU++x6Lfbba2srOjIkSNaWlrSiRMnNJvN0i4JEJnxeJzKESBqJOJvbm5qOBzq5MmT2tjYSCvmvV5Px44d013velfd5S530bFjx/SpT31KJ0+e1NramqbTaVrdhvw7mazVasmxQO1/r9fTkSNHtLKyom63mxwK7XY77eqQBxdC6CCzkHSegTA/whhZFYesuTPDg/g8KwIHSK/X05VXXqlOp1MZlxMnTqRsiOFwmM5hFXh1dVUrKytqNpuJNNJOJ5w4QMbjsdbWdhJ0yQZwO7vv6pFnEEhKAo4HGlISwXP51n8Qf2lPgDpy5Eglh2FtbU0bGxuVTAmyHtwxku+g4P+NUMEWlF7+4uKA51U4ic3LK5zge14C9/U+4rq0190B7nBwwWtpaSmFPgJ2LfG+d4cCWRJ8LnHhuBDkuy+4QEafehmH51JwP4SkPEdBUprvtMuFN67jmSW0zedUvlOFzyv6ljbfWglLIBAIBAKBwJmwfeIW/Yd7f8kFudY/P+8B+tDX/doFudZ+4pv/+VtUfM3OJij9rcgnvZRwIAQFJ+Neq+61/vm2kpAa6ulHo5GKokiEkVKH7e1tDQaDRKrdCj6ZTNK51PtD8O9xj3voqquuUrfb1fb2tk6cOKGbb75Zg8HgNJs0pRdSlegMBoNEwFdWVnTllVfq6NGj6vV6yYnBNo/NZjOJHr5qjdjiuyoQ6udlCjyXW7bJWZBUyVjg/aIoKmUduBNYpZ1OpxqNRlpfX9fa2pomk0naNYMfcioIUIQ0eogfq8ij0SgJMrgDeM9t8N4HXvaByOIr+74i7mUCfj0nrp1OJ4kfzKeTJ0+mOeLX45o4H3wl3FfUcdK4UMVY0qY8PJBrObl1Mi6p8px5SQgr+56d4Nt5uiDhAgOCAsTa+5rnBi5wMV+4dl7KQPtyIp7nEeSOGhfQ+G8/N3dneGgix+clEH4Oc1HaEw38+TjHz0V8QbwLBAKBQCAQuK0oNxeXQ9xW3Oc5Az3sD59y1uPmzUK//4u/cCBzHe754qfqHr8/VLl5w343JXARcCAEBYevsEp7hATyB2HxHRTIVMB6zzZxXo7gq6+SKtkCkO52u63V1VVdddVVuvrqq9OOBZBqnA7SHoHiX1Z/WWElMBCxgVIHSjEkpXMQBLwP+NcJXL4y7eGVuDggf7RBqgYKep15rbazrd7q6mql5AK7+2g00mAwSP1LKYmXafT7fTWbzUQEaYsHOW5ubianyGAwSATOV6A9nC8P2vOcBCfiPlc414UAwO/umuD6bAGKo4BVeESIPNTPcxW4P0Qeguw7IyAEee6DOxQcZ6rn9/cXhSvSHhdTcH74mOMq4Dyexx1C/hnxfvcSFs+T8M+pH+PlGu7i8GdYlAuRzwMPGPX8D3c+5CGOPu7MfRc6eB6Od2HF3RHuZgoEAoFAIBDYD8z/33vV/n9nP65YWtIXPfoHtdSqlnr+zwf/nh7VnVyk1p0Zrx/X9dS3/itJ0t3+dCq9+Z/OckbgsOJACApnsrh7OBx19/zBD/nh/aWlJfV6Pa2srKSVfM9d8FBCiC7HsC0jWzre5S530ZVXXqler6fNzU2dOnUqWf5ZeYb4OaH1VWFIODb748ePq9frVQhmrVZTq9VKK/w5+XJy22g00go6q/SUO0Bm3U4PaSKY0skU16dsxIMnB4NBylhYX19P2xfWajX1er20HSclHL1eL5FohBJffZ7P50lMOHXqlDY2NlIJwCKRwx0UCBuL8gbyUD0novmc4nXEF8aIHUNysQohAEeEiw35Pb2kAdGB3Tc82NK32fR5TrvdheDlETxzLtT4+aykI2zkbgYXE3K3hGcv5OUETuhxybhwgePHiTnPTTkJ85Dx5XPj9+Czzn1cyME5xDO5sINrwgWCXPgg0NX7Ihdq8u8iLysKQSEQCAQCgcBhQLm1pXs94e2nvf4f/+gbdfyzfjf9/lnNTfVr7YvWjrdPZ9os6/r/3vetuvt3/ONFu0/g4OBACApeA+6p+5CJ0WiUBIWtra1U5+/bF15zzTXqdruJFEMyZrOZTpw4ofl8nnIGGo2GRqNRZWeHfr+vK664QldffbWuueYara6uant7W+PxWMPhUDfeeKM2NjY0m80qOyrkbgICA8kJ6Ha7Wl1d1RVXXKGVlZVE2hqNRmWFH9LqBMxJaa1W0y233JKEjaIodOTIkVQfPp/PNRwOKyu67H6RB+5BHo8dO6bjx4+r2+2qXq+nNlDqMBj8/+19bYykWXnduV3dXfVWVddHdw3MLDPLgoUjkyiKEeJPbBzJKAZEWCexLCz/QMIScuJIIZYlg5CM//ADW7EUKUoQlgkowgZ/IfPHEohYdqSY+AMDXgwLC16Lme7p6u7q+v7q7rr+UXVun/d29c4Ou1VdM/0cqbTdb1e97/2qu3POfZ7zdDEejwMRr1arIUWCBo6bm5uB9JO0qi9Aq9XCvXv3cHBwgKOjI5yenobP6UkwT71JvJXQMgqFJ/8xydMxIOITbY4pCWi73Q6REzRy5GeSJEn5WGgFD84Lx4zkl8aVAAKR1TKMTJngfeOSj7FYwLXJdmlKUDyXmUwG+Xw+jIMaC3LtsIwp55deJFpRZXNzM2X6yfZxbbNP/M5y3WsKBNugUQ/a/jjNggIB38P1RMFPRSKdSwohvIeKPdonCh5M91FBgXtBHBXCOdbxNhgMBoPBYHgUcePpb+FDeGP4/Yk/L+J/Pfl/F/KskT/Br/zIT+J0dw8lfHchzzCsHlbmX8tKpJj/z9x0EiASTSUs6+vr2NrawtbWFs7OzgLZBhAiFNrtdvApYG16Rj2wAkOtVsOTTz6JO3fu4ObNm6lUh3q9jmaziW63G06kgfOygSQ1NI3k+/L5PKrVaoq0K4m+ceNGEDk0fFtP1xnRcHJyEqIHNFeeJ81a0pFChJoekrTp37a2tpDNZoOZIj0lWO2ABDlJklAZgdEMhUIhCBY8VXbOhfQSCjH1eh337t3D8fEx+v1+ahy0vB/JO8dUT+fjsHemlpBEsm9cRxwznnKT9FJgGAwGKdKq/gAUNlj1QUUCnnwXi8WUCSbJubaPQgL7QDEh9kwAkDrlZ39OTk5SKQzZbDaINZxPzfOnyKbeG3wGRSyKGiTqjJiJT/I1HYORERrdwDar4SXnU30z+PlY1NJ5U+PR9fX1VEQIv5s6ZurJoP/l3KsPhZpqqreCjjvHVdcZvTYoQhgMBoPBYDA8soj+LbP3H57EWyrvCb+/47//H7yv+vz3deszP8Gb/8t/RHIw84vwwPr+1y480/B4Y2UEBZI9EjzmPfOaGuLxNJfEOJvNpvwQ6PTPcomMdCAp4ntJ4JMkwa1bt7CzsxMqFlAgaLVaocrBeDwO5ExD+jU8fzweB8KWy+UCGdeQdUYn5PP5ECqv3gwMJyehPDs7C0QfOM8NV5NCnoIzlYFeBzGppmdDLpcLxJdtJ0nn74waoZjA+1JMiNM36NvQ6/VCisPu7m4QEzgvbAMjGjT8/TICp2KMjhFwnn9PqLGjri+dM0YA6JrScou65vhZEm+KOTr3Oi9cY3p/PZlX8YP/VU8B9WmYl87BE3c1wNST99gAEUCKqANIVVuII25U1NI+6TjyfZwvPk/nQyMUgPMKCxr9we+mzo16Z+h3jX3X8VQ/jbi9WhUjXgsUOmL/EU3t4HMMBoPBYDAYHhf4v/k6tCj2R3//7fhvt79PA0kP/NAXv4Wzo4ZeMlwzrISgQDLA08t+vx9OXNfW1lJEiESBp7J83/HxcSjR6L1HNpsN/gkaVg8gXGf4fLVaxe3bt7G9vY0kSeCcw3A4DKS4Xq+HspIaAk3xgFECWoGAp5wk9iSAvL69vY1sNhtEiMFgkMoVB84d90nS9bRcTe9IFkejUSiZyRD48XicMg9kVQitSMCXkjSSumw2GwQF/S99H0gaSZ5ZyeH4+BgHBwfY3d1Fu90GMDW9pADEn5kmAiBFQvWUWw0D49SGOPee5FXJtYbkUwTQtArOF0/8OZZ6b645tp2CFcdOw+czmUyYV+1DvN7jaxx7jZjg/SiwsU3qicAIB63ywXXC8VLzUfZlXrh/bHSpz1A/ChX82H5GGOiYqmEiv8M6Bwr1oFBxQ/8eCws6Ryoa6rjEUDFlbW0tfG8peGmZz8u8FgwGg8FgMBgeB7z6Q//vJX3+7MFvMTzmWAlBgaSBKQM8aWdoO0kST98LhQLK5XIgtY1GA4eHh4E8J0kS0ibOzs5QKpXCNYoE4/EY2WwWxWIRd+7cQa1WQ7FYTOW9379/H/fu3cPR0RF6vV4oN0jDuX6/j16vF0Lo2XaGk1cqFZRKpRBaThGE5pH8DD/H+5NIkXQxjYKESgUHnvYyPDyfzwfSDyAQfUZi5PN5AOnShhq9QJFE/SpIshjqz1NdPVkfjUZoNpu4f/8+jo+Psb+/j+9973toNBqpaA2KHRQWlJTG+fnx+iBoJqiET8Pm2Wc9ISdBZOSJRpfQyI/EO04dYdvYh3w+j36/H9amVpHw3oc51UoUajyphJ0/cz54T/oVqFGjCg1aLUSFJRXe1LSU3w2KSZpCob4JKuRwnngfTevQyBR9FtdlHB2h1Tm03CXFNr6PUThcM7lcLogMFAFjIYZjosaUapqqaSDcV7T6g0Y5zDOuNBgMBoPBYDAYDPOxEoICSRjD+hmOrySPYkKxWMSNGzdQKpUwmUzQ7Xaxv7+PbrcL4LxOPQnU5uYmCoVCOHlmbj8rHNRqNdy5cwfZbDYQnWaziUajgd3dXezv76Ner+Pk5CSQy/F4jF6vFyog8KSap7IbGxuhrVpFgddJ9nmfXq+XctgHzlNAeNrPCAz2iYRQT4RZ9jKfz4f0AyWYGopPcYIGg6wUcXp6in6/j36/nzKu02oSWhaR1SAo1Ny/fx/1eh2NRgP9fj8QvFwuh83NTZRKJZTL5TCWLOep4giQNvvTPjIlhteUZMeh6zzZB85PyJn+wbEm2YzD7TXdYDKZhEgNek7oGLKtvEYTR/aDbVBhRKMHVPzieFO0oVCh3gUk7BpNosIMP0cxgUIAv1fqv6G+ASowsb86NirM8LnsB/vPKB6On1bIoPDECASNvACQEii4ZtSQk+1UDwb6jKhpJfvOMVHvFd6bn+/1ehgOhykhgvsH59NgMBgMBoPBYDDMx8oICpqzruZ4AIIpHU/2GUlA4svQck2dODs7S4XVM6KAp5y5XA7b29vBGNF7H4jLaDRKVVRgSLuexmtJSiXuJDcsrciTeJJEnhDTQFLLS6qHAIlQt9tFp9MJggmJeTabRSaTSQkn9DUAENIoGNlBkqVkiaZ0FEF4ys0XgPAsLU1JUq6CAkUY/pcpIupzQZKqponAucGfnpSryBBXfFCnf64PCjBxzjuvabg8oURZx15TAbimtMIBiaaSVj6DY6vrkakCJMsUBLQahqZ76Cm6mgpqCgSAIABouoNGEGgoP++pVUNI7NlGFRjm+Q/EaSOaHsEoAp0PnS/2kW2mUKKRHVoNQiNKYpEpTnNR8Yd9ifcCbZf6hHA/4Jw451JiggkKBoPBYDAYDAbD5VgpQUEN49QojsaArObAMGhWJiBpJvg7IwLW1tZS4gOjB3Z2dlCtVsNpLV39WRmCqQhAOoScQoKKCTytJTlXI0OSOA21Ho1GaLVaqTxyNaLz3qfEBPpKsE/5fD4V1s/nkaiy9CPL+LECA4WbyWSCJElS0Q4szcmUAkaF8O8UXZTIsx9HR0c4ODhAs9kM5TUpBKlnQpIkqbx64Jy8ajk/nsCruaGelsen8fPIZEy2SVpJnvl3npKraaZWK9C8ego9nHcVQNRDQ8m2pmNo1QOtEBKftKsxIPvLz3IdaqULNWPkeHIe1V+AkQ86/rFow/apmKDRBCoEaSQE03bUYDGO/Dg5OQmfYx/5LBVdOD7sA/+mUMNKTYOIRRKKZ+wzvx9sM+db51crjRgMBoPBYDAYDIb5WAlBYTKZlt5jVIE6tDvnUCgUUKvVQrnCTCaDTqcTzPxyuRyAdP43qyjQF6DRaIS0gFqthieeeALb29vI5/M4PT0NlQg08kDDrEn6GLLN0op6AkyCzmgBejQwooLknqkX/X4/ECiG8vNeAHB0dITj42N0u11471EsFlGtVlEoFLC5uYlOpxPaR9LLNlFsYdk9ejHEp8gUPQCg3++j2+0GEYXjzVz7VqsF4Ny7gZ4Uh4eHODg4wL1799BoNEJ6CNvJnyuVShAU2FctwUko+dOIg3lCAt8fiwq6FtQ4kGRXib/6SHAcOQYcI/pbsA0qKgBImThqFQcNs4/FBPUScM6lUhLUpFEFCv6uqQP6HI0i0WoPnAcVhjh2vB9FIPV10IgKRrBwrjgmWulCib2e8tO7gnNOUe8y34x4XCgexF4KjNRRU04KbeyXCje8N4UqFSM553EKicFgMBgMBoPBYJiPlRAU4jB6kh6e9FcqFZTL5UDSWfJRQ8kJ5ooXi8UQ/t/v9wEgZQiYz+dDysBoNApRAHEZQU1zYOnDyWQSoh0mkwk2NzcD+SYhS5IkkH8+d2NjI0RCHB8fB+KtZnTM0R8Oh+h2u+F6uVxGtVpFqVQKUQgkgABCqDajA05PT1EsFlNh+CS9Wv6QBJ8pEqenpyE1Y3t7G1tbW6HNjG7gM09OTrC3t4fDw0M0m010u12cnZ2FMaZQoaUqVUxguzX0X4lzHAmgpDM+ldYweIUaTqqYAJwLD0wZ0XKQjFYgWSVB19PtuJQpn6dGkFzPvBdPwTU1Qj0m5lWz4FpU4q9il1bbiMeCbVCTRBUAlOwzyoZjFKdccA3od5QEfzgcpiJNAKQqn5Dkx5Uy+DwKaSosaUQH18Px8XHYG5iGopEaarAZCyC6VnTeNBJD0xxMUDAYDAaDwWAwGF4YKyEo6EkqSQzJLiMNSB6U4GhePXBO5njSq0ZxGvZN4qg+BXTtpymelusjAVTiSwJGIhqXUdzY2Ljgo0BTweFwGHLJKVKMRqNUu0j+s9ks1tbWgplhNpsFkE6P4HgMh8MgipDQUnwhOdc8dZ78Umyg6SPHu1AohNNs3peCCkWQw8NDtFqt8FkKOUoWOUYa2aBkXv0IlLizXZoWoiHumpYQn3Dre5TIK3nUqAT1TYgrCTBMnyH0Wo2Bz1IfB/qAqCeCeh/E/g8qXHBO43ZyDZKkA+diggpqmmLA+zPVgX0hyadooV4LWskhFiHUq4TfLY2U4DiqZ0X8/WOUhHo5xGsZOI86oVkqv3MUxNR8USMN1OCR7Yv3Go1eifcTFSY4lwaDwWAwGAwGg2E+1h70Bufcx51zdefcM3Lt151z33TOfc0591nnXEX+9gHn3HPOuWedcz/xMI3RPO8kSVAsFrG1tRVy+DX/nfnYPJ0kQVC3diWQSi7VYf/k5CRUlyCxUZKmRoYk3TypBaaEjSSJ5IRmh1oekdEQ/DzbPhgM0O12A/Fnvxh9UCwWQ4QGoxzYLpI7Erdut5uqFqAig4Z+cxzUaJF/Z0lCRlbQzHIwGIQx6vf7aLVawbiS4op6OVAIoUDD+VPipuIEXxRbSHK15GBswkjE4pIS9nk59vo3rQ6guf8AUutHRY7YrE9FC11j86IHOHfsB9+rYgMFII3k0DlS74x4HNg2NVLUU36NcODYx2KZRmhoNArXDkHCroak84w0dYw0skCjE+als/B9HI/RaHRB6ND+6vcnNs7UNRJHyOgaYjvUf2NVsMy92GAwGAwXYfuwwWAwXMQDBQUAnwDw1ujaFwD8M+/9PwfwLQAfAADn3OsBvAvAP5195n845zJ4ESCxymazqFQqqFarKJfLKBaLqVDws7MzdLvdYFjY6XRSxoxKXEks1OROySgJEas/KNlW88XxeJwySCSJopigZegoSBSLRSRJkqoywRKRTJUg2R8MBoHoUHA4PT1FkiSo1Wq4efMmarVaqA5BcqURA+wHT5HpM9HpdMJ1TRMhySeh5Im1+iacnJyg1WqlBIXhcIhms4mDgwPU6/UQmcAUB548k6jxWXoCT3GHv7OUp5YO1RfFHCXi+nkVEuLT58sM+5SYaglGjZLg2KrYwLYoYWc79Jo+V8k555ikndEt/AwFMy2VSSFA70+hSol1TKTVsNI5F8aWYhXnXgWbeOy4tjQ6AJh6RnQ6nbB2KVBRfGPUAteDlrvU8VExiaLU5uZm8K2Ix4PRS/wOU8xi2xnJwLUaRz5c9jvHmb/rM1cIn8AS9mKDwWAwXIpPwPZhg8FgSOGBKQ/e+z9zzj0VXfu8/PolAD81+/lpAJ/23o8A/L1z7jkAbwLw5w96Ti6XQ6lUwite8Qrs7OwEIUFN00is2u02jo+PL5y6a6i1mg+ShOTzeWxtbWF7exvlcjlUdaBPgZbrI5kbj8fhFB44P8lUo7v19fWQQ05/hiRJUuHiGk2hkRF6ugqcl2nkPbRMJPtLQ0eeVNM7gSaMAIIIQrKnp80kuDRapEDBaAKS59FohKOjo0AmNzc30Wg00G63Q5qIegWQDGq4eC6XS0VRqAcDgCBQsGIGUzD0tFkFEH5WCb+mT6hvQEyoFUr2mU4wL5qFn1dBiCKKVkOgt4AKB1y7Gt1A4qzClkZAaJRA3FaNqKDgo2H5FAhi0YbilXoDMH1CSbSmEzDChBEjFJy0L3EqkZZb5FqKo2I0LYHrjuPOeaOACKSNQr33oZIJxzwWQXRNzDPq1LQSTd3gWqCfyLyIjKvGsvZig8FgMMyH7cMGg8FwES+Hh8J7AHxm9vOrMN1Mibuzay8InuiXy+UQ3q8igub69/t9NBqNQHJJVElG9ISaRF09DVh60jmXMj7UXHoAISKBHgexYRxPWwEE7wWSSZ7Gay67huSTSGlJRI4DjSfz+XwgTyStjGggOVSRgeSSZJbpFXE5TSXgJE6aVqBiQrfbRa/XC2Tv7OwMvV4vpFbEp70kaBrmruH8PDVnW8bjMZrNZsrgkuOpoelKRpU0asRFDBURdC70NJvtUFd/igBqjkghS8P741B5IJ0iwTXJ6xoJQuKuY6GRBQr+rj4jXIsawg8g3FujKtgm/qxpJiTpGomhESbsM+eDkRzaT13vBAk/+6bfGb6P461kPvayYEqQChQaDRR7L+h3X6NkND1FPSBUVNL1opU1+LxHBC95LzYYDAbDS4LtwwaD4drhJQkKzrkPAjgF8ClemvO2uVbpzrn3AngvgFAloVKpoFKpIJvNprwRSDBGoxFarVYolxgeEOW6A+ekgGZx+Xw+iBZJkuD09BS9Xi+EbdOfgMKFnkazDXE4vUYgxKXreD0Om1ayr6fE6jfAKAeWmSThpKAwHo/De2kmGQsXWpFB0wKSJAljRmFC/Qp4Gt/v93F8fIzhcJgisQwlVw8Jjse802C9RhNLihmDwSAVNk+oWECSqQQwPpWmq388PzFJVA8EWYcpMUOjODTqRaNhYgNGbTfvw1Qb9SDQKAjtj7YrHjcF58G5i0aWuua1Hwr1GYgJuUY/qCjF9aljr4RbxR4+l/3TSAuNGNHvgo4FBQ1+ltERfA+jZ1RM0agDzoWOk4p67GcsIMRpULGJ5KOAl2svziG/kPYZDAbD4w7bhw0Gw3XF9y0oOOfeDeAdAH7cnx8T3gVwR952G8DuvM977z8G4GMAUC6XfbVaRa1WQ61WC8QZQCDVo9EIjUYDu7u7GI/HwVBQTd30VJTkggaJOzs72NnZQblcRi6Xw97eHhqNBprNJgaDAUqlUiAsPJlnJQaenvKklBEEag5HYqXEiyZyDOHmqTz71+12A4lnRAKNKPP5fIr4jUajIHAAQJIkQRSgyePa2lr4mW1VQhub01EcIDGlIz6NIg8ODkKOfyaTCSkiGsYeiyHsO8E+ez8t9cffKSY0m80gkMTh5xSClJiTOPLvvK6iAD+vIfaap0+CCpyLPhSFeF8S5FhM4L2VMDOqgeuR46lVO1TI0PtrKojOF5+hXgMcXwonJL+aqsH1SMEjPo3XaAi2h9E2nGcVvZiGot4kRJxWouD9tR9xlRaNnmCqA8tA0rdBK5NkMpkwh5quwXEHEKIY1GOBf9OxUCGM64hpLd57ZLPZ8Fp1vJx7ccltW61Mg8FgeEjYPmwwGK4zvi9BwTn3VgC/DODHvPd9+dPnAPy2c+43ADwB4HUA/uKBjVhfx1NPPYXt7e2Qt93v95HL5VAsFjGZTHDv3j3U63V0Op0LYfQ0c9MT5Vk7sbGxgUqlglKphGq1ikKhgG63i3q9jv39fXQ6nWBwNxgMMJlMgh8B25bL5YKRnRoxKjlhuTwSNg1vZ1t46sroBz4vm82iXC7j1q1bQdg4PT1Fs9kMBJWmixQ0kiQJqR88SQaQIpZxdQkKACTJmUwG7XY7VfqPESCMzKhUKmFODg8P0W63gz+FjjlfcUUGntRzvsbjcfBg0NSJOOKAkRost0nQ6E8rCvT7/ZSgpNEiGmFA0SGOpOCzVYRgZAnJtaZxMMJCUy40bQKYCj4UADRVQk/oNTKEgguhERL8m6Y6zEuXke9nENIoMHCNcL2oXwJP4rPZbFgfWrmD653CBsUCTfshsY+jLXjCz7Hl2uZn1tam1Rw4p1xDFLViUUwjSjQ6gW3RcrEUJvj8OB2J32/OEe9fKBSCCKglS1cRL/debDAYDIaHg+3DBoPhuuOBgoJz7ncA/CsANefcXQAfwtTBNgvgCzNy9iXv/c9777/unPtdAH+HadjXL3jvH1h3bX19HVtbW8hkMuj3+2g2m6nw516vh3a7jV6vF3K5Sd4Ynqwh6CQRLNtYKBRQKpWQyWQwHA5xcHCAu3fvotPpBNJDkkHSBaQJ59raGnK53AUTQg0R17QINYYjaWE0Qb/fD9UeGO2wvb2NJElC+1VwILF1zoWKABQYtIQlgNRpMMmbRivwlJmkjZEYJKetVitEZjA6gCkQvV4vJdaoR4GSXxUUlMBrVQ1WcIgJG/uop/tqsEkCytNxElcNVdeTfJpYxifasR+DzinHR0sO8vkagaARAFoZQiNXNBVHq4xoCgT/FkcTxPPJsaU4QFGAfaEwwXHUKAiSa62WwRKONCLV9JdYcFCxgASe48e5ZfvitA0VeAiOIcU4EniuEe0LoWktfIauGy1FqQJP7G3CceXn1Fsjm80GI1HdS1YBy9iLDQaDwXA5bB82GAyGi3gxVR5+Zs7l33qB938YwIcfqhGz0/Szs7NgOlipVMLpphoBqnFgTCyUcLEqQJIkQVhgZYV6vY6joyMACESGn41D45XwqUFiXP5OCSXboiSepJz9Y5h/kiTY2toKRpSMzmi1Whfc53mKy3HSEpT6PrYtk8kEcYDiBoUXbQ8JFUUG9i+bzYa0CqZbaIqDCgrsc5zbLusimGoy1YKknW3XaA8VatSYkCfvnIfYbFGrWWg0hvoFqLCiY0PwnurVoCBZVVNFnQONntB0hHm5+vyMpm8Q/IyKJ3HahooXFF409UENGEnUY7GAz9boBQAXBDNts4p4sQGjihk6rxxz9X+gQKYRLCqYaKoLSb6KJoQKMboe+GyORwyOD5/FqA5tx6pgGXuxwWAwGC6H7cMGg8FwES9HlYeXDIYp01cgk8mgVCqFE/t2ux0qLgBIERmSQT0dnUwmKJVKKBaLKJVKKJVKcM6h0Whgf38fe3t7GI/H4SRcSxWSdDHkm/cvl8sAzv0ZGK0Qn8jHJAdAuF+j0QjCCAAUCgXs7Ozg5s2bKBQKofxjp9NBu90OJop8Ubjo9/s4PDxEq9VKGch570OfNjY2AmkncU+SJJgiDofDYIjIfjEChKHpGxsbGAwGaDabqTQI9lOJK3B+6hwLHMA5yWNVDTWjVGg6Az+nIoaG5ms0B6Mw1EiPApGKAnwP54lEWf0f1INDUw9iLwWOgRotrq+vh7mKq1DwvRo1wrHWaAJtK//unLtgwEnhhb4DnDuN7hkOh6lX3E7OH9N02BeOEdMs+Hf2me3VNB9Gh8zzVIj7TpFOS0RS8GM/Vdjgs3SM1LtDPRP0syqu8R4qUlGAZFrH5uZm8BfRaA6DwWAwGAwGg8FwESshKPDkkuZ9tVoN2Ww2VFt4/vnnA8FmuDgJE0PieTpNP4Lbt2+jWq2GEpG7u7s4PDwMRJxkhmRO8+Xb7XYgSCRdbmYMSbJFAqqnxbwfT6mZcjAYDLC/v49msxlI+cbGBmq1Gl75yleiWq0CAFqtFu7evYvj42NMJhPs7OygUCggSRJkMhn0er3gcdDtdgMp4yl7Pp8PufvOuSAWkCgVi8UQLUHCxL7zlcvlUuX5+DwtHxlHJADnqQ1KiAGEdvCZvV4vkGJNNyBJpTEgyedwOAxpIYw20XB0Jfkk35wXjRpRIUSFoNjjgW3TSIeTk5MgWtBokOOjBJzjzDnh8xg2r88EEEz/SGJVZKFwwrFg2g/HuVAopMQA9bXgZzjejAjh/LKKiEZ56DxSCMrlciGyRFMsgPNylmo0yXQDFQI4Dny/ijH8Hul8MoKHQpmmNPF+ul40HYTRKBqZoGUwKQppqslkMgljzb5xjbJfBoPBYDAYDAaDYT5W5l/LmrfNCgbdbhd7e3upf+DPC01nWDIN5Gq1GkqlEnK5HACEagLNZjO4uJP8MXyeJ/9MAdBTY4oYfHac5hCHrJNwsxxiv9/HwcEBms1mED0qlUoQDPzMDLFerwfTw0KhgEqlgkKhEFIX2u12qEpBosVQcKZ3FAoFAAjklMILyStP7dXhn32iKR5zzUm+9JQ2Pn2O0xo0hYBEj8SfghGfyxP1+CReS4aqCSb7omH8TNHguCrR1ygWTUHh+NDYkNUn+Dl9HwUhRjowAkD7Hftp8D4a6QCkyzpqZALXX1zGkZ/hyT3bpl4AWuVBvQ7UXJFzSM8ErnmN6IlFF40Q0QgMnWuN4ogjTbRt8efYf3qXUBBh9I6ONddE7KWh1SzUvyFOc9A0Hz6H5osa0RL397I+GQwGg8FgMBgMhnOshKBAssCTe3oJNJtNHBwcBJI/r7qDnihvbGyENAemJDDMnikTJBN6KknSy7r3AALZYftiYqT+CiTj6ivA9AWeurbbbYzH41AeslKpYGtrK4gVjD5gecBCoRBOoXl6y3QBEiuSQFZEyOfz2NjYSKU58ISWfeXneRIen/ryRSKr/gNqGhib7Gl7gHNCHHtSaBg9/wuc5+uT+PG9jPrQsHYaZ5J8Akg5/KuXQ0zSGUVBMYFtVrIfp0zwxFyFg/gzJKDsN5+vERt6es/2ajTGZeaZmsuvYkd86q9pExrBoWkxcbqHzh3vwXHS71f8PvWj0D7Ha4FjoN9bLTepERCxhwP7ql4WKkTwfhrtomICU0L4Pn2vvk8jGNT/Q9ezwWAwGAwGg8FguIiVEBQ0BzuXy+H09BSNRgP1eh2Hh4fodrsp8zYSJpJVJeHVahWlUimkTAwGg+DBwBPytbU1JEkSTmr1dJTCBUmLhlLHz9acdT3RpO8DBQqKBRsbG6Giw40bNwL5p+lhv98P/ahUKuHkfDweo9frodPppEjgaDTC2toa8vk8yuUyisViIGaMxOCJNO+lUQe8zjYTJF80UNRIjNgpX0WX2CRTCbGSXiWTKmzoqbmeIGs4OgUihvKfnJykzAU10kCNFecRdT6bglLcDo4l517D9Pl5pkDEkRtqYMjf54kJAIJB5tnZWWotqXAS/03HnFATyNFohMFgkIpgYfUCjk/8OabQzDNpVCNUikL8PnLOYo8DFVAYcQAgNRf8Lo3H4/Bd5jzElTyYhsF55vireEPxiWJC7AERp1DEe4qKTFxDBoPBYDAYDAaDYT7cKpzAOecOAPQAHF5xU2rWBmuDtcHaEOHV3vsbV/TspcI51wHw7BU347qvN2uDtcHacBHXaR+2fxNbG6wN1oZVbcPcvXglBAUAcM79lff+jdYGa4O1wdqwim24DliFcbY2WBusDdaG645VGGtrg7XB2mBteLEw1zGDwWAwGAwGg8FgMBgMDw0TFAwGg8FgMBgMBoPBYDA8NFZJUPjYVTcA1gbC2jCFtWEKa8P1wSqMs7VhCmvDFNaGKawN1wurMNbWhimsDVNYG6awNszByngoGAwGg8FgMBgMBoPBYHh0sEoRCgaDwWAwGAwGg8FgMBgeEVy5oOCce6tz7lnn3HPOufcv6Zl3nHN/4pz7hnPu6865/zy7/qvOuXvOua/MXm9fcDued8797exZfzW7tu2c+4Jz7tuz/1YX+Px/In39inOu7Zx736LHwTn3cedc3Tn3jFy7tN/OuQ/M1sezzrmfWGAbft05903n3Necc591zlVm159yzg1kPD66wDZcOvZLHIfPyPOfd859ZXZ9UeNw2fdxqWviusP2YtuLZ9dsL8b124ttH14N2D5s+/Dsmu3DuH778Oy+j+Ze7L2/sheADIDvAHgtgE0AXwXw+iU89xaAN8x+3gLwLQCvB/CrAH5pif1/HkAtuvZrAN4/+/n9AD6yxLm4D+DVix4HAG8G8AYAzzyo37N5+SqALIDXzNZLZkFt+NcA1mc/f0Ta8JS+b8HjMHfslzkO0d//K4BfWfA4XPZ9XOqauM4v24ttL35Qv20vDtcfy73Y9uGrf9k+bPvwg/pt+3C4/ljuw7P7PpJ78VVHKLwJwHPe++9678cAPg3g6UU/1Hu/573/8uznDoBvAHjVop/7IvE0gE/Ofv4kgJ9c0nN/HMB3vPf/sOgHee//DEAjunxZv58G8Gnv/ch7//cAnsN03bzsbfDef957fzr79UsAbr/U5zxsG14ASxsHwjnnAPw0gN95qc95QBsu+z4udU1cc9hefBG2F9tePA+P5V5s+/BKwPbhi7B92PbheXgs9+FZGx7JvfiqBYVXAfie/H4XS97EnHNPAfhhAP9/duk/zcJ7Pr7I0KoZPIDPO+f+2jn33tm1V3rv94DpogLwigW3gXgX0l+SZY4DcHm/r2qNvAfAH8vvr3HO/Y1z7k+dcz+64GfPG/urGIcfBbDvvf+2XFvoOETfx1VbE48zrnxMbS8OsL04DduLl7wX2z58ZbjyMbV9OMD24TRsH7Z/E78grlpQcHOuLa3shHOuCOAPALzPe98G8D8B/ACAfwFgD9PQlkXiX3rv3wDgbQB+wTn35gU/by6cc5sA3gng92aXlj0OL4SlrxHn3AcBnAL41OzSHoAnvfc/DOAXAfy2c660oMdfNvZX8V35GaT/h7rQcZjzfbz0rXOuWbmalwbbi20vfhBsL541a857H5u92PbhK4Xtw7YPPwi2D8+aNee9j80+DDx6e/FVCwp3AdyR328D2F3Gg51zG5hO1Ke8938IAN77fe/9mfd+AuA3seCQEe/97uy/dQCfnT1v3zl3a9bGWwDqi2zDDG8D8GXv/f6sPUsdhxku6/dS14hz7t0A3gHgZ72fJifNwoiOZj//Nab5ST+4iOe/wNgvexzWAfw7AJ+Rti1sHOZ9H7Eia+KawPZi2F48w0p872wvnmKZe7Htw1cO24dh+/AMK/G9s314Cvs38YNx1YLCXwJ4nXPuNTNF8F0APrfoh87yYH4LwDe8978h12/J2/4tgGfiz76MbSg457b4M6bmJ89g2v93z972bgB/tKg2CFKq2zLHQXBZvz8H4F3Ouaxz7jUAXgfgLxbRAOfcWwH8MoB3eu/7cv2Gcy4z+/m1szZ8d0FtuGzslzYOM7wFwDe993elbQsZh8u+j1iBNXGNYHsxbC+e4cq/d7YXp7CUvdj24ZWA7cOwfXiGK//e2T6cgv2b+EHwS3aBjF8A3o6pg+V3AHxwSc/8EUzDQb4G4Cuz19sB/G8Afzu7/jkAtxbYhtdi6sr5VQBfZ98B7AD4IoBvz/67veCxyAM4AlCWawsdB0w36j0AJ5gqaz/3Qv0G8MHZ+ngWwNsW2IbnMM1D4pr46Oy9/342R18F8GUA/2aBbbh07Jc1DrPrnwDw89F7FzUOl30fl7omrvvL9mLbi20vvr57se3Dq/Gyfdj2YduHr+8+PLvvI7kXu1lDDAaDwWAwGAwGg8FgMBheNK465cFgMBgMBoPBYDAYDAbDIwgTFAwGg8FgMBgMBoPBYDA8NExQMBgMBoPBYDAYDAaDwfDQMEHBYDAYDAaDwWAwGAwGw0PDBAWDwWAwGAwGg8FgMBgMDw0TFAwGg8FgMBgMBoPBYDA8NExQMBgMBoPBYDAYDAaDwfDQMEHBYDAYDAaDwWAwGAwGw0PjHwH5u0w9FxwZPAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 0 333397\n", + " Min thresh = 1000\n", + " Sliding\n", + "\n", + "\n", + " Winner = Sliding\n", + "\n", + "\n", + "026ns_image_1083297968960_clean_ClassN_148-276.roi.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADYCAYAAABberBAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADRXUlEQVR4nOz9eZxk+VneiT6/yMzYcqm9u1rVLbWQWhISZhEgQAZbBmMwxmgAg8HjOxjwFZ7LYBvb1wi8j4e5suHaeDxj+2psBq4XQMZm8IINWLa8DEiAABmB1FJrl7rV3eqlKjMjI3KJM39kPie/580TtWZVRVW9z+cTn8qMOHHObzun8nne531/paoqJRKJRCKRSCQSiUQikUhcCzq3uwGJRCKRSCQSiUQikUgk7jykoJBIJBKJRCKRSCQSiUTimpGCQiKRSCQSiUQikUgkEolrRgoKiUQikUgkEolEIpFIJK4ZKSgkEolEIpFIJBKJRCKRuGakoJBIJBKJRCKRSCQSiUTimpGCQuKWo5Tym6WU193udiQSiUTiEKWUD5dSfvdVHluVUl56nde57u8mEolEIpGYL6SgkLjlqKrqVVVVve12t+NyKKX8rlLKb5RSni+lPFNK+alSyoXb3a5EIpG4m1FK+eullI+VUi6VUj5SSvlzt7tNiUQiMW84bmH2SufLv4sTl0MKColEO35L0ldUVXVS0gskvV/S372tLUokEom7H/9A0iuqqlqT9FpJf6iU8nW3uU2JRCJxryP/Lk7MRAoKiVsO2mpLKX+5lPJPSyn/qJSyfqB+vqyU8r2llKcOIlW/B9/91lLKew6O/WAp5TvCuf9sKeWJUsrjpZQ/SsW1lNIrpfxgKeWjpZQnSyl/r5QyaGtjVVVPVlX1ON7ak5QW3UQicU+glPKaUsovHkSjniil/K+llG447KsOnsOfKqX8QCmlg+9/28Gz+rlSys+WUl50NdetqurRqqo28dZU+exNJBJ3IUopn15KedvBc/Y3Sylfg8/eVkr5o/j9j5RS/svBz//p4O13lVI2Sil/sJTyulLKx0sp33fwTP5wKeW/vd7zxbbm38WJyyEFhcQ84PdL+oeSTkn6NUk/q/21eUHS/yjp/4djn5L01ZLWJH2rpL9ZSnm1JJVSvlLSn5L0u7X/kPud4Tp/TdLLJH32wecXJP3FWY0qpbywlPK8pC1Jf0bSX7/+LiYSicQdhT1J3y3prKQvkvRlkv5f4ZivlfR5kl4t6fWSvk2SSin/jaTvk/R1ks5J+s+SfuxqL1xKeWMpZUPSxyUtS/onN9CPRCKRmDuUUpYk/UtJPyfpPknfJekfl1JefqXvVlX1Ow5+/KyqqlaqqvqJg9/Pa/+ZfUHSt0h68w2eL7Y5/y5OtCIFhcQ84D9XVfWzVVXtSvqn2v8D9E1VVe1I+nFJD5dSTkpSVVX/uqqqD1T7+I/afxB/ycF5vlHS/1FV1W9WVTWS9Fd8gVJKkfT/lPTdVVU9W1XVuqT/WdI3zWpUVVUfPbB2nZX05yW991h7nUgkEnOKqqreWVXV26uq2q2q6sPaF3aPiLQHz9OPSvohSd988P53SPr/VFX1noPn+v8s6bOvwaXwJkmr2hcq/qGkizfcoUQikZgvfKGkFe3/vbtdVdW/l/SvdPgcvV78haqqJgd/I/9r7f9tfCzIv4sTs5CCQmIe8CR+3pL0qaqq9vC7tP/QVSnl95ZS3l5KefZAJf0q7T/YpP2cro/hXPz5nKShpHceWMuel/RvD96/LKqqelbSj0r66VLK4rV0LJFIJO5EHKSe/atSyidLKZe0LwqcDYfxGfsR7T+DJelFkv4WnrXPSiraj5pdFQ5E41/T/v8Bf+VKxycSicQdhhdI+lhVVVO89xFdw3OyBc+FlDE+l48N+XdxIiIFhcQdg1JKT9I/k/SDku4/UEl/Rvt/qErSE5IexFcews+f0v4fpq+qqurkwetEVVUrV3n5Re1b0tZuoAuJRCJxp+Dvaj/69MhBgcTv0+Gz1uAz9oWSnF/7MUnfgWftyaqqBlVV/cJ1tGNR0kuu43uJRCIxz3hc0kOsPaP95+gnDn7e1H4gzDh/Fec8VUpZDufzc/l6znc55N/FiRopKCTuJHQl9SQ9LWm3lPJ7Jf0efP4WSd96UORmKNRHOFCA/3ft11y4T5JKKRdKKV/RdqFSyteVUl5eSumUUs5J+huSfu1AlU0kEom7HauSLknaKKW8QtJ/33LM/7uUcqqU8pCkPyHJebd/T9L3llJeJUmllBOllG+40gUPnrffcXDOUkp5jaTvlPTW4+hQIpFIzBHeoX2S/2dLKUullNdpv6bYjx98/uuSvq6UMjwoLv7t4ftPSvq0lvP+lVJKt5TyJdqvOfZPb/B8kvLv4sTlkYJC4o7BQd2DP6594eA5SX9I0r/A5/9G0v8i6T9IekzSLx58NDn493sO3n/7gYX330maVazmgvZTItYl/Yb2K41/7TF2J5FIJOYZf0b7z9h17YuxbUW6flrSO7X/h+q/1v6Wj6qq6qe0XwT3xw+ete+W9Huv8rpfK+kDB9f9R5L+9sErkUgk7hpUVbUt6Wu0/2z8lKS/I+m/q6rKdQn+pqRt7RP9H5X0j8Mp/rKkHz1ILXOdhE9q/+/jxw+O/2M3eD4i/y5OzESpqup2tyGRuCkopXy69v+Q7R0UBkskEolEIpFIJO4qHDgc/lFVVQ9e4dBE4tiRDoXEXYVSytceWL1OaT9C9i9TTEgkEolEIpFIJBKJ40cKCom7Dd+h/RoLH9D+Pupteb+JRCKRSCQSiUQikbhB3DRBoZTylaWUR0spj5VS3nizrpNIEFVVfeXB7g2nq6r62qqqnrjdbUokbhfyOZxIJBK3H/ksTtxsVFX1tkx3SNwu3JQaCqWUBUnvk/Tlkj4u6ZclfXNVVb917BdLJBKJxBHkcziRSCRuP/JZnEgk7nbcLIfCayQ9VlXVBw+qmP64pNffpGslEolE4ijyOZxIJBK3H/ksTiQSdzUWb9J5L0j6GH7/uKQvmHVwr9erlpeXVVWVqqrSdDqtP6uqSqWU+tXpHNVAptOpptOp7LaI3/F7PobH+fuS6mP5Gc/Bz+I54vfbjo3H8/yxvfHabW243HXZb77i+WM/2toxayziXPGabW1oOybO3dX0nefgumi7HtvY6XS0sLCgpaUllVLqa+/t7bWOZdu8eMwuNx++Fq/ftvbiuLgPvBZ/39vbOzKXl5t7zm8c99jeqqrq87MPs8aVfWybJ/8c+020zXts65U+j32J9/ysvradj5+H16eqqjp3pCHzj2t6DkvSwspy9cKHi56arGrhscnlDk0kEolbhrE2tV1Njv6Hd2fgmp7F+RxOJBLzinU91/o38c0SFNoe+o2/4kspb5D0BkkaDAb68i//ckn7JGNzc7MmOLu7uzUJXFpaUrfb1dLSUoMsTCYTra+vazKZaHt7W9PpVIuLi+r3++r1elpcXNT29ra2tra0s7NTE8jd3V3t7OxoPB6rqqoGCdze3q5Jns/FNpkkklBT7FhYWKiP83dIUqbTqUopWlxcrPvW7/e1sLCgUkr97+Li4RQtLi5qYWFBko6QvzC29bHu42QyqfsdiStJ5+Liorrdbt2u3d3dBuFeWlrSwsKC9vb26rHb3T26iYLJqMfZ/V5cXKzHbXt7W+PxuD6H++RxX1hYqF9un9/f29urx95j53b7HL7GxsaGptOput2uTpw4ofPnz9drYjQa6bnnnqvnytdbXFysX0tLS425rapKS0tLjf56Pt3Gfr+vTqej6XSq0Wik0WikyWSi3d1d7e7uant7W9vb2/XY93o99ft9LS4u1n0spajb7WphYUGdTkebm5saj8fa3t7W7u5ug/B7/batG65NjzPFiel0qt3dXW1tbWlvb0+dTkfdblcrKyvq9Xr1OhmPx9rZ2anXN9vrl8fK7fIce3w7nU59H/kzry/f557v6XTa+Nz94tr1eHotcL34HJ4bw/NgQcPXdLu5rquq0tbW1kfa7rM7AFd8DkvNZ3F/6YQuPPLn9GnP76jzgV+72e1LJBKJq8I7qrfe7ibcCK7pb+J8DicSiXnFv6t+svVv4pslKHxc0kP4/UFJj/OAqqreLOnNknTq1KlKOiS6i4uLtZAwK1Id35tOpw3iTFJMYYDRZRJ7uh9MVnmcSTOjw5FkGu4HiU10SLRFe/29y33f75msXk0NDIoeHrO2sbSYYNHG5M0kMLbT7YnCCs9JUGSIQgyJJokur81xsFBD9wH74TaYZPscFkK8XnZ2drS7u1uvG7el1+sdEY34swWbWaIMhQ+TeJNfCwpuB9ef+8x2ex52dna0vb2tyWSiyWRyZA3yfqH4xPlgG7gOTfA5fn7fsDjlz3xPuL2Li4va2dmpRSOvDc6bx5HCBgWDNoeS17n7y7mO9yDvz1nOIJ+TApYFmU6nU4/NXYArPoel5rN4rZyuBj/9S7emdYlEInFv4Jr+Js7ncCKRuNNwswSFX5b0SCnlxZI+IembJP2hq/lijEKbFJkskTAwcr23t6fJZKLxeKzJZFJHT5eWluooK4mmpJpUWGiQmlZ8Ws2j1Z/k3+QqkkG2zd+LBNXvt9nX4zVJeGelA0iHBI9knK4Hf+a2UMCwC6Tb7TZEC/aNZK6t3TymrS/sO9s7S/hoS7Og80NSHWGO80whSVJN5hcWFmpibkGBYoGkem2Y2NNFYcGqTVSwAEBiTiLv9vtn9o8R/8XFxUYft7a26vW9tbU1c83YKcDrU7DwGNBZwvVlscjtpuCwu7vbECc4T3YGeT7s9CFBt4DgsaAo5Pd5/7SljNgd4mvynopiHUXDeD6el/dBdMvcwbju53AikUgkjg35LE4kEnc1boqgUFXVbinlf5D0s5IWJP1wVVW/ebnvmJQsLCyo2+1qZ2enJgz+vOU6DXJpImEyRtIdLeCO/Bomd47CktyaaJF0SGoQNEZZeU2SLl6bfSYxJ6H0sXRMMC2BhMqILgBawf1d95tR6lJKnXphCzjbyfO53zs7O0ciuTy/r+F+xDkkoaYAQ/s+CX206Huu2hwNboMt7JzDjY2Nem7G47HW19c1Ho+PuDF2d3fr69Np4OvTKu8++tocP6cKRGcFRRBHximQ0CEynU5rAYTpEm3OEacakHi7X76+HRKc4+l0Wqcs7O7uajQaNebSgkFMZ+G6JoGP6UGcc7eDLgsLGO6vRcLJZNJYP5yjeO9zrXHdcpzoqvF34719N+B6nsOJRCKROF7ksziRSNztuFkOBVVV9TOSfuZqj4+kMpLtSMJJMpkTHsUDEg2eNwoPtmuTuNN+TZLOfGufN/S9QW4oCkQCaBeFSeiVSA1J9sLCQi28tBFL1kxwu2NNgGjvjte3cMBIMskhRQG6SxzpJUkmqY3pH/ycEfalpaUGiTcJdLqCSbFJ8Pb2diNK7rbZpeC6CnxREIrCk68rHUbXfawdNP4OI+1uj/sUxTG2h9F7knKuLdcTiBF/Emd+z+fyXMSIPM/dJhzt7OzU6yYeF9NWIrnneEThw2kVnPsoCJHwRweC4XuFIokFCt4fdDX5un5+uG9sf9sz6E7GtT6HE4lEInH8yGdxIpG4m3HTBIVrAe34jETyj/2275Cs+z2fi/njJnht54r56rR0R1GA5IK2bEeweX4SnZjv7++TNEciG9sYx8qE1G32ZxQUoshAMcKOhDgmJFIk7ix8R2LKazNn3tclyfVc8FwUdwwWqqSbgs4EFtWLY25nAcfEn3seovXf5JJCh/vKtUC7P4+Lx5o4c13HPpJIt0XLuf7sxnD7KWZFAYjnjO4ErmXPV1wDsT1x3bf1mcd4TXjtcFxYkyHOG88V7/04Vrz/+T4FEJ+L65ViIAuXsg8c0ztdUEgkEolEIpFIJG4m5k5QiPUKpCZRi+QnOhBiIUcS2hipNCljxDWSixjZ9Ge2fkuqRYhItExi6KDw9UxoYi7+LOs1v0MBxFFy/xsFhbhLBKvkxy0U3Td/d29vr46Kk+xyLKODw3n/sf4CSXAksXSiWGjxuLBInkm1SarnMNZyYDoGaxz4fUa0XegwEv4IChOSWreapAhBe77nirUqWFejlFKLBXGd+RimW/gcsaYF1xrbF8eaAkd0AEQhjO1w3/g995FilkUj7xrBPnCuruRY8VhwLbW5N3g8d1RhW+kQcqqK72M/c2a9EolEIpFIJBKJRDvmQlCQ1CDItHRTaJCaEVETBRZyI0FysT1G4xl193lMtBnFJ8GLgoWJE0m0SSlt3ySBzBfvdPa35RsOh3XxSEm1E8D9odDgdnobzFinwMTH7gxeh4g1INwvt6+qqnps3B5vxenvRAs6z8kUBEfq/f02wk5RJ4os0Vlg8h93d2gTFNgfuhLcP4612+txo+BBhwFdEdF5Eb/ntkTnSdv7PpeJ7nQ6refY7Y/i18LCgnq9XmObRRY6pDOAjpNIlKOA4N/9/ZiG43FkgU+Sd0l17YNY68H3BXeg8H1Ksm/RpJRS1wphjQkKh3GNeD49Liyw6FebYOex4rat0emUSCQSiUQikUgkmpgLQYFR28vVJWgDbfgm3Yy2sghcFBt8HZMVkopIVBjpZmQ/nofEmpFwgxH4fr9fCwouEEgXA6Oo/N3tYmQ4RuzpRuBYxch1dH1YzHAfZtnbmWvOz7nbhYl4mw2f0WcKJiz6x9QMf2ahJ64PRr3pHHE/OfcWJjhmFGFiRN9riteNUXnOi0WLmILB+fOcsX1t8DW63W6DMDstpNvtHiHBvnabCOfrSWpsQeq1TDLv430eigC8L5hKM50eFo8cjUZHUoG4drzGKH7QxcGUIooSPJZjzHuCx8Y1bzGS6RCcOwqG6VBIJBKJRCKRSCRmYy4EBakZqTZmRRFZFI+EnRFmEgUWx2P6gYlvLJgYo7KMSFPwiG29GhEkkmdGpd1Hkqo2whojyh43f5cF6eIYUyjZ3d1tkDsWT/T4uh1tpJBjwDQDnifmzMfotsfbY2JyamEhjlV0CZD8+niSc5PLNts/+xKL+FHc4nzze3S0uG8e27hmoqNilpgQ02L8swm/+8f2UgjhdTlO7AevE8eE/ePY0XXC+5Dt5f1FIS+6NqJYwVSO2C6LY7NcIhQOYupDFLRiP+PaiM4btjmRSCQSiUQikUgcxVwICpEUMtJoImWSwOgvtw0kgbZNXzqsNE8iHaPukfTy2rR6M6IZnQSEiW5bH/0zUxraUgF4DIlPWyTb12N9hOjWiIJEBEkiybRt44ysu91OIyGps4MgnvdyjoI2mznn06kebVHn6BKgIDCLDEarvPtCZwO3L+S4Uciw0GFBIe42wuuzmCLFgphCcTnhw21sm7/o0HBtAJJtiiK8D6I4w/ORuMfjKYLRjRPHIY57vK/YPoMiBnd0aNsqNI5b2z3OdWihi26UKCpEp0oikUgkEolEIpE4irkQFAySaMOkIhJJ5tTHvOq2iC8Jk4k3azW0EXYST0Zjo4Wf14piiMFoO3d3oEgR0xyWlpbq75J4cos8f85/ec22iG+MNEtqRNlZc4AReJ6DbpC48wLHhRZ6Oj/aHBQ+Pra1LV2Aa4PnnRUV5xqIjgvWIYjzyf54zVmEoJvC77UV4JR05P3oeIhryddj3z3nPg9FCX7f7o6qquoaBrEeCMeDc+q2+Tr+Pt/3NXd2dhrX8vEu5DmdTut7zXPpte+5co0POnPiWvO/Fpbc9iiCUDSIAgj/9TPkSuIM3TaJRCKRSCQSiUTiKOZCUGA0nWkFJNDSUeIUo69GtKabSDCFwOTHJJjV6GlPN2E2SLh9PKPlJCN+jxF42vr5/bY2xsiwz+d2+PhZLgrWheC52Q8Wi3T+vceW4xmt+j4HC+/52LZoL8UcCickbXt7e3URPgoQLtRoKz3b5s9Iaim+RPGjTbTy57TeU6CIZDyKNHQoRMcL54IFAqPAEkWQuPY4d7TyzyLi/g7X2ayIO0WF6PSgY8j1GmIBRxaBjKJJdJ14fj1evD/aHApuF9vJ4qvx2Cgo8nt0cfh7bc4O6bDQ6SyXSyKRSCQSiUQikZgTQcGIOf6RAJEskNBQUPD3SFij2OBIbJuIQacAXQAkFybBjkxLakS92yLp0d5P8taWmx/t9jyWUX+eh+00GeW1/Xlb9J6R+yiotOXze6w8/raQs93+PBJgOwJ8LAmqRQNGy1lDgY6AtnmJIoxdFh4DktQoAFGEYD85Jm3vcV35X/Y9jhdFAM8PRYg4txRKDL/H+WxLW+CctqWBRLGKAgRBEYBuizjecXyjiBYFDs4Bx5VzQrElii5tzqK2fsX7I94HMRWF7UkkEolEIpFIJBLtmAtBgaSf1vNI2EzE4s4JbSTPhCbuHEFybUt2JDe0tDOKGnPfmRZAYuO2soYBSSQj0yTqkcxEd0EkxjECzO8x8t8WwY5Ci6/hfnBbzWgl5zVI9iKpM4mNzgYSOB5LguexY2pBt9tVt9vVZDJpEHb3p41YkkjG9zmW8fpRCGC76QKJ/YqFQUnqI0iSo8uFzoa24ykoGB7r6Gbwe20pD/Fn33/RaeBjokOnbawNCgn+l6IY54/9igJFPIbj5Pf8XIh94lzGeW07pu3ciUQikUgkEolEoh1zISjEKH2n06nTEUzu4xaIJJAkKSTazkH3NeI1WUwxVvWPudsUANw+iwaOnnsXAhf04/di5N3n9mt3d1fdbrcmanQXsAgi888l1dd1PQbXlaB930KACahJofswKyobLeHuR0xBYV8Mt5/uhbY5IDFlQUg7QOxmcO58t9uti0GyHSShnnOOL50d/k5bhDu6RrgO2G5a4judjvr9fk3aXTjQc8CtRS2Q0KFgQhzhdcR5i4SbO5bQTRLrVfhnpsHwfB4bp49EISY6JXgvxPsyujB8L9ChwHu1bd1FkSo6WaKjgGstigRso+9Jf4f1KKJgmEgkEolEIpFIJC6PuRAUTEJoGff7Ozs7DVJgEkZCwm0j/T0TKRM6EjifM0Y0me5Aa71t+mwHv2fCT1Lq92nxjrniJDAWE5hnz+isI/T+vvva6/Vqkk2yFcmiBQ2TW74v7RNHRv7bLO90Q3i8xuPxEaHAc0HxxG1pawOLY0ZEYhjdBJy3KIz451hU0t+J64YgoSUxl5rul52dnUYqSymlFjwoCvE6kUR7ztgnEngSbDoY3L44Z22CkK8fj6NARNErpnjEa7EtFHfcF4oxvh7vYX+fx7htJv102rSt39iuNucE7xcKG1GQougQt6FMJBKJRCKRSCQS7ZgbQcHkK0YKpeYf/CZvMVI667xSU2igECHpyPftOjDB53ei4BHbafLKSDmLvMUUDkbG3XcTU+5cwe0gvXUgf6fFPbosSLRIQvkvo8r8OboXWFwyEkteOxK2WXb/KOi0bb/JWhVMIWCefYxCR4EjRqi5G4Wv02aFj1Fy98/FK90+zj3HIqY6UBSIAkIUQXzdOHeRlLeNa3R+tFn+ZwkRHJOY8hDbF8erLeXgSqQ8CkbsI9tEUSxefxb55/OC9y7dKlHc8dqITpBEIpFIJBKJRCJxFHMhKEiqCVrcZi4SL6lJ5C0AxOg1XQRtRJrkj4SCxHNxcbGO4JqA2I3A79mSbrJLQYEklPnwtLv72j6O9RsY6afAwJoOzOtnNNjHxHGIUf5ILKO44PPFsffvl3MI+Hoc2zif7iuvQ3s9HQwUlEic20h2mxjC68Xvx7XAf3luOhR8jMeZ4xDXbhyHeN7ogIl2/zZnS/w+RZYoKkTBJhJxE2oeR9Idx2LWWPF8bYjrr02Y4xhEQYGpKm3t4lhSTGi7Ds8VRZEUFBKJRCKRSCQSictjLgQFExn/gW8yb4tzjJxKTfJFshjdBtGmzeij0xhiJJ3EMBa4k3SknoOkI1HvmIvN3G72m68YSY1j4n4uLi6q1+vVhQttvd/e3m6kiLRFs9tSGkimYh9Y/DKeg9dgHzqdjpaWltTr9Rr1Dph64nlznQuSWBJo9z22y+sjik/sk+eMx0j7dSdiKgGPjXPj+YtOCBLeNiGM56Mzok1YiKkCFrAiOCZcd5wDRu79HfchOhNI7j3XnA/2hW4MigrRzcDx4fdjG0j63Re3299l2sNkMmm4FCiScB45B9w6k21tuwc4NrPEr0QikUgkEolEInGIuREUtre3JR1GUrvdbv371taWtre3G4SpLdpqRCLmKLeJqp0QJrMxgl9KqWsTRDJskMzbSUAy6Gu6f3QnSM1ieoTJOAvpxShxJGpux2QyqQUFFoQkYfRnbAfz00kM2Qe3jcSTBSjdPotBJO87Ozt1rQFJjRoVrv0Q0yz8OefO89br9er+swaA10ZbFDqmhESXib9Pwun3DNrtmZ7iteM55ZiQMPt6UUjy+1Ecc3pLp9Opxy8WN/TnrC9AJwtdHtxtIc4t1yFdPlxHdt/EMaWLh8JLrKERnUJxHuL6ioIPRTq6EzjWFDqiS2c6ndZOqOiq4Dy07YiRSCQSiUQikUgkjmJuBAWTML+YN89dCxwFl466ABjBjlHIKChIqqPnkTiQoDD1wZHLvb292t1AEmgi0ratZVu0n4TNbYvOCIoJPBddHAaj7t720WQ0OiQoKrTZ8FnLIZJfkkMKKSSaLIJn54V3lbBzwW1w+zincVw4Xv6ZUW+2m0Uj49hMp9MjJDbm/retBY4V+01y68+9Bpj+QtGKbgtfI24LGtdJm2OA3+WcROdIdKX4fCbXHM94TCTpPGdcmxzT2E7OI8eCaQ/RQUCnAM8bhZ/oCGlzGNEpFEW8uPNKCgmJRCKRSCQSicTV4boFhVLKQ5L+/5LOS5pKenNVVX+rlHJa0k9IeljShyV9Y1VVz13uXBQU/Mc90wq4kwAjpyRAtFL7HNHizUi3iWR0M5AEmajRVs3v0JEQI8ImJiSCFBTcBrsR3E8So7YoL2ssONJMchkt7XQaUBSIZI99okDi1Iu2iH0UVEiM2fZIEpeWltTtdhsCTKzDELcX9PmWlpbq992vtsi0f45ug+gm4Q4HkUi2EebYb6YnxOM4b3yR1FKMYXoNUwKiwODveR5JoP0eBQ+2IfaBiGsvXju6ZDxnbE/bmLHfbW3h99hen/9y4gkFkDgGcRwsarSNfexXHOd5xnE+ixOJRCJx7cjncCKRuJdxIw6FXUl/uqqqXy2lrEp6Zynl5yX9EUlvrarqTaWUN0p6o6TvudyJGNU3iej1ejWBtpXfZN7bJJooeLtDby9nezhJp8/PPHFG92OtBmk2oeRxjJpTBIn55iRGFCYWFhbU7/drAhTt4N1ut9EXCwkm5XZwlFLqMdnd3dXOzk49LvGa7B+JF4sVui8smBgj6zGqHseK0WQKA7Tex0g+C05yvN0mCzBO04hjGTErnYJEPDpK3OYoYnHMiDbS3bZemCJDYSdG1L1+eC5eI0bY2Wafg330+MQUixi9t2DDIoYRJP5tKRtuC1MfmCrC80T3Bwk/11oUCSjO8PfojPBY+Lx+hnBsuR2spMZaaOv/nOLYnsWJRCKRuC7kcziRSNyzuG5BoaqqJyQ9cfDzeinlPZIuSHq9pNcdHPajkt6mKzw8GQ1fWFhQr9dTv99vEEkf539jBDTuxhCJGwlnJGkmmYw0k2jF3yXV5D6ScqYiRFK2vb1dR/sdaWcblpaWGnUMTPCctuCxiES+1+tpYWFBw+FQ4/FYW1tbjf5zvEj6eN2qqmrCzgKQBEk5iTnnxL877WJvb6/ud1VV9fl9DZ+PBSftXuC4XWn9cJ64Jly/gWvA/7Iug78TBSja5n1+uiei0OPzU/CgEySmHngsmQLSlsLTBhYCdbs8D54bOjK8g0MUueimocOEIgRFIY4jBRE7jbh+KSbE+4v/+rsUKuhq4Bx7vXIsDa4lX9PzGetGRHcCBZ9ZYuI84jifxYlEIpG4duRzOJFI3Ms4lhoKpZSHJX2OpHdIuv/gwaqqqp4opdx3Fd+vCZBJLXcHiMcSsS6CyRWJSafTqaP5B+06Qmxiwbm2iOqsNjDay/OSLPm6/D6PpdgRj5MO0xlIXBmJ9nj5OnYpkARyJwKSb9rr43ljhL/tPBwHz5nH3nUTPPZ0JzA1hSTUL5LFGOVvS99ghJo1M0jM/V4UISgoWWzgmNCxwXZz/Vr8abPMRzGB/Yy2fKbn+H07Vbye2T+2gw6QSIqjU4OumLY1H50Cs9IL+Jnb5Pe4JikoeE22Hcu2tNU8iP3ymLQJADEFyMdTLInOHTpU2lwv84wbfRYnEolE4saQz+FEInGv4YYFhVLKiqR/JulPVlV16WojeqWUN0h6gyQNh8OGkNDtdht2fhLDmLMtNS3gkdD5PebztxEU/9tGrCQdERx8rjbXRBQYTIAj8YuW8VgXgpHWSJh9bu5SQZLEbSQNCimR2DESH9MgSLjtiIjt51xw5wjPn89BFwT7RLGEjgHOGYlgm/tklrMiujPa5o7kmGvA53YqQFx3rPnB70URiaSW7aUAwJ0SXDCRtn0KVD4u7oARRTIKC4z8k7xH0kyHBMWbKDrxPvD52rbjjC4Hrj+OSZtQEQWFOFc+R2xL29ppE+rcT44R37uD0h6O5Vnc1/DmNTCRSCTucuRzOJFI3Iu4IUGhlLKk/QfnP66q6p8fvP1kKeWBAyX2AUlPtX23qqo3S3qzJJ09e7ZyXYRer6eVlRV1u11tb29rNBrV0fa9vT11u92aLDHfWmpWa2e6gom336f12Q97WtlJLOxuiATU54rHMuoqHeZktzktSApNLt2/GHElcYpOCPfdtRh8XaddxGhwJMwcJxJGRrwP5qwWfHxeChallPp3E7nt7e1GioS/byGE2xl6nvwZXQ4c/7Y5thjlttLaTldBRJujgOR0Op1qcXFR/X6/4SSIW1XGtAkSaxLpmB4TnSxOEXFdjFhckf32VpF0fxCxvoXbFUUcjoGj9by3oquCLhO3x+NBl0Yk9rEgor/rtRdrN/gcbW2IooTP6TVF8SCm/nCtUwBqczPE+3ZecVzP4rVyOre4SCQSietAPocTicS9ihvZ5aFI+geS3lNV1d/AR/9C0rdIetPBvz99pXN1Oh31+/06f54RcEe5TRotPEyn+3vKOz/axMDEkQTOBMikwWSzLZotNckoiYx/5zlooY/RXhaJNMmhzd2fOdd8MBg0ihL6uOl0qvF4fCSCfTAPNQnvdDoaDAY1edva2qrJeBsxohjC8YhReB4TI8ExghsJrPP4TTI9jx4nFtDkeXd3dzWZTDQej2uXA9MgPKYm/Kz9QOHEa4oklQIF33db2Q9/3yJIKaWxPngsBaJYiJDklW4QX9u1HiyeuWaGX+4fU3piGygYuI3RQeLPLcD4GIoCBEUBOzUsGnis6YiI3+X6iQ6RmILAYyhAMXWHaTdMjaFwQ1EgpvfwehTLorMi3gfzjON8FicSiUTi2pHP4UQicS/jRhwKv13S/0PSb5RSfv3gve/T/kPzLaWUb5f0UUnfcKUTkWSS/Js404HAYn4kECQAkUTFKKQJqs8ZiYOJRZurgG4EkmAXvPNnjoyaIJpgmsTE+gQ+v8mSSZtJbrfbrdvLvsRoMB0R0XZvkYbf98tiRSxcKR21ndN+TzeBv+95ctpKTEkxMZVUi0MUhNwPFh10O+gMIOGP6Q4k7R67y9ne3S+PG2smXC4NhuvOQkLc4SMSZx7PteI+u48eR5J4knT3MbomfG2vHaZZMF2Ba4n3SLyXPD/8bpuQFKP+XHMc+5jmwPmKBTAttrWBfbDIFx0GXKsUFvh77P+s9THHOLZncSKRSCSuC/kcTiQS9yxuZJeH/yJp1l/dX3at56MV/OD8DYJHkrq4uFhviWgixug16y3EqKgJn0mE/6U4EO3elyMXjGzTqcDreZcD95NkiQRHUqNmASO+jk77WJJUt7nT6TRqJ7gfJEkkdqztQIEiwv2Q9ndcsBgQ8/P9L0WGttoXnGfviMF2so2+ThRAKGjE+gW+Dq307m/b/HGuKb7QeeDru30kw+wDBRCmFlA08Tl8ffeR8xVrQrT1z59x/ugc4fppEwQoMMUxoxDAtBrOYxTu4jnivRPvjeggoJhAxwLnIF6HLo+2tcP2xHbOEorYhjZHyrzhuJ/FiUQikbg25HM4kUjcyziWXR6OA4x60tpPizYj0T6OZF1qRt4jOaYdXWrf6rAtMt5GPBh1d3sd1baN2pb98Xhc1wqIef9O4SCJiUXvTM7aXAfs82Qy0Wg00tbWliaTiSaTSUPIYNtJ9uJYR6IY00t2dna0tLRU12ygCGRRxWPBNrsNnGsTZ4obJI+dzn4RSM8Hd42wmMDtKy+HaLOPIgUj/yTSvm4skun2G1EUY+2GuPVlm1uC/Y5FIOnS8LW8dk24eR/QMUNRxfcStzedRcDppHF/Yo0D9t394nkIjisdLT4nrx3FDaY2xLZG1w0/Z1pEm7gR00co1PiYyWSiRCKRSCQSiUQicRRzIyhIhwTBEXYTcVvke72eer1enUYQdzGQ1HAK+JxVVWkymdTF7pyfHolYtGXH4m4xeurv7O3tNcQCkz66IWxvp03fxSdNviXVKR57e3t1XQlfmwTQxJ7kzoKChYxo92Z7aUOPRC0i7thgwaTb7TaK5Pn8tO0vLi7Wc+Q+xDQFjxv75ij98vJy/ZnHJo5lrAUQYUIY012MNlcB0wl8fY+n3QSs12DC6rGJ+fleQ57LKILF4ooUkUop9Zpl+oyFGLabRJm7QzCVKMLjxrQct5dCQRx7jpnH0d+zUOA+8HwUbuKYs+8xFcj9p3hEUZEpMT7f0tJSQ3SgS4XpHOwzi2UmEolEIpFIJBKJ2ZgbQYF/yJssm1jGXPGNjQ2NRqO6uF5bpfpY8Z62dZPBWBeABMnfZ0HFSHyk9q0N+b77RiGh3+9rOByq3+/XBQNNmN0P1ong9dw/EkA6FCyacOwY5Y555iRube03SaPwEqO67CNJoRHHwgKRd8/wv4xaR0t6jPpbSOj1eo10AYs4JI7sswlxBCPYnU6nUciRBTjjd+L3uRYpalFwmnWO2C6SeL4X28oUieis4PFtQgGvY/GCKR0UitrWS2yXz2+wDRQZoojle5yOj1kpFXTUUMCik4LrhMIB2x37F91Bs9I6Eol5xsKnP6Infte5292MexL956Za+7G33+5mJBKJRCJxSzE3ggJ3N7DFnsXp/Me9q/9PJpPG520kl4jRWzoRbM2XmoURI1mJwoa/7+/F/HBf1/3rdrsaDodaXl7WyspK7UDgdUjkY8qFo71xu0yTzvF4XI9bWz0HiiqR0MUcdfaDEXSmCRAcNwo7FAVIGi0qWPxhn9xXkmNvP0nSF90RbrOvFdNSOL5xTZD8m4iSdMc8+pgGE0lqTAHgGnW/KHrE1BGTZroU2ubG12RaQNtaJHmOn7XVkLDoxj5EMSP2nW3xsdEtFIUKvk8BgN+La9Wfe064Njn+UTSJ/eA88sXnTSJxJ2Hh0x/R8591Rpcemf1/YeLmYfx8R2tf+JnNN6eVyq++R9Wc12JJJBKJROJ6MTeCAqOTkTCTZNi2buJsIsW8bIOOAu8m4Ag1ybGvScLqqLlJCwlpW344ax7E4n+O2q+srGh1dVUnTpzQyZMn6y0eubWjzx+jyyTqPNZ92tnZqWsmUPyggNBWpNHwcbTO+32SQ4+lP+P3PQ7+bqynwJoHTHmwoMD0ARJj1r3wWmirM8G58Lh7DtmP6KbweqCAY6u8r+kUktjH2H+Sea5F95FCB8UF10zweyyqKal2o/gV13qbA6FNJIpR+Vg/wu3yfRD7yDQaXqOt/x57knwKDrHtcdtPzll0SFBEaDsX12AUweK4eA207ehxOZEykZgLdBbU6e4/kx//8nNaf3Gu2duF7ZNTPfYHh433ylR62YdOqVpf339eZU2WRCKRSNxlmAtBodPZL7zXlovN9+xOsKWf3yWBiOkOFCS63W5N4EmQfD2SVNrqSV5MbqP9PhItw++trq7q9OnTOnnypPr9vqqqahRurKqqttrz5f7HCLvf87jQ1cHv8TiTRRJTjrmdAH5vPB7XwgDrWHS7XZVSarIeUxJ8DoscsdaAwV0t2A7PDfPj3S8WFaT4wvP1+/2Gfd9ElQLN4uJinXbiNJvt7e2G4MG8/ZiCwzbGcefcU0iJLhT3nWQ61u7geTw2s9ZuRCTXfD/urkHnja/DdeZzsT5G2/GM8ltQ4DFckxSVPK+SjtREiM4hXo+I4oJFGhZ65bi6f+x7vOcSiXlG+axX6P3/7aokqeqkmDBvqIr0vu95iSRp5SMd3f+3f+E2tyiRSCQSiePFXAgKBvPlGbGUVJM9E2dG0w1a6klcWBiRxe8ME+IYdTaBsTV/Z2enNRrLVAipuRWhyYpJY6/XU7/fV7/fr6PeJjttxCq2k/njFDlInN02tjMSTreb5NDjwHoMFAycpuBoOlMhTA5JfH1eCgD+rsfJQoXnnWTTP0dHiusvcNtEijjum3+fTCYNIcMR6W63q8FgoOFwWDs8vJ4oKJDUW1CgqyGKIPwOBRZ/ZpcMCzi2uQH8mceUDganJLDeRNydJBY4bEsF4LVZrJPEmy4XniOm07C/Mc2Ba5HbfHrNtxVCjM4EH8/2RAEhrg2uJbbfx/NfntfrMx0KiXnG6Gu/QM++YkHVQq7TuUWRqoPH++gFlT75J18rSbrwc5/S3m+97zY2LJFIJBKJ48FcCQpSU1QgMTOhN8GltTnmTns3BKm5cwAFhRg1jZFlY2Fhod5ZgqkGlwMJlokkt4hkND6KDv6ceeiMSMcoqseMRMnvMe+fx8wiTBYITMDijgKllLoIoo+3uOH3nCpA8m7BoG1HBgodFEsoKPB3950OBbY/Cid7e3u1+4WkcnFxUYPBQMvLyxoMBrXoQIGFufSs7dCW0hDHkevTYxLFLIo/dFrE1AqLKBaA4rxSeGPhzOj64Hf4M9ca+2DRznNA903sLwUbH8fofkxF8BhSnCCx5yt+n+surgkLXrFOROxrFA/b+hDHKpGYG5Si6W//LD33sgWN70sx4U7BXr/Sxov2n0fPfs5prZ77HGmvUuf/epd0hb8rEolEIpGYV8yNoMA/6ElIJTVIPCPAJiKRhNlRQFGBLxJg6TAKS/Lo75oQ9vv9RnvcZpLeNrs7hQJHvd1mW+VjDjnJIaO5HCO/H90XUvsuDB6btnYzKr29vV2Ps1+OYlvsIDHjlpvsN10mTo+wO8FkkNF3E9BIrKMtXzok+3RCMOWCRNrOBtfQ8LXtTFheXq7nNvaZpJJ1OrhO+D1/h6TZIlJcp5wj9oPOBL56vV5NoHl+Cyv8fTqd1u8z5eByJLnNneO+8V66kksg1hJpcyZ4vLyWKB76sygqsAin2+S59TksJlBo8rxw3iJ4D7CPUZxKJG4LOgvqLIe8/MVFffD3DzTtpphwp+Lpz5Oe/ryeOjtFj7znlPaeuyhNM8UqkUgkEnce5kJQoIXb1nu/5/QGRiNJTkzMo5WZJJuk2+SBhdhoQ5fUIH0kFiYzBt0T4/G4Jn/x3J1OR4PBQL1er5Ej7hQKHxt3fZBU13swUfTYmKx6DJiOES347ouJmckVx9REm3UYJDXy/y2McH4Y1e10OtrZ2Wlcg/UWKC64LxYH3F/2g+SPZJ3z5HGIaTIWE3wsd7+QVKeeDAYD9fv9mjSz/76+/6WV30IHi2Ay0t7tdmsBicSepL9N9PEx7pP7FSP4khoilceIdR7o1jGRJ9mflTZDkODzXt3d3W2sb1/fDhTes/G+cL9jLZJ4XTo97BSiMOQx8jpyCovbwOtHd0qsB+HnjMeV455I3E4svPRhve87jm4DWZWMaN8NmC5Wet/3vUyP/MNLmv76b93u5iQSiUQicc2YG0HB0XjmXDM6SmLMPHySYhJpv09RwaQiFg5kRJxRY5IJFtUjISJZaiNXJjBra2saDof1cdEOzm0zKSgwD3xnZ6duS7fbrYtROgIfCRRdDewHx9ZW/xi5Zb/4ijnujhBTJOCODI7O0+XA8Y9bHVpcoFOF9nWPSSwwaNGHbWTRTLfP823C7znytWPRvzgukXSzb36ffWPaBM8VxQSKYTHdp835wvXCtnMN0zkR7xGfhyJFdGXwGKYaxNQGf05nDVNnojuA7eF9F+9Ht4nFUfv9fn1fW2zzOfn8cLssfLANTBHx9eim4DpNJG4XnvrO12p3KE2XstjiXY2yX7jxI199Umc+7Qs0/OfvuOqvTr/4s/XJLxpe+cADXHjbuqpf/o3raWUikUgkEjMxN4JC3NKQ9nO+pEMSJx3WCoj5323XiLZ8v29CEXPmKS4wfcHtdTsjwXLEmDsO2GLPHSlI6HhdttXndx9J8mPUnoXoKJKQdMV0ErbD5J/CCwWBGLGN7gQSUiMKE7ak08Lu9IfLnaNtXmOKRFufOC8ktRYTWMfA7YwWeLYhgoKHx5+7NrSlF/jYNhGH522D55nHc82x7ZFMz0K0+hMUIOIWjHRCMPLftkbogIj3anxRhGChUotAXptuX3RBxBQQpn3Ee8DzRxGOa7PtWZJI3EwsrK1p/IUv0+ZDlfZ6uf7uFUzOTPXcIwvq/a5Xa+Ftv9ZaU2HxRQ9p65H76t+ff6Sr0QuuXmz61GevaO3E50qSum97lyrU40kkEolE4noxN4ICnQTMN4+W7Ol0eiSCS/s9yT7JAiOtMcc6Rotj5N2wlb6NkLNaPfP5XX9hMBhoMBjUhGg8Hje+H0UMkzW2KV4n5n1T7GCNBCOSYkdrSYKZImKRIUbk20BRg2KPx4E7XJCwcV7axA6S4Tjn0mGdCaLNcRLbGqPUFGtiwb9ZoDPCJNfkN/aHP7MGAa8fx4xzx89JjumGiE4CkuTLCQq8LotmSjpyHzDtKIoInodZ12q7d3wtC3oUB31eCwl25VBQsBOC9waFwXjvR2GJ/fdnFLeutAYSieNEZzhU9eIL+sjvXZSUYsK9hq3zU33kK3p65N1nNX3uuX3CX4oWTp6UOkXrn/2APvE6/h98bWvkuVdWeu6VSypT6eWPnlc1Gu1/MK2099xzx9aPRCKRSNxbmAtBQdrf2s9kY3FxUZPJpJHqQEJgkMxRkJCaxe2ct0+STGs7rxF/N3Hh8T7GheVMdEi+fd3hcKjV1VWdPHlSw+GwrjMQ3QOSGoUKmcdtuGaChQ2SUl9PUoOUtdm5Y6Te9R0WFhbqnR3idpLub7S5x9x0OhrcD++k4F0VTNS4o4NfFIfcL89Fmwslikl+TSaTeovROE4kjRwvujS4BaPrMbSl13guPP6s4eB0nShKta0jC2VRkIlbQXqcuV79M8ky59vg7hCsHUJ4bpxW4JoZbQJFTGPx+dxGpgQxNYMFTCl6eZtSj6fHo9fr1WKUi1P6fqGAEB0hnGfWXIlrKCK6hRKJW4WLv/8z9eQX3O5WJG4npt1Kj37vS/Tyv/+s9n7rfeqsrOh9f/7lqo5xw5mqSO/97gfr38te0SN/4dc0RaAjkUgkEomrxVwICv7j3TUCTBociez1evWxLG7HrfR4njbLeozES4eR7EjyoiPCoIBhp4FJqAvEMZrb6/U0HA61srKitbW1RvE/Xj9GT5keQLu/yZEJ3ng8rslwtGg7v5yEjX3ye/1+X8PhsCZr4/G4rqvgfliocTtNemO6Qawn4L4Mh0Otra1pZWVFq6urNeEfjUYNEtlG3jwuJNUUVCTVhSCjwMQijPGcMVJu0mnXhomvxzda/2OBT24J2ul0GuMf22bCTBHFa9Rj6zHx71wrRFUdFuSk88b9ieMaRTSKQ7wvvNtHnFd+L6auSIeil/tDtxDrVXDOKZZ4fcfUFNbGoOMgOjmYEhLPS7Rd20KC13oKColbiSe/67XaOl9JWWzx3sbBI/5Df+CsOjtnD2osTOv3j/MaRrVQ6aN/6tVSJa19ZKq1f/L2Y7xYIpFIJO52zIWgIOkIgYl/6JM8RFIrHa3DQNu/z8mUBJOJNnJJouhzEyT/tFmTtND+TkLE9vlctP9zS0Q7K6SmXTzuSODvdLvdBglus+2TSDH6690YfLzbFyPscazarOL8rNvtqt/va3l5uXZpbG9v19d3O0muo8DCF8UejzPdHCbYHh9Gu7meGIGmWMO2e158nNvNNktqzDPrG7gvvD5JrNtGoYTk3J/TjcGUmDi/cQ7Ylpg+0+ba8Hq3sMc0iyhYtaUPxJoO7EtbbQy2xYjHxXsruoniOrkSYgoVRRqKbW0iRCJx3Fj49Ee0+ZJTkqTRhayZkDjE9qlbmG5VpPG5g/9bOh11v/o19UeDT45U/cq7b11bEolEInHHYS4EBdurDboOIpn17ybgjODzfCTWPiet+NHSTFLRJk6wroPPR9EgkjZGdWNEn22jKMFz+sVUDelwVwuTZo+BI7k8P6PAUZjw+Pl73H2B2+5xbGNE14i7DfAadkCsrKzoxIkTdVrGZDJpzH0UFDgWJHhRdFhcXGzUZXCE2WJCnH+LBxGxHoL7y5oKFBHYDq4DpkB4HGJePwUJt4d99rFREPN1Pb9RoPK1fB72w/2PzgDPI10ZvA8811Ewi+MYhRuf0+IE0SYKUDTkPU5RIq5Fzt2VEN1LRkylYQpKuhMSNxMLZ8/ouc85o6c+3+/kekvcfkzOTvXxLzt8pq69f00v+Pj9kqS9Z55TtbM966uJROIqsHDmtMrB39nXi+nzFzNFKTFXmAtBwVHlUsqRXHqSOBImRqOZ28/P6ASIW+rZas88byOSwCh4mIi7LST/fLGmgvs3Ho81Go1qMYAkngSK7gRfUzok4CbhvV6vUVBxe3tb4/FYm5ubNZmL/SFZZz/ayBoJP8eZxN/pJx4D7y7Q6/W0urqq06dP69SpU1pZWVEpRRsbGw1iTBIn6QghZi0N94cFLz3OFhM8V55Tuy/cH46B01UoPpVS6uJ/XmPuv8UluzncdxcNNMlnnQCvBa53klbX4qD4FOshRDs+17A/571Bl4LnhCJFdGa4zaxtwXQNtokiBNd/bDfXCvse7yPWOWiriUB3QqxhQVHFa8Vzy2cBi40yLcfnoiAW25lI3Ax8+L9/uSans+hnYr5x6ZGpLv3ZF0uSXv73T2jvt953m1uUSNzZ+Ni3vUKjB27s2f/wv97R4lvfeUwtSiRuHDcsKJRSFiT9iqRPVFX11aWU05J+QtLDkj4s6Rurqrps+eBoX7ewsLOzUxdnZDSY0ehZRIqE1ceSyDFlgDn/vsZB31qdDCSRdBNYwIhkpKr2awaMx+NGjQKLCHYJkNS0WdpJAk3g+/1+TcIoKPjlcTWRbtu2UVJjXDx2LmwY7f0xXcR9GA6HDfLa6/XqnS3chq2tLW1tbdUFE+N2oQaj9i4Y6WNN6D3+HitW/DeBd9vaxpSpFQZdBRx77yZhFwjBlAuS7ShCca27be4rxQSSYYoOFlZiIUUiEn6LAvEeoDPCY8DCpnZneIwtcHGLT9+vvP/ocrAoQ9eDf6YTI54vpj2wzayPwjUb58Lfj+4FpmP42pPJ5Igr4U4UFI7jWZxIJBJHcPA4/uA3nVFn57VamEgv+IFfbN3a8l5HPocTrfjCz9THvnxFkrS9Vt1wTZSPf2lXC6997dEPptILf/Cdqg5cwInErcJxOBT+hKT3SFo7+P2Nkt5aVdWbSilvPPj9ey53AkbQ6SRgpJTEx8dJzYgkI5gECZkJySTcbNENQHHCEU5JDeJocmISZIGjjfC50J1JdFsqBovqRaJNQmqSTeK8t7enra0tbWxsaDQa1QUbGTW2a4AF7trIaqzRQBLOcXB/l5aW6ir8joI7+uzrWUzY2NjQeDw+IiaQyMXUCm7xyDx9ike08nsc6cJw29vWko91m3xdOgR8Ta49zg3t+1xDTH9gv3jOKGowsu61wxfPG3dTYN+YZkN3AlNSohOH90C8D+gaoJjg9RTdBD4/HQsGRTz+HseTYxXTmLh2JR3Z/YLX5Zp3m6K7oe3a/PkOwA0/ixOJRGIWdlYrSZU6O0WbX/carf3Hx7T3qWdud7PmDfkcTjSw97pX65lX9Y/VkbY7rLQ7bClkPpXWX/85KnuXF/vW/suHtPfkU8fWnkTihgSFUsqDkn6fpO+X9KcO3n69pNcd/Pyjkt6mqxAUmMcfbfC0JDOSaSKws7PTIFAESRXt0k5BILkgmeC54vZ/kdSa7LrtJNvRMRFt7iQ//l5bnQUSOzoUpH2iPJlMtLm5WQsKLnJJ4mhybVHE7XHf3EbXZ6ANPkbrfW67Bfr9vgaDQWPc/b6j1ru7u9ra2moICpcTFfy7BRvPO9vF9A+6WLyWvK7aChj65c+9NuLctdW74LHErLQR9ss/sw1cS3EtMv2HbWNaCNcjz+l7h+eiq4R9iTUnCJ7H12a6zKx7w2u8bex9bba/DWw71yIdJxYP2EePN+9P6TBVI/b5DhMPGjiuZ3HiFqCzoMULD6hauPKhicQ8YrpU6YkvLho+/qAW96baey4D7lI+hxMBpWjxwgv0+Gv6N5zicLWoOtInv0i6kgVi8NSFOth24xettPuJx9OxdI/jRh0KPyTpz0paxXv3V1X1hCRVVfVEKeW+ti+WUt4g6Q2StLy8rOFwWBOU0WjUiOQzsisd2pYPzlNb/V0zoO1YWrlNSB3dt8uAhMJRdeaVH/SpQVCYPmCizagod5UgaG+PReecbrC9vd0gao72myRLqo/d2NjQpUuXtLW11dh+s9/v1+PKOg0xYk3SSuu7x9gChFMK2I9+v6/V1VWdPHmyYYt3jQNpX/ShiLCzs1PPWSzcR4s7bfduu90eriEQ6zt41wqPP+dPagoEJpcWFZg6QZGBrpK2CLrbPIsUe2tHgtF5ij5O43A7PEZ0JXj+WJyz1+sdqQ/g9rPmQCmlFoA471E4IoGPDgoLWr4mr8cdQjzOURiM6TZRxGkbJx/LOYlFOnl9H0cXhuecaTJxTtvcEXcAfkjH8Czua3iTm5lYOHdG7/3uB/dDSYnEHYwPfONA9/3yy3ObyUP8kPI5nDhAZzDQo3/yIVUL8/es/+DX9SQ9eDwnq6SX/9VRCov3OK5bUCilfLWkp6qqemcp5XXX+v2qqt4s6c2SdP/991cu2BdJp4ktI6NSc5cHElKSCUchueMBSbEjtSRhkbxQrGgjLAdj0SDmJn3O83eE3dfnzyzO6HOT0DMyz4iwvz8ajbS5uVkXemQawsrKypHdG1itPzoB4ntuF8cukkALCoPBQCsrKw2hZ2lpScvLy3X6BIm362NYFIhuENr9mbfvNnJeOJ/lINXCTgweT5GE80XnAYUEt8fr0P3ymLAmANdMJKEWBoy2ooMWieioiedk/r9rHtBlQFGM0Xu/uAZc2yJu12pBKK4Ltj0W9+Q1OUYWkyz6Sc1Cjh4bXsdzGd0/7FNbKo4/54v1I+hw8piy7147TA/xmM87jvNZvFZO3zEKyp2GJ//4azU+I1WdSio5zIm7A5/6zKKNB1+rF/z1X7jdTbmtyOdwgiif+yp96PVr+8/7ewAf/O5XSNVBUGYqPfyD79J0c/M2typxK3EjDoXfLulrSilfJakvaa2U8o8kPVlKeeBAiX1A0hWTdBiZLKU0os+0s8dia/GPfRMTk0MTVZOWGGE2gWJ+td+L9nuT6bbzREu6dEicSHRZdJJpHWw/SZPTJ2gfJyEaj8fa2tqqxyrWYbAIEYUS1lSIBIyujDgG7LPnwtfo9/u1I4IFH+0o4HkoKpBok5hGkYNts7uBBf7YJ3/H8+EClR6n2BZev815MMudwPV2uah2W1oC0wcoGvHcMcXA65rve90xBYKOCrozWKckWt04bnSIxHYTMUUg1oeIzp1I6qMDgu4WH08XR1VVDWGP89EmavD+5pqVDmuvtKVJxbG/A3Bsz+LE8aMzHOri13ymRucr7Q3ujT8uE/cOpr1K4zPSpW/+Qp36t482opTj3/8a7SwfzzN0+rNz74LI53BCkrT7pZ+rZ1/Z087q/DkTbgrKYX0Vaf+f5772t+n025/U3mMfuq1NS9w6XLegUFXV90r6Xkk6UGP/TFVVf7iU8gOSvkXSmw7+/ekrnct/uJv8WFAwqY5b9vk7kYBGQUFSq5jQVrxOahIeRrKvZHuOBJy58G6f20WSTjHB1zJBpHvBpIj57nt7e/WOEbbDxwJ5rL4fx9tkzxFh1nbgi+PrvpmYcrtEv7irgwmvd7XgeaJQE+eVDgW2zXPKCDJJIQUef99iAtMGeM5IoNs+J8lkO6MI4b61iRMUY+iIYT0Cf8ftZGoAo+0+xu2NAkOsTWFBzvNnNwZdAHHcr9buz7mMZH8W4hpjWoVdAgaFL66Ty12D9zddHRy3trmkMHWnCArH+SxOHC8WTp5Q9fAFPfkapSshcddi2q301Guk1Y+8UEufPFG//+TnLWpn7XhI1c5/OZbT3DTkczhhPPvKni695B4RE9pQpKc/V+punNPq9GBL7w99JGss3OU4jl0eIt4k6S2llG+X9FFJ33A1XzIZYm49c8gdUTRMeOhgcP684YgmbdWRCHY6ncZnJqgkO5FYkAS5IKQJW6xxwGNMbuJ5SSL5Yh2CwWCgwWBQR+a3t7fr4oskhrTsU4SI5NDuAqd1xD6Z1JlkksBbTKArwakd3W5Xy8vLNSHb2tqqz8tCiibYjB5Hy32sXeB2c2zYZ4oObi/rD8S5dFu4XrwWo1vDbTQRd+Tdc0onQ1VVjXG3I8Xv0UlisutdO9yHWLCQbowomsT1WVVVw84fUyYsNDFVJLaX69zHu79eO7EWwe7ubmMbye3t7SMuhzg3fj+2f29vr1UQY42JtvoObWks0aEQnyUUpq5WsLhDcF3P4sTxYfyaR/SR33sz/ptNJOYPH/iGgaQB3rmHSdUh8jmcuCfxid/ZkX7neZXdokf+0lOajka3u0mJm4hj+Uunqqq3ab9yraqqekbSl13L900OKSCYLNPmzG3qSL5MjGzvl1ST7hgZN4HiloaM0BoxT9zwMePxWJ1OpybSFBJIwFgM0d91AUASQZIyE0VG30kivaPD1tZW7WIgWfV5aaGPbgiPXRRWYmoAo/UmZd4mcjgcajgcajAYaDgcamVlRcPhUP1+v3E+toGOkzZ3iO34dl7s7e2p2+02CD4J+cLCQj0O7qPXi8cqknHWWOD6YcTfu4j4XH6P17Ugw7QOElHuKuA1wHUSo+DRNWMhamFhoRaOWBzU3/ExrlXBmh+xTkPbziK8BzzOTDniZ1w7FPVY8NRrx23hZ3EdWgR0m+KWq9G54PFkn3lOj50dH0wTimufc8Pxj6kwdxJu9FmcSCQSiRtDPofvTZSlrj785z+vdTvHexnVQqUP/rnPqn/v7BS96H/6JVXh773EnY25CJ2YIEqH2yuykGK087PIH90HdBdIzag4xQJGapk7boLEwm8+3ufzvyZLJpYmJpHAtBETEnQfw2gzq/z7c5JF1pjwefyviTzFCP/O/nEs4i4U7n8kf9xik8IFayi0Vf2PIIlmzn4bsaY7INZk4LxRGGC6A10gFALoiIiElO309dpSWNrmmW3leLINUlOwYqpBLHIY6yH4xYKdvi7dPFVV1f3kujIY3adAw9SF6A5gMUkKYXGNU1iIRRc5LqzpEOeBY+r2Xo7k02HAMYwiRtu9RlcT00Z4jyYSiUQikUhcDnuDStViCgoNFDVEljKt9Owf/vy65AJx4sNjdf7jr93CxiWOC3MhKJBoxRoCJIUkgLZLx0rvJADRMu/PSKDaSL0JvMlIrH1gom+ngQUPktRYL4C5++4bxYwYNSYRsttCUiMdhO4Lt5PE2efxez5njIQz8hx3mfB4RSu4QVdBr9erXRExysuxjkScEeO2OgVtRJHjyrXCPktN4k7yHM/l63FMOIaM7EdBhmuIUX/3jcJBHAv2Ja7xWMPBa9rzT8HAn1EoiIVBKYzxOLocOHZOO6D7os21Y9DJYAGM9xDH2GNHQcH3RNvOGZ5nvscxZLsuJyYQFDLb5oPtTiQSiUQikWhDZ3VVevEFb3SQuAyqjvTMZ7WLLjsrAz3w9Mtmf/mZ57X3ZNY1nUfMhaBgmCxFlwIj49I+qWaElBF/RqcJEjvn+pMok1SbWLdFwlnwrtvtNuo3mHCRUDOySqJlhwUjxyRv0mG9AEaet7e3axt/G3Fn3rkt+bTKM1ru6/k6PredEG6LtzOMOwH4M6d9WFBo21KRZC+KCJxbFguM88Zx8XjGqLzFAKZ7+Pr+104Sn4svf5/pBtFR4WtTIIkOCI9DFENo16fgxHEwuWYk3XNHoYdzwePtvnHkPYpZTEuI6UAx/Se6FCjI8D2/z4Kqk8mkIRLEMZcOd+jg/FN4kdQQ97xm2oSHWWuU9zYFH5/Pz4KYVtMm/CQS14RppTI92E0rl1IikUjclahe9kK9/w+vqjXsnrhqXHrpVJdeenrm5+d/8bRWfvKZ/V+mezOPS9x6zIWgQKu1yTYJYqybMB6PGwICya9TIhilJemP2/PFvHvpkNiTSJFs+FwuSOiaATFiyqr8TFsw+TO5ddrAwsJCTea9M8Li4mI9Jm4Hi+lJh84Ckl+T++qgQB/TIwy3ywR6a2ur3jmirViha1TQceEaCqxHQQLoOXD/OVdSM2febY81JEy+KcZw5w8KLFwHTD+hQBTt8Z4DzjWJLp0ibi/Xo99zccXBYNBIx2lzKbCAo9MT6JAZjUYaj8d1m7wNakwZiKkjFIu4Kwh3LTHh9/ry+xQRvPNEFDXoouCa8DkobtEBQLRtY8k2sB5I3F6V92EUUCjWeEy83jynFJPiPcu6K57PtvYnEleL7tvepZe/93699089dLubkkgkEonEHY0nP7/o6Ve/RpL0yA99ULuffPI2tyhhzMVfy7Gwm2HSbHJMcjeZTOrvsk7CrIgiSUesGRCjtD7eZIZCgEkbdzVwATjWUDCJdMG32E6nCMScfhM95nAzkk0yHAm0/2U6ByO7jPyT2JqksxhjtKizX/6cOz1YpImEj+kTrAHBuaZAQsHCBJWF9/zdWFeApD2mn1BMiLZ9zxvJpc9vUu12RuHKiNF1rlNfM6YmMLoe6yNY4KGDxZF0izM+D79Psuz+s71ewyyMyfaRQNORQ5HC5+I4ut87OzuNNJHo8qF4xHswnsvX4HhExwG/G7eFjMdxO0vem7wPOI88Z6Y8JG4E1e6u9p58Wi/5ybP66FcsH9sWeolEIpFI3GuoFivtHTDXx7/uJVrY/jR11yut/sTbb2/DEvMjKDgqz1x4EwMSZJJtkh5GzSMcOaagEFMinCdvEtGWpuB2uQjhYDConQXcoo7klCkVjLybjEcXQ6wRQCJFa3gklfy+yZnHysQ+iiYWE5jqwIg0bfoUFEz8ut1uPQYsqkkBIQoJkdQy0mww7YWpEVVVNdwaJOJsM8kliW0kkSz0SDeC5y+SSaYwxPXjOYhpHXHMObdRLPLa9xhGYsvjvS7dfxL+tutxvCI5Z9oQx5QCAEWsKMq4bb4/7ApiWgH7GAW9NnGC7Yvn8PtMYaCY2DY3HJP4nGibzxQUEseGaqqFzW2V6fLtbkkikUgkEncFLj1ykJZ9qaMTn/Xpqn7rA6p2tq/wrcTNwlwICtPptLbbj8fjBkEi2TBINk2aGdEkYTIZXl5ePrI1ntR0JzBibfI4nU41mUy0vb1df7a6uqoTJ05oOBw2hAoTLBMvCgQm1j6m3+9reXm50S+nXcQot3+3k4ECgxHJovtokSZa4qX9iPt4PNZoNGpY7JkTbyeCRQN/trS0pMFgoOXl5dppYWJq0u88+slkUl/HogK3N+RYW1zyNokkgZy32O9Yq4BiE7eN9HfifNGJ4DGgO8Bzx9QFujE4b47WR1cL57Kt0CeFFEnq9/uN6DtFG+7CQTFhVu2ASMjjfcXUF4pCkVDTCRPP43+Z5sJ55ZxxLPyzxySKGhY2ottEUmN8Yhv9HTtQYlpLPN4CDd1MmfKQuCGUos6Z03r0W05IJd0JiUQicdehs6Bq4WgwM3FrsLM21fu+5YRe8QOn91Mg8Pdm4tZhLv5a3t3d1bPPPquNjY2aVMfoOO3vBskxiedkMtHW1la9M4Jt+ZE4xDxsbv/I/G1H71mAkFslmlxzy0TuPOBzmGgNBoNajDDYN6ZLuE2sjxBrMMSIK6PXFmiqqqrb7joFo9FIFy9e1MbGhra2trSzs3MkdYNigtuxvLystbU1nTp1SoPBoEFmoyNhPB5rc3OzFizG43Hjc+7CYQeCx9s2f7pTYkS6lFIX6aRl33NrIYDiiNvMVBWOG8UqqVkAkCkiJOlcf1tbWxqNRo30ETpWPJZ0kHjs/DN3zSCpjeILI/WzRCW6Jei8oHODtSjaXEARXnM8hsfaBeR58Xrli2PO+fQYW4Qy2nbsoHhH4cbnZgoF10V03lD46XQ6tVA4K4Uqkbga7H7pq/XBr+gqC3UlEonE3YlnvvU1ev4VUj7nby/e990v1oNvfVDdn/2V292UexJzISiY+DJvPG5BJ+kIKYoWZhMhFmXsdDrq9/s1MSXZZp0CRrjbLNAx+uqaAZGYmNzs7u420giqqqojzq67wIhsrAFgMmNiMyvVwYKCP5tMJo1tCxlBJ+F2gUQSYwomvn5M4RgOhzp58qROnz6tU6dO1QUpI7E0KTS5tqBgMYGuAUaRWXBRalbu93WYlsAot+cnplRYOOj3+xoOhxoOh3V73f9SSmMXDdYvoPvF48y59rWn02ndN255yrXD9sb6AhbAoiPE64+knXUlTN4pIHC8PPdes54bOgu4tqKDgM4Ufx6LU/paBF0VMaWB925M9bFgMx6PG2JRdDTwulwv/tz3F1OlmEpCpwgFiZhmkkhcL6qFoulS/pGZSCQSdyuqxf3c/sRtRJGmS5We+tyu1k5/odZ+LGsq3GrMjaDA/P2YmhDJPf/Qj3n0JFsk+9G6zXOTMJEokqCRDDKtIVrtfW5XjKe7IeadE9E6boJNS7cJMKOs/MwV6mPU2ue344BRaI65rf90RNANsLS0VLsTTp48qZMnTx7Z+YHkzATbKSNMAfA1Yx0Dzx0FFqYxeOeKaGsnKXXhRpJMukq63W5jtwg6P7a3t7W1tVX31+e3yOFzUrBhG7yW24pb0mkRi0rGPsf1JR3Wp6AIFCPyrNPBeY9tcNva3Ae8pu8fpttwW1C2ncKe780oxNHN4vXHvsYx9H0c7xP2kX2IokYULlzbgUIKhcVYCyWRuF4svOrleu6BJWXUKpFIJBKJm4/xuanKtKO1292QexBzISiYpLRFKykUkGiRwPFY5lyTHJgMkVgwwhtFBZMzVvynkBDPT7u2v2fLv6Oiko4QGRIkgznhFCxY5JDRb5M6OzxMYt0uigW2n9Nqz8hxt9ttEDy2ezAY6MSJEzp16pROnz6t06dPq9/v13MYdy6wqGJngtvJc1NQsEuA6QbRIh8L8NmVQXLuuhEWlJaWluotPu0OsZPAu4VYUJhMJhqNRrVw0e12JelIPYR+v1+vEV+fjhBu48kxibUEmFpAAScWi+SaopPHYPQ9rjNfK4o3l6vFwDXk1BuPQ0ypiLso0AXB+8QOHd5Xrk3i78VdKPxdCjO8TnRVsL+8P/is4D0b3SSub5LOhMSNoNPv66NffUZb57NuQiKRSNyt6PT7qjL2MFeoyv68SNJ0e0ea7l3hG4njwFwIClKTzDDNwYgESWq6E5gWweJq/X5f/X6/juCbkDGSG10M0TZOUuoIfiR9bLfJUNwGMx5HIuf3pcNCc3Y1uE8kPsxNn06njaKKbKePW1xc1HA4lHRor9/b22vk6HsOSNJMRHu9nk6ePKmHHnpIL3jBC+r6CdFV4L5x9wju4BGj771er76Ox046JKEWANrm37+XUuotHaOg1O/3tbq6qpMnT2p5eVn9fr9u03g8rsUAbm8ZnQOdTqcWHrzLh1NNPI5taRqO6nOePLaeW89723rket7a2tLm5mbdRgtE/n689sLCQmNHBY4dRQqOq9vLce33+/X7BvvKOgn+PTpjWNiz2+3Wa8HzZEGC94/b5nPQGcR7xfPltRtdIFzHvrfoPHA73E7fO0abgyORuBw6q6t67C98hqaLuXYSiUTibkVZXNQH/uLnaNpLF9o8YXxuqvf/1c+RJD38MxMt/Idfvc0tujcwN4JCt9utyYnzpmltj9FeEr8YiZXUcBxIh6QrblMYiSodDL6+dzHwOSlUmFxKh9sdxu0X/aLDwcSJUdS4tSOj8CTrPHf8nGKEo+y0rDsdgCkTMToeU01Myi9cuKAXvvCFOnnypIbD4UzLvNtEEYRzGG33HHenJzjlgAIOz81ijvG6Pm+329XKyopOnDihEydO1BHy8XjciJLTjcJtS01MGa1fXFxUr9dTKaWO1lMgYp0Bigo+ni6N2Je4VSHb5KKZPjaOG1M3WHOC48/xiWMV6x1IqkU0i07up90ydPz4exZPSOK9RepwOFQppSEo8LscD4OiWJugGBGdC23uC9YRcRuiUyam0SQSV4POZ79Sj/+uk/tiQi6dRCKRuKtRdZQOhXlDOaxp8fhr+zpxPmsq3ArMhaDgP/ZjHrnUzEGXmq4EEtVInhjRjJFPfz6LLFCsYF0BV943qWR9A+bkx9xxSY1oNck2LeLcHi+KBUxTiM4HE2KmL0TngQUaRsrbIv5Mx7CDod/va2Vlpa6bsLq62iC0bifbS5GD8xhz/vleFF9irrvB85M8+jP33dtarqys1MSY40VnAX/2vDOthAUr7XjxOHl9MOouqSGGMHLPNAGKYnRveI58zihSUbhou2/c/ogonBixXgDdIV673PY0CgcWYSiwUFRx5J+uAY81hako9nk9MxWJIorHg2IAnw8Uh+Lai2JITK/x+4nE1aDzWZ+uZz7rhDZemM6ERCKRSCRuNyZnp7rY6Wjliz9bktR97In9rSUTx465EhSYe27rfRQSYv0D6Wievd8jweDOAlGwYGFD2u95HjsSTExNsvw92/rdF4sNJqd2M/i63qKPEVULDHFXB48Ld0iIrgpW3ScRjMIDyWck423Xc5T/9OnTOnHihFZWVuoccxeBpJgQyXl0P5AUenzjWiC5oxBh4YWikK37JIeeJ4sgy8vLtY09igje7SDm4kfHR7fb1WAwqF0OFqgsLFVVVc+P++v59txyfdHSH2tW+FxetxQqvD68tigmuZAnxQSOudvBehBt7p5o//dad5vjLidug6/D3UM8F06daBM5+H2uJ6Z/zHIa+XMWEo11EbhWmBLlefD3mGpCQSmRuBo8/qWnUkxIJBKJRGKOMDk91Qe/fr+mwsP/6kF1N0fSdKrp5uZtbtndhbkRFEjwTf5IcEwETNwlNcg38+dNqn1ORvRjDnVb/YTJZKLJZFITCjsSbNteXV1Vv9+vSd1kMtF4PNZ0Om04A1wE0WkTJviTyUQbGxtHdlhwJJyCRizw6L4z2u7veezcp2632yCO0aLu9pP0Mw2g0+no5MmTeuCBB/SiF71IDz/8sNbW1uqUDdY9cF9IKP3ymFh4iTUXPH8mxu4DUx88FibDLFjoNAmviW63q+XlZS0vL2s4HNbz4KKLW1tb2traqusumBizboGv63asrq5qOBzWbeL6iAKXI/Nea87RJ/m2I4frkO4QEn+TbQtZtOz7HGx7dPAYGxsbjXNSLPA9QUFqeXm5Tveh6ML7J17PBTjdRzs6LKh5zOOYuQ0eX69Nt8XXirUqoujA9BOfl/3zfEXRpS2lIpFIJBKJRCJxd+DDv29J5atepbJX9NK/+GuaHtSeS9w45kJQkFTbpQ2Sh0iWGGGXjtq4aZNnRJqF5fgzyTYJbymljnQ7Oj0YDDQYDBoCBNtJwkfLfq/Xk7RPAi0MWPyQmhFUOilMor39pPsXSZ3fGw6HWl5ertto8s+0D44fX96xwIUKB4OBTp48qfPnz+uBBx7Q2tpao8BgdIxQXBmPx9re3q7HwZ+b1LuPFlBIjLmTAC31dmawJoTnktHk4XDYILEk8tvb29rc3Kz76Qi1j7P7wOktnvO1tbVamOA6dbqLx7gtlcFgikCbO4BiD8/ptUDxK6YbEHR52O3gOfGx3kLTroZSSi0w9Ho99Xq9I+vc95C3HrXQZWHJdR68Hnu9Xr0Wu92uqqqqBQcf43NSTGC/7QCZTqe1m8R9XFhY0GAwqEUPSfWuER5fCiLxeUJBKm6P6T7H4rCJxCw8+JMf1cXXXNATX5zCVCKRSCQSc4eyvwtEVSp9/LteLVXS2kenWnlL1li4UdyQoFBKOSnp70v6DO1vtv1tkh6V9BOSHpb0YUnfWFXVc1dxrlaCZZJF4hQjirHKPiOqJnn+ntTM2TfpojDgiDIr0/PFaDLz/fliXryPMbkzWSTaKthLh4XjLHQQJvOMqJsIugCeSSQj3tEq73PZPbGzs1OnebBugkURFp7k2Fss4O4OnFe6SDwn3FXCc+MxY1pGJNYmfhxnny/a5C0oeBy500dVVY1jeR7Pvwkxt91kmzgPMTff78c12lYXou18vDc4lrwnPP8xjSTWJmBKTVzLCwsLtSOB657r0ePk9tktwzQhpkW4hgWLWNItFMm8RR26ITjPFtNYVyW6kXi/263CopoWfKJDhq4YzklMyZlXHOezOHF92Lv/pCYnOtof/kQica8hn8OJxB2CIo1ecLBb2VJHvd/9uZKk/rs+qr2nn76dLbtjcaMOhb8l6d9WVfUHSildSUNJ3yfprVVVvamU8kZJb5T0PZc7CYlSLKxmYkFhgSkKJgV0FUTSFaPBvqZBwse0CeZ+m7gwgskIK90JtrmT2NFtYNu3yRFTAkhKJTUs6v5ObDMjwk7LWFlZaaSJUFDg+TiGdkI4iruysqKzZ8/qxIkTGgwGjToXtOWz5oIj4VFQoIgR0zAMiglMaWChPkbSHc3md6MwQ0LP7Szt9qBAQaLp92zZ988smhjTU3xupjhIqp0RsWgohaP4cxQTWK+D4hdrDvA80cESSbbnkztL2NnRNr4e9+jG4baZrONhYWt5ebmRGhTrmHCMB4NBIwVGUj3m3HKU95/vHY813Qm+J9pSGeissUPFbfFcRpFzznEsz+LE9eOJL1nLGgqJxL2NfA4nEncYxvdN9ZHft/+330u2Lmhxd1eqptp7/uIta0NZXFRndfWmnHvv+eel6uYHOq5bUCilrEn6HZL+iCRVVbUtabuU8npJrzs47EclvU1XeHg6cs8ceUaxaR2Pue7O22aqgz9nNJgF31hMkIJE3Eau3+/XuwSwKF+/36+JDcWMthxuHxej49Kh7dy2bhbfM1FloT9HjN03CgP+3MTMRI5WdwsZJlyuseD6DOvr67XdfzAY6Pz583rooYd06tSphjuBLgfmzO/t7Wk8HmtjY6OuUeB5s3vBDghGhRmBNhi59nUtnHiXBRN1p1aYcDISbyLr/ruGggto0nliUYVikgl2dKU4NSMKKR4PH8OCiFyLdG247RSZLKREwcDfia4Nj1HcTYNujMXFxXp92MFCdwBrgzBNxQIGU3lioUTPjdfOcDjUcDisP4u7PnB8XPwx1vyIqT0WVvx9X6vX6zXcGnYluB9t40zB0iIChSXfs75X5xnH+SxOJBKJxLUjn8OJxJ2PD3x9X/r6l2thu+jF3/dL0nTvyl86BpRXvFSPftvJm3LuV/zAh7X7xCdvyrmJG3EofJqkpyX9H6WUz5L0Tkl/QtL9VVU9IUlVVT1RSrnvSieK5JC53ozI+3fncNPCT/s0zyvpim4GkhanJpBMRpu4o5lSszCeyYcj74ymMqJMWz0LMpI4UvCwGMIiirT6+zr9fl9ra2taW1vTyspKTQLjuWNRv8lkos3NTW1sbGgwGOjEiRO6//77debMGd133306ceJETeLdVwoajP6PRqNGUUYWb3TuvAmfI9NMSWABQhN5OhQ8nibxFgc4ljEKTkFnPB43XC52H1As8HdogXdf6H7xOUejkTY2NmoxwQ6X6Cbg+m2LfLPmBsU0Omw8nrNSLGJqBGH3Sq/Xa6R4OEJPIs4IvsedYgfP7/ftcnCdEa89z6vTcvwdn9c7Z7j90WVgF4HXPAuQcpcNH8eCmBaY2FaPq9cu2x+dHVHMmVMc27M4kUgkEteFfA7fQ1h45NP0kT9wXtVSutLuKhz8aTtdqvTx7/kCSdLp9+5p+FPvuGmX3Pz6L9Azr1qQys1ZSx/69k9T2fs09Z6rdO7v/eJNuYZ0Y4LCoqRXS/quqqreUUr5W9q3cl0VSilvkPQGSVpeXq6jqMyxJnnz7yaitOtLze30YlQ45qbTJs/PfQ1eJ24R6fd7vV4diWbUPtr2/T2SGpOiuD1kWx49I/cWFvxzJHVLS0s1met2u9ra2moc4+vGopUm/7bxe7vF06dP11su8toxNYMF+lyU0SkPJG6OoHueGOk2QXZ6CMfb8PXp9LCIY7Jp0k9C6s/p5rBg4Z0bSNLb1hIdMK4H4L5ubW3VRShj0UuCohfdBb5mW0Sea9JrmustpjtwPfH6diewpkB00fB+s8DD63Oe2pw4vi9YvJL3s+8dEnX2mSIa2xHFRPcn7tDiPjMNguNAd4hdLPyM89GWTjLHOLZncV/Dm9PCRCKRuLuRz+F7CFWvq/F9KSbcrag6quf3+b0FLXzV50uShr/4mPaeO74SKDu/5/P0/EsXtH3q5q2lyZn9c+8uF6191edr8O9/46bsbnEjgsLHJX28qirLNj+p/Yfnk6WUBw6U2AckPdX25aqq3izpzZJ05syZivULpGaNAxMlk08T9YPzSDrcHi6SuJibTks1vx+joSQrjMwyeu70CZNyg8SRNSF4HZ7PbaOYYDIW2+vjSY5MSLlF39LSkjY3N+vvMuLO1AynIphgebvAU6dO6cyZM40q+XFcWWjQDhOnNThaLx2mK0hqEE7a1+M8U4yxCODrcEtKFtnz2JlM0rFC8YPuiOXlZS0uLjYKDFLQcPujoGAhYWtrS6PRSOPxuFHk0Y4Wukk89ibbrBUwy1Xgsec6IUk3uJ4jEfa1XXCRfYpiFR0wFGCi2OB5YK2DKFjEcaOTIIouUUCjGEg3hVNvnPLA+8jXsABYSmmk3cxax1F84Vq5QwSFY3sWr5XTd0SHE4lEYs6Qz+FE4i7E6IGpRg/s/137yFMXtPCxpcbn1camppub13TOsriohbNn9KEvXdJe79YIU7vLlT72uxf08g88qM7HHtd0NDrW81+3oFBV1SdLKR8rpby8qqpHJX2ZpN86eH2LpDcd/PvTVzrXdDrV1tZWo25CdCnQJRCj3j6OooDfo1uB0WNapE1EDOfps6q922CLtaOcsc0mI2xvtKPHgoNx1wBJjfNyHPyzCbcJX6/X09raWsM+TteE6z64705PcL2D8Xhck8LV1VWtra1pdXW14SZgfQfOAcfBAoVdCs5R92tlZeWIWOMaBwsLC/X4srYCxQOuFZJBkvbFxcV6+8x+v98QPUopNfFl6ornyPUTPIZO0/B3PYaj0Uij0ajegpLk2TZ+17xgZJ/rNEbHWUDSbg0KWnFXDgsT/I4t/FxLnj8LHN6hgYUaWT+ADpToFOE8uxaJ581ClteXz23HDMU1plO4P+4DU2ncdopidBDR5WJRjQ4MjzPFO25LGoXFtvU87zjOZ3EikUgkrh35HE4k7n68/w+tSFppvHf+Fyut/NNrS4novORhvfc7zkrlFmuHRXr0O87qoZ8/pd6/+eVjPfWN7vLwXZL+cdmvZvtBSd8qqSPpLaWUb5f0UUnfcKWTmDSScJHYsMK+pCNbL8bK/lE0MFmR2gvYmTxSXDA54nZytFebMDtK2+l06mKDkmpSGtMpTAJtm2dfGaknqYvW9WjhtrPAVfjHB1YWjg+L7Dnv3+2XDiPMrr/gXHu3LUbFp9Npo2ZAtN8bbpudE8PhsGFHJ3kzabcrwvPkdvtaTHWQDgUOz9fy8rIGg0GDIMetKlkPI+4UwW0IvXaicMX3/L7XqYUMt9+uBa4Fbpdpgs9zUSRhfQmmX0ThIIpVJvtMo7CThKTaboPNA4U1knO6F7a3t2tnhtc7i2eyqKqFFa6LtjSCmEbB2hssEsm0kPiy+MIaENHV47GjoBFdGB4fCn13CI7lWZy4flz4h49q84teoo9/6Z2x1WgikTh25HM4kbib0bLx19Ov7ui5l7+28V7veem+//UXWk8x+tov0NOfffNqJlwRRXriixe1/KIvOtaaCjckKFRV9euSPq/loy+7jnNJOmr9JmmO0U2mO0Qrc4z4m2TQ5s1oMY/r9Xq1PdyEipFPk3ZHzX0uk55YG4HRWEZETcjcDpLMaA2XmlsBSmoUoXME2OTY5M9kyf2I2zq6zwsLC1pZWdHq6motKNAeb1LJlIO2rQtjzrvrFHiHDEft/R3uQiCpUVvC5/LnFgYsJjA1xGPo69HeHwtEkoBy7JmOEkUqRvNjhJ0RfkfqLVRwfbAeBFM0uCZ5LNe1zzWL4HIdcz7YR1/X7Wd9CKYa0a3A70wmE41Go7oQps9PoY1bcsa0hlhIdRbYRxZZjH1pOz66PuiKiM4argn2Ne6GcifgOJ/FievD3qee0dL6iyR1r3hsIpG4+5DP4UTi3sNev9JePwTKBkWjr/2C+vfupV0tvvWdkqSd5aKdtdtbf2N3WGn75PEGP27UoXAs8B/6Jq0kDdEezmht2+d+LxZB9HV4LYLOCFa8ZwTUEUzb7kmcpOZWhySe3P3BYAQ0ks02dwL7SALlaLsJMQsscrcMf9c1Dmx5Z5rA6uqqTp48qbW1NQ2Hw4YI43Zy+0eS3BiFdpvtSvD2fkzzoDgRx89zzVx2tiWOkwlnr9drWOwlNQSQvb292gERC21agIgOhejMYP/oauBWk+6n4bGMYxTFhLb1GL/TRqp9Ls5ZrP9BhwPvAYo23GmCgopdLXTmMEXF9y7dD7w3KUbFdBX3ieKar83UBroyPC/x1TaOnDemMlic4vjHeii8LxOJy2Hh3DmNV+fiv9REIpFI3CQsnDqlnTOD292MxBxjd1jp8d9x+Hd671M9vfjRC/ufDYqk2+9+nS5Iiw9e0O4nHpeOwY07N3/9tEUESbRNAnZ2drS1tVUfa/LHIo0kfY64Soe50wYJk3S4D70FBZMlk0/a80ejUYMwsr22t29vb9fkKdZ/8Gcm0LbFR5Idz28wd92FDh1ttehi6za3dKSgIKkm3v1+X6dOndLp06d1+vRpnThxou6Ho9lSU5BwDj3n0KKAUxAsKLhegcmrt3C0MOO59DzQncDItIvsua8et+XlZa2srNTChSPs7L/nnykPHnMSWV8vCiYkvZ5T1lzgtWmb9zrxeemqYIHGtrmO0Xe/oiuH6QtOEzIZZ5sJ3heTyUSdTkfLy8u1QLK4uFjvqDGZTLS+vq7RaFTPrcdRUr3eXN+CqSNul8WIWU4Ljy+3lvTadj+4xt3vKNTxdwpS/k5Me2Cahj9jYdZE4mrwiT/8iDZemFW/E4lE4m7G01/7Cj37224/IUzcOZicneq9f/qhg9/mY+1Mzk713j/1kF7+V0fHsnPFXPy1TOIYq7abcDkqSmt8mzvBJIHF2xYWFjQajVqdDRYiGGU2KWS1eEfkYyqFRQITQrfFBN4k1sUSTXBNzFj/gHnyLMzHKK/bbDLHfPnRQcVOigq0qm9sbGg0GtVCQCn7BQoHg4FWV1d14cIFveAFL9DJkyfr+gl2erhdLLgYnQO+HlM/Tpw4URNCj6Nz8P3ifNr9wZoKS0tLtQgR6xnEQpIWQqRDNwsLEJpk28XgcWUqhvvr32mL99y770zrsAOjqiptbm5qc3OzjoBznfFfCmZEtPd7LbodXt/RjeP+uW4F3QNjbBPjczF9ZDAYNBwBFgFcgHI8HtfXZoFEClhMA7EAZKeNhSl/p82lQLGEtVMsSsSdYHwePivo+qArQVJDNIjPDF+D434H1VBI3CZ0+n19+M++WjuruVYSiUQikUjce5gbQcGgmGA4imgiYCIdbdkmeLROuzo+c6cJEiQTGEZEpcNCdvxuW1E8Ex+TK6YckMjYnbC7u6ulpaXaqWAyRHs+x4HpF6zTYELHvjIP3DZ0Fh/0v0tLSxoOh1pdXdXZs2d14sSJuqChr8c5GI/HDecFiR4L3HEXBRM9j6OFBO8CwXoFdmjQfSCp4digm8Bk3oUYLRKYbDrCzrQI1zhwJJzrzP30eDFNgCSTJJZpJxZd3L84h6xH4b5Y9PK5Wf+Aa5nCwdLS0szaC3EXDV83pmr4fcNuC4oNrrkRx5CunVgHIxaB5L3hNcr6DUbbcyCmnlCEYG2FWfUpOJ7s/8LCwhEnE58ZPr7NKZRIGIsvfpGeee0D2jkxVZW1GBOJROKuxubXf4E2H5gPy3oiMU+YC0FBOlp80ZHjKASwSCKJo3RIJJg3LrVHJVmbwATMDgXmbJvgmvyynW2woMCijSZetmyzcJ375PbH4nFtReaY506y6++ZRLvfzBWPee39fl/Ly8s6ceKETp06peXl5UZBSuagO9WBxezaBAWPf7S8W1CIu2OQNLJwItNVPEYkfp43F3zklp4xZ9/nc+FEz7GPZU0DtzUKCrF2A+eDDguTcNYSYNpEG5GN0XWTbzp2uFOE+0ORwesiulqYCsF7jaCg5nVPN4pTTShocby4Ranbx4g/++rzx/oHXA9RhPG4+3xtwkmsl8A5NShUcAziNX3dKEAmEsTO+ZN6uq0EWyKRSCTuLpSipz63o71BprYlEhFzIShEi7Ht1iSrMa+5LdddOiQM3q6O0XkTDZNKnm8wGNTFCJeXl+s2mASPx+Oa1MVoMkmedLgLhEmYdLiFo9vDKvkGI7RtheZiwTxHT7mVJN0YFgCYL05C1+l0tLKyorNnz+r+++/X6upqbd0nUbMosbGxoa2tLY3H43q8I/F2e+ig4HaPzrF335mj7roCXhO+PgvycRwsWgwGg7p+AR0NdCdYTLD7gkSdfYjbWHI3C4+jwToCvV6vHm+PE9NvuDbbyLwdKkylIGFuWxdR7IgFDCnQUHiQmsUgLYj0+/06NWEymWhzc1MbGxu108ZCHgUvCmN2fJDIW8yhi8BjzBoc/A4dHCxeyhQTix+9Xq/RLz43eO7oQKBziOO6uLio8XhctzGOWyJxBH5E3xkbgiQSiUTielDShpZIzMJcCArSUYeCwaKAJjSswh8LrdluH89hwuXPXSvBr+FwqJWVlUb02gSThEo6uisFo+EkotJhrroJdVskn7btSH48NiZPjnCbvJoEkrQarG3AwnS+xmAw0IULF3T//ffr7Nmzdf9ZsND939zcbFT4N1F19Nr9I+FjcUqnEUTrPOeRLhQWcXS9Cc+vSWGv19Py8rL6/X5ji0tH1p3/v7e3V9cUsOhAscrpCe6Xia77RPHEbXD7fd4Y0WfaxmQyqeeQIpTXfJud3+MXx8jwOqOjxeka7pvTCygA8F+vF4sitvi77207mbCmRhyfWA+izXXENBmvUd6j/r7XTnTy0K1BMcrHsr4Cx8z3vu8x/+t1zrVDES0FhcTl0PmV9+gVHz6tR//0w6pyQ5BEIpG4K7Hw0hfrA3/k/JHtAROJxD7mRlBosyCbdLMIHEkWq+i3EXETJxNqkicTZ0ZnHeVmzr9fJEUGiRqjmv4u7d9uR8ydZ9Q6Wq4tMrjfTHFguxyZtiOD/Y87HNih0e/3debMGZ05c0YnT56saxBEEus8+tFoVIsKzJlnagej8RRa4sv9YcE91nfwvDhFxGPDQoWeRxcepHjiGg0WFZg6wNoKbt9oNNL6+nrdD0fCGcUngXfbTfo97k7nIHFnaoTt+kxnIYmOOf4UEtw3j62LhNJNwTV5OSIc00bo1LDjJ6bt+P5igUpe132xiMAaE0ZMjeCuF5Ia6S5RGPA68dh7fKJbI/Y7PhdimgXbS3GDQk0iMQudF13Q0198Xir5R2YikUjcjah++2frk5850O5yPucTiVmYC0GBef1EtLkzkk/SRsLD3PEYZTSpYMFAR/4dvba7wQKBzx0JHkm70yJiocK2dAYTFOaj+9/Yd0byfa1Y/NBiAgmrr+eIK1M+nA6yvLys+++/X6dPn65THbyFJGs6uIiiBQWnLLjPW1tb2t7ertttO7mJJq3jbgNrVfgYjwdrN8SUD17DggJt9p4Lb0fpvscClnSK7OzsaHNzU5cuXaoJrccgulxijQ5a+OlM4Npkm7l2uA5iPQXWOOA6tuuFfYjpJl4nvG6s+0ExKxY09DntgOG5KYhwTbfVZGBqDuspxPoRXi/RabGwsFBvJ+pzt/WF8+71xXGlu4lrk3UWfE3OMcc+kZiF3XNreuaz8o/MRCKRuBux8NIX65O/baCLL8vnfCJxOcyVoOA/8L1jgR0FJpyMMpKkslCbSUfcW15Sg4R2Ovt73HvLxNXV1ZpQm0g7Eu82RneC/3UUn9Fa6ZCAkVwxEs3t/bzbw6yaCVVV1RZ0X2d1dbXur0kmnQBOVeAOFYPBQMPhUGfPntULX/hCPfDAA3WUn+TSgoHz6NfX1xu1ATzudixIh0Tb0WtJdQqB2+Q6Bk49cBqEI9MWUgwTv+gysSDh43k9b3PIufO5WMPCjoLRaKStra1alPI6oNDj89OdQGeCxRbXrOA8xtoJFFCYwhGdKqxTwEKePnes7+DvREQnQCxMGMULj4/Hj2JBJN5MzYhiQZzLtvVNgk+Hgf91KgbdORYamKoQdzFhXzxn7iPvEz9zvEbpMooCQyLRhjKVqqKsoZBIJBJ3EzoL+sAfOZ/OhETiKjAXggKLqE2n07ougIkV6wwwAh+ty36f2925/oFrJfT7/TpC7/dc2M8ExXn+jHaaJJsouXgbo+ExbSPWEuCuC9HWzkir0xK63W59LqYuSIdb/DFlwJHlra0tbW5u6vnnn9f6+npNkAaDgU6ePKlz587p/PnzesELXqATJ05IataiMDm7ePGinnvuOV26dKkWE2y1N8G1wEB7O90ZPkZSnWrhGhgUQTzO/r7nlGTPOe+eN7syOH50TbhPtu773HYl0M5P9wHXU5sANBgMavu/z+VrMr3Ea9euC/cxugIYQWcbWeeBBSbtNIlRdjoTLIzENUlhgf+yXoFdFIPBoEGuPb4eK65v3yNRgGO9BP8b3UgUEpmywOKJXmMujkoHS9w1hOkYFhQoOLFYqfvKGhZR5EgkZqG849162WOn9b7veUnWUEgkEom7BIsPv1Dv/44L2uulmJBIXA3mQlCQmjZtEjymFzDfnFHyGME08TH5YTFHR7aZ6jAYDGryRWJO90MkX8yZ97HeOtAkzrUAFhcX6yi82xpTKNheqbn7A+tA+DPa+D0WLgq4tbVVCwAcg8XFRd1///26cOGCLly4oFOnTjWcEW6jSbEFBVf6N2nz+Du67/PT4eGx8nc85nZDTKfT+vuO2JN081/m7XM7SpJKzpvTD9wupiCYqHuXDUmN7S055lyPrN9gYci7f4xGo4YLQ1K9FqJoFNMDSK6jfZ/kNtak4E4jFKtYsDDWjmAbYm0B3z9xjbLmA8WXWPuj0+nUKRJMTWA6A+/TuHYptnlcuAYsHnU6nbr4p9vCubSYEJ0GXgN2X9Dd5O+1pT+0pdwkEjWme6o2N293KxKJRCJxTKh++2fr8c8Zaq+fAYVE4moxl4JCJHMs9BdrJ1hwICEwOWcRPe7ewEKHJrouxGhS45oIbeAxbZXlHW2OxRRj7rjJj1MG2Jc254Jzy03MWYPA5NYE12LC9vZ2TTK9ReS5c+d07tw5DYfDOkrPHQ58rkuXLml9fb2RauE2m5iNx2NJ+wSa7TR529nZqQk7ixj6+6PRqB4zjz93rLBYIDWdKrHOAttkoYfElQ4Pn5dz5PF3G+hQcFs4/3TAbG1tNRwCbYU2SeBjvQzeAxQTYtpEPJYuBToXpObWnUyhMOgQiOk8biOFCxJvFsmMW4t67CwsxeKWrCVB8Yp1PjxeMfXFKTMcIwsDHG+vBa5Xg1uYxpoLvi7HiuOSSEQsnDql6UsfzHSHRCKRuEuw8WBfl16SYkLi7kZnUrT8iaIKdfBuBHMhKDg6LqkRgWROPesPMGrr75hckFRK+8TKUXGLBya2cUcDf59iAiO6MR/c9QNMTukcoJhAN4Xba2I9mUwa9ni3NZK0WNCw3+836j2Y2Np+b0Fhd3dX/X5fKysrOn/+vO6//36dO3dOp06dUr/f1+bmpkajUV0Dwukidjm4FgFt6yaALHpI9wgJ/t7eXl0vwWPtIo9uJwUdEzifM9bIsAuCLobYbgpKPobFJCkmOQXGY8xtEdkfp594rVoMcfFORvW5priGWJchFlKMuf0+zt91u2ndp6jieySKJEwL4lamseik1yXTBuzGYBu5frkjCt0F0V0TnQdeHx471oKIBVQpsnnceD/5Z/eHwhFTizzWUWzkHETnSExNSSQidl/xQn3gGwe3uxmJRCKROAaUxcUUiBP3BHrPF93/t39BxyWdzY2gwD/+pcM95016YkE6kgyTBxN8Ew0TKxdjHAwG9W4OTHtgjQMKCowqM/rOiH4ppS40KKlBxnysibePNfFZX1+v+7K4uFifgxFlktzhcFjXD3CkdjQaNWz+0TUxHA61srKiM2fO6CUveYkefPBBnT17VsvLy9rZ2dH6+rouXbpU2/YtcozHY62vr9c1KNw3CjdO8/AYWgjhtpIWdPyqqkqj0aghVkiHdReYj++2OGXCYophMsmtLP1iEUMSc19jZWWlHkeOc4yKS4fFMX1Niin+HgUqr1emA/T7/UYBSade0B3AKL7HwWKAUwp8v0QHQxSyKGaRePs6FEk8twaFBs8570Vuu8oaD76HKfhxd4qFhYV6jcWiqvydY8AxibUifB/RNbGzs9NYV71e70gBRo8B04EsOni9WsBMJBKJRCJxb+Cj3/MabZ9Kd0Iica2YG0GBhelIzPw5SQoJGOslMMLLKLQjqb4G3Qq0tk8mE21ubmpzc/NInjgt0v6M5Da6GPwdRqK9MwCL4Lk//X6//h6juCRUbjPdCxYRogBikcJiwgMPPKAzZ87UO0NYgPCOCCy46LoQPsbgNomMotPxwfxzuyPoQLAjYmtrq06XoNtkYWGhboej6hSPKDBxzjw3bYKTybL/tQvE64z59kw1MUl1/7zmWJfD5/W1KTo5ws20AM87hQtfz/1nykusDcK2xhoIXteeh7ZUAqZBUPxy32LNAI6jRZ2YJkLxxvPpdtMpwhQI9sU/+/qsVxF3ivB5PGZum9eK01A8/h4HnofikcUqr1HW0piV8pRIJBKJROLuQ7WkLLCbuO0YPtHRA/95Ux/8+sFNWY9n3lV09pef0XGGzeZCUJDUIPp0J5gokACYQJgYMCrPqCKJEyO3rKVAgmMy4nQJEq1YWC4W8WtLiWCKBlMnaBE3cWXUNR7nvtDizig8UynY316vp1OnTum+++7T+fPndfLkyVoE4W4IdGbw1VYfgn3jNQ06OaRmLv/u7m6d5uAIP+3/JpM+jwk6t/rkNdwH1zBgW0g0Sc5Zy8FjSUHDfWIdBYoMXKuxgB+LAFIg4BpjX319rzHWAeAaiIUFKXbwPnGfJNVigtMKTJw5FrH2CPsY702fn2kbbBPrJzB1IYonnN84HlzrdIUYFP98LR/n5wF39PCxrKMQ54FCXVu9kyzKmEgkEolEIpG4FRg+3tHp9+6q88u/qZOf8flaf5GOfevS4ZO72vvNR4/1nDckKJRSvlvSH5VUSfoNSd8qaSjpJyQ9LOnDkr6xqqrnrnCemgDHLSNZuI3548zTZ+FC289JuCTVqQLcPtIOhe3t7TpSbxt03KKS5J+RehJKItqlTXpYQC+SWBLXWUX5HHE1oeZ2eY62myT1ej098MADunDhgh588EGdO3eutrmbfEVLPHPTLTLQHUD7uOG20t3gMXfNA8+j6w6Y6NK2bteD4XlwagJrRjAtY3t7u54TpkzQmcD3uG2lx9HHcWcDqenKMJk2sWb6AiP1JN8GRTHOLdd6XLNRfIpEmuuchRBZS4RCm8UUCmJ8UeDw9eM9SqLP+7JNlKDI4nPQYcQ1TfcR3URtNRWYHuVjKaBYRPC8cU0xXaeUol6vV28Z67HkPXCnpD0c17M4cW0oe1N1toumS1Xm3SYS9zjyOZxIJK4bldTZKbrwHy6p+pV3q5J05n//RU3/2Bfp0kuKqsVjEBUOrlGmxx8su25BoZRyQdIfl/TKqqq2SilvkfRNkl4p6a1VVb2plPJGSW+U9D1XOJcGg0FNHKVDEs+8eJMOE0CCkVvDRfxWVlY0HA7rPP7V1VUtLS01ovKOmtsqzWi3UyhIjHjdtvx76VAkMNEzaY5tjYX0WPiQNnFH4hlltXhg8rq9vV33c21tTS94wQv0wAMP6Ny5c1pbW5Okmmj62nQ+sE8eG5/bdRto3ScZnU6nNaEzcbVg4zQG12toczi0FQ5k8Um/vCWmhQmnjHCO/LOJMOcu7hBBsYGiA8FaHKUUTSaTej7tkjB5tgjiVBuvMzoTYvQ9unK8nrgWTIA9XrE4ZUyNIFFn+gWFoSicRReGz22BhILYzs5OvQMI1ypdD1737DNFCV5vOp3WNU5i0UgWSIz3odN+WHjT37Gg4D67rXYqOYXD65UiTnyezCuO81mcuEb88rv1yHtX9b6/+Mq0ySYS9zDyOZxIJG4EZa/opf/TuzXd2Gi8f+7Nv6Qzr/1t+uDX94/lOi/7oQ9p95NPHsu5iBtNeViUNCil7GhfhX1c0vdKet3B5z8q6W26iocnCQ9t1CT93E4vkhTpMO3ARL7b7dbkmqJCr9drRNQ3Nzc1Ho8bZJQky5hl7af128eZIDE1IqY1EI5wR3eG++Q88LidpYmoiws6+l5K0fnz5/XQQw/pvvvu07lz5+oCdbxmJKVuJ8Ucj7dFHVbm57i7nYSJvz9zEUkTe44xI9jcMYNikkms0zUk1S4IjznTGUop9dhwHvlyG/gejze5Nvn02nQNCtaDYEFFRu45LpEoR5Eh1hgwSY7kP56PUXWT4cXFxZpUWxRg21g8kespCirsB+/NKJLE2g+8T5nKQCHO7olYm4FjxHQoug8kNXZtcFv98vOEaSO+X/iKa5FC4B2CY3sWJ64BVaUqa20kEol95HM4kUhcE87/QqW1Ry9KU+2LCTHVdrqnpXd/SC+79IAk6aO/77TG913736ZLlzp68T97VnufevboNY4B1y0oVFX1iVLKD0r6qKQtST9XVdXPlVLur6rqiYNjniil3Helc7WRO9ruYxE1E2ZGmiNBdwrFYDDQcDjU8vKy+v1+TT5tzTc5dT5/Ww67QTJOcYMpESTKMV899pcg6XREnZFSH08SZzLKfO9SSl2F//Tp0/VrdXW1tpD7XBYUSASjXd5ElikmTHlgNN3/mjCyKKX/tVPB5DZGouPY+Dysl+GINMUjFtSjyBRrT/garJPAgn0cG/5Ouz8dHG1bFNKa73FjfYDYzpju0lZvgetpVl5/PDamMJAgcy17Dn28BZho949pMSy4yOKXvB/oeol1ESwIuK0WE9hHjynFEN6bFtjimnQ/WZ+BgiEFK9auoLjBdTHPOM5nceLasHDunLY/46FMd0gk7nHkcziRSFwtFkdFax/Y//nEu5/R3nvef9nj956/KD1/UZJ09kWv0ejcgqaL0vOvuHK65Yn3FS1MpO76nqb/9b3H0fxW3EjKwylJr5f0YknPS/qnpZQ/fA3ff4OkN0iqt2mTDguuMUJOMUE6jBibgHDrOJPkfr+vwWCg5eVlra2tHbFSu26Cdx2IRe5IxihwmJg4T5vEn6SJokKMPhtur8/ndAEWh2Pf2/K5fX2TfWm/dsGJEyd06tQpnTx5UqurqxoOh3W/SWrjNoPb29uN4pRR5GE7YnFMpjFYPKCYwEg4hQCOdayhYNJuIYHpA1wLB2uqfnEeTBJ9DQpHLNbH+WRfKFh4XjhOk8nkyFrxXHgO3b6YesBrcJ0xhSamEfi4mC7ia7BvdNv4Gh5T3jMUebze3G4KA23OCa4hjw3H0GPO67FGRRtpZ1oHHShcG21pRv5s1u8UC9rWS6fTqUU0CkHzjGN9Fmt4M5p4V6LT72v7VQ/pQ1/TvfLBiUTirkY+hxOJxNWgs100+GTR6R/+BUm65p0W+v/yl9SX1Fld1fr3fsYVBYUHfuqDNyXFIeJGUh5+t6QPVVX1tCSVUv65pNdKerKU8sCBEvuApKfavlxV1ZslvVmS1tbWKhMEW+tN2ExKSexIMkyCSVSXlpa0vLys1dXVmkwPBoNG/rtrJpicugJ+jJZLh1Fyt8U2etvJTZC4tR6jz9GNEFMlfO6lpaVa+GC0FmNWk9eqqjQcDmvbv8+5tLSkwWCgM2fO6Ny5czpx4oSWl5drMYX1GlxokNHf7e3tWmTZ3d2tt7p0RNr9NBylZq6+SRlFGKLb7R7ZuYHCAp0QjNY7zYDkt5TSiK7T6h/rYESrPKPn/r4dICaVi4uLdX0Pj8HGxkZdDNJrM6aSxPaXUup6ENxthM4K3wMxfYYiBtMZOA+Mvvt3Cg8UeSgEeAxjwcW9vb3GWmPEn/PJGgROyfFxBtNA/H2+CP/OmhW+n9wO94FpGrwHOKc8xvetnx18lrj9dJjMEvHmEMf3LC6nc1uLq8Qnv/3VWv+0+RecEonELUE+hxOJxBXx0M9va+mtv3rD55mur+vFf+7tVzxu9yakN7ThRgSFj0r6wlLKUPv2ri+T9CuSNiV9i6Q3Hfz701dzskg82yLW0mEElpZkRjMXFxdrd4IL45n0OEI+Ho+1ublZE6ZZFmiSWYsWJh39fr9hs3beOQtLUghhvjpzzkk62de2VI4YvWYRR0d6V1dXtbCwoMFg0Ch06b55HFj/wAR+fX1d6+vrtVPC7eB8xCr/MS2EEWoSUYJj7HljjYQouPj6JKBMjTCBj06CuGZIYjnWTNuI8+Pxch2IyWRSj5HFB9rqY1qMP/Oa8BjGteZ+cKw5P06x8DGxxoHbSmGE8+f2uG9uA50DbakvTCdgmlHsi4VAinR0wJi8x/XiPvKcvI+964ukehcHC3u+B3j/c61Q1GNtCApXfn74mj4+ukTmHMf6LE5cHmVxUU9852u0db5SNf81OxOJxK1BPofvArz4Hz2hp153Xs+9KjWdxPGh92xHD7/lQEt86hntHRfJv0ViwdXgRmoovKOU8pOSflXSrqRf0766uiLpLaWUb9f+A/YbruJcjer+jizGCCYLuzE6689MMBzlJ5GWDm3Sts4z0svq+VKTSEeiyFxxkhdfL9ZQ8LVNstrqJ5BER8Jl+zqLU0qqx4z2d0dh+XKUl7Z5plSYrHpLRwsXJJieG48nC92RUDO1IJIxOkxIYD2OJowUJHxdXoPz4p+5LmKuPSP/bjfdESSXJOzuq7/LGg5M42Cf47jY0RELC8bUGrbBa4Rrj+IF7xuvD6Z+cH59bs57vI9Yv4AChp0AJO9c3/4eHRSsacD1yzSMuNbZX99HXLMeV6ZAMcWE49HmKmBKBtdzTGehANEm7swrjvNZnLgKlI5GF6r9rSITiURC+Ry+W7D32IfU/dz7b3czEnc4FsZFp37r8Pf+87vae/Sx29egW4Ab2uWhqqq/JOkvhbcn2ldmrxqO/NLmzzxtwwSMRFQ6LDBn4mZC4tQBRm1JCE2++/1+XYiOhD4SQ7eBAgUj0Cah0b5PwcDfp70+jGmjDYyWMl9/cXGxtsCbdA0Gg7r/bYKC2+wxdbu8W8Hm5ma99Z77apiAdrvdRvtIoDlPkYi5XR4fj6FJpsm6nSOGSSXdIBacSMpjXrzHUlIdOWfEmZF2ihUxvUZSHXE3WWYEnuvS16SbxW3iPMRdREiwKSjwHiBJpyWfItLi4uIRZ0ksvuhovKP1bJ/Xhh0b7gfTECjYcFcWC1Lc/aMtbcf983xGZ46LqTotQVLdFu/sQRGC7hy23+PC+yHWa/CajgU3PW5+3Qk4rmdxIpFIJK4P+Ry+O7A4mWpha0F7gxSNE9eGha2iMpV6zxad/Ie/cLubc0txo9tGHhtMBvxvJDMx2s/ijcyTtk2ax0mHEc7xeKzRaKTpdFq7GFwUkqQ1kgmTG5OpWN3fooSJS3VQ74AklZFpFkeMKRyubWCi7e0WYyoCiXUkrv1+X2tra1pZWamFFVbnNzlbX1/Xs88+q6eeekrPPvustra26kix22Oy2u/368J7HBPa4n0sSaOJqMeHKQmOhLtmxsbGRl0jweeK5JupHlLTTWCyzQj/ZDLReDyu11O3222sLa4hRvr9vkWWWQKTiavJtNemz+V6Hq5j4bVp4s7ffQ2LX3SQVFVVk3i3wfM9GAzqMfJ3Y9qDhRe7JSwo0KnBYqgURki86Q7ylplbW1tHUiNi6gkFLO4IYrBmgufAa9WuIp/Hc8X1RFdBdOuwPawd4jGgCOh15jWZSCQSiUTi3sDg//wlPfJfH9Z7v+v87W5K4g7DI//bR7T7icdvdzNuC+ZGUJAOI/6s5G/LuMmAiYCJt8mPCQQdANKhEOHo9+bmpsbjcSOP3OczmfM1HP2M1nxa4KWjRKgcFH6MDgbayt3PmL/OfH7pkHCPRiNtbW01CC8JoyO6vV6vJrDLy8saDofqdrsNsri5uannn39en/rUp3Tp0iVdunRJGxsbGo1GtdDBvHS20ddzP5hnTyLOnQ7aSBthQuox83UpTvh6JK0mlCaVrFVhgmliaFeKz729vd3YpYL98nphmgQRd7SwmODrWUTpdruNLUtj8cB4blr2SbrbouQWeJaWlmphzOki/pepMEy7aNtpIqa/+PruI6/nMZtMJtrY2GhsL9pWC8R9i9tM+n3fi677YXHPYgLFCp7b52FaiotCLi4uajgc1ulPFMj8Hd6Tbpf775fXcCIhSQuvfJk+8vqzmi7eEbU1EolEInEd2PvY43rF35be/0cfSKdCYiZe8pYtLX3y+fr3vSdba67eE5gLQSFGMWOetNS0J8dihhQaGLEkCZ5MJvWL+eAsoMios//lz4xe0hXB3Rmkw631SHx9PX+f579crYUYbWYNAtY6cJ+8y4MFhaWlpdoabgLI1/r6ep1mQCEj5udzjiisxHx5SY33KUh4bDyfbpcJqfvsqvueS3/HbWNke1aag3+OxQUZXed5Oc9uP4kynQVtiCkfdolE+z7HjkUtmcbA9U/ngkEhxa4Ru17s9ohiAFNNPGasdUFHAmtD0G3A9eudUph242MJzkvshz+3+OI2uj0unsq+cAws5lBctAPF426xxevQ92asD0J3FAWura2t1vlO3JuYDpY0vi/FhEQikbibUe1sa/eDH9b5X7pPz3z6Yj7373F0dorOvfOosLT43o9q97nnbkOL5g9zISgYJOtMFZAOiRG3MWRutz8zgY65+qw+L+mIFbqNKJL8MJJrwsVq9MPhUIuLizUxo0OCBfAi+aazgpZ627Jt9fYuBoyq0lXhcej1ehoOh3W6QyRoFy9e1KVLl2q3xsbGRk2emPLBtrH/vi4Jt/vpY9zevb09LS8vN8aOP0tqRK1JLi0qLCwsNCL1XBMcO7bNzgOmz3C3iFgIkLUIvLZiLQDWzWhbJ355vr3TiAk/2+f5sKDgvlggsvgRo/GcBzoGHKEfj8e1O4FpNhTaYnqDdJgOFEUlknYKeXZBOBWkzb0SxyfWIIlpC55vCyM+v1MOmPri77lNdBRIh/c2xRy2kfU3mGbE4qS+dqY8JBKJRCJxb2Lwf/6STi18gZ4edrS7kk6FewaV1L2EovRjafUtbz+yq8KdUWXr1mAuBAUWkIvV9k1omE/PHQgceXTtBBZkdNTTBI3Em0UUd3d3j0RXWdMhttXCgKPQFhNsA3fhRLoTHPmO7gVek1XynSYRc/+Zw+6UCQsq/X5fp0+f1tmzZ3X69GmtrKxoOp3WtQkuXbqkZ555RhcvXtT6+nqDNDFFg1Z4j7XJr0UOE1du12jrv9tMEkc3CcfYJJBFAmOKBF0aHjfXvTCZNrjrANcTxQjuAuE+xvx8t8kijdcdj6E44r55bbluhc9PN0CbGOOx8BzYDUDBg+2xnd81Iuw4oavCx/q+8PXdXjox6GrgOHpt9Xq9OgXB68X3AEU5zqfPQ6eK7xMKe25jr9er+zIajTQajSSpFmWYMmR4/Xo9uq0ef7qa/D2+73O4/xYeo9MjkUgkEonEvYflf/YOrb37pXr0j5293U1J3CIsbBe98H98hzRNyeBqMReCQix25z/827baiySLhKfX62kwGOjEiRNaXV1Vt9utySIL67GwXZs9nzswkDyagFBQ8KuqqjrS32bRJpFjXrwjpbEIn3SYOiHtk6CVlZWaaNq5wJoPw+FQZ8+e1ZkzZ7S2tiZJNUF79tln9fTTT9dkbXNzsxYWLADQ3m/izaKWHj9HkF2LgqkJGxsbdR0GCinRCcC551jR6cCdAEzyWOTRx3kHC84RSbPH1nMXazIwxSCmqHhd7e3tNcQXE2gKFR4zFhX0GmOKh68ZC4DGIookzhSNbOO3WDQajbS+vq7t7e063cKFGpkSweu40CfvO/bD7aDDxy4Ij5WFO9b+8Bi6zbxHLUZxrAaDQS3Y7Ozs6OLFi3UKjkU01n6Ia8dpEXaHrKysaDAY1N/jd5hywVolXP8WF2JR2ERCkspvfkCv+Fv36dHvvKBqMaNViUQicS9g+sGP6hU/uB/keOJrXqSLL8vn/92IF/+LbfXe90lpOtVuignXhLkQFCQ1SI10SCxNPEjOSQy4TaRdCiZ0Pp+3szOh5fkoYMQq+3Q1MKrtF6OftoybnJLcctcGklDpsDZD3CLQY8CUCUa8TYDcH+/qsLq6quFwqIWFBY3HY62vr+vSpUv1v6PRqG6nhQGKILEIpQko3RSM3Jq4xXQVCgOxvkC0xcd0AqYQ0J3gc5scx3oPrA1AG38Ueeg24FhKh8TdFnwLOL6+11Gs3cBaE6yHwPlzW5n20lagkWuX6TsxrWdra0uj0ahOW/F3HfW38EDxw2KC591t93djmgVFPvadKQdx7iPxZ90GzrPH2uPl4qMWjjqdTt0Hto1FPy0GWPyJKQ68t9kXrweLc3RGMeUqHQoJonPmtC69+gGp5B+TiUQica+g2tmuq/efe+cZLX9yWH/2zCsXNDmbwYc7ESffUzR8+nDueu99XLtPfPI2tujOxVwICjFyKKkhJETCyaJxtshbTHDEU1JNAE06KFC05Xrz/CZgvk4UNSQ10g8cvY55/my/SSOLKTLXP1rhac22hdvk2seZQA6HQ504cUIrKyu1Y8K7OVhQsBvBZNKRWLc5jjdJ/HQ6rYksybIJdxRCpEOxhKKNyW2sg8CUADoTLAowFYTCD9eO55eReIsnHisfQxJMwYTbCZrE2gpPQu3rsQ88t1NBOE5cW24nUx04dryO1Nz1wnUlXAdja2tLOzs7jSKQfvF83AmB94T77fml6NFW1ySmDNDlEWtuRHLvdeLaCRTauDUq0zvcLvfD90AUwnyPxLok7AuFy5gS0/Z5OhQSxN75U3r8S47+35FIJBKJewS/9Bsa4tfdwRfqYulIRZqcmkr5X8TcYnGjaGFyOEH3veM5Td/1nvr3DCFdP+ZCUJCOFssjkZZUE4e2gnExD9t52kwjmFVs0L/HKC5TEmxjl1QTMl/fx1+6dElbW1uN2ghMR6D7IJIUCgrcgpEEt9/v15F1CwqSamv76uqqTp8+rX6/L0l1Bf6nn35azz//fB3FdrqDHQusjcA8e9vbd3Z2apLGn6XDrf+41aCkmiia+Pr8tNBbDPA4GRQmHLXmNogmsdER4DXkOXSFfqa6SDqSisCdAex0scPD4kncipFE2GuCxNXfi4VB2T6mt1xuFwP30W2jgHXx4sXG9pDD4VDD4bAWFWL9Cc8n7wkKIVEMoFMnpnZYbBmNRkfWbLx/YxoR58Jihet82G1gkTA6YFzHwWKC58uODM8Hx4/PFrpdotjA4pFMmUkkEok7Fm1mmiQ8icSxYe2fvF1rkspSVx/4/s/VlOlwea/delzGQPjCn91S57/8ev17hoyOD3MjKMSIIAk7//CnK4GFFU1gTfSYC826Cawoz2gyt/Wz5Tzma7O4nqQG2TJZM5kiGTR5dVvoejBpM+HjdS2SMK2CKQqDwUAnT57UmTNndObMGQ0GA0mqbeNbW1u6dOlSvT2k881d8G40GjVqEjifnBFgj53HXFKDJMeUAb5vom6xxpF+R6i5e4DHxZ/Rmk4RJhZ2dHtYwHE8Hjd2stjd3a3HMRYndP+5LphWsbe3d2Q3A6YvkJjareFaFFwrdKZQzCBR91iYiLOmg8fWYsnFixe1sbEh6bC+ht05bp/TPSwieOxNklmbJPbJQk6sWRLnnqlHnk/fAxY16ARhwUhJjbQb34d2JXALWLdrY2OjbhdrSvie5drhPHMMLDgYFFB8n0axJ5FIJO5E9D/V0Yv+wWP173svul+PffPybWxRInF3otrZ1iM/8JjUOQjO9Ht69LsuqFq4whcTx4r4zCOmz1+8nN6QuAHMjaAgNe3g0bLMgn4WEUzAGL2NxfJMNE2eSB59TZ5fUoPIxXQMuihoH9/a2mqQqlilP9ZNIMmOOfwmUxQ+JDUiqyZTg8GgLr4n7UeuTXztRLCV3MICiTYdA3QEmPyxXkR0ArRZw6NVnyTPpM7Re0eUOUacb48PUxpot+cOGfweI/EmsKyHQLs7o/QEU1CcvuB16d0sfD0LRG1g1DumDpCQR6GM+f9eF3SOcDtFp/uwHoGP43ap7hNFJNbGcBvdzphiwjQQH+u2c43QmcG5pIPD69nts+OmbX7tEvGxUrN2CufOa4uFPT2H3FrSaCvayDWdKQ+JROKOQyU98H9VWtyaaml9or0nn6o/Wtjd1UP/7iX6xO9c1HQp/7ROJI4Te08/Xf9cFhf14FvPH3EpfPILlrSzdgf/bYHnyzwiPvMStwZzIyiQoNJ+HXPkLQ6wUB1JuHRIihwFd8oCUyRcZ8B53zHv2tdzG9xGk0A7Gywm2KrNXSlicTc6Exi5ZVoAC+rR6cBUDJM2iwmO6FZVVUdvO52O1tfX610dtra2tLm52diSj2Sf1n7m15N4siaCx5m/e6za6gFYUIhbAVIAisIEXQQk3CSsbddwugcdCLyW207CGCPxbbUq2ooQUrjiGHAsZkXNfYwFJq8d7o5hdDqdmhC7fy5aSEHB63J3d7eureB2sqilHQJMx3DbGJ3nvUAnCPvA9KOYPkGXCcUbih527ngMfB3ey3E7Ut/TFgbZ/rgWKVowxYGpO7NELYo6iUQiMa/ofaqjDoqSr/3792jvueeOHLf3zLPq/cxzGr7si7R1n7TXz2dcInEzUO3uqvdvfvnI+6vnv0hb97UHoe4UzHq+JO5dzJWgwGgtQULH6vsWBnq9XoOAOHprcj4cDuvzOqJrgmYiT5u67f+MIJPQm7Rtbm7WJMftcN43UxlY9M+EiUTJ5N3b3VkcoUASK9ovLS1peXlZy8vLGgwGddtt6a6qShsbG3r++efrwn3eYnA0GtWE1MTVWw9evHixJp0xpYQkn+B8MerPqDrTNfw+twK1oCE100voorCI0u/3j0SWuRXi+vp6Y1ePuJ5s/XdfnMvv85mM+zivLxN9k2ATdQs+LFJIIj7LBeHP6bxgKgwJu4UECj7D4VCDwUDLy8u128PE2a4U31d0wPg+oDPG68CiBXfyYHpKm2uIbed95rGMu4L43mLRTH+HYoNdC2yX58svrkW3088Tn4PbUEYRxGCfuDba5ixxj4P8K5dH4nYCa/HFP/zBRnXyy254VlU6/zd/Qc9+6xfp2d+mXMeJxC3E6R/+xdvdhBtGbqiYiJgLQcF/xEuHpJGWZRKImO++tLRUR2hNSm3PXl5e1nA4rPPinR4xGAwaUVsTEW4lx8iuCRB/d40CE7LBYKCVlZWaSLn4IdMcer1ewy5uS76kugid22KibSLFSDn71u/363FgysL29najGOPW1ladd2/Cu7i42CD64/G4EflvK4q3tbVV98nijMfMxI/kmTUtPB4knybKJLZ0D1h4oLMkWtpd68HXMeH2nHPHA9rnfc1+v99wnbCeRZwPFlRk9Jq7GMS0HRaStFhAQksnjaS6DdzBwGPvvlpM8pry2rSQwJ0j2IboMCAht9vG/bOoZAHPwgtJN50+vr9YrNNE3uvFwoXvH9dN8H3tz2NxToo3FA4iLH753rGYQHeCj4vuFjpU6KRIJGq861G9/IOrkqRP/Hefro2Hc30kbh/OvVM6/TOPSpJ2n3/+mr9/9ifepdPveake+4PDKx+cSCQSicQMzIWgYDCCL6kmk0wVIMGxmBAL7UnNWgQm29H6zvQF5o6bUNL2TEs+q7+T6MZaAbEIXSxQx6htrCngz5nHb9BpwYi9SZSJtUUNk0xHuB0xp2DB3HQWBnQk20ScUWsSMhPt7e3tmhx7LFwccHd3t1GI0WPBvHamYHj+KSIxis00BxNO1plgGgEJP7fKpOXf57AgwVSPGDn3epDUiNp7PGjdj5HwOH5MgaEDxmvP7WUtB6971vKwKEQyTicHf+b69z1jwcKkmilFXpsUEyg+UUTyOHgumMoQhTk7SDwWdAe0pb/4OH/Pzwq2l6lEvNd8Pt8rTHNpc94w3SqRkPYtrLZ5PvCfLmrn3f3b3KLEvYzex56/IdvxdDTSwvs/rof/1YuPsVU3B596Pp/FiUQiMa+YG0HBpMIkqc0yTsEh7tggHZIkSXUk3yTUEXmS4EgmHDn1i5FLnj/avZmeYMJqAk1CQjHBAkEk78xhp62+rV90J5gkWcxgmoNfjtR6XLnrgsenqqpGRDoKDxZIPF+Ojseosgm4x4LbUzpabkcF6zXEVBNa6k2IWcMgvjxfXi9OV/B3KNT4/G6L22uXhT9n7QgWeyR8Xbc7imPS0foSJMdsQ7Tdc/499xZJPA50ZrAuA1M+WAzU65HpJXZtsF4CnUGxzgXTAXgdCj1si8eA/aEgEe8v1qLwK46b2xDXR0zf4Lqg26StICPnMh0KiVmofu035+c/0MQ9ieOwHe8986wW3/rsMZzp5qJUo9vdhEQikUjMwNz8PcQoZqylQNt7LMjml8mU0wJc2JD1FUyYSTBITh3Fv3jxYk28TSq4Q4DJXtzezkLBZDKpt2QkifPuA24n60GQ5LBmQtwJoNfraXl5WWtra42oPd0Rm5ubunjxYh1x3t7ergszsnI/++LxsVBjckayThcDSTBz7m1L59hGki01c+tZt4KiECP43KWBbgiTe4o+FiEsuvh6nhsWJzTs3KDrgH2kEETS7jXCAop0wsRjYiQ8/s42RJHGKSh05dCZ4HXt8eL94/FkX9weugbc91gk0ueJtRjoWOHOKZ5f7r5iASsWF41FSqOgRHHBIhfHNtYm8Rx73TsNykIJUxuYVhHFHAofiUQikUgkEolE4ijmQlAopdT1A6RDy7T/8Kd7gVtGsiI+o8Mm3a4xYEJkEmUHAtMc1tfXtb6+XqcKTCaTRr423Qa04PvznZ0dbWxsNGznJD3+fswFp6DA6DldEIzSe1cH7nTgMXv++ecbbgT3hZFrn78t4isd3UaP2yO67+4Xaw5Ekk4xwe33eXxOj5HHkc4UFuH0574eRQEXl2QfIqEnMY+CgXd0iIUbSTAtYMwSFNxf7j4Sx5p9I6E1KEjQacJzc779udey+0BHAd0xXIe+ByzG+GV3UHTNUJjg7hAWMEzULRp43Dx/cUyZMhHXG8UDv8f2M2XG7bBg6HGzuMI6Jz6Oz4ooRPn6FiDc1kQikUgkEolEItGOK+5bUkr54VLKU6WUd+O906WUny+lvP/g31P47HtLKY+VUh4tpXzF1TQi5nVzf3oLCiSIsVicv1dKUbfbbeyWQPJBGzQJhMk3SRpJL630bq9Jrm3nLIbHqL9BcikdRnRJqng9pyCwWB+juTH33+12O0w03a9Y6DDayt0mklwe5+vTxs96Ap4nR8ZZaNBttguBaRYxSm23Qsyrd18YjTeJJpGP12a6BslhJNic59h/r0X/S8HH48c0EUmNLTjpSol1OaLwYHC+PDccd0ffff7o4okpGO4P3QkUfGJ6A8fUa5Nwu3h+jqHvWR/LuiLsT1xzFCd8fjpc2Ee+4jrxKwpIdCS1FV6NYuY8pTzcimdxIpFIJGYjn8OJRCJxFFezEeqPSPrK8N4bJb21qqpHJL314HeVUl4p6ZskvergO3+nlNJejj02pIX0k5wwosz0CBN6H2dLOK3WPi9t9m3iRXQIMMe8zbrP4o5ML5hV4O1gjBpCAdsYSSD7TQLmaL2kRh9IumMaQiRN0WZvRHGHzgOmZkQC5rbSft6Wx886Buwb6xQQtM+bJLKGQSS/zMn39WaJBW21Fyi6cAw8liT/HBeKCTE9guPo63oO2sSEmM/vceL345r1WHD+IqJTg+uMNROiOOJjozjRNp4UKeI64k4LdAxQUIgFHnnfxO9E8YtpMF4nbLPPx7XLNAve53zNEX5Et+BZnEgkEomZ+BHlcziRSCQauGLKQ1VV/6mU8nB4+/WSXnfw849Kepuk7zl4/8erqppI+lAp5TFJr5F02U1XGT10LQNJRyLzLMbICKaP964P3vnAtu+qquqtE0myGc10BJXk0i+TOalZRI454cznd59iATmSJZNziiJtY9IWoXa/pWZV/Oiy4PaJrCFAIhlJIs9Pous2W2CJhNXiCne0IOHz2Ewmk8Yc9nq9RkE+X9sEkTsDUNxYWlpSr9erd7ggQWYf/N1ITFm/ga4Kt8FuCpJOEv2YXsA0B0fG6Y5pGyv2h+NFss4tKx3pr6qqURuAbhfC7TTaBAUKPlyT3MIyigdMXVlaWqrHhfUUeM04f3QOeSw4NxRr7FjhuoppEBQLmfKzu7t7ZIcPrvl4jzH9gWLOvOBWPIsTiUQiMRv5HE4kEomjuN4aCvdXVfWEJFVV9UQp5b6D9y9IejuO+/jBe1eEiblrG5hEuGYCxQRuO2jCs7S0pOXlZa2ururkyZNHCsSRaJs0Rku/QRHAxIL2bIsJjkIzr9/fZ665yRAj8M4vp8vB33dfLZRQeGD/TXrdls3NzYYzIW49SRJtUh7h9pFQdbvdut8mtG0RcLeLufgWOkz27Exgvygk8Nq+BtMVvF2mX0tLS0es64YFH68nv8eaD22uBB/HXHtGzD1+dF74Wia2fp/FJttcIXSssO9tiA4F1wbgWPP8JMuSGukvrPkQ0wd8HW4nGte0pHpdMLIfXQNME/F64n3sa0VXhl8UbpiWQfHEIo5rhlhoaduyk2JKrG1BgcFiS6/X02g019XFj/1ZnEgkEolrQj6HE4nEPY3jLsrYFs5r9QyXUt4g6Q2SalLIgndSk9yaqLo2Aslep9PRcDisX91ut0FOTDiY789CeyYPS0tLjSgw0wra8rpJ1i9XDd6k0RFSvuf++fsUO0gGTcS4bSB3gmCOOgUO99NjsLu7OzPVIoLjb8yqfG8yynQHHx9TBRgRZ1Q+ukP8XiTfTmmxqMSou881Ho9rUkxS6fllW3wdttm5/u6bCWxMP2mz9Js4R3GjbcxY6yFG8yW1kmyOSUy/cR9MlCn+kPTTkRALWDINwPce3TY+P+8luj2YysGaJRanPO90f1DciQ6aWBeDv3tde+3T7cB/ec+2iTZRIKIj6g7FdT2L+xrezDYlEonEvYR8DicSiXsC1ysoPFlKeeBAiX1A0lMH739c0kM47kFJj7edoKqqN0t6syQNBoOKBIYRbP/bZi+nLdypDr1eT51Op0GM7H4gEaNg0FbkjaQ55nWToFEMCP2rv0shgmkBvg7rCvj8HAtGdVkvIO48YELL3yl6kGxFe30kYm19aXNzsI9tRSNjnYKYCuLzx+MMuwN8fhJSt5tRd4tMJKqcs+hKYboFLfRRaIqiBMeO7ad9nuPKlIyY/uLPOV9cdxwn1sCI80ixgDUp/L3orKA7wQQ/zkNb4UTOO+sPsN9M0WAaiQl6rOkRaxbwmrwHuLZie2Mf+V3WQ6Fo5Wv5WK7neUp3uAyO9Vm8Vk7PVdGIRCKRuAOQz+FEInFP42qKMrbhX0j6loOfv0XST+P9byql9EopL5b0iKRfupoTmhCYOMRIJMmk1Cxg6NoJvV6vtmE7Srq9va319fWGhd2I9msSiEjk+XnMCbe9muSO0XJ/hySWUVo6CiKhZjts8fcYjMfjujbEaDQ6UvWfogKLGJLYRSdHWzQ8FhUkKCa01WTgzhcm6LSs011Bezzb7O94fhnR9/dIbCkgkfyzhkR0GVAciIX6KIK4LXZ+2PVBoupxZT/4imIAx4CRdpNazlUUKjgObX1mf2YJU16HLOhJESCmZBgUQaKzxJ9ZmPGatwjBwonRwRLFPdZQoKsmimbRARMLg7JtnIv4TKCYMCv9ZI5w7M/iRCKRSFwT8jmcSCTuaVzRoVBK+THtF5s5W0r5uKS/JOlNkt5SSvl2SR+V9A2SVFXVb5ZS3iLptyTtSvrOqqpm5wIcwGSPef0WEPwymbYt2wTJx9kGLx1GmLkPvXToRDBJdF2DSOL9/kH/W3OxSUIYwSa53N3dbWxr6SJxfu3u7mo0Gmlzc7MucMdcf7dlaWlJw+GwrhtQStH29rY2Nze1tbV1JC2A6Rx0JsRILAUDEzFa82NkN0bAY768r1FVVWPrPjoIIuggMVG2YEIxhYKOSWSsCeHz0WLPtASSR5+bYgEdACbRnqsoPJgo+1xtY+K1QrIdrfUscBgFFNbKKAf1K/xd3ycUrHyc59XX9zryPUCxjqkJUSRjUVMLHIzytwkprl9AgYYuB7plolsojiMFHLop6Gpg7RLX4+C66XQ6DceO10Kcu1kpP23v3y7cimdxIpFIJGYjn8OJRCJxFFezy8M3z/joy2Yc//2Svv9aGsEIpkmMyYPJtMUE58Wb8HQ6HQ0Gg8bnLM5G67qkmmi6WN4sEhjTIJiD7WOkQxIjHdYXsJDAVAcKIAsLC9rZ2anFBH5GEiftixWDwUDLy8saDAY1Kdvc3KyFCJM9R+6Z0z9LLGGb+fssYsyif74ex5NigOeIQoHU3M2DpJOWd6ZDtLUl5uZLUq/Xqz8jMacDgGuM807yagLp6zKSz3QKX99tjPZ42u3jGqdAQIEi1iuI6Qg8j88daw7QJeO5odDjvnIePUdxHZFoe33GuWsrxmiBx9dmm6LbJaYYtPWV819VVT2/dMy01WLg+Po5EIUErkleI6atzAtuxbM4kUgkErORz+FEIpE4iuMuynjdiMSOOfMWC1hvgOSc5J2Er61Im0kSCU2MQsYIp48x6SNJM2mK2+vF2glOzWAE3+4C6dCRIR2SdNv8/fL17L6YTCYNwsOc9hglbosGxzSQSD4pGrC/fo+59/6ZVnRa3j2uPM7HtrlBZgk9LsJHAuz2tBFAk2DOa7S4O3rva3i9MSUgRuYjIZ7V3khcYz0Nno9tmgWuWb54TiMS+jiOs1wGcd3OunZ0GXAeovARx47XikKLz8N71WABSLozYp0OrtO2PnJOopgQhZNEIpFIJBKJRCLRjrkRFKQmCTeZ7vf7tZuAuc8mHyT9s3K624icf46WdEl12oHbw5QFRuJJqEnS7KxgvQe31cczwu6dC5aWlho59n7fDgxHaGlPZ/9IUFko8nJRV/Y/iiFMkZiV/8+0Dp/PYg63e4w2dpJF9qFtK0uf19d3jr9FJ38WnQkclyhmkFgynYV9iwQ3Xodugkja24hoJK7+1/NI8SLOR0QUi6LDgmkjTKOhKMYx5fhQHIhuDrff3+U4RicK359F0N2+KAoaTmG4nDDg9eD2xDoLsehjXB9RZKTgxbYkEolEIpFIJBKJJuZCUDB5ju4Ebqm3tbXViHr2ej0tLS2p1+vVWzKaQJBoW3BwaoI/ozhBJwNTHUi4vA2hz+nij3ZDeK96py0sLy/XjgFJdX0En28ymTSOZ8pGdZDOMRwONRgM6ms5jYAFHKNNvK14oseFxDS6DiLBZpFFkipGjn1Ok2FJdXE/FvaLqQWx6B1FhrY28nfXR4ipAyx6yWt6jA1a+NkPEtpI4C2MMC3B68B1Fnj+KOaQrLMvFGn4Xa5Ft51pN55fO1ScnhEFgW63Wx8bybWPizUToujBMeWa4PppI+tx3pgm4flhwVOvQxZnpZjntbW9vd2oA0GBibVSKHoYFCw4h1xrbQ6QRCKRSCQSiUQi0Y65ERRIVGL1+dFo1BAIvNuDHQwu1OaouK3e3W63Pi8LsjHSzSh6tLf7nC4uKB0KADFqzxQNX9fnNOGONnNuhek0CIoWFkt8rViTgIX2pKNigtMDTOgYcSeBI+F0agXdGSaeFDGkfRJmscO/Mx3BRJc5+e6TdFirgkQ0plkYjDL7OBL/mPrQlmIQo9hR6PB5LBTRSk8nANeBX3RieM3FNc6Ui+ik8RwbFGkolHkNx3QeEnqS8dhvtofR/raUgygyxXSReBzFBfaB91R0o9DpEwUVfocCQRSD6B5im6LDIoJ95dxRhEkkEolEIpFIJBKzMReCgtTMyTe5iRFypiK4roCjwzFq7+0FHcG20EBCHwUBEyEWNWQthpgP73Y7uusifhQyTIB8bMyX9/sx8m7RhPZrbpEXySfbwmsxDSOSZ14/ph64n23nZ5+iAMOaCBQS/KJTg9ewS8XkvC3vPxJjHhOPj/0kKY01D+hK4bF0PvB4zxHXKK8To91sE9McokjC73CryLhW29I7aNmP8+p5aXNKuD8cE46vx4trIvZ31u9tqRKcG6+PWa4AFgyNbXLf7E6geMAUizi2bfMfBYd0JSQSiUQikUgkEleHuRAU+Ic/86lJ1khK7U6waLC3t6etra2aUNC5UFX7W8uZVLE4XLRJuy10O9jBQOdEW6E7p19YVChlf5s/2rZJVH0tR7an02ltW/fODnRtuMBhjJpLhznnjPDyeyT1BtvA342YlhAt8BYAHOmmiyHOlwmbBQN/zqg+o/2+TluUnWIGnQ2MLkfnAQUT9o0pMUyLsLjDsZxFQGNqSXQNtK3zth0JuJNCrAsiNesfUOTwtXxsTBVgtD0SeI5FXNMxVaNNHPCaiIIC56NtnLge28SE6EigeNLtdhvr3Du+8BnSlvpCsYjXjZ/NEiESiUQikUgkEonEUcyFoCCpUWjRxJzRWke2l5aWtLy8rF6vV4sJFy9erF0CFhN6vZ6qar9AoG343HLQv/t70mFe+9bWVv0dkzSmYZB8WgCQ1HAVOALrY5gL7mvRreDtMV0zwYSbEe3JZNIgU7MKxllIGI/HNYFyOkZsk9Qkge4n28jIfiSMMY3E5JRwmgPTEpiD7/axkCAj0xZ4fA2KEhYgYu2Btmuxzey3P/M6pLODokV0RkTy6TZxHvg53QIkzLHdTPehAMWxpnOAaRieI69fn9drymNrB44FsuiqYX+9DgyuSQoLFC7cFs4bnR2+T7jW+IriQLynKBBG9wIRxSdem6IYHSlc72xDIpFIJBKJRCKRaGJuBAWDkVKT4MFg0HAHkKxMJhONx+PGFpN0CDgVIhINEhXXN2CqgyPGzvGPZDm6KkhUeH5GyJkWQEHA37VIIqkmYdx+MdZIYDSeUVY6BUwWvSUlI7SRKLFv8bMYDZdUp5dE0sf6ESSrbjNfkRS771F8oaU97qpAItgGp1HQScHtKekEYa2INodBdG2w3ySvdDfEfjHFht8xYSbJ9ffjtWIKAtMVokDBOh1ef9vb2/VY+nxMRaFI4HbEdAJe32PCtWinB9tHUcGOnOgWimNC5wbHlqk8bBPXEtvnsWABS/aVIgX7kUgkEolEIpFIJNoxN4JCzGu2MOAXSY+JDQkPP5d0ZEeEaGH3Nf2vXQuOqNI+72NYYI7t5r/+OQoWkUiztgFzv3lNuilc0T8KFcz/J9njcdGu7/cjWWNkn4iiRVsEmcdJOkIaSfqiVT6KFExz4L90UNDxwPHguaK1nnMXrf8k+2xTjHCzD5HY+7i2SLs/m/XiGqM4xL60/UyyHucizqnFMveV91VsX+xDm6AQ2x+FrTiWFBN8L1FMaEsvodsljj+vyTZGRwnHw06nuJbjOROJRCKRSCQSicSVMTeCQlsEM9r0SSi2t7clNXO9KTZYTKBIwEik1CTbJlu2iZMER2LEyGgbuYu5/CTfbbUAYr58Ve1Xx3cNB4sKbPcsYhwJUiSnJNl0EpAwRucDSV3MWWeUn3Pp+XM6CMe+zU3gMSbBtJhAJwcJYbxm2+8UFEg621ITaPfnGPMY94XuAu5aQTdKdBjE8/G6jp7HdBH3pe3nmLphIYwiEddsLDBq5wLXXywAGQWqtjSONoElknO2iQ4ZXm/WGo2pH7yvKOhEBxEFirg96yzhxOeKc5xIJBKJRCKRSCSOYm4EBW7HaFcCCRar1E+n00bku9/vH8kfp0MhVsd3ZN9E2iJCm2Wa5LqN8JGEklhKh8Rob2/vCBFnLQO3m06KhYUFTSYTbW5u1iSQLoS2VAIWOZR0JBpMkmbXBGsQUORwf9oEi2ipjxHhKCZIhykcFm4YTXZ/WYfB4+af+S/7SKs+yTMFEaYxuG6A54G1AThnRCT/Hhv3M6ZU0A3jcbmcQ4P1OSgERLHK/0Z3iM/tuSThJ1H3jgiSGtt5+vt0L0Qxwb9zbCPaBAXOUazPIR06UrjeuE7pVuEcta0HizJxJxWux8XFxSP1FyjkRdGR9VISiUQikUgkEolEE3Px1zKJFIUCEx3nYvvYWATR+eHekcGiQqxyT8HAAsR0Oj1SfNGkIxIZElsKHTEnnmSKxR99DtczMJl1LYJSSuOzjY2NWogw8Y6RYLoljGih98vvRcLMooeSWkUTI4oq0epvkYNt8vjbbeE+xJ01DJJORp1jegHbYFGhzfnAnTqi84Tzxj76u/yXxzBdwAUzScbjuolklbthxPobbDtdGhQoOMfuk9ewz8P1TyGHqTusGcCdJOh6iG6LmP4TBRyKJ3HXlrYaDHQgdbvdI+uGrpI2cYH3JfvsZwUFG9ZIievFffH96H5acEwkEolEIpFIJBJNzIWgIB0S1ZiDHQmayYNFBEk1mfIxJgxGzMUnwfb7tIHHCHmbfZtCRSTVjHyboLD9BFMNfDwL58W6ABEkxrPs20aMXsexZj9IKAkKGTyWpDvmqJvQR1JPd4a/6yh7vCbbTceFwTmOUXK2z9eJr5guYdGjjcRH0u4XU2soUsR0gShgcCyiMBSdNUTbuohpFlxPUWxhgUgKCrNSGuKYxTXme5hODN7XcX1yHGMaDs/Ba8T32r7TthY5Fnb8sJ/RZRMdEIlEIpFIJBKJROIo5kJQMJF01Jd//JvYO+VBOkoqTOBNWF1fgVFJkiILCiZQ3F6PRLGtCKM/J0FjKobhNkThoU1QINgHOhdmVeB3uxnNZtt4bHQ1tIHv8xzxM4o4/pwWepLpuHOGI7+zah6QxEbyzfHwPHGMPSY+D+clCghtRD6Sab8XxQSSV6cScDxm1Whg5J6kui19ZFaNAbeD65XtjIJQ/L4/9/qiA4YFMNvGJLpjuDZcn4DvR3Gp7b7hXMS+t413nAs6JaKjIV67bavJKBq0iTuJRCKRSCQSiUTiKOZGUHAdBG5vZzKws7NzJJpJYWA8Htc7Iezs7NTbLzL6b/IUC9GZqNDGTeIeCQct6GwLhQYWdyScty5Jk8mkQTppizdJplWb16dzwykSPifFE48dSR3JdCThUpNERxJLiz9FHM+FU1A89h4LE273iWkTnGeKEIzKR/IfiafPT3LLHH2pmcbBuhIcV8Nz67GJNR8oUu3t7Wk8HreSWcLntHhGmz/Xnq/LHRm4LpjGwpoddMFQBKPAQCGJ70cHD8fEv0+n01bRw+KIBUGuH79vkcs7lfAcFJfimvR64T1BwcPfZe0Rf8YCjFFIaBOIKFpEB1MikUgkEolEIpFox1wICqxpwNxygxZ0EteqqrS1taXxeKzxeFwfw0rukho7N/B8jFr6fUY0o92fRITElnn0jsTv7u42cscpDrSRdDox3DaTb7fH/zI9w/UkYs0H9jG6J2L0vO09kmqD6Qg8hnPiongUVljgzmKPx5PwcSwe6L7E1A1/3+NB8YEkmHPH8zDCH0UVE/S21BG6DXwMHRBeoyTxXl8uNsrreuyjmBIJMMfBcx+vQWcEx2BW1L5NwGE/Yr9cj8BzxTXqe479sXPGa8FrgKJWm7ATxSOnKLB9UdiJ96Z0uGNITBWJ64p9dfs4tolEIpFIJBKJRKIdcyEoMM0gEjiSJBJz6bBWgndCYBE1k26TAubdM7LsYnpt9QSitZsEOFast6BAkmmCO8tWT0ITiWOv12tsucidCnx9k59IKNss3dEZ4Hazz21WfalZs4Dt8DUsnNCZQDJHghi39eN1pHYS6HbNyrGPuxLwnCTF/peOAPY9ppRwDBnx51qNJJbpKf7c16TAZDA6HvsV7fwcgygwxSKQbWuKBRJj/6N4QNIe28m54+4NTJ/gfNI9wbXFtBR/j3Pt71uU8lpiW+KODuw7Raa4pul6ic+cuCYTiUQikUgkEolEO9oT6YFSyg+XUp4qpbwb7/1AKeW9pZT/Wkr5qVLKSXz2vaWUx0opj5ZSvuJaGkPS0GjkARlzhNTEdmdnR+PxWFtbW3XNgb29vXo3gclk0tglQTok/9vb243ijSZcJP8k/LE93pGCuz3EiDWPj4KFr2mQNLqvjvq73THaT0Gj7bocOwoQ8ZqsQxBdA7TY0z5OAYNiQqxpwP4z+usovK/pdjB94UrWdH63TYiKIlB0OrSJEm22/3hsbJf7z3QaigSllHqtRIfA5dobxSi+OMZR3CB8PNsX3TIUMJh+MOu6djP4eL8oVFDoigJRTGvgPEa0CVhMj4h1Hzj2dGZEcSSKfByvOCbzglv5LE4kEonEUeRzOJFIJI7iioKCpB+R9JXhvZ+X9BlVVX2mpPdJ+l5JKqW8UtI3SXrVwXf+TillQVeA8+Clo1sWlrK/lVy/39dgMFC3262J52g00ubmZmNHBRMMbhVIwrqzs6PRaKT19fU6p3thYaG24keiEcmQrd/eHpHHmPAwahs/J+mLgoDPz1QHqWnBX1hYUL/f1/LyspaWlurPYooCSSGJpCOyJu7MPzdJZPu63W5NhquqaqQxmCjznK4nwPmLfbKYwxQPizxtuxGwTayt4O9VVVULPEwFaCOTHmtuHch2UCAhMeV36bpYXFxUt9tVt9tVr9dr1O/wi86aK9VyuNxnTG+IqR5tYoLHzmPDtBS6WyxkcYvFNieFx4CR/+gYIdmnONRWI+FyDgpfi3UkvK7ZjigE2qET3TWXExiIuG7mDD+im/wsTiQSicRl8SPK53AikUg0cMWUh6qq/lMp5eHw3s/h17dL+gMHP79e0o9XVTWR9KFSymOSXiPpF69wjUZ0XlJdg0DaJxH9fr+OkNONEKONjjZHZwHJp0lxp9NRt9ttRGUZsW6L1ptsmrj4XG4vr9uWUkAwmi8dpg6QqNFRUVVVLa70+/36+hQUYn0CE10LIB47CzIk0rF4Y6yJYILIMfe48prR7k8xYTweNwo5Oj0g1rKIL78f01DcZ4pA0VHCsfZ3GX2P142F/qJThUST7gQKV7G+BMUjrsnogPA64DrmtWaR4Fmgw4T2fq5x3we8rtcWyTrb6O+wdoKFFoocUUiYRdbpcmHdBTqMmO4RhR3fuz6eggy3iYzFL9scLHMoJEi6Nc/iRCKRSMxGPocTiUTiKI6jhsK3SfqJg58vaP9hanz84L0rgtFJRtkdkTdRYYSax0hH946nOCAdkjnXTHBEdmlpqUECTbQoCJh4MPebkfrY9kjcJDWirxQ4GBk3fB6nb0yn+zs6DAYD9ft9LSws1A6Ltuitx4MEand3tyb0cRtHRuVJxkzuKCiQ4MW+ElF4iE4Ajk9bqsuViB3Pb/DcHovoaoh2fzs/uJb4nTZxg4KExys6WeK8Mho/a7z44jzGF9ej5yTOX1vqAkUPpjlwvnkvUKzzWPhYrmeOP+8dtpVj7rZTAPNa8H1lIYCiSHQ08LwULNgejmGci9hG9zl+/w7BsTyLE4lEInHdyOdwIpG453BDgkIp5c9J2pX0j/1Wy2Gtf5GXUt4g6Q2SamLPCvImMo6cOiJJi3uM/JMwMKIa7dVVVdVCAivXS4dRy+guMPmJtm1fy1Zx5uLzmEiOTa4NF2B0GyygMHJvt0G0q0tNa7eFjZh2wfoS/F5bXj9FCL5IsOsJBumKpJppIXZSsMhjHCPPG0l3dAdwvuNuB22kkTsmuF10K0SXC1MhTGgZbTf4PV/T6zOek/DnXJNta4SI4klcY74n6JiYtYMC54mumHivROcH5ylufRmdFm3OizgGfPncTKmJogYdFlwrvEejmMhx5bq93NjPq0PhcjiuZ3Ffw5vSvkQikbjbkc/hRCJxr+K6BYVSyrdI+mpJX1Yd/mX+cUkP4bAHJT3e9v2qqt4s6c2StLq6WnW7XUmHFn8T/V6vJ0mNVAcLDRQZZpE2/xyj9s53j4SXIgHPT6JsxMhtjBozCmzwnLaUUyCg+8LHWBywmCCpLjgpHYoC0r6joZRSpzj4fdeOYF98TkbdGaX3+Shq8FrREeExMxmla4NbB8aIuNEmENA9QOEnuhAoJDBtxk6QGDGPwgcFFIsubscsN4bXEq/HeY2Ogkju424cbakafp/nk9QoYOkxskDmuhaRQFN8YzqRQRLPmhtx/lhgss0dEN0Q7DP7Fb8bd3SI6RGzxAmKKm3ugssJYLMwK71kHnGcz+K1cvqOsmQkEonEPCCfw4lE4l7GdQkKpZSvlPQ9kn5nVVUjfPQvJP2TUsrfkPQCSY9I+qWrOJ+kQ5K0uLiotbU1DYfDOp99MpnUzoJut9uI4NMKTRIY7eEsjOdtGRmRjiSGDoE2C7p/JpmnkMAIq6SGUDAej4+ci4hihttr0cHCCl8eOxNdRs2jG8LHuLCj28Ko9tbW1pFt//zdmJri/sY2dTqdRsQ/pqRQBPCxLDoYtyX02MQxs5OA12zbrtDHkhD7/BSELpeeENMEpGZkPRZfjOeaTqcNwULSEQHCY+LvLS4u1vPOa/k4rw86Odr6Esl5dPHMSv3Y2dlRVVW1YMG+sx8xJYm1JThvnD+m/rCQqtdZvEd8L9J5ElMiCK45rofoEqELJO6IMq847mdxIpFIJK4N+RxOJBL3Oq4oKJRSfkzS6ySdLaV8XNJf0n4F256knz/4o/vtVVX9saqqfrOU8hZJv6V929d3VlV1lNEdvUYjYtvv9xtbJjoy6roHrnkQv++fJTWi2Xt7ezUJYqoDbd6xLgNJkHQY4bUAERFTA9rs2jxOOqwbEaPFvpbdBm4zP7e4wv7TORBJV4w8x3QIjpnnIhYXNJGOoEXe7WqLUsfr+j1GumO0m8TOogHHinNmIhjnLRLDuCuAx4BrkGvKY9wmlkiq61FwDuI128gpSXNbegRFlDgvUUChi4FrlUJbdFnQOcHrcLy5nlnLIJL3mI7QJuhxvuIcUtzwZ1FgiYJPPJb9bnMlMGWKwoZfMV0ktvd241Y8ixOJRCIxG/kcTiQSiaO4ml0evrnl7X9wmeO/X9L3X2tDSML7/X5NJE2iGEl2rQJcs/6ZxEA6jEaTSMeq+7H4HsE87TabOttP8tVmZY+kif2J0dJIGmPENNrjacE37PggPBZOJTFR9GcsSMndD0hcGfXmuNMZ4eOiS4OiBdvDnSHarml4TEhUWdyP49EWmZ9F4FkXg4STpJV9YzHBtuKNbEMktmwT5zYKCmwjBZ627RLbSHeb0Mb5ioJAbHdczxQUuA4oWrQ5d2L/KdhwzNvmqq0PsX5JPH8UI3z+NhdSbC/7x/GcB9yqZ3EikUgk2pHP4UQikTiK49jl4YZB8rq4uKjBYFBHQJnqwHQHRrNjUT8WOGQBQIoKdho4uhwJs3QoJph4xK0ETY7bai3wuiRqPhfbwig5x8S1E3wMCxpShIi7JETxwySLdRi4NaL7Slu4P/P34nZ7/g7rF5RS6rEnKfXckPT7XLFAo9vKaDELI7atnXj+WJeBggTJJgWeKJJEcSm2STq06re5USimzILJK9dA/Jdz4noWJPdR1GqLzpMsk8xHYu12T6f7O5hMJpOGc4fuBPaRogLb3IY2cYW/z3Il+Ltc1x5rzmMUBbwGKSa0wd+zk4ntSSQSiUQikUgkEu2YK0Gh3+9rdXW1QdQl1USVhDESOVvu464NkurP2hwFMXWCP8ctF/0y0bAQwbaagPO9SMbdjxiBp10/Eund3d1GyoAjr3QxUNTwte1EcH9M+GmdjxZvpkC4ZsIsWMCJNRsYTY/1CuimiNst0okSnQlEHM+Y0+9jSJb5PRJL95diD1MBKCLE9eDvWujiGEaiS+cHySvFIZLpTqdTF4kcj8f1Oo4ilK9HtwIdINGx4za5Df7O9vZ2LbDt7OzUdT4WFhbU7XY1HA7ra5OoxzHm+NPx4n+jqBPvO58jikExLSm6dLimPEeua8JjKJ5xzrmOvXbb0psSiUQikUgkEonEPuZCUJD2CZnFAEa2paNRTRaQ4/vcDYCWaqYg+FjC4kR0GPD74/G4QSD5OWsEkNhGcmjyu7e31yCFBKOukloJm4lTWz/Ynki0ubUl6yMYLITosY3WeBJlt4OWfQoaFl/cr0jK/T6vEQUMz02M3LdFxGNKCds/i7SS8Md5I3ln1Dpa7jleFMGiA6KtlkRcL7HPseZGFG44FjGyT8EqpihYpKMw4Z1DKJxZdPD9aSGLEX+6HrhGvY69zi7nAOF8xPlp+5yCAo+hyyI6dzyGcS3E2h6sPZKCQiKRSCQSiUQiMRtzIyiYcDo6SHArQRIU2ty5g0Cb9Z3OAEZLY246zy0dkhXarH1e/htz2dk+Eka3MxIdSUfy8nl9jlOE2xEjuCRekYAxWhzbRpt9dIL4+x5PXodF/OjkiIX8GKVeXFxsWPVjYUFGuBnlj/A4xZz8y1nxI2HlcRw7OikoaJHcRuGlbY64TihWuD9RfKDjhM4Ni0LcHcHtjm1oSx/wOFNkcDTfDgWKUtGpEsdg1vhFUcXnm5V2MmtO+Tvnhu4WChG+D9rqJfD+iS4Ir/X4XEgkEolEIpFIJBLtmBtBgdH9GBWMKQQmCyQl/q7JUiR/JKlSs2I+rdGRyLdF7dsKQpocMkLKLRxJ9trI03Q6Vbfbrc/fRvqJeC7WofD12Cbm/bft+sCxdltnEapZdQum02kjz9/jRkIXRQ5uKxjJL9MvPK6RvDPNoG2N0OHBVxsRNehOYPtJODkGcU5jrj5FGfcljnuM+vt4unF6vV4j3SW2Of4eib3HmCkc3hLSQgIJtYUEpqDw8+gooLji95gaUkqpU0Mi+WebZ4kVcf2wbxyrK7WtbY44r3R+XE4kSiQSiUQikUgk7nWUefiDuZTytKRNSZ+6zU05m23INmQbsg0BL6qq6txtuvYtRSllXdKjt7kZ9/p6yzZkG7INR3EvPYfzb+JsQ7Yh2zCvbWh9Fs+FoCBJpZRfqarq87IN2YZsQ7ZhHttwL2AexjnbkG3INmQb7nXMw1hnG7IN2YZsw9XiqJc+kUgkEolEIpFIJBKJROIKSEEhkUgkEolEIpFIJBKJxDVjngSFN9/uBijbYGQb9pFt2Ee24d7BPIxztmEf2YZ9ZBv2kW24tzAPY51t2Ee2YR/Zhn1kG1owNzUUEolEIpFIJBKJRCKRSNw5mCeHQiKRSCQSiUQikUgkEok7BLddUCilfGUp5dFSymOllDfeoms+VEr5D6WU95RSfrOU8icO3v/LpZRPlFJ+/eD1VTe5HR8upfzGwbV+5eC906WUny+lvP/g31M38fovR19/vZRyqZTyJ2/2OJRSfriU8lQp5d14b2a/Synfe7A+Hi2lfMVNbMMPlFLeW0r5r6WUnyqlnDx4/+FSyhbG4+/dxDbMHPtbOA4/get/uJTy6wfv36xxmHU/3tI1ca8jn8X5LD54L5/Fuveexfkcng/kczifwwfv5XNY995z+OC8d+azuKqq2/aStCDpA5I+TVJX0rskvfIWXPcBSa8++HlV0vskvVLSX5b0Z25h/z8s6Wx4769LeuPBz2+U9Ndu4Vx8UtKLbvY4SPodkl4t6d1X6vfBvLxLUk/Siw/Wy8JNasPvkbR48PNfQxse5nE3eRxax/5WjkP4/P8r6S/e5HGYdT/e0jVxL7/yWZzP4iv1O5/F9ft35bM4n8O3/5XP4XwOX6nf+Ryu378rn8MH570jn8W326HwGkmPVVX1waqqtiX9uKTX3+yLVlX1RFVVv3rw87qk90i6cLOve5V4vaQfPfj5RyX9N7foul8m6QNVVX3kZl+oqqr/JOnZ8Pasfr9e0o9XVTWpqupDkh7T/ro59jZUVfVzVVXtHvz6dkkP3uh1rrUNl8EtGwejlFIkfaOkH7vR61yhDbPux1u6Ju5x5LP4KPJZnM/iNtyVz+J8Ds8F8jl8FPkczudwG+7K5/BBG+7IZ/HtFhQuSPoYfv+4bvFDrJTysKTPkfSOg7f+hwN7zw/fTGvVASpJP1dKeWcp5Q0H791fVdUT0v6iknTfTW6D8U1q3iS3chyk2f2+XWvk2yT9G/z+4lLKr5VS/mMp5Utu8rXbxv52jMOXSHqyqqr3472bOg7hfpy3NXE347aPaT6La+SzuIl8Ft/iZ3E+h28bbvuY5nO4Rj6Hm8jncP5NfFncbkGhtLx3y7adKKWsSPpnkv5kVVWXJP1dSS+R9NmS/u/27t81ijyM4/j74dQDRQXFIqCCgtdrq1xlYYIG1CZyRQob4TqbK/I/WAsiCKIgB4rp/QcURe8iKv6ogiGC7TXqPRbzDUzCbuKi39mN+37BsJthknnmyXw/Wb7MTJZoLm2p6XhmHgMmgT8j4vfK++spIrYB08DfZVXXfVhP5+dIRMwBn4FbZdUScDAzjwKXgdsRsavS7vv1fhhj5QKr/6BW7UOP8dh30x7r/Hc138csNos3YhaXsnps+9NksTk8VOawObwRc7iU1WPbnyaHYfNl8bAnFBaBA62v9wPvu9hxRGyl+UXdysy7AJm5nJlfMvN/4BqVLxnJzPfl9QNwr+xvOSImSo0TwIeaNRSTwJPMXC71dNqHot9xd3qORMQscBr4I7O5OalcRvSxvH9Mc3/SbzX2v07vu+7DFuAccKdVW7U+9BqPjMg5MSbMYsziYiTGnVnc6DKLzeGhM4cxh4uRGHfmcMPPxBsb9oTCI+BIRBwqM4IzwHztnZb7YK4DLzLzSmv9RGuzs8DC2u/9gTXsiIidK+9pHn6yQHP8s2WzWeB+rRpaVs26ddmHln7HPQ/MRMSvEXEIOAI8rFFARJwC/gKmM/O/1vp9EfFLeX+41PCuUg39et9ZH4qTwMvMXGzVVqUP/cYjI3BOjBGzGLO4GPq4M4tX6SSLzeGRYA5jDhdDH3fm8Cp+Jt5IdvwUyLULMEXzBMu3wFxH+zxBcznIP8DTskwBN4F/y/p5YKJiDYdpnsr5DHi+cuzAXuAB8Lq87qnci+3AR2B3a13VPtAE9RLwiWZm7eJ6xw3MlfPjFTBZsYY3NPchrZwTV8u258vv6BnwBDhTsYa+ve+qD2X9DeDSmm1r9aHfeOz0nBj3xSw2i83i8c1ic3g0FnPYHDaHxzeHy8/dlFkcpRBJkiRJkqRvNuxbHiRJkiRJ0ibkhIIkSZIkSRqYEwqSJEmSJGlgTihIkiRJkqSBOaEgSZIkSZIG5oSCJEmSJEkamBMKkiRJkiRpYE4oSJIkSZKkgX0FuykUt5ZLgcIAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 317002 23734\n", + " Min thresh = 1000\n", + " Not Sliding\n", + "\n", + "\n", + "026ns_image_1083297968960_clean_ClassN_61-189.roi.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADYCAYAAABberBAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADE8ElEQVR4nO39e5ht+13Wib6/WfNetdbae+3shJ2dQBJIgERbbkYCjeY80HJRiNrCwVsjoEFbEbVtCdItts9jiwebxtN9bE88CpwWuYk22K0NSoOXwz0QhJDEJBBy29m57b3XqprXqjnOH1XvqM/41pi1blWr5lr1fZ9nPlU15xi/+xxrve/v/X5/paoqJRKJRCKRSCQSiUQikUjcCToX3YBEIpFIJBKJRCKRSCQSDx5SUEgkEolEIpFIJBKJRCJxx0hBIZFIJBKJRCKRSCQSicQdIwWFRCKRSCQSiUQikUgkEneMFBQSiUQikUgkEolEIpFI3DFSUEgkEolEIpFIJBKJRCJxx0hBIXHfUUp5SynltRfdjkQikUgco5Ty7lLKF9zmtVUp5ZPusp67vjeRSCQSicRmIQWFxH1HVVWvqqrqJy+6HbeLUsp35n+AE4lE4v6hlHK9lPLhUsq/v+i2JBKJxKbhrP9feifl5f+LExEpKCQSp6CU8p9K+sSLbkcikUhcMvwtSW+96EYkEolE4hj5/+JEG1JQSNx30FZbSvlrpZQfLKX8o1LKzVLKr5RSXlFK+aZSyodKKe8tpfxu3PvVpZS3Hl3766WUrwtl/+VSylOllA+UUv4EFdRSyqCU8rdLKe8ppTxdSvl7pZTRKe3sSvqfJP3Z8xmJRCKR2EyUUl5dSvnpUsqzR8/U/7mU0g+XfcnRc/gjpZRvK6V0cP/XHD2rnyml/Ggp5RPuoO7XSPotkr7zjLqTSCQSG4dSyqeWUn7y6Dn7llLKl+Gznyyl/An8/cft2Cql/Nujt3+5lLJbSvm/l1JeW0p5Xynlrxw9k99dSvkjd1vemvbm/4sTrUhBIbEJ+FJJ/6ukRyX9kqQf1eHafFLSX5f0/8a1H5L0eyVdlfTVkv7HUspnSFIp5Ysk/UVJXyDpkyT9rlDP35L0CkmfdvT5k5L+6int+guS/m1VVf/h7ruWSCQSDyQOdPgMfJ6k10j6fEn/Zbjm90v6LEmfIel1kr5Gkkopv0/SX5H0ByQ9LunfSfre26m0lLIl6f+lw/+wVvfYh0QikdhIlFJ6kv65pB+T9HxJXy/pe0opn3yre6uq+p1Hv/62qqp2qqr6/qO/P06Hz+wnJX2VpDfeY3kR+f/iRCtSUEhsAv5dVVU/WlXVvqQf1OF/QL+1qqqlpO+T9JJSyiOSVFXV/1FV1buqQ/wbHT6IP++onK+Q9J1VVb2lqqqJpP/OFZRSiqQ/KekvVFX1saqqbkr67yV9ZVuDSikvlvR1Ol1wSCQSiYcSVVW9qaqqn6mqar+qqnfrUNg9IdIePU/fI+k7JP2ho/e/TtLfrKrqrUfP9f9e0qfdpkvhz0n62aqq3nQmHUkkEonNxGdL2tHh/3cXVVX9X5L+dx0/R+8W/21VVfOj/yP/Hzr8v/E9I/9fnDgN3YtuQCIh6Wn8PpX0kaqqDvC3dPjQfbaU8sWSvkWHToOOpLGkXzm65oWSfgFlvRe/P3507ZsOtQVJUpG0taZN3yHpr1dV9dyddiaRSCQedJRSXiHp23XoQBjr8P8LkeTzGfubOnwGS9InSPo7pZT/gUXqcNfsN0+p84U6FBQ+854an0gkEpuPF0p6b1VVK7z3mzp8Tt4tnqmqai+U98J1F98hvkP5/+LEGqRDIfHAoJQykPRDkv62pBdUVfWIpH+hw/+oStJTkl6EW16M3z+iQ3HiVVVVPXL0ulZV1c6a6j5f0reVUj5YSvng0Xs/XUr5w2fUnUQikdhk/C+S3ibp5VVVXdVhCEMJ1/AZ+/GSPnD0+3slfR2etY9UVTWqquqnblHnqyU9IenXjp67f0fSq4+ew+vE30QikXgQ8QFJL2buGR0+R99/9PueDsVc4+Nuo8xHSynboTw/l++mPCL/X5xYixQUEg8S+pIGkj4saf/IrfC78fkPSPrqoyQ3Y8GWdaQA/30d5lx4viSVUp4spXzhmrpeIem36TDfwqcdvfelkv7ZmfUmkUgkNhdXJN2QtFtK+RRJf7rlmv+6lPLokRX2GyQ57vbvSfqmUsqrJKmUcq2U8uW3Uee/lPQSHT93/6oO8+p8GlxriUQi8TDgZ3VI8v9yKaVXSnmtDv+f+X1Hn79Z0h8opYyPkot/bbj/aUkvayn3vyul9Espn6fDnGM/eI/lGfn/4sRapKCQeGBwlPfgz+lQOHhG0h+W9CP4/F9K+n9K+glJ75T000cfzY9+fuPR+z9TSrkh6V9Lak1WU1XVh6qq+qBfR29/pKqqadv1iUQi8ZDhL+nwGXtTh2JsW5KuH9ZhGMSbdRir+w8kqaqqf6bDJLjfd/Ss/VVJX3yrCo/ifvncfU7SEs/gRCKReChQVdVC0pfp8Nn4EUl/V9J/UVXV244u+R8lLXRI9L9b0veEIv6apO8+OiHCeRI+qMP/H3/g6Po/dY/lsb35/+LEWpSqyiTKiYcTpZRP1eF/ZAdHicESiUQikUgkEomHCkcOh39UVdWLbnFpInHmSIdC4qFCKeX3H1m9HtXhDtk/TzEhkUgkEolEIpFIJM4eKSgkHjZ8nQ5zLLxLh+eot8X9JhKJRCKRSCQSiUTiHnFugkIp5YtKKW8vpbyzlPKG86onkSCqqvqio9MbrldV9furqnrqotuUSFwU8jmcSCQSF498FifOG1VV/WSGOyQuCueSQ+HoeKf/KOk/k/Q+ST8v6Q9VVfVrZ15ZIpFIJE4gn8OJRCJx8chncSKReNhxXg6FV0t6Z1VVv36UxfT7JL3unOpKJBKJxEnkcziRSCQuHvksTiQSDzW651Tuk5Lei7/fJ+l3rLt4MBhUOzs7KqWolKKqqrRarWT3RKfTUadzrH2UUhr3V1Wlg4MDHRwcnLjHZbLc1WrVuJ/X8Nr9/f3W60+7x+3xz+gA4bXr3CHsH6/x+37PZRluK+/xGLC8eH+8nmN6q/qrqlpbfuxLvDfes2482j47zVnjfnH+YxmxzrY5XNev+Flbm9bN+7r+3CviPN5tGUSeAFPjI1VVPX7RjbgL3NFzWJK2drarj39J0YfmV7T1zvlplyYSicR9w0x7WlTzk//wPhi4o2dxPocTicSm4qaeaf0/8XkJCm0P/QY7KaW8XtLrJWk8HusLv/AL1e12NRgMVErRYrGoX6UU9Xo9dbtdbW1taTgcqtvt1iRqPp/r5s2b2tvb03Q61cHBgQaDQf3q9/uSpP39fe3v72s+n2s+n7sd6na76vf7Gg6H6vV66vV62t/f140bNzSZTLS3t3fYAZBPCxZbW1va2to6Qe4l6eDgQPv7+1oul1qtVup0Our1etra2lKn09FisTghWJgEU0Bx3S5/tVrp4OBAq9Wqbm+329XBwYH29vY0n8/rOgeDgYbDofr9vqqq0mw20/7+vqqq0tbWVj02VVVpuVyq2+3WdU8mE00mk7oN/X5fnU6nIVxUVdVoq8fY6Ha7dZmr1aqum/A9FoU8Hh5Tf+b3byWcrFYr9ft9DQYDjcdjDQaDum6LRBaMPE6ek1KKDg4OtFwu6/l125fLpZbLpQ4ODhqCFdvkNnIM3D7OrdeG29ImUNyJ+LS1tdWYE352mrDFv/mdinN8mVFV1W9edBvuErd8DkvNZ/Gwd01Pvvyb9bJnl+q865fOu32JRCJxW/jZ6scvugn3gjv6P3E+hxOJxKbiX1f/pPX/xOclKLxP0ovx94skfYAXVFX1RklvlKTr169X3DE2wZdUkzvvmJuQmwCZ9JHkuxyTQBNeE0oSVH/W6/Vqori1tSVJNZnsdrva39+vCVjcxfdOfiSNW1tbdTt8/8HBQV0GCR1Jue+hM4PE0+W7H27j1tZW3Q+KGd1uV71erx4zChL7+/s1kfQYsU7/LKXUbSJRNfHk+ybgURTpdrt1HbzPbYmkvG1c/PNWRNefc549H26DdJJYx3t9TXS8tF3P9kYhwH3y51yrRHSBrHuPdXtu2j47DfFzz7PrbHM9nNaWxMbhls9hqfksvlquV6Mf/rn707pEIpG4HLij/xPncziRSDxoOC9B4eclvbyU8lJJ75f0lZL+8Gk3UAQopWhra6smwt4VJsG1M8C7/iZ7JI2RzJlkk9C6PgoGLtdl+3qCZFiSZrNZLXB0Oh0Nh8O6D5Jq8m+iFsMJKFKYzEbRgddRUPF9FmJ8/3K5rB0ZW1tbGo1G6vV6DSHAxLrNRUAXgHf0LVy4T77f8+G2eR54n4UPugW63W7dXo+R71sXVhBDC9qEmegeYPvcdrc1Ch/cmff68BqzE2Bdu2IIDN0CdF5QuIoiStu97IvfuxusC2ug24QiHdfAOpHhTtEW9pI4F9zxcziRSCQSZ458FicSiYca5yIoVFW1X0r5s5J+VNKWpH9YVdVbTruHu+wkyf1+X4vFog5RkA5J1c2bN2u7v0MV+v2+9vf3NZvNNBgMGjvzhon2bDaryVOn06ldECZsJqC9Xk+LxaLhfHB7SQK3trYaNvflcqnxeNxwO7ANkUzt7+9rNBo1dtWn06kGg0E9Hhwbt8HjdHBwUIcXUDCYzWZaLpeaTCZarVa10OFxxZyp2+1quVzWbaSTgeTS49rtdvXcc8/V77sNdG5wJ35/f1/9fr8WQ1yvSbrriiTXv3vupWNy2yYyWVSxQ4VjZcHC9XneGbZi0cVC0nw+r8UCCyVREIoChfvsddI25+scB23vRyHhNFGlDes+j+V5/C2Y3coFclq98XMKLneL2+nrWZb5IDsx7uY5nEgkEomzRT6LE4nEw47zciioqqp/Ielf3M61pRT1+/1GvD2JTtxd5g4/7f3SIXE0aTUBtMsh5j0gsaRjwa4Dtk1SYxc9WvojcfJ1sZ8kVXQBkIjGmH0KLbxPau5uW3ww4e/1eidi4Wm9N/n3OHJM2uz6W1tbjTAAOzBMytkezktMjkgnCF0JHL+23XmOoRGFHb/HeujkcJ3sJ/vEkBISaoYDcL4ZRmJHiMeGbeV6dn9vtdt/Gvm+U1J9KyIe16+kxrjEz26nDfHzi3Ik3GnfT1tvDxru5DmcSCQSifNBPosTicTDjHMTFO4UtIGb2EaCRxLPnXypSawjOeeussk5SQMJdNydNamyoEFSLh1b67kz751ztq9t59nEk8KD++e8BgxLoEU+kn3nS3Df+v1+HSri+9m+NlBYie1lEkg7DbrdrobDYUNAicJAnJPlcrmWKHOu+DrthA+/t67MKD54HBlCEHf/6VaIO/htwozn0eMcxYe29rQJUm3r47TPzxPr6nqQyXUikUgkEolEIpE4W2yMoGBwF56EPn5mmMz6d78iobNTwddzN96kni4IChbcoff9vNflul7vyrvtbUTRYofb7h19Owukw7CJxWJRiwAcCzoq3NbZbNbI3WDyz5MZYpJK98t/tyVGjCEU3vHf3t7W9vZ2LZ7QjRBhcs5cEiTuMfkiSXvbrnFb2W2igueLORw8115LzNsQQywoKPBFYcYuGuaHiO6UtnXQttu/jrDf6vNb4WHJV3A3/biTex6WcUokEolEIpFIJO4HNkZQ4M6+0bYTbyJ4mmPA5flvCgbMjRBt9XRIxJAEiwdtifkcd19KqQl7JPyuy/fP5/M60Z/bu1gs6l3/8Xhc99uiQlVVjTCFeOzkfD6vXQT9fr8muUwqaVLPvz1WrosJG0lgndfBLg8LM86n4H47P4LH3Tv2DDHhnHscTPg7nU6dM4P3t1nvPW9RUOBpG77e98S8Gu4bhRGKS66H9XLtLZdL7ezs1CE70+m0zt1wL2hL/ngvOOv8A7dbXhRn7nf993pPIpFIJBKJRCKRaMfGCAomsPP5vLb7x0R6p+1M0x7vnWKX6dwCJqa01vvvuDMdTwkwnKMhugsGg0FjJz9a6fmZwxOGw2Gd74F5E0opGg6H6na7GgwGdd0k7W1kk4TdCRd5mkDcEW8j6y4/XsuQjtlsVr+/s7NTf97tdmtBwidkxNAUw6KGRSSGDliQsLDAUIo4355z99O/c0zs/vC9PvGCoRoUT9rCPShGVVVV541wGT5Jg6eCrJujtt/b/o6f3SsRPmsifbvl3e51d9rH8xQGzksESSQSiUQikUgkHiZsjKDAXWva9KVmcjruFFN0oBPAtnYi7nCTQFuAiNb5Nvs+BQmTUOZZoNOCbXNdzPngfsYTIHgcI+ti/W3CAkM0ohhh4ht3+Zl4Lx6f6D7Z1eB7fTrCYrFo9CG6ASjguA6SdpJ8CgF0odgNQpJ/K5IX3QqeD7/oRPHJIAx7iMkIozBAAcjXexwsOEWRgojiVeL+4naEixQSEolEIpFIJBKJW2MjBAWGLezv79fWfxJA75AbJOnRns4ddu5iRwu8QTJM+3zbcYZRcODxim2kPL7HEIN4bKHb7rAJ51Jwe51jQVK9i8++8EjEqqpql0PMmRDLNEjqTagszjDRoO+joMCcCDH/gfvmpIysP14b3RFbW1sNN0Cb6BHBthgMaWDiy36/r/l83hAg3Aae9NA2TnRJOE8DTxVpy0XBsb0TnAXB3RS7/7px8Nq5V0cD32/Lv5FCTiKRSCQSiUQicTbYCEGBJHo+n2s2m2k0GjXIKcmeSSlJI3+awDp0wiSSO/sUAGzZ93VReDChdr3cUbedfjKZnHAguN1M2OdcDCSpJjjRqRBPkHCYRK/X09bWlhaLhfb29uprnS+BFv/t7e06QSMJPcUFt8VlSsdCzWKxqOeASQ29A2/xR1KdUNL3MAQlhiHEnAUk9C5zXaJGOkcoQpA8xjAKuiv40wKAcza01efy/D5zabjdi8WidkJ4vBlWEsWcu4Xru1U4ha+NoSJ3i7MUI04r5yxCHtqcSBnCkEgkEolEIpFInD02QlCQmnZ9W/5JKhmiQKLoz5gnoJTSSHhowuqdZIYiWMjgbj7t7HQ6sG3cpY5CgtvA5H6+lm2mDd+Enu+xzXYDbG1taTgcajgcajQa1URWUiMMw30zUe73++r3+43xjrv98RQJt9siCN8zWZ5MJvXOfCT3dBSQgFMsiWCfmSshuiNijos4bhZwOP8WdqKQYwGAY9DmOmGIgwWDNsGCYTGup+3UjxiaEXM33Cni7vumOBLOCvfSnzaRIZFIJBKJRCKRSNwbNkZQYBgBybt3g0m+SG5jLgWWJzWPRPTuPYmhiX/bzvdpiQBjnL1JMC37kfBGUcS71rynLTeC79vf39dsNqsFk16vp+Fw2DgFglgulzXZt1jisTPhjkSXp2NQDPC1JPj+2yIGiXRMTOm54K69nQ5sdwwliIjvt82XXRicT5JI57rw2HtNuT2xPoKCEcUtOlo41ywj7pYTbdefhng9wwXS0p9IJBKJRCKRSCTuBzZGUCCBZd6C+LnJtMk4iSSvYb6D1er46EU6IbiDbYeAwd12hkYYFiP4t8uMu/Mm3T4dQmoKHbzf/TC4g83EjL1eT+PxuE68OJvN6jo9Hj5NwqKMj5K0oBBt+CTU7reFBIcueH6iK8Tj59wPy+WyzhHBUxt88gPdISTxHmuOpd/nT4KCj+daUsM5QUHIfeAaoHDFelg/3Sp0n/helt0Gln1aeMLtIOYIiOENZy0qbMKu/nm2IUMiEolEIpFIJBKJO8fGCAqOZXfcPnfH+Z99k1OT3YODg/qoSRJmxvFXVVULCr5HOiZ+y+VS0+m0IUj4+EMSM5NTEnZ+RsLf7XbrnfJI7ni8YafTqcMZZrNZffxiTB7J8A0f2+jjMHu9XiPhoMnuZDLRZDKp3RnOweB+uK62OH8SfrbHjgK6Rox4YkQppU546HlkaIHL8lz5fR4bSoGjzfJu8YFuEK+J/f392skRcyfEcBavP4agcNzdJjssLJjE+YliUnTUtF3LdsSQBeNWYRG3EhAetvCHW6Ft7E7DZRqbRCKRSCQSiUTirLAxgoIJwGAw0GAwqAkhEwwa3qH37nnb8Xy29McQBxM751jweya+q9VKw+FQg8FAs9lMi8Wi3mXnbnZM1kdC7iMJHU7BMAm6EPr9fp2AkI4Lt9cih8m122Siv7e3V+/4l1LqkwVcvst123q9nqbTaSN3AI/MtIjgNqxWqzrvAkkwBQOevuH+umyOi0UQuwaGw2Fdj6RG2InL8k+GQcT1EsM2pKZbJJ7s4PcsEHAOY16OGM4SnQARUdSgKBbbGIWQNqEgikr3gk0lzOcldGxqfxOJRCKRSCQSiYcJGyEoMB6dRDWC8ekm7THMwYjhBySYjvP3vcvlUsvlsnHCQb/fr++1sLGu7cw9EIUDOxdMMtkv9pNhGf7MbYnJ/0zSeTKBEzdKx0IByf7BwUEdFuHyTKp9XbT8+2hIhj1Eos35c9vYd+cmcPLI2Wym4XBYOyscvsIwB4oKTHjJ8V6XS4Gk3n2l24DCC8Ns3C/mgKArguQ/5i+gq4LvR+cB36N4wfaetrO+SbkR2oSAy+aCSCQSiUQikUgkLjs2RlAwwZeOTwSIRMyky0SQMexGPG2BwgIJq4m8yeNyuWw4DEhcuYNNRBs+hYXlclm7B2I7CBNRiwQ+RpEuCB5PyKSVDA1xWIPHz2XbIcEQA7eXoQwUWNhG3xOPSnR/vdvPueP4M7eBjwRlWXYs2IXCOWYODIYSRLGI64guAvfb4+Z+zudzrVarE4KUy2gLXzgt1MBjG0/0oKDA6402AcfXREdO2/2n4UEh9uedF6FN/EokEolEIpFIJBJng40QFLa2tjQajSSpjrMneeYO/2q1qsMVfI3j8n0/8yt4d9yCAXemow3eJNX2fH/GnyaQDg0gMfbn+/v72tvb02AwaBAY78QzUSBJqKRaUDBJt9DANlNQYbsZXiEdCzVtCSNNqHkCxHA4rMeolKLRaNQaMmL3Q9z994vXe37toNjd3dXBwYEGg0E9j9FJQcfKOiJPN0cMDfCYeg2wPEn1cZsca86vx45uDPc3iky+3vky6CKJa5z3LpfLOucHXSx+RUFh09wAbXVvQhtZp+erbfwSiUQikUgkEonEvWMjBIVSisbjcYO8m6CTJJuMkfA7xp8uBZO65XKp2WzWmktBUmPXejAYNMhkJHckJia6FixMSp1Ucj6fa29vr5HQMJ7c4Pa6Lb7fu+cUETwOzI9AMcTodruazWZ1m0ajUSMEgMdUurxut1uTe+c2cAJHJmlcl8PAZNh98kkWFHRif50Dwn/TbeKy6VRgP03sLTpRAHE9kfB7LEkqSfw5x3SdtOVLOI2YxhAJjlFbKAP7zmvaRJQYkhIFi03EWZD4OxUl4rUpJCQSiUQikUgkEueHjRAUJDV2t2O+AxNHxvObrB4cHKjX6zVi2BnPb0s9XQtVVdXhArTWx11hkk2SPpM5ZvlnHwaDQU3qF4tF7QKIoRE8atHig08kiIKCRYxof2efGT7A0AlfG0URk/s2kEyzTo5J3KVn8ky+R6Lua/y7XRZ0GVA8iSEMdlZwvni/11Bb2IHfbwuXiOMbc2asE5T4uUUr5n1oGyeOpceAyTFvZ/f/NFy0e+EscS/9eJjGIZFIJBKJRCKR2ER0bn1JO0opLy6l/EQp5a2llLeUUr7h6P3rpZR/VUp5x9HPR++gzBPhCiZZPNqQYgKv4ekKTLxoa73Jqk+QiLvwMVmjwfAE7+Rzh91JHe2m6PV6Gg6H9b3MXyA1HQKsm8kUXXa8zmDyQwoSMcSCzowYCkEngfvA8mJyRO6Q00XgMjym7CsFBd/nOfCJFcy30FYHRQX2J45FFAi4HihquNyYeJGJPiPaXAMk/9GxwrJPy79AgYb9P22n/bQ8CrebYyHx8OA8nsWJRCKRuH3kcziRSFxm3LWgIGlf0n9VVdWnSvpsSX+mlPJKSW+Q9ONVVb1c0o8f/X0q4k54JI1xV9g5EUxeTZxtC48CgB0MDB9YLBba29vT3t5e7Xwo5fDEg+Fw2EjWOJ/PG+UPh0ONx2MNBgNJqsuazWa1QDEYDOpyTKJdt8UHl0k7f7/fV7/fP3HKhXfm/buTMHqMTKAHg0EjXMRj5DE0HDbgPA8eT4ctjEajesx8r9sXQz5MiuNxjdE9wZMnfJSkj+b0y+PgequqaiRvtBhB0YLEnGEWMXlnDIXwOPL9tpMfonAS3RNxLUeXTRSUeC2dG1zrseyY52Md1jkc7gfuVsxYJ7jcKy6RO+HMnsWJRCKRuCvkcziRSFxa3HXIQ1VVT0l66uj3m6WUt0p6UtLrJL326LLvlvSTkr7xFmU1EhHGnflIsLgjPp/PtbW1VR9LyN1sOhV6vV6d+HF3d1d7e3s1wbXg4Jj2uMs/nU5rgu1d7OFw2CCJk8lEk8mkJnw7OzsaDoc1WfRP5m2YTqd1PgHmEDABXywWdfnMxWAC5jGLoRoUFFhnFG7s/KCw4ZCNUkrdR4otvC/urrtOX0fXBBNX+ojOxWJRz5+dAZwzl8dwBs/taUkMvUY4Jv7ptng8eB1DJyjexPHz554Hh5ncihjHzy1WOG8Gx2pdjoS2MJQ7wb3efxrutsw2UeZeyjsND2MYxFk+ixOJRCJx58jncCKRuMw4kxwKpZSXSPp0ST8r6QVHD1ZVVfVUKeX5t7rfToB4ekGMU2+zmPOkA+YkMOn0/b1eT8vlsiZsDnuQVLsS7Djg0YjSoWPCiSBpje/3+7WwMZ1O658k5k72uFgsGnkRTGyY4yESVx87aeJpgu4xsyPCpJYCjMt1SIFfFC7cl6qqatdEDBNhzgHmpFhn5fe8UNTh3DE5o4WJuBNvMH8G37OYQYeE7+VYRnHJ10SxwWVEYYP3x/7FPA7+LIaXxHvXoU34acPtkOHTSPN5k+mLJuy3qr9NvHiYBIZ7fRYnEolE4t6Qz+FEInHZcM+CQillR9IPSfrzVVXduN3/nJdSXi/p9dLhMX7cqY9x9HQCkOAa0V7O90y4adtnGEI88cEkP/ZjNps1rPs+GcEhGLbju77RaFSHH/T7/UY+A7eLCQTjsYuS6vAACgUmsibZFgyi8OIxjCEJ7KfrICF3skpfQ9t/JOIk2zH8IIK7zhYWOp1O45QGEvJ1IgPLa3Mo0FHA9RKJvz+zuMNQiDaxoK1urlOXw/bero0/hj14nGJ7b7esxOXEWTyLhxqfXwMTiUTiIUc+hxOJxGXEPQkKpZSeDh+c31NV1T89evvpUsoTR0rsE5I+1HZvVVVvlPRGSXr00UcrH+84GAwaDgHvnjPxYozPl9TYXXdOAOdasCBB673JtgWA+XzeaF+v12sQWR9ByTK8o93tdjUajRrJFp2TgLkDKISYPPK0CV9HQk/nAf9h8j2up5RSOyx8LfMwMFcAXQouy8dvOszC+RSYU8CiBEkrBRDPF19t4QgeNyZM5P12Lfg+Eu0ovjD3AIUUjkN0Sfg6hlg4j4bnyJ/RLRNFrHWJK/25+xPRtisew0eYmDOeOHEaThNB7sdO/FnUcS9l3KmD42FxJ5zVs/hquZ6KVCKRSNwF8jmcSCQuK+5aUCiH/xP/B5LeWlXVt+OjH5H0VZK+9ejnD9+qLBN65guQmgnymMywbWeciQJJaJfLpSaTSb2jz+tZbrS++2/uWPs0hPl8XpPwXq+n8XhcixPScTiCwx5MzBlrb9DOz6SHJrkMibCrwoSz2+3WzofFYqHZbFbng7A7gqdSTCaTmqCSTHs8GD7isfZcRCGkLeSBLgGDzoZ4ekLbkZbxaE7WY6eEy3JYhsUgigW+l2IM+0ABgGuH4Te3IpvRTdEmdEXnAcfpVuAxoEzAyXFYhygg3G6d55m/4KzANt6NULLJfbsbnOWzOJFIJBJ3jnwOJxKJy4x7cSh8rqQ/JulXSilvPnrvr+jwofkDpZSvlfQeSV9+q4KYmI4uBVrIvRPvkwDiNTHmPZJ2OweYZNBwCAFfvo9k0MSdRzuS5HvXnUkjTVYdEuF7pONcB7xeUsNZEMfJ99mRYVHBJNNluGwLDP1+X4vFopEg0vcwZ0DcpedO/Doitm7sKQRwDGNYB8fFRN9t5Hy17fb7egoHbmsk/Gyjy2TeDo6H72sjrG15Eda1727A0A+2+3ZyLBh3S5ofBLJ9N0LJ3eIBCSE5s2dxIpFIJO4K+RxOJBKXFvdyysO/l7Tuf/Off4dlySEPJoa9Xq/+zASLOQq42x/t7nH33E4Fhj9Ix7vydDWQlJOkmvhaQGBuBpbndlAg8GdEtMy3iQLOoXBwcFD/LqnhpLBwwDa7DCcPlHQixCDG+1M0iHkQfK3r43sMTyBx59jHBIkk+vH9WG/MKxB30GPdnAe2M14XnQ9xfqJQ0DYe665le+8UXFPrxLJEgjjLZ3EikUgk7hz5HE4kEpcZZ3LKw72iqqpGDLukxqkPkeybTDspYszOT3Lqex0SYIeBdJyjwOEM3vVfLpcn2ugcA5Lq0IcoCvAUBjodGDZh2JUQLfIxX4KFBl9DEYV1MkeDy3V+hraddu7g871er1d/xhMUXJdFGI8xkxG6DM5XFHvi9RwPiw/xGpe3ziURc0K4HUxg2XYvy435HHitBZs4Xm1lRXFjHU6z6nP8OG63CnO42/rO8p77Wd55oO17kiJOIpFIJBKJRCLRjo0RFObzeW1xNxHu9Xr1cY8kUxYfTK6vXr1aEzmSSxJGku7oHDBZ4y7/eDyuiQXFCoYMRDihIhM9msyORqM6/MDCRQzNiHA/acEnYiJJixImx0z4aDDe36CQQyIuqZEQU1LdBye2tPOj7RQIE3XmgYghD26v5342m9Xj6DopvLQlivT9JPxMlsiEh51OR8PhsCFQuU2nzYfX1e3kLvCa47zE+25FrHlyR0xS2tbGW5H1ts9OC+eIwkib0HKnuFeh5X5g0wWPRCKRSCQSiURik7ARgoLBsAZJ9XGMkXyatEuHBODGjRv1SQvxyEPfw51yCwsmo/1+vyFQlFI0n88byRQjQY3EjmEHzl1A4cOJH03GLThwZ57jYBIaXQIxnp5oy71gQcPlxnAQCht2KDisQzo+ZYDj5XHt9/vqdrutbWyL/6f7gOMdQwZ4skEbwY3hGzEvBsm4y6CwZHGA17SNTUTMY3ArQSiGKdzq+oi20Ip1ZdyKCLcR9bZ71pWTRDuRSCQSiUQikUhEbISgEHfFY4iDySDj3f3ZcrnU7u6uxuNxgyy2kS9a76XjkyEkNUIuHG5RVVVjt5yEkjkPGPLgepwE0XkbXKbJsJ0XkYz7/vh7DD3g7222bJ6SwASMp+UOsODh36uqqsM/fC9PQIghELGdbl88USK6O5hTgfkKYu6CiEjwWVbb6Q7sOxNoSodOjDZxg+/Fz4k28t/2fsztcBra6rtTUSKRSCQSiUQikUgkzgsbIyh4Z9xEzlZ0hheYmJr0mvzv7u7qypUrNfnn7j53u5mEkac0lFI0HA41nU5rkm8CRxHCRNU/o3PC1x8cHKjf79d5F9yfePLCbDZr2PpZXxvhd599HUn9uqSBLie2l2U4fMHt4xg7nME5JhaLRWMshsNhowwTc9dNN4FfzA3APrHtUaCgyMTjPD2WvN995dh5HVmc6vV66vf7DeHA4glFK64foi2JY5vTok0capunNsQybxWWEe89re5NxbrQjHWf3Q0uOqwikUgkEolEIpF4WLARgoLUJOTMZ8BwAZNTv+xQmM1m+shHPlKLEOPxuGHT93VOrOcjJ/25wxuYY4FtiMTeZVskGAwGdftIPkl0Z7NZTcr39/fV7/c1Ho8lHeZCIIFmvRZJ+JnJ0GAwUL/fb7TN5TuBo8UTE+jZbNY4RtPtdjJGE33mDCDxX61Wmk6nWiwWWiwWdV84JzxJw/2wqOAjLPf39+vQD7bFn/m9tnAPSQ1xoS3Roz+Pgo1FKK+pXq+nwWDQuM/rkWJDDHPxeHnM24g+36N7hWEf65w0sZzbIcAUHNZdfy/k/E6J+FkR97Mm/ykmJBKJRCKRSCQSZ4ONEBTif/C9g2xxwSc5kOxJx7vO+/v7ms1mmkwmdSJHCgPxKMWqqjQajRqkzu0woWaiQYY0sFyT4el0WidxtGNgsVg0+ud7HVrhxIzO4WDCG5MLxvAEH6fJsYq5E9yuuNtP0YRkmU4FksBut6vhcFiPA8Mz3BfPQa/XaySv5CkWLtPCi8u2uMM+W6BxbobFYtEQh0yamSST64GEPY6T59vOEJJ9nhTCEAyX7b5S+KGbI+ZsaFvX0VFyO44FjyMTYUbXBIWWW4VU3AuZvtN77yavw72grbx1dZy16yGRSCQSiUQikbiM2AhBQWomOzTxYkZ/WtmjnV06tObP53NNp9N6x9lElKETFhVMwttCIqqqahBIOwaYwJChB/EUBiaX5HWuz2Sm3++fIK5uh+th/oG4O8/r47GTvIaklKTf11kQIJnmTrzH08kwKTAwx4LdEizbDga21Z9b4PDxnxwLk/ToEIjhKHFHvi2fBAUdOzd4LKmdJVHE8b1MysmQF4oxd0pMmfuBAlIE1z0Fj7brErePtnWSSCQSiUQikUgk7gwbISgwtj7mDqCgIB2TdSbUM9F06ILj6knsmU+hqipNp9O6XMbWcxeY+RxIAC1MMGzCO+V0Q9gl4LJYnuvjGEhq5HYgYZWazoxIKpnzIFroSVpN1HlEJsMDLBq4zVtbWxoOh+r1enXoyHK51GKxqE+psOtCUp0Lw/U6JwUdGS7Xu/wWM6JjwP33/LgOto1CQFvOCZfnsriOLIZY0KCAEcUChmL4WoojnN/T4LIpDkTRqW3u1vUtXn+rujdpR/5e2xL701beaXVs0lgkEolEIpFIJBIPIjZGUOAJACabJkrdbre2vks6kTdAOiavs9msjumfz+eazWZaLBY1SZUOSfdkMpF0vGMeE+/5FAYT4bbkfCa2DrlwO0w8na/AxDnmYZjNZrWVPeZfMEHlCRMOSTDJNMFniIjzAqxWK00mkxPWfgsm0rFzwXkZSO6lQ5u/2+bcB4vFog4rcU6G+XzeINkeB84LQ1biEZk8ttNHhfLF4zfbXAoWBjh3HDcKTA5FcTnMoeH3o9uD4RBci3TLtIU3EHTVRIGA7ok2J4t0nBvjNNxKMHjYCHQUYBheY2yaiJJIJBKJRCKRSDxM2AhBQTq2lkvtO67MHcDdZOl4596fWVRoO9WADgAT8mh1jzZ72819jYk/cxc4ySATL7Kc+XzeEA9cFpM7UihhyITvs6DAXAZu/2q10s7OTh1ewGMtpWPS6nY7N8JkMmm0o9/v1/Vw3EzK/LnzPrg/diJYfDC5cygKc0/s7OycyFtgWFjxe71eT8PhsCaGDkUhKWcoyjpE9wMFq7acC36fbgqPg/M+xPAcCwzr2kEnAtvLdqwLw2BoTVzXt+p7DMm41fWbjDaB4FYuhUQikUgkEolEInE+2BhBwUSKu8/RUk54tzbuenNHnDkU6BLodrsnjkOMpDISPosIDJFgO90m1kciR3HB/Ylx9BYVLHzQlcHkixYkaL+3oOEyTfRjCIbdGw5tmM1mdf3sl9vQdsoCkwtKxycoUJyxa8Jj4vF2v+yoaLP+c+wdcsEcCjyxwXVx7vh+TFjYdsxmXF+niQsMW4lzebvHOkbhKtbrsW8LA4qhG3Q0tOVW4JzFnfzESeTYJBKJRCKRSCQSt4+NEBRsM6ftP2bCjy6C6FCIdvFItg0TbR6LaAFCWh8L79ACk2+SNyb7oxXe5cX8C3Y80FlBEuzQA9cbBRFfy7AKE83BYNBI5EinxWKxqE+jMGl1u6OgQDs+4b75fh8V2TaXDiWxQ8FOjU6no+Fw2EgSSQcDx8uCQhSH/DnngfkRPLZRVODO/7oY/Dj37pPHK67FOIf+bF15URxju913tp/38xSNOD8UIGJ950WUo7Bx3rjTem51Pdt/nuOUSCQSiUQikUg8jNgIQUE6Tg5ocunwARMrCg3ccebuPnMkTKfTulznOaBoEE+PsDOCtnPpmDSSyDNPgsmpQw0oOFDwYP4DklmGYBgWFLa2trS3t9cgpia2TMK4WCy0XC71sY99TFeuXKldCHH32yEeTlw5GAw0HA5rJwSdGARJeXRzdLtdXblyRYPBoM6lwPFjHgTPC8MrPG6ug6ILk1kOh8NapHBfSMTjjr/fazvVgvNkuGy2JTpI3HePH10n7qfngzkRKILE8AMihtnwOo8p72cdW1tbtdvkbghxWyjB7eB+hxjcbTsTiUQikUgkEonE2WMjBAWSSJ6MIDVPNjBZ9e693xsMBo18Brbz08ngXXSTeO8209Xgz7e2thpHHbockjmehuBkkCaP+/v7jZMPmDSRhJe5GByeYNLvvg+Hwzo55Hw+r10I3uH3bv/e3p729vbqezke7gNdCL7GpxfEExT8IjH3uDD8gC6Cfr+vyWRSE1332aEci8WidlS4TRRI3H/PQ9wt7nQ6GgwGjSSP8cXcFU7yOBgMNBgMGoJFW14B18E8Dp5TriELRBQ4fJ3LXC6XDVcEr6PLgOvBP5mYMjooKNZwnChOsZ8xweQ6seEsSfppdfCztr9vhbMWE24V6pJuhUQikUgkEolEYj02TlDwy+4EkzcTZX9mAhp3cWkbp7Wd9bSRmGhddzncpY6x+CZwBwcHjRMV2AeXJ6mOi19HlqOlXjqZcJJtNUk2AWYiRuZwYB/pqijl+DjEaOOnqMMcBxwTOxbczlJKIwnjwcFB7ULwXJLQ0yXAEygYMuJQE19vcYJjREeD+0CBZH9/v3Z8RAdKXAPRuRBFBa5N3+s54BqLBJ75D+KpEFFUWEds43qJbW9zYtBp4TraQjruBbcjCpyVEHDeDoUUEBKJRCKRSCQSidvHxggKJrUxjj6eGsBdV4sKJKAmv5EU+/eYp6Etnp02dpLZSOhMEn2yBMlOtOD7MxPbKCjQNRHJLkUFklqfgCCpsYvOe9yH6Iww2Xe9zDnBPnB8nPjR7Tf5d31MxEiByP1ym3xSA+HPLR5R/KEo4jE0UXYOh+Vy2RCd6MZYLpf1UZJuJ8c0kvuYiJJiAcMSKBDQTRDDR9bF5bNPLp+ftbVrXViO62VojsvgWqU41BYeQSHidvIJ3A4Bv8gQhbaxvdP7U2RIJBKJRCKRSCTasRGCggm5pAbZWa1WjRh72s55YoNFCBJckgAmLbStnm4BSQ2CSPBUADoeGNNeVZX29vYaO/0krSTxdF1EmOCb/HInn+1yIsnhcKjBYKB+v6/hcKjhcKjZbFaPwcHBgUajUUN0iYKFdLyLzf5RCKHAQ5hE87PBYFDPEU/Q8Fzt7Ow0CD/HxEKBwyI8njztguPje4bDYR1msru7W7samOyRTgffS8GDJ2TwWFKHdDDfRiTyvV6vzqngdWVhx4KEhRa3xf1mSIjrpRDBfAmu08IBRQz/7jwOzmcR17HLcjvaHA1cF/ys7bpbiQXx8xiqcqe4E3FiXVhLIpFIJBKJRCKROBvcs6BQStmS9AuS3l9V1e8tpVyX9P2SXiLp3ZK+oqqqZ04ro6oq7e7uNhIUmnzxOEQnapSOd2O9Y+5jCbkry7h0EzyTvkig6VpwGxjaQAu9PzPRlFTH9nPnl+IBRQgSbMMEcTQaaTAYqNfr1bkZvPMeQw/cJhNa5ynwuHF8PQaLxaIeE7sI4q50FAl8PUUU9p3XbG1taTAY1M4Az6vzPgyHw3oe9vf3tbe3VxNu/+x2u5rNZjUpZs4Gi0cWH3q9nkajkaqq0nw+lyTt7u42yKMFCebb8OfM2eD5oqDg8XOeCCeYZOgCiatdGoPBoBZ3GF7CJKN021gkYShDFK04znZxtBFmrlmSd9fhsff3JoYBERRS3C7W1+bwOQ1sI987L7LvdRpPX3kYcRbP4kQikUjcPfI5nEgkLiPOwqHwDZLeKunq0d9vkPTjVVV9aynlDUd/f+NpBXgXmuJBWwy4iZvJkHeZpWam/+g8MHnmjjXJ/Dp3glFKM+Fd3MknGY0nPJgUxrwBMXzC75mQbm9vN3a5F4tFQ0RgEkfpOMGix87tov3e/TYpX3eig3fs24iehQW/z3AA5m6Ix0FSMOFYOg8Ed+pJNplkkfMcySHzLzAhpvvEpJ/9fr8+XpMnMjAkwuIV54XiQQwloIBDFwTJuMfVazj2xYID1wudLrHfTBwZw3LchxhGQZeG74uiTXTZcK3TKXGnIkD8nvGn547X8po7AeeHx28adyIqPGCuhnt+FicSiUTinpDP4UQicelwT4JCKeVFkn6PpL8h6S8evf06Sa89+v27Jf2kbkNQsCVdUsN+LunEDqrJMImqryM5Y/ltL5Kqlr41SFMUIJh4j2Q0EuC4g02BI+7ym4x7153CwzoCxx12hz64TRw7E+2trS3N5/P65Ajfy35QUIiJINkHix8mpXRGuBwSbopGnrPBYFA7G+xQYP4MuxTa+u5yGbbgMXCeBo/nfD5v9IdJGu04MOgioejCEAWvH48fd/C9FkzG3UYmhVwsFrVzwuuBQgxdEC6Lp2PEeYguhuhS4PtRpIu79/x+MN8Hw36isETcad6C6Fa4XcLf5s6IYk8UgThOD5hYcCrO6lmcSCQSibtDPocTicRlxb06FL5D0l+WdAXvvaCqqqckqaqqp0opz2+7sZTyekmvl9Q4pWB/f1/D4bAmliY6jKlnTgDunPI61FNbuykm8FhK7qa3EavqKEyC1/lz2uNdVjyRwuSM4RQm+N6RJ6miPd7uiG63q8lk0uiTYdLqnXe3le2zyDIYDDSfzzWbzTSdTuvjLu1c8KkMFlDaElwSJN+r1apOTimpDnWYz+d1okZJ2tnZqY+9dJgGib7dA+4Hy+SOc6dzeHTnbDarx8j5FEh6mTPB6Pf7tdggHSeKXK1WtWuCuRGMGKZC1wxdHyTzDiuwiGSx6MaNG/X7Hh+3NTok3F7XGUMyPDZcxxQ/OI8MW4kuB48THRIUp1w+nS8c17YcDOv+5ji67dPp9IQ4QrQJB7F+94fvxTCeKFKtc0Sc1pYNw3foDJ7FQ43PuZmJRCLx0OI7lM/hRCJxCXHXgkIp5fdK+lBVVW8qpbz2Tu+vquqNkt4oSYPBoJJUk7JGA4+ILuPgmVOACfUsKNDeLx2SRyYBpBvCNnvfa8JF8sQwA9rqeTKCCZEFAooaBombCZ534EsptWvA7d/Z2an7aBLJnVaOBft3NL6NHfGjOWsIGRZf2D+eyMDElRRBTNR5soPdAJPJpE6qyISLFj0mk0lNsp1PwWPDXAou10TaORXsNCBpJIG2GMG8GhaEaLm3q8HiwWKxqMd/uVzW7SZJJ9lkQkSPN0Uvj3dMyGjBxuvd9zLPhxNPRkI/HA7rtWGHQwxpoDuA7ebJHLyeJ6VEV4/FpkjGXWabgya2Zx0igfcYMJHpaUSecxlJf1ub6eJY50h6UHGWz+Kr5foDoZ4kEonEJiGfw4lE4jLjXhwKnyvpy0opXyJpKOlqKeUfSXq6lPLEkRL7hKQP3aogEh0SY79ncmrCRwu5SWl0ALgs2vhjcj+TrH6/XxNwug/8M5IfugPa+sFd+2i/jgS/zY7NHWsSTLczluMd8Pl8Xl9vIs7rPV4WCubzeT1GMVSBR1gyPwGP3eSxmgxX4XwyLIJ5H3zCAOthG912E3S3yesh7kJbQPJYWShgDgcj7uxzfUhqODHcxggKFHQD2K3AtUKXA8n79vZ2XV900LC9bAvHyUKNP/PfHDt+FsskmXfbuFaHw2Hj+2CB4jThIH5X4mck9P6bOVGYs6GtnZH4U1SgCOG/ufbjUaG34z54QNwJZ/YsTlxOdK5c0XO/51UX3YwLxc57pio/9csX3YzEg4t8DicSiUuLuxYUqqr6JknfJElHauxfqqrqj5ZSvk3SV0n61qOfP3yrsiLhieEMjN+2M8BENR4jaTLE/AYsnzZ06Zjw+XfXbYcCCXO0U1MIaOsTBQbG39MdYTJLW74Jt4kpd+9Nkvw+2xudFyZMJKHewa+qStvb27XrIO7mu712DJhU2zHCUzFYJ/MveC79HnfwY9/Yx9FoVJM/ukZM1tvEI9dVVVUtvlgoYZ4BjzGdCm6Hj7x0/gK/2H/XybXqhJltoSsMB4nE2PXNZrNGok/eb1CEooOEfaGwE0NU2sSrSPYPDg4aa5HrkW6K6EaIhD5+P+I8Ef5us28k+34vjg3vjcd60uXEkIhY/u0ICg8CzvJZnLh82Hrkmlaf9GI9/WpJD65R554xe3SsJz74EknSwfufUnV0alAicTvI53AikbjMOItTHiK+VdIPlFK+VtJ7JH357dzU6/XqnflIVuxYYMiCj++zBd9hCyartGUzF4HLY0iCY++ZnM67pnQHSGoQ2racAgQJtkULkk63y+S5lEPr/WQy0WAw0Pb2diOen6cjuH6T2263WzsV3EYTKR4XaEeGyZQJv/MquL3uu3/a9eA8CR77KKa4Le6fwRAPz7FFm16vVx8pOR6PdfXq1XqulstlXbcFJI8ly/ZP98chHYvFoj6+0e87wSHDMuwiODg4qMfLORQGg0E97gx18PWr1aoWc7zOmA8hEmSe+NHtdjUajRpHSHIso2DDdrh+kuLoEOFpEp4Tind+f7lc1qKS14wdMRbf6KJw2S7T64s5FaITge8ZHgff57HzWNndQpGR9/L73SY8WEyiSBjzaZyGB1x0uKtnceJyYfK5r9B7v6DddXeZ8NwrKj33io+TJH3y3+3o4B2/fsEtSjwkyOdwIpF46HEmgkJVVT+pw8y1qqrqo5I+/07uN3GgaGCSxmSNJmDcBV0ul1osFjXhdlK+6XRakwgLDibIzlvgz32fdGg/n81mDRFiOBzWyQPpCIgJ6aRjcjUYDBqk3GSJDgeTWen42EcnVVwul5pOp5JUk+nBYFCLGCb33W63Js0mfB6rwWBQk+/VaqX5fF6LGzxJgokYo03eQgrDJZggUmruAkdHievzeDpJo8u8cuWKxuNx/drZ2dHzn//8ep6n02mDWC+XS00mkxNijtcEj330mPpUC39ukkpRw8INTwxxORRGTMh9/cHBgfb29uo2xNM/PIbD4bBuo9eByf54PG6IaSb2bWEPHAf/7fnlvLHNFNj4nWN5/v6ZlDt8xnPX6/UagkLMK+J+MWTBbWPi0ojYLn6fYp+kY1EjgiJL/E7SheJxjk6GhwX3+ixOXA5sPXJN7/pLr5SKtOpK0gMrmp0L3vk1L9Dz3/S4tv/Jz150UxIPIPI5nEgkLhvOw6FwVzD5JnFn3LbUtPHTSUALPm3qdCxURzkS/Bmz28efFiViUj6XT8JsokT3AMlVTIzIvkhq7MbGJHcuf7FY1OPkz30EpIm3XQlMsug20uVh0sVdeFrYp9Npg/zRoWCCzd3/2J+2EJCY7NHw7vy1a9e0vb2t0Wik0WhUOzM6nY7G43FdvsUPJ3akO8PXeMzdv4ODAw2Hw4Zww8SPXg8WXyw20KESd77p8mAIDceEOUA6nU692+/72V4na/Q8te3Ex/l3X5iQknPAz9l2uiYYUmDhg9+pGI7DsAL2JebSiDklDIsg60IiohjAkBR+rxl+EftB50V0KtD99AC7DhKJW6L0+nrmKz9T1UlNUpK06kn74+pShzichoNhpWdesaXFV71GkvS8//3tOvjoxy64VYlEIpFIbCY2RlAwCY+7//7PfyRMjsE3mTYBMsnkiQwmEyaSLsM/+bvJM8lP3IGnu4GCQBQnGD4gHe/USsfCApMhLpfLmtT6Gu/Iuq9tu8PMQeDyuAPr+2i1X61WjWMRfa377ffcD4+dybr/9ljwZAY7Kwh/5rLd/uFwqO3tbV25ckWj0aj+224IhqHM5/PaMcEcDjzS0yc38NjR8Xhcu1IsEsR4+sFgoOFwWDtEGNoSRSxa571GePqCcyJwZz26UzwGHGOva69tvngtvzP8OyZe9Hxx3n0fk2uSrFMwcH/pEInfFwoS/r6ta18Mh2AoiMHvEtduLJP18PP4Ga+J7z/g4QyJRCu2rl5V9bIX6aOfVq0VFBK3xuzxlWaPH/5+7d2foN7bujp4OvPpJRKJRCIRsRGCAskMSZeFAO6Qchea93lHWWpm7XfSPCZzjLH9FAUsAtD+T9HCRxf6GEu6ICgkSNJgMKhDCSRpNptJah4X6Lpns1mdR0A6ThDpekjeaSc3TJR5QgSTEZpQ7e3taTabqd/v6+rVq7Udv9vtNsIm4phQULCo0O/3GwIERQPPHUkbd/z992g0qkMdrl69qtFopKtXr2o8HjdOR3AIiEMNeDyjw0Ec9rK9vd3IdUCXhtvIvAySNB6PNRqNtLOz0zjBgcSfogHr9vi5z5PJRJPJpCawThA5Go0awoEJuNvk9e159HeD5DqGBDCMg6Sf/eb3yTki3G+GELgd/n7EXANMuBnDEXyfy+P3ii6XyWTSEBraSD7XNoUwt9HXUTBj6MQ6BwK/p21iRhtScEg8UChF+7/1ZXrXHxxedEseKvz67xvo4376Zdr5wQ9L+UxIJBKJRKKBjRAUuHMaLcv8jMSWpLmqKi0WiwZZi8fwuUxaqE2+7ARg/RYCTOpNbFyvycm6WHdJdWz+aDSqy7Zdn4TRlvnpdFr3wfZzXiOpUadt6rbs0wEhNU+tsGjhEwlMqu0u8PX9fr9x4sBisWgcq+mxcN+c58LtGY/HtXBCgYdk2X3rdDq1iGKHgEMfnLfC/fe4z+dzffSjH63nmATT+S5cFuP5HUpzcHCgwWBQj5fbv7OzUzsldnZ26rGm48PC1GQyqV0Yrvfq1auNcd7d3a1zIZi8u310XtBZ05bE0uvGOQ4YCsOwHIpZHmu3n7kwKC5RkGsTqfid9M6/x5BuIF/jXBxO8NiWoJF99H1cs24LxavoBPJpJ14THA9/f+hsiuDzwD/brovfvURi0/GRP/nZuvGJUuZEOHs8/duLnv3E1+hFf/OnLropiUQikUhsFDZCUJCOyT7DHNpEhRgr7fe4I2onAXeXY+gESYekBkHzdbSrO49BbIP/9i4027ZcLuvkdqPRqCZd/ox5HNxun7QwHA7r4xNN3pgvgk4N/+7Ef+yDx9Ux/rPZrCabJrre3XZf6XRgQkyCO8YmlnZiOO+BE2PSDh9Jr0MMTPJHo1HtNvB9/X5f29vbunbtmvb29vTYY4+p0+nUwoV33GMCRY+tBQy3od/v1yKPSTITUzp/AwUHkt74vnMgDAaD2m1hwcJikYm4pEbYhkM57Gjg2osOE99jYcXz4HVAB4T773opjJCg+zsXBQzOEdc5BYSqqhpjH0M6eBSp22nBKooEvoffMd/D7zjFNIcJUQCj+6ftGdP2+zrEdiUSm4rS7eqjf+y3a/fF0qqf6/U8UHUrLR6RPvonXqPn/9DbdPDMMxfdpEQikUgkNgIbIygw10F0FEiqySoRk74xP0EUJ26VPNAnEsR4bF/jIxIZTmFS5F1THtlni72PPVytVo3Ejf7pnV/mVPAOr4k6ySXb6/tMKE3wXLfHwmICSfBqdXj8o49EZNJFCwoUFZzfwfPCWHvDBHAwGDTyDTCXBHfcTTCZEJFCAuPzfZzkZDLRo48+Wlv3LRCQ1LrfnkPX7/F1uAadGa6HIS8ec889czB4vC3ueAwtijixpx0l/N3CkufGiSZjssMY/mNQHOM4WZwx2ZdUJ9Dke3TIUFTweHk9cc5YXxQYYoJLjwVzkTCsIoYnRERBwWXzWEu6i7gW1wlfdyoKUJRpy8mQSGwCui/9BK2ujlX1tvTMKw9Jb+L8sOpXeuZV0iPvfKkGb+tr/4NPX3STEolEIpG4cGyMoEDCFd0JPu4wkgLuWFIcYBw6CTRzMJAMkeC37ZYy5t+E3YSStvbhcNiIX/dPiwPD4VAHBwd1Rn+7HkwsDYZWxBh5hlwY/lxqCi8UPebzuWazWUOYsFDgvnjsnLvAAoSdALTeU5wgUXVYChNXRrLvcobDYX1cpI/ZpHOEVvzRaFT36caNG5JUhxWYoFvQYWhAKaUWOKKd3mNqEsy/LVaY0MYQB4bmLJfLOpRhOBzqypUrunbtmqrq8NQMukvcjvF4XIdy7O7u1nN2GvGl+8J94/GYPKXCbW1zIHjuXQ4TTVI0o7hDcYvfN36nKHhxrVAs5BqwWNMmTEUhyG1mHRY9Yt9YzrpQhttBfK4kEhuBUlS6h8/7p77whXruk/3dSTHhfuE3XtfXC6+/RNs/8lFVR8/SRCKRSCQuKzZGUCC840/CYVJMt0EkIiQATGLo2Hdfw+SAJJDcxXY7/DJR4+/esZYOyehoNKqJ/WQyqYktLe3eHS+l1CEKdAK4bw6XcHLCwWCg+XxeOzhikkmTPxM/iw/u+2w203w+r6/z7rPrpnODRwhOJpN6DqKgYJGCoSI7Ozt1+IcTW3Ln3OTfO/nb29va2dnReDzWcDisibxdFRYppEOxZGdnRx/3cR+nXq+nmzdv1iEi7M/e3l7DGSDphDhDq77LN3l2LD4dGRZVvOa8+07BxXkbxuOxrly5Ugs4MQ+DRSiHKTzyyCOazWaaTqd1v91+Cl/RLeC17/n0OqEAxjCGePwok5UyBMZr0uvc36vxeNxwnrS5AShyMCyB+SgYwkDhj2EdrtfhJF5TTIhJkdDjwfAHClKs83bAPBOJxCZh65Wv0Dv+i+uS0pFwkXjqc4qGr3i1nvzWzKmQSCQSicuNjREU7EDg7m+0ZTMMwO/7ZSJKYswQA+7Am4AZjrOnXdwkyDC5NanzaQw85s9wPoMYe2/Yns6QCRMjE9aDgwNNp1ONx+NGWIBFCBNTkm73vdfr1YTfdn3u/LuNcaedrgz3waERi8VCN27cqMfNRNknQ7is8XjcEGqqqqoJIZ0KFBR8GgZ315l0kyS51+vp6tWrdRJNuxIsWrhvFjpIyl02hYS4A89x8txQuOJuvgUTixCLxaIWLHxihHQoLjG0ZbFY1Ak4u91uPQ6eS69jhpYwPIY5DBh6YKeCx5h5RGJYQBQr6LyILgaGgXhNeBwYnsL17fs8H87lwPXIebF4QLEkuossePi66EqIYl8MIaGziK4Nf55IbCK6L3pSH/iyT6j/3h9Lq36G4Vw0qi1p/kilD/2Xn6Mn/tGv6uDIOZdIJBKJxGXDxggKUvM//fxpMcG7j97hJwk2seQOZCRHTA5HQYGx89IxaWRsOa81IZbU2PVlPxy77jJp1ebf3qWNrou4gyypFk2cyI9Z7j0GJN/MX0DhwG0kgSSRJdF0QkG3g0ki/ZmFDZNYz4/H2iTbiRc9fj7hwWKCy6ZF3qTY82uhYzweN0IIXA5j+efzecMNQIeExYRIMFk/8xdQkPLPeOoIRQ+fWEEBwuNm8cFjxISQHmMSXopSLoc5Efy+17HHn+uYOTEoYjGPBL8HLp995zU80jOScToHuMbc7+gsYBlR9KDo5ro9JlyvUTDsdDonEj8yfIltjeEW/PtOcy8kEmeJ7ks/Qbu/5QW68fIUEDYRq0GlG59U6fpnvVzDt75f+0998KKblEgkEonEfcdGCAoMYzC4uxl3K70T7HtNnrgTz11QJtEjqSSx8Us6TsRmokxiblLiTP3S8W593PGNMe++1gTJ7SHh9ecmy26Dd+pp3d7b2ztBEk243Le2hIgkhYyJjzvXvsbj4jwPPJ3ATgC3qd/va2dnpyFiGL1eT9vb23W4QTzVgaKQx8GChUNF6NTg8aAUJ/yaTqeaTqeazWaNeeMuPi35JLWeryhcUegyfOQnEzSORqNG+ApzDHheowjgebIQ5XYsl0vNZjNtb2/XO/Usw+0ime50OrWLxt8TSbVTIIoUHB/PvUU838/171AFlh2/jzz60WvbYSBuM0U8tyWGLVisYVgL+xDDGTiuFjAIjhm/m/H5kUhcND76uU/ow5950a1InIoivftLe3rR9sdr9GPPqDo6gSeRSCQSicuCjRAUJLWSBCacMzGwzZ670aWUxikMJjG0ZHOH22VKxwTIRM2EjtnpHdYwHA4bJJn5BkxQTfRsv2YbubPv8k12vDPta02wff18Ptf29na9O+8jJWezWU287ZogsbRrwaSU7THcZlrLPb52F1iAcfmRpFmMcJ4GhqYwMaDbwxh7H+Po/AwmlHQo2CXhdnsOh8NhPd6e52vXrtU5J+bzuabT6Yl5i+EtDDGwMODPfPyl7zVh93iPx2N9+MMfbjgHnE/Ba+rmzZv1+NCVQiHLrhYmlaSocHBwUCevdBiBdJys0bvtFBUsCvm7w9AO98dzw1wF7ie/dy7PffP3lmuaiRw51g5XcC4Pj4HLoZhD90V0Svj7ZuLv9sWwD843Qz9cB8MfKGBwfl3GPAlCIpG4Bd7/2o5Gn/KZeuG3ZU6FRCKRSFwubISgEJO8WVRgnD/jy30tLdXc2TfZs6ggNQUKk3WGNDBum1bzSJy5e27CTUcAr2FuA7fR5drebvdBJIN2I3Cn3iSs3+9rPB7XBJtEns4J6Tjb/ng8biQQNHEn8TKJNyi+WMihqNDv92syzx1khmhIx0dudrvdWgyi/Zzx+GyLiayJs8mqT9MwAeZJGk4C6bGPpzm0zRWdKFxHHicLG+47ibfbZULtMBAfS+mcA86J4b65XJ6wQfBEEa9NOxdcrufF48RX2zqwAGLyTueF1yhFECap9BhTALBwxHXsU0wsDrl/W1tbtSOFroOYCDK6E+hyoNuI6zbmXnD7Sjk+4YPhMTG5Je/zcyW6UBKJ+4XuEx+n933FyyRJ88cq5ekNDwaqjjR7rNLTf+5z9MQ/+GWt9vYuukmJRCKRSNwXbISgIKlBZGOiNSaF8659jNGnEMA4dBMPOxRiCIR07BLg3+tyJ1C8YKgGbd1M6Bft2G6nib3JGNttEcKkMNblcdjZ2VFVHZ4iYcJnCzlJqslc7F/sp9vg6yxQsE20ynM8TQ5Nghk+QWHAeQ3cBxP6mBCQcfR2T3iHfp3rY7FY1GXSocFdbZdNYYgnZHj+Yg4FxuLTzeL+r1aHJ2JIx3k1KObYScJEj66DQhnrZ54PrmWLKVw/XiceAztK2GbmIGCIEB0nzJPAtcdcDtzdd6iIf+d6suDAHAhORuo5pFOEZUWhI7oGLBhZ7FgH5mpwuXH9+FnBz1lXInFf8OrfqlV/Szcf62v3JZkz4UHEalDp5ksqXf/cT9XoLR/Q/vs/cNFNSiQSiUTi3LERggJt5ty5NgFjYj86CvzyTrmJku3xJpXc+TZZ4s4k8xpIOkGMYrI6OyZIyEmI2+K7TeRMnBaLRU3k/LK12gTVO+EeIx67Z2u/dEiafEwlczW0kUTXw7ElUaVbIgoKg8GgFkJch8Uchn9QPCExddjFbDar2+Tdf7fB5I5jx7H2iQkeT4aZuB3xqEEngGRoQEzy6ZwA3B3nGvG4cqy4Lklc7drg2DtBo50O0ZFhdwNPDWH+C7aTR16aUDtppsvhPEYBoS3khQQ+ijH+brLdbntMkhiJOb9Tdi6MRqNGAkqvEQo+/Nvl0DUQ80VQPKEgwZ/xu05BwWt/XdhDInHeeM+XXNHiWgoJDzyK9Jtf3NWLt57U6JlntToSmhOJRCKReFixMYKCd6mZLLGqKs1ms5qsOwzA5M9kxAn5nCPAZcadZlq4abF2PgNaoXlknn+a0ElqWPH9edxRlo5j7v07d8dJVGmD9y7+cDisnQVtuRt8LCETVJJ0xd1h5xzwGLAsEjW3zwTXO8sWBEiuI+GWVB9taXJr4key5rHv9Xo1yV4sFg23AImv6/Ac+xqfdsHTKCgijEYjPfLIIw0bv+/luEYSyvwGnlsLG66fhFZSbedfLpfa3d2tx6jX69VtsKASc1lEh4bf49x4DTpMgCKRcyo4NMVtpFDh/jF/g9cOxQzmIfD3kfe7XxQCqqpqJHx0eIzzZfC7EYm816DHx2uT40+xjp/F+XQoBcUmhjtEodB1+x4+N+J8JBKJxO3ivf/ZlrY/9dP0xLdnToVEIpFIPNzYCEFBahI673oaJgHRBi4duwm8g87rJTVIW6zPooBPEojOhbhjKh2HNkiqyY//pnXc7aCN3u1hGe6PCc3e3l7dJpOxfr9fEyQKEiZbg8FA4/G4Ti5oIuTYftfrnW3Xxx15gy4Qj69hkk7y6T6Q3DHOnk4JiwIm/WyXCaVPcLCgQWIoHdv6XTZJLHMfcM59ogR33H2N28GQDJ444TH2HMSjCBnfTyHGpz4wfGR7e7sWdRju4DllUkauO7fbY0Rxi6EDzAvifniuPJauk4IA3/e82l1CISvm3HD/6aihQ4FhDF67vi8mSaXjweMZQ2z4vWI7+X6n02kkGDW43igCWUDhaRMW5qK7KZFIJG4b5eiVSCQSicRDjnsSFEopj0j6/0j6LTrMHPU1kt4u6fslvUTSuyV9RVVVz9yqLO7YmvSRbDUavUZw8E46STBBMm6SZWJi0hp3hX2fyzfJiESG7XF/4q5uTBDJHfs2gjyfz2uxwyTJ7eG4MNQgEmHawePYxXJI+vi3x8Lkn/H/7otzBdDFwdh4tp3HHbr9JnUx1wPHiITdvztZJfvgeuw+8WkPMZlfXBt2OSyXyzrnAhMM0u3CfAdcIxR0CIdFUJzgenQ4B49EZcgD81jE8Bv3abU6zM1Bkcjrm+IMBbA2Wz/XhOeXY8fyGX5iZwoFnjankAWIKNpFN4+/E2wXwyviGPLvGHLhMumMMCjMMNzlQXIonOWzOHF/0dne1vw1n6KDQSZffNiw3Jb2P/8z1fs3v6xqzf9LEg8P8jmcSCQuK+7VofB3JP2fVVX9wVJKX9JY0l+R9ONVVX1rKeUNkt4g6RtPK4SkJToKePSjYYsz8wVIxwSpLZu9RQaLCSaiPMmBzgQS8Ri+0Eau4okQzg8QxQaeUEFy43JMykyc7VZwfgWSbf5Nh4CJmMeU4RVMRkniR9GAMevso8u0UOJ+bG0dnjqws7PTEATcTucVcDstlsR8ARYlPH6RUNJazxMNSCa5hjyG8/lck8mk7qOTBcaX2+WTCtw35rKwmMQTRehOiGsxrhuC66uUor29vVpEKqXUCSi5VugG4Vx1u916jVgoc4gABSkKFExE6fVKQYBhEb1erxYm/L2hwMHvG8MsYn4GilYUQvy9i99/ih1tjh/+Hb+rURiIzoy20AuW+YDhTJ7FifuLznCo8glP6jd/T095msPDh8WjK/3ml/T08p8bqbp586Kbkzh/5HM4kUhcSty1oFBKuSrpd0r645JUVdVC0qKU8jpJrz267Lsl/aRu8fC0s8C/S8fE86jsEzuFJrwmmCaAnU5Hw+HwRJy/yyHpi2Sftm9a3NvIInfTTQKZ+d47wm195bGY7EdVVbXTwEkDHXNvAYTY39/XdDptJOSjADMcDhsk05850SLzJLhuJvzzzjNt8yavHs+DgwMNh0Ntb2/r6tWr2tnZaSQ8dN3e+fe4213g0IB+v6/RaFT3zaEZFCI8jyb9Flso0rTZ9GezmUopdX2j0aheZybcFpn29vY0nU5rIWK1Wul5z3teHTKxXC41mUxqwu51w/VVVVV92oWkWiyxe8N18yjUUkp9rGSn06nzIEQHgteNnSiun/NiscP5LzwG/p447CLmDHEIgcWFNuLtsebnbtNqtarXjgWI+XzeIPUUWTwGUYjj953OFAoE/G7F7zXXivNAcG4YduR5okBjsavt+7uJOMtnceL+YveLf5s+8HkPhgsmkUisRz6HE4nEZca9OBReJunDkr6zlPLbJL1J0jdIekFVVU9JUlVVT5VSnn87hTHuft0OIcMieGpC2+68pJr0W2wwgTa5cn0mHS6b9Th0wcR8sVhoOBxKUmMn16SNFv82uzU/M/HirrcJZL/fr4nNZDLRzZs3tbu7q+FwWF9jguz+mJi7TBMml+dxor2fYQN2KtASz9COOC9ug+dgMBhoZ2ensTPuMeF4kAA6D4V3w8fjcSM2nmMVE07SVeD2uByGHjCEZDqdajKZ1ONSSjlBHj0WHiM6FlwHRY0YphMTB7ou53Jg2IjrktRwodB6H8efgpTfZ31ep05oSniuebqChRh/J+zi8bq1uOP3vean02njRAgmvux2u43wC36nojjYRt6jKBSdOEbMCeI2+8Uklu4Dnxd8bvhzzyVFig3HmT6LE/cZqSc81KiK9J6v/6168Y8+p+pNb7no5iTOD/kcTiQSlxb3Iih0JX2GpK+vqupnSyl/R4dWrttCKeX1kl4vqSYiR+/XRFpqZtz359IxefTfPM3A4CkQzngvqRHDT7LDUAaTWO/y2nFgokHrv0ke7eLSycz9JEkmWpJOkBYLIXRSeMfcO/0eo/l8XrsYGMLgnWKPg50JJti0jMd+xTZxd5eih0MMmDDwypUrGgwGOjg40HQ6PWFRN0xOKS4wN4Pn1GEFbSEDbo/LsZjkkAaGhVDg4HGYkZQzVIKCAtcLd/ZJvokYOkKBI+7Ymwz7pJLBYFCf9LEOnmOG5rherhnmB/F4+CQInqjhdcL52N/fr51D8chUi0AUJthPfkcoAtFVEetzmzk+7qsRQ0AoHnhOmEeECTa5lil8xKSaDJ94QASFM3sWDzU+nxYmEpcVRZo9vtLBqKc8hPahRj6HE4nEpcW9CArvk/S+qqp+9ujvf6LDh+fTpZQnjpTYJyR9qO3mqqreKOmNkjQajSruiktq/Gc+xmiTVLTFwZNceeecFve4Q8preUwk22PC7h1ahzuY7DBHQ8xV4HJIlknaGPJA0kwiRWeFbeQO97CowLwCDvvgmPnYzRg+wXFzP72r2+/3Gy6MaLs3gR8MBhoMBnrkkUe0vb2t1Wqlvb29mtQyVwNdJHRE0CXBfruuuNPte1y+3Qbur8UTzqPbboHFhJOhFXRwMB9BLMdj5zaYjEZRynWyjyTM7o+FjpgIsg0xV0NbG2N+EI6ZnTQUJbgzzx3608Z8uVzWbR2Px/XYWlBw2R4r5kpwfZx/Cgp8n+uErguKBxZmolOCQqHbzjUWRaU298iG48yexVfL9QcjzuMhQXe6Uu9mV8srOeyJxAOOfA4nEolLi7sWFKqq+mAp5b2llE+uqurtkj5f0q8dvb5K0rce/fzhW5UVdySPyq+JD2P2paZtOboSYt4D3+Oj+mazWePEBJIU29H9N3M0OLyA5Mik3n9z59Z9MlHjzq3bx51tttfkn+ET8/lcN27cqO3yFh9cjo8qdLy4+2aRpNvtNpwLJuDROeAQhjZxw+IH8xSMRiPt7OxoNBqp1+tpZ2dHjz/+uLa2tuqTFUopevbZZ0/savf7/YY1PxJIjyFDS5iDwGPp+WGbufu9DibwJOXuq39SRKIQQpu+8wlQOIlwyIWPJ3XsvuduNps1xBkf+UgnhAm32+CkjV5fFiU8x16PHhfmdaAQ5vcs2lhcWiwWDfIehTiHSHhdOXGl157JflsST88thTeLOVEE8pqxUMDngQUY5hDxvS6fIQ92J9EtEUN8mIPiQRAUzvJZnLi/6P+fP69P/NUn9bb/6sUX3ZREInEPyOdwIpG4zLjXUx6+XtL3lMNstr8u6asldST9QCnlayW9R9KX305BtNSbKMZcBHG3kbuWJAgMFZCOj+yLyexIPuMRfSQiW1tbdW4AE7r5fH4iOaHb7PAIHg9IMso+R1t1bKeJ5v7+vnZ3d+vkgA7loMji+heLRSNEwCS2lKLt7e3G2NGVQau3cwNEwum2mfS6HdeuXdP169d19epVXblyRVtbWxqNRtrd3dWNGzfqcI3ZbFaX1e12de3atbofMY7dYhHnJ1r8JTXWisntuvwDvobx9qPRqG5Dp9PR9vZ2I4eDxQATTifC5PqigOHy+d7NmzcbJNcCgEUCh1aYFHt+SMS5VnjyhwU2hiV4XhgK4/liWXFN0vnjtRSdBnHNe5041IXjzjmlY8LfW7oULHRxfilwUfzjM8Bj7TwQMXyJ65uhVJw7v8dnjF9esxuOM3sWJ+4fFl/4WXrPZ/clPRChNYlE4nTkcziRSFxK3JOgUFXVmyV9VstHn38n5XDXlM6EaD0mGTPp8bUkMYyD5st1mbz4Pu9yMq6epxxIqnfTpfYkcuwLnQje6Yyfm9yQqNFe7pMvSIIsLHhHnmEZ3O1l2AXdGu6TiWyn06l3lV0Wbf5VVdU73myXd6PH43FNxnd2dupjIz2WBwcH2tnZ0Xg81mQy0XQ61Xw+b8zHcDhsJCm064LrIibOY5gB14zvYz6NaK2PAozrcXhCp9OpT8egIOMwE4tJXgsWGew+sDhAV0MMxYh2fpLteOSiER087j9DMLgmuYbj2vP6p8OAiR5dj9caT4uITgmSf7fd7eVPChAEx0LSiYSVDFvh/e6Dr6G4QycE64niSfyu+Drm1nhQcFbP4sT9w+ILP0sfe2Vfi0dSTEgkHgbkcziRSFxW3KtD4czAHAht75N4mXQYJsdtJI0vigomTt7J9e6t34+JIk2S/Tdt3AZJjNtA23lbLHp8URywQEDCRFHB7THJZxw/ibbv8/GJJHC2/FOUMTGMCfJ4csRgMND29rauXbtW/769vd1wUHS7XY1GI43HYw2HQ41GI+3t7dXto02eBJ9j4XGNxNOEPSb9c9l0n3hOmeCRIhbdJu6bdByfT8eHXQQcG9dt1wBFJH/O9cIwHa4hrhcKL8w5QLEt5k2IOROioMATGVy/nREee9fX6XRqp43viw4MinUeFwsv8XQJjzW/C3wxTMh/e74oRnismMMjPjNijgqPLb+rDF3hGDIUI5E4a3SuXFHn2lVJ0nte09fiWooJiUQikUgkHmxshKAQCQPjr7mz7N+5Mxt399vK5lF3JHT9fr/OARBjuX0igqR6N5f1O0Gid2q9i8/d32jz9u6pd3wtFPC4Ptcfbd0mvbxnNpvVCfx2dnbqo/pIvGwjd46F2WzWCOuwo4AEazKZ1KJFTG43GAzqMbt27ZoeffTR2oWwvb3dSDBpIcafOceDbewm3cypcHBwUFvMSWb5N9eMnReDwaDeHTc5jcdyMk9CFKQ8B5LqPppg8rOqqhqnkFCosEshOhg8rk6c6XG0UEAhx6TdfaEIwLm06OA1Fh09JN7+aQHHrhOvJY+lxQzmlPC8cI3w+0OBwe2Kwg1DNxzSwdAChnQYFvWcI4NiBvvn74nnOLpYCIsU/s5SYKSThc+BFBYSZ4np7/wUvfcLvKZSTEgkEolEIvHgYyMEBalpY2fMdMw94Gt8jwlAjHs2YZ3P59rd3W3E3jthnYnScDisyVGM15aOEzYy8R+FAxM7E37WYWfAzZs369MP1oEEhm4NlzscDk9k2rcwQVIUrdz8zITOhHA8Htd9XS6X2tvba7ggfIyhQwEc4kAh49FHH9V4PK5P0zAhpnhikr69vd2YG48n8yUw0aIkjcfjE6ITibikRpiFx8wvh46YbNtx4AR9Fn+4I+4xlg538SeTyYnQC+7Su888cYPJB0lmnYPBooXdBUzqSIeDx49HlTIshd+Z+XxeCxsMzYluCo+Z16hPuuA9ft9ryWub3wG6Azy2/H4QdBPEMKAIv8d16/VoRxGJP50SDM2w0Eg3BYUJj7nXM8W2GEqVSNwLnv76z9HkhZWkTOCeSCQSiUTi4cHGCApSM/8AibU/k1TvnDJ/gn9n3Dh3Rrlj7DJiAjsnUOROK232JjYuOxJ773oyLMAwefZ7JGwxTt67tzGUwu20E8KkUlKjL24PxRmOr8Gd6bhTznCN+Xxe7+7zeMh+v1+Hi4xGI41Go3rXnadd+H5JtYgxHA7r2HwT4pjHgLvO8Zg/igp0crgOzwNFCo871wzHwiTTx1R6nF2/cyowp4THz+IHX06EyfXI+haLRcMp0BYGY4dOnCPOtcfW4gzdCyT7FEJYT1zjXBtug8m/1y9DGhxqY2JuscZtjd9fOom89jk/FBr8nvtMsYU5Krwm3G4m6ORJGXHt093h93lKSgoKibPEckc6GKaYcOlQSU/+m5X67/6w9m99dSKRSCQSDxw2RlDgLrp0TDL8mUmIiQNDCaSTxzi6PJOc2WxWkzcKAxQAfC8T0XE3nESOAgRj5kmA6BYw0ST5jeTWZMvWdo5BPIFCUiP0g7kbTLyYob8tKR3dHnaCkGxFctvr9WqHAk956Pf7GgwGGg6H9U6yia136xn2Qbu/r+Oc0Sof20nnBhPzsU8WFKJ7g2EAUfChqMC59+cWFFi22+N+2hlgIkvBiHNJwcbv2yHAzz0mJLYU1nwNd+WZgyHm42gTLQy6F9rEOl7L3CJbW1u1m2U6ndb1O1zCa4eiCctlWFNbyIbbRgEl1sFxtUBgkY9CYlsbKGKwXtafSNwTOlvqfsKLVG3Mv7aJ+4lSSdv/11u1f/PmRTclkUgkEolzwUb8F4dWfe/Qx6RqUpOsx51Mfx6FBlvap9OppGMrfFVV9U6zr/O9Jv8UBpgUj+SYORocEuHyTKhc5o0bN+pwgQjurnqX3GNjQsVj/2Jb4m6qQy0cCkBSRjLFhHwmYAw3cb97vZ62t7f16KOPNk7F8HjaeeAcCHt7e5pMJprNZjXZZqiFibITHHrs6VRwP7gjzdM5HGNvsk+y2OYOYE4Mz5EJLYksXRN2uFgg8DixbQ5zcOiLr6MQEmPxKYq5va7PY0hBhQkr28DTP5ic064WJ5r0Z+wDvz8cB4ttFuAMr0mvKzopPKcUevj9jo4ir4koClH88ZxTNKEDhP3i5wxHYkgU+2sHhtdRp9OpQ3zacrIkEneKrUev6W1f/4RUMmdCIpFIJBKJhw8bIShwB5xx4nQHMMdC3GHlzj0Jp8v2Tr6vGQ6HrbHwRlVVmkwmDVs9T3gwiaIrgC4F2rpJCk3ybcN2vw1auN1Wj4kJmnf07bagI2M4HNZ5HRh2YEcFHQAu00LKcrmshYDd3V1NJpP6JIbxeKwrV67o+vXr9akOFgZM6EgUF4uF9vb29NxzzzVyCpjgMU+FSaX71uv1NBwO6zHmUYTOe+Gx8nj5uE/OucfvNFLoNdfv908kRHT9Hl+uEe960y3Bubbg5XW8WCxqB8doNFK329V0Om0IOm5rmz3f42ZRwO9z3D2+rpNCgueJfYzCh+eAa87jSlGNQh7zJFRVVSfGZOhFTGxI9wPzeURhggk3KRKsVqu6fcPhsC7TP7nOHOpEF5D7RNGSYRJebxy3RCKRSCQSiUQi0Y6N+d9y2w67dLyLTDAZnkmy49FNpEwYIkGkEEAyNpvNavLHpHbMQs8wBu+qVlXV2Kl3m2IOCFu1TTZjOAVt9Ox/29+um2EBFF3ifU466PGkY8HtYWiIiZsTMfqUhu3tbT3yyCP1Di7DTEzkPG5OPri7u1ufihBj1knGGfbhPkpq7EBHm3ybQyPmx6CgYOEkOjTieHHNxM94ugLJMeekrV8UCaIYFa3+nCuG+tg1w+uZV4COAIbzMJyByR9jG72+mS/DBNztpWjhe0z6ndiUayKGFsXQEjoP6BLid5PjTPFusVg0RIUolnhNxDItrrnt8T6HYPD7lUgkEneK/jMdPfnvZqqOHJKJRCKRSDyM2AhBIRK7GLbA63wtd+a9W8lEgbTMe1c8igqug+EK3jXl8XeuI+7u04buHAeREJPwmrCYFLr9DGvgrjpJDokqk9TxKMlo3SeB9/skeHFsWYakmlj6mMgrV67o2rVrtUvA42OSFwWFxWKhmzdv1sdAMiQhgqKRx8LjbmLpOji3TFjoe7nj3da/eDKB/yb5j64VJgWczWYnHAIk1pxf/jRp9tpxHfFkAo6BXx6DmIMjigkGxYTo8LGgEJMjMryBuTHi2rYIRcLt6yk2eG44H9GRw58M4/Ea5ncshunExIx0D8W6+B2wQGIRhEJLFJSYayORuCss97X9vo6mL6i06mdujsuE3p609RO/mOd6JBKJROKhxkYICtLxMXIk9SaUJr9xp9HkbDwe69FHH62Pk2MyPhMIhiFIx0fNkQzb0s0dUROamNDR+RdM9OmIcPkmoW6rd8cj2SG5cTkeB4+Jf1JIIUl1cjyTLDsEPH4uM5LfSPR4vW36w+FQV65c0eOPP67r16/X7TWxtgtif39fk8mkdngsl0s9++yzjRMSmBuC/aezgDH3HkOe1OGkjl43LjOSbdfjeWWsvK8vpdQhGVwXMacDyS7FJgpBJN12u7gs76YzLMfjRxHHwoHBdUxy69Agrmeuv5ikU1It9jA0x3DogYUBnuhBdwHrokjnkAeGO3D9tu30twkaJPZ0a6xzKVBU41wxRIjfHeapcJ+ikOc2sQ+JxN3i4MYNPfHtP6X3fdPnaPb8pJaXBWWlPCE0kUgkEpcCGyEorFarOmki35PU+M+/SQHzJfT7fT3yyCO6evVq43x6ErF+v68bN27URNtHOFKcaNsRNfGkQMHdVhMQf854cqm5026bvIWSeOa9HRYkWVFQ4KkRTFBnomvngMM2TLosVCwWC21tbTWSL47H47pf4/G4HneP5c7Ojh555BFdv35dV69e1fb2diNHwN7eXqNvk8lEN2/erF8MH7HdnCcoRCcAE2VyLTjHA3MO+P6YT4LhCpxXz72FCY89QyCkptjh6zyfJrwWUNxm7uQzqSJdLUw46YSSJMl0cPD4RQsJdgX4vWjzp/jGsjz2TIDJ3XyuVZ7g4bnynMQwELeTc0f3B4U6h9p4Tih8cOxjXgPOtdcp54eiCsONPGYUhZifwW1yAlSKGp4Ttz+RSCTuFC/61wca/cSblak4E4lEIvGwYyMEBUknCBWJFneu4+513E2PpIYhA7Fs/m73gAmjwfecNNBkxETNP90e10/BgacNkABaFPGLbWTeAZJRl2FySLu83zfh5UkTbpv7PplM6va57VeuXFGv16vzLphgmqwySZ0dCc67wOMDp9NpIyEewwBMHj32BMl9tOKb7HE8YsI/zgnf47hYKOIpECaxJutcIx4jfra1tVWLNrTssz0Uneh8oLvBsGuBogCt/+t2+L0eY6gBf2fuArfLP2O4gMWO0WjUENI81jyVgWW6Pc6v4XKdmyTm3OC8x/CbtlCNOF5cK/yb91tYcDsZYsEQFoYG+X6PRwwlSSQSidvB1mKl1VG4XyKRSCQSDzM2QlCI5NHvRat/DBWQjomQya6JJwlCJAUxTls6juNuI7lso0UFhhiQVLblJ5COSTuFDeZOcB9otzcRJplne5kgj8SRMfUkYjGhn9tpi7tPWNja2qoz9ts1QaLvcvb397W7u1s7EUzQ7CZg7gr3bx04t9x15xzzKEK+7/5ZaOC9bqfbZeGDRLmN3NMFEueK65JCCdvFPBsUkiwotOXO4FhxDOzKoRjkdsY16s+YJ4HrOeaaiPknGPLA79q67wXHIc4V3TN0BnC+LcL4/XhdFA0ieG0ExzfmVaD45jmM87yu3EQikViLStp5b0e9j80y4iGRSCQSlwIbIShIx9blaA+Xjl0CMc6Zsfe0UHc6ndraTps3iQ8JUiQO63YlTUonk0mdN8AE1feRnLociw0mgHRQmMBEIWGxWNQuAe9om+T5uul0euoOuXeb23JQ+H4SV2b2N/FlUkSLBJ1Op3YiPPPMM/rYxz5W5wNwSIWP7fOuO9sR4+JjHgeKIyaUnmfb7qMIQCLNeeQRmp4/ilM8QjCuQR5VSFgwGI1G6vV6dT+Z3NHE3O4B7+q7PLtRKIZ5jXucePQnvwv+SWeJwesZOkGHgAm8xSK6X3gEJ/tNMSTmfGhzCtAhwnVncD3zCFN/p2JfGbrA7zDnm/2PTiSPE9vNsfJaokjTJmAmEonEWlRSZ7/oye98iw6efe6iW5NIJBKJxH3BxggKjKs3ySBxsH3Z75PEO7be+QKkZtiABQWTVzoiXEbcqTWxM7l13dIh4TWZj6TTseImpCaTbpsz4bv9dhoYJHLcQe10OhqNRvV1zl/ge01wSbRHo1EjL4MFAbo3HONuh8L29nYdM++yHWu+u7urK1euaGtrS5PJpBYTnn766ToHBmPXTZAdNuG5YdK+eMICRQWGhti6zmSYrsfzyrVEmDzyVACT59FopOFw2BAeTEA5j3HHmqKG54nhDR4HH6XoPtMhEnfovcaZE8Jr2O0iqWZoDd0Nnlda/Cm4WUxwiBAJdXTNUBCIzh73IZ5QwbmN7gLfY7HHQo77RKHFc8fvp7+DFh16vV5DvFjnZmA40rpQG4NhGSkoJBKJ28Xwwx29+NvfpIOjsLpEIpFIJC4DNkJQiG6Era2tenfXZMy7mCb2PGHAsfGDweAEuYjx07Rfk4TSVWBi5DoZa+/rGO4QBYpIykjmXC53VuMuKwkn7fwUF3iMohHJsk9oiKEQzL3AHdlO5zAp32g0ahxt6ASAPjlia2tL0+m0Hne/vDNPOz8TT3JH3QScYSpMVGnyT2LsUAyKEJ5Hj6F3uuk8oKuCiTY5t14vFJ7acjQw3IC7/cwrIKne6afo5Ln2WHrsLZK4Xs4JBRM6W9xWtim6dIho53fSRQo0cd16zXGde32zL215RyjOxTwL7JvXQVtiUwo5dPLwNZlMavGmzSkRHRQxFMPj1YYUExJngc72tp7+Y/+JltfSAP8w47FfLnrez380xYREIpFIXDpshKAgNf/zbsJjMuKdaZIgEmSTGp5eQPIT46MpNvi6mEyPLgkmhSRYjtttQuxEhm6PCRp3pbmzS7u92xN3gu0mYA4D7go7RMHt8LF/vt79IQFkOMFgMNB4PNZ4PK7H+ODgoB5zqekuaAsF8M4+yzbBJVnmjjEFB7eRhDnOiddFJNicS9cTbfIeT4oJFjgiIWVYhOcu2vZJwi3U2GlAF4V/sl/uD9cQ+0lCTcGLazGGWriNFAXaxpAvighc4y7b68Xl+70YzsD6OUZsO8MY/B7JfZsIxZCPWIbDTdh/94PzuS68qW2N8P1E4l5RhgM994pKyuX0cKKSrvxGR9d/9YYO3vL2i25NIpFIJBL3HfckKJRS/oKkP6HD05Z/RdJXSxpL+n5JL5H0bklfUVXVM7copyaJMbbd/6n3UXYm6tJx4jmTX5ML7w67bNZDQu4cBavVqt7Jj8RXUoMQt9mlJTXu6/V69RGMLscnAtDazR1g78b7fhN4E6NSSiP+3+DOutvldrgst9vigu9z+Q6XuHr1qq5evVoLCiTo/X5fg8GgsSNt4WcwGNTj0u/3dfXq1UZiQ8+n2+X7eAQkHQwkkDw+kaIPHSYMBWCogseCSf/cJo8xnRgMRSFx9zok8eV64vGKniOuHyYOZPgB55DXdLvdOgwjihZtsOPB7eF4UHDgGNEZ4r8puEWxy2uVffKao2BCIayqqnr9WfyKbpwY2mFnEtcw13YUCWK7YpJHjhHzJ3BtxOSWvOa0RKKbhLN6FifOAatKnUVR1atUtX+FEw8gyoFUDg6fMy/83rfr4CMfveAWJS4a+RxOJBKXFXctKJRSnpT05yS9sqqqaSnlByR9paRXSvrxqqq+tZTyBklvkPSNtyqPZ9TTRt7pdLSzs1OTrMFg4Pob5MS7w0x6FwkgiRt3i50TwQSTZDTuukdSRJt2zPPAuH8T7GjvjjunJEMOAWAcPcmlXQi+L9rz3QfXPRqNdOXKFUmq+3v16lVdv35dz3ve83T9+nVdvXpVw+GwQTDpDnHoAOP9d3Z26vG+du2adnZ2akFksVhodnR0FkliDBOhqCCpdka477PZrM5HYdLrMZnNZnXZDtkwMTXZ5tyaqLssl+E6LBLEOHrmD2ibexNo/+17XJfbZHGJhJiuFbpVWE4URiTVyUfn83kjpITCmdc41xnXtMvjeounnniM4nqNTgV+b7im7eAgqaeg5HKdy8LXWZCIgoBfPLUjhrpQwGJyVgqLFO/Y3zbRcFNx1s/ixNni4Jln9In/zc/rvf/1qzV7fh5D+rDgif9fpe1//guSpIMglCYuH/I5nEgkLjPuNeShK2lUSlnqUIX9gKRvkvTao8+/W9JP6hYPTxIzSfVuOBMhmtB6N9y72DH2nTb7SHSiJVxSQ4SIYRcmg7437hbHXXOSNb9vgkOCyraYsNtKvs52zT6x/3RWkEyR0JG4D4fDhuX/ypUreuSRR/TYY4/p+vXrGo/HjWMqh8NhHfJggm+Ct1wudf36dfV6vTq0w4SeR2vajUArPvvmcYq7651OR4PBQMPhsB4fjjdj8Gnn9z10O0TrfiSeXisWGxjbz7XJMBvmFeB8xTmMrgbmbDB5n81m9fy6ff4ZT3OIDgeKBnSAeM15vZlQuz+DwaDhxmHoBPvl71DMlWBnhufMgo9BwYxuj7Yx4Tp3qEbMdcJ8DBw/OjfclijauQ4mAqXAxbGkkPQAhT2cybM4cT6o9vf1CT/0tD762c/XRz79wRGrEk10d4te9oOHm8udDz1zwnGVuPTI53AikbiUuGtBoaqq95dS/rak90iaSvqxqqp+rJTygqqqnjq65qlSyvNvVVYUFLxryPAGEsBo+0eb6t1Kk3Ra19vCH3xfdB6Q+JiQ8trofHCZjEOnAGGXQExeRzLE+9btkvL924mF526uCarHtdvtamdnpw512NnZqcMiPIYUCHhyhXf9x+NxI3+ARQiLEiajTq64TlBomx+7ILyzT0HBcxuTSlq84c42RQ3v9HM9MZ8E5/u03WoKWpwz6dit4FAB5kygKOA+2PERP+OrbX3E9rAPXH9Mcikdn8LAxJDR3cIQEDozmI/EY8nxj+1kWBG/H8yr4Dr9N8Ufi2zsi9dRFBNYDttEoYa5ROi+oYhAF8ODEPJwls/ixPnh4D++S6OXX5e0+Wsq0cTVd3bUnVbqTSqt/sPbJEnpNUkQ+RxOJBKXGfcS8vCopNdJeqmkZyX9YCnlj97B/a+X9HrpmLybbFpMYCy8PydRi7Z5Zr2PJzMwhILl8cQF7zjHXVU6BxhXHoUFugMisWFbYpw++x0TTUYyGXenvSPv3WKTLRM+tpmCgi3v165d07Vr13T16lVtb283dpw7ncOjKp1TgSTLZN9igwlgKaUhBHnX34SSc0ByGvtJIWY0GjUSOHKM7YzwfFmA4HU+GYIigOfK807yzrXlOXD/YhJBSXXIQhRylsul5vO55vN5Y67dhpinIH4P2nIBuI0UDbguuO54YobhMXeogI8Rdb4Nl3NwcKD5fN445cEg+V8Hhq5wTdMRYseAx4PfQ58cwvUcxQGLCvG75rGN4SieA4tm/g4wAamdFnS8bDrO8lk81Pg8mphIPHAo+0Wdo8feC3/kPdp/7/sutkGJjUY+hxOJxGXGvfxv+Qsk/UZVVR+WpFLKP5X0OZKeLqU8caTEPiHpQ203V1X1RklvlKTRaFQdlVHvMHuHO+6cOsaaRx/6M+4EEyaakurypePY7qqqtLe3VxPOeCSg74sEKiZCjInkvAtsQkWSzBh1389kkybhzCdBAur28/fhcFgnqDPZ8skQxng8rvszHo/1vOc9T9euXdN4PNZwOKwTW/oeh54w2R6JN8cw9kNSnT8hWtrXWcpJDmn5dxtcBoUjh3GYLEaUUur8D96NZt0OkSCJZZJD7pr7d6431kPSO5vN6hwH5Sg8hevba9lz7USXMSwmfgdIvjn/TIBpoYz5Afb29hrHnProVa9ZX+/PnZuBgoK/B26b5zoKGRYJKKBQNOHYck27Xn+/KazF8Y1hE1xbRDxVI5620pZ7xGU+CA4FneGz+Gq5nn78RELS895c6do//llJ0n6LSy2RCMjncCKRuLS4F0HhPZI+u5Qy1qG96/Ml/YKkPUlfJelbj37+8O0URls+CQaJg3/3zm8kdG3WdFrsTUa8Y00LvYmLYQLVtktMUBBgaIXb6VckKiRuzPNAguX3eNpF3B2n+4JEi2X7s+Fw2AgZ8E5+tNv7HroFaFO/FdiXaJn3+94ljzv3MecFreh0fvh9kkO2l32ygEQRgTvoTAro9llQ8P2cE9YTT4cwuMO/Wq1q1wZzMrgchhbQseL1ynwfHFeuK5NlzqPFivl8XosHXjMMR2DYTJw7iiwOI3G/PQ9GTGbaFiZEBxDXaQyr4LUsx31keAJdFZ4fz3l0MdCJQvAZwfV+2nd/g3Cmz+JEIiGVSlIKCYnbRz6HE4nEpcW95FD42VLKP5H0i5L2Jf2SDtXVHUk/UEr5Wh0+YL/8Nspq/E0beBQMGFvNTPkmlEyw5111k7LoeiCxiJnw2/IpECTy3kmP/aFYwHjvSF558gRJFdG2A8sdW37uMnmaAXMnuPwYfrBcLhsx7yTvDMMgAW7bpWf/fS3j4b2b7ja6fXQDuF6+4pjRNeA5YXviDjZJIq3zXFtM0sm5psjhdUWRx+TeY8WTKVyG4/VJeO1KYN88DgyfiEKR62D/Gcbh95kvIe70s+2R7HscGK4Q16Kvc//aEAUChp0wRCn2r01M4ukVnFP3wy8LcG31xHXNsCJfQ1GhTaTcNJzlszhxvhi9b1fP+8VHJEnPvEo6GGz++kokErdGPocTicRlxj0FCFdV9S2SviW8PdehMnsn5TR+N5kxeTNBiEIDCa7UtFqTmJJUM4QgxrzH3VkTyUjuTTq4s00CYvGA7XBMd7R3t+1Ok/CT9JPIeUeaDgyD5dpib0Gh3+83yL2vXy6Xmk6nmk6n9Vgyft5k3TkBbEuPu+Tc0fXccJfbY8cdcPeRu8kktlwjkUBSCKLrgKcDkHSzjLbxsqhCF0GbkOO55xrhcYc8htKx+gwVsMDgsWcuD/bd8+y17jJcl+fIbYlODwo6Xg90c8TdfSZu5NqkEOG/+f1yv+IYR1GIgkLM7eDruQZ8PddIdKIw50V0l1j8iaIG82dQaHF/6DR6EHBWz+LE+WL1y2/VI798+PvkL32OZo9Lq36KCpuGrWnR1vzB+O4nNgf5HE4kEpcVG5NxjLv0Jk8mEHGX1InmeDSc3/dpBCYsJlqMJZeaRNEJ6Ux0WCbJCGP4JZ2I16eg4D5FkkaCQmHBbgK6IaKgYJig7uzsaHt7u47Jd5+5K721tVXnDxgOhxoMBo0d68lkUlvZZ7NZnYPBYsVwONR4PNbW1pbm87mm02ktKvh3ugI8zp7D3d1dTSaTOl+AdJjHoaqqWmiwaBRDNqIDwX2nE8WEMCbss4ATCb/XjcdrPp9rd3dXe3t72tvb03Q6bRx/2CbYeG6M4XBYX2tnAol+LIe5J9xuIpJYihkUYuiAoUul2+025tgvEntfR+IeHSok/FHIoQhGQu/Eoi7X5XEMogOmLZyFn0dnBUUR5/ygKMmcFFwT68S/eKoD54NhUInEWeKFf/unNPkDv0Mf+LwHIqzmUuGTvvNpHbzj1y+6GYlEIpFIPBDYCEGBu+2ESQGPi2SMdLRi8/hEErDFYiHpOBbeBIgE37v3UpP4EDE2nI4HqbmzTJu/2ybpxI6xd/rpamAYRtw1df/6/b6Gw2HtPoh2eEmaz+f1KRAmhyZSJo+S6oSHVVVpd3dXVVXVxLDf72t3d7cmyxYBfEIABYVylBvC/ZzNZppMJppMJrWrQZJu3LjRsOMPBoPG+LOddKuQ9BmMm+90OrWIYpeBc1WQWNN9sVgsdOPGDe3u7tYCiQUHjzVDHEh6o1BllwFDa0z2h8NhLdx4TdJt4zluc8PE4yf5k6IU8ycwXMBrgCJdDBvw2FEMIcEmMfe8RcJOt4jb4XGjUMY2u4+R7HusWbbdCDEkITqcOGZ0Lbn8tpwZbotFySgOJhLngSs/8R/1Kb90VZL0zq95ofZ30q2QSCQSiUTiwcJGCQrcZaWDIFqtpWaiQhIy7/zSWUCLs8MOuPttImwCRus8HQy0nkfbdSRH68QI7r7ytArfy/5zV7gtXwLHr80Sb9If6yCZt3jgdltQMOlyyISFFAolFiVMipkbYLFY1IKCiTp3q6NFfbFY1EkjuWt/cHCg2WzWEC3suCC55u51KYfHEZrwu+0xFMLE3s4EH0FJxwRdMxQT2urkzrvnkCEPvo75P5jQke1qC9FgzhD+zWs8ZhTLYmgO1w7rpIDjdsfvH+eLc0hBi2vS9XM8okMhfk8MlufvLHNOeA2wb9GNQIHO97Q5TtrcEK43kTgvHDzzjPTMM5KkF/zCC/TMJ3c1eSLX3EWhsyx6/E2V9MxzF92URCKRSCQeGGyEoCCpJokMYzABY5I1g4QvkioTDRNp7gQz/tvvUYTgznI8atI7pCRD0aYdEeO/SYLjkZK8J8b5m6SSYNFaTuIbLf60v/MoSzsMbP2vqkrT6bQeE8bws3wLERQYPA4OA/Fu93Q6rUMe4nGA7isTbXqc7ZpwbgcLFw7DcJsY1uI2cwwtFjGRp+Ex2tvb02w2qx0UtNVLzVCVNsGHeT58v8fOISQUQbguY2gBibdBJwDdCW2JQ1mmx8Wfx918C20xnIFhOm4Tx8Lz6PVIYY6EPIqDrCcm84z993UUalynv/P8PkShhAJBXA9RIOI9np8oViYS543RD/+cype+Wvvjjfln+dJhayZd+YGf0UF+7xOJRCKRuG1sxP9cuJNsQm9iaTJjks/Ybd8rNYl7t9s9YSlnPgMTPlqy+/1+Q9TwbraJyng8rm3/khrELtqjGbsvqUHsSHwYw23yLB0TvX6/3wiZiHkCYnJFWs597WKx0HQ6rXfhDw4ONJ1Otbu7q4985CNaLBb17rlJo08jmM/nmkwmjbmiHdxtINyH/f19TSYTPffcc5pOpzWJc/gD+3XlyhUNBoM6TMECjgWdxWLRyMPg0yo4jh5XuymiyERXhsfn4ODwlImPfexj2tvbq9sTT0uwOOIxHY/HJ9YrRaNOp6Pt7e06jMDilMvyMY4MnYlOl+hSiGvTYN/9PkMhuN44FvP5vBZ/4vqNYSWGSX0UzlyuhRJ/Bz2PXFusywIRxQe7ZaKLIJJ9t4HzyfGJzglfQ9eG20JhjnVlyEPifmP4z39OH//PL7oViUQikUgkErePjRAUuAvu3V7u5nOX81YJ7EgmCRJvEgyX2e/36zh+72hzZ9ohD94JZmx/2w5z3DE1oXR5rps7yyYxJGDScRJK6Xi3nLvIbrd34yU17PW2qJvE2jXgnXm3p9fr1cJKv9/XcrnU3t5eg2wxz4HbTSeA22sSTmeChYHZbFYTYbsNHH7A+XDOASd2tFOBxH21WjXINp0CdHlYjKBTxXXu7u7W5XgnnzvwzgNh54THnAKWXR0WBbjTHkUsCxmeU4pZFq1ImmN4C9cM84EwfIHr3GuxqqrGaRur1eqEUMU1apeIy2JYBMUrhhB5XqNwRuGD4T4UDF02k6uWUuo2u13z+byuw+POIzntwPE4c626X+wPnR/xlUkZE4lEIpFIJBKJ9dgIQUFqWslpaybJMImIu7Qsg0SD70sn8y5QpHCSQ+9+z+fzxnUmjyT88QQC1uV7pWPxILa57Ui7dVZsE0wLCiapFgRM6N1WH0XIMAUTMx9paNLv8rvdbiNEhG4Dt515DmIfLQC4HIZYUFjgTrb7wOSbHlsT7tlsVjssZrPZiTXC+9wGzoVJJnM+uO0HBwf1XDMmnwLOfD5viBE8VYT5CUicGdYgHec14FGcFgHcd4a+UPTg+o1HPjKMh+4G/mT+g5g7xGE+Jt8xRKANbCPbSTGBYkoMRVoXRsDvPL+bPP2D9XgOfC9Fpjh2bd8pjl8UGE5rZyKRSCQSiUQikTjExggKRltIAEmjCUNbYjXuXHN3ljvJJnAuw4RlMBg0Tk0wiY4kiaIGCRfFEBKntt1y2q7pwPB1LMfgWJiMWgTwzrx3z/2+Tx2QjpMbbm1t1YKCj350O32/d65tbzfRPDg4qI+pjMTW95vUcxeauSKYMJCuBM6vT+Nw/RYT/DOSVvbZLotobfeY2TVBosmjJN1PHp/IEw0odHjuokXeu+peQ+w3T/VgyIvr4049wwsYBuA6Y1gEf+f6i0SZ7hbXKZ3MFcHwhJj3gqJdFAGiO8PX2MkRvzNc+3S8xHAnCg4uh4ICX7FsIoow0Z3AMIlEIpFIJBKJRCKxHhshKJAYM3adtmra4ElSSCxMIigE2JUwGAxqwsxTD2j1p8Xbn8VdZhPMmFSOhF7SCYeD4d1/CgIeAxN5l9Xr9Rq7skyyaAJqArS1taXRaNQQVWazWcM2fuPGDfV6vTpZ4rPPPqvJZNKw7UtqHH1YVVV9UoTb7jAFHoXJMXCbmEzRc2lizrlm2EWn06nDCTyXDnewCELCx3l3P5gbgMTW+QucgJLj7j45zMN9c18YVsE+e04Zb+854k65T0Xg3Jsocxffn0+n01rscf8Y1kCxwohrLYoAFExiUsg2gY5OB/c3km2GMXg+OL/uHwn8urAIjoPXg8Uhuiv4OddAFODYTv7OceG8sc9tTqNEIpFIJBKJRCLRxEYICpIaBDP+B95E0bHmJrkkA/FoOpMTv+88Ay7P+QRMdFi/dLyjz11iJmI0sTXJtDAhqWFrd9u4Ux3js03cB4NB3U4nZHQ9JsQm6dzRdgLEfr9fiwreESYhcz4EJ1t0O02emB+B4RU8KtKkmIKC0e129eyzz9Zt8FhzB3s4HDaItsv3NQwn8Fju7u7Wc8EQC7bV71vsYegDybPvJYnkdY7Pb+sbwyxIbF023RCz2axRZzwyM+YfYB+4ViiesR10NjAcJZ5+Er8fdmJY4GDoicciCjGE54mhKQRzoPh6ujZi4lASeIYoOGyEglsEBbjoXPJ32muCjorooPCzggKHr6GYkkgkEolEIpFIJJrYGEGBVmeCtmfvgNNCHq3RjKunS8EEk39Hyzx3iZ24kGSPO6UUC0w8SIhIREzAYhgFiVwppc7j4OSAzm/gOH7v9nOsaANfLpeNxIRM0kdXg3fpXR5zObi97A9zQJjUt+3auizOifvuHAEmoS6DokXcUfbOPkkz+8awBe6607ruzz3GFn7o/KDAw7kleLoG59DlSsd5Eih+UDjhmva8UNSK4kFb//h+XJesk+vN19JF4/XAtc/+cM6ZcNHt59qNjoU49rG9FGYsBKwLQ2gbvzgvXAttoUoxd0Ocu/jMieJiIpFIJBKJRCKRaMdGCAokZCaM3GFkOIR/koBGEh13uvmSVBNKSQ2C47+Xy2V9GgFt5SQ2jKk3GbR13ASQsfYxFEM6FkvcV+dxsPjh+pnU0GXwXpIpHqNHckbXBMuLJD7GuPsnrfZtOQzcL+8GMyGkf+duucfTO9ceN49FjPenOBRDJkymIylvE4xcPl0LJLR2X8Qx4C620Tb+PqaTp0kwzMNz4jI5n3FtkNRTyCCRpzDD3Aq+j4kk6VCwSyESa4pBDgHxd4JuhviK4kyb4ESS7789bp4Puha8Plge72V7+QxhW6LzIH7mMlk+E7CuEzISiUQikUgkEonEhggKUtNaTdu2yY9PYGDiQJKTKDo4jt4g6SB5o7BgYuOcASbh0vGJDOvix7nba4LrsAyKGWyPy3VIhsMdeFSfy7G4EEM5Ytw4P6et3fZ4nrZgokkCRZHG4RTc9WUd7i/vMyF0TopIkAmP53A4rJ0KzMPAcfL8OVeET+Pw2MfcEpwj/+R6sahAZwNFBredu+u019MBw3ALH8/pvBAu13k6PK5Muug1QsLu8BOejGFhgmTY6zaKQ77H77n9zHcgnTyFgUk+LUr4OzWfzxv9pgslugraQhQI399G2Pk9izlN+FkUjPgzrmWjzb0SBQuu6TZhJJFIJBKJRCKRSBxiIwQF/wc/hjYwNwF3tSkcmOD6uraY67bEipHI+GhAk3iCpM+wi8C7wN7BjTulvne5XDaEDDsq3Ff+tJhiESUetUiYZDOJoetjHgQLJdPptOEc4I4149nZRlrqKWR4rJnk0rkDvNPv8A3uFNMREAkbQ0AsJHl8q6qqw0KcL6DT6dQkPiZMjP3xWrNY4HZaDHL9dJlIaiRoJLF33zx20+lUu7u7unnzZsNB4/qZtJMJJl3vYDBojKth0cBlMleD59nzEpMtcg1PJpNaaGMIha+n4MG15esosnj+PPcMF4nuhdPA8BO3K7olojjBz7he2Fe/vN5YB3MteHz9M4b9JBKJRCKRSCQSifXYCEHBMNmOJDTuilMgiDZ47sLSvcCTCGzbZ+Z9l+uf0VLvci1u0OYuqc5LEEMDIiEiYXUdFBPcF0k1eaY1ngnt/PI4WXCgVZyIce8m/BQjeIzjurAGnkLh8fKcRCeGBQ0SVfcjhhwYJPAOb7FDhHPsl8k91wYJJC3vLrdtV5qvaN9nyIHngO2yMMEEk9HNQkeLBQL3Kc5VTGzI690+HvPodUpyzLwHkaDz2ph/QjoO5+C40RnD9cX+xpCC2C/+HcumeyLOA98jLJb585hXom2NudwocrEviUQikUgkEolE4tbYKEHBhKUtU713ZEkSTThJrE0wo+06Wvqdr4GhDtyxZRy5yb9JtHdV2TYSTelYaIgkiAIACXH8XVJtk18sFur1enWeAJcTd4Hdl7gjz7p8dKB0fMwjCRWJaxtR5DiY+FM0iYSPO9c8KWGdoMBQEJdnsYAiUYT7NhgM6nACziUJLolwrMtjxRCPuIPt8WPYhJ0LMSGg27aOiLetEd7j6xzKwbXGOXJf49j7c/fJwlwUA9pyIMS1FvtA4t42VpGcx11/iikxLwTXr8fIP9vmg2MQBaV4EgVBIYPlts1JIpFIJBKJRCKRaGIjBAUKCSaq3L1ktnqSPiPuipOIGZF0uyzvxNu6bWLBxI0sgzvtzrXgXWlazGn9ZuJFCgZsH+vyfQyBiP00sSfBo+DC3AMkzhxfO0HarN20sTs3AB0KzpHAuH/Pk637DBFwHTGfRJs9nWPX7/drkYRHeJpIMlEh4/4j4Y2WeI5PHEuHmPg6CiYm9x5Hk/vZbKbpdKr5fF7nTIg5Pdi+wWDQEGnaBAVJ9fyMRqO67SS8JOnReeD2knjHIxRjnVxLHCMfP+qyPNfxNAuCu/9xvgyOUxQVTnM3kPzHEKUY1sT+tgltFGrisyWRSCQSiUQikUisx0YICpIaRNfkg7uEMV+C1MzAb0ISs/1zZ973M9abu/ROfGhwZ5+kdLlcajabNY4ztGDAJIbckWeeBOmYmJromFjxSMt+v6/RaFSPh9vg8obDYU3cmYDR/e73+/Xn3PH258wlQPLsMTWpJol3293mXq93ImcBd4195KVFF7edToW2nXrPjX+P5NTj3Eb+LHi4ress7FxbUehxzguKARSd6IKIRNljyzCW4XDYCJNhgkMjEvMYCmF3CceXYxd34ikQRMLuzymorFar+uQHun3clujwYJvpLIjCW7wuOnQo2PD62J/YR88TQ1V4bVuYS9sacDvZboYQJRKJRCKRSCQSiXbc8n/LpZR/WEr5UCnlV/He9VLKvyqlvOPo56P47JtKKe8spby9lPKFt9uQGM/MPAmM546JG51ngAkE7RyIuRak47h81utyvOvO5HQUL0zOTYxI6ki4aEePyfRM3niE4P7+fkOgMLnv9/v16Q8+4YJtkpo7/CRbdCqQaJngmqwzvCGGXMRQBO6IczeaOSxcpgWh2D7uVDupIEUY7nj7mrjzzfuckNH5CyiMuJ9t9vVo7bdbw59FsM62eHuuVa8jvnhCRNu8cHxiKAPbxL61uV1iv3htJPj8TlG0cbucU4PHOra5H1hfG7nnd8bg9zGGG5y2pteFWFBkiuEg8eX6LSacFtqwToy6CNyvZ3EikUgk2pHP4UQikTiJ29l++y5JXxTee4OkH6+q6uWSfvzob5VSXinpKyW96uiev1tK2dItwN1KWve9I88kgH6ZbI/HY43H44bNvi0HAK3fMRTCZCu+2uzuJC4kJ9wBjvZu/x1j0X2tySrDJ9y2Xq9Xiwnr7OFtdnPWEUUIjjUt8+5rJFgknCb5beTdO+rsM+eYZceQBP7OOlgXhRweEzmfz+vjMGMSSIaMGGwf8yG4n5F0eiecLhH2y2VyvFy3hSoKCiaxkXS3EWvm9TBp58kcbbv7bJvro6jAeebvbSJAnO+23Ben7f639c3vr6uzTXxifURcs6c5UtrGJoogbcLTBuG7dM7P4kQikUiciu9SPocTiUSigVuGPFRV9W9LKS8Jb79O0muPfv9uST8p6RuP3v++qqrmkn6jlPJOSa+W9NOn1WHRQNKJY/Bs7ffnJr/cte90OjWptA3d5IAW+dXq8Jg7H9dn8hBjtxla4LJMrKTjZHf+nJZp10mi3kZAI4l22+iq6PV69TWj0Ui7u7uNnAduj9viMSKhddtZr0FngtvGfA/sm8twKIBDRMbjccMNMJvN6l3itt34aENvs5TzaMZSSqOfJtgkvHRXUOTg7nPMv0CC2ul06vARzjmFF9bD9bVuZ93zwaMz3X/u5rs9FHg4TxbIYj99LYk31xfDFSj4sEyOVdv6iIkpo0OFwp3LNVx/TBLKsW07+YMiXJtYEcvxGo/iVLy2DW6HpDr8hHPKzzcB9+NZnEgkEon1yOdwIpFInMTd5lB4QVVVT0lSVVVPlVKef/T+k5J+Bte97+i9U2HCE+3tPFEgZuK3K6Hf7zeOLBwMBpKOXQIWEObzeeN9E+SDgwNNJpMTYRZsWzzVwPf4c7fLJMknMxyNT012LHZ0Op1aoIg7oL42uhliMjtfS9IcyS7zNRiM/ffnBIUAl22yZReF49ZNRH1dv9/XeDyuwxbcLpM+l0lRgKdO+HO6EOie8Pz5J+eMJDsKPE4eSeJr8cZ1Oh8DRSCTy9gWOhk4h0zCGMedohUFG4oivs5kXVLtwoiJB6XjEznotGDb6U7g6STMZ0H3CnNEGBRiohsihgBRhOE4UByJzgjOp+un28DXtrkcoigRXTGSWr/THCOOOcUc1xndLRuIM30WJxKJROKOkc/hRCJxqXHWSRnbtgRbPcOllNdLer0kjcfj2mlgQmMiJKkWCmjX9t9xJ90kw/HfjKf2TxOqeNwcXQgky/7b5NfXMLeDiSvDD6JDga4FkiuSNLoVSDYtrtD+HZPaxR3ZSFxjqIbLiPcxx4F3xS0smHwxoSSTP0YSyd85piSO0bpvQYK5GNjXemGFnWiOr/tBUSaKAxQ9KCjEuSGxjfW1hSpEUk4xjHPD+Ynknjv2Xstt+RLayvVatRDn7xLdEdGtwO8HyTXdOBZu6OIgYghBdBpEFwTHaJ3TgePDuW0bS85L288Y9uPxjo4ii1O3cjhsOO7qWTzU+DzblEgkEpcJ+RxOJBKXAncrKDxdSnniSIl9QtKHjt5/n6QX47oXSfpAWwFVVb1R0hsl6fr161U8hs8E2kSI1nHa2WO+AhK/tjwDJCWRTLXZrbkTSuJiIkJC71MTTOIisYwOg7aEcHRWsC3cbaaNvK0Mt8fjZnLHjPgko7yfjorYRhJCihq8LtrEKRKxHJO21WrVEBQsIHBOYihCbHdsfySnLo99owjgfAwk2ZzXeOJIHMNIPtvIqMeTayKe4sDxtXDE/Bpec3TKENGVsC4PCPsQnR4cQ17POqLQEueFfWhzCPg7TsGN8xH7E+dxHdpEhbZrpKb4weeDP4vXbzDO9Fl8tVzfqKQRiUQi8QAgn8OJROJS424FhR+R9FWSvvXo5w/j/X9cSvl2SS+U9HJJP3erwqLjwPZuJp4zOR6NRrUTwHZwZ/n3Ljp31aOYQBJDMkUbeCnHcfu+VmrmHGD5tu7bSbFarRr2cu9+sx/7+/t1jgSDbaHFn9Z8ns7AXVYjWtnZzhi2sQ4kgBYv4u65x4LHS9JBwHCJxWJxQqQhUYvug3Vx9+y/2xEFBIYtuC+3StJJASs6XbgzHl0K60iwf/rl8u248PjEkBOuL69Nr2+PMwUrjwHHkUlFGWpCEk8hhGPgdvJ995kuEYpHniu2I7qCYm6DdWPGcWV9nNO28IU2x8a6uWkTn+IRnA8YzvRZnEgkEok7Rj6HE4nEpcYtBYVSyvfqMNnM80op75P0LTp8aP5AKeVrJb1H0pdLUlVVbyml/ICkX5O0L+nPVFW1nrmyIYjzZhiDyUtbNn4n75tMJrUl3C4B74yboNP2TReASVu05fs9EhsmwDOh9+c+ecKEczQaaTqd1skiJdXX+OQG2u9tJ/eRlVVV1acW+F4nQPRuuu9tcypwt5phA/1+/8TYk5BRSOHnDGmIggJj+Ek6mYiQO/QRsf0+sYOiCE9LkFTnFfDL9Zik8xhKCykWByhccCfe80vSzBCOKODEHAZcmxw7u0Nif+k8kdRwpZA4MzGm54hHj7pettFinNerE5GyTfzd4xyJNUWgtv45VMnXkJxzbUSyz7FoQxR+1l3j7zCFHAoi/iw6iygm8KhJzrV/3xTcr2dxIpFIJNqRz+FEIpE4ids55eEPrfno89dc/zck/Y07bUgkLNwZNZElsXSSxUhuuctrwcHXmWRJqh0JJNB0Q5jctRE8tsc/XTbj9f2+yd54PK7bbyFDOiSKJrwWREhA426zyQ5JLAmkYRcHibJFD9Zvwsad+LbdeI4RRRCTSeYfIGH1+9yhp1BAcmySb6JqASRa9xkuQDGIO9rxFAIS+eg6oMMhigl+32uMc8A5oZhCIcJzGUMKXDddIzya0i/PLwm21wy/L2y/x5SCRiTynDuudYYM0VFCcc1lxHGkoBBDS9aBzoF1BJ71R8GD+Tj4PsUQzgvHN5YtNcN8NklQuF/P4kQikUi0I5/DiUQicRJnnZTxrsBYf0kNa76kmrj6/V6v13AImCSYkM1mM0k6kZ1fahJIklQSDooZzKvg+9nmKH74fROd/f39+u9+v6/BYNBI7hgt9tyNZr/7/X7dHtvMpabNuy3MIwoqzMPAzwmWxffcTu7yxtAFgiJPnAuOv8eR42DRhv1sI4GR7LosWvFvZX1nmADzD7BfHNe2ulkmCXXb+LaNNU++WBdqEHf320IDKEBIxyEfPNnE18QQFq4rhntwnvld4NhyfVBMaOuv741zEa9nXbE+/t22TmMdcYz8PsewrexNEhQSiUQikUgkEolNw0YJCiY43W5Xg8GgJjROROeQiF6vV9v+nbfAYQoWFLiT6x1v1sc6LUiQiFm0kJp5DNqcFJHoMqwintJgJ0EppeEocNJJEhvG9nvHfrFY1ITbgkQk/xQT/Hun09FwODyxy98WA+8yfI3RtmO/TlDw3NEtEHffafn3HPhetlE6eSKAQWcBx9DhCCTFLs/zzjAah5owBIH1RaLaRoi5I8/1QsRdfpJ5hgi0uQ7YX/aLY0iXhEUcO3U8HlF88Foiufa4xBwD0QET1w5dEW1jEH9vEyo4zswnEtdBfC+2P443v6OxDRzfNkEukUgkEolEIpFInMRGCAr8D73/82+RwJZ9igkmT07QuL+/r93dXd24caNBXEnEIslwQsTBYFCTFpdNsuc8BjG0gDvqbL9JvGP8Tca86+06KGCYDI9Go1pk6HQ6mkwmp44b3RSGSdhsNqut9iSadktIaog2zjfgxH90jTA8gX3c398/kdvAxJXx6NHlwbbwXpJrkm7D95sge8edp2vQheF+u52cK64N3sM6Y0JBzjmFn62trUbODSeipKsh7pB7bGMMP8kshZdSSp3wM4bgsO++x/Pp+WCeCTofYh6B09wWbaE/JNwUYvidiKAjSGqefOE2RiGGIQwsJ5Z7u4gCSXRJ3E6oRiKRSCQSiUQicdmxEYJCp9PRaDRq/Oeeu9/eQTb5tIOh1+s1dkFNjuxUMCJJ4u46iaQdBN7dbYv3j8kP2V7uMs/n85psuf2DwaBBbH0UoMu2C4FwDL531NkuE9No9acl3WXQKUBCbAHDZXl33OPi0zdch+ule8LChKQTO7p0apj8ew794hGJdpfEvrmNHleKNRw/zx/nKeYmaAslaGszHQd0pkRXgseDJDXuvFNY8Nxzjtxf12UxIDpA2H6LUm3uCa9HujPYBotlFEYo+JjsU7Di555r1hcdBjyyNAoB7C/HwXX7GtcR7+U9bSEtRPxOtY1VdMSwnnQpJBKJRCKRSCQS7dgIQaGUon6/f4K4SccWau6ym/ybSDCb/XK5rHfnI6Fus7PHHWsSUh5B2ev16pCBuDPrOmzz9lF/JuwmvBZBTAaZJ4I79TFkgSIHSZsJue9dR6SYINDvRas3P/O49ft9DYfD1nh712WRRWoSTLczWukZlhDj/O3qoBuALgkm0rR4U1VVXV6cQxJhrw+Wy7FgeAzH3uNId0oML5GOT69oExOYh8Avvsf8DR4/n15Aoh3njv1hGxgyE0Mzopsl5kNoC+Vo262nsBEFCX6n/H2hu4Gfc1w41py72I/bRZvgEN+jmMB2tI1XIpFIJBKJRCKRaGIjBAXp+KhAEkP/Zz9asUmGHSpgQrhcLjWfzzWdThu2e6lppSYh4m51JKaS6jwNw+GwJlA+IcFl+dQJk1GHDpD0j0ajOtxhsVjUxNeCinfrKUwwf4PUJImdzmFeBIeCmIi7jzzVom2X164F9pk7yr1erw4rcd/m83kjLMMCScwB4DoZFkChhsTRYsJisdB8Pm+EpHgNcKff49uWS4Fz67FgAkyvq16v1yC50ZHAnXE7R+iukJrHTno8YngHhQq2z2vaYx5JtO9jv9yONndFrCeKFlzrbQIR+x6dCAzBiGNMQYoOELZznVjh9ce/Y+gJ58X3RnEhzn2sry1cgmtrnUhBwS2RSCQSiUQikUicxEYICqWUE9Z650aYTqeNmH0TdxMP75Bvb2/XxHF3d1fz+fxEzDfrI7lgLoJokychJkFhuIV0Mu7bJJs2dh7tSNHEZXpnejabaW9vT9PptK7b/ZjP57Xd344HHgXpcttyGywWi4YYYbTF41tAsWDhMkhaTRwZpz+bzU4IN77fIRLcuZ7P53WfLCi4D0xk6VCNOJ8xD8B8Pj9B4DmfkhoJOt129p+igMdjOBzW4+k6Pbce4/l83ggriPH5nufoCuA1JrCDwUCz2ewE0fe6tyBCQSAmASUh9pqnU8TjwjaRYMfwl3UhEW39i4IFXUZ0kFCEcHkxaWaERSyXH0WHKEBEd1Jc72x7dC6kQyGRSCQSiUQikViPjRAUpGaeARJ8khHuVEtqfG5C6p3raDM3SECY3I/hBwZzDnBHs6193W5Xw+GwcS+Ji8mxQzts7fc1zKgf8yDYdWHYmeCcDEzwZ8Lm/Ack/NJJAsh+WqSQmqEGHLvo4litVprNZrUY4HtdrkM1XDfDRTyOFgLs6mC+CYdcMB9AdAjYTdC2LqKzgM4Thp2QQHoNeayYiDOOHXfXo3Xff9Npw3vosnGyThJ+rjvWxz54DKIA5hwXkRDTCUAXRHQPsO8MW+A9FCz4ua+JbgKPTczrEEMk2JfolojODJfnNrpMCoEMF+H68LUuo63/dxJikUgkEolEIpFIXDZsjKBAIkxybydAtDebbDgB4nQ61XQ6rfMnMAmfia/JLHdgTUjpFjAcQmHSY/LO5H8mJybPtuqboDNpnu+xw4GJBaVjEcL1sSx/RkLPBI8cm5g7oU1AoLXf5TPMxASN/ednFBQIEjgKMobJJt9j7gWe4sFdbiPuuvsUDhJPJnGky8Fz1+/3G0eCuq3c1Y85Okhk4y481zCFCLeR4kLcrWeoCcUIkv5I+Dm+HNNI3jmfXBvx/jh3bHMUNjhXXFccG343PU5RAOB88nf3xf2K30m/33ZfFCliu3h9FBnjGFmMypCHRCKRSCQSiURiPTZGUOBOLwkIiYnUjH22y2CxWGh3d7cOE5jNZo1dcJdDsh7LbguNcB4D71gvl8s6jwKFD5fj3XDfSzIdbdcmud6hZ/I5l2+SY1LPExooakTCRHDn2GTXhC26IeIcMI8DLen82dY3t8tgSEG06Uc3QRxXXu/55Bqhc8EkmuvFzhcmVbTgEPMfRHeAP4/uhHiCCH+nq4Ntcv8YusBkoFGwoBDmtdEGf845jGEK/q7E8aODh0IDXThchxT2uL7ijj5dCq6zjZh7TGJ//Nm6Nc16+Xe8nt9z1sO2RnGDYhpDQxKJRCKRSCQSicRJbMz/li0CHBwcaHt7uyYyJoAm9XYYOH59uVxqMpno5s2btUuBIQzcvac1nruZ60ArPmPweXylYdLi4wAXi0XjpArnexiPx/XfBwcHdZw8Ty3odru6du1aXY6vcdnOcTAYDE7sYBtVVWk2m0lSHTIRQwI4DiS4PFXCOQlIsmPCTKlJuplzgeVbAOC4+4jPuBvueXaSRidtZH4NtpuhACSvHk8Ta44THRom055TknsmgYxlxJAOz6vLp9skhhdQUHBeAIon3Enf399v5H44ODjQdDpthO2wTObVoKDD9U8XhNvIhIieV85lFBTYf86rfydpb/tORiGPp7N4PGPo0J0gCnHxfufnoMjABKLpUEgkEolEIpFIJNZjIwQFk1/b3U3YaXs3eTUpo2tgNpvVzgQnHuROsUMXfD93QbnDa7K3XC4bRM0kh8TUpIhhD9zFdnvpULAQ0O/3JUmTyaQRlx7BEInpdFrnRXDCxK2trbqtdBOwH36Pu7QkaHGXejweNwilx9thISTUHj8KEO6r6zBJJXmMRJJEmbvbdB602eDt1CBBdv/a4vwZpkF3CkUqXxdDG2L7XQ/JOgUXEuMYGhMJsk/pcJltO+0WY5bLZT3WMdwjhnVQmHDZMScBhQWLEBxn92OdaMD2xXtZfsxjwDa0uSzWIYbLcMxiWIN/uv1+MVSIzg0mAqW4kHgwUH3up+n9v2t80c24lNh+f6VHv/unL7oZiUQikUgkLgAbIygwiz8JosmciTF3uE32p9NpTa6k44SCjOduC2uIu7UxHwHrWEdqJTXIqAklrfMmjCZ6/X5fy+Wyka3f9/GoSo4LczfQHRFt3QxtIHE2kfL4UASRjnMP9Pv9Rvw5k0HGfAAcB7pGDJfJeSAxpyvA1/g0Cn++WCwaolKsk7vOzA0Qr4uEl2uCoSC8jiERHiuWT8cCx5EihUlpW94ChlhwDOLapIBhl4qkWlTj+rXoQ6HKdVJkiUSf93J82o7B5BzHMeSarKqq4XzhuiFiTgO6BTymsW6WtU6AoGgQnRPxOjpF6NJIQeHBwMFrP0MffdVQs8dPhq4lzh+rbkfD17268V45kIb/4k3Sqj1cK5FIJBKJxMOBjREUolNAOt6BjiKCiY534CeTScOSbieBy43HytG5sM5iHnexeV9bmAHJGE9boA2fwgKTA5LwGQyfMCllqAVj4A0KBSZzLI8hJH4x4aMFBV/LHXz3J8atc8eY+Sr8nkMASJDpdvDRl3Gs21wb7htj+bmLbIJO0h5j5102j8A8TaTg2qTzJR5NyXAJiwkUGWKOAdbDozFJgNtezBkRd/RZD6+JzhC6a0j44/p2jg2OTQTnNfYvCgpcH3FeWVYU9/wZRR/OdRxblxmdDLHdnIf4WneqR2Jz0BmP1bl2VZL0vtcMNXt+igkXhcWjK73/tcGBtCx6xa+8UFosVc3mOnjmmQtqXSKRSCQSifPExggKkk78Z15q2td5PcMdGIdP0mhCZPcCiQp3fW3tpr17NpvVuQOGw2H9sh3aZN/ExA4C1z8cDuscBr4u7tzSEWD3gN0EPq2Clmy7G0z6/bmFF+YTINkkqRwMBhqNRnV/OIbdblej0agWDuwOMKm0COFx9bxEgh/nMoYw2N7vEA4mUozkle4PEl2KCG2J8yimRKEm5nGwQEBQuHL7KMrEEADPg+eVQhHb7jItItC14jn32JI489SJuMPudUzQ7cNQoTbRjCKE33dIBfNDRGGEa4wukthGt38wGNQ5OSj++RqKEW3fZc5BJPoUCHq9XsMRwutdBq9l39rGNrGZWL76U/Qbr+sf/ZViwqZh1av0tj//pCTp0V8reuzvZ0hEIpFIJBIPIzZCUCilaDgcajQa1cTa4K62yVabXd1EmuSQpNbwe94ll44Jvsm1X5Jq0jccDmuHwGq1qkUK7zCPRqNGXf1+X6PRSNIxiSe5tojg9jJfgwmX22Fi73IoajBpHWP1HSZCF4HJ7ng81s7Ojq5cuaLpdKq9vb26vy7f5Xl+YvkmlBxrX+P5iDvv+/v7jbAIt4miEUkjy/AY7e/v164G12UxiKKJ55XhJBQZmDPA99JJwVwLJL9uswUlfz4YDE6cDkGCyvm2Y4XikEku28ByGBrTdkTkcDisE35Kaqwpk+e24yn5HaPQwCSkHkvew/ciomvB8+hQn7bvgEMwovjjvlAMjM4FjlPMBRGdKC7P3/nVatXImUBnTJ7wsLn46J94jW6+VJJSAHoQ8NwnSXvf8jmSpJf+4w/q4B2/fsEtSiQSiUQicVbYiP8xm1h4Z5xHOdJezh1Nk0vnGnA50slj/Uwc2qzcJiQm1Ex253Y5mSIz8TuvAsMAmESy3+9rMBjUZM9J8kiOSNydL8C7wj6ukn2xo4FJDOMYSsex9qPRqN5d9xgNh0NduXJFV65c0c7OTmOnmac5uG+R8Ll8Wu/9HkUF70hTRDEYDkEBhGNj4u0xdB3uawz9YPu5RlgPrfXRSRHhuWL4QgyRIOlnngCGGHj9sY42iz3HkoScjh2Pu3R4OobHwWPNuYoCAENDjBgCwevpLqFrgCIcczhEZ4L/ZtvolvE9XjdtISH8XnE8GAISQ5kYYkTnSBzf+KLDg7+nqLBZKN2udn/fZ2r3xUX743QlPChY9Sst+offvw/9rhdo8GmPa2tZafS//dwFtyyRSCQSicS94pb/Wy6l/ENJv1fSh6qq+i1H732bpC+VtJD0LklfXVXVs0effZOkr5V0IOnPVVX1o7dRR73jLB2LBW07qLQzc8c7kk6WzR1gk20SQ9dHYuucAsx3wB1T1smj90jyfBLDcDisd9lJjEyyTLYtctBuz36YKJGgxqMHXU6nc3hig48r9IvuhO3t7YbzI8aNc1eeBNDjF/MKUIjgmMU8BnQxRJjI+mUhhsTeY2Cyx5/MDeGxaNvV5u46+xt36Xk8Jd0xBHMQ0GXgMi1KeT6j44F1kuRyLGPYBfNa+OQPCl4UZ9g3Ev/Yn+j08dqM4Qv+DsSxiKKApPr7YydNdAv49xiq0zYvHre20A+uDQoKPIUjzn8UFNzXKBJuCu7Hs3iT0BkO1XnB4433qkFfH/zsomorxYQHFc+8qpJUtDXr6OVv/ngdvP+DqpaLi25WInFbuGzP4UQikbgd3M7223dJ+p8l/X/x3r+S9E1VVe2XUv6WpG+S9I2llFdK+kpJr5L0Qkn/upTyiqqqTk3zzF3aePSgCbGJRqfT0XA4rHeMI7k1OSCRsBDB0AnXY9Lo2G4TOTsMmEyRO5mOrTfZcYJIkxG7Emj3NhkygTIRdb4GWuwNklXa2UsptQOApHO1Wmk+n9fEL5bt0JLt7W2Nx+M6pMKigqQGYXNbXR4t6ybrbCPDMrrdbh0aYOEn2tpJCmPCSBNuOw9IUr3rHXfEo2uB5NztZk4BhjQQMbTA13KO6aSwO8TuFroLKAQxv0KboEA3jtetjwm18EWxzet0Z2enboNt/hYhWBbdGxwPSfV68ny6nW3JMmOoi8HwAbtwKLS0gS6MmOzSbaG7iHPqOXd9DAny2o0ijdcLnzt+fvB392eD8F0652fxJqH6LZ+kt/2RnYtuRuKccDCs9LZveKE++e92MwQi8SDhu3SJnsOJRCJxO7iloFBV1b8tpbwkvPdj+PNnJP3Bo99fJ+n7qqqaS/qNUso7Jb1a0qnZmBiWYMLq3VGTXemQPJkQe5fWcdnSse0+WpwtEJDQTqfTxjUGkyUycV5MDOhrvXPqtrKddA7YpcBwB54GYfJNGzzFFMaEx2MSKSjYacCEj3RiWEiwe4JugkieXQfHlvNFQszddNfP3WTf12axd3l0eUSi6n7SqeHxtYshOkzch3WuFRNcktZIOF0m15ikRt+9NhyyYnGGazHudFv0ovhBUcxhNhSAnKyTyT69vjw+fm9/f78WwUzCHVYU2xCFGiZK5EkjMczFZdAd4DUXnUH8LtNtZNFNOhbKOBb+nGE28bvN76zXNUXFtnCXKCAxfMLt8DhuCu7Hs/jC0dnSe7/5d2jVq7TqSpkj4eHHu/74C/T8Nz2u8T/92du+Z/r7Xq0Pfcbtu4de8s9uqPqlt9xN8xKJBi7FcziRSCTuEGcRIPw1kr7/6PcndfgwNd539N6pMGEjkY2E0OSDO4bcBfV//ulYMNmhk4DEkeETJu/SccI+ughINKVjIkwLfrzO5TApo90OJj0kRHFM2FYSLSMSZYLiikmqT6xg+Ib7651zzsFpIJGmS8KCQiRt0ULeZqP3520CAEULJkd0AsY2EaHNeUDyzvK9rny9iaSJNHe53WevKxN1kk/Ww3awDFrtSZTZN4oKdh2QpNP5wFwLcT1xfbp+ro+2cAG2PzpovC75PTCpZ8gAHSHR0UL3RnQUxDmLLgMKb3TwtIUyRFHL9XGeeC3DNm7nu7BBuOdn8UWi++QL9dH/28drcW2lanMiTRLnjP1xpY998paq//x3aPuH2kWF8umv0rOvvFL/vfvijpZXbv+7+fTnXtPglZ+tzoF05Qd+XlrlBnHi3PBAP4cTiUTibnBPgkIp5Zsl7Uv6Hr/VclnrFlMp5fWSXi9Jjz76aMNeTmJukmGiStLga3mknsmff7btdkvHsd1+zefzxu6pkwFGN8JR20/skPpF8mtngneYYw4EWtcj8fV7UcggyYkkl3H/MQwkiii+3n1jroJ64gL5btsZrqqqIfawzRx/k1ySfraLJJEEnmPB+H4SYH9O8kuiGcfU68bOAYstsU1RkOG9FmWYu2JdnR5j73y7XxYEuPtu0cR1WJAaDAaNcBsnZSSRp2hAF4cFg7h+PB4cT5J7Cghta47zRvHMggLng2EYFNFiwkp+f0jyuZ7pTqF44TXKuqOjgY4aX8+wB657j/WDgLN6Fg81Ppf23Qrdj3uBpq96oT78mRdSfeKCMXv+Sh/e6ejqr3yiVr/xXlXLhUq3q85LP16S9JH/5Ko++mlcvncm9N34xKM8MftFj/yHT5SWR//OVZUO3vkbZ9GFROKBfw4nEonE3eKuBYVSylfpMDHN51fH/wN/n6QX47IXSfpA2/1VVb1R0hsl6UUvelHFXVLa26VmbHckF47bP2pTg3SRDDi+3E31aQd2Dsznc81ms/rzfr9flxFt3dy19g41jwQ0GeRpClevXq1dFHZSuJ2MVV9nyca4NYhatMtPp9PaFu9dbO4ik/CSxPIIRSaFnM/nDbLlXWYmw/RxnybNtMn7ZyTaHFvmTJBUiztuA90QnnOOj9eM6+ZcMWeBdBxvT6s/RQ/PDRMhmtyyHwzvcHkUOOgc8O+eJ48j8xS4PQxDGQ6HdYjKaDRqjAkTXsZcDByXNsfBOpRS6vXi6+IcMveEdHyyAvM4eAy8BqMYwDGheBCdCV4nFDEsIMZTPijSeF0xXwqFGl/n9nPcfK3bvEkhD+twls/iq+X6/Y8xKEUf+pKX6WO/NcMbLjP2x5Xe/qcf16f8naX2f/O92nreY3rbn37+ESU7m7VRdSu9/U9er//emhe97L95r6qDA6nl+ZNI3C4e+OdwIpFI3APuSlAopXyRpG+U9Luqqprgox+R9I9LKd+uwwQ0L5d0y3OhuGNpIsVddO60zudz7e7uarFYNHZnTVhMgE0sTFZIMiTpypUrunr1qnZ2djQcDrW7u6vZbFbvWLoslsPkbyTU/ps76P1+X48++qgee+wxPfroo7p27ZpWq5V2d3d18+ZNzWYzzefzBrGV1CBOJrQxzMHXz2azRp2r1epEgsUYhhEJFEnZYDCok0t6DH2fy/TLzoThcNjID0FRhuEk3NU2yXP5vN/tZ1gD3QGGyfX+/n7jaEnXR8s9xywSSeaCWCwWdfiNx8ZrkjkRTOZ5MglDOewm8HjbFRLDMuKxlgz38LiyjnVWf/fHa9LfGQo/3O2PSU79mV0PHGMKXPGYSAtRbqvDaeLaoqARxQ+KMqvVStPptCFa+LvHEAknS2XuBYoc/N7afcK1z+9cFB4dFuR7Nt2hcNbP4vuOUvSe//Y1Wl7J/z8nDvGOP/WktHryUEgo57suDvqVfv2v/3ZJ0mO/Uunq9/7MLe5IJE7igX8OJxKJxD3ido6N/F5Jr5X0vFLK+yR9iw4z2A4k/asjYvAzVVX9qaqq3lJK+QFJv6ZD29efqW4zm62Jm+3djBO3KODTGEz8Op1OTWKcENG71DGZIYlct9vVaDSqd357vV4j0SOFBxK0tjaT2JFo+XjG69ev6/HHH9f29rYmk0kthLgOv5gILiYdJBl0Hd1uV9vb2zX5sQDil/vOUA3XyxMATNQM/02bOsmZ2+uwkOFwWBM83x/JOgmt54giAWPp/TmJa7Tfe24oeJB4uz+cf9Yfc2swYafXHAk5d9BjKMRqtaoFDLfZITScwwiSfpJzj6FDSOKOuvsrHYfhtJVvUEDgGmI5XBNta5miBceUoRW8N84NRRee1hHrZv/axtzhJetyjrhclu/vj9ck3Q7xftbNZ86m4H49i+8HVp/36Xr2k4aSpOWVSlU3BYXEIQ4G93EtFOlgdFjfc5/U0f5Xv6b+6JF3TNX592++f21JPBB4mJ7DiUQicVa4nVMe/lDL2//glOv/hqS/cSeNMCF06IBj0vmffu+QL5fL2pJO27l3+73DTcu2yZ7JjXdVB4NBIzcDyW/bri53kWmpN6Hy+/1+X+PxWFevXtW1a9f0yCOPaDgc1qc4SMc7oybtJk50algYMcGTji3mzs3g+i2kcPfVBMzkiCEHJLpxd9y5Dlye28k5oe3fAlBMBsgwBt+7LhyCFviYT4NChl90bcQdcO4+m+TymETPE4k5d7lJZGOMv+ugSOOyer1eI4TjNDCWny4JtycmK4w75ZHcx/wWRnTmGBx/z00Mo/HnLLdNbGBITWwL++q+teUrcP9i3g+uDY8Lk4q2iQMUJzxOFE/aQizaBBSKUJuA+/Esvh/Y+uRP0od+60g3Xr45Y5tIzK+vND+OhtDBYKQXPPspkqTqHb+haj6/oJYlNgkPy3M4kUgkzhJnccrDPcN5EExQI4mRjo+4s1jA3Uo7F/b29nTz5s1GwjoSVRISHo8XSYwJnMl0JCEmHi7LO8m26o9GI127dk2PP/64HnvsMV29erUmytGVwN14t4/Wbe76ehfbp0bY6s/Ed77Oce2j0ahBjGzB9/F+dntIx3H/vt5E3OPO5JguZzAY1ATv4OCgQYwtrhgMo/BYRkdGp9Op22xCSUJIAkoBh+SfYolFHM8p++Z2WrjhsYgky9HB4XVHMYruCP/tvtIR4ms8TjwZgY4GChkxTILiEIUzCzv+m+uNY81wEH5POC8EhRY6XjzmbTkiosAR66DIRccOQ27oPOF32IlUPR5+n2vc3y/3M7o02uDvNAWQTRIUHha8648+rv2dHNfEZuO5T6703Cc/Ikn6lP/pCe2/+72HH+QJEYlEIpFINLARggKt00w46M9IPk2kt7e3ayI5mUw0nU61t7en3d1d7e7u1mVKqklqGwGsqqqRd2C5XNblkZQ4TwOJa7fbrUMbtra2apv7aDSqEz5a8Lh586Zu3ryp6XTaSDoYx4HkazweN8IPer2exuNxLWLQlWDibFLpWHDmYeCYsi4mZ3T8v/9eLBa1cMCwAJM9hn1UVaV+v1+Xx9wX0YZu0B3ieeEpFXRyxF12Cj1x7FyP1xQFFzoC3Ecm8HMIjB0sFktIaB1qwrXgeofDYaM+SXVIDsUE5gVwUkuCrgGuRa5br2+S7uhG8bi4DvdjOp3W5Xu+ovgU12cMbfDacL6HGMrjun3vOqfF/v5+/d3wd5fHkLp/roeI+RTcLgtIHj/nhKCo5Z9cOxTpEolE4j9+3RNS9YT6zxW96G/+1EU3J5FIJBKJjcLGCAomMybaTGonHR8f6d1ck5fFYqFnn31WH/nIR/Tss89qb2+vTqBHsmZBwfW4LhO1xWJRv6K13qRTUqNdzsOws7Mj6fg0itFopJ2dnTqZ382bN/XMM89ob2+vkTAuOiO4g2pybxeCnQuMBXf4hwmgxQS7E4bDoVarVZ1XoS0W3aSLoQjRZu/raVMnaaXF3oihHTERIYktrf/caTapY3JASXWSR4YIcFfZhN3jFcfVJNjjwZATilBxfVKoMTlnP6qj/Am05cecA+wzwx4YQmEw3IaCAueebSYcemEhyONG4h2FA84jXQwUHOIOPhMyllIaIgLdPRaWPIYMUeF33jkpHJZk0ZDhSnQWRZHC5dPVEl1OXmPRqcEQIc57IpG43Fj1D59Xi0ekj7z+NXrBD75NB888c7GNSiQSiURiQ7AxggIt2ky6GO3k3p03qZpMJrpx44Zu3Lihvb29BskyMTGBJBEhoXK+AL+Y14A7tnYJWNwYDofa2dnRlStXJB0SPRPO8fjwHOHFYqGDg4P6OEe6IWxFXycomDy533QkuBySPfeT/bZA4vZRVGCcvnR8hCXzFjCXgOtoO5kiwkSaJwPE+SZRJzm3oGECSGGD9dE9wnIiSaf13kQ1roW2/ANxjXKMeWyjdJzrgTkwvKYNt82uBxL6dfW6/dxt99zE/Boec44XRQ0KLRTLKG60zWMMX+A9Xmf+Xnit+R7X7d8ZcsH54WkLFg4sKHicuGaj6yaCYo3r8HxRlGNb6LRpC/1I3Bs647GqT32pqo34VyeRuHOs+pWe/VTpkU9/mYZvfb/2n/rgRTcpkUgkEokLx8b8186kYjabaTabNUiLbf5+dTqHR/xNp1PduHFDzz77rCaTSb3LbqJvQkLbNOuS1CCti8WiDkeQmkfqkWhLh+Rme3tb165d02OPPSbpOFY+Cgp0Pczn8/rIyJigkCTGoROMr6+qqj5WzxZuw+EOHitfT3JuoYaiQr/fr4UUnujAkAO3KZJOWsY9loTrjO9zh54x8d5ZNjH12Dk3g0m6ibHJq8eI7aNA47ocynDlypVG0knmKOD64M6/6/V68tGmcVffLgXueptUU5SRmvkQ2twBsT8k0RR72twEbgcFIbp6WFebkECy7bkk0fZ4MoSDbgyX0RZCQdGHOTo8V3YU7ezs1N913+d+8j6KAVyPrtPryoJE7AfXY9s4Js4GnRc8rrf90SuSckwTDzbe/aU9PXn14zX631JQSCQSiUSibMJ/mEspH5a0J+kjF9yU52Ubsg3ZhmxDwCdUVfX4BdV9X1FKuSnp7RfcjMu+3rIN2YZsw0lcpudw/p8425BtyDZsahtan8UbIShIUinlF6qq+qxsQ7Yh25Bt2MQ2XAZswjhnG7IN2YZsw2XHJox1tiHbkG3INtwuOre+JJFIJBKJRCKRSCQSiUSiiRQUEolEIpFIJBKJRCKRSNwxNklQeONFN0DZBiPbcIhswyGyDZcHmzDO2YZDZBsOkW04RLbhcmETxjrbcIhswyGyDYfINrRgY3IoJBKJRCKRSCQSiUQikXhwsEkOhUQikUgkEolEIpFIJBIPCC5cUCilfFEp5e2llHeWUt5wn+p8cSnlJ0opby2lvKWU8g1H7/+1Usr7SylvPnp9yTm3492llF85qusXjt67Xkr5V6WUdxz9fPQc6/9k9PXNpZQbpZQ/f97jUEr5h6WUD5VSfhXvre13KeWbjtbH20spX3iObfi2UsrbSin/oZTyz0opjxy9/5JSyhTj8ffOsQ1rx/4+jsP3o/53l1LefPT+eY3Duu/jfV0Tlx35LM5n8dF7+SzW5XsW53N4M5DP4XwOH72Xz2FdvufwUbkP5rO4qqoLe0nakvQuSS+T1Jf0y5JeeR/qfULSZxz9fkXSf5T0Skl/TdJfuo/9f7ek54X3/h+S3nD0+xsk/a37OBcflPQJ5z0Okn6npM+Q9Ku36vfRvPyypIGklx6tl61zasPvltQ9+v1voQ0v4XXnPA6tY38/xyF8/j9I+qvnPA7rvo/3dU1c5lc+i/NZfKt+57O4fv+hfBbnc/jiX/kczufwrfqdz+H6/YfyOXxU7gP5LL5oh8KrJb2zqqpfr6pqIen7JL3uvCutquqpqqp+8ej3m5LeKunJ8673NvE6Sd999Pt3S/p996nez5f0rqqqfvO8K6qq6t9K+lh4e12/Xyfp+6qqmldV9RuS3qnDdXPmbaiq6seqqto/+vNnJL3oXuu50zacgvs2DkYppUj6Cknfe6/13KIN676P93VNXHLks/gk8lmcz+I2PJTP4nwObwTyOXwS+RzO53AbHsrn8FEbHshn8UULCk9Kei/+fp/u80OslPISSZ8u6WeP3vqzR/aef3ie1qojVJJ+rJTyplLK64/ee0FVVU9Jh4tK0vPPuQ3GV6r5Jbmf4yCt7/dFrZGvkfQv8fdLSym/VEr5N6WUzzvnutvG/iLG4fMkPV1V1Tvw3rmOQ/g+btqaeJhx4WOaz+Ia+SxuIp/F9/lZnM/hC8OFj2k+h2vkc7iJfA7n/4lPxUULCqXlvft27EQpZUfSD0n681VV3ZD0v0j6REmfJukpHVpbzhOfW1XVZ0j6Ykl/ppTyO8+5vlaUUvqSvkzSDx69db/H4TTc9zVSSvlmSfuSvuforackfXxVVZ8u6S9K+sellKvnVP26sb+I78ofUvMf1HMdh5bv49pLW97L42ruDfkszmfxrZDP4qNmtVz70DyL8zl8ocjncD6Hb4V8Dh81q+Xah+Y5LD14z+KLFhTeJ+nF+PtFkj5wPyoupfR0OFHfU1XVP5WkqqqerqrqoKqqlaS/r3O2jFRV9YGjnx+S9M+O6nu6lPLEURufkPSh82zDEb5Y0i9WVfX0UXvu6zgcYV2/7+saKaV8laTfK+mPVNVhcNKRjeijR7+/SYfxSa84j/pPGfv7PQ5dSX9A0vejbec2Dm3fR23ImrgkyGex8ll8hI343uWz+BD381mcz+ELRz6Hlc/hI2zE9y6fw4fI/xPfGhctKPy8pJeXUl56pAh+paQfOe9Kj+Jg/oGkt1ZV9e14/wlc9vsl/Wq89wzbsF1KueLfdZj85Fd12P+vOrrsqyT98Hm1AWiobvdzHIB1/f4RSV9ZShmUUl4q6eWSfu48GlBK+SJJ3yjpy6qqmuD9x0spW0e/v+yoDb9+Tm1YN/b3bRyO8AWS3lZV1fvQtnMZh3XfR23AmrhEyGex8ll8hAv/3uWzuIH78izO5/BGIJ/DyufwES78e5fP4Qby/8S3QnWfs0DGl6Qv0WEGy3dJ+ub7VOd/qkM7yH+Q9Oaj15dI+l8l/crR+z8i6YlzbMPLdJiV85clvcV9l/SYpB+X9I6jn9fPeSzGkj4q6RreO9dx0OGD+ilJSx0qa197Wr8lffPR+ni7pC8+xza8U4dxSF4Tf+/o2v/8aI5+WdIvSvrSc2zD2rG/X+Nw9P53SfpT4drzGod138f7uiYu+yufxfkszmfx5X0W53N4M175HM7ncD6HL+9z+KjcB/JZXI4akkgkEolEIpFIJBKJRCJx27jokIdEIpFIJBKJRCKRSCQSDyBSUEgkEolEIpFIJBKJRCJxx0hBIZFIJBKJRCKRSCQSicQdIwWFRCKRSCQSiUQikUgkEneMFBQSiUQikUgkEolEIpFI3DFSUEgkEolEIpFIJBKJRCJxx0hBIZFIJBKJRCKRSCQSicQdIwWFRCKRSCQSiUQikUgkEneM/z/1HdAiy+SZzAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 0 0\n", + " Min thresh = 1000\n", + " Not Sliding\n", + "\n", + "\n", + " Winner = Not Sliding\n", + "\n", + "\n", + "026ns_image_1087766719219_clean_ClassN_153-281.roi.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADYCAYAAABberBAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADXyElEQVR4nOz9eZxk6VndiZ83M2PNpapr602tXS0hEJuQhMBgbMk2m9FgFmMPYwmwBcaAjTcEM4wZ/8CjMRgwY2NbGAwMjEFexrIBG2ywDBgEGMQmkIR2CXWr1a1acouIzIj7+yPz3PzeJ2/WmtUVVfWczyc/VRVx473vdqPynOc8z1uqqlIikUgkEolEIpFIJBKJxLVg4VZ3IJFIJBKJRCKRSCQSicTthxQUEolEIpFIJBKJRCKRSFwzUlBIJBKJRCKRSCQSiUQicc1IQSGRSCQSiUQikUgkEonENSMFhUQikUgkEolEIpFIJBLXjBQUEolEIpFIJBKJRCKRSFwzUlBIPOkopbyllPIZt7ofiUQikThAKeU9pZSXX+W1VSnl2dd5n+v+bCKRSCQSiflCCgqJJx1VVX10VVVvvNX9uBxKKZ9RSpmVUjbw88pb3a9EIpG4k1FK+cFSyiR89y7e6n4lEonEPOG4hdkrtZe/Fycuh6Vb3YFEYo7xwaqqnnKrO5FIJBJ3Gf5+VVX/263uRCKRSCQayN+LE61Ih0LiSQdttaWUbyml/KtSyo+UUtZLKb9TSnm4lPKNpZTHSinvL6X8SXz2y0opv79/7btKKV8Z2v7bpZRHSikfLKX8RSqupZReKeU7SinvK6V8qJTyT0spgyd39IlEIjH/KKW8uJTyy6WUC/vfqf+olNINl332/vfw46WUby+lLODzX77/XX2+lPLTpZSnPclDSCQSiblGKeWjSilv3P+efUsp5fPw3htLKX8R/35VKeUX9//+8/sv/9a+U+DP7jsIPlBK+ab97+T3lFL+5+tt72aOO3HnIQWFxDzgT0v6fyTdI+nNkn5ae3vzQUl/V9I/w7WPSfpcSWuSvkzSd5VSPlGSSimfKemvS3q5pGdL+qPhPv+XpIclffz++w9K+t8v069z+8LDu0sp31VKWb6BMSYSicTthKmkr5d0RtJLJb1M0leHaz5f0idJ+kRJr5D05ZJUSvmfJH2TpD8j6aykX5D0L6/h3l9dSvlIKeXXSylfcANjSCQSiblEKaUj6T9I+hlJ5yR9raQfLaU890qfrarq0/f/+nFVVa1UVfXj+/++T3vf2Q9KeqWk191gexH5e3GiFSkoJOYBv1BV1U9XVbUr6V9p7xfQ11ZVtSPpxyQ9vZRyUpKqqvrJqqreWe3hv2nvi/jT9tv5Ykn/oqqqt1RVtSXp//ANSilF0l+S9PVVVX2kqqp1SX9P0pcc0ae3ak94uF/SH5f0QknfeZyDTiQSiXlFVVW/XlXVm6qq2q2q6j3aE3YPibT736fvk/Tdkv7c/utfKen/rKrq9/e/1/+epI+/SpfC90h6jvZ+wf5mST9YSvnUGx9RIpFIzBU+WdKK9n7fnVRV9XOSfkIH36PXi2+uqmq8/zvyT2rvd+PjQP5enDgSKSgk5gEfwt+3JT1eVdUU/5b2vnRVSvmsUsqb9qNXFyR9tvbUWEl6QNL70Rb/flbSUNKv71vLLkj6T/uvH0JVVY9WVfV7VVXNqqp6t6S/LekLr3eAiUQicTthP/XsJ0opj5ZSLmlPFDgTLuN37Hu19x0sSU+T9A/xXfsRSUV7UbPLoqqq36iq6ol9IeOnJP2o9pwOiUQicSfhAUnvr6pqhtfeq6v4nrwMzldVtRnae+Coi68F+Xtx4nJIQSFx26CU0pP0byR9h6R7q6o6KemntPeLqiQ9IonFYh7C3x/Xnjjx0VVVndz/OVFV1cpV3r7CfRKJROJOxz/RXkTqOVVVrWkvhSF+B/I79qmSPrj/9/dL+kp8156sqmpQVdUvXUc/8rs3kUjcifigpIdYe0Z736N/uP/3Te0Fwoz7rqLNe0IaAr+Xr6e9yyG/mxM1UlBI3E7oSupJ+rCk3VLKZ0n6k3j/9ZK+bL/IzVCoj7CvAH+f9mounJOkUsqDpZQ/1Xaj/eI2Ty17eEjSayW94aaMKpFIJOYPq5IuSdoopTxP0l9uueZvlVLu2f+O/KuSnHf7TyV9YynloyWplHKilPJFV3PTUsoXllJWSikL+wV5v1TSv7/RwSQSicSc4Ve0R/L/dimlU0r5DO3VFPux/fd/U9KfKaUM94uLf0X4/IckPbOl3f+jlNItpXya9mqO/asbbE9S/l6cuDxSUEjcNtive/B12hMOzkv688IvmlVV/Uft5d/+V0nvkPTL+2+N9//8hv3X37Rv4f0vko4qVvOJ+5/flPRLkn53/96JRCJxN+Bvau87dl17Ymxbka43SPp17f2i+pOSvl+Sqqr6/7RXBPfH9r9rf1fSZ13lff+q9iJ0FyR9u6S/VFXVG69zDIlEIjGXqKpqIunztPfd+Lik75X0F6qqeuv+Jd8laaI9ov9D2kv/Ir5F0g/tp5a5TsKj2vv9+IP713/VDbZH5O/FiSNRqqq61X1IJG4KSikfpb0vvN5+YbBEIpFIJBKJROKOwr7D4UeqqnrKFS5NJI4d6VBI3FEopXz+vtXrHu1FyP5DigmJRCKRSCQSiUQicfxIQSFxp+ErtVdj4Z3aO0e9Le83kUgkEolEIpFIJBI3iJsmKJRSPrOU8rZSyjtKKa+5WfdJJIiqqj5z//SGU1VVfX5VVY/c6j4lErcK+T2cSCQStx75XZy42aiq6o2Z7pC4VbgpNRRKKYuS3i7pT0j6gKRfk/Tnqqr6vWO/WSKRSCQOIb+HE4lE4tYjv4sTicSdjpvlUHixpHdUVfWu/SqmPybpFTfpXolEIpE4jPweTiQSiVuP/C5OJBJ3NJZuUrsPSno//v0BSS856uJut1sNBgOVUlRKqV+3e8Kv8d98rc1lUVWVZrPZke8vLCwcurbt+qP6E/vENkspqqpK0+n00PuxvdlsVn/G7/sa/90/7J+vj5/xNW3z5+vcBvsYx3a5MXIc0+n0yHlum7t4D/a5rR9HfZ7r5zk8aryck1KKlpaWGmPgvY/aS7E/RGyL/TpqXGxrNps19krbHLTdu23P8PNxLEe9Hu/lf8f+H7VH+HOle/A9P3NeP/azbb+0jaNtz7X143J7+qh1N2az2eNVVZ098oL5xTV9D0vS4spy9dSnFz02XtXiO8aXuzSRSCSeNIy0qUk1bv9PeP5xTd/F+T2cSCTmFes63/o78c0SFNq+9Bu/sZdSXi3p1ZLU6/X0ohe9SJ1OR91uV4uLi0c2PJvNtLS01CAOk8lEs9ms8drGxoa2t7e1u7ur3d3dmkQanU5HS0t7wx+Px9rY2NBkMtFkMlFVVdrd3a3J8+LiYoP0+XWpKQr0ej0tLS1paWlJOzs7Wl9f1+7urmazmRYXF9XtdtXpdOrPum8e03A4VK/Xq+/nNjudjjqdjmazmXZ2dhrv9fv9+n1JGo1Gmkwm2t3dVVVVWlxcrPvrOZjNZtrd3dV4PNbW1pZ2dna0s7Oj6XSqTqejfr9ft+u5cHu9Xk/D4bCeuwsXLmhra0vj8Vjj8d5/fL5ft9ut5286ndb36Ha79TyVUjQej+u5n0wmKqXU/V5aWmrM08LCQj0nHovH63t7nt3+1tZWvZ5LS0s6ceJEYwxVVdVzwLZMND3fJO+Li4v1e76nrzHc78lkotFoJElaXFzU0tKSBoNBYx9cunRJo9Gonme3yXnw/p9Op9rd3VUpRd1ut/5pI8vx2eGY/NwYS0tL9f5bWFjQaDSq99N4PFZVVY21498v18coenheRqNR/Yz4/ha5/FNKqdeSc+72J5NJLWpxft0Pts3niPMwHo/rNrj3pD0hYn19/b2tEzr/uOL3sNT8Lu53TujB5/yveuaFHS288803u3+JRCJxVfiV6mdvdRduBNf0O3F+DycSiXnFf6n+devvxDdLUPiApIfw76dI+iAvqKrqdZJeJ0krKysVo5Ux4mtS4l/4pcNRaF5P4t1GBn1dW6TTpIVRaUe16WRwX3itX9/d3a3Fh+gYoCPB9zIBb4s2++8m5p6H6XTaGhk/yjHhv8doPcUSCxsm5L1eT5JqocCk3te7PZO73d3dWgxy39hHriPXpi2S7vfcru8d94UFJffHwornkXNrRLIbo+Tx3yal3h+llEOig9vzvUmOKch4b5iIc02i06PNFeH9tbOzU7c3mUxq8YZ9bNtPbW3RMbCwsFDvSd9nMploZ2en3uNeX7bhfy8sLDQEAbfHPli8GY1GtVARr6NYQ7Q5PKJjJbobKB7QUcP14zN9OVfIbYYrfg9Lze/itXKqGrzhV5+c3iUSicTdgWv6nTi/hxOJxO2GmyUo/Jqk55RSniHpDyV9iaQ/f9TFbb/A85d+EqQoKkQ7eiT9JEAmWCYVfs9k1O+7Tb/uPpBMT6fThpPC75tYUlRgHxl5dQSdY/QY/NrCwkIdoXUU2HPTZgUnkXYbjLjGefe1JreMPnc6nUa/TOpNZk3m7Txwv+nsYD/chvtqIkoBIa6h94Lvzf3htTJpN/r9fmOc7othouzxklBHESiCe4KklA6KhYWFug+eF+8H38eOAo8/7kmuEeeOLgrPv8exuLhY7xU7OOjaaXu+6LyhULKwsFDfy2vsPcI1ppPHr3uPx/e4ZyaTiba3t2uhwu/z75wvCo1RDIzj9Jx6/jhWrwOFiaNSkS4nxtwmuKbv4UQikUjcFOR3cSKRuKNxUwSFqqp2SylfI+mnJS1K+oGqqt5yuc843aHb7Tai3oTJsaRDBNQ/tNbTBt3r9RrE1TZ3f47kXlItDMQaB4zoR5hIkQD7M/1+v9FPE3O3zXHwnrRq29EQxxxdDCTDtItTDOG8OK2gqioNBgMNBoP6dY/L8z6dTrW9vV23H1Ms3GdGzEmUSeC9Xv68XSWcd0n16/7czs5OvTco8pgA7u7u1k6FNmLo9ANGpdkO5y+SV/eD10XSGaPrnm+3ZaJOgh7b9/oQdGtEEcfkfWdnR51Op04t8TirqmoIRHSQ8BqvRSlFo9GokWLDfvrZsQuBDgM6MqIgwh+mGfh9ii9eU7qNFhcXW91HbYIZ1/FyYo33pPvBPt3OuJ7v4UQikUgcL/K7OJFI3Om4WQ4FVVX1U5J+6mquXVhY0HA4rHPGTTjQlqSDiDrFAqkZwSYpjAQi2t4vF+nkfWNb0U4e3QeMqJqwkJDzOjonmC9P8aSq9mohDIfDxng4Zl9HEud6A7TpxzQDX+vrnRcfo//uryPiboOWeffdbgqvZYz4R+JsgmySyrV2P/ya5zA6UnxNzL/3WOxu8X5x/QCLJd5DHk9cb7/u+fA8M7od95/77tej68HE1XNLgh0j5p5rr0XcH7HvHg/3u+t40JESUwX4XDCVhPUefJ1TYUjKORbPP/vA54OimNtmmorH53n0HqHjgM6FOB+85qj95PtYVIriz1FOldsF1/I9nEgkEombg/wuTiQSdzJumqBwLbBF3ESUhFFqJ/t0CDDHPjoKopOA5JIkz9HPGFElySIB4b8ZiWbaA+/H1IY2l0HsT0yBMHHqdDr1647Uk/BzTu36oK2e4FyZ/NGpYRcF24+1AzgPvm+0uPO66BIhCecckOi5/1EA8v34b5J+znVcIwoKdjNwD8WIdZtgxTH7Os5RFKa4B4wotERw/7FfLDLqeeEeoMvDn/V9WYySz5kJfxsRd5sUa/gscR9Hd0J0dlBYiHsxrntbGkr8t8H18jVRpKGTIgpwMSWk7R6JRCKRSCQSiUTiAHMjKPR6vUZBuBhVNiL5Nul1dLvNPWCQGEXiw77EqKpTE2wZp6DAKKz7wKgpxQSPx24AjjVGQxmhNUH2Z+OJFSS8khpuA+fqR3dBm6U7Fn50lNo/nvdINmMaCqO8bUTQ17LfkYzyaEcWymTUPdaUYKSbUfK4f9yG0wRiXQSmhPg6ptF43drIJqPcbUUR6Vrx9SS1XB8KBkxVcRoMhQGvFYk718r3in0hCSfRb3uW/Kz5Oq+RTwOJ+8One3hPMJWB4+HceXzc39HlEp+TtpQhj4fPuJ+zKKLwJBSmvyQSiUQikUgkEonLYy4EhVL2jr8zESLh8r9jtN5EgdFZkiATzWiB9/2kA6JC0hcjle6DpIZNnMTQUX0TJjsU+LO7u9v4PJ0GjJAyXSFGTN0+j7+zeMG5cg2Dfr9fE2YTMvaR5Ipk1u+7cJ6L8o3H4wah931ms73TIdpSOSLsqPD7tMqTwLKYY7fbbUS0t7a2GvvBgsPu7t5RmCTQdr7436yx4bkfj8eN8VuMiRFv7te4PgaFD6eucJ1jGoTbL6XUhRxJbrlWnBvWqaArw6D93/MeBSwKQRSDPDexKKf3oPfQzs5OLQQybcTCmvc4x9MmnnHevJfi+P18e8wch/+ko4hHoXLN4n2PcjBwvyQSiUQikUgkEol2zI2gwD9JuKPdnYQs2qYNEloXpvPnKQYwx5/E2tFVkjLa5GMk2YKCxQU6GRzxNEnhaQ0kaxQnWIOAZJFRV5KuOD+dTkf9fr8xdpIjXxOj2CSTJmWTyUSj0aiRo+82OJ9+zeKDx0rhxCIF8+t9moQ/HyPKrMvA/kdbflx/Fv/jazyVgmvIfP2Y+kEiH9Mc2vYyT8zgSRdMJ+De9dpxb7gNu0pcaLJt77gNClFeX4paMQLPegmcS+7neB8KdR6v5yWmE9DpYWErFmXk/NKJ4T5TDKOTg2kmFAS5vvxuoDuG+4tr736wj+lUSCQSiUQikUgkjsZcCArSQTqAdLggn8kAicNRhJIEgKSvLf0hRqBNLkxw29AWXfXnTATdJxIlChHRCs+c8UhUGTlus30zXcB9oXsiksZ4/8lk0mrzJylvWyMWmzRJ9efYT/eFxfrspHB/7VLgmLhGnifPrckpnQ3x8xZE2k4YiOsX7xcR++G+cB2iqOPP+U/ek4Q8ricdJtPptBH9p9DE54ARfL9vIYfPDvcA1yqKCVF0IygetP2b/aKA4vu3pY54bum2YepGm4sguj58z5jmEec+rpdFC49FahaPbEtrSSQSiUQikUgkEnuYG0EhEraYzsB88uhS4Htt+c+OlJMQ01LP4+r8b7sDYnSaBIWkmZHtSGDcr2ib5+kK7BsLBcaid1EIYSG9OI9tRMtj8lGRPoaPhN+fYbusrcB0BdabYJTa92K6QduJD3QhRPLJuaYYwzmJBNJ954kBdHnwdc9VPKmiDaybwRoYsf4CxxVFBApXdnHweo+dc02xxfNE0k17P+fH19GJYCEnpgn4fR6fSIcN19evs95BFMq45+g2YFoC55tzTlJPRw73AO/RBu6xuA4R3KtRYLzcPRKJRCKRSCQSicQcCQo8Wz5Gs0kOYqE6RtBZZ4AEn+TIpMjtjcfjmlS63Zjj76JzMQWCUXlf65xy94WEOEa/SaYjsd/Z2TmUMhDv62KJPO2BqQx0J5D4xjoFMRrNz5VS1Ov1GpZ0kk5fz4gwK/tPJpNGnQQStEjevWbxyL/LOUZipJqWfrczGo3q602cScxJ8N1PO0rcpoUR/p0CUCmlrifBuY8nZHjueG/uA5JZ7reYWuD2XNuCdT7scuBpIzGdwPenyFNKOeRsOGrOoyPB88F+xmNKY3ttbhDukbaUpihQcA5ju9Exwn4SdrJEQTORSCQSiUQikUhcHnMhKJh4Soet/FLTVh1rFDDlgZHXSDAYPSX5tb3cr8eILAkrI9Mm/P5ctFkTTIkgSYxRcToEaO/3Z3q9nrrdbp1CMBqN6poEkmoXRrToU1xxm5wz5t1TqNnZ2WmkZbBQJoUKWuZZ+8LF+UzW21ILSJDjcZ1cD/bD6+6+MwXC11AAsRPDqQAUT+i6oCumLX+e4hT3Lv/eZrenO4HEOo7N6z+ZTA6l6/AZaNvHvN/u7m4tokQnB/cb3QlE7H90WrCNtuv9d69TFHgo8EXXAkUACjocZywMyueQ82O0pTzE99lvjm9xcbFxOkoikUgkEolEIpE4wFwIClVV1bn8UvPEAboKYu42I5W+htZuEjDa30nqGBmmS4H3t4MhEnYTTDojYlV4X0siaoLFcUbiFiP5/nwkyx6HybKPimyLbkcbeyT4dgLEYxUpUDDtw6Q7km+eunA5+zjJIueCbgD+6Wt4TCEFF84X55QkNToz2kQOrhHnL1rvuTYx8s/7M/+fQkyMtFtQsFuFp4LE+0YnBPtP8s7ihxxnjOL7PYoP8XNcQ/a7TfyJ4kdcCzoXorjGfRbv20b+I+JaHoU2Z0ObEJmCQiKRSCQSiUQi0Y65FBRY9Z8F4uL59JE0LCwsNGoPtBWLkw6OReRnSMaiPbuU0iDvdkmw/yTPUZCQmlFzpkrwz+hYYBsev0lPzBNfWlrSYDBQr9erhY4oSvDkgnhviw2M9jLfPvbPn/PJCb6OfVxaWjrkPOG6Mhrs+9ExQIGGggyPGKWQxP61ReXbRINoi+f8xvQDC0/cG1yrKCq01XaIxJiOGu49tsV9zNQFplPE+9KdEdNdItnnunBO4rx4XonoEOJc240QnR4eY5twx3vxs23PJdtrGwtFj/ie/4y1UuI+OKqmRiKRSCQSiUQikZgTQUFqki8eW0eyxMi8EaPrfk1qkieeBsDIs6RG3viVjoozCel0OnXNg1jLgfD9u91undcuqR5DzKunABIFipjnbRK+tLSkfr+v1dXVeh6iaMIifVH0kA6nYDCS7ddJTp2mMhqN6rk14Y/OC66XxQIesUnxoJSDWgT+PEn+dDqt94X3SYyUx7x9z1Gn06lrTFjoiBH7KDpESz7nk2vMuYpCifvNUzPa1oBCghEJOQUFphP4OWH9jLiPmY7CvpNQR+LOfnqt+DpPl2DbdOXQkdMmDLQJHBQVpIP93ObkOerfbCO6ReIejwJCdEQlEolEIpFIJBKJw5gLQYG/yPsX/6OKvpEodTqdmlTS4s/K+DGvXTog8dLliQOj1G2uARNhHkfYZg13sUZHbNsi1b7WokG08XP8HpdrP/T7fQ2HQ62trTUI82g0qvvoopck7tGGPplMDkXmSRrZrxhN92uee6apRCeARQOvnz9rkkeyzvWKhD7a+klcWe+BzolIgN1eXA+KN1Fwiq4TOixIlj1fMfWG/fB1bD8S5DjnfAZYg4J7Pu4rCib+0+ITaxxQuOE4YtoFyTmfiShC+bMsPBrTSTxHfHbonHFbbWkY7jP3sxHdHUwF4XpHdwP7m4JCIpFIJBKJRCJxNOZCUDCiRTla7Ck6+HrWBjAhc04722LElaQ6pgD43xYJSNzYFsl0JOG0e8dUBfaB96OY0JZHzmi3YddDt9tVv99vHL14ubmLjgG/3zYeRoZ9vQl4PE1icXGxjsC73zzhwSkK/mGRSs95rJMR14xOENc1iGvFOYt1CNoEgyiucD9S3PCcmMSS7DMNhHNJcKzeo9xLFKmiS4L3jw4C9o99j0KJX+d8cOzuQxQmohjC9igStaVcxLmnkBCFJ14XnQOcC46Zz3EUNzzPFK2i4NI2HqZZpaCQSCQSiUQikUgcjbkRFEykJDUIcJttmQTCpNSRVZPaNhs0CaGFhxhRjp9hH0guSGSjvZyRV1ahj+Mh4Toqp53vuWCfpDrNwUUYu92uSimNIySjtZygIBJJNsdOy350j/h9ijcm2xRTIulkPYdo74/CCteU4ofJMl0oJIhup9PptBLxKNR4LBwf95ZPrGAkn+vkdSRpjS6C6DzxnqUYYlJP1wD7yPXj39vWmnMUhRI+X22kOv64PYp+cV3ZbwoqFDe4dnwWmL7SltLEPds2B1GQoFhBtwq/R6IAyDEd9UwmEolEIpFIJBKJA8yFoBCjhiS4CwsL9VF/0gGRZ4Tb17umASP0Roy4U3QgCTXpi3UBTDSYLhBPMTBKKer1eur1eg1bv98zUen1evUYKW6YVJKY8wSLhYUF9Xo9ra6uqtfr1UTK45pMJvXf3VcTPM+Rj4W0BZ3EK4IkeXd3t1HckfPXJsJEt4BFIJI12tBd64DOEaZqUFBgVJ/1NlwrwULLbDar54TrzLoSTAnxPFAM8lr7urjenA+LTB7XwsKC+v3+oTQep20sLCzUQlAUPziH0oHo4v67L22nPbQJCpEsu66B55Zijgk4CX9Mp/D7HlssFtnmbnA/FhcX1e126+fAzxT3Eu8Vn7Po3KAgGUUSfqZtTvxe2/OcSCQSiUQikUgk2jEXgoJ0QBxNanxigYmhCYNPFGCFf0Zy6VaIIGEgQTUJZa56tHAzQk53grRH3AaDQePzTkUweTPZcR9MZp22IB1E900We71eI53BrgrXHxgOhw17/Xg81vb2dt1XzhXTE3Z2djQejzUejw9FfE1So10/Rt5NIn1EpUmYSbjXjlF7ElSTOAscnifPmcUbzwuJXjw+kesgqd4zFnUoQlmo8pwuLS01RBW373F57Xh/7oXo2HA/xuNx7WqgWyJe63uOx+ND5Jn7gYKM59DzRtGIUX+6AbwHSKYpXElNESgKNmyHTqFIzr13PEdRQIpCE09vYX0Qrz+PEHUf2O/oqOGcelzeRzFthm4YrxvvQadUIpFIJBKJRCKROIy5EBQYXTQBcaTatn5G12M6RCmlQfIYcSVB43vMxWdUnCcxGHQAmOiQiMcoLscR7dSMsDttgYSKffY8MJrvz9r5QMJOdwXni9FyCgr8HNsn2SdI8GiDNyzMkKwbFFEYEWa6BFNE/BoLRXJv+H7uF+32MW3Ccx3n1T8kmNHqHvcSybjnleQ9ik8kx5HA+p4WG0iOo+vD7cf5YzvRDUDnQEyzocDFflCgoLgQHSN+n3MSnT5GW8SfIonvy+vaXARs39fEe8YUiSg2UCikwEFBhOJZIpFIJBKJRCKROBrXLSiUUh6S9MOS7pM0k/S6qqr+YSnllKQfl/R0Se+R9MVVVZ2/yja1uLioXq+nfr9f/ziKHKPmJMEG3QPMTSehNCgykJzwbHqDxQUlHSLjkfAdRapMKBlBZyQ/EtVIHk0MmSphQYUEmW4EW9BNjCeTSS0WsI/MQ/d7HFeM1nq9+FmnGTANgeTU/Y0OEUbefVIF6wr4fhQcmDrQZounmGAni9uwMyQSzJhiwD0S9wnFBYoj7i8JLQl8jNrbGcL+X8l+T6HDY+W6tKU2sH8UYfx598ntR0HB4+A8RLJOhwRfj9dHoSDOqfvAZ6ztmYqCAl0Gsb0ogsXnlevmvXI7iAo347s4kUgkEleP/B5OJBJ3M27EobAr6W9UVfUbpZRVSb9eSvnPkl4l6WerqnptKeU1kl4j6Ruu1JiJZL/f14kTJ3Ty5MlaTCCZc96/1CQIMXd7MpnU0W0TJRMdE0yKA7bjtxEUE3YSHd8/EhwSMb7mfjAlYDgc1sQ21kHY2dk5JCiQHNqhYKLsazwPvpYiRVVVtZhAFwadAU4vkaRer9cgnCSKFAdoxafjguTU71Nk8HusE2ExIs6t79Xr9bS0tNQg0zwxgfuCQgVPwKCgwHx7ChSSDgkEHLf/HiPgRiThk8mkLhAZSbf3jI8B9T7Y2dlp7CW6eHgah+8XT5GgEBRTW5gG4TH7GMkofnEvUVCIqQzuh/9sO3XE46UYQ0dAdK34uYzCUJvQUPYdMtx3bTVVokOEfY/PUhQx5xTH+l2cSCQSiWtGfg8nEom7FtctKFRV9YikR/b/vl5K+X1JD0p6haTP2L/shyS9UVf48iyl1DUTBoOB1tbWtLa2Vhey29jY0O7ursbjsUajkUajUSP3mhFI1xKwo4GkhbnlJBWG0ylIVEk248kEJOUUN3wfkiSKCc7xN/m23Z3pECZFHlOMOEsHaQRRMPF78bSH0WjUIGuSGn2ySBFFhG63WxPcaL+n0OLaFybOFi9Y7yKSW5NE9oGuCkk10Tap5DGAhttn3jvTBegwoc0+7kOvMyP6bsPzQ5GBIg/dGBYOLILx3qwTEYUf94mOBZLrWIsjprt4HJwXihteD9fX8LrFOYpOAd/f603XAe/R6XQazgzWrqCYQkGA4kKsT+HTSzgeXu/xUtiIa8L9QAGuDXy2JB1Kf5pHHOd3cSKRSCSuHfk9nEgk7mYcSw2FUsrTJX2CpF+RdO/+F6uqqnqklHLuSp9fWFioBYXl5WUNh0MNBoOa4Ozs7Ghra0ubm5va2tqqHQo84WH/fo3ig5F0ob/1fU1orsbiTNJmomSQIPl1EkBHxElmmbIQP0+C2kaSGeWlW2A2m9VpB51Opz4FopSiyWTSIM0ktVGYYGQ7RuAZBfacm3DHQowWNdw+59DiBR0KnLcoKFDgYZ0I1kBwlF3SIdLvfjFtxJ+LkfXYBq+nSOB/TyaTQ5+hu4SFIz0HHpcFI/+dnyXpjusfXRpxP7OGQ9ybUcCw68WCSGwjOjU4FvYrPo/RDcB9wzF7H7Fdine8J8cURQ/vJ9+PwhD7QAGQRUW5149yn8wzbvS7OJFIJBI3hvweTiQSdxtuWFAopaxI+jeS/lpVVZfaIv9HfO7Vkl4tSSsrK+r3+41TDRzFdYqDnQmj0UhVVR2KhEYCJOmy4oDUzDs3uSLxYCTW19MVIB0uOEcSFI/yi0SJZCzWEjDY/lEEjmNh+oJrEfj66HCgEMG6DOyrbfe0v9NRwbaiwMLaDay1EF0eMT2C9RUcVXYfGUHnaQJRCODY2iL2FBDin9FF4Xn1e7GoJ8l2TC0w2twEHDNFhwgKNPyTe51jjKReOqgzEa+jw4DFLuMa8F6+pm0Ptwki/EwUFDjuNgdDW1u8N10h/B7gevJ1Ps/xmeRatY153nEc38V9DW9eBxOJROIOR34PJxKJuxE3JCiUUjra++L80aqq/u3+yx8qpdy/r8TeL+mxts9WVfU6Sa+TpHvvvbey/d/RddrabZ23XZvEwr/0s35CW1SRqQAmIG6DUd16YnCUoyPsfN25/DGPnVHiCBLGbrfbIC4m7qynsD9PjYg2nQgcK4khRQXWCWCUnsc30hVBsuZ5otDB4zU5ZvbX6RG2x7NdFmWkaENXhz9PcsqoeYzSux92f0hq1JiI/6FT3PBcXElQcHsWWYwY9Y+kn8SZ8xznrO0zXK/oFoiCkvdQFE8850xliXuLe8b3jS4RX885iiR8Z2dH29vbhxwvbU4a9pvCG+eVolWbwMf5OWpPlH03TpuYEOfKY4xi2O2A4/ouXiunbi9LRiKRSMwJ8ns4kUjcrbiRUx6KpO+X9PtVVX0n3vr3kl4p6bX7f77hSm2RZDEKPJ1ONRqNdOnSJW1ubtYnH9jBYILAaKqkBqEwYSQhc7HGSDZpAydpNMGgZZ8nC1BQsChiUmYRgQUgmSdvYj2dTtXr9Ty3dTSexDISZBdupLOChEnaEzFcoNLtmeiRQDLaGy3ujOSyaCJTDTxGkjvslUbtCK/veDxu7IOqqg4JCaWUxqkPXD/PueeSzhEW8Iu5+Ww77kOeIkEBiGTY4g8JehQV+BmnYXj80YFi0SW6Hrw33M8oJvi+/nsb+WXNgLaUBe5ZpqBwzkspjVNTeBoHHRuu0eG+tIlNnhePL+6xWAiSKQkUuegg4B6Oa8pnjGvC54VOGwsSXG+ms8wjjvO7OJFIJBLXjvweTiQSdzNuxKHwqZL+F0m/U0r5zf3Xvkl7X5qvL6V8haT3Sfqiq2ks2t4nk4l2d3e1vb1d/13SoainyeJ4PK4JD8k+iUIkgH7PpIgCQSyqGO3e0Q1hkhVJrQmKCZlf73Q6jbz6KB7EVAdHyCNJ8/ilA0LuHxax3N3drYk954XRY6lJSj1mkliLNySELGbJAowmz3FuKAL4JAn2h+6RuM6cc8+L26LgEk/I8HgYlSf5JMlk1Jy1MigGEVwTukdi+shRjok2IszoOCP0/nfcB9Fl4zWw4OT9x33OE0/i/T2nkup6EW6LDovoKCHBP8pNYcT+ci7bxsjPURCIgkJ02fB6zqPBZzsKTgsLC3MvKOiYv4sTiUQicc3I7+FEInHX4kZOefhFSUclh73sWtuLtvfZbKbxeFyf2CA18+9J9OlQMHEz0YjR2Sg00OrMI/QIk+Q2csT2eGKBiXFbzr3bdLsklNFyzygyCSLnyv1gegj/9P0jaTTpJaHidVFQIaE2wecpEn6dhSft7IiCAvvCkyI8jxxXtPYbFAFY/4GiBS3w3GdMD7EAwfngfoiW+rhv2Kb7w9MNfL3vE/dNXBfOt+8bU3SimMC58fVRVIlijPvDfcp24jwyVeSoApoRcR2NNqGOriGuURQE2tqLIhH3Y/x8bIP94IkqbWszjzju7+JEIpFIXBvyeziRSNzNOJZTHm4UMYLsSOpoNKpPdaBIYNt5tE2TUEpNazXv5XYiKWKk/Kg0ALe1s7PTIEMmyz5dwcSa7gG3y34w9SAeZ2gBwW22RflJ5ujWGI1GtbOjjey1pWt4XIat7r4HRRELPjxGMKYb+POea7/ugprxRAZfR7u8T3LgGvA6t0GBwPPDdAfPJ6/1mF3PguQ37hkemUnS6Xliez76krUB3N84/5x7vhdFBc8P+x4JL/sUxTeuNeuJsA3WYKAYESP9PPGCffTnKAREwYtj5LMbnT4xhSEKgPyMr/O941qyDe8RngIThQ6Kd4lEIpFIJBKJROJozIWgEDEejzWdTuvoeoxUHlXlvy0q7Qi5X4tkgwTexMTCgKQ6yu52GZmXDghQrAFh8kliRLdBKaXOqXeBx1iQ8ajCif6xYECiPZlMGoLCwsJCPRY6CjyHrKMQ23LU3gUWLfLQrRALJ8b8ekbpTR4tjniO3Kbvy9oKMYWAkXI7GShomAzahu96CxQ1vPZuo9frNdY4ukncB4sjsbYBwQg7x8R2ouWeQgjXJvaBqS/xaEvOEa+jEOY5iiSdzwbXkfdmLYK2dALvZz5L0sFJJ9FlElM66MyJ7oOjHCpx7rw2vKfXmCIM14Rtuh884jTeL5FIJBKJRCKRSBxgLgSFmEJg8mbC4SKHJsQssBejlG050kyNIGFkNLfX69UE14UD3S6vpZDBfPJYaE9qig3RGh+t3THK7bF3Op1GMUMSWRc29LgceWXkl2Oxe8E54bSIk4gZFGzsFGA9C0mNaK6JrB0VHo/bMFiokGTY69ntdg/VZYguC0bS/W8TR/eV7gmmRND5YSIcT+xgX6NwwFQLjoEnS3if+f4xQs91j3UrYn2ONkHK7hdeS3Ltoz29jty/sRYERQzud4o53l8k5W01GWKKRZsroy1dIboR2sQazkcU6+joiGvIuYvOD7bra+O9EolEIpFIJBKJRDvmQlCQDqc9MHoZUwfaSEEb4WdetK+PpNntk0A4+huJbLRpG5GY8zWTPPYzkiHpgIxREIlkPZI1Hs84m81qIk5retvJECSo7lMbEeNcMu2B17LfLL5oFwIJs8fB1A6nszj6zSKIXg+OPc55XH+KUawFwHYoBLlfPtWAYgldFPHesV6B+8p5jYUeue50CrTNM9MRovujzY1jqz4Fq7boOvdjvD9f8/2jeyGmOtCF0SYExNfogmhzC8TPxeed82vQAUGxgn06ql9R3GCbRwkbicTcY2FR+qTnSwu5f+cZi+e3NH3bO251NxKJRCKRuCHMlaDAXHHpcG46o7wkMyQnjE6T9ETCRhLIKHdbOoHvZ7SlWNgObyLvCLEj8X4vEmq/F+eBEXfekwSOxRelAwJLsk9ibzGBdnl/hp9ri+TGaDOvczuOnNtV4fuMx+MG0WVKCSP6kQzGiLjnh3PD66vq4JQLClKu2dAGuiq8dwzfh/uD68T9wfGRdPtztPR7vqLrxsd7Mp2GAhQFBe5t72vvlVhDgn3hs8Sf+Fz4T57e4LmIe6ON5HPMFISiO4bCD/dAW9/83eBni8Jam+shinDxPe6nmGKRSNyOKJ2uyuKCyvJQb//iZVVZBmSusfbOFd333g9oNhrd6q4kEolEInHdmAtBweSM0VuTRRJeEow20Jbv3HlJDdJm8tXr9ep7kdTOZgdHVpIw2sVQVVXdP9vkfZ3rNbAopK9rs96Px+NGBJrkn0IJBQumVmxtbdXjtNWfkdx4WoURRZSY5uAChCRzngPp8MkJJtLdblf9fl+9Xq9OeWANC9cr6Ha7dVvdbrcWRUwoOcZYkNFiRK/XO0SsGVX2OjA9oI38llLU7Xa1s7PTcHKwyGa3221E8b03uP7RpRLvd1SKgec7CiFLS0saDAYNJwdt+9yfbS6Atsh7m0jE54ruBN9vPB43RD7OG50WdD74h0II3SG8L1M2+LxTRGABVIoqbfuD7pPocOAY3Je2tAc+Q+lQSNxO+NBf+iStP3PfPXX4xNXEnOHSM2fa/JZP0DO/+ddV7cz98bSJRCKRSLRirgSFeAqASRZTFUhKpANCzAiviznGezCaHW30rkfAqG9MAyD55+dN7vr9/iFXgtSspRBJCp0BLMxoIsX3paY7giTN83W5CL9FC7/fZon3yQ3T6fQQwXYevcUNr42JpYm+3QkLC3v1KBxx73Q6WllZ0WAwqPvsiHVbqgDFDNr0LVq4L6P96I7n1mKRnQfsq6+bTqcNp0i329VoNGqM12JCr9er9yCFAIMCGE/ccFsWlfw6i4J6rknOq6qqXR7RMeD154kV3BOM2vv9thMNKB7wueL+pssj7lXu6zYnURQV4j7iWsT0JApD8dnnc8M94mtiShHFEj4rR30XxHSMo8TLROJWYemZT9cHPu+B1ve2z1XpSridUKRZp9IjX/NJevAnHtX0D951q3uUSCQSicQ1Yy4EBelwIUPmcDN6GG3Mfi/m+EuHLepGfJ3FGttSKkwuKBCwDUejCRMYfoaF8qId3uSW1eUdvY6k2vf3XFH84H3b5ikKMjFSHYs6UgShSyPWivD4YkX9TqfTEFr6/X4tapj0un2SU5JgulbcBotU2iEQSXyn06mLbXrOIzGl8MIUg/gaCS/TT44i1LGmAdvgvmMfWAODJw207TG/733L9912dAO0uRbifiEZd7/4OZLzeLJJdATwWt6LpJ7jO8pZ0ebAiGJD3N/RERLvzecv1jiJxSUTiXnB4kc9RxdecFobT8vTR+4UVAvSxlNnuvDCc1p+4MR1t7P0a2/TbGvrGHuWSCQSicTVYS4EBRJH/0J/OXLBz5g4kQizrSgQuA2/ZyLGv5uskAD6PpFkso/MoY/ErNPpaDAY1KTLRzo6ih7rKkh7du7t7e2aMFuQ8Bx0Op065z/m3XuO2H8SuBhtbpvrCDoHSCZZNyFa0hcXF2vrfrfb1XA4rC38JsKR1HH+Hb1323YNMNJtIj6bzWqxgoKCiTuFEq4PXQAWASzuOG1jOp3WqTBcb5JrzyMLS7btJV/nNeF+sWgTXQ2EHRUe9+7urra3t2u3hxHTQeJas98k7FzvGNFnH5guxH3F+Y6ChcfGuaKo0OYU8OcMukDahK1Yn4RCWxSeuG6+Pr6WSMwDFlZX9dgfOaPzz899eSfiQy+RpN51f/65H7xPC49+WJrNNNvcPLZ+JRKJRCJxJcyVoGCCaRI3mUxqC750YN+WDvLUmctuAsBTG3gPI6YC2AngyHMbuZKa0Wzn5ZNM+XVHz01cTKqHw2Hdd9ZhMBm3YGCCeOnSpVowoAXeIoTnivNH4tTtdhtF9KL1nSde0KnhOaS4YRHBfXC/l5aW6jSGXq/XmGvXHrAg0Ov1tLy8rPF4LEmNdSV5NAl2CgcLPnpM7Jcj+jEVwOTSaRg8StLzSOeDUxvsLvDcTSYTjUajxtyY/Hv9Y22CeDKH92m01zP9weOJ6Sbcf56Dfr+v4XBYp+pY8GINDkb9/XmijUyTyHuPUxCJQozFHd97Z2en7k90BVEYcl+8Jr4Xizb6efCzFF1EfCb5HHGOvY94fZzTbrd7pPhy1HdBIvGkohS96zUfo91BigmJdrz9q85JOqfeEwt6yt/7pVvdnUQikUjcRZgbQYHugkhupeYRfCy+GMkFRQcSg06nU7fPCCadDcxHd3v8k+A1JmYkmCRpLkY4HA5rEum+0PVAIjgejzWZTBp56BYSGKEnmMZAkcOvmVzxuEnPrYn34uJiI2+cKRcUSNznbrfbIOY8xYGiSbfb1WAwaLgq4hxWVdVwLjDdgacneF68V9yPWKeColE8zSKuFUWSwWBQj5dHUFJ88Zg9FybC0QXTBu4n7kOulfvFdAi6Alj4c2lpSf1+v0H8XUeEqStu/yj3D9MXWNCTYlQUf7zOPGqVjgT3kakIdH8sLS1pMpnU4+U+4jPPeaFrgmIT9yHXgvuMcx/TJGK6xNW4dhKJm42lpz2k933xQ5r2Z1LqW4kj4CKck5OVPvi3PkWSdP8vban899+8dZ1KJBKJxF2BuREULBC4MKKjlW11AdqiiSYfjtJHmzkJOMleJA20v/Pzl3MumOi2WaUZUaZzwfZ5pnlYDIl9d7SWJJageMC0jRjNPSq/nYIGUwmYPuLxkZQtLCzUpzawrkOsHeDof6/XU7/fr9e6rf9xbfx+m5vEY3HUm2QyriMj1vxhZN/FQL2PDP49rnvbSRosrul7cnyxtsBRaT0cg9eGtTbYD0fZPUexPgWLfVrUivs5kmr2/6hUBBL6tvlhKkIUGryPLTBZUGARU7/fJgRQCLKg4H77Gvbd/24TSCjGcQ0SiVuJxec/rPMvOKWtB7JmQuLqMOtU2npg73vs8RcMdHLwQklS9xd+V9W+OzCRSCQSiePEXAgKkuqaAtKBm6Atx562fRIuEpdIAEn4SeailZuiAaPLMdLs+x/1WUby7U4YDAbq9/u1aEASRUSLuomuiTtJUxRIlpaWGkXqPH++hvUhYjQ6CgmOzPv4QI8zigruE1NBSKjjGIbDocbjcZ32ENdoaWmpMTes9eAxxyKEPLmC7hDOp0mkxRy2y/56fKPRqF4rpyDEIooxmu1xmMDz9SiWcD8fhehesSAV96nrSLg97j26HJg+cBQi6fe+iPfl9b4XnzvuyZjmwfsYXut43CfngmIG26Lbgc+GhROug5+LeIKF900UsS43V4nEzcTiyRP68Cef1kdekC6ZxPXh4nMrXXxuR6qk573jXlXrG9f0+dnFS6qOENQTiUQikTDmRlDw8X/T6bQ+6o/CQVthOhIuE0fb+WPUO/47HiPI3HfpIOrre5iESge2bpJ/kku/74j88vKyVlZW1O/3G/Z5Eny37/d7vZ5WV1cbqQU+IYFEyaTL1nFpT5yxC4AEzBZxigJu0+3YKu/Pu66AEW3vMX+dKRAUHexQcOrD9vZ2PfajLPJ0JXjOdnZ26n3iuen3+3XfKKZwvXikqJ0bJst2j1j08J+eA+8XClp0xFBgopOABJv7wyDB93yxb0zj8NxyPjwHvtaf59Gf0dZvtD1PcZ25ht4zrKnAvUQyzmconlTBOhxMvWE6g9ciOgssHLl/LMRJ0cRw+ywiGoWEuBZ+luKYEoknG+/8G8/X7nLuv8QxoEhv/br2o0Yvh4d/+JKq3/y9m9ChRCKRSNxJmCtBgZZ2FleLhdKkZkRbUl0MzmQqnphAkACS0PJ61gkwWWH0n4KAXQiMVjNFgXZskjbmzce2FxcXtba2JukgT76NvEUru4mkSRRTQ2LEe3FxUcvLy+r1enU022LEeDxuuBzYDu3uFBYoHJBI9vt9DQYDLS8vNyL7nK+YeuE2/W8e7cnaAL1e78goM9fa5JLCEMk23R+9Xq8WHiaTST03o9FI4/H4kBvFxTG9F02WY+oK+9RGVilOxSKUHqdFChYa5MkGJO8k3ewX967hcbCoJfccBTnvL47ZYg/dI3RFcK8y9YOnj0RnC8UWwmJKdCjQweLvgvF43OiHxUHDr0dhMLqQEoknC0tPeVDv+V+epukgayYkjhHXsZfe84qTWvisT9HCjvTAd/6KNDvaUZdIJBKJuxdzISiQ+JRSamJnEmwCxOgwyRvJbsyBJvEjoWdkmS6GaNVmH49q24IByReLxDFyShs/87ZJqkkoDc4JixFy/uIpD4yS0/ruPrG2AWtMuL1IUtvmgSkNnU5H/X6/Lu7osTjdw6ksbeQtkmzOJfPhDYsPFI4oFPAz8Z7ea7GAI0Ukk28WgvT+9FwyZYEFGilWtYF5/JxvikSsl+B9RBLNfeY+cj28/7huHj+dOOwT55T3p6AQ0xr4fHkP8iQWFo/0PT0vrGPga+J94338eb7X5kxgP7jn43PTtn8ovKSgkHjS0VnS6Fzuu8Stx+Tkvotzt2j0OS+UKmn4gQ3N0rWQSCQSCWBuBAXn6psg+Bd5EjMSaUZG2yK+R1m8TahIBikqMAe+zXLvtuO1JG+0qFsI8H0cKeeYJNV94bGMsXYByY2FF88BCVUkm57DhYWDoxJjXQZfF4WEtrx534N9cxTdx0fSDeHTHeg0cBtMVyH5p2BEccBzK+kQ8SThb+tv3BPsO/tDgcEk1EUPWUuB+8H9sougrQ9RGHOfucejM4EuDVr26TIhKaZzxyIRiTFFKwpIFLLiCRZHiQp07rC2RXxeKd7EMXufUkiKdRKi24gngHD9/F48uYXjscjhfRKLnNIR1eaMSiRuJhZWVzU9tXKru5FINFAtVfrAH9/7Dj75+yd036P3SpKmjz+RNRYSiatFKVo8d7b1d+o2VLu7mj7+xE3uVCJxPJgLQcGgzTmSAhIMV+OPNnySH+mA0MR6AyYjzAX3Z0mkpKPt6ZIOnS5AIu/aCb1eT5JqC/3W1pa2t7c1mUwaZNDpBZcDxZBSSl07gOkeTvmgCEGxwjUCXJNhMBgcmi/OKwks1ymmfLi9fr+v4XDYGu13/YPRaNRwU7Bd34tEknNPJ0Vc42izj4KSiXN0kVgAcTvRcbKzs1PPtV0fLHi5sLBQvx9Bouz2OacxDSamyHiuI4nn59tSe7heTGeI6QuR2PMYSM6jRZxIst2W3QkUFJiywLnkHMR5axPHmJbka9iPWPuBAqCFLq/neDyu64JYUGgTD+mYSiSeLFz87I/Wh15yq3uRSByNCx9V6cLzniFJeu4/Wdb0D951i3uUSNweWFhZ0dv/9jNVXeWvFb0nFvTQt/3Sze1UInFMuGFBoZSyKOl/SPrDqqo+t5RyStKPS3q6pPdI+uKqqs5fqR0TGUbzo73fpCISCIoBs9mstqeTuERiyihpW3SW9vzZbFYXeoxR7hgxd9HB1dXVOmJdVVUtJGxvb2s8Hh9KPyDhc99Jrnx/z4ULRpLIMX/dwosFExM7E2iTKEbbJ5OJtra2NB6PawGEdRsWFhbq4oTuo+fatQdc4JCfY177aDSq54DE02uyv6fquel2u/Xc9nq9WjCR9kis2yHhjEUheRQnhYRut1s7NHhd3C9VVdUiFvemr7OYwvoCJKmSGkeEekwkqxR9Yr0Nzy/3XBQHosjivlFYogjEfew/+/3+oYi9wc9cjmRThKIIwlQjujHanAtM9Ylry+eac+0xWLDgc+K1bus7nQtu23vce+V2wXF9FyduMVLDSsw79vfou770Pp37jTMavOFXb21/5gj5PZyIeOIrXqqtB4qqBakqV18bZ3LPTO//5k+p/91/vNLZf/LLN6mXicSN4Th+W/6rkn5f0tr+v18j6WerqnptKeU1+//+hit2BOSCQoDUPA4wRidpmaal3BX9TQxc1I62bUato8Wb95UOSBpTD2KE2ATYEVG/bqJvsr67u9tIV5AOn0ZBd0asr8B7OvLvHxIw5opznt0WI98WFPjj9AeP2YUAI2G1kODUBtrWmebhdhmlpojAvnoMPr2g0+loOp2q3+8fast9oWDCfH33xwKLUz14mgCdHEwTYR+5TiTjFgHYZ6ayRKLsNih6cM28NkyNoRBgcK74Gtc71pOgMNGW4kFnTnQFHGX/jzVI+HnuX5J01gmh8EL3BMFn32kNdIgYFI2kA3GJ4grXgc8SnTlt830b4Fi+ixO3BuPPfpHWn7ogKesnJG4P7KzNdP65S1r4nBep95O/dqu7My/I7+GEJKksLWnz816ozYeKJieu/Xu9WpTGp1DIvVc0/IIDC1vv/K6Wfu7Xj6WvdyrOv/KlevyTrm3uT75lQWf/aQo314obEhRKKU+R9DmSvk3SX99/+RWSPmP/7z8k6Y26wpcnc6FjjjlJSVuaAyOIfj8em0fiZhJNwk5iw0gsT16Q2u3evN7E0oSV4oij86zOzz5LTbGCZCkSIjoZTK7H43HdNvvF+eJ8+t4UYXyqgYn6bHZwVF8pBycMeC68br1eT8PhUMPhsEHmDRbrs5BDos25oJDEgoQcx87OjjY3N+uTBtwP1q3wXrIzwPvEUWsXiWTRRc+FP0OnCNedqSoWOzhPFj8omkShhEc9RrHI6+/5brP8+3VG3Y+q23DUHuB9o+OBn/ca8j1+nqIcr4mCHMk+iy+6j3ZlxIKMXgM6hlhHgS6jKAiyFoXbpEMkCpX8buGzMu84ru/ixK3Dh17cua5fOhOJW4mt+2eanFjSs3/7KZo+8uhdXVMhv4cTxsJwqPLgfXrkU4qqxeP5Xt9drvTIHzn4HWvwoZ6e9gdPaV5UVdr9ww9KV1H/aWF5WQun7jmWvknS7CPnNdvcPLb2rhcLy8uaveBZkqTqi57Quz7x9df0+c99wWdp5zc/VpK0+Hvv0fTSpWPv452IG3UofLekvy1pFa/dW1XVI5JUVdUjpZRzbR8spbxa0qslaTAYNCz8uKYRZScpJXnwL/08hpFEizZuk2Yee8d7xKi8SaHv79dMIH1/k9Tl5eXa/u4xmATbhm3xgWICiZjTNtwXphIwt34ymWhjY6NOp2D0l6SehDimlPjvdBHYQXC5yLcJWqfTqVM8Tpw4ocFgULdJYchzurS0pO3t7QZhZh/8mq+1QME0C/eN6+/6DRQJKFh4zn2t95vFCq+39wdFCe85Emem4rg970HuLaZNGHZ1sK9cM46RIJl2e3TCuH+sjcD1pDOABDu6FrhveSKGr+Pe8r18ve/vvzPdgfNgYYdCVUx5iSIW94qv87WxAKmk1vHGAo+SNBqNaiHN9/Nn2tI/5hTfrWP4Lu5reJO7mUgk7jTsDiu99a8/Rc/77qLd977/VnfnVuK7ld/DCUnTj3+O3vlFg5t6j+17Z3rrX28KCmW36Dnf/IRmo9EVP7/zoufq3a/oHlt/nv4T92rpZ2+9Y2LnRc/Vf/l/f+C6P/8TD/9H6d/u/f3Tv/rVGvy7TOm6Gly3oFBK+VxJj1VV9eullM+41s9XVfU6Sa+TpDNnzlQs+rbffv2nybzPuZcOR6/Rr7roWq/Xq0k57feRJJnwm5iYEJqc+DOMLDvfnPUXlpeX61MOJNVpCO4zTz/odDqNHHMTw5gK4HGurKxoMBjU/dna2tLFixcbroeYEx9FAEaV6Z6wkLCxsVEXTJQOCiDGIoSep06nUzsT/LO6utpqSXcf/afTUny6h0mp58YCgd9jhJqWdB9TyaMqfR/2m3Z3kumj5otOGabHuI9ux/vB6RRxL7bdi4UXGT3n/FLkYpusmdHtduv+Mu3H15goe/wWaNrIt8Fov9fer3v/ek/SfcETUzhHLITqfjotyPuCxzzSXeAxURTa3d2tX7dIQiFG2qsFwbW04yQ6FSi4xPQZOlDmHcf5XbxWTuWxFk8ylu6/T+/8qmdqdyXdCYnbG+/4S09RmT5U//uZ3/sOTT/02C3s0ZOH/B5OGB/58pfq4rMl6clfxmqx0ru/6RN0NZUfZ91Kx9nH97+8q4VPP6j58LSfXJd+9XeOrf2rwTu//aX6oS/4x5KOx136Hd/1j/VnP+ur9fBXZkrXlXAjDoVPlfR5pZTPltSXtFZK+RFJHyql3L+vxN4v6ar/NyFZpJ1ZOjgOzpFP5q2zurzJuQkHiU6sm0BiEfOxHalmEcA2u7Z/WDtA0qG0DZJHugSi5dypBo5+O4XCRNDOhdFopK2trUNH6BnMXXcfaAu3oMBxOpJNokkhgQ4L9204HNZCisUUF7mzBZ4pKD7lwT8k6ZJqck6HAPcHxR3Pp23tce0o6FiwiSQxpiJwjVhHgTZ4zwOFFRJhIxam5FijnT4Se66X22pLv+D1RBTPKHxYCLPTIYpOHH8UeyLRjn1hTQavC90W3OtczzY3i9unoMDxtpF+ChgWDfmsxpQS7xEKSTEN5TbAsX8XJ54cLHz88/XYJ5zQzlqKCYnbH7vLTYLy4c9+ljrbzzx0XffSVL2fav8FvfrUj9fGQ4dPTZr99JuOrZ83Cfk9fLdjYVEbX/gibTxUNB3cou/0Iu2sHq9QcLWY9itN+wf3/dBLVjV85ifX/77nTR/U7nved9Pu/85/8Mn6n1/+8/rU/vH93vbiXkd/9Y/8Z33P//2n9Jyv+9WrSiW5W3HdgkJVVd8o6RslaV+N/ZtVVX1pKeXbJb1S0mv3/3zDldoyOTjqyDYLC/5ln+fKS2pEOBntJ1lhQUESY75mwUBqHsXYFpmn1Zx1DpjzzeixCRZt4IycM9+cfbGYwBMj3DcWnfQ9GMU3LC7EOhEUY9rEBJNxEj0elekTLYbDYe2gYOqKxRyLJDs7O9re3q4j5yZyrG9A50m0y3ut6N6gC8Dk0/Z1r53X23spCgqMqDNVxfMSLfZMH6G45Oso8FgUYcFM992Ip0vwmWBkn3MRiS7FMf5w39oZ4Lba0ir4XHjfUCSI75N88/OxpgL3o+fQPzz5gXvT44mIdRIIpplwDdgvpi5RzIjPhscw7zjO7+LEk4uNZ6zqIx+bv6Ak7kwctbd7T3T0jLc+vfW9D378UJeeffh7f+cXj7Nnx4/8Hr67sTAcqjz0gD70oqJqKQViSVp/5kzr0BO76/dqmYG0Rx/TbGvrhu+zsLysyUuepx/6/O89VjHB+Gv3vEef/Xnfqa96w9ep/6t/kDUVjsDN+G35tZJeX0r5Cknvk/RFV/qA89pH+zk/k8lEkhrkzeTH9QScIkF3gsHcbB+FGMkyiRHvRzs17dg8QcB2bYOEylFdE0ha7Hmyw3g8PlRQMroIXNzRxGxnZ6eul2CBJBKmeFQmjzuM+fYm7Dxmz32ibT5G5J3ysbKyotXVVa2trWl1dVUrKyt1KgfdAW5nc3NTm5ub2traauSr06UxHA4bffTacJ5iET7vA6dR2LnBtfN9SFT9d+ba+zpjPB43yK8JsK+zAOI+UICiKGLbPQk2UznYD46J/YmkvM0p4H07Go3q/be0tFTXebDg01abgPeP9QwonjDFgf3htZwXz7fHwnSSNrdFdB3QLcI+uV3uXfY9ug1iugOFy+gaYQ2P2xjX/F2cSCQSNxvj0zO99WvvO+LdO46M5ffwXYDqo56ht3/pqm6FM+B2wftfvii9/OC5f84PL0tvfssNtzt7wbP0sz/y/TquNIc2PNxZ1s/98Pfrj33ZX1T3Z349nQotOBZBoaqqN2qvcq2qqnpC0suu5fMmz6xd4Oi732PeOQm2SSsJi4UI5nibcEoHjgf/nYRWOjiKMZJeE7PhcFh/dn/MjXoMJvXus0mcdBBBNtlnBXveh5FS939ra6tRM8Ht+oeiBEk359n9jXNiMu2UClrBPe+uV+D6Bv5ZWVnR8vJyLX5wDexMIMGP9RCkvfoSg8FA/X6/IRLRXeD5i9Fk93U8Htdii+eZZJInK9Di7uvc/8XFxdrl4Htyb+7u7mowGNTrO5vN6hQOOz3aXCKM3EvNOg8UjuJe8d/porDA5j3of/u+XPsY8feYeWQm3TnRsRPfY10NriPTHCwo8Pm0yMf+eLxsI6It9cRjphvB6+xruE8MnmTifi0tLR0SJenouJ1wo9/FiUQikbgx5PdwInFlvOvPrql84Uu1MC566rf+ijSbXvlDAe/+ey/Vv/7z36W9LKObj+/9Z9+jz/nJr9dz/sqvPCn3u50wF37ehYUFDQaDmrQxgulicMyX5jGEbUc7kuQwEklCy+r6zK1n2gAJHE8RYMSUBIi1Bjg2/5j4UuigsMFxUEzwsZO08DPlI0a0HcHt9XqH7OU8CcNjZIE9I9rGe72elpeXtbKyUke6XTuBQoI/y/nnGrhNk2JeG8kk56Mt8kzBYjQa1XMU7fMmujwlg9d4LinmWLThvHnuSea5Pk7lsEgTI+S+32zWfrQpRQDa8eOacM2jGOX1MiGOBDz2JQoPEX6NwhoLQ7pdihKxRgLTK2ItCRN6P9dH7aE4F7GP0bHBeaLYx+8H6aA2RdscS+0pF4nEcWDzC16iC89Z1B0YkU0kEom7Brsve6Ge+Oie8rv82jDt7fOMXqXzf+HFUiWdeM9IC//tzVffxrDSx3afHDFBkj6qO9TXf8Z/0ne+7k/q4VdnoUZiLgQFpwOYWDB6zJxzRx9NUiwSkCCQDDKXvC1fmiJCtES7rbb8c7fta0yU7KqQ1HAZ+HpGpDk2RqTpovBrsc4B+8y5itFaWu7bSD37T4IeybZrRtidwb8Ph8M6Kh3t/KyJ0Tbv0gFx9jgXFxcbxQQjopDDUyp4okF0BHh/xXoHfj8W7TPiWGLU2++5pgXX1msSo+TeK237wJ+L9Su4Ply/NhGK4ggJciyO6D/Zh9gmhTr2nwJLFJ/8Z3QJce1Zl4FC3FF7I7oT4pgpRMR9zrVqEzQoXsTPJBI3Cx95/qLGp/IX0EQikbidceHZXa0/I7/LrxfVovTEx+39/rWzMtD9H3547/V3ve+yx1/uvPyF6j+0/qT0kfjae96r57/sB/T39YIn/d7zjLkRFKSDSGf8pZ8kz4KC/zTxMhFndJinGDAa3hbBjgIABQYTaKcYmOAwqjyZTBoklbUN3C+6EyQ1ovqx75FUud/M8WYhS7oqGJUlmYokiU4B9288HjfSIOxO8I+dCS7EGFMdTJZddJGk2HNDMWAymWhxcVHj8bgmlySPJqYxSs3TO1jvYjqdqtPp1H3qdDq1i4Ing5DQ0qFgASbOEcUeFsh03QQft8k0jUhUOQ47FCza0HHCYwzdF9cjcF9i+3TTcH9wv1NsaUN0BfD16A7w2O0q4PMSXUbuN2uCsJ4Ix8CjYKOraDo9OFaS/aMgx++HtlQP7keua3RZ8MjLRCKRSCQSiUNYWLzyNYmrxqVnz3Tp2ackSc/9J1PpHe+RqllrzYK/8I/+g161loemzAvm5jfmyWRS56ETJA4WCFgoj9Ftvxbt5CQ2BiPWRxEHFxm0XZ7RfhMgigY8DcKOBP/bdvxInGJUXzpwbDC3nCTI1xh0RbBeQDxqMNrRHSV37YH19fVGlNhE0ac5DAaD+jQH//3s2bNaXV2tj7Tc3t5uHNlosu1jKZkmYOLsPjm9xcIJXRQmg9vb24eKFdLVYQGk3+83TqLwSRlHuRdoife6cS16vV59XztVTERduJIOG6bkGCTHFhO63a6Gw6F6vV4tiriAJWtAkLhTvPGYLXLEfnP/u32/z/3leXSbXKfopGCbJO1taQcs5ul9w/UejUYNAYsk398JdM1Ep4PHKTXdPL635zqmMvl6rzmfL38nHCW8JBKJRCKRuLtRlpb0nm9+sXaX051wM/AHX35ORee0tF700Lf90q3uTuIKmAtBwcSCRRClw5XrpYOCiYz6mqyaeLgdthWt2DEqHAmERQRGr0lAXAGeYoJdCyZRJDjui8mp0wQ4Pooe0eJuocBjNkGMdQho23auPokiCxwywu7rSFhJskwSTQx9wkO/36/nNh61aULof1MoiA4Swu87rz7m6vu9mBJBMYU1E/xnLHpIUsoUBY7b9SV8f+8l9t+pBCTKnOOY9uFovYUAFor0fJAUc2xt/ef6MM3CgoKLTMY0jZj24nGx7+4vCb3XIZJvX0MBgMeMug6J70NXj50B/jwdLmyP7hv/cBzRXdK2570mnAfPI0/CSCQSiUQikTgK016lKk0KNwWz/RoL1YL0xF98qc79u7dr+vgTt7hXe3hB95I+/O+fq/v+1lTTt73jVndnLjAXggKj5YyQk8jR9swIsnQQ+Y35+CSAtlH7fozWk6BITVt+zH0n0aM7gZFT1i4ggWH03IKC++joPUluTP2gFZxjJQl2X5gKwAgw+xOPd2TNBKZTuE3PW6/X03A41PLycj2PjO5bWHCxxGjfZx+8pl7jWKOCc3tUgbxINmO9BL92OZIYiSZTLhYXF9Xtdhvkl0Q3ujqOWgumJrhvdMjEkzC497ivCBJr7gfPhe+9uLhYrwHrDfDv7LPnlSlAHAf7RKGDc+QxRIGH4px0IPb5Pe9HFiF1m76PP0MhkGMjKBaxHkbsg5/Pbrd75D5JJG4UpdNVef6zNOvksVOJRCJxO2JhdVXVw0+9mScVJvYx61Q6/9HSiXc/Xf239rT7hx+81V3SucVl/cYn/bj+5JlXqbztVvdmPjAXgoIjko4WLi0tNQormsSzGJxhQupopwmNSbSjwbR/SzpEhGLU12DaRIzMkujQ2k2C45+FhYX62EWLCiRuJPttNnKLHhZKaF83UfI4GOHl8ZskVG3H5zHP3cTOzgmPgwUZV1ZWDrVLoWJ7e1ubm5va2tpqnH7QVjQvCjck4BZtGG1mRJ9tsbgiBQYKCvEEhyjAUPxw1DqKQ6zZwHuSbFNA8Z4zuW4j4pPJpBZi7HZxWxQe2gh2THeIx3f6c3S+xBMvKMIRMb0mPkMceyT00+m0Lmhqh4LHynoTJvOeV+9NFiGNxTW9xjEFw3NmWGzxfqEY5PYteDhVJjojEonjwsKpk3rbK09IJQWFRCKRuC3xtAf1B1+6Kim/x58svOdzO7rv1ENa+Ve3XlBIHMZcCArT6VSbm5va2dmpSYPz0lloj9blCJMAOxtY6X55ebkm4859N9lipDOCKQdbW1uNe8Xz6S0YkOiQmC4uLjbSBEopdU0FE2yePiA1CbLzxF1HwLnnjIxLe7Uo/Petra16LnyEIAUJOghM/JgaQIdHp9OpXQnLy8s1OXSqA9M7LCZcunRJFy5c0Pr6ei1Y0EHgSHCM1JO4ex4oCNAJwWNA25wIi4uLdX/tLPB4o7vDQkubqEBBym4SE86YMkEhietvZ4rTHeIJBvG+FEPoTqBbI4oJfj9a/RmV9zXE7u6uNjc36zZZOJHX0KHjdA3ONR0PVVXV9SZ8bXQG0BHjcVFMYD0Q1jxhLRAWM3U/CIsXTIXiuruOhdeHBT9TUEgkEolEIpFIJI7GXAgKJlW0+8c8dkbwCZNlw+SSJITv+2jCGM1m+gFJGovo+XO+xn0ziY1kx/2TVJOVWMWedRmOsuQzss7IOK357HtbGgTnx24LR8Q993ZPMN2j1+s1aiasra3Vpzt4Tdieiwpub29ra2urrqHgdWF+f6fTOeRUICE3fK3n0jUX6HTgKQ1MnWCKBlNAxuNxHZn2nFkU4YkNdo8YseCgx8W+x7F6r/HoUYsIMX2FbbMmBAsoRicLCTTXjn2Ieyu6aGIND+9nw32kO8H7iXudfeGpEnQx0AlBF4WFKD9zrL8Q3QnuO49qjW4XngjBdJIo9Nid4DSktroOiUQikUgkEolbh4981KJ2/8JLdfKHf/lWdyURMDe/LR9l5zaBiBFVSQ1BQFLtQmBagn8YIeepAG3F6Pye2/KfTGsgwTHxoZARBQISFgsAMWrsMZloRiJIQYGiAWsuMFLucTDPntF4t+f7UhwxoSul1CkOJ06c0OrqqobD4aETBEjILVTEQpsUY9rWjn13fykMcS5ilJvEmnUEbLV3f5la4OvpFqCDweAc0xFCUYp7N4o5FMU8ZqbSMF3E13tcFLei2EKRgXuZcxrBvWCwYCQJudeJ42pbK68tnTAUCZkawfQljoGkv+1ZczsUgNqe2Tahg+0e9Rk/w5yfy4l8icS1YuFjn6dZv6PxatboSCQSiUTiWjG5Z6YL3aKTL36BTi5mMcR5wlwICiQCMXedUWTmy0sH0UUTgPF4fIigM2LLfHFGtB019fW0bTvy7mtdrZ6nQDCSGok7+0piGyOmsb+cC/fFJyhYVDgqBYSCBEWZTqdTW+pdONHRdJ6GEOdpeXlZa2trOnPmjE6cOFGndvD0CJJC126wO8HEzH1hvYcYwea1kVCa+EcngEmv59Vt2sq+vLxcz4vTPDwPFnf8WdeeYPX/6GbhXvF7dJp47egOiDZ9SQ0xITpOSMItFnHs3tOxfsbl9gP3d1v03m6MmGrj/sX6BO4TayB0Op1GWoT3lNMnKKK4Pf/ba8Jx93q9RmoS0zB4wkl0jlgQ8n7kPWPKCItGelx0/SQSx4H3fc4pjc5lCk0ikUgkEteL3eVK7/hzyzq1uKFxtaNe6Vz5Q8eMaTXTH063pFnW0DDmRlAw0fbxdiQS8XSD3d3dmtS7uKFJj63bjJLGnGnf04TMtmmTPxMS/5icOlK/vLyskydPNsQM5tObpJmEmaz7OlvuHQmnY8J/+loKHqwZYKIWSaV0EFk2wWMqhvvF2gkmfBZISFgHg4FOnTqlM2fO6PTp01pbW6uv8Vwzgu4+MledEWa3y7oQjKozUm8RhMTTAo/f9/x7nWezWX0053A4rB0VW1tbjRoPnjPXQ2ChS+fcs94Dj0bkfHquvYe8ZpxHj50uADpEuNeiQ4evx1SW6OKIxJq1ACTVtRuYNkDSzPeiEOB26RiRVIsHdBHR4cIin3aHHFXHIaYacN4p7jDtg3U+DIpb/pPjcx/pZOKcs9ZDigqJRCKRSCQS84VX/Yev0ss++Xf0fQ/99yf93r8wWtL/9YI/qbL920/6vecVcyMokDxJh23sjnozIsqoNgmlpAYhoBuBJIbEQ1KdkmCCKh2Qtn6/X5PT5eXlQ0UCTfpNRN2+yZlrE5gEmUhSePD9SBp5PfPFbaOXDqrz+2QAEkKSdbbH65kWwDGVUmrx5OzZszp9+rSGw2E9ZxxPjABbhKEw5L6YxLf1j6kbTC+QVAshzPenuGGy6oKRLrRngYg1I1iXgGJNm1PAwoz7sLu7W7tnGPHmqRsu7se2/B7rCHht+Rz4ung8KoWjWM+DUXyn67Q5epim4zVcWlqq1zW6VVgnwvUfeO+4Vyms+VQTrh+f8Si00FlC8s/6Kt6bsX4Gvws8bt4rXhPFBMLPf1uKRCKRSCQSiUTi1qLMpN3q1qSlTlU0Q7H+xJwICgZt3SSUJKwm3yS+jPS21R5g9D5+VtKh+xlsg9FWk0mSjeh+sA0+2vaZEkDHQexTjEqbJEULPcfgPjuyHKv0m0iR5PLaWPjSR0SePHlSp06dqk+oGI1GjXGzXbZtchrTSyg6ME8/rhM/R1GFotPS0lKDeDvCHNM3uIc8d+5/zLF3P7zmTvEggY21PabTaS0iuA8WHyhUGCTXFGK4VgTTUDzOKLrE/RuJt/eN14RzwRQSiyhMAfBa8nQTC1wU5mJ9CaYyxXQkjov7Otaa8OcpKHjt4vhjHYu43zzWo55z7j/+mUhcL0qnq+lLnq9p/1b3JJFIJBKJOwdveeI+ve7EA3r1iTxK8lZjLgQFWpkpKBhtkU3pIIq7vb2t8XjcyG03YnG8+FqsqRCLKpoYOUrt6Kn75f77T7fB+gUs3Gdi7FoIJHt+30QwplOYCJnYsZigyRXJ9NLSUiNq7nvzniwWaHLt+R8MBhoOh3XKw8mTJxvtmcgzvYT9NDFlZNjuBNYmiGTZc2nyy9oHrvtg4tnv9xvF/yRpOBw21omCk3SQKnGUEOJrer1efUxmKaUer8fAkwssJJB87+7u1o4IzrvbioUC29wzFMCiKBaLNlKUcnqBx20yzVQZumn8uZj+4v3Q6/VqwcHiAU9M8BjdNsWk6IqJINFnfQc/D14Xfj9QKKBrgs8k36eIFMWbuO/cp7Z9mUhcKxbWVvQHf6a/F05JJBKJRCJxLHji7af12g9/lv6nl32PTi8MtFhuvmPh/HRLvzf6qJt+n9sNcyEoSE3Cy+iiyYsJGaP5JrAm544MSzp0DB5t2rEdpzTQ8r+wsFDb9bvdrlZWVmqiWkrReDxukDkTFxZ3M6EyiXN+vome60UwzYEEzaQvnsZAgcLtmQy6EGGv16trDZCAmaSa6Lu/s9lMm5ub2tnZ0dLSUn1U5FOe8hTde++9OnXqlAaDgdbX1xvEjtFiE3+TOtrmKaRE8k77PNfL82sxYTQaaTqd1qkMtsuTNHY6HQ0Gg7rGxsLCQi04+cQJigmeW5L9wWCg5eVlra6u1mkuVbVXFNPraiHG/aMjxff1eLxHTc69dz1mOh44t0zvsUPC80yHRRvppbjjtRgMBvW6z2azen97vjk21hHxvjpx4kR9rObm5mYjBYcpBF4bngTieW6rVdL2GveU2+aYPBeDwaBR8NFHhnrO2ubJaycdpFZFEdLfD0cVPk0kEolEIpFI3FqU8x299N/8Df3M53+HntVZuen3e+F//Ro951W/JSlrbBFzIygwj93WaWnvl3vmvkuqiYpJ2ubmpiTVRI6F26SDHHNGHGmD9jVSMz2ClnyKDcx5dx/tHHDxRh5f6cjp5uamtra2ajJm8uM2bI2XDgQQk6d49KLJlUna0tKSVldXtbKyUue6RwcB3Rh0JjiNwBFmk+IzZ87owQcfrAtQupgk18mEcHd3V9vb27VY4rFTLPHn7TLgPLsdk3NG4GO+vHPzGU22Fd9E1vf13LnfBGtYeJ06nU59qsXy8nLt0rAYMJ1O63szak7i6j2ytbWl0Wikra0tbW9vH7Lfu++ebwo+dgXEAook4KwVYAeB97CvpdDFeeP6MBXFgkMpRZPJpK5B4b196dKlWkjw8xTTQ+xuYH8MvhadPEwL4rrEZ9SCivvL+hZul/djsUuDz250esTUkkQikUgkEonEnKKSPvO/f43+8sf+vP76qXfdtNu84Du/Ws/7j09IK8t6/6s/5sjrehcqnf7nv3zT+jGPuCFBoZRyUtI/l/QxkipJXy7pbZJ+XNLTJb1H0hdXVXX+cu0wj92Rex6xx1xzEgx+zoQs5uTH9IkI38ftHuU6YFoAhQKKFsyrt+3b5LitdgLmUZIaxCeOnakGbQXner2eVlZWtLKyUhMsCzH8jMfE2gKOOo/H49riPxwOdfLkyfqYSLcXixfyRAefHGHybZLtsVOI8BpG5wiLaEbbuV+3cOQ583x57UkWKRq4HVr0GTV3EcmVlZVaTDChNoG2YGGwoGbbfvacUUzg+LxHfDwj92JMF7EDgjU1WIiRZJ11LCh2cX5Y48Dj46kaPJ2Drgs6fFh0NBZtbHv+GP1vcwpZfPP7dAhQ+KAQY/GC8+B70vFk0I1gRw4dItF5czvguL6LE4lEInF9yO/hROLWYfahvn7svS9Up0z1tfe891jb3ppN9K0f/iT1LlYa3b+i6TOep60HZtIR9HJysmjt5S+UJA3e8WHtvud9x9qfecSNOhT+oaT/VFXVF5ZSupKGkr5J0s9WVfXaUsprJL1G0jdcrhG7EEyAHUk2wWCeebQhm5D49TbrON0JbseRSZJ+Eyjem3UAYn41iVKMclJQcIqEx2YxgG1KzWPz3EeTX75P4sgiemtra1pdXa1t46PRqE4LoADBCO76+romk4m2t7c1Go3qExLW1tZ04sQJLS8v1+05bcCiAYWCyWTSSEvgOPyexx9FGI4/RvEjibQlnxF6g+kjhoUDHh1qJwTdMC5AaUeCxQSKB55rpntQAKBowYKMTAegUELCbiLtsTrthLUnuId9rfcQBTjvEYpHJt6eU4ob/hxTAabT6aHjI5mu4/ed4uD5okDBdeF9/B6Pc2QdhSjIRYJvAcauCLdLcYXPh8EaFG7T3wF2tdAdwT18G+BYvosTx4vS66msrd7qbiQSiScH+T2cSNxCPPH20/ru839cr/j0/1sPLg6PpabC1myi390p+vH/9inS8yudf37nip/ZXa703s/Zu+6Bn79fqxfXJUnTCxek2yRQda24bkGhlLIm6dMlvUqSqqqaSJqUUl4h6TP2L/shSW/UVQgKznNn5JNOBOmAgPKceEeM/aeJAU85iLnX0kEeNYkrI8Ym/E4BoFDAKvmGyY3b5LGCs9lMGxsbtV08EimPkWNfXFysCbxTCOhgYJ0CCwAWFEy2bbnnHJpkOvefRN959adOndJ9992nc+fO1QUJeX8T8tFodMhZYrJp0ivtiRYWLCaTSb1WJquuAWFSyxoFkhqRY0fKXY+B82lSSafCdDqt2/c9KNy4LybFdmf4uMNYI8LrRoeJwXv4fRPu4XDYEK8olCwtLdW1JfwZ7yXem44K7hUKXhQ1KMKwtkeM8rs//X6/MT+Li4taWVmp97rXz+sc0xw8BxQsut1uo66G7+97eJ6jG4VODn/GIg1rldhB4s/Q7WPRg+05FYiiHoU7O228l26HGgrH+V2cOF5M/ugL9N7PXDoyipFIJO4M5PdwIjEn+HBPf+zf/k391z/zHXrq0o3XVPj2Jz5eP/xzn37dn//gpxXp056rUkkPf+vbND1/ZxqUbsSh8ExJH5b0L0opHyfp1yX9VUn3VlX1iCRVVfVIKeXclRqydd6/xNuabYJB4jccDjUcDjUajQ4VeSNJcrsxGiodOAz2+6jxeHxIYKC4wDoAvI90QFT6/X6jTdrrWVQwWv7df9u8o4BBxFxwkmGnO6ytrdUFFikEOFJuocYizubmpjY2NrS7u1u7HE6ePKkzZ87o3Llzde0EniZBxwNTBxzZpYAzHo9rYWM8HtcnJ5CExmg2iW487aKqqnoeeX+SWJPsTqfTEJHcfhshtyvBBNeiQEwx8VySlFLUcD9d58OvDQaDmtByP8WioyTiFi4mk4k2NjYa+51Reu7RKJbwuli8kU4bC3FMi+Ea7ezsaGNjo3agsFgkiT+Lh8aaJqwFwrly3+2C4akdFg9ZANL73kdbUkDynFnAcG0NPvOLi4v1HmL6heeahTtvk5SHY/suTtwEpJiQSNwNyO/hRGJeUEl/7L99rf7aJ/7cdaU/bMxG+oSf/ypVVdF0e1E35HModZf03r/8UVIlDR+tdOpf3Fk1Fm5EUFiS9ImSvraqql8ppfxD7Vm5rgqllFdLerW0d8wfCTwJinRwvCEdCFKTuJOEMmIZI6PREm0iwSJykg71I6ZWMP2BJJF58E7l2Nra0tbWViN6z1QG95WF6Rjt5k9b0UhGoDudTqNopD9DgcNjdsTZ7/GIyHvuuUfLy8uH5oVzSes9f0i6Nzc3a/Jm4urTMkxg/TkTQtrzXTCSYobXNX7W1v7hcNggyJ4LOk92d3cb9QtIzh21poDAebQbwyINj9r0fqD4s7S0pOFw2KgvYMHCbdGt4FQLnowRxTOvP/czX+O+4v3is0LhoU2U8Rz6eFavB0UNFlN0mkF0HZDkexx0sfD54Xr56EqvWUxt8jpT6PNnuTfoXGibn1iXxM9ZFGHmFMf2XdzX8Ob08C7E7I98vC48q6O9XyMSicQdjvweTiTmCY/39P+858V629Z9Wigzvfa+/67hQveyH/nHFx7S728+oO1pR7PH+lKlGxMTiCKNzu5zsd6Clj/7RZKk5d95RLvv/8Bx3eWW4UYEhQ9I+kBVVb+y/+9/rb0vzw+VUu7fV2Lvl/RY24erqnqdpNdJ0qlTpyoSORJ+6YDc2wbOX/5pTSZRiqkBhAmECVAk79LBcXLxc4x0+jWeRmCY2FtM2Nraqo9xJLnl9TGHnZF+kiOD5MmF8fx+FAFMjkyQx+NxTfQ93tXVVZ05c6YWFAaDQU3oInH1PdhH/91RezsgfHIDbepeR5JxE9Ro9+dpEkxB4LxQTHB6AfcQ18739rzYzcCaF+4bjyT1PV0TIqbRuP1ut9tIa6mqqp5LRux5YgbdOR6/90wbUfeY2sgx03PiOvmz7gsdDr7eZN1pO65tQkGBn+fe4r7056OAxn7xRJA4DgsHrFXh9qM7gvMSxQk/a1EEi9faoRD7cxvg2L6L18qpZL83gIV+X+XEmiTpA5821OjcbSFIJRKJG0d+DycSc4Yn3n5a//Htp6UifeHn/ZrOLmxd9vrv/f1P1+h9N7/u0eTETO//E3s85aHqfg0nE2lWafrhD9/0e98sXLegUFXVo6WU95dSnltV1dskvUzS7+3/vFLSa/f/fMPVtBft77SUmwSacPM0AUkNYkGi6TZ8ncmP6wfEfH+SDBLaNuuzI92ubi810yqqqtLm5madUrC1tVUTpRj5NEFy2gRTCHxfCxeRRPZ6vUYhQal5ioFdASSwPsZwfX1d4/G4JtWDwUBnz57VmTNndOLEidomz8hvLHLocbuegdv2v6fTad32ysqKTp48WefkM/2DJLbX69VOALfDtTHhI7Hu9/v1cY9eD64ZBRm6XOh+YaTe93btB8LjjOvntuzqYB0P5/p7Hmnj91xEAm4ibyGK+/Go3H6mt3COWCOjLVXB+9HuEBe+dBqCUy4oCsSTH1wfw8+FXQsWM7gXvb4WJyggeA55mofXzy4cCn4UQ/h8+BqPzfstFgel0OYfuo7mHcf9XZy4fux88vP17s9zBCTFhETibkF+DycSc4xK+rI3fNWt7kUr3v8nFqU/8UyVadFzvnlds8A5bhfc6CkPXyvpR8teNdt3Sfoy7blDXl9K+QpJ75P0RVfVkf1IZIw8R5s385z9Ho+si+kCPNmAqQpsw++xWCCt0iSBjHgzOru9vV1X4jfZ29ra0sbGRl2jwMcvMqJt0uk0AJMvpiL4M0ynoOXbPxZgxuNxw9If0y9cz8FiwmAw0MmTJ3Xvvffq1KlTWl1dbZB6zlU8vcCwk2A0GtXpHVVVqd/va3V1tRY8hsNho/6BSagJqPvsdXYBQK+hhRVGvU0+B4NB7QSItQnogvD80d1AImrBxILC5uZmTeotVPm4wZgyYbLLQpFtThfOmR0gxnQ61cbGRqPoJAlzTGvgffw+BQfWz2Ba0ZVcOJ4DO2ziyQ52xPi58DPh+g/ex14Dzz2JvcHCqu4n004orPl5YPoOU4/iPDN1hT/+bvA+iYU2Y/2NOcexfRcnbhBZMyGRuFuR38N3ATa+6CV64mMWlaJx4ljgGguLld77tz5RqqS198x04kfedGv7dY24IUGhqqrflPRJLW+97FrbikUMKQpEEkExIR79yGJq/jOmKdBxYIu6I7Os7H4UiZvNZjVpktQgvu7Tzs5OfbqByT3mrf47SbR0IJh4DoxoZXe/bdfnZ+ne8P1cIJHuDs/ZcDjU2tqaTp8+XYsJtonTwRGLL3LN/D4FHNcOGA6HdYE/R70dfXdknkIOT45wpD2uAd0rLkrpOgWsd8A9RCcB8+U9p7TYc6/5yM+4/7guFKzaiGisMxFTAPz5eE/PM08VaRMpTOi9p+wE8D7wPfwTP8958D0sENlxMpvN6nXyHmEUn/uYqSExrSGKPE5zsSuCQiDTNThWz+Pu7m69/6N7x/2iMOG9RXcCU2qiq6XtNI95xHF+FycSiUTi2pHfw3cHJqsL2llLMSFxzCjS+NTevrqkBXU+/yWSpLU3vVe7jzx6K3t2VbhRh8KxgTZoky3+gk+BwOSJUXoSzkhCSESZ3sD6A4yMtuVPsw3mbJMcm+BOp9NG/QDWeYipFRRDTPr942ukZuSYufp0SfhzdBSQeFkMMLnzZ5eXl3Xy5Endc889WllZaVT2p5uA7hDWeOBpC56DTqdTH8NIsYZWfqcSsL6CSWwk7RSM4r0sWrTV2KDdnjUSmE/PNSUhNvm0SMPxmkjHwoTce9y/dpdYcGCxx3jfWPTRn+c+NBH3nua9YhqDX3MfY7FRI7ok4gkdkhpHNvL4VpJ5jzUW/qTY5+fPNTVikU4+q9ENw++D+Ky6Xc4H5zvWJeF3DeeK908kEolEIpFIJJ4MjE/P9MFP3/udunvxQfUmE02f+Mgt7tXlMTeCAglwJINS0+psIseiciZkJFck3yR2jPo6OmpSY5LOe5HgSDqURrC5uant7e2GqMGoNoUOj8UEl6cL8HjJWI3ebZjQxSP97ISwCGCXg//uNpmH7lz3kydP6vTp043aCb7WbTqVIZL9NgLsYxhPnjyp4XBYX2fRw8cPzmazWgywe4HRYooongva1U1IeQyl18t9otBDUYEpAkxVcA0Lk2mKQnFfeR1s/fe+8rzHoyS5h7w33J6FKbZBMkvBjS6LKEq4b51Op5FS4L3TVoQx7mnfe2NjQ5cuXdLm5qam06m63a5WVlZqN0Gn0zmUkhHTTMbjcUO84zPNtfOaTCaThnBER4efX4pGdFtQbOT3ip01TGtoExI8R94vt1lhxsS8oFKmPSQSiUQikbhhvOdPd3TPs56r098338dMzoWg4Ki1CSQJPSPM0kH0k8SIpNPkysTAYE676yY4796khrZ1pk/4h6IFCxFSODBp2draqomWiVXsLyPaJu0xlcDtMsXBfXcUPeb30zFgYcHz5hMQOp2O+v2+Tp06pdOnT+v+++/XfffdV7/vtkjg2Y77Hu37Tj9YXl6u27II4XkZjUb1OpGMe339HteYKRKS6roLLsTIUxTcXwscbM9iidsu+wUdXchxe3u7JtJeQ7frQp2MrNvlwXmnu4EpIE4Z4JGGXDcS8Zg+QWeJ4ff9bFAUiekyrDHie7qwKPeh59gpO+vr63UNi36/Xws3dgVR6HMaDd0s7pfvwQKp3oPcbyyi6ufW42aNBT8DrIvisXJ8sX5GPAaVc+B7sQ2PPZG4Giz98lv0vPfcq7d97QOqUo9KJBKJOwel6AOveakmJ+e/WHMicRwovZ7+9Js/qIc6T9Sv/Zdnt187F4KCf/mPVfaZC08SYEJBMhGjrSaRJrvxmEaTc5NJ2vLb7ODsK/OuozXd/TWZIfFmVJw/tHZHu3wUExxhZy6/iSAj227PoocFEYsJPmJxZWVFp0+f1unTp7W2ttbIY/dY7XCIgod04PhwX/v9vgaDQd1XE0v3w4UrmcbANiigeD65F3Z2dmoniU+OYJTawgeL7zl6z7QEzq2Juefr0qVLDZFIUuNap2h4H9IRwf1KxwFPljCxJvGmI8H95T5i3RDDBN4CGdFW64FCA1OGfL1TG+jQ8EkUccxuj33x57wGs9msdtGQpHt8FmRI/pmKEB0ZrIMRT6iINSaimOD1Y98tOnot3Ib7HotlJhJXQjUea/bEeUkP3OquJBKJROKYsbNaadZNQSHx5GLr3qL+F75Ey//mV6UWbnrceOyvfIoufMJEWpD+9dp/08pC/4qfmQtBgXnYrBlAqzNJLCvUU1CIOfckMbSW2+HgiKsFBX+GFebZp5iSEaPKzLGnoMHaC3GMzKvnj2HiEwtGkjwxIk5RgkXxPBZHeX2U4+rqqk6cOKETJ07UjgLOJVMmmDbByDkFFRa4NKlmMciYy+80B84vCaT7HUUaHxPJPvsaWtx9PU82iKknkmpBgMdeMjWG6RKMjvuzTHExeLwmXQd+L/7wGqadROt9rBPiZ4FpKFwXpvy4f74P27J7xONxWgr3oNcuiiOsN+F5t5ODzyFdSD7Zw8ILnx8+R1GAi4JTdErE5yimQ/EZZ9HKuK9j+kQicSUsrK6qPPUBVbltEolE4o5B6fW08NADe2d2JBJPMsanZ3rskxb0jH+7IFU3p7bX4skTmnz8syRJ937Be/Xm5/3k/jtXFhOkOREUSNaiXZtF1kjMY3E9txOFCMKvsQ4BCwfynke1wchyLBZHZ4D76T6TzDpqzn7H4m+RQDl6GqPUHpfrKNCivbm5WVvYTTztdhgOhzp16pTuu++++nSHfr9/KB+dBSbZlsfLUyM8tx7naDTSxsaGNjc36zEPBoM6pcX3YbqLI+EcF90NjmyvrKxobW1Ny8vLdXt2arhPFFEoyDDVwMLL1tZWfUwkxQFfY+eGrfruo10NPhrUJNSuBc4j53Z7e7v+cZ0G99MCF+fVpDgKPoYJtgUMp9BIapz4YDLuFAi7bLa3t+s5sEuBffL4uT99AsT29nad1uJ5r6qqTmfwWjri7/mjg4h1OFhHwy4GihlcO86v15bPCV1HnjcKDBai6JRxPRLPXSJxtdh54XP07ld0r3xhIpFIJG4bLDz9Ib3tq85or0hOInFrUBaKqpt0wMjWpz6sN37f91335+dCUJDU+IVfOhAZXGjPZMbR2Bg9ZC64ictRkUrnzfvHhIUEhfn3jDIzHSHWD6Blm0SW9RiYU0/HAa31JuSO8DICbeLkdA2LEeyjCbhrALBwn09f8DGRDzzwQH26g+3vJJk++pJkzz8m0pubmzXpHgwGklTf/+LFi7UQwGMuTSK3t7cb89Hv9xvkjnUTLIScPHmyFhI4fgsQJvde816vVxN6pr+wVoDt/S6yydQRk1+eJuK++Xp/1o4GzyP3qcmqybeLU9oN4bQICmPeV94r8WQPr7nnmDU7LCA4zaSqKg0Gg4Yrxq4Eiz/um+eJYgxTS3Z3d7W5ualLly7VrgaKSl5LikNOgfA+4ykQTKWJYomf55hi4efBbpFYcNX9ZRFOr433sK/z+vDIWgspicTV4MNf9VJtPF3KXzgTiUQikUgcJ6bdSu/+lhfpWT/8mKZvf+extv32f/piveEzv0dX60Zow1wICrQsGyQYJhO8ps0KHUn/UfdwFJjV6judTiN/mjnYvh/t/hQTmN/P+/H0AJNNE3sW9aMNP1rS/Zpz2Vl7wJFn3tMCiK37Mfd+dXVVZ86c0blz53T//fc3ChqSnNoZsLm5qa2tLW1tbdWk0UR6NBrVRftIok22NzY26jQH1zwYDocNVwlz29uKBjKHf2lpScPhsHaUkBw6wm2CzloMrDXAPHmmY9Duz3lz+9x3HqOJuN0bnGemJLDooMGaBZPJpFGwM97TAoIj+x4351tSLRxQROOfrBshqR67nQYef3zuKHK4bxZSokOFez4WV6UoYNHOz0Xbc0rnjgUO/51CH1NjWIeCf7bVkHA/3Bceq0pnRiJxOZROVxe++BO1+aA07aWYkEgkEncSqk/9eD36sQOlWJy4pSjS7nIlLS1e+dprxOLqjj62e/1igjQngoLULNrWJgq0CQcUFfxZRxlju3QnsFo8CZAjuiYZJifRIu/7mNCYoJLMuG1Ht6N93e+ZRMdihyRejESzun4sNOnrefykx+TItp0J9957r86cOaPhcNg4GYD1AGxntxXekWSTTx+rSHLmyK9J6s7OjgaDQeOoS6+PCa7JtEUUk2T+WARyzQtHn1nY0H3y6QImkb6fRSNH8DlP/qH13mvFdfEYPR/+cXrA5Qp6xlobdDWwOCIFAb8ejxhlOxShuFf5PHFfea05bq+5r7UjIgod3iMWmTxXXiMKdEwt4DPs17xX2Dc7OvxM0F3jNqLgZ4HB/Yu1S2KaUHymoqDgebfomEhcDqWzpMc/QaoW85fNRCKRuJOw+Oxn6NEXDHTx4fx+T9yZ2Hn5C/WUs09c+cIrYG4EhTYCb8QoYSTePPbO0XXWHCBZZQ43yY8JjMHIr9QUPEj6SHpNZkrZO57RZMTEaWdnpyZaFjFilJ3kx/9mNN9CggvaRVEjEuTd3d36xIW1tTWdOXNGDzzwgB588EGtra016lZUVaX19fVaDNjc3KwFBaY9WGw4f/68xuNxo/CeI/y09ttR4CMieZyi1CyyScJu0m9nQa/X03A4PBSFp4BhJwVPdPA6+QhI75G2uYp1Mdw/7jGLKu6fpFo44h7hyRJeK/fFaQ5eV6fc2JXhPcIilnQMcExON6HQ5rbp7uF+s8OAdRNYNNPpFRQV3De7MiwYUdDwc8VCmZxHzk+c6yhcMJWIaRf8nuBzyfFGNwPdFXThUIxymogLRjolKpFIJBKJxN2Hd77yPu2upJiQuENRir7ldd+vTz+GX3XnRlAgEbKN2mSDEXy/5kh9JPesGRAjy444mvwxdcB9MNHc2tpqnA4QLdMRvj+L6i0uLtbkezQa1cXwhsNhTVRY5JEujGjrZmqAybnrHPBkB5N5E6bpdKrV1VWdPXtWz3zmM/Xwww/r3LlzWltbq1MxWBPBdROYW+/1cIqDre6j0aieF/fFtRMctV9eXtbq6mrthGCRRRNKiz8cOwnf0tKSBoOBBoNBHYX3+rpvTq8wUXeaA4ntzs5Og1haxOExkxSIuP4xik0ybQeI++5IP9M4KJK5fQpF8Tlg3+NnmZLifnod6DBwu0tLS+r3+3W6ieefNRx8gof3WUw9YToNXQ1et1gvxM8s3UJuj06Wtucovu/UoHikqecu9pUiIlM+6CRiIciNjY16jC4k6eKhMRUrkUgkEolEIpFIHGBuBAWp+Us/c+BNZEzaafVvO77Obfn1WOmfKQ8sNEdBw5FKqVmbwGSEBI598b2kg2MDPRZHPLvdbqMuAtMdIvlkLrijpiavPP0g2vBNnldWVnTy5EmdPn1a9913n86dO6cTJ07UgsTOzk4dbd7c3NTGxkYdeTdB95++xoKC78HIMR0cJmiOtHtOmD7hcTDtgQUT7bDwesUijDxZwJ8xMbbAI6mOmlNgaLPMe73jPnF03vNioswimm1FAZlOElMeSIrpWImODdrzPU6KHjyFgYTbe5Tvs/7BxsbGoboBdO7ENAfuBddr4JwZ0cXDVAe+7nHxPaYVWZRx7Q2Tfc99W5oURUeKIdwv/h5hioP3H480lXQopSiRSCQSiUQikbidsfj8h/XI/7mg53d+UdLyDbc3N4ICremMlPIouFiokYSLkWW3Z8JGYkjiGu3cJlsmbHYymJCYjJh8RcdCtKfHExZYoT9GqTkm959V6W0n531NbP1DZ4Dn8MSJE3URxrNnz+rkyZPq9/uqqqp2E2xsbNQ/ly5dqufZJDrWVLCYQMLuPjNCbBGFZJak1EILo/K+LpI9ph3QjUIBhS4DEkKLFJxPSQ3y6XlnEULWwLCQ4L67vxRKSIZjoUkT2Eh8Sfi5Jx1dj9F6/p0uG5L7OB7ve655rH8gqZECFOfb7h1+hvfgHog/3Ntx/J6r6BzxPvJpETwdxO9RZOG+iN8nFHv4ec+t9wV/3J8UFBJXQjWdavXdC9p8SqVpP62xiUQicbtjod+XnvsMVXPDkhKJ48Xk3Ire/KIf0HGICdKcCAomGrEIm8kYiRhFAxMBkmgTGLoGTBIYeY2nCsRCc9IBkfX7rCrPInEGI8xMW5D2bNuMsNuFwbSLTqdTR/1NNv2+x2rXhMdsN4WdBv63o7tnz57VQw89pGc84xl62tOeprW1tdqyv76+rieeeKI++nFjY0Pr6+v1eBYXF+tr6U7gPJB8sg6Fo91OdfCYXaPB82nnhefSIgGPiyRxp5Dg8TPVxT+xZgCj4W0uEO8Jp0pY/OGaxdQAil0syslIP/vufnDsvq+PAPW/fU8KJv483QTeG+4TEQUHnv7hI0XZZxYo9bxZ+KGwEUUYPg8GhQhex+KJXid+lqKeRTiebOEaGe53W10GPrtxX/g6ChxRRKHwkYJC4kqoxmOd+8e/pEe//lO08dQUFBKJROJ2x8L99+qtrzqhPNkhMTeopDItUjWfe3IuBAVJdZTdBeYY6Wf9BBMU5l/bBs0CbCYkto/Tyh2Lx81ms5rA+l7Ly8uNdArbvE2iY+FI6SDlwbUMTJjsLHA7Mf/bUVgSL5NVFpkz8bY7weTQYzcR87WnTp3S/fffX5/oMBgM6tz3zc1NXbhwQY888khdM4F9M1yjwD8m6iZky8vLjVMXGHV3MUjPrx0QLD7pOaPt3SkM0+m0TvPg0Yuul8BIufvnVBX2i/UpPD8k0nQgeN9QTHDBR/eLpNjtjMfjRqSb+4uRdLozXGtjOByq2+3Wc25izFMnRqNR3V86XSjGxRQEugzoTBiNRvX9SaIHg0EjMs/UFPeLf7o/8T2vr58lFlW1qOF0H9Yv8XseaxSkXL/DgoCfezqHKCb5Tz+Lfua4f3nai78rYt2IRCKRSCQSiUTiVmFhUvTs/99va7q1dau70oq5ERT8i77UdAb4F3rmSZPom2RSdPBnTVh5qoMLGrLA23Q6rQljVVWNqKhFAObG+94mMuybSSPHRet4tKvbdRALE0qq78coroUXOwxY1JGuhuXlZT300EN64IEHdPbsWa2urkpS7TS4dOmSzp8/X7sOLEzwXoz801FBkSMefckIcSmlcQwlnQkx/cDrwGKSjlB7HZwy4dx/jpc1KLy+tK4TMRUlkka6GugooD3f68l9GNNo/CcdFf6MybLt/J5vpgnE4oPeK3QwRBcAnTPcd3ZzWCCgKyamWXi9vSfcHvez5yemNHh87hvn332weGdC7/VwMVQX4vQ4LVBQ8HN7XheKiRYFvN8toMxms9rVwR/WrfBpG5z7ROJyKJ2uPvzlL9T22dwviUQikUgkjh9F0mx7lA6FK4EEM9YS4GuuH2ACSxLDyKmkBkmwSMDjC5nL7VQBOwpIBmNdAOb9MwXDfeC1USBoI4kkgWzX46cYYcHCjgJJDRu6I/pra2s6e/asTp06pZWVlboQpEmb0xsspNBGTkGB4/Pck4CRXFpQoFDAFAZG+Lme/rzdCTGv3evA9AvW2fDc0RkR+8Z9Fk8XaNtr7FPcgybzXB/2IVrnHe1nfYdut9uoDcBUlbb+xDoLFgk8NroAOC/eO3Y5WCCgyOb+slghT+JgxJ/7tA2skeCxWliINUrsHpEOxAb/28+sBQXvx5h+4f4ZsUZGFKg8P16rKCy4T56PNkEqkTAWT5/S7vOeqosPV6oWrnx9IpFIJBKJxJ2GGxIUSilfL+kvai/J6HckfZmkoaQfl/R0Se+R9MVVVZ2/UlsUCvbbrv90JFM6IM8kKSRh9cDCiQ4+HcER9VjUkEfg2WLPyv60kJtQxpxySQ2iFSPkJKdHFdSLRfhMyEimbO/3fHnulpaWtLKyUhdiPHv2rNbW1moru0mlre+2l0eCzXtRTGD6AMcbC99FQYFpEyzmZ1GH97MbxGvFmhFbW1taX19vnAphocTr4lMB7HZhXQ5Gz7nHYv4/x+Y9QcLuPnMcXHOmOtDh4Ei7RQ+LCZ4np5R438TUmHhaBusw8DqKWY7se5/bSRGFFwofLLwZnSR8Rkm4o7DEveC/86hLz6/3hAWFqqrq01B8tGqs2WCniveuXQdec47H96Rg4DXyZ/wnXRHRDTXvOM7v4sTVY/fhh/TOLzyGA5wTicRtj/weTiQSNwNlJpWdK193TW1OK31gd0P3Lw61WG78d93rFhRKKQ9K+jpJz6+qaruU8npJXyLp+ZJ+tqqq15ZSXiPpNZK+4Srak3RAWGgnpwWdAgIJC+3OFgVWV1e1trZWk2pHd6uqqu3cJnLO5/Y1sUAkI74xck+7N0mrSaBFAVepZ2oDo9g8SWA0GjWukZoF8pib7veXlpZ08uRJ3XfffXra056mpz3taTpz5kydnz8ej2shYXt7u26D/aCgQYu/dEB6Sd5okR+Px/XrzENnlJikzmtIq38suFlKqfvNtBS/3+l06vk0WafDwrUvDBZTZIFHnlwRHRS9Xq/el07fcFssYEiByKk4Jr92dvh9ix4WrUyO/VmmOLCuAY/z9HsUV+h4oWuEdSu4Bm53Op1qc3OzLnrIWia8zu1a2KLQ4bW2yOY1oaASC6eyACdrZvT7/dqZwjFNJhOtr6/XghqPf42uBosOns9Op1PXraCwQPGKzgQ+e/OM4/4uTiQSicS1Ib+HE4nEzcKJtxWd/YFfUzU7vkLhC7/4m/pLH/Wn9L/9zi/oU48hLnKjKQ9LkgallB3tqbAflPSNkj5j//0fkvRGXcWXZ7RQ898mm9GSLulQNF/as3OvrKxoZWVFw+GwPsfeZMHk0fnaJHBH5ae3kYsYuY2F30xwHNl3xDd+xm2PRqO6b76WBDta92knX1xc1Nrams6dO6f77rtP586d06lTpxrjNhE2ker1eqqqquFSYOV/k99YR0E6IJeLi4sN94F0cAIF15CRbgov/LfX2KTQbXFepAM7vCPTce19WobJ9Hg8rtNc3BevL+sbMD+fYpAj6VyvWMfD+8euGVrzSaSjyGTiu7293ah5QCLvtTf59jx4Hb2WdDCwDgNdAzzmk6Kd58kikPdtvJb71iKcf7x//B7dCe4DHS2cG6/rYDCo3UQUNCymbG5u1sVD6TBg2gLXlfUY+MN0GosMnu/bxZUQcGzfxYmrw+YXvETnH16UNLvitYlE4q5Afg/fIZg98iE9/INDvfNLTuZxwIlbjlJJVXCT3zCqSrOtLU11PL/zXncrVVX9oaTvkPQ+SY9IulhV1c9Iureqqkf2r3lE0rmr7kwo+Nb2E68z0SAZ7HQ6GgwGNTnp9/s1iZNUk7gYOWchv5gLHuszMIIdr6etnNH4OE7azHk8ICPbPGEh1jPYn2NJe+RyMBjo1KlTOnPmjE6dOqW1tbVD5Mz9cS2JmG7RVkeAqR2+xq+7j7HfFgFc64G1KEhySehJLj22uL4UazivdqfQsh7TUThO5te739HpwtNGuA/aBAX2mXMQjzhku+4DiwayyCbb9TzQoeO5iMUV6WjgPMe+smaC9xfFJgoUnkf2kYJGFIsoyHHfR7cFBTMWTGWhSKaOWKjy2FkLweB6ei1ZaJU1QJh60lY7JKYDzSNuxndx4jIoRdWnfJzOP7yo0bkUExKJRH4P32mYjUaa/dbvq8z/rwCJOxwr713Q2rsnV77welBVetUvfrl+8NKNfy3dSMrDPZJeIekZki5I+lellC+9hs+/WtKrJWkwGPD1RhQzEsPoCvD7JJoudtfv92uHgnQQfedxi7bJx5Ml2DZJTCSTBvPtTY543GF0OzCa7bGaCJlkM3c8EiemWJg0LS8v6/Tp0zpz5oxOnz6ttbW1mgzv7Oyo3+83hBQ7Adg/jtOReUadPVZG+D0Gt+n18Jy76r77QlGCkWuPg59lSoTnzOvMuaCFneNxVN5E1mtqkYaCiNty+oA/x9MFokBBkcvzweu4hpGsu1aBUyLYJmsoVFVVizK+l50OrBXi+eFnKZhQzPHaco+7VoTnt6oqbWxsNMbifTmbzWrBzs+NnS6xSKn7bKcO197PtEm/xT+uGdNSnEoUn1nDNTt8LcUEH5NpQa3b7Wp5eVn9fr+RyuS0Fu6LecZxfhf3NbwZXbwjUHo9laUllX5Pb//8oaqlFBMSicQe8ns4kUgcKyppcVz0wM99RLPffutNu81z/sJv6Ft/9HP0qj/2L26onRtJeXi5pHdXVfVhSSql/FtJnyLpQ6WU+6uqeqSUcr+kx9o+XFXV6yS9TpJOnDhRsQCao7smHYxsuj4CidJsNqsJw3A41MmTJ7W6uqrhcFhHJZ2Hb7LBkwRIihgVN4mz6GASW/YLHJIQ7+zsaHFxsRYyeBQg0zJozTa5N7HyWCKxjyIEC0OaBC4vL+vs2bO65557tLq62sgVNwnb2dnRYDBoFAA0qTaxdd/cdwohLBDpubLgQELM6HMch+edooSP2aRl3f0zyWPhQebUk2CaZDKqzBoDviddH/6RVEf7h8NhPdfuC4tgMgLv2ghMibE4RAGKzgSnt7gmBNNluEc8j2wvOkxMxrl3JR3qo1/zvba3txt9XlhYUL/fb6T8OLUgCj++dnV1ta7PEQtfGkybsHjhdeExsb1er05Rcr/o4LDbhXUy+AwwZcdCicXF5eXl+nlwgVZ/N7BWw+7urra2tuq0Cn+/3AY4tu/itXIqvZ1H4MOv/ERdfO6+yFdymhKJRAP5PZxIJI4NC7tFz/yW39BsP1193nEjgsL7JH1yKWUoaVvSyyT9D0mbkl4p6bX7f77hWho14buSzZ2EXzrIvyZ5MDmKFvzJZFK3R8s2o5TRgu9rpQNnBMWCWOCN5NuEm5Z8t+9Iqkkv8+alZj43C9otLCxoNBo1qtWvrKxodXVVy8vLGgwGh1I4mKPPVAMT5t3d3VoIoSvCxM/klpFzpnLwxAC/7/WLJNvvOzruz/u1mM7A/nAu6E6ItS88TyxIaBHEJ0+wACGL9nm8k8mkdrPQBk+i6b0wGo3q17yW3A8k6yx+yDk1kfZ8MYrP4o+eiyiWsH/xOFDuXdc/sODi/lk84Ge5Z6bTaSOFhqIPXSh0ebBvcW/5ueAJLByD55V1I5iO43XiM2JBptvt1i6KKCgwFYjPvI8lja6ROcdN+S5O7GNhUR/6mpdo6748GjKRSByJ/B6+A/GsH3pUj778vlpMTiSeDCx/YEFP+Q8f0vRJEhOe8/dH+ujf/Wq95Wu/97rbuG5BoaqqXyml/GtJvyFpV9Kbtaeurkh6fSnlK7T3BftFV9smLfRtxQFj7QQTdqY5sFAfI7YkkXQ0mBiZwDF/mvUJaK1mdJ3XsLgbCSFzuU3+WBfBUW6mGsT7xVx4SY3UAteN8Dx4bG6PJMztWGCx9X42mx0qXsg/SUbZJ4+fBfR8PdfCVn7OoYUMk0w7PVgngJF0tuX7mtRGgYO596wFQLEoClYWaFhbwMUKI7n2/aMTgOISi31SWOH9KSb4897jfp3FJ2OtBM4H02boHKEwFcWiWLvEYkKMzntfcp44H17f6KRhahCfY/eNxRI9Bu9R/snPe+x8Tjn3fq6ZRuE1objg54gnoNCZxP00r7gZ38WJA5SFos0HKs16+QtlIpFoR34P35mYvuPdOnPvCakMdPHh/D8gcfOx+u4Fnfq9saZvf+eTds/Zb/2+nlo9T89+waskSf/bJ/6UXrXWaqY6Ejd0ykNVVX9H0t8JL4+1p8xeM0gwGVVlmkCn02kQcUnq9/saDAZ1kUG6B6Q9ksScaEcve71eTWRs72bEnPdlLYS2KLhFDZOiWN2f9RTsTNja2pJ04H6wq4EEyf13eySLng/fO0ZiXU8g1qMwUd7c3NTGxoY2Nzc1mUwaR0iGdW6QVrfDVA8e2ReLWHJM/jNGoQ0SYdZL8DwzBUNSPWe+Tyx4yfoBkg7VRDABpgPGooNz6eOJFeyDI+IWHbzG3luOupOwx5oMnHO6LSwYUQDwT2zTc2gyzDH7Os4ji5AyfYC1JfwZigMm5d4rdEVQBHIf6b7wetEJ4VoQFl94OgP3rdcuFmCMotbCwsGpDX7GfUSnx2yBgakdGxsb2tjYqNNQbjcc93dxIpFIJK4N+T18Z6L899/UfR96hjYfvE+7w0qa/zhD4jZD2S1a3Dcj3PcLF1W9+S1Peh9mv/1WPevP7/397/7Q5+o5n/bPtahKL+oVLZYr2zNv9NjIY4GjmCYHtNmbBPD4QxZLc460c6JNgEjctre3denSpVpg6Pf7WllZaUTwo1BgYhIJKq3kJliumyAd5KmbkJEwVfvF9ewI2NnZqcdJsk4CZvJvEYKCwtLSkobDYf2nT3ZYXl5ukHuStK2tLV26dEkXLlzQxYsXa9eGnR6sCWDiSYLHSLwJH1M5TMDb3CVcG46HtQocBWcaCh0Sng9f47Whi8THCzri7LViXQSKHIxoS3tuFqfGcG64TlyrKFrYIcL9SFu9ST/bct9MuH1PpjXEFB2vgX/oLPC6cB1Z68H70mOqqqpRX8T7y6DA43XxdUzNiI4HP99er+3t7cYecuqBnR4sqMi5YCpQdJBwbpaXl+tCi71eT8vLy435s8jgubOwZ6eOx806H4lEIpFIJO5eTN/xbj39f3+f3v2tL9Z0kE6FxPFi+QNF9/3DX5IkzcPues4rf0N/t7xQC4OB/tlbf0ZPXVq54mfmQlCQmnZv51X73/G0BJMtEwVGgRlJN3Ghfbvb7Wo4HNbWfhNZpyW4vVgrgMc2shiiBQW7HFikkJFSR5wd9WZxOooVrJ0QnQkxJcQksd/v10KCC9v1er16bNvb29rc3NTFixe1vr6uj3zkI3r00Uf12GOP6cKFC/V8t7kT3F8Wv2PRRUa4eSqD167thIV4GgDXhzUUYvFFzoNBl4bv4/QW/3A/xSi6iTUJusUE1ueIBSm9dxzhdh2G6EpgKoIJP10P0X1AYcH3olBhEYUCGFMzPD9tdUfi88bnxOvidY2pCSwI6T6xUGPbOHyftjQUChDcA65DQVeQnQ5uPxaA9DPoGioUFJh24v3EOhHb29u6cOFCXYiRaToxnSKRSCQSicRditlUz/lnH9AHP/chXXr2bVNjKXET8azXb6vz6IUbb2g01tyVAK8qzba39RV//mtULdGh8E2tl8+NoEB7dvyJ9QRMLkgmI2kg4WPk2wQy1hSgM4HF5UicaOV3RNT2aZ464eKGJoAko/xpK7hIAkZyzroJTAlwVPbEiRNaW1vTYDCoSZQJkwWFCxcu6Pz58zp//rwuXLig9fX1OtrP+7IoII+NdD9isUDOI1MJvJ6sc8A5Yo0Dj5NRcelAcDFhZj0ER6qZqmGCzyMh/R73mPcP8/xZl4PpE0eBhJpFGFm/wtd5f9DBwbbp4OBrngO6KOiy8HzyZBSmJjBlJNZEcBsUqmKqUexH/Lxfj7UT/HqsXeE1oYgVxTILdH5uYh0GzrufQ9dK4E+bmOB5sPvEThaLCe4zxZbE3YvFs2e19eKnq1q88rWJRCKRuLOx+9736+ybT2nw+MFx9xceXtD4VP6ucCdjYafo7K8fDjAtvfV92j1//hb06ElCVWnhF3/zqi6dO0FBOsiFJhn1NSSyFBT8J4+UM0lhBJkCBC38kRwtLS3VxJl2f19jAmPS4uiuSZsFBQsUJGyRpLDYH0ms7x+v92tOdVhdXdWpU6d08uTJxj1t/V9fX9f6+rrOnz+vxx9/XB/5yEd06dIlbW5uSlLD7UHBgGMy0aT44vl3n2IuPdfS62eBwsKQRQamfJC40gVg54CP+mNKBEUBOxMcsef7XF/uL6ZxOO2Da3FU1X8W5WRKAkkw96H3QSy0yPQEf8Z7zek3UaRgYUu7H5iCwpoe0sHRju439yOdNXQbsC/+XNyrscYB4fedUkHnh2t88N58Rv0M0tXAIo1eRz6L8QSH6Jrg/hiNRtrY2KiFGI+BaVBRhEncXajuPa33v3xR82FCTCQSicStRvml39Iq/j370k/WxcWD3312h5Vmnfw/43bFwqRoabsZQFscSauvf5MUXKuZFHuAuRAU2ggJCV18nUclOjrJaDNrLdiuL6kmWf48o+XsC0kaiS9z3G2rlpo5944OszihP08BgxFxg9F+kie7KmhFL6VoOBzq9OnTOnfunE6fPq0TJ06o1+upqiptbW1pc3NTjz/+uM6fP6+LFy/qwoULevTRR/X444/rwoULdUFFw3MmqbafUwAgwWJOOp0UJmQkckzpiKcbOGLtVBOSZvfB0fe26LZJJdNXfG08MpGW/WjL9/glNeopuB4GRQ/uWbdBtwrTWYxYLJHCFiP8khr7wmtvksx0E4sU29vbdYFPW/9XV1e1srJSC2ebm5sNt4sFI7pERqNRo36JnxEWOLWYYyGJR4nyObNbg0VIneritr3GdHn4yFOnOXhNvff8XPJ5dqrD6uqqVldXa5GPTh86INbX12tnwsbGRqPGhsfE9JREIpFIJBKJNpz4kTfpBP792Nd8ii49KwWF2xUn3iGd/r5futXduO0wF4JCmwPBJMWRcF9jAukfnzXf6/VqUYFRTNqYTVgXFxfrs+ZJFBmNp2uABe6WlpbqaLEJ8ebmZh3tNyF20UimEtCFwddMxEzoYuTa42J+eafT0dramu6//349+OCDOnfunLrdbk0O19fX9Yd/+Id6/PHHdfHiRV28eFGPPfaYzp8/X5/qwCJ7vr/UrFdA4YNzQUu9xQ9/hgUAPbfM0Web8UQNr4PhIpIWhngsqOdbOiDsJq50d7Aehefd/aCgQkGKKR9MUfAaeo9xf1GYcp0POmUimeZeYCFA7ws7EwaDQT1Oz7NJukUWSfWzsLKyotXV1TrCz9oKJNcx8h/7ZMHCzyFrMrAWgedJUuM5jIKQ9xf3nPu1uLh46LhTv2cXg8c9m83qsVpEYHFHOgxY32NnZ0fb29u6ePFiXTPB4/P3hvtE10cikUgkEonE1eD+H3ubHuj1pF5Xb/vq+zJlbo7x1P+0q+HvfrDxWjUapfPgOjAXgkI82UBqWr5pQecJAC7GRocC22NdArsSpMMF/hhBZyE2uh1MVHh+vR0QrkpP4soaECQ4jDzHNAEWM+RRhjGv3qkOZ86c0cmTJ7W6ulqfgmG3xMWLF/XEE0/o4sWL2tjYaFSyZ6TY1nfPk4k0o+SxGKULTbrYJF0d7iPXjicQmKBxbWLdCzsjZrNZ3V8WzWR0n+vJUxlizQv3h0JV3HN0wnhdvCdikcSj9qx/WLwwXtcmKETRySKDUwCkw4IXU2xs9XeEf3FxsRYE7DLh5022+ay5b9wHFEH8/PFzXlsLSRyrxTbWF7H7gXMZ65HEdfJeoQPCtSooYLhPFI78mgUNp/9Y6LAgROGLQkg6FBKJRCKRSFwtpo8/IUkqS0t64BfPqbILtlP06CfrisdOnv0fUmfrCIdDkR59yYJm3SfXAXHZPgHjEwt64uPm0J1RSfe9SVrYafZt+HuPavcPP3jEhxLXgrkQFKSjRQWSL9qSec68xYJYNM7t+nMu8mbyaTGBxJdWdhIN1mtwO6PRqD633sSE1v9YzI5R/vgaq/Pz86yCL6l2SJw4cUJnz57ViRMnNBwO1el0NJvNtLW1pQsXLjRqJdgS7x8SQBaIpCDC1yi2OBLseaclfjKZHCqqaCLbVozR88o5YuTf17tdChlei2iF59GJ7nM8acJr5fvy7+4Dibjb8FxEB4vnjaQ2HkkqHYhIbY4Vf45CS6xtwbmkOGPr/8rKigaDgfr9vkopdfoHCzd6bmezWX3SSduz5nFbHHMKA50ULNpJEcXz4+eDhURZaNF7zHvawqDnhqKQnyu7NpzqED/jNB7uZ/djY2NDFy5cqN1JFEsojLlehz+XSCQSiUQicS2odnc1+He/Wv97YXlZ55/zcVcUFE79zB9o+uEPH/n+4Bmfot3BFRoxijS+Z1bfs8yk7oWFay4LdKU+GWvPeJo2nvLgtTX+ZKCS1n7iNzXbTw82skrW8WEuBAWLCbHCeqyCb8QIvtuIbfraUkpNnkw6eE9fz/x6RrdZhJAkxQR9PB4fSR6lJlH1v6PlPBbh83GQJLGS6ij0PffcoxMnTuiee+7R8vKyJGljY6NOc3jiiSd04cIFbW1taX19XRcvXtTjjz9euxMYlSZBjq4OEsBer1eTVosRFy5c0KVLl+p8fK5NKaV2G5B8UuShCBTdGrTh+7jP4XBY59c7Eu0x+VSLWD/BffI9LCK0iQ27u7va3NzU9vZ2PW7PA0k2CxxyzU2Qo1uG78eaAxSiiCg6UTRxHQn3bWVlRcvLy/U4fYKB58K1A9wuhYE4Du+PWNvCqRcWCzY3N2v3iAUHpzrs7OzUzhiKaNxfkup2nbbkNfB6cq+6Lz4adTAY1M9HTBXxeHZ2dmrHjk828d6g64bCksUEig6JRCKRSCQS14vZ5qYe+rYr5+ZfyW5//z+4+vz+0unqnd/2Qs2W9n8P3Sl66Nt+RZpdm6n/aq/effd79dC3vvea2n6ykOdw3FzMhaAgNWsKkOCYHJCgmeSZuFlUIDmN4gSrtzPaaTAS7GtNhBhZNgk5f/68tre3G8IFBQl/nkTF5NwgCfJYHa2164C5947irq2t1UUYl5aWNB6P9cQTT2hra0uPPfaYLl26pEuXLtXF5zY2NmpCZeLv+WXqR5ujwlFw10ww6XMU99KlS9rY2KgJbsyNZ4qFSbjnigINXQlui3UyYpoFCzDS5eGUD6adkLjTlh8j0643YJHIJNnrwPoFMTWBPyTqsY4H01xYvHBpaalBnmnjpwOEJySYwNuhIKlO+RiPx/UJBv7saDRqnKLA5833NYm2e8BuAAtyTgfwUaQeh+fW97Pg5hoFfCa9B+JJFE5BiMKN96aFEwttFi6cBlNKUb/fb7QxGo30+OOP13NhoYipIxSVdnd3Gy6eRCKRSCQSidsR1c5Ez/n2d0gL+/xoVml6jWJCInE1mAtBgQQ+pgRIB8TP1zKXm1Fhug5M3k1iae+mG0JSbcWORSH9J/sV7fBMhYjtU0xw3w3ei6Q0HmtJ8cPR3OFwWJNQHw05mUy0sbHRIE9bW1v6yEc+Uh8dafs755XEyY4Bkz6Pm8KNC+S5/Vi536KLhQqKCSTWFF34vqPdJJy9Xq9B1rkejmj7njwCkGCNiFhkcjab1fnyrolBUUM6yK1nnQ0KHjGXP+4xFhmksMJ7tKVlsL5HW80JWvs5lzwakScjcK9JzVoR/hzdMBYuvK5ee6cycC+5YCILWVKU83j8XBx1EoP3AcUYHsvpZ9XjssjlZ5kCzPb2ttbX12vniot7cv1jysTlim0m7h5Un/Jx+vBHD5VHRiYSiUTidsXVpCokEjeKuRAULgeScroVLCqQlJl8OfJrcrq7u1sLCrFIn6T6xANa4Rm5JbF3pfiYWx4FiaP6TjBSbmGCbZmUmZB1u926hgFPN3A7m5ubdZqDSd+FCxdqC78Jn/vlCC9FCzozSIopFmxvb9cRah+tSYcHiwC6qJ3nhqcqSDokJkyn07o+g8dpEsmIPVMESHSjoMBUGLpTmGri+gL+/Hg8bkTdfT3v63nhmrXVRvDcMZXDUX0TZAoCvoapEZ47kvG2Iy9ZY4Hj8RpTmPFzEetPcD0tlnje7d6I17W5TDxeCnNRXIunRTiVg/MgqSHcuFYIXQacB4/fBVO992PqDfe2+xgLeXLtEncfzj9vqPPPTzEhkUgkEolE4nKYK0EhEnK/ZphMmYjZju3z7p1TbwJql4IryEsHbgQW1YvF30gwTF7sSjBhoVWdNv/YX0kNmz1JlnRAWiwYmJy6TgMJvUUHk9BoPzd5ct2E8+fP1/UNbNOnOEBCZnJMMcWCjOfdRDUWtaPDxMQ+zkWsEcB6DVwDz6tFhVjoz2vI6LekBnlm9DvWaPB9TUxNMBnRn81mjRMHmG/vPlDwoJvETo5YKJQFI+1+YJFD2/O937wWfh6i6MP0GZNrk2aLCevr642aBdyzdnRYHKLTxE4YpyNUVVXvM55oEp05MYXGe8PrZEcPnw8/WywaybWj8OIioHYZVFVV1/Pg0afup5+Lra2ten0soPhZGAwGjZod/g7xuLh/EncZqv2f3AKJOw1H6WS51xOJRCJxHZgbQYHEMtrFSdB8Xv3q6mrjhAcXf6NrgK4A5rY7qh+P4ePfpYPjCFkp34KErfiMypPgGozsx/dNXEiI3JaJEyOzJLEuRvjEE3vH00wmE128eLEWFjY3N3X+/Pk6L91Cgu/hH+b+m8TydANG6CXVpJXRY9ZfoHDhMXo9mU7iz/vvpRwcycloP0UH7hNGmb1vpGbtAY7Za+eouoUHCzck1G0pATzK0u+zQCddB47uG6xFYeHINTKYSsC58/6k64HR9JhW4Dnh3rEbxXU5VlZWGkeeuv4FBafhcFgfQem6DibhHoNFCc+P+8d97nFTWOBrXEfWr/C13gOeTwtanuvo6LEwwYKKdFJ4j/h+bWk33Ie+nilCibsLZ378t3Tq95+td/zZ4a3uSiJxrCiV9Nzver+qzf2K50tL+oO/+ewn/Si6RCKRSNwZmBtBgbnP0tHpDY5ek3yaWNmd4Gr00sE597RlS82ceBMb2rRNJkjcTOpM8mP0nHnuvjcj2zzOUDp8NKWJOftJuzvrRlgYcVTbtRQuXbpUR2VNKqUDksaId1vtBoNEnuOigyOKJwZz5Cmk0B1CtFn5HdGmWOE5isIP4bVmfQy347GzvgYj4zGNgqcB8H2md0RngvclRZt44kRb/QCmCUSHRSS/vq/JcayfEPvJCL/3PtM7mApDQYbPCItcxroNTBHgOvmH9U/4J90CrJfgMbaJFhR0/AzyGWOtBIpInGP3lQKb+2WBzK8ftccTdz5mW1ta2JhISkEhcWfgnrcUnXj3RKqk6aMfUmWX4dJSlgpJJBKJxHVj7gSFthoHLLxI0sZUA9vYHY21pV1STfAchTX5sojgv7N2gFMb3HYk5hQTfK0rzjOqTwLvayIBsyshzkckNCT9jpyS8NmZsLW1VVez51yS5BttaRQkYTzhIObtG7FoJoUJ5sV7rJGkRdJpMYHOhDjfMTJOZ0CMhtOCbyLMe0QxIX4miiqxeKKFJu8LRuot9njM7CPdFVFQYLoMLfjuTzyG03NDFwznxH/35yw4cZwUE3wPuiDYjq+hwMT15fPM+iQU7Dz3/Fysu+D7MAXnqHQYuxw8Lu4hCn48ZcT3i/UyUkhISFIZjbX8gb1nYnS60nSQ+yJxe2FhUjR4bO//jjO/ta7q135HUlM/qGaVlj9YtHWfco8nEolE4poxF4ICbf6OnFMMMFmzmMC6Cazsb4eCK+4brEBv8SDWAiCRJmEzsTDRaisk52MK4zGWjPJToIigJb6tsJ+k2plh6zcFCI/J9nWTeKYOuD+x7WjfZ1SehM9jck59W42CGL3mvHpsXt/LgTnyjNDHPtIx4p9er1dH7/0TxQLPQZxrk0vvF4oCHntMATE41xYoGBG3lZ61B+iEcdqB182fMQF2/9wmi2xyfZgu4NdNwJ0mY9HJR4hStOCae/x+/nxcI0UdunooWPm9SM7tKIgOhrY9wXQEX+N6KJ4TP1MsxBgFJwofFM/4PRPFCbqC2pwwibsD03e8W/f/g3dLkh7/ypfqwvNucYcSiSuh2ktpMHofKfW59UdKBbOp7v2eX9Ljr36pLj5Xqg7XkL61cD2TRCKRSMwl5kZQ8C/xJDEsvuiChf6xmOBcaV7LPHyTGQsHJm8bGxs1KaN93gRkc3PzUJE9RrYlNXK1KWCYpNgmzkg57dWxqj1JlUkao6ku3MfIve9noh3TBCJxZnRYaroLYmSZNnhJtWWejhGpScakg/x+Cx2eRzo7WFvCf6+qqj5Bg0TPtR1I0iky0LlicWpra6te23gCh+fSnycx9nxSDJnNZnVRT66Rx88il657EF0R3o9MW/H+cQHB2Cf303NjgcTXeyxMNYiCB50NPurT9/JxkL7ecxQdGXYFUExgzQfOSyT2fN/7w/vT68gx0AFEB0en09Hy8rKGw2HdBtM+WOciCmIWHJkCwrQK/5tCTRZjTCQStyN65xf0tO/+nYMXplMdPki5Hed++M06/cLn6Z1f2L8pfbterL1rQR/54Pat7kYikUgkjsAVBYVSyg9I+lxJj1VV9TH7r52S9OOSni7pPZK+uKqq8/vvfaOkr5A0lfR1VVX99JXuwcgrq/TTHk4CKanOfTfBZm2FaEt3uzxKj1FNRqhNUsbj8aGccP9J8sHoO6OeJoImUYxyRlt/m5iwu7tbR1JdfE5S40hGpkAwEmwRg6kaJP0eZ1yDWG8guiTYTwoK/LyFDVvPeSQnESP8TB+I77lPJo6st+AIPEmhiSVJPddOOnBmRBt+27UuQui6CRRZvEeYMhNTSmLtADtbWDjQn+Ge43yTNFssiekMhP/N0w88L47Ue3/62eNceD/T/UFRx44bpmhYJGCqEN937YqYmsHxxufcn2cxUvaZDiOuOQWHtrQLz7XXlJ/3Ws2bqPBkfBcnjsa9v/CETr2lWU9h/Wl9ffiTblGHEncFFsZFT//JkXSVaViLo13N1tev616z0UgLox1Jt15QKFPpaT+1o4XJVJ3z23r37GplkZuL/B5OJBKJw7gah8IPSvpHkn4Yr71G0s9WVfXaUspr9v/9DaWU50v6EkkfLekBSf+llPJwVVWX9QxTUGCU1iRFOmyntxgwmUy0sLDQKNToz9FR4GtN4kh4DKZExJx7EhHpgOAZMVLsSvQeX4zkxnxxzoWJ22AwqB0XrmXgyC+ju/4cRQ+24wi9+0ei13ZfpgX4ekfL4ykK/Jyj1xRrptNpQ3hoq7/A+/O+JLisZWEHCgvz+fOROFvgiWJFLFDpOaEwYhIcj4AkvGeYhhFFBxJq3y/uYc4FhQfPsUUIuxosojGa3wbPqV0NMYWFohafOadAWEjxtVzjmJZi11CsO+K2Of98trk3PB7OhfvAYpp+DigotBVh9PijyEiRkiLIUek8c4If1E3+Lk4cjenvvV3RCX7q/HO1feb0LelP4u7A0qjSwi+8+aqvv9HMgIX1kVbec+IGW7lxLEylzi/8jqqdiebsS+sHld/DiUQi0cAVBYWqqn6+lPL08PIrJH3G/t9/SNIbJX3D/us/VlXVWNK7SynvkPRiSb98hXs0CBnzthn9NNFwvQCTxsFgoNXVVS0vL9cOBRMYt++IebTim0AwajwajSQdEGZGPaUDy7yJCaPdhMURw/eRmhbzWPHf1/R6PQ2HQw2HQy0uLjYi784nZxE99tXkmrn0Jui0kZPIt9WSiH/3OEziTXJNxhw9Z+oFSSnTMeK4WYGfpJp9cg49T6dgjYrxeKzNzc1Wx0hcP47b9/W/aYenIMI96z5vb283BIxYeDGOK0b5KT5FuM8+xcO1FlhMMzotPFf++87OTl0zgYSd6+sTVChSWLih+OGofywu6ra8F+hAoGDh16NA4+fIdSY8d0tLS/V6x3W2eMT9SXfCUcIZv0+8PhYfuG+8L+cFT8Z3ceLaMH3L23TfW251LxKJ48P07e/UfW9/563uhqT5LJuQ38OJRCJxGNdbQ+HeqqoekaSqqh4ppZzbf/1BSW/CdR/Yf+2yMFGgkMDj/0wo/Mv/9vZ2nUPe6/V04sSJ+qhIkxATgt3dXa2vrzdOdDDR7/V6DSIUiyaa9JmExKMVTR5NgvbnoyZUJrO8PpIqE7hSSuPMexI8281N1jwn/X6/rsXge5JweT6d+04niHPKScJimkA81WE2m9X2+ugIYKQ7FrWLKQxcW+brx0g7+2uC2+/3NRgMGoRvY2OjUQCRtR48ruhYYG0C3zuKRHS8eI68zi7EySi5xQf224KK/01ngD9Hkusxce1ms1m9593XtbU1DYfDxjUk1kyNcU0J71MLZV43rwmdGHTF8LnxXPpEk/iseb9wbrn3mQLBvU5xhPD+Zw0R/7jegfeK92gUNJwuRPeI18hiY/z+8ZpHF8Uc4li/ixOJRCJxzcjv4UQicVfjuIsytnmEW0XmUsqrJb1aUuPsd9cMMFmJEVVbrnd2dtTv97W8vKzl5eVGlXsTQx57x7xp591LahQ6ZA41I7zuY1uuOokRo6Im3yw46Gv897YIOB0F/X6/QWj9OkUMEz2TvTb7tnRAtExiPRe220fXBq3iURRh5DsWL3S7Hgf/7v7EHPlIOilyUHjp9XoaDAZaXFxskNxYADGmMtCeb3El5tUTFLQ8fs+Z/4x1GhzNJxmluOKijh4XI/y0+PMzfM3r5HoaLpIY953Hy8KUFC14PdOLmEbicTN9JZ7qEFMt2moiRERngtfbYkK3223sNYoldN2sr683RAC3zevcfizOGoUO7wMLIzz209ffpriu7+K+hm2XJBKJROLakd/DiUTirsD1CgofKqXcv6/E3i/psf3XPyDpIVz3FEkfbGugqqrXSXqdJPX7/Uo6IBAmNkcRO0esu92uBoNBTTJ5rjyj9SY7dBQ4auxr6UygeFFPFIi/yQgr6ts9wXtJh3O3DZOpeBQhj/Cje4E5/YyEs+I+c/I9RxQUGL1lqgXdCxQTopXc/fY1nN+2fHnPURy3+yPpENnl++6HT++wU4XEmW4Qij2+pq0AYBQx6KLwnHDuolDk4ogUbbyObZ+JBNZ70y4JjpmODc6p61f42FSLbkxvYCoFU3wsAHDeY/oKT59gPQT+0MHB5417nnudc8z9z/fcDp0ObY4N77ft7e1aKOH8cK/y8x5LFBS4FygktF0/5zjW7+K1cmoeXcaJRCIxz8jv4UQicVfjev28/17SK/f//kpJb8DrX1JK6ZVSniHpOZJ+9WoajLZnRyyZH85j4hyt7vf7dZV/Rs9Jshmd7nQ6Gg6HWllZaZDytnx/g+4EkmVG1Fns8SjySmLrtvwnCfXi4qL6/X4jlcL9YxrEZDKprfDb29tH9iFGkU2y7Vhw7QiTeIsLvo6CgaRGFNyOBxJbjiOOjTnrFCSkAzJPMaCUUotGPLqQzgyvWySlbIfzEKPZtMJTmIiuDo93a2urLtzJtBXvHc8F0wXiPogFMH0vHmNKgaCUUjsTer1ewwXh9pjiwGMdI1FmOor3NQm8++I9FfcV0wK4x+gGiG6FmMpCIk/hgO4Zr4PnfnNzU+vr63W/6JDhfqXgwXniusfvHjoT5qluwlXg2L+LE4lEInFNyO/hRCJxV+Nqjo38l9orNnOmlPIBSX9H0mslvb6U8hWS3ifpiySpqqq3lFJeL+n3JO1K+ivVVVSzLaXUooAj886Vt1XcBMKnOiwvL2tlZUWDwaAmjowGkwiRaJikO8Js67rzxhmFNskwiSfhiNFaklWT3LbIuPshqUGA/W/b5x2NjzUXTL7G47EuXrxY137wn7TRxwr9JmIktr5Wah4pyXtSbLEAYxGD8+Q8d6YT0LbvfpDY8RrDhI4uFB4LaULvezNSbnLNaDWdK+6D3SAWsFgIkKIGryeBlVSLWf1+vx67r3GND66D+8VjIj1ep3FEIm5ibYGJNRq4VhaXKEjEMXFdq6pqHIfpFAfvi+l0WotMFIl48oPHYLGCc97mOnF/+Zy7vkEsXMl96+d0a2tLm5ubjaNlo0PCYmRMZeF3Q6zTEL872Pd5wpPxXZxIJBKJo5Hfw4lEInEYV3PKw5874q2XHXH9t0n6tmvphImASYTdCSYMFAaqqqoLMDpayxQFEiwS5hglZxRXUk3USPijDZyE1QX3mG9t4k2iE+amJme+LhJx2vsjQfe/3XdX7o/Rev8wNYIpBDGVg2IF32NaRlthPJPDtlx6Ci1tZNb39D18HUUACwrSAaln3QKmwlBU8vxGCz7dFhQ8oqDgccQfj8vFGukWYaTcRJw1QEj+7bzwHHtNSNxp2Y81J/wn0z78jMT5i5/x3DDNgCKa+2JxhPs2CmBMMaGQQxcOP9+2t2K9CPfPsIBkAYtpQV77uFfjuHmNv2v4TLLPMR1onvBkfBcnEolE4mjk93AikUgcxnEXZbwuMCLJAnHSgd3Z5Mbvm9SZHJgQ0WLutmmrllRHXyk6sJif/x2t9G31BAiKBO473+O9WC+CjgWOLc6RI9M8Mi/WMGC7zrNn0cK2sUZyy7mKTod4JGQk7bTEx7x9XsN7cR4oRjDFhGkabM9/b0tdoP3eIgLJLn+4lm22+NgvHl3JeWERRM8pBRUS6DhvcT3o/OB1/jyFANZkiAIP++9nLV5jsYbiU9wj3N8UgqJQxPd8b/7J90nkKZp4Dl0PgselRkdLFNGOqoPQ5kBhigPnl59LJBKJRCKRSCQS7ZgbQcGI5NI56yZKS0tLh3LqTYYsPDg6HMmYyY8JiklYhF9jYcQYIY7W7GixZsSX4JGJJDgmQ456x9MkHM112gfTF9wnFrLkMZt0VMSosvtu90FMVWBKgNcjOiFIzqSmCBHFjhidj4KFo+ucE0bieTRhTG3gusR6CpHke44oXtHpwL3pfrtfTkmx84C1JHiftjQLEvy4p7iHohDGWgt05Ewmkzptx3vAIsflRAHPE90tTHGIwgyj/4z0uw0Wx+QzEYUZ9sFj53PjtZLUEBO4tzgnFK/ikaa+H+eWqRQWf9qKZ/ozMQUlkUgkEolEIpFIHGAuBAWTsoWFhYbFnUTNqQDLy8saDofq9/t19J3igK3ZRxXo29nZ0ebmpjY2NuoIfySeOzs7dR0HuhMk1YTS9RZiCoOFBLoq/Dnb43u93qE8b79uour+mDi6b5wTt+s23C5z4knGfE8jCgLuhxGFAQsYTpNgpJcgYYxpICbmEbSwewxe3zYyHgsWRmJJwSYKOzx607U7aNePpDf2yek4nl/X66CYwM9HYh/JK4m7/00Rh4KQX5NU15LwPuMxo0yBoUDQdmoKXSe+P/tJ14xriXiu2wpkck09fxS9LFLFfe514r63yGFnElM0vEf9zHisfDai6ODnwn2mmBbdM17HRCKRSCQSiUQi0Y65EBRMFkk0LBA4Z7rf79eFGofDYeuxidIBMSeRYrFBR/dZkyGSFEeg6RSYTqd1//wZWrA7nU49DpI0RprpvmBUnG0wgsqaDbEuhHRAdpji4FQJVsyPx/IZjJK3pS94Xhz9jvc1OYt58xQMSGD9mTanQEzDiM4DRpe93hYb7DKgoMAx+k//nfsspgH4XnGuoqXezgCeVEHyydx8j4VpBnQ8kPjSDcB13N3dbTgCvI8pBLWRX44jFunkKSisHcLngWIHnQmxLkS8H+ebYoKFCQofUczgiQ2eJ4op3AvRcRHraHgeeYpDPAKT/fVnjhLLEolEIpFIJBKJxAHmQlAwSLRZQd6RZIsKvV6vJromRrbK93o9dbvdRpTThI3R5BgdjpFlRvvZP9ZRMFlxv0kgI2ExmKdNO3XMKTfRYntMK4iEypFf3yOmGpgAsj/+e6whwL7GqHPMjY/1Bnwft++Itq93AUO3xUi1r+HfI1GnJd/3YwQ6uh+inZ0iBotNkqgyrcD3ZB9oxefJGhQiuFZxzknYfR+uDSP7FJU4Ht+fYkgkx1Eg8P5likok6L42pj34vbYjFmPBTY4xkvtYxJMOB6aHsF/RwdEmMrU9V+4vPxedKJwT9zOmwCQSiUQikUgkEol2zIWgEMkho4J2C0R3gp0JLiRH0cFkx22baJgItlnTSdR5bKPULPzHvkU7tQUO5pPzWhOamNdNImxiRRHBpJJuADoe+GPXhvvB90hOLRSQgNP67T/9flskmHNBtwPnxZFoWtpjjQTuAf/ZVnjR7zOf3nsmElV+jkQ3Elta9yOpjvtTOpyKQ+t9dAgcRdhJuDmHMU2DkXo6VRxl95zT6cD97jY5B2yDa2ZQNGNNDZJ7t+c1jbUjYjvuh+ecqSBxnG6H6xTXgYKB15nij9+j4yM+Q1HY8ToxdSKufSKRSCQSiUQikWhiLgQFqVl13/+2RdpFGJeXl7W8vKzpdKr19fXautztdrW6utrIhzfZM/na3t7WaDTSeDyuyRjJynQ6rQmMazSQcJCESGoQJZN132MymbQSad/HNn1JdVoFr3NqhlMmTARZlNAwYbIoYhu7r2OqQ9sJCbTas48klLTKk7i1jU1SbWl3Tj8LQ3reTd6Wlpbqoy+j24HCBsfgcXl/0N3BqHLsH0mq0x7cFzonSG6jM8Tr7NoNFk0oPnkNIvH1mKLYZOGGJN1pP9zHFJj4zLAmAtuIjh+mkUSRoM01Q/cDn00KdEzviYj3icIZBTiuv/cFaybEH/evzUXANBsKbH4+mNLg1CfvDT+PXL9EIpFIJBKJRCLRjrkRFJxeEPOte72eBoNBTU4tJmxtbdVEbGVlpRYTojvBxGVra0ubm5va2trSdDpVr9err+ExiDGKSkJDYsyaD0tLS9re3q4JlEkuI7iGyeLu7q4Gg8Ehh4RJ42g0argZGM3mfdqKzfn9Xq/XEEBiikWMIPN9k96YQkDixznxHMWaCSTmThOhq4CE0vNEZ4H/JIm0e4SkMbolojDhMZKAM0odSa3rVXicJphMP+CJGl7DNlLeFpV3f9gXilc81pSvcy7ch1jPgEIRI/OcAzpDGNXn+sfUgvgcULyiSHJUSkqco7aUCQs0FB7i2nLuoiMhCiRxTrhW/rGgxGNWjzoBJpFIJBKJRCKRSBxgLgQFkgGpaYk3QbDzYDQaaXNzU+PxuFHkLRI2EhULCi6ix3vR1h2jqJIaxMfkmBFiSYdIptsfjUYNckVbfbRy02ZOcktnAIki78M0hRjljyARi+TM96EowXtLB/nt7HNb1Jvt8T48hYJR7lgvgnuDzhDWPuDcRVHB78Vxc964vhyTCSXnsY2sR4eA22tLcXAbsQAi5433cR8I1kKIey26MZji4HHFehNRpIhugDj/3GPxdIi2aH6bC8LPG9vitRYTLGC0iUttaS1M3YiCIvcIxRcKIRTm2CfPUyKRSCQSiUQikTiMuRAUpGZ0lKcSMDrqiOj6+rokNcgRo8yOLvrvFiFcb8GE1MID+xCt6EedVx+jzrTAMy2ApIkF/xj9JyFmRJ/kxvcxWMvAxIh9jOQz2sTdNx6HKKlxkkSM/rf9PRLJSLKZW28BiOkSrGnBOWhzFSwsLNRHb3KNSBA5NyShTHegABAFKK43P0+nAMcZi/5xfUhyuRe8f+LnOC+MnlM0iM9J2x5k3QCKBbHWhPvEuea8RjHH94nuhDayH//0Z9vcGH4WLChEYSMKLlzf2M828h+dFk5zoNOoTcTwvEdhJ5FIJBKJRCKRSOxhLgQFkg67EUw+TRKcAuDK+j7WsdvtSlKdcmC7uKPf29vbunjxYu1MsLWZ5Dhavk1aGD2P0UzXQJBUv89xuJaCySydCU7lMOF2u3RDkOCQLPsUCxemtHjCaziXdDmwryafJNk+HpIRcEZ4iUj+TehIlN0f3sd9cnFDSbXNnIKKXzeY4x7HEo8dZFQ7pgh4XEx1GI/H9T7wWNtSGJi+wB/m8kfh5qi5ivuOKRbsp+8R0yicbmNRyZ+Pln/vrU6no+Xl5bqt0Wikra2t+jM+DpX3iLU1mO7AmhgUJHi9Ed0BdIP49VhfIdaKiCKcr/HzxTmmAOH3uWf4WR8z62eRgpz3bSKRSCQSiUQikWjHXPy2HEmII6eTyaQmEEtLS41ccJ5l73oKJDe7u7va2NjQxsaGtre3NZ1O69MiLBYwisojF3kUpftyVGTYp00YTFlw2yZn7jNJfLT4e6y+B6OjFBlMhJnrHW3/s9msFmWqau+oQdZm6PV6DYJmAeUoYmiQDEZCySh7HI/vE4kz7x3FiU6nU9eKcJ8cYSbpjMIBCaXb5FrSbeL9ElNl/DkKIXyNkf4ogrB97jMLBBa13Ceus/djTBWw0LW4uFiTYDos2p4jiwU+BtVCDvdBJODuA+eTAgVTJS6HttQJ7h3WL+BRlFLTpcSioNw/UZiIIgIdJG1CRnRfcJyXczwkEolEIpFIJBKJPcyFoCA1iTft9JH4SWpU1Xeuux0CJmzb29v1qQs+VcGRfUeESXaM6FqIfTNimgIR+8tj/Uzw2sgM+886Dv43ySWt8Ze7N+eQ17MOgUktiyLydAiOPaY90E7PqD9FgTjHRIwKe/1Z6d/R89lsVp8MEJ0T0f4eySPH4Wg0x+M5ZfS6zfJPlwLHS8IahQ3+MO0gziNdDxa4YqoF90gsZsm+0k3jeZxOp7WoNB6PD7ks2Jc2McF/Uny5HI5KSfDrbWkj0oHTgc8C1zU6R2JfOabosGhbnyiOWYhpc+YkEolEIpFIJBKJA8yNoCAdEIkYcZSahRoddWfUdmdnp1F130UYJ5OJFhYWGqkCjHA6AsrXaBWPQoLUtLDTlk0RhJFWtkGSFCO8sdCfC+lJaoyXUW2mU7Cwodtzf1jkz6kDJuqMcrOPsQ6ApENEzuIDazp4TdqEkUjQYh69Uw08D47UW0iIxD2SRFrgGU2PTgKSx7Yfoy09geSYrge22bZvSPCjS4JrbwEg9pUk2+vNlBmKAibFvJ/riVhks0OFgkJ8NuKYmDIT7xvnK/aZ609nguE1jCdDxPYvJybE/RvdCawZ4XYp7LCtKzkwEolEIpFIJBKJux1zIShEguoaCIuLi7V4wKJ6tov71IadnZ06naDT6dSnOmxvb2tnZ6cmzyYwJEMmZ23Wc0fw2+oTUDQwMYkRY45tOp3Wx0kaJF0kz5E0+fNVVdVFDH38JO3gjuBLzRMoGFHmPJpkxmiza1OQuLIfTjlwlJlOBs+fx+OxMT3AUX2ugz/PYwPdT9ayoE3f/Ynk1WOOhD8KHEzPaItec09GeI+SBEcngj/rPnr/WcCK+9rvW2yKIgjFpuhKiC4Sqels2dnZ0ebmZp3+QwHH17DAotuJKQCsddFG9uPejWvvebCoxeeIAgjXis4EFvH0PHDdvOe4xt4n8fQO7iG2Efd0IpFIJBKJRCKRaMdcCAomQyZJzuN3BLXf76vX6zVyrS0YjEajmhj5aMnJZKLxeNwgKr1er267jRBFMmXCzVQBRoBp6zdYD4FH8xkkyTEdwPeKFeVZk8GRZbfpOaFIwTbt3DAhl1ST9TgXHrPz7Zlm4LF57G6fBNlzEgUCppmQwDuX3yKHr7Pd3/03iYxpEVEM4Bp4L8V1jqQ7Ev7oTmCbtO5HAsp9QJGAp42YQLOWhPemx8/aHOyXhZt4AkJ02TD67nX0HEYBLKYbtAknMaWEQg2viQ4H96ntxAauc5sox0KUnH/XKplOpw1HEeeca8HnkuOne6ctHcJt+c9Op6Pt7e1DeyKRSCQSiUQikUjMiaAgNY+jcwFFkyKSEJPura2tOlrZVqzQlfvtcpAOovVtUfzoCKBFuo1oMoVBah63KB24G3h9JEttxIcklZZ8k3ATuKWlJfX7/TrXnpFakm4SqUju6UzwXETCS3eC+xLz3k0Oo+U81opoGwtFCVr+3UeSd7o9ogDQRiCjUMK6EbHaf1z/SDb5d7o5KDJxDOwHxRfvU89TdKfwcxwDiS7XJxJ2pgoxhYfFOyls2Q1xVNoHBQUKRkwn8PsxxSOC43SfLPjEmgdsl6kdscgi1yHOEQUjioLsJ9th/YooQCUSiUQikUgkEonDuOJvy6WUHyilPFZK+V289u2llLeWUn67lPL/lVJO4r1vLKW8o5TytlLKn7rajlgI2N7erkWCTqfTcCb4Olep90kMFBuiO4ER9MlkUh87yZz1NhIT6xVEK3xbsTiDpBLzcqgAXrRTR5LL+8cjGH1iBQlaJKCRKEdSy9x9EroYjWZUl7Z0p0bE+YtODPaDRNLXWuigmCCp0QcS5Tayfbk0CBZ3bBNajkp34Jj4bwpQFIA4brbvPtB9wAi4j0DlfMXikLGuRdw7URDxPLTVPGBaSRQf2uaE88WxxmKKR80d72kBjOJhm5DjvrjvTNNoa7+tT2zDY4pzyL3N+hXcL/OCJ+u7OJFIJBLtyO/hRCKROIyr+W35ByV9ZnjtP0v6mKqqPlbS2yV9oySVUp4v6UskffT+Z763lLKoK6Ds52aPRiNtbW1paWlJw+FQq6urGg6HNWnlNSZH3W5XKysrtb1/NBppc3OzEfl0bQH/+Ng9k3Haz90fOyGYu0+Rg+TbYojvSWJo8KjINkLIe1FEiC4CuzaWl5fV7/frtAq6F9w3t7GwsFAfl8n3WZzRbUs6RORIgJnzb6t+FBTcNh0BTl3Y3Nysrevsg50oTMlgVNyIwolJOY8d5PGT7iNPi4hHREbi3lYMkONzP0i8Y32Dra2tRj0J718LWl5H70OmB5AEl/3UAadEMC0iihuxr3QbHCX2sE90fvh6iglxXem2ofMkii0WTYbDYX1PCxwxfYP/9nPl/c+6Hy7S6TG1pXA4/cnXcdyeI4pqUcC0uDBH+EHd5O/iRCKRSFwWP6j8Hk4kEokGrpjyUFXVz5dSnh5e+xn8802SvnD/76+Q9GNVVY0lvbuU8g5JL5b0y5e7x2w20+bmpqqqUqfT0XA41IkTJ7S8vFyTdx4XOJvN6gi9UyN8HN7W1lbDtSAduBqkg3oK3W73kB2apyTEYnEmrrSlswhjjH6ORqOG5Z6RVRIk1kewIEGRgG1IqutJDAYDdTodbWxs1Ne1kR9f5yKL8ZhB/ilJo9Go4QaIkXPWsYgFE/0+i2ByjkwEbV3vdru1KEL3BNdaUsOWv7//GhF+7yGPhcTXJJFjN4GOtRFocefrXo8oIvj6Xq/XIMsuBkrBhG2SsDIFw/Pj8ZPocpxtxJ12fv5QjLGo4nm2W4TrRyHAggaj/xQR/NnoFOBcUsTy3MQioBRxmIrjfWoxpZTSKMoYC5lGccP1Q6IjIz7bnt84xigK3mo8Gd/FiUQikTga+T2cSCQSh3EcNRS+XNKP7//9Qe19mRof2H/tsiAh6fV6OnnypAaDQR39JolyUTYT5U6nUzsQojWfFnsSEBaFoxWfOEpMMMmI6QQxcszXY7G9NvLDWgWcF9q8aY9fXFysSROFB7Ybo8lHiRQWUExoScrpaCBJZHqBQWIoHdRfiLZ7ppswlz/a7y08cN7c70hCvX/cjp0UrPof5zqKB20kknuJ60IHDKP9Hicj5r63+8j5Y60CCmZRFPF6R/cC+8R59f5me3ReWByJKQ7RldEmUnD/+5r4J6/nOHmfo+aCrpGYNhOfS+9hug4oEjKlht8JvK/nl2PjOt9GuOHv4kQikUjcEPJ7OJFI3HW4IUGhlPK/StqV9KN+qeWy1hBfKeXVkl4tqY6+WiiwnZ/RW0Y1aU22eyEeQWhiYdDC3FaY0NeSTJDA0pIeiZh0QHBIeqIVW1JNkqOg4L6b6Pl9Eng7K1j0jwJBLJRYVVXj+EemCrC2hPvsyDj7HK3/JImMbJuw0o3hsUQnRxQT6CZh3QiKLyShsRYEiazfZ3/clzhfHpuJp9uIhJdpMW1rTgdFLDbJPcN7sq02V0zcrx5rTNHwnnHbtP2zRkGMuvt+sQ4E/4yuGwowsYBo/DMKNHHefF28hv3yeLh+FH+4b+jU8DNtx1N0J3ANKLSwHYobtwOO67u4r+FN6V8ikUjc6cjv4UQicbfiugWFUsorJX2upJdVB+HbD0h6CJc9RdIH2z5fVdXrJL1OkgaDQbW0tKSVlRWdPn1ay8vLjdMLWKGexxqaZFFMYP60SQILCDpaaeu06y4wAm3yS0JNsYApCiSxsYghiY8JDNuMpxWYmPo9t+0xMJJq54U/W/Zz7SNIlFgp32KCCarfM4lz4ccYsY4Rddr4JdW1GngNRQUTRRI9p5+4P1EgiYScRLON1FJwYKoD3QlcB/cJe7NxQkWbAMCc+06n0xAqKFpxTHR7cJxemygUsG6C7fu+xnvFc0LHhEUGtsfnJf7QMdO2fzzfdGGwQCP3ekx78PjokogFSz1HrOPg+WWKwu7ubqON6GpxG65d4X3G54/9bBMBvTfcZ6dKzTOO87t4rZyanxyPRCKRuE2Q38OJROJuxnUJCqWUz5T0DZL+aFVVW3jr30v6f0sp3ynpAUnPkfSrV9PmyZMndeLECa2urjYqwZv0S2pEkZknbZLICKd0YGVmrQW6E0w+2uzsTq0wmYppASRqFD9I8GP03X13xJvpCouLi42IsQWCaAs3+XTNCEfX2yzbJPa+H0kfTyMwSVxYWKhrGzidJNq+Sax9HwsnFgf4GTsfHDG2IMTaAJw/Wtn9Oq3tnU6nNeXE75PIm6BGwk+hhWvDeY/7wddaRLBjhDAR9mcpTtCFQVcEx+K5jE4UFrL0vqZLhvf19XTD0MnAvvr+HG9M2aFLgyIFBR8KIX6Na25iz1oNFJoowrnmBfcOn502sYYum9lsVq/PYDBoPBdxHjgmj5fPhL975hU347s4kUgkEleP/B5OJBJ3O64oKJRS/qWkz5B0ppTyAUl/R3sVbHuS/vM+EXlTVVVfVVXVW0opr5f0e9qzff2Vqqqu6BleXFzU8vKyBoOB+v2+pAPreyT8JkEmDrH2gEmGSRcJrInIUScoMEfdZMnRSkdPWTDQ7UpqjYDHAngk+JFMmfBLahDqKAqYiFmMiCSL1/hzvI+JXVtdBYsvLOAYU0e4Bp4f/z26OSKRJ7mllT2S/8vtE7oKojuBe4AWeN4zWvclHXIjkPC2RfoXFxdrMcFOD/fPogDdB222/EjC/XkSde6VmH7gPce5j9e7Hc5PdDAwPcHPgD/f1hfejxF+9pHrwOeA8+v3Lc55/PF4zVgzIbbv67jHWciSQhv7yBQTOm143yvtxycbT8Z3cSKRSCSORn4PJxKJxGFczSkPf67l5e+/zPXfJunbrqUTtnc7Msz8ZZMegkJAJI+0hPs4wjYLeiyAZ/g1VuCPNQYsONBKTeIsHRQOZNt8n6IAhYy2z9D2zYi7I/eRaPGzJFok1rR1s8+MjJMoknx7zXhP2u1ZB4FkzcJHG0klyWSf+O+YfuDXCO4HElJ+lqRWataeIEklsSShjbU43Ebsq8kr22R7RLThx3WMggLdGTG9gPNNEs/XoruE7bod9qUtFSU6Z9we55aiGtfTc8E24zMXx81UCe5JPhsUMfhsxOc8fg9wL1H0mSc8Gd/FiUQikTga+T2cSCQSh3EcpzzcMGgzJzEgmaDI4CP5/MP0BVfY73a7Gg6HGg6HNbGIufSR/JEUxWKGFhP8mcFgUNujozMhig0UAvz6zs5OXcchnvLQVoNgYWGhzueuqkrj8bi+njURosAS6xw4qr64uFi7PDzPfo/3JtmKhI+Elf223d01HvweXSIGSaH7wpQJCifM43efOMceJ63wkRTy3hQDGGnncYieG6a/xNMjpAOhJeb6R3GDe5sOAZ4iYkRRxvfw/MY54H6OKSDxlAOmT3A/eK0sGEShjkKZ9z/ngLUdnL4QnwPPr59j98EpNkxjoCvEa09xwOvFOhV2J7hdOifid4VdQdw3FBqZepNIJBKJRCKRSCSamKvflkl2TN6YKx6j7bR+myCZFK+srKjX6zUszwaLEEoHRNh/jxH6aLtuI4tS8/g5Fmk0SXExSJIqChKz2ayRk88IrkkViXK/36/H6P6SWBMmbnYgOI3DFnGLDZIaxf8oFpB4e70YfWYBRs+dRRReE4mx/2RhQs+Z1LTCR/cC0zy4HrTs04HAz/n9paWlVjHB9zYx9Ty6nsBRe7itWKDFI7fp9/7/7Z1dqF1HFcd/K6k3JFo/aquEtjaJVKFPNogv2r4o2gRt/ABp8SGgIIKCRQQjAelrFX21KBaLVFtEi3kRKiL65EcbkzYljUlqxNiYaH1oUe+9xowPe+b4P3P3yc0l3R/3nv8PDnefOfvsWbNmZt2z1l4zW7M2dBzq3fMSoNA62rIT9L2O9+Jkb9q0abKESB1vHWv1Hhva13rHXwM7WqaylE09S5/oxpLFYdeNUktfahBM97vQpRzlfX093dtC9+dQfS4tLU3NP83aqDMmFhYWRr+PgjHGGGOMMUMxioCCZhsUR0azBtRRneXI6V3YrVu3rngShAYk6o3Y9E51cUrg/461Oh3l/PpuZp1irXIXJ2VxcXGF3EWm5eXlieOk9Wiafe041o5yqUfbqo61rvnXJRbaNl0KovUUB6tG21d/X4Mz6sDD9GM9VZdLS0srskXU2VOHr14eoedpir/2id751nJdflLQ1HndZ6GNcs3a8a+DFLr8QPWqTnP5rupSdV+P21pPtf40EKR166NQS3vb2qjLGzQYpFkWGlCol7/oXgVl3pUxXQJcOqc0o6bef6LorLSlPn/btm2TDVh1r4R6mUWtQ13aU+aKBpKMMcYYY4wxKxnFr2X9ca9OnjqH9TKIQvmOPhFBHQp1fDQooU5XQZcNlLv3uslhfedZr1HvDaB3Wss1dKmGOsTFkS3LLDQroLSj3itBAzCqR8120D0ZdBmGOlSqyzq7QB3Dtru4pW11IKRt7blmBRT91HLX2QHluvX6e61L+1j7pXxWHGftB9Wf9pXe6dYlGhqUUF2p/JqJoY50/SQRdbrLmCnjRsdanUXT5uTX12vrW51PbfsgaH9pG+vAhC49mKXLOoCj7Sh/VX59QsqsYI8GYLSd2gcaIClPJ6mzdjSoUC+F0fFc9KCbOhpjjDHGGGPaGUVAoVCv29Y19boeXx0LdTqLA6h3XjUgoen06hAWJ0adJXXM1fHSOossCwsLk+9r6nw5vnjxIouLi1N3UoGJE10czvqOuDqcRS9tmRLqGNfZCTC9ZEAdN73brN+r+6M4VeWzOtijuqw/L3KVPtK75eV6ly5dYnl5eZIRojqulyTU40V1WoI2qsuSlVGnrReHepbzXo+lerlF3c460ANM7ZNR2q9LeYrDWmeZlEeTFpnrDT4126DUWT81QzN9Sh/ocgcNPtTBHg0maBBvy5YtU5k3wEQ/pS90rGqQRvtPAz3l0aW6tKht087ynRJ40XaW65RNWMujS3V+qQz1XhYaXNC+1wwJY4wxxhhjzEqi7W5y70JE/A34J/D3gUW53jJYBstgGSpuSSndMFDdvRIRLwMnBhZj3sebZbAMlmEl82SH/ZvYMlgGyzBWGVpt8SgCCgAR8WRK6Z2WwTJYBsswRhnmgTHo2TJYBstgGeadMejaMlgGy2AZrhTn8xpjjDHGGGOMMWbNOKBgjDHGGGOMMcaYNTOmgMK3hhYAy1CwDA2WocEyzA9j0LNlaLAMDZahwTLMF2PQtWVosAwNlqHBMrQwmj0UjDHGGGOMMcYYs34YU4aCMcYYY4wxxhhj1gmDBxQi4q6IOBERpyLiQE913hwRv4iI4xHxbER8PpffHxF/iYgj+bW3YznORMQzua4nc9l1EfGziDiZ/76hw/rfLm09EhEvRcR9XeshIh6KiAsRcUzKZrY7Ir6cx8eJiPhAhzJ8LSKei4inI+LxiHh9Lt8REf8WfTzYoQwzdd+jHh6T+s9ExJFc3pUeZs3HXsfEvGNbbFucy2yLmT9bbDs8DmyHbYdzme0w82eH83XXpy1OKQ32AjYDp4FdwAJwFLith3q3A7vz8bXAH4DbgPuBL/bY/jPA9VXZV4ED+fgA8ECPffFX4Jau9QDcCewGjq3W7twvR4EtwM48XjZ3JMP7gWvy8QMiww49r2M9tOq+Tz1Un38d+ErHepg1H3sdE/P8si22LV6t3bbFk/INaYtth4d/2Q7bDq/WbtvhSfmGtMP5uuvSFg+dofAu4FRK6fmU0jLwKLCv60pTSudSSofz8cvAceDGruu9QvYBD+fjh4EP91Tve4HTKaU/dV1RSulXwD+q4lnt3gc8mlJaSin9EThFM25ecRlSSk+klC7mt78GbrraetYqw2XoTQ+FiAjg48APrraeVWSYNR97HRNzjm3xSmyLbYvb2JC22HZ4FNgOr8R22Ha4jQ1ph7MM69IWDx1QuBH4s7w/S89GLCJ2ALcDv8lFn8vpPQ91mVqVScATEfFURHw6l705pXQOmkEFvKljGQr3MD1J+tQDzG73UGPkk8BP5f3OiPh9RPwyIu7ouO423Q+hhzuA8ymlk1LWqR6q+Ti2MbGRGVyntsUTbIunsS3u2RbbDg/G4Dq1HZ5gOzyN7bB/E1+WoQMK0VLW22MnIuI1wI+A+1JKLwHfBN4KvAM4R5Pa0iXvTintBvYAn42IOzuur5WIWADuBn6Yi/rWw+XofYxExEHgIvBILjoHvCWldDvwBeD7EfHajqqfpfsh5sq9TP9D7VQPLfNx5qktZX5czdVhW2xbvBq2xVmslnM3jC22HR4U22Hb4dWwHc5itZy7YewwrD9bPHRA4Sxws7y/CXihj4oj4lU0HfVISunHACml8yml/6aULgHfpuOUkZTSC/nvBeDxXN/5iNieZdwOXOhShswe4HBK6XyWp1c9ZGa1u9cxEhH7gQ8Cn0ipWZyU04hezMdP0axPelsX9V9G933r4Rrgo8BjIltnemibj4xkTMwJtsXYFmdGMe9sixv6tMW2w4NjO4ztcGYU8852uMG/iVdn6IDC74BbI2JnjgjeAxzqutK8DuY7wPGU0jekfLuc9hHgWP3dV1CGV0fEteWYZvOTYzTt359P2w/8pCsZhKmoW596EGa1+xBwT0RsiYidwK3Ab7sQICLuAr4E3J1S+peU3xARm/PxrizD8x3JMEv3vekh8z7guZTSWZGtEz3Mmo+MYEzMEbbF2BZnBp93tsVT9GKLbYdHge0wtsOZweed7fAU/k28GqnnXSDrF7CXZgfL08DBnup8D006yNPAkfzaC3wPeCaXHwK2dyjDLppdOY8Cz5a2A28Efg6czH+v61gX24AXgddJWad6oDHU54D/0ETWPnW5dgMH8/g4AezpUIZTNOuQyph4MJ/7sdxHR4HDwIc6lGGm7vvSQy7/LvCZ6tyu9DBrPvY6Jub9ZVtsW2xbPL+22HZ4HC/bYdth2+H5tcP5uuvSFkcWxBhjjDHGGGOMMeaKGXrJgzHGGGOMMcYYY9YhDigYY4wxxhhjjDFmzTigYIwxxhhjjDHGmDXjgIIxxhhjjDHGGGPWjAMKxhhjjDHGGGOMWTMOKBhjjDHGGGOMMWbNOKBgjDHGGGOMMcaYNeOAgjHGGGOMMcYYY9bM/wCKsjnRy5M8xwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 322885 19481\n", + " Min thresh = 1000\n", + " Not Sliding\n", + "\n", + "\n", + "026ns_image_1087766719219_clean_ClassN_64-192.roi.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADYCAYAAABberBAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADItklEQVR4nO39eZila1rWid7vWrHmiMzcu2rXQFVBVWmVTLaIHkBolauhFVApUaFx6EMjdmm37di2FHhOO1yXiq3t1B7bLo8KrSDg1GCrrYjSdh8BGQQZCwqoooraVbumvTMj1hgR3/kj4vfG/T35RY4RGSszn/u61hURa33DO60v876f+3ne0jSNEolEIpFIJBKJRCKRSCTuB72rbkAikUgkEolEIpFIJBKJxw8pKCQSiUQikUgkEolEIpG4b6SgkEgkEolEIpFIJBKJROK+kYJCIpFIJBKJRCKRSCQSiftGCgqJRCKRSCQSiUQikUgk7hspKCQSiUQikUgkEolEIpG4b6SgkHjkKKX8SCnls6+6HYlEIpE4QynlXaWUz73HY5tSys9/wPs88LmJRCKRSCS2CykoJB45mqb5pKZpvuOq23E3lFKeK6V8QynlxVLKR0spX3/VbUokEoknHaWUzy2lfH8p5aCU8p5SypdcdZsSiURim3DRwuy9XC//X5w4DztX3YBEYovxDyV9j6SPkzSX9MlX25xEIpF4slFK+URJ3yDpyyR9m6Trkm5cZZsSiUQiISn/X5w4B+lQSDxyuK22lPLHSil/r5Tyd0opt0opP1RKeXMp5atKKS+cRqd+lZ375aWUHzs99qdLKb8zXPsPl1KeL6W8r5TyO1xxLaWMSil/rpTys6WUD5RS/lopZXJOG3+VpNdJ+u+apnmpaZpN0zT//vJGJZFIJLYHpZRPK6V852kk6vlSyl8ppQzDYV9w+hz+UCnlz5ZSenb+bz99Vn+0lPLPSykfd4+3/n9J+l+apvlnTdMcNk3z4aZpfurCOpZIJBJbglLKJ5RSvuP0OfsjpZQvtM++o5TyO+zv/6KU8n+f/v5vTt/+wVLKfinlPyulfHYp5b2llK8+fSa/q5TyWx/0eh1tzf8XJ85FCgqJbcCvk/S3JT0j6d9L+uc6WZuvkfQnJP0vduwLkn6tpGuSvlzSXyilfKoklVI+T9IflPS5kn6+pF8Z7vNnJL1Z0qecfv4aSf/9OW36DEnvkPR1pZQPl1K+p5QSr5dIJBJPKo4k/QFJL5f0yyR9jqT/OhzzRZJ+qaRPlfQWSb9dkkopv17SV0v6DZKek/R/Sfq793jfzzi9xg+dChl/p5Ty7EP1JJFIJLYMpZSBpH8s6V9IeoWk3yPp60spv+Bu5zZN8ytOf/1FTdPsNk3zTad/v0onz+zX6MTl9faHvJ4j/1+cOBcpKCS2Af9X0zT/vGmaQ0l/Tyf/Af2apmk2kr5R0utLKTckqWmaf9I0zU81J/g/dfIg/uWn1/kSSX+raZofaZpmLumPc4NSSpH0X0r6A03TfKRpmluS/pSkLz2nTa+V9Ksk/WudPKD/R0nfUkp5+YX2PJFIJLYQTdN8X9M033XqEniXToTd20Ta0+fpz0r6i5J+8+n7v1PSn26a5sdOn+t/StKn3KNL4bWS/nNJv1HSmyRNJP1PD92hRCKR2C58hqRdnfx/d900zb+S9L/r7Dn6oPh/N02zOv0/8j/Ryf+NLwL5/+LEuUhBIbEN+ID9vpD0oaZpjuxv6eShq1LK55dSvquU8pFSyouSvkAnaqwkfYyk99i1/PfnJE0lfd+ptexFSf/H6ftdWEh6V9M0f+PU1vWNp9f7rAfpYCKRSDxOOE09+99LKe8vpdzUiSgQ/+Poz9h36+QZLJ3k1/4le9Z+RFLRSdTsbljoRBj+iaZp9k/v+wUP0ZVEIpHYRnyMpPc0TXNs771b9/acPA8fbZrmIFzvY847+D6R/y9OnIsUFBKPDUopI0n/QNKfk/TKpmluSPqnOvmPqiQ9rxMFFbzOfv+QTh6Gn9Q0zY3T1/WmaXbPud1/kNRcZPsTiUTiMcL/LOnHJb2paZprOklhKOEYf8Z+rKT3nf7+Hkm/0561N5qmmTRN82/v4b757E0kEk8D3ifpdV57RifP0Z87/f1AJ4Ew8Kp7uOYzpZRZuB7P5Qe5niOfzYlzkYJC4nHCUNJI0gclHZZSPl8n9ivwzZK+/LTIzVRWH+FUAf7rOqm58ApJKqW8ppTyq8+51z/SyYP5y0op/VLKb9KJavz/u/BeJRKJxPZhT9JNSfullI+X9F91HPPflVKeKaW8TtLvk0Te7V+T9FWllE+SpFLK9VLKF9/jff+WTp7jbzx9jn+lTmzAiUQi8SThu3VC8v9wKWVQSvlsndQU+8bTz39A0m8opUxPi4t/RTj/A5Le2HHdP15KGZZSfrlOao79vYe8Hsj/FyfORQoKiccGp3UPfq9OhIOPSvotkr7VPv9nkv6yTvK73inpO08/Wp3+/MrT97/r1ML7LyV1FqtpmuYjkr5Q0h+S9JKkt0l6S9M0H7rYXiUSicRW4g/p5Bl7SydibFeRrm+R9H06+Y/qP5H0NySpaZp/pJMiuN94+qz9YUmffy83bZrmb0r6X3Xyn+136+T5/Xsfoh+JRCKxdWiaZq2T/2d+vk5ctH9V0v+zaZofPz3kL0ha64Tof52krw+X+GM6KZD4YimFOgnv18n/j993evzvesjreXvz/8WJc1GaJt0riScTpZRP0Ml/ZEenhcESiUQikUgkEoknCqcOh7/TNM1r73JoInHhSIdC4olCKeWLTq1ez+gkQvaPU0xIJBKJRCKRSCQSiYtHCgqJJw2/Uyc1Fn5KJ/uod+X9JhKJRCKRSCQSiUTiIXFpgkIp5fNKKe8opbyzlPK2y7pPIuFomubzTndveLZpmi9qmub5q25TInFVyOdwIpFIXD3yWZy4bDRN8x2Z7pC4KlxKDYVSSl/ST0j6TyW9V9L3SPrNTdP86IXfLJFIJBK3IZ/DiUQicfXIZ3EikXjScVkOhU+T9M6maX76tIrpN0p6yyXdK5FIJBK3I5/DiUQicfXIZ3EikXiisXNJ132NpPfY3++V9OnnHTyZTJpr167Vv5umkTsnSin1JUlHR0c6Pj4+9xiO82P8M67P503TqNfrqdfr3XZM0zQ6OjrS3ZwcXffhbz/m+Pi41S7uSXv9c9rU6/XU7/dbffL7Ofwcv+bR0VEdN87r9/vq9/utaxweHrbaUEppXc/Hnmv0er3WePo5pZRWG+KcdfXBxzN+7vfwz3xcGDvawTHexnht3otj69fw68e1xfjEtnfhvL55GyJ8TcXvx2WBPif0oaZpnrvqRjwA7us5LEn93Vnzsa8vemG1p/47V3c6NJFIJB4ZljrQulnd/p+FxwP39SzO53AikdhW3NJHO/9PfFmCQtdDv8VMSilvlfRWSdrb29MXf/EXq5Si0Wgk6YTYHh4e6ujoSIPBQMPhUDs7O+r1eprP59rf39d6vdbh4aF2dnbUNI36/b4Gg0H9e71ea7PZqGkajcdjDQaDSoLX67Xm87lWq5U2m42Oj481mUw0Ho81mUzU7/e12Wy0Wq20WCy0XC61Wq0qMZdUCXmv19Nms9HR0ZF2dnZabY0Ef71ea7lc6uDgQMvlUoPBoLZrs9lovV5rtVrVz6bTqabTqXZ3dzUej7Ver+sxx8fHtxHr6XRa+zAajXR4eFjv98ILL+jmzZs6PDzZ9GB3d1fXrl3TeDzWcDjUYDDQYrHQ/v6+9vf3devWrTong8FA4/FY+/v7Wi6XdW5ms5mm06l6vV69lyQNh0MNh0PNZrPan/39fS0Wi5bo4KKGixs+/y4OHB0d6fDwsHWNpmnq2C0WCx0fH9c1Q9/6/X5tH23o9/va2dlRv9/X0dFRHdvYvuFwqNFoVMUR7oP40uv1NB6PWwIKbWTuXYxomqbOga8PxBoXfiTVttKGpmm0XC7vKEDc9uU77ZMLI+H7eNvv3m4Xovx6jxoPct/7Oafr2KZp3n1fN9we3PU5LLWfxePBdb3mTX9Eb3xxo95P/fvLbl8ikUjcE767+farbsLD4L7+T5zP4UQisa34l83f7/w/8WUJCu+V9Dr7+7WS3ucHNE3zdklvl6RXvepVDYTl8PCwigoeCebzXq+n0Wik9XpdSd/Ozo4ODw8rWTo6OmqRIn6WUiqBbJpGg8FA0glJgiCu12vt7OxoMBhUgYII+2azqSTXARkmAu+CA23nvlxzOBxW8ooogjixs7PTIq/0j35AhBFLJFViu9lstLOzU8dgMBjUe0yn0ypobDYbLZdL7ezs1OvSrslkUu+9Xq/rtbwNzA9EHtIOMV6v1/V34J8zLpBW5sudGJKqgIBI5GNOG/jpvx8dHWmz2dTjGAdItbtB+DsS7egkcRdCdIEwT7Tf1nlL+PG17PeLzpXYP8aM6yOQ3K+D4E7uhyhQpDvhscddn8NS+1l8rTzbTL7l3z2a1iUSicTTgfv6P3E+hxOJxOOGyxIUvkfSm0opb5D0c5K+VNJvOe9gyBOE3SPXRGyJgEN8R6NRKxUgRlOdoDoJ54VrwSPURJbX67XG4/HJAJ0SbsgzRDW6A0ajUStFAoLI/QFR68FgUIm72/SHw2EljrQFtwSk0kUUqZ0qwVhAoOnfYDDQ7u5uFSEODw+12Wx069ateg5jRBvW63Xr+uv1uvabuVmtVnUOmBP6j0PEr8959Pvw8LCeD7FlPrg3xJmxRIiIa8hdDDHa7+dwDe7vzoGu9Ap3LHg6B+0+PDysjhHG20k6946pH54eE9N4YioE64o5GgwGdYzuhfjHqHt0JEQBg/7fy/mPEg9y3/s556r6dUm4r+dwIpFIJC4F+SxOJBJPNC5FUGia5rCU8t9I+ueS+pL+ZtM0P3KH4yuJ3Gw2evHFF08aFyK+uAQgbLgIANFsBAiuLbVJk3RiySeiT/QeC/tms9H+/n51CpB2MZlMWuKHk9KdnZ2aYgBhdCJMW3hBDJ3Q0h/uuVgsdHR0pNVqpYODg5qWgKCAy8HrCJCesVgstFqttLu7WwkoaQu07+bNm5WUkmKwt7dXBYnZbFbTShAIGE/ayWeIPTs7O5U0Hx4e6uDgoKYD0F7GCEGE9BAnzhzvqQguNjixpv2+nnxuIPJxvfi6QiBAOGIMWEcIMZ6a4eKCrz0EnJju4DU6WD+MFf2IwpALV4y/tzfWhPA+dX3P7kSYu+qH+Gf3ez0/7rxrPAwuO/3hccf9PocTiUQicfHIZ3EikXjScVkOBTVN808l/dN7Pd5zyZ2kugvAo/0QV3ciQEZXq9Vttu1YnM/TJcbjcbXHe0Tb7+9kcjAY1OM9Wi+p1nCABBOBJ52Aa/GZt4/zuQb1Io6PjzWfz7Wzs6Pr16/XGg2QP3cdRDGDFBFPLUCMIAUC8QJHA7n6Pi8AAcKvQ9+x/QPmkfnip7srDg8Pa7oJrgrGibFiTmiTR/OpLYCrgus6KfZ7eYHFWOTQCbSnasQ0CcbFhQIn9ogK0TWBGOBpPFzXa0XQpigseLuYU6ktQtwJdyLS56VCPOj1HuS4+yX7lykMXJYI8qhxv8/hRCKRSFw88lmcSCSeZFyaoHA/iMTcCb0TRxCjzAgDfEY0nWtLZ6TLyaTf18mhk3I/zu/ltvxoH3cSznUiqSSFwYUIPxdhBTs9BQU92k8KgZNP6SzffrVaVUGC8fG2euoEQgxFDUm5iH3xfnoKA8TfCb2kGu0nqs49ve4F4gf3jfPD9dx54PcbjUa1bsRgMNByubyNmLOWcDZ4G+9UQ4FxAt4GjolEmLZ5H/wefo5fx8Uz/9vB+QgQUTh7EDzMuU8qHnchIZFIJBKJRCKReBTYCkFBOouEY0v3IomQJ4iUV9QHkHHqDcSoc8xPdzLH39yb3H/y/yHOXjCwS9TwtnA8wkEkj55CQLSfz/h7PB7XnSXYKWGxWLSEh+jUAJxz69YtHR4e1t0OnGDTbsj9ZrPRwcFBFQFi36IjxMk5IgbFGDkW9wNOAq9lMRwOVUqpc3x8fFzb6NF9F5qcSCPMIARRV8DnyUk8fXECzb3uVpTRBQpfj+c5A1yM8rSIrlSC8wSILni/canE9XwetsXuf170PzpH7uU6d0vFiMfc7z0SiUQikUgkEonE+dgKQaGUUiPukC7pjLSyVaFv4zibzVqEk9+B2/6jMEBEG3IBmfbzIfyQRwg5BHoymdQ8eEAtBU+nwGVweHhY+yipCgSQG9pAygNbNc5mM0mq9SUODg5a4wO5pC3ucFgul3VXh/F4rOvXr9eChezygIjS6/Vqm+iHpx64s+BukXwvgOgOitVqVYtdUsOCvrnLYblctgST8xwSnEv/qKkwGo1qkcRIst2pEkWpCBelfDcMFyruBK+z4fUbosuB99wRcrd2uePCBRdHl2j2oLhIEn63Og4Pe50oIEhPTgpDIpFIJBKJRCKxTdgKQYEIcwQEdr1ea7Va1boEEPXhcKjhcKjRaNQSIjx333PPiXBvNhtNJpMWoT3P1bBarerWiBQ4lFTFDydqEHvP1Xd7P0Sb4xEaIGtsvzgcDrXZbGotA1IsuP58Ptfh4aFms1lrtwUvTEgdBq6/Xq+ru0FSdQ/gpoDgLxaLWt+B8YmRdk8/ILXEd4lwGz6pE4wnYgHX9NoHnsbgKRqe2gFcZEAkcScJbfX0Ahedzovscz93QnAPXxsxxaGLqN6pRgOfx/fcrXAvjoPz6jjENjwJeBhRo0tkSCQSiUQikUgkEg+HrRAUAKQIAgqZHo1GlajzgngSpXVy6Md63QK3tkMcvcaCR8o98r9arSSd1TnwegdclxfX8CKRUrvuQxRQIMNsy8jLt7NkPLw/OCd8+0C3/PvOAX4fFzocXhvCa0hwDpF2runFDuljLFzoRRCZmxiFR8ygH5D5LkGDfnJ9jncxBVdDJJH3klLgx7owQp/up96Ary3G8ryUB9AlMJwHb5d0+/gnEolEIpFIJBKJxGViKwQFt8hLZw4DiN14PK72fd/CEOEgknUcDS4QOIkkvYC0AqLqRLq5PvckCs9WgL7bhEf8IcW8pLPaAjElw1MinHT7NofUR/DtGiGnTroh/R7lZ9wQURy+swXpILyPO8Kj/n6+7xghqYogLvAw1i6EMDeMr7cdgcb7wOs8AcAdE6wDSdUl4S4IFyT8Wl2ugXgPft6J6Me2xRx+1mBX6sZ5uFfhwouWxu1JLxLbENW/zDZkSkQikUgkEolEInH/2ApBIdq8negSSYcAU5gQ8kmqwo0bNyqh8i0bId6IAdwPwYGUCYAzATGBugIQZ/LpaWuMxntdA78ff+MC8OKEToadmDs8Au/tp+Ai14oRauoguPOC+zM+ALHAxRuEAdq+Xq9rcUU+8+KZ0pmTA/iOGLSRNJPj4+Pafoo0QojdAeF1C6IQ5AU73b3hEXt3LPi8RGHgvPx76l3Ez7rQ5YzwOfB5vBPu5GToSqeIdR7itZ4msnyvc3U/xyQSiUQikUgkEok2tkZQODg4qILAYrHQfD5XKUWj0ajWEvCUAmoNDIfDuqMBkWl3MEC0PLd+Z2enFnmE5LFzRFctB0l1twKILsUFOZ5rQWp9K0tILdF36SwFwotKehFH6UxEgAz6Fo+IFnw+mUxqPyHVq9Wqjh3bULq7AqHG+wGpd4cBbXWhAwHDizW6M8OdAhB6xscJNtd1UcnFGq+r4IUnfT49nSXOA33zF/f22gjS7Vt+8l6/39d4PG7VvOCzLgfIeWucn+fVYYi4G8n1Gg8uWnk6zr1e66pwWULHtvY3kUgkEolEIpF4krA1gsJqtapEjoi310MAbkP3YoJdOfPSWYqAb3HIeV4rACLsTgOPaPvuCLTV0wEglk7C3YIOofe+RHSJEDFH3o+BaDvB5p6eeuHihY+Ruxr8HtRKoHYE/fO0DBBJayTYuAjitoxOehFIeM/HnnMYC4713Rq8bd5vTzVwsaDrmp4S4akWnpYBEKq6UiEcXSKCv3+/uFu9Bd7z78jD3O9+8bS5IBKJRCKRSCQSiacdWyMoLJfLSka8qCJkbDAY1LoCnEPUHgs8BBVi7TUTIM6Q8slk0qqzQGoEQkXcMcALG7LThKc7xAKK3B+C7mKJR+npS3QuMAaRDPb7/Wr3Z2cHb5MXqPR2xxoOXMvTArwNXMt3odjZ2Wm1C0LPGEDW4/Ukdb7HvX0HBfrnKRVxrbigEGslMMa4Kbx+BfPkzg8XJuiHn+PXRlQ4rzZHF9m/VzLfRcS7ruuiwnnX9nZdlphwUeLBZddFiGOYgkcikUgkEolEInFx2ApB4fj4WLdu3aqkj60aPSVhNBq1yNF6va5Og+vXr2s8HlfyPp/PW6TPQbFCaiK4vR4SNhwOq0DgNn7QNE0l8E7aKWboKQ8Q49FoVOsSxOg410f4iC4D3/UBcYU6BmwhCSH3+3JNJ9/UVPDr43TY39+vaST9fr9uxxmLKJJ+gMhAWgkFErscCV5vIr7nqQeMRSzU6akILj4xtozPzs6ODg4OWkKICz/Ud+iK9tMGBA2u7/fyLUBddOhyYNwPugj6eYKAuyj8Pb/WZbsS7iSAeDseNYGPDo0o+iQSiUQikUgkEomLw1YICpA5ot/L5bJlq99sNi3HgXRCKqWTKPd0Or2t2CF576QaQHjBZDKptn7frpFrHh0dVREjph5AqqUTS79vpQg57/f7Wq1WGo/HGgwG1UFBHYj1et1KQeA9XA0Oj8j7Z71erwoLCAPL5bKmMkD2eR0dHdWCkrFg5Gq1atWoQCiBmMa0EQi7z5PvuOHiQZfTwkkvrgCcBRD0WO/AXRfuMnCUUqr7BIHHr4FgEFMkvF3+uxek5DPWhaeUeL+joyCmb3Shi/B6PQzaGNMZthkX0cb7FSW6RJlEIpFIJBKJRCJxOdgKQcFJNAUVncidF7ldr9daLBa6efNmdShA7oloU2PBc+BJnSAKL50IFE4sseN7ZB4y2FXbALJN9Prw8LAKCYgObrd3wuwCBSTS++wuiC67v7sRcAh4moV0tn3ler1uReDdDUEbPFXD2yapVcTRybqnVvA5iI4EJ93cq6tmQhwHP8cJdkxx8QKMLiT4uDBfCFl+b09JoZ+eRkJqhpP9ruh8rFnhn92N6LpwEEWJJMmJRCKRSCQSiURiG7A1goILARByxAQni/43EfmXXnpJe3t7rSKIHoUfDAYaDoetqLkTPqLjRLSdpEf7tBN7dykMh8PqCliv11oulxoOh5W8Iy6sVqtKWuOOAhRYdNLoBRVpu7fBx1BSK3XA6xDwQqzxYpbcE9cEfXI3BP2NzgF+elvOS1XoitC7KEIfulJVXExwwYExcgHFbe4c7+PGfd3N4mvD6ypwru+QEbek9FSNiC5B5G6IIgLj4208T1R40moFPEw/UnxJJBKJRCKRSCQuF1sjKDihnM/nt1nUcRJ43v9qtapW/Q9/+MNarVaazWYaDAZ1lwjpbFcH4Ds68Hd0SHCMuxK4lnS2E8VoNKrCBxHvwWCgzWajg4OD2g9EhdFoVMUL0gecgHN/L67oQgnHuNOB8fBc/uPjY83n85r2QZsROqQT634kyF5HAZHE20ef+Zy6EF7Y0ufSnQQxBSOuAU8JiTUw4hhxDRwZpJT4GLmgQNt83N3d4DURuJ8LCi4YdOXke2FHd7PQb8a/qziluw/8bxcWaP/dRIWrJNAPSuAvSwRJMSGRSCQSiUQikbhcbIWgQFE/6axoIqTZCSwpEET+JdU0gvl8LuksncFTJuJuDdjcIWnc13dqIOrtxM/TDCDiENrhcKjpdFqj3uPxuBYu5D1cCqPRSIvForUtY3RXuOgBKcWaz9jQXqLzXsOBvjVNU0UPzqVWA+fgEBmNRprP57VPcY54j3t6xN+Jt6cISGfbUzIfiBDUS/A5YO6YB8QX4KSa+8b6AtFJsFqtWmPmThCOjzs3dIlO9AsBiVoM3r47IboOvA8xrUE6qR3iQooLJA9Kli/TwfCg1+xKF3mY690J6VpIJBKJRCKRSCQuDlsjKEDySimaTqcqpWi9Xrci4E5QJ5NJJYe+S8Jisajk3Cv6Qy4hpJDMrm0JcTd4tDrWTJDOrP5e2A/BYzKZVJK6Wq00Go00mUxaAocXMfRoOKTHST1Rf7fge+Td++hiDMUrYx8RO6gRgKjD9pxcI6YN0G/EAa8xESPo9MNTCNy+30WwXQzwGg2eIuJbinIvr2OAIySS9uPj40rSz0uP8B0h4laY7lrBbeHj4/C2xHoWHO+iRoSnXERHhLfT73UvuGwyfdWE/W737xIvUmBIJBKJRCKRSCQeDL27H9KNUsrrSin/upTyY6WUHyml/L7T958tpXxbKeUnT38+c7drQeLZJnI0Gmk6nWo8Hld7vtvEd3Z2NBqN6ufD4bBGldlu0l0IkloRaxcEYpV/3lutVpW0dkWJ3fXAvUlDoGYDBHuz2bS2qfQikZB5xgH4do7RKeEuhDAnt23vSFrIer1u9Q9S7vcn+k4EHlGB4xhT3/6S+8XUCG8TffN7+Wex7y4CIcC4U4O6FF2CAW2OKRN8jtDCjiKx+ON54oCncPh58XNHrN0QxRNP8+iCC0y+Bs6L6Ps5iacHF/ksTiQSicT9I5/DiUTiacYDCwqSDiX9t03TfIKkz5D0u0spnyjpbZK+vWmaN0n69tO/7wjy/efzeU0DGA6Hms1m2tvbq/UT3KI+Ho/ry6v8u12+dtJIm0fLXVCIhQsXi0UlzrgmINoQ6dFoVNMJ1ut17QPFDREUlstlfZ++TSaTlp0eEuwpALyPMOIkGqIvtQkqhJsI+mq10nw+18HBQe0n/Vsul63UD2pN0C9cAlFU4G8vSokzw9FFlhlzr43AmDrZjyTcyTnjx9w7uG50MfCZC00uQMX7RcHFX75WosMlwoWU84j+RVr+7yRuPApcRLT/vD5c1P3PE7UeY1zYsziRSCQSD4R8DicSiacWD5zy0DTN85KeP/39VinlxyS9RtJbJH326WFfJ+k7JH3lna51fHysl156qZL0o6OjGpnGfeCEzwk7xHe1WrUcCV6kb7FYVNLL/VxI4Joe9SdVwSP2XlTQyaTb493B4NtIQpQnk0ndcWK5XFZST8oHfeRnJD9u1ydlgrZ5KoWkKtDQL9IZXBSQznZ0cHIc0w144USgVgWpE4wNNRBob4zCd0XbcSJw3+ia8PoQrAlPX/GaD10CRNxlwlM+/Dhvr798/F38iGkI3MMR6yHEVI4u3MmBwN/n3a/rmK5rnofLrF9wUfA2PkjKwjb37UFwkc/iRCKRSNw/8jmcSCSeZlxIDYVSyusl/WJJ3y3placPVjVN83wp5RV3O5+UBwohQoy7bPCRQBGhns/nrWKEXnMAwu6FHxEpECG8VkO0qcddC5z8c0wkxF199FoQpGxAhiHR7raIkW3vO2Q6EnQ+IxWEKD27TlCAkH7g9mAXCidptMNFCf8cYQeRod/v110suIfXVXCXSHQOOJzo+xwwTowhok1Mb/Dr4iZxAh53ZOjaOSG6K2J77od4d7Wtq9/3+pnjvPtfZoT/qvEgQsmD4nFLH3nYZ3EikUgkHg75HE4kEk8bHlpQKKXsSvoHkn5/0zQ37/U/+KWUt0p6q3SSAgDhPjo6qhH8SAJPz2vVNfCoMtfgd15E49ky0OseUBMA27vvYMC9nHD6lo3SmTthPB7X97oiz7Huge+qwDlOWn3byI6xa7WNc7wwIe4N+o0jYjAYtM5br9e1JoWLIi5YQNh9bBg7d2VIqk4F+usOBa9fcR75j+/5OHuaiu8a4Q6F86L59MeLUN4Jcez5u0vUuhdEISORuGhcxLN4rOnlNTCRSCSecORzOJFIPI14KEGhlDLQyYPz65um+Yenb3+glPLqUyX21ZJe6Dq3aZq3S3q7JO3t7TWkB5BHv16vq7WdlAEILtFqCDARecQBiDO1F/r9vvb397XZbOpuC5KqM8HTJXy3htM+VlLqRBlRwQUFyLS3U1Il9bgGKCZJrQN3I3iKhTsMSFmgTadj2Lqfk/Jer6fJZKKmabRcLrVer2uxSZu/eg7Xp+ChOzHoG1swcn+2S4w7JiC6LBaLugUntR28zgIE37fojMUOo0vF0w3izh1dokRMuYi7UJwnDsRdKKJIFY/tKkgZ2xHdJvcjLjyItf9hz3/Ye1729S4DXakij4NL4aKexdfKs9vf2UQikdhC5HM4kUg8rXhgQaGc/K/7b0j6saZp/rx99K2SvkzS15z+/JZ7uFa128fiilju2coRuJUeIjwcDqsYsVqtWrs6QMwRLGK9AtIR/Pqe28/nROYh1tj8JVUiLqmmCfh5BwcHVTCgXcPhUNPptBYHlM5I73g8bhVAjA4L360Cp4FfAyeHp2w4YUes8WN9XOkPKR0xNYCXOyNwOni6hO9qgUMCou8gNSO2BbHHnRi0j3UT6yT42kJ0oP/npaXwuTteXHBxZ4xvIentj/f2n467EWufXxchziO3dyPrXZ91neNiTkz5uJd23wn3cu5Viw7bLnh04SKfxYlEIpG4f+RzOJFIPM14GIfCZ0n6zyX9UCnlB07f+2qdPDS/uZTyFZJ+VtIX3+1CpZQWefbiiUR/7xQp9DoEfizEcTAYtIj50dFRTVFwkUE6s9bjEIAwE3V3ghkj617Ib7PZaLlctoogStLBwYF6vZ5ms1mN3HtRRK7lpD6Cz2JhSI/S+zFcp5RS0x/OczZwrVhDANFHOtvq0vsNIO+kUeBSQOigiCZj723kPQomxrQOxpLjvP9OgN1VgjDA+4gQcfyiMOD98mtHl4Gfw7F+XCTl90NYXShxAaTre3C363bd+36EjseRaD9FuLBncSKRSCQeCPkcTiQSTy0eZpeH/1vSeSzjc+7nWpBVoum8d3qf1vseHYfQe7pCrH3gEXivA0D0HXHAxQsvNNgVwfVoP4IDcELt13bnws7OTk3LiLsJuBDCOCA4ROEiihtddSe8EGRsE33wNA53ikTi7/PgY+Ztpb6B12Xw+hRx+0vmJpJ2v2YUP+L941rqcg3EdROFhEjSuac7Me6UJnGvzoEHicAjLHSJH4nERT6LE4lEInH/yOdwIpF4mnEhuzw8LCC7TuA9Px4yBakjVUA6I6Ts5MDnXMeLIfJ5FBk4jig69Rcgn9QOoK2859spOjH2KLgLBE3T1BSAl156SePxuGWxd3JMWxEd6KuLBN5/SCbuDkm1NgTtwh0QUzHW63UlzbPZrFW4keMo8gg4NxYapFYC/Z9MJq3xpi20kzH3sWUsuG/so18nigeky/AZ9RZi+oE7F7iP3yMKFb6m/DqxPV2f3+m9O4FdOLyY5XmpGhH30p5txHmpGed99iC46rSKRCKRSCQSiUTiScHWCAoQT4/Ou1VeOov+U9gQsnl4eKiDg4O6dSSfeyHBxWJRr0NOP6SWyD2FH1erVS1OOBwOq9gh3U5uqF+wXC7rPSHfk8lEh4eHWi6X9VyvEbC7u1u3PYyRd+7Blo4uulDQUZL29/frORRz9C03I9l1R4SLAYzharWq/QDuBBgOh1X4YccEdxMAXArPPPNMraXgfXNXBoKPk3hEAG8jpN8FB9YH7UHQcKGHNcI1484Uvi5wWbjwRD/PqzfwoLgXosz8+S4VUru45EXf807n3s95F0XcL5r8p5iQSCQSiUQikUhcDLZGUEAsiFZ4j8jiWoDkc6z/7sUcnfRS9BDivbu7W+/tP3EGvPjii5VUjsfjFjn1ug7SWR2GzWbTKirpuxtQo4HIOY4K38XBI/78TQFJCkt6QUevO0G/nCwjRvgOErTL3RmAsVsul7XtTrLZ9YExj9H8SG53dnY0mUyqu2O1WnXWa/BaFIyRE2fGlD54+ooXmaQNMf2ja5vI8xwGODkY064Uh5iicSecV3+hqw1RtOJ3b3/s7/3iYcj0g6Rq3AkX7RTout6d7pFOhUQikUgkEolE4uGwFYKCdLb1YCmlFjCMOxDwuef3e6Sbc7wiv1vfiZITPSfa7sSaaLYkLRaLSjjYaSKmNribAnJPJD1GxGPxQe7jufnuLOCa3sbj4+PqnhiNRtUhwXGIAJ4ywniwDSXX8Xszth7Rh8C7W4BIP2OPw4LzIxBU3IWAld+3kPRaBbEQZdylIdaKcGHhvAh8FD8i0feftOG8+g33Cp//ONZRzInnxPXQNV8cnzUVEolEIpFIJBKJxFVgKwQFCJFvhxgLJrpwEF0FMQLs5NX/xkUA+SY9IpI7L6Aoqe4CgctAOtt9wUknrgKcCm7vJ8ofXQ0x9cDhtQBwV0DE+/2+ptOpSjnZjYJ+kcrBdb0dvq2k2/o9+u+1Jrztnl5Cv0kdcQHF54F5Q8hgHEkB8R0MuB9EHiEEAcUdKC4qRPIdazV0OQnOEwe8z7hAXCi6X3gaRhyXmJLC76xz383ibmLGneoOxPe2KSL/sG152LoV2zQWiUQikUgkEonE44itERQ8jcCj0ev1urXNo6TWDgkc5+TRhQhJGo/HGg6HWq/XlXh7KoHnzZNKwHu4GthJAqJG4UEI52az0Xw+rykSXs8gRtibpqn1HiaTSU1j8NoAvnsCY7RarVRKqWPS6/XqvbzmAfB6CdyDlIbFYqGmaWoNhlJKFSPcTRGJbXRZUC8C0WO9XldxAncCogJ9X6/XWiwWOjw8rC6LrrbHPkhnO0k4KUfciYU2gdcecLLO9WKKQRw/39LTx+JuhNRdJb4VJ+Pma5Rr0jYXf+5VCPDj7sf6/7giOkwY25hK8qT1O5FIJBKJRCKR2BZsjaCASICdH6LvNnx/bTabzgi3pEqenVxRB6HX69XCiJB2L7pIhB5CHKv7c45H53d2dloReN+ZAIFkOBzWa9N+SDyk1esDxMKROBQQL7zdXqTSnQc4IBhPUjzoG4SWVI7j42ONRqNKoGMqQ1fRxJiqEF0ifg1EBd5fLpfabDa1XS4auDjkZJz14mMZ6wp0FVDkurgpYl+4Ltf2ApA+B+7e8Lb6+ZHgMga+s0Q8350VsUbHveJpiMZ3CQR3cykkEolEIpFIJBKJy8FWCAqSWqTLhQCvjwDZ8l0HONdFhS6rOwTdc9Lj513nuGAQo/OSWvn+EHiPLENKIfTUiEAUoJ5AVz2CLpGBtuOIcFGjlNI63sUC3Bc+DuPxuBZK9EKWXtTQxyQSt7jjgB/DNbkv10VYoe6DCyvnpSj4mMc10FVw0dcA7XMi2lX8MEa1/brukugis+ftvOA/vXZDFB662hHrRCQSiUQikUgkEonEtmFrBAVIHNsWSmdkLZJ9r8Av3X0LvRhp5nhPRYC8I05wb99RgTSBCASHzWaj1Wp1W/FCr31AfxAUINTcB4Ei9pv2eUR+sVjU7SMltbat7Pf7NaIOOSUdo6tPR0dHLWcI94+pBVzLiz76MZ4uIZ25Bbgu24PSL1wKfs8oDDGHTvRj3QQ/nmtxX9wdnqrAfeK93GHhzoHonvDfWVc+1ncTE7oKPbpYcXR0VFNqLhLe34u63qN0BVykawNkWkQikUgkEolEIvFg2ApBoYvMSWckfzQaVSt+r9ertRA4N0ag45Z/RP05fzQatYoP+o4GHvkmmo/A0ev1tFwuay0D2kkKAQUHDw4OJJ0QfNI4uCdtODw81Hw+r6JC0zSaTCaazWaSdFsqBvUIPBWBWgyeFsCxjKdvTXlwcKDd3V2NRqOaTjGbzdTv92tdhn6/X90CpHBA4nES0AdEgsVi0dqS050djBvEm3uORiOtVqs6n4yDiygu9rirA3TVdHDCTBsHg0Fr28/oNHAhw6/JWG82m1onwu/lP7vEEEd01Tiie4L1wRq/SNzJ/fEgpPpRE/HLIP8pJiQSiUQikUgkEg+GrRAUpLZVPubfS2cpERCz5XJZCRoWfkirk2sIHuTfI/9eoM/z8WOaBekBkGQIH8Sa971GwOHhoZbLZSWyo9Gos9+kJUDWEQ58S0rGB5dDLD7IlpikVDAW9Md3t5Ck9Xqt4XBYHRP8ZJcI2oEY4ekoXkCStjD+y+WyVQsjjqV0liKCWNTv9/XSSy+1CD/tiSkWOCh8lwhPOfHIvzs/mDPGJNaG8LFEnKHt0bHg4DzG0+tIdIkHd0pd8KKRfo37SXd4GLL9uJDqqxAwEolEIpFIJBKJRDe2QlCAsEHiINNewM+J6Wq1agkKngbgkXG3yDsJJ1LuFnWuw3n87fUZECH8+hzH+0TD2fGA+7LVo0fgPT3AXRZeEJLPEDD8WO83NQkgo1580LfMjITX6zfwN+IIOw142xAbIPc4KRiDuMXicDhszbPPJddjBw6P4nfVOeAc+uCpDTENIroVuFbcrSGmPnh6g78fa254n6JDxh03se13SsuJx0bnTiKRSCQSiUQikUhsE7ZGUGC7QQiik2CKHUKOF4tFtclL7aKAXheB/P0YZY7R4JgewXm0Aes/x7i44UTT7fXL5bIV4Z9OpzUVoateAHDHA4TdUzKkM4Ls/cMRIalG+J0ku0Dj7fVaAy7IUOzRHQqlnOzUQEqEt0VSTUXx43EH0AavOcDvOB3i1pzuIAGc40UkXTyJ53BdFw58zKMTwYWBeOydSL0LHKzVLrioEIUOBCZPf7hXAcKv9yCg/eelbNxJDPHzLxtXUbMhxZxEIpFIJBKJRKIbWyEoHB8faz6fS1IlspAsSDlRb2oB8B7HkCbQ9Z//WFMg7mAAQe4ilZ5eEd0EtMdJNwR1MBi0ztvf32+1CScARRURMNbrdSXZFDCk3sJqtWo5CaQTt4Zvw+h1FPiJOIGggvDBWHubaNfOzo4mk0m9Bg4IT5WQVF0RkOE4FtQB8EKRXrgQxwhCDHUVWAuxwKGTbyfwcX5BrIsQ10eXoOPvO+kHXpgxnutC0Xl1E7rIOveIDg1P1YhOiodFdFV0tY337kasz3NvZL2DRCKRSCQSiUTiycVWCAqS6u4Iq9VKklrigG8PCEn1mgcc78TWX9IZQYN8e8HDrjz8uBVgLPTIzg0Or+bvKQOQfc/nHw6HLYLorgQnmBBU33KxlKLRaFTFAS+eiKOBSD3uBu4JCR8Oh7UuBEKA1y3gvqPRqDWGOBSc8DI2fAYg1l5Ak5/8TrqEf464hBvBnSMIEHzOnHgNBr9+THOg//5erKng4Fp3OoZruMgxHA47a4Gcd31fP+6EiWvU01y6ajr4de+GeznGBaeYHnIR138YPGq3QiKRSCQSiUQikWhjawQFHAe9Xq8S0KZpKsF2Uuk7F3Acufkx0goBhehBwFerVbX8d1nboy2eCL3XOXAy44TPCwhCtnEekLqAgODHe30C2sFx7BJBscFSisbjca0/wA4UROkjafbaDV43wYs/0j93GvT7fY1GozovXkyxlKL1et0aZwo0unU/RtW9bYwP88q1fJcDbw/XjXUOutIZWAexHS5gnOdY8Gsxly5OnJdy4GPs9/PrdjkU/PpeOJLx8mP956OCCzH3WyzyccbT0s9EIpFIJBKJROJBsBWCAuQIQuk2eieEkE6IJed6fr5f0wsAYuPH4YCg4KKCFzv0nHgEAcgzpJrfuR/v+Q4DOAUo0iipJSq4vd9rF3htgxglR2iB6FPwEYLeNE0VGTwy723tckQg1PD50dFRa/cCH0vO5/qMr+900UXGvMYA4+ruAifh0WnBNb2oo4sT5xHdWE/C11xX+kIUDHBqdK0/jve1GgtvMid3EhWYBxfMulwRcV2CKI7Ee9zJzXCvcEfONogK9+rCuOp2JhKJRCKRSCQSTyq2SlCAdBEJd1u9k8ZIAiOxgKiSunB8fKzd3d0WgffIODUCnMx5DQJs/ecRU9/xwKPMCA+QY9I66AuCAOR8PB7XF9tMIjR4fr3vooAIQQrEYrGoaRYe0ff++DaRCAGM82q1qn2bzWYtYurzQQ2Gfr+vxWLR6i/Xi1F2n1OEAU9XiGSZdcDxzE8k7V01C6IY5TtzuLvF2xXTCbxGAw4S6aT45GKx6FwLjA3rAReHp8hEMYJ7eg0Lrs9ntIHzXWzwtsb0ET/G34+Cz53IuZ/v83HRdRzi3w+b0tDlTrlTOzgnXiMFiUQikUgkEolEohsPLSiUUvqSvlfSzzVN82tLKc9K+iZJr5f0Lklf0jTNR+90jaZpNB6PJalle3erN7hTFLrrOC/S5zsZxLoJ8VyEhvF4XEnyrVu36m4PfM51o6sAkuupF160z4/16P5oNNJoNNJ4PG65Co6PjzUYDKpYEAseDgYD3bhxQ+PxWMvlsjoqIil2R8Jms2nVkhgMBq1xu3XrlkajUXUp0I7Tea/XZRcFQP0IL6Tp53iqx2azaaUrRLEIIs71uZdfi60paYunJXBMFEWiG8KFEAQgFy4YH4QFhAL66GIH9S68zX5vJ/PeBtoqqbWNpjtwfJxAKaWKHdG9E9NnQEyJAdFJ4Skm530n7xe+HqLw423oEhPuR2SIY3wnPOoUksvARTyLE4n1r/6l+sCnDe9+4GOGvXc1uvG3v/Oqm5F4wpHP4UQi8TTiIhwKv0/Sj0m6dvr32yR9e9M0X1NKedvp3195pwtA4GLUM+a8R1eAHwvxcdIDuer1erWGQYyKS2dEz8m9R7x7vZ7G43ElhhBHv3csnse9/JruZhgMBpV0euqB7/Dg5JedLCDPpE/Qfk/fGAwGWq1Wms/nlfC6qEDfIMFe5JDIOqkGvGKxSHcT4KJg/BlX0h+8DU7caQvjyn3jy90FbE3pZN93rGCu3R0RiSttZx3EcUQsiEKIz5UXBe0irJ6qQvqCuwRigU9f3/1+X9PpVKvV6rZz4/qPqRleuyK6LLivH+vrPIoOsZhkTCu51+h/vIafe9l4WHfBY+ZOeOhnceLpRG82063P+2RJ0s2P62v1bPe2t483ehr8xk+XJF3/t+/W4fPvv+L2JJ5Q5HM4kUg8dXgoQaGU8lpJv0bSn5T0B0/ffoukzz79/eskfYfuQVCgoGAkMV43wK3iTnwgVh759eJ2TvgRFDwnH4LvWzl6+oOk1vux7bHmg41PK5IutbeLdCLO8RD08XjcItykSMQUBL8n13Sxwomv1y/wlAjSOWiDF8J04uuEnJcLJk5Svc6EuwXcMUCkH4EGocAFFv72PiIYOEn27TG7hChPd3GhJs4V7S6n9QycaHt6RKxzcF4qjCSNRqOa7sIa6Bpf5oktO+PYe5oG7YvpDJ5S4u3wPsXviI+Fj1OXW8HxoOkAUUzoEhnOu/ajEiIet1SHi3oWJ5589GYz9Z59pvXe8TO7ev6zilQk6UkUE6TVs8d6/j8+eX6MPvoajXd2pONjHf7c+664ZYknBfkcTiQSTyse1qHwFyX9YUl79t4rm6Z5XpKapnm+lPKKrhNLKW+V9FbphKwvl8sWmek4vuUugGjyHhZxyF8kHi4udL3n5D5azDmH3Rakk20u1+v1bVtBAieLMU0Akue1D5z8Qsh3d3erWAGJdWeA11IAo9GoEtYbN25otVpps9nclirBtSDzPp7RieDj3e/3W/UNRqNRFUDYGpO0A09vcFHDBQh2hej3+1qtVrUQJGvB7y2duB5cfIL07e7uajQaaTKZaDwe6+DgoPada8R6Ce4qccFkOBy23BVxB5EoPLGW+Ok7VPR6vVorwwl6dMWwntylQhoQ88R53g7vl39XON4/d+cN1/RtRb0OBtdmLqOY8KC4F0HgfpwP95MCcT9gLWxD8cl7xF/UBTyLx5pecjMTV43VZ32C3v35W1E+6crwrl83kPRa9VdFb/jqD0jH52/tm0jcB/6i8jmcSCSeQjzw/ypKKb9W0gtN03xfKeWz7/f8pmneLuntkjQajZrValUJpm97KJ2RtPV6rdVqpdVq1YrGe+67bz/ouyY4eeZYj9Qul8tKZBENIFyIHdzHI/oOFwW8MCKkx4vuUSchRtTdFUH9huPjY61WK926datFyL2OgsNTKrDvr9drLZfLSrJJmYjbNnqkv4tAc46k2j/GGjHDd+vwbTDdfu8keDKZ1M9Wq1WtwcB4M6bMzXg8rv1AWGBXi8FgoL29PQ0GAy0WCx0cHNR0EXcw0G7qHbhDYL1eazKZ1HXgKRTuCoD4RwEGEcJ3w9jd3dVyuWwJEF3pCswH8+eFL0F0JXQ5FGgP96Gt3k8EEeae+hTu2FksFp07W3B9J/Nd5J7+Iw4hmsTrML+s6/NIfNc9zkujiI4hxv1uuIg6EY8SF/ksvlaefSzUk8SD4YX/+jN18LpGUk6zJB0NG737j3663vj1H9DRT/zUVTcn8Rgjn8OJROJpxsOEKT5L0heWUr5A0ljStVLK35H0gVLKq0+V2FdLeuFuF/JoMwRYUotgOOn1CvdOWNxyH0mjE1gnGtHSHV0SkCBILmQrVsl3Quh2eC+q51HquNMARBbSfHR0pMFgoMlkIkl1HFxQoLYB92F8vJ4CpNQLCiLI9Ho9LRaLOt4xBYDCijEXn2Pprzs0hsNh7buPgzsdYl0H+kMfcT0w3i4S4epgrVAzwJ0gk8mk5aa4detWFXQg1e728PQQL+rI2sGt4GPjKRL8pA3UecBNgBiDAIITIK5T1iRjhnjCOuxKOfC17CkguHZcQIgpL+6c8WvE9dP1XYnpF6yJO0Xzu5xD54kL8Tr+972KDdENwv3ux3HwmKQ+XNizOPFk43AmHY23fj0/OhRpc+1YH/jsV2j0qc+pt2k0+wfffdWtSjyeyOdwIpF4avHAgkLTNF8l6ask6VSN/UNN0/y2UsqflfRlkr7m9Oe33O1aEBqIBMTLI+IuKsSov1eid9LkKQeQCi9AeNqPzvbwmVvDnSBCfv146cxl4Pd3Uhev6akGnEsxvnJaZ8BTHqQzxwBtwrnB2FCLgGM5n+shKpTTnHrGGIHCnRSeYoEDgGgzfYBUe+oDn7tYwThwTqxtwf24DkQfF8bx8bGGw2H9mzHwNBfSMIbDYRUj5vN57YO7Ntxd4Skv1DtwwYH7+zw7+ea6rE2EAvrqxT59zcTikZ4yMR6Pa50J5tfdLDEC7ykQLprwvWGcvUYC4+YpGE78+Q46yfd2+PVczIgCgK8j/7zLQXAnMeFuuJt7wZ1P93Lty0inuGhc5LM4kXga8eInnArIq55+/g++QcfveZ+a1eqKW5V4nJDP4UQi8TTjMhIpv0bSN5dSvkLSz0r64rudABn1CC9k1VMWnJByHgTaXQg4EXyXAo80QtKj/R1y5GScSO5isahkF2KKcAChjPc5D4gmkHon1RDBxWKh5XKpyWTSIviQTElaLpctO/lyudRyuaxk14sAut1/tVpV8rxcLm9zI7hjACLIHM1ms3oNxgQhgnSD5XLZys+PJNXdCtKZYIQ7w19cl3GhYCHvMQ7MDaR6MplUQYIxQTTguHhfSbXPiBalFO3u7rbSaoCTekQMrudOB8YnFsqMBT49JYfvAG2eTCa3CWtdkXzajLBC6g0Cis8two+Lc10pCy42MG98L6KQ5w4dvq/+fUIQ8r771qi0n3Xif5+XwuBj4Ntkunjna7DLxRCv+bilPZyD+34WJxJPM45Gjd7xu1+pX/BXi45+8qevujmJJwP5HE4kEk88LkRQaJrmO3RSuVZN03xY0ufcz/m9Xk/T6bQVYXfS6bsCzGazSkqwz0O4ITf8TTFC6YR0bjabSsophugiAmQt2uM9MuuOAi/CyOfSWVE8v5Z0tpWkky9s6eTMU+tgf39f8/lce3t7NQXASS8kFhECV8Nisai574zFaDSqJPLw8LAS9aZpNJlMWsUQpbMotaQ6BswL/aMN7hBg3MfjcSWHsXAkZDgWgPRtM6fTaS2uSL0Ejt/f36/t4h7j8bheczqdajabaTo9KWo0mUzqeDKXPhasCUQGnA0cz5qIdSXc2eGuip2dHe3t7enWrVt1bllnCAuILNQLcYLugtJ0Oq1tm81mtxFx1jfiRZwfr8HhhTRZQy6SuKjAfPiaL6XUYp7eH+YeRwn3Wa/XOjg4aKWiuCjINf375+k0XDemZXhdjZgiwrUR3BijuDVol4OiS6igbVH42WY87LM4kUhI7/ztr9Qrvu85zf5+pj8k7h/5HE4kEk8btqbUs0cEvU4CjgSPVnZFUp20eHqD53d7NNZdDl4h30mP3ycWTHRi4/d3MkcU3LenhJhi+ffrIVJApObzuZbLZY1Se3TcCT9kH7INidrd3dV8Pq/1GAaDQasOw3A41HQ6baUVcG2PEru93/s+Ho9bxQKpE0HdB0m1LgTnMz/Reo6IMR6Pdf36de3u7mo6ndZdHWiLi03Rbr+zs6PZbKbZbKbJZFKdBwcHB3VcXBByYYExQlDgeK7t9yilaDab1d0ZINkuSNA+J8/cC/dBdNRQaBJCTaFS0EX4fVz8Xt5Pd+k4PPXBd8KI/fX7ezsQQaI7iONwqrhTxh0v0R3gaQkuRNDGOO9RjPAtPKPDwJ0M/rNLTPB73ksRx0TiccFr/vVNfehT9vTRT8o6CnfC0bjRR9/c1/F/9hna+6bvuurmJBKJRCKx1dgaQUE6i0JCtiEQsSAexFw6Iwcxd9sjnoPBoG4rCfl2QgcpcTFBOovi4naINn4nIk6c3InAuZEIEZV2CzmRfYjoarWqggLCgbsg2FnB0wGkswJ+7OrAONE+j8ZD/rtIVcx9d/JOygFWej/Ot9eMrgy/ro8XczqZTHT9+nVdv35ds9ms1ntgjrHpdzkbhsNhdSeQKnJ0dKTr16/r8PBQ8/m85VBg3hAsGBvqFkCIva6EE3Xml9QVXi7UeAFK5ok0jCjQsHYRTbxGRST2jLPPrX8HYhpDHHufc3cNIBDQZn7GgqVR6OAn92Ocu1Iz4lpzkcHBfV0A8Ll3gQd4fQe/ZhQPzksXie262zGJxOOE/odvaXCwe9XNeCywfO5Ym92iGz/0Zh3/1LuzpkIikUgkEudgKwQFJ0EU/sNFAImGPEFqnEwdHR1V275H0z1S69FLt1THewLIrl+L6DLWcc6B/Dn5iFFwd0VIbTJH8T4nbPSJrSJ99wBJNRJO6sbx8bH29vbqNokuKOBuiFv2DQaDmhqAqEGfJVUi74KACwe0wWtJSGfbVuIQ8Mi3R/UZM+oPDIdDXbt2Tc8++6yeffZZXbt2TbPZrO5KIZ3VFqBuQr/frzUVRqORJpOJJpNJdRDQL9IlFotFTU9wouyEeTab1eKSjIHX3XAhYDwea7PZ1K1FmUuv/cEYImiRiuBrzd0bLqhFQu3iDuPv6QkIXxzLLh9cyz/jPK7Z5QaKhVDP+/56gUsX4VwQ9J93cga4EODfW09xYExdUPB2ePoTYgv3dmGsKwUikXhS8bO/8TVavDpdN/eKo0mjd/yXz+rj//JKh+9+r9QcS/msSCQSiUSiha0QFKR2tXupXVzNdy5wguA2a8+JR1yI9u2uiKdHyl0A8AKI/X6/ZbtHWHDrvjsUuC9b/pGDj/U+9pXrrNfrFtHc39+vUe4bN27U/klqFaIkso/dH/HA8/Jpk6cMMMaQdXdARKu3pzx0Ads9c+QpDdQBoBYExSN5Ufdgd3dXzzzzjF71qle1BAW27RyPx2qapooJnpKAOPLMM89oNpvVOhHuEhiPx7U2AikRjB9jP5lMdOPGjZaj4ODg4DaHAGuQPlIvgbH12gOsJRefqO3gBJ41i7iAKMH68nXDjheIXev1uuUO8LVKHxHA3F3g5N/XeJxbHBteF4Kx4JjValW/i8PhsK5ZBCRfazGtKBZb9RoLLiqwFhkDLzQ5GAyqC6Vr3bpI0+WISCSedLz2r3y/Fp/zC/Wezz3/WZ64HT/xOz9GRR+jwUtFr/3T//aqm5NIJBKJxFZhawSFaIl2ouEpCpJuK5QWSQM//Zr+txMJFxVcEKBugTsduA/Epyvyyk8IKdehYJ1HV70CvhNUyD/Hr9drzefz6rTwAnsugozH49YuDF6vwPPWKeRHP92t4WTZx9nTUTzXnTbQLt9+kfHGsUDqxnA4rK4E2j2ZTLS3t6dr167p2rVr2tvb097enqbTaa0PcHR0pBdffFEf+MAHWtso+raPXJ+/JWk0Gmk2m9X+Hh0dVXGDfuAwcJcDY8HvzBMCl0ffR6NRnS+EAh83T7PAWQGRR/xBlGI9Ml44TNyxEMk1RN5rebjzh7mNxTDdnRHXl39//BpRhGMd+BansW6EHx8dF+4U8P7FOgsuYrjjwu8/mUxaaRasWR8vH5tE4mnC8XKp3ibX/f3ieHT6zLohffh3/DK94h/8uI4++tGrbVQikUgkEluCrRIUnEy7Rd7JHATEK8x7CoRHHp1c3am4WrSWS2e59E60nSx5Trrb0LkPUWrfYWE6ndZaDl0pBlFQ8LZxHmIA0WzfXYAoPtFxyJZHfD2Czj0jCXRrOQUHu/LSve0AYuvpG7zPfRhX+oe7YHd3t4oI7MTB9o9E25955hnt7u5qsVi0dh3wNAsXOhAJ6C8OF+Yl1jGgrgQpE7zHuDEXXnDTd8jAcYCgE8l/bB8pFZ7yQn9YN7znQpavf6954DUTXPDwY6P4xriwfrl+V90ET6/wteNtd5GD7VVjbQOu5+vJ10TXd9LhjiNvp9/PRUeO950t7nT9ROJJRP/NP08vvWJr/tl/7HA8bPTRT5JuvPMNGv34UIfv/8BVNymRSCQSiSvH1vzPwnOmPb+bCLQTkpiqIKkSupib7UTaf4/RVr8mRIj8/5g+EQsNcozvGLDZbGrUWjoRKPb29ioJllRFAkm3kWAIstdf2Gw2ms/nrUKITowjecaF4OPirg/aSVTfCSNiDukF3m/gxJO0A9rsZJhUCJ8X0guYa9Ie2CYTlwGCCe166aWXdOPGDe3v79ddEDzi7/NOf3wbS3efEFEfDAZaLBaVmPqWlS4EearLzs5OFXfW63V1PHANtv88OjrSer2uKRXep8FgoIODg3pNFwoQiHzMESpYC7gYOM+dEDgxaLfPE2sskm5f46wNxoj2IJggNrE+Y5FS32GCYz0NhPoO3Es62wXC003cxePff+bRnxm8599zd324KIgDIwWFxJOMsrMjlbNn9nt+/Ss1zxoKD42fectQH/Ps6zX7x2cuheZwk/UVEolEIvFUYisEBcgoxBmi46TabdMQESfGXTn//KR4IcSG153qAkQHBCRyPB63dlRwAk7RQ/L2nYC67R8cHx/XrQK5hkeEIdaIBrQLAknRwMlkUo8htYJx4lqMqQsei8Wi2uTJyXehxUkhEXonYIgjvI9DgvoFLuRA3jzlo9/v69q1a+r1eppOp5pOpzXlYTqd1rHy4pfPPfecXvGKV2g+n+v4+FgHBweVoEPSo6sEkch3ahiNRlUEQLzwqPxkMqnbVpZSKvFfr9eaTCZVSEA48JQGJ6zL5bK6GiDsnu7hW0ZGkQqBYDAYVHFoZ2enJX55KpCvH2pWDIdDrdfrVoFN2sr6o33uDGLN+HW9hkV00PBd8T4xdxT+XCwWrbQL1ilCArVG+G54OkZX6gPn+hpHAPE+RJcIbTw8PGxte+rwFIxE4nHF+/+rT9PBay11aSfX80Xh+c8sKp/+S+rfr/1XGw3/+fdeYYsSiUQikbgabI2g4PnlTgAgYDHH3HcUgBQ5CXOS5cTWbdKcD2kjUs/xkEDg9RMktQgkLgbIK++7hTw6EBBSEB9or5Mk2keBRyf3MZ8f0YIxwhnA714/gfFF9KC9TtakMzIPuCZAJHCXAMUCaZ+LKN5++j8ajaogAMn39AwvMDkej3Xjxg3duHGjzjvbVHIdyCBjQpt8TUEqfQcP1h3ii7eRbSgp0AnRjbULXHiaTCZqmkaLxaI6IBgnd7m4s6NrtxHWls9PTDFgnXNtxpH54f7uIIEw41rx9AF3BcXihy4m+Nx0gbFwMclTX3jfXUDnuYli6hIihreHbTa5fkxrID3FnxcxnSc6nNLFkHjcUEYjvfDln6r5qxsdD3P9XgaavtT0z8b2hV8y1PDnfeZtx5Wm0Sv/1r/XsW1PnEgkEonEk4StExTc9g35guA46XFCRqTWUyUi6Y3529JZlBwC7MX9oiU8EpNI8Px92ufRWifd0tk2hPSN6vneRv7GYeHtcGcGP2m/v+fOAMbJSVock1iEEYIbRQra5/dxkcYdCjGv3wUN+jYej6ugw7i4WOFba1Jr4eDgoG6Lybm+swbnMS7c08mkR/VjjQlfN4giCEZ+HnPuUXAEKnYdoaYCffaUCtZeV9pG/J7w0+te+Hr0dYeTx90/vubcdeLfm65+ed9IffC0pDttK8k5iDouqnktA3cj+Pc61npw0k973bHhfXBxzutJ+DFdYkgUNBKJxwX9l79Mm49/nW6+qVHTu/vxiYvB8rljLZ+7/f1yLL3s//EJ6q1OgwaN1Hzfj0rHR7cfnEgkEonEY4itEBSkM9tzFA48Fz4SeP9PP2TE4dZw/8wjy5BQSJbnt8c0ASdXkXRBZgA2etrrOeeeS++kytssqUVsIYiIHaRKuDiAmICg4O33LSe9roOnlURi7CkaXpDQXRg+Nl3E2l0jRLeJ8Hv0H3eC166QVB0V7k6h1sJ8Pq9WfkSJ2Wwm6aQ+BaILqR+8PE3A20o/vV+MH2R/MBhotVrdJkh4ocMoTvX7/dZ8SGqlqXgdDCe6uGUcjCnrwdvAenPnDL97nQh3NXjhTf9OOVFnnLxWQ0zZ8PXPtaLjwWtZeDqKCwouCjKPMV0BcCzjG1NA/LnBd5Z2ueBAu6Ng6H1JJB4XHL7ptfrp3zi+6mYkTtH0pJ/+DSNJJ0GBclj05nde09FLN1NUSCQSicQTga0RFCAH2NQhCESgnSxBMqUzAgfRkVTJK2TQt1iE9EL2RqNR3WHACYhXsydf3om/iwOlFM3n85bYENMUSCvwyHmMolKHYbPZ1PoIXHM4HOratWs1qi1JN2/ebNnV3ebNfdhe8fDwUKvVqpJWt4W7oOC7SDBOzA/9gMThOHBRYX9/v+6U4GIE/WMHB645Go10/fp1Xb9+Xbu7u7UGgkeHvRBlr9er53Df+Xxed4RgHhFcEAOIyLMufN25aMHr5s2b9XPmLRJ3dzOwHl30mkwmtf8HBweaz+d1S0ki9ogCLiJ4LQDOh8yznukLQgyFK/3+9NsFHa9hIbWdF/4Zx5NWcnh4qPl8rul0Wr+Pu7u7rXQa6np4DQN3wiDGAEQRd+kw5rym02ltQ4TXXeA7sVgsahvoexQWmSv66i6FKFjG9ZJIJBIPg6bf6Ce++uP18795X833/NBVNyeRSCQSiYfGVggK/GcfccC3x/NoeLRYe+FEdypIauWKx3oKRFc9130ymVRSQlTUI6Me9ed9crG5F4UCIdrcExHEo7zULoDQuUDi9Q3m87lKKZrNZq22Q3x8hwBJ1eER6zIQTXbBg/7zN9H7rroILh4QBabtHhE+Pj6uBQQ9t94j5+zuwJyS7oBDwS3sFI/0PHtEBVwKy9PcVJ8X7ufFEHFEeKqGp4HQtzhHOBM80s0OHrg2fF240wDHy2QyqQUcb926Va85m82qI8Zz+7mGC1C+hn1+Ic/MYXQbxPXva5vvm6d9+Is6EByPsMZ68p1QfAy4Z1cqj3/vEVG4t8+xOwrcGeGCGd91xsyLhCJO+rOBuT5vbDxFgvdcBEkkEomHQpGanUbv+dw9Pfu6T9f0H373VbcokUgkEomHwlYICpJaIgKAXMV8ds8bdwLGcZAKiJakVpQRQujpDRB1Fw5i3QQAuYm1A7g3hA+7vbfZr+EpErE4no8JdvXNZlPbS38PDg7q9SBoLgK4RR5iRXs8/cLHlL74NfmM/rrY4Nslet88Ok1knXnwXH7P+48EkPng3K50FQgpx7HLBHCLf8zN97oC/HQS78S9K/rv7aaNh4eHVYDwgpFE6Jk3dqjwlAyvD8C6cKLuxDmKXl1pQe4W8P77OvN7+fu0n3XpKRvch7UTi6a6EBhra/B31328Fkp0gfBd8DXIWvU0EBcEfezieTFdytefj3Ui8big98kfr4++cXLVzUjcA5avONZHm74mn/UpKv/2B3PLyUQikUg8ttgKQaFpmtZOA050EAZicThPc+A//hAIUhQQCZz0cK7n62MZl86s3+T5O+mhrfyEjHr0EyeCR7CdqPo9VqtVq7gdDgEXGzhuPp9rPp9rd3dXw+FQ0+m03ouocSx45yIBBNjt6THX31MTHB6xZk6AF/9zwgi5dFcJBQohjwg6Ufxwuzwvz/X39IXRaFTrJhwfH2u5XLa2rfTUDk8h8PSazWZTx8Ej7Z7O4WPh1/ZdDHxeJdUCk9SJQBRijS4Wi1axQgDBjcKC1xBAgKJNzHMkwT6efI7zw79Tnu6BWMSYcD2KS+LKoO2MG+vQRYcIdjVx0c4dMt5WP592+fusKZ4DnmbkbpMuUdDTIFwc87GLNRsSia1Er6/e7GRr1uf/k2d16w25NeTjgsUrj/Uzb5noTT/+jI4++lLWVEgkEonEY4mt+N8yhEZqb7UonQkHHmn0vGaIqe9uIOm2a0AaIFwUxfMtDSGqEBFEDqmd3kD1frecu8OCXPK47WQkzMvlsiWIeN0HSJ/b2yFsWOWx2pdyUuhwsVjUMfHilrQx7oCA48Fz+J1QdZE+IsS02+shQJ6ZJwg214fEHh0daXd3t5K1GBlmTXhKgrse/BxqSlCbgHM8rcVrRbhDYb1e6/DwUKPRqOUWIWXD6ye4uOF1JxCjPJLvaRi4KK5du9ZKz9nf39fBwUFdZ9Q3YMy7hB3WKIIS6QK0BZEBsYXx9Si/izk+rog/zA9/44jx7wbCWRxnSa1xjMICbg53Qnhfvb3+vWNs+D54GpOnF0mqu6Gs12uVUlr1Eu4G/x7634nENqP84o/XT/6WPUlSU1JMeNxwvNPoJ776zXrT376p4x/40atuTiKRSCQS942tEBQktaLH0YrtZNJtzC4gQJRifjluAU9N4JrSWXTXyZZbtSHsuBogvovFohUpjQSYfHmu5fnhTlR5uZgQC+9JZ+4Ft3fv7u7WfnghRSd4XB/yj/gRHR8c6w4M6SzSS7Td3RbuBEFMwK0QBQCfY6LzCA0IO55C4TUMaAPzTl9pP2NLccXlclkFI4puIpxQX4GdGqQT0up/+/zHbTL5iagA2eb94+PjWhgQAg3xpy2sK4gxa8zFEk9lcLKOOMLOELQhrilfaz7PLgZ5UdF4HGvWUzvYpQHxBiGEayJIxe+aO1BoKwIT4+DjHhGFFXe9uEDhDhbGjuP4ntBHFyX4znjthJhqkUhsM3J7yMcYRWqK9O5fc0Mve2PWVEgkEonE44eHEhRKKTck/X8lfbKkRtJvl/QOSd8k6fWS3iXpS5qm+ejdrgUxIBoZbcruHIjpB9KZRRpyw3HRds17brGGOHoeuqTbBAvf6hFAZJ2wQXp9q0gnfPx04cPz9j1KTJ9szOtPrPTr9bpuCeiE0YkxZJoxIHLbRSKjrZyfEEIvbkf/3AnhY+N1FHweSX9gNwsvZOg7YriY4CIC4+KOFN8FgftDwieTyW07KnhtBRdLWBOc66IT/ZxOpy0S7Skvo9GoFpJEINnZ2akFDn1c3WZPO+JYejoL65D++HaTvha9joELIlFIc2HBBQGOd2HAHSz013eRcGGCY9z5gqMjpgC5+8PvRfu8dgbryY/1/vpcxnXh4+7rwJ0jfk5s0zbjIp/FiccHvV/0CfroJ+xddTMSF4DVy4+1eFlP06tuSOKBkc/hRCLxtOJhHQp/SdL/0TTNbyqlDCVNJX21pG9vmuZrSilvk/Q2SV95p4v4f+4hElFUgDBAmDzqKbVzrt12H4kT0WLPDyf/m3Oj8wBQL8C3Q0Q4gBxBdni/i1R78chYdd6dDjGHP6ZMIBKwdaBXo/fItZNC35YxOkFcbEHY8cg19+M8F02ciNI2b2fsv9vXDw4OWv12Qsg2mi4U0Fav1eCpEU5YEamm06lGo1Elp13rz8UkXANY+1mTtA8yTVuZBxwbOGUk1RQF1pCntzCu1HFgzL1N3mcvRun1J2gfThYvYtm1tjxVIBaYjG4bruvrmO8iqR1ch/FkDF0YwDHiAkhMUfJ5c5JPH/yaMXWCddqVhuFrJz4THHx3PV3oMcGFPIsTjxde+IwbevHjHw/RK5F4CpDP4UQi8VTigQWFUso1Sb9C0n8hSU3TrCWtSylvkfTZp4d9naTv0F0entjeITJE0iHb2Kr5fD6ft0iQW5whXJKqBZ7IJRHSyWRSyZgTJOoenEeEIdxY9CFTEOquGgCcx3tOoJzwQNr4zMUTT2eAjK9Wq0oKGaNIuLH9O8H0egUIM7TLXQyeeuBjRAFB2gqpZIwhjO4kgBi7gOORdElaLBaVJDvxXC6XOjg4qLsjuJhDAcTVanWb+ORpBP1+X7du3botKu0OBVvX514HQeHg4KCSZxc/SAvY3d3VrVu3Wk4JXAr0cTabtez0vu4Y6ziGLjL4eELCY3Ted+lAwOCFUOM7b3iNDF5euwOBgWNJR2H8+U6xVhk/F3C8HsdoNGrtyOB1VKLo444Oh7tS+B76i/uQnsMcu4vH04NcoHJnwzbjIp/FiUQikbh/5HM4kUg8zXgYh8IbJX1Q0t8qpfwiSd8n6fdJemXTNM9LUtM0z5dSXnG3C0GS+M+7Rw79PScaEL1IPLgeZIHdFogcIyhATKKdnnsdHx9XUnt0dFQr2rPFX5cVHALuEX1PCzivToQX14sOhaZpWtX13fVwdHSk1WpVizPGXHki2QgzXmyPtjjBjoX4KNznbYr58p6y4Ski0a2A8OPv05/9/f26k0UUFKi3gDBE3j6Cy3w+b+2eIJ3trsA62Gw22t/fr+ODsOIEmTYzpgg8TjZZJ8wna+/69ev1fMZnPB7ftjapfTAej1vtlVQdCuPxWC+++GJ1cHhBQ9+Cku0yfR6ZH8YKEYa5ikKC76wCfOtUd590pQ5xrK8734q0i4xHJ5KnL7jQxFpkXdNuxrFLCED88O8s8+SuG58nnhFcp9frabFY3OYO2nJc2LM48Zig19f7/uCna/XydCc8Sbj5Rmn9336mXv0Xvjt3fHj8kM/hRCLx1OJhBIUdSZ8q6fc0TfPdpZS/pBMr1z2hlPJWSW+V1CJfd7IZO8HyNICuvGiIhEcdPWoZI7aRPHjBOs8xdzu356N7fnuMbHtOecwT91oARE19DJwE+9Z+XsPACzlyXbfik6bgqRVO6vx+visCYgSChqd3EBFnPBgbyJ7nx3t9BBc8uDfkmmtDLBEUfAtP371ivV7XOgxEumPqBfO/WCxa73s6iM+j1xvgPa8RAWGnKGev16s7XXStQ8aGe+KwiEQccg+Zpr1eS8Mj6z7HPgd+TU8b8qKfjCm7kMTaB3Ht8b5/tyimiAOCa7jQ4sVF4zrzPjAW/X6/lbbDeo31RvxcCmrG9ext9von/t1xBwfigrtvHiNc3LM4M7i3Hv3nntPBp79Bi1c2anZSUHiScDRutHzuqluReEDkcziRSDy1eBhB4b2S3ts0DSWJ/75OHp4fKKW8+lSJfbWkF7pObprm7ZLeLknXr19vusgAiNF86UxQiM4CSAbEBoLmOfIeXeUaTjT43KOgbjuHVMZ0Ct/O0lMbIsH1YnUeqeV3SJYTPaKvHl32qDnk2ms5sJ0hhNejzU7mIPJuAUdQwIpPSgh9hmi6WECxQAo3cmy07Mf5hTTTBs7FXUBfOZd54rPFYlFt96R40DcXCxCNjo+PW9tl+jpiDNyh4NsI4hgh3aWUoul0WkWbWO+C+WR82J0hpmj4uDLvEH53M3h03V0vkfj7jhq+owTryCP+9Jmx51r8zk//7hweHlZxxAk+qR2MN+vOv9+eUuTpGvztRTn5nO+oCzw+BqxZFwWZAz5ju1dPH/J0D7/nnYSWLcSFPYuvlWe3vrNPM/rXrunwza/Rez+np5Oab4lEYkuQz+FEIvHU4oEFhaZp3l9KeU8p5Rc0TfMOSZ8j6UdPX18m6WtOf37LvV4TcgvB4j/8nqMOaYFQxGgiJICK+uze4HBiBTn0Am9cF2t5LGTYlWftNQQgXE7aaX9MG4DoxfoJXY6I1WqlW7duVfJHxJWI88HBgaQTxwe7EHBf39qRMeC6uBD4fW9vr7pGvA3Ur7A1UIWL6XSq69ev6+Uvf7kmk4mkk6j7hz70oVZtB6/14GkTMWfd59+Ppx4BwsJms9GtW7fqto9Y3V2c4Nr9fl8HBweaz+eazWat3Td87H2d+NiRi08dBazxo9FI169fv80RwDx5AdAobPk9d3d3O8UE1jFj3pVO4oKEpFrng/PZwhQyjYAWv0N8JzxdwqP8EO/pdFrnh7FGhGK8SLuJNRg4HrEifjf5fnrKBPdizhjb0Wikl73sZVosFjo4OKi1K2iX19w4OjqqQhAOheVyqdFo1HJXuFAzGAy0WCy0zbiMZ3FiO/HB3/RJ+sgnJ9dIJLYN+RxOJBJPMx52l4ffI+nry0k125+W9OWSepK+uZTyFZJ+VtIX3+0i/OceOMF0gg2RmM1mtZaBF6hzEu7pBtEuDakgwo29HrIEWYn2crfjQ+B9lwY/n35J7RQE7kt03x0QpGV4hJm+Q354eYFDtl5cLpctcsi5TdNUYhxFCnc/sH0jLggKMLrY4nBHyGw2040bN/Tcc8/pZS97Wb3OdDrVhz/8Yc3n81qbAJLHOMdcexcCGGvGyncSYCtGCgRCWL1IpNcVYD1Np9O664NvA+qR81jYD5cHa8bdGjdv3rwtmk7/cCZ4nQ53dvg9qZFwdHSkvb29WpSSMYrrz9vlYP1Qq4FxZE26WEb9jSiO+XeTv13Mw+3hBTE9RYgaGDs7O3XN7u/va7FY3Cao+PfHi7O6wES7Y5qHuyco8ujPEYQZF0U8rYUCpy5a+neYmgqPAS7kWZzYPuy84eP0M7/1NZKkw91GKnc5IZFIXBXyOZxIJJ5KPJSg0DTND0j6pR0ffc59Xue21AVJLVINYZPU2sveyYLXOojXh5i4YwChwXc/cNLKvf13J9+eJuHRW/L7YySZ6zvBjQICbSQ33+3iTmYpMEn7GAevP4Dg4Dn9cWxctIF4rtfrahGnkr/XoYg585PJRNPpVHt7e3r22Wf17LPPVpcG7Y07Wbiw4bt4RDGF+WMMPXUCQoqV3Qv6+b1wYHg/mtNCf2zxGFMIPCIfUwsgzh7lRpjwteZr2YWb+D6fuY0fYu0Re09zob/uhPB1WsrZlqK8R3vpC2vEd0lwl4OLcpB+3ufFGvN7+FwNh8NWugLCStdaZNz5nvBMiGvcRT7u598jX6OeYoG4464JFxxdTIjPgW3HRT2LE9uHZjjQ6mWP1RamicRTiXwOJxKJpxUP61C4UDgBhyx6zr1HQmOqABF4IpBuDfeccM+bdkHArelO1N0SDvGCZDsRd2LHuU6wPN2Aa3FMzLfnnggKfj3y39ntIObTI5AgKkSS7sUq47hwfSK2g8Gg7iJBOyBlELfRaKTd3V3t7e1pb29PN27c0I0bN1quio985COV0IMYnXfSSltjsURPF3DRAUGBcyCs7lRxEs768oi898ft734/r6/h68rraUS3DcdQ58LHm8891cdz+ieTSe2Hpz4g/KxWq5boEfP9XZTgXNan1x2g5oQXRGS8u9wC54Hj4vc41iNxcc/Jvtf4cCdC/C66YOD34h6ICFEQYO2Ox+MqKPmaIZ3GC2cmEleJ/jPP6PBls6tuRiKRSCQSicS52ApBwW318X3+ox+t4XE7uBil9e3y/HOPBntRxfF4rMlkUm3wnINosVgsWlZ36cw5QaE+T7sgjx+S7pFhLO8egYfQS2dR2tFo1CLi7haAoHqUn+P5jHFgLKgrQRsRD3BLQHh9pwd3LXCd4XCo6XSqyWSivb097e7u6tq1a7px44Zms5l2d3drZHy9XusjH/lIJZrumHCy78TV3R1eZJPoMu1y8k1dBems+CQvCDTklNQQ5oQ2Yc/37UFdtIk5/95+5sL76GIB7UQIiuubvrrjRlIVOJxUe70MxjGmAkhn22d6H12kmUwmdX5Z36WU1halLorRHtp53raKiA/c110wCFQu4nghRy8U6d8h7z/3B+7s8AKZDndM+PV87UWXTBQsEolHjY/8ml+gD37qVbcikUgkEolE4nxshaAgtXdrgMC5pdpJV3QoeCV+zsfCDMlwYhfJqKS6QwH59RznRMPJUWy7p1yQAuERaa5DgUeIrYsJntbhpJIxiHUcPJKOmDAcDm9zAhBdX6/XOjg4qIKFk0uPWEuqxQ4RS/zY8XhcRQR/PfPMM5rNZrUwH/0dj8eazWY6OjrSfD5vRZCdBNNGT5HwsUDIoH2+VabvnMBYEnGOdQYQhVyoiuIJ7gCcItRBcBEKwum1K3x+vKZHrAHg9Ra453g81mg0qoKGn49owbpmjeOOYH14CgUOA/rgWzgy7pzD+LJOfc0yLvTRybaLLIyFX8u3NfXxYQwZh7glpM8jcyOd1UXAmdLlmohilV+beWR9dokiFFb1gqCJxFXgmX/0Q7rxjjfqJ39LuhQSiUQikUhsJ7ZCUHArt+dqu0sAUuDRd48gS2d56ZCW6GpwUQBCzjUmk0klcX6e/7xXeHScKK+Tqpij7tZ7zxf3vHpP/eB6cZwQNFwwibZ1Fzk8LYTrEJmHbMUcdhce2N0BQWE2m1VBwqO9EGUcBpE8et0LT0XgGjHNgfWyWq00n88r6fOilzEdxSPTnvPvZN/TMCh8iDvF3S2873UcuGfXzhQc46kbcfeBuA0okXsXzahH4H1jd4tY0LDL9RNTa3q9XhVmfMcHCDz9xSHh37uuFB3//lEMkR0jIO4e/ff0BRcJfW3GNepjjWjitRVon6ef+PplHGn7crlsOX1c5HicaigknkwcHxyof3MhKQWFRCKRSCQS24mtERRidXn/z/9gMGhFrd1CDgGFfElnbgePPFIkUDqrnYDVejwe16h6V80GFzn8fScz3m4nOFHkcFGAny44+Bi4Vd8Jkzs2nETFyK47HrwNbuWOx3p7IZP03/P1qTUxmUw0m800m800nU5bLgra52kppCY46aV/jL2nJyAIxAKdEHvcBh5xj4ICJNkj0r7Fo4+Lzz/tJ6rtxJp+sR68RkN0srBGfb58dwnaRVuapqmuGhddvOYBfYTkUzvE3R5RVGAtuLOFVBZ3gzBeXWuFvnvqgc+fjyfOC14IJbgD3BkTRR9vv9fXQEzybVl9fSEGeDtcXEQ8Go1GLeHBvyfSmSvInU+JxKNG/+Uv0+ZVe1fdjMQjQn9ZNP5gbuORSCQSiccLW/G/ZS+QJqmSewqkQUKIdiIueJ67kySpTbp9Bwcq/mPH39nZ0d7ensbj8W27C0AKXZhw+7enJXTBiSDRYyecnr/tOesueBDVH41GNX9dUo2ALxaLVrQb8oW9PYoeUWzxrTPpH8dDABECcBrMZrNqzUdQIHddUiXrkUjz2tnZqeQbx4QX1HSi7ekr0fHhIo2LPrzn7YD4QtKd8Hob/Vrk+2ORd7JNCoGLDN4n1o6LBS5AsDY85cNFq5s3b2p3d7dVKwQxgfOYY9bzZrOpThDmMkb4GV/WvheqpHaC1ySgfdQ38HQFdxewTph/xpsUBebZ009YHy6W8N2Lwoy7O+gPn3Ff2hx3WPH1x31Z56PRqPXdjttMZg2FxFXiI5/3Jn3wl1x1KxKPCtd+WnrZX/+3V92MRCKRSCTuC1shKEDSXRSIdRKm02kVDtypsFqt6vEekfeieNFW7YQaIuPReemErFCwEHIDUSLaHcmOf+6FArludCEQkS2l1Px4COBisagOAEkt4kP7uLYXXnRbP9sZ8oqOAKlN3JbLZaswoO8MMRqNdP36de3t7dWCjNPptIo/bFHY6/Wqa4A6DPv7+7VIH7np9BNxyIUT+uXEjz5Bemk3c+1WekgshNVTTJgfb/PBwUFrp4bNZlNJea/X03w+13w+b9VxYEwhuMvlsuVSYF27GOVugNVqVVNGZrNZrWXgzgacF7hoXIgYDAaaz+etXT02m01N2/HChdyTgpAe1fcUH8aItuA2iekEzI/POd+3WB/CCzuWUlpFTyH/XhTT3R7uxHBBwdd+FB49xcSv5WIH88Y48B1iTXrhzEQikUgkEolEInE+tuJ/zdH+7NFqz9UmMrxcLlsuAq8REKOxfn2uA2Hyz6V2GoKTEbdsR2u6X9/JPMTPSa+7Dzxy7s4Kt3m7YDGbzep7HOsEyp0OtJtjPQJOW2O+vO/0wBixS4BH5a9fv67pdFodChSwc7v7crnUfD6vNQ68sr+30V+Mc8zVx3ru5NxTTmJRR1IU4vqKaQi++4GLE5Bbxs7z65kL0jAgt4hhnp4gqVV/AHjdBtaCO144BjGL74Rvi+lrnTXpBBzBwUlxLDzI9813QYmfM05eq8MdHAgztDsWOHRhiOtwjq8ZTz/xfnWlPMT2xdSICE+h8fP43efLnS0xXSiReNTY/5LP0K2P7UnK7UsTiUQikUhsL7ZCUACQ1lgc0SPrEF2v7u6F6oCTAScRfBavHXPOIZtEdt0OHq9Luzz/m/c8B537xRoOtMmr9HvuN/31ugNeW0Fq1xaIIkscEwQIt6UT1eV8J5mM+Xg8rg4FctCZJx9HCibu7+9rPp9rsVhUwuuiAu/R55iDT1u9aKCPvUfT3drvBJGf9NMt/Z6C4WPpqRP03+/n9QY8NcDFIU+tiOslpme4cMR7Ljr1+32t1+tWHQhfD15XAEEBUc7rUfga9zZ5uoKPcReJd4cCzgDvl2/7yDqiH03TtOodMLZRQIiiiTtMzhMMYxv9c+4dBQcXpjje62n4tRKJR4UyGqn3xo/VBz+l6GiSYsLTgvEHe5p86PZteBOJRCKR2HZshaDgVm4s4JJaxJPjyGd3YopNmcixEzwIE3nV7mLwCK+LEpA83qdugwsFRMG7tivkb3LenVRyXbdzA7d8c0yvd1Ypny0Tfdw8ouvV9LnX0dFRbavb4IEX4BuNRrcR236/r9FopOl0quvXr+uZZ57R7u5uFVC8T7gbNpuNFouFbt68qZdeeqlFMiGdnkri40B73WnhNROwq7sQwbmMuxdo9K0lfV69PoDn78exPz4+2Z4QsomTYrlcajqd1nXLmvTdGuizCy6MLcd7LQ2PkLvDpNc72Skj1vbwdeDfE/rkhUYRyPjMv3cIRqSbsJZ9m0nG1X9HtPA1hbDBekYcZA7dLeBzwueM7XK5rNuVQuyjIEPbvU6IF1NEwHBnixd1BZ5eQzt8LSUSjwylqPe6j9E73voySVm/46lAI5VG+th/+qKOf+BHr7o1iUQikUjcN7ZCUACx0KETQI8ue0QRgkLRQggUkVOIiKcUQLqdCM/n85YDwQsKYjknSk4xwslkUokI1n4nYL1erxJHqV3w8PDwUAcHBy17PMSQ9nNPCv55/j/Rai8EuFqtWuPGtZwkugUfMojgQCoJJG4wGFSBZ29vT88884xe9apX1XoObLm3WCxaEeb9/X3dvHlTL774oj74wQ9KUis9wuEEtNfrtXLmuR79Yqx9J4lo5ZfOhBMIrNfcgPA3zVlRTo+641ZgfOM6k6T5fF5dI4gN7FwAoaWOBL8jYgwGg9a6YV7oI38jpnB/5tXTL2g3Y++pG8wp9/X1L0kHBweaTCZ1rKmT4ekmUfDgfE/Z8BQazvM2+veJ70LsK/VDfI68AGR0K3m6UHQ1+XfMay5wL9Ys4gNFIl34ccdIVxpFInFZmH/Rp+n9n9ZTiglPD3qHRW/60z+uo5duXnVTEolEIpF4IGyNoOAkitxxJ8LUMHD7dEwtwDmAsOC530TPIRgQJ6LBROdjWgPnu0DhRRed5HadE4lvzNv2qDV9kNqRUa994DnvjNVisaiChtQmddKZkwHCxdh5NX7prPAjwsl4PNbu7m51JjzzzDO6du1aJekQQa8PQSFGUh2Wy+Vt9Su6nBKeUuBE+fDwUIvFos4Jc+WOAUiz99nH2OtDeNQbV4anTtAOJ8LMpa/V+XxeBQ/fbcSt9dFt4mkFw+HwNjHEHRIIH8x3TNXwtYSI4fPNfHBdT3fxQoUuznEf4M4dF33oR5fo0TUGfBZTXriXbwnrTg4XJjxFxdeMO5Fiioa3y1NyPJ0mCjP0tytFIpG4bBwNio5Hue6eFkze39PH/JsDHb34opTPm0QikUg8ptgaQUFqOxKkdm50rAcAGfFaAkRZJ5NJ3cJQUitCK51sj+cR6GifhyRBSLH987dvk+eRUK8B4AUPvb0RTqTpM4T2PFLlBAqifHBwoOVyeVsVf+DiDH979BoLu/ebXQiuXbum69ev69q1a3XXCeZjtVq1SNtqtdLBwYHm83klirgFnMhF5whj4bsEMDfsoOBkEQHA6yu4wyDOCUQRBwTiC/Poc+Dj7YVCvcYGghTkMxJaF8h8i8u4bp1Y0x9s/y7ExPXibh4Iv48bcNGolFKFDd/JAngdD8bSv4uRsLP+fOz8HPrs34tY48PTf0hL6kpNcreIryHvm8NTj7iGj4kf1zUXLtokEonERWP8Qk/P/MSRynf+4FU3JZFIJBKJh8JWCAqRpMT/8HtUNEY+yfPHUj2ZTLS3t3dbBNyJI0UCndhEUsc5EJbJZNIiVS4qYJ/3ezrZcyLLZ57TznW8VoDnh9+J1EBuF4uF9vf367Z8sco/5M5JIdsMQshGo1HLGUIRxhs3buiZZ57R9evXNR6Pa/R8tVrp5s2bLYcC9SYODg50cHBwW+Tc++8FHYFvJyipCib8HQvpeQSd9eDRbJ8Tr0HA7g2MsRNpbPDeJt8qlNdisaj1LXB3uEjl6Sg+p349FwC8joBv8Yi4wZriuzAcDqsw4rn/jAHneXFJUmfcjeD1Dbz45XA4rOkBw+Gw1lTwGgbcKxJ+dyX4/MfdPnz3FC/SGdObuK87eHzuXKDyMY1OA8bF00RchHIh6W7fvUQikbhvNFI5Knrdv7yl5nt+6Kpbk0gkEonEQ2MrBIV+v18L3EH22IpPakeLPeUh5nd7lX2HE8zBYKAbN25oOBxWSz41FIjgQuqlMzLp+fZ+H69RwH09yh6vB1lyog3J9Kh33DrR4UQQwgq5pc04Nbqi6h7Nn8/ntf7EaDTS7u5uvWe/39dsNqspJBDt5XKp/f19vfjii7p165YODg7qNocIJ5BE8tRdrPCilYPBQIvFoo4N7XOLvnSWtsAc4hghL591wbi4g4HPcGAQmY81JHq9Xk2JYF587D0ajmvChQUn4r7DAu13AtyFGMl3cuwReV/fXiuB4pouKvgaY4xxTvh6Y85chKJGBA4TgIAQU2dopwtjXYVGvR2sS9aOr09vP3ONQ4b1Ox6Pb3MHeWpDTNfg5ffzwo/ueIoFJBOJROJhUY6K3vynfvwkzSGRSCQSiScAWyEokFMuqUYLY365R849EgmRcNJAZXfPm3bLvee87+zsaH9/v2XNltTaNeLw8FCTyaQSf49cesTa89GlNrmBTEFyeBEp9gr/HOdRU6K7RJj7/X5rS0buC9FCAIgFLX08uacLIhRPhBTTb+5PsUhSGz74wQ9qPp9XISHmn4/H40quiYB7nnrcbcFFGdpBJN7rCNBHL7oYo9G+XlgzRN25h9fHYD7jeHn6DKAoo6dScA+i/BRf7NpS0oUwxt7XF2saIY1Iepw/+ukOHE9B8bQNrzPhooWv2eg0iCk0tN1fTrxdBHG3D/djrfK5k37G0O/pYpGvb8YAuBvDv+u+JjgGcLx/d5umqQUeY12ORCKReBiMX+jpdd9286QAY9ZMSCQSicQTgq0RFDziL91OmLoiltIZaccp4NF/yARWaq+ADxk5Pj6upBzyA6H07eNop7fDc+O7CuxxT7e/R2EhEix/eX9jcT8iuy4++FZ+EHEXZzwS64ILfYPET6fT1q4ZXGO1Wqnf72u1WmmxWGixWNQCjH4drxPgRQ3ZLSPek7mI9RScDFOPwqP8vGJaRVdBPbexs1YQJeijCzog2t5jvQBcLaRQMPcuosS1i+jgqQN+Td/5g3uSyuIpD/Q31k3wOgRu548E2QuF0q7zalUwD6xlv68T9dhP5sHXbxQ93FHgTgfcDbGeiK+Vrv67YBfrIjDPfr2YcuXrKwszJhKJh0IjXfupnspRo9kHjtR87w9fdYsSiUQikbhQPJSgUEr5A5J+h072uPohSV8uaSrpmyS9XtK7JH1J0zQfvdN1er1eK28dYiOpFcmFfEXRgRoGRNGXy2UrR52IupNKt4p7qoNbxmkLPz1C7oTexQcICyQJIWG5XGq1WrW2xvNIPSIBZDBGjmmbp4JEMQGCjBhA5N13OHB7v0fKGZPJZKLpdKrJZKLxeFzJK2kVpZTqjFgsFq0t/jwC7xFuSLvb4SHq7LTgUehYhI/1AUl3QShW5o92/C6XAucivIzH49ZaiUQ/1giAnPs8SWfRfYQZ7kF7o1uEuSMizjrw+hBcc7lctiLn3M8Ju4tEvk68eKG7QWK7+dwJenQFLJfLVtqEw8UWqV0ANKYnRSfJndwaLnx4OkoU+DztwQWMLsGJ490h4/eOaVPbjot6FicSiYtBOSwqx1JppFd97Q/q+ODgqpuUuGTkcziRSDyteGBBoZTyGkm/V9InNk2zKKV8s6QvlfSJkr69aZqvKaW8TdLbJH3lXa7VqjgP+ZLOiu5BiIhWQ9j8/OPjk+381uu1bty4USOyTkok1Qr3k8mkEuT9/f26K4GTqMFgoOl02rLFQ1gQCryQokeQIXcICIgLnr8OUeN+7LwQ6zLgpED86PV6tSq+CySQd4hsKaVumdk0jZbLZSWYo9GoVY+CFAwKW7orQFJNO6DPtI97USeB/vCZp20wRj53pA8Q2SfHXTrZynI2m1X7u2/XKbWLH5LSwLx7EUYXozjOxReOZWzjjhQRXs/DHR+sRbftQ1ght8vlskXGPY3j6OiojqU7WUopVVRh/fk6jOKSk2/WBWKEE+ZIsFnH7j44j1z7d5Nrx4i+10/gJ/Puoo0LKu6OYU78/FjY0h0lHB9Fg64CrNzfHUExRSVeextxkc/iRCJxMfjYb9to+K9+QJJ0/Bg8RxIPh3wOJxKJpxkPm/KwI2lSStnoRIV9n6SvkvTZp59/naTv0D08PGPFdo/SQpg8uu5iAZFMT3Gg2KBHo50kxYgoJJdIKmTGo/9EqjkGIrtarVrXiG3yNAWIC8UE3VIfbd5uvWbbQiLobpF3uEOCa7i4QFu4F4XuptOpZrNZTXdwkgdZdPGDtu3u7tb5IxLvtRk8lQWS6wQ1CkO0DbHGazd4GgjjSjFI5pgCkO6UcBJJuxEUfJ58PcUovf/k3vRpMBhob2+vnhPTEpzk0wau44Terfhdoohvr9hV7NBrWLDOuR+ClhfGjKkH0Rnj1/SXC0M+bj5GrAnaTlujM4FzXOjwsaK9fOdiypALE95n/675fPj4xHFyVw3rIn6/thgX9ixOJBIPhuFHe3r9//YRSVJ53wd1lELC04Z8DicSiacSD/y/5aZpfq6U8uck/aykhaR/0TTNvyilvLJpmudPj3m+lPKKe7mepyJAKLpqIzhJItJMugQpCJAuL+QWCV0saOcCxr1EqaONOxJWt2t7pNqJHKkavsVjtKJHMk/0FScDY0fbpXb9hlip3nPrcSm4oDAejyvR9l0QvI30ZzQaaW9vr+XmYN4YG8iek3L+dvIY/+beTiK9xkWsc4BIQGQ7RtndNk+qg+/c4VFtHy8XFpwUM38u+kRS7cKKr2l3unBPRIIoMnFfjo+1PdyF4MQYAY02r1arWitiNBq11qCLT17PwoUPTwdyR4XPgffbx8HnO4ooXCs6W+J6iYIB5zAX3lcfW//uI2h5n7l/FHXiOthmXPSzOJFI3Aca6fpPFPXX0uilIx3/hx+/6hYlrgD5HE4kEk8zHibl4RlJb5H0BkkvSvp7pZTfdh/nv1XSW6WTnQA8kkjUmvQDry3A79jjh8OhptMp12xFMhEgouvBiY0TxEjYcAVEougpGdFh4PZvqb3tpKdNcE3Iu2/P55XxvTZCjLY7UXULOIIKefQeWXYiiiAzm810/fp1Xb9+XZPJpFrOJ5PJbVZ5zmXcfUwRATyHHUdFJNY4GnCdREEh7kBAmgCpDT4+9IO6Dy4oRPLOWPnL591FABdGvF/suECb3T3jpNrrO/ga9HQNX0esexcrXBihH9SsiJ/5eqQ9HLtcLltiAe4CLyzqLgEfO74nOEFcRKG9HOvzgyDk8+339O+Mi0pdRJ42s/uKn+9tdNEReFsRIbgGqUcuKLg4EVM4thEX+izW9DKamEg8ESjHUm99+/PpVX//J3T0oQ9fQYsS24J8DicSiacZD+Pn/VxJP9M0zQclqZTyDyV9pqQPlFJefarEvlrSC10nN03zdklvl6S9vb0GEuDE+/j4WKvVSlKboElnRFy6PWoJWYrkE/A76Qqe243F3vO5ndx2CRsc684E/x0SRZvIkx+Px7fZ4yPh9O3rYqRaOnN20Ab6Q5rIZDKp4xdFlV6vp9lspmeeeUbPPfecXvayl9X20H5cC8wJpJ48fyeXiBq0cbPZ6ObNm1osFpUgj8fjOqceCfbihZJaIgbuA9Ib2FXCHQXj8bg6LRAU6DdbXUKcZ7NZKy1if3+/zgvry0Wd4+NjDYfD1hp0ouluGq7J9WgnaSQuUHEcogvjypgyHtSO8Gu70yXWOfDvAAU5qZ3Btplci7Xu1/J1jiiE2BJdCdE9gGjg4+IOAcaT75w7EPz7wjHuooj1F/z50OU6cJHSi4u64NhV12G1WtXv0+MgKOgCn8XXyrOPRYcTiavA4GZPH/snvvO2948ej+dE4nKRz+FEIvHU4mEEhZ+V9BmllKlO7F2fI+l7JR1I+jJJX3P681vu5WIeWfT0gMPDQ43HYy2Xy0oW5vO5pJOK86PRqLXVHdF8yNR8Pq9kA2KBHXy9XleCAYi0+y4TvhOCR7w5HvIbdx+gH0TPSUGA5E4mkxZRRLiAoHXZ6LkniGTSiVfTNHVnh+FwqL29vSow9Pt9TadTTadT7e7uand3tzo9XBAh6u/1E8bjcSVibCXZRS6x1zMe3BdXAIQyFmmMAhEW/Z2dnbqzBASddUL6gqdqQAa5H4QRMcedEBBoj7b7eLq7g/66G2G5XLbWMlF4t9CzLumbE1tcDz7XPq6+TjxFwddjFIsYC5wqh4eHraKc9I2xiXNICpHvlOBtoY30me9cTB/qGjsXzfw6Lpy508LH0x0NrHMf8+h0cDGwC34/7u/OpccAF/osTiQSJ9iZF/28v/Mh6fj0GbE51GGKB4lu5HM4kUg8tXiYGgrfXUr5+5K+X9KhpH+vE3V1V9I3l1K+QicP2C++h2vVgnFOSHxHB6KyMaWB6GnM/eZ9IqyllJpj79FZSBMRSa8FILUJeiRsEJBIQmmnuwioOeB53e5icNcB5zihoX3Ac9793jHdI6ZNYEMnpQOxgVSHWAvCHQhOvFx4YSyi08JFBBd8nBx6tF06qxHhxNnb422hHc1prQknqzEvHnQR5+g+4V4+hlyD81gjnkLSlW7DvHlRSZ83BBRcA9w/9ttrcriTgmO4bhecKPvYso685oGLDXw3WC9ec8KLb/pcsfYj2aed7LjgNUx8bCPpj+kncT79Hoy5i3DudGCeYntjuoU7jx4HXOSzOJFInKEcSUc/9pNX3YzEY4B8DicSiacZD1XCvGmaPyrpj4a3VzpRZu/nOlqtVjWijcU7Rv6dUHg+O7ndEIN+v6/lcqnVaqXFYqHFYqHBYKDZbFYJE1ZwrPBENn37Oick7nCQ2qIChE9S63hEEunMdeGEyqO2UUzxqvT0ORJR2uH3pV+IKb1er6YB3Lhxo1recXcgtIzH49sEASepXcSRMQdOHGlPJOJc16PjjJdv0+eEOpJzLw7pboautBC/fpew4GMYx/lORDUWfvS1iA2fvrCjh69rnCukHCB8sVac7HKsCwo4ItyN4PPnolaMwPsc+Tz5XCEo+By62MZ7njoQ4aIS92f9+y4Z3NvrNLhYFAl+FB5cyHGhLbYFASsKPl2OB2/T44CLehYnrhY7q2P1F30dTR4PMetJRm9T1F88Fg6lxJYgn8OJROJpxVbsieYOBbYLxJKOQ4GihJAtL1K4Wq1qYTycAJAuCB7EwSPK7mJw6zUkjuKDnu/tEebRaFSj9F07D5DiAOmLbgIIjRNHrPwUVozHQuogZvTF3Q1+LxwIw+FQ169f12w2q0ILYsp6vdZqtWoReoi7iyKIAIxbV6QX4YV5gVw7eTw8PKyixnq91ng81nq9rjUaIonzFAPvZxeYdyeiCCxSexcNj8g7seU6q9VKy+Wypt2wDlmTXujPRZIYlY/XRiDgRd0Lj6RznSgceaoJ64HrsBaPj4+1XC6rqHZ8fFyLbPq2mrSFMXIxxB0BOCxcXIp1RxAFfe34GNB2n1PaER0r8XtCe3zu3Tnk32O+c+6U8JeLh/484G8vqBrvmUhcNib/27/Tm/7D6/Xjv+dVV92Upx4v/4FG177h9noJiUQikUgk2tgaQcGJPfnkvO/54r3eSWG/vb29Vi635297Djpk1KOYkKxIxLsQI93kvhOpdWGCdkBko80c8ied5YRj+Y+ReKntPvD+e8oEJM0dFB55R4CgaCHRcsjX4eGhFouFbt26JUm1jwgRi8Wi3v/w8FDz+bwKNQgRLgK4sODj4ikTq9VKBwcHtRjifD6vJJJz4hjgUokE1EmrE3bGnP55vQaEIL+Gk0cnzP6CAEOuY20ETwFArOH4WHTSBQWEgC4CTu0D1gxiDAJMdKjQZ+YlOjuiOMSLNvu697YgvLiTwOtPeCoGKUfuGHLBxesT8D33uXSXiafoABf2vB/+ffZUBhcNoluD73BX2pKLQInEo8LRe96nj//Lue6uGs2tfT0e/qREIpFIJK4WWyEoeL0CiBxEm+iyW5kpIuiknsgk1yKKTDFESIOT+C4rNe2B7HjROU9JcFs8RNfFCa7tcKeCF7pDbIg1A6IlP9q4I9nx9IvDw8NKVn3nAHcvMBbL5VL7+/v1mr1er7WLBvn9R0dHWiwWlay6oEDbXQyQ2kX36OP+/r5u3bpVBQV3CTjB9XlAjOEacQycTLpLYLPZaLFY1Pln1w7WAMd3WdtjGkDMs/dxR4RBbAK4EUajUateBnPl9nza4Gkf7PQBgSetgvc5LopyPh4uLHWRexfN3DXja8ZrK3gaiI851+saK356uk9Mn3Ehwcl+lwjA99zTFLr+dvECuBjk31P67O+76yiReBRoNmsd/sy7r7oZiUQikUgkEveErREUPCqL7RkrNtZ/iNHu7q6uXbtWBQVIrZO8fr+v8Xhcr+9RdCcJfg6kyYs8RoeDt7krJx1wvFfu98gq7XCyxXF+vOd3e65/JIHeft9qkGg84kfMD1+v17XGBKS71+vV+gpuQcfWTooJFnl3O+D+8FoVjCM7Drz00ku6deuWbt682SJ89N1TPYjwU5gTl0CMPkfSCvElbYHxkNTaqpE+RRLucxDnz8fQ2+DE3YUtLwbaRaS7yDPrifVIG90R4q4Md1Ug8PiawA3ha89FAF8TtC0KUb72fKxcCPSUAncKuaPA79G1jqMY598DF5/OmyeAyBKPceHRa0i4C8PFj0QikUgkEolEItGNrREUxuNxi4RCiiDdbt2/fv26rl+/3iL9BwcH9VjIz3A4rBFit4pjgQfnFXHjfQih53xDvj267EQ3Frtzy750QjS9EB8RZ8/xd5IT89ghb06+2QoSO7zUzgN3ezjvbTYb3bp1S5vNpkbW6e9qtapFMj2nPqaBIDIsFovatijuuFhz69YtvfTSS7p582ZNn/AaEvSd/u/s7NTc/6ZpKjF28uh9ol+8Dg4OqhNid3e39on+shUlRJ1ihO5S8foPzJmnnUCQIe++DWJMM5jP57p161atz+D9dVEnpsHQNu7vY9DlUvCaAKwr7sP3wdNHIjjfHRbUvaDug7fN02NcgPD6BC5EIKLEwo4u1pDKw1y4s4N59vZHVxDt8WNiYdN4vK/xdCgkEolEIpFIJBLnY6sEBemMpHlUkyj1eDzWbDarhI2t+CBsnocNAeG6EMumabRYLFqEtSsv3q324/FY165dqwUaJbXEAicqADLoW1Jy3Zj3DrxN/h7XiwTSnRkxpcGFCY5dLpdVrOHldQYgx4ztdDqtJN4jz/TD27xer3VwcKBbt27dRt6c1B4eHmp/f1/7+/s6ODioIo/n1JMa4CKEFwHEbeD2dHcl0Ed+RyDo9Xqaz+eSpMlk0iL6HBNdJu4iiXUCuu7LOEGefS4QXV566SXt7++3Ivq0g59OeJvmbHcCFwFoX6/Xq+PImpCk6XTa2lXC64iQsuKugK7vpY+vCyBOxn1uaL+nQnC811NgnXoRVO8Xaw63B2uSGiDeD5+XCJ4R/j1FUPGUF3eeuJMkaygkEolEIpFIJBLnY2sEBRcPPN/eo6xd1msXERx+HXcFsEMCJMKP8wgoRGIwGGgymWg2m6nf79cIsVvk+en96MoNj2kN0cVAgTreX6/XrToNnBdFAd5njIjqOhF3K7wTZ4ilOyukM9cHRSS9/b4FpueaMy4evSbCzbhLatUC4FjPc4+1IxBNnOy7C6CL0DtZ9+g1JJpUDre5Q04RX9wN4PUdGHPWjo+xjxVzRru4LteOAoKnMHiUP0bKPUWCdSyptTZ9LvmOeFoEwoSvSSfdMcWGdsR13VV/wceA9zxdhH76d541F78vLpTFNCPGJdZz8PHz2iSeZuF9jff066SgkEgkEolEIpFInI+tEBSkdtE7JxGkK0RBIdr4Yz56vJ6nDZBugGDR7/frDgiQGogKUVGcDl6HwZ0OklptjEXfeHWRNCd7fO7kkGKEXAsiDil1soWg4PUEIFwQZidNMQXCiZkLOR6RdpGAMfF+IlIQPR+Pxy1RwSPKMd+fNiAEOZH3XS1YE55eEl0j7gBxhwGEmgg59SIQE/b392s0njoYTuBJM0FsIeLtufjuSuGcxWKhxWJRBYW4Fpxo49ZwgcHXM31zx4iTax8XfnexBUcG57qYwXsgrhdfUz6XnsoQ1xLwOWIM/f5RXHFnDms69sVrT3B/F3y8Ly4q0LeIKAAmEolEIpFIJBKJbmyFoOBE2N0GOzs7mk6ntWCgW6SdODqZdPEgRjyJqo/HYzVNo+VyWd/f29urNvijoyPt7+/fJg4A8sXZPYC2ei0GyLhb1V0UcNAHovWSqn0dohht5HwOSafGhKeB0HaPTPs4QwIh7G7h55hYmI/PqS0RI8fuPEDwoBYDc+nzxP09otwlylCUUDqpeTCZTCrRP69AH3DHiM8Z80SBz8PDQy2XSy0WC928ebOOl2+3GbdW9LQMUjdou6fALBaLulXmrVu3dHR0VIWM2HYXGjwFKIokURzqIu9+DPPL/LC+fEvJrnQb5oiUDU/jiQKOfz+jmyGKFFzbXUSshSgQugvD60RE0cJrLLjjBVEF8Se6iFwE8fYlEolEIpFIJBKJ87EVgoJ09h95yA0Rbc+hl3Qb4emyOXcJDx4Fh3xDGthecjwet3L49/f3KwFDfMCy7jUIIqGHwHgEXTrL1fb+Ao+8Q3pWq1UdEwirE8PFYlGdE17BH1JFBB2izG4JjJ2PodcGiPNCe+KYU48A5wfFDiF7kFbIuJNvf0Xy5oUuDw8Pa1FFyDG7UjDPk8mkVfQyFth0lwO1ANxBwC4QuE4ODg5qgUmAcINowhzwntezYO49VWOxWOjFF1+sQpSn8sTUjq7tJ71gIe3xdBR3d7g7gXQWn9sodkRRIgpyvO+1Kbxd7oyI68cdFE7q4xrzn1EwjKKhb1MaXRpRZELk8DFywSMW84zt9jFPJBKJRCKRSCQSbWyFoOD/YadAIi93LwAnEBzvefhux5faRAWi7QR3Op1qMpnUSvbSmeMAIgp5dkEBMsM1XUyI94yRUSe4HOuk0avvezTXidRqtapkHmLuwgkEimMZE9oTret+jxgFj1Z1r+fQ6/VaWxl6cb3j4+PqzvAimT43PlakMvCZ1y3wiDS7NpAjjxhE4cyYtuFjwhxwD6+rgDAQyTFzjUvDhSoEBV+DPoeIGIhQPrbAax94akUUYVx4i5F8/8n1PeLuqUBRVIukORJq+uMikKcpdJFyrhPrFfB+FNe4TnSZRGEhpjj59Xz8fY27a8QLajKv54kGKSYkEolEIpFIJBLnYysEBeDF2SA8nkfu5MXtzERUIRNEy50IS2fkfjAY6Pj4uEa1Z7OZRqNRzed2e7ZHMSGf2K69rV5/QWqTRe7tKQWxsKPfF9LkRAsi6oS/i2h7FBbiTLuJjHuxwJiDHgmgEzjvE9dwRwXRYD+HvjkhdjIeBQXPce8SXlxQ4Log1jRAXOLaPi4+v8wnTpQ4d03TVNGBcXPCKp3s4OAiRhRCSNlwh0msPeH3o/2sKd+FgnUSXQbxZ+yHpCp68f2KolUXPJrv89gVxffvjhP18wQFr+8QBSsXLHxcvPZDhLfLRTwcF/6sQBSJfYl9SiQSiUQikUgkEt3YGkGB/+gTYaaY3+7ubqsIHQQt5vz7Dg1sl+eRTCcHpZRWegPpAhAXCiJSXJAifLEonxd59N0jIIsOj9gTscZq70Q0Wtdpu1/PCTmk1YsgMp7ABYOmaVq7QXgqAXUqGCPGwPvkqRXS2Y4NjBttj46S2Bcnpy4O0V6uw1wgDsRceuoW4GxgDGnLzs6Odnd3a6oH77ngQQqEixcIJnzu449jwNcN6SleyJKxjaIPY4PLgr4hnjFXzKunpbj4FFMifBePmCIURTXa6Ft2uqOCdeLbj/r6O8+R4OtvMBi0im5GV0EUdtyd4vdijcR0p3sl/LGtLnTwPWAMfJ3SzxQWEolEIpFIJBKJbmyNoOBF/pxINk3TKpa4Xq81n88r8YNEuzNhd3dXTdO0iGCX9ZpILVFs7rtcLjWfzysRhFh7ZJg0A+AE1fPJPZLtzgIIlEeqpbPtEHFYxGgwJNKdGpBJCKrvCACpJUpOLQXfoSEKABBrT+3weXKS6lFjJ+JxXsn59znwaDFz5OIR8+1uFdJVPPXEnSgucDBX1KDwwpkuaDjphdy7LZ6dHzzSzfwxDow9Y4DI4KkOvrMC40wbR6NRPc+FHh9n5jumO7jY5t8bhDkvnEmbY/oPY8f9uF7c/YHr0Z6u4oaebhPTeaJDJIqE1I7wuhKeBtFF7mPdBhcHvJCoj6G7oXzufd7pX5fTI5FIJBKJRCKRSGyZoOAF9Zx8S2dbMjbNWTE9iBaOg+FwWOsgdEV2PbLqpAaiBSGbz+f1BUGDXMTCb0SrKRRIu/jpUV+3eUO6/H3aAoGm7xAuyI6PFaRbUo3Ck8rhbYDM9vt9rVarOp4eyXYi54KHz9F51nq3lzthc7Eipo/0ej1NJpM6v94m5gyBAjHByb6nf8S8+1iPAjLqWzm6IEJ7EJkQahh/xrjX62k0GtUClFyLMZVUf3ei2hVRjy6UOPZu16ddXM9TL9yp4o4Th7s/vD3Ml1/La0FwrItj3pfo/PH1zXv+OefEVAY+py8uOET3QMR56RRd90XAcAeKix2+VmP7E4lEIpFIJBKJRBtbISg4wfYIoedrQ1Age9KZ9Rpnwng8rqTYCadH3z2a6dFgj+AvFgvN5/PW1oecizuBSHVXO70wo0fCIcNcw+sZeOTWybV0e3E9b4vXWlgul9XhgFjRlRLB/bxYobsWHHFngEiwuqK4XRFq5gNxhn7EnTUiweMzf2HZ9/vwN2sn1jnwGhZS21HihDba/F20gFjHgp/MryMS5vOKWno03NuImOPfjejm8LbFmhxc2/vI+CAguKjmYoILcD6+XufgPEEhfo+jkOLrJ67p+L5/dqe0g67P7iQ+MPdes6PL/XAnESORSCQSiUQikUhsiaAgqUUSibQSbV2tVhqNRi0CKZ2RPbYOhJw2TdNKi5DOhAi3kxO5Z0vI9Xqt1WpVt/aLRBHS53n6q9VKTdPU44miQ/bZOQASMxqNqn0foh/rKHhtBto8n89bVemdCEqqTgWv97DZbLRYLOr7ngrgbhDuw7U5xrcOjDnsDq/9QN8jUT08PGwJIPR3PB5XIQiBxqPEOBO6cuu5t3TizsBpEsUNUhKipZ/70M/oBPBUGmok8H4UTeLa4v0o6Pga8nZ4cUsvwMn9mCNPNWDO/BwnxU7M/Rx3fniKUSz86CksLor4HHg9BMaQNYBLyOEpG8xXFHbi8Q8Lbyd/uzskRYNEIpFIJBKJROLBsDWCgtQmQB7Zd1dCLHIXLeGDwaCSNy9OR/4+5yEAQO480gyR4poxrYKaC27NJq/fI5/L5bK25fDwUOPxuNVe/naXgUeNIdNYtJ14egQcMjafz9Xr9WobV6tV3X3g+Pi4FjX0SHRX0T1JlUgzxkTuu0h5JK6+7aM7AiLRpy2+S8Z6va7tpH1ejFGSDg4OajoKc0uqi9dEQDBCbKBNEGfmnnMReqK7wncNYXzdQYI4xNwgivl69Yi/p3YgTPj6g9xzfXcnODl2Bwbk3d05Dq97wRhEsYyXuwq8T9Gp4ddjHBCHuCfnAebU3SZdzgrWoIOUFRdWugQLT5Pwc/2Y81wTwAUX5jKRSCQSiUQikUi00R1yNpRS/mYp5YVSyg/be8+WUr6tlPKTpz+fsc++qpTyzlLKO0opv/peGtE0TcuSD3GHRHlhN9IQXDBw67f/7aTBUwt4eQQ+njOZTDQajarzwVMJaMtpf+u1eN/t512585wHUYx2f4helyPAyaQ7FTgXh8XNmzerOwHiCmH27TidlHJPxgUyPx6PK+n2rQoh1/4ZUXrfIQMnhzslYjScvrk7g608SQ8hos01vM6Ak1QnnEdHR1XY8Xu7CyCSY09h8blySz/HMw6ebuFOF9wpMbofHRx+X58X3vdinl3EP5LsrtQUvw/99+9M1zrzY+irryEfm650iEj8fRxZY6ydru9ovKZ/b11883ny7wPvd10zpnD4PaIbahvwKJ7FiUQikTgf+RxOJBKJ23Ev/2P+WkmfF957m6Rvb5rmTZK+/fRvlVI+UdKXSvqk03P+aimlr7vAnQOS6o4AEA23XLs1u4u4ODGKRMKJINZs7uO1DyC12PERFyJZdcs8UXn6QhtjVJ52ARc1JLXOiW2Pv8djuDd1IHxLQCdwTt4ieY1tjtHkeN+u67mo4sQ/7mrh1nqvIxCJpt/b6wswBzgdfE68P35/b0Mk+f4+L98VwecgrgEXd+g/wkLcRYJj6H8Us+IcI9K4MOFt8XtHASsSZh+XLlHCvwfc24/1+YiEvqsGQxT2ur6TnnLS1SdHPCe+f6exOA/xOE9p6WrDFeJrdcnP4kQikUjcEV+rfA4nEolEC3dNeWia5t+UUl4f3n6LpM8+/f3rJH2HpK88ff8bm6ZZSfqZUso7JX2apO+8yz1aZImINA4B7ObswEDdAkiNRz0hAF3F+5xsEmX1nSNWq1WLsPB5KaUV0XaiyfWdZPKZixuQH28zFn1PXaB90lk0mJdb5EmV4Dja7YQOUcSLQXIef3ufEGsQPlyE8HF16zv9dcIcCbITV0QIJ7br9bqOn4s6pEPEyLKTPPoMaXciG0UKX2e+9jg2pjogYPhn3JstFTmesfK59FQHHC58hhMBUNeA/rhw0zRNreHg7oCY8hO/U/6z6zsXUwuYa9ruAhHfy/g98+ttNpua9sN1fB34/bgO8+Pr0cckOhCYc473AovRKdIlKPi4ngd3xNyLIPGo8CiexYlEIpE4H/kcTiQSidvxoDUUXtk0zfOS1DTN86WUV5y+/xpJ32XHvff0vTuiKxqJ5d3t+R6Zxl0wHo81nU41mUxapB4HgluXPSLd7/fr9n/9fl+3bt26zZpN2xA3sK9jZ+c6EP7hcFjTMbqIjBMxUhA84ovAgEjh2z+Sxx0LB3qevYsZvIcg4mKC2+IZI+4BkeSc0zm+TVTgWr4rgtv2IeN+T8giNSroL8czr7EYpNdDWC6XdSzcFQLhZgvPLpcFRNOFG8YNItw1Vz6+tJ92+T0AhJy1GNdeXBO+hjiW82kzOE8ocDLdRYJ97qJ44yTb60J4MVF3SbjTJ97LxRIvIOriEoIc3+k4HlEMcLcEriHW12AwqOsMEZD1FdM14ljQX58b0nioAxF379hCXOizOJFIJBL3jXwOJxKJpxoXXZSxK+zXGeIrpbxV0lsl1R0cYhTaiXO92GmkdDab1ddoNJLUzptGUPBIqQsOHtGNVm+PzPqxvq0kxJvPBoNBi3zR1i63ASQ+2uC5L9d1MonbwCO7fg8nrvSfWgSQtEiOXGzxYn5OWnEseCTc7x9dEqPRqJXz71H8OxFQxt0jzoyHp054qgKk2N0j7p7wuhEe+XcXBH2IKTT0iT57+72eQLTu87m7FaKQwfxEEc3HmYi/j53Pk48l8+brMba5y8Yf0wR8600Ie0wj8TUGvC3RseLw75+LS3Ec7pTq4OkvpZTqmvDx8z77dyMiChYxnSK6YR4zPNCzeKzpZbYpkUgknibkcziRSDwVeFBB4QOllFefKrGvlvTC6fvvlfQ6O+61kt7XdYGmad4u6e2SdO3atSYKCtKZc8EJFVtE7u3taW9vT7u7u3VHA4/i+zaRx8fHdUcA4JHSGG2WVMmwf0bkmBdiBW0jCn7av9vaTeTTt8f0SDxRUSdn3Bure9fnEB+3vkO+XDghksu4dhFat5FD5l0YiGQ8nu+fu5jgYktskwsK8Xo+T1Hs4PdYF8EJpv90wgii88Wv69Z3rulkHicM1+4SFzxtItZbiNdl3PycGK2P4kSsveCpNfQtEmeHiwpedNNTYbgP978Tovuj63j/briLwdsU7xVFP+bUhRs/J86Ff9Z1vJ9zL2kRW4SLfRaXZ7cnxyORSCQeD+RzOJFIPNV4UEHhWyV9maSvOf35Lfb+N5RS/rykj5H0Jkn/7m4Xg8zE/8BDOHzruslkol6vpxs3buj69eva3d3Vzs6ODg4OtFwuW1F3yDD3kNokHQGiKzIPiXZC4iQIgguJg0DjCnAyRv8mk0klqVK79gFbG9KW9Xp9myBBioAXJoSQeYqH3zPWjeBaLrYAT5HwaDRiDO4QT6PwMY05/W6Nj/nuzAfXj0TUI+S+u4ETRa+XEOs0nCdQ4CTxa7MWfDw87cLHK7pOusQVj/Z7fQdvh9eGYBw4l89jpJ82RLHLSbRH2F0I6xqfKER4nQfG1YWgLnEgiiJ+nygOcm++X6ydeB2uxU8+o0/xui5cxHGM6zAKNFFk8/53OWq2EBf6LE4kEonEfSOfw4lE4qnGXQWFUsrf1UmxmZeXUt4r6Y/q5KH5zaWUr5D0s5K+WJKapvmRUso3S/pRSYeSfnfTNEedF779PvU//x5Zh/wRwaduwvXr1zUejyWpFmqMBIxrRdcABNlFBs/zX61WWq1WLYI8HA5blf+Xy2UrHQPC7oLCcrms7eB9HAqcw+ee3gHZOjg4qGTbiRN1AhBQnNDOZrPbBIEYcffotrsPJNVaFLRjuVxWYYbimIgKfl/I+Hw+bwkTWNJ97KkzIakKDT6OoCsS78KDCwDuiogE2Ak89/LUBdrnTgIEHt8O0wmmiyZR+GCs3Y3h65j6HT5+nkKzs7PTqsHgKQYuZg0Gg0q4uRffET6j5kR0mvg6i3UcGAt3xbhbJDpiuKbvvuK1C2JKQReiCwPEwqp+bXdr3In4R8dDl0gT23Weu+Iq8aiexYlEIpHoRj6HE4lE4nbcyy4Pv/mcjz7nnOP/pKQ/eb8N8YgjxJso9Waz0e7uriaTiabTqabTaauAHQJArOAPyeN9tvJjVwHPxY5t8ag71vZoj44pBy6GuBU+5vJDzLhur9e7ra6Ct11q7ybB9SF71GUYjUaaTqeV5K5Wqxap8+0tIaaHh4d1HHq9XhVp/HMnoj5e0QlCrQPuQ8TbBQ5P9/D58rEkBQJ4+kQppYosPoZ+LPPhc+U1C9gxg2tEt4BvWclY+NzHnUPot5PtmCrhczccDjWZTOpa8xSTWLPA7+sOg/PSHjjOxzymacSofTw/Oh18twyEkug0iU6ECBegfK79ni7w8Z6vez5zUchFDs5xnCdg+Fj5T6ldI2KbRIVH9SxOJBKJRDfyOZxIJBK346KLMj4wIH1EWJ3QSSckbjqd6tq1axqNRjo+Pqs6v1qtatQbMsDfvBASIH6QMi/q5vBouHRGMiKZd9t73KHAI7nuDnDSzGdefZ/7+f29+j4E31MYIPAIApBct3Iztu54iOMfLd+QP/rvRfFiYUHmxMeKgpteC8J37Yj2c//ptTBoL5+5fd3dLVEEOI/cOrzWgxNpT0fwe8X14v3mmOFwWMfV2+/z4FH8O6UVdPUj1gGI6QJREIvtd9GDc/xnFMr8WE9f4PfzBAYfg1jL4DwRwNsXxQRPffE1yjzGcYjupCi2dGFbBYVEIpFIJBKJRGLbsBWCApFIdjIYj8fVsg3pH41GGo/HtYYCVnx2XkA0IF8d+zWRdlIE1uv1bQQsFnaTunOo3W3A+U4Qx+Nxi9B65B+S6qIG1nQEFEh2tM9zLukBvsUgKQjc3wUFrymxs7NTP6duAWkbfI7oEQsgeoFABAXGzCPdzIHXiGAHDgeiCOcB7uFknrF2d4f33cURt+EjGEGku2o0OGl1ccWJrNcR4PjoDMD94rtLeNqOiy/MnW+1yTqL/acNjK33La7LmH5Du33uvG+xjkd0MbiI1FVHJL5iWs55tR24Rkw7cPi8AO8Px3S5WPycmB5xnoAR3+O8ruMSiUQikUgkEonEGbZCUNjZ2anFFcldd6s4goLvkgDhgUi/9NJLVVzYbDZaLBYtwre/v6/lctki6RAQJ9JOIpxQOWFyEo4zYG9vr7ULgxPXKCZ4/QDs76PRqDotEEEYm9FoVOsXOLn2nS24npNOouSIHtPpVIPBoLbDz4nF+EgPiZFuBAMn1wgJXoeCfi8Wi1ZNhVh7gfQDwHxxjDsxvB3MG/DoP+PKsQhOkqrQ4HUDBoNBdYTgiPAtFBELON7FlCgydaUr+JpjLdN2F468TkR0EPiOIi5muTgSCT799bGk317/gfny4pfMv4s77hJxoYW1znrzNeRrzIWQLoeMCxK0V1JrW1B3QPDyFBRPKTqvGGVXegXXZAy6hJtEIpFIJBKJRCLRxlYICv1+X7u7u5J0W8FCJ/Fe2NDzpjebjfb39zsJyPHxcSXqEBIngdQe2Gw2lbS7PZ8cfY8Ck1dOWxA7OJ77xGi+dBaF9/54rQEHYgLHbTabluPAayyAOF70l/oKtCEeD+nsqkXR1bbo3vDoMA4IJ6IuFkHYPH0CIrder1vRdkQeJ6memsA9+R3S3rXdIXPjKSOISRBTj47HSL+LXE5eETCc9EciGtMh4laVFAp10o9gFZ0LMcXDxY8uss91mQsXg5xc+44U7uxAMHCi3rWbggsCnt7ja8bdDy56uFjB3101Iri+iwTMI+PjIltsYywkimPJxYrojEgkEolEIpFIJBLd2ApBAWs8RMT/g99lSycayueHh4caj8etiKrb1X3bPiK2cdeFpmlaEVapnQoRI+WkHpCKQV2HmOcdI/Jcl5enOzhJ8roIkKVo93YS5+32ProFn4J6fo47LeKOC07anVh6G7oizrH+g9fD8Gh5LFzpqRaQO4/gewTdx9H7HPP1WU9O4HEiMCZ+P4+AQ3y5b4z0+31ATBc4r+6CX58XBS2dHEdxI8LTafzafl9P0/C2xHa5eBLFIj73depijtcJcSECN4iPTUyHOK9NXbUWfC3698vHyY/1PsR70XYXz+IcpUMhkUgkEolEIpE4H1shKBBBj1HlGIV2sgB5gfRPp9Nq5SfK7tvlcT1JLSLvKRRs5ecugFgg0PPZqUtAygJpFtwX0cMJHffye/d6vZoyAFGjLZDLnZ0drVarStLoDyJHJFo4MGir284j0XI3Q4xKUwMBsslYMEY4CJz8OnH3cXcRhHH0yLNH+JlvJ/SeE+9ODF9HLgYhKpG24HZ2j+67PT/WjXC3RlfE34UFiDgOiK5dH/jpQoIXo3TXAn1ijbsYRD98XHnfhQcXXDwKz1jFaLyPdRTyorPF01hw6vCdYa14/QLvWxTFYlqFHx/7CJqmua2uhKfb+PfOz/F79fv92+ordKWOJBKJRCKRSCQSiduxFYKCpFYdA0iwdOYSiBFmyDgEBkHBiTvuBSfTWKQhywgLpBBwDa+n0Ov1NJlM1DSNVquVDg4O1Ov1WmIC9/I6DsPhsIoKFJxcLpetdAnIE/UQIIqz2azlmNhsNrU2BIIJDgknScBFESd9iBm4PBgr30pROiFWFJmEIC6Xy0raVqtVZ70A/nYiPplMqvgym81a8wSRj6KER++jlR+3AKIJ9/O6E54GEAkq40IaCG1BsPECi04o3Q3grgkXQKJ1nlQK+si5rAPag3AT00t8XPy74IKG15yAIDNOTtAZm9gHJ8/+0wUDUgk438k8wgzpOS66sa6Zy+hMcSHLhQbawPiyfl2wYOyYW366COlr0teoj7Hfm2t6KkQikUgkEolEIpHoxlYICk4sAKRwPB63LNNx+zsnG75rQiweGK3RkNFIxNwVAeH3dAGIkhNOfneXgZMtRAVJVTShT76tJSST/tPnGJ33NAaP0E8mk5brIY4l96ddUWDxPvX7/Sq4bDYbLZfLOld+ffob3SUeBXY3htTews9TGpgvn2vvf0wnOTo6qu0CjLuPn4O58ZQS+uHpCh5Z70q78XSa5XJZ+xeLD7qow3gw514nwMeM8ff15eIAfUd4icVEGQPSKLwfcaz8HohWrJnobPHCk/5d8RoGtMldAv6diu6AKJ70er3a5q40DT/Wxy+uN4QG+hTdTT7WLgJJbVdFpjwkEolEIpFIJBLnYysEBamdUy+dpRjELfbiloZ+fiR77laA2DkxdIIT88adbGPlXq1Wrc886h2t5vQHgcPt6ERBnZz5/T2C7Hn8Ma8dQkx7uA9j4Nf0Nsf+8Yrkm+tDwh3nETDaD2iT29K9Hz6XnqMvtYWHLnLpaRhxDcQItbfbo92ksbhLIxZMxNXh5BoRiJfn53eNVZx/L7LItd1V4muzK3IfCTbjFlMfnOD7sfQpWvu9Hz5H7pSIc+5zFufQ+xNTLOIcxXHydePrmv4zzi6Y+DjeyUET34/fLXd1pEshkUgkEolEIpHoxtYICtJZHQCPMrsIEFMf+E9/JA5EjT3n31/cS2oToEjAOc4JkX8eo9nRnh53ccA1EXO+vT/+uV/fo9DcA0cGxxMJ9/O6HB0Odyp0RYud2MbCkG7D97oOXlQQMcZFAB9Dd0YwDh5977KqRydDFCjiT7+fFxBkXth1g7QX31mB9cU6YP1Qq4NtPhEI3F0Q10t0ZDCmHsF3UcTnwwmuz2ecN19b/h7n8TO6Ptz14veLZDoS7bjepDPXjadNxO+Vt8fnNgppvj7dCePvRZGsS6iI/T/PgeCiBH+zA0cikUgkEolEIpFoYysEBcgwJKSUk/x9ahBEuzROAUk1H30+n2s+n2t/f18f/ehHa/pAtJtDIHx7PL9WjEr6FnTYpyGFEN/Dw8O62wM55L4lJVF6/xkj610uBiz1EO1+v6/xeFxTJjy9gb+7ovzcgzFmLCH70tmWgV7HgfcZO8i3389TLpyYc4+Y6sC1nDgz3rGAJmTVbfMuXHBPr5NBn5gf6llwHcaQdeHzv7Ozo+l02orcs3ZivQuuG4srxtQRhxNl7ucih4sL3i53EcTofXz5fRhrX/9cj8/d+RJrjcTrMDdRxGF9OvH21AJfI+7I8e+AOw5c4GA84z2jGyWKeH4N/nb3SRTPPA3GnQ8pKCQSiUQikUgkEudjawQForoUL4ScE4V3lwC7OUiqpPvg4EDz+VyLxaJV9M9JlJNrJ6Tz+by+DzFyVwDEBxIJkfRI/HA41Hg8brkNeA9RYTAYaLlcarlcarFYtNqChR5iHyv+0zYIk3QW3XanwmazaY0PBB9hhraORqMWofP7Ma6LxaJG1T2C7dZ8iKMLEm79d2Icxww4We6qqQDRo+0enfbovpNBT/lAaIgk290bjBXjyRxSnI8ClYyH1zXwPvkYxjQYznORhvv7uHqUnf4xBxwfHTwxLcbHx9eYix3ePtaIixKLxaK1i0ck4T5/sW0+L/H7Fx00HMdcdaU0dbkT+J2176kKXNudRr7WHAgRXleD41xQTCQSiUQikUgkEm1shaAgtS30kZBEq7mnJrhDAcJPVLKLPEEsPAoNUYEwQo6d3EYSBJmM7gO/npOcmJ7g4gZtRCiQ2tvb0WZID+2GCHlKCKSecXAy7ueMRqOW8NBF4nzXC4+qu7OA6HMs4Md8Et3tii5Hl4LPKePixNnv7aQwHuMRfZ9r7yPCwHnt8WvRP8bQRR5ft1zX0wm8T07o3QEQx/08eKqDp+9wbSft7niIKRA+Pi7KuJPE3QG+FruEoC54aooLDtHR4TURPM3Fx6bLoeDfgTh3fn0QBRQXSSgq6SlKjGkikUgkEolEIpE4H1shKPh/7iE3UVggckl9BAi9JC0WCy2XS61Wq2q7JzrupNjz4aW2SOBk7OjoqO7YAAmk8J50RuywdENo3VoNmeFYIuueuhHFCof3ORIu2ks/IYLr9bpuKelt9G0LicBuNptW/QPG0yPj0cbuzgLPMYfYEhH2PkbHAdd1l4PPD9f04xFjuE/cWYI+cUx0ECAMOOmO24Ii5vgacUeGzxn98XUKfH58TUWBCsEk5vHHtdFVI4Axd4GjqwCnz1dMg2Fs4ncu1nfocvbEFIwoFvm6iMf598Pfi/UQXACIBVPpQxwT+hoFhTuNEd9b1g8pM3HnjEQikUgkEolEInE7tkJQAPwHfzKZaDKZ1Mi6k6zVaqVbt25V8urCgaSaI0+dgtVqpaY5yXuPUVN3O2AJ95QHiu4tl8sqKLDrw2g0qtH+8Xjcyr3fbDY1jYK2j0ajSu6dPCFaTKfTKogQGeZ8J3RO+t2xsNlsqkWdcXAyzBaciCBHR0cajUatLfUk3TbmTqad7PE3ZIzUEI9yd9VbiDsgMN6IAPQ55sWPRiP1er06FwgmPt9O7PmMeY0ENxLGKBrg3CBqzRojxSaOsTsQYmQ7uhW4n98z1gnhPCfAcW5cIOH7EB0MkUz78dFZ4dfocnQwF+7i8bZ631xk6hIEaON5Dgfmocsl4AIITg//zAWPmMoTxap+v19rtbho5Q6ZRCKRSCQSiUQi0Y2tEhSceEpqkQBI82q10nw+r/n4w+GwVRAPsj8cDivBhjRwLbdWe3oCBN/rAbgtHnjuPMUYqZXgKRgQzliw8fDwUIPBoBJj4Ln4y+VSkur9ES5ixNi3LySyTtTVx9WJKjUFZrNZFTHoF7UWIFZOMJumqY6FGNn26LCTWu8b6Rm4SebzuQ4ODrRarVrpCaPRqEWK6YsTegQBCizGIos+TogRngIDyTw+Pq4RacaKHULoI/ePAlSsKcA4xFoOjJnn5vua5W/f4YB+Hh8ft8aANesCzHmCk4sRrAtvv6eW+Dr0Oh7+vRyNRvVzzvFUCJw43vcuwcDXlBN4F7vcheLPgSjExBQWF3aiI8G/D55K5ekOPHu4VhTAEtuL41/+i/Xe/2Ry1c1I3AVv+Ib36+gnf/qqm5FIJBKJROKCsDWCAoTfo/xOPCDOi8WiRtUhiexc4FFrdyN4dLorVxvi4pFXzy132zbAik+BQxwInnKB4OGFJT3dwCPGng4AmYLwuXgRhRBACgT32dnZqWMYiyAyxoy5v++7UnBdSB19i7UHPCIcSZ/PC/PqYo0X0MSdEmsXSO1dIKJ938fA54jfY6FEb687FgAiSxeZdHIe60n4evMtPPmb+7tDwseINuCOiYQesu3rMaYt0EZ3HLjg4KlCcexcIPDfY60LFxH8uxTnwUUPP8/HinYzpv4ZYxJFgeii8M88VcLXgrs3vK2+s0O6ER4/lNFIt77wUyRJ+x/T1/rG+Y6XxHbghV/5Sr3sZbvSd/2Hq25KIpFIJBKJC8BdBYVSyt+U9GslvdA0zSefvvdnJf06SWtJPyXpy5umefH0s6+S9BWSjiT93qZp/vk93KNFbr2mgBMAIvEeUSeKK53l+Dvx4CcEvguQWyea0lmxv5iCwL0g+ZBwL1BIxHM0GmkymdTILc4KSKS7HegjIIKLw4JdJCCKTqZo52QyaZEjFxQ8ss49Y62K6XRa+wKhg9zGiK2LDrEOhLsLiPZyDOPN+7RxMBhoOp220k+83oXPi5Pnrki4izUuPkQrvxNo1gBW/kgwvZ1OQv2aPrYehXeRyOfPCwn656wDr2nB9TjX0xY8xcH76m3np39H7jReURyKjoSYJhIFnZhG0dUW32GB9se0JK4Vv9cuEnWJAbHPkup30I+JrodtxaN4Fm8r+q98hcp4dNv7zXSsD3xGUdOTpBQTHgd89JMaHe/M9Oqfe60O3/Peq25OInFfeJqfw4lEInEe7sWh8LWS/oqk/9Xe+zZJX9U0zWEp5c9I+ipJX1lK+URJXyrpkyR9jKR/WUp5c9M0R7oDyINny8O4RR62dI6FFBDp9vcjmfZt4NzmDo6OjnRwcKDlctki15BGJ0nz+bwSJ9o8nU41nU5vI5nr9Vrj8VjXrl3TjRs3tLe3V69FOoOnYvT7/Uq0IWG+g8RsNtO1a9daaR8x9aLf72s2m7Vs5IxDKUWbzaa2VTrZBtMjxYPBQJPJpKYRECmXVNMSEBW4plvL3Z7PeMTieG7XZwz5HUcHcCGCfiI2uKMAYcnJYVcxPwijF4/0deMkvcu9EO3xTkK7imrSZye7jAH3gTS7i4N7RpLrqRCkJOCUYN15AURPR3HHC/2G0LtA41uEsobcReCOgegAoH3uBqKfTu6j8ICbAwGP7zttQET089yFEJ0hLvT49yDOja9fH293gJwnQl4RvlaX/CzeVjz/xT9fN39eCgZPCl76BY32P/Z1esMf+Tlpu75jicTd8LV6Sp/DiUQicR7uKig0TfNvSimvD+/9C/vzuyT9ptPf3yLpG5umWUn6mVLKOyV9mqTvvNt9IEOLxUIvvvhiJTE7OzuazWaV2IzH41osEWIIcfVIpBMCjyK7uyHu8OB28KOjo0roIayQTsg+dRMgmNLZdoPUPNjd3dXu7q4Gg4EODg5qu+mbR34hytjhr1+/3kqpoO+0kWKOtH9nZ0d7e3v1Wqdz1Rl15icpGJJucyYcHh7WehWMr29TCSntsqW7I8FJ8mq1qk4I3BoUcyTlIubNl1JqDYrBYFCLXq5Wqyp0QBp9a0bQteOGiy2+BhmDWL/D6yPEGhVN03QKLu6uGI1GLUFFUi0Y6qkFXe6apmnqukF04trenigo+BwxHl7YkWN8hxJPYelygbijBOeOv+/fNfrufexKR+DzuC0ov7tA4OKLi0A+176jio+BOzt8FxC+b7TJvzNRKLpKPKpn8TahDIZ691f/Um12k3Q+aTgeNXrXn/gMlQec2vEHi175P/3bi21UInEXPI3P4UQikbgbLqKGwm+X9E2nv79GJw9T8N7T9+6IUorW67Xm87lu3ryp5XLZIklEzyEwXjvBbdVENp1oOElwsuWfQ16wqbsNXjoriAgJw5pPJJ/3ITKSqhCyu7ur6XTa2soQIhft8h7NJ1oPkfbdEzifYoNOenmPfnuU310UELLJZFLH1HdrgPyzu4UTWI+++4tr8plHq3kPIu7kVWrvcuA1H9yBgXvCiTgCAegqxsd4xFoAwFNb4ph59Jt2URfDa174lpBc08fMXTKeUuGOlFiTwdcqBTx9vFxkcUEhRtxjyo67GXxuouW/KwXAr0nfY3oF1/PfXbRzQcFrlHB9H/eutBK/lt8juhT8fBfh4rmeehPHf5sEhXvAQz+Ltwk7H/c6fehXvFaba8enKQ2JJwlNTzp8CKGo6Usv/dbPkCQ9+/0f1tGP/eRFNS2ReBg8Uc/hRCKRuBc8lKBQSvkjkg4lfT1vdRzW+T+GUspbJb1Vkl7+8pdXQeHg4KBGDGMVdo/mOwHneKKTRJid6HGskzleXmCP60Ty5uQ9En23a3tUdTabaTab1S0sYx2A6JygHgREyFMHYnpBKUWj0agVceYcJ+rL5bKeE4vPIZQQMYeYIyZwLtdkHCCBvuuB90lq7zDghRW9OGG0v7uIwPzTLpwa4/FYklqpLrgc4rydF/H3+8dxYy7X63VLEOBezP9kMqnkl7EK67ueS2oLAoJH/nu9Xqt4JvdiHpwA+3ospdyWauNpB6yRmG7h8+TOk9hufo9CgUf8Y39djPP78XsU9fy7jADlDgX66ufzWRQLgRdZ9BQmd1l4Wgzj7PPhLg0XHrYZF/UsHmt6Ke27X+y8+lU6+KRX6UOfms6ERDcOp40++EtPfu+vn9X1wzdKko7e+TOZRpG4Ejxpz+FEIpG4VzywoFBK+TKdFKb5nObsf/TvlfQ6O+y1kt7XdX7TNG+X9HZJeuMb39gsFgstFouasw+hJDLNDgdxX3qPInYV8oOor1arVgFHrxVAHj/HU4TQCRiEkMiwCwq4CXyHhdFopBs3btSo/2Kx6LTXUzPC6wLEegL+Oe0fDAa1XoKLGJB9TydgLOLuDZAvxoHUDoimOzg4lmsg5LhAcl6lfCfzfn/m2AmdpyUwlqSWeG2I8Xhca2l4agXtYi48ks59GStIvBN+by994zqIRqwdxsG30vQ+e30CF8Ww7bs45KKWOxNcHIL8I+xMp9N6DuMIKfe0i0i8XeRBBHBxy8UBFzJcNOtyAJyXysB9vL+8z/hLarkwWH8uXniKAtf3dBtcRhRAdcHI2+ACXXymdK3fbcdFPouvlWevnomVovd/4Rv04sdffVMSjwfe/5lF7//MV6gcS2/+4x/S0a1bJx+ksJB4RHjinsOJRCJxH3ggQaGU8nmSvlLSr2yaZm4ffaukbyil/HmdFKB5k6R/d7frRct8r9er6QK7u7stG7+TB4+Ug+VyWaPLsWgcdvter6fpdNqKlrKFIddyEk30GkcAggJkiMi5k6vhcKjpdKrd3d1K9l566aXaHtrvRN4jorzvzgqOQdTw9APpzD7uBNQFCz6DvE6nU/X7fS0WC83ncy0Wi5YYs9lsWk4O+uUpITglIM0+pp6OAMGLkeVoKXchwIUVdxsQxR8MBreRSq9P4YUE74bYTyey0enA+EvtXTnitp1+Xa/JQUoO7WL9sNvB0dFRLRLqKRHeFtwlXidgZ2dHy+WyNb6czw4pLmy4OyCmq/jLv0OICvR3MpnctuZcOPA0jPh9ZH5deGFNxJQTFx6Wy2WtWeFjwufcn2u62MT3yJ8lcc16msu246KfxVeOXl8/+99/ujaz/P904v7RFOmdX/VJUiPt/qz03F/LVPXE5eOJew4nEonEfeJeto38u5I+W9LLSynvlfRHdVLBdiTp207/0/1dTdP8rqZpfqSU8s2SflQntq/f3dxDNVsnyRABahRAnJ20QIYhB1S+X6/XrWJwfm2P2LJrgnRGgNziHgnR6ThU0kakHrLL7xAaRAd3QbAdoo1ry/7PewCSTN9Wq1WNPkNmoyUbcgt5Wi6XWi6X1XUAEAUQQejPaDSqOz9wvdVq1bL+e72HKFBEQSMWBJS6I8D0C2cH16Nd9Mmj9pBp2oloEom8E+CYu89cE133c+I2plHIiuPvJJuxYMwRo7ifO2XccQDRR3CIopi3n3HycY5pPv6+uwV8LiJhj+kVfo4LNTgFaKuLXy5QsGYQk2J6gSOmv7jDwI+/E+H3/nq9Eu4da1HEe8W/t0lUeBTP4qvEzuteqxf+09dps3uspn/34xOJ21Cko/HJd/vgNUX9L/9l93V6f93o+td/190PTDy1eNKfw4lEIvEguJddHn5zx9t/4w7H/0lJf/J+GsF/+iHf/A7JghBANiDEHAvZ9qi6kwPpzLbe7/e1t7en2WxWSQ5iAiTE7f7SmVuB83khKIxGo5bNmva7NT6mG0hqXc+t58ALI1LPYDgcduZ1OxljHDjXCSxjwthi94/CSCmlpn44sXOhQzqzrDN+Hh1mHiJ5o+9RaKAtCAtE+xFVPGodI+2+O4RvC+mkPApE59UHiIX8XJDxtA5fK6wxRBB3ALBWIfwIX9wD0cNdEYwDbY0pJl6ok/mPbhQEgpjK4c6BLkdGlwDEOb5eGRtff7E2he+YwXczro8uV0AUQDytJ5L/mEbh88294g4qfu34vfN52aYUiEfxLL4q7Lz2NTr4ha/WR35hOhMSF4PD3UYf+Y/u75z+quiZ/+jjpWOp9+EXdfj8+y+ncYnHFk/ycziRSCQeFBexy8OFoNfraTKZVNu8k1zpzDUgqRXFLqVoPp+3LNGQT4gaJBnnwI0bN7S7uyvpjLS7oOD73nuBSNoJsUI0wE3heeXT6VTXrl2rBRmdjElqkaqYzw98q0BPd3Dy6bZtruuuC0gmpGu9XtcUEkQb+rlarep77ErAmDDWcXzdQYC9PgKi6fUu3FLPOLCbg+9ewP28oCbiDSJR0zQt633cjtHb4CTRd0NwgQgRi3b2+/3q/qCdtAuHjBcUdILM39FBIJ2JXF6jQWrXFYjEHcTio5vNRovFoiU8dRVPdBcGQhnvxy03fW26iBOFIk8Z8DFyYcadQswD147pKXEbyPjdiQ6C+D1yRwbfCy/g6kJNl2DgIotvD5q4PLzwqz42xYTEleNo1OgnvvyGJOm5772h63/3gycfHGdQOZFIJBKJ87AVgkLTNJUgQRogJB5Z78qLRwzANt40jUajUa2cT7R7PB7X6vzT6VSTyUTSmd1+tVq1IsyeGw+cuLB15PXr13Xjxg3NZrOWXf7lL395rdMAkfGaDE7AEQv29vZaEdqbN2/eVjTQawx4bn10KBApjnZ/3xXAyazvpACpJiLOWDNO5TSH33eJ8PoTDifR7iBwBwg7YXBfd0+4M8DdCL6jBudE4cLTG1z4kFSL83nhT7+3CwIIFIwB7cIFslwuW9s0+o4htJFjIPGk95RSWs4Q5tFTaJjLSNh9XufzebXze8oNa2QymWiz2dT17XUegAtpLth4wUjcF076ozvBa4p4mgPX7DrXnRpe14Tz+Im4NRqNbnOc+N9d4hb397oRLmi4AOMOk0Qi8fThQ79Y+vAv/DRJ0pv/P+/R4Xvee8UtSiQSiURiO7EVggKIFmdImUd0IVL7+/ut7Q35XFIlkxB/dxGMx2PNZjMNBoOWXVtSi4w6maNtnlfO1pGTyUSz2Ux7e3stu3yv19N8Ptfh4WHdvSJas73fTuCIrLLjBXZ+t51D1J1okwLgRBsCxn0YA3L63SUwHo/reEMKZ7NZJWeQZogfxD4SRO+Xk3zmlf4SqYbERxLN9bpcHHeKvHN+JI1cz3cP6Pf7dRcRXBhOnCG2nj7Q7/erMwEhhUi6pxLgnsBBwPmsYV9PMS0hElkXjDxdxMk8a4SaHS72uKDF3Pl4kDbk3zNELK8LEefU60Sw9plP6awWiNROF4nCS1dffbtT7zv38nXNT3clSGc1MvwYT8uIIp2vvcQjQCn66Jd9hvY/tuic3dQSiStB05ea/sma/Lkv+lj1l6/T4CBrLCQSiUQiEbE1goJHKp0UQHA9qgoJhqhtNpsWmYf8EZkejUb1hRXcr+F1Bpz8SKoEMRJjv7YXj3RBgKgxW2LGOgbuMkD8cBv/er2uNQQ4DmIKEYwEy0mRky7GB3eGuyScSPs44vTAlcD9nHCSDuACUJxTxhES6ekORM/jjhVd5zKn/neM3Mf7M9Z87p9BJpk7P9dTSqKAwfvRDeHpAi4MMH/uYInrKvYx9gN3gwtsrB+PxjM/rE1fD8y1uxO8iKO7Wtwl4ulFXKdLJIpuBu8fc+WCkK+782oVOPH38YnPC5975iHW0+gSoeL3jrb6K3G5ePHN0tEkRZzE9uLWG06L7x4U3fglnyT98DvVnAr+iUQikUg87dgqQcHt1tE+77UDVqvVbfnrkAbSHtwezwvC6ukSi8VCBwcHlfwT0YdsOHlyAYNrTyaTWnwxkshbt27VvPb9/f0qBtDWWEfBiRyf0S4vhghRcrHAo8IQPwo4Qpwnk4l2d3db9nps8k7M3Yo/HA4raeV9SDg7V9AmIsmQQyz2Hkn2MeJ+bF8JWXYxif51EXp3ljiRxzXhxzjxpK1esyHa49014M4D2g7cnu+iC595MUXINOvY1607KHw++F54fQMfF9Yk7hFP2yB1w8l6dBp42g2fM7+eHsM9OY7zvK6B94/jY10GTy/gO+D98fHmmFi3wecyimCk5dA32hXdK+5O8PonUWBJQSGRSIDDWaOf/G17+vj/4Zks2JhIJBKJxCnKNvyHuZTyQUkHkj50xU15ebYh25BtyDYEfFzTNM9d0b0fKUoptyS944qb8bSvt2xDtiHbcDuepudw/p8425BtyDZsaxs6n8VbIShIUinle5um+aXZhmxDtiHbsI1teBqwDeOcbcg2ZBuyDU87tmGssw3ZhmxDtuFesT2brCcSiUQikUgkEolEIpF4bJCCQiKRSCQSiUQikUgkEon7xjYJCm+/6gYo2wCyDSfINpwg2/D0YBvGOdtwgmzDCbINJ8g2PF3YhrHONpwg23CCbMMJsg0d2JoaColEIpFIJBKJRCKRSCQeH2yTQyGRSCQSiUQikUgkEonEY4IrFxRKKZ9XSnlHKeWdpZS3PaJ7vq6U8q9LKT9WSvmRUsrvO33/j5VSfq6U8gOnry+45Ha8q5TyQ6f3+t7T954tpXxbKeUnT38+c4n3/wXW1x8opdwspfz+yx6HUsrfLKW8UEr5YXvv3H6XUr7qdH28o5Tyqy+xDX+2lPLjpZT/UEr5R6WUG6fvv76UsrDx+GuX2IZzx/4RjsM32f3fVUr5gdP3L2sczvs+PtI18bQjn8X5LD59L5/Fevqexfkc3g7kczifw6fv5XNYT99z+PS6j+ezuGmaK3tJ6kv6KUlvlDSU9IOSPvER3PfVkj719Pc9ST8h6RMl/TFJf+gR9v9dkl4e3vsfJL3t9Pe3Sfozj3Au3i/p4y57HCT9CkmfKumH79bv03n5QUkjSW84XS/9S2rDr5K0c/r7n7E2vN6Pu+Rx6Bz7RzkO4fP/UdJ/f8njcN738ZGuiaf5lc/ifBbfrd/5LK7vP5HP4nwOX/0rn8P5HL5bv/M5XN9/Ip/Dp9d9LJ/FV+1Q+DRJ72ya5qebpllL+kZJb7nsmzZN83zTNN9/+vstST8m6TWXfd97xFskfd3p718n6dc/ovt+jqSfaprm3Zd9o6Zp/o2kj4S3z+v3WyR9Y9M0q6ZpfkbSO3Wybi68DU3T/IumaQ5P//wuSa992PvcbxvugEc2DqCUUiR9iaS/+7D3uUsbzvs+PtI18ZQjn8W3I5/F+SzuwhP5LM7n8FYgn8O3I5/D+RzuwhP5HD5tw2P5LL5qQeE1kt5jf79Xj/ghVkp5vaRfLOm7T9/6b07tPX/zMq1Vp2gk/YtSyveVUt56+t4rm6Z5XjpZVJJeccltAF+q9pfkUY6DdH6/r2qN/HZJ/8z+fkMp5d+XUv7PUsovv+R7d439VYzDL5f0gaZpftLeu9RxCN/HbVsTTzKufEzzWVyRz+I28ln8iJ/F+Ry+Mlz5mOZzuCKfw23kczj/T3xHXLWgUDree2TbTpRSdiX9A0m/v2mam5L+Z0k/T9KnSHpeJ9aWy8RnNU3zqZI+X9LvLqX8iku+XydKKUNJXyjp752+9ajH4U545GuklPJHJB1K+vrTt56X9LFN0/xiSX9Q0jeUUq5d0u3PG/ur+K78ZrX/Qb3Ucej4Pp57aMd7uV3NwyGfxfksvhvyWXzarI5jn5hncT6HrxT5HM7n8N2Qz+HTZnUc+8Q8h6XH71l81YLCeyW9zv5+raT3PYobl1IGOpmor2+a5h9KUtM0H2ia5qhpmmNJf12XbBlpmuZ9pz9fkPSPTu/3gVLKq0/b+GpJL1xmG07x+ZK+v2maD5y255GOwynO6/cjXSOllC+T9Gsl/damOUlOOrURffj09+/TSX7Smy/j/ncY+0c9DjuSfoOkb7K2Xdo4dH0ftSVr4ilBPouVz+JTbMX3Lp/FJ3iUz+J8Dl858jmsfA6fYiu+d/kcPkH+n/juuGpB4XskvamU8oZTRfBLJX3rZd/0NA/mb0j6saZp/ry9/2o77Isk/XA89wLbMCul7PG7Toqf/LBO+v9lp4d9maRvuaw2GFqq26McB8N5/f5WSV9aShmVUt4g6U2S/t1lNKCU8nmSvlLSFzZNM7f3nyul9E9/f+NpG376ktpw3tg/snE4xedK+vGmad5rbbuUcTjv+6gtWBNPEfJZrHwWn+LKv3f5LG7hkTyL8zm8FcjnsPI5fIor/97lc7iF/D/x3dA84iqQ8SXpC3RSwfKnJP2RR3TP/1gndpD/IOkHTl9fIOlvS/qh0/e/VdKrL7ENb9RJVc4flPQj9F3SyyR9u6SfPP357CWPxVTShyVdt/cudRx08qB+XtJGJ8raV9yp35L+yOn6eIekz7/ENrxTJ3lIrIm/dnrsbzydox+U9P2Sft0ltuHcsX9U43D6/tdK+l3h2Msah/O+j490TTztr3wW57M4n8VP77M4n8Pb8crncD6H8zn89D6HT6/7WD6Ly2lDEolEIpFIJBKJRCKRSCTuGVed8pBIJBKJRCKRSCQSiUTiMUQKColEIpFIJBKJRCKRSCTuGykoJBKJRCKRSCQSiUQikbhvpKCQSCQSiUQikUgkEolE4r6RgkIikUgkEolEIpFIJBKJ+0YKColEIpFIJBKJRCKRSCTuGykoJBKJRCKRSCQSiUQikbhvpKCQSCQSiUQikUgkEolE4r7x/wfCArr6ZSmV4QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 0 0\n", + " Min thresh = 1000\n", + " Not Sliding\n", + "\n", + "\n", + " Winner = Not Sliding\n", + "\n", + "\n", + " VFOLD = 3 of 15\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsIAAAGDCAYAAAAh/naNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAACuXUlEQVR4nO2dd7gkVZ3+31NVHW6cO3mYABMYwpBlAAERMKCICmbQNaPi6gY3uOAaVt01rb9d4645g+iqiAIKKAiIpCEzxGGYnMPNt1PV+f1RdapOVVd1V997+6Z+P88zz9zbXV11qrpv9Vtvvef7FVJKEEIIIYQQ0moYkz0AQgghhBBCJgMKYUIIIYQQ0pJQCBNCCCGEkJaEQpgQQgghhLQkFMKEEEIIIaQloRAmhBBCCCEtCYUwaSpCCCmEOHyyx0EIIaRxZuI5XAixXghxzmSPg0wNKIRbCCHEJiHEiBBiUPv3tckeVxQhxDu8k+8bJ3ssY0UIsdzbF2uyx0IIaT2EEDcKIT4V8/iFQohdYzk3CSH+5J3fTog8/mvv8XNGu+5Rjkedb9X3224hxHVCiJfqy0kpj5FS/mkix0amLhTCrcerpJSd2r8PTvaAYng7gAPe/+MORSkhpIX4AYC3CiFE5PG3ArhSSlkZ4/qfBvA29YsQYi6A5wPYO8b1joUeKWUngBMA3AzgGiHEOyZxPGQKQyFMAPgu7J1CiK8KIfqEEE8KIV6sPb9YCPEbIcQBIcQGIcR7tOdMIcRHhBDPCiEGhBD3CyGWaat/iRDiGSHEQSHE12NOyPo4DgNwNoD3AniZEGKh9/g3hBBfjCx7rRDiH7Tx/VIIsVcI8ZwQ4m+15f5NCPELIcRPhBD9AN4hhDhVCHGXEKJXCLFTCPE1IURWe815QoinvGPxP0KI24QQl2rPv0sI8YS3Tzd64270mNc6pqcKIdYJIfo9V+O/vMfz3n7s98Z+nzpGhBASw68BzAFwlnpACDEbwCsB/KjeuTAFVwJ4kxDC9H6/BMA1AEra9gwhxOXed8R+IcTPhRBztOf/z3On+4QQtwshjtGe+4H3vXG99/1yjxBiVZqBSSl3SSm/DODfAHxeCGF469wkhHiJ93Pi95cQ4ighxM3eOfopMQPuUpJqKISJzmkANgKYB+ATAH6lnax+CmAbgMUAXg/gM5pQ/ge4J79XAOgG8C4Aw9p6XwngFLhX528E8LIaY3gbgHVSyl8CeALAW7zHr4J7shWAfyI/D8DV3snttwAeBrAEwIsB/L0QQt/OhQB+AaAH7onbBvAhb19P917z196653nLXgFgLoCnAJyhViSEuAjARwC8FsB8AHd4x6dRah3TLwP4spSyG8AqAD/3Hn87gFkAlnljuwzAyCi2TQhpAaSUI3DPH2/THn4jgCellA+jxrkwJTsAPA73fAxvOz+KLPO3AC6Ca3IsBnAQwNe1538HYDWABQAegHuO1rkEwCcBzAawAcB/NDA+APiVt+4jY56L/f4SQnTAdZOv8l57CYD/0UU6mSFIKfmvRf4B2ARgEECv9u893nPvgHtCE9ry98K9fbYM7smyS3vuswB+4P38FIALE7YpAbxA+/3nAC6vMcZnAPy99/MVAB72fhYAtgB4off7ewDc4v18GoAtkfVcAeD73s//BuD2Osfm7wFc4/38NgB3ac8JAFsBXOr9/jsA79aeN+AK/8Ni1rvcOwZW5PF6x/R2uCf+eZHXvQvAXwAcP9mfJ/7jP/6bHv8AvABAH4A27/c7AXwoYVn/XOj9LgEcnrDsnwBcCuCv4F7YHwngae+5bQDO8X5+AsCLtdcdAqAcPS96z/V425zl/f4DAN/Rnn8FXBEfN56k823ee/xM7/dNAF7i/Rz7/QXgTQDuiDz2TQCfmOz3k//G9x8d4dbjIillj/bv29pz26X31+6xGe7V+2IAB6SUA5Hnlng/LwPwbI1t7tJ+HgbQGbeQEOJMACsAXO09dBWA44QQJ3rjuhruVTkAvBmBa3AYgMXerb1eIUQvXMdWjwxsjWzrCOFOotjlxSU+A9cRgbe//vLetrdpLz8MwJe1bR2AK5aXID31jum7ARwB4Ekv/vBK7/EfA7gRrhO+QwjxBSFEpoHtEkJaDCnln+Fmdi8UQqyEe4fuKqDuuTAtvwLwIgB/A/ccFeUwuDlddc58Aq4RsNCLJnzOiyb0wxWpiIwh1XdIDdR59UDMc0nfX4cBOC3yvfIWAIsa3DaZ4lAIE50lKnrgcShcl3gHgDlCiK7Ic9u9n7fCvX0/Vt4OV1A+JITYBeAe73F1S++nAF7v5XFPA/BLbfvPRQR+l5TyFdq6dYEPAP8L4EkAq6UbP/iIt20A2AlgqVrQOyZLtdduBfC+yPbapJR/aWBfax5TKeUzUspL4N6S+zyAXwghOqSUZSnlJ6WUa+DGNV6J8C1PQgiJ40dwzxVvBXCTlHK393itc2EqpJTDcO+UvR/xQngrgPMj58y8lHI7XFPjQgAvgRv7Wu69pqEx1OE1APbAdX/jxhb3/bUVwG2RMXdKKd8/juMiUwAKYaKzAMDfCiEyQog3ADgawA1Syq1wb8d/1pusdTxcx1I5st8B8GkhxGrhcrxwZw6nRgiRh5tbey+AE7V/fwPgLUIIS0r5IFxX4zsAbpRS9novvxdAvxDiX4QQbZ7DcKwQ4pQam+wC0A9gUAhxFNwTuOJ6uE70RcKtMPEBhF2AbwC4QmXFhBCzvONVi5x37PLevm5HjWMqhPgrIcR8KaUDN8ICALYQ4lwhxHHexJR+uLcX7TrbJoSQH8EVm+8B8EPt8Vrnwkb4CICzpZSbYp77BoD/8EwMCCHmCyEu1LZfBLAfQDtcR3pcEEIsFEJ8EO6clyu882mUpO+v6wAcIYR4q/edmBFCnCKEOHq8xkemBhTCrcdvRbiO8DXac/fAnbCwD+5khNdLKfd7z10C90p9B9wZwZ+QUt7sPfdfcLO/N8E9oX4XQFuD47oI7qSvH0l3pu8uKeUub10mgJd7y/0U7sn8KvVCKaUN4FVwhfNz3vi/A9ddSOKf4DoRAwC+DeBn2vr2AXgDgC/APTmvAbAO7skaUspr4Lq0V3u38h4DcH6d/Rv09k/9exFqH9OXA1gvhBiEO3HuYillAa4g/wXc4/wEgNsA/KTOtgkhLY4nUP8CoAPAb7SnEs+FDa5/hxfBiOPL3jZvEkIMALgb7l09wBXom+GaA497z42VXiHEEIBH4WaK3yCl/F7CsrHfX15s7TwAF8M9R++Ce97PjcP4yBRChCOhpFURbo3FS6WUL5jssUw1vKoU2wC8RUp562SPhxBCCCHjAx1hQmIQQrxMCNEjhMghyMyNh1NBCCGEkClCKiEshHi5V0x6gxDi8pjnZwkhfiuEeFi4PbzfOf5DJWRCOR3uTOJ9cGMXF0m3HichUx6eswkhJB11oxHepJynAbwU7u3h+wBcIqV8XFvmI3Br/v2LEGI+3JmZi6SUpbh1EkIIaQ48ZxNCSHrSOMKnAtggpdzonSSvhlvqREcC6PLKTHXCrdU31v7lhBBCGofnbEIISUkaIbwE4WYE21DdOOBrcEtt7YA7S/PvEsqUEEIIaS48ZxNCSEqsFMvEFbWO5ileBuAhuCWhVgG4WQhxh5SyP7QiId4Lt04sOjo6Tj7qqKMaHjAhhEwF7r///n1SyvmTPY4YeM4mhJAISefsNEJ4G9wWhIqlcF0EnXcC+JzXinaDEOI5AEfBbXTgI6X8FoBvAcDatWvlunXr0u8BIYRMIYQQmyd7DAnwnE0IIRGSztlpohH3AVgthFghhMjCLS79m8gyWwC82NvQQgBHAtg4+uESQggZJTxnE0JISuo6wlLKitei8Ea4Hb6+J6VcL4S4zHv+GwA+DeAHQohH4d6W+xevOxchhJAJhOdsQghJT5poBKSUNwC4IfLYN7Sfd8BtRUgIIWSS4TmbEELSwc5yhBBCCCGkJaEQJoQQQgghLQmFMCGEEEIIaUkohAkhhBBCSEtCIUwIIYQQQloSCmFCCCGEENKSUAgTQgghhJCWhEKYEEIIIYS0JBTChBBCCCGkJaEQJoQQQgghLQmFMCGEEEIIaUkohAkhhBBCSEtCIUwIIYQQQloSCmFCCCGEENKSUAgTQgghhJCWhEKYEEIIIYS0JBTChBBCCCGkJaEQJoQQQgghLQmFMCGEEEIIaUkohAkhhBBCSEtCIUwIIYQQQloSCmFCCCGEENKSUAgTQgghhJCWhEKYEEIIIYSMK7YjIaWc7GHUhUKYEEIIIYSMK6s+cgPe++P7J3sYdaEQJoQQQggh487Nj++e7CHUhUKYEEIIIYSMG44z9SMRCgphQgghhBAybgyVKpM9hNRQCBNCCCGEkHFjsEghTAghhBBCWpDBgiuEhZjkgaRgWgnhf/j5Q7j0h+smexiEEEIIISQB5Qi3ZcxJHkl9rMkeQCP0j5Sxo7cw2cMghBBCCCEJKCHcnp36QnhaOcL5jIlC2Z7sYRBCCCGEkASGlCNMITy+UAgTQgghhExtBryMcHtm6gcPppUQbsuYGKEQJoQQQgiZsgzSEW4O+YyBQtmZ7GEQQgghhJAEhqbRZLlpJYSVIyzl9OlYQgghhBDSSgx4Qtgyp379tGklhHPelUWxQleYEEIIScuGPYO4af2uyR7GlKNsO757ScYPVUfYngatlqeVEFYWOyfMEUIIIen50V2bcPmvHp3sYUw53vWD+3DMJ26c7GHMONTFBYXwOJP3hTAdYUIIISQtZduhiRTDHc/sm+whzEjUZLnpkGSdVkK4LesOl5UjCCGEkPTYjmSscJL5+q0bcMczeyd7GBOCKp9mTwMlPK2EcN5yHeGREoUwIYQQkhbbccXwVLpVfe1D27F+R99kD2NCsB2J/7zxKbz1u/dO9lAAAFJK7Owbadr6h0qMRjSFvFePrlChECaEEELSYjuuG1yaQq7wJ3/7OH581+bJHsaE0EzRORpuf2YfXvD5W7G7v9CU9avJcg4d4fFFOcIFOsKEEEJIamxPj0wlIVwo236WdKazZf8wAKArPzU6re3uL8B2JA4Ol5qyfvW+UgiPM210hAkhhJCGcbxb1EV76nx/FisOhlvE2Np8wBXCC7vzkzwSl6I316piJwvV3z+2E2d+7haU7cYvngb9qhGjG99EMr2EsFc1olX+cAghhJDxQGU1i1Ok6lLFdmA7sm4N37s37kffcLnp42l2o67NniM8pz0LAHhkWy9+cvfkxULUxMlaIvfZvUPY3jvScLURx5F+dS8nRUb48R392DPQnIhGGlIJYSHEy4UQTwkhNgghLo95/p+FEA95/x4TQthCiDnjPdhO75aCmo1ICCGkmqlyziZTBzV7vzRFLDo1jlrGVqni4OJv3Y23fb/5E8yaPalry4EhAMF+/+L+bfjC759s6jZrocRtpcZ+K7fYifnI/Os1jyaOX19nmqoR7/nROnz9lg11l2sWdYWwEMIE8HUA5wNYA+ASIcQafRkp5X9KKU+UUp4I4AoAt0kpD4z3YHvaMgCAvpHmXx0SQsh0ZCqds8nUQQm9qZIRVuOo5QirfOnDW3ubPp5mlfkqVmx84MoHcMOjblc/XYBOZkWFNI6wmmBZiVHCD2/rxcPbehNeF+xXmozwQKHst2SeDNI4wqcC2CCl3CilLAG4GsCFNZa/BMBPx2NwUdqzJixDUAgTQkgyU+acTaYOU00IKyGmymwptveO4J//72GUKk7TJ1rpcYg413M82HpgBNc/utP/Xe23bcuabmyzUeOolREue+OLE+y2k/xZskPHtf4+FisOyjXG0WzSCOElALZqv2/zHqtCCNEO4OUAfpnw/HuFEOuEEOv27m28qLQQArPaMhTChBCSzJQ5Z5OpgzPVohGeiBouhqMRdz+7H/93/zZsOTCMZutE/Vg0yxEe1oT+wu5cyBGezIoKwTiSPw8VWznC1eOUMrlBi22nj0ZIKVGyHZQn8QItjRAWMY8l7dmrANyZdItNSvktKeVaKeXa+fPnpx1jCAphQgipyZQ6Z5OpwVSbLFf0qj8NlSohZ1YJp4rjND06oDfnata2hjyh/9P3PB/nrVkUOMKOM7mOcFnVla6REY5xhHuHS/5Ex3SOcO1xlG0JKWtHNJpNGiG8DcAy7felAHYkLHsxmnyLrbstg34KYUIISWJKnbPJ1MCPRoyyfNrXbnkGG/YMjNt4lCB0JPwKA0BwK71iy6pKDrv7C3493vFgRKuGkOYW/mhQjnBHzkQ+Y4QcYSmbt916qDK0tR3hsBCu2A5O/NTN+NdrHoNdwxHW11nP9Vau/GTeqUgjhO8DsFoIsUIIkYV74vxNdCEhxCwAZwO4dnyHGKanPYPeCSilQggh05Qpdc4m48dQsdJQma+BQtl37fxoxChuQRfKNr5409P+hK/xQBdRek5YuZBl26mKRnzqusfxt1c/OG5j0CtWNCumMORtoz1rIWeZKJRtSCl9kTlZrrByhGtlhCtOOBqh3rPfPrIDUga1iKPo2rqe067WMaUdYSllBcAHAdwI4AkAP5dSrhdCXCaEuExb9DUAbpJSDjVnqC6MRhBCSDJT7ZxNxocDQyU879M3484N+1O/5rh/uwnv+/E6ANViphFsTZyOF7og13PCSpCW7eqqCgcGS+P6/R+KRjRLCHvVEDpzFvIZA4509029H5OVE1aOcK33tBxxhNVnJ2MabjQi4bXqWGZMkdoRnszJcql6/UkpbwBwQ+Sxb0R+/wGAH4zXwJLoyFl1C3ATQkgrM5XO2WR8ODBURLHiYFd/usYDSmje+pQ7yVHdgh+NI1zxYxXjJ4QTHWHllNpOlfs9XKqExOtYCUcj0r3GdiTW7+jD8Ut7Ui2v9Ep7zkTeawpWrNhaabJJdoRrbN+OZIRVrEMJ4aS8uZoslzEN39V3HFf8Zy0DG/YM4CX/dTt+/r7TsaArB2CKO8JTjbaM2XCXE0IIIWQ6oxyztA5itFPXWBpqNKP0mr4u3dzyHWFHVkUjhkq272SOB6NxhP/wxG68+mt3YkfvSKrlVfyiPWMi5wnhQjmYKGdPkhPqZ4RrOsJqYl/YEc6awq0aUdcRNvzXfvuOjbjgK3cAAB7e2gcA+NFdm4KM8BSvGjGlyGcMjHgZG0IIIaQVUE5p2u++3f1FAMCcDrelr9Iso6kaUSsaYTsSj+/ob3idRU3QDsVUb6jYTpU4HSnZ42qEhTLCKZ3Z3uESgNqNQHSGShXkLAOWaSBnuZKrULYDt3WStIz6HNSKJAQ5ZndZ3xG2DNjSrRoR93lUbnfWMvzjur13xL94WNDtusCb9w/7ApiOcAO0ZUw/Y0MIIYS0AmUnqLKQhj1ehGKuJ4SdMcQbfCEcU2rr5sd34YKv3oGdfekcUkU4I5wwWU7vUOZIDJUqKJSrxZeUEv96zaN4cMvB2G2VbQff/fNzVa6jLqrTlk/zG1GkXH6oWEFHzk2h6tEI9fpaVRuaSVzViN88vAPrd/T5v0dzzOp4WYYILqxinFz1XMYQvtC3HVlVjm3z/iH/gmiqN9SYUqgP0njeHiGEEEImi1uf3BNySOMoR6o/1ENlied1uu6bEjyjywgnl7jaM1CElMBAobG5O+GMcLUzq+rLKkbKtj+pLiq+ihUHV96zBXc8sy92Wz/8yyZ8+rrH8ZO7N4ceHx5FNEKJwbTCebhooyPn6pa87wg7VfnbiSbqCNuOxId/8TC+++fn/GX8qhG2EsLBZDlZI2qjXpexDP/z6siggYhaX3+hkqrVc7OZvkJ4HAPzhBBCyGTw2PY+vPMH9+HT1z1ec7nAnUu3XhWN6MpbodeNRgjbNdxkJYAbXW/IEY4pn1ZxwtGIvpGyv/1oPMIXWAkHZ2dfwV+nzmjqCKeZZKYzVKqgI+u+B7k4RziFE7rt4DB+dNemVNurxQ2P7sQP/7LJG0NY5G7eP4RC2cHBoZK/fLSOsLpYy3nRCCA+aqMOc9Y0/J8dB7EuuOoLwYxwA+S1sDkhhBAynVGu5JM7azerUI5ZWsGmohGODIuZsUUjagjhBterO+CDcZPlKuEWxPsGi/7PIxEhHLir8WNQeV4VUfDXownwtI6w3hkuDcMlG+3ZOEc4vcP/nh/dj49fu75qAmSj/OqB7bjyHtcVL0ZaLD+5y/38HdCEsPrMKQGrdJelTYKLu5MRmiynPn8yaCCiX0So7U71hhpTinzG+yAxGkEIIWSao77TouIuSqXBqhEqGhHNZSY1QahFLRE9WHQdvTiRXIukOsK+6HbCGeG9A4EQjhpharEkl3ZQq+WrMzKKjLDfGS5lpnUwJiNcKNsNNdRQ23x61yDO/s9bsfXA6LrrOVJWVYBQ0QhfCA8HQjg6oU+J3owp/NhKnJNrx0UjtHXpx+6Jnf3eOCiEU9PmfZDGs5YgIYQQ0mwODpV8p1ZhCAGgfqOLSoOT5XZ727GdsIBO67ztHyziv256KuTgxYkV5Qg3OtmpWHEgBNCVs0J1hG0tMqDva1gIR6IRdUqRKUc4Y4YlT7hqRPpx6+Osx3BRc4S1O9qNZIRVxviBLQexef8wnto1ulbXFccVwnozDPWePrXLFaQHh4KGJeXIcY3WEQZqT5bLeoJZShk7aQ4AdnkRHk6WawD9iooQQgiZLrz/yvvx7h+uCz0WbVaQRGmU5dOqc57pFN9tT+/FV27ZgI37hmrWER70oxGNfSeXKg5yloGOnBXvCNtO+mhEnYywmowXFZ36MU/rtBf9agsNZIQ9R1iVT3MbajQghL2M8faDI/46R4PtuPWL9fdR1RFWjvBgsRLsYyQaEdQRDiIPcZ8Jf7Kcd+GhxLf6Wa9drMrR6ctMNNNXCE9isJoQQghphOf2DeHujQfw+M7+kACrpBTCSjykEWzFiu3HAaKCK+2kpLLW6CDoLFe97YGimizXuCOcNQ105EwMxkyWi7ZYTuUIJwnhyLFQjK5qRIOOcMn2hWw+rqFGivWoCY87vBJ1g6Psrms7Eo4jQ8ev7AnQLQeGMa/TLbWnXOHoRZTuCEsZFsc6/mQ5T/jbesWIiCMcl0meaKahEPbyVIxGEEIImQY8tr0P/33z0wBcUaHf2g5ERp1ohC9K6m9Pv82s3LlaDl6tdZTs4DZ+XA540I9GNDpZzkEuY6I9a4XqCAcltpxQ+bS9g8lCuK4j7K0/+vxITNm2erGDRh3hwWIF7ap8Wqa6oUaa9ShH2XeExyCEK44MideK7aDsHeslPW0AAnEa/ewEk+VE6slyACClFtGJOMJ62T0K4ZS0aeVHCCGEkIlGSomPXPMoHt7am2r5S3+4Dr95eAeOXdINAFivdWJTYqPeZLlyTJWBr9+6AR+/9rHqZTWhE3WE00YjKpojXLN8WrGx8le6gMqaBvIZI7TeYLJcuGpErcly9apGDBbt2OfLke2u39GHl33pdjxU431tpGpE2XZQqjjVjnDFDkRmivUoIbytVznCo9M/KiMcuiNhS/84zO/KA9CFcPi4Kt0lhKhZjs/vLBeKRgRjUOtV2WnFZOWEp50QZkaYEELIZDJUsnHVPVtw+9N7Uy5fwWtPWoJfXHYGuvJWqHtX2qxoXIvldZsO4N7nDlQtW9bElRIXfmc5Tbg4jsSFX/szblq/q3p72vJKtMU5do04whv2DGLVR27AVfdscTPCGQM5ywzVok1qsbxvMLiFXh2N8MZcZ7Jc1H3Vf7el9AXgfs19juJXjUjh5KrohRJ8ShgWQ5Pl6q4GHd7r1Xs3WkfYcdxJa/rFUNkJqjio1seqcoRf2SLSUEN3dGt2ljPdiaB6NEKfLDerLRN6HR3hlORZNYIQQsgkosRQ2i9ux5GY3ZFFPmNizSHdYUc4pQvm1xHWFq9EXNO4dUZLYOnua6Fi4+FtfXh8Zz+iBNEIOzEaIaX086pphTAAfOSaR/Ho9j5kTQM5ywiJKX2ynC769w2MfrLcSEI3uJJXuQJwxbTah1oxlUaqRqhGIapsm2EIZC3Dc4TVmOsfN9MIS7XRCuGKI2HbMnRHvWI7/oXTQs8RPhiNRkQywrpzW9MR9jLCjj5ZTivhFhXCwyV7UhprTDshrD5QjbZzJIQQQsYDJQiKKYWwLSVMw1VcqxZ0YotWBzZt1rQcU0e4bDuxr9dFaVTM6EJDrTPO1VOun+5eRqMRxYqjCeb6+9E3Eri6m/cPI5cxkbWMkDALhHC4fNqAJv6SoxHVY9BrEUcvOiqORN5yzTVbBtUUat1x9jvLpdjfIS/C0K7VL85bhntM7eQxR4lWChnLZLmKI0PHr2wHjvC8riyEAPYPhR3haEZYF++xGWHvactzwB2pNXbRohjdESH88Wsfw7t/eF/i+D//+ydxY8zdi7Ey7YRw1jLQlbf8N4oQQggZK/2FMs7+z1tT5X6VICinrJRgO4EQzllGJMNbW0w7jsSGPYNa1YjweuM6zSlxaojaVSP0HHDVOjTxm1RxQjek0jh5B7QatQCQi3OEfXfXSRSJyS2WY6IbMTWKFRXbjWcA7nFWYr5Wwy71XBoB63e007Kw+YzpNtRooGpEdJmxTJZzoxF61RLHF7w5y8SstozvCCvBGp0YV45EI6qOa2xGOBDVFVvC8GpI6zyzexDbvRx0HD++azNuWr+7wb2uz7QTwgAwrzNHIUwIIWTc2NNfcJsV7K7frEAJsbS1c21HwvTuwWfN8OQw3dGNE7V/eGI3zvvv2/zSWfoyZVtWlf1yXWJ3/fmMiYojIWXgruoiyHdzaznCWvm06GQm3ZlME404OFxCzjJwyCz3FnztjHAQ+1CCqStvQYiYqhE1RGXfcCC+o+552ZZ+bV/b0R3hGtEI3xWtL2D3D7lxjp72wPnMZYyQeKwlhK9/ZCd+dNemqiYqQ6OcLKcEqdq/rGW4k+X8ur8CczqyVZPlohlh/XPw3zc/jVUfuSFcgcN73/xohNTrCLufJ8s0qlpeHxwuJX6OVEnAkfL4pwGmpRCe05GtGWYnhBBCGkHVwU0j6JSYTOOCKhFqeI6wZYrwJC3t5+GYW/J7B4twZFA1QY9GVBwn1BHt2b2DOPpjv/dLgOUzpusaa0IqHI1IdoT1yXLRaMTXbnkGH/31o/5EOX1dtTg4VMKcjiwWdrtCOGsanjCsjkaU7GDfjj6k218+b5mJQjhOnPYXytpy1VUjclo0IsgI14hGNFA1YuPeIQDAinmd/mNq/Ep81hLUH7jqAXz82vVVOfDRRiOiVSM6c5Z74eQJW9MQ6M5n/GOmxqa2H+cIH/QuNH589yb/sehkOSdaR9h2YBnC75inKFacxLssvd52mjE/bFoK4bnaFQshhBAyVmqJwijFGGcsCSXSLCWEDSMUadCzpoMxc1+UC6fET2iynC1DcYBdfQVUHIlN+9wMcpvnCOtiO86NjiuLph8P3b20HYl1mw9i3aaDGNBEZtw6Pn3d43j/T+73fz84XEJPexYLveoEriMcP1lOd4SPPqQLgJtdzWeMKsdWr0gQpW8k2RGuOIEj7GiOcLFmRjh91YiN+4bQ057BnI6s/1g+Y2K4ZPs1kkeTER59Zzl3PUpMduTcz4d6ry3Dez8i1SH8znI18tH/+6dnfaFs+w5zQmc5R7pCOGtVrSfpgkppvmEKYZe5ndlQKRVCCCFkLKgv4DTOZqEBR1hFF1RGWN0uLkcmsQHxTp9y79TtcBlyhIP6rPrYh73bx7mMJ7q110SbKSTtR8UORLI+xrLXgMF2ZGgCW9w6Nu4d9F1RwHUP53Rkwo6wZcYLYcfRhHC3/3xbxqyuGhFzUaHoHylXLafvi58RllrViBrvayNVIzbuHcTKeR2hx7KWEXI106ynOhoxNiE85FezyKCiTbjMmAL5jIlixYaj3Unwq0bEOMKKg8NlPLKtz1se3vrURQZga+uqOA4s0whNIlTEXVC563c1X71626NhegrhjhwODpdi81SEEEJIo9TKy0ZRjqQu4J7bN4T/vPFJfPfPz4WWVSLC9B1h93+/RmsdIVz0hbByhPUqCE7od7WtYU805y0zJHQMkVQ1olpcKKdZb7EMuEJFucT1ohHRDPPBIeUIu0JYwp08aDtBtzG1fFlzhFct0KIFmepoRC1HeOO+QIhXOcK2DEUjin5GOF5suRPq0meEN+4dwsr5naHHMqYIiblUk+W0Yzi/K4fBYgVP7x7wy7OlRY1ZuaqdORMlOzj2ljZ5Ua9FHWSE44XwK45bBCGAu5/d7+1TZLKc1O6AeO6wZQh0Rjruxa1bodo+MxrhMacjC9uRoVsehBBCyGjxowAp4g5xguB7f34OX7/1WXz6usdDkQFfCAuVETZCr9WjDXFOn3InlYun66ayHW5XW4k4fm1ZM3Rbui1joqTV51VjiCufpl8Y6HnYcsXxxbES7lnLiM12lm0nZFgdHC5hTnsWC7rcaETvcNl3ZKNOa1nLCKv4gnIsq8unqf13x6a/Lw9s7sXKeR1o8/LS0fHp0Yh6GeE45zqJgUIZewaKWDk/6gibIQGbJKj146bfBVjc04ZC2cF5/307PvyLR0Kv2bJ/GN+6/dnEMan3UW2/PWt5LZY9R9gQ/oWGvn/R8mnRSNDh8ztx1KJu3P2cEsKBwwyEJ8u5x9kVwu1eNKJTc4aT4kaqyQejER5zO928jZqRSQghhIyFRjLCShDoy+ounz6HRYk5NVku64kD9YWv386Pq48fjUaEBEpkIlw0A6oywkpUtWUtSBkIOt31jeLHJmwnFL8o2Q5KtitslODuacvEOnkVJ3CEbUeid6SM2dpkud6Rsu/IRoWwnhE2hMCdl78Id17+Ii8jnFw14v0/uR8f+7XbdlpKiQe3HMRJh86GZQj/WG87OIz+Qhll2/GbdOlVI5LaUIcbUdQWws95TvTKeWFHOGuGoxFJd7b1sm/6vLzFXsUNAFWNUC746h34zA1PJk6mCxpjuCtsz5pey+MYRzjUlEUdFy8fHXmv53bm8PyVc3D/5oMoVmw/BpHRLjL0yXK2VzVCCWBdCOsXbjqqpBujER5zO9yryf3MCRNCCBkHGsoI++XTgmV1MakLYV9kGGFHONroAkhwhL1tKXEjI1UjovldwG0BDbi3nG1NjB6x0BVlSkCVtRxwFL+OcJUjLFGq2KH6s+1ZM7a5iF6RoG+kDCmB2e1BRrjXK6cGQJtopTnCmhBe0tOGBV35mtGIiiOxvXcEO/oKAICtB0awf6iEkw7tgWkKfz8u/tbd+NotG0KT5dJUjQg7wrU/J5v3uxMWl89rDz2etcLRiCRHWC/7psdfDp0brG9JT1voNepCKsmtjtYDzmfM0HtkmYEjHHenwXeEI+uf15nDqcvnoFB28OTOgdhoRNgRdmCZwm89HS2jFvc3qP6mGI3wCBxhCmFCCCFjp9RIRjhm0lCSEFYi1IhkhFWUQBdCcdUAqiskBD9HM7hBRlhNlgtXjTh1xRwAwP2bDrrbTlVH2K7OCHsusXo8nzGr2i+r8SkRpyY7zenIYr4XjbAdGUQjyjHRCG+zeofhtoxZ1fBCd5FLtuOP/YEt7n4+TznCnju+o3cEB4ZKXka4umpEUh3hQgoBq1AXLtE2wlnTCN3eTxLUevTTkcCCrhy+/85TcOziWf7ji2cFQlgXrkkus179wTQEMqbwKo+oaETgCIfuPNTJCM/rzOIob0LjU7sH/DsIWa1Gsx11hA3hO8FphLA+WW6854dRCBNCCGl5lJBL5whXRwpKtuM3TtC/m6Ll06qrRgTrqFU1QhGdHKcLluhkqDbvtr8a56LuPA6b2451mw+E9jW+xbL0nwuVX/NqvdqO6xRbhnAzwgmOsHqturXd057F7PYMPvSSI/C9d5xSHY3QBJPaV5WvBlzRHXUF9c5yFa1lsGpCsnJ+B0xDuJUuChU40t2PUqSOcCki+KI0khFW70F7JizyspFycYmO8EjYEc5lDJx75IJQjEA7LNiwd7DuOtVxKlTc980yDe+YqWhE4Ajrrq8t3aYsfqQmEguZ15XDoXPakbMMPL0rcIRV1QgpA3Fu+xnhoGpEtMNcXE5Yv7is1flvNExLITy73RPCbKpBCCFkHGisjnB1+bRSxcEi75b/gRgh7E+W8+zNuKoRcRPOoqW8wo5wxLnzhbArqPORiWiGIXDyYbNx/+aDkFoUoGaL5UjViLLnCLvZUuk5i0ZsvEKvaqEaL8xpz0IIgb97yWocsbCrKhqhBFPZDkS+0BRfrk4d4bIdVDxQ1wyGELAMAxVHVpXhCrVYVo5wUka4XF/AKka0CYs6ShwqkgR1VAirz4/unuqC+pGtfaHl4wgcYRsZ00DGECjb0n+vM6ZAzjLgSFSVeCtGLvp05nXkYBoCqxd2hhxhvY6w2s2gfFpQNaIRRxgY/3jEtBTCGdNAT3uGGWFCCCHjghIDcVnXKHpG+JFtvdiwZwCliusIZy3Ddz+B6slylj9ZLogCKJ0Xd5s86k5G6wi721DRAFUVICifBgRC1xQCJx06G/sGS9jpNd/Qn9fRawxHc8jqMdub/Z8xRULViOC2e68nZKJRgagjXNH2Re2qKj0HeNGIqslywfHQM6/quBgCviMcVB9QFwvBZDnfIU9whAsxHfB+fPdmPL6jv2rZ4ZLtu+U60d+ThHDvcDgaYXgfknZNWOvvm94aPE6kO470j2ex4kYjLNNwy+tpDTXU8dDz6hVHhi8CIn8j3W2ukD1iYRee3h04wuqzrmeE9WiEXzUin0IID5WhPgbjXTliWgphAKF+2IQQQshY8KMRDVaN+Mg1j+ILv38KxYqNnGVibkc2FI2ITpbLVpVPk8gYhismYwRMVJQpQSE1caHHCQAtGuGJJuXgmYbwhehwydZKxiVHI6INNVSkQDnClmkga5mJ3en8Jg6esIqKntoZ4UDIKnraM+gdKYdyonrViLIdCFo/YyyEnxFWglxV4Qgmy0HLCCdEIzQxWLYdFCs2Pvbrx/CKr9yBu7wauorhkl3lBgPVQrheNCJrGXBkcLGkhCoQrmIxXKcShZ4lL5RtZEwBy/vM6ZPl1PuhC2HHkaGLgOjqlWN/5MIu7O4vYv9QCaYhfBdbrxrheHciLMPwneC00Qg1yXK8K0dMWyE8ryOH6x/d6ZdJIYQQQkZLLVEYRQmQku1goFDBUKmCYsVB1jKqTBonOlnOc8l059M0vFv3MdtOmixXSRCCQDDpLh/JCLvbUdsPSmTFRyMCsa9vq6g7wp6zlzVFYvk0xx9T0NZXJ7lqRCD0DS0aMbcjV9VHQK8aUdYaiKjHhe8IO35jBuUIZ80gGhFUjag/Wc52JAqlYLlrH9oeWnakZIfcW0U2Eo1Imvil9i9nGpBS+sfg8AWd+PG7T8Uxi7vDcYU6uWP9YkY5whnvM1fWMr3qLsJgxBGOiyOsnNeBFx+1wP/9iEVuK+yndg3ANIQ/Zkei2hE2BTqyJtqzJuZ35UJ55+hnyXYkRso2FighTEfYRfXu/vHdmyd5JIQQQqY7jZVPC9zj4ZKNYtl1SZUQDjvC4Yywyk2WtSiAO3FJxDph0YlBKhqhT1jSRYa7jPu4EpmxQlhrxhHbWS6hoYYSISrr6WeE48S0JqIHixUvgxoVwkmT5YJohKFZwvO8ihP7tDlCYUc4uNUvPSdVCAHTqyN8MOoI+y2Wg65xSZOxopPc9OWi+z9ctv1b/zpRIVzPEZbefukXA2etno/OnJWY291yYBhr//1mbEroqlesuI6sZQp/4iDg3rVQx0MXwrYj0e81idEn613xiqPx3Xec4v/e491t6BspwxTCr/aht/m2vQswFc247m9egLecdlgoOx09luq1yjlmNMJDv3oghBBCxsJoyqeVbAcjJRuFio1SxUHOdIXww1t78ZL/ug27+gpVLZZVt62yJt5M0xWocXnRpAoJegtcXzxGRLy6Na+EriGELzgqTjBJqmzLKmdSd8j11eoCqVRRGeGEqhFOEG8YKlaqJkUB1Y5wkHcOSm7p0Yh5XtWovZoQ9o+J1yVNXVDo2VrLdI+vyt5GXXO9xXIxwREuRjLC+nLRbPlIqeJX7dBJmxHuGyn5zzsyfDEAuKXxwpM1g7Ft2jeEfYMlbD4wHGxHu3AqetEI9VlQF3ZuQ434jLCqUaxnvCND8tc3UrbD0Qg9xuO4+6SWXTm/E21ZM3SBEP0sqfdXOewj5cZaS9dj2grhpM4phBBCSKOMrsWyxHCpgkLZjQsoRxgANuwZxANbDvqT5ZQQDqpGRB1hI9RuObothT/7XhunE3GEAdcsUuJCd4TVOGytbJa73+Ft6xPpdEdYF0jFig3TVOXTqo9bRYs3DBYr6IhxSKMZYX+7kYYainmdyhGurswR7ZjnSOmLNTNSNWI4khEORSMqdmhSokIJRtWxr6YjnBCNiFaNqOcIO17psqjozJpGYjRC/RzKUWv740+W81aqKlxkTN0RDmeO+73xzO7QhHBUnFtKWNuhz1pYCDteRjj8WnWBCFRnhNXQlRs9Uqp/sdoI01YId+cz9RcihBBCUqCiCo20WAZcYVoo2340oqct6z/nCqbwZLlMZLKc7d0mVqWsqrYVGY8d4whXNHdZkfFufQP6ZDm9aoUMOW9VQlirGhFq+hESwu4t9rjyaVJKrxaw+/NQsRK6ra6IRiN0R1if7KZQQnh/TDRCvXcVzREWftk61xFWQliN168j7ASvlzI+K64c4Y6cCdtxQhcpcUI4zWS5pFJnKsvsSBlythW5jBFygfXx+q2QtfdNv8gqVtzyaZbm4AJe1YhYR9jxHWH9822KqJj11ldyhbA69uHyafAzwnGvBWo4wl6+fDim8cxYmLZC+NMXHQsg3HebEEIIGQ1KNDTSYllRrHiOsGmEvqRDlQ+i0QitjrCb16yeLKfXtlXEZYTjHOGMKXz32a8jLILHVIUFRXQ76rloQw3dKVTOX9YUia9X2xoq2lUT5YCYyXJaRlgvf6boacvANEQoIxwVk+o9lCFHWKCiTZZTZGNaLLv7FieE3cfasxYqtgwtE93/xMly0aoRCXcg1P6piWZRRziXwhHWnXz9PSyU3Tq+6rMYCOH6GeFZ7Xo0IjwotW8jdRxh9ZnXCWWEq4Sw+7+K1rBqhMecjizedvphGB7nA0IIIaT1KGkOaD2indgKZS8jnDHwzjNX4EXeTPqy1uXMb6jhZ3QDsWJ5payit8njOr4pbRNqpBGTEbZMw3eh1XoszSXW6+3G7bcanxLCSjRVO8LxGeFKJMM8WC8jXFU+Lb5qhGEIzO3IYt+AHo0Ir1OvGmFojrA+WU6RMQ0YovqiI66WsLpr0JYx3aoR5aCDX1S8DZcrqSbLxdWOdhzpT7hUE81EjOiMil8llota7CbYjh6NsGEahi9GR0ruaw1DVDnChnDX01+oQIjw3fiIlvXFrCPdz7vpO8LhEn8VpzoaoV8gREsYqgudzqyKRlAI+7RnrXGfPUgIIaT1aKzFcvh7Z6Rko+JIZE0Ti2bl8bFXrvHXpQRAdLLcA5t78eL/9yf0jpT9vGbUHYyrZ6tPDFNEq0ao7ahtKlFnGEFEQ1V9UERFd1A1wobtyNhGCyprGtdiWW+w4TiuwxgXjbBMA6YhgqoR2j6odUazqHM7c+GqERFHuBIzWc706wiHHWHLO06uIxzU641zhNXkwlzGzRur96crb1VHI4rpHOHo2AG3i5rtSMz23FdHylBTEcC9gNDfs2LFqWqpHdd1EHAvMjJG4AgXyrZ/gebXEfbubOQsV/T3j5TRmbVCWd5oNELfN9MIqkY4UoZaLFfsuGiE8DshVmWEvd1UURNWjdBoz7qzJtOcuAghhLQmtiPx8i/djt8/titxmUZaLBfKYZGjBKgSAhktmxudLKdcs4e39eLZvUPYdnDEnSxnVE+WiyvjpfRMrTrCajtVGWEtGqFXV4jbb71qRMWRvsgKV43QHWEZmmAWrWqRVDUCUKKuOteqxhSNBczrzGJfqHtfJBqhTZZTWs1S0YioI2wYMISA47hVI1SJrkLFxid/ux6/fXiHv2xQ89nNG6v8dndbJvVkuWpHuFoIq4oYqoFExY6ZLBd1hG0HbZ5j6k8a1N7f6N0GS6saMVK2kfE2oC54VCY4lzFge1UjutsyVe580r6F6gg7QQUQFckxY6IRKn9cVUfYe61luGKZ0QiN9iZdHRBCCJk5DJUqeHLXAB7Z1ht63HGk73D6zSVS1hGOm7CthLDePU6J26BqhPv/oCc0hosVmKqzXJUjXD2WNHWEAeV0xtQRNgNHODRZrioaoVeNkFVOIaBusQdthPVjF3KsbZnoCANhd1MXtXq2WWd+Zw77Bqonyymkl6uVIUfYwEjJ9uMcCuWcq+PR5b2vhbKN79+5CX/z0wdDx0Sv8KGc9u68FSqt5jhuA4i2mGhEJkVGeK+3b6qBRMWpjkbkLDO0zVLFQVs2/H7rxyV6saDHZEZKmiNshTvL5S3Ti0aU0ZW3Qs509H0JucVaRrjiBO2d3YYaTmhZwK2NfK4XKarOCAc5+7aMyWiETnuT8iKEEEJmDuoWtt6NDAA+//snccwnbvSrPgC1HeGhYgWf+u3jGCnb6MrH5D99RzhomuFEoxHeMv1KCJdtX1xFBZ0aty4+9MlkCicmI5wxgoyw76xGOsuFy6eFv0f1eEGp4iBjGMhaRmiyXLGsqkaEJwDqr1djdh3haocU8ESdyghL6d8iV0IvGguY1+VGI9RFQVzlhYpXw1h3hJVppr93lmnAFG40olRx0O3Vyd3THwjtZ3YP+PuU8bLXtRxh5eSP2hH2hPCi7py3XSfWEXZkuLpHeybsCOuxizhH2M8Ie3WFAWgRGNv7XTnCZXTnM6FxRN8Xy8tbq+eUUA59Vr1oRPS1l59/FD70ktUAkqtGCCGaEomd1kJY/VENjXMpDUIIITMHJbKiQvjXXlvcvQNFX1DUitr94Ynd+N6dzwGAL5h0cp7IUWLXnfDlPud3lvPEx4A3C3+4GMywj267oDmOCqVnwlUZ3P/DGWHDFxt657CgjnHQUAOozgiXHccX9sOlCgxDIGsasRnhaLc8d3zBz0PFChyJ5GhExvDFo+1Iv6SZGne0gdb8zhyKFQf9IxX/NVHc8mvBZDnTFP7YuzQ3P2MKGIbw6wgrkbxFa0Zx/aM73XV6ExtV3jhwhDMhF1MJtdFmhPdFohHlGOEYVNsIIiz5rDpu1TGT6DHSL2AKZdv/XKj1qghMkBGuoCtvheIQUXEOBBeBphD+83pe3J0sJxGtp6y/NjpZzu8wKNycMBtqaChHeLhIR5gQQkg8ylmMCuE5Ha7jtru/EOpGFi1jppjdHtRQ7a7pCAfZXDsajTDDlRxKtsrZVleNUNEIXXTLGPc3qEARjkb4jrCadCaCaETUEdaFsIoVdGjxQ8uLQKhIh/saG5YZRCPKoWhEMBZ13GtGI7SqEYEjHGSbdZbObgMAbD3oitU4ManqEBv1HGHD8CsjVBzpv6+6EH5wS6+/T5ahOcJKCLeF2x2ru9SxneU0AZi1jNiGGnsHishnDH+c0RbL6rVAcLHgOsKRdtUxEyqD/RahOsLqc6EuoPzJcsoRLpbR3ZYJvRfRMenj0qMR5cjdi7iqEUD4AlLHv6siGI2oYpF3taR/YAkhhBAdJSj7q4SwKzB39hUi+db42q664MrXaJ+bMQJh6DvCkYywjqkmy0UdYU/A621tHW3Skf9YjCNsaY6wEpl6N7FKjTrCStD68UOvLmx71sQBbbJZ1BEuJjjCqgZtshB2867Sax6Rjwi6qOBaOrsdALDt4Ii3/9XvV9lxIGXQUEO5uEBYCGctV7Cpz4hyi7d6umJJT5vvjlZsx8sUG34dYUMAHdlw1YjAEU6+WHL32wh1CFTsHShiflfO3++y48RmhPVj5GaEw056uKFGzGQ5v7OcHXJoc9oFj58R9hxh3ZmOutRAIPT1aITu8KoLjlghHJncqXB8R1jgsrNX4a+ef1jVa8fCtBbCRy7qQtYy8NDWg5M9FEIIIVOUdI5w8sQxhS649PJdCiUCVBY3brKcEKJqolDGNGIdYXXrPSSEvaHpsYa4OsIZLQYRdJYLXMBKtLNcRKwAQfxQOcJd+XAWtuR1ltMnBypCQtiLMNSuGhE07sj7Is/d/6jxuGyO6whvU45wzNtVscOtiXXh1ZkLjqflVY1QFx2qRfbTe9xc8Ip5Hb4orDjSd9qVI5zPmG4FB9vx3XrVVCW+xXIwjpwnMqPsGyxhfmdOa4cdXzUCcN8DxxOXSgjHlaKLOsIZ0/Ad2BHv/VXkM8G4XEfY0TLCo3CENbFfrrgXKFZcNMKo/hwBwd+dEMAFxx+CFx+9sOq1Y2FaC+GsZeC4JbNwzYPbsae/MNnDIYQQMgUpJGSE896X9q6+iBBOiEYocXDaijm47OxVVc+rygoA/JJi0clyAKq6ainRUF1H2ItG5Ksd4UrMbe/E8mmas6rP5K/YQQwhJISjjnDJhmGI2AmCluYIlxPKdfXXi0ZkPCHs7Zs+JkOgyg2d1ZZBV87yHeG4aITq6qdXjVB0hybLeY6w5+Ium92GrpyFrQdG0J41sbA77zvCZdudNGiabim2YsVBznIvBKQM9tmPRtTJCOcso2qi361P7cGzewdDjrBbPi0pIxxM9IzWEU5qseweD+EL9YFiJSRMc6ExmugfcTPeXXkrNI4YLRtkhHVHOKZedZybrF9A6kjNEW4GqYSwEOLlQoinhBAbhBCXJyxzjhDiISHEeiHEbeM7zGT+5eVHYd9gCb99ZOdEbZIQQqY0U/mcPRkoZ7G/UAnVulUCYmd/ITShJ0kIK2fq3159DA6d0171vJ7/zHhth6OT5dRzOiqvWY6IlRE/gxojhGPcvmj5tGhnOVNrolDx3OoOT+zGRUMCR7gCyxCxuWhTywjHxSuAIBqR7Ai70Qi1H/pt/zjxI4TAktltfnxBxlaNkKGGGrrjqQt6t7Nc4AjnMiaOXtwNAFjQlUNnztSiEcmOsL7/aSfL5SIZ4Yrt4NIfrsPOvgJWzu8MJpvZ1cchq02WC1o/h530uPhMsN/Cf+/V7wo99pPLGH4cprstExK/NR1hETTU0P+21NiifwPBOIzEjHC0k914UXe1QggTwNcBnA9gDYBLhBBrIsv0APgfAK+WUh4D4A3jP9R4Tl0xB0tnt+H+zQcmapOEEDJlmern7MmgoE3E0htCqOzs7ogjHJ21rtAL+0dn/wNhkaO6rfmT5UxdCFc7wplYRzguI+z+H1dHOOoI+1Uj7KBqhO4Il2zpi9Nbn9yDh7f2es+FHeHhkpsR7oqpnWxp4jopZx04wvHl0zKmQLkStFTOaZPlklzAZXPaA0c4tmpEuHyaGRLCetUI9zgpFzdrGjjGF8J5dOYtDBbdCyh3kpfh540LFSdeCJfTlU/LWkaoxbJqK33Z2avwT+cd6VdoiItG6FUj1HZrdZaLOsKWYaBdez/0C4WQI2wGjTuqq0bE5Xy1aIRyhGMmZUYbagSvF1XRJF8IT6IjfCqADVLKjVLKEoCrAVwYWebNAH4lpdwCAFLKPeM7zNqcfNhs3L/5YKqOQIQQMsOZ8ufsiUZvPKDHI5Rw29VfQNlxfAGQ5AgrYWGkEMKusxXvCEfby1pmfB3hkVghnFxHWBccGa1ObNBiWfg5zIotUbEdX6zd9PhuXPj1O/3ngKBqRNHLAsdFI0yvrJq7XHCcKyFHuHZGWLnhsY5wgkpZOrsNWw8OQ0qZEI0IN9QIZYTjohHeRVHGMnDM4lkAgPndOXTmMp7767itiSOOcM4yqhqKjHgZ4biGGiFHOGPGitW5HdlwtKCGI1yqOEE0ooGMsGmEHeFQNMIT1BlThD6r3flw1Yj4yXLB5MQgI6zVWC7XdoTj2nWroUcjMuNFGiG8BMBW7fdt3mM6RwCYLYT4kxDifiHE2+JWJIR4rxBinRBi3d69e0c34hiOWdyN3f1FHPHR38XOHiWEkBZiyp+zJxq9Q1tICHuCYXd/AcWy4wu1JFNFiQlTBLnYbEK2Ut3ijZZPU8/pmF5JrqgA2LRvCHM7sqNyhC3T8F1ovQyZYQgIocqnydjcrhqHLhhrZYQP6fEmrx0Y0dZRXT4tSQgrN9yfLBfKCCc4wrPbMVyycWCoFPu9rxpq+A0eTN0R1iIBXvk0JdCypoE1h4SjEYBbV9etI2y4VSP0aISZEI2oUz4tF7n48T9f3qCV6Kw4suqCwK+1bCc7wrXqCGdMESrvFp7EVz3hDUB1Z7k4Iay9VvhCvrpedZyIdsdRLYSl7wjHvmTMpBHCcZuOfuosACcDuADAywB8TAhxRNWLpPyWlHKtlHLt/PnzGx5sEkd7H1og6NFNCCEtypQ/Z080yhEF4oVw2ZbYM1D03dF6jrDeVrinPRCpWTMsLNw6wtWT5aJC2M0IV1eNeHxnP9Ys7g4JbBnjCMdlhDNaqbSgs5x6zhVyZccJTehSDrBajy7AVdWIKKZh4NA57chnDDzldWADqhtqAEE1iLh12E7g7AYNNexEITy3063ucHC4FFs1omzXyghr++U7wp4QtgRWL+zEqvkdOOnQ2f7FwGCx4tURDhzhYtlBPmOE8rpA0D47Tvib3oWIu61IRtj7WYlStVx8i+XA7S9VZYSVI5xcR9g0DBjahDl9AqfafsYwQp/b7rZMaBw1G2okOMIqjpRJjEbEZYTV9ibPEd4GYJn2+1IAO2KW+b2UckhKuQ/A7QBOGJ8h1kcXwtt7R2osSQghM54pf86eaAqaw6vXEi5GFJQ/cayeI6zFAfQmG9FoRMV2oL7TQ9GIiIJQdYSj5cee3jXoCmGtGoUaQ3kUGWE1BrdCheNWQdBE+RGLuvxtA+FqFWYNR9g0BFYv6MJTuwIhXImpFJA8QUp4MRJ3/EGDjupsrCIo2SbjWyxXZYSD/ezSBKrlRRBGfEfYRMY08Md/PAevPmGxX2ptsFDx6ggb/vErVlxHONoJr3ekjI6sGRufEcL97BjC3e94RzgQk2pfok1F9BiP2m6+ZtWIakcYCHLg+nujxvHGU5aFBHJX3oL+FkbHBATvnSGE5mjrnwX3OEfjQfq4qusIT74jfB+A1UKIFUKILICLAfwmssy1AM4SQlhCiHYApwF4YnyHmsy8zhy+fPGJAIDtBymECSEtzZQ/Z080xYRoRLFsh0SRqpKQ1GbZljFCuENzhGtFI2pMlsuYokoUbdgziJLtYM0h3b7QyphCi0Zobp+sFseWaVQ5wnp3O1U+TRfl6icVu0jnCLuvOnJRV9gRjlQK0G+VR1HjCTLCWjSixi10d5+dKrcTcIWf1MqnxVWNyJjumEIZ4YhA6whFI6JVI9xcuV7KDHBd6h7tAilK1jL8SXf62NXnTo1VjV3vkKevA3A/2yU73MBDCclQ1YjIxYISuCr6oTu/H71gDb7ztrX42CvXhFzY7nymbjRCvS+W5nyXQp+FFNGIhMlyk5YRllJWAHwQwI1wT5Q/l1KuF0JcJoS4zFvmCQC/B/AIgHsBfEdK+VhTRpzAi45aACBwhH967xZ89NeP+s/3F8p487fv9sutEELITGS6nLMnkkKNyXILZ+X93+Mywp/87Xqs/fc/AAjKp5mG8Gueducz/hd+OCMsEifLRcWWexvZCOV+H9/RD8CdA6NET84ytWiEXhpLOcLhyXJmkhD2MrnKEVZdWoOIhbu8LoSNhPJpSrQdubALeweKODDkltrSS8EVyvEtdYN1GCFBqxzwUswkMX//tLbOiXWEnUBMxlWNUGJQL58WdXG7lCPsRyNUHWGJQiW+fFrvcDkUmYmS9VzlqBCOxmj0Xa+uIxzEeJS4bMuGxx4uzRYRwhFHWJ8sd+ySWXjJmoWh5bKmgXzGrFs1Iq6hRiX0WVCT5eLlZ1zb6SlRR1hKeYOU8ggp5Sop5X94j31DSvkNbZn/lFKukVIeK6X8UlNGW4OufAYr5nXgO3c8h417B3HFrx7FT+7e4j9/42O78Jdn9+Mrf3xmoodGCCETynQ4Z08kxbKDjqwJ0xBVGWElAoEgGqE7wt+/c5PfRU59QStRmzENtGdNXwBHHWG3jnD9yXKW4XaW08Xjk7v6kbMMrJjn5lWX9LRh5fwOOFJ6pbyqb3tXItEIv2qEJ/ICR9gIWt2aAnd/5MV4ydEL/NcrZzmUpU1yhM3AEVbjBsLCq1hxEoWPO9bwZDk9apAohM1gIlbsZDkvMqFeHucIK5FnGMIXW9FxBhnhst9iOVRH2DKrqkYcHC6FIjNRXEfYa6sd8z6qcemfmagbmo3JCLdlwhcqTozIVqjjoRzvTMKFihpDd5u77lDViDghnLp8WvrJclMhGjFt+PbbToaUEm/5zj1VzwntFgMhhJDWoVCx0ZY10Z23/Ha/gCu0FnTn/N9VXdVinYywcsVyGQPtOQv5jAkhwmIrqCPs/h7qLBfjCFuG251MbWOgUEFPu3sreunsdtx5+YuwbHY7HAmsuOIGfO53T/qvV0LBdmQo/hB1hPWYQMV2q0bok5uUeFX/Zy3Dryxg1nGED5vrNhhR8cSw+LETM6HuWA2/ygMQiUbUzQgnRSOc8GQ5b/mMKfwsrS/atG3kIo6wH40oqGiEXjXCmywXqRrRV88RtlxX2TRErFjVnWpFUh3hUNWISN3iUNWIaDTCG3OcIxxaztuwuggKjSnmJboQNvzPX3U0olZevLqOMKq2PZ7MKCF8+IIufOH1x2NnX9BuWdnw6kMU14GGEELIzKVYdpCzTLRnLb+0FeCKCL18mPo5OmsdcL87lFBT4uBTFx6Lt51+mN9mV4TiD15GOMbNSqoaAQS3kUsVp+o2vRDVWU9AizTY0i/ZlTG0jLAdiUZ4eeSS53C6jxn+tpUzbZnCF4K6I6yX3VITu/Rb9dFjWCw7VW2ldTKG8B1qd12ByEtyDi1dCCd0lpMyKDumjkVOc3DjnNfkaITttVgOqnEMlyqx0Yh6jnDGy2+rxhz+mO1wNCLczjjJEXaqWiwr7Bi3WVHlCCcIUzUGdRFUt6GGFT6mhohMliuruxO1qkYkZYRjXzJmZpQQBoDDF3SGflddhNQBpAwmhJDWolCxkcsY6MiZGC6FHeGsafgT5tojVSP0CWkl2wmiEd6X/KtPWIyjFnWHxJAiyAg7VRPF4jrLKWGixFDRro4TGEIk1MwNsr3KFcyYbnksQwSi1PQdYQNlx22ooQSqut2vjyFjGP769KoRuvOoxh0Vg1FHOElouet23XA1wU53ZetFI0qV2tGIaEZYXbSo4xDdRtRVzWfcPK8bjZCRsmASuUw4GuE4En0jY8sIW5qIVESjEZb33uqOcNYyQq8JOcIRcVmVEU4QplFHWP9IxjfU8D4v2nGPi0YkRTGyMeXTgjrCdIRTsVDLewHu7SUAEFDRCEphQghpJZQj3Ja1MKQ5wkXPdVWT5FQdXfXFvW+wFFpWCa7oF3LeMqtuqWdMw6sjXJ2ljE4ccx3hoOMb4LZ5zlYJ4fh4XzBZTvpCTgkdJXCECNw8V/S60QjdFS370QjNEfaEkmm4NWdNQ0Qc4XghrF9EFMtOnWiE+5zKMue0esNJ2icUjYg5JmXbjUYILQ6ixunXyY1xhNsj3eCEEOjIml40wglV4wAQikYUKw76C2U4EqmqRliGCLml5UiFkVCFhshxEMKtZa23WM5a4bq/+uTJiv/ZdX9XdXw7Ip+XKGosKiMcjmskO8KGL+ZFpIKI+mw14ggnb288mHFCOB+5NTBQcCdGqOPHjDAhhLQWbr1XAx1Z029/a3vlunKW6U+Iao9UjdjZF5TjLJaDvG9UyOY0MaTIel/ojpRVzllcZzl/8peKRthOlbg2hIg1c/YOFPHHJ3aj4khfpEZFXrQ1btl2G2qosWSMoMtZWWvsoDdcEEKgM2eFXFO1nWhOtuyExU9SAwV9HUok6XWTa02qArwssCOrjn/FkeHOcpojrGr56vloRTReALhu6GDRRsWRoWoc7vrMUKa5d9jVHLNTO8LB49WOcG3RmbPMUItltV7/GGhXCEH+OlwuTX3mkyYz+o5wLhN6nTum+H3TX2ca1XWBo+vRyVhG1fJ2RMSPNzNOCEdRjrD6EDEjTAgh05uDQyW850frcHCoVH9huCI2b5loz5oYKrquo+6idUYcYfVFvEubb1Ks2L7DFq2fqlcOULj1UKV/Oz38XPjWt1ub1n29+tKPywjr1Q10rr5vKy790ToMFiq+cM1EBIk+5ozX2rdsy0Awm4E76TvChuE7pGofuvKWvw338WASGhC46Xot2JJdxxH21qHm9KSKRqjyaRX3gkYdK/V/xXYgQ5PlgoywWk65kmqZqKOq6MxZfjTCMmIcYU0IHxx2P5P1JstZvhDWXNtIRljf9bhxzWrLYFdfIewIay+KywhH89G+I5ygMv2McIwjHB+NCF9cGCL4XOn7U6+5is6k1xGejvzzy47EWavnAQgcYXUgKYMJIWR689iOPtz8+G48vrM/1fIqI+xOlnPNEV08RLOvKmqwq18Xwu6krLgv/5wmhhQZS/iOcPQlSoB1t6l6tsFkOSUCSjElxwwRFjdqvQOFMqR0xU4QjfAEiRK6VY6wW21Bzwj7WWM7KOPVHhFK87tyodv+li/avFv1dnVXM3e59I6wfiyTtI/KmJa8yXLqNcrRVR3n1Mv9SX2ZQDBHXfP2bLUbDLgTytw6wu7kQlN7Xzqylr/tuzfuxy8f2AagfjRCOcKhHK/vxFc71XHH4bQVc3DXxv2hC4hQNEK7arLtsBBW2xht1Qgh4oWpukDRJ8upaITu2ic5wlnvAlInqCMc+5IxMyOF8AfOPRyfec1xAIB+zxFW2Sc6woQQMr2paK5pGnRHWFWNKNpBAwXlCKsvebX+kCPsRSPivsCPXTILxy3pCT2mMsIqVxp+zl2HalgRN1mubMc4wiKcKVXrVe2BgUAIKqGo36LWtx80NgiyxEosqXhGxgzy08pR/tKbTsQnX32Mv65QTMCrnazGH7fPcaj9iMsIx9WqVWNT29GjEUrMVpyII6xFIwBXcEUjCO0xsQgA6NSiEaqznGJBd87f9k2P7/b7F9SqGnHkoi4cuagLlhGe/FiJ1JyuF4144RHz0TdSxrrNB4N90j5roYl4MixG1TbUZz+xjrC6aMuH7wwkOfXR9euT5XQhnBTFqFlHuElKuLoo4AxBXWmrvvLqVg91MCGETG/8ygophXDYEfaEsNdSN6eJveFSxZuQJvGBKx/A9Y/u9NdRUhUgYgTAv7z8qKrHVEbYdqpFgxIBs0KOcJB5VfsWzb0KIUL7HIjO4ItN7YtyPnVnTuFWQXBNIrVdS2vo4TvCRrUjfNjcjtAFSLR2cpIQTnIc9TGq9yTbSDSiniNclREOohGB8+ouE60YoejImtjRO+I76Lr4X9idh2UaVRMZa2WE1efls797IrZ8WnxGuHo9Zx4+D0IAf3pqr1tFwhCh1+gZYdtxj0V0oqCqnZ30/qjPe7RqROIFihWOmxgiyAhnLQNwe9NUfbYV7TkTA8UKHEf6wtehIzw6uvMWTEP4eR31RxmdaNBfKGP55dfjmge3TfgYCSGENI4yNuIm4cShOoCp8mlSytCXs3LFBgoV/3b1Yzv6AADnHDkfgFv/NMkRjkPVEXYcGVMlIiyETdPwHTnf7bYdX1QoDFEtMKOsnNeJ/3jNsXjJ0QtD27IibtxIKdzqVi/lpbZhmeGGGsH443OiuhCu2DJ0O79Wi+VoNMIQQotc1H5N2Q5nhNWE+YotazvCmhBWyyQJ4XzGrRqhtmtFhLC+DkVcF74oesk6AFXl+fRDFndBMKcji2MXz/L3R99PoDojrHLJ7nKqaoSaLBd/oNX6lLnoC9wE9ZiLyaZXIrEMINy+W+ewOe6F1k4tluSwfNroEEJgdnsG+wZKeG7fkH/FHK0asWX/MADg27c/N9FDJIQQMgrKjUYjKg5yGbcmriMRKjmVswycsWouAOCIhV1+t6+MaeCC4w7BB8893F9HXAWIJIIJadVNIZTo6I5zhO1g33JmVAgLxDX70LFMgbecdpjm4FW7i6YhUCiHO3xlvEoSevvmjCl8ZzncUUwErYvNiBDWLlL0Cgy1WixHJ8vpmenE6gJG4AhLGTiM+YxWTUJrqOE7wt7zOS0jrJzH9kz8TfJ8xgw56PqY1EVUNBOd5nOiOtQpqjrLGeFjHsfa5bPd50X18dJjNI7XdVDPhAOocvyrx6gc4XB8KNmpDx9TUwTRCP0z0BXTpRAAlnsdCjftG/IfYx3hMTC7PYufrduKc7/4J2w54Aremx/fjUu+dbe/TLM7lhBCCBlfbK37WhoKZRv5jOm7X0PFSmiy3HnHLMJdV7wILzxiPkzhOsKqXbG6lV6suHnf1ELYEwSFil3lnkWjEXpG2K+6EJMRjjZgiCOuRrH7Wv0xQxOdyhF2/3ck8MzuQczpyKItYwYd4yLHOlhvsOKsGXaE9XKmtapGRB1hXbAliR/DczfVpD99EphbeSDcUEOtT+3PP553BC47e5W7vbqOsBEIYW1scVx16Wl4+OPnJT6vo46hyglXtI5+QP1oBACcfJgrhNX4wnWEo46wEdSS9j4QKkqTOFnODAvhuHJ8OqqhRlz5NPUedeasxO0tn9cBAHhOE8JKzzdLCM/YjDAQDqtv9YQwANy1cb/bUcc0ml6omRBCyPhS9l1Tu86SrptUrLg1eZXQGS7ZVV/Oh8xqAxCITSV6lYPolk9L/12hHMpCTHthKzJZLtxiObl8WppNR4W6FVM1Qp8s5zfe0KpW3PXsPpy+ci6EEL7DWowca/c4hGMfGV0IO+E6yLXEo3pObcPUjket6w4leG0ZTJZTzSoqkYYaeh1hAHjRUQv99dSrGhF1ttXy3TGu5qoFnZhVIx+so9ZTcSSy2kVOXGe5pM+dEsLRdar1AsBTuwawZ6AIQ1RPngzK7cWv/4xV8/CuM1fgiIVdoXEkOdTRShxCaJ0KIxeAcSzqziNnGdi8XxPCbLE8emZ3BAd768Hh0HPq6skv1NysFDYhhJBxxY8PaHnZrQeG8Zdn9/klMxUl79a57ggPl+zAETajItWNNDheHlgJp2LZic37JpHxhbBdJeYWdefR055BT8gRro5GxLVYjhJdd1yzDiD8HWcaAsORmr1qv57dO4gdfQWc7sVF9K5pOnHVKMLRCBkSwrWrRniOcFl3hGsLLrWvJa/jn2W6cQ11UVFx3JiHenlQR7ha9vgZ4YSqEVFnW41tXmeuatn5MY8l4V8seRcA0TrC4fJp8cdBXcAp4hzhl33pdvz24R2hWId6Pw6d046/ev6hOGPVvNj1z+/K4eOvWlNV0i3pbYmWTwtVjfCeS4pFAO77vXxuB57bF2g2dpYbA3M6Akd40/6wEH5gy0Fc8JU7sMcLZFMHE0LI9CAuGvG3Vz+IN3/7Hrzvx/cDAB7f0Y/zv3wH9g6409RzluG7X8Oliu8+xpcocx1hS4tGuKXQGssIA64Qjr7mDWuX4bZ/Pje4La11lqtoneWqx1a9najTGt3WnI7AddbHpuaNd0QaZtzxzD4A8HPTuUx8NCKYdBURwlqL5bCATOMIB5Pl6pXpArTKHFL64jnjdYxTLZaj2dlcjNitVzUi5AhrVSPmdlaXSGvEVFs2xxWxmz3RV4lmhFNEIwDglOWzsdKLFCQ11ADg1y7Wt2GZBv79ouOwbE57qjH7VSMSBqRy7WocKmqkP1fLEQaA5fPasWl/TEa4SYp1Rkcj9Cuz6B/xx69dj20HR3Dz47sBJOddCCGETC3Kmmuq6PNa2+4bdIXv1259Bk/s7MfvHt0FwBVA7Xo0IqZ5AwC/tmuQEVaOsN3gZDl3uZGyE8rRAq6ImNWWCdxYrW1vxZuwVrar2wbHOsIGAC21EHWsn79iLu7csN+vqa+2r1Dls5Rwf3R7H7rzFlZ4wkqNsVAORyOsiEOollV3W8u2ExKdSXVq3XWJ0Db0HG6t7+aMaaDiVeZwK00YyHhd2yp2uMWyOi5xZbvqRSPyWstnyxR+Cb65HYHG6MpZ/uTHtKya3wnAdeGPWzrLv8CLneBY4zj8/H2nV0VAgBghrF1g1Mps16L+ZLnwHYhQR0MrHAlKYvm8Dtz65F7/b5CO8Bh4xfGHJD637aDbQ15dqTAjTAgh0wO/1q7tYNO+IRTKtu8mKoG7dLbrcD27dxAAkLeCesFDxYq/vN68AYBfPk25v0oou5Pl0gvhrCagk8xQveSVEqIVR1bllxVxt8ejAik6vjMOd295H9DaUesxhagjPFysoD1r+dvSJwvGbcdKmCxXtiXyVlhAJhE7Wc4MMqaJr/O694UcYe9Ylp3aGWEdtUxbNrlqRLAfBvYPuRdbuiN8/8deilv/6ZzkwcZw2NwOmIbAhj3uZ1Sv1gGEHdBaTrP+uYjLCOvPWf771hwhrC404nLO6rl6Fwyr5neiZDt+kYOgfNqohlyXGS2Ej1rUjc+99jjM7Uju8PKbh3cAYNUIQgiZLihHeKhYwflfvgM/X7fVdxOVEJvniZT7Nh3wfs/5t75HynaofJqO60DFOMJeFjXtl3E4GhH/VatEpi78KraTmF+OE9RRgRTNCB+/dFbVa3Sx1JELz/IfLtkhAa72vyoaEeNAhqIRTtgRThONUO9hKCNcyxE2DK/RiRenMF0RbJnuxLNQRjjSYlmn7I05TUY4Ywg8f6UbG3n9yUtD+x69cKlH1jJw2Jx2/2JNObhxjnBajRJ1hHVXWL/zUKucXZr1J5a1MyOOsAh/PoD6jvBRi9yJeU96LdSDyXJ0hEfFxaceilNXzKm7HB1hQgiZHqgv94NDZYyUbewbKAaOsK2EmLvMs3vdrOHxS2dp5dOqq0YolCNsexPj1AQjt2qErFn9QEcJgpGyjSQzVIkyyzD89ZYd6Qv9uPyyztLZbVXOXnXNYgNdeSt8e1/bh/ZsuHzWSDkshFcvdG/fn+01FoluR3eXQ5PlKg7atG2miUbElU+r5cD7WWBHwjRcd7szb0WiEVFHuFrsqu2mqRphmQaOWNiFTZ+7ACcdOjtxbGlZOb/TF8K1M8LpNEq0jrDegEXPXqe9sxGlXkONaGMPfTvqtfWE8OoFXTAE8OSuAQBBR2CWTxsDs2s4worRfigIIYRMLKqzXN+ImwsuVBzfTYxGJAB3Zvzczpy//HCp4p/zq11XAdtxYxCGL54MFMvhx+qR8XOvybWHVYnPLk+8qX1Lyi/rjthXLjkJLztmIc783C2hZeJued/7kZeEuqrqy6iLA/XYULGCrCYWD5vbgYc/cV5VqbC4hhd6NKJUcZCzTAjhCplajrC6aChpk+XSRyOkH4347jvWYl5nDnc9u79qsly0s5yOmjhZq7NcdL/Hi1ULOnDb03tQsR3/cx3fWS7d+sKOcDjSMlSsBNGIUe5HvUmM0Sok+nIj3t9oXNk5nbasieVzO/DkrrAjzGjEGFDRiHmdWdx9xYtjl6EhTAgh0wPVWU4J26FiJVR/V/8fAE5c1gMAoclyxRqT5dzyaTIknoLOcunGGHKEE77BT1g6C7/+wJk4fumsUB3hpGiEvpqunIWcZVYJkrhttWVNPx8NhEWpmixnacI9ekxmtWWqbkvHZoStsBDOWoYfoaglvNS6VBkxK200QnOEDSFw1KJuzOvM+eXTHBm0eV7Ynccpy2fjBO+zoFPXEc7qzvb4yqaV8zpQtiV29BY0RzjZTa1HuGqEE/o76C+U/fWMdj/8qhEJ41k6uw2fvvAYnLdmEYDw35eaZJimzvJRh3ThKc8R5mS5cUBvrLFoVj52GSnDnUwIIYRMTaKOsPpf3ZqXUsYK4YxpIGsaGCpVEl1XQ6iGGtLP9uYsE6WK4+WGG4tGAMl3HIUQOHFZD4TQJsvZEiXbFQyZGtGIuPJl0e0m4VdQsAx/+SAjXKlq7VxrHUkZYVX+TTnotYSXek7VEVZd46Lrr3pdpHxaMDbDb73s1wjOmvi/y87A0Yd0V61HbTcpI6zHKcbbEe7MuaJwpOxGb4SIz9emFYH6+Cpei29FoewETv4o90P40Yjkz/RbT1/ui1394kLdtakXjQCAIxd2Y/OBYQwVK2yoMR6oesJ6+RjAvbWk+POGfTj3i3/ya04SQghpLjv7RrB5/xD6Rsq4Z+P+1K+rRBxh9X933oKU4coLs9oyeOERQbOA9pyJEa98miFiWhKbAiU77MzlMoafEU6rH/TsbBrx7EcjHAelipcRruEI+7eo62SEY7flja1DEylqjMMl2y9zVQvTr0MbFsJF77gXKw6yZjpH2HejQ53lVE42eQx+ZzlHVnXOi5ZPq0W9aIT++GirLSShd/SrODJ0wWCEHOF06zNCjrCMqf/srn/UjrBfNSLd8p3anYgRzxHuytcXwsvntUNKYHvvSFBHmBnh0aOKVqsPRE97Br3DZX9mos6zewfxid88hvs2HcR9//qSCR0nIYS0En9/9UN4du8QTlzWgz88sRvX/+0L8MzuQbzy+ENqZkpVB67+QlQIZ7BvsIRSxb0lPL8rV3Ue78haGCrayGdMZC2j6pa/IYTfulnPERd9RzhtRlhzhFO8xJ8sZwciPppnjXaH0/8P1pNCCHvLtGf1uIT7mBKw9YhrrJAzlRMrvYyw4W+rllMd7SynRyNqVQrImAYGChU3GhFxhCuOE5osV4sgGpGufNp4oo512a7+fIUywik/d/r7H3WE9eeblRGOoh9TlRHuSDjOca8rlO2mRyNaQggfuyRcPuadZ6zAf//haSzoqm6FuGHPIG7wCrATQghpDr3DJdy36QAcCfzhCbex0QVf+TMAN8+pWvzGoeoIq/lfvV4zDdW6VQnhOEHXljUxXKqgq2LFPm8ZwjdNzJAjXH0LvhZ65KIRl1bPddaqGuFHE1JkhKu35a5XlU7T1xe33Th8R1h7nepYpxx5PRpRS6Ard1K1x85ZRtCwo44QLqn3RT82psBI2W2TnabkljreSdGIUNWIJjnCSrRaISHceDRCF8y2I6vqP0cnDzaKkXABloT+GVPRCN0lTkJVOSmUHb9KDCfLjYGcZaIja+KwuW6B9b998eF4+BPnoae9upqEKmxNCCGkedz29F44Ejh2STcWdOXwqhMW+8+p7mRJKEdY0TvsNotQhfpLtoOS7cRWCOjOW+gvlDHkNY6IYhjCFw/BZDkziEaMxhFuQAiX7eB2dtRFjYtGVDnCDeR79f03I4I27TqiGWHAjVdI6bqdQSez+o7wYLGCtowJIbTJcjWG4rdYdiIdzEzXEZapoxHxDrxCLz032vq7SQR3AjxH2BybELYiQrgU4wibhhh1Td4gGpFWCAefsb998WoAwILuahMyinLhC2Xbj0Y0q45wSzjCgNv1Rb1xQgg/rN2VtzCgZYdVPT8A+OX923Dqijmpe3ATQghJxy1P7sHcjix+/ddn+uXPOnMWfnrvFgwWyzVfG+2YNeAJ5ypHOEbYzOnIYntvAXnL9OeP6MQ6wl75NNtJd6sdCJeISiOElStasYPb2bUd4XCdXZWXbSQaoTtzusBL5wgrZ7H6depCJmsZQZWCmp3l3Nc5MphclS4aEVSH0PVpUEc4nWBTGeG4ZhsAkG/iZLmsFVwAVRwZcYQR+3MtdMfWdmRVa2zTFGNytdVL00Y19Bz6m089FG87fXmq16ljHo5GpB5mQ7SEIwzAz4NF+fOHXxSKSOiO8D/+38N4zf/8ZULGRwghrcQj2/pw6oo5sEwDnTkL8zpz+NBLXcdosGjXfG0096giEl3eDPxixfFvzUeZ3Z7FgaEiDgyXYoWwaQjfRdOFcMl2M6dpRYQ+Mz7NZDnDEBDCjX34pd0i7qMuCtUqldBTdzjTiG7TW297aLKc5uyO0REeLARC2IoRzFXj0dahnEC/ukENIWuZBsoqux2pqGE7EhIyVaWBtcvdpltJt+wNI2i1Pd7l0yz/AsiBbYcbtoymfJpfEUTrbKhjijEKYT+Sk2553RFupF+DH43wyhYCLJ/WNGa1Z9DpXbmfdGgPdvYVQs/vG2QVCUIIGU+klNjVV8DinrbQ40qIDDUYjVB0t9XPCM/pzOLgUBkHhpKFsJq0pXcjK5YdVOz00QjLNNDl7U/qShOGEap4kY1Ub9A3HXWEezzhnebWverypouUTIyzW4u48m3qeCtHP2vp0YgaglZbhxLn6uKhdtUIAyVbVk2WMwwBW7qOcJrb6f/vDSfgpg+9sGY1g7aIQB8vMtpkuUokeqOPPXWLZRHk2oGgdu+7X7AC3337Whw2tx0r5neMerwNRyO0+E0j0QZ1QVTkZLmJQV29nrlqHh7c0hu7TLFix7ZmJIQQ0hj9hQpGyjYWdYfrurdlTBgiOCcnEY1GKJSQKdk1ohHtWZRsBzt6R3DukQuqnrc0R1ivt1usuJUmGvky7unIYKBYST/j3xThznJm+DtHF0nRjPDsRhxhPyM8ekfY336kfBoAP26YNQ3fua4VjVCZ4Ioj/VJlSqzXOnZZUwR1hHVHWAg4jkydEc5nTByxsLqKVHgZA30jzRDCejTCCa0/7v2uh34XAwiE8OuetxRrFrs1lC89a+Wox2ukeF902nOj0005zRH2M8JNsm5b3hEGgjzTRSctxiExDTc27x/CMR+/EY/v6J/ooRFCyIxjT797521h5HwrhEBHzqo/Wc5xYh/v1jPCSdEIzwUu2zLWETaEQNG7naxEr+osZzuyISHU0+auP+2taMtwc75JGWERygiHhfAhPXkIEeSka5Hxq0ZUl08Dqht5JI1V/x8IxJeeEfbrCNeJFKjtK+c1TZkuv7NcpJqHqTnC4+UiKodyvKMRtRzhcEa4USEcZGyB6rsLo8W/ABrFZLlGUON3HWFGI5qOumKa35WvKrUGABv3DaHiSGw9OAwAuH/zAWw9MDyhYySEkJnCLiWEY0pYduasUUcjfEe4RjRiriZ+YyfLmZojbAa3mZUQbsgR9rprpXXzchkThbJdo3xa8HNUkLzy+MW4/m/OwsLu+O6pOnGOcFzEIc06amWEc1o0opYjDAQCUznCqRpqWKrFciQ/LQQcB6kbaqShWdEIv3yaLb2McHwuOHU0IsERjt5dGC3BZLl0y6epGRxHUD4tiEakFd+NQiEMYImXU+vOW7FX031ejUp1ZfW6/70LZ33h1okbICGEzCB2eXMx4lrep3GEo5PlFEH5NDsxGjG7jhA2hOvKAkFO1c0I2w3VEQaCCXNpX7OgK4fd/QWtfFo0I1x9q1wJkraM6d/6rodary5S4qo/1MLy6whrr/PEVsgRTjFZDggEYbRqRM0Wy56DbkeqRpiGWzrMceS4ldzKKUd4nMun+Y6w43hVI7TOcqMon+Y3gfHeQ9XNLU23wDQYDWaE2xO69dUjaxoQwq0j3OwWy8wIA/jF+0/H07sHIYSInTWqalRGZ19KOX5/ZIQQ0irs8VrZx7mXnSmEsJ2YEQ6iEcUaGWH/54TyadGf9WhEI0LYz+2m/J5Y1J3Hjr6CNlku2RGOVmNII14VSuCHZvTrWd+UjrAQCY6wEsJmkKmu56SqMUWrRtTrLAcgpmqEAVtKyHGMRrRlqhuIjAe+EK44sCMZ4bFFI8JVI9K8p42sP+3fQZrmGXEIIZC33Dsk6i4BoxFN5JBZbTj7iPkA4t+0Xq99p7qyUqy44gbc9ez+5g+QEEJmELv6CpjVlgm1rlWkiUaU6whhVT4trkHCnM7aQtiMceRylul3/mrk9qyKRqQ1TBbNyocc4Vrl0wJHOOwApkGJLb3rVyZG0NbCNKrLcMWVTwuiEbXXmYlkhP2GGnWiEYpw+2nA8eoLj5duzUeyy+OF3lkumhE2I/uUBlP7zAJBW+NGPh9p1p/aER7lZDnAjUcUKw4cdpabWDpjohGqfac+e1Fx43q2YyaEkEbY1V+oqhih6MiZGKpTR7iSEI1QdYRrZYS7cpYvsuKFcPCzFRGZwyV7VNGIqImSxKLuPA4MlTBYrHi3hsPbCrURVuXTvIcacfzqdZZLK4SjxyIonxZXR7j2cYtGI0x//+o7wtHlTKEabaSvblCPtoyJjDn6jmxJqGNWst3yfPpxCpdPS+kIa7l2IMgIj1ekw68aMYryaY2S9zLzzS6fRiEcQTnDOioaMVKy/eyYItrHmxBCSG329BeqKkYo0mSE46IROcvwv/xrlU8TQvg54Z626rqxuiPsiwotb9mIEFZNLgbqdMpTqGOy9cBw7OQyPWarxmaOIhqhBPo8zR3Xs6lpWyxHc7+qMsFAUS+fpqIRdRxhNVnOz+LWj0Zk9RhBpI6wcoTHSzvlM2bdnPNoUMK3YsvY6E2a6hmh5UXkMzvO0Qh3LOkd6raYuz5pyWfMUEONZiVRKYQjHLN4Fp777CtCjx3wHWHbb8WoKFEIE0JIQ+zqL8RWjABcx3Y0k+VylhG4azXKpwFu5Yie9kysOAtNuoo0J4jeuq7HbC8aMVCnLrJCueRbDgzHjt2IuJ76eONiIEkct2QWfvPBM3Hish7/MT2bOnpH2JssV6gun1avaoRfPs1zENMIQP39C8UIhBj3jHA+Y457xQggyFq75dOcKrHtV2lIuekg1+5FI0o2LEOMmzOuxpz2uI5luznLQKFse/OxGmvI0QicLBdD9GBv98qm3bR+N/b0hzvNlRJu0RFCCKnGdiT2DhRjK0YAriM8VKzUnIysN9TozlvoL1SQz5jBTPmyDduRiSWjZntNNeLQhUhUVACNCSuVEe5PK4S9Y7Lt4Egov6uIywhHJ0elQQiB45f2hB4LN9Sov4+nrZxbZQRFJ8vlLM0Rrlc1wneE3f+VK13LeUyMRhhui+XxzAifsWpuYrWSsSCEQMYw3OoXMXWq3fc8fdm+aGZ8uFQZt3ywvw0xvsI6iZwWjWhWLAKgEE5kdnsGBz0n+Nm9QwCA5/YN4bl9Q6HlBgvpbnnd8uRu3LlhPz72yjXjO1BCCJlG7BsswpHxFSMAVwhXHIkv3vQULjxxSWzHr4ot0Z41MVyyMbsji/5CBbmM4X/hD2kZ1TguOe1Q9HmRtyhxJcp0kdlI1YDuvHKEU0YjvGMyWKxgdkd1bCOuaoQa71jFji4q06zr1ScsxqtPWBx6LG6ynBpnWke4vQFHOJMQjTANAUcqITw+AupVJyzGqyL7O16ojoJu+bT4XHjq7oSRz+xI2Rn3km+mIZpW01cnbxkoeuXTmqm7GY1I4Hd/90J87x1r/aLOSewbjD+ZRvnwLx7Bd//8HB7b3jcewyOEkGmJqiGcJIRV5Yev3/osPn7tY7HLVBzHn1Slcrg5y4Tl3WbWhVgcrz5hMd56+vLY53RHzjKrhXAj0QjV4KNey2hFd97SMrLJ0QghoDmt4yOE9d0abfOF6vJpWh3hOmJM7Uc+Uke4dkZYd4SDxwNHuHm308cT1SGvYldHbxqNRhi+EPY6y5XscXeETSGaKkwVbkbYbvr7SCGcwKJZebzoqIVYPrej5nJpr/RP8G5D3fb03rEOjRBCpi27va5yiVUjtFnmd288gHs2VpeodB1hdzmVw81n3CoLWdMIJmuNQgCEW9xWi8xGbgnP7cwinzHw4ZcflWp5IQQO8eIRcZOb1KZD3ceUEB6j6yeESO3eJqEuGPq9kqNZywjqCNetGuG+tj0TbaiR/JpMQkbYEEKrNNDADkwSGVOg7Mj4jHCDk+V8RzgTxITGc6IcEL4Qayb5jOsIyyY7woxG1KGtTleU4ZRlcdR66tXHJISQmYwSwgtnxU+W05s8dGRNXPfITpy2cm5ombIdOMKzNUcYcMWX3+J3FAIgrkSZnhFuJBqRMQ08+enzG9r+P5x3BG5avxtnHj636rm4rl7KnavnuKbBMt2yY6N1EDOmgbaMGboQabiOsCqf5rdYrhGNSKwjXH0xM5XJmIbXUCPOEQ7uAqQhqH0dlE+L65g7FhqZLDcWAkd4/CIucdARrkO9CQiqPuSegQI++dv1oTD9rU/twfLLr8eegaBAelrhTAghM5Fd/QWYhsDcjnghrDc1WtCdx8HhEj752/X44FUP+I9XHOkLZiWEVYwtZxmhOraNEtfQIKdF5JotAF55/GJ85ZKT8KZTDq16Ls5dNQ0REupjYTRd6qKo0mxCuOMMohF1HGE1Wc4TwpkUTqjeBCQ6WU4xHRxhdQFSiZks50+KbNQRVtGIJjjCjWaEP/+64/CPLz2i4e2oznKcLDfJ1DvBDHulPT7268dw4/rdeOER83HukQsAAN/783MAgPXb+/0ZysMl9wTdN1L2TxhpGCxW0J4xJ+R2BCGENIvd/UUs6MolZm1VtYT5XTl0t2XQX6hgd38BeweCij0VR2qOsHse9R1hswlCeJQZ4fFG3TWPjnHcuoaNQ8xiVlsGu/oLfkMQv3xanaoR0c5yaSbLHbkomEhpa82u9NdMp4ywHTNZzs8Ip/zc+e+hVjUiY43vMTjp0NlYs7g79fJxF3VpyGcMFLzJcs18G1N92oUQLxdCPCWE2CCEuDzm+XOEEH1CiIe8fx8f/6FODkknmLc+/zD8w0uPgO1IlGzHP/HqV0nq71KIoN7wUMnGbU/vxQmfvAl3x2Tf4hgolHHsJ27Ef//h6THsCSGkVZjK5+zd/YXEiXJAIGjPWj0P3XkLfSNl9A6X/So+gNtZTgmmng4VjQjcTH+y3GiiEbFC2Ix9fqJRok6PQbz2eUvw9y9ZPS7rV2J0PBxhtY60jrBaTl3gZPxoRPJr5nbm8LP3Ph8dWROrFwSiWH/bp0U0wnCFcNmWoYYuQPCep/3YmUZwZwQAHDm+zTQA4NtvW4u3n7F8XNcZh18+zZnkaIQQwgTwdQDnA1gD4BIhRFwNsDuklCd6/z41zuOcNN73wpUQArj5Qy/EL99/uv/4W08/zL+FN1KyUa64qlfveCTh/ly2ZRCNKFZwhzdh7pFtvanGoCpT/ObhHWPbGULIjGeqn7N39RWwsDs+FgEAaxZ343/e8jx85jXHYVZbBgMjZfSOlNFfKLuVALxqAEtnt2Nhdw7HLO6GEG6eEHAF2HhNlouWooo+P9EoMaCP4eTD5uCdZ64Yl/VH3cTR0N3mfi+qY2akFMJK3Fc5wnWO92kr5+KxT74Mp66Y4z+mi8npcBPVLZ8mYTtOYvm01C2WYxqsjHf5tIkibxkoVhzYU2Cy3KkANkgpNwKAEOJqABcCeLx5w5o6rF0+B8999gIAQJ/mSOQsw79y/ZufPoiiF30Y0CbDKUd4oFD2WzEPlWy/5aFlGChWbDyzexCLZuUxrzP+y6HQhBaJhJAZy5Q+Z+/uL+CMVdUTwXRecdwhAFx3sc8TwVK651KVIZ3bmcU9H3kJADdLGOsIj0LQRfO3QDgj3MhkufFGbbpZNVxVTncswqlbOcLeOvxKFPWiEUZ4spxyp9M4gVGRqGvuaeEImwZKXh3h5PJpaYWw5whrrY3Hu3zaRKH2oVB2Jn2y3BIAW7Xft3mPRTldCPGwEOJ3QohjxmV0U4xObeZlzjL9P9g7ntnnO756vchACFf85+997gCuvGcLAOBT1z2OIz/6e7z1u/fgm7c9m7jdgTGc1AkhLceUPWcXKzb6CxUsqBGN0JnVlsH+oRLKtnsy7R0u+3fddEF61CFdOHxBJwBXgCmzYdwywlpd3ckUVmaMIzyeWE2IRhheVYt6zm61I1w/GpGEfnymgQ5GxneEZVXpOnXcGp0spxtn09VEU3d5Rkr2pNcRjtu6jPz+AIDDpJQnAPgqgF/HrkiI9woh1gkh1u3dO/3q6YZaUFqGX8cSAHq9LkUfueZR3zlW0YjBYqVmK+aDw24GLglVk7GRFprjwU/v3YIv3vjUhG6TEDJmpuw5u1B2z4P5TLoqB92RCcW9I2VfFOvn42v++kxcetZKAGERN9aMcLQma/T5iSbICDdnDOM1WQ7QM8LpSrtlTLcGtBVxkkdzvI2QEJ76SthvqOFUZ4QbLZ/2/JVzccmph2LV/KAHwnQ10VQlmOFSZdI7y20DsEz7fSmAUFhVStkvpRz0fr4BQEYIMS+6Iinlt6SUa6WUa+fPnz+GYU8e337bWpy+ci6685YfjQCAnV63JAC48t7NAIKTfn+hXNWTPYpyMABAyvB3Vn8hKE5+z8b9eHr3QNXrpZT4/WM7UbYdPLa9D33DZWzeP4Tll1+PdZsOeOOxcfW9W6rWn8QVv3oUX7t1Q6plCSFThil7zlbnwbRfzNHKOgeHS6h4pkLS7fusNrFtNOZBnCMc6mA2FaIRTRqDii+MrxAWoTJnSeQsE+05rV6z2Vg2Vkd3T6dHRthA2ZG1q0akPA6LZuXx2dceF7qDPX0zwu7nYbhkT3o04j4Aq4UQK4QQWQAXA/iNvoAQYpHwPq1CiFO99aYriTDNeOmahfjpe58PyzQSm2184fdP4fEd/X7XuYFCxc8IJ6HqEf/d1Q9ixRU3hJ5TjnDGNPCmb92N8/779qrX/+npvbjsJw/gK398Bm/65l343p3P4Y5n9gEAfvnAdgDAf//haVz+q0dx4/rdDezx1OWDVz2AD2i1RQkhAKbwOVvdGUvb6CIqhPv0aESCKxq6JTwaIRzTUMMwhL/eyS2f5jnCTRqDabjd5cZSplO9ZxnteKVxhN9+xnL81xtPCI0FGJ2Q1cc/HTLCWVMkN9TwJw02ts6FXXnfrJu+jrAXjSjbkztZTkpZEUJ8EMCNAEwA35NSrhdCXOY9/w0ArwfwfiFEBcAIgItlWttxGlPrqvmWJ3ejbyQQwqVK7UYayhG+9iHXuHEc6f8B9KsuSTU+zCqO8eSuAQyVbPQXypjjlRVSw1R1OJWwnu5c98hOAMDX3zzJAyFkCjGVz9mNOsLd+Ug0YriEsieEkyZf6TGGMbdY1l6es9wJTc2aqJaGRt3BRrFMMWb3cFZkstxrn7c0VNosiRXzOrBiXnA7PzOGC49p5wgbhj8pvtoRTj9pMPQ6Q+DIRV14cEvvtHWE9e54zYy4pGqo4d06uyHy2De0n78G4GvjO7SpT62T7OM7+/2yZ79NUfZMj0YAwP6hEuZ3uVUklHBV2bg4lGg+OORus1hx80YAqnqXE0JmNlP1nD3WaETvSNmPRiQJpNwYJwmFM8LB63MZAwPFmZ0RtsahOUd3JBrxvENn43mHzm54Peo4j0YA6cdnOmSELVMEQjjymTVHKYQB4ChPCE/0/KLxQp8s18y/u+l5dKYIRyzswqcvOtb//eJTglje7U+7sYQOLT6xpKcNAELZYsVIpPXy7v4gc6ycZTUhLw51FXnAE8KligPbcb8wpsOtIULIzMcXwqOIRuQsA73DwWS5xGiENX6OcGiC9BSIRgRVI5rz1W0ZxpiFsHrPxiq+MmOoGmGEHOGp//2nVzqJOsJq+KM5Dkctcru/KV0w3VB3d5odjaAQHiMXn7LMf4M+eWFQgUh1mjt5eVDk+9A57QBcmz9K9I/g1if34E3fvAs/vnsz/u/+bQCAPVqL0ShqDAeGdSHsPuZPOvAmkxfqxDSilGtUvNDZ0TtSd1IgIaR1KdmNlTVToiqfMbCwO4/e4ZKfEU663XvyYYH7qHeES4vuAuuiV9U0ncw290rUNSsjbJlizKW2opPlRos69qOJooTiLVNfB3uOcPydjjStppM4ymtBvXHf4BhHODmoz3m50tw6wqmiESSZjGngtn8+F7PaM7En3X986RG43eskN7czm7ge5Qh3t2VwYKiE/3ez2075nucO+MvUEsJ6nU3ALTx/lVe9Ilp+ZUCrdZyGYsWpmzEqVmyc8blbcNGJi/Gli09qaP2EkNag2GA0Qs1872nLoqc945VPc9eRJAbfsHYZzjx8HvYOFEfpCAc/65tQDudkNtRQ5/BmudLmOEQjohnh0WI10FAjynRzhDO6IxytIzyGaMSRnhDuaUvWHlMZpTuKttPUetB0hMeBZXPaqyZ1KI5dMgsfe6Xb3TQuEqHYM1DE3Rv311xGb98cJerE3vrUXmw9MAIAcKRq9ew1/Sg2JoQL5foOsvqCu+nxqVOR4u3fuxc/X7e1/oKEkAmhUSFsGgJdeQs97RnMasugd7jsz32odXG+uKcNJyzrGdUYVezAMkQoX+q3DJ7UyXKjd0nTYBljd4TzGRNZa+wRC8sIGziNMP0aaiSX51O/jmY/etqz+ME7T8GXLj5xDKObPNRFQanJjjCFcBPpzFkwDYFuz9WoeK6tPjNW5+Jv3e0vU4+o8K1Vnq1QtrG9d8SvSDGYwhHWJ5CnEcJlb/tTpVZIsWLjtqf34sO/eGSyh0II8Wg0Iwy4DuOstgxmt2fRl2Ky3FhRQ4uuX93xm9zyae7/zZos9/yVc/GC1VXlpBvmeYf24Egvnzpa5nflsHR2G1Z5HQMbIezqT30lrHeTq6oaMYbGIgBwzpELMK8zN/rBTSJ6TInRiGnErz9wJvpHynhsRx9eevRCAMGtouGSjZs+9ELM68xhw55BbNw7iMt/9Wjo9cOldG7tqZ/5Ax76+Hn+77XKsxXKNj5x7Xr/9zSOsC6sr/jVo/jxu09LvbyO40iUbCd1Jymdvzy7D8cv7UFnrvGPqR7/GCiU0ZXg2BNCJg4lhBuZSLV6QSeWzHYnGvcOl4JqOE3rrhY/KU5N3JnMaITvCDdpDO87e9W4rOfq954+5nV05TP487+8aFSvDUUjpoHdp1eKiH5XjiUaMd3JmBPj7E+Dj8j04sRlPXjhEfPx1+ccjtUL3XzOOUcuwMWnLMNHX3k0jljYhTkdWZy6Yg7OP+6QqtdHy6glEW3JXNsRdtCpdezZcmAYyy+/Htc8uC3xNXoVizue2VczlgFUO9SKz9zwBI762O9TT7hT7Okv4M3fvgf/8LOHsH+w6DcnUdQbjy6Ep+uMWUJmGo2WTwOA7779FHzq1ceiI2dhqGT7d82aVRs1qbWvcrFn8mS5mcJEOYnjhd55T9X/VwTl0yZ0SFOC8KRHRiOmNVnLwOdedzyWzm4PPd6dt/BP5x2BlVpP8LhawVnLwEovTvHPLzvSf7xfE4e1qjUUyjYWe6XbAOD+zQcBAD+6a3Pia6rqGg8mT9QDgo5RUa6+z83oDhcbq1Sh9m3DnkGc/O9/wDn/+afw9upUp9CFc98MaSBCyHRHnScaEcKG1+msM2uhVHESy0yNF0liUznCU6GhxmTGM6YDugs8HeoI6xd1USGshj8d9mO80Y9LM519CuFJRAiBD75oNb711pNrLve+F67EVe95Pr751pNDdYmP/7ebAAA3P74b93niNo5CxfEd2X986RH+473D5cT8b1QI7+6vFsJ/f/WD+NivH8PWA8O+MJUIC3l1+3IoZeRDUaqEb3/uj7i6xTol4NREQaDaPSeETA6jyQgrOryIlGow1KxGQeqcMyUzwk2ORswUpl1nuRpCeCytpqc7Fh3h1uHwBV34uxevTny+LWti0aw8XnbMotjSZ+/50Tq/RJvO377ocJy6Yg4KZRuFsoOe9gze88KV/vPP7RvC3/z0wdhtRgXynoFC1TK/fmgHfnz3Zpz9n7cmRjPUl1Vc9nnDngEc/pEb8MzugarnRsru8voV4U3rd/k/69uLxiT2DRbxgase8H/vbTFH2HYk7tm4f7KHQUgVo4lGKDq8eJe6w9OsjHCS2FS55qkhhPnVXYuJuqU+XuhZ2NntYSHcyhc/+gVCMx1x/jVNEbrywYSwQ2blQ8+1aeH56EQ3WaNMQ1c+g3zGRLFso1C2kbfMqiD+zZFyZ5/87Xrcv/lAVWWJWjWMHRl8wUWHo/7Ah2KiEX94Yg8qjoyNaAx6y+tC+L0/vh+AK+D13G80f6x35QOmXzTCcST21Ymi1OJ/bt2AN33rbtxdRwxLKbF5/9Cot0NIo4wmGqFQjrC6sM00sc2w+394jIEQbspmU6G0ADPCtTGM6eUIZ2pMlmvlaIQ1Qe8jhfAUoVtrJfq205eHntOF8LvPWhH6QNQSeV15C3nLQKHsoFBxkM9Uv936VeZz+4bw/Ts34XX/exe2HRwJLbenv4hdfQW84PO3YPW/3lAloFWmt1hxsPpfb/DbQfvRiJhKFaoaRFzXG7V83C3Uc7/4J7zpm3f5v1cijvDBofAx6avRmlpn70BxSkys+/Ifn8Haf/8D9vRXu/BpeNJz2KMXBFG+c8dzOPs//4THd/SPajuN8IM7n8P//unZpm+HTG2KY4lGZCcmGmEmTJZTneUm040daymtVkGPRkwHAamEcNwFYktHI8yJcfYphKcIylF95fGH4Nyj5oeea9NywQu68rjpQy/0f39kW1/iOrvyGbRnTQyVKq4jHFPCLGMKlG0H/3rNozj3i3/yH996cDi03MHhEq6+bwu2HRxB2ZZ4z4/WAQhaOD69K4g3lG2JZ/cOeut3P2JDMW2llYjfE5M/Vs539Pan44nefs2xLkdiGfuHgvVlLSO1I3zKf/wBz/v0zamWbSZ/fNK9yIjLZafCuy6o9wVw7ya3a+GWA8M1lxsPbly/Gzc8urPp2yFTm1LFQdY0RiVOlCOsYlptNZoPjYVEIawc4UkUViarRqRiukUj1Pdcd766VGhLl08LVf9o3nYohKcIpyyfAwB43wtX4fD54QLibREBe/iCLnz2tccBAN72vXsT19mVt7BoVht29xcwUgqE8PffeYq/TMYw8JuHduDKe7aEXrvlwDAWz8rjno+8GMvmtOHgcCk2B7zmELdoumoJrfBLHNXICB/03Ne4knHKEY5GLeIy0tFoxL7BwNWd055F77DbljVNY5CpgPqyqziNlZyLUis2A+gnluZ3QSnbTurSgM3gs797Assvv37Stk9cShVn1B3HVNfN7b2uEJ7V1pza4PXLpzVls6lQQ5rMEm7TAXPaRSPcQcbVu2/ljLBhCK2zHh3hGc+Ri7qw6XMX4Lils2CZBv70T+f4z7Vnq68SozliAJjXGQ7Z5zMmls5uQ9mW2HJg2I9GnHvkAn+ZgWIFtzy1p2pd2w6MYOnsdizszmNORw4HhkqxJctUL/MoSrCqK90/PrEH63eE3WuV9YtzbIc9B1m1hz5srlt6bkffSNWy5Ug0Yv9gEZYhsPEzr0Bn3sJQqYJXf+1OHPWx3/vLfPq6x/HN28b3Vn3vcGlM2V6F+pKrUyo5EVW5o1ZtaQAQGNt2GqHsyEm9EPnmbRsBTL+8+EyjZNujFsIqSrX94AjaMtXzHcYLw4h3XYOGGpP3tSnoCKdiujnC6s5pV6wj7P4/DXajKai/NzrCLchyrQ1zR676hB935djdlsE9H3mx79LmLAPL5rgC0hXC8V8c1z9Sfcv64HAJcz1hPac9g97hcqyjNztS6kWhMsPqD/w3D+/ABV/5c2gZlSMeKFSqKj+oaIQScwu7XeG/M04IR6MRg+7YDUOgI2dhsGjjiZ1BDnaoWMF3//wcPvu7J2PHruM4Er9+cDtsR+K6R3bgzM/d4rd4jXLKf/wBa//9D3XXWQ/lCDuj7FetXhaXy9ZR3+ej3U4jlCvj48jf8OhObDvYeJRDfYls3FudRycTh4pGjIZ27zy4b7DYNDcYCERmVEAF5dOatum6sI5wOoxQRngSB5ISJfa6Y77XzYTPY6ugzDRmhFucow+p7tked+WYNQ0s7M5jzWJ3+TkdWSydHTTSyFvpHZSBQsX/o5zdnsWj2/twVSQ+AVTPcFX89N4tcByZ6Fzc+tSeUL65P+LUKRGnGmMs8oTwjt7qCWDRCMHO/gIWdLnLd+ZMDGuC8I9P7MZvH97h/y6lxJmfuwU/X7c1dpw/W7cVf/+zh/Djuzbhil8+iu29I7EVMID4ZiijQTlS9brnJaF07XBMLltHiIlzhCuOE+pWOBqklPjrKx/ARV//S8OvnduRAwBs3MsqGZPJWKIReqv1nvbmCWG/oYYZFcJG6PnJgJ3l0qFfKEyHyXLqOyzeEW5xITwBFwIUwlMcQ8SLTf0PRv3Rv/rExQCAT194LH5x2elYNqcdy2a3+w5MXNWIJPoLZXS3udtIcn0B98vh2g+cWfX4fZsO4tqHt1fFFhTv/P592DNQ9K/Wo7V+ldhUzvDCblfIxDnCqvmGYtvBYf8CoD1rhUrOvfuH63D5rx4F4H6xlm2J7b0j+PAvHokdp5rIt2+w5DunSV30FN+6/Vksv/z6ROe4HuocXq97XhJqfNFSe1HUaaVelng8qNgSI2V7TNtSFwajiZ/M8j7LT++prllNJo6SPXoh3JYx/fNFUx3hhIYaqxZ0Yk5HFnM7c03bdj1YRzgd062hhooSxglhtSvTYT+agbqr3MzrgOqjTqYM937kxf7tuCjzO3M4+4j5eO8LV2Lt8tm49qEdeO1JSwC4s6nXepPvspaBNYu78dDW3pCg/vUHzsRFX78zcdvDJduPX0Q73ejkLAMnLOuJfe6f/u+RWFfT0R576dELcdPju/HEzn4s6MrhS394Gsvndfi30dUJwo9GxDjC+mQ5KSV29I7gRV4OujNnJTqjlinqdqhT4tcQgO39XO8W/2ducCMXuweKWKK1tk6Luk02WiGsBHDdaIR3ZpkAHYyS7bj1pm0n8TNdj7E47urCav325peKI8mMJRohhECHd2HbTEc4qTLDKcvn4IGPvbRp202D0r+TGc+YDujXCdPBSVV3y3raq79rTUNAiOnhbDeDiYhGUAhPYRZ0V0+IU1imgR++61T/9zeuXZa47InLevDQ1t6Qk3nish6csKwHD2/tTXydKuVyqJczjqPWhJU4EfxfNz2Fd565wv/9/OMW4abHd+Ovr3wApiH817zoKFfIKhG7yJscGDdZTo9GfPWWDSiUHSzxHWEzURBahqgrNv09EMKPENQTz4qtB4ZHJYRVNKLeZLckhnwhXC8a4f4fbYvdDFQVkUJp9EK4nhNfCzVJ7tHtfZBStuyXymRTHEM0AnDnSwwWK+hpS744HytTOZNJRzgd4WjEJA4kJW86ZRme2TOID5x7eNVzhhBT8rM4UXCyHBkXXve8pQDchhE6BU9kXnzKMnzh9cdXvU41+Tj6kKAyxPK5YVGca/BL7Su3bMBJXq3eD557OE4+dI7/nC6co3nSWW0ZZC0DO/sCR3i25wp9+ron/Mf+yyvjtsorQdeZs7A/oUlGf6ES20BDv30vNUdY6cVCOZ0g27J/dPV51R98WsGtlv27qx/EU7sGfCF8z3P7Y1tvK9R5pVyZgMlynogdSwm1aJm8tJQqbum2WW0Z9I2UWTliEhlLRhgImmrMaqIjrL54m9XCeSwwI5yO6VY1oiNn4bOvPS428uMK4UkY1BSBk+XIuHDc0ln4wuuPx6cuPDb0uLq9+NfnHB7rKKvJcsvnBhUsfv/3L8Tjn3qZ/3ucu/eBc1elGteKeR2hyXw6UcGUz5iY3Z4JRSPUhLiHtvbi2oe2+3Viz1o9Dy84fB6AoAh/HKWKg5f+9+1VjxcrDvYPFnHT+l1+bGDLgWHfkdQF6mCxAiklfhfTLOLDv3wE1z2yo+rxKO//yf340h+COszq1mwj0Yg7N+zDtQ/twGd/94Qv9LYdHKlZZ1qdWMbitKZlMoVw74h7saMu4iiEJw83GjMWR9gTwk3MCAfxg6n39WgaAhlT+DWVSTzhjPD0VpFGC8ciAG2yXBOvBhiNaBHihO5XLzkJNz+xG4fOjY8+KEfYMg18+qJjceTCLj8KoWIMagLeK48/BNc9shObPncBHEfi67fWr9HbkTMTP9wPRSIbWdPA7PZsqNtaxgpe+/VbN/g/n33EfH+9jUwQVBTLDj5zw5P45QPbcNZqV1D/6oHtoed/9+hO7Bss4mPXrsdZq+fhjmf2xa7rl/dvwyuPX1xze797bBd+99gu7B0o4j9ec1xVNGLDnkEcOqe9ppP2zG63LNi8zhx6R8rozFn1J8uNQnCPFpXvHUsJtdE41yMlG9d4790Zh8/Dw9v60DtcxmFzRz0MMgZKFQfZ9tELTCUAm5kR9h3hKWjDZS0DP3/f6Th8QWf9hVuY6dZQoxam0dqOsJosx2gEaQoLuvN4y2mHJT6vf9m89fmH4dQVQYxBnWhynjD+6iUnYeNnXgHAvXJLcix0N0g1CvnC647HJacuw5EL45tzuNsxqr78Tl8ZqBndvdFzuaNx/woV2/+jixO4hYqN91/5AD527fqqZVSe+pwj5+P0lXPrilEd1d1PuRnFio3bn96Ll/zXbbjyns01X/uk1+K6f6QMKYF/PO8InLJ8tvdc/AQxtY+jdVobQeW4x+IIN+pcX/vQdhz98d/j+3duwrFLuv3cOR3hyWOs0QhVQq2ZGWF1KpmqTuJJh86OrSNPAoxQRnhqvo9pEUJMalvvyWYiMvsUwiSWrGlUtXrWySghbKnSJiJ08tG74a2c34E//8u5WDmvA5edHcQmVKOQN56yDJ997fGhLHKUnGVidmRG7aFzO/AvLz8KAGBrE+aWaHGL0bidP7tvK6wa07KLNTLCL12zEFe95zR8+eKT0Jm3YltC68SVE1N/+KWKg5959Y0PDJXwyLZeHPeJG7G7v7pyhtrOs17DiLmdOT8b/vIv3RG7HXVe0Y9RvfJmUspQ1Y80SCkDR3gMtYQbFey3POl2TNzVX8DyuR3+7XQK4cljLOXTAKBdCeEWdYRJOqZb+bRaGGLqXpRNBJbvCDMaQSaAX3/gTKzbdADnH3cIZrVlamZyetqzGCqNIJOQo+vMmdjnNfEaKdlYOrsdt/zTOaEsbbR19FGHdAMPxWdqs5ZRVcatO2/5tb90MaeywwDwwXNXI2MaWL2wEx/62cMwRP0GEmrCXRKFGpPYspaBM1a5cYquXH0hPBQRhgOFcqhFstovR0rcuWE/BooVbDs44peT88fkOa3Peg0j5rRnkdcER3+hkpir1AXm679xF7rzFr73jlNinZQPXvUgrn/UjcCkpaJPghyDI1zRyqfd9vRenH3E/JrL6/nwpbPbKYSnAGMpnwa45xWgyRlh1b1tCk6WI+mYbpPlaqHKp7UqynRr5jGgI0x8TlzWg0vPWoklPW2hLk5xXHnpabji/KMSZ2/rk+hOWNrj/6zf0uuICOE3rV0W+oLTi4vP78xhfle4kH13PuOLHV0Iq9bQgDu7/MMvP8qvzzinI4ujFnVh5fwO1OOIhfGOeK2qEfqXfFe+fk73Mzc8Efp9d3/Bd0+LlaAb21DRxlNexKEYIyajAjNa+P/ujfuxb7CIn6/biqd2DcB2pC8si5oQvn/zQdz61F5sTqh4cb13IfPkrn4cjKm48fvHduLe5w6EHtOFdpIQfmb3AP7p/x6u2YREj0a8/Xv34i/PxueyFfpneMnsNgrhKcBYoxHq4rmZQlgIAdNo7dvR0x1jBk2WO2v1fLzG6xHQirCOMJmyLJ/XgfednVwdQrmab1y7FP/26mP8xzs1cdueC+eIZ3dkcekLVuD/eY7sRScuwX2bDuB1z1uKrGVgXqSjU1vWRLHirk+vuZuJcZxUhMMyDPz+71+In6/bmthNTpH0hV2rUYX+mk5PCCfVrZVSVrWt3tVX9MVgqeJguORua7hU8XPAuiMtpcTTuwerys3N6ciivxAIvvf9+P7Q83/34tV+17+4SWjRTn9R3vrde/HqExbjY69cE3r8sp88AAAhx1hvhJHUZvkDVz2Ap3cP4tKzVuCoRdUtxd31RFpp9xbQN1JOFEW6K7RsdhvyGRM5y6AQnkTGXD5tAqIRgPvZYTRi+mKFMsKTOJBx4KVrFuKlaxZO9jAmDU6WI9MWVV1i7fI5oQiE7vJGHWEgfBtdCLdc23teuBIAqhzhrGX4rl+9W+7KoVZXl7WaVVx8iltho1B28NnXHlf1/J6B5Ba/+mTAzlwGtiMxWKzg+kd2Yn+kNfDD2/qqXn9guOQfg2LF9huK9A6X/fyv7kj/6K7NeNmXbsfjO8MT4uZ1ZrF6QSfefNqhseO8e+N+X3ArganXcR6sE+nYO1DEzr4RXPCVO3CyVxc6CV3AJlWNUNFkgeBsd4/nYsetBwD+8f8exgmfvClhfRL9muBVnRbndeb8jPVIycaegeq8NWkexTFmhM8/dhE+eO7hde9YjRXTc4XJ9MSYQdGIVoeT5ci05TOvOQ7vOWuFP1NfoQvhuNJmepe46ES3qCPsRiNcgZvURlmhBKq6upzfGT/r/CfvPg2vOO4QAK5QuuTUQ/2axIpv3b4xcTv6l7za1+P+7SZ84KoH8N4f34+DQyX8488fxk3rd8W2uB4qVvzIwk/v3eq7wI9t7/Od1b++8gH8/rFd+N2jO/GIJqa7tWNrmQaEEPh4xLHVx6kEd6niQEqJK34VOOSDxTIe2tqLn9ydXK1i32AJ63f0+w1LkkSunu1NumCR/v/uT1JKvOlbd+M1/xMco6TJcnET/P7nT8/6VThOWNbjC6ejFnXh8R3uRcNfffcenPoff0zaPTLOSClRqjjIjSEjfPQh3finlx3Z9EoAliGmZEMNkh5fQFHlTGvU5NVm/s3zI0KawrFLZuFfL1hTJV5V2aO/fdHhsR9sXTRFhbC6HdrTnsFXLzkJhy/orGqYkVQ3WH2pqVtmLztmUahFtaLsOL7zrITdKi9PfOkLVlQtH0Xfo2gJuY17B3HXxv345QPb8N5IVEExVKyELgYUO/rCzuVlP7kf77/ygdBtvxMPnV31uqQW2I6UIUd4uGTj5+u2+c8PFCq46Ot34qO/fiz29QCqHG69S1+xYmNH7whsR0YcYffnr/7xGfz+sWDipOOJWVWRQ4n+rQeCltqlhDrCe7Vx3L1xP65/ZKdfVzprGbjm/Wf4zx+zuBsb9g7i94/txP2bD7rbbrAKBhkd6j0diyM8URhGa7e1nQmojDffx+lNxs8IN28bU/+MRGYUWcvAxs+8Av9w3pGxz+suzJGLwuXUDpvTjtectAQ/efdpeNUJbpMKXQgfubALd3z4RbHrVQJblWIRQsRWHajY0hfCyr289KyVyFkGXnbsorr7F4oXRLLEFUdWiccoQ0UbZVvirNXz8NoUEyR0F/bIhZ3ImgauOP+o0DL//LLqY72zrxBEMGynyqnVc9BJTm+0dfX+weD3TfuGccbnbsGHf/FI1WS5B7YcxP+7+Wn8w88fDl7st692txXNEj+zeyCxjrAuli/+1t34wFUP+HcIShUndJt09cIuSBlkmQGEstSkeaj3bzoI4TefdihecnTr5jJnAkE96MkdBxkbLJ9GZiS1yrK9/5zDUXEkXnL0QpwccTgt08B/v+nE0GPzO3NY1J3Hrv4C1izursoRKw7zuud96CWra45tcU8ec9qz6MxZ+OgFRwMAls1px1P/fn693QIAaIY2LjppCf79uid8AWA7EnsHqyst6AyVXEc4Yxqh6heA2yJ4U6Sag16erT1r4en/qB7nB849HC84fB4u9KIYbzh5Ka57ZCcWeMeqrFWnUOgivne4jEWzTHzoZw+FlukdDgTkY9v7sL03GNv6HW5k45cPbAvVh/7fPz3r549XL+zCo9vc16nDNlCooFC2Q8L81qf24J3fvw9nrIpvB7ft4DBOPqzaDY8j7vPRO1z2q4qQ5qHu8IylfNpEoeqTk+mLcoSne0ONVseagIjL1D8jkZaiM2fhivOPxinL56TqLZ61DPydJ263944kLteVz2DT5y7Aeccku7o/fc/zccziWTAMgcc++TJcfGr1RLNH/u28muPRb7N35zP45ltP9n+v2DI0+Uvx/JVBxz6VEbYMURX7OGFZT9Vr9fW1JXTzA4Djl87yxmThyEVdGCnbvoM7EhGeAPDFm4JayirycM2D25HEK7/655DLqru9/359uETcj73cccYQeNXX3NepnO+lP1qHkz99c2g87/z+fQBcsR1HXBm3JOZ2VAveg8PpX09Gjy+EreTPKSHjxURMsiLNxzKaf0FDR5hMe9Rktu0Hk4VwPd60dhlO01pIJ9Gt1UH+5ftPx5O7BvDGtcvw+d89ie/8+blQ1QsAOKQnaHxRcRzsi6k40ZkL1vnTe7dgTkcWK+d3hGoxA+5+XhtpOLJ+R1Atoi0hDwy4J5E7L38RLEP42ditB10Hd09/seZkw437BnHHM3sTnx8t+jb1wzZUsv2ycTp6Wbw5HVlfoKumJPW64gEI1VZW6M42aR6BEKb/QppPIIQneSBkTFgsn0ZIfZbNacdlZ6/CVy45seHXvsUrL/b51x+fyoHWOfmwOXjLaYchYxr+H6sTEWOHdAftnh3p5mpPXzkXV156mv+4XknDkW41Bssw/EoXy+a04aVrFuKiOpnhWkIYAJb0tGFhdx6LZrniXE1c29E3Eis8FR/+xSP47O+erLnu0aC7vhLh43bBV/5ctbzKJF9y6qE4a3VQyWPbwRH87tGd6I+UfMtnjKp8dE9MzeHeETrCE4Gqf52jECYTAB3hmUFmAhpq8IxEZgSXn38UTj6svqMb5T9ec1xD7YIB4KMXHI0vvuGE0GPvOGM5Tjq0B29cuyz0eHebFaoesWnfEBb3tOHMw+dh5Ty3GkW0ugTgThrMeRUwzlw1D99+29rYRiE6+RrRCJ3Fs9pCvw8UKthbozay7tz+7YtrZ6wbqb2qT8gbKcVPhPv5+07HJaeGj+lHLzg6JGh/eu8WvP/KB/DHJ3aHlnvwY+fhA+ceHnos7mLn4BAd4YlA5dDjPu+EjDeGnxGe5IGQMcE6woRMQS49ayVef/LS0GOLZuVxzV+fWTUZSwjhO7CA62quXe5O7Lr6vc/H999xChZ15xElYxg463C3qsVrn7e06vm/XF5dHaOeI6yImzC2ce+Q//OVl56Gc46srqgBBKXkklg6u63m8zr6BL3BYrwYbc+a+Oxrj8cxi4NucxnTiC0L9y+/DHcKrJWZJhOPuqDi+0ImAnMCsqWk+WT8Sk/N2waFMCFNZvGsNmQtw6/ScKqXRV7Qnce5Ry3AZeeswhded3zoNZYpcOjcdmz63AX+8joLYsTsSYf2pBqPaQj84rLTQ49t3BcI4aWz23D4/M7Y1+qCNI4kIfzhl4cjCrPbMxgs6SXa4h1hJXhXLwjGkzFF7O31si39k2Wtk+YP33UqzvWE/mtOWoJ3pagPTcbOSNl9v9NesBEyFgzBjPBMwKIjTMj057C57VjUncef/vkcXPuBM7EqIjIzpoE3nrIs1LDDqnP2tkwD7z9nlf/7j951alXzklosnxd2dp/dM+j/nM+YmBcjtJfObsPhC7qqHtdZ0BW427rY/utzwhGFE5b1IMXcNt89/MSrjvEfE0IglyCmnr/CLbFWqwXv2UfM92tIRyc3kuah4i/tMa3VCRlvmBGeGXCyHCEzgH8670j88F2noj1rxZZAU3z0lWvw7xcdCyDs0Cahap2+7JiFeGFMc5BaqDJiqqbr4zuD6hNZ0/CrY6hufgDwx388GwB8NzWOZXPa/Z91UQyEqwWcsLQncR2qfjMAtHuCd3ZHFu88c7nfOTBpwpVqwlJLCANAu/c8u8pNHGpCJjPCZCIIym5N8kDImMhMwAUNL80JaTKzO7KYHVO/No43nbIMf3l2H157UnUuGACu+5sXhH5/7rOvGFUGTgiBKy89DUt62nDOF//kP96eNdGZt9CRc8VKT1vGLy+myrn971+djB29I+gvVPAPP3/IzxfnLAPvPGM5vvLHZwCEq2EAwG3/fA7+9NRe7OorYElPcpZYdwz1POknXnWM7wy/7nlL8ccn9uCujftDr1UZ5npiq8PbRlw7a9IcVJWQpLbfhIwnBh3hGYFpNj/rTUeYkClExjTwP285GS9ZE9/e9dgls3Dskln+72M5OZx5+LyqiMTjn3o5Mqbhi9E5MQI+nzGxcn4nTlzWg1v+8Rz/8Sc//fKQ4I82BDlkVhsuOfVQfOilR9SsJatEOJDs/M7uyOKn731+1eMned0InxfpShhFleSx6QhPGKwaQSYSU1AIzwQyBqMRhJAmo2ryvk6rTvHCI+bhNSctqWppHYeKe0RFeS2xqyb7/cNLj6h6ri1j4qfveT7e/YIVdYW+qrjxzbeejOv+5gU4dsksXHXpafi0FzFJwvKEMDPCE4dfNYKOMJkADDbUmBGoc3UjpTkb3kbT1kwImRb86F2nwpHhE03OMn0R/LU3n4TVNSbJ/fx9z0exEh8x+OIbTsBxmoOtOH3VXNx1xYvQnc/gv25+OvRcR87C6avm4vRVc+uO/Vd/fQY27BkMZaTPOHxejVe4KJeIjvDEMVK2kbOMhhvXEDIaVNl1lk+b3lh++TQKYUJIkxBCwKxxjnnl8Ytrvj5nmaF20P/9phN89y9ab1nf5iFeY4+Pv3INbly/C/M6c7j+0Z0o2elzu4t72rC4Rt44ieVz3UiI3qGONJeRks1YBJkwTJZPmxFYE+DspxLCQoiXA/gyABPAd6SUn0tY7hQAdwN4k5TyF+M2SkLItOE1CRP9knjXC1bgXS9Ygd7hEpbOacOZq5ovTpfP68C9H3lxbHORmcBUPGcPl2yWTiMTBifLzQymRB1hIYQJ4OsAzgewBsAlQog1Cct9HsCN4z1IQsjMp6c9iyvOP7pmtng8WdCdn5G3TafqOXukXPHL3xHSbCZCQJHmk5kidYRPBbBBSrlRSlkCcDWAC2OW+xsAvwSwZxzHRwghpDGm5Dl7hI4wmUCUAKYOnt5YU6R82hIAW7Xft3mP+QghlgB4DYBv1FqREOK9Qoh1Qoh1e/fubXSshBBC6jMlz9nDJTtUF5qQZsLOcjMDyy+fNrlCOG7r0anWXwLwL1JKu9aKpJTfklKulVKunT+/sU5YhBBCUjElz9mFss3SaWTCMFk+bUYwVSbLbQOwTPt9KYAdkWXWArjas67nAXiFEKIipfz1eAySEEJIaqbkOXu4ZGNxD4UwmRgMNtSYEahoxGS3WL4PwGohxAoA2wFcDODN+gJSyhXqZyHEDwBcRxFMCCGTwpQ8ZzMaQSYS5QhTB09vMn4d4eZto64QllJWhBAfhDuz2ATwPSnleiHEZd7zNTNmhBBCJo6pes5mNIJMJIYQEIINNaY7E1H9I9UUXinlDQBuiDwWezKVUr5j7MMihBAyWqbiOXuYDTXIBGIZgrGIGUAQjWjeNljUkRBCSFNxHImRso02lk8jE4RpCE6UmwH4VSOa+GZSCBNCCGkqxYrbNpvRCDJRGIZgLGIGMFXqCBNCCCGjZrhUAQBGI8iEYQqWTpsJTJXOcoQQQsioGS655YpZNYJMFIYhIGJLapPpxEQ0RqEQJoQQ0lQKZU8IMxpBJghTMCM8E8gYdIQJIYRMc5QjzGgEmShMVo2YESyclcNL1yzE8w6d3bRtcAovIYSQpjJUdDPCjEaQicI0BJtpzABylolvv21tU7dBR5gQQkhT+Pl9W/Gqr/4Z63f0AwBWze+c5BGRVqErn0Fnjl4fqQ8/JYQQQppC1jLw6PY+9I2UsXR2GxZ25yd7SKRFeP/Zq/CGtUsnexhkGkBHmBBCSFM458j5MA2BLQeGsfaw5mX8CIkyqz3DOxAkFRTChBBCmkJPe9YXwCdTCBNCpiAUwoQQQprGS9csBACcsmLOJI+EEEKqYUaYEEJI03jr6YfhqEXdOGpR92QPhRBCqqAjTAghpGnkLBMvWD1vsodBCCGxUAgTQgghhJCWhEKYEEIIIYS0JBTChBBCCCGkJaEQJoQQQgghLQmFMCGEEEIIaUkohAkhhBBCSEtCIUwIIYQQQloSCmFCCCGEENKSUAgTQgghhJCWhEKYEEIIIYS0JBTChBBCCCGkJaEQJoQQQgghLQmFMCGEEEIIaUkohAkhhBBCSEtCIUwIIYQQQloSCmFCCCGEENKSUAgTQgghhJCWhEKYEEIIIYS0JBTChBBCCCGkJaEQJoQQQgghLQmFMCGEEEIIaUkohAkhhBBCSEtCIUwIIYQQQloSCmFCCCGEENKSUAgTQgghhJCWhEKYEEIIIYS0JBTChBBCCCGkJaEQJoQQQgghLQmFMCGEEEIIaUkohAkhhBBCSEtCIUwIIYQQQlqSVEJYCPFyIcRTQogNQojLY56/UAjxiBDiISHEOiHEC8Z/qIQQQtLAczYhhKTDqreAEMIE8HUALwWwDcB9QojfSCkf1xb7I4DfSCmlEOJ4AD8HcFQzBkwIISQZnrMJISQ9aRzhUwFskFJulFKWAFwN4EJ9ASnloJRSer92AJAghBAyGfCcTQghKUkjhJcA2Kr9vs17LIQQ4jVCiCcBXA/gXXErEkK817sNt27v3r2jGS8hhJDa8JxNCCEpSSOERcxjVe6BlPIaKeVRAC4C8Om4FUkpvyWlXCulXDt//vyGBkoIISQVPGcTQkhK0gjhbQCWab8vBbAjaWEp5e0AVgkh5o1xbIQQQhqH52xCCElJGiF8H4DVQogVQogsgIsB/EZfQAhxuBBCeD8/D0AWwP7xHiwhhJC68JxNCCEpqVs1QkpZEUJ8EMCNAEwA35NSrhdCXOY9/w0ArwPwNiFEGcAIgDdpEzEIIYRMEDxnE0JIesRknfvWrl0r161bNynbJoSQsSKEuF9KuXayxzFR8JxNCJnOJJ2z2VmOEEIIIYS0JBTChBBCCCGkJaEQJoQQQgghLQmFMCGEEEIIaUkohAkhhBBCSEtCIUwIIYQQQloSCmFCCCGEENKSUAgTQgghhJCWhEKYEEIIIYS0JBTChBBCCCGkJaEQJoQQQgghLQmFMCGEEEIIaUkohAkhhBBCSEtCIUwIIYQQQloSCmFCCCGEENKSUAgTQgghhJCWhEKYEEIIIYS0JBTChBBCCCGkJaEQJoQQQgghLQmFMCGEEEIIaUkohAkhhBBCSEtCIUwIIYQQQloSCmFCCCGEENKSUAgTQgghhJCWhEKYEEIIIYS0JBTChBBCCCGkJaEQJoQQQgghLQmFMCGEEEIIaUkohAkhhBBCSEtCIUwIIYQQQloSCmFCCCGEENKSUAgTQgghhJCWhEKYEEIIIYS0JBTChBBCCCGkJaEQJoQQQgghLQmFMCGEEEIIaUkohAkhhBBCSEtCIUwIIYQQQloSCmFCCCGEENKSUAgTQgghhJCWhEKYEEIIIYS0JBTChBBCCCGkJaEQJoQQQgghLQmFMCGEEEIIaUkohAkhhBBCSEuSSggLIV4uhHhKCLFBCHF5zPNvEUI84v37ixDihPEfKiGEkDTwnE0IIemoK4SFECaArwM4H8AaAJcIIdZEFnsOwNlSyuMBfBrAt8Z7oIQQQurDczYhhKQnjSN8KoANUsqNUsoSgKsBXKgvIKX8i5TyoPfr3QCWju8wCSGEpITnbEIISUkaIbwEwFbt923eY0m8G8DvxjIoQggho4bnbEIISYmVYhkR85iMXVCIc+GeVF+Q8Px7AbzX+3VQCPFUmkFqzAOwr8HXTCdm8v7N5H0DZvb+zeR9A0a/f4eN90DGCZ6zJ46ZvH8zed+Amb1/M3nfgHE+Z6cRwtsALNN+XwpgR3QhIcTxAL4D4Hwp5f64FUkpv4UxZNGEEOuklGtH+/qpzkzev5m8b8DM3r+ZvG/AjNw/nrMniJm8fzN534CZvX8zed+A8d+/NNGI+wCsFkKsEEJkAVwM4DeRQR0K4FcA3iqlfHq8BkcIIaRheM4mhJCU1HWEpZQVIcQHAdwIwATwPSnleiHEZd7z3wDwcQBzAfyPEAIAKjP5aoQQQqYqPGcTQkh60kQjIKW8AcANkce+of18KYBLx3doscz0Ej8zef9m8r4BM3v/ZvK+ATNw/3jOnjBm8v7N5H0DZvb+zeR9A8Z5/4SUsXMoCCGEEEIImdGwxTIhhBBCCGlJpo0QrtcydKojhPieEGKPEOIx7bE5QoibhRDPeP/P1p67wtvXp4QQL5ucUadHCLFMCHGrEOIJIcR6IcTfeY9P+30UQuSFEPcKIR729u2T3uPTft8UQghTCPGgEOI67/eZtG+bhBCPCiEeEkKs8x6bMfs3VeE5e+oyk8/XAM/ZM2DfJvacLaWc8v/gTvh4FsBKAFkADwNYM9njanAfXgjgeQAe0x77AoDLvZ8vB/B57+c13j7mAKzw9t2c7H2os3+HAHie93MXgKe9/Zj2+wi3Lmun93MGwD0Anj8T9k3bx38AcBWA62bgZ3MTgHmRx2bM/k3FfzxnT+3PzUw+X3vj5Tl7eu/bhJ6zp4sjXLdl6FRHSnk7gAORhy8E8EPv5x8CuEh7/GopZVFK+RyADXCPwZRFSrlTSvmA9/MAgCfgdrOa9vsoXQa9XzPeP4kZsG8AIIRYCuACuDVlFTNi32ow0/dvsuE5ewp/bmby+RrgORvTeN9q0LT9my5CuNGWodOFhVLKnYB7YgKwwHt8Wu+vEGI5gJPgXoXPiH30bkM9BGAPgJullDNm3wB8CcCHATjaYzNl3wD3C/AmIcT9wu2UBsys/ZuKzNTjOOM+NzPxfA3wnI3pu2/ABJ+zU5VPmwKkbhk6Q5i2+yuE6ATwSwB/L6XsFyJuV9xFYx6bsvsopbQBnCiE6AFwjRDi2BqLT5t9E0K8EsAeKeX9Qohz0rwk5rEpuW8aZ0opdwghFgC4WQjxZI1lp+P+TUVa7ThOy/2dqedrgOds/SUxj03JfdOY0HP2dHGEU7UMnYbsFkIcAgDe/3u8x6fl/gohMnBPqldKKX/lPTyj9lFK2QvgTwBejpmxb2cCeLUQYhPc29cvEkL8BDNj3wAAUsod3v97AFwD97bZjNm/KcpMPY4z5nPTCudrgOdsTK99AzDx5+zpIoTrtgydpvwGwNu9n98O4Frt8YuFEDkhxAoAqwHcOwnjS41wrYTvAnhCSvlf2lPTfh+FEPM9VwFCiDYALwHwJGbAvkkpr5BSLpVSLof7d3WLlPKvMAP2DQCEEB1CiC71M4DzADyGGbJ/Uxies6fw52Ymn68BnrMxTfcNmKRzdrNm/Y33PwCvgDuz9VkA/zrZ4xnF+H8KYCeAMtwrmHfDbXH6RwDPeP/P0Zb/V29fnwJw/mSPP8X+vQDu7YhHADzk/XvFTNhHAMcDeNDbt8cAfNx7fNrvW2Q/z0EwA3lG7BvcqgUPe//Wq3PHTNm/qfyP5+zJ34ca+zZjz9feWHnOnqb7NhnnbHaWI4QQQgghLcl0iUYQQgghhBAyrlAIE0IIIYSQloRCmBBCCCGEtCQUwoQQQgghpCWhECaEEEIIIS0JhTBpWYQQ5wghrpvscRBCCKkPz9mkGVAIE0IIIYSQloRCmEx5hBB/JYS4VwjxkBDim0IIUwgxKIT4f0KIB4QQfxRCzPeWPVEIcbcQ4hEhxDVCiNne44cLIf4ghHjYe80qb/WdQohfCCGeFEJc6XVcIoQQMkp4zibTCQphMqURQhwN4E0AzpRSngjABvAWAB0AHpBSPg/AbQA+4b3kRwD+RUp5PIBHtcevBPB1KeUJAM6A2zEKAE4C8PcA1sDtaHNmk3eJEEJmLDxnk+mGNdkDIKQOLwZwMoD7vAv/NgB7ADgAfuYt8xMAvxJCzALQI6W8zXv8hwD+z+tbvkRKeQ0ASCkLAOCt714p5Tbv94cALAfw56bvFSGEzEx4zibTCgphMtURAH4opbwi9KAQH4ssV6tXeK1bZ0XtZxv8myCEkLHAczaZVjAaQaY6fwTweiHEAgAQQswRQhwG97P7em+ZNwP4s5SyD8BBIcRZ3uNvBXCblLIfwDYhxEXeOnJCiPaJ3AlCCGkReM4m0wpeSZEpjZTycSHERwHcJIQwAJQBfADAEIBjhBD3A+iDm0kDgLcD+IZ30twI4J3e428F8E0hxKe8dbxhAneDEEJaAp6zyXRDSFnr7gQhUxMhxKCUsnOyx0EIIaQ+PGeTqQqjEYQQQgghpCWhI0wIIYQQQloSOsKEEEIIIaQloRAmhBBCCCEtCYUwIYQQQghpSSiECSGEEEJIS0IhTAghhBBCWhIKYUIIIYQQ0pL8f5JIiCyMCNR8AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " FN ROI = 027ns_image_4641643404894_CLEAN_ClassN_154-282.roi.nii.gz\n", + "027ns_image_4641643404894_CLEAN_ClassN_154-282.roi.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADYCAYAAABberBAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADuKElEQVR4nOy9d5hk113m/57qylXdPSNZkiVZcs42TuAgE7yYnMwCJmwwYC9mTfISfruGXcKysHgzy7I2iLQmY6KJhoXFJDljcA44yJKtYEnToXJ11f390f05/d4z1ZrUM10zc97n6UfTVbfuPfecc0v9vuf9vicURaGMjIyMjIyMjIyMjIyMjIyMM0HlqBuQkZGRkZGRkZGRkZGRkZFx8SELChkZGRkZGRkZGRkZGRkZGWeMLChkZGRkZGRkZGRkZGRkZGScMbKgkJGRkZGRkZGRkZGRkZGRccbIgkJGRkZGRkZGRkZGRkZGRsYZIwsKGRkZGRkZGRkZGRkZGRkZZ4wsKGRccIQQ3hVCeM5RtyMjIyMjYx8hhI+EED7rNI8tQgiPOMvrnPVnMzIyMjIyMpYLWVDIuOAoiuLxRVG87qjbcSqEEP5JCOHWEEI/hPA7IYQrjrpNGRkZGZcyQgiNEMLPhhC2Qgh3hhC+46jblJGRkbFsOGxh9nTOl/8uzjgIWVDIyFiAEMLjJf2kpH8u6RpJA0mvONJGZWRkZFz6+AFJj5T0YEn/SNK/DiF83pG2KCMjI+MyR/67OOP+kAWFjAsOt9WGEH4ghPDrIYRfDCFshxDeEUJ4VAjhu0MId4cQbgshfI599utDCO/ZO/ZDIYRvTM79r0MId4QQPh5C+BeuuO6tfP3XEMJHQwh3hRB+IoTQOqCZ/1TS7xVF8ZdFUfQkfa+kLwshrJ6fXsnIyMhYHoQQnh5CeH0IYWPvO/XHQwj15LAv2PsevieE8F9CCBX7/Av3vqtPhBD+OITw4NO89Ask/YeiKE4URfEeST8l6esO564yMjIylgchhMeGEF639z37rhDCl9h7rwsh/Av7/etCCH+99++/3Hv570MIvRDCV4UQnhNCuD2E8D1738kfCSH807M934Lm5r+LMw5EFhQylgFfLOkXJB2X9DZJf6zduXm9pB/UriIK7pb0RZLWJH29pP8RQniqJO2tYn2HpM+S9AhJn5Fc5z9JepSkJ++9f72k7zugTY+X9Pf8UhTFByVN9j6fkZGRcaljJunbJT1A0rMkPVfSNyXH/GNJnyzpqZKeJ+mFkhRC+FJJ3yPpyyRdJemvJP3KqS4YQjgu6TrZd+/evx9/9reRkZGRsXwIIdQk/Z6kP5F0taRvlfRLIYRHn+qzRVF8+t4/n1QURbcoil/b+/2B2v3Ovl7S10q6+RzP58h/F2cciCwoZCwD/qooij8uimJH0q9r9w/QlxdFMZX0q5IeEkI4JklFUfxBURQfLHbxF9r9Iv60vfN8paSfK4riXUVRDCT9ey4QQgiSvkHStxdFcV9RFNuS/qOkrz6gTV1Jm8lrm5KyEpuRkXHJoyiKtxZF8YaiKHaKoviIdoXdk0Tave/Tj0r6UUlfs/f6N0r6kaIo3rP3vf4fJT35NFwK3b3/+ndv/t7NyMi4FPFM7X7nvbwoiklRFP9P0u9r/3v0bPG9RVGM9/5G/gPt/m18GMh/F2cciCwoZCwD7rJ/DyXdUxTFzH6X9v7QDCF8fgjhDSGE+0IIG5K+QLtqrLS7snWbncv/fZWktqS37lnLNiS9du/1Rehp1wXhWJO0fbo3lZGRkXGxYq/07Pf3ghG3tCsKPCA5zL9jb9Xud7C0m3/wP+279j5JQburZveH3t5//bs3f+9mZGRcirhO0m1FUczttVt16u/J+8OJoij6yfmuO+jgM0T+uzjjQGRBIeOiQQihIek3Jf1XSdcURXFM0h9q9w9VSbpD0oPsIzfYv+/Rrjjx+KIoju39rBdF0dVivEvSk+zaD5PUkPT+w7iXjIyMjCXHKyW9V9Iji6JY024JQ0iO8e/YGyV9fO/ft0n6RvuuPVYURasoilvu74JFUZzQ7vf4k+zlJ2n3+zgjIyPjUsLHJd3g2TPa/R792N6/+9pdCAMPPI1zHg8hdJLz8b18Nudz5L+LMw5EFhQyLibUtfvl9QlJOyGEz5f0Ofb+qyV9/V7ITVuWj7CnAP+UdjMXrpakEML1IYTPPeBavyTpi0MIn7b35fyDkn5rr1QiIyMj41LHqqQtSb0QwmMkvWTBMf9fCOF4COEGSS+VRN3tT0j67r1UcIUQ1kMIzz/N6/68pH+3d97HaLdU7f+cw31kZGRkLCPeqF2S/69DCLUQwnO0myn2q3vv/512Qw/be+HiL0o+f5ekhy04778PIdRDCJ+m3cyxXz/H84H8d3HGgciCQsZFg70vrW/TrnBwQtI/kfS79v4fSfoxSX8u6R8kvX7vrfHef//N3utv2LPw/qmkhWE1RVG8S9K/1O4X6N3a/eM6DSTLyMjIuFTxXdr9jt3Wrhi7KKTrNZLeqt0/VP9A0s9IUlEUv63dENxf3fuufaekzz/N636/pA9q16r7F5L+S1EUrz3ru8jIyMhYQhRFMZH0Jdr9brxHu1swvqAoivfuHfI/tBt6eJekV2n371HHD0h61V5pGTkJd2r37+OP7x3/L8/xfN7e/HdxxoEIRVEcdRsyMs4LQgiP1e4fso29YLCMjIyMjIyMjIyMSwp7DodfLIriQac4NCPj0JEdChmXFEII/3jP6nVcuytkv5fFhIyMjIyMjIyMjIyMjMNHFhQyLjV8o3YzFj6o3X3UF9X9ZmRkZGRkZGRkZGRkZJwjzpugEEL4vBDC+0II/xBCeNn5uk5GhqMois/b273hiqIo/nFRFHccdZsyMo4K+Xs4IyMj4+iRv4szzjeKonhdLnfIOCqclwyFEMKKdrcR+WxJt0t6s6SvKYri3Yd+sYyMjIyMk5C/hzMyMjKOHvm7OCMj41LH+XIoPF3SPxRF8aG9FNNflfS883StjIyMjIyTkb+HMzIyMo4e+bs4IyPjkkb1PJ33ekm32e+3S3rGQQeHEEo2ibW1NVWru02bzWaaz+cKISiEoEqloqIohLOC/4YQtLKyohBCfN0/I0nz+Vzz+VxFUaher6tarSqEoKIoNJ1O5W6N+XxeauNsNtNsNovnrVQqqlQq8Rqcx9tm9xfP6e3ldUlaWVmJ7fRj+L0oinh9XvPzSVK1WlW1Wo3tou/Sc/p55/N5qY/5rPcB9zabzTSdTkvXLYpCKysr8dorKyuxr3Z2djSbzUrjUKlU4uc5B9dcNK70t9+nj6334SJ4P52tG8evkY5N+vrZwufQYZyPc+ZdXA4F9xRFcdVRN+IscEbfw5K00u0UNz4k6O7xqlb+YXx/h2ZkZGRcMIzU16QY3///8JcXZ/RdnL+HMzIylhXbOrHwb+LzJSgs+tIvMZsQwoslvdh+V1EUqlarevazn60rr7xSIQSNx2ONRiNVKhWtrKyoXq+rXq9rOBzG9yaTiZrNZvyRdgWAlZUVNRoNtVotzedzTSYTTadT7ezs6IYbbtDa2prq9bomk4nuuusuzWaz2L6dnR3t7OxvDjAcDrWxsaHpdKoQgprNplqtlhqNhhqNhubzefwMJNqJb1EUGo/HkbjXarVISqvVqtbW1tRut0skv91uaz6fazqdqt/va2NjIxLynZ2d2Ae0+wEPeICuuuoqdTod1et1bW9vq9fraWdnJxLLWq0WCfx0OtVgMFCv19NgMFBRFOp2u2q1WqpUKppMJlFU2NnZ0dbWlu68804NBgNNp9MocBw7dkzHjh3TVVddpWazqa2tLW1sbOjEiRPa3t5WpVJRvV5Xu91Wt9uNwgQ/jUYjCiHc72Qy0c7OTuxvxKDZbKZKpRL7vdlsxn5EGHFSvrOzo9FopPF4XOoH+uwggUBSSVxxQYLxQ8Da2dnRZDJZSN59Hrjg5SJOtVpVvV6P90//pNe9v7am11xZWdHKyop2dnZOEp4c6euLxJ0zxSJB7HTavYzYa/utR92Os8Qpv4el8ndxs7au6x/5b/WwjakqH3zb+W5fRkZGxmnhjcWfHXUTzgVn9Ddx/h7OyMhYVvxp8RsL/yY+X4LC7ZJusN8fJOnjfkBRFDdLulkqOxTm87nuvvtuNZtNdTqdSG6LolClUlG1Wo0CAavlk8lE1Wo1EruVlZVI1iCkvsKfEjuIZrqKj2OA61ar1ZNcBr7qDnmbz+fxs35f7gLwNuBO4Dyc29sCqcYNwHtOTLmGt417p92QTe7d7wdnAe33PvD2VKvVknPAnRGcJ73W3phLUvw8x/FDP+/s7MT7SR0ZCAreFuYH4817nBNyzTXdfXI6JNcdDn68j80iF0P6bx8Tnwv+w/XO1V1wug6O+/v8YbgbDtshkY7B+T7nRe7yOOX3sFT+Ll4LVxSt17zpwrQuIyMj4/LAGf1NnL+HMzIyLjacL0HhzZIeGUJ4qKSPSfpqSf/k/j7AH+3z+VzveMc71Gg0dMMNN2h1dVW1Wi0SRVanp9NpFA7G43GpfIHVYwgyogI/zWazRDB9FRdykRLzarWqWq12UgkG70Pm/Vzpaq+TZsoDJEUnhQsKEOh0dZlz4nDgmpVKpSQQOJlEdOE9CDsuA/8Zj8fx3O7YcDEAAQYiT/lIpVKJ70H2a7VaiSCnbaPtLg5Uq9Xo5mAMFpWT+Nj4eehThBGOAX5fp5qT6XUPEgi8XOUgR4Afn4oJCEwHXYvPny4OKr85XaSlRWeCRe1cdnfC+RAqlgBn/D2ckZGRkXHoyN/FGRkZlzTOi6BQFMVOCOFbJP2xpBVJP1sUxbtO57PuKmg0GlpbW9NkMtFwOIylBK1WK7oSID69Xk/j8VitVkvHjh1TrVaL5Hk4HEqSms2m2u22VldXS3ZwxIm9tpdyBSB7aWmDuwoggl5SAZlG6JBUIpMuIlSrVTWbzXhtzuPiwiIS7EIAn+MHUaAodvMhKI1ghZ9+nkwmGo/Hsd3SPhnn307KEWMoR5Cker1eeo1rraysRDcJPzhIKA8Zj8clAaLVasUSAMZhEdnzNrm7w8UdjqPMg7nCPKNvD5qH9/e7A3HKx8rzLvg845u6X9zN4kJSeu3TJfcuGrm7hbkslR0z5xOnc/4zKYlYdMyZfP5MhYOL2aFwLt/DGRkZGRmHg/xdnJGRcanjfDkUVBTFH0r6w7P4XIlwdzqduPoOgfVjKWHwUgcnw07GnHz6SjKveV19SrhoE3b9RfAcBT7j5Q9pqcTKyopqtZrq9bpqtVr83Hw+12Aw0Hg8Lq1cNxqN+P5kMpG06xjAZbG9vR2P4TgXJcgscGv9cDiMIgTXH41GJacH8HIHAHGezWYlQYW2cV9cezAYxHPgZqDPUhHARRp3SPi4puGZfH5RaYqLI2kJw0FjumiV/qAVeH/9/nIL/Hife14Gcq5IXR1+LeZyWnLi97qoXw/CmRD69HNnU5aRXu9MBYLTee1Swdl+D2dkZGRkHB7yd3FGRsaljPMmKJwLIDwQR/4NvBY+XXH00gLffcDzBzyPAHKNGAHJWrQjgxMyB8emJBInw/1Z2L3G3wUF8iAg9RzHfXseBJZ/whsRKTiXtzMtY4DMQ+jd9ZCKCZJiO1ISSskB5/LyDmlfePBgRPordVq4eENf+Gq7jxufcVeJzwMvPfE54O8fRP4Psvynr3mGA++fqmTA55P3hc+5w1oZP4hEpyU2fr37W8k/U8fExYazFUgyMjIyMjIyMjIyLjcsnaDg5F3aJ1oe+ifthym6i8Br7skZgND66veiVVsXFKSTa+UXtdPb6K4EFx3csu/OBxdD0lA+iDdlD7VarbQrBO+5oIDYMBwOVa/X484JKUFNAyjZlSJ1M7jw4P2bttcDKTlfWi7hBNQzH4CXmXBd3BCeg+Aihd8P/ZwGYnKPjC3t8XIQ3B4pmU7JvSNd+V80PxBB7s/54H3jgsJBIsOZwM/lookHbvKTnv9U1/MyijMtIUjPcxifO18Cx6UqmGRkZGRkZGRkZGQcFpZOUID0jMfjuFUipQHUwo9Go9KqttvsPTCxXq+r0+nEUEe2DqSUAMGhWq1qOByWCC8lBZzTCbSvkkNqJ5NJvCbbW/qqO+30bIZWqxXP5aQIsWQymZTq3kPY36KQPuh0OjGLYWtrS6PRKLZtbW1NkkrnGI1GUVSAmKfkPQVtn0wmUSCB2Hs2wmg0Kgk3kE6HO084j48jzgiEoEplf/tKP+ci8p26SpyM+/Fs0bhI4Lk/IelUBPP+3k/dCKn4NR6PS2UZKdFPxY3TaYs7NtJgTNp0qpKDRaJKKriAC5E3cDFnGmRkZGRkZGRkZGRcalgaQcGJQioqdDqdSJy9hACijs3et1OEJFerVTUaDRVFEcMCF5HPdLUYgYCVf8ign9tt96xyU27ANXEAcG1IM+UBB/VF6ppg5d5FClbdnVgfRIqLYj+PwGvn07YuIpepe8HbiFjDfXppBG1OQyadXLuLgjZ4qQXX4jj6I10l5/o7OzvxfjgnQhRknblSFEVpB5CDyg3urxyC97wEZxHhduLu+RypQIBQwxzxsQJp7oKP86JxT+/JnTGL7u/+BAZ3NqTXXxQkea5IhYxUFEkFkVTAWtQPp3vNs3WHZGRkZGRkZGRkZFwuWBpBwQE5gYB7Xb3vnAC5SMsUUrKRbunn5M+v6SvDs9lsYa19GvgImXUbP6ICJQmQXWlfrCD3IC03cELuggWBlCmxXNQuiD6fpUTCSXd6734/B2UUpPZ2L8Hwvk6Js+c0IMQgGjjR51y+pab3NfeYlmMwPogtaVmHux38/lJSfxAOcirQ92k5y+mQ1vsjq2lOxyICnZYynC58jHzM/drpfd7fPRx0jcNCei53eaTHHDb5z26IjIyMjIyMjIyMjPvH0ggKi0gN5DC12dfr9dJ2jGmNuJMNJyBeJpEG+LHSnta0e/sWEX8PSJT2Lf3sUuD5BqwqIyr4yn0aSMiPlxRwPe7LSTTnx5FBTgAlEuzi4KKK95GLKTg7GAN3SKQ2eQQDru+E9FSCAmMKsUU0oJ1cg9IKiLWTas/E8Ov5sTg5FmUGpCv3/l+uv4iw+jUXkXtfTU9xOgKG50S4UOH9dbrihZ/X+81LafhvKqoddP6zua+zAX3L+dNwVhdXDnJpnEvbsqiQkZGRkZGRkZGRcTCWRlBwsOpP3b5vkUjuQKvVioSbbATq7cfjcSTqkPF+v69erxe3RGw2m3HVfmVlRa1WK5YmuKMg3X0Bgpe2M4RQck/wWcgh7fPPICLs7OxEAULaJ+1OVFN7OQKIE3quRd6EJE2nU41Go9iHLgY4yef6nhfBPfs1fOeNFO7C8P5yMcLLE3ifnSw4J59HfGi327G9TvBcdOE6zJeUNHOsr/bzmftb6fdzuFPDwyVd+HExKxUmXAw5yKaPGOXuAR9/F50cfm6/dgrun75N3R4+Dj5HeT+9F+9LhJ/7u35636dqM3POXRUupNBfLsilok5GRkZGRkZGRkZGxvnBUgoKTmIJ+yMQUFJpK0Vpf6cCJ8++0sp5xuNxDGT0axXFbpYAzgeIpwctpuR+MpnErRl9hX/RKriXC7Dyzzk5FzXpTt58JXpnZ0fD4TC+BpHlnqbTqVZWVtRoNGIw5Gg0Uq/X02Aw0Gg0kiQ1m03V6/VS8KQLCggq9AnX9nYtCjRclLPgAgXjlYoKlJakjgwv/fDxwqHCNdKMgUWlHOkOIT7HXKg5CIuyBlJ3zKLzpNd0wcgFJBc6mCu+1Sk/XtqTrs6n2QEHwV0IaWmFv+/n9bGgXS5E8J7P1/vrU3dEpKLLQe1NSzG8L5kfZysqnKoNGRkZGRkZGRkZGRmLsZSCglSuz4cwswqf2uopjSBwz63arEJPp9O4ou+7KqS1/y4MQKan02lpBR8ng7RPslx0gCh7G7x23zMCaJtfk/N6PyA4uNDA5yFwaR6BlxtA7BuNRixPmM/nsbyhVquVshVSUSAliR6G6I4DkJLeNDTSSSnve/kCcKLqgZxpW9OVfz7n/eEE2Vf/vZ1p231cUiLLuCwiz4vKKvx8LiL4faSf8/5zweagcoeDnAp+j+l7vJ4KQumYLHJrePtS50UKfy+914P6MB3X9HO00/vjbEoU0rb5+KbiSUZGRkZGRkZGRkbGLpZOUHACLSmupEOK3WrtYoKXHUCeOQ53ghNv/1m0SguJ9PO7tX48HiuEEB0BEA/edwLqGRCs+rPSixCCe8HJrAsHi3aEcLKPUJFmRvjqdaVSUbPZLG21iZiAcyIl816+gP0c4K7wnIv0JyX18/k8BkzS135MmlFBO9Lr0icpKeY6vrKf3seisoNUPEgdGS6oHEScF5F4kAoATtS5n9T1cH9w0nuq9xaJFLyeChb+7KTPhgsMwPs4FU4WEftFz9pB95C2fVGJxqKxPFMcNJbcUxYUMjIyMjIyMjIyMhZj6QQFaT+UDpILIFqUQYxGI43H4/g79nlpf7cDbPyeI+A2fHcKIASk9ffT6bTUFgg5wYdeYuAk39uNjd2v79tNcj3fpaDRaEjSQteFE17cEWyrubOzo16vp16vVwpr7HQ6MY+AEpJ6vR4zF7zdi7IUvIQhvTeIceoM4doudoxGo0jcndC6pR4w3ogetVqttM2lk2LKG+hrxB5EpTSbAYHHd6kIIUTxxlfDUyeIv7+I2C+y3S9yBiwi+whWLka50MQ94HKg3/06tCkl4D5/0tyKdPeP9H7cWeG/0xYXJPzai4SU9PWDrrvIkZAeT3uYO+608D6jXxY5QxypOJeRkZGRkZGRkZGRsRhLJyiEEPRJn/RJetCDHqRarabRaKRmsxnDDieTiYbDYRQUfOcCJzS+YuqvQTYgQpKi+wGSDUn3LRMhmb79YlHsBgp2Op1IkMkgIOxRUumawEs55vO5Wq1WaUXYV9J9K0gXE7xkwF0GtJv3PbeBgEhe935CzOCcqajgfc11KEWBxK+srMR74hoIFpDRdKx8nBaVKEDaIY1OzlPngOcxHFT6QXtSd4P3t4sd9Ie3J/1J5zDtT193AYX3/R48syLtq9RR4eKLuz6YDyGEOF/9/IDgTm+r308a/Fir1Urij5cguYDnxJ25gXuoWq2Wdg05VZ95exgbBCCQukn8Pa7vWRoIiwfBBYWzKZ/IyMjIyMjIyMjIuFywdIJCpVLRtddeq2PHjkVCAvGh9GA4HJ5UwpCuvjphhVCwCg8phXRznIcPSioRSlbbU6SrtLTTCb07EJxoQfScxAPazzkhcZ5X4GQJsYDX2SHDr52GUfo1vVQjfd8JsK8Aewie29whYYwL1/XXcVVI+7thpP2Ls4B/cy9+XLo6f5Bd3+eGE9I0TBHi62UOi0hl6kDxzy9ycPgq+UEWe+/f1OGQHpu6C+6P4Ps9+Lj6mC16fjxH4HRKCzgPgowLHi6mpEGa3pZThWQuGtNUGEqPS+/FhcVF1/I5dKrSk4yMjIyMjIyMjIzLGUsjKEAAKpWKjh07plarFVf5vSxhMploMBiU3ASLavRZmXVSy6q0r+TzX1Y+fdXfk/V9hdiv6Vb71GGQ1qO7S2I6nZZW+z0vQdon+Pw7XZV3FwArqm47d7cB76WChJMpd2NwTR8XL1GgX33s0jIAb9cidwj/TVeqvU1uw6evEIU4Nh2XlMynhJZ79X/7mEuK7hQvg/FzpCJBKhgs2kXECfn9ZR8wBp5pkRJ5n3/p+34NLwFIy1mc/B8kyqXnPEgISfvBBZ1UdEqFHn82aNv94aC2+PdHeg3PH3HhKX0GMjIyMjIyMjIyMjLODEsjKCxajV1kf55Op1FQkHbJX7PZjAR7Z2dH/X5f29vbMVPASR6r45JKW0g6UXSCma7Y8nnKHSDrWPvTMgfOI+1u2ZgKH9jTKetIrfBOypyA+5aPaR85kfY2hBBi1oSTauDkftGquJdLpOemjxgHz0Twe+Y+yDpAoEj7zJ0WZGO4m8PHLL1/zukklnlAGYAHaLrTgza7eONiy6La+7RkgvmWti91Tyw6l5N5b3/qZEldA6kTgXvxnTFchErbngpfzAcn4D6G9Fe6YwrtQ8BjDGmTC3EIRH7u1HHg90U72KkEIdAFhLRcAZdLKvhwvoMEjOxMyMjIyMjIyMjIyDg1lkZQcHJLPkIIu1kGnU4nlj3gPEBIwLFQq9XijgODwUC9Xk/tdlu1Wi0SSEhOs9mMZMXrqUejkQaDgba3t0slDpCLRqMRCdBkMomCha/CQpYPsoa7KME9OTGDwM5mM41Go1KduzsxvF1+bs8pGI1G8T3Ic1pT7+2kdMIt4qkwgjvB74PAQy/FSG35ZEbMZrMontDW9JzkHVDi4tteprkOvtrOffLf1BmSul38s75i746ToihiQOKiuerX5BqNRqOUgSDt51e4k2PR1pd+DXIQ3FmwKFPBf+cHlwOBoQhTtNMzLRaJC9w77eW/Pn98DDxTxMt/EIJciKCfOK/3ySLnQdrG1AHCfOP7gmeU6yJEeh+5SLFIlEq3Qc3IyMjIyMjIyMjIOBlLIyg4sYJMsjtAuvKPMOBBhH4O7P6QWHZfgAB3u91IVr2e24MefVWbXR7YNQDC4uTUdxzwzAAnlU5quS9JJxFNSFKlUtF0Oj0wYyBdGeYavkrrK9KLSHFaukBZCLXu6badHOeW+pQwpqvnPh5O2l0EYNtPxBoXElywGY/HMcCSe0x3J0hX6zlWUpxX6co8gpOTTV8xT0ntQQ6Dg8oEmKupCJD2f1qywHW8hGWRA8U/v+j39J59bqTj5nPbr8Xz4vM5dRCkrglCGN39s8jZcSpnUnpP6fjQ5tQFUq1WNR6P43kYf7++33/qHsklERkZGRkZGRkZGRkH46z3RQsh3BBC+PMQwntCCO8KIbx07/UrQgj/N4Twgb3/Hj/Tc3uWAeKBE27IVmqn9z/+EQwIJ4S84VBwwsyx7LqQEhQEgHq9rna7rXa7rUajUSJ7OB2cxDnJlsqCAgRz0X2kq9uc1wHx8dVad0i4tdzf99dSIYPX+DxiAoLCopVsPpveq7c33ZLTre/uymCsJpOJxuNx3DHDMyEgh2kQJu1wMcBXxL1PXNBhBd/f91KINOMhvf+0/xaVP6QOCR+blITz47tj8G+/VhpsyJxICbpfd5EDIb1PF3wQ8rzkwgWFVDhLBZdUPHInQyro+HkOQtqfiwS2VFBJRY9F4kkqyJ1ue5YF5/O7OCMjIyPj1MjfwxkZGZczzmWj9R1J31kUxWMlPVPSN4cQHifpZZL+rCiKR0r6s73fz65xe44CSgsgQJJKlm1Ws6X9cEN3J7CyClHz8EJIkv+3KMr19IgQiAmdTkfNZlOSYqYDq+8Q8pSAOYmRyuSf1eODjnVxg8+6g8L/22g01Gw21Ww21Wq1FuY8eFBiSvS4HqTUyw8OQlpX70JLapFfRKQheggYXuufHuOEFIEnFRX470Ek38k6ggLuE4Qmb0dKYlNRhOu5s8Cv56vg6Up6+sP7tI82NhqNk8olfNtRxo2xTol72gfSvuiGiCPtb/NJf3jpRxrm6NuB0q50m8hUCEkFwdSpchCBXyQIuCDm8PP5fPb5lI5n6kzweXMR4Lx/F2dkZGRk3C/y93BGRsZli7MueSiK4g5Jd+z9ezuE8B5J10t6nqTn7B32Kkmvk/RvTnU+X1VtNBqRtNfrdbVardJKKiFve9eOpI9chXa7rRB2SxXIEXAyjeDgDgDIMIFvEDlpV7zodDpqtVrx8xAUCJQTbsixE7mUEKcr+fP5vOQGcIEgdQR4n6Wr3W7nbjabJfLtwY9Oil1YodTCSbz30UFj5yvaXqs+Ho/j+Wq1mtrtdmkHA8aGvuF3qbxVJm3BQeI1+pzLX/e20b/+e7pizzkQExBRPKvA79/DDp2s+r16RoET53RnBa4P0aashr6kTS6WIAZwb17qAlFvtVol8czLHHzeuvuEcWTuI8YhtPh4u3iEMJW6FarVamwHpUe0hbYuyjfwfvWyFLIh/LhFpRS0aRG4P+6J7wovAXHhYdlx2N/FGRkZGRlnhvw9nJGRcTnjUDIUQggPkfQUSW+UdM3eF6uKorgjhHD16ZzDyYBbrj0ngT/6U1u7tB805yuiEORFK/KQRSceTvTcDcCKLedxJwPnQISQyoKCr05zHLslOHnnM74C7CvEnMet+SnxSS3c9Xpdo9GoRDYlRRLp54Ws036Hr0ADjvfSFBconOx5u53sOen0XRm4f/o/FTaSuRcFCeaBAzGHtjihTfvF8ybS+bFo9Tq9F3cY0K8uhPGZNOiSuZtmANAW3+3Cr5+6Sur1ehQjvEzC51nqUHChhTa4gOKiC2Prc8xf9x8X+txN47/zQ78yB7x/FyHtPx+3dO6lr6V9vOh59rZebDiM7+KMjIyMjLNH/h7OyMi43HDOgkIIoSvpNyX9q6Iotk73j/AQwoslvXjB6wtJB8TV6+nTem6v904zFZwo+bn8uh6yCPHzUgFf7XbHQXouJ61OhiGAiwIMndS4OOIOBLe0ez8vIj9OAt3J4MempNXFgVRkcZJJ36eW8rQeneNTkujEfFHav7e72CtpcaEnzWtgjHACpOKDC0/e/z7POJcLRD4+tD8VGNIxSAk0485ccbGAf7vrxfvBsyXoAz7nbZUUhQQXFFwocUGNc6TtSUUfz7zgXC6M+Pi5IOb96+Tc5116Xp619Ln1vuXf7hpJn/dFY79ICFpU8sD8SOfqxYLD+C5uqn3+GngRotLpKDz4+qNuRsayYLqj2Qc+dNStyFhi5O/hjIyMyxHnJCiEEGra/eL8paIofmvv5btCCNfuKbHXSrp70WeLorhZ0s175ykOIsj+h73nHlAeMJlM4uos5GY4HJZs2y5OSPuCAnACuLOzEwMJncTiFkhdCZAbJ42LSIivwiZ9KGnfNcBKsZN0FxUgfS6ycA/0jRNkDyJMV5tTEsV/2fFAUslejujhK++UUvB5AjBTy7mvZKf9Qj9wTdwpkEcnfdwb7cD9ALH0ueJk3N0BqVsg/R9+OhfTMXRXiZc0pGUp/lnmB9ejzX7P9Dt9jguErAQfT9/1gf4iO8N3D6F/mRe0KxUlFrlwaCvCFn3prgYvj+GZSQU1F5683CHd+cLnjD9LLoT5OdPnLB1bf1bTz9AG/68LPT7eFwMO67t4LVxxcdzwhUAI0iNu1Pu+bv2oW5KxJKhvVHTjf7i1/OL85ODejMsT+Xs4IyPjcsVZCwph96/un5H0nqIo/ru99buSvlbSy/f++5rTPScEwHd5gBzs7OxoNBppOBxqMBhoOBzGunInEKzkuhjggXtkFczn80hanTRXKpX4Ptd3Mpxuo5g6Dlw0gPwQoOfHVyoVdTqdeO9cz0lg2i/VajXmQ/jOEv55yCDvp6vQXk/vq/2S1Gw2oz0+talL+6R4OBxGYtnpdGLOAwF/kLQ0K8EFECeO3s+ppZ7P+z24OwURBkEJIu7jNJ1OS8SRc0BAvaSDMXJnRuq+8B0+iqKIOQHs/lGv1+Pc5Id7T0UPxpz3ndT6TiUunPA+fVWr1dRqtdRqtWLbFpWteKYGIpmXPbjbgDYjXnlwKKBP/Z68bIH75T64h7Qsw10RCCtcJ81tcFHPXT2ps8dLgnyuu0uIsfMQzYPEimXG+fguzpA2/tkzdd8TJOnimQsZ5xeT9bk+/B+fHn9v3Bd03X++5QhblLEsyN/DGRkZlzPOxaHwbEn/XNI7Qgh/t/fa92j3S/PVIYQXSfqopOef7gldGPCyBkiV74Lg5ADyl5YSeFCgE02/nhO0dFUdQGQ8yI7dC1j59dV+J8lOxr39EH+32kvlRPpUVOH8tNMt6l7+wWc9pwGBARLKfaVlH4gAfk8uRqSr99VqVc1mM75er9fj67VarRT6x7j6OVx88f7DVeDWec7J5yDDuEdoO+fjXt1GDwn2bINFbo3Unu+iQr1eL801XBq+40GaDZC6IrykIp2PXgbgZN+3yYQMe4iiiyrMMc7L8T7nXDRxwcPnmDt7cEm40MIx9I2Lcekz6rkg6f14/gZCnIsC3kdO9r2tLhr5M+PjiqDI8ewg47kmfvxFgkP/Lr6sEYJOvOCZ2n5o0Ly+OLsl4zJFkGaN/e+G0RXSvd/wLEnSA/52S8Vb33VULcs4euTv4YyMjMsW57LLw19LOqg47Llne969c5fs9ePxuFS37yuMTjg8/M5T6CEoi1bIHRAYzuUrvWmdvRP41AGQEq6DPucCg7fB78ct9Dgw6BdfjYW4+r+dMNNPTr78/tx+v+h3Pu8r9tS9Q/Lr9bqm02mJMHpbOK+fc5F9Pt1pAlLP/aaiU7orRJoJ4NfwFW4fr4NyKTzjgGtAPn1+eZlKSoLdFcI4Mubpf1PxyNvtBNzHzfvbSz/8h7nhK/QeHumOBK6ZBifSLj+v93s6xz1klD6CwHN+dxB4n/s9+Pxf5N5x8cPHypGKlYxJWlLj9+hjsMw4n9/FlxOqD75BsyvWpIp04rHSvJHFhIz7x7xR6MTjdv9dmazpivnj43uV2+/W7BOfOKKWZVxo5O/hjIyMyxmHssvDYcHFgtTSPhqNSvXbTi7czswuCm4r93wCvxa/p3ZySbGcABJWq9VKpNBzCPisr1q7oJHu5kBZxng8VqvViu0BTtR4D/I8HA5juUe6vSCrrxxPyUO6y4CTJY7HEu99k4ZUpjs6+L8hgelKvZcd4CZwMu9kH6ThkDgT+IGoUtYAwW80Gmo2m6VshXq9fpIrolarnbRrgv/XRQxIqm/HSX8jblA+4OOVEvqUHC8iyilh5vr0r1/DS0M8jNHFAr+Gz7/UFUKfp8T8oOu5CODz3PvR57k/J37OFF6a4P3kAlBK/P07AHFrkSvFn0U+58ek4+TX8G1qMy49hNpu1s49n/Eg3fMUnr/lF5Iylgv3PrnQvU9ejb/f+NqWGv9v87xcq5hOTn1QRkZGRkbGBcJSCQq+iggpZEV+NBpFEsc2ge5ScAeDOxKccEr7K+1kGmB7brfbpdXf4XBYyk6A2HoZRaPRKK0QQ5o5JyJEURTxWGm/rjwVI2hjSoq41+FwqH6/r9FopKIo1G631Wq1otVc2i91oC0utLjwwOvT6bREmul/t8zTZkjt6upqzFsgCJD3CGqEvHlpAkhXhVPHRrpS7O3DYeCE0EkhgoW7UWg7K+RFUWgwGMTPMTYuRNAOiGir1TopawM4WedePMSTa3tpRioiuFuFz7gTgnO4e4X30sBQv2/+6+f2132MuBcv8fBnTdrP+HDng7c3db4gKPCMUR7j1+Za/gzRxkXtwhHjz6uLg/7cuPsEocX7YlEJVCpaZFy6qD7kRr3/m3Z3cShWsoiQcXi47bOrCs992qGft9oLuvEHc25DRkZGRsbyYKkEhXa7rauuukrdbldFUcSV+EqlUkrqT7FoZVc6eds9Jx7j8TiSDVZ3QwhxVRUrPUJCuiKLvd9rwcfjcby+Bxq6Zd1JnxMdhBOvG/fchfl8rsFgoF6vF9vWbDZjsGOlUtFoNCrtssDrvprrZMtDLVNLvbRP8N2t4L+Px+PYL/V6PToUUlHIbelO2qR9wQDBw50jHOM5Af5atVotZVk48YXkeimAzw/PW/BSAc7jx9PXLig4MaWvvKzDibiXbCA0Sfvhku4g8bnj4BzMIZ4HH18vXVjkPnA3CMd5CY7P70Vhhbyf/ps5kZZh0AeL5hbwUqKi2N1twndMSd0d7o7xZ8SFFsayKIpSOxDtmPdpBgrjsqg0JePSwMoDrtQdX/no+PusKc1rubQh4/BRrJwfkWq6Kt39zTedZKK59tfeq9m99x369TIyMjIyMk6FpREUIKMPfOAD1Wq1SoGCbjeXynvPe64Cx6Q2aV8BlhSdC6xoSzqJ7DhxTrdxxHrP9VIC6CF/6WsQIlZG0xVq32XB8xLm83ks+4AodTodtdvtSJS89MP7wskW9+bk22vluTZtSm3w9IcH27lA0Gg0okDCNbyPWE2nTb7CjQPF+45VZXdQMAecTKduCu7fS1OYFxzvghHv8V/Gx+cAggaCAmQ2LSFIgwH5N6Ub7fbuHtOTySTujMH5UoHA572PJ0Q8DZT0MU7JevrsLOqnVEzw67qgkbpLOOcidwNjzhzkWXPxjHO4cMV7Lual456Wjvj853z0A69TwuAlVS6a+bmyoHBpITSb2npkFhAyLl4U1UJbjzj5e+n40x6m2taDVBlONf/79xxByzIyMjIyLlcsjaAgSa1WS9dff72azaY2NjZKK8WQPq8Dpz4fUiqpRAyciEj7NnE+57skQH78d2ryIZJObjie6wC/dpqo720BkFcIeCooUOs/m800HA5jRgTuhGazGcWERTX6tC1djXbbfkrW/TxO6HFxsA0mFnVAyQNEmfGjBCKEEMsjJJ1kN09D9egPxoJdCtJadyfA9LsTUBd8vBSCz5Ad4WUnPnbcA04WhI/JZBLnkgsrtGfR/TWbzZibkc5N73snsunqvAs03mfe5oPEJPoMpE4MSopS0r/IOeElNBzr4+JhnfwbYr8o46FarZa220znBe1KRQfmBAKCi0H1ej2WufhuG15S5W12oSiXPFxaCNWqimb9qJuRkXFecOvnVyVV1bi3oge/r3nanyuKQsWeuzIjIyMjI+NssDSCgpMfwgQhMmmt92Aw0HA4jCv4fB5SghDgNees9CMoQCSk/dIDJ+HUfHe7Xa2urqparcbcBSdMTqhoR1EUMdOA8zmxRyRAMKDUwsl5CCESVg+6q1ararfbOnbsmI4dOxZLL3Z2dtTv9yMBT1fNIV6+iuyEC8LnooPXtzup597oR0pAcHu4fZ/X6QMEBcbCbedOaH28UjKbkk0cIxBr2sMxPv6Ae67X62q325FwsqMIK9ReEsM1OB/HpLtMQHhHo1Hsw3q9rlarFQUFXCbT6bRUbuOE38syuE4ahuluGe4xhFByVDBHvVTABS/aTJYE89cFN3cKeWlFmqHgAhplIvQL88bnw6K56s8AzyLncQEmDdZkbvAMMLcbjUbpXrl3n+vkoqSOoYxLB4Mveqo+/qmLA0EzMi4VjK+Y6wM/9OTTPr57a0XX/K+cyZCRkZGRcfZYGkHBseiPecgLK+D8O10h9Zp5J/Fez+9E1wME3eLs5I8VZQers5JOaquvgDoJdjfCZDKJq9y0MyVUkE7Q6XQ0nU5juyDFlUolOgbSUgxpn2imwkdasuAE3gE5S90FkDAn0r6KjAjh7Wk2m6VV5LTfEAK4b99JgT7xFWTPJfCMCrfsk22BmMJqt++SQX942QECB8c5EU6zHhBLcK4MBoNSUCilDqurq2q323HcubfpdFpyA/huGF52wj15P6VuGe6xXq/HFXcEgrQEAucCx3veQFrCkI5VOo9SVwVOGq7jTiLGNg2K9LlSFEVsk7sSvDzI79n7Z1G70znPddNnNXV6ZFwaKEJQcXKMR0bGpYWgM5rng+sK3fmvboq/r942U+c333geGpaRkZGRcaliqQQF/+NeUomoQM58VdJXE6VyqBwEhM86QXCyCgFPMwUQG3zLwEUBg541wGq7/+7kBReClwSk7fJ6f18dns/npd0UWH1tNpuxT5rNZgxllFQi2CmcWPm90CbPFEhJmJNXSLQTW89jcOu8Cw2SYtkJq/gpIWT83GWwaEeCRaF/nMsFGV+JR4DwlW8vA6GdCEt+7tTN4oILZSAeFOmOAXdsuHjjGQqMceqq8PBIf83H00sE0rIC/5yLbe5AoaRlUf6FX5vnwIk7Qhrnd5GH6/huKz6X/D5dIPAyjzQzxcfLj09zHdw1Qb+k5/HnOhUpMy4BPP2J6j+worwdZEZGGbNmod6DC/t9Ra3PeIokqfbOW3PQY0ZGRkbGKbG0goLXgHvYmifj+yqr27JZtU+DBSETWOPb7XY81mvrIUP8sKLuYoG3F5FgPB6XzuMJ8qwSY6n3Ug1pv+zCiaBbvVktpm0QWEIZK5WK2u123F6T+3BLe+r8WETYnFi5oEA/+z2QiUAfLQp35B7dCeE/7ibh/hcF9eGegKy7zd77DPLO6rf3M+91Op047k5efexWVlbUarXU7XbVbrdL85B2efvX1tZK4X/uoEGgoq24KnBO+Bai0r5bgD4BaXikz1eegTTAkn5zMu7PlpfvIK7RJu83+sgzJvw9F918LBk772vanAqH6a4i/l/6lbIJru3z1wUsxshLV1zkcEFjkUvC+zbj4sdtn7uq8RW5hCUj41QYXjPXh75011n48MkNWnnnXojt9vZRNisjIyMjY4mxVIKCdPLKJyum1Lfz46UN0i7BgbR5CBuECiLRaDTU7XZPsuj7ynqj0dDKyora7XYMZRwOhxqPx9FZIO2H+E0mk2hxdzKOrR2CORqNImmFVLojgRIHr9d3wjscDjUYDGK+w/r6ujqdTiRsnU5H29vbpVp1+hShYZG1nP4jw8HJGpjP5xqPxxqNRvEckFYnvi54+Aq9kz0PO+S/7rxw54lvA7gITvi89KBWq8UyAml/dbrZbOr48eMnEU/6wN0WlJYgmNA33nfca6fTUVEUcTvSdGXcnQydTkf1el29Xq8kUOH2cIJM+5hnwN0H9HGn0ykJDThX3Ongfcmcr9VqajabMeCTkhH6AKGE67uQ4mKeX8PdHy4o+HziOO9/F8CYh4iMnrdBv9O3B4kCPPuMmQdmev95G11Ey8jIyLhc8cHntxS+4vGqTIIe+m/fJM1np/5QRkZGRsZlh6USFJxEAlZEcQFg6V9k5XYSBvmYTqcaj8dqt9sxL8Hrrd0FAaFAnIDwTyaTGALp6e+ehzAYDErtgMj5qjKCAqS71WrFld3ZbFYidpJKxM5JUaPR0Nramh7wgAeo0+nEEEsnz5IicXIC6dZ7D2J0gYVjXQyAUBISSTu8dMBdDr5C7Y4OCKvvkODBh04Opf0dFhBnPATR4RkNCEqAUhH63MMK3f3CPUOk2+222u12FJxSMQYBgNITHAc+f+k3nBaNRiM6JIbDYewL5grno3QCB4y7dlyAYi4SPsjY+c4h7oih7cyTSqUSP5uOPffFM+HlCy7m8RlCS/0a/j794WPrQoSLCS58eHvd4cGPP2+Ifmk5BPPTBRDmZuqU8HmYHQoXN1aOH9dt/+Kxmq7mUoeMjDNGkIogzeuFPv6dz9CNv/Ex7Xz41qNuVUZGRkbGkmGpBAVf6XQyCxFIk9mBiwFexw3B8EA6X3nnGr6yGsLJwYDuLmAlEyI4Go00Go1Kq7fuqvB7YgXWLe20Q1KJWPtquSfVQ2Tb7bbW1tZimcP29nbJzQDxSuvJIfoe2EcbIGr0Mzs4AEgbfZOuEnuZAtfx2nfG1c8vKZ4HUrsoI8EJceoW4H4WhWxKiud1EcdLYjyEUFIUJXC8cA9ObKX97RAJjvT79JKC9Hc+Qxt8td7Px1zxkgDPpPCsDPrQx5M56fMrzf9gnDjO50haBpGWo/iuHqngArzkgjFzN0sqSiwqyUhLcHy++G4eXjLFPPRn0v+dXhukImN2KlzkqNc0uHYu5WHMyDhrFBVpcN1c9z3zWh3rtDR/53uPukkZGRkZGUuEpREUnCB4ir+vYjppSclLSmp9ZXYymUQrPXA3RAhBrVbrpJptCAfCga/0s31lv99Xr9eL5BgC6NsKQvK8zt1XVn3F1EPj3NrdarWiMEJt/9raWmw3RBpRgn/7ara0v5LvlnVpP2CRkEdyEtyC7/kKnGORMOIlEW4vZ1vENFzRt1SsVColQSENxfR7YKxpN6UOfv75fB5fxwHiZJJ2uVjE8e4u8dVuzyngvGQ74Apg7JgDnt+R7lrgrghEDN7jM17u4E4cFyIajUapzCHdScPnhIsLvhOEP0/e9zgsnHD7/XnZAEhLFTzLwOd66gRwgRARw8/tAhJlGtL+Vp5+v4sEARcruF46t+8vVyEjIyPjcsTdT5emneO6+mPHNTtx4qibk5GRkZGxJFgaQeExj3mMrrvuOtVqNY1Go2gfd3u6r/L7qqjXdEuK5D5NyYcckocASZL2CZOXAWA7HwwG2tjYiIJHrVbTeDxWr9fT9va2hsNhPD8ruOPxOJJXFw6k/fp3X0WHxHL+0Wi0cCW10WhofX1d11xzjY4fPx4JdKVSUavVUqfTKbkpPLOhUqnEkEGcCO6sgHBz/74DAM4IJ3qc01d/gbsrILgEOrrQEsJuOCalCOyAwTWazWb8PGTdnQZFUWh9fT2WtCBIeOkMRN2zDPis77zh5SiUHXCMZwJ4tgXn4f4Yi263G3MkptNpLJ+gnb5yD8FmfqUr+JD6g+r7mbeU57j45sdSPuKCBvPkIOcJn+e6qcsh3brRRQSeK89GYC7SxzyT9BvCH3MfQWHR/TKufD7N5vASEdqSukVcVOAzjUajVA6TkZGRkbGLE48rtP3Qx+gh/+4NUhZcMzIyMjK0RIKCJ7JDECDokDz+6O/3+6VVT2l/xwJpv0QBYsmqPRbzfr8fRQC3v0NoWLElALLf70eXg7RvJ0dQGI/HcdUUpCvZEC53DPR6vWhrh8BK++F0Unk1WlIkUp1OJ5J/FypcrGDXCVbdd3Z2SnZ+iDv9g2DAeHh7nWRzLbeP+1g5+XTLPm2bTCYn1cMjBEDKIb6VSiUKEaPRSJJKbgSyJ3y3DuroJZVyABg72sM9Mt+4L3ePMC99DJ2Y8jkcHYwR+RI4FzwbgPFCUHGhwoUxrguBZi6n7gQPFnXHQCoo+E4T5EyQe8DxvvqPWJKSao713A6eHXep4EhJRTEvT+F5ZT64GOFiSip6uJPDd9VwocBFDj9HKlh4SUXq2sjIyMjIMITdrSZvf9mz9JBfvk07t9521C3KyMjIyDhiLI2gkNZPOwGEvDmZWmS/h4yRneCrv056PTHf3QN+DggT5Q4IGJDWfr8fBQcIEUjFBLf+A9rgtmp3LaTBd2n+AoGATnrScERfAfdSCRdXuAZ9lNbCe9kFmQzploG0z8sGvD2c10sVOC9OA8IHcVc46fdQQkpjyEXAscA94zTwenvuj3nDuT1DIyWZ9Gtqefe8DcaMNqY1/pQqsCuJk3vOj4Dhn+GcCEQeyunj4n2Mc8BdL5zL54fnPnjOAuf0LItF88HFEM94cDHPnTGcy59dz/DgHJTXeAZCek3/PS2HoJ2+OwTtWpSp4CKHf+/4mC66dkZGRsbljqIija6eq6jXTn1wRkZGRsYlj6URFNIVfLc6+6qy13VDAlhxTW3sHMN5CQKEoEJY09X4VHgg2BGRAncBgoATUkgghBkruhMgr/Hn2k7UOIaVcidZ7iZwsiSpRNwgly5s1Ot1ra6ullbZfeeLRf3tJQCtViuWB/iYsTrMf2mnOyYQS/yclUoluhMItxyNRlHwoE2c01fXIbwQcUklIYl54aUOUnknAXcYgLT/gP8O4WQOOemmv1utVsktwuc4F/MTQYEMCd5PRTQXpDwY0TMuvL2+uu/tQlBIBS4XaxblYnBOXvMtQbm+Oxp8vvp4eVsQbpjTjKGXLzi593txgcavl343eH/52Ptzmx7vyILCRY7ZTPWNiqZrcxUrpz48IyPj9DE/1lH1gdeomM01+8Qnjro5GRkZGRlHhKURFCA7vvWdrxJDGiAjWLbdwQA8kI7Xd3Z2tL29rcFgEInsorR9SMZwONRwOIw7OMzn8/j7bDaLrgXaTimClwW4lT1dQSb4EFJMGxE4IFqQXrIHqtWqOp2O1tbWVK1WS1sDOnHlmogP9G2n04nXSkUVzx3gdSeiEF/ImedNeCihiytOPouiKJVW7OzsxHOkJBtiiADEmDlJBOQucH2pnEmRrtQzRl6K4Q4Axod+CCHE+3LxKS1h8fPx3zTIEIxGozifEROY0z4OODAoE0GUYUXfhYy0bIOxAl7S4w4ZcgNSN4HnlVBa4hkNiEjupGA+cL8EbrpgwBx1QZC+RFBifBFKeKYR0rgvSmR43rx0gp9FuRQIdd43fNZdQzmU8eLG7J57deMP3qLbvvcmja/IeRgZGYeJD3xNR9JDVesFPfj7sqCQkZGRcbninAWFEMKKpLdI+lhRFF8UQrhC0q9Jeoikj0j6yqIoThkHnGYhQGjIUnDSt76+HgnRQSFwkCXKFHx1tNFoaG1trZT8T+09BMJJKmLDYDAouRwgYNIuSW232/F3r6dvtVqqVCrxfL4K64LHaDSKZAcyTg4CRIv2EmQ4GAxisj92+2azeZJDIQ0yLIoitp97Gg6Hsb99hR+y6yQZQYG+ob9Go1FJQGFMUtcAY8GuHumqNp9Ld8+Q9l0ctMdFi5WVlZgv4W4WQJ4EgZtkY9CHRVHEsgkXCpijCApeWpLmDPgKOHPRhRgPnkTQwslCGz2bIM2iSFfkU0HJXRL0IwIE7oMQggaDQclB02q1SkGJ7uZJtyBlDntII33E/SB+8VzwvLrrwB0hlUpFw+HwpBDHtOzC3Su8jiiBGOF9REkMn3ExkLZ6/08mk9hHaanJMuOwvoszMjIyTgt7evVOp9Bt33uTHvqzH9HOxz5+tG06YuTv4SXAMz9Jt312934PqW1LD/zRWy5QgzIyLn0chkPhpZLeI2lt7/eXSfqzoiheHkJ42d7v/+ZUJ/FMBA9Fc1u/rwDzx7+TNj7vOQSQH4hMrVbT2tqajh07FkmDl0NwHQ98ZIXasxQg2ItW3n3l1hP1aVNaFpCSRFZgIXMEQLKrQ6vViiQtDaRzgu6heL4i7Ndwl0O64pyuxLuDw0WPlOjTZ2m9PeMMIXd3hrfTcwTSFWL6z+dAWo4AQXSSyMo+whTzxMco3U3Cyw0Omq+cm37jPtyNkgoQvqOEVCbInNtLGtj9wucbbXcHgRPoanV/hwze85X9Rfkj3n7GzIUbBCDEEC8P8nIZ5hfCl7uO/LMcl5aWpHC3Ev3lcyEVX7wd9CFjicDI8YhiLqK4w+RiEhR0SN/FlyKuvWWse57YUO/B2aWQkXHYKCrS+Iq57nnug1Xr36DqYK7GH735qJt1VMjfw0eAUK2q/yVPUxGk/gNXTulI2+kE9b/8GZKktfduaPau912IZl7U6H/FM/Txz9j//cbXztX4g0v7Of/4d92k/oMvbED3I355pPD6v7+g1zwMnJOgEEJ4kKQvlPTDkr5j7+XnSXrO3r9fJel1OsWXp9dh8zuvSfuEwgkDBACC75+B7EEqfDvAVqul9fV1ra+vlwg+RHIRSZIUV/A5FzZqFxTcsi6dHEro5D8lk05QuTd2K+j3+9re3tbq6mpJUAghxGwHVlxZoZ3NZqUt+Bb1t6+E457wQESOlfZJe0q2ERRSouqkkTH0awPf9tJD+rg+feQENz2XOwcW5Vd4mYK7FnjN+yLNiEgDBR20I635hyQ74XXxwwUFL5lIrfZpm5lvLph5aQRiCsSf+/Rz8Xua+YFTgnOlrgtfsUewcDHJnUK0md04XKyhdEPaLUthrjD3UjeCg9dd2EpFyEVzzkUkf40ymrRPvYRjkZi0jDis7+JLFdU/e6vW1p6h3oNzJkZGxvnCPU8pJAXVtqt6+DsftP/GdKqdO+86snZdKOTv4aNBpd1WuP6BuuOmsJeVc2rheNYodMen7i16NY7rinuvOac5unL8uGaPvuGsP38x4I4vnehDn/lz8feH1l6sR937Saf9+ZUP3K7Zvfedj6YdGlYe+0jN1lvx9y/4p7foP13zdxe0DY+955t0Y7Hfryvvu02zE8tvajrXv5Z/VNK/lrRqr11TFMUdklQUxR0hhKsXfTCE8GJJL5Z2SeU111yjdrtdsnhL+2ICpMit0LgGJpPJSYQiJSXtdlvHjx/XlVdeqdXVVbVardJqtDsUJJW2nXT7t6RIlpz4Qq7JRpDKwYR83letnfz4ajH3ubGxoV6vp8FgoOFwqOuvvz46IWq1msbjsTY2NrS1taXJZBKJnqTookjJrv/Xt1qkz9wujogAEaSvnIySA+GZDSnpdCGC7AocHiEEDYfDEjl08puGEaY2d7bDdEcI2QmQan+fdnmdP59jfLHmIxxxP94G5h9OFo5Jt4v00gR3ebioAhF3R4eLZN4fzDHPsADcuwdVuuDjbWD8FwHRg4BLRIrU8YBIR7t5ZuizNJhyMBhoMBiUshb4L8+yCzqQfX++vL9S0A5/1mifl0LR/4RgjkajkqPE588iIWlJ8aM6hO/iptrnuZkZGRmXOqarhd77HfuCQuOeim744UtfUFD+Hj4SzJ78SH3w+a1TH3gA7v4UafOhDz+nOXrvFz9Gb3z5K8/68xcjPvwlN0tfcvrHf/L3vURX/vTrz1+DDgGVV/b0h4/69SNtw3u+8RXSN+7//qzv+pda++U3HF2DThNnLSiEEL5I0t1FUbw1hPCcM/18URQ3S7pZktrtdpG6CvaOiRZxSXE12mvGIV++susEGtLDammz2YwhcZAdVvgJyvPtESE7nlFw7NgxdbvdUhshkAQ3emI/IoOTct5DcEhD+cbjcRQSIHbkNNTrde3s7KjX68WgSYgclnLIPauyqUtB2hcdJMXVWi8r4TNsjwnpg2jRJx5KyX8hlcPhMJLE+Xxe2nlBUslhwfupKyLdCtFDDKvVasxt8HZ7WQW5EV5HD+n0IEPeQ4CAlEMwIcaMI3NvPp/HOYWAQVggc8YFLsZdUmmO+RilzhLcOLgbmN8ElJLTQR80Go2S44a+WDQPfA7zfCHUuUDjzg+cMC78saLPc0af8WwNh8Mo/rnIxLUGg0Ek9+4MoU+5hjst3KGBoOHBoMxvxoPnw50H7k5ifl5MYsJhfhevhStyCmVGRsahYnJ8rlv//U162I+9d+lXKM8W+Xv4aHDfC5+lzUdI0rl12dnM0dBo6EvfdrtuqN+rB668SVL9nNpwqeOn/+2P6mMvWz/w/f/6Lf9c9dde+BKK3vOfoe/5kVdJkp7R+BtJnQvehvvDj//wj+nOH1zTRyZX6feedK2K6eTUHzoCnItD4dmSviSE8AWSmpLWQgi/KOmuEMK1e0rstZLuPtWJIDRuaZb2a/JdRPDfnVh5XXVqifcacc7vdm9e8yyG0Wik8XgctzKEHFLaAElEzBiNRhoMBpEc835qT8fx4OKJr/T6aq1b4wnMg7QjOjghpT3S/mq1v5YG2XG9lHRyrNf807dO8H0nBEQYhAzIPu4DkBJaF4YWvc/84J4ajYa63W4cA8aP+8fdAdyB4fZ8RA4PYHQngH8eIu1iVVp64aULvoLvbpT0x+cx4+wiis8JF9o8l4E5AXlnHFP3i9v909fSUhKuR5Cj9w3zynMjAAIMzxtCDn3tOQhe/uBbs3JO3CF+fqksKqbz2INaaYeXUyAU4VLBQeO7TLhLiHZeBDi07+KMjIyMw0axIk1X57rnix6t6rhQfWumxh9ecrXX+Xv4QqKyot5XfIp6NwTNWueejeNz9AFvue+UmQrhKY/X+1/a1D9b+wt1K01lMeHUeHKjoSdrdOD7P/TS+/SR53+ywmBFj/y2N0kHlL8eJu789pv0gC+8XV/Ypl3LJSZI0tMadUkjbTbfr/968+dI86Djb6npqlcul9vjrAWFoii+W9J3S9KeGvtdRVH8sxDCf5H0tZJevvff15zm+UqEL62Z990R0pA2T4pP66p91dot/FI5vyAlbP1+v0Q6WTX11VrawApsr9eLK50eQCcprmgDJ7meaQCB55qSSltS+s4SaZidf8bT/52ULRJcuDcyFzhfmiOREuDpdFpyBng9vtfwp+PE+RE7XFhJr+3bW66srMT8CEpOGFd3TKRkOgXbcCIaHSRm+HaZZD1429NrpH3G/brg4OPl4hgi16JAzfR69FXavkXXSTMFXDDydvBvF3g8eyF9nrwsib5K5wt97bulpM4Ad3x4+YjvSJG6j9LASG//IpHR80EQalxg9PtzcWHR/SwjDvu7OCMjI+PQEaR7n7z7Xd64t6aHvvchkqTinvs029o6woYdDvL38IVDpd1WuOE63fUpQUX1EP8fvTdHq+PjOr55vXZu/9jCw1Ye/2jd+nnr+tDnvEK72lHGYeD1T/pN6UnS+6d9/cvXfJuab/rA+ftuCEGzz3iKHv8V79EvP/TPz881DhnrlZY+/Lk/I0l67oO/RDvve5okqfGW89hPZ4DzkTj2ckmvDiG8SNJHJT3/tBpiwXPpKi+kgpV7J/O+RSGEUtonTBAFiMtoNFKn0znJDeGrszs7O9re3i45JLDws10jbYD0QlAhTbPZ7laPtMnLHZyksBLL6q47ACCJEGmIo6+g8ln6ze89zZRwMSC97xCCOp1OSSzwLTul/fBBCK/b6DmuVqup2+2W8hO4XipsuOPEnQE4H3Z2djQYDErZDOwcQNgf90tOBaF6B9nVuTeyKabTacwScNLebrfVbrfV6XTidpveV05Y3eXiRNfb4GMEIfY+SHMS0tIdbx+OldXVVXU6HTUajVJf+H/9GpyL/un3+zHvgz7AJUA/uliROgPSwEtcCAhsZHR4JsVB5Qr+vOO8YK4T9MhzlAoatAuXCt8l3BOuoTQgk7a6eJLuunKROBQOwll9F2dkZGScT4yvnOu93/pASdJDfv9KVf/srUfcovOK/D18yCge+1C9/5+t6lzLHA7CXc+Qth7yYF3/8gWCQgi67YdW9K5nvOK8XDtDelSto//38z+jf/T1/0L1P3nreXEqVNpt/dTP/5hurN7/9qLLij973O9Kv7j77/PZT2eCQxEUiqJ4nXaTa1UUxb2Snnum52D1HZLixEXa38qx1+uVAvSc1EB6IA7Ur0MGWfknK8FXyCHPCA9ebuDbEHrOAaTb6+hxR0wmk5gf4GTMV6+dWPoqrOcScJ8QLEC72u22VldX1e/3Je0H1rnFG6LFtXmN60HAqLsfjUaxz90+7xkBhOy5UOD3kK5Mg7Q0IYSgdrtdKnvAus5YUeLQ6XTU6XROCsRk3uAo8V0FJEXSzPkHg4G2t7ejwIM138UjdgLpdruq1Wqx7IX+SucohBjRgNBJn99+/8wZd6HwWfoF4sy/vca/2+2q3W6X5qYLEDwvzIfpdBqdNZQBQKD5nAs8IYSYVYFTwIUJn4eePdHv96NI5uUR9CvHuZvIn4k074TXXVTxPBOeLQQef0YYb3c/sK2qu5ZcFPEwS3cAXSw4jO/ijIyMjAuFj352Xd3H3KSr//ctR92UQ0P+Hr40EapVPf8dt+vLun8j5eDM845X/OSP6Qv/4Nv1yG9+46Ged/TFT9d/+bH/retXLo0xPF/9dKZYitQxVkLTVVUnMPyBDzlyhwK19OlKrq9UQ2Qgqr5NnbRfh002AUIAbfOQNtqGZZ5wQ8oSFgX/cS13CnAer6F3guiEpyiKmJ/g5IddHyDakEZIq4sKqTWc4Eevb/eVccirtwkijwODVf60/MLLVrxfh8NhKWgSYuhZF76KDVHEieIuB1+x95ILX11GlPAfMiEIePRtHiGdCDgIH8wb5kXaH953njfAvPA8AdwsvuOAz2F3hficJsPDd7Dgc771pbsnnLTTJnf1eN/580jbvTTAg0V9zoK0hIP57tkL9Ls/l9ynB3p6uYg/28yzVGhx8SvNp0jLdvzZ4Pnl8+564LWMjIyMjPODeaPQ4NpCG//8WQp7wntGxkHYee7TdOezDw72OyxM1gptvOBZqrR3SWflSY/VR375sfqy7od0/BIhosuOx9bb+vbnvFbvv/lTDu2cd3znTVr9ztv09EZNK2EpKPA543z009lgKXoTSzsEwsUEL01wcuSiQZpg7yu1TjJTQSKtS4fw+So6rgS3/UNEIJmQUCf8nO+g9qcr+J4TAIlzR0MIIZ7fyRTkEgLsQYWQPtrsNejz+bxEsD2bIrXHQ+64N45bJMz4vfk2k/zOjhG0x0kjhNhJql83LS3w+eOr+V5O4E4HtiUsiiLurEE5A2PgApJveci90i++C4ETeW8TWRLNZrMUuOgOGEklISXNK/B55Lse8Ly4Td/FgTRPwQmz35fPNy8l8F07mEupoLAIaemGl8J4GKI7X1zo8DYe1Bd+LT+HzxGunzqD/D13GKWiDjhoa82MjIyMjMPBTqfYzVd43CO08rhHqfrgGyRJK4/e/X3lcY9SaGaxIUPaeERd2w89/9lGs1ahe55cRJFreH1X7/3UX8hiwgXGtx6/Vb/92T+u4fOerpVj5y4kFZ+6od9/1B8dQsuWC4fdT2eDpVh+c4t0+oe+h65BLtL6ck9zdwu0r25LOonoOoGDMEGwWTGFsLttGgu9b08HKZ3NZrE91M1LKgXJkdEwHo/j5xYR03QFu91ux1Vj7s1FCOzaTqzdBdFqtUoZCZQ2uJPACaOvzkLwIML0Y7PZjO2dz+dxa0DO63XqrGj7SrLPAS9b4R4g9u66cKHDiTXzxMdFUil40V0DnINyERcBWq1WJJPcK5/3VWz6HyEsdSj4vEbQgJi3Wq3SyvxoNCr1Szp3mGde/uKr9KmA4GJNvV5Xu92O+R4eTOqikZdWtFqt+NwgBDG2Kbx8hfFDDErzHTyXALeLOw8QHxhTf24IVfTP+zxy8SF1SvAejhSEpqIo4hgwVu7SycjIyMg4vygq0gdesCpJ6n6komt/4m594Ouv0ryx+108+m/5uzjjiFBZUbFycsB3xoXBkxsN/eUrb9Zn/ZMXauUv/16an105aqhWFcKluyPrYfXT2WIpvqErlUpcxZ1OpyUbvtfJQwiwy7ulmhV94ITb7fy+sgqxxb7vq8apBd9XvQHkChIEOUTw8JDJnZ2dSLb5cSKYXocMhpWVFbXbba2tren48eORhA4GA21ubmpzc1O9Xi+KIO12OxK4zc3NKChALBELEFW8rMTLK9zu7QTZreRFUcRdF1ZWVmKpiDsWWAWnTTgAXOThGCffOALoU4712nbmhudReCCguxU8+BHyyOd8xb1Wq5VcC5BOn1PuFJAUBScEA9rk2zn2+/2SS4b5lwoUablOmrvBXPM544Q8FZnYncKdA1zDRZVKpaJ2e195RwxgfOgjFyLcjcMz6s8g7fBwUZ9rjI+TdtrpZSbMK/rat5NM2+PZIN42zyXx7wTaTdhqCCGWtXi/ZmRkZGRcGPRvmOtD//6pmtcv3T/+My4evP/mp+gvPue/S7o4A/wuFfzUq35Mn/Vb36VHfPsbzvizoVrVN7z7/frc9l/rUt+Z41z66VywFIICZKMoilIiOyuTrMpCEPr9fjwmJb4QGAhLGuYm7Sf4V6vVGJzIynxRFHHVm5XgtBQgLZXg2pJie0MIajQaURxI8wrm83ncrcAD6CgPIJ9hfX1dq6uruvrqq7W2thbbMxwOtbm5qXvvvTducckKK0TZV++9D1yMof8hdxB7qbx7gbS/9SX9TskAq9KQbxdlJJXEA88HcGEjtbyzhaUf7+Tacxogf+4icTGKPktdHZyH+3Z7Pu2jzZDvdOWf49N2+fve5/SLW/txL3jpCU4NngPa6G4N4KU0fl+M7aJsAfrFS4Yg/n5e2sBz6fPdyxYQJXyc/B7d+eAlPgeBa7nY4y4ezu2uF+7Z80JcTErHltc9t8HdTd6PGRc3tr/6mdp8aEXS8m8DmpFxuaNYkWYr+bs3Yzmw0ppdtLsBXEp4aK2reevs/x/+yPrd6lYubTFB2u2n7/jcP9B//bnP0aO+/sLtoLM0ggIrg9j8/Q95VpRZWfTsgdTuDuGDGAAs/Fi52ZFBUiT8rJRDrljNdAt9Gibn9yCVt+1rNBqRZHsAHKuyhDh6kKOXJCAKdLtdHTt2LK4AE2x4zz33aHNzM5ZOQIzYBcMFBS8VcaLuoXtpAB795ivLnkHAqi4r2Yghk8mkRFBT27hb3znWiboTRH+de5D2xRG/7qIVZa6f5nH4DgAQcYg194u7Q1Is7WAOeiaBl7u4I4O55HkdaZaB94Nne7BCj+uCa7rF33M2UhEFuKOBe/f7ZWycbPu9eJnQImeFjwljRCaBl1HgOvB5xlxz8u6CkIuAPi88bwJRAFFp0TPq10t39PCyGm9HFhIuLWw8sqLxFVlMyMjIyMjIuFhxzY33afi8p6v1mjcddVOWGt987DZd9ezf0M/ooRfsmksjKDiR9j/oq9VqzA5gFXwwGJS2vVu00glRgSTs7OxEMtJut9XpdOJ5sFanK89umYescb3hcHjS9aT9lVrs1ZDERfXa7Xa7tDLKMZDLWq2mbrcbXQqSohvhvvvu0+23367pdBrFBAg+FnFC9SBlqSuBwEAPwXPy7W4Et9/j4jh27JhWV1djroTvKgHhw73A6riTevoed4ZUJvieg+EuCxdfxuPxSUIT9+c5Bt42D+ZE7HGCDZmH1HqJBBkfZGTQX/Q588yzLjyQ00sVmPeeMeHCjYeTIlTQB8w1jmV+OqH2oMFqtRoFCkkxbNTFI5wW3kceZsk8IoMCIQm4YyF1S7g4wfjwjPCc+T27SwkBy4UMFyhwgXBdfx4RpcjGoB8YExw5Loz4tb1/Mi5OhFr9qJuQkZGRkXERIrRbqlSyGL0seMOTf0Ov/i/r+pnXXDiifLFiRYUqnY7mg4F0ARbJlkJQgHB4YKK0H9aY5iuMRqPSe16SwGfZ+QAhAhJMucPx48dPyhHwbRir1Wppe0jO6cQ2tbDzOteSFFfsh8NhJDCNRkPHjh1Tt9uN7dva2pKkSEyr1aq63a6uvPJKHTt2TNVqVf1+P4oO9913nwaDQaz/Xltb0+rqqkIIMWNCKgf7jUajSO4hj+xoQAI/YwG5IgQPcggBdFI5HA5jP1GO4lsAek5DCCFa+z3gD3HAiZyvcC8Sjnw3DhehGrb1lDsOXBCAvCLcQDgrlUocL8SURqNR2l7Sx9zLLSDLbOPp4gwiiztZ3JHi7ZUUS17cKcC8xP3CfKNf07DL1B3iK/6MX+rykPZJ+XA4VK/XK5U7dDodtVqt0jPibaC/PTckzSmh/Yha/vymbggvrXDXi99j6mhInSyUFFFGQxtwCDGXfBz8uyTj4sXKVVfpA9/1CM1reSwzMjIyMs4AQfr+v36NnlArJGVhOuPiwpd2NnTTe/5YL/zib9D8799z3q+3NILCcDiMq6FpsJxbq6fTaVxVhAQ7IYFgIiZg/5cUd0rodDqqVCqR1HpOA6uY0v6uEKxgOzlPdw3w0gJpP6jPhQe/PhZ6yKhb/CGk6+vrajabpVyFfr+v0Wik4XCoer0eCR4CAQ6O4XAYCanb4iWVSB99iGDAPbFK62TOSR0/jF/qfmAFHOIIQaQ9EEDvMxcTfKXd6+bdjYAYRN9B2j0EEIdCpVKJ/YGwwvUhnAgTEF/GkbmW9iFzZDAYlEpqfOcLFzrSfAJ3JHhwpW+x6RkBCDhkezix9vIVDzv058PLGtK8BG8L5Tm9Xi+KRfP5XM1mU2tra7EduDsoO0jLj1KhDyGJ8aAtCAk4c1yA8q0ceV58TnANdzV4GxAIXSxyRwp5Kx4Omo5RxkWMStC8VkjZaJKRkZGRcYZ44MpY7UrOT8i4+LASKrq22lVxP3llh4mlERTYls5rop0gSfurhr6fPcKAZwOklnPO5+TCLdiQUsjayspKJChY392+7WTUtxh0MrKyshIDClkdJ/kfQuarq+k2fpQwQKJYNfdae1aZ3X7O1peQPSedTvwQFDxfAXiJQ1oD77s1cE4P7/NAQsaAdgA+46KBX98zE7xP0kDCdNwZYyzsThrpa28Lc8VDMd3Cz7WZZy4m+PnoJ4QHv54LCu6wcNIM0WdeeqCgl/4wP7mOZ1+kWQReKuLn4Hj6iD6E1Lt4hTOB+yOAE3KOkLLoeebHyzZ8VxQPpHSHhwsGfl+pGON95G1AQHExygNPKfvwvBB3l6RzLyMjIyMjIyMjYzlwY/U+3fsv/omu/s33anbixFE3J2MPSyMoeC27VCa/kkornWl9OquL0j75dKcBpNBt+uPxuLQi6iu/XI/zsqpKWyEklFCsr6+XyBykmmwGt6v7lokci7ABaUSkYDUekYBdIjwUkZ0i6vV6SUxAzIC4eVmHE2QIpwcN0v8uhED+WNFNLfse3peWjkDQOLfX+yNmQL6dKHtfe76FB24y7ohM7pxwkk97KXGATOIaIWvCHQG878IU8wuhx4UlVt0RPdyF4I4A2uFt9PIQJ8hct9VqRceHOz+cvLtFnzanghxjj9Dj8xDhCkHBn8FqtRrdMJR+pA6L1JnAnPMyGi8vIWPE3Qn0ifc1YAz9nr0NzHUvpaGvENt8W0/O5yUdPr5ZVMjIyMjIyMjIWB48s7mit/zgK/V5b/2nUhYUlgZLIShAqiXFreCcAPtKp6RIGJ3E+qqj5y5ANlqtlrrdbtwu8sSJE9rc3IzBjFi5KZFIt0BM67RXV1e1uroa68mdEEnSYDDQ9va2xuOxJMVQP6/jh7RzXtoGOR0Oh5G8TadTbW5uajKZqFqtam1tTd1ut7SVJMchluB0AJSCICLM57vbFXrYnW8Zye9uF3eSxf36Vp/kDeCY4AdBgX+7QOAkvt1ux7FF5JDKWQHSvuDjc8IJKG3HceIlAO5gcHHBhSjKFhCZ3FLv7XNrvQtClNJAvNvtdpzHXsqAkNXpdKJAxnyDIDOfmWuMB8+Ik2x39fjuDhB5Fx9SB4sHj9IHlJEgxuFqYH7v7OyUXBO+K4OPN33tz2Gj0YiuG571tKwkJfWIEO5O8TIX+sSvx/OG68KfRZ4VPpODGDMyMjIyMjIyMjJOH0shKEj75MFt+E58XTCAqEDYfAUcIuT27pWVlRhaSIijZww4iYd8QASdYHgAXbPZjOcLIZR2OeD8EB9fjYcA43rwVVbaBlmdTqfqdDrxeFwcBDGmxIcVZlaWIU6sSiNGcL50RZgdJ7j3tC7fV3XTlXFfHeceyMPwLfu4llv8pf0QTbInFpVcpDXzvjLtORB8DkcI88BX8blXxBjg82hR/oJndfgPn+WHIE8P/3NBCtdCuj0p9+XuGlwStFlS6Vgv9aG/3FnhmQr0nZcfIDQw51wA8GfRd9LweUZf0/ec18tFOE+n04kiD/PGHTP0MfMCN47PA+Ytzy5uHsC8Z47htmDcF2WkpDtIAC/FycjIyMjIyMjIOHo86qfer7/8+Zt0zY/dctRNydCSCAqICCmJ9NBCyJPX90OmIAge4sgxlAZA/lnZJXgPUgJ5cgu/E1baKSmuXLdarbiqKqkkBDjhklQ6t5cieNmBk7rUPk7GBAKKb33n9eqIIS6suCPCxZjxeByJFyTS7elOBOl3Pu+vp1kBkuJ9OLGlH1h1x+IfQoikm5p2xtPFhDS80ckrfeUCEJ/zkoy0NIb79Tam2y0ikPiqOO3gPp2E0hbPkqCPIfJeQuHjzw9CBufgMz5HvEQjFX3SsXM3iLsT/FgPnkwDCqX9XTVY7ZdU2o7RHUEeMunCVLvdjq+Px+MohPgccleQl2546Qlwx4kLSS7UMF4uknA9f9a8r0F2K2RkZGRkZGRkLBd+7Lo36xEPfpquOeqGZEhaEkEBkuCkCLKNRdzt5k7wJJWsyul5KA84fvx43KJxOBxqMBjEEEhf+XVBwJP7IWNSeUvKlZWVSLQgKHxe2q9lJxDOk+jdMu8rwBBgtvXj/P1+P5I/yjGchLqQAWlHjBkMBiUXCKIKJRGQNA+S9NVljvFVbyf5KZmXyqvLfk4PL5QUt5hsNBqxRMSvuSh53/vNdzLgNXdwDIfDuIsIlveUnKdlGKmzw232tI3yEs7JfKCdXrIAWadNaR/Sfo7xUg3APTOXONbHKi3jSEMNPRskbYcTe3ed8F8yOtzdwnPgW6oiwHH//Je+YD7w7Lo7Ic0u8CwFz8agn8lE8bwNckpoD88D9+vfIWSSeFv8eyUVGDIyMjIyMjIuD3xiVtc1K1M1Qu2om5JxjnjH+Ho9uHq71iuto27KJYmlEhR81RgSPBgMIlljFdWzDSAavrUjZJHSgE6nE/MJ5vO5tre3IzGSFAkJhKnf72s4HJ6UK+Bhgl6OgQMA0unCAwTGA+FwN3iJRK1W08bGRql+vdlsajqdajAYlKzZXmIBKaYW3MMVcU94NgDCA8TSt86DHDMmEEX6lXtN8w9cJPEsAxcNpH37frfbjfdBsKXnYri9XdonfxDo9FpSefcN3ACz2SwGVPb7fY3HYxVFES3xlIhI++SX67kQxNh6aQTiDXMoFZgYA3brkHZzNXwlnnsklNTzQJhvvuI/Go1KpRsIBzw7PCcINPQLY8Uc8tIdL+Pwc3s5C6IL52N+kFFAYCTPBeenHMEFGvrX8w8W7dLgTgV/znFv8Fytrq7G8eCabAvLfEJ0mE6nUVxi7Obzecym8G0smfO0OSMjIyMjI+Pywle+5tv0Nc/5G/3Q1e846qZknAOKnR39/GMfov/0W5+jtz/9V466OZckluavZci7pBJBhgC1Wq1INiAoXu/utdytVqt0TggIhApC7eQI4j4YDLS1tRV3XXBBwYmQnwMXBSUJkkpkEdIJgcbh4KUS/X4/7pAAKaS8ICV9XIM+ol88jI4QPcIZIXRFUWg4HGo2m5VW1VdWVuK1ILupgEB/e2mAEzNpv0bdtzb0rTd5H/LujhLOSX/T5+7EoB/dSeA2ePpqOBxGkanX68V/0ze+JSICBCvlvvsBq9gINZ6zwXEEJnrfsPuGBxlyTvqRMZYUXRAuWji5n8/nGgwGpTIKSlroM4IO04BCF53cxZEGW6ZzHPiqPp9FLOl2u7EdXINxcJHQyyE8J4R57ZklXJMxpayCHIpOpxOPq1arUWDk+Uqvx7gsuk6av+Hhne7OycjIyMjIyDhaPPD3b9Xqbdfrts++QO7BQpoXufTxksB8puIyGsvXDSv699/8IjXf/26daxrYB/73M/Qlz3yrJOlPn7r4mHMSFEIIxyT9tKQnSCokvVDS+yT9mqSHSPqIpK8siuJ+9/VgtZM/6lmt9RyCNBDQBQQnzJ5m76TN6+idREH6cSd46jykjdKDRWUXnvOQrrRCYiC9nC8lzF4O4fZ1SaUkf7dfc27akFrlWXGFmLkDAKIFUfMwRkdKLLmul01AttOAPreLI1BIKrXLz8l/K5XdHQW4tlvS/TicLG6Fn8/ncewoZ4E4Mz+8vIXxx4afWv29vMIFjNTV0Ol0SruK4BBwe7+7Ueh75ojvVuIikxN4SSWRKxWDPNSSvnHinpat+C4V9O8iMcHHhT7hefT5jADFMT5Ono/ibfK8Bv+3j7O0L865iJgGYnKNdHz5vAszLpp51oKXavAMXiyhjIf1XZyRkZGRcXbI38PnHzsf+7iaDzwuafWom5KxBHjEU27TXd90k65+RQ5mTHH3bFX1175Z81MfehL6X/EMnXjU/t/SL/y0/6d/94D3SpL+1wGfOVeHwv+U9NqiKL4ihFCX1Jb0PZL+rCiKl4cQXibpZZL+zf2dBEHBiX8aiujkFNLtNmqvVYdAOIGk3t3t/gDre7/f12Aw0GQyUb1ej1vcdTqduLqb5iVUKpVIBgHEx4kaJJAtFSG+XN9t8pzDCbKkuNrtfQFZ5BqIKOxuQP/69pvSPgHz+nev8XdyzX14ECKknXIMxsl/EFvcUeCJ/KzW+4+XGqSr+hA8byv3wLUQh/hcKmRQOuM//nnmh48f48Hcwu1Qre7uIrG+vn6So4Nz+qq4C1KekcDcdCeG5zW42OFlIl5mgDgEOeZanqnhrhdJUcDw+ZzmJjB/XNDjXF4qwBilJD8Vllw88WBJn2deTuO5KE76mfuTyeSksfT+4/NcC0ED1w2Cmot4vrtFKrItMQ7luzgjIyMj46yRv4cvAMJ0pmovaKdTSBdgwXljp627Z31dvdI5/xfLOCO89jF/oJ/4luv126+46rSO72+29PbJSJ9Ub57nll18CI2GVq6/VpI0e9E9eteTfvOMPn/WgkIIYU3Sp0v6OkkqimIiaRJCeJ6k5+wd9ipJr9MpvjwrlUq0Mfd6vbjNGwSCGnTIAHXUEChfWYRI7+zsRAJILb1b1z3vgPf7/b76/b52dnailbvVasX8Bazyw+GwRBY93NFXTiEjkGRWsSWVatIhc54lMZvNtLm5GXdiIGTQ0/QJGeR1jmH1emNjQ9J+yj7ZC2RLUG/uOQdkDnhQHcTKXRT+O6QR4ueWcs4BCeUYykQYf358zFLbvQdC+kp/u92OZQg4Gnw1f21tTe12Owong8GglL/gWRCUQriLAvIMcWbuMD/YmhABYJHFnh/EM8QhruuiDTkQ3gbmB/e7vr4eBThJcUwRKSaTSdy61DM16G/aJu0HNSIouAvAx5XP0H7mjrtN3K1Cv6auHnaJwInkxJ/j0lDOVFCgnYgD/py5aAHSHT7oD8bVMzsQE/j3suMwv4szMjIyMs4c+Xv4wmH+9vfqoe9r6IP/4ama186/i/CP//rJ+n/XP1Lv/dRfOO/Xyji/eOTXvVUvef5L9Tf/8yePuilLh9FnfpJe9zM/ddafPxeHwsMkfULSz4UQniTprZJeKumaoijukKSiKO4IIVx9OieDgLFS6VkDzWazZEUn2M/T7LFgsxUh7gHfItKDEd3+TIYBwoC074qACK+ursYadogrAgLkFaIM4XQiRLtZPfWUfb+Or+x7QB8kCNcCGQG+as216JdFdm0PEYQoQxa9HCTdjULSSSvYnkEAeXdLuQcHQuCq1WppdTp1RLh7wV+jf+kbX5Gmtt7dCzhC1tfXtbq6epJlnz71nAvux8sGILTHjh2TpLgijkCB+2U0GpXmI4KS1+xzLsbdSbxnQRRFURKfmAuUsiB2IcjwOu4Ld7VwjwgxKbyd/iy6YwTXC8+Tk3FEjYPmq48tc4a8CO7JP5OWVzDuLjgxjz1gknvb2dmJQgrPhpeuSIoiAoIkTg/62uehOzWWGIf6XZyRkZGRccbI38MXEvOLoxwxY/kQ8tQ5CR/6z8/S937Jr5/TOc5l+a0q6amSXlkUxVMk9bVr5TothBBeHEJ4SwjhLaTXS/srj2l9ttfne5q9Ex7PYXCiSD4CwgIr+77Fo68SS/sWd3ZkYCcCiJ/XgkN8IE0ufkDMPBMB4uVWbl+Rhpy5YOCEiTYv2u0C0i7tZ1HQTv7rq+Rc31f93XY/Ho/V7/e1vb0d8yXcmk8IZrvdLpUzMAb0obfLV8Qhm04qfWU/7UcvPfDyCg/BpF/r9XrJRYBY4/1On6Y7KiwSqnwl3M9Hn3g7fdcPF0f4t+8y4vfgZL3T6cTSiEplfxeHdK65k4B56buALEJazpJmTHiOAe4cz2mgXfSnixUuCKTPA3PbnQk+pi7CuQBj3xulOeqCnD8fXuLgIgHfFe5wWiRipf2z5Di07+KpxuerjRkZGRmXMvL3cEbGEeDJzY/qIz/0LK1cecVRN+WixO3ffZO+8Llv1gvW7jmn85yLoHC7pNuLonjj3u+/od0v07tCCNdK0t5/71704aIobi6K4pOLovhkrPpeN++7HUAsnOA7uXdCBjGGGOBQGAwGUVRAWPCV0kXkysUEJ5S+qusrwU4a0zwC2sVqtgf9+a4IkuJxuCl89dRXeCGNHOOlDazU+k4ZTnzdAu8kyq9HOygF8XZzDNsiUtPP/dMeSLCv+rsbIL021/VSAF+5XkQ+U1JLOJ/PISe8KXF1FwHn9/5kDtJOXoPEpqv75Di4UOXz0QNHcZcwf3GNsNUpxD0NYnTCzD1LivPLHSypUEQ7aJuLUalolgo3CF+eM+BlKD73U2cAv3P/jAXzg/P6DgvuFHDni9+3i0n+PKdiBvPRxQSeOc9uWSSELDkO7bu4psaiQzIyMjIy7h/5e/gCo7YVVJlemNT+2c6K3j/ta1ZcFH8TXFZ4ZnNF73vhK6Wrrzyt46vDuX6n381jKUkh6JXf8Ar96LVvOedTnbWgUBTFnZJuCyE8eu+l50p6t6TflfS1e699raTXnOpcEEKv605XEX11liA4J1FuNXdxwsMWERVY3effTrxYvefaXB/SRGYC5AVy7yvOEDRpP/ARAYBret04K+kQVPrBV9EhYpA2J+UeUEjZRa/Xi/dG+9g+UdoXQDY3N7W5ual+vy9JJ+0wgZCAGOH159Tze8DgYDCIJJVyBN9FgvOxO4Wv8HsOAsQO0ufj4SQfQYl+Yz51Oh0dO3ZMnU5H8/m8RPBTAQIhybMBeJ33nMB7SQljQH+Ox2Ntb2+r3++fJFgxH2kD/ci2pl6m4bkPLqbxHDCvcPN0Op0oIg0Ggyg2+Zzj/V6vF7dGxUWCi8OdKV6K4eUnzFdyFmiLl1r4/EaMYE6lzzg7qbRarSgA8V9/jrkH5q+XrLjbyLNNhsNhnEfpM+1t4ljfWeZiyE+QDve7OCMjIyPjzJG/hy8siulEN/zQLep+9MIICvO7mvr83/5O3TsfXpDrZZw/NP7gzfrJJz5BH5sNjroplxTOdZeHb5X0S2E3zfZDkr5euyLFq0MIL5L0UUnPP9VJUmuzrzpD8nzl20PvCJ3zOnCIEuF0lDi45dxXnKV98sh7qUPCSxAAK/bp6j7k2YPgfFUYoubkqFarxXvx80DmaBdE2MsSPCWffIXt7e2SMwFC7VZ9ciN81d+v4fkJkF3EHElxt4FqtarJZBJFDFwL6+vrajabpVVzxoY+2d7ejgQ+dX0A+oK2p6vObtGXFMWEtbU1NZtNbW1tlcgoBJ5ruhDkeQyME0KBj787WjzU0l02tF1S6frValWrq6uq1WpxDs9msygYQKx9ftH3ZCRsb2+Xcj6m02kUCvr9fiTHPC+eJYKY5u6AlZWVuGuH95Nneuzs7MTSH8SilOyTHeIihPeNl9zgAlq0xSpjgJMBkSrdNcSfhUVhoIhgaWgo4zocDk8qP3G3ETkVFwEO5bv4UsPsE/fqMf+tqg99w0M0Wc+rERkZGecV+Xs4IyNjKfBF7U9o+z0t/eaXf7pm737/yQc8/Yn6ylf9Xz2jMZVUO/n9M8Q5CQpFUfydpE9e8NZzz+Q8bqF3Yu+2c09sl1SqUed9X0VNz5WSDbuH0vZ1kuKOCWnNP2SG65HsT1txMngGgF/fyQnn9D3vnYimden006L2cz3aA3H3e6bdCCQuRriFnfZAMoHb7gGrvqxQDwYDrazsbg0JKab8Ii1fSNvm4+CCBiUGXhJA5gb35KUmBCZCVKX9nSs4F9dlXOhv7tG3K2SspP0gwLQEA+GF/kQ0cXEGFwn3gjiAe8G3+6Tv3ebvJSr0pffLYDDQ1tZW3CWFtkC6XYBLr5m6B5jLXvqA0IOww3xxd4KXd7i7w0U7f96ZX36cl2X4c+vz1bMwmMuc18sffC6lQh3j6nkOHv7pJRAXAw7ru/iSw3ymnY99XGH2kKNuSUZGxiWO/D2ckZGxLGhX6nrR+p364Zd19aDferpav/Om+N72Vz9Tn/iSkV60fqcOQ0yQzt2hcGhI8wc8iX9lZSWWCXAsBAYCRBmCtJvi7kTbSymc6PE658bOzso7q5hpzXutVouhjpAWL4tw8gMWEeidnZ24CpwKKKzEOxHy1Vjg90AbIZSp7ZwVaa6d1s87qYKw0t98Fhs6/VCpVDQej6O1nr4j5wLbvxNS7xOyKZw8pq6DNMuA/oAM81nmAvZ9RBpW7L0PuS/fqQIS7SUk3ldpcKMHB+IkoMQEwcBt8y6K4E5wJ4RnFEjlrQ75HNfwIE9J6vV62t7eLq22p4KCE2h/FjiWkE/KKFzUSK/pO5ww93yO+/PsQpgLZbTJ5zKf5b/0OWMynU7jbhZcI3UvuZPEhSF/drwvfEcWxD2/p4yLH40T0qwZtNO+KEI2MzIyMjKWED994qn6qvW36uG17lE3JSPjtPChz/pZPax4oR71sSfG1058eV8fePbhboO6FIKCuxMgL2nZAxZ+zw/gD353FvAzHA5jPTkCha9qQxoggNIu2Wm1WnrAAx6gdrsdV2AHg4GGw2GJaLLqTX326upqJDzsjMB10pp9SXGlldVeLO9ObEajUbwvSZHgeZ/NZrPYNlZW+YH4cW+S1O12o/2d91wYcALL+QkOxJ0A6W82m5GwkxngYYJFUcQyiJQ48jvlBy444Gxw8k7tuxNHCPhwOCzNAbYUnc1mMc8A9wTzadGuF14+4Cvz6Uq1j6uvsruDwR0ubDVJexEbEGEGg0FpBwXmHeIAfY1AsrOzEwNDyaDY2NiIzg2EB+aJZ41g8U9Lc0ajkba3t+PnOTfPBo4GF3vIHfByEM/9oO3u3GFsPTPDQxS5Bm2fz+caDodRAEzFIM8j8WcLccPnkZdf+E4pPB84RNJQ0IyLH1f/+C0a/ONn6OOfFqQLU3KbkZGRkXEJIcykv3r21fqVn3+x3vGMXz7q5mScI2aX0Z93H/rsn5U++/xeYykEBWmfPPh2cqwmb21txTp43mNLRC9D8BXGzc3NSJDdnu6kETEB8tDtdku7EnjtvJMLSM5kMilZ1ckpcBHDV9Qh8KwyY23HCeGfmU6n2t7eVrPZjCvGtMVzJSaTSWkl2YkVRNQt9rgraIOkKK7wujs4IIg+PpD7lZWVSNZ5/fjx46UyiPF4XHI9sPuAOx6cKJLC74TQQ/oGg8FJpQS9Xk/j8VghBK2vr2t1dbVUBrC9vX3SeHA97o/5w+vY6iWVRCfmV7rDA4SacUYo8n5OzzcYDGJGAAIBK+y9Xi9e03f/8OBIngP6n+Mg25yTOY0A5v3nc7YoivgZtgBl/MgVwTkzGo20ubkZBSPGzh0FiGT0F+11wu5j4Y6PVKhxFxDPIs+3h5kWRVEKl/SQUeY0x+IuIg+C/vO8i4xLB90/foce9YEb9f4XHTvqpmRkZGRkZGQcEeajkb75s79WlZsH+v1H/dFRN+eSwNIICjgKPP0fEKoIwSLQ0BPZIYAhhJhyjwABqXEgEkDusPgjJkBcPPDQLe0QI2l/9d9T/CFHHtjn5yF8z9uNICIp3psTXxdbPIvA7ea+HSKrwxApJ8JObrlP/uur716OQDaA5wYwNjguECc8M8L7h75xd4Zvj+mr2bg/EEWkfQJP+xFZfGW9VqvFsfAgSD7jZS84E3wbSBdUaLcfn7YFIcLFCMbVcxoYIw8cdKcK12fXAV8d57r+wzPhOROpKCftk/J0q0k+S1mKl7y4S8Q/g0uCvvXx5B7dIZOW+XhpiAtgPAM+Tl5u4pkJ/ty6AyM9lz9PjIGXQkkqbR/JnEZs9HNmXPyYDwaq3Pox3fAnq/r4p1c1a15GyxMZGRkZlyCueeO2qoOu7nvi+f0+r29UdM2bp3rvf36svuvRmYBeCpi9/4PaHD3sqJtxyWApBAVWrheVJ7gbAPJC7baTDWm/Ptu3yUvr2P2aHp4IUXZrP6vOkClItxMOD4bznSA8MM+JIvfHlot+fieyaU26pOiISAMDsdTP5/PoguDarJqzkutkmnt3gge8T/09yD12eJwi3DPJ+JA+D7mjvynF8Dp9xs5DE7kPBCEnti6IeJ/SPgQl2sI50tIXSZHMM45ptgBCjQdoLmoL/05dJ/7jYA45oWUs0hwAnDC+84K7IhAcEGdos6QoMrhAxvhBoH1+cK+IWItIPiU/jBHjRg6D36+X53B/CEZeEpQGQabuDg+lTHeU8Ot4KYqXCbmg5/1KmQnn9ufAMz8yLn7Mt7fV+KM3a+UZN2VBISMjI+MiR/Hmd+h49Um674mt83qdWk9q/snb9JpX/LU+qd489QcyMi4zLIWgMJvNonXayRu2ZsLmEA/cVeArkRCyfr8fxYR6va5Wq6XhcHfvWMgLq6yQKVYq2brP0+WdeKdCBoTEA/QgwWlwnxMeSCSk11d0vX4ewsdqcLPZjO3ykg9+hyxSOiCplBGRBkCS+YBtXdqvNYdkORFj9wTII04N+tpr4iVpfX39JIs7FnMXP/zavnrtIkNKsqX9fAKEICz+zAGEpWazGeeJr4Yzfj42EHN3iLiYQGCfzztpn3x6uQ6/0xa/XwSgZrOpbrcbS12YlwhIzB/fAYK+RLyo1+txHtF/XmLjGRW0z4MJ3SlBiQTzHRdKu92O/enzkbmOCOZiggsE/txKim4UD6RMhRh+p4yEe/GyKOaqlzbxPYL4wzODwMCzzninokt6/oyMjIyMjIyMjIyMk7E0ggLEFHLECupkMtGJEyc0mUziH/+QNYgkRGMwGGg2m+nEiRNxtdq3LvT6efICpF2Cd+zYMV1xxRVaXV0tEWlWQkejUSR84/G4ZD2XFFfjW61WFBx8W75Fuzj4KjqkHLLmW1lCdnz1GzLMqjo2+TQsEFLs/UXfEgroAgDn5Ida/hB2d0+ArE0mE/X7fU2n09IODKxa48BotVrxOHIOnPh5GQDt9RBD+ou+Go1GsQ2cp9lsqtlsanV1VZ1Op2RzL4oiEvZOpxPnitftS/sCBdf3khl2jWAe9Ho9VatVdTqdKGK40OTn5b+IEAABq9VqaXV1NQZcAn8W2u12vJa7YdxZg8uHbSMh6963vlrP+FI2gTjgJTej0SjOReYPogUCBLuh4ExxYY2MBp65Xq9XyjxhPvruHS7CeIkO1+j3+yc5JugrBLq0fCEdE/pRUhRMvNzHr5+RkZGRkZGRkZGRcTCW4i9mt7jzhzwrreywwB/8vO4r1V7TPRgMIjlqt9tqt9snWaLTVfBGo6HV1VW12+3SrgOsqFJyAcnE3o9YAEnmd8iclz1I5SR53AhObr2cwgMgPXvAiaqv3DuZc7s4r7HK68F2EEbfhWER2Xc3Bs6EwWAQRSDfvpBVYFa6vazECTD95u95W3FasAWoj4e3k77k3gh09LHivdRO77Z7t7yzc4HvcME5XfzxXTR8HvtOBy5Q0Dde8oHjwF0g7ibwfIV0tdwdNAgdiBbpSr87fzgfc4c+d4FqMplEccLLKBgrFwU4PhUTON77LS0dYS77vXkeBfOAsfF54KVHB/W/l724a8IzM1y4S0tcfHwzMjIyMjIylgu1D9+pG1+7ozA/9bFng+PvDLruL7bOz8kzzhl/OZKe8D+/SbrznqNuymWNpXAoeF2zr6yPx+OYYA/pSO34kA+s2AT0kVRfrVYjyYJwOOmuVCrqdDrqdrsx0E9SJCus1EKGvawBscDD5HxF2Ov1naSk1/CQvDS3ISU56cq9CwoIKZAuJ+CQfnYRwDGAO8Ft+4gOEHLuBZEBIcJ3cEhFE98O0++LVWkIrVvuES5SQuckEjJLe9zCzg8iCavT7uqgT1MxwbdQ9B08AG4Od8o4KfXxRizxkgF2YaB/nVSnjhhvt28l6QTYCTc5I14WxHseZpjuTOHjkrabcfYVfhd7mFO87kJDmoHiopmLJ/4cAxcWOM6fq0XHpxkWHO/Bre50cDHjoIyLVHTIyMjIyMjIWD7s3HmXGic21Hnc0zS8ptCscUj5OIXUvrOiB7x9W8Vb3qlQXQrKlJHg3aPrdf1/ukWzUx+acR6xFE8HgoCTV1ZINzY2SsGCEAv+2Id0QHAl6YorrlCn01Gj0YgrpOk2cKPRKK4+d7tdra2tqd1uRxLMyibkmddTgg2ZgYyRK+D5CdyjOxp2dna0vb0dxY5FgXxpqr+v7kKSEQa2trZiHbuTWJwTlAZwHRcTvF4dgQBShoUckWE4HGprayuuOCPa0J5FgYsQca9dp62+qp6KGr6NoodspuUmOBUg3qn1fpGg4GF/CEUIWP1+v+S4wJGBawHnC3kSzDsCE1ut3XCg8Xisfr+vfr+vyWQSy3NoZxoS6PkJkmKeh7svOI7P8pl+vx8Jt5fBMJbMX+BlRog8jUZD0r5Txok/1/WyHcQrRCHa7I6IdNcHB9d2F0IqxjC+zEUPcvT8BBf2ENjod86Ja4ZdQNKgSr5bGKM0IDQjIyMjIyNj+VCMx3rg/7hFd770JvVvLFScq/+6kMJcuuHmd2m2sSlJCvW6VpT/JsjIWISlEBSc4EEwBoNBzETwVWq3W/NvXoeIrq+va3V19aSdF7jWcDjUfD6PtfXr6+vqdruR8EC4ISQQHs8jcGIPwaF0wMsfpH2CRvkF9+crol6z7dkQkNdOp1MKgWw0GppOp+r3+6W6+fF4HHMPyA/ArQFJoxyA80EsPUnfa8spz6CkxLeJTLczhPyyCuxuhhCCjh07pmazqdFopH6/H8UG3xmB/ItmsxkdAx5c6TX3qf2e7UdxGaQ7NHj5C26KWq2mjY0NbW9va3t7O96ztC92raysqN1uR2EGUuqlHPRHURTa2trS5uZmzI9gLBEIvASCOTIYDNTr9TQYDNTpdNTpdOL4r62txXHhWMQrD8eEWI/H4+gE4b4RZSjDQISg793B4GGhTt5dUPCwzdSVQ9+6aEW/8hl3iDD3vNyIY3AduePBxSvGnu8CRKHhcFgq+yDvg1BL5jz35O4jxt5FmIyMjIyMjIzlxXU/+bcaf/oTdOvnnxu9aX6ioht/7O816/clSdPP+WT975t/TI+q5R0eMjIWYSkEBbc/V6vVUhYCr3s9f1pzLe2nyZOdgMvBrfYuCEDKm82mOp1OXAV1suUWcgIZITnpirdnDiAoODlKyyJ8tV1SXInnnNVqVevr61pbW4tbHkqKZN3dCV62ABmECHY6nVLaPcfTB8PhMBJJX/Vn1dZt304w3SHi5SCz2Sy2l/BLaX+1vdvtRtcCQghAGPDSE7Ie3G1AH7ogA2F0d0aaHeG7MHC/izIXcB742Ha73XhdzuG7anh2xng8LpVdSCoRXw/QpCQH4cTLIxATcEO4c8BX8VPRC6TZEO7c4N/0AyIN/ZqWmNBn3o8c53M+3R2BOZGWLqTbiroA544Hngsv5XABK81eoEQJMcxLOBgz2o4w2Gw2S+KTi1XenxkZGRkZGRnLi/lopNbbb9NDdh6kj3xRTTqLjZqOvzPoqrduaL4nJkjSvBr02Hr7EFuacRh49tu/TDu/dI2O6fVH3ZTLHkslKEAOIFXsMw959oBAh9vgWQFmVdJXGP1zbCdJgr+0T34odfCVZw9y5Jrpyi2v4y6Q9jMQfAXYk+k5D6vzfi9ra2vqdrvx/tP6b4iTkz7a724DrokbgPZQJuCkmFIEhJiUQHqtva8Y0wa3ryNueGlJvV5Xr9cruQjcCs+9Q5ZxiyCYuIgDvFbe5w/jB5lHAEkDM9mBwbca9dp53AWQYfrQ6/NZXUcs8fwBxt6DKFmtp+8QISgrwKHBFps4cjz/Iw0mdKHF+ynN2eDf3qfMvzR/g7npWQze72mmiT8btM8FQ+7XnUPukEidSO4ckPYzEDg+zUzw+2T8vX881JP/Ilr49wNzIQsKlya6Hy3Uu7GiyXoe34yMjIxLCTt33qX61rbWHvdkFXv/Wy+qUu+G+UKBoX6iosaJ/d+vfMe25n/37v0Xnv5E3fX02skfzDhy3PWuq/XwXzgLMSEE9b/s6XrCFW8//EZdplgKQUHa/wOflWIPE8SW78TEVxIhHo1GI9avQ44gTe4gmM/nWltb0+rqqrrdriTFVdDpdBpLLbzEAMcEpJ/rpqUKbL0HSUkD7HxVl10Q3HnB9ViZ9hIEdzl4BgN5C/QfBOzKK6+MBA2SSx9yDcgWq+IuqHiYnTsTIFrcm+9OkP6+s7MTxZtOp6P5fHfrv8FgEFeFfUwRE5zkQ+4YZw/688BAd24wfxCYEGKcREPwPfiTeSQpCgVra2tReBiNRnHXAgQPxsh3G3Ghh8wIX/n2Ob+zs6Otra24NSkuGwQv3xHEy1Zw0eAKoT98jkLcfacULydISx04NyU5CG6UF9BmF5F8XrqDhPH10gbyKFyM8XwIF+x4ZtPyFBcTXAhhfFLniosqjKuXZnA83w/uFMqhjJcmrvjZ16v2Vc/UXc886pZkZGRkZBw25oOBrv7xW+LvK8eP6wPf/ZgoMDiuftuOmr/3pgPP9cGXVvUP/+gV56OZGeeAzflQYecsLCiSKo2Gfvl//DfdWO0ecqsuXyyFoMAKtgcoslLcbDbV6/Ui+WGlG9LidmuIo6QS6WN1F4LfbDa1urqqTqcTCezW1lZczaT2GiIlKYoc7iCAkECEV1dXI3FKV72p25YUV/5pl6QomhDYt76+riuuuCL2SRqO51Z3SBnt9EDH6XSqzc3NSAS73W4UKjivtwHhxFfxnaA6YcS2Lyn2L44K7zNI/crKivr9vra2tkrXgRjSJ4PBIN4rhA9BAEHBd4eQdl0JWPc9n8ADGdMcDASWXq8nqVyWUKlUYlhnt9uNrgSIMqKTCxMQ/LRUBlfEZDKJZQWslhOO6ASeQFE+CzEnY2F7e1sbGxtRgHDRzVfj6QvyEFIBDDAHcEgwbym7oF/od9rvDgHPI+A4skp8W1FyKoqi0LFjx9TpdNRs7tYkInL47iU8c75zSBoWiUjHM+djTAaLPzs+11ZWVkpbY3rQJ0JYRkZGRkZGxsWL2YkTevj3/u3C94rpzsLXM5YbX/E136SHv+lvc0zmkmBpBAXcAb5ln9exIzpATFlV5HWvA/dacwgiOwlIinZyzoNg4Vb9dJ96t2ezU4HXi3sNOKulkBRe8xR+HAye/cC9UroBMYMkci++Wu3bQRLGKCnuduCkF/LmGQXcj2/J5+d3QuxEFJGBFWLGgvcIx6MtHrbp2Ris4DOuuCm8RIF+YRzIs/CyAoifbw/oWQ9ensHc8HR/Fx7of0IUG41GJPUeWOjzwcUESCvt9tr81CnDvxHLPPDRd48Yj8fa3NyMhNxFqTQfhL7166QCQNpGzxZwMt1qtU4SiDi/7wbi88KfF+ZFWkrUaDR07Ngxra2txbZ6GGa6S4eXwrhrwYUHf8YZ+3RnCdrigiQCFMKFl//wTGdkZGRkZGRcvCj2/qY6E3z015+o//Sk3zwPrck4V6z0Jmc1phnnB0vz17IHzGGTd8LjpAJ4GJ6TbVYqnST6Cjsr5ogY/X6/RJD4twcLul0aouLEhnb46rnXsqeigFv3020QIX4epMdn00BC39IxrXt3h4YTJs5P39J+vy7n8HIOyDDX9nwLbx99wEq9Ez+IOJ/3jAOuTb/4+DPeXB/bPhkNaVinE3juH9IKMXayz/mZKy7USDrpsx4UiFDCe2RUpCUI3p8AMu6ZDsxLxg4r//b2dhQu+AxjlgaQcm4vpXHBzcUB2pCGo/KcSPuuGBwDPg8h+Wk/I2QgbNBHPIOdTidmePizhEjkzpm0XMT7z+ck3wlelpSGK3q7+UFoSV1H6XhlXDro3DlW99aWeg/OOQoZGRkZGbsobnqSTjy6LQXptz7lv+UwxiXDHTs9fc17/5k6m31lb8ny4JwEhRDCt0v6F5IKSe+Q9PWS2pJ+TdJDJH1E0lcWRXHigFNE+I4FAELkQWxe84xjAZKchtZBDp1USbsOhUqlEneT2NraiuSJ3R84J7Xq4/E4rh7zXwD5rNVqMfgQYu/ZEO4KgIg7kXSxhJV63+LSiaJvoQiphXhyr+zggAMA4g5hdQJKPzop3hvjUpp+urMBq91O5Hw12sfS3RbcixNdD3F00up19b7tIQQXt4kTQESCdItJ38bSxyIl+359ymdwIGCr95wC7093uiCMuKDgbhjPA3AHxWg0ihkX5E5sbW1F10mayYBrwgU0LwnClSPtOw2Gw2Ec4zRXgs/4c5WWMMzn+4GZXt7h40z/TCYT9Xo9TSaTmF+yurpaKkNBTPE8Dr9Pz9NIRRAPV+Q+uf/BYFByJPiuE3zf+BgxLy8md8JhfhdfLqj8xdv0oFtv1Ptfcr3mteKs0sAzMjIyQP4evogRglbWd7fnfs83VPXhz33l3htZTFgm9OYj/dr2E9T4nI9kMWHJcNZ/MYcQrpf0bZIeVxTFMITwaklfLelxkv6sKIqXhxBeJullkv7N/Z1rPp9rY2NDg8FAg8FAzWazRLDS0gPIjofF+aqzW5YllYSKRqMRwwGpXYfYe3heURQlG3u1WlW3241Bjk4eIbPD4VDb29va3NwsbYkn7du2PTsBuz+he9L+6mm/39f29nYUBGiXCy5ORGkrhKvf72s2m0Xbvm9pCCEejUaxZAQy5XkNECoPD2RlvlaraW1tLRJMaX/njM3NTfX7/Rj0yOc5l/eZk1acB+12O/adB+X5ivJgMIhkdn19PfYRx0OQcYJ4MKX3oZNXqWzlhxxDpuk3+ou2sGOFOxu4Z7feu9uD/nJRgkyK+XyudrtdyuE4ceJEHC/6TFIURxBIeB6470ajEfu70+lEUYDnyLNHaI+XRxDU6M4h+gcRw8U6nlH6DbGFedXpdOJ2qIwXcy2EELMhECSYWy4W0r/uJvBngveLotBwOIxCQ+pu4HnzbVkpu+A7wOfKsuIwv4svN+x85KN6+L+7Ux/+/qdpp5MrMTMyMs4O+Xv44kZ42uP1K7/zU5KkZqhKyrs6LCOe+Iffqsd82zskjU55bMaFxbn6eauSWiGEqnZlvI9Lep6kV+29/ypJX3qqk0DKIEWewO4rn15XznZ6nj3g9eKQKkgBlmyS6lnN920UEShYuXTyubq6qrW1NbXb7dLKMG6J0WikXq8Xt0SUVEqkh2w7ifTMAYgYjont7W0Nh8OYbcDOA07w+BxbDuKk8PIMJ4asskNACZ50kkgwHyu4CB64AxBKfPcEVr8RSrgGwoOvmrvbhPMyFgQTpiUCXg6Tbtfotvz0s+76SN0Rfs50K0HvY0QInAGQcBdpXORqt9tx5xCOJYuAtuDCcMHJSxZoIyII2RjcL32duiJwaLiY4XkQCDP0A89IOp5pv3MdiDdjvLW1FecnAkbaZ14igqvGSzv8eUf4S0s3EBPcqZL+cL8ISzwb/pm0rARxjLnj7hKEpkUixJLiUL6LL0cU04ke/sv3au0DubwlIyPjnJC/hy9C3PnSm/SIV35A65WW1istNUIWE5YW86D56NzFhPl4rH/6r75T33j7sw6hURnSOTgUiqL4WAjhv0r6qKShpD8piuJPQgjXFEVxx94xd4QQrj7VubBO+x//nhMgqUSEPMfALdkpeZD2V0xJj8cNwOovQW5ONmgTZMMD6pxU0T7IUq/XK63Mu23eMwlc+OBaTsQgzmm7fMXcSwvY5i9dLfa6cGl/FdwJPsd63b6XiBCE50SXUEoIqZdHQIz53cl9KhQgdLDS7dtDOlF0F4H3faVSKYVrej9zfeaAt4vXEAiYF3zOwxc98M/DFWkD/UufIDSwMo6I5avkXDe9Fu130o64wbz36/uqvfc1506zE7wcx+eWl9yk2QKeb0CZA88UAoGPJSICz5wHT3JNf8boP+5zUUaCH+vzx8s6XFTguyINNGXcuQ5zyOe2zw93Ry0zDvO7+HLF7N3v1wOu6qhYaWn7YTlTISMj48yQv4cvTpz42mfp+Bd+XD9+/RuPuikZp8DnvfcLdfzvTv6brNJua+epj7rfz4ZCqrzxnSrgAUWh9m+9Ue988cOkB52P1l5+OJeSh+PaVV4fKmlD0q+HEP7ZGXz+xZJeLO0SpUWrth5q56KAlw5gTfeQPMgRxMJJBQR4OBxGazXOBK/B51xcy1eZIU6+S0BRFLHGfe/+SqTRd6zwRHuIPFsCpiSo1WrF/ITJZFJyP0DqsNxPJpNocedansCfujuceOMS4XdyFer1erwOhBbi7IF9kLJ+vx+v5y4ByGiaVYAzBREFB4eLKL5yn6b/49xw9wHE2PsAkusiA2PA2PrxiDxpToDX1bvjAtcCDhjGz7eiZOzpBwg7QpLncrjA5mUii1bQPeTSLf8uCs1mMw0Gg5ITiDnvYaTeb6lAxzxnTNLwQp4nF3fcKeCCRyoY4ghy1wDw+3OBCiHCn3tEMdxF7Cjh5UGes+Lii4sU7MByMYQyHuZ3cfMyrhet/MXbdN3HH6Z/eOE1mjVypkJGRsbpI38PX2SorKh69QP0Hd/zq/rq1RxpscyYFXO9dzpW8T1X6qo3vD6+Xmm3pRAUrrtGH/ry5v2eI8ylR3/wSs23e9JsFl0OG/2WPrrT043V7nm9h8sB55I69lmSPlwUxSckKYTwW5JuknRXCOHaPSX2Wkl3L/pwURQ3S7pZkur1ekFJgge+8YOLAPJC6QCrkb767KufBPBNp9NItKm/x64NAet0OtF94HXTEM52u31STTkr1l4qABFBJIAAkWbv7gREAez+g8GgRJbb7XZ0AXAvvsrP8bgUWCl20cIT7SFe9Xo9lm5Ql09fNpvNeF/Y61kpX1lZ0dramo4dOxbbRltxP7jwU6lUtLq6qlarFc/P7zgy6EsvVeHcvjpt8yaKHRB4D0ms1WqlLA0+zzixci3tCiu+NWJqcfdcDgQOJ/Ve/uHzZzgcxnBPrpGS/7S8Ig3XdAGHeYdQgkDiO1V4qQPnbzQaUUzo9/uxJIa+8UBD+pvniXYiOCBoudCBK4O+cHcN4gtj7HMLQYIdHzgvuR+AMXVHgjtQuCZ95KIbc5E5kpZNMYc8Q8KFyTSkcclxaN/Fa+GKyzpIYPaBD+lh3/tRfeg/fIpmzcu6KzIyMs4M+Xv4IsLKYx+h3/qTX8zlDRcB/mpU1csf80xp+vbS67d++5M1ueL0HIVFkN73/z1UktT9SEXX/K9bJEkPev579RUv+P/0pv/4yvv7eMZp4FwEhY9KemYIoa1de9dzJb1FUl/S10p6+d5/X3OqEznJ9pX8tMzBywY4ZtGWcGky/3Q6VafTKVmkpf0a89XV1ZLlHfCauxcgMZBA3oOY005IK5bwdEUZ0QSCC1FzBwar5r69n5/Da8ERLbhHD7D0sgvPTCC0D5cE9+i7XaRthjhz7KKVaCf97XY7OjHcYcIYMQaeN+Ap/pQ1+Eo0hI854Kv9TpY5B3OIvmK1vNVq6dixY5FMc15EGg+hTAMqPcSQ/ufc4/G45KJxp8wi8s85fIzJYfD7TkuAaA/zzvMJIMvSrjBCJofb+8nm8MDOXq9XCt7kHAh0/jwybl5CVOyFHCIypc4hzsV9IvAhjnAMwgLzzsk9c9szPXjGeDZ9rjGmtMfdCIwj4+/lJWmfLzEO7bs4Qypms92M9oyMjIzTR/4evohQhJDFhCXHE3/0m3Tlu6aqjOeqTd8aX185fly3v/Cxmq4XKk7XRBp2RQVJGlxf6M5/dZOu/d9vUTGdKFwUf+YtP84lQ+GNIYTfkPS3knYkvU276mpX0qtDCC/S7hfs80/jXJH8Oengx1cmIQKQknSLOmk/b8GdC05+3EINcXYS6qv5i2r5WYUlHA/CA1Em68DD6qRyiKOvsmITh6SRT8D5EAa8T1JLtm/Z6CvILp6kfQiZh+SyWutbZ3o5A4Q/zYfw/mZ1mnIET9CnPxFRVlZW4vkg825P93vxED/agrBBX7sDxD/HtXkP8t1sNkshfsw1J5/ukkDooL1eHsBYIgB4+J9nXyya+6n9HmeCv++lOD5PU4HAfxC2CO3E6ePH+K4jBCn6DhAuFKUlGMxp+svnMG4BrpdmlLiDxkUeBBjgTgGuSV9yfn++3O3iIoS7D7iOl/5wTn/W/HtpmXGY38UZu3jA2wttPLKi8WmufmRkZFzeyN/DFw/mn/YUfeiL7t8in3Fq/Ks7Plm//74nnNFnnnD9HfqdR/7xge/fvHmd/vPbPkeS9Kg/uFezd72v9H71ITeq98QHqn/9/KzLEmeNQv0bCo0/85NUmRaa1aRH/9UL9PZP/ZksMp0Dzmmj9aIovl/S9ycvj7WrzJ4xvL6aP+5ZoXSi6lb2NCdAKgsKkDFWk53UO4H29zw53+41EicPtfNwSFY6IdYeRkd7uc96vR6vB5liNZ4fLPqIG5zDMw0oieB8/tNoNEoWeyd2CAntdjv2ESTLtzl0sgcJT8cAG7lvW4koQVmEtE9ksamz9SRjVRRFFFIYf/oaQs08oJSgVqtpe3u7NE6eueDuAn5n3LHDO/HnuuxS4dkCnhvg5S/MOS+1cEGENgHP1nCXDeNCsKMLIw4XtmgjJJhnBCGLUhlyKiDYLiaEEErH0UeeUZDuvEA7KIfxOeIlIf7s+XaMEHf6m+eROZfmQrio5xkJlA3xXTCdTktCIM916jZh7Hlm/dl218lFUvJw6N/FlzWKQqu/+gZNX/gsja846sZkZGRcLMjfwxcHbv38pj7wz7PF/WwwLqZ6y3j376L/+xtP18N/5JYz+vzdX/VM/c2PHCzU/8gtX6BHvegtkqRFe2z1H3+Nbv/Mc8+2KirSRz9vlxusfijoEd95r/74z9f1Ga17tV5pnfP5L0eck6BwmIAwQMywZ0N4HF5DDkmCfEMu+HelUlG32z2JNGJ1hlCyorpolwLatr29rX6/r8FgUArh49hqtRpFDMIeJZVICYS0KIpYcw6BY8WeVdNFzgvuezqdxpIIVush/4gs3BeEKYSgdrutdrsdhYN6vR7LQyBjXse/vb0dSRhODizlkmL+g+/S4LsG0A4PypT2AyfJHKAEg8/SJkkxLwMC2263S2KOjxHwFWbGAVJL+KNvmwjZZEWfMWX8nEx7iQVk1d0ZjUbjJLKPKMEP90ggYwi72052u111u11VKhUNBoPYDj8HAYsemigpzkfmEudPtwJFTFlfX9d8vhvGSa5IOl8RSebzeexH5hglK7QRgYeyDxcmOCcZDi62IC6Rh0GmAvfmYZGUHPl4+Vh5sCX94u4QH3MEFQJaR6NRvE++U/x8GRkZGRkZGRmXK35u8yH67cfvblTyoOLMxARJWv21N+gHX/20A99/VPGWs27b2WL7oXO9/1tv1Cue8ET99J8c1+8+8rUXvA2XApZCUPA6el/p9RVtQLihkwS3u0NSPKSP0gRf7XULtlvD01puiJyvikLMIdi0D5LihDQN8vO6dHcfsJODr2x7e1mRpn88O8HLGNwpgXAB6fVshm63Gwm/h/CxoktIXr/fL5VfIDBwfx6Ah50cguilAdwXYgtjiaDgQEzwNvNZBKK1tbUooqSuAYQV+htBwkUlL+0gP4AyBx9/7pPxpc0QUFb+PTiU8aI/PS+DtrmIQQBmt9uN84A2IFLQL4y/l7zwg5jAc0SZA/3IfKdPONdoNFKv1ysJINwDfcu1uDbnRbxw4u95KMwVn4PetzybCEZsu+rPNW4GL69hvuIo8FwK3DuSSvONsfa+mEwmMcOBMUvFqoyMjIyMjIyMyw1/NlzRj7zoa+PvK4OpVLzj3E56lqWk937Ds9S7QTr0kKMgzWuFbvuOp2nwnh09+q9foge+fqY/+okfV7tSP/XnTwM3b16nV7/k80qvFStBN//s/9TDa5fGDhNLISiARbXmi/ICUrLtdeVOWj3gEKLsYDUdQcGJSupOwBkAySKxntVUX5mnrdSSu3XcV6nTQEkvs0it5bgS/HjuDcLPa56rAJFjNZZyCogxRBpCzI4Aw+Ewpu5Dxr0MwG37qYOE9yGJbnN3J0S6FSHX92A9+o/+ghDTx5wnzU/AVZFuL8oKvb/u508zLhgL8h18NwQnt+5g8KwB+ih1v3jpQVp+4dfkfLhGuEcvXfH7dAHJr5duJYkQxm4b6batLqj5eDMXaQs7ZKTzgWshBPizynsu9nB/tNndKmlJk28LShu5b67BZ/ivzxUEPYQzF9RSkeZiyFDIOD84/t6B5tW2Nh6b50BGRkZGxuWDJ7zhn6p/T1vVE1U97HWvP/UHLgCGDwiarp6nXKMgja6eqzKsqLYdVKxIj//9b5EqhZ706I/eb+7DIrx9MtLz/uRb4++NO2p68OsSR0cI+uzf+S4VrT1uulLoHZ/74+pWLs58j6UQFCAEEGZPlue/kBYn574i6WGKED2Ipwcyevijk28vF/BV2XRlVNpfqfbyA1bjIS6euA9hgoxJ+7X+ToK5losnHJeGT0KM3eLu14G0ufjiteOQJQQRdpkYDofa3NzU9vZ2aTtD2uJCCe1w4pgKJO4c4fyMTQghkjkXWfr9fhwjX91nbnjfQBL9Pnnddztwwp/eQyr0pGISAhKlKJQ3eJuBl5cg8lCi4DsI8F/GmvBKLyHw8fO8BhwNzEP+68JTmiGSCgRFUUR3CeINbUi3yHTRhfkymUwWChnedn+2/dlzQYEMBMqcKIngmXThyEsnOJ9/H9AGF5AQJvy5oZwIAcNLhJgXLgRmXJ4It/y9rrn3ERpcd7Uma2cfAJWRkZGRkbHs+PC0p7+fPFCS9KAfqah485uPuEVHg+E1c91xbEWP+4EPaXbPvbrtRZ+i3/muM3MRvPruf6RHvfgU/VcUeuRL3xB/DY2Gfu5vH62vWH2Xrq1efK6FpRAUJJVWvyHIaeaBtE9GnLh6bbuvni46lwcaOtFxZwJkis+ykgnRYjtFX0nHseB2aQ975POAWnBfFSdXAJKGHR3hgvaxKt1qtdRqtUrBh41GI/7b69QhcBCynZ0d9Xq9UpnHzs6O7rjjDm1vb8dsCieB9D218ZyPPsV+zuvuOqCkBOcItfv9fj/2I8QSIYNx4HNkH7ijwEsCgK9Eky/BCjzj6WOfls+kTpNGo6F2uy1pP5sBgcNXwAHzgPEmZyINtmTO0h9eCoJIMplMSk4RMjBwBkB+cX/4VqmUCvi2irRvPB5rc3Oz5BZBmPCSCHccUB5ASU+n04lznHvxME36x8tNmEPcN6Ujo9Eo5pNwfCoE8Lo7EphbTvwRA3z++jNNv7qgwHlTAZLnLuPyxOx9/6AH/9BH9MEf+hTNG9mpkJGRkZFxaeK5f/5SPfLr2J7xHMsaLnLM64Xe+68fqkf/9Loe8JOv1yt/8hFneIYTZ3zNYjzW7z/+uH71tS/Q33zSb53x548aSyEoeOq7b3/or/tKvH8OcSB1IDhJkk4ONPTVYN8i0AmPr7D7KjJZApCfZnPXngJhw2EB2XbBwEssnBRBZL18wZ0JiCqIDQgKad/5Vn+spHs4ZL/fj+Sa89LXnl3ASr0TqhBC7INaraZOpxOFFVbHPQOA83rQHttFSuWVeyd3kGTPeEAkYvwgwqm9HuLoP3xuMBhoc3MzBkzSJ9wb/3WRoF6vq9PpxC00EYfcIu+ZC76izj3SP+muIoC+Y25QikIGAufvdDpqtVpqt9vqdrulOdLr9dTr9eJ4plkDqaCws7OjwWAQV/C9JCbd4YM+JjMCQanT6cS56uPmQYueg4DTA7dHURTa3NyMAggCG8+zOxPcNeJZFJ6XkTpP3HHk2Q08A55hwdinzqA0GDUjIyMjIyMj41LC037gJXrsH9+u/BfPHo7Qkbj+LYUe//xv0ru+9RVH14izwFIICpJKJNLr4SEvqdDAe17j7AKAk1Zf/fZtECF9vtq8iIxAhKifh5xOJpNSPbaTN+zSfg8c6+Taywjczg9Z4vO8D+HzXAhfBea63DeEl/NB3qT9LRRpr+8EQBu8X700A7LuoYySoqDhfYJgALH2172tqQvB2+596WPu7oSUgPIeTgiIJH3oZNgdLPQbJRMIMj7v/Py+qk2bINaeu0EIJKUTPi4cw/0hfjH29Xo9OlJovws2Lj7wA2FOnw1EEc8ZcWeCt8Pvm3IVz+JIXSw+Tjw7iD/MD+7dyxwg7y4EesaFt8P7bdG4u+toPp9HkYtnz/vWy1oYI3copO6XjIyMjIyMjIxLAXfP+nrmb32nHvPnd2nn1tuOujlLh3uefqWuaD1exVvfdcGuOfuHD+uG/9vRwx70jXrn8/7XoQVDnm8sjaDgWw06+WFV3P/IhzilJAICBVGAVPgWk6yULlqJ9FpxPxcr2r5q2+/3oxAg6SSyLWlhmQKElcwC2uKlGRyThup5oCKr95A1zkFbnDS5mNDr9Upb4kEg6UMPpIOwcg9et87vlGT4bgv0O6vT3AtWee8v/k0703A8xAYXQbw8xYPzvAQBFEWhwWCg7e3tKGhAoNPQQ8oGZrOZWq1W6TiEAc9YcEEhdcmsrKyUylWYQ55h4VkBfm+ef8DcIbiRz3MtnAwuUPmYAyf7zL/UneAii1+fz7ijgVKblHj7NpNenuQuHY5ju0YXlsiGcHdRGnbJfCBI1IUH7j99pulftpx0V5B/B/m8yIJChiQV80KNjaDxMeWyh4yMjIyLHI0TQa/uresru5tH3ZQjxQenPb3ink/XI7/9zZrNc17UItz7pEIq1nT8rac+9jBRvOWdevR7Ovrfn/FYXbHS18Prd+s5rfMUSHlIWApBAQeA17QTyNZoNEqlDlj5+Zy0T8jcou3BbL47ghMEiDdb7LESndq22+12LF8Yj8fq9XqaTCbxeBcgIJfYtyEp1KQTaCcprvBC4Fk99fBCL4XwYMD5fK5erxcDDlm5TvMKaMNoNNLGxoYGg0EUJ66++uooctA35ENAbr0MA4LF/WKBx6aO8OMWdC/r8HDFVNRJSScE3cmf91Uq/vDDfTNe/X4/boGJ+8HzHzzngZV+xp25l+4+4O3w/qENiF7kQxRFoU6nEzMHnGi7nV9SzECg710sSon2eDzWYDBQr9eL7WJOM/9c+OA+uS7iBCSasfd8D/oR0YJ+QWBzMNapa8hLhggzHY1G2t7e1nA4jG1HMPHx98BN5ok7Gny3Du7PHTOcT1JJmMK1kAZ1IsplMSEjYj7T9S+/Rfd847O08WjlcMaMjIyMixjX/Zdb9HN/9Pn6yj/51aNuypHiC9/4Ej34Ky/vrIRlxrzf158+YVXSqj7xL/+x/vb7XnnUTbpfLI2g4ESDlWxWdT34z23cToR9tRhANj20MF0BlhSv6wQCMgmRZkWX6/vWg4TR8fn5fK7RaBQJCiQSskjgoa82s1rrte9e6gDx8dXi7e3tWMvOe6xYD4dDzWazWKsO0aKPIJCNRiNa/LvdbizlQPTwcpPUfQHJ9pp38hm8LxA4EB8g4DgQ3MUAOfTQPBcU0p0zPMiROnz6jXb6ynqz2dTq6mq89mQyUa/Xi8KDl9hg8+fzHgY4mUyiEIY4gEtAUhzPotjdPcFLFegX3BzVajU6OCDfvnMHc9wFtPF4rK2trdL90lfMbwQBL4VBzGm323HucQ1EBC89Qdza3NxV8tvtdhTC0rIgDztkzJhvzGPEicFgEIUThDK/Zy/hweXBc+G7rTQajVLpkudrMN6IEvS5iwbe/nQHCb6bMjIk6ZpfeZeOP/UR+vDzLg77YUZGRkZGxiI89Qdfoof/3q05M+E0cOKx0uBlN+n6//R6qTgal+IDf/Xd+py3f61+59U/tbQlEEvx17Jb192q7KvREE63Ry8KZfOyCN/tQdoXEzy0zu3fnMNXw6X9QEeIkhN9zstnJZWOYVU2Lbmo1+slUsd5OJdbxl1MSPMApHKNO7X09InbvWkX2QBOrCSViD7wcEMcCN6Xfg1f/YZEej4CpN7dI4PBIK7ku4skrZOnf9MUfkIPvU/cpcEcgNTjNmF1nx9W4BGGIL69Xq8ksnBeqSx4OenFzo+4QKmDOxvS8EbPlvDafkdavkKfuePB5z196WIE/2b8PeuBHRx8DH2nkdShQomFt8/FHS8B8lIKPx+uBBdbIP2IeTx/viMJ/Y/AxDPgYgL36EJhOr9DCCVxkHnMWHCtjIzZ1paq2+NTH5iRkZGRsdQId92rR//cS/TW8eSom3JBcWI20KNe9RI98M8/oZ2Pffyom3NGuO6Wodb+4cLT1nmj0GTtaMsdZxubWvnb9+mpP/tS/er28SNty0FYCkFBKpMlJ0mSSkTJ/9BPgxA5jzsQvE4/TYd3QUEqky9fBXeC5GTGU+35PMdL+y4HVu55HULv9m6u6df1+6cP0tVdrou9H0FBUrx2SqAgW3yO86Sr4k5+fXcCyJsTYHePeP850Ya8+Yq+CwHuPklLJVxccUEiJf5p+Qufpb9ZdSdPYmtrS71e7yQhZjqdqt/vx/M6UcaV4fX2tD8VnygtQHhIRaJFgoI/Ez7GTpqx9SNceckMfe0Cho8/JR8eKEo/pmGFnpHh4pQLBoscArTN24GDwUtHvMzBXTBe8uIZHIwvx3hZjbsy0lIdn8/cA+3zkFP/rmAuZGRkZGRkZFw6mH3iE3rIv329/vUHv0J/M7o8Fg7eMxno3975mXrY971Vs/f9w1E354xR+Yu3af0jl+9W3vPRSA/+vtfr+//ui/UHg+ZRN+ckLEXJAyUFEAZII2SNUgDIFWRgkfsAOzgkwldGfWvCRqNRKntwgpcG00HavKad11LSBklut9tqtVqxXINzUYNOPT2khfwDqby7AgSMcgDf1hGHg7RL5ghchFC1Wq1I0FiBpcyBmn/ODwHzcEnf4s9DJT0PAfGCPnSizXaGbsuv1WoxhwJ3AKvilUolbofo7hPGuVqtqt1uRzFhMploe3s7buFJ/6ZlGCmJRMSg1AFyLO1vA9nv9yOZZY65kLG2thZDOvv9vgaDQam0BGLL7gzuSEidLE5gU8HGxRnmpAcSepCnizL+DLkLwTMQ6GNW/X3Fv1arxXyG0WikSqWiVqsV5xrnpU+8H7y0wMUE3DXu0ul0OiWHCyIc94qDxctBPEDSMyMYKy8vodTDhQofb9/Fw4VKkB0KGRkZGRkZlyaqn/VRveB/fJM++FU/cdRNOe94wTu/Tld80fuPuhnnjkKXdZbRQ77q7fru73ihPu87f1wrYWl8AcsjKHgIHCTQrdWsMkMIvCwC0u75AxAFVsRdUJD2d2BwIov1mVBFt343m7tqEIQNoUHaL7Xo9XoxuG51dVXNZjMKHNPpNBJziA319xAsCBR2dg+MazabpcDBZrOpdrsdyS+ku9PpqNVqqdFoxP5tNptx1wKvf/fgvkqlEol/rVaLfZgm6OMacOs51/ZMAWz/HoZIfyAm8F4qeKTWfoihryBDUDc2NrSxsRHnA6KCH09mBe3e2NjQ5uZmXNFmrClNYI4wxjgtPCiU8er3+9rY2FC/34/97SJRKib4eT3vYDwexz52h4Gkk8QE5pO7WdyxQgaD7xwynU5PEuo8xFJSvC/cI4R+SvvCnAtUEP/RaBQzPRC+XExAAEF0Qbigb9J8A0pIEH2Gw6EkRXGG54g5689qt9vV6upqvG/6FSByeU6F7wzhDpQcypiRkZGRkXFp49E/+D59xv97sf7iJ28+6qZknALNP327Hv3+6/W+l1x9WYsK1//UO/QFt3ydfv83f061sHLqD1wALI2g4GTHa8JZmfTyAF5L6+lZYWT1M7XG+yqwW6PJOYBg+Co8xAnrtK9ke8K8OyNcyOBcLn74FoCSSqSQMD8PN6xWq6UtKGl3WoaxurqqVqsVt/Rju0IItq/scy9u9YbgYgP39Hwvu/DQSA8NlBTvmfIM3A++Sk1eAcf7PaU2d1at/T6YF2n+gmcTpPkXrGZ7mYX3X5ox4KSfOUqfNJvNUp6FZxbQV14m4rkTnMv71AMa0/70LAkIMsKPuxPSchzm86LSEfrYx9LLWzwLgbnuuRvc16KSBK7v4ZqeU+JiBA4dHzs+QzgrggDzg/N6ACSCHDkZPKuMIQKK5354iVE6FukYZWRkZGRkZFyamJ04oc6bPqLH/69vkiQ9/gvfp1c/7M+OuFWHi4f93xfq2t+vHXUzzhnFeCxt9SRdfdRNOVLMt7dVeccH9ZT/9a369y/8RX15d+uom7QcgoKkSCYWbTnHNoesZnqdPmTNcwx43a3eLihwHYQHT5iHoDnJYeXWrdBuDyc0ks/QXggKq8mcj/fr9XopiBKiyw4NHjgH0ccBIKlUKsA5OS995f2AHd9zHpx00g7PKkjHIiXhvopLWyGEvmrOZxETIHp83sfS3Sb+HuQPMsk1IPSIBrSL+4SMQ25xgTgJ9xX1VFDwseB9dtMgsBEwD1PBiVVwJ6hOYrmmE2vO5YICRD/N12BuMi+ZA+nOCLSR11KXDe2k37iO71iCsJCOAyv7Pm9pL2LCIiEOeLCkb6/q22UiJniZh++MkW7l6iVK3v+pgJIKCvS7fx9lZGRkZGRkXHqY3XW3HvQjd0uS3rlyk77leb343tdc+Xo9u7k81vIzwbSY6f+78xl68K+sqP7aNx51cw4Hk6k6H6toeE2hee3y/Rtt3u/r+pffou9+8pfqzx/+Pq1Vh/qP17z9yNqzVIKCE1/IAHXzx44d03w+19bWVnQBQDI8tM/FAq9N91Vc3qeW3MsiPDDOSTokkvILD3JzwsYKdrPZjEF/fi/Y4P2a2Mu3t7e1ubkZyyZYBYYsYvf2VVzPReDckGmpvPMEjgEndV7+QKgh/SrtE1bGxctAPJDPibY7ByhhYMV5OBzG1W7PC6BNno/hjg5P52fFGyLrK+kQX8obWM3HAbK1tRWJqgcG0t84YRAgILZszcmYbW5uxuyG4XAYx4V+QoSS9sUUz0aQ9kMMga+aI1JxXy5O4a5xMYptLBETKC/xXTZ4Vnjd8ym4tm89ST8w38k8wCnC7hr0QVEUJz1PiAn+zPiWnqPRqDS+7k6g7IbP+Oc8xwORgz5nTuBs8rbgVuEHR43vwkI/4QjJyMjIyMjIuDxwww/dog/80P7vL/iFF+ndn3n65RCNsDxOgDtmQ73v0xuq99981E05NMxOnNC1/+0W3fZvb9L4yuKyLn2QpId+9dv1AUnVhz1M4796a3y9ospJ5RDj4vyFWi6FoACx8y373B2wvr4e//CXVCppgNBLKpEkSfF4yKELD4QmQtq9Bh5C5wF2kDJpf7tACDAJ+bVaLQbCzedzbWxsRJLuhJXtC6VdlwFCwt13363RaKQQQiSoYDabxUBCsgVGo1HMfmi32yUSSTmDr/iCVqul1dXVkptge3tb/X4/htnhyIAQQjIZF/rVSzGoT/fae28/K+suelDa4efyeUG/+TUhsayKj0ajKATU6/XSjgsQRUpJIIy+ZWaj0dCxY8fivfvYjUYjSftbP1Yqlegk8RBRXzkn78NLaDxzw7MSeJ3P8YPzgryMEELcbYL5jsBAGwnQ9GwDzkNf8/xIiiIE90Z7XACQFIWA1dXVOOdxm2xtbUXHiZcxuPDhY0d/eLAk8wuBwndYcBcQQppvl8qYe7iiu4U8OyMtyUCo8R0kfFyY8xkZGRkZGRmXJx79zR/Ul3W++LSP7/z6dClKJr7kA5+n2VcVmvfvOuqmnBc8+H/8nba+6JN057OOuiXLgZ0P36ov++T9eTp+9HX601/+2fj7/9m6Wr/+j556CFf68YWvnlJQCCH8rKQvknR3URRP2HvtCkm/Jukhkj4i6SuLojix9953S3qRpJmkbyuK4o/PpJlez+3E3euhIY9eb84PwkNq8XZrt6+iQjZ4z631nsPg9nB3J7g9H+K7srISV+id3Dj5qVarMU+g1+vpvvvuK1m8XVDwFXSuBYn0kg0ncnwOaz9lF5yHfiBTgEC9TqdTWslOwyf5L4SL80JufUtLSLKvtHu2gZegMHaMNdfx48lAoM2sjKdj4iIIZR64MzwLASACsSKPTZ/VenbkkBTFCXezMMeAk1V3Jiy6J9/dhGs4qU2DFXFuMHd9twK2pvRcBYg04gFukHTnChfc0jIUBBgEBsYZJwrz23cqwUXkc6Uoirg1JW2nlEnaD7N0AYLvBM/w8PIFL8GgbV62gzMlDZf0+U3/p7tuLFu5w4X+Ls7IyMjIKCN/D19+mG1tSVunX6P+8R99hp583aNLrw2f3dP7Pu3nD7tpB+Jhf/IiXf+7VbXvvETKHBZgPhioMj3/Wz50P1rRNW/oS0v2N+FJKArt3HFn/LU+GuvJL/+m/d83Cx2/4/Xn7fKn41D4P9qVI/xJeJmkPyuK4uUhhJft/f5vQgiPk/TVkh4v6TpJfxpCeFRRFKfc0N3LEdy67nkAEFTfeUDaX/F1S7nXpUPm+IyveLu92wmvZzQ4wXO7tLRPCn2LP0lxBdu3rHPyE0KI5QEk2bPiiuDhJBSyyIrzZDIpBVVKKpVX0GfuWHAyS1+QpE/4HUKGB/lxvGcm0CeQXGmXzHHftJvx8PICiK4LDd7nXrLiK/9cl3IHt6inGQtODNmaUtrPAvB+8F0DGE/EBEknEXWEIt53J4nX7JMxkBJld2Qgdnh5hK+M028Qae9HPya9f8pzXBzxvBHPg0jnt5ddpCIU5RW+qwNziXtKnx36h749yL2AEMC8S0sy/Fl24dHHEyGA49I8jvR+EaBcUKA9HL9E+D+6AN/FGRkZGRkH4v8ofw9n3A86v/FGdZLXtj7xTH31gz4z/v7ZV7xbL1q/U4eNWTHX13/0ObrhN1fU/L1LV0wAzXsman+spcH15y9Au3FfofD6vz9v5z9fmJ04oWt+7JYLdr1T/rVcFMVfSrovefl5kl619+9XSfpSe/1Xi6IYF0XxYUn/IOnpp3GNk1LqWc2nBt+JhdfeeygdBM2t277aCPmA0EM03KIOafLjIIa4DHhdUsw/kFRaISesDzLt5RO1Wi0S3a2tLW1tbWk6naper6vb7arT6ZRcEZR4QGZdwPAgO6z4kDxs6aw+QyQhcYPBQPfcc482Nzc1nU7V6XRKAZRuPefeaZeTbvq93+/rxIkT2t7ejg4K6eRtErmH1E0BiUXMcIcB9n1s8VyblfHUScK4s7Wkly602+0SYfY8h9lsFt0POEYIz+Qe6VN3C6T34ETexSVJ0fbvwY4QWO7XV9nJoPBcCWmfPKeBlogtuB9SO38qcHhpC9d014jPM+b25uZm3K6TcaJ8xl0Q/pwyjh4Iyni7OOLj7SUQaYgl4hvtRezg2cRN4g4kn0/+X+Yz//aSiWXBhfguzjgF5lLYCbv7YGdkZFx2yN/DGWeDtV95g048+774899/4cvUm49O/cEzwKyY62Ozge75ghU1f+9Nh3ruZUXlr96mG3/lI+ft/8thJoW82ddp4WwzFK4piuIOSSqK4o4QAvt3XC/pDXbc7XuvnRZ8xdFr0L2kgdr7tLYZwuY5CVLZ2kyGQaPRKO1o4Fvs8XnC5yRF8spnsWlvbW2VbPeSSiRyNBrFYMdUyJhMJrrvvvu0ubkZyS45CJA3X+mtVqullXFfkfZAuVarFftxMBiUyJfX2BdFodtvvz06E9rtto4fP16qZR8MBtGGT58S3ghprdVqsY5/Y2OjtELtY4BYxGo7Iof3T7VaLZFAVsw9rNEJoRNT5gnkcjQaqdfraWtrSzs7OzEos9vtliz96ZgQjkkuw+rqqlZWVmIGgwspuBpcVHBnwmAwKG3h6CGim5ubscyF8QHMc9rmNn7a7O4IrslxCEmME0Gi4/E4zplqtVoqmaAUxMcLkYZ7Gw6H2tzc1ObmZhTRAM9Zt9uNwhpj5iUSiHWef+I7kWxvb6vX68X5kTp1aDvPBXPHRRGfb35fiDg8E2AwGER3AudkTHxclhTn5bs4YzGKv3u3HvXBVX3g3z3+sk6XzsjIKCF/D2ecEW74b2/VV/zRi/TaP/ilQzvn13/0Obrn84NmGycO7ZwXA3Y+9nE98nvv04e/+6marh0u+3/kL26peOf78xrCaeCw/1peVMiycBxCCC+W9GJpf597iNkiEQECkOYESCoJAZCgZrMpab/23gP+qBnneqxypiSWVWbKEVjRhpSxikqqv7S/AwGECzs9QYQIGb1erxQs6IIDBNEzF1hd9vuhDZCeNHPC7eBuY4cQDwaDuGLPLgaUQLAy7G4MxAYvrXDbvpNjdwv4SrdvG+mCCcen7oaVlZUoHLBCntrX9+ZTPAZhADcBY8y9cP+MI5/x3SlcgPEyC5wCaekLK+3MTfoHhwrtRLjAZcG4uUNiZ2enlMEAQab0wueIZ1zwWVb0fdWfa3ufeUijlwL4M0l5ECIIApiXGHnmiYtJiAyIMJRdeDZI6rjwZ4rz+dj6nGFue8mJi43eFnZ5cNcP45qWVrhAdBHjrL6Lm2qfzzZd/CgKzYeHu6qUkZFxySJ/D2csRDEeq/L+j+hT/t1LJEmjL97UO57xy2d9vof+8Yt042+uqLlxeTgTUsxHIz30tzd017PWtfmoc6P/ndsruu4vtyVJ4UO3a57DuU8LZyso3BVCuHZPib1W0t17r98u6QY77kGSPr7oBEVR3CzpZklqNBqFiwqejyCp5EqAwHptttc7O6mBKEBOfJtEz0Pw+mwcC9L+yv94PC7lFUBQsO3TFlZ8WWFHTGAFXdrPinAxAds67/NfCC2ryW5Xh1R62JwH8/EapMuJG/03m83U7XbjdRAZyBzwcSj2doRATIBQ4ijgnE4YPZgRgsZOBV5q4LkKrKhDGn21mX5xCzwij5NmXCP0L6SY66SWfxcU+Ey73Y7jxjzg3t01AtnmPLgTIO/0nZckIHTQBlbQuTfm4aIyoDT7g/51kcHnCc+Ft9GzRvw5c7JNu9KSGs8F8c8mz3bJnZCKQH4czx9iFW6B9Fh+x91ACRHZFu5EcgdCKmyQuUEfeumMl454BsOS41C/i9fCFVmIPxWKudb+QerdGLTTyd2VkZGRv4czzhzzfl9X/OxuSN59epb+Ufd5kqRfePQv6UHV7ik//67JUN/yga+WJD3od6tq/v6ln5lwf5j/3bt15fpTJO0uKG89TCqqp/cohbm0+sGKQlFo7dapije/Q9JukmrG6eFsBYXflfS1kl6+99/X2Ou/HEL479oNoHmkpFPKZRAFr2t3MiapRGpYdXYyCtHAXu5hbDs7O3HLO1bCEQ5Sd8LKyora7XYkG9TKE5TIOXylHkEAMgxZTK8BmYU4+wqxk2fawao6pJZgQSfsTnBXV1ejMwNBw50fvoo+n8+jM6HVasVdJ3q9Xsk1wTgQuOh5DJBAX1F2QuYryqwQ49xwW7kLE5BV2uvbJEIcfaU5tc9PJhNtbW1Fh4Wk0vt8FhJPZgZiAn3MThyc07Moms1mFCloK+clR0Aq75LQbDZjFgKZFe5A8TBRyDjz1J0nkqKw5sTbXSRpiYQ7CfxZcjs/uyH4nEXI8pIFxscDHgFtdqHBy3HSAEYPV2UMBoNByaVEXyBAIex5lomLFmnuiAuR7r7gWMbUHScuYl0EToVD/S7OODWKnR094ObXq/iXz9LWw8Np/8GSkZFxySJ/D2ecE6742ddLezv8/dI7nqIXrL/tlJ/54Y99seqffaskqa5bz2fzLhpU/uJtuuovdv89/L6btGPpmPNase8ZKqTKdP9v1cqOdM1PvUXFdHLhGnuJ4XS2jfwVSc+R9IAQwu2Svl+7X5qvDiG8SNJHJT1fkoqieFcI4dWS3i1pR9I3n26ardejpwRIUqkm3kkNhNt3UahWq3E10omMr/6yKl+pVKKd3ZPsx+Oxtre3Vextf8ePh+RBgGmn19e3Wq1SPbk7CobDYYnwck0XOlqtVqlMAlK2NyalnIVGo6Hjx49rbW0tvu4rzE56nYiurq6q0+lEwr+5uVnapQFxAqI9HA4j2YI4DwaDWE4CCfRVXcaC4/v9vjqdThzr+XyuEydOxHY5EUTEoF88CBOS6YIQY+YlE4uyDSRFZ8F8Plev19Pm5mbsY4grxzjRZWXct3iUFEUiRCWOIxfDHRC4T5zwp84LLyPwbRFdJIOQM69oJ2IFmRSc03eqWATu3bMJNjc3tb29HceBPuEZ5Zng877K7/3johnHIFwwt7a3tzWbzWIbADkbrVYrzjPuj3mTCgbMraIoSgGbLuzwHUG5Eg4dnzfLhAv1XZxxerjq5jfpypueqA99efOom5KRkXGBkL+HM843XvcpV+p1K5976gNnw1Mfcxnjwf/xTVLY+1uuEvShH3iqZs29MulZ0CN/+F37JYzFXMXyO1KXGqcUFIqi+JoD3nruAcf/sKQfPpvGQHw9KG4+n2s4HMZVZ1b/fYUZguE1025/9hp2J2lYsiGSkEhq+SFtHhBJWv3m5mZcjfUtGl2w8JVeiDZiAtZxr3f3/Aaux+pqSpL56Xa7Wl9fV7fbVbvdjqGIqdPDV9prtZq63a5WV1fjKjTigK9uu0uDHAMvfSBbwnMTIGSMiRNpQgG5t0qlEt9DFHJXAEKPl1IwZjgTpP0tOn2XAdrlOwzQF16Wweo7Y1mv16ObBWHJ51yr1YpCC/3BGHm2BKKQCwoIDoxzau1njvJfv0f6yMMDPVjR7505lAo77hpBGEPM8F1D2I2ELU29zME/m5bduBMmdZJwX5yjXq9HJ1C6damj1WrFgFSfN7htvBSF+/QSGEIYXVR0ZxFzgb7xEMdlw4X8Ls44Dcxnqr3rVj1i8iB98Ks6KpZPg8rIuCTQ/nhFzXuWg4fn7+GM8435KOf0HAZSgeDhv3RCWtn/G3O2vS0V2WF4WFiqCPNUUJAUg9P44T1WKyEETvzTenGv9/acBezQrF568OFoNIor706iWDVPgxrdsu6kGeIHEfdVbLdpex6AiyIQ65S0Qco6nU4UE7hHJ370Ayv4s9ksljp4kGRawsH90EbPo/DtOX0MINXevx7YSJkFpRgILE5yEV4QEwh6pG9YkfYtB2kP76UZDhzjIgvH8R795rZ37xcXelLRKyWpOBgoiyiKImY64BgAjBGk1ueU30cK5hbzyreahFSnToQ0+8BzGGg3JQXz+Vzb29saDoellX/azHm8BMZLFaR9R5Bf390JtVotuipwbniJjgdjpvkqzFHu28UZd5+kwZTMa3+WvI89M8RLOzIyFmF24oTC2/o6/oSnqahI4+NBg+vyHlMZGeeCaj9o9SP7v3c/PtVtOQw1IyPjHDB/53uPugmXNJbmr2WIBqTRV0+dhLMC22q1ot1dUrSp1+t19Xq90sooBC2tk/ba6nq9Hsk9xBQi48cPh8O4PaK0H5bnYXKQEq/vJ6wR8uT3BCFy4oTVnveddPPTbrfV7XbV7XbVarXiCnVKRD3/ABFidXVVlUrlpJVzz4TgfhA/3OXAym9aJoIAwPXZzYK+IgSSmv1+vx+FDUlxxRpHw3Q6Vbvdju+5+IPIAVF3EgjRdcKMKORWee8nD0hE0ECEcQGL69Km4XAYy1/I4FhdXY3zczQaRXLOZ3G/pMGO0n6mCP3qWREuGnF9hBzGg4BNSDf3iNiVOgjoM+ZSpVJRv9/XxsZGLH/xlX8X/py0e9mLBzN6aCKCBWILfTeZTGI7uP9ms6lOpxNf4769/cxb2pjmSaRwccSFB/rdQy89EyQj4yAU00kM1pp/6pN16xe1dv9dK7JrISPjdFFIK5Pd7+7Ox6Qrf/r1R9ygjIyMjIzTxdL8tcyqLkSFYEACECG5zWZT6+vrkRBDtKm79iC/dLXXSwDSoDayFKT91UnImaRSxsD29rbG47G63a6q1Wp0NED8uA8nb6PRSFtbW6XtB11MoA2QMYi+b8VImQbEa319XWtra5GgQ/KdWCFgcJ6rrrpK6+vrkXQSwujWcQgj7XChZWtrK5J3t9wjDtDP9AnlBO12W2tra6rVaiVhBdLmboGNjQ0NBoNIkBkTVtQZK8aZ1/hJ0/59JXpnZ3eXBcpbIJD+by8BodTAyy1csHFBptPpRDGBsghKPu69994o9jB+7tZA8GDe0Aaf3+7ikBSFCsQiSgNoG+fknjx7A+eBk/d2ux3zKPr9vvr9vqT9gErfQpT5gPjHHHVXwiI3C9daWVmJpQ6IRIg2PHeEhfozKSmOPa4Gd5Ywjgg+zF3gWQ44S8hJIZNjOp3G/l7kDsnIOAiVv/47PfSW3e+Rj3/XMzS4Ns+fjIzTQSikR7z83Zpt9aQiPzcZGRkZFxOWQlCAvFOuAMHlj3n+6GcFeXV1NdZfQ/DS2nvfGtBJlSfN+xaCXnog7QcSQmTG43EsdSDp38MAfZtICCDEht0pfNWdVVt3UXhZBSv+3Her1YptRli54oorIglEEGDV1XccYGWaEEZIupdesDvFeDwuEXx+IJBYxukXVuh9ZwiIHttnEjDZaDSi84LjIc/0yX333afBYFAiqYyPOwq8nCFd4fe0fwQOPucZB+5W8fkA2fYSAsbGw0IRUXq9XmkXAsadcg9EG+ZjrVZTu92OhNnnsZfVIKh4qQX3QfYDc6TT6URhCceCZwMwBzxQ0bMeut2uVlZW4ti4q8R3VaAPGQ8XSIAHYLowiLNIUswS6ff7pfPQ3wgLzDFpX3DzEg8XpBgDd4+kAZf+rDDnCKDkWotKITIyThvz3fl646tvV9FqnOLgjIwMMNvqxecnIyMjI+PiwVIICgTBVSqVaH9GRICcQH4Ic3PLtTsBIL7Svj1aUikVfxG81AECCmazmcbjcSxBmM/nqtVq8XXIopMhSCXiAMGBToyBrxxD1iE8bjOHINdqNa2vr0dy5sKB1+K7mNBsNtXtdiPh4vweCukkEaLv5N0FEO6N67AKDJFGaAkhxC0PEWA8b0DaL6lgNZ/XfWxSh4I7UHz12m32kFjuBZLLPHDSiJjkFn3P34Bo8jnf1QGByYWH/7+9s4uxLLuv+tr10VX33qruadsBDbaJbWSQDELEQnmBBKQgYlshBhIhRzxYCpIVKUhECCm2LEFe8hAi8giRUSxHyIkNAgu/INlCiLxgQmJsZ4w98TgxMPZge9o1devWre8+PNT97bvOrlvd056pqtvTa0kl19w695x99tlnu9fa6782f0dQwCEC6R0Oh9VN4Nfz0hqO9eBAJ+uMJ94NFxAYt/5Mvd98vHof8e7xHiBoIBj4eGjhDg8cKl7KwPtLyYc7DGiflybxjrfvuW8l6qVSHgTKd1r3gqQ6XhHAEP8Yi+5MiKAQfL84/cb/uekmBEEQBEEQXDmWQlCAEEFWnBD46io11eQdQFyk+aqo14UDSCLX8pwG/66TXEmVWJycnFRruaQLIYvHx8e92nDPFYC4k7HQOhI8DI520Ads/+e7FWCVv3v3bu0HiK00X53n+6yaY8eX+pkI9Jkn8vM5/djWwvtqvgdGulWf8+FM8DwBFzok1T7ke77iDPmU1BsPrDxDon2nBHcmbGxsXFjVhkDSr06i/dnwu9QPNFxbW6sr7BBm3Cke7Omr8IwRxjEhmi4wuWNkOp1W1wDCA4KXu08kVVLs7433l6+6Q7LdAcJzaMUEzo2g4O4Ez6Sgj9wJguOFMUipg49zyDvvGmJcWwbjuRn+jvAM/Tv0P+Mbd4/vltG6EzY2Nur3eM5toGQQBEEQBEEQBBexFIICZMJD8DydnZpqVmtPT09rjgG2cFY7+QzyC9n0hPrV1dVqFXcRw/MDIF8Q9slkUoPaJFU7O24FthNETJCk6XRaHRdHR0e9GnQXEqR5aYULAtLccs593LlzR3fv3tXW1lbNl3Aiub+/X8kQVnZ+RqNRJXmIGxC//f396g6AyLFCTd9RCuABmZJ6yf5Y5slYwBWBwEI/tvXw9D/3Sp9AXH1l3BP/nZDSblwMtMuzHLw8hjFGnyBCeA4BZN+JN9spstK9ubnZq8dfW1ur48NX6Xkew+FQq6urVVzxkhFIPTscrK+vq+u6KmbRV+6M4BgXWyiZaXMkuHf6ATdNm1viZQfSXKhy0Yk28H6ur69XMYRtIHFjIAR6yKqXpQDGHC6Q6XR6IVeCPkak8DGKMMB9b2xsaDQaVVGJkFD+hsvH741r+LwRBEEQBEEQBMFFLIWgAJH2mmuIo9vTcQWQSQBpcEGA7AV3OEiq7gFqqCGR/J1VzbZunzYR5OcOCj+vW7QhL+QmsOq+KPXezyPNV3fv37+v7e3tnkAxGAxqEOPGxkZdaeV/9/b26v2wsjwcDmu9PsTVyTmiB4KMNBc3INdewkDOAk4LT8t3oYGVYZwbZ2dnPcFCmlvjWS3mXO468Wfv48Wt7C44QCb9GbLqT7kIz+v+/fs9YchT/X2F2gNDu67T7u6uJpNJbwXb3SQ+xo6OjrSysqLRaKQ7d+7UHTk8e6INxZRUdzeARCMw8awPDw/ryjqfe8mCOw28pMHfCVwjfI8+4Dubm5u9chjPJqCt9Ofm5mYvN4L7RvDwsEzfucRdLzhKOHY6ner4+Fjr6+u1X7wMiOdCcOr9+/2wSRdlEM0ODw+rmMD3PKDVHR1BEARBEARBEDwYSyMoQDSckHoQHCuPLir49npOJt1WTYI7x3l9u5NUruu7QSAecGxrJYd8efI+529FC19Fbkka9+FtXl9f722LKZ0TQHdBIHgcHR3VLAeve9/c3OytYONM8Da0WQrcB/1AH3AN2ky7F5F57gfi7pkNLlpQNtHuwCH1LfAuQri9nu94G3hGno8AuXYBgv73HALO72UTCBduv/etCiX1wiXZktK3srx161bdLpOsA98dwp+L3zvjkvHkO24wpnwHg3Zc+f16W/2941kwNj2A0UUAfwbuxnDRD4cQApEHOnowaut24J4pG4HgU9LhpQ5equHvHyUUCGM+f3ieBS6Ydt6g/31c0/9BEARBEARBECzG0ggKkLuWqHgdPf/4n06ntRbdiY+kXi6CW/KxsbNSDvl254PXYxP+BpnzPetb273Ur++nLMBXviGckCUPXYQgHRwc1HOTxcA5KauAdEnquQZYFcZOT24CooRv3wc5a7euZMXZSwmcjPmxkC4PPGzFEAQFFy14Nv6dts/dcg/BlOaZFhB9b6db/gHPwncMcfHBBSwPVHShB3FGUt3pw4P7EGooDaAPfMvHwWBQnwXHuDOB+0NcoS98zCNQuZgg9Xe/4DhW6N3dQn+4s8QzPJxI+9aLXh7jO4h4WykLQNRifHhYortSvMSF6+GmcbHFS2AYM8wLvpUl9+75HJ5lQo4Ff3Mhwu/HnTmMA7aSDYIgCIIgCILgIpZCUKD2n20Zvf7da7t9Ozzqn7e2tiTNLeoeaijNrf8cc3x8rL29vRqSJ81JoDQP5CNID7Ln5N4DFV1gwMngK9+QNNrF37D/Qx4hl5ClwWDQE0rW19dr/T0r09PpVOPxuBJNSdU2PhgMdPfu3UrosY8TSAnBd1GCe0EQ6LpO4/FYe3t71TLOtpIQVmlxEOJgMNBwOOw5HJw4c621tbUanMhzQDRxJwbPRurvTuB5CC7SICJwnzwHzuFbB7r13ktQcIRQLoLg5SIS7gYEAEi45xsMBoMLTpudnZ3a54zNs7OzSoS9jQg/XuZDwKWXaUwmk17pgPerO2bc2ePuBO7XBRQn2pB97tkdF+RjIMxtbGxoOBzW8U05hGdPAAJD19bWeuUkLijRTlw3ZDYwnn03jeFwWHMVXGigbf7O+/Pmb3yH5x0EQRAEQRAEwWIshaDAii7ECULlK5m+Ett1nba3tzUYDC6s/DtB9K3k3DUwHo97ZJhMAFYuvbRCmqfXS/PwP19h9e0oIZls++cr3wgJCABtSKNv0beysqLJZCJJlUBtbm5Wgn1wcFCJPu0kL4F6/VJKFRLoF1aQIbIQrbauHjKFmwMXBBZ+CJuLMfT3YDCo2wO2ZRJuc29r5r0/ERPc9eEr1J6d4FkVvlMD3+O58excfMAR0QYDUqLg4o2LVJBiiDikmXbSRt/2sQ3BdLcF16V9rKYzrsfjcc+9QX9J/S1Ph8NhJfr8zcs73IHgz6INgURo4m+4XNydw4/3p+8K0ZaYMFZxQyBA4XyYTCZVFKGd3BsCBu8C5z08POy9B/6+4a4hkNPHAfAsDvoL4YyxFARBEARBEATBYiyFoMAqdlvj7yvAvprqlnq3hruVnRwGr/t2S7Z0MRTQrwPZaq310lwAYbUYAuTnhPy61dtXSjmnb+HnYgIkH/LmBP7s7Ez7+/t1tZc+8dwEavl9Jd63hpTm5QwesOcr7dTDs1p7enpat+BDZKHvpflOCP43L7FoV7u5N88F8IBLqe8kkFRX1hk3TphdTHAXhO/c4e3imrTXwwh9G0h3OXgWht8LY5PrL8ovIGMA94sLUX6u9p3wnTyw49MGxi6lI54X4s4N8ggoE6C8xO/bt12EUHsbfez4Lh2UMSA2IaT4dpRePkCf4GRoRRTEBM/lWHReBDLEntPT017pCddelBHiz8UDUf14BJ8gCIIgCIIgCBZjaQQFSIELCRAn3xKu67q6Au75B25bd1u6W9zdwgyRhQy15A6CBPGAACMYHBwc1M+cCPrKsYPvsLKNGNKWC0AEIYCeJwAJZFWWrfkgwaTtu2We60EsnVRh44cUUtbBdoP0FwSLVWIIWBtkRy28OwsQEvjdV7g99JE+aFeLPRTTV7X97y4OuNjAdbkWn/uKPgRZmjsmRqNRL3PDd0BgVRwRxceMlyO4gEF/8OzY2tP7CvjKvItgPqbc7eCf8Wzae2Xs4/7wFXwvH8GFwPP2/AMn99xv24/tuRAKcDu4AOe7iPizpA/8XeJ8HsTJs2G7UwQfz9FgbHlGgj8zf+c8cNNdTkEQBEEQBEEQXI6lERQgt9I8pFGa2+g9NO7u3buV/Dq598A3aqydJHseAYTIa9fdTXB0dNQjvpCqg4MD7ezs9EIcpTnBgtC41f309FR7e3va39+vhL6UoqOjo55FXFJ1UFCCgeOANiAm7OzsaHd3t5d2T+24NA/Ig4xC7AGOiZdeekmSqo1+PB73Vrcnk0m1nBMs2BJM7rO10iO++FaVbTkD7odSSk8kcrs6AhGr7+6ecLLaOkkYS63jgWu6M4Txwu/SPPTy+Pi417Z2JwPO7QTcy0oYf+PxWNPpVEdHR3Wl3QUVvksuAGTcXToumPC+rK6u1hwCD4ukvIb+IcfBS2BGo1EN+zw7O9NkMqnknPNJ6rUBYYprISR4KQLfaYMneR8BbeM8t27dqudnvPqODe4gOjw81Hg81v7+fn3O7lCgvMRLN/w99ywUnvV0Ou2JRd7WIAiCIAiCIAj6WBpBAcKC7bqUUi38kHBI2NbWlrqu08HBgXZ3d2u4HfZ4X+n2BHq3bHtpArZ3iCyiBFkBnmnAaqgHurmjwVfrcUGcnJzUIEhfEfUVd4IgIcaQH342Nzd1eHio3d1d7ezs6Lvf/a5OT0+1ublZsxMIKISg4j5gtR4nBmLCiy++qOl0WgWByWTS2xmA/kQIgHR6roGTYEQSyKNnH/D86M/WMdFuVcgPAsvGxkbvWRIw6GNFmpNAL3WgLTwfvyYBmC4mtOKUpJ7Q0ZZucB36wEtuAKGBntfh7g3fDtTHsp+H8cLfpXOCTr4GY4e2E1LopRKM3ZOTkxqcuba2VsUnjqU97kSg/V7i4u+Zlx1Jc0GBd4I2+jHSXDDgOfnfuT/ECto6mUy0t7en8XjcC3DkfcRxgPvGx2kr/CA8cP8uONy6datmmQRBEARBEARB0MfSCAptPXobvMfqNMGErL4ScOj1+mtra3U3BAIUfcXYr+nEE5EBIuckEYLHuRAmfHcAD4L0lU9C3rzO3q8LEXcxBJLYbltIqQMOCQ+qk9Qj855L4ULKdDrVZDKpAoY03znBSan3A99tsxC8nt+P8X72rTEhti5yeMlIu/uE5yJ4oKK3jfZBJC+zqrc5B76y7pkc3DvCANfwMYA4w7m871nhb10lnkvgYlS7YwU/fh/edvoVEYa2IyK15SqSqnMErK2taTQa9QJLPVTR80lwuyC2eSkQOy0wFhzuCHL3Cu8ihL3NMHBBgbIIz2NgRxjcM4gJHOdiEOPLRT6uRRv9PQE+PoIgCIIgCIIgWIyVhx1QSvloKeU7pZRn7LNfLaV8tZTypVLKp0opT9nfPlRKea6U8mwp5cdfbkN8NdnLGyRVK/RgMNBoNJKkuvMAK+IQAlaryVmQ5qFwLSnjd1afIZKs/rrDgc+x+S8SFCBJbVo/q+lOnCX1CI47KHyF2MMBp9NpFRTaEL5FDgvs5pB0rrO/v6/xeFwJblsf72GVLsJA8j20zvvMz+ek2He7gLC7CAQoNeEHculCk1+nFaFoT/uM/Hm7nd3DCHFHuKDguQz0kQcktuPW28b4pYwA8stzp63u3PDzuOD1IPGK9nu/ugDg5/H+xvXi2Q6IHe1Wq4xhv28PEaX/WyHJxRI/n7fJxRS+58+uzU2YTqdVTMSJ423294Bn4c4E+pHx7eKUjxMX+5YF1zUXB0EQBIuReTgIguAiHiooSPqYpHc1n31W0l/ouu4vSvpDSR+SpFLKOyS9T9Kfn33nX5ZSVvUy4DseeBmANCc/vqXhzs5Orff2VfH19XVtb2/3CAxk3cPjZu2txK9dqWTlGlHCCZUTDs9OaIPjsGUTsOi5Cn7PrChjzfZSB4jm0dGRvvnNb2p3d7eWGmDVZ2UXEknwH1kB3NPp6anu3bunnZ2dGgzYOhScQFJK4o4BBAv6HKcD1/P6d8hru9rrW4T66jZk2UsB2hDA/f39HjGnD+lTztOWPLiTgn52IksfSPMgRsjq6upqzXPAGs+4aQUnJ7F8B0eJjxkvL0D84jl62YiXVPAccAkgNnk4Ic/cBRm/f4Inh8Oh7t+/X9tHUKhndniOxXg8ruULGxsbunPnjra2tqogQXhim/swHA6rewY3kbtw2gBOdwq0IZ+Hh4d1/E6n0xpE6WURvCttJssiUYpjWgHT3+Ulw8d0DXNxEARBcCk+pszDQRAEPTzUz9t13e+UUt7SfPYZ+8/PSfrp2e/vlfSJruuOJP1xKeU5ST8s6b896BpeckB5gwexbW5uajAYSDpfJd/d3a3hdr6aCWnd2trS+vp6JVeek8BKJi4Evu+rr+vr67W2HKLjgkLbXq4NwSXfgUDBruvqam5LbJ30tMSIAMLWmYCDYXNzs64ME2zoOzpAfCGdkH+vv6efIU8Qfe5zUTmKpAvWdfrSdwdw0r7o/PQDq8q+6u/CQLuFn9fAt8/Cww05F31PP9G3vsLuOwRMJpNe4CIiC6Sda/CsERPoa8oPIOQIINwjNf/D4VCbm5t1rJLP0Zbm+C4WlDiMRqPqdMD94ivvjCuuSQ7FYDCoAoaXvXiJDc/pxRdf1Hg8rkIA7yHHecaElyfx7DY3NyWpihuIAF5qQilJKwxyTJllUpD7MZ1OqwOEsg2EOu9zhB8fi8wfCGW8c/QRfedlHMsUyngdc3EQBEFwOTIPB0EQXMSrUSD8s5I+Ofv9jTqfTMHzs88eCsgc/8j3uvuNjY1Klg4ODnqr656DcOvWrSoEuMUbAui2aA9llNQL6oPUexmEOxxaGzSCAaSlPbfXgfvqu7fdbdl+POQIy7wLAF4u0JZt+PaU9BWlF7QJ0uSBg96v/kwuKy1wa7gTfr+ftm3tNn7ASbE7FSB2rCLzw/XaZ9M6UHCr8KxccKB0pHVGtLspuPvCvwtOT09rcGSZZW7g6KAtbS4Ax0OCWzHBdyFBTOCnFXsYe77Sz7igrxAvJFUHCm4cRAJcEow5jmEXEUQARAsXV2iP52W0fYcrwQk7z5z+chcPYg79sLKyUvsN8QZBinGPaEbOBM+KH94jftqtUb00YpkEhZeBV2UuDoIgCL5vZB4OguCJwysSFEopH5Z0KunjfLTgsIUJeaWUD0j6gKRKCPjdtyFkhRuChl3erdwQRyzbvlPAIneCpN6qL+eBxLeig+cbeMnE7D4qgXJi7oF+fk+tJd9/OI+vqCOgHBwc1GuzMk34H/fAajUr5hAjD2ikj+lf7qkl1HzWttPFEoimlxs4mXeRgbb5lotecuLn8Gu46NLWtvu5/Vm4sEHOBE4RjpPmIpKLGIgokHZ3e3ggobsN/Lk4uW2D/lyc8VV1r+OnjTxfF1UYv07evQ/5jm/ryP0ilCFEQfIRXDY3N6sjhxIHtlD03TD83WnJf5shgquAZ047/Bl5SY3vSAHabUF5N3z3FR8zLpS4uERfIsL59qWewbJox4nHAa/WXLyp4ZW0LwiC4LWOzMNBEDyp+L4FhVLK+yX9hKQf6+ZLzc9LerMd9iZJ31r0/a7rPiLpI5K0sbHRsWqJMOCCQks6/B/5HAcpwmbtoXpYuiFUvoLJOST1iIqvmmLZltQjs+6iaIkNx7ujwEloWwoAAcKWvr6+rr29vWqzPzk50Wg0qqu6tN13Gjg+Ptbe3l4VP9zZcXJyopWVFQ0Gg0q0vI+8H1xg8AwChAl3Mbi44sTaXRy+ak52gAst7gbgOF8xRlS4ZBxeyFLwsENKA/y67ryAlHtQZEuSKV1xwuyCCyv8LkK4eIPIhBuC8gLGKRkLLha0O3QgCLgA4n1dSqlj1V05CFSMKcSLg4ODStBp++npqSaTicbjsXZ2dnR6eqrt7e1amrG2tladMpDvtjSAd1dSLfuBxHMOH/etCOaim5dUkC1Crok/A3/nJpNJLfXheXRdV9/hrut0+/btWvbhbh7az5zzuDgUXs25+HZ53eIXLQiCILgUmYeDIHiS8X0JCqWUd0n6RUl/reu6qf3p05J+q5Tya5L+lKS3S/rdl3NOguBwEHgoo9dE+7ZyvuL51FNPaTAY9GqlPSyO1UjPLQBd1/V2Syil1MA2rt2WJnhomxNG2uar3xzjlnmIkYcEEnQH8bp3716vxh3XgodAQtA6C/qT1HNiIAJ4CKHvsuBlCW0tO21/UPkD+Q0IFr7KyzUIwWOVn3BALy3xY/360ty67+IC7RgMBj3R6ezsrNb6k08AMYRsc05JvQA/xAFJte4fQcfzIyDNEFd2H0EMoJ1OjFnl397eliTt7u5WAcC3rPQ6f/qS8/PsXagqs5wBcj58bLirgVBJ+sCFArJJCF88OTnR7du3NRwOa87A3t5ez0mBU8YdNi6o3Lt3r4oovv2pOxTIB+GavvMEY5ZA1o2NjfqO8rw9n2E6nWp/f7++q9739Mnm5qa2t7erG2M8Huv4+LjnDOJ7npGyrLiKuTgIgiB4+cg8HATBk46HCgqllN+W9NclvaGU8rykf6bzBNsNSZ+dEYPPdV33c13XfbmU8m8l/S+d275+vuu6s8Vn7l2jrr5CbgB19xAvr0PneF/phpCx6uj2cq/h9xVvt2m7i8AzBbimbzHoeQKtZV2ak2Duw4ke4Xes6kM2qecfj8c1K4Lr+nW4dyfuEGffMYN79eO5L6+zxwoPUeMaCAm+ou/95uScFWHaw/21u024G8WdD/6cF+Ur0Je+wwIk0IWmdrtN3+XC3R3uaHA3BnkTCEotqXQnBi4IL7Nx54YLPB56SKgo112UGeAlOD6GcLh4aQHuBH/WPv4g1rwT9Juk+r3JZFKFFd/tgb7b399f+Oy97IISBcQNroProxWaEDk8WJI+Q0hBSGgJP+PKd7dw4Y/75lwbGxu6ffu21tbWers8ePva/I5lEhSuYy4OgiAILkfm4SAIgot4Obs8/MyCj3/jAcf/sqRffpRGQHDsHJLm9dUQoTYTwXcScLs+BMWJt9fDO2Ft6+5dJGjDA9s8hDadviXBba24pCpIsMrKcYgJ2LNZvW7JJgTJV3y9rMH7pA2GxCbOsZBvt597HzvBpp0PItcegOer+e3OEW1YI24SfzZtbkI7XvyaPC/aBgH1+nh/TowL+obzcz3KDRAU/H7cpcKquTtNfMXe+4otQN1NQBkKwoBnE9CvLpS15Slcw10dl5WSIDq4EMPzbAUJL+HwIEPa22ZYANwquIm6br67Cc/bsx7IBmEsepYKAhWlCZB+xCcXLfhfFyLdIUJ/sEuF52LgoHABzoWny0ptbgLXMRcHQRAElyPzcBAEwUW8Grs8vGLgIiDEzUMBIaReJw0Rdks3BB1BAfIKmfHUfSfIkFPIB0QEEtWKDxCjNkiOv7fgfFjEIZaSah08ZIeV0/39fY3H4/odVn7pG1bgERSc+LIyzz15H5dS6mou5BB7P4SRADypL4K4nd3LOPi750R4H0P2EAbIEIDEObnmmXk5xSJRxkki14AM4/TAcUFehpN1+sPdKF6XT/9QYoPbgratra1pOBzWHUUoJ3AHShuoyO4IkPeDg4MLQoyHP/pOCYhXR0dHC0NDfceFVlCAGHMPXgLBGGSVn5IDMh5KKb0yo3Z8t/kaJycndXzhrPHcBPoQZ8JLL72kw8PDXt/yDOlfXB2IEZPJpOYkEMDYlidwHi+tGY1Gdaz7drLt7iuICR5IGgRBEARBEATBYiyNoCDNt3bDAQCpx+oPufPt8xAVID9YqCExnMtt9xAPXwX3wD4ID8dCctxGz4qor0K78CDNU++5DkTX0+bZmWJ1dbWSsel02isNwLVw//79akV36zyE3YkixNXvdTKZaG9vrxItSCNCDQF67X20JSMOz53wXAYXhfx8vr2mh16210RI8MR9z0xYX1/X/fv3K7FkO8GtrS2trKxUkcFDNWkTz9CdGN5+SZXYI/r4ajc5CC5okIPBGHKBhHIexgw7cJAtsLa2Vom71A8vdHs//cJz5p3w5986E9zZMxwOe+IbfcR9utCDuEFQIuPWRQsfa2dnZ9rb29N0Oq3CGbtC0HcEjSIE+M4bCAaj0Uivf/3rqzPByzYODw/1ve99T5PJpI6xRXkbLqRR5kA/7+/v1ywIz4HwchDGIWIjYyIIgiAIgiAIgj6WRlCA7EFWsB/7qi2EBsLi5AlyitW6DXW8LINB0gWHQUuK3Xru4X+L6qt9RZNVUsiuh8mdnp5qMBjUVWvq0z24EVEF8uvbaK6srPT6pe03Fy0kVfINKaZkAgcIBM+322ut8V6OwL16OKWXF7jlXFJvxd3LHCCEbqF3Sz1jg+fpWx9yT4gv/DBuaEubneC/c722ht/LDgCi0mg0qu6QthSAz9zVIOnC+Gu3gHTxhza1beGZtQ4ZiLC7ORB/ELMoz2jHMM/Kwz0Z2wgfLrh4foU/8+Pj4zqGyStAnPA+YOcHd/aQIXL79m3dvXu3Ch8ISvSPuxPcSbAItGF7e7vnwiEjwoW9NveiHd9BEARBEARBECzGUggKwEkRq8dODhdZuqV57TakzQmprz66hRlii2jQ1qS75XlRm/h7u7LuaOvBPb/A2+KE1wMRpXkQn6SeBZ6Va4iwCxBu2eYeEVw4j+8C0W436OGHvprf5ht4EKM/K+8Xzuer2l6+4nXv7eow3+dcCCHej8fHx7WdXjrgbgnftcLt8MBLAvx5+PGQXmz4q6urtd9wObTP0M+P8OPP0Um5X98dLoueP99xkc3HH98jUwNyjaDlRJqx5qIB9+H5Dl7e4s8Rko4whHsGJ4RnabjrwQUX3/1ia2urPkfGIWIFO1AgRlwWmMi4pHwDAcbnEW9XG4zJORblRARBEARBEARBMMfSCAqQTggLq6RY950c4U6Q5gGAk8mkZ2P21X0n8E6W3d7vwYS+suu13ZDH1sb/sPvinnAUsOIu9evPXRygLa0owcq1W90XkVMnt6xWHx4eajQa9foY27uvGNMf7So5x0A0yYPwfALq/Fty5p9xLggx9+XlIfSNE0/aRD/ywyq0t4X+4VqcF4HE0fZ7+2wpJxgOh9re3tb6+npvlwHItZN1vu9ijDs6vKzHCbY7HTinC2kukrUim78PCDUeHEl/uhjRWvvpq5WV86BQF90QVRAK6GNI/srKSm8rSs7J/eMu8PdnfX1dW1tbun37dt2BwQW8s7OzWqozHo+r8OVwwYNzEsDYigm8fzwr+gC0730EhSAIgiAIgiC4HKUlVzfSiFK+K2lf0os33JQ3pA1pQ9qQNjT4wa7rfuCGrn2tKKXsSXr2hpvxpI+3tCFtSBsu4kmah/Nv4rQhbUgblrUNC+fipRAUJKmU8ntd1/3ltCFtSBvShmVsw5OAZejntCFtSBvShicdy9DXaUPakDakDS8XSRwLgiAIgiAIgiAIguCREUEhCIIgCIIgCIIgCIJHxjIJCh+56QYobQBpwznShnOkDU8OlqGf04ZzpA3nSBvOkTY8WViGvk4bzpE2nCNtOEfasABLk6EQBEEQBEEQBEEQBMHjg2VyKARBEARBEARBEARB8JjgxgWFUsq7SinPllKeK6V88Jqu+eZSyn8ppXyllPLlUso/mn3+S6WUb5ZSvjD7ec8Vt+MbpZQ/mF3r92afva6U8tlSytdm/3v3Cq//5+xev1BKGZdSfuGq+6GU8tFSyndKKc/YZ5fedynlQ7Px8Wwp5cevsA2/Wkr5ainlS6WUT5VSnpp9/pZSyoH1x69fYRsu7ftr7IdP2vW/UUr5wuzzq+qHy97Hax0TTzoyF2cunn2WuVhP3lyceXg5kHk48/Dss8zDevLm4dl5H8+5uOu6G/uRtCrp65LeJumWpC9Kesc1XPdpSe+c/b4t6Q8lvUPSL0n6J9d4/9+Q9Ibms38u6YOz3z8o6Veu8Vn8P0k/eNX9IOlHJb1T0jMPu+/Zc/mipA1Jb52Nl9UrasPflLQ2+/1XrA1v8eOuuB8W9v119kPz938h6Z9ecT9c9j5e65h4kn8yF2cufth9Zy6un78m5+LMwzf/k3k48/DD7jvzcP38NTkPz877WM7FN+1Q+GFJz3Vd90dd1x1L+oSk9171Rbuue6Hrus/Pft+T9BVJb7zq675MvFfSb85+/01Jf/uarvtjkr7edd3/vuoLdV33O5K+13x82X2/V9Inuq476rrujyU9p/Nx86q3oeu6z3Rddzr7z89JetMrvc6jtuEBuLZ+AKWUIunvSfrtV3qdh7ThsvfxWsfEE47MxReRuThz8SK8JufizMNLgczDF5F5OPPwIrwm5+FZGx7LufimBYU3Svq/9t/P65onsVLKWyT9kKT/PvvoH87sPR+9SmvVDJ2kz5RSfr+U8oHZZ3+y67oXpPNBJelPXHEbwPvUf0musx+ky+/7psbIz0r6T/bfby2l/M9Syn8tpfzIFV97Ud/fRD/8iKRvd133NfvsSvuheR+XbUy8lnHjfZq5uCJzcR+Zi695Ls48fGO48T7NPFyRebiPzMP5N/EDcdOCQlnw2bVtO1FK2ZL07yX9Qtd1Y0n/StKfkfSXJL2gc2vLVeKvdF33TknvlvTzpZQfveLrLUQp5Zakn5T072YfXXc/PAjXPkZKKR+WdCrp47OPXpD0p7uu+yFJ/1jSb5VSbl/R5S/r+5t4V35G/f9DvdJ+WPA+Xnrogs+yXc0rQ+bizMUPQ+biWbMWHPuamYszD98oMg9nHn4YMg/PmrXg2NfMPCw9fnPxTQsKz0t6s/33myR96zouXEpZ1/mD+njXdf9Bkrqu+3bXdWdd192X9K91xZaRruu+Nfvf70j61Ox63y6lPD1r49OSvnOVbZjh3ZI+33Xdt2ftudZ+mOGy+77WMVJKeb+kn5D097vuvDhpZiO6N/v993Ven/Rnr+L6D+j76+6HNUl/V9InrW1X1g+L3kctyZh4QpC5WJmLZ1iK9y5z8Tmucy7OPHzjyDyszMMzLMV7l3n4HPk38cNx04LC/5D09lLKW2eK4PskffqqLzqrg/kNSV/puu7X7POn7bC/I+mZ9ruvYhtGpZRtftd5+MkzOr//988Oe7+k/3hVbTD0VLfr7AfDZff9aUnvK6VslFLeKuntkn73KhpQSnmXpF+U9JNd103t8x8opazOfn/brA1/dEVtuKzvr60fZvgbkr7add3z1rYr6YfL3kctwZh4gpC5WJmLZ7jx9y5zcQ/XMhdnHl4KZB5W5uEZbvy9yzzcQ/5N/DB015wC2f5Ieo/OEyy/LunD13TNv6pzO8iXJH1h9vMeSf9G0h/MPv+0pKevsA1v03kq5xclfZl7l/R6Sf9Z0tdm//u6K+6LoaR7ku7YZ1faDzqfqF+QdKJzZe0fPOi+JX14Nj6elfTuK2zDczqvQ2JM/Prs2J+aPaMvSvq8pL91hW24tO+vqx9mn39M0s81x15VP1z2Pl7rmHjSfzIXZy7OXPzkzsWZh5fjJ/Nw5uHMw0/uPDw772M5F5dZQ4IgCIIgCIIgCIIgCF42brrkIQiCIAiCIAiCIAiCxxARFIIgCIIgCIIgCIIgeGREUAiCIAiCIAiCIAiC4JERQSEIgiAIgiAIgiAIgkdGBIUgCIIgCIIgCIIgCB4ZERSCIAiCIAiCIAiCIHhkRFAIgiAIgiAIgiAIguCREUEhCIIgCIIgCIIgCIJHxv8Hao0fuWdrVhEAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 42894 428892\n", + " Min thresh = 1000\n", + " Sliding\n", + "\n", + "\n", + "027ns_image_4641643404894_CLEAN_ClassN_21-149.roi.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADYCAYAAABberBAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAD++UlEQVR4nOz9eZhk6Vndi64dkTHsmDIyq3qoVqs1IQkhBhmBQAJs2WDEDOYeMPYxk/EVHsAcPIGxfT1hrHvwPcbYx3Dkgw224WCBMWBjM9oygwQIgQAJzUNL6q6u7qzKjGHHHLHvH5m/L9feld1V3V3VlVn1reepp6syIvb+ph2da73vu94kz3NFREREREREREREREREREREPBlUbvUAIiIiIiIiIiIiIiIiIiIizh6ioBAREREREREREREREREREfGkEQWFiIiIiIiIiIiIiIiIiIiIJ40oKERERERERERERERERERERDxpREEhIiIiIiIiIiIiIiIiIiLiSSMKChEREREREREREREREREREU8aUVCIeMaRJMk7kiR59a0eR0RERETEMZIk+VCSJJ9zne/NkyT5mKd4n6f82YiIiIiIiIjThSgoRDzjyPP8pXmev/FWj+OJkCTJhSRJfjpJkoePfvl97q0eU0RERMTtjiRJvjJJkjclSTJJkuSNt3o8EREREacRN1qYvdb14u/FEU+EKChERJyMjaSflfT/utUDiYiIiLiDcEXS90h63S0eR0RERETEMeLvxRGPiygoRDzj8LTaJEn+XpIkP5Ykyb9PkmSUJMnvJ0nyoiRJ/maSJI8mSfKRJEk+1z779UmSvPPovR9IkuQbS9f+G0mSXDxSUP+cK65JkjSSJPknSZJ8OEmSS0mSfH+SJOlJY8zz/FKe5/9S0ltu4lJEREREnEokSfKKJEnenCTJwdF36r9IkqReetsXHH0P7yVJ8t1JklTs83/26Lt6P0mSn0uS5DnXc988z38xz/M3SHr4Rs4nIiIi4rQhSZKXJEnyxqPv2XckSfIl9tobkyT5c/bvr0uS5FeP/v7LRz/+3SRJxkmS/MkkSV6dJMlHkyT5jqPv5A8lSfK/PtXrlccafy+OeCJEQSHiNOCLJf07STuSfkfSz+nwbD5L0j+Q9H/Zex+V9EWSepK+XtI/TZLkkyUpSZLPk/RXJH2OpI+R9EdK9/n/SnqRpJcdvf4sSf+fmzGhiIiIiDOOtaRvlXRe0islfbakv1h6z5+Q9CmSPlnSl0r6s5KUJMmXSfoOSV8u6S5JvyLp/3kmBh0RERFxFpAkSU3Sf5b085LulvTNkn44SZIXX+uzeZ7/4aO/flKe5508z//D0b/v1eF39rMkfa2k1z/N60VEXBeioBBxGvAreZ7/XJ7nK0k/psNfQF+X5/lS0o9Kem6SJH1JyvP8Z/I8f39+iP+pwy/izzq6zldK+jd5nr8jz/OJpL/PDZIkSST9vyV9a57nV/I8H0n6Lklf9QzNMSIiIuLMIM/zt+Z5/ut5nq/yPP+QDoXdq0Tao+/TD+uwTOFPHf38GyX94zzP33n0vf5dkl52vVkKEREREXcAPl1SR4e/7y7yPP/vkv6Ljr9Hnyr+Tp7n86PfkX9Gh78bR0TcVERBIeI04JL9fSppL8/ztf1bOvzSVZIkn58kya8nSXIlSZIDSV+gQzVWku6T9BG7lv/9LkktSW89Si070GEt2F03ciIRERERtwOOSs/+S5IkjyRJMtShKHC+9Db/jn1Qh9/BkvQcSf/MvmuvSEp0GDWLiIiIiDj6nTXP84397EE9ve/J/TzPs9L17nu8N0dE3ChEQSHizCBJkoak/yjpn0i6J8/zvqT/qsNfVCXpoqT77SPPtr/v6VCceGme5/2jP9t5nndu/sgjIiIizhy+T9K7JL0wz/OeDksYktJ7/Dv2AR37HnxE0jfad20/z/M0z/M33fRRR0RERJwNPCzp2e49o8Pv0YeO/p7pMBAG7r2Oa+4kSdIuXY/v5adyvYiI60IUFCLOEuqSGpIek7RKkuTzJX2uvf4GSV9/ZHLTkvkjHCnA/0qHngt3S1KSJM9KkuQ1j3ezJEmaR/eTpMbRvyMiIiLuBHQlDSWNkyT5WEl/4YT3/PUkSXaSJHm2pG+RRN3t90v6m0mSvFSSkiTZTpLkK67npkmSVI++a7ckVZIkaR7VGkdERETcTvgNHZL8v5EkSS1Jklfr0FPsR49ef5ukL0+SpHVkLv4Npc9fkvT8E67795MkqSdJ8lk69Bz7sad5vYD4e3HE4yEKChFnBke+B39Zh8LBvqQ/Lemn7fX/Jul7Jf0PSe+T9Oajl+ZH//22o5//+lEK7y9KeiKzmqmk8dHf36Xj8ouIiIiI2x1/TYffsSMdirEnmXT9lKS36vAX1Z+R9AOSlOf5f9KhCe6PHn3Xvl3S51/nfb9ah9+136dDf5zp0f0jIiIibhvkeb6Q9CU6/G7ck/QvJX1NnufvOnrLP5W00CHR/yFJP1y6xN+T9ENHpWX4JDyiw9+PHz56/59/mtcrI/5eHHEikjzPb/UYIiJuCpIkeYkOf5FtHBmDRURERERERERERNxWOMpw+Pd5nt9/jbdGRNxwxAyFiNsKSZL8iaNUrx0dRsj+cxQTIiIiIiIiIiIiIiIibjyioBBxu+Ebdeix8H4d9lE/qe43IiIiIiIiIiIiIiIi4mnipgkKSZJ8XpIk706S5H1Jknz7zbpPRIQjz/PPO+resJvn+Z/I8/zirR5TRMStQvwejoiIiLj1iN/FETcbeZ6/MZY7RNwq3BQPhSRJqpLeI+mPS/qopLdI+lN5nv/BDb9ZRERERMRViN/DEREREbce8bs4IiLidsfNylB4haT35Xn+gSMX0x+V9KU36V4REREREVcjfg9HRERE3HrE7+KIiIjbGls36brPkvQR+/dHJX3a4725Xq/n9Xpdm81G6/Va6/Va1WpVlUpFW1tbqlQOdY88z0VGRaVSUZIkkqTVaqXNZqNKpaJKpaJ6va48z7VarcL18jwP7+c6fq08z7XZbMLPuVaSJEqSpHA/3uvvr1ar4XVJ4Z7Ar8X1qtXqVdeTFF4HPnbmxM9YnyRJCmPic1yvfM1rgc8wLx+jz8PHI0lbW8dHijH62rBefg2uy9h9vOV19/1knJwV1p11ZI0ZP5/h8/6Ha/Bf/4yvafn8+Dx8LxnbSeft8da6fK9qtRrGs9lstFwuC3vvY/V7l8+T46Q1fbwzz/PoZ83PuL/OtU/aYz+P/h7m7vf0/fPP+/r5GHzc5euWUb5Gee/AarUqzGm5XO7leX7XiZt3uvGkvoclqdpp5w88N9Gj866q75s/0VsjIiIinjHMlGmRz6/+Yj8beFLfxfF7OCIi4rRipP0Tfye+WYLCSV/6BTaVJMlrJb1WktI01ctf/nJlWabxeKyDgwNVq1W1Wi2dO3dOOzs7qtVq2mw2WiwWWiwW2traUq1WU7Va1WQy0XA4DJ+5cOGCGo2GRqORBoOBhsOhJpNJuHe1WtVsNtN8Pg/E54g4aLFYaDKZqFarqdVqqdFoqFarqdlsqtlsSlIYx2w2C9ep1WrqdDqBUE8mE43HY63Xa0lSvV5Xt9vV1taW6vW66vW6er2eGo2GJGk4HGo6nWqxWIT393o9SYcEeD6fq1KpaDabaTweazweK0kSbW9vq91uq9lsarlcajabFUj+YrFQpVIJ42M8JwHiCra2ttRut9VqtbS1taXVaqXBYKDVaqVKpaJut6s8z7W3t6fxeKzFYqFms6l6vV4g5fV6PaxjnudaLpdBAGq1WpKk2WymyWSiyWSizWajer2uZrOpXq+nWq0W1mE2m+ng4EDT6VSr1UpJkqjdbqvT6YQz8uijj2q1Wmlra0udTkfnzp0LZHW1Wmm5XIbxLhYLLZdLVatVdTod9Xo9dbvdwlgnk4nm8+P/qUN6XQBpNpva2tpSnufKskyLxSKsA+N2ourCQZIkajQaQaDhHLJnvV5PaZrq4sWLOjg40Hg81mazUbfbVaPRCOuLiLZYLMKZd3Fls9moWq1qa2tLjUZDzWazsCbValXNZlO1Wi2cyyzLNJvNtFwuC2eBOWRZpvl8ruVyGdYBQWO9Xhfey9mr1WphPKvVKtyv2WxqsVhoPB6HvW02m0FMWSwWWq/X4blHCMzzPHy+Wq0W1pi58+/lchmuXa1WVavVtLW1FYS5zWaj8XisyWQS3jcYDB583IfmdOOa38NS8bu4WdvWs174t/T8g6Uq7/+dmz2+iIiIiOvCb+S/dKuH8HTwpH4njt/DERERpxW/mP/4ib8T3yxB4aOSnm3/vl/Sw/6GPM9fL+n1krSzs5Pziz2EB7Ixn8+1Xq/VaDQCMSAjAYKCuODEAwFgvV4H4gjBgKBKCmTI712tVgPR4tqQJKKhjUYjjNEzISAnjUZD0+m0kMWQ53l4XTokphCbVqsViCrCQLvdDmMlYry1tRXEAwgq4gFiBcSonEWxXq/Da+VouWcF8DrrD4FrNBpK01RZlklSIJndbleVSkXD4TCIDZ6psFqt2PNA7Nk71rJaraper4e9cmJNpJ794Q97whiTJAkEEcFHkjqdjur1epgfApGksIcIB06mPXJ+0nqdBEg5ognv9fGSEeHiznq9Vr1eL2TkcHZns5nSNFWv1wvnbTqdhnVkzWu1WliHNE0lKZBw5sO+8tx4pkz5vPhacx8+y2f82eA8slee+cC/PeOBZ5Yzz7yr1WohW4lnhDUjS4Zzxn03m00QIHxt2YdyNgM/8/Xg/txruVyeuM9nBNf8HpaK38W9ZDdPf+o3n5nRRURERNwZeFK/E8fv4YiIiLOGmyUovEXSC5MkeZ6khyR9laQ//XhvTpJE9Xo9RC5rtVogZNPpNEQ/IUDL5bJAqJ1YrFYrTSYTdbvdQK6n06nm83nISJAUCOV6vVaWZYFAUTJBlBkiLSlEUz1iDiFyYaIckYcAQejr9Xq43mazUaPR0Pb2diBtkMjJZKJWqxXS9hE4Go2GFotFIGiMgXFCXiFKkPRKpRIiyIxFUhBKPIXeI9fz+Tzct9PphPnOZrNCFsF6vdZ4PC7cu1qthr9D7DwLgvdzfRdJ5vO5qtWq0jQNBNZFHtYEQgoR7HQ6IYOB7JVerxeIKusAiMAzLsQizqOvCeDvnEvpON0+TdNA+BGBODOIT6wNBJt5IZqQjbJcLjUcDkPGCnNdLpdhnVzw4F79fl+NRkPj8TishZf2kHHB2joxL5dMcJ58X1lHXmOulCshCnL2fb6IFuXPzufz8D3Aei6XS9Xr9SA4sU8IbM1msyDAlMUCfu5CBGfJ38PcyRTxDIgzjCf1PRwRERERcVMQv4sjIiJua9wUQSHP81WSJN8k6eckVSX96zzP3/F474d0pWmq2Wym6XQaCAzEFTJQq9XU7XY1m81CJFtSgUiQrtxoNLS1taVWq6XZbBYijqvVSs1ms+ADMBwOQ9p6o9EIZI5oapqmgZQ5iYF4cG2u2Ww2Qzo/QgOlErVaLRA55tlsNtVutwOJW61Wms1mIR2eaC4EkqwACBmElLVApPGINwTbsyScLHuK+tE+BjGBP0mShIj/YDBQlmXqdDqh7OLSpUthjfnjogJwf4DxeKxaraZ6va52uy1JoUQAYYX0dLIZPFMEcsket1otdTod5Xmu8XisK1euaLPZhBIWSWFtEDGq1aoWi4Wm06kuX76sc+fOSTpOzy9nrbCf7A/nhHXb3t4O5QCcRamY2YAYQSYGAg1/tra2wjk8ODhQrVZTu90Oc86yLGQGsH98lrOPwDUajQKRJvOB6DvlAi4CsCachyRJQrYD2QG8hwwW5s7rZN0gAiCkecZOmqbhOWZcrHe9Xg/ngHl4SclmswllRogsrCFnm2eIvUM0QKRDjEE44/Oe8XRW8WS/hyMiIiIibjzid3FERMTtjpuVoaA8z/+rpP96Pe/1iGWr1dLBwUEgXmQkTKfTQOY9wghJ94hxnucajUahfr/Vamk0GoUorHQc6YbID4fDQo12s9nUZDLRYrFQkiQaj8eBfGZZVhgHZAshxEUOSJBnWHiEGrKT57m63W4gYET8IW1kW+CxAJnmdeaEeICg4MQJ3wCvLUdQ8BpyCCERfdbffSsQRSBxeB7s7OxoNBppPp8rSZJA8rkXogjiS6PRKKTTI040Go1A8rz0wb0gIL6+F/hGpGmqJElCKQPiTaVSCeNmX/r9flgzRIyDgwO1Wq1ALt30j3sCj4y70IRoBWEm8u3ZGx4NP6lMg58vl0sNBoNA/DudThBuEORYU67NGNhLFwTYGwhzOROE88R1OBeeFcH6gjRNw7PsfgkIPng4eFaAZ8YgPHgGi4/HxRvWdDqdhv1n/zjPzJnr8OyxZv5csS8IQLxG1s1ZxZP5Ho6IiIiIuDmI38URERG3M26aoPBkQISQcgdIg6dRu9EgxJaf41UAPH2aKK0buXmkuV6vK03TYAjnKduQDIieu9x7BBcPBK/lZpzuZVD2JyiTUjwKlsulsiwrCAoQK/dHIGUcsl7uaEDaPmOGXDNO963w6LWkkA0yn88DKZvNZuG9ZGEgBDAuhACIsgssPtcyaYSk4h3h2RWIGmQxsFcIClyjvDaNRkPtdjuYZyJIUFIDiPy7WSeRctay3N2A/YXE+vqzT6TuM05IuAtbvBdBwI1HMe8kGwCxgYwCL8UBTqgRE/AfQQBgjLVaLZBrfEc8Q4WxM0Yv0WCNy54GvmY+N/fR4DX3avDvATerLJcwMC/W0vfbvVc42+y1ly9wxn0ensVD+QwCRkRERERERERERETEyTg1ggIRaCLIXmvupNyN7mg1ORgMCrXOpOpjygiJhDhAkEl9brfb6vV62t/fD1FfyBzX8kgopMWjm51OJxBBFz4YK2RQUhAKPOV6tVoFF/3NZqPRaBRKPSiZgChyfQg7xIv1cKM75si48ZLAg8EFl0qlEkwwJQXRxgUVyji4pvtZeMo+r21tbWk0GhWMASHIkNl2ux0I33Q6DSIPHQzwuIBsNhqNsE5chxR/6Zhg4yVAZgbXJisCQuslKIhEvkaSCiUBi8Ui+Ds4GfUsDEg2olVZQOF8I+iwn2R8cL75Q7mKZzB4RgDngPExFhfVJIVrMw4i8rSkLJcveDYNzyLn1p83sjRcRHGBxa/pf9xjAYGMffZz6+/lTPMs+LryeZ4XBC72h2fF1wtRgX1CzCNLISIiIiIiIiIiIiLiZJwKQcEzByqVSogqQ1YhcCcZCjabTd11113a398vdH/A1A8y1Ww2Q/o85Aly1mq11Ov1CqRfUiAs3J+adQSPcvYAZoCQUfwAJF31fiLSYD6fh4yCNE3VbrdD+zzIr5vSScclFSetpZcWYKbIOK9cuRJaT3qGAu/xTI1utxu8ALIsu8qwkNKC2WwWykw8jd9NNiHhjI8WgZKCB0Oe55rNZuGz/X5ftVotZCRkWaZWqxVKH5Ik0cHBQSixYDwQzWazqXvvvVePPfaYFouF9vf3g/Gfp79D0BuNRmgx6kTbO3iQbu/dFdgXSCiiBpkcTs75O+fNPSogz9PpNKx/u90OZRleFoFg5hkcEO/pdCpJwbuAzA43U2T8rAPrzvNAeQ8ZLd6pgvNHRwvEND/fzN/9JlxMcDENIQrxye/hhpAuspQzZCQFUYB98zIj5u5dXhAUEDBarVah/WpERERERERERERExOPj1AgKrVar0M8efwDIERHiSqWibrcbPgupxkSNEgBJIVKbpmkwf1ssFppMJgUjxeVyGbwUPFtCUohc8l43J/SMCd4DkYc0egSayKeXFUjHYsN4PA41+9vb2xoMBprNZmFMECEIOWsnHUd+icJKCk7+EHwi2hDKwWCgyWQSXk+SRO12O5RdQFIhZ3QcYAz8FyK7Xq+1v78fCD+vU34AWUOM4DMelW+1WoUsErpIlNtJQlTb7baSJAllLzj/ewZEo9HQzs6OptOpptOpJpNJ+JykgpkfnhusH9dhPHRbmEwmhVIW1gDi634UksL5K4tDlOxwRjESxCCQve31eup0OqF8g3tw/j1Szzg4/5LCulCaw9lgnJQzsBaIcBhAeqcQzjPCEmeMjBovi/EyHDdG9DPE+ChVYM09E4K1Rjgi84L3e/cI3s/1G41GEOzKgoLvM+/le8D3ICIiIiIiIiIiIiLiapwKQYEorhNhjBElaTqdBpJTq9UC6fSadN6LiaKkQnYBdfkQESd9kNw0TQPhc2NCMhW8rSPRWsD7KK3w7AN+Tj2216x7pHY2mxUi/7Ro9BaRns2BWOFGeL4u0rFYQXSXrInNZhOIKXNaLpdK0zTMgTVI0zSsJ9Fo1tzr3d3YjrFKx+UC7rtQLj/xbAFvqwn5J80d0sp9fRxeJsPe+fkCiD4QXzJKEI/IwoBIS8f19uWyANbESb2fIT/jTu7LrS95P2U2/IyMhDRNC9koiCsIS5xHL6NhTbkvQgwiDyQcEcD3AqNNb+HoZqMOP4c+X/dj8Ps+kU8CGQZkmXi2i59z5uVtHn09GDPj4zPlsblJKnvs5U5RUIiIiIiIiIiIiIh4fJwKQUFSqLsnQos/AfX2ZBZADngvhISoMnDzw8lkom63G0g9KdhcH3IO6fQ6dC9pIIrqPgbSce08JJGUd16vVqtBTPByi1arVUjJ9nljFEiqv0eEvZSAaDHRbzcH9HZ6ECiuKx2216TkwKPWbja5WCzCOCG3lC5AvAH3haBD9hADIGqUYdTr9dBJw/fMM0CyLFO32w1dDySFzhFkZJABgQeBE1GIKR0PqtVq8GSQjrNEyADBHLNs8impQGY9Mo4BKFF+outuiOmZM2RnuLkkogT7xDzcw6Pb7YY1IFrvfhqcTQQFIu+cF0qAXCjzLBvpWAxBOGq1WkGk8IwX9y/wdWbu7Atj9cwYP8981n0UyNSga4pn4ZRFBbJKOPsIZMyFPUDwYBzM3/ef5xvTS56LiIiIiIiIiIiIiIiTcSoEBX5pp459MpkUWtNtNhvt7++HUoX9/X31er1A4PnjJMBd5UejkbrdrprNpra3t5VlmcbjsVqtViBonkZPRL5Mjrx+3N3tfRxEnMvRWmq+sywLPgvj8Tj8vFaraTKZaDqdKkkSdTodNZvNUKZAqruk0A1CUiHS6t0uiN6yFpPJJIgJ1Ks3m0099NBDQTyhPST3YD6Q4bvuuksXL14MAg/E2o0Bm81myCJAeKDDAin3CBVkFjz66KNhv+bzuXq9XiHV/vLly6pUKtre3tbu7q4Gg0Eoj+GceFcIslTcxwHy6utShqfTexmH+xsg/PT7/WDuyN4Qzd/a2grZH2Q9+JmgTMHHyN4iRCA2sH9XrlwJZzNN08JZdF8N5tlutwNBdv8A5sK6MB5J4Vkg62IymRSyehCTfK9BpVIJHiLe8cFNKr0cwctBvASItWddeOb5LvB1dCNQzzrwdWbejMlFQT6DuODlUBiQehZSREREREREREREREQRp0JQgDCTJdDv95VlWSC66/Va3W431HePx+NgCOcRTE/ldoO69XqtLMtC9gAp9JALSh0kBWM/Irykp3tWA+QEsufmb0SbJRVS+/lvr9dTmqYaDofBqLDRaAQCD5HzzAsiqkSk8XzgNQB5d9M7ovbz+Vz7+/vK8zyICtvb25Kk0Wik6XR6lTiACMAebW1t6dy5cxoOh8Hzod/vX+UX4DX00nG7ymq1qp2dnTBfiGC9Xtd4PNZ0Og3zcTO/+XyuwWCg5XKpu+66S91uN3RiwLzTO12QsUEpi3d/YK8gi3TXQAAgC6bT6YQsEIg94yJaT3kIe+6lMpKC6IEwxTpKCgIU2QougLEmnDFfg81mE7qBMBeEjSzLJKmQccM6IHhw5qVjM0h/dhg7JqaIe2maFp5LzknZj4DnqmySiAiFOEVWgT+jnLk0TYN4wvx5H9d1vwo+xznk2XeUsxzc+NEFDC/p4RxERERERERERERERJyMUyEoSArp/o1GI5gukqYNgZaOU/NJv5aOU/SlY8LnhFpSIFYYQDYajUBwIHZEu6VjIuTRXa9RdzJIxJWSCo8cl6O1pP6TaQHZJ3XbDRAhOUSs3dQOAg9xh2jh9cA4Ie2z2SyULHDdTqejXq8X1hCzQCe/7qUgHXbEwJcCQQVCVjab9LZ/kGJKIYgMI0gQyXdDTIg196GTBNkB3jWgXAIBwScTwuEE1P0xvPuCtyas1WpXnTfECcgxZRi+19wf/wrAmlEm4eQaQGgh4i4MQLo5RxB2DBeZj5cdkMVQ9llgrGQClct82GfWkdIdSmx4DtgvzkH5jDJv79DC65RLUD7Cc4SvCWPw8bLvJz1nXNtLVfg+4Tz6c+3zpcuHiy4RERERERERERERESfj1Py2TDSUyDtkg3puopGQOTdfdONAr1mHrBDpJQuC9oBuMlcmOeVWfggOEBknUhBefAEojyA93O8BSW00GqFEgUyIRqMR5omwwJwgWVwPckYE3v0mWC+IEgRsPB6HbgpJkhRaNW5tbYVuGhBMz3SAGFJuAfEu1+WzP4yb+zNmTBYlhQgwYyVTQTquyydrAzI9Go0KJRsuBkAg/Z4uzAAEF88qcaGGNHo8F8qCghteIvh4tooLPZ6xUm7riL8E7Rw98s85Ye8QW9zbA7HHxQMXH7wMALGk7JfgWQnMqXxtRDzOmpcuAK7BvD3jwgWjcqmJm0kiVPEMUfIDlstlOJs+By9xcb8TzrCD/T7JZBIBA/HN5xcRERERERERERERcTVOhaAAWZ9OpxqNRlel2kPIIEik9Ttpod7fyZ50THCI0kvSuXPntLu7q2q1Gu55/vx5SQoigAsKlC54+vlqtVKn0wkR7tlspk6nE0hNv9/XdDoN4/A2hpvNYQu/e+65R+PxWMvlUlmW6a677gr3IUoKqScDgvWYzWahvZ1HZyHBGB/SBq/T6QSPBO/60Ov1QqTchQFJBSNMXiOyjiBDdgXE2/0mAISe6DXeCly32+2GtpKdTkcHBweSjlPRIYfL5TIIDufOnVOr1QpeAS6m8Fn2ajgcFtpEIi6RwUH2AFkas9kstIUkUg6h9+4NlDIgPmAwyZpQWpNlWYFIYzYJsaVVJ6UUnBMvfahWqxoMBoHo8nPPAPCOF1mWaTgcBlLMfnnrSswwOSfeqYFMHveIWK1W2tnZCWvG5z0jhcwTSnQQnHy/vQMK5xCx4uDgQKPRqGCkyT0QF/2cknnhmTyeEeHig2fa8GxlWVYYH+1rOf/MMSIiIiIiIiIiIiLiapwKQYFItJM5XP2pA3diAAFAVFiv1xqPxyGVHvIpHUYwy6nhi8VC3W43fHY6nRYc4TEmJKrq7ef4DNFpDBXxFIAcehmAR5+pqacWPs9zTSaTEO3ns0mSaDKZBIJJ9wFPYYe4SsUaeMoGKpWK2u12oTPGRz/6US0WC2VZViBh1MJ7GniaphoMBleVNkBanWxKCpHlcpmImwF65J6sDveZYK/c9BG4H8TBwYEWi4X6/X6BdFIm4z4C7K9nUHAOuCdEdGtrS5cvXw5iCSaHrLEbdRLBp60jnhaj0ShE02u1mnq9nrIsCxkn0qEIRheDJEm0vb1dECogsmVhC6FpPB4XSn1YZ0wv2+22qtWqDg4ONJ/Pg+DkwgL3Yr8RrhCsyGJhX/f393VwcBAEFDdBdINEbzdJdsl6vQ6vcf7JpEHAq1ar6nQ64TtgvV7r7rvvDvuISaMLBa1WK1xnNpsVzpp7UPh3ByUqjJlWtJwPRCpJUVCIiIiIiIiIiIiIeAKcGkHBiShkjtcgbxAYoplOZCATHmH39nJec090n8gzJBUyDwmSFEihZwpwT49Qe80+0V3uhxcBdfYQagwgEUAwaMQ4kmg3af2kozvJJuOBunBP5Sd1nlRu6bBV5GAwUJZlYd0gYI1GozBvykOIvOPsT3kC84Y8Q3BZF3fm9+iw1/CTmu/R+HLZAPPks4gNs9lM0+m0QCDdVNI/w3lwE0SECwQVXmu1WoG4IkR46QvrAyClnBWMHJmTGwzyB7JLtgZnj/FOJpPCHBB+KMmQjks3fM0Qxur1uvr9fvi5CxRezuImhZxLnsPxeBzmw5qUnwvfV/ZTUsF0kywC5u0dM7xMhLNLpgTCV5qmBa8Jf7bxuEA4KLd75fwhCvpekhHCM8CceGbKJSIREREREREREREREUWcGkEBEUA6Tkn3n0kqRB89AkokmXp5SEO5rSDEB2NAN9Qj2s+1IXTScZ23R0bdtR4SxDgWi4VarVYgb5IK5MQN+CCz1G1DfhAWMKXkjxMlN7PzLATvagA58tZ/mD56a0AIq5vpIZZ4RN/LFxqNRhg3xJj7eMmJmwTyM9YFMcLTzjHEZK2YgwsCEEo8GbyG3oUkr6v3LBcILmfE6/Y7nU7wIWDufB7RyqPzXubAWiM4uTBD5J+sBzebnEwmoV1mpVIpZLKsVqsQ3feWid79gJ9RYtBsNkMWjiQdHBwUOkgwds4la8Car1YrZVkWSjfIwOA6ktTr9QqtMiWFzAZEEl+j8vPp4+ePm2p6dxbOlmcI+fPJ/Pl5WehwccmNRsvfNT4+P8cREREREREREREREVfjVAgKkq6KLkNCpWNizHsQAiCZeAMQHYUweBScSLjX8Tu5oAMB14asAyKW5XExHtLaKW3gPV4mgBHjdDoNEWyIfL1e10MPPRRaJzYaDZ07d06Swni9DSJE3zMwINtO6JwgkR4uHRKnvb09ZVlWcLgnS4E5EJ2WDoWYwWAQfAUajYY6nY6Gw2GIJp8kKtDWkH3C8wLhhrr+zWYT7uX1/l52Uo4aQ9K9dr/dbgfi76+7x8N4PA7r6kaA9Xo9tCildMF9CNgb9+ugzALho91uF8bv8yq/HxI8GAwKJQZkhiAorFar0J2k2Wzq4OCgENWnHIDMCgwvd3d3Q8bEZDIJ96cUhtICN2hkXOPxODyLOzs7OnfuXMgKoSzJy1iAmzhiwCkdd4xws1Q3Q6UExTOW5vN58M3ARLRSqRTKIhACEczIbuLZ49xwhjxzJEkS7e3taTAYBDGGs8n9IyIiIiIiIiIiIiJOxqkQFDyDAPIPicNYr1z24GS82Wzq0qVLIfpLereTUHeIp6zB2/atVqvQdaHT6YSIMtfyCLGXIEBgqtWqut1uSKGezWahW4X7DhDBHgwGwTiRefR6vRDtzrJM586dU7/fl6SQTeD+BF5qgVEfa+eElzFvbW1pZ2cnEG+uh7jSaDS0vb1dKBmRVIiaQyiXy6W63W4glZPJROPxWNPpVGmaFiK85YwCOjV0u11tbW3pypUrQTDxcgovZ4HoubAE2Av2tt1uhwwRSgQQEvA5oAsHkXHvilCv19VqtcJ58DR/1ok14efsEWcFwl4u4UF08C4KZCN42Q6lMH7OMOZM0/QqU1IXmRADIM3dblcXLlzQpUuXCtkWtDhFTEMkcFFkMpkE8r+zs6Pd3V0Nh0ONx2Pt7e0FP5J2u61utxtEIp4DOjXU63Xt7+8HkUVSweeAf3tGCJ4ZeJqwtp7FMpvNCkKie6vwM/+e4bpe4kCHmel0qkceeUTnz58Pwk3MUIiIiIiIiIiIiIh4fJwKQUE6LmdwcldOUYcIegYCZJ1IKITcib+XTnj7STwG2u12wewNM0CvWXeTPUoREC/onFA2oyv7LuCkX6lUAkni9UajEcgaUXN34U/TtCCU0CnCSx8gYGRluON9OeNgsViE+7EmbmzpDvoIEO7uT7s+IupcH/IvFb0uGDfrBXll78juoJ0ihLder4esBtYO4YD3uQiFOEKHBbpt8HPKOLrdbsgUKBttQujpjLG/vx+i/tKxdwEimJ9b5kr5gP/M2xP62SZzhX1aLpdBEOE8e/mOm026WNRoNCQdlwxNJhO1Wi3VajV1Oh2Nx+PQXYJxMC7P5OGMcw86ZSDGIGQNh8PQBYSzTyZGkiShHAYC3+12NRqNQpcWz66Qjg0ofT8524vFIpQmcD8/1y4gIFiwXuXvGcAZ293dDaIYZ9C7pkREREREREREREREnIzKtd9yMpIkeXaSJP8jSZJ3JknyjiRJvuXo57tJkvxCkiTvPfrvznUPxozePLWdiLTXQTtRIGrr3Qq8NKHs0QAhd2d87wLhdeik23sUlDH6+2k3SSmAExc3H2SslCMw1kqlon6/H8wiicxCiry9IWP3NH5v94dAgAjic4MIdzod9fv9kE0gKUSVIXKMjXWC4HMPRBXEF2rmvf6fFHqi3MxrOp0WHPaZGx0vfK0h2U7OuR7kl3vQtQPRyCPnrB0ReMSQxzuHtNvEQ4M/ZF1QHkMqvp89SK93scB3gr3kddpfMhb2CSGJa3Nv5uZk3O8JqcbHAU+ONE0LZ5Mzzh/PlkBA8u4r3v2EZwDBA3GD9eB8cw7o4ODdIbgWZ5Qzxvqwp8ybbCBfe8qT3OOk/Kz7885a8W/Ep16vFzJmEPPyPD/xfJw23Izv4oiIiIiI60f8Ho6IiLiT8XQyFFaS/mqe57+dJElX0luTJPkFSV8n6ZfyPH9dkiTfLunbJX3bE12IX/SJ9hKN9BIBiK0b80GAPE2eKLX3uucziACSQqs/IpBE3knzhqykaRoirS4KeDo7UU03PyQbAbLDtSGRZEIgJiBsQL729va0v78f/AAw9iN13jsrSAqZFBBDuh9gnIdPhHTcOg+vADo+UP6ASEEXBD4D+ed9rD8tCjebTcikgJB1Op1A/tk/MiHa7bbuueee0Bp0Pp/r8uXLYS18HVl/MjFcsIGksg/T6VRZlkmSOp2Ozp8/H0onuE6apuEaHvkuk9tOp6NOp6PBYFA4g3SHYKycMdL9KW3gDx0yODtEwTkjnU4nCDqsH2caUassFLFuZNBw/kjjJ5VfUhBWINEIR1yHjBRECHwfEA0Wi4XG43HIKuh0OtpsNsqyLAgNiDRenoK4w2f6/b7yPC9kSrDuiAG+Zv4cM1c+4yUsPPOz2axgwOplIZLC84hAyTPZ6/VCNsfBwUEQSBDJTjlu2HdxRERERMRTQvwejoiIuGPxlAWFPM8vSrp49PdRkiTvlPQsSV8q6dVHb/shSW/UNb48IcMQXdLcIeFExKVjgkA0mlR2T5EuG8URYZaORQvM3tbrtba3t3XXXXcpSRKNRqNAXCBG29vb2t/fZ94hGuyGf6PRKERLvT6dsUB0mePOzo7W63UwgyM9ndIN2juORqNC60fmKimQTu8KIB0T7Ol0GgztIF4end3a2gr3q1QqBWM6Sgw8sgvp9q4LpKND/smu8DaGCChkjSBiHBwc6ODgQDs7O6FmfzQaBZPHTqejVqulTqej0WgUhAJKLBgDe4zQsF6vNR6Pg4DS6/V0/vx5jcdjjcfj0DUBQYDPebcJLw/Z3t4OwgpnDE8LDA4h62XPBs4jZwJBodfrhfG5gSTR/nKmQJIkGg6HIbMjy7JA3hFx8K8gk4QxE9UnOwVhxI0YicTz3CEsIWggUHhWA6Uz+I/s7e1pvV6r2+0qTVPt7OyEZw3BDa+QJEnC2XThjfIf1mlra0tZlhWEAbIuyIhAMCNDxM8rmTR8BgGPs424wv3uvvvusA7ufXGacSO/iyMiIiIinjzi93BERMSdjBvioZAkyXMl/SFJvyHpnqMvVuV5fjFJkruv9fk8zwPhkI5TziGrXgtdrokm0sjPieB6CQCEzmvwSQuHEBGN3mw2oc7bTQCJzPtYICkIC5AwSL6ne9NhgfaCRGuTJFGWZYH0eDbCeDwONeJuCEgZgLviE0kmQgsxJroMCWRMzJ1oN6nqzJFxs8ZEcr0Mwb0RvNwDwYP0fGr7SfmHsNKVYHt7O9y/2+3qscceC4aR+BmQzeFlGZB+9pZ1diM9zDHLKf1eqsH1PIpNVsXW1lYwxoRkAoj0aDQKZRW+xsyZzBgv02A/AN0syq1SGQ/nj/0gEwIi7GU4GI6SRcPP3IiQPWWOrDNrwFlyzwa8CryLQrvdDmd3Pp9rNBqF5wPzSjeW5HrsE0IH8/SxuuDlogBnzg0zuS5nkT30n/PdgMmrt7V0U89+v1/IWDpLeLrfxRERERERTw/xezgiIuJOw9MWFJIk6Uj6j5L+tzzPh2XC/wSfe62k10qHxIOUe0mh/tq9E8pRTO4DGZCOiW2ZBEAqPMWc+m4IBuUPRM+5BveiEwT3RTCASBE5JjMBQHxJT4fISwqRWr8WRDBN05C67iaLbgxIJoCnd5MS7vXviASQR+bmYyHFn89Dyoj4e7bHSZ0WWGPIv9+XbAj2GnGgbGhJ1Jv2f5DsbrdbKOXwMZbNGvEKcN8FzzYh2k4aPj9nnd380zt09Pv9YNzHunAPSjgg6xB5Nx701H3pWFxxcaos4nAN1i9N0wI5Z+84z/5MsKe+Tu6H4aaWrB9n3A1N3cDRxQEXRhCzEHym0+lVWR8IYGS3UE5UNhp1g0W/JyVCbpzJGWY9/dlg/qyJCxAIMWQQ8Rn2lBIeBK+zghvxXdxU6xrvjoiIiIh4PMTv4YiIiDsRT0tQSJKkpsMvzh/O8/wnjn58KUmSC0dK7AVJj5702TzPXy/p9ZLU6XRyCBJp1WV/ACelEAxPfya9ufzlDSlyAzv3U6DswKPvEECPNPO6gwg/Tve0x/Pos5voQVggXffdd19IT3czREwTyRiA7ELGWBeED8+4oJ4dMsb6kKmAWOMlJC4MsEaMhdcgmJBw90Tg/ltbWzp//nwgtwgepKZTquBijbfd9I4dmAru7++HNH4izY888kiIHnN9BBei5pKC+DAej4MfQKvVCqZ7nDGIuo+N9WT+kMx6vR5IJiQ9y7JQksK6TyaTQpaCZ4VwDhAVOFdk6SBO4DOwWCzCz7kOWS2LxSKQYObowogLDe6PkBwZfZafF8+aIEOGOSAAcKbJ/nA/BX7O2ripJe1QMR7Fu8FbRZY7M/A+SifKwPuB/aDsCJBd4QIQQiKZEHwW349+vx+ErbOCG/Vd3Et282dkwBERERG3GeL3cERExJ2Kp/wbc3L4W/sPSHpnnuf/h73005K+VtLrjv77U9e6Fr/MSwqRUsgGLQWl48gjBKKcteDCw0l96L2DhF+DzgPe3g7PBK5J6r5nKGACiSiBgSBRdSLtCA+UOKzX69D3vtfrqdfrqdPp6KGHHipEdXu9XiBbkB2v/e90Ojo4OAiiQpqmWi6XWiwW2t/f187OTigjoa4fwQTifuXKlSBmkHLv0X1fAzItykZ1bpBIiQD3OTg4COJFrVbT+fPn1e12g0niaDQKafKUc0BcIeCPPfaYtre3Q6lIq9UKPgPsPWu0WCx07ty5Qj0990IIIerNvDlHCCiLxSKUabhwxZwwx+R+8/lcV65cUbPZDAIBUXuEIM4k9/UIfr1eV6vVCvvH3CQFs8HJZBLWp9vtarPZaG9vr0DuEaLwz+B+vk9lHwHmhKEk7/PyAc64t7JkbnhkILhduXIliA5kQ0Dya7WaRqNRMHzE14PyJkoRWB/2gOcU01IvlcBDwbOSWGv2zcfA+NkHxBuEEzdl9XKX04wb+V0cEREREfHkEb+HIyIi7mQ8nRDcZ0j6akm/nyTJ245+9h06/NJ8Q5Ik3yDpw5K+4nouBmmlPhxhACLixMbT0V08kIr17264x2teRuE185ALSYFkQUqcUJKuLamQdQAxJkLO+yGoRLGJtnrqOB0HMBOEKCMeQID4OdFiyBWihbeMhBh1u90Q/UcoYI3wLYDEUnrAfmRZdtX6ci3PUoCMsb6so6f9S8edIvgvxH48HhcySMh2gOiT0UF6Pn4CXk/vppSj0Sg49tMlwz0fGBt/yJyAfFMOAchUYOwIS556v1gsNJlMgn+Brwu+GawDYs10Oi2IVZDYJEmCqEA2AevI2pPdwdlwgowYhREoWQzskYsbblaKrwHiHn4XCAwIcszbsy4kBZGKrhOYVkoKxF86zpTI87zQxrLRaITuIYhunAcvwcE0088k+1UuLXGviLJpI1k05cyOsj/IGcAN/S6OiIiIiHjSiN/DERERdyyeTpeHX5X0eMVhn/0Urhf+eFq4t42ERPB30v89Yll27X88UYHrIExgTsgfop5ODLkHbRUhKJvNJhC32Wym6XQafBkY53g8Dl0ePPJLajpRZ1LdSeH3kghIM60TMbdjLggFjBUiiwjgEVsIO1FvbyOIEDCfzwNp5GesOaTfjQK9/IFMDMSNcjcB9hVy6e3+2DO/Dt08KCvwSLOb+kHsySAhGwNyzhjdU6BMHv08IWp4VL/RaITou0f9MWmkhSNjIrXeDReZE0AMYA3IqmBsZdHGI/zegWI+n4eMB+biGTlco1xO5OaMrCdCBGPnde9KwbqRqeDmje5f4fuKh0X5mpLCXpUNIF1s8n/z/PoZL5fzeDcUzq2fA9aUs+DXuN7611uJG/1dHBERERHx5BC/hyMiIu5knIoiYQiJdEwUICtODCEYTqw9m6BcMw7cnE5SEAQ848HFAmr5IT5SsdMBqeKICrS5hPSPx2NNJpOQ+k/k2dtGYl4IeWq1Wur3+4F0HxwcFFoA4utA94l2ux1c9EG5XSGkFAJJ1wfPMmAuRIel45Rx6bjloJtdtlqtsEZ4NvA6ZRFuTlg2fiRbgvXkc2RxQGLdjwDBBvKHeMKYIJNu8rder8M6ITxxDa+nR/Dwc8M8EJsobdhsNur1eiHzw4mtewjQ0pF5khniAgV7utlsdHBwUNhTMnVcSHPS66KBC0mIGnS2QCxwcs85Ryji+u5dwnoyP8+McHGAtWI96fKBqSZ/5zmmrSjjrNfrIauCchJKJlhzF5dYR84A547zwj7z7HpnCJ49L5HgtbIY4WJHRERERERERERERMTJOBWCgkeMiR56RLfs1g7RKLcvhAg5wXGvBMgThnSkjU+n00A6IYmeLk/E283uSJNO0zSkij/00ENBUBiNRsqyLHgONBoNDQYDZVkWfBa4N94AmAl6JNvTx0mT5/6IDZLCuJhbs9nUwcFBwQgQ8QFS1mg01Gq1wj18fkSbh8NhIVMDwz2IGSSMdZ5MJmHOZBOMx+NCWz5S5z2yz1pA9CjJWK1WhW4AWZYFgYXWfmRs+B5lWRZ+3u12wznizECoPTUfUiqpsGZpmirLsnDuJOm+++5Tr9cLKf5+lieTSSgXoTwCgs24EQFYh4ODA0nSzs6OdnZ2QhtTxAhEBs8o6Ha74RoQdfZiPB5rd3c3ZFMg2nh2C+Sf8hhJIZIPMfduIqvVKogUXhLCczafz9XpdNRoNNTr9SQddx6hVIczyH7v7+9re3s7lD4kSRKeuyRJNB6PQ/YKa+kCJP9mD/Au8fKSyWQSSpA8G8Kv44avLjK5YBcRERERERERERERUcSpEBSk41/kISuQL09nJqvAxQVJ4edOqHkfadsefYRQQraIQJcFBa+5J2oKeaJjANH8xWKhg4ODkPK+v7+vfr8fMgDIeJBUiJ7iD0AHBoijkyiyIlin2Wymg4OD8HMIpkeWq9Wqtre3A5mjHAPvBe++QFcFzwrhWu12O8zJDS35u3fcYE8QGnDzR3App6c7OeRnGHByLQgz0XFIs3dgYNxEuf1MZVkWiKiXabhHg2e7cB0EBc4CZSGLxSL4ZZCFUKvVtL29Lek4RZ5yBUo1EAf4gw8E5H69Xms4HIZxdrvdIPYgtLjQhOBCV4bJZBJEM860ZwAgLCFseDkMe47ogzCD8MHzwfvKPgZkXlQqlUKWC+UL7CXCHa+xj9PpNOwJ8y93SfE2n2SY+PMpqSC24WOBCEQmEv4jnvGUZVkQZTBSpUzljHgoRERERERERJxhVPvbuvinX3rN9937Q7+rjf2u/LjXe+HzdfGP33sjhqYL/+FdWl++ckOuFXF74lQICk72ISlewwwph9zwPicavJeoMqTZzQzdu4BIsaQQXfUsCenYDM6d5SEhkHHI6mq1Co7ws9ksRKnd4d7T++n8AOGB9HiknDHic+DZAJPJROPxOHR8AB6BBaTVYxiIAaRnI3imgq97mqbBGBGyCFFz8u6eBBA0MjHcwNHnxji8dR/+EQDC6+UI3uqSa7jw4Bkt7C0RcKLkZW8HuhZIxyUxCEWeKs86DAaDILi4lwb/RXyi5APxQFK4JuMhVR8jwuFwGMQi7uslE37WIeaUFbCviBkIFi4s+J65sEN2SLmkgTnxhzG7/wTPi2drIHAwXl9v1plr8Iyyb5TU0ObT7+VlJgiHnD1EFPdL8OeYbA8/S5PJJHy/+LnkGY2IiIiIiIiIuBmofOLHatOqa9apafgxm8d34pCkXDr3iherOl09wZsOMXh2quELN9d83/Vg5+XPV214vyrTpTa/+84bcs2I2wunTlDg356FADmQjjsrQBS96wKf49+PJyjwmtf585qXS0DoJBV8G/BLoOQhTVPlea777rtPlUpFjz76aMhYILrtNegQH8jpfD4PfgcQcEowvHyAyCxzGgwGIdvCjQm5n6QQNSZTAw8BCCzRYESD8XgcruNdLxqNhkajUcjQ8PII38M8z0Pt/2q1CunsEDWudRKRh+DyeQgz3RDYfxc9IL7uBVD20siyrEAwydKA+HvmyWKxKNTis+atViu8nmWZ9vf3w95SHsJ9EVy4Pm0WMVEkK4WxksGCCHDlyhXVajV1Op3glUCXC19v5kQWC3uLQMAzwn3Ya9bQMwwkFQQDMgHcaBMDTfewcOGOa5W9CxgzIo3vkXfY4DzirdFsNtXr9UJmiJtEniSCSEVzS54fRA43evSSKrw7WB9KXFiLiIiIiIiIiIgbjUqzqQ9/0a5md10n8U+kD35JXVL9po6rjAc/f0vSlhqXK3rOu5vaWPAoIkI6JYKCpAJJgWA5sYNUp2kq6bA1IOTA06Mhop1Op2Dw6A7ukB5IDbXonqVAlBJSK0nj8TiQwYsXL2p7ezvU0ROlhow99thjIYsAUugmfaTO835aHXrJBaSbbg6dTid4A5CSL6mQzeAO9t7ekCj3SeA+lGhATCFYEO5qtRrG7DX5bvrImCCA6/Va3W437J13CSib/1WrVd11113KsiykwbOm3rpROjYCdHHkpKh8rVbTaDQK5FdS8KrwcVL+slgsNBgMJCns+2KxUKfT0fb2dkilz7Is7PG9996rTqcTzEO5D/4Rk8lEg8EgiBntdjvcV1IQpiDTs9lMe3t74RoIMMyNf5P1UK/X1e12dfny5bD3rCvnHCPQcvmQP3+MHcGK7BqEIu4JsecZ4Y9fj7V0Q0REE88IYo0lFcQPnm3afyLkkInB3tZqtcJZqVQqGgwGISOj0Wio2+0WsoG8tIPzPRgMQnkKHiSIhxERERERERERNxLVnR295zs+Vnn1xmQRPBOY72703u98mV70uvdqvXf5Vg8n4hThVAgKkFeHp8tDcki1brfbIeqOyaETOUgf9ftE/yFZkgKxIeW/3W4XIrdev+/16ngYjMdjDYdDbW9va3t7W51OJ3Sg4PPUvx8cHBRSy7k/6dm1Wk3dbjek5jNvH2+tVgudISiP8DR096DwenRPXYd4e1cAzwzBvNBbSCICuBgBOaNmnT9ec854RqNRoWSk1+sFcQeBhxIGyki63a5Wq1VotckYuLd3suBnzNHnzfu63W4YDxkInA3EDMZwUnkH10WY6Xa7IQMgy7JA/judTniddHnmzTW5rxN6P8ee5UGnD84CQg/miCeJcOUsAs4a2R/skUf3gV+PdXW/Ajcx5P0uKHhHFOBiA+eJ52wymQSBgLVlji4gYYxZr9c1HA7Da5TkcF/PVvDn24U5ylbKYgv+Ent7e7rvvvtC5sQsqvARERERERERNxqVRHk1f+ISh9OGRMor0ke+7sW68GuZkjf/7q0eUcQpwakQFCQVoukevabOGpKO6dpkMikYKkrHxGk+n4c6aoQAiB1Cgddhe3o/Pg2QXo++e5o0JQfdblf9fj9kKrg3ApH82WwWOj4AoumICt7CkPm7HwCihpvNIVBA1tzgEOGAOSFolMsBnCCSSYGA4Cn1PnayI7ym3TtssIcQQ29nSRSfcTFmMh44C6SsO9GnRILsA/aCNfGyBhcUiO6zbl6C0m63C50IWBMi8YyT/YPEIrCsVitlWRY6WjBHJ/dE5ImQE/3nTHOO3ScCsWKz2YS19zINzjbr7MS4fCak4xIJykPcdNRLgbgWz4Hfk2fHRTH3MuHMcE0AeecanoHDWeJMloULRCuyDdI0DV0bpOPsHC9fYd6IKC7QcR/229cFD4vZbBaeg7LQGRERERERERHxdLB1/7M0+fj7bvUwnhoSafKsja58fEvnlx+v/LfefqtHFHEKcCp+W87zPBAyop6kZRNx9jrtVqsVosseaXTnd1K8IcNOIIjSenSViO/W1lZoEegdDMqiwnQ61eXLl0Od9+7ubvg7JIt0++l0GtoIMi+IH4ZwEE2i7W7WxxiI1kpXG9N5qjqve+26pIK5pZcAQBTxCqDO300byZCYz+cFwQCCzzjd0JKIM9FfiCQiEQTaPQy8tSJlGi5ulD0BII+kseM9gYjipnwQevaAtHgyCpzIenaBr3G73Q7EVlLwwkBwIAMBQ0EEFelYiKFNKGKJ38N9CTiznjHDefVyF4/we+cKWmO6sMD7yMrwUiD2m/VhXV304J6sr5cwuMEm58p9GXgvwkyj0QhdJ9xc1Q1Q2dckOeyqkqZpEGpms1lBHELc4RzyrDNfLwdCeFwulwXD09VqpeFwGPwX8FCJiIiIiIiIiLgRmH7cBX34NWfbo2n/43JNz/f0wLu72oxGt3o4EbcYp0JQkA7JBxFyNw6EMEBwZ7OZms2mtre3C9FGN3bDc4HoOhkNXEM67jsPUXLTR3fOJ3IMESbjgdr4S5cuSTosF7jrrrvUbDZ1/vx55XkeyC0CwnQ6DaST6GyWZUEs6PV6gbyXiTUEsmxOCQn0loisiaQQxWYtPRVeUkFUmU6noc6/2WxqMpmEbI16va5Op6PNZqO9vb1gdAiIBDebzVBjD5FkjQeDQcHvwQ02PUODqDHXwqSPsSH2bG1tqdfrhXIA7kdHB8SoZrOpRqMROigMh0PN5/OCrwNZB5BmItaQVMa3XC61u7urTqcThJTNZqPJZBLEMC8/ILJO9gDtHMseBe4/wR7NZrOQbdPr9YLYgEgzHo+DuIavQqPRCK9xBl0MgFBzrmhZylnwMUDeyxkk3lGD0gAXjfjjRpnuvcC4aFc6Ho+DuOLtOV0o4jz1er2QcTSbzTQYDIJfCv4anGOeK++w4YIawkvZJ2EymYTnptVqPeXvtIiIiIiIiIiI2xWzuzZ67997qV70ne/Wen//Vg8n4hbiVAgK5QyEdrsdCBDRaYgOUXgixa1WS1euXAnRRlKh8SOAnELSICneGcKjs57mD5EiAgtpTtNU3W43kLHhcKgHH3ww1M/XajXt7u4G0lKpVHT58uUwdjfNI7U9TVPt7e0FAurZEGXPAI+8e327dGxo52n1/FxSIF0+Z/cyIN2bSDup+ovFQmmaqtPphCyK8XgcSKOLFkSLyRyhQ8B0Og1kz0szqIlnTIzZa94RfbzlH+SYvUAwgpgyFubM+o1GoyCgrFarIA7Q/QEyCwnFe8F9HjDZxGgQkWM6nWo4HAZBy0UhxCzOKcIH+8KZhLyTsQHBRrzgddYRnwnmgVhDmUfZqJG1Y/yVSiVk5XjJgxtzkpXjPh3sEe1Qx+NxyFjxch0/X5wNnrXt7W1JKlybz2GSiODAmvmzyRlENOp0OuE8zWazcGaYtz9XrAeiHu+ZzWYaHantXuoTERERERERERFxhETKr/2uiDsAp0JQ4Jd8d5eHaHkqNIRuuVwqTdOQAr1erzUYDAKRdtLlZnRuIgdZ4j3uOSAdR2G5r5dhUHrg4sXBwYGuXLmiSqUSoqhEUjFghOBJCpkXzHk8HoesBwi9ezhA9Nx80kkR73VSDgn18gbm5vC54jHAvSC1ZAoQfWet1+t1YV7ugwExdE8D1hqyx376WJz8UfbA/kBuPS2+3W6H+RNRl4rtRzlDzWYzZAnwPlqAem0/2Q6cQ9LsF4tFIYJNRgT3wzSTMfo8/KxxTt1zgPtxLrgGAkSr1SoQ+nJZgJcSsG6e7YNAwpn2Uol6vR7myPr7HL1UiLPEGiEquBcIa+3ikmcarFarQlZLnh+2Uj0p4wahq1KphK4plOJMJpOQYcFaNxqNIC4hiCHW+HPEM+zdXSjTwcQ1dnmIiIiIiIiIiHh8ZJ/xQnV+92GtPvLRWz2UiFuEUyEoUJ/PL/IQWshH2RiN1PRWqxXSpt1DAFLjgkK9Xg913vzhPhBW6ZjQ+h8vp5CO0/vdkG4ymejKlSuBIHW73RC9lqR+v6/Lly8XIr+QPiKtWZZpNBqFGn2ImQsA3vWCsZRLGJzYQualovke83KzPUnhc97KEAFgNpsFrwsIpEfSPRsCAgpYM4wG3VzQfREg1ew/++YeA15HjxhBtJ/aeAg50XE8E5ijCyIIBKxvo9EI92KufIa9JkPBU+3df4FyGX5GnT7nEoEG0YV9YJ2IsLug4+JR2XOBjAQi+K1WKxB0BA4vnWH9yWZoNpuF0g5fPz97fBYCTrTfDRO5tqRQ+sG688zw3LHHvO4Gni4MMI/hcBjWnjPIPbkW++G+JO5X4caQZDa4KSZCGp02IiIiIiIiIiIiTkAiffSzK3ru9B5tRUHhjsWpEBS2tra0s7Oj0Wik2WwWCJt0SDL29/dD1BVHf4hzrVbT/fffX8hAwFMBMkHLOQjSer1WlmVqt9sF879yvbebzflYfRweKR+PxyFLodVqqdvthqiwk01JoeZ9s9loNBppPp8Hk0dIH6UfEEfpmHSTJcC/mZvfD4ImKZBRiN56vQ4t+Pi8rx9rS8nBYrHQ/v5+gUCS5t/tdguRaeAGeETJveOGk3TIHqUW5VIBnP0nk8lVhof4anjnBMpoEFX4QzYBhH0+n4fMA9BsNkMGA0aP58+fV5ZlIdNkNBqFezIv/CYQNRAtuDbz8e4OjBWPDUQM0vfZm8FgEIw9OetOkMnM2N7eVpqm6vf7Wq/XOjg4KHSrcLGOPWNcvV5P+/v7gaCT8cD5Q5Th+eOscd1+v6/5fB5KH2azmXZ3d0OWAnvoZRWDwSC0kqQdLOteLlNiP/G/aLVa6nQ6kg5LJshe8K4O8/k8ZBvwDHnLTUo6PHui0+mEMov9WBMYERERERERERER8bg4FYJCnufa3t5Ws9nU/v5+wQwR4uedGNxobrlcamdnJxA4yBoRbIgPIgAp60RC8zwPxIlMh7IvAYQTU0KINkQLDwGECGqwMY7k/QgERO9JuYZYzWaz4LWwXq9DHTcihJsuUvM/nU5D1JqUdCL87v8A6eN1SOHBwUGIjOP/wGtEvCF1EFqvSSeC7ZF2z5goR9Sl4zaWntLuQgdlBy4SScdlB7PZTO12OxBBShZYa9LmIaVkXXBtWj/yfq7r5QVe7uJlDZICqUUc8P3xeeHFgMBFdgrGgKT9E5HnnHnpgmfeIAxwfjyLh58jIGE4iakkwgpZBZwBni3MHbkH4li32y14nDA/zoWLbYgSfjbIGsCYEvNK/yy+Guw7549n3Z9h95dYLBaFlqYIMwhTPCMIdG78yf6u1+tQQoGwhUhEd5aIiIiIiIiIiIjHx0N/pK7uc16p3X/95ls9lIhbgFMhKLgngEewISaeVl+pVELNvKdPE5GFPGKiBwGBYDi5gGgToYWQQJ64v3TcDQLi6j4BABKJqIDJH8II0WGP/rfb7VA/nud5cOiXpF6vV/B9KJvlQTghtJ6eTqTfr+vEWzo2cIREVioVdTqdwtqX50l5AvOFhHFvyJoT8nLpiKed0zrQz4IbOnoUmfII7kt5AOfFPQn876y5mwmWW2iSleEeAp7hQAkL8+K9rA1CkaRCBwsvR3CRg309yfuCCLzvM+083V/CTRY505wHBJlms1kg4HiSeKtPRBpIP0aotNn0rIayYaZH9iWF0gd/FshscBHC15gzxHURlzwzgnWnHITPYWDqPhaeicM9vUOGG0Z6yQ/PRZ7n4XPlrJuIiIiIiIiIiIgilt1c4wcqan/hp6r587+rfLm49ocibhucCkEBwgvBhPj460RSq9Wqdnd3A/Ek6ohb/Gq1CpFFSAQEjeg04gDAQJHPO8mB+HrNvxMSj8ZDhCFiCBYQLj4rKZA3yCQtGhnvSUTGDSYpCYAM+WcYW6vVCmsLafTyBu9i4HNzcQUiCAEnAiwpCDfuywCxLpsASgpkF6KPkSAtDt1bAZGDa3gaO6nzCAre7YJxkMnBOFhnfl42u/SoOnNgHKPRSK1WK9yLtWTNIO0QZaLmnBu6NHCeuKcLLH5vzivCA0Ibc3OxhzXimt7hgDIhfAxY0+VyGX7O2iE8sf9uTkjZh2egIJQgEHCGyArw7Bjm0el0wnX9fHu5jHcvOQlkKfizivDCs+jiEOIOr5HV5IJPOYOG+/B6RERERERERETEE2OxvdFH/1hVL/6DC9J0ds3357OZ1geDZ2BkETcbp0JQ2Gw2Gg6HgbC1Wq1ACpIkCcSE6PR9990XyCG96Pv9vjqdTiAySZIEkzlPuyalH0LIaxBAiIl3CziJHJezFzwKjP8CqdweHYcEUzPu3g5ZlgWSuFgstLe3F16H7JEOj2Giv5/UeuaBj8N8Ptd0Og1zdj+Bdrst6bicYDKZFNotki0BoXRPicViocFgEMiZR9rLUXovP2AM1Lv3+/1Q5gLZ9LR3Mkj8mqw3//YIv3RcJkJGi68VZ87NKimBYC3YX87CeDwOWQrdbrdwP65V9qyo1+uBRNfrdQ2Hw0LZB2R8Op0G8QdRgesiamxtbanf70tS8ABxsuslEjwvLjzgOVEuGWi324E8uzlls9ks+Eu4IaR3qaBsh/lzVth3RCf2yMsLvFyCMSP6IbZ5OQzg595KtJyxgXBAG9SyH4cbi+KLwbl034hut/u431sRERERERERERHHyCvSu775wnW9d+edic79q1gicTvgaQsKSZJUJf2WpIfyPP+iJEl2Jf0HSc+V9CFJX5nn+RM6m0GsZrNZII0QfzwOiAwvl0sdHBzowoULIbI6Ho81HA4D2cPkkGgookSr1dJms9HFixcLrvoQ7k6nE4SHchZDv98PJJA/XpoB6cFcbzqdhvpv92OQVPA56HQ6Ib0d0YDsgCzLNJlMJCkQa/8vbvZkIUyn0zBmShPSNA3p4BAsIrqUXkCmcdR/vK4N3I9oNmswnU7DuIi4Q0whbcx5a2sriB9EzJvNZthv6bh0BGPEbrcbhA+u5X4Cvr4e7WcOZKd41wnIukemEWy63e5V3gWDwaDQGQBCz1h9DhgTYtqIYaN3FGH9gJNmyh68TIfrNZvNsF8QYf54e06MRlkTN1AsP3NkLFSr1UL5iWfmLJfLYIDoXiFkM3iLS0qMtre3NRgMCqVICE+IGLSrTJIkPMsuePE8uMDjHiFk3XC+WDP2DaNG9/pww0yeBcZPJglj4MyfBdyI7+KIiIiIiKeO+D0cESEpufZbJGnwAmnyd15V+Fl1Lt333W+WjDdFnH7ciAyFb5H0Tkm9o39/u6RfyvP8dUmSfPvRv7/tiS5QNhGUjlvUOekl4nlwcKC77ror/LKPySKp5q1WS1mWFYgUEcw0TdXpdAJRhzSWo6OQFI+i0n1AUihr4BqQxGq1Gl4jiuuktWz6SEq7d6LAW4GxnZQm76neXvPNeKRjszs3hsQjgpR17kma+UkEHVJZ9g/gPZAwIsa+Hr1eL5Az/Cqm02n4PFkp7JETa1L3vbyEUhEEH97v5Jw1Zf2yLAtnxc0VPbOEM+jiC+cR0k1HCUQSX2vGAFFHnFmtVuHcELn3zh1ljwCu6aUCjJ1MATf0dN8E9tSv5x4WRN7L2SRkfHgGB88g55Z54rEA+SZLBKGFfUdUINMBEci9G3wszAuy7z4jnqnAeeAZ4pruC+ElIGS8ICyyb5xhF2IQItyTIz9b/0N72t/FdypmX/QKrRvX+RtQRETEM47NL/36rR7C9SJ+D0dcE80PXNa9b7pbj7wyuW7yfTti08g1bxR/z6osE2Vf/gpJUudDY+VvfcetGNpNwfX+rpFemqvyq2+7+QO6gXhagkKSJPdL+kJJ/0jSXzn68ZdKevXR339I0ht1HYKCO/571FBSyFLgl/3xeFzIZphOp5pMJsH5n4wGoqBOXhqNhnZ2drS/v19oRUeUnc/iSA9BWi6XqtfrITpMi0vPYnADOgQFNyRkLhB6rkmbQESBWq2mTqcTItDeos99D1wUIJrrRMjLOZgTpRxEmZ3MQ+jdNJEx+3WZA2Se9PLFYhGyQCCACADcn7ITT6eHaLuXgRsXTqfTQDgh5566754M7DXnidIT94Fwk0aIbrkbh/thkJGBqECpCvvg0XPWks9D1Bk/8HIFN71kbSG6PmZIcbVaDevAefDuIYgKgL1zgcBFGtbM58CZK6+V+4ew7whxGGx6iQvZAayHC0Bl81NEAbIcEJC8nIGMhPIz551aWGt+jvDB3rjXhJuMuqjmZSdnATfqu/hOQrW/reSopOWRV1a1ap0p8Sgi4o7C8jdu9Qiujfg9HHG9WL/vg9p+9LIOXvjxmu/kyrfi/3/Appbr4mce/i660+/pnkfvD6/lo9GZ8lzYunCvZL/7X+/vGp0HW7r/wfuLP9xstHro4Rs9xBuGp5uh8D2S/oYkLzS+J8/zi5KU5/nFJEnuPumDSZK8VtJrJanb7arf7yvLstD/3aP36/U6mDUScbx06ZLW67V2dna0Wh32iy/X2jsJR1Co1Wp64IEH9NBDDxUM7KRjU7xWq6Vms6lGoxFIJFH1er0e6qpns1mIvvKHa7VaLfV6PeZaIHuQ0fF4HMgZTv7eOeDee+/VeDwOhJe1kBSitXgpkJ0xnU4LGRD4Abjo4GQXAuYGe55NIRUJL5/zVHgXKNy0cr1eazKZBJLKPjO+g4MDTSaTUJLgGRAIK2mahvVPkkRpmobyB/ZLUiCelIsw12q1GkQF4OIU+7/ZbEJnDMbpxozsM34KZJSQWeOlBHSe8OwG6vg5k961gzPKnDgvZVEBM0qEGp4PSL93cSCLwyPsjJf9Qgjw+xL99+wcFxkwi2w0GhqNRoW2pWQHIcRxD85+GXmeF/YFIdHNOVerVTjjZCp4pxDIPyICYg5/xzuCuUwmk/AckeHg96BMaTqdhu+bM4Lv0Q34Lm6qdZOHeXpw8JqX6NKn86/4y1xERMTTxvcofg9HXCfWw6Hu/6436aN/81Wa3ZVfO1Phev43dZtlO+x/fK79jz8m1ve+KVfnx86AuniED3zj87XY9sDU9f2uMX7ORu/6K0VBoTpP9LzvuCRt1o/zqVuLpywoJEnyRZIezfP8rUmSvPrJfj7P89dLer0k3XXXXTkkAcIAIcAs0VvhufEcZHA4HIboN2RLUkFIIFLebrf14he/WA8//LAGg0Eg58vlUpPJRPP5PGQMQCgxSKSF4H333RcIB59xEn3lyhX1+/2QIeAp417jjQfBuXPnCr4RkGI8EDwdn9pwyjowsPOUb8/MIBsA4u5t+iCRZXhKOdFiSC2EHzLq/haTySRkJVDHT408ggCvk+lB5gEeDFmWSTok2Z1OJ2Q9kHXgxpP4C0Cy2+222u12EBo4D5B0CKxniUjH4hBZAK1WKwgXknRwcBDIuZfH8F8XQ4jau0DD+fCUf9YOwcuzQCDP7OX29rZWq1UQ3ZIkCS0+y2e9PBYXaLgXQpL7cHB/Po9QASF300uEEzJx2C83DsUUFUGqPHeyLryjh4tXZGrwXHPexuNxwQiT5242m4VuGF5KxDNGto+XU7k4xhh5DsvdKE4rbuR3cS/Zva2Z9daFe/X+P/98SdK6kSsKCRERETcC8Xs44qniOd/3Dg0/52N18TOeWA1o7lX0nNe/+3FfX73ofr3/K9IbPbxThUdfXtHljz/2XLjw5qXqP/uWWziiIh751ldp3j/+96pz47Jc1/VcD/7dT7vq5y/4wYe0+uCDN+w+TxVPJ0PhMyR9SZIkXyCpKamXJMm/l3QpSZILR0rsBUmPXutCXg8PyVssFsGV3c3pvNYcsrq1taUsywJRPXfuXCE6XSbP9Xpd58+fD+nOo9EokAqviffyi+l0qoODA6VpqvPnz6vX62lnZ0fz+Vyj0UjSMQl3Y740TUP0Uzo2KXQvgdVqFdLaPZrqteB0K2BOlUpFw+HwKpLktfFuKEcGAdf1tHEXFHx92Rci5YgsTjx9b8pjp9TCuxmUPS1O8kng3tT9p2laILIeTefaRKXxk2DOrKFHyLlWuYSDn02n0zAvxAnvbMDZY3yk47P2RMy5L4KYlyX4GiPOuJ8BY3evDTIrvIMI64BQ5OUDZV8SCLvvvxN1766BSFQu0XHPgfJ60maUe/H8Au/ewFrTmaI8TvfwWK/XQZjjc/h2kHVRLhlhTcn+8We7XLLDXFkvxuj+HqccN+y7+HbF7ItfoWW7omWaaNk7G2UsERERZwrxezjiKWF9MFDvbY+qNj4ffvbh11T1xX/4twrve3TW1Ztf8ILHvU6zN9drnvs2vf0ffaIuv2RLs7tvv//XbRq5Nua5sPfxNXX7IdVQ/d/f1/odjy+63CxUul0NvvClmt6da928SXpgohN/f7n02fepPi521ei9d/SMe0885d+W8zz/m5L+piQdqbF/Lc/zP5MkyXdL+lpJrzv6709d61qQSggb5BcDOGrbifp6BBPyBoGndKAc7YQ4QoK3t7c1mUwCQfMyADd+g1wlSaLxeKz9/X0dHBxod3dXvV5PWZaFLAqP/DMeIt10cvCIOY7z6/Vao9FIvV6vYHhYJktuTumRecbpho+km0OyIVCQ8bJBX/nP0b4G4zqv23fPAjI/yCDBiwIxw8dALbuPQVLBrA8S6KJFs9kM6+pks2xoWBY6PKJeziLw90sq7B/tE+nSQCkKZ5TPuTEma4mvRdk7gfeX/RZYB/bZyws8w4HIv7clRUwjsu7n3EUG9p6Mh3I5kHeHKHstcAYg8RB59oG14HWfW61WKwg1Pld+xt6WhRhfB8/u4Wc8Y5yPk+Brh5fDYrEojJlx8F/3HuFzpx038rv4dkOytaXqA/fr0qdsHf2POAb+IiIibjzi93DE00GyWquysADMhbm+58JvXf3G5/2PJ7zOeDPTF+SfqOV2rnxnqWT/7HSqeiqYPGujybP8JzvamT5XkrT60EeekfKAan9bm495ti69QlLyzP+Osf/Sq++5THu6e/+51/X5G7VONyP89jpJb0iS5BskfVjSV1zrA8vlUsPhMJBOT2km0umpy24cKB0TB+qja7Waer1eIC8eiZYOSVS73db29nYw3ZtMJoWU+uFwWIjC0u7w4OBA733ve3X33XdrZ2dHu7u7mkwmGgwGmkwmVwkKmETS7s/bOHY6nUDYZ7OZWq1WwZ3ejfEkheg7pR97e3thPUgPJ20fQuuGh06GgQsPeEZAyBFs3CcCbwEfT9lAkc9Mp1P1er1QsuCdMSC9kGZ+TpkB44cEt9vtgpke4hCRe645n89DC0d8N7yMBnHD4SUilKxwLwShWq0WjDjdXJB5uDDRaDQKPgKVSiV4QbjXhHTshYFnB2eecbMGeBe0221tNhuNRqNA4L3LAddfrVbqdDphXweDQRDK6L7AOjH3cvkD8yKDwIUrPsPPK5VKWBvWE7HJ38d73f8BUaOchcI+uaGjZxuU5+/+FJxzPkMmBK8xBm8TyZ5QRsWenGE86e/i2w3V8+f0rm+6V0puv0hNRETEmcAd/z0c8TiwjOD3fuOz9J6v/b6nfclOpalf/r7XS5J+YHCvvutnv+xpX/Ms4dKnSZc+7V4pl178Dwda79/8Dq2Tz3iRPvI51Wu/8RnElU/MdeUT7732G2/gOt0QQSHP8zfq0LlWeZ5flvTZT/YaRA5JL/doJxkFzWYztHz09GpIS5Ikms1moQZfOq4Dh+hAbHDyh5yNx2NJOpEgSccR1sViof39fX3wgx8MZKjf7+v8+fPa29vTbDYLJorz+VyTyURZloXuAHymXq8HQcMjtMwZ0uRRXQgXAkCv1wvtCSF4kEBq21erVciQqFarBT8DSUFAoETCSyEwqCMdHWNEJ2usK/4F0+k0GNrRzrPdbgfCBlmDLDcajUJ9u6e9Q0ghhF46wFpsbW2FrA3WFZGEjg1ZloV7Ql69Awd7TOQecouhZafTCb4ArMNwOAx7h3jBOcFElGwMbzXJ2F1YkY4j8aw/Z5nziBjFvRA+GDuEmXvi/cH6JEmi/f39cC5OSuUv+1OkaRqeCcpyRqNREJic+HsGgmc0eDYLgqGfP4QHroHJI2vJ80Q2BnuOiESWDt4HtEZ10Ymzwh4hSCJCsM5lj5aziBvxXXy7YPm5n6IPvrp2SyIGERERdy7i93DEtfDwX3+VfuAv/rPw7/uqvyKpc0Pv8Wd6H9Fnffn/T5/3U39Fyfo2c2u8Drzvr3+snvPfZqr8yu/ctHs88q2v0uTes+3H9L6//rHHvyZtpOe/7ve0MR59vTg1BcIQDoiVE2Uc/DFEHA6HIUK7WCy0vb0dIs/JUTs7yJRnKED2VqtVyBjodDrqdDrBQNAjzc1mMxAz6uV5PcsyZVmmdrutVqulfr8fCBQiBiKBt7Ust3GkLt7r/SUF8sp9ITvScd09UWsvB/CsDMQCPl/2InBhADB2rsf7yKTgPV4SAplM0zSsGddmLygfgOxBKj39ncwK6bhrgxNDygs8O8AjzqyRR9YZr8/NPRU83b0cPWf/aFXoUWwIJ/OjjMU7cUBOyULwubI3gIwGhAfmx32yLAt1/fV6Xf1+P5TMQIY5V07oOWeIJMPhMIyZeZXH5RkLvh5+Julm4uel/G/vTuJ74KUf/IysCcRERCr2B1HLzwzZFy5uIUK5N4Z3hfBzjTDHGQacYfd1iDh72NQSrdOz+z/5iIiIiIizg6TR0Ht/4OO0Vbt2+vhrXvAWvaLh5Qg3vjShkdT0gq2q/uyr/6f+ze+9UnrsTGdcPjkk0jrNdekVqZrPf6WSjbTzht9Wbq3Cnw4qrZau/C+fpOnduTb1M/x7xtE6BeTS3p/8RN31q49q/Z73P6lLnQpBgV/0PQ0aUjabzQIZa7fbQQignSJtEr3toHRsqAgB8ainexS0Wq0QgYbQQnjpROARWP6QfUAnhna7HVz3ub90bIZI60PaO0oK5Idad4guxJQMA6KpbrLI553we+s80rlZOwQFrgFxZE2cOHn0mPl79gBEE0HBywnSNA3jZh2YA8TRiT6E09Pa/Ty4L4STW6/Nx2dDUlg/hAhKDnxeXi7hHhVcj3uzf2QYkMHBnnv2xnK5LNTbkzHh+1NeM+m4XSSikhNbN0Qcj8cFY0/KSCSFjAH3YkAc49ySQYIggECEcIN44+eCc8Oac51yVgvPBOfPBQX2oZyp4GUJnCcyDMqdJFxUQKThHmQkuAcKmQjlkijOkJ89slXm9j8Z9rEstkWcHWw9/7ka7JyuFMSIiIiIiNsQr/gETS+kWjcq+u1X/1NtV05Pp4VqUtHfPv8uve059+u3Nw8ouXz6faFuJLL7N8ruP6x63Hn7x6j6wY9qfTB4WtesntvV5vnP0t7LrqPV51lDIl35hFyNwXltzxdaPfiR6/7oqRAUgJNrj7ISnYW0djodHRwcaDqdan9/X+fOnQtiAxFa91loNpsFQQFTOwwcz507p0cffTQQIAiLmwRKx6RPUhAI6OCAMAEJGg6HkhTI8mQyCc78ZD9UKpUQcaYdI3PEg2A2m6lWq4UsCsgXgFxTWgDhw0sBwaVSqRRS9yF2zAuiC5nyTAkivhA2r0H3MpUkOWy3yHgg2pSnkJHh0WO6RpB2zrgh5JRvIJQgrHiWgs+Rc0QJhYsTvB/xhp8TkfdxIUwwNsQSPCwwamRvJ5NJIfMBLwfGPZlMwv3LHhbcnzVYLpdBMPA197aiaZqq2+2qUqmE0gfPZiHjxkWgbrcbzu94PA7eDT5X5sR6uQ8C/yay7y1CEd8QFCDqWZaF9fRsBdaZc0KGBWUhrFOn0ylktbBmfD+4iMNesEecX4QS7+rAc+TdLMgw8g4ZlF5FnC186E/ed1s6XEdEREREnB4ktbrG/yDTr37ivzv6yekRExw//oJf1PfsPlff+4ufd0daCuUV6b1f09Xz/+PzVPnVtz2ta81e/nw9+Pmnij7fcFz8zESj+5+te//5w9dt2HgqVgSS5F0DIFGQDiKheAK48/6lS5fU6/WCqJDneTBIhBB4NJ/6fur07777bl2+fLkQUYUEt1qtYGo3Go00nU6VZZnG47GGw2EomyDdXzqu8aZNIoaOg8GgMM/t7e2CeR1EEhNKxkOmQb/fLzj0ExmG9CKS1Ot17ezsqNFo6LHHHgu+D5vNRg888EDwI/BsjDzPg9cAooZ3YiClfzqdhn1DmICwcX+IL/egNAVxwqPY7hOBOML76bbQ6XSC9wLrRSo/pTHU9uP6D6H0CLN3hfAUeC8JWK/XyrIsnA1+Tm0/5Bjjz2azqStXrijLsoLvB34RtJ70DBhJhcg90XLvNsI1WBO6ZyBUzOdzdbvdcOYwvPRMDvaQdWg2m8HHY2trK7RLJSvBy2UoaWD/8eDgs/48cvZ59iDxrDMCAVkz7vfB2XUTTMw15/N5MLQEPFuILYhN0nFGC5lA7CtGjv59wJn2DAieU/aY76aIiIiIiIiICEel2dS3vP139JnNX9Zhp9DTjb/Uf7+++Mv+if74T/61O1JUiHhyyJ690Yf+4Sv0/H/4O9occYInwqkRFNwMEbEA8gVZhXQ6OYUkTCYTtVqtQHwgNRBKSDwEC0EBH4KdnR0Nh8OCmSGo1+va3d2VpBAxX61WGo/HodWjEx1MAcsO8WQOzGazUDLhbf0mk0kYP0QIEsvniAQjOrjXAKnfzD9NU+3u7gZTSAwrmTNRZPZgsznslEH2hJM+T6l3zwZIGxkVZAbwetmjwNPZy/X5lBOUyxkgt4zBx1zO6CD7g71mDJ5ZwbWBCxrueSCpYAbJXuAFQUQdg09Jhc4cCBSIU96201sz+vnxrA4vD/ExScep/j4nb0/J/krHLTEZm7dq9HIAN7XkmfJIvmcWIIwxftbdM4FarVYwYfQz4/D9odOKj4OSCEpvXMxwfw3W3E1dN5tN2D9KKchOYl3IrvD1cK+FiLOFSrutx/7UYcusiIiIiIiIm4H8VZ+kve+Y6g83f1mtyukXEySpllT1wFaqv/w5P6vvfesfu+PKHyTpkU9vaXfnFWr+5998Sp+ffPmnaf+FVUm3vyKTV6V1M9ejX/OHdM//uKT1ez/whO8/FYKCpALpg4x7XTSRTbonSCqkWEPSSaN3czoisJBkujUQ0cYDod1uhywEd8GHLEHqiRST6k7LR8oNIFEeWUUU8FaMRJ+9xMON8pgD859OpyH6DvHySCwtJN2Ir91uF6LUlI80m82C5wR/JyrsWQRlA0XgTvmYYSK2lPfWCbxf06/NuJ14k6HipNlNGl0oggSPRiN1u91CNkTZm8D/sMfsB//1rgduGsnPXNhh37mmezDg8cBnmAckljF460TvhsC1+BmRfs5Qea19TmWfDIQT9p+sBgQF75ZAmQ5z9IyHsjjjHUg4a3ToYA0oUWDOXtaCkMNaeccIfw49k4L7uNiF4MgZYl39c+UsBZ4nzjJr6EaoEWcDSbOh/Y+7DesaIyIiIiJOBfLPeJk+9MWp3vPJPyTpbJHyWlLV/7bzIf3q8z6s36k8+84yapQ0edZGleWWrqOh4ok4eEFV03tvfzEB5BXp4CW5zr+tfc33norflstp8x6hXK1WoUsCBASCBwnls6TKdzqdgiO/19tDctypHlKOseJwODwxLZ7U++FwqMFgoCzLdHBwoE6no52dnRDtJDoKoSWV2sUMWjC6p8N6vQ5p6K1Wq1DSMJ/PlWVZiLhCLPGBaLfbGgwGwTBvPp+HVHvWY39/P9T6Q8LKogHj4dqslaQCgYR0kQ1AFHw2mwUyzhid3BEp9khwOePBTQslBUGBiLOkQicFLyuZTqcajUZhL8jo8DF7uYVnTDBeyhP4jBtZIphA5GnJKSkYhXqWAmn57h/gPh+exeACDwSbc+zPCBkO9Xo9vCYdmzMyNyfakkLWA9kQlNpQXoAYx1pz5vCMYC2Zu/sT0N6RMXFfRDaeZcQn5s161+t1ZVkWsnRcDPGMJJ5jz8BwM0uyJJjTcrkMoppnWZBxMp1OgxcFr3MmyGyIiIiIiIiIiKi0Wnrkb8z0nk/9wVs9lKeFH3/BL+q7tl+s//uNr77zWkomUrK1pTyabt9QnBpBweuf3YG90WiELIBylNsjq2QATCaT4E0AQfDMAqKz7XY7RGdrtVowVZxOp6H0AVI1m82UpqnSNNX29rbG47H29vY0mUw0GAzUarU0m83U6XQCETo4OAgp1ZB+yBUlHu7z4PXgj2cUOB6PA+Ej0grZa7Va6na72t/fDyUby+WyUN9+7tw5DYfDQPoxaETI8Ygx5RXcDyAIMA8vkWg0Gup0OoFY857RaCRJwZTRuzR4tFpSiGiXSyIYH14O3hUCQQiPh+l0qvF4HDIIIKKQTM4O9+V+RMXd6A9fCMpDmBetBfG24PxwBimNIHODvYJo83nWiDR81gHCzdxc5GC/INIQfEwdPeOh2WyG8SN20KIRvw5KBRAVqtWqut1uMB6dz+fBZNR9KFg7PjscDrXZbIJYwbPGmlF20+l0whp7+8lutxuybNgP1kJSEGC81IHyDeZG60hAWRGGrzs7O4VsHrJ+XMxiPKxhRERERERExJ2NZGtL3/p7b9EfSf+nbkabx2ca33bunfqTX/pWfe5/+mvSHVQlmD17ow/8w0/VC/7+9XkDRFwfKtd+y82HRw+l424KkAZPH3fzOTdulI69GCApTn6Wy2VIh9/f39dgMNB0Og2GhxChbrerbrdbMHGEaBGxhDDRgQLDRgzk6KZQdqPvdDqBxDFWJ95SkTR5iQZzJ4oLqfSIORkFECrej6M/Y3eS69HecsSbjA/vNAB5xbjSsyt4HTLpTvmsU5Zlhbp37zbhnSUYD6Uo3vGB9zBGyjR8fpwP1p49g5D7+fKUfc6Ze1O4EaMLCwharDEZApTsQObJGKGDhXTcPQGiS+ScuTE/zpCbUUrH7VTJviHbhPPsbRldiOPMMNZ6vR5EJ9aSyD4ZCfgbuOmjeytwbjEs5f4uDLrZI+fOvS44h4zFS26AZ194hgdlL56N4c8+3wmcnU6no16vpzRNg7CHiOF+DeVSmYiIiIiIiIg7D8mnfoLyn7tXr2qO1EjOvpggHbaUvH+roe94zU8q31le+wO3CfKKtImxoieFh1/d1fRLX/GE7zkVSwrpgUS4SOA+CRBrJzbSsZDgngkQA09zJorJ59I0DRkK/Bc/Bbo0MD5KMWgL6URqNptpPB4rz/NARImUk7ru5AuSgxhQNgzk717e4a72/CHCDamk9p118LWSFEi6dCzaUBfP2MhAYByIHZ6y754J3Ktc6857Iezz+Vyj0SikzrtY4oDUcR1vAeimk4zPxZ6ymZ/XwnOWyFgp39dLIfwznprPGrh5H2vEeWRevtfl7g1kFTAPshMYE2tQLjHh/VxrNpuF9eGs84yUSTGeFJwF338XYsjkcd8BNzNEAOCeZSEGDxD++Hv93JOlgW8Ea0+GCufJy2U4E9wLgYBMEG8B6XBjSwQmwDq4kaX7KJT9QCIiIiIiIiLuHKxf/cl68PMbeu9L/p3OQjeHJ4NGUtM3bD+iX3jhB/VbH3qO8kfvLE+FiOvD5MJGW+OtJ2yKeioEBQhEuYYZwkl5Ar/cT6fTQIYQG5xok9YNqYLAkBrt5LzVaqlarYY2i6SC47gP2XCSAwEj0jqbzTQajYJ/A67/kE2Ij5MoosHl6D+kl+i1dEyEiLJilEeqOteAHLqp4Xg8Lrjlt9tXG2s4QXdTRElhjuwHGQiQaO9iIKlArhEOEAIQFChlgWQi+Dgp5/6+ZpQTeDYGGQLeDYAsAIg3RJEIPzX57kXhZoN+X/eUKEfbXfzCE4MziW+FCxOcTfdYYI3Lhpfe6tBT/BkvJQRkpKRpqlarFdbfSXTZ8wDiT1vLso8BwgeZIeyNi1esZ9nPYLlchhabCDxkbNRqtdBpBAHR196NIflTFhR8Pcti2kkZL7yfNeGsIox4RwjPLkF8ROyJiIiIiIiIuLNQ7W/rQ39hpfd+1r++1UO5qfjR5/13/e32J+hH9l+lZHmHeSpE3BCcGkEBM0JIqKdyu3ggKXgqUCMuHYoMEPJ+vx9EhTRNQ/s7yDYlDpBB6uR3d3e1tbWlXq+ndrsdxACyG4jwQra4DqR5PB6r3W6r1WrpwoULISq/WCw0GAzC9SF4kHcIP9F7yNfOzk6492g0UpZlGo1GwZgPAglh95aRnoUB8aLsAbKPJwGEHiIIIfP2jNKxoACBxLCRdYTo8nfS/emcMZ1O9dhjjxWi355BAlnG3Z90dMSHer0eCCldHHq93lUGiv1+P4yd6yAO1Ov1sK/e0cC9FCDXjIuyDfaajh9eukEWBnNHEOIeXjqCmNVutwv34FpkknA+MEeEeHvGDV4XnU5H3W43kG/8OciQYL/IAKD8glaN0qHBJGULiDKcRd9nzhieIL6XiGOsMa81Gg2laRoECwSYcmtVvCdYA+aAQOEmpzy7mJUiPJGxwDq5SISYyHvJWPGSI84644mIiIiIiIi4w5Ak+vNveYs+v/XfJd3+baT//l2/q6/54l/X5//EX73VQ4k4gzgVgoKkUFuPsaHXt/N3bys4m81CNLbVagUSQ/nBuXPnwvu3t7c1nU4L6fAQY+rDH3744WAMlySHLR/JhPAWfRAVb4nnteaQ90ajoX6/rzzPNRwOA8Eqk3JImkf1Ifm0fZQOyd5kMtFwOAydDDw12436uI6kAkEvd3Sgjp915u+UUjjJZn4QVq7hpSDA15iaeK+xHw6HQfAop/V7uYd3A/CuFpBzMkXoviEdexN4zf54PA4kFZNDDATJWmBPOFdcg3uyfhBcn7N3puBsXrlyRZvNJvhmlD0KfI09O8HXgLmkaRrEFF4nO4PziVjEZ8pZGJ5lgWji/hGIHXye8+RriieEl33QjaS8TvhGOLkn+s9+Qu7LfhbScXkKZUm+/og6tVpNWZYFQcBLbRDOOEPslWdB+XPA2iMglLOlIiIiIiIiIu4MVF72cdr+Px/RH0kvq5Y8UaL37YNqUtFztur6x1/4/+h7v+OrtGxVtPeH7iC3xoinhVMjKECMIELSccqyRxmr1WooKeD9kD8I/XQ6DVF8ouhkKuCBAIngvsPhUPv7+4UsCa/9dnLtBnkeVed6+A5QPuF+CR4BhbC6kZzXn+OSD3He29vTeDwutOnzkgwn+35dvz4o192XjQkhbogUrCep4n79x/ss/y3X0NMZwgkqhNEFDPaU7AD3MCDqTkYI96Ukg72gJMWj5ZypclaHizu+jie1E/T0es4UPgOcQUQM5so8WE8Ie3mvPG2fayAeuWjEnDkPCAoQe/YZ4QfS734QXtJA2RFzcRNJzxrgM+4v4CKLe3ggODE394bwUhtKU7zUBQGI+/gZY64nld6UW20irpV9V3zcDn/OIyIiIiIiIu4crP7Yy/XgF9T0vuf9iPSEVeO3HxpJTV/ZGehvfWpF3Q9K2+9ONHhRLt1GVRBb40Tb75fydTTdvpE4FYICkULIn5NdQGRWknq9XnC4px4ckgi5mk6n2t7eDgSm3W6H1HuIunTsej+bzfTYY49pNptpe3u7UHu/tbVVIFwQa1LBiVq7YRwRdLInIDzuaA/BghS5KR9/GGu329X58+dDW0j8BLif+zAwJtbQu0g4WYcAuvljOa3dW0pSIuFEm2s72S5H3CF3zI/6fe5DKYobPPq42F/EDKLfSZIEzwrWgbER2Ybkj0ajgqGgm0VKCq9JKqTAe9TbM2fYR18XJ9JkvtDWk9ah7t/B2cRPwM+FZ2ZAklerlbIsK6w1Z5h2jJT5cN6cLLNmlBnwnPn+QeJZO+9cwTrxXDJe92xwTwRJhQwErsOYuCZiEu/lnPI6Z6zs57G1taVut1t4jj2zBAGFc404Aty80ffXfRuiqHB2kGxtKTkSFyMiIiIiIp4sqvfcrfd+Xa4PfM733+qh3FK896u/T8/7uW/QS757pPED57Rp5Mpvk1+HmnuJdn7wTU+pU2Z1LlUWiTb1mLlRxqkRFJzQkQ7u0XAnapQTJEmig4OD0I1BUiCno9Eo1Env7u5qZ2cniAQHBwchcgzZuHLlSkibx7PBo7y00uMe1NlDhN3YDU8IiFej0QglC2QqIEZ4LbpHbKVj4o3h3t13363pdKpLly5pb29Po9GoUF9eLmmArFNfjkcC680asL5cy40DETwgt5RaQLRdVIGEQY7ZM0g1EWs8AZrNZjD+83r3Mll3sUVSILsIUL1eL/hY0NUCEt5qtcL9IMv8dzqdhuwFb2HoZo7cD3FFUiiHgQBPp9Owx3gf4BVAeUev1wulBn7G2W/2gDVdr9chG2W9Xuuee+5RmqYaDAa6cuWKrly5UhALVquVxuNxEIncfBMiP5lMAmFmvi6YTKfTUNrT6XSC1wJtFZkjZSONRqPQwtTFI8+i8e4TLsbRtlFS8DLw84UIw+v4fPCccn4RFfGEKHd5qdfrhTX2jAV8L/xZIYuGOUWcDSxe/Un68OffHu28IiIiIiKeeXzDr/y6vqx9IOk2Yc9PA+/73H+lH33VXfq3H/uAPvK3X6n5bvx96J5//mYtPvfl+vDnnQr6fKpwKlaESL2kEPV2gzsnYdSRdzqdkO69t7cXSIakQJ4nk4nG43EgF5Ck2WwWyGu1WlW32w0eDtSal9OvvQsA0XlIOZ+jtp8otDvEU/vv5nyMC4JWrs2fTCaF2v+dnR3t7+9rPB6H8ZZd7ctmhxgOQvIgy4zfI8JkJWCux+uUAZTT0lkbXx+yMFwcYiwIG2QnQA493b+cbYGw420O3TRyMBio1+sFckxXD96L/8BoNArCgmdsbDabIP5AsvErIHIOAfUsFOYBmSb6790NOC/j8ViSChkhvMYfz3IhswV/AMpNer2e6vW6ut1ugVgzb86uZ7YwR4i9ZwEgrrg3AQIOWR7dbjcIYaw1AgFzQkjjfLghIued+a5Wq1A20Wg01O12g1kj/iBkcFAS48aNnAPmgyiFT4cLHOWSC84z3hmU2viZk4pmqdFD4Qyhktw2EZSIiIiIiGcetWSlahL/RyIdeip8QesjestvPU/Lb5tr/Ky6Lr/sDo/M57mSO3wJHg9P66lJkqSfJMmPJ0nyriRJ3pkkySuTJNlNkuQXkiR579F/d65rIBYphQBAhEhvhvAQgWy1WiHCDcmYTCaaTqfBqG4ymYTSgHq9rna7rW63GwiPpOBA7+aK+BN4PX05A4ByCKLXTnzdEwKi5R0siKgyd0zv8HeAuE6nU43HY81ms2AW2el0lKZpwVDQo9WMzV93s0fW0IUBL2Pgs27qJykQTzpLMAcXI8rlGu4bgTDiqexkdnhJg5NsBBzpuJTEOw5MJpPCOlLK4C0Ffe5cw+eOVwA/Z+6eFeNiAiKJR97JPEEY8DUkk4JsCEiur6+n6XMeyHCZz+fa398PAgLCDGvlWTLMxbtSkFFDuQrr4y1HfT1YXzISeDZ4vtwQ1Z9d795RFsq4rl9/s9kEQYDMB86Fe0zwbDAOzgJrzvlO01RpmhbKn1gLnkvuy7i96wrfN75unhlzmnEjv4vPJF7xCRo8N2YnRERE3Drc8d/DZxjVe+7WR7/jVXpB7fKtHsqpwk61pe+58Ft68AtrGrzoVo/mdKD50aF2fy/RU6qZOMNYbEvLz3n5477+dGW4fybpZ/M8/1hJnyTpnZK+XdIv5Xn+Qkm/dPTv60KZ1OLST9TXa8apLYdcEw0lKwECN5lMQlSaFPher1eIrFYqlRAp5b6exg285lpSGCfmhd7KDnLCHyLdkMSyjwBzod6ea0+nUw2Hw5D+jqDA+7w9oaSCAAJZIsW81WqF+TEu3isdZ4q4mHCSoAB5ZX09m6AsSEDsEA0wKES4gSQzTm8jCaH30gMXA9brdWilWRYaWF+i9uX7ujjk+w3ZZz0RFMrmlbyHc4RQ4F0KyHbgPayZz9n9QrzbBOn3ZIscHBxoPB6H+SAoMUbG7vsCOa7VauE5YV68tywqeKkJz4v7VCDYeRYA6+gCFuIR2QMuNEnH3gp0AmF8PEt0w+BsYXCKiaf7Y/j5Y118X/05RITw8gsXFbimi2RnBDf0u/is4eE/0tXBS+6w/7tHREScNtzR38NnGZsH7tE7vulf6qX1O8uE8Xrx/j/5/XrJZ35AW5OzEWS5mVj/wXt010+/+1YP4xnH7O6NHvzCxw/cPOWShyRJepL+sKSvk6Q8zxeSFkmSfKmkVx+97YckvVHSt13vdSGTRLchF0QnIQnUejebTV24cEEf+chHAolCIIBsj8djVSqVQKh3dnYCYfE2fJBHT69H5IAIeccDN7Uj6wDPAx/r0foEglhOqZcUSJun7kNex+OxHnrooeBXgEkj0XFPNUc8cY8D96DY2toKxApiTVq5mxZiZjefzwsR3zK5n06nIbMCDwG/NuPjmt1uV7VaLdTr46Xg4ocTczeIZB5lz4e9vb1Qk89nXHjgupDS6XRaKJ1w8lkubeFMIAxwTwwPMVpkfb0MpZx94KahkF8XpRgr80MoW61W2t/f18WLFwPBRyApn1c3AJ1MJur3+6EbhnRcMoDQBmGuVquaz+eh5MDFvTRNwxqx54gNZIG4KOLPMiaQ+C14mYebSdK5hXFx9rzVKiaMm80miBq+z6wjzzniCmKPnwsXsNjD5XJZyGhyI9jTjJv1XRwRERERcX2I38MRtzve/lvP04u/78N611999q0eSsQpxNPxUHi+pMck/ZskST5J0lslfYuke/I8vyhJeZ5fTJLk7msOwszV+CW+XOOOeaCXPkAKOp2O+v1+IN9Zlung4KCQbo040el0tL29rZ2dndD1AdJPBBXiBIiiTqfTEP321pKQYIzySL/m3pAVSCV+ApAb2gy2Wq0QhSULAGFlPB7rkUceCRF2r2H3VHmuNZlMCkQLUu714eXaf8QD1gGS6z9j3SH20rHXA10GMDaEoHvpx/b2ttI0LZgP0kaStWQe7vng2Qu+rpLCfpP+TvSaNSFzpNxK0deN63FNxCbOBXuW53kwKWSslAP4Nd1skEi4iwwu8CBMHD0zV3kqQMg5f+WyinJHAp6P6XSqwWAQ9ixNU7Xb7QJZp3wIIcD3jbNBhoe3PGVfXMDY2tpSp9Mp+IBgCOnnx7NO6HZBBk2v1yuUbdAOk+vVajW12+1glMr3hWc/ePkF4t14PA5iyWAwCPNqtVqFLB72zkWxM4Ab9l18VvHAv/+ADj7zOXrkVTF6EhERcUtwx38PR0TcKVjvD/Sx3/uwPvjV90ezyiM8HUFhS9InS/rmPM9/I0mSf6YnV97wWkmvlQ5d85vNZiEyCDmA2EB2IQtOvIiidjqdQAZms5myLCv4IkiHZKPX66nb7RbqziElTswxkCO67WnWfIb0dCK34/FYo9FInU6nYMBXrsXmNe4JMYL0k+qOSeVsNtNgMAiO9URcPUVeUoHcUi5CaUS5iwDEjSg4ZSRcy/0sJBUi8y68eImBCz/MBxK52WxCTT77SPq/E3DvWMFcWT+EHM6JZ4d4tNlfI5vFswi4tu8H1/X19f1hb8rtB93/w0Uvz1hgzShloOMGe4h/QLmrBfek/aikQLS5rptrlg0y2bP5fB4ySMhuwGyR8SNSlI0KmVuz2Sz827Mx2F/EAl9L5uFdFCQVDDc5w2T3uC8Egp8/L4gMngHk55Q95fkHnknk3Vr8Pc1mM5RKuLB4inHDvoubOpttF1cXH1FjcL9Oic9wRETEnYc7/ns4IuIsYNmT5p//qWr83G9Lm6dovL1Za/WhDytZ3X9jB3eG8XR++/qopI/mef4bR//+cR1+eV5KkuTCkRJ7QdKjJ304z/PXS3q9JJ0/fz6nC4J3RpAUSANZAZBtCC0EqtVqFYwRidR7nXme59ra2lK/39f29nZI8Z5MJuF1rucmbqTzk3XAeDylGyPILMuCGz6R1JMIlqRCW0wA8fLIvqRCSzyI8mKxCNFlCDyEkfRxr4+HCLqxnbvhQ4IhlozNxRh+xt9dTMiyLHgnQNC4l9f4dzqdEF1nbogTXvoAkafu3TsYSMfCE+IIc+fcSAqCghsqutniSaKCl75IKogjkFAnmmQJuDkhKffMjbVgbZgvWRW+pogKbua5vb0dyhKYU5kIS8ddN/BZYI5kaSBeUPpBFoJ7XzAuXx9KdfwceWYAooIbTvJz/jAXLwlBpHPj0GazqcViETpZIFKx5+Wz6PfhPQhKnAnGzLOLANXpdIJhJ386nU74LvLuMacYN+y7uJfsnomUjIiIiIhThvg9HHFbY9PMtel3b/Uwnjbmuxt99LOrevHbL2j96GPK5/OnfK3aWFr2Eq2b8ZF9yoJCnuePJEnykSRJXpzn+bslfbakPzj687WSXnf035+61rWSJNH29rbyPNdoNCqQe1L+ERROMl2D5LRarUKd9GKx0Hg8DtkDRLq73a52d3fV6/VCyj3E2kUKTCGTJFG/3w9p6/P5XOPxuBDxbzQaQaA4ODhQr9cLmQFOsCFEkDEipL4WpHXzfghxlmUFbwOyCnDKlxRKB4jyTiaTYOro3SEgWVeuXAkEslKpBALVarXC+kOsyxkL7AeZItPpNHTQgGjinYDAMxwOQ2cOsg0QPpiPk3IIN2uBGCAdl8qQwVKr1dTr9UJ7UPYHQHghi+7T4K002QfuNZlMgl+Hj9lT5CHSlODgJcFZWSwWoXQB88HhcKj5fB5KPjAwRDjwZ4EODUTPvTxDUiGrg2yCVqsVUvcRuzA1pEUmc2R83ioUkQAy72UMJ50HfEE4S+yfCwqIM979g2syTwj9YDDQYDAI4gGeDS50uFjgWUCMfb1ea3t7O3hP8Fx4BxgXFPA54RyehbaRN/K7OCIiIiLiySN+D0fc7vjMT36nfu3PftytHsYNQV6V3vWt9+tjfnRH+s3ff8rXueefv0nzL/xUfeRzzoyB903D080P/WZJP5wkSV3SByR9vQ47R7whSZJvkPRhSV9xrYsQ5U/TtJCl4CUITrzo0uCkX1LBod9T4Yn2cr1erxcyDNI0VavVUpZlYTzUm3vGw3Q6DRkKROGHw6EkhQgq5HI8Hmt/f1+NRkP9fl+9Xi+QIcoQIF3eDQBTQcba6XSCkFKtVkOUGbI0Ho/D+z3zgHndfffdunjxYmj1hwEe2ROMiUi1E2ha+jEvj7KTxXBSHb+nxHONbrcbxgxRlqRut1tI96fUwCP2lJogoOCnAcFmLyQFYtzr9UIU3yPXZXj0nbmTqUE0ngwRb63oIhCiBWR6vV4HwYbzAnlF9Gg2m+r3+5KkwWCg4XAYzCnTNFW32w2Rc7oqbDYb7e7uBhEN803EHPc08GyANE3DWjAf9q3b7Yaf85ywf2R6PB5RZ70QVXjuyiiXJ3mGiXswMI6dnR01m011Op1wViaTSRCm2As+C/lnrL53XHu1WoWsDLIU9vf3Q4kSohhZJQhynNszghvyXXxWsffaV2r8gHTH9XGKiIg4Tbijv4cj7gDcTjZFN2gu6Rv/QC968Nl6z5/t317r8yTxtASFPM/fJulTTnjps5/stTBFcwM3j1ZTzwzBI5IKiSu7vTvB9faMjUYjtBrEDR7iB6HESA4y5F4B0rHQ4W3pyAyQDknmcDgMxJfOBkS/Ic7ScYkD9eNEiYnmevo4n6U23Mfk3gdupNfr9ZQcdX+g2wXRfzIo3KQRsgcJ9BR9J+fuX4Hfg3TshVD2ACCNHWGDrhpOQvmM18WzPmW/BAggZ8Ej7X4+EKggxv7fsukiBJR/c303/PNIe/nfbrK52WzCvFutVji/lCqkaRpEK8QyRDUXoQ4ODpTnubIsC+UzmEMiAkgKpSc8C262WCb7rCXnhXIUN6KUVDgrnqlC1gJnwUUdzoVnMZQFBfdH8WwDhAUEPQQP33cylhDXEBA4p2VPEc/c4CylaRrWCrGQsgnez/cFZpmnHTfyu/gsYrGdaNWOxkgRERG3Dnf693BExFnD3ss6Old7mZJfe9tTvsYmy1T54Ef0rF/u6ZFXVLVO78zAxqlwsPJIt7fnA2UTQH7xx2eg3JUBcicdGwmS0k60eDweB8JFtJuMBCeJHo2FULkDv0d/O51OSA/HS6Hdbmt7e7uQQeA17YwB4okpnZNaT+n26LN0bLxXq9VCSz036+v1epIOydpoNAqk3tsVeu28E2e/lhsretS2TK4RJ7zjAFF5UtAhhNTOu4memxluNpvQWtF9BZzYMg9IPOcB80r3kGA8nvnCz1xQ4OcndbxA0GHt2A9KXhAUXOjBrwBzRASQRqOhdrutxWKhvb09ZVmmdrsdupEwLvwzJIXzwvlmP3x/EFLwG2F/PWLP2rPuZCl42Qnnjrm6v4kLD/6selmKt0Blnfz5AX5mJpOJWq1WOC+YV5Klws+Zg58RSo/8O6PssUBWCz4Y7ofC/nL+XHSJOKVIEm096z5tTsX/ySIiIiIiziKS+VLff/AsfU3vg2pV6tf+wB2Gdyym2pt1bvUwbjgOXpJr1Wrp/g/dp9VDDz/l62yyTOlP/qba979KkwvSqnXniQqn5tcw9yLgl30IoZN+yAdkCMINaZBUIIsQn+l0GojfbDYLJQzUTEPyZrNZiO4yLoSD6XQqSYHMQFYgcJAoyNtkMtHly5dVq9V0zz33qNVqhWgur3PvdrutbrcbxgNJJppNZoVnWjSbTQ0Gg0AEL1y4IOk4JZwIOQRvPB4HnwdII6RT0lUlFSdF6ykv8e4CHuGHoJG9wB5BEnkPpSGIFb5v1P1zDW//yRjdA4G5IEYsFouQ3s46k+pffj+CB6SVbAYXSfyckdlA1B+Cil9ClmVBGPC9xcODiPhsNgt1/UTd8Vu4fPmynvvc52p3dzes8WAwCGe4Vqtpe3v7qo4MCB3e3cHbIfrcGDNigZ9rzgvk3J8D1hSvEe7NGkHa2U8XB91LRFI4K26C6b4bnU6nUI6BYATZX61WyrIs+D9QouNj9e+BcuaICxNkvVAuwXN2UhlHxOlBpdPRu7/12corMTshIiIiIuKpYfN779J/+ri7dN979/Ul7cmtHs6pwxe/8ZuU7N+eAZbxczZ6z7c8Ry/4W3vKl4trf+AJcPe/eJMmf+LT9PBnJXdc+cOp+W3ZyxuI2nomQDmlHBIDseAaTmgon3DSMBgMdO7cuZB67+nNntpNtJlrzY9cQMuklM9AJiGYtC/EXO7SpUva3t4O5Jh7enSejAJaE3oKureSxGwRMo6gcPHixeAvQUQXAYNMieFwGIwlsyzTZrMJmSF0q/A9gUB7GYVnfwD3hfAMAsi6dEgwd3Z2lGVZoWVn+QyQ+o7wsLOzE+af57mGw2FYB+lqYz7PwMC00Y0lGRNnBWIMEDI8as3c/L2Q3zzPQ5cRykuGw2Hwwdja2gr7MpvNgnCACWGr1VK/39dwONRms1GWZbp06ZJ6vZ76/b6azab29/f18MMPB1EJ8Ynxk8oPMffyFuaN6CAdCwS+7l7ewvkpZzF4tke5WwVnCMEBPwJEBf5gbLlarUL7yuVyWTC/ZF/J1HC/BUlB4MNYEVNLb/VaLh06yVQS4Y5SJz/zfsYiIiIiIiIiIu4k/Mykqf/zi79Y9a9qaNm7fYX7zVauD/3tT9Hz33BZ63e8+2ldq/Nzv68XvfcBvecb+jdmcGcEp0pQkI7r5j2lnGgoqe9EeCHLEBVvF+d+CkQ6iebyedK+IaJlUgWxcCLjZoREOTebjUajUUihdpNECO5gMNB4PFa/3w/u+0RMPQ2fiHy1Wi2keyM4SMVoK2tER4t2ux3GTaSfa3stPyh3VvDUf0QPj+izTx6Z9nV3jwPmATljb3HVZ+1O8ifwdHT2iYwKXwf3PfD7e9mIeyx4dkHZsJE5sQbMmTp+7oNBJgKDl5h45wcyQTgv3s2DPeRz3qGE8pQsy8Kcz507p729vVCyU+4ewpy4LvPhvkTuvUOEPyfuy+HZPl7C4M8p8AwAOqL4WPw5xTcDeNYHn5nNZhqPx2HNWB/OtAsjjJMsB7IP/KwiDpV9MrwMA9Exz/OrDFZd8IqIiIiIiIi4ffG3Xv91+vEvf7v+7XN++VYP5VSgX5no4JPOaVO/zVP4E2nZ2+iRz9pV8xM+XZVVrvZ//E3pKRhzbyYTVR58SM/++a4e/sNbd0xLyVMjKABP3fb6a3dzJ7tA0lVdBiAHXIuUc4hmpVIJn8cgz0kzxMbN4iBV0nENfjnqSetDsgLIRoAYHxwcaDQaqdvthvaAEH6uWU4NdzLuGQ1lrwdIr5tP8j5IGAIH5ohOnFkv6vO9hSZr6nNnPdyoseyq70Tbo72+3i4m+OfJLoBgsqaIA+4HwLX9rCBESMeZHeUSmnJLQ+bA2D1LgQi8e2kQvfe9cxNNH0OlUgmZJ1424N4HlLYgNI3HYw2Hw1AuwnninE2n09B+k2v6ueE5QYDxDB83MXWhwMn7SdknZZTNKimhwL+iXGbAc1o2baTMgHlNp9MgQKRpGs4LY3UBgp9zlvBZKJ9r/su4yuUyPFOcDy+XiIiIiIiIiLj9cd93v0m/2XmVXv+V79Nrt596Tf3tgI+uxnrX/GN06dOkO6WD0uDFuQaSKouKXvi25ypZb5SPJ1o/9tiTus5mNFLjv71F7Re8SpN7pVX79l+/UyMoODHBwwC/AwQF6ZBs06UB0zQIjH/eTet6vZ4qlUrIIpAU2vF5WjTjgLgCCBAECvd3SA+p7OPxOBjoeVbFcrnUo48+qscee0y9Xk+dTkc7Oztar9fKsuwqZ3zGATH01GvvuABhdVJE+0vq3/EpoPyDKLm30YQIIzj4Gnq5Q9k0kfdJKpRGuLDAfUiBd1EBgu2tPSGf7plBCQPjJyUeocUzICCbWZZpPp+r0WgEXwrfTwilz8GNH2k16F0sTiLDZDx49kOtVgslO4g83W63MG4yEcgucWK9WCx0cHCgixcvarVaaXd3N3Q9yLJM0+lUo9Eo+DT4vNhPPCQg3ngMjEYjjcfjIBrhScDZdt8Ez+CAaDv8meRcuAlmvV4P59H33gUp5s39yB7imej3++HsOiiN8HPGWen3++Gs8oxwrv067tfAWngrWM5gRERERERExJ2B5/zdN+nH/vtr9A0/8gOqJnduYOG7Ln2Ofu5XX3arh3FLsKnnevdfukeSdO53E+384JMTFMDd/+JNGn/lp+uRT9dt76lwKgQFJ8+UNBCVbDQagfBBfCHv1K7X6/VCCj5RZQgebR0xv4PwYqQH6fJILqTXI5eQNerePRqMmIA3AMZ8EOzhcKgPfOADgeDee++9IVsA8ulktV6vhz9kHHiKPf4D5Yg+9eDu0g9JJfLsZnleMkIpQqVSCSaCZXd+BJTVahUizl5C4tHycpYJ791sNgXfAyejmCjyOfwkMBRkfTzVHzJYFlowNCTbgDPkHhDcl3VgvbgWhHc6nRYEFrI8vOafeTJ3J7qXLl3S7u6uWq1WaNfp6f+IC+zFcrnU3t5eEF78LGw2m+Ad0G63QyaMG2ayZ+6bgCmov78sxpAB4mKPZ3eUM2PSNA33mkwmGgwGhTUna4BSo+3t7YK3CXNGwOv3+2EvsywLHRnK/g7sy3q9VrvdDsINZ6XZbBbOJ88FngxexsSzzPjdy6HTuf1cjSMiIiIiIiIeH9U3vUNf8pl/Qn/nl35Cn96sXvsDEbct9j9OGnznKyVJH/MDD2v1wQef1Od7P/029d71XL3n6/s3YXSnB6dKUICYED0lM8Ed/be2tpSmafAIgASWa6Y98jufz0PqtKQC2eJePgb3NYCMEaGFAHlNP+Zy1I3zfjeQm81m2t/f16VLl9TpdELWBPdcLBaaTqehDMNLKyBbTvpardZV64cg4Gn8TpQhcNJxzX05tZ1oLaTQDTBZO9LaPRJPpL+8Pj72+XxeINnltoxeAuBzYw19Ddww0Ym4CwEevXZhxOdbTn93w0bPsHChAaHK0/o5T+XsB+YD+Yfo8nneg08Dos1gMFCWZbpy5UowKnUjUjwzEMEYH6IH54QyHOaBINZut4MI5n4Kvp7NZjOcRco8vPSB9UI04zxQ7kGJkZehJEmidrtd8Jrg3pVKpSD8sW6UhJRLJrgnggAmkOwXmQ+07KQEyjNu+JmbqyJMYHQZERERERERcecgXy60+uCD+vPf8816+Z/+Pf3AA796q4f0jOIbPvyZ+pUPPf9WD+NUYFPLtTlKWr/4mvtUy+7T1myjzo/9xvV9fjbT1mgqqX/TxngacCoEBalYj40Jn0fQnUhQCgHh45d/CKN/hu4OEAOPzntEs2w66GZ0TjC9XpuIKaSfiLgTVR/7eDzWlStX1Ov1dO+99waRgyg7PghebkG0GDLla0L0nnm5eZ1H0yFLkgqEEAEEUYFWgYgk7t/g6e+IEeW9oUuEiwTMBeLGGFzccEDGy2fCRQ4MFz0d3bMXHs9QkGs66XcfDN8LPl9O9UeEcqHEyxcYo4+Fc+hZDaTTMz7+yxjItKBkhXMO6IqQpmkwEkS0odtEmqZBEILM022i1WopTdMQveesuKcC54nnygUW1ofnBkNDhBG8QxC5GDNGk+WsJM9UYL7L5TKUZJA1hAjm60WZhotM/BuBgQyF2WwW1p71lxQyb+bzuUajUSFjJiIiIiIiIuLOwz3f+yb96t2v1Hd/2UX99d333+rhPGN44/teKD3WuPYb7zAMXnzUSn5S0fbbXyhtjjr1LVdafeBDJ36mes/dWjyw+0wN8Zbh1AgK0jGB8wg2f7xto4sHEA9JgYx4+v9qtdJ4PA6pzvyBTFOewL+5LinUZT8GSA7ku1arBUHCDSIhmV5mQI32lStXtLe3p/vuu6/QChIzvvV6Hdrg1et1dTodnTt3TpcvX5Z0LB7s7u6GVHL3L+DebjKJMFEmkLSB5P4Q/06no1qtFiLEJ+1NkiShVl9Sod0m2RHsCUJHmqaFbAMn4ZA7zzjxfWa/KPPwjAPPcKGEwQUiNxucz+eFs8BaOZl1IcPHwV6RkQIJJxrPOWEefh1KbIisIxywX9PptGCYiAiFmOA+AIvFQqPRSK1WK5RRcD7pDsIzQwYEJRGdTkftdlv9fj+MZzqdXjVez/BAqHCxBWNI1rbb7Qbizpw4Y6zzbDYLQgIin5cxeMmF7znCYKfTKQh77D3ChZc0nWRk6hk/vp9pmoYSChcxYpeH042keufWt0ZERERE3Hw892+/WT/za39Mf/n/fpcaSe3aH4i47bFq5Xr3a8+Ff9cPKnrgH5xcCnHwR59/ZGx5e+PUCAoeqYXcejozkUl3kvfoqafbIzB4BHs6nQYSSs27dEgoxuNxgTBKh4IC16T0gmglxBCCx728PANDPk+xlg7JbpZlGgwGuueee0IKOnPzOnGIVafT0Xw+D74JzHNnZycY2E0mk0A6nWxB9prNptI0VZIkwfMAYkzWBoKAmyYSsSe6WyZabvrXarXCmnmWBJkY1MX7WrgAwc+c+LlnBGICggFwAYWxeJaER8mJjLvJJeKAl2k4qWc+fmZYO86A1+R7twzpOGIOKZ5MJup2uwWTT+8IwljpeDCZTMLzAGFmDmQwdLvdQpkKAgfZFe6XsL29rbvvvltpmqrVahUyRjz7gJKi8nOJqIdIwX3cOHI+nyvLspBVgNEmn/HnyjNgPNNEUuhkQbcPnnnOqqRwvvCtKAtNnGPKjprNZqHEibKPer2u7e3tIHz43kWcPmw+82X64BelypO4RxERERERNw/NX/gdffkrvlT/+6/9R720HkshI4pY9jb64Hd9+omvbbakO6FLxqkQFMrO65IC4YWMOCCPbpLoxoaUIXhrQMgexIIoN6/ht+AlC07eICG8NpvNws+8C4OnUnskH8JI/ftkMgmmg5Ck0WhU+DnjbTab6vf7Wq1WGg6HIYLa6XS0vb0diCLk28sbvDaeKLZnWkgq1OAzbjd1hGxDvspr5vPmOty/XHrh0WH2kj1HrFgsFiEFHXIuXd1tg3s56XODP9bPCaaTVi+hcJGqXOLiIgnXYP8lBaLMfFxkch8Jj9L7tbiHixZciz1BXPDzz+cRKlhv4H4Km81Gw+EwmGdWq1V1Op1CK1EXalwkcT8Q3ycyh/ArcDNOvy9/py0m16V7h5cq+Tr7Z7e2tkJ5EufBvUfIbvDsIPe74NlFQKRMArGKayCysH4RpxPTL32F9l+0pXVjc+03R0REREREPA3kq5XWlx7V+ja36t9bZ/qyd3y1NqOaYv7f9SOvSOvm7S8aPBFOlaBQjpASaYVcO6GHhEBmXACQjomk12lzD0mhTAGy56TR070lFTpAQP6ImLv5n5Nd6ZhQk8bN/ZkX5QVEyAeDQYGEI4pUKpWQ2s7nuC4kzQ0qfZ5uYEe0HlJGij33Yc0RAMq+FFyP8XlEneu74Z2vgZevlAl3WVRg/SUVuly4L4GXLHhGip8L9p97lE0YIcbuFcA6+Dn0khfuw7wQcsr+GS5yuBmo+xywFogoXl7D+Nz40a/pIg+ZHuVouo+FzB3OKV0jEFJ4xlgHPsd58GeTcTEXBDRe9+cOkQJRLU3TkGnCtf39nnnC58tnxY1Gy5k97A1nCGNJhD3EGdaQ9Ufc4FnkeS2LPBGnA4Pnb2lyX9ybiIiIiIhnBvkm119415/WP3rhT+rV6e35/5/RJtfFd94dxYSIJ41TIShIxbpzb9mYZVnwP4AwuBEh5BKDOZzoneC6+Rr3gkBAyjxyXDZVlBRStrk2UWonJV7TDUlhDBBVrwmfz+eq1Wrq9Xpar9e6dOlSiKwyJ8YmKZAjJ4aUGnjauBvrMV9PMad15Wg0Cs74RKp5L2IHBohlHwUyFBA+wEmCAqKFE1dPOSe9XDoWXFijNE3VaDQCyaO0w70Z3KzQxQjPsuC6Tsw5F6TPl8fu4ymTZTID5vN5yKbg56w510N0QRBDUCKijsEiogJ76QKan0lKWDxzx70JuC7EnWeBKP9kMtHly5fV7XaD4Sd+Br4GrJc/B2VwzhGNXHgol41gBpkkSXhOWRvG50KRz589pfTDsz8oh0Ck4fnDq4JnhEwODCq93SyiBF1OWEvEqoiIiIiIiIjbAEmixIIX+XotXU9542atzud9QN/8n75Kv/9pP3ITBxgRcfZwKgSFcuQ4TVN1Op2Qnj2ZTAqtFGkRB7nFHwASANH19HuIXjl66j4M0jEhJeoM8eB9kDhILGSHzhNcQ1KoFV+v1+p2u+G1+XyuK1euhOyL3d1dJUmi4XCoy5cvhzGURQzuD9Ej3RwSxBwh+4gFEP7FYhGMHtM0VZqmIVIMoYOMQpipYYcYu6DgvhcuZEjHYgaiEI7/vV5P4/G4IL4gclC3D5hbu90O49na2gqEkPNAt4tyhL6c8l7uTuBr5YTZSyxYR8+K8HKL+Xyug4ODwvzJGihnrbh3xHg8DmSe0hw31/SWmszdTR+9uwGihHfC4Ox6BwrEIUSN4XCoTqdTuKa3UHThy1tP+nPLexgz54QsGvbM/TA4x1tbW8qyLIyZObOW7o/COPg3WT9kLbjppWd5pGmqWq0W2m5ieopQgNCHKJLnudrtduG8RERERERERNweWLzmU/TRP3pMf+77lbWa/+U3b+GIIiLOPk6FoCAdd2vwqKJHeyEJ5QgyJocQA95fRtk0z00YPaLtJRFOiiFTTurKkWtq0fmME+xy2QaRUuaMod1gMChEhhE2ILNkDbhrP8ZzkDBIpM/TU+shrfg6lEkeZJiIue8BQk55jZkX60HJhKfNI7w4sYdMQpARUCB0nn4OiXeijscEY2PezNkj4PyBABM19/kicHDO/Oy5iSLCFD9jXdmPstgCmWfePlY3HeVezWazIKp51oJnrXBNykZcjKADCYQc0QhxhKg81/PIPNegRMYj9X5P1pkslvI557o+V87darUK+11+Tj1Dw1/DxNOzNPyZRcRjrqPRSO12O5zvTqejyWQSslbc72Oz2QSDVs5AuQQjIiIiIiIi4mxi+Kc+XcPnVbSpH/8O+9gnbal5/yslSff+yDu0Hg5v1fAiIs4sToWgAMEiooyvgEdoy6n8XrftngQONygsm+D5370+n884KaRGndR97l2uK3d/AAgKRIw0fSeEkPM8z0OWBcIIhMvr731sXMszLyQVxsd4PG2cdXbS5anmHiVmHuWSAe+Q4GvsBNLX06PnTtDcj4HrIThAdH1MXkPvJJ8SGem4AwP7h2gAmYVke0kC63WSFwZzd7g3g5dUuAmmZ3DwGT9nrKWPq3yWyh0kGLOXoHjZBuNyscPX2jtIIJ65eSFCjosKnuHipRtejgBc5DlJNHJBxAUo970oP6e8zmfYd8QqMmro/sKZ5Tshy7IgMLGmnEe/l5ctIdqxNxERERERERFnF0mtLr3sxTp4cUWL7WJAbH5+o/l5Sbm0+/KPUeNdD2t18ZFbM9BbiHcspvrxwStu9TAiziielqCQJMm3SvpzOuyH8fuSvl5SS9J/kPRcSR+S9JV5nu8/0XXwLyC1vFarqdPphPRr0p2dgLpZHynkZa+EcsqykxHEAalYJ0202NPH6a5AmjUmkGVfBifY1GtDqLa2ttTpdEK9PfeFhLZarVCOQNo4EWSvz/fSB+7jZM0N6KbTaVhTxktWA2NnPtwXogZxh2TzeZ+3e1AQEU+SJKSxQ5hZQ6LT3B+S60SZFo+sExF3BALKPKRjAttsNpVlWSDapNl7RgPEmPkhECE4+F6zxid5SEi6KmuENUAY4+dlIcLPJXNBRPHSBz5HKQhr6aaP/BuSXX4uPJuCZ6ycjQJh9r1g7o1GQ81mU41GI5RikJHjnRyAZ1cwBp4jCL53SmFOLt74M8iau8jhZ4nng7VDKED8Y23JBGK/mI8/3y7akKXipo5nATfquzgiIiIi4qkhfg+fXlR6Hb37T7Wl5AnMFBPpg19S1/3tB5T+3BXly8Xjv/c2xA9eeZV+4n9+2q0eRsQZxVMWFJIkeZakvyzp4/I8nyZJ8gZJXyXp4yT9Up7nr0uS5Nslfbukb3uia202G00mk1ACAKlsNpsFIz7IBN4DEB6vFX+86Lmnrpcd8z2qTUQckzpqq92zAELmkVNJBbEAAoZQMhqNAkFM01T9fl9S0bSw3W7r/PnzyvM8lD5g3LjZbJRlmUajUSFyS+YAEVrKHlgfxJLyfCmZoMwA4zrGDuHOsiyIANPpNBBZCCNj45788TaEHsHPsizU/jMWWmUmSaJ+vx/II9kE0+m0UDJQq9XC+BAh8AJYrVaaTCbhfU4OERXSNC10AvCMCHwB+CylBxBU/CfYa85AmqZhT8qiTfmsIzogfECe3UyR9UUYcRGEszyZTK4SpxCeKFVwAaFctoBQw3+91Mb9JxAXRqNRwXfEy4Z4thBEuKZnalBq4pkuJz2vtVotPOf+zCHKsWeIEniNuEDAGR6NRuG8ecmFi3lcm7kgOJDlc9pxI7+LIyIiIiKePOL38O2Dh/5oRelLPkX3ffebbvVQIiLODJ5uZ5AtSWmSJFs6VGEflvSlkn7o6PUfkvRl13MhSIdHYgGkR1KIQE4mkyBCeOTWCYJHiZ00ci+PjlJn7hFiJ1uSCpHVyWQSCBGEnk4BrVZL29vbISKLYHJwcBCi961WKxCn6XSq6XQavCMgq5Bp6sIZ42w202QyCYQVoo1wMZ1OQ+SdCLSTN4/IupDjqfxE8t2YkM+W4WUOjUYjRL+5npckQOQlhc4P3hUjy7KCFwY/y7IsrLmn6LPfrVZLvV5PvV4vrAWEFKM+xlir1dRqtUL3iHKdvp8BJ96INK1WS2maBkHLCTZnTFLh557xQCaCj28ymYQuJV4qAaFHwPLnheg7+4eA5SSca3F/F05YOxfGEMImk4mGw6HG43EQAtx3gM96ZgFrxx/PJPFnzsuI5vN5OOPlDhecIT+/bsaIaIDQ4mvFvvJMjMfjYA56UrYJf7w1rPuUnAHcsO/iiIiIiIinhPg9fBsgr0izc7kuffOrVGm3r3r9wv9e04t+8C/cgpFFRNw6tB6q6EX/5uBxX3/K4bc8zx9KkuSfSPqwpKmkn8/z/OeTJLknz/OLR++5mCTJ3de6lpN9SQVCVfYI8LIHT4PmNd7rqdxODt2ToTSf8H6i2V4v7mnZXhfupMrT0N3BHzEA8od5HZHTxWKh6XQaCLanv0PkmTMCRjkdnO4HZbd/Fw8gXfwMM0GECqK9RIv9c6wf8yV6jvABEW21WsEoj/UhPd7HhcAAOSTiTDYC+4PosVwuryLDnklB2nu73dZoNLoqAu1EF8JJBoQTXcbm3geeicB83FySEhWHn0XWzQUe9goRCpGI6zjJdw8IJ8Pu/+EkvmymWfa08OfKz7+P3cfvJNyfHeZSviZrR1cGziqCFv92Ac/XnWt6yZOfWfdoKHeeQLRxMQxRAEHC/TPcENNLZrx05rTjRn4XR0REREQ8ecTv4dONfDbX7tsTDV4orZvXbhG5aeQaPS/XffW6lGWF15I3/67uftanSV93kwYbEXHK0PlwRTvvWmrze+963Pc8nZKHHR0qr8+TdCDpx5Ik+TNP4vOvlfRaScEvoVarFboQSCqYxknHxN/Jrpsxlmu8nciAMpnymncXICQVPAJIqyba7dFryBHR/FqtpjRNNZlMCunZEF1S6SHkWZap3++HLAWc8BEUiFxD3LkO6exJkoSI6nw+Dz/jM25ox3qRIQF5otbcSaPXxjtZc8M+TCa5lkfTyyntUrGdo0fOJWkymYSSAvYTIaZarSpN08LYZrOZptNpIOvNZjN0y/BOCqT/exkM4gAlIE40XTDx9H4veUGcKZN3P0OkzXNvyCtlPOzRYrFQlmWBhJcNKcveCKyNk3Vf68lkUigD4V4uqvlZKHfuQKzx56zsd+DnByCEIULQDhR/B86Tj9uzKFzIQVzzzCVEAMC43IjSO5WQCcF9GY/vKWeYs4/3iT9/pxk38ru4qdbNGGJERETEbY34PXy6scky7f7rN2v+V1+l6T3SpnZtUSEi4o5HLlXniS788kD5W9/xhG99OuG3z5H0wTzPH5OkJEl+QtKrJF1KkuTCkRJ7QdKjJ44xz18v6fWSdO+99+bdbjdEqKWikOAp6E4cyqnakgr195ANSAufJUoJyazX64FEuAs+IgMRblziq9Vq8CygOwMp1RjY9fv9EAX3Ovf5fB6ILrXplUpFg8EgeBUQaV8ulxoOhwVjSiLZRF09W6Ddbof0cUooWDvEEkhytVpVq9VSq9UKBNiFA1L7IVS8B68ABBYIOqIE0WSIYTmqzc8QZGq1mtrtdhCBLl++rPl8HtYVAkgWBQKBlw3gmUDmQavVCiSSNedMIfxA7BEpEGS4D2KBlxkgPLAmXgbgPhFOQllr5koaP2UpnEHWifsfPSPBdJB0fq/t51xAmtnrarWqLMuCD4iXDbiogAeD+1vwXp4nJ+buOYFo4OLdcrksGJ2yjqwVpRhcy80l3XsEIYXzxn2Zo3s/+LPPWXTT1PV6HbJByOLxriFeQsH3g5eelMXIU4ob9l3cS3bjb1kRERERTx7xe/gM4ML/8WbNvvBT9dHPfroV3xERtz+SdaIXfOfvaVPK0jkJT0dQ+LCkT0+SpKXD9K7PlvRbkjJJXyvpdUf//alrDjhJAoGeTCYaj8fhNU/ZhzhAyiCQkBhIGcZ7mC+SFi8dl07QgcBLFHi/p1eTMTAajQqiBvXzaZoqTdMQ0SXbwEsDIIWMj2g0c4EADQaDqzIKZrNZIGOj0SiYPEKSIJ3dblfNZlP1er3g58AaItZAmsiQIBPCCSTZFdPpVI1GIxBdxgWRlo79EyDSjNfJNtc/Ka3ea+VJry/7DrDmXuKB+MJ9IcKtVisIOS6QuIcDBpkQU8+8YC5eeuBn0VPiOXcumHgZBOAz5QwIDD/LJQCLxUKNRiNkoLixoWekeCbIdDq9ap2daPuZZszlDAnPAmCMlDWUBT7eCznnfp4lgdDB9Vzk8jPn2Sy8B48KWmeyv5QOuSmonx8vq3Hwc7Jwms1moV2qX6PdbofzdkZww76LIyIiIiKeEuL38FlAnqv95vfpY/bu1/u+siUl1/7InYBP+J6/qNool14UtawI6b5fydV9x2VJ0vooaHstPB0Phd9IkuTHJf22pJWk39GhutqR9IYkSb5Bh1+wX3GtayVHRoZE5Mfjcfhl3mvQy7/8l9PuIWQe5eS97pFwNP6CrwCp715OwWdph+gk0tsQEmXHAG4ymSjLspDNkKZpII8QWyKgnsI9nU4D+XOi7wZ+ZSM+xttoNNRut9VqtUL2gnsmOMlCwKhWq+p2uwUCjQiSJIm63W4hWl5O//Y1hXQuFourfBj4Ayl0UouAQSTfzfe8pSJlJcwJEtpsNgNZ5/6ISog4XrbgHhzsp0fZSa93eHq8dNzBw706XFDgPDo80o+IwXllH/n8SV4dZV+MsgeA39Pn4evPmvuYfD6cURcTmB8CCPvH9d3U0r0MGJufO67tHgzugcAz7B01WCtKabyMBzHQs5YYGyJN+byyJuy3Z2xwDbJ2fI1OM27kd3FERERExJNH/B4+O1hfvqLq1pak59/qoZwaVOZS5fT/uhNxo5FLu29PVCnSHnXf/pjW73n/k7rU03Icy/P870r6u6Ufz3WozF43XFAgTZtf5DEqhLy4UR3/5j1ONCBBXMOJrHRsDOeCgQsPbsxIij0/55oQLoi5kzKyLBAUSAH3kgmIJEQwy7JwPdYhy7IQ6cW8kY4AXgpSr9fVbrfVbrc1n881Ho/DnN24z+9XqVS0vb0dTALdGBJC7uaYboZZFgtYN1pR+lq7md5J+8D6ko1AyQNlF16WQuYF1+S/nt7unSrc64KzA4knS4UsEggsmRwu9nCWuIYLF+Wz7IIK0X9S9stRdUlBwPDuGi4O8Dx4pwoyKji3rJ2ffxcMXEjg757R4CUr/tzRCQNRx0tofDzM3c8XIh1ng+fNMyD885LCGCjnoHXsZrMJY2E9OW++du7n4WKArzXXp2SJsXv2DmLPWRAUpBv3XRwRERER8dQQv4fvHFTnuX59ttanNhJVk7NfPjF95Vjji9G743ZFZXG1aCBJyqW7fuIPtD4YFH68PuGt18KpsDAnzXi1Wqnb7Wprayt4KZD6DPHzVGRPvad2nqgoZOuJshScLKRpWvA68Ei7kwzgkWTpkNDX6/UgjNCijtd6vZ4qlUrIJNhsNsHvgHlfuXJFkkJbQzwRuJ5HnvnDWPBuqNVqIbNgNBpJOk73hnRBnllbSLCTLEodkiRRmqYaDoeqVCoajUYFUQdRBNEDgQATvq2trRAVZq+lY5NGyhwYQ6fTUbvdVpqmwePBvTI8i8ENHX1vMaz0DA8IMsIEe48JH/vNWfPOBmUSjK8DIo+XJXAW2W9KLKbTqQ4ODoIQ4SIV4/RWm/zXjR8nk0mhI0X5/HsGxmw2C3vrEXvPPuD8+vPCc7FarTSZTML6cjbIrGE/y9kcPCPsVzkb5STzxHKJBv4SnG3EpeTIoBPRAUHIM1Y6nc5VZRi+f/V6PQgSnqniwhMlES4gRkRERERERERIUvM//6b+/i99lv6vd/28Htjq3OrhREQ8IS68ea30J3/zxNdu1G+5p0pQyPNc0+lUnU5HBwcHmk6nGo/HgViSdu+Ragi6G+VBbj2duZyyLh2XLeCz4KQVMkW02Ak2UWnIPUQQ4kNnByfSTlQg9GQakH3RaDSCyFCtVrW7uxtqvbkX9z+JzBN59awK1pdreCq5pEBuK5VKMDJkzmmaFkj2fD4PnQhWq5Xa7XaocSc7wE01pWNzy3KqvqfgQ+gg9fhBcH88JLiuZwbgwQDp9rR8SCxdNbg3Rn8IELPZrFB/3+12g2iApwGZGfhzuBDhafjuC+BeH7SE5Gx0u91C5N7T7j36X85AKHd18EyHZrMZ5sVz4pkOmCQiXnh7TElhHSUVTBhPKpfwkgIXJ7zMwdeC/cAU0UsU+KwLAaw5e+kZQTy3ZJpwbslK4rxXKpVwPy8PYW6IEp5t4/uMH0lERERERETE7YPN5Sv62H+e6gNf+ywttjdXvd64XNHzfvghrQbDJ7jI1Z87a9hbZ3rlr/wlra80op3EbYIXvGGq2iMHhZ/lB8MbJhw8Hk6FoCApEPZ+vx8IJZFkTOpIgR+Px4Xe9FmWFYz3nJB59NJrt4lWQ8w9Susp3S5GOBl2Az+PMHNdUrMhRQgKXrNPJgRiAOP3bgTcl59Drijx4D2sE10jmJunoCPAMEbWhHmVa+Ahq9yH9p7sCwJJvV4PNe6QbAhcu90umGZCUgFCAJHubrcb2mmynsyb7ANvH+j7Xq6j97UhayFN02AA6qnz/ofuEqwbmRd+Hz8rnu3APFl31hyiTfaACwRlDwJfL7Ir2HPWj/VycYX9QsiifamD++V5HuYB3EvCz6GLN+UsCPcx8fd4xoaLenyW+/MzLzGB2PNMzGazYEBJuYhnK3kpBYIWZ9iv598H7JFnmXg2ha9JRERERERExO2DfLXS6oMP6p633K3LL6lp8qxjcaDz4Yp237nU6oMP3sIRPjPYSNo82lQSvRhvPnLprt/WcelBIj32yclTbmFaWSa6661Xf3brXR/Wan//aQz0qeHUCAqQcEna2dnRxYsXQz37bDZTt9sNPgEQV4jVZDJRp1NMOTrJjM4NGOnQ4OTTSaKkgpM95AhiAtl0UQEiD4F0gk702VPBPeOCun2vu2eOkgJJQ1BAOPA0eCdqXm/umRUIAGWi6YTPo+XMKU1T9fv9UP6wWCwKKfEIPtPptNDtgQwLIsNuGMlYuRZtCCHE7oPA2pPuzmsINKyRE0aMEz0aLR2mxU+n0wIxd8PDxWIRPCy8PAZxoLw+3vrRz5qkcNbo2sC4JpPJVZkaUrFdqYsN3rnCx8xauQDE2fUMAq6B0LZcLkNGA4SbMwB5Z73dN4Nz62cOPwe/v++xe2hwRvmvd1pwk0vWfD6fazKZFEpoyBxwYcDNHck68jXz7wIXGHl2XaApiyERERERERERtx8aP/MWnV9/qh7pHP9OfNfbZqr+j9++5mfzPNdPjV6q/6X7Dl04g2UPH12N9XPZx0hRTLihqM4TVWcn/O6YS7s//Xath0dZL0miwfNeqU3j+L2L3ua480gu1YeP789RnUndN/y6lBc38FYV6p4aQYFU9Ha7rYODA33kIx/R3t5e6Gwwn8/VaDSCtwDEFAI4Ho+vqg130ofxIq+12+0gQuR5rr29vfB5UqYhX4wPksG/3QBuPp8rTdOC6Z6nsgM3wKO9I/Mjmsp7qCX3a0L83CQP0pdlmfr9fiCEEEZIZ5qmhQgv4oib93k3AY+0NxoNbW9vq9PpaH9/X+PxWPtHCtjOzk54nXlNJhOtViu1Wi31er1Curl7V0BQIdqXL18OJS7sD2PE2JDIOESXPy6aQDIRPVgH77LAnPkc//UsCv8c5TTScXmAZyl4ar2TV/YPUUFSOL+AjBGAcaeXDZTNRlkPzB49Y4PX+CwiV6Vy3A0F407OJff1deD6J72HLA8/k41GozAnhBs+R2aOnzM3tkQAY89dePFyHIQ7RBo/u4g+ZMj4eS6bU/L8uLjDufLsk4iIiIiIiIjbD/WffYse+Nkn/7l8Ptd/eemOfvRnv0a/9ok/ceMHdpPxOb/+F/T8P/egkr8r5WffV/LU4N5fv06/gjzX/f/4TeGfydaW3v+dn6pN44g/rBI95x/9lvJlscPeacWpEBQ8KlitVtXr9XTvvfdqOBxqb29Pk8kkEItms6mdnR2t1+tgdoeoAFkkkgyRkhRSoUlzhnxBNhEvMCGEUEHksiwL//Z2dhBGj7R6R4HHmyup/uPxWKPRSNvb22q324H04UkAaeO6EK7VaqVGo6FOp6PZbKYsy5RlWViner2u7e3t4Cswn88LWQncn2g/PgVEnFlPz8BIkkQ7OzsaDAYaj8d69NFHtbe3p0qlol6vp1arpfPnz2u9Xms8Hod793q9QvmEGx5ieCmpIJDQBYM1cHEHMrtcLoMHRavVKmS51Go1pWkaDCq5Dh4LaZqGjAlEE0g56+vGkS5cIZ54+QlwkWYymRTq/skakY5LVLz8AxLspoyeRcG+sb+SgsBCy9F2ux3amF65ciVkaZBlgnBCxxDu6yKcl8iQecE43ItAOs7s8Hm4F4l0nOnjawo8i8KzgFgfslYQDsh4ofyDM8t9/fnO8zx4Z7gBI/dgT7MsU57nQYhzwaNsOhkRERERERERcdbxeS94p37+W16hPDn7XhCnBS/6wYH0gY/qqaxovlrpRf/sg5Jl+q7OiJggnSJBwUlrs9lUv99Xv9/X9vZ2II2kLpNeX257R6TbSYGkkOLv7v/eqo/yAYwdMVokIwAi4u3mKIWQjokgZIw/nvq+XC6D74EbwDmBhvx4lNxb83ltPddhjJ4Z4N0anGS7oz5k0U0luaeTQ0gbBN67QCRJotFoFAQWskfo2AFh91INTzdnXRE6MNGjDIVOBeU1gOixx+6TAbgfxo5kaXjbQDwaEFW8HMUj9/53hALOFJF56vkxyvTz4lku7B/nw0kupQNeIsBnyGhw0cq7RPh6uNAFeeff7CmveWlGeb6eMeOmh6wd9/a1R3AACAXlUgLOo8N9JvjDXpPxw1nykhdfW67Le/1scX3/OwIX2SDl74mYoXA6cfdvT1WZpxq+MP4iFBERERFx6zD9yXv08uVX6q0vf8OtHsp146Vv/l81+3BX2o3/D70RqM4S3fObm0Mx4ajD3lPB6uIjN3BUzyxOhaAgqUDyaR/Y7/e1s7MTfsF3Qz4nmuVWdtTll80SIWUQcPcbwGwQksRnylFNJ0VeZw3R49/lVH6irBBdJ2mQZzIUiJx6tNvr2H0cCB+NRiMICpSG0HWCyCtz9jFyfcbk60ibQCL7CC6sTbVa1Xg8DuaM586dU7PZVLvd1nw+D34KkGw3f3SiSlQegghZxTDPMxTYL8/yyLKsQGK9fAH/AuaOXwNmkWRHuHGgVKz/53XA3MoE2+/hZSQuVLhpoZ8pJ8ReLsF9y74SCAT1er1Q9lLePzfdJKuB8UKqXcRgLCd1bWAdWDcyHVwkcGHG/ThOKv1xgavsa+Dz4Jnk57yfc+fPNd8l/jnOA/f3Mhfe4x1OXLCKgsLpROV//o7OJZ+s4Qvr135zRERERETETcJd3/9mTR79NP3gC+/WV3cfUTU5vfUDy3ytHx5d0D3f11RltdAHvzT+P/SpINlI9f3jfa6NpNZ/+o2nlJlwu+BUCQpOyJvNpnq9ns6dO6fhkYEFtdydTie0M/S0fD7rtdGkP3u7OalI0La2ttTpdAKBdZJTqRy2tIQcQ84gsBAfJ40OIv6UVnhqtxMvIud0YZCk8XhcIHNepoHA4h4RZFowfsohZrNZKA9x88EyYfaouSS1Wq1Qa0+KvBsSMqfZbKbxeKzxeKxer6d+vx/KRFwMIqrv+8a9EXUggHgUcH9ff1o6IgyNx+NwhrgPJS+1Wk3dbjeUR0ynU2VZFsoP+v1+yIDxbJTpdHpVuYJnjdDpgntRWuOElDPtWQzehYF/n1Qaw2cgvJxZIvTcm/Uk9R+zQtazbNrImfXsBcbNmvsfSLcLUpxBunGwfpxpz3ZwMcEFMf5bNlMErEs5c4JWmOwNghBigxtfck0MNv17wssyvLyCs0eGSdnrIuKUIZdir6uIiFOGJ2PyFp/fiNsArZ/4Df2HX3ixvugPPqjz1fatHs7j4sOrqX70k56n2vytWr/6k2/1cM4ejr7btrJEz/7ONz3xe+8wnBpBwck1ZQ3dblfb29shCktEc71ehwi5lz44cZEUCAFEyrsNQGjddNAd4SHrpOmnaVrIjqjX64H0kfrOe52kQy739/e12WzUarUCsarX68GA0Ns9Enn2doqQO35ONgXp62maFgz1uD+miERgmZekQKBYd48SIxQgcJD1AakjWwFyDVEnuwODzfF4HIz9fK+q1WrYV8a22WwK7RpXq5WGw6Emk0kgrYyFvWGNyRjg/Hi2AeITqe0IIM1mM/gN+Gse4UbUcEK8Wq00nU4L5QxlQ80sywotQtlv6ZDYTiaT0I7S58t7uZ53rvAODl4WwfPDXvBvxCvG7NkILmrxHrIRvLyE8Zc7OHD20zQN1+T+PEtkuHjGBC1LySrCvBOUvUh8ni6uuYDHOL20xMtTeD699IJ7IRRx7nn+Pesi4nSi9ut/oI998B69+5suREOpiIhThNqoouf/y/dd833v/8sv0KoVLeYjbg9sxmN9zWu+Xud/4BH92+f88q0ezlV4zTu/SNVvSpXP33urh3Jm8cIfGavykUel9fqWdVM4rTgVgoLXYrsfAnX5nU5H4/G4UPbgpBGi4j+DTLmXgnTcQg+S5aSaiC7RydVqpWazGbojOOlvtVrS/7+9c4+xLDuv+tr1uM+qnp729Dhtj+2xg2OIeQSDTBIICQrkpSQmASJHSBgRZBCJACHAjiIRg7B4BAyEV2KIcQJJnCAIcSCImAnGQOwYj+OxHY9fcYZ5T49nuqvqPqur6vBH3d+udXad6uru6aq6XfUt6arvPffcc/beZ5/Ttda3vm9rj5B5tF2q29YlZRGAKvecl+Ure71ezZoN4Zb2XA6eNuDCBeeFxBF9h5AyPogOjDkRfl/dwtvv9SoQOljCz/tKG50gux3dHSMlKfSifkTdnQQjOBCB9xUUcKMwvmyDlEIkORd9H41GWYhYXV3N7gKi/16o0omlj707Yrw2ho+dizQuCJTk39vp8LlMzQqP+lNos4z+M78QvaQ994ZfX78WTTUOyjQiSDtCHePEeLOkpxP90gXDvjs7O1lY4H4GzFlfmYI2lkupupjn7eD+mE6nWdzhO78uXovC3SCgXH0jMD/YmUykLz4v6dJJNyUQmG9U0kv+d6XFSbNQWi0kPfG1i6qWbo3cL06TXvIBE4bHm9p+5vKhv7vvl1+m7faNqYFfXA/hITDnqCptf+qz+tSPfZV+17e+VA+9/qdPukUZr/lff0rn/3Nf5x/+4Ek35Y7CxQelzvNWdPw3ntD2bIW7QB1zISgQsUVEgEDjHGCZSE9vIILKq4w8eq0Bt2OX5Msrz0O8WRHA6xTQFoh7p9Op5XhjcXeC5uRPUiZcEDKO1ev1tLq6Wqu94GTJC++5E8OP78QTK3xTvjm585IyWUdIgTy55Z36DIgKkHFfiYAxoI20m0g115iUlZKkc+0QGErSSzqIF9nj/O5K4Li+moIX7aO9rOaBGNDpdGqrKzjhbLqWXvQTcQDHRlnEsBS+mLeILLSxLCrpJNzFJbZD7Lln2NevA4IC52KVBo7BfeSig4tF3kb6Tl9Ho5FWV1dzfY7yeF4rw1NsPF2m0+nUVpqgfz6fWZmCe2w4HNbqNniBUMbBV1lhjnNNuYcYh3KVDsaWOeO1OQKBQGCesTRIWh425xCsvO8TBxcLW1hU7zW/TzvLt5Z/sDSS2r/4f2/+dw88eMN/hKZqdNPHDwROAi/61x/UxuAr9bdf9VslSX/6/Ed039LKibRlu9rRP3j+Nbr0E221/0tdTFgabKpzuaPJxZ1IPZqhdWVBi7awwot+5UltfeGR/DlcCQdjLgSFzc1NPfroozp//rzOnTtXi5aSbgAJwzlANBtSINUj1l5R31cygJwgOjiBIVK9s7OT8+0hwb1erxbtRwyA2K2trdUKu3EciDVEFgLV7XY1nU61tLSkc+fO6d57783WfS8KCUkcj8d5GUKvgyApE05fgQHiDSGEwHn9Aa8V4MUFJeUo9+Liovr9fk6B4IXIUOa4j0ajnB7CdfA0Aa438MKAFGL0avyMI8LCeDzWXXfdlQUCos5eTJD54W4Gz7uHXBO9xiXCnCiLKNJmfg/JpI+IQ6TTNLkafBWQbreb5xoEHYHKryvj49cXsS2llNMFSucE84V5hxOF9B8fWz+Xr2rg6UH01dOBvAik15VA0HBxz1cJQezi+IgBLsRxzRHz6Df7MBdKV4iLSIwnbWLOeZpQSqlWa4FnA33zmiuBOUfUUgicVVjg/sUf2Vb355vXP79uEtfOti79w8gHDgRuF1bf8yH9r/fs1nj67Ae/Rf/m5e/P3x1n0cbL2yO9/yvvVXu4X/CrPvJJvfwzq/rc216r6qz+/1kYn+5/71XtfOxT+XOU5b5xzMVfy9vb23r66ac1GAx0/vx5raysZOIi7UUhB4NBztfv9/s1IuXR5bKoInnyHu12Wzwvos6dTkdXr17NpIZlAolku42ec62vr2tjY2NfTr+0Z/X22gTD4VDr6+s5bx7BotPp5GKSHuWvqioTSHcCOFGGeCJGlAUCqV0AQWu1WhqPx5lolqRqNBppOBxm8cSXh9za2tI999yj8XistbW1LKyUKRHdbjfb4yFqHn2X9kfKseZ7VF9StrAjxNAuiLg7Rdjm6TEunLgzoqwb4HUMGCui9Yybn9NJO2Tfo97eNsaZYo7ML0g1ffL0n6ZighB2iHXpFEBUYDtinIsdiCuMLeC+oYgoc4gxoJ0bGxvq9XpZMEAM8wKHkvJ8lpRXIfE6CTwDmEN85n7m3ub6+Mon7MuYMh+oK+LX2Z0stHFzc1Orq6uS9moq8H2s8DD/2NnY0Jf97c/o0T/32zR+cdS9CJw9tNYX9Mp/8rAkaWc0uql6iIFA4Ojx3Hf29O2d78ifX/+fPqcfvLhHWr/m+/6cnvg66Qt//Edv63m/8/N/RNM/1dXO8NHbetzThFe+d1Oth34zf34hSz6edcyFoFBVlQaDQS1n38kLkXPPvyb/nMKDkLoyv91TASBhTiI5h0elnXh6bjUkp7TAE1mHaHGO0kXAdojccDjUxsaGNjY2NJ1OM7GRVCN/tAn7drmCAOTMI+pNY+x5/R6J99oUnqtPBJ9zQwD5F6GH68WKC+Sw02fEIeopeCE9vgfY0v0zKSBuYWdcOI6TP09N8PGHdLqjhXnjwgNiQJn24K4LaS91A2LK9XWHROl04DrQFvpCBJ86G+zLteH8nmqCg4DvOAfzlVU2XKDw/jBGZe0Ed+x4qoPv56kVLnJxHVjC1B0kiCpcN2kvPYlzcL9xD+Bq4Pp7eogXzXSBx11C7rLw/vt+OGfos6+u4W6awHxi+8oVvfSXN7S1uifiPfG1LV1bDWoVON1Y/cKC7v3oKHJ6A4E5xtZTT9c+/8IPf61+9t6vy5/v/+AX1Hnukl771F/I217xDY/oF1/zi7d8zle//0/rnl/o6NwjH7rlY5xWtL+4oEsf2v3bu/3pJ7QVz8/bgrkRFLDekxfuL3Ku3ZJP8TdWeigLFTphwonA90R13bHgJLusDyApEyoIKG2DKLld3K32pX3do/LD4VBra2taW1vTcDjUyspKbZk+z8GHgCEoeD0Bb7uPaWmfl1Qjnk50XTBhO24Kt6T7Obx4HmRyNBrVlt+jH5BlUlU4P8fhWIuLi7VaES7cMD82NzdrdS1arVZttQV3GZQuEZZ4dNGJ8XJBgfduwfdioS7QcO3d/l8WZOQc7jSgnV5AlGUYaZsXrfTCn4xvWXSUeUuKCeONu4SxJvJPu5jbLsY4eS8FoDLdwO+DlFJOsUDgK1dWQaDysfHr5YIFtR98rnh9BnchHAS/P0oRhaU2mTMUTuW+CNwB+PAnav+Zrb7iqzS9e0E7S9L4S8K5EDg9SNtS76ndZ9mFh6dK/+djJ9ugQCBwU3jRj9VrGWxJWnjqad33P/e2Pbb11fq+ld+XP3/HhY/o67sH/43zE+v36MMbX5o/f8m/b6v3czcgJmxvq/fEgsb3Vtppn04RfmGa1H12L9jaf3JHSw88KClSGm4n5kJQgOA4WYbA+Hrz/X5fo9FI6+vrmXR5dNqXmSMK7CTJHQ5uz/ZoKaSnzJ924YE8dKz8uCUgN05snCBBdjne+vq6nn/+eT333HO6cuWKzp8/nwsnet44JNfTEa5du5ZdF279huh5zruTJCdh9JnfEj2mneSgeyE7jyKTroGFHfcA5HQ6nWaxgXHyApmcm3QKXuS9ext9lYjNzU11u928csXq6momiVjd3Uki7a2CgQNiMBjUxKaSSHPNPN2BNvkYMJ6MEcIJfXQXBG3hOuCcKesQIPpwvbmuk8mkVniTJRuZcz7HqRHBcTc3N9Xv92uCgpN75ix1Fxh7F9WYl1wTxhTCjyDgooK0J6R4UVVPZfFx9xoh165d02g0yuf2+8mdQC7wcG5/uXDh94eLEL48ZumCCNx5uPCu3T/YFl98rz77118lSbs5omc1TzRwOlBJS8OFqHcQCJxyvOSHfkWf+6G9z3/2R75Hn/62f37g/u/459+lF//TvedCT796Q+fZGY106R2/oif/6ldr9JLq9PwfWUlppo90Lyddekc8M48acyEokLZA4UAcB5A31rvv9/saj8c1EjydTvfZkp2MegoAFm4vnsdvffWA7e1t9fv9vJ9Hgf14RONJT4CYLiwsZDs7yx3yW8gKBRqvXLmiy5cv64tf/KIuXrxYc1q4bbvT6ejcuXNaW1urpXtAHD3PHEI2HA7z+SFG5OtDKgECCTUCIN/S3moQRIuJlkMkPXoNEcRpwjH99x7hphhit9vNy1q22+1aP3wFBmm3CGK/35e0u6wfK2R4qgTjU7pFqOvgUW/6xFhSy4JxgQBLe0II6QRsg1xLynUp2NdTbSDWXsPD+4lgsrGxUVulAcHChYB2u51rb7hjhzaNRqMs5ED0Wa2D1T4YVxdM3KHiJLvf79fSkLjujKM7SXBEkArDfcS4uDumdHLwHkcK7fM56/U1fMlTxs9TJ3zZU65D6Wrg+jMv+H0ICnc2ti8/q1e/bVd8Xv/m1+rprzrhBgUCLwD3fCzpwn946PoFFgOBwKnDb/1rD+s7/+a3Hfj9pSsffUHPhfv+xcc0/kOv1WN/+PSsbPWaf/SYdtbWpe3teGYeAw4VFFJK75L0rZIuV1X122fbLkj6GUn3S3pE0ndVVXVl9t33S/oe7a6u8RerqvpvN3COvDwh6Q1EOyHYnjcOIfK8d0m1yLxHk8uCd9IuEXXrtRMxiBb51FjqIUtl0TzIHoSY8yJglK4Lr70Aid3a2spFHT2HG5eBk27Io+fae6QWwjkYDHJtB6K3kEtPJXHhgBUHPA1heXk5iwouTvjKBZBMT1XBhUH/q6ralwbBShFE3Dku/SpTV6jtMJlM1Gq11Ov1agUzaZuLMU78mVv0hfniLgJPb6FgpwsKuCgYb7aVtQw4NvMGoQVRDBLsbecalMfyiHlZ94MVI5gnzC8XIbj2AEeHp2tA+h2eHsE4MCd9/zINocnpA9mnJoKLUJJqBVI5ps8VSXk+e9t4hvhYlGko7OepIr5SBGk6zAUXzeYFx/EsPnWoqlxk6fyHn1TvyQv5qy9+RU/rXxp/ZgTuDLzkA5VWP/GMtofDk27KmUY8hwMngZ2NjSMtGLgzGqn/0JN6+dYlPfqNS3eeU6GSXv5L21oa7P3Ntv3Ms6quRR2s48KNOBTeLemfSfoJ2/ZWSQ9UVfV3U0pvnX1+S0rpyyW9UdJrJb1E0n9PKX1ZVVWHLt3pEU+vwu/Eyy3qvgykk2JJNTJeFmnj961WKxO3MgINUUZYgIBAHsulA8ul9mgD25wUl1Zyt85DlCHfnqcPWeJFWyTtI5989mUqpbrTgAKMtJHvSSvw8SpJoffNbeWMmYs6w+Gwtgwf6QllhBhRwaPHbpOX9twhiDCQPR+PJpcCY+IRdF91A9Lv6Q1u4yfi7jUWPD3GLfXMF19C1OsDsBoCc9iJOmNeFifkOnhdDdqIQOLLQfIZIcgFI+o0lNeTczEWTXOYdvi8p62li4RjegqJj1lZ24Nr5WlG/NZJv6++0NROd4TQH/bhnIx3eQ96OoSnXcwR3q1jeBafVmw98qgWHtmrdn2h9Xu0s7j7DBzeV6laOp35o4E7F8sbSe3ndp9z5z78iLaeePKEWxRQPIcDpxRbjz+hztq6Vl/zOzR8yZ1RU6F1ZUGttd333Q89rO2ra/m7+W/96cKhgkJVVR9IKd1fbH6DpK+bvf9xSe+X9JbZ9vdUVTWV9Jsppc9Ler2kD+oQQAYg7J7vjgjAPkSkie5euHAhkydfiYHPEFoXA4iGlxX0PeoOIHMs5SjVCyxKynUE+A4QxfZ9pT07voP+OtlyUtrpdPIyjB75lurF49w1UOb7TyaTvNqCFxiE5I1GI3W73ZpI49eDiK+k7BRx0s++29u7S2dubm5qOIuoIGAQoSblxAsVQvr5HcUn3YpPGxBGsP0vLi7W+ubikK9EUC6r6aSzrOzPvKHWAeO7vLycBSmPtlNTgtx/junno5YEtRB8HnAsj8I31TNwd42TYxfefC4vLS3VxCVcAO6y8RURvPZHq9WqraTgtSA8HajT6dTcQfzrNQnG4/E+Z1F5DzDmLK2JMEaaCfMel0WZ9uDLUvp9zFzy2iM4VVy8o3/z5lA4rmfxWcHSLz+oL/nl3fePvu2rdW21UnV8y4MHAtdF2pbu+px0/t/u5v5G8bD5QDyHA6cZOxsbevEP/4qeeMtXa3LP3vZq8eTrK6RtzYoh7eHeX9tS5xc+LGnXAhQ4OdxqDYUXV1X1lCRVVfVUSune2faXSvKyoo/Pth0Kdw647bmM8C8vL6vf72dS0el01Ov18mePWnqxNo/0LywsqNfr5eM6iSd6C5HxqKU7JWgH9Q28H8Bz4+kTRLAsPjedTjMxdMcB7giK6r3oRS/KZLFsE79BUGE8fIUAJ0tra7tKnkfIqfuA4EKf3JXBNnL4sY575BhC2Ol0cq2J7e1traysqN/v5+g8OfI+Lh5RHwwGWUghLQJBgfoZCBVcd4oROtn39A9W02CcKXLJHGEb3/u1Y+wYX+Yorgp3tnhU3X+/sLCg8Xhcc3S4YLK0tJRX12BOuhOEcUM0w/1RClSk7TAuZZoO0fymFUpYzpLvWJmjnKPsh5uI+er1Hmg/33N87g3mDOMIwWfOIli5m8TH351Inv7ifeP9eDzOqVU4TZhH7j6hr61WKwtic4rb/iw+i3jF33lQz7/xdXruKyKmEZgPvPrfrav65GcjynZnIJ7DgVOF+/7xg7WgzyN//XXavPtkUwS/7Ecvq3qs7tKqtrbiGTknuN1FGZv0q8ZrnVJ6s6Q3S8oRcar8e5TVyaa090c+5KTdbudq9xQnxMngjofSll7a2CHaEBXs9xDh0gHgkV+PmjvKdrfb7dx+yA3LIHo9AciTr3JB2+jz0tJS/h2YTqfqdDo1AcTTCyBcwGs0eLHAbrebV9UorelOmKlFMB6P87KRrJpR5q670EO6hRcG9Lx7aU+Y2dzc1Gg0yuPWbrezQ2MymWSCyPE3Nzc1GAzU7XazIOOrRECAEaUg76XlnX7TXxwaZTqCj4WLV/SV6+JzzdMCSEFAzPB0HR+3Mm2GGiD+8hUaXDhyscydCxzb57Nb/hFkXCzx/ZlDtE9SdpNwjMlkUqsdAln3tJame9DvAT8+791hg4DEeHqaFMICbXXXRLvd1srKSr7PKWDp18pTMO4w3NKzuKPeUbZpblFNp1rYjj9LAiePhWtJr/qPQ6UvPK6drfAl3OGI53DgjkQ1ndYm6v3/6XlV7ZmzNUmPvGFFW73b+3/mS9+/o96T4wO/r554WjtWCywwX7jVv5afSSldmimxlyRdnm1/XNLLbL/7JDUm/VVV9U5J75Sku+++u3IhwIkPkWRIk/+Rz4oQWJibVh6AXHgkHxLo+dmlGMD3EKay6GFJfD2/3esbOPmECC4sLGRrPkvjDQaD7HbwfpSuC6+6zzZvu0fnvT18RiyRlEUAT1eAsBMBL65ZzfmAS8HdDeXqCeUxOB9jguW/rGHA94yPF/LzqPJ4PM5V/CHjpBuQ2uJ5/76qB4KGt8vt+PzrgoXXrWhKw6BvLkJx3XnvKQAu5nhkvnQMOJlnu1//7e3tmhjnY8w1c4GN43JMF9z8fnOhx0WBcn7zG0//YL7QL7YjXPi9xLbyO66X1xUpxQdvA6kkfp7FxcWacOZj0Ol0ct0SUnBIq/BxnmPc1mfxuXThzLLq/lPXtPnZlqqUtPGqHVVzf+kDpwm9Jxa0PKy0cE3Sr35C29WZvRXvRMRzOHCqsfPxT9c+3/XbvkpbvdubA7H60Se19djjB34fN8V841YFhfdKepOkvzv79+dt+0+llN6h3QI0r5b04cMO5jnREB/+kPd8e8gT9moIOKTASZcLCU1OBX9hR/d0Ba/X4OkSkByK7kl14lLa4b2wm6dLQLaHw6GuXLmiZ555Rjs7OznVwJeCdPLmDoWyTkJVVRqPx41ks4yoLy4u5lQLF0f6/X52TUD0gBfag1xCyinAOB6PayKC56dLyvUDqGWAGAAJxkbvjofFxcVsO+/3+2q1Wvn7jY0NLS0taWVlJY/1aDTKaQS9Xi87YEhv8RUi3HlAPr0LONKuqAFZPyiyjwhEu/gd4oCnlZRFLhkXFyA8HcTTDIDXhvDry3xxMYd2uijDb5vuQU+PgaR76o4XWvQlGl04K4UFBBN3uHC93EGAMMQ9R90HxrEUqLi3PJUDp43PO/bxFVL8Hufa4VTAeeTzf05xW5/FZxlLDzyoiw9ISknDt3+ltrvx50vgGFDtuhLue98V7Tz08Em3JnBriOdw4Ezh7h+//WVAwo91Z+NGlo38ae0Wm7knpfS4pB/U7kPzZ1NK3yPpUUl/QpKqqvr1lNLPSvqUdufG91Y3UM02pZSFAYgK5IY8/cFgUCMgZW0ACu5B/IkqQ8DdzQCh99/TDo9MUtzNc+fZ5+rVqzU7fL/f18LCQi3CWUahifJCmiB+6+vreu6557S2tqbz58+r0+loZWVFo9FoXxQd23+3281LMkIWcT1AhjyHHDJHIcCUUk4ncFK3vr6ubrerfr+v8XicBQ5fDcBdGYyJtEvAIfMQQkQLxoptXC+IPETY0ziwpVMXgWsCAWT7lStX8jgRvR4MBqqqSt1uNztYEBOoEYHbY3V1Na+wwRi6UFLa75lj7OPFKrHN+7jjmuj1elkwI+2FF6thMK7U5fC6Cu6eIKUDcF4Eq7I+wvb29r4VU9y54s4Tn+8eua+qKvfBXRO+2gNODI7pTpcy5QhRw+9bRA/67SIBApenypTnZx7Th/I6uKDgqU9enJW0mHlzJxzHszgQCBwvFraSfsvf+rh2Zs66wHwjnsOBQCCwHzeyysN3H/DV1x+w/9slvf1mGuGug5LwOEGCBHj+uBMJj5IiTiwvL+eaANRoKIvKeRTdiwIibrTbbfX7/VoBOs5LdBtrPcf3+gu0k8+cZ3l5WePxWKPRSFevXtXly5d18eLF3HYn7u12u7Z0JcTabfI4Jzyq7WQKEkcfu91ujv6PRiMtLi6q3+/XyBdkj3Z65LuM3kIgfTxxOpQEcTqdanl5WZPJJBM3HzPGn7QU4Nfn2rVr2pity7u+vq6lpaWccrG9vbvKxMbGhnq9Xr5WtGE4HOb3nU4nzyG/RpyvXM0Ap4inCoxGo1zQkjHz1IXpdJprHHiRR0/VYX6xcgaigDsdvJaCr2bg6QNe14O2ky7jjp3SccFvPdWI68xc5Z7xGgieNuOOgDKdiHvBXTJ+7/qYl7Up+N7TFVz8K+tQ+LggSPBCyPNjMM84nz8P5gXH8SwOBALHh96TC7rvvz2/KyZEisMdgXgOBwKBwH7MRcUxJy5uJ4f8QMAgmJ5X7aTdSQCrRRDRh4C7FRqS5stBQig81YDjeG6/p2BA3LyNfKZIHPtQ8Z8IN4LGeDzW1atXNRqNdO7cudw/ju/F8STVBBYnpW4rZxk/L5box3MrPfuQtjAej3M0nwg1ZNnz192GDol1Kz3fO+n1qvukNDhxRIBwO7qPuZNZBAkXH8rvfXlH2oGV3oUE2kofvPClt9Ovh4+fiwllgUdP82Cuu02fFwTfx9jJujtyfOUId8FAml2w8PusfO9z3bchPDjBLoU8v/8QctyZU4oFTf1y54WLR/484Dc8F7zGBSJDmXrBsV308H28XZzPRYY7JOUhEAjcQUg70l2fSUo70sqT1/blJgcCgUAgcKdhLgQFaT95IBJdVdWBggBR/5LEEVHldzgMSIMoi99BWD033As5SqrVFfCIOiSF1QYQC5rqOEBwiS6zNCVtWFtb02Aw0Hg8zvZ/ig961NzrIUBQIU0QZc6NzX8ymeSaBbTfydnOzo4mk4nW1tbU7/fV6/U0HA7zaghE0H15RdrnEWFQRqo9LYK24iaYzKq2lukU9K0UgCDopGzwO/pW1q+gZgLHTCnlWg7T6VSj0ajmOnGxaHt7u5ZKwJz06wtZdVHA4aTWv/f557UXqqpSp9PJSywiEvlxaZuTcMaWa1qmATB3y5UZmJ9c1/Ie9NolLrh49J/7jnFxUcePWRYT5fju9nDhwuuI+Gfaz3cuKJQFKRkrFzdceChFBb8vymsZCAQCt4q0LS1Ok+79iV+LauWBQCAQODWYG0GhhEceu91uTleA1I1Go0wsIN0QJXLv+/1+rgfQ6/Vq5MhJDukAfm4vuOerQkCqSW3wCDY1DiCvuCsgzpyfz6QcQCDX19e1traWHQrr6+saDoe1QoakNnhuuueyDwaDTBwRWhAkJOVCf+4kYJ+1tTWNRqNct+LcuXPq9Xq1HHNfjaCqquwAcEu9151AFGAMETk2NzezQCQpk1Nfsk+qC03b29va2NhQSklra2va2NjQaDTKfaJmAmNCasP6+rp6vV6t0j8uF1JEGAefEwhAnopAP+gXbXN3ha/owLERJuinp6NwfRAD/Jp4ccNyrPzcLjCU/aSAKHOHuenFTyH+uHW8aKGnzHi/GB/mUblspZN4focIwLWlX7SpdFwwd0gn8lQg9uOZQJtc4ChdTH5tSd/gfuJ87iIJh0IgELhd6D+2oC/5p7+qnZ1Iow8EAoHA6cHcCAqlDdmjp9j3KaropMujpZAYCFGn01G/38/uBIgYhNWjj9jRiWCXOeStVkudTqdWiLHb7WoymWRxw19e+M2JlrSXGuAFF1utltbX1/Xss89mAvXss8/mVRhKa/xkMtF4PK4Vl/SccSz6kCq+h8zSZ09ZgMTSDmpPrKys5HFyG3tZgBAhxyPjXrzQVzYg6g8h9Nx3z4cvSSlEE7GFyDlFO53IEv33egllfQOvc+ArhwBcHxQM5NqzNCHCgEe8vR/MVcg97WeceDHPPPXD0zFwK7jA4ukDzCkcL9KeqwbxYXFxMbtBcHTQZxwxPobu1vHr524Cd564YME2/97TRbyvLtqVaQi0G7hzifnFtXPnkKfZlC4F5j7tceeF3/PukgkEAoEXgkv/u9JdH3lMWyEmBAKBQOCUYS4Eha2t3eX/EAycnLmluYyqAvaFHJYpAUQ2vaieCwoeeee3bgGnDUTPJeX0iXKpPY+sE3X1qDX70TYXNUg5QIBYW1vLKQVEnsfjcW11BrdwM0ZEW0ejUa3NkOoybcBrB6SUchrAYDDQZDLZt2whJJdUCgg/jgwizVj1GX+v4YAgQZu2t7ezWOS2eE+zYKxGo1Gu8eA1I/gtY8X19CVFfcUAXowxKSFO0Etr/vLycv7cdC5POSjz/8uaAfzGBTSf0001AdzVwfGApxlA7l2w8HO7A8eXIOX7MjWgSYTzc7pI40VPfT/Ggc8ID1y7JqGk/L07BmhzWVOhqXaEj7G3tRQnvR7EPBVkDBwv7vl4pe1WpLsEbh/OfeJZbf2/x066GYFAIBAI3HbMhaCwubmpZ599Vp1OR71er1YvoCQLEHEIvxMcCB1EwtMOyqXuHJ4L7oTfrdvSXiX4qqpytJrjj0ajWkTXI69e1R9QcBDSQurAxsaG2u22lpaWcgoCZJ1I/HA41GAwqC2x6eIJkenxeNxIjpxwQti9Aj9W9tFolPvldnTEhNFolCPekrJ4QAFLxtbrXyCKcH6vqcD1QSTAyUCNCx8rrOqkj/Av7fWVERAeEH7KlSgQSCRlJ0BZYJLj0y5WGvGii/Rne3s72/B93H1elzZ8xop57GQe4YH5z3V3ocDTTHBDuKOlTEHgWAhj7p6hDezv90BTGgDfM76MX5nu4H0r04lodykmco2axAY/tgsOpaulFG3c3UA72J8xxWHk1ydwRlBVWn3Ph066FYFThvAlBAKBQOC0Yi4Eha2tLa2trenixYs1q7rnjDt5a7fbeQUDSTlSX1qU+Yy1250MEIayqKFHVbFge8794uKier1eJoyIDv5ZUj4ved3sRwoD+7ktnmKBg8FAy8vLunr1arb142YYDofa2NjQ1atXc/oC9SIuXLiQCefCwkLO/S+FB0k5tWEwGOS+4aKgnc8//7zOnz+fazxUVaXhcFgTLCggWRYHpFaEOwdwOlAMkfZhv0fUIfIvSePxOG+DCK6vr2dRAueIp3t4KsHOzo4Gg0FjLYMyF9/rGbgzxp0tiA/8FseCF6ukZgHE3eexF9n0yDzzs0zbYBsCgKfOcN0WFhbU6/VyW3F/ICaQasFylFynyWRSS90onTtevLQUBkDp8mGb79dUo4JUGMbZ03q4P6qqqs1n2uTn9XuO7e40KNvgY+siZZlqwVxw0SYQCAQCgUAgEAjUMReCAiCK6IICxILviaJ3Op0cvSbHvaqqnMdP+gQRc2mP6JT1GZzUY5FfXl5Wv9/PhKckiKWgQIFGju0rDngahZNtlpCUlMk3RIhUBWoFVFWlfr+fiQ7thKxCbCHuKaV8DtwQTso9v572eaHBnZ2d7ITw8ZtMJnlpSdIuvGiip4h4hJ6lPOkrwlFJvhEc3F0gKbs2yiJ7kE2uQ1mIsrTq465wkaPdbtfSEVzA8cg9x0cI2dnZyb8dj8e5L61Wq7EWAseHqLrjgEi5t9NJsYtbfF8ew2s/QJDpJ+d0gcLFFa8ZQn99f75jvjk8faFML8CFw/HchbG1tbf0ZXnv02eO7StseM0Jb48LPrTdXQ601WtB0Ga/1j4+ISgEAoFAIBAIBAIHY24EBY9yE12GrJY55r56ArZ9yAdLN7IiBKRRUo48lznb0v5ib5ASLxCIbZ4UCrdt03baDHl2YPnHtTCdTrPl3HP6aae0uwrBYDDI5JF+EOGVtO/cLpR4lJXaC9QNoIAfxMudDNJeQUII+MLCQq6bAIEuCZcXOiQKTxv9ffkbou2S8rWFvDthdecB5NBt+D5/GCf652KEtEcky4KAngpR9s/nAt8hYHiah19Ld764tR5xDELPb0tHDv33bQhCLnDhNvDjlETZt3mdC8aqFAa8H+W9ULbPzw04F+NcioNO+sv+uzvC3UW4QTz9w+sieApNU1uarqfPBW8D4kYgEAgEAoFAIBDYj7kRFNw9gFDgJNFdBVjnyzx3Ir2loOBRchcj/Nxus4dIQFwgF+4ocFeDE1cnPlKd2HF+qu07KfTzOoklor65uZldD/QVEkxbIIcQPPL8IewUUPSiin6uss4ELggEBQQKX2rP0zdKMabJdu758fzrqSBVtbv0I8efTqfZYUEaB/u5y4BzO1EtI9ROhBGU3EnhYkK5AoTDyauk7PQoyXlZrJF54e1wR4e320UTJ/kcB/cG873T6ewr0tjUbp8fPmZsxwng/eReYD5xP1LMkutQ1oBwMaF8eR0DFxr8nmkSpnB4uBvpoLnnzhd3zTDW3l7gLiKvrREIBAKBQCAQCAT2Y64EBWmXMAwGA0n11RucjJRF1qRdYkotgX6/r16vp06nUyvI6KtFOHlLKeUc9LIYowsBtIl89Ha7nQsEQvYQHiA6LjKUeejT6TRb+iFKpBRsbGzUxILt7W2NRiN1Oh21Wq28pCPHgyBzDE8VgIizkgbCBdZ9aS+/X9qrtbC0tJTdCO5QQFAoa05IdQEEQlgSTYieu0XoPwTOyWRVVZpMJjUiTjsRFNwt4HPDr7GLDaRgUBsCkko7PDLv88H76cURKYBZFk3kN76SRlk00Ffr4Fp48UQX2ugTYoXXmmDOcS4KTJbXyAm2H4Nx8zoNpWMDkY356wIRx3UxxEl9CeahC3I+H/17jsH9xfe4fBhXXxXE++suCe5/F9cQFXEW4b7xeyQQCAQCgUAgEAjUMTeCAiAqLu2RSkmZ6CwvL+dIu7RLZFZWVtRqtXLNBI+wQxjcrg2cqEAusdBDzH07x4aYOCH2iH9KKYsZTnCdpNJPoqXUQEBMWVxc1MbGRq1goosT7XZb9957b62oJMUKSWfw9i0vL2s8Hmt9fb1xzOkvdQlwBPA9JM3dCQgpbnf3on8QQK4jkW4EB0/R8EJ5o9Go5iwo0198uT+P3rvDw6PkfO959BBLxtVX4fDUCOYZ88BdKfSB4pSMHfOJNjgZLmsSNNnqD0oHQHjw9nkxShwLLsC5SFbWhPB0IsbVUyhwudBfF1u8xkJJxr2tvspFKZD4NXLnEfeEXzs+u/PAHQSMAd+7oABoJ4ICx6Nt/JZaHSEoBAKBQCAQCAQC18fcCApPP/30vpUAnNi4w8DJJmTZUxyk+tJ7kHKPhjo80k0xPiLARFzb7bba7XY+p4sKJVmEqGADZzuk3Ak4xMWJ4Wg0kiQNh8NcxwGhA8cFZK/X6+W+sSKEp4ysrKzU3AVO6hgrijzyr9cdoI2QraY8dY7vUWZ3TXhEvUyHKKPhjJOTYK6nkz/fX1JNsPA0hZI0u80f0sn4eru8zYyvuw/cNl+mx3iRRZ+HHNudCN5371MZrXeHQ/k9/WSeezu4fp7SwbaSdNNntvsqDNwHXpvCr6Ffd3cSeTt97vk1Le+lcp9SHPJxcreCi1kOFy/K7T5eTUJE0/ECgUAgEAgEAoHALuZGUHjiiSdUVZXuuecenTt3rkZinQx4EUTgqxj4igwcA0eDRyFLEcHrLZQrDWxubqrX66nVajXm30v1YnLeBn9BiJ1sexQfIQOL/2g0yoKC98+XYvSc97Jmghcs9Fx8j9RKe64Ct9R7O52Eu+PABQWvtu8RZ47nYkIpKJQ5+1xb2l7munuBQ8YHUs85ykKN/OtpE5zPV3RwIuwOGRc5aJu7J8pIuddlKNMcmmodlCka5Xeljb9pHkGuuSassMDLCxWWjg3vD/ebC1+MMeNRikeeSuLtduHCBQUXmtjXf+vH8PP4vy7SlYJCk1CDKFGKNj6uTSJPIBAIBAKBQCAQaMbcCAoe+ez3+5nkuxuBP/a9KCNot9uZkBC5ZDlJX44RYrewsJDrJmBlL1MZSuLnBIvPkDXOW0ajIS0l4e73+/k9/fDcbmocQI4RTZzweDSZ8ShdHteuXcvpF61WK1u4l5aW8jKUkHKIpS9lSL8gzKRTUEPBV4QAXjDTST01Iyis6OMh7aUaABdLfHx9pQb2IXfehQ+HE3r6484CJ5fuhGCMWUmEa8F8JVXExRgXEwBkval9nm5Q4iA3Ar/zMXFBABHqIIHChQcXSXyMmE8+R2mni1SeisL40S5PG3GnhItbLggcJLYw731FjvLYLti5M8W3lb/18fI0Gq4hxw4EAoFAIBAIBAL7MTeCgv/xv7y8nIsqdrvdTKyx8u/s7OxbrQGyAplmicSdnZ1cvNCL7aWUanniTkjY5m1ywldGuj3vnLaMRqNakUPEC47nAgPEC3IGyR8Oh5KU6xl0Op0cJaZYYrfbzeekbkKn09HKyoqGw6F2dvZqUnieOjUnqP+AgEMaBUUfIWCINKPRaF9BxrKGAv1zglYSOCejjIFH710g8XQLJ+MQesadNnJuJ8Gc2wko84kxpzZEKVwgKJSpLO6i4fyl8FWKUE1iAgSb33mqSRkld8eJF6JkTGkXqzJ4akJp6XcRyQUCd2iU5NzFBdoo7RF2/y3t92tM/905UToYyrHy47kowPmbloh0IcHhggnvHTxbuD+9zkIgEAgEAoFAIBCoY24EBakeEfY0BqzckD6Pkrol3tMA3LJeRp/d5u6k18lXSZw8Au9tgeB79XjIqBMnj3g62XSiW6ZHkBPv53fihlvAUzNcLPEaDowv31FzwlMWGHPqRXgOPu1x0l2OEX335TldDAAeEXcLfGk15/q6u8BJowsQZSFGIuvuDCjTDrxOhn/PMd0iz/j6eV0EcWs9woaLRE3k1VGmH3Ae/87h4hbtc5GK6+UCgR/HI/buFvB/uRfL6+zXh89lukSZVuH7+e89zcH77alDfq0Yk6ZUHD9PKSS4c6JMQXGhw/sRCAQCgUAgEAgEro+Fw3ZIKb0rpXQ5pfRJ2/ZDKaVPp5Q+nlL6uZTSefvu+1NKn08pfSal9I030xi3TXuNA0Dk1QUFopWQI4gy+5eEoawP4GkLZcTUiVQpUBDddvt9Uz0APw4kmxUDeHmE3UkqaQ9+jnKscCqMRqNsvXdBhn2d0F6vJoOLAWXkn+ND0H3svDK/CzuIGrRXqqeKHBTF92vkffCc+zKC7fOA85O64qKNW+y5ji46lNb7UlTwl7sYvP0ct9znoLz8poh6UwqE7+vzzNtL/3ylChdbXDjw69ckEHnNi1IoKEWGUrgpBQxvG+1pugd9TkqqCQpNwlTTmJbb/L5y4c5FG3d3eJ/nBcf5LA4EAoHAfsRzOBAIBPbjUEFB0rslfVOx7X2SfntVVb9T0mclfb8kpZS+XNIbJb129pt/kVLaX2ntAECCIDrLy8t5KUgv8OdWaoistEeUe73evoKJZYS4jPBKqv2GfdwF0SQoNBF+ju1EnVSETqeTBYV+v69Op5PrPzjBwWUB6eU85WsymWg4HGowGOR0BASFbrdbW1aSIo/01a3spd2c9voSeogXntYAafex8u3SnhDkrg0fA28L14tx5LhO9kr7fikIuZhRzhu3ynu/qO3AOJepGT4/fX/cGg4XLNzFcrPktCT4tIE5UboOXDxgXyftTQJFme7QdE53Avi2cp/SBeDCQ3lvueDWJCqU7iDutTLFxMepye1S9oGlTjmvixK0vRSD5gjv1jE9iwOBQCDQiHcrnsOBQCBQw6EpD1VVfSCldH+x7Zfs44ck/fHZ+zdIek9VVVNJv5lS+ryk10v64GHnccfBwsLucoerq6taXl7WYDBQSkmtVisT0M3NzUxYESH8OO12e591G8JV2rxLoQFyS3uoNUBNA84JsWM5RknZ4VDWdPDaBQgltI8VBLDfI6gAj5q7mOBiynQ6zctGeo0ErP9u74ecLS0t1Ug+4kGTRd4j0IxNSkmdTieTRghir9fLQsZkMqm5Tjy9wscGR4UTTQipE03a2uQw8VoPHLO00XONSQkgZ74k/aXAUs6PwyzxLpC4ff96ooILKIcdvyTTnlrC+Uh/8f1LJ4SLd56acpj4wTn9OE39ayL3HJ957Q6J0q3i+zLny/M0iQdNx2AOM77lWLhDyts9Ly6F43oWBwKBQKAZ8RwOBAKB/bgdNRT+jKSfmb1/qXYfpuDx2bYbgpNEX+XBVx4oix9Chpqs4vxb5vFDtIlETiaT2soRi4uLuZChn5PlJ514EMWE+PJ7J93eFtrrqQAQQF6eJy7tRcZdxMC1wDlwSUC4ORfH45ygjBD7WPmSkKAkcZ7CAPnivIylW98PImUuxJT2+9Iaz5i54OOuiNLm7yTVSSTH8Jod18ubd3v/jZLLgyL410NJvj29wPfx4zMWXkvAnR6Q/oNINuNUHvOg3xxE3m9k/6bjujvmejUjXIAox+Z64+p1OHxcDvrdYWLFnOO2PYsDgUAgcEuI53AgEDhzeEGCQkrpByRtSfpJNjXs1vjXfkrpzZLeXGyrCQhux/boLRF4IvvligllhNFzyCH0LKsICZX2E2t3C7Tb7Vxk0K3RTr5pixM7J4C+bWFhIZNYj4Z7G8p6DO5UQFhAxGgixJD6UsTwcSrHG3LdtISfR89doGlqt/fbSVpJ4lyU8CU4ve8uVvjxXFDw9jNebPf500Rmy74cRiJvhmhf7zdNx2gSFMrjNLWvFBJ8+0Fkn3FyEeyg/jShjPA39adsT/ldWUzxegIBc9PdENcTBqQ9QcGvdZkyc72+3Sm4Xc/ijnpH0r5AIBA47YjncCAQOKu4ZUEhpfQmSd8q6eurvb++H5f0MtvtPklPNv2+qqp3Snrn7Fj5AVsSRM99h0jjGmi32znloKwEXxZzdIJZLivoRAzL/HQ6zUUNl5aW1Ov1NBgMshuhJKakZECEva4CTga3+7fb7X194zscC03L6pWFKd3y3jDGkvZcESw76ekUbnlvtVo5DYAlIhEhFhZ2l9J0AaUkkmWevLeDPkl7KzJgd4f00n+3vm9vb9dqaCCe8L6poCNiC2PI9jICX4oeTTjIsn8YmgSGUiwo93HR7LDc/YPSCEqUIpP/DlGM+6UsvHgYbnUfbwPpSqV4eFC9ExffbtTx4WkSpcvhoN/dTB9PGrfzWXwuXZj/DgcCgcCcIZ7DgUDgLOOWBIWU0jdJeoukr62qamRfvVfST6WU3iHpJZJeLenDN3LMqqr09NNP64EHHtDKyoouXryYCWZVVTW7v7Rn5+/1erXCeBAGJwVNdQVK10IZ3S5zrb3QnxMSCE5KqbYyAqkQTmi8dgE5/NPpNJ+LVIHZGKvVamWhwO3+kPCSTJe59y46UKPAo/q0mTFyQo+owPk6nY6kvRUfiGy7XR3Rpsk27tX7EVt8bNwJwtj6v54y4k4VPvtKB04cGSP2d3eDiwW4OcraEeUc9T6VYkP529Lu72gSF5hPbLteW24WTQKGn09STVA4CE1k/rA2HnRM5rA7JRD7rufOuJHzef/c0cB5b1QkupHznSSO4lkcCAQCgRtHPIcDgcBZx6GCQkrppyV9naR7UkqPS/pB7VawbUt63+wP8w9VVfXnq6r69ZTSz0r6lHZtX99bVdX+0HnzeWrpB1Rkn0wmGgwGtar6RJ9JQ/DIOnURJNXs7k1LCUrKkXeK0nl6AcTU8/zL1RFouxdelFSLqEOaqFa/vLychQR3EZSuCdrmx/OijwgkjBfFIRErvCaBpCweeLsg475Chq8SwBhxXpZYbBI0OI4X61teXla3260R1zJtwklbSbRLUk2U2otqchwEDVweLihAVNnuUXGOezPR+dsJj8CXfS4J7a24JQ76XZOI0ZQ2cVg6xwtBk9vnesLGjTo9fHuZfnSn4riexYFAIBBoRjyHA4FAYD9uZJWH727Y/GPX2f/tkt5+K41xi7KLAyyHSDFCiCOEGyu+/8YJOseE8Jd59TgLsH97GgIE1Ml/E+nyAoAIDET96Q8iAkvSubPC3RiMBU4EqR6Z5zsXQvgN5/I0itJOfhA8rcGJrY9fWdyRceCcvpoEv2EfLxwo7c/7L9/7cT267EUsXYBx50JTioy3sRwzjn2SuFFCfxTnvV7fnYzfbrGlFBOaxA1wM26Bg9p7J4sKx/ksDgQCgcB+xHM4EAgE9uN2rPJw2+BRY8QBnAkUCdzZ2dHGxkZ2BPT7fXW7XW1tbWkymWhzczOnKHiEHjJMPn65nCOrPhDdxwVBqsVoNNJ0Oq3Z9d3JUObke18g1Z4ewCoNiCNe44Cc9larlUmUL+voNn7gbSBFxMeBgpJl5FZSbQUJX00BQu6rbXjqhB8DoWRnZyePMfv7vlxHxq/JGeBiQpnCwvsy3cHrbqSUcv+vXbuWrze/l1QbC47DuR0+XoeRUbfql3Oiqehj6co4DmdE6Xwo52zZxhd6rsPcBCWaaoE4rpc60gRPSZrn1IVAIBAIBAKBQOBOxFwJChAxJ+BbW1va2NjIeftbW1tZYFhcXFSv19O5c+e0urqqxcVFDYfDfUQfMt5ut9XtdnMaAceAUJIyADGmZgO1DiDdpBtAeCVl8pxSqtV6WF5eVr/fV7vdzoIHhRVJa6CNfpx2u52JMucg3aCpMGJJ3hFYtra2cn89xcDt7owr6RjS3soYjAnpJTgjWKWCF0KLF3wEjAvt9LF3IcKFGMYa8YUx8HQKJ++eluHpKlVVqdPp1EQD3CjMMUSRwxwcB81X+uXt8sKffg7HQakEt0rmb+T3B4kGRxG5v1nyf1Rw50NTG05DOkQgEAgEAoFAIHASmCtBATgZpn6CE/eUkkajkVqtlkajke6+++684gNOA09BkFQjFO5e8Hx8j8qTLgAZoT0QbY+se52GkmTijOh0Opm0QKA98l1G6ZeWltTtdiWpRq5pX0lQIbFeRNKdCF4Lws/p/fE2lWSfbRS13Nzc1Hg8zuNSVZXa7bY6nU7NwcC5uBaeruKpGd5uFz6qam+FjFJ8QZjxcXRhwkUTrrOno3i/S5QpB9dzEXAOr+vg9RlulKy+UFIbpPhg3KjIEggEAoFAIBAIBG4ccykoXLt2LS9ZOBqN9i0TiAtgMpnkCDpWfNIEmgowepFBJ5a+D/v5igFEyUtBgTYBFwbK85CuQKS8rDRPuoH/FhcEbcLd4HnmDq8TwRiVK154kUb6VgoUPh6MPe3pdDq1oopeM6HVaqnf72eXw0E1JuiPF8BkPPieNngtB0m1Y3NdvABmU1S8rBHg9STcCt8kFvica8rrd5T9nZfaDIFAIBAIBAKBQCBwFJgbQQEyxuoOo9FICwsLGo/HubCekzTqKwyHQ02n05zOsLCwkK37kGdIKy/PwW+y6Jft8pQA7Pduz3ei6YQWG75H6J3M42hALCij+ogQnN9THVx84PwQfsSEqqo0Ho/z8cr2+LFZGaPJBQD5X15e1l133aWUUq7/MJ1Oc90EBAXOT2qKVF9xgzbTH8bTl7Rk3GmDj7ekmgji9RPo60GuAt7THncwlKsr8PIUnIOKBZbn8blxOxC2/EAgEAgEAoFAIDBvSPNQqCyl9KykoaQvnnBT7ok2RBuiDdGGAq+oquriCZ37WJFS2pD0mRNuxlmfb9GGaEO0YT/O0nM4/iaONkQbog3z2obGZ/FcCAqSlFL6SFVVvzfaEG2INkQb5rENZwHzMM7RhmhDtCHacNYxD2MdbYg2RBuiDTeKhcN3CQQCgUAgEAgEAoFAIBCoIwSFQCAQCAQCgUAgEAgEAjeNeRIU3nnSDVC0AUQbdhFt2EW04exgHsY52rCLaMMuog27iDacLczDWEcbdhFt2EW0YRfRhgbMTQ2FQCAQCAQCgUAgEAgEAncO5smhEAgEAoFAIBAIBAKBQOAOwYkLCimlb0opfSal9PmU0luP6ZwvSyn9j5TSwymlX08p/aXZ9rellJ5IKX1s9vqWI27HIymlT8zO9ZHZtgsppfellD43+/fuIzz/a6yvH0spraeU/vJRj0NK6V0ppcsppU/atgP7nVL6/tn8+ExK6RuPsA0/lFL6dErp4ymln0spnZ9tvz+lNLbx+JEjbMOBY3+M4/Azdv5HUkofm20/qnE46H481jlx1hHP4ngWz7bFs1hn71kcz+H5QDyH4zk82xbPYZ295/DsuHfms7iqqhN7SVqU9BuSXiWpJekhSV9+DOe9JOl1s/erkj4r6cslvU3SXz3G/j8i6Z5i29+X9NbZ+7dK+nvHeC2elvSKox4HSX9Q0uskffKwfs+uy0OS2pJeOZsvi0fUhm+QtDR7//esDff7fkc8Do1jf5zjUHz/DyX9jSMeh4Pux2OdE2f5Fc/ieBYf1u94Fuftp/JZHM/hk3/Fcziew4f1O57DefupfA7PjntHPotP2qHwekmfr6rqC1VVbUp6j6Q3HPVJq6p6qqqqj87eb0h6WNJLj/q8N4g3SPrx2fsfl/RHj+m8Xy/pN6qq+n9HfaKqqj4g6fli80H9foOk91RVNa2q6jclfV678+a2t6Gqql+qqmpr9vFDku57oee52TZcB8c2DiCllCR9l6SffqHnOaQNB92PxzonzjjiWbwf8SyOZ3ETTuWzOJ7Dc4F4Du9HPIfjOdyEU/kcnrXhjnwWn7Sg8FJJj9nnx3XMD7GU0v2SfrekX51t+r6ZveddR2mtmqGS9EsppQdTSm+ebXtxVVVPSbuTStK9R9wG8EbVb5LjHAfp4H6f1Bz5M5L+q31+ZUrp11JK/zOl9DVHfO6msT+JcfgaSc9UVfU523ak41Dcj/M2J04zTnxM41mcEc/iOuJZfMzP4ngOnxhOfEzjOZwRz+E64jkcfxNfFyctKKSGbce27ERKaUXSf5D0l6uqWpf0LyV9qaSvkPSUdq0tR4nfX1XV6yR9s6TvTSn9wSM+XyNSSi1J3y7p3882Hfc4XA/HPkdSSj8gaUvST842PSXp5VVV/W5Jf0XST6WUzh3R6Q8a+5O4V75b9f9Qj3QcGu7HA3dt2BbL1bwwxLM4nsWHIZ7Fs2Y17HtqnsXxHD5RxHM4nsOHIZ7Ds2Y17HtqnsPSnfcsPmlB4XFJL7PP90l68jhOnFJa1u6F+smqqv6jJFVV9UxVVdtVVe1I+lc6YstIVVVPzv69LOnnZud7JqV0adbGS5IuH2UbZvhmSR+tquqZWXuOdRxmOKjfxzpHUkpvkvStkv5kVe0mJ81sRM/N3j+o3fykLzuK819n7I97HJYkfaekn7G2Hdk4NN2PmpM5cUYQz2LFs3iGubjv4lm8i+N8Fsdz+MQRz2HFc3iGubjv4jm8i/ib+HCctKDwfyW9OqX0ypki+EZJ7z3qk87yYH5M0sNVVb3Dtl+y3b5D0ifL397GNvRTSqu8127xk09qt/9vmu32Jkk/f1RtMNRUt+McB8NB/X6vpDemlNoppVdKerWkDx9FA1JK3yTpLZK+vaqqkW2/mFJanL1/1awNXziiNhw09sc2DjP8YUmfrqrqcWvbkYzDQfej5mBOnCHEs1jxLJ7hxO+7eBbXcCzP4ngOzwXiOax4Ds9w4vddPIdriL+JD0N1zFUgy5ekb9FuBcvfkPQDx3TOP6BdO8jHJX1s9voWSf9W0idm298r6dIRtuFV2q3K+ZCkX6fvkl4k6QFJn5v9e+GIx6In6TlJd9m2Ix0H7T6on5J0TbvK2vdcr9+SfmA2Pz4j6ZuPsA2f124eEnPiR2b7/rHZNXpI0kclfdsRtuHAsT+ucZhtf7ekP1/se1TjcND9eKxz4qy/4lkcz+J4Fp/dZ3E8h+fjFc/heA7Hc/jsPodnx70jn8Vp1pBAIBAIBAKBQCAQCAQCgRvGSac8BAKBQCAQCAQCgUAgELgDEYJCIBAIBAKBQCAQCAQCgZtGCAqBQCAQCAQCgUAgEAgEbhohKAQCgUAgEAgEAoFAIBC4aYSgEAgEAoFAIBAIBAKBQOCmEYJCIBAIBAKBQCAQCAQCgZtGCAqBQCAQCAQCgUAgEAgEbhohKAQCgUAgEAgEAoFAIBC4afx/p/n2ufFIHesAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 267140 88273\n", + " Min thresh = 1000\n", + " Not Sliding\n", + "\n", + "\n", + " Winner = Not Sliding\n", + "\n", + "\n", + " FN ROI = 027ns_image_4743880599022_clean_ClassN_130-258.roi.nii.gz\n", + "027ns_image_4743880599022_clean_ClassN_130-258.roi.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADYCAYAAABberBAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADfWUlEQVR4nOz9eZxt61nVi49ZtapWV1V779OlbwhJMAQIoUlDE1BAEbhGQBDQS4B4wxUERUQI8hO416so6AWuFzCiEhSluyAoCEI0QiQEEkNjIISE9JzkpDlnV9Xqq9b8/VH1fWvMp2bt5px9Tq299zM+n/qcqrXmeufbzXX2GM94nreq61qJRCKRSCQSiUQikUgkEteDtfPuQCKRSCQSiUQikUgkEombDykoJBKJRCKRSCQSiUQikbhupKCQSCQSiUQikUgkEolE4rqRgkIikUgkEolEIpFIJBKJ60YKColEIpFIJBKJRCKRSCSuGykoJBKJRCKRSCQSiUQikbhupKCQeMRRVdUbqqr61PPuRyKRSCROUFXV26qq+vRrvLauquqpD/I+D/qziUQikUgkVgspKCQecdR1/cy6rl953v24Eqqq+uyqql5VVdUDVVW9p6qqf15V1fZ59yuRSCRuZVRV9V1VVf1hVVV7VVW9saqqLz3vPiUSicSq4UYLs1drL/9dnLgSUlBIJNpxQdLfk/RYSc+Q9HhJ33muPUokEolbHyNJ/4uOvoNfJOl7qqr6hPPtUiKRSNz2yH8XJ85ECgqJRxxuq62q6tuqqvqJqqr+zXFE6nerqnp6VVUvrarqvqqq3llV1Z+2z355VVW/f3ztH1VV9ZWh7b9dVdW9VVX9cVVVf8UV16qqusfRr3dUVfXeqqp+oKqqflsf67r+t3Vd/0Jd1+O6ru+X9M8lfeLDNyuJRCKxOqiq6jlVVb36OBp1b1VV/7Sqqs1w2Wcdfw+/v6qq76yqas0+/xXH39X3V1X1i1VVPela7lvX9bfWdf3Guq6XdV2/RtKvSnr+DRxaIpFIrASqqnpGVVWvPP6efUNVVX/O3ntlVVV/xf7+sqqqXnX8+68cv/zbVVXtV1X1F6uq+tSqqt5VVdU3H38nv62qqr/0YNuLfc1/FyeuhBQUEquA/0XSv5Z0SdLrJf2ijvbm4yT9H5L+mV17n6TPkbQj6csl/d9VVX2MJFVV9ZmS/qakT5f0VEmfEu7zDyU9XdJHH7//OEl/9xr7+AJJb7i+YSUSicRNi0NJXyfpLh0R+k+T9FXhms+V9HGSPkbSCyV9hSRVVfXnJX2zpM+TdLeORIF/d70dOBZ8P1753ZtIJG4xVFW1Iek/SPrPku6R9DWSfqSqqg+72mfrun7B8a/Pqut6q67rHzv++9E6+s5+nI4cXi97iO1dCfnv4kRBCgqJVcCv1nX9i3VdH0j6CR39A/Q76rpeSPpRSU+uquqiJNV1/XN1Xb+lPsJ/09EX8Scft/OFkv5VXddvqOt6LOnbuUFVVZWk/03S19V1/cG6rvck/X1JX3S1zlVV9Rk6+mK+VvEhkUgkbmrUdf26uq5/va7rg7qu36YjYfeUSHv8ffoOSd8t6YuPX/9KSf+gruvfP/5e//uSPvpaXQqGH5D02zoSmROJROJWwvMkbeno37vzuq7/i6T/qJPv0QeL/19d17PjfyP/nI7+bXxDkf8uTkR0zrsDiYSk99rvE0nvr+v60P6Wjr50H6iq6s9K+lYdOQ3WJA0k/e7xNY+V9Fpr6532+93H177uSFuQJFWS1q/Usaqqnifp30r6C3Vdv+k6xpRIJBI3Laqqerqkf6IjB8JAR/9eeF24zL9j366j72BJepKOah/8Y29SR1Gzt1/j/b9T0kdI+pN1XdfXPYBEIpFYbTxW0jvrul7aa2/X0ffkg8X9dV2PQnuPPeviB4P8d3GiDelQSNw0qKqqK+n/k/Rdkh5V1/VFST+vo3+oStK9OioSA55gv79fR+LEM+u6vnj8c6Gu660r3O/Zkn5W0lfUdf2KGzeSRCKRWHl8v6Q3SnpaXdc7OkphqMI1/h37REl/fPz7OyV9pX3XXqzrul/X9a9dy42rqvp2SX9W0p+u63r3IY0ikUgkVhN/LOkJXntGR9+j7z7+faQjMRc8+hravFRV1TC0x/fyg2mvgfx3ceIspKCQuJmwKakr6X2SDo7dCn/a3v9xSV9+XORmILNiHSvA/1xHNRfukaSqqh5XVdWfabtRVVUfIekXJH1NXdf/4WEZTSKRSKwutiXtStqvqupPSPqrLdd8Q1VVl6qqeoKkvy6JvNsfkPTSqqqeKUlVVV2oquoLruWmVVW9VNKXSPqMuq4/8FAHkUgkEiuK1+iI5P/tqqo2qqr6VB3VFPvR4/d/S9LnVVU1OC4u/uLw+fdKekpLu99eVdVmVVWfrKOaYz/xENuTlP8uTlwZKSgkbhoc1z34Wh0JB/fr6B+dP2vv/ydJ3yvpv0p6s6RXH781O/7vNx6//utVVe1K+mVJZxWr+XodpUn8i+OKt/tVVWXxmUQicbvgb+noO3ZPR2JsW5Gun9FRGsRv6ShX919IUl3XP62jIrg/evxd+z915Di4Fvx9HUXV/tC+e7/5IYwjkUgkVg51Xc8l/TkdfTe+X9L3SfrSuq7feHzJ/y1priOi/3JJPxKa+DZJLz8+IYI6Ce/R0b+P//j4+v/9IbbnyH8XJ85ElamJiVsVVVU9Q0f/kO0eFwZLJBKJRCKRSCRuKRw7HP5NXdePv8qlicQNRzoUErcUqqr63GOr1yUdRcj+Q4oJiUQikUgkEolEInHjkYJC4lbDV+qoxsJbdHSOelvebyKRSCQSiUQikUgkHiIeNkGhqqrPrKrqD6qqenNVVd/0cN0nkXDUdf2Zx6c33FHX9efWdX3vefcpkTgv5PdwIpFInD/yuzjxcKOu61dmukPivPCw1FCoqmpd0pskfYakd0n6TUlfXNf1793wmyUSiUTiFPJ7OJFIJM4f+V2cSCRudTxcDoXnSHpzXdd/dFzF9EclvfBhulcikUgkTiO/hxOJROL8kd/FiUTilkbnYWr3cZLeaX+/S9Jzz7q4qqp6fX1d/GxsbKiqKklSXdc6ODhQXdfltbW1Na2trZX3Dw8PhdOiqiptbGyo02kOjeuWy6WWy6XW19fV6XRKm3yWvw8ODrRcLhuvL5dL1XXdeJ3+0Pez2qP/VVWVvtNv2vT+tX3+CvPXGJ/PhfenrQ3uT//W19e1trbWaNM/R99pl3nhx9eJNrw/VxoL/fXrmIsrIX4ujtf7cC1tcV8fB6/TXpzXOEZ/ve3esa+0H1/3cVzp9WuZ27M+Hz97Vj+uFW1zcVafrmVdrjams+53pTmJ63lW28fvv7+u67uv2tHVw3V9D0vS+tawfuKTK90329b6m2dXujSRSCQeMUw10ryePfj/MZ0vruu7OL+HE4nEqmJP97f+m/jhEhTavvQb/2qvquolkl5y/LsuXryoXq+nixcv6tGPfrR6vZ4kabFYaHd3t0EaOp2Otra2VFWVDg8PNRqNNBqNdHBwoE6no0c/+tG6dOlSIb+Q0ul0qvl8rvF4rK2tLV24cEG9Xk91XWuxWBSRYX19XZPJRPv7+1oul9rY2ND6+nr5/Gw20+HhoaQTMWEwGOiuu+7SYDBQt9vV2tqa6rouQkNd19rc3CxtzedzTadTLRYLLRYLTadT3X///bp8+bKm06nqula32y3iCgIHBPXg4OjgAvpbVZX29va0u7tb3tvc3FSv19P6+rokaTablbnwOVksFjo8PFSn09GFCxfU7/e1sbGh5XKpvb09zedzSSpiD/OKsDObzTSdTjUajcqYIeEHBwdlrhBTED5sL5T/rq+va3Nzs/RxsVg0xl3XtdbW1srn19bW1Ol0tLm5WfrFZ/kc94viiN/bf5/P51osFqX9Xq+njY0NSUci0HQ6LaKLdCJ6RSHl8PBQBwcHjTlgv5wlPDFHCGLL5VIHBwdaLBZlbplDxnOWEOTzzt5mX9Iv7ufr4uLXWaKArwX3pa9RROEeUUCIglPbtYzRhbI4b4eHh4158/3n6x8/52JeFFP8+2axWLy9dRJWH1f9Hpaa38W9jQt63NP+jp7ywEJrb3n9w92/RCKRuCa8pn7FeXfhoeC6/k2c38OJRGJV8cv1T7b+m/jhEhTeJekJ9vfjJf2xX1DX9cskvUySNjY2agjJYrHQbDYrRBoBoS1Kzu8QZumEgEEgIBQQKog6xAOCxbXL5bKQpE6no8PDw3IPSDZEjHscHh5qNpsV8ut95D58PvYV8B6fOzg4KH+7G8MJphNaH4ej0+kUcgrBhZhCOG1NTrkkuD8Re9pyUQNCx/wyxugugPQxx76G7v6gXT5ztUi2k/u1tbUGgZfUmPM4Zr+Pz0Obu8GFFHd1uOskthGj506Yuc7/G10Rft/YlzanjPfR241tRrHAx+D3OMsF4C4O/2zbWvk92+a4TVw5y20Q58yv9x8XJdxt0jbfvp5+v2t1tawwrvo9LDW/i3eqO+r+z/zGI9O7RCKRuD1wXf8mzu/hRCJxs+HhEhR+U9LTqqr6EEnvlvRFkr7krIv9H/VE7onOr62taWNj45rt40SigRNfSK9HtCEeROEhtk7u+axHeSU1IsVEfCHsLiQgJjCOtjSCuq4bqRoHBwelf0RcGQsuCSfKvIcYQB89tcPFEIenFnAN92V+XCBpi/7zHuOBxMUUDoQaFxtcRPGo+1kR8kgAXXhi/dkDnorCPmiLdnubZwkK7qCYTqeNz7qg4+JIFB4iAfcoeXQHsL5nCQp+T59b35+IXHE+o2PA7xfFJN8fcS8CPs9rPg7vn7fVhrMcEVFYOkso8b+jeNImRJx1f665yXFd38OJRCKReFiQ38WJROKWxsMiKNR1fVBV1V+T9IuS1iX9y7qu33DW9RChg4MDTadT7e/vq9frldcHg0Ej2jiZTMrnpKZ1mt8h5058Y8QfQPhBmyiByEAbHrFHWJhOpyVVg9f5DAKDk8JotWYsTuwQKIi8M27cErEdHwPzSd/dIRDh7yE60Cb34n0IO0KKCwrRqk/bPp9xDeJ4ndzHtYpzxJozv5JK3zxSzfuHh4daLBZlXmnP95FH5um7k2fG4GIJ7ow2G72P0/cC/V8ul2WdYo2P6DxxEcz3tztgPM3mrNQSF+p87HGMZ5H4sz5zFqLw4WKLvw78fRe1XLSL44p9axPO2hDH4Z+9lhoeq4rr/R5OJBKJxI1HfhcnEolbHQ+XQ0F1Xf+8pJ+/lmshR5C9yWSiyWTSIF8e7Y4RSM+PJxLtKQqeinDcN83nc21ubpb2o6Dg1n3PMY9Rcd53MujXQdy63W4jSu73ivnuTrrInXdCDFmUmsUjnbTzWepKMEbqJdCOCyQuAtCvaKGPxSN9PdzV4VZz7t9GzlzoYL7PiiZ71NjJp+8RJ9Nxf3Et42Du/L5O1n09fH1cOIiRcMbt+5G9FYUKb6vT6ZS1RsBw4n1WFJ69F8UC5iL2yUU1nilv0/vpgkIb+XfS73sltud71dcp7p+z0nZim219oq/RBRLn5kqiAvMRP3Mz43q+hxOJRCLx8CC/ixOJxK2Mh01QeDCAmMxmM81ms1IwMeZDtwHy4AQYUkjhQychnqbgUV3pJMIdCYmTaEmNKDOEM0ZepSahjakRMeLfFjF2h4RH0efzeeOz3j/6uFgs1Ol0SvqIn34Ri/LF+gWSTkXT6TvXQlKdkHGtE3uIY1uUm7n099oi0FcSFfzvtvoQvoc6nY7m83mZf+8/18b6BPHvOAbvV3QU+LrFPvE5d6P4Gsa91CZoXQnep7Y93VY/4Kz2XUTxPdMmNJw1Jy6OeF+ioHDWs+7uFva838vbiwJMHOOVXA5tIk4ikUgkEolEIpFoYiUEBScRuBT4gTAQ0XQ7uf9j33P8icZzWgB28hg95mQHt4t7TQWPhnp6gXREZiDp9D9WyWdMkFZ+p/Akf1NkMTopHB4xdiIXUw/caeAW8YODA21ubp6ZJ+9EzYUFdxBwH5wP8fSGuJ4xek8awlkE1om3CxG8H8ls2xzhanEHgvcFcSeuT2zDxR3fO74nfLyx3z5u9pgfE8pnPA3GT7RwUSjOZXRVOPz58B93KLQRbr/PWVH86AhwN4qLAmeR8DiHMQXIP9+WMiKpIcz5NVHka1un2BeHi4lRnEgkEolEIpFIJBLtWAlBQTqx67tTwG33pETEqGO0qJPHP5/PT0XWY+4/4oMXE6TNeDyfn6pA8blI2ObzeSHyuCsYh5PBg4MDzWZHZwtD9nFlcGQhfXbixrGTtONpDfQhOhDm83lxKEgq/+10OppOp+UzngrgLgOu3djYKAUz3RERBQknxBGxbkBbxD4KD0462+4VU0J87Hw+to8zg3uwttTdQHCIRzOCOEfRweJ7090h3Nv7Fvcaffc0mCikRHcB1/gRi56G4/Mcj5KMqUDuFIluAfYucxoFoLYaIRFRTIpOnLMEJ7/e+8heiSkLUdSKDgi/zsUDf7ZTTEgkEolEIpFIJK6MlRAUYtTWaxtEEuOV510g4HUvkuh53R7Fp46ACwjdbrchLnjfPKcdYhvJk3+OkwAktQoPCAhErSH+8TqIobfLcZoU8muz2TNXnpqAs8BPt2AMTn7H43GDbHmdhbbiicy3k3wQLfEOv9adEdE2H8e0tramwWDQcHY4kWbOcClEJwLj2NzcLEJRdDFwf08HiILCWWPy/RxdEZ524WvOmvDfw8PDcv1ZNRR8f7qY0CbaxOcrOkdcAPL321wOPic8L221ReJeOAveXpuQ4O25+OLPuH+OuY3jbBMy2l5PJBKJRCKRSCQS146VEBSAk3uixRCHNnLihCkSUKK8kVBCQNy+j6Oh2+1KahbPc0LuxJrorPdbaqZcdDodzWazxj1dQEAwcWHEyZkXG/Q54kQMFxvcLSCduCjcpcDRmN4WY+IoTYQKT6Fw14ZH/D3FwPvi6QtE+s/Khz9rH7h13Y+6XFs7KnLpjhbW2k8tiG0zjrPSCOIcuy3fESPc8bPc1/sb23Ky7yKIiya+7i4sxf0eI/zssxh1j3MSP+Pr7E4RH6e/53viSvPRhjjXvkbuGJBOF+10ESx+ztfG966P+ay+tdViuJaxJBKJRCKRSCQStzNWRlBwMryxsaFer9fIl46kNEYYyfnH0g+Z9pxsyHx0CywWC83n89bCey4+8B42dr+e+0LQNzc3y9GXs9mscf/FYqHpdFoIMITIx+lEKroQ6IOfqgA8sj2fz8sP78XxYfHnJAqvPeAFGhF63NXhgoQTXu8j45ZO57k7YvSY9ty9AOnz9AZOroiR5hghZx29Pe4Vf5xAn+VMaBMg/N4uLLi4AOizO3DcwRBFLXfaMA++RxhPFBriesW97aKGC2YxfYD7eT+j8BNFIyfoEVHMia4Pd8343z6v0Zngz5KnQrS5E7y//B7X1O+XSCQSiUQikUgkTmMlBAX/x7tbqck9h3zxD34KLkKEPJLqAgOR7XgCA/eE4B8eHpb6BxSuA5CT0WikwWBQxA5JjSJ6tEm6xsbGhra2trS5uanxeHzKpeBHOvI57h8j0PSVlAU/lSKKCvHEAnc8jMfjBiHvdDrqdrsNR4jXZfA2vZ/Y3HndiyB6Kol0Em2PEWeHp1201WWQVPrj5NDv42KR97sNTny5Jgo0fgIG4/VUDPae971tXOyLeM/NzU0tFovGmJzMb2xsnBJ04n6OTgqv6+BHNLrwc632fm8zCiJxv3G9p05EIu6CTnSFMH/uImIOoljF94OLBb4efh0iiSOmw7TNhzswYgpUIpFIJBKJRCKROMHK/GvZbfPdbrdB8Dx/G6JDDjyEmSg8RMxPiPCI93K5bES4Dw8Ptbe3J+lIIOj1eqeIIcQRYQPiF4vmbWxsFGJeVZV6vV4h4Pv7+4VAentSk6g5WUK4gOTPZrOGoOAWdOnEKYGT4PDwUJPJpLgUnKST4kAKAf30ugysC9eur6+r2+2WfjEX9MFFEh+Lk1upKSq48yMSZP7rxHq5XJb6Ex65R9BAJCEtxB0pMTrPfRk76+a1COgPogKI4zlLvKBvUXzwe3kdAfYnc8++cDKOqOAOhBipdwEnpp94P/wnOjxi/+PpGF409Cyho825Et0g8Tl3AcPbAPG5i6LAle7l+wtBzE+MiC6lNndFIpFIJBKJRCKROMLKCApu5ZZOUgecuEunj090ezb1AtbW1sppCV6EUDohXF5Mzgs2tpGTWOMA4u5OA3dW0C/SICSVExLcYo6g4AKKdGLXj0QKoSSeXODFJN3dEYk1TgwnrN5XhJput1vGxNxxDdc5offIfRtiQU0XAWJqgs+7E0snvF5UE0EkiiBORKMg4YTTnR58Jp4mEsUIj1x7OoDb6+P6uaBAG3G+2uaPcXMPrxMQPxv7GMfWRsAj8XeBIjobGDPPqtddcLHC59YFiCg0uCvFhRBPa4ipHy6W+Jj981FI8OtoI6Yz+LN9JddJIpFIJBKJRCKROMFKCApePwBxAAILwQNXymvm9AQXFA4PDwux5l5ted2RqABPqSAtQjqJ/Ho6hRMzjwDX9Uklf65FUGB8kRQzVn/Nj5t00kp0PUbAEQA8NcML1rk93cWEXq/XiIBHlwJ/Y8H3dtwi7uQuihgIQFdbh0gQJRVRhLZIf/HrcbBEG7x0+ujE6E7we7Ne0SnDPeN6+V6IBN9dBP5+FFUi4fc2vK5IJOjxvi5wtYkIsS/ugHBBIY6BeY0npXi7cfxxzPGeXpwyEvoo1MS24t7xz/ncsPbu7vFnrE2USCQSiUQikUgkEmdjJQQF6Ygkep46BNfJQCTs0ulibFVVFeLvRQCpFQC5Jn0h2rRjm96/tbWjAovz+VwXLlwo73l7uAE4KcGdAxFO8B0uYvjnOGbQT51w0u8kcH19Xf1+X8PhsJDJ6A6Yz+cljaLb7RbnRb/fL/fEkUBNiNFo1Dhq0QsdMtY25wH35jhNxucpD+4oaItG046DfPi4ZqRxbGxsaDqdlj3Bj/cN8cX3A/134YO++FGZvl88yu/wfdAmQkTS6+SfyDkpB+4giAJCTK3w2hcuhPEZ9qzPv5NxhKbYtsOLH+JaifMRUw14PTqPonvD05IYr/fZHUqeNuJjjN8XsT/e7zbXRRxvIpFIJBKJRCKROMHKCAoe+aQeAoQonnxAagOnJRweHjYKrUEC2+ztnU6nQYj9VAbAPTzfXFKpRUDqgX/ej7mE+Ozv75d6Bm3ExGsonJUyEN0S9At3A6THCStzAtlDnIm2fBcn5vN5ESA2NzfV7/dLrQQcHhsbGxoOh+UoTEkNcs48ML9tLgdEkBjl5j3GSN8YG9e0pTuwRzx1xYWO6Axx0u1Hc0a3BfvSi2fSF44YJY2Edr32gzsaohDAcaVRTPA193XyYoXRjh/X1Pd7FDfaPuevu3iHwMR10+m00UfmA9GJ+Y/CgO+DWC+B66K41iaSSGrsL/aunwRBf33O3dnhdUxc+PI9wXjSoZBIJBKJRCKRSFwZKyMoxOh5jDj7cXXSST0BP5EgkieIQrS4O5FxUhnvDZzcuIhBSgHvu73c6zlAttzKzQ9tQhYh3m0RfE8n8EKHMVoOmfZo+1mRcC9cWFVHhSAh6bzvUV7e8+Ma6eNyuWw4ECB+vi4xIu5kHlHI58vX1SPt/O0k39fJXSttLhB3cjiB9//6PZyge80KIv1+CgVz5/AxMA7adFt/nCf/O4pOkfDGvrrAxbUuMni03z9/liiBmOXXx9SBNlGAZ8LX2x0M/E0BziiYxLZ4Vn3f8bqvZ/y8/zCn8Yd7+HWJRCKRSCQSiUSiHSspKPjRitLJyQwe5fWCiPGIQyew7laINm4/LSEKCsA/Q1u4Izz/HiIDmeRUBqKjMQXDI/KMJxbRcxGCz3g0FWcG/WTuILkOJ1lt9nre73a7Zb6lo6Mm/cQNj0g7AYwV/3ktEmMXKDxyzDxyjbfp1ncvBunRZyd/7ghxAhxz7H0deD86DZyouqjl8+5uhJie42N1Yh7b8rQKX6s2FwJ9bRMUuA9z4uTcxZe2dnjd+xHXiLSbKI45kY+1K9rEAASEOA4v4Mn78X6e3uPPqxdCbUvPiCIF/fD/+jzG1xOJRCKRSCQSiUQTKyEoRKJ/eHio8XhcLO1uI3cHABZrt8B7FJ/3SVOI9nsvlOiCgRNZJ8lcg6Dg9QWoQcD1o9GoWPT9pAXqOfT7fe3v75+KsjqJnM/njb89ohsr6kfb+LUQIhwH1BpgTrDz9/v9hmtAUhmrF73kfjFFhHE7PA3A00wg9hBe1syvQ5SJbbJ+AMHE6yX4XLkTxAtMslecoEahIro9fF3cTYJzJdrvcTC4wBXXhP9GoUM67aDxdY6Cgvc/pva4aNQmTriQwnXdbreIZH4de8LnnvlfLBan3AFc40IaY0YA4rlyccLXhDkg9cfFPenk2Y81EVxUiM4E+tDmqEkkEolEIpFIJBKnsRKCgnRi1ecf8E7uSC3woxsRBzY2Nkquv5MFiAcpD7PZrFi8O52OBoNBIa+IDV4Az0k8tQOc9JJu4YSKyCn3JDWCSL6LFb1eT4PBoBRv9Mg95A9yFdM/nPBGS7qTLy/u6MTNibFHmBE6+v2+1tfXNRgMVFWVRqNRgxw6gXPRxVNJmAsnxYyx7WhNJ/q8jsuCgonxHgg8pJ9AlheLRanDwTx4zQTpxBHhhDzWMWDfbW9vN5wu3gfWcjKZNMiwi2Fxb/NZ7kN/6Cvg/t1uV9PpVLPZrLGmfMaFjbNIMvPa6/XKfmSOXIDy58cFF97HwRLTSLjHxsZG45nzMblLg8/4/mONXRxxAYY59RQHL3rqf9NWdKjEe0f3g/83xYTEI43JC5+j+z72dAHfROJmwsZupcd+16+ddzcSiUQi8QhhZQQFt/Q7ycPC70dKxui8uxL4nKdF1HWt2Wx2yiFAVJVii1Kzqn6s+u7pDVzr13ihvtlsVk6EQLTwdAUKH7oF3993O3gkiO5kiLZ6xn9WLQgi3/wX0gohc3Hk4OBAg8FAy+WyQWbpV7TES83UhUjoIhGM6+aWfPqHWOAWd+7TlpbAfFGsj3u6IOFOCFIrPD2D9zlCkyMoSbHx4oSMH2GENBQXTryOB+3Hmg5OhGP6i0fzXWTy+7eRfHfusLa+hxHiokMhpk3EcbqwFz/H38yzk/O2FA364ilDLpxxj0j2fd19X0U3j9/L+xjFDf8M+yWReDgxeeFztBg29+DeE9e02F6e8YlE4ubAclPa/ZLnSZIu/t6ulr/1e+fco0QikUg8nHjQgkJVVU+Q9MOSHi1pKelldV1/T1VVd0j6MUlPlvQ2SV9Y1/X9V2mrEd2HyLiF38m7W5khfzGK75ZrKvE7CYMsOqmUTiLpWKZpN9ZdcNs0Y8Dm7nUWuIbfGReEjnG4g8FPZ2iLlPrYIUZthM0/F0k8f5PusLGx0bDmQ4YHg0GZB9wUMT/dnQ+0RX8QamKeuxd+9Dl0EurCgtdEiGTXTz/wFA2IJqTe0wki+fWCg6QGIK5AvDlmM9anWF9fL+4In1cXFFywoJ8uMvBZxASfC68tgcsDgcR/vLgm5NhTadxxIKmMy90x9M/3gDthut2uDg4OGs4S1tdrneCCYExtKRWxFobvZYQrakvE1J+YNuH99H0SU13i/XxP+PgZU+z3KuJGfhcnHl6sX7ok3XlRknTfx3S02IniQYoJiZsfh91a93380e/L9Qu6c/9Djn5/2ztVt6Qs3grI7+FEInE746E4FA4kfX1d1/+jqqptSa+rquqXJH2ZpFfUdf0dVVV9k6RvkvSNV+2IkS9y951gTCaTU0cCeiQ1Vv+XTnLaNzY2GvntkEuOUlwuT05aQHyI+freH0jxWYREahb4I8LPdbSxublZiOF4PNZ0Oi394B4uKLRFtZ1sg2jzdkIZ6xb0+30NBoPirnDBYHNzU9vb20XMwXERC0y6uwShgLH6iQf8jQMCB4MLAk4c6b/n2MexHxwcaDKZnCKJ7p6gf07I3QnjgpUTea874NZ/F0ncNSCdiCo4G6qqahQXdVu+p9r4XsGV4aTe139tba2k29Avr3PBGHyM/l8fy+bmZmPN3X3ibgYfO2kPLhT476zB5uZm6bPXQkAwiWKZu40QXHgeoiuGdtjffL7tOoeLNJ6O0+ZIaPv8iuKGfhcnHj6MP+Gpeuenk9KQ4kHi1sf7P6bW+z/mUVItfdg/2Nfh+98v3ZoOsPweTtw4VJVUrdC/QZaHV78mcVvjQQsKdV3fK+ne49/3qqr6fUmPk/RCSZ96fNnLJb1S1ygoAAin1xLwEx1IW/BCfFFo4D2v2u+EHPs2pLQtbSKSLI8+8wPRWiwWmkwmDbcARA/CBrGEVEciLp0QLye0TjQh2DGiSjSX9j3dwPtPJBtsbm6q1+up3++r1+udSrHodrvqdrsaj8eNQofktnuhTOYZMsz8OFmGxDppZ9ySGiTP++5RY78HQkGMlHtqBH3ANdJG8L2fMSWCPkMwqY3BD/PJNd1ut7gw6JOngUSRgz0Y1xNE8Yz7IF5AvqvqpKjh5uZmET487YA9vba2VmplcLxnJO5+b/rFc8Oejs6CeIQr/fB97QIT13pKhgtN7oaJ6wC8+KaPN4oK7urw9cEhxOd9/PF7YRVxo7+LEw8P3vN1n6Dxo2tJtySZSiSuijd/3VNV1U9V732VHv3dt1aNhfweTtxIvPXvP0//7ou+57y7UfAtL/xSLX/njefdjcQK44b8a7mqqidLerak10h61PEXq+q6vreqqnuu9vlI2iEBHr3lGrfOQz7dgh7t7LzmOekQckjFcrkshLllbKei1hBQj1x72gTwSL07I2LKgBOyOA7/nVQCJ80eIfZ5jP0HcYwQ/+FwWEQOxA/G6w4JUgPOigTTN48ie2pDtLc7aWcduS/j88/5WnoqgwsacczuCvHUFk8tcEHB1xT4vqRIInvTT6TwPUJ/3T3gDgUXVGJ0P4pGvp/cJRFdG/Tbay8wXv+vk3PmxcUAn1tfZxc2EPDi/mLMPhdXq33iRUPj8x7n5izwngsDEXHPRWeMz8/V7reKeKjfxYkbi7WP+BP6wMdekiRN7qm13EwxIXGbopIO+0f7f3KPdP+Lni9Juuu1H9ThG/7gPHt2w5Hfw4kHg87jH6e3/JM7JElf+if+qz62u3mVTzxyeOAfLnT/3kfe0Daf+D3rqv77b93QNhPnh4csKFRVtSXp/5P0N+q63r3Wf4BXVfUSSS+R1CAnLiY4+Y3Exivox4il27udTPKa1x6A8NAWhCKKAzGKGn9cUHBrvxMUJzweKY5kJhIcF1tcTIi55k4gnVQ5yW5bH/o6GAzK/Tzy3kZGAX2L+ey+brEWhPfFiTv3dou/R929TRdh4rh470qfc5B+4qeH+LrG+d/c3NRsNitr0RatdwHC58D3YhRK4vU+x6yTvxbrBPi+Zvx+LKmLTlwf19b76K6C+PwxZy7m+BqyHn59HJ+nftBHEEU3by/OC2vun29LYYj99/74Hmy75mbAjfgu7mnw8HXwNkPnKU/WBz/yoj7w0SkiJBKOw36tD3z00e+d2SVdGj9JB299+7n26UYhv4cT14q1Xk+jz/yo8vf+Y9b1xk/6/nPs0dl49bP+vxve5tPf/Ff16Lufc83Xb73yD3T4wOUb3o/EjcFDEhSqqtrQ0Rfnj9R1/VPHL7+3qqrHHCuxj5F0X9tn67p+maSXSVK32605klA6chxA3iEe8/m8EFCOXMS+P5lMvN0G2fSIavyd6yWdInnY6D3iztGEXgMA4lFVVTnRgb73+/2jSe50NB6PSz641CRMkVRGYsW1UWSAJHrkNzoQPOKNw0E6yXlnPjj5ItaScJcI7VH7oa5rzefz0g/cC8yBE9xI2vy+XE+k3x0hFLhk3mI7dV0Xlwn35DXGGYUpHBP8HlNLut1uScugHW8/Cjs+N4wrpm5EUeGsYyS5xttwkcb3HXPP/vSCiD5O7uV9jQJVFDxIx/C9Rz9pNwpLXiyVOYvr764HBAUXOXwe/TmJYkw8jcXhn4ltM8ee5uJjYC58D98MuFHfxTvVHcl+bxDe8fmP1fixWSchkbgS3vtcae/xj9Nj/8m7jl64iXO183s4cc1YW1f1IU/Qr3zfy867J+eGN33Z9x9VGLlGfPqXfIU6r37Dme/Xx7XqEueDh3LKQyXpX0j6/bqu/4m99bOSXiTpO47/+zPX2J4klXoJ3W5XVVUVEg9xIH+/zVbupNNBxX6ICr/HyC6fxTFBIcjZbFaILznk0d0A3OpNocO1taN8dc+9n81mDZJGH50cQnDaoq2Siu3dc/+9Hx5ddodEjDJTR2EwGDQKQ3KP6XSq2WxWjkT0dAvm0aPUTkR9jfz+PneQee8j6xGLBsa6FiDa8WPEPIo3npaB9d+FAU+NYb3cteKCCfvTSTC/e9FJJ6pt6S2+P/v9fhG2GDP39LQCRAVEFC+46GkMUSBDaPC583uwl7y2gDtUYlpIXR+dZEKfo0uBtY5zzHxF94SLdf53RNse8Gcgntjie9GvjUU5ETOvNbp0nrjR38WJRCLxSGLymKXe+vePIpVP/tmxql/77XPu0fUjv4cT14N3/+3n6ue/6h9J2jrvrtw0+KEf/l7NriC1fc1nvEiHb3rLI9ehRAMPxaHwiZL+V0m/W1XVbx2/9s06+tL88aqqXizpHZK+4Foag9DFavCxgB3/wPfcfKl5pJ4fvYcA4KcbuDshphSsrR0V1Ts8PNRoNCoEiWgqQgHtQdggiR59RVCQVPrgBMeFDGoyQODcSu/R7Wjjd4LIdcwh/XbxwyO3/X5fw+FQ29vb2tra0nA4bLQhSe4caXNQtIkBwN0VES4c+I+/zjx2Oh0tFotGOx51jyTSRQWvYwGJpgihO168vzGS7+scRRH2ga+TE3SHE3jWA8GBMbijxCPsZ52E4cIR+xDBi7njuYnz1OaW8Ta89oVfE1MgXEyKqTgxrQMhxJ9xf+ZZE5wiXkRT0qm+0B/+y373axAT2vZKFKna9uJNgBv6XZx4aFjr9fS+//XZml3KIGMicS2o146OmpSkez9xqO4zny8tpbt++HWqF/Nz7t01I7+HE9eEP/ynz9WLPvmVemInxYTrweOvMl+H3z/T/dOnXfGa3ssuqf8zv3Eju5U4xkM55eFVks76F/enXW97HtGVTsgrxNwtzk64+K+TV7daOzmK9zoeR7kfjgjIP+Qkki23S2P1hlj5PUgxcPHAnRgemZZOiuoRdaZ/TsiioODjiGkcEZGsk+YwGAw0GAzU6/XKWDw/3/sdCR1rwHvePydq/prb9nnN23R3AGtIv2I/uD5G0WNqgwsffNYdMETYPZWEvvl6sdeYRxwKLiyx1h6ljyLMWXZ69pdH0X3PuOOEtrz9mLYQi0D6/PlRj3GfeBHJmDbi7/k6+GvRqUCbXpfD18bXx/cGz5ALFr7OPqcuorio4SKQz10UPuJ3QRTPVhU3+rs48eCxftedOnj643X/M+qzVySRSJyJ8WOXGj9Wqg6lO5/9YaoWS63tjaU/PO+eXRn5PZy4GqpuV5c//9n6O5/27/XiC+857+7ccvjFZ/zHq17zIZ/zv+lRW89rvDZ8z0KdV7zu4erWbYOVOBPNI7sxx7vT6ajf7xfS6YKDR5+J+vN7jMx7vnaM1tKGW84Xi0XDrh/76lX03VbuNuk2Qi4dkSI/QhKC5rUdYu6699FFFT8ZwS3oROIhSU7K3EFBqsNgMChuDtoggu7tsgYuiGxsbBTRh9SIGM2mDx4FhnxyJKgfHemCEQSxzX7PWPwYR58vovUuBPi4SPfgc56Xz/y7UFVVVakt4X31lAF3KLhQxt8xVcYFChdNGAPXRDHD91pbWgd7gtcRyfy+/sxF5wBz5Sd7+PPkaRUu0DC/0+n0FEmPiI4L7k3febZIw4mOCX9G2NOeLiSpUQvE59P31FkiXCJxPZh/xJP01heuTmXuROJmRb0uvfmLh5KknTdfkN6cCl3i5kXV6WjtSY/Xr3zn/6uN6uaozXQr4q2f/c+lz26+9ll/8Fmqf2P75IXFQsvp9JHt2C2AlRAUJDWitX7qwsHBQSHN0WLtZCUKCk7OILyQYY/Aen613wOi2ev1isDgEU8it1iyI1k8yy7u+eIxT9zJIWOmkn48grKNfHpU3N0MfB5Cur6+rl6vp52dHV26dEk7OzsaDAaFeEG0t7a2VFWVRqOR9vf3SxrIdDotZHRra0vdbrcUL+QEBMYYC2DGAo8xhYDfPRJ/1lgjGXZBIa6np6xIKmkrzMNsNtN4PG6kIER3QHRaePvMLf91RwPEm1QcyDLteNqCixFxvlwsccGFGg7RveH7lDXlvog4LrjEz+NYcfHN9yzPKNfjPmEP8nnGyXPtbqP4PHF/7tPr9bS2tqbZbKbZbNYQPQDry3oyRtqjdok/g7iAEET82Ubwiye9JBKJROKRx95Tlpo9Lk8+SNy8uPern6NX/K3v1EY1PO+uJAJ+5un/Qff/3omA8Kd+8yV63OedXfwx0Y6VERSiZRuiv1gsTlX5j3UWPOUB8hPTCZz4xcg/93exgrZd3JDUICUeuYYwkTLhkV3IUDzlwYmRuyggXKRr9Hq9cqxhTOuI1mzIquflcz01FTgicnt7W9vb2xoOh8Vh4PPkY6FfEC0nj+4icILrJNnJG/1YLpfFEeHOD69LgAOCNfRUiCg64BqJxRNdtKA9RBUIqK+j990/76KFR8djvQP2b9yrDva3F070fRpTL7wuQEytaauN4MKFO1LinnCnhd/f97rfnzbZG1H0YC42NjZOndDB3Lt45G3Tf58LLwIa3SPeLs+p1yXhPfYTzzHr4/PpApQ/X4lEIpE4X9RryhSixE2LN33fc/S/f/Iv6a71FBNWERvVuu6xtfmeZ/2o/tEr/mz5+x3/7Yl64v/xa+fRtZsKKyEo+D/g3T7uDgAQCRRkok1IcCLo8MhotIz7ex6JjbULnHh6/yFbbufnOMRYyd4R0yJ8rNFC3xYljjn1keTST0914IdoPcd1xv75PCEo+D2dsMeieB7h90KKsRCf9z/mrruLI6ZxeGoFgoavlQsrTjiZB0i2u0twpHC9R/Xd0eLiS3Rb0L82EcD3jwssbekhPgfepgsw0skpDsDnxdeGPeHrcaX++/7xtfC0FEck9F4zwdcxjsfnxQURfw4R6dyJ484HPuPOCRekEBLi3LrAQdv0JZFIJBKJROJ6UW1s6v0v+lj9zU/5eX3Npbefd3cS14hP6x/q06wew1/uf6reeO/zH7H73/PK9+rwD//oEbvfjcJKCArSCfGLZFxSIcJOqKUTIsrRh54j77nr8/m8FN5rs1rHdAQnbH60YSSKbpd22/Xm5maJli8WC81mM83n80baRBuivT/e18UE7uckHcRUEHdD4HigbgL97Xa7Ojg4aBQYJLrs5Jlx0Jbfj7mPqOu6HJMZCzi608LXwR0DjL0t5cDhbgEnsvP5vPTLj1b0wpvehhNQHBNc4+KWr5ELW6Q4+Ikd/hnge5H7tbkD/DOe/hBJfdwvXiDRhbq4Ni4q0A/ei/1rExO8TXerSGqIAJ4O0QZfq9g2aUiOeMyqCwtejwNXxNraWkOgpC9xz/p4znpWE4lEIpFIJNpQbWxq7cmP16982/dosJZ1dW5m/Jsnv1L69lc+Yvf76H/wVXrsBx+44jX1dKblaPTIdOgasRKCAkSeWgcQOrdFe1QxRkaJKnvRPgg/xeG63W4hrVwH2aB9Is9U/kfg6Pf75XhBSKO7Jw4PD0uUv9/vq9/va319XePxWHt7e7r//vt1+fJlTSaTcr0XrYNwkQLQ7/e1tramfr/fSDkg9xuBwsk2JJAx0ydPEdjY2NDW1pYuXbqkO++8U3fccUc53aHf75fjE3d3dzUej7W/v6/JZKLJZKK6rouzAUQC631xV8VsNivvDYdHtiIXEDhe0+tLYJefzWan7tFGsCGyy+VSs9mscQJBJIh+kgL3cgJKO05UYwoN64Jw5AUPETQYw3w+L/OPkLG+vl7WEMHMrfuegkMfvZhim6vDHQC8znyxX88SLGJ7sT4Crztpj+kOuD7ovxfu9PWgDzy3iH6sAfuFe0ZRwUW1WCySZ8QdGL1erwiU1MlwV0abS8n7mUgkEolEInGteN+Xf6z+29/9vzVY61394kTC8Jpv+h4tvrH9RD/wMb/6lfqQL/7tR6hH14aVEBSkkwJqblHm75gDD6KV/6xrERf87zYbd4z20waEEkLYlm8fC7hB4CDF0+m0QfYhXBBFSKdbu+kDwPHgUVYnd56CET8rqQg2/HhEnXYQXg4ODrS/v1/6TTTXo8SQO49yOxHzVAPW1McGnAR7jQkIK6KCXx/TCdxR4mJSTK9oc1D4dThlvE+Me7FYNOYKYSBG+f0khTZHjLsiuA6hIe5vJ7xtbpOY/uNk29+Ln2WPsE8llT3h/ed59L5EMt+2BqzhdDotn8NR4/31z3Q6HU2vUlnX3R4+l157wvePP9vRJRHXyr8nUkxIJBKJRCJxvXjT9z9Hf/MFP6+tFBMSDwLdakPdauOK1/zgc1+uH3z1C1rfe99XPlbL33njw9G1K2IlBAUn8dGy7CKAkwmIkOdTQ1Yj8fFIr5PUxWJRSJkTMfoE2SENw4mHE1WEgWjVx0lAtDoejyidHDVJvz1qGyOoBwcHpU1/nzlwiz1RWxcCSG1AGIkCjEfjDw4ONJlMSkFJiBanXvCZmH/P2kA4I/ne2Nho1JRwRDGItXKxxQUUBAwXgBgDDoNIyl0E4vV48oSLJE56ca5Q84AxIUTQnv/QHv1xlwN9jqk1bX2PYlibY8OFHH+O/LPsbdYm/h7b8vWDrPvzGmtEeF/jevq4gKcm+fq4myI6kqKbxMcd65rEOYnCFM8b8+DzlEgkEolEInEtqDodveernqOv+uRfzJoJiYcVL+hJL3jSr7S+99Qv/d81fPcnNF6757UTrf3q6x/WPq2MoBBz9aUmuXMiKKlxdKEXZpPUIJ6e7819FouFJpOJBoNBKcpH9NQFCKKz8fi86ExALHChAUI+nU5L3QGItPcbQomgAPHxPH6AmDCbzUoKQiSAnvZBxBl3Rb/f1+bmZhFIfK6lk+M6ERTG4/Gp0ykGg8GpOfCoNG4GdzVEl4eLNpHwIoS4AOBzH0+dYK5ZdwQFTxHwGgKsj9cJ8Dnz/eLkHQGBufDim06g25wv9NfnN0bavaigE2PQ5lzgnv477bjTgLmINRva4KIB6yapsQfi8+gnsMT6C8Cf6TYhycfNs+B1MLxtFxtjCoQ7TXxNXQDhs57SwnXSSSFJvz6RuBasLZZan1Q67NVZlT6RSCRuE6z1eqqe+Dj912/4Ll1azyNOE+eHN3/JD5x67UN+5iX68D96bOO1+uBAh++974bdd2UEBSc6HhmWTv6B70QEAg9BgUxJKpF0IsjSCdmDQEL2ucYdCFHg8HajFdqj6ETzq6rSYrHQ3t6eptNpiQD7WD067KkPIJLJ6Hqoqkq9Xq9Bzt0lwZg53q/b7ZZaELTveeYOSN1kMiluCOabfHQXTqJ9HDEB4u0/m5ubpa5AHOtZaQyxRkCMcsfCitRkcOdAdGPEKLvUFBMYg68BkXrWk3oB8fQKTqLw9Io2B0xMOQFOjD367/MVRYS2dAK397ujhs/EdJrZbNbYF4htiDi+Vxin99HXyq/16D/z7ONkf/v4AYKduxFIo+j1eqeEQx8Pe8yFCfZrW/0PhKO2+hCJxLWg+u+/pae+4YLe9P97huoUFBKJROK2wAe/4Nl61Xf8U21UKSYkVg9v/nM/oOWfa3KJb3/fR+s3P3r9jE9cP1ZCUJCaUUonGE4Mom0dwgopieQAi3okjpJOpSmQZuBW/LOiqtFmT39ns5lGo5Hm87mm06lGo1Ejd5uq9DHf3J0JHnGGDHNPCA/kzXP4nQB6Xzc2NjQcDjUcDnXhwoVSAwFSH8UB7OaMgZx2d2y4iCKppFJQCwIyiYhAmgQEOtYXIIcfIss8IEC4xR2y76kInnrCfLLuzJs7XaI7wR0LMY2EtfKUGV8r2uG/MaUCF4OnebDGXiskClXSiSsAB44XbvT9F/e994soPgSa9BUfRxTvEJRYW65BLPL5dvdAfD7jka+xtofvc8aDCOOOBF9r3z/sQxdI2A+0zbxzvTtgXITinu60ceEmkbhW1IcpQiUSicTtgjd933P0LX/yp7VR3ThylkjcSKxXa4q786vveLW+63XNOgyz5Yb+6M9u6fD9H7jue6yMoACw+0NGon3cc8u9xoCTKCcn5Lw7ka+qqkGKaD8SebeyR8EiCgp1fVRFniKGuBVo2/vPfyGJ1HFwougRXhcwEBC8IF0ksC7IIDxwioPXW4jWc4gkc+UkHPJGygI/Hnl3QchdC34CQnSiePTaI+jMbafTUb/fL/dj/L5f/G9PUQC+rk4o3Yni6+QikbcbawV4+23OFd+nMWXB01piTQT/vNcEQJBiniIh9n5F8YN7Mb8x6s9nvO2YyhD3AzVBaNMdAOwvn4ez1svX3dNCfD/F0zbiGvC3pw/VdV3qb0QRo+3z7IHoZkokEolEIpEA60//UL3tCx4lSXrxJ/0XvfjCe865R4nE9eExnS3948f8j8Zri/pQz/ybf02d0RWCaX/vJ1tfXilBwQvfQUYg5UTf/Vq3jHt+NSSAiLqkhsXec6WdVHu03klWjGY64YYgeSE5ovdOyCCDOC68IJznvTvpZRweMfZIracYQBB5jzGQ8kDtBCdKTqTpN1FxovzUqvATKiBcng5CP30tWM9Y7NGj3HzO59XTKOi71x7AWeFOARdfmJvohkCw4TXuSxTdRQv+9na91oLvlyg0ufjQVq+AeyCw0MZZ7fhejnvtSnvU9x738v3u/WAeXACIohlryuu+jrxOOo6LCe4gcrHHXTHcB/GJ+1EAE2FKOnEx+N5rG0+sr8F88fk2IYd2XDBLJBKJRCKRkKT1R92j9/7Je/R7X/19592VROKGYqNa15u+7PuveM3632t/faUEBU9TgDQSYez3+41cbk4tWFtbaxB5fndiKZ1YmKmvgG3eyTVkN0Z/3Q4e4XZs7NVra2ulTUg/hNpdEoPBoGE5dycEzgLmAWLpxRr9mEEnxV6gEiHBj7z0avaQfo9+076fOOERaKL39DcWUYyfhyB6VBv3iUfInYgyLj4fnReQX+bLxRfuz4kWa2trjdM2XATix9MJfO5dqLpWOMF3gQRC7C4Vro/ilBP7Tqej4XBYSHusKeJjjs4d0lEQ6VxEQ6TwdZzP52Vf+N5xx0KcO15jfV2YcweNC2ggFtR0B4kLADzvh4eH6vV65TNxHmPNA/YpfXcxIjpZIqKzJJFIJBKJxO2Nd3z/3fqfz7sy6UokbjesjKDgBNQJgnRi2ycXfzablRMMIGEeafRoOuSojfw60fbicC4cRELRRkJJq4hiRLRvMybs67GYYIyKxmiyAwLG+KMN3P/blpIQ57Xf7xcyKR0JERcvXix9Rgjw6H8kr22vORmdzWa6fPlyo/YCa44A4xF7X38XROhntOTzWdaZOaINz6F3cuxuCxcU6DdClaeDuHNAOnHQIF4gasU0CV8Hj9TTjgtKEF5OGkHcQRyJKUExLcfnhj3uzhTmmbF6Kkqn0ylCxFkpBvTB543P0y9fN+Y+puQwVheNuL7X65W2ua7f7zdSMNy10ZbGIp1+Fv0583V2USmmvSQSiUQikbhNsbauJ//6pr77nn8uKYsvJhKOlRIUYqX2mD/Njxepa7OKQxAgJjENAELhbULOnNS2FWKMgoPboyMhi8SR95xges623yvOTSTePl/8+P39ftE1EMUGTzPx1yGUkSjG/vt7kTRDrKkrQSoIfaaYo3TaAeIikLs8mAe3tDtB9T3hbgFe9zoE7hjxPRfTETwaH4l1XEP/nF/vc+I/0ol45P134cfFER+Hi2mx3SgwxP3hxNlP/2D/Igb4MxlThOIa+f3of3S+RPBZnAeeLuHFKCH4LrogJNCfeNKJC27uZqBfLmDwWtwPiUQikUgkbk/sfdHz9P6PrlRX0r9+zHfpnvXheXcpkVg5rISg4LnPMWKP7TqSHyeYkchEOzZte1V6f93vGUkh/XCxwaPaEJ2zjhl0F4FHU53IenTd6wk4WWcu/KQA+s6ceF0CPhOJs6cf0EcEBaLNjBkHh89RG6n2+WDs7oQgwk9kHZFnc3NTg8Gg0S7r4m35PHlKjHQiQvge8noLfvIDbflRnfGoRdqKhL9NTPH7+vqe5UqJYoGP0U8i8P0ZxQWfX4e35/vySvB18jlDsPP59DViHlzogvifVTMiiiv+HnuB4z7deSE1jwXFgRAFBcQEXysXhvw5iWk/bc4On8dEIpFIJBK3D9Z6PenpT5YkTb74Ab3p43/0+J0UExKJNqyEoCCdEAXIhOf3OyGBJDppgvB4FJPrSC+IhMuJEPdHAOBzbtv2Ggvk1sdoJvUbIDt+X88r5wdS5mQ9ktYYcYdIO9GHzMVikvRpPp+XvnmUe3t7W1tbW+r3+9rc3NRoNGpY+z0FhXFA/OI8+1q4dXxt7eioQk7t4D3mGiEDIGS45fzg4KDsg5gW424HxAavneDr6OvE8Yluj78e+Jr4Gvmegax67Qlf67i+jDW2u76+3jhak3v4WrYVKASesuLClQs71HdwN4GLJC7E8FnSZdh/kHfG43VK6BOf9f1PekW/3y/tMxeeqhDFhE6nU0SEg4MDTafTMibppM6IP9uIN572gnuJOee1THdIJBKJROL2w+J5H65f/rf/8ry7kUjcNHjIgkJVVeuSXivp3XVdf05VVXdI+jFJT5b0NklfWNf1/Vdrh0jjaDRqHJ94Vv52jPJ7/ny/3z9l148R5xh95l5OZHkdkhNdCIge0TZvc9OIchIVxwkQ22o7FcLHHm3/nvLhRNGPYYwnKnikttfrlaMkEXPiWJz09ft9DYfDQu4RKzzi61FryJzPB3Pc6/U0GAzU7XYbAgSFKqObI6aKxDYREhA73KFA+4xxNptpOp02HBObm5unCKQX9CRVo6oq9Xq9Rs0E1sJJPySWtY4ilc8X+8MFDh/j4eFhOY7U59oLKvp8QbKpucC6xrnztABEM9/7Pv/0AcGvqqqSrsIzE/e/rz/veX0T5jPuNR+Huz3axB+EDgQrv5+vH/vBnQ7Anw13tMRndNVxo76LE4lEIvHgkN/DNyfWnvUMffGP/VL5+87OG8+xN4nEzYcb4ef965J+3/7+JkmvqOv6aZJecfz3VVHXR8X2xuNxa/G7SJgjufCopVemb7OBe8TT7+G54N4v7h//631os0zTpkelcTnEaHEck0euoxjijgH/r0eDnRC6RR0C3Ov1NBwOS2SaCLa3HyO3pJ/E+Yn1EyCYnioRUxJcuPHUlFiUsy21Iq6VuzTaHB/xB4EAcQei7oTfUy0QZjxdw6Py8fq4PlEU8X3bJiqxN6Ko4EduSienH7i4BKKjB3LuDg8XzHxe3Q0Q01Xol5+84AVGo8Mm7k0XuKKgB6i34XvS18LnAteLpzD4M+S1VnzMUTy6kiB4E+GGfBcnEolE4kEjv4dvMoz+wnP1h9/Y1ZfuvL/8fPZget7dSiRuKjwkQaGqqsdL+mxJP2gvv1DSy49/f7mkP38tbUESJpPJKbLthCy6BSLxdvt7LEDo70vNvPjoJuB9J+VtkVsnoJ7r7cTGx+g/LkpE8k+bUUzwsbSsR6Pf8XcAGcRtsFwuC2H0sTAOXosnU0QBhM/F+hax1oOPqy0fPwoKPlbvj9vYXaiI+yWKT7wfhSufs5g77+vk+8vrPbgDI65PdFv4msX0DneUREEl1hbw+gUuprgo4LUkcI74+kZ3zFlChhcEpZ22efB2XPSi/z4+Hxvv4zYgVcefibPeb0tpij/RRRHnk311EwoJN/S7OJFIJBLXj/wevvmw9qxn6N4/P9ebP/WHzrsricRNjYea8vDdkv62pG177VF1Xd8rSXVd31tV1T1tH6yq6iWSXsLfWNGx0DuJ90gw0WXs3rgR+IFceHQ8Rv1phwgnR+N58blYdd/b4Xfvo9SsCO+1BfxvJ6+kTHBvryUAaYMwQcIgnm3CBe24W8D76SIM6QudTkfz+VzT6VSz2ayMudPpaDqdNlwdpBbE4yz9aEO/Noo47rCQ1Kj5EOfOyagTQsbD/Hg/oohAdN2dDy568Pk20QhBpM25QDqNv++uDnd2MJ/sOX8NUt7r9Ro1FojM+9x6G/6e1y5gftyuz3xwP0/DQLybz+et4ht7Ju4/X88oXMXaBL6+Xj/D04UQCdhvUXDztUH4ikUgXQRjXn1evA364GvEuF2kivtyxfHdugHfxb08CiuRSCQeLL5b+T18U+Ev/tgr9GU79513NxKJmx4PWlCoqupzJN1X1/Xrqqr61Ov9fF3XL5P0suO2aicObXnS0okVej6fFxLmJMUj4fHzToSJcEYyLp0Q/8ViUV7zXGrPKecHstrtdgsZdJK2vr7eIGaSTpFy7NwQLT7HPT1NgteO5/FUsTyfs+iEgIiT/z6bzQoRRdBwazxRaMYVI/7dbleDwaDUY+BekZxGBwhEkjF5QUyv5eB9cMt6W5rHcrnUbDY7VVSQvQGxpn6EFyIk/QMi7X2X1Khd4WKV7eeGcBPnPSLuU18v9g73Wl9fLycg0F+ENtwGdV2X8bggwLPhbUGw5/N5o88IBD5O719buouLW+xhXmfO2p4z39uxvZge4nsFQeHg4KCRguPXIWS4kOT1ROJ96ZcLCv76quNGfhfvVHfcPEUjEolEYkWQ38M3F9Y/7Kn66p/7j/qTvV1Jm+fdnUTipsdDcSh8oqQ/V1XVZ0nqSdqpqurfSHpvVVWPOVZiHyPpmqQ/z/n2YmwegfWielcjbBEQKXcNcF+indPptBCtxWLRiIo7uXTxw9un/+R1x3x8fr8S/FhI2nNBgb5cidC2Wfh53VM+aJcxRnEmpjf4CQSIEx5ppwgg77ela/A57sffRJSn02lZFyexrF9bugCvOVn06HmMpHMvb4v7xHmnLT7jgkJbWomnU3g7DncyQMI9zYc2JTUKWEahJDpx4qkirK2naPA5CDl/uwDkdSEQe2jfxxRTQ9rShuK4WUufr7brfe+wTyiM6aJB20/bc9m2FlEwaev7zSAo6AZ/FycSiUTiupHfwzcJRp//XH3gi8bHdRJSTEgkbgQe9L+W67p+aV3Xj6/r+smSvkjSf6nr+i9L+llJLzq+7EWSfuYa2zsViYfcOAH1InoICm2pBFIzio0wEa3absmHhDlxceLUJig48XMBIhZs9Fxy7h/ztRm/H7HoOe5OhiJJ92tcXOB976M7PpjPKFb4f5lXbOmeS+9FMEkd8c9x/yhyMI+IJxwd6P3zdIeYwkE73J/5O8ut4fPBvXq9nvr9fjltIqa8eIoIp0j0er1TR5n6+vn+a3OM+H7wNXf3iQOxpd/vF1eFp294LQmKJMZiibHWhBdzjLVGvE3ft6S0uMgUx3Kl1/x5jkUto4PFn1v2iZ/iENNq2hALTbqQ5uPzdnxcN1PKw43+Lk4kEonE9SG/h28SPO+j9Mf/y4F+/xP/9Xn3JJG4pfCQj41swXdI+vGqql4s6R2SvuBaPuREerFYlEgwhBEyiW0dt8FsNmsQ45i/DXkiKus1GpzIQuBJq5BOUh2ioNAmZkBYINzz+VyDwaCQMa7xcTihkaT5fF7uzf25n8Mj0tjWvd+RuPsRkZBvxAGvTyA1iRhz5O1zLWQQkg3Znc/njT54mgp9pW23xrvYQfs4FHzOvBYExFBSo/5GGwnkfqy5pFME1vvs1n3mEFHBI+yeKuOOGRcS2lJwPN2Dv91yH237vV6vuHNiHQP2kKckeCTfRQKwsbGhfr/fuG9M9fA9yth9/3uKBOvTtl/9b9JKfK/5XDJWn3ucQ7g+XCyRTupKsC+4jn676ODpGT7mtrW6GcSEq+BBfRcnEolE4oYhv4dXCJ/+g/9dv3jHW867G4nELYcbIijUdf1KSa88/v0Dkj7tQbTROKJue3u7RFo92u1V2yWV9AQXEqSTAnhup+d1zy13VwGEbbFYFJu7R+G9roKTR0iqE5JYzM4jsYzXCeR8Pm8QHwiq59C7gyBW1ncixd+SGkdEXrhwQd1uV1VVFaLf7/cbBNndDbFugnT6eMxolV9bWytryP0RSrx/PgcuSBB9d+EC6z19Yx1wRSAy0Rcn2562EIl+jMIzhxBT1gFhgz4iZvnc+2kIfIb3YmqCpyT4nNNvCLUXI2WvMWbmgB9qKcQ9FPdDFCNcRPBCpGtra2VP+nPItZ7y4WPnHlFUiHDHijsX/Hlrc3rEYzJns5mm02nj2XCwTlEg8nn1/ePOiLb2Vh034rs4kUgkEg8e+T2cSCRuNzwcDoXrBsTGLf44B/r9vuq61mw2a5zsQHQRIuOCArnikbBADlwEwPY9Ho8bqQYQKH6chDkRAzHayX2cyEEQPQ0jOh9iukLMb4/kVGrWbYjXcJrD1taW+v1+42QD5q6NiHpeP6TYq+d72kZMSyFlhPdZnyh4eATd54Bxe70Cr20RCWA8/tHnx1NZ3KXAPLTVTfA6GzFlxvvqQoWnWsS97f/18XtqRtvRjy5MxPX3tB/f4369CyPA+++nJJwVse92u43jQuN+9H3kaRueosJ9cVtIauwTv5ax+Bw7PHXB9yj37HQ65e+YAsS68uPPWRQPfG8mEteK9Wc8Te97/l2qq6yplkgkEquC9bvv1pv/n8fos7b+maT+eXcnkbjlsBKCgnS6DoDnufO6dGI9J+rold95HxJJW5GguJU7Fn10IuxiQiQbDshSm6DAf11A8Cix1xvwugyeRiGd1D9w8khfXFTxKG+n09FwONT29raGw2FJeYj1H1zI8LVoE2piDQofFyTRjzb00zDou9+TNhiLCyk+fncn+PuIO7G9mF7iaQyex89cxnQK6YQUe76/i1K+F1xQaKud4HMG2gQFX2dcHi5URJcL/41OC3/ff3fiDKl2gu3jJ2UAQcEFK9J4SDOJgo3DXTUU7mQtfH/5OkaxhGu8ry4o+Jr6uLkP6+/uJpw67kjwNfXXEomrofPkJ+qBj7hDH/zIFBMSiURipXBhS296wQ8rxYRE4uHByggK0knxteVyWXK8B4NByb/nH/ebm5uF/Eyn0xK5drLuNRkg7RBe3A5O6p3ceIE7LPjePxcw3LkAPOLqqQse4W1zGrgAQjQXVwbjoY+QO2oH8B7j6na76na7uuuuu3Tp0iXt7Oyo3+8X4o99PhJvj9L7EY5euNJFFyLYVVVpPp9rMpmUWgmkP7iYEAsf9nq9U6KKzw39jeSbufF7QP5diHDC7+kITjxdmPKoudckoCAh/XQhw+sh+Nz5GKTTtS3ctRFTPrwoZIyuk/LAPVwsaBODpBMyzlo53IHjgkin01G/3y9pMpPJpJEixJ5sE4cYrwsgkfCzl1wgcGEh9tH3D3uTOfBaE7zPj88F13lNBheg6JffN5G4Frzrcx+v/SeeLqyaSCQSiUQicStjZQQFdyZIR7n3OBT4h3+0fCMYkJ8PKTg8PNR0OtVwOGyQeicXbpnnM0RRB4NB+YHkQV78ZALP5XYy7GJFzN2nQCJjo3DjaDRqkBdvh7+dXELG9vb2tL+/XwosdrtdDQYDDYdDDQYDbW1taTAYFMKKJRzC6E4MJ8PuFoCE1XWt0WhUorq062kFntMOOXayvrm52YhmtzlEgEfAed1PlEDE8BQL5rAtCh7dER6JR5Shb5BoXw8EAifybUQa0SI6V6Krg/3iAo0fYRrTKWibuXIy744LJ9suUPFseT+Bj5U2u92utre3CwF3QYv1Q2DzMXhaSXR1RBcC+466JfTJhRV3KkRxhjnb3NwsDhx3Hbjzhn3hqTfMiYuGnvKSSCQSiUQikUgkzsbKCAoQHyfr8eg76SQH3Mkcv3sBNrexQxKm06lms5lms5k2NzfLfWezWSEREBlSBBAFIMV83gm+999PjfB6Ax51dfcB/aC9s/LhpZOcd8bjxQ4RYyBWiBX89Pv9U0UuXUiA1CG40F+PKntKA0Ss2+0WlwDzi5uENXCwRjH9wdNdeO3w8OgUD095iQUF/ThBj7R7wUNPy2AfxT55P71mAPeKqR6er+8km/mLTgC39rPHXGzAdeECVUzXoO+065H3brdbiLSvX0x18FMzroT4DCLY4SBgbhlTrCvhgoqnrZDG4X2incVi0UhD6nQ6jVQVPuOCF44NP8UEsRHByfvs/WY/efoKDqkoviQSiUQikUgkEonTWJl/NTvBdDLi5AQy6td4hN3b8px7SIITcCfmLihwmgLuBLd2Ew1fLBblCD2PbDppi2KIkyLPJyfy79HZWCAOkH++vr5+KjLsuf4c8dftdouIgLjhgkK07LsDwwkw/fdaDZEsutjgIosLFE7qfO3ohx8HSR85CrPN8u73jMKB5937nEa3gu8XFyXckRDXwwWGWPTPBQXmwN0r/uN99Gi+u2poI4oevuf8ZIpYbyHex5+XtnoHANErzoXPmTsgvN/chz0OXIjwugr0/ax5wqXC51wQQMDjx50JnnbicHHCnTmeuhLFm0QikUgkEjcf1p/xNN37p+4+724kErc0VkJQcBLp1mzPf5dOyCFE5eDgoBwbCLGhPUmlxgLpBBBwyBqCA2QWQWFtbU3b29taX1/XbDbTeDxuRN89nz0SDvrvpJ6Cdj4G0h4QFCBeLpTEdj3Sy7y4M4IoLekUXgciFq1zgYA2mQ+OznQiyRx57QjWCWI/nU4LOYT4IXzgfvCx+WkdHun3yD+RZie3Xt+BNfHaCV680kl5jNZ7VJ3X+XybKBHXx9MLvC/R2g/xdzHM78s9fd+3pXCw1tGZw7owV75fYkqG9+EsQcFFsbY9zpgZqws9kHGeAfaOp6Bwj16vV4psIvoxRtabtWRs/nkEM+o8IPLRDz5LykYULVlL/55xIcfHlUhcCVWnozq1p0QikVg5vO0v3K3f+6vfd97dSCRuaayEoCA1j8iLxNkjthAjou2IBpA8iBQR+eVyWfLRIS1EISeTiSQVwg+JwUKNRZvaAG6vR9SINnDaGw6H2tnZKSkNs9msQYYiQea+Pg/Ywz1FAgIZTz9w67yLAE5Ix+NxIVrMByTf8/Uhp8w1BHc6nTZSOag9MJlMtLu7q/39/Ua6Q1tdBkQOjgSFBJJSEu3ns9msQWi9354KgHCCpd8JvAtIzL+7J9gP7B/acuEh1lNwQQGXC8KJpAYBdms+68YYWF+KU3q/WCdPY4hpF4gKEHz6DtlmTVk3+u6OCtbK946LXewH1gTxiLX29ADSFlx4aTvi0lNiPBXF36N2CfvcU0u4b7/fL8ehci9Pj/G1Y9zU+HCRycUZ738icTWs9Xp6y7c9W8uNLMiYSCQSiUTi9sPKCAoOj/y6M4Ccfr8OMkKEn8gqZIwaCfxN5BQS5nn+RIk9KkrNBD+5oC3VwgUFbytGiSGq9FFq5qI74ZvP54XgYe1mbtwd4Fb4mO8PQWUuadst6u7o8BSCmDbCUZDMd6fTKQ6O8Xis/f19HR4ellz2zc1NjcfjEpnmc+7e6PV6ZW5dTInEmte8OCD9hjwzt9GN4HBC6/PD/DO/rAPXs798rVz8iOTU18QFJEjreDzWfD4vIghj9JSSmGLgbgtPNfA9z0kHFy5cKIIbqT7sfU9rcdGJtuJc0C9/HtgL8RQU9pbvT/9sTKeJ6U0+1ljnIaa1uEvBUx18PRD/vBaKC4DunojOBB9HItGG9Wc8Tfd+2t063FxK6VBIJBKJRCJxG2Jl/7WMK4AouEdonbx7LraTXScZEDR/XzqJgkN2ERx43wUNt/I72WzLd5dOag/gknAiyz0Yi7sLnDx72gHkW1KjKKSTVwiXk1F3HVCgzo969PoBfjQlkVq303vhSggy7RKxZk18LB59Ji2j1+uVyLIXamTsTiajU8LrIHAPF29iET8XdUAkkpG8exHCKGKB6L5wocLz9+OeY87cFeP7pE1QcMLrAo3vNUSnfr+vra0tdbvd8gxJKs+E99lrE7BWngrAvVwY4DV36ZBS5Cco0Fc/5cNJu6d8xLWJe8GfH55lv3e8nwszfsSoPysuKnA/L/qZ9RMSV8L6hz1VDzzrTu1+aDoTEolEIpFI3L5YKUHBI5SQVEmNYwY9rz7mb0sn9RWI5nsqBMQBcuH57RAJxAl3SEwmk1OF5KQT8gJxcZJCxDimb3iev3RCMElFIIJMBLjf76vX62lra6u85w4EJ8/efrzGC9th62fOPfIPaWRciCn8EAGn1oSTTHcYuLDBvdbX1xunTvR6PXU6neIU8ag/bXjtCOYxFv7zInpOlGmjLXUGC3+bkwFBgb3Ca55K4SkZ7nBgn3n9CRwIrDU/TpDZCy5IuYPFhRRPz+DzEPx+v6/t7e2SbuP7zAUXL57pc+NpD+5UcZLuAhjOEMaAaMCceA0NF5zij4t/LtT5M+XX41Lw/RBrgBweHhYhzueS/rH2/gz5WJi3RKIN937GPSkmJBKJRCKRuO2xMoKCE3/ppPDb2tpao/hbVVXlKEHPl4YwxFx3opPkg7uNPRI5rzfgxRg9Ik4kGZK0WCwaRRelk/oOfuQeJNT7RDtE9z3dwYUJSLiTWY/c+rjczQDhi2kXsbidk7RIyJ3Q4TqAdOHuQJSBBPuRix497/f7GgwG2tnZKfUTyJGH5LIeLlB0u92GIORiiBNq+h0r+xM5jydQ8HkcLV5YMLogfD4kFes/hSh9f9EfP+WDteZHUkn74H0Xzlxco9221BYXYLrdrra3t3Xp0iVdunTp1B6hDy5scK+Dg4PWOg5eI8SdAuyzwWBQ5of0Fsg87SJQsW/jEZ70jZQcBKb19fUi/PhaubAQ00x4nlwodHcCzid3R8T19dQkn/NEIpFIJBKJRCLRxEoJCkS/iQpDAIiQ8hok3aO2Tl75Ib+aiLoXVYxWaSeh8/lc+/v7mkwmjcJ5HvH3aK3bswHE2j8DwfGjJImoLpfLYv+HfEG+L168qO3tbe3v75cxeFG/GA2H6DFuxI02x4R0IsLEKDRig1/jqRSeo765uanhcFgIma8Vc4EdnxMouC6mkTB+UiT6/X55PTpSnOjSP0+FoC2vGeAiCuJPv98vn6GAppNerzsBSXZnBvvNCXhbtJ+9wX8hrRD9SGBdWODvWAPCixQyX71er6QaMEb2M6IGexL43Ls449d4yo5H/mO/3dXgQou7UbjO1/Dg4KAIW15rgf9SuBTwDLHW1DvxZ9AFGxd0fH3jPnfnQyKRSCQSiUQikWjHSgkKEFOixR55dsLiEVYnU14s0IUF2uSzHrUkiurRyOVyqfF43LCzO4mN9Qn8c1KzroP31wUFSYXcxCgsQAxBDIAwTSaTEhn3dA1vn8KHfqpCzMtnXE5MY1Q7plN4qogTPcisH13okV4EBfrkxNtt/n5/CCRCi1vbmX//ifU0eD2mhThRZC/0+/1GSkBbHQMn8lFUcJFAOjnlwaPo9A/BjEg9ffIoeVsOv49BahZB9NQKH7+LKd5nd9e49d/3QEw5ibVKfI7j/sUNgSgRXQkxxSHWNvB9EWuP8F4sLunpN+wvn18/9tTX1PcUfXOhI5FooKpUf8KzNN8+744kEolE4krY/ZLnqfOx9593NxKJWx4rIyhAGDyaHom727whRET2EQ68UJsTbIgIVd65l7dP5JLaCV4MEoISc77dPQHBp20irU64IHzL5bJY5hmHp30sl0t1u91Grvh8Pi+nKXCiAn3ySCvjg2C6oMI1Thjdbt9mk5eaOf1ekwFxgOi8pIag47Zzoue4E8h5d5eJzxVr6qQ3RpCdCPp6O+H09py8Mj+DwUBbW1slgk6KhBNSfiflxNMXDg9PTrbwfsW6Gj4fbfUhnNy6qBKfE9YgOlS8noG7X6bTaUnf8VNTGKM7bDztwosZknqCkwKHjT8/CEC4Z3BHICQhivn4PL3FUz3iqQueOsN3Adf4UZ387iIj9/C9Ftc0znF0LCQSoOps6I9e2M9jIhOJRGLF8Ul/6zX6zke//ry7kUjc8lgZQcGPbIz54/FYv+l0qt3d3UJuLl682CCrXtitqqoS6YcwUWOAyPfh4aHG43EjmskRd0RYowUb4cKFCemE1G5tbZUccEiOE77FYqHJZFLu4xFVyPtgMCjOAsQEiGG05dMXFxRwJvg96T8/HC3oBfgAhJn573a7p9YFsQKi7UXt6Bs1Clgj5mU6nWo0GhUniBN/SY0xQQgRX6KY4LUyIJH8kAZCnv5kMil96/V62tnZ0fb2tuq61mw20/7+/imy6c6M2WymBx54oBQN9b3AXnaBB1EI0gwJ9roA7E+fb09vkJoOAtYGUWQ4HJaTHVjrvb097e7uajQa6fLly6W+gB/xyUkbvoaksfCM+DzEGifeT3cIeboB7XNcK64c9rDPke9ldzTQDnONWOFCAelMfvoE98K9QJvu7OEZd5eLu5sSiUQikUgkEolEO1ZGUPBigUTAIVtbW1uNfO4PfOADxfLvxJCc7vl8rslkUgiek0EnDUQuiTL7sXaeTuBWcY82b2xsaDAYaHt7W+PxuFjInYh5LrYLJpPJRHt7e+U9joT0qLi7MZbLpUajkcbj8akccbeEe2TVI8yIKZGgQb4lNSLETlqZZxdgIP/cix+KLXoE2YkmbUMAqdmAkEFEm/5zCoRHtqOTwqPX1NdwYk7aCK8xTk7PuHTpkjY3N08dDwriEaS4VyDUzDMReOC1IfzYSBem3IUB4W1zJcQ0CJ/XXq+n7e3tRqHP5XKp/f19jcfjsm8oJEm/XYjAXcEeol2EBl9nFz4YGz8ulCAosC6IVwhKrLkX2fSiiG2uG8bu4pfXNMFJwWe96CfPkdcxYc5iUVUXRBIJsP6Mp+mdn3O3lp10JyQSiUQikUhID1FQqKrqoqQflPQRkmpJXyHpDyT9mKQnS3qbpC+s6/qKCUzuSIhH2pF7D3ifH/7hj6AgnRxd55ZpR7T6YwX3wn6IF0STnfxCjji1oN/vazabNfK8vT4ABfogKERpEU2c2ESrtdu5SY/wVAeveg9pjfMqnSZhngfv1zpxxhoPmSUi7PZ0xkkfcCL4OnjEF6HBc9993llzL2jYVj/Dx+FpHZBa9okX5+R6r+nA+rH/4ukHzLOvZyxaGQsX+n3a6hD4PvQjTiG77BF32XAPRCpPL/F0C9YN4YOf+XxeBBOId6/X03A4LCc1zGaz4gzwEyjanlGeCXcNxH3mggrzEFNX2Ldez4R1dwHB04wc9Idnnb64QBmdNy7kIHJ46gdr0JYOsaq4Ud/FibOx9qxn6IMfeUHjx6aYkEgkTiO/hxOJxO2Kh1rC/Hsk/UJd139C0rMk/b6kb5L0irqunybpFcd/XxMgdBBRCOrW1pa2trbKsXZRdIDcY+9vIxBODiGU0pETYTKZaH9/v3HcnB9/SETWHQoc0be1tVVs/F47QGpGTiEokhoRXo+wO2Gi/143wSPopCt4nQRvw4mUEy6pmZMe88URWkjJmE6nDcHARR/6CLl0QYG18Hv5+N2V4FF3SDXpGtwT4CQhwg3xdIcK10knTgyvyQFhdkEotu1iVHRFIBD5WOm/CwDuNHEXgwsgXl+AH3czMHY/AcWv4/44aaiZQFqM10xgzzHHuGu2traKC6Ot1kWsH0GdCdbAyb6LfaxPTN1gf7JfSEGK44tOgTZyH9NfvIaKw/cha8H68RlPt3BR4SbBDf0uThyh6nS0fumS1i9d0ns+6ZLe97Hn3aNEIrHCyO/hRCJxW+JBOxSqqtqR9AJJXyZJdV3PJc2rqnqhpE89vuzlkl4p6Ruv0lYh4ZDgTqejra0tXbx4UYPBQAcHBxqPxzo4ONDu7q6m02khG+SBE/0mhQHSGvOzYzE5ov+9Xq/0gyg7EXGvdSCdOCcg8lLTKj2bzUouuxNyvx99g9iMRqOGjR9xRVLjxAknlG7J9gg7tQMklZQNiigiREAQ2wricZoE64OwgmWe8eDcgKRtb2+X9eJ6J8bxqE8v4uepIaQB4JCgHw4KB+7s7GgwGJT5ns1mZZ4QGSDBy+VSvV5PFy5c0Pb2tnq9nqqqai2QyX1JO2Ht1tfXNRwOGxF4L2goqUTd21IeuN5rBbgIAelFzPFoOq4W7jEcDtXv94vQRl2HWDiSKLzXDuBoUebZax2Q7oBQwfi8JoHvVZ9j9qqLeC5E+frTB9Ig2I8uQEShzY839baYN09ncpGM112I6Xa7jbH4mjKPq44b+V2caKL6E0/VH3zFxeO/Vn8vJBKJ80F+DycSidsZDyXl4SmS3ifpX1VV9SxJr5P01yU9qq7reyWprut7q6q651oaI/LrJJFied1uV+PxuEFQPTKNldot6Q4nh5JKnjXkGAFCOokEQ3Q9IstnsdFvbW1pOByWiDckSjqJwruowWuQVyecfuQd10PCJDWcDogBXgARscKLGzqxIk0iFnCESDH3CDKQUAgvZN1JHOTdLepEy70WhRNCcvI96u02f1IA6J+7AlhDfnfrOs4UF13cRu9CSL/f1/b2tobDoTY3N0uhRvaBF7dknJ7qwf5wl4WTZa7Dvg/Z9oi37xOfIyfgiAnSicuBz/Aae5v6HXzea1144UMXLSgc6s+EuwToA22x3v680B8vGurFEX2MXjdDUnEl4PDwVBPmh+emre4GgkF02MS0EncM8dzwveFz5KKC//cmwA39Lk4E3BxZL4lE4nyR38MrhPVH3aNP+KV36CWXXidpeN7dSSRueTwUP29H0sdI+v66rp8taaTrsHJVVfWSqqpeW1XVa524EEHu9/uFbEBMILyQPbdDe3Q4Wqw92uikwa33Tmz9qEbIaGyfKDrkK9qsnfyQ8+4OBSfnvAZRY2yetx7rOxD1dreB9xHC7vfwAnpeI8JTItyy7mkVzJ/by4HbyL02hRM/7uMOCl8b2xeN9ISYGuFOFifLvod8nuq6bhQjhDh7egw1BuJpItzHI/Me9faCmD4/Pp/u/GAM7C2fEx+n71X6E8UAT63xPR0FLReYGHMUlUCsRRHTZnwt/VnyVAvmkPbdBcQa+BrFPvg8taXJ+P6JKSZtKQrcg3nzGifsrzi2uDY3AW7Yd/FCs4erjzcdqmc/Ux989qXz7kYikbg5kN/DK4Sq09E33vkG3bOeYkIi8UjgoQgK75L0rrquX3P890/q6Mv0vVVVPUaSjv97X9uH67p+WV3XH1fX9cdBtD0CTBTYCUe0MfspB050PQrslnR3DHh7RLv58Ta9IKMLCk7OvR6BR8U9GutWbCdWkWxJJ6kAbQTJxw7xu1IRPye4OCv8BAon/fxN39bX10sk18WJiLgWnmMfI8AeYWY8beOLJB2cVWzPRQwXhZbLZakpgKgCaeZ9TkDw4xqP92hxbCA6uADVFhGPEW1vy+sJ+Fy7oOBE2Umw17vwqLvPgZ9K4PPhNR8QwLwfCA64QzyNJ/aJOXHiHQUF2kJQQJDx+cNlFEUzFwP5iWJC7BPXuRDl8+/fA7FGRSy46oLJTSQo3LDv4g112y65LfGBZ+/o/R9zUzhUEonE+SO/hxOJxG2LBy0o1HX9HknvrKrqw45f+jRJvyfpZyW96Pi1F0n6mau1BWEkhWE4HBZB4fhep6LjRJk52z4SV+kkr5o0A0iDR4g9553c8cFg0GjXiZ9HnKmQj40fgoljwHOyNzc3T5E8J8XYxLFjU4TyrAgu8+LRYwQAjgLE2SGdnCgAMSUyT/S+rRihR8Kv5OaIx2GORiONRqNSg4E1jqIMfUdMqeu6CB6Sypp63r6TPUi3F1N0GzyEcTQaaTablfb7/f6popzRheJ987oA7hxw+Bq5s0DSqbSaSOZ9j3nBS8/1dwdKFMfcrYIQEI85jaIEIhT37HQ6JQ2E40EZtx+3iIjmogj1NlhvCi1yconXr3CCH90A/rx4KpAXmfQx+3GeIIprzDeCih9pigiC2OECWBQEVxk38rs4kUgkEteP/B5OJBK3Mx7SsZGSvkbSj1RVtSnpjyR9uY5Eih+vqurFkt4h6Quu1khVVeWkBsQECCEEfDQaaXd3V7u7u6WAXDxRgc9Q04BrIGJuvR+PxyWiChl2UoaTgBMWJpNJIVM4KGKaAw4AikRCfJz4epTViaR0IqggajAuqRlNhZghUrgowlGI29vbjQgw8yw1j+ck+j4ejzWZTMo8IpJEh4i7ObxYIEX1XCBwAg1xjCdRxJMrIHtey8EJtKcTxNe9sKPXq2CNmRvElsPDwwZRpW2fp7YUDyesHuF3e31bG1wfTz7wwprSiQsj1kRg7Z30IhQgkiDMMA8uKsXUEeaYZ489zV6DTDvZj88togRzMBwOy56h8KiLar6nPW0l1nvw/YG7hGfMn3lvhzQdL6yJ2OJtsucR09yZ0ib03CS4Id/FiUQikXjQyO/hRCJxW+IhCQp1Xf+WpI9reevTrqcdt0gTHeUUB0mNKKVXvvdUA6l57KATMieekA4ixn6dH5NHkbnRaFTu6RX4iXQ6+fKaBt1ut1FkMUbWgZNNiuJR2NDt19GWjUAhneSBE2EeDAbqdrsNAhnWrfTFI7Me/fUUDm8nChRus0cYicX1ouvBU1Q84h9TW5hzfw1Bxsfi4/HPONlHrBkMBup0OqUdxu9z4EdPutvFjxM8ay4Yk6eIuL0/fg4wz9zT54918jmgSKin3vic+HxzHe9xf/Y/e59xexoAa0WbcS+4ABTH52ICz3Ys0hkdIbTtgpALPTyfnupCQUrfU1700/eWjy+6cvy7gr1zs+BGfRcnEolE4sEhv4cTicTtiofqULghiO4ALNQenUVMiEQKYcH/8e+nDni1ekgkhNLt4p6bThRzf39f+/v7jXu6xd/z4JfLZYnWe9Tej9xzy7xHQmPahVv+IT583qOvnk8uqaRKDIdDdbvd0m/QFtF1ocKJlVf/93WKtSLiqQROPt1+Ht0JDggi94xHC3oBPT/tgnt7OoUTU8hhVZ0UYuz3+6qqqrgf/LhI+hpJrzsGuC99dvu+n7rAa05onWzHFAknyTFlwmtX+J6gFgZiHO/HtB/a9tdZKxdbcDh4IdL42di36NKgbX8W/ZjTWDvD3SYutOFO8FSRtpoLLrrxOnvUxw4QIGjb3QltroS2/ZpIJBKJRGI1sX733Rp91OPOuxuJxG2FlREUvGbCaDQ6FYUkD97t637knEfBvZgd9utIniEnOA48LYFUh729Pe3v72s2m5X8a+65ubmp2eyoEi/94r1+v6/BYFCOuEQQ8Uh4FDkgvQgR2LIhjzgmptNpuXY+nzcI7nA41M7OjgaDgTY2NsqpBjGCD0F1YgW5ikUpscA7IXSyJqkQMIidCz1+hKAXkIRAspZOwp3kkVZBlJ774wIhTz+KCkTxDw4Oynr0er2y7vP5vNR7wIEC4SeS7vUi6B97SjoRQjwiHsUP2nHBxfeeuyJc0IlpJozPUzs44jHe02tJ+HGlLkaxPv1+v3H8KSKLE3lPkXHXRjzSkb3iwoMLhS6mtKVyMN9eS4JnI84tn/MUEtr2NB0Xdur6qG4I9T3YZ3E9F4tF4/SWRCKRSCQSNwfe9aVP0+98/fdJyv9/JxKPFFZGUIAYQb57vV4huvv7+0VQICLb7/dLasByeVS4z4kS7bXlRR8eHp6yiU+n0wYJHo1Gunz5skajkQ4ODnThwoUieuBogHSNx2PN5/OSoz8YDE5Zrj2lgPG6YCKp1C1YLBZFzGBsECBIHn2A4A4GA91xxx26ePGitra2CpGjfYiX1Dy9wI93hLx5FFhSo5Aj7XENogpt9vv9U4UcuS/z4eKO2/JZM1835mmxWJR2qTNB2glCTUydcMEo1m7waPRkMin3Yl79GEKEGJwnEGkvLMj4PEXD54W18NdijQl+931MWxBorxPhRTalIyv/dDrVZDLRYrFoOCk8FQSRBkcL9ReopUEBy+jkGI1GpR3SgxCt3NHCeFwIYB59Xl0kYS6AC0vugokuH55hv5eLVrPZrDgvXNhjfRC0aJ/96nswkUgkEolEIpFItGOlBAU/htFJkhfnc0EBMuGkBsuzExoioW4pd3Lp0XNI1N7eXiMC6jUe/L5E+SFZRGM9Bx5C7MXrnJQ6CfI2GbOnOkgqFeuJoHpRvW63WyK00foea0p4JNgJfrTje5oHJFJSIYnxPk4YPfIfayf4eIj+I0R4hNkt86xTdDuwj0gFidb6thoREFRcL/TfCb2TcE95uFJ+fUyX8BMWPB2DdnyuXJyIwg7jcSEJwQARIRJuv4fvSXfEsBfjEYrsCz8Ngb65yBTTIdrqD7hQ4u4LFxPonxfadEGKdfQ1dGcH3yO+z1hjF3HcCeK1I7je++hzn7h9MPr852r0mEpSrn8ikUgkEonElbAyggIpBRBHCJBb17Hgkw/vReSkk6i9pAZ5ktQgWV4LAALhBJVIr+fxuwXar6Owm0eMsbLTDydnTvRo24k0zgHGzBx4cT8EBcgQRJs58bx3yKd0dNRmFBR8DDFnHmLvY5bUINSR0DNPntbgYo6nJrigwD1I1TgrhYXjPN3W7rZ3yKTvAY+EM+cuNEQxhPmKFv1INL2Pfl10SEBcY90Aj4S77Z85iUTa9y7zzPhIu4lpCf6MxT56G7FApYtaCAqeEsMceVSfcUW3AWirE+Frxd+eXhHhAhXzwHPCPRwudviecwdMLKbpY7uScJS4RVFVuu9j13TYz7VPJBKJRCKRuBpWRlDo9/vFek1uvKRSS8AdCqQdUPQwnioQyZSTY7dgO6mHcDmxklQIlx9DCQGTVKL8tIcwMpvNGqkWHtWnHQrrYR9HxPCj8mJUFTfCYDAobggEFgQVJ1DuruC4RCeeTiCJQLdFciGDHhH2gniQcdYmFnqk/VjPgc+y7ggG7uZgDF7ALzoeXIQCkFw/BcDTYXiPz7MWMfJO/3yPuAAQC1gyX+4Uof6EE1fuFSP1Ttpjqglts95RICINh/SCmArA+Nk7zBl1QyaTiSaTSUlxGI/HZX94XRL2LM+BuwvoD89WdExwTXRRkN7j+y86K/wEF45wjSII8Hu4OODz4akoCIFt3yGJRCKRSCQSiUTiNFZCUFhfXy9HHXp+tnRS1T5GCp3U+vnzkPtLly41otCz2ayQIqL7RHKJqOMO8OKPVL8nGgo5h3hAWnq9XiGWHmH10xkgX7ThkXlqMUS7txMhXAjUctjc3GyQZCdO3NtTBNqit17gjt9xEHj/IOSQY08Z4b+M310Zs9mskT7g7gQn5NHZAKH0opluq2dOGKNH/9fW1jQYDBrXDQYDbW1taWtrq9HvSLDZP9yL9+kDa8lnvc6BC1PuHogpC9SBYLzsbx8zzwFzCgHmd54Rd3w4sWb/egoHn2EfuXjjqQ2TyUTT6VS7u7uNI1NxTXibPmZ/Zr2YItexXi42eXpNLLbIs+n38RMY4l729Xcxwecd8Yg18ropjIH+c00ikUgkEolEIpFox0r8a9lTE9xy7JFOR13XJZruUWvIKAQYokkhNtqPhLjT6ZQ0g+hOkHSKQGEZj/Z2+nFwcFAs4tFm7cIEooSP1VMErhS59urzEN04R57uEKOvbt2H+E8mk1OR45hCQjvR7s/8QGy97oXUPPrQ0zGclPv8eYoLZJHxQPSdxHsbFOuEHDqB90g+ognzQz8htLHt6FrwtBmuYS/734zLHTGDwaAQZK+vwVw6gY8pJg72iqfMuAuCNfTCl9QgQfRwIY0fRAWcNozVnQKAvm5sbGg2mzWEkTZBKqaL0F/fVz6XbWksLrD4s+9z4iIX7fH802/gbcV0m8RthrrWk/7TVO95bl/jx2XaQyKRSNwseNv/+Xx9wmf87nl3I5G47bASgoKkBlGJOfjRFk1agpPjeNSgW8I9x9qJsgsZTuy8Qr6LB04i44/XLiDaG23/LnTEyKeTLeDW71h7gc+4EBFFABdnII6R+DqZHI/Hjfx6L+QYhQipKTK4MBAdGW2EPBJvhA2vmRHJpIsWMSJNv3yOeZ/ofFWdHBfpdTei0yCeLuDjjfUWfF/6vPpelFTSLtgrvV6vQaK5p4tXsZhjWz0Krw0Q6xPE9B6vtYHoEp05iAikGbFn3InAPdrEp7iPfQ/FvrrY0ubk8L3j17nQw71i0VUXVaJg2YbouIn7M3F7YeM9l9WZ9s+7G4lEIpG4DnzCZ/xP/asn/up5dyORuO2wMoKCdGLl7vV6RQSIxP7w8FCTyUSSGgUJ3abMsYJYvMnddwHAI6UUYcT2T1/8x4UEJ09VVZXj93q9XoO0ur1bapLdSIi4pwPS6+/TZ8bkEVc/ZUI6itRLOmUx94g6NSr8qEFPQSCVg8+6wBEJIG0jKBweHrbm63O9R99xnOzt7Wk+nzcs+tybNfD6BdHhsLbWrC/g9+OIyP39/bIe3W634XJhfH6KRnTB4GrxtAacEH5PJ/4+XvYsohN7j/a8VgGCEMeiel8Q1Xxu2OfMuTsEeI06F+wx3CSTyUTj8Vjj8bg4bFw08vWN8+WCkO9LF2U8tQZ3iKe/ILbEZ81rRLCWzK07X/w+7obxVBx/jnzfusDG67EwZuL2QNXp6M1f8Sgd9tKdkEgkEolEInE1rISgAAHZ3NwstRQgal6EzaORHBUJMYKcra2tFWIPEYEw0UYkOPG0A68jIJ0IHTFfHFIEiSUXez6fazwelzb4jFfV9xMLiFCTyuEuDO4Z89W5ln4NBgNdvHixIaRAVp3wukuANvxUCcimR7HdGu/HEnpOvwsD1KtgLZgb5tzHQ5uQ6r29vUYxQtbD+4wIJDUj4GAwGDRqSiwWi2LhhygPh8OGe8AdFayNF+F0Zwevsw58xlMUouAyHo8bIgFzz0kKTrx9X7ljhD3Slh6ACISY4CIO7w0Gg4ZbwNceV8JoNNJkMimCle9ZUkH8/qwn6SUu8PA80IeY1gHi+vnceSoDn+PZpo9tghxjHwwGpW98Z7jTgjWNQpuvZ+L2wfrTnnIkJnSzKGcikUgkEonEtWAlBAUn2ESGvSZATD2QjqLuEFK3OLvdnUg55B4ihZ3eCyY60Y3uBD+OEXJEW/4ZxAvcCTHfXTohfpBSrxMBSY5RV7dtQ9wRLiB7nC6BoOBR8bbP+lGAXMtYaIu18GP02vLSfZy07akGEF0nk/yNkOCpDnGePdrs8+XX+Lr5PREUXKThs8wdn4/zSZve5zYizf5tS2Whz4gq3ifG62PhOeDUCxeBmG8IcTz5hH3qbbhA5Mes+v35nX3LOjEmxB/EPKlZE8KfP+aC192VwPPmz3Sbc8iPvvRxe/0Sv5+LVYgCPGf9fr/hZmlL22E8rKuLO1F8SNy6WH7Ks/Xej+qnMyGRSCQSiUTiOrASgoKkRvQWxCivR8Ldah2JBA4FdyB4njaRSgiVV/aXTki8uw/chs019MmJmhc3jPnbfA6yg6DghMjHHomNE1L6TfS63+83RAC3iLs44oICBfTcou4nUHgBSIQE5pg+RsLllnavM0AbXlzv8PCwiBpeiNFt/05afT3j/Lu136PqtMeeOTw8bKQDRDGCvYDLg/Xz/ePiEyIWPzHVAiHDT6rwo0l9/hmLi0MIXy4K0Tbzxdoh4Hg/SDnx9B/W3k+HwFXioo8LCvSj7bl094j3j/dijYQo2Llg6IIN+57UiCheSToluPBd4nM4nU5P7VP2ld/Lx5CCwu2F9Q9/uu77iL72npJiQiKRSCQSicT1YCUEBYgPJNDrGXi0Xjoh1l4ED4JHzv/Ozk6xWE+n01YiC5n2aDfkjBx56gdAxpzcOjna2NjQcrlsFLWLBRx9rO7G8GMIic77tQ4IlRcB3NjY0HA41M7OjobDYSk+6FFZJ8zMLUTe5440Bxwe9AEBASHExRyu8Xv62jBeP5nCCawXSPTPQAgB8zQajRpHRfo9EEQ8d98j2MALTjpZJRWBcfq4PC0CIo7Q1ObGAE6E+SwFDyl6CDw1YXt7W1tbW+Wevv9cHPGIOnuKPeCCAikTFN8cjUblvqyHO268sCn9d4cA+8LFFtaPZ8T3sIs17qJwp0hd1+VUCZ5HL8JJCgWv0467maqq0nA4LKk2nU6nCHy040KVCwqxv7EQZeLWxVu++E4dbKWYkEgkEjcr1gYDdar8Hk8kzgMrIygMBgOtr6+XAoEQL4+kQqoWi0WJxEoqBHNra0uXLl0qbbkzASAmuBPCf4co9vv9UwQLskrtA8/pd6JIMcJoz3YiRZ0It4dH4us1H+q6LsRIOiKf/X5fvV5Pg8FAW1tbZdxu7/d0BlIMKLpHXQX6gJjiZNCj3RBCUjsknaot4fMN8SMNg+vI00dM8OjyxsaGLl68qJ2dHfX7/RLJZ1758eMeEUO82KCPgzXzOgnx9A3muKqqIqywHr4H+VlbWyvOgV6vV9IKIOBe0FBSI63DXRyeXtDv97Wzs6OLFy/q0qVLpZ9VVWkwGGhzc7OsG2uIaDAcDjUcDhunVnS73VKTZG1tTffff78mk4lGo5H29vbU7XYbQgf9YNxx3WLR0k6nUwQAhJn4XCMWSCqiB88B7TP3OIZ8jvv9ftlzMZWm1+s1PlfXtfr9fimQurGx0TixxYWxmILDf93VkmJCIpFIJBKrj/U779A/ft1/1FM3upLWr3p9IpG4sVgZQcFTFCAOHon1CKhHJz1vvt/vF1IlqRA4T2kgl9tz1v09dzp4CkS/3y8EHut4PDkhEi4IDOSorQ6DH/noBIbPeo0HL0QIqdre3i7R7M3NzXK/WDjR58MJbUSbpdzTB2iHOURkYZ5c/EFMwDmxtrZWIuGIHrFWxsbGRjmlA4cC8+Z7Ilrz3QHBOJzIupNBah7J6SKE10NgzNzbRQo/ucPTW3wOXXSCuCMsxPe63a62trbKena73VKsEYFrMpkUcYN1RMTwOgnsRy+u6S6J6Ajx392xQZFUCLgTd55D2ork3F0Mnkrgwlyv1ysOA9aW33FI9PtHR/eRqsF6edqNrwXjRQjxsfrz7IipF7HOQyKRSCQSiRVGVekJnTVtVCkmJBLngZUQFPgHvhMl6YQYeyQXUuiFEiFOEFEi+5AnJ5dOQNpypb3GgRd982itF/qjHUnlXm6XjoXl4rhdYHDii8jhYgUEU1KJ9CJ0EIWGlDnJYi79BAYnWg766kcOeht+BCXzhGPD3/MoOdFiSYUUet0E7sc8Mx5s+i62RGLP/LOWvBfFBP+JeyumaZxVK8OLE8bPuYXe+4kA4keIRjGhrusScffTNXwvrq2tnXLuIJS5OwJRiVoRtIdYxv0Zm88Va+B1GXiezkIUJOIzFfe8CwousPn8LJfLkrrBEbI8W23iG+16KlEUl2Jdh5gOQ1/aRKhEIpFIJBKJRCLRjockKFRV9XWS/oqkWtLvSvpySQNJPybpyZLeJukL67q+/2ptQTLdAu+F7TwKDOl0e3K/39dgMCgEyGsEEKl3IuJEOVaUh/T40ZT9fr8QO3LqI1GhdgIR87Mi1p77HnPNYxFDd2/E4wWdMPrRfp5379X5x+NxOT7RC9HFSDJEFtHC0yiYV+mk+B1RZk+zwDXCWkEaXdiYzWaNPiA+YFmPZNV/97/dYQKJd5HBP8M8u1sFZwVrzfv+WVwLnqpwJbGIvcO6edFDXvc6FKyjiwnsB9Z1Nptpf39fly9f1ng8LuOj7oIfhblcLjUYDEqqBHuTz7SJBF47gz55Gg3HmDJefybbag743mZdvGgm7Ua3iteS6Pf7Go/HZUxtgoKfzMHzv76+fuq5jmAe+H7gGfD1dGFilXEjv4sTiUQicf3I7+FEInG74kELClVVPU7S10r68LquJ1VV/bikL5L04ZJeUdf1d1RV9U2SvknSN16pLbdEk+vuhBciSgSWSC7vbWxs6MKFC7p06ZIuXbqkTqdTnA58zgv8QZglFXHAyUcs1tjr9XTnnXcWwuHpDpBS6hv0+/1CTiBApCs4eY91G5wEQ6iiSDCfz0sEutPpaGtrS3fffbfuuusu7ezsNBweOAhIz6A2Be9B8DyqTMQaq/vW1pbW19cLIR6NRoUo93o9XbhwQYPBoHH8Jn3r9/u6ePGiLly4oG63W8QdTzVg/TyFg1oQOERcGGA8vm+8wKQ7FKJg5I4KT0GA8PvJDZHM+7qwrsyDiwO+3og27mbAXcM1vO6FE7mnn3JQ17VGo5Huu+8+3Xfffbr//vs1m83K3Pb7fV24cEE7OzsN18HFixc1GAzK/CFAsU6IZtFpwTzx+cPDQ00mk4bY5C4gT+nhefC1YxzuIPCUEhdWaBtHkNd4iEep0n+eOeaRtA36AjzVyB0lMY2FMcb9tqq4kd/FiUQikbh+5PdwIpG4nfFQUx46kvpVVS10pML+saSXSvrU4/dfLumVusqXZ1UdFcKLNnHPtec6t4A7SSRK74UHydcnp9qj15IK0Yd4uEjAdd1ut9Rl8GiqR0njSRR8bjqdlvbm83khjxB/SCZjA+SCSypjp0I/gsrOzo62t7eLuILN2ws50rf5fK7JZKLxeNwobkhfPSpLgT9OuEAsmUwm2tvb03w+L1Z4IvZelwHi6M4JJ3dOprmWOgsUEIypLqwT8+71EpiXeJSk7xt3qUB6cVLEk0QQo/wEAgeRej9pwvP5l8tl40hOX1vu7WkHXmvDHS1e+PHg4EDj8Vi7u7sl7QGBgLoezDmf73a72tnZKfdkT/Cs+IkbUtOd4HUsqHvB88Tc+1gYB+sRx837MR3B950LW14fBTGM9fIjQmnT1zY6JHyvefv0dz6fFxEGuIgUXRsrjBvyXZxIJBKJB438Hj4HjD/3uXrSN/yB+tXmeXclkbht8aAFhbqu311V1XdJeoekiaT/XNf1f66q6lF1Xd97fM29VVXdc7W2IG4x/9+jhyBG1CHvkAmiw+PxuKQVQGLcpg4Z8mMA/X4uXlCJ/nhMDeu8E1KPaDtpInoPQfTIqdcpcELM+GIUF+JIKgGCglf35/5e5JLjItsiwi4qeH67dFIUEtIuqUTFXWThB6JLNDzWHGBO/H6MwWstxIi/E0M/QYN5dSIJyaQdSYWIQlLdIeB9j/PjcKHLHQcQUj6Lo4N9xDUeFXcByueE8fI8cLTm3t6exuNx2TeskddPYM1IAUJgiAIGTgieD35coGMt6AN7h3vyeYeLJdFRwlwh1LiTwq9FGOB5Zd95X73eAc+ZP3MuYMWaEf794fUu+J294vdZddzI7+JEIpFIXD/ye/j8MHrUmv7Nk18pafX/f51I3Kp4KCkPlyS9UNKHSHpA0k9UVfWXr+PzL5H0Ekna3t7W5uamDg4OGhFVjzIDJ4/8Y59ouHQUcdzd3dV4PG5YrCGfEDY/CtDdCe4agKQR9YeY8BrtuTjgzgXIWCSQ0dHgp01ApLwNP1WByDFiAj8QcUgX40FcGY/Hp3L/vWYA/fITE0gpiGkU5Oavr68XF4iTNnco4HJwOGFHeEBUQNxwgu6CAidHOPn2Apn0gb8ReqglECPTYU82iC59ZT966orb4v063CfT6bRxWkQbifX5cKGJNVgul5pMJrp8+bLuv//+kkbBvkbscvGGfiH4xBMlPOWCve4En9STfr+vTqej0Wik+Xxe6if4qRHxBAVcJMwLQoqnSbgYwNqw392dUB3XtfCaHZ4KFMUFhzta3J2AIMLv7n4BUdSIe2QVcSO/i3saPBxdTCQSiVsa+T2cSCRuZzyUlIdPl/TWuq7fJ0lVVf2UpE+Q9N6qqh5zrMQ+RtJ9bR+u6/plkl4mSY997GPrXq+n2WxWoscQWScTEE9IHMTFTxCgcN3BwUEj6k1lfMhDzHtvy7WGtNV1rdlsdor0eOHDmN+9WCy0v7+vvb097e/vl/7T18lkUsimCxWeWw6Rxz7f6/V08eJF3X333brnnnt0xx13lPmAiHtRRsbsP54rT3/5L0QSwoizAXdDp9Mp6R/MGXMKcZXUyGX3NXWRgPFySgVkHyEDZ8R0OtXe3p4mk0mZA+Y7pg+4G8Dfp1gnhR6ZW673YolOegGk19MiGKOnXrBn2X/uTCCVQjo5RtTHSrFM3AG8RhHG/f19TafTRs0FjknluEn2bLfb1fb2dhEUvOaDi2PRAUI/cTrMZjPt7u5qf39fi8WipKTQBgIP++nw8LCxjgh5tOmnsjC/CDRef4O/l8ulRqNRQ+jwdAdPSXGhhrVwVwXpODz7Dn8m3J2B8HAT4IZ9F+9Ud7RXsEwkEonElZDfw4lE4rbFQxEU3iHpeVVVDXRk7/o0Sa+VNJL0Iknfcfzfn7laQx7BldQgnvyDnn/ge3Q92rcj+R4Oh6VQHQUFvfo+945WaO6/WCwa5NWLByJIODwqS945ud+9Xq+QPpwDjNfTHrgf0enJZFKElQsXLmg4HBYSCaFEAID8I0Ts7e1pb29Po9GoOBQcXpyOfjiRms/nZd4klXoHvO8F+FgT5p2imS5iQOYhd9SD8BQGrmMNmEPcFJzu4fvEo+zSiVuAeXTXBe1DXGmHugTsKchvXdenTsZAaPK0EAQPovlOoom2e2FK73Pcg4yB9UTY8XQCngkEBMYDyfYUH3+OPPUhumk89YZCjBQbJc2FefE6Dn4yC2ILP078Pe3EUyFcdHHSj1hFW6SyxHoHXvuE8fKe12Zhv7rrwNsjPcr3ys2Q8qAb+F2cSCQSiQeF/B4+B7zpZR+vl35yTmkicd54KDUUXlNV1U9K+h+SDiS9Xkfq6pakH6+q6sU6+oL9guto81R02QljLF7nBCzm+XOMJKkUkGyixFKTULcdeRet904kIUZ+zKALEpDBuj45NaHX60lSww3RZq9GzEAcgID3+33t7OzowoUL5WhFrw8B8WSspDtgG4+pCd5fnw/IF84ExuaiTsxvh8TRJ9YEi36MDru7JJI2Ty+geKVb5l3E8BoZzB1tAEgifXcCz1ywnr629MNTPmKxPqLpsR7HlQQyUg8QFiLJZ494uok7MbgWgQfXBkIJc0p/vF9te9sFOq8N4rULIPW4KlhD1hrnhAsynvLgz7DPr69FrNvBs+ppCJ6ewNqx7l5ng/bW19eLIMVzxTgc3MNP2oj7aFXxcHwXJxKJROLakd/D54NnPv1desmFPz7vbiQStz0e0ikPdV1/q6RvDS/PdKTMXhc8rx5C4VZk/4mvIT7gQFhbWysnFUBCsPx7UbvjMUg6KcQG6aBPHlHmNIVot4aUu92eqHZd1+r1etra2tLm5mYjQu+kGqLmTgvy1yWVIxXvuOMO3XnnndrZ2SnHK/o9STEgj9+LMdK+zx99j9F60hlwZpC3z7zQR44TZB7cwUBaBwSN+0P2YlSadrywIY4Sj3iTYsG6cTSip0oAai5AYr0+hRN52iISLqkhaiDIQJg3NzcL2adugAsr7rKIwhRr78VAI4l1McFTRgDrQT0N35PMk9d08EKU7i7xOgNeSJSx0y9EGRdh3FkCYfe1ctEEQNyZHz6LKOYCiKdp8JkoirBfvACjF47kmWNvcIIHz5u7UuIY3e2w6riR38WJRCKRuH7k93Aikbhd8VCPjbxhgBTMZjM98MADGo1GDWs89Qc8sgipODw8LKc6VFWlra0tXbx4Ud1ut0Husd+720HSqXYhU0TD67puFBn0gnYesYVAjUYj7e7uNggRtnREDYg6JKau63K8o1vsue6OO+4odRO2t7dLf4hE+3GQpFu8733vaxQRlNQgnh7Vh9ThZoDQe2FLaicgJniNC9qkTxBXRBdOK5hOp5KahSj524kmpBfBwAmliwnUD2DdIOG0yb7xCDVii+fSE1FHaHKxgHQGz7HHoTEajU45ThCyWA930jBO5oZ58hMVqqoqIgBz7G4BHzvCGWvA+nB/J+jutHDhyFMWXHSCnLOuCFfuhPBjF+mfF6tkf7Xtu7Zimv67OxP8ucQNwf1dLPE157P0jTn3OhzUWmGPe8pJLJ6aSCQSiUQikUgkmlgJQYF88fF4rNFoVMiqdHKsYSS10kkUGJs/hI/CgpAGSJlHmWOE1AmgCw/SCVkm6juZTMrrtOHvO8F3ouIEBeJDtNSPd5xMJo3aAZAgyCMCC3UKiDJ77rw7JBhv2xF7nj7AfyHdtOnRWyenk8lEBwcHJVKNaOLFKqkf4OQbsocY4+tJnxBd1tbWCmFmXBDwfr+vixcv6sKFC40UEZ8Pd6K4SyAWWnRbvotbjNFdGggvCA4QY+bJ63r4fZl7j9jHNBtIM/sAIUxSIdbsn62trVJLw8m6u13c6eEuFT8FwdM9omvF0zAQt1hbxCzG52k0HuX3tAZ3Wngqh7scXKCjDXchuOjkx8z6PvV6JDElBxdCdKi4m8TdHIlEIpFIJFYHa4OBPuxX5/qau35CR1kliUTiPLEyggIigke+PU/cI81ErqM1HCJHRJu2XUyQ1LC+Q4I8es29pRNruZ9s4M6DSA498uu5+U6WIFAxHQDyiBhBX4l6DwaDBunzKDB/05ZHf93a7WTPyZanmyCoMEa3giOYOCH1vHkn7KQneMoJc+rpKvTfiR1991QF1hKBifoBFOvz/sU5gbj6PnDEYoGek+9uFPri7oF4jRN/n3fA3iXtwetScF/a9/3AXPNMUKSTIqHcm+ck1lDwFA4X7Xye2C/uWKBPXnTUaxd4mkesw+HPKuOK+4/P+v3Y+/7suLPHn22/NtbjiHsJoTF+F7hA4Z9LQSGRSCQSiRXD+rq+5Z7/prvWU0xIJFYBKyEo1HVdCI4XEJSaRwvyj/8YpYTYYYPmeEC3fEvNEx2c9EaS6EUAIa6QNggyAocTLyclXk3eC+/Rf2zbHsWn5gHjh+gxpn6/X66PaRtesNLvEYviOXllfnwMpGSQ5uFFKNtqCnBvFxC8T9E54CKMCxlOvL14oV/LPTc2NsqRoNGmHosnul2e/vt6+TwztzHtwgUZ2nIxwdNomAeA2MLvLmBFd0Iktl5g0901nc7R8Z2XLl3ScDgshJ3UBI6LZK/yecQiPw0k7g+fl+gecSLu8+Nr5WuBgET7OBJ83CCKGb4uvO6CgrsI2sQEF2h8fTjK0t/ztqOwkYLCLY61da3ffad0UxzmkUgkEolEIrF6WAlBIaY8kL6wublZTmvA9j6dThuRd0jx+vq6hsOhLl68WAiVCxQxso8lHgu7k+uNjY2SXsB/yWsnokzKAYSEKLJbzCF6LjB4yoNHk0n1cBKDjR6Hhp8sgcAinaRk0D59ODw8bBzht7GxUcgl4ol0msxBjAeDQXFFeO0Eij+66ADJQ6iRVE6K8KKCXgyP+8WCizH676kJRJn7/X4RFBASIMuSTuXEu2PDI9zL5bKsZSzW56Tc6wLEEwjahJuqOilQSZtR2HJ4xF9S2bvuVmFuB4OB7r77bl24cKEUkKQvzMV0OtXu7m7ZV6zF7u5uOYqUZ8zrU7h7wOtYeDoK4+XZgohTB4L9N51Oi+iG4OCpEV7UkWs8PYN++dq6ION734879e+VyWRSCrVSO4H5dfcH/aMdFzgTty46T3q83vg1j5G0+qd5JBKJRCKRSKwiVkJQkI7+gT8ejzUejwthh9CScuDF43ASQO4oVOgRacgv4oF0EiX26vGQPT91YTAYaDgcFkINwYDkcy9e88g/hI7ovlvy6S8nNJAmECv5e1qEk10/1lA6Idjdbld7e3sNGzmEFjLIHHukOBbCQ+DgXl5UcTwea39/v1Ec0CO+7jKgmKGLFm6F93tynzZHA2vmef7MB3N3cHBQjseUmmkqa2trZY3OqiPhxxxCgPf29opLgLVAgBiPx43oPXON6AMZZi/RB9qhzoSTd2p4ICqNx+PGsZzMNSLXhQsXipATRaaDgwPt7e0V4YcinaPRqAgMdV2XfelOE/oDmaaP7HXSfSDr7sJBgOB+PK8uCCG04drw0x3oL04C9pgXk0S0oA/sAZwn7BHGxbyz3nFuEY38lJfRaKTxeNw4ajNxC+O0YSaRSCQSK4rx5z1XX/Z//YwurfXPuyuJROIYKyEoxGgtRIwoM6TV86s9d50aA5A33vPK+F7Yz9MdYm6735s2uR99c3eCfxZRgKg2ZIf7es0Ct5h7JNxzyr0vVNmPdQYQGiCtRKNjtNwt/0SZPW9eUnEKSCfELJJEbOy878QPEocjg5MUPLofUxwQj4iCY8tnLj3Fg/9GIWg0GjXEiyi6+Jz6j4synrLAXEFkfU9R68LTICCs3i6CTEzv8BoXTpR9fzAHfqQjQsrW1pZ2dnaKoOCE3lNn9vf3GwU+ERO4n6fG0CevM+HODBe9YroM6wNZp1gn/ec+vrf9uUEoREjydeK5cweBF1Skz/xN29Fl4YKUp5IgNPlaeloIn00kEolEIrEamG+t6cUX3qPMVUskVgcrJSh43QSs9F4QMeaZc30b+cfWTxSTCLBH591uTXQeEu/1A4igcg0iB8RSUkMcgAx7RByyRdSWMXoqAYTS58HvF3P7uSae7EAU2etFEK31qGsko36EJa+702M8Hp/KR2d+Yg0JIsAuXDjx42/cBtzLj6REMIGYe8Sfcc3nc41Go2K/d+eJuwpcXHH4a9wDEguxhvTSHmkv0X7v44p1JbzWAOkzEFvP42f/OvFnDw0GA21vb+vChQva3t5u1Obg87PZTPv7+9rf3y+OH8QE5oh++j1dkPBTPvw0DK9JwlrzjEgqJ6C4uOMCFs8ixJ0+sFfm83mjLghz4aKKuw94nb6xxjxDnrLBXHmBUNp2YYbTSBBT+E5JJBKJRCKRSCQSp7ESgoKkBrmBrGIjd9LgUUdPCaDavaRGMTpIqReOgyg42fc6AxT8g0x4WgNFIiEu9BeCSHQWG7pHqSF0uBx2dnY0m82KvT7Ow2AwKAUpNzY2dHh4qPF4XOaGowOrqioEElcAgDTF0xti/YXNzU0NBoPGMXwQzNFopL29Pe3v7zfmp98/spu5COKR/cViUcQCjyoDJ4lEjrHqO/ElPQTi57UiIjHnBAQi2YgO7IFYSJA+cy+PtEOEIaLslYODgyIG+XhctHBxywUjxAei4BBhiC+AzPv+oUbIXXfdpW63q/l8XvbxcrnU3t5eSUvZ29sra8beQOBhDhmfj99PGuF5Wi6XhYR72hHrEOtLMGbm1kUoSafSfOLzxboxf3wmnjRCbRRPOeJ91tlrNywWi5LO4O6l4XBYnCmM09NrErc4eIQz9SGRSCQSiUTiurESggI2csgDJMmJCpFPLOjY5Cmg6OIAJMmjnV7EjVx3vz/k1k81kE5OByDnHGLrFn6i/7gDlsul+v1+o+Dd4eGhRqOR6roudSE8YurV/CFI1HCADHtkdWNjQxcuXCjEkoJ7UUyAGDu5cvcChQ1xArAG0hE5hJCST8/xlcw/5A0C6dF45sdFDEgcogiRdubg8uXLunz5ckMsajuBgfSOy5cvl3F5OoS7Cdya3+ZwkdSIYkNYGQMFDWNxQcbJ717oMKZ+IB7QNutEv2mTufSoPP3b2trSxYsXtbW1VdrHASKp4UbY399vFDjkXr7ncV2wbtTYcAcG17lIIJ24W3xv4TbwehFev6Lf7zfcDMvlsqQ5+Bx4ezx3rG0sKIoQ4E4j/6z/7akXXpeC2h0IDtJJTYxMebi1cfjOd+vD/uFEb/naD9XBIAszJhKJRCKRSFwvVkZQ8H/gx7PuPeqNUABx80J4MUfbCRkWa8/JdzLotnov0Baj156/T9+d7BMlh4w4YcNGjXuBQnRE2CPBjScPeE0CxAZIHFF9r5OAdRtiFUUQnAlew8AJN8UOaRsxxQUXj9K7kOApAb7O0V2yublZ5gaHBfUnfL28foYffTidThtr59fHSHZMUWBtvJYEe8LTGNgDMRXExQEv+kf0HQKLWMa1saaDz4+P04slDodD7ezsFFLOvbmeYoJE4Lk//aV/XnvATx7xuhHuJvBnJPYX4h/nzp8ddx3RF651lwBwQYrnBEGBz7jo5Xsk1lbw1CZP23DHBOlUCHu4T7zGSeLWRX1woMP33ictP/S8u5JIJBKJq+C9X/sJ2vnse8+7G4lEImAlBAVIrEdjvfhaTGFwooEl2SPhTvx4z/8mhxvyjQgg6RTxBn7qgedpe40BotgudHileq/ngKAAkXEbOWKCn1rhkebNzc1yqgViBKdZQFwpoogAQbqAj4l+UpcAouv1A3CFsC4u+NBfJ/xtLgjga+RH/XnRR2zwUVRi7NSKQHzwI0GdBEI+/TQQj+b7fDvJdbs97zs5ZS/EeSKNxd0KXsvDXQ+eduDwOfS54qhI1pw+OeF1UYt5cbJPO77Gfi9/Dnm+mAt3t9AGe435cFHA9zx98HQQr29Aagf38honpD7h+GBeY/2QOI9eK4W+uZhAH9mDnj7D9xDPXQoKtzaqjU2tP/4xqtevfm0ikUgkzhfDz3qPfuUjf/q8u5FIJAJWQlCAsJB37qQVcuBF9zY3N0vNBEiVR6YhI0QmPVrLe16J3iO4HpnldUmNVAcK7R0cHGh/f1/vf//7df/992s2mzXEAM9vn06njXoF/X6/UeDOI60bGxu6ePGihsNhcSDs7e3p0qVLJU2AKv+j0aiMj7GOx2Pt7e1pPp+X9iBIFL7rdrva3t4udRCw0NMGxJQ2EDEGg8Ep5wFH+bl4ITUL6vlac/Rhv98vRJgCgpBzCLcX5HSbvF8b3QkUB8R+v7a2pul0WtIsXDxywYJ7kFbjRQCZB6L8HjEfj8dlDpwsI1pFp4sLAU62Y3T98PCw7LvhcKjhcFgENE8/4G9PP0C0YX+fVe/Bazvg+uHHa2PEVA7EC09PQhTw1A1J5Xno9XqNZxrhyGuV0ObGxkZJr2H+Y1FTF8lcOPGinrgN3CHi3w+Syj7nPfqTYsKtj/XHP0Zv/NrH6KSQQiKRSCQSiUTierASgoKkQvIgctKJLRrLPUSi3+9rOByWgmzY5Il4U6mfKLG7AyCCXomeSD11DzwdgvZiJP/y5cv6wAc+oN3dXU0mk0L+aMfdDJB06USYgBST6070ls9fvHhRm5ubJWp/cHCgra0t3Xnnnbp48WLJT2fsTvQorEe/IcFe32E4HJb6CeT5X758uaRJ8CMd5ZNzrR+riGvDSSfjgEBDHBGDGB/94r7k0hOB98KTEErGt7u7W/L//ahL1mw2m+n+++8vogL3hOxzYgb9nc/n6na7pc/xOEd3XUhHpBWHBMcLQqydMMe97UUeub87caST9B+vEdDv9xvHniJ4uCPHI/7MM8KKCxt8zmsZ+Akm1OyAhCNMsNYIe4gBg8GgcSQj48R14wIbhSC9TkgUKahxwvNGe4gN7iDgngiKCH3uqkHocaeFnxTidUnYf7Td5iJJJBKJRCKRSCQSJ1gZQcHFAEgX5IMj74hKEnHnH/xejM+jsTEqKalE/CFGa2trGgwGjWr6kopAQPQVkiOpiAHj8fiUywEHAn97WgXjc0Iaj+AjKgsRItrqQkqv1yvkyXP5vYK9pFKDgfG4RZ3oLuSVKK0TRidvbh33Iot+8gI/EEa3mHM9YkJVVcV54oTOC/AhmnhevZ9iwf1xlZB+sL+/X/aMp2u4gOB7x9MuKJ7p1npINfZ86aQmBgTVSa6nB7Dn/BQPxAO37DPfcd78+Enui+hASoAXGPW0BKL6iDHejgtu3AcST3/4DM8d94XAk3YknRyLisjCvLvbyOsfsHYbGxtl3tv2mztlvB6IC2T+7LpTg+v4HvDaC8wv6+h1VNzxkC6FRCKRSCQStxs+782foT/4T0+74jWTxx3qjz7vnz1CPUqsMlZCUPAoKEcwOrnCAQCJIboNYfBCipAht59LKkSBQoiz2ay87mTQ3Qme6+/V4P3EiUhuIbiessF4nGS6zZrPYwsngu6kz9MEPHLrNRNGo1EhZ17vwHPevdihpELqnbR5nr+TZfrE5xkn8Nx/t+2zVu6Y8IKFTvohkqyt15dwQosYECP0i8WiHJ/IvEOOEQXcJUA0H2HHaznENBmvyeG5/l44UDqpxeCk1FMBPKLuroc4d7EOBWvoLoRYIJO22GN+0gP7inb8uEbGQD/iPOMGcKHD19LdMezr2KYXyOTz8X6eZsS6sUe8/oPPkdc78OM+vW0XaXyfxsKQ7kzwuiKJRCKRSCQStzL2l1N9072fIkn6g194mh7/D37titdXH/tM/bXnPleS9MV3vlqf2MuTsW5XrIyg4LZ1CMHh4WEhRZLU7/dLlB6rtCPmwXuEmfeoRzCfz8sxkAgVTlAllQjwYDAoNQ9ms5n29/e1t7dXIrj9fr/k6DsBd5LrJFI6iaRCfHq9XjlJARFgNBoVYjYcDnXXXXcVEuZ5+tPpVHt7exqNRg37eq/Xa9Qe8EJ+EDiECI6GdDHB8+ldOHCniBdD7HQ6jWMqvbihuzcQWUhfgGSyB1g7j2h78T0nnjgL+Bz1IyhIiVBDe14HgX5RVwIHBGvL3onOFT+2kLVxQQERBSJLcUiPkLc5ctyaz17w9yDl7CXcAdyTOYco7+/vl5QHXycXqhAaqC3hffb9yjzj0uCZ8Zobo9FIk8mkrA/imAsYvocoKurr7G0yXu+rpEbBS3crSSoCFEJDFHO8uCdjZR+wz/v9fhED2VuJRCKRSCQStyIW9aGWWupV0wv6w48/+nfP43VlMUGS6te9QX/48Ue/f+m/frHe+Kd+UBtVVjm+WTGrF+pWGw/qsyshKERyCPHwXH6i9xcuXCgpAZABaib4GfUQZi/2SCR+PB5LUsN94HnupB/0+/0iJiyXS43HY+3u7ury5cuFhHrlfAfpChAm7P4uXPADOev3++U9SDV9uOuuu7S1tdU45o6x7O3taXd3V8vlstQd8Bx5CN9isSiF8ZbLpS5fvlzSNjynnTVxhwPw/jvJhZx5VBxiTXuQdgjhZDLRaDRq2PrducA6QtYheQgFEFXfJ4zVUzMQD7yIoq8/6RExPYW95WkcXiA0Rtq5B7/jYvHTDqSmjR7Cy3tOoD39gH7zrLAPIOKkG5CKs7+/r93d3Yao0ul0yqkizAEiGIUr/SQKCDkihhemRNDjqEpO3kCI6na7GgwGZY1oA/GCfebuAxxA7iTwtYynZrAf/bn12hM8m96m3yPWSfFxsY/29/ev9vWVSCQSiUQicdPiU//GV+niq96uermUdN+DauPDvvotesFnf7Ve/Y9/4MZ2LvGI4Bve82z93gsfp+/61R/XMzYH1/35qwoKVVX9S0mfI+m+uq4/4vi1OyT9mKQnS3qbpC+s6/r+4/deKunFkg4lfW1d1794LR2BrGHDJoruFv5er1eEheN7STqxRnuRQumExEIIaV9qHgPp0W8i0kTmIVuLxeJUjQLIiUeznRg6sfY2PULu0V7GwjgkFUGBCv8xauzFHSU17N9Otj133V0SXvWeNiFZdV1rOp2W/saIL0KCuxJcnPBTEnytEH38WEt3JHhdBcgpwoDvD+bZHQC+Fp7/zzq7Bd5FB1wkRNeJxCNkeP0Idzr4sZ7MJa4HxsD19kw1fnc3A/Po73vf3bHgczKdTovTBJGJwpwIEIhcHsVnnXnNXTOsCc8nIooXNt3b2ysFThG0qDfizo628TBeT0vylBRPV+G/7uzxfex1KLxOhKc9AXcxsccQOnCzTKfTchTsquCR+i6+nbB8/wf1lJ+6Q2//7J4Ou1kvI5FIXBn5PZy4VfDid3ySXvdvP0qS9Lhfe5sO7n3PQ2rvcHdXd7zqXXrWd36Vfu7r/pEe39m6Ed1MPEz496Mtfdv/86Xl7/77ltp512v0l77j67XcPA6SdqT/8nXfqbvWh1dt71ocCj8k6Z9K+mF77ZskvaKu6++oquqbjv/+xqqqPlzSF0l6pqTHSvrlqqqeXtf1FRORibhDCiFvTjicGMYCcVFMIBXB8+ydQDipcYLtKQ/cC8I1n88LwaB9+u6WbCfcTuaJ9ntxQ+8fr0G2p9Oper1eSV3Aku59JNoc+ySdpFTEgnSet+99kE7EFLfee8Q+jo0+eCE8F1tcJJFOSClzSZQc5wJELub245JApKEdrwfgtQXcVeHCkTscPLWjbW4cMcWEeztx5fO+37xf7BWvx9Am7nAfv7df5+kPfj0EGMfAaDRq7HNEEy9u6GtCH2OaEPdiXV10QGBj/5Nq4ydv0JaPxfeviwPsMX68uKfPp6cpeN9caHJhwoUN3zO0g5jAM8Zzzs8K4Yf0MH8X325Y7u1p7Vdfr+1nPF+jx1dabKeokEgkrogfUn4Pnxve+4Z79Pcf+2H65rv+4Ly7clPjW9/3TL3qlz5ST/7eo7SGg6tcf604eOe79OjvuVdf8pn/qx67dVnP2HqPvvXu37tBrSceCu492NfXvfPPlb9f+/Yn6kO/93Ray90/8Orye7WxqS/+7C/Snb2RXfHm1vavKijUdf0rVVU9Obz8Qkmfevz7yyW9UtI3Hr/+o3VdzyS9taqqN0t6jqRX6wogncCPevM8fKLFuBOcOHuaA2TJLfROkj1nOp7qIDULsvn7BwcnJyggWrh9nPu6YOC55Z5q4ISJcXjxOBwHpF3gTtja2jrVX5wJHJlZVdWpQnwubHghS8QY5goC1+l0SiSYCLsTcf8sQoYTbvqCEOAnUTAmxATcDz7P4/G4uCEQU6j2zxrgGvFIM8QRBwh9dpeKpxw4aSW9gGvdIs++cAcNrgo+Px6Pi2Dka8QediEG54bvUReSEFPahAevAbC2tqbJZNIoiOjpL9PpVFtbW2Xc7piBqDupdjeJCy0xzYTxU/ySGgM8M16XxJ00PpfMCc+8P3fcO9aO8NoHfk0Uy1gX9iP98rV3oXJzc7NxhOpyuWzUFFmlGgqPxHfx7Yq7XvZqbfzl5+l9H3vePUkkEquM/B4+X3zo1/+6fuZL/5S++TtSULgejJdzLXTyb7FXfssn6sn/4WHahstD9f/MW3W/pF/+vE/W3/je1+nCWv/huVeiFYv6UON63njthy8/W/d/4gfL3x+qD8aPnUK9mGvt096p+6/hng+2hsKj6rq+V5Lqur63qqp7jl9/nKRft+vedfzaFUExvOq4cj1kAQKF7R1BwaPlWOT39/cL0YPQkHvvxJr0CYhPjKQ6EXIr//7+fhEOcAN4xNTbhABDyCG7TnS8voCLCX6c5XA41IULF7Szs1MIT7/fb4gZfkKCH0OJkAI5hlC56wJA6BATPCXB3QuSGkIPffeIuaeK1HVd6gjQHx8jzpN41B/jZP1ms1lDhKAv2ObZNx7t90KRrIm7GVxsGAwGhUyyl4i2M0YXaTz1xOsYMB5+R8hxuIuBvpKuQAFFSeUIR+bTaxzQjosc8/lcu7u7DYGJdcCdQOTd9zV7wvvtTgLGzH29VoWnFiHmMKcucLkzCKGC55Z9iIDAXvPnGwFCarpqqqpqzBmFHrlOUimwSHv0n2eSIq+IJXt7e/rgBz9YUq1uAtzQ7+JEIpFIXDfyezix0njBt/513fNTbyx/9/f+hx4JP97wZ1+nL3n15+r7X/OTemKmQDxiePovfKWe8bfe0nzx8FDS7sN2zxtdlPG0X1zte7aqqpdIeomkQuYQAqSTc+KpnUAU0U+DiARROjm+0Y+B9Gg6UXnypYloNzpskW/piJxAZr0AoRMZBAWvReDRU/6mP261h0x59Jhq8xDKbrfbODISQucF5Ty6jDjg9QIozOc57LYepV0XQyie56SfcbWlCBCpRzjBbQGxh0B7oT23qlPMzwkpxSOn02nD/u+EmL3j4gnj4rqYcsA+IDKPmOAndniuv6dRsAej+IWbxgWs+rgYIesEseZ91tLTG9in9J+jTt1dQL+pXeHiEv1nnvyITq9H4KKJ999rj/gz5gUWEY0Azx57AHGKe1KfwIUCT3Pgb++zp6fQN3cnkJLg9THYmzHVgXa9QCP7DNEK1wUuGQSKmxAP6ru4p+svxJNIJBKJVuT3cOLc8M3v/Sj90v/ziZKkR/2Xd+vg/muJM99Y1AcHOnjv+/QF3/INev5f/01992Ne+4j34VbH03/or+pCyEJ42u+PdfgIr/eDFRTeW1XVY46V2MfopCTouyQ9wa57vKQ/bmugruuXSXqZJA2Hw9pt3ZAUIsy9Xk/9fr9EhqWTY988qumFAD1n3ivz064TRgiK9a0RlaWmgR/9R4TTi955JNxTBDzNgIgvpNP779eT4kE/vdAd4gMWem/fc/sjEfZUBBcDILgewaUt5toFHH6P9RcQP/iMn9jhDodYeNMt/k5maYO5l9RwkABfb19H1sn3iZNJd7z4KQkIKZ7r7wX/YvFA/5uxeB0K5tfTL3w/cAqEpzewZggO9XGtDncM+LGRXruC/eipKKyFO0zcyUIbnn7A/WNhxChaAT9+1V0dXpfBBa4oxuD04X1P/+C6KDjM5/Oyn2kTscUFF3eoRGHJ1x6xi8+7g2lFcUO/i3eqO7KIQCKRSFwf8nv4EcTwj+f6zDd+tv7Dh/1sHlF4jG993zP1K/c9tfHau17/WD3lXx6lNdyoGgkPCstDXfzhV+vnn/F8/fbHPU7d9YNcuweB8XKuF/7B5+tg2eRAT/mJXdWvf8M59eoED1ZQ+FlJL5L0Hcf//Rl7/d9WVfVPdFSA5mmSfuNqjfGPe0kNcuXnwrsF3qO/0knhPQQFyA5RTOzknprgOe9OoKSmjZ8oKJF7os3uDIBMd7vdUxH3GFGHoLpTAQIY/2bc/X6/pDzweeaJ/kI0fdxY4YnYIkxwTewfUWuvrwAhi46LmPfuZNJz+qktAYkdjUalDQgm7hQ+76QTezrEjlQE+o8wwJhi/QP2ijtHJDXSaKSTehSkeTB2xCjIbFs9g1ibwWsiEOl24QUizjyRxsH+9fHThqfYuJPAxRVPZ3GRgCKYvr7sFRdvoqjBeLzgJtcgxnENKUbsUdwe/jwz/+4+8mNegadVxL7EueMaPo8I4YU++Z3xc2/20f7+fkkHmc1mZR38ONkVxg39Lk4kEonEdSO/hx9BbPzy61S9Zltv+J0DPWNzqW618sL/Dcfl5UTj5cm/m372n32K7vm+ZoG9p+jtj3S3rogPeemRuFFtH63do9Yn5b3HZDrEmbj/cKxpvdQfHmxp/TPfq7VFszbCqqiP13Js5L/TUbGZu6qqepekb9XRl+aPV1X1YknvkPQFklTX9RuqqvpxSb+nI0Hsq+trqGbrTgJy1HEjQFQh1Ovr64WAeHR/ODw60sKr+hPRRUyQjogENQm8wF10NTgp51g8iJEX1aN/2PkhMZJKlFhSsa17MT6ucbIJWbvzzjtLike329XW1pY2NjYa80TdBRc6nMxDrqhiz7ilE9I2GAwKIYNUuajg0XTIWxyDE/DRaNQghDHazfXH+6Wsib9GeoUXhUQQQMxxQYG2PQXGRQXahYhDJlkfL2TIPYh0e0FCF0xcYHCxg/Xxvrv44m4Q8vTpC3NPbYGYVuIOGWqNeD0J5pCxUwfDa39El4HPOeIMYgFrybzVdd04bSRG+31/IiggBrnbxVN8GDN9jm4iT09hLjyVgv6zTuwn3Ap8zsUwFyAPDg4atSUkldSiNjfMeeKR+C5OJBKJxNnI7+HVwHJvTy995p9U/xeG+qmn/tJ5d+cRx/P/2dfrSf/kt8vf90xec469uT6wdjr+d+HaHZf0E6/+KQ3WNq/yydsTf+Zbvl53/uTvSHWtejE+7+6ciWs55eGLz3jr0864/v+S9H9db0cg7BAwos6SGo6CqqoKUZZOSLjdv2FvxlngxR1p1+3hECnIHgQDK/RkcqSkRRLp9Qj8FADah0htbGycygUn/QDrOtF36iVsb2/rwoUL2traatQy4D7UOoC8upiAdR/yhEDjBSoh436qA2TPI89u9/cxubvBUwOYb89D574ebaYNJ7ax7oOndfi1XovA3SQuQDihdOASYD7pL/3hdU/HYP69dgbj9/WnH16LwGs7MD8QYwQqd96wv71Yokf2Y9Se58ZTLXz/tqUGecoJ73kNkFh802uT8Bz6GL3mBXsTd4AXSuV+7hhgrn0O2p7vtbW1Mj+eyjObzcp6e3FJUh+YAy+gyjWLxaI8K+6cAVGYOk88Ut/FiUQikWhHfg+vDpbjsS5/2zP0IX/hJXrrn3/ZeXfnYceP7N2p//dbv0CS9OTX36fD0egqn1hdLMcnxLieL/TpX/+1UiXd++kHeutn/eA59mw18PX3foxe/Z3PkSTd/ap36OAmWOuV8PNCwohm8gO5cXcCZEQ6fa49bUkqqQp+9Ju7CTynndeITCMKeO0EIsle1JA+eBqC56Y7GWKMkgqhwYHg0V6ixJ7qwFGZkB5I2Hg8bogJi8WipHdAWr3av6cwMIeQLO+7p2y4td+jxC4uOCmNlvZY9BLS6GjL2XfRgfv5PX1evSYAJJbPtfXRhQkvMuhE0gm199nrJsSaCF47wwsI0h6f91oA9Mej7n6tPyNtgoK/xt8uNvl+jHONyOHpFrzu69iWHuOfp13u7cdfuvDD3LmYEGs6+PjdicL9POXD54Znhz3qfXcxwd0OOHxcBPRn2++dSCQSiURitdD5L6/Tk7ofr+d/yOfrVR/1E1qvVsdVeCPx7e/7cL38VZ+sp/3o0aEht5LNpV7Mtf1jR+Nanz1XH3PPX5Qk/dBHvVwftdk7z66dC77yXc/XK//zR+vJP7oC9S+uAysjKFDl3k8zgBhQPI/TA4h8O5wE18cF7Lxqv+dFQ4rI+6b4Ya/XK58lcg3hwCbvEVqPknpaRRsQHCD1TvKJvC6XS/X7fQ0Gg+JKQEypqqrkjNPW5cuXNRqNyutUqScii2DhAo1bzp2geXQ25s970USiwPx4eoQTXIppkqcOufRINPdzIu8RfO4FkfW/WXOcARBWCCOgHU+DcGLcFoH2cXONf4b/eg2OKCb4XsQ14feO40D8cvEqzos7eJyg+5qRMsAe8PmARLetFXvMhRn67+vnwo+LPtybY0KZMyfnXovBBQUXUKJTqW1d/DlzscPrIvj+8JQIHDuITFFw5D1f90QikUgkEquJ7n/6TQ1+4w791msPtL220MU16Z714Xl36yFjUR/qrQdHqbg/9hOfqqf9vV+7yidufgx++jUa/PTR79/x3/+svu3x/1HrqvWhG7dHjYU3LUZ6/f/70Xryy1993l25bqyMoHB4eNg40cDTEba3twvhgRRAjjwHWlIpjDidTsvrEAOvBk8axXA41MWLF3Xp0iXV9VFlevLZIWWQonispdvs3XYtnZxmACj2Bmnp9/u6cOFCcQdwhN/W1lYZr4sJkE3y4j/wgQ/o8uXL5fXxeKwHHnhA4/G45I9D6jki08kdBJBor88R48P9QNoCdScYo9vPpZNUAtaRtBAcAJDt6BYAboeHUDIW6cQh4VFnBA0EKN8bLggwVkQh7uenJkBU+azPy3w+L+Ny0sn4vHYD/WtL70DEclfDYrEohQH9tAYvCuhiCMSf62hrNBoVgYn7ezFEJ8qsCffgPrH+hM9xr9crqTLuBvFUBfrv6+RrzPPqRSvpH3NIf7xmAv3iM/4Tn5XRsTXMT6FwUWxtba2kBtEX5sGFTBddEolEIpFIrCYOP/BB/Z2nf5Ik6d1f93H63b/xfefco4eOf3H5ifr3z3qcJOkJBzcfwXyo+OCn7Olrqz+ptac8UT//X3/yvLvzsOPycqK/8ZzP1aX7fv28u/KgsBKCAgTHC8JJR6TEyTCEwj8TiT8kxo+Aq6qqRMshTuTF9/t9DYdDbWxsFNIyGo3KZyU1TnPw6G2sm+C55U5KEQ0g2YgG6+vrxQmxWCzKsZAIAcPhsHFqw2w202g00uXLl7W7u6vJZFJIKC4FCid6qoM7K7x4IbZ0d2w42fQUDcbmdRg8wu2Rd3deMEeQUoi72+CdnNMea8R/I+lFhGHd6RtjdCLvJJf6HIxDOqm74evqfV1fXy8OGUQSJ5wIL9Eiz325txN6LyLoc+mig5/C0Jay4OLCfD7X/v5+oxgkRRJdwPE6DX7SCa8zH7SJIMe+cLGGuaHvLr65oEObdV2fEk7cpUHND+8X6+3PnbtbvGArwo+3y+fZ39JJsUpSg+K+Za5WrShjIpFIJBKJdtTH1e+f+OPv0qf83kskSV/4j/6TvvriO8+zW9eNZ/+9r9LOOw7UGR+qs3jdeXfn3FDjXn37u/QpL3mJ/uo//gl90fb959yrhwffct9H6lV/53nqfeD10k2abrsSgoLnykNQIJCkI8Tcf0mNgotukfZChaRHtB3d50cHevV4SJR0Qto8WumF6/hps4NLJ0QJwQACxGkLfN5t3PQP2ztjn81m2t/f197eXjmSD3IYc89dSHDrOUTQI9Fuo3eLODZ3iHi0zNNPz8OPLg7EEsYYa12w5rzGPX1v+NwyZ55q4XUdqEfgn49knXH6j/eLNfPTHHwuEUhi2oiLGLQVRQbIuYsNUVBYWzs5MtULVvocuCCDYOW1ABijr7GvvV/nbfge9mfIP0+ffR3dheHOEO7BHoDE40Tgetr1efa58eeez+Ay4vml39yTvcL3g6+Xf3e4cMM9ufYmODYykUgkEonEMQ7e9g713vYOSdJ3f9Ln6HuedFIA8Cef/89WLi//E3/n8/S++7fL30/7uXfq4O03lwjycGI5nar3H39Df+dP/UW97lNfo+989OvPu0s3FF/69hfoN/7zR+hJP/drK3ME5IPBSvxrOUYEIQAefYxRXY/aQ3ggDZ6L7mSYz+FOQEzgBIbZbFYITyTbEEhIqdvuqfPgVmnGBPmVTnLVuTf99Kr2AFeEdEKqOHFiNBppf3+/kYvuRfBwJzA2P5rSiacXsoNQ8Z5XxGf+nNy5IwDEeXYngX/O58lrM7SlQSDWeLQ6igkxih9JtIsfm5ubZR8hPEWhCsLP/mE+/ZQRPxHD7+l7OkbofUwO9jZjiPejvy7cOIF28u/1HmLdBYQQd554vQgcCLyGsNZ2JKWPK4oJXich1omg1khMv4C8Iw7QVqx94XsNJw+pDVGYY679+8HFBJ5pL7QanTnRPZO4NbG+s6PDjUqrc6JzIpFIJB4qnvJNzVSB73r1n9ZXPeq/lr+f3V2qW208rH34/flYl5fdM9/f+rtDbf3GyRGQN0sRvkcaT/2bv66f+5ZP0F968a/ro7tnz+fNhNfN5nrDv3qmnvSym78+xkoICtKJEwAiAVnlH/rYpPnHPjZ/yAmk0s+xbyuyBsnyIouSThXF81QAyLAf9ejpAuRw8zkvNgcZQhzBbk8NAydCkF9AsTjI9sHBQTkS0o81dEJKrQMKW+IYgAhHUkn7Hgn3viAoeN0F2sRmHqPnfrQlbUonBBbBhpQWct+lEwEBouwChRc49HQJrPZOZCGSjIO9sLm5WfZHnAf/PGJFp9MpKTG8T7FO4C4KnwcXcnxuadvH5OIK+yzWiWCuODmD96gHEI8CZW0ZG/u7ruvifonpBD5vLha1OSXYDzyjHNEIYZeOhDH2nYsJrIULYexd34P0w90niEgIL22uD+Z5NpuV/rEvvO6HOyJ8PqJrIXFr4y3f8EwdDFNMSCQSiVsZ7/2EPX2rPq78/cW//2592c59D+s9X/J1X6fBv/+Nsy+of/dhvf+thCf8vV/TS3/2RfpPv/Cj592Vh4xZvdDf/aQ/r7vefWvUx1gJQQHHAKc4QDaJQLoFHVIH2YLMUTAOMgQBIUrttukY6cXpABFy63e0rNN+tEq77dyr1kMSIYIQSaLjnp4BsYqWf78vJNLJk6QyB7F+AaSVeRuPx2emgkDKIOGxKB5z7fUZXKRhHhgPRN9TGjxFhXmhMn+sg+FiiXSSsuDzi/Xdc/cRMnyNIffkz3uaAoTcI/w+zs3NTUkqYpU7PHw/ee0PF0kYj9vx2Tden8DdItQwiOkJLi6xntT7iI4DT3VBePC5j/ubfe/Chkf8475kv7ZF/0lp8OeCZ4b2adtTgdyRsVwuy5GprK2n1SA+IhDFmhQx/cT3h7tlXDRjnl1kSdwmSO0okUgkbm2Ef9P/2y//s/o3vXU98KFdvfb/+P4bcosP//6v0mNfdRJ02v6tN+nwJs2LX0m86W369L/0FZKkd7zkUG/6lJefc4euD0/56a/UU35yIdVS572/c97duWFYGUEBcu7Ey8lVjNa6Ddpzsd214FHvWFzNz5tHUPCccbfhe6V4r5fgZMoj/24L5zoILW0S5Yag+nidQHltAOYhWsC9fkTMHfdUEcinfzaSrpgi4OOX1DiKkrXxmgpO5Ihau6UewcIr8yMS+P39d/oLieSYSMbNviFiTgFMJ8cQRgiv14rg6EAXotwhwxy4k8SFDi8i6Wkf7Bn2pado8J7XcfB1R9gCPgY+5/UpfP6Za4QQ/o51Ojwtwx0NZxUj9LQXF3N8T/spDP7c8Hn2lbfpKR5c7w6R2IeYAhPdQC4gxlSN+GyelcohKUWFRCKRSCRuYVSv/m2tS3rUHz1BH/L8vyJJ+tKPe7W+/e43XFc7P7p3SS991edLkp7+i3vSb5y4DvJfETcWy+lU6//1f0iS7nz08/Qh479S3nswa9eGy8uJPvqX/pq0bI80bAznetMLfvia2vrf3vmJ+uX/+Yzy95N+bln6fyvJTCslKGDLhwhBztxC32ajx53ggoOTs4ODgxIFd7LsdQU4Ps4t2X6iAeQCUuUOCEnFzt3mgiBi7eSFExtI5eB+HnlFCPGTCyJRctLsbgQn5ZBJCjk6UfM5iYKCCwbcy10FzG8sBOik1HPyWT/STYbDobrdbqMuhpNBjyJ7vYbpdHoquuwFNYnW+2elk1QMxAPmZjqdFpHCUyOYY0QQ9pbXzmD92QvuivAUmOl0WoQlrjurKOTh4aEmk0mj/kEs+okghQgGXLihmCl9cKHHnyGfa9YNISU+p9w/1rtAlHPhok1QYA39OWI/bGxsaDKZlLlFZHCxINZz8BNEzhINfF7jeHx/+hqe9ZnELYa1da3feYeUh3kkEonEbYuDt79TT3/xUSHEH/nOF+g5n/uW6/r8t//O5+jpL37tw9G1xBWw8+9+XTv/7uTvB7N2bXjb/An6sJf8bjk5JKLz5Cfq53752op7vvqnnqWn/8Obv0bC1bASggKEyY+tc8fCdDrVaDQqpAjyS5S7qqpCsPxse8iy/1RV1bBRexqAW8X7/X4h/hBCSDT53pAd8tfpvzsXXGCQVKzsk8lEe3t7mkwmkqThcNjoF/2A7BweHmo0GhVRo9PpFNLJHBIFdzIP2WIMRH4hT34tcxbBGOKxnk7muM7Flo2NjSIieEG+wWCgfr9fhCOuYX2jy4MINikLngIBQfWCmn5MprtMKGo5m80KoWcMiEgQW3d6eJ0Bd1lwLUeOsuYQVdwQ4/G4cT0nfMSUBvrC/vGTPnw/LZdLTSaT0i5zFItzurMizin7wF0S7AX2uQtizBdz4SkNzAlijrs/XNjx+/M7J56wV9mj7shwBwZpUS6q8D595llnnD4OdyvxveN1Ifw5Zf0Tty46T3q83vg1j9GtFSdIJBKJxIPFh37Dq/W93/AnruszT1TWQVgFPJi1OxvtYoJ0dJLI9z712u7zON36YoK0QoKCRwI9oj+fz7W3t1eEAtIL3B69XC61u7t7qjCd11OAjPR6vRIZJ6o6mUyKUwChwivH854Twm632yjQhzAAyXVhQFIj6k0EejQaSToi6tvb2xoMBg0y61Fpr7gPCfJc/uiMQGRxdwcF6tqK7cWUBMSGGHEmrcBz5p3AeX4+xI/5JRVhMBgU8QSS78KEk3g/OhPxBkGAuWT+mY9+v19Io6d64ESA/NNHL9AZT5wAXpAx1q+AxLu7Y7lclvvO5/OyZ6KI4gVAXVBDsIrFB9mze3t75Tlgr7oo4/UtfA09Cu8i28bGRhGMXLjwtWQfec0MFxMQtIDXXGh75um7O0XYIy4AuGjmhTM9xSg6Cxh7rBVCm74/3VUCfE8nbnFk7YREIpFIJBKJB42VEBQkNSKanm4AEfQopUcwnbjFyvb+OxXk/VQBj1C7zd9PloiV8TlqEgLoNnuvreBRUO6PBd1dEQgNw+GwkSMf87u9iKCnNnhOP6TII7tSk6DH3HnmHueEpyxQod+dG9SQkNSYO09BccHDiTxziKCBWERUmvVy0k60nDmgj56yQu6+uzecTONwYSzRxeFF/jxS7YTSayYgeDnZJq2GNaJPiBekiXiajbfvLgGvH+AFA32/uagR0xo8BcbTMxhXJNZS+zGl8dn0lA/fV16MtE0Mo02HOy68HU8jcfeEuylIreCHNWHN/Lnwmgv+TNIf5jrCBYpEIpFIJBKJRCLRjpURFDwHmrPovTidEwfPi5/P59rf3y+k1KOv0knEvNfraTAYaDAYFGLvNRekk/xs8se9aCJpDhDJmMdOpNuJLnDLPsQJQYEjHofDYaOuAeP0PHEnS150ERLr0XV3fEQyyT08h57ItwsTrIvb6D3y69X7gRfuY5x+xCZry5h2d3cbxI9553687vPtVnru444G6YTs4o7w0y287sTm5qa63W5DrHEyydi8bgB7gdfZR15E1AsU4jLwIqA4QWL77hjw4wx9PhEU3M1CP5w8O1mPDhav0eFkmz65uOHt+L5iHO4UYA48zaEt0u972U9tiXUf+F7w+hrRnRCFEO8n83iWuOEpKr6HuS5FhUQikUgkEolE4myshKDgUeFOp1PqF2Blpyq/pFLfAHI+Go20v79fCFBbpfjBYKCdnR3t7Oxoe3tbw+GwED6PrHa73ULIdnd3G9F10iRIh6D+gR/5GKOatIUDoaqqhuOi1+vp0qVLuuOOOxpR8k6nU1wQRNd3d3cLoXQrPSQScukEzSPpRM+Zw0gsIev0o67rMrcUwtzc3CwkFIK7v79f5hlbPnPGWJ1Ud7vd0nfEGNIAEC8ousg8UD9ib29P+/v7xZrvZJ556HQ6heSOx+OSGgCBR1xiLX287DHqcjBffioE4/CUAtwRCAj0i3lGTILwelFISaeKAnqBTvaEpxZMJpMyN+x19qEXSfQTICQVgSLWOEC0YS+4k4WxeDqF38OPbHRhwhFTQXzfjcfjxvPCPoiFHf19F5Cc/POe18Rgr/ha0WYUP2J/o5MnkUgkEueAWlnmJJFIJFYYKyEoeESeYwkhSG5/h+Ssra2VnHnIdbSHSyqEYnt7WxcvXtSFCxc0GAwa7gOIEDnr2NUvX75cyLQXcoTcuo0fYuLkLEanKZo4Ho81mUy0XC6LOwFiOB6Pi/DA9e6C4LOj0ajUHWDcCCkUPmS+IMzku/O6pJIu4gUlqS3hcyupjIFrF4tF6QcODObHT+Tw9AIKb0JCPaKOQPHAAw9IOjmesqoq7e7uFhcKfYEAU98CHBwc6PLly0W0oHYEjoSzov+QceopeEScOfPPR/EGh4Lb6V1gcjLrJy7EExMQK+KxptPptNQSkdQ4gYQ59THF0w/cYeLuFIg09SHcheFOHp4Dr1MQXQuISm2iHnPiIooLL17zwo/L9KKKpH3494HX0uD7gnn0ZxqhAfHPnQu07XUl6HsWZUwkEonzxdbb19R7z+y8u5FIJBKJM7BSggJkDsLlEVOvD+BF3Gazo//JxJxtiF+v19PW1lajEKDXPZBUCDkEgkKBWPUhJ0SyPU0i5mZDNKlFwJgoHuh9JnLNfSF9EFbIsP9AjCB4Lhh4wTza8RQMz5v3qv3cG2HDI+H0CfJGpJ++HR4eNoro0T/G7+knPndOur1wJEUVqXWBgMO9nPB76oB0UjjQa2pAeCHo/NfXzfeYCyeeSuIpNOwzCCxr4SclxP3tOf+xRgFwV0J0u/gRkbznDg3WV1JjXX1sbVF3fmffe0oRIlQbqXbSTd+joMd80Td/nl1I8XY8paINPlYXa1y88L3PZ3w+GGNMa/GxeWHHRCKRSDxy6H5wTff8j5NAQfd9I709xd1EIpFYWVz19O2qqv5lVVX3VVX1P+2176yq6o1VVf1OVVU/XVXVRXvvpVVVvbmqqj+oqurPXGtHnARAnjyS68XkcBFA5iJBcAs+pzoMh8MGUfcifh7xhigT4ZaaNRAgrYgFnj7gRRWxdkMQvYq93zcSLS+O50UNIfjujIiWfRwBiDOeQhHt5E6wPD2COaCvjMOLCXptibZ6Dy62SM3iei4AMF8+57hUer2eOp1OowhhXdcN2z4iBATQ62l4RNoL87mLBLHDSbeTUEivr3F0VNAH4BF4f81JrRNgJ+QudMQ6DnE9pGZagz8bcW1jDQIXFZg3bz+KLS4A8Rkn2y7U+B6LwgV98rnw9txB4D/xhA3/TqBt7hWFNK+x4QUe2QP+ea+/4M/IquCR+i6+rbA4UO++NVWpGyUS54KNvUq9+9YaP9tvr9X9ud8sP/qN1TmSL7+HE4lE4jSuxaHwQ5L+qaQfttd+SdJL67o+qKrqH0p6qaRvrKrqwyV9kaRnSnqspF+uqurpdV1f9Z9rTr4RCSBVTgKJHntlf3LepRPigiNhOBxqZ2enOAyw6s/n82J59kJ+kKvxeFzIFXZ+J2TdbrfhonCiBinhNAkIodv2ye12Etjr9Rr57BQTHI/H2t/f1wc/+EHt7e2VSDjXU7BwsVgUoQIxhX56Ljx5/cyXkytPsXC7OeTMj6I8PDxsHDXox/55KgGk7ODgoKyDpOI+gHz6EYnSiXjhLhT6iAhB2xDS/f39hg3fiyz68ZA+7/P5XIPBoOyHeHoAQoYLR/v7+6WGhrtn3CVAn32PxKg+1/spE9HRgUODfnjRUO4Ti0TinqBt1gORhOfFCyJKasxRG6mOIhHPj7tteD86KeLJFjz3/twwNm/DCzi6GMB3gadv0P+4vl5Dw0/b8PoOzIe7JeIRoeeMH9Ij8F18O+HgXe/W4//Bu/W2//P5OtjKJO1E4rpwAx6Zx/23uTqveN1Db+iRww8pv4cTiUSigasKCnVd/0pVVU8Or/1n+/PXJf2F499fKOlH67qeSXprVVVvlvQcSa++0j3W1o4KJxLJd+KwubnZIOZeVd7z2T1KTG2CwWBQCjhyDaTXI/cQDwr/7e7uFnLT7/e1s7OjXq9XyAdRbC9miBACMeIkgMPDQ+3u7mo0GjWi5VtbW6VYHKRua2urEDnqAFCU8f3vf78uX75c6iZQe4H7U9wOckcuu0d+SWEg9YF5lk7qKezv75eigYzBo/aclrBcLks/pBMCTY0KCKAXZfQ6F6zFZDJpFDpkvfh8W0TZ01HYF7g3zrKouwPA19xdFowDocKJJoJCXdcaj8e6fPlyg+RDqLmGe/DjhSG97oULCIgSvE6Niv39fY3H47Km1NfwQpQIIR7Jn81mZc5i4Un2r6cekGrigoW7cbzGCPPPKRkuQPh46EcUMjxdwX+YDxcS3IHAXoh7wsUccHh4WEQ59nO/32+IPMyNC2BtTo5VwCPxXZxIJBLXiqf96z2tvePeh9TGcn90U9VbzO/hRCKROI0bUUPhKyT92PHvj9PRlyl41/Fr1wQnPE4+IVpugfbortu3/TQBLxDnpIX2vSAdxwu6rRqHA2IH0UqKD8aUASehnoPuxIwUBSL1jAdCBGmH4HDCA2ICxfIQI0j9wBHBvETru1vXo0Wc8TqRpg0najhCGAdiTnQykFLCuD3doNPpNIo+ItwwZ/S7zTYPMYfIeySZvsX9xE90u/h+8DQGLPIxks59Dg4Oiuji6xbdCfTFCycigrFP3VXDZ51oe5pLbNsFNa//4WIC/fP0hJiKgShDvREn29Hu78KIPwv0y9NdaN9rUXhakIsL7trwNXNiz2ddVOE5dvh4EdH8SE+eXe7BXvCaEC6I3WQ1FG7Yd/Hthif+8lTv/di+Rk9YHQEpkTgvVIfSE375UNXBlZ+Htbe+S4cPXH6EenXTIL+HE4nEbYeHJChUVfV3JB1I+hFearmsVXyuquolkl4iqdjy/ccrsEMe+Ic+hIzXYlS0rSChRxs9Tx3SAHHzwne9Xq+kTjggxU56+YE4MyYn8x6lhwgxJsi51xggSs0RlQcHB41TALD9e+V/CJV0Em33PkKQECycqLq92+sFuG2duWeOuZZxe+Qfp4MXRJSaqQwx0uxF+6KY4HUY6JeTdY+2uzjl/YvjXS6XZRxOpL0mh7/HaRvsERcTEAuclPI5P/HC6yO4MOJjnc1mjZoZCEjMCSkybv33GgWRCLcRY99n7kBwgcb7Sb0I2ve6CeyttroJEPU4p22iTRQU4nMdC2r6fuee9MWPunQnR0w7YV9FZ4Snzqw6btR3cU+Dh6V/q461//Z63bH18arXj74LJo9eqr5qhaFE4hZBLQ3es1a+IdYOpO4vv1b1VWrI3Bzfjo8c8ns4kUjcrnjQgkJVVS+S9DmSPq0+YQbvkvQEu+zxkv647fN1Xb9M0sskaXt7u/boJVFTSODm5maxszuRcduyR6FjtXyPRkLcIbsQUj+WcTabqdvtNk4boPYB/YJcQpiIgiIm9Pv9RnFAJzW4E/gsJMkr+EPuH3jggSIoSCfOivl8Xmz39AtC6GOCbMVCd0Ti3SaOYEF79Jc2sbl7DQJs70SOqRPx/2/v3EIsuaow/K+emXO6Z7o72skok4tORqKSJxNEBK+gaBI08QIS9SGgIIKCQQQjAc2DCir64ItBSTBIEi+oGAhCgoj6EqPGJCbGOBONOGZMvGQ4p6+Z7t4+nPqr/9pdp3vaTJ1zes7/QTPddaprr1q1a02vtddam/eugQmWC5w8ebIsv2AKugYtdFcFyk6Y6cHnyt4UuRPNe2eTRwZiWJrCAA3vVYMJ7AOhq98M3Gh5CeehNtfUHhp5E0JNz9cSBH5GHXHb0k6nU+kPoGjzTg2IaQNClmHw/ajTKWXRYA/l1iyCfL5TryyryVf580yKPOCi75L2XmAwh59riUT+XvO+VDeUhZk7DBi122202+0y+ML3hc+eY/CavM5uCCicSVs8G3O7Kfv4jNK++zc4/24AEXjy86/F2mQRnHRgwZytJCASEGuBC7/+ANaLv3OKj8wOsB02xowz/1dAISKuAPBpAG9KKS3KR3cBuCMivoZeA5pLANx/OtfUBmy6eqhNBZk1QCdGgwn8nM6uOnjMeKBzPD8/j263WzpPAMqVYKaJz87OYmZmBvv378fExASWl5dLB4glEnScU0plzwbWlDNlnfX+dFA1E0Eb4TEAwAAB0HOuTp48iU6ng1OnTmFmZqZ0OHk+f5864coyHVlNoadec8eQOteMBF15X1xcrGwRSSdMgwl01LvdLrrdbnlvdOYZMKFO6ERzC8h89wfOCcqezb/yWTHIoSvMuiLebrdLGQBU9MzyEQBYWloqV9i17IJ0u93KLh3sYaE7k+jKep4pUJclwWcQEWi322Wgi7tV8Pkx+EQ0y4EBkIWFhU1bcmo/DwYf8gwBXmdiYqIMsuS6VCedz0cDEBxLMzN4nTygpNlF+nsajOG84xh5QGIrJ5/6YCCPZRIcX5uS8p1RWdbX18stRzUjZFRpwhaPPSnhyBcfBiYmkF55GEc/cGDYEhnTCIfvPoXW/X8GgEowwewM22FjzLizbUAhIu4E8GYA50XEcQCfQ6+DbRvAvYWDcl9K6aMppUcj4vsA/ohe2tfH0g662WpNt+5rr80DgWr6O52Q5eXlsiGh7sjAFfWZmZnSYVOHmw4DAwo8n70T9u3bh+Xl5YrzHUWDR808aLVamJqaqjiudEwAbHKI6KDplpXL2X/o3NVBV+U5Jp0qbSinq8u8R67CUm+6aq4p3tQ/r8l7YOkCZaDzRyeVztrKygo6nQ663W7peLKPBYMJ3IWB18rLURj4yR1ijqf6Yx2/bneo5QC8D65MU8e8H3X++dypG3XiqUvd0pBBhLzcIJdBgzicA0Qdf216yVIHZkHkzRS1fESbMObj6XPNsxzqSizqMhNYVqP9NzTYowG7vFSC7ywDNiQPDmjpkJYuqZx56Unu5GuAQp9ZSql8VnkQTLNVdK7l5Q/tdnvTezksBmmLx531hQUAwJ5jx3HkR4eHK4wxDdE6+hRWu91hi7GrsB02xpjNnM4uD++vOXzLFud/AcAX/h9h6GCow0ZnQlc485RkTSmnM6jN3Pbt24f9+/dX0rbVUVKnEEDZoK7VapUZARrUWF9fL48BKMsY6KTQsaKTCaDiQHFFniuodMY0O2Ftba1cFadjpM4OHaO63QnUAaTu8trwvOEe9U9ZgQ2nWIMieUCBwYKlpSV0Op3S+dKtPnnfzOjQvgrUJ8fl2Hy+2siQxxlI0Jp+yq/PXbdApDPJDABN1VedMKDF56NZLNpYMt8ZIC+54HOuK1ng72gZDOcMdcRgEM/X8gM65RrsyYMECs/n3NRnrcEKzWrRgIpmG1Aelqjo9fLGjPqMNVND9ZD3IeFc1fN0fualGzl5QCDvo8Jjalu0AaO+N5rBMgoM0habHmvPPouJXz07bDGMaYStOySYOmyHjTFmM2dil4fnjaZvM60+3+WBDkueVk2nanl5uXQU6MRym7jZ2Vm0Wq3y+nTcNN1aU/qnpqbK7RB5Lj/jai6P0SE8cOBA7Q4GAMrUfl0BXVxcLAMXwMZOBVoasLCwUFkVZh8FTZ+n88s0fl1Rpzyadp47b7rjAXtMaPo5nUfNkOB5LCHRxpHscaHbIjKQQx3rZ8DGLgc8zowB7ZlBJ4+7YNDp1pVtyqi9DeiUM5CgTRdZFsO5QKh/XYVn8IbBIzrUACqZKERX0rUZoZbqqA404MLyGs4LOtAsHWGQSx3+HJZ81JU7qEOuz1pLfviZOucM1OlnOh4DMBrM4fPXQBTfO33OfJaa+ZHfD+XUHhp1QbA8oMTzWOrAd47BKW1cqu8XM56MMcYYY4wx9YxMQEFX8/mHPB2oPOVcSwYWFxcxPz9fWQ2dn5/HwYMHMT09jXPPPRfnn39+uavAwsJCpSGfZiswxXl6ehqtVqu8vvZAYAM8AJiamipLHXgt9gjQbfXoJGuDvrW1tUowgVsE8h6Zik2nc2VlBd1uF3v37sXk5GRZwqGNApn6TyeLMmgTRTqaeRM+XR3WEgw+BwDldpbsYxERmJ+fR6fTwfz8fBkk0W0imb3A0gQNHGjDR6Cads7MAzqhqhd1oLV3Bv/l6j7vcXV1tRLgYXBJd0ZQJ1vLIpi2r9sV5kEtNv/TfgR5bb4GczTYQcdY6/4ZDFOZ8pV9nl+3Ys9nqAEVLQvg+wRU+1WoHvRfvV+dJzyufQvotPMdzntI8Jp8nhoQyBsuagAkz/Th8bx8ggES3j+vwfeQc1eDkXrfOpe0WaQxxhhjjDFmMyMRUAA2UqbZSC8vL8gbpdFRpaPIlUQ6PNPT05ibm8Pc3ByAjXRufmlwgnXf7JswOTlZOnl0vLQ3Ah053b6OK9p0rPJsCg2EsFcAnUbKoyulLNXgNRkwoKPcarUqdf+6mq79FRQthVCHkL+j2Q6Ue+/evWUpRl6Tvrq6ioWFhVI2jkknjiveGijRUgk+L2DDUdRgAu9D5alrlqdjMmigK/x50EBX9vX8vPSBGSTcnlGzDOjA8rpaEpBvj8gxNatEz9FsG13Nr7tO/oxVdo5NnejzV+ef7wCdZw3k5D039Nlo2YVm96geODeZ0aH9LfS6+ruayZHPj61Kc/rphPZDgw26ZSuvy3eZz051rVk5xhhjjDHGmHpGKqAAYNPKqmYncMU6pVRZ9QY2nDhmGZxzzjmYnZ3F1NRUpYmfOtV5vTV3aMidLDqCmprNMSlj3s+BDhSdpbr6bJY3ACgDERpMoKPIbQ5zJycPXnAcOmx1DqX+TB1Qp6oP3rc6dLqdn46vzqQGSvi59oZQ+dVxVnm0NERlr2vIx6wBbQ6Yr55rcIJOrgYOiAYYOA/ZG0N7OPBf1ZeOzXvKZdXVdZ3zGlRSxzt3tCmjPmfC3+O8yoMReRCEAY68nEgzCTh+Xlqgc011oNknmslRF1DgsTxDQcthdA7UBVc4l/RZaNBGz9MmrxpM0CyYuudijDHGGGOM6c9IBBTUAWaNujpQmh6t2Qm6+wCw4ThMT0+XJQ8sF1haWqoEJtQJnJiYwOTkZLkjgNbxcxWXWwPSOVVnhg61NvIDqunkPFf7BagjyS+OB2w0WmS/hsnJycrKrabtq8ObO7J1x/v9rDICqJQpaKkEx2VmBoMg7Xa7lJ2ZFXTYdIVYHXM63+rc1mUj6Ao50etpSr72KlhZWdnUM0EzEzR4tL6+jsnJSUxNTZXbTe7Zs6eyIwgdc03nz2v5dW6z14aiwSbO57xxoT7TvEeAXp/vBu9Rsyn0PO0jkQdgqEvdkjIPOAEbWS8aVNDAh5a8aL+OPLtBnxXh/NKtRJ977rnaMggtL9GgWt6EkXNP5zDfKb7PdT0mNNBljDHGGGOMqSdG4Q/miPgXgAUA/x6yKOdZBstgGSxDxktTSgeHNPZAiYgugMeHLMa4zzfLYBksw2bGyQ77b2LLYBksw6jKUGuLRyKgAAAR8duU0qstg2WwDJZhFGUYB0ZBz5bBMlgGyzDujIKuLYNlsAyW4XSZ2P4UY4wxxhhjjDHGmCoOKBhjjDHGGGOMMWbHjFJA4ZvDFgCWgViGHpahh2UYH0ZBz5ahh2XoYRl6WIbxYhR0bRl6WIYelqGHZahhZHooGGOMMcYYY4wxZvcwShkKxhhjjDHGGGOM2SUMPaAQEVdExOMRcSwibhjQmBdFxM8j4rGIeDQiPlEcvyki/hERDxZfVzUsx5MR8YdirN8Wx+Yi4t6IOFr8+8IGx3+F3OuDEdGJiOub1kNE3BoRz0TEI3Ks731HxGeK+fF4RLy9QRm+EhF/ioiHI+LHEfGC4vjhiFgSfdzcoAx9dT9APXxPxn8yIh4sjjelh37v40DnxLhjW2xbXByzLcb42WLb4dHAdth2uDhmO4zxs8PFdXenLU4pDe0LwB4ATwA4AqAF4CEAlw5g3EMALi++nwHwZwCXArgJwKcGeP9PAjgvO/ZlADcU398A4EsDfBb/BPDSpvUA4I0ALgfwyHb3XTyXhwC0AVxczJc9DcnwNgB7i++/JDIc1vMa1kOt7geph+zzrwL4bMN66Pc+DnROjPOXbbFt8Xb3bVtcHj8rbbHt8PC/bIdth7e7b9vh8vhZaYeL6+5KWzzsDIXXADiWUvpLSuk5AN8FcE3Tg6aUTqSUHii+7wJ4DMAFTY97mlwD4Lbi+9sAvGtA474FwBMppb81PVBK6ZcA/psd7nff1wD4bkppJaX0VwDH0Js3Z1yGlNI9KaXV4sf7AFz4fMfZqQxbMDA9kIgIAO8DcOfzHWcbGfq9jwOdE2OObfFmbItti+s4K22x7fBIYDu8Gdth2+E6zko7XMiwK23xsAMKFwD4u/x8HAM2YhFxGMBlAH5dHPp4kd5za5OpVQUJwD0R8buI+Ehx7MUppRNAb1IBeFHDMpBrUX1JBqkHoP99D2uOfAjAT+XniyPi9xHxi4h4Q8Nj1+l+GHp4A4CnU0pH5Vijesjex1GbE2czQ9epbXGJbXEV2+IB22Lb4aExdJ3aDpfYDlexHfbfxFsy7IBC1Bwb2LYTETEN4IcArk8pdQB8A8DLALwKwAn0Ulua5HUppcsBXAngYxHxxobHqyUiWgCuBvCD4tCg9bAVA58jEXEjgFUAtxeHTgB4SUrpMgCfBHBHRMw2NHw/3Q/jXXk/qv+hNqqHmvex76k1x7xdzfPDtti2eDtsiwuxas49a2yx7fBQsR22Hd4O2+FCrJpzzxo7DOw+WzzsgMJxABfJzxcCeGoQA0fEPvQe1O0ppR8BQErp6ZTSWkppHcC30HDKSErpqeLfZwD8uBjv6Yg4VMh4CMAzTcpQcCWAB1JKTxfyDFQPBf3ue6BzJCKuA/AOAB9MqVecVKQR/af4/nfo1Se9vInxt9D9oPWwF8B7AHxPZGtMD3XvI0ZkTowJtsWwLS4YiffOtrjHIG2x7fDQsR2G7XDBSLx3tsM9/Dfx9gw7oPAbAJdExMVFRPBaAHc1PWhRB3MLgMdSSl+T44fktHcDeCT/3TMow4GImOH36DU/eQS9+7+uOO06AD9pSgahEnUbpB6Efvd9F4BrI6IdERcDuATA/U0IEBFXAPg0gKtTSoty/GBE7Cm+P1LI8JeGZOin+4HpoeCtAP6UUjousjWih37vI0ZgTowRtsWwLS4Y+ntnW1xhILbYdngksB2G7XDB0N872+EK/pt4O9KAu0DmXwCuQq+D5RMAbhzQmK9HLx3kYQAPFl9XAfgOgD8Ux+8CcKhBGY6g15XzIQCP8t4BnAvgZwCOFv/ONayL/QD+A+AcOdaoHtAz1CcAnEIvsvbhre4bwI3F/HgcwJUNynAMvTokzombi3PfWzyjhwA8AOCdDcrQV/eD0kNx/NsAPpqd25Qe+r2PA50T4/5lW2xbbFs8vrbYdng0vmyHbYdth8fXDhfX3ZW2OApBjDHGGGOMMcYYY06bYZc8GGOMMcYYY4wxZhfigIIxxhhjjDHGGGN2jAMKxhhjjDHGGGOM2TEOKBhjjDHGGGOMMWbHOKBgjDHGGGOMMcaYHeOAgjHGGGOMMcYYY3aMAwrGGGOMMcYYY4zZMQ4oGGOMMcYYY4wxZsf8D9GzPuCI3sPFAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 18803 757874\n", + " Min thresh = 1000\n", + " Sliding\n", + "\n", + "\n", + " Winner = Sliding\n", + " FN Patient = 027ns_image_4743880599022_clean_ClassN_130-258.roi.nii.gz\n", + "\n", + "\n", + "030s_iimage_1180496934444_clean_ClassS_127-255.roi.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADYCAYAAABberBAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADOt0lEQVR4nOy9e5xmWVkdvPZ7v1VVd0/33HFmwOEaLyAieAt+GEU0IkYQTSKgZsRLgiZ+ETQxmnwqijHG+IlORMEbFxWDmijqKOFLwqAgKDe5D8www/T0dFdXvffb/v6oWvtd56nz1qWrquvtrmf9fvWbrvc9Z5+999nnTK31rOfZIcYIh8PhcDgcDofD4XA4HI69oHDUHXA4HA6Hw+FwOBwOh8Nx5cEFBYfD4XA4HA6Hw+FwOBx7hgsKDofD4XA4HA6Hw+FwOPYMFxQcDofD4XA4HA6Hw+Fw7BkuKDgcDofD4XA4HA6Hw+HYM1xQcDgcDofD4XA4HA6Hw7FnuKDguOwIIbwvhPD0o+6Hw+FwOGYIIdwTQvjyXR4bQwifeYnXueRzHQ6Hw+FwLBZcUHBcdsQYnxBjfMtR92M7hBC+LITwnhDCagjh4RDC74UQbjrqfjkcDsfVjBDCT4UQ7g0hrIUQPhFC+KGj7pPD4XAsGg5amN2pPf+72LEdXFBwOPLxfgBfGWM8AeBGAB8G8Moj7ZHD4XBc/XgVgMfGGJcBfCGAbw4hfP0R98nhcDiOO/zvYsdcuKDguOxQW20I4UdCCL8dQviNEML6pvr56BDCy0IIZzcjVV8h574ohPCBzWM/FkL4DtP2vw4hPBBCuD+E8O2quIYQqiGEnw4hfDKE8GAI4RdDCPW8PsYYH4wx3i8fTQC4RdfhcBwLhBCeEkJ422Y06oEQws+HECrmsGdtvofPhRBeEUIoyPnfuvmuvhBCeHMI4ZbdXDfG+MEYY0c+msLfvQ6H4ypECOFxIYS3bL5n3xdC+Fr57i0hhG+X318YQvhfm/9+6+bHfxNCaIcQvjGE8PQQwn0hhB/cfCffE0L4x5fanu2r/13s2A4uKDgWAf8QwK8DOAngXQDejI21eROAfw/gl+TYswC+BsAygBcB+E8hhCcBQAjhmQD+JYAvx8ZL7u+b6/wkgEcD+NzN728C8MPzOhVC+IwQwiqAHoDvB/BTlz5Eh8PhuKIwAfB9AE4DeBqAZwD4LnPMcwA8GcCTADwbwLcCQAjh6wD8IICvB3AGwP8H4LW7vXAI4aUhhDaA+wA0AfzWPsbhcDgcC4cQQhnAHwD4EwDXAvjnAH4zhPCYnc6NMX7p5j8/J8bYijG+fvP367Hxzr4JwAsA3LnP9myf/e9iRy5cUHAsAv6/GOObY4xjAL+NjT9AXx5jHAF4HYBbQwgnACDG+N9jjB+NG/if2HgRf8lmO88D8KsxxvfFGLsAfpQXCCEEAP8MwPfFGM/HGNcB/DiA58/rVIzxk5vWrtMA/g2AvzvQUTscDseCIsb4zhjj3THGcYzxHmwIu1tE2s336ScB/CyAb9r8/DsA/ESM8QOb7/UfB/C5e3ApvBzAEjaEil8HcHHfA3I4HI7FwlMBtLDx9+4wxvjnAP4Qs/fopeLfxhgHm38j/3ds/G18IPC/ix3z4IKCYxHwoPy7B+BcjHEivwMbL12EEL4qhHB3COH8pkr6LGy82ICNnK57pS399xkADQDv3LSWrQL4483Pt0WM8TyA1wB4UwihtJeBORwOx5WIzdSzPwwhfDqEsIYNUeC0OUzfsZ/AxjsYAG4B8J/lXXseQMBG1GxX2BSN34WN/wf86E7HOxwOxxWGGwHcG2OcymefwB7ekzm4YFLG9L18YPC/ix0WLig4rhiEEKoAfhfATwO4blMl/R/Y+EMVAB4AcLOc8gj59zls/GH6hBjjic2flRhja5eXL2HDkra8jyE4HA7HlYJXYiP6dPtmgcQfxOxdS+g79jMAML/2XgDfIe/aEzHGeozx/1xCP0oAHnUJ5zkcDsci434Aj9DaM9h4j35q898dbATCiOt30ebJEELTtMf38qW0tx3872JHggsKjisJFQBVAA8BGIcQvgrAV8j3bwDwos0iNw1IfYRNBfi/YqPmwrUAEEK4KYTwlXkXCiF8fQjhMSGEQgjhDICfAfCuTVXW4XA4rnYsAVgD0A4hPBbAd+Yc83+HEE6GEB4B4CUAmHf7iwBeFkJ4AgCEEFZCCM/d6YKb79vv2GwzhBCeAuC7Adx1EANyOByOBcLbsUHy/3UIoRxCeDo2aoq9bvP7dwP4+hBCY7O4+LeZ8x8E8Micdn80hFAJIXwJNmqO/fY+2wPgfxc7tocLCo4rBpt1D/4FNoSDCwC+GcDvy/d/BODnAPwFgI8AeNvmV4PN//7A5ud3b1p4/wzAvGI1N2EjJWIdwHuwUWn8OQc4HIfD4VhkfD823rHr2BBj84p0vQnAO7Hxh+p/x8aWj4gx/h42iuC+bvNd+14AX7XL6z4HwEc3r/sbAP7L5o/D4XBcNYgxDgF8LTbejecA/AKAb4kxsi7BfwIwxAbRfw2A3zRN/AiA12ymlrFOwqex8ffx/ZvHv3if7Sn872LHXIQY41H3weE4FIQQHoeNP2Srm4XBHA6Hw+FwOByOqwqbDoffiDHevMOhDseBwx0KjqsKIYTnbFq9TmIjQvYHLiY4HA6Hw+FwOBwOx8HDBQXH1YbvwEaNhY9iYx/1vLxfh8PhcDgcDofD4XDsE4cmKIQQnhlC+GAI4SMhhJce1nUcDkWM8ZmbuzecijE+J8b4wFH3yeE4Kvh72OFwOI4e/i52HDZijG/xdAfHUeFQaiiEEIoAPgTgHwC4D8BfAfimGOP7D/xiDofD4dgCfw87HA7H0cPfxQ6H42rHYTkUngLgIzHGj21WMX0dgGcf0rUcDofDsRX+HnY4HI6jh7+LHQ7HVY3SIbV7E4B75ff7AHzBvINXVlbi9ddfn34fjUYYj8cYj8eYTCaIMaJQKKBQKCCEAHVVhBBQKBQyn00mE4zH4/RZsVhEoVDIfD+dTtP5IQSUSiVUq1WUSiUUCgVMJhOMRiNMp9PUDs9hG3n9KBQKKJVKKJVK6Ri2oT/T6RQhBBSLxXTtSqWCYrEIAOk49pXzEWNM1+Kxdk60T3pN+9l4PM6MiWPksTwuhAAAaXx6rM4D78924PW0P4TOFcF7qz8613ljZ5t63/S6dj3Yc/ljx6l94/d6LT3X3vN57et64PfaNz3XjtPOC+dL22c/7HrXezWvfzxPf/Q4O492bvLWvrav17HzkDfH9jrz3FV2ndhx7tWV1e/3z8UYz+zppMXAnt7DAFBsNeNn3BpwdrCE4kcG2x16xWNwSwOftXLuqLvhcFz1eGhSxoX3lffVRh8dDONg+z8wFhd7ehcfp/eww+G4srCOC7l/Ex+WoJD30s/8FR9CuAPAHQBw3XXX4VWvehUAYDgc4uzZszh79iwuXLiA1dVVDAYD1Go1NJtNNJtNhBAwGo1SW7VaLf17Op2i3+/joYceQr/fx2QyQavVQqPRQKFQwHQ6xdraGtbW1gBsiA3NZhPXXnstbrzxRpw6dQrLy8vodDp46KGH0G63MRwOE/EhCWIbSvJrtRqWlpZw4sQJXHfddRiPx+j3++j3+xgOh+j1eumn0+mgUCjg1KlTuOGGG3DbbbfhkY98JJrNJorFIsbjMXq9HtbX17G+vo7V1VWcPXsW4/EYpVIJzWYTKysrueQNmJF/JYMqcAyHQ1y4cAGdTidzk/r9fhJyVMQoFAqoVCpotVqoVCppns+fP4/hcIhCoYB6vY5ms5m5FyTXFGhGo9EWcYPHTiYTDIdDDIfDzJwWCgWMx2MMh0N0Oh2Uy2XUajXUajWUy+UMWS4WiygWixkiPRgMMuOq1Wqo1+tJPAKA8Xiczq1UKiiXy6nvnU4Hq6urqQ3OrxLeUqmEcrmMcrmMQqGATqeDwWCQxstjKTaVy+Uk6vBehxBQqVTS9XkPVLShsKEiB79n/ylq6XzyeSmXy6hWq2letQ3e43K5jGKxiMlkgm63m9Zwr9dLx5VKJSwtLaXnkaIXnylgQxhst9sYDAaJ5BcKBVSrVZTL5TQXXI+8DueLYluxWEzPHeeLP1teMjFiOBymNVEul9OzXywW05xbIUzXrIpPMUZ87GMf+8SWC10Z2PE9DGTfxbXyCm66/YfwyNURCh9912H370gRrvssfPIrl/D+7/qFo+6Kw3HV4rP/8pvwGa9awqPf/5f7auft8a4D6tGRYE9/Ex+n97DD4biy8Gfxd3L/Jj4sQeE+AI+Q328GcL8eEGO8E8CdAPCYxzwmyucAsuRQ/+AnmQGQid5rtJ5EkSRO3QoaCdWosxLParW6JcKp7RYKBdRqNXS73UROeJ3hcJiIJMF+kFTzOgDQarUwGAwwGAwwHA4T0eKxSp603+PxOF1Dx0QSXygUUC5vRATU4TCZTBLRpAOD57CPKiaMRqM0vtFolEQKFQoGg0GaIxJquit4PNvSe0Go6KHzSQJJIkgBgv3gnKuDgufx+koeVdhgm3YtsU3bjv7YKLqOXa/L8U6n03Qv2F/Oi861ugcoiqjbJoQw995zHvlf62zhnJZKpS3PgIoUfI44J3nOGhU3JpNJxs2gfeJzoCSdY9A5YJvWhcP+TqfTLaTfCgr8XudMx8R7o+4RvY/ad86Vfn6FYsf3MJB9Fy+HU7H+pv394X+lIP7Ve3Br9zH4/Kc+D3/0Ob+K08Xmzic5HI5d41kffBYqf3gCtT9421F35aixp7+Jj9N72OFwXB04LEHhrwDcHkK4DcCnADwfwDfPO5gkQF0AjE7WarVEKEhCSDL4wygwj1ERgtFPtg9kCT4wi+73+310Op0UFWUfSN74O6OsJKNKkkulUoq2KnkjYer3+ynqG2NEt9tFr9dDt9tFu91OQoCSfhI39pUkvtfrpTnUa7CvADLpG4PBIJFRnm9TNywhVlJIjMfjJBxw3nh9zhvnlJFu9kFFHL0PSvKUdA+Hw4xAVCwWM2Ohk4BzrykwXBt6XbbNqLfef5vmYB0eKkgoQeb9ooDC8zmHnAcVRFSsYB85F1zLSo517nm8tfJrGoiKXErUuYbZ1zzBgg4gm7LANcm55ryquKTzR0FFx2SfB7pPOE9WUKhUKnNTWNQ9Y9eT3nN+z3VkU3VUgNE0GnVdXKHY03v4OGLyvg/i1D8M+MMP3IbntD6BlUL9qLvkcFzxmMQpPjruIX7vCq75m2MvJgD+LnY4HFc5DkVQiDGOQwjfA+DNAIoAfiXG+L5tjk+2eRIZigkaISZIEOgImEwmyaZN2zYJNc/tdrvJ5q01DjSCTpJdrVYTESZIIHl+pVJBrVZLpKbT6aDX6yUCUqvV0Gq1MkRZiXy73UapVML6+jrK5TIqlQqWlpaSJb9QKCTSbGs+0E2hxJvfMV2ARE2t771eD6PRKNngGcW1tnymaHS73S2RbM4X51jdCyRx1Wo1kXb2nc4NFTx4j5iaouNUZ4gl/7zvJPMUbihA1Ov1dO8551aAUtGJTgjeZxJLXRsqijD6ThFiPB6jWq1mIvE2Sq6ChdrytX0l5byv6mBg//gZyT37SrGAhJhrWkmxOhvK5XImvYWYTCaZ54fX0pQVzkW/30/zpC6SyWSSxDN9bjgmvZf84ZxwXXOe+LzqOtO+8P5r/RHrYqBLROfHuhIodOj3+g640rDX9/CxRYx43Wfdih97zbPw4ae/+qh743Bc8fhvnRP4r094KuLoA0fdlYWAv4sdDsfVjsNyKCDG+D8A/I9dHovBYJAIIYkFo/UrKyuJuJDgkHCSXA8Gg0SomD6gdu9qtZpxNwAz0kqiQ4JDEkTSwr7pedVqNVMvYDAYoN1uJ5I7GAxQrVYBbNSFaLfbSXQgEWTu/MWLF1GtVnHhwoVEwsvlMvr9fhqbJTYkQLaoHY/lWNTtMBgM0rj0d5uTrgTS2t5JpFkvgFFotbbTnUGnB++btZmra0Ovo2kVvMc2jUFt8iSbeo84R7x/wCw9QQmn2uDZJ+s0sOkxmsrA80ajUeoH51DXKufBRvpVwOD4Ka4x7UH7ausmcF1oyg/b5TPASLw6ELQ/Knr0+/2M2GPTFVQE6Ha76fnRtBOdd107eo+scKDCCe83j2FNEX0m9TjeQ72PusY4X7aoqD1Gn2/CFoS80rCX9/BxRhwN8ahXjPClb7gD02LAr//Mf8Rt5dZRd8vhuOLwpHd8I1b+3yVURu846q4sFPxd7HA4rmYcmqCwFyiJIpFVwsAigITmxisRYTSeBMR+T1JiI+Fq+VfyRtLNaDgFC017GI1GKT9eo+d0OrCdXq+XIv9qP2f6wsWLF3HhwoWU612tVlOROooKltxa2zYFCo1yVyqVRGBVyGCbjLBTZGBbPEedC5o+otF6Em2eP5lMkpjA+dLj9L9q+dc8f62fYUUIvYfT6TQReaZa6JxoFJ390ba0P9q+HqNigu2DrkebmsA1qMUndZ3p9XVtA8gUr1QCruRf+2NThpScW/cA10aeoMDzbC0F218Keby3FBV4P7nOdS1yLPpfkncVnGyNhTyBR8efdy91bvQcbUvFJRUUtL+O44P4rveh/i4AhSKe8Q9fgkpj431WLE7xV1/wq2gUKkfbQYdjQfHAuI0vu/s7AQCtP22h8mZPc3A4HI7jhIUQFEhOmPKg0XEteKcRYi1+SLKs+dZKOG1EmoKFRjU1yqnReNY7oO2eUc5KpZKq9avVmuSy1+uhUqlk2rFRf/Z1NBphbW0NDz30UBIZGo1GKt5oxQDNe1cixXQK2tpJLK2goJX/tdCfVtjnPAHYkv/P6+nWlewH55Xkmlti2voEvA6vTWs+rfiVyuyPdxtV5vUpePBaumsBr8P1oQUjNaKuhF5dCpasqivCrivWEyC55rj4o84AS3ZJuJUg815a+z3Hy3ur5FmdAzoWJdJ6HesY4PjYthYVta4Q7Q/FNH12bO0P/U5dCSoG5Qks6qTQNZgnJFixI2+9sC9sm+fou8KuOSsEOY4BphPc/sJ3pl9DtYo/es9p3Fre3RaTRUR87qY7zeG42nFu0sFr1z4btzzvPUfdFYfD4XAcERZCUCBRJZFhdJNgFF9FBCW2jLAzRYJkVAkNCRBt3cPhMBFdkhmSTZL6fr+PdruNXq+XKQrIa9jrMeLL/nU6nYzAQJcBgAzpZL0DpjwMh0M0m00UCoWUIsG+W6s7x6lCDImoblnJOVUSr7s2sA0lyiSVunUfU0aUxCsZZHoBfy8UCuj3+0l4UYcAkK3Yz20ZKULwh9fhj5JAkmx1M7BvvBckrlqokmMkwVRHi9bs0OKQdv61XoX+znnQ1BP+rkIGyaotnKjrmutMaxqoGGUJuIpNec4IXodzpYVF85wPvEcqQGjqUa/XS+dxHas7g5+zHRUqOE9az8I6C9hXXtu6jrQQpa4Lzgcwc3vwXK5FO4d27O5ScABAHAxw52NvB3D7ro4v3XQD/tvdb0I5FHc+2OG4wvGUP//nuP2F70LOjrQOh8PhOCZYCEEBmBWL0+0MgRn5Y5FAjfRrpFtz6Vk0sVKpJNLBVAIlsAASGSVhJGlWUk1BgQSWggEdCBQaCJJIFmnUHRnUGq4RUe4MQVeCVs5nGgUJtyV37CfTGPgdSTFTLlSEIIFi9FiJtc4N/8t50tx6ihCau65Wfb3OdDpN5Jgk09rWmaqiNTI4t0qc86LtSl71OBJlvT96nnVw0L3C/ujOAEqUdQvMEEISDOiGoJCjhDpvG1QrIHAsKlRwvejaYn0FfmZrabAtS7Z5LAsy8nzOlWKeY4PCmxaWZKqRriF+xj5QxLJrS9OOdC3ye4qJKkywv7qTir3nbJvtaF91zthXfqbPpTsUHACA6e6Lc04+fRbP/JY7EF2PchwDPPZTa5j4e9LhcDiONRZCUOAf+0oM1THAP/ZHo1HaZpHEhGKBksQQAqrVaobQVavVTI6+rReghMbWVdDij4Rum0jSyy0NNW+fJGowGKRzeF39LzAj/lqMT4m73eaRkVYVFLTyP8koibIlZSraaOoC/6v2cD1HiaYSXUaALQFVF4bmxvO+8z5r5Fyj00oM9Z6xb3rf1V7PY/Ps8CpmkADr7gE6h+rK0PodbI99JznVNq2NXu37JMO65rVdzpuN4Ks4wPa5DnT+rfVfSTPvg86p3lddmzbFQP/N+bApLVYsUrHDtsVnSEUkPYZzyudM1466SbjG9BnhedpfzpcKLSrizBuvw7EbxNEQpbveufOBDsdVgCt3HxyHw+FwHBQWQlAAslFn/qGvhQ9J7nq9HjqdTvqMEX8lkYVCAfV6PUM6ucUjgIxzQavdExrlZoqDWtJZ40Bz8XWniOFwiE6nk1InGM1WQYFj5XUZnecOE7aA5GQySd8poaIrQ9NBNAqtdQWUfAEzN4Hm/quzAdgQLVRQ4DlKWvXesc9K8kkUgdl2hToHJNqsRcDjSOLpMMiztRO8DoUd7Zc9nm1Y54EtTkmCyjlW8mlFABUPVHixIgzv9bz6G7bfNkVE5znPom/vTZ5bRNesbcsKQZaYW2HAEn7rPLFpA3p97acVOPRe2RQOnVM6H9TRoevXXt9+x/bzxu9wOBwOh8PhcDi2x0IICtPpbKtBkk06D6rVKkqlEmq1WiYiD2SJoW4JR/LJHQ5ot+eOA6VSCUtLSxkCRzLBgoskpuwTt4IkAX344YczZBOYORm4EwJFDDolGo1GIvkhBHS73USGKE6QYI5Goy1OBW6vqKILr0kHg9Y2YLvq8OB3nHcVO1jUUgUV9lUdGpxfzWdnewSJH9MVtD4A54NtUYzRHSFsrQAlvkocVVhhqou6IYBsjQIVAQh+x7QapnGoo4D3xxJqvYZ+Zh0gKsZwjfHfFJ5UBLDEWwtsanoEjy8Wi6kmiNYFYTs26j/PxaBr2RJ/FY6UuHOsTAPSPqsQpJ/z3zxf+6zX137a+hn8twqQ+h3b0XeDPmPssz4XPM+243A4HA6Hw+FwOLZiIQQFJfMqGpAo1Go1LC0tpVoEjMYDs7z0arWKWq2WhAMSB9rRtShfo9HIFF7sdDq5kVRgJmyQQGv9BjoobARbo9X8ncSc4oQWoST51d0CeC6LKVKoUKLEnQBIMNkvjoUCCElrpVJBv9/fEhEmsdIaCdYaz2swbULFH0vQ7X3V+2RTD/RcS96UNFp7vxI/fqbCkroVFLYIowoUes+AmeuEn6klP69gnxZs5NrROhdaMFFrAFBE0T6xjwpb7FAFBT4/efUILIHXuVWCr/Oj98Y6Aux12R7nkfOkfbFuBP5oUU1us2qP17WYN548QcJCP1cBjLtR5KU6WGeJw+FwOBwOh8PhyGIhBAVgVpyNgoL+QU+3Qa1WQ6PRQK1WA4AUma7Vamg2m6jVaqjX6+l7JWAkLSTr5XIZk8kkRbS1eB3JuRJDa90nGaHQQKu8kl/NJVdiohFTYEZWbVSU7bLgn911gSRVI9Y2gg4gl1TnRY+VEJMgcqwqXPBzTV2wUDGC866OC7Zr50MJY14BR9tnhRJ+/be6SPTekNRrXr4lldbyr4RbayHMO4eYl3LB3wFkhCg9T0UInT/rRshLUdA+W4eFbgtqoYRe16Vtw4oUVjCwLgcrYugzYueR/9W1kddP+9+8fuWlGum188QWh8PhcDgcDofDsT0WRlAAZnbkRqORIvIkWRQOGo0Gms1mIvKlUgnNZhNLS0tJTKjX64nw081AgsDIOtMhmIKgxJKuAU0vUOs0iQ0dBIVCIe2wQFs7yaaea8meFSgsYSSZ1MKOJF2acqD2cyVHGk0m8VQxwW6dp9tIKplk3/k7jwdmtR9s3Qm1vGuqCcfE//KeWLJo58Za2C2RtOeqM8M6DVRM4H3Wtiw51XvG/nCcvIYVIvS+23uubasjQUm7/q5CgYo9tsCmdQCwLU0FUqGA95tzptDov953hU1lYP/suPMcDQTbppBnz9P5mOe22E4IoiCh49E50LU173OHw+FwOBwOh8ORj4URFPjHe6VSyRRUnE6naa/6arWKlZUVDIfDlLIAAM1mEysrKynloVqtot/vo1wuJwKuTgWKE8AGASoWi+h0OgCQRAy6AiyRC2FjB4nxeIx+v59LDEl8WPzRjtFG7zkWbg3Jz3ldJb50MigJUjKeV2CS80hhguICCbGmUvCaCrslppIt1l2g4MHxqaBSqVSS84TzpA4Q9m878qr9yMvtHwwGKaXEkkJN2dC8+cFgkBE1tG0Vg+wuC+qsoFCiYowKNrwfmo6QR2AVmmZiUxvs+iG0MKI6F7iWlIyrWMY0GZ1bK+7YfuYJZZaM21QSTQViik8IIX3Gtm0RSq55rWOh/bIizzx3iHUIWSeDHZuO2+FwOBwOh8PhcORjIQSFGGOqY9BsNlGv19Pn/X4/Q5YqlQoajUbK5wc2CMLS0hKazWYqdqdF6+y1LOkCZsQd2CAXvV4v7aqgkV22yQi6bjWo/STRVMFAt36k3ZxpA/ydjgfuLkGwYCDbpcvCRsBJxpUIaxRYhRoVJ6xIwTZYLJMkTAk7+8xr0fVhCaz+l4UT86z9/K9en6CoYl0V6mCh+GRdFko6+/1+mk+uES30SeKqRR8BpIKHtp4D1x/bt+NSWOu+dQwobMFDFTFUTODc25QCJch6nhULVPSwQo4VP+g+0J+8e0XRgGshry39r35v60aosyZvjVwKrJjAz2xah8PhcDgcDofD4dgeCyEoAEjReYoELF5I0ksiWSwWUavVMi4FJe6sjWCRF3XVaLWmV2gEXQkaaySQwALZSvG6w4KSRvabxyoRZsV/Rrn53XA4zCVsvIYWrlTSqESIZHHe2G3O/XYkyhJUfsZ7s12Em22TkOo9USJtXR7qLNC0Co14857kFUzUHRQsMdedHyiYsA1bw0N3fWA/db50LndDRPPSC3Qe5tUeyHNP6Dn231Yo2qmopI5N+7abNWLXhT43eRH/PCFiu7bV2WDXov6+G7Fh3n1yEcHhcDgcDofD4dgbFkZQoAWdBFFz70kAWLSxXC6jXq+nqLTu6kBSPY9s6e8kgqPRCP1+P2PDVxcBj2MaBGHTBLSII0FbPFMatIgiibCKEzzOOiiUYCtR3G6sJNR5FeznWe3t7xQKtEaCzp+6NbRgolrQrR1dUwDUIWKjxCqiaDsqJnALSopPbJPuDRVzVIBRQYF9ooNCc/l1l468wn7aNyXvOjd5czwv7UFFA3vPbKqDtsXjLUFX8mwFiXn90Hbs+fNIN++p3vO8e6nXzGtj3jwByMwvr6efsX/7dS/of92t4HA4HA6Hw+FwzMfCCApaQ4DFEqvVKqrV6pat8EqlUrKg07JO0mLt9paAazoC25tMJskdYQWDGGPaKlIFBfaRfaEAwYg2Uy+A2daTABIRZgHHSqWSjgFmVny6FTTf2xJai7z0DiXtJL96vE0xoEijOe1WzMgjobpFp02jUIcJ5862T/EkT7DRIou6G4eKL2qH5xaYFGt0/BQbtP/sk64t1pawdQbUwq8pN+pqoetEx8D5tXNg59Qel/f5PHeBHq/31bo82JYt5KmCmn1+8oQBfab0/rJNnmvv206OhzxHja45m/5h+7gfWEHB4XA4HA6Hw+FwzMdCCApKJknca7Vaysuv1WqZnHgAqNfraDQaiQgpabKRWWDmINBoLq/V7XbR6XQwGAwScS2XyxmrNcmWtqERcKZbMGrO69frdYQQkrPCkjhLAJX4sdAgo+Q2Ss1UD/ZDiTqvobBbM3J8StBUdAGQRBNNP+AYNJ2D4ysWi6nYIefC7vJA0QRAKpBZLpczO1qwPyrGqLDBOSGBH41GqT6DFuzUcREUB2ybmoai4PU04m7FGV17WpCR57NgJa/JNcm2dfcGFbzYlhXKlLBr4U6uKbvbgs63FojcDnnPkX6ugkEIsyKkOld6Dudip7SEPIeEFRV07W5Xt2K7toH5DoTdOCocDofD4XA4HI7jjoUQFJRsMP2g1WqlSC+JulaKr1arKbrd6/UAZNMU5u0UAGQJNckXiQnJfB55s8RebfB2G0bWZWDxRCUuJOxK7NgH3VFBazpohF4JutrMOYc28m4t6GyDRJxQQqvjUpeC3rMYYyoQSTFBCbmtXcC503EpeS4UCsmhwh86VXRHjG63mxE+dFcM7ae6DpQU8v5SkJlXANHm5ms9BVt/QoWWPEHCtqdrSq9r14k6BWwajK7NPDFN3Sk2lSHP6WDFA+2XilnafxUwbPvWXWHP0bmy47R9sq4YFQYdDofD4XA4HA7H0eCSBYUQwiMA/BqA6wFMAdwZY/zPIYRTAF4P4FYA9wB4Xozxwm7aJDGiU4CRb7uFIokoI9tKLHSnBgBbCPdm3zPFCpXkaHQ3b7tEJXMUHzRSz3M0mq/EEchuw2iL+akowfNJVBl91x0kbKTWklMbvSWRZtQ/b4cCdQXo2PJEGr1HSuzzyLISbXV76G4UmnKha0DXAcF+qtiQR6TzItlqwdc55P3X+67FIC2x5Zxa0s1r67F5AoVdV/Y4KzDoOrWEfrsimzbSP4+IzztHxa684pQ6hnnpGrZNm8Jh+5WXvmDFBcW8VBF7zLzxzrvmouMw3sUOh8Ph2D38PexwOI4zCjsfMhdjAP8qxvg4AE8F8N0hhMcDeCmAu2KMtwO4a/P3baEkgZFWm1oAIBVGJDltNps4deoUTp8+jaWlpZS3rrDW/nn2aJtyodsKWtGAEXXWQmBqgroO2CYt/J1OJ9USKJfLqNVqqFaraYcHknzWjeBYrHWf5JpE2kaalcizDoM9V7edZPSfKQq6W4VuS6nuDBth1hz5PEJmj7HiDbCxLWOj0UCj0dgiAnG+arVaZkcPpjhUq9VMioqS8/F4nLaKpHBhHQScN86dEnR1BrDNPDu/dX6wL4PBIG19qqkJVmhSccEWH7SkV0m+pkzYAoV5sNfYrv2862nKjQoe2zkFrHCQ9x3vgRX78kQH20cds567nYCyU5+vMBzYu9jhcDgclwR/DzscjmOLS3YoxBgfAPDA5r/XQwgfAHATgGcDePrmYa8B8BYAP7BdWyTexWIR4/EYvV4P7XY71U4giYwxYjAYpEhpuVxGq9VCrVZDu91Gv99P5M0SRC2GSHLP4/WHtRJsdNxGmTWHH0Ai5kzTYHE/bgfZ6/VSe0zj0Ahv2KyzoOSKRf8YxVdXRl5FfWCWI29TOPgdMEvPoMigc28JLsduBQVgFjG39QSs8KKCAu+nOi/YJ+7eUavV0Ov10ryxDoP2mbUT8q7L+8N51Mg55x+YFcDketF2ZJ2nMfDftk1NC9HUF+t80fWuYplNB+C955piioW2x4KRVlzQVBxdI1pU0zpGVACz47bQ9pniwuOHw+GWAqoExZYQQqb4I/uh4oB1dvD7eWKgnrdbh4HOTZ4rYienwyLhIN/FDofD4dg7/D3scDiOMw6khkII4VYATwTwdgDXbb5YEWN8IIRw7U7n22g3nQibbW8hGFrArlqtotVqoVQqod1uI4SAdrudjiNxA2Y1Ftg2d1pQcmUJSbFYTMIAI/maGqCkjqQJmBX+I8m09RDoINDIsjoPKKxokUZG4lU04LXG43EiezbtQAmebu0YQkC1Ws2QXt0iUYlmnq3dWvv1ftKxoUSRwgVFBX5HsYJkvFarZdI9dGtG6y5QB4tem/PDueS9ZL+V0KoTQedPyaSSWhsBVyHBCgS6PnhOXuqLFWXmuQR03DYCr2vd3iP9TNuzooQViyy0zd2mD+QJHvocWzFHhRs7przjrAB0qSJAnpB0pWG/72KHw+Fw7A/+HnY4HMcN+xYUQggtAL8L4HtjjGu7jRCGEO4AcAcAtFqtDDlgHQUAiRBai7ZG5BuNRiIYk8kkFe0jtNL9cDhMRJ3iAomnRlylnxmHhIoKllxZJwCvbUkvxQRuQ6lEi2kGjMSTdKrVX3cQYF+UkOuYrT0fyJJ7Rvs1Uq/X0T6ro0CJIa9hf+dxvKba5SkokPhbJ4UWTGTfWNchZy1lSKi6I3RceW4BABmBSp0Utt90iqhYxWtqukse2WdbKkrouqCQpsfq+Cis7YU8a/vWCaD3VdtjX1TImyccsP28rT5V1OGYdUtKHRORV/QzTyjR8VnkuQ12Egd2+85adBzEu7iGxuF10OFwOK5y+HvY4XAcR+xLUAghlLHx4vzNGOMbNz9+MIRww6YSewOAs3nnxhjvBHAnAJw+fToqsWDeOQkcf+d2jPYFTRJOYtputxO5I7Hs9XqYTCZJTLBRUpLrzb4BmJFoRqCVCNIRsDkPSZBgUUFGxa1FnKSp3++nvgAbKRNsm9din9RZsF2e+GQyyaQGqPvB2sc5j3RFUOQAkKnToCkjKqRwS09LFLU2gI3ocw4sEVaHBcfALQi59SRTXZgGoGO3YN/UGcIUgcFgkClImVdgkN/x3rP/FA3ipr1f14mKESoc8B7wntqoO4UbPTYv0l8ul9P92UsUXtdoHtm2DhtdpypuqOtCYYUrK+TZ66gTKE+o0GvZz/fiGpjnYNA2ryYc1Lt4OZy6uibG4XA4LhP8PexwOI4r9rPLQwDwKgAfiDH+jHz1+wBeAODlm/99027ao5WfaQmshQAgFUkkoaL1n26EpaUllMtlNJtNTCYTXLhwIYkJlUoFlUoltcm8fI0kFwqFVJuAeeC6nSIJpBbX06h0CAH1ej0RVRJIboFYKBRSWgaAVKSx2+0mcYPjGQwGma0peY6SORI+zgvP4Xck/Kx/wO/H43HG6aDkmWRdI/xa64DFGnVbTf5bUy/yiCW/010xrBtEBRiuh2q1isFgkOlntVpNW3Ja9wHnS50e6mrgXPX7fdRqtS3pDRQQ8gQb9o3XYG0M3l8VjqbTaVprFMV4DoUDrSkAINXH0PoC2qbWxbCiGvunY7EumnkOB03B0e1IWVuDfVXHBgUUrk0V1DR1g/OfJ17krRHrYrFuF0c+Dvpd7HA4HI69wd/DDofjOGM/DoUvAvBPAbwnhPDuzc9+EBsvzTeEEL4NwCcBPHenhpS8acoCyXGn08FoNMqQOZInpkcokdYoqBYzJKEaDodb7Pu6NaESG61lQGKued+2boIdj7oOlFzZWgAcO4BEKvPy6tURoISQ1yIp5u/83o5Zt6fU9vOi0ErcrdPC1oVQ4qlbZXLMnC+2o3215F13c9BtKe3c8brWYm9TKNRVwv5YJwbnXY+zEXObHqO7R6iThPPANjQlQvvMsVKIypsPe08s8hwI6jCwNSI0Zcb2M+8nb875PM4TDKzrJ09ssv20aSM6ds6LOlTy6nfsFXmOkCsMB/YudjgcDsclwd/DDofj2GI/uzz8LwDz/vJ+xh7byhA5jewCQLvdTjn0jD6zUCKwQcBZXJHtAVlSqtX9gVkhQJIcJYV2Sz8KCdY9kHceYSOrFC2UQGokXOeBEWa7E4K6BXiebhnIugTsoxZvpChgSaBCx0w3A2tN2J0QeLySY031sPeXxyvh5/1VQqpgX0nSlbTzc5t6otcDZrZ7plBQCNCoPqPxWo9Cia2OkdfRdAk9jvdW+6KCjyXfKiqoG2FeWoumBVioODMvbYB9tsKZbU/nVNuzaQnq8tAiiype6FrZDeHP64+9p3ZejjMO8l3scDgcjr3D38MOh+M440B2edgvmFKghJJWawBpC8FarYZ6vY5Go4Hl5WU0Go3MtoxsRwsdKsliRJp2+F6vh36/nwpAkpCTfLJvJNUk1kqklPyQ2Oc5FQCkvH6mWNACr33V8VuBhGJCoVBIOfzWFUAyTKcCMCNgw+EwRYzzSDzFjMFgkOaKRJs/6pLQ2gFsz6Zr5Akt9t4Tlmzznlhyz3vIe2TnXIULtsF2OQ6mtFCcYB0JCk1aZ4FrSMdmhQMdg55jo/Y2NYBzo8U06WSxkXrOV56gkOcwsJ/rrif6XNi28/qtfbWuBSuUsC3OLa/Dcev1bI0N61KZJxpYl8JxFxUcDofD4XA4HI6jwMIICu12O/0byN/ikISs0Wjg5MmTKY2BBHEymSRhgpFo7uIwnU5TXj4FBQBbjimVSlheXkalUsH6+npqT4v3jUYj1Ov11CfWPmAf1O5Nh0SlUkm/cwwk7MCGy0JrMpCIaYoDgOSSoHug0+kkEYGf8afZbCY3AmtUKDnmeAGk1I7hcJhIOT/XH3UFTKdT1Go11Go1ABuFJq2AwHuqQoI6JzR6r+kQ/Jzzw2PpROEcjcfjVNBSHR4Uljj3pVIp1V9QNwJFHv5wLaljgM4WXp+iEx0necUHbbFF7uihEXuOjbUhuO4JdaJw7emasMTfpinsRLKtC8I6TKyopQKA7gDCfluhQdebijVWNNB1Yt0rWsfjsFITdK62c0Y4HA6Hw+FwOByOLBZCUJhOp+h2uwCQ+4c9SR2Ja6VSQbPZRL1ex3g8xoULF9DtdjMpAozI9no99Ho9hBBQq9XQaDTQarVS4bx+vw8AKSrPQo7qAqBbQkmNJUL8r0bvNeVCc9ctKVPyTpJKsqzpFBwbCTEFFAotmnYwHA5RLBaT8EEyrVFg9jWEkLH7a/tqY9eoOtsh1JGg4oH+m0QfQEY80ci/knytT8Hr2i1EeW0luOok4Zwx6q/1FACkVBHtL4k8BSAKP9b9oPeX4+R/eb/ZZxU4tK8chzpi1Mlgib5Ng1BY94S6LrTuhh6nY9c6EuoO0PQM22/rsLApEfpc5KW06H/1c+uOyDt2PykPKoCom0evb//tcDgcDofD4XA4slgIQSHGmFIW1AKtqQIaVeeOBKyjEEJIu0Bo/jaAVOSRBEut/Er2GXnmuYxAK5EjQcuz+gOzGgS64wLJmBa147hscT/NnycZ5XdKCJWE5xXrUxLKaDnbt4RYc9vVFaB1KfSH4+SY9holtvPDsehuCSS5JP+E1nOwEWub869kl2PnNdWdMo+Ya1ta78JG4vPy/XmupizYIqAqyKiwo/fUCj+2MGIe2dW+M6VGHScKmzagwoE6Q3ZaZ/w3rzMvbcLOt03P0HHpNba7R3lkPy8FYx526+ZwOBwOh8PhcDgcW7EwggK3UCTR12hwrVZDjDHlvauTgFFfRoGZ2qDF/JiKQDIKIGNzt4XwmG6gW/2RAGoKgubQ250XmJagIoRG1pVwcjz6Q6GBpF63aCQJ0roBtk32BcgSZyVa+m/tIwUabpNpo+i8vm7JSOQJJ4SmW+jx6oLgZ/zhvWdfdQcMO+ccP+dOf/KKO+rYtb92HrVd3U1E3QY6bp6XVwNBya4ScL2nOg82um/7NU9U0D5StNG5skKTdT5YoUnHZdMqtK6Ikv9CoZDZFSVPwNHCnNuJAHmE34oNPN/WttiNqJAnTrnI4HA4HA6Hw+FwbI+FEBSADaLIOgRaNV4L6DWbzUwaAAmMEjsSl1arlazea2triRxbUaFSqaDRaAAA6vV6KpbY7/e3bHtoyajWSQghpOKRTKPg9YbDIXq9XkYoyLPua6FHXk8FBoocJEC05tt+VCqVJIJouoa9Xowx9ZXzoikUFBVYuFJ339DtAPPIqjoRVJhRJ8l0OkW9Xke1Wk1iElMieB+YqsA2B4MB+v1+huQqodWUBo6T7Srp5zyqQ0KJtpJl1tjgPVLSzc8UO9nwdXcIrnMLdSRoCoGuFe3zdtehaKYE3KYqqGBlYYULFd/YFtebHseUHGCrG4TrVlNf2JZ10ui856V8WJeDdWnw+nmilQpzvPf6jOk6djgcDofD4XA4HFksjKAAIJE3YGbP1+0Ol5aWUtFALXSnbgLWTaBlv1gsYmlpCZVKJeXmqwjBHQNijKlgI10N/X4/ESIbgdaItY12a70ETSFot9uZrS4tISqXy+l4Jcy8DsmWig56Pa3RUC6XM0XwtHAl54zFCjXHXsfC8dttIzWlhGPmPQFmufjATExgv2w9CK3rwDXA83jPNApOgYZ9oVDBdni94XCY1g7HpekTms6g4gNTYthnwkbBt4MSc86V3ic6YNjuTm1aEYhkWLfMzGuH19QxW1HBpkPYNBab7qBpHlY4oVsoz22gzhrbjhU8rJNnXtqDjoltcn3xO5tWYdux3+uzbdekw+FwOBwOh8PhyGIhBAX9g14JIKGFAlncjsIDyamSksFgkESFGCNqtVqKVipRUALKugz8nkSakW2192vqA6/JKC0jvqzvQGLKKLiO09YC0HSJ4XCYxA2Sa/ZF0yTyCuVxTknAKSyouAAgpYzod2yHfSAx190rtA8qovBc/lcJo40E87jhcJh2OOB3dDAASEIK77WKG7x+nuhjUwVU+OD86PEaDdcxsi3r7tD2tC8qjuj6VleNkl4LJfOa0qGgqKDE3pJiTVewJDpv/er1+ZNX/NKKBXoNQsdpXQY8Xx0C+pndCWK3As488UDn1PaHa1PvqZ0L6z5xOBwOh8PhcDgcMyyEoABsLZZnSSsws673+3202+1ELOlaIInq9XrodDqJINDCTGFAyS3z9EnQmQbQ6/VShF7THNg/EjKKGSS1dD3U6/UkJlBQYDoBSRjJOttU0YSCiW5zqYSYfdcILlNDKG6oWGDJNZAVMLQwIo/hFpXqTrBWcRUUtD8UV3RHA01T0doB6hzQPvF7zq+mTOh90LnnfVZhw0KFGEsmVQDhXOsWjUqi1R2TN7dAlpSqi2TejiH8XUWMvAg7RQWbksPr6fEqKtg0hbxUCo36WwJu+6Lj4P3lOEulUlrHPF/vke4MwfPtOuCzOw86XhVUdJ7yhBZez7Zv3RG7ETQcDofD4XA4HI7jioUQFEIIaVtIWu2VjANAo9FIBOXs2bOoVCqo1+spwqgpEsPhMAkKhUIhcywJhG6JCCBT3wBAcidw+0WSemBGpNTmzzQDYGOLwmazmcnf7na76PV6GSu85mfzeoPBIF23VCqlWgLAhqPA2q9tpFuFCqY5aPoBz1dXghJ4hbWaa20BnsMaDBy3rXtgd3DQyLUKFbyepjaw7kQIIdVOoEPBihdK9u0OGbrOmOLBdAEraKhrhaCwosUjeX1LivW+qEgRQkjzo4TV1qOwBSr1PuwULecatmSd52rdCL2edV4oAedcahqBpi9o+gaPVyHJEnj+V0UPrkXrIGAf9bmz99S2xc9U+NFnhvdBxR0dL91POpcOh8PhcDgcDocjHwsjKGh6gBZYDCGgVqul+geTyQTr6+s4d+4carUayuVy2kLSFlu0REIjpyRuJMVa98CSDeboU3DIy7lmeoK1c2uEWLemJLlT0aHT6aTaD+oyUCFEyTKj9lofgOezkKCOi4KCknZ1a7B9rf2gKSgaDVYCr+IP7yPJ6mQySd9rsbvBYLDFUq7uDZ7L2ggUHyg+8di8YpN0LMxzAHC+9d9sO8+uz2to2gfHpE6IvFSHvB8rRuic8hgKZdYVwbGwDwTvu7oErLuAQo+OWaF1DHRMdPbk1SbISxFQFwT7qvdD/62ilXV32OdIxQVdO/qc6Xl2/tgX6+LQ69j/OhwOh8PhcDgcjvlYCEEByOZdK8kFsCXq2e12cfHiRfT7/eQ+YOR6Mpmkz1i0UYmSTS3geaPRKEUutSAgo9nW0k7SphF5Ehv2XwmnkkLdepAgwadIwH4qiS2Xy0mU0Ci79ovEksfRWVGpVFKEXHfOmHcfOBbNMVcSp4SbW33Soq6CgpJILYhpXQF5kWmO0eb567aQ81wVShbnWfTV2ZC3BpmaQIFD16JG+7UfeQKDTaPIExNUpNGUCLs1pr1XVuSyP4T2gbAEXueQ/1UxwLoX9LnSOdfzrchg0y+ssKH3Wu+DtjnPkaACR944tU8K68jwVAeHw+FwOBwOh2N3WChBQa3mGg0FsnZu7pjAtIDBYJAKKqpboFAoJEs+iS/dBlp0kXUS2EapVEKj0UC3291CFpUMcYcIuieUgAJZwmYjuSSkJKvcmlFTGDQtw7oTVJwgbCFFdQ3QycH0AZt/b+8FhQO1u9vvlFBqP1VQ6Pf7KJfLGeKsjgrOkyXg6pBQW721uFvLutrj+ZnufmHrR2i/89wlKkRxfVKY0XussOMh8dd+qiDBPut9ZR95TF4RR86/3X5R15n+286VFr9ke9p3dZXYtAcVM9ThYh0OKtLwnmqf9BzrllEHgoouNg3Big554yfsMfZ4TdVwOBwOh8PhcDgc22NhBAUSCUaASTxIAEjkmG+uOfjj8RgXL15EtVpFo9FAs9lEuVzOCAiM9isx090j+v0+6vV6cik0m81MQTlre9dIM4lmCCHTJomYLWzI82u1WrL/9/v9DNmxJFTnSWsvKAnWfHHOlwoDFBXK5TL6/X66JkkhazZoZJjzxNSF7e4fyb+mWViLeqVSSW3SSaEk0p6vUXu6K5hmoeKT3hO2petJI9NK3LV9zZnnmuHYtT4Ed6XguXp9vXaebZ7kme3p9xwbXTVaDJICmE1h0F1KNJ3FukA4Rq4JdbioeKAuglKphGq1mrkPrB3Ce2mdNNZVsZMboFKpZJ5PnTeSe+uS0LasK8KCIhz7pvOjrgkrPDkcDofD4XA4HI6dsRCCgo1OM19brelKWgqFQipWGONsVwYSLkYrGfXXWglMKWg0GhmyNp1OUzS92Wyi2Wyi3+9n0iM04q+OBpurrdF1FQCUuJIIMl3A5nare0HFFY3OKgm2aSJKuHn+ZDJJu0ZUKhWUSiX0+/3M7g4kgTaibi3m1qavrgJeU7fJtOkSvJYliJxfu0OEPU9JrZJc9lvnTPuvdSE0r17Hq+JRntjAvlhhQmtwWFeKhYobuq6Z2qLrSQt/auqFijMqJulxbINiDd07xWIxUyTU3lvOLbdcHY1GaT2p60VFMltjQYUTihhWiNN1ru8A6xbhWPR7FR1sgU8iz7Wg7amTRwUw6xZxOBwOh8PhcDgcW7EwggKQJZQkikB2dwFrvVZLOov49ft9TKfTtGMCz8tzKmhU1W6fSHJH4sSorUaAlUjb/G0lSko2lRDZ8SuRUrJko79KoK0FnIRcizCSGFFIqNfrmXMonmjbSq4Y6QVmQgYt70rQ7c9293weaWPdB7vlJOeRv+s88d+Mmmsahr2u3YFBxQutX6EElt/xftApo+O2efwqEvF8G7XXOdDPNaWC21JyLVtCXihsFK0cDAaZdIM8276mpJTL5TQfeWuQKT3sh01b0QKeOjb90ftEsVDXEF086rLR9aPpJzqnel/0GjZVSj/XFBQVPdShwPbVueJwOBwOh8PhcDjysRCCArA1513t+ioo0C2gWxFqRH0ymaDX66XjaOtWe7u1ZZMUUVTg7gcqKmi0XYktMBMOSDgtOeJnJLsqhCgZUwKqDgOmbSi5UcLEiLj+WwUFnj+dTlGpVNBsNpMYoOj3+xkSOi/6q/3j+HiMijuWHGqePOda7wOh6QC6RaTeZ50L3WWCu3vYvuh2jVY04lxxjHSs2Pllexqt1zWh5FQJt95H9kv7n1dzQXeRoADW6/UyfVJSruKWrhFdhypEAEiindZB0OvTyaKRfF0f2j7n17oHdMeUGGNKF+H52i99XrR9XR+6FuxxFFasK8YKQtpG3px5HQWHw+FwOBwOh2N3WAhBweb+EyRLzOMejUbo9XpYXV1FrVZDs9lEtVpFvV5PhHA6naLb7WJ1dTWR6Gq1ilqtlohN3r70Gn22hFGFBSWQ6krgZ/NIiAoTJGHc3pH9zCNCKoDYugiaV08CSHeGdTlMJhMMh0OUy2WcPHkSzWYzk4KgAokW+GMePcfH45Xcq+2d/9UoP8fG9hS2/gHHaNMdeF1LapUkcg50LVhhI488Wxu8Xovt2vO0DyTLer4WCGWftG4EgHTf85wcvAdsazweo16v51r77b1mn+1a1DkuFouo1WpbnBiabsKdQdg/Ci16n7VdnQc+V3Q48Hi9fzHGtMUnoYIRnzcVA3cSFHRXEvs9oetLU6kUnu7gcDgcDofD4XDsjH0LCiGEIoB3APhUjPFrQginALwewK0A7gHwvBjjhZ3ayYu+k+CQqJCA9Ho9tNvtLWkJJAcsOMiofq1WS7UDQphVtyfp5XaMdDWo/Z2kUAmedTioZVtt1Co4kBRSTFAhQYvpKVGyJNiSbCV46lhQGzwJIyPT1WoVy8vLOH36dGpvdXU1EV4dC8fL+6BCDDDbiUOvy0gzSa2OmUUb9Ye7cLAN7pihkWO9rlrebe0AJdF6r7S+gYo52ibXEcUZHUOtVkvX4w/XHI8fjUZbUgf0fJ2LvBQHujK0BgQJNddwoVBIdUHY71KphMlkgmKxiHq9PjftII+ENxoNhBBQqVQSsdc0ClvHgoIYiTbnkOtUnTIcd71ez9wvzhP7wDFSwND+q0PDpiToOOzOMDY1R9c054ltc9yVSiWJk5xnddBcCTiod7HD4XA4Lg3+HnY4HMcRB+FQeAmADwBY3vz9pQDuijG+PITw0s3ff2C7BjTKrbZwYGvUm0RZtyNstVoZEUDJupJF5ubHGFNaA88bDAYZO76NRtsUBBInXoOkU0WAarWaSWege4DHaV0HaynXqCyADCEmMVNrv/ZT60Qo2WYEf2lpCadOnQIAdLvdjFgzHA63WMhJsGlrV6GBbfO/KixowUi2ScGAx1IUUYeB7uShBSM1ws5+cB70eELTAvJSQ9gfRqz1OiomkRTTXcDtSgkVjWxhQhsdV1HDri+uTzv2vLQJnX9eW+sdWHu/Hs/vKDCp9d/a/60oYYUahYo57A+LOqpTxa4f62zQa+vn1uGQV7ehWq1uEfI07cOmYPB5UQFIxbQ898gCY9/vYsfBYvjMz8cnvtrrcDgc+8XgJ+8+6i7sFv4edjgcxw77EhRCCDcD+GoAPwbgX25+/GwAT9/892sAvAW7fHmqbVyJoRKoEEJyITCiS1u51kDQivIkTiRParNWoq5ugLycdhJdCgFKtpTw2V0CtnMeaK0HtYdr3joJmooFKiawHyTrMcYkqpCUMqJeqVTQarVw6tQpFAoFrK2tpdSLRqORIWzlcjlD+G0EWnPNdTtFfsb/qsjA9BO6R9hPm7IAIO2AoXn2HAfvL+eOczYajTL9IklXp4sKINxG09avIPksl8spak0xQQWCGGOKsqsDQderFcko0Ci55homOC51xqizwz4zmubA9al9sKkD7LcSZj47NrVFHSt2Hev91hQN9pNbo9raBjyO/bLODutC4LOkzgU7fjtWvdcqAlqRK+/3K01QOOh3sWMPKBSBJz8eKGxNd/vE1xTwsa//pSPolMNxdeEpdz501F3YEf4edjgcxxX7dSj8LIB/DWBJPrsuxvgAAMQYHwghXJt3YgjhDgB3AEiWcGDjD/9Op5O2tCOhYiSZf/yzngKwQUxYT6DX66HT6WAwGKTjl5aWsLy8nEkDIFklEZ5Op8lBwAg0SXsIIaVNAEg7SWyOI0VGSSpJOkkcKSBYoqlOCI3aK3FXoq3OBACJgGrU20bFtehgtVpFq9XCiRMncPr0aTQaDaytrWEwGKQ0ERVYKEQobIQ3xpgi0Y1GI1NscTweo9lsZsa1vLycxB+mqdAlQSKoQorOL69TKBTS+bb4JNMBCApBvD+cF15Do/RK1lVc4PagrK1BJwJFIaY8aGFBLQSp7hN1R+i9Y3oAnSKaTmBrYmiRSE2z4HpQEYbP1Lx6AFZE0VoFKpTpumW/KBJwPHYHB65bfjYYDNLaoLiktUtUONI50t1XCB2fporwOdCtOK3IQ8FJRSOmnHCt2q1rrwD8LA7iXYzGIXfz6kPx1Am84Y3/Fa1C7ai74nA4jhY/C38POxyOY4hLFhRCCF8D4GyM8Z0hhKfv9fwY450A7gSAlZWVyEjydDpFu91OxIYigaYiaMV+JTZ5Vn8tOjeZTFJEnGSjWq2i0Whkdo8gyaVoQLJB+zZJiEaBbXoDSSJJ2Gg0wvLycnINkMRr1JpRas4DhQmtEaHWce7WAGQLWwJI57E/bL9er6PVamFlZSW5FRqNBhqNBnq9HhqNRsb2ffHixUzhOuaa8xg6IEjqNM1EU03430ajkYoBUgjS+8R2SOKr1SpGo1ESFCgQ8D7X63WUy+WU8845VScFXRGcF45D51yj0wAyIgPJqt31QgUK3h/+sJAoQbJK674ScxWTgA1hQFNhGGlX8YPzp7uPcHzsj9YboFimbgB1bnBcXM8cuxWq2GeN+PM+c2659uiYUSFAXSM8rlAoZEQUzjn7R7HG1qng/VABgmNRsc6mRWhaiRUw9He+ZxYdB/kuXg6nFn/AC4TVb3ka/sMP/7KLCQ7HMYe/hx0Ox3HGfhwKXwTga0MIzwJQA7AcQvgNAA+GEG7YVGJvAHB2N42RZDB6SSIBIJF8fq/54SRN86KnJMMUCygo8HxgRnJ0izzmyyuh0CiougKs3ZqEi0SaJIXRc5sCwbbr9Xpya1BQUHLT6/VSegDFEIoGtkAhx2ddEIzy08Zfr9dTOgg/IxmdTjd2zCCZjTGiXq8nEk8iqCQSmBHCcrmcnB22GCMdGhRrlNxR+KjVaunesT1bF4HX6/V6GAwGaZ45xxxvtVrNEEsVO7QmA6+v64lzN51O0zkULfQ47hZiC/nFGFGr1TIEm+dQGLCpDHYtKYHX61unA8+lCMHr1Gq13LWqO1jQ6ZEncth+cQ5tsVLrWKBbgufqM6TrlE4GFeRsWk0IIVPE0/aHY1OXia0vwvY0hULnn99zLVwhRRkP9F3s2B0+9QNfiFu/6uP4isZo54MdDsfVDn8POxyOY4tLFhRijC8D8DIA2FRjvz/G+E9CCK8A8AIAL9/875t2aovRfACJMJPAkUhp/rdGh5W4kKjxeJIGdR+wJoBWswdmEWQl4Vr5nmTJ5pKrJd3MTyZKS4JEAmnJKh0QrVYrkSstkEgCTis9sEESGRkn1CWhpJfzzD4xfYP/JvGmG6JQ2KgZQMJPsYDCg00/USs+UwwoejBNgYSNpE2vxXM5F3RNhBCSEGNFHOuEYMoGUydIVOm6sARS62qo04KpG3kpACpoaD8sSdZdQGKMaDQaSbDRYyhu6byoI4H3VoUtXpOima4R9tkSaN5PJfx2/VuRRlNbCJ6jAowKCtquFunU83X9W1FDC3RyTmw/7bav2i8ew/lVgZLrhKIJx6HPp02PUJFnUXGQ72LH9iieOYPBZ30GAODp3/BO/PxNbz/iHjkcjkWAv4cdDgdRaDYx/ILHXpZrVd/xYUzW1i7LtbbDYfy1/HIAbwghfBuATwJ47k4nFAobdQ5ijFhbW8ukF/CPf80D12KEJKVKlJQAMSd9MBgkcYEkgmRFI71MsxiPxxgMBokU24i1Fl9UMqj2eLoe+F2z2UzX6Xa7GYJbq9WwtLSElZUVNBoNVCqVzNZ1dEsoodIiiP1+P9nGSYSsCwJAIvvVajVDtugKIPkGgF6vlyHQloyTZDNqzPM01aLRaKT54zEUKMrlMgaDAdrtdqYeA8WE5eVlVKtV9Hq9TBFKiiqa/16r1TAYDJJrg/PAbTILhY36Gb1eD5PJBLVaLf3wXnLeWMtAi3xybLwHFCC4LijMUBixToUTJ06g1Wol8sy2eI+VZHM8Wl+AsGRcRS7ubMLj6AzRXR30OeGzx//q53odnXPdQYHzZd0aXB+8R+y/XUdK2HWsKtrx32yf11fBhv3VFA3ebxUL1B1joQKK3T3lCsae38WO7fHwV30m3v7yVx51NxwOx5UDfw87HIuAnL/9DgvTz3oU7vqNV12Wa33Zi74dlT95595OOoS/bw9EUIgxvgUblWsRY3wYwDP2cj7t/lozQPerJ8nYbD/lyrO4n7WGkziwSF+3283klKsNXyOgbIdEUokTr63XV2s9z9dij0r46MBgNJwkXm3ilUoFzWYTy8vLaDab6Pf76Ha7mXoLPJ//HgwGufnnJH8kcxQ16EZgkcfl5WWcPn0ahcLG9pucA+5oQJDY0b1RKBRS7Qk6AvhfkkQKQ5oKYCPUJPAkppyDkydP4uTJkyiXy+h0OkkwobjCe8y0Egol6q4AkHFe0J0yHo+TeELxQNtkjQfeX7ZF2PWgLgk6OZQMFwoFXHPNNVhaWkppNbxWu93OCDLW6cK0ErpVbGqErmG95xQ+tFCiOm54nnU+cJ1qTQz9IelWkYLPDK/JlJp6vZ6pbaCuCev00X+rMMExUBhUkYbPEdOEOC/6ruDvXPOlUimJOHzXaEFGdbJY18mVgP2+ix0Oh8OxP/h72OFYLIRSCc99z334rNq9l+V6tfA2bGQ+HT5+4Zd+DuuxvPOBghfd+RLc/BP/50D7sTB+XkYv9Y97kjUgW9SOtRCUSOdt1wjMoquM3pJAaH43ybPWV1CokMDj+UMSTYJPAsQ+sB9MY2DfGTXl2Eh6a7Uams0mTpw4kYgmhREKECSNJJrab2td1+r+SsBJpugEiDGiWq2mNikacK44RxrxZY0DjouCCu9nqVRCq9XKzJ11hjCyrzZ6relAFwbJnda/4A/HzHtMoQPYiPZzpwmmxQyHw8w6oJNBI9kA0raNat3PE5nUFaCRck2TaDQaKZ0lxphEIgosFDQ0Mm9TDVQI4LF8ZgqFQqZGh64/9oO1IVTMIknPS9tRQY/rR9ND2A8V9ej6oDNF75Udg65RtsG2eS/4PuA8W9eDtmnTE/Re6TrRe8N54XX0HrPvDgcA3PeyL8TjnvWho+6Gw+FwOC4zCp/zOHzsB3dP2sp/3cJNP3mwhO244yP/6ako3di9pHNDiPj61ltxsni5dlDZG8HfDx5X2fuYnvXct+H3P/ezL+2Cz/ud3I8XQlDQKKWSCX7GSKRGK3UrOUZHKRyoHVqLLJLIqltBBQWNgDI6y+N0BwFWzCf5Uds1awhYQUGJkNYN0OipEumlpaVUF6Df7ydio8IEt6/UiKvmzedZ0bX2QaGwUZSx2WwmQsmtOJkOoYUQtT3a2q0VvdPppPvG9AWtA8Bxc77ozFCruqZE1Ov1jEDEvum6Udu8ilLsJyPYIYRURFLJvwoAuhbVvcK1pPPJ9aMEVPP1lfDTEcH122q1UtoLgHSPNSVBnQG6hpTIa4Sdz0KepZ9zQZGI7h4VaLT2Bu+XFi/kPHPceSkEXL8sQsnjdK55fY5RC6jyGhwn59CKUZqaoW3rutf7pbUk9B2jYp6ucXUeORwAcOLvfxq/86g/O+puOBwOh+MyYfjMz8ekGvDwE0r44Jf8wq7P++abvwz3/d1TDq1fS+85i/HH7jm09g8FT/ks9G6oX/LpP/as1+P5Sxf20QHfjpV4xfXvwiuuf9clnVuc8/lCCAoAUvRYo4lK5nQ7w9FohMFgkAgUI+oUE5QE8HtegwQZQCJrGu1nrQLmw5N8dLvdREYZCVdywjx6/puuAhIiRmvpNNCCjVrXgISs1WqhWq2i3W6j0+lkCBYjy8PhEOvr64mwkzgDMzLIcWtkmP2jG6DRaCTypcKMphVwbkluOV6thcCCmjZ9odfrZdI6WB+AuzLQ6aB1MXRerEjE+07oPVDya+ssAEhEWsl+rVbLrAnm0PM6uoWjpm0o8ebxtlgh22ddCKZ/DIdDLC8vp/vD9a+Rf65PzjuPU7FLt9Kko8VG2FUkYVoIU0B0vajrgs8O77UKBxynEnw+mzpW3le6eXS+mXJEMY+iAp9dnUN9F9CFwXlTx4U6eLhObO0Tgm6NcrmMpaWlJG5QLNQ5czgcDofDcUxQKCIUi0Ah4P/5hV/CF9X2/nfAb932F8Ar/+IQOreBx/+/34XP+Kn7D639w0D733fwvz7714+6G45DwkIIClqDAMCWLf4KhUKyrRO6pSRJAPPsScJIYmy+NLBRFFHTI6xIACCRDIoX+h0wy3nXaLha90n46vU6lpeXU7qDknRrY9d/A7PaB1o0UKPadE2oUMLjAaToNQnUcDhM9R8oaPD7Wq2WCJ6SOM4bSZ+13VMs0WKRrI3A4o+8z6zhQHJuI8OTyQT1ej0jzuj6oDijkXWKACSSJLscl+5KMRgMUp0L/VHnBx0t6v7gZ0p8dftGjotkX+dN03iYWsH54vqhUKYigtYAUOcFXTucUwBbtoRUWOeD3iuOg//m/acIoDtx6M4nXP+sucDr051Ah8J4PM4UmOT94HqkCKJ9VAeIfeYIdW1oCpO2pQ4SdW6oEKKpGVr80uFwOBwOx/HDh3/2yfjjZ/8MAOBRpUuPqB8m3vLiV2D1jqPuxd5wY7GIy1VXwHH5sTCCwnbQXGqNktN90O12U146SaXNcScpYRSbUVHdlpIkkCAZIblUUqiE2+a7s29aN0BrLfA63PVBbf/80TQOHbOKBhRPmFuu5EnJKp0EmibB1Aa2qbZ/nW+mYijBteKFzgPnhQKFWuVJ/NTuXq1WMxX1tagjSTwdCryvHLP9Xcej46ADQXPwNS3BrhVtS9eCXjcvRUJTS2yuvroYVJCgiGPn2I6R91DnXa+htRxUpFByznulBRxJprUAI58VHac+P1qbQOsOMOJvxSh1jVCA0rSXPMEjb/5tagnTKayQwrZZk0FTbvg86rOhc6Pgs+5wOBwOh+Pqx4df8yT868//Qzy63DzqrmyLa4tNXDvPe+5wHAEWQlAg1Hav0Lx7/QyYiQokDkrYlBhp+gRTJpjekBcJJQliegFJHwmskhYlpErqlSDmEVISRC2sp33kfzmueZFatecDSBF1Ei3+VyPvnU4nfa557UwJ4NaKuiMEXQFaf8KOWyPGWgRQBQQWQuQ902j5dDpNgoNNNyBh1nWi68W6WjRP3qanWDFB21RiTijptPdP5ySPvOtYrSCgqS82oq4iirpWlNDrGtAaIDo2HYvWJdC0Dc43d5PIcznoc8nnQ+s92PZ5TRXLeIymK1AMU6jIp89OnhPDiju8Bq+tz53eO1t3QYUtTb1yOBwOh8Nx9aJ4YgUXvupxeN2X/hc8pXr5Cuo5HFcLFuKvZRIpzRfX71QYUJLFz1lPgGSBlnglQSpA9Ho9dLvdRNqZx28juuwLtxAkAeR1SKpslNvm+ANIkXaKA+yT5vizv7zeaDRK20YyfcOSL84bzwFmVfOV7LIPvV4P7XYbFy9eRAghiQYKkq3pdJrmiWkQml9OAqa7a2jdBdr7NTWAdRFI1FTU4VxqioLWtmBKgCXU7IuKNfMs8/Z+ce703nGMusaU0HONsX4B+6/FITn/KvYwXUCFJr0G+2CdGYz8KzgG3v/BYJBcJ/qdzpMKWFoTQUUUKybkuTV4DW1H58lCBR2KKiqSsA3Ol94LdaBYBwbbtn3OcyMpeF06JVTY0vdFnpDpOL7oj0poT/toFdyy6XA4HFcLQrmC0Wc9Em/7j7+Iy1md3+G4mrAQggKALX/IW6cCSZiKAIy6dzqdtIVjrVZLhFQFiMFgkIiP5sYDs+r5JFzW9k0RQEkXCSIJEUkdr8l+smZBCCEVWByPxykqbS3ldBCEEJLw0e120ev1EomiIEE3ALBB/NbW1jLR/larlbGks8+dTgftdjsVoyM5pggwGAzQaDRQLBZTXQpuc8hrqkih7gUKFBzbcDjMpHXwWiTtrIHB8VCA4H3g7hoqXuSRX7oeNDpOYaRaraLX62VcDgBS23lpDxrJ5jitMJGXk8922U/eq06nk9wXTANgMVCdQ/7OdBZei/PDMdAlw3Y6nU4mLSePCOvOHRTQSKbVsaPPIcecJ+TY/yrx524mKhZwfvW5piOGn+mYVESgKKPOE5u6wnulQg6/120m6/U66vV6SqHq9/sZAYd99ZQHh+La534ST/+n34d3/Ogrj7orDofD4TggfOTHPw93P/+nASx2moPDschYCEGBRBHIT28AkBulBGaOA5J06zig9Z/HAEjkWF0ESiS0Xxp51gKJShZJTPOIFYUGXlfzvhUqKLCvFD5IOBlN5fEsfgcgEX8VSfr9fnIJMMqtaQQkYRRwLInk+VpwkHNCcUcj8LwGyTXnSYtV2ki/JbFKEJXYK6EFkBEP9EcdHGq71/QIdS5wHNqmdarMy7Fnn/NSJ3RLUx7HtaD9UiKr6Su6vjjfSrJVXOPnev94DSXrFIOsMEChqdfrpTokWstCoWuQa19FB10PFAa0eOk8h4neI50L/q4ijd4fptDQLcJ+WGeT9l+3QtWdPHS9blfPwXE88dEfeSKe/RV3H3U3HA6Hw3FA+OhvfS5e9sTfw+miiwkOx36wEIKCCgVKDi2hJFlRgsDILgUBJU8kj9xdYTAYJJJDMqakgqTdElglwGoPJ3FhezYyrPZ1PV4LKFIA0LQFEs9ut5ucFCQ7Ssaq1WqqoG/TAdgeCRTn1ooyNiVAI7taV0EFBY6Nc2gj+uqIsPnrStrpRuD3KkjYnHqOmf3m7zatQS3u/N7WJFARQMUsrYvB/1rBgOuFc0CngNY/UDFAx8xjSa65NnV3B3uPda2x/3odKzyo0KJrkH239Se47ulCUXFCBRUVnSgM2OdE+8M2rRhnax/ozgrqKNIxWiGF7XG90QnBdaNpOXofeZ66SdhXtq/PpwsKDsWZz33wkvdtdjgcDsfi4d886X/ghctnj7obDscVj4UQFJgaACC5C7g9nwoFJOdKcJRMk+hMJpNkLSdx0EKMAJINO4/0a7E2EiB1Fdg8b0b8NVWCZFC3t7Rkm0SQfaa1n3PB1ARuDclrceyVSgXNZjPNn915IW+HCCWFmpevqQBakI5pChQvtDikEj+2zzaZjz6PKJOoc5cHtqu7eXDuFHlpB1bIsDnzzI/nfJBUcgw6P9rudo4FO3atWaAOAp1/jlFTALR/muKgIolN9dB7puvICgrqlCBU8KBwNRgMUqqFjkcLTbIv6gLgmLRtjoU1TVSYUmFG58kKI1aEsi4FrgM+47qdpj6buk6soMBj6RDRd4iKkV5DweFwOByOqwwhoHjiBMrh3qPuicNxVWAhBAWtR0CSWSwWM1FTkjNbxV6t2SQCzCXXaCrTB+gAaDQaKapJ0qCOAxJyYEaUleBZQqWkDkAiakwFaDQaaRtFkt5er5chYSRPJNRra2vodrupP0qYmPKgc6jzxH4qicuL6KvzwQodmu7ALQ41em2j3wCS4KNihv0hWaPLgvOk/WB/mcagEWQKKjYKra4WvU8UaUgaLbHNg3VjcJ1oBF3FFYWmg3AutC4Ef1SgssScYIReCS5TRVioU3dMUAcA29L5pojA9Bj+l/dNhQSuN4oCFCp6vd4Wscc6V7guKETFGDPrn9C0Hs6Xumh4b/W+WKFLd5bgeSry8fm26VTqEuL9oPih69ThcDgcDsfVg+LjH43XvvnVWCnUj7orDsdVgYUQFEiwp9NpyoUmqVESqqQSQCJRy8vLiRABszQIzQEnMVNBgoTERqABZKLLNqKtdmwl4SRRTLFgsUEWgGP0nuO1Oex6PdZSIHHLi75Wq9WUo16vb7wUuSuC1lPQeVZ7e6fTSW0rsQJm4gzFlHq9jslkgm63m0gyCZedD863Ci8kqJdC0PR+KznW7/m7TZWgwEQSrSKARqpVKFDRRutmEKy/YcUE7YMVDfi5FW30exVqNHVA01BUcOE1dbcFdTKo88KOVV0R7Kem9tj0Ep1/zguFLh5raxgASMVQ88QhFiC1z2WeC4XXY7FHily23oG6Lzh+3UVFi5gSKqBovQ87fsfxRvM/LOMzv+478ZF/7EUZHQ6H40pGDMHFBIfjALEQggKjpsDGH/ck+QBSXYE8IqUF6DQ6zZ0FGL1U5EW/SbRszj1FCk130BoOmq9NUYCRY5JXrQ1QrVZT/1SYyLN0s3I/MNuFwqYXaLSWkeRer5chV0q8SWTpjuj3+5m0EBJLdX/wftCdQMIWQkipBUqAbUqA3iclqnnCAEUfG8W27gxFXrvaniXPSoi5NnTbSJ0zzqPW2bBpL3mwEXaCfSPh5RznQcdh15v2S1M+7LjV0aFkn4Ib51rrltg+2HsEzEh+nghAhwKvxWdHizmyf5pmoXNux07Hjk0/skICMNthQ/uugpQ+6yoa6DxpLQaHg+ifqWBycmsalsPhcDiuHMSnfQ4+/lWNo+6Gw3FVYSEEhRhn2zraLeBsVFZJAo8lyWCdBO6SMJlMUKvVttQWsLbucrmcSBDJPSPaWhVeyab2iecw2sp+aBoEt+qj2GAj6SRYJJl0J9Aqzy0DNVJOAlSr1dIYlCSrQ4MEicUeuc2g5p8ruWT7dCeo44Bzw6J6tlaDXlcL52naiN4Pjl/Hl0didSxsW9eAvS9MddAaClpjQMdpXQUqhEyn0zS/eQ4LHmuLUFpCqwRVhQH9fjshxa4ZHQtFJYojXEs2rUe3p6QjiKKRbreoY9Wik7zuPKeJCjjj8Ri1Wi2tXXVE8DhN5aDYo/dAn1cds65Zm7LD55Tn2NoYKuTp53Q+6Jp0UcFBTF58Dh//7DcedTccDofDsQ/c8w8b+NAL3WnmcBwkFkJQINR6rukLShKYO62CgK2BQHcAiUK1Wk3nqgChbgS1u6vTQKPW2id+phZpklcWf+S1aM1m9Jbt00URY0zFF9XiTsLHa/b7/Uw0mYXpSOCZpqGV9ZVEMd2h0+lgdXUV58+fR4wR9XodtVoNzWYzXY/jazabmWi6jk3TQBRKpumgqNVqmb7qfFvnAwsnElZMUMKZ1wcl4OwzhQq1yPNcRsD1Gla0qFQqmTQV7RsL+VFY0cKhKkpoH3WnAdser8k1Y88lbAqJChNcB2yPn9OZEGNMYhLFHqbQsM6ItgEgrVudKztnNm2E1+W1+axofZI85DmICoUC+v1+xpWi6SNEtVrdMp9WcOJzRgGGzxTfFTwvrzCow+FwOBwOh8Ph2MBCCAr6R78WVSOxoe2Z5II2fY0ok6zToaCF6kiK+F+NaKr9WaPneaKBJb/VajWzKwFFAN2xgCSaEexer4d2u43hcJjywJWA67aCTDmgg4P54/zRCDKP47iZcw7MiGcIIeWtc0tKdU/oTglslwLOeDxOVfVJKm26gUbEgZldnf3lXGgEWIsDUsDJ276R/aI4oOIQ7z3nntdWYcbOg64fQusb2AJ+ulaVxPNe6bkct0b2decJOjWUgKuQwPtOYcVG1G1/2Pe8NAmdI1u3we6SwHVDUSmvNoHukqLzPE/csPeCv1uxxbpcLPg86XxxrlVw0XnneZquRKGQ16JbSJ00PD7PSeRwOBwOh8PhcDhm2JegEEI4AeCXAfw9ABHAtwL4IIDXA7gVwD0AnhdjvLBTW0r2SBBJNAFkiCmARCAZZdQ6BJrDrSTKVnhX8q9QkkKSVS6XtxS7Y/RdUyaYN67En0Sd7gSS6Hq9nvql1yEJshZxdWhozrz2W1MQLIHm3KoTpFQqpeKU5XI545AguacoowSZ5EyFGDouAGyZd/3RMdHxwD5rrr3a03U7Qs4xwTWgAoG6H9gPmyNvbe96vIpHFHd0napLhOtRdxawlnxG1tmWvRe6Q4NN47Aihk23seNVh49C3QoAksBjt0gluWY/9fmyNRy0pojWNFGRRNeMjkkFlHkpFFa80Xmbl6aiggLnUgVErjUdjxX/VHS8EnCQ72KHw+Fw7B3+HnY4HMcV+y1h/p8B/HGM8bEAPgfABwC8FMBdMcbbAdy1+fvOHZGIJSPXJN4hhGTJX1paStvQaYTbEjolHbR3KwFUQmGjohrNBWaRei3OyHQDbqvI/5KYqJhAgqU7MNhaAbRbN5tNrKysYGVlBc1mMxFQ7lpRr9fTrhEkq1pssd/vJ9KtZF7FBRUMqtVqapMRYM1357lKRCkmkGjqXFSr1Yz4oCRT55/WevZXt82090bFBE2BIdnTnHyNgqsDRestqNuExFfb4tjmbVeqwgTb4s4ZujWlrrW8caqDQvupAlAerBOB47C7Nigx1jmgcKWuH/ssUkgi2E6eSKVChBYL1e0mNR1DXQZW5LCwIgGfJa5BXRN5603HqGKEPvd8ZtVxZJ0OVwAO7F3syMdDqy28b9g76m44HI7Fhb+HHQ7HscQlOxRCCMsAvhTACwEgxjgEMAwhPBvA0zcPew2AtwD4gR3ayhCsTqeTrO2sI9BqtVKBN91OD5jVF+j1eqmQom4rp6SExJBt8PNarZb5fDweZ3Lt6UYgkWHBR/bJWsG1b91uF4VCIRVD5Pn9fj+Np1QqpTHSfVAsFtMOFwBQq9WwtLSEarWaaiEwrWE8HmN9fR3r6+uZbQ0ZfWUNAwo2zPNvNptJTKDIoPOrgo0tuEexh6RRC9ppFJ8ETesnUABhKoeKB5r6EmNM95bHqnNB55r3Ty3t6tTgf3VnAbX0c5xKyDV1hONSOz0j+BSKbOFGzqHuqKH3QcUBbTvPkaBpOxrtp1ilqSp67mg0StdWkYDPA9ui0MB+M+VIxZt5feTvJOK8J1wDnCfOG9e9TStR4cKer7VCVGjSlCbruOBcq3OHc8W1W6/X03Ogu2FMp9NcJ9Ci4SDfxY75uO35f4sXveBf4i9/wot5ORyOLPw97HA4jjP2k/LwSAAPAfjVEMLnAHgngJcAuC7G+AAAxBgfCCFcu1NDjAorudI8fRUHSA7yiC8j6tzmkBHH7aK+mjtNMkNyWK/XE8mq1+sZcqa7I2iEVOs7kGi2220AQL/fT2RIx04HRblcToURKTiog+HEiRNoNpsIIWTcCCRWFy9eTIUdOZeVSgWNRgPNZjO1rfb6zfuUIWj84Vz0+/10La0ToPZ8jdir00CdJyTwajlXKz2j7No33lvdHcOSbXVWsI6GklfeQ7XeUzAioWX73L7UEm/OD+dUc/BJlumS0WJ+eh77ax0GmrZgRQZ+zn4o0VbRRdcz74GmaWhagP7YWiEseKrzpFF9dQHodpt6D7UPKgjourfPCt8B1hmkwg7vE5/DXq+HyWSSBDF1Ouias+8Khbo12FfrdrgCcGDvYsf2OP3fP4T/64Fvx+++6udwsujbjjkcjgR/DzscjmOL/fy1XALwJACvjDE+EUAHe7ByhRDuCCG8I4TwjsFgkOzi1joOZKvZ2yJ6tM4roaeYwC3xlDhbolUul5MzQIUALcynxdrUraDRft0Cj2RUI9dqzVZSrMSfQgj7rfn6FFV0C0sWWGSRRRUXgBlZ0l0WVAgBkLaA5BjUgs+xMTWBJFnnIa+2Aomlkkn+zEtTyLu2TX3Iqx2gzgMgW+hRc+R1/dg0Bn6udRXyBBf9XteS/qgzgv9Wt8Y8G72tA6HrUAkuoYRZnqkt82FJvBVrtBaGQsUNfWbYDteXIs9xoX2xYor2nYIM1xnHrOPWdBgez/Ys+eec05GiIlNeWoauYV3HVwgO7F08wuCw+nhVYHLuYVTf9kFMcGXU1nA4HJcN/h52OBzHFvsRFO4DcF+M8e2bv/8ONl6mD4YQbgCAzf+ezTs5xnhnjPHJMcYnl0qlDLHVKHseqdtsG8Asgk3iRvJMd4LuOKAEEJjVLWi1Wmm7OCWvdEdo2gSj8ZVKJWNnJ2FRwqxigooO7L8SLN3Cz9Zq4OcUMYAZcaYAY8UEiitWUOB4OC/dbhfdbjf1XwkxBRG9N5y3vL7aKLBNNZjniLAF9vLIus2517QDS661XbPmtnyn98Ha+nkt7Yut4aB9nddvzpetZ2H7piKKOh406q/pBipOWOeBbVuPIdSJwn7yPqqQo6kjWhtj3nWsY8KKZ3miB4UNpgTxedbvrYNGXSjzxBUdp86lrmF1N+h90/fNguPA3sVlVPMOcSimU7yxfTvOTjpH3ROHw7E48Peww+E4trhkQSHG+GkA94YQHrP50TMAvB/A7wN4weZnLwDwpp3amk6nKUeeJIp/zGuuPX80T1qJT6lUQq1WSznRjPRv9ndjwEI8KAzU6/WUl26LFbK2QL/fTykVWjdhfX0dFy5cSOkGJN9K8DVyq2RKr0fhwEaQ6Xio1WpoNDYstpqGoM4CFSHK5TKq1Wom3WF5eTnjgBgMBrh48SIuXryIdrud0hooHgwGg/S5bunItu38MkXCznPe/bb9Vnt7nqPECjp6vBbhsykYmhOvWwbmEWa6GTQ9Qp0gTPnQVAN1NKhzhbB9UyGE60HXAl0Ttm5FHlmmqKBRdu2XIm9e9b5yvFyzHK8eo+lBGuXX8eVBRRa9N+pqYWoQxR4VL+y64RxpP/g9/6spR1ofQ50PnEub7qMCoKarLCoO8l3s2BnTTge/+7hr8a0f/Yaj7orD4VgQ+HvY4XAcZ+xr20gA/xzAb4YQKgA+BuBF2BAp3hBC+DYAnwTw3J0aIbmhsFAoFFCv1zc6KMIBgJS7rVb58XiMSqUCYFaIrVqtZqKS1plA0YE7KbAfJFcsjsi0hm63m76rVCoZ8sFaByw0F2NEt9tNLgGSTFuIjwIFybJuWafEiSS+UChs2f2CjoPxeIxer5cKI1Io4RgpgigZ7/V6GYs5CxCqa2F9fT1zLYoKFAJI/vRecBw2j51kUYUj3lN1BDCHH0C6Nt0iXBM6V0zlmE6naacMdSCoaJCX0qACg65JKzbwc9tnTUvR2gF6fB643ah1dlCYURKeF4EneD9VJGEfCc61Qgk+1zvvk/ZJhS1NYRmPx6hWq1tSfQhNVbCCmt2tQbcPVWj6gaYu6BhVtOF90+csr22bSkFRgeuBz/aVIChs4kDexY6dUWg28X+9/dP4puX/BaB11N1xOByLA38POxyOY4l9CQoxxncDeHLOV8/Ya1ua4qB1CwitPZBHTpSQW1u5RrgBZNpXEgJsEBQWpiNJI4lXIjuZTLaQG2ulZ6pBrVbLWKpJ3q0VvVQqZQgR+8r/KsErFAqp7oP2UV0Ken0VFNQKbmsWDIfDtBsFiZhG7ZnKoUSafdX7pznqNhJNF4e6M/ReUiBRKJG191cdHkxFUdGJxxCca0vQeU/UnaDpDURecUO9T3nChIWSbHVK6Dnsu7oz8lwf2t88d4J1emh0nveW/SeJZpRehTw9T+eC/9WikfPGaj9TMYfPhdZDUKGKfVKRRVOb7HWsYJT3Hedfv9ftKPOEmEXEQb6LHTugUMCLVv4Wp4suJjgcjhn8PexwOI4r9utQODCovZgRUyVzJLZKrtQCbwkisJXIaJFDtcfbCvW1Wi0RMEaKAaStJUMIyRJNkmbz8ClYkPAAWeJoo/jWAm7TIAqFQsZtwX7SscF+AdkaB9VqNaUnaL0DAJmILSPAvV4PnU4n2c95P0ja6EDgvykycL5VFNBaDRy3LQLJfvNHa1mwTd47Ja3WDs/7yvN7vV5mLjmHdA+wj7qe9Fpa24HtWwHICgpab8HWWbBuB/3cEt48AUNFFCuUWUFB14IKGpwHHQPdHew7i5zqFp3zhAzrLNmNmKB9t84Rrl0tksj+UFBQoY2imaa12Hut19bx67rX3SqAbM0F7vrhcDgcDofD4XA4tmLhBIXRaJQizbS4azFDzcEm8R8MBolkEzyepFKjpywmqBF3ns+6AIxQMiWA9QtIurrdbqZqPEkfYXdW0Ei/FktUcYPEj6RJCW+xWES73U59pqDAc0iktXJ9vV5HvV7PFGJkmgCJpqZ1dDodPPzww1hfX8dgMEAIAUtLSxkxQp0anDe9NxQwVFBQIs35pKDAPnE+yuVyWgc8T1MKGInOExXYjqZX8J6w/9a6z/VD0ce6X4DsTgm8Do8hlOhzjlWEYJ/oKGE/+cO1pOkuuqMIa3notbRwoToQVCDQtBIVlGKMGTFBaw7QmZKXxqBuH35nx65Q0Yrzz3vKfqgwqGICMKslYYuCqmilooSKUprKQNFGn1E++5x/tmuLkTocDofD4XA4HI58LJSgwEKD9Xp9y24DWjAPyEZYKRqQ6JDQ8hwt1qbkB0AiXSSfTDsgidFUAkau1eavRFWjyHRZ8PqMrpLwUWzQiL4SUS14R5IZY0xiSLPZTESo3+9nHA3cuWJpaSmRK6YpcB5ijMkFwghwu93G+vo6er0eptMparXalmKCOuf8GQwGmWuTFGr9C82VVyFGiSjJqC1qqdtdVqvVRB71frENzpemwWgqDEmrknJNQdHUm7y0Cs39t24A3SVB15cWVtRIPO+FRtYVNsVG29Q2+Bl/Z98pXHAd2SKa4/E4IzywDoc6U2wKB89lf/McCnl1HHS+dQwqFrVardQ/inZ0tdhijdbRo3Om6RKce3UfcMw8n+IJz1H3UV66iuN4Y9pu41u+/AU4/eqz+LVb3nrU3XE4HA6Hw+E4UiyMoMA//Ckk2PxnLWCokXhgVsTO5odbKKEj9HcSTpJFzcPXaLklGuyHRnNJang+RQk6L5TU5vWHxJ0RVkatSZhI2hlhHQ6HuakGGq1nm2yfQgX7xroJJNhamJJzR5JOUknHAr+3hR+1wB/btaKQijKaV6/bAqpYYW371sqvAg+ARKTVnaCWeB5LwqpRaX7HsaszIM/Kb8UqrQFg17Rdf4rtUgj0mppuk+eYUIeLCgp6fRWG7LPGvsyrA6FzPu84Xee8rk1F4fU0BYHrR59Bm35hU2LUgaEpD/pvO086Vk1PAbKijcMBAIgRkw9+BOcHNxx1TxwOh8PhcDiOHAshKNj8b/0vibRGIkkCSJLUTm7THpQIartqw9fCcnqsLZSXV6sgr1idphRoxJPFHjXyqwRRc+tJ/m1kmt8xRQBAqmvA3/PqMXBXBv4XQNoOUXd9YLSW9Qgs2aKYoe1rVNjOCcUU9p3OEYUlgkrCOT90FqgjgXOuzhMVnfJqbPB7Tf3Q+877oO1TfLDryMISXa4fTWHQugEasdc51t/zhLF518+D3hcVmoAZudd1mpdWoe3Yvuq8cE71HH0m7bh1C0d1FbBtCmbzCiNyjrWQo7p88ubK3iP7zmD/9Z3gcDgcDofD4XA48rEQggIwEwlIGgGkNAEtxEYSopFmrc6vzgAlNiQ/JDKlUilDqC2x4bEkpMz/B5BSFtSublMDNBJrSSMw28bPkjPts1r4VeTgeZwDXpd9UnKmBeeKxSJGo1EmGnzx4sX0GS3m1WoV9Xo95e1rnyhyqFOD90XJMAUY3kPNkee4CoXC3KJ3JLjziKx1oyjZ16g1kK1FYSPY+rneH01DoBCi5NymMMwbA+dA+6RrayfYsWnbeS4G9pnf8/5oEVJN32A9CxWTdO3ZNadzZFNX2B77wTb4e54rw4ocmp5EMUrTi3Sc7JO+C+xzwvGzPX6mDg62o+3a2hEOh8PhcDgcDodjKxbir2a15QNIUWjd+QGYReIZPecf/yo6aJuW7KsAMBwO0ev1MJlMUKvV0Gw2t0RHmXJAgsXUAJIjjewy/5sEr9frZXae0PGwP3YrOx7HOWDhQxKz4XCY6i6Q8NhIvo20s76BRm+1QN36+npGUGANCpuywHbpjlACp+Po9/tbtvkDZhFy1o5gigbnU8dPUsx1oCkLedB5160i9XhNo2DbPEbvEy336kbRNAvFPPcA7zXJ+rz0BnWyaOqGprRYMUEdANbpoW6avPQD/V0JuxbJVPGF61xJt15/NBplillyHeSNU5893jNNB2IfVGzhs0VRgNfQwq21Wg3VajVdh8VE1cWka5B91XunwgyfLZtC4XA4HA6Hw+FwOLZiIQUF/SNec9pJcHmOJWIkGRqpziNzJC4kyszNp0igxEuJuBI2JZ4kqjbVQJ0PIcy2wGPEG9ia687PKCJoTQJ1I3C+WMCQc6EkyBax49g1WlupVJITYDgcotFopOM5h/xddw8AkOabRJLX07mZTqepbgSFCiBbr8Ja1K0DQdeJTXfgMXofNE2GY7a7DZB0c57YX7ajJJSFLa0tn31QYYvtsQ3ON+curwZAXt0BtfGTyKvDxgpIuu54H7SoJtNhdA2ryGLFLRXkeJ6ea10g6rBRZ4feFxVp9FnT+6NuAj4vmmLEc8bjcaYWh86NOiPYN10v1u1hU130mfEaCg6Hw+FwOBwOx3wsjKBAQqEF2oBZFFcJupIHgoRXI+uaD6057bYqfLVaTVFzJWUKJVRMmVAiRvLE8Uyn08z2hAAy3+t4SMKtvd9aspUMcXzchlEj70pYGanV7fV0fDyfY6zVauk8En0VNngc7xN3XdCii0rQNVJMcqaCiaarcG70GL0PefZ7klOSdxJ4bYef5dVuYASbwgzJra0lYJHXN43g65zweCsm5LXBz/W6dn50DWtBS36upF6FIJ6vP1agsN9bkUHXlW7xmOea4DpXsUbXoX6utRD4PbevpBii41dRSMdBR4X21a4HmxqTty6sOOdwWLzvQzfjzutuxB0r9x91VxwOh8PhcDiODAsjKGiU3kZwrZWaBFDP5c4J5XI5WZ+Zf03LOokuyT4t0/V6PUNkNO9dCQjJolrCgRkBsRXsSWQ0as8+A0ipCqxNwHGrK0Lt6IzIqsuAue8aBQdmUVslRSTMlnCS6I/HYzQajcx8037P2hacdxJKHdtgMEh1JlRU4bisS0AFhnnpDPyebXLbP/4wfYXkkyki9r4ogWYbXCudTgfdbje1oTsdWFKpUWzOo5JxJfV6rAoKOnb+m+ID74mKE3SJWGeMFWP0utpnXYu2vxaankCoKML+q8DE8zT1hufpzhF6LymGqTOJzynvI1Nw7HxrCg5dLtySlOkQXFN23NZlQbePFRDUveJw5OHRd/wVfvHFz8YdP/zKo+6Kw+FwOBwOx5FhIQQF2rP5byW44/E4FU7UNAdGwsvlMprNZtr1gMSj2+0mUYCRVD2/Vquh0Wig0WigXC4n8UEt2mr310iu5uKThLCgnbotOB6N4AJIJIaEnf8mESRRHgwGaLfb6Ha76HQ6KJfLmZoJvV4vI3ywnzqPjO6ScNndMNbX11O/2H6/308FGlmckVtIsi2mbVSr1dQmxQ+tnaD2f5I4RtV5n23Kg4o/XAfsO0m31hZot9sZ27yN/KugQIGJ9zvGiG63i16vl3G1MLLPNcV+quXeklQdg60dYd0ZVkCxtSrU8cI25zkJOGbWHeB1NK2BfdHUF+ueUEJtyTfHr44IwooQSua1qKJeW+81xQkKVhSINF2G4kW/39/i1lF3CZ9ZFSf4bHAt6L3j/Og2rqzJwLE5HA6Hw+FwOByOfCyMoMDtH5WwKzFUIkmCySgz3QYase52u4no1mq1TH68OhqU1NqcdSBL3KzDwe40oSRL0zM0sq6faeTYRoE5jl6vh36/n9IJtP5Dp9PBcDhM81KtVjPknA4HEju6C2g7Hw6HibTyHvT7/eTuoIDA8VlXhm7jaHP4Sc5s8Ui6Atg/nQtLZkmgWeNB2ycmk0maH7ahgo6mh1gLP+8z1wr7zXHTmUGorT4vJSBvTfPf+l8LHRfHzvvMubcuCPZf7zVFF64/TYXJI9VsQ10SmmLDdnW+VESzz6uuDb0/er72H5htB0rRoN/vp++12KYVytg/Clh8tm0hVOtusmvLphapU8iKgw6H4p4fexqe8RXvOupuOBwOh8PhcBwpFkJQIMHXnGpaupVIADNrNQktMNsRgd8Nh8NkvSdRIjEl6dBtADXH2goKVtRgAUQlqLyGEu+8OhAqWGhaBCP7ABLh1si5Cgq8Jre85Hl5UXAAiWxRUKjVammsFA44TyGELbUE8kiX1lWwuf0a/SV0rDyW85IX3bf1B7TavxJ6AKkIozoblLBqioBCRQ3eU/aD60oj+jadYR6sa4DtzBMedB60Xb2vtv6BJfZcT5o+wPXIflDc0LnXWg323tr7o+OxKSi2VoRNqVD3g7bJNURhimJQ3pojbD0OrlOuO7aTtx7ZX5uSwvszL93K4cigUET7Hz0ZX/est+Enr3v3UffG4XA4HA6H40ixEIKCkg0SISWA3CKSJGAwGABAciWQkDC63u12M6SGefUkjtyGkAIBgEzElsTURpS1kBxJyWQySVFN7mLAyLZNsyDZoWCgEWFLqAaDAVZXV1PqBvum86SuA61uT1dAjDGJDmohpxDA6C6JWL1eTwLHYDBIOzgoydRCkiRuJPUUL+yuAUo2S6VSxmWhzhD2md/rvJM0Kxm0OfU8X4ULLfqnToq8aLmSWNaH0PoEOi6N0BM2BUJFpXmCggoVOk8ck45RRS4ScY3UK0lm7QIeR2hKh7o52D+7kwifC62XwHHSQWPPzbvv7APXIR013GGFz7yum7zUEE0ZUVcGz7GOGLtO7I4fHI9NTdFCnw6HotBs4E0/8zM4XWwedVccDofD4XA4jhwLISgAM/LX6/VQq9USadI/8C250jx3zdnu9XqZXRTU3k9yPBqN0nHcFpBFBVnokLnUGjW3kU0SLq0zoOkOJED8jsSRdnQtMFmpVNK2kr1eLzkUSC7ZB62HoDnjmhbAXShUOLC2f5JKEmgKNLSdj0ajVGtCCzMCM/t6r9dLTge7XSMwI5AUVLgNoKZEaIS91+tlUg9IKK3LhJ+rK0Qj9+wP/6uCjlr+CS04aF0XKh7kCQh6LOef5JpChzpm9HyKCVYYUBdInliSJ4zwnvH6OjZbB4Jj1bQFrZPB59FCRR3WOtC0CU19ocuIwogKSHxeVNhje+q0yLtHebtLqHOBfdQ1w+cNQEZwy0uh4TzO64fD4XA4HA6Hw+HYwEIICow0skq7Cgq6zZxGbklgNJpKUmLrFZDk6vFKeEjier1eIsiERuDZJy0oSChB4pi0lgCJDqOwFBV4LMkL56DT6WyxZ3Nsuj0iST6JoNYdoDihWzhqXj4FE40WA7OiixQXBoNBcl+QjLF2QafTQb/fzxTSs1Z1El/9N+dEC15SmNA6AGqT51zYgpgUJWxEX9NnlCirW0ELgGp/bZ+VtOtxNsKvx6jrQM/hcRoxVxfFdJotfmidD5rqYMeqpN2mXmjtAD5Xmo6jAsg8q7+uVRZcVGeMOhv4HFIwYX94/1WgY12UeVt86jh0HikUaRqEOliY/sQ51HnjfOhcaJpN3v1zHG+MvvzzUHzZWawUakfdFYfD4XBcAh7522v4e2vfhff+i1846q44HFcNFkJQoH1ao882V1q3yGM0XSPmSqpsDreSQ/5u86pJPEhqNSpMYqHWbRIiEqlqtZpSKSgMKKGzFmwbXQWQIUB0CSipVcLFyvSaXsE5IGFj9Jj9160KVQChcFMulxPRGg6HSWzhvanVahkSOxgMkvBhdw2wBNgKCkpCGZXWnQ7UcWDvqU0f4HrJy+3X3TS0poX2QdeHPYZQss/jVBzIW1uaemHbtuKSCl+cM1s3RNNwVGjQGgY2jUMj+ZYgK3G3opQKLHlEXiP76gyx6ShW3NB5sKKPdSfoOtB6ENquukrUCcFnWp0J2qbW9ci7X3pvHA6ic2MFb3/cHwAo7nisw+FwOBYP8V3vwyNGjwX+xVH3xOG4erAvQSGE8H0Avh1ABPAeAC8C0ADwegC3ArgHwPNijBd2aouRaUZPbZRbo9rc1aFWq6WouhITJbaM9iqUtFLMYKoDawowDYJ2bDocSFxIqFh7oNlsZiL8WhtABQX2S9vSKLkWRQSyxRK1An6hUEipCDxf7f2EpllwXkulUnKB8Fh1H/AatkgmxZ7xeLa15Pr6eppnXo/3y9Z+UJs+76G6RXg8+8Y+kOwp6de51bYJknAtlqnF93TM6mBQ0q/zz880zWA7aIqOpniozZ7Weq59rW/AdA9NBbIpEOp0URKv0NQGrilNjdG5LJfLyW2ihUD53Ol9ti4T3gNdL3ovCFtQka4WdQRYQYFtUBjhHOn90TnR7UvzXDP6PKpwoO4WPvd5aR+LiIN8FzvmI0wi7hu3cXOpddRdcTgcCwZ/DzscjuOKSxYUQgg3YUPfe3yMsRdCeAOA5wN4PIC7YowvDyG8FMBLAfzAdm3xj3cl/9Z2rukGrEmgxRXX19extraG9fX1dLy6B5SkaME9Cgpra2upkB3Jpa1xUKvVUv9I7ovFIprNJhqNRsrdZ8oE6xcMBgOsra2hUqmk1AGOm0IFx0BRgHNBos36Dhx3rVZLxJvpB+12G71eDyHMCkSqk6NSqSTxo9VqJbJqawEAG0St1Wol1wJ3lSgWiynVYW1tLbk0SC4pqqiV3v5owUqOl2kWpVIJzWYzzXO3200CkUbCSUxVBOE1NZpP0Ym7HFjXgBbjJJQ0W9i5ynOhcDxWSLA2fopH/X4/CR9clxyX1stQcq3rRGsaqICh7p1SqbSleKXei7w6BpwDdQtpWgTHT3cD29C0C00/0nXPsXG9agqC7v7AgqwckzogVJjTNcA5pWtGU6Uohun3tdrMvk7njdY4WXQc5LvYsT1WXvtXuOPPvh6/9o7f86KMDocjwd/DDofjOKOw8yHbogSgHkIoYUOFvR/AswG8ZvP71wD4up0a0Vx0zcVW67pG/Gu1Gur1eiJJdBeodZ5RSSW7JENME2DE1UZkScRI4nltdU6QSGmuO8m/pkJoqgKwsWPF8vIyWq1WGgOQ3RqRfdSt/tSxoISchJM/JJWcJ+aX69yRZPNHt9qrVCpoNBpYWlpCvV7f0jcKCevr6+h2u5l0BGBGwklotZgj+0JXgpK2EDa2Dl1ZWcHS0lJGeNFUBp0DW5xPc+B5vzQVRdM7rI0/L4+f11b3gq2rAMwIvtbwUKKvUW+1+WuxQKaq6O4NWmPB1jfg2iSBt5F021dbLJNzxP5PJhN0Op0U0SeJpyDFuVZxQHctIVHndXR+beoL50sLdFIc0OvRwaJOGnUV5KW/UKRSd4LtB++RrhW2zfuvaShXCA7kXezYHsOveBJOvHHkNRQcDkce/D18peDj9+KLvvfF+JNueedjHQ7HjrhkQSHG+CkAPw3gkwAeAHAxxvgnAK6LMT6wecwDAK7dZXtbcuG1YJvNLSfZGI1G6Ha7qTigig9ahJFtk9wyKstopUZkaUVXcmlzubUv7K8tKEdCwigtI671ej0R5nlkWAsWkhxppBbIOij4o6Rbd8lQx4YWsbM7JJTLZdTrdTQajVQzgWPQXTAY4bX3UMmo9kHvA+dFnQnFYjGJHXRh6Nzq/KtQwfuoDgWOo1KppB8VM1T00H5vZ7u3NRpsvr3eh3m7A2j7HLsVL2whUuvUUSeBFnLUOg3q5NF1qH2y0X4tDKnpHlaAyXMGaM0B7Yem0+ix2n8ds/7bij56Hb1XtraFfpdX44LPk62rwDYoJrBdW3x1EXHQ72LHfHSvLeG3bvsLlMPirwuHw3H54O/hKwvTTgetN9yN+8cnj7orDsdVgf2kPJzEhvJ6G4BVAL8dQvgnezj/DgB3bP4bQLa2AMkDMMujt2RQ0xXa7XZyE+jOB+VyOaUPqJW6WCymXR3a7XamxgCjrYxwsj0t+sYoLPukEXdCo6mVSiWlRrA+A10GWluBfeM8DAYDdLvdDHnPExTYXwoE2obWksiL+qsIwbSIarWacV4wmjydznbkmExmW25S+Jm3PZ/+KHEdDodJAKDYQmeGjoPiCsfBeVJCrKIT+0XxCZhZ7TWFglByzTa0voAVQ9SCzzFrdF/vlXUK8BwVsqyDg2KDOncsmVZoeom6Zjg2tqHzqruGMOVIf1QUApBSf7QtfTb1O/6uY+LxKiawv/yOz5p1pWidDZ6j82nXghZdVGGC7bBddefY7zRNY5FxkO/iGhqH0UWHw+G4quHv4SsTH+pdj3PNj3sKm8OxT+ynKOOXA/h4jPEhAAghvBHAFwJ4MIRwQ4zxgRDCDQDO5p0cY7wTwJ0AUCwW42YbmeJ5+gc+SYslIOPxOONOIJmkbdxa12nzn0wm6Ha76PV6Kb+a5IGReGBW/b5QKGSq0He7XTQaGy/96XSaIvcauabQwD4xjYAih45xOp2i2Wxmdq7o9Xqpj4PBAOVyOUPIYozJ9k5i3mg00Gq10Gw2kyBBMaJWqyWiSoFASS3PZSoGiSZFBUbHVWixUerRaJScIJVKJaV88F7RRaE2/Wq1mknFUKt5tVpN11Y3A10HSrI311IiiBRodFtJjfrzh2RayTELV7I/HLeSavaJVn8rRnDdmXWfK1xwDuzaB5DEE85jnptHay9owUtiOp2m1A8AmR1N5u2EQBeNOiqUgNtCoRTwtOipzoHu5MDj6USZTqfp2bRFIwmun0qlknEm6PuB64zfzUv7UMeS3dVF5/ZKEBRwgO/i5XBq+2qjDofD4ciDv4evQLzz88p4ys/+S3zsG37pqLvicFzR2I+g8EkATw0hNAD0ADwDwDsAdAC8AMDLN//7pt00RkKv+cwkedZOXa/XM4S62+1uKbpoLdNqlQeQBIBOp5PIDCPQQDayqrUatD8qNujODBQyNEpLcqrj0xx6W61+NBphdXU1uRO0yr6tjM9ob6vVwsrKSiKC3LWCc7O+vp4KVLJN9rlcLmNpaQmNRiPjSuC5FCEoKnBcpVIp5fEzLUNrJjBCzHvJYwmKPBQIOH+MQAOz4oX8nqIM+6X3XteQdTdYF4kVdGxajSXOHD+Q3fqR91oJtNau4HpQoUT7TAFAxQSbMmHXF8/RtKB56QKcF60bwoKI6kZQAY7zx/6oEADMUi+0TypuKNSNojtNkKyrg4LzpcILxSpbJ0LFBHWFqHigYgPFEV6f/aWgwDFoms4VggN9FzscDodjz/D38JWI6QSPfeV5PPGD34V3/dAvHHVvHI4rFpcsKMQY3x5C+B0Afw1gDOBd2FBXWwDeEEL4Nmy8YJ+7i7Yy9nKSOHUokOQy2qy56CREzJfXAnIauSWhsikNADJElA4CJSx0C6hFXVM0lKham7zWbiBRVns2Lduapz4YDNBut5PrQlMulERqdJh1DwqFQnIXKOGeTqeo1+tp/riDA+eMzgSKHXlb7qmAQaGFn+vYFWq9pxij6Qxa14JQMqsEn3Oo7fF4LWhofzQdg+RTc/+1r+wb7w/Xis6l1kNg0UR1Jai4oWKCkl9L+vU4FThUxOI4KYDxe64BFRR4nzg/OmcUxzRir+D4KSTQHcIxqBNAnUWaUqNOAztXuta5/vPWiRV98hwfmsKSV7vCrkMVE9gGhS/226ZcLDIO8l3scDgcjr3D38NXLiYf+DBu7A9x+xe9EHd98c/jM3xbYMc+8IMPfjbe8IEn7auNv3fTA/hvt7/5gHp0ebAfhwJijP8OwL8zHw+woczuGSSNjGSTEJMkknRpLQMlU7SNM0JvxQSSluFwmCL/zMnXwnAAMgXamFbBiC4LCLJNAMltoONgv3h9JXokTByHRo/H4zG63S663W4i/HkRbJInEky780Wn08mQwOl0ina7DWCDEPN4zhnFCEaTdecLzqcWvWRflbRaYmjJGUmoFonUudHjtYiiijNW3KDQQMs8+8W2KDzZlAV1TOg9011GhsNhKkJJkk8BSZ0E6m7R1AOS3LwIO8ekQpHWmFBLvxblVHeC3g9+zvuktR7U+aJFEble1UVhRRjdaYLzye/sfbeEX0UBJf4UG3RONIVF50uFNx0L50efOxW2VAzTd4cKmGyH0JSZPKfIouKg38UOh+N44OK0h/cOq3O/P1Ps4dFlzy/fDfw9fOVi/PFP4JHf/Am86m++AC8++Xbc4KKCQzCJU9w92N2xb/yDL8Kjfvht+7re2W98Kv73T+z+788bi13cVj6YNfuXgxFGce8O3X0JCgcJzXVnGoNWstdorhJrTT0ol8uJ6DP6DgCVSiWRZVq1O51Ohlxq5JvpArR6M3+eBK1cLmNlZSW1ORwO0W63M4Xx1HmgdnKS23a7jV6vlyK/dBUMBgP0ej2sra1hOBymehCVSiX1QaO6HDMLPrKII4tUKmmkw0PdAY1GAydOnMCZM2fQbDbTrhcUNHhvCCW6o9EoEVmNOltRgGIJySxTHBqNBur1+pZ7qwRXwetyHrRmQ7PZTAJJp9PJtElxRR0GjNJzDVhXBUk8ayRogUSKBypWaaRcawPY3Qh4Pq9BcC61loO6UbR2BNNDKIqx6KfWFlERgNfkWHSHDnU58Frshx23OgVI+HlvOScck3UXcbx5ThsVKjjvFAP4rHNtaDoRn31dG3xGmW7D+6BzzfWswiT7yO/miUAOh8NxNeE7PvHVuPDFF+Z+/9CLn4q//revvIw9cjiODnd/bgW/duf34eNf/V+PuiuOBcJ7hiP8h0d/EeJk563Eb4n7ExMAYOn1d+Pfv+Hzdn38J//t0/CBF+8/ZWcQR/jRL342xvc/sM1RH8v9dGEEBY06KxEmYdFicxrZ5zG6jaAWetPCaiSRa2trSTBQMsx0BBJNFRO4g0K1Wk2pBUyFIPFUckNSVCgUUrE9tdCTtDPyzDxuOiH6/X4SCug6ILkjYQJm7gRu8djv99Fut5OgYPPa6TyoVCo4efIkTp48iWuuuQYnTpxI7g2dX3UTaIoHXQzT6TQJK7wHek9LpVKaC/6oeEQiSBLOon4qvjBVQQtSAjMHhBbzY2Re7fy8hxrJVrKr6RQcp9aFUAFDoXUv1MpPcs/xsv/q2FBxwZJ6PgeW0LJd3ietf1GtVlMbmpai/bMpMOokUfDeqshgYaP6fE7ZB4oaumb0erZdTW3QNApdR/rMc3y2MKX+l2KPuhb4OfthazBYR8WV4lBwOBwOxdO+/8Vo3j/c8bjyah+I5+d+f/0bP4q/f+8d+KNf/Hk0CpWD7KLDsXiIEY/7qYfxxHd9F971b7ymwnHBhUkXX//PXoJiP18wKIymCON3X95O7SHl9pG/+kl8+Vu/dd+XDDGi+OB79nRtYiEEBUs0rC1eySZt0RrR1CJqNrqt1ma2rbn0eaSGhF6t4Yx2stYALeda6Z6kGpgREyVeJFoUKpQUjkajZDOnBV8LQ2quv9ZUoHgCIKVy8IeFDDkHrA0BbJCqU6dO4fTp02i1WmlbQp0Taxsn0dPoLb/T4opq2VcRgFF2Ql0OCr1PnCfOFR0dSpbVHaHiA0kh76WSc4oz6iqx61Dz/jVSb+tEcLzz3Ci2jgXXLudC59XOg35vx6nFMVWc0VoFOp+aZmOLGOqatde3fdJ+6bxxXErGtS5B3tzSPaDOERYp5di0QKemTgBZUYfQmhs2BYPrRYUE9tMKIi4mOByORcdHR218+Zu/b8vnj7vrY5g8mLuhQAY7veUmD55F48/beMIffg9QiPicx3zyisvtdTj2gsmHP4YbANz2uf8MAPDPnvpW/ODpDx5tpxyXjLt6RXz7XTuQ7XHAY+56N+JoZxF2ETG+9z4U773vQNq61MphCyUoKNnRqDEFBc0PV9JryQNJghIdIBs51Wr7JBaaDkE7uRaHY70BWuvpTqC7QFMter1eJprPtrU2gYoEJFE6LpuDT0eF/eGc0J3A/qtVnqDLo9Vq4aabbsJ1112XCJslzLrLhQo1Oi/sA1MvWEmf94D9ohBgLeX8TAsl8hpM/9AtDlVs4vzkuQFI5OkGoctASTfXhs2nt1HqPPs+EWNMohCAjBtGhRB1JOQRd9uufT60vgfXEtfMPEFA21RxTI/nGKy4xn5xHXBM+ozm9dmScRX5tF3OKd0CFK+0NoWKBSpiaGoGU15UFGCbCp6nu36ogFmpVNJxKlpcQTs9OA4ZpZtvQvfa+c+pw3E58ZZeAavTBv7owtPw6Dv+asv3Oxtzd49pt4tHv/gvAQD3fsfT8N++fyNX98vqD2GlUD/AKzkci4HJhz+GR9+xYe3+5Z9/Oh7/lZ9K3z25+mnc7DUWFgbd6RB/0js19/uf/uhX5L4jLRa/BPdiYyEEBSArApCwk+QpKSFBZXSedntgVu2eBIkRfpKDXq+XahcoiSO5UWu8rYSvwkapVEopC9x+sl7f+J+qEie1ebNeAl0NADLb/il5J8mxzgpgZuOuVquJODESvra2liHfJKFM1Wg2m1hZWcGtt96Kxz3ucXjyk5+cts5kAUjdHYMpJFowkrUd2OdGo5EKQtKdoCkrJL8UBnRniLwaCRQCKCgMBoPMmKzjg/PFPtGloc4GTS2h/V/rHzBKrmRSCS7FCK5BugH0OGBWFJCEWteTFcD0fJvjr+uH31Os0dQP2x91xGjEnutHxTNdU3n1I7jmVWCxP7pWKGrxPqjgo2PR67MNFc0Gg0HGdcJnOC/lRcfH9WodEvzRQpnq2LDj0D5YJ4rjeGP1l6t4z2e7BdaxGPjxb/kWhP/9bmzsUHj5cPqX3oZX/tJnAgD+91/fjldc/67Len2H43Lj9u95O16Jz0y/3/97X4v3fMFvHWGPHIpfW7sNv/f4M3O/b87J+XccLBZCUNB8abXzkyjxO25hNxgMUrFCjZxbkseoY7VaTc6AXq+XSA+vzUg4CS3Jhtr6Gdln30gWSZ65CwNBkjIajdDrbfwPn+crWeJnS0tLW9IaNGLL82u1Wkr7oDDCcT/88MNbtrbkOY1GA2fOnMEjH/lI3H777bjllltQrVbR6XQy1n8VRCigkBz3ej2sr6+n7+r1Our1eiqECQCdTifdJ9ajYJ+YAkHCViqV0Gq1EtHkfeH9oNhBMYDReCXxFE6AmSuArgR7j3i/uTY4b+pQUDJKMcTWHFA7P6Hkm8JXr9fbUlTUEuy8KL9eT+tlqBCgBNmmxOh1lFRzrei/9fpW5OBnHDPdFnxedatPJfpa18COWdNAWP+Cn/N5U+cJ1zrPo/uEzwih32uNDb2/6hZiO4PBIIk1bEd3HHFBwUGsfE/EE577XXjfP3dRwXH58Xk/8p0489fr6ffi+z+0Y7rCYeN9/+R2PLPxhEs7OQT82Btehc+rel0Gx5WFz/hXXTzz1D/ZVxsfekETH/tHv3RAPbq6cXd/gh/5xhfOzesP/TGAv7usfXJsxUIJCkpqLYlTgj8cDpNYAGRtyprzz6ilCgVqnWa7tMbTCp0XLVaCQfJL4mwJi+bvM2qvO0po8TgKEdVqNWP3Hw6HW6LPSpxJkpUsksCSfKuY0Gq1cObMGdx88814xCMegRtvvDERc5saoRHicrmc3AXr6+vJjcEUB7pJgBnpVEGBxQ21WKDm9+fl1tORQOKoUXe13Kv1nWtAa19QTGAfdL3xv7ymRs41n9/a7/m59knFCF1TtqiiXfP8r64HHR+vyXuhfQWyxJ3PDqE1GzSdRNcmsCFSqeNC+2TFCBW7dKtIrTOxXYoAj1HHAK9jhQIKFkTeXObNvaanaJoJx6+1LTSNRQUQTbXYLhXFcbww+cjH0frU9UfdDccC46194IV/8GK89Tk/vW9L9BPe9o/Rv3cp/f6Yv3gQkw/PIm2LYM+dvP9D+zr/m3/rJRg380cSixHves7PekqFY+Ew/tg98wrd7xq3XPNkPGry4l0f/9Vf/E783I072/avZNh3HlFqB9z6V/N3TliEd6FjgQQFtX2rzVoj9WqptlXjlcAx+q2E2xbVU4IJIBFwJZTaN03BYBSdxRi1cByLOir5saSEaRgsZshijyTiHAuPBZBIOL9X8UBJEokod6NotVpoNBpYXl7G6dOnceONN+Kmm27CmTNnsL6+vmU7RB0z50rrM4xGI7RarSQmcNtHksI8QUHFBO6uwQKOWieCbWhRTCWFJH+24KWmK6iLhaIE14xa43keMNsxQD/Ls8VbIUNJp/aNwgbXn3UB6Bzb2h8k/VrHwhbmzHOTWMcE74kKBVbUoZjAfrONvLngdUn0ee/YXwoF1p2g90nJvtY6mCdYaCqTjj2vGCfvl747+PxofQiuZ+vo0HmzQo3DQVTaU7x67Vr806VPoxjcvXKc8e7BAO/s35L57NfvfSpu/96348e/8Mvxea179tX+da+sofxnd6ffD7ImwqLg1h+aTxJCtYqf/dLPw82V87i18tBl7JXDcfiovPkd+Mw91Db94594Gl71dfdue8xN5Qt4ZmOwz54dLu4bt/HmzmfmfmffeY4rCwshKBBqhdbILEk6CSItyhrhJHFloTpgZoFngUIAWyLNAJIFXgkMybmKCbyW1lkAkMQL5u73+/0M8WHtgFOnTmVIXblcRrPZTFv+MR2D19fIuxYa1N0OgKwAw/oKrVYLj3jEI9BoNNBsNrG0tITrr78eN9xwQ9rZ4aGHHkKn00lt0cmhOfAk591uF51OB81mE41GI9VM0BoG3W4Xa2tridSTpLL+AVMmlAiSqFNU6HQ6qbCkLWgIIKWRqOuAaQ8kt1rngedSnFDxSu+z7hLCa/AeW4eALY7JNaPklmIT+wzMBBsrFKiwkedAUMLP87U+gboRLDR9g+IRP9PtVfWamu6g6y+EkFJueK4KRjbSz+vzM94z3ge6h5TcaxoF51TFQq5NzgHFIa4VdQype0GFEq0nYUUYzoeKZA4H0Xjj2/H6P30Mvub9H8fpYvOou+M4QnzDG1+CR/2r7B+/VdwDAPjo5/fxUezPzVLGO/d1/pWOOBjg/3xOBcD1WP2W5wD4waPuksNxZLjtZW/DG162/Tul8w3PxjN/brHTKF704W9C4Rn5wshxf+dd6VgYQUGjhhoNVTs/SWG5XE5ETO3/ahMnUSAxVFu3Rp55rN1BgmRGHQokzyTOJC8ULHQrQjoP2F6j0Ugkk4SlWq1mBAaOg5F2W4SQUWoKJZPJJM0FgOREWF5exokTJ3D99dejXC6j0WjgxIkTuPHGG3HDDTfgxIkTKJfLqdYAiSjJGTAjxZ1OB2tra6kORKvVSqJCrVZLgoMWXuQ9ZJoHv+t2uyllQgtQciyj0QjdbhcXL15MhRBt1JzuDM51oVBI/cibNxWbgA2Lf7VaTefzv6zJUSqVMg4QYOYooVACIFM4VNcM1/K8AoQqRKh4AMwi+ErOGWGnYKWpAJqWwGurqKFknW4Rrnmm2uiOHTZtRx0+WjfB1qzgs2SdH7wWxR1Nd1EBiMdzPagowfQXCjtaX4XPgxa9pBih4oGmUPEzChi85zpn/M7dCY48TNttfMtXvginX/Vp/Notbz3q7jguEz7zLS/Eo39sVgDx0Wc/elW6BhYRp37vvbh7ePKou+FwLDSW/ui9eNY/+MZ9tdG/aQl//upf3tWxj3zjd+Cxr1zdU/uVdhceprk6sRCCghIfTTkgcbBWZ5I1RpdJpvLynS2xs2ICI8VKegaDQTpXI9ckWEpytGiereGg0c1arZYIHcmX2rQZYWXKAMm4jXJrFXsAaReGUqmEer2Oa6+9Ftdccw1OnjyJpaUlTCaTlJ5w8uRJNJvNFBlWok2CR2GEfaGYQEJXrVYzEeQQQjqW/+VcKpFlQczBYJBSSzRNg3Us9Hq2tgPvNeeeUXbOk/aDn9EhocU6dS1ouoeKFuqMoEuG19QiiXbNKilVqz3XG9vT2gQE76u6bNg+U0CUAKvbQK+t41NXBY/jurefqVCg4p5dgzq31lGhzzSFEe2DzgPFBa15ou1rrQObYsJrqCvBOjYIm8KgqRV5RSlVnPEaCo4tiBGT938I73/V0/A5X3MT/uYprz3qHjkOAd/1qafirj95Yvr9xr+cYPK+dx9dh44xpuvriHGxrdwOx1Fj2ukA7/vgvtqofWoFj/mV7wR28afPbX8+xGSf13NcPVgoQUHJnubz6x/4lsxa8QGYFWjT9hkxJ1nSonAhhOQOIJnktTXlgWS53+9vcT5oXQaSbC0+Z+3TSlA1jYLXIKHVyKvm78e4UaSxVquln1arlVIaTpw4gRBC2hGjXq9jeXk5FX9kGoOSVxUT6F7g1ph0Q2jEXKPAKkLweE03sFso2ig4d3Zot9sZJwDvn5JkOhpsDQH2X1NZtBCgJeJqobc5+0p+2a5G61XIshFt60zQaLiOyRJfFQG0fbpXmAajz4zWk8gTFChYqTjDH4JrlNuhqrinNRvU/aBpGPNqOugzyjnXtBIFRRaFbtnJZ0CvMY/8a92GPNFARQ1+xnGqi0LXjMNhcc0vvw3r7afiFZ/5KPzfpz561N1x7BN/O+zj99c+N/3+Z3/2RNy2TY6/w+FwXG2YrF7Erf/G33uOvWMh/lqmLR2YEQAld/yORIhRb6JarWYi7GxTI+4aIQ8hoNFoJKJPa7/mkpMIqXWe5Jo/JGjM81ayZ0mQ5qtzXL1eL5OrrbUSlDRr0UL+XiqV0Gw2cfr0aaysrKDZbOKaa67BmTNncOLECbRaLfR6PRSLRdTrdbRaLbRarbRV5Llz53D27Fn0+31Uq9UkiKyvr6dxsh8kbeVyORUc5LyyUCQFAZ1LkrZut5txdGj6Cd0YFCK4TaSSS5I7TQmgEADMiKUWhOR9ICG1aTBKxiuVSkYUsOkwXD+8JtvV9BUVC6y4NR6PM9uFqrjEOgAqrnD9cS1w7fL8PGeEjtlG2pVE09HCa+qa5HVUzFGHhV6HY7P1CTh/Ktbk1W1QcZD9VSFQ3ULab/1ex6XuBJuqYOsnWHCeNd1E++dwzMPS6+7GX/zZrbjj3e/1avRXKCZx4x333LffgVu/8W/T57fB/6h2OBwOh2M3WAhBQSOgJAc2+k0iQsLCyCGj9Bp11naVmJDQNhqNzHaO3W4X6+vrifRZokPyT2LMvHtNhwDyq9WTMFqxwdrkx+Nx2pZRSbwS88lkozI/3QbXXHMNTp06hVarheXlZdxyyy04c+YM6vWNP2zvu+8+xBhRrVZx8uRJtFotTCYTdDodnD9/Huvr60mcIHG9cOEC2u12Ss/Q/PTRaIROp5PuSbVaTTnyWm9BxYDpdKPQIoWCWq2WGXO73c6IOmwfmKUhcL60OB/nnWIL+6Bzx2MtbEoG3Se8lub1qyuC93AwGGQi4I1GIwkAKkgpseZOHrw+549j0NoPei53E5lMJqlug7pUuNaseGCj/bYWCNcT22DdCCXo1pGhrhD+rs9AjDGzuwU/Y19YzJGioBbv1HmjO4f90i1i9blW4cAKHuq6sHOmrgoeq6lETEfSZ9nhmIfJw+fxzV/8jXjU7zxw1W/rdbXh46M2vvsfvABhNMaj1j/lNREcDofD4bgELISgACAjJJD8kMzZqviMsLLwIXcjUIKhuz+olVzt1hQTSGJ1yziNfpJYayV52qG53SSJteZ7s89a9E2LyGn0VwsEkuzY7+l0aDabOHHiBG6++eZUF6HVauGaa67B6dOnEUJIRD2EkLaQLBQKWF1dxdmzZ3H27FmMx+PkOphMJmi325ndNABkih+SdCs543aXvV4PFy9eRL/fz9xHRr05Zivy8HNu86hF/tRVYPPwNb2A1ngVP2z6gRYb1DnVtvm5Og/UjcB1qq4Da/3ntei64NyxBoemiygJVyGkWCym8ZBcs3aCRuLtj00jsDUSVNhScUbdHTb1w9aWsLsi2BQEOxeakkQxgceqK0cFGq39kOcWUEGO863pRpxDffb0mpquo8KBdVHoM+pwzEWMGN/zSdz9X56Gz/q62/GeL/ito+6RYwc88k+/FfW/q6E4BG74yNuBqUsJDofD4XBcKhZKUMjLw9bcff5QTNBoqy22ZqO4NlI9Hm9Uzae9X0kqYfPRScJIYnh9RlyV6JAAMSrMa1KYyBMslHTn5X3XajU0m00sLy/j5MmTuO6663DixIkkKNCFQBEF2EgHYVHGGCPOnTuHBx98EOfOnUuOB4oZa2tryUlAIqxbSmpdC/6XhJhzqXnyADJkWckb6wKoRd6mWACzlBHOvbpYODeM4uu4ed80wqx1CRSaWsLzrOvEEkvOCe+d9gnIbpGoggJ/6NRgbQ+KFiTHTOvh+bVaLTkc1IGhfVOyz7GquKUFTXW+NcWG33PsOi/8TN1E6ryxdRw07UeFN86Big/q1tF1wnNU5LP3Q59dFfJUNOD1NF1Gn20VX3gOgCSsORw74eRr3oYwfRq+5+YvOOquOHbALa8tovLH/+eou+FwOBwOx1WBhRAUSAJIzmm/1wJpateuVCqpECHt+kocGU1XQqfF22if14KDWphQhQlg61aFjPaS5JEkKSkhaVHLtW2Dn7OWgK0RYG3drVYL1157La677jrceOONOHXqVNrNYWlpCddcc00qrMdo8/LyMlZWVlCv1zEajXDffffh/vvvx+rqKhqNRiKuTIM4f/58GkO5XE6uBCXy3AWD17p48WJKB1GHhxZ3JFkFkCmUqO4FTU3R6LK6QjRST/Ld6XTQ7XYztTbUzUBoHywJ11oAFLD0flqbvRLW4XC4ZScB3v9isYharZbSOtSFwDHzcxUEtEZHpVJJNT80eq+FP+k+sMKMfbY4VgoZLMypqQ7sh5JujpsFSnV7VhJ6tqNiDvvPbTnVGaFkXdMq9N7ZtAkrCFlXk/ZNhT5Nf1G3g7qXOGZ1wXCtOxy7wYlffxs+/OtH3QvHTqjAU1McDofD4TgoLISgACCRAbulns2FJmEgQaK9XAUFWuCBWXFFS0RIQklqtNI/SQgLPWq+N9tkX0iklCxqnxnBB2Yk0RawI7HTCDvbAZBI6crKCm699VbcfPPNOHPmDJaWltBoNNBsNrGysoJKpYJOp5OuUyqVUn7/xYsXcfbsWdxzzz04f/582r5xOByi1+thbW0Na2traLfbaS50bng/WLOiUCikOVxfX8+QQ84300lYc6BUKiXxRAsCUmQhEdY5IPFV676ScV5H76+2Y+sxqAXeWvJt2gDva7fbzaxTOgXUXUFhiePnfeP16KAg+dexUVSxzwPFMwocXCuaesMxcStQ66jQ2gmcNz4fuhsH0yo4Bp6j9SJ4z3gOr8kfWzyTTh0V5th39o9rIk8E4bg5V7aegbpCeA0Vdngdvae6fqxjge1pqofv8uBwOBwOh8PhcMxHYacDQgi/EkI4G0J4r3x2KoTwpyGED2/+96R897IQwkdCCB8MIXzlbjvCCKXWGFAypDZ7/ptERLdYJImkyEACpVXc9RrAjPipfZtgpF3JW7VaTVZsS0rV9g4gQwKtLVsjzTxGo6VKaprNJq6//npcc801aVeHpaUlLC8vY3l5OdVI0G0tKdAMBgOcP38e9957L86dO5eK702nU6yvr+P8+fN4+OGHk9BACz7bUdJJMtrtdtFut1OaA/tJAYdEmW4J3gu6EHq9HjqdTiLTOn4r1FAcUHcB26EQo+kEjJRrtJtRdq1jwLWQN/faX+t00LngeXoNigZcU6wRoe2oe4NzrEUcVUxgWoqKCRQgNO1Hv9PaDbq7BPtsCyJqjQM6P9iOPoucf1tYlGtfHQ36XOXVJKBDh33mc0wxoVqtZsQjfS/oc6bFFdk/K15wjHbrSX33qLNC05oWBZfrXexwOByOfPh72OFwOLZiR0EBwKsBPNN89lIAd8UYbwdw1+bvCCE8HsDzATxh85xfCCHsuPea5khrdBOY5V9rVJ8gcVVCRyKk+eUkFnqMjeBqjjk/B2aF3EhIGA3WQotaEE5/bH+072xfazNon0lwGBFvtVq47rrrUp2Eer2eairU6/VUmd4W+BsOh2i32zh//jwefPBBrK+vp9SA0WiE9fV1XLx4ERcuXMD6+nrGMm/dAioo6BaPOjcck+66oFFrCgH8jmNXV4GmgeiuAWq9V2GC31tSmJc2wnuqJFVFCEJFKSsmsH0rRKigoLuFKLHVNakFMLmGgZkLQtMU2B+tP6BuHQonuo7Ylm63qveWfeX1mDbB51BFN33mdE61noLOrQoDumuKimoULmyf5z1j2l+7uwrb1PZ0XagIYfuvY9N3gy0GuQB4NQ75XexwOByObfFq+HvY4XA4Mtgx/BZjfGsI4Vbz8bMBPH3z368B8BYAP7D5+etijAMAHw8hfATAU4Ddbeisf9ArMdMtI5WcArOtAUmqSDRJuEiylfQwyql54JqDTTFAr8WoMwkSyYvN+baCgkZ3Seo4PiU/tvih1jGo1+tpV4drr702ORJYS4Lb6rXb7eQwIGE8f/58IucPPfRQ2q4QQHIJrK6uYnV1NW2NqHOlRExrHOj33GmjWCwmosztLzUqzfMZ+aXLQyP9bINzOhqN0rypC4WCBdNJLDFUAcmSQute0MKe7Ke6K7Qmgq5T9pMpDAolt3QhcN3wfquYEmNMEflKpZJZ89aZQOGBjhC7lnTcFBx4XXWw8D7QdaPzzGM1Qs+51/QAihDT6TTV0bBpC5xTfUbYnv08r9ApHTAqUFihQ++t7hSiaRwAMu8OFTXyhAQ+74uCy/kudjgcDsdW+HvY4XA4tuJS/bzXxRgfAIAY4wMhhGs3P78JwN1y3H2bn+0ITVvQ6CEjkbR4k0yQzJFEsWo+7eXlcjmRCpJ6JRK28BzB462FXreoZFtKcq0FPWzWdmDbJCZaB0It91qAjn0EgJWVFdx444141KMeheuuuw7XXHMNms1m6g+dCUxrWF1dRbfbRa/Xy5C8wWCATqeTCgQOh0Osrq7i3LlzaXcHksW83TRYR4IEXotjkmBSTGi32yk/n3OqhK1SqWTEIV6bx5I0a0FOJaGsmcAINAUYS/g1j98KI+psmUwmqFarae3RfcE1ppFyTXcg0SUBt+Tbuh9s2odG+zmfTKdRN4MKEJzTWq2WhJK8NAamMLAYIu+f1huheMF7TOGJrgl1B3E8mhqhdUK4BilKcTwqBPK+qFCiKTXFYhGtViv1l/OnO7qoU0nvr84V59s6n/g959uKWRTH9DmfJ1wsEA78XexwOByOPcHfww6H41jjoBOEQ85nMeczhBDuAHDH5r8zBJ2fMVquedwkB0oISVCVnGvKgRbHY/vqMuC5vK7axxnl1B0dlBzpjyVPSmxIsrQmBHeZsGMnyuUyGo0GTp48iRtuuAFLS0uZvHqKA6PRKJF4FldkwUlNueD4SVDPnz+PCxcupDoEmusOILkfSBY10q7zyN0FmIKQV1eAIPHWOdc5s/OmBNLa+nm+ig42Wm/PV6Jq0xk4Ts6Ptg3MCgOqBV+3M+X1tS6AJbjAbCcBFbY05YDX0nnROh6aTmGdCdovEmNgtlMJ50zTd7S4qdYp0Hujbg6eV6vVMkITRRKtnUDSzz7q86wpHup24FjoorC7VOjaUveBbZNzqU6ZGGNy9NhnQ+dW78MVikt6F9fQOMw+ORwOx3GCv4cdDsexwKUKCg+GEG7YVGJvAHB28/P7ADxCjrsZwP15DcQY7wRwJwAUi8Wo0V9G60ko6V7QSLhGiG11eSX9PE/TDUj8SPLU5q1CBL8ngdct8qygAGSLMtrUDSWPQDZKPi8Kyp0dTpw4kWonkCSSfHGHCBZIZE2EdrudGSuvoQUAL168iPX19bQjBueRJFTdISSNSuI4Ho6FBRZtDr+1ygOztBMrEth6FDb/ntfSvHndnYPkW7/nHPC6ebn8ev+1CCT7zD7a+6r3XV0WFCXUYs/r2fVCq786LHgNdSiQ0NvjVOjQ1AFNN7C7K6j7x44vz7HD+6XOGO4EQjFJBQDdhlXvra5H7SsFEPaXa4huCN0pIq8GgqZPaBqTPos8nqJGnpshT8RacBzou3g5nMr9Y9fhcDgcc+HvYYfDcayxm6KMefh9AC/Y/PcLALxJPn9+CKEaQrgNwO0A/nKnxlRIsHUHgCwJHg6HaWtERkNp+1cRQEmEkgSt9G5TLNiG5v2z/Xl2a+1vXu43+6P55CyUqEX/NNLKf584cQLXXXcdrr/+eqysrKBer6NarWa2rOx0Orh48SJWV1fx8MMP48KFCzh//jzOnz+f0h14DYoP6+vraYtIWvvzyDIJngoKGuHmeLi1Ih0X8+ZeCbc6CbQiP8k850zP5bxx7nic7k6gLhWtH6CiijpG1NrOegdM6+A9Y7v6o4TWFjLUHUZ0PVnRS0m9rRMBINOeTVfgGuR901QHugc0jYG7cei61l0o7I4IhIobxWIRjUYDjUYDtVpty/1TNxDHY0UKK+QUi0VUq9VMLRAVBphSw/vDQpYqBFgBR6+jAiXTMPgs2K1g7U4VnP8Fx4G+ix0Oh8OxZ/h72OFwHGvs6FAIIbwWG8VmTocQ7gPw7wC8HMAbQgjfBuCTAJ4LADHG94UQ3gDg/QDGAL47xrhjiE8FBUZhrb2ZNnkeT+JUqVQyRM/m3vM4Jf4AMpZ0fm6dC1YIUMLHqCyADHHViPt0Ok1WdjoLSL5I5Oe5E0qlEk6dOoUbbrgBN9xwA06cOJGJ1pL8rq2tJYHgnnvuSdtCAhsOhxBCIk5Kkngu50q352NfK5UKut1ucjJ0Oh0sLy+jVqsloscCjJq+ofeVwg+QdTRo5JcpLJp/rwIN+6y7Q7CIoB6j90Qt7+PxOON0YNvqVFARQGsLhBAyWzvq/dL7br9X14AKGeyb1tLQ/qubxToLdPtHzqutG1Cr1RLp59jV0cP1rPU3uB5UlFNHEPvL3URUgNHim1y3/F7TeVQg1HnXQouTyQS9Xi9TA0IFOq4BFXo0hcU6O2y6EY+naGSFJ33vcM51PR81Lse72OFwOBzz4e9hh8Ph2Ird7PLwTXO+esac438MwI/tpRMkIDaqqI4FkgwVCZTM6bZ8JHIkHUyZ4LU0csrjSSRUSNCtEDW9gdcDZoXtKGzw+7hZe4H9JEHUaLxGbjWSXy6XsbKyguuvvx6nTp1Cq9VCtVpN80Tyu7a2luognDt3DmfPnkW73U5R33K5nCLbtKSTfPEzXpNiCAv51et1lEql5AjodDoAkKLTpVIpFS8kQeOcKKHT8QHYQtA4JyoS2ag/yZ8WC9SotgoSw+FwC3m180tSrikSWnuDhRF53/Os8brjB69v0zx0jWkRUK4HteSrU4X9V5FDSTGP1zQLzh3vO1M3dKcKFTDYh7wUB50znsOdILSgoop47IcVJVg3QQUdtk3RiuIORSYSewp5XLecD00dUjHBuiD4fOpOFOq00eNtPQ7OMbdYXQRcjnexw+FwOObD38MOh8OxFQddlPGSoUSG0BoAALYQfZtLrk4FRtxZA8DmRpMA6jWVzGn+vLXo26irLdoHzCLkWrCPRF5THfJQLBaxtLSEU6dOYWlpKYkJmkoxGo1SusP58+dx7tw5XLx4EQASsVThgKRcRQ+KLpxDnkuiPBwOsb6+nnZVaDabqNfrKBaLmSKMuruA3rt5hfNIMlUAyptPfq9igjoqNGKv90VTJWx+vN5rdZuQqGp9Ck0l4DnEPEGA11S3jPZDhQEV0vJy+dmmriNej2tbI/0UWChe8d5o33RtayoG15Z91rgWSPLVcWHP5zhVTLLPsD5nvAbP0/QgJfYqwmkKjE0n0X6pcELRhwKBTe2w48mr6eFwOBwOh8PhcDi2YmEEBSVXJCBWTGBEU4mIOgcY7bbFFSkwKCnXiLQSvDwxIY9oqB0cyEbaLSnSavOM5itRsUS3XC5jeXkZZ86cSdvoKfFkO51OJ239+NBDD6Hf76PRaKQIO9MUKCRQyFB7falUypBCihEhhFSbod/vJ5FDd5ZgHzTaC2Tz+wFkdtjQ+gF6j9Rir2IAUzvs9oJ2Xjk2JatKtrVN/lfrckyn0xSF584WtNizXQsl4ZZU2/oYSuiVROu6sutB16PWclCBg8dy1w8Kbaw3oSkaXJc8xu52QcKu9QaYWsLUAzpANO3BOhTsmib0/uozPE9UijGmbSxtzQQVq6ygoHPG7UDpdOGzZ50Y2l8V3vLG4XA4HA6Hw+FwODawMIKCzasmSLBZkFBTC0gUtMCaRoQ1gmmFARJYjRhrXygaEFofgEScxzJvXx0UQJY8cicGJcbqfuD1l5aWcObMGdxyyy1YWlrKRJIZqe12u7hw4QLuv/9+3HfffXjooYewurqKWq2WtpYcjUZYX1/H+vp6prq/5pzTws72G41GEjBGoxE+/elPY319HdVqFcvLyzhx4gTK5XISKtbW1tDr9TJElfdDa19oBHw0GqWoMSPHnDuNPvN+catDksdSqZSIM4BMJFlrYbBNFYd47wFssezTmUD7vU3j0PutzgT+Ny9lx/aBdQtI5q1DYl7fVThRwUq/r9VqyTkyHo/RbrczNRm4Hq1gQ9jaEEwpUQfLYDDYUpuC82jTNXiOrg0V7vi5jl/dJ8Bsq0v7vKjjSIVCjodiCOeaNT64lthHTbNgGxSXeD/0XeRwOBwOh8PhcDiyWBhBwYLkp1gsotlsJmcC86k10m5tzOossC4DJX7qJNCtJ0ejUUZM0Gi7TXHQa2oahp5rCzXaXG8lfI1GAysrK1heXt5SAI8Ei2T+gQcewMMPP5wcBM1mE4VCIeNeUDFB+0MCNhgMkn2eUeh2u51y70MImSKMTINgXYXxeJzINoDM/SF0/GqFp3Bj0yLU5m4FIJ1j3hPd/UBTXWy0W8mr/jfGmCG8FBOskAHMbPGECgxqw9douxJtG9nnj6YvAMi4DTQqz3mwzwi3cGRE3+b+55F9TRVRAq21DXTtTafT5N6g2MPr6Ln2muoYUSeKukSU2Gt6Agt1cq71udbnlvPBHS5Y0JFODQqOnANNU1EHS16RVofD4XA4HA6Hw5GPhRAU8kiHpjhQTFDyYVMdbD2EvPxtW6dBCad+r+dZIqd273lFFa2oocR5O4JSqVTQbDZT3QRen+ePRiOsra1lijGyvgGL8Y3H41Rbod/vZ/pHlwP7R2KoTg1awxnhJkGr1WoAgHa7nXZ2YMSaY2ZdBUb16X7Q+6aElufwWHWVUCSy90yFD2AWJVdib9NXeD2tP6HuFXWSqEBlRQG7vvSHbVvBiv+1NT903aqgon3X1Ah1YGh9Do2iU1DQ4oUq1Oj6VLeO1mTQugOcD00jsmka6kywbgF9Zjhu2wdNlyBsXQtNjbDPr46PgoIWUtXaITw3T1jU/rDf/MzhcDgcDofD4XDkYyEEBWBGDjTtoVKppN0GdJcCYOYO0GJ8bAfAFiJgUxosWbQOBiVdVjTQyKqNgtt+8NjdVItXdwLJvZK3Xq+HCxcu4OGHH05FGIfDYSL9ANDr9bC2toaLFy8m94AtGslxsH0tvjcej5M9fDKZpEKMTINYXV1Fp9NJtQWUeE2n05SjTnKnBJ7RYCVvTIHgPaCl3bocCC0oSIs6hQ1NA+C/LVlk29pn3Z5QdxPQKLhdD3adWDFB152m1dhUnLz1pYU82T4dApouomOkCKPFC3X8eSKX1gRh2/xhFJ9kfDqdploenEfrxFBxSb/TZ5L3TsUmS+zVsaBpOdZJoc8d7znTHIAN5wrXsT6TmrrENaX3UefJ4XA4HA6Hw+FwzMfCCAoEyUm1Wk0F4bR+AEm8Eh0SEisOsD3Nmc6zowPIECu11OvxADJF+Ni+RlD5GX/Xwnc6xjzYXRT40+v10m4Oq6urOH/+PB588EEMh8NUjK9SqaTvut0u+v1+pjYECRnJLUUaAOl3Fnvs9XoYjUYol8toNBppvkejES5evJjJRddoP8m6kkimVOica2RcwRQMu80nRQ9GzzmnjMhTOCHZVjGH7bCIZL/fT99pVJ2CD/um0XpeUwUZQoUB9tdG0XU3Chvd5zGTySSzzai2rSKIrh913pA86xac6uTIE8oYvdcaBep2YEoLHRblcjlzTd4/reWgbg1NI9FrWzFDnT/6jHP9aVFRrldd17o2KChwZ5Ner5dJE4kxplQO9t06JUqlUiY9x+FwOBwOh8PhcORjYQQFtUnbqLoSR5J8G9nUNviZFuTj9wSJhBJiFR401UFTBNiOkkoWk7MFBi3ZzIMKKKybYNMIJpMJut0uzp07h9XV1ZSOwPGRLK+uruLixYsZUqlFKu3cAkhF90jQtRChbnfJNAjdUYGklXPI8xhVZoTbRvo1uq1F+NRerwIE7xfvDVMrSDSVuOaRXK4fXtemweSJTXRsFAqFzA4Z7HOeq0XvqY45z22SJ3ixXa4tCgmMqKtrgX1nu7xvOm96Lc4951Z3t6BgwPbVmaDj0JQRXivPJaHrXYUjrj97rK73QqGQ0pxqtVoSGWxqhS1KqW4MCgl0J1h3khX0VFCxgpDD4XA4HA6Hw+GYj4URFAglCEA2yq/V/Lf7o1/JgUYybcRxnkCg4oaSt3nXApCJcCqxnScmqAU9hJB2sOA5JGKskbC+vo61tbVUw0AFAwoBa2tr6Pf7iaTZCvY6Tq2dAMzcGIPBIBFFRsqZVqCpDjqfWs+Cggivb4lgXu59nv1e50kJJL/XvHhNceBY2He6KHTt8Dh1D2i9BtueLbSolvh5a9HW21BxiL/bwpE2bcDWN9DvbRoLxRI9zj4r2gdbfFBFEh6nYge/sztqqGBnnwF1MehzZVMKVLjjc6ApONaFZLcNteIe3TT22vrc2fQPfV+4oOBwOBwOh8PhcOwOCyUoKMHLSxuwZHO3sOKAEmwlkDw2r2Abv+Nn27WvhGw3Y2ZU1pIw7urQ7XaxurqatmlU+/tgMECv10uCA8/N2+4uL6deiRUdAkyLUJcBI76MFgOzNAoVFxjpVsKoxNMSahVF8uom6JrgnOiuA3bNaFoBodtY8v5oOoPed15T158SaEue560Je6y6CfJcNLaAIoUCe6y2zza1toi6bFTQsXUItPhgnngyTzDQXULmiXZWKCLyfqfIpOkGTP2gm8WmZNjn1T53dDNxfHl9I/Q4XaMOh8PhcDgcDodjZyycoGDTBSxBIKzFPK8tTTewUUfrVshzJWzXvv3cCh157ShIdMrlcorKWnI+HA7R7XbRbrexurqKbrebahKEENIWkqwNoEKD1gKwZFX7poSZFnQVBdbX19OODqy5oHUkVJwolUqoVqsAZukLk8kkiSX8zIoJKhYp6dO+azFAteqzbc3NJ9guXRtKPHU3AxUyNEWBfbN9tmtx3r3ltVRQ4HlaXFGFHqY38NpMv1AxRoUJde6oy4D91/nj2tH1q+ewvwol+1bkINgXPm+aNmRrRdgfveelUgn1ej05dWytCevSYJvsA9ewrQth16kKS9pGnqi0kxvK4XA4HA6Hw+E4zlgIQcH+Ia+f0b5siVDevwm1jc+LINtr5fVhN/3Wtra7FsmM/d1GlInBYID19XV0u91MyoGSbxae03x37Zfa3umCUHJFcgzMhAWNSnMLSq0/oJF2HTuJsRZoVHJp0ySUwPJY/cymvfBHc/dJ/im+sH3uLkF3hSWFFD60PgKvacUJjdZrv/OcMirS2GMsqVZngHUmqJuCRUl5vq1noI4BnUO7lrWWAT9n/Qwl9dpH/lvvmY5DhSfrFLACj45RBRSKHtzRhWuU945rm+epmEDourLvCp03whZc3O3z7nA4HA6Hw+FwOLJYCEGBULIFZC31844n9ksOLiWVYrs+WQFh3rG6RaDa+knk1R3ASDpFBdr/txNC8oQLJX6W4Ovc61adGim2c6XknqSfZFwJpxUiKGDkRYHZJ0aULWHW+VJSzetZ54NGxbWAo609wP7wvDyhS/+r3+Wlx+h4tGaC7kbBMVjhxW4daduytR3sMfxM+6Wwrg2bDpD3fNkxaf0DO3Z1Beg907ksFDa2F2UhxkKhkFl3XCPqprD9suvDrmnb57z75nA4HA6Hw+FwOPaOhRIUCCW18/KZ55GA3aYrbHfOpWK7a81zSGg+OPPc6TzglpEkWLSskwjn5dirnVu/UwfBPEFBc9+tYDHP+s3+M1pt0xf0OrZoX14/SUC1TxrxtsSX7gQl7JoKoKRSLfMUDXRnBP7k7cRA7LRWrPBgv1MBSY+1Agb7awUF/ptj0OvMI/3zxLLd7G6QJzBov236QF5fNH3FpivQLaJFGDVtgSk4er51QmjxSv1c58qKHnljPKj3gMPhcDgcDofDcVywEIICSY0WyqPV2VrrLTGfRxKOGrsRMlj8UKPVJFPcTYHEeDgcotPpZCLxtjidFRnG4zEqlQqq1WpKDdDdDEjW+Ltu30iipnZzmz+v94sEV7cN1Dx0nZOd7pmS+7xjtR1Gsu22kRq51/VFm7+uL54LzHYJyKuJkffv3YDXt/Us1Pav5JzfKUG20f88Ij/PoZI3d7s5V6+dJx5YsW+e4JQnJnDt1mq1VDNBU3goJmn/1M2ifdLUFNtvILubi+2nPnuL+B5xOBwOh8PhcDgWGQshKABZ27wW6yNpsbnTB/3H/7wIrYVG0/cCtX4DG+NtNBppm8UQQoZMqROBhQj5nUbZSYxZ5V/Jc6VSSbsYkChTIOCxWrjRRsq1CF8eMdWIPlMHbM68dRfsJsJvnQ32e00F0MKDwKwQI88nNN/fbn2oke5517T3by+wYoISXb2ubf8g0nC2W9d6zTzBRAWd3Twbtv+aXqJrTF0tmrqhQpoKjLbOhF2jVijQ/s8Tpez4rEtjL+N2OBwOh8PhcDiOKxZGUGC0vlwuJzv65d6+bTeEcbfCg8Ier84EOg3UPUCipC4BWsC1Pf1eayCQsNFGDiA3TYJEjYTPCgk26ps3rrwcetvHvMjwbuZMya6NrOdF19XmrtBtEbXAYx553C5qf6migtZ7ULeGzrctjLiXtvci0uRhO8Fhu+93uqaKKLaOghb+5HrTwpF6jnVqaIHQvDW3W/FjN64Mh8PhcDgcDofDMR9bS6YbhBB+JYRwNoTwXvnsFSGEvwsh/G0I4fdCCCfku5eFED4SQvhgCOErd9sRtc/bnOjDdifsFXshffMi+3Qm8BhujzkYDFKktt/vp9+VRAHYQvy1fZuKwPYtedO+KRnfSUzQaK72wY51r+6E7ebO9tUWTGT7eX3Wec6rB6H9tGPMExX2AhVsdB4omuXVm9grtiPHeoxtP0+kyfu5VGiqg7o8dO0Mh8O07ammOtj6EZr6o+vY9tPe153cNfZY/X3RcLnexQ6Hw+HIh7+HHQ6HYyt2FBQAvBrAM81nfwrg78UYPxvAhwC8DABCCI8H8HwAT9g85xdCCEXsAFqjGbUfDAZb9p/Ps1PP+1lUaLSWqQjj8TgRqvX1dXQ6HfT7fUwmEwwGA3S7XXS73cyckGTRtaDkh+6HarWaKXI3r4gjI+Wj0SgVgtRo+X7n+CCI6Tzyp3ORJ67wXM4z00fyxmavpQR8v+RStyzcTkyw17XYa1/mOS4OmyxzbamoRaErSIoMC45SJBiPx1u201QBSFNrdiMcbPeddUCo0+egBJVDwKtxyO9ih8PhcGyLV8Pfww6Hw5HBjikPMca3hhBuNZ/9ifx6N4Bv2Pz3swG8LsY4APDxEMJHADwFwNt2uk6lUkGxWEy7GWiOO3OqN6+dzlGCPi//fZHALfK0EKNuB2nJ7bzdBkis8nYx0BQKJdEq0BAamd8pvcGet0jYjZ1/u7WRl2qw3zFqm9aef6nrdK9iWd7x88Z5UEJcjDFTgJFr2jpfrMuEx3Ltqoiw3S4j23223Zis42W79hYFl+td7HA4HI58+HvY4XA4tuIgaih8K4DXb/77Jmy8TIn7Nj/bFkoktFaAjUorbG72YYoJeYQz7/udjtPoNwk+xYS8ehF5NmwVTqwAoDZxtmmj4BZ5KQk7EfT9kk9t4yDa2wl7EUsOA4sQ8Z43z4c193ymge0dAHl9se6TS5m7ncaV15Z1qiyyuDAH+34XOxwOh2Nf8Peww+E4dtiXoBBC+CEAYwC/yY9yDsv9qzyEcAeAO4AZEVZL8y6unYl+HhXyov7bETd1A9iI7U4R2O0iqZbA0Va/m8KK+83hvxQclpCQ52SxaQWXE9u5EnYSn65U2GdTxa1564vH8/v9iEC7nbud1sTlShE5CBzUu7iGxqH0z+FwOK52+HvY4XAcV1yyoBBCeAGArwHwjDj7i/s+AI+Qw24GcH/e+THGOwHcCQDlcjnSnt/v97cQCZsHbp0Lto7AQWO3xG+nCLBauEmw9oI80m9rAeQJFvP6xy0o+e/trslz582FPW47srbTnB0G9nOd7VIidiKjuzn2cmA392Ue9nKOPYb1EfKKXtrjmaazl2c5r83jhoN8Fy+HU4uvnjgcDseCwd/DDofjOGM3RRm3IITwTAA/AOBrY4xd+er3ATw/hFANIdwG4HYAf7mbNlntfS9bRdroet73NmXgckcb7TW1/sFeMK9woH6+U80E269521Ha6+6WSOb1Me+6lwN587Oftua1rzjKlIbd4lLm5FLO2Y04sNPzuZtUkZ3u86Lfj/3iMN7FDofD4dg9/D3scDiOO3Z0KIQQXgvg6QBOhxDuA/DvsFHBtgrgTzf/kL87xvjiGOP7QghvAPB+bNi+vjvGuKNCQPKxV4uzko3d5IcfZgTT9iGvT9sR93nYTS64zfe2UdvDrong2MBerPaLMucH5Z7gmLQgY972pDtdazvh4LjjcryLHQ6HwzEf/h52OByOrQiLEMErFouxWCzOTV2wBJmkRe39R0045gkKl8vuvp1wsF0fFsGOf9xwtQkK2ga3QwUurQ7CXsSHy4UY4ztjjE8+6n5cDiyHU/ELwjOOuhsOh8ORwdvjXViL54/+fwiXAf4edjgci4o/i7+T+zfxQezysG+QdGwnbpAwxxjTlosHWYxxvyRvnhvichGinebuUr47SuyX6F5OoWSva2dePYPDqAewl1oPez1/3ritkLCXcV1KasVBCHcurDkcDofD4XA4HHvHQggKwO7SAJgrXS6Xt62doO3txl59ULn2tm0nJ/Mx7/5w3vZaNHA/6S1Hda8uR0qOihWX0r4KefPO5y4tdA3lFQ/VvuwXec/tftv2Z9XhcDgcDofD4dg7FkZQILarh1AsFlN+9m6Kte2E/UQzF5WAHHakdTe1InaDg5z73UbZL/W6O41xEdfCQa3R7YQf/a9+ftjFKRdxvh0Oh8PhcDgcjuOIS9rl4XKCxKRYLKJYLKYcbdZPABaTYCxin64ELIJTwLE3zCsI6nA4HA6Hw+FwOK5uLJxDYV4+ealUytROsAUc88477D4uIi5H8cdLud5BOSd2u+vFXs7Z7zUPEgdVR2GnOditg2G72gtWSNBncpGekUXsk8PhcDgcDofDcTVgIXZ5CCE8BKAD4NwRd+W098H74H3wPhjcEmM8c0TXvqwIIawD+OARd+O4rzfvg/fB+7AVx+k97H8Tex+8D96HRe1D7rt4IQQFAAghvOOot2bzPngfvA/eh+OMRZhn74P3wfvgfTjuWIS59j54H7wP3ofdYuFrKDgcDofD4XA4HA6Hw+FYPLig4HA4HA6Hw+FwOBwOh2PPWCRB4c6j7gC8D4T3YQPehw14H44PFmGevQ8b8D5swPuwAe/D8cIizLX3YQPehw14HzbgfcjBwtRQcDgcDofD4XA4HA6Hw3HlYJEcCg6Hw+FwOBwOh8PhcDiuEBy5oBBCeGYI4YMhhI+EEF56ma75iBDCX4QQPhBCeF8I4SWbn/9ICOFTIYR3b/4865D7cU8I4T2b13rH5menQgh/GkL48OZ/Tx7i9R8jY313CGEthPC9hz0PIYRfCSGcDSG8Vz6bO+4Qwss218cHQwhfeYh9eEUI4e9CCH8bQvi9EMKJzc9vDSH0ZD5+8RD7MHfuL+M8vF6uf08I4d2bnx/WPMx7Hi/rmjju8Hexv4s3P/N3MY7fu9jfw4sBfw/7e3jzM38P4/i9hzfbvTLfxTHGI/sBUATwUQCPBFAB8DcAHn8ZrnsDgCdt/nsJwIcAPB7AjwD4/ss4/nsAnDaf/RSAl27++6UAfvIy3otPA7jlsOcBwJcCeBKA9+407s378jcAqgBu21wvxUPqw1cAKG3++yelD7fqcYc8D7lzfznnwXz/HwH88CHPw7zn8bKuieP84+9ifxfvNG5/F6fPr8p3sb+Hj/7H38P+Ht5p3P4eTp9fle/hzXavyHfxUTsUngLgIzHGj8UYhwBeB+DZh33RGOMDMca/3vz3OoAPALjpsK+7SzwbwGs2//0aAF93ma77DAAfjTF+4rAvFGN8K4Dz5uN54342gNfFGAcxxo8D+Ag21s2B9yHG+CcxxvHmr3cDuHm/19lrH7bBZZsHIoQQADwPwGv3e50d+jDvebysa+KYw9/FW+HvYn8X5+GqfBf7e3gh4O/hrfD3sL+H83BVvoc3+3BFvouPWlC4CcC98vt9uMwvsRDCrQCeCODtmx99z6a951cO01q1iQjgT0II7wwh3LH52XUxxgeAjUUF4NpD7gPxfGQfkss5D8D8cR/VGvlWAH8kv98WQnhXCOF/hhC+5JCvnTf3RzEPXwLgwRjjh+WzQ50H8zwu2pq4mnHkc+rv4gR/F2fh7+LL/C729/CR4cjn1N/DCf4ezsLfw/438bY4akEh5Hx22badCCG0APwugO+N8f9v7w5a6yijOIw/h1oLLVpQXATaQit1Xd0qrlyYYgPqpuIii24Ed25c5Du4baEUBIkgQovZ9wu0NJg2pYq2q5CQQjcuutH2dDFvYBLuJF7ad+Ym9/nBcG+GSebMybz/XF5mJvkPcBl4FzgHbNBc2lLTh5n5ATALfBsRH1fe30gR8TowB/xaVvXdh930fo5ExALwH7BYVm0ApzLzfeA74OeIeLPS7rt6P8RY+Yrtf1Cr9mHEeOzcdMQ6/13NyzGLzeK9mMWlrBHbHpgsNocHZQ6bw3sxh0tZI7Y9MDkM+y+Lh55QWANOtr4+Aaz3seOIOEzzi1rMzOsAmbmZmc8y8zlwlcqXjGTmenl9DNwo+9uMiJlS4wzwuGYNxSywnJmbpZ5e+1B0HXev50hEzAOfAV9nNjcnlcuInpT3d2juT3qvxv536X3ffXgN+AL4pVVbtT6MGo9MyDkxJcxizOJiIsadWdzoM4vN4cGZw5jDxUSMO3O44WfivQ09oXAbOBsRp8uM4EVgqfZOy30w14AHmflDa/1Ma7PPgdWd3/sKazgWEW9svad5+MkqzfHPl83mgd9q1dCybdatzz60dB33EnAxIo5ExGngLHCrRgER8SnwPTCXmU9b69+JiEPl/ZlSw6NKNXT1vrc+FJ8Af2TmWqu2Kn3oGo9MwDkxRcxizOJi8HFnFm/TSxabwxPBHMYcLgYfd+bwNn4m3kv2/BTInQtwnuYJlg+BhZ72+RHN5SB3gd/Lch74CbhX1i8BMxVrOEPzVM4V4P7WsQNvAzeBv8rrW5V7cRR4AhxvravaB5qg3gD+pZlZu7TbcQML5fz4E5itWMPfNPchbZ0TV8q2X5bf0QqwDFyoWENn7/vqQ1n/I/DNjm1r9aFrPPZ6Tkz7YhabxWbx9GaxOTwZizlsDpvD05vD5efuyyyOUogkSZIkSdL/NvQtD5IkSZIkaR9yQkGSJEmSJI3NCQVJkiRJkjQ2JxQkSZIkSdLYnFCQJEmSJEljc0JBkiRJkiSNzQkFSZIkSZI0NicUJEmSJEnS2F4A+m/kTP6J+hMAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 0 387364\n", + " Min thresh = 1000\n", + " Sliding\n", + "\n", + "\n", + "030s_iimage_1180496934444_clean_ClassS_37-165.roi.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADYCAYAAABberBAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADb8ElEQVR4nOz9e5xt6VnVi49ZVeu+Vu1Ld5JOIOEeEBC8YAQVRKOIikBUPHiDIBqQcwQvyO0cBfypvyiKIEogioCKcvMCKh7QaEAFgkRRIIGQEC6BpjvdvfeuWveqWvP8UfV9a8ynZu1L7929a3c/4/OpT3WtNec739tavcd4xvO8VV3XSiQSiUQikUgkEolEIpG4E2zd7w4kEolEIpFIJBKJRCKRePCQgkIikUgkEolEIpFIJBKJO0YKColEIpFIJBKJRCKRSCTuGCkoJBKJRCKRSCQSiUQikbhjpKCQSCQSiUQikUgkEolE4o6RgkIikUgkEolEIpFIJBKJO0YKColnHVVV/WRVVR97v/uRSCQSiVNUVfVzVVX9jtu8tq6q6v2f5nOe9r2JRCKRSCQuFlJQSDzrqOv6Q+q6fuP97sftoqqqb8x/ACcSicSzh6qqrlZV9e6qqv7r/e5LIpFIXDTc63+X3kl7+e/iREQKConETVBV1W+R9H73ux+JRCLxPMPfkPTW+92JRCKRSJwi/12caEMKColnHW6rrarqy6qq+o6qqv5pVVX7VVX9eFVVL6+q6ourqnq8qqpfrKrq4+zez6iq6q0n1/5sVVWfFdr+gqqqHq2q6perqvqTrqBWVdWrqupvVVX1C1VVPVZV1ddVVTW4ST93JH2NpP/rmZmJRCKRuJioquoVVVX9UFVV10++U/9eVVXdcNnvOfkefqKqqq+oqmrL7v8TJ9/V16qq+t6qqt7rDp79UZI+VNI33qPhJBKJxIVDVVW/qqqqN558z/5kVVWfaO+9saqqP2l/vxrHVlVVP3Dy8v+qqmpaVdX/UVXVx1ZV9a6qqr7k5Dv556qq+qNPt71z+pv/Lk60IgWFxEXA75P0TyRdkfQ/JX2vjvfme0j6K5K+3q59XNInSNqV9BmS/k5VVb9Okqqq+nhJf17S75D0/pJ+a3jO35D0ckm/5uT995D0l2/Srz8n6Qfquv7fT39oiUQi8UDiSMffgQ9L+ihJr5T0OeGaV0n6CEm/TtInSfoTklRV1SdL+hJJv1/SCyT9F0n//HYeWlXVtqS/r+N/sNZ3OYZEIpG4kKiqqiPp30j6PkkvlPRnJH1LVVUfeKt767r+mJP//PC6rsd1XX/byd+P6Pg7+z0kfbqk199lexH57+JEK1JQSFwE/Je6rr+3rutDSd+h43+Avrau6wNJ3yrpvauquixJdV3/u7qu31Ef4/t1/EX80Sft/CFJ31jX9U/WdT2X9OU8oKqqStKfkvTn6rp+qq7rfUl/XdKntnWoqqqXSvos3VxwSCQSieck6rp+c13XP1zX9WFd1z+nY2H3jEh78n36C5K+StIfPnn9syT9/+u6fuvJ9/pfl/RrbtOl8LmS3lTX9ZvvyUASiUTiYuIjJY11/O/ddV3X/0nSv9Xp9+jTxV+q63p18m/kf6fjfxvfNfLfxYmbYed+dyCRkPSY/fdC0hN1XR/Z39Lxl+71qqp+t6Qv1bHTYEvSUNKPn1zzEkk/am39ov33C06uffOxtiBJqiRtn9Onr5L0V+q6vnGng0kkEokHHVVVvVzSV+rYgTDU8b8XIsn379if1/F3sCS9l6Svrqrqb3uTOo6a/fxNnvkSHQsKv/6uOp9IJBIXHy+R9It1XW/stZ/X8ffk08W1uq5nob2XnHfxHeKrlP8uTpyDdCgkHhhUVdWT9C8k/S1JL6rr+rKk79HxP1Ql6VFJ72m3vNT++wkdixMfUtf15ZOfS3Vdj8953CslfUVVVb9SVdWvnLz2Q1VV/ZF7NJxEIpG4yHidpJ+S9AF1Xe/qOIWhCtf4d+zLJP3yyX//oqTPsu/ay3VdD+q6/sFbPPMVkl4s6S0n37tfLekVJ9/D54m/iUQi8SDilyW91GvP6Ph79JdO/numYzEXPHIbbV6pqmoU2uN7+em058h/FyfORQoKiQcJXUk9Se+WdHjiVvg4e//bJX3GSZGbocyWdaIA/wMd11x4oSRVVfUeVVX9rnOe9XJJH67jegu/5uS13yfpX92z0SQSicTFxUTSnqRpVVUfJOlPt1zzF6uqunJihf08SeTdfp2kL66q6kMkqaqqS1VVfcptPPPfS3pvnX7v/mUd19X5NeZaSyQSiecC3qRjkv8FVVV1qqr6WB3/O/NbT97/MUm/v6qq4Ulx8c8M9z8m6X1b2v3yqqq6VVV9tI5rjn3HXbYH8t/FiXORgkLigcFJ3YPP1bFwcE3SH5H03fb+v5f0dyX9Z0lvl/RDJ2+tTn5/4cnrP1xV1Z6k/yiptVhNXdeP13X9K/ycvPxEXdeLtusTiUTiOYbP1/F37L6Oxdi2Il3fpeM0iB/Tca7uN0hSXdf/SsdFcL/15Lv2JyT97ls98CTv1793b0g6sO/gRCKReE6gruu1pE/U8XfjE5K+VtKn1XX9UyeX/B1Jax0T/W+W9C2hiS+T9M0nJ0RQJ+FXdPzv418+uf6z77I972/+uzhxLqq6ziLKiecmqqr6VTr+h2zvpDBYIpFIJBKJRCLxnMKJw+Gf1nX9nre4NJG450iHQuI5haqqXnVi9bqi4wjZv0kxIZFIJBKJRCKRSCTuPVJQSDzX8Fk6rrHwDh2fo96W95tIJBKJRCKRSCQSibvEMyYoVFX18VVV/XRVVW+vquqLnqnnJBKOuq4//uT0hqt1Xb+qrutH73efEon7hfweTiQSifuP/C5OPNOo6/qNme6QuF94RmoonBzv9DZJv1PSuyT9d0l/uK7rt9zzhyUSiUTiDPJ7OJFIJO4/8rs4kUg81/FMORReIentdV3/7EkV02+V9EnP0LMSiUQicRb5PZxIJBL3H/ldnEgkntPYeYbafQ9Jv2h/v0vSbzy3Ezs7dbfbLX/Xda2qqlRVlba2toSLgr8l6ejoSHVdl5+trS3t7Oxoe3tb29vbkqTNZlPa2t7eVlVVkqStra3yXl3X5b95Br95bbPZlOc5uJf76RuIf282m8Z9jJEf70dbW4yR9w4ODnRwcNB4fmyT5/Hjfx8dHTWuY8z8+HvA//Y2b3V/7I+vhb9+dHSko6Ojcs/29na5xtfqvHG29Sv2l/t9vvw9vyaO2dfyvHmLz4zj5H6/fmtrq7FH4748b+7jGNrGeit437xfbZ8F78t5ax+v83mI44jvsbd9Lf2+uKdv9ax7hCfqun7BvW70WcAdfQ9L0vZ4VL/svSs9vppo++2rm12aSCQSzxqWmmldr87+z/jBwB19F+f3cCKRuKjY17XWfxM/U4JC25d+41/5VVW9RtJrJKnT6ejlL395IY/r9bqQyZ2d0y52u10NBgPt7OxoNptptVpptVrp8PBQOzs7Go/HunLlil7ykpeo3+9rvV5rvV5ruVyq2+2q0+loe3tbvV5PVVVpuVyWH0ispCJIlI7Xtebzufb393VwcFDIVl3XWq1WWiwWWiwWclGEvjvJOTg40Hq91uHhoQ4Pjw8e6PV66nQ66vV6Ojo60mKx0OHhoaqq0s7OTnnWzs6OLl++rN3dXfX7fXU6HU2nUz366KPa29vTer3WcDhUv98vpIz7jo6OiiiCcLFerzWfz7XZbIpYAclGqDg6OlK32y1El/v5e7PZaLlcNkQbSY35pD8u+CDOVFWl4XCobrdbxjqdTnXjxg2t12tJ0mAw0GQyKXM7m820XC61s7OjTqej0Wh0Zr2YYyedEOXDw0Ot12vVdV3mvd/va7PZ6PDwUKvVSuv1uvR/a2urzAFztNlstFgsGkLO1taWjo6OGmvr5Hx7e7uMkz1+cHCgw8NDHR0daWdnR4PBQP1+v+yF6XSqw8PDIkQhOiCIHRwclH3W6XQae5j1pn3Wzgn74eGhtre31el0NBgM1O12tV6vtVqttFwutdlsGgIW/XChIYpxiEJ+rQsefi/zRl83m406nU7jeYyf6zudTuM5rDNtsQ4IfbeDNoEjiDc/f1sNXTzc8ntYan4X9zuX9B4f8H/rfa8faOsd//OZ7l8ikUjcFt5Uv+F+d+FucEf/Js7v4UQicVHxH+vvbP038TMlKLxL0kvt7/eU9Mt+QV3Xr5f0ekkaDAY1hKfT6ajb7RYicXh42CBBkAcIFNdBsCCEw+FQw+FQnU6nkDwIkqRCbJ3MWN/ORLB7vZ5Wq5WOjo60Xq8LqYbMudAgqRA46dQR4c+oqqr0i3Y8UgwppU3I+87OTiFetL2zs9MgntIpGYNkQsB8/Ds7Ozo4ODizeIzd++dkOroxnLTHKLoTzs1m0yDECBtOBnu9nrrdbuk/xLvNycAaRkEB4u3P51reY75Ye9Y59o/3XXCRVObc72fuGKtHytmrkgpppo/00wUC1tXfd8GA+fK9Fuff54XxRNcI7R4cHBTBg9cQi9wJ4Q4R1uI8R0ubi8KdJj5fvu/dqRHvYQ0j2vrBOp6HNudJFBMecNzye1hqfhfvVlfrwXf9yLPTu0QikXh+4I7+TZzfw4lE4kHDMyUo/HdJH1BV1ftI+iVJnyrpj9zsBidfuAsgfS4oQCC73a6Ojo60Wq1KWgR/7+/vazKZlOj/er3WbDYrjgVIBoQ2CgqSzhDQnZ0d9fv98ozDw0N1Oh3t7Oyo2+2WaLPUFBAgYd4+43HCDiB03h4kZzqdlrZ5Ns9nXC6G0D6Ezgmp98MRI8tOZLe3t1tJNn10twNjdkHIyTjtIM7wOpF69gMiUXRseIQaAu6RfB9vTCVhHETpEVo8Cu4EFkGDNrwfrGMkyB6197XwPrhYwFwdHBxoZ2en7F1/nzGzFj4Of5++dbvdxlzQDmvE9YhhvV6v7CfcN77OUURoS+lxV0gUgHwN4+vMk/cfYcHb8f3s8+xz4OPzPe19asMzkCpxv3HH38OJRCKRuOfI7+JEIvGcxjMiKNR1fVhV1f8l6XslbUv6R3Vd/+TN7lmtVqUeABFcdyFAQt2hwN/T6bRh718sFtrf39f29raGw6GuXLmizWZTRIXZbNYgx0TCPQrtzgDEA48KLxaLYptHaJjNZg1i3ZaP7ukIg8GgEM29vT2Nx+MzqQGebrBYLEq/h8NhwxXhJB3XBNZ6f+5yuSxkFKHEo7seISdKfXR01Bg/z0FwYb6c8HpEWjomdRDUwWBQCOPh4aGm06m63a56vV5xlfR6PUkqokNd1w37vbfrv32+GSPOEifUuCDqui7tcw97kHmH5LM/cIdEsg9ow6Ps7phgPhFScKsgJPFaJOY8E2GCfQIi8fY5I2XE18nTVDabjfb29jQcDougMR6Py5q54yaS+djfCN8H9N2vd7GHNfdnxvH7HvP7Y0pFTMU4D23z/FzA0/keTiQSicS9RX4XJxKJ5zqeKYeC6rr+Hknfc7vXQ1Tn87n6/X6JkgKvSVDXtbrdbiH8DsgcbgSitL1er9jniYp7VNeJNVFSt157ZHhnZ0fz+VxHR0clB5/IrtvgozOB9pxIevR6Pp+r1+sVwYR54VrIrYsBXiwScYTnOPlH/IjEH5KLKMFrkkq6iAsOvN9G4rwtUgcYN+8jcHQ6nfKD4yOu9WazKfUE3O2AKODWedt3DacGpJtxRKLPfsIpEkUAqekkQWhhbdg3XhzTXRS06WkpCBQ+L7Ev6/W6iAGsG2OI+9HTEVzIcQHF90t0EjDew8PDUm+E9Aeft+hK8XvPI+XuGHCnBK/7Z5j+RzHuZm1H+J5oW+c2PNeEBMedfg8nEolE4t4jv4sTicRzGc+YoHAngDRh81+v1yVCDLGGOLk9HoKCWwHigliAeICoQBtOOiKp8tf8PbfTE11erVblNez6HrE+L3/b3QoedXdBIBZKpD9ujY9tevSa9p1YOsnlvfPGD+FjLtueFdtinqIbI9Yz8Ci8rwl99/GzD6ITIKaTeCE/f83rSPjY2iLfLgTQP9YopnAgvjAGF3YikXWHQoy++3PoQ3Qq+Fp6X2MhUW+HuYj7ydcnEuworPj6+090n/g8ntd2HKPvsbb7YztPh/S72JVIJBKJRCKRSCTuPS6EoFBVx0UPITTL5VK9Xk+9Xq8ICC4ISKf59pI0mUy0v79fyAP3HBwcaLlclme4nR8S6NHLNpLt4gL3cdrE/v5+ye8fjUYNoknevQsRMfXBXQFbW1uazWYNqzp99sg4JNGFAyd4RMolldMsotgAEY8WcebOibXnyW82m0Zee6zZ4NF7f83nARGIOe33+40CmZwwQQQfUcGdHwDHhpNz+sn78XhRCLsLNm3CgtvwcVHQb18zJ9jueon7m72BE8DrKcS6Duwff79NuGBNWRcn7MwDPwgzNyPYLuzgaPFx+VyyV9xBE9tvE9Rc0IupDm2uCf99Jw6Dm6U4JBKJRCKRSCQSiXuDCyEoSCougk6nU45yhKjjUoBkQnZ3dnY0Go0KYaMOgtQkKX5kHqkJ2Mi9ToCTb6z50qk93/s6HA4LMSSFwusM0I4LApDi6D7wSD3E1U8v8BQIiChHa7oQ4MSP3HcAifbaBPz4fPlRl9EFEQvoRdeAk3+PQEOYo72d9nF8uLPE++X1BhaLRXmdOZ3NZhoOh6VPXgiSOfM0FI/ux3oH5wkKbtdH8JCabg3abiP+XO+nS3BtLD7IHHmahe8T+uJFJxeLRUmXcVcF/fLil+5UoX/+etx/zIOLbf65io6U6GDhWheffA/6+NrcMP7f0T10npPhTpwJd+OCSCQSiUQikUgkns+4EIIC/6CncJx06jKgAKF01oIOQaEoYjzBwe/hOU4UPX2CgopOmCl6CPFzsYKidUTUY5ScZ/NcSBN9i0cAVlVVUjeIYnskvKqqUjfCI/z0lwKWTgh9zFHA4BlOCplTL8q4Wq3KnCE2OPFFePH73CbvJ2VQJHO5XBZizf04Tjw9AnGA9722gu8bXC3MsaebMIfubvAx+/7w9YtzHMnyarVqCAHR5RBPYKCwJ8IQ8+rChq+Pt3Xe0ZWRtMc0FK8L4o6ImyEKMYzZXT1O6r1fsd8+f1HYc1GBdnw9orATcTPy39aPm+FmbaXTIZFIJBKJRCKROB8XQlDwKDcEEECGnVw7Mec+jyJ7tNhJlpMeIrC0CyF3QcKJLVFy2qBoJEQZguxkNkaCKXIXCY9b8D2SHXPAo/U9Wvdp39sFbQTaUxH4mwKVPs8xNYIfn+uY2gGBJIefNjhdgTEiftAv5hn3R6yJ4KTWySeuhJiG4G4F3xdOwn0tGCN7wPecO1i8gOB5BNYj6t4WhSZZY4/S00bsVyTvLtwAd3V4qoLfF10rcbw+npjSEhHn0x0Ncfxtc9SWyuCfURe57gTxc/N0kEJCIpFIJBKJRCJxa1wIQUE6tXe7oODkNJ7ywD0xSr+zs1PqCLjN3U9YiA6AbrdbnAYQWSdxRNI95YJIOc8lSo6rATgZc9dFtHZD5uiTt+/iAIQa4uzkzAtDOumOhBDy6scf0qYT8zZS5kTV0xicMDMeiD6iC+Mi7YI1jEcYYt2XTiPYvg9o3+c0Xudj9WM42Wc3I7Vu728j8m0umLa58vmnHfYxgpQXafS0D1972oriWDy1Ibpe+Pz4eKJTw50XvoZx351HsNtEF98rsYhj3LM+/6yvz1nb+rQhzn+c+6eLu70/kUgkEolEIpF4LuPCCAqA1AIn3JDOnZ2dQoI5ApKfTqejfr9fCjkiKlAcEcIK6V6tVlosFjo8PNR4PNZwONRisSikCwIqHROvxWJRBAuEDS8MCelcLpcN10Qcm9cJcHLs1n5+sPE7GYtReemYPNE3TxthHB5JBpBsClfiBkBoiXUPIHwUesRJgIiyXq9V17UGg0GDQFJjgvlnnaJgwH8jLgwGA3W73XKahhNWr3/hbdd1XebV23XxhH1DvQveb5uf2KcYpXcSjEDgjoSYkuBCFXPAPlyv12XvulAQXTUxLUU6W+gyiiMx/cDdEVGQ4r99n7EvYrqFz5mP9TzXggsy5zkPoqDlomIUWW4HtytInHdfIpFIJBKJRCKROB8XQlDwaDDkGEEAx4CTZ4gmQFSAqMcIN+QSYtnv98vRi5CryWRSCJWTIQrwea0EjqqUzla657/n83khty48+CkOXgCRscZovxcZdJLqdRjcAn9epJg0guie8BQE2nSXRYyYE2Un8j8ejxuCBHMDYXdnwHK5LKIQBTUllToKkF2KNXa7XXW7XS2XyyJYuNuBApaIOQ6fu8VioeFwqE6no93dXc1ms0Z6Cuvh8+qCip88cbPihC4QOXHmfSfn7DH2EfvXha/1et0QFmKtghjpb3NDuMPA9zX9jmJDdCac9zlyog+i8yYKAtFxQFs+FtqJ46IvbcLAeWJBnJ/Y30QikUgkEolEInF3uDCCQpu1XzolMpBqfnuBQI+gQpQ8ZWC1WhUi60QRArtarUrBQ57thIpoPCcn4Hrw2gAeOWccEGUnvPyOxQYRB/w4SMbrtRJoz4mbzxv3RZLJPHv1fhc72go5tkXlHdQD4NmQYoiiH5NIv1erVRk36Q+x/6yfpLIu9JFrqRfB3qA/cZ55PnuAPiNatKU0uLOB+6OA43PPXMXxRhEopoP4sZieouOiAu1FIagtbcPf8zWP/fS1j06KtnvaXotigF/rv9v2j8+DX+9oG6+nZdypMJBCQiKRSCQSiUQice9xoQQFqUnwpNOouRNHJ8KdTkfdblfT6VTS2Sr2RLxxNbSRuKOjI83n81LY0fuDnR3xYLValWi1uwvcheDRUMgobUlquC0g3h4hjxH3uq6LJR7EQnttxz+2WfXdbu5pG/F+FxS80KGDeXTC7W4G5tpdDk7k3SERC2K686Df75fnELXnb9wDngbgln1SR5bLpTqdjnq9XnEFOJl2YSgKRd5/X8dIshmvk3CewbGNLnq5s8RPZPCCoS5AtZF+nu+/o+DgcLeDO4G8rZjuwD6Nbgd3ZJwnKHh/vO5G3Gd+vT8jOjPuNOXh6aY6+Px6bYpEIpFIJBKJRCJxigshKEin0WAnltLp6QvL5VJHR0eNGgH9fl/D4VDdbvdM3QXcAYA8/H6/r/F4LOk0XWGxWGg2mxUrPk4D6ZQMkfMO0SLSvrW1VSLn3O8Oh/l8ruVyqfl8rslkUmz87nhgLMwBBBi0kRyey+ukhUDyziOfkHVqJUDoIe9O+CDWvV6vIXjwfPrb7/clqRB7J60uKlBzwesujMfjhkuBNhAPut2uhsNhQ0TyVADEIJ8LL54Jafb58dSQSH49zcHn/7xUgCgQbG9vq9/vN/ZHv98/496gv6zBYDDQ1tZWo684atjzXngSEcv7xPvuwIloc5C4IOXjjakC/t/niVVxv50nLsTnuHgRRYBY2LFNgLgZ7lSAcLGQsSYSiUQikUgkEomzuBCCAoTWyTAEN0ZuKXoIyeh2uxqNRnrkkUdK+gLRfGoexAKNkEoi1TgLKFBI7QMEDp7joEYCBGe9Xqvf7xcy6wKBJE2nU61WqyKA4IaQTongeDwujoudnR1Np9MybtIfvPAiNQQcsXiep0z40ZpE7IfDoXZ2dtTv9xsiBoQbAo9I4mkF9Ie5HAwGhUh7LQLGxG/ma7VaqaqqIlgwNheDfF79WsbIunpNBFImuGY4HGo+n+vw8FDT6bQ4FWK0nH77HEMwO51OKeh4eHhYRCzIMOkXCACeTiBJk8mkcUym13hoc3O4QOEpH7znaSusCW3zXMbQJi74Zy7WbPD1j3CHgJ+UEtMf2sA8eXoJbZ6H2JY7R2KqzL0C88scuLiUSCQSiUQikUgkTnEhBAXgZMGjmETRIRDYvyG8k8lE/X6/uATm83kp4sdrkC3SHzwCL6ncv16vC4H2gotEfiGjEEueQWS92+0W0ut2/vV6XaLuCA5eG8IFEqLGnuLhggvz0uv1yjgRJSCisYCjpDNjjnUc3G3B9RBPJ7+e1sB1CAKe7++E2p0YXu8CkUdSWZco3kDAEQl8XiHv/lzP8ac95oV1Q1yJ+fzMcUzzQCDwQotcxzMZL4KGp1N4Ogxz764M3mONaJ8+xBQDr9PAXvXTG1y4iJ8n5qkt7cIdC57G4WvBeG/2mW0TFdzh4GOLqSa+bxzucuD37bgV3K1zO/A+3sl9iUQikUgkEonE8w0XQlCI/2j3HHiis07WiPRKx4SKowNJJwBOfF2M4NhAz4Xnfbfdu32cvH2EAtwNTuS9Cj4kHfJLRJ5n4ArwkyN4HWIPaYQE+5xIajgOIMtRQGiznHtNACfrnGbh4yAaj9PBySDt0+Z5ooKv3WAw0Gg0KiTVnR5+eoSTRi/SKKmRpoFA1GbLZw4oxOhuAu+/10fgGvrD3EqntTt8/zFPnvrAeKLA4TURXDCgDXdMOAn2mhSkt/iecfHLBQF3kMR2fU2YJ4QX9gBtu1vhZoTfP8dO9NtcBvTD+9Qm8JwnLMR0ifNEjHjPneBOUiUSiUQikUgkEonnIy6EoCCd5q5Lx2SCOgMQDPL0OX6QHPy6rnX9+nVdvnxZ3W5X/X6/cWKDpHJcIUTIjy/EvUCRRiLmkHMniggKW1tbJfWC/uFswB3hxQQhxRBDyN5gMChWc4oLQhzH43GDFJ8HnA5+zKaLB7G4IwSTMa1WqyJ88N56vS6EbjgcNtwJq9WqQcIRXRBDIP6e78/fzOXly5c1Go00nU6LcyOOyYmwF7Okr4PBoIhCOA4g2k42I1GHkLvYFEm4zxPtu6Dje8nJPmLVYrFQr9craS8ufPhxoX7sZUxdIVWEuUMAkVTcD/4ZwDnjLgy36jOW6BDw55EG4ikeLnRRW8RdMN6v6FSI6QiR1NOWz6HX5nCHx3ntIEjcjPzfiZDQ1r9EIpFIJBKJRCLRjgshKOBCiCcOOCGGuEKaIE6Q4r29PXU6HfX7ffV6vULISTfwiLR0LDIgPuzs7Gi1WpXIeV3XunHjRsmlRgRwZ8Pu7q729vYKIRqPx9rb2ytpDdeuXdNDDz1U2vcUB6LkCBLuluD17e1tDYdDVdVxkUaIqTshEDn6/X5pn2dA5hBXIKCcUIHTAjfEer0upBRBBfeC/5AWwhgQEBBanER6zQVEhxs3bpR1vHTpkjabjZ588skyb5Iap1lIaogCm81Gi8Wi7ItOp6PLly9rsVhotVoVwSNGy72mAs/yvkYXC8dMukhC/7yegYsKLlpQh4O1Zf8gViBKsLcZpxN1xB7/XHgKA9fh0On1eo31Zl2Pjo7KXgdOwGnD1xHxbLFYlH3FunndChesvKZIdBt4+khbH+Jrt5PK4GvnY2l7/U6QaQ6JRCKRSCQSicTt4UIICtit+R0jjm5Nh1wSvXWbOYRyMploNBqV13EAQGoglRQQHAwGhWxtNhuNRiPNZrNyr1u+iVBvbW1pMBiUtmnHC/fNZjNtNptC5rxeAs+iTeAklaixF0EkUu6nATBvnF6xXC7L67G4ngsFkWDyuhcGpB36GR0XThaZG0+Z8PnivnjixmKxKH2W1CiqSN/cqeBklj556gEEu42Meh0Kd1k4SWeOgadbeCqGC1QuWsS1QlRy4DLw8fk8sx7sBT/q0iP6bXuJtAwXLNzlwH3RBYAgQDtVVZX1djcCc46bx0UEj+i7GBjnLKZNRAHI74lpLD5n55H/mBJxu+kLt5M+kUgkEolEIpFIJI7xtAWFqqpeKukfS3pE0kbS6+u6/uqqqq5K+jZJ7y3p5yT9obqur92sLWzsROax3duzGrUBuMZz3108kI7JPYR4sVg0qstDyGkb+zzEg5MYIGUHBwclag5xrOu6pGHQB79mvV5ruVyWCDO/pVPrfhs8qgtxc2eAiwuSCqnjtAv6Ek9s8KKLkhqE3yPjTm653omp151wQYE2+O3FDd2lUNd1if7jrhiNRg2S6c90Ak+7rDE5/l7w0C3wMVUEMQfSzbPYG54KEEUFxhALCTIvXON2f9rBpeACghdtjKJGFCtcUPHn8rf3m3mOTh8v0uifnego8ZQRSY0962tNikfcXzzLBZ42d8LtugDaXA1tDhRfB389umZuRyiIwsVFx738Lk4kEonEnSO/hxOJxPMZd+NQOJT0F+q6/h9VVU0kvbmqqv8g6dWS3lDX9WurqvoiSV8k6Qtv1tD29rYmk4lWq1UhYFirY762F5GDtCIm+M94PNbVq1fV7/c1n89LQUSPBCMqrNdrTSaTRhrA7u5ucTFQtwHRQVK5lvaoqUDdhO3t7eKa2Gw2Gg6Hpb9+rxNPiC6vr9frxnGJLqz0+31Np9Nio9/a2tJkMtF4PC4Cxmw2K21ScA8iCGknz186JdKQ/e3t7TJ+j3gj6FQndQC41x0JfoKEpywQ2V4ul6qqSru7u9rd3S3jZTxSMwrtKRw4THz/tO2JKEI5ifZUDeaEZzFW0gUo9snY6Btw0YO18LSI1WqlwWBwpm/uzPH6GfH4VEi01zBwUYJ1I53FXRt+agdry/vxmEmuwRGBSICohYvE19/THrx2CZ9bHA4IDdHx4uJAm5PAhSXEAXdV8AwfZ0Q8caOtLkLswwOW9nDPvosTiUQi8bSQ38OJROJ5i6ctKNR1/aikR0/+e7+qqrdKeg9JnyTpY08u+2ZJb9Qtvjwhw9vb25pOp2fs+pAWiK2kRlFFtyljqT88PNRwOCxHPB4dHWk2mxUywet1XWuxWGg0GhXiJEnj8bhE/zmJwCPrOzs7pYidR4xJRej1eg0RY7PZFPIIqfV8d8QSXAAQUj86EnLW6XQKkceJABknRYLosM8lpyMgKDBvFMCUmukECBnMyXw+b7gCfP4joWOc7tBwknZ0dKTpdKrNZqPJZKLd3V1tb2/rySefLOR6s9loMBiUdaeWwHg8Lq/50Z3MtbtLIvz4R8bo6Qhtzgb2iRcNjAUOgac+eJ0M5iIKLvTJXRVe7wGBjNM2EIfYH55y43Pg6Sn+Gs9hHtxV4YU0Pf2B9fTCl/Q1rrsLJKwBQomTdV7z00P8cySdujx8buM+ok0voMl80K4LWi5IxHWjPW/7QcC9/C5OJBKJxJ0jv4cTicTzGfekhkJVVe8t6ddKepOkF518saqu60erqnrhre7HEQBJgohLzdxwiAjWf4hwzLeWTivjdzod7e7u6tKlSzo6Oiqk2Mm9twlxGo1GhUg6cXWS7xFrm4tC3IbDYSNKDlF1C7pHpRE+PPLrJM8JqbsJIGW4O3Z2dhpE3Av7SSoRXcYRUwciEXNxYrlcNvo9GAzKfEPmPC0Cgu3W+ZO9UdbahZJ+v19OfmD8Lrys1+viqoB4+1GXnsrRFo1mr/ixiF77wN0LToDbRJO2fez3udjle6OttgCigl/reyumF7AePs+e+hCfKanxWWGcPm+RcLO/PA3DnR6eekSRS07o8M+iixZx/lwg8JQPntc25z5WPl+ecuNOhriOfsKJCzC+Fm2Cw4OCu/0uTiQSicTdIb+HE4nE8w13LShUVTWW9C8k/dm6rvdu1ypcVdVrJL1GknZ3dzUcDrW1tVWOX/SIPRFVt7976oFH5J30UNxvMBhoMpmU4yY5JQDCBxmHkG9tHRdDpA7Der3WYrFoELcY+XS7O4KBF9LDjs7fkBru96i1ixD8DYkHPNsJkgsXiAbUG/Dcep4PEfc2Y/Tcj+5ENHDHAO/7KRVuT6dNFxRcmNna2irOD+nYOeLFGYnMA65l7DyHdqMQdR6cNNI/n+doq/d18XWI/x2j5/7b59lz+51Ex2tiW6xJ2+fM3RreTiyAyDi9PoePi7/5HQUiJ+B+rCZCXRShXDBoc7LEOWTO2Vfs0SiUuDjibcU++lq6u+R2joR8kISFe/Fd3NfwmetgIpFIPMeR38OJROL5iLsSFKqq6uj4i/Nb6rr+lycvP1ZV1YtPlNgXS3q87d66rl8v6fWS9Mgjj9TUHthsNppOp43Ce1iYnWC4TXo4HNKf4lyQTmskTCYTXb58uRCP2WxWIsiejw/B6Ha76nQ6mkwmkk5JMtd7EUCeGa3lfsQkDgivM7BerzWdThvj8hoNMep6dHRUijwCjqOk1gOuB0SW0WhUSFx8jqSSlmFrcqZ4JH2AJPrpEqRHQO4pUrlYLFpJNOTTC0byd6/XU6fT0WAwKCkr1Mbw4yk5QpNCmp6m4nPAeFr23RnRgRQVnBLUTjhPEPBotiPuB57VJm4w91zDsyNchHJ4CgE/PCsKIfTFi4EinPgeY89F0aQtDSCmfnhR1F6vV1JiXBygj167gb3qbXvdC68TgQDnTh8fN89BFGMevDgle9znrW0to2PhouNefRfvVlcv/mATiUTiAiK/hxOJxPMVd3PKQyXpGyS9ta7rr7S3vlvSp0t67cnv77pVW0QOe72e6rrWZDIphRTJEY/HN3oRu9FoVAihpEJuESNms5m2t7c1Ho9LkTxIbafT0XA4bJBnt0dzAgGkhIKRg8HgjK2eUx4gPrQTC/+RKlBVVSl05+KAE14nT6QCQIQ4HYM+kSoCceQoScgYxNUFkBjBpn/8dgcGJL6qqrI+8/lcw+GwvE79Au5nfV2Q8VQSXAju1PC0h1jIb7PZ6MaNGzo6OiqFLin0SLtOWr3mBuR1Z2fnjGDlTotowY+pJy2fhcZv9iBz7HUH/B5PV8GFw3x5G7G+hddTAO5g8bX0/RPXGdGL+7jWay34PPjn1cfJnHL8pxd1dJFge3u71C7h+aw9rhqvf+Dv8Znw2h+MiT55YU13SLiDh7QM5g9HlAsfPv5bOV0uAu7ld3EikUgk7hz5PZxIJJ7PuBuHwm+W9Mcl/XhVVT928tqX6PhL89urqvpMSb8g6VNu1RD/4IcAX7p0qfxDHtLkUUaIBJb+w8PDQvC5FsLmfxMB393dbUSHETPoi0dI67rWYDAoNRUgebEGg4sKW1tbpVaDk3+EE4jtYDA4Q7hwV0B0nVz2+/3GSRbSqc2bkwj8Ne5zwuh2dI82AwiVE3hQVcdFGnFuMP8IBcyJ99PXl/Xs9/uN9AnIozsh/Mf7TyoHtRwQoHC3kM8fTzfwmhOx6CW/Pa3Gn+l/n+d68DlsS13waHkUHnye3a7vKTEuArk7x38iEY4k2e/lWS5aed/bxuvihjtBEGuqqtJisWicQkGfuIfPIZ+ZWCDU3QN8tuLYHMzVeW4SXyPmOZ404aKaP9PFpAuOe/ZdnEgkEomnhfweTiQSz1vczSkP/1XSeclhr7zT9ogk9vt97e7uarFYNCLrnu/v5IjTF8bjcSEWEHEIjZPvbrer0Wika9euNfKqvfr/yfiKKEG/aEM6JVdtee5EX4l8kobgxJRoLcSM1APapG/MC0SM57htHEIPqY5EHESy7ES17adtXAgCTtwRWvjxlBCfT/L2O52Out1uWVO3s7sVvy2/PhZilE5PFkBsiNcjXNCW13Tw57OmbUdDekrAzQgsAoC/7rZ9CK2vh9cJ4FleE8PdEy5MtBUE9Xb9dZ/LGHWP9v42x4V/TvibeeN16l/EOfVnsH6xngfXIzb4fPmYvH/e57a1iPC5YzwukvA8/4zHz9BFxL3+Lk4kEonEnSG/hxOJxPMZ9+SUh3sBJ8eXL1/WdDotRPvSpUvl6EaIl5PRxWKh9Xqtbrero6Pj4yEnk0mJ2m9vbxeLO6c+jEYjrVarBqlrI1JELCHREB8KOLol2++D3Po9TpSI5LswAuHBCeBzQx858UCS9vb2zpBkj6zGnHqKVbpo4LZ02nciF4v10W/pWAS6du1acSq4KySeXMFaQvxJjWA9nYjTJ08XgGj68YCkw1AvArGi3++XSDnHLGLF96McEWhwuTAnCFH026PnzIOnKgDuI/reRs7ZCy54+fw6ifVIeiwk6E6a88Sj+LcXV3ShB0Q3gosn7nYALtR47ZLlclnEpkj+ESDYR1VVlTVGVPK90FYPI4oKdwJ3NLC3/djO6ILw8SYSiUQikUgkEokmLoygMJvNJEn9fl/9fl9Xr16VJF2/fl07OzsajUaNEyAkFUI5n881n88LqV4ul3r3u99dSNvu7q5ms1khLt1utxx36NF/CIaf9gCp8VQDiiASGfdTCKTTI/moawDhjqkFo9FIo9FI29vbWq1WxZXB/aRx4MJwEaOqjmsqUINhvV5rMBgUwcEjrYwlRqbddg6JoqAe8+vvu32dFAzqPiCIQBI9NcRFmNVqVUijp3cwJ57ygCCBGETuO3n4CATXr1+XpFLLAQGBtr2eBn3gVBGexzzSD+9DFA9uZcFH2PF6F772ni5AdJ+95AUKXdhxwYh9HJ0mCEYesaedmOrioghtnFfQ0V0AfFZciPLPESk/W1tbWiwWDaHGhSKA4MceXq/XJS2FI1DdjeP98P7RB38vOheieOPinq8Pz/H9nkgkEolEIpFIJM7iQggKEJblcqnr16/rJS95iYbDYSHwnG5ARDlGPrHf89PtdrVarbS3t1eILxFuCNloNGoUfotWf0iYn2DgefuRTEEMPaLqdnaIEs9YLpeFRCIezOfzIpJsNhuNx+NGZNrrDOC+gFxSwNIFB4/2I0BAIj0K73nstAtBZSyefgLRwrnBvLhgwDOYP9phfZzItaWDAK+1QJ0DT+9gzWezWREPSMvAHbGzs6PhcFiujW25/R5XAESXsTBvTj5j+oj32feG71evTXGzSLgLCxw56v2NxQnpv+/P88h3m+OA/3ZXTazFEVMwEJNiH/1z6nVA2oDoR5sIZ7zO3mDOgM9n2+ex7b/bEMUS36ttglEikUgkEolEIpE4xYUQFCBph4eHWiwWpfr8cDgsJzJ4lDNGGr2wHkRxvV6XUwhWq1UjciqpkKFI9GnXC+IRae90OoVYet6/j8Pv5zUi7X5sH8cl4iiAxDMWP0qROgAIDZJKVJsxICrgEIg2eo9gx/x26VSUIS0h5sp7tXwvYhcL/rnbwQka1/nJC23RYe5zos/17iCA7PNsalBAdN3GTlSd8eBG8D3lJy74yRKQWp7ta+2FDyMiqfXrPPIdRQUn8O6OcAGE/eVturPDXQfxt6fduEjge4a18ci+v8a6I1bRRy9a6vvzVjUOWG9cEl57hHlwZ0NMzfCfW4kXbWkobakebc9KJBKJRCKRSCQSTVwIQQH3wWq1Ko6E0WhUXApPPfVUw2ofSagXVfOTB7DLT6fTYq+HmPT7/RKRB06+vR2irhSdg9hz/F2n02lEM51c0V8/kYJUg+l0qvF4XI6wo30XG/xYPs/Nhzh7TQkEgUiKIGuMFQu5p3ogTCyXywbhJcrsxy9yPCUuBMQHFx2YTxwTTtC8KKHPu6+DR8O9+GBMj3CxhXb8eEg/HYQoPlFwf50+Iurg7oAYO9GlH+dFsT1VwcfE8zxlwhHrDXixRpwdno7RNhde98HTEpy0u6AQn8lv9qEXLoxjpU3f33yWKTrKaSr+EwUY5t0LfrLvcKO4QBTTOugj/faxRHEgjvs8EeJW4kQikUgkEolEIpG4QILC7u6u9vf3tV6vNZ/Ptbu7q16vp+3tbd24cUNPPvlkiY5jte90OsXG7s4AyId0GpWE/ENoyffGPSA1CxAiUpB24ZH2qjo+Hg8SSttEWCU1Iv1Y7iF7HtHdbDbq9XrFjeDH8uHMILrulnz6SCpHp9PRbDYrBSo9mi2dOhrc1k5dB3cSsAb9fl/D4bBB4jzn3gtJRheFk1ov2od4gZvASS59dQcIzwT0mb5SG8JrILAuXsuBPYEII6lRr4K+MJeIK6wDjgd3YHjUnPV3ez5gDzAO7omOmFjfgPGxl0gXiWkA/hzGttlsSg0J3weeIsE+AO7WYB/zG/Gp1+udidw7OcdNxJ6gTxRUhczzPBddaI9nkMKDqMD+qaqq4dSJc8iaRSHFwdh87/m8R7EnikOJRCKRSCQSiUTiGBdCUJCkwWBQig8ul0utVqtSjPHSpUva398vxIT0A8iSCwGe69/r9UoEE3iEnPsjyfM8aulsLjhOAU4SgDy5g6Cua83nc3W7XfX7/UL+YxE8jwJ7pNX7RQTXCTCkVlKDHHqxQo9g8z6EFNLppydQzBCHRKydECPvMR/fT3gAfg+kkMKafuwj73uUmWf4Wjh8TIyD1A93HkTyjRuEvrlAABlmHj2twfeR16pAZIgpEJ4e4KdnuGsiIqbMIHR4f7zYo+8H+uifi5i2AOL7LjYwLvaNjy06Ffwzwb5CoPPjLr3PES5YuYDGerrbh+fEceGM8XU6zw0R95SPIfYrXQqJRCKRSCQSicT5uBCCAo4D0hMghYPBQIPBQOPxWP1+v1jV3akAMeI16ZTEYtX3AnP8dpLCEY8QGvrkv51Uu+sBQHKcMMYj9fz5khr2+raIq5N4FxhcAIk1JRAqvB9et4B2mKu2vHfGioji43Y4SfU0FCdi0TrOXCAqeIqEXx/rADAfIFreERQQjBBq2vpEPyCsXgvDUyXa9lYcf7fbbThcpNMChm3FGLnOhaObgTV2Z0gULFzQ4fp44kNbnYqbiTWxjoY/JzopPPWBZ0ZRiH0ZUyZiqhB7nTSi6CKJgoGLf+56aPs8tQkMN5t3byeRSCQSiUQikUicxYURFHq9XjkWkFx+yO5kMtFkMtFyuSxn3HNEIMSQ9ACP5FNTwG3T0jH5XywWjRMDIGQQfLeku/XbSb6Te7eDO0EmsuxEBlJPPQLG644KnhdTOLyGAmOJVnYXUpzYQXDdScA8Iyb0er0zx0Uybu9/JPfRLh+jvp6/3uv1yuv0lfk4j7i78OLpBjhESF/xAo7u+Ii596RCxFoE7Adfw0hSgR+v6fPstQ+c2Lpowe+4L7jH+8WasfaxMGabKONz4esQnx9JfptTwVNYvGaBzxtz7nPt6TmeahOFCZ7rvxFrEBBpz9M9osDgQmKbu8CvjZ/t84SG2xUgEolEIpFIJBKJ5yMuhKDgRxYOh0PduHFDe3t75aSH3d1dXbp0SbPZTNPptBxPSI621waAeJIDL0m7u7va3d3VYDDQ9va2BoOB9vf3S3FBcuQ5xaGqKq1WqyI0tEW6o1PC6xF4TjbRcqnpYthsTo9VhAS1OS+kU4LoKQl1XWs0GhWCxbVY8f3UC/pCH3u9XikEybx5PQR3L5C/Tz/a+ufReC+gKKk4HqJ7w49qpNjhZrMp6Sx+SkabQ4I1iScycDII42V9Pb/eHQceiQcIXKyxP1M6Jc4Q7tFoVGoWcB3HaTI/tMuas/e4/ujoqOxj+hk/I56G4u4OT3tgLJFkE813F4CvZyTgvqcg3n5KCakMLhJ4ak1M13HHga8t1/IcP32D7wRP98BN4v12p46nuHBfFG7a4H1yweJWDpJEIpFIJBKJROL5jAsjKFBsbzwea3t7W9PptJD/4XCoF7zgBTo4ONB8Ptfe3l7j2Dwi1hAAxAZI2HQ6LcX6ut1uydmnVgMEkij9arUqRftiVBMivLW1VYrGMQas5vy4Zdyj/fHIRk9T4Hpeo9AhgoefOLBcLktNBMi514XwlAf6Csl2QUNSg6BCziQVt4J0WoDPSas7AiCtbWIIZNCj5vTZxQIcCN4Gp13E1A2PwnOfR/IRHTwizvxyvQsDXpfAHQyHh4dFXIL0Mx7mvtfrlXXdbDaNU0HikZP0P7o8iMCzf7wmAOuEGyIKLOwVH2u32224WVhDnteWAuBpI36vize+fl5wMqZZ8By/3gUQd234dbGQJ68xTtaUNjyFxD9/URBpE078eyO+lkgkEolEIpFIJG6OCyMoLJdLDYfDUsRwOp1qNpvp+vXrevjhh9XtdjWZTHTp0iXt7e010g48YunEB0K4WCy0Wq0KGXTCenR0pNlsJkmNmgpt0Va3y+MM8PcgP94W44OkQehjbQCEAyfznmrhNQF4n6MlnRQDovUILFLzBAWv/8Az3XbOXLalgcR+eI59TAvwsRKBduEBN0KMyEcXREynQNiIwgloSytwYsn1rGOb/d+FmegeiYJQ237wZzIG3o8OD357RN3z+CHvHvmPln9Ph2APtKXveL/jmIGPw1MT/DPHHLFHcPi0teeEn/t8Ps9DFFRckHCXgot/LlT56z6fLuBFsSk+P5FIJBKJRCKRSLTjwggKnIjQ6/U0mUw0n8+1XC715JNP6iUveYmGw6EGg4GuXLmixx57rGH39loKkAtI9MHBQam94Ecsen743t5esal7SsByuWxYut0VgZMhHo8IosjB8ZMesfZ6CQcHB1osFuX0CncOICjQZ56zWCyKSMLr7n4gJQIi66kFiAue4uDEFhJHHrtHod1e7gJOTANh/uOpD5BO0i5Yl/Ps6Z6Lz3V+goOndviRgf5c/2/6RdvUdIBkMtZI6qVTZ0SMYsc59H64+EKb0Y3ia31e5B5nSFVV5YQRd2DE9YvOBCfvLvS4+OHOBY/me4Tf3RmeboBgFgm+j9OFBJ4f9y/g+XHft9VicFHPBQU/0jWKCjHFw/87uloSiWcC2w9dla5cut/dSFxA1O96VBtLpbuvqCrtvM97qd66+ffh5ud/SfXB+qbXJBKJROK5hwshKBwcHOjatWvq9XoajUZ65JFHdO3aNS2XS+3v7+td73qXXvrSl5aUiCtXrmg6nRYCGYkdBRJns1mx+e/v7zeIYLfb1WAwUF3X2t/f1/Xr1zWZTNTv99XpdDQajYow4fUBPB99PB6r0+mUQpFRWBiNRpJUXBC4E8jtdjJZ13WpWcBxmdi2STvg+EnyytfrtRaLRSFwg8GgkPqqqspY+v2++v1+IXz8ZjxEdbGkS6eklDoWLhiQgrC9vV0KXrojw4mouxc8JcDrG3gtB+mUODNHCAruUpBU1pFCnogu8/m8sRZeZyMeW+mk1Yss+rxIp5Z76VQsYr8hcPjf7tZwcs9zeQbj4D2HE2jGSmoOY/NIO8eSujDBGLxQpPfpZpF5CL4LNC4quGuGzwfiDDU54lq6QyMSffpKPRF3p7g44gICKToufLibw0VA/3HRweFjTCSeafz0X3q53vGHvu5+dyNxAfExn/MaDf71j9zvbkg6Fr6+7Qe+VeOt/k2v+7hPebWq//Zjz06nEolEInFhcCEEhbqu9e53v1udTkdXrlxRt9vVww8/rKqqdOPGDV2/fl27u7sajUbFwbBYLMq9RPohIkTdKQQHIT84OCjuBCKo5LrjEJCOSUW/32+kTDjBhLBB2AeDQREMnDzTB6KmiAB1XZeifBBEiD9EczabFSIMsZvP5+r3+6WP7m4gVcOjwvSRv69evar5fK7FYqHlcnmG+BJtdnt7JPKQPyfgkEcnuF6/wI+fjM9ABKAPEGVEhpha4f/NvcwdJJeTPWiTeWe96PdqtdJqtdJsNiviEER0f3+/tB9rOjD/fuKAg/E7PBpPrQ6vZ3F4eFhEjzai7LUjJDWEDtom5Waz2ZSCkJ7G4zUMfC3YKzdzXcRUDfakF8Tkd1ufozjiqQzxb3f0xDQjnulpC+6GiC4Vd3VEhwL7jPZ8rZj7FBYSTxePf9cH6Y+833+/6TVfPvz7krZvek3i+YnP+RvfoV/8q1fvebv/+Gd+o17yqrec+/7ik1+h3/dX39B4rVNdv6WYIEl/5Bu+R+8+nJx5/Xse/VB1f+fP33lnE4lEIvFA4EIICpKKG+HGjRt6+OGHNRwONZ/PNZvNyntbW1saDoeFaEci4OQVsuCRf0gKxyVCkijuR+QekYECiLwHGYmFAdvy+J2MbG0dH4E3Go2KsEHdBo/UesFFnglphcBBFGPNAUQOJ6EutvT7/Ub+PfPSFumOgFj2er3G6xAvP1bQiRv/HY+dvJmVPNruPX+eMTlZ9yKSCDiILoxvtVo10jQg9L73SJFB3Ol0OkWgivMQSaZH2N3hEdMH3PLvJyZ4DYm2fH5IvKe90E50HjBOPh9xbn0evf9ttRR8LXl+W+oDf/scuwPH90NMM4g/rCFzGGtFtKVAtI2NZ/ve4R4XyKJ44E4H/ywlEreLrclE7/iSD9Xf/ZB/pI8frm5xdYoJiXZ86uSapGv3vN0P/NBH9fmv/fRz3+++fE9/8eo7nlbbr959XNLjZ17/raOf0h977edKkt7zPx2o830/+rTaTyQSicTFxIURFA4ODjSdTvXEE0/o8uXL6vf7pUjjfD7XdDotUVYIf7SVe70BIvNEINfrtdbrdSHFRIc9Asr9FHCEeCJSQCixzfNcSJ3XJpCaedoUScTuzphdTCDKjqjA6Q6Qx9g+z+dZTkoBdRJox4+B5H3QRmr52yPiCCg4Qbx+RcyPj1Fw73OMhntkP9rUgfeda7zdnZ2dksqCiwFByW31kNaqOj4i1I8Z5X3uj3Uh2kQCnyt/36P6zAOihkf+owAVBZi4Rr5OLio4Yb5VnYc47zEFx9cQscQJtwsKnmrA/TFlwVMo4v7ibxwVtO+fEZ/rtj0R952Pue19F0KisyGmhCQSt4Pth65q9eHvo5/8tL+nTpViQeLi4RNHc33ip73uWX3mK3odve3kme87+Sx94K98kCSpfsvbVbecgpRIJBKJBwsXQlAgCj+bzfTUU0+VEx92d3c1n881n8+1Wq3KUZKSyukAEG8IIq9BcCBvs9msHLt4+fJlbTYbTafTIjKQyy+dFnIkHWFnZ6cQTtIhsNSTNw6pc2u/5/+TXtHv9zUejzUej7W3t9codjgejwuZvXHjRuNYSKLmi8WiRM49yk69B/ridQ34ezAY6KGHHtL+/n6DpEVnQqyBAEn16DrvU9fB0wL8Wie8EETgaRO8H0lsW10BCL6nVcR0BOYG+z/ElNQT5hPXy3w+b9RqQJAiLYK58DmSTgUlTjiQ1Chi6bUW2pwHLnrhAEAAcvHI55DXfI18Hjzdx+tEeH+9kCXzyjpyX6x1wNii0OMpGwhXvO7pCNTc8BQbF0VcLPD0HRd1GGdMX4hrEx0K8RoXJ/x1+udCSSJxu3jXqz9I//svfK3SeZBItONnX/X10quko3qjT/wtr9LhOzMVIpFIJB503LWgUFXVtqQflfRLdV1/QlVVVyV9m6T3lvRzkv5QXdc39e1B4Nbrtfb29vTud79bjzzySCF729vbmk6nhVgMBoNG8TnSGCB21AggZx6yR52E/f19+i7p+LQE+gChgkRubW2VGgvuahiNRprNZo16CpAnXnNyRSS02+1qOBwWUQOhAnJHnQieh+PCUzCkU+Gk2+2WMUIEnQwiRuCAYJ56vZ729vZ07dq1M4XrvLAjcxSPduS/fd4RNZhbjzZzP+3781yAwEnge8MJcRQYYk0FRB4XFaRm+gOiC9cNh8MidsTaFrTtRQ6jG8QdIBBeXwv67RF8HDHxaEeeF50fUYSgD5FIs/aeKsN756W0xOfjmIlpML6f3bVC/zhJxec+pj3wOWlLffB2SdvgNd9TnmLE9Z6yENMXvA4H8+knRXjb7hqJaUUXHffiuzjx9PH4d32QXv+rv0YpJiQSt8Z2taU/8b3/WbNNV3/vHb9NV37vz9zvLt0T5PdwInH/8M7XfpT+n0/+jrtu5xfWD+u//vrdPLXmDnAvHAqfJ+mtknZP/v4iSW+o6/q1VVV90cnfX3izBqqqKjb1o6OjIh5Qd2AwGBQ3AbUHIGuHh4eazWaNYnHYs4mGe7qAH5foBeD8JAds8AgNXCs1iwHGSvI7OzvlNAVOa/DjDWm/3+9rMplouVyWCCxjgkhNJpMiYHik2p0HXpwO4sZ/e70Ad2oMh8PyGgQacuX1CGg71i9wMHZ3IjB/CBl+kgRtQ9qBR6e532sEuEgT4QTbf3gPYuxuByeN7hxhTn1cRPujdd5/u7jifUE8ibUM/EQIt/p7m1xHW+fVQ4ipA742TpZ57bxUCr/H55/XfA49jcdfc9EIMcvb9bSh82oT+JpvbZ3W/vB9Fl0pnr7g/fVxRnEF+F5hTH6s6wOGu/4uTjx9/JoX/ZI+sp9iQiJxu/gD4z1J0gs/8Lv1OV/zaknS+33nWlvf/z/vY6/uGvk9nEjcA7zri3+TFi+5s8DOq37Tm/Rpu0/c9bNvbH5R3/DVn6fq6P64VHfftq0Xfc0P3pdnP13claBQVdV7Svq9kv6apD9/8vInSfrYk//+Zklv1G0ICpyqQIqDpyKMRiMtl8tGgT2Pei+Xy3KUIWR2tVo10gkQH4hUE9nHIeC1FCjIx6kPg8HgjI0bckRkO9Z3cNHBo9AQ5tFopMVioa2trYbzgejycDjUarXSfD4/E42mHY+yet5+JMsuKvipEzzXT8HwVAKKQjLuNkLvc4FLQlIjVQNhx1MccEHweht5o81olXeRA9HDhQe/DgEHkclPCXARZDAYlDlpEzyiU6CNwLrw4GkJUexoI/uk7LQ5EaKYwH1REIiOilshppTQV+bXI/9e34IxsKek01Mi/Np45CZig4+bfsRxcS/FJZlvro8uBBcVvCaEOxmimNEmPPiJI37tRce9+i5OJBKJZxsfP1zpZ//A10uSXj7703r/xz9AR2998BwL+T383EP16z9Edef2hOLqqFb9oz8hPSD/brgf2L5yRUcf+NLbuvbVf/R7n3aB2LvFpa2B3vnJr78vz5akT/v5j9Fj//3Dbvv6ncdu3Pf0sbt1KHyVpC+Q5OcEvaiu60clqa7rR6uqemHbjVVVvUbSayRpMpmo1+sVcjubzcqxiYPBQJcvXy7H+EFEIWcQh9lspl6v10hx4McLwm02G43H4xKp59put1tEBogSZP/GjRsaj8eSVPp4cHCg4XBYxkPdBwQFjoeUVNqr69NTKHq9nh566KGSogHxgThvb29rMBioqqryGsSdyDB9ZWyQKkgoaRYIM4guksr4t7a2tFwuG0cYumMDBweFLb3Ogeeyu1UdssnzeE1SmWuvCUBUmvH7WBBFgDtCnKy7m4Cxe1Q8EtMoRLigJKkIDx6xd5EAQYdrPdLNXva0BQQZTydxAcyPB3VBBBKMk4T95IQdREfAer1uCBOIPMyDCzqsTZw3r3HBM7wIJiISc0jRT9JGEGwQ2Nj/3OMnh0QXjgtxFM50YcP7fPKdciYlJJ6K4U4m/7zZ91LDGXJemsgFxFfpHnwX9zVsuySRSCSeFbzt016nT/3o365rv/l+9+Rp4auU38PPHVSVvuQ7vkUfc+sTUyVJjx/N9Okf9HHanDipE2fx5O/7IL3ptc9uUdgHEf/4vX5A+pc/cNvXv+/3faY+4NUPqKBQVdUnSHq8rus3V1X1sXd6f13Xr5f0ekl6+OGHa0g2Fuf9/X2NRiNdvnxZo9FI4/G4uBE8ko7LwIupDYdDVVWl5XKp5XJZxAaI01NPPaXLly8Xwur51ZDM0WhUyC3OiPg8UhYkFUeDW9j9+MfRaFTIOYX+dnZ2tLu7q9FopMPDwyIsQCqJeHtKg6cieM0Hnu+EHuJNTjtReK6BsC4WCy0Wi1KY0C35m82m1KxYr9daLBaNqC1teaSdtnFEMG53BTD3jNULO1KHgXnktxNBiB9t2b5sFEg82WulbVI9ODZUUqmXwFx2Op0isuBgifZ671t9Uj/A0zQgxOwZ3idlxt0zzCMCl6dMMB6KkAInup5yArFHSHOS7i4ZSY05insb4u/Ck6QzffQ0F4qh0nffJwhIOEUQHfxoVPYs17nQwpzy+WdciA4O/1xHQYB2EXUQ9HiP59CPB6GOwr38Lt6trmZoJZFI3Fe87mX/Vj/49quSpL/6l1+t3X/2w/e5R7dGfg8/d/COr/goffWrvlHbqvVRvSPdbl2ch7YG+rz/9aM60rNjk/+Kn/149T7u556VZ90Ofubv/0Z9ze/65pte88j2j0jq3vSaxJ3jjb/9q/Xjb3+49b2/98mfrM1P/NQz3oe7cSj8ZkmfWFXV75HUl7RbVdU/lfRYVVUvPlFiX6y2Q4kDiIpjT3cLPkUYIX1cC9GoTuovLBaLRr2Bfr9f2obYQ3KIdEK0IULSaZST0xsieXaS4zUbpNMK+ADSAikZDAYNkcAjvZ6Cge0ewhOt2TzLaxRsNpti1adPpIlIpycf8F5VVZpMjkV0T4tYr9daLpcNhwL9dct4/PG581QCT08g9cEt54wtppzE9AbWDtLPM7x/Dr+OApnsB1wO7gaI6QP0P6YotEWsvb4ATgA/dYQ9ynMRj/i7Le3ByT4uE/Y2JDwKYfx2QcndJC78+Ph4rdvtlmtihN6LTrb1kc+G1yBwV4A7VLxP7tZwdwgCA2JKTPFwB4k7Fto+K23wPeqihDtu4p64wLhn38WJRCJxv3Fle6jfO1xKkr7mT/6ifvqVH6HVl//Qfe7VLZHfww8wdt7rpXrLX36RJOnTPuIHyv67kyK729WWPn64uvWF9wij9/tufcY3/Iln7Xm3wuf8xv9o83YeUkx4JvCynbFettM+91/w5duaX/+I8vev+pJf0NFj9/5r6GkLCnVdf7GkL5akEzX28+u6/mNVVX2FpE+X9NqT3991q7Y2m01JGcAu7pHceKyjRw0hMn4iwuHhoYbDYSEsHnmnXUgmOfpOHngOooR0nNIACSG1IpLpSE7dTbDZbIpogPXbiy2SKkGNiBjBhig5GYN8ey0Ft7G7TdwFBSf+TsyJAEsq93W73TNF8Jxke10Axg75pF3vM5Fz/o7RZS/K52SRv1kb77u7HbwdnyfGTPSZZ7uoE6P+Hsn3lBOH999FIj8xgL/pI3sUF0Ak7owHAQZhif3R5paIcwGxd8EmOjn8GsYMeXcXQUxFiIKAuyz8uE7G48KBryefmZjiAhAfPAWJ5/rpKG11HCJc/PL54zPE581FNP9MX2Tcy+/iRCKRuEj4fz/o30kfJL3iq+6+0NozifwefnCx/f7vo8d+2yN65+9+sKz4HzvY6J2/+x/e724kLjh+8qO+pfH3R/7nz9bol1+qnela+pEfv2fPuRenPES8VtK3V1X1mZJ+QdKn3OqGzWajxWJRjjfkNUjX1atXNRwOi8UfIgaq6viYO2zq8/lco9GoVO/3XOxotcYVEUk25ErSGcLS6/W0u7ur6XTasKdHko3DYr1eazKZqKoqDYdDDYfD4sCAyOB86Ha7RbDgRAvvG3nxvO456KSEMC7cGeTf9/t9jcfjkiIRHRK9Xk/7+/slXYN8eMZPcUMnqB7tPy9nHTA3tOduCk8X4D2P/Dshd5LnNRqw07OG7gjw60l78Ag+RD7mzdMvP1HDxxPHFms6REcFe2qz2RShC1cIThGEJwpyIqRE8cj3RYyw45QgfYB19CKFfNZ8D/Z6vTJny+WyUfvBUxNYV3fB+GfXP6Pc44inX/DZoTgr7dAvxsY+6HQ6Wq1WRQBj/b3OhYsoPmcuvHh9Dj7fvmf9/QcQd/xdnEgkEol7ivwevsioKv3Un3mRfvZTHiwxIZF4uvjhv/l1kqS/+sQH6b98+KD5ZktA7nZxTwSFuq7fqOPKtarr+klJr7yT+zebjWazWeMEAifDOzs7euihh7Rer7W/v6/9/f0zZDAWsPO6CePxuBBlIvXz+byIBpxE0Fb0ETLU7/cbNRX8PgikR135ISf92rVr2t3d1c7OjsbjsR5++OFCnCBF9BdiDpmD5ECoIP/UGqAQYL/f13Q6LWPp9/u6fPly4zi/4XBYHBDL5bKkkjj573a7WiwWjVMxIK8cwyidugY8En6yB0q/GIdH/GM02skxYgjjJgLtNQbYM8yLn0bgKRZS0ynAD8SYdiDduE4QZrjfhQB3zsQihr5epLZ4tN/dIJcvXy7zTIqJO3KYZ4Snuq4LYZdO00dchPFnsg/9t8+dpxUgmDA3iFTu/OFv/6zxmUBs8f1JHzkBxdffP1vRYcL17IeDg4NGagKfE3e+uNMDsagNvlc9HYfn8dl3h8wDlPYg6e6/ixOJRCJxd8jv4QcHH/qjlb7pBX9L0vh+dyWReFbx56/+b33cz57+G/fLfu6TdPTbfvlpt/dMOBTuGKQ8LJfLUmcAwru/v1+OhRyNRtrd3dV8Ppd0Slzdrkx0neg+UXVOFuh2u4V0UATRo9mQIAgdpAKSBPHhWTFizjX0j/fn87lms5kmk0mp8UDhRyc6kLzBYKCjo6NGdX+vYyCdni5AXyB6nDCBY8NFAcQICCZRckQH6kYcHR2Vmg5e3NGjzvSFCLinEfh1nrYRUwEgt/Qdcu/jdMEGsYF58Rx9dwxwv0fq2yzsuFV8TOw/Fy1csKIoKHvPBaSYRoE45uKDdCxUcBwp6Q3uPnARi2cyfnelOKIww1hxF/hJErTnrgV3mfhxm167gf5Bul1UWK/XRaCA9Hu6hKcsxDQZXmef0jdELem0jgMCBevCEbF+PKnvwfgMT03xVBjfE4hOUaBKJBKJRCLxYGPnPd9Db//bD+lrH/5avXgnxYTE8w/Dra5eYXTiL7/Xv9Gnf9tnlL+rnx7pvf7y7deuuRCCQl3X5eQDyDyvTafTQsSHw6Emk4muXbvWiEK6NdqdDV4fwQk3BJM6AdxHOsV6vS6ECJLbVsTOo5fR/s5vyAu2dshPt9tVv99vOB+o60D0F6ILkYskCYLvkXrINc9DUICsQvaojeBiAukSWOu73a5ms9kZu7+Tw5j3Tv+8ngGkzVMBeN3Jt7fjYoWTX4ixCwOe4hDvh4R7xNlFpCiAeF0K5o2+eTQ9jtkFEq+d4XZ/7188oSKmF0inKQTeRwh1FLLi3CGe+WfD6zN49B3STF0C2kBQoFAoY3N3A+lCpDlIanzu3GEShTav3wBcrGNcPu+e9sBc7OzsNE7tcEeK7w9/z0UyfrjG92Qicbt441tfrm+49DP6zEu/cr+7kkgkEolzsP3y99Ojv/2F+umPfp3SmZBIHOMj+9v66Y/+x+Xv/+cDf7V+4M0fdfbCf/2drfdfCEFBUhEBlstlITJ1XWs+n+vatWvl+MjJZKLRaKT9/f0zxAPSApHG/j8YDMo1kFLqCDhZdXLOMY8QYc/1h0C5cBAFhUiUOKoQizuCwmAwOJNmEdMbiNTSFxcHEC2op+CFBBeLRREwOPoSZwJHSEqnaQHk7BMB9xx7iCEnMEC23LXg449uAHc0+LGDsSCfk0+PaHvKAEeL0jfad6LsZNBFDBwsnPyB2IPIg+Diz3XyD5F2AhrrKhCxj6kksT+RJJNmQrrOaDRqpA94YcNut9uI5nstBcQMxhGFEa/twB7itBNfW2qWxHoJvv9c9GCf8Bze8/3sIoO7I1hDqSlG+d+bzaZxIgltsx4UFWUPxO8H5oLPrvcXIY00D+6JtR8SifPw8s94s/7un/v9+mOf/9XqVQ907Y1EIpF4zuLtr36h3vbqrJmQSNwMf/WFPy697mzRxu1/3X79hfnXMoQXMYBI8nK51JNPPqnxeKzBYKDxeKzRaNTI2wYQl93dXT311FNnTjmIkUnPhafiPdcul0vt7u4Wp8J0Oi0kNp4WEaPsTuwABHu5XGo6nRby3+12i6jgueBEiGOKBekMbrmXVNIVhsNhcSVQS2I6nWo6nRZB4/Lly+r3++XYSOmUCM9ms9KPwWBQSB/1GobDYak14GTW++1CgPeReXBi2+/3G/UKyPP3ucQ5Qj8gp94PdxHEYn8IMYhJpBh4/2azWXkehTwh1Kw5kXfam8/nRTTw6L6kcloH+fkuvET3BONxcQNhDXs/KQXsNU9fiPPKPqfIZ1VV5XQI9jMODPpDIUhPB6CQJ0Sbz8dyuSwknHnBveAC1mazKYKYpxW4I8jFA69vEQUpr6lB0VJEBNYL5w0FG73YJPC9xA8pLO5C4rOdSNwJXvK6/6FPfsMf13f/+29Rp8p0mUQikUgkEs99XBhBwSOG6/W6kT9948YN7e/vF9IwmUy0XC4LISK66rZ1j7iuVqtCpCAUfpoAEWV3FgyHQ0mnle+J9ntBQr+X15w88d+MySv6z2Yz9fv9knLhhejcju/9pNgf8yWd1lFw+7YXtvRUEi88SVuDwaDcz/ggvJyU4c/hlAl3AbhYw4+nSES49d3z/V2w8Ws9yuwRcn/Po/6+pzxFBSAWANok3QVSSrsHBwclCk4xThcyvA4D8wFpxxGCC8THFcUwBAwvxuhEl3mC6DL2WLPCx0tf3DkRo/Y8H9eD16RgXw0Gg+Ky4ZmIFl5bAgeAdPZkBU898X3mqQpt8JQEvhMQK9ydgDjDZ5Z97+6IbrdbPhM8k/QL1io6aBKJ28VmudTOk3v3uxuJRCKRaMHbXvcK/anf/J/udzcSieccLoSg4AQTUkedA6LHs9lMo9FIg8FAw+GwFA/0EwSc2FOHwQkOz/DTCGIRPeC1DhAjED2cMDmZ9Pud4EhnSSsR7JiG4XPhf3vEnmu5jrYhrpAiL1bnz8XBQJoE8zwcDstYmCfmerFYFFEEUhrJOvd48b7z6g24eMPcAie0rGd0f/i10fUQ19nnlMi4HwfIvZBkTvHwmhQuWPA6/cFZEE9OYG/59S6cxLG5G4G963UYXGxiDTztItr8pVM3DSeSuBhBf2jTiTciBYLC1taWBoNBmcP4uWHPIbD4enuaBeITYhfCy83AetE3P20lOlSY05g642PzPYk45Sd9+OcxBYXEnaJerfSqn/kEfeX7fKde3hnd7+4kEolE4gSf89Fv0F+8+o773Y1E4jmHCyMoEH2cTqfqdDqNM+05KpL6CcPhsPXIOre9QxghTZ737oTXK/A78Z1Op1osFur3+9rd3dW1a9cahfqkU4LqhAQyFY92pKYBryN00E9OFvA+uniBs8IJkZMet3d7CgXvrVYrzefzUuRysVjo0qVL6vf7ZVykQLhD4urVq8UNwm+KAiIqeJqDiw70mzFFQUZqCgJRZGD9fQ742wUXJ5vMS5tlPRaWxCLvAgtpNk6kvagi/SM6TtQdwYW2o9DhKQ/0g9e9323ihtdi4McdEd43+hRFF46o9PFzH3uRmgtRmKFdapEgnkDGPfWAOXDRjefxufSaDFHw4/neRxxH/X5fvV5P+/v7jYKO0enhwhqfG6+TgGDAflqtVmWcnhojna3nkEjcCkdPPKmjj5X+9o/8Dv2dl3y/hlvdW96TSCQSiUQi8aDiwggK0mnxP+zf/OP/6Oio1AHY3d3VlStXNJ1OC7HE0eCOAT9ajkgvUWfPMz84OCjFCCGo2KJxRVCXYX9/X/P5vLgLnIx71B2SPRwOC+lZLBaFlDvhgRD3er1SO8IdFhTqgxR6DQjy/qWzFvRut6vJZFJSGZbLpebzua5fv17I0ng81nA4LGPhKE0/6WEymWh3d7c4GyByXnxPOo14s45O/J00Q+J8vjx1gPXzYoDuVODIT6kZlffoPf1xMk/bpKm4TZ71hiBz4gKiAXvIRSe31x8cHJTjTL0uge/tGIl3ws/ffnIDLgPqKXh+v88T/Yfk89poNDqTWjIYDEpaCyS7rQZGTBFhnaj7sVgsNJ/PtVwui3vH64FQ66MthWF7e1vD4bBxjCttuTuJH3ev7OzsaDweF6EujpmCiu5OiekzW1tbGo/H5TPoApcLjOwbT41JJO4Ev/DbtvRrv+jz9NOfmcW/EolEIpFIPHdxYQQFosqHh4eaz+clAs4/6inWSASR4oPY+L3QGhZvt1i77Vo6W5nfI9peII/nQoIghhDlbrdboqzuVvAj9BAeOGUBwQDyTs73fD5vkBm3s0Nw6S+RWNol9x+C5GQSh8JqtdJisdBisdD+/r6eeuopSc0jGj1fn3XhuE5ECY9gu4Wf+fDUFXdvOEFEmGA9GbOfIMAaORFn3FzPunl6iVvycSJUVdUgoKSIsBbsPz/ek2u8OCNk3GtfsBfZEwgWnt/PPvd14bcLXF5zIIokTo6dNPs8xXoavn+84GCsueB98Dbj58XrTyCguADg9SXYy95f/9xMJpNGOsJsNis1Gnz9WS/aGwwG6nQ6DUeI19LwveVteQoHIl6/39disWhc5+ksnj6SSNwJNrOZttfVrS9MJBKJRCKReIBxIQQFqXm0HxHi+JrnqUPi5vO5pFPSEUmVkwnplIxzvb/uEWJJhVwul0uNRqNSXZ7nee64F4XkfZ6P6ECKBoR1tVqVooiQHPrlRR2lU1Lt9m5PC3FrPIBUIXCQBsFpD3t7e0UocWIZCRVpGqRqeKTer4sRZZ7tTgREGZ+POC7/b9oB7uzwSHqMqnvfYmQfQcCJu7tXiOJ7GklbOgJ7tNfraTAYlGeRWkD7iFptrgTWPqYYRFGJsXMNKRr8jRjjfaPOiHR6VCd/8zlivj3lJIpt3m8n2Ox5nueFI30d/eSGNgcJ10gq+ysW9oxCECKCCyPxOr+fZ0dRgxMi/LsgkbhXuPSOjX7PT/8efc8Hfs/97koikUgkEonEM4ILISh44bSdnZ1y3r10GnGcTCYlbUA6tuuT/3zjxo1GsUGvmYBTgcinRz0hHE4UcTr0+/3iltjb29N4PC453FtbW1qtViVyjWUeeF46JJOUAgjtfD7XYDDQer1Wv99XXdcaDodnjruDyGIv9xz00WhUSBVEkjx4yJOPy4/mnM/n2t/f15UrVxrkLAoL7obgx48qpJ9EfGPRu5i3T1QYsQZBiPdj/j+vu0sBgkr/nHTH+gqMC8JK5BziieCEOLO9vV32madHeB0D9h1rj4uj2+0WMYz9xvxFd4LXH6B/XrRT0hnhxMfjAkF0KNAG6Qe+vswL7hE/CtPFCJ9Lj9S7g4U0Bdw8fB48rcjdL7FOBp9RHDpei8KFQU9FoJCjp+U4EOPcseQCFS4UjtTs9/vFLeQii7eXSDxd7P6zH5Z+5H2kH7jfPUkkEolEIpF4ZnAhBAVJjWgj9mcI33q91vXr13Xt2jVdu3ZNL3vZy7S7u1uiodeuXdPe3l4RFKgbAPmOUWpIITUBIEDSMdlbLpdFUFiv15rNZtrb2yuF6cjVpq/kjiOEQMjoCxgOh4Uk+akLy+WytEE+/Gw2U6/Xa+TOT6fTkkMOOb98+XKjYGKsSUCNCWpCTKfThrjhqR4IEF7fQGo/ktGdCUT3iaj3+/0iQpDewNz7tYhFXgshOg9cDPBUDsgpc+Rr5xF2dwl4fYa9vb3iFlkulxqPx+W4yIODg7KfIlnGzUHxRkgo4gD7YzqdlmJ/khqFMqV2oorLgN8UwHRXgM8rooATZsbIHvZjP6uqasyXu2og6NRWcAePp0hIpwUpx+OxptNpQwjxuideZJQ9iUjCerFfuG+1WpW18T3Ab1Is3FVy3l7BBRPdCfFEGAQ91sZTejLlIZFIJBKJRCKROB8XQlBwEiud2qERBqqqKtFsCrhdunRJvV5Ply5d0u7urh5//PFGsTkIjVux/XQHt5gjOBA5XiwWpVihk04cCqPRqFSax4JN7QDplKhh+Yc8urvACS7EB0Lb7Xa1t7dXruF6SBtpFBTaQ4igPoITdo/wuitgNBo1jjkk4r1cLsv9LgZU1emxhp7GwLXdbrc4JigiCDF1dwhHcXIcpaSSwx5z/l1AgEQjbjghh7QiWPjJAV5skHnbbDalQCFzAlFlHBBOhCM/LpOaGF5ENNZM8MKJTmRpK6Z1eIoLa03/IyhaKqmRNuKiXCTILoAhRnl7iA0UmaSGhAtkjJ+fXq9X5oC9Ek/c8PXxIplRPCIdZnd3V5IaLiWHfyewngiCLpq42yimPnjhTNYFocNTpRKJe4H6XY/qt3zuZ+lz//q36g+Nb9zv7iQSiUQikUjcU1wYQcGj0pA/L+AHqSf///DwUL1eT+PxWJPJRP1+v5z8EH88pcKj7p7X7UXpjo6ONJ/PG5XjIdqQMaKpEFbEAD/X3osDEsF20iipEB/IDwRfOnU4MAYcE+4YQOCYTCbFccH44twSVZ/P55rNZg1xgnx7yJWfcOBuBLf9uxsCUcELJca6EKyldFoLwQtaMieRSHqE2esKuIXfnSgU7/N19TXntAzaQYiCZPtxkrGeQFtOvs+FCyy4GQDji7Um4n7057XVhqAtL9LJmH1u2Iesvd+LQMM80PeY1hHbZw/7Z4GaGO4AYp1cBPJ1iuOkX/1+v9Sw4LUoODIeL45K2+v1uvQRlxECgq8b93o6jhdldKdDInE32CyXGn3nm/TzX/awpBQUEolEIpFIPLdwYQQFr+pOpJhILhFTxIT9/f1S0HA8Hmt3d1ej0UjXr18/4wzwyvlO4hALPGcckkPKgRd/m06nhQhBtt1SDREHkFEnOt4PxgvhWa1WjSP4ECyIvELqOOKSZ/Z6Pe3u7pb3IGOeuw/54xoI5Ww2K4LCYDCQJE2nU/V6vdK3xWLRiAgjGMToMmPy0zU8au958C6cDAaDM8UwPeXC6zq40OTXeR+IQPvrThwh4k56KfiJZR8rPS6AtrQC70Ms7skaUvDP7fUu2Lj7I0bxJZX8f38WcCs+UXuvgxEFBf7bRQH2q+8Xd/JQSyKmZ9BP6g/QZ1JEvOCi1yhpSx+I60xdgygC0U8XTHD1uEDnp6vgTsJZAeKxo4wp7jH/TkokEolEIpFIJBJncSEEBQQEnAduU3cbN/nVs9ms1BjY2trSlStX9PDDD2tvb097e3uS1CDrEEO3pjtBns1mDYv84eGh9vf3i5jhuez9fl/9fl+7u7u6ceNGKSInSVeuXCkk34+gjE4JRAJJxWoPcaN/k8mkjNmFFlIyiMQiBAyHQ73gBS/Q3t5esat7frl0WpBuPp+r0+lof39fs9lMV65c0fb28VGcw+GwzBsOkOVy2XA8QM4gXF5Zn3QGJ4LY4iH6o9GoRJZZG9wVLlq4nR9Ayv2ZFCCMee+Q1HiiB9Z+xANSDCgQOZlMzqSwuBOBsbPPEK6w/BO5p1ZFdMZ4AUeEDD/60iPlzAcuCp8H9j+fES/oyf53khxP3GCfsucR6SDp9A/wufQ6FcPhsJFywHX+290t9C2KAw4/ehJRIIos9BlRDHGj3+83nBKeluHCA2NhT7allvg6JxKJRCKRSCQSibO4EIIC+fkQa4+uE0H3COR8PteNGzcadQggsqPRqBBmv8cjlFV1fOwk9QeqqtJsNmvkVkOw6NN0Oi3kYjQaFfLN8Y+LxaLUWCAC7QQLEuRuDFIQyP2HpHU6HQ2HwwYx84KGECZSM5grTo1gzNJp+oCTXtI3ptNp40QDnu1V+rvdrsbjcSHu2OBj6gbPIC3BK/h7NJ4CkjEiD5mmoJ9b4j1K7ETZj/vzKHp0T9AX7yf9R4hATEBw8TQAr4PgJNkJsdca8OdRmwPBCCGFUw18zN62Cxq8FmsyxPklZcVTbVirmOYgnR47yroinLH+pPbQP8Za13Vxc1DU1K8BrI9/BlwYOK8gp3/2+cy4IMEYEMxw0MS0DXfJcB9txT0Wj1xNJO41vu+zP1pf91kfo3e88hvvd1cSiUQikUgk7hnu6l/QVVVdrqrqO6uq+qmqqt5aVdVHVVV1taqq/1BV1c+c/L5yG+00qsN7CoL/eCTVaypQy8CJR1thNbePY0mn/gBFGJ3EefTZ0y7W63Uhcl7vgOJ+kCGeybOIjDsRpW3GATGkrgE/ED1+mC+v0UDKAfd4rj7PIFq7Wq00nU5LkUui5L4mjKPT6WgwGJQxUC+CPvGMaKv3NAhEIT8RACeF2+09XaLtx9fUUwW8nkHcO25hj1FxothE5Y+Ojhrr0EZm26LZPn4XaHhGrG2AUIbjpe30AyfGXnuANXcRo9PplPVBCPBrY5oG93o9BHd9MG4/VjLWPsBd4XUI4ufar48pHThm2As+5/F5vg6sgRe+dFHE19rvoy3fS7F9n48HCffquzjxzGHrv/6YHvk3PX3Yj/zh+92VRCLxDCC/hy8+Xv89H6c/++hH3O9uJBLPOdztv5q/WtL/W9f1B0n6cElvlfRFkt5Q1/UHSHrDyd+3BAQ4RnsdkCPs8U7yichD2D3621a7gCjwcDjU5cuXNZlMGqTOXQRRyCCCDbGGKFNvIEabsfZ7RXoIiwsK1EAgAk9tAz9Wj5QKiCgECxIISR0MBsV+X9d1qT9BGsHh4aGm06n29/c1nU6LQwNRwckcbY5Go1Js0PvjY+F+jxDHoyIhrvTFhQDPt491GNoEBdY0Cgq87//tRNVz95lTj3i7wOInF3hdgrb9Cbn1NAvvo4sR7D9SINpECxfBnPzyLBegWHffa21Ci/cTIYexcfSqpDPrF0k+wpAfV+pz2wbf+15s1QWmOO7oDHGHjos4iHJx/7qg5HuzTbTgM/QAigr37Ls48czh0ve9VQ+9bnS/u5FIJJ4Z5PfwBcf7fsEP6Xu+9zfc724kEs85PO2Uh6qqdiV9jKRXS1Jd12tJ66qqPknSx55c9s2S3ijpC2/RVokSkwbgdmcIBUR0sVg08sERGbwOQixKF90LRGchS5Abrqd2gRNUP5EBIjgcDkstAgomUt/ACY2nYPgJENKxE2I2mxWRgKMNuS9GZHF0MAaIJe/Rbr/f1/Xr17VYLIrosr+/X+Z5Op3qxo0bunHjhobDoSQ10gk6nY6Wy2Xpw3g81nA4bNjFPd8dogpR87QPaiX4ONwBEsUB6bTCP+97Xj1OEP6mP7HAJvNNe17w0lMHhsNhGS+uDVwYvmfYA6QLMCaeTT9Xq1VDiIjpK9SbcILtqRHe9nmOCN//LgwgMEyn04aTIaZ+cD/j39/fb5zWgLPGRZgo9OEI4DPM55B2Yq0JT0lgbfzkDwpZsve9P/HECtbFUxr8uyOmqbigwPNcrPG6Gi66XHTcy+/ixDOLt3/BB+ttr37d/e5GIpG4x8jv4UQi8XzG3dRQeF9J75b0jVVVfbikN0v6PEkvquv6UUmq6/rRqqpeeDuNedR9Op027OYA0g95H4/H6vf7JSe93+9rOBw2iuhJp1HNkz6pqqpC+Mijp7Cf29X9+fx2UgkBGg6Hms1mxcFAXjnEhPs9+u6CCD+z2ay8d/ny5UKsiKDjyICEEpFeLBZFzPBoPuOl1sJ0Om0UTVytVrp+/bpu3LihyWRS6glgmSdXnmd2u11NJpMi+lA9350dseAepJ8UEYrkIRRAdiGJpJMAJ58QVReJ2tIYohvBxSnmv9vtNo7rpH9VVRXxhYg5JBfxw/eWF6Xk2V5XgDF4//hvJ+P0ifdcgOA5cXw8290cnlKxu7tbxoMLgM8L8+/HkFITgc+ak23m2NeGuYV447JwAYz/9muZk16vV9IUcKzQL8bs8+WfSdpHvHNHAe4SPzISx5H3yz/XCAjuxHiAHAr39Ls48czhA173i/qon/hs/dDf+rr73ZVEInFvkd/DiUTieYu7ERR2JP06SX+mrus3VVX11boDK1dVVa+R9BrpuKq+iwJS80g3SAz57dj3F4uFRqNRsXmPRqOSk71YLPxZZyKrbrnH9o6wQE0G7Oo4ASAasVYAKQCQU/K6pdOoeMypj1FfT+GgwONgMDiTruERaeo+uDuA+aJmAWkU8/m8nIABmUOcoZYChBMyDEn0YoukPHhxwJh24I4CJ2dO2okuuxjQVj/Do+5cF9cyihdRcPB7XCRytwR9pd4DewD3R7/fb7hcuD86YW5llXdRgefG1Ay/9rz3nOT7vvLfCF5E7r04qReL9LXwvsf0ERdlYn8Q2dr6GtfDBR7fA+4I8M+GiwkxTYHUEkQUBDnWzfdU2/xG0C/m5wHBPfsu7mv4zPQwIUk6/MV36fL/Ht/vbiQSiXuP/B5+QPCi/77Ry9/n0/W23/rN97sricRzBncTgnuXpHfVdf2mk7+/U8dfpo9VVfViSTr5/XjbzXVdv76u64+o6/ojIMYUFPSINJZsSaWOAdF2yDJR98lkUuohxGKBsS6DF4Q7OjoqRe2oPQBx9tMHzit0x/WQXxcrnNQ4saK4orcb6zR4GocXpMMhIKkIIaPRqDEGik1euXJFly5d0mg0KhFid3pQQwGbvxcLjEUhvfBfp9MpaySd2s9jbn8sjufFHKOTgnWKBQeZs+iCaIvax3oNLgJEe7u7CDwtwuspuPvALfFtooL31dNrooPCPgONWgDxPYeLBdGB0bYO/Ph6xX3J+NbrddlPLpiwhj6/8dk8nz0Z64d4/3CEsMa+Fv4Z988Mc+T3xhQGd40geiEExvocvt/ibz5bXIsA9gDgnn0Xd9R7Vjr8fEZ1cKh/Md3VfHPx02kSicRtI7+HHxAM/9Wb9H5/bXW/u5FIPKfwtB0KdV3/SlVVv1hV1QfWdf3Tkl4p6S0nP58u6bUnv7/rdtojku9kgH/sY+uWjgnHtWvXdO3atSIiHBwcFNI8Hh9Hf7xgHGTJhQrqMFRV1Sh62Ov1dOnSpTPkBWHDST3EB7cAAgM2bo/+QkxcIPB0B8aGswLS6ic8RKJ0cHBQ0hP6/X6jjgJ58VevXtXBwYEWi4WuXbumvb29RlrG/v6+9vb2dOPGDV29erXMAYQKUYAoN+/jpvDK/Ds7O6UgoUefGStz5a4FRADIpxe9hGiSx0+7PmfuXnAiHYs9RiAYtBWDRESJZN/X34k17dAPXBj0z4FNHwcJAoynwHCdp/sAF2c8dYEjTv2ZzC3uHSfnjDmmJ3ghRtbMiTbtuoDEPCOAxSKOW1tbxcHgjhufQ4QsRD4XhOgjn2dEP57jIhapQPQrFknlOE4XbPhMcR3HqvopLhcZ9/q7OPHM4uin367Xv/x9tf9Tfb16t5VbJBKJBwz5PZxIJJ7PuNt/Lf8ZSd9SVVVX0s9K+gwdux6+vaqqz5T0C5I+5XYa8iP0IjmWTokfBQwfe+yxQkbclbC7uyvpWAB44oknGkfJkfPf6/Uax0FCit0W71XyeS7Pc6Likfjd3V0Nh8MS/YeEERmOBfEgUrEoH+RmvV6XQog4ECBxpHzgjvDCgZDGuq51+fLlMoeICev1urTx2GOPaXd3t4goy+Wy1DqAiNIm7hCP1DuRw9WB0MC8M39tkWv+ZlyknfgcUNvB7fJE2GNawGazKWuH4+G8wnq+F1hH2ut0Olqv1410GS986M+ODgS337sLw4sLHhwcNCLzMXLvcOLNvnFxA8JPXRDapT87OztFaPP6Au5wkFQItbtJmGf2sc8FnwUXDRiDH2/K9X4KCPOFqAdx57r6JA0ppgaxbxE/xuNxo+4D+wXXEu4Lr3/Bs93p4G4HF2cGg0Hr3rmAuGffxYlEIpF4Wsjv4UQi8bzEXQkKdV3/mKS2A11feYftFBIHmSWK7oTUbdr7+/saDAYaDod68sknVVWVxuNxIwVgOp2Wyv08x0kWbUKUqIHgkVqITIyocm2sw+DkkiPs3K7uwohb8LnHo+J+VCIk2U+LmM/nJRoOieReajFw1ONkMtGlS5f01FNPlecjzuzt7RWXwkMPPVQIWSTFMepMYUMvgOdk1sWGSPx97X0PuHPAI984PNps/swhz/Q6Bm1Rfr/HhRg/vSKKATGPHyJNn9ucE/TVU2GYq9VqVZwgnmZwXh/5b9+D9BtijojEj+83TmyQTusd4Pzx+fQTNxAnQBQTvD8xRcM/r36t7//oIOHkEhwULsz48yH97DNEC28X8Qe3gtdF8WKRvke8b5568SDgXn0XJ549/M1/8gf1/b/vx/WNL/sv97sriUTiHiC/hx8cVO9+Su//zz9b//IPfJU+rNu/391JJB54XAg/rxMgLNqz2axhj/bo6OHhoabTqXq9ngaDgZ544olig4b4DofD8ppHPN2+DnnBYu2V/T1PPhYf9CizCwouRPjYINRt4waQOtrykwLcho8zYHt7uxw1GQkn45rNZmUcw+FQu7u7Go/HJfIvHUesZ7OZbty4UY6YnEwmRdCgX7EeAGvldRlwgLgQ4xHuONa4/rSLQwVCh1OA57cJE75W0Z5/npDh6QNOYl0wYS3cwRLHwr6I5NNrNezs7DROqHCxxWs+tBWcbHN0MGZPgfF+xv0uqYgyuGBiagp7h9f9CEep6WDgue6uiU4Rdxixf+Ln2B0K7HNPtWgTLBgj6RHj8bjhYvA6CKSuVFXVWGOfJ3dBkELihR0TiWcCL/1rP6g3Vb9J3/rHf0KfOrl2v7uTSCQSzxscPfa43u8vPK7/8Xtfpg/rZupZInG3uBCCAgS4qqoSHe92uw2LuEc0sdRvb29rMBjoqaee0qVLlwqRJUVgOBwWwu0pCOPxuJCb1Wqlvb09DYfDQvg4utDJuh/XyOkJXjyOHz9hAbINOYJAeiHANtu1R0Z5n6KK5MKv12tdu3ZNs9mszJHb3D1FAcfGC17wAu3t7amqKu3v7xdRZTab6amnntKTTz5ZUimInruQwvGVi8WiCDc7Ozulv7weiT/pHl6nQDp7agG/vX6D7w1Ip4tETlqZLwQi/3G7ux/xSH98HLhl6Md0Oj1zmkAUcXAheFqEp2n42m9tbRUyzGu93mkRJhdz3KEQ58wBEfbPC/3wdljXKIYhHDghJ32AuaCuAj+IcezfNtGFsXA/84f45te7GIXw4HU4tra2SuFQ2uBElF6v1xAfGTOiEPe4qODPZe8gLPiRmonEM4WX/tUf1Dd+3yfoU//1P7nfXUkkEolEIpF4WrgwgsJqtVK/39d4PC52eyc4/IZIEoG/fv26rl+/rmvXrjWi+US6h8NhIRJemI3XIcJuHfdoJWQDW7VHnff39zWbzbRcLlVVlYbDYSFmw+GwUbwQUkoBwraIthNpLPJYu69du1bqGiB+cMoFpzZ44Ub6ulgsikDS6XQ0mUxKOomTuuVyqf39fV2/fl2TyaQcSem2dLfGx1x5PzHDRZWqqkrKiaRC/NyVwDz4fOAQkFQKPfI68yTpjHsgFltEcGBevV4CcKEIIuuWf/YdP170j2fiGmHf9fv9shbRncI84rzADQBh92g6bSIGuLDhdRBcwImOBeaNPlLo0j9Pvtd5nRodiGu+FxAhIP9+jKrDhS5/v67r4kZwdwtpGYhA/j1Q13WZe+ZxtVoVAYkCpd4H2mDsiCOLxaJ8dtxt43vgZvU3Eol7gZ//Kx+lr/ujX3+/u5FIJBKJRCLxtHEhBAXplBh2Op3iLIBIOpnz4n5ORii+tlgsNBgMSlQStwNkDfINccE67ZFgj7IDIsAQE8iipw9ALP06yPPOzo7m83khZS5QAMiTP5vnMjZqKQyHQ43H41JwbrVaFXLlFfCdfFKwcDAYlAKMbnOfz+dFpHD3BP2ITgA/atFTRDwSz/x6jYR4OgDtObg3ujn8JAPvk7sVYo0FhBPuO8/yjlDhDobt7W2NRqMiirAP4zi63W6DAPtRonF9I3n3gp1xD/i+9Nx/dxJ4rQ1PQ/D0AlwYPJs94o4WL/Totn/mD9eQC29eQDOKJ7Fegdd9cHeIj4m+cr9/Ds5L/aCIop8u4c4CHC4uUjG25XLZEMyigPGg1FBIPJg42K31sYP2k2gSiUQi8cziK1//B/Xdn/wz+pfv/x/ud1cSiQcaF0ZQcHJJdB+C4oUT2wrfeTQRYg1xoyZDr9crxBYSBLBuey67W/T9mZAhyCKiwtHRkbrdbumrE1QIqFfyj6KCR5r5b7esc/TjYDAo9RTG43FxdxBtpdgfogzzB4g2008v6MexfC7aSGrtm1vsXShwm790SnYRBNxd4Pn6bleP5NoJdCSUTv6kU/HAHQoePUcw4B6e50Q01mAYDAYNUebg4KBRsLAtvQAC7tdEEu373lMp/H0n0T63Low4WXd3CmNvW0v2gqfssI7SqXDiwgXpA7gOaMOLp3Kt1z1g/eJniv3RJjzQVts8xLQPRDQcDz5HjNmdGpxEEgtu+p7y/ZlIJBKJROK5hxd/5Q/qf73sI6UUFBKJu8KFEBQgdhwzCMGLhRO9TgHXkEIASTk8PNRsNis56aQ3UA8Be/96vS6vrdfrEv13RwOEw/tGoTsKQhLxhMgjGhC1hsxAOHFS9Pt9TSaThoCBzV06PdLQyc3+/r62to7rKHB6w3A4LH2M9RQoViepnMCAdZ6/mYvValXm1yPGEE366MdUIj5Ip0QtkkYi4ZAz0j48ku+2eaLJkQz76Rv+TIQNr1MB2W9Lq2B9Sc/gHs/T73Q6pR9VVZVUE2zy7B2vOyCdOhpox1M/NpuNFotFw17PekPc/SQL1py/4zo4CeczQVqC11BwwQDQBtfjBELk4vnL5bLULOCzwrhIISLlxV0LzIWkRi0Mfx14rRT64vMQ++1w4YF+Inp4bYt+v1+Oj3XnEp8BF6Si6JQOhcQzilo6qjfarrJWRyKRSCQSiQcTF0JQgEBC2iN5pYAchDPawj0qK6lBBiAaXq2e+gvSMaHp9/uaz+fFeh5PKvACbZCU0WhU6hkMBoPyTASDwWBQyBZugr29vUKql8tlIbcxVYCxeE0E5uDGjRuF1CJ84DjY3t4u4gCpF6R/LJfLUliSYpaz2axRg+HGjRulFoLXnICwQyyJvJPGAdHf2toqdSS4LzpKHL4urK1f58SYdXDRxecprhX59JIa4gjzBsn3lBUIst9HvQ7vF7UF3KUCCY2pHMw3bhIKei6XyyK08IwoRlAbwAUaJ9jeR0lFXMPOz/18Rlx84BmIDuxfF1aIziO6+DpyHwTeER0u7tqJqUQ4M/xEilg7wcfstRXiuNj7fJ68mKS34S4G/7z5nHh9iETimcIHfvlb9dvf8Nn6/te//n53JZFIJBKJROJp4UIICvzD3fPjsTD3+/1GRXqud8LiufDuCoAIk6IQiSUiAaQcYhyt2jgUACKBR0Bns1mD+PlJDRAVTkigb35soOfVO5FymzvkFyJ86dKlRmTVRRZAsb+qOj7ZwY/pg1gjvOBW8Lz5GBXmvl6vV0igE0H60kas3U0QxYWYv+/7gPoEXkPD0wviegNPvfCjPZlXCKdH+n3OPS2CufWjJKOVnr3odStw0WxtbRVxh3Wkr+7eYG3cieBrDJhD+ux1O9xZ4zUhYrQf94g7PDx9gnn3/RzX1mtj0Md43CLXUng1piO0ORHi/gAx7cZTkjw1ir7yw/eCH9eJaBlrZvi4E4lnEkfXb2jw2OJ+dyORSCSet3jvf3Og99t8tt7xqV93v7uSSDywuBA+S9wJTiogrkTEica7lR1SHqvMQ6ClUyLb6/VKG5BCRArs3xBs7qNvtI+wgH3aiWmv12tU+vece8ZF5NOjqi5eeLoHRMmr8NMux0Eul8vi3HBLvBNdxBIcE4yN1AcizUR3adOj1cwDkWEvgOeEln74vHvfYz0Kz6X3FAHPgec5CCVtz/L+AC/C58X6mGsXrdgvUajiWp7lUW0XAaKd30UoP/7Q9zN9dReIX++kOqY7eMFGXxvmMaYNRWHI59yv83Whvy4geP2PuH9jdN/TQZzwtzkO/LPqYoGvZVxXv4b2+Uy7OIIw5m4gFxP4rHl/mBN+EolnEluzlT7nlz5SNzYpLCQSicSzjZ03vFkf8M9n97sbicQDjQvxr+W6rkthNXLJiZ52Oh1dunSpQXw4hYCTCqbTaYncIw647d6jjhAfagYgKJBaAUGCaNMGDgXI6GKxKOSF6LP3mWi853k7GXcSFQker3k9AfooqRC7vb29QurdERGL3OGOwEYvqZxesL+/fybtgfQP7996vdZ8Pm9Y8j0SznhI5fDosEfWYwE8F0GYdxdrIHVRBGK+EHQgsPFe5oznuTAiqZwqsr+/X66JiKJOFLWk5vGU1Mpgjqi3wTyQeuLPquu67ElqT7hg4HPo8L2CI8H3PtF42nX3h68BNTwYpzt9EANWq1WZd/rsIoSnNHh6EXDhz90O3MdrMYUpjjeKIy76UD/FhRTfh4gZ7AMcHD4f1HVIJJ4NHL3lbXrHb5C+/2ce0ieO5ve7O4lEIvG8xKo+UK/q3O9uJBIPJC6EoCCdkp+Dg4Ni04cokgvu9ndIyXq91v7+vh599NFGvvpkMilRye3t7WLpp5aAR7wXi4UuXbrU6E8boYDY1XWt+Xxe8tQ3m436/X7pI+kQHtmGaHKddEoGo4W/qqoSzYU8Q4gQBjxqjBiwWCxKYT2KUkoqBSA5EpKxUQOCcRwcHOj69et66qmndO3aNY3H4zP554go0qn7AcLKtX5MH8IMY2yLbPMa73uaQszd73Q6pfikpwW0PY97IImQZgQpX1cnsW7B9/5G8SO6JhhPt9stooKnrHD9YDDQaDTS1tZWEXN8Xr1tiK4T81iLgPG6a4PCkqTK+Pr5nov73N0fEGvuYV2ZMy/mGF0VCGCcrIJTwAU0+hfTl1wAqKpKq9XqjHPE3QkRHAPrewCBhM8FIomnPPAaKT1eYyGRSCQSicRzE/Wb36JX/brfq8/9b9+vjx+u7nd3EokHDhdCUIAcQKw4lYGo6Hw+b1wbbdg4FRaLhebzeSG3kCwInhNQ6TS6CaGAbGD9J9LLfU4OpdPjJnE5xHQFj4Y6iXP7veei8z7jjPULvBCdF/Nj/ESQIYrxFIbRaFTcHDgXRqNRIx9/sVjo+vXreve7363RaKTd3d0zTgvplDD2er1GTQQvcgiJc/Lnc+N9Yy5iJf5YZR/RBiGH335sJWviNQzcbdIWqfb9FXP6/fW2HP5oyffXEGv89ALG4YUIiZIjDnj6Df322hoQeAg4884cIGp533ydY8oA4/IaF8wpDh2v4cHe83k6T1Sgv+5IoT++9+N8+2+HCwUOnoPw4UKVpJKShOiEQEldE59b+p91FBKJRCKReI5jc6Sjxx7Xus4gQiLxdHBhBAW31nuUvd/vnyHZXoQPwrZarcrpBxAKyEOn02k8i2ivExAiqJCq5XKpXq9XCA/PjAUA6YMTTenUccEznagQaceJ4CQukiu3bLtIAtmBlHkqAITJ6ytIpwUaY7HKfr9frj84OND+/r6uX7+u/f39RhV/FzIgnKSKuG2cscd8fx9fLOrnr0unBQhjpN6j85HUsga8zpx5G17LwdMVIMORQDph9vb5Wzol5HFPR9GLZzu5RtyIRzySqsAzvdhgrJnhtn+e5TUaYnqGOyxA27jdOSOdulP8WXFtXCRifIgSPmc8MwpG/vwo1EQnQ3xNOk1P8j7hWGDM/oMAyNyyb24maCQSiUQikUgkEoljXBhBAbKKOABhJffcCZhHTSE97lCgvoHn+rsrod/vS1Kj+CCRXnLyieRLahDAWNvAibD/N9Z66bRgnRNBItAIIE5oY0oA4spgMGiQSqkZcSeVg/tdYMFNgKOAe3ECOKldLBba39/XdDotIgTvcx+El5MLIJvMC+6ASM6c4DIWiG1M/6AeBqdPAIgg6RDUK/AoOzZ5dxP4MxGVPOrv4oanCji5dQLNPdHNEFMKeCYE3As5+v7w00xwyOBmceHJUzrc3YHbxvvnr3uf2tIdAPu3rR6Cr6/XPGhzabizxz8vDv8Mu6AX58eFvbbijsw7fTxPUOBzHgtIulji9UESiUQikUg8P3D9aKhVfSNrKSQSd4gLIShIKqR1s9kUdwBHMkYyDmmG+Egq5Pnw8FCLxUKr1apE9AHk2Qk+hGa5XGowGJSq//SH50Jaiap6zj3knX51Op2SNgFZotYAcCKKYwGLP3UOuG88Huvy5csaj8dlbLTNsZocXekk/vDwUNPptJBSTntwyzo1HbrdbnE4kGpCgTs/vSJG0sfjcUkzYP49LYIjE1kjoucevY+59QhKfjICkXfu5xn+TBeOOJYRIk16AbZ9L8DpTgOe42KAO01i2ozPhRcrjBH5wWBQ3DcHBweazWaNoxU9ok+/EW348VQOd2ow17FYJoBg+35mHL4HXVTiOd6WCygIG17bgX54YUgfl4tu0TXh3wM8M7bPPETHD89irbw4JWkky+Wy7AX2JEKdCyKIOX7CRSKRSCQSiec+vvUVH6wv/epP0jt/1zfc764kEg8ULoyg4HUFpLOWdycx0fpMVNdrGkAe2u7BIYAQgIgRiTBRbu6PbXhdBQoiOgldLpeFvEGUODKQonkQ8aqqNBwONRwONRgMJKncL6kQay/wuFgsyt9O+n1uaB8i7qQYBwVjZvwICovFohGld5s4847o46QX8YV5guT6CQ6IMpBW77evdzwyFPFFUoMItqURQH69qF8k+nFNaSsKRpB7J8N+n6fjMIcQ/16vV1wi7CfW3sfh4gGpPG0igwsN/j5993F5vRGvWcD8uwjCb/oXj7ZEhPG5jY4TX4c2F0SbK8JTRmJKhIs1LoK42NCWTuNjje4hXDfMXa/XK98b7szwfZBIJBKJROK5jaO9Pekg/7+fSNwpLpSgwD/yo8UcEuEkrY0A4VKAfEXiASClPAvyvF6vNRgMzlj1ITxOLiDy0ikZJxqKRdsr9/f7/YaY4DZrxA8ixKR6UDzRTwGATPM6r+EkiJXpvTaCizSQ+GhD9/n0VAzGF1NPaM+Pr/S5g/TiwCBKz9pIOnOPdFosEZu797ktd97TDOiLk2c/8cCj8m1oEwxi2gLX+TWx/+5sWK1WZxwMnobgAkzM6ffrPe2BeYlpGIg/zFObWOHWf08H4bPnz2CcPibWlvl0l4jvEZ/PtvSQtgKY/tl2J0IUXrxP/tyYGsL9nipU13Vj/8a1SSEh8Wzj83/0U3T91/47fdruE/e7K4lEIvG8xe5bO/q0X/0x+sfv9QP3uyuJxAODu/pXc1VVf66qqp+squonqqr651VV9auqulpV1X+oqupnTn5fuZ22ut2uBoNBOarQyVmv1ysWfY7Zsz5IOra4cywkJANSjIPBiST1BLa2trRcLnXjxg3N5/MSmW1zTECKcQPwGscvQlA8Ck8k2tMfIjmmbgFj29o6PpGBcdO/2WxW0hzG47FGo1GpjTCZTDQej0v01fvC8xEovA/u/HDRhh8XHPjbo8WSGgSPv53M+hxxkoZHkXmWO0k8pcVTXSDAvkaIK9EN4jUp/Dk+Jnc5RGGlTWiJPz7mCMSq2Wym2WxWbPfeHukrvqfZo+xdoudOzF3wkdQQUXzvMae4Y1xIcreGi0sunvj7scaHixiMhX3cVsDR+0e/ozslpkT4fW2fn7ieni7h6Te0xXz758FrPfje8zm66LiX38WJ+4P3+cP/S1/2hj+gx49m97sriUTiaSC/h58beOTv/KB++Yvf/353I5F4oPC0HQpVVb2HpM+V9MF1XS+qqvp2SZ8q6YMlvaGu69dWVfVFkr5I0hferC3IQKfTKUUYpdOcbaLv0mnOPFF+J47r9VrT6bSQN0gW1nEIKHUORqORlsulptOpFotFIUNHR0cNgsa9LiZ4NFY6JjLz+byQ5OFwWEQEFzTanA7Y0hEUer2eRqORZrNZsesvl0vNZrOGVXs4HDbmcDgclqMDqR9B2oKnIdAPajbM5/NGcUhEANJAqHngzgDqUThpcyAGINBAZiH1pEY4gWVueJYLM5Ia6+dzD/H1NhibF4pkntxp4UUZed/H0+aEcOGDtUAYimLF1tZWqZkgqdSscBcCz/YTTThmkjlwgYN1cBcBY3EC7mkbgP0TxQRENk8Vog6Jk+1YaNTTX1arVXHeeJ2LNnJOe9GVFMfpLghEEv/MuSvIa4fgJFkul+V5fBaZNwRC0na4zsWdB6GGwr38Lk7cX7z8896sT/2uz9N/+qZ/eL+7kkgk7gD5PZxIJJ7PuNuUhx1Jg6qqDiQNJf2ypC+W9LEn73+zpDfqNgQFL5LGP/whFC4eOBmSVAoNIjhwQoFb/D3lAQIE6UQkoHAb0WIi4ZDiXq9X3BMUbIypEJAw4CcqQJy9aJxbuREAIJL8eNX/+XxeCKkTU8jdeDwuxNWJ8sHBQRFOut1uIdOQbtwcq9WqiAuS9MQTT+jq1atl3HVdN4rd4RiIRDHWL0BM6Ha7Go/HZW0Rh5gfiKUTSncueFTc0yCog4F4xPv0kfbciUHf6S+pGP4cf5aPMRJy+hGj69HBEVMG/D5JhcyzT6O13/cLfSIlwlMmQBQiXARg7X0M/nl0scXFF9rlOnfq9Hq9hmuhzeHB87yfse6Hv+8iw3npNC5K8V3BM70uQpt45M9hj0bx7AHBPfkuTtxf1IeH2lq3n76SSCQuPPJ7OJFIPC/xtFMe6rr+JUl/S9IvSHpU0o26rr9P0ovqun705JpHJb3wdtpzYubkBuLY6/Ualdc9GgyJIAqJU8AJgRe14z5EBdIVINWcMuARcGozuPDhaQv8IHzQ536/X4hWLBTn0WlcD+v1ujglPLLrEVoEEcihk7ooMjgJxIruNvl+v1/66LUf1uu15vO5ZrOZFouFlstlw8pOn2Ohx2gf9/oP0rEANBqNSiHHmEKAgBKFDl5zkh3TIE723JkIt5NGJ8f+wxzFPvj+jPu17XXaaUvTgODSbpyr2Pc20F8XQ1yIiOkntOt1CuhXLMjo8+PCgH9e/D7fZ14bpC114DxEccD7yzN9LlywcXeIP4854DPnJ4G4u8OLt/K5pg6J9+Wi415/FyfuL7qPT/XhP/KH9USmPiQSDwzye/i5hfweTiTuDHeT8nBF0idJeh9J1yV9R1VVf+wO7n+NpNdIp1bvNoIHQaDmAVF7JwUxgrpYLBpEQTq1w9OeuxRGo1HjtIf5fF6IBdeSe40botPpaD6fN4o/QnL8qERIGKkHnnsP0fY+kWYAsaUmBMddAvrW6/WKCOBkz0knpIijLV0AcDKOQ8NTTmazWXmOn7LgAhAuhTZyj7uCPrHWjNXrRrh9PRJCt/X7yQX8DQH1dfcUCp7v8+cOBt9PHnlnPG2CQhvxdlt+FMiczPKMmArgzgB/jr9H227fJw2IZ8X6By5k+b6k71GA8zFJzWMpWVvaZ576/X5jLLFOQyzSSOoRr8U+MkcxfcLX1MVH7vE23d2C4OHP4PuDvYFAdztiyEXBPf0u1vAWVyeeaRy95W165FWV3vKOkT5m+9bXJxKJ+4/8Hn5uIb+HE4k7w92kPPwOSe+s6/rdklRV1b+U9JskPVZV1Yvrun60qqoXS3q87ea6rl8v6fWStLu7W0e7udQkOhCWwWCg+XxeSHS0Ysf0AFwCXiCOKD01GyAVm81Gi8VC0+m0EOjhcKjDw8MiHkBsyL+GxFLwzVM0ov0c8uqnOjhhow1+tra2ihXfc7shmaRqMG4cEogn/X6/4XDYbDaaTqeNAomkQGw2Gw0GA41Go+ONcSJGMPaDg4MilFBYMZJmyJ+/h+CC64F5vXz5svr9vp566qniKHHS6ESaOatO8vxJhWCvMA7WHlEmOhNi9DpGvj0lBcLtdTOi6OUpJS5qODne2dlpFKL02gceZfc0i9hv9gdwlwzRd99H9Jf0D0mNPUcbjvNONohihxNyUgyqk/QZrmf92hDTJrzNWGDRRQjWnLUBUVDw+9wBQ1pLdB94vRTa63a7DYfQA4B7911cXb34loxEIpG4eMjv4UQi8bzF3QgKvyDpI6uqGkpaSHqlpB+VNJP06ZJee/L7u27VEGRivV43opxOpuIpCy4OzGazRkE53ARejwByDAGDFFKP4OjoqFj79/b2tL29rfF4XGonQHQoJjgajbSzs9MoCCidkkbah3xRxyGSTsQNSBVEk2MOIdL02cUKiBuRY48A8x7F5qjvMJ/Py5wOh8MiEJByAfGP7gz644TVUxyYC48uQ5J5zSPpCCyDwaC4ECCXniLgUXjfE7Tn6RcU7+Q+j5DTR488xxSI6CCQjosjel6+70n+263zsa+sRXQpRNGAaDyvQ9CZy0jsIfH03cUDdw34a7EN1hw4eY5EmvV0QYbX3Tni4+P5bc+gDfa+CwueGuTt+Np5uhH9YF1o30UFX3M/RYb18lSNnZ2dIuTFI2cvKO7Zd3HigqCu9WWv+UxtvuBJvfFD//X97k0ikbg18nv4uYb8Hk4kbhtPW1Co6/pNVVV9p6T/IelQ0v/Usbo6lvTtVVV9po6/YD/ldtqjRkFbVBBSAZkdDAYNUo6VH0JA/v9yuWykSkB4IKmQKlIYsN+vVqtSwLDX6xUXA8/0QoGQVs/xd3IDQfZikE6CfLwQs7aTE6IVvK1WQMzFPzo6KsUbIUcIFH6EJH32VA3pVPzwPHo/dYBnuzuBPsYceB+33899np7i9QGkZrFCT4WgLS/WRxpL2zpDMkmZ8bSJuE4RMb3B95tHweMaxbX1tn0dnUD7KRAufHC/OwNYWxcomFdeZ+5c5PE6CJ7q4GKUC0Fxvb3YKP2NbgH6wv7y2hExdcHniNd87OyTKJy4aOfPZI2iE8XdJ9EF42JHWy2Ki4p7/V2cuBjo/Mc36/EP/E36bdUn6T9/SHKQROIiI7+Hn5vo/Mc36x2f8WvvdzcSiQuPuzrloa7rL5X0peHllY6V2Ttp50wxPCc+XvGe0wwgcJzCgFPg8PBQi8VCe3t7Gg6H6vf76na7xf6/tbVVIu5OxP30hsPDQ+3v75d6CRzPOJvNCqmGrHrhQI7LczINEYJsORFl7E4mI/F0ouwRcC8wF+EuB698Tx/or9vcXaBo+9vrA8QIO6JMjO5HQui5/B7F96MDSRPwWhBEi30+vHAj9wCvf8GpG23FD+kH84MrgPZ93tss/L5/otDC2P0Uh7YUCxdtvH4E6SKIJ+5kiEKUizX87b8Zv6+pO1C8f96+n0jhQkkboqDlrxHld5HM93jc++7U8M+Rp0W4GHDe2rqowHvuIHEBzUUXF8keFNyr7+LExcIL//4P6vCnfr3+2z/Y6CN70nb1YIhcicTzEfk9/NzE0X5H/3u91Id1+/e7K4nEhcXdHht5zwBJd8IKsVytVoX0kZM+Go2Kq0BSyZvf2trSdDotP+TcUx9gNBo1hAhJxT7O8Yjr9Vqz2Uzz+bzUYBgMBlqtVlqv17p+/XpJFXBCKKmRU39ecT3gkWVSASIJ9FoM1AjwNA7ElM1mUyz/iBxec8EJEu04sYece0qGz48LGuv1WgcHB+V0DCdsOE3cIk8bjJm2XDyAwEZHAWOE7CIceF0C7zvk2gUG7nOXAhF8SQ1XA236vNOW5/87CY7r6iSVdWU9ESviPnCyTx6/iwyRyMdaArE2hIscvO/7FcRaHwg77sjhnjbnjK9pdEkwFj+WNRZBpJinO1Wi24O2XfDjObGAou/pNkEgpm4gVEQXhvcxkbif2HnDm/X/+8CP1N/8mR/If9AmEonEs4yXf/aP6HN/75/RG//BP7jfXUkkLiwujKAAyV0sFsWmL52eDDAajRq56hw7SATXI9b7+/va29vTeDzWYDAoNRJIYZBO3QaQC6KZ1BOg3gCE6EUvelEpzEiE30mpE1gvAOfuCyekbWTFiSOk2KvqQ/IXi0Uj4hyjtX56wHK5bBB4LP84OSaTyRlbvNeLgNDyDHdlQLxxjkDcXVBwQcWjx06gGePOzo5Wq1XDEUDxQebRnQyM1/vtdSWYwziGmFbg7bhDJNr8QSSqHJnoqRSechDt915TgfYRRPgcuIODexCcXLzyeYprGP/b54D34mvsKz8BIqYhebrD4eFhqZ9BWpGnA9Em6+jtuGjoNSxo25/D58VrS3g6DXCHkzslvGimzytiD59RF3D8/UTivqJ+IIqDJhKJxHMSw//2Nr3yj3+mXv+Pvlrv1xnf7+4kEhcOFyYER8FEqqsTsYSsEpXvdruFaFOg0Yv4UVxxsVhoPp9rsVgU8kvkl4KKMaoKwUGEoKAbEXIvzkfKgHTqJPDTACDspELECvYgWrSd9DrZ8nSF9Xqt5XJZCCz993oQ1GJgTt3BAQFzR0Akll6gMRZbJILs7TmB94J5UTxweI498+cF85z0xSMwz0sjiGQ2js3/ju34XqMv8cQOf8bNxuZgvoCLC57Kw95i3TyNwtMYohjF2ke3gXTW/XA7kfcousSfWOfAn+EuD8btKUXu3vDnxLQNrvG9xxy5e4W/Y00LRK9YVDGmhvhnS1L5rPqRrolEIpFIJJ6/OLp+Qzv/6X/od/7rz9fXXHuv+92dROLC4UI5FCCwRLqdcPpJDx41xHHgpyggJrigQDukTDgBiUSz2+1qOByWAnDk8HPKBP2kOjxt+okEXqcBEurR5Yi24/aipR6hgiMlfRxOhkm54NQK2vd0AidrLgq4EODP8pMlPMWA/kF6mY946gXXtI3Jn0vbILbp1nTuBzHPPz6vzZLvcFIbc/w9Uh/X8GbEk3t9D8bUBJ7lpxv4qRrxOo/kO/Fve7aLVbHOQRRDvN22efIof5x3d3v4vPhnhDSd6BRoE0k8fcGFBE9zcGeMp2P43uPzHIs28r67Rdyd466nRCKRSCQSz3PUtT7g835YX/kPf6d+w2//en1k/8Gps5RIPNO4UIICRzJKakQil8tlIRK4DKRTAgBZgQwsl0tNp1PN5/NSY8Gj5dFe7TZtouxXr17VdDrVer0uAgX98uJ9Ozs7xc3AUZVuSYcoOinlPal5fJ6TF88rZ6y4DhBfOIECZwRFIbvdbolwr1YrzWazRmFGrveo9/b2dqkx4dX4vYgd/ee57m5oI+8QMyfcPqboRPD5cBLM2uL6cMHBnwV8bv050QES4S4L5tndGNFh4sUv/SQK3vPIutc8cCu9R/ZdWEC0Yr9zvacmRDHGxxXFEE9j4HUXLWLRRl9v7kdU4lQNRCWe5UU+6QcpEezL7e3txkkNpEGwH71N/tv76W4kjhpFqKiqqrSNuLdardTr9c4cq8oeaiuSShu34z5JJBKJRCLx/MHL/+SP6vP/4Ofov/7dr7/fXUkkLgwujKBAvj/kHmIH+fLIKiICvyFrHhlfLBZFVIiFAJ2kRcLIc3q9XjlGcrFY6PHHH9eVK1dKysX29rb6/X6DZFE34WaWct7jfkghBR8hTj5e5sddBev1WpPJpIylrmstFotSuA5HxWw2KwIEp114nQXuGQwGGg6H5QQN+uDELZLDyWTSGJfb16XTIx1Xq1WZJxcTXIzwCLILBE42IbGsd5so4ETR19PFAOaR/cB+YxxtNviYOuDtuLU+2u59v3qaTdvxmy56MXeey8/nILoBYpQ/vscYcIC4UOTP97oFzCXz6UKBpzxExHX0cfj8I8IgMngaDu956gH94shYf15bOgfzT/8Rwhg7/WsTD1w8igU0E4n7gfrwUF/4yX9Cy6+Y5RGSiUQicZ+x+31v1cd9yqv1zf/87+nFO1lTIZG4EIKCR+gh8VIzSh9PE/C6BURynQxCZL2woJNeJ2cxuks0lkj/ZrPRbDbTZDJRr9crpymQcuDExCO23iePjkunVn4Io4sakSg7+fOcctJDPOUBUoVzAkLm5M77hZOBKC7jc1s7z16tVg33g5NC1hHwLK/TEKv3+/iigMJ/x/x/74//7c/0PcI6eO0Hn0M/1tHnElLPs+LJFf6+p5Owtk7OeZ++se7uTmhLNfD0AkSe81IbYrqGu2J4rr/mY3IxwZ0Wvh+joOIikPfD101SOdUhOnJ4Jk4MxCbfN55ygAjDNfTNT1ThOhdXfD/U9WkxVz5LLtrQJp+rmF6TSNxPbH7sLXpi+sH3uxuJRCLxvMfR3p623vQT+phv/Yv6s5/wb/V/Xv7F+92lROK+4kIICtJptJdIuIsGHsX0vGqKveFS4BonJn4MpQsO3O+IggKpAaRRrNdrjUajRqqBOw6cYErNnHx/jT5QgBACSEHKaNnnfo9qI2J4LrmfNLG9va3BYNCoeu+EmrZXq1XDFo6o4GTX51I6LQyJoBBTGLzOggsa7gZhnj2SHcmyk3Inq04ynfi5PZ/fMbWAUxRwPrgwEefdLf9tdRKcmDNGyH28xk/58LbjeKNjgGsgzi4+eFoILghvx08u8GfEtn0MXM84WBc/0cTnxF0BLpK408JPT2Bv+qkWXv/E9407DHZ2dsoc+LUuKrjrxT/LPOvo6Kh8Zn1+6JOLKtFVkUgkEolEIgHqw0O97xf8kP72Cz9O/d/477RdbfTHJ7+i7erC1LtPJJ41XAhBwUkitQAgMpB3J0sQaZwL3W631FnwGgeSilPBySJ5+UT04+kHiBkUYex0Orp+/bpms5mGw6EuXbqkyWTSiILG0x3W67WGw2FxM/hJE/EEC/qGaAFcbDg6Oj69AqLnxSghVLFwIqdZQOz29/dLP5zkIcr0er0yh71er5HLj9uD1InBYNA4vaKt2B1CjOfwx6h4jMwzh1GYceu8pAZJdvLJWJk79g9E9PDwsBz/yTh9v3jbzCP7zSPZ7lBwJ0NMefGIN3uL+ee1uPc8Ms64/cSPOH6fb7/HXSRtLoeYCsQa054T9Dg/pPhQwyC6QLwvcTzsMWp8sC6sObVU/BhOr1cRRSZSQnxscT/S74ODg0ZakKf9+Nh8PyUSiUQikUi04QNe/WZ9ux7R1mSiT3jLO/Xw9uh+dymReNZxYQQF/uF+cHCg2Wym5XJZ/kFP5NwJs4sKnuYgqZH/TkR6f39fly9flnSWgDgZBJAtRAWEDFIyaMMt5U7UeJ3IP6cvcJ1HfiUV4SHm+rt1vE00wWHgBefcXYDFWzomrjdu3ChkE7K4XC7V6XSKAOGEC+fEcrnUfD4vJJ3XIK0IH54OQboJ89PpdMrceQQ7OkjcXu9pErTnRwFihfcIO/dT5E9SKewImec4TPZLW9TeiaU/z/vu4oy7IFwg8LVDHHBnRDxlwNviGavVqqy9C1kxjYG9dXBwUAQqd3Twm/0bx+oFJt1R4PuKeY7z4p8Hfy+mjrhgwVywbt62iyb0k/d9j7MmCFbAU1NcVPD/pn8IeT4H8fmJxP3Gy/7MDf3aT/4c/c8v+dr73ZVEIpFIGDbTqT7td32G1JKa+kzg8Y+6qh/9K6+7J2294kv+tB7+70/dk7YeBGy6O/qH3/X1es+sf3HPcCEEBek0j36z2Wi5XGqxWGixWBRCjKCAZdlJp0f9Y663E1En61KTsDs5oX3cDxQyXK/XWi6XRVSADEmnUWYn5LFegke0IZ2eAuE2bXdpRLu/k9rlclkixIggbvn2WhFenR+y5OkLFIWMz3NyKp2KGAgspJpAZP10BBcm/BQP2o/RcIQSJ6YuAjhB9nZcTPBrIOteRwKRxAmzk0+ECO9DjFR7aoWLJtKpY4W1Z+5Xq1VJ1wH8N/Pn9RZi+y6AxHQIENvxPecuHV8z/wz6eD1qL52KKW1CixeLZO74TLEfYj2DOFc8110SiIadTqexX6JjxPdBTM2Ia+NCgo8flwZz56JPInERcPiuX9KL3zDUy9/zT+tNf/Rv68r28H53KZFIJBKSVNc6esvbnrXHvXD1PvrAb/zT96St9//+X9bhO3/+nrT1QGBrW7/zG75Am+7tuVAPB7Xe9n98baaz3AQXRlBwMsdRh6PRSMPhsHHcYbfbLYUBJRUbt5MkL7TnJPe86L8XSwTkW2OLp04DogLWaZ4hnQoHRMO92CN9g1h5P2MhOUhQjLZ6egbzRX88jaLtSEhPbfCic9IxqUUowY3h/YDIL5dLScepGTgWFotFQzBxt4CTNY+aR5EE14ITfE+3YP0QMGKxPCfQbvP31AecLjzbhY14bKKnWHhE3PdIrNvAuvjrXiiQ/vv6007cd4zBBQHa8M+L//BadFq4OOFOGgQ672d0F3iaEXuJfRMFAn8/pjlEQcQ/dw7a9poHtOdpRZ7+4i6f6Orwe3lW7EesL+EiViJxEXH01p/R+37pL+gvvfK36XNf+J/08k7aaxOJROL5hqO3v1Pv/X+/85609bw7z2pzpJd9+Q/e9uXbL3qh/sorf7U6Vbtz9crO7HlfmPNCCQqSikNhNptpOp1qOBxqNBqp3+9rNBppNptpd3dX8/m82NZjygPkGyHCI+webY454jHqTBoCNQOwQ5OO4USNSCoFDb0GAM+S1CBMFGVELPFILTZ56hq4WOLFCCHZ3W63lWgzH17g0qP+0+m0kOh+v6/JZNJox4k8wsVsNivHGF66dEmbzUbdbrcUiozijaepOJmmbxB2hARSI3yuERaYV8g284ro4YUtPZWF/eAnDhweHmo2m2mzOT1S0B0qtOkEG+HBXS8+z/zmx9MgPPWDdtif/X6/rJmPlc8G97vrBaEhphH4nvQfHBySivPG0yXcxcPfLnz4695+dOn4+9wbRQXpVMjxVBfW3T87fg/CnrfPM11Y8Ofh4OBe0n18jIyFPcS+dTdJInFRUK9W+pnfIH36v/80/dcP+w5JyshJIpFIJBLPAI4ee1w//OEdSZ3W97c+9Nfos7/3n92ynQfp/9NH9Z0F1i7Ev5YjqV+v17px44a63a4mk4nG47G63a56vZ76/b76/f6ZvHBPeyCaCdEgfYKIup9lD7GIJxSQ7tDpdDSZTHT58mVNp9NCmrH6k54AKabg4+XLlzWfz7Wzs1PIjT/DnQX0dbVaNaLr2PKdBHuKBISVuhOSGhH6eF+v19NoNCptICggWCDc0L/9/X1Np9NSZFI6Joc8q6oqXb16VVVVlcKZCDeMBcQcfF5jnLw2HA4bggJpGJB7z3WPqRuxhgLPWC6XZU2dkHqBSkg+KSJeQNIFCPbHYrE44yCB0Mfotgsc9BWiyjNjNJ+Ch7Qdrf3+OzpXXBTzFJuYmkExT9rlufQLAYZ+sceZ35hewT7yZ/rYXfhA9KC4qIseUfRzodBTcpjn5XJ5phjmeWkaiA5ei8JTZhCk3O2RSFxUXHn1vj5x+CptRgP9s3//jzIFIpFIJBKJZxn1T71dn/hbXnXzi6pKX/qG79Areu2ixEXCB7/uc/Q+//SXznn3b7e+emEEBezXTjZWq1Wx1CMo9Hq9hnjgJNUt1G5xpiYDqQp+ndvcyZ3nnuFwWEQFTjUA6/W64Shwm7p0TMggS9IpIYvF77Ce+2kOHlUmou+uASeOjIF5i4UjPVrOqRlOrGKdhMVi0RA8vG4BEXWes7+/r6eeeqqQ9G63W5wM3Ofk1qPf0qnFHsIPcFE4wfX0B9bJ3QM+DtaT1yGoLhL4PYA19Jx9z7fnd1saDeuI0OP1MLjP19bn09NDXFCQ1Kgd4m16WgXPiAJOtPPHsUeSHR0Xm83p0Zru3mlLtUDY8vF6CgyIe8Dfj8KLOy5irYM2d4gXnURA8b6yr0lVcveBf36jGJFIXFQcPfa4JKna2dHHfM3na3NSj/ioL/34n/wadartm9ydSCQSiUTiblEfHt5WDYo/9VWfp8MHQPd/2ffduOOaGhdKUIAEe540kVpIlRexi6QYxBQGiDJEOxI+0hXaSB1pD4PBQMvlskQuie5y/XnpFC4MuIUeAuPXekQ85n9D/nxsfi9j8dMXiBjzQxTeayzQFoSdYx7dZeDEDZJ1cHCg+Xyu69evq9frlbQHhCDIv9SM7Ed3gj+T/rr1nTb89AhIOM/ycXgE3m3tLmx4UcsoGCAo0J+4T7jWUzjYA7TpkX2Hz4GnUbijwsfuzp22tniu73Xg444iDvfF1ISYJhHrO3jb/r47TXzeo4jip694H6MThP/2v70ehRfXvFkfXajxz5OLil6vAxGCtee+ROKioz481Ev+5mk+6PblS/rs3/VbNdg+uMldp3ioO9WXv+Ann6nuJRKJRCLxvMcjX337dRvuJ57Ov3wvjKCA1RwC7WIBAoBXpuceTlTwHGoit9KpMwDrvqdD0D7kxUnEfD7XdDpVp9NRr9fTcDgskXpISLTbO+l2kg5Z8ePu6Jfb7P30Cm/j6OioiCF+ogNz4+kP6/W6iCfxdAyew9/01ckWDgUcC553j+jheefT6VS9Xq/UAdjZ2SkpEk7QImGkHU9jiKkNzDeCigss3oa7WngGrg/2DSIIz/GIN697tHu9XhfHgRfP5Donp0dHR0UY4JQK2pGapzKc56Jg/0HyESa8T8DTIxi/px34GJxYez0B6fSEBfaTi0c+Nk+7iYKX/9Avd2r49S5wMC7/LLnjwok8a87nDWdSTKHwufFneKoEnyX2i6fAuLjholMi8aDh6PoNvesjb//6n/2QD9Xq+37sGetPInG32Dytf+ImEolE4tnAhRAUpNPj/brdbsN94AX73IruwgM/EE+KGbpw4GSBtnjdyQ2v+zGFm82mpDyQ7+8EDNHACQyvU7fB6yxAJp0AU/yR8XEqgxNnz2H3uUEkkFQixYvFojEfy+VS4/G4FI0k+u0kGUGBsRNxhiD6XDE+Uklc5PCUAIoqAqL3jMef44U1SZuIjgIInhPs6KKgfxBJSCPrDammLYg3qOu6CFVui/ex01/IvI/R35NOj0OkbV/D6KjwwoUe0ffx8Ux3vMTCke70cDcC11ELxIU0F5DYw7QX3RL+GXChwK9jzIw/Rv19XX0e2Zd8zv3zwN/+ufB1i+vo68Facx/tSU1REDEqplokEs9VHL317fr9H/H77nc3Eolz8Y53f9v97kIikUgkzsEtBYWqqv6RpE+Q9Hhd1x968tpVSd8m6b0l/ZykP1TX9bWT975Y0mdKOpL0uXVdf+/tdiYe/yid2vE5LnIwGJwhLB6BhETF6DzE1Cv5u6X9pO+FjElqCArUb/BocCTRkBGeJ6mkBkCseTZigZOrfr9fagRQRJF2Op3OmfoPHpn1CK4TSqL/RLyd6Dq5R/yA1COA4IiIqQHM++HhoebzuaSmZZ45Ip3BhRN3DJAeQT88jcTJP2PwkxKi08D3QjwK0W31HtWOufi+p3yuXVggau/z4u85Kfe1anMb8Levi1/ve8RTNBAHvB4Hr/tpFFFMcFHC//Y597X2+YzClbsOYh2EOH8uCPkctzke3CEQHQjR1RHnJ65jFKP8OwK0uREuojPh2fwuTjzPsDnS4aO/cr97kUici7q+GAfb5fdwIpFInMXtnF/xTZI+Prz2RZLeUNf1B0h6w8nfqqrqgyV9qqQPObnna6vqzqpC+fF+UjOizLGMTu7cOs7fTrY8ekr70ql44fe6CCGdFlvcbDYlZcALMUZ3A4IEtR4gTNRPgDxHIgeB8sKT7ljguMd+v69ut3vmKDuPCkNOIZWSGk4CL7DoaRbUMlitVmdqIDAvkeQh9uCIQDjhh7ZoL6Z/MC+IF/FoSBcmnBRHEh0L8nmE2wl+JNOxSCHPi8QzPjda6T3Vpq2vMfWDa+M+bEvDcSIc54LfzJ/PKSkysY5CmyPA59PrIlCjYrlclmNavRgl1/ozfJxtYkj88TmJ6+DttKVXtIkU/v55KRlRaPHPsX9HXEB8k57F7+JEIpFInME3Kb+HE4lEooFbOhTquv6BqqreO7z8SZI+9uS/v1nSGyV94cnr31rX9UrSO6uqerukV0j6odt4ToMUunUeYktxxH6/r+l02rBDO2Eg4u2W5kgeIcnuSICo9/v9RvSUiCuiAUTTHQ3kzuNQ4DW/h2c7mcclwX9jtUfE4PWdnR2NRqNWIuY1KDySvLOz07DE7+3tlT7SH08/qOu6nAIBcaZt+j6fzxuWfAQUScUZ4iSOFBFfXz/i0Y+MZM69UKHfy/2sO3Pkc8jcMud+DKLvK4+qgxit99f8BAOP1LtTIaZE+Jp7gU6PwrNP6Bt9x2ng13tU3cUSiD5z4HugLV3ExTpe5zrg+9zXjjH7Xvb/xu3iaRNO4N1FsLW1VcbubcTnxffOcw+wD6Jwwlr4GvH+4eFh49hOr99y0dIdnq3v4kQikUi0I7+HE4lE4iyebg2FF9V1/agk1XX9aFVVLzx5/T0k/bBd966T124K/uEfj8CDxD3xxBMaj8eaTCba3d3V5cuXtbe314iyOkGjaBvRWiKsns9PpN/TJSBkFGGcz+fa29tTv9/XeDxu2OMPDw9LnQbIuxfFGwwGmkwmjah7rEnQ6/XU7/eL6wLhgDHhyGCOtra2Sjuz2ezMPMaidV7kjz4gEECIPbLLfPvzcU7wbNYG2//Ozs6ZVAx3YTBnzO1yuSx9dSGD+52MIs5QD0I6JbMuJnnRQ8/397Eztwg/MSoNPB3ECwu6+OBuh7b7o6BAv11Q8CKjXjiSefW18baZV9JNInH2OfI0n7jPad9Jvgtd9NddDr4vfB18zIghoM2h4b9jbQZEARd/fPxtgkMUJKLDIQpJPNef7+Ier8fnX1Dc0+/iRCKRSNwx8ns4kUg8r3GvizK2eYVbw4lVVb1G0mskFdLMP96d7B0dHZXTGaRjIeDSpUsaDAbFRl/XdbHyn7TdIARuC4eEkV5AhNQj/kTeibZ64UHgBAwnAq/Td9IUhsOhlstl6dPOzo4Gg0Epksg1iCAQt81m03A8UFwwHp9Z13WJVLu44mTVo9zuSvCjIf1kDX7HqHVZ1EDcfF6Ya57haQHc64UMfa3bSK+TPu+LR9DPy+VnzBB2H0ckpbTvIpGTe68v4O9xL0Tf90d8v+2Z8be7C0BMFYj1B85bsyhORDeOr2XbGrszxMU0dzl4+9HR0eYyceIfCXtMWYmix3q9LgLXeakJ7uJxxHny613IaHN1PIB4Wt/FfT0AByQnEonEg4H8Hk4kEs8LPF1B4bGqql58osS+WNLjJ6+/S9JL7br3lPTLbQ3Udf16Sa+XpN3d3TpGF/mHPHncbrMfjUaNtAevXu92dLdgQ24hOkSrIScQeKLG2KAPDg7KMYz9fr+VcG1vb2swGDSeRYHBXq+nwWCgwWAg6Zi87OzsqN/vazQaFVGj3+8XsaDtGENqOHjknMg7roW2PP0YnWacVVWdqefQRnAjCccBwHsefY72duY71nxw+3tEJLZOJr1gJ9fFCLmkchxntL5HW7v3wWtQOKl310ysr+D7oK3/kcRHV0G04Pu4fQ/7vDLfsbBjmwjj6+RpJYwtnkzhqSP+ms93m2vAr3WBw/ehC0P+vl/nQk8UBX3OvAaIOxCiqBLbjnPk/YtizwMkKNzb7+Lq6oUfcCKRSFww5PdwIpF4XuPpCgrfLenTJb325Pd32ev/rKqqr5T0EkkfIOlHbtUYxBTC4Kck1HXdOM6u0+loOBxqMBiU3H0v0Ef0H+s85NyPKCRiTQFEyFV0FlRVpdVqpel0qtlsVvL1qU0A2SA1wY91XK/XJT9+OByWug6QXRcUEAvquj5zwoWTUtwURK95H2EgFh90ezdjpN+R0AI/NpM2HJB61ovner+d+EF+XYBwYkebjkj6PN2gzQni1zoh9yg488X68hxPuXDXh6fEuBPDibmnNjhpbks/cNHKxQF+ogMiziOpBC6esf9jdJ2ftloAXjskigFu/ffX2oh4vLctjSI6H6LLxNe6zZES3QKM5TzHiaPt+d5Pvyb+uEAW62xcQNzT7+JEIpFI3DHyeziRSDyvcTvHRv5zHRebebiqqndJ+lIdf2l+e1VVnynpFyR9iiTVdf2TVVV9u6S3SDqU9H/WdX3b/yJ3ksU//A8PD3X9+nVdv35dly5d0uXLl3X16lVdvnxZN27cUKfTKYX3JJ2JYm82x4UBb9y4oSeeeEJPPvmklsuldnd31el01O/3S54+11NHodPplBMLptOpJpNJcRdMp1NNp1NVVdVwIPA83ANVVZWaDBQtlI6J8Xg81nA4LAJKTAE4mdMzEWe3oPuxjFTkp/0YgYVEekoChCna/BEgOPbSayggrNBfn/9er1eInLs7/ISOGAGPgoGTeJ8XEN0QEZHwdrvd8jd9jaczOPF3QMy9cB/PiPb9SFZdfPDIv6ezIPLEaLzXgJBUTspw4cJdI6ytu1QQTlxY8XG1zVVEnBdP3XDhysfu68OzXEyIYkd0LdCWiwrevte2iO6C6FTwdAYfd/xv308x5eKi4Nn8Lk4kEonEWeT3cCKRSJzF7Zzy8IfPeeuV51z/1yT9tTvpBC4ExATIJ/+wx11AOsFgMNBwOGyQcYgJ0VcnCxAzjjeE2JNCQMQfArter0sfOGpxNpsV+74fx+hEz+sdrFar0ieOgBwMBiUK7gUhvb6A1Ew9iIDkU2zSo9tEb6VTUofgIKlB3Binn1YR7faQ2vV6Xf6bVA4cE55O4kSvzbYec9V5hsNdARGxXkAbzouCR/cEY4iOgvi82E4UQFw48PQAUhP8mFHWzvdGJMqsBS4X+oGAwxrEGg/RuUHtirax4BQ5L+3EcZ4L4FYuBX63OSfiPS6QRYeDp9hEwaatH97OrcbQJihIOvN5vCh4Nr6LE4lEInE+8ns4kUgkzuJeF2V8WoDg+KkMkHwIqUfVB4NBqT3gFf49/11q2qkPDw8bpz0QBXZBgX5ADBEP6rouqRIeDYVsIygQ5Y+ExEUFCDfP9PoGzIX/N/2PxItnk+ZAf7woIfPJ+1jkfd6JyLblzbsYAMGFzEYrPykSEHTve1uE/GaIggBos6CfJx7cjEwjbPiRodEi7yIV73v7tHuewBFf9/SFeJqGw/eFixUcIelpJC4Uec0FF4x8HmLKiRcvjITd5zOOyX/iNXEOzhMSbpWu4GJHnN82d0h8v63/8X5/39viu+FmY0skEolEIpFIJBIXTFBATNja2lK/3y9k309pgEx1u90zpx1AXJxEQS6Pjo40nU61t7envb09PfLII4WI4SqA4CEAuKCBcDAYDEr7XE+/qIXQ6XTOROppk9edsLTlqUfbuB8xyLNdzHB4lNoFh7quy1i73W5pA/EB0sqzEFNYG2pVeJFBSaUug6dPnFdrIOJmZPC89yNh9FMsmE/vo6dkuEhAX89zeLB3IPI8118n0h8RXSYuWCFa+Tg8HSbuA98vPg/ucmDtYs0HF39imgj9iWON/Y5zH39ivQOfg5u5C/y/ndDTjjtiaM/3sjstWJfYzygIeFqTC09t4kSKCYlEIpFIJBKJxM1xYQQFCi9CcIiken74crnU/v6+HnroIfX7fQ0GA/X7/QYxcKKAKMB7y+VSe3t7un79ularVSHYly5d0nK51I0bN0r9g8FgUEgGtQCWy6X6/X5Jx6CfpCD0+/1C1vv9fuOEAkkaDk+PAvLjIdtOJOAaLypHX1arlebzuabTaYl2I45Eous59S5uQLq73W5J23CiWVVVqXnQdjQgogEEDSLowo+7EnimO0JoKzoIHG359H4MIW1IpykDFFTkWi986GP3tAHSP1hP3mOcjElSOSGE/Un9CuCOAT+C1E/EYK5YA08viaKHzznt8xp9jq4YF6OYO08l8D3INe72wZHi+4Z7uKYt1Yj5oQ9tqRC07+viYkKbOyM6ec7Dea6R6ECgX54yFfvhfU4kEolEIpFIJBJncWEEBY+289+9Xq9BGiGrEB2ITK/XK+1A8rwQnkdBV6uVZrNZIYAU3CNyL53WKXAycXR0pPl8XgiIk2wEh/F4XAiiF1qEQHkNheVyWUgeEXSP8EdEK79Hap3QuzABYfMcf28/uh5wIngBQndI4AghUuzH99GGnzRBhByyiRsk2tX9tAki7TzXCS9zh4vAbfOeTgI5bqunwDNIl3FXgEe8nQj7iRXMhef2kw6DywBBydv3cTAH/r6va0xp4H2cCL7+zEU8lQOBwgucxlQUFzciogshpq44OXcC35aC4v31dfcTK9ztEJ/tolqb2yEKFd4vF9FimzHdI6ZiRMdFIpFIJBKJRCKRaOJCCApSMxLoBA6BgMj8YrHQfD4vVmii6G7th6xJp8SKdmmHYx0lNY6PlE6JNYSEKD1FGJ3sOXH3SLlbqd1tQSoHkW0nLd7/NrQRqVhXgDGclxPvkXqvI+DHQNKm14zwoo2QNoi35+9znzsIIPguYLgzIUaHnSQyT07iPeLPvPIcX3vfV9Ep4X25lbUdMuoiCeN2ocP3BOKJ7xWILfedVxSSefV197n0ufb18DHH2gBRIPLXvH2vIRFTAHx9/Jnxuog2ccDJ/82uj/fyeYmfhbiGXB+LOsZ5uRky5SGRSCQSiUQikbg5Loyg4KkJTkwhV7gAptNpOeKRaLDXWnALNojkB0GBIoXdblfD4bDcw5GPkop7QTqtWxAFBU8xcJJKFJj2qA0xGAzU7XYbpzREckexQ7ept5FCL/JHPyNhdTEA6z6OgTYnh4sJrImTZreiS806Cd5fJ9Btp28AJ8fx5AFs+C4o4P5wscYdDrHGRSStcY18n7Tty/g+/WO+SbtxB4AX6GRf8JrXeWirjYBjx5/vn48Y7Y/7g+ujY8X3GPd7ipC7FmLKSnSVeOqACw3npQrcTFBoW4v4zPP2v7cfn+e/fR5jn9pwO0JTIpFIJBKJRCLxfMeFERS8KBwEnd84EKJDYWtrS71eT6PRqBATUhmcLEPQcBJgUffopddk4GhJdyjQBqSLH/5eLBaazWYlt97rGaxWqxI173a7Go1GxamwWCzKMYKSGmTO+4uIslwutVqtym8flz8Xa32M/nOdpJLm4WIBqQCkfZDCQZpATKHwkyOcCINOp6Ner1ds/lznZNUdG/QxChlcg+MEAUk6FQ5YJy+02EYa4zMYC8KHCxi+P73YpHSa+kBdDfbEYrHQcDhUt9stY3bHQiT+sWiiz43XuqDfuHG8L21EPjorooOn7ejS6BTh8+MpG/65chHl4OCgpClFF0pd16XfPMNTDrxd+uiiiIsPPt7ooGgD7fNZdfEHp1IUHnzuF4tFa7uJRCKRSCQSicTzHRdKUPA89mh/p4bCcrnUbDZrVKSH8JJHzuueHw8gERAJt697LQU/7aHf70s6Jq6IEdE2f3R0pOVy2RAGHH7cX7/fb5wIMZvNNJ1OG2ICfUdQoIgkRSMhe9EKL50tGog4g0DgRDRGyOOYfB1wQ/D8uq7V7XYLceZoTp4X59SJHG1JatRsaMttd+dKVVUaDAaN/q/X6yI4xMKCLqC01aDwfcE1kGucHJ7W4WQZQQNhi7VyMSgKE7Th/Yj7lWfHNfZxeTFOXCBRQInFPn2cpAO0CQQuEkQy724Wn1t/TkwrcBHgVqkG0S3TJpT42vl/n1fzwOfwVq4Dn4e20zsSiUQikUgkEonEKS6EoOARROmUVEZr/3q9LmkP/X6/RDzbiu850Y5V4insSCE/t/37qRJ+jzsBKFDoFv5Yd4FrI+miTxSShBy6+OHpChDv+XxexAyKVzqBhtyCmNfvjgoQixc6iXPSC8li3ty9QbSb+90Z4nUTvF6Ai0Rx3G01Beg/pDamuXjRRyfvLk4wXk+H8Gh1TLVwePSedlxQQDyhP36yxM1SPSIZxh3haQesbRQ0PH3A9+95BTjbHBv+ueCaNneCCwO+L/y4zra0Cu8PaEtXcERngrfnYsit7on3x9SKKDJ6n2+3NkQikUgkEolEIvF8x4UQFKSmlZqIaBQVINbT6VSSCmmLxFZqEtRIaInyewTabddeCNBJJCS07Zi+ePoEBRwhXNHWjjMCC/tsNit94L3FYlFcEU7MvFglKQdOnNwa3mbnpi+Mlf65KOHz6UIMDgTcG96u9z/a08+LtEP8/BqPktM3rmFNPQWDcfrauUvA95iTdsDfXjegrc4Cax4dCvQNUYHjT12AilF7XzOewXz63vf/joQ+1nSgrZj2wGuko/i8+vvRodAmgvjnJAo2ca1ZC5/nu0GcQ8YQRS3G4QJl2zpGEcTHx/spKCQSiUQikUgkEufjQggKkcx77reTQojVfD4vOeVuz45kx4kaud2Hh4e6ceOG5vN5KaYXCbrn0Ttp8pxw6TTCyzWQbUlFtKDuAlF16iCMRiP1ej0NBgMdHh42jhIkTWC9Xmu5XJY0AxcxqqoqJ1PwDCfP3icnpdRVwCVBugHResSLra2txjGXq9VK8/m8iByQ581m0yhUCbGORzuyLsyLH6fJGjE+d4NsNpvG3JxXW4D0CubDCzJC6lnHGIn3/3bgDkCI8PFEVwjXdLvdIizxuh+3yT72IzejwwKxw10pq9VKvV6vIRD5ZySmCkSxgvY9XSW6Qlgb6bSopO+lmObDKSvxhBXWmj3h79E3nx+fTz+y08UmX5P4uWcvsu9cZIxz4XuT58e0GK/3kYJCIpFIJBKJRCJxPi6MoNDtdsvfkAPIvueCr9frUvxQUqNIHaSg3+83orFSs+jjYrEoRB3y4JZ6iDLkG4KL4wByCLmBIEP6ET0gYW7RhziR9y/pjCXeI90QN54RiQ9tV9VpQUocD5DEGEX2tIRYnBBnhosb9A0XBfMK0YQAMzYn5u428WvoE/Pl6Svch4tEUulHTG1xoSeSfa/l4Ck1vO/1HEAUF7iHOhHRjRHJMQKB140g9YN6FjynTcxw54ATZH8mnxef2+imiJZ/d2844W9zYjhiTQ0+I9HJwzM8qh/H5eB5bYUluZ5x+Ry6kONCRfyJ+4TrEa/88xsFFneKpKCQSCQSiUQikUicjwshKEhNO7ofe8hvzytHDEAgcPLAf7u1HbeBpFKFf7FYlKMjITYQGE+DkNQgzp53H49W5PmIFkdHR6VoIW4EiCmnVrTl+TtpY14gOpBsCJCPy/vp6RR+vdReFDBav7mOZ+NugERG8ulCQRQU2kQLz+dnTll7v8brB/izvC3EByL8nm7A+55icl7E28l1jIw7cW7rixNPJ+q+hn60aUwriH3wqLuf+uEilBegxIXRljrEWroI0iaMuODi68g17ihp20ttrgD+21M2XGTwOY7veVoD7/vv2H4UgbwfPMsFJq71cfF942uZSCQSiUQikUgk2nFhBAXpNOru/x3z4iHiEEiujbnbuBucREKU5vO5lstlKcwoNaOpMZodi+TRD6/g7xFVSUUs4P1+v1+Oi4T0cnKDR8u532sD8LuqqnLMJA4M+trpdBr9c0LuokokSO4woD1AJJzXOFLSjxB0eMTd20dQcFdDvDba4mmbuQEufvjasB86nU6jGCZzwd+ka8TUGp7BPDtBjUILr8XodWzDQQoBKSYxMs797iDwoyJjfQdPOfGUBObQI/CRLDu597X2fvgcuGjQJtK5c6ItraFtLtsEgLYUBf9cxP56O+e5PbxI5Xnih6eK+BxFwSORSCQSiUQikUg0cWEEBSdLRMKpfQBZ5jpqE4BIZDyqDynhPez1MU8/2uYhoFxLHQNJJQUhRkZdiOBvxtTr9XTp0qWGbRubv58OwakOkLadnZ0yB4yFEy+cHI/HY3U6He3v7zecE36Pk2XaoA+IH27V99STuq7V7/dLjQLmyKO9Ljb4vJB2gZCyWCzK89zWH90E8fmsPeuAKEP6iK8dPxBtnxPmlLk/bz864ukRTvz9ZBBJRVhy94C7OhBqfC0YG+12u92ScsOcxRQOF4hijYM22z7rGwUz+uZHezI37sDxdANvw/d8PG0kOlGiAOBtuEPhPERhwR05UaiJz2lzG7jQ4O4k2smUh0QikUgkEolE4nxcGEGBf8wTxZVOCRDEyom7iw8UJXS41RxyBCFzMs3vmA/PddQucJImScvl8kwk2wkR4+j3+5KkXq+n8XhcCPS1a9c0m83OpDscHR1pNptpsVioqiqNx2P1+31NJpOS7kGthOVyWeYM9wAEmfmhbeoxgBjF9bQIRAp+YjTXSScFJWOeu5+aABFFcKCIoxe99OMoR6NRERXcwcCYEC1chGAte71eg8CydrTj6RMuCESLPr/pO+KOOycAaS0uwnA/wpE7LZhPF0EYv6d/sN9YD4SUSLoZP0IFxSq9XoNH+n3uI+Hm88LpIqxb20kVPNNTE6KQcqsIv7sP+Lx76k7bdYhrCHDuevG94t8Z3m8viBlFjPi5SEEhkUgkEolEIpE4HxdCUIjWZ0mN6CvvxQi6vx6jjx6N97x8IrzSaUHH9XrdqEUAwUWI8OKKTqbisYQOrvX0AMQRiKwTTY+O1nWt1WpVIvqQH6L60Qnh95Jz70Q6RtSjsOA5+pC0Nos643BHgpNyiLDb87mX1JNbrbuTyPheTE/wvxmzuzu8L8xhRNt8xGfTDgIHjofYDr9JVeBed0vEyDn3xNQZ6VT8iOvmkfPY3+iQ8fVCNIifK38vpkt4OoA/z8WRmNIQ99x5dRJim+xfT7mINTl8nr3dmOrQtreii8HXlGf63+lQSCQSiUQikUgkbo5bVhyrquofVVX1eFVVP2GvfUVVVT9VVdX/rqrqX1VVddne++Kqqt5eVdVPV1X1u+6kM04gYk631DzZoI0c+7WQbD/+jved+GKhX6/Xxa0AMcVOj10fMQOiv1wutVwuS02G5XKpxWKh+XzeOPKP8dAXj767KOHHC3ruvEdU3QnAjxPHtr+91kO8z8lVWwpIW6FF5rfNzRDnGrLv7XkbrGtMKYiCQFu02aPT9D06UXivzeHStv98r9HH6OKIrgmv2RD3qItPHnX3Ofa5cEEr1ra4lfjR5gZwESG2wT3RgdLWtv93FEV8LG2iya3SGPx5vmfbntU2DvoQ90rb/MTPXaxP0TaGi4Jn87s4kUgkEmeR38OJRCJxFrdTwvybJH18eO0/SPrQuq4/TNLbJH2xJFVV9cGSPlXSh5zc87VVVZ0tjd8CJ1IeufdTHXAb9Hq9M64EJ5UuSHhNBuDkzYmeOxY83YHoJTUdaAsCi5iAoDCbzTSfz0sBRdwCTmq8/xCX4XCoyWSiyWRSrPt+uoTXOSDHvtfrlXz8NuIdCSV2eOohMA76CdnycSG2tJE1Fyd4HqkBvOZ/ex0DxAg/0SCmTBDhj2vkJD2+5qksXqsCuBAQxQscDvQxrjXpMX5cJ+/VdV3Wx+f34OCgiE5eLNJFCNryehGII4DrvCaEE3EXP/yoyeg6iHvE92AbgXb3QnQ4+P2R0EdBIP7dBhcL/HoXX9pEhbY+RyHEr3fBKYojLkpdMIfCN+lZ+C5OJBKJxLn4JuX3cCKRSDRwy5SHuq5/oKqq9w6vfZ/9+cOS/uDJf3+SpG+t63ol6Z1VVb1d0isk/dDtdMbz6Z24kKYAmSJP/KQvZ+zWEEPpNOIKySPvG7JJ3QEnecvlshFtxoYNOaVdyC41DZzUU8tgd3e3jAeShzjCiQRHR0flGEtOj9jd3dVqtWoUJfQaE/1+X1tbx8UeuQYRgDFGwhXrIjC30mmePjUKmMP5fF7mMBbC9GKEHn2H+PpJFfSHdXKHQ7ShIwD43PKMXq/XSNHwNT48PNR8Pj/jVIhReNpivZywupOEa5kTF1u8BoHXWEDsYb7YC154M86N10hgPzAuFwra5pHrEDhi5J61uhmcvLsQ52kyfAZ8/c5DFA1cRIvpNG0OI3/Nx+rrFtMgfAxSM3XGv0vavi/ivPo4WfuLgGfzuziRSCQSZ5Hfw4lEInEW96KGwp+Q9G0n//0eOv4yBe86ee2WgDTzA+GCQAwGgzO2/kgsYlTS7enktXuk3COQ0QLt7blN+v9r7/xiJLuOMv7VzHbPTO8mgHFAS2xiG5lIeSIW4gUSkILAtkLMHwk5yoMlkKxIQUoUIcXIEuQlDwGRVyKjRETI+QOCCL8gJUIInkJIjJ3YOI7tYMTixQuJ5d3Zne75s4eHvt/dr6tP7+x493b3bH8/qTU9d+69p+4559Zu1amqowaX1l0AruwEoI4FXTHf2dmZqnHAcxkNQOM0F+TTZ2QRRhqvXCUfjUbtlppcKSdqMNOQU4ObkR+akqHpGHkFX/tXozkoz4kTJ7C5udkWr+SzaiFC9jvvxb7UNAUdHwDt7gw5GkXHQcPYObfy6rQaz9o/s4x2NUQ5djrPtOii1h3IaSNsj46pWi0CbZM/dRcJHVONFFGZdH7r6jvl0JSC/Hx5jmthzlkRDBodUZNfoxSy80Lnh55bM/41ZYnUxjY/S/57ngOaKqTPcJgzZsm4IbrYGGPMG8Z62BizclyXQyEiHgWwD+BxHqqcVo1tjoiHATwMYMLwBa4YDzRSAbQGbw67zkYBIwqAydVOtqGrjWpkq5FKJwYN+bW1tYldErIBQiNEDRdd5d3b28NwOMT29jZ6vR5KKRP34+87OzutMcS21aGgBitXo7lyXEqZShfJxjtXy9WhoKH9DNPXldrRaDRlTDOyQ50JXIVn1AT7pVa8UFeAabxpuLymeOh5HL+ImDif56gzSo3CHKmxv7/fOk2yE0r7ijANQ43ibJiq40Dnse7yoMY0+0UdCvosSm0Vnz8pT16l12KUer46yGor8mpI59SCmvNOnQM6TjW58zGVO7eR26KcNVkz+W81J2PtOTXiRufOceBG6eJNDDqRzxhjbnash40xq8obdihExEMA3gvgPeXK/97PALhdTrsNwCu160spjwF4DAAGg0HREGs1rmhE9Pv9qdXxRo425BtAW+OAOfUHBwdtisDm5mZr4NMQ5q4LwGQdBqY7qNGlxhVD1VnrQNMTaGhxtX53dxevvfYaBoNBW6wPuGJcM82DqRYR0crMdmhEq6GtOytk45WFI9UYVmOc12lax9bWVuuMYe0KlYnHeS+2xzQLNajVIZJX1rNhrs4j3lcdRZrnrob7tdQCyCHzmp5A+djHWjAxF4+kcyRvJair/lp7Ym1trS3qqdtBqkGvxr6mfiiaKqAOgbydZy5kqP2p98yr+Uo2pBlRkqM1altIzhqLw1b4cxSEtlN7To1UyBEQGu2QHSla40O3Cc2OEx47TpEJN1IXvzluWZ4qlMYYc0ywHjbGrDJvyKEQEfcC+BiAXyylXJI/PQHg8xHxKQA/AeBuAF+/hvu1hoXuXZ93HACuhJPnvOaNjQ30er0Jg1fDvGlIaB4870/DnO0DaKMddEU9h4FregCNFBovm5ub7Ur95cuXceHCBZw7d66Vk8UUdYvAfr8/VRdA6x7QOGQkAg0+lV8dMjSedRWbz8HijDUDVftcjXsal4z2uHz5Mra3t1vjlUY1+1SjKzgmrB+h8u7u7rbGN6Mz+Dc6JPi33d1dbG5uTswdjgGA1lmUw+kpLz+6GwXnDaM2aLizmCfP5ZzJTgE1crUgIv9Oh1ctgkLlzu9EXmlXB4A6GHT8a04Xziftp1kr/Npv+ZOjCTTSQR1bavBnZ0av12v7mc+s8quDRp16el/Kz2uzY4HX0hnFZ9Z3QyMrNDoiO8RmRUEsCzdaFxtjjDka1sPGmFXnUIdCRHwBwC8BuDUizgD4I4wr2G4A+Grzn/WvlVI+WEp5NiL+CsC/Yxz29aFSyjVVNFPDlmgxQo0iYNE+jRjY2NgAMGm4jkajKYOC51y6dAlbW1vtjgc07mkQ6qqpGoZqwKhjQaMn1MlAg3g4HOL8+fMTuzMwYuLg4AD9fh8nT57EcDicSsugYcjUAjpE1OBiRAP7QQ1OXXVmNAINOzo88uowv+u1utUkP+qYYbtcjWdbaqjRIOdY5B0a2K+UkdczQkANV507vB+dPLUVaH2+g4ODdizplNBUAa2HofORY5sjIThWfB6teaCr5rXUGB0jtpMdQ5Q9G+r6fDllgOOg87QWnaDPovdVJxPvU3PScHzUSaLvjaLRALm2hfZ3dnRpH9ciIfSnpjypPDmCIY9vdr7lcVk089LFxhhj6lgPG2PMNNeyy8P7K4c/c5XzPwHgE0cVpPYffDUAND0g1znIkQKaI5+jGbg6yl0VeJ9er4fd3d2pNoHJWgtZPjW0coi3Gk0smkhnB50DuhLPtrgaz9VsGpRaOFKNVhqMmtbB/szh4Yy8YLt0hOTVX/1dx0KLSmrxRD67XqeGGe9LB5GOu95DHRcaJaKy5jmTw9V7vV7VmNT5lcP0GQGSo2Qoh45PNmrVwKZDJRvG6jjQPtHj2uas1ASNvsnRAuoU0L7JW3LWnCH6e57/RCNgNGUmO6S0v3Nfab0CfWZtW6/PY8sIF72fyp/fpTwPNIpDHW4692sOmmVgXrrYGGNMHethY4yZ5kbs8nDd0IhWxwFwJZxdDRtNWdCIBg2x13z1HI6tW0rqFou8Vu+nBoUaidloqxnOACYMOcqu+fbb29utE2AwGLTn8xkZlaAGpYay0yHC67a2tjAYDCacCbVdKzRtQWGbmmqiq79M5WB9BZUth5Vn1NBWg023m9RVdPYx61TwGm7FyH7UaAvKyf5VuWoyafQHDVHdwUHrCPB3OnRq9Qw4f9S4pYOCsvKemjoxywmVDf6cYqHnso/VQaTONtYYUeeRGvQ6fhyL3G/quKNMeUw11Yh9TPR95jua624wUiRH1XCuaG2LnOZBGZnKw7ml23DS2aRRH9oexy07B40xxhhjjDHTLIVDAUCbZqCrtZpLT0fDaDRCRGA4HAK4UsxOV7W5sr2xsdEavTTAd3d3cfHiRfT7/YkIBV3hBdAaPITGJ4sQMooAmDRUKDuNWjVmBoNBu4o/HA6xs7MzlZqws7PTypwN98Fg0MpGw3o4HGJ9fR2DwWAiZUIdJzS6aHxrrroWN9R0Ev1oFAXHgYal9pFGkeRtEXWVOUd/6HhrUUj2FetN7O3t4dKlSxgOhxP1HXT8CQ1KYLqYYF6d1i1KdbVdo0+0YGM2kjWKoRZ9QBnU+UDHRXYIaNi9RthkQ13b4nEdTxrv2VmRHQoaEVJbjc+RGHxXeb2+o+rs0PHTaCI6srTmhkYMaH0Jzjl1EHAb0hylQNmYwlTKuDAl55Om0bAPs7ONP9VxskwRCsYYY4wxxiwbS+FQyIZSbeVUV8t11ZG/68oyr6MRo8YxV5i56p1ztFUmNQK1nVoYd67Sr0aWXpfDyDU6Q2sSqIGfUxL0p6ZAZCOMTgR1fOQiibymNhbqRMhy6z35vLqaT+cPv+s9c8i7plMwSoCfU6dOYWNjo43cyNEgutKvBjYdQjqvdFvAbMhyfGfl6Ou5GilAuLtILX1BnV2cm+zX2g4TOvfYPh09Oq91dT7vjsG5x2fb29troxRyKoU6PjStQeXRsc79Qjj22u5oNJp4ft2u8+DgoN2WVB0c2t+5D/v9PkajUfUdpMOC9VC0v/Q8bYNt6jxUJ6YdCsYYY4wxxsxmqRwKuopdQ1eG87XqUNCVRTWMNJxf0xxyHjhXctUpoIao1jVQg1qjGtS4ZYFIblOpq9o8h5EIdCDUnCNZRj4X5ckGUW3Vnn2W0zZ4T/1dIwbYlhqw+pxqJKuzQo19LVSoz6XpKXQoaHTBiRMncOrUqYkoktp99PlZKJN/1/5QGXUeZccBa3HkuZbnYURMbTGq/amyqXGuRrBGTuj7kGXSdBF1mGikRzaGa+OhqKOGY6CRFLwWmIyiyMa2Oufo4KAjKMudHRe1qA7tX17PnVC0fb0nC3myP/le1uZcdvJohFNOeTLGGGOMMcZMsxQOBWByx4S8QkvUANGVdw3VZ0h/XnnUSAEA7W4LPD8byHk3Aq2DMBqN2hQNyqLGJw0fXYW9ePEiTp482aZH6JaSpYy3Q3z99ddbY6nf77er3mo48v76/DTwtQq/GkZq6GZjuBY1QegkyOkBuk2kOjjUkGVbuYaE5q8zkoLpK+qM4fn7+/vo9XptpAIdNHl+qLGq/apGp6YcsB9y1IvWp1hbW2uLX6phqY4Ydd7UHGFsM1+vfUZHDOecOhYoY049qBneaiRzTtdSFmoODp0/6+vjLUXX19fbsdatMGtRHDUDPW+Fmvul5mSYdR5lo8NA01ZyBISmK/R6vYn2a/2oc4TX5wgPY4wxxhhjzDSxDCtwEfG/AC4C+L8Fi3KrZbAMlsEyJN5WSnnLgtqeKxFxAcDzCxZj1eebZbAMlmGaVdLD/j+xZbAMlmFZZajq4qVwKABARHyjlPKzlsEyWAbLsIwyrALL0M+WwTJYBsuw6ixDX1sGy2AZLMO1Uo91N8YYY4wxxhhjjLkKdigYY4wxxhhjjDHmyCyTQ+GxRQsAy0AswxjLMMYyrA7L0M+WYYxlGGMZxliG1WIZ+toyjLEMYyzDGMtQYWlqKBhjjDHGGGOMMeb4sEwRCsYYY4wxxhhjjDkmLNyhEBH3RsTzEfFiRDwypzZvj4h/jIjnIuLZiPhwc/zjEfHfEfFU87m/YzlejohvN219ozl2S0R8NSJeaH7+SIftv12e9amIOB8RH+m6HyLisxFxLiKekWMznzsi/qCZH89HxK92KMOfRMR3IuJbEfHliPjh5vgdEbEj/fHpDmWY2fdz7IcvSfsvR8RTzfGu+mHW+zjXObHqWBdbFzfHrIuxerrYeng5sB62Hm6OWQ9j9fRwc9/jqYtLKQv7AFgH8BKAuwD0ATwN4B1zaPc0gHua728C8F0A7wDwcQC/P8fnfxnArenYHwN4pPn+CIBPznEs/gfA27ruBwDvBnAPgGcOe+5mXJ4GsAHgzma+rHckw68AONF8/6TIcIee13E/VPt+nv2Q/v6nAP6w436Y9T7OdU6s8se62Lr4sOe2Lm6P35S62Hp48R/rYevhw57berg9flPq4ea+x1IXLzpC4ecAvFhK+V4pZRfAFwE80HWjpZSzpZQnm+8XADwH4K1dt3uNPADgc833zwH49Tm1+x4AL5VS/rPrhkop/wzgB+nwrOd+AMAXSymjUsp/AHgR43lzw2UopXyllLLf/Po1ALddbztHleEqzK0fSEQEgN8G8IXrbecQGWa9j3OdEyuOdfE01sXWxTVuSl1sPbwUWA9PYz1sPVzjptTDjQzHUhcv2qHwVgD/Jb+fwZyVWETcAeCdAP6lOfR7TXjPZ7sMrWooAL4SEd+MiIebYz9eSjkLjCcVgB/rWAbyICZfknn2AzD7uRc1R34HwN/L73dGxL9FxD9FxLs6brvW94voh3cBeLWU8oIc67Qf0vu4bHPiZmbhfWpd3GJdPIl18Zx1sfXwwlh4n1oPt1gPT2I97P8TX5VFOxSicmxu205ExCkAfwPgI6WU8wD+DMBPAfgZAGcxDm3pkp8vpdwD4D4AH4qId3fcXpWI6AN4H4C/bg7Nux+uxtznSEQ8CmAfwOPNobMAfrKU8k4AHwXw+Yh4c0fNz+r7Rbwr78fkP6id9kPlfZx5auWYt6u5PqyLrYsPw7q4Eaty7k2ji62HF4r1sPXwYVgPN2JVzr1p9DBw/HTxoh0KZwDcLr/fBuCVeTQcET2MB+rxUsrfAkAp5dVSykEp5TKAP0fHISOllFean+cAfLlp79WION3IeBrAuS5laLgPwJOllFcbeebaDw2znnuucyQiHgLwXgAfKGWcnNSEEX2/+f5NjPOTfrqL9q/S9/PuhxMAfhPAl0S2zvqh9j5iSebEimBdDOvihqV476yLx8xTF1sPLxzrYVgPNyzFe2c9PMb/Jz6cRTsU/hXA3RFxZ+MRfBDAE1032uTBfAbAc6WUT8nx03LabwB4Jl97A2U4GRFv4neMi588g/HzP9Sc9hCAv+tKBmHC6zbPfhBmPfcTAB6MiI2IuBPA3QC+3oUAEXEvgI8BeF8p5ZIcf0tErDff72pk+F5HMszq+7n1Q8MvA/hOKeWMyNZJP8x6H7EEc2KFsC6GdXHDwt876+IJ5qKLrYeXAuthWA83LPy9sx6ewP8nPowy5yqQ+QPgfowrWL4E4NE5tfkLGIeDfAvAU83nfgB/CeDbzfEnAJzuUIa7MK7K+TSAZ/nsAH4UwD8AeKH5eUvHfTEA8H0APyTHOu0HjBX1WQB7GHvWfvdqzw3g0WZ+PA/gvg5leBHjPCTOiU835/5WM0ZPA3gSwK91KMPMvp9XPzTH/wLAB9O5XfXDrPdxrnNi1T/WxdbF1sWrq4uth5fjYz1sPWw9vLp6uLnvsdTF0QhijDHGGGOMMcYYc80sOuXBGGOMMcYYY4wxxxA7FIwxxhhjjDHGGHNk7FAwxhhjjDHGGGPMkbFDwRhjjDHGGGOMMUfGDgVjjDHGGGOMMcYcGTsUjDHGGGOMMcYYc2TsUDDGGGOMMcYYY8yRsUPBGGOMMcYYY4wxR+b/AUFWGwZ47kAvAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 0 473783\n", + " Min thresh = 1000\n", + " Sliding\n", + "\n", + "\n", + " Winner = Sliding\n", + "\n", + "\n", + "030s_iimage_677741729740_clean_ClassS_122-250.roi.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADYCAYAAABberBAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADaaElEQVR4nOz9eZyl61nWi1/Pqlpjra7u3jsjOwlJIExRZFImCSgIqECOHFGDAwgYFI7g0SOT+FPP74cnGERRT8B4lEHG4NETREU4kShICBAGJUQgkBBC9s7OHrq7qtZUw/v7o+r71PXe9Vbv7t3du6p339fnU5/dtda7nveZ3rXruu7rvp/SNI0SiUQikUgkEolEIpFIJG4GvbPuQCKRSCQSiUQikUgkEom7DykoJBKJRCKRSCQSiUQikbhppKCQSCQSiUQikUgkEolE4qaRgkIikUgkEolEIpFIJBKJm0YKColEIpFIJBKJRCKRSCRuGikoJBKJRCKRSCQSiUQikbhppKCQeMpRSnlrKeVTzrofiUQikThGKeWdpZRPu8Frm1LKBz7J+zzpzyYSiUQikThfSEEh8ZSjaZqXNk3zxrPux/VQSvmUUspBKWXbfr7grPuVSCQST2eUUr6jlLIK371rZ92vRCKROE+43cLsE7WXfxcnrof1s+5AInGO8Z6maZ531p1IJBKJewx/r2marz/rTiQSiUSihfy7ONGJdCgknnK4rbaU8rdLKT9YSvnuUspWKeW/l1I+qJTytaWUh0spv11K+XT77J8vpbzt6NrfLKV8aWj7q0opD5ZS3lNK+RJXXEspw1LKN5VS3lVKeW8p5dtKKeOndvSJRCJx/lFK+X2llDeVUq4cfaf+k1LKIFz2R46+hx8ppby6lNKzz3/R0Xf146WU/1hKef+neAiJRCJxrlFK+dBSyhuPvmffWkr5HHvvjaWUL7Hfv7CU8pNH//4vRy//0pFT4E8eOQjeXUr5uqPv5HeWUv70k23vTo478fRDCgqJ84DPlvQvJV2W9AuS/qMO9+YDkv53Sf/Urn1Y0mdJ2pT05yX9g1LKR0lSKeUzJf1VSZ8m6QMlfXK4zzdK+iBJH3H0/gOS/j/X6dezjoSHd5RS/kEpZeMWxphIJBJ3E/Yl/a+SniHp4yV9qqQvC9f8MUkfI+mjJL1c0hdJUinlf5L0dZI+V9IzJf2EpO+7iXt/WSnlsVLKW0op//MtjCGRSCTOJUopfUn/VtKPSnqWpL8s6XtKKR/8RJ9tmuZlR//8PU3TTJum+YGj35+jw+/sByR9gaTX3mJ7Efl3caITKSgkzgN+omma/9g0zZ6kH9ThH6CvappmV9L3S3phKeWSJDVN8++apvmN5hD/WYdfxJ901M6fkPTtTdO8tWmamaS/ww1KKUXSX5D0vzZN81jTNFuS/q6kP3VKn/6HDoWH50r6g5I+WtI3385BJxKJxHlF0zRvaZrmp5um2Wua5p06FHZPiLRH36fvkvQPJb3i6PUvlfR/NE3ztqPv9b8r6SNu0KXwjyS9RId/YP9NSd9RSvnEWx9RIpFInCt8nKSpDv/eXTVN858k/bCOv0efLP5m0zTLo7+R/50O/za+Hci/ixOnIgWFxHnAe+3fc0mPNE2zb79Lh1+6KqX84VLKTx9Fr65I+iM6VGMl6f0k/ba15f9+pqSJpLccWcuuSPqRo9dPoGmah5qm+ZWmaQ6apnmHpK+S9Mef7AATiUTibsJR6tkPl1IeKqVc06Eo8IxwmX/H/pYOv4Ml6f0lfYt91z4mqegwanZdNE3z803TPHokZPx7Sd+jQ6dDIpFIPJ3wfpJ+u2maA3vtt3QD35PXweNN0+yE9t7vtItvBvl3ceJ6SEEhcdeglDKU9H9L+iZJz26a5pKkf6/DP1Ql6UFJXizm+fbvR3QoTry0aZpLRz8Xm6aZ3uDtG7tPIpFIPN3xrTqMSL2kaZpNHaYwxO9A/459gaT3HP37tyV9qX3XXmqaZtw0zU89iX7kd28ikXg64j2Snu+1Z3T4Pfo7R//e0WEgDDznBtq8HNIQ/Hv5ybR3PeR3c6IiBYXE3YSBpKGk90naK6X8YUmfbu+/TtKfPypyM5HVRzhSgP+ZDmsuPEuSSikPlFI+o+tGR8VtXlAO8XxJr5L0+jsyqkQikTh/uCDpmqTtUsqHSPpLHdf89VLK5aPvyK+URN7tt0n62lLKSyWplHKxlPJ5N3LTUsofL6VMSym9o4K8f0bSD93qYBKJROKc4c06JPlfVUrpl1I+RYc1xb7/6P1flPS5pZTJUXHxLw6ff6+kF3e0+3dKKYNSyifpsObYD95ie5Ly7+LE9ZGCQuKuwVHdg6/QoXDwuKTPl/2h2TTNf9Bh/u2PS3q7pDcdvbU8+u9XH73+00cW3v9X0mnFaj7q6PM7kn5K0i8f3TuRSCTuBfxvOvyO3dKhGNtVpOv1kt6iwz9U/52kfy5JTdP8Gx0Wwf3+o+/aX5b0h2/wvl+pwwjdFUmvlvQXmqZ545McQyKRSJxLNE2zkvQ5OvxufETSayT9uaZp/sfRJf9A0kqHRP87dZj+5fjbkr7zKLWMOgkP6fDv4/ccXf8Xb7E9R/5dnDgVpWmas+5DInFHUEr5UB1+4Q2PCoMlEolEIpFIJBJPKxw5HL67aZrnPcGlicRtRzoUEk8rlFL+2JHV67IOI2T/NsWERCKRSCQSiUQikbj9SEEh8XTDl+qwxsJv6PAc9a6830QikUgkEolEIpFI3CLumKBQSvnMUsqvllLeXkr5mjt1n0TC0TTNZx6d3nBf0zR/rGmaB8+6T4nEWSG/hxOJROLskd/FiTuNpmnemOkOibPCHamhUEpZk/Rrkv6QpHdL+llJr2ia5ldu+80SiUQicQL5PZxIJBJnj/wuTiQST3fcKYfC75P09qZpfvOoiun3S3r5HbpXIpFIJE4iv4cTiUTi7JHfxYlE4mmN9TvU7gOSftt+f7ekjz3t4n6/36yvr6tpGpVStLa2prW1NfV6PfV6PZVShJOilKJe71AHaZpGBwcHOjg4UCml9d7+/n69ppQiSbXdUor29/fr52nb/809+aEvwK+N1/MefeK9eC8+x4+35a/xWeYC+O/+X+83c7K+vq5+v6/BYFA/t7e3p8ViUdsaDAYajUbq9Xpqmqa+7+Phvf39fe3t7Wlvb6/Ozfr6unq9ng4ODrS/v6/9/X3t7u7WsXKfOG8+r/v7+zo4OND6+nr98df9s4zxtP3C3vBr6CPv08fd3d3aZ98DcV383t4H32f+udhG7Hsck89T136L+8rbcvhzEfeFP2P0YW9vr65Tr9erz4mPNf7u943PzWlz1vVc+DzFz3o/aIN+8u+uZ6jrWm/X953PLf3z9dzb23ukaZpnnlik84+b+h6WpLXpRvOCFxY9vLygtbcvr3dpIpFIPGVYaEerZnnyf6Z3B27quzi/hxOJxHnFlh7v/Jv4TgkKXV/6LcZTSnmlpFdKUr/f1wte8AIdHBxoNBrpvvvu02g00mAwUL/f18bGhtbX1+sf+pDH3d1dLZdLLRYLra+vazqdajqdajgc6sqVK9rZ2dHu7m4VBCaTiSaTiTY3N7W/v6+trS3t7OxoZ2enJTBI0vr6eiWYEGfIqCQtFgvt7e1VYjIYDLRarTSbzbRYLLRYLDQYDDQYDLS+vl4JK1itVlqtVur1eur3+xoOh+r3+/Wa9fV1jUYjSdLe3p52d3fV7/e1trYm6ZBgIxJADkejkdbX1ytBXK1WGgwGdczPfvaz9bznPU+XLl3SeDzWbDbTb//2b2tvb0/9fl/Pfvaz9cEf/MGaTqc6ODjQQw89pF/+5V/Www8/rNlspl6vp+l0ql6vp9VqpStXruihhx7S+vq6NjY2dPnyZU2nUy0WC21vb+vatWt69NFHtb29XQWRyWSitbW1SnjX19c1HA7r2rImFy5c0KVLl/Sc5zxHw+FQ29vb2tnZ0WKxqER4b29Ps9lMo9FIGxsbGo/HGo1Gmkwmdd7oy3Q61ebmpi5fvqyLFy9qf39f8/lc165d04MPPqgHH3xQjz/+uK5du6bVaqX19fVKZhFJECvoq4sQe3uHB0mwDqPRqO5TFzukQwI7n881n8+1WCy0XC5b+3p9fV2TyUTj8biu97Vr17RYLCrRZb9Ih2R5uVzWPjA329vbrevpZylFg8FAly9fliQtl0ttbW3pypUrKqWo3+9rPB5X8clFGfrvgo0LMVzjzxLjXq1W9TliX65Wq3rd2tpafQZ4LqbTaV0LxkU7PBc838PhsD4zfDfMZjPt7e21xALuzfMym800n8+1Wq1OfA/0ej09+uijv3UjX3rnEE/4PSy1v4tH/Yt64CV/Qy++sqveb/zCne5fIpFI3BDe3LzhrLtwK7ipv4nzeziRSJxX/L/Nv+r8m/hOCQrvlvR8+/15kt7jFzRN81pJr5Wk8XjcEOmGVDVNU4kD5MlJBaTZSZSkSlBHo5FWq1WNkPd6vUpAINBEwCHI0nHEnD5Aklarlebzee0/RKaUItwV9GmxWFSiBPGHJDHG9fX1ek8IEe1AatwVUEppRfp9HtwdwBiAE9m9vT0tl0utVisNh0MNh0Ndvny5JWzQPxco9vf3KzHb39/XeDxutU278/m8iieQTY+Eg8FgIEl1TohE7+/v17mhv7u7uxoMBq1oNYIE43YBhX7Rhre1Wq1OEO+uyH58j7FEVwnr69FtxtXlSnAwNn5o1/ckY/VxMEeO6BzwPUJf3K2wv7+vxWJR14v9h1CCa6PLDRT/7XPl9/DruNbnMb7uTiB/llhT1tvv62vmriN37vga+bpFkZAfdzZ17Y+7DE/4PSy1v4s3y33N+PU/89T0LpFIJO4N3NTfxPk9nEgk7jbcKUHhZyW9pJTyIkm/I+lPSfr80y6GHCMa8Ef/wcGBdnd3NR6PNR6Pq0thtVrVqLfUbaP3aD6ASEBSB4OB9vf3tVwutbOzI+k4LcJJK21C/mgH8ud2a95bLpfVpg9xpq8QRydIuDH4DPd02/ve3l4ragwxllSJIf/2NAREGkmVSA4GA21sbNRovSQNh8M6hl6vp9FopPF4XMeO4+Py5cu1H/1+v0banZQiqLggAlFEuOgibUSaSclYLpdVbIjpIlxPhNwjzIghLnosFgvNZjNNp9O6vlHA8T0JGfd7RBGJtYDQSu1IvL/uex2yjMDFuiEisG7AXR0HBwd1rWgzIs4Vz5e7K3B3+F7jetwMvv99rnwvR/ElkvmufroAwX39etrgOUIApN0o8PBdEZ0kvOeCAmNDSPPxx7SLu1xQuKnv4UQikUjcEeR3cSKReFrjjggKTdPslVL+F0n/UdKapH/RNM1bT7veI/mR0Ozu7mpra0uTyaSVQiCpErGNjY1WfrxHdj36D2GDdPT7/Ur8uBb0+/1K+Dzy7JZrrNtO3unjfD5vESTuERGJvwsGWNqdoPGZUkpNrYBcTadTlVK0sbFR2yHNYzqdajKZqGmaSv4RDSBTkFS3yY/H40rwcTc4YR8MBnWcy+VS165d0/r6essR4MQd98ZwOKzuh2hhxwlxcHCgK1eu1DoP3AMXhefvuxtlPp9rOp3Wvvd6PS2XyyoIMb6DgwOtVistFgvt7OxUYYT0End9uBDAevL+YDBovU8fPIUBkYp15L44JmgXMcxrUzB23wdOhn3NAM8Jc4tbxN03W1tbLaEBcYF++Nj9/vwe63pEYQ2ng7fnDiD2sj/zsY3d3d26R9fW1rS7u1v3vPcVgWJ7e7umvPCdEEUFnkkXJOgLe7JrTu823Oz3cCKRSCRuP/K7OJFIPN1xpxwKaprm30v69zd6fSQRkBZAzYF+v1/JLETM888hDk5acCQQSSX3HcK+XC41GAwq+fGidBBFSVXwgKRxH4gT/YEQQyJxH7jdnvvw3/hzNIcty7tHsx1Ez4k4k/++tramjY0NbWxsaDqdVsLImBg35Lnf77dSKZij8XisyWSiK1euVEInqdYsICWEH4QH6gQw36wtdRAQBbg+ujMQP4AXkfSCjQcHB1W48PSW5XKp8Xhc3RzUTVgsFppMJpX4P/roo9ra2tL29rbm83krj549gkCCoDIcDtU0TSXjkFfmbmdnp64lc+zRfGpweOFKajcwxt3d3VYKEGP1eQCM2wUD/6xH76lV4IIP+4X7REGBe3SJGl4rIj7PgPn0lBoIfBQR/DVPfeD59poV7vTxufFny1OJ6AO/44Dx/rr74W7HzX4PJxKJROL2I7+LE4nE0xl3TFC4GbijANLGH/SQCyfra2trGg6HrRxsJ6MOiA/EnqgjUejBYKDhcFgj7V156E7GnDhB5KOg4E4CiOb6+nolb12igF9Pv70afazI731xkkWEXVItbMnpDTgQnGQyn6yDE6/ValUj5rQBuJ8XBzw4OKiuCRcWIM4IRBR49Pl1scWjyn7ShOf2O0F1dwBCD/1D2PF6BaR9IERcu3ZN29vb1THQddKDjyHWUnBnjc8NaxcLerrAAXllPIgIkk4Qb69V4MSZ+WAd/Jny+hvuRvB5YwyklsQUAdpjvfzZ8GKM7lbw+XORz/vnbgWvQ+LpCrTl8xSLQEZBwt0bsT1+579eh4Tru74HEolEIpFIJBKJxEmcG0EBqzG53ZAML7CHJZ6CgRANSBDkwAknJBerMwX+iF5TxLHf77eq9rstmsJw3l/Pq3fS684FFxO8qF5X0T4IXJdrwYkTY4XAOYl0lwBRdKLRVLanDVINlstlazwQTEktN8BoNKonPNB/7wtiDadcuDPBiX7TNNre3q5j5j5+6oWLJx5F5zMIBIgFnhePoOJOkX6/X8k6AgfkmdMQvNK/iwFOyD3P3+3+CGCMj/v6XnHiG9uL7hz2ide/QEDzPe+FPtkzfj/SHnxtfUxO4HFjuDsDtwDz7j/02QUWdyg4IXeC7qICwNnBmjBvMU3C+8H4qcfB9aS/0IY/S4zNC1W6SOPjcUEkkUgkEolEIpFIdOPcCApETmMEfn19XZcuXZJ0SFg83xx48UPItP8+m810cHBQjyzkdQgsxw5iu/dod7TZO1FyoiO1TwhARCAFgT5DAqM93KOu8R78150a9JtaBJBmFwogiaSJTKdTScfCDNc62d7Y2GhZwiVpMpno8uXLVaTY2dmpAgHke21tTePxuDoAcBz4WPgd8YUIOySeOY429OgI8DmD2Dux5R4U2/QUGRc72GuIWLzmRNZJpwsGiFK04ekX1GyItn2HF5p0x4CLWhz1KB2KLu5o8PSc+MOcsy+YU/Y7IoMXetzb29NkMqmOChc2mHPfwy5ueMoB440iXxdiAcYoHLCveN0FO09fckGBdplb9j597XJTuKjjgoW3mUgkEolEIpFIJE7i3AgK0nGE9uDgoObme6FCroEY8ePEhTb42dvb02w2a4kOkmpNAwjXaDRq5ZVzL4/WOjxC7YRKOiZ5EBKvg+CCCOOC2MX2GRMEhyJ7jA1nBz+LxaJGaLHwE9km2kwtBp9LUht4z+359LXf72tjY6MSruVyWQsdsoY4IYiMQ7qlY4IICXTSRhue7hHn3FM8PHrsEXXWwlMQPH2GnHkXRJgv9h3rRF/plxNR3qdNt/47yfaaCdyPe+AeYe1dIGEPM46uPchedieFF5L0ved1Bnw9Kbbpe8EFBnfCMFZfmyi2+HzwE90Q8fngc95GFHW6TndgbD7ftOOChzsquKYrjSimWcQTYhKJRCKRSCQSicRJnBtBwUkLVnZINOTLHQhOboCTN4/g0i4kzU8T2Nvba9UYgCjH6LGTGcihk7Fo/YbkRMs2fXE7tkd1aY/xODlyEoaTAhcCwgsuC4oPjkajVtTb++HRaCeCLgh4jv1kMqkF8rxuBHPihB4iG9c4Ek9JtRihz6cTVu4fI9EepXZAxOmbp6NQLNLv72vta+Jz7X2BbMYodxSVYvt+DQJAFEB83T39hH0NYvoD7h3SAHzOSXthnemfO1s8VSOmAkSHhq9pTA/gNfrMPPgz4s4Sdwf4HPg6x++GmI6AY4f16nIVMF7fp3EfRaHBx5pIJBKJRCKRSCRO4lwJCpANCPd4PFavd1wln8i826n98xAEIuCQiK6Cdk6gSjk8Mm80GrUK9nkedySETrCcVEnHdnbvk9vRYw2FaCnntUjs4liZh1JKdQbwGY4l9OKI5JbHSDECBG4C3BouPvA77XCKgtQmzMz7cDisfYiRdRDrVXRFohGVPAc/iipxvZkH5pT0C9I6/ChLXzOfE494I2K5uNG1Dk52IeouMjhxpmaAn04CfJ96X7z9eC372dcA0u5z4m4NhCOvBeLPXxRLYmqC70te58hLj/x7n33sCCm+nrTjzx6f873iwK3jTpKu9e31evXauB4xxaJLQEkkEolEIpFIJBJtnAtBQWofTbdcLtU0TSXERM2JxF+5cqVGm72SP5Z7iB7Og8lkop2dnRahioSBCD8/iApuhZfaRdpiWgK5+lLbCt+Ve859+QxpBE6uIblOMEnP8Oi3dEhgqZHA9deuXasR1+FwqEuXLp0YC2NdrVa6cuWK5vO5hsNhrf1AJB2LPP1woh5Pt8Aqz/x31VLwufSosKeucC1j9JQIFxNms1l9nyMzWQfapaYC6xlt7p4e4JH2aKdnzjg2EuGIYqHunOF62vK6IG71Z/xOliMhduGCcXnf6Qs1BXApsA7sgfl83nIiuOjle5l1QThw5wHk3Pvj+8mfEd/zXuDRnQpRvPBTPg4ODlp1UbzOBdfTPiJJrCXhwoS7N3xPMV6eO3cjJRKJRCKRSCQSiW6cC0HB87+Hw2HLmj6bzTSbzbS5uVn/+KfWQWxDUhUXRqNRJSdEYZ0oQE52d3c1n88ltaPnEC8vFkj0FeLn0VzSBxgHffU2ol3bi+NBjt3KHq3bFOrztiGRvIcwsbe3p62trUoox+NxLUZIfxFgSG1grieTSY3mU6jPSfRyudRisWhF9Vkzrz/BvPE7EXdPhYBcu/08ij4uQDC/Ltb4HJOGQX0AJ/TuiPBUlCgoRELr/XH4caC+tswtfWQc3q67GrwOgqdfsH8R0tyhw3zEugDAiTrj8lodjMvnP6Z2uHPInzPa9MKSiAyeytHr9ao4SNtRJHPBhj3uqUK+buwx+sH9+QyiIv3DucLeiDU43BUBXPi4XkHJRCKRSCQSiUQicU4EhVJKFRIktXL+/bQAz3F2K7gXV4MgDAaDVoFBJzUe1YSAOokn4uuRdyfCToqk42iy569Lx+KGnwLAeGO+Pu10WeQBxNT7Qj93d3c1Go3q8Y0esV4sFjWVA7IH+fKjCYkGe5+clPqJEvG4vigIQDKxtfuY/AQHxs17MSoP0S2l1H3RVawQMYb1Z87juseoeIz085rPv6cAdKWqxP3gKQGsl7scfP/5Hoj5+zG338ftfYjHNUZRxq/z41mZN18Dd8/ElJ+YusC+cUGI8fi8ed+8XW/P++3zzfp5SkbXfuPfnvoQ90Ucg+8NR0yJSCQSiUQikUgkEt04N4LCaDRq2ccpngap74rsOyl3Aj0ejyvpJWIJEXHyv7u7W90O3haEyO/tNvpoNZd0gpQAT1Xwqv5RGDlNPOhqz23zkKzValUJv5N6iNhyudRsNqsiQr/f12QyaUWbpUMxh2MbPTrd6/XqsZseNee9SOR4nZMjoqjQNWbpZIFEf02SxuOxhsNha548DcMJJGIBhNRFCD+O0O3xPh72I6KAE9lY38AJMa+7cNFVHyIKCtKxOOEE2IlyLCYY++Vr7mkU7h7wVJ0u4cF/dwcE44nj9Ih/dNZEsaZLmInrHwl9rO/g9/UfR6xZ4nvK14x2u4QR70MikUgkEolEIpE4iXMjKJCvT8TU/7h34uORdWzlXO/RVq7jh2s8TWA2m1UiOplMTuSn+7391AI/kaAr4g48XYI0DNwYvV6vFj+M0dpItiGkTuIg9BwVuVwua/0H3nfSeHBwWFMBscUj5dzDRQFy8f2ek8mkjgERAqJJGzEiTnFGJ3cuzCCsSMfEMUa1o12e+XBnCWvqp1AgPLkw1HVCg5NkT2MBjBXiulqtajteN8HvESP9TuSjOwMbP3sBMcP3kRN8d0REQYh7LJfLOkbfty7AuGPD934k6S4AuXCCKEI/4skq3MPFECfzES7WeHqDr28s0nk94Y219KNN43zFFJi4N7qKQCYSiUQikUgkEolDnAtBQVIl3MPhsFVor9fr1dx8j5YOBoOWXdltzeROQ2idEJJG4SkIpEd43j8F7DwCDEHyivExdxuytlqtWvnuuAEQBhBFpHYuN6TLI6YIBFzjtnAs7BBTPuOOCazf8VSGnZ2dKhoMh8Na1NFt9IgB/X6/rgGfZ26cSJO6wrwwRx6VdmLJfDopjAUpGQ/1LphD6jxQvJM1RESgj16MEfEqElzusVqt6vrEmgRRvIDcIjA5WUfw8fYdkRBTawCRhnV1R0X8fHQm+H89Hcg/4+97GoifvMBYmMOYjhBrKniKgzsW4okR7mShfoc/vy4QxX6ylj4WF0J4bblcVkEmHu9Kn7iX35c1ioJYnPdEIpFIJBKJRCJxjHMjKACiucPhsFVszQu48TMYDCSpFZ0mOktU0gvteXqAE/ZolXfS46Qu2sKdKOGCgOjSF2ooeFTbrfDSsXXdxwdpltrV5z2fPBJvL/DXlYLhLg5JWiwWLVLHaQDxehcUcDe4M8MFERcj4rq6wyCmCHiaAmvuewGRaLlc1tMmPI3BBYlIYONrMdXEo9Fur481AlwwYLyRyHv6BXvCyTt9iWsU0xucPEeBiL5EJ0tswx0nUbSK80LfGXe872npAO44cPIf0wninubzfpwl77lo4fubH/8OcDeHu1lcYPR96mvVtR9i+o4Lj4lEIpFIJBKJRKKNc/HXMkQNQOYRAyB1EHGvISCpWty9CCHH+EnHJzRAMPb29rRYLOq9cB748XTcAzILQXHQF7ehe+TcCZILAF1595A33otEDXLtfeQ6Fzs8Z5z3nZw6WVsulzWiy7VExrkWQYFrx+PxCdLrUV7mxcdH204gPR3DybXPaa/X03A4rIUmEX7os4/bwXpACqPAEP8dSTVEGCGKfsV0AcboY6WfXmPBia7PXUwr6CLNINYmcPILfF+4G4bfXShwQcH3RnQ2dM1x7Af39v3gdSu67kWbPJfMF/3wZy3WS4ipMt42c+1rxHcIffNnx8frtVlckEkkEolEIpFIJBLdODeCgh/tJkmj0UhN01TrOWRSOs5p9/oGbtNeLBba3t6uaRHr6+saDAZaLBYtsoiYIB2ToNVqVV8bjUa1bVwH9Dfa9t3mjahB/138gKi4G4LXXXCI0eC1tbUT0VzuD3GMpxrgLHBRhv5y6gPtllJaR3YiiOBSWFtb03K5PBFh9rlzosY8MW+sEzUV/LhHj36ztu4qoV8uKDAX0ZngtTPcXeARandyOKmnPfrk8wjJ9ft5FFw6PsbThQfu4eko7B3ma29vryWaSKrHXsZnxCP3kexGcSkKJT7P7DH6iQOEz1Hzwde1a43dJcM10QEQ++hz7sU9KY7qaTUx5SK27bVU4tq4qOPikotAiFwu/tBuIpFIJBKJRCKRuD7OxV/NkCW39EuHZIMigJ4z7fUHonOgaZoqKEDK3HEAeYJkQGggkB4Bd9LixHd9fV2TyUQ7Ozs1Grqzs1MJNCkV0dHghJ++7+7utkhmTLHgeq/RQJ+Yg0jiECUgW3zO89X39/d17do1rVar1nGTtNnr9Vo1INzKH1MWXOwhRYF7cmJEJHxx7WJKQow+MyaPZvs8IDDwmgs+vn4exec+MdffXSt+/KTvMf93nH8EG+p3SMeFFV1s4XovHtpFnOMc0I7XnjjNrcGY2fPc39M8PIXD6ym4gME93HGAKOFpA03TtGp1cH3TNJrP5610AlJXvG4DtTAQR1z48fHwLMYikl0OhrjmXXvRxZcogiQSiUQikUgkEolunAtBQTr+Q9+j7xB+SS2C7STHyYy7FCD70rGV24mCE24Ijede0yePcJJf7iSd9Aoi0JAzIp+xfYfXa6BPHhX2aDBF+5gL/uuF9HwO6b/3QTqZ944Q4CSd8dI+fVksFvXoya4Cej6vkH8/HcNrYjixjW14ND06EDzi7ojE1q93R4AT0Viss8vm7s4J8vW7ah94H+I6uejgKQj+OYQR30Nxf0fS7CQ7gnu5cBDnP9YOcAHLHQtdDgF3ZzBnOGViDYTo9vA2XKRgDmgnOi1KKa3Umq558D658MVcsoaMx11CtOHpF3GfJRKJRCKRSCQSiWM8aUGhlPJ8Sd8l6TmSDiS9tmmabyml3CfpByS9UNI7Jf2Jpmkef4K2KgH1Sv1O5Imcnkb4ACRhsVhUAhWtz0Sd/fhJT32AbHg9A78PooLb9r22geduE3mGmDtIveiyajshk9Q6ks/zxSFO7tiANHFvzyGPdQMgV5D/0WjUugfjw20wn89PkGgXKSDptEE1/xj9d4HHySqkkfnquk8UFWJNAF+rLtu9iwxei8BdAAgdLlQwDz7v9N/7FR0ccXwetff+sNfj2Fh37uU/vObv8W93f0DoIfiIYj4H3teu4y2jMyOuj9cscTGFZyI6A5y8+/z7GvhP1/3j7y4o+JhciOkSGvwaFxRcwDivuJ3fxYlEIpG4eeT3cCKRuJdxKw6FPUl/rWmany+lXJD0llLKj0n6QklvaJrmVaWUr5H0NZK++okaQ1CAzHCCg3RIpqmJQL6ziwoxKkp0FfKAy4EoKnn5g8FAo9FI/X6/Og3cHYCoAAn0qK3XA5jP560ijJ6a4C4BCKO3fWJSj2pAcAIDKR+cXuHjZ2we2XVrP6c2+H0i4XZXBn3lcxDSra2tlngC4aJopa8VY4XMTSaTOl9RLOInHk+IoBDFIu4ZT6JAfIjiiJNdHysCAPdwYk2b9AsS7pH2uG7uFPF97ISbPsYxdRFuJ/ROpN3C78ecMsZInGO6Asd+usOmy/p/Wv9cMJGOXQ+M110V7jLwZzGKAFFciiJC1x5gfkjLoS+k3rCutOnuCF9z+sZc4vRxEcFPRTnHuK3fxYlEIpG4aeT3cCKRuGfxpAWFpmkelPTg0b+3Silvk/SApJdL+pSjy75T0hv1BF+eRAi9SJ9HOHd3d1vF/QaDgYbDoaRjUoMYwPVXrlyp5G8ymWhjY6Pm9nvqgheFc/LjOe2eT8/nESKchPp59u5UKOW44CGkdH9/vxJxz0VHuIAY9Xq9KiI0TVPrM/AZxBfEBz89wV0LHkX3z/sJFowBwjkYDGr7fuSm129AVGAeJpNJHRdjof/9fr8SNCfRvuZ7e3uaz+etKPFisagneXjfpWMHhbsfWI/oWnAXRTxxo8sxwFozTie5Tvjd2RDdDE7GIbNc644HP5mA/YGo4/339JnoSHBxwD/HPEUBwMfnqQg+F+628X0C2I+ILl48k1oILog0TdNK7/CaGKwJBSHZsz5mhDsXJ6JbhH0ShQN+uA/X+vogUDH22Wx2+hfXOcHt/C5OJBKJxM0jv4cTicS9jNtSQ6GU8kJJHynpzZKeffTFqqZpHiylPOsG25DUJr+SWkQXssjxicDt1/x7uVy2To64cOFCq9ifk22vSUA7fnJEzJunTYhRjKY74eI6bP+evx1zyh3Y0sfjcRVDrl271iruF9McPH0DocD7NRgMWgULI4H24ni8hwNiMBjUtA5/n/cgcDgUWLMuIuxz1+/3tVwuT5yO4AQ8EkbEgrjuvO62eSeWvtdirYi4vtf7jO9XXy8XIhBhvJgn79M/9oOn9Pjc0id3XLhQ4qJbdDrwuejO8D2HgOXtxHGdNv+8x3rxPHqRR5wbXMu/fW28bzxrXOMOm65nBMTUhigO0e/43RLnkf4jSHTti/OO2/FdnEgkEoknj/weTiQS9xpuWVAopUwl/d+S/krTNNciIbnO514p6ZWSNB6PW4TLCY5bmSHIRND58YKDHomOFnrIsbfvpM8BMXSy5mMjehzPrnfy6AQSks344mkFUYTgM6PRSJPJRJPJpBZ/hKhxtCb3dSItHad+eHFKJ+rxhAXG4vZ1yDH9i3UPnCiyNr6Gvh787gURvXaAz7FHtRlvjPg7Afbr4/Gb/tPlQngi3AixZD6iC4R+e4qHr5ELVtGd43PINV2CA+04afb55lqu8ToNPh8uHMTf/TX/nfai8+Q090Bcf3caxH2H6MQ1rHsUieI6+r7g2YqCo8+Nz18UFK4nZJw33I7v4pEmd66DiUQi8TRHfg8nEol7EbckKJRS+jr84vyepmn+9dHL7y2lPPdIiX2upIe7Pts0zWslvVaSLl++3By11xIVEBGc9K+trdVj6SRVK710bL/f3d3VZDLRarWqpB2iCdlwW7bXRoCAeBqE2969HoJH32M+fsz1h0hBKmN1eT7H8YeQ89FopI2NDV24cEG7u7uaz+eVYG9sbLQs/nw+HkvJHBLxJfVjZ2enzg/HPdJnUgwQCEaj0QkS6MUjfSzXI5WMi3nliE7mhvs5+aZNt+v7nDn5HQ6HrVMtugh8l6gQX+ffvO6EOToFogjjAgt7AZfBaRH3SHi7xAEXryS1yHcUenw8cY9xHfD55lmILh3mPH7ex80edLeGCwLuPPHUBk/1iP1GWIiCVpcYxD39Wk8v8TQU34++5tQq8fW/G3C7vos3y313x4ATiUTinCG/hxOJxL2KWznloUj655Le1jTNN9tbPyTpCyS96ui/r3+itvwPfz9BYXd3t5JeSRoOh9Vh4NFZ6gVAPAaDgSaTSSV6kE3PkV4sFloul9V2TySez3i+P32EsPtRlu4WgJwwBlIMDg4Oj1zkNbf2Q2IYgwsLOBMuXLigy5cva319vc5Hv9/XpUuXtFwuaxHH+XzemkdJVTBhDBcuXKg1F5w4IzQg2NA/2hoMBhqPx5LaJz/EXH3uFVMQeA3BxPvIHDRN+/QBxAcvlsm8e0SZ6xCUYuG9CAhwfA1C2+v1aspMPL7RnRHugnALf9M0NQXAhY5Y+8HhUXxv3/cH/WTtcHbEOgCsA84c71sXuGcsKokDx/vCnPu8uluFdmjL60a4Y8df92KapNW4OOBCD/2Iz7SvUdf4YnsuBsWCmb42d0PKw+38Lk4kEonEzSO/hxOJxL2MW3EofKKkPyvpv5dSfvHota/T4Zfm60opXyzpXZI+74ka8j/4/Q98dxBE8iG1852lY3Kwvr6u8XhcCyH6EXhOumgjRrxpB6JEtJu2JVX3g7dJoUgi7V78DVcFAgTtuM3aI8O0i+BB0UVPlcA14JZwr1HgTgCIaCSDfi2pJ5w0QZ953Unp3t6eZrOZFovFCaLsrokuC77PL/flM17w0QkiYyXa7yTbSS8Oh67IuvczugCcuDpJ99ecXDJnLjJ0Re1jRL7L3YEQFmsg+J49ODgsSNglXnSlLXQ5EOI6nObWoF0Xivx3b4fnL9YRYe8iILmI5MTe94KLVL7+8b4+z+7q8JQe7klhSH58jmMKCmN0oeoucSjctu/iRCKRSDwp5PdwIpG4Z3Erpzz8pKTTksM+9cm02WVx393drU4CJ3lOdDxy7QTOo57xPlzv0VWpbQuHcMQ6CZJa9mm/1iPSTk7oAwSJkxBitD/azaMQ4i4GiBDEifoKLiqUUuo8eqV/77eLFnzW1yC6A+IRkvTV3SMx7aGL+LoIw1r4GPlx58Da2loViLg38+qRb4eTcF+TeARkdAlEkcCj2swX94+CQxQqPDUn1oCgDy58+TzR3+gaiakNvle8r9zD1xaRwqP7LlL4/LsIw7Ue6ff5jdF/b7NL1HFBoUskcQeM7yX+G10r/gwiUsRnKe4Nn7eufXDecSe+ixOJRCJx48jv4UQicS/jtpzycKuIBMaL0zkZd5JKioFfxzUQAk+DcLITSaWTICdItOFpCvGeLkrEGgtE0l00IMffUw6oku9Wd3cwNE1TayF4vxA6JNV5Yq68FgHtMD9elZ+x4qZw0shaEBnn89wHkQKngQsxiBg+9+4EcSv+cDg8sRaee+/R/fX19UqqSYXwGhbRQh8FH/q4u7vbGrOLIU5YI6HkHn5s6GknObBmvq6MycltrFUAifY9IB0f/ehHNUYxwfvp6+tii6+ln8QRBRcXARinpxDRT3cGeWSf+fc56CL1Lgp539n3wJ9/2vLaFr5vXcxx5wKIaxsFmEQikUgkEolEIvHEODeCAj/UTogR35gLDjHv9Xo1/cBFAncVeKFDiFpXHYQui3MsHudWdX6HOEonC0tyHf/FmeACB0RnuVxWkgjBXa1Wms/nLYLNfWjPawcwh4zTXQAIHh5VZ3yQVz/yj/FzL8ZOzQY/mtPTQmjDySDY3d1Vv9+vP+5i4P6kuPh6+bp4fj5zFtfPUzsguogRbnF3McCPzWQOvd6C94l5I63E94CvXVdajjsTXFzhWYipHNFJQ19PqxnA5z1Fgn46WfZ7uquHz8QiiayXnxpCOwgKXWKbo4vU+3gHg4Fms9kJUdHXxfvoRSRj+36f075PXPBijZkrH2sikUgkEolEIpE4iXMhKEhtUQH7PmQVshILvXn0NDoOaBPC5hZtj4hCqohsxxzug4PjAo2QsWiVR2yAuCJWQK7pC32FmDm6IqvcC0dArP3Aex61jcfuDYfDShipKwH5p48QY0QAyDHFGyFXrA2Cj5NFJ++kYLjdn2tcZHCxxteL8SBMQCR9P7izwElpPAbUia5fF2tPOFFHTGCveOQcwokTBdGGtfd9w39dWADsEdbGP+NpCjHNwvP+vd+eQsG/cXX4/ot71u/pBNvX1Z+d+F4X4fbrvcAhz5g/u/75mH7xRO6GeH8fq792PaeJf3dwP3fkpFshcSu48mc/Xpe+8LfPuhtPOzz2Pc/Xff/iTWfdjUQikUgkEjpnggL/9Wi4R4M9nUA6jibG6COEJaYpSMdRWSfVp/XFr3e7tReiA7F2AQUQsedD/N1lEW3p3mcXCCD6kCwn704a3QLv6QNcMxwOa3FDiKwLNbFmAmOhL1FMcIElWuQj6ZeO607gEohiA3Oxvr7eOmXBnSBdpNGPLXQRwt0iMZWE6D9r50TZ0wlwi/gaRSHB0y082o444WkizLWLHF3pNnF/uSsh1n3o2k8+vi5SHFNQnLD79VHg8vt1nbwRif/1nk1/PmnD++R98M9Hp4XD3RynteOCja+zPzteiyGRuBn0RiO9789+pCRp+w9t680f+sNn3KOnH373Z3++Hl37+NZr40cPNPnXbz6jHiUSiUQice/i3AgKklqEPUY2/aQDt49LqqICxNIjjx7FdSIB4ZfUsld74TvaIm1COo6KklPudRroE0csUmMAEuSig/dFOrbxx+i6dEzKEBa8QN/m5mYlyUS9oyWdPiIoIBJ4aghju14k1+9P/zy9gX65zZ77u3OC9XUruzsHfHyIGDhWXBxyFwDrz0/MmefeMVXAxRvfL8wpggjCAWKAuwdi5F5SdXYwR54i4ikfnlbgexQ3gr/uJ1h4v6PA4M+MC1BO3n2t45p7O36NC0DukmD+ed/TNNwx4usFvIhmdBjFOfW5dgeJCwJdhS29/1G04Vng2ih+pKCQuFGsbW5K/XXpOc/Um/72P1G/nEy/Sdwe/PeP/V7pY9uv/bUHP0pv+8/3Hb+wu6f9a9ee2o4lEolEInEP4twICvzxDpGUjskeVnmPPjsJ9agtkXGiw5AUiuh5uoPbsj0KTm0BiAuE2MmPk84Y4XTS6akKy+Wy5QyAYPI+dRDoHykHEDfINePyNp0cIXosFovabz9aEXEEEo1Y4HNPP7DO8+/RaNQ6lcLJIsUCI0H2n8Fg0BJiWGcnpC6ezOfzOk+Mm8/6TySw7AfuFSPs3Ht/f7+Sf0+b8fWlDoULC74WiFzRzcKcj0YjzWazure8fXehxDSNWLuDfvveZTzxWWAd/Bk4zangzxLwve8Ojyg++Zwtl0sNh8NWykKXWOdEPTpd/Lsg9tdFBH8Wo6gU58bvzz3dUeG1M/ide3SJGolEFzb/w7r+r/f/95KkfhmdcW/uPfy95/yc5r90fKLTn/mNl2v+ySkoJBKJRCJxp3FuBIVIOiAGRDUhR9jeY3SbUxNixNsj1U5ionUccuyCgkc/43GETr49wuuvQwBJOVitVtrZ2VG/39fFixdrsUj6NhgMWhFqL0QZRZVYQV9SS+DY29vTcrmsY8Hd4aR1PB7XPseUDebRRRKs/jHi7VFynxPm0CPxrIUTUxcLXFRyZ4ILDrTLD/Pm+fC+n+I46KcTVyfWLj54qgSiAi4K3zPuePC1Z059XzJm7w99577Rlu9jdFeLj8/H4zUW4h71e3SRbH9ufH29nkSX+4fXnIh7n2K9Ch93JP3uQnARz+un+LONcNHVry4nh8+DX4u45PdIJE7D7HM/Vi/662+TJH3tc39Y097kjHt072Kt9DQ1Iecb3v//0Te+6TMkSe981Ydo/PqfOauuJRKJRCLxtMa5ERQknSB/0YLvQoFHVCExXEMEPbbn10dS45FgJ4sxyk6UmmMevd98xu350nHEOdr3PVc+EkxPRYh9c5wWzfXotM8XQoQTcj+Rwcfr0WMit4gNXO91G2IU2Mk6r8V0Ff+s10LoEpdihJp57fV6reMDPf0iElS/l9c+8Ii795PPMHaEHl+zrsKELgh4igvji4U945r6v+NneT2KGPHzsR0XN6KgFl0Kvq+6fjy9IYpPXW1E+LrzexRFun6iyOGCgbfrcwdcMPHn1YWVeL90KCSuh51n9fRd7/9fjn5LMeE84aWDcV2bF//PH6gLL/4ElX3pOa/5GTWWUplIJBKJROLWcG4EBScWjmiP7iLVkHJIE9c6oeQ1iESMfEbSHiPYXtAPIhWL0iEWLJdLLZfLFtnxSOpyudRqtWo5EpzQRas1hH+xWNSxkoPvZNOjxG7/9jldLpetgoK4JzyK644OJ2u9Xk+j0agKEjgm6KOLAj7nXoyRdlwscXi6i/c9Rqf5YQ4YE2OM5Jh+sz4u9tB/7huj68CLMHLyh/fZ94Z/nnn2ky+8zoPfjz3TRbBd8HBXgM9XRNfn+SypPN4nJ+y+hp4i4PvB79N1zy6XgTtJIvz+8V4uzMQ26WcUJH2NfZ2jSBXbi89CIhGx9oz7tXshHSx3A37z0/6F9GnSI/s7+nP/4c/q4F2/o2a5POtuJRKJRCLxtMC5EBQODg60tbWl+Xyu7e3tEykHg8Gg2ruXy6W2trY0Go1O2MAhY4vFonU8oSQtFouW5d5PNogpCh7J5nQFT5Po9/tarVb1GkgM6RgQEa8R0O/3NRwOJR0S3tls1rKzIxZIJyvpez0BdwnEAnZc50c/uguCe0NiOTXD78X9SW+IpI/IfL/frykVXhCTtrwgpbtHoiPB61fshaiRuyJ8XSTV+hLk7DMW1h8C7ekerANz5bUl6LOLAF1kFiHHBSA/kcQt/14cdDQa1TnytJqYyx+dGi4C8Npp9RB83nyM8T0XFHwd3OkT3SXsD08tiu4OrzsQnxkn7y5++P7yNAYfn5+yEcd92jzEtKfoxvD7x3oMMQ0jkejCwetG+sUP/ieS0sVyt+AZaxt6/Rt/UC/7375cm9/302fdnUQikUgknhY4N4ICVfCd1EJORqPDvEgEAKL7klrHJnr0ld89ugp5QIyIBe+ws1NgLkZsnUD5yRNec4DxuK3e6wZ4fQBe6yr+5oUKpUMSOpvNKtmnzxD8UsqJwpXM3Wg0qsSbwolra2va2Nio0XOIthdEXF9f12QyqXOIuOIFDSGikloikLslPP+e8TvZ43rW0qPpfN6LUzKvzD9rhsiCeEQBx9FopPF4rKZptFqtWlb3eLwiYkGMuPv69Ho9TSaTOobFYtESQ7rcBC7QROu9Cz/ufomiWFf6hLsU/P5dEXdP50DAYC9zz+gKiK4T5tQLn7Jf42kYXO/39OeSuenqfxxjl5jQ1Za7Lrw9F3e8xgbCmx//6W2moJCI6E0mer//1NNXP/d1WisbZ92dxE2iX9b05/8/P6RXffxn6yVfkcdMJhKJRCJxqzhXgkLMl/eaBVI77xmS4jn8Hl323yGSvOepBt4WpIp7edTW86wjufSTBlxAgKC5SyCKDh7R9delQ6Lqgkmv12sRV8YCQV0eWThpj8j8cDisBQW9NoGTMISJeA93TYB4fCOEDRdGPCrQ19OdJJ7T72MspbQEH9p2QcLrKDgBxZFAH3Gi+ByPRqPqMHFHCf2K6Ri+11wcYazelosqTkadgMeIve9V4CkB3i7jdNGsy03gzhDu7yk6vrZdzhhfJ+4TU1Bi+kGsayGpCn+R5Pve8PbcjeJikzsH+DxrFOsfdPU17mGvKRKv7xpvIlGxtqZvfOBH9Iy1FBPuVrzy4nv0O5/8k/rXX/XJer9verN0cDL9KpFIJBKJxI3h3AgKq9XqBNmBMDu5lNpEHSLspLXL4uxRVoi8W8Kd9BPFdneA291pE3ACgB+HCHnsqlpPH6Q2WeR1HytuCuaCsTAerPx7e3tVgCAVgH7xQ90D+u/pEp5eQNTWRQ8nyrE2A3M3HA41Ho+1WCzqenYV+nNEizt9gXCSSoAI5CKEW+HdCcEc+F5wMh7rdbB3XDCI8+z38ntQKyMSbBc+XJCIIoJH3j2C72vE+H0Mvo98DrpSBWg7knoXWWgjOkNo9zSC7e0jJng9C/rqKS0uVPjzgVsmph1FQc7TS1y48bFEJ4jvL/89OhB8blNQSCSevvg7z3yr/tyXv1lf/i2fqmaZgkIikUgkEk8W50pQcEIHKY4pDZI0mUw0Ho+rvZkUBU89iOSu1+u1SIZH4Yk2u4MA8Bmi3u5s8KKE3BvRYTKZVMeAt+PpELH4HoDMLhaL1ukCXmyR+8/n8yoAEClHgGD+IHiQbL9H0zStqPDOzk4VAxBSEHXIn2fNIHq4B0iv8BMs4lo4cWfefNwuFAB3UfjaxTmjTxxTiSPDo/f0EyeGp7xAap3w+v6RdOKYSObOUwH82igqIQpFh4STeyffTnDpW5cww+e65g2RCJeOiwC0ycklkaQjKJ1GtJ3ou8OAuaAuhdfRYE2YWxcjYgqRF7J0V0OXwBHH7nD3kjuRYp2F6HJIJBKJRCKRSCQSp+NcCAoAQk7euxdjdFIGgXXS4ESZtngt1kHgxATPIYcMkU/trgas9p4q4IJCTBFwAcBPOIDwUUCQPHnIu0eaIZ3b29tqmqZFtHysFPjjPpB+TwHwnHfaiNb0LkCkGQ+iC++tVisNh8NWbYrRaKTFYlEFCBdhWF8IqIsLXjOCNWQ9mFcfVyS9vu4Q01jJH+AwiFFqd8SwvogqToh5z9NKYoTe1z06byI5px1PBXGRKQpqTtDpGzU/fP48JQTRw4t1ulDD9QhdcU93FYr0NYzjR8xinj1FwZ9Pxu37dDgcVtGOcfn6uzDXtb4+Phd4WDsXPni2aaMr1SORSDw98YL1sT79Le/Tv/vKP6D1N7zlrLuTSCQSicRdiXMlKHiUcjgcVpv3YrGokXkEBbeKO8mEEHVVt49RZl6PgoN0XHDQI+mQi3g6gR/R6OIH6RhO5NzWTVturffx0D7R5SiuRESiJekE8XNi5kTLI9N8Jtr7IXruenDC6sIMjohIyHytPELu6Sxcx7zHyLtHxBF4PGLO3Lp7xMfLdfHHj4SEfDoZZq5IZfCotxclRDQhuh6Py/TCgW7n9zoWuDuc6Hp0n8/GvR3TWHzcft+4H3gf1wD7ycfue8RTLbif11Dgvwh20T0QXRdeS8TXyZ0J7irwvXqaG8Hhz0HXnPg8+vynoJBIPH3RL2v6q/f9pv6fC592vv4YSiQSiUTiLsK5+X9oJEBEinu9XhUUvEaBCwZOUt367uJAFAtwBHh7HrGOEVAn6JJaBSQj2fEorN8PcuX3REyI5I229vf3tVqtWuS0yw4f7fJ7e3s1Sk/bXcQNdwRte+G+KCZw7OXu7m59nfoWTtLc1eBkjTYZG79732NRTm/XyTVtMIcOt/E7aY+OFqLTUTjhFA1fB79vFJtwZ0QnCPsFMYk2EEnYD15wsWvMXVFzd2t0wdeaeXMRxF/3dqKg4HBniM+br7k/Swgk3se4trFopgsj8cddEtdzKHjagiOmSUThgn6xp1JQSCQSiUQicTegd+GC9KIHbk9jv/ZOHSwWt6etxD2BcyModAE3QowwO+mUjo+O9DoFkeB6hJd899MIvJN8J2H82x0Kfk/a6IqaAtqBuLoIEvPXaW9vb0/z+bzmuTuJitFr0jk8wupRd/7NnHK6Rq/X0+7urpbLZR33eDzWZDLRhQsXNJ1ONR6PtbOz05pbxA6vTbG+fnjc5Pr6usbjce2zW9z9JAhfB1wo0nGqipM9L4rZNIf1H5bLZeuIRY86c03XOjjBRxTY2NiopDqmszhRXa1W1YnAmPgd9Pv9WkeDeWX9XQhxMo5w4Gkh9NOPktzf36+OEXcMAAg4rgMXOLpcDMBrQ/g+dAcQffKaHHGOuKevMf1k/BxlGgUBF8V8bF0EP/b/iYDA46lOXc4d1uG05ziRSCQSiUTivGDrMz5MP/mP/ultaevTP+8LVf7rL96WthL3Bm5ZUCilrEn6OUm/0zTNZ5VS7pP0A5JeKOmdkv5E0zSPP1E77gqIhd084utEFgI3Ho/VNI0Wi0UlPbwHMevKx5dOngABvE6DW/ul4wh1JDhOzLmnk1mP6seq/VjkY12GeE/631U8kCP69vb2NJvNWqSslKLJZKLhcFiFE3cGeL6/p2WMx+OWoBCFnfl8rtls1krbcCGI4oOIPKPRqM6HO0V8Hj1S7LUL+G+MrEOcQTz9gc9FMs08MuaYAhDhTgfW6uDgQJPJpJJrJ8g+nxRypO2u2hv+w57gvZhuwPy5aOZzdyNEOKYX+OvMI9eQehPb7RJrmFd3NEQRMN7LEWuORNdC3BuOKMhFd0tX/Qeuc6fR3ehMuF3fxYnEvYav/6Zv15d++p/XB33Zz5x1VxJ3OfJ7OPFUYf9TPkp/7tt+qP7+QP+/37a2v/I7v1+P7k1br73qu/+Env//+6nbdo/E0wu3w6HwlZLeJmnz6PevkfSGpmleVUr5mqPfv/p6DXj0P+acQ25xIUQhABLoqQi7u7v1c9Gd4O6F6xEvoquQFyLBRDijlR/Qj+s5FPhvFCQYeyyc1zVet8jHdA23a7uVH0cF8+F99LnxOacY43g81mg0qiIAggvXeqpJlwhAX8bjcZ1HovYxVYL94HUaPL3ktHl1N0NMrYhr5OvghJ1+uKjBa349Y2YNvK5HLDwY0w785IVYS8HXFribIYoK7gjAveHPA79Ht4GT/a6UARcbGNtp9Tu6XArAU25c0PPP8G/ad2eCv+/Pi4/bRYJYQ+S09Ae/t4uNnvJzo8LMOcItfxcnEvciPn2yq+Ez5mfdjcTTA/k9nLijeMerPl57Gwcav9+2/tzmI3fkHn90spDUTnn4z5/13/Tjz/7Y+vsLfuRAw3/3s3fk/om7D7ckKJRSnifpj0r6Bkl/9ejll0v6lKN/f6ekN+oGvjw9tcDTBrzyvpOHWJzOiyNSwBBLuEfUI1EP46n/dUcEkVpvP+Zcx/Z8HPzu1/F+jNxGJ0IUCrzwISc/QHqJ1kPKIP+kJThR89x9Is8+3xTFdFfFcDiskXaP8NOOCxL02ckqNnf6hXuEvnN/d3fgdPC5d9dB1/p5e12I9wRekNLn38fr7ojolvC0gq4oOff0opw4GXxf+J6NAk3sn4tdnurRBSfhPu4osPi8+gkQHsH3+YoiHfDUId+/Lq5EcF0UeKI45aJPlwvlRgQFXzfGFU8GuZl0irPE7fwuTiQSicTNI7+HE3cC5SNfqmZ49HdgKfq+P/kt+ujh4Cnvxz9/wU9KL/jJ+vuL+q/UBz364fX39Xe+V3sPvfcp71fifOBWHQr/UNJXSbpgrz27aZoHJalpmgdLKc/q+mAp5ZWSXikdH9cH/BhEotr7+/s1399TISDRq9VKi8VC8/lcy+VSa2trmkwmlcBBCmmXXHDu7+Si3+9rOp22iMX+/n4rjQDy6ykFHl2GwPvJFJ7KIanVF4eLKZ6WILVdGxzN52Qckr6/v6+dnZ1aV2G5XNbjHJkT+kTfWQMvwuiihZ9gAIl18SWmhuBK8KKStv4nIvsOd2LEWgp83gHpfCKreiSX0aHAmnAvnAisBfeNIkGXUyUW3LxetNvJttROJWBsXOOOBu9XVx2F6FTgWq/ZcL1+OammyKentriwFseP2ODFNllT9t317utCmadOxIKs0rETpcuJEREFE3dA4AbhtS7R45ziH+o2fBePNLnD3UwkEomnLf6h8ns4cZvxZa/7N/qcjZm98tSLCV14x+e8Vvqc499f+o+/TM/7P1JQuFfxpAWFUspnSXq4aZq3lFI+5WY/3zTNayW9VpImk0kzGo1qOoEX7INkcWJAF2E8ODjQarWqxNUJelekEZLdFc2EdEG8wXw+r4QTYiS1iWWM0Ho0FccEJC4eWxkdD4zd23Iy6zUmnFxSDLGUw5oJuA+cNHPPwWBQUxAgYl7bAVGG18L61c8gCHEfTuVw4QJXAoSUIyW73AKQeh8rr3MtfXDnRXzP9wptOCn3cRCBp6Al/XehK/ZTOnbWOGn21BV+vE+87z8IL/TLyT7z6oVCo0uFuYjPQHS7DIfD1v51IcXFIt6Le8+FACfiCH3uLIiFFbvmj/vwDNOer6XvOV5HlOCUkb29vTp/Xjgyfl8w/y5oIQx2iVp3g6BwO7+LN8t9d1/xiEQikThj5Pdw4nbheT891ec+4+fq75823pLUP7sO3SBe96V/X+/84staHAz0zz/p47T/3ofPukuJpxC34lD4REmfU0r5I5JGkjZLKd8t6b2llOceKbHPlfSEOwqC4LbjKCpEKzX54tJhBf3ZbFYJyWg0qsf4Se2CjxAsiBmkJB4DCMF0OBHDtUCbsZ/b29v1c73ecTHCrnxz/6FP3CuSOo8wuwDitRIoENg0h4UqpWOCCsFCUKBf/jqkMua2Iwr46RZN01TBwWsddJ2y4NF/+jQajU7k5rstHngfmDdfl/iaw4m5Xx9TE0577TT4/HiBRRc6XCCjHxB+3mfOnLyedjKFuwI8bcXn250BMV3Do/5cT19iEUyfC3824rrQJxcVEG58bWPRSxc7YhpLFABdDIvpFb628XnytfZ14zmj7111Hu6ilIfb9l2cSCQSiSeF/B6+S3HtFR+nhz5t77rXjN410Av+zp0pSPiOv/vx2n328Ull//A5/0gfOnCXyvkXEyTppYOxXjpYaL+Z6au/+QHtL16gydsHet7/kYUc7wU8aUGhaZqvlfS1knSkxv5vTdP8mVLKqyV9gaRXHf339U/UlpMbty7zR74T9Vh0sGmaaucnyjgejzUej6voEMmeR4UhbuT0d50sEPvaVQgyvk6km5QE7OKMIVqqY3+kNmF1cuMEKtYxiHUH3CXhDgiui0f/RWLG/Rlj13GZHuml0OJpRRRj0Tv6GUkq96ctSG+025+GLveDC1cuMt0qYhs4YPzUDh+3X+NjioKIE21+Z61Y8/js8F9+uM7dHVFM8DQGh0fz3WGAwyOmGbAXfF4R22L/fe26iih29cPfd1EhpjmcJiD5+y6cxaNf/bq7AbfzuziRSCQSN4/8Hr57sP7CF2jx4mfW3x99+UzveNl3Xfcz3/joS/SjP/GyO9Kfr//cHwzFFe/ulJe10tPb/8C3S5K++r0foZ9780dLkoZv/e10LTyNcTtOeYh4laTXlVK+WNK7JH3eE30AUSAelwhhgKxCHmLleGze0qFlfzqdajqdtqzt0nHU0aOvkFlOhpDalekhVPzXiyA6Yn2E1Wp1IiostUlXjBz7UXsgEnfIHSctEOWnACUWeNIf3GlB2gW1F9zd4HPjxSv5nUi6k+QYNWa+sd67e6ErCuxz4kJBnCu38ZOq4sTUo96IHrwXnR2kDjAOjpzsIrK+P2nbBRr6h2XeBRyfJ9qgb9Gi7/fwvQog5e5M8cKO7jKILhA/MURq1wTY39+vApDPn4Pnw+fY15B7I/y5k2S1Wp1IR/E95WP1590Rj2flWXGRyBGFgNNEQXcwuFPkbj42sgM3/V2cSNyL2G8O1DR31YkuibsH+T18nlCKfv1LH9CvfcG33tTHvvr+X9dXf/ev36FOPX3xjc/+Rem7f1GS9DF/6y/p/v/rfYdvPD3+xkoYboug0DTNG3VYuVZN0zwq6VNv8vNaLBaV2OAu6CrcFiOVEALpUEzY2NjQ5uZmy3otHUd0Pd8ceBqBuxOc+ELQuffu7m6rdoGLCdIxkVsul5UMkqPu9/QxSceW8tNqFvCzWCw0HA41mUw0nU5rbryTtVJKTWmguCVzS2QWuDjgzguKYZJSsVqtNJvNNJ/PW0UqXUjBMcIJEpBvj8b7mGMKAoIJpJT5dHLpDogYkZbaJwz4vLqzhXXoWnf6zTw5iY2iggse3M8JPqQaostJFTFyHsGcuaOG58LrccT1Yt7iqSJxjhaLRRVoYqHDSKiZh/j6aekjLiB5m6xddBB4P7vqOHCdr7WvJc8vrgwXHn0M3q4Xf/X0pdM+fzfgVr+LE4l7ER//N75cH/Bvf1Wnn5GTSNw48nv4/OL93jTVP3+/V0uannVX7jn8wNe/Wo9+3VAP7V3Ut/6ej9DBbPbEH0rcNbgTDoWbRhQFvAZClyU5Rkyx43M6AakOTlAhHBTZ4z0XA7os1I54PKO351bsg4MDjUajVr0G6j64hZz+Rzu/py1Ix9HqxWJRUzs84uzFFSGr9M9PUcC94PfFSUE/EVzcDk8fKIDndn6i/Yx9Pp9rtVrVz/Eea3xavQGux57vx2fS13i0n/+4UOPuBRdhcCfEkznYL55eEQUWKv/zO3PFvZiHaPd3MSHa/Nk3ns/PfWNBQyfSMZrv4oW7BXwemqZp1R3xGiUe1Y9CQBS9omOma1zsTxe2ulIlThMMeZ5xdHDPrn76nkJwcJEhOi88fcfnwsUDn4PTXCuJexMHn/SR+u2v3NWF3vmosp24PRhd2df+o4+ddTcSicQdwtozn6m3/+Pn6puf80/1vPUUE84CH9Cf6gMkLQdX9TXf9WLt7/fU//mpHvjGrLHwdMC5ERQgaP1+v1r4Ibcxz7wrfzrWD/DCd/HIuuFwKOnYUu+Ejv50kRG3mBMt5t4QTo9ES2odQcc4ESScIHlhPNocDoetaC0WdeBkdDgctsaLoOAReOaUeziB9qg975G6QH+YF69pQKoI7yF4OIEnCh5Jm6TahqdDRCHAHQl8zt/zufD1chLZRdT5TCwm6SkfcZ+eZvv34ovABQEXavyzvoa+Jk74mf+unP5IrGMaiq+nfybWo+iqbeACmc9fFBT8s34SRXxm6YfPgwuDkk7UkzjtBA/vu++VrjFEN4Q7XWKaj7ff5RRK3Nu49qKRfuUTvl13S5GsxPWxbHb1Fb/zMg0f333iixOJxF2JtQ98kd73sufo1172rZLGZ92dex7D0tevfMJ3S5I+/3l/QO/+H79PkjT9qXdo/33vO8uuJW4B50JQkI6t59jy/Tg8J1dRACDCTKSe1yGy2NEhJmtraxqNRjWSWcrhUXocexij0d4/z/+GiA4Gg1YNByc27kLwdiE8w+GwkxB5bQSP4q5WqzpWjmPEJYETQTqOPlNXAcFhPB7XuSPfPaZ+QLT29vaq28DTQbCD84O1HoKH4OFk3o9NdGKLQ8IdCtGSTm2NLsRoNp+HCLJOnjrhoozPmfePz4Hr2eadaHtahiO2hWjh4hjzyvpRf4B1iZFyF6Jc3HGBjWucGEdxxtv1cbJ3fSyeFuAiiYszLqz5fHUJFlH46CoOGZ0C7KfrOQd8Xfi+wBXE/EcBzfvE567nVkrcg+it6SD1pacV3r231G990oF6y184664kEok7gLK+rnf86efqbV/6mrPuSqID3/uiH5e+9cclSb//L3+ppj90VWoO1Jzyd3/i/OJcCAq9Xk/T6VSj0UiXL1/WxsZGJXteEJA/9CeTSSXHEAy3vS+XSy2XyxMEC/T7/VZ77liAZECWpONifJAYTyPY29vTYrHQtWvXKvGGvIxGo0rgIJqkJHC6gheOhGQyJ16okZQJjriEiEEcvb+Mtd/vazweazQa1f96hJ//ujvCCfJ8PtdisThxWoa7IBALuCfpDp7nHkUWxrq7u1vrMTDPnpbgpyBEAgi5ZT69hgX/ptYFc89egQC7+8H7WEqpY3YSzTg95SYSVY90e9FNTwFgDnnd14RxU3sjugCk4yKmnJAR58dFCsYTxQFEKV5jnqIrxtMJ3NWAoOb3dXHH+83eRGxwMS/+HlMuugo1sn5RVIh1Ffx1vzY6ImIqSboSEl34nX/1IfqRj8nc20QikbhbcN9/vqDvesGrJW2cdVcST4Dv/wd/X7NvLvr5xfP07R/6Yukgq9rcTTgXgsLa2lotLDgajWr03e3cEA4i5UTqIZOed+8EXjqO8EKUcCPwGr87qfT6Be4iABBOyH5XRDgSJf+3nyzAuK538kIkqX7kHRFtLwwYXQX82x0JPr/URACQWiL7vV6vCjdcy5wsl8sTOe+030XYXGTBgcCcxWMpacej9TE9IrosWAPpmBC7aOBuCH+tKxrdFQmPFn+cMJ4OEK+PqRLsBe7tKRM+Z9zL94ILCIwvkvmYItH1byf6ngrAXpSOT1lwIYF58blx8c1dHjHVIcLny2tXuIDnfWfPc50f/+iIqSVdAkNXekd0u3T1OXFv4uJknrm3TzM8e21dj/7f76/9g9tXK6Vpip77JY+eb+tub03v+J7fpenG4paaefbf7Ongl952mzqVSNw+rF2+rAe/49l69QPfoWetpZhwN4D/vz577T169ev/kJqmaP8/3a/n/MOssXA34FwICr1eryUkYNV3MuiCAqkNEFAnWtihnbR5jr9Hbvm3R2o9r57fXRDgNXcExIKL0XYvHRMnJ3Menfb7xmJ/TvYktcQEyOxisWj1kbZcUIjRcIgrggKfk9RyBzDH/X6/RvljdXzgJI6INGsVUwUQLSCfXRFq2vS2u3LeuyLTwGsSsKd8jTzVI1ruvQ+RRNMWokjM43cnRFc9A08v8d89qu997PpMrJvge1Y6KbDwGqIDcxHdIDFNASHHX2cPds3VExF6X5v4mXiNj8fbjX3tEjlOS7HocjjEeyUSiac3pr2RfvajXnfb2/3Iz/syjR/7gNve7u3CwZr0Hz/hm/Si/q0JZB/68i/T5Q/9uCe8rr99oNEP/8wt3SuRuFGsveTFeu8ffLZ+7mP+T62V0Vl3J3GTuNgb6y0fffi9/KmTz9HWQ8ffMZu/vqXmLW89q64lroNzISg4mfZih370onRcqHAymdTjEJ1we3QeCz9kLP5wTwSF5XLZIvvktHdFMSFjEPKDgwMNh8NWFN0t9x4Jd0t1jLbinhgMBicKBfrn/XVSEqglgXAAKfJTLCKhB+5OcEHB0xckaT6fa21trUbj/YfxOOmHiEZC6CIIbTppdsLqa0AbXujxNBIZSa07MSDRkFlSB1ys6KqvEMWEeNqF991Fla5ilMwV/fFjUgeDQUs0iGKMvxefowhP+fH32Se+nr5uRP99/fyUCObVa2r42OKaRIeNp0n4vHBNl4OgS8Dw4oldzoOuOfLvhHjtac6LRCKRuFH8wtffDfnat+62edtfvLFxvvbq++nf/PiL2i82TR4bl7gjePfnPEf/7a+9RtLJQtaJuwtv+LAfkr75+PcX/bu/oA/5K4eOk4PZTMq/0c4NzoWgIB1HzCXVFAby+Dkbvt/va2Njo9YDIH8+WrWJppLOMBqNNJlMKtlYrVatYoYuQPR6vVrfwCPPfpoCboTlclnfI/3C0yggRpBPLxx5cHCgxWJRCSV1JCgQKalF2KO9G6K6WCxqvyeTSSsdhFMdGLe7HqRjAkrNCdaBtYBo7u7uqtfr1Xnz91arVYswRhGGehXSIVHkM4xdaqdGeB+I/nuEn7oJtOm1DuJ+iqkIHpX3VAHu4X33MdGe98FrHVADgjVn/7rQ4IKEvx8dDS4sRHLsLgoENPYYIhOIBR27Iv/87kKO7zdqdrCnItGONSG8cKp0fDKIzz/3dEeRuzKi8BVrUviYXERwp0kUpHxPuwOIfrhw426luAcSiUQicfP44s1367Pf9mut1/YlfenLPl9773zX2XQqkUjcdXjrH/4/dfUzDlOxv+iz/0KmXJ0jnCtBIUYknTxB/r3OAmQcFwDvxyP0EBogGCBGkyEUw+GwFQmGrEH2JpOJFotFKxXCUx2c0Lgjgnt6HQC3ZXsBOk4jcDLurgx3b/hxm5BAfvcK99RE8P7GlAn+6ykRXpgQQu6FA91B4W6LmD9PP7g+1gLw9ff3/TXWnPXqqi3AtTEqzmuIIrzmwgZgrE6IEX4g3pHoRngtD+4br/X+Inh4Yc+uyH/cN+4+8FQLJ8Qu1iF++XMwGAxaNTgQ8byfEPcuoh3HhTjAnHWlZMRxearRac4A9pU/M7zu19BP5tP3Bt8F7vbhd5xBvkcTiUQi8eSxVnp6bkf9keF3zbXafb4kae+gp/GfuKb9xx9/qruXeBrh1//Pj9WXfNIbzrobiTuESW+gSe8w6Hr5NQ/pfYvnt96/8t3P033f/qaz6No9j3MhKEDaIHiSWlFYyBZkmagp13mkFsJLu5AIJ2lSO+IMoYCYQ4ScWMcCh/5Z2owR9igs+Hi7/u2vIQAwLxSOjGSTOSAyOxgMqsuB6L2TbS+ux7x7/rz3CfdFHCeCBoKHF+6jvzHKHAtMRgHB7+HXROLqkXlJLYLP/Xzt3Lof00tAF2l0wccj7N4vrqEP7JGuNY57IkbrIyGO/+163+Eila85okB0FMSTDKLwFcfgfX8ixFog/hx29dvJvD/XUYhwASL21RHnLY41uiAQZPzkiujiSdybWH//5+u9f+h5kqTf/8yfPePeJBJPL/zrD/yx+u/dZl8f8wV/Wf3to+/5A+n+f/kWNburs+pe4i7EJ3/0r+jrnvGrZ92NxFOA733Rj5947Xd99p/Wo2sff/LiRnrGd/+8miM3duL241wICpBnt/K7XV3SCUFBahNQ0JW77WSFa4m++zUUhYzkUzqOuHqdB4g9BNaj7ZAZ/h3dEP46ZD9a7FerlVarVb2fE1d3LniqBvUlEBMiCYagQZT5IY0gEjXvG5F8P5UAy7q7B7rSLJwYxrmNEXcn4D4fzDXr5Y4QJ9T0CTB/3q8nIoqcbuFr5uKCp3q4mOAR9JhmEOtEuEXfyTpuBtry8ca55He/Ls6luxr8HjGlIta7cOHK241zF/cu5Bwxg3WJBRhxFbm7B/LvNUp8fzAnPI/uIvL781+eD8Q42vYx+Br6PHpbiXsPvY0NPfLJz9PP/e/fetZdSSSe9uiXNf3SVx3XZLh6MNfnv/EVah6/KkkqV/M438T1sXb5sga9Wzu5JHF345c/7nukjjqxy2ZXf+ynPl966JGnvlO3Ac1qpYOdnbPuxnVxLgQFJ5Bd5Npt/B51BzgLYp437UFgPfpIYT7pmDRH6zMkB3LnpBFyQmrCcrls5cyTcuB99PE6kfTTIOgfYgKCiud/Q6zdVQFhpl4EtQvcRQCYB1wGTsDjiRr0CbGgK3qLIEEtAfqytrZWayW4zZ21doLMj6+F7wP6EIlrJNZRhKJWBoSYfnnb7jA5LfoP0WQunWhzHwf7Ls6l938wGJxIm4jODI/G02/ai+PkNfoZibPveUm1rgeINQxcDPJTRrqEDZ8j77fPUXzPT0rx+0DsPf3H52k4HFYXzu7urnZ2dlr7MrqJXJRArInChT/bq9XqhKsoce/hnd/xYr3l479F0uCsu5JI3HO42Bvre//L99Xf/+AfvnqGvUmcd6w943699udfr+euTZTFGBMRw9LX637sX2pfd2cRx0/6uS/Sc/+n810v4lwIClI7r9rJi1fbp4AeRN3JiqRWBN0JBkQUskmhRz5LxN3zrj1iT/+iE6KL0HreNRHpaPun75BEnBmMkTHQhlv2Y+E5J824EyBkkNpYwA8i6Cc5xDU4zfre5Qbx9IAY3fV5i44ET01hjmI03YUOFyJcVOn3+y2nRYzoR5EgujAQdbwvXePsytP3PtIu+89P88BVw3xxfXQsOIl3ss8ecOGC/ngaDqLCYrGon4v2ftqPwpDXb4juEn8eaSvu6Zj60ZXqg9gE6KcjpjSUUupe8bQk71vX3ovrFNv3Z9BfHw6HJ5wKiXsP6+v7NVczkUg89bjYG9d/ryVJTDwBLvXWtVZynyS6Me3dvUeIfuuHf4/+8X/9tNZr7966pI0//I5zc9LFuRIUYpQWokckE3LMqQMQX8iL2909kuyV/on+Hxwc1Cg+1y4WixrB9OKFblX3mgG8R4HIGIH3iPvu7m7LQeFuCCfwbu1nXtxJ4UKGR6ZxRHCyQyRakMmuWgaxrkAXieqy5Tuajg3dldLgIo2vPW26Q4H7xrbdGQG6nAO+N1wouZ6g4K6FOCfMYTzqsEtw8DGSTsOcd4lTXBdFC09DoI/etkfjPX0mOmy4Nq4N6+FiAP3zfe+/u7skigmSWvdmDL4enlrgx07SHvfxmgqAU1KiaBXn3+Gv+3eFw9u7mdSYRCKRSCQSZ4e1l36w3vVZ96tffuSsu5JI3BF84qinT3zRf2q99q69bX32V36VyhEdW583uv+fnV1BynMjKHhUMxJKJ3uef++RXsgqBGB3d7eS/Pl8Xk8kIIrN54h+LhaLWptgMBjUYxTjCRF83mspcEyjn6hAfz3H21MppHY0nNeJtOOYcFKHA8OJsh9nOR6Pq70/pg54igV97HJcOKn1CLZHvxmbwwmv99nvBen3OXDCGusm0CZEPqatINTQH3c5RMu77xMnvj4v3DPC58YFJ8YVXQO+Z30P0e84d13z6EKAE33mM4oAnlLRJTj5eIH3w9Nv3PngqQq+f2JKhYsccS/hzmD9PO2Eve6fdccF+4LrcSf4evl+A77vfYzREYRo4P09LbUqkUgkEonE+cJDn3SffvkrXyOpf9ZdSSSeMrxgfdqqO/NfFtI3/vBnnrhu773vkw7u/Ill50JQ6PV6rUKC/nq/36+EBvKxWq0qaQZO1g4ODmpaQymHOdE4F/g8BI+8e+ogeETVc+/39/erg6Fpmnrqwtra2olCkX4kIekULgZADr2YY7SHQ8ScKG5vb7eOg6S2xGg00ng81mg0ark8PILuEXafXyzeXQ4RL/zo1nzGwvzSJn11UcidHcyPOwhIafE0F0ixixgQ2F6vV0+/cPHA++yEPJJNX7MoqtA/roupAIyDfyMqlFI0HA7rPJCDDzEmJQUiG0m039dTBugHr/u60X50NTiioEBqiMPn2ck2r/m6s8ZxHzlcBONa/j0ajWotFPY/axfHyfPnjo6u/TgcDquow7zGveuCn3/HxP3iQkqc80QikUgkEolE4jziZSPpY3/u3554/eWf9YVqfuGtd/z+50ZQ2NjYqH/QL5fLlh3fUx8iIYYoeDrD3t6ednZ2ajSZ4oOIB267d9dCJCzujPCii5A/P9bSBY1I3t3CDTmCZMW0De7nhA4Svre3V8kY4x4MBhqPx7pw4YLG43EVWrgfhBNiBcmDBEdruosvMVJMeoiLLpJapNXJX1chP7fhs55eF4H7RofBcrms+fbuZOiK9vv8QCJdPPB7uq3d+9p1igY/iAqMMxY/lFTFqOhiQWCKQoYXFPQjP6M7gn56GgTr421C4CHxBwcHlWwzF+wlFz7cGRHrHTAf7MX4Hu/7Po7Cg5+2QT+j2yjWhEAs4FoXOgDOHoSKCBfgvK6IrzvXeH2G67lJEolEIpFIJBKJ84BhOenS+f3f+RY9sjuVJB00Rb/xx5+rvXe+67bf+5YEhVLKJUn/l6TfJamR9EWSflXSD0h6oaR3SvoTTdM8fr12ILtemDD+Ie92a6ldmR+S57UQnFRAgNzBALGDaEFIIGuDwaBVg8AjyhBVd0zQBn3tiiw78ezKFcdBEYWNaJP3qHK/369V7ylWCeln3BDO8XjcShmAgDHmWIjPo/zSodDjQgv39/56ygdijZNiJ4mDwaCSbIhqvC+kFxLPj4s33NdFkCjiMAfsh7guHgF3IuxCQXRjuJPC4QKEE1nmIebmu+jDnHK9rwVjYE3pkz8TTo5JhWG+fN7ieni9Aq+5EdMeXAzz5zDudU8r8XnxdAJJrXQif6Z9/8f57hIUoqjTVefChRkXYGL9Bh/b3eJSuF3fxYlEIpF4csjv4aceV//Mx2n2B7fPuhuJxLnF1z/jf7R+f8mX/SUNrjyv9doDP76j8qZfuqX73KpD4Vsk/UjTNH+8lDKQNJH0dZLe0DTNq0opXyPpayR99fUa4Q95j4JHItBF3GI+OATfiytC1jz334+mxH2AoMBrXs0eMYL7QVpJlVgsFvV4RulkDQH6EKP0MSJ6cHBQUyd8Thirkz9EGI7PGwwG1XFANBeihsAwmUwqqcSV4akZnn8fCS5iR8xZ96MIIYBO5qIbxAkz1fTjmsexetsIEZBsdwu4KOLW+5gGEqP7MRWAdq63V10E87Vm/Z2Qu/DCe06QmWuud0HB62ww3101A6JDwsUXj/Z7mk10A/gz5vuTPeLHf7pAA3yfR5ePt8d+Yk0QlbxvXjshthfHj7jHHMRTXrx/XQKBi1LuFvIaHXcBbst3ceIQ6y98gaaj5Vl3I5FI3F3I7+GnGM/4kt/ST3/QfzjrbiQSdw1+/c9864nXPujCX9JL3vvCG2vgN7pfftKCQillU9LLJH2hJDVNs5K0KqW8XNKnHF32nZLeqBsQFJyMQrik40gr0exInEAswhaj4R59xQUAYV+tVq0ie8DFhMViUUnUfD6vjoTZbKbt7W3N5/NW7njMb8cRwfuQexcT9vf3a30ESTVNY39/X/1+X9PpVBsbGy1HwsbGhi5cuKDpdNq6v4+jlNKqvUBfFotFdXM4qYeI8RnGPRgM6vpAzFerVRUvPAefFBJfMwQFxAREG8i515Pwz3C/Xq9Xx97v97VcLmu9Au8vbXa5ROifE9SuugC85nNDW11CkN+PvnrqhXSc708KB59zgu2CgkfTIdukb8R0A6LsfJ5/+7PFaSSMxdMy2DsuvLkjw+GigzspJLUEBE+fiM8GYxqPx/WZ9L7F55x++veAC1BddRA8vcPnwX9cbOGZ8tNfThOWzhNu53dxQirr6/qGH/9BfcRweNZdSSQSdwnyeziRSNyt+LUv+FbpC27s2rXndr9+Kw6FF0t6n6RvL6X8HklvkfSVkp7dNM2DktQ0zYOllGc9UUNEAon2+x/8XUXygL8GAYgV6bnOC/fN5/NWZNTz83u9Xi2GCCHzSOf+/r5ms1kle4vFoooLEFpIracW8EPbCAO0s1qt6ti5j9eQGA6Hunz5cv08AsOFCxe0sbGh0WhUyRE/w+GwZSXnfSLNCBw+r+vr6xqPx5X8j0aj6npAWHGiTk465NFt5bEAHusAaeN9Xzufd98bbj93oug1NjylwEkk5JJ7Se26Fh5Jj5b+9fX16kBhzKWUKg7w48Q7pqfQDz85AHIPmfe6Fy5IMVZPC+j3+5pMJq3UIN8rMZrvjgo/cQFRxOuQuFMjCngIcIxpPB7X8bgzxMeNmMV/4xzwWfrB/vKaKTF1hH74s467h3QQF75c2DotVYI5Y358XHcBbtt38b2Og0/6SH3aa35SHzq4O1JdEonEuUF+Dz+F6E0m+vD/OtNfvO8HJU3PujuJxD2PWxEU1iV9lKS/3DTNm0sp36JDK9cNoZTySkmvlKTJZFIJ9Xw+r8TDSVG04sd8ayL8ECIImHQctaUYHrUA3FoNKY4iBW3zXydPLhggUBDljKkSRJghLbHmgRM57xfCwHQ61cWLF+tcQMxHo1E9YQBSD1GESHuEHUBg3QEQiXJML9jd3T1xEsdpEWm3+McIf4xUO3HzHHY/xWE0GtW+UrMiugwgny6ixPSTmAYS0xUg8l67wY/x9Hn1vkfxJEbGvU6G9xuBwsUYdzVEAuxz5ikRLijEFBQXFEhzYQ38BASvQ0JfossjRvvdKXCao4HPe/qM14Hw/ej72//b5dzwNWbPIT4h4Pke6kqfQYjA9eKuEPbJXYDb9l080uTO9PAuwe6FdX31/b+uPH4skUjcJPJ7+KnE2pr++jP+q56xlmJCInEecCuCwrslvbtpmjcf/f6vdPjl+d5SynOPlNjnSnq468NN07xW0msl6b777mu8HkHTNDWK7YXhnGxB1N327CTDI4sUpoP4e42B0CdJx2JEtGDHSHosJEcUdTQatQo8dhFmKvn7PaU2GZWObfybm5u6ePFiK/o9mUw0Ho9btnPqKiA2uDvCq/xDrrxYJYIIIKosqUZ9IfaIKUSFGVtXcTwcEbTpaShRyGGNncghkPR6h/UWrl271qqP4MSYGhFdRwzSx5gO4u+xjswD6SGQWcQu5pR7IECwDxGvnMzGcfqPCzLRjeOih4sYnr7hY4rODeaIfvhpCS4ouBvH6zv4PPl4fF75N/Pre94dGjghuIenbrB2tOP7xOffyT5iDvfnv+w7LyQa+8t3QjzO0gWau8ShcNu+izfLfXfFgBOJROKcIb+HnyL0LlxQ8yEv1Jq6U6ATicRTjyctKDRN81Ap5bdLKR/cNM2vSvpUSb9y9PMFkl519N/X30BbVUxYLBYnagBI7ZMNICV+1J6fbY89HdIPGXV3ASSV15wAUqgRQu1F49xNQH8mk4kODg504cIFTSaT+hnGRk2BSFa8rgPvOVElr5s6CU7e19fXdenSJW1ubmo8HreOAByNRppMJtUWz0kU3AcCy/1Wq1WtkeDkjNcgbhw/yNzv7u5W2ztEk/lx+/v29nZrrUjPYOy0Hwkf46HeBC4Jz7cnwjwej2ub1J5wQu/3c7u8r6O7NChw6aka7BsXWXw/RTip9yMLpXZNAUiy99XdAe4i4TOlHNavkNQSvXxMLrgMBgONRqOWAMG8ugiEwBNdFy7geCoF/fP+M3ZENcaPkwaXRNezjfjkzhNPJcKFQHFKSfV5i3ubmiR8Hzh8XvxYT74L4skt5xm387s4kUgkEjeP/B5+6vDYH/tdevOrvlVKJ0cicW5wq6c8/GVJ31MOq9n+pqQ/L6kn6XWllC+W9C5Jn/dEjUC6nWxBaviD3msHICggOrhVGjFAUk0VuHTpktbW1rS9vV1Jgkc/PYdcOhmdpX/uSKCfvO+iQLwWYQBCyFidAK5WK21vb2s2m9XK8hcuXKg1EoiKI5CMx2NNp9OWSwEiPBwONR6Pa+oFp154UUU/MtOt8vHHI82ka0AWT1sDfqeAIAUam6app1LEqLqTXyeb4/G4VW+CIpiQc0gh+8MFF9YIYox4glDkkXSP3vMZdxz4OBE63JnhfWauJbXIMfuI+3U5NTwNwl0B7kbw1BQXGLg3/fW5cfeMO0B43Z0bXpST/e2uCubBx+t953o+68+tX+cpIO5icGHARRwXoiTVtJdYV4HaIe62iEKS71N3JyAmUKzUn/dzjtvyXXwv4+3/4OP0jz77O866G4lE4u5Ffg8nEol7ErckKDRN84uSPqbjrU+92bY8Okv0OxIQL9jnJJ/PI0Asl8uaEz0ejyvBgPBL7bPnPRp8NK6WFR3EwneQGxcUPPUC8ggh9Ned7FAYcjab1er/RGSJykL+19YOK90jNnhqSLTRQ5JxDMQxeb9dEIhjjoJCHFdsm/8i0niU3p0huCdo2630kHZqRyDEcB9SEiDvTjQhsT4u7uNjiYKCn5Dg9QH8daldnNDJs7/vhNXngj3nc+HkOs4f13sqD2vmQoDvMfZXLNLprhFPvYmpEH5/3y/RVeDOBH/ff4/rKh3XDPF7eSoFn3dnhRfyZC19fVlPF25wLLnY6GJhdDUwv1EsuxtwO7+L70W88xs+Xq/4Az+pPzpZnHVXEonEXYr8Hk4kEvcqbtWhcNsAQSf67RXw/X2KBDo5R2iQVAUFhASs8JCE6DKQ2qdFOEnqcinQFwiYixsxou2kxD8f0yeoH7FcLiv5x9UQc9uJ1F68eFGbm5s1ch9z72Pkl745IPukX0DKojji9Rx6vV5NB/G5c1IdX3Ny7LUQmANfYz6HC+PChQva3NzU3t6e5vN5teLTZwQFJ9NRmPA18Lx+nyvIvQsKADHE5w/hq8vBEMUd4NcginCtC1Dev0h26U/cY1FQ4PlxoYdxcD8vfuqiRhTNohOHMXBvnxfvvwsVnkbjtUh8jzKv/nnWxNNQ/F4+z8wDzwLPkh8D6c8+1/L56zkZEk9jlKJ/9opv1ctGZ92RRCKRSFwPay95sbafl/9fTiTOG86FoOCEBEHBC7Bh8aZ4mqcuSO2CcZCJwWCgjY0NTadT9Xq9eoLEfD5vFSqU1CrwCJnwtATSBpwkOWl1YsN4TquL4Nctl0vN53NtbW1pZ2enEqzhcKjJZFIt3i5GrK8fHjl53333aXNzs1q1JbXG5U6MSFap6dBVJyKKLRB0r0PhcPGB3z2n38mp17Pw/HoXjrieQpSbm5vVFeEOEbep0x59h4BCTplbr9UQ9wxpGJ4O4I4BRIxIuEnpcHKMi8SFFZ/X5qgeBekHkmoxUhcnYlTf97qnBTGPkmp6iY/L90hXuhDtMK+87gKLu2rcGcB4+PFipO4o4v60E8UVby8+J+5wWa1WdY/7/vG1JKXJ14dxcoKFr7/vB09J6XKfJBKJRCKROBtc/cfSWz/8NWfdjUQiEXAuBAWP8hO19ohitIc78ZdU6wCsrR0eL3jp0iVdvHixHsu4WCy0tbWl2WxWyZ8jEifg9mcvAgcxcSGBaKgTN8iJiwHUOqBfi8WiFhiEJFLAz+tBlFJ033336RnPeIYuXbpUSWIkR04WcTYwj8wt912tVjVdAKJJQUOfG+4RCS/wQpVe3BJCx7/dScLvseidk21s7qSEIAb5SRReByK6MlwAcdIbUzViIcoYnYa0+r7zPeuii9cL8DF5ygP1LRAp4pGhbsuPaQbxdyfEURiLoF131nSJJPxwJCnPwWw2a92bdeTzrH1Mb+lyWLDXmTN3UvDMxflnDH4k5O7ubk3bcEeFFwfF+eTPA21H0c5P9PBnN5FIJBKJRCKRSJzEuRAUJLXImudRuyugaRqtVqsqDHhePGRtbW1NGxsbtYL9/v5+LXbIaQZOyvwenm+NwOCED3Li5MfzsZ3EOdGC/HitA+lQUCDNgdMPuHev12vVFxgMBppMJppOp5pOp5UIOTmEzDnBJJUCsoeYEB0XpCEgYHgaBXPsookTUielPld8rmudmfcuC7sXy6TPs9msii9+CgJiju8DLyboIpWT1CgqAAhnzO2Pdn/GDymW1CLH14OfKuDpLDGFwfdn3HPMu5/SwBh9DDGC786A6F7xFAk/ptFrcPjaSW3hzAUDPh/3o7sF/L/uKPD9huji6UHuwkHIiP3pmj+cS7gWuJ594g6X6CpJJBKJRCKRSCQSJ3EuBIXoOIikHWILsZjP55VYAK/uH6vZk+4AqY4kUjp5dCAR5Rjp9MKFMeIttYmqdPL4PEgnpIbouosDEECPjq6trWk8HrdOdYh1HDx9QTp0CyAmQMZms1n9Qahw8cPJpUfu3QHg43Qy5qTdBQeup52YOuFtMg+Mi/VmzU8rlkc//J4QaxwgUcjwn0iwXUyAdLo7xucckhqPe4z9cxdAFFJOE1p8P8ZIf9y38TlCUPD6Al3tM6dcG4t8Irad5ppwuJjgaSQ4D7wQInvFRYdYy8DHxDODQBTfv56QE0Ujxh73PuP3/ZNIJBKJROIMUYoOPvH36PkX3nXWPUkkEh04N4KCpxB4hNDJIf8lT9xTCrDDr6+vV9JdSqlHwHF6AqQ1ki0nEpAaJxTYt+mvn0IRI93cIxJ0jkzkPY9GezoA4/SjBDmxgmKTRI8Zh59qAMF0J8dqtdLW1pYee+wx7ezsaLVaaTQaaWNjo6Y6QNacwMZIrRNAryPgY/HP+ho7+YsEmjY5nYO5QAxCMPKigl6AENHAhQtqXzAuF5O6Uhx8zeMe6dqz/tkYuQf0g/szdubZU1Ki08XnyUUmF7kcPkapfdqEk3XvZ1xjxsw6uFDjbgefBz7HniRdxesxuNDEfkVg8MKUOAcQGNwdsre3V9ezaZqWmOb1NXycvm8ZM3soHispqaYkuQMikUgkEonE2aE3HOqffe8/0QvWp2fdlUQi0YFzIyggEvCHvrsUIPAQDgjicrmsAgNWaqrB0w5kCLEA1wIOBkgG9+N0BXLGvcCdExW3tnsevdu7PcLtUXdOsYDQUMSPegG4CVarVS0uyDGRly5d0n333aeNjY2Wg4OIMO0jJDA/uBU4mtJrC3D9YnF4ZJpX1XchwKPz3HN3d/dEtJkxMe64zn4Eo6SWxZ5Ujr29Pe3s7NQ+IyjQPrZ35om1gmgyt4gNLpTQF+m4rgCvXY9EulsjuhiiuOCCgwtTpGi48BHrSPCeuwL8ej8hgf0H8XdxamNjo7oEeH58HPF+/DumtTCmKBL5vDCPCAm+3/0ar3HgdRZ8LbzYJs/xfD6vAhFjp22+OyjmiqPCazFEQcXX/7S6IF4bJJFIJBKJRCKRSJzEuREUPNLJa/yhv7u7q52dHUmq5BBSRfRdOs5Nl45JFuQDkglBicSIyCp2752dnVOJpkfUeT+OA1HEK/l35ctDdOi7Cwr0k/oJGxsb2tjYaBWSQwAhDQIRwYkqc8hpEuSmU3iOOaTPXkwPwYG+OJGNDg1JrYKJvN4V5fdI9Wmiy/7+fq2d4PfwOUIwiLZ15oCUD2pzcG9fS6L9ntbha+8Oga7UD/rkYL+4S4XXuf9pNRP8uXAngRPfLmcEaToUJ+VYypiO4n2LTgXvR3Se+BrEZ8OdBl500UUY9gzXMI8+Fp5fv58Lgy5cuRDhAo/Pq8+lOz7iOGmfZ9TnLJFIJBKJRCKRSHTjXAgK0snifW4Nx5HgRMjt7tGizuelY9Lr9uZoV5dUUwogKTFnPVr6/dg+j4JKahFuP6mgizRyvZ9ggbUbF8BkMtHm5qam02kVDiBaECuiwj5O7sk8kQLh94WcUwDSiT2RbcQGIr9+UoOTRgQUJ6Ix395z6hFE4o+klmtitVqdsMYjOLAvrhdhdrLppPO0mgUxJSKmIMS0AZ9P9gKOgShEeZtd0fHTHAB8zvdjhB91iLOFa92l4XUcPHIf54cUCtr0zzjZd5ePnwrC9XFt/MQMH5c/v8DFBnf0eG0LL0JJf7z9uI4+113uG/+uiZ9JJBKJRCLx1GHtmc/U1u9/sUblDWfdlUQicQrOhaDgedoAElRK0c7OzgliCqn0ExScsEnH0dBSSq0RMJ/PqwDh10GknfxDihAtIP5u23b7uUdNuYYq9RB52oWsOfHyPPGtrS1dvnxZm5ubetaznqXnPOc5unTpUitVw0WTGIlmHiDmnCbhufC4E7z+gIsJWMypYUBahqSWMMC8TCYT9fv96iiAkLG2vV5P4/G4lZuPA4Oc/bW1tSpi+LGaLqLwWS+2SD+4T3R6QLDZJ55ywhwyZ15Pg70YRSyfA9+30WFzmgOhi6j6NV3vnyZCAE8T4shUnyeIMvUORqNRdbGwFu4COQ3cw/cdcxh/ugi7n2Lin/X+8yzE58aFQwQuF9G6kKJA4noog4HWdCDp+qezJBKJROKpx7VPfrF+8h/9U0kbZ92VRCJxCs6FoODigaRWQUOs+pwP78XegEc1IRV+NJ+nAEBQnERDcv3EAy9A1zSHBQ43NjZqbYFSSqtOAVFhSLY7BhiLnwLAdbyGvf/RRx/Vzs6Odnd3NR6PdfnyZd1///26//77dfHixUrgmqbRaDTSdDqt80FfqJewv7+vnZ0dbW9va2trS7PZrM4TogaEnTlz9wDEHQfDwcGBxuNxyzovqUXWmT8vounCAekU7qBwschPpFgsFlXIQRxhPZw8+skZpDggSpC3j2ixvr7eSgtxQFRHo1HLYeD7ylNJ2B9dRRvdCeNte1FIz8/vckRExLWgD1780Gt3UGeEOWFNnJz72Li/iwl+4oPPGyJSTAeiT1E08JMZuKbX67WOKeWZYaySWidDrK2tabVatcQ+dzW4MOgOJxczaIfXmCNfA54xHDeJpy8Ofv9H6B9992v0Qf1c50QikUgkEokng3MhKDRNU23tHqWFDHhEWDqZT+557C4CuH0bog1BoYgjNQioSwDRI1Ido/AULGyappJ2ihx6SkSMNtMeokUcL3Ui5vN5bW8ymdRCjBcuXGidMiGpEjCP6HrUHmI+n881m81qrjvRdz/ZweFkOFrTY2FCovk4MnCN0KY7MSD2rAltec0GXydPNXDSHgm3p0nQhqcbONEcDAa1ZgLXQIohz7hK6AvvcW/EL3eX+Nr4iQ70vavmgqeF+L6NBN376C4TFyfi8+HwOgm+5xG8POXD3S3RieBChu8NF4eYQz+VwuueOHzs7lLxcY5Go7q/o4vJ60YwfvZhV3pDFCLoH98Jvs9pu0ssSjx90Kz39KGDyVl3I5FIJBKJROKuxbn4a7mLuLpdPhKJriiuXysd50e7MyESVcjwaDSqdn2PznsaAz9E2Z0wLZfLGumPhM/7C1n1qC/3293drW3gZtjY2NDm5mat1u9E0esuSMcuDxcU9vePT8CgcKGTd96LaRJu8WcuuafPK69xwoQX0IuFIWNKCECkcWdErIsQxY1o+Y9pBnHPxLoQcc/4nLEucf4QXrxvnm4RCWjX/MU+umgQxYEoCvje9rU4TTyI8xQLX3p6AYKIp93EVBJf95gC4ikt7C+fQ09Nis8x+4LngueLdhA+fF5dSPR5cwdQTH/yccQ9EL9PcOB07dfE0wv9x+f63Lf/IV09mJ91VxKJRCKRSCTuSpybv5Y9QgoJjfn8p+V3u0jglm+cDxB+6ggQ2ed0hIsXL2pzc7PWDHC3gRNe0h1Go1E9ptCt9US/pcM0gEiqIUruUPC6CTgeqEdw6dIlbW5uajKZVLIHaXXixrgjEScFgHaJBEP2OJLRo8SQRneBeHoGxDJGu732QTxRQDoWb+gX1/ixgZFk++e96F6sI4Agg3CyWq3qe4hALlhEgs/6uLskOj6kdqHOJ4LvIebbx+ik1Ql7dN146onPjxPkrnt7moO7Y1hnxDN3V7A2Pne+v5gTr52AUMX6bmxsnDipA6HLn2EX7dgDCArsVdwmPF9eyyQKBy7GdO0fnyv/rnH3h6dOxXSKxNMTB7/0Nu18ctEv/cZYL8ush0QikThXKP2B9gc39ndXIpE4O5wbQUFSq3gh5BuiT+70aSQKEuLEFTIzn89rMUYI1Xg81nQ61XQ61ebmpsbjcRUJKCo4nU6r7Xp7e/vEUXjugCAXezwet+ocQPT9eiexAGJH0cVLly61yJmT/ngaAmTLhRXu7QSREydwQ2xtbWm1WtU2PYfdI9Axiuy1A+ijzwH39euwojMWP+qSOhfRdcJaSMdpDV580qPekH8XB5xscm/u78US3aoPEfajSSG1fo3XCSCFgs8tFouafsF1vt5dwobb/BEbuuCk2UUI7oXw4CkGXpsEMQFxxoscLpfL1rx49N9dCe7EoC1EsMlkUtt2ISTW1KAdBDr/L9etr69XkcjrrJAaMRgMThRtfKI5c8cSbbtw0JVKlUgkEolE4qnHb37Xh+qnfv/fVxZkTCTON86FoACZhhj2eoenAVAEkfx/SBtRdoiAR3zdao0zAaHAI+2j0Ujj8ViTyUTj8biVdrBcLlvCwdraWislwgu9Se3cdUibkx3Po4dMeV0IXqfYI4TbI+VdJC9GtT0K76SvKz0C5wbEDTgRJPrsTg3ac1s64/HjPZlPIuOeakE7WMqdZHoKCE4DJ4sxJ5+1h8wzdt9b8d9RuHAXjBcHRQwgkk4bzKcLAy7s+BGcp7kaYmqCOyFiNN33dZwPf9+PO2R+eEY85ST2KzofECe8roO7FnAOeAoFp0bwLC0Wi5bbBMR+eaoD+8SdMQg0OF+8pgMOJO4T++uijQts1A6JzhPfs74HEolEIpFIPPUYjnb1jLUUExKJ845zISg43J7tkVTEBj/nHmLhZNSt0pBSiCkEhmjoeDyuUXIng4gWsZCbpBb5o6+QaidFnCYAvD4A0XQ+K6l+ljGMRqM6jq6aAZ7rH+Hz4MJLV60Bf48+xgh3zD33VAeOifSxeX+51l0VLogwp/FEBaLIHhGHRHrU2yPfHqn3KLOPz+fQI/fuGmFefW1jrQQnmu7mcMLscxqFjVgfwu383j+/X6zL4HvT9yf9cCHEXSIuKHibiCpxfugn9/U59EKlOGC8OKr3k7Xzz/ozE8UXF8xY35iGgXvB59T3k4shrLELXy5OeAoEc9r1fCUSiUQikUgkEolD3FJRxlLK/1pKeWsp5ZdLKd9XShmVUu4rpfxYKeXXj/57+Ubb4496t6h7HQQna36yAGS1K2qOjVtSLcA4Ho914cIFTafTVooCYoLnektqWfrpCy4GP5JwNBrVYy0j8ZJUBQ4irlK7YCCpGBsbG9U63pW6EAUCt6MfrUuLYHmuvEfaS2kf5cgaRMdAV8oA4oyTcXcNREdFjGT78Z9xfO5CYC38WEqIMAKQnz4Q0ysYN685Ue9KOSB6HdcGYNP3/UlqBnULutIZ4j1dELlemgqElz0f+x/dBl77gTZZb38+ulIZaK+reKXvM7+vFzXlJBL6SL9d8HChhs8hTLHfY9qBz5unM7HffL/6/kWkYT78OFV/llw8icJCl8viPOJ2fxcnEolE4uaQ38OJROJexZMWFEopD0j6Ckkf0zTN75K0JulPSfoaSW9omuYlkt5w9PuNtqm1tbVKqMmhjgRAUouYesSc15yU9Pt9Xbp0SdPptL7vZGd9fV2LxaIWdPSCdcCPX5zP55UYQcCGw6E2NjZqlBa7tqcMQLwPDg5aOePD4bBGaiFm0+m0Rbg9Ws/9qD8g6QRRos+IBhsbGydOl/DPkyLi0Vvmm3mAwDEeJ4F8PkbzPSqOtf3g4LD45c7Ojra2tmrNAcjwYrFo2dzjyRq+Ll2RcI8yc3/G6CSeuYJw4mZhLxBNh0R7DQl3USBouPW+S+zhdU8rQcTwvdL1XOBioC3mn/F5GlAUGqJoEJ0Hvq5OrOm/pwIxJxRgvHTpku6//37df//9unTp0onTUrgWIYBndzKZ1NNLXPzxNYonsvjz0uv1TpxQ4mOlz/TbT+rwve1uE3/O7ibcie/iRCKRSNw48ns4kUjcy7jVYyPXJY1LKeuSJpLeI+nlkr7z6P3vlPQ/PVEjkJhSyolj4rzwHiTMI9DSIelxsuf2dYr/QUacmDr5jlFfSZVcbm9v1+gm5CRGxGPb8QhJT9XgB0IOXGSgtoBHqj3CHElrjHIToY4OAyfUXVFZJ7Y+x9H6ja2cGhXz+bwSc8+Bj4UcPWIMkfY2IX0QxXispF8TI8guKDjJ5L6RpDqx9lQUP2bT61G41d7b8v1Gux5pJ4UHR4CTWs/3B94/BAKfE96L6Qv8m/0R23X4c+L7IToK3LnhNQf8lBRPHYp7KjoqvG4JTg+/l59O4Xs77iW/TxyjO4liCo67iihCGl0Odyluy3dxIpFIJJ408nv4dqG3pp0febH+8Yd//1n3JJFI3ACedA2Fpml+p5TyTZLeJWku6UebpvnRUsqzm6Z58OiaB0spz7qR9iAVfoa9k4WYQuAWaid9kGbPg/YK7tb/+u9YeM1JqFv5ieLG69yS7gX+iAi7bZ4+uGhCX4jEx6itOyGicOL2bLfge8qAiw0xdYK5IoLu4/GIdSTAp7kJuD9teLqBpJbtHALnVnciyac5IWJaQCSTHhn3KLvPTUwrcHt73Fce9fc2YmHOuCd4j9/ZE/F1v7/Pu6ckkPbjdTdciPI94ikSXeS4K63ExZvoYPAUCmqYxFok7pbh+fNnhvEjqpDuEososv6Mx599308+FvatP7NedNHHE0Uy6fiUlLtZTLjd38WJRCKRuDnk9/DtRekVveZDvlcfPsjzfBOJuwFPWlA4ygN7uaQXSboi6QdLKX/mJj7/SkmvlNSK1HsU2AmD2+idXHohPQgfr/mReLzuJJzPQb48Ust1EA1/D+GAEymapqlCAGOBnGL/pno970HMvB8QMwQDL2YYK+FHKzuEFBIHqXKbfBdxglDRx/F43CKnLkI4Geces9nshKDg6xSLay4WixN9Yix7e3s1rcQFBXcnQFBBJNa85q4WTzXxgpo+J74XYnte5JFr3R3hwgO/x9SF6AbwIoteq8LrgvAZIu5N05wg/VFwYl92pU64ECSpddKH19bw8SM8+HXUkaAGAmk+7G1383BqBnuBeiO+h6Xj1JC9vb1WegTPMf/l2FMXjTxtYblcamdnp44xioUuWHqajT+H/LdrDs8jbud38UiTO9HFRCKReFojv4cTicS9jFs55eHTJL2jaZr3SVIp5V9L+gRJ7y2lPPdIiX2upIe7Ptw0zWslvVaSNjY2GkjjYDBoWfaP2q6kTTokH/P5vFqaPfLoaREQGUmtGglH929Vz3cbO3n7Ts6bpql1G4iu+jF9kCxEgYODA43HY0nHFnGs+pAdJ+AQMxdBsJVPJhNNp1NtbGy0iidC3HyuIJ9+r1iwjjmVVOseIH64ywKBwskecw1RZB2c6Mc8/lhszwUayPru7q7m87m2t7e1WCwkqVroXRSABHufPd3A55V2vW8uKtDXLgHC01JcjIqOBCekXtDQyai7W4jQuzhDyk4skIkgNJvNtFqtNBqN6tq7gwILP2O7HhFmHNQYgJzTZz8Os6tYpjtsSM1h3yAY7ezsaHt7W/P5vK4j6QV+eoo7VJgb0iBc7GGN/L1Yl4OxbW9v133K3LjoyBwybq9f4UUmPUXnLsBt+y7eLPflsRaJRCJx88jv4UQicc/iVgSFd0n6uFLKRIf2rk+V9HOSdiR9gaRXHf339U/UEH/Me9Td88c9QiypVd0fAhXJIBFeSMnOzo6k4yrxXtjQi+tB/PwIxF6vVwk/0dUY7Y9HUUaxg4is1K6WH4vqOcl0ska/nZh7tN/b9ghxJIXRzu7pEn4/nwOveeD2+F6v1yLn7uyQrn/0oDsBuopuch398HQI1o8fH4d/zq303gfvHwQa0UhSJb8uUvnnu9r3a9yp4PPrzgJEM/a+iwleP8TdH9FpIqn12eVyeWLOGWN0ELiQ4O4YF+38eeRePj4XBmgTgYm9whwi/rhjoGteYq0N9hpj4L6Mm755/Q7EMHcbeB0RxufFKKOgFvfNOcdt+y6+11A+8qV68Wt/Qx81WEhKa20ikXjSyO/hRCJxz+JWaii8uZTyryT9vKQ9Sb+gQ3V1Kul1pZQv1uEX7OfdSHuev+6F4dzaDLw+gBMEor5d+eer1eqEpRyC4W0RHY4FEXEmQPgiCY41Dsg39zoCXYUSvS9OPomUenTX5v5Uq7aTaydljCPa+iGVXpvB00fc8u5Wc49ke1seIY9kMRb884h/jPz7vkC0cMLoxNtFkyhIxDQJJ//eH49kX0+giuONYoKLDe4OgQDzuZh6wp7g57TaHZ6qAbF2V4QLDu5gYL1ALLDoNQ28j7FYoe8hn9/T9onvaU+jcYdF3C+eVsNeY2+6AEDf+T5gvrxoKfvF62C4E4n7+veCP993g0Phdn8X30vYuzjUax74aaWYkEgkbgX5PXz7sP7CF+idr3ientl741l3JZFI3CBuxaGgpmn+lqS/FV5e6lCZvZl2aj0CiIKfNx+jv04GnFR6G4PBoBIC3ALYrZ3E81m3VBP9p33ac+IWazd4tX3PM4/igV/P/YCLA9Qz8Px0n69IjElDcJIEGYe4eR9oR1IVLziOzwkxKQaIMvQRpwBjcKKG+OEEFjJHP3xtXVSIbgLs6B6h93n0SDNjcfJNG96mR8ZjvQj6hLuEtepKY4ipFn4N4grugslk0vqsiyMuYDBXsaih999FCo/GuwC0u7vbKmTozxN99VQL1j7OeVfk3+/noomfrOCCAmPi86dF/5lv2vBaKLGYorfpIoq7m+iji0aSWuJD0zSto019/WLq1XnG7fouTiQSicSTQ34P3x7sfNiz9da//BodajGJROJuwC0JCrcTHvkmWuqk2XPM4xF6EEQINNFMCDFF/mh/fX1do9GokuD9/X1tbGxoMBhU2zYuAQiKEzIIdpdlHELLcXQQUj4rtW3o8fg+LNfuSsD6Ph6P61hpxyO+XuvAnQnuEojvDwaDepQfooKnOGxtbbWO8lsul3V84/G4Ru5JGfEoL3DCGY8phHg7gfZoMu87uXayiNBB6gBwkon4wWelk8X6nJBymoIXA42ncsSaCk6019bWaqoCZJx7IFbRpyjgMEavgwHppQ3W0l0srD9iAv1ALBiPx1osFq3njJoCfqSlz5mnuTRNU/cmgocXuGSPzmazzqKokHxSVICLD8zvcrms6TwIaqyFjyt+3p8JF+54BrrANf5dwJ7luyCRSCQSiUQikUh049wICh7BjCSLaKzUtmK7xZ2IMoTUCdFyuZSk6nyYTCatmgSRBBOZJSc9Rp4lVUIbSYuTdyf/MSf8woULlbzH1AV3aHgOe8wNh8Q6EYoRZI/Gx5x8iBmkEjEEEj+bzWqEljHGiC0EkXtBYGNNCMbvRNR/vCYGThOi1dzbRQA//YB1Yp553+fcHQ0+TxRdhJDz+Zju4PsvEtvd3d2Wg2Vvb6+efsE8u2CA04M2GQtzRhs+5iiARBFrsVicSDeIp4JwH/rvxQfjnkac8OeGfjHn8/m89Tx6cU4ENU+78D3h+8Hvz/y4A8ifO3++WO+uOg+suTt2EE26TkDxtnn2/bsjkUgkEolEIpFInMS5EBTcohyJm5NVj8JDFLyWgBNuUgCoZj8ajWoqgR8d5zUEIJmSWgUA3Qrtee5OYvy4R/pFNBky6ZHbLhcG6JoHj6T6vLl13/vn1/GaOwRwXfiP992JIfPOmN2Z4fnvRNGjBd9Jp4sGvpYIDe5goO/813PgXfRhPL5f3HEQ0wkcvqf4jJNs7tWV+89JIC460J47LljnWHPC7+9pP6cJH74fulIdYnoBbpwoOrkIxv3dEeJCj889c4RQN5/PTwhDrJfvzZiiEp00TvbjCRyx9gN99j3jwoWPq+s0D382fe/5/vK1i+uVSCQSiUQikUgkjnEuBAWpTYQ9qh1JmdvC/RQCSAGRYs6rJ2qLK4FIaySHTqoPDg60vb0tqU3ondw6AUQg8BoMLnJg98e67tZxJzeSTggE8TUXVpy0uSjDdfQ1EnHGgwjCyRWkifg1w+FQ0nFxRNbF89q9JgRj9PoGTvARFLwvXa8z7lhDwFNZWF8XDHxdHR7ZjsQyihhcTztdwoQX1ER0oU3Wnr3lzhk+62kQwEWBuO5+sght+D70+hbucmE/Mr/+vEUhgsKUcZ/4PobE42CBkNMvUolcBItiiz/X7tTgmWZvI7p1uRI8LSOO290gfiQk77uYwNz4fa4nQCUSiUQikUgkEoljnBtBwQm6V/V3W7LXTICkY8uPee5eTJDaBBBo3if9YDQatQoJEjX1CKhXgYfkQTY8CuxuBLe0k7/OcZWkOzihBv1+X9PptJU/7jUQGL+klsiwvr5ex+UChc9vPCkhOivcNu8W/BgFdpcHQo7XnHB3gvfRLf/MI8TQSTGRf8bAmCiW6fb9SDij+OIRcHdbOPGMzgsn7x5lB/47JNidF+4ooP+ICogiXkTUc/7Ze9yHPeqFQj0Fgf3l9QTYY4gZXguA9fS9gIMHRw/PTZxD2ufzXjOh3++3UkZwwcS++LGVLhrQDsVT2X8u4kQHCK+T1uGpFPzb+8P44nGrLiKwHn6ySiKRSCQSiUQikTiJc/EXs5MWCKVXeodASMcWfC9aB5wgE7XluEjIBkKDpEr6IU5E47v6hxDg5Nv7JEnz+bxFXGkboono4UXw3LrNe6PRSOPxWBcuXNBkMmnl50vHZI57QKg9f97nxMUEiLqTcMiikzQXWiD7sWbDarVq1RcAHmWn3whA5KW7k8LTDqTjFBO/xiPa0aER4a4JPwaQuaOPPlcuEHjtByLoHrGPe8Mj91yHoOBHhboIQzoNLhBqOTgJpv84WtifsSghYgb9Yx85gV8sFieKD9IHxLbVaqX5fF5/vPYE7foYZrOZtre3q4CCOODOAy/6yHx5W55mQ19cQPP0DBd5/L3oKvB96Gks3gdPgWBfxFQSBIxEIpFIJBKJRCLRjXMhKEiqbgEnoB5p9NzoKCY4QYGQ8D5RYO7BZ504L5fLVjpEV8TbK+ZTiBAS11WTwXPGY8qEk1D/8Yr8k8mkEk0ILqdPeJT9tNx3J79uS++K6Hvuul+DgMC9Yv+9TkTX624x9xoJPq/uPvD78tlI4Jlnd6u4gNBVvJA5iPuN+XNXgqcuOOFkfiW1BAZ/P47LybC7Y7ps+qQbuPsl9o8oPPOCWIZg5HsPkavrKFFPF/DTIzilAWcP/aZ/CFsHBwdV8ONECcbi98OZwLPpjpIoTgCcEvQpOiOiCEZ/EDGis8DX1B0IcT489Sl+LpFIJBKJxJ3H1T/9cXrss2dn3Y1EInGTOBeCQiRCMV/bxQbIkJ+MANmB8DhJlY4rv3shPyei6+vr2tzc7CSRTnKxbxO1Hw6HtW+QvUhsY8FI+kH+vwsctD+ZTGrNB0/h2NnZOUG2XWCIdm8nTE70GBuA5Hvqhbff5QKItRx4zdeF92O6hdROxeD1uCb0wR0PMVrt6SgeVXbSyJhcAGGP+VrxmvfTX/dx0baLLLxGSoNfE6P3pD/4j9/PUyD4N0SZ5wDXQdxnseaCk3536bB3+fz29rZms1lNPfG2ELfYb+zdg4OD6oYopbROVHHHkK83cxJPmPAx8vxHJwtz6g4UF0y8bgVpFHzWBQXf1y7kuFjkeyCRSCQSicSdxSN/ZKm3v+y7zrobiUTiJnEuBAVyrbH6O6kgCisdR5nJJcdKzechbVKb0EAcqLUgHUec19fXNZ1OW8UD/bQB6dj+Px6Pa+FFyMdgMNDGxoam02klbk56nbxia4ewXrlypdaAoKjheDzWeDw+cdzfbDbTwcGBRqNRK+rrJBeSyRGCkDIIpI8xuhoiQWddoiPEiasLCKyDt4+zIqaaMD/MM9Fy+oEwFKPaXmQwHjfYVUOBPeP1AqIFHrIvHR81iQDhRD/uD7fss0aIItHlEYtUenqCF1eMKR8xLcDFBeomsEeYS0Qo+sm8RjHL01Vwvzz66KP1GeF53NjYqPtNUqvexWKxqLURGANpP5PJpPUcu+iFiMP+8FQDUi9c/OK66HBg3yNEIhi4QMZ+8eKTzAX7Na6D78UuMS2RSCQSiUQikUgc4twICuPxuObsU2AOEjsajVrEdrVaaTKZVBIC+UFUkNo1AKR2BFk6zpn2InMQysVioZ2dnRrBHY1GtZ6BF8LjvtPpVJPJpBKn+ONCiNvUr169WqOwFy9erO14ETuPFiMguLvARYOtrS3t7OxU23qXLd/H7E4Pt35Lbfv6crmshewgyFzjZJD8fPrF2Cn06CIA/aGmAv3w0wlc/OF+nN4Ro/xRUGCcPj4XX1g/yKXvrf39/ZZwE08l8LlkvHzO55I+kfZB+6yNR+jdHePiDISX/dDlCmHM9Jd9Q8FEahl4jY3RaKTRaFRTHXZ2drRcLquwtbGxoY2NjbrnSXNAAKMtn8PFYnFiTXzOEIuc4O/v71fxjOecfYVI4IKSF7Zkrnx93VnhTiffL8CfKYDgg2iRgkIikUgkEolEInE6zoWgAInxyH48BhIyJR2nOJAe4T9EG4fDYSXFkCqi/07YPF0Bogohh9xQKJEUBz+lAIcCpzY4KYc4cT8IubsgpGNi4ySaz3HcJDb6SFg9Au+nWtAu4oenFTjoB213FTGMtSpoG2LnOe+e5sD4Y0V9n5tI1H0dPWof60VEgSjCiWSsJ+HHBHpUGsLv9Qt8DiJp5X3u5ekejNdt9X6iRPzxtA3cDHGtfF5jjQnGSPuz2UyLxeJEagHEnOcIMYeaCV4YdDqdajgcVpFtPp9XsQ9xwIUknB1eGyHWP/F6B56e4I4bd8i48Bf3l9eXiAKSCxO+x3xt+QzCBfeKJ3okEolEIpFIJBKJbpwLQcFt59EyTm0E6bgSPGJCPFZOOiZMfiqCdFg9fjweazqdtggh+eGIDxBLCDvV9alW78ULKeSIO8IJqosJwF/zUxqcmPl1LhhIx/Z9outeNwFBgei3E1m3vvs8uUOAtrGqswYukrhVnB8/HtFJNaTOT5bwY/+chDvZ859Yq8BrKrhVnfv7fz0q7W3TT6+x4HPI3Ma1oL9OXH2O3aHgzg1PdfCil74nuNYdCn6MKNdFIh1PSGCPLJdLbW9va39/vzobaBeyHmtRMCdej2Q0GrVOKkGk8GfTBZlYTyGKL3HNm6ap9/B6CPTRhQcXn3wPx2eOz7FW7jxCPDgtJclTk6JwlUgkEolEIpFIJE7iXAgKEEMvhuZk33PUJVW3gOeF0wbCgXQc1V5bW9OFCxd08eJFjcfj6jJAKMBdALkm1x/3webmZhUNOFqPooyxGKCTZsiMOxoimYnV7mNU2x0HfrykiwwcCzifz09Eyamp4IUGPQLrx3O6KAC55Hfmw50CkGBSJ/gvbbtV3UmlOyqw5XtuvEeRcVlEC73f39MQ3MHhkWpJ9Z57e3tVRJJU6wHgSmH/RIHEXQ9+T0QoXovpDNQ7AETiXWxCVIr5/sCt/r1er6YrQHo52YTCiteuXavuG4BzZzAY6ODgQPP5vM6Hk3qfe8SJa9euVXcCYgKOnZgK4mk47rxgr7BPSina2NioAoYTenfXsO+p3+A1Mvx5czHJBTbWLIoPXWIBe9BFpEQikUgkEolEItGNcyMoeIS4lFIdAcPhsBIQSI8XfGuapuZgU3tgMplIOraic4oD5MXdBYgCEEoIOMLExsaGLly4oI2NjRrJh2xT84BaDU5oT4sA02dIljspXIhASHBy7wLKarXSeDyuBNRFC4j7crlskUZJrXZ436PLXtHf1wcS6YST8XldgBg1jmODvDs5dLhzwCPHvp6eCsNr3h8nvohMOCUgkRBR+hJP/vAijH7yCO1TC8Cvpd+AdJVIZkl5kVT3oRcwdIeOk2efFxd6+NxyudTW1pa2trY0n8914cKFOlZ3l/BZ9gX1F/y6g4MDbW9v16MkSXdAhMNZ4I4F9gyC0cbGxok6Fdvb23XdJ5NJLXSKkOTHZzJPvmdYf9bV05r8On54z9Oi4rwxLy6o8F4UdhKJRCKRSCQSicQxzoWg4ERcOk5p4Adi5hF+j1pDkimgOBqNqnUdC/Z0OtV4PK6R3MFgUIUJyLBHt3l/Op1qOp1qMBjUNjc2NjQajXT//ffX95zUS8dWek9TcPt5rDTvdnDEFVwIHo2PBNxFCNqlje3tbc3n8ypOOAmLKQpSu5YDhJv7++sQrv39/do+JC0eN+nOiFg3wO3rMW0ljtf3B/uAueO/nqbhqQHuLPC5J6rtYg9zg0vF58rHyfhj/xFRPDWmaRoNh8NWLQAXX9zN4A4F1sBFCcYQj7bc29urYsL29rb29va0sbHRekZ8zb1Ao6d3eJ0Cxgwx7/V6VQAh5cb7RnuxpgnzMJ/PNZvNqoDBySkuOvjcIhBwlCV95plGbCLNYz6fV4HMRQUfo+8D4H11F42n+SQSiUQikUgkEomTOFeCAlhfX6/kH0C83BbuooPnfmPp9uKN0+m0VfSNIxqxdcccbcQJoqjcezAY1LYuXbpUrfN+VKOnE/hJCl4Mzms/RKIHeeIzEDmiuE4A/ceJ/mKx0NbWVq28DzmKhS/9PY+We0QesYYfJ12eTuGFDumHuwJ8jaPdPNZPcOEkWtr9en/di/LF4oaMVWoLCi5s0Cb99nn2oy197v0a2oi1Atyl4QUCvc4CcDLrnwG054Uy2Ws7Ozva2dnRYrFoPS+smQtWfgqIixa+bi4ouDPHj5v01AEXcTzNhftxkgQOGIqZxvohjJm6DYgE7tbxPeXCA+4UTxfy+eUZAzHNY21trSW24BxJPD2xvrXUV7zn9+rvPucnNO2Nzro7iUQikUgkEncdzs1fy/zR71FboqCSamFGyBSEzJ0J5KFDGBEXcBpAMsjdJg/d6xFARkl5IIKKpRvr/8bGhsbjcSWgOzs7ms/nlSTu7+/rypUr9XXadMLopAgSBzlCDEHEoL/MDfMAMcSNQRT4ypUrNbLLvDHHXoTQxzsYDKp44pF7r/xPfjlHQULgpGNrPS4JSKQ7G9zBIB2nf9BHj2rzfiS87BPIJL/7NT5WhB13KLijgTWQVFNknOyzJqyTHzXokW2Hi0ue6uAnKrjrwk9ccIGDGg0xZYYCg7QdBSScOqQTePqAnwbiRQu96CV7w1MNSIlBpPOCm/78+j5g/re2tvToo4/W55LaJKRJuMuBOiU7Ozu6evWqdnZ2WkUcXeja29vTbDaraR5d4iBzxpj4/vB9504Rd1qkoPD0RvOWt+pXf2/Rz//GSC9LPSGRSCTOFM2BtNvsq1/SHZhI3E04F38te664k3pe9yKERBCdBOMScAcA13JcpKSWCEEROK8GL6nldtjc3NSFCxfU7/fVNE2LTF24cEGllFpY8Nq1a7p69WqrgOLOzk4lL7ghnERCLL2mwWw2U6/X03A41HQ61cWLF3XhwgVtbm5W54UXCPSIfK/X02w2q7nvvOfOAggXJBKRhB+33DPPzMfGxkbreEpIdhQJEBM8794LVyJW8Hk//tNTGVxoYe28n14IkH3ktTUYZ1dhPe+334M9yDXM02q1OnGsJ33wNBKu9Vz/4XBYPwOp95NKIMY7Ozv1s3zGnSAxnWQ8HleB4sqVK7p27ZqWy6XW1tZ08eLF6qQhhYP18DQC5pVUAp4BPuP1N9grXrAQ5wLPI8LX2tpadUvgHFgsFrp48aIuXryoS5cuaTKZtISupmk0n8919epVXb16VY899pgeeeQRLZfLVjoOz83+/r5ms5kee+yxei9fOxceWOPoMkGQZN+6EOF1IRKJRCKRSNxZfPCX/4Ze9ke/XG/6+9921l1JJBI3gSc8bL2U8i9KKQ+XUn7ZXruvlPJjpZRfP/rvZXvva0spby+l/Gop5TNuuCNWCM2t7dGO7ykDXVXpveo/n+MUB49MQp4geDF3/cKFCzUiT7tUzYfYYOeGMFHUEYfAzs6Odnd3q6gBWfWTIjwtAMKMAEBRSLeGMyf019MhIPJEtJkDJ/rRuh/XgDmAjEOI/QhBxkidAeYeYsyJE16wD4cC4yda7GKSXxPrT7jzIKYORFeLR73jZz2CzjV+SoO7IJgH9odb+7mWfnO9O17YL4zJ14U9JR2nqLg4tLa21nI07O7u1jnF/QDhn8/n2traqgLQaDTS5uZmyyEwm81a6TQIQ/SJeaY/vM8c8zp7DIHAhRg/7pECjDgMEFGm02kVHXzOaPfKlSt65JFH9PDDD+vhhx+uRRzjiRue5oCYQHpGVxFS9pinz8T6G101Rc4Tnqrv4kQikUh0I7+H7yz2r13T8OrJv08TicT5xo38xfwdkj4zvPY1kt7QNM1LJL3h6HeVUj5M0p+S9NKjz7ymlCf2LXl022sQOInz6uuSKuny4oa87hF7SKoX1MNp4M4Ej3ivra1pOp1Wu7jfM544AKGjfYgf9nP6wv0gatQeiHnsEF4EhfF4XKPYklrExyOsODcgX05MfT49XQTEGgQuOJBO4sd3egqBzwnzyfiIJLvo47nt7jhwYu4OilhTIPbT54wf30sxTSI6HLydWOPBa1s4YvFBv18UE7rGxB5zMhsFBT7jIoDXM6C/Tu5xS3DyCPONCMH+YK86QfexIbLEwo/sXz9m0/cA/V6tVtW1g1vm4OBAo9GoJY511Ut4/PHH9eijj+qxxx7TlStX6ry4S4U1WywWtX0XqVwUQNDx/dDldvH6Jdwrzs05wHfoDn8XJxKJROK6+A7l93AikUi08IQpD03T/JdSygvDyy+X9ClH//5OSW+U9NVHr39/0zRLSe8opbxd0u+T9KYbuM+JSKfbqsntjjn/bkmG1BBZ91oDi8VCkmqdAC+KCLnjvxCfruMg+QwR3+3t7epEgEzv7OxoNpvV4o+0C2FBgPCUDh8DDorJZNJKzWAczIe7FigMCZmKjg0vTBgjtlI7Kg1BxlkBCfT8e8gr6+JFCCG4HB3oRR49qu338dM7ohPAUxq4BlLsa8h4nXwC31M+XubMBQmcFi7ekDLCZ/0kEiek9AkhiLVzpwUpLfQVco5A5M4CFwEYh7sJ2E/08cKFCzUdx9N5vH4C7bqAxh5y94e7E5g7RAR+ELsQVphTanns7u5WcWwymbSOfKXPe3t7ms/nevzxx/We97xHjz76aBUKvE4En+G/u7u7Nc3D00x8b3maUdwzLgT50ZNefPI84an6Lr4XcWV/ot1mK/N2E4nEdZHfw3ce5UC6ejDXxd74rLuSSNwz2G8OtN0sn/Tnn+xfzM9umuZBSWqa5sFSyrOOXn9A0k/bde8+eu0JUY6KHTZNo42NjUpUKT7n0URPV4CQTyaTSnCl4yP99vf3K+lwu7WfcIAoQXrEs571LN133321dgKWd4gKjgCIk9d8iCQ0CiREd3d3d1tHCTrJ8ci3R1s9Wk7+PaQUouiWdu7plm5P4XDixX/5HGICTo1yVH9hZ2dHkjQajdTv9+s9aYPfWTfa9NMFpGM7uRN1hAlSWrgmuiw8bSOe/OFz4Wkfvs/oR9d8IhB4Cozb5n2uWE93H7CPSUNh33QRVXcCMBZfM68h0TUPkPblcqn19XVtbGzo0qVLmk6nVbxBOKAdrzPA/nGHkIsIiFb0EyEC8c3FBPqFmEa/+v1+TcHgiFWebUSwa9eu6bHHHtO73/1uvec976m1RzyliXkhjYb+UPS0qwaKC15xXO5SQeDz4pPn0J1wGm77d/E9h6bRt/3e36u//k/fX7/6Sd911r1JJBJ3H/J7+DZi8KM/r1d85Ofo1T/7Q3rpIEWFROKpwFc99DF626ddvIEr/1nnq7c7BFc6Xms6XlMp5ZWSXimpRuK9yF6s1O5/4HvxPArYQSAgZTE3HAJE5JgoezkqvEbUmDQDSKpbqWM9AAgIIoPbwSGITiwheC4eQI6ISntk3WsQMCf0F9JEHvnVq1ertVxqp3501SoAsbo/nyUXn3XZ3d3Vzs5OrbTP/LBeIBaKJGrtLoZ4P/oR61hI7RoQ0VXA+8whBNHnOZJwrvW5QkjgWhd4mA/qVTj5pg/sNQgwRBZxJKaguGPFya07BHxeub/fO6YdUMRzNBrVvenzEPcWeyGKOcwpewwy7u4LTx3BFcAYvAjj/v5+PSLSC1fyzJRSdOXKFT388MN65JFH9NBDD2l7e7u+784H+oiAg6BAjQX6zXzRfizE6PD9gqBAOzw3XQU97xI8qe/ikSZ3sk/nFvtXruoFr1nTS97xl/Trf+5bz7o7iUTi6YH8Hn4yONjX/iOP6Iv+5l/Vh335L+vbX/ATZ92jROKux4/O+vobf/dLTn1//Ni+xo//zJNu/8kKCu8tpTz3SIl9rqSHj15/t6Tn23XPk/SergaapnmtpNdK0n333dfEInVuq/Z0B7c+u1sAUuj2aM+R5whJL5InHUfKqXNA/rkX0oO0SWoRHbf5dxGvWGjQCZn31YmSCydEXp0QE1XGVUGUdnt7u3U0IiQMuAUcxPoN3J97EIGGgBNlZw7d5UH/PLrO+OiXFyTken4Yt0eS+XysNeD1G1hnL+BI+kBXfQO3vkvH6Rbepyh2xPoe9Ic+0Z8uAsz+iwQ+1pCAnNMHPu97js96LQM+g1iGUEFtBcYdRRIflztYeM3t/p4yw3vuoOHfBwcHVUyA5EdXRtzPnOTw6KOPtgpL8lxzf/qAOIBggrjkThffiz7+rrGT5sBc+rh9zOcYt/W7eLPc1/nH7r2A3n/+BX3A7HfrD/3ez9a/+eAf1LSX50gmEokbQn4P3240jS79yzfppz/gE/S//NGV/skDbz7rHiXuAfyVBz9Gv/TYrZmIXvG8n9UrL3Y+5ncUj+zv6E/+6it00HTpmNJvPXi/XvIv7ly21ZMVFH5I0hdIetXRf19vr39vKeWbJb2fpJdIuiG5g2iopFpdHkIeSSsECJLlpy9IbeIH0SFKSvV8rzNATjynGUyn05Y1HmLvEX76RQ47Fm8/vcAj8Z4y4Q4BF04gn5Cgra2tExZuyFa/39dqtapigh85CFGlfeC1E/xeUltwoAhjPHKQeYqFBhkfY3RA9BFaIvHzNJEoJriYJB0fR0mdBz/G0ItikgLg6+T1JTwlxU8OcSEEuAjAfNInL27on+E6P3UAkYb95mIC8+B7hN/pA88H/aduB/t/NBrVVB4i9/P5vDWOCK8v4PU1fN9EsYgxxKKSrA+nl5AqwnNH/6kdQsrGe97zHj3yyCO6du2aFotFHSv7L+4fd4W4AyPWeuBe3r+uIpoUkHT3kY/rLkh7uO3fxfcymp/971r7jHX95P+4qN8zeFT9UvSMtY2z7lYikTjfyO/hO4QX/O2f0i/90sfqwW95g567Pj3r7iSeRnhwb/vEaz/z9z5GF37gpzuuvnH8vVe/XJ/9J199S208Gfyn+ftr/dPeder7L9Fv3dH7P6GgUEr5Ph0Wm3lGKeXdkv6WDr80X1dK+WJJ75L0eZLUNM1bSymvk/QrkvYkfXnTNDd1/gs5ze4EcOIK4YJg9/t9Xbhwgb5W0jAcDjWfz2tUH8K1vr5ec6aJeM5ms9rOxYsX1e/3tbe3p6tXr1aC5BF5Sa1ccD+Gj34iBBwcHLQKHdJHz2UvpdS6EXzmypUrlVhRM8JFkr29vZp7/vjjj+vatWu1CB7ReQQBt9AjOHjqAG1yugXXrlarevwlUX+EDMijE854JKXfB4GIPkASPS0DIQXRx8UVJ+ie9uH59KyDO1c8au6OivF4XAt7su9Ym5iW4o4WSbVOA84E3C8IWvTTU2ViTj5Chzse5vN5TZsYDof1/oyHdjk+cm9vr+7ryWSivb29eozi1tZWa12jfd9rRTDHq9WqCiz9fr8ldrFO7qyhHoYX1aSmCIUYaWexWLT6sr+/r6tXr+qhhx6qNU7YX54e4TUxlstlFUaYX/Y6r5N64qKaw1N/2GN83tfC06XOC57q7+J7Fc3enr7lwz9aKkVXXv679aZvyvPQE4nEIfJ7+KnH5PU/py/+iZfr237+9XpBigqJ24CrB3N9ySf8SR08fqX1+oX5z95y2x/4dW/RF/3tMzghtmkkzZ76+x7hRk55eMUpb33qKdd/g6RvuJlOxD/y3YodI4W4DMjzpnAi7RAVdSLPUXpU7/fChaQaQArX1ta0Wq107do1bW1t1bxqSa0CidIxKfSK+B5VJmJOfz0iChmFPDIW6Tj66o4E2udYyv39/Vr8jh/vaxd5h0z7iRHMm9cO8DQM2iWi7znnkEDEhNlsVqPiTvC4L0TS+ySpFX33efT6CF68MFrbPVWkaZrWsYRE7F3A4X3cEm719xoOrBmve+qAi0suOnhRTo96s7fpb0xrQChxhwbr76dFuJhAqg8iAE4Sxsqz4iTZC3KyP3kOmua4kGZMMfJ0DtZ7b2+vPmsu+ngqD+vsp2EsFgttbW3pd37nd/T444+3ngV38LDXGa8LMzyL/l3h/XX4a+4O4nf//vA9xfycFzwV38WJQxzMDv+nfN+Pv1Of8Ff/oiTpI/7aL+o1D9xa5CKRSNzdyO/hM8DBvvYffUyv+Gt/Tc3aUbrisOjHvuGbb/gkiP+2WuhLv/avqJyDZJIv/Fs/dCaW+HsRL/6xL9Jz/sPg5BuNtPnQz6m5A0GjZnelZnf1xBc+zXBuzkVz8hYJo9Q+ThHiDTmCqEDAiKLzGY/yQ1IgP05qsc9DeHZ2dmrEnHvQx9PSFqKVnTEQAYbcIjREwgZZ6iJ+kGDpkOCS6oDjwsUOdw64bdxJntc02N/fbxXh8/QCj84jKODGcPu/57MDFwi8kCWvQ+h9DiORZ53oL+vs6SRxn9AuefaILcyr1wHwvH7mjPdirQivl8F1Pk7e6yriGOfDX2cuGQf7kf3Nvo0uDK9PEOfJx+OpKZB3T/9gz3mqA59hPPE0De7DWL39KCAxh6TpUDthNpu10kz8Hl4nIqZexH2O0OR7Ic6Bw1N8YoqLj/kuSHlI3EHsPfiQLnz/Q5KkH/+QT9BHfdT7a7C+r5/4PT+QR0wmEonEU4Wm0fQHj+so9EYjfeLLv0SD9RsjhFevTvSB33c+BOFXfcJn69teeOXE6/dvzPRjH/pvn/oO3cV49WMfoO/7zY859f3n/nBf0x/sXvdzoC09rXBuBAXOowfuWnA3Ak4CP6rQUyK4nraGw6E2NjbqkZRYxj3K6TnqkH1OTSBlQlItzsg9xuNjZdQj1k5QvKL/zs5OFQCcOEptNwbkbjgctiL5kCb6cPXqVW1tbWk2m9WINX3wtAMXMyS1CHGsDQH5QzDwyvc+f4gTg8GgCg9eP4J7u1DgtQ58fpzsSqqCEY4M/4zXwgBO/CDY9B3XBOPk5Aq31btQ4EeUgugscMEA4NZwIcERybuvPe/7nJFSIx2LYPP5vAo88VQTHCs4bmJ9A+YxEmhPUXEBg9cQqnwOnHCzht5339MuJrCXr1y5oitXrmh7e1uz2aw+37FPXuAUAcbdHT5vnjbzRPBUEPrpbhIXvRIJ8IK//VOSpN6FC/qZXyp65trOGfcokbh3sGhS3E0c42Cx0AOf+9Ybvv6Zd7AvN4uXfEV3gcm1D/sg/dp/eOL/r3zA+lhr5WRdrLPAstnVb+2dXTT+n/3Qp+tFX3fnCg0mbhznQlBwAgchcVK2tram0WhUBQWILZ8lPQBADsbjsXq9Xk132NnZqXUGvDCeR86pTbC1tdW6HySbCPpwOGylBmAZ9wj4xsZGTcnY3t7WY4891joRgP47mfd6C8PhsLaPO8Mj6kTgIfM+B5KqiEDRSC8e6A4NJ3S066TR+3HlypU6f5BPRI3FYqHhcFj7H4WGpmlaR2E6GUYkIe0k5s5LqukhfiqDR6+Zd68lwDGEOFcQpLpSMiDh4/G4VZ+BeYyElbVDfHG3CXua9ZJU3QVeZyPuWWoxUEMBR8v29nY9tcGvY/4oCuqCBvMYXQgupDhx5rlzN4s/IzFyj7iFQOKv8dPv9+tzSN2E9773vXrkkUd05cqVKp5Q88IFJE8bcfeGuyOYA8blJ7SwvtEp4kIC/XURDEdQTK9JJCTpYGtL/98P/riz7kYicU/hXbs/ctZdSCTuKPZ/5df0FR/4B65/Ua/ob77tTfrEc3II0asf/d36yY/ePLP7v2g/a5yeF5wLQQHiBhkajQ6fFCdmXi1+tVpV8hPJG1FUSD8E1M+a98ij53VzDSSdKLZ0HDX1SDKRb66X2sSm3+9XsvfYY4+1IvMeFXUS5jUZiHpLxzZ/iN7e3p4ee+yxGpXuigbjuCCyDcHz+zsJjPZ+xuPEy9taW1urggVk1tMQIGY+Nk+z8PkHnkLgBR09v95FkZh6IKmuIUX72D/uTGBNPYXAC/PRNoS+qzifR92jM8GdF9zPRQlvj9dGo1Edo6cIUACSdBIXRVhjxCjmx09HiWkC9N3TGjxNxN0YzAtr5WOgtkcE7hDfz147wety0If19fX6DLmQgLDjay2dLCrpApWLO/7dwP5ygYRni/f9SFJvM5Fw3Iv5kYnEmaIjlS2ReLrhRv7f8vV/6ZU66J8Ph0J/e09ruz9/1t1InAOcC0FBOraV+3F/CAQQAI8iRkHBo46S6jGQOARi/QO3ruN4gOjgfnDy57npEL548gP9QMyA7OGM8Ag3BInPORHH6g+cZNO35XKpnZ2dEwXrXEyAZEKaJdX56MoPJ5ruZBKHBnOEeMIa4DqIKRZuiY9wguv/dpdKTA+AXHptia70g+jaaJqmOjA8TYC1QAyINQu6ajd07Vn66gUVfRyeYuBj9fs4MY7OAU6wgPST0uG1J7ieNrhfFIOcfLPW3mffP/7cda1X172YC78nr/FckeaAAOUiAEVCaY/n31MuWE/vC8+dj8H3DNd6276PfO/4+kjttJREIpFIJBKJs8TgP/7cWXchkTiBc/PXshMDovuRWLswALl0IuhRSCeP7kqAUDtJIRLu6RCDweAEgXfyAemKIgV9os7DbDbT1tZWJUsQG8iREzePeHuqA84MqvwjVESbO/PYRYghYk7yYiQYksr9fa6oAUHqBKSUego+t7FoX1eRSh+7W84Zg/84AYzpMb4O3BuhhXY9qk9KBfPioke09nvdCfaVizCRfAOf1ygo8F+Iuq9ZdHG49Z/59bQEL2bJ+rrjw1MivN9OrhmX388dCJFQ+2fZd34yhItuvk7M5dbWVuvYVq7xccaUFF9b3qddr7XiqUuexhNFq1iQMTpGuLcLEolEIpFIJBKJROIkzsVfyxCL4XCo6XSq6XRaI5YQXOmYAAwGA02n01ZE0gkd0WhJlQjv7++3iDltE8Un+o5V/r777mu5F5bLZSWjEPqYPoB1G+fE1taWtre3tb29rfl83iIn7magjf39/Uq2IDqj0Ujj8Vj9fr+mWFAYEdeD55YzD55X74JKdF14CoG7Hegfn0d02draqmvhueZOIHntNDt8FyCvbvdHTPCaGjgi/MQKH5sXcORzw+GwtS6e/gIRd6EIUSe25eP2PrqTxteS67HUeySdeXKHA/dfLBattrwuRxf5d5LvTg4vsun9c5eMC3EuJvh8ettRRIP8kwK0vb1dC5aSpnRwcFBrWvja4ZLwPUG9BfoTTy8hLcRdFl7vgrY9VSEepwrc9cBncd4wF+6aSCQSiUQikUgkEm2cC0FBUiXOk8mkFjyU1BIMvD4B5AYCABl1EgNpJD0B0o944GTMawdQqwAyAamBKFJozvPst7e3qwCwt7enK1eu6H3ve18VFPyYRfo5HA5rvyA9OzuHFV7X19c1nU7r/Ozt7enq1au1/+4kYB4ktcgh5I32cGt4Zf9I5BeLRSXB0nFhRS9MyLrEqC5tOGF00ugV++kr8wEJ5j4erUZ4gfh5vQjacgGA6LrXGqDwn9ccgGR7ugJr7IU7o+jjAo3X7mAtXGBwMhxdGFGU8L1K/7si5O7e8PmMooEfUeqv+7735ygKQC4cuOABEGKapqm1NA4Ojoss8hyxJ2azmWazWet5pj8Iiu4+iCkIXlDS++FpFbu7u/X7gfvjMmGf4azwdBFfb9Y3OjkSiUQikUgkEolEG+dCUIhFF6V2wTwnfpAYT4XgM157AZKwWq3q57wQnXRshYbUxYgzZIdItpM3+kEawmw2a5Ee3AacfoDrgFMQKBYpHUelYyTZCTkkmxQH75+TK7dwe6V6yK2TWAgW94D8uSDDHLoIEa377rSgHfriLpJ4uoYXEHSHAPPgKQ5O4L2vvO7kExEiWvY9ZYa2QCyYSbtOmumbj8GdBJGAeiqJR8a5n7dXSqnEn8g/pNxTIlzQoU/sWSfcCC7uIPETJhyeyuFjiKkZPl98zteMVAOfd+7vQlicOxfZvL6Jp8WAKIa4m8D3CM+gi1O+T/zHj8b0OWP9E4lEIpFIJBKJRDfOhaAgHUfKITAU1nPXgEfBPXLpFuhIqElDiPUDXCBwkuZ2aW/HyRuEhog6aQreB9InPCrLsY/D4bAeb+d2awiSCyQeFSd6jytDaufHu2jA9djanRB7Tr6/hwOBOZnP5y0C5oKCzz9EUNIJ4SEKGZ5jz+d93Z3sRns673lKgr9OW/HY0VhjIRLqaK33gnwxNz8SYo+yswbcF6GFdYz9icUr2Xu+DzydJTpCPIrPs3G9dAUv2Bnb4ZoonDmiuOBpL153w90gPIPR4eLPLONFbPN5QSzh/jElB0GB/cV8RzHQ54t5jAKCuxWY03gUayKRSCQSiUQikTjGuRAUIBS4FGJtAEQBCA/EhGMhvZI7dQGwe3MdQoTUJhIQRcgX/SB1gdQHSLw7GbDPk6YwmUy0v7+v7e1tbW1t6fHHH2+JIhAgnBgezad9CCx597gXKGYXRQcXVDxVgwKTkOhI7J34+mkCEDQfo/9wz0gucYXs7OzUsTIGjyDj1JCOiwxCAJkniHQk0ZJqxBkSS+FKfiCmnrrAHoppCcCFE9+LkHSfCyezPibGTB+k41QBxuFuiShq8DvpNByd6jU+fK7dReHjYn59LiHiLprEVA/aiWvqc+LzSfqMpNbJKOPxuJWq4c/X7u5ua99wH/YBLg0/mjLWSGCc7BtSOlwoIcWB7wrmlfZns1m9P+kNjJV7U9SVdUgkEolEIpFIJBInca4EBf7g39raauWpx5MVnERC/KRjYgXJJ1faCS8iA8QingCBg2A4HJ5ILYBcejSfSKbb+z3KyfgktfLiY8TYC+8R8d/d3dV8Pq81GqjB4K4Ar4jvhSU5fQFSzPwsl8s635KqAAEhhHxKxyTX58DHCrw2hQsAXU4BSbW2Aad5uMVdUkuAIOrs94GgexQZAkhdCk9TiePxtfKaDS4guJWesSEmuHMAgsvauUXe3Qc+B4gEToT39/dbAhmR9Ji64oSccSFwxPGyxrTjLhr6GYWlKJrE+gmeEuTFNw8ODuuHeDFU5jSmzPgejnsRAc4FAhcXDw6OT5+gby4IubjoYokLgVGIQYDhfUSpdCckEolEIpFIJBLXx7kQFKRjkucpDpADP7UBQgAxJ1IMQYyWbYo4us2cAnKQOq7jnqPRqHUUHu9Lx1Fcz6OH4BDF7Yr0urXfCww6kSW6zZgguwgETsickDNuP5EB0j0YDFq2eQgUvxPh5VpPeYg1E9xaz+tO1GI6QFfKAWKCn1gQizU6mZbaeezuZGBdnGDyeXdVuDAknTxOETJJ3yGY3ndPDYguFebEayW4o6PrNI+YVuDOFT9JwutE+H70dfH7ed0BT8dAOOvqa+wLv0dxxF0cvvb+HNAXby8Wn/TngWfG0zeiI4Q9z3/9WWKO/FpPZYqiHoJM/I5w4ctFlK7Uj0QikUgkEolEInGIcyEoQBAQBSDc0jF59pxsSS2bdISTZgQCoph+5KITNUjfYDDQZDJpRbiJ1rrVHLcARHA4HNZ7e5tElj23XFK1yvscuHsBJwZiQld1fBcLiGQjknjxQMiWuyYQE3BsQKhifr+Px0kjY3Xixz0h95Gwxugyn0U4YFxe/wEhKc4t1zu5ZFweaadfvp9Yw65r+XeMpnsfXOzwvROFD5839mkkuIzD0z/ifbo+w7zyXyfPtMl7npbhxJy58La64PPlwgwCYKyDEcWWKA64cEYqUjwGs0tQcPHOPxtrLfgeRrCLc+dij//X19q/HxKJRCKRSCQSicRJnAtBwfO1PYceIo7DABI3Ho8r8eYa6bi6PyRiPB5rPB5rOBxqe3tbOzs7unLliq5du6b9/f1WRFg6dkKMRiPt7Oy0jj8kBcIt8qPRSMPhUJPJROvr6zXFwEkbxNpPsPBo7/r6usbjsTY3N6tdH/JGyoOnMCBgUOCRa+mXCwrci3oDXvyP9I+9vT0Nh0ONx+MWIWTsfkoG92QtEHecLLv1H/cEgEhGsu+EdLVaaXt7u66HC00OxIQo0rizoIsEc52fnkB7LqjwuqdteAqC9yGS8egSYG664ONAZPEUDY+mO9mN94zpCi5I8MP+ijUYvCZEl/jBnPj8RHcG88Sz4a4Fdx14jRLp8JhULwbq+wnRDjGP9pgr1iSuQRR96CM1RlwMpD/ukokOlUQikUgkEolEItGNcyEo+B/yEIi9vb1KKCeTiSTV2ggQhMFgUJ0BEBi31ZNXf/XqVT344IN67LHHNJ/PJakWanQL9WQyqeSCgoZra2uaTqdaX1+vJyxgH+fe5FxL7aimR6xJJ3BrN5/1AoweMd7e3q4uAj8+090SCAkUYfRI9cHB8UkNfkIBpNCPsuR6xA4/4g+ySVoF1yBweOoC46YehnQcgfdrfM15j7oWiD0uwsR5g8QOBoPaH+be3QMIJ6yz10/gx+sJ8BnujYjC/Dtp93oE0RHgEXOP0tNXijTy46kAtOX3cDGBfRZTJxB/PH2IOfF9Rh+9TXe+xH3M8+GODq9vAqF3MYjPeFoEew1iT+qRj5VxsNb+jMY6JQcHh/VS3ElDH12w81NIWKPYbxduotshkUgkEolEIpFIdONcCArSyWPksDSPRqN6eoITRcQEKvpDXqXjaDME6dq1a7p69Wo9PcLFBL8/qRYQ+aZpWmTEydtpdQIgUJCpaKX2SDKk2U8ScJKDmBCL7AHGTYpAjM4jGsSaBC4sQJiJyrrN3lNHaJfikIzBI97RUu/z4ikYTlZjccjt7e0qKHhNBO+TdCwoQJy9fdaI+3q/uvadCzQIKPx4GkZMAfFxMlYfsztv4o8Tf9/vEN2uOgt+n5huwr5j/3gbvv8iWY41H2IxUU/lYI67Ugw8hcSfiygCUfeAWiZ7e3stsh/TdfwozK6xx9QIX3PEKi/86evSlQ7T9UwnEolEIpFIJBKJbvSe6IJSyr8opTxcSvlle+3VpZT/UUr5b6WUf1NKuWTvfW0p5e2llF8tpXzGjXYk/jGPZR5BIQoAOBDisZG0BbFaLpe6evWqrl27Vq3OVKP3SvEQjN3d3SooOKFychcLE0aiJR2nT8QouwsKfjwhrgCKMHp9A+bjtP5SiDHa3Hndr/HXIGz0jbF4XnqsKzCbzbSzs1OdD7H2QCTA0XYf6zogCCyXy9quCxXxs8yHF7eM93AnyO7ubou8d+05SLwLUV6fg3Xz+3tEm2tcUPJxetQcMcXXkd/dnRBTL6JY4XvJxTb65IJEFDbiWtBmTI3pKhQa18Hnh0i/I66Z1D6NxEWPLuGmSzzwIo4+Hz7f7CFPiYnuEubJT9vw99yJcR7wVH0XJxKJRKIb+T2cSCQSJ/GEgoKk75D0meG1H5P0u5qm+XBJvybpayWplPJhkv6UpJcefeY1pZQ1PQGcSPF7v9/XZDLR5uZmzZk+uketWzAajVrEHpAOsVqt9Pjjj+vhhx+uVuzJZKKLFy/q0qVLGo1GrTSL2Wymq1evaj6fV3s2Fm1PUeC+TdNoPp9X90O0l8e8eCc9vV6vtgORms/n2traqu2RH46o4iIKKRSIELgUINHxB4GBYofMcXQBeIQYW/re3l4l/NRpQJxxUuzCg5NXt7CTvsE8lVJq0Uly6TllI4oF9C2e6OAuDCeb/O5CgZNFF2uclPp93f3R5XTwfRcJqte34GhOSLAXrvT/xsi+E35PNUEc8mj8E4FxubDkc0v9DfrnZNyFCn8WYjTf59nTbHidfc5ecmHGRSwQRYwoWDAHzDV7CDGBNA9JrTXkh3n2PRuP8zxH+A7d4e/iRCKRSFwX36H8Hk4kEokWnjDloWma/1JKeWF47Uft15+W9MeP/v1ySd/fNM1S0jtKKW+X9Pskvel69yil1BMLdnd3NRqN6g9V/p3s4EqA0LjdH6Iwn8/13ve+Vw8//LCuXLmitbU1bWxs6OLFi5pOp5rNZifICURrf39fGxsbrRSDtbW1VlG71WqlnZ2dmpaB00BStVhDVjySTzoEP0fzWUm7k5nxeFzJdTnK4/dq+rgFIFXuNoDYRjLmJyP40XuxaKPn3zMOiGyMXHuqBOuI9Z1ikh6ldpK3u7urnZ2dmtqBo+Pg4KCSQ0/XiIUaEV08dQHBA2Lp8+KfgcgzV74fEB5YHwpMuhsgpgS4gOOpBF4PgHnz+9COp4f4mLmG+hWeHuOpNJ5C4SKPu0/8vqyHE2s/vjI6a7rqeHghT9rz/ePOEJ4vxoELCZeKu0vcbeROEBdavE8uGtEP7ztrPplMWsUZPTXC+x4dKOcBT8V3cSKRSCROR34PJxKJxEncjhoKXyTpB47+/YAOv0zBu49ee0I4ESiltIr9eeV4iL2kSib86MOmOaw/cOXKFV29elU7Ozva39/Xfffdp4sXL9b0CbfE8xmi98PhsEUwnLxBTiDAEDCEAggQffb6BxAxor9O9BaLRY3Ycr07MGItgP39fc3n89bcABcvugioR7PpH24HP/3ALfNOrmJagLsgKN4HOWZMTva4n0fbnah2Wd4ZtwsJvB/JOJ91Yh1TMyLRjQ4Ej7ZDnl1woX1+j9F7+sl9PZrvdQZibQ1PjfCouV/jzopYENLH7ON2uIjBNew5ag4g5EUHgj+fPKOsQVeajM+7OwGiIyM6FHyv+fj9mihacK3vc67lueM0FtqPTh3m1ft0F+G2fBcnEolE4kkjv4cTicQ9h1sSFEopf0PSnqTv4aWOyzpDfKWUV0p6pSRdvHixlcMO4fPIvacTeASbKKWTqsViUcUEovqbm5uaTqf1VIBYgNDFBT+GEBLkhAnbv/fzaEyVePrRjZAZJza0x7Vd13s/cAY4KSV9wAmqk/+Y9x8r5jNfbqX38USLvxNRfnAueKV8L/7ogoqkE8UfI5l34h72S/28k2p/T1LrvS4RI1reowjB2InWuwPBSXWsyeBE19t2sk67rJeTWLf2u6DQVR+BeYiFI93R4GPh38xFFEq4zvedj8+FAP+spyH5vEURIwoKfN4FiShCxPG6wOTrHEUUF698L9Nf7yvX+EkxPk9dKRbnFbfru3ikyR3pXyKRSDzdkd/DiUTiXsWTFhRKKV8g6bMkfWpz/Ff3uyU93y57nqT3dH2+aZrXSnqtJD3wwAPNYDA4Yb+ORN8jxbgJnETxO8coYsG/fPmyLl26VF0Bnn9O7jjtu33dRQPy/3d2drS9va3ValVdDE4svRgi4oQTFGogkGqAw0A6JsvelhN+RAncBDs7O7WWAQKFkzw+5wTL7eqSWoIGn48nAnA9TgBqS6ytrZ2oL9BV26Dr6EdIswsFpyFGoEnvgJSyNk7ET4vUuzvBc+RdiDk4OKhWfAg2RDimbDiZ99SGKMQMBoNWvn4ppUbGEVmiK8HTAHxdSynVRUO/3cERXRmRZOMuIT2F+/neoy2eFeaXNaYNX894T19XruHz/X5fw+FQ5Sh9yIm7CwHRbeJ9dccE9+5yP/AM8oy4A4rnMe5/hLE4J+cRt/O7eLPcd3coKIlEInGOkN/DiUTiXsaTEhRKKZ8p6aslfXLTNDN764ckfW8p5ZslvZ+kl0j6mRtor5VSMJvNWpFwXAXSYRG22Wym1WrVipRLqgSdFAgcCdPptFqdvUDhtWvXakrE5uam+v2+JNXX6Bufnc1mVaiAVFProd/vVxGCAnyei464AAmEBHMfLOYegfWidRBQSdWBQY0BSCUEzclQF7lmvrkHZModIj52SOH6+nqdSwQRTnvgfQgiYoLUdhUw97x+2pGNkRR7Xjv3gpBzHKg7IpyQQhA9Zx/xgXXx3Hnvm5/ywWv+Ge+TX8u6QNyl4zogBweH9TEYpwstHnmPvzNuinN64cquaLqnVSB+uSjC/HiNAU8d8YKf9NvFFK7xNAafF+bC3RteVJQijcwL6+f7lX3paUJxnTwtwotdIuQAxjaZTGofaDOmDW1vb1cx5Tzjdn8XJxKJROLmkN/DiUTiXscTCgqllO+T9CmSnlFKebekv6XDCrZDST929If/TzdN8xebpnlrKeV1kn5Fh7avL2+a5oaSkIkeYuN34kMRNT8aEZLhJzp4NX0ioKPRSNPptBX1Xa1WNSViuVyeOBaPUwfIJ5dU28UKz08sIuhEWlJLEFhbW2sVaHTXhXScI+7gs0T5XbTwKK2TWCddzGMsBugEnOsg6O44YJ7pi3/eiSPRXgguJNeJa5cTwqPcnorg4oZX8me8wFMEnIC7IBHrRsSxxN/pl1v/WRt3OPA5j2L72nobXuvChRQXeoALLNFh4HUOELp8HzjB9rVnHfwad0C4O8NTfeIxo+7qYD/S5650Al8XF4t4Laa8xJMjXNiJIpMLkewxf41n2p0pk8mkCo3sQZxMXLu9vV3TmhjfecBT9V2cSCQSiW7k93AikUicxI2c8vCKjpf/+XWu/wZJ33AznYBg7O7u1oi325Sl9nn0wAUHyA8RU5wD4/FY/X6/ugEQLWazWX0N+76nS+zs7Gg8HleS42QfoshpE5JahRrdpn00J62jCb0iPuTOq8577roLGJJa9nOfC8gQJNFdDS6+RPLr/eAebufnc0T1ES+4F0TS8+GdpEabukeg3YYOKYTkOSGVjlMz6HN0LXghSHdY+PhOcztEm76nefA5X/+Y5hLJvxNhxuVr4q6armchigwuPrmIxXsu7Lgo46kquBl8T3bVfWAvSWq5BtwJ4/vbBRufYxcYfF49dYE1ZV59TrhPLDzp68v+pD0XXaJwIf3/2zu72MqqKo7/1rS9H722naEz2oaiDAZNeBJifFF40SgQBT8Sg/GBRBNjoonEmIghMbyi0VeJRiIxKMQokRcTjDH65AfgDAyBkQExIuOgDNB2etvpx/bhnnW67pl7pzTMOfe29/9Lbnp7eu7Z6+y9z+pda6+1dmeHkJmZGaanp7sKisZru8OuGGUzDFShi4UQQvRHelgIIS7kUuzycElwQ77dbucrqv6lf3V1NY8QgG2Dz1dq3TDx8GmvUu/bTvoKNnQM08XFRdrtdp424U4Hl+GNN97IHQ1ONASLK9hbW1usrKx0GUewHW7vn48GsRuGvqLvK8HRsI/OhImJCTY2NlheXs5rJ8RV9xiV4D9jiH8sogjbW1XGldq4uu/h4rGYoqdU9IpOgO0ijHErvyiPEyMmolMBth0KblwWi1Z6WzElIPZ5r/SOmOJRpOiE8M8Uc/+jQ8D/5td0wzkWLoz1EfyY31OvnRmK7RbxaI9arZY7iWIqQi9ngssYV/GLOzEUo0Jin/i8LDocXB6P7nED3u8hzq9itEt0MvjzGp1L7rgqRifEOb65uZk79Or1etf88j6KtVAAGo0GU1NTzM3NMTU1lc9X33Y1jnO73c53UNljuzwIIYQQQghRKUPhUNja2mJ5eTnfOnF6ejpf/d/c3GRpaSkPkx8bG6PVauVGtoeTLy4usrKykkcnNJvN3JjzlcbV1VWWl5fzc+v1Os1mk1qtxtraGq+99hqvv/46a2trtFotGo1GvrIL2wXm3FjxVIcYku+GpePGkht+7jBwZ0VM1SiuAkcDzo2c1dVVgDwHvVjAMoZ7NxqNLuPXw9zdMIuOG7/W2tpafo8eBg7bWx1G/DM+hrE+QjSa/e/uIPGtO6PxGc+LkQmx/z0SIq5KFx0BPiYuXwyXj9eNxHB/T1Xw331OuvPJUwdc1hgREtuMBnyMuHHjOu4c0itCwq/v5zebzbx+BZDL5P0V6zz4PUUnQzTwYz0Dl8tliykIxTlYxMyYnJzsatPl9Wt5REqM6HEnkTsTPEII6Iq8caeT95dHH/nc9joUMb0jXsvn28zMDLOzsxw+fJi5uTmAvMCq97nXSDl79ixLS0ucP38eM6PRaOTPhBBCCCGEEKKboXAouPGRUspTFdwI98KDxdxqIDfmvRZCXOWOhubY2FhXtfr19XUajUZeKR/ouoZHLcQVeujebcAN17jdYoyGiLsbpJRYW1vLDaSYV+952gcOHOhyAPg9w/bK/7lz57pk8WvHPPFoIBZXnn0lG7ZX7lutVm6cu/HncrgBHvs1GuRFIzCmM/hYxc/GnRPi+EVD2q8T790NzPHxcZrNZtdcKEYPxCKPMbzeibJFQz46J2K4fAy994iYYmpHjNgopkPEFXZ3KsW5VAzlL/70c31nkGLqTzG1IEYCuJPAiTJ6X7pjysciRrBER0PxGQDy/ig6HWIqQ4yOcUeNO9G2trbygqbFuVasBxF3u/CCijGNKNaXiKkYk5OTzM/Pc+TIEQ4dOsT09HRexDPWd3BnmEcauQz9UlOEEEIIIYQQQ+RQcOPDjfgYghy/2EfngxsgXnchrspGQyMaTNFBEXPR4/aN4+PjeXSCtwnd4fN+zVioz8+JnynWG3CikeRtRicBbDsNPLpifX29a+eIYoHHmEMeIxMcX+n1+/KilbHKv6/w+rnRgeAGmF8r3ls0VuO4FlNF4t88Z71o5EfZizUJ4rh42H1MLfHjcZxiWkExpSCOk/89GpHFuhl+H24Qx5D+4iumdhTTUWJqS5S7WIfAP99oNLqcCb3GwYlRKkWHhztGfOxj0Ux3CEVi/xVTM/zzLkO8TtwWNI5/rK8RI2S8r4t9WUyd8F0i3AlRTI+IjrRarcbs7Cxzc3PMzs4yNTXF+Pg47Xb7ghQhdzi6gyumiQghhBBCCCF6MzQOBdhexU4psbq6mhsXk5OTwPYOBx5F4M4FX3GMq6AbGxtd+fjuTIgh/XEFOxZFjEYOdBs6kbgtYlx99eO+0u5Glhd+dEPIzysaWzGSwFdO2+12fq4bttE4i3UdYjqBE41kN7aazWZXykYs/uh96MQV5F759i6zO1rimPrqul/Drx2L/fm1vP5Ar7nhOfNej8LH06/vY7W+vk6tVsvHd3NzM1+Jj2Mfrx9rD/h9FGsiRCPWC3rG3P0oa4xGiVET3masbeAOimiwex9PTEzQbDZpNBr5dqk+BnGs/JmIY+zX9igaIL9WTJ+If49pHLH2Q7EwZ61Wo9VqUa/Xu5x7fj1/TmMNEP+895dvBRmjQeK9x3H26BufA+4s8TbjWB84cIBWq8X09DQLCwssLCxw8OBB6vV6rlfi8xd3TvHnINbwEEIIIYQQQvTG4srmwIQw+y9wDvjfgEU5LBkkg2SQDAXelVI6MqC2K8XMloCTAxZj1OebZJAMkuFCRkkP6zuxZJAMkmFYZeipi4fCoQBgZo+llN4vGSSDZJAMwyjDKDAM/SwZJINkkAyjzjD0tWSQDJJBMrxZlCQshBBCCCGEEEKIXSOHghBCCCGEEEIIIXbNMDkUfjhoAZAMjmToIBk6SIbRYRj6WTJ0kAwdJEMHyTBaDENfS4YOkqGDZOggGXowNDUUhBBCCCGEEEIIsXcYpggFIYQQQgghhBBC7BEG7lAwsxvN7KSZnTKzOytq8woz+72ZPWNmT5vZ17Ljd5vZv83sWPa6uWQ5XjSzp7K2HsuOXWZmvzWz57Kfh0ps/73hXo+Z2aKZ3VF2P5jZfWb2ipmdCMf63reZfSubHyfN7GMlyvBdM3vWzJ40s4fN7GB2/Eoza4f+uLdEGfr2fYX98FBo/0UzO5YdL6sf+j2Plc6JUUe6WLo4OyZdzOjpYunh4UB6WHo4OyY9zOjp4ey6e1MXp5QG9gLGgOeBq4AacBy4poJ254HrsvdTwN+Ba4C7gW9UeP8vAocLx74D3Jm9vxO4p8Kx+A/wrrL7AbgBuA44sdN9Z+NyHKgDR7P5MlaSDB8FxrP39wQZroznldwPPfu+yn4o/P17wLdL7od+z2Olc2KUX9LF0sU73bd0cX58X+pi6eHBv6SHpYd3um/p4fz4vtTD2XX3pC4edITCB4BTKaUXUkrngQeBW8tuNKV0OqX0RPZ+CXgGuLzsdt8ktwL3Z+/vBz5ZUbsfBp5PKf2z7IZSSn8EzhYO97vvW4EHU0prKaV/AKfozJtLLkNK6dGU0kb265+Ahbfazm5luAiV9YNjZgZ8Fvj5W21nBxn6PY+VzokRR7r4QqSLpYt7sS91sfTwUCA9fCHSw9LDvdiXejiTYU/q4kE7FC4H/hV+f4mKlZiZXQlcC/w5O/TVLLznvjJDqzIS8KiZPW5mX8qOvSOldBo6kwp4e8kyOLfR/ZBU2Q/Q/74HNUe+APwm/H7UzP5mZn8ws+tLbrtX3w+iH64HzqSUngvHSu2HwvM4bHNiPzPwPpUuzpEu7ka6uGJdLD08MAbep9LDOdLD3UgP6zvxRRm0Q8F6HKts2wkzexvwS+COlNIi8APg3cD7gNN0QlvK5IMppeuAm4CvmNkNJbfXEzOrAbcAv8gOVd0PF6PyOWJmdwEbwAPZodPAO1NK1wJfB35mZtMlNd+v7wfxrHyO7n+opfZDj+ex76k9jmm7mreGdLF08U5IF2di9Th33+hi6eGBIj0sPbwT0sOZWD3O3Td6GPaeLh60Q+El4Irw+wLwchUNm9kEnYF6IKX0K4CU0pmU0mZKaQv4ESWHjKSUXs5+vgI8nLV3xszmMxnngVfKlCHjJuCJlNKZTJ5K+yGj331XOkfM7Hbg48DnU+okJ2VhRK9m7x+nk5/0njLav0jfV90P48CngYeCbKX1Q6/nkSGZEyOCdDHSxRlD8dxJF3eoUhdLDw8c6WGkhzOG4rmTHu6g78Q7M2iHwl+Bq83saOYRvA14pOxGszyYHwPPpJS+H47Ph9M+BZwofvYSytAysyl/T6f4yQk69397dtrtwK/LkiHQ5XWrsh8C/e77EeA2M6ub2VHgauAvZQhgZjcC3wRuSSmthONHzGwse39VJsMLJcnQr+8r64eMjwDPppReCrKV0g/9nkeGYE6MENLFSBdnDPy5ky7uohJdLD08FEgPIz2cMfDnTnq4C30n3olUcRXI4gu4mU4Fy+eBuypq80N0wkGeBI5lr5uBnwJPZccfAeZLlOEqOlU5jwNP+70Ds8DvgOeyn5eV3BeTwKvATDhWaj/QUdSngXU6nrUvXuy+gbuy+XESuKlEGU7RyUPyOXFvdu5nsjE6DjwBfKJEGfr2fVX9kB3/CfDlwrll9UO/57HSOTHqL+li6WLp4tHVxdLDw/GSHpYelh4eXT2cXXdP6mLLBBFCCCGEEEIIIYR40ww65UEIIYQQQgghhBB7EDkUhBBCCCGEEEIIsWvkUBBCCCGEEEIIIcSukUNBCCGEEEIIIYQQu0YOBSGEEEIIIYQQQuwaORSEEEIIIYQQQgixa+RQEEIIIYQQQgghxK6RQ0EIIYQQQgghhBC75v9uYEvuFOGoXgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 0 601460\n", + " Min thresh = 1000\n", + " Sliding\n", + "\n", + "\n", + " Winner = Sliding\n", + "\n", + "\n", + " VFOLD = 4 of 15\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsIAAAGDCAYAAAAh/naNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABegklEQVR4nO3dd5xb5ZX/8c9RmT7jce8NsDE2HWPTO4SSBLKbRhKyacuSTc8vmxA2bZNsSLKb7KaQJQkpS8oSUkggEEqAACE0GzDNBowNrrjb0zxNen5/3CvNlUaa0Yw1I43u9/16zQvp6urquYPn6ujoPOcx5xwiIiIiImETKfUARERERERKQYGwiIiIiISSAmERERERCSUFwiIiIiISSgqERURERCSUFAiLiIiISCgpEJYRZWbOzA4p9ThERGToKvEabmbPmtkZpR6HlAcFwiFiZi+b2X4zawv8fLfU48pmZu/yL75vLvVYDpSZzfPPJVbqsYhI+JjZHWb2xRzbLzazVw/k2mRmf/Gvb0dlbf+9v/2M4R57mONJXW9T72/bzOyPZnZucD/n3BLn3F9Gc2xSvhQIh8/rnHMNgZ8PlnpAOfwDsNv/b9EpKBWREPkpcJmZWdb2y4BfOOd6D/D4LwDvTN0xs4nACcCOAzzugWh2zjUARwF3ATeZ2btKOB4pYwqEBUhnYR80s++Y2T4zW2NmZwcen2FmN5vZbjNba2b/GHgsamZXmdlLZtZqZivNbHbg8OeY2YtmtsfMrslxQQ6OYy5wOnA58Bozm+pvv9bM/jNr3z+Y2ccD4/utme0ws/Vm9uHAfl8ws9+Y2c/NrAV4l5ktM7OHzGyvmW01s++aWVXgOeeZ2fP+7+J7Znafmb0v8Ph7zGy1f053+OMe6u98oN/pMjNbYWYtflbjm/72Gv88dvljfyz1OxIRyeH3wATg1NQGMxsPvBa4frBrYQF+AbzFzKL+/UuBm4DuwOtFzOxK/z1il5ndaGYTAo//2s9O7zOz+81sSeCxn/rvG7f67y+PmNnBhQzMOfeqc+5bwBeAr5lZxD/my2Z2jn877/uXmS0ys7v8a/TzVgHfUkp/CoQlaDmwDpgEfB74XeBi9X/AJmAG8EbgK4FA+eN4F78LgSbgPUBH4LivBY7H+3T+ZuA1A4zhncAK59xvgdXA2/3tv8S72BqkL+TnATf4F7dbgFXATOBs4KNmFnydi4HfAM14F+4E8DH/XE/0n/PP/rEn+ft+GpgIPA+clDqQmV0CXAX8HTAZeMD//QzVQL/TbwHfcs41AQcDN/rb/wEYB8z2x3YFsH8Yry0iIeCc2493/XhnYPObgTXOuVUMcC0s0BbgObzrMf7rXJ+1z4eBS/CSHDOAPcA1gcf/BCwApgCP412jgy4F/g0YD6wF/n0I4wP4nX/sQ3M8lvP9y8zq8bLJv/SfeynwvWCQLhXCOaefkPwALwNtwN7Azz/6j70L74Jmgf0fxfv6bDbexbIx8NjVwE/9288DF+d5TQecErh/I3DlAGN8Efiof/vTwCr/tgEbgNP8+/8I3OPfXg5syDrOp4Gf+Le/ANw/yO/mo8BN/u13Ag8FHjNgI/A+//6fgPcGHo/gBf5zcxx3nv87iGVtH+x3ej/ehX9S1vPeA/wNOLLU/570ox/9jI0f4BRgH1Dr338Q+FiefdPXQv++Aw7Js+9fgPcB78D7YH8o8IL/2CbgDP/2auDswPOmAz3Z10X/sWb/Ncf5938KXBd4/EK8ID7XePJdb2v87Sf7918GzvFv53z/At4CPJC17fvA50v9/1M/xf1RRjh8LnHONQd+fhh4bLPz/9p9r+B9ep8B7HbOtWY9NtO/PRt4aYDXfDVwuwNoyLWTmZ0MzAdu8Df9EjjCzI72x3UD3qdygLfRlzWYC8zwv9rba2Z78TK2wZKBjVmvtdC8SRSv+uUSX8HLiOCfb3p//7U3BZ4+F/hW4LV24wXLMyncYL/T9wILgTV++cNr/e0/A+7Ay4RvMbOvm1l8CK8rIiHjnPsrXs3uxWZ2EN43dL+EQa+FhfodcBbwIbxrVLa5eHW6qWvmarxEwFS/NOGrfmlCC16QStYYCnoPGUDquro7x2P53r/mAsuz3lfeDkwb4mtLmVMgLEEzU6UHvjl4WeItwAQza8x6bLN/eyPe1/cH6h/wAsonzexV4BF/e+orvf8D3ujX4y4Hfht4/fVZAX6jc+7CwLGDAT7A/wBrgAXOKz+4yn9tgK3ArNSO/u9kVuC5G4F/ynq9Wufc34ZwrgP+Tp1zLzrnLsX7Su5rwG/MrN451+Oc+zfn3GK8co3XkvmVp4hILtfjXSsuA+50zm3ztw90LSyIc64D75uy95M7EN4IXJB1zaxxzm3GS2pcDJyDV/Y1z3/OkMYwiDcA2/Gyv7nGluv9ayNwX9aYG5xz7y/iuKQMKBCWoCnAh80sbmZvAg4DbnPObcT7Ov5qf7LWkXgZy1RG9jrgS2a2wDxHmjdzuGBmVoNXt3Y5cHTg50PA280s5px7Ai+rcR1wh3Nur//0R4EWM/uUmdX6GYbDzez4AV6yEWgB2sxsEd4FPOVWvEz0JeZ1mPgAmVmAa4FPp2rFzGyc//saSLX/u6vxz3UzA/xOzewdZjbZOZfEK2EBSJjZmWZ2hD8xpQXv68XEIK8tInI9XrD5j8D/BrYPdC0ciquA051zL+d47Frg3/0kBmY22cwuDrx+F7ALqMPLSBeFmU01sw/izXn5tH89zZbv/euPwEIzu8x/T4yb2fFmdlixxiflQYFw+NximX2Ebwo89gjehIWdeJMR3uic2+U/dineJ/UteDOCP++cu8t/7Jt4tb934l1QfwTUDnFcl+BN+rreeTN9X3XOveofKwqc7+/3f3gX81+mnuicSwCvwwuc1/vjvw4vu5DPJ/AyEa3AD4FfBY63E3gT8HW8i/NiYAXexRrn3E14Wdob/K/yngEuGOT82vzzS/2cxcC/0/OBZ82sDW/i3Fudc514Aflv8H7Pq4H7gJ8P8toiEnJ+gPo3oB64OfBQ3mvhEI+/xS/ByOVb/mveaWatwMN43+qBF6C/gpcceM5/7EDtNbN24Gm8muI3Oed+nGffnO9fftnaecBb8a7Rr+Jd96uLMD4pI5ZZEiphZV6Pxfc5504p9VjKjd+VYhPwdufcvaUej4iIiBSHMsIiOZjZa8ys2cyq6auZK0amQkRERMpEQYGwmZ3vN5Nea2ZX5nh8nJndYmarzFvD+93FH6rIqDoRbybxTryyi0uc149TpOzpmi0iUphBSyP8STkvAOfifT38GHCpc+65wD5X4fX8+5SZTcabmTnNOded65giIjIydM0WESlcIRnhZcBa59w6/yJ5A16rkyAHNPptphrwevUd6PrlIiIydLpmi4gUqJBAeCaZixFsov/CAd/Fa7W1BW+W5kfytCkREZGRpWu2iEiBYgXsk6updXY9xWuAJ/FaQh0M3GVmDzjnWjIOZHY5Xp9Y6uvrj1u0aNGQBywiUg5Wrly50zk3udTjyCHU1+ynN+8D4IiZXvfEvR09bNzTwcKpjVTHvNzPrvZutuzdTzwaoSfhxf818SidPQmmNtXQXBvn+W2tzB5fS3NdVfrYz21pIeGXEx4+Yxyp5Yd6EknWvOotEjl3Yh1NNXFe3NZGZ2+CWMQ4bHpTQWPfuKeDvR09AMybWE9jjfcWvXZ7G/t7EkxprGZcbRUvbm9lzoQ6Wjt7ae3s6Xf8bS2dbG/tImrG4hn9X3vL3v3sau9mfF0Vs8Zndrp8ZvM+JjVUs7Oti0mN1Uxrqkk/1rK/h1d2dzCxvopd7d0smtZIPNqXT9vR2sWrLZ0Zv/+UV3Z10NLZw+TAMfd3J1i7ow2AxTOaiFrmP91XWzrZ0dpFxIwlOc4jl3U72kk6x/6eBNOaapjc6HU729vRzcY9mdM85kyoY8PuDgAOnzmu3x9Ob9Kxeqv3J3Ho1EaqYvlzh6u3thCPRjhkSuaidy/taKOjO0FVNMKh0xrzPNvjHDyzZR/xaIRFg+w7FMF/n9n/pguR+v86OevfQzHtbOti6z7v387Bkxuoq4oW/TXyXbMLCYQ34S1BmDILL4sQ9G7gq/5StGvNbD2wCG+hgzTn3A+AHwAsXbrUrVixovAzEBEpI2b2SqnHkEeor9nzrrwVgBVfvQiA36zcxCd+vYrbPnkmsyfUAfCzh1/hs79/hpnNtWze6wVHR80ax6pN+/jEeQu58IjpnPWN+/jGW4/m4qP7kunHfPFO9viB6kNfviAdGO1o7eL4f/8zAN9/9/GceegUXvudB3hmcwszm2t58MqzChr7J369it+s9FZz/9F7l3PKAm+V4bdf9zAPrt3Fv7zmUP7+2FmccPXd/NsbjuDR9btYuWEPD3wy8/jf+8tavn7780xqqGbFZ87p9zpfuPlZfvq3l3nr8bP56t8fmfHY4Z+/g9cfPYNfPrKBT55/KP98xiHpx/783Dbed/0K3rJ0Nr9asZG7P3MOkxr62ur+4P6X+MptazCDFVdflHHcD/zycW59aisfPnsBHz93IeB9sLjw2w8A8Lcvnk9tVvDzjTuf5zv3rKWpJsaKL7ymoN/hu37yKK/s6mD9znY+c9FhvO/UgwC4ZdUWPvR/T2Ts+513HMcVP18JwMqvXtTvWC2dPRz5hTsBuOuqs5k6QBB46tfvYXpTLTdecWLG9kt/8DAPrdvFwqkN3Pmx0wcd/x+e3Mzy+ROZNq54Aef2lk6WfeVuAL77jmM5//DpQ3p+e1cv/3bLs/zrRYsZVxsv2riCfvbQy3z2D88CcOOHTuHwmQMtAzA8+a7ZhZRGPAYsMLP5ZlaF11z65qx9NgBn+y80FTgUWDf84YqIyDCF9pqda/J3KuMbzFxGcuTMY/7jSQdJ/ziWlaGMBp4YvF0VOHbM3x6LRPrtN5hYYN9I4N25virmn4PRVOvdbunsoSfhMl47pToW9f+b+y0+PcZo/7FVxSLsaffmTDZWZ+bKUueyvyfhjyeS9bh3Px7p/7px/7lVgdeMB27nGkvq9YbyO6yJRWnt7O03vniO48cGOW7wPPL9LvsejxKP9T9eTdx73kDZ5KCLj55Z1CAYMn8PtVWF5D8z1VfH+PobjxqxIBigOt73ISj739VIG/Q34pzr9ZcovANvha8fO+eeNbMr/MevBb4E/NTMnsb7Wu5T/upcIiIyisJ8zW7t6pvvl0g6ohELBMKBINPyB0XOecEw0O+r+uDzgjFUMABKBW2p1xss2ArKCLQDr9VQnQqEI9TGo0QjRsv+Hrp6k1TF+n+FnAq68gbCfqARyxWwRo1dfiDcUJM7EO70A+HsIDw2QOCaCpJjwQ8NOT5A5D5e4YFRTTxCa2ePfy7BQLj/MXIF30HBfzPVOX7PQXVV0Zz71PgBXq4PLKMleJ4jUXJQDDWBQHgoH3yKoaCPBs6524DbsrZdG7i9BW8pQhERKbGwXrO3+/Wp4GWCo5Eo3b1+IBzrnxEOZpDj6YywS2eEs9+PU4FwxDKzxcGAMp4VZA4/I9x3uz4QCJsZTTUxWjp76OxJUBvPlREeOAsZywrWg4IZ4YbqeM7n9WWEsz4oDJBpTu0bzxH8RiPWL/vubY9k7FeImniULv//eSwj45wjEI5EeNdJ87j+oZdzHisj6z9IRvdzr12cEcyl1KYC4QIzwiMhIyOcY4zloCYW/Bsqw0BYRESk3G1r6Urf7k4kqYlH6Ul4QW0wI5cKuoKFFKmgx+Flk4P7Ze+TnUkNvnFHs4LBoQTCweA3mH2uq87MKtZXx+joStDe3ZvOFgdVD5oRTo0xV0Y4wu50IJx57EggI2zW/9z6ykLylznEM0ojBv6wMFCGOZ9gMFo1WGlE1PjC65fwhdcvyXksM0s/b7AxLJ03Ief26nQgXLoANLM0okwD4RJmhLXEsoiIVIRtgYxwrx8A564Rzh2omXlZ4lSiOPsNORX/Zn9THwyYsoPB4WaEg89rSNUI+yUY9VUx2rt76ehK5Pyquy8Qzh30pDPCOcZWFY2wu8OvEc4qjYilA+FkOjsd1PchIHeAHfyvt1/+cQSPN5TfYXW8f3YecpcmFJJpjkUig5ZFDCRdIzzKWc6g1L9tGBulEaNdI6xAWEREKkIwI5wKgHsSyX7Zy77SCALbjIgZzvVlhLPjpFTdbnbtMPTPbvbV4Q6lRjj3hL5gaQR4GeKO7gQdPb3piXRBqcAt39fxuep1U6pikfTvpX6AyXIDBZYD1fsGHxs0IzyMOuuaQNCaqzQiGAjmOv9s8agNOlFuwPGUQWkE9E38K9vSiMAHGGWERUREhmFbVo2w91/XL8OUygj3Jvsi4VjEiFhWjXB2RjhVI5zjjTo741noV+pBGTXCeSbLgZ8R7vIywrm+6h6sNGKgsQUD3OzSiHQg3J3IWWqQXRaS8Zi/rSpHLWi+DGDqeLl+3/kMVhpRF/jgUEiAHY9GDigQri2DyXLQd/5joTQiV9eRkaRAWEREKsKO1mBGuK80IjsIScWYiWTfYnrRiGGY3z7N25ZdQhEZ4Kv67OAylp7oVfjbbL72bNk1wnVVXka4vbu3X9YW+oLN/Bnh/JPlgkFpdmlE6nldvYmcwWu+GmroC26Cjw02oTCVeR/aZLn+pRcQyKZXDa0WNRa1jNZeQzXU9mkjJRaNEI1YyQPyfIKZ/Ogol5GU529ERERkiILt04KlEf26G+TICEdSNcLk7xpRSGlEdo/eoWSEo3kywtmlEfXVMVo7e+nsSeapER6kj/AA7dNSAdus8bX9uiCk9vcywkMrjciVLS44I5zj951PvlrTXIFwId0JvBrhCiiNiBp18WjO7hzlIOMDjEojREREhq67N5G+nRkI5y6NSGSVRniT5SDpb+/XR3jAjHBm3e1wJstlZoT7ti+Z3sTRs5tZONVbvreuKsrONi/7nbNGeJAs5EDt01LnsWha/yWNU2Pa35PIeezoABne1Gtld++IRmzwGuEhZAhr8kyWm9Fcw0VHTuekgyf1G+9AqmIHGAj7H0pGewJYtng0Qk2ZlkVA5oIaCoRFRESGIVUOEbzd3ZurRtj7b29g/77Jco5EnpXlUs8bKNDrywgfYB/hwGtPaarh9x84mSn+Er/11bF0r9xcNZ+pYHOwrhG5J4t5537Y9MZ+j6QCx6TLHUSnDpe7bCL1QSHzebGI5Q10Bwqs86mN5874VseiXPO2YzlkSkPGaw8mFrED6hox2IeS0RKLWtl2jIDSTpZTH2EREakI3b1JYhGjN+kyMsLZQYilSyOCNcLeEntJR972aQN9VZ/dASE+QJlAPvlKI7IFs8D11TlKIwbLCA/QjeGVXR0AHDqtfyCcq+NDUCEZ4eznxaORvL+jdFZ9CF/nD7ZUb/C1Csk0x6KRjJZsQ5UKzKvLICNcrvXB4H14M/P+X492+YYCYRERqQg9iST11TH27e/JCISzA63U3UBlBNFIJN0+bbCV5QYsjShSRnig5wWD37oB2qfl+0o/FbDmChTX7WwHcpdGZKx2l+N1Byq5yPdYPGp5JxQOp49wcNLVQJ0tvDENHhgePXscE+qrCn79fuMplxrhSKRsO0aA9+G0JhbFZSxzMzoUCIuISEXo7k1SXxX1A+FU14j87dOCohGvm0TSuUFXlhuwNCKaWQIwlPrWaHDRjwGCv2DwmysgHaxrRDpbnWNsE+ur2N7axbyJdf0eCwbqdTky0QN1jUidW/b/i1g0kvd3lD3xsBD5aoT7Xi8YCA9+3Kv/7siCXzv3eMojEC730gjw/t8Fy5tGiwJhERGpCN2JJHV+h4Xe4GS5rCAkVyIw9ZXsgCvLDVgjnJURHkbHg2AJwEAxWjAjnCvLVxuPsmRGE4dN75/VhWDA2v9FfnPFSbyyuz1n/XDwvHO1bRuoj3A8T5Acj1jegLSYXSNSgq8/Gm26UoF5qSfLvfX42Tn/n5WTmngUR2LwHYusvH8rIiIiBeruTTKxoRrI7BqRvbxtrhpErzTCmyo2aGlEjuenMn79+wgPszRigOCvbpAa4WjEuPXDp+Z9fl/Q3j84mzOxjjk5ssHZY6rPEYAPFGCnHquKZU2Wi0byligM53cYDIRzLuwRrHMehYUbasskI3zZifNK+vqFqIlH03+3o6l8K6dFRESGoCeRTAdo3YEFNQovjbCM0ojs/QZa6Sw7E9y3wMbwFtQYqDQiGITmKo0o9HWGUnIAmRnUXNnFvpZx/c957sR6auNRJtZXZz4nOlDXiGHUCAdKIwZaBnqoxx2u8fVVxCLGpIbqwXcOuepY/g9FI0kZYRERqQjdvcl0tjRVGtGdcNRV5W6flrEt4i2x7AZYWa4vMOv//Li/clcq25zdT7gQwYBwoHKAukAQOpy6z1ieDg6DPm+QyXIDrVi3bP4EVn/p/H7b45FI/pXlDnCyXM7yjiHWCB+oSQ3V3PuJM5jZXDvirzXW1cSjRCO9g+9YZAqERUSkIvQkXLpUIF0a0VtYRtgLilJLLPsZ4aw4ygYojYjHMgO6dHZ0KJPlCiyNaBika8Rgjp0zng+eeQjHzR0/pOcFf28DTZYbSuDaVBujqSae87GBJt/lU5Onj3BKX+32wFn3Ypo9IXepiWSqiUcKWu2v2BQIi4jImOec8ybL+YFhT0ZpRHaNcP/nR838THHfEsvZwWjqMLkCqKqsfrgDLTecT8ZkuQFiv9Q5mmWWAhSqJh7lE685dMjPC55LwwClEUPJNH/zzUcPugLeUALWYMu4XDXAfWUhqgwtN15GWIGwiIjIkKUC31T9bCFLLGdsi3gryyWTfaUR+dqn5QpuY1ndD1KB1pC6RgxxQY36qtioLj4QHF+uTPRwVoIbKFs60O87n0jEqIpFSCRdnlruoZesyOiYNb42Y7XH0aJAWERExrxuP/BN1c/2BcKF9RGORSzdRziZHLhrRK7nV8UiGVnG7CWXCxGsER4omEy1TBvtvrDBoLshR2nEQAtqDEcsPeFwaMeriUXS/x6yDSe4ltHxudcuSX8bM5oUCIuIyJjX0+sFPn0Z4b7SiOyWXfkny1lG+7T+fYTzB2ZvXz6XZfMnpO+nMo9DqxEOLKgxQKa3KuYtl1vKBRJyZYRTGdhifb09nCWWwfug4LoGPqZKI8pPqVrMKRAWEZExL39GuH9pRM4+wv62Qtqn5Qr0Fs9oYvGMvgUsYsPJCGeURgy8b111dFgT5YolV//ivrro4gQ00WF8mIBUP9rcmcXhTOiTyqaPRCIiMuZ1+xnhGr97w8ClEf2fH42YN0HNkV5ZLrvGNHW/kLrf1GsOpY9w8LiDBWr1VbGcwehoGXBluSJnhId6vJpYNG95Rrp1nAJh8SkQFhGRMS+VEa6KeS2YUpNuugteUMMwvAU18q8s17fvYKLD+Fo/FaSZ5c5aB9VVRaktZUY4x2sXu+xgOEssg9dJI/9qdUNvayeVTaURIiIy5qUywlXRCPGIN1nKOZdzieV8gXBqieWEy1MaMUCNcLb0ZLlh9BEuJPC7/LSDaK6rKvjYxZYrI5zKmBdtstwwM8LV8WjeetNUhn40lleWsUGBsIiIjHmpUoh4NEI8FqE34dX6Otc/Q5mzj3CqfdoAK8tFhpDljQ2jldhQJoe9aensgo87EnJN1IsVuf52uJPvauLRvMFzsccoY58CYRERGfPSGeGYt7BFTyJJrx/RFlQaYQbmLcyRr33aUDLCw5ksl84Ij4FkZXWOjGs8GqEqFsm52MZwDDdonTexLu/vXQtqSLYxFQg/vG4X+7sTnLloSqmHIiIiZaQ7mBGOeqURfduyM7v9n59un+YGaJ8W6dt3MH2T5YaSER76IhylkquGOR6N8Lv3n8S8SfVFeY3hTr77wuuW5H1sOB9QpLKNqUD42vteYkdrlwJhERHJEMwIV/mlET2BbUF5F9TAX1Ajz8py6T7CBcRQwwniUknKofbNLSeHzxxXtGOlPxgMMWgdaP/hlKxIZRtT3w3MGl/Lpj37Sz0MEREpM6m+sVXRvtKI1LZCu0akM8L5SiPSX9UP/tYZH0YQFx1m4Fep4lGjJh6hsSZetGOm/h8Wa0KfjH1jKiM8e3wd+/b30NLZQ1MR/zBERGRsC2aE49EIPQmXMYEuKOfKchZYYnnQleUGH8+BLKihONgTi0b4/QdOZs6EuuIdU5PlJMuYygjP9v8YNu1WVlhERPr0BOqB47EIPQPVCOcrjUgvsZx7v4GWWM6Wes2hLKihVc/6WzStqagr6PVlhMdU+CMjaEz9S5g1vhaAjXs6SjwSEREpJxkZ4XRpRL6McP9AM+LXCLtARjh7t9RhCpnMNrG+mpp4hBnNNQWfQ19GuHwD4YbqGIumNZZ6GMOmjLBkG3OlEQAbdysQFhGRPumV5fyuEd5kudw1wjn7CJu3xHKwRjh70tpQ+tqOr6/iyc+dl7PNWD5DWcK5VJ7+wnmlHsIB6ZvEOKbygDKCxtS/hOa6OPVVUU2YExGRDBl9hKNGdyJJTzJf+7Qck+WiqQU13KAryxUaqNbEo4MulRw0FrKVZjakcyo3ZkY0YmqfJmljKhA2M2ZPqGOTSiNERCQgVQZRFYtQFfVqhHsCyy4H5YqBopZqnxaoEc4zWW6kgqixtKDGWBaNGFF1jRDfmPtzmzW+jo2aLCciIgGpjHA8WBqRap82QB/hvkltfZPlnHO5O0uMcMZ2LC2oMZbFIkZcGWHxjcFAuJZNezpw/ldXIiIi3YkkZl6QE4sOPFkuGGcGV4Azf4nlRNLlX4aZkevzm+4aoUB4REUjNqRuHlLZxty/hNkT6mjvTrCno6fUQxERkTLRnUgSj0YwM680IllY+7TUqnMZC2q4PHXEI7zyW7prhLKVIyoWMS2oIWljLhBOtVBTnbCIiKR09yap9iPVWNTo6R1oQY1gaURfOULfEsu5SyNshDPCfV0jRuTw4jtiVjOHjuEWcFJcY6p9GgRbqO3nyFnNpR2MiIiU3K62Llo7e9O1wPHUZLkCVpaLp9tpZS6xnCvrOxqlC6lxyMi5/j3LSj0EKSNjLxCe4GWEN6iXsIiIAMd9+c8ATGvyFq/oC4RTfYQzA8tg+694LLNG2MsI556wlgqAYyP4tbpXv6pAWGS0jLnSiMaaOBPqqxQIi4hIhngstXyu0ZPoK40YqH1a/8lyXjCcKyk7GgtexBQIi4yqMRcIA8yZUMcru9pLPQwRESkjqYA3ntVHeKAa4apo1mQ5vBrhXMFoalN0BN85U23cRGR0jMlAeN7EOl7ZpYywiIj0F49G6E26vq4RA/URjgUmy1lqQY087dNGISMcjRhqaCAyesZkIDx3Yj1b9u2nqzdR6qGIiEiZ2N7aBfTVBLd3JTLupwTj2KrAghreZDlHIknOrGwqAB7J0oVoJKLSCJFRNOYmywHMnViHc7Bpz34OntxQ6uGIiEgZaO3sBfp6A3d0e/fjkfwZ4VMOmcyh0xqZ7bfmTDpvUY1c5Q8jvcRy6tgqjRAZPQVlhM3sfDN73szWmtmVOR7/FzN70v95xswSZjah+MP1zJ1YD6A6YRGRHMrtmj3aqmNRANq6El6mNytwDd6d0VzDly85glg04tcIk39lOf8dcyQXvPBKIxQIi4yWQQNhM4sC1wAXAIuBS81scXAf59x/OOeOds4dDXwauM85t3sExgt4GWFAdcIiIlnK8Zo9kpxz/balMsLtXb05VxALBrnBMoSIv8RyvvZp6dKIkewaEVXXCJHRVEhGeBmw1jm3zjnXDdwAXDzA/pcC/1eMweUzsb6KhuqYAmERkf7K7po9kpKBOPjkQyYCfZ0gvEC4/9tcMI4NBrzmL6jhnCOS490xPVluJDPC/qQ9ERkdhQTCM4GNgfub/G39mFkdcD7w2zyPX25mK8xsxY4dO4Y61uBx1EJNRCS3srtmj6SEHwn/v3MX8ov3nQD0ZYTbunr79RAG7z0kFWxmBsVex4hEnq4Ro5ER1oIaIqOrkEA4119k/++iPK8DHsz3FZtz7gfOuaXOuaWTJ08udIw5zZukFmoiIjmU5TV7pCT90ohooASiOhAI58oIQ19Qmxnwmt8+LXewm8oEj2zXCNUIi4ymQrpGbAJmB+7PArbk2fetjNJXbHMm1HPXc9tIJHM3PhcRCamyvGaPlFRGOBg8ZtQIx3K/P0QMEmQGwuka4WTuleWio9A+7XVHzWBCfdWIHV9EMhUSCD8GLDCz+cBmvAvn27J3MrNxwOnAO4o6wjzmT6qjJ+HYtKcj3UVCRETK85o9UhKpjHCkfyDc1pWgqTb325zXosxldJAILrGcK9hNJZdHMhD+wJmHjNixRaS/QUsjnHO9wAeBO4DVwI3OuWfN7AozuyKw6xuAO51zo1K4u3BqIwBrXm0djZcTERkTyvWaPVKSfkY4mNnta5/W06+HcEoqlo1kdI3oW2I5V42w5SynEJGxrKAFNZxztwG3ZW27Nuv+T4GfFmtggzl0WiNmsHprC69ZMm20XlZEpOyV4zV7pKS6RgSztKka4c6e5AClEf2D2oh5NcL5VpYbjdIIERldY3KJZYC6qhjzJ9azemtLqYciIiIlkkhnhPu2pUojgAImywU2+jXC+VaWi6Ynyx3YmEWkfIzpP+fDpjexeqtKI0REwirVNSKSIyMM+QPhVMI3OyPsHPnbp6UD4TH91ikiAWP6r/mw6Y1s2N1Ba2dPqYciIiIlMFDXCCBnH2HoC4CD8a7hBdb5V5aj32uJyNg2xgPhJgCe14Q5EZFQSpdGBLtGRIMZ4fzt0yDHEsv4K8vlap82Cn2ERWR0jelAeJEfCKtOWEQknNILagS7RsSj6dtDWVDDzLyV5ZK5SyOOnTOeD5+9gGPmNBdj6CJSBgrqGlGuZoyroakmxmplhEVEQilX14jMjHCeQDiSozQi0Ec4kiPrWxOP8vFzFxZh1CJSLsZ0RtjMWDyjiWc37yv1UEREpARSpRHBgDZYDjFYaUSuyXJejXDxxyoi5WdMB8LgfVX17JYWOrp7Sz0UEREZZckcK8uZWXrC3JBKI+hbYlmLZoiEw5gPhI+fN4HepOPJjXtLPRQRERllubpGQF8LtXhs4EA4GCenFtTIt8SyiFSeMR8IHztnPGaw4uU9pR6KiIiMslxdI6AvEM7XPi0VN1vGZDkvCE643CvLiUjlGfOB8Li6OIdObeSxl3eXeigiIjLKcnWNgL4AOH+NcO6uEan2aXmeJiIVZswHwgBL543n8Vf20JtIlnooIiIyilJdI7IXe0u1UMtfI5z5X0h1jXBe1whlhEVCoSIC4ePnTaC9O8EatVETEQmVdGlEnoxwbAiT5SJ++7REUqURImFREYHw0nkTAFih8ggRkVDJ1TUC+pZZrspT42DpjHCwa4S3oIZzjjzxs4hUmIr4U5/ZXMvM5loe04Q5EZFQGbRrxGAZ4YyuEd4Sy/lWlhORylMRgTB4dcKPvbwb52cHRESk8iXzdI0YVh9hM5JJl3dlORGpPBUUCE9ge2sXG3fvL/VQRERklCQGKY3I10fY8k2Ww6sTVkZYJBwqJhA+ft54ALVRExEJkXTXiKy4NTVZLl+NcCrQtYzJct4SywnntMSySEhUTCC8cEojjTUxVryiQFhEJCySebpGDNo+zd8czZgs502+SzrXr+ZYRCpTxQTCkYixdO54TZgTEQmR9GS57NKI4bRPi3gZ4aTap4mERsUEwuDVCa/d3sb21s5SD0VEREZBqka4Xx/hQdunpUojAtvoywirNEIkHCoqED538VQAbn1qa4lHIiIioyGZJyM8ePs0/7+RzK4RDi8Yzj6eiFSmigqEF05tZOHUBu58dluphyIiIqMgNVlu6IFwqjQiuM1bYlkry4mER0UFwgCnLpjMyg176OxJlHooIiIywvpKIzK3D95HOPXfYEbYa52mleVEwqPi/tRPOWQS3b1JVr6iSXMiIpUub9eIVI1wbOAa4UhW+7Skc377NGWERcKg4gLhZfMnEIsYD67dWeqhiIjICMvbNaLgjHDfNm+yHCQSqhEWCYuKC4Trq2McPbuZvyoQFhGpeHm7RkSHt8QyQG/SEVMgLBIKFRcIA5y2cDJPb97HrrauUg9FRERGUN6uEekFNQZeWS67RhigN5nM6CYhIpWrYgNh5+BvL+0q9VBERGQE5esaMamhmmjEaKqN53xeKui1wLtgKijuSSgjLBIWFRkIL5nRRFUswqqNe0s9FBERGUGp0ojsuW1nL5rCPf/vdKY01uR8XirojWZMlut7PBqpyLdHEclSkX/p8WiEw2c0sWrT3lIPRURERlC6NCIrEo5EjLkT6/M+L3f7tL7b2ccTkcpUkYEwwLL5E3liw152t3eXeigiIjJC8nWNGEwk1xLLgduxPLXFIlJZKjYQvvjoGfQmHbc+taXUQxERkRGSTHWNGGIgnKuPsJHZU1hEKl/FBsKHTW9i0bRGfvfE5lIPRURERkgiT2nEYHL1EQ7e1mQ5kXCo2EAY4A3HzOSJDXt5eWd7qYciIiJDcONjG9m6b/+g++XrGjGY9GS5SLBGuO9xLaghEg4VHQi//ugZmMEtq1QeISIyVuzr6OGTv32K367cNOi+yTxdIwaTagphlrscQoGwSDhUdCA8fVwtS2Y08eBLWmVORGSs2NHWCUBrV++g+w63NMLMyI51TYGwSOhUdCAMsHz+RB7fsJfOnkSphyIiIgXY3uqtCto+lEB4iIFr1KzfhLjgPdUIi4RDxQfCJxw0ke7epBbXEBEZI3a2eW0vO7oGT2AkncMsM5tbiIj17wyRMXFOgbBIKFR8ILxs3gTM4JH1u0s9FBERKcAOPyPcVmBGeDiLX0TMyF48LhhMKyMsEg4VHwiPq4uzaFoTj6zfVeqhiIhIAXa2+aUR3YMHwkk3vJ6/lqM0IqKuESKhU/GBMMDy+RNY+coeunuTpR6KiIgMoi8jXFhpRHZmtxC5SiPQZDmR0AlFIHzCQRPo7Eny9Oa9pR6KiIgMIp0RHuHSiOynaUENkfAJRSC8bP5EAB5epzphEZFyt2OIXSOGM7EtEsk1WU5LLIuETSgC4Qn1VSyc2sDD61QnLCJS7oYyWS7p3LDKGMys3/My2qdFFQiLhEFBgbCZnW9mz5vZWjO7Ms8+Z5jZk2b2rJndV9xhHrjl8yey8pU99CRUJywilW0sX7OTSceudq99WntXL85fOS7v/m54pREzm2uZ2VybsS1zZblQ5IlEQm/Qv3QziwLXABcAi4FLzWxx1j7NwPeA1zvnlgBvKv5QD8zygybQ0Z3gmc37Sj0UEZERM9av2Xs6ukkkHdOaakg66OwZOHmRSA69hzDAP59xMH/4wMmZG4NdI1QaIRIKhXzkXQasdc6tc851AzcAF2ft8zbgd865DQDOue3FHeaBWzZ/AqB+wiJS8cb0NXtbi1cWMX9SPTB4eUQy6YgOI3lrZv1qiyPqGiESOoVcPmYCGwP3N/nbghYC483sL2a20szemetAZna5ma0wsxU7duwY3oiHaUpjDQdPrucR1QmLSGUbc9fsRNKxb38PABt2twNw2PQmYPAJc4lhlkbkohphkfApJBDOdTXILtqKAccBFwGvAT5rZgv7Pcm5Hzjnljrnlk6ePHnIgz1Qyw+ayIqX96TXphcRqUBj7pp9w2MbOO3r99Ldm2TD7g4ADpveCBSWES7WcsjBsmB1jRAJh0IC4U3A7MD9WcCWHPvc7pxrd87tBO4HjirOEItn+fwJtHb18tyWllIPRURkpIy5a/b6He3s29/DzrYuNuzuYFxtnBn+RLaCMsJFCoQt8BlCfYRFwqGQQPgxYIGZzTezKuCtwM1Z+/wBONXMYmZWBywHVhd3qAduud9PeMUrqhMWkYo15q7Ze/2yiB2tXWzYvZ85E+qor44Bgy+znHTFm9gWPIxqhEXCITbYDs65XjP7IHAHEAV+7Jx71syu8B+/1jm32sxuB54CksB1zrlnRnLgwzG1qZqmmhhrt7eVeigiIiNiLF6z93Z47dJ2tHaxYVc7S2aOo74qCgy+zHIy6fqtEDdcmiwnEj6DBsIAzrnbgNuytl2bdf8/gP8o3tCKz8w4ZEoDL+1QICwilWusXbP3dngZ4VdbOtm0Zz8XHDG9LyM8WGlEsoilEVpiWSR0Qtcx/ODJDazd3l7qYYiIiG+PnxF+etM+epMuszSigBrhYk1sy1hiWYGwSCiELhBePKOJnW1dbN67v9RDERERSLdOe8yfvzF3Ql2gNKKQPsIj0D5NgbBIKIQuEE4trPHoevUTFhEpNedcujRi3Q7v27pDpzUSi0aoiUdGt2uEaoRFQid0gfCiaU0018W5/4WdpR6KiEjotXX10hvo7T6tqYaJDdUA1FfFaO8eZLKcK17PX3WNEAmf0AXC0Yhx9qKp3L16Gz2JgdewFxGRkZXKBqeC0CUzmtKP1cSjdPbkD4TXvNpCbyJJsWJWdY0QCZ/QBcIAZy6aTEtnL6u3amENEZFSWb+znYf9Ze/nTqgDMgPh6niErp7cCYuNuzu44FsP8LeXdhUtaA0epli9iUWkvBXUPq3SHDd3PAArX9nDkbOaSzsYEZGQOvM//5K+vWBqIy/v6mDxjHHpbbUDZIQ37unA+RUVI1EaEYuEMk8kEjqh/EufPq6WGeNqeHzD3lIPRUREgOXzJ1Abj3LsnOb0tpp4lM7eBDvbuti6L7PTz47WrvTtEZksF1VGWCQMQpkRBjhm7ngef2VPqYchIiLA64+ewTtOmEtNPJreVhOP0NmT5Jxv3sfejh5e/upF6cdGJBAO3FZphEg4hDIjDHDcnPFs3ru/X5ZBRERGR6pXMEBzbVVGEAxQE/NKI1IT6ra3dqYf2x4IhG0EFtTQZDmRcAhtIHzawskA/OHJLSUeiYhI+CSSLqM1WlWs/9tRdteIh9ftTt/OyAgXKWbVEssi4RPaQPiQKQ0snz+Bnz748oDteUREpPha/NXkzjx0Mv/v3IU596n2SyMOmlQPkO4wAZnZ4eJ1jdASyyJhE9pAGOADZx7Cqy2d3Ltme6mHIiISKnv9QPj1R8/gQ2cvyLlPqmtEV6/XQu2RYCDc0pcRLnbXCGWDRcIj1IHw8oMmEIsYT2/eV+qhiIiEyp6ObgCa66ry7pMqjejo9pZZDpZDbB+RyXJW1OOJSPkLbdcIgOpYlIVTGxUIi4iMsn3+BLjm2njefWriETp7k/T4SzB3+pnhrt4E+/yMMhSvjCF1GAXCIuER6owwwDFzmnliw166elUnLCIyWvbuLyAjHIuSSDq6e5OYQXdvkkTSZWSGoZilEcoIi4RN6APhcw6bSltXL8d96c+41DJFIiIyova0F5IR7munNrHeC5i7ehPpQDjVaaJYXSOUERYJn9AHwicfMgmAtq5edrd3l3g0IiLhsHd/D2bQNFAgHOgzPN7PHHf2JGnp9GqGpzRWA8UrjdBkOZHwCX0gXBWL8JN3Hw/A+p3tJR6NiEg47OvopqkmPmD2tSbQW3h8fSoQTqRbXk7wtxVrFTiVRoiET+gDYSDdo3KdAmERkVGxd38PzXX5s8GQWRoxwc8I7w8EwqkscbH7CGt5ZZHwUCAMzGyupTYe5eGXdg2+s4iIHLA9HT0D1gdDViDc0JcR7urxukekMsLFWmI5dZRosYqORaTsKRAGYtEIly6bwx9WbVF5hIjIKNjX0T1gxwjw2qelTAjUCHf6XX5SGeVEMlmUMaUywrGI3hpFwkJ/7b4rzjiIeNT4/n0vlXooIiIVr5DSiNpARjhVI9wVrBGuS3WSKE4gnEosq0RYJDwUCPumNNZw0REz+PXKTVxz79r0SkYiIlJ8e9q7h1YaUe/tuz9QGpEKjruLHAgrIywSHvprD3jb8tkkko7/uON5/rx6e6mHIyJSkRJJR0tn79BKI+q9Vmmp0ohoxGis8RZHLVpG2K8SLlY7NhEpfwqEA46bO4FvvfVoADbsUq2wiMhIaPGXRx6sNKI61n9BDa99WpKaWCRdOlGslUFTiWD1ERYJDwXCWS4+eiZTm6q59/kd7GzrGvwJIiIyJHsLDISDpRGpfTt7vRrh6niUuio/I9xT3Mly6iMsEh4KhHPoSThWvrKH8/7rfhJJLbssIlJMezq8VTybawcujaj1V5aLR43GGr9GuDuQEa5KZYSLVRrhUSAsEh4KhHP46DkLANjd3s3qrS0lHo2ISGXZ11FgRthfWa42Hk3XC3f1ejXCNfFo0UsjtLKcSPgoEM7hnSfO429XngXAw+u0yIaISDHt3e9nhAeZLBeLRohFjLqqGFXRCGapBTW80oiiZ4TTXSMUCIuEhQLhPGY013L4zCZuXLER51QeISJSLHva/YzwIO3TwKsTrquKYmbUxqN9k+XiEar9jHGx2qepRlgkfBQID+CyE+bywrY2bl61pdRDERGpGHv392AGTQUFwn21wDXxqNdHuDdBTSyaDoR7izSXQzXCIuGjQHgAr1kyDYCP3PAkL25rLfFoREQqw76Obppq4gUFnNUxLyMMXs1wZ08ynRGeUF/F5acdxPXvWVaUcfUtsaxAWCQsFAgPoLmuiitOPxiAVZv2lXg0IiKVoZDllVNqq6LU+m3SatKlEd5kOTPjqgsP47DpTUUZV98SywqERcJCgfAgPnHeQqpjEXWPEBEpkj0dPQXVBwOcvnAypxwyEUgFwn1dI4otPVkuqkBYJCwUCA8iFo2wZEYTf3p6K7vbu0s9HBGRMW9fR/egHSNSPvvaxVx+mvfNXE08kp4sl6oPLqZUJlgZYZHwUCBcgM+/bgnbWrv45G9W0d7VW+rhiIiMaUMpjQjKLo0oNrVPEwkfBcIFOGp2M+89ZT5/Xr2dy3+2omitekREwmhPe3fBpRFBNfEonb0JunqSVMdHLiMcjeitUSQs9NdeoKsuPIyvv/FIHly7i9d+5wGVSYiIDEN3b5KWzl4mNlQP+bm18SgdXQm6E0lqYiOQEfb/G9U7o0ho6M99CN68dDbXvO1YXt7VwZf++BwvbmvVYhsiIkOQSiJMbCisRjioOh5h335vMY6RKY1QRlgkbPTXPkQXHTmdd580j5ue2My5/3U/tzy1tdRDEhEZM3a2dQEwsX7oGeGaeDQQCBf/7Us1wiLho0B4GF5z+LT07Sc27CnhSERExpZdfkZ40jAywjWxaHoVuZHICGuJZZHwUSA8DAunNqZvq4uEiEjhdqUywsOpEa7qe8saiYxwKv5VICwSHgqEh6GhOpa+/dcXd/LyzvYSjkZEZOzY1Tb8GuG6qr5r78hMllNGWCRsFAgP07cvPYY3L53Fln2dXPK9B+nsSZR6SCIiZW9nexdV0QiNgYRCoQ6Z0pC+PRLt08w/pAJhkfAo6EpiZueb2fNmttbMrszx+Blmts/MnvR/Plf8oZaX1x81g6+/8Siufcdx7O3o4Z4120s9JBERoLyv2bvaupnYUJXu0DAUR81qTt8eyfZpmiwnEh6DfiQ3syhwDXAusAl4zMxuds49l7XrA865147AGMvauYunMrmxmm/c+Tw7WruYPq6G85ZMG/yJIiIjoNyv2bvauoZVFgEwtamvrrh6BCfLaYllkfAoJCO8DFjrnFvnnOsGbgAuHtlhjR3RiPHaI6fz0o52Pn/zs1z+s5WlHpKIhFtZX7N3tXcPq3UakJFFVvs0ESmGQq4kM4GNgfub/G3ZTjSzVWb2JzNbUpTRjREfPXthqYcgIpJS1tfsVGnEcB00ub6Io8kUjRixiFFbVfxss4iUp0IC4VwfjbOXU3scmOucOwr4DvD7nAcyu9zMVpjZih07dgxpoOVsXF2cWz54Svp+R7daqolIyZTtNds5x862LiYNo3VaynXvXMprj5yeMXGuWKpjUX723uW8aensoh9bRMpTIYHwJiB4VZgFbAnu4Jxrcc61+bdvA+JmNin7QM65Hzjnljrnlk6ePPkAhl1+jpg1jm9fegwAT23aV+LRiEiIle01e39Pgq7eJOPrDiQj3MB333Ys1SMwWQ7gxIMnMq42PiLHFpHyU0gg/BiwwMzmm1kV8Fbg5uAOZjbN/OItM1vmH3dXsQdb7o6Z3UxNPMInf/MU96zZxt6O7lIPSUTCp2yv2e1dXpvJhpqht04TERkJgwbCzrle4IPAHcBq4Ebn3LNmdoWZXeHv9kbgGTNbBXwbeKtzLvuruIo3e0Id173zeDbs7uA9P13BZ37/TKmHJCIhU87X7NRKnPWqwRWRMlHQx3L/q7PbsrZdG7j9XeC7xR3a2HTKgkm8bfkcfvnIBv741FbWbr+fj56zgPMPn17qoYlISJTrNbvdnz9RP4zFNERERoJWlhsB/37J4fzXW44CYM2rrVzx88eZd+WtPLVpb2kHJiJSQqnSiPoqBcIiUh4UCI8AM+MNx8zi5g+ezINXnpWeIf326x5hW0tniUcnIlIafRlhlUaISHlQIDyCjpzVzMzmWu746Km86bhZtHb2ctG3/8pjL+8u9dBEREZdukZYpREiUiYUCI+CiQ3V/MebjuK6dy5lZ1sXX7ltdamHJCIy6jr80og6TZYTkTKhQHgUnbN4KldduIgnNuxl/c72Ug9HRGRUtfkZ4QZlhEWkTCgQHmUX+N0j7l69rcQjEREZXalVN+s0WU5EyoQC4VE2e0Idh0xp4P4Xd6a37WnvZt/+nhKOSkRk5LV1JaiKRqiK6a1HRMqDrkYlcOJBE1n58m52t3fz8s52zv/W/Rz1b3eyq62r1EMTERkxHd291KljhIiUEX0/VQLL5k/gZw+/wrFfuitj++qtrZyyoLpEoxIRGVntXQn1EBaRsqKMcAmcu3gq5xw2td/2d/zoEf7zjufpTSRLMCoRkZHV3tWrHsIiUlYUCJdATTzKd992DO84YU6/x75771puemIzz21pKcHIRERGTnt3r3oIi0hZUSBcIjXxKF++5Ij0/b87ZiYfPnsBAP/ym6e48NsPsFM1wyJSQdq7elUaISJlRVekEvvjh07hT89s5RPnHYqZccOjG9je6gXANz+5BQdcdsJczbIWkTGvozvB5EbNgxCR8qFAuMQOnzmOw2eOS9+f3FidDoS/+MfnAIgavOvk+SUZn4hIsbQpIywiZUZpxjLTXBcHIBax9LYXt7fR3asJdCIytnV0J9Q+TUTKigLhMvOVNxzB9e9ZxjtOmJve9tjLu1n8udu5+k+rSzgyEZED09alyXIiUl4UCJeZuRPrOW3hZJbMaEpve2FbG71Jx/fvW6cV6ERkTOpJJOnuTao0QkTKigLhMvWGY2ZyywdP4VPnL8rY/l93vcC2ls4SjUpEZHg6uhIAygiLSFlRIFymYtEIR8wax/xJdeltC6Y08NO/vczbfvgwzjmccyUcoYhI4dq7ewGor1KNsIiUDwXCZe6QKY0ALJzawP+84ziqYxFe2tHOAy/u5ISr7+ayHz3C5r37SzxKEZGBtXR6ZV2NNfESj0REpI8C4TJ3yJQGbvvwqdzyoVM4ZEoDT37uPMbXxfnALx5nW0sXD7y4k6/+aU2phykiMqAdfltI9REWkXKiQHgMWDyjieqY93VibVWUj5y9gNYu72vG+ZPq+fNz23h1n1c3nEg62rt6uf2ZrTy5cW+phiwikiG1UuakhqoSj0REpI8C4THonSfOS9/+9luPIWLwrp88SmdPgk/99imWfP4Orvj541xyzYPp/Tp7Ejy1ae/oD1ZEBGWERaQ8KRAegyIR41eXn8B/vPFIjpg1jv9801GsebWVe9ds5zcrN2Xsm5pQ99nfP8Prv/ugOk6ISEnsaO2iJh6hQV0jRKSM6Io0Ri0/aCLLD5oIwNmHTaW+Ksr7f/F4v/3++RePs2BKA7/2A+Td7d1MbaoZ1bGKiOxs62ZSQzVmNvjOIiKjRBnhClAVi3Du4qn9tscixt2rt/Pte9amt+1p7x7NoYmIAF5GWGURIlJuFAhXiC+/4Qjee8r89P3ZE2r5+fuW051IZuy3q72bTXs6eHbLvtEeooiE2M62LiY3KBAWkfKiQLhCNFTH+OxrF7PyM+cAsGhaE8vmTei3373Pb+eUr93LRd/+K5/8zSp+9/gm1Q2LyIjb0drFJGWERaTMKBCuMBPqq1g0rZHTFk4mEjH+9JFT+ZfXHJp+/HePb07fvnHFJj5+4yqWf+VuXt7ZXorhikgI9CaS7O7oVkZYRMqOAuEKY2bc/tHTuOyEuQAcNr2Jvzt25qDPe9P3H+LLf3xupIcnIiG0u70b51BGWETKjgLhEJhYP/ibz47WLq7763o6exJ591m9tYWXdrQVc2giEgLbUz2ElREWkTKjQDgEqmIRrrpwEbd++BRWff48ls3PrB0+6eCJ6duLPns7Xb0JNu7uYMve/enta15t4YJvPcDZ37hv1MYtIpVhe6s3D0FdI0Sk3CgQDonLTzuYJTPGMa42zo3/dCK3fvgUjpnTDMCVFyzi7EVT0vte/7dXOPXr93LSV+/hgRd30NmT4Pz/fqBEIxeRsW7LXi8QntGsHuYiUl60oEZILZkxju+9/Vj+9PSrHDFzHD961/E453jv/67g329bnd7vsh89yqXL5mQ8d1dbFxMH+YozmXREImqcLyKwdd9+ohFjSqMCYREpL8oIh9j0cbW855T56ZWezIxvvvkoGmsyPx/ds2YbAHMn1gHwldvW8B93rOFfb3qaZNL1O+6TG/dy0FW3sfKV3SN8BiIyFmzd28m0phqi+nAsImVGgbBkaK6r4s6PncaxftkEwLYWb6LLV95wBOccNpXfPr6Ja+59iV88siHn5Ln7X9gBwM1PbgFgf3eC2595deQHLyJlacu+/Uwfp2ywiJQfBcLSz/Rxtfz2/SfxP28/ln+98LD09hnNtVx14SKiEeOgSfUA/Pttq/st27zbv79ln1cX+OVbn+OKn69k1ca9o3MCOXT2JGjv6i3Z64uE2dZ9nUxvri31MERE+lEgLDmZGRccMZ33njKf0xdOZnJjNdPH1XDQ5AZWfuYc/vzx05ncWM1fnt/BWd/4S0aHiRe2tQLwxIa9OOfSWeMdfgulUrjkmgdZ8vk7Svb6ImHlnGPrvk5mKCMsImVIk+VkQJGI8b/vWZYx+a25rgqAm/75JB57eTcf+9Uq/vriTo6Z00xLZw8PrdtFY3WMnW1dvPd/VxDxa5C37tuf93VG2ppXW0v22iJhtqu9m+7epEojRKQsKRCWguTqADFrfB3Tx9XysV+t4pO/fSq9ffq4Gr711mN48/cf4p4129Pb1+/sIJF0RCOWEVh39iTY351gfH0VNzy6gcmN1Zx92NQROQ91sxAZXalvi1QaISLlSIGwHJBcs8A//7rFLJs/gf96y1F87Fer0tt//OB6XtzeyukLJ3P9Q6/w6ytO5McPruf7960DYP3VF/K129dQVxXjzEOnjEjA2tLZk85oi8jIS/cQHqdAWETKjwJhOWA/edfxbGvpZHJjNdc9sJ4z/cU53nDMLAzjiQ17mNFcy9V/WsMDL+7kgRd3ArD8K3dnHGft9jb2dPSwp6OH+17YwbFzxjOuLg7AV/zexlf5k/ecc+m2bwNJZaBT9nQoEBYZTXs6vMmzExv0dyci5UeBsBywMwOr0mWXNFxyzEwuOWYmAMfMGc+bv/8Qi6Y10tbVy6Y9+7noiOnc+vRWAC6+5sH0897908cA+PIlh3P2YVP4wf1e1vjK8xfR1ZvkLT94iNkT6njH8rnUVkU5enZzv3H94cnNfOSGJ3no02elt+3p6GY+9cU5cREZVEd3AoD6Kr3diEj50ZVJRs3x88bzP28/lhMPnsjzr7byxT8+xxcvXsJVFx3GyV+9J/2Gecahk/nL814v4s/8/hm+cls0fYzLfvwIU5tqeGrTPp7atI9bn/KC6HVfubBfKcWdz3oLgfz0wZfT27JbvYnIyOrw2xbWVkUH2VNEZPSpfZqMmlRLtua6KpYfNJFbP3wqExuqmdlcyxdet5h5E+v44sVLOOngiRnPSwXIAA+u3cXvHt/MqQsmZezzkV89yeXXr6Czp2/fOv+N95ZVW9Lbdg0hEH7opV1s3N0xpHMUkUwdPQniUaMqprcbESk/ujJJWXjXyfP5y7+cyTtPnMfs8d5SznWBDNK7TprHXz91JgCXHD2Dn713Of/ymkPTj9+yagt3PreNR9bvpq2rl9ue3sqL273+xamFPQAefmlXQeNp6+rl0h8+zKU/fPiAz00kzDq6eqlTWYSIlKmCrk5mdj7wLSAKXOec+2qe/Y4HHgbe4pz7TdFGKaFy7uKpfOr8Rbz9hDlsb+lialM1jTXepLn7/uUMZvmB8gkHeZnjfzhxLqcfOpn3//xx/uHHj2Yca8a4Gvb3JIhFI8xoruWu1dvo7k3y9Oa9xKMRjpzVzJpXW5jaWMOPH1zPxPoq3nL8HL57z1oANu3p632cmqDX3ZvEDOJRfY6U8lRO1+yO7kTGh1oRkXIyaCBsZlHgGuBcYBPwmJnd7Jx7Lsd+XwO0fJcckFg0wvvPOBiAJj8ATpk7sW+i23Fzx/PAJ89k1vhazIxj54znoXWZGd+zD5vKly45HIA/P7eN912/gn+96Wl+vXITAA988kzO/+8HMp5zy1NbWfnKHgBq41F2tHZx/L//GYCrLlzEr1dsoioW4dYPn9pv7J09CVr295BwjulqFyUlUG7XbAXCIlLOCklpLQPWOufWOee6gRuAi3Ps9yHgt8D2HI+JjIjZE+rSbdQWTW8E4D/fdBSLpnm3j5nTnN73lAWTqI1H00EwwKlfv7ffMZ/etI9Ll83mo+csYH9PIqPG+Dv3rOXF7W08u6UlvVJeTyKZfvzdP3mMZV+5mxOvvoeObm+S0MpX9nDjio3pfV7d18nmvUNfZe/bd7/I7c+8OuTnSeiU1TW7o1ulESJSvgq5Os0ENgbubwKWB3cws5nAG4CzgOPzHcjMLgcuB5gzZ85QxyoyoI+es5AJdVW87qjpHDS5nr88v4M3+K3bAGriUR7/7Llc+O0HWL+zPb39E+ct5D/vfAGAB688i4n1VdTEozyzeR///ecXue6Bdel9Wzt707dPvPoeTjp4In97aRdHzW7m1/90YkZG+pePbODLt65O37/k6JmYwQlX3011LMLzX74AgKv/tJo5E+p4+/K5ec9txcu7+eZdLxCNGC995cIh/V66ehPEIxGtqBceZXXNbu9OqGOEiJStQjLCud49Xdb9/wY+5ZxL5Ni370nO/cA5t9Q5t3Ty5MkFDlGkMONq43zo7AVUx6IcO2c8Hz93Yb9FN2qronz5ksNJbf7NFSfyj6cdlH58ZnMtNXHvTXvJjCamNlVnTLbL9jd/8t2qjXv5v0c3ZDwWDIIB3vGjR7h7tZd86+pN0t7Vi3OO79+3jn+96ZkBz+1hP8BOJB272rrS2//rrhe4/ZmtdPYkaOvq7fe8RNJx6Gdu5+o/re73mFSssrpm7+9OUK9AWETKVCEZ4U3A7MD9WcCWrH2WAjf4Qcck4EIz63XO/b4YgxQpppMPmcT6qy/K2PbG42Zx/LzxGdvMjP9+yzH8esVGPnDWITy2fjdX/u5pAH767uPZ29HDl299jp1t3VTFInz+5mcHfN1H1++mK9De7S0/eIjPvXZJ+v7Wffsz6orX7WjjrG/cx43/dCKb9/YF48d9+c/88h+X01xbxbfufhGAw2c28czmFl7+at95JZMuvSLfDx9Yz8mHTOKMQ/sWP8lne2snn/rNU3z9jUcxubE65z7rdrQxsaGacbXxnI9LSZXVNbu9u5c5VXXFPqyISFEUEgg/Biwws/nAZuCtwNuCOzjn5qdum9lPgT8qCJax5D/fdFTO7ScePJET/b7Gs8fXcctTWzh70dR0QLlgagN/fGorTTVxvnb7Gprr4vzfP57A/En1PLh2J929SQ6d1sjvn9jMt+9Zy6pN+zh/yTRe2tHGM5tbePP3H+p7ravv4fLTDuLR9bu57IS5bNzj9TD+7r1reclvBZfypT+u5qhZ49L3n9ncAmQuKX3Pmu386K/r0/u86yePZQTK+Xz77he59/kd/O7xTfzT6Qf3e9w5x1nfuI9F0xq5/aOnDXo8GXVldc3er8lyIlLGBg2EnXO9ZvZBvJnFUeDHzrlnzewK//FrR3iMImWhKhbhF+87IWPbkhnjWDJjHLvbu3llVzuXnTiXw6Y3AZnLTX/8vENZOm8CHd0Jzjh0MknnWPy5vsn6Fx05nVuf2ppeSvrJjXvTj93/grfK3rFzmvnxu47nlqe28tnfP8PqrS39xvip3z7FO06YSyxivO/6FUM6v47uXn75yAZ+/rBX4hELtIfb19HDzx95hcOmN/Lwut0ArHm1lfauXpLOpdvbjQRNthqacrtmq2uEiJQzcy67dGx0LF261K1YMbQ3apFK8l93vcC37n6Ru//f6Rw8uYEXtrVy3n/dn3783MVT2bCrg+e3tQKwbP4EbvynE2np7OGC/36AzXv3c+ER07jt6cI7SVx05HTevnwOz21p4X2nerXR+zp6aO3q4ZSvZXbQ+KfTDuKgyfWcsmAyH/vVkzy6fnfOYwYn/g3XZ37/NOctnsZpCzPrUFMt72798CksmdGXAU8mHTvaupjaVHNAr3sgzGylc25pyQYwyoZ7zV7wr7fxvlMP4lPnLxqBUYmIFCbfNVtpFpES+cjZC3j/GQenJ+ctnNrIz967jCmNNdz61BY+dPYCImb0JJL85fnt6UCwqSbOg1eeRVdvgqpohETS8cMH1vO129dkHL+5Ls4fPnAyl1+/Mh1M3/rUVm59aisAv39yM29eOpvP/SGztvnDZx3Cj/66nsc37OH7969jMF29SV7d18m0cV5Q2t7Vy7/d8iwfPnsBu9u7+drta7juncdTWxXlb2t38sent/LvlxyOmXHTE5u467lt3Pb0q9zw6EbWZnXEuO0Zb6x3PLstff43r9rC1betZuu+Tn59xYkcP2/CkH7vMnq6e5P0JBx1cWWERaQ8KRAWKZFIxKiJZAYIpy7wMqKHTutbPjoaiXL+4dP7Pb865j03FjXef8bBHDlrHHs6ugFIOjhq1jjmTqznto+cyuqtLfz4r+v53ROb089/ZnMLz2zuP8Hv9EOn8PC63Tz6cu4McMqyeRPS+5xw9d0cP288py+cTF1VjBtXbOLGFZuY2lTNtpYu3vC9B7nwiOl88y6vTd27TprHuh1tfOxXq9LHq41H2dvRjXMwvr4KgG0t3iTBb9/9Ig3VUdbtaOdXKzZS75dKPLVpX0YgvL21k8kN1bR29bJmayuLZzQRNaO2Ksr6ne386ZmtvP/0g/t1E5GRsb/bmxxaV623GhEpT7o6iVSIkw+ZlHN7NGIcPnMc33zL0XT2Jrjt6Vc5dk4zj2/YC8A333wUH7+xLyBdMLWBY+eO7xcIv++U+VznT777n7cfy0mHTOKqm57m1qe2poPix17ek/GcbS1eq7c1r7ay5tXW9PZ/vH4Fr+zqyNi3tauXo794F0fNGscfPngKm/fu56GXdrFgSgMvbm/jK7d5Ge941Hjo02dxytfuZd2OvkmE97+wg3f++FEWTWvMeK2FUxu482On89EbnmDVpn2s3trKf7zxSAD2dHQztbFGPZZHSEeP19JPNcIiUq4UCIuEyDfedDRX/12ScbVx3vvTx1h+0AT+7thZnL1oKpv2dtBUE6epJs77zziYzXv3c/6SaRw1exztXQkaamL8/JFX+OE7l6Yz19e87Vi+9ve9NFTHWLu9lat+9wyYl/H9+I1P0tnTt+re818+n8179vO2Hz7SLwgOWrVpHzc+tpF/u+VZHPCdtx3Dqo17eWTdbppq41x89Awaa+IcNLmeXzyygbqqKNWxKL9/0st2B4NggBe2tfEvv17Fqk37ALhl1Rb+8vx2f6KfVwry8fMOzR6GFEF7l58RViAsImVKk+VEpGBdvYl0ScZgtrd28t171jJnQh1nHzaV+ZPqAW9xkO/95SWOnt3Mt/0+yB8+ewHHzR3PgikNnPTVewCvVOL7lx3XbwJdSmqyYaGmNFZz7WXH8Xff+1vG9u++7Rhee+SMgo+Toslyg3t60z5e992/8sN3LuXcxVMHf4KIyAjRZDkROWCFBsEAUxpr+OLFh/fbfsJBEznhoIn0JJLUxCO8eelsJtZXpet2q6IRuhNJbv/oqcydWJ/3+B87dyEXHz2Ds75xH+AF04+/soe/rt3J7R89lYVTGnHAnc++ykkHT6KmKkJ1LMoJB03gmc0t6ZX4Uu3upPjau73fsVaWE5FypUBYREoiHo3wz2cc0m/7bR85hW0tXQMGwSkHTW7gU+cv4vSFk1k8o4nWzh46e5IZK+JdcETmRMOfvGsZsahx8lfvYXtrF/MKeB0ZntRkuVoFwiJSphQIi0hZOWRKI4dMaSx4//ef0bf6XWNNnMZBWgungrJbPnQKm/bsT6/EJ8WXzgira4SIlCldnUQklKY21ZR0QY4w6EhlhNVHWETKVGTwXURERIauo0sZYREpbwqERURkRHT0qH2aiJQ3BcIiIjIijp7dzBWnH0x1TG81IlKe9H2ViIiMiJMOnsRJB+de8VBEpBzoY7qIiIiIhJICYREREREJJQXCIiIiIhJKCoRFREREJJQUCIuIiIhIKCkQFhEREZFQUiAsIiIiIqGkQFhEREREQkmBsIiIiIiEkgJhEREREQklBcIiIiIiEkoKhEVEREQklBQIi4iIiEgoKRAWERERkVBSICwiIiIioaRAWERERERCSYGwiIiIiISSAmERERERCSUFwiIiIiISSgqERURERCSUFAiLiIiISCgpEBYRERGRUFIgLCIiIiKhpEBYREREREJJgbCIiIiIhJICYREREREJJQXCIiIiIhJKCoRFREREJJQUCIuIiIhIKCkQFhEREZFQUiAsIiIiIqGkQFhEREREQqmgQNjMzjez581srZldmePxi83sKTN70sxWmNkpxR+qiIgUQtdsEZHCxAbbwcyiwDXAucAm4DEzu9k591xgt7uBm51zzsyOBG4EFo3EgEVEJD9ds0VECldIRngZsNY5t8451w3cAFwc3ME51+acc/7desAhIiKloGu2iEiBCgmEZwIbA/c3+dsymNkbzGwNcCvwnlwHMrPL/a/hVuzYsWM44xURkYHpmi0iUqBCAmHLsa1f9sA5d5NzbhFwCfClXAdyzv3AObfUObd08uTJQxqoiIgURNdsEZECFRIIbwJmB+7PArbk29k5dz9wsJlNOsCxiYjI0OmaLSJSoEIC4ceABWY238yqgLcCNwd3MLNDzMz828cCVcCuYg9WREQGpWu2iEiBBu0a4ZzrNbMPAncAUeDHzrlnzewK//Frgb8H3mlmPcB+4C2BiRgiIjJKdM0WESmclerat3TpUrdixYqSvLaIyIEys5XOuaWlHsdo0TVbRMayfNdsrSwnIiIiIqGkQFhEREREQkmBsIiIiIiEkgJhEREREQklBcIiIiIiEkoKhEVEREQklBQIi4iIiEgoKRAWERERkVBSICwiIiIioaRAWERERERCSYGwiIiIiISSAmERERERCSUFwiIiIiISSgqERURERCSUFAiLiIiISCgpEBYRERGRUFIgLCIiIiKhpEBYREREREJJgbCIiIiIhJICYREREREJJQXCIiIiIhJKCoRFREREJJQUCIuIiIhIKCkQFhEREZFQUiAsIiIiIqGkQFhEREREQkmBsIiIiIiEkgJhEREREQklBcIiIiIiEkoKhEVEREQklBQIi4iIiEgoKRAWERERkVBSICwiIiIioaRAWERERERCSYGwiIiIiISSAmERERERCSUFwiIiIiISSgqERURERCSUFAiLiIiISCgpEBYRERGRUFIgLCIiIiKhpEBYREREREJJgbCIiIiIhJICYREREREJJQXCIiIiIhJKBQXCZna+mT1vZmvN7Mocj7/dzJ7yf/5mZkcVf6giIlIIXbNFRAozaCBsZlHgGuACYDFwqZktztptPXC6c+5I4EvAD4o9UBERGZyu2SIihSskI7wMWOucW+ec6wZuAC4O7uCc+5tzbo9/92FgVnGHKSIiBdI1W0SkQIUEwjOBjYH7m/xt+bwX+NOBDEpERIZN12wRkQLFCtjHcmxzOXc0OxPvonpKnscvBy7377aZ2fOFDDJgErBziM8ZSyr5/Cr53KCyz6+Szw2Gf35ziz2QItE1e/RU8vlV8rlBZZ9fJZ8bFPmaXUggvAmYHbg/C9iSvZOZHQlcB1zgnNuV60DOuR9wALVoZrbCObd0uM8vd5V8fpV8blDZ51fJ5wYVeX66Zo+SSj6/Sj43qOzzq+Rzg+KfXyGlEY8BC8xsvplVAW8Fbs4a1Bzgd8BlzrkXijU4EREZMl2zRUQKNGhG2DnXa2YfBO4AosCPnXPPmtkV/uPXAp8DJgLfMzOA3kr+NCIiUq50zRYRKVwhpRE4524Dbsvadm3g9vuA9xV3aDlVeoufSj6/Sj43qOzzq+Rzgwo8P12zR00ln18lnxtU9vlV8rlBkc/PnMs5h0JEREREpKJpiWURERERCaUxEwgPtmRouTOzH5vZdjN7JrBtgpndZWYv+v8dH3js0/65Pm9mrynNqAtnZrPN7F4zW21mz5rZR/ztY/4czazGzB41s1X+uf2bv33Mn1uKmUXN7Akz+6N/v5LO7WUze9rMnjSzFf62ijm/cqVrdvmq5Os16JpdAec2utds51zZ/+BN+HgJOAioAlYBi0s9riGew2nAscAzgW1fB670b18JfM2/vdg/x2pgvn/u0VKfwyDnNx041r/dCLzgn8eYP0e8vqwN/u048AhwQiWcW+AcPw78EvhjBf7bfBmYlLWtYs6vHH90zS7vfzeVfL32x6tr9tg+t1G9Zo+VjPCgS4aWO+fc/cDurM0XA//r3/5f4JLA9hucc13OufXAWrzfQdlyzm11zj3u324FVuOtZjXmz9F52vy7cf/HUQHnBmBms4CL8HrKplTEuQ2g0s+v1HTNLuN/N5V8vQZdsxnD5zaAETu/sRIID3XJ0LFiqnNuK3gXJmCKv31Mn6+ZzQOOwfsUXhHn6H8N9SSwHbjLOVcx5wb8N/BJIBnYVinnBt4b4J1mttK8ldKgss6vHFXq77Hi/t1U4vUadM1m7J4bjPI1u6D2aWWg4CVDK8SYPV8zawB+C3zUOddilutUvF1zbCvbc3TOJYCjzawZuMnMDh9g9zFzbmb2WmC7c26lmZ1RyFNybCvLcws42Tm3xcymAHeZ2ZoB9h2L51eOwvZ7HJPnW6nXa9A1O/iUHNvK8twCRvWaPVYywgUtGToGbTOz6QD+f7f728fk+ZpZHO+i+gvn3O/8zRV1js65vcBfgPOpjHM7GXi9mb2M9/X1WWb2cyrj3ABwzm3x/7sduAnva7OKOb8yVam/x4r5dxOG6zXoms3YOjdg9K/ZYyUQHnTJ0DHqZuAf/Nv/APwhsP2tZlZtZvOBBcCjJRhfwcxLJfwIWO2c+2bgoTF/jmY22c8qYGa1wDnAGirg3Jxzn3bOzXLOzcP7u7rHOfcOKuDcAMys3swaU7eB84BnqJDzK2O6Zpfxv5tKvl6DrtmM0XODEl2zR2rWX7F/gAvxZra+BPxrqcczjPH/H7AV6MH7BPNevCVO7wZe9P87IbD/v/rn+jxwQanHX8D5nYL3dcRTwJP+z4WVcI7AkcAT/rk9A3zO3z7mzy3rPM+gbwZyRZwbXteCVf7Ps6lrR6WcXzn/6Jpd+nMY4Nwq9nrtj1XX7DF6bqW4ZmtlOREREREJpbFSGiEiIiIiUlQKhEVEREQklBQIi4iIiEgoKRAWERERkVBSICwiIiIioaRAWELLzM4wsz+WehwiIjI4XbNlJCgQFhEREZFQUiAsZc/M3mFmj5rZk2b2fTOLmlmbmX3DzB43s7vNbLK/79Fm9rCZPWVmN5nZeH/7IWb2ZzNb5T/nYP/wDWb2GzNbY2a/8FdcEhGRYdI1W8YSBcJS1szsMOAtwMnOuaOBBPB2oB543Dl3LHAf8Hn/KdcDn3LOHQk8Hdj+C+Aa59xRwEl4K0YBHAN8FFiMt6LNySN8SiIiFUvXbBlrYqUegMggzgaOAx7zP/jXAtuBJPArf5+fA78zs3FAs3PuPn/7/wK/9tctn+mcuwnAOdcJ4B/vUefcJv/+k8A84K8jflYiIpVJ12wZUxQIS7kz4H+dc5/O2Gj22az9BlorfKCvzroCtxPob0JE5EDomi1jikojpNzdDbzRzKYAmNkEM5uL92/3jf4+bwP+6pzbB+wxs1P97ZcB9znnWoBNZnaJf4xqM6sbzZMQEQkJXbNlTNEnKSlrzrnnzOwzwJ1mFgF6gA8A7cASM1sJ7MOrSQP4B+Ba/6K5Dni3v/0y4Ptm9kX/GG8axdMQEQkFXbNlrDHnBvp2QqQ8mVmbc66h1OMQEZHB6Zot5UqlESIiIiISSsoIi4iIiEgoKSMsIiIiIqGkQFhEREREQkmBsIiIiIiEkgJhEREREQklBcIiIiIiEkoKhEVEREQklP4/R6IQzgIqpWQAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "034s_iimage_3368391807672_clean_ClassS_102-230.roi.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADYCAYAAABberBAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADNz0lEQVR4nOz9eZxk2VXdi6+TmTFlZg3daqnVGtAAGkDoARKIwQ8QTzwzWCDwe8xgAQIxmcEYIwlsg+2HEWYw+Gcj3DYgbGMkwIDAAiEsEBijGYSFEBISGpDUaGh1d1VmDBkZeX9/ZK6b39h5Iququ6oyqmqvzyc+mRlx77nnnHviVq21196nNE2jRCKRSCQSiUQikUgkEolLwcpJdyCRSCQSiUQikUgkEonEtYcUFBKJRCKRSCQSiUQikUhcMlJQSCQSiUQikUgkEolEInHJSEEhkUgkEolEIpFIJBKJxCUjBYVEIpFIJBKJRCKRSCQSl4wUFBKJRCKRSCQSiUQikUhcMlJQSFx1lFLeWEp58kn3I5FIJBKHKKW8o5TymRd5bFNK+Yh7eZ17fW4ikUgkEonlQgoKiauOpmke1zTNy0+6HxdCKeXLSynvLKVsl1J+rZRy80n3KZFIJK5nlFJ6pZSfKaWcK6X8TSnlO0+6T4lEIrFsuNzC7MW0l/8vTixCCgqJRAWllMdJ+veSvkrSrZKGkn7yRDuVSCQS1z++X9KjJD1M0mdI+u5SymefaI8SiUTiBkf+vzhxHFJQSFx10FZbSvn+UsovlVL+SynlfCnlDaWUR5dSnlNKeX8p5a9LKX8b535NKeVNB8f+VSnlG0Lb311KuaOU8t5SytdRcT2IfP1IKeVdpZT3lVJ+qpQyWNDNr5D0G03T/EHTNFuS/omkv1tKOXVlZiWRSCSWB6WUJ5VSXlFKufvgmfpvSyndcNjnHjyHP1hK+eFSygrO/9qDZ/VdpZTfLqU87CIv/fck/Yumae5qmuZNkv6DpK++PKNKJBKJ5UEp5SNLKS8/eM6+sZTy+fjs5aWUr8PfX11K+cOD3//g4O0/LaVslVK+pJTy5FLKu0sp33PwTH5HKeUr7m17le7m/4sTC5GCQmIZ8HmS/rOkmyT9iaTf1v7afLCkf659RdR4v6SnSjot6Wsk/etSyhMk6SCK9Z2SPlPSR0j69HCdH5L0aEkfe/D5gyX90wV9epykP/UfTdO8TdLOwfmJRCJxvWMm6R9IukXSJ0t6iqRvDsd8oaSPl/QESU+T9LWSVEr5AknfI+nvSrq/pP8p6RcudMFSyk2SHiQ8ew9+f9y9H0YikUgsH0opHUm/Iemlkh4g6Vsl/Xwp5TEXOrdpmk87+PVjmqbZbJrmhQd/P1D7z+wHS3q6pNvvY3tE/r84sRApKCSWAf+zaZrfbppmV9Ivaf8/oM9tmmYq6QWSHl5KOStJTdO8uGmatzX7+H3tP4g/9aCdL5b0s03TvLFpmqGkf+YLlFKKpK+X9A+apvlQ0zTnJf1LSV+6oE+bku4J790jKZXYRCJx3aNpmtc1TfPKpml2m6Z5h/aF3SMi7cHz9F2SflzSlx28/w2SfrBpmjcdPNf/paSPvQiXwubBTz5787mbSCSuR3yS9p95z22aZqdpmt+V9N91+By9t/gnTdNMDv6P/GLt/9/4ciD/X5xYiBQUEsuA9+H3kaQPNk0zw9/SwX80SymfU0p5ZSnlQ6WUuyV9rvbVWGk/svXXaIu/31/SuqTXHVjL7pb0koP3a9jSvguCOC3p/MUOKpFIJK5VHKSe/feDwojntC8K3BIO4zP2ndp/Bkv79Q9+As/aD0kq2o+aHYetg5989uZzN5FIXI94kKS/bppmD++9Uxd+Th6Hu5qm2Q7tPWjRwZeI/H9xYiFSUEhcMyil9CT9N0k/IunWpmnOSvpN7f9HVZLukPQQnPJQ/P5B7YsTj2ua5uzB60zTNJuq442SPgbXfqSknqS3XI6xJBKJxJLjeZL+QtKjmqY5rf0UhhKO4TP2wyS99+D3v5b0DXjWnm2aZtA0zR8dd8Gmae7S/nP8Y/D2x2j/eZxIJBLXE94r6aGsPaP95+h7Dn7f1n4gzHjgRbR5UyllI7Tn5/K9aY/I/xcnFiIFhcS1hK72H14fkLRbSvkcSX8bn/+ipK85KHKzLtRHOFCA/4P2ay48QJJKKQ8upXzWgmv9vKTPK6V86sHD+Z9L+pWDVIlEIpG43nFK0jlJW6WUx0r6psox/6iUclMp5aGSvl2S825/StJzDqqCq5RyppTyRRd53f8k6R8ftPtY7aeqPf8+jCORSCSWEa/SPsn/7lJKp5TyZO3XFHvBweev137Rw/WD4uLPCOe/T9IjK+3+s1JKt5TyqdqvOfZL97E9I/9fnFiIFBQS1wwOHlrfpn3h4C5JXy7p1/H5b0n6N5J+T9JbJb3i4KPJwc9nHbz/ygML7/+QVC1W0zTNGyV9o/YfoO/X/n+uY0GyRCKRuF7xXdp/xp7XvhhbK9L1Ikmv0/5/VF8s6aclqWmaX9V+EdwXHDxr/0zS51zkdb9P0tu0b9X9fUk/3DTNS+71KBKJRGIJ0TTNjqTP1/6z8YPa34Lx7zVN8xcHh/xr7Rc9fJ+kn9P+/0eJ75f0cwepZa6T8Dfa///xew+O/8b72B77m/8vTixEaZrmpPuQSFwRlFI+Uvv/ke0dFAZLJBKJRCKRSCSuKxw4HP5L0zQPucChicRlRzoUEtcVSilfeGD1ukn7EbLfSDEhkUgkEolEIpFIJC4/UlBIXG/4Bu3XWHib9vdRr+X9JhKJRCKRSCQSiUTiPuKKCQqllM8upby5lPLWUsqzr9R1EgmiaZrPPti94eamab6waZo7TrpPicRJIZ/DiUQicfLIZ3HiSqNpmpdnukPipHBFaiiUUla1v43I/y3p3ZJeI+nLmqb588t+sUQikUgcQT6HE4lE4uSRz+JEInG940o5FJ4k6a1N0/zVQRXTF0h62hW6ViKRSCSOIp/DiUQicfLIZ3EikbiusXaF2n2wpL/G3++W9ImLDu50Ok2/31fTNGqaRqUUSWr/3tvbUyll7kVnxd7e3tzfKyv7OonbKaVodXW1Pdfg72zDffD1DbexsrLSfr63t6e9vT3NZrP22JWVlfYYX8PH8drup6/j89lvI37G83wdtudj19bWjlyHfWiaRrPZTLPZrJ2D2KZ/rq6uanV1tW1zZWXlSL85Xs+Pr+054D3mPDdNo9XVVXU6nXaum6bRzs6Odnd32z6y/+wjrxPXQ/yc5/OzWhu8BsdXO4fneY48Fs4v5zjez9ocxWvF7wjHyZ/xPhC1dVfrE/+u9ZP3I/a39nmt7dp9WNQWj4195RwvQhzjhfo+Ho8/2DTN/Rc2uLy4pOewJK1ubjQf9vCi909OafWtk+MOTSQSiauGsba100zKhY9cSlzSszifw4lEYllxXndV/098pQSF2kN/7n/4pZRnSnqmJPV6PT3xiU9syS1J287OjobDofb29rS2tqa1tTX1+/22HR+zu3tYyH9tba0lcW7/9OnT6vf7LVmlSCFJ4/F4jlgbs9lMOzs7KqVoY2ND/X5fg8FA3W5X0+lUo9FIW1tbOn/+vMbjsVZWVrS2tqZTp06p1+u1ZH4ymWg0Gmk6nWo2m2ltbU2DwaD9fGdnR7PZrCWDHgOJqqSW1K+srGg8Hms6nWplZUW9Xq+95mw202Qy0crKim666SZtbGxoMBhIks6fP6/d3d2WvEvS9va2zp8/r7vvvluj0agler1eT4PBQP1+X/1+X5ubmzp79qxuuukmnTp1SpubmyqlaGdnR03TaGVlRd1ut33P7U4mE+3u7mp3d7f93cJEt9vVbDbTdDrVdDpVp9PR/e53P21sbKjX62l3d1fvf//7ddddd+mee+7R+fPn2zH7/PX19Vbk2N3d1XA41GQyaees0+lobW1/qe/u7mpnZ0eS2jbW19fnRJfJZKLJZNKuhdXVVfV6vXbteCxcJ3t7exoOhxqNRhoOh5rNZur1etrY2NDZs2e1vr7eXns8Hms8Hrfr2XO2u7ur6XTarnnOKY/hmvC87e3tqdfrqdfrqdvtqtPpqNfrtcd4nRq+9xZqdnd3tba2pl6v1353+F3wXPmc3d3ddv1R0Oh2u+188OXPPc9RNPE8dDqdI2ve1/N987z1ej2tra3NHe/59TNhb2/viNDS7Xbb7xeFK95LikNvfvOb36lrExd8Dkvzz+J+54we/Kjv1SPvnmrlbX9ypfuXSCQSF4VXNS876S7cF1zS/4nzOZxIJJYV/6P55er/ia+UoPBuSQ/F3w+R9F4e0DTN7ZJul6RTp041jDabaJBQmLQykm3wd5MWE40YjTSRpQDB46X5SK0JkN83YsTXJMfH1SKkkbTs7u7Ote9jYiTcJNJOC4+DTgk7JEx63RadBySms9msPc7ks9frteQ0RuVJvEi21tbW1Ol0NJvNjsyn26dgYJJsMtfpdNo+W+jZ2dlpo+seB6PznDeKLpFo8/zpdNr2xffe1zCRZZtul/Po8Zv4x3VBsWdnZ6cVdfr9vnq9XisUdTqdI+uZhF1SK2jwGpyj6XTaCgwUQyyKra2ttX2mQ8PzY1HH88B7xTXMeaVzhzBpp2vF73N+2G583y4f3weLQxQTLBC4Xa8xuoT4vWS/PUfRVVObO//u969hXPA5LM0/i0+Xm5vBi159dXqXSCQSNwYu6f/E+RxOJBLXGq6UoPAaSY8qpTxC0nskfamkL190sP+D7yizCa2JAAmDX9EebcJrkmFCRTJBy34tAluzttM6XiNZbrfT6bRE1WQ0kpFoTZ9Op3NOCh5DW7kJYKfTac83ATXJcqTZEdjV1dV2/Ds7O20fu91uS9ZMEE1yB4PBHOG2SOIIv++PBQL3yfPLiL6j+o7oO+rvfpsgW+BwGxYeLCj5eowam0RTdCI553HSfMTZ/fT5s9msnRP3o9vtzlnnveZ8LgUKrj3PpcWpyWTSrms7B9y+nSruL6PlFiQswLjv/tw/d3Z2WhHC7bkfXo++Z91uV/1+v3XiTKfTtq/ut+eR80NyTSHGc88xMNWoln7DtU6nguF+2eXga/rFOfMa9lzbleN1bZGE/YvPG98798Nr398l9/saxiU9hxOJRCJxRZDP4kQicV3jiggKTdPsllL+vqTflrQq6WeapnnjMcdrd3e3JSLRLbCxsSFJrZV5a2trjpyQaDFqzqiko+Am44ui8IwKUwBgJNzEyqTPRM7WeffL5ERS6wigeyDmp9N1YMLoyCzTFNwXjoV9NZEfjUZtGySaFEmYpuDx7ezstPNjMtzr9drUB7dhAhgjxCZxJHx0mXQ6nZYgOyptsYQOAx8b14lTHuK983rhPFr48Pkklu6bHRF8z21RuPI9MHn1/aMrhO4ME1yvqVOnTrVz7bFSoPK8rq6uqt/vz61HrmUKDyTmFD7G43E7z763FhB8rOH7TKdLLUIf3+d3geOPAo77StGt5gDyd8rpTWzX16IQ5s+9Fv2d4/31/PP7ZkGKQqbP9z2jWHit4lKfw4lEIpG4/MhncSKRuN5xpRwKaprmNyX95sUcSzIrzduS/ftgMNDa2ppGo1EbZTVs347pApFkMsJOUuLfGWlnkUUTLvfPxJi59CRsvq5t6458mgwy+ssoNMkVI+N0GjC1wgSNJHxnZ6d1IqytrbWCh2sjuP4Eo7jOX3ffXYPAUXgS58Fg0N4LR9LpkCAB3dvba4l3dBB47O6X76PHbQGi3++3ooCvY8dFzQlC9wb7FXPyKcocZ5fnuHzcdDrVZDKZW2Mm77zHdGe4JoLnmf11tD8SZYsBTHtxH2j1Z5+9fl1DwsINP+f3RtIceY8R/ZgO4fsTayOYqHtdWKCgk8PX8lgskPH7788oRnke6Jjw9ymKVv4+0W0SC6ZS0HF6iD/z99ZtXOMpD5f0HE4kEonElUE+ixOJxPWMKyYoXApinnfMnzeZ9d+0n5NQ0brtv2MNALdBK/kiQYGEif2T1JLcKD7Q0k/ibBu5jzEhNEHl9eggcLu06/tYkzeTYxPdbrfbFoSkNZ3zIh0WK3Tqga3mbnM0Gs3NF4UZt+95cKoCBRaLHDH33W2aQE4mkznizGJ6Jo01UHCJxfV8LiPcMdrO92OaBIUIOyIo2rBAINdrTJfxenVhUReetCDC/kX7/6LxUhSLAo7HHgUzn8+xMkVid3d3rqAixYboBjJ5j2kYTHnwcbwmv2d0McT0CLuVOKZI7Hm/osjBlI34vY+uE6bXRKfNNZ7ukEgkEolEIpFIXHEsjaDA//hHQs1oI3cmkDRHjKT69nJRDKhFn2MufyzeZ7EiRkmjpd7HM4LsqDpFBdY/4LVMsKJd27AAYTHAVfH9/ng8bsUBk7yYmuB5cXTWRRm964QdDiaaUXjxOY5omyi7ToIFEp7rsXAbS983E0ineTDK7ONItlnvwMfSim/ngV0K/ukxRIHIbZNQUiDh/MV6ECbVrocRxSn3aTwet6TdLgVvlRrTF9yXGLWPcxC/QzyXc+F7TvGL7Xp9UYzjuSTnTLHgThWLiDvTNugGMFgPg2vcooWPid9pfz6ZTI7s9MA0j5iy4Pvvdll7hPNBd0gikUgkEolEIpGoY2kEBUdH6VLwT5IJFxdcX19v7f2OpBsutCfNF+ujY4FE17ZpE0+36euasDKSGrcNZKTdpNw2+Nls1tZ/MKmzOOFjfL6JpQv4cbcKzovP8bVMiCwqWBRgpHsymbQpCpJa0cAE19tCjsdjjUYjffCDH9QHPvCBNip//vx53XTTTXP3aW9vv+bCaDTS9va2tre354QWpiU4tcJjkw6LMJLU05Hg+g9+r9vttvPk+zgej49sdcjifUwNcd89z6xJQOHD94NbI1IcctqFCbcFFqemxHQYz5fbdzqEd5jo9/tzRNgpC9EB4/UXxQVG+v2Z77WdEBZGLNq4Lx6LnRhc826PqRpM7TCi2MDvGx0cMa3F/fe4/R1xG9w5hcIQr0G3icdD4YqCpYU6plbYpUBB8FpPdUgkEolEIpFIJK4GlkZQ8LZ6JPEmAHQg+FgLAKzsztz1mDc+Ho8lqbXqxwjyaDSaK65HMcAExlFothuJlQknc8l7vZ52d3c1Go1aUurrWVSg08EELJJvE3TWmOA8GdPptHVwxCKTrj9h8jYYDNo5XFlZ0ZkzZ3TmzJk2dWI8Huv8+fPtHAyHw1as6ff7bZHM8+fPa3t7uxVimO5BxwBFoZWVlTYVgNFikmW6LCzqeN7oUmBUPka0LWR4Dv2+4b6a6LLav++7++j7xPaZ2sE2Yvu+jxYiLFb0ej1JmiPtvr5f3DLSIg7dJlwnTBPxtWPKDe8NXTxx1wgLHlHAoNjldRbFuugOIHGnoMD1GV05MUWB3zc6WNwu+2Cxiu4ji3V0CHkuY9pJXCeJRCKRSCQSiURiHkshKFAMkHSEUMT/5DOiube3p36/35KuaMFmITkWRnTbtP/7Wv6cefkmI4xc0jXACDuLI/q4brc7R5ht8+fOE0xzMAEi+aaDwf1a5F4wmTIcPTeJNVF1kUsXkHQ6gyPmN910k0oprSAzHo81Ho/buRiNRhoOh9re3tbW1lZLGg3m4sdovcdPWzyFFffbRNqEnUX0SGC9lnivWWfCrgAfRxIZBYlYb4Bzxvx6rlmOmcKY266lWnhOeKwdGXxZ3OJ3gPMU62l4rDUnA8dKscPFRj0eChG+f0x/iH2KbbIWAueI46aYE1MxuAb4/aPzIK4nChBui9tQ+vvNNeFx1twPiUQikUgkEolEYjGWQlCQjtZRYG43q8+TPJhY8jiLCtxaj3n2tnX7s7gbAMkNnQy0gkeywVxx2s1JbuhUYDFB98V1DKRDQupoqushRBEhCi209DsC7bng7hK7u7ttmsDW1pb6/b4Gg0ErGnjLwr29Pd1yyy0qpej8+fMaDodtOoS0T/63trba1/b2dluzgPeRfYvEn/fNpJ1V9n0/Gf2PxDzeNwoKdnp4XnztmCJAAcFiDNvl31x/7AdJ8aJx8p5ZyBqPx+05dhpEQcFr0ETYP0nSDQpchh0p8dhafzkei0xRSIupDH6f94niD++Nr0cxKN676FRiakpcW6yrEMW2WBfB80Mxi4giSZzHRCKRSCQSiUQicYilEBRo268JCtJhdJMkXDokdmzDJNqEhwKB7e/+zHZ2E3xa9OkgsNugFuF13yLJdYqEiZMLKTrP2+e6/c3NzdZtYTGg2+1qfX1d/X5fk8lEo9GojSSTuLHP7qeJOXcVoKV9a2trrq7BnXfeqdtuu02bm5taXV3VxsaGzp49O2f9t5gwHo/V6/V0991365577tE999yj4XB4xBHAaLLnySTPBJT3yP32vPR6vXbOfWx0objgIfP0SeJ9b+gm8P1nGkks1sdce8+tCbHvpV9OyyBp9bhZnyGmYKyurmpnZ0fj8bgVLmK9ANb5sCjh67ttC1iS5uaHNSVicUfWJ4hr2df22vH6Nyzy+FgKEVEUoPhGUYFrgtfn/eM4WcOBLhHDwhwFIBcLtTDC9eCf3W53rl/uj6+VSCQSiUQikUgk6lgaQcHE2MTFhCLmRNOiHaOeFCQMk1tb+RmxlzRHsl1fgDs/0PFgMmdCH630JB/RTu1CfDyHQoRfdC+4+KQFBRdZjIKE59BEkmIM89m9s4BrEEynU91zzz3qdrvq9/va3t7Whz70IXU6HZ05c6Y9vt/vt7Undnd3tbW1peFwqNXV1TbVwWkT0WJuYrkoBcMFDD0G33uS1Sgq8H67T5yLeD53AfB7JuleEyTk3AqTwoRJqQUgz7fXZ0yT8PpdW1s7sktETMfY3d3VcDhsjzeRJ8Hd2dmZWydMqfG43RZrhNScHP5ecZeQGnmma6DmuqgVu6Q7wH1iOoKPic4S3/9YI4RCg+eG/aMgQmHD/bJI47nj/MQ0B7dZcyIlEolEIpFIJBKJeSydoBCLvUlqo/q0UxvMuWZetj+LgoKjrTEHnvZ1EwwSUebtm1w6yk0Lvl81QYEiiTSfG06nBS35LorX7XbV6/Xm3Am0sNPebQHB1yJ57fV6bVFLSW29B1f+39ra0vr6eutQIBGTDqP3ngvvHMFtFn1PeX/pAuHY2V6MonsOPD6KPR63yWQkp1wfvlc8j6SSQg/HSHu+j/Na4atmsec57J8FKUbKmZoTnRgUBhiZ5zqLY6V7h/Pm9yJJJpHn9bhW3Xe3Sfj+2FXD9c46ByxoynUe7xlTGOLxdOGwf+5/hO9ldDVRfKKYEMccx5pIJBKJRCKRSCQOsRSCgnQY6WS+NO3jdBWwOn0tIhzJqM+1mEAS5sg+c7Rr0X0ikhjm48ccd7fD2gkGr0ty6n6ZVLrfa2trWl9fn4saxzl0FJe7PriPrNXQ6/WqWwm6pgIt/vEa3I6QQgILMtLuTieJ58TXt/PExC5uG8h763bpPjAiKSQoSLAdRuVJ3ulg4DojiY+1KaJDouZW8f333FHoWRS1Z20RzgUJcqwFQdHA6ySSavaT65xCB9MK4pjifPNzj9MpHhQqeL3oDPB64Yv3y+fHuiZR6KAQ4PUd6yzw2OhOYF9SUEgkEolEIpFIJBZjaQSFnZ0dTSYTdTqdI9vU0QZu0hvJDKPKjugbTqVglNU56rR+uygh4XNMjkiQ6U4w+YtRUpO0wWDQ7oJg4rm+vt6S/16vN7f1HwUDj3V1dVWnTp2a27GBUV8LABZnKMzQDt7v93X69GmNRiNtb29rZ2dH29vbuvvuu9vtOy0QdDqdNi0hRu0plPinBQaLFHZdkMw7ZcNOkeFwODcv0clBsmfCzTz7uNuB7z0/j+IT7+NwOGzPtVAQXRWeuyj8eJ3GHRliGgCdDB6/23BaSUwP4T10mgOLDFqgodOFcxF3S6A4wXtBQk0BIN63+B3gvbbIZ9cMXRqcA8+p58hpMKxX4uN5vvvK3SakQ1cF7ytTJDhfTdO04+c8+NwomqRDIZFIJBKJRCKROB5LISiYiIxGo7lCfozGGrTe8z//sdCec/xNUFjczYSOhMHExtFnk0f2hwSLLgg7CKKVmztNOBId2/CY7BwwyWEU3kXl1tfX54pF9nq9Oas9iSLJmq8xHA7nUjy8leXKyv6WgefOnZuz6O/u7qrX62kymbSE0W070kuxgmKGiXi/3z8yd6PRqK21YFeC7wfHEO38HgfdAJJax4THFRFJv0kv2+OcGxQ0aN/n/Pk8ii5un+4D11Fgny7kZGBaBsUhX4e1CbhGmRoUU4VI1lnDg224v54DCkicD24z6eO4u0kt9YRCjtuK66rm1KHAYmGB8+t+x/tmsLimC0p6zPH4mGaSSCQSiUQikUgk6lgKQUE6JGWTyeSIu6Bmi+Z/9FmHQDq0rNNB4B0XfH6MPFOg6HQ6R+zotEtbLGD+d4z6sr+sCeG++bg4BosOJj0swuiaCrSn1+zhJKvxJ88fDAbtmC1cjMdjnTt3rnUbbGxsaDabze2kQBGBYgIdABw/I/5OkyDR5ZaMTCugO4T9jOOMYoTnytfm/Y33LI6F/SXocGAKAUUsp37E9eD7y3XA+hd7e4c7V8R6Gz6GDhiKBwbFB4/X4kIcFwUtCgJsn/VEfC06A5h6wrXNGg5x/mKf/Xd0G1GE4VxQNIq/s434rPB7dGNQ6ONzgfcrkUgkEolEIpFIHI+lERRMMB2tjtHpWo5zJFkkWyQi0XJusk4iGvPpWYQxEnbWRiA5JQGLokKM7pLgSEdzx/257eSOylrUqKVXuL9x28NIUH0+d43wtcbj8Zy93lF1tsXCg2x7kWU8Fvvj2BhJ99w7Sh/vi8+lRX0RiY87efge+DymMPgzE3HWU6jl8tM9YEGBaQqxL1xDvp6Js69NAh13aaDYYacCr0FXDEHxgN+L6CxhP2PxQjo4KCi4rXivKRDEeTvuc46TToooBPD+ea17vXh98rlQW4+15wbvM50KNXEkkUgkEolEIpFI7GNpBAXbpR2FpzuAUfBIgqR9wmhXg4lBjEj7GrPZbG4bQpMiRmBrJEPSESs2iZGJHqOpJNokfJEomzjx86bZr5EwGo3alIemadTv9+ei7nRa+Lpug+KA++saE07tcNqDxzWdTjUcDlsxIRZapLBD9wBTNDw+H2ORwPNEQSWSXu4gwR0geK9ZKyI6TQy3yyKDdBO4X03THHEkMF3F8D3ymEajkfb29to6EN4y00SXdQ0oPLktr9coaPi+0P0R3QFReIrpCHSRRFcDr0dBYJGDwP1l+1zzrJlAEu+xsMaH557E3sf6GIodFFooZvH6drxQQIti0aLvB+uLeJx+L85bIpFIJBKJRCKROIqlERRYY8CkwUSvRsqk+X3vpfkI697ensbj8VzeOnP8WZzNEWa2YeIu6chnPtd1E0xeOp1Oe43V1VVNJpOWNLFOAMmmdFjvIJLW3d1djcfj9rWzs6PBYKBut6tSylxBPO6S4TZMrpxK4l0iut1u+7JIYjHEtQDG47HW1tY0HA7V7/fnilq6zxYdSExpQY8kbmVlpS18aSLn+ge+l/1+/0gKAkUF147w/XR9B7dv8JyNjY25Yn4WJHyO7zXdBbXIfXQCeA58rkUiOiy8TiPR91ikQ/Gj5tKIIpr74s/oVGFdEH6P/P2pkWMKBCysGQWI2rleE9ENFGsZMJ2C16GgQNGEa6fT6RwZAx0ucZeNyWQy19coHPD+RnGCIo2/O3GHl0QikUgkEolEInGIpRAUYjSQpMt/81gS4Bhx9k4JJjMmHtJhhN2Ohli0UVJbYNHt0Mlg8lPK/k4JjCI7ssyouK9P4uxruA8cM/PqTepd18ApGrS7M28/bnEYo/+cU38WC1WSKJdS5ggqd0rg2LjbAlMyak4Sg+S65lCoWeHpJPE8sx9cK5EELiq2GEmmP4spBvzJcXMXhehY4dry3DLK7+v4p9Ml2EeLbEyDoGAUnS8ULGJqgO93FEco+liI83ux6CGx6H3OI4/zNXlvnX7BeYupB9FRQCcE5yKOnW2xDa5Nnh/Xqt/LlIdEIpFIJBKJRGIx7rWgUEp5qKT/JOmBkvYk3d40zU+UUm6W9EJJD5f0Dklf3DTNXRdqj4XRoqBgsu/PWUPA5Jv2ctvQpcPicZPJZM6mbQEgOhXcjskUSa+Jq4k4i9yZANqeLc2TNJKvlZUV9Xq9NvIvzadFONJqQYFpBZPJpJ0b1leINnJG+X39SFjX19fb60chILbJOTZIWj0ubhPp+aoJBPEnr+OoeHQ4uF0KBJF81kSMWCiQ57ifcVyRGJPoMqpOoSMeF68T3TVxXAbnmbUPIknmvHH8cQ34uryHNSLNNugaYb94XO1+so8x9SN+7hfX2qJ6Bv6Oco5jKg7HS7dS7b4T8b5EoWLZcbmfxYlEIpG4NORzOJFI3Mi4Lw6FXUn/sGmaPy6lnJL0ulLK70j6akkva5rmuaWUZ0t6tqRnHddQjOjW7PW1yCc/90+TAwsGfpmMOPLf7/e1trbW2t1ZbNDgbg9OB3AE3BFfSXPWaH/uyLJTE1jozzn0/X6/HYfbtqNiMploa2trTjAwSXTagD9jrvqiaGzcgtARdosvFlSkQ1eF++E56Ha7bboB0xEYCWcdBLcV+xJFCEapY9Q8rhPPkcdCZ4jPj2AKDckur0kyusgh4XvI7SIZEY+7iNAlE8Ucn0MnCdevU1KYPlCLpNMhQvLO3TTcR9fD4Ngj+JnTXzqdTuvaoQgTBRG6dez0iekHLgTq++a6KT6XYiFTQvxZbWeTRWJO7bgoGHBOKeTEmg1Ljsv2LE4kEonEvUI+hxOJxA2Ley0oNE1zh6Q7Dn4/X0p5k6QHS3qapCcfHPZzkl6uixAUer1e+x9/kttSSusuiOfEPG/XMbBYQAcCC/yRAJosSZqrB7C2tqZer9eKG64pwKg8ibgJJIUQE0I6KRhpZpFHCx0m/yZzJOzs+2w2a4suevzR3WES5s/cP6dWbG9va2VlpS3SGM81CZUOyaUFE49ndXX1COmyS8NpKCzIaPGEwg/dDOyr5yeKFp4Hui9IJH1dE1CmoZA8+h5ym0m3EYsyGrUUiPiZ+8555PaN/pz1APiT4+KOI3HbTgoGXP9ue2dnpz3GL4+VBUSj68fzyzXHdR/dDx7f7u6u+v1+e/9iQUZ+T7hWuEWo34spUPG+0CHi391/OiMojtWESc8rhcqaGLHMuJzP4kQikUhcOvI5nEgkbmRclhoKpZSHS/o4Sa+SdOvBg1VN09xRSnnARZx/hKAxisjPTV4ZlSSJoDOh2+1qMBi05Jtk0oRjbW1Ng8GgJXAmIIzKr6ys6OzZs1pdXW3JMIviuV+x2Jz7aQJpgmwXRnQVsCZEbI8/KVDw/G63W03R4DyZ2Dl9otfrHZsLTzHD16MQYrhfdAB4Pv0ZyTht7r4X/p2Em3NIESfeS+bFu/9sy+3YaWByG9NBKAoxpYWI8xULEnLtksxz/pg2wZf7ZBEkRs9r9RgYZbdI5vmzYMK1tEgs8fn8uSi9g/NHYcEuCBZz5PqmS8DXiWkK/H5aYItpCTEloebe4P3i2uezw+dZrOEc19wqy477+ixOJBKJxH1DPocTicSNhvssKJRSNiX9N0nf0TTNuYv9D3gp5ZmSnimpjWoec+yR4m3x82iFtjU9EnTWTuBPRv739vZa5wIdDJLabRxpvXcU3cUTTUZMqqRDO3qMhJIEsa+1egD+e1HNBB8TCXDtmk3TtDUYYhFDHu/rGR47iSAj2THSz/SEaEcnCTaiOEQHQrS2cx0s+pwOFQpUsQ/8SYs855QCSJzvGkn2GuHL/YtbVcb7bHLusTvNwveDjgfCc1fbHjKKF7VoPfsfi1+yf+4j7z8FEQqBXB+cq1oKA0UZiwBMiWBfo1OC8xnvNc+pzbV/8vtxreGyPIu1fuU6mEgkEtc58jmcSCRuRNwnQaGU0tH+g/Pnm6b5lYO331dKue1Aib1N0vtr5zZNc7uk2yXpzJkzDUlcJIaRXJroxLx0kxOfbyFgZ2enJWRMc/Dxs9ms3ULRJGV9fb0tnNjr9drzSZDoUJhOp9re3m4FgZWVw+0IfYzzx2vRVbcXdw9gZXunKlA0MAHzrhXRtcCoL0mmUw9o968JCyyyaBHC0WTnwMfoe2yHQkMkmbGPbpekmNc3WK+ATgh/FkUMijUmqLTlx8g115avb1cHU0QiQef1eF/j9poUqZh+we8B00o4l3bccO14LDVBweIEt1C9kKjhvlAU43zEaD/7xz5xrul08Hj9vYuCWxSL6H5xHyhg8Fg+Qyhw1RwHHgevcS3icj2LT5ebrz0lJZFIJJYA+RxOJBI3Ku7LLg9F0k9LelPTND+Gj35d0tMlPffg54supr0asTHpMfliBFM6tFObsNIqTbt60xzWDXAbFgmYHkGyYjGh2+22BNKpEaXs13UgCWKeuwmkpFa8KAdpDhYwJM399BaQ3F5yMBjMWbIteDg6HSOvnq9a1Ja2b4+xaRpNJpP2fBdclA4JO8khc80tLsT6ALweayD4XpDo+xq050dix+J8vO+eb9cCcC0Ik0amO7D2AK3tMXrN/tMdQAGI9y+KX3RWcL5qRDWuW4Nr2Of6eN5Hpo14HqKg4X7x2lwXFNC8xrweOedsg/fSc0mRjOvDQh3rNUQRIM5hXHNxdwu/RxGB82Cxi3PlcXpe4nxQhCQ4/8uMy/0sTiQSicSlIZ/DiUTiRsZ9cSj8LUlfJekNpZTXH7z3Pdp/aP5iKeUZkt4l6YsuprFY6JAEzUScpEqaL8wX7dcxwikdbpvn9xjNZS0BEj0TKhInab5i/NramtbX19vdHCaTiabT6REnBM9xVNrtRtIbc9lXVlZakuvXdDqd2wrQboJo446E1WNkLQQTykj4O53OXNQ5EuBFBJaFMumoqLXBwoMec41c+r2YIkEhhWOM4HzTks98/ehMiGSWc0oiGom774fbtROEBJbX4/aliyL1/D5YzOG6571gH90Xpn0smlu/z/sVxSUjpnRwTKwFEWsvMEXH4pvPjalNUdCItS78Gde7P49z4LaPWx9xbq4RXNZncSKRSCQuGfkcTiQSNyzuyy4PfyhpkT/4KZfanklGFBP4k0SJuxIw6kriy2N5HRZUNEHzFo7SYRTWf5tgxa39pMNtCzudTkvIV1dXNZlMWiu3+8qIp/tnZ0K0kM9ms1ZIIWkykWJUn+4MksEYBaa4ULOZEyTv7L/7zvFHgsYoPUkeBSNeh9sjRlAccb9jfynS8Dz+5DzEuYgFCNnmoj4dB69jOgCiMMPrRfGL5Fean29/ZjeG26n1jQJLp9Np3S81sS2Oj9deRLJrAgEFBQtlcQ3EuYq7Tfj3mrsjfs9rn0UnSRwrv1O18fj349bAMuFyP4sTiUQicWnI53AikbiRcVl2ebgciP9xZ2SfEW0WU4x26EgYa1F17p4gqU13YJ2EuMWcc9BZYd9RX6ZMuN+9Xq91KcT+MartbfzG43GbkkFEaz6t/nFcJtquL2FLfCRRtqCb2HNXjOgcINEzOWYk3NelrZwiituKAgfB3S+4DnwfWZ+B99/HxDYt1PCz2nVJSGMtAZLJGnmN7gT2l8f7WK+PWrSec87rcCtQt8NdKeyo8feAxN7CVhRvLF7xHpI0UziIbo/jxJU4booJcUvIRd9XihMUFGtOjfjdrgkkXAPxXvk8CpMcTxxXIpFIJBKJRCKRqGMpBIVS9usLOBpqkhm3tzNB6vV6R4oBMnVgOp2q3++3ZIDRYumQnElqt4286aabdOrUqZZgbG1taTweazKZaDKZaDwet0ID0xFWV1fV7XZbom4hhFsT2tZt+790NBfdbbt/jirbpWDU5sVEnqhF/E3YXBei1+vNjSWeU0o5UhSQba+srGh3d1e9Xm9OUGBahu+X60PQpUChgnNJ98ZoNJoraMhUArs23EcT1ehIiZF6ppHYXeJ74fYWCRy16Hbc8cJCDkm961PE+gHsp+8BXTkGya3XmY9lIU9/Hzw2ClGDwaDd+cRrk4JGLdrvXUDcVnQv+F5R9HI/KARxvBQUPHbPG79D3v4yOm9iW773FBEoUPD+xHM9nxQmYr2HRCKRSCQSiUQiUcdSCQr+j3/M2Xb0ngTNKQYufmiCZOI6Go3mSAtTH2Iefa/X05kzZ3T27Fl1u92W/J87d06SjqQkONLPgo3uF90K3FaS0VeLJjE6TCJuIkWhRdIcYTeB4zaTJKkuZumx01HB9klkIwH3eSTCHgOLIbJIIueaxDwW5yOh41ywpgHTJmxjr9WFiCkP0Yofa1H4Pc+FrxVJsEGiStcIHQ50B7g9ElWPc5FTIRJupo1QKIjzG9vlGvA6i2uJ6QhRWHC7XFOcf39HozjB9WdXD50+cXycG7obWFiUx/M4j4MiD9OceP/ptIl1UPx9iqKIP0+HQiKRSCQSiUQisRhLJShE0m0yaDLl4/yTkX2SgN3dXY3H47mo6urq4ZaK3v5vMploNpu1RRk3NjY0GAxagmVSw60V3Q+TupqLgoTPBFQ6jHz6PBPxbrc7FxUn0WfE3u3zOJMvkkn3O0b/TaAZmed7TJOIpLRWr6JmJY/z4T7X7rl01LLOz2PfPJ/xeotAQcHXij9Zn8PCwHH2fq5RCjHu8yLrvj+Plv+aK4DHkuzW5ifOJ6/POiFMIeB1uWai84Lt+TOKahQF+H1h2gH7FtdurFcQUyBqZJ7X4nscV3R+xD55HOxb/H7X1nYikUgkEolEIpGYx9IICo522o1AwhCLJDqq3Ov15uoEGM4Td7TTgoIr3U+nU50/f16nTp3SeDxuP+/3+9rc3GyLNJq8zGYznTt3TsPhsJq7zSgut1CMRJjEcG1trU3LcB89zlJKOz4Xi4ziiuetVh+C8xVTECgmWNCopTq4/ySttsBHNwQJs9uipZ7nsy5EzdZv+LN+v6/19fVW/OHaoADAdAMewzZ9TUb7TR6ZohLz6n0u3QIWbJh6YKJqp8yidIIYCafIEME+syZETYiJAsWitRIFCqZ61EQKziPXOsm6247zHfvlfvu92haccUwcd5yreJ+5FthuTejwHNVEheNEjUQikUgkEolEIrGPpREUTPal/RSHSHgkzZEYCwT9fl/S0a0kSaZM/GzzNjk9d+6cTp8+rdFo1G79ePr0afV6PXU6nbZuwng8Vq/XawWM8XjcEhGS2Eh6acuO+d97e3ttXj3dASQ7/X5f/X6/TRVomqbtE9sziXW/DKcjkPD5PTsyXCywJobYPeE2ZrOZJpNJW9SylKLxeNyO1cd7vE4/YRFF32+KCovWhJ0oFnd8Xd/jlZWVNr3EQgrHESPgXEt0KVhYodPFOyKwL0RMqbBjxmvCqSieC4o3Hjt3DmEdDB/v35nu4vtbc5JEocJjp1OhNs8+jkINHTYcv0WTOMc+j8cdd18NfkeYLsEtLi3a1MDUikWOBl631i/fN6aTRGEikUgkEolEIpFIHMVSCArSIaleW1trCy6SBLNwm8nY7u5uW+hPmhcmptNpS75YxM9omkaTyUSj0UjD4bA91mkGu7u7OnPmTEtu7rnnnrZIo9MgTPRNore3tzWdTluHhCvxu91Y08CuCBNxj9skzf32sRYTXKjQJGgR6amNma4CR/9N/i1I0BZOkmXRw21F1MhkjZiZ2LHYH2EXgK9t0YA7e3BniujwYDvRJRHBMXrOvYYWuRzo/ODYuDMDHSus2VBL3+B1eF4N/C7QKUC3BokzRQvPo+clpgPQReN7E1MwfE6sTVBzucR1EOs/SDoigMXUhFiHoVYAkyk/vpbh+h/x/dgvf0axjPcmkUgkEolEIpFIHMXSCApG/E8/I6t0H5hMmACwUjt/xoKJUVygMGESySh+v99vt5WsnWs7uus2eAtI99WRaY6D4onJYLTM04rNeTBxnkwmkg5JbA3+rFZ/wO051cRiwWQyORLtZVqA+1wjkbX7uMjqz7oONYJt4uxjHaWOxQmj28EpM7VovcG22bdajYVFtRA4t5GUSpojpRY1mC7je+lxUyAgwfdPkn+6B2rW/Ogm8GcWaSgKxHP5d+3exetyTn29KGpEUYLricKENF8Tg4JBTTyrzV+cg5iadFx/jNo9SCQSiUQikUgkEkexNIJCJCckEf5J8h/FhUgsTeQtDJCoMypOgk4xgAJEp9Npt4UkCTYpdHSfgoJJ0vr6ejsuRuYZAfbWfCb33LWB9n6StvF4LEltSoTnLdraWX8hkmuOp5TSpieQyJGQ0qlAISDu0sCxxr8ZqfZOEyTIvk+8/3YpeK4sprhd943XdJ9qY3BKwqLzIuHnMRzDcdf2y+szpkjESDvrXkTiS8cCXTt+ryYKxPlnRJ/94e/x2HjfokgQa4XQQRJdEhwrxZu43liLgX2MbhD3rSYmGF5jdIxQtIlz5HMWpU8kEolEIpFIJBKJeSyNoMD/3Ec7O8kTo+l2BjDnnNshOpXARN3n9Pt99Xo9bW5utjbwra0t3X333VpfX293e4jbLPJFYSLaoklcXOiOxNnHkFzSgl7LJbegwVz8yWQyFymv5Zqzb7VoenQBuK4DSR8dIZFoRQGD4kDt+nEeSZBLOSzSZwt7KaXd6cJtxrQLF1GMOfy1mgGMPkcHA7dfjEQzpqx43iP5ZBvdbre9RkxT4LibpplzfnjOF5Ftjyv2IRJ2f6diPYlIwnmeXxY5KH5R1KBbh68olEThwudfyP3Avvue+x4TcbtK3le7IKIIwuN9/3kfOQeZ8pBIJBKJRCKRSCzG0ggK0jwpjgXiLCyQ6FgkiCSaxNXEwkUZWZ/Ar1JKG/l2YcVIzGg5d8Sc0c+dnZ1260uTQPfXOfTSPKEzQXRhORJl1zUwKTKRspPBxRQNjpWuBmm+gGCMphN0TZgYsg1G5Okw4DU91hgNJgn2+ZG4+z47b57bhTLthfebZJmpCJwXFvirrTm2xfvDrTi53abn34hFMj0WCmJuz6kssT6B77t/soYDP+N8uC2mA5DIe22yTf8e738UIWoR/FoKAo/x9WprK96v6EBh/9xu7Z7FMdbGQ7Fmb++w2GUcC8deayedColEIpFIJBKJxPFYCkGhZrGmjT8SWUaIpcNdIaIdPZISn+ddCyLZc0FFE0SmVTANwX1wOy5453QJiwgkz7Tzs/aDx8ZzfU2LEhQDvN1jt9ttyTujsTHyGkkryRMJs8F5r5F3/4zWcY6RAoxRI/uO5PN+0Trva8UoMftUI5LxuJj2QbEqzlOck1qdAYopMdpPUk0HAeeQAgiFm5pD5TgSzDnjuHzsIjJeI/yLhAQ6Weg4YP/Zdo2AR/dBdCG473Hd8Dsc24muC35ec71wPFFoqc3PItEtkUgkEolEIpFIHGIpBAXpaA2FGpEySbMTgAQykitGMeNWgyyux+i66zO4QCNrNvg998XpAaWUVnCgbb1mq2ebLuhoxG0gLTBYJKC931tYcocLw0SXkeC4A4Cv536TFLIeQrTEu28UWXy/ON/86c89Fx43iaTFDR/rexSL9lEsoluEogDJdbTYRws7hRBfg9shsm+sqeC++Tp2VXD91gpiRlLOopzuT/wu1N6Poonni32+FERRhvOyqO+eBzpHoqvCbcfvck2Mim4a7oixKBUh3svYHr93Pob3Ja7vKAwlEolEIpFIJBKJ47EUgkK0O8eop0Gitru726YxOGVBmo/Em3hMJpMjkdZOp9NeZzabzYkI3nLSZHY6nWo4HLbFFlns0db96XQ6R2QYHWf0m23bCUESY5LK7RtJXPv9fvu3++yxxeKGruofCTO31YxRcJJ/9tugmMC8dgszi5wFbtdzZ8TrRBcD0wRMCGM6CwWDtbW1OXLvMdfWk9cdI+PT6bS6UwT7QQHJiG4E94+1MbydKGsi+DxvR7pIEIhuEcLrwUJbJNp04jB1h7uLxGtEQh3FmEjy6QSITh4KTtzG0se4HbosfK8p+FFEXCRMWOSL/WTfmQLB54X7xroMUSBJJBKJRCKRSCQSh1gKQUGa32aPUX0TMZKpWAzRBDXWWmAEnHn00b1gYh/TEWKkmu6I6Bxgn2ldJ0FiWyS5JjAkoKzjYMEk7jzgPP6aFd5FBC0ckKxxV4t+vz9HytlXRnZ9zXgt2v6ZX895jdF6i0a+jok214HJdtM0LdlmPxiJ5px5Hfge8ryahd5/c/eDmiWfLoHpdDq35khM3R/C7gG273XKtBjfm0WpDQadF/xO2G1Cws1zuf64TqIgFa/Dv+kO4FzWUkP4nfA14vfGbcXUG59bu5dRJCM43ni8z2E6BNdhdD9wTSUSVworH/1Y/V8veM1JdyNxmfGCf/O3dcvtrzjpbiQSiUQiccWxFIKCSSWJJ8mLj4n2aEmt24Cf2UpuQkyYZMR0CEemJ5PJ3E8XCCS5lDRHxCRViRuj/xRAOMYYfa1ZxOkKIPmJIoB/knAbjrrTCbKzs6PxeNyKEzEFgWIIrxvbJpmO94ZjIIGLZJPHkkTTIUASGvPuSTrjvMe0CLbFNcbIeRRRovhgkYbjjOuM80cS6/XDdAVJ7Tq2MEBiTIGqllbANVUTTfy5P7OAxbVGQSGmOcTx+Lwa4Y4iW3RWUNjgd5B94nxZQIzrJKYtGHyffa6lNnA8NQGkdm8TiXuLnc/6eL3nMzpz703vt6vfuvltJ9SjxJXCi//fO/T2R35y+/fDf32o8kd/eoI9SiQSiUTiymApBAXp0EpvMYAgkfCx0nzEmxZu/03i6EJ/JP0kzYzaj8djTSaTubSAmM7ASLD7GO3ZjBJHIlMTH/w+d7DwT6cpxCiySWQtr96fOSrr+TAZtmDCyH7se43gey5j5N7jpJBjAh5t5lEI8bG8Jp0MnC/33+95bqJg42g4RZYLRZx5L2qCgdtwH6KAQodGJP+sZRHXkokzj+X9iKkkUXjiuGOf2fdFf5PIcy0yRcHvMeLPdJRIwu3EiJ8zNSKmZ9TShrhjhq/H71K8pxQfKC4ZFF3iPEWRJZG4XFh99IfrHV+worc/7Xkn3ZXEVcDLP/rXpI8+/Psx02/SI7ceK+1Je298s5RiZSKRSCSuEyyNoGAwgs4XSUN0Hph8ReJIEcGkxE4E55xLh8RqOp1qNBppa2tLg8FgbhtJbxdoIkThw+kQ7get1Ybfc19i3QETVG+baQs7Cb6kI+6L6EiIBNzX83ncTWJlZUWbm5ttHzxfJugWMGIk3UTd7TEX3yJF7F9NWOBuDkas11D73PPuOZ9MJnOpArwGU0S8Vnw/LgTOIbfI9Hg89ijy2E3iPrGdTqdzRFyh+MG+RSfIItC94PvQ6/XmHBs+jqkDPN5z5Bdrc9TmRDoU9uimoKBB8Yc7ajBVx4IWC4R6rp0OwmKPnqfo+OB3nIUivcaYasH0B86x7yvTeNbW1jLtIXFZ8Bm/8nr9ZjoRbli8+RnPk54h3bM30pc9/nM1u+uuk+5SIpFIJBKXBfdZUCilrEp6raT3NE3z1FLKzZJeKOnhkt4h6Yubprngv5ysI2CnAomxo7XSIRHx565tQHLniDXJeCRoMULp1Ift7W31ej3t7u5qNBq1Of4WIEyCGLE3UaSoECPdTFXg+/w9RuiZkhHb85yYkEYyZ9LoYymC+NjxeNyKGP7b4+XuAzFqHEUVH2chxOOIZLs27/y79lmMnPNYui58bO0exOh/3JGA6ySOkak0LOTpn3RnMD0l9re2bSbnlvfI9y+KN+4XCTr7QReO16vPZWqB++PjYwpEXI+et5iWQweL1ysJeXS7+HvN9eJr83tMYYBzSIHMW7VaNPD4vZ7dhr87XA+cN483pjxcjJizTLhcz+LE5cXawx6qL/rtV+kLN98paXDS3UmcMM6sDPT3Xvl67TT7z7cP7p7W7zzpgdobDk+4Z4nLgXwOJxKJGxGXw6Hw7ZLeJOn0wd/PlvSypmmeW0p59sHfz7pQIyQqrOBP0sFIpiPgJi+MbEaHgAkYYXIRc7f39vZ3hfCuDqPRqN2ecVEk2e9bhHA/GZ2upSWQ3MQtKd2mpDnbeSTWdBB0Op05cm1hgCIFbfduw44CziUj3scVEKSd3YSRxDkWGWS0OBZNZMQ8CgskrHHdRLcBCXcky7Ta28myiDhS+IljJzmNJJV9JuFmFD2S19rPOHamcNApYfA+s78+JgpsTAeI6+S4e8BzKBhwzqRDss61FIUmrjefTwdPvL7n0O37e+/7yrnjfPJe8PsbrxHn/xpLf7gsz+LE5cPOZ3+C3vIle/rq0+9XigkJ40tPHfLJ4d579f/70c9U2S06+8YV3f+nspDjNY58DicSiRsO90lQKKU8RNLfkfQDkr7z4O2nSXrywe8/J+nluoiHp0kCCbLJCy3ijvzWCi6ajETyzmg9SQfJFSO+s9lM29vbbS0FpwmYUNW251tdXdVgMJizU7OPTF8IcyjpcAvDGAmn8OG+kRyTbFIIsFDAuamlQhgULCJBtEjgwo2eJ6c3xIgzt4Wk7d5t8z7E3Hz2ke/zuPiZ7zvFBvaJ0W2OySKK3+M8ET6efXOfIgn3WpDm6zGQJMcxkmDXru/3KUB4vcb1RIGGopTvVxQQ+DdTcqJrhP2kG4Pfp5oDiP1jmxZ9fA6Frjg/BN+PwozfO+6cRaJNFBWuNVzOZ3Hi8uF9n9DR2z/rJ0+6G4klxvpKV29/2u2SpKc+/nM0ff3/IUla/fN3aHbu3El2LXGJyOdwIpG4UXFfHQo/Lum7JZ3Ce7c2TXOHJDVNc0cp5QG1E0spz5T0TElaX19v86qjNdlEzOTDJJlkKFrzV1dXW3u4j2WBxpWV/V0Nut1uG8lljrwLNA6Hw7aOgrSf+726uqputztXNNHo9XotGaJLgeTe43PfuX2kP6cgQku6BYfoTHC/KXR4HBRnIlHknDEyTHGh2+2q1+u1KR12CTg1xeNiFJgFCXu9niaTSSsCMapfi/xHFwZTACgqWOSweOF+2QFhIu35jYUMScjttIi7LPi+0OFCcYTXdJ9YYJGkm/fJcJ8sWMWUhJqjpSa6sIin5yfC95YiVxQDfO24rn0s7zPXIddQFIaYbhCdAUw38PucZ6ZNcO4XIYoZNfCaUXxg/+L35BrAj+syPIv7Wr/C3UwkEovw3x/9W9Kv7P/+ad/8TA1+7dUn26HEpeLHlc/hRCJxA+JeCwqllKdKen/TNK8rpTz5Us9vmuZ2SbdL0v3ud79GmncMkBSZJK6urqrX62l9fX3Ohm+yGy3O4XpHouEkyXQ+7O7u6u6779ZwONRoNNJkMtH6+rpOnz6t9fX1Ns/b9QacWsAovkUNbmfY7/fnbOcWPWazWXus52E6nc7l7rOQXW1c7pPf83ho97fgEAkjBZWY1uFUjm63217DQoXbYp9MUjudTjs3Kysr7RyRfNZs+XSq0EnCfjO9hc4SuyX8WXRH0O3C4p+9Xm8uOu5j2DbnlOksjuhTALPgRCJcW498WZzxevH5MVXH8xvXgddc/Jsi0NraWns/fIzbov2/RuJrZJvCFh0vbt8uEDoa2IbPsUDFex7TYTiuRfMYxSoeI+lIH7kWucY45kXpMMuEy/ksPl1uvqZUlETiesWP/Ot/pw/8yKkLHvdbd32M/vITJlehR4njkM/hRCJxI+O+OBT+lqTPL6V8rqS+pNOllP8i6X2llNsOlNjbJL3/Qg2ZxJlMSUe36jNMPEzcO53OHJkmYuSb71OEmM1mc+S3aRptb29re3u7TXlgAUKfy0r+3NVgbW1Ng8GgJd8UHIjt7e2WoG5vb0s6zAsnYWX0l+SJ0WHOFYk4+8Qo/N7eXitUOKJv8snorMdK4cZtTadT9fv9IykSLlq5s7OjyWQyd29J5EggmSrCsZDsuW8suufPKQJEoSG6MOiCYPpAXDNx7bGIIT9335ke4vlfFFGnsOT1Y7eD15X7EYl6HJPb8X1xkVDuKMEdDTgvnH/3K6YgeN5rKQ21eeJ7nluSeh5LV0JMW+F95fh53ShwEHw/io2xwCS/M1EsugZw2Z7FiURiOfCkXkfS+ILHPbbzMn3mT3+HJOm2l67p1AtfeWU7lliEfA4nEokbFvdaUGia5jmSniNJB2rsdzVN85WllB+W9HRJzz34+aKLaY/k6KD9ufdppWZEnaSJxIWEk+2ZXLOavB0BzjHf29trnQkWFOwu8Pm9Xk/j8bg93sICyXkkKjGqzuJy586dm0uLiNv2kVzXCFQtYh2j3JGEm3RSKOAcSoeCgqPdLvzofsdUBBP2nZ2d1tUwmUxakYHRbN7v2Jb7y+P8mcWk2j1fJLRw/J5jzgvbjDtEuM9xBwOmeVhQ8Nr08b5fdDFwLZJA+5p0l/g4jtXzFx0Jktpr93q99n7W5vRixADOoefLc8FxxHXFNuJ2jYuutUj4432NqLmZasdQTJDm67Tw3Oj+qK2hZcTlfhYnLg/KJzxeowcfrfWTSFxOfHhnU2//nP8oSfqIwVdr8IEntp/1/+oD2n3Hu06qazcU8jmcSCRuZFyOXR4inivpF0spz5D0LklfdCkn+z/0tGz7xXx1iwmuheDPDNq9a7ZpWvwltU4CCwSMsJsMR0HBZGl3d1fj8XguVSBaqpme4T6vr6+37YzH43ZrPwsLx+1AQCu/ySdrNkhHU0giwex2u9rY2JhLaYjzFfvtMcZK/Exh2N3d1c7OjnZ2djQcDtXtdluSTKdAFHM8/hg1jlFli0G+Nom94XY4B3QveH4kzbkvTPzpOPG8xN07vF6YauE6G2yfjgzfOzoHfC2LSBRvakKP++TUCrcfz+d69PjpzHBfohhFUBCg08Vrwz8p3FGMoegR6zBwbkj2Y70T95n3hPfUx/D5QEEk7gxCQY91J/id5bq6hnGfnsWJ+4BS9DG3v0EvufX1J92TxA2Etz75+Yfl/yQ95me+SQ//J38tHfOMT1xx5HM4kUhc97gsgkLTNC/XfuVaNU1zp6Sn3Nc2mc7gYocmh47207JfS5VwagRTKUw++v1+SxxGo5H29va3i3RKAHd2iG4DWvP9O+sl7O3tqdvtHiHCvV7vyMskZjQa6fz58xqNRi0h9xiOiyD7M4se0mG036TVc2Uyzag5yT0t3hQyfMzq6qrW19fnCJ5rO0QLvsdgpwcLJjKqP5vNWjGGgkS8lxy3ybbXhPttEuh2LchEEl1Kafst7Qsrg8Fgrt6A+ywdbuPZ6XTaMYzHY62urrbij10OFjuYYuA+GyTLktq15+MsvPC+cWy+Vq/Xa9ubTqeaTCZHXACeG4oN7ANTOOj0iccyRcZ9Zh0K982ikOeOwlMtBYTreJGwwfHErUqj6OS5ieIZr83imZ1Op00xoVDC7+61hCvxLE5cGtZue6C+53/9pj6uuyupe8HjE4krhZf9vR/Wd3/G5+nOv3XXhQ9OXDbkcziRSNxouBIOhXsFRhkZ8azlYMfK8tGGTfHAhMYFCRm1NFEyOZpOp62I4Wv5d5M6H8e6AH4vkkdG7d2G/+a49vb2tLW1pcFg0PadkXWDkW/OkcfN4oOdTkf9fl/SfB0EI0aZGamOQoN3eYjtmFwzv76UMlcDgLZ3/870hkg8JbViTkyniK4PiyNMTTCJ5LpwagHJNgm7Ras4p5x3jsHpItH6z7VWW4uce/aP6RJeU7wHFE58fqzV4Gsxik9wDfre+X0WMeTcxjbiGopbt7JwZs35UHMysK81RwCFAo6VDibOYUw7Yr88ZjqXYroMHQqJxL3Cyoqe1GvUKSkmJE4WD1nb1Hc/6CX64hd8vT7i779Hsw/eedJdSiQSicR1iKUQFCLBip/VjpfqRdf8frQ9x6ijCZgJqYsymlwyom+SSDeCo9Akxs4zty2eJI2OALct7W81OZvNtLm5qfX19XabvVj8z+3wZyS0fo9t+3qO2tLlIdWFC6Y5+FwKCibTHlPsH8UB9sfz6Llyege3eqR9P+5GQTGAroooapgYkohaRKIV3/fa4/OYHK1m+0wfMJElLAJ4vBQ5uBaY/sC5o+Wf7hK/z/oTkub65La97uie4Tzwel4DNWGO8xudKhx3bI87mtRqHsRilTG9gIgpEZ57fuf9OdcX3Ut0nBBRLGFNiXi9azzlIZFI3OD42F5Pb/rU5+uTPu9b9IDfv0O7f/WOk+5SIpG4F1g9e0Zbn/6Yk+7GiWNttKfOS1970t1IBCyNoOCobiSSJBAkFZJaazqjjCSWJrwkebRgO2q5s7Ojpmnm7M/dblf9fr8lmyZDu7u7mkwmrU2dUVo7HeyGYOTXRIdbVbovTdNofX1dZ86caaPz/hnFgiic+H2P32OrFYBcW1tr8/09P4woS5or1BhfFBZq4gb7wUg3RRmnrziavr293Vr2Z7OZer1emyZh+zxFI99L1r+IpI9uCI/JNSrcP/fF9zjuRMF+W1SJBSR97ZhS4PUcCzFyXrwGPAbfL6ZqUPzhGNmG11YpZS7thWuPY7aDhO2TlFOI8z3jGqYwV0tf4Huebwo77ktMcYjfbZ4XRREWiOT99rxw61aKbhTBKMJ43jmvXnM1x0oikUhcS1gtK3rNDzxPH/Xvvlkf9kPvVrObxUITicuB0rl6TrTJEz9Cf/C826/a9ZYV/23rtP7D4x572dttpjuXvc0bCUshKEiHUUKTM4N29UgUpcNoJyO+jJZOp9OWQJnkMRJuYhWLs/n9mPc9m800HA7ba3gniBhBNlGhW8FE1GTH+egrKyu6+eabdeedd7bihreaJOGzUGHSSfLF6DL/Nmm268IFED3HjETT/k8BwYUGWfvBcz0cDo8U2/O4LcxQQHHe/87OjsbjcTsWOxd8fK/Xawticv5ZMyHWFuA9YtoJnSEWg1gcc2Njo53PWAOD5J+CAgWEbrc7J4pMp9M5QaJGoH0eBQU6M1gHIoo1TPmJKSERNTLv74jXpduPNRQ8Pkb6mc4QRSUf488pVPE7FfvHPkanAF0vFHU8ZxQMYzqM57xWDJJt8HnDlJDa8YlEInGt4uXf+MP6xs/6Am1/2gdOuiuJxDWPlX5f3/5nf6JHdj50Va7XL78rafOqXGuZ8fkbd+nxb/29y9rm38w29IOP/1va296+rO3eSFgaQcGIhGd3d7clOn4vRlMlzVX+Z750TH8wWXVUkoSVEWmSFSKmSHh3AsMExsUGWQCR5JOpAysrK1pfX9dgMGjJvPvnObGgYNLKFAtavqNVne6CwWCg6XSqbrfbjnttba2N0pvg0g3iebC4MBgMNBgM2v5RnHA/GeV3H+jOsKjCHTvcf4sXJOK00ZNgMk2AiOITSbGkdk3x/Wi7j4SWaRq8pyTbLOxHIs1r+zOOj6IC15n7EWsVRETRKzpE6Liwi6BWa4HjraVArK6utusvpsnElA2vAQtrbpMknyIJv58UX7xGWagypsGwJgLFhXjfogC3CPwsBYVEInG94AGrG/reh75YX/trT9eDv/q9mt19z0l3KZG45vDu53yKep98p1ZXGn1a/w+0vrJx0l26odApq3p05/LO+cPWprrzFx+k3Vn9/4bntwZ65Ff8ae6YcwyWRlCopTXU0h6keQJJOz93aIjWbemQ2Jq0Rls4d46gbZoiBwUF2/IpSphYxhoLbqfX682RIwoNFBOiUGBhgJZ2t1NLfYi/2x3AubIjgFtCkhDHHHuLMf1+v3Uh0NbvdmN0msUPTUpZtDGSQd4Tk99aTYlalN1/0wnCQpAsAkkCbbAdz5/nmGIC58XpOrU0hZieUCv2t6h+AIUGblfJ7wLrJkTXAK/NmgsXEihitJ/riDuJ8B75OIp8NbGC9S04x/zJ7z3FPs6F36PwF++nx+rvCr8n8btfc0bV7k0ikUhcy3hir6tXf8J/0t8dfJ6UgkIicVFYvfUBuvszHilJevxT/0IveMTvHnySxXevB/RKR6/+uF9a+Pnbplv6yi/7LpWj5cF0+i/Pq3ndG69g764NLJWg4Ii3CbhJh7fmi5Fh6bD+greBlDQXIbfIUEqZqwHAFAtau235Z2SXJM6k1NsicrtI5l67DoJJqEmMnQKS5nLzx+PxXOFDpmhQUPBceL5IVLlVocfHVA5G5U3ULCQwH98/Gfl2f1zEkA4I5qZbFImRaDoWmM4RiW8UNhjpji4Bj5uihMHffV9iugvvLc+hMOFxu8+8n4zce1xxpwX319f1NSgIxR1HuCOF+2DhIIprFlxq4orvh+87v2OeW+mQrNfm0d9Ft+21E78TtSKMEdFh4P7EFA4KJLyfXqf+DnBN11KVfK8oKvB++HvlPjklhm6VFBQSicR1iUFfWlmV9mYXPjaRuIFROl2d/5RH6I9+7KdOuiuJE8KHdzb1ih+p3/9HvPjr9djvCI6J2Ux74/FV6NnyYGkEhWgVp8NAmt+NgBbySEhJRiwK9Pv9OQu8CbHJh6OTFCHW19ertmhGoElwHal3XQWTUNcS8Lkm5adPn9bp06dbIh+3ALSbIRZAjFFYRlpN8JyOYTg1Y3t7ey6to9frtekLJojjyhcg5vDTScCos9MnHLEnieN98ZzY5WEyxzoRjD7HyLGvTYIYHQO8pvsfixLG/PvogiAZdZ8psNB5YDGB64PEnyk5NReO01h8DaZCSGprStAhQ5eAxQvOEQuLeh7t3uG95BzU+knhwTUwYrqL59riBu9bFKZ475jmwWv6b65xuxOYXkExId43r/u4DqXDtBffG6aIxHooiUQicT2hVzr62d//eX3Wc/+RHvDv/uiku5NILDXefPvj9cef+a8lrZ90VxJLiDd+zr/TPZ81X9Dx9ruepD/6mBvLvbIUggL/4x6dAdK83ZqRykWRWiPasGs2dRLNGEmPEW8TIWle+PDxjqKzfgILKDoy2uv1dPbs2SPF4mKk3o4Kt88ItMEieP6bqQTsgws+rqystE4Az7lJlcm4x+V5cr2J6XQ6J9yYVDotIPbNn5P8j8djjUYjjUajOdLpcXC+fB9ZLI/R+5o9Pu5cEaPnNTdDTDPhnLIPtOC7cCOPZ80O98VpHlyTnKMoWPgesS8WWXwOx+U2uW6ZYuI1xZoVMbWklnoS0zc4Pvbffa+lUkRSTgEqgnNnYk9hyefzex2FLba1qA+LENM7+AxKJBKJ6wkPWN3QFzzz5fq5x3yqHvVtrzrp7iQSS4n3/Mrj9K8f/0LdtJpiQqKO9ZWu1lfmxYOvuenV+sOXfVn791vfease/bXX91aXSyMo+D/uth+T8JCs0nlAEklSS3Iarcs1kcCWbn5OshYFiUiIaO9n3YRovZ7NZtre3tbW1la7wwHTIdwXE3uSQkfWYwSdQoJJF4UKX5fRbUePXWSRBNRFIw3PDUmjhRs7MGq7Ejjlw9s18tzxeNzujsGIuefXdSmiQGREou8x8v5zbngf/Xu8/z6XdnrPJQWaGNU28a3VseC9cf/ievd4OI8k/fF+8mck9xQWmDpT+w74GjXiHde6r8WtFd2u55s1HuKcR9IfxRqDYo3FN16LzwP/pPDiNihM2NXg+8HrxvXB+0n3SiKRSFyP+L77/7ne9MQH6q6T7kgisWRYvfUBev/nf7h+6Qk/qo/sppiQuDR82Nqmfucjf6P9+xcfekb/6uu+vP17cOee1n/1+hJyl0ZQMKGVNEeuY1FECgskMCYNPo559iYHPi8W5mPkWdKRz+mKIGmL0WmTnhhBt7tib29Po9FI29vbGg6HbcS/lDK31aAjsu6b8+9rggLTNjyX7p/75cj39vZ2e2y/39fa2po2NvbzfjqdjjY2NtrzTNIpGpjsO9rN+hG+jutGWDgYjUatsGABYTwet5Z0CxDcwcLuBV/bc8yIOaPrJO7RNu85oQPEiPPdNM1cfY1aO4z419Yl34vpDLw3FKlqIhZdOH7PP6N44ff5faE7gXPEsdNRUHNtMI3CogEj9xTbYn+iAEMBIo4pgqkQ8Vp+j9dwP7lGJM19j5z6EB0Hs9lszq3kex9FnUTiYlA6XTVncluvRCKRuFaxsr6u4cc/TK/9Z89TpjkkLge+ePMeffE/f1779z+84wl608tvkiTtbW2rme4sOvWawdIICoyMk1y74CIjz4yM+hwXnzPBOX/+fEtcbU+PrgeLGCYU0iE5ZNTbJI4EhWICI9TRfm3iZjHBed2j0UiTyaQtJmmbu1MiptNpG2WOBJfXp8OBpJF1Heia8NxKaudnbW1Nm5ubuuWWW9pzp9OpxuPxnEhi6/54PG4juSSUrh/h60wmE21vb7cCwfb2ts6fP9/2yW2a1K+trbUihcWW6XQ6Rzy5ZSYj3lxLFBXYP0bXScBJVL3bBgUBX5fz77XGiHhMPWBfa+kAi/L043t0B/iesw5IjKRTjKKIwtoUFoVq20f6b9ZSYOHHRSkLHLtBl4HXjMd0HHifOA81J0hcH7w/sWAqz6EoREdDTBtKJC4Wd3zLx+t/fdePqVP6J92VRCKRSNwL/MWPfbTe8NR/Iymf44krg3/1wNdq6w0TSdKTn/sP9YB/e+3XslkKQYF2+VgTwKQvkjYfK81v90i3gQmuHQLRYcBrxFQG5t/7fG8PGe3UPp5kze1ZQDApc1s7Ozut7d81HDwWiygmc95hwBF87ibgWggWRmL6hcfLnRxI8LiloKPa7q+3lmSqSYxCM9eeqRUWFIbDoba2tjQcDjUejzUej48UFOTuG6wlwOg46yvEnH6Pie4CE0muoZjewrng3PCavrd80YVCUKBgn1k4MqY7XMx3IwomJsfRbRHJtue5ltZzoT4wSm9xKp4f++DPTMa9hShTECJqjhKuTwpnFG98HOHPKaRYCOR3m2ICBUCvZe6ukoJC4lLQrEqbK/mf0MS1g3/y4BfrOb//hZo+dVt758+fdHcSiZPHSpPP8cQVxWpZ0Zmyv+Pf137Ti/W/vuzDNdztXtPP4aURFFjQkNFhkhiTG1bDl9SS0X6/P1cAz8TWYD48hYEoYlBMWFlZackgI+MxF9vEpd/vt+kEFhMocth1wDHH3PdutzsnYPi6cfcGEiI7GehGoAMgEiSTeAoKi4r10XZOh4avS8eBx+TUhuFwOCcm2BVRi1DT7RGj0bFehN93/7jlJlMHKIS479HhUFtnrI0QX7EOQIxku12KIhQWOLfx2rwOd5iouTBiygP7y/Ex9YJj9HmcG94Ljs33ppamwTG5TQordHoQbCeOj/2Mu2/E42r1Mijqcb3S0RDXtp8JTElJQSFxsTj/JZ+kyZO2TrobicQl4XHdgV7w4b+uJ33zd2htJJ1690zrv3J95fYmEheLO5/xyXrco99x0t1I3ED41pveqW+96Z0a7u1c08/hpREUTJZZ2Z/kjakKjnKbqGxsbKjf72swGGhlZUWTyWSOTLlNR1pJJKX5egi+BqOwtLBTWHDbtFkPBgNtbm6q2+22BJopDaur+1vvcXzSYeTZ6Q7cmcF/Ow+cUViKEBZT6N6YzWZtOoh3cFhZ2d+S0ls8+hVrAjDCH4UHz5fb9LWYLjEcDnX+/HkNh8O5+gmeR9rgPbaaU4A2+uhS8Fg8BhLQGN03maTgZKGGTodut9u+xx0joqhgOGUnChmRbEfHRUzPcFt07NixEesIcJ16XngN1wbwNShKeK0ycu8UgbgGFqVlcEx+sV2vkVgQMTqBFok6JP10Avk99tHjdTusx8KtJpkiwvVELHI/JBIXwmP+wRv1sx/2P0+6G4nEJWN9pas/+/aflCR9/l9+tmZ/dKt2/+Z9J9yrROIqYmVVa7feX//yOf9Rf3t9euHjE4nLjCPP4Vc8UJI0+9BdaiaTk+zaRWEpBIW9vb25nQBipJQRSpM0EyRGppnvbSLKPebdXiQVFCekQ1JpgsrIN4UEEshOp6P19XUNBoPWpcDrUnSwg0E6tMl3Oh31ej31er1WEPF5Flsc/WdElvZwnkMSZUGg1+tJUvv75uamNjY25gSO6XTapimMRqO2cKMFG/ebZM5z4ns4mUw0Ho/bHS0sipjIR3FFmo82837SiRIt/SSTdCv4GK8d2vVrpN4pHjzHbbDN6GTxMSStHhvbiGuZ50Yxy/C46aZgND2CNR78k1tVkrivrKyo3+8fWcMRFPTY50UCA0U/um4oNHl+mHIQRRoKep57fx7dDty9JI6jNia+R4GQTp+aeyaRSCRuBPz6o16id716S9/wkZ+lve3tk+5OInFVUJ74UfqVX/sZ9UrnwgcnElcYv/6ol2jy2v3/wz/5u75Vp3/hlSfcowtjKQQFg3ZzbpdIK3yMDNN6byJHl0Osxh+vwygxyZNJHAULCw+7u7sajUZzkVmLCOvr69rc3Gzzxx0ptiPARf9Onz7dugpMuqIl23UWnCZAYmYSzOg5x+VoP50Mvr4dDRYKPG8uGumCkZPJpC3a6IhvFGh8LZNXuxBcgHF7e7sVGjyvFjgo1MQx+H4tIrP+3RFxigxuzz8tPnnt0OlRSjkiavi++3dJc0KAx2viy8KZMdffa9BkmsIFBYaYrmBQNOG9jYhkmyk9i1IOXCNj0eexH5Ggx756rD43pgbxOP70/b6Y1Ai7WdgWz7MgwGKYsV0+B7wuY4FGI6ZzJBKJxPWO21YH+uj/OdRrv+cT1H3Ja066O4nEVUGKCYllgtfj0//Jb+hffdLn6VHfvtyiwn3y9ZZSzpZSfrmU8hellDeVUj65lHJzKeV3Sil/efDzpoto50iefyQRrPofyZpJhR0OFBQoUJjEsn2+TD7pWKCNm+IGiwfGHP44lpia0O/31ev15gQTEi+mgPBFhwLt9IzmujilXRC+pt/b2NhonRTuo+eY2zvSYk6izPmgtd1zZxHEoof7TcLrvnq+6BghIec95DFxFwOex90IeK9M2Dl/Pp7pNrGPdBBEt0G06NdEDd6fOJ90FNCNEIUJg7VDoluGhD+mBNRIfRTvKD55Pt0finTRmRLvExHTTWriRqxnENuI88u54SvOE2uQLBIqOP81ISemrCwzLtezOJFIJDplVT/8wD/Ru75iV1tf/Ekn3Z1rBvkcvjYx/cwn6i1fuXHS3UgkqvjGs+/Rl3/6/9J7/9GnSCvLu5X5fU0U/glJL2ma5rGSPkbSmyQ9W9LLmqZ5lKSXHfx9QTBiHVMS4jaCJvGOtktqdxWYTCZHis+RyHP7yGjRNokguaRLwcfEApIULmJEO0bVScQlHSFFJHAUEihgkPzQpeFUDbslnKZg18TGxkb70/UT3AfP32g00s7OztzuANElskiIsZjg+xVTNGppGrS+e94YVaZrgykcvvckqouuW7tfJN018SPm3MdilD63lsdPEYNtcc6MKApwrqIQ4HZ9f0j6jyPkvg7Xitcid9iIqQyes1joc5HgQdRSGNgXg3PCdbFIzIlCAj9j+76nFARq9SBqc83v4CIxYglx2Z7FiUQiIUlve8rPqvv1d2jt4R920l25VpDP4WsMaw99iN7+pUV/9UU/ddJdSSQW4v97wBv04m/9V1p91CO00l/OHUjudcpDKeW0pE+T9NWS1DTNjqSdUsrTJD354LCfk/RySc86ri1awe0EMIEzIfRx/g8+88lNCiW1hIvEm+RV0hwxjtsImjjTon4w3vZcFriL0WBf38UKI0Hc2dmZExacmrC3t9cWm4wEOBJBEl3OlQUFCiUuEnn69GmdOnWqLVxpV0fTNK2jwBZw1qxwOoS333Qqh4koCfFkMtHW1pbG43ErTNRIH8dgx0MthcPkP9rafY7XAOtbkEBGZ0UksrTwe94pDPl3rgVf07Z7z5nbpxjkPni9Spoj2UwDiRFyt10jwF7nPI7km2vY115bW5ubm1gXwtfm/Nd2V+B70aHhdugSobPH447nxv6zfkStZkdETVCI57h/FCi4Jige8HlzLeByPosTiUSC+L3HvUhv+f1tfduj/69rojDYSSGfw9cm/u5LX6sXn/mbk+5GInFBfNjapn7z935Zn/bNz9Tg11590t05gvtSQ+GRkj4g6WdLKR8j6XWSvl3SrU3T3CFJTdPcUUp5wMU0Rss0o4ORCDLdweTAhQSlw+giiQQJDcmPr2VBIkaneT0SbIodvqbbcpTc/eJ7sRJ9KUXT6bT9fTQaze1gEVM7nEdv4ut2GNl1KoX7OBgMtLGx0b5YG6AWbefckbS7xgJrJqytrbXbQrLugmsmmID7HkbHB7e69DzSpeF5Nzn2cbVtLqM9P5Jev8f+8BqG34tCRhS56A7wdShqcOeIuG1lFBJ4bs3F4PU7wX/mYtqH2/cY3A/317/73vsnxQSmAHgeuetGFGz4/aRLpBbVZ/9qdU2iEOQx8nw7KnzNmBrlPrHGQnTT8JyYRuHz3QcKEEuOy/osTlwaVs+e0Sf8/gf19Tf9lqTNk+5OInHZ8Yi1vp7yug/qJd/2ZK397utOujvLinwOX4NYLdeMCzGRkCR9ww/9N/3TT/8ifcQ/WK6aCvdFUFiT9ARJ39o0zatKKT+hS7BylVKeKemZ0v62jwfvtQQy/gc//seeZNhRdRLX6Drwe4wUk8wxncKEigSR0Ww6GxjJju4G5u7bnUChgMS8lKLxeNxa7922BQC6FfyedEj6vXPD+vr6XFqH6yZ4a8Vut3vERk5HAPvnYyg0eI4tCHhrTAoJFmfYTkwv4bV5v2qukLgVZqxLwfnhTiGLyDnJLdeI+0tnhNcjz/HnrMvANiLxZlsmwnHsdBywWGjNIcCxcExxjLyGr107J35nFvWfc+XjLHZFB0G8ln/GFBfOG//mPHFcdLawf7Vx8J5FRwLbiJ/xO3CNCAqX7Vnc1/qV6eF1ivIJj9dbvnhTL7rl36pTUkxIXJ/olFX9o5vfpn//jE/T/W/9pGui4vgJIJ/D1xBW739/ve07PkKP7/2EpO5JdyeRuGh8xak79S8evHw78NwXQeHdkt7dNM2rDv7+Ze0/PN9XSrntQIm9TdL7ayc3TXO7pNsl6ZZbbmmko9Xc+V4t//mgnSP1BGKEmmRVOoy2UjwwkTcRoqPAWwKSJDHq7Ig5+80oMUWLeF0LCtJhHQhuiUmyT4Lk+XCBx263q/X1dZ0+fboVD5qm0WAwaHeWYC0IkkmSYBJQw3PgfrnPJtXD4bAVQ/xipLpmeTdqOfo+zseyPV+XEXqOwSknMQ8/OhZiRJ/gmnNfSEz39vbmtkM0+a2ttRqp9hr18bGQaM1qT7EizmlNTKgR9jgH0VWxqCaCz6ulH/g+RXdLPNfHxvfYn+hsIPnn7zFNiXMhaW4uF9WUMCgSuS1/3+M8LjEu27P4dLn52sjzWBK8/4mbeutXPE/S8hZKSiQuF976GT+rx3a+Sqd/4aR7spTI5/A1gtVb7qftT3qE3vw1z1OKCYlrEac3xlp9zEdo9ua3nnRXWtxrQaFpmr8ppfx1KeUxTdO8WdJTJP35wevpkp578PNFF2qLdnATtljw0Mfh+kdcDDH3ndF1g1Z2WukpAPhaLAbJOgzdbrcl3bE4pAmt+8NrmowztcL99/UiUYrkizbttbU1ra+vt0UXz549q7Nnz7Y7PNAWLu0LFhYVWAOBBQldy0CaT+HwZ6PRaC7i7jQH101wygZrQHiMMRJt+D7YWeDj6TrgfaFDgW2TGC8ihHYCRAGA7dKS789Mpr0+WT+CW39ScIjtRqHG69hjrEXMuUYWoeY0sIAQ0xw8LxRg4s4mXGcUzvjdlDT3HXPbnt+Lje5HMac2zppIs0h04U8f63vDtBvPLZ0Isa4E53aZcTmfxYlEIpG4dORz+NrBW7/z0XrLVz/vpLuRSNxrvPrjfkmvf8lEz/rwT5H2lmM3svviUJCkb5X086WUrqS/kvQ12t854hdLKc+Q9C5JX3ShRsqBjZ9EP+Z1x99j7nrMt2Y6xHQ6Vbe7r0Ka/MVtEUkuTcoige73++35FA3cd5NoRzil+Yi8xY2aeECSzIKTLKgXCV+3221rJJw6dUo33XSTbrrpplZQ4HaITtvgtpKnTp3S3t6eRqORhsOhtra25izsnHMLD4ys0xFAZwILE9Zy0qOjwOkSs9lsLp0jFh70TztC6DRhSoj7G8m94XvE+1Kz0nP8JMq+v77vXI/c1pF1KizwLCr4F634TIsgGY6goyQ6TbxzA8k9XQq8l762j4mCiN/zXLEvdO34Zy1lIJ5neE5qO5/UdhnhNTl/Fma4DjhPXLd2idQEE+mo0HEN4LI8ixMXj7e/4P/Q7Z/w70+6G4nEVcWLP/F5+snXfZr+7BPK0vxHdomQz+FEInFD4j4JCk3TvF7Sx1c+esqltMMoYm13AxMKEoX4H34SMW6vuMjCTUcECTdfJiiTyaRNLXC9g3htEx7Wc5AOiY5/j8TXggS3pYyFAS0skBRGx0Sv12v76H76HO/gYCLe6XTaLTRN/KPVnlFybllJJ4fFitpWjXSP8P6RHLsdbospqSXsUQig64BuFpNc3hfa3jkWfsb1Fe34NRs+01m45uw88XkUKOJ2orGfFJ4i+WdKwnFiAms48FheK/6Mgp0FsTjfEXQHeJ3XRINFhL4msEUBgGOOqRrHpWTE1Kd47diWv/uLHA/XEi7XszhxYZROV2/9wSfon37sL+vJgyzolbix8OGdTX3Vza/Qs/QpJ92VpUM+h5cf7/6eT9ETPv0vTrobicR1h/vqULgsiLZ8EgMSR6NG6EkyjZjn7fdISqXDPP5Op9OmMPg6rK/AFAySZrcRiwcarJngCCqjvib4JKcxKsy6EH7f4kCn02nrKHAHBYoEjpLzHIsjTKOI9ySKPCawHoudBTFtZBH5oyjBlwULppjElAUKKTXE4yO5l3Rky89I6OO5FEl4D1nHIToE2LbvVYza815GYYMCTJzDmoPC6y3WoIgiwqI5o2gXP+N1uN6jsyGuzZogY9eGP68V0PRxta1ZFyHe8/h+FGOi2BcFCLZ1oWsnbiys3nSTdj7mEXrNl/yYblrNwmmJRCJxLaB0utLHPkbf+VW/omfkNpGJxGXHUggKkuZSDGJRNJN5khgTcUaASWoYkex2u20OPG3n/tvRZacR9Pv9ubSEWM/B/SLBpujgtng91hZgO2tra23awmQyaVMLmMvvazFVY3V1Vf1+X4PB4IgzgcKB29nd3VWn09H6+npbqHFRNJmg68IgAeOuFixi6fm31Z/3w8eaWJKsW8SIBQJZ3yCCNTS63e4RQSauMwo6nOdaX+JcOK1Dmt+ykxH1RYgOC899FE/oqIhuhihEcEx0TsStGaPIdVw/Y2pNdHbwXkcXRnQaROEh3j/eV24hWutzBNMUasILhQZ+D+IYXcCUz41FrpDEjY07P++xetVznydlFfZEIpG4ZrDysAfrN1/0n0+6G4nEdYulERRc68Ck2rn0MTfa/9E36Y/kyW3FGgWSWuLb6/XmCCSLzHnrxdXVVW1vb1e3gDRJdTTdYoJ0dHcCEuy4i4JdBkxnqBFnR+9NuCIJi/nunjfPncmeizHyekxXiGIIhRISaboQDAsLdix4Pkmea/fE/WbRQ7cX0wTirgy+L5H4LUojiJFoRuYZ5a+l01BY4W4dJMJ0bnB+LJDVHAcx8m/UyDj7E8UF95tzTjGgNuduiyILxbYLIdY78Xr2Z9ExYZHLc8L3/PvOzs7cNpS+vxRbYuoEhQgfUxNV/F5MqeB4mN6zyGWTuDHxtv/6sXrhJ+cWY4nE47pr+ra3vFE//jVfppX/+Scn3Z1EIpFInDCWTlBgbn2N9Jo4mJiQxEiHJCfm8/Nvuxui48HkhqkAtP57O8JogWe0lrZ8RuyZt08hgbZ5FlGMRSZrOyCw/gDFFhIwkk+nRDCNZGdnR5PJZO7anMuYokBhhNeMRKx2fUlzAoc/Z4qJ7weFF8PXrhFlRpRjtJ8ChHS0voI/Y50I1gfwveSYKULEnRJ4fR5/IXLKvsQx1Wos8Lx7Q3yZEkO3QexPrZ8xFSU6LzyOKAb4d3+P3I8ohDD9IY6T/WJRRY6D32HfEwow7CfPZXrPNViYMXEFcevN5/TEXooJiUSnrOrvrI/1o4NVXRMb6yYSiUTiimIpBAWSOQoA/MzR/mifNxFh/j6dACYNJhWMKsfoaXQLROLk4oYWI2L1fUZGTZjYJ1+LhRhNfJwWMZlMjlS99+8x+msRgGIAo64kek4HcN+kwy0ufX5MbaBYwlSRSKrj7wYJIslmTE+xe8LXjKkHXCcUCKKtneIQx15rhykXXhcWWDgeXy+O1ePwZ5z/WAeB9yQKC9FNQcQIOse1SKAgEY8CBRHnjjt7xD7UUEvR4HqNwhavacGJggZFEYoTccvY2MdYsyH2Y1Hf43eb39XoWEkkEolEInFtYu2hD9FdT7z1pLuRSFzXWBpBwT8ZmTaJcPTX/8m3lZmf22pPcmyyyOJv3hXBAoYFAm4BGFMceB1axJ0GECOtbIvjY90Ep1Z0u12VUjQej7W1taXRaNSmT5hkN00zJ3iY+FiEMKk6e/bs3NzR5u3CjSbIPj/OK90OFByY8lAjtBQBDAosdBeQ9FKMYdSajg62x7mOJNzCRIySk9STpDN9JIpVJJJRPKpFzWvEOK7xmrjk+0yRrAaPzWuIu2IwZSHObZwL97EW1fff7sdxrgevY59HkS7OX835wLQezr/HGZ0+URSie4TiHWucLALFFLqMPKfR0ZJIJBKJROLaxNu/+sP059/0kyfdjUTiusZSCArS/O4OzOE3aTahq1ngXaxwMpm0EWbpMOpq0hHTGExIXKyw1+u1bVmgYDTVEewaOYpEPEbJ7USgO8HtSdK5c+d01113aTweq2maNg2A4/ScmNz7Z9M06vf7c/Nk2Jng4o1uy2KC61a4dgWdHbFGxGQymUtnoBjAvHcTUqZ3+L7Gwo1GJPomtGtra3MEz6TVYovf9zVNQmNaSBQEYl0GrovoDKBQ5etY4HHfSVBr7oGaYOE1QQJvMSsSYo9tUdqDxxDTS7guY8rAcaSbiCIBU3vssqm5Ao6L7kfBMIostf7FNBpex3PL+0cXjMdRmzuOL977i52jRCKRSCQSiUTiRsRSCAokK/7PPi3HJAhMKTBBitF2E0USFoPn+nOSfBbYI3mkjd27CNitQAIeiY1hwmW3gD830Z1MJm3KQ5wPjy+CpJkRVu/oYMLnHSB6vd7cDgy08Mcovq/P+gBMR4gRbPaXQorn1cdyzNGxwPtPWMyJLoeYI8/jSShrqSBce3EdxjoNFhSiSMA1SZFlkaAQx8R+kpDX0h+YZhHbdZ/jrhM8N96z6LSIiG4Jzp+dAFGco7Dm42ItCRaoZN+Z5sPPo/sjFjBl25w/nh/TM1ijJBYX5VpLJBKJRCJx7eLtz/1kfeZT/viku5FIXFb8/fd8ov7nzz9RD9z7o5PuSoulEBQME5NoT/d/7lnrIJJCR85ZpI258RQjGN2mbTrmvvOakegwKksyz20SmS9ucFcG7v4wGo20s7PTOhbYZ4sY7BNdF7Rts7ClhZJut9u+JM0dw4h6JHlsl1b9SN4pdlCkiWTbZM5zFiPJ0TXA9xlhp4BDYWgRCSchjSkAJNZxHnwf4thp7T/uup4HguTW99aumOgw8PEUgKL4QPcKSb7n2G3wu+DzatF3ig/uY0wB4Hyzv7W0EqMmXthBEWuRsCZCbX5jOlEUE3jvJLXfSQo4tbQGptwsSj1JJBKJRCJxbeBpf/uV+uEH5k4kiesL/+Ptj9bDfnx5xARpiQQFRhtJIP2TxJ+7BPAz2sIlzRGVlZUV9fv9tjAhi+j5+j6W9RVIyk2A7FpwLQaTb9Zq2NnZabdoNGgP393d1dbWVisWnD9/XuPxeK72g6PO0mEdCdrMY80A94XbTFpI6PV66nQ6bX2GKByQSMd58X0hSCRrxJQk1n+7PxZNIkn3sU4H4WeMOrv/ktq24o4ZngenwPBz3yv3gbUI2Jc4HyTOJtpRBIvuBIpAPjfWDogiCufT6yHWS+B1vKa43mrbaXJHkCjeRNHouMKGNQeGwXnj2uF3mW4F95OEn2Q/zkdM6Yg7MfCzC40jnkfRkU6eRKKsrSklpkQikUgkEomjWApBgZHPGO00eZd0RCww1tbWNBgM5t4jEdzd3W3rI9jhQMFiNptpPB6r2+22RNEE1GkQBElurMfAiDadDE49YJ6+d3Qw8aUjwP12nyJ59Lz0er12fniutE/M+/2+BoNB205MkyD5dr0E3o9OpzNnC+duACT4vEc+t9frqd/vz80fiRrbrM2po/eeXxJ8X2tlZaUdG1NcWGxydXW1vf+R0DZNo8lkMlf8j6S05nKogeLAolQM1pNg21EUs4OGThK7X+L3xevBrpWaZZ/zzVQi1oRgvZA4XroymA4ym83aoqJcf1FE8e+llPa+UIRjX9m+r0ehh2LiIsJfc49QcKRwwvm32GiRqibKJG48rPT7+vY/+xP9n/0/lNQ/6e4kEolEIpFILBWWQlCQ5gUE6dAOvkhsYITTkVkSHbdnwhLdDbT8u61aNDPa4k1imXZhwYBk3W4Cw2SFUdi45SPPXUSmmfZhMul2o2283++3zoSa2MGxu+giSZTPW0TkGFkmWWMEnBb6aJH35zWyGOsg+LruPyPsFGlYhNF98b0iqfX13a7nnFFxzpHHyXXq42KRTpPvWupGTLvwHPDcaPmPAk5M8YhpErxHkXBbOKFjIt5Tv89+xO+fwd+59SvHGtuPhUM5ltp7/BnrVSw6LwpUFJM4RxQPKYYd16/EjYeP6t6pzZXNk+5GIpFIJBKJGxiP/OVv0MNePLvwgVcZSyMoRJA0kJgzf95EwU4AkqNYOd7FAVmZnyQ+2s75MwobMRJsgsYoedy1onYe0yUioSOxNVH3OO1MYL2IaJn3MdxqsJaX7rl0/YaY7kERIJLsmj2eIgGj9NG2zjoEJHQmvCRyvG600/O+Me0jplPE+gQUajjvnEOmMrj9uEZr7pXjSCjXCVMm4n3hezWSH4WW2rFRVIjrMY7bn/FYzi/FFa4DH+81SjFhUfHD2nxRLPD1as4Q1iapOQji2mMhR86X10lt/dZcFolEIpFIJBKJxEnhIb/bqPvbrz3pbhzBUgkKMYpt+7f/k0+LPu3yrlvgz6bTaetekPYJ72AwmNsWkjZ/5pW7zVo0lKTXUW1vqdg0TdvXUspcvrrP4y4Sw+GwJWYkvSY3tGj7+rPZrG2DVncXmrRg4poJdm6YGHsMLGxpEr6zs9NuHUlCFolgjYByvmLBwkha7RjwfLMOBAUcX7dGBukk4NaLvBbnzw6ORSBB9zleO7GGhOcswv1nsc5FdRWiWFCL6NcQRRHDwsQi10FNMPE4OO+cf17TP2O9AgoV8RpeCxS6nLbBtVFzQUTCzz5SSDpOVOCx7GtM96nNDb8D6VC4wVGKysb6SfcikUgkEolEYmmxdIKCf9KqLGnOBTCZTFryZkKws7Oj2WzWEmOTLNdX2NjYUK/XUylFw+FwjsSQEJuQRzJBEm83xM7OjobDocbjcduWI/7SfpqDayf0+/05YsvdF3ydtbU1DYfDNgWCbooogrDdXq+n9fV1nT59Wpubm+21XBvCzgbXG2BklltN2jVhQrWzs3NEgCHZjLUhatFq6ahV3yICybfBY6OLgCIDI/0WS+hsYEpIjcDXSHMULujC8Ll+j1s0UgzyK4ocFC2YjkFhjNfhcexnbSwUhiS1AlHcwjGO8WIKFlIUiFuXxnGxPc7VoutE0c4/WUPEosciYSjWObB7gdeIroPYh7hG4meJGxfDL3iSfuEnflQPWct0h0QikUgkEokalkJQiLnVMTe6FjnleSYUdBtwh4PNzU1tbGy0x7Bgn4kwo+RMpfB16A5wBHs8Hrcvt+0+WTDo9Xpt4cToNiAJZQqCSTxTJDhmo9PptGPb2NjQ+vq6BoNBOxaLABZMLMC47ejQiPZyj9vvOcrM61PUMZgmUHOdxPQU3stIWilyMJofo/GxdgNrVrhNtlETrSgg0JlRcwWw5ob7TscI1w9/MtUmpiOQ+PreROu9SS6LCvp9puD4vvp4F3qMIslxiLUH4veNWETcPRb/zvFQSOAcc5eH2vXoVuJ6YWpMvD7P4THx+8dx07WUuDHRrCrFhEQikUgkEieK98+29bn/7Lt062veqd0LH37VsRSCgnS4fR9rGsTIsaOPdBRIR4mKCWW3250rTOj2Xd+A0UkTnEjySXh5nAlKjKa6DybbFhaYesC+Mv1gNpup1+tJmo/2uj8myO5Hr9fT5uamTp061ToweK0oEjCq3zRN6+ZgMb0YpacQwPmupSFIdQcAyWK0kptYcw55PHP2Iyh4sP90MHB9RedEHBePXdT3GuI8sSYESSlFhDimKDp4tw0KKHEOY2oDnQpe6+wT0xZq0froZuD77G/tuhR4eF84t3He+d2jIMH6I7wPnge7L7jFqq8TU27cT97/eG/5fLEjgmkPiRsXg7+Z6Cl//vn6jcf+stZXuifdnUQikUgkEjcYXjrs6FlvfIZuff5rjgRelwX3SVAopfwDSV8nqZH0BklfI2ld0gslPVzSOyR9cdM0dx3Xjv/Dz+3+IjFwJJzEmpZ2iwg+hikF3e7+fwQtJkwmk/a4g3HMEUGT/Ei0WdyPRKaUMrfl4tramvr9ftsHOwbC3M2JF05HMJEh0S6laDAYtNfyOYPBQKdPn9aZM2e0vr4+l5bB6xAmnJPJRNvb29ra2tJ4PJ6rNxFTFHjNeN94XEwTiKID5zr2yS9uj+h5oIOCxJX2dn9eI7heU7xGLT/e50WbfnRTeJ5IREmKPV/sW2yHwhLHz50+DLYdRTb2gXPNtBa2Hx1AtTSP2t/RCRDva3Tf1ASgOHfx+2sxodY255aiidujOCfNO0wo4rAmg/tA8Yr387gxLBsu17M4MY+VP3y91p7a1wffsqMPS0EhkUgcg3wOJxKJy40Pzrb1D/70mXrI//NGHQ0FLg/utaBQSnmwpG+T9FFN04xKKb8o6UslfZSklzVN89xSyrMlPVvSs45ry0UKpcNorwkXI4UmLSxISIEh5rBze8XpdKrxeKzRaKTxeDxnJ5fmi++5D7TmUxRw3+guYGSVFv1oozcRmk6ncw4I2vlNiiyiMOWCqRLr6+s6deqUzpw5o1OnTrXzFtMLWETy/Pnz+tCHPqQPfvCDuuuuu1oxgekCHn8tim3CTSs7ybmJPvtAwcHwmBxt9txYAIgChtshWXWaAeePwo/n3PZ/n0enh9v2T/afoIuCwkZMc6i5OOhOYYQ8tunfd3Z25moHeI17nIz08zvB9JDargrRNcCCp1GIYeoF1y7h4yliUYRYlBoRnUD8LB7D972G6VDg96V2LYo00UXk68R1aXGPTotlxuV8FicSiUTi0pHP4UQicSXwuf/4u/TQ//q6pRYTpPue8rAmaVBKmWpfhX2vpOdIevLB5z8n6eW6iIcn0xyiHV46jBqurKyo3+/P/c0dDmJleZMSE5HJZKLJZKKdnZ2WcNvF4GvHYnjuC1MlaHOXdMTNwIi5SXApZa5uAbdINLFh9JqkkhFTRsS5jWSn05kjm67d4D5Op1ONRiNtbW3p3LlzGg6H7Ry7rUWRfUb4Y3qE8/OPi6AbUWTxXLl9bwfKdtz+cekbRhQwnD4Q7fYm0+wT54FjcZFPzpXXnN0wtVoDcfzsZ6xbQcJroYT3JDpcKCzUbPl09LBWgcH5db+ZyuP3ojhBwS4KL3RRxLQl93kReC0fRyHF4oZfnF+6fPgex8G14/Hzu1HDcZ8tIS7bszhxiNmTn6CbfuAdunW1d9JdSSQSy498Di8ZXvfsJ+qRX/lx+qvP/JmT7koicUm4azbU5zznO3X/33undqc7J92dC+JeCwpN07ynlPIjkt4laSTppU3TvLSUcmvTNHccHHNHKeUBF9GWpHlyQ1IdtyVkBX/a/Pk7o65MqWDEmsUKawSToMU+RjUJChqOOJNcx2i5o6h2Q9DF4N0EIsElkaQg0u/3j5BeRmknk4m2tra0vb2t0Wg0F203MSaptIBCMu3rM6JNd0PNjRDnMebxU3iJZDzOp3RYENGvaMfnOmKfY3TcfeduCBwD+xk/j24YHse1Ex0fMRruueS57F8k7qxRQMeFrxUj/zXCz9+j8EOHEL8HUcxZ1K6vH+dt0XrgvY8uguiYYPoLRQemTbgP/k5xS9k4H/FvOlzifVxmXM5ncWIe41s6esEjfldS56S7kkgklhj5HF5OdF76WvU/8VOkzzzpniQSF4+XDjv6tj/+Bj38l/5Eu5PJSXfnonBfUh5ukvQ0SY+QdLekXyqlfOUlnP9MSc+UpH6/7/fmBADpsDhhrDfgqHyv15uLRpLkMk89EhaTde8G0ev15kithQC3s7q62qZJOGIuHRIlt2PHhJ0OJrt0MsSUCBIYOyl2dnZa67W07wKoEWT2fzAYHNmdgCLK1taWPvShD+n8+fNzdSQoTLgfFBL4otDD+2NhxmOkc8CEjvc1kmlez+14Lh2lt9sgEnq6HbxOSDC5tkjW2S8TeY6J4H2ma4SpFb4vcV6cphLvjREj83Gtx2O5hime8V5GFwnnII6p9r5FBc+R5zwS8loBTPaBLpcauNbiVpcUJjzH/E5Lh6lITHtwf6KgcaEUBq8PujIWCSHLhMv6LNb6lehiIpG4jjBr9vQX04lWpteG6Ho1kM/h5cXqRHrLdFuP7mycdFcSiQvi3btbevafP0MP++I3LH2aA3FfUh4+U9Lbm6b5gCSVUn5F0qdIel8p5bYDJfY2Se+vndw0ze2SbpekM2fONP7PfKfTORLFl9S6CEwwLSbY6r+zs9OSABN/7hpgYm1SagLW6XTU7/fbgoiOataIhwmJyQq3nzShMcF3f03CnBvPftpRQaLjNhl1N+lyyobbNSw89Pv9OXJqgj4cDrW9va27775b99xzj4bD4VyUny6IyWQy14aL5JlcMbWD7xOMCEfnAdMLKDj4WPfL66Hf72swGEiaJ+0s6MeoOFMhuHb8voUT32fPqc+leEHRI9bp8DGTyaRti64Hzg/FCqbT1NIWPI5aqgPnmYTXc+y54LkUa7h7Qkwr4e8UIugQkg5TNeI6cJuLHCpc4z6OaT+xNgSdEBSMLFb5/vN+Ebz/dK3Q9cF553nRNXEN4LI9i0+Xm6+lf78SicQJ4A07Uz37sU/W6uSPT7ory4R8Di8pHvTDr9B3vOjp+s3f++WT7koicUE87f/7R7r/f3z1SXfjknFfBIV3SfqkUsq69u1dT5H0Wknbkp4u6bkHP190MY2ZAEQxgSSOEVJG5l07gOSVkdFI/u1G4LaSjvT6HIsKjI4yLSCS4sFgcMQ14B0eTITG47Emk0lL7Py5RY0aCTPRcu0HRsC5i4WvQ3Lu88bjcVuIkrb/aHeP94ORZunoLgW+X3ZReD6ibdwvRp/jtWIk3Ttl+P6YlNupUes3ieai9eV+RpcI73MppRUaLABZyGL7Ptf3k+kKJOQkxDGFhA4N31fWAzgOvJf826C7gM4GX4dOm5oYEB0OhucrCjdRSKqdS2EhupFiv3yfanO0qAZCFLsoNERnSaz34XP4HLhGcFmfxYl9vO2HP1l//3N/66S7kUgsJZrpcm5ddoLI5/CyomnUvPPdevLXf72+8cd+WV96KjfZSCwX/vH7H68//N5PkiQ98PXv1O7eNRHMmsN9qaHwqlLKL0v6Y0m7kv5E++rqpqRfLKU8Q/sP2C+6mPZIBEwiTK7sICDZYt6/XQ20KjMiS6GhlMMifxYSpPlIpUmYNF8YksUHeRyLGbotk3wSa5PUGlEh+ZbUEnlGTE3iKKY42h6FBI/fpNjEOJJQj5G/kwTH+gW8Bj/n2FnrgekSBlNJ3F50OsR6Gb6PNdt9jGzHNmNqCUmjU1B4nufO4hZFEjtPSHY9ThNskmTOJecv/uTYKAxcyA3i41kU0vMX58LzwPXLY3l+FHnifMd0C1+HbfC60YXA9Vq7576O5zgWaI1OEfaNYl8UPGpiFOeJfYwOjGXF5X4WJ/Yx+Ih79B03veOku5FILBVuv+dB+sE//Dt6dPPak+7KUiGfw8uNvfFYvRe/Rv/4M75Er/mMV+tHb0t3TWI58JXveLJe99KP0oe9+I8k7T88rkXcp10emqb5PknfF96eaF+ZvSTY4k/ivLKyol6vp/X1dQ0Gg5askHhYUOh2uy1hNoExWSSxYL61o82sp+DzXezP7oYY6ZQOiTi3DDQZ3NjYaAUI7+xAgSMWB5TmCV4sbEcxxGkAGxsb7U4O7o8j5hYR7GyIWzyS1NtWbpLMlAySQxNvkuReb776ucUN9pv3IJLUmBcfaxzUIsl0iLhvMcpsMuqXsbq6OucssHMlihw7OzutoOBrR4Ejpi7ENiiYEBdLUuP5x53HazPFIs6H52rRVovxmjXxhqTdQoqvGfvBV3RqMO3A8+v77899DYoydIFEtxCPjd97iim1zzhf14KQQFzOZ3EikUgswo+94Sl69Ne/5qS7sZTI5/Dy48O/65X6re/9FH35171ST+x1T7o7iRsQb59u6b2zwzopb3r+R+rDbv+jE+zR5cF93TbysiBGe03QTZxte/dxtp/b7s8CeCTnJvKz2WzOjWDy4EJwkuaiwz5uOp22aQomK3ZDuK+sw8BItt0JbuOee+7R9vb2kd0oLHCwEKGFFBN9k3wLJ5ubm9rc3NTp06e1ubmpXq+nlZWVljxbUDh//ry2trbaNAsLGZ4Db6e4iEDZacHtMqPNnfPOOgWMTrMmBUmnYdJucYhbgFqgYISa95cEkvfXYorTPSw++b5aZPH6YA2DmuWdKSAWoRg55z01IfbaJjmn4BAj5lFwITGnI0DS3Hrhd8j9dn/pVHHKC8Uqz53brwkKvq/j8XjuGpLaQor+PlKw4f2J80FhiilNFOW8jjkmFums1U7w/aeDhmlS0YXg4ymKRCEtkUgkEonE9YGH/sAf6R//xt/Tb73kBSfdlcQNiKf+1HfrIc99Rfv3Lc0rjjn62sFSCAqS5iLBa2tr2tjY0KlTp3T69GltbGwccQrQ+k+rtV8mOrGyvvPwYySagoF0SLZMZuhKcC66hQC6BAwT/PF4rOFwqJ2dnZY0dTodbWxsaH19fS4tgsR0c3OzJa4mhHt7e+r1etrY2NDm5mZL4Jgjb2fCaDTS9vZ2SwIZlecYuGMABRFGij1/fF9SK6jQKRLnKRJQRp5JLhlRd2487fJxpwmSQpLxmLIQC0JaQCJJdb98fkw7iLUp3I9Y64MikYlxJK9cpxaMGPEn4Y9pAoy8WxxyX90XOi78vbKw4vVloWFtbe3IGo9rwEQ7CgR0fVzI7WCQnMfvZBSlWPSRKSs+p9Y+10EUGzgWzjvP9fh9Ly+mjkUikUjcKHj8v/5mPfK/f0DXXnZvIhHwlnfoM7/8ayVJ73zmnv7yyc+/10095me+SQ/9H1dpa78i/cjPPE8fG9zBieXFI37z6/Th/+Xw/5sPf+s7tXsdBquWRlCI0X27D/r9vtbW1uZ2G2DtBKcmMJLryKYFiFjfwMSEgkPcOcGChAlITE3g1ojMYed1ajs2WNDo9/ttWoQJlKS5tAbuHmDS6O0h7dpgigFTPTgHLGxXI+V8j2NYVNwwCiB8+R7xRcGCpJVpDvxZK2rIccU0BhNSVvyvEV9fr5Ybz77GHTQYXaczgWOKDo3d3d0j646pEW6PfeUcSEcFhFjnIdZriGNelPYR54ipC3RJ1NwS0c0S0ym4Ttwnzi3HSBeAP7fYQWdOdDfQURL7yPe8jiiOcF4jPHY6bBYdm0gkEjcK7tkb6WNf8q167G9/SLM3/eVJdyeRuM/YG4+1+vL9Ogr3f+An6RFbX3+v23rUb41U/tfrL0/HLgL/z69+u/Y2l+//Jl//SX+g77nlzSfdjRPFY//wqzS5uz/33kN/s2j15Yc1Z67VGgkXwlIICiRMJtSdTqctOkgi7//w9/v9loyT1LBuQCRpJKosPujIriPys9lMo9GoFRQsYJgoMmrq32NeOiPRfM+OhsFgoFOnTrW7M3DrQteNsNBggus0EIsJLsjIazE6b1GEkXSStChCmNAxmsv+W4yxmMI6ECyQFwknUwjc30i2SWaj28D9Zi0KrhfPq/tRi/oz1aLWP/8e3yMRpZDAegCMipO88tq00fs8t+MxRXcCib1TA9i/2lzX7jcLG7o9p+P4Wl5nnsfpdHqk3kYsjGjQwcD5WlQDoVavwGuP21JSCPN1PS/8ThxXPyKKgbzP/pziBL/DcevaRCKRuNFwx+6WXnj+o/WYb/rf2pvunHR3EonLjlMveKVOXUPZDx/xna886S5U8R//7ZP1UZ/1nmOPedDaXXpSr3PsMcuMPxhLH5ptLvz8kf9sR7M3vuEq9mh5sDSCws7OzlxdBO/swFxro9PpaH19Xf1+X6Xsb/E3HA61vb2tra0tnTt3rrW2s9hiJHu1/HRbxC0orKystORfUnst2sdp2TboDLAAMp1O1ev1WnfC2bNn29oQ58+fb8fm69miT3Lq8weDQUt+TLgsqHCLTIoMMSod0wqm02kr0sR8flromWrAqK/7SedH0zRzrgKmldREBbofSN45n+yTxZ44//7c0WbpUJCyKMJ2PW4S/+g88NjYZ7dbE6t8jAWBGPWOrgu6Nmr1Kihm+fwoKJC8+286FEj8J5PJ3Bh2dnbmxDyO1aKb5zC6LCjesCZIdMTUxsT6De4PU3EsfMT7azeD+8H77mvw/sUUFLpqojOHQlYikUjcqPj8//21uvmpb5GUYkIikViMR/39V+l5+ohjj7n7732yXvXc512lHl1+fP83fp06Lz1uh5sb16GxFIKCNB8VjoTEn1twOHv2rPr9/pGK/a4fwIhnKaUVKAxHOR3h9zVNGFmI0W4An+/jTWRdENHChdtnXvra2ppOnz7dkumNjQ2dOXNGm5ubbVTWBJLt2K3g+WBBymj1ns1mrSuDdRfG4/GcU4FR/niMxxXvC4sX+jxJbZoIiTiL6DGCTkLJSD6t/CS3FihM6NzX4XDYElDPQ9xqsGbJjykrfDGFwJ+T+NZqIVjE4JqqpXx4XHRpOH3FQgJFAI+93+8fIcGsK8Br175HTGUgaY+pCDyP8+X5sMgRxRyTbosl0eES0yMWzS3TF9zHKPZQwOKajMJXTQiL99tCINeN70dcg/GeJxKJxI2Ex//4N+uhv3JH1kxIJBKXBff7jb/QZ//5V550N+41em96k/J/hXUsjaBA2zqt6SQTTBegABCJFu34djO4eKOJG/OkJR2JpEtSt9vVYDBo3RDSYW0Ft8HibZGUue+dTqftm0UI7zpBAheJj8mOr2PCZZGBxREtKFggmEwmc1tHRvJKYcGuBhMrkn26Giw8RGFAOozKc+eI2Wx2xDERo/4xkh8j3xQUIsGU6gJILdefqQl0afgznhvTGVgDwvfTa4xrlOOOfaRDIY4vjqlWwyCmWsQaAtGdEAWdCAogvg+1egR08TCdgePiOPx9iMSe/YgknetB0pzYEu8hf7qdmGpEeK3G+0HXAgUgf0+ZQpW4MdH772f0eH253vCJ//Wku5JIXFUM93b00b/2rXr079yj2VvfftLdSSQS1wlmd90lvfauk+7Gvcb1V0rx8mFpBAW7BWjjj/Zk7ybgugrRzh3TGnzs+vr6XKE8Wthpy7el2xFtpyZsbm5qMBjMWc0ZZacwEG3mscaAXRa2/dtd4dfa2lrbjs+N0d1erzdXP8LX8+4O3irRwoLFBc+ThQUSN+fMW1ggUbXo4PYsjLBfsRYACRmLY9IpQPLnOeffboN94JadFl24TugOiU6V2DYdBBRnYu0FChscQyTGvh4FFM8FxQsKF7T2H+c6iCJIBFMS4rnuN8U2fl84zkiy4zxxbVBsonOFaz06Hha5R/iT6TG1OiixVgeFxNrYPSfxftMlwTQgC2teb4kbE/f76Vdo8t5P0PM/8gH6qlN/o9WSu34krm+8bLSqd+zcXx/cPaXHfPcbtDccnnSXEolEInENYCkEhZWVlbkCg9FuvLe3137uugp+3+Sj3++3x7vugN0M3l7RMCGmvdlE3FtRdrvdduvKs2fPqtvtajwet+TLxNYwqTKZ3d7eVtM0bb9dK4GReUfw7SqgEOF6CzGS6v5ZxJhMJtrd3dVoNNL58+fbbSq3t7e1vb3duhNYzJBiAuH59LWcQmHRwY4Hz7//Jun3+H2N0WjUkkmPI7o6IjGkGMCUFqejuNaDnRrM7Z/NZhoOh3NbRlrQoUPF64BFIrnmmDrgazP67mPohqA7wHPruYy1OxiBj44Kik3+Gd0Ux1n7/Z3yfHr8TvOJTgO3F3cqYaFQC3h0//iaJOTRGUKHg9taJHp4zUSniM+zoMjr+lwLDTXRIroceA8pfM1ms1Z4pIMnceOi91uv0Qt/75H69Df/lR7RWVyIKZG4HvCsH3ym7vcfvSd6igmJRCKRuDgsjaDQ6/XmcrZZT4CRVRNOR94nk8nccZLmcvztToj5+j6e5NeuBhdRPH36tDY2NjQYDNp+Mg3BKRfcUYFknZFef+7zTIwc+TeJMfnrdruazWateOC+MsLvmgIsSDkajY6ICCbhk8lkztrOCLlJnN0MjAK7byaYnU6n/Tta7lmrwSkQdhJIh/Z0uhoMijWxmKH7bwGFxNnpLD7ebfknaxt4jHQgRLcK58b30p+5f9Jh4UBa9U1O6WiwqGE3BdM37HYx8abzhqSf8+zvg1MOKLRwjfNcr6m4i4G/C6zL4bH6WM9RLNJIQY/iRayRQUGklu7A9cN59jOBO3j4OxOdSf5+sG/+3ddwv/iZ544Ol+iISdzY2BuP9S2f/TVa+6nz+vVHveSku5NIXFZ883s+Se/46odJkh7w12/MegmJRCKRuGQshaBgxwB/73a7rbWfUU7XCjCx29s73IrQpMSkkzsWSDryu6Q5AuMig5J06tQpbWxstMXxSNZoj7c9mg4DWrndp1JK63AwsXdU1OTFBCcSfdrPffzKyorOnz+v0Wg050gwsbRTgMUUTaQ5droA2LbHR8ElVrxfWVlpx8Dif0xLMKGLtQM8fkby6RSIKQAck8k2iSGr8lMYoFhAG3uMsrNvvCd2kbBeAJ0IMRrPApYUbkzI6U7g+o+Ogdiv2rFe87wm0xLinMe2LXTEFJfoGIl9qBF3E39/d03co7Mi1rzw/MR2pcMaJawX4jnky+OzYOf+Mo2B9zuuK64ZrysKhInE7E1/qQ/+zCfrMY/+Ju2tSX/6FT+h9ZXuSXcrkbhXmDV7eswLvlmr46LNd0m3vPEVFz4pkUgkEokFWApBwWTe//n3rgwuXGiyzeKAjKDbgeDUCEf3SZQiaYvWa6ZArKysaHNzs7XUS4dENZ5rUmMRI+a4m+g0TdOKDibiFhhMCkkOI8nlZ66EPxwO50SF4XDYpinEdAw6DFj4MhZqjLnp8TPOaYwYM+2DRNKiUK1NCjUWayL59RiitT4SyjgeX58FIz0/vq+x8KH7Z+GBQgrFFUbEeZ/ozrAIQVEj1njg2oxrJ7ZNeK1SyPH7JNVsg64Jzk8t/cR/1wQFCjTul3c9oYjHe+TrHlfngGO0ABALtXId8EX3AWuLcM1yXljng4JCvE5tLSZuTNz0c6/QTZJW1tf1ff/3J+rM2kiS1FuZ6h/d/LaT7VwicQH8+F0P19Zsv7j0tFnVo3/wLzX74J0n3KtEIpFIXA9YCkGhlNLWQLCgsL6+3lqeTfRoUWZahH8yQkvyH/PD7SrwMY6Cmlwx55w5/CRGkua2qrQDwG3EXSjsnHDV+O3tbQ0Gg3b7S/eFDgXpkMS64KJ0SOh4/clkoq2trZags16BI/MWYjhHTLdwRN6okfcY1Xfk3e1Houx5LaVoZ2dH3W63JaJxh4OaM4J9oVjBeaEAQvJNYshtMimIsK81h4LvAwn5zs5OS3SZ7hALUBoeq9cyBQWKWATHRJGExzG9RNJcsU4LKGzP/TB4b9hXfxb7ZTcJ23Kf+F30/bLIRhznCrHQwyKmvDesy0Fngc9h2gtdD74fu7u7bQ0Jf0axjPA6qzlHEjc29oZD/e8nSNI+OVu95cF65uv/TJuld6L9SiQWYU+NfuepH6Pdt78T76aYkEgkEonLg6UQFAznw586dard6nFvb68lqiaQJgHeieHUqVOtK8EEgGkTm5ubR6LE3NHBUXSnPPhYpw/EnQ+464HdAePxWNL89oS0XbuWgUmW7eFROPA8DAaDuejzaDTSnXfe2Z7v9zkeOzncD9YrMDmORemYssD+SvMRa6Z6sE0Txxgtju4QpoE4khy35GMbvI7JN1MOLPwYFhs4Tp/v7S49Z6WUdkeNWooAXQ9sn/PnnTpcF4EiUCShvmasLxEj9zzPdTC4Ntgnj8cCEmsgUAirEfpYk4ApGYbTSkzaOffRecC2fS5fFhxYr4L3Nrpi3D7b8z0YjUbtuqOzxefyO8NjuDsEz3Ef4/ciujUSiUWY3fkhffn/+SVScN8kEsuE3Xe++6S7kEgkEonrFEshKJCsMtc5gvnns9l+wUKfQwIvSf1+X+vr69rY2GijkiZEJDLSoV2bBNMpBCZu3iaR0dm4ewKjqpHsxPHGtiwKeDwWLHz9ra0t3XPPPXOEymCNAxMxbqdIASISSYsQnlu6EiiOxCi2+860ABNnziMj+ybyJKLRieC5iyklvLcWE7zrB1MoLG742k3TtPfR5zONxYjiAvsXQQcK10KNZBsk5myHY/bPmF4Qf+d99brzXMRzYnpOjPobtPezmCLFkqZpjohAte8qHS97e3tzzoVamkp0lbifHCNTZKJQQBHA67EmUlhoYV/43fVP9jORuCCaRrvveNdJ9yKRSCQSiUTiRLAUgoJ0dDs8Eg6DBMRRWUY9TQJWV1fV6/W0sbGhjY2NdstGWtbZNqvSm3SMRqPWWk0RQjokPba4k+j6c9ZwiK9YVd/EhrtT2Nq9t7dfn+H8+fO65557juwIIR1G9hmtJgk3ueM8eh5owafrwfeCqSAcu8kdSZ7JY4zsuh8sUkm3yCJBoeYU4P0ymfR80KVBour7SBLKqLvbjLUM4rVjmodJL0Ub9pFgO+4H/45zVRNw4jG8TxbEKFowpaOWUhHndVGqBsUqujBqY+Raijud8L762tERQzGBa42pQBx3rNdQq0/hzyg8uA/cBpXfx3QoJBKJRCKRSCQSF8bSCAqG/xMfo8z+zMTZhNJ54ySHa2trWl9f1+nTp3Xq1CmtrKy05MakI+a6M/o7mUw0Go3alAdJc7Z+H+/3LGL4fRImRmdJ0AeDQet6sKDgoomui7C1taXJZKLt7W2dO3dOW1tbc2Qn5oIzx91ki9ZvkkG6C3wOSbZJO+tK8B7U3AkeYzzH11xE/CK5Zl47yXG0znudOA3EtSScUsHaE3QncG35fdYeiARY0tw8eYwWSSLhd79q69pzxLXi+YlR+9r5sTaAx8S2PT8WeHwf4z3kvXGb8ZoWzbiLBNcFj6X44OMtcvAVv0e+biT0Hi9dEnQVxa1fa/chjicKbRbm4vrnvCQSiUQikUgkEok6lkZQiITDpJr/8fd/9ksp6vV67U4QThGQ1NZCuOWWW3Tq1Cn1er32HEZPST4Y6R6Px7r77rt1zz33zF3TdnraotlnVpZnRNc7VZD8xa3wDBLl6XSqra0tjUYjbW9vt7s50JZPxwSJrolZ3HnC15UOSZuFFQohsbAlyVssiEfC7+uS7PueMNXC16y5OOiU8O/M+2eeu2tLuN4Ao9+MklNM6Ha7rYPDIsTq6mq71aHnk2kU3NrSY6UoESP7xqVa5msiAue05tRgPYcICg2187l+WHfB94KuD2+1SbGIa8RrkKlAvL++HtMvFsFriwQ/Cigx1UGa37GDcxjdIXTU8P2aayORSCQSiUQikUgsxgUFhVLKz0h6qqT3N03z0Qfv3SzphZIeLukdkr64aZq7Dj57jqRnSJpJ+ramaX77Yjtj8hGr05NUNE2jXq+nwWCgwWDQ1keg2DAYDHTmzBkNBgOtrq5qMpkcSVmwCECyzF0TmArgOgYWFCKhIQFndDnax2s7SPgzCgJ7e3vtFpOOutuyT5LGc3w9OgNiXQZa9JkmwYgx+xwj0O4P89S5FZ9fJumMilMEoKgT3Q/S4XaU/jzWNnD/mdIQbfBxZwQTb68XjoFt+ly+SJq5Vkn4Sd45H3F9cy75eXTK1BCdDUzViWkCbJeCTbwurxm/H173nqdI2KPTwWSdc8t7zfNrv7MfXKcxhYHHcp45zvhdpGBAQTEW5YxjXCaB4Wo+ixOJRCJxFPkcTiQSiaO4GE/v8yV9dnjv2ZJe1jTNoyS97OBvlVI+StKXSnrcwTk/WUpZ1UWAhNE7IphMRxLrnHFHvik2rKysqN/va2NjQ/1+fy6vPBYPZKRVOtz6jyTSbbMYJAkJycjcxAaLv3QY6fc1WZHec+BrjsdjbW9vtzUTYpu0b/vcGDmmKELiTEGBgkXcfYCIUXtG/eMWious47wuyW8UDXz8Isu57xPnaDKZtMKRrxGdCa4zIB3dUYJzys9q8+FIPHP6aykPPC+26zF4vdXs+ovEBZJ4rhl/xvXrY+jscNuRuDPNJNZO8FpnOxwTUx3oMImfR3GQcx/nlW3VUhqiMGMBi+uJY43ipLFod4comCwBnq+r8CxOJBKJxEI8X/kcTiQSiTlc0KHQNM0flFIeHt5+mqQnH/z+c5JeLulZB++/oGmaiaS3l1LeKulJkl5xsR0yeZc0R3Bj9JoE1vUHnLO9vr6ufr+v1dXVlpi4yKIt+zW3QKwJEKOatWhnjIgyh106JK6OkJvQ1rZ5tG2dUV5fL7oFamkOrtdQS+vwNUgk3Qcf67l1nYcoltAS73ljEcZapJlCkeeDx9dSP5zm4Lmz+OL7PpvNWsGJ2zla3DBBdLveQtR/8x7PZjN1Op12XqKwwjmMhQhJSllXgEIKXSeM2Pve1qz7bps7nzBa7xd3mvC2pTXnB+8N24o2fxb6rH3v6MxhSgnvW0wncJssnhpFo0WCQhQRVlZW5u4V1xgLnUaRh+3Htcr7xHtAcWlZcLWfxYlEIpGYRz6HE4lE4ijubQ2FW5umuUOSmqa5o5TygIP3HyzplTju3QfvHYtSirrdbvufeboIok2bhIARxKZp1O12tbGxobNnz6rb7c5FWx3FtuggaY7MkmC6vUhkfF608lNQkHSEIK+srKjX66nX683lpg+Hw5YIO32DpMxkzISsVrfALg0SV0e/h8PhHAmmK8LFCrltpI/hfYmE0/UMPC63yf4ZdANQmKBVP7pMGP32/eN7Jvx0JLhPFg0owKysrGgwGLQ7fdD1Eh0E0cXBe+mijZzHSFKJ2m4Xnnc6UujeiBH3aMGn2OH7GlNzuF4p5ji9xevc945iGccd02AokFEwIvH233753pKwU4yic8BigsU0ih6cJx9XE9LoQKgJB+ybx2QRb5HDZJkEhQW4rM/iRCKRSFwy8jmcSCRuaFzuooxHq6JJVd92KeWZkp4pSadOnTqy1eEi4SBGe2ez/Ur7/X6/FRQ2Nja0trbWiggu3GcSSWIYrc4k0Ohr2792UCAgkSC6j4YFhX6/Pxd9dXS82+2q3+9LOiTNMTfd57FPtcJ4TGXwbhiMqsfobw0xAkzSG10PseYCyS4LMZIcc7vPKL5EV0icYxNnFmGkQBEdEbXaEfFexfoFMVXD94+pKia2nB9a7Smi1FwvBgk1STz74+PilomcH68bugB8fa8Vth1TAKKQwTQHilUU3HgeBSmm9tTuSVyvbIuCgtvjvYzt8HlQE3Zq70X3DX96bhalu1xDuFfP4r7Wr2SfEolE4kZCPocTicQNgXsrKLyvlHLbgRJ7m6T3H7z/bkkPxXEPkfTeWgNN09wu6XZJeuADH9iwkKBJWo08SPOEwKTFaQ6nTp3SYDBoSR2r1C9yEJBARXLi65B01kQH6TBVINre7STwloXSoVV7bW2trQfhPsb2SThp5+c4SMKZutE0zZybgoUIo4W/Nh+8foxic/4NXiu27/eYlmBCSKK9KDJMcs5+sIYD597XlA53lvCcxLUkzYsWnB/fIzpUaPWP7VCkivUDarb7KKS5fzEtgfPuueB1eM8stHkcPI5tLhIUSMTj/ed9qs11FFjiPeQ5vJesMbHo+x5TE+I6jYhri/1kf/heLd1liXFZn8Wny81LP+BEIpFYMuRzOJFI3NC4t4LCr0t6uqTnHvx8Ed7/r6WUH5P0IEmPkvTqCzVmYsr88m63W40keos/v7xt5MbGhjY3N7W5uan19fV2y0QXHDRJibsKMDJM8kFRg8eTkJJguf8x2m1bNXP4TVztWvBYa4iEMooQkYjR1s7+SpojxO4Xi+Ydd223ZVs900aY8sGIcQTrSNB5wih1JL0WCuiYcFsWJnq9Xtsm+023iAWFmHLAscZzfb7vH50acf3WyG4sbsg54nUpDPDla9VSUuiAYK0JH8M0Eo+F34OaoLBIwFskLrE/FN3i++xzPJ9unSiK8DtYm+MoFBjR5VETPfhZbH9RkcwlxWV9FicSiUTikpHP4UQicUPjYraN/AXtF5u5pZTybknfp/2H5i+WUp4h6V2SvkiSmqZ5YynlFyX9uaRdSd/SNM0Fk5BJVrllpP/zbxFhbW1N/X5fZ86c0f3vf39tbm62RdpOnTrVpjusrq62OwBsb29rMplIUkvqvZUkCZZJpx0Nk8lkrmijpDlSSxs9iQlJkVMZvNuEx2qi7PHYTr+3tzdnFec1m6aZc0Cw+GKM2lMEqaVhmCT7/Uh4w/1v58Y7TrB4o0k9++r+kpR5vBwryexxkWYKDUbN/SAdElT2w84PElRu81gTc9w2i3y6rZ2dnTmRh2vB53mu2O/oXolR8UVOEJLimqMijoNODopiFJ/ifNfmIN6P6ByItRFiakPsb3RSRBEvtunzXYshupiicFVzNXAOY7943fh5Tfw5aVyNZ3EikUgkFiOfw4lEInEUF7PLw5ct+OgpC47/AUk/cKkd8TaAk8mkjZ4zerixsaHBYKCbbrpJD3vYw3S/+92vLajGVICmadq2hsOhxuOxptNpa1l3jjmLH0qHW1VaaDAJO44MMUpL4l5Kad0TvV6vLRDJ/HC3X6szYPJNwmiRwX1yTjwj1Cwyt7e3p16vJ2l+twFG8rkzwerqats3Wv3dlokZ0zcsSpC0xnoFtt7TVULiHHe7MCFnOgdz6n0PWb/A99199T3h2qBw5LljDYVoibdY4oKZnU5nbs0scnV43BR4PEe+VzEtg/2Nzpfa50Z0CUSXR4y6cw3XUCPdJN7RmRB/j/1lIcfalqvxmrHN+L2qOStq8xjTk/g9qokeFxr7suBqPYsTiUQiUUc+hxOJROIoLndRxnuFSPBNuGw9d9HFM2fO6Oabb9att96qzc3NVjwguXBBQosJ4/FYs9msdSeUUtqaCtya0UUb/XdNSPD7LHzn9+gcYJqDCXwkQSRMMYrKSDa3cCR5l44W6pM0JwQwsh2L9cVrS4c2em4RyH5xq0g6HGLhvXie0zM8HySYFFncR84DXSCc73jNGNXmT8+956FmpY8k3mJCr9drx0qC6rXJ+fPv3DUh3s9FNR643mJfauP0GloUWT+u7ZpQURMMongRz43riVF9vkcBZlHqR7yH8T5HsSR+l+JYeE/ifC+qG8Kfy+RMSCQSiUQikUgklhVLIyhwqzhH2f2f+k6no/X1dZ06dUo333yz7n//+6vX67XuA5MVOwuGw6HOnz+v7e1tjcfjOWHCToHJZNKeL2luW0lf27+zUKQ/I3EyIuHmVoPR2s2xLwJ3QqgVhfSYY72HSPAWFbqzC4TklwUIGdnnZxQT3BaJGufKDgy26/5MJhMNh8O5bQCZihCdIO5/FF4ofsTrewycU/ebApBdEhZVKILY0RCFiZh2QVErkvY4P37f8yodFihk2kZNMOFccA1FgaEmLtTAdWKCflzBznhNrjeOk04SOlZqY1gkDFHIqbVVE5eik6Hm5Ijj8e9R7EskEolEIpFIJBKLsRSCwt7eXltEUZp3BVhMuOmmm3TrrbfqQQ96kM6cOaPZbKbt7e02VcFEw06D0WjUkkSTBhPw4XCo7e1tDYfDufx6kwnXZaBlvUZkI+EyCXd0W9LcbgDcYaFGMCk6rK6uqtfrHTmOxfMiaYpFJHu93tyc0s1AJ4Xbsb3fJHpvb0/b29vt8aUU9fv9I6IFCbyPlTSX0mFSPp1O27n3y+NlqkXMjY9gLQQWvGR6hOfM47Y4Y8GKRJXCi50JdidYXIpuEMOfxyi910BMneE9444XTKGI64u1KzgvdM9Ex4j7Rtt/dDtEgk7RJm77aHdFTDeI12XNjrjLRawnUZtLzhXX76JUBzo/KFLw+xLdPRQdIjgHi9JDEolEIpFIJBKJxBIJCiQcJCauRTAYDNqii91uV1tbW0dysx3NNFG1SOEotXd9MKF1igPz3E3+XCSSBJzEkH3f29tr6wOwUCGj3rRs88UIKndnsKDga9iJYVJJh4Lf5y4OPs7CQCSSHguj2LGApMk154AEWDq6G4CP498UHSgojEYjjcfj9r7RmWKCGImn58xjcH0GCj7cNrNGCH0uo95M6/DOIW7Ta8HOFklVJwXBopgeA+3+Nau+58z30/PiY5lKEndGMGI6DtddjVRHMYHzEwUCr08S+lqaAtcDv9e1VIfoUuCa5FyR3Nfa4BqPjpaakyORSCQSiUQikUjcdyyFoECywMimiYsj5+vr61pfX58jm/4sFlyMxIfbSDq1IRIxV5OXdKSWQqwpEEkonQncsi+S2mixZqFHHkviZ0QbdrR+11IqLkSeTHJZbJEWf0aofUxNMCBIAJ3O4HbG47FGo1F7H6bT6VxxyNieiX8UZEjUa5FuRt4pPkQxhfczzjHvn0WKOMe1egj8nW355f6zT7TzS4cOhZg6wf7yFUk5+8L6DXQPxHY8n6yhEWtNGLWUC/70+uE2psRxazuKCYvShRYhzlkUGi5GULjYayUSiUQikUgkEjcylkZQkOZzpmmPpqAwGAzmSL53f7ALwTUT+GKUlEUcfc1YfC9GteNuDLGCfyTjtsD7Wo4Oe6w14kV7t9uMc2Oix/M8R9HCHUl2JFM+zmNxjQPuwuB74es6vYDt1bZppNU9Ro7H43G7PaiFHZK9aGeviSiRLMcxkiTbZeH7HAtWxnoHhOfYDgWmRrDAYM09wL5RMPC1YqoGHRUUSmpiDZ0J8XM6aWL0P64rEnaD95oFQTnHUUDgmuL3h2JCTPWJjhm/oosnign3VlSo/X6x5ycSiUQikUgkEok6lkJQkOYLw+3u7rYE3QTL2y86Yu3cfxJEbskY87DjrgImyj7WtQFiTnkk8iY4TjWwMyKOw9dh0UR/TjLP96ItnVtH0kLvVAe/77F4/kjqSDo9JyzmuLOz0xJHzjkdIJ77fr/ftu02PC4Tc28DGVNReC+cCsJaD4yIS/NpE3ZM+H2/x7n3PXNaAomsxx+FD6bMeH5qRTTdHu8d22HbFBTovKB4EUlttOiz4CPXDo+PaQdMU7BwEIWZmsDAtAqm7PhVE+bozImga+VCjhuOmX9HAaGWtlLDIrGg5rDw+xxDTcBIJBKJRCKRSCQSi7EUggLTHEj419bWWtJt8uj/8Dt33hFzuwGMaLunqODaDJLmSKz74Hx5kh2TU3/mdngtF86L1nSOIdqv2T8eI+kIgatZ+0nAWauB0WjDffMc0wHivnjcnn8KCizg6PtGt8Tu7u5cbYpapN7zxkg6rf+8f4uK9rG+gfvM9cNrxx0g3LbvDyPhvH4UZjy/nCeOz2vY87C6ujpXZDEKO06v4Vqoge3G9AQSfooQUShgH+O4fQ3fA/crpvfE9B1ex8exrgOvs2hcrPcQhYOae4Ln8rjamI9LibmQQHGxAkYikUgkEolEInGjYykEhUhGTA5JniIZYiS/aZo26k3hgEICCV0sTkfSZkEhpk1Ih6SQEW2KBtGpwDZ5bRJajtMkmi4HH7uIfNauabD+gKQ5QuzrxuKCMarNaPXq6upcygj7YpLtVAbWZmDknfNvN4TFIs4N7e9MGyHxjySeL38eRQqS6FjUMLoDOMe8Z7VUCd7DiHiNWrR8kUU/ih68RixcyXZrOzHUUigYped94Fj9osDGgo0eP8fhPl8oxYD3MqImRiyqvbCo5kR0RtS+P+lMSCQSiUQikUgk7h2WQlCQ5kkuSaR0NLpq4u0XC8A5P/9CBNOW8ChmxIr3vCbTEtgfR8alQ1JmcsLP6LCQ5msxuC0S1lqEn84LRqlJiKLjoiaIkFjH4/038+nt5PB4IoG0e2M0GlW3x+S8Mw2A95KOh3gMibHbNZxGwToHnhvPmQUEElCKQY7KR1IdCW8kzFy/JN1RAOO9rKUwxHQEvh9fnPsaIadQxT7yuhQGfF/o1onCCdcL10wUuWqCRRzrcZ8vOo7HRzcJRRrOf3w/3jOuMX6HEolEIpFIJBKJxMVhaQQF6TCibpLp//CTNHvXABdQXFlZadMQIqmMrgCSPpN8H8fIe6xI7+uakHY6nZbUuc2dnZ1qXnp0RdC1YEQXhAm5r2dSz340TTOXquBx1wgaCW4tuu6+OhXCufSee4/HOzSMx+O5e8S6Cb4H7nfsh7eGjH3hXFl04Nx6Dul6cBu8/nQ6VSn7NTdIkB2Jt8jA891PF0rsdDrtnPE+UCCic4ZimPvJbSm5dnjtKPQsEiPifeL7i4QIpuUschHUCDg/pygRiThFBQpuRHTP8Fqco5ozIPYp/h4FjnhuBEU6Fk8l0qGQSCQSiUQikUhcGpZGUDCp63a7mk6nWltbU7/fV7fb1WAw0MbGhrrd7hxpN5mbTCba2trS3Xffrbvvvlvb29vtloROhWDU1sSH5JzEiX9H8h+t74SLFMZoeCwgyIg1RQx/PpvN2kKEdAZ4vBZMImIKQ4xS1yLjkloRwLs80P3hnRgsupw/f/5IXQsTeaeKRNClUKvDQDLucfCecfcLCxKsEeHrm7xH0cLXYd+4C4WFE8+13/N5TvVgOkcs5uc+0RkRo/u1+8WfMW2B7oZ4z6NrIIowcT1HkYxr02CRUB7H60WHhH/6mlHcqDlVeO1Fwhq/57U0kjiWmKpB8SbWIqndhxQSEolEIpFIJBKJS8dSCAqllLZIonRIqDudjtbX11thIeb7O+I4Ho81HA61vb2t7e1tnT9/XsPhcC7Vgc4AFhGk7X6R8HAhOCJMNwHHFsmqCZCvb0Ls8xiBZ3HAuEUjHR2REC2y5pPI1SLLJuq+LtNATKrj8XSIROLqa/pYXpPEtzanURCpHRtTVXydmjWfqRfcBcJjjvn27AfrcNAVwDmuRctr43KbdN7Evsbjay+PNboQokDDc2KkP/YtjieeXxMN/Bl3TXFffJzXXXQ11OaHbfOYmOYgaU6sq6U2REdOdInE1IhF859IJBKJRCKRSCSOYukEBUb2LShsbm62kXMSMtvht7a2dO7cOW1tbWlra0vnz5/XZDKpkgUSc5NERmr9uX9fRCYY2bXt3kScVe5ZlFA6JNW8Fus8+H0SXJN5ih4eEx0Osa81u3r8nPUOJLU7a8QUidls1ro+PA4LAtyqkakAkbD6+Fg7ooZFIkKNKBss+sj5o6gT5z1GxCNZj/fI6/M4xBz/447j+I6z4B/n/GDBzjgnXiuLzj9ufUSBodafmksiXrvWT0lV8WlRH4z4HbCA5+v6e8BUlOMEH75fW7eLhI9EIpFIJBKJRCKxZIKCyUOv19NgMNDp06d15swZbW5utjUTJLVEcDqdant7W+95z3v013/917rnnnu0vb2t4XA4F7VkKoGt+4y0O2feZKVWiE46Gj2V5kmhnQaS5lIcIrG3EGAizh0X6JKwFd+gc4EEyrUPdnd32+PZ50jcLKbQUUAXh4nzeDyeG+dkMmn7yUizry2pFX5I5Am37Tl2ccyawBBdDEwn4D1lSoS3EmX/+NOOirhVJ9vwe14L3CnEn7nNmoOCYgzdB3xxvLV1RQdOjNKzvbjt6SK3RxQVKCawL1w3cZeQ2DZFNTpASOBZhJPjjqLHouv4/Ziu42t2Op32XnEd0oETz6m1E50Lxx2fSCQSiUQikUgk9rEUgsLKyop6vV5LjNfW1nTmzBndcsstuu2223TzzTfPpQhMJhONRiMNh0OdO3dOd9xxhz7wgQ+0qQ5N06jX680V14vRU25FaFJGMuFcfJMMRualozsymND4M2m+ivxwOJxzLuzu7rYRf9vuY963yTbz4yMpjFtkTqfTlgzGPtjpwFQLp5eQ/LvoorfCjEX9WGOAhI/bD7q9GjEmyVtE/CKJ91hYS4L3hcSVx5dS1O/3276Ox2ONx+O5ooWTyaTtg8dBsr+o2CfvB4UZp4pEoh6FKYNiR4y0G3RXePyM+MfjKTzwZ0wboIjEPtTSGqKYwWNiukYcEx0DnNuLTSng9y0KKhSp4n1xH/yzNj6OzWuA68hrLJFIJBKJRCKRSMxjKQQF6TDSPJvN1Ol0NBgMtLm5qY2NDXU6nTaaPp1ONRqNtL29rXPnzunuu+/WnXfe2ToTvCMArdAkiLTwR3IV7e7H2c1N4Jjn7zZNcuhaMIk16ByIKRd0HbAmQ62GBHc4cL9jgbqYauDrRIGAbgPfj1iPoNPptH3l+JlWQFIZo801m3uNVEY3R+0zkshFYkIsUhkL9HkOvL5Y0NH3z/U4aoLIorEw2k2yvSjiHes3LEpf4Phq143OgJqVn+S51katfb5HgSK+T8R0Hzo6FqVO1FBLo6B7h2s8ppBE8YPjryF+fxKJRCKRSCQSicRiXPB/zaWUnymlvL+U8md474dLKX9RSvnfpZRfLaWcxWfPKaW8tZTy5lLKZ11sR0ygucPDYDBQt9vV3t6eRqORzp8/r7vvvlsf+tCHdOedd+oDH/iAPvCBD+iee+7RaDSaI8MkoZFQ0Jq+yEpdI8XMy4+pESQ0TidgsUhvuehtF53qwHalwxQGt8F54d+7u7tttJ3pG8xVj+T+Qrs+MA2DaQF0C0SXB2s/xEj4xeSfM2rN4oqRSLMgpY9hDQRGrN2XWhFAFmPkvHCXCB9nJwydJPcGtZoO8fOaEHSxJDse7/vga9bIP8/z+zGFozaOWpS/1o8oOtBFUUtpOG6cNUHExRjZRhQToqDAV000iM4Hrp9lwNV6FicSiUSijnwOJxKJxFFcjEPh+ZL+raT/hPd+R9JzmqbZLaX8kKTnSHpWKeWjJH2ppMdJepCk/1FKeXTTNMdWX2uaRqPRqCWI3W5Xp0+f1sbGhlZWVnTu3DlNJhONx2Ntb2/rQx/6kM6fPz9H0Ek46U6o5W2T8Jg4SIfEj0XeSJBMYEhITVCcakCxYjgcajKZtC9fg9HzbrfbXpMiQrSgS5qraSAdLepnh4DHz8KTjAyThJNYR/HA77tmgl0MnmfWIeAuFjXibcLKnSmi3X7R2qAbhNf0mCJhjgUznS7DdA+SWLoc3I4FG5/DdcKUj0WgNT8Sb//NNpgewjFyHcY+8lp++XoxxYdtxN9roNjm9ew6JmyX37sa+Y/3+mJQGzP/jqJVdG4sujc+h3MTBTZ/L5lmtER4vq7wsziRSCQSx+L5yudwIpFIzOGCgkLTNH9QSnl4eO+l+POVkv7fg9+fJukFTdNMJL29lPJWSU+S9IrjruG6CBYT7ExYWVnRdDrV+973Pm1tbbUReYsIJvH+jz8j4iQFjM5Lh1s50hVgwmzLu0kk2/axe3t76nQ6cyTczgHp0OrtyLbdCv5sdXVV/X6//Z0FALlFI4sFxig9o7Mme4PBQL1erx078/gXEToSWemwfsLe3t6cMON5YH9qtRAi0auR2osVE2rw+STlJIg1Iu17wyKJHg8FILoYtre32zQIElSmSvicGo5zvsS+Wqig+HPc9ptxPtyf41JHfEytzUjQ498Eo/as2RGJOK93nAshzlOsmUFxSDoUC/399ZyxsCnnyeOLDo44l/7+x2KqF7MTxdXC1XgWJxKJRGIx8jmcSCQSR3E5aih8raQXHvz+YO0/TI13H7x3LFzQ0P+p73a7KqW0UeLt7W1tbW21kX5a3aV5Ur22tqZOpzMXTY1Wd9qdSahMPLhDhHQoEJBckGz4d/fLUe2YNmDQlh/PtzuBxIrChcftHR1M5OJLmi9CR3Lnz3z9WMzORM5iBwseug/sX+0anLtF9/y4KDmj45wrn+tjSGAX1SHgPaDjIYIFIqOTweeZjF6MFT5Gznmuz3f/uT4vJFa4PfaNrhuu7Qs5EXhcTfzhi+17XukSsSDH9RFdMReaoyjecAxc6zWHAl0qfMUxGDFFwtfkOlgyh8KFcJ+fxYlEIpG4T8jncCKRuOFwnwSFUsr3StqV9PN+q3JYlUmUUp4p6ZmSNBgMWlJrktg0+wUCh8Nhm8fuiL8JDIstcrtE7/BAB4JTCUgKGVGv5YaTsNFSTreCiQrTC2azWSt8xLQE95FExwS2Vv/B1+FPwgSLYopTD2L+PAlVtLRbLIiRf79KKdW6Be1Nxlj8medqEYlbRDIt6HDOo8DCcUhHnQkmvJLaGhPcbSJGwjnXrOPAuXN/F4kkNcSoOO9HrXDmxZDYGlF2e7X6BhcSFY67H/ws1nfgHHG9XMw9XjSmmiDkz+0gYFHQRYJCTNGJ/ah9L/2+78dxQsiy4XI9i/tavyL9SyQSiesd+RxOJBI3Ku61oFBKebqkp0p6SnP4v+53S3ooDnuIpPfWzm+a5nZJt0vS2bNnm0i2dnZ2NBwOtbq62hY1jHZ/k9wYTR8MBlpZWZkrtueijSZrscAgI/vcRpLuAacRYAxzOzLEIoa1goWOrprwktjHyDvhcyPBcR2Gfr+v9fX1OYIdi+DZebAows65cbSZKSCxZsKioo9sm2OKUWs6IuJ4OP/x3Athb29POzs7c9eJgkJt/PF49ztetxbVvlB/OAe+t6w9EPtXAwWwGI2PuzpwPHEN1PrNCP6FxmVHEddCt9ttnUW1Nha5JaJzw2JifMX6JkxzYL0K94dzbBGR7fv8KHxcrLNimXA5n8Wny83LP+BEIpFYMuRzOJFI3Mi4V4JCKeWzJT1L0qc3TTPER78u6b+WUn5M+wVoHiXp1RfRnrrdbhthL6VoMpm0hJPOApMXP6/X1tbU6/Xmagc0zX7agV0NdjiYXDCCz60ljZhDHZ0BtqgPh8O2pgPTG5qmmRMoJB2pPcAtChmxPs5KHwUHzxfJHGsikGR6K0vaxv2eCRn76zoPruPAiC5dESsrK22tASOScteIqI2Dc+o+9Pv9ds48NySrkfhS6PDY7UpgPYnadqHsM0UO5t1HBwB3AiiltLUzoqMliiYWE7wGOWc1VwTnhm4P9oHFG/3dcXtRIImpAFx7/A54ji3A+bou9GkRTZI6nU77/fN371LA8VDIowuC/aXoRQcLj2Edhfg9qLkSolPkWhARjMv9LE4kEonEpSGfw4lE4kbHBQWFUsovSHqypFtKKe+W9H3ar2Dbk/Q7B/9xf2XTNN/YNM0bSym/KOnPtW/7+pbmIqrZmsywQKFFBEmaTCZzBdNMYk38+v2+er1eSyx8LoslcmtFaT4S6b8pKkSCGe3vjNgzqsz6BW43kl0W4yOp9tjYt93d3bm2mKtOMmdhwYRsdXVVOzs7c+JLzZ3gOSQZ833o9XqSNBcJZvE6b+lpcGcK31dfo0biKWJ4PnyPo6siknr3y9f13MZ+mLhHez7nNN7nKFjQSRDrNnArzjjOGOH2deys8Xu8/xRMFolLJsYeN78/TIXw57VIOwWEGKX3vMRxk5D7fKfaxLV7sWCtE/a9Ru75vVgkktDdU5vHON9xLUiacxYtk7hwNZ7FieOx9+kfp/d+285Jd+OGx+lfPqXTv/DKCx+YSFxm5HM4kUgkjuJidnn4ssrbP33M8T8g6QcutSPM17dl3eTMxFg6jEzSut7r9drP/b6jqHYOHPStvZ7JCF0QJCAkYTViGAUFj4Hki0KD+2ACTTdGhCPPtOYzR93nUkiww4N54yb+JLGRsNEZYNCBwNoW/hkJJOeDx9XGZvgziioUFFiYMrYTt56MxRYtDlEU4NzaxRHvL0UMiiHxHnDsi8QEn1tD7X0SX1+TAkNNmGB/4/HRuh+vFedmUUqK24ypHxSAanMd57d2femwXob7zaKfcczS/G4W/L7WxJ5F32fOGb8z7sOy4mo9i29UlI//aG09bOPYY973iSv6y0/+2avUo8QifMT4a7S684lz7/Xu2tXa777uhHqUuFGQz+FEIpE4isuxy8N9RjlIeTBZsxhAQsDoq9MX/Jm3YLQrwTssOOVhNpvNpUNI86kHdjSYsHc6nbltFxc5FJxH3jTNXOX5WLzOwobbX1lZaUUAE2GmCJgkOy3CZNGigcn++vr6nJDgefK43Bcfw+KPdmzYKu9+7e3tqdvttg4IRpw9h25Pmq+tYNHE4s6iCDut9e5ftLV73rmlItdLjGiz/gAj9r4PvF6MpEcSGdMkYqpDt9udi/7HKLmFqth+FBz4t89hG57jWKhxkZhQmx++R+JPkYQCgtuPRVKjoEBXAUl9zWEQiTy/B17P/k7x3kfURAo6faKI5X5F14TnNjqE4rz5fKd3JK4vlLU1Ca60t33nmv7yyf/+BHuUuFi89TN+VvqM+fe+446P1198Su/Isc1kcpV6lUgkEonEjYmlERRMyGezmYbD4ZyYsLm5ORfB9H/w6UwwSR6NRrr77ru1vb3dktBer9fuJLGzs6PxeDxHeJjT76i8yTRJjK9NocJ9p0uBpJ4uBpN07mLA3SGkeXLrY3385uZm+7cFiX6/3woCNRLX6/Xa9+mmIAn13PrvKL74GPeJFvFY3I7ixiKwbgWL50XibLGDpNMig8l+3MaS6SDuA8UIEk/eM/ffgpL7VHMeULjgFqeLXC2xgKX7weh8bfxu50JpBDUXQnRcRLLNiP9xaRp8LxY45NpkvRE6g+gyoQPF5/v+U+yKgklNiKGQURM34hhYG2MwGBxZpyzgGq+VuD7xlh9/ol72eT/a/n3/1d+X1D+5DiXuE37oga/Qe98yLx7cs9fR9zzhszW7664T6lUikUgkEtc/lkJQkA5JgtMdTBxdFyASDpM+OwDoSjBxNtl3akAkbiQTkdjQds5Ch8zHN0kkWYlpD36RGDO6T9EhzgdTGnq9Xlsrgm25GKXHwlQRzpGv47Zr0XufRzHAhHB1dbUtvMdxR8LIaHF8+Xo81vckkk9G0Z3CQDdAFEQohtCG3zRNK7h4bBYk4vaDJLleOySmFFAiIfUc+zg6AuxqIGLNA4sSUYihU8FrppZiwfFwTB5zXI8ebxQTSObjvfN7dAXwmqwLsaj4YVwjHre/wzyPY+TPuFa5HnhPKZZ4DBab6Nao9ZPXSlw/WH3UI3XXv9m/p9/78BfpEZ3NE+5R4nKhVzp6xMG/eca0mWn4wjOazG6WJA0nXd32JX+VroVEIpFIJC4jlkpQMGLE3s4EpkJ0Op054mLXALeXdLTZ6RSMZpNgESRFJuS17SLtQiBhoY3aJJh55tFxEIm04bY6nY4Gg0ErJvjldpie4aisSS8LXNbSBSKZJmhbp3OBJJngVn92H9TEBM9LJLd0ikSC6OvG3RkiSfacmjDSdl/bwYPj8XE1MaK2LmoE1mNgIUMfx8g8+8Frex7ZtwgLDrxGvGcx7aCWluDj4988N85xfI/uEo8/1jeppWXw5Xvv7wGdLpxD/h1FkHjsIgGAropF333OQxS1Etc2hl/4idrZXNHWQ4re+DE/edLdSVwldMqqXv7Rv9b+fc/eSE/5yu/U6kFdzdVpo1MvfJVUSbFKJBKJRCJxcVgqQSGmNJiAevs6uwNIYE2WLSZYUGBqQKwfYEGAZIl1B0xqYgV698nOCUlt/QWTWRYVtDPBBFfSnOjAiLbJuPvS7XY1GAy0sbHROhPW19fntoo0UXWfZ7NZ6+hg7QEKCiTAnt+YbsEUCd8bigIEI9aeM77PdqMoEAldJJwm9ru7u0dSMDwWR+9j/QsS/Hg+xSH2PdrwCRJ0OldqIgnbjaKSP4+pHpyPKMSwtoGvFYWM2M/oPKHQFcUBnxevGcUX9zsKCiyO6VQgCls+nj/dnndhOU6EYB8uxjXA7zBTYWq1IKIA47XP73Li2sczfvBX9dWn33/S3UicMM6sDPTaf/G89u+3Tbf0Lb/6lHQsJBKJRCJxH1AiSTuRTpTyAUnbkj54wl25JfuQfcg+ZB8CHtY0zf1P6NpXFaWU85LefMLduNHXW/Yh+5B9OIob6Tmc/yfOPmQfsg/L2ofqs3gpBAVJKqW8tmmaj88+ZB+yD9mHZezDjYBlmOfsQ/Yh+5B9uNGxDHOdfcg+ZB+yDxeL9PMmEolEIpFIJBKJRCKRuGSkoJBIJBKJRCKRSCQSiUTikrFMgsLtJ90BZR+M7MM+sg/7yD7cOFiGec4+7CP7sI/swz6yDzcWlmGusw/7yD7sI/uwj+xDBUtTQyGRSCQSiUQikUgkEonEtYNlcigkEolEIpFIJBKJRCKRuEZw4oJCKeWzSylvLqW8tZTy7Kt0zYeWUn6vlPKmUsobSynffvD+95dS3lNKef3B63OvcD/eUUp5w8G1Xnvw3s2llN8ppfzlwc+bruD1H4Oxvr6Ucq6U8h1Xeh5KKT9TSnl/KeXP8N7CcZdSnnOwPt5cSvmsK9iHHy6l/EUp5X+XUn61lHL24P2Hl1JGmI+fuoJ9WDj3V3EeXojrv6OU8vqD96/UPCz6Pl7VNXGjI5/F+Sw+eC+fxbrxnsX5HF4O5HM4n8MH7+VzWDfec/ig3WvzWdw0zYm9JK1KepukR0rqSvpTSR91Fa57m6QnHPx+StJbJH2UpO+X9F1XcfzvkHRLeO9fSXr2we/PlvRDV/Fe/I2kh13peZD0aZKeIOnPLjTug/vyp5J6kh5xsF5Wr1Af/raktYPffwh9eDiPu8LzUJ37qzkP4fMflfRPr/A8LPo+XtU1cSO/8lmcz+ILjTufxe371+WzOJ/DJ//K53A+hy807nwOt+9fl8/hg3avyWfxSTsUniTprU3T/FXTNDuSXiDpaVf6ok3T3NE0zR8f/H5e0pskPfhKX/ci8TRJP3fw+89J+oKrdN2nSHpb0zTvvNIXaprmDyR9KLy9aNxPk/SCpmkmTdO8XdJbtb9uLnsfmqZ5adM0uwd/vlLSQ+7rdS61D8fgqs2DUUopkr5Y0i/c1+tcoA+Lvo9XdU3c4Mhn8VHkszifxTVcl8/ifA4vBfI5fBT5HM7ncA3X5XP4oA/X5LP4pAWFB0v6a/z9bl3lh1gp5eGSPk7Sqw7e+vsH9p6fuZLWqgM0kl5aSnldKeWZB+/d2jTNHdL+opL0gCvcB+NLNf8luZrzIC0e90mtka+V9Fv4+xGllD8ppfx+KeVTr/C1a3N/EvPwqZLe1zTNX+K9KzoP4fu4bGviesaJz2k+i1vks3ge+Sy+ys/ifA6fGE58TvM53CKfw/PI53D+n/hYnLSgUCrvXbVtJ0opm5L+m6TvaJrmnKTnSfpwSR8r6Q7tW1uuJP5W0zRPkPQ5kr6llPJpV/h6VZRSupI+X9IvHbx1tefhOFz1NVJK+V5Ju5J+/uCtOyR9WNM0HyfpOyX911LK6St0+UVzfxLflS/T/D+oV3QeKt/HhYdW3svtau4b8lmcz+ILIZ/FB92qHHvdPIvzOXyiyOdwPocvhHwOH3Srcux18xyWrr1n8UkLCu+W9FD8/RBJ770aFy6ldLR/o36+aZpfkaSmad7XNM2saZo9Sf9BV9gy0jTNew9+vl/Srx5c732llNsO+nibpPdfyT4c4HMk/XHTNO876M9VnYcDLBr3VV0jpZSnS3qqpK9omv3kpAMb0Z0Hv79O+/lJj74S1z9m7q/2PKxJ+ruSXoi+XbF5qH0ftSRr4gZBPouVz+IDLMX3Lp/F+7iaz+J8Dp848jmsfA4fYCm+d/kc3kf+n/jCOGlB4TWSHlVKecSBIvilkn79Sl/0IA/mpyW9qWmaH8P7t+GwL5T0Z/Hcy9iHjVLKKf+u/eInf6b98T/94LCnS3rRleoDMKe6Xc15ABaN+9clfWkppVdKeYSkR0l69ZXoQCnlsyU9S9LnN00zxPv3L6WsHvz+yIM+/NUV6sOiub9q83CAz5T0F03TvBt9uyLzsOj7qCVYEzcQ8lmsfBYf4MS/d/ksnsNVeRbnc3gpkM9h5XP4ACf+vcvn8Bzy/8QXQnOVq0DGl6TP1X4Fy7dJ+t6rdM3/U/t2kP8t6fUHr8+V9J8lveHg/V+XdNsV7MMjtV+V8//fvh2jNBCEYRh+bW0EPZWFlUew8Q5exNKLeIVACgvR3soT2FhkAiJEnGKjIc8Dw8KyLDP/zn7FD7OunrZrry6qx+plXM8XrsVp9V6dfbm3aB3aBPVb9dGms3bz07qru7E/nqvLBefw2uYc0nZP3I9nr8c3Wler6mrBOeys/b7qMO4/VLffnl2qDrv+x73uiWMfslgWy+LjzWI5/D+GHJbDcvh4c3i89yCz+GRMBAAAAODX/vrIAwAAAHCANBQAAACAaRoKAAAAwDQNBQAAAGCahgIAAAAwTUMBAAAAmKahAAAAAEzTUAAAAACmfQJARODcK9phhAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 0 311696\n", + " Min thresh = 1000\n", + " Sliding\n", + "\n", + "\n", + "034s_iimage_3368391807672_clean_ClassS_190-318.roi.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADYCAYAAABberBAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADRzUlEQVR4nOy9eZxl+1nW+/yqas9V1dMZMpJBE2YQRIFwxVwDGBFBUULgKghoRBzA60DgXi9OQBC8ovcCISCCiDJ4mQSU0ciUQBIJEIaEhMSQcJKTc7r7dNWealfVun9UPau+6621ezg9VHX3+3w+9emq2mv91m/au+t53ud9f6WqKiUSiUQikUgkEolEIpFI3AhWTroDiUQikUgkEolEIpFIJO4+pKCQSCQSiUQikUgkEolE4oaRgkIikUgkEolEIpFIJBKJG0YKColEIpFIJBKJRCKRSCRuGCkoJBKJRCKRSCQSiUQikbhhpKCQSCQSiUQikUgkEolE4oaRgkLijqOU8hullBeedD8SiUQicYRSyjtKKZ9wnddWpZQ/+CSf86TvTSQSiUQicbqQgkLijqOqqg+uqurVJ92Pq6GU8tRSyg+XUn7/8I/fZ590nxKJROJeRynlJaWUXyylTEoprz7p/iQSicRpxK0WZq/VXv5dnLgaUlBIJNqxL+m/SvrzJ92RRCKRuI9wUdLXS3rFCfcjkUgkEkfIv4sTS5GCQuKOg7baUso/KqV8Xynl35dStkopv15KeX4p5ctKKY+WUn6vlPJJuPfzSim/dXjt75ZS/lpo+x+UUh45VFD/ChXXUkqvlPJ1pZR3llLeW0p5ZSll0NbHqqreW1XVN0p63W2cikQikTiVKKX80VLKa0oplw8/U//fUko3XPbJh5/Dj5VSvraUsoL7P//ws/pSKeXHSynPup7nVlX1U1VVfa+k37+V40kkEonThlLKB5ZSXn34OfsbpZRPxWuvLqX8Ffz8l0spP3/4/c8e/vpXSynbpZTPLKW8sJTyrlLKlx9+Jr+jlPK/Pdn2Yl/z7+LE1ZCCQuI04M9I+k5J5yT9iqQf18HefLqkfyLpm3Hto5I+RdKmpM+T9C9LKR8pSaWUF0v63yV9gqQ/KOmPh+d8jaTnS/pDh68/XdL/dTsGlEgkEnc59iT9HUkPSPpYSS+S9EXhmj8n6aMkfaSkT5P0+ZJUSvmzkr5c0qdLelDSz0n6j3ei04lEInE3oJTSkfSfJf2EpIck/S1J31VKef9r3VtV1ccffvvhVVWtV1X1PYc/P0UHn9lPl/S5kl51k+0lEteFFBQSpwE/V1XVj1dVtSvp+3TwB+grqqpaSPpuSc8upZyVpKqqfrSqqrdVB/jvOvgg/mOH7bxE0r+tquo3qqqaSPrHfkAppUj6q5L+TlVVF6uq2pL0VZJeeofGmEgkEncNqqp6Q1VVr62qareqqnfoQNg9JtIefp6+UwdpCp91+Pu/Jumrq6r6rcPP9a+S9Ieu16WQSCQS9wE+RtK6Dv7e3amq6mck/YiOPkefLP5hVVXzw7+Rf1QHfxsnErcVKSgkTgPei++nkh6rqmoPP0sHH7oqpfypUsprSykXSymXJX2yDtRYSXqapN9DW/z+QUlDSW84tJZd1kEu2IO3ciCJRCJxL+Aw9exHSinvKaVc0YEo8EC4jJ+x/1MHn8GS9CxJ/wqftRclFR1EzRKJRCJx+DdrVVX7+N3/1M19Tl6qqmoc2nvasosTiVuFFBQSdw1KKT1J/5+kr5P0cFVVZyX9mA7+UJWkRyQ9A7c8E98/pgNx4oOrqjp7+HWmqqr129/zRCKRuOvwTZJ+W9Lzqqra1EEKQwnX8DP2/XRU9+D3JP01fNaerapqUFXVL972XicSicTdgd+X9EzWntHB5+i7D78f6yAQZjzlOto8V0oZhfb8ufxk2kskrgspKCTuJnQl9SS9T9JuKeVPSfokvP69kj7vsMjNUKiPcKgAf4sOai48JEmllKeXUv7ksoeVUvqHz5Ok3uHPiUQicT9gQ9IVSdullA+Q9Ndbrvn7pZRzpZRnSvpiSc67faWkLyulfLAklVLOlFI+43oeWkpZPfysXZO0UkrpH+YaJxKJxL2EX9IByf8HpZROKeWFOqgp9t2Hr79R0qeXUoaHxcW/INz/XknPbWn3H5dSuqWUP6aDmmPfd5Pt1ci/ixPLkIJC4q7BYd2Dv60D4eCSpM+W9MN4/b9I+teS/pukt0p6zeFL88N/v/Tw9689tPD+lKSrFauZSto+/P63dZR+kUgkEvc6/p4OPmO3dCDGthXp+iFJb9DBH6o/KunfSFJVVT+ggyK43334WfsmSX/qOp/7l3TwWftNOqiPMz18fiKRSNwzqKpqR9Kn6uCz8TFJ3yjpc6qq+u3DS/6lpB0dEP3vkPRdoYl/JOk7DlPLXCfhPTr4+/j3D6//wptsLyL/Lk60olRVddJ9SCRuC0opH6iDP2R7h4XBEolEIpFIJBKJewqHDod/X1XVM65xaSJxy5EOhcQ9hVLKnzu0ep3TQYTsP6eYkEgkEolEIpFIJBK3HikoJO41/DUd1Fh4mw7OUW/L+00kEolEIpFIJBKJxE3itgkKpZQXl1LeXEp5aynl5bfrOYkEUVXViw9PbzhfVdWfq6rqkZPuUyJxUsjP4UQikTh55Gdx4najqqpXZ7pD4qRwW2oolFJWJb1F0idKepek10n6rKqqfvOWPyyRSCQSx5Cfw4lEInHyyM/iRCJxr+N2ORT+qKS3VlX1u4dVTL9b0qfdpmclEolE4jjycziRSCROHvlZnEgk7mms3aZ2ny7p9/DzuyR99LKLB4NBtb6+rlKKVldX1el0VEqRJFVVpb29PVVVJbspSina399vfPn3pZT6Hr62srKitbU1ra6uanV1VSsrK41nlFIar0vS3t6e9vb2tLu7q93dXVVVVbcnqbUd95F99c/uj1/z83yNx+n7VlZWGu3zGW3PWl1drdtcWVmp2/QzV1ZW6rHF9vzMTqdzbB58v/vPueV43JZ/53XgeLxG8fm8h2P3OOJY4/q73dg+14Br7XbZFufBX+4z55z7KrYf14jtLXMD8fexr7y/7fecD77OPraNK+7Z63Eqxevaxng1cD7Z/9jOsmdIqvdk3A9Xe2bbGHg/+9N2z3Q6fayqqgev+qDTiRv6HJak1fVR9X7PLnp0vqHVt86vdmniSaIM+nre8y6edDcSiRPD7+/2tf2bNxbPmmmsnWp+9f9kTi9u6LM4P4cTicRpxZYutf5NfLsEhbYP/cZf/qWUl0l6mSStr6/rMz/zM9XtdrW5uakLFy5odXVVe3t72tnZ0eXLl7Wzs1OTvrW1Nc3nc02nU81mM81mM5VS1O12tbq6qt3dXV26dEnj8Vg7OzsqpWhjY0NnzpzR+vq6NjY2NBqNGgR3NBrpgQce0MbGhgaDgebzuba2tnTlyhVdvnxZFy9e1Gw2q8WFXq+nBx54QL1er+7rYrE4RvBM7KbTqa5cuaL5fK6qqjQYDPTwww9rOBxqbW1NVVXpypUr2tnZOViYtTX1er0Gwfd8uA8kxaurq+r1enrwwQc1Go00GAy0WCzqfu/t7Wk0GmljY6OeJwozVVVpdXVVFy5c0IULF+q52t3d1Xg81nQ61XQ61dbWlra2tjSZTDSZTDSdThuixc7OjubzuebzuWazmcbjcS3WdLtdjUYjdbvdem7m87kmk4l2dnbq+XP/+/2+er2eFotFPWbf5+dPJhNVVVXPU7/fr+eTQouJ6v7+fi1araysaH9/X+PxWJPJpBY/PPd+Ptd3d3e37m8UPyy2uK9sz6+7X6urq6qqSru7u/Ve4br4ee7/2tpa3SYFKT/Dbezu7mqxWNRz4+st1nW73XpfeT95XPv7+62E32OSmgKQ7/F7yOPkz1yHlZUV9Xq9hpBmoc7P457c3d3V9va2FotF3d5oNKr752s4/ggLYx7Lzs5O/Vnir7W1tfrLa+3+rqys6I1vfOP/bG389OOan8NS87O43zmjpz/v/9BzLy+08rZfud39uy+x0tnQ5Q/9YP2zf/otetFg76S7k0jcUTz/Zz9Hf/A7e+r91utu6L5fqn76NvXojuCG/ibOz+FEInFa8VPVf2r9m/h2CQrvkvRM/PwMSb/PC6qqepWkV0nSQw89VHW73QYZXCwWWiwWmk6nGo/HNXEwgSOBMBHodDo1UTOBMslZW2sO1aTIUXsSdxM6EwsTMZIfE7N+v69SSi0ESGr0b29vrxYR3FYpRf1+vybOq6urWiwW6vV6WllZORZFpzNgZ2en7lu3263dHHRguA2TSxNREn8TNM+FSa7nSzogpxZuLN5MJhPNZjPN5/OanLFdPi+6R0iSPTduaz6f1+SUjojFYlGLKG5rsVjUz9/b26uJn/u+srLSINp0OZAsuo+eVxJ+k3X3iW4VknSuE8k217rN4cA2PQa2535yr3Je/fu2Pc25ZzttzpC4TvFauh3iNVHQ8n6iKLG6utqYD687++Hn+R6/fzhm37+3t1c/x+Nrc2+0ORf8nqAo4+e1uY28Tncxrvk5LDU/izfL+WrwQ798Z3p3n2J/a0ub/+G1+isv+jx98cf8lL7k3DtOukuJxG3F2xbbeumvf74k6fyPDNX70deecI/uOG7ob+L8HE4kEncbbpeg8DpJzyulPEfSuyW9VNJnL7vYBNvRy/39fe3s7Gg6nWp7e1vb29s1Mex2uw1y5t91Op066iwdiAydTkdSk+BEMiEdRTFpbyeR6ff7NXmWpE6no+FwqG63q7W1tTrSymg1HQUmPSb8a2trWl9f1+bmpnq9Xt2fwWBQR47brP27u7u1S0I6imh7zDFKTtLvse/u7jZECBIm981kdzab1W4ECwrb29uaTqd127u7u3W0niIGSaPHv1gstLKyUosDFlscJd/b26sdJo5Ksz2TX8+DHQ1x3qUjQug+0SFgYYgih788151Op362ifdisaif68i2946vY4oN0wsocMR52t/fV6/Xa+xJpmBQaKGw4uf4WRQRuIfoEODcUEDhe5GiHdv0+y0+m3uHr8drokDm9ynnbFkqSlsqhPcW55v7zsKa+04xxmN1v72WdD3cA7ihz+HEncXzv+D1+oZX/Cl9+md/rd5vbf2ku5NI3HK8c3dbs6ro31z8X3T+U95y0t05SeRncSKRuKdxWwSFqqp2Syl/U9KPS1qV9G1VVf3GsutXV1d17ty5mgxaTBiPxzWhZX7/fD6viZXJhgUFk9B+v38wQERN6RIwEScRdUTclnFJ6vV66na7NRk30bV13+3bxs+ItUWJ3d1dra6uan19XZ1OR4PBQGfOnKnt245Q24rucc1ms1qQ8LMtDng8jvibRJqgdbtdTSYTzefz+hqLC34GHQqeQ4s5JlYXL16sXQkWEmzp39nZqVNOmDYRo8t0LphEm8jSgm5xyO3NZrPG2Jh2QAcJnQkeJ8ljJMjRweA0DQsFkuq9xFSJ2F6sM8GxWZjx/PLLYg9TZCxKuF8WX9yG55muCadvmBRH50aM3NP54blqqzfBdBi/H0yyo9PHwh3dQXRdMA2CogSFvyh+eI4o6kUXCgUXzz/BuYvuCguPXkOPifvLa3KtGg2nGTf6OZy483jul/+y/soP/w39xH/6jpPuSiJxy/FX/8JfV/mVN0vVvqR7Rqi9YeRncSKRuNdxuxwKqqrqxyT92PVcu7q6qsFgIEk1qTKRIaEweSJxKaXUpJ8EwO4E1htwWsVwOFSv16uJhkkE8+JN1kx87FIwGW2L7kvHC/C5toPH4FSH4XBYR+NJYIwYwac1nVFvCyiuRTCfz9Xv9+sI+3w+b1xHku+5ZbSXKQdXrlzRE088UackuF4CrfVMqzCRjlFy9p1k0GSe6SwktNwD3hPRYUL7O9MXLA5EAuv1JTgvjIr7etZwYJueM4sfdD7E/eG+WRSyMON9QXeDr2e0PooxFm48n6yFwDmK6UEeEwUGI4oM7idrDVAk4bg8Zjoo6EjgPRQ1Yt9iwU87e1zXwvuL6RxtxT45b35GdEK43bgHvGc953czbuRzOHEC2N/T2pvero//opdJkmZ/9ZJ++SO+74Q7lUg8eXzk6z9T6992RpI0+q3f0v5i5xp33B/Iz+JEInEv47YJCjeClZUVDQaDRiSaxI5OgphrboHBEWWSDEdNGQ113QMTbpIrR8ol1bZ3k3yTDxavY/+j1dsky9FQW6p7vV5d6I/RXObk+34T6ki6WSPBJMjRa6cDuO9sm4SJUXcW12OqgdNNHB03SadoYoeBiVdbhJmpBL6mLUeea2rRxpH8WD8gFkOktd1EkPuHtTEiPP5o8Y9pB+w3I+4WfqKNv01QoKjAa5gyw5oLvjcKBeyr54M1ISh6cNzRCRDTI+jkYc0QF9XkXLAdzll8X3DdI/GnsMWxek1YMDHWTojpCzFdgn1jn+hQYj/oyIjCUSJxu7B35YoGP3iQLz1++GP1AeO/VL/2JR/yM/rCs+8+qa4lEtfEN1x+pv6fN72w/nn9J9c1+MHXSJLaS+UmEolE4l7DqRIUbKGPkVOTQdqUTcCYuuDounR0BCJ/tpPBhRRpHWdku6qq2uHg9uNRjCyESOJGoud+UVRwW2159IxUU0zw98ss9r7OEeVOp1M7MUimIik1Eab9ns4Dp55Mp9Na1KCLYGVlpZHyQCLs+23Dj4ICUw4YObYLxHO6WCw0Ho8bQojXmicVeL08LhJriirum5/NeWH/YvHFSODZtmsreAxt0XLPrdfc8+3rLZp4XHGd42kIfs3pNBaB2qz/UQDz/m1zA/haz6vbsKAQnxEFAV8f348ef1vhRroNKEbZ8eIvpmGwH26nrc4C31tRkIzP9+cPa3PEY1YTiduJB775NXrgm49+/ppv/mT9kU/6hpPrUCJxDfyL//bJet7f+KWT7kYikUgkThCnRlBw9N8/d7vdpdZmpj0YkdDGyKKPLNzY2KiJNqPnTiswoRkOh/UJDN1utyb7FiZ6vZ5Go1FNZH0fSQyLvjElY29vrz7SUjqKrrJOgo9cdJqByQ+t+3Qv+ASGtbW1+ijK6PZYXV3VcDisCVsppT4K0k4EugnsQCDhtgXd/WA9C8+R++Z0C0bC3ferWe2Z5sATHjwG/0s7+nQ6rYm4n0vwFIcoEERHAovyVVVVH4FJ4k13Bh0kKysrWiwWNQGO0fi2iHysUbC/f1CkcTabNez3kTBzPuM8eT0iKaZI4DbovvAe9txyD3McsYYFnQwm7nt7e7XbhOINiyXyPcP5YWoK97zrivg6zzMFCrbblmbBMVjE8mkjrGuxLI0ikbhTeP4Xvl5fXj72pLuRSCzF86o8jSCRSCTud5wKQSESb5/k4FSGNiu1SRKJBMlIJFN0GJCU+WdGjff39zUcDo9Fyl0PYW1tTZubm3UdBIoIzE13wToeR+laBNvb29rZ2WkUraPIwWKFHEckWkwPiDbutrx7P9/k9MqVK8cEBUbzOS9VVanX6zUi/Dzu0SKGBQt+cX4YISbZ9TyaHLM+A9Nc3DeTce6H6MCwGEOxiYJJm22+0+nUIhJFnuhi4JGXdrWwsKjXiGtM0hv3oJ8fhSAKQBFcCzo94ph9jcfJNBEjzouFPe/fZUSbz4g1FmJhRT+H7g6KC1wH9ssiBE8EkY4KJ3ps0QnD13gt9widQExbaUtlSiTuKKpKqo6naSUSiUQikUicFpwaQYGF0iwiMBLOyLAJZBtBup7oYswn9+9IeHmMJCPTTifY3Nxs5JSbQC7L77bF3NHQ6XRak0USZEfIXRPB9xuO8LJAHsm50zpo72c+utu2WHDp0qXaCWFSRRLFlAzPvefIJNCChvsSj3nk976XkWWuL0UKp02YULZFo2MEmmSVkXrOL19r24cWBXicJFNx3Iaj5UzT4FpLx4kp+0uiT6HI/aBjIJJyI46BiE4QXkuBIPaJhJtpRhQsfD/fu1frj9vlXnfRUM6phbd4r/c90yFY78HPjgJL7A8FFLfLGh2eGwpXiUQikUgkEolEoh2nSlAw0ex0OnXNABIVf0+C05bT7jZJCExaaOeOkUoTFUeoGaWWVLsoRqORNjc3a9Ln6DWj821ExNZ5k3dGVZkTbuHBBCzmenseLGh4vJ1Opz56khF7W8RZ02B3d1fj8VgXL16sj4P0PLk9qSkouD2vQZtQ4Fx+EjQTSLoF/Aw6TXyP5yKKAm357/yeroUIEkxW76ezg/uQ/XCdCF9v0cPzaPGLe4xpEzyek6LEMtLLa9vGEa+LIhrbp5DB69r2J9MOnFYS55iCUpvAw/VqexbFhLYCiFxnClcG3Rp09XhdokMhzpXb8Fj9/m0TE5etQSKRSCQSiUQikTjAqRAUpKM/9lnEkH/Qm7iY6JtwmNTGwo1tpI3FBikC0G7NkyB4pJyPthyNRjp79myjDoOkOm+f5JuR2/l8rosXL9apBSTNjoBTIHDf6URwn+nUIMHvdDp1igUj2SZbLmY5nU5VVZW2tra0tbVVuyFIDNvWxa+x737NYkssVhht9CTXJKMmeW6TAoQt9+yT19x7hSka8RhKzqeJLN0Brm9BQm6xgFZ4iiisLcHUAI9lNps1RJ1Op9OIxLttOhMokrWdJkLcCNGlcMa5WEb63Re7XTwGzinTONimEd01FO7oDJjP5zWJj+IEx0lHAwtRRlcC/21zc1BI4OeCr4/vnRQUEolEIpFIJBKJ5Tg1gkIkJ4wW2l7NyHsb+ZWOot7MpWetgel02qiVQELR7XbV6/W0ublZF2QkCRkOh9rc3NSFCxfqonmMojMKzNoJ0oGgwMKPjqSzCKNJHk+WaJuTaKGvqqpBrqXmsXkkbH5OPG3ARJfkMkbtY/SeNSAMWshd5I6E2WQw3mP3hoWZlZUV9Xq9Y6kKs9mskUbAFAM6RGjV5x7zyR+0t/NEBTs5OA6LMRRUHCX3CQQ+OYTuEu/H6IygmBDTDGI6Bok2I+8UACiELLs/gmvMVAS6GKJbwH3mfPL+KFywr+4PU3DsfmH6hMH3L0UY1jlgykObYyU6FSgqUeTi/bwuznMikUgkEolEIpFo4tQICpFckZxQWDAiqSCxWWaHj0Xg+ExfwyilyYfJY6/X02AwqMWGyWRSk2FWiI8FEm2rjscT0iHhcZPYRSLo8bhd5pKb3EZSyVQE2/dZ+4Dzy3mIz/O/cX3YTz6XJ1AwtYGnBXAt2aZJsEUgrre/j4UH2whgJLyeA6dXkIT7ur29vVr8MfGkIMJ94j5a6CJJtTjDvUfRI5L+KB5ZeHE6RZuwxPcOnSFM0YmEm/shpgQxtcB7jGkr3m98dhQ7fG1cL88758dz6/cLHR1+7zGtIaYTUShjXzhe9oeOoLh/KZzEz59EIpFIJBKJRCLRjlMhKJiskEiYIJHMkeTEnOdIbEzGSIRJ8mIkl7nhJDaO4jMVgkdaWkzgEYl0F1DIYL89bo6zjcBEsSNGo/0sOyIYXTc5pz2cBRNJpDgXBvPJfZ1dFvFYPo6HJyOYGNthEgluJG/Mo2c6hK+N/fPvKSpwv5BwxoJ8tOFzvS0UuW+u6xGFFrsTer1ew7kR54aEONryOc+EX7cAQ9LMfsSoO9NG2gQ4ijFcOwpsFLVYW4MnakRRge3wmfxiSozXKtawoJvDggKFGIpgbSkhbQIKBZ3ocvB4LSJGR8WylJNEIpFIJBKJRCJxSgSF/f19XblypSa7TA1gRXlGFWmJNukweJSidJB+IB2RoraTFaJ92oTbxGI0GunMmTMajUZaW1ur6yA4X95ky89yVJkkL9rbSyl1dDva+CU1CI7FgQgLCb1erxYM2B8Wl6Q7YX9/v1GrwuKC0wUk1USZQs5isdB0OtXu7q7W1tYaOexOSXBaiefHICm2m4Jk2O4Q1lnwvyTgTPngupuY86hDrzPFB5JuSY3Uj3hUpdeGfXK7vV6vrjPgEx/sbiCia8Tk2m15z1Aoim6RSJ75uvc1j/yMtv/oWKFTJL4veMRpdD30er16DTg2C0jcvxSePM+sMxJTdyjEuN+sw+HrvLZ8lsfszwrOG48gje6E6EyIR5S2vecSiUQikUgkEonEAU6NoGBC4noCMSWB+f1RTDAxYD60XQSSWtMcSCKcx22iQ8Jjwr++vq6NjQ0NBgOtrKxoPp9rMploMpnU4kJMt5Ca+djx9AeS+WjRltQg47HYpGFS2+l06uMgTdoGg4GGw2EtFDB/nXNPgh3z5t0Pj8PEmakbTOGIeesck9fQdQy4vrSa7+83axYwFcRkuK02AK3zbZFlrncUGTg/Jp0mk/EYQb/m9WAhSF9vQsq0l+iqsVjhYpp0ljBtwWMj2lwJnMsYbWf/uLc4J+6X19lFKP362tpa473kdeD7JQoYcc/Huad7KN4bXTMWyOiaWbbG3E/RNRPfb1GcoBiRSCQSiUQikUgkluPUCAqups/UBxIl6TghjFFcE4x47JvbN9Hg676f9n4TPZO+Tqejs2fPajQa1UKFayY46urnxnHFNAeSShI4RmUjoSGpZGSdZJTtWAgx+TIiyff1JIR0SkRHSIww+1mOdkdRgs+m0yGKCEwVcL8893QZsK2YL8/rI4l337ivYh0BElg6E+wAiRH/KEbE0yUIznGbM8XPoJDAPRLXgwKVx3O19eV+Yt8oclAQ8LM5Z7ze7bivFKp4LZ0NfCZBoZD7n4JhFOm4dnYBtYlTrFsR03Ti/mkT9KJ4l0gkEolEIpFIJJo4FYICLdssXhgt077WbgCDxJtRakbFSe5NEFlDwMJBv9+vo/4m5jwqUlIdpefRkyTQJOEkZTECHyv3UyyQVLfL9A0Somjtp7CxtrZWCwqRBLe5J4xYlNJCTCxmR6IeT1KgyOC5J2lrE4hMSimeMNIf1zoKDE5L8Lp73zBnn+Sb7UaS6+fGkzrahCy7a3hyAOcikna27z77GFSmm0TEmgCRxMf5kJoOF5Jt9n2Z2OWfY80Cih4G+9JG6Am2H9ezjcAvI/4UFHh/FDSY4uNnU1hhXRLWjkgxIZFIJBKJRCKRuDZOlaBAWzLJjI8bNEE00Y+EmCSQhMLn3Tui7me6befDr6+v6+zZs3rwwQc1HA5VVVUtKIxGI3U6Hc3nc02nU43HY83n85oEW4Dw85x+4D5bgLAIwSMe3R+SLZNXj5cWd1u/XSAyFp30HPT7fa2trTWOamyLUJtMRfLM4w1N1GKNh1iDwa/5uXY1LCNpPiWDwtFgMKgj96xjYdGE/fGz7NRYWVnRYrGoxxAj7Hy+55L9aiP0JvuxqKMFgHhvnJ/YlufK4lW3223k98eIO98Le3t7jRNFODdtKTRRLGhrv+0ezi9fcz+8p+ioiKKC741rHvc674kCAp/PvRt/R8GoLV2CgoH3qT9HWB+jzQGVSCQSiUQikUgk2nEqBAWpWd2fkUIT23g8HO36rkRvYcBkVjogPq5zwPx9P3N1dVWDwUAPPfSQnvGMZ+jChQva3NxskHk/d2dnR9PpVNvb27WgIKmuYWASw1xtk3IXKqSlPhLGZY4BElO7EnziRHQPkNDHIxpNoFhHgfnovoeEzCKFRQzfZ5eH14VfbsOvs7ifnxEJqq/tdru1MBDdDn4uyX2n09FwOGxU6bfwYCHJY/e/PKXDc8HUisVi0Ug1YNqNQadAJK5te5l9MIm1SLW6uloLL6zlEMUIj8fjtxPF/WG/2B8+m9f5db6vosjA8dIZRKGH71WiLY2Az6RAxGfGa+Pcc159ugq/YspJFFe4Pnwf0lUU34eJRCKRSCQSiUTiOE6NoGBrPvOpGWVkZJe29tlsptlsVkfqTVhNCkzOojXfz+x2uxqNRjp37pwefPBBXbhwQf1+X9vb243UC0eQx+OxxuNxfbQgc/dN+PwlqRYUHDWnzZ41IpgnT0Ty40i8STfnyaSIqRf+lwSStSaiUEMRx3323Hu+2IbXiuKCC/V5jfyzT5xgDQv31yJDr9dr1EGIzgemfzBVxcTa8+20FIsDsRYD91gExYdYC4KvG06j8fe8l2vtPts9YjEhujfanA08SjW6EpjuYnjMHCvrk0RXQkTb7+M+inPXJmRQJGtzsrDdOA++tm28nte2cUUxJI6TaQ7e7xT2YkpHIpFIJBKJRCKRaMeTFhRKKc+U9O8kPUXSvqRXVVX1r0op5yV9j6RnS3qHpJdUVXXpGm0d+wOf1mVGe002LRS45oIJNmsTOMWAxdj85Wt7vV4tKJw7d06bm5taW1vTeDxuPN8k1Sc7ODLKVAKTcB+dKKkhaHCMdCVIaozPc2KwLgRrBcS6DJFIRZLJ9jhXBm3xJlYUcmJtBEfzmToQI/Nuw332UZTsM4UgHqHIvhom4H4GjxA0uaSg4L5xjmmN59ilZioMv6JrhNF1/87/WiTxNe6X+2uniNeaa8hxxXSMtqg514f95xzGMZOwR1xNMIjXxf3Wdk3co/F0Dr4nuA6x//6XwlBsn6JNnKP4e4oSTNXgWl1NcDlNuJWfxYlEIpG4ceTncCKRuJ9xMw6FXUl/t6qq/1FK2ZD0hlLKT0r6y5J+uqqqV5RSXi7p5ZK+9GoN+Q93k/HZbNYgFoxCm9D6qEa7B9bX1xuRb7cznU4bhROdkuBoucWEhx9+uC68aGFgPp/XRGN7e7smqj7W0qiqqn5tOp1qMploPB4fi7hGAknCEoWTKCiYhLL2ws7OjqSjWgFxPg1G4tvEBIs4Jqa030e3QDxxIgo/JLfSgU3fbTBNw44P6agGgl0mrEtAIcZ9YEqEyb7dCJPJRNvb27WDxO27TzENhPNCccD7zcQ/CggksybWrqPh13lqBdM9WPvC8xzXj//6tbiGcSy+JopUbekG7ucyEs7+06ESSXmb24GEn/uDDoU28antJAaKR2yboleslREdJXFOY3pGrLvANb4bBAXdws/iRCKRSDwp5OdwIpG4b/GkBYWqqh6R9Mjh91ullN+S9HRJnybphYeXfYekV+s6BAUXLpzNZtre3q6jvLbIs+I+C9Q5mug6BpLqoonj8VjT6bSVsJngDQYDjUYjnTlzRsPhUKurqzUZNdHY2dmpf+/6CYvFoiaEi8VC0+lUV65c0WQyqeslxPoDJJBMgYhOgcM51e7ubqPgIKP7LJjo6/ll0s55sqjC4yRZPJL1EzwuEvrYTxJEkl26E6SjGhN+rtNBut1uvR52X7AOgsFaFtHFYpfI3t6eZrOZtra2tLW1VYtSFBKcVsE0Bo/Zz+GY3GeO1WvnuXX/PXaPgcUsHZm3iOU+Ubhyf+1OMCjW+BlcA7YViTvny+vB/eb1oTjhoqE8xpPCTZtQxf3huWK6EQUNHsfKNB8WXW3rexTfeFRnW6oDnRbxXr5PokjE9eTvTjNu5WdxIpFIJG4c+TmcSCTuZ9ySGgqllGdL+ghJvyTp4cMPVlVV9Ugp5aFr3W9HgQm7CbxJByO6UvN4Oxco5NF7dhGYcDD6TPJikre+vl4XyDPR6Pf7DaLI+2mPNgFz5X2KFyZiPhrQiETNXzEPnCkOHp9JkFM5CBNjt2GyRQdDjDKb0HkuTYRZ4C4SLqx7PQ8xL573s/aD7/OzScJZrJFzHKPpJKl+rtNbptOp5vN57d5gtNrjdB/ia5yTKPB4/Iy6u33u1ThfMW3A43I6hokxhRzeZzIc0x2WEWT3gSdkmNhbKOEX22qL1Lc5ZTw2ijyeT/a/TXBgikp0o7TtM4oK3JdMJaKYEPchxYQouNE9xO/vZtzsZ3EikUgkbg75OZxIJO433LSgUEpZl/T/SfqSqqquXK9FuJTyMkkvk6Rz585pOp1qOp3WkVoSaZ9sIB3Z801o6Fxg6kEk3CTjJlom0YPBQP1+v3YQlFLq0wZ8r6PqBm3XPtXBxFA6ihx7DGtra6qqqhHZjmTU4zKxs4hCAsbjNRm5J1ny+Nry5pmW4DmIaRaRCJOEXWt9PQZH8SkmuO4D54fOBa+hn+N/SQAtppBwS6rXoC0qHtctuiooAnAeYn0Jkln2jSSWc9VWD8DX0AHCoxc9h3S3+H66bFhLgIIRBRz2u22t21wxy044oBjBvlIw4JzyGs9ldCdEF0KbQ4BzGp0PHBeFotjvKPJEUSH29W7Frfgs7mt4+zqYSCQS9zjycziRSNyPuClBoZTS0cEH53dVVfX9h79+bynlqYdK7FMlPdp2b1VVr5L0Kkl6xjOeUVlQYFV+uw9c+Z+ReRM5FvLb2dnRfD7XlStXGhZw6Yik7e/vq9frNSLMzH23yDAajY65EnhEon/vdu1UYLu0za+trdU1GUhI44kHJpnVYQoCyT3zxk3YSWZ5nbGs8KPJX0wxcN9iFLstPz2mOUhqHBHJUzAsEMUjGS3meG7tMCFBjSdt0I7PvjAS7zGyfgL2bf396upqwzHCPRAj93QTONWCbhC34XWMQg6dFh6P+0xHBsk11zKOOaYLxMi81BQ4uKbLBAX2gUIB9477Fck6r+f9FhJYUJT3RRcN32Oxb3wfUxy6FtoEhHvFlSDdus/izXL+3piQRCKRuMPIz+FEInG/4mZOeSiS/o2k36qq6v/GSz8s6XMlveLw3x+6Vlv7+/t1oUNWwXdU27+LVmdbu1dXV2vLu1MnmHbglASSaxM+t0FyQXeC0xoMOiQsIpgcSsdzxN3G7u5uIy3CIEEaj8e16yAeJ+jUDRJPP5fHP5IwMZpv10UbKYs28cP1bQgPHoeFFYIuCRfLlJpFKGnr5/r2+331er36Oq6Zx+258/palIjPdtucD++dKIxERBLrMXie/HyTf1r3uZae++gQYWTffaDYwOt5cob7Fk8KWSwWrZF9v1+uF0xNYFqMxRK3yT1NF8wyd4av8X0U1uKz6SrhvqOgFMXBNhfFsrWMa361+zkWixWn/RjJW/lZnEgkEokbR34OJxKJ+xk341D4OEl/SdKvl1LeePi7L9fBh+b3llK+QNI7JX3GtRoycTS59WkAJpsm1ybILBZIm78j2NFB4OtZzJGEge1IR4SKooGL583n89aCcNGeTrLndtyPNtABwMg4yQxTAhwFjxZuIkZyYwTcxNh9JsmKgkJbekAUGvg7X8u54Bh5TOTa2lrjxI5IuC0keP5JPOkcIQmVmidatAkJ7DeFAbo1qqqqhaA2iz0FpkiWSZIZ5fec0IXBMVN4YRpC7B/FAOn4CRZEW9SfeyFG8Ok24H2xzgLJf0xZYI0MFtz0synAxDlq63PbHMS1iK+14WpCQpyv67WrnjBu2WdxIpFIJJ4U8nM4kUjct7iZUx5+XtKyv7ZfdCNtkUAxTYBH9pnwkNj5Xr8e6yZQJIjfS00bOvtgwksBgoKAyVCbZbotWktnRcwxp2U+WrcpKMSCf5HEWxCIz/brjPbyHvaZr3sdIrmP7frftug0o/KeN6aNULhhLYooyPhECxN730ubPwkw+8aTBxjhZ72KKCa0CVIUMpYRd85pJL8sPMlUCY4hpunEueVauZ5G2ykFBJ8RCXIUvXhtFBYMC3Pch/F63kfBIQoh8f1DAeNaRL5tLPx9FBmup624HneLoHArP4sTiUQicePIz+FEInE/45ac8nCz8B/9LmDoUx2Ycx0rujPST5IfXQMmBCaBtGlHW7Xb7HQ6NWHzl8WKNrt0jPyzf4y6t5ExRqSZ5hDvNSlts7l7LLFvbd+7uKTnh+keFi84N6774D5Eh0VbpN6gWOL7KdiY7FssmM1mmk6nDRHJjhAeschjLw2LE5IaNvW4VzjH3i8Ulvi6BSzWbCBBJnyqAtM1PD8+TcT7ioIIRRk+h44Ril3x3uhAIfg618rzEvfwMlGB9/J9SGcCx0JSHwUaqemcaRMV4j3x/RZJfhRMKCLx33h/m5OhTVRIJBKJRCKRSCQS7TgVgoKkxqkOFhR6vZ4Gg4E6nU5dY8H1EKI13gSREXjpgBD4tAQTExdiHAwGGo1GWl9fb4gMJnM+hvCJJ57QY489pieeeEKTyaTOp6fAQSHDbgkSIUbpKUAQPJ2AQoB0UPOh2+02cvItMpiARzIcazv4X1/jQpfRWs9IP+eXRQXZt7W1tcZ9XJft7e1aALBIZMJfVVUtEvioz93d3dqZ4mdZVFgWbXaOPsmfxxkFkHhSg/va6/VqQuq5ojPCBSaXkVmDwoDXhK4EScei8Bwj1yoW1LQg4dfa9lDsh/sX++6x+5o2JwoFoFJKw6Hj1+N9FLhiEco4X3Qe8T0c61K0CYQk/pzPNrHG4/UzKTi0pcIQKSgkEolEIpFIJBLLcWoEBZ4GEKObVVXVhNNEngSTRzEaJIcmzDs7OzUxtpAwHA7V7XaP5bDv7e1pOp1qPB5re3tb29vbeuKJJzQej+vnxSKJrmlgMYL9YGTXZG5ZPQUTpJizH3PtWRiQJM3X2V0hqXEfSRLnkaKA21lGXBlZ9phI+Nyux0ghgUR6f/+o4KHnjM/0azwmk4STaRV+bkx7iaDoQjdIrIHQFnnn+tD9woi615qFIePzPb+sx3E1XIvYMtofU1LYV1r7eR+vpwjRlrbS5myI6QFtjgneE++Pe5v9ZJoM3xd+Dj8zPI7ofFj2XM4Pf+fPIouZiUQikUgkEolE4jhOjaAQC9axUr9TDvwVj9qzbT0KETwlghHmTqej0Wik4XCofr9fEz6SzPl8rq2tLT3xxBO6dOmSrly5ou3t7fq0CBYCjA4JOwMY3ZWaNQqWRUajM8B5/4x6m3CRqFoo4ekEvMdtRPLHug6ROEfXB58VSSlfc5u8l6d0uH9+pp0JXiP2h04QRr8jgWV7rGXQZqlvqzsQyaf779/bQcNUDY/Le5VrH59L0s40GwpNbSBh5/pwPuL3cW+1uSra1i+2xXm+mqh0LeGAIlZ8Vts6RGEinqbB9V1WnyH2sa1vbCfOU0zLSSQSiUQikUgkEsdxagQFg/UCTJin02kjik0CShs5j5i0Dd7tOKJfStFoNNLGxobW19c1GAyOWbP39vY0Ho/12GOP6b3vfa/e+9736uLFi5rNZjVx39/fb0SmfT9rLXS7XUlHpGg2m7UW45OOE6k2K7iPiPR4Y5TdJM1E1cQ2ki2ScQsfJJO+1g6HSLzcvzbS7HWJKQoUalzHwbBoYHA9PJc8MUBq1sRw/xhFZ3HG2Lbn7WpOBjpPVlZWGukaMfpOscBpEl4PiyQGLfecK9fQiPMb+9MmLsQUA84Dr2G7bfUX3I7nqe0ElGXgHozPaRM/2u71/RQIonjEftK94NeimLJMPIkOBT5fOnJMpaCQSCQSiUQikUgsx6kQFCKJNRE36bly5YouX76s8Xh8jKi2RZidb97v99XpdCRJ8/m8PpLywoULetrTnqaHHnpIm5ubNRE02Z3NZrp48aLe97736eLFi3r88cd1+fLlmvS5bT+LfSFRNQFmXQHWHYjEL4oEjJLz2TzOMdaTMAm3+BIjuPwdyZkdBCRnPG7TpI4iie+hG8L2fffboo4j+LPZrD6pwW2475FQc648PxQVKJ54zq8VnfYeW1ZA0v2hyEEhgXvWR5p6f1HoYp0Ir4v77746hcfCD+sHcL9wfuI+cl8ocix7T3i9eH8sLhmFhZg+QAdQTEUg3J94dGZ0EXFveW2ZnuF+8Hq+RlcGxbWruWjieONcRndUIpFIJBKJRCKRaMepEBQYeTVprqpK0+lU29vbevzxxzWdTo8Vg/MX3Qks7sjaCTs7O3VhwPX1da2vr9e1E7a2tmoXxGw203g81iOPPFLXTBiPx3UeNW3QPI1AOqqAH6PNHqPUXoiOBIqEkQ4Mpgv4OXZrsFaCn+V5YQ0JFmmUVIst0VLO9h1t97xGAYWnILTZ4t0e6zrEUxfsSKFQQqGFhSdZtyIKAm3/tl0X0wNIOtm2f09RxuOPdRPiaRAer3/X6/Uax3B67Vy8M67/tUAXxtVIvfvMgp1tQkvch/w9r48iQhRZoqMhpmG0RfzbhIM21wD7wJ/Zx+tJd4jPZFullLr4ZZvjIZFIJBKJRCKRSBzhVAgKBqOOrv4/nU41nU4bR9VFIsGoosmTr3O03ikI3W5Xo9GoFhPsStje3tZ4PK4LMV66dEnb29uazWZ13QSSnBixNhj5jdFf1lvgmKWj4wojWSapcbTXRN4iCKPiJIWMtJL8kyib4MfUDdYC4LzSHcATAtjPNuLPNmN0vK0YIgsALhMTYmQ5OleiYMDX/Kz4FWs8RMt9TC/gfcsi4ru7uw0xpqoqTSaTel/Swt+2p9r63kbq20h4dBvEGgNx3uLzo/AVXQZxrLGfy/pOMA0k1kOI8HMpGPG0FT6rrQ9t42W/vM+vNo5EIpFIJBKJRCJxgFMhKPAPeVr5eZSgdEQ2IiHgvfG4usViUdcucMrD+vq6VldX67oMs9msLsA4Ho81mUxqwkeiaFIY+0Fy437GY/qYjx2jqJLqwpEcVynN0yF4+oOdFIxw8/hIOgpMumiv9zxHAs1+0V7OUzhI4qLVnP03LA7QZWFSSKJt9wBTLUjC6dho20Oee9/LMURw7XydRRk+g5FzRufZhtcoElvOiYUDikE8WpJtXktUcL/a3AGcC0kNASg6P64lJkThho4HIqZbXA8Jj++N2C5FKgoYXA+PZ9kat40nvt4mKFDQSEEhkUgkEolEIpFYjlMjKPR6vfqPeYoJ0+m0cZykyZ/zyS0SMN3BRNwEej6fq9frqdfr1XUV9vf3dfny5VpMGI/HjcKPJJUkik7JIOng8Y52GkhNcuV0C7e1trZWEyFG8WlNdwTbKQ3z+bwm8CxQydSAfr/fIP/un90Jrl8gNY92dLvx5IhOp6Ner1e7OzqdTiPnP7oTpCMSvrq6WpNtP9vHM/K4Szow4txb9Ggj8m3WfK7HjdjVuQYeA5/JOg7cF14Lkm63F1N0PAd2ljAaHu9fhrbXo2MgHlfpZ5t8L4v8t80JHQpt9RY4d21teg+yjWXCII8W9VxJRzUsPK42Qe5a44nP4vuUgoZrlFAwSyQSiUQikUgkEu04NYIC3Ql0BphMOILPSLCJqcUIRnpNSCwS+HjIbrerqqrqugjz+bx2JbSdECAdERqSagsaJvss4GeyFEke//X3Jlq7u7u10BEj7HwGTwZgzr6f7fmMJJbFEpkGwboP0sGpDx5Dp9OpiypaWJCO0jnactn9OteWhJNHL/IkD48tChPR3m5SerXq+1eLKnvsbW4QzzddLtEJ4P3Bvcjv4/O5H9si6hRmWKfhRlIf/C+JcRS83Edfey0i7rkm6aYIdK15vp6+M5WC/V52uke3223U6riaaBTXgO4GPtf/ek/GY15TUEgkEolEIpFIJJbjVAgK0vFibf5D34UDadO3G4CpDvEIR99D8uBnLBYLTSaT2gnhOgRS095vwu9nubBejPz6pAXf7399H4sKsm+suE9xgVHa+EVhgaQpEnwS9OiiaCOEkWSSxNmhQFfIsigz0wIsWETLusUEknumX7B9z08UGiKZjdH0SAQpgrhvHssya3t0KRgktSS/VyOgFBNiYUiuBS391yLsbU6N+NqNODbi3mD6Rds8tKV2LBMb2sbSdl90UZDot63HsnmiWMD7olBi1xHTmZjGkykPiUQikUgkEonEcpwKQSHmT8eq+iabJke+hs6GSNZ9b6yr4PoM/ndnZ0fz+fxY5Ht3d7dBjldXV9Xv9+u2LCLwpAU+nxHuKCh4TCbTkSRRBKCYwJQHkr1IwJ2v77QKEskYgaUzhOTR/e73+/XxiDFqH3PPfQ/nIZ56YWeJ54Rr637aAeI+MqIf3SPx50gA4zrQVr/MfRB/JklmsUquFQWeZQSfUfUnU/iPa+5ntxH9mGrRVucivl/8OxaH5PuS76FlqQ5RJPHz47zwHo7JApTn0ikI3A9xPq8GClhtgoK/mILj+cv6CYlEIpFIJBKJxLVxKgQFqUlqmDZQVVVN+Bl5biNRJP9uZ3d3t5GmUFVVo9ijCW+3263JpgmfayU41cGEcmdnR5PJpM6FdzoBiVGMekpqdRAQJmB2UNhF4falI2Jsa7iLJJrUMnq/TFSJufAk854HEznPGws8UsAgoWUOusnhfD6v+0unh9vzcZwmcE6toPWde4TiiOcrigB0o3jembLi9fWa9fv9xrxwHX1sJsWR+XzeILlM1YiiEfvtn7kPovhFxw3b9bj4M0UNrw2dGlzbeJKHEYU8rp3bZQ0TFin1nHAPcB645iTn0THh95ZraHiPra2taTAYHEutuR5ER0xMd/DzKSLEOaMwmEgkEolEIpFIJI7jVAgKJhMGo+YmMIxc8jpJjdxwk2CTKBNup0741AdJdTE91h6wgFFKqVMcLCz4yEMWfLRLwbUJPB4SmLa6DDHK62ezZgLHzIKTRimlfrbBVAVfQ7Iaj2NkX0y6XZdiOBxqMBjU5N8ijSP0/X6/YamPaQru92KxqEkpBYM4F7GughH3Bt0JbIfgXLFgp4UE328CzaMxKR7EehZeKx7zSVId55TEmUKPBROOi32g2LUsXSBG99tOO6DbhOvclr7gubSQ4/F43tzPeKJFTC3wfvO80k0Q02+iY4auI+9FvnfaRJE2xH5HESSmPrTN4/XUskgkbhVGP/ugPvb87550N+5rvGX8FL3zY2fSfvvJMYlEIpFIJI7j1AgKJmUkvtLxonIm2IxAM/LbFuX1a9KB+DCdTuv7aIUm0aCgwGix+2DnAEka86/9xWMaY/5+JGR0Lli8aLOcS2qkQnjuWEDRAorHJKnxDP/MfvneWHzS8+lUAZLnXq/XiOhG6z+PLZRUt+sx8DqvmeeRRQ85B1cjeXSDcGwxxYB2fhLxmFLAPef9EtM6fF88/jFa++mAiCJIPMkk3h9TL240Ws9nc6/GduKxktGJwteiE4Zt830Vo/9tc8b3AUUFPis6MGLf2Y+YVkNXRNvatLXFeUsknixWz53TW//BB0jX0KZ+5Flfp+d3RnemU4lWPLL5q/r4r/r7x5bqed/we9r9vXedSJ8SiUQikTjtODWCgqPYkTiZlLMgoXREHhitZhTcjgG7C0xKTNRNWnhig8nG/v5+44QDR1stJPBoSQsPvJcpCExFcC0CSceIDe/xV4ziRkeG54QRdo+f9RNIEmNNBeap+z7XTWCE2P9aUPDv+v1+Y5w8xSCKINJRSgWjzb7Gzgo/h/PBKPXVSB7TO9qKYbJ/XItIur0mbdZ+ppzEqD/3pNswSJI5ppiSQicEiS2JNdtmyoHhnyPx536KLol4P58bf+/nt4kOsQ8Exxbb5pg5nxx3rAkRRQ0KUxbD/B6JtRE4jquNP5G4IaysauWDnicdbp3p0zb0ls/9puu4McWEk8ZT19b1O59zfK0+9te+UGfftN74XXnvRe2999E71bVEIpFIJE4tToWgYJgg8EQDpyiMx+OGoEABggTCxNh2e+aez2azRh2Afr/fIFYkiMPhsCFCTKdTXblyRZPJRLPZrCE6dLtdzedzTSaTBgGdz+eSmufedzqdRr67n+c0Cn+x/ybRtq1zjkx0KY5Iqms9MF0gii+eu36/Xx+ryeM1+/1+PZfRwWGy5noErPNAN0AkZDy1I0aqSdSZ++9rYltRkCDhZx9IKA27DDqdzrGUCs5ttOczJcPklGTW/dnZ2WmsO+tQeL3j/DA9wkIY553PdF+jaBOJNdM3IuiacNsRMc1gWZoDX1+Gq6VueH28rzjPdAc51YjzwKKKnGf3iyJd3HdtYkkUSRKJG8HaUx/WD/74d6lTlh9tm7i78Jqve+Wx3/3B//iF+gN/NwWFRCKRSCRuWlAopaxKer2kd1dV9SmllPOSvkfSsyW9Q9JLqqq6dI02JB0dw1hKqZ0As9lM0+m0PknBpy+YMJpEmIC5aB6JAaPzJiPD4bARdZ9OpzVx7/V6tZBg8j6dTuvn7+3tqdfr1cUF7QaI0eO9vb1jxMbOCfeZJJK1COyycCTbRMnEy6TJ42atB7dpF4Xntl70tTX1ej31+30NBoPajTAYDBquBI+vlFITYAspJrsek9ex7fQC13Pw72iFJ/mjSOFrmbvflsZA0k5Cyv4tFotGxD7a7KOLIe4tj4GCgKRaHIpOCNfu4Dh43CjFB+4VCkd+3YIRCzTGtB4+m4ICBY82sYDR/+hk4Vgo5sSChSTeXru29x7FIYqAbaIS19D3+Tp+z3FQiOC4LEDE92fbPPh79+duExRuxWdx4snj0R/6AP2d9/8p9VfenmLCfYDv//Nfrzf+6WfUP3/tt75ET/u6XzzBHiVOA/JzOJFI3I+4FQ6FL5b0W5I2D39+uaSfrqrqFaWUlx/+/KVXa8CEmKkNjtT7pANH20lKTMpNgiXVJF5qWsKjVZr58X6epEb0mcTcgoKvMUE0KSIZM2EymXO//JrbIPExIhFlfQMLF+6jiyL6PhJe1qAgMXZdCBddHA6H6na7tUDS6/WOiTSeQ98fBSC/TmGAjoCYrx7TIjhncV/QccCIfLTes61lEfNopY+1AgjXzfDzmf7i+fVaxBM+2sbjVA6/RoIf3Qrx3rb8fopSFBSYPsGTGgjuOzpCOA9tqRWRkPv6trQI/p4iQyTq8T6KCX6m55qOEV/PZ3He/N6NxS0thMQ+3I0CQgtu+rM4cWOoPu4P6a0v7UmSvv6DvlOfOpqccI8Sdwof1u3rw7qP1T//2J/7bf3ysz66/vnZ/3lPnZ94/Ul0LXGyyM/hRCJx3+GmBIVSyjMk/WlJXynpfz/89adJeuHh998h6dW6DkHBhRhZo2A+n2s2m9UFEBllJOm1jV5qJ0ImNUwRoIXazoWY4+5/5/O55vN5TYxYb0A6cj5ITcEg2tUjiY6kii4E3+vrLZqYrFtAILliEbpo8WcE2ILCaDSqHQoUGhhBXpZz7jHHGgFem+hE4NqwcCNJIIlpTCMg0Yykj1F0uiQodvBenupBgSbOlcH5b9tXUUDhWEj0I/GXmmkonEfug0i6eU2M6F+NENMh4TXiOLgWHA/XPaYMRBIf142pEX4GhYu43nQfSUfCjdOf6LqI6xrTNyxQxj3cJmrc7YLCrfosTlw/Vj/weXrbiwf63T9/PfUREvc6vvs5PyM952fqn//A3hfq/d/9/tr7jTefYK8SdxL5OZxIJO5X3KxD4esl/QNJG/jdw1VVPSJJVVU9Ukp5qO3GUsrLJL1Mks6cOVOfRW/xYDKZ1KkO8/m8EdV2jn+MzpIIkoxZrDAxsYXcee4WG9pEAgsbJqIkPhYlTHYYJXVE2mkbTHVwH5e5Eyhc2KXggo62z3e73UYKRzwlIDomHF0fjUY1Ee33+7VLwYUYKUiYVHo80lHNgfl83ige6ed0u93Gzyb11xvd9txTnHDaR3QlsK6AxzcYDOo6CHyG90kbAXZf/TvvBac0RDFgd3e3XiuPz3tUahZfjOkUXme3EwUhpjC4bYtSUXSgS8br7+vtuGENDro8/Br3Id00bUIHiTlTM7xPPAYW3nQ/+F70OnJM7J/Xnsez0qFA8s/9E9ON/L6MgljE1QSFu0hg+Hrdgs/ivoa3uZv3Dla+aVtvfv73nXQ3EqcUb3vJK/U3P+6j9Tt/5KR7kriD+Hrl53AikbgP8aQFhVLKp0h6tKqqN5RSXnij91dV9SpJr5KkZzzjGRWt47FuAnPjTVopKJD0ORJqgi+prqvgmgIrKyuNAo+SGuKECRwLufX7ffe7cZxhPOKRxzaaCJtkk/hZcGAuOiPT0hFxdRuuq7C/v6/BYFATJhNTE2kTv93dXY1Go/pe/+sijKPRqCEmDAaD+rl2c3S73QZ5m06njXQKCxAeA4sp7u3tHTtFgwUQGW3397ToO+WC97h/JrGc936/XwstnkO6D2IqAUksSbHv4/V0tTBlwYIHiTZdEHwWRYMo2PCZFsDs1GExQY/VRTPpOpCOxACKUibyTFfhcZweX3SYGDFlgHPnez1Xg8GgdgzZ/UOXQnSh8P1Ld5D3Ct9vFCWiOML9tKweRPyev2sTtu4W3MrP4s1y/vrPI71PsTIa6bPe8GZ98ugXlCczJK6Gr3zqq/Xzbz0nSfqKV3yeLnzra064R4nbhfwcTiQS9zNuxqHwcZI+tZTyyZL6kjZLKf9e0ntLKU89VGKfKulJlUEmoSERcWTW15jUmqCz9gELwsVc6ugoiISCheeYOx8FBTsqFotFHcWn/brNtRCLAsYcdlryTUDpSiBhcqqFr2ckl+KGCSiLMa6vr2s0GtW/t8NhZ2enFl1WVlYawg2JaCTRFg4iUaXI4KKa0XJOR4nXlxFxrovv8bMZFW/rV0w9aLO6M0LfloLBtAruLY6T9S58L6PjLLbIdafDgiIYX6eo5naWtccimVIzPYJjl5r1G6KDxGAKyTJnCR0L0dXA+WlLl6CgFvc358CpPhQPo7uAeymmi7SBfb2LcVs/ixNHqD72w/XmL1zVZ268Wr2SYkLi6jizMtCfHs4kSd/yl35Xv/PgC/SMr87Cjfco8nM4kUjct3jSf01XVfVlVVU9o6qqZ0t6qaSfqarqL0r6YUmfe3jZ50r6oettk+kEJC0krP6e1d+d+28HAAk/LdNMUYgRz2idjikTJCtSM4pPl0AkmnQX0FnhtmKON50K0dHgLzox+MW+SGrcw0KMg8FAg8FAo9FIm5ub2tzc1MbGRqOegu/xl39HUhrrIJCQk2CyHf4+VubnfFkAidHouB88N9HKz3Ul+WYdCf9LpwLrY8TIudvGe+BYgUCmnsQvHm8Y6y2E91bj2MplR1eSXPMeul7itSTvHFMsUMk5icIB5ySmQNAlQCEgChFRUIiFGOngoDOirThn7Gus8xBTGdrWJuJqr5023I7P4sRxrHzYB+idLx7pdz/x29QrnWvfkEgAP/i8H9envOQXtfe/fqS0kqeA3GvIz+FEInE/41ac8hDxCknfW0r5AknvlPQZ17rBUen9/f2atJo0mPiQrDiCLqmOuDN672voAHBRRUl1pJ1kmeSBZIa2fpM2pziQ7LGOgZ9PO77JjsdjwYN1ENqs1yTkJMwsJmkRgaRSkgaDQT03FjT8u+FwqDNnzujs2bMaDof1/E8mkwZhNMn2nJHsxdx0P5/3MQ3D/WKxRI/HPzP/3nPttqNY43m1M4SpF1cjjKWUul5EOUypIHmlk4XgeC1ceW+weCT3EF01JPFGJO3cvzymlCS67UQPrg3FDf7rve97uMc5N3G+SNgj2pwdPD0lFlGMKScURSwURgGDY2hzJ1A0cc2EmPLCcbalXiwTFe5y3PBncWI5rvzzHf32h33jSXcjcRfjax5+o574ztfos/7Qp2jvscdPujuJO4P8HE4kEvc8bomgUFXVq3VQuVZVVT0u6UU32oaLMkayRMJiojCdTuuotMmGCV6bK4FuAkaoTbZNCqUjshHJqdML2JafYyEkEjcTcUaWOQ5+saAfCRSdDb7G129tbWkymTR+Lx0RZqYydLvd2p1w5swZnTt3Tg8++KDOnDnTiO4Ph0NNp1NNJhNVVVWLLR6v61uwCCHHRHLHNBTP28pKe6FGzgUj+G2pEC5WGe3znnsed9kG15CIfaCw4XWl0OO+sWgk197tkaB7HiKZ9v1cd+mIjDM1xOP2fo17lgURDc4JiTOFsXgMK9eTYPoG18WvcQ9EN1B0lsR76eZg3/nFOh6eKwoLXG+vZ3QzcRx8hr+Pv2Nf7ibcis/iRCJx+3BmZaB/+rr/oi/6v75YZ78zayrci8jP4UQicb/hdjgUbhjLbMnRWm1Sv7OzU0d8WeTOUVEeM8lUAJOimObg/Hi3x0isn+sCeSRksRp+LDDndtqIXfyZpKst/9uk0XNgUs/jLP18iwkWZliDYX19XRsbG9rc3NTZs2e1sbFRE1FHd6ON33PuQpmO6LOv7mNMz3CxTc+/hRq6QDhGticdEW1Gp9vqD1DMiWkZnE+nVHDPuH2LUpHQup9cJxdn5BfTcNyPtlSN6CLgXmOfYkHJmLrhOYuE3/9SlLDrw3PH9AivAQWF+N6LxSjpqOBc8/nRWRDf21cj623z4/3AvRDnIqY6eCxtzpG25/l6X5tIJBK3Gn+419VzvvDN+rVnvUDP/GdZUyGRSCQSdzdOhaAgNQvzRcR0A0nHxASTa3/RZu9orIkm89hNohzJZ0E95rH7+EiTEZNqkxu6EWLe/bLxxn+jeEISZDh9w4KCRQD3gbUP3J7H3Ov1akHBosJoNKpJ+nQ61WKxUK/Xq0mYxQQf5WlhhYX/SOKcVuF+rK2tNY4wjKcLMOJtocHFIOk+4ZpT0HHxSbos4rx5/8SaC4zOR/GGa0PRg+kv8YSFmJIRCW+0+7MPXnMejRrrDXCcdEzENAGKEu4HxQq+J3gP++bnWUzwuFlYMd5HwYIuhGXviSi0GRwzxQqPhfvC7+nY/wimY8R14jN9rdtb5tpIJBKJm8F3P+dn9In/60j6Zyfdk0QikUgkbg6nRlBgzjxrEziFgdHPTqej4XBY2/F3dnY0mUxqq76P2iNxIkE1ubDowAh+LCzn+3nsZLRs+8hCEh0SIUe9iRg9JRnz2Bn9tojhtIPt7W3NZrNGpLzb7arX69XuDRNIiwtOdzh//rwuXLigM2fONI6K9Lic2rFYLHT58uXaETGZTOqjPCPR8tgtUrBAJtfYc+FnRVLLcbMAX7Swe43b6hPEAoNMhXDRSc8bRSb3LR5TKanx/Bjl9j2sF8DUGten4BjZPwsuXgPWDSE5ju4Eg2kl3vOcR4PvB9YYaSskyhMkPD4KGW37moJITD1wv5c9j+vGuYl7wykgFP9i6kiboOB+srYDf09HhPdYrC+RSCQStxIrqlQ6XVWLnZPuSiKRWIaVVZWWGlKJ04X8HD1ZnBpBwc4CE+bZbFZHwukGWFtb05kzZ9Tv92sy5joCJLoUA2JlfrdpkuOcep8qQFJmAsJ2ou3aJxJIzQKFJi4mxiY7JtPO/fYXn2HiSjI9m8105coVbW9vN2zxFjTOnDlT1y0w7FxwEcaNjY26hsLZs2drMcNHAq6trWk2m9XuB6+L14MWe+mAoFmI6ff7Go1GDdcDT50wOEeuncH1cf8plPAek1v/TPLJtAOPnVH/tbW1Y0cRMgef9QiY2hFdDKxhwLn2ulro8DPdVozoU3Ah4W4r5GmRwnsopnVw37pvfC7TEfzeie+tSMhj+gkFlZgi4b762XaDUEzwuAn3N+7/uGfaxIQ4/7EWBB0dvobrYDGmzaXSlhqRSCQStwo/8P7fr9e/uauv/tCP0/54fNLdSSQSLXjLqz5CP/6J/+qku5G4Cvaqor/7SX9Je29520l35b7FqRAUqqqqrfQ+tYDR1Pl8XhM0HrvIwoj+mW0yymj7tknczs5ObdH3qQcufsdjJ0nSDLfH4xVNGk1m3Qbt3jFizOKCTCEwyfExjqwbQILuCHiv16uvdf8oRpjY+ZjIjY2NukCjdEQ6WRHf/eG6xPmVVDsiPI9OdzCxi2ICBRWO12M2obfQQBcB7ffRSUJyTZs90yQ4t4xIRxs/0ZaSElMMpKM0C6ZdUERi/QHOBR0qFnXoqLhWbQimA0XBgEJIdEXw/cHfR1GBKQKeL7oTWOOCc+HXKHBxLulUiG4AzgFJvQUiz4PHZreJ54hr13bMqfcDnxWLasaUpEQikbjVGK509dG9hR7/3qfpzCvWtfJzv3LSXUok7ns8+jdfoPJJR6ew/OPn/6Ce3xmdYI8S14P5Ny50afL+jd8NvvOs1r/vl06oR/cXTo2g4Ki4XQo8UYER1H6/XxN/W7dNoAzav2P0kSTMbTqKatLHaC+LO0YSwlQJEzyKCSa/voeCAnP6/X2MzpqsSzpWu2BlZaUWNFiEkdF399Gvj0YjbWxsaH19vU4ZoT3eZJFEjQ6NaGdnmoUFBZ54QPGgjbBzHj0/TmOILoW2PHnfTzIaBQUKFTEKHX+ODgKuRdv3jG5zb7WJCXH/+ToKJd67bp8uhbY6CTFNxqAIQTJO0a0t9YJuGQogrEHBdknMDabg+D0V57ntdBAKFzFlyN8znYjXxHFS1PHeokhGAcHXMQ2KKS1t6ROJRCJxq9ArHf3yR3yfPvaZX6jNk+5MInGfYvXsGV1+8QdKkoaf8h79wod9/wn3KHGj+OkP+uFjv3vupc/XU1Y/pv757Ovfq723vv1Oduu+wakQFPb39zWdTjUejzWdTmvy7BMMTIpHo5HW19fV6/XqYoGMlJpY0eUQreEUBhzd5/GGdCawjgMFA5IXk5F4DSPFUntle0dc7b4Yj8c1qXcqhlMhXIjRUWy/5hx92vaZLtHv97W+vq7NzU2tr6/XqQ6bm5t1bj8j5SZde3t7dZqD/412egsKFhIo9nj8dG14raMwwOM03R/PM0ldJMmR/Hre41GETJEwSFK55pFkc6xR1OAe8Nh8ndeExJUpOExfKKXUxUYZRecYfE1bXYToIGgD3QXuh8Ub98VjYD/a5sxiAu+hSOI5WVbPwO27L04N8tpRYIrP9Zq1OQd8fbfbrdeCokdbXQnPNfeQ18LjTCQSiduNvU5R6fVUzecn3ZVE4r5C6XS1+NDn6hf/71eedFcStxi/+4nfJn3i0c8f9i++SE9/5aP1z/vTmbSfxbdvBU7FX8v7+/uNXP354X+ozB0fjUZ1VH11dVWz2awROY3tMaJKGzcJuL9YzZ6nQ1i0iBFUkzMSEfffRLgtx95igPtIy71TJnzNcDhUt9utRROfXMHigLS1m7xLqoWE4XCojY0NnTt3Tg888ICe8pSn6MKFC9rc3FSv12tEhGmbt4Bx5coVbW1t1SdJmHxTKDEBNHk2sWR6hr8sLDB/nS4NR7ej+NKWLkAwYk0SyTlhzQTXbiAx9Tq7jbZCmu533G+rq6uNY0ktELloKOuAkGyzDxRsmH7i58a6EZz//f39urCj5yOSb/fZfdnZ2Tl23CbnyfuKrhyD7hH3h86Z2IdliGk+7i/TFDjvnpdYgJNpLLGP7EdbQUv/ni4kC0LpUEgkEncKP/7P/oX+2Kf9VT3903/jpLuSSNxXeOtX/WG99qVfJynTGu51/Nzf+ReafPGRgPCpX/H3df7fvuYEe3Tv4FQICoyakjg6Eu+0BJ9WQIIq6RiBdBoEI6RMUXDqxGAwqIspOkrqiCkLMZps+Hk8kpFuBD/HJDLm9vOEAxausyWbkVmTOY9nZ2enUU+ANniScUm1W+Ds2bN64IEHalfCAw88oMFgUM+X26UjYzabaTweazwe1+IOnR4kdSbErC1AccNz6rnzF9M9XFwzWtLpEIhuAdZlsHgSCyvSYcI1ZEoE14VOBEkNAh7ByDXJKiPpFFe4V72G3W63dsaQtNOZQTcI3yvsR+wX/6U4Q7dNdM7E9rm3OP7oDLGgFk/uaGuX8JhXVlbqWibeR94Pnvu2tmOK0zJQPGhzJizrW7oSEonEnca51aEG3cVJdyORuK/wtv/wh/RlH/EDemA1xYT7AWdWBjqDPwU/8W//gl73F5+l7Z2uzvzZd6VD7CZwav5yZhSSkWvb6kniSdZNFFhI0V/S8cgqo8c8YpGFIGN0nTUJop2bOfHMQWckn6Q25tBHWzjbj66JGDWOZJPFEYfDYZ3qcObMGZ05c+ZY4clYH8HFKp1+YlcEI/uxj7F+AIWDeOoAI8AmbjFizJQSEk1a8dsK6tEtwnWLaS7uP0WQKGRQ9KGoEYk6+8yUCLYdSXw8otR7l6kTXGOv1dXQVkvA38f0CL53OJ62NWhLe+C6MOWBKQPXciZwPTxvFqi63W59jfsSxbo4v23ulbb0Iq4t54r3xxScZXOQSCQStxp/5OF36vWf+7E69+9eK+VnTyJx27C6ualHX/LB+taP/ma9cJDHQ9+v+KqHf016+Nf0xP5UL/yCv6vVnUqb71yo8xOvP+mu3XU4NYICbe6OVJJ48mQHnjlPUmarvgmcybIjwkx5cN4/j58zeWC6A3PeY9qEdERII0nja4y0uk/Rdh8JnMUEnurAfrp/7pudF8PhsC7A2O/3tbGxobNnz+rcuXP18YsWEDw+igo7Ozsaj8fa2tqqj+MkKaeo4jlwn3xNFGKY6hCdIryfBC4e90eCSQJuQch7x3PGfRIJaTwhgrUPOBYS2Ph97BdJOV0BdEl435g4WzTy69F9wj3JtkmI/RxeS0HG7XAdlrkT3Ibnto1M816LCFEAuV5RQTqqX+A6KU4/oKgT953H1SYWcY3YZwo2FCni2Liu3suJRCJxJ/CNT3+t3v5Pfkp/88f/vPYee1xVfv4kErccpdfT7oc8R6//J9900l1JnBKcWRnoV/7Pb5Qkfdyvfbr6rztXv1bN59qfTE6qa3cNToWgEEkbiSZJhKRaKOB59KUUjcfjBll3igAJEHPXea+fY2K0WCwawoR0cOKCr3HeOomMo+0mK0yZiLn5LPomqS6O6OMxDRdEdHFKpntYAPC4XLTy7Nmz6vf76vV6OnPmjAaDgYbDoUajUd0mRRD3c2dnR1euXNHly5drMWE6nTZSFEze+SUdVcanzZ+OBM6Bi01SyGGKye7ubkMkkJruFaZcsKimpFoQcX0Niz/un6SGMMRikdxvbRF0rz2Fg+hGiCID23FaBut2mBivrByc2BEj4ry/Lfc/puS4v+wfBQseS0nBwM/Z29urhTfvtTj/0fUQx3wtcF6Z/kFh0NfF9aFQ0JZK4nFFxM8BzmecO1/HthOJROJO4Tmddf2H1/+gPvWvf7H6//mXT7o7icQ9h7f/nx+pN3zev5TUP+muJE4hXv2h36fJrx/VJfuon/3reu5nv/HkOnSX4FQIClKTaEhqRO4drWTk2ykQKysrxwip3QokLbTpO4UiWp5p2zf58j0m5O5njK47wuz2YkSY/adbwSSYtvuYe+/vLXbs7x8V4bMb4cyZM9rc3KyJq/vtQpZ0d5Agum3XU7CYsLOzUztAoiAQx013gb+YQsF58JzTdREJPK+L0XePi+ScDpW4bqWU+lhPz290kfi5Jsvuq6Pl7FN0CHi8bSQ7WvS539xujK5TBIhOBAos3Od0WXAsHB/3JwUDCgEWeuLaXg3L6jgsA+txeG2iSyimObCwZHT98Lle85jCQMS9H9eP/16vSJJIJBK3EmdWBqraD+xJJBI3gbf/xw/X//kR36f1lRQTEu3olFWdKYP651d+9HfqW37hj0uSLn/x01S9/k0n1bVTjVMhKES7OwmcvyeRoDhQVZXm83nDndBWY4DH2cU8eSNGe02oHUWN0XaSS0ZYTfiiBZ3uglhZfm9vr468myjZJUHbPPvsIyHX19e1sbGhfr/fOO1gdXVVg8GgFhRMIEl07ZjgCRsk+20EkfUCaHmP9npGeUnkr2bn51GKnG/OO1MmvAfoCGEKBO3/7H8bYaeA1fY7XxtFgLiX+RodMEypoFASifvVhATuhXiMZ5vdn+3FEx28bhaJnBJzLau/xRZG+a8lPES0iQkU4jwn3se+hmkkUSS6lpgR3R9sL6aysJ+JRCJxp/GuTyx6v/kfUe+/vO6ku5JI3DP4qx/68/qczcdOuhuJuwgvGuzpRc/5GUnSH/jfvlAbL3iB1qaVLnxLng5BnBpBgdFSEiNHTHnsIPPvHV2fzWZ1xJ/tSkfpCLaZMzJPwsYj9WLxRpNvR/rZPu3w8QQKkkJH7Jm+wPG7LROryWRSE3wST1vkXWzRR2ryWEcTa6cErKys1EcjsqDe7u6uZrOZJpOJtre3aweE+27ESH78Pcdq4uvjJikQeQ44b0QkvSTRvoe1MywmuB4E19v9i2Q3ChpRRGBqQCSqbcTfbVyNVEdBQTpyX7DGhH+28MNCjax1wRM0OG/sL8cXj2PkXHncnU6nQdgjKEzYHeL0nWVjp6OF7wmf8EHXQay9QeEuwvd4DG53mQDQNh4+x/fToWDhJJFIJO40fvfPfbM+4MG/pGf9l5PuSSJxD6AUrT3lYfXLpZPuSeIuxts+85WSpJ+dSV/zIy+uf1/t7mnvfe87qW6dCpyKv5arqtJsNtNsNtPu7m7D1r62tlbXEDA5dSR1sVhoOp3WOfNtgoRFAUeyLRjM5/OaTK2trdWChMmuj5S0Q4H56tJB3r9JRzw6kUTHJ0lEd8D+/r5ms1ljDtbW1jSdTmuxgzUM6MqwULC5uanz58/XR+1Np9O6vkS329X6+rpWV1frwovur193X31U5GQyqcULkimmb7ivFG4sWFBQ8HqY3FO0oYOEjgK2QTu/+2RiHCPasd6FQYGAZLjNzm4i6vQZE3ySc5L+OAdS016/zDLvPWBxym1RMPNe4MkmOzs7x04e8fj8fa/Xa/SN/fM+jq4cp8dQaON7je8rX+++UQiIYyUhd398XbfbrYUungZiUWhZqojHEY8N9dg8Dj8zOpUoOPD97GfFdA+/VxKJRCKRSNy9WHvOs/T9P/d96pX8Pz1x8/j4vvTRr//P9c//afsp+nfv/8wT7NHJ49oHs98B7O/vN6LZJhssXMcItUnkfD5vRPwZmTYZsN2/jQBKx8mcI6cuZugoqqPCFh14coOr9pP4+PhG5viTlMY6CSYzPGnB4oZPpbA40e/3debMGT3wwAPa2Niox8gTIXq9ngaDQaNeREzvYJoDn2WSSXGkzUpPscNE0+06cm2yJ6k+hSO6DSiWuG+MWDNizzWLJ3FIzZM/2qLVnHvOB0l4FA74WnSg+Br32+MyWHSQiGk3cZxx/8cUGs+5xSEXdSQxj+OIoGDB9wHnOh7DSmHCe4fpRhzzYDBovHec6uP3N4UGpqwYLKDJ+gjuTxTa+P53/ylktDlVYlqF58PjTEEhkUicFP7dH/k29f77U6RMvUokbgrVSkkxIXFL0Sud+uuTh7+nD3zDmj7wDWt65O++4KS7diK4KYdCKeWspG+V9CGSKkmfL+nNkr5H0rMlvUPSS6qquqrHiNFguwroKGCEWjoSIEhAYjE/CgzLItImc4zmRneEpGOEx2kDJnMmHTGyaSLv8bGPUSTheP0sn4jg+djZ2akJmUUPRoB5IgMFiFgk0KQsknH3Ix676bmPzgDPVzyxIbocHJFvq+HQlgoQ6wNw7blf3EeKHqyrQPHA4+c6kWDGtBKCwgpJvX9m4UaCJynE1ziPTFOh64VzEVOCGIWP9QAoJCxL14iFEKN4FOeN9S0ohlFcsSDnL6dpuG0WRKULhUJGrGXANA7uC86rnSssyEhRyuB4DY/LnxOx3bZ1O424VZ/FiRasrOr3/+5H6zOf9jMn3ZPEfYY/2uvon7zfD+lLywukKk+dOe3Iz+FE4v7EudWhvv6pr5ckvfhPP6zf6x2JCk/7ualWfu5XTqprdww3m/LwryT916qq/kIppStpKOnLJf10VVWvKKW8XNLLJX3p9TQWbdJtNmjpyK7MInxS8+g+CgtSk0SYLLB2A8mMSYaJMCOsJNf9fr+OJPOkBo+B5Mtky0RqPp9rb2+vcVqFnQJ2XYxGI41Gozq3fXd3t3Y+UCywc8LEttPp1CkbHKvHRou5Cb5JFckirf+eUxPo6Exwux6X54hOB9dwYM2JSPK9jv6XpwJIzWP+SEZpxfe9JJV+XhQa/DMj+jHVgddxHhlhpyuCJH4ZKaUIFGtEuK22yL3JcxRLKLy1uRHYH1r7Pb9xnvmesWjkNBk+M560EMk9+2UxzOKAHSZRIIjuEgqJ8UQUr7vvc1sUYZaJAnQjxGva0i1OOW7pZ3HiACv9vspz30//5W/9cz1jbf2ku5O4D9Ep+1r9A8/S/jvfrWo+P+nuJK6O/Bw+hVjd3NTi6WdPuhuJ+wT/9QN+VPqAo5//wENfqA9497MlSbvv+D1p/94Uh5+0oFBK2ZT08ZL+siRVVbUjaaeU8mmSXnh42XdIerWu8eFJMlnKwWkEzuc3aWEFehdNNKleLBa15Z/kz6SFOdY8AYDE2JF9EyL3Y7FY1OkHbsvpBP1+v77ORMc1HiIpJuEhCTUhcnFEiyfD4VCj0ahxQoOk2n2wvr5e56Dz+e7bxsZGfY2kBvHzz649YWHANSloc49RaosFztkfDAa14OHTIig27O/v1/UxTJ7tuPCcmFCTXHsd3Z6Jua3yJK9MkeHak6iTCDPlgaTXaKsdQaeECfGyAoYxzSCKDCbwFoHcD6fOeK97z5FAR2HF749riQm+j0Kb73H7vV7vmCskinxM94m1LehicB8tGPh9Ix3Vg2BqjFOdYp0HChMWF50iRJdOm5gQ6yPEGhf+l+6SnZ2dejxt75vTiFv5WZxoYutTPlw//6+/WVKKCYmTwQd3B/qx//79+hN/+a+o8xOvP+nuJJYgP4dPL97xtz9Ev/lF33jS3Ujcp3jbS14pvURaVHv6s//Lp2v37f/zpLt0W3AzDoXnSnqfpH9bSvlwSW+Q9MWSHq6q6hFJqqrqkVLKQ9dqyCTAZOfKlSsNsuHUASMejbi6uqrJZHKs8F+0M5McUUxg5NT9YVTdp0jQvbC5uVmTMpMdEk5Jx3LLY1oCc+SZclFKqd0PFhNMyJny4GKP/lpZWdFoNNL6+rqGw2FNvkmYPU90Wbhv7jMLZJKkMqWDaSHMg/f88AhMFmLka36eyXF0KbhP/p3H4na4dp63SPRpq+f80pkS6xNE5wrTNLy2Xm/3xWvVFlmP+yqmOXiPx/QQEmiSXroquI85V9d6v7HOQls6g9Q8hcPknP2Oe2E4HNbvI9YY4XvQdTT8vmrbE3QsuOAmXUl0TDCliWk60fFB14fXhOkZMZUipricctyyz+JEIpFIPCnk5/BpxV1jNEzcy+iUVb34R96ob/9Xn6wHXnXvHTl5MwnCa5I+UtI3VVX1EZLGOrByXRdKKS8rpby+lPJ6RzFNZqfTqSaTybFjIEnqWDQtEpFo4TZZcfSXQgCjmIz+UkxwRNVR1NFodCxyyogq+8N+8ZrYbzoBaM83UTd5s5hg54Ffd466i0nyqMv5fK7pdFqfAkHxgpHbmCYQI+OxAB4LScYieZH8MlLMowSZSkA3AIUSRupj/rt0vGAkRQSuM1NXSIojohhBQYGpCv59W+oGyannln2J6QTxJAyOmQ4Ajo/rE2svUAhiKgbTNNx/7lkiCgoUE0jaPQY7DHg9RZWqqur0nOgI4TGgUQjievm9Y0HNIhLdGhSHPCcxdYGv8ZncjxS1Tjlu2WfxQmmpTiQSiSeB/BxOJBJXxd869z81+PT36tG/ce8VbrwZQeFdkt5VVdUvHf78n3TwYfreUspTJenw30fbbq6q6lVVVX1UVVUfFY8w9FGQtEMTJLSRQDEibrIU0xRI7lg7QToi/46kxhMQ+v2+hsOhJB2zpJPUxSi0+8dijiTyJDL+Hcm0c9CHw6GGw2GdTsD6Ca6sPxgMavu63RWTyaRxDKXnEevRyOmPVn4KAsxbJ7l1H3kMYZuQEsk3/yUh9xpEF4P7w74bjFLzVA5+z2h0JP6RTEbngtunmMDaDLyX6895iikFTMPh3uPJJ4zEe2zec/HYREmtezI6DGKUnnDfuH7sP8F0BfaRooH3VywEGp8f01AoJvj6WEMkikZR6IhiAufFcxXvZVrHXYBb9lncUe+OdDiRSCTuMeTncCKRuCZ+/sO+X5/6sv+u1Q96vrRyPJh3t+JJpzxUVfWeUsrvlVLev6qqN0t6kaTfPPz6XEmvOPz3h66nPZJj5s2bCJEUmID4HhN/2qPpYOh2u9rc3KxzuF0XIUY5SZhMfOxQcKFDR/4tepC4uS0LI3QuSEfH9Hk8JoycA0l1GyTSpRRtbm5qNBrV/dja2mpEsdfX1+vXu92u5vO5JpNJ3Uc7NDwna2tr9RhM2pwj77lnnyI5I+Ej8eV4GEn3epBktwkXXAdGpg3a7Fmd3/thZ2enJuQWVLhv/Jw2N8vh3m5E/z0WEk8KLN6Lvtegc4OR7njyBsUC17GYz+fHCgN6T7AuAcU2k1/3y2P2/MT9RDLv/ej7owjC95SvcWqO30eS6vdLFBPcNlNPlrmGLAjR9eIvHqdJtwXnmEUao9Di+aeAQfeLBZ27JNVB0q3/LE4kEonEjSE/hxOJxPXiHz/4G5r/5Bv16R/1Z7T7yHtOuju3BDd7ysPfkvRd5aCa7e9K+jwduB6+t5TyBZLeKekzrtUII8XMcfZrMXefkdyrkcfBYKDNzU098MAD6vf7dYR0e3u7QVRM1Bx5lppHF/q5ztm2YDCbzRr1EEjK2yzptHabCLkPtKB7zO6TiZSL0MVih26HR1VSnHEE2e4GHq3I+WfKQSTOjKDHiH6M1nv+TNJ7vV59j9fH10RLeXSaxJQX/+trPNaY0hBz6VlHw2tFAslrIrzmcT+wcN8yl0lM0WDhT6aFUAjxmpLs2ynDdJXYV6+BdLzYIAl3dDV4DqLrw04Jint0bPDYVBdTZFHP2DeLGO6/7/dcUVDg2lP4sAAR9w7fz34WnR8GxRY/NzqJ2G5bKsgpxS35LE4c4S2v/KP6pk/49pPuRiKRuHuQn8OJROK60CsdffarX6d/9dUv0blvv/trKtyUoFBV1RslfVTLSy+60bZiUbS2InQkZ1FMsCPARMaRU1aOZ2V5RttjlJK5+SaO/X6/JiKRrMaIeyy4Z1LDXHmT4p2dnTqCbBLEYofug1MtXPzPY3E0NaYauGigI9kmY6zdEFMcYlTW/aRLpK2AoRGt5W3pAm0pBvw+5s7HdWC0mQQwzn10tEQSzTXz3Mc9ZvAaklb3gXuAbo04vjbrva8xebeYIB05Gfw6BYE2uH2vL59HYYV70eNj/7kGbofz5j6whonXgfve13GO4mkrfp0iDH/mM2JqRrzW6866FnHO2+bOe5NFSOM6n3bcys/ixAHWH97Wi4eZy5xIJK4P+Tl8+vDuL32B/uAn/O5JdyORaMX/tvG4vuWzH9F7zr5AT/n6Xzzp7twUbtahcEsQc+0NkpwYATb5ilFd6ehoRRcvtAPAUWDXG/Az7FyQmgXsmOPuVIdos3b/46kBJOgUC3hCBYm2dESe/DWdTmvnwXA4VL/fr8mbx82INd0PHo9/3+l0anElpniQiJNUm0i6r5GAUwiJBNv3uz9cO84Lv/f9FmxiRJ0pDtwj7hu/PN97e3uNwoe0y8doNNM7IhHmmNvcM5FQ2ykSRZe2fc9UBu8ruk1iNJ4ukIg2AuznxwKQTPfgv3R4eF9yH3genH7AdA2msNAl4Xlpq/fAfccx2RXkdWdqCOed911LAIh7hwKKv6dwdBc5FBK3EOUjPlgPbWyddDcSiUQicRP4U5/5Gn3tU37lpLuRSCzFqz/kB/XS0Z/Qpa8/6Z7cHE6NoCAdRaJNSkhU+Ee+7f4+uWA6ndbXMzXAJx5IR8cTSmpEVRmVZGoC3QFGPI6OAgJJusk+i+mRYJr02DlhgaTX69UCCCPKtob3er2afE4mE00mE+3u7tbkc21trSamzm/v9Xr1Vzx+M7oGLETEQpAmn7PZTPP5vGEpl5p1BkjYYvvRnRCvo9uA47egMxgMGgRWUr1OFCcoOjg9hEdLstil+x+JI0UDH1Xon+lA8LhjekVbdDymQ7B9i0Mm7cPhsHYEMBWH7wHfv4xEMw2HDg/v/fl8XrfhMUdxifU23G+7XZx+4z1Jgct95ffej5wP/+v3DI+ypFuHx4JGN0UsnhlrT0SngeecIg7Xz8+MNSoS9wfK2pr++Q/8G31Yt3/SXUkkEolEIpE49TgVgoLUPBKSjoLd3d2aDJoY7O3t6cqVKzUBkY5s3hYVRqNRTXacB25iZkLIKCkt1Z1OR/P5vG6TRdxMtlhZnhFs5n57LDwVwVH/brd7rD4AiY/rMzA671SHnZ2dxrGasW90DfhZdidYsDEogLhdCxKdTqeeN54m4f6y5oPH6Qgvx0SSGosdRidHTL1YXV3V+vp6XWiSzyNIBjudTi0WSM0IO9eOc+Xnew+R+LdFqWN9B6YHuH90ZFAsYJ8pbni9vNasKWCxxm1cS1Tw81nzwfPJ+fL3nnemm/h0FDoD+B7xWKOjgU4ci22+h6AIR0JPMcGuHO9nC150l8RUlfheig4ajtH72nPmUyR4nGQikUgkEolEInE78E3v9yP6sTc/U9/10R+ivctPnHR3nhROhaBAMuQoOfOhV1dXa1LFUx1YCb6qjoojut4BreGRGMQoe7TuG26DBQvdZrR4207vyDJt+jHa6nbtSDDZ8vhNsHgyhIkfCw/SUh/TCtxur9er0z98HUUCnwZhkYJEta2mgUHHAXPeo9WfpJqOAr9GB0OsQ+C+0ykR+8D19DxJR04Fz6Gfb0Ia2yJZ51jbnBf8isIEBYqYhhHTHDy/7iuLPXq9fW/buNknRuTd35hiw37FdihImVxzr1oYsNvF4hTFFToJOK9t4J5wn1i0MZ7oYPGl7f1stLk1ovCzv98snGrRyGOLdRoSiUQikUgkEonbgXOrQ33K6F36rvJhJ92VJ41TIShIqkm4iUMUFBiVdfQ+FoFz9JS1Atoi4SzQF+3y0vHq/IZJpslPrPwvHUVXbRe3QyAWo2N6BaOndEC4r3Rm2B5vQhQLV8Y5NSH30X4mV/v7+7Uw47SR8XjciBT72liEks9klJiE1v9yjfhsg3MZybkFBc8jXRG+1/2MhN/j9xy7D1EE4j1thfg8xugs8HMpGtDxEsWEtvG2HbnpNuLejuLXMqLL3H/OFcWWSOJjGgYdAhQn9vf3671MVwxTlGJ9Ce71uEf5Xue1fj7fG3RPtL03rwaKVBYRWISVnwfeazGNJZFIJBKJRCKRSBzHqRAUGNH2iQ0Gj7bzH/mMDJPkst4ASSjJmVMiNjc3a+LgAoYkyHxO7KOkY3ntJlgmRXYcuC6C3QGsB8EIsIkOLd2OAlMUmU6nmkwmunLlinZ3d+t2Y8qI5+LcuXNaX1+vj24kodra2tITTzyh8XhciwosuhiJVyS1bTUBeNShRYs2Yu02opjANXcxSqdeuA3XReAXi1zareL+xhQG14egSyIKEnSC8PdtVnuTVbYX9wdz+/l8k34TaN8fj6jk/rsayeW+4pyz7ywgGu91KgMFBYopfF+xBoHdBTFVIBZfpIDBvngPUwSKR6x6PZiCwsKddGJEIZFHUXKt/DzXd3DbKSYkEolEIpFIJBLXxqkQFKSj6HyMeEdbdJuQIB2dkNDv9zUajY6RdJK2zc3NmpS6xgKjuiYvFBMYgSdxpIMi/hvJnWs5rKysaDgcNiL9jJ5XVVWTNt6/tbWl2WxWn2jRRtRN7DY3N/XQQw/pzJkz9QkVPuFiPB7r0qVLtaCwvb1diwltJJSk0oUk3U9a9S3kMDfeJ3FQlIgpA4QJo9dzZWWlUQ+B+4G5/hRmGOW2LX86ndZzF5/PayXV13l/mCR7nUxy25wtcY9E10bcu64LEd8Dse2YRtAGrhNdLm4n1iqwoObX/TOFKZJzu1wo/HltPP/cQzF1oE3IiIKdn+v52tnZqfc7U3z4vo9tuF0KQxxnm/DmdYjvqTzlIZFIJBKJRCKRWI5TIygwF9skwYS6DbTVm7z4JACLBY6gLhaL+vQHH7/IGgKLxaIu5Of2bHNvExFMTuIpB+4vSQ+jwiRfFCikI6LJNAhaxS1wzOfzmli52KKjq51OR6PRSOvr61pfX9fZs2c1GAxqojefz7W9vV1/XblypSZrJIKRcNN1QGJLx4C/LACwiGNbioHBVBbPH78494Zz6Sl4RCJIxwHFhzg+X0uhI6ZocM+11dRw6gnFlUhe/VymdNB5QOdE21zF/cI5i+8J7zk+Mwp2nJ9YY4Hih3TkGPHvnHbDYpFeF46P75no5vBz41rQyWH3EAug2rXAa9rEPopOdEDE+eJ7lmNIQSGRSCQSibsTq2fP6C3f8Fz903OvktS55vWJROLmcGoEBeZRszCbI8yRaEUCxNMMXMTR6QMmKT5OcnV1VfP5vI6wmjSTlDoybZAcMdouHREVFoJkhNTkbrFYHKvt0Oa4YDX8GL12KgaPU3RaRa/XqwWF0Wik4XDYyAefzWa6cuWKtra2tL29XR87SSJIcH6jdZ1zwgi/x+k6D4wOc77anuPveSJGJJuSGo6HWKzRz6Hl3VZ5zl8kmTElgGscI/ZMn+DYTHTdnxgtb9u/bekAJOnL5iyuVVwfijgm5nEeOefRgUL3hvvr+STBZ39YdJN99JjYJ/a1TUTxfDClwuOMaTd8FvdmTHWKYkIsgskaDdEpkUgkEieByf6O/sEjf0ydy/OT7koicdegjEb6rRd+qzolxYRE4k7gVAgKJDrdbrdh+SepY7HGWKCOhQclaTwe1yRqMBjo7NmzWl9fV7fb1WKx0HQ61Xw+r6Oe0vECczFiHUkciYdt0ybvdhOwjyZgrO1Ad0Cv16uj737dYzcx9jw5LcD1Gfy1sbGhzc1NbWxs1M4EHwc5Ho/1+OOP6/Lly9re3q6Pi4wkinPMyLtTCjgnUWywFZ5pA+6z0UbS3F4kcpGUSqprbDBy3tY2rfkkphaRvN/W1tbqtdjZ2dF0Om2kXkhNIus1Zp2DbrfbKLjZ5nhw/9wWiezV3AlRzLjaNRSeuKdZ5JNz1ZaWUFVV7bqwYGPXRayb4GeawLsvdBfFdIdlJD06GihAuC92wbQ5E6KjhMJgFFGY7uDPFp5kks6ERCJxGvCWRaXf+ehdaf/XT7oriUQikUi04lQICjF3msUILS4sFov6j3xalKWDP/6Hw2FN6J944glNp1NJqtMARqNRHX01wXa+PfOnY068yY1z791fFo6zO8CEyXZ/R+xN6k1emYtu4SISGBIhR8tNdkzyfJqF+/DQQw/p7Nmz2tjY0HA4VClFs9lM29vbunz5sh599FE9/vjj2traqkkzyWpbigHXxfPgVAb2RTpwDmxvb9cE3ikkMcofC+6xgCFBSz9FHdaqiCcrMGrNNI+2Ipser4Ufk2ULFu6rj9z0GphQe/x2iJAQW/yJrgAKCibMbQ4cRtU9VqYxRMRipf6dRTWmEhjec8sKF7IvnhMf2+ixcN7dZkz9iekovIf9jk4VrlEUriwqUNixCMRaCBEWEbiH4pxSREskEolEIpFIJBLLcSoEBf8xzyKGdCBES378Q7/b7TaKMNp5wLoJFhPm83l9PKJ0dN69c/9NgEyG4kkHfj7TLNrIZkyf2N/fr4UHp2WYnJVS6iMdeT2t/yw2SHLuNAcKCT75YXd3V+PxWFtbW9ra2tKlS5c0nU5rAk+7uftAAcMkj9F7ug7cP7fFazwHdDeYzMVx0T4f89w5j8zBjxZ27iX2t209uIcYCfc6kxSTyHpOvE/sYKB7gGvItYoiiMdm4SWKHayvwOuj44HwusV/Y+oGi1hSfIlFG1lXwHPF+aPg5t9xvdvWjykcsfgkx+395Xu9d9wm0xnairn6e+8VHtnq97vXjUeJtok1ifsH5SM+WI/+4109a+3nTroriYQ+751/TL/+rR+iC/uvOemuJBKJROI24esvPVv/7v/9U3po+w0n3ZUnjVMhKBAxOkji4KityQyvp/DglIFut6vBYNA4snE2m2k6nWp/f79OU2CleIPWcR8raTDS7mgnj7UjKTNJ6XQ6GgwGdX8cReW4Wc1eakb/GWGmoNDpdOoCjKPRqCZLJvg+DnI8Hms8Hh9zA5hwcdwk7l4DntjAdAi7DDzvrJvAfvLkhpiuEnPvSfZjBL9NEOC1fvZ8Pq/TOaIgwbF737CAXxQTSI7dV46LYgLrL3COHLH3z7GuQ3wPsP1YIyISXworTBfgvNGF4rWgo4OpN+yHCbrbjHVFlrlZ2pwlFDbYhp/lOeL+4GvLhJVY76IN3H/R4RTfq2wnBYb7C7OnDvU/PupbJA1OuiuJhF7zzmfrWd+aYkIikUjcy3jt5efqwW96je7mvzhPjaAQLccxgkkiGfPxSym1tduk0GkOGxsb6vV62tvb02QyqUmxnQlOG+DRhJKWnlBgcmVngsmJhQcXI/S1JkM+eWF9fV29Xq+RwuHxTSaT2l1B54TH1ZY6MBwOtbm5qQceeEAbGxt1VNd9mc1mmkwmmkwmrUXxSFiZ627SbIHDzgOnoJAAun++1qTcbZvEmRTGe6I7wf3hyR+SGkSahJLXz2azOsUktu394vG5HZN7Oi/oPoi1CTwHFEcspLQdZenoOp0MvDaScjoTfE90Ayx7D0WyHWsWMI0ipgwwbaHtlA0KEXxOLF7oueb7J7qL4nvabh/v3/j+8XV29cQvX+8UBj6D+3AwGDTEDvfP6+Dr4j5J3Psona72u+2CVCJxp7G9P9PubtZySSQSiXsZk/0dbS96J92Nm8apERQMWqkdFWcRPkmNiKTUtGSb7J85c6ZRV8G5/RYOnBdvAuJnMsrcdoSciT7t/ovFQuPxuJGrT4t7v9/Xgw8+qLNnzx4jyx6PxQ6TVQshfoYFFpJNCwlnz55Vr9dr5MFLqgsMWkQxTKAcsTbximTNaSSsGWBSyfx7f5kkex3pAGHdBB87OJvNNJ/PG1Fh15bg/LeROtZ+sODhNkliI3lkBN+IopHXz0SU7gunokQxITpTYsqCnRyeJ6aFeDwGxQyvaZyHZeke0cVhAs/59/sopoPQweD9FvsUn0uyz9oF7oPbYO0MCldOQeCxo14v94n71m4krpcdSLH4otvc3Nysj1XlkbJcV89pv99vFJNMh8L9gzd/84fpdZ/4LyWNTroriYQ+8e9/iZ73Q7+m9gOXE4lEInEv4KP/9ZfoGd/wqyfdjZvGqREUYnE9FzY06TGRIEmUVFejZ971YDCoiYEJ3LKIdbRO0/pNS7ivZdTUJNHFCJ0LT5u76xucP39eg8Ggvt5jdlTf9nwWeez1enU/e72e5vN5XeiQ6RxM+XC70pFwEEkdLd6cS0bgGWWmwMDIe9sznM5B4YGReboneGqFSaXdIjF632bxp+hkhwCdJtE6z3H69yb5vJa1DuzSiC4KugbaIvwUPDi37mM8dYF1JiiUeI6vFSmPJJttx+ssOrHAonS82CnHQgHNz2IaTtuzLb5wfJ4LukG87mznRog855vPXl1d1WAwqMUE70m//zwOv8/YR9Z1SNwfWO3t6YHVFBMSpwOd6b72J5OT7kYikUgkbgMW1Z7+yCv+lp75E49qbzw+6e7cNE6NoCCpJmkUAUikSPBpteb3q6urNYFwezGC7MgvBQoTvbYaA4ygs8CbI508etH9WFk5KJi4sbGhc+fO6cyZMyqlNE6LYK0Dk0emCLAavdTM8e50OnW6BufN/XKE2eOJYgjbM2FmHzx2ro1fiznyJLMsqsmaD7TJMzLue1gLg8IO73efeJ0JMl0UbcSwTZigWBRTQAi6G3hvWy0DiinLUhxi5D/WpGD7bcUG2xDH4edy31oAk9SYf/eDQhTHRJHDr3uPxbWhkOL2KPaxACVrULDta4Hvn7Y2/KyVlZVaUIjr6jaiw8ICUuL+wpXP+hh9yDPeftLdSCQ02d/Rn/ntv6D+e+cn3ZVEIpFI3Ab82s5MX/Tbn62n/fvf0t6lSyfdnVuCmxIUSil/R9JfkVRJ+nVJnydpKOl7JD1b0jskvaSqqqvOFlMXTHDbHAXM+2Y0MpJsW6fpPmCxPJIgSXXuvesXVFVVV5SXVEdaGbmWVFvsY20Bk5z19XWdOXNG586d0+bmpra3t4+RRAoKjNQ7XcBpD04TcNqDnQyssWCHg8fnOaRI4r55XBZF7Bqg4MDig+5vJGXMQ4+Wed7H9A6Pw/1hvr774Taj+ON59jpxr5DQtjkoOAckrkwLaBNw4hfHT2JKMh8Li1pQiLUELIDF/R1z+5cRfvfDbXkOTIqjU8LvszhfrG3RBqbALLuGoof3Qts1nlc6MtpSUShKxL5wLSnk8Nk+5YVOn5ia0tbH1dXVxnv0bsCt+iy+L1GKvuYrX6mP7590RxIJ6ZG9HXX+9HtVzd950l1J3CDycziRSFwNj+xua0/SV737UzV68e/qXqrS9aQFhVLK0yX9bUkfVFXVtJTyvZJeKumDJP10VVWvKKW8XNLLJX3p1dqKdu028mYi4Ned0mCLPYnR2tqaJodWQTsUWCCOX86hHo/HNYlw5D9GKkkSp9NpQ1Bg4b3V1VUNh0OdO3dODz30kB588MGGXdzXuO7CdDrV3t5eTX581OX58+clqXZBmLCtra3VUVeP0VH9+XzeIE9twkyMgnvu7eogsYzkuC2FgWOiEOO+cf0sUniueJIF6zHQ+k6XCKPsFkOWFV7kvDBaz7oFFIqiS8GCBdNJDApHMR2BKQFcBz4zpoNwjhzF98kXMfpOsYQpGib8Bh0rrF0Qazd4XrkfSim1mOXnufCp5yiusfvG+hJcF548wXujWyLOc0zB4RywNoTnymKc/+W6+Fms59CWAmMBKBZrPY24lZ/FiUQikbhx5OdwIpG4GvaqfX3Bn/w8VW//PVXV3Z/iEHGzKQ9rkgallIUOVNjfl/Rlkl54+Pp3SHq1rkNQaMtZZtQxkkISDEetTQ5ms1lNPGOeu3REhkxGXSDPDgEXOHQfmMYgHRHZ6XRauyXojHBRxac+9ak6f/68+v1+fdwi8+NZmM9Eczgc6syZM9rc3FSn02nUB2BBwFjALtYb2N/fr9sn4edcexxMBXFRRJJ/RpDdV4oJzLM3vC78N1rp4zrGvH4+MzoH3F5sV9KxYz7taOCz6VKIEXyKLMv2J4WZCM+P597CAEUIkm4KH9HJ4LHH4xrp1LHLgY4K1rtwXykIUFCgYMI6HG3zEMfCefUzuU4WmNhWdBQwdSSmdcS1pYgSTw7x/rWYEIthcp9z7WLdBu997/+7BLfks/h+w8qHf6A2vuFRfXh3qjwqMnHS+Jz/+fF6+9d+oIY7v3zSXUk8OeTncCKRqPERX/VFGj56+HdsVWnz7b+q/cODBu41PGlBoaqqd5dSvk7SOyVNJf1EVVU/UUp5uKqqRw6veaSU8tCNts2Cb7SAS8ct8iYKfm11dbU+FYIkJdZP8L0ksRQFGEmNRQgd9TdBM0F0v3zKxNmzZzUcDhtE3qSMR0y6/4PBoC4o2el0GkdROlLqZ8Wj7Uhe3U8LJozue158T6z90Ol0GlHZSL4jGN2nC6M6rBvgvkTSaKLGtAkWN7xaLj3FhLZihTEtIToyYtTbry0jj5HsRpcGwTng3HMP0XUQ96L3e7yO+y9eQ8HB95Dcx+eQ3POYxbZUCo6P4hrTCzzmWIySIhadAMvcDW3zT6dHdKLEoz3tTmD6Rluh1fgcvt/b9uppx+38LL7XsTg30Pc+96eVYkLiNOC3Hn+Kzn//L510NxJPAvk5nEjcvZhXC33sG/6idvfbA4VPFs/8gXdo992/X/98L5/aczMpD+ckfZqk50i6LOn7Sil/8Qbuf5mkl0kHKQYGo8b+mQSKVnFauA/bbEQkTTJY2d1Ey6SBJwMw4sm6AyYuJMmO/rsv/rfb7WpjY0MXLlzQxsaG+v1+g6jwVAcem9jr9eqjLk3yptNpnVoxn8/rvrmfpRwVXrTAQhJv6zzn06/R+m5nRqfTaURmSRZNwknOJR1zSpDELRaL1pQA3+/+R3GAogIJqtMV6KBgn+IeogvCBJPpEBQ1mFYRwWvjkY4knyyQyai/XSV02EhHBJmkl8c4xpoc3n9eO6fIOFXFMGFn8U0eCWqhqtvtNtbBKRIk4wZTDJa5E1gckYLCssKSXneucdvcx3Xwe43vA54qwrmngELhjMIX9xvFy7b6CqcRt/KzuK/h7ehiIpG4Bt65u60r477On3RHEk8K+Tl8yrC/r9/Y2dUHdvfVK51rX5+4ZzGvFnrr4urFtt+zt66HX/p7t/xknfupxPfN/MX8CZLeXlXV+ySplPL9kl4g6b2llKceKrFPlfRo281VVb1K0qskaWNjozr8XSNib5hUmED4D/3d3V1Np1MtFgv1+wcVtSwksB6ASRgjvS4OaNLd7XYbhQGdNmGiYlJC8msiY1v32tqa+v2+1tfX65MdLAxYFJhOpxqPx7p48aK2trbU6XQ0GAx0/vx5bW5u1uMYj8caj8f1CRJ7e3u1M8H9mU6nNclyeoSJLmsLxKg5T7Nw302omAJxuK6NIxVJoE0go1hCMSamL7g/JKx0RJDw8eQDWvPpvIgOASOmVJCsRuGCwhBJMNecRNaCE/vddqoIn+tnRFcEa194XBQULEZ4niig8TjEGFn3vTHtJ9YQ8PvBwhvb8HpwTl2zhCkddElQGOh0OvX7paqOCp3SieFCoteC9x77zWfGfU/BIDpj3L9ljh2+viyt5ZThln0Wb5bzd0cVykTiHsNLvvzv6dn/4XUn3Y3Ek0d+Dp8i7D7yHr38eR+nD3/drr7m4TeedHcSJ4i//8gL9JaPufZbqtrNY3pvBjcjKLxT0seUUoY6sHe9SNLrJY0lfa6kVxz++0PXaohCAnO4SVakI8Jux4Ej/FLzbHuSGkYd7TLY39/XlStXGsTDRRh9PaOeJoosGmiCRLv56uqqRqORLly4oPPnz6uUop2dHU0mk1pM2Nra0qVLlzSZTOrxDIdDjUajuoCcxQKKAi7E2O12awJpMmYyaacCI95M8XDbHhvt6JwnppFEyzoJmdeOdn0LNCR5V0tfaLPZ+7mMzLNgIQsc0q3C+91PFlj0OGlxp3jlqLf3j1Na2Jbnvq12AAWZGOXmPDBVxQKPf45igveWa2m4DRflpMuCc8LaI/v7+42TM9wvkmWLA1676BbY399Xv9+vx08HCV1DFIAk1fvBYgTH6fcdx9DmUqD4FEUZpm/4efF3dNlwfS1aeW9xz/sZd4lL4ZZ9Ft9v6L7xbfrjL3uZ/p//91/rw7p5zEPizuPS3kR/5kv+ji78wtu1u38v1fy+75Cfw6cM1e6u9qvTn7aYuDX4qH/417X+nuOegO7lhcruG+98h+4z3EwNhV8qpfwnSf9DB66OX9GBurou6XtLKV+ggw/Yz7ie9liILv4Rb9Ji4rK/v18TrLZK+HQhmIwwGskTB3y9I8uOvkZrOwmp26HYYZfDcDjU+vq6er1eHXm2kHDlyhVtbW3VxRwtJvh6j41FGKUjm70j0h6b1KxPYMIfCRXFFbs0GPWmxT26CCgmmIBhDzQElrZn+joS8xg5piDAPsYIsl0BnHuvUTxBgGKC2+c4YzFHks22/nDcvJeCBQUnE1iOP84R26Ebwn3xsaAUe9wXv+Z22goO0tEQ97tFBzo9Yo0Czk1bqoB/x8KIXGPuQ/cp9ofCxtUEBc91FFHoEvHPbQIWa0XQqRT7SfGI151m3OrP4vsJe5efUP9HX6fL/zrFhMSdxw+O1/W//+Ln6/k/8kbtHgZHEncn8nP4dOKHfuJjNH5RT9/49NeedFcSN4mP/dU/r/dd2lj6+vv/6O9q9z3vvYM9ShA3FX6rquorJH1F+PVcB8rsjbRTf2+CwugxayE4cjybzRrEjZFOEmgSBal5dB2jyCZlTGOINvlY4DBG6+00GA6HWllZ0fb2tiaTicbjsS5duqSLFy/WaQwrKyvq9/sajUZaX1/XYDConRqz2awm+nZB8KhIFmEkEaW93NFfSfW4SI5jBJnpDB4f26S9nXPCmg20i8d58zrGdAdGs73msZggUynswvCc2NURCXFMl2BfeJKCnSY+KrRNnHA/3UYUejqdTp2aEo9ApNDDfcnXPUbWE7AbwGvE94KfWVD7ID5jb2+vFqYo1rGNOC9GW2qAr49Oj3i0JAWoKEJZCOQRqNcCRaf4fmPahOH3TRucrsGxsGaF+8RUirsFt+qz+H7FL03+gFb1O9pY2UmnQuKO4C2Lsf7hmz5bz/vc/6H0t98byM/h04fnvPw1+rm/9wK94W/8rP5wr3vtGxK3FZf2JvrNxZP7P3bzK4ba/OU3Ln39fqpXcBpxKvy8jGDbicDII6OYu7u7mkwmDQu0o+1t+e+rq6s1WW+L1JZS6loMJBvsGy3axmg0atjx19fXtbGxoc3NTQ2HQ+3s7NS1Eh577DE9/vjjunLlSj2ufr9fF2F0tJk1HVhsrtfraTAY1GS3rS6B1CSefgZJo4UT/o41CaLDwHZwkjqvAeexLU/dv+dxn5IaZNyIVn8+xwUs2cfV1VX1+/267oVTASwWmDhyjCS4/KIw4fmdzWZ1fYqYusFUE9e0MHjso/eW3TEcNwk26yd4/zmtJxJmC0wenx06FBv8nFgLw4JUJOXLYDEqpl5wL3j8nhuP39cxzYi1Ikjc455gXQ6PnYJFLLJIYc1rwBMo3KbXmGlF3i92JHn+7yYhIXELUFX6qQ/d1E/pD2v+yR+lV3/Lt5x0jxL3AT77n/09Pe1bXnPS3Ugk7nk87et+Uf/wh16qH/vv33/SXbnv8ZK3fKZWPuFdT+7m6tdvbWcStxSnQlCQjv74N5Ex8WGknIROOiI1JpYmhAaJEIuuOdIerdG0xpsMxnxxWrx9z8rKitbX17W5ualer1eT0scee0wXL17UE088oa2trQZpXF9fr0lxJGt+Trfbra/p9Xq1g8HRc+aCu21GzU3mOMcWFaqqqskdiVUc83w+b7g82oh5BF8zWTNi7QGvZxQa/PzFYqHZbNYgsjzekyki0W3hvnDOonjhuhQrKys14eWYLSpQqPF9PEWBBJ5WeUbz6Zigs4DimAm818fEN0bW7YiIThsWWaQI1hZxpxBkccx7p+1oR88r61uQ/Eeyb/g11ztZllLhsXse6UDyPT6hgkKJn+XfcT4l1e8FptuwVgjTNTx2Oi0S9wEO99DwF96iT/jsz69//Z6P6etNf/sbT6pXiXsQ2/szfcpf+1t66PVvU366JBJ3BvvvfLc+4bM/X5/zyh/W52w+dtLdOXX4Q6/4Ij3wa7Pb/pzOxYn2q/Rk3Ys4NYKCtPzMd5I7kgUSsJjzT2FCaub7S80j9Wi19z1MuSA5ouhhUt/pdDQcDuvjL2ezmba3t7W9va3xeNwosOgoKSv0+3l+tsdmImTyTALKvHxGzz0fjsS2FakzATZ5pguBYgpdCHQYtNUgYNsmmJHoSUencPAZjmovS08wqfScDAaDxokc8/m8QTJJsqMA4v6QwHqeXPCRhNiE2WSc5NdtuaAo7/Gziba8fbouuLdYI+Nqc+zXKWD4GexLG2INi1gLgesXRRETee9rFpbkeyymzHAu2vrWVvOB6QjLaj3E+hRun8dJcizcDxxXrKFxPW6OxL2DvctPaPXV/6P++RlPfLCe89y/enIdStx72C/6gP/2Ju3d4uPJEonEclTzuVZf/T/0ld/3Gfq5T/o1fcszf+Gku3RD+Lx3/jG9+tc+4La1/4E//qj23vzW29a+sbxEe+Jux6kQFBjRpQBAK7X/yDchZWE5ElRGXaNVOv7eP8eIZrze8LMoKJRS1Ov1NBwO6+j/zs6OLl++rMlkotlsVtd78LPtqrBQwLZIXG0pbyto1yYo2A3g+0ySTc7oRrCtnycmmIB53CTpPN2Aogaj3hRt3K9IoqMAsrOzo52dnZr4saaAo9F+voUbp7BYAJjNZo0K/RQOSEzdD+nIym/BwGvk58U0DdYVoAjESDfXeBnaagzs7+/X9TFiIUevTXQ8WBTyHMdnWgBw32MfSMCZauT3UpsYtLu7W9cHKaU00lC4L/k8ppvQVcNrYs0TCyXuA90h7luspRBBwSgW52Q6Vay1EU+RSEHh/kb1K7+h57/spHuRuNeQf1QnEieDZ//D1+gXJy/QD37+r0qSPmlwUcOVG6+t8NjeWD8/e/hWd28pXv/9H6rn//NfvG3tp1sqcbM4FYKCdFT/gISKaQoxQiwdz9f3PfF8+mXRSJMcEkYLDSRHzlnnqQLuw2g00rlz57SxsdGwzNuhYNLOfjlPPoohHoefRQfD/v7BUZJ2FEgHReY4T/1+X4PBoHZKTKfTmmxTSNja2tL29rYWi0UjUuzaFb5uPp/XZFM6OoIwEjiSXAoxcVyRnDqyHx0B7q/HSdeFnRfz+Vyz2Uzj8ViTyaSREmCiSxGF0XemmfhZPnkjOhAMFnrkmnCPcj64lk7J4VwxRcBrwJSFKIAtI92+nqkSFpbaiDbRlvYTf+b7gI4DE3P2ZzabNd578TjG6ADw+87tc1x0OkTnEdcypnVQ1InpG+6LU2icVkQXQ2wzkUgkEonEvYNnfPUv6pu++g9Kki7/9u/rL28+esNt/M13/hld+riLt7prS/E03T4xIZG4FTg1ggIRbclMRzDoUjBBifUCSMQYYZaOou8mNcyzZhuxOKJJ7d7engaDgUajkUajkaQDkusot0kUc75dE8EFFknUWYyRX5IajgLnofO0B/d9MBhodXW1Ebk3UbagcPHixVos8PxQIGHk30Sche9cd8HzQ8cCiwcSMSJO5wSjzSaDkWxbTLBbw84PH8fJ4n9u06KCpAZZjOP0elE4iVhWe8DjWJZn773Jeg98rkmtCW1bmoG/j893v+jU8f5edn18LzjVwqBw5+fSKeFrWCfB62TnEMfhcfq5FBNYjyH2k+9lpji0ndwhHZ3SwhQkn9zh9wOFN19HcTC2yc+eRCKRSCQS9x6+5y/8CX13/8ap0MrWTNKdExQSidOOUyUomOTYBk9iHm3OJFPxD/9IDEgkTGJIcFmLgZbnSERNUlzZv9/v18X5TIJ4xKFJuftrUmwBQDqKmrqoIokt0wLG43HtNvC4OQ8mRyZx8/m8Jt5ufzqdajKZ1ASL99ux4SMrPWcmh57jnZ2dhkNkWSE+FsDzWLyOTImgGGCwbySR0oHoQEGBZJFkmnZ+uk9in/0915okNrbh/vlkhmWpDhaq3GZ0TMQxMrru+7nnSbDZL669X4/EfFk9BQoYvpdOnij4+L3GVCGm37SlZfDeZekc/F0Un+g+YPqCEV0WUWCR1Op6iEJCdNB4fFmUMZFIJBKJexP7b/rtJ3Vf/mWQSDRxqgQF5u7b2t/2Bz3zoyMZIKFwmyZ/klrJAyOrzJOPYoK/nK7AGgeM0pto8rm2X9Ni7ei4nQ08htCWcrsTtre3W0ku56KqKs1ms7pNpzX4a2trS7PZrHE/rfQ7OzuNFA1JNWF3f0iGLaAYjDhHYujfxQKJXPe4xkwDYL2CyWTSSP/wPLDWholwTJFxn2MaDEl5JLNuy/vCbg9a+mNtAD5TapJv1gGhOMR5i/PC72OaRLzf5Jk/s08E54okP4p0rKFBEYDCTTwO06kXJO5MM4r1N5btBZ5cwnG4DTpjYh0I1ndgnQ2CaU9xHTL1IZFIJBKJRCKRWI5TISiQqNmqT2u9iX10D5jIx/PqWWzPRJlEiKSPdRNIqHq9XoMguvDiYDDQYDDQ7u5u7VYopdSigN0BW1tb2tnZqcmaXQnRDeAjDy0oGCbwdibYwcBjMgeDgfr9fn3feDzW7u6uptOptre3G+07d5z2cZ4EEV0QJook3/yS1Ij2Mj3EokGM9Mf2SHq5F7guXgOvoeeEYkK32z3W3zZLu/fKZDKpr4mFLz33cT9QOLIowRoPdBhYjHI7PPbS88V54/PosIguBd6/srLSqMPhdYzW/jYxgc/iUZcUBOK6tTkI2lwgnhe3ScGLTgGuNduIz5LUqIMQ3QnRccBUIX42tAkKcR+6H07tsRCXSCQSiUQikUgk2nEqBAVJNUE0+ZWOCIeJggUFHhkYCYEJR0w9kNSwTDtNQToiUE6FMDEmsR0Ohzp79mxN4BnRpDPBgoifTbLm9v17ngARRZO9vT1tbW3VQoXH7TGYZLm93d3dWsTwsyeTSS1ymGyyHUl1X+1oIJF1P0kQYyoDbeyMPsfoNcGfF4vFsdoVzLVfWVlpjGk6nWo6ndavxeKDrrfR7XaP1alwygbn04IQ9wJFCToILJR4jSl42HXAn309xx3TWjx3nJdI1ilA+N94Qggj/G3iRRt4ioZFqTYhIaYQca29dhyP3TLcZxa06BRqq1nBNKS2/sc6HXzv8L3P/lMg4+8pjERHQ/zsSCQSiUQikUgkEsdxKgQF/tEfLcauPWBix7xoHlXHY+8YRY4EiSJFJBkx/9qW7X6/r7Nnz2pjY6ORksD6DCa9PGrRz/O/Jq4mK+PxuC4IyJMALADwFASSJrdpcmaSbIdCrOFAxwCPvHSdCgsbnE+TK44npgSQ1LVFe41oMY9RYwodJN2sZ+DxWGBZto/aUgk8jhil5rW06bfZ+C3IeH7b9pP7EFM7YjpE7DPHE8UA3te2B/hMj3WZoMA97/3K/jEtoQ0WTUjCSeSlI+eQ544E3e9Hnm4S54QnVcS0mLY6B1yD2BbdGnEP+zWKSZ4/pyvF0zsSiUQikUgkEolEE6dCUDBiXYMYRY7uAwoGjtg6as/TB9ye72+rLO97SUz8fB8NORgM6n6ysCAJSFvONa3c7Nd4PNb+/n5dV4HklakQMb89HnnIWgwULKKYwJxzX+fjF52eEYWBGBGmHd2pIu4Hc9EjWWRuPwtRui0TSZLDeM98Pq8FjihSkDByraOYYAcDjzfk/R5HHAOt/KyZwL3jOYtFF9uIMx0RvpZ7leIZ2+DvI7le5gzh/ZxPHxsahZVYIJJtktjHI1QlNVwJdpe0OY9i+pERC6bGf90Hg/e3iSxRtPKe5XuBe4D3tDkbEolEIpFIJBKJxBFOlaDgP+y73W7DGh4JIgkwLfwkC7ROM1rsVAESJEZaGWHtdDpaX1/Xww8/rDNnztSpDj660UTa6QWdTqdhmyY5db9Nemz/7vf79ZfdFRYI2giYdGTzpo3cxRvbRAHOrwm5Uxpms9mxege+1+kIhsfltixK+HlRTIgWfs8JvzcsEMSTFlj/wevu/cG23SfXhnCknWkOXg+mjLANEnGvB9uJtQG4P40YRSeRbwOf6zFQ+KIowGd4H/B3JMptaSZtRJlCGtfVP7MuhPeJx880HX5vcH9aVLDDJ7ouPAbW1fBebUvbaBsj54L7LO5Zi0oWE/xZEvdcmziYSCQSiUQikUgkjnAqBAVb/hlBNpZFm0l0aOMnOWRkstvt1l+xmJtdEBYmXPjwwoULOn/+vB588EGdO3euUc/Axy/6KEbmis/n8/oUAj+fTgOLCy4I2Ov11O12axJk5wALSZLgmRyaYPvLz6FTgM4GEsplggUJrp0hdAoYjOgvw7ICgU6vMEzK7Rygk8Nz5Xs4NhJxrp/ngYSSNREsJkRngcE+xBz8ZTUJvNZXI6Ekx0xRYN+iw8LPZCpCm6Dg/WNC3+aIIMFn6oH/dZHO6B7xs1jDhMc4sh26IOx+8fM8Ft8T6y94fZlucLUaEAb3hPvKvc42WBSU+47uhDanSSKRSCQSiUQikTiOUyMoOGWh0+ks/UM+RtJJmtoilrRwR2GC9vF4bylFZ8+e1fnz52tRwQSIRQdNfPwsR/wnk0ltz5eOorD+2fc7mu6orcUICxK7u7uN0yEYRd3b22scnWjCZyLtfHfOHaOvJNmRhPpZJodMc2CRvrZovMfBvsbIMwmmySXTTWJqBEWktsh7JLd8drSt81lXI6t0a7S5CAzuUzoE+DvuZzpjOAYKDSTHvsd72WsfU3Pa5ob3x3nk3MW5ILGOz6J4wCKhfG8xpYLFSen+iXvN4+b+jGANiLhW3vt0J8TaEpwPgy4Vt9UmgiUSiUQikUgkEonjODWCAk9xMLGOBFY6iho6h5+EJkZ/aceOufLS8UrytsL3+32dOXNGZ8+e1ZkzZ7S+vq75fN6w8se8cKdCTCaTmuiTGK6urh4r5meHAk+tmE6ndUSeFnwWq+MpEX4O8+f5s/tGgs7TB9oIXpwn30/Lu50LkRi3pXx4TSgIMSWFYkLMYTcJjgIT15Z7wGvDFIdYEyHm2nuMbXUCOMY2AYLXcT75mueP4lWs7RHFAL4ea0nQLcB+Mf0i7gO7WCJR5/6UjmpF0PbPNAq+12LKxzIhiPPDMdN1E0WPttSNZYIJ5yuuHV067iP3bhR7eG/sdyKRSCQSiUQikWjiVAkKJtk8MUE6HhFmgTpH+Jl77/aY1y8dRXpJouli6HQ6Gg6Heuihh3T+/Hk9/PDD2tjY0Orqai0ouC/T6bSOtJsMXblyRdPptC6QyGf52e5fv9/XaDSq0wp2dw+OfbRIMJ/Ptba21iDy0lHdhvl8rvF43JjHtgJ0zg93XQaKLW0FAz0+1jEgUZTUEGgoIkhqkN62HP+YPhCPP+TpFG3FLhkd95p7Dv18Rshd74JHgUZhIIofbVHpKLSQ6JOkc29GNwhf478eS1v6CN0wnMu2+hPst0UErv1isThGyjmXvs6Clmse2IngdKFlAoYdMCzEGFNFKBL4NQoQsW5CWw0J3xt/Fx0Ffp2iXxQUoguHQhSfn0gkEolEIpFIJI7jVAgKkjQcDiWptj2b5Jt4kdhWVVXXHeh2u+r3+41rmF9PUuHUgl6vJ+koMrq6uqrBYKAHH3xQFy5c0EMPPaRnPetZWl9fr0m5Sep0OtX29najkNvu7q6eeOKJRgE6tx9rPPjn4XBYk2mTr/F4XB8lSeHEhI4FG2MdglJKg8Ax2k8Lt+cknmjhe9xPz40JfZxPihasNcAc9VgPw2Bbft3PonjRRuyjwySOwf0gMfWXRSM+03UFIoFsI7BGfI0OFzps6LTwdW6fhUQ9drZHNweFnFjvwvBeiuklLEjKeyiOSTomJDhFgXU+6OjhiSSeR667azDE1Bb3y2vj5/J9Q7EozhsdI9G95N/xe4sUvs/tel68N6Jzhu+/RCKRSCQSiUQi0Y5rVjwrpXxbKeXRUsqb8LvzpZSfLKX8zuG/5/Dal5VS3lpKeXMp5U9eVycOC8LZVRALLjJa7utNyFjIL/Rb0lHU20KDr+ez19bWdP78eZ07d07nz5/XAw88oI2NjfrUBpNy10dwWkOMQMcUAJOw6Jzo9/v1UZEktSw8SAJsgunnk4CReMYou50SLPBIYhfBiLvvj8Se5C7WZIgpFW21BJyTz+MFmVIR0xtoYZeOyGYs5EihY5m9nkUDabFnbYJotScZd3ttoEsgzof75evaRI24lhYlvHfbhJPYNzsyTOijmBBTgXwaBvcg95/7uey0ibjecQ/EdIc2ZwL3D/e9BY+YDsN9FGsl8ItOmZgSxBSSmJ4T+3qaUh7uxGdxIpFIJJYjP4cTiUTiOK5dQl36dkkvDr97uaSfrqrqeZJ++vBnlVI+SNJLJX3w4T3fWEppZ6/sBCLVkmrS6d8zCl5VVYNExnPr23LRo0DBe1ZWVtTv93X27FmdPXtW586d09mzZxsuBkc5Tc4ZxY0RYYPR3ZiiYfHEkVHbxE0CLT4wlYOiA4kmiRGJo50eFBmYgtGWt0+yRpLLdWL7kdjF6O6y69kXz3FbIb42Mh+LAlIkiEQx7i/2x2TW7pPrIY4k03HuYooISTLng/3mGGOdhEjWo6MgzhfTSUiQ3X4UvBiZj7ULPJ54igNFBTpS+N7kc+M6eLz+l234mXF/kthzv0fBgmPjdfEa7tnodoiuhJhCcQrw7brNn8WJRCKRuCq+Xfk5nEgkEg1cU1CoqupnJV0Mv/40Sd9x+P13SPqz+P13V1U1r6rq7ZLeKumPXusZ/CPef+i3kcAYpfb1sTZAJGuS6loLrFkgHVjFLSI8+OCDevDBB3X27Fmtrq5qZ2endiSMx+NaTHDBSJ5QQBJSSqlTGljErt/v1192YzCaTDHB4oOLMc5ms7pgo0+QiCTK82h3gcm7j8GMkfdo6ba44a+2YogmgRY1InHl2lkkiikXJHyOikcSHckeXQbRZWLSGJ8jNWsu+D6KMxZySLTd57aaBm171n1gSkocU3TUMN3Ba+VTQqJbhfvLz2IqitctWvY917FGBPeA9/RsNmuMy6Te/Yx7h8KH9wtJO1MY3BYdMCT2scBjFBMsjvGUirjvDNbPaNufXh/vf89V29y4ndOCO/FZnEgkEonlyM/hRCKROI4nW0Ph4aqqHpGkqqoeKaU8dPj7p0t6La571+HvrgqKCa47wGgsiWK0YO/u7jZqLfh3zOmWVJN7k5Pd3V0NBgOtr6/rwoULevrTn16LCcPhUI8//ri2trbqugYmvyZOnU6nJnPMybYI0O/3awLjftNC7n5SRGDhQKdLmESZ+MWIKUmc6zGY0Lk/nK82IcFzbJEgWtX9L/P5Y1qCpLqORbfbrZ8V3SM8etN5+izAZ/dItM2b3A4Gg8b+iO4CCjKMdHPdSfjZB/aF+1JanupguG0TVt/juWZRQ0nHhBTvhzgOulvoJvDaxmKRy+A96HVaWVk5VjvCAofUrPFA8cb7PzoePFfRaRNTFtif+GyPmSkeTL3x/DItwmAaC9/7bS6DZQ4d9i06ak4xbulncSKRSCRuGPk5nEgk7mvc6qKMbX+ht3rJSykvk/QySRqNRnXUncctMhpOMuJ6ANJx63Yko9JRMTuTA4sWw+FQZ8+e1UMPPaRz587VdRPsTNje3tZsNmt1D0jNgnSSavLO/HgKBP1+v67LwPxvX0tibuIdSTDFB0kNW71/NqEisfa49/ePil16jhmN5XGdh+t0tJCBnLWlTDA9JRZXdN/dDgms26I44+vW1tbU6/Vqhwnvo2jEqHPsI/vA/HqPM55Y0DZ+RrQJOgaWuSN4QgKj+xSCOI/eTxbCuGfcXxb7tGAQ0164Xp5zpiYQvpaODl4fRbqI6IagmBDXOTop4lz7OXQa8H0fn8vrKXa09TW6iWK/mGoS5+guwpP6LO5reDv7lEgkEvcT8nM4kUjcF7ieGgpteG8p5amSdPjvo4e/f5ekZ+K6Z0j6/bYGqqp6VVVVH1VV1Ud1u91aTKB9ndZp/3FPC/Ph82sSSrs5SUUkCyZf/X5f6+vrOnv2bH2Eo3RwJOTW1lZdeLExYaGuA0meCS/rQZjU8/dt/fIXc9ZJ9EmUeE9MDeDY7Xjw9RRGSJ4tWNBSHtuPtRKiJZ1gjjsjvMuuN6LDxGTbxJonDXi8kZi2pWhwbmJtCApEcV6XwaKI2+QejWIXC4tyvttcNGyfNQy4F3yt16+tJkZb3yNZbyPb0THA1CHOX9wbcUwUFJjyE/vhZ3KNeC1dJXHNOJZYb8JtLpuHZW4TpnLcRYLCLf0s7qh3WzubSCQS9yDycziRSNzXeLKCwg9L+tzD7z9X0g/h9y8tpfRKKc+R9DxJv3ytxvb39zWZTGpBwUfJ+XQCEhf/0S8dkXtHQE0sbAk3EZZU/97Rzm63q/X1dW1ubmpzc7O20i8WCz3xxBO6dOlSHa33M2LElXnd0lFk11FdntRAZ8JisWjtO+9x+gCPiKQIQds5i1pyfniUYCRkTBnxvCzLF49iDtMJCI+FAoTXiU6SWHfC10THRFVV6na7GgwGdd0J6chpEe3oTDHxHPnnmO9vUSTW46C4E0HC7RQRumq8Bzw3rAfAYo0Uz9pEhdXVVfV6vcYJJ20OBb4H7GjhWvD7tvXyXo3rEIswtgknFPJI6GMKD79c6JSigdeNQlV8JlMoYi2HuH+vJQTFdfHv/Sx+dvD9dopxSz+LE4lEInHDyM/hRCJxX+OaKQ+llP8o6YWSHiilvEvSV0h6haTvLaV8gaR3SvoMSaqq6jdKKd8r6Tcl7Ur6G1VVXTMJeX9/v3YDkJA4f5ppDCYMJKg88cBkgEXmTBYsCqytrWl9fV1PecpT9PSnP11nz57V2tqarly5oieeeELvfe97tVgs6sKKpZT6foPFES1QMKLrPlJMiGOwVd7uANZZ2NvbqwtBck7aSKPnYDqdand3V51OR/1+v7bSU0wgSfWpFa6dEG3+jIwzHYNHYXIszGMnWFizTUTwnHmt7NSQVI/Fz+MxihQCGFV2vz3mNqdEFIm4Fzk+kmeSeu9N1nhgOyTSbpeiBgsW8h63MxwO6/nwHmHffH1bAdJl2N3dbYyZx7Ryj5l4s6+edz+v7X3H/cU+se6JhTLOJUk+iyo69YivMwXjesZM90Z0XXhPUKyk44XC22nAnfgsTiQSicRy5OdwIpFIHMc1BYWqqj5ryUsvWnL9V0r6yhvphKP9JhN0AcSaACaDJjQmF/zD3yTIBMLtmFT0ej09+OCDOn/+vDY2NtTr9bS9va3HHntMW1tbWiwWGo1GGg6HDQLkdnzyw3Q6rZ9tokNXBPPySdr88+7ubi2klFJqMcFkn2kOJnMkUJ4PWrVpk481DGglt/vBIkQkq0a8P5IyWvFZDFJSoz2TfNY/8DWcI64/izBGwYDknSJLm53d6xP7ZXGEa8bItL8oMHC/Ukyw8OTXY6Q8pgX4GUyJoKDgfRyPc4zrEF0dnFemZXDeWB/B7ztJjeNMvbasDRGdDtEREgk4156CAYk75837jce0tgkOMe2Jz6PrgOvntfUcxVSLuJd4/2nBnfgsTiQSicRy5OdwIpFIHMetLsr4pNCW70whoS0nO6ZCkFxRgJB0LAVgNBrVpzl0u906zeHKlSu1s2EwGKjX69XCBVMxxuOxJpNJI+IrNfPvSUYiiXKfab83mfP1JKxSUwxwG9EeHnP2aZGXdGx+GPluI07sswkviyIyVz3Wk4hWev/eBDESNhJ+k95+v69er9dIW/DrdCd4LjhHkWzG+WMfuD5tKQBcM67dsrF6vnyfn0sxgaktdAwwRYICBNulZd9zH1Ni/Gy+T1hs0XMXi416vG31JmLhSgoncbz+XayhENcgunqYwkBnTEz7aHufxfmnO6HNgRDB+TttYkIikUgkEolEInEacSoEBemIuNkRYNuzCUSMNppsMAWCkdqYX18d1kLo9Xo6f/68zpw5o+FwqKqq9MQTT+g973lPLRD0er3aneBI6Ww209bWlra3t2uHQluxPfc1nubA+gQWKebzeU3wfAqAxQTWZqDVm5FZRqf39vbqkxAYkSVR57WLxaKuzeB5J0jAXAfC7Xvune7h+XZbJMYxkuw+kdA7mu57SykaDofq9Xq19Z5tMIruvnKefGxj2x6jgMGjGKMrgfNAMkyiT5eDxxbJuduPp3T0er2G+8E/u51I6OlKiKKA3yuxtkUUVehMcA0IprKYeEsH7y8fKxmdFMvEhLgWXJO21IQ413QnsM4F58Roc5LEtfaYmI5zPSkSUZRJJBKJRCKRSCQS7Tg1goJ0FKVmITaTChaLk5p2a0bNST552oCL+507d07nz5/X+vp6LRTM53NtbW3VhRovXLigTqej2Wym7e1tXb58uU6HGI/Hms1mDXK6t7enyWRSj6Hb7dZ9ZI46ic3Ozk5NJHu9nrrd7rECczwtwoTKJJCRXVvu24rskZBZQCAJZRTXIJnlCQvdbrfuuwkyRYmrgRb3WGvAxN759i5IaEu+bfe+3qdxkNRGQsy0CaYz7O3tNY7l9J6xQ8D98z1s032J9TgsnJBg+7mcL9/T7XYb6QUswsnTTUj4l7kPovBEEs09QBGGIoXv4zGk3CPum1MTWG8gugeisMMaD+w3U07cV9cAmUwmjRMWuNbun9c7pktwH1DQstvBaxqLTnqO/BXdKIlEIpFIJBKJRKIdp0JQ8B/2bTbraF2Wjog6SR1/T0JgdDodra+v68yZMxqNRnX9ALsBLDgMBgOtra1pZ2dHW1tbunTpkt73vvfp8uXLGo/Hdd0GE01GoE1G3VcSGQsL/nllZUX9fr92FDji7yKMUtN14YhyW1Q+RslJgni6AI/l5PyRWLEwJk+oiEX6PHYKKO4P0XbSQySe/t6EnoLMbDar3R1ea5Nvj73f7zfGTmHFX7TPM8rutl1U0/1hzQTvTYoMMe0gFjykk4GnejiVg/USmEIS18pzEwmvRQevbzw5gxH9KCjQ1cMUB6ZleH5ZKNTrGefCaEtnWZYKwveIxZPpdFq7S/zsmErBFArOf3wG58hpPbyfqQ3sPz870p2QSCQSiUQikUhcHadCUJCOHx1H8sNop4mCQXJAEkBBYmVlRevr61pfX9dgMNDKyoomk0mj2v5oNKrJvSO/V65c0aVLl3TlypX6xAWTJhdI5HGLtJtTRGjLh3eaA4+ZJNmPx0DGeght+eOx0Fwknmw/RrzdZ5JQR9MdCeaxm1wbrgVrDpC4UgzitZEcep3p1mCahCPWkRRTMIjOAbfBtYviThvJbEtBYISdgg/HaQGDKQ5eb5JzzgmFKRZi9BjiWjElKApDrJ0QCTPfF/GUDIpfFim4p9lGrOHRJnDRnRBTFNyOHR8xJYTzGX8X14tCEd0Snk8WTo3OBPbP46KjJZFIJBKJRCKRSCzHqRAU/Ec8q/iTMDJnPFqX/eXfm1CYhJiEnjt3Tpubm+r1erVV30KAXQkWMZwCcfHiRV2+fFlbW1va2tqqn+l27SjY3d09VqGfBN7/+gjMmAtPWz3z8ikmxGMrTVJJemJtBd9n4YR1J5iuQet5nDcfP8nCiCSdTMuIxHNZZNy/p/uBz2SNCY/bhJz1FvxMujbYNvdLFA6iuEMRgXPLOYwiBiPZUUyhk8VpHK4JwZNDuP/jEZ583XuPe4tpFHRuxLZJ4OMeo4sintARXQ9MM+Lcc355XOa1BI6qOjq6NBZSbXM5cJ7bxAzvoTYBj0IEQQHyeussJBKJRCKRSCQSiQOcCkFBUoOoxHQFkiUTRJOzUkrjVASTIpMsHxF54cIFjUYjlVJ05cqVuj6ATxKw28CE4vHHH9djjz1WuxOqqqqJar/f1+7u0ZGP+/v76vf7dWFFt+Widrbus18myFKTcJmgm3yZQJPUO10iEjzPnf+108IkVToSRJhmEiPAjqTbmk+i1UaqYz0BCz4Wh9wnEmynNngO3CfWD3B0eTAY1OkhpZRGWoifQ3Fgc3OzEf32vHrssRglj9rknqJlni4ACxIxWu9aDN6Lbtv9NxhF9/eO0NM1wddZI8LvA6YkdDqdY04DzyvfX76W76d4j/vtfWCBhI4e70cKJywKGvdXTMWpqoOaHl4Lik0k/stSJuKe9PUxJYftRXdCFHQ4320uhkQikUgkEolEItHEqRAUaM9fdvQg7fjMg2Z9AZK81dVV9Xo9bWxs6Ny5cxoMBjVx29/frwkti/O5CN58Ptd73vMePfHEE5pMJjWhNBmLuf1tRz5aQDBZ29nZaURwe71ePX6PIToQ6FwwWOiORz7u7+/X5JxRdc/L3t5ew03gefI8slCeiT4L4lmcsCAgqSa1PPrQ69MGvx6t/+zT7u6utra26rFxvBSM4j1u1yktrF/ByDWvd99j6gXXjSIP9yQFAQsQvtdr0u12a2eChRnvBbcV6xZ47f2994vXwmsrqZ5D7uFlKS10SrBuAh0n3AvRwcBCjhRVmJLENaWbhYIX01Cm0+mx4pERHEd0JdCNwRQUplYwZcNCH1NOPNd0hESXRCKRSCQSiUQikWjHqREUIvGQmn/Qkyg5HcC/jzZ8k6Jer6fRaFQfAUkiyhx7F8Ez6RyPx5pMJrVoYAcCiTQr/TPiG2sV8GeTdkbLl9msac02gYq1Adpy2T0ny2zfvM6/oyBgocVj8jOirZz9ZRTY8x/JHR0XPJGCRM5CDR0IjHTzX8MklxF1zrnbjqkAHjvrc3Be49hILNtqWrgvbJfz6L6zSCUj4jHFweNi0dEoOrS9P7hOETEFgYS/LZLPdBEKM9y3TEehmOD2o5gQaxu0CR/sQxwHhZO2uiKeW64x+xtFg7b3X4oIiUQikUgkEonE9eFUCApSkyhIR4SJRwpGshoJPO3hnU5Hg8FAw+FQ/X6/QcBZ4JFihKRGhNxF71ZWVurIriP1rj3A6DGLH0pNscNjMsGMxQvdP0ZVY+oHST6t8ZwTRrw9L22gQMGjARlpdvQ2EmUKABYGPL5l8LgctWetCc/P3t5enUZCwswIsvtN4u82nRIRI/5emygokQizrgFFCp/ewHnzHMcaB14HpnT0er1jfWoTJzg+2vijoBCFHT8/EnhG5Q3uKRZ19GvxBIRI+v06yTznMYpqbJvOBBbbjCkI0S0SBTPP/TLxJIoQURTzOClucJ+kKyGRSCQSiUQikbh+nBpBIdZQ4DGIMbpsQsOornRUbG5tbU3nzp2rCzE6TYH2bLfr+0opdarCdDrV1tZWnQdvdwKj/iZ07qeJEtM3Yk42iWY85pFigkkaCwGaLPtIS6dnxJxz1x5gLjlfj5FYCghtRfVsz5eOjrF03nuM3rcRM79m0umUBJNapzbs7+/XJxywb55bEmWufafTqdMKTBItHnC/0M1h6z/FFK4tQcGkTaDhz06J6XQ6Gg6H9Vh3dnYatQIsVETiTXeNHTZx3fwz+0VyzXSTKKBQxIljiQ4Niibcs671sLe3V9fZoEOH+857z/t8d3dXk8mksd89r14b1yGhCMEUhCgAUoDzs+IzLeKwfonvj66oKOwtE+QSiUQikUgkEonEKREUSMIZ9SVRjfnlUVCgm2A4HGo4HGo0GmkwGEhSTYAdZd3Z2WlUsZ/NZjXxm0wmjaJ3LLTo55Cs8vnuo/vtn9fW1jQajWpxgm4Hf1FoMME2yWJOO0kPUw0c3Y9RZUazmSfPAn3uM38Xc/I5Js+jxZm2aLPvsfXfZJGnCpi0UQQhOWw73cL1ICwmdLvdRlSdhNYnelikco0Inq7h4pmeF+6/tnQSR+a9BnTFmGRbTKBjhOkfcQ9HksyTTaqqqsUqrnkkw7zeZNpr3lY3gdcz8s+1o1uF+4Dik9eErge6NljgkqKTn83aG9EhQBGEQhEdTBxjFABiSkesCxLnkPA1iUQikUgkEolEoh2nQlCQdIyMM8eZf/TTGk6S5yi20xNM3Elo/HN8hqRaTLBDgWQxphEsFotGJJhpDozYuw2fJsFihybR0Roei02S/NPaLh0VaIw58YxmO0rssXjctLh7Xh3BbXMzREeB27EAEG3iFDNMtE1gOW5H6+kOiAJCnFemApDssmhjJMnMyY+pAlF84Rx5HrhO7rNBMYFr7THN5/NGRN57hpF6kmST9bY+Glxj9tX3xDQV/r4tKh/TLTjP0QlBZ0t0A8SUDf/Mfdu2xm4zpgIxDSWKCRxb23s6jsPtO5WD7UVwDyUSiUQikUgkEol2nApBIUa4SexinnQkF8wHN2nwUZAkQiTTkTya9FlQMAFk0UBa4l0pPhJOpyWYIJrw2AJve/jKyorm83l9AoPJfIzM7+/v122aCNGJYTJtoh9t7CThJK10ZtAqH4tFsraBx+/TKizUmAgyss95jikV8aSG6E6I5M7t8vc8hcBOCjseaLmPQg/rEZioUiTgM0jofT3nlI4XOgosKNiBwqMWuaeZpmC0ORMiETdM7JkexLZJphnlbxPoWBOBr8WaCp4zFsBkXQa+J9k/tx9FQ46btQ3YL6bc+Fo6jdra4nM9BzwNI9ZgaAM/ZxKJRCKRSCQSiUQ7ToWgQOuyEWsjECbh/qN/a2tLVVWp3+/XaQ7xSMhYLI/FDSeTiSaTicbjsebzeS0YkFhXVaXxeNzI8Wc/beeXjshev9+vc+EZzXWqA4l17NNsNpN0RPRte7dDgBZ2kla6HGIBQPfbXya8rCVASz6JusUUigdEtJa776yZsLOzo/F4XPerqipNJpO6fdY4iCkVtJ6TIK6urtbHD3ouKLzQvk9Cz6MbuXZGLNJIN4jTZUiwO51OndLS6XTqPWXnTFsthigUxJNEeCyj5ziKQCTVkQSzuCFdFkwrogDD+fW8xBQQv68ozLAmQ0wHopgQ3QP7+/t1ugqdQ2yT/fF9fC+1gfNgh4zXjnttGbg2TjNKJBKJRCKRSCQSx3EqBAWpaeGm1ZiEMOaaLxaL2k3gugmDwUCDwaARcXYahCPlJu52IzjNgZFyEybpgNz5dUm1YOE+SaqJEcdhIkNrvkWEZcc58vcuHCgdFVskmTRBsjuBBNDpBCR5rAlRVVV9VOYyUsoUCqc2cMyOKpPEUgjwfLM9X0MHAaP/vI/1K5iywTFOp1NNp9N6jKxJ4T5FhwTFBM9vnAcXvfQz+/1+PQb2w8KRhQS7F1yE0aeBeM65f30/XQ5+L9CxQRcAnS+M6Hs+pKb9n2k7JNHRNcAaG2672+023ot8HlM22FZbOpJ/H/vrPrYVUaQzicJJvD6ms8TUCDsp4nuL8+Pv6V6IqRSJRCKRSCQSiUTiOE6NoOCIb8SyVAcSFVb6pxWbaQGOwLst1kxoOxmBz5aOThpgLYBItvw7qWmxZ9SfpDIS5RhBNjk1+WcUn0XwTIBinYFllm1GgFlVn6/FIntuUzpyYNAJwT57rnm9x8x+sQigCbXrD3j+/FynENDd4LajSBP7Q7JodwgFn7aaESwO6Wt8f3QmsGaHdCBGMJWC8+49Q5dHFBPiUYZG3C9My4n1BbhefD2+h+I+j6Sdv2c/3D73MgUYP5f9WOaW8bW8n7UhoqDAtrkPOc9+jTVG2vZFm+CSIkIikUgkEolEInF9WO4bPkQp5dtKKY+WUt6E331tKeW3Sym/Vkr5gVLKWbz2ZaWUt5ZS3lxK+ZPX04llJIavS80jJE1GSyk1obOgwKMP+UXLuV0J0+m0rmfAOgTuj0kTc+ZNUmLkluOgmCE1I8LsP0lszGM3uXT/FotFPQ8kz1LzWEDPGdt2P5gWEIUBih0UFGi7l44XAmRKAmtBMGLcFiGnqOK8fJN0ikKEx24Xwmw2a9QqaBMUPLfxFIJIKv1F4caiEEUQ7wX21f21WOWIPPdLnKe2mgGx1kAsUhjnom1uuU6ca37fdsIB9y+FC65B3J9sb1lfuB/iF8cWBQW7iWJKDtFW5yGmfMQ9eLU+8HenDXfisziRSCQSy5Gfw4lEInEc1xQUJH27pBeH3/2kpA+pqurDJL1F0pdJUinlgyS9VNIHH97zjaWU4wn3V0EkJfGIRTsKeNKBCx4OBoM6wu30B6cmGFV1UAvh4sWL2traql0Kk8mkkdZgcuvUiL29vcYRhRQTeHSiI9/9fv9YNJUE0OIFyZdJMYshTqfTurZDnKPd3d26RoMj5EwHaIt2M0WiHOaXx9MvTHxt2zfp51hM5EwmD9d/aYoHj2uMqQ5OGfApGEx94DF/voeiCEWEWE+CfWbhTfeHeys6PnhyQ0wtkdQQsewucAoO19TzSqEgij+SGi4Zp6vE2hsRJN9M62grPhndClFQiAJKWzHMKHi5LY/b7xNes0xIoDOAdTq8t9oEQQo/vs7vx729vVp4s3OD71UKDe5Xm8OGTos2EeeE8e26g5/FiUQikTiGb1d+DicSiUQD10x5qKrqZ0spzw6/+wn8+FpJf+Hw+0+T9N1VVc0lvb2U8lZJf1TSa67xjKXkRjogW9PptCZbJsImHk536PV6GgwG2tjYaFR0l1QTh8VioSeeeEKTyaRBRKfTqVZWVtTv93X27Fl1u91GCsT6+vqx4n20zMfUgki0DQsjjBi7jyxcV1UHBQtJdmIkVlKDeO/v79diSyR1JNV0UDCK7nZ5AoUJPdfGv7PTY39/v7EOJuleVxYaZN2Lclh/wKkOPh2B45zNZrWQ5HmiwOE+MQrv53lcnnMLOCzSFwvu0S3hWg+TyaQep3QggAyHwzpi7nYpCPV6vYZ4RJIvqd7LLD7Ivc9ilHRMEKyj4HH6Gv/sf+ncuFpb0eVCMWV/f79eo9XV1do1QzEgjiM+i2IEU0A4922OBsNj5J61Y4UFMFkrpS21hs4K9o39YdrNacCd+CxOJBKJxHLk53AikUgcx62oofD5kr7n8Pun6+DD1HjX4e+uiZgHHnPPWdvA0Udazf29o+Bu0zCxYAFGt0u3Q7fbVa/Xq5/raCfTGqQjMSFe12a9to3cxNaE3c80FotFIzWBJNnkyGNxFJt9ou08RqYdCfb8MQ2EEWOmBPDUB84959R94xGWhokhbefsA9eMkfhoQ48CCa/xXLUVO/RrJJvuD9NnGI23QON7fb9FjNXV1ZpUM62CtSZYTDLuAY/D4hbTPvxFdwHHFiP8TD2hUMACizx9wc9rqz/QFomPaSJxf7fNu9fN10XhgoICXT1umwTe7Xheeb1/jnU++JlAZwLnJqZo8HlxvU6ToHAduCWfxYlEIpF40sjP4UQicd/hpgSFUsr/IWlX0nf5Vy2XtXqGSykvk/QySXXEUDqKgDOC3BZhtD3e5Kvb7da2edY4MNF35N0pDiYhJiR2JzhNwq/HOgPSUeQ7khPCv2PU19F55/9Hcm6yLemYgMJoLC3f/D0JHgspeu7YHzoUoiBBYhyJfLTO253AcUT7vK/nnHgdmUYSiS1rFpDoRZLKgnt+Lh0pdkQQJJPcV55TP9vCk+ebRTnpiOB8LyOhdCxwf5kksw+8PopDcS3i2OIzY70Ng+JDm+OjqqrG3LEuBsW4WJegDTGNIIoJFBXoWLresfl9bkGIglEUS6I7IQpYnpdY7PE041Z9Fvc1vC39SyQSiXsd+TmcSCTuVzxpQaGU8rmSPkXSi6qjv9jfJemZuOwZkn6/7f6qql4l6VWS1Ov16g9YkwKpGSGVjgj0aDTSaDRqHFFoy7xrF9DebWIxmUw0Ho+PCQpVVWkwGOjs2bNaX19XKUXT6fQYkaLVmuSHUfloc7cFO+aaGxQjSLrdNxNYj4fuAYoaJlaxLoPbdR+ZKmKCzGg6RQlaw6M7wmSdEX6TUPfLtSQWi0Vd+4J98AkJ7mNMZfCa0UHi19lfkloei0l3weGerfeEHQveKz5q1HMdBSW37VQEry9THuj6YP0JrpH3QBu5p1OC80ziS3cB19eOFQpEdsL4KwpjnqfofGDknwUomYZhp43Xv63mAveE15NigfcAx9GW/kRQzOH7l7UjVldXG++H6FihyBCFrLiP7gbcys/izXL+VBWNSCQSibsB+TmcSCTuZzwpQaGU8mJJXyrpj1dVNcFLPyzpP5RS/m9JT5P0PEm/fD1t+g95F1GMEeK9vb1GSgNt3y6OxwKDbsPtWEywoOBnOkr+lKc8RcPhsCaD8ei/WPQu2sFNTBlRPpwrSUd1IDietbW1xvGETDegU4MWfUkNIYCnG1CocJt+VilFw+Gwnj+2S/IcXRIcI+tSmJgxd9/P5DGei8VCW1tb9XyamHotV1ZWatLvVBZJx5wFJoXx1AOeqMBCfBYMIiEtpdTChkk8T5TwHEcnCFMyZrNZw63ifWuyztMxPC6eTGHBws9kOo1FKF7LSD73IR04rkXh/Tefz7W9vd0QNWJtAp4+QXGF6UEm6d6Lrq3BehQUKpgi05ZSQBdGWzpEW+oF0yfYdkxJ8nvf+4linn+OQoKfy+KjUbQ4zbgdn8WJRCKRuH7k53AikbjfcU1BoZTyHyW9UNIDpZR3SfoKHVSw7Un6ycM/yl9bVdUXVlX1G6WU75X0mzqwff2Nqqqu+Rc5iZtJjwmVCaOdCE51cFQ0Hi0Xo7smcia1rJng+3w6hAmlc81NVHgigK9xBJrRcYoJJiYWAhgxjcXoSDpJYEzwaKcnKSThJ4F2X9j2sjQH948nZ9BK72KEjDQzZ9259RZGTGxN6ieTSS1SMMXB/fGYSfC8BnQmxCizC0xSzPD+ifPM6DOj/Uy9MEFn1D5GyrluJp10rbjv3rOeS6actFn96U7gnqWoQTHFa8Oxmzj7XotXdNmQ9MfUAo/R8xaLH1IUIfmOxLxtrO5/LLjI57KWxDJ4faJYxLX3dV5Dtx+/+Jy2OYrpP6cBd+KzOJFIJBLLkZ/DiUQicRzXc8rDZ7X8+t9c5fqvlPSVN9IJEpNo4Td54GkEjIpGq7PJtEmv7fY+JcJE1ZHyfr+v0WikTqdzrNCcn0dXhMlWPCKP1ndHbqUjsuK2SbRIVmKhOB5FyVx9kkqKCa7JYNJFUSESQ4LkfbFYNArree6wtvU4CM6718RpH9PptL6OTg+P2evsNeXa+Z6wv+prPN/xpIpY14JE0qSVjoc4J5FsWkRqEwOY+kJCT/j3jNaT3PuZnF/OAQl4jPx7H3s/WISz4MX3FduJhD6ur/cgi4/GeiaxgGIUEvy+8PO9xvGZvDeKDZwzvyfpAIopSNEVEZ8RUxvi92yjrTbKSeJOfBYnEolEYjnycziRSCSO41ac8nBLwCMZHQUlYSdp8PckE3YumPy58J2t3z5+0ISIR0yeO3euzruONmq6JhgZn06nx4g1I/zdbrcWH/b3D44etAsgRkiNGOGlY8GRc6lJxF0PIpJ5klXDxQYpxEyn08ZRkyZUbtuCgu9l9J1gKgMLYMbX3A6Jc7Se0+bf6/UaNvy26L2dD21RdM6rv7imFomisMD7PWdxrBR4+NzFYnHspIj5fN5q6ffPHjdJe4zY+36Pvd/v1wKN03pc28BpGXEPt0XtDe5XSfV7ys90CgqFAoopbQUQmabhtecXUzeWiQwk9XwG9zHdCWyL7Rnss39m+7yfaTCJRCKRSCQSiUSiiVMhKNDOTaLJonAmJk5NoFvhzJkz2tjYaJDe+XzeEBRcZHFlZUXD4VDr6+va2NjQ+vp6nWIRHQw8RcICwnQ61dbWViMSS/IXT3+wA8CRY97HmgySNB6PG8RoOp0eI7okQo5CS83jHH2dSTlTNozFYqHpdFoLEnZVuJ+eC6YBOHUhkvNer1cTbLsa3KZPzWABPrfPvvt6t29HSHRuTCaThhXdp3u4jzEFxc/i+tB6b5JNQctjp0vCKR2+jnNARwGfzb0co/bur6+jYEUXgPtEgchzyToaW1tbde0Ppphw3T0H0fbvfrhmg99r3W63MQ6vV0xPoQhGoYHvIc9JFNXoxHF7bXu97fOCtS04l9EFEe9lf72H+TwKimtra5pMJsfaSSQSiUQikUgkEqdEUDBMWlndfn9/vyYlJEiOSg+HQw2HwzrS7OisCfN4PK7zyVkMcDgcqtfrNSLmLLDoiKpt4LPZTJPJRJPJRLPZrNUyHXPE3S4j5jFKLh2JKNKRxZukx/Z8klHa/qX2HHupmTLACDcdDm7XxNtuDqdARGs/CT7JmAUXEtpltRFYG8JrYCcK01fscjAxdzseMwk+q/63nZDAaDYdL470MxLvtAWTVe85RrOZVjOfzxtpDBYI2qLgHgPnkb+j8yWmEhjemxYRxuNxPbfcX201E9jH6IahmOD3I2uFeCzcB+yn+8b3q9ePhU4plEUHQVt6AuH+831BQYOI7V7teVyLtloPiUQikUgkEolEoolTIyhEEkhrtaOxPJ3AboXBYFAfPejIsknQbDbTeDyuq/o7oulTIXg8pcm0n8l8fLdlMYGnHrjvbbn+JNAUFKQmwWT0l/dHmzbz6NtI+TLyw8it+0GLvnRUPNDuDqc2kIxatCG5ZM0L32+HQSSNMV2B42MkniKF5yda6ingcIyMVDO6TUcCRYVYH8NCisl1W//YJxPl3d3dhkhEkYQiEPdGFBTimjLNpW1tWR/EZJ3Pa6tXEFMo6KSxoONx0JkQnQP+N+5RCy/+otCzs7PTEDgoBhBtzgKirSbEsnlqS+1oEyyiYNOWMpRIJBKJRCKRSCSaOFWCAqOEzKO3rd0nCPhIwn6/r+FwqLW1tZpUmbDaqeAvuxG63a4Gg0GjCCCJlaRWdwKFgVjF3/0nAeXJCfGeWHSOzzaRicKDCTD7RMK8LApNm7uFEZPh+XzeIMG7u7va2tqqLfpOVeApCDxZgUcpWkiIYgKfzToBy+zmPO2AKQUsimhnAmsyMIpOss5ie1FQ6HQ6GgwGtRjENBAKNDxNwWAxTBfE9B7w93QCUDggiac7geRb0rHio3RZsJbHfD6vHRIUS9oIOwspWkTjqQ6sdRBrUVwLrnnBVCE7J/wMOj0s4kTnQyT8nHf30Xus7b3S1p4RHRVxbPG9eS1xI5FIJBKJRCKRuJ9RTsMfzKWU90kaS3rshLvyQPYh+5B9yD4EPKuqqgdP6Nl3FKWULUlvPuFu3O/7LfuQfcg+HMf99DmcfxNnH7IP2YfT2ofWz+JTIShIUinl9VVVfVT2IfuQfcg+nMY+3A84DfOcfcg+ZB+yD/c7TsNcZx+yD9mH7MP1YuXalyQSiUQikUgkEolEIpFINJGCQiKRSCQSiUQikUgkEokbxmkSFF510h1Q9sHIPhwg+3CA7MP9g9Mwz9mHA2QfDpB9OED24f7CaZjr7MMBsg8HyD4cIPvQglNTQyGRSCQSiUQikUgkEonE3YPT5FBIJBKJRCKRSCQSiUQicZfgxAWFUsqLSylvLqW8tZTy8jv0zGeWUv5bKeW3Sim/UUr54sPf/6NSyrtLKW88/Prk29yPd5RSfv3wWa8//N35UspPllJ+5/Dfc7fx+e+Psb6xlHKllPIlt3seSinfVkp5tJTyJvxu6bhLKV92uD/eXEr5k7exD19bSvntUsqvlVJ+oJRy9vD3zy6lTDEfr7yNfVg693dwHr4Hz39HKeWNh7+/XfOw7P14R/fE/Y78LM7P4sPf5Wex7r/P4vwcPh3Iz+H8HD78XX4O6/77HD5s9+78LK6q6sS+JK1Kepuk50rqSvpVSR90B577VEkfefj9hqS3SPogSf9I0t+7g+N/h6QHwu/+uaSXH37/cklfcwfX4j2SnnW750HSx0v6SElvuta4D9flVyX19P+3d/cgclVhHMafl0QFP0FRWRIlG4m1sbDR2ChigiZ+gEQsAgoiaCFpLAL2FtoqiGKQaERUTCMELLTyg0SjkSj5EDFk2UAsFAQ1+lrcs8vsZmYnQ3Lund15fjDsnZObPee+e85/h8OdWZgu82VVpTHcB6wuxy/1jGFd73mV69C39m3WYdG/vwy8WLkOg9Zjq3Nikh9msVk87LrN4vn2FZnF5nD3D3PYHB523ebwfPuKzOHyfZdlFnd9h8IdwLHMPJGZfwN7gW21O83Mmcw8WI7/AI4Aa2r3e562AbvL8W7goZb6vQc4npm/1O4oMz8HflvUPOi6twF7M/OvzPwZOEYzby76GDJzf2aeLU+/ANZeaD+jjmEJrdVhTkQE8Bjw7oX2M2QMg9Zjq3NiwpnF5zKLzeJ+VmQWm8NjwRw+lzlsDvezInO4jGFZZnHXGwprgF97np+k5RCLiHXARuDL0vRcub3nzZq3VhUJ7I+IAxHxdGm7MTNnoJlUwA2VxzBnOwsXSZt1gMHX3dUceRL4pOf5dER8ExGfRcSmyn33q30XddgEzGbm0Z62qnVYtB7HbU6sZJ3X1CyeZxYvZBa3nMXmcGc6r6k5PM8cXsgc9jXxkrreUIg+ba392YmIuBL4AHg+M38HXgVuAW4DZmhubanpzsy8HdgMPBsRd1fur6+IuBTYCrxfmtquw1JanyMRsQs4C+wpTTPAzZm5EdgJvBMRV1fqflDtu1grj7PwF2rVOvRZjwNP7dPmn6u5MGaxWTyMWVyG1efcFZPF5nCnzGFzeBhzuAyrz7krJodh+WVx1xsKJ4Gbep6vBU610XFEXELzg9qTmR8CZOZsZv6bmf8Br1P5lpHMPFW+ngY+Kv3NRsRUGeMUcLrmGIrNwMHMnC3jabUOxaDrbnWORMQO4AHgiczmzUnlNqIz5fgAzfuTbq3R/xK1b7sOq4FHgPd6xlatDv3WI2MyJyaEWYxZXIzFujOLG21msTncOXMYc7gYi3VnDjd8TTxc1xsKXwMbImK67AhuB/bV7rS8D+YN4EhmvtLTPtVz2sPA4cX/9yKO4YqIuGrumObDTw7TXP+OctoO4ONaY+ixYNetzTr0GHTd+4DtEXFZREwDG4CvagwgIu4HXgC2ZuafPe3XR8Sqcry+jOFEpTEMqn1rdSjuBX7MzJM9Y6tSh0HrkTGYExPELMYsLjpfd2bxAq1ksTk8FsxhzOGi83VnDi/ga+JhsuVPgVz8ALbQfILlcWBXS33eRXM7yHfAt+WxBXgb+L607wOmKo5hPc2nch4Cfpi7duA64FPgaPl6beVaXA6cAa7paataB5qgngH+odlZe2qp6wZ2lfnxE7C54hiO0bwPaW5OvFbOfbT8jA4BB4EHK45hYO3bqkNpfwt4ZtG5teowaD22Oicm/WEWm8Vm8eRmsTk8Hg9z2Bw2hyc3h8v3XZZZHGUgkiRJkiRJ563rtzxIkiRJkqRlyA0FSZIkSZI0MjcUJEmSJEnSyNxQkCRJkiRJI3NDQZIkSZIkjcwNBUmSJEmSNDI3FCRJkiRJ0sjcUJAkSZIkSSP7H6bQIHV3KpkZAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 0 267367\n", + " Min thresh = 1000\n", + " Sliding\n", + "\n", + "\n", + "034s_iimage_3368391807672_clean_ClassS_32-160.roi.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADYCAYAAABberBAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADQwElEQVR4nOz9eZht61XVj4+3qnZbdc5tIM0lCYSQ0CRo6IQEfmCULtIFRTCoGGkMnfQIAb8K8SsaBBUUEQOhEZEkKEgjX4KiEYEQSCA0IbQhCWlISHLvPadqt1W1fn9Ujbc+a9bapz+39jlnjuep51btvda73m7ve8aYY863NE2jRCKRSCQSiUQikUgkEomrwcZZdyCRSCQSiUQikUgkEonErYcUFBKJRCKRSCQSiUQikUhcNVJQSCQSiUQikUgkEolEInHVSEEhkUgkEolEIpFIJBKJxFUjBYVEIpFIJBKJRCKRSCQSV40UFBKJRCKRSCQSiUQikUhcNVJQSDzkKKW8upTytLPuRyKRSCROUEp5XSnlY67w2qaU8vhrfM4135tIJBKJRGK9kIJC4iFH0zRPaprmpWfdj0uhlPKJpZRfKKU8UEr501LKd5dSzp11vxKJROJ2RinlW0spf1BKuVhK+d1Syt856z4lEonEuuFGC7OXay//XZy4FFJQSCS6cZekfyrp3SS9n6RHS/qWM+1RIpFI3P7Yk/TJOvoOfpakby+lfPjZdimRSCTueOS/ixMrkYJC4iEHbbWllG8spfxIKeU/HUekfquU8t6llK8rpbytlPInpZSPw72fXUp5zfG1ry2lfH5o+2tKKW8ppby5lPJ5VFxLKYPj6NcbSilvLaV8Vyll1NXHpmn+c9M0P9M0zaRpmvslfbekj7h5s5JIJBLrg1LKh5ZSXnYcjXpLKeU7Sin9cNknHH8Pv72U8i2llA3c/znH39X3l1JeUkp5jyt5btM039A0ze82TXPYNM3LJf1fSU+9gUNLJBKJtUAp5f1KKS89/p59dSnlU/DeS0spn4e//24p5ReOf//545d/o5SyW0r5G6WUp5VS3lhK+frj7+TXlVL+1rW2F/ua/y5OXAopKCTWAZ8s6Qcl3SPp1yW9REd781GS/omk/4Br3ybpkySdl/TZkv51KeWDJKmU8nRJXynpYyQ9XtJfDM/5ZknvLekDjt9/lKR/fIV9/ChJr766YSUSicQtiwNJXyHpXXVE6D9a0heFa/6qpA+R9EGSniHpcySplPKpkr5e0l+T9DAdiQI/fLUdOBZ8/4LyuzeRSNxmKKX0JP2kpJ+V9HBJXyLph0op73O5e5um+ajjX5/cNM1O0zQvOv77kTr6zn6Ujhxez7/O9i6F/HdxoiIFhcQ64P82TfOSpmn2Jf2Ijv4B+rymaZaSXijpsaWUuyWpaZr/3jTNHzVH+D86+iL+yON2PkPS9zVN8+qmaSaSnusHlFKKpL8n6Suapnln0zQXJf0zSc+8XOdKKR+roy/mKxUfEolE4pZG0zSvbJrml5um2W+a5nU6EnZPibTH36dvkPRtkj7z+PXPl/TPm6Z5zfH3+j+T9AFX6lIAvkvSb+hIZE4kEonbCU+RtKOjf+8umqb5X5J+Siffo9eKf9Q0zfz438j/XUf/Nr6hyH8XJyK2zroDiYSkt+L3qaS3N01zgL+loy/dB0opf0XSN+jIabAhaSzpt46veTdJr0Bbf4LfH3Z87SuPtAVJUpG0eamOlVKeIuk/S/rrTdP8/lWMKZFIJG5ZlFLeW9K/0pEDYayjfy+8MlzG79jX6+g7WJLeQ0e1D/4lm9RR1Oz1V/j8b5H0/pL+UtM0zVUPIJFIJNYb7ybpT5qmOcRrr9fR9+S14v6mafZCe++26uJrQf67ONGFdCgkbhmUUgaS/qukb5X0iKZp7pb00zr6h6okvUVHRWKMx+D3t+tInHhS0zR3H//c1TTNziWe94GSfkLS5zRN83M3biSJRCKx9vj3kn5X0hOapjmvoxSGEq7hd+y7S3rz8e9/Iunz8V17d9M0o6ZpfulKHlxKea6kvyLp45qmuXBdo0gkEon1xJslPYa1Z3T0Pfqm49/3dCTmGo+8gjbvKaVsh/b8vXwt7bWQ/y5OrEIKColbCX1JA0l/Jmn/2K3wcXj/xZI++7jIzViwYh0rwN+to5oLD5ekUsqjSikf3/WgUsr7S/oZSV/SNM1P3pTRJBKJxPrinKQLknZLKe8r6Qs7rvkHpZR7SimPkfRlkpx3+12Svq6U8iRJKqXcVUr59Ct5aCnl6yT9TUkf2zTNO653EIlEIrGmeLmOSP7XlFJ6pZSn6aim2AuP33+VpL9WShkfFxf/3HD/WyU9rqPd55ZS+qWUj9RRzbEfuc72JOW/ixOXRgoKiVsGx3UPvlRHwsH9OvpH50/g/f9P0r+R9L8l/aGklx2/NT/+79cev/7LpZQLkv6npFXFar5KR2kSLziueLtbSsniM4lE4k7BV+voO/aijsTYriJdP66jNIhX6ShX9wWS1DTNj+moCO4Lj79rf1tHjoMrwT/TUVTtD/Dd+/XXMY5EIpFYOzRNs5D0KTr6bny7pO+U9Heapvnd40v+taSFjoj+D0j6odDEN0r6geMTIlwn4U919O/jNx9f/wXX2R6R/y5OrETJ1MTE7YpSyvvp6B+yg+PCYIlEIpFIJBKJxG2FY4fDf2qa5tGXuTSRuOFIh0LitkIp5a8eW73u0VGE7CdTTEgkEolEIpFIJBKJG48UFBK3Gz5fRzUW/khH56h35f0mEolEIpFIJBKJROI6cdMEhVLK00spv1dK+cNSynNu1nMSCaJpmqcfn95wb9M0f7VpmrecdZ8SibNCfg8nEonE2SO/ixM3G03TvDTTHRJnhZtSQ6GUsinp9yV9rKQ3SvpVSZ/ZNM3v3PCHJRKJROIU8ns4kUgkzh75XZxIJG533CyHwodK+sOmaV57XMX0hZKecZOelUgkEonTyO/hRCKROHvkd3EikbitsXWT2n2UpD/B32+U9GGrLi6lNBsbGyqlSJLsmuDfdFKUUrSxsdG65krhtth2KaX+xOderi3e19XX2G//xLa7xhFfa5pGh4eH9W/Pmf/rdn3d4eFhay7jdYeHhzo4OGg9j9dI0sHBQW2Hz459iPPgtleN/1Jj3tjYqO1yPlfNdRw774m/x354H3HODg8PW9d07YvYfpybK7mf+yD+d1U7fF7X/ozzcyPQtV7xMxL3/bU+J3424h642j6v6utV4u1N0zzsam9aA1zV97Akbe5sN+/+2KK3zc9p8w/nl7o0kUgkHjLMtKdFM7+6f/CtD67quzi/hxOJxLriou7v/DfxzRIUur70W/+KL6U8W9Kz/Xe/39fW1pY2NzdPEQCSWv/0ej1tbW3VH99HwsXXNzY2dHBwUH/cfiTcGxsbtU0SEBLDpmkqWfZrfL77vL+/3+rz5uZmbdv98bP7/b4ktUht0zStMezv72s+n9f3Njc3NRgMNBgMNB6P1e/3dXh4qOVyqfl8rul0qtlsVglyv9+v121sbGg+n2tvb0+z2Uz7+/va2trScDhs9XEymdR25vN5nT+3ORgMNBqN6vp5DpbLpWazmXZ3d7W/f3TIgud2MBjUcW1ubtbrPR/j8Vij0ahet1gs6rz2ej31+/06v/v7++r1etrY2Khj95gNX0sS7jH2ej2Nx2MdHBxoPp9rMplod3dXBwcH2tjYqO97bMZyudT+/r4ODg60XC61WCzqevs67tFSSp3TUkpLpPGcRrHAbbmfXremaTSbzTSZTFrP7BIxukSWqwE/F96HFGNKKXV+l8vlKRHrUuBcuT1/7qJoEwWUSz2DffNax/ng56yrX+Hv11/RZK0fLvs9LLW/i4e9u/SoJ/xDPe6BpTb+6Ndvdv8SiUTiivDy5ufOugvXg6v6N3F+DycSiXXF/2z+S+e/iW+WoPBGSY/B34+W9GZe0DTN8yU9XzpyKJhYmUAdv15Jh4mUyexisTglMjDaTMJh8toVyfd1MaJPYcPtuP3Dw8PW75IqAfXrJn8xuu/fI0Hz3xwfhQ+36/8aJqPL5bIS9F6vJ0mV8Jp0ut2NjY0qRPgZFCrYRxL/zc3NUwTMa+K18xxb7LAY0BXJ9nVuwyTd63NwcKDhcHhKmPG8emwHBwd1z3j+3E/OLYk8nRmek42NDfX7ffV6vZbwtFgs6txHlwSf4X5xXgwSXF8bxQNey/stlHgv+78m39wnBPdKdETwtStFB9Fu7V/3OwpxV9o23SEedxfhl3RqLF3tXcqZssopxLZvlMPjDHHZ72Gp/V18vtzbjH78Vx6a3iUSicSdgav6N3F+DycSiVsNN0tQ+FVJTyilvKekN0l6pqS/eakbGK11ZFjSKULOf+yTaB4cHFTRwKSTzoBer6der6f9/f2WGGE42m0SYzfBKvLIv0liTcI3NjY0HA7r6yT2HqNFBzojKCqYLJswR5GDTofZbKZSisbjsXq9Xm3Hc+GxLRaLOrZ+v6/BYFDbm81mVRgw+eaY47hJ/CkEkJyPRqM6v3RvbG5uttre2tqqLgH3wxHv6AxxPzg/+/v7LUGJYyf59rzyv3QP2EFBgWM6nVYnhNfhUq4AgykfHp/R6/VOiWBxnzFa7/547uL7q1Iuutrtet7lwPtiWoWFIQoCV9J+nK8u4YntdH0WV4H3cc54D0We2BaFoVsYV/09nEgkEokbjvwuTiQStzVuiqDQNM1+KeXvS3qJpE1J39s0zatXXU+SbqGARNtEgPZuk3STmK2trXofI8wmzybZJtKz2UySWqTZ4sDBwYGm06kGg0ElvpJalnX/fnh4WMkhnQCSNBqNKpHZ29urogVBOzlFg9FopN3d3WqlpyvCoMBwcHCgyWQiSRoOhxoMBtrZ2ampDXYgOG3C4xkOh5UAum++zlH/ra2tlihCwmjnggWc5XJZ53Nra0vb29va3NzUfD6vrguTY8OuAK/xdDqt1zRNo36/3yKY+/v79ZmO3nutPY8eg/fEYDCo8+c5dV9ms1krZcPCgfcW0xvc1+hWoKiwKqrO9R8MBrUdC0sWULqEHAthJu+cE4KvRSdExCpCHtMDmFriPcHn+b8UhiimXI2IET8fl+rnKkTRg+IShbFynLITU6riM29VUeFqv4cTiUQiceOR38WJROJ2x81yKKhpmp+W9NNXen38B7yjuSw8SMeAXQYm2o6sM0pqMrW3t1cFAJNOiwd0N1iUMOlmjYNIoumEYL0Gw/22kGH7/2KxaLUd0wo41u3tbW1sbNSx0l5ugj8YDFquDdcP2N/f13A4rGS1lFJdDE3TaD6fa3NzU6PRqIoww+GwklavgwmkxQLfT9JreF48r9Gmv7m52aqVQHHBfez3+3UNLC74Xt9j14l/pBNhiO4Wz52f4/UngafDgq4DCgp0lvie8Xhcx26RhQIDUwxIaP2+BZU4Bgpm/pvpMJ7XVRF0pguQWNtBQMLclf5wKfLOPRvdKvzd79GR0dXHiFXpB6uuu1KHgqTWd0V0K8QUi9tBTDCu9ns4kUgkEjce+V2cSCRuZ9w0QeFqESO9JK20x5NIRrs30xxImEziSdZN4p3e4P/STi+dRGndtvtBwkkS6mf4bzsibKWfTqfa2tqqboLowjAcVbdQ4gg558L9471Oa5DUElEGg0Htv8e2WCwquY6FLS24+HW7PKJLIq4bybGJOsUWEmbppPYE22DhQtZVYBHACKbMMJLOlBP3z2vnuWctBgpXJM5s332gu8Tt0QnAFA+6Bvya4X3nPc19x/1M4chzEj8zUSTgOsU9vKpGwaUIP0W26ARgXy4nThheU8/vzSLwbpffFV395HwnEolEIpFIJBKJS2NtBAX+Iz4WPIz/6Dcp7Mqzdlvxtel02nIokAQyimyi5RMT2CYJmImnSaZ0UtWfRLTf72s4HGo0GlUCb3GDpJDwM+waiIIDnRQWNDwe2rdp42d6g10CTB8guXIbnms7LQ4PDzWZTFriAAURz4l0QqJjZJjukFgEkuvPYo2sjxDHSUHC0Xue/iGplUpgkYRCgE8o8F7jfjTZ51xb6LAY4xQbWuqjhT6KAzwpg/UbCIoEXak5nivPPdMFougRazVEEWKVMEBxLv7wsxF/j+2tuqbrdJTL4XrIfvysUwRz26tSHxKJRCKRSCQSiUQbayEoMPrMKK3UttrTMs5IciREJg20Nx8eHtbaAc7X97UmdVHUiMUbSepc0JDHF1ro8JGHJpsWFc6dO1ePdNze3tbu7m6tbcC+0l7v93ysJMmOj0iMBNr37+7u1noK7gfnyXn5dG047YEODROufr+vnZ0dzWaz6vrg/NnFQHi8LHjI+gkmuia9XAdG1T0XFkl4CgbdF9LJqQ0e83w+r6kKdjzQFeF1M8l3OgjTBiiccJ+5DdfRoAuEaQlek3gig/ePj+uMhTdjTQUKSxRiWL8gkn7uaQodFFU4Vo6X10eyH8n21ToMomtj1ZhX3bfq/at5dnQFUQBKJBKJRCKRSCQSl8ZaCArS6fPuSXIODg5aR/uR2JHorLLEs5igpEq0Td4iiXOuP4/lM6kyGfaxi65BYIJrcrq9vV0dAaUUDYdDSaonH3g8s9msChKOVPs5JtFdEWpb9VlLwnPAe2LxQ4sGfo6L7UUxhXUaSPp9KgSt+3QieKw+sYFuCAsPPIXCKQRcy2jxp82eFfvdf6arbG5u1pMsvLZeB5J8FvR0236d/+WcM6LNPjNVhtF23u9ruyL3sY5EfCZTQIyYXsEUji4xwX9TdKIgEdMOouDgdYpihQXAVYUoLwcLV+x7rGMQwTnieK9WzIiuI7+eroREIpFIJBKJROLKsFaCQvybJIpEx0SCZKdLbGA0l5Z3ihM8ucGElxFsk1WKCrbIm3S68r9FCxNMnhJhEi0dkRaTeEfQXXzQpM3PtHAgnSaRTB+waML5i7UDLHa4D76PpN6whd7P9piY6sGK/nZoMFXArgUe0xhrFHSlq3RFyU0yY80F6eRIyijIuB8WUnwtBZeYJmLhIe7JSMz5u/vKo05ZwLJrfPzb1zM1ge36ni7Szs/Eqsh9TLfwPlyVchOvd3sUFDx3dAnFe+M8dYEiEvfY5dwO0cESU0yuVBSIfe1yoCQSiUQikUgkEolurIWg0PWP/1VEJwoIJN6MUsfIJUmQT3GIxRhNiHnig3QiKrgPkuqJDU5tsO2eEVcXQ7TTgadUuM+9Xk+TyURN09RiihY2YhQ9OhEiqWI9BINE3uSaY7FoQAJOmIC79oCkljhhF4WfTZLqgpQWYEjUmfsfI+8k7ySXsc6Fr/cY2C5PXvDYOR8UE+hcIEE1Yp4/yS4JNwtB+ljSLsR7u+op+P0oaqxyOfi5/jsKIHYwUKiJzyYo4nQJG27P/fLnkM6iKwHXlf27GscB60NQ2LgaUWHVnCYSiUQikUgkEonVWAtBQWqf5EDy0mX3j5HhwWDQKk7IwoBOJ4j2eRNkk9G77rqrZV3nKQ6067MNihOsm8AxsU8keS7g6PoKvV5PDzzwQH2e8+rdngl5JI+DwaB1zKL7TqJuscLzxbSD/f39WhPBaRcsWkiyTcHCUX9H1/0MFoHk6RDsN+tN9Hq9zhoZrnfRFfnme9wnnh+KO15nOjJYpJEk2c+y24SvxTQaFlB0uywWaucJyXKM2neJEiS2JNZMLaAIxnHE9rscFt4jvV6vntph1w7rUtgN0iVqeL693t4LdoZEd8Pl4HHR5XIl93BupJOCnVcDOpg4vkQikUgkEolEInF5rJ2gYFJpEmai0pXrbtJrcmUywGMlTZaYDmDxwS4FSZpMJrWAIdMnSNr8DEaRGeGlAEBY9KCgYFFhMBi07ptMJpX8E0y18FzQUeFxkyDFUwNYc8FzOxqNWnMUx2piGdM5/J5rQ1jQmE6ntb9cW6+jC0Fa0GBkmmSOJ2jw2EXOh8H7/AyPfWNjQ5PJpFXw0GOKToPoTOhKyfAzWGDRr3FePS+e19hOTBPwHHo9SazdZ5+0YaGEn4lL2f3dN34mJFW3iq+3sMM2LAzQTUJHgF01FhX6/X6rbkYXutIKYtrC1Tgc2MerFRW6UkMSiUQikUgkEonElWFtBAWpbXePUduuv0kiIhhJNcmIbZl80t3ANAVG+CPRpJjB3G/XTTAZlk4s8iRltOJvbGxoPB63IsQmaozkMw2CxDAeoxkJFeeVVnb3yach8PkmxjG6bwGAtnn+zWvjmlFsMTGOogfn3H2gS4LrGkl0fC+ucUyFoRjEH66Xx8C+OxK/KgWBLhA+h/u6CxwTBQfPi8k/57mLBEeRJP7uPcICl06HocMgCj1x/zFlxK6VuA5dqRScB34WLVZcDannfdfiLojfB5cSrhKJRCKRSCQSiUQbayEoxGhz/G98jZFmqe1qWEU0o3OApMzk3VFs28HjdXwWj0m0ddw1EXyc5HQ6rfcul8vWkYok5I70D4fDGqU2Kad40ev1KqGLFny6KUj+nYLAugmR1DmizlMZ3DdHsUmMTeAoKLBGAa35q4QhE322Q5LseygCcJxdkexIKJnOwPlk/1hfgusdQVHGDgG7XihoUTiyoyCmn3BOuvY+f+c4Y90JXtPVXnQsxL5YCPCc+mhSr7Nf52eIjhU6KzhHfEYUYuI83QiHQNdn/kraWfXdwBMtYr8TiUQikUgkEonECdZCUJDa/2jvKspmEkgyH183mAfO+0nMTLRNkFwY0Tn3Ozs7rRMfYuTfokav19NwOKx9omOBtQ329vaq+MDrTKx81KTHvFwua3qCn+cIsvPePW4TILdNYs752tg4Od7SxN9uDOmoHsN0OtV8Pu+06PtZfs/OCBLS2WzWIurx/l6vp8Vi0Ul83Q6j5I6iSzq1ztwrbIf1Krgn6Jog4Y3uB89ZF2Gni4HtuN6En+X7vT88L6sIfxRcPA6LIXEuPVdRgImIaTDe//zcsMhmKWXl6R4WqCw6xc/ccrmsx4r6NfaBAo/X91rqHhDRecP5vJwQEOcguioseqWgkEgkEolEIpFIdGPtBAWSff6DnpH5mG7QRcxY9d/tMypKUmYC7AKLk8lE4/G4pgKYZJnodkWWWVyR7Upq5ZS7PsL29narf7a0D4fDaqmfzWatYoxMkaBrwnNgF4TJIa32vp81ITyfFhSGw6FGo5EODw+1WCzqSQXMtZ/P56dOSSDplNQSMyyi+Jrlctmqb0CC6bHYiRFJLYmoSSDdBp5HpgewXa9zFK+6Ti2Iohb3C9fd/WDbcd8xdYNpI9yX8feYokEnBQn+5eoOsD/RIeJ9zTlj32JqTnRJuB4GXSl0K9BRw4Kn7O/1iAlXAgoEXeDe8fcJ+7i5uVnrgiQSiUQikUgkEok21kJQiBFUvkYSZYLDkxtWkTypXeiNbZvg2CngFAVJ9dQDknOTJx6NF636JFrss8lmTBnw3/1+v0VkaZff2tqq0XwSH4/B4krMaafYwvoDXXZ7k1X31ykbnosuYh9TDiJB5z3xvVhkk2Py66vILwWELpt7bCOKARw394z7xH50pR9QQGC7MaXB44rryjF1pW1wLlhboovgr0pviGAUnj9dokaM8DPNQzpZf77mPRf3GIUWzh/nelXhxijWXQqrxh3dSZdrh3PEeiSJRCKRSCQSiURiNdZCUDCYciCdEDaT4xgJNZnj9V2EuUtUYNX/fr9fo/KHh0fHINqN4Gdsb29rPp/Xqv20kkf3A2s8RNJpsu1nHRwcqNfrnbJpM01BOk3cIkjoLD54XJGYx2i/dGJP39raqoIC589j4lx3pZZQxKA1nsX/IvmOBJVrSCGJcxRdCRyjRZXoXGGtBLYX91aXm4WklKkqFJJiH6IoQedD3Kddz2cfmOYiqSW6sC2iS2Tp6u8qdLUfnR/cj3G8XekM/LxyfW4GeWe7q0SFuGaSTn1+E4lEIpFIJBKJRDfWQlAgeSIhZBE4V8x31JyEvN/vt0i5yQwdAVL7hAMW1XO6ggnQ4eGhZrNZTWHo9/v1OMnNzc1ax8DEyOkQrLpPq72kVjTYNRtcuLHf72s0Gkk6yfWnmFFKOVVTgacfmIT2er1qu2+apnVKQyRskWD5/X6/3xJtmHLCEzBsd/fYSNZd64FHUbovPibTcxbJ8GKxqPO7sXF0asZyuazPYT2Fg4ODevSn54BCku/hvohk1mvEegXeF10OBL9msYZz47+jg8brSkGBYy6lnBIy7EzhKR8UHTgWzwfb9LjoQmGBTtZMiG6TKGYQpZyksfAIUwo/njOmtESHDZ0u7HeXsBD7cKk0idjOlQoCUXxkTZREIpFIJBKJRCLRjbUQFKQ2ITKxk9Qiby5MyLx3EzemMbDgokGy7/tIuHwCA0nhbDarwsF4PNb29nY9XlFSFTJMskliPRb/zqKKm5ubms1m2t3drcTQbbjvjihTWImk1qkYkir59PsHBweazWbq9/stYmT3hdFlX/cYLMp4jizs+D0/h9Fuz6nXwjUXosBiZwhdDiarsX90G7hvJPp0RbifJrsm48zhjwSeggeLV0YbvOeZ7gSDxSktlkiqz3Y9Ac4lx8J6A3R3WLyxYMaCml5b95HzTPHF/bNY4vujqOAaF3wG3TicL4/fx6Ty5AeKeqyHwUKd3svev14XijkRnPNV6R5RkLgSQaFLsMhijIlEIpFIJBKJxOWxNoICc7glnSJwUjsSzhx0uxZox+e9JknM2Y4RU7fP90g6mXphAmVnw3g8ric9uI1I6CgMNE2j8XisxWJRI/J2RMSoKCPK/X6/EkKTK0fWSYw9dpI1OiqMeGxjbNv3xNoPsUii55tjj3UQPK8uSklhgfdS5PH7sQ8UFEjOKU7EiLPHRTcCHStxvilacQ4pShgUGbxOPinDa2IhKhZlpHuC6Qgc0ypHAwuURmEmWvZp/fdaeP0puJjU+zPD8TF1ws+isBPHxDnjZ5ZCDfdRXDvuC851F+JYr1QMWJUuElOCEolEIpFIJBKJxGlcs6BQSnmMpP8o6ZGSDiU9v2maby+l3CvpRZIeK+l1kj6jaZr7r6RNigokj/xHPYlXJIy8hsSUEcdoi+8ixNH6zTb9s1wuq6AwGo00HA5booKJKwUJkv3RaKS9vT0tFgvN5/PWeE3w3CcKCgYLKXp87qekFhk0LFYwSs75jGtgGz+PXOSRiHaORGEmkmTD1zE67/8yuh9PqIhtMApukYXrakLusVAk4fM8Jt/n8XP/MJK+Krc+Ru3ZJz+fcx9FDCOSZ34WeHRkdPGQ2HNu2E+mW7hPXlfvVQpB/GzFcbqvse1Y/4LXee68V2PdCwoIUajif7tIftzDbvtyYkBcgyh+xe+VdcXN+C5OJBKJxJUjv4cTicSdjOtxKOxL+qqmaX6tlHJO0itLKf9D0t+V9HNN0zyvlPIcSc+R9LWXasiEg+R0NpvV+gUGBQCSc1vcTVRYNM/tx5QKkiWT9igexKgx3QPT6bTmkg8GA+3s7Gh7e7v2yX3ks0w2PdYHH3ywkrz5fK75fF4t+uPxuBV5ZoFFCwmTyaQ+L55UYGLmlIP9/X31+/2apiGpRXqdduH5dBqBSWfMLR8MBhoMBiqlaDabtWz+7ANz/90/piNQMDGhdf0ARsQpAniNeD/THXxCBtNifE9MU/AeodWfe0DSKfJOYcHvx3G79oNdGX7d6+T2iJiqE10yjOyzz547p9TQLcC5Yptuiy4W1wlxWouk2ncKVUzHoVARxT/f5x/vLwto3FcxVcLg+lskYO0Gz2t0RUinXU+xX0R0RFyJILFGuGHfxYlEIpG4JuT3cCKRuGNxzYJC0zRvkfSW498vllJeI+lRkp4h6WnHl/2ApJfqCgUFEgNb9p0/TscAySf6UwnKbDZr5cP7vyQw/L2U0qqh4LoMblc6KdxnQmjCPxgM1O/3tbOzo+Fw2CIzPPLROeTuu0UI1zTgCRKORrtAotS2jjvH3mSVdQxYK4DuBZ9acdddd1UxwPdzPinCeLycM4sYGxsb1Z0hHQlAdlswgh4j5obH4JoJJqSeZ/fBz/KcRucJnRuxcCGFAN/vQpCM6rN/FFQ4foslHhvFia7IOVNefL/FHI/Z4+ac8zSMSNLjHMbIPAUcXsP2o0jm17xX6VTwaR9dpNyfT4oKdph43j13FOL4mXRaiP8bhYX4Gfd+9hjpdImujC6XUde8RafJLSQiVNzI7+JEIpFIXD3yeziRSNzJuCE1FEopj5X0gZJeLukRx1+saprmLaWUh19JGzEv28TOJzqQWJnwk4SSZPLIvmgDdxsmeY7E8xhIEyHpJIfdxNWEyPnnrAbvwoomnSbGHgdTDDY3N2uaxHw+13Q61XQ6rX02AfWc+HVGg01yaSGPZMnj9YkIs9lMkmoUOhI2RtFN2GNdA6/JfD7XcDhsHTNpt0JMA3CfoluB68N90FVdP1rkSVw97xZkVolOXnv2z44GOiTYd9r1Y1t0okQSyz3t53KNoquE4BrQNRHnwn2JhNr3+L0uYYfz42dFkSCmn3SBQoh04kDxSSAeo/ccXRreX54fzi3nmH8TFCF8Lfd+XJvY7y5RIaZ63Eq4Ed/FiUQikbh25PdwIpG403DdgkIpZUfSf5X05U3TXIhW4kvc92xJz5ZOF7sjmWRkPxJJX09LPKPMJnWxTyZcjtw7ym8Lv3RCxBwVlVSL65Fwud6B+21yatcA3Ql0PpRS6nGUFiI45hi95lhNgsbjcSvHn+9xLmj9tjjj9kh2uRacV64HiedyudR4PK7ChwWTWFfB4zDJJ0Fl5X8+n6krMeLOfrDfMSWgS1Cg24KihtfVaSZ8n06FLmJtUYQEmL/HuhV0H8R24jxwD1AUiHPLufHrHHPXNfFzF+tWxOKn8XPE17lubsf7mPPg37m3uPfZ7/jMVX2g+EPniJ/VtSfj54rz4zSQW01YuBHfxUONb14HE4lE4jZHfg8nEok7EdclKJRSejr64vyhpml+9Pjlt5ZS7jtWYu+T9Laue5umeb6k50tSv99vSGwYuXU0PJIG5ombrJiExrSGGL2k+2C5XGo6nWp/f791dGOdoOPItaOdPrbSYPQ6HgXIowgPDw914cKFVt771taWRqORlsul9vb2NBwONZvNWoSM/zPyfRYjtra2ajQ45v53ESvXmXBePI8MlFRdFST5TD/w8zxvs9lMo9Gopn0cHh7WoyCj8MM6Cb7fP7F+BZ8ZBY/jvVPJpQkr6ymwSGOMwvs11tyQVI8/dMFN7zm7U7rIqhHnn6KW14M1QkjaPT7WZYgiCtElWvA1OnmimBCP34zigcfu2hsWy+KxkVwDgsIe022MLvHP6UxcZ89bdHq4Df6X42TaD9uLP1wnrinnr6v/64wb9V18vtx76ygoiUQisUbI7+FEInGn4npOeSiSXiDpNU3T/Cu89ROSniXpecf//fErac9Ek5X3Syk11382m7VqHpCwkcBLJykGkjpJEMmKye2FCxckSePxuBJ9pzKQpG1tbVVnwHw+r+4DE1Tn6JuMWYTw9dPptKYKNE2jXq+n7e3t2v4DDzxQ210sFqdcEyyIt7Gxoe3t7UqIWECPfed8GnZMkOAxVSCq6iZpLO63v7+v3d3dOi8+9cJEncKOHRc7OzuttBD3g+TRz/C4TO784789Z3aY0AXh912nodfr1THFkyRcw8KC0mg0UtM0tabFfD6v9Q88T3HvxiM3eUyk64BYKHNahsdLscXrzN8pjHG96Liw+4Vr5Od7/bw3SMopODCdx2KPRTq/ZyeD183PtVvHa0uBwmP1uPr9fktMIMn3noxj8zxRaIniSdzPcS45/q6okfttAdAuI6cirStu9HdxIpFIJK4O+T2cSCTuZFyPQ+EjJH2WpN8qpbzq+LWv19GX5otLKZ8r6Q2SPv1yDdFhEIkBSSIrzMcIZLQ1sz1GHOlQMEzeXcyRhMcnTTBqvrm5qdFo1CJMkWBJqu1sbGxoPB5rPB5X8nrx4sWW22BnZ0ez2UxN02g6ndYI+XK5bBEiRkxNcnnKBQWUSK78muctEtHDw8N69CXdBQQFBRNun3gRBRS3HaPvJpUm/DyFwXNpAiu1SWF0KlA4ivUAKEDw5AKLFmyLe8cnd3B/cM74fK8v6wDEdBnvL9YQiFHzGFk3OG8xvYFuHYpN7o/3hsdFVw/773nk5839ZmoR9w9dCHSjsBgq18LPt+DG/kU3QhTQuEYcN+eGTgPOp/ci01iis2JVW12iw5rihn0XJxKJROKakN/DiUTijsX1nPLwC5JW/Yv7o6+mLUZeaeU2TJBiNBN9qf8lMYl1FxjRjPfSaWCSZCI6GAxqhNvX+1SIUkol/zw60VZ5knsKE/P5vJIqv2fng8cWi+Exwk4rvkWPxWJRBQ4/JxYbNGl3JJoR7BhFjsdwuj0ey+ljKQ0fe0kXQMzHp8jhIwSlE7s714jrTvLMKLPv51py3Wmjj7n7jIQzdcDr6z5GWz33H0m4n88UCT6fRTxJxKP4wjHyc9HlVPCaRju/3QKcjyiIxB/ODwUPCjdRRKHbh+KR2+B4TOyjMEFxItZQievDzxSFFgoRnocoDHAsFEl4L4WNruKg64Yb+V2cSCQSiatHfg8nEok7GTfklIfrhckPSQOjtSbekiphX2Xll7rPridR7SKQtL67Mj0t0MPh8JQLgsdEsqJ9jPZKJyTTZNJuBtcd6PV6Go/HlTSymJ2kKmj4nv39/eqo2NzcrO4Hk3se2WjBwccVmuh1Rf39TEd3LTpwThlp99hZ78Hr6XoKXkOmpPh9pxf4Oj/La8T0CBJmCgScE86b19jihtSutUAiHF0cLL7Z5daIwgKj+svlsq6L7+ccdc2dC4+y3oLHL50cecl5iNZ+p5V4nDFNgYKE+0WRjOQ8igGeY6ZoeB9wj9hRQ2GCQh4/j54LO3ksUNFtED+zUTTpIvx0krAt7nWuH0Ucii/ex4lEIpFIJBKJRKIba/Ov5XiEHsladC3QgWAyEO3+FB4iufe1BAmMyb77NRqNNBqN6vuTyUSlFI1GI21sbGg0GtU0BQsLJkkmdT62kfb53d1d9Xo9jUYj3XXXXRoMBi1CfeHChZbA4hx1P8M58p6H8Xhc7fUktSbzMQddUhUNnLrgFAwTPekoQs8ihhQqRqNRPSqSue4WQGxx53oyWn/+/PkqdJCYkhQygu39YPeDdFRQ0X10OxYiPNfcD1tbW7VewubmpmazWauGAdMSKChE10O02LPIJaPgTCGxKDAajapoYZcH02VIlC3i0E1BF43n20IVxSQ6Rui+8Tq4DTofPE7PMcUIj4mfGRJyzwfdHPysuT2Pj7Up/L7nyns3pnrE7wn/l/33WC2mUeSw48Tt0uHgUz4oniQSiUQikUgkEolurI2gQBu3bfb+B71JCPOtu2znUrsIY7SJS0ckiMS96x7/10TcBJQEyaTepKff79cIMQvV2cI9m82q6GASJx2RdUk15cG1GfweI+Mkj71eT7u7u5WIWriwa8LihufU5JkCAi34Lj4Y18NFMaWTyC9PqaBQweh5rJtAcYAkrZRS6zawiKCfF+3pfp5dDtGCb3EpFvf0OpNsm6yuikJ73pxO0pVu0WW5Z3vuGwUBOhJ8vUUPz6HFKrbTlWIQXSMuXspjRJneEYU3CgVsL7oWYpFTuiM4zphe4DWJKRmSWvUULGBRDOBnknvJ/fAa8TPL/9IxwWKjdFx0iRMcV1cdkUQikUgkEolEInGEtREUpJOobCzcxuKH/sd+FBMimZDUIguMcsYij4w6U2SgPd2RXukksstighQ/TOhYqM8ChMkuTyNwqsXOzk6N2B4eHmpvb6+O288xQdvc3NRisahHXvokAdYHIEF1xDXWDXB7kQzyeS5QyPlibQRHxmmnjwJRTAXhupAQx3VmpDsS2Eg4/X7XyQL+PQoA3mORaHNPes4YradjgkID+0PSS0dFFEo8T3TGMA3Ae9W/d+1ZuhHoFODpF3aN0AXiNfAeZX/8Hp0Z/JtrET+HfK/r9a5nUojhSSHxPv4e926X4BNrjlDUiqIC9xbFlkQikUgkEolEInEaayEoxHxnRrcdeXeEOJIxkqxIYEnyGB1l/rdJItuOxx6SrJmQ0TFBO7VJiGsVSGqdwsDUAFegPzw8rLnjdhiUclTscTKZVEs8n7O1taXt7e3a3+l0quVyWZ0UJJZ+PsmdxQ/ppK6AI/GMSjtCb4JpV4Tnknn6tIlTYPH8x5QJuh1KKTUFgFHhVS6U6CpwlN//nc1mVVggQWQ/pZN6CW7X8ymdCFwWlGazWR0Lx0xivmpvx1MtKEyQ6HoPMm2GYozB/er7fGyn3R5ORfEYmBYRXQDum4k3ax90pTJEBwrnmM6I6OqI7gg6KXg6hAUWH4W6iuB7L1AA8bp5vywWi/qZ8efe/YnpT1FkSYdCIpFIJBKJRCKxGmshKJAo8m+/Riu/pJY1n6SUr3VFHhnZNXk9PDxsiRUmvhYMSL6calBKqa+5vyTqjrRzTH6dgsLdd9+t5XKpxWKh+Xyu2Wym8XiswWBQc/zvv/9+7e7uajabtRwBm5ubGg6HdWwmoZJqP3u9XhUInD7hPH//sJiiCSkFEwoYBk91IMFjeglrN/A9uzQ4z0wpocgSEWsDmEh6Pk12/bfXzuvLNAg6NmLkfzabVVeGn9M0TRUeOP5SShVvoq2fRNzza0LvPcw0DN7nI0RN3O2iMOjU4eeFQhlTUWazmYbDYa0pcHBwoNls1kozYS0DPiu6ErpcCv6dxSWdnkI3B4thxj0wGo3U6/WqULZcLjWbzepcMO2C8DO7XC0UZPy88Xhc19WiAteyK9UmkUgkEolEIpFInMZaCAomdjFa6Agmc5uZruDXunLN+RptzwTrCkyn0+os8LVRlDA5M+mJefQmLLxWOqknQEGgaRr1ej0Nh8Oa3kCCv7Ozo+FwWE9CsKjACOrW1pZ2dnZqu29/+9vr80mWY/+YQhDJrPtnQue/Odd2TDBibNcHo9E8tpC2dhZxlE7I68HBgQaDQUuIiGCaAUUB90+SxuNxLXYYCbfJIsk+bfPeV94HTBXwmNznKIQRMSJPIcQEm32L6RMk0Bwj0wvimOgeGI1GKuXkWE/W+/A1dk24P5GUM80jijweW1fdBApzTMPh/NItEsUe7ye2x70WXQMUsuJ+73ptNptVtwbXnmkzvrdrbROJRCKRSCQSicQR1kJQMNEy8Xd0lcSBEVHarKWT8+hjrjyj0TH/m5F0RyXtOnC0P9ZYYITfJy7Qar1YLOrzHIn2vSTx7P9gMKjt2U1ggj0ajVoFEC9cuNBKxzDhtbNgMBhUZ4TJl4UajsVzFsksX2cRO4+RJyfYARDXkCc9dIk9XiNa6u0Ecd/sRiHhcz+ZNkE7veG5imPiPXQReE0ZRSeZj8JVzL+P6Q6cH+5bEnavN+clOhu60j7YZtf7fI73NU9NYDFOzpPngXMeUwy6HApEFDpiygDX28/keO1eMdH3PRwH63R0uZn4OeN3QKyxEFMZojBIx0oikUgkEolEIpFYjbUQFKSTYyOdx82c8VV5zJEA8DWpnYrA6GYUCHq9nsbjsfb29ipptTXftnkW+pNOjvKzsCCpHifJyC77RHLkfPytra2a9/7Od75TkqrV+/z589re3q5OCkn1uEjb1U1yPYbZbNYqSMiUAwoAnB/PC0UWR8VJHEnWWCOBYo374zWJEWyLKCaujK77dz7fpNKkl9e5T3yGn+u6Dx6P73VaiHS6mCJB0uvovgUVOja8X9hOF1nmPLrQJZ8fI/aMrnMcvpY2fUbhKSRRNPD4LThR1GB/oxDU5U6In7uuz6HvjWkasQ6E95H75uNOLVA5zcTvc/3Yd/bBf/u/0XnBz2gUIOi6iHs3kUgkEolEIpFItLEWgkIkrQajp7yWRJiEKkaqmWfuyLn/Nimzk8CE3ITLee6LxaKKHMvlsgoCJj6Obpuc+RmLxaJW9id54fGBxtbWls6fP6/RaFSLK85mM41Go5pbbuI2n881n89bBR89Xkf2WafB73nuLJaQUJJMsaYABQW6Oba2tjSfzyvB46kSnst+v18t9VE02NjY0Gg0quPb2Nio80yXhlMg/Hz+12tEUmi3hvvN+g+ObrtGAx0oJI880YFigecx1gZw2sru7u4pa34Uc+hCIFllH03CoyjjFBkTZNa5cBskz57nwWCgfr+vwWCg+Xxe+2Ii7/Vm390fC2bz+VzT6bQee0rhILqCIgmnGMdTW/wZZFrMwcFBrS3BGhauFeLPIAUcClNMo6FQYOcDBYoul4Xbp7DC2iyJRCKRSCQSiUSijbUQFKR27jijszHKH6O6jP67HVr8GcGPEXqSEBMXE067COwEMCmxQLC/v6+9vb3WiQBMnTDRYhTX2NjYqAXySFjOnTtXCZwJtnQimrhwIesa7O7uVsGDFnYT4y57vPvEegkmsi6AZ3LItA6TN4/VBNXj3t/f12QyaRWOpADjuXRE2jUgXFfBrg2vuwUczhtt/HHfeN09r121NDgXdKHQCeH58/4xifW+sNDhUxi2trY0Ho9re96bJuwWTLiPuRb+MYH3fuTngM4It+Fik/59NBqdSlVgGoOFNaZAuJ6H62mw/5IqAfdz6fbh50vSKYGGRTM9b96ndCZwTqKgwjH0er3q7KC7gXPE2ha+lzUaKLhQXOHnIzpKEolEIpFIJBKJRDfWQlAgGeQxgzGSS0LHf/CToDEy6XsY7Y2RSQsArmXAqLxdCib4rlEwn89bKRTuq8lXtFGzn8zF55GLkqobgUUJGZmnC8JElydU+D2Ojac4EBQWTEDtXujK8+ccutAeCXp8Fkkl3RSOVvsaF52MNRVoUacrhacuxLQSEm/213PpdWKEnu4JCi0es59PhwUFLK+5UyycInNwcFBf8zq7nShseKyxuGRMe2CRTV9PscPX879u04JJvNbgiRB04Nj14f5Iaj2TolkppXXsKOeTn/G4R/g58fMtwHg9Pef9fr/lUvB8+ZqutBN+f3hOKDTEzygFmRQWEolEIpFIJBKJ1VgbQYFERFKLeDAyS+JKQkRy4VQDksGutAjfx0KQJtImTIvFQpPJpB4lGAvy+bhH6chhYJjQkehHkhWj6CbY/X6/kntGS2kP39g4Om1hPB5LUsvNEEWFLpioecwck9vyMYdGtOGTuPqHLg6Pl4TeZJuEejgctiLNPJKzq8+sC0DSzz1yeHjYir6TpHssXTUgOIcm7xYKuP+8X92Wx0CyyhoQnAMLVTGSzv/GkzWYnuDXncbgY0ejqOT+2bHBIzmd8sHPBF0Knj+Ph2kHHAeLWnqeSNTZfwoW3s9eI+4Xpofwc0NBQVLrOFcW8KTYEEUL71lfbwGIfaATKpFIJBKJRCKRSKzG2ggKJgEko0R0K7AqvdvwdY6sM/psshQJpQm9SS6jxQcHB5pMJtrY2Khn1zO6bLs8o+WsS+BIqqRWLQCTGYsHts7Txr21tVUdEf7x+27n3LlzlZR1Rf+Z68/oLUmu6xw4x5x2+N3dXUmqNRyim6Lf71cHh+fWxxW6PyT6tvR7Xpwicc8992h7e1vj8VjT6bSSZBYe9Hpubm7W2gtuK17Lox25N9zvmNLh/WSi7esGg0FLnHIaitfaZNz1MnxPv9/XbDZruQsszlg8iyTXYP2FmL9PEWg4HGp/f1/9fr+2xyKdXHOKLxYVNjc3a8oKhQfub84F6w94D/r4TzpaLIYxlYjpGj7G0n3wfrR4Q0HMNRV8rT8bdhPxM+51t+jHEyG8B/w94zoJ3kP83okCWZe7J5FIJBKJRCKRSBxhLQSFw8NDTadTSSf58zHS7vdI0nyvyRKvN3mT2i4EE0m315V6ILWPVVwsFnrggQfUNI1ms5nOnTt3qnig6yycO3dO4/G4VWCPOd8x79v964qIUnxwn/3cUk5qKsS+m7R5HpyiUEpp1SmgoEB3AU+0mE6nLZs9HQ2OkjsqzFoETdOo3++fqvTv9v2719BjdB0At2FCyiM9HTE3qZ5MJppMJnWOTYAl1boQ3BfcS5dDKUXj8bg6QuxIcZ8pEPT7/RotHw6HrTV3nywk2V1AQYrCAueG+9nzNBgMquDUJZa5roXviUIT94rfsxjGk03stDBZl04KJcY9TAFLUhV74jyzoKRFG/crioqsD+L2vZ83NzfrySpMd7EIRAeF++gxUTCIKRD8PHmvJhKJRCKRSCQSidNYC0GBxdEoDJCMSaoRT5OFGFGU1CK7rGDv66O1PaZCxBoHJtDL5bKSa0mVPDLn3FFoEzg/1wTNZNPknX2QTlwXsR++hrUdGCXv9/va3t6u9R1I4i2g+Hmx7gCfZyLPVACPrUsIcZ0ARs7pouCJCLTPO/LsSLHXxNc6f186qStAUYGpFDw1g1Z3Fv6jg8Fj7are3xUhp+Wf9/k0At9H4kmS6ufx2XE9mXJBx0L8LyP9TCcg2fbrsSAlx+P+MS2EYpuJPR04TO/gHFK043r5M8k18RjomqDTiJ99pqLws+758zxw/bleFB5XpTpRFIr1GLpqtSQSiUQikUgkEok21kZQYA41o8jMP3cknIKC748527T8m8DyWW4/igl+PRI1571LR2RnNBrVvHL3Z29vr9V394sV/qMlnf0w6XVUOAoetJzbReB+2hUxnU4rGbNdnOkdjDyzwKBFEEa3Dw8Pa+SfDgSOTTpN3t1Hrp+vd9u+lvUS3MZwOGylJfC92WxW22E9BUk1VUJqixmOPptEUijq2od83fvKx1FS3OL6xSKL0VkS8/fZb0fxuxwTjKZbsGEqAV0vft9tseZCTP/hfe6764jQ/RPTelgYsmv+nPrg++l26QJrl0TBxPf5+VFk85GddoxYlOLnn331fFmIiwIj126VEJFIJBKJRCKRSCROsBaCgnS6BgLJQ3QpMHLp31mU0ORPOhEJnHft/H2S4Jg3bcLKPHrmz7ugna3uxoULF2ob4/G4RVRMzCS1oquRJMXjCUm24tzQFt80jcbjse69995al+Gd73xnHa9t8ufOnavHN3oOPWeMcJOsTqfTOmae8DCfz1vHbZqkMX2j1+vVugrSUd79eDzWbDbTZDLRxYsXW1Hq7e3tauWnTd/E9+LFi9rd3W0RSNe36PV69dhLk/XBYKDt7e3aX6+B0xgsUu3t7bXy6Lkvl8tlrSPhvcX8fveFzg+vM6PkhvezT4GgkBXbotuB682CmnEv+9muNeF5J+y6YM0Mjt9j9Vx6PunEYB0JCkbREeNaC9Gp4LGw9gMLgdK5wZoc/mx63zKVgYUa/fllfY1YV4E1GDwOpotwLRKJRCKRSCQSiUQb1y0olFI2Jb1C0puapvmkUsq9kl4k6bGSXifpM5qmuf8ybbT+kc9iiSRe0on9m3bxaJP26QiOKDs3f2trq6YfMELrs+2ZesGoudMbTEhtoR8MBur1evV+6SQybvGCqQMmMyYojijzb/eJpyVwbkjKSNokaWdnp/bHxM5EmWkJni8Tczst7CTwGPjjFIVYqM+F/UzgRqNRqyif58lzaCLvFJK3vvWtmk6nVfBw/00gLXiwgJ+JoCP7kcR6nXzfaDSqc29ye3h4WGsZuA2Taq8JI9sUPSxS0GURi4r62dGmzyKP3J/SEel3Gojn2HtwY2Ojzr2dA7GIKJ0YTF+gcBJTe7zPvFYk195jnAc+3589ihJMR2maplWM1GSfbgQ6OChweU3o3KETw30ppdR9QyGOn1EKOkw18XMt1lAIY/FHpresM27Ed3EikUgkrh35PZxIJO5E3AiHwpdJeo2k88d/P0fSzzVN87xSynOO//7aSzVg0i6dRHUdqaSwQPJi4hWjqpFssVAfSbVt7MPhUKPRqHUiASP0tI+bdLDYnK+zOLBcLmuFf+nEMh+jnbFyvZ9Pwuyoux0BjJTG/HS354itx+Go/XK5bKU2xPmMNQZIOJnL7zlg/j0jwJ5f9nGxWNS+bW9vV+Jvl8TFixfrM+yucLuuW+G+m/i7VkR8PsUXC0e2xvt1EkfvPc+LBQL33+36v27PpyXEteB6eD/7d84d02q4d0iouRYsLOi9YKeNdCLwxDXiPuCzHcW3YOB55H7lmEnKfU2M9vs9f14sBtL9w7n3/Ph+nszAH19DJwfniH97brhHmT7EvrJN7g2mhbCA5S2A6/4uTiQSicR1Ib+HEzcEW495tF7zNY866260MHj7pt79ub901t1IrCGu61/LpZRHS/pESd8k6SuPX36GpKcd//4Dkl6qy3x5OspIYYD1CwyT7/39/VplntZ4E7NIKkyGTG5MSn1SwHA4bB0nSKLk/jmSa6GCxQqj4ME8fka7GUH1+47c87jJSJZ4tCHbYc0FtunIKq3wTgXwNSZaJtAka/4vo/gm6J5bk1QSXM+5hYbNzc3qbLA4cv78eY3H45rC4Ci2nQNMkTA5dZ+ZmjKZTGrfV+Xnu88WADxXdAF4HD6CMtY88LN9rfdJJOI8fYOgi0BSSzjy/jbxpqPFe4nk3A4bnhxCR4/fZ70IrrnbpNjAIooeA900FMzodOAce274N/c356kr9cGCmftE+H3uTf8eU1OisGChh+OPooIdCp7HWO+hq3jnOuJGfRcnEolE4tqQ38OJG4GNJ7+fDkc9vf0J23rtp/37s+5OCy+8eI++7yWffFX3lINGzSt/RzrM9NHbGdcbfvs2SV8j6Rxee0TTNG+RpKZp3lJKeXjXjaWUZ0t6tqRTaQP+B/7xdTpuqxJO2qgltYqvscCcSYWJoushmLi5sOL29naN7i4WC02n01bhPrfLVARa3E18aQXvysWnu8JRcNrhmeNNSzgdFtPptNZA8P1s3+KIiblJ3WQyqaTdMNln0UrPKws+OpXh4OCgFn30GplYe86n02ktmGgy6Tx6CyzObXf74/FYe3t7mk6nOjw8rOshHdU64OkOdpZsb29rOp1qd3e3Okbc3nA4bJFzW98Hg0GLNFpwsGsinhBAocbwfFugcBsWGjx/FBFIlOkE8N90g5B8kwBbNPCecFoP9+XOzo42NjZaJ324kKY/JzwhhEIYj2R0moHbd/+8t/x6rMvAebOQ488dUxdYH8JzaiGMQiAdInQK8ffoUKEw2DRN3Y9Oi/Da8Dnxs84UC67jmuPbdAO+i4ca3+RuJhKJxG2Lb1N+DyeuE3/jRT+nv3v+bWfdjU4889z9euaP/seruufBw6k+88mfqIN3vPMm9SqxDrhmQaGU8kmS3tY0zStLKU+72vubpnm+pOdL0ng8blj1/rj9VtSV9nYSJJMQv2YCZMJFx4KLxrlgou/f2dmpefYmp35erN1AG7QJ0XK51N7eXou0xLxrki2TXNv5HdV3KoL7xer1UXSYTqctAmvCZpJv8jkej6u4YNLuvvX7/ZZzgZZvix5N01Q3CPPUSXqxpvU+ui54dCZPXtjZ2an1FezUWC6XlbiajJogew2aptFisdB8Pq9V/mezWT3lwRF/Cj9ODxgMBhqPxy2XBd0CzLGnG4CwYOO58JpxPWKKQiSmsRCkC1tyHr0vYs0AOgVY4NPzareD9/1isaginMm0XRUG3Rd+Dvc8r7Pw4M8m3QV+pkUp1r7Y2dmpBT55n+fILiLuRRe+5B6l6yLufX+u6XzweCkWsa924kQB0a+vO27kd/H5cm+ek5lIJBJXifweTlwvNt/n8fri//5T+kvDC5LW/98eV4q7Nkb68pf/Xy11acfnt/79z1L/Z371IepV4kbjehwKHyHpU0opnyBpKOl8KeU/SXprKeW+YyX2PklXJLP5H/usMWBCQqJrRAdDbMsCBUUFRquZEiCdFLVzFX8TbRMQ2u/pGPBrPFLR7UUrPvvqvvDkCAoO0ond2n2lbbtpmlYfnQrCiLlrA0iqtn9fzxx65vT7evdvMplU0uy+UGTpSg8xSY5ruVwu9eCDD1aRw0KHRSGPyYSdqQZ0HPg5FgImk0nLYcCaBSbNXG8fsel18jM8ftd8cOpBXIvoVPGzScAtEMXUCopQvn8+n9c26VaIRRT5DAsGviY6DLrmP+4fk2zv5ViAkZF6/9fjJ5jWEZ9LWFjxOJmyw89Sl7AT1z4KNJxv7kfeR3Eupka4xoj7Z3SlYawhbuh3cSKRSCSuGvk9nLhm7H3ah+kdz5zoE8cz3U5igvFx46Wk5SWv+adf9k697tM/5NTrGxe39Pgv/+Wb1LPEjcI1CwpN03ydpK+TpGM19qubpvnbpZRvkfQsSc87/u+PX64tRl+P265ky0Qh2qBJcqQTG7URSQ+L1cUovgkNCzbGXG9a1CW1xIiY+uC2oqDA8VI8cFSfueQxOuoUAhJ/FvEzSXPfTD5JImN6gq3gHitJs8djdwDz+A2Pm0IECz2apDH95MKFC9rZ2WnVd7DY0SUYcG9YHHBfLQAxHYBzzAi++xYj2p5PCkSMfHdZ3unW8PpRwOLeoKjgCLxFA0ffefKI19rzxj3HUxFcyNOk3GNlmoqf72d0uSTsMmA6BYsSut+rfvfe4L6Kn1nuF/edwpXf63Lj+Hn+jESHAfccC2C6j1GYia4efw7tbvD3Avuz7riR38WJRCKRuHrk93DimvGUP683f/K+XvsRP3jWPTlTvOzJ/1V68unXXzlf6Gt+8guljn+ODV/3Du2/9nU3vW+Jy+NmlDB/nqQXl1I+V9IbJH36ld5I0YDEgYXjYmTZiDnnJghsk3nlw+Gwkg4TOpMqE1wXqXN7FC2Yfy6dHFUYj/OTTsixI7S23tvWHsUTR8gjKTM5db65pNqGySGf4boCdgOYgDsye/78+Ur8KaowJWOxWJyqT2CyaaEgOj1M2JnW4flzfYr5fF7rMdxzzz2STogmCy3aMeK/XT+CZNOOB9fIoLOFx1d6LmO9Aj+XZJ2Ek3Pve5n24DQLtx/v57MPDw9rPQdH6e0q8bMJphN4L9l94rQeuxxY5NHj8x5i/Qy357QHrp/39qo0DZ7GQvHAcxQj+h6Xibt/917kOD1Wz7VTiHxSCYl/dPJ0CTB0pdClxPWOhVy95/z+rSAoXALX/F2cSCQSiRuC/B5OrEYp+pjv+UW95N4/OuuerC0+eNDXz/3gCzrfe68XfoEe/1WvP3nh1v432y2NGyIoNE3zUh1VrlXTNO+Q9NFX3ZHjSCnt2PzHPKOF0Yod+lJJHh0JMXXCBNrPktSKtkbHA6816RmNRrXvo9GoVfDOR0fG0ypMYihI0HrtPvO/ri3gcZhwsRilBRVG5WOF+2glp0BA67zn26/7NAXXKHDNA57+YPLs8XptWDzQP+94xzs0mUx08eJF7e7u1loIfp4JsvvuUx8MkmOmTXieKej4mY7mU4AhAaaTg4X9COb933XXXa3aC4yOe259v/cj62+4iKL7ZWGG+8T99zxSzKCoQEHB73OvuQ883YKWf7/vOeBpDPyMeR49X/7Msp9ui58bg8Te71EY9B6m0GchzHvVYhL3KNuPz+D73odMu+A8U5i7VXEjvosTiUQice3I7+HElWDrse+uf/S/fkwfODiU1Lvs9YnT+IW//q36k786qH9/9vO/TI/+53ms5Vlgrf7lTMs9i+lFuzUjzSZN8bg8SadIIaOS0gkJYg0BW9JNLrrEi2hTNxmMBJTV7ElyI/E2kXN/7VhwjQS6HiiMdNnGKVDYQWBSzwJ/jNYyPYPjcD6++0OHh8ccUyBs/6dtnQUyTWzdb9dyGI/HraMdeRKCiaX77edYuDk8PDrdYnNzU8PhsFX13+tgUcbjM5H3viGRN1nnPuOzTazpymCEnPuNhSmZCmJC63HF9WT0nAUtKUiwjoN/IoGnoBCLMHIfUFDw5ykKLk6zoLODz+GJEBQquBascWF4nzAVgr+zv9H50/U3Pw9+nQKKx8x6FZ7rKIbc4g6FRCKRSCQSa4a9T/swTZ71gJ4y3JQuU6wwsRr3be3oPjDZT/j0l+knPuDP178f8cNDjf7br5xBz+48rI2g0JUnHkmJpJagQLLn6/xDMkGQmDAVwmTr4OCgEluTVudWuz3WGIiRfT/D/TfJ7KrUb5LWFeVmRJljiZZ4g2TIz6FjwnMVTx/gmOKP54Z9dER8sVjU0x9iegHJIQmt8+PpQDk8PKoVYZeCRZaYpmD7O9vgSRRN07Qs8oxQsz6AUzXcN5Nkr5kFjn6/3xKUYiqNU2Tiesa9HIUX75kovPh67iETe97H+WWhzigocLyM5Hc5L7zOPK3Cz7PQwZMbfA/TCSgY8H3334jOCH8eo4DAtuL9q66JghqfEa9jrQUKel01HxKJRCKRSCRuBA6e9kF60yce6I8/5EVn3ZXbDt/yyF/Xtzzy1+vf73nh7+kxzYfWv8+96i3af/2fnEXXbnushaBgAkPLuf+BH+sWGJGoRKHBr3WRApNS38MIPO9nbQG6IUyImdfd9XwKInQY+DUelxhPjXBkmoIJi+cxqs33eY+j0h4bj/mz0MAcctYlMAlljYTNzc1aV4FReostTNXwfFks8OuOyLuP+/v7evDBBzWbzaogMBgMWuvCPcL6BBZdXL9iOBxqPB5rNBq19grJqsUACkucc5NbCxN0SsQ2WHCRx0gSbs/OCffZxD0SZLsauP+9rhQ+SIQtklhQ8Gv8LElqrX8UGVhUlALMKgGi6zPofvm/vp8OG46Ln8NSSsuhwrb8+bLAEueNrh231SU8WHiJwkEUNbxOiUQikUgkEjcKpdfXB//rX9P/fMSrzrordwT++BO/W/rEk7+f/C1fpPu+462SpGa5WHFX4lqwFoJCjJybiJqgOZ/e1w4Gg2qxZnV7k1USa1qgY0TZv0tqORQsJJg0SqqE1WTTJJn3kcSYSJmomBCRlLr4okk0o86Hh4dVsIgnBVgAYJoHRQMTLo+BxR9Jni02sP4BCbuvY5E8v+eCi7PZrEb0TVg938xXJ4HkkZCeC9dn6PV62t3dbTlNDg8PNR6PNRwONRwO6/GXfsbe3p4uXLig2WxWUxk8n5xv6aRuhNtnag3TXlh/YzKZdK4NT6+wGEHSzj1ncL1IjE2KPb8uDOho+2QyObVWThVxn5xKws+KfyzSdIleHrfXkmvGFJcoAMQUAYsF3EPD4bB+jrw/vQ6cJ5J6z5Hf47P5t6SWGCe1i5R2OZm2trbqNRS+3HcKC12CTyKRSCQSicTVYuu+R+qfv+y/6X16m8qaCWeDn/mKf6GLX170wGFf3/hBH6eD++8/6y7dNlgLQcHEI0Z4TQIoKEht8sVo56qIL4/qoyWb0UxGtGl/NrG03dtkwzn50mnCI524BZgiQcLoa+bzeUvoMJEkkSNpY/0BklmTPwsKTk9w9J4pD5wDn2ThNYhR7uVyWWsg+HQCR+h9v8dG+z2dG8PhUNKJaON+sF4D14A1ASRpMBhUgcn384QFF410+8vlstZkiKLC4eGh5vN5p0PB73ssJNVRcDFpZW0Et8dimx4b55Sk26BDx3vcr3tdWDiQbhUeE+rPhPcFnS+cQ4tVFCj8nu/hKQx+vvvla5he5P563fn5ogAWxbwoHvk9jqNLYPC9Fio4Z/EzybnmWH19XL+4JxOJRCKRSCSuGRsber9eT72SNRPOCvdt7eg+ScvmQPf/53s1+tfvpd7PvuKsu3VbYC0EBen0P/KlE8tzzMUmEew6qo6knVFnvh6j/iYSjtCS+ERC6WtZ7yDmzZsMuY/R4m2CZSLs4/tMipwqQHIeXQN+DommBQIfG+mI/eHh4Sn3QRRkPC4LJoz6+hq7BBzp9RhYM8FzQxeBBQAWuSQpZb9IHHnKBKP6TEuwW8XOAQogXlO25/6SwBtMs/FYfD9TDJjmEffsqtx/nh4R3SyeJ+57Owu8B2ezWb3OhSrdL5J/tkmRwMUm7QiheBQdE/4cMJ2AIkVX+oKf6+tiAVC6AqLQY4GEAsTlEFOiPMcUqmLffB0/p1GsWLWGiUQikUgkEleLzSc8Tn/6lx+hDaXrcR3QK5t62ZP/qx73SZ+vxy0/SJv/+9fOuku3PNZCUKDNmATN5IVHGXalMvg9Rr5jfYMuEkPSsrW1VQkoI/gmqtPptBVljpZtk3g/wwTYhIeCggnPfD5vWbedNtDr9TQcDuspD4ya06pOsuS5mU6nlZw5JcOCgp0aHq8JswWP6XTacnKYtLuv8/lc29vb2tnZ0Wg00nK5rGkPnk+nJEgnxyyawDviz4iw6xRIJ84Dr5kkzedzzWaz2t/RaNRynHi9vU4sGuk1HY1GpwpHMrrfRV4pXNBSbzj9w2vre7yfPZ6Y0mDxhM+JgoLvjcdAOq2B4oL3q10gdKxYKOCaW+yx4OTnUujiPmXKBl0UMZLPfen743jcH6YTRAdOV4oB+8C58GeAaU+eC9dboKAW15nOEX+W4mksVyJsJBKJRCKRSHRhYzjUGz7tkfrtL/1OSRmsWCe89q//Bz39/T9R5eVjHU4mZ92dWxprIShEAmOyJLULv5ls8Pg7E2nbnk1Sx+Nx67hCk1WexhCJXVetBV/jtIvoRuB1fEasJcAfR28ltU4qsEhiQm6Luh0M0glJZd9J7lxHwMR8Npu1UgjG43Eljq4nYLh/FgBIut32xYsX1ev1tLOzU50Kvm9vb6+Oud/vt4orMqrv6LhTD2I0eGtrS9vb27UOgtdwsVhoOp22iC4FENrsd3d3K1He2dnReDyu44gpIBRauBc8Fqd5kPy7hkJcJ+4h9sfiDmsG+JmeP+8lWvctAuzs7Ojg4KA6MLx3/PzNzU0NBoMWgfYYvfYWzPr9vnZ2dqrwEsdBJ4n3gH+ncOC94cKYsTYDCzF6zHQV+DNPrBJ3uDf8OXEfedKHxSO3L7VTKmIaCl0UnDfPaQoKiUQikUgkrhWDl9ylX3yvfylpdNZdSXTgx9/nv+k1rz7U173/X9bh3t5Zd+eWxdoICi5Q6B9a+g1GPE1MmDtPyzMjohGMwLMtkwpf4zZZL8FEho4KEjLfu729XQkMo+Ymmv1+X8PhsPXefD6vYgSjptJJtD8W62M6hd0AnhNHoy24zOfzKniwwKCFgf39/XrqRIxqU1TY29urjoOdnZ1aUHGxWNTigU6NsGPB/WVRvMVi0YquezxMZ/D8cQ94PB4v7fQmgfP5vOUSYQqE95trVUhq7QUKRG43ponEdBm7L7xHuG9ZN4FrGvP7LWRQdGKNA59esbW1VYuCuj/cV3YfRCIda4AMh8PWe14fCgAUdDxP3HveL3bleD0oykTBzW27HwRPQfGc0BXB+aVLyP3xZ8j38QhR3su0KbpUYl2UTH1IJBKJRCJxtdg8f167P/Iu+uZ3f6Hu2kgxYV0xKD09qX+g8lN3af//fV9t/a9XnnWXbkmslaAQi9mR6MdcdamdksB7TKxcVDCewEBEqzfJHIsNxkiq73U/TMpcGDEW9fMYTdJ8HeswsAYCBQWKBSRW7K//ywKBbpfzx9QLFthz6gFTQ/yseMKBBQvXRqBwwYr+TdOcOibSa+x5cTqD33c/Lfo44mzi7+eb7JOg+zUee+i5J3GNxfsc4eYeYgQ7Fgpk/7z2rLXgvRBTH/zcKHJR/LIo4THSDeN6Cqw7YRHMYpPbY78N7wPWhqBIxz3Nz4Z/6KQw6PTwnPLzyHQKzv2l0kk8Bs8VhQS+5zWO+z2mQHAsFlq4Nu6n3TbpSkgkEolEInGt2Hzv99Kbn/4Ivfz9v12DMjjr7iQug17Z1E+/z0/rqY/8Ap0/687colgLQUE6iQyyzoEJYxcBiyICyZ4jnyaWrFXgdn0/nQpMSWAk01HYVRFLEjtH053H7ej+YrGoqRx+5mg0qm4AOxU8D5wDj9HRXxIpk8SYL+7ncNwk9szR93NIrE30eJ0Jrfsym81adniP0+4Ap16YbNo94AKN7i/rR7h9z7WFDAsYdqV09ZliFJ0Vce79Ogs9xuMHPcfcb3QeRIeL73XKDsk3U1y8z7hX2Xffx376Ojs9WF/CBJm1RdgmQWHJ6S7cK1GAiHUUeOKH58JtWsTzetA9wev8bIosnjsWpfQYvG4W9vg5Zw0QOiK87z0HTl/wOPwZ5dg9z/1+v74fHVKJRCKRSCQSl8Of/uWH61XP+U7l8ZC3Fpajoo3t7Ux9uAasjaBgMmHyGivz+3eTNxYw5DGSJITOCbe1nUSDtnemSZiYO9IuqV7HnO8ux4RFAaZNmKyY6DsH3m3Thh/rADCaurm5WUm8xzAcDqvgYtJMUtY0TW3fJNUpCLHqfyRzjHJbTGAtCvbH5Nu1BjzGixcvSpLOnTtX15MnC3jOJpNJFYHsaPAPT5vw+jtCT0eGCS6dAxRbGP33c3q9Xq3nYCJMJ4PnfWNjo9YIiEJBdFTYmeLimH7Pe9Lv24lCAYcuEvepyxXhPnr/M72DxTbpKqDThmIIXQ1de9rX+NSRKK6QuHtu434iKSdJp3joOfCcee0Hg0FdIxZBNZjWENMZvEYUpth/wu/7mhQSEolEIpFIJO4c/Pxzv11P+eRn6b5Pfc1Zd+WWw1oICoxe8vhEE4UYeWek03b4SByinZoF8SS1CKbJFo8SJEFhOoZJDU8KYKTa10ttOzXHadJtO7/7yR9Gl5kPzpoIk8mklfbgZ3s8g8GgRv+N0Wik4XCowWDQKlTo+fP9TB2g+GDhgKIPo+omq04ZmRxXTaXww7WUVImqCTxPcaC4QULp9eB8SyfElAUNWRPCfY2FL+Ncez64H9h3rqnnyy4Hk1qLEF1uAeb28366LCy+GDEVhS4Sz3d8DkUw1hahQOYxcyweq4UN13Cw48eCm8fHcVJE42eOaQx2MMTUEPbfe9DFOb0/41oxNcXrFoster02NzdbtUv8/FjIMZ7ckUgkEolEInE5/MG/+zD9/b/4krPuRuIaMN7oa7B1cPkLE6ewFoKCEWsYSCfWdZITkgNfQ0ITI8d+PxbYo5BBy7jJswvNRUt1tFWbQPOa+XzeisBGMHJu4hNJXUztMPkl2Yt2cs8hibfJvKQqJvi/FAW6yL7nwuTLwobTQCS1UhA4H+4/SaCviykoPimAxzyyjUikOVexiGcUX+z08Nz4FIvYlufP/6WwQnGjawxGV6T+8PCwVYODaQD+O+4Trmfcd6w10ZUixL5EYYaE3esZBQ/OFU8IsbOFNSVif93HLnBPW5yLRTGjc4B710UlYx0Hj8F96xKC+BmhaGNBgekX7s+qNU4kEolEIpHowhOf9AZ95b2vPetuJBIPKdZCUOA/2k1iWFTNec3RpWAyZcIrndQzIGkkuTRIrkwyfa2jsSxEGPtIUmU3BZ9vssTn0EJvYsS6CNIJOWdUXWof3yepFSXmNSSXJtc+bUE6EggsKIxGo5ry4LlxDQT210IGTwLgKQHudxRYXOjR/WE0mgTXz5/NZq3CgyTEzHM3yfQa+DlMDRgMBi13ikUF1nbwOlAc8n5k1J02epNP7icKViS3dDtw7fwMkmeSc6bo+Hm+nkcuUmQZj8enTllg9J77MLZjMYyuDkmaTCZ1zhzZZ8oF0ySYekIxhOPimH299w1TVLy2FHq8/hSvDM4vU2T4WYgpHRRqopjo97NAYyKRSCQSiUQicWmshaAQI6SuWWBy78ihI/8HBweVIJoAMddcOnEAWHAw0TDpGY/HLVIzm80qwXBaAC3/fi7t0yY80THBHH/D4yMpZs0AE2of7Wj3QBRQhsNhyxlgocWEyfMVib3TG9wu22E+vQkeq+t7Luw2IAEkAfX7s9msFVkmSGx9dCaFkfl8rt3d3ZYTYmtrS7PZ7NTRmV7v8XisjY2NSqYtFLDo5O7ubmtMsQAlBSlGyyNxNYm3uOX19/yYlLstFmukMNDllOHJH3E/e+4Y1Xf7FNYsVHGPMhUluny8/53WE39c0HQ2m6nf79d91Ov16pr4OfE0FdfdIHG30ELhMM4Z+839b3jt6F7hKQ2ec34vUOTwc+hmokDItJXomEgkEolEIpFIJBInWBtBgaTUxMNkwITN15BUSWrVIHBUlqcB8DlMT4iF2GJkdTQaaTQaablcam9vr3XsY9dxe4xuuqAeSaOJHnPHTZxszXe9CEaO3R+fiGDXwWg00nQ6rQKL881JynhyBV0JFBNMSH0igiTNZrNK6kspVYAgifR8mPT7NAaeysAIO4kdnRp0dFhYMam3IMKUAa6hiSWLDXItmBZicsxIPf/rdfR/PX8msHz+YDCoa+Vx+ll0sLCmhAUIRu6Z/+/+WkzzddxH/t11DaJThuIBBRAKV3TGkEy7Tf5QxKDoILVdNBRFoqOHfaLjI6b8+DPJOaEIRMeG55jv+XsjwsKc3RaeF/ade9OOHAsUiUQikUgkEolEohvXJSiUUu6W9D2S3l9SI+lzJP2epBdJeqyk10n6jKZp7r9MOy2C2DRNjbzTxs9oKyO9fo+iQrR1830+l+9ZgGBuvp9HKznvj2MwObLowNcYHe6yrvs9SZWYM2eepNEuBrsKmIvOa3wvTziwOBDHubm5WQUUv+eot+/1qQIWP1xQkSdvmMDGYpScP5N+2+gtiuzt7dX+2u1g4uc9wrmOLhALEBSJLFiYxHLNueeY+sBovkky+x9PFjAsJvl1ikZMl4iiAmsZUPSIiLUO+DufQeLOPdpVH4G1HPia18efC6+J3+P+9ZxwLxpdtUS6UkAszLAWAlNJ4rx0pSr4Ne6VrhoVnJPoMnH/LnXfuuFGfRcnbiyaj/gAvekvjs+6G4nbBO/6m/sa/tSvnHU3EiuQ38OJROJOxfU6FL5d0s80TfPXSyl9SWNJXy/p55qmeV4p5TmSniPpay/XEKu0O5osqUbHa4ePo6ZOefAPiTRzp5nnHgUJt08iTAJqa72PzWNhQhI4gw4IRk5toZZOBANGqw0Ta0bpmRPuyLIjwxYHeMQgT0nwdSa5Fin6/X61o7t2hH9cFNHPGwwGLfJtUWEymdTjId0mT4MwMXUaBKP2JO3b29v1uEmnutglsb+/r/l8Xtumi8TzGlMHSik1rYPr7H3g1Bavl+9zvjzrXZCY+7hOkt4oOLAwJ49rNOgeoXvA46FQ5nXvcjz42RZHWH8gnhhicK/5Xp9CQVGEThGvtfezj8KkEMK97+v9OVlVIJIpH9EBwKMv/bll7RSLBRY97JrwtfyMsc0obrHfnmM7buyIuVXEhGPcsO/ixLVj49w5bTzsXerfv/+Mkf7gb3/nGfYocTvhcT/7uXrCT511LxKXQH4PJxKJOxLXLCiUUs5L+ihJf1eSmqZZSFqUUp4h6WnHl/2ApJfqMl+ejErS6szIsAmWyY1FBkYoWayPwgCj6DxGkUTZ9Ql8j9Su5G+STCGAudq+3ikAdlhEks3j6kzGabmm9Z2RbJNUOgd6vZ62t7dbNnC7D1gzwhFzSbrrrrsqiY8pDJwDpz+QfLsWg2sq7O3taTKZtIpSnj9/vlrMPdbpdFoj17Txb25u6vz58xqPx9U9MBwONZlMWmkGFpfiMYl2VDiKbpLqWhEm3t5PJo4eM0k8rfd+BtMoSNo9V+6T+8c6Ft53LgjpNbc4wn3Ggp5+HoUDp5AYJtwsgsi94fftErFwxOMXmXLAz5H3ntMfvI9cvJOfzbgmdIjw2uPvhypY0flDt4mkVk0QzoGFNqchUATiZzLWqvC+449dFnQJ+fPrwpa3kphwI7+LE9eHNz37z+k3vyoFhETiTkN+DycSiTsZ1+NQeJykP5P0faWUJ0t6paQvk/SIpmneIklN07yllPLwyzVkskp7s3RSFI/F7hw1j5Zpkw+TOdq/Hcl01PTg4OBUlX//7rZMbNg/Og9Y+JDWe7dl0eJ4HuprTMkw6YyR3FU5/cwBNzl1dN/zNBwOq9hgp4fbn06nevDBB7W9va277rpL4/FYg8GgFoO0cEP7v4m9yZsJ42g00ng8rrUlTNIHg4G2t7er22I2m2k8HleSauLueRiPxxqPxy2CfvHixdb80/JOoue6Gtvb261CnbTxu7+DwUCLxUKDwUDz+Vzz+byuq68jWP/BRNiklQIM95KvjfU73CcLJd6/bs+CV6ztwIKjFmjinme6BB0RMcXH9/v9WGvAc+x5nkwmLYHKLhSesmDnBvc9nTkU7FjzgNfxmEb31eJLrKVCsk9Hhdv2dwSdQwcHB5rP56dEBYKpL3RudNVjWFPcsO/ixLXj9S/+c/q2D3rBWXcjkUicDfJ7OJG4xfGk7/givceP/ZmyetbV43r+xbwl6YMkfUnTNC8vpXy7jqxcV4RSyrMlPVtSzaOXTk4zoD26Ky2ABMRF8hyZ3djYaLkbTLqk9ln2JuImXrSLS2oRUxMrEmP2yYTOv1vYoNXcZIfH37kfJo2MtpIcmmAxgs6xuy2LCY5O+57Dw8MaMfeRk4xik2iZqPf7/UqOLUr49X6/r52dHT344IP1fRNeu0C8li5g6B+mPLgtE3umsDC6HfeAr/WcexyReHJNuT8Y2Wbagcmv55zpA54X75mY08/1pcgkHYk5XqP5fF7XjONjSkg8paHX61XBhOk6TNuIdQcokjBdg/2lK8Zt+noXsaSIF+eOfe2qF0LyT2HBfaN4RbePyT0/Z3EMFCy4VyzW0K3ktuh8oWDE7wO6VW4R3LjvYmW+/7Xiqe/+Oj19PD/rbiQSibNBfg8nJEmv/6n31Mf/lU/SS94v85NuNZx/3aEOXvMHZ92NWxLXIyi8UdIbm6Z5+fHf/0VHX55vLaXcd6zE3ifpbV03N03zfEnPl6S77rqriXUNItnhaQQkT3YWuHigiYodCXQeuB3phLjajeDnsjAbyZsj/yYcseAjCaik1msmQrS728ZOEYHjpTuji+SZDG1vb7ecGSa9TMcw8baoMJ1OK8F19N6RWc5/v9/XbDZrpU1QsDh37pzOnTunixcv1r65D7bKu18m+XYeeK7j8Zl2YZDok2QyF95CBkUWryejy5GEU3RiET/vB0fGSVQNRte5/hSu+GwKWUw9MakmcaWg4L1jkcIuAc8l9zoJPmsTkPz7h46AWJ+AY5JOF6McjUYtEYPuBx4D6fHG9vw6P+ucC68DHTF0KcR2uY7eDxy/Pwf+zLqQKF0ddCUxTcrjj86VNcUN+y4+X+69ZVSURCKRWCPk93BCkvRu3/pL+rPdp0r/+Kx7kkg8dLhmQaFpmj8tpfxJKeV9mqb5PUkfLel3jn+eJel5x//98StoS1LbNm1CZ0JmQiWdFI6jTd4F/hzJZfE9X0PS6XZYy4CEju4EExILF7Z6M5efBfl4SoLb47GO7i+L18VTH0yMG+TEm0zSLeDCjF256SyQ5/Hs7u5qNBppe3tb0+m01lJwSkB0XnDOPTaLK4PBoBJEux5YV8FtU7SYTCZVzGCOPgm/58xCwXA4rER4uVxqd3e3VVDQz6Zw4FQPizwmk37fqR1dThM6ROgcYF0LSa0aBn7djovRaHRKfHAagccXUxUYIY8ujuFwWFNTvE4sJso5oxhDsh/TVngEZBRODKaRMEXEYoTnzXNkUYqfO15DMc7wnPO/dOV4HBYieK1FPgonFDC8xp4HO4MoyPi/MT2Ea7fOuJHfxYlEIpG4euT3cCKRuJNxvUnCXyLph8pRNdvXSvpsSRuSXlxK+VxJb5D06VfSkF0CJg4+EpH55CRgzO2fTqcaj48sYjzFIFqWLVS4lgGL5vm0AxJoRspdkJC/85hJpmjwPkZWnW8unRzfyHHTgh8juO6vySbTOqQTVwEt5UxbsAgzn8+1u7urCxcu6IEHHtD58+drBNwChNtjAT+TOTs/Sjk6TeFhD3uYSimaTCZ1zuxY2NnZadnko/XdrgWvNV0BdjOYALPY5ObmpubzuWazWb2Ozg1J1UnhuhC0vHMvMG2GiMTVQk5XRJ+RfLdl4s25dP0Gpn6Y1LMOgOfHopU/D+6zRbPpdFrXuYv8RkHEfe0SD3y/++q+cQ+yhkNXLRELBfEZ8YQVilxMl1gul3UfSKouA+93OoTch83NTY3H4yoeeW4tgFj0YmoTBZwoZNEBxfdvAdyw7+LE1WHznnv0V37htfob539R0vZZdydxm+JDvuEL9X4/+0Z1S7+JNUF+DyckSY/8kd/Tx/ze5+gnfvC7NN7oX/6GxJni7Qd7+pvP/GLd8+rXZP2Ea8R1CQpN07xK0od0vPXRV9lOK8oonUTqbVmOhe98nwmJRQE7ABidZyTS0XIWrYvknyTYBH6xWNS0Cukkwk3XQ8zJjpFYOh0iCaQNm9fT0s9+0o3ANiIhYgqEo83L5bKmPUwmk1PHL7qtKGrwGpPc0WhU7fAWTGazWStdgfUumNPOCDQjyazGb2LoAoEkm8vlsh5daUGB6QKLxaIWkPR6uH2Sf86h55gE1O2S9HMPuu8k5awLEE8+4Lg5127f8+7xcV28ntJJjQ+norBPHiPdC/G/URjhaxYv6Lzx3NGREAUtItY/iOkFMRXC4+dYOJ/eT7Hmg9+PbpqmOTl+1msRj4OkoOHP06XmaF1xo76LE1ePZj7Xv/nvn6B3+9T79Wk7F866O4nbFOdfv9T+6//krLuRuATyezhhHLzjneq9fKYn/+cv0/M+9Yfy/w1rjOc/+G76lh9/ht7rV16pg+Xi8jckOrEWZcwpDJDIsUaCBQXpxK5ssimpRUAdzXYlf5Jgiw0kLCbtfhYJocmfBQuDxC4SKboSKBSYkDkiHe8hcaLNnkIDI8KsZ8Dj9fxfHh/I6vgmqpPJRBcuXGgVxWSEmmSaffJrW1tb9d7hcKi9vb162sN0Oq11Iyh8OJJt0YDpA76G9RZYGNCiAu3rdpnYQeA+2sngeSEp5nWxxob3H9+neyRGrNk3uhToUPC+Y+pAjLST+HOendrBven9b7eI94nTRzwOi1d8Lf43ri1rD1D0ioJCFCrcL34WmK4gqSVQxDWhiOJrvV/YvueBLgOKBPzcROGGcx1FkpgOFecnkViFw8lEj/ual+mnPurJ+rSd/3vW3UncZpg3S33fg4/V1l56ExKJWwn+f8M3PP6T9S5P/mE9bXRrBCjuJPzspKdvfsXH6/HPeZnyX3vXh7UQFGzvZuTV/7g3aY5F6EzSaHN2G6zDYOEhRlZN+CgauC/SCbE0Ad/b26vE2Q4HHiVIssniciQk7htztBn9NiKpMaH0eCwm3H333Tp37lwlWiS2/q/7aOFhOp1Wu/w73vEOlVLq8ZG+JkaHGVn3HNtqPh6PtbOzU+flne98Z62TYEs+2xoOh63aERYOOLbpdKrZbFbFCa+B0wXsGPG9FhPoQHDNio2NDS2Xy1MpCFznSJ7dliP9dJuwgOOqvH3XdWDdDulEhLLYxeg++8eouMe6t7fXuoanc5AUU0DwZ8nP5n5iygFf4/NdK4N7oOukCc4ri1Ky6KPboJMnknh+Fi2GeM58bb/fb31WKX55T9qV0OUSii4SP5cCRxQVE4lE4qzwmsWhfuz9H6ly+Kqz7koikbgGPOqvvVpf+lVfoN/8qu88664kAr7+eZ+nx3/Py866G7cF1kJQMGGUTqKYju6TNEjt8+oZzXUthMlkUttxbQASL+dXm6Qw353pBSbt/j3mkDsaTOIRC/xFt4H7z+rzrCdg4t9VWZ4Ert/vazweVxLPExJI8Dhnzk23oDGbzfTAAw9of39f4/FYo9FId999t3Z2dlqRZAsVdjT0+/3aDxZ2tMAyGAyqGGBix/FcvHixzo/dA5PJpCXG7O/v1/stBvC0CNcQ8N90OnBfkHgyfcGvWYhYLpcaj8etOfJ6UrAg3HevL48aZEFNEnkKYR5PTL/gfqEA5noRdOTQ5cHPBdM4WDuD+zGmcPgz4jYs0EmqqT6uYeCxWYhwH12QkrVKuAZ0f3huPU7336lKJvh01ngf8MhNun4sVrBQqtee11PQYE0Fiwk8fSOueyKRSCQSicTV4NEveLU+9lc+Wz/9wu9Rr9wSp0fd1tg9nOnT/trf08Ne89tK38iNwVoIChQOCNqaSRZYQM150SaWk8lEh4eH2t7eroICo8iRLLhtIpI/SfX4RBMwRjFjn42u4w4N38d0CJMfjjfeY9JO8ssc/a659ft2H5ioTafTOvcWNNweSZ7HQPK7sbGhCxcuVAcEI8Uei4mnxRWTP9vUe72e+v1+dZh4/CatJvOMoMcUFLsUiFiPwNFuRsdpdyfR9WkZjOLbKdFli2f6BIUM5vqz9gfn1/dwrSi00A0Rx0kRxePl9RwjRQjub4pUXGevw3K5bDl+PBZ/3tiWdCTqeb9xPEyxiO4XpubwGV5rflYpAnic0VnE+gw8iYKfIX62KIhQJHH/YjpTIrEKv/m976+/8Cn36Vc/6MVn3ZXEbYJ/8KcfqJ/+kafq0U1G0BKJWxkHDzyorV/7ff357/4SNUV6+FPeop//cz921t264/BBr/gbmvz6u6gcSu/xG6/UYTiZLHHtWJt/LZsImJRKbRLr4xp9rcHoP1MXHMk0UbELgWkGlypMR8t1KaVFXPzjtqJt24QmEjGSIqYpuB0TRxN0P5tOCJ9g4agxSShrHjDi6n6ZHDI1wEKJybnrT0Qi6TZsebdTwlX0LVaQ9Fsk4NGQdh1Y5Dh//nwrnYE1ASwS8fneE2w/FjhkygdTSkjsafVnFFw6svrTOeI6DRRnfH084YGOlZgKw72+ag+T3LOIIZ+zqm6DRQzuJ4KRePbF/40uF88tBRamDMTPzMbGRk31oMDEcdKNwXoMFO8s3rAfFBHdLoWBmK7B8cV0JN7HzwzHzOMuE4krwbs+/2W6f/FUPfcxT6yvfdj2H+np4/wHS+Lq8f0XHq4ffemH6fH//JfOuiuJROIG4HBvT+/+jUef5z/7wqfquY984mXuODt88b2/qnfdvPVPLfrvk6Fesfe4+nf/xffoYf/paA0yofXGYi0EBdupTZSGw6GkdhV7Rsdp8XcUnHn+pZQWAWQhNxPILkJHErm/v19dADzO0P0iYXLxQfbD7TuFoWmaWofB0Xk/24TWdRVMaHyqgdMk7E4YDofVok/BwKSehRhNqGgFN0ymnKKwWCx0/vz5mjs/HA5bjg6uxd7eXl2Dc+fOVfFGkubzef1ZLBYajUYtl4JFCUZ/SdxJnnm0INcoOjoYsY85/kyp8VwwZeHg4OjoUR5V6XU2wWTNA88N0wO8ZtFlE0UY98n70s9wegjrflCs8vGfrHXgsZqYk3h3pQaxYCfTMShw0IlBgu+97OstMhAUOXg/+xnB+gzut59Jd4P3BN1BTI/yOJkuEfdDTHtxioU/K0yL8v7sSj9KJFbhnu9/mX7p+0+OCHvR//O5+tgv/I4z7FHiVsX3PudT9fj/9stn3Y1EInET8LB//zL90r9f3+Mkh7/1Afrqe3/vktdslvUMuBw0J/82/ZoXfI4eDVH2LuV36s3CWggKGxsb2tnZabkLDIoKzMNmZNXX0b4eCZ7z2m2XJ+ln1JsuAhMtEzo6Ahi1jSkKbmNjY0Oj0Ujj8Viz2axFZCTVfHELDBQ93C/3nekOo9GoknhGa0mSYyR6c3NT29vbLdJMUcOk7MKFC7UvzoenS4P573Y17O3t1ZoO8/lcFy9erDUQSBQ9XubPm7ixGJ/XiWtKgYZFGOkc4akQzON37j/FIhNTp4p4XnxChfcgXQ6sGUBCzlQERtbpFuA1rGXAMfh1i1iGn+VaFXYCECxkyn768+P1vVQqwHA4PHWd5za6PHiP4TSVmBrDsXpOuF+7UofYL6aueL/4x4IAxQR/vuNn3GOwmEO3Ap0fdgllykPievEe3/5b+pT/9Kln3Y3ELYjxW34jI2iJROJM8PNPf4J+vvd+l7zm977pXfSHf+n7HqIeXRne60VfoPf99jfXv9/9Hb+VNRIeIqzFv5Y3Nzc1Go1aVdlJfKI12vcwXzsipiAw2mzRgTUFWNlfUuu0g2hbZ1637zGxMQmneGAyz+PuPB6TXqcZSG0Cx0iwyb3dCp4zigfud7TkGyZxTofwtT6C0ELAdDqt9SdIkn2dnRkmYyykuLe3V4ml4eKYJO5uz2SO/WSUmSkUnh+evkARxdd53kx6SaKjk8RzZtLrUzC4j5xSwnoO3FsUf0ycKToxncPXeH9Iqn1236IVnySe6xvfp3ODRRt9DccTX2dBSo4ntktHQzyWkiJQdDB47XiqRiT9huciujEolHgc8YhJ7qmu+XNbRKxXwj2SSFwrDi9e1OFxIdpEIpFIJG4F7L/pzZe95jE/+Ai9/2990RW3+emf+VJ9w8N+53q6JUl61Xyuv/0fvqLzvcf9wkT7r3vDdT8jcfVYC0GhlJPjBE0UTXi2trY0m81aRIq/xzoD0kk+uHRicScBNWmUTvLOSUBM3LuIm/sbCZyjyHYzuH3fOxqN1Ov1WkchWtRomqae1kAiTQLF3HUeHUl3Ba30ttPH3HuOzRF6X2+xYLFYaDabVTcAc+Fj8UTPke8zGY8nI1gc8ekBkbBGKzrhMZIMej09Nq5Jl7OBRf9M8H2v58Ak1c4L98WkNRYCpBBiAYG2f6ajsEhlHB/7ZFB8iukhFpV4faxpwL0XnQWsI2F4Dv25i+/ZxcFUAKceGYz6e304Xn4m3ceYmsH0hTie6L5w3/xM38/jKv1ctsG2uU7cQ553XptIJBKJRCKRkPo/86t61M9c+fU/8KiP1Fufcv66n/vrb3+UHvW8rC2zblgbQYGEKQoCJkQxKkpxwXnnUrv4m9swGFFm25E8xBSGSMpMWmJROBc13N3dbfWl1+tpOBxqY2OjnkTBwouj0Uh7e3uncscZOSZpMpGK5NKvSapOA+fo8x5J1VHhlADb6OfzuSaTSStq7zHTWh5dIrS1M62BpyywhoKFCLft+XBNCbftZ3q97XCI62WXyGQyaV1z11131SNAfaoEnRZOZ2HtAka5JbXqVdDpQgcNBQamzniPzOfzzrQep3zwnuh+MJFnjQTPTdzjnle3xxMnfC3Tajy3dr5Y6LKY5DWzSOQ91yX88DPCFCJ+TikoOO2G+zoKBhwXj1v1HmNqDtMhuHf5fWGho0skpMOEIlYikUgkEolE4trwhC95uf7oBrRz/oa0krjRWAtBQVKLbJCUSNLOzk4loJJaIoBJss+mp/DACKX/ZsTUpDCSHLoVmFfNqKzJi68xQTXx29nZqf101H57e7uSHxb/k44I687OTsspYBLrtAha0n0qgsfr+gSeDxd1nEwmmk6nLZHAhNHXeC5LKZU0TiaTOlfuD2sc2D3COSAZZMSdFfgZhbZzJBYHjLUCotNBUssBwcKRniueEvHOd75Td999twaDQR0z00EoFtGt4Ii89wrX3XNlEu7aDS4GaqJMN8n29rbm87lms5mm02nLKeL962dFUc1z73ljqolJu2tfxDoJXsdY/4CfET6XjgwX62RhSpNupulYkPKcuR2m7/Czzs+uBRCKTdF5woKiPI6Vgo7nxv3nHvC6+b8Uatg2xRa6WhKJRCKRSCQSicRprJWgQNHAMBmiNZo5/IxUm+DEaxlpdiG3VXZoPt9RXke0TTZNoruKujGVgMUDfZweiQ//OxwOT0XuTRJZn8HCQoxCM/Uiuhg8FhN8kydGuE16Sfo9ZiMKBozA00HB1x3ljlFxzr0dCRZGiC4LeqxJQOs9HR0m3BcuXNDGxlGBTBYRdJueF88rCyDGmheeq3hKA/eNRRdG0903ujAI1raIcxXdBZ5jrkXcVxTFvBaxP3SXUGTjesfUHpJ3Cyp0sjDVgK4Uj4P95hqvStOJJ5Pwd4/Dc2nBiIJIXGuLTuwXv2MojPEZiUQikUgkEolE4jTWRlCQTohFdAj4damdZ80IrXQSqXYtAhbtYyV9Ege3adLIdhjhJIHm8XkkmiQiPoHBzzfBjKICCex4PK7tzmazU9fw1AL3wWM3mfP9FhxoiWcthS4yH+fY0Xa2E+ecsKDAXHpJrevpBPE1tJizWKARSZ5rHNDp4PnwWEhmZ7OZdnd3W+JJHJNJOaPgnievPfek55hWfkbjKaT4GVxPE2u3y9QIzwfnlWIKRSPOlV/3/maf+RmKZJ7PoEsgFjzlGtCxEmtFRAHF7/l5UTjhXmHBzS4yz3lyW07DcP0EixCsJ8J9xL1HF4TbpCAZBc5EIpFIJBKJRCJxgrUSFEh4YvSQBMBkjUUWTfJY9d0RctvmSTIoKtjSzz5E0kPy3VVTgHUDFouFxuNx65SK2Wymw8PDeuIAI6UWFOwSmEwmkk6OI6QDo9/v10i7c/5pFyfplVQFEbdDkuZ+uS8UXxjJZhssnMk2GYGmoEAC6Xti+oDfp9uEr9EBYLeIUwzYjosmmhD6+bPZrK73crms6QWx8CYt+L7fz+BRk76uK5rt/nvPdRF+zj/Hy1oUfo+1AXhEJuuA8LPBvWIhK7ok7ATwenm+/Fz3jcdIxs+nxTY6SigGeH6dhtH1WXZbsX3vN/aZY3DbdK9QUPNc9vt9HRwcaDqdtgSZ/f39VjFSgutLQSSRSCQSiUQikUicxloICtF2zAi0/3Hv2gQmAMzrjycRmMTYnm2ib/LCtAeTF+Zi+zkkz8yln8/n6vf7VQRw/YLFYqHJZKLNzU2Nx+MWqTXBtE1cUhUHLCjcfffd2tvb0+7urobDoR544IEWCZfUEiB6vV5tl6cr0FlhwsvjFA1H5SeTSe1rjP77uuh+cD/m83mdB+lEDNrY2KgpFCy2Z7LHqDDf83xbCGItA4/DJ2X4OTxdw/uDLpCmabS3t1fTTizqDAYD9fv9ej0JP50AdBvQFWHEgqBGTA/hXHDPee/a1cL0Fbfnehren65tYOLLIomsYUBxwg4QIp6G4fvjmsVxW2SZzWa1TX5WKHTE+gR0APnzFPcCP/sem8U8OjC8Vk7p4PpbXHRNDc+phUG7ffg9xHoOUQBKJBKJRCKRSCQSbayFoGACYULg/8YaAczBjv/oJ1EwcTbZ7/V6rSMRJbVcDHQSSEfEyETD7xvxRAP3l/UHHEGP1fVN8j0GH/u4sbGhnZ0djcdjjUYj3X333ZpMJhoMBrp48WK9z4UdaZGny2IymWg2m9XrPVbppAK/xRSPiZX8GYlnnQqP104GnnBhUYbpKrHYIU9Q8JzG/H0SRgo58/m8uhFoyec68phHiyIUU6L930UGue8c0WdaBUUMvrdqD0eQlJPc+/mMqHvcMX3AwhZFmGjL97hjmgnfc/+ieONnUTDz3LjoJ/d+TLngc6LTJNZnsCBCgcJ7jc4gjtOv0Sm0WCxarhTON4UdOjDcD7ZFgdF94vXseyKRSCQSiUQikTiNtRAUpBMbvHSSB0/bOUkvyYWvjySH9ns7FkwiTED9jCgSkNDEOgksPkjLuV0K0hGxmc1mGgwGLUJr8uTnmMxajOCpCzs7O3V8Fy9erMf2saaDx7RcLjWbzVqCAoswGhyvRRs6PdgvP5snKNAR4Pc8XosKXoNI2DxWEtCYp850C/fD4ya5NyE34ljpbmE6AlMnWAvAc05XA+eEz/K9bJv7g3Pi/dFF3LmHOed0x3iN3R6LCXodKWSQ/Poavk4BjikovoYOkegm4R7iM+O8cmx0GdBJwTQSjy06PLoEBY7BiCcxsM2YcsLUCQpffh7X3+iqFZJIJBKJRCKRSCSOcF2CQinlKyR9nqRG0m9J+mxJY0kvkvRYSa+T9BlN09x/ubZMAk3+WVCNYsPxc1tiAo+BMwllAcRer1er+5uQz+fz1qkNJmfM3faJCr6fUXCpnapBF8Ph4aH29vZOkVe7KJhmYRHBhHw8HtdjDd1fE2oLFZPJpPZ9Pp9rOp3q4sWLVXggCaKlnoULmWPONIOY7kDCxtoRtJazhoVJqeeGNSscpV9lsSd5Zp0AuiZms1nLfu97uW6RTDLyTIJpIYYk2+kbTElwagGt/XQYSKppFLEGh9febRDsJ0Wtra0tzefz1t6J8HzSQRLnNBJkf45iWgXrOFDwMiiw0R3R9TmIz3MaET/P/rxsbW1pMpm0RLLoBInP5vvee34vOj6YPsE+0hVBN1JEFJLWGTfyuziRSCQSV4/8Hk4kEncqrllQKKU8StKXSnpi0zTTUsqLJT1T0hMl/VzTNM8rpTxH0nMkfe2VtOloO0nnqiPgSF5MyEyCfDoB885NGmyR97MsGJhc+34Xpev1erXAIgvcOdrpnPCusZhEsuiiSfHu7m4r7WI4HGoymej8+fPq9/va3t6uYx2NRnrnO9+p3d1dzWazOi/7+/va29vTgw8+qAceeEAPPvhgJUoxYhxFD0lVxGBhxMlkUkWJmJdu0heLLsacfxI5H+VHhwjdJm6XdnoXXmS03PUUYkTZwornnC4HE2USTQorxu7urhaLhQaDQT0qk6KB2zORZuHPrtQKkm33S1InYaZDwc+IJ10wHaIros7XuAYm86w1EN0JMQWAa+d7mCbT5SqJDgaSf4t7dAVQYPLnKopBdCPFOgYUrTgPTLnx3qHw4+d6z/rzSQeTr4trt864Gd/FiUQikbhy5PdwIpG4k3G9KQ9bkkallKWOVNg3S/o6SU87fv8HJL1Ul/nyNAFhOoLBwm4kRoyOsh3/l3naXdFyR4BZB2E0GrXqKbCo23g8rvZ75/STBNEx4Ui9yamkFilzBNxHQ25tbWl3d1cPPvig7r777tqn8Xisc+fO1WeaVE+nU5VSNBqNtLu7W90JFy9ebKVpRAJIMs8IbbTCcw0Gg0HLoRAJYTmuWWEiKJ24Ipqm0Xw+P2V7p5uAzhAjFsq0gMMoPsUmkmauQxw763H0er0abfe6es9QeKFbwqSeqQncL34m60ywNgGFB9aXiCk9jK53iVUsuBjbi/2OKQsUDLgnohDhefcae98y5cHrQlAMocND0iknAPepCT6FoOg+iYUzKVB4Lu1Q8rNZsJWOBj+fKUDRAXGL4YZ8FycSiUTimpHfw4lE4o7ENQsKTdO8qZTyrZLeIGkq6WebpvnZUsojmqZ5y/E1bymlPPxybZmw0J1gAuB/8Mdcadq0Y641yaR0QqKkdg0ERnZNKlwR3qcX+DQHW9ptuWdU1W2RcPEZrAfhaKh0Yrnf29urqQyug8B0CB4TaVHBRG0ymWhvb6/ex5MAPF7DBQtpIY/1BmLEnGKOCRprKHCcns/oRCApju/FYoK+hu4ErxHFEqaqxHSTmDcf63CYhFoUsMjhuaADwfcxtYCihefBcxZTApi3T9GFJNeE2s+KAkN0QHD+6Cbg/iMR52eJYLscKz9j8YdrFeeB/aYbgg4UPjuKJV3P6yL4FDQs5FiYoQDE4yf5ncDPYyknJ7BEBw/Hts64kd/FiUQikbh65PdwIpG4k3E9KQ/3SHqGpPeU9ICkHyml/O2ruP/Zkp4tSdvb2/XEA5MA5lxTUCDBkk4i3FJbOKAV3gSDkVY/z2Qj1gpw/QSLCcPhsBI85rczP9v5747SMnJsh0Sv16tpAPv7+5pMJtrYODq60bUQxuOxtre3NRqN6vX9fr9l1Z7NZvXHYkLM9Wd9A4/L/Tac3uB5YHTZ43U0v8sST8dBXAemTRCRyMYaDXQnsG8moBQSWKiwi9DSBeDX43GL3lfeexaWGN3nelrocD98DcfNSL7B/kWxjG6GLos/0wDsYvAzaemPNRwoKFBccRtdBN5txfl0vYHoeuC6sqZBvJfpBm6fBSCjmMFxMP2B4/I1dEbwuRSlDLsRoqDgPnqfda3hOuJGfhcPNb4ZXUwkEonbGvk9nEgk7mRcT8rDx0j646Zp/kySSik/KunDJb21lHLfsRJ7n6S3dd3cNM3zJT1fkh72sIc1rmHAwn7H7bai5Iz6xuh7l6PBRGR3d7eSBka9WbixK4prcmmHAm3bLujHooE+PcKigfu6ubmp4XBY0yfcngmuT2e4ePFiJcr33HNPy7ItnbgaXP/BbgqnRXhMMR+cQoQFEtcKILFzWzHfne2wIj/JYxRX/DpTHCgKUTCgs4LR5Xj6h9eAKQ889o9rTNFJOkkD4Lr5hAeOwSkQTlGJfe4iqJ4PEm+LLbPZrJXC4Otj3QmSfkbwTf6ZFsL5dNrGbDar4o/3Ip0dUViJgoIRHT58HhFrV5D0+2/vX7or3D6dG5xTpg11iR0UISTVGiilFA0Gg1YfKUhFsYXCFcVLr92t4E44xg37Lj5f7j290IlEIpG4HPJ7OJFI3LG4HkHhDZKeUkoZ68je9dGSXiFpT9KzJD3v+L8/fiWNReJKkKzGVAbf2wVGIQeDQSXLLtpoEcEkghHnWBjOzxkMBjp//nyrMn0kpCbv7Cst41tbWzp37lwtstg0jfb29nThwoUWsTbR5ikPJIKsXcAidIx4k0TSfbC/v1/JF4sg+jkeu+eZc8J2/H4cn8m0iSPXLLY/m81a9n8/K5JeOkBi+guFhLhfWPzS/TbZXi6XGo1G1bFCUcCks6tPrg3h97kPo2PBv3eldzC1w/uolNIqEuoxUszhOLx+XksKOe6P24xiAsk8P38UcbqcQZxTpht0ORO8JnbMMOWAY4vOFb7H/hBR+BoMBi1Rke6YuC5R/HAbdJ901bBYQ9zQ7+JEIpFIXDXyeziRSNyxuJ4aCi8vpfwXSb8maV/Sr+tIXd2R9OJSyufq6Av206+wPUlqRQbpOpDUIhYxqhpFBb5vYuFoKfOufa+LJtIJ4cKEdgH4WqcusPAeUwBI2khEWWzSrgeTG6c/WNjgkZV+n8TaBDSSo9gfOyq6cuX9twkpySjXhL/Tls8UBf8eiyT6Ht/Hgn+MOBMkgZH0sjiiwaKJJMuSWkIFiS0dDVzXKA65HRa4pLWfffb+5HpFguw+db1msD5EbItzyvoXJPFuL0b96RaI6Snsg+fC8+/rOO8sWtr1PI7dc2lhjMJK3G9RNIz9Jfie5yGmGHEsq9qNqSR+jWu+zrjR38WJRCKRuDrk93AikbiTcV2nPDRN8w2SviG8PNeRMnvFMDnyP+xt22aqg8GidiZ8rJcQLfe0fMdcfZ/A4OeYIFG0MEHf29urtRUoKjCSHckR7fGsCeFnugCkr5tMJq2jCWnhdgV8zlkUFDwfUTCh5d//NSGm7ZvHDEbhJkaZKSzQKeH+duXZM2WAhQQpkJAQSifkmz9O9+DRjfGowDjnnCuKC3QyeM7srvBc+fWuaL377TZYu4GiBUk714HRcc4914z9pLDiwqBuI64TRYtSSss10yUumYSzPxQE3K6dLxTkDI6Bz6cAQuHGz6PAFPef74+CA6/h3opjiNd7XBRT2HZ0VdwKuFHfxYlEIpG4NuT3cCKRuFNxvcdG3hAcHh5qOp1W4uXCbyTfJgF8zf/4Pzg4qCKEI7Ek1TEf25Faiwj+3T8mHiZRPlnB5NDuAaZIRNJiG79PZnBKge/d2NjQaDSqTgjn2ts+bsfCeDxWr9erNnvWFmD03j9MJ3CthShkSG3XBR0DJOCu8WCS77UyyWOtA0bzTRotjLjCv0kfnQEk5ywESSLH+XU6SSTcTNuIBJtF+NyuUwQ8jsFgUAUmi1sk3UyvoRvB/WOdCF/H6Dkj4Nz3FBosVDGiHp0Y3J/xmXQrRNeHQeIeRYd4n9Mu6ACxS8FzxZQSjol7Kb7H+XCtkSgiUGzoSoMwmNLj9A8LjNzDdKB4DK5HElNL3I4/94lEIpFIJBKJRKIbayEomECbGJAQkGiQoDCqLLUj4ozUmoh3RYljFDzWQ1gsFppOp5pOpzW6ulgsahqByXE8QtJ9M9lmlNRWcY+RxMzv8xSJxWLRKuJHlwIj8ixE6D54Tun0YOQ8/pckzO1H2zyJPZ/v53INXMvBoJhBh0KMApO889l+zWtzeHio4XAoSVVMsIBCu3uMQncdD2iQLHMuo+OFQhL3UnR0eE5YZ8GkNu7JOH4iRuxjrY/4eaDlnwJZFJ/iZ8DPpzDleYzCkcUir7HTZujqiA6I6EKgwBCPlrRbiS6P6LqI82ZhKQoZvpbihd0MEUwNYZpSIpFIJBKJRCKRaGMtBAXptP2bpy6QmNFxQKLs+geSWqTZhIWkO6ZSmHzbLWDrvcnJfD5vHS3Ha5nyQEIWx+S/l8ulBoNBqx++xn21QOHrXa+Bbfp9knOpTQwZWZfUIn+cFxJSF+4zYtSaEXqpXRPB7dI9IUnD4fCSgg9Pw+gi036PYgZt7vGUB4+ViEQ/Fh9kTQHfS2Id+8Px0o1AK30k+hQ62C/3g33wcy4FposYdE1QkIsOGoosXBNeR0dE7LPnnqdwWNDhmLx2XAP/bmcH++rPHuc2PjcKCWzb7hXvqSi0eF65HmyTaVGXcnokEolEIpFIJBKJNRIUCAsEJgWsH+Aoo4mKiQQLKpo82LosnRBfRuJJVkyuKUbQ+jydTltRZVumGaVngT/phJBasFgsFq1CjOPxuBU1Zft2VtgRMRqNJLVz3imSUGDxdbT904XhvtkBwbmNxJ92fpN/zjEFBRJDOhNiLYcoDJD8RxeE18OCisfJNAmvH2sacK78PsftdeI42F8TfLsJSDodSaeIYALO16MDgG4J94//ZQQ+2vSjuOB5o9uA89f1w7WNbhaPl8SbqQl0t/D9mA5DgSGuJ5/F60nwDe7pmO4QxQS/7rm1SMf5jg6POK7oYFgsFq16HIlEIpFIJBKJROI01kJQKKVoOBxWwjEYDGqtARIDk+her6fRaFSJqC3OtLk7SmlyQXFBkkajkYbDYSUQtkv798Vioclkor29PU0mkxY5lFSJptuNUXqTLVrHTb7tAuDzWfeBUXFGgkm8TaoplLBWgKROMsSIMf9LMiapzr3UPtbPBJDRXwoVXQTYxDSSO885j++M8xzTCzwu7ge3FSPjzJmPJ0twHjxGPtNjsHg0n89b5NP9oBOGP+yj2+8izHSzRCHKqTVdBDr2ha9zrlgbxH31fHK/e49GRwKFlF6vd0og4fxx/F17iGIMxQu6R4goHkRxwuOLIoHTX7iGXseufnchPieRSCQSiUQikUicxloIChsbGxqPx62Is3SSz97r9TSZTDSbzWpNARditFuB0dcu4sfigD6WkYX4WDHfBRKn02l1CZA4mkgypzxa7GOk/fDwsB4zKR2dMBHz/Z0v7nQKp1yYBLm/JEmOopp8xSKIJFLuSyzCSFdD/CHJo3vDY2QRwZjjbviZXWvk93ktySffp1DkdbVY5P55Lhm1j+TeIojb5lx53Ba0LGYxrSGOzc9nlDvWSeB1l5orzgtPRWAxT645HQ0m6Z4Hn0jCti0KeB5ZJNPjjJH7uFdiegD7wX0fHRJMP4higvvk4qruz2w2a61VREz3cZsxVSW6TthniiZO2fD4MuUhkUgkEolEIpFYjbURFBy1N0kx4XEVeLsQ/I98RihJVkx8TOx8nU9lMCl0LQC/FtMXeKICo66MxJrwxUgxyQrHaBweHmo+n2s2m7Xs3pG0mhgxEk/xIhLkWBeAUe8oeNBSzpSISPooXnBM7GO0qxsxxYFz4Z/oyDBYOJGRaq4rxYS4H3wtnQAcM/vMgn9ca7fhvcg2KOhQ8PC+Mjkl+ff1dAa475HI+3WSY6ZYxB+LAizEyH3ZtbZ8FlMeolC0SlDgvEd3iOchjoNrQ0JPIWlV+7wnft54D+ePdUw8/13FIvmsOF/pUkgkEolEIpFIJLqxFoJCKaVVqNBRdZ+GMBgMNJvNWqcORAITTzkgybObgXn0XaceUEDg8YxRUHA7Po1BOilWSBJDe310LLimgh0H/X7/FPGOhNWvWQihU8B9i6SKv3eRVdrC2UfPXSmllVYQnxfbj6SPog77yLQI5uqz/Qi2E/vK++huiKTce4wFPLtEApJUzneXmBAFBTtnXATTdUC4N1jYkqDQEskuXSPsB/vD+Y/txDoLfF4cR3Se0P3AdY7OD7fJNAvOVdwfHJPJfteacg7iPonfBRYyuJarBKOuvcW5jqkxiUQikUgkEolE4gRrIShsbGxoNBpVQmHSbNu2rdu7u7va29vTfD6vpHy5XGpra6umB1gEMExser1ey/re7/db6QN2Ppj4xYKHscCe1D5WkUQoElPfQ4JlF4THGYkUT7Pg8ZROe+iqceC5dP9cONJEruvoQpMmO0RIJp0O4mdEAYFjo/ARySrJp+tEsLZFV8FB2u9jzn0s1OeIP8k/14fuE4tLdINEkYCOAjpcPLaYQsH5MaG1s8YOitlsVvdGrDFB0kxC7D3ZJRiwRgcj/d777G+8x21z33lN6B5h3QWuv8E9Ht+P+8Vr2ZV64n0TnTKeT/7t1Jku90XTnByVGefW+8D73u91uZ66xMpEIpFIJBKJRCJxGmshKJgIsIjiYDDQYDDQcDjUeDzWcDis4sL9998vqU2gFotFrXlggmmHgwlGdBDE3Hj/xIi8SRcLL7JuQSmlRfIZBaWF3ATd71tQMOmhzV86IX20vNtGb+IcXRTOsyeRclvuDwkjX7NLwuvA/nDshvvuPrKeBCPZFgUsAJE0MmWFEXS6CegwoKvDe4dr6blhX/3sKADF1IDomjCBpUjhZ02n0xaRjVZ/ruvh4WHLIcM5d5tdiKkHMVrP9Acj7j3WqfD9no+41tFJE/vh36PrIaaIcF140kIcJz8rMUWD44nOF+7pWJSRqRNdz7JgyJNHfNKJ71u1HolEIpFIJBKJRKKNtRAUpBNyaiu4I/EsvGiyPxqNWsfNkTg5dUE6ITAm8oz++n2mSZD0uk++rss+HslHV+oARYd4nQUCk8bYHnP3SbjdLk94ILlkWgTvi0SJIgP7EIm2nQu8j/n0dBOw7/6J6SLsB+fUbXkd3Q7Hxah1vNftRScD55Vtca18DcfQRa79Ottyn7oIMV/vir6TBDviz2dwb0unT+bg/o0OAe+DuB+9d+KejAJHFCfi2ON8+m/3mfPi/bIqbaZrnrkGbtepJxQx4vxEhwHnPK57dEtwHletfyKRSCQSiUQikTjCWggKjJSaYFlMoIXZBNvH6cX7GWVlTjZJjnT6GENf6x+LFV2nEkQSx8KH7GeXFZzRYoM2e5J2Rv4pKpA8kdS5T4xo0/bOKv7uC+33FBO63AsUDdw3Rq6Zix+FnigokNCtiopfSghhtJ0gefU1XWKH26QYwT6Q7HaldzAdJRL5SJQ5h6zNEJ9LoUrSKUcA++92uk6n6CLGcdxddQSiQ4DCTezHqrSFKO7EOYtjitd09TkKRXxedEZEEc/zGPdSFBTi2BKJRCKRSCQSicSVYW0EhcFgUC33zO2nyMBjGk3kfc14PG7lhTvyT7s6o5MsOEdLPNMHYk45LfM+eYJH+5HA21od0yrYHh0TzvGmiOE0BD/bTotV4git40wfMUkjWaXQQst7jBhHQaQr/z+mavg+I0aQY5TaRwXG+zgPzK+PooWv5d+0tNMZEUWCrhQICgZxn1rc8fGLJPR8PtfdY4yR9Ui4/bsdBLFfcW0ohPEUEH5W7ESIEXruCc5D19rGca0SRSiYuC2uD/fcqsh/dOFwvOyTx+Zn0lVD0aAr/Yf96wIdGnlsZCKRSCQSiUQisRprIShsbGxoPB6r3+9Xos4oosk2i+tZPLBjwf/1z2KxqGSLOfV0PDi9YW9vT4vFovbFMFlfJQK4ryb7FAPoUmBbLDZJQaTf77ei/b5HapP2SLLs1nA9BQoEkQxGEtfl7CBx9Rx5zvk89/VShItRYZLWOA66CrocJTEiznHQ/UDXCMWgXq93Ko+f18fjDWNByiiIbGxsaDgc1jlfLpcth4EdLn5Wv9+vv3u/MN2kK7JO8svTSTgG9pkk2oKCU3ecarDKFcG+87lRKOpyUqxyf/gzSyEotkVhq2s9o+PBz+N3A4UipsvweEv/RCEpiirci5dyeSQSiUQikUgkEokjrIWgUErR9vZ2Lb7oExBMZrvEBOlEHLCYwMgyixk60riKuKwq2hePzzPpYME9khBf49cNkli2QTLPGgYRzoW3YEDy76KBHj9PjWDRuqZpqmhidFXE5wkDMdJN1wbHyOg2RQDWivD7PO7SfYg1MlalNLCfcf451xZvDIo27tuqKHmMXpMws9/ucxR/6Bowafa8suhll4gQ90yXW8PvxXmIf7MPscZCFI7oaogOF9aA4PXsO4UxPiem6URyHl0mXUQ+ihwU9uhYMeLeicJC12eR77Gvl9qDiUQikUgkEolEYo0EhfF4rPPnz2tnZ0cHBwfa29vTdDqtJzeYIDFloYtAm2RLbXLXFe30NTHi6jZdEJIOBz77Uoh2b45VOiI6g8GgErGYSnApQrMqKuy+k6jF6Gyc9ygOUNggITXR97GL7EvMZY/9ouBgMh3TLfy+dHIMZGynK2pMm7t0Im5YaLGwQRdCPAaxK61DOhEN2C7TVrqi754riiesN+H5jJH1WL8gRt0ZOaedP+4bzhePR4zjjGIEhZgo1nh/WnDoEjK6ov/8PToi+DdFsrifKPxxL1NQiC4ZChCr3DlEvIafvXQoJBKJRCKRSCQSq7EWgsLGxobOnTune++9V3fffbcWi4X6/X4lrtPptNOOzVMg3I5fN9GI1nKTsWj1N3Hwaz6a0MKCo/N+TiRb8/n8FLHs9/stxwMFCv7O55mEsY6DdERsbGE3XGuCxPdSJNMuh4h4ugPFEj6fwkIUTLpEC4s5vobtmrQ5XcWvdY2Tc8oaDF0uDBaf7EpZ8Z6iY4WknUJHdFxwfln7gq4AW/39GtNj6Niw84Y1DehcMIF3f1jrwOMbDAYtcSamQri+R5cAxfX29R4Pi5nGfUJBggIBRR2KAhQBvSYUH5wqFEUSPjOmQXAtXS+FaTkUYrrSRDgH8XcKF5nykEgkEolEIpFIXBprIShIqpb0c+fOaWtrS+fPn9fFixc1GAx0eHhYayLM5/N6Dy33JjHRxSCpElQTOOfAj0ajVrSTBNiCRq/X02AwqM9eZcGWVAsxktTyh7UNer1eJdOrUiai26Df77eOiPR1FE8YlfXJESSivo/pIgYjw+7vaDSqbS8WizrPLkzIyHmM+vO/XGeSYjojfD1JJOFrXYeAolK0+7MmhgUhkm46GyK55vsWW+h6oaBBRBeMBQETZ84VBS6T4eVy2doLXfubz4996XJvkBhzr3u/c090zblfp2OFToK4vpGIR2dJdDBwzen6YDoDXRlcrygA+fNPN80qN09c57jHKI4kEolEIpFIJBKJblxWUCilfK+kT5L0tqZp3v/4tXslvUjSYyW9TtJnNE1z//F7XyfpcyUdSPrSpmlecrlnmCz0+32NRiONRqPqMphMJhoOh7VGwObmZktUMAlxlNLkbJUNmnDaASPvdAZYVBgOh7W9xWJRi0ZKOkUgTSJXCQp0PQyHw0o0aYNndJspHXF8JFweT4z2My/ez6HDgoQppi5Y1GBRQcJRdd/L8dMB0GUhJ7HlSRwmrow4R5s9iSmdA77W73GeKNw4FYEiC8knC3l2WeqNrte7UgkY9ed7JMRd6QiM+kdbfuw/56CrH6v62BWll05OHZHUEp04x76O6Ugec7yez439Yq0Fih5ui+tdSqlFMOPRpv59ldDh/3Ld4r7i3MY5OWs8FN/FiUQikViN/B5OJBKJ07iS8Nv3S3p6eO05kn6uaZonSPq5479VSnmipGdKetLxPd9ZSrl0sQGdkC6T+NFopPF4rPF43CrWOBgMarFFR6ktJCyXS83n81p3YTab1fcIkg8T+8FgoO3t7SpmjEajKibEEyRMyv18CxEm7yZYfFYkSY6oDgYDDYfDlrAQCaf72O/369GaTpeIggBdECxGx/e6Xo82/khu7QLgSRR8JlM3JHWKHZeyjrMeBk+n6Ioc+/cugaKrnoYj/yz2GK+JpDXWAKBoweNG476iEGCwDToC4vzEa+PeiXNAAcrvReGqa7662uVaMsWDxUpjLZI4Z34/jpHCEZ0gUXSheNPVTnxO/OxxflYJF10iRRRxuAZdwsQZ4/t1k7+LE4lEInFJfL/yeziRSCRauKxDoWmany+lPDa8/AxJTzv+/QckvVTS1x6//sKmaeaS/riU8oeSPlTSyy71DKY00KI+Ho91zz33aDqdand3V7PZTJPJRE3T1CildOJSmM1mtZijpFPkO9Y0oO2/1+u1iKf7wh/b6C1cmJw6Koo5q8+I6QwmKRYUxuNxdV04yh+JJUkwyVVXDrzRFQXme1FgiNcyYswijOyTc9h9nftOsI5BfEa0/9u2bnHB8x2t/JE00wbP8VjkoUtDakfco+ARXQl0CbBeQkw98LNJot2eaxl4vjwvbIPXew643pEk8173k2PqmvNVp390HQHpfsRTN2IdDIoMsQikr6ejIYICh90HTK2IpJ5CSlebq9wJUUzg3/F9zu06CQoPxXdxIpFIJFYjv4cTiUTiNK61hsIjmqZ5iyQ1TfOWUsrDj19/lKRfxnVvPH7tkmiaRrPZrLoLzp8/X10BjlgPBoPqUIjR+fl83nInTCYTHRwc1HvG47Gk9gkNFhFIhClmWJSg1ZoE1u+7n4xeG5HQRSLD6L7JtAlMLNjnZzH6T7fBpaLSfI0nDth5QNLHZ1K0sDhjZwbbZNt8nY4OErNoUfdcMYrNFA2SYAsZJL9M4fA8meyalPrkBR8dyQKIjsDHdfY6RfLfdWJEjN53ReEpADACH90GXe24XxQ34vGb3ENRyIo2f+91t20ibxeK3R18Dk878byzv3GvldI+IjMKAXQscBxdNRZW7cuuZ0bE2hFRAKRgwnZWiRZrhhv6XZxIJBKJq0Z+DycSiTsaN7ooY1fCcee/yEspz5b0bEk6f/685vO59vb2dPHiRd19992V2NDGzh9J9T3ptG062qdjJJ7Xryq8FvPTTZBMKE2saTWPZMXtSO0jGbss+zxRguKDCfHKSQ8EfdV4/DqFjGhFZ1Q6ujQoOpBsOdrNttwX/70qJz32tdfrVUt7HGNc+1VjMxm22NPlLOiy4sc95OfGtAc+o+sUArYf2yQpjvd1CRAet4/ANKJ405XGwP5EUSF+HrqIeBw7T2hw+7GwI++lgOVnRuEkOh5iX7pSGigWUdCKgh3Fl+g26mr/NsM1fRcPNb6ZfUokEok7Cfk9nEgk7ghcq6Dw1lLKfcdK7H2S3nb8+hslPQbXPVrSm7saaJrm+ZKeL0n33Xdfs7+/X10K+/v7rar4JHEkBCbhkTD4eEQSYEY0mdMutQv5kSzzGDrb/umQcFt0G6wq4LcqKhsjvu67n8foLq3jMZpPYtSVfmHCzCMiu64hieQcRDcE58agTd995JGAJMlxDJyDVfPmPsQjP5lq4fv9XF/L9ISYKkDRI86hX/ceis/wusQ+R5Ia91PXfzkvfp0ujFibwKAwEvdVrEPA6LvvpfgR24zEvGuccbxRpIpuAo47uhziGGKqTry/63MU1yC6IlgHo+u6rnlcY9zQ7+Lz5d61H3AikUisGfJ7OJFI3NG41jPRfkLSs45/f5akH8frzyylDEop7ynpCZJ+5UoaXC6XWiwWtZZAF8nlayzgZ+s+iwfa4bCxsXGqyBuLOfp1/k7BgddKJ0UKB4NBS1hwP+yaiHn+LGrXFQ122y5MyVMtojMgRqQ9DzwdgUcWes5Y+FA6qeTfdRSmCbDdCvE62uLjUZ0ULbqKTV4qMt4V7adgsLm5WQtZjsdjjUajVrHKWPmf6TEcUyTUBsUkr31Xzj7HyP9StIrReL/G1zkPsR0KaWyDYgeLS8aIPf/m/MbaDbGmgtuODgv+xM9MFDW8F+I4/ay4TziPTEvqGleX0yCuX+wr55mfKV4TXTmrPqdrhhv+XZxIJBKJq0J+DycSiTsaV3Js5A/rqNjMu5ZS3ijpGyQ9T9KLSymfK+kNkj5dkpqmeXUp5cWSfkfSvqQvbpqmO2QfYILiGggmC3YuzOdzLRYLLZfLSuotHtCib3Ljoo2OaEsnpN6V/2N+N/sym83q/T7CkqdCjMfjlvXaEWyTWtY6YETb5Mgk3UdQsqAfj5I0SH5MdH2sH8l7V9SYkfVo93fb7q/rHjhVIObqx9QHnijhOgUxGt3lAuDaRJLLUwX84/5aIKBL4fDwqKhnXG+TU0m16CdJo/vu1AWvfRfZ91i6hBcS5y7nRlzDiEjESfANHmvqtaJgQuGli8RzbHSK8HkWiLpep5DFdeEYuM+ZnuJ+eW2i+4GEvkvoiWNmSs0q2KFiIdCOpSjWuGin22ONEY/1UulGDyUequ/iRCKRSHQjv4cTiUTiNK7klIfPXPHWR6+4/pskfdPVdIIkmTn8JhrL5VLT6bS6Fxy9dCR/a2tLy+XyVNQ42pZNKB11NiFi5J8RZpMuEzYTDR9raVIfibt/N8GOBI+Rb+anS6trILh/JlZdhQSjALDKhk5SFiPoMR3Aa+GxMILson6eb5N8X9uVZhAJL10jGxsbVTQicbcA03WkoNcrzlk8OpLzF90uw+GwijNx3rpeW5VuEGtouG8xIh7JPPfpKmdBnLvYH47T80pnRhR04okMXZ+XWNODe42OGc4FHSkeM/ve5QDgs7k+XO+4b1alUcS/o/sgngLCcXEN3K+uz+JZ4aH4Lk4kEonEauT3cCKRSJzGjS7KeM3oSjeQ2vUOSIx4XCGJWRcBIMHmM2JklJFPFnMkGZFOiJYdATFSGwvN8Rr/bTFif3+/VQ/AbXRFyR0xjQ4EPoukkoIF248R6S6iyrlk/weDQeuaWBTT7VNEiLn3kSzH/nalYBgUFjiOGNGOpDBa+mMEnn2JFvlV5J5gqkUk5jEi3xUpv9T88JkkwavIbhxnF1mOY+haI7te+HmMQgjnWmoXrYx9oEjHzzJB4Ymfza7xUPy7FFYJMfGaVZ+7xO2Pd372U7U/yrW+nbDzpwca/+jLz7obiUQikUjc9lgLQSFGI020GZmmZbppmkrCI0H0PYygdlmsY4qDib374wiuiev+/n4VMdiXGCkn4fH7y+WyFbH3GOfzea274OMMSWpilN59M+LrjBhbtCDxpGBCy7/TBWK01mN09N5rEclwtMCT2MeUj66ilSSRXekV7DfXiu11EeW4NygssM4FTwuJRRajkOP+kgjHlAee/BCFGQoWUQhhO12OjpiyEMWxLjLc5XhgH/x7V10Hfp78fDoUuhCfFZ9Pd4bHHPd8FPwoVHWt8+UEK17fJU7E/RKFl8RthI1Nbb7Lva2XyuaG/u0/+g49Zbi54qbErYjPfsNH6q3/92EnLywXOnjgwbPrUCKRSCQStynWQlCQjnLcp9Opdnd3tbe3Vwmf0xwY+bS1PpIR6UQMiFFuv+fXTEaZe+7X3abJ6sHBgRaLRY3IM20gRll5DQmvSblrQEjSbDarRNaOB/cn5sOT2FkMsOjCZ5N0GyZxrnngNmINgBhBtyBCezz/doqCCelisWg9z+JPJI+c70jOmbPuuYzruL+/X5/lNkjoGQ2nQELniNM2WIeA7TN9hnvJQg3rb7APjM6vinZ73iNBjtF31gaJRz56Xn0N157PZvFDIwp4UQyKNRD8Wq/Xq8/rSmmJrhAKc5wnigxOYTK8L6OgEufqcuiaf7/O/bJKaFnlTEnc2igf/ET9lx97wanXxxv9M+hN4mbiex7zfzT/9ZPvn0/4nc/Q4ONSUEgkEolE4kZjbQQF6YgMzudzTSYTDQYDbWxsaDab1fx6F2HsyoWmyCCdjo6TSDC/nk4EOgtMZCNZMvlkoTmpu+K+1F0w0eRtPp9rMBjU/jJa7DoLjK4zyh4j9LTOdxWSi1Z+9y2SJhKqSMpI1A0LGyxu5zmI/fNrfE5EFGc4t5wLrl2XbZ6FHdke9wkJs9tgSgfniPUHuhBftzjEcUaHgvcn14CiS9f6dEX7fV+cC6YqxPQOikWeJwsp8RQG7lnvcTpzLLjENbIQwHHSBcDPFn8oKrDPqxwXXcS/y4nAz5D73pWelLg98Zav+nB9ymf93xQP7hBslg2Ny8la/5v3fqH+3a/8JUnS7/+jJ6n/klecVdcSiUQikbitsFaCgiOas9lM0+m0RsBN3knMI4mIUVWStpjnHwkG32NENPbL7TlqzWc70k2yQ4JCksSUAJ7YsLm5WdM9uirLs+1oreczopjh3y839zFNhPMYSWSsQeE+k7Rx7k3eImEjwewic5Gkxmg7U1UMRvVj5NxiTJwf942uDzpi6ARY5TyIQgv3l/cwRQbPEfvh+e2qj8D1JymO/Yh7l8/zf2PtBu95OjcopPAZXIdSSi0w2rXvpHahRa4zU2xW/bAd7u0rJf7RgRDnkk6arv4kbg+8/fOfqvs+4Q36pw//rbPuSuKM8Of7Q/2HR79MkvSez3yidp784fW9d/8vb9b+a193Rj1LJBKJROLWxloJCtIRKZtOp/X4wi5BgTUVpJMUAJ7+YCu+1CYSJPiRYDgSy5QFkwxavSNBdb8oZsQik2yPz7d9n8JCdD+Y3DCa2uv1ao0EjiOSva6ocCT2MRe9i7jR/k/hIea7u52u8ZKkdrkd/HesJRDTE3itpCpk+HVH3d0niipdEX+6ShiB51z6uVHo6XJHeN6YFhFrHXg/X4pg+zXOofvctbfdXtccdkXkuV84z9z/ERQUuJ48tYSinX/8+THimKMY1rU2/ol1OLrmalVKQ/zMU8jpWs8UFW5xbGxq6zHvpn/wlS/UM8/df9a9SawJ/vjjXyB9/Mnff+HPvlAPPziQDg61/8Y3nV3HEolEIpG4BbE2ggIJxWKx0MWLF3V4eKjZbKbZbNbKyx8MBq1TIHzveDxuRW5NLE2ETUa6opsm8SZKw+GwHoG3XC41m8060wsY5STZ3d/fr/UfDJJWP8vkcD6ft06RcLqASU+/369pIM7jXywWp8QVwoUfSdoYiWVKAK3z7iej510pCh6Lo/qRnEVRwu9Hcm7Rw+3FkycsJJBc0jESXRW+PtZeIFEmWfU9HgvdGJGI09HgfeC+UCygG8LXeS08Ph6h6L+j2yKSYDo0KFxF4cbzGx0gbK9LMPD9sUaE55Gf01jfgmkacU/SjdH1+aMgFYUfjplpGF1uF9ay8ByxTX5uo0Nj1ecoceti8/0er5/42R/WZlmf4z8T64df/qf/TpL0ysWB/tF7PUU6PF08OJFIJBKJRDfWRlAwITcx2d3d1XK51HQ61XQ6bUVQfTICyaSk6mpwPjijooz+0wZ/eHh4yvIcc74jOYnkjdZ46XRhQEbWJbVs9dFCztoNHO9gMFC/36992tzcrIIFT16gSHFwcKB+v99yQdBN4LH53l6v11qTGLGnqOC+ec14kgWj3CwuSbcA01AonFCgMJgGEO377Bcj7Bwja25EQu71oIDA8XOdfA/FBM6TBYIu8cVpE10k1uOzY4XvG3HuLULQJcC19O8UjValm7At7vtVKQqrEIWALuHgUm6JLvHD/aM4E10y7G9Mr+AaSWrthbgOUfC73HgT64+mlBQTEpeF98iT+wd6yq/PJEkv/KmP0mP/4cvOsluJRCKRSNwSWBtBQTohFI7uz2YzTSYTTSaT6kwYDoeVxPr4RZMIE/fRaFRTCEysLVjYtWASbEcEI6cUKUh0I9EhGPEk4YlE0CBx9L0eF0np1tZWLUZpwcSkdjAY1PHEOeRcmjyZ0EZbuZ+zinB6bmnHN8Gzi8PX83jNrnQAixYmdiSEXa6BGDG2WLQqkmxhhISQ0XaKDWzT/YsnOqyKWlMg4Zx01RKgmEDSHVNLIjnms7p++AymKJAU0xXQJQ7E9A6mo3Qd8RnFmK52V7kHokDDHyOmhVAgodsjrhX3UPz8dc0lnxtFJKaOpGMhkbhzMCg9Pfdhr5Ykvflj7tYvLD/8Mncc4T3/7e/q4B3vvJldSyQSiURibbE2ggLz3pfLpS5cuFDFhL29PY3HY0lHVfhdL8GRZQsH0hFJ88kJdiUsl8tKdhmxXSwWms/nWiwWrZxz2tHd5tbW1iUjvSQijOh3CQokKxQsYuTU91hQGAwGtZ/L5bKmfkRru8UTp2vYPUAnBN0HkcR2ES4/k32lQ0Fq12DoGgvt/VE0ISw60FHA1A6uD8Ue99nt+To+3/1k+of3BusvMBUkCiNdQgNJvNeNc8TXoosg7qkuwSo+n+tEp4z74ucxvWJV+xSpCItDl+rPKidD13i6Ug6YwhDrTLhvHKOFL34WKSrw9BOvZ6xLscpJweekmJBI3Nn47sf8ovTsX7yia//Syz5Po9fdqzJfaP91b7jJPUskEolEYr2wNoKC6xT42L6LFy9qb2+v1lBwRL5pmhqtp42fZLfX66mUon6/X+sI0B5t0jCdTnXx4kUdHBzowoULrcjm/v6++v1+K+rLav8UHLqiriYljkz72S7e6P45laHf75+K9ksngoLdACbbLsrouTNIuGazmRaLhRaLRRUW2L8uB8FisWi9xroQJpeMFEfhgdZ0g0UmGa23e4DRcRJIijEet+tq2JlCYcCk3k4OWuDZH4o9/HGajPdLl+DB/rnvvo71POgocV+4j2JU3KCrgjUs/GzP06UQxRUScQpIdiJ4ziSdWn86dyiIdTkSuoSH6PaJjorobumaK4sEcb/F53utLEC5PaYEcT/b4RRToOi+yJSHRCJxOfzv7/seSdJz/+yJ+qUn57GkiUQikbizsDaCggmAC9eZAM/nc83nc/X7/RqVdE0BEyTfZ8JAYh+r0fsUiH6/r52dHW1vb6vf72s6neqBBx7QfD6v7TlCGyOVJiDRbm3C7n5GSzaJ9ubmpobDYf2xaBCfxzoK/X6/ju/w8FDnz5+vBJ3tmxxbjLGowPG4XRIrk3T3N0Z1GQl3X0kEGeEmMfbfbsNr6Xlj+gTrUHiuB4NB7YcJoImixRL31YINbfGRvLKOhKSaHuOxxFodFBS89haASjldINIE3WtFgsz6B5wrg2sfI/i833uDRJpt0S0SRaqutIsuVwOv8eeMffTauZ8k53RgRGJO9wY/H6yfET/D8XPRlTIRx+T22O8oxvDzEx0xMV0icWvhzV/94foHn/fis+5G4g7CF9/7q7r31U+sf3/vHz5VD3/G755hjxKJRCKRuPlYC0GhaRpNJpP6u6RKbmMe96ooqEmDc/NJAk0UTA6Hw2F1BphAnTt3TrPZrHV8Y5e1PcJExKTcfYxuCFq8DfeJBIuWeIMEyWOwmGJiLakSXBNjk16TbpN4PsP9dr9WnYLBvpi08ySFVfUO3Naq0yQktUQet2mSxyKIsR8k8uybayiQxHIdOP/8L8m/RROLCl1zbUfJ1tZWLfhpAWMV2fX8d9UnoGBDV4KdFlFwii4KOjK8B9lOV7Sd/Vq116O7I97vH4sJFmP4zJjGQEEhugzo6KEw0dW3KBLwb7pq+B7TQChodLl2Ercm3vS1H673/sQ/0N85//az7kriDsK7bm7rS+55ff37cU96q778X3y2Hv/c39Th3t4Z9iyRSCQSiZuHtRAUDg8PNZlMKplnfQRGw0mkSJyc8mA7PmsGMDpt4urijiYcBwcHOn/+vC5evFidCSZrJkhEl/3a6QKxNgAjy/6R1LKfx/x3kn4/zyTeNSRI7GlJNxnb39+vZNgCSbT+m1S53wbHb3SRbQoKtPt7TVjbIFrZKbCw6GQk2xaIIvknfD3nif3pmk+Pg/nyFoRIeD3XdMN4bb0vSUo5T5w7Pq/LyUE7fhQV4vMoMnBO6U64lJgSHRGXI9Ek8rFdChLeD9HZEeuJ0HlBJwnFCc4555bzZnA+2adVzgx/d/Az3uViSdy6eNZnvUT/4N4/OutuJO5wfOJ4po/7W9+hj//ZZ2v463+chRsTiUQicVtiLQSFpml04cIFbW1taXd3V+PxuP7j3rndzqH3EYgmd/5ZLBYtmz3z101aSMjoDiil6N57762Cgp0RMSJK+7l0uko/I+qSNBqN6nVOa+C10gnJYaTWfRwMBpW8+36TNRNwp374OdKJY4O2bxPzXq/XKuTo1AiT+o2NjZajIZJl/868fIombp8k0W3xZAvfPxqNWgS0lJNTN/xsRrx5qgUJKdfIR2XyfdrvY90GPqPX62l/f79VbNJtMP2CbpIoIHSdQsHaETGFgnuGKSUUrbrqU0TS63nze7FfTIuItQ34XzoxoquDwgDdG+6j19ynstAxEwUb7vu4t7rm1fBzvIdZf8Pvx5QIthuLP1I86vf7KSYkEokbhl7Z1P/6jy/QBzzvi/SIf/NLZ92dRCKRSCRuONZCUHChPUfdDw4OWlHr4XBYo9eHh4eaTqdVSGBBQhPpmP9sosEjGOla2NjY0M7Oju66664ayZ/NZpWYRMs0bdwRTGGIqQ4mdCacJlqLxaK+Z1JD8YDOCqcF8CcSQxJoiwNNc1LM0tctl0tNp9M6L/v7+xoMBvXki9lsVqPgsVCex9g0TUvU8Hy7Dyb3rofhEzU8ptFoVIWMzc3NSoopIgwGg5rO4QizQRs7/7ZTgbUYKDAxjcF/u58m/l7j6FTpEhT8X68pxRAKMF5/iyOOwvs9knoWVCS4rwi+1jRNq8BidBN4HukciW2RqPNvthn3G9NhWMuCwhsFha5jTel84Vx7r7PmQRS0vBfoXopuIn4mvUZ0wXBfdKVZJBKJxNXiBV/xbfrsv/ws3feprznrriQSiTXHG77xw/Xcv/lDZ/b87/2bn6zmFb99Zs9P3HpYC0HBiFFVRkNJIObzeY16u9hgJEV0GcQiirS0m1zs7OxoZ2dH0+lUk8lEi8WiRaZjWkKsNcAIqH942oTFAPdrPp939sPEiUUYLS5QaGBVfkZ5PU731e4ICwE8AWE6nVYngXSSMsE+WYzwevA6jjWum9GVHsKosAtsRqeBRYHoJPD97IuFpmit95hJCiNhj06ESMq9h7j2kXB2kdaILmeCBY8YQecPXQlRyIrP8zp4Dlhcsatfq9IJ2Bfu+1g3g4S8a166BI8IzgH75Dm6XDtd9Rd8H8Ugzq37SwGB+zSmQiQSicT14oMHff2TJ/2kvvI7/pbe56t/Q4ez2Vl3KZFIXCE2n/jees2X3v2QPe8TP/iV+oydBx+y50V8w9cWzd7xoZe9bvjmLb37P0nnVeIKBIVSyvdK+iRJb2ua5v2PX/sWSZ8saSHpjyR9dtM0Dxy/93WSPlfSgaQvbZrmJVfwjE7C1mV7duTVhMkRfpJREwkTKlbuJxliBNgnPuzu7mowGLRIqvvFCHMUMSIBM2k3id/e3lav16v1HkyKmBsfCzRSTKDIMBgMqiuAEfHYB1q63baFCIsQ8/m8FjGMfdjY2KgpIJxXRtxJvjj/7gudACaPjoyzT4w0+7+8N+4B959OCe8Ft98VWWe9CbpGHC2Pz/DvjG6bkF5J9DqScv/Xa8YaGFG0otDAaH9ME/B44okW0ZHgZ5FwRzHDe4P7iXs81isgOee8+DqKPKucEPHv+LNqXulQoKjAZ0d3TRQT4vp4bbpeP2s8FN/FiUTi5uFTt3f1MZ/67frkn/oSjV7xWh28/R1n3aXEVSK/h28NlK0tHX7Y+1/2us1X/u6lxb0P/XNqept68weP9cef8p03sIfrjdd8xA9e0XXf9cCj9KM/97GSpN5r/1T7b/nTm9mtxBrjShwK3y/pOyT9R7z2PyR9XdM0+6WUb5b0dZK+tpTyREnPlPQkSe8m6X+WUt67aZrTJe0BRm9ZpG/VP+iXy2W18ttKT+Lv1AcTGefEm0Btb2/X5zhCPZvNNB6PWxZ8khoTepNrkk/23SQ1jqfX62l7e7veOxgMtFwuT508YSHAtm3PjdMVxuOxhsOhxuNxK71DUo3oU0RhlHs4HFahxPZ+igO+vt/vt/LxOZckjZybSPzcJwoY7q+LZnpOo0PA69hFTHnyh10gTleI1nqvN4+jjBZ5r5/nyyTUf3v/dZ024mfF00iYRuE2vKedojPD/8AiaacQQieH9z7nN4KikgtyRkdDFOr4ObNIxJMQuJ9ZK8Rtcu/4v4bnxm1JJ8ddXkos6Eo5iIIBHST8ndd2OTu6XCmEhapL9fGM8P26yd/FiUTi5mJnY6j//b3frQ/5x1+od/mel511dxJXj+9Xfg+vPTYf+Qj95ItfoF45XcibePon/y3pla/ufnNjU//whT+ojxrehA7eJviCu9+kL/iR75ckPenffpEe/c9TULhTcVlBoWmany+lPDa89rP485cl/fXj358h6YVN08wl/XEp5Q8lfaikS/5fc2NjQ+fOnZN0RIqHw+GpyLakFqFkXr4FBRMdR5tJYkspGg6HWi6X2t7e1vnz52vhuK2tLU2n00rqnQduMry5eXK6glMtpJMTCI7npEV6mZtukmXyTILLGgmMGrM9t+O5sejhtkj2XR+C7gESXEm1TgDz2d0X1zww4TW59pzH1AK6BDzmLjcAHRsUObpcKJFgs9AjCTLJtokhjxvlvRQHYmTbc0EBin1xGzES7jH6eSauHKPFJLtAIsHlMZN8ZiT/vtdjZX+YtnIpkOzz3q4I/aqijnZCWHDhWC0uUBCj6OU+U2yJn4X5fN4pgLjPFD4k1WKs/KFYwFoKHA/3LNeSoOi0DngovosTiUQisRr5Pbze2P2Zx+mfPOHH1SuvuqyYIEnf+CP/UXtNX//5z56qNz5lV5L0R//yKfoPn/rd2lSjpw4OJK3PvwPWGT/2Bd+iL/zoz9TWx7zhrLuSOAPciBoKnyPpRce/P0pHX6bGG49fuyRM9qWTKv10KHSRK4oLjNa6PgEFBUfiTbonk0klpiZpjFqSaPu/FjgYEfW1/D1Gjk24Xe+BxMsEnsUV43g4R4zcMn/d/fLc8ehEEin/1/NGkYAkXzqp4M92IsGjBZ/vmaRR0PD1riNBmz3Fly6nA/vLNBQSYc49SaTdKaxVwLVx/9g+++L2e71e3TNeJxLVaK2nq8UndLCmAefEf9PhwnnxOCwWeT/F+hYUFuj0iJZ/jj2KN9x7Mdof0yroIuGYDKcG0aHAOXNqQTx1g+vLfcI1d58sgNGhwHQG9ouiEfcu96s/H37WLYbr/i5OJBIPDd7ts/5Yr33XD9ejnpf5x7cZ8nv4DLCxva3f/Y731fc84fv10aMrN4A8Zbgp6UCPfOT/0Cf/xy+WJH3OB7wUbaSYcKV47962vuFxP6G/+/2fq/f90j/QwYULZ92lxEOI6xIUSin/UNK+JJci7fIHd579Vkp5tqRnS9L58+erpZsW8WifjtFVigvMD7el3gTL1e5NHnZ3d1uuhphz7n7E9AUTz9bgEGXmeyRrJu7z+bxVtyEWX5RUI+wWNdivSGD5LJIpHi0YnQ6en8ViUQtaMkreJeJw7uNrjLabLPOaSORj7jqvj6cZkCSyboD7SGGli9xTQLEw4n1CJ4jngIJCJLJMh/B8040SRRbWxbBDwc6Zrjnl3NLRwX1Ly76fE1N7uuoreH74LPbViPu/S5zgtUzJiEIN54lCmfe154397fqJ7gmueSml1t+Ia88+R1cIRbBVgmDXmNcZN+q7eKjxTelfIpFo4yee8DP6/NFT9Qev+GD1fu7XpKbz45m4hZDfw2eDrUe9mx58ymP0ux/3HRqU3jW18aT+SK/9mO+9wT278/BRQ+n3Pvb5etrTv1h3/9KfaP+NbzrrLiUeIlyzoFBKeZaOCtN8dHPCbt8o6TG47NGS3tx1f9M0z5f0fEm67777GhODaDOOxCCKCpKqnZzH/tGWb1LjYwuHw6Ee9rCH6a677jpFZmzDdmFGR+pJ4FZFNBlNNkE2GWaahvtssimpigokXrTzWwjgcZlOTXBRyig2WMTwPZ6XxWKh+Xzecmp4PDGtRFIrXYGE2O+RoHk+6LSgqNAVyebrvV6vHtkZr4m1NkzYu8QA7LO6Zl0OBc8TUyUktaLmnhMWUPS4osXe/7XLhqk7kSTHtBTf630Yo/neK3ym9wVTcSIJjuNeBdY4oFDC9ADvAbdLASumwnB/RPGiq28xBaErLYECHwUor390JFBQiOKFf+/qF9di3XEjv4vPl3uT1SQSDxH+w6Nfprd93//Us97343S4t3fW3UlcB/J7+IxQit78jMfq1/+f75R0bWJC4saiVzb1i9/2XXryv/giPfLf/Kl0mCVD7gRck6BQSnm6pK+V9BebppngrZ+Q9J9LKf9KRwVoniDpV66gvUquHM10egCLvZng2eZsYhNt6l1WZ9YNuHDhgi5evKjZbFbrMLgIIYmqf3e9Ap7O4Oc66h2fTfJ5cHCg3d1dXbx4sZKewWAg6aRGwNbWVi0W6T4zbcNEngUj3W8KBc4pl6TJZFIFh+VyWY/DtEPBx29KqvUhWOjS9xqsNeBIs0ELe3RQcG6iWOS0D7++v7+v6XTaEoVITlnokOkeRnQsuE3uBRPgSCpJ7u2QYcHHGL02XLjQ/bGgwGMpOR+eB54m4L53OUH8XIs/dkDQpRH3ptfUiKkCcX18jfcnXTnRKeP0HL/v8Xmvxj7G+htx7pg+QdGK6R98NgU9fh/EVJiNjY3WiSxM84gpMhQb6FiKrpl1w43+Lk4kEonE1SG/h88O9//U4/Xjf+5fSNo5664kAn7yK/+F/vZf+SyNPv6Pz7oriYcAV3Js5A9Lepqkdy2lvFHSN+iogu1A0v84/of+LzdN8wVN07y6lPJiSb+jI9vXFzdXWM2WRMOigomaiZD/sR+j3CS5vMbvSSeF5kiYTa4Hg0Er/cEWdUZfNzY2WqSNkc1osZfUimjzOhb8sxggSYPBQOfPn28RaxN+ihmOppsscd6cV+9o7WQy0XQ6rYUrd3d3NZlMWi4HSZXcxroTLGgpqc4BxxBdESR/8TUSPb9OMimdRKBJfCMBZL2B+BwSXFrtmRZCN4BBYSI6Djy3jHbbLcD+dFn14z7l9Yz2d+Xrs02mDqyK9rM/nkuOlaJKvJZ/u+2uVIY43/Eav24iTvcKxaSu+7r2B+ezyy3AteL8UqRhmgPv4z2xPa7huuCh+i6+lbH5iIfr9d/5MH3SzndLaRtOJBI3GPk9vF54+Pau3n0rxYR1xLtv7ejddh7U/WfdkcRDgis55eEzO15+wSWu/yZJ33Q1nYj/qGcetKvJSyd57CQWJvYxih3boZ3dxNs/JMi+34ICo6FdEVb3wfeSdDKPPBIzpmKUcnSSwHg8rgTINR5I1uNpF3YJmBjZieFr7DKYTqeaTqe6ePGi9vb2WpX3SW4ZsY0FGw2KI0z18PjdR5500VXzIKYA0PbONAauo38n0YzrECPmjJz7GhLbLsJ4KZs7BQk6HKI4EUWVKLpwTuIc81kUTfg5YVsESTAJM11A/Lx0IQo+cRyr5iPOgUUvC0QUT9yfKCh1CQpRfFglpnQJQVHg8Vzzmfw7vr5OgsJD8V18y+Pctl791B9SigmJWwU9FT3wKX9O9770dXmG+y2A/B5eE2xsavKMD9FTzqfhY53xPjtv1f/6q/8/bf/kK9WAayVuP6ydnzcSMf9uEYD/yGc+tYnr1taWRqNRJVM+9SEWZbPlfz6f1/QD6SQFYTgctmoAMKWAOfsmySy8x1QHjonEiFF21mrwMZAWUiww0OJPwsNTGFiA0uOeTCaaTCba29vT3t5eTSegu4GnEcQjFD1nFEFi7QCviWtP+LrlcnnKnm9ySYJMEciCCK9hfygUsA/uB/P5WceBKRkmuVeKrnQFFmn0GOK1POrS68r9cCXP9PPo0IhiCt0yXe6IS7kZuj5vXeP0eKIo4n7R2cC1dtu+hsISPwMW/aR2/Qp+3qPARlCgivAYoljBuexyRayboJC4DDY2pX7m0CZuLdyzOdbL/uV36cOe84W650VHsbxmPj/jXiUS642N7bF+7N/8K73r5vZZdyVxCTz3Ya/WV/7bV+gzX/oJOrg/vQq3M9ZCUDg8PNRsNjv1j32pXRDQpN4EisUGTSZHo5HuueceDQaDmtownU5VSqnCwnA4rMSWpLDf72s4HGp7e7tG+HkagmsuOJ3BAsLm5qaGw2FNHYiuB0fd+/2+pCOC1ev1tL29reFwqOFwWI97ZFSZ1vOtra1aKJI57RYbpPZxkIvFQhcvXtT999+v6XTacipYNGAU2USti2hH276FgqZp6tgHg0Edg8k/SbTX1fn+dEO4qKTHNBwO6xz4vbhWjIqX0q72bwLumgOsA8HTGSxIRaJO0clukUhAJZ2aK7pYPDcmpXSOlFKq8OLXKI65n7F+QIRJuPebr3dbXttIyOM4uLZ8zz880nTVvRQbNjY2NBgMWmkPdqxw73bhUgR+Y2OjlSbUdT3dHvF7xLVQVqXoxHsu15/EeuFNX/Nh+ukvylzaxK2Jn/ymb9Xe/9voD5b36F+93weqWS4uf1MikUgkEmuAtRAUpJPItNSO3jvSGaOdsUiei7OZ3JrgOzee7ZuYk3jweD8Tez+PpI1Rb4POARMWpzmYuPt4SD+v3+9rNBppNBrV/vi+xWKh6XSqyeSots/W1paGw6FGo1HrWbShu6iiUxXYButFmPixX4xSm9izoF4Xme+yzcec8y5iF50nTEegvT5Gid0v9p/zz7Y5N0RXlL+L2JI8u3+MmK8iwzHNIkblo3jFeggWA7rma1VqBwUJg2k3/lx4zuhKoTDlNuLcUBBZ5XLocrSwjSge8G9+julcWJWO4WtX1Z1wuzytwu4E16tYVTchulAStx4Oe8pc2sQti4dvbkub0iM29/Tcn3y0dr5xR/rl3zzrbiUSiUQicVmshaAQ8/H5D3yLCSTcJs3M8Tdht5gwGAxa7gaLBI4OM9rP1ANasCkmxFQHFo2UTh9raZBYxZMj3E8X+GNqxWw2q64NRsRd2yHOlYkd++s2XNyRkV0TRgo1xioS7Pv436uJ4DJtgpH8WB+B8xmFH+kk0s6IOY86jPPv9zgWklk7XtgPCim+nmTdiGkhfN3tmtCScMe57yKxfmZcG84ncanoP8fUNbd+Tozcc8xMJYmCBu/jfHQJT1H4YaoERbk4xxT07ES5lMMgpmPwO4R97BIYojiWSCQSDwXGG3394p//Ub33p36h3mPrA7TxC6866y4lEolEInFJrIWgYDD6T+syiwaa0Eyn00pWbLG2mDAej+vxigcHB1VsMLkcjUY6d+6cRqNRjdAzKmsi4Ui/I/yxVkHM8ydR408UMvr9vvr9vsbjcSv9Yj6f19MdnGrhOXCdhygqzOfzlq2fYoJPdbA7IZJF120guSeJjOOKUeouC3uM0sfoNVMJ/L5THOiWsHvCbZIIeq+4Da+tx2JxhX2MBSSjy4VCkdc+giSZr7k9zi/ns5TSSj0wTIj53Pg8ChZdKQrRneAfiiMRXaJQXL+ue9xXOh14H2tkcB5ZQJTjkU7cBF7HWPeBQoiFRLpUPIcsBsr7OC/8TlklJsR9k0gkEmeB3/87/17v+7jP0nv8wln3JJFIJBKJS6Osshc/pJ0o5c8k7Ul6+xl35V2zD9mH7EP2IeA9mqZ52Bk9+yFFKeWipN87427c6fst+5B9yD6cxp30PZz/Js4+ZB+yD+vah87v4rUQFCSplPKKpmk+JPuQfcg+ZB/WsQ93AtZhnrMP2YfsQ/bhTsc6zHX2IfuQfcg+XCnS05tIJBKJRCKRSCQSiUTiqpGCQiKRSCQSiUQikUgkEomrxjoJCs8/6w4o+2BkH46QfThC9uHOwTrMc/bhCNmHI2QfjpB9uLOwDnOdfThC9uEI2YcjZB86sDY1FBKJRCKRSCQSiUQikUjcOlgnh0IikUgkEolEIpFIJBKJWwRnLiiUUp5eSvm9UsofllKe8xA98zGllP9dSnlNKeXVpZQvO379G0spbyqlvOr45xNucj9eV0r5reNnveL4tXtLKf+jlPIHx/+95yY+/30w1leVUi6UUr78Zs9DKeV7SylvK6X8Nl5bOe5Sytcd74/fK6V8/E3sw7eUUn63lPKbpZQfK6Xcffz6Y0spU8zHd93EPqyc+4dwHl6E57+ulPKq49dv1jys+jw+pHviTkd+F+d38fFr+V2sO++7OL+H1wP5PZzfw8ev5few7rzv4eN2b83v4qZpzuxH0qakP5L0OEl9Sb8h6YkPwXPvk/RBx7+fk/T7kp4o6RslffVDOP7XSXrX8Nq/kPSc49+fI+mbH8K1+FNJ73Gz50HSR0n6IEm/fblxH6/Lb0gaSHrP4/2yeZP68HGSto5//2b04bG87ibPQ+fcP5TzEN7/l5L+8U2eh1Wfx4d0T9zJP/ldnN/Flxt3fhfX12/L7+L8Hj77n/wezu/hy407v4fr67fl9/Bxu7fkd/FZOxQ+VNIfNk3z2qZpFpJeKOkZN/uhTdO8pWmaXzv+/aKk10h61M1+7hXiGZJ+4Pj3H5D0qQ/Rcz9a0h81TfP6m/2gpml+XtI7w8urxv0MSS9smmbeNM0fS/pDHe2bG96Hpml+tmma/eM/f1nSo6/3OVfbh0vgIZsHo5RSJH2GpB++3udcpg+rPo8P6Z64w5HfxaeR38X5XdyF2/K7OL+H1wL5PXwa+T2c38NduC2/h4/7cEt+F5+1oPAoSX+Cv9+oh/hLrJTyWEkfKOnlxy/9/WN7z/feTGvVMRpJP1tKeWUp5dnHrz2iaZq3SEebStLDb3IfjGeq/SF5KOdBWj3us9ojnyPp/8Pf71lK+fVSyv8ppXzkTX5219yfxTx8pKS3Nk3zB3jtps5D+Dyu2564nXHmc5rfxRX5XdxGfhc/xN/F+T18ZjjzOc3v4Yr8Hm4jv4fz38SXxFkLCqXjtYfs2IlSyo6k/yrpy5umuSDp30t6L0n///bu4DWKM4zj+PehrQVLLSg9BLSQQDxXr4onD03QgHpJ6SEHL4Xeeukh/0PPQhEEiVAKirn7DygNjaZU0fYUEhLI1Yu2Tw/zBiZhN+lS39mN+/3AsJthknnmyby/LC8zky+BTZpLW2q6kJnngRngu4i4VHl/PUXEMWAO+KWs6roPB+n8HImIReAtsFRWbQJfZOY54HvgXkScqLT7fr0fxlj5mr1/UKv2ocd47Ltpj3X+u5r/xyw2iw9jFpeyemz73mSxOTxU5rA5fBhzuJTVY9v3Jofh6GXxsCcU1oEzra9PAxtd7DgiPqL5RS1l5n2AzNzKzL8z8x/gJypfMpKZG+V1G3hQ9rcVEROlxglgu2YNxQywkplbpZ5O+1D0O+5Oz5GIWACuAN9kNjcnlcuIdsr7X2nuTzpbY/8H9L7rPnwIXAd+btVWrQ+9xiMjck6MCbMYs7gYiXFnFje6zGJzeOjMYczhYiTGnTnc8DPx4YY9ofAEmI6IyTIjOA8s195puQ/mNvBHZv7YWj/R2uwasLb/e99hDZ9ExKe772kefrJGc/wLZbMF4GGtGlr2zLp12YeWfse9DMxHxMcRMQlMA49rFBARXwE/AHOZ+bq1/vOI+KC8nyo1/FWphn6976wPxWXgeWaut2qr0od+45EROCfGiFmMWVwMfdyZxXt0ksXm8EgwhzGHi6GPO3N4Dz8THyY7fgrk/gWYpXmC5Z/AYkf7vEhzOchT4LeyzAJ3gWdl/TIwUbGGKZqncq4Cv+8eO3AKeAS8LK8nK/fiOLADfNZaV7UPNEG9CbyhmVm7edBxA4vl/HgBzFSs4RXNfUi758Stsu2N8jtaBVaAqxVr6Nv7rvpQ1t8Bvt23ba0+9BuPnZ4T476YxWaxWTy+WWwOj8ZiDpvD5vD45nD5uUcyi6MUIkmSJEmS9J8N+5YHSZIkSZJ0BDmhIEmSJEmSBuaEgiRJkiRJGpgTCpIkSZIkaWBOKEiSJEmSpIE5oSBJkiRJkgbmhIIkSZIkSRqYEwqSJEmSJGlg/wJUzPR0YbHiAQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 0 184500\n", + " Min thresh = 1000\n", + " Sliding\n", + "\n", + "\n", + " Winner = Sliding\n", + "\n", + "\n", + "034s_iimage_3401832241774_clean_ClassS_132-260.roi.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADYCAYAAABberBAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADKk0lEQVR4nO29eZxtW13dO2ZV7a5OnXM7RC6N9CAQ2xgitiTYIEGIGggmKiqKiChqjIIm0byXGIzos3vowyYSYxTsAhF7lKDS2SACAtLDhUt3uXBOVe2mqvZ6f1SNVd/9q7mrzrmnqX1O/cbnsz9Vtfdac80519zrnDF+4/ebpWkaJRKJRCKRSCQSiUQikUhcCJaOuwOJRCKRSCQSiUQikUgkrj6koJBIJBKJRCKRSCQSiUTigpGCQiKRSCQSiUQikUgkEokLRgoKiUQikUgkEolEIpFIJC4YKSgkEolEIpFIJBKJRCKRuGCkoJBIJBKJRCKRSCQSiUTigpGCQuKKo5TyhlLKw4+7H4lEIpHYRynlnaWULzjPY5tSyv3u4HXu8LmJRCKRSCQWCykoJK44mqZ5SNM0Lz3ufhyGUso/KaW8rpTy0VLKbaWU3yql3O24+5VIJBLXMkop/7WU8p5SytlSyrtKKd933H1KJBKJRcOlFmaPai//X5w4DCkoJBJ1/J2kL26a5npJd5X0Fkk/faw9SiQSiWsfPy/pE5umOSPpsyT9q1LKlx9znxKJROKkI/9fnJiLFBQSVxy01ZZSfqCU8mullP9RSjm3p34+oJTyzFLKB/ciVV+Ec7+ulPLGvWPfXkr5ptD2d5dSbi2lvK+U8g1UXEspvVLKs0sp7y6lfKCU8jOllEGtj03TfKBpmvfhrR1JadFNJBInAqWUh5ZSXrEXjbq1lPJTpZRuOOxRe8/hD5dSfriUsoTzv37vWX17KeX3Syn3PJ/rNk3z5qZpNvDWVPnsTSQS1yBKKQ8qpbx07zn7hlLKY/DZS0sp34C/v7aU8md7v79s7+3XllLWSyn/spTy8FLKLaWU7917Jr+zlPKv72h7sa/5/+LEYUhBIbEI+FJJvyTpBkmvkfT72l2bd5P0f0n6/3DsByU9WtIZSV8n6f8ppXy6JJVSHinpOyV9gXYfcp8frvNDkh4g6VP3Pr+bpP8wr1OllE8opXxU0lDSd0n6r3d8iIlEInFVYUfSd0i6k6SHSXqEpKeGY75M0mdI+nRJj5X09ZJUSvnnkr5X0pdL+jhJfyrpV873wqWUZ5RS1iXdIumUpP95EeNIJBKJhUMppSPpf0v6A0l3lvStkn65lPLAo85tmubz9n79lKZp1pqmef7e33fR7jP7bpKeKOm5F9le7HP+vzhRRQoKiUXAnzZN8/tN02xL+jXt/gf0WU3TbEn6VUn3KqVcL0lN07y4aZq3Nbv4P9p9EH/uXjuPl/TfmqZ5Q9M0m5L+oy9QSimSvlHSdzRN85Gmac5J+kFJT5jXqaZp3r1n7bqTpH8n6U2XdNSJRCKxoGia5q+apnll0zTbTdO8U7vC7gGRdu95+m5JPybpK/fe/yZJ/6VpmjfuPdd/UNKnXoBL4VmSTmtXqPglSR+76AElEonEYuEzJa1p9/+7k6Zp/ljSb2v/OXpH8e+bphnv/R/5xdr9v/ElQf6/ODEPKSgkFgEfwO9DSR9ummYHf0u7D12VUr6klPLKUspH9lTSR2n3wSbt5nS9B23x94+TtCrpr/asZR+V9Ht77x+Kpmk+Iul5kl5YSlm5kIElEonE1Yi91LPfLqW8v5RyVruiwJ3CYXzGvku7z2BJuqekH8ez9iOSinajZueFPdH4Ndr9N+A/HnV8IpFIXGW4q6T3NE0zxXvv0gU8Jyu4PaSM8bl8yZD/L05EpKCQuGpQSulJ+g1Jz5b08Xsq6e9o9z+qknSrpLvjlHvg9w9r9z+mD2ma5vq913VN06yd5+VXtGtJO3MRQ0gkEomrBT+t3ejT/fcKJH6v9p+1Bp+xnyDJ+bXvkfRNeNZe3zTNoGmal9+BfqxIuu8dOC+RSCQWGe+TdA/WntHuc/S9e79vaDcQZtzlPNq8oZRyKrTn5/Idae8w5P+LEy1SUEhcTehK6kn6kKTtUsqXSPoifP4CSV+3V+RmVaiPsKcA/6x2ay7cWZJKKXcrpXxx7UKllC8vpTywlLJUSvk4ST8q6TV7qmwikUhc6zgt6ayk9VLKJ0r65sox/7aUckMp5R6Sni7Jebc/I+mZpZSHSFIp5bpSyuOOuuDe8/ab9tospZSHSvoWSS+5FANKJBKJBcKrtEvyv7uU0imlPFy7NcV+de/zv5H05aWU1b3i4k8K539A0n0q7f7HUkq3lPK52q059msX2Z6k/H9x4nCkoJC4arBX9+DbtCsc3C7pX0l6ET7/XUk/IelPJL1V0iv2Phrv/fyevfdfuWfh/SNJ84rV3E27KRHnJL1Ou5XGv+wSDieRSCQWGd+l3WfsOe2KsbUiXS+U9Ffa/Y/qi7W75aOapvkt7RbB/dW9Z+3rJX3JeV73yyS9be+6/0PST+69EolE4ppB0zQTSY/R7rPxw5KeI+lrmqZxXYL/R9JEu0T/eZJ+OTTxA5Ket5da5joJ79fu/4/ft3f8Uy6yPSL/X5yYi9I0zXH3IZG4LCilPEi7/5Ht7RUGSyQSiUQikUgkrinsORz+R9M0dz/i0ETikiMdColrCqWUL9uzet2g3QjZ/04xIZFIJBKJRCKRSCQuPVJQSFxr+Cbt1lh4m3b3Ua/l/SYSiUQikUgkEolE4iJx2QSFUsojSylvLqW8tZTyjMt1nUSCaJrmkXu7N9zYNM2XNU1z63H3KZE4LuRzOJFIJI4f+SxOXG40TfPSTHdIHBcuSw2FUsqypL+X9IWSbpH0F5K+smmav7vkF0skEonEAeRzOJFIJI4f+SxOJBLXOi6XQ+Ghkt7aNM3b96qY/qqkx16mayUSiUTiIPI5nEgkEsePfBYnEolrGiuXqd27SXoP/r5F0j+ed/Da2lpz4403qmka7ezsaGdnR3ROlFI0nU41nU7bz0opKqW0ny8tLWl5eVnLy8taWVlpz2F7Pr52zvLyspqmUdM0mk6n2t7erePn99yOzy2lKLo7/L7bnk6nM5+5Pf/0e0tLSyqltH1fWVlRp9PR0tKs3tM0jba3t9u+uD/us/tq8D2/z3ljf+IY/DvPZRv8nPMU++B+xHmoIbYV71ft2HntsI9sk305rK04ZrYV5+h82qsh3ofa3NXWS21ssV+cQ6/HeI2j5jAeM28u4vVqx9Xajfc4jvGwOT6szfOZ//idYH/jfG5tbX24aZqPO7LRxcMFPYclaXntVPMJ9yr64Pi0lt86PuzQRCKRuGIYaUOTZnz4PwaLiwt6FudzOJFILCrO6fbq/4kvl6BQe+jP/C+/lPJkSU+WpBtuuEHf8R3foclkos3NTZ07d64l9MvLy9re3tbGxoZGo5E2NzclSd1utyXeTdOo3+9rbW1NZ86c0U033aTV1VUNh0Otr6/r9ttv19bWllZWVlqiv7S0pNXVVa2tren666/X2tqamqbR1taW1tfX9ZGPfERbW1va2dnR1taWNjY2tLm52faLgoGFiU6n04oCg8FAW1tbGo/HmkwmbV9JwHzOysqKlpeXdebMGd1www267rrrdKc73Un9fr8VG5aWljQej/XhD39YH/3oR/XRj35U586dkyTt7Oy0czOdTlsitLOzo8lkoq2tLW1vb7fXXF5ebvsfSbb75L5ub2+3r52dHZVS1O12tbS0dKCNra0tjUajGUHI5/m4lZWVdvw+xmO0YDIej2dEIM+rr0chBeupfW9ra2tmnJyLyWRyQFSwYBR/t4gVCery8rL6/X4r/iwvL7f3wcf7d4/P4lCcawtJHvf29nZ7D92O579pmratpaWl9toeO//2ObynbI8knH2miBWFNc8LxxTHHgU8f+d4f7wmtra2ZsRCj9vz6u+4rxHhMbD/btfv1cQIinKeU/bT87C0tKROp6P3ve9976p2YPFx5HNYmn0W9zvX6W73/z7d56NbWnrbay53/xKJROK88KrmJcfdhYvBBf2fOJ/DiURiUfFHza9X/098uQSFWyTdA3/fXdL7eEDTNM+V9FxJusc97tFsbW21RIAEzP/BNwH1Z91utyUcPkc6SNg6nY663W5L9EmCYwS+Fh31391utyXN7icJmPtVi6qbRJEEun8kpXZJbG9va3Nzs23fgsJwONRwONRoNNJwONTGxsYMWR6NRjPzR4LnefHvtcix54Vj4vkUCSgCeN59nyKZMzE1aeQ1PQ9uL/Z5eXl5pr/+PIoCkbTyc0fneU8Ow/Ly8gx5jm3yfk6nU3U6nZnP3D8KCuxP/KyGKHBEgcLCDMc+LzJPgYfOFo7NQkP83rGvcTw+huPiWvH99JzWQFcBz+Oc1cZVc5q437Xf43XiOqQQF9fSVYwjn8PS7LP4TLmxGbzw1Vemd4lEInEycEH/J87ncCKRuNpwuQSFv5B0/1LKvSW9V9ITJP2reQc3TaPJZNKSHf+nnp9HQmUy3u12Z4hsjCpbfHCk2+2ORqOWGPpcChkkVj5veXlZk8lE4/FY6+vrMxHOWhSWKRUmbI4gM8JLV4Ck1qkxmUxm5sEuCQsLdiQwMmuCZ8LJaK00G3X32Pz+ZDJpI9kWOphewTYIkz+LLdvb223kXVLbN7/veaWIEB0IUUSioOBr8fokor5mFI1IGDmOKCoxPYDtca2yLV+L98FtxXXOY+0Y8VqozS+FIPchihAWpNwuyXt0Fnj+6NTh94ZiEb9XXOvud0yHYDu8nu8BBQZiHvGnAODPjsK8tAeKJvG6vE4UBecJF1cJLug5nEgkEonLgnwWJxKJaxqXRVBomma7lPI0Sb8vaVnSLzRN84Z5x0+n09bmLqkloySi0abc7XZnSOD29nZL9ieTibrd7u4AYZ12eoFJkcWEzc3N1sa/tbXVWuNNDDudjvr9vnZ2djQe7+azbWxszETW93KtZ8bQ6/VasYBjNXFxX/y7Sb0dB3Q07OzsaGNj48ArRoX9czKZtKQvziejxpPJZCZlYWtrS91ut+2zx0SiGImeXQTb29vtnJGUsv6Fx8Vxuw3fFx8bnRAWY2I/6Iag1Z+OC97vsFY1mUxm+sx7arifNeeAwfQEika+3xQT2BbFK89FdBGwv0z7MNy+74NFBX9v6FAw+v3+zLqM8xYdI5JmxDX3mX3iOqk5RuJPI7oDavPL/nN+o3BDR4fntiYyxD5SVPB78+7D1YALfQ4nEolE4tIjn8WJROJax+VyKKhpmt+R9Dvne/x4PJ4hv8Z0Op1JVSAhlvbTERiR39jYmInaus1er9emP1iAMHkaDoetMDEej1siTSs5iz7a5k5yZfLm8ZhoE+5/jNab1DLNQZqN/rsmhIUTpl7EQpYkQ7SQ0+2xtbU1Q55MRN03zwfFCveREWkSwBhlj0QzCiq02buv7g/dAH7PxNmgWMCxG7F4ZSSVnBuuPYsXJJqMyrO2gPP+iXmR7Xi+14wFMIoJ0ZETbfmE1yrnxGvY7VFQKaVoNBpV++1jaqkIbv+w1JHoOKil2dCVwc84Dq/R6FaIDh9fMwoYdDXV7jvHyL5dzSJCxIU+hxOJRCJx6ZHP4kQicS3jsgkKFwoTAJN2kjSKCiaZKysrLaE2EaRdPdYfIBGz48BElMTFhQUnk8lM2gJJKftGIkMS42NibjuJngsfksy4UF0ks9vb223tBBYtjMTJ1+DPSPDcV1q8owBBQSEScZNUk+F5BJPOBB9rIm1HhqPg0Q5PIkqSGcfh3+cR+Fi/oAYKOzElg6Se13S/lpaW2nXCeWKEnOuYKSc8n8UVa/3zfLGfh0XSY80CzqeFGQopfp9jmBfVr4ECE/vNtihI8Cfb4PgoZvjltWCBJ84Hjz2f/s8TTxKJRCKRSCQSicTRWChBwWSE1epNQnq9nsbjcRvNd+0E2saZ3kAhIdqel5aW1Ov1ZtIonGowHo81Go3aivu24tPWv729PXMNaT9q788tgsQq9RQc4taUdAN4Tvy50yG8i0KN6JO0xfdJ1kieItmmSME+eo6ZGmGHh8cYrftMg4hOAV6bgg3PpZgS+xjJfVxD7i/JNmtksC33ISK6F2K0m/3zGPwaj8czpN1FPSmy0GJvMa3WH5NnEvEoPjANwn317hjS/rrzuqk5gUjeOQf8WQPvZxQ9OF/8jN/NKDrEa9XWRM3tEN0VFIPY19pYUkxIJBKJRCKRSCQuHAshKHgbvuFw2BJZbqkn7eZ7exvGc+fOtYULLSQMBgN1Oh0NBgMNBgP1er3WAUBC6Eg/ycl4PJ5JcxiNRhqNRm3fDIsOdjNQVLDzgdssOo1Bmt1Wz0RnOBzOCCN2L9A5IO2nIzDFQZq11UfRIDoM2Ae6Bmghp3jiyHmsO+A+2sHhflBcsWjh1Iy4hSFrCBxG8H2P3E8LOXaruA33gQ6ISBppr49zy0i3QRGDfSGZjfMY++trsQ9RlJhOpxqNRjPbXM7bEaHX67Xn8t7H2gy8nlN0SN6d0kJx4SgiPc8h4u8VXRdRrPDxTKVx/466js/l947jZuoD63bwxbmN14pOhlqfEolEIpFIJBKJRB0LISiUsrvbgO3+sUr9ysqKer2etra2tLq6qsFg0BIAuwyY+uCigiYHTm8w+RmNRm1qw2g00ubm5gxptbhgWGTY3Nysigk+xtf37giO4DP/nVFQW+VN3l0I0m35GpyLKCa4DySTtIBTxOCOFtIueXKNAs9xrFcRCweyPQsmjsCz0CSj1lGUiHUbJLVz5vcZxaYLgLsi+Nq+dzVBIRJ6zpGv5b8jKWcfCAsFbo/jq0XQo9Dg9UJ4HTs9IkbViZiOURMTfL0Ykffa8L3xd42uFR5XE6koyvD7V6s9EJ0DtfVAh47PiTUO5s0FXRVcL9GtEBGdEDw+RYVEIpFIJBKJROL8sFCCArcwjDnpJqveqYERWlqteZw/IzEyUXY9guFw2G4hSbK8tbWllZWVGaJF8hTTKEiCTQqZAhFhouV2ncpB0mmSZDDNoWbtrhHfWkqErx3rJzB1wO9RiPFn8RgLGjG6XqvdEIlqJJMxss28/1rVf6Y1xBSYKOBw3pmjz/ej/Z7jmBfFrxH6SFY9l9Fd4PccSedajsfOu3ZcD8a89AaeW5sLfn7YmGIakOcv3t/aNWObMV1lXqpFXOu8x7GIKtdcDewr700t7SKRSCQSiUQikUgcxEIICktLSxoMBjOkhPUF/JMOAG6Nx4iko+1OJYgRTmmXaFFMsBvBhIJEmYIGo+IGz3Hag9+POyT4mFhMz/32FpkkOjFSGwWCmpgw7xiPwz+n02nrDHB/6TCotUXnQUyhsDAUxQODEXG+P08kiJFmjiemV9idQMdDbRcBgu0y0u2/GY2vnRPFkcMQ1zPvK4UQOgHmrd/YX66x2hgPI9Qk0LFv0a1QS3tggU4KIVEwmrcm+Z3i+b7ePCGE59bOjyJSFCiicBD7lIJCIpFIJBKJRCJxNBZCUDAR5faLMSpM8trtdmeIkkl43EXA57FGgVMaNjY2dPbs2TaFYV7et7QvJnirSJIlt+vjmqZpI7dxJ4YIv+/PNjc3W6ITUwBIdInDdliIxMpbE/o8uhLcj0i+KX7wftGNEF0UR0V4ORfMfWd6w2EE2e9zW1B+7vHT1s/0EtdxiON0nr6FFkkz9RoItxNTJeZF9WuRevezJijMa682FyTtUahwe9zSNJJo/j3vvvk76j67Pc9XTYyYTCYzKRWx7/PmjeuWaT9RGIgpRxyT+xSLu/JatfFyPs9XLEokEolEIpFIJE4qFkZQcMR8Y2NDGxsbLflzCoFJlomcayTYsSBphkD6s+Xl5bYmAnd1MEFisTeSCBf/86vf77fky9eu5dj7PUbHSZ68I0IkqoxGkzTH4nI1kJDXXAGHgWkPFlvi7gC19iyweO6l2ZoQftkpwjoHjCZzy0QW1fN81VJWXLvB1+Ccx7QBj8E1Hvx3zdpOokyXxry59Frz9RmlNw7bDtLg+iB5PuzeMWXGr0iAKRYwrYGkO0b5a0UVSdy5EwXvp7870dVzFOaJRm6PhTvjPHv+WXCRhVDngUKL23UaVXTmHPX9SSQSiUQikUgkTjIWQlAwTKq8w4LJPKO20+n+dnjcljGmI5jYsHAeBQUTkeXl5ZkoayQvJlcsBmiixug6iUjMgWfbsaig4XPiT+4aQWIXCRFrN/Da0Vngz1gPguTJ6R8xrSNGhk0s6Tbw3+yj7w93hGBaiWEhgEJGre8m/V4fTKGIaSm+htv253RmRHeFC2lSnHEtjXi/SJ5J7EmoKQTVUjs4dxz3UWSc4lN0J8Rjau8TrCNQc6hEhwDvRVxj8xDFrih01I6nAygKIhxbdIFEZ07NhRDXC+eG9zYFhUQikUgkEolEYj4WQlAg8TapdTS/2+22JJyCgsUE5+wzvYCEzmTCUXL/tMvB12PU0+6B6DaQDlaD5zVIxhiJp32bIkiNCMX58HaR3L0guiIsJsTdMWKkPpJyf86dI9xf95N9YppDFDhI4ElAa4jzEt0hcT7mnVsjjSsrKzM1MSgqxOvF63KbTG5RGVNWSG4jOAdRGKBIwnvBPlDw4n2uzUWcg6M+oxgW5y3OS+3z6Gg4TMyowd+jmGJREzj8OQUF94HXn5dKFJ0+/IyCAddcPD5THhKJRCKRSCQSicOxEIKCtGtVHo/HGo/HGg6HLakicfWr1+up3++3JNpbNEaiR/JtO/9kMtHOzo76/b4Gg4E6nU7rfuC1HIUn2fS5jsLTcSCpFUIsApA8WsDo9XrqdrszxRCZ7y3tk0f32e1JagWUWrTXiATJ7Xmutra22pc0m6fO7TPpeHCqh+dLqhcy9Pi73e7MHJqYx1dM46jl40dSZxJp4cfkkASThNH9YsoDiSrHWZvHeaBgE0UsptGwPc4nybn7yTllag0LfMZ2avefqT2s93BUKkXsa20MNeGB9zKm31AsMZmfJ0CwZof7ytoPFMriDiOcQx7Pe896Kz5m3jwmEolEIpFIJBKJw7EwgoLTCkwSWWRtOBy2JNzkz0Sw0+loPB7PkIfJZNJG2Xu9ngaDgdbX17W5uanxeNxuE9nr9dprOxrvdk1ATEwpJpDQMK/btRq2trZmSByvEWtDSPt1AcbjcUvID4vU071QSlG/32/JJ4UEp454vngu6wi49gGFAWk/3YL3pxY9JiwEsWCfYVGBxPOwGgMxZ97Cjt/3GnFKA4kir+sUmRjRppPCpNM7iFAcoajjrT15L3mPYkoIhY4aOSfp5n3xT8/7+UbKo+OAf8c+sd810EkTxROPkeKMRQCmRnBdRSGEAlp00/g9C4X8frMt9qmWwsBzOQe8fiKRSCQSiUQikbhjWChBwakMg8Fgxm6/tbU1Y2knqY3WeRNZpzW43ViR30TFUVCTSRcbjLn1FBMYba1F6E1uTKAlzQgi/iwWk4y1CUi0aDePRMjE1+Tfc+G2SXbZdx7n8Vlc8LmOtLMuQo241+4DCSMFmnkCQiSJRx1vHBZdZpX/muOhlpbBSLhFo0ic59n0YxuHfR77QkSXyWH2+3mOBfbT3wWvI4ow89qL88atLylWRMEgOhPi99Rg/ZHoLorHxmvy/eiGoIhRWxe1rUsTiUQikUgkEonEhWNhBAWTHAsKnU5nJs3AAoGkGaLK6LW0T4K3trbayv6OtFJUmEwmMzUBmOZgAYK7DUTLOVMkGF02WY+7ODhdgGkScRu+WGm+5iZgFDZG5uflk8c89LjTgmFRgu1yu0G6A6I9v2ajp3BRu9+1/vK9KKCwPkONDHoea6kFsd/nAwoKnofDiKpRO4ZOBt+LSJ7Px4VQI9oGyTTJvK/vtVcTRfge1woFBafIHHZ9jpliUy09RJrdNYJzwjbZv/g+xxZFr3lCTE2USCQSiUQikUgkEheOhRAUnGbQ7XbV6/XaFAaS/xhVNjlkNL/mXHDbg8FAm5ubbZFHft7tdtvzSilaXV1Vt9vVaDSase37mtyxYDKZtAKEhQxHgfv9ftsu++5+WmCwq4LOAIOEkPnwceeA6XSq4XDYzmcUOWK1/JojIb5nIu0xcWcN3rt5lnQ6JoxY9C4WLaytDbpImFfvopo+zteN+fEUd85XTCBBrW0H6fbjvaXbJEbNKcD4ftcEArpRjkKNLPOaEb53LnrK82qIa6nW3yjyUIyquTkoWlhUmycc8L7x+hQDKbh5THTFsKBpRM05wToP/l4nEolEIpFIJBKJg1gIQUHSTHFD1h8opbTkiwQpEjyTMzsUGKk2Oeh0OhoMBtrZ2WlFC2mXaPR6vTYabZFhaWmpTbeoFfWLZJdEkHZu5vr7M6ZhUNygA4IE29e3gyLm+1vcoAXcaSOsB8AdLHgtaTZSPplMZrZ7dB+cAhEjxJ4LiygUM+L1POfxfpJ0+z27S3wu59eoEVY6XtwGI+Q18YL3qIZ5Tox58H1gYUojulG4danHF3d6iA6AGlnnuYz+WyRi7Y5YONKFND0PkczX5ozfU88r3SvuN/vLe+02/D7PjWuE3zG3SVdCFJD83YptRlzIPU0kEolEIpFIJBL7WBhBgdtAMooq7RKdSAZjBNifOfrrIofMG+92uxoMBlWLOcmLo6uMgI5Go1asGI1GLTnvdDozpJkEMooNdEx4t4QY4WcbTKmwIMK/PU8UT+imYIFHSQdIJkGCFlMcYuSX4ooRCWhEJOORHPs8F2GkG4P3O+bZUxyIW13yGp7T6Jw4LCWD4gUJ7jxXQSTRXJeRHEdBwX1h9D624XbnwefbTULHhKPsMTWAiGuX45uXlkHhQ9IBF0M83veSQgfbpruI8xiLX/KzmhuEv9PVEsftz+L3jykTiUQikUgkEolEoo7z81VXUEq5RynlT0opbyylvKGU8vS9928spfxhKeUtez9vOK+OoFAhI6kWGEzu6UAwGXShRhMBCwr82TS72/D1+32dOnWqLfzocxgNJvmgW4KV/l3bIZJ1VsYnuZFmidlhxQYZXXe/aNuPUex4vUjs2UdeM5LW2E/ufNDpdNoIdi2aXCO8FDliocXoOCGYxmCSyzQPH8N0F7fLWhW1cdbmPApBnnOPPc5tzS3jGgsxBSOCu33w3nH9xXXDe1JLcWA/GPWPAplTcpgCEF+xH7x+rS9x7rlmeSxBx4PrdsSClzXhoHZPa+Ooncs1zbVLh08UfuY5QBYNl/pZnEgkEokLQz6HE4nEScYdFhQkbUv6N03TPEjSZ0r6llLKgyU9Q9JLmqa5v6SX7P19JGhPJ4n3+yS7m5ub2tjYaFMher2e+v1+G50ejUYaj8ct8d/c3GxJVLfb1enTp3Xq1Cn1er2ZQo8k3EwT2NramiFAJI1OQXAf+v2+er3eTEpDFEO89aAJDAlYnJNYL4H1EGK/WXzSbca2STh7vV475zUiSMHGYozH5WPmEa4oNswjivNEBYoFXAfRwUK3gV0o/X5/ZlcNCgQUCrytqH/6/lk84T3kNWIqgtdKtNX7WjVxgWuaoHBxmAgSz6ndD85vXM9MXamJTPP6FT+PIkZcR2zTa9TnUfCjSOjvlIWhOB9HzUNtR5bDhAGOIQpHV4lD4ZI+ixOJRCJxwcjncCKROLG4wykPTdPcKunWvd/PlVLeKOlukh4r6eF7hz1P0kslfc9R7S0vL7dksNPpzEQUSeql/dx6k/LBYKBut3sgP9tbQ0bivrKy0joMJLXChI8xuXD0dDQatQUaJbX1Ffr9vlZXV2d2pZD2q9W7P34/5nXHqH4tukxrPIUJEy+SWIoPdmpEV0PcfcLzE3dXMDk38faYPS+0089ZHzNbWUZCOE9IMGw339nZaUm/52Zzc3NGrGCBwXgfa/n//X5/Rhhqmv3aDLGGAm34nDPfl8PIaq24ovs2Ho9ntmH0sRQwSMRj/QIKBTEFhGkPPsY1GujE4LamPp/tuA/st1NQuIY9DybjTs3huvI4Yr/i56zH4flg32rpGjzex7qPboPfIe72Eu+BnUxse9FxqZ/FiUQikbgw5HM4kUicZFySGgqllHtJ+jRJr5L08XsPVjVNc2sp5c5HnU+yQCJBQljbts+Elbn+jio7wuwaB7Qz+zjXZogWdl/DpCSmV5hs+xqxcKBf82zwFBWYs26C5/dZxJF5/EZMI5BmCbGvw60gabV3u4zyU3gwubKwEOsHkEjGKDnJqefSJDZG9yM8BgozjOjb4UFnAO8j60hQ0OFcuw9xTs/X5h6dAHzvQmzyFsXYZ67T2B7vn9dYFAW41kmi6YqhoMXUlHnjc1sWX3gut9akMOD5j/2P4oiFDvaXrhTPT2wrXosii4/zmDmfPs/rKjp+rmZc7LM4kUgkEheHfA4nEomThosWFEopa5J+Q9K3N01z9nwjeqWUJ0t6siTddNNNM0JBjDQy3YCRen/unRhMlmyNt7hgQhKt63ZCjMfjqqjAPGted2VlpU2xoDWekVHmh5MkGbW6AnQmcAcIHx8L2Pkn5ywSUW5PSNLq8bsfPofR652dnXZ8FHk81+4XxyRpRkTx327b95iIpJ4ukZjfbpJpIu3ofY2A8/7R8eE5iGNhlDq6C3hc/D0KErynEXQQREs+x0ACz7Z8H+iQ4BxS0ImRfooXcdtI9rsmqsxLN6BLxIVKY1vs32HXiNeLAlFsh66j6IBhnQSfUxMU/JPujTi+qwWX4lnc1+rl62AikUhc48jncCKROIm4KEGhlNLR7oPzl5um+c29tz9QSrl5T4m9WdIHa+c2TfNcSc+VpHve856Nc7ppRyYpd7RfUhsxN5mcTCYtAYxOBdqmjZjzXcuftkghqdquHQrdbre15JdS2t0gXMPBfe71ejPpGB5bLKjI/vl6FgZsWzeiG8ECRCTXUbyggBCJm50SPo4ODM93zYJvUl+LJOOe15bCjOBgUkdnAUWPnZ2dA7sKmByTLJOoU+gxamSV80MBxvPEn/Ezij/xHJJq3g+mbbhPUXQy6WWhyVp9AhJtrm+KMJPJpO2H5ymuuYiaE4P3hOKNHQr+O7pzmJoR22aqShT3IrxmXWuBoHhGAY2gmyg+Nyj82QFyNeBSPYvPlBuvHgUlkUgkFgj5HE4kEicVd1hQKLv/6/55SW9smuZH8dGLJD1R0rP2fr7wqLac473XbmvDd9E2aTYS76J7Jh+M3psUbGxsSNol8pJmIvW2XZukOxIfC+W5BgMt5gavFd0HrrvgvjNyPJ1OZ2zWJsOlFA0Gg7ZYHkmmnRD+jNF7ii8+ngSJgornuWZdJ7mOVnLWULCAE+/fPEJKoYSknIIRybDFC7dnIYniAufF/WeNjbgtJOemFvGPefQ8n/f3MLGExN7n1QQFpp2QjNecDXQfxPQXuzSiCFFD7ZhY94C1Orj+5okk8/7m2pzXF4pXboMOHf7uz+g+8vfOLiQKQB4TC5lSqIjCV3T2+MVUmkXHpXwWJxKJROLCkc/hRCJxknExDoXPlvTVkl5XSvmbvfe+V7sPzReUUp4k6d2SHndUQyYDJm/T6bTdnYHEPKYySLvEZTQaHSCtH/vYx7S1tdWmJtRqC2xtbbXF8UxcXFCOBRZNuEwYTT4YDZdmyXyNkEXiz/6SYNKR4L/9cr9ipD5GpUnGYr6822BEuWZTj4LJ+ezu4M99PI91pJzk1WPxODjvFAwohsSdNtwGc/m5Poh4v2JEna4Gf+7++rqcH4NOk+iIiVHz87HRcx35FQm3++3vDOtT1FIWXFCR/adAE10tdKHE6L1xVKpEzWlAkcDzzO9OTF+gwEXHBdcm+0p3hO9frLPg9mK6TJyDqyTl4ZI9ixOJRCJxh5DP4UQicWJxMbs8/JmkeaHRR1xoe4wOmjw61cGkyYICia3/0x+jsOfOnWtdCKurq+r3+zO1GUzufIxTCyQdIE7zyJTbIiGO4yGBoeXb/WXk3SkNcTtEfx5t5I7O8pq1SLevWSN/0drva0WnQ41IRrJVI7Ek2BZm+DevaWJoEsgxce5IzFm8k23F32upNNzxohad5zjoKuCL9zhGu/k7Ca/FoNqc8Xr8nC6OSIBZV4ECSUy1qN3H+Dnf4w4M/lkTK+Ix7LeP5/fB95q/x7HFvsbf6aCJ65rfEQownBsKGuyrv6dHiWaLhEv9LE4kEonEhSGfw4lE4iTjkuzycLGI5IGk0Xn8jG77P/0WG5aWdnddcFuO7k8mE62tranT6ajf7x8gRCYfFi8Y1YwR20g+TVhMTt0nErkYDWUVfLdHq/5oNNJ4PNZ4PJ4hc+7nZDJpdzhYWVlpHQwG0wVi/0mafJwjtH7/sPvjdoh5f3OO6aKIzgla7aMF33b+eA3fI4ohNWEkOgkY0Y/Hz7P3xzmg0EH3CAUAgrtpuO+1uaPARKcDx0JiHvtFQeGwuYqOFV6H9v+asGJRxGuGqQQUAKIrhedT8LCYFuftqBSOeYII54rjo5gQhRp/rziv8buSSCQSiUQikUgk5mMhBAWnLXS73RmiY4LiNAeTKhc+ZH5/r9drP9/e3tZ4PNZoNNLy8rLOnDkzE3GX9qPlJmEUEzqdzgxZd194DQsROzs7Gg6HLYmJOzuY0CwvL2s4HB4oLklC5fQO2tJN3ra2tjQajWaI9tbW1kxOebTwk1i5D7R/c3yRYNkVQlJFe3i0hkeXwLxI82QymdlpwcKIrz+ZTGZqFtQcFKz3QJeC5yUWjIzigcnwvLXI+ThKRPF7MULv3/m3733cmYH3x8d7bVlA8md0pTB9hOvC7XMNW7Tw/LGvXrfR0RAJd0wbittweg0ylSGmTfBzp2DwmrwHktqiixRd5t07rkVeLwqEPJ87lzCVyXO0vLx8QLhLJBKJRCKRSCQSu1gYQWE8HkvaJQUWELijQq/XawnnaDSSpFZM6Pf76vf7bXTUZKzX66nf77e7MPhadj1Is+SKtngSpXgMCa2vZVJsd8TW1taBivU1gskidiaPzIvnLhe+hlErCOnrOMrvvy3IMM/eO1l4PDGSboLmMdZSC/i+BYLYF7bl8w4j3iaydBXMI5K8Tzy2Vq8gEmmTexJjE8iaGML+RfEkphv4/eheiEIP+3PU2Jgew4g/r8HfY4pMrFXAeaB44DHSceD3eL/miQoe47z7FVNGKCTUCmj6b4qKng9fb156AoUCnst+eGwULY5ySiQSiUQikUgkEokFExRIeCwkeAcGb7sYo4/+jNF+E2iKEibNflmMkPYjxyYRJB3M06aN39HVWIvB20U6YuyxcKy03PN8uhdi/YPaZ2y7ZjHn7yag3n6QkfBopWcqges6RALm9mKBxJq4IWlmrkhCPZ8mtJH0xrEYvp8eP+syxAJ9cR5KKTPFFyVVyXktXeMo4lq7F36PL6alRNEhtktXDPtPMYkiAsdO5w3ns1ajIRJ9t1tzicT2+JPHzMO81AIKQlHcM5jKwVojsR/z1hDf4zjcn8PucyKRSCQSiUQikdjHQggKTdNoOByqlNKSfFr4LQwwak2Lta3fJB0WGRwxNyliOsLKyop6vV4b/Y8kiznwMf+d7oOlpSWNx2Ntbm62NRC2t7c1GAzavpkEbW9vH9h20cSI5N7XiHZ0w4Se2+NFgkaytLy8rH6/3wosjEAzTSNWveduEwaLY1pwMMGL21faKcFreGyGI8+8nyTItvmbhPtnFFYiufb5EdE1ESP4FrKiQDLPtRAFEF47uiViKsU8UhvnkKkofNWcBkzvOCpFg+/F46NoQOHIPylAzHOGzEOcg/j9qzlIaukrsUYCRYiayBG/H3RxMDVknkMlkUgkEolEIpFI7GIhBIWtrS198IMf1JkzZ7S6utqSOddUsDDACKIJqIktBQgfOy/y69x0knwTYxIhihuxgF+M/Jp4m1DTrm9ixPYjOTMpcsTV4zGZJrE3ybQgYmIVI/y9Xq8dy/LysgaDgQaDQUsEV1ZW2joTy8vLbdqJr2P3QSx+6bm3sED3gcUBzjXn2WP2faJ4YHLKLTp5fTsSKO7ENnifeP9J+k0aWYsg7gJBQhrFJve95n7w5yw4yL5xHCyOGeHre2yRoHNeTIo5fl+Xjpt4Pl07huem0+m03z+/byGMzh1utenPjgKFC7o0otDDcXEeOYaacMD36AipiUO1NvleCgqJRCKRSCQSicR8LISg0DSNNjY2ZvKXY6oBo4j+T76Jtm38FhdM+HisyT7JD1MNvNODiQej5ia4PpY1DdwvE3XuFtHpdGYIoYk7Le8eM9v1nMQ5qhUTJBkzCbQA4zoOJomDwUCnTp1qx27y65oBkjQej1txxSDpW15ebmtSNE2jfr8vaT+/3+OlJZ33zqBg4rZ8DusR+G/Ojftkwu15dT/YV0abDQoJktotQ339GvkkuDbdTs1aTwHBaTAee6/Xm5vmYFBE89rjuoi1GLh2ajtKcE45Xo6Ta77X6824HmK6DNNGPKdxS1cKBZxXX4fz6bZjOgr7xn7PcyEQFB3opmABSTuI/D3hd+qoe5RIJBKJRCKRSJxkLIygMB6PW3JogkeBIZJTRke9M0Akj7TCc3tICwkmvq59YILDWgMki+5PdCs4cs8+RTJl8kwxI1r1YzFEpgXwepGck3haVHDRScMk1q6F7e3tts8kmt45gvPIKDdTTCTN1KFgdNdzTrLHdAWLPjVBgaKS2zZ4Pu9JdAPYyTCPbPJ4E0q2H8dv8Lq1dIoaarU/fO9ju7XUFq471hZwX+elNVBIYFoC/47XiruB+Lo+lu4RuhfiNWvjqPWJc8GfXgsUGqLbIs4ZP4vfIaZ0UFzwNWPqRqY7JC4UZ7/yM7V5lxSgFhllR7rLc16tBv+mJBKJRCKRuDgslKBgwtDv92ei18vLy22KAl0BJBkmISa6JkZMJZhMJm0E3m4GaXcrQ0blbfU2sZJ2SS1rFlCUsKDQ7XZbIjQej2fSHFxkUtolo7bRk1Q61cBt01ZPUsr3Se7pirB4wSg6hQbPG90JjqR7nNyK0C+7Hxjd93xvh/+kkYT6/rhNR8C73e4MoeN8kWy6XgPTSgz3l64PCkaec4/Rc26yzuuTvPJ3igexzUhka6DoMW93Dh9HAs/0nmjjj/2qtcXvSK1vHKvnxmvIQo/rFJDwSzrggohiD0EBIzoA+F1lvQz3d95OJnyv5ughWMOCc0ynRHRAJRJHYanf19JNN0qS/uF3vkY/dbdXHXOPEofhwzsb+prf/WqVzd2dojSdavvW9x9vpxKJRCKRuMqxEIKCtEvYR6NRm0qwuro6Q1xNWOwA8Hu0W5tYmjz7d583Go00HA61tbXVRutJXB3R3t7ebgtBmmjZEs28d7e9tLSk1dXVVjCYTqdaX1/X5uamRqNRS9pPnTqlfr+vnZ2dtl6BjyfhMrGL4zNJshvA50THAMfGdJBTp061DoXpdKput6vt7e3WHSJJo9GotdeTeJt4eV6j88KfxS0XnQ5iMadpmpnUDG4F6PvK61mwcH+imBCJpclozOuPzgn33efyOr4WCXRMRWE0m6JEJPgxoh5FJINj49xybXq9+Rrxe8D7EiPtS0tLmkwmM7uesE/ROdHpdNTv99u5sAso7iri+3YY+TdY6LJW94DCQq22QXQRxHvoOaAAFp1CcY55/ZpLJMWFxGH4wNd+ml71739KktQpB7/XicXCnZZP6YUv/bX277dujfUdD/wnavDvcSKRSCQSiQvDwggKdgmYsDB/2ySf+dwki7T8Mxpr8cGR7ViI0fZtEkcW6IuWf+aJDwaDdjeA6XSqXq+nwWDQChDT6VSbm5ttSkUkyJ1OpyXYzPsnImG168DReKYhmCi6voGJFQWWfr/fCgqO4LOCvsc5Go3a7S9jP1jo0Z+RaEqzBRHtxvD7btNzPRgM2v7YIeE5ZtpDnBsKML7XMbJtxHQI30sKNRRo2HeLNXZIWHDgMT6O7bjegdfnYSkSrNPBtes+nk96RS3qT3HFZJ5ODJ/n42OKCCP2rmMRvwuHpVDE+0VRgOfW0ixqoJgYBROKRuw7U0IoMNSEBTovooiXSBhLq6u66x8v6frOpj7l1K+lkHCVgffrPp2OPukVE02bJb3oJf9Y9/nuVxxjzxKJRCKRuDqxMIKCdPA/7yYDcYcER2xNlqIoQNJjEkQC4TZJ9GOqBMmsCaLbkvZzyR2FJyHi9pa0grt9n0P7/mGWdBNWbmcozZImOypIgDkvtR0FaPHnZ+wjHQE8hvn8JJUWPXjtSFLtTHBqhsdAQYn5+3EuatF8EufoTIj9YBE+Cgu+rmtL+H6a0MeoONvnWqCN3sewQGO8Htcf+097vtvg/HvOfR32h/eLNQmi2MM2fE68Zxz3vPVZcx3E4yLpj2IAP+e4jHliRM3NcJjIQbGgJuLx+omEcfYrP1Mfu8+Spl3pN+7+Y1pd6h53lxIXiV7p6Ifv8hpJ0tY/XdaffNdn6a4/8gopv/+JRCKRSJw3FkJQiNFeEhoTRUaQHX01mIcdo5SOxJs8+3Pm+/f7/dZ6z20IeaxTAyS16QQ+3oJCjVDFqCz7LNVTOSKpsmBgEcTvOfVB2q+RYCLs8UQrOa/vfHW7H5zO4OszTcHt0LVhcYM56JyHeF99rsUP12MgkYwCgrRPsiNhZl88z14r7Kt/53uTyeRAgUP32eSeqSRcV5EUW6xhTQ2Py/NuAYnbk1Is8nU8BzFy7rYooHluOBcEU34oDrHP/G7QTUERgUJGBPvC+36YOMb7xvPivEZQEOE4Yt+iABnhz+g4Yt99rUTCWLn3PXXDk9+tVzzwd/beSTHhWsNP3PUv9IanvUz/9kVfpem7bsk0iEQikUgkzhMLIyj0+/2Zwmy2x/s//Ux5qIGky+TEkXDn9tOKbkHBhGowGMxE9hklNlGlCNHtdtsUB2m/oKGJm39njjlJjNMvWCxyMpnM2NE5P1FIiYTS6QOsHVFKmSHtLDxZi8y6DoLFgo2NjQNzYPHG/YwCQCR8Fht4X1yQcTAYaHV1tb0fdHhw3mj/99ijoGTBJdbTiEKCx+MCmj4+2vt5nu+b3+f2jSTnPtZiD9/3dZl6MA8k2jFdw+JJdCvQCRPFsJrQ5bXhe1lzOPAaNScIBRSiJqBRTIjXqTlZjHifo0AW50faFfxq25WWUtp1UnOY+HpHpZckThaW+n391Et/WffurB13VxKXGQ/pDvQ7L/0N/dOv/QZ1/uAvj7s7iUQikUhcFVgIQWFpaUlra2szRGY8HrekjBFjEyoKAiaYJBAuRmgrvYs9xqJ9FhQcNad1nSJEjGTbHWBiY2HALgILBDzGRJ0pFCY+Tn9g3r1JGfPyGaGmM6PT6ejMmTOtS4FWeo+Rgoo0m0Lgl4Wc8XjcEk6PNUbde71eO0d8uW0SaYtG/X6/LRzpmg7e4cME0fd3e3tbw+GwmnbBNcFimK51wOMigW+apo3c1+bEhTNjLQ6vl36/f0CY4T1z7QrPv50gvn9eu3TDSLM1AqJLJooHXoMWYGIdDhJsRva5dljbgQ4JplrwPEntOp3njIhCS3RF9Hq9qggRC7DG4pu1ug3zXBNMm/H6NChy0R3i70gUs2oiR+LkYPLFn6Ev/ZE/1t1XBsfdlcQVxJN+8rf0vq3r9Vcfu6du/+yPHHd3EolEIpFYaCyEoOBoqaQZa7iJsklAjayStEbywMinSTF3SIhgZJIkKx5PS7VJyWQyOfBiygJJfawHEW38fDFlwoQ0RnZ7vZ5OnTql6667rnUYcA48Bu6owOuzxgJrMfgz950pBLX8/Fp6h38nQfZ2kVH8oDuDqSQUBNgnOxO4cwXvOec15uRbWPK4mIJgMcpEnQSX1yaxZTqJ++k5jSk6NXB881I2/Dnnl+kRJP/xnnjsXG81wYL9YUpLzbXD+TRiX3hdknceV5s/3iNeMwpg7JvHG9cs+8rtVON8+BjOYQoKJxtbp5f1nTe+XVIWXjxJ+Nenb5N0m95x+rX64mf9W93//32Ptt9zy3F3K5FIJBKJhcRCCAomGybq4/G4jVo7ih1ztaVZYlOzOEdBgTUHSAjpHJD20xe8cwLJHImayZbJ73g8bndIYESVggLdFSaujphHIkx7O8mtYQGg3+/r9OnTuu6669q5ktSKGiRmjMxzDB5HrahjFBR4zywEuH2KLbwu2+dOFNIsKeV97na7rWOiRuidomGhhIKC54kFJjkGCgrshyPpRk18ioJCJLaehyi6ECTBTFfwZ7FPvndc95H01qL60Z3Ae03Cz3vA++nvJQUH3iPWnoiwAEARgHMbxRM6jaIYQgGP4oTnaV46VFxbdDmxPd577zSS6Q8nGyv3uLvWb04h4STj3p01/f3X/LQe9rdP0Y1/sq3tW99/3F1KJBKJRGLhsBCCAkn9xsaGbrvtttahsLOzo7W1NfX7/ZYMuDiio6hOZXBaQ4xmmpT6fW+BJ+2TBlvG6ZDY3t5uaxCYvMZIuvvhlIfhcNj2L9rifR2TWEdL3Z9oMWeqBmtIuD3XcTh16pTW1tZ044036tSpU+14h8NhW8TRoEDhdmukz7UnamSTZD3WGZDUtj0ajWaIstMFvLMDa0zQah53fxiNRu3xS0tLOnXq1AwRtNOBggLXFYUgElQiRt/tUCB8PRJZz4PFD8/vvJoAJsNMo2EEne267zWngu+hwd/pZmG/l5eXW4HOjqCISKK9Pvx98fqriUG8VkyvoLjHY9mGRbOaOCipTSmJboqYxuB+cjxRjGQhUTsXKD4lEu/+iTN63T9+znF3I7EAeMWzf0b3ftGT9YCnpKCQSCQSiUTERQsKpZRlSX8p6b1N0zy6lHKjpOdLupekd0p6fNM0tx/VzmQy0ebmpjY2Nto8bToHTMBNiiaTSesGmE6nM4RO2k+d2NzcbHPYGS0mybQY4PNM7msReUaFaQs3KaabwDUUbKN3vr/JVr/fb/vhFACTKZNBixuen+l02u4y0TS7xQX7/b5OnTql66+/Xmtra+18fvSjH21JvbS/u4LnZmNj40DxSEbuTd77/f6MRZyiBAvjmaR5ntxeJMaG01R4fc81j6UAwei6j2MqB8WNWJOBgg1TB2Jk230mGfWcMw3nkO9ENT3H55Kg8xhG/WM6Akkz1y/nkv3n+0w7YToLvy+llJlihpJmRDdp33XBdAW6CZguEse1tLS/HSf7G0Ubrj/PWTzH780TbXyv+T0i6Krx3LK91dXVtoZL7fxFxaV6FicSiYP4nUf+mP7LKx6pDzzs7HF3JbHAyOdwIpE4ibgUDoWnS3qjpDN7fz9D0kuapnlWKeUZe39/z2ENOKI+mUxmquPTem8y5P/4mxT7HLbl6D6JKbdFbJqmjXqb1NL1ECOUtHU7ZcCE2YQ4Fqnb3t4+EKEfDAbtGEyEKShYKDEBHo/H7TUmk8nMLg29Xq8dq+em3+9rdXVV0i5p2tjYaOeG9RFsYbeIwoKQMd/cJDO6LTjXLP4o7ZPEWGuC8+3fLb4cRv543+I2gSTsnosamY+/xxSOeO8pWHANxiKP84hxdBJwrthPCglcb9KssOL+cy5N1Ln+47z4er6frGUxbxcEpzlQMOCcsl/RVVOr0eDvrAXBmA4T54/Xs5DHz2pzFh0mdL0Y0RERBRvOG695FeGin8WJRKKOB3VX9e/u+rt65E9+px70rPdo+73vO+4uJRYT+Ry+CrFyj7vrjd99t/M+fu0dy7r5R19+GXt0eJ/u9b93LutONO/595+l0Z0vPKCyesuy7vZDl3deEouJi/pfcynl7pL+maT/LOk7995+rKSH7/3+PEkv1REPT9cfMGFmIcaYM7933ZaIWgiI0UoSKUdfLSpIalMjLEyQoNBOT8RIsbeHtMBBAkVBgZFhk2O25/5yy0Y6IGLag7S/7SRFBadAGNwij/UR3AYj/yZ3JHKxT4wQ+z64KKTJoudWUlUoYDskfjVSzHmJ155nS69Z8UnCa+dRIPAxXhsmr547p6nEehY1t0MktnQd8Nok5xSgCJLheW6EeXPhNeLaFbWdL3wNEmuKIUwh4tzG3+P3lgKGr800I49h3twc5kRwn+P6ooOGYgeFCAo0tbY5d1cDLtWzOLGP9VvX9KKNVT3m1OZxdyWxIHhA55Te/hX/nx72iqfoxpcVbd/y3uPuUmKBkM/hqw9Ln/IgTQcdffj+p/T2r/jp8z7v22/9DL3x5Z98GXumQ/t0352n6H5nL9/1/82/+k096boLT/H6Tx/+RP3p/3nooceUnUbNX75eukr+f5U4P1xsGO7HJH23pNN47+ObprlVkpqmubWUcufaiaWUJ0t6siStrq62BN/W6OhKsEXbhMWig3OuJbWknTUSTAhMtFkc0JH5WBCPUXDmhJPcTKfT1lVhwk0CxXoJkZDGon8k5uw7SV3cxtApH8wBt0PBFv3xeNyKHaWUth6Ex2uHgttn2gbvhc/xZ57/brer1dXV1nlhEuZ2eW98L+hOIKn0XJyPsMPzPSdMh/Dcsa1aikHMs6eAw/dcSJIOD0kz6RrsI9ce3R28PvvotU3hg1HyWDvD64Jbj3ptR3Ctce3Pcyj4Gl6HsfbAYWD/vM7jvdve3m4FB/8d3S/+PjBVaJ6gIB0snOm5pJDAsR0mLhnRzXAV4Md0CZ7Ffa1e5m5ePXjAU1+t//ovvlqP+Yn/77i7klgwvOLZP6P7/cpTdN9/k4JCYgY/pnwOX1X4l89/ib72zAcv+Lwfu/kvpd+8fA6Bo/C2x/+M9Phju/xc/Ls7vUn6zTcdeswHdzb0xE/8Ik03Nq5QrxJXAndYUCilPFrSB5um+atSysMv9PymaZ4r6bmSdMMNNzQmOYygkhSasJu8myTbOm6nAUmgSX8pu4UcB4PBAYu+ibLJM/PunTNei/S66KCdAozoN02jzc3NNmfcuzAMBoO50VYWeyRJNkxq7chwKgT7bvLln6dPn27dEs1eHQoSyU6n0xK8Wp9IeH1Nz61TNFZXV9Xv92e2gOz1eu1rZWWlLQ7p1A3WN2DaR60Qn+cmCgQUV/w3j3X/oxWex3LMMeeeQhKLVfp3z2kk8xRKaikcvr90s9TcAh6vj431LeJcxfoGtWh/bdvGWv/cH3+3DqsjwC02faydLx4D65r4WPfPggfrlvizmkAyD0wNkmZTIyhQRLcTnyucA9ZXWHRcymfxmXJjhgwSifPA7/+LZ+v7H/ZofeizPnrcXUksAPI5fHVh+YH307e8+Lf1T/pnJdWLVCcuD25aGujpr/1L7Wj2/1fPftpXq/t7f3FMvUpcLC7GofDZkh5TSnmUpL6kM6WU/yHpA6WUm/eU2JslnZf0x1QCkiETPRdfbJqm3ZbRAkSsCs/oKlMQeJwFCKcSRDeEQaJHYhUjxO7LPLu3yWGtPgOj4u4Pd3WweyH2P5Jl5qaXslv00f0m8Y75/CReHHN8P+bDWzSgmOGdOTx2pgbU6gzU7PM8jmsi9rFWPLE2DoLvmTjT6RD7xzljakiMirNPJLNs+3yi/IbHwnod8frsQ8z5pxjCn4TPYVt0iVg4YRpJHJPFIbbDfkXRxv3ydVgvIhL42vy7X1Gs8HGcvygo1Lau9O/x+PNxMSwQLumzOLGPM6+7TQ/8+W/WK7/2R3TDckYNE/u4b2dNz7zr7+rRP/+tetD3vls7H8iv1wlHPoevEmx8xT/WbU/Y1D9bHSnFhCuP5bKkR66OD7z/n57+Eb3zcZ/R/v2gZ39MO298y5XsWuIicIcFhaZpninpmZK0p8Z+V9M0X1VK+WFJT5T0rL2fLzyf9mLOMknyZDJpixDSiWBya/u+7f3MnzaJcfTSaQDM3Z9MJlpZWVG/328juT5vb3yS9msCeMu/SPB9rI+PxCda1x3hdo0EH2Ohw8Ta7fT7/faaJF6MWDNS7THF3Sfc/0joOe/SfjSdokPcWpK1GbiLhO/neDxuC0qyHb4iaYuCAskmSbAFAfeT94rjiajlzfO46DYwPIf+PaY7kFB7/uJ4DuvXPHid8N5QOIr95VyxsCnP871kexwniTjXA9N5DPaB3wM6DNg+24npTDX4XD4botjA+88Xv4NRPLOwEc/z39KFuSSOC5f6WZzYx86b36r7/OdbdO6JU91w3J1JLBwe0h3oHV/yc/rMP3mKbvqzvrbf+e7j7lLimJDP4asEn/nJet+Xbuvtn/1Lx92TRMArPuU3pE/Z//tTXvdU3enmM+3f3b/4e03PnTuGniXOB5ejlPmzJL2glPIkSe+W9LjzOYn/gTehNiwGuG6CyRIj4XQAMNrqdIfRaNSmUvAadgSMRqOZHRJInG3T5m4Ijt6yBoMJbrTWuz+j0WgmCstdIuxy8FhHo1FrH7f13GSaaQNun32xjZuEM5I4EqcoThjMIzcRiztwsJ6CnQqeH2lXUNjY2GivTwGC4yF5ZwSc16N7JDoKGMWOboxIQDk2CxKcg5powetwjdWEgSiORZJ6VNTbRNdrIxJ4txH7He+d01Bq/aHIQXGBbpJSSns/4ziY7uH3mMbimhrehYVuEgt/Fu4iDhuXx870Cbp5ON6aM4NCltuOIkPsy1WMO/QsThzEVhqQE4fglf/1Z/TAX/hm3evfvycLjSUi8jm8KChFX/Bzf67fv/Ftx92TxHngtd/9nJm/v/Bffp2W/uxv9t/IZ+1C4ZIICk3TvFS7lWvVNM1tkh5xoW2QbLE4oMmPCffy8nJr5ffxrBxPqzJFho2NjdbtsL6+rq2tLW1ubraR836/r7W1Na2tranX67V9Mgl2ygWLyDESzfoEJGUWDaTdrR5Nwrvd7oECiDHC7TY5VvfNpL1pdgsdDodDbWxstCkIMVff7Zm8k0hzN4e4LaPHFqO7klp3B9ux6OOaD955gvczFtr0nHA+eH3XYiC5pwDBXH8WKZznAqDtPaaAuD6E75/bs4vFZJgpNp6PmuOCEe4oQDAFwO3U0lfmFXasRdspuPV6vRnizPoCNUfHYa4NOncsCuzs7LTrhrCYQBHH3wXfKwtyte0Zuf7o0nGbnnveZ4pc/A7WXA8+zr9HXCVpDlVcimdxYhbT0Ujf9tn/UtvPK/r9B/32cXcnsaB4ydf8sL77n3ypbvvs24+7K4ljRj6HFw8r9/oE/fs//i19Wm8qqXPc3UncAfzYLz1HG83+/9m+/7FfrenfHl4AMnHlsDCbrZMokoRLs5XgmRNum70JIMm4QTcARQG6A3q9nvr9fkuAmVdtsh0jwpGs1vL7OR67E4zxeHygzoPTKJjCUIuumzR5zEyT8Bh9Dm3vEaWUtoikCSmdByZ/cWzuH8kdhQALIU3TtNFqk8yjigK6bbfR7XZbQYH3mEJErDVgYl67Rky78L2isMCigpzLuAWmrx3TDpiCURtfrKfBKDnnmNtu1oh/rNdBgcPfDYo/MSofHRxHpWGwz74G55lrx+1RIIzt0+VA50iN0FMgoNjCOXGfJB2Y24h56484bJ0mrn3c+m8+S+OHrrd//+A9/tfxdSax8Lj7ypq++66/p8f/6jfqfk97r3Y+fNtxdymRSOyhWVnWZ/aXJS1+GmOijod0BzN/3/6sbd1+7pO19YGB7v9trzqmXiWMhRIUTBQsIJh8RXu2NJuWYKJq4kXCaHhbyrg9oi3a/X7/QHTeYkK329X29na7ZWAkR4zix/F4TIzumqhydwj3P6YjsD3PgwksCZuj6BYUDLsVXNvA59NR4H66DoUJqs+pjUvaJ/dx20mmljDVweKFQRIbi/KxfxZ56FZxv2JU+jDRx+uCRNzj8PEkyozE+54RdAcw/SSKBfGc2Ga03bP+B+95TEGRDgpGFHWiyBHPrc3PYaiNhb/HXSRqjhODqQ8xJYGiQU2E4PeK4+J68zVqbZ/PmOelQCSubSzf6Satf/Z9JUn3eczb9L/u//vH3KPE1YRP7fX0xs/9RT3m9JdJKSgkEguB5fvdWx/6vLscdzcSlxiv/NRflyS9aGNVz37sV0mS1t54m3b+PlNajgMLIyiYfLhOAa3O/tzkYmVlRVtbWy05Y563z+G2kNPpVOPxeIb0SGqFhLW1Na2urrb2bRctZFTd2ySSzDBFwFHtWl69rxsJja/vKPx4PG4JebfbPZBDz1zxSPKd9mA3AAm6xQFpn5j6GO+YYUeIP/NcRPdB7Xc7JCjwmNSxXkKv11MppR0Xr0cS6j7Hl48djUYz89/pdFoxxO/FmgMG3S0xP56CAoUBChaR4Hv9mRw76m4Ba14ffA2KZ/G6hIWhCAoutfUXhYmYcnEhqLl/mA4ThY15tSa4dikKeJzSbLqJj4s1NgyKchQYpNmUEwoEvm4UlWrHJq59lJUVqSxp42H31ct++rnH3Z3EVY6msyKVkjm+icQC4J1febP+7pufc/SBiasSjzm1qcfs/bv9wP/2zbr3979LzRwOkLh8WAhBwdHxmC8e6wdYaHAk3rsH0CHAYo0+zyTPYsHKyorW1tZ05swZXXfddbrxxhvV6/VaQWN7e7vNP49RbbsU3G9GRiMRdJFCW/cdZZfUEmxuu2irv4UGE+WYHuG5cS0J14O4/fbbtbS0pMFg0BZzZH8oyHhcvV5Pw+FQTdNoc3Nzhpx5bHR0WDyoCQyM1FO4YMqI55FbbvI8iw4ea6/X03XXXde6BobD4YGie+6vnSC8vlETKVhEkFZ7bnkZ8/bdlkWE5eXltjaG58cRdjoNvFbYr1iDgQKVP/f1LWZx7Vl48m4e/I74mr5XJuaHpRRw3qNbguP3nDH1xn1mQVAKGVxPkmbuN9dm3NmEaUC1IpAUMvjd4jU9l/MEFI+79l1JUeEEoBQ97nW36HNX36Z++WNJa8fdo8RVjOWypJ/8w+fpy37iu3Xzj7z8uLuTSCQSJwZ//jXP1vc84ot1y2euH31w4pJiIQQFaV8wcBSe0V9pP2LpooLcWpH5/kyPoJuApC5uc0g7fcwrN7EiWatFiqV9ormzszNDlCKR6nQ66vV6Wl1dnXFSMHo+GOzmCo1GI0lqix/6eBbd297ebndTGAwG7eeRvDJazGOczuE++rNahXwTWaYXRBu6x+05cdSZ9S/sjCABd10Eply4H6wHEKPtzJ23OGXHxXQ6nXFnmITTSUFXTKwF4ftiks05qqVQeI4sjFEk4/2jCEaHAlMnKJw4/YQiEdvhfaZLokai3Q+Pk+kDvPcGXQKx7/O+C1z7dAvwXnlsnie6Tgx/3+nMid/jw76PHPM8RwJrptAF4TEkrl0sP+SB+sCzGj127c90p+VTx92dxDWC+3bW9Oiv+jM9/+6fpft9xyuPuzuJRCJxInCn5VP6zrv8ob7qhV+nm7/hNu186EPH3aUTg4URFBjJrUX+Y6HGyWRyIA2iRgYYmaRIwEKBkg7Y8CMZsnvBfYjV+6NowJoJPM6EbTAYaDAYtLUQvNuEP5f2t/eLzga6GyS1214Oh0ONRqPWbUECxfoRcZ7YP183js/Hx6g/8/E53ySetut7XpeW9rfhNBlnZJouCToQfG2nPFCEYc57jEpTALH7g+d4DmskkpFwEk5ey8fEKD/nhcKJ1xjn02JKdNq4/xR3KHTECLrvgV0tBNeV2+A6YEoQCyvye0b3gu/nYaQ7rpc47/E7GgUNC0ScS66PWJC1VufC1+ZPn8PPKYzV0k4S1x4mH3dKf/UPf0FSigmJS4sf/Pi/1dnPGegtx92RRCKROEF4SHeg1/yjX9WnPe6puvkl12nnzW897i6dCCyEoEDiQsJGxwG3O/SODdI+Ae10OjOkkGSK5Nh/05kwmUw0mUxawuNoMImSSbuJv9thNJtk0P2R9smOnQAWBJyyQCIUSXEkjD53dXW1dSiYQA6HQ00mk3YeKJpQlDFBdN0Bjz/OfySDFD1i3yIZk9SmejjFwfNNJ4L7Z5Lp+0pBwqKE7yPFGpJb/067fIxm93q9Vsjx3DstoFZ/gGKRXQORQLt9ptZEUYNrNzo/asKA60BEsWQeWM/CaUFxdwi3S8GIx0Sizu8ghTQWwjwKFOd8PsdCJ4f753vt+fRc+PsUHSYUvCJq81ZL+2CtidqOFIlEInGhWFna0dLqqqabm8fdlUQikThReM2/e44efNNTdc8fvkXTPbd34vJhIQQFaZ8kmvBK+6IAUx9i+gLz9EkyHMUmoXRUV9p1JKyvr2symbRFHp0Pf/r06Rk7+ng81mg0mqll4DbcBxN8E5Fer6fRaNSmaVDoIIFyhNUk29b+TqczI14wUk1BIVq+a6kdJI8WRSS16RmuG+E5oAVc2idlJlw14u3jGH1mGx6f581E1vfMbZN8+3wXrTSJpVjjuSJh5Taah8HjIon0fakJB3FsjLJHkNyzoCZTM+yKaZpmpt6G55HrqVY0kNdZWlrSZDLR5uamNjc326h+TB3iOOh88bVjkckaYi2Hw+aXbfgahsfOY3y/ufvIcDicaZdFUqX9LTHPV+Q4DLF2AtMvEolE4kLww3d5lW5541BP+8dfoe33f+C4u5NIJBInCq/4ph/RNz/yUbrts1NQuNxYmP8tkyBtbW21tQNMoKMV2sUYSQAYabWAwKr8UVwwKTXpc0SfjgJpl7BsbGy0ggKj7JFgsrYASbL7xRQOkymmOvh8E2L3g0X1GE2NZJy54nG7xdFopM3NzXYM0+m0LZgoqXVPxLQICg7RueF75vEzZYEFDX0MyfW8dWCHR7/fV7/fb4UTOhEYwY+kjxFxt8kofy0dwWN1P03IY3sx2s1IO102ni/WT/A1WLiQwhj7RxdATcRhOofv5dbWVutQYRFPii3xnrFfNQdEdMzMm18i1urwdbw23He7jnjfWTvDffLftZ0zfO89zyykGcfq68QCp7x3cYvaw2pEJBKJxGHolGXddaW3u+NDIpFIJK4orlsa6Pvu9jt62h8+QYPHn9XO7bcfd5euWSysoMAIKCvqM3Jcs9kzpz1GymP+tAny8vJyG50n8XU/vIuCbeQmfDEtgOOI/XPffW23y0ixCaSJmC3f3FqwVh+CEV6S0ihgOLXBYgwJE0lsFCkYZa9FpEk6eZ8YjXc/KVZI+ySXc0Vhgrsx8Hox35/nsj3ekxoxpgOAgkJ0H/D+1EARykKCz42CB8UErz+uC95/H8O+UlBy31gfg2ID78c8MYTtxnmJ/XY/57VVA4UNplHE9Bqux3ivLEj4+8J6JYaFAoo0kg6IBLUxRYGl1odEIpFIJBKJxNWDh3QH+oMH/6Y+44nfqrv9/oe088asbHM5sDCCguHIpaO6JqbeXtGkLuap295uMhHt9/49knQWy2NU3q4EFxAcjUZtRDWSDl93Hkh+HSEdjUbteGLU3X1jhDuSX/YzugaicOK26HogUaUrwA4FktboKog1FEhYTbydhuLzPe9M//C9tXDDaL7ng2Q0CjTuM4UYj3nefPhzEttI1ulm8flcU/Py7z0+3zfpYM0COhri+b43dpfENR4FBR8b7xd3RPA8xe8Bx8X1RHGG6zcWYIxrwb/Pq2PgNtw/Omr4ec3x43Xh7TH7/f6M48F98Penlo7De+9xuk32keekoJBIJC4FmutPq3z4I2q2JkcfnEgkEolLik5Z1mu/+zn61OlT9fEpKFwWLIygwKgzCUK/39fp06db+36M0tNizigzo5+u6k/SyugvCbCjn5PJRBsbG+05m5ubLQFxPr+0T6wmk4kGg8EMeWcfWGiOJJ22b5NRtxm3tWSUfzwea2dnp00JoCPAxzhtxPPjHH4TagoAS0tLGgwGM3UHnOLB6Pt0Op1xjETngeeRRSeZWkIBg4UYKW443WEwGGh1dbW9L75XjErXSF8UWbxuPIdOZ6BThGsiEspI5KXZyLbbo/DCYoox1cBzVfusJlbMcwz4npAM053je+H6CbGdWGPCTh2LZnQ1RLHAok4tJYCuGQpNTN+ha4dboVK8oOAX63owrcb96Xa7rcPJmCcI8LtA90Sn06nukJFIJBJ3BL3S0Qv+8Jf0uc/6Tt35p15+3N1JJBKJROKSY+EEBdY/cOG1fr8/U5TRpCwSihiZpmgQSbw0myPNInB0JNBGTgu+beYG2/f2je5jt9vV6uqqpH2yy3a3trY0Ho/b/HePwWTL1yQJZ+TWx7ronUnzcDhs58R2cBeB9Fhc0HA6nbZbUTqCbELKMbLwJQkxI7+DwaAVOugcMYlkgUASdBad9PkWVTzfFGkMk3juYjEvfYGOhHnnxPN8DgWRmLbBVIVYANHrhYIBjzkqCh5TOdwngkS75hRgugLTJQi+5/XOVIBaAVD3v5Ze5PQg9in2LwoJdjHEdUvhhYLFPBdJTHuIYk0t9YGOm1oKRCKRSNwRrC311eSjJJFIJI4VT/qmF+tHH/zFesBTXn3cXbnmsFCCgsmqCaQFhbjXvI+PedKHESU6AyLZIpF0rQELCnGnCUbmmQLR6XRmdnVgFLbT6bREXZqN2Hu7Sl/PYzPRcoTZOzKQnEYyZQJmgcLV8T1HttH7PRI1X7Pb7baWfacskFgzFcXzQLLm8VLc4H1jkUhJB8bsPtiZQQIa6y8wHYB2/3hN/k5hIKaM0D1Agj7PIUByz1Qbfh5TbzhWnlNLFYj1Ew4THjhG3t84V26XEfiYBsE5otMm1mGITgS3ZfcFRYI45nl9jCkYTN2wYDWP5PsaMb3E680/PY6YbhH7EectkUgkEonE1YUb3jzVw177FXrFp/zGcXclccz41hvepT//pLcqSzNeeiyUoGBi7qr+/X5fp06dakkK6wvQpixp5jOTfEZ1Yw5+JCXM8XeNA7dHomIyYtGBhNvXpqBgYaTX67UkjsKFI/gm8bZ3W7yYTCatc4Cg/d8Eyrs4uK/dbldLS0ttpN/vRYJv4urrWrygLd/zZQFkeXlZ/X5fw+FwJqJPp4HHxYgzK/h7vknsKEgwIs5aDLHmAR0KFDhiOgZFA59b+9s7BTAqXgPn0Y4DChE1kSAKC7XfuZbY/yhM8NgoEPCn26djx98XFm6MjozJZKLxeNy2VTvGBN3fg7iTQxwjhUAKggZFHQoKUaCI9Q7cx+ii4LU53ijG0cHB9lNQSCQSiUTi6sXaC16p5b++t/Sy4+5JInHtYmEEBRIQpjr0ej01TaPxeNySbkex/YqF2BjldF40BYiVlZWZPHqfOxqNNBqN2sisCYrz+b19pdMa1tfXWxFgZ2enrblgh8Dq6qr6/X5L1E3Ctre3NR6P26KP7hOj/8wr9/kejzQbvfYuFBsbGy0Rt4BB6zadDUxZ4Nx7vBZ31tbWNB6P2/56fmJ0PkaOSeprOxfE9AWTPO7uYDeD00G4BliwMooI3j7RP8fj8YwQEZ0O7u+FIIoRTANhBD46Y+J8MCrv303Qnctv0Ymuj9jfuP5dd2IewT4KLp4ZCb1Tg0opbb9cj+B8QLLO/nnOLGBIB8l9BB1JUdTy77xurY8eU3Re1ESZRCKRSCQSiUQiMYuFEBRo6eZ//Fkwj1FaR9xNrigESPtELlq5ue3k0tLSTPScdRUcwWWxQ0bd7WAw4YtRafe30+m0hQVJuN0+t42M6Q3zCFp0XrA/GxsbrQhjlwSvE50ANRs+Cxgy753pBybzjE5TsBgOh23RyI2NjTY1JBayjOkrrM/g8UURYTgcanNz80DqCteIi2JShGBaRiTKHGvsR5xrijKxXkdEJKmMvNci37wWRRNH1nmfeH3/TlHI66i2XeRRcLtRdPG6tFAV00MifG26K9hHCmUUByiy0XkR0zr8vY3pHHa90PHiz2opUTF1xteel+qSuHbQ/eu36uFP+kb9xE//pD652z/u7iQSiUQikUhcdbio8Fsp5fpSyq+XUt5USnljKeVhpZQbSyl/WEp5y97PG86zrRlbMyP5JscmtrTD0xbOyDNzt3kN2/5N3l1XIJIonk+ixxoLFjsiUbVgEVMSiFgPwsJFrdCkI9xMQ/Bc2B3hmgmeL5JwCgBM45gXsY3OCKdsuNgiiSrJIWtLWOQZDocHtjGMBNdzVbO/T6dTDYfD9hXHZ/eExSGO1/eD88etK/058/9jDv75kPF5qQhxHBQy4ue08vOeM02GbcW6BBRIKILFNTwPXLvR7UA3S3ShxPGRsNfGyTZr7oNa3QUKdkyp4BwxnaPmgKGQNk8AqY39asGlfBafJOycPave7/6FHvs736Yfu/1ex92dRCJxFSOfw4lE4qTiYv28Py7p95qm+URJnyLpjZKeIeklTdPcX9JL9v4+EowWS/tR/PF43LoPSF5rgoKJBck8SbPf47aG3s6R5IUFGEk+TFhNlml3t8jBwpIk3SQr0TXBaDJrBkwmk/ZF4kTSSJfGxsbGTHpATBOI22aSLBqsgUDxhsICx8b5dH0Gk3w7OCwoHHbvD6sP4B0rNjc32zbjizs2UHzhzyiu0NHiuY/3bl5/2W+6NyJivQeudb4X3RkxTSLOn+ee8xTdCTGdINYbqM11PIYCU01M4LlMPYmCQRwHUxMIfncphsQ6DxYNWMsh1sqYV8Oidl/nuU2uIlHhkj2LTyIe8NRX68df9kV66XBJLxtJO83BtZNIJBJHIJ/DiUTiROIOpzyUUs5I+jxJXytJTdNMJE1KKY+V9PC9w54n6aWSvueItg78R59RRlvqLQ6w4N9wONTZs2c1Ho/bz13UkdZ5X8dpCCbNLsDHvjj9gMTIqRK19AvXe4hbTEYSRMJnwu6Ci95W0u2bRH/0ox/VuXPnNB6PZ8SKwWAgSQcINaPwGxsbM7Zzb8kYiW0tEsy/PU/Sbp0JfmbyaqHBqSMcSyyIGF0gNdJth4rngk6VWDMj5tFzDdkCX9vdoyYC+F6xXzEFhOKWjz0MNSGJ16sJKnS/RGLu8+YRcq9fu1cspnhOma5yGOJ6oJOHfY/3jp8zLcf33/PW6XTamgnzUkboamFbLGIqacYhwzly/33fmEJRc1hcjSkOl/JZfJLxgG9+tf6LPlml09V/fcvLMgUikUicN/I5nEgkTjIupobCfSR9SNJ/K6V8iqS/kvR0SR/fNM2tktQ0za2llDufT2Mu9mY7O4vXkVh4C0nb6WOhQEc2Gd2sEQwXWOR1SN5WVlZaokriZIImqY3Mm0zHSOl4PG5J2erq6oyzwDUg6GygPZ9FED0fdgm4LoNJFV0ZTdO0LgoX5tvZ2WmdGO47xZlYA4EFAinK0BFiUkey7VoNJNCxAGIt1cNk3/eBwkPTNK0jhEICI9WRENbcILxuTIfhTh21aD5FBDozeL6LeBoxVcDXrtUniEIa+24Ryes1guPz2Ljmo5OjNv/8Xvh3rhWvBX5P/F1hPQiLFPwOsi5CTDUxuWd/fO85do/bfeB4/F2tiVXsl6/LNBKfy7QSfgfivVlgXNJn8UlHszXRd33lN6lZ3vtu9Zb1P/7bj+vmlbVj7lkikVhg5HN4gTF913v1hY//Wv3rn/sdfe2ZDx53dxKJaw4XIyisSPp0Sd/aNM2rSik/rguwcpVSnizpyZI0GAxm3Ahzjp8hKRYTXKCPaQvSwegz0w/8eafT0XQ6bcm1SUS0u5tIUyxYWprdaYJExGNgmgEt9o5uUwggmXJE3mKCCZZ3v7CAYaHBfWS/XZxwOBy2AoWLTPb7/ZY8eSzRik5xhTUi4kvaj/CysGXsT8xPj9FhpmIYft8OA6aY+FyP4UIizPPqCnCsbnee6ySmw0SBgNewCMa+cg7ifFgYo4hxVHHF+FkUWmKtgdrYa/PE9phewHmM58R7H8fq/sS+U9zy9zymddC54u+Fj6sJI74258DXjoU3z2deFxSX7Fnc1+rl6eFVhvKK18p3fqXf19ax9iaRSFwFyOfwAqPZmmjpz/5GH9o+LSkFhZOKR735UXr3791Ld9PLj7sr1xwupobCLZJuaZrmVXt//7p2H6YfKKXcLEl7P6vf3KZpnts0zWc0TfMZ3W53ptAetw5ktNMvE+WNjY12q0YeH6Oke32ZIZHRLcCtKrn1IneTiHZxFnek4MDXPBIeCRxJj4saul6ACab7560oSdKdCkFhY3t7W5ubm1pfX9e5c+faAonRMRDnh6SQVvtYnyCmMjgtgYSzRtiiC4GF9NwXXtORbSKKAjVBIZLY2rkxV79GomO7XGNeB7EAIufRKSE8jvPAtcG5Y22K2vcgukrmvTwGijKch4jae26HLhEXBeVcRodQTQzheqHLpjYfPId9iCId12LNXcPvb1xL88Yf18MC45I9izvqXZEOX01omka/ee4f6Nbt9ePuSiKRWFzkcziRWHC877fupbv9UIoJlwN32KHQNM37SynvKaU8sGmaN0t6hKS/23s9UdKz9n6+8HzaM6lwrj9z2EspLVl2JNxF+obDYRt5lzRDmOhaoI3f1/Ax0aru91iToGma1jUwmUzaCPLeXMwUUeQ2f/7cxNiuAm9tZwHF1n8XMxwOh9ra2o2LmYhef/31OnPmjFZWVtrx+DoWGdwPjyXuHHHq1KmWWLkug8ds0Jng+bStn8KP59Hj39raUr/fP+AEMdwei+mR6JIMeo6YSkAHidtmBN4R6zj3doJwbOwf2+eYOB8xKh8dLF5nJNvsB+eBNR9IotkOXQ1cw/GaFAt4HbdLAai2xnkO1wHTPNxejegfBjpJLN7RmeDrWBQ5Ch5ndLvQQUIhh3PE9XYU6AzxfVhkXOpncWIWzXis333I9fq13/sa/fkn/+ZxdyeRSCwg8jmcSCROMi4m5UGSvlXSL5dSupLeLunrtOt6eEEp5UmS3i3pcUc1Mp3u7lIg7UdmY7qC7dCTyUS33XabPvaxj2k8Hrdk0U4DiwvcCYJ1D0jiaEmPNnWTFBOq8Xis9fX1luifPn267R9zu01IXayx0+lIkjY2NmZqBTj/2+Q1kmMKDSsrKzPuiVJKS8zcd6Zt0FLvsZtgcStJFp4keYpuDKZg1HZsICm2AOB5ZGTZx7G4YrShx4hwFHtM9EgO6U6IKRAUoygAuW2SXo6nlo9Pgapm9ff99XqkG2EymbSCD10VJK8R0YFBeHwUqSh8GPF+kXTzb1+PY3WNjHiP2YeaYMS58ffSY7FLhvc21kmI4ouFEdbSiPMRv78U0ejC8fex5pqZN66rBJfkWZyYj+ue1ughj3uq3vCtzznuriQSicVEPocTicSJxEUJCk3T/I2kz6h89IgLbGcmEm1CFgmVbdLD4VDj8bj9jz9rGdB6TrLECOvW1taMAGERwukNkmbIlEm5iTXrPXA7QhNYt9Xv91vngYkf+xGjyTUi67lwakUk05HQ0YnheaV4wq0o3V60qcfIOcUFW/g9vxQKTOZjFJrzZXcD0ydiBP0wuK8+nkJOLd3B68P3oZbCQDEgpgTw/kSyS1cM24wRch9rx4nXF4k1U2lqqSIxKu97GyPv/M7Uov4eQ0xDoAgV57Am3nCOauScpN4Oha2trQO1DjhfdBdEMcr3h0VIY4qJx8c17THURBs+I5g64c+uJlyqZ3FiPnbe+g6tvfcux92NxFWGnWaq+73wKbrfX28ed1cSlxn5HF58PO9/fLFe9c/+Xr9+3z867q4kriDyOXz5cbEOhUsCEhZGgU0KTJzG47E2Nze1ubnZ7ihgYcCvmMJAUkJ7+PLyslZXV1tySuIZSRMJMX9anDC5c/9dk6Hb7bbRVY+BxC2SJ6YDSLPkj7n+8+zhtSi2hQ6TPAoK3F5Q2id23A2gJibYLdLpdGYixnFODBL56E6I5P4wkHBSgPF88p7znG63O7NtIUWXKKJ43uK1asVCa2JVJKI1USCmDtjh4mOcplI7L95b941pE26z5qLgmDudzoE16fscxRV+ztSkCIpXXrt0STDFhH2Nc+Y+zFsrNadIHLsFLn4WQSGCTiGKcolEInFHsa0dPfj/fre2b33/cXclkTjxuNuzXq6/PfMwKQWFE4V8Dl9+LJSgYAJgsirt28JHo5HW19d19uxZbWxsaGtrq91KLxaso8XeZI2R8c3NzbYOwfLyss6cOaO1tbXW8r+1tdUWZjTBroHtOoWh0+loMBjo9OnTM2KIPyMpYtFHux/sZLB1fB6hiekMBtu3CMN0go2NjdbJYeHDBSh7vd6Mi2J7e1vD4bAttFhKUb/fbz9z/xz99/z6eJM5iw50JND1Yfje0REQQdcASa/JLUkk00niTws/vic1WNxynygERPdLvE8xDSOKUXE8EST5MVXDIpXvsa9lMSw6I+iEiIVLa2OvuUx8TbZF8S6O33MXXSGxZkcUhDwOf7dYmNQODh8XUyek2a0nfc+iwDTP+RGdE+xfIpFIJBKJRCKROIiFEBSkg7Z/EkVHY7lNomsKrK2taTAYtCkSJgcWBUwOHB13ZXmSzrhtZCSfLK4n7ZMWEhcTe9riSfgtfpBYOdovqd3ZwUSdbgsS4Nr8MDXCY/ZxdgT4msPhsJ07iwRMj/BWnO5L0zRtigO3x7ToY6LpHSWGw+FMX5nnbxdHHAPn1X1nSoO0H11n6gRdKrwXXgO8txR8uGPGyspKmz5j4hsLdkZ3iftj8cU7ctBN4mt6vHGHDNZk8E+KKLXdNFiTwekmLFBZSyeopXBwbXLXBooxRG3N1YqZsv5CTFmQ1NZGifcyCjL+fjq9yevUdT4seER3he9drDtxWAoIQRHmKDdQIpFIJBKJqw/3+5E36+F//o166c/+7HF3JXEF8O8++En663/5QO184B3H3ZVrGgshKJiwmGQw4kqwPoFrFHALRUYlTb5ItOKLrgZptgDcPDu2QYt7tHOTTLkdkiwfG6OtPt4k2MTGW1oyHcPHMl/df5vI2i1AgYQOgJh24YiwCbLbNhFnOybTFGxMOh2RN+m1qEHXRa2OAYkfo9Jx3k2EIxn29XgvosPE89vr9VoRyv32eGP9jnj/eN9oy2eBx5hGwLQXthHXGMk76xZ4fca1y+8JyXxcgzUnBF0X7hPvZ7T9x5oFvn4cB7/PETHFJ84XxTA6WuL3he4P3iuKMjWRie3w3rr/tVSRRMK48W9u1wOe9836m6/+ca0uLf4OIIlEIpGYxc5tH9HgXXc+7m4krhA+urWqnTe/9bi7cc1jIQQFaTZP3ESAzgCTJef9d7vdmZQBnmfyYGJomzcj+X7PwgPJ2/b2dmuFJ3mJJDjapWNOPSO2jJySiPN4CgPMQe/1egfqO5A4URQwSTORjyTUYySB9nlOcRiNRm0BPc8XhQtfg2kPFEV4L5kD7zY4n+w/+0eyG8FtJmvpAG4zRsr9Pp0cnAt+znvjteR+0ebPgpu+57xHTBWgcBFrJMT1dJTVPt5PrhmP3ffQ4+J1OC8Uxxjdp4Dga9ZqF8Q+Mf2C/WQ/+OJ69n3inPHanCcKdkRt/fnasS9RYGD/a4JW4mRj+rdv0n3fuqrv/aLP0rfe6aW6b2ftuLuUWGDcsr2u59z2WWpQkDeRSCQSVwYv3uzrj991f91Drz/urlzzWBhBgakD3iaRpIXRQ0fsKSjYAk/S5poIjkgzzaHf77e1E1ZXV2ci7CZCtqk7Ys9UCfYpwjZ/iwDRcs1zSJpZjI9pD97hgcdT3HDfTXr9mYmU60HQAWJiPJ3ubtlp6/7Zs2fbugarq6sHbPbLy8uaTCYzAo6dEKPRaGZ+4pyS0Mb0Ac4Td0OIpNEkkQKQx8pIO1NgaJlfWVlpU2S87ri2LDb5XDsPYjReUktWvZVor9drhZnYX68lijgG71XNYk/hiEKS23H/ohOHdQoi8W6apt2xhE4UtxvFPK+teTUf3L+YbkCBLDoHmLrg8+0oiSIU01dq6TIRcd49DrdvYTIWwEyXQuIoTDc39cZ/KD39pY/Tbz/gd4+7O4kFxrM+8Ai95R+NJd123F1JJBJAaRrtNFMtl6tui+jEBeC7f/7rdY//8vLj7saJwMIICiScMdJtwsqtGVlXwHnwW1tbLTk2ATcBMpF0ZXuLEibt4/F4pgCcLf2TyUSbm5va2NioRpcNExAWGjSBL6W00fwaufK43WfDaQ5ul0SKKR0mfLT8u12Pj2TMuzyMRiNtbm62DoX19XUNh8MZ27/THUgU6Ugg6et0OjPOhsNs9r43FCyi0BLJNefKxy8tLc0UdiTB9jnxeM8FP3M/LCgYdpfQFeGfnkMKWYyIM33BdRpq46RQRWEjOm6YRuE+RzBNgaJC3HljHiE/jEifr5jA9mMakAUoOzu4fri9p2Hxj24Mwvcrfk4HBOub0LE0T7CMbSQSiUQikbh2MH3z2/SYz/7n+urf/1M94fTtx92dROKqx8IICjEKLu1Hbmv2Z9vWSaRZqC/aopkX77oEPp9EkHn5JoKj0aglPxYI3A+KBI7+M+fbv7tftfxzCyPSbG0Gw+Q1RtKbZr9QH7fnYxTchNhz6TmygDIajSSpdWI4esv0EKYkOI3CooTJoefZIg3TUKK9nfc8ktToBLAYQrcDEaPpPsfzxjmOYgPvhcdpAYZriKTefeRWmXZ7UIxgIUc7VjjmmB7D8cR6GxG25M8j/zUiHMWmO4qYZhJTGojozLFrIG4dKmlG5GGqj6QZUY3fT14nzkVcb/yecj3W4LnymkskEolEInHtoNne1vY7361R0zn64MRViQf+t2/Wvf5k/bi7cWKwEIICSWGsku8ILm3LrIFgGzjzpU22Yz69q+KPx+MDUXsWzfN17HjwrgckhT6Glm5HgX0tF3c0oTTpYb9J1i08ECakjvyTGNOBYBJUs8OzHQsB3vGCOzVYXLAg4Hmj48DCCe3kdG5Y6GFu/Dwx4ShbuUkg6xLEugo1QSEe7/eiI4L3kOKLj4059LVUFYs/FF68dpnu4bVXE4si6T2sLkAkz/OItH+Px8X7cD6gOETRyiJdra9xjHRrUEyopbTU5oGOmHhPa4hpQfO+D4f1d14Nj0QikTgKv3zuJv3e3z9Y99VrjrsriUQicWJwy/a6/u/3f6Hu91Pv0Pat7z/u7pwYLJyg4J8mt0whYPpCFB7mVek3yXV+u0m/I5WuIeA6CW5/Ot3dtm5zc1Nnz57VuXPnNJ1OZ6LQJD7MCzd5JGkejUYzufgeS6/XmxE3GDVn6ge3SCSJ4jaRPJ9599J+dHg0GqnT6ajX62ljY6MVanwdpl0wrYQRczodSAo9N54/Wtdr99zXjX2OY/HcmoTGKH8t4s+0jNp1fSxFHRbp9LExFcFuEeb+u2gmBRe6Grj7RY0k+zi6JywY8ViDdTYuBBdr37fwFAl47Ivn1Wk+0v5YvWYOWxvRfRG30JQOOj3m9ZW7b/h5wDXhdcL14zVN8SKRSCQuBD/4i/9S983c3URioTGadrKWwjWGn7/9oXrnQ4eShsfdlROFhREUBoNB+7dJP3cTiFFoR9stOJjUulDjYDBot5W0Df/cuXPa2NjQcDhsLdUmcExJMOkfjUYaDocaDoctiXQxtxihJvkwMTXp9nhMzJ1yYSLqPruwIl0NtPo78i+pHWuv12sFByJGopmO4boQ3n6TDgkKCrU6Bk5zGI/HWl9fb2tWsMgdifo8Est0lEgMYyoC60e42KUFAJ4bCz8yRYKFC33/6HqhO8FknuTXRJqE1mKL++M++LqujcDaC+6L1/VhUXRuncnrsg3O57y/mU7k61DgqEX8I5F2mgedErV7ynvIdUkHEefT68/HxJQXt8v1wL7GFBXPFUUff88tJjgNyeIU663YDVSb00QikUgkEtcOXvR5n6gf+k//TO94zHOPuyuJxFWNhREUaKt2nrUJhmsdSPtEx8TW77HwmreVdJE3SW3qgtMXOp2ONjc3W+LLav8mFbRYk8i7z4bFh8lkMhPtZmTV7VNUYB2ImqOAOwNwfoxYKyBGvBkRJ4Hm7gTD4XBmG864IwPByDPdCRxHzdY/D7VrMOXEczkej9s0jZj7TmdDdCn4RULNqv5Mg4gOCc5nrN1AMYT3kykecReD6XSqbrc7s8Z8X9x3iiF+3/czHheLLNZIOEF7/2H3o5YGwHFxnvm55zN+znEelULg6/A+8LrRPcIUIKZjMC2jtj1nvCbnuHYPEolE4kLwkJ96qu7xex9TSpKJxGJj58O3aWl0/+PuRuIS4dP+4gnqP/96ndErj7srJw4LIShIs9v/sV6BI98mErS/GyTxzPtnioELEFpQ6Pf7MzUDptP9vecZ3SaJihFxRp1Zf8GfRZLCdmL6Agmjz2ftCEfqSZJjP5iXLs1axyko2GFAsmVizSKYMWff4+ExPpfkjufE+gB+L+bOs322YfdHLJjJ+ay1ESP/XB+RHHNtca6Y2sFzKC75PkQSTSGCazVG0uM4Innn9Tg+C1Q1oi8d3MVhXntx/LzXsT26E3jvOG8Xko7h7zvdR3bpcKzSfloLBYVamkxtbFH84zqbJxxwTIlEInG+2GmmutevvFfb73jXcXclkUicB06/fUlPfe9n6jl3SxJ6NeNJ7/4cLf/vG3Tmf77iuLtyIrFQgoK3h/RWfMwpZ+TUJE/aJ8LetYG5/D53Z2dHw+GwdShsbGy0ke9IOGJ02+6Afr/fRuMZJfZx3hbQfXY03WBaAXd1iMKI++BdGFiZv9vtztQQiOTL82fibRHC4yMhNyn1lnyxJoHFhUjGYiFGji3Wfohg+7E2AckdhZtoX49km/eNIk608XN9sJbGPOLI4pW0+sdxME0gknYKIXTL+PrxnOgiqIkAFmKYDmGSz7VAQcFzGcmz70Nc/7wO+1VzQXCNsA5I7L8/53qncOPvMFFLB/E4oqjBczwX0Z1QE1miaOE2/Dqs1kPiZGO43dHmdKLVpe7RBydOBHaaqW6fDqVMl0okrhp8/E+8XG9/xSdJL0xB4WrETjPV2elItz7xLrrpzSkmHBcWQlAwgSYBo+Vd2ifetNubKK6urqrf77ft+TyKFJubmxoOh62IEK3SMTJru7QLOvozigEWNkx8Op2OVldXdfr0aZVS2rQNwyKHrzkej1vhhITKhNM1Ipj/7bQKt8s5c5skmSREnje37Z0nOF8mknREGBZmPC4Xd6R7w/MUySut/pGYMmWAuyy4zzUwJYFRZwpBJqPRrRKL7UU3StM0bUrNZDLR+vp6e+9ru17EFADOAQkx34tzxOh+rZAk58hiAtdXrKkQ56pWm4BCg/92330er83ioZw33i+ef1TaQE0YiiKBr+m5rW3j6DVO4c/9j26V8wFFLDulEomI7mNv08O+8dv12u9+znF3JbEg+KHbHqQ/+7y7aOdj7znuriQSicSJwM+fvbv+18Pur52Pve24u3KisTCCAiPC0sHdCWKE0Xn73W5X/X5/hlDFSO1kMtHGxkZL3nu9ngaDgQaDQZsDH0koUxgsINAtYFcCK/i7uCLrPdB2HQsImujZBcHtJjc2NrS5uSlpv6Dg5uZmO9atra2ZcbpNRt8ZpTVJ8vu+pgUWE2ZJrThj0cV9daqEST6L2Rm1bQFJut1fEtVoZ+ccx0g7xYOjdgsgEXY0XVIr1PgYfuZrm0z6HpOUxvQO9tVzxYg670PN5UDSG1MFSPK5RmtuAYovbof3MILfqRidj3NYSpkp2BlTOWK788bja1gAs2BAV1HsFwWvuCUsa6d4rvnd4ho8X1HB9zJ3eUgchunGhu724vfr07aeqld+74+rV3I/85OMB7/8q3TTL5/S6kdfddxdSSQSiROBf/hXj9fgeTfoVD53jx0LJSg4gk7iIh3cU97Ew6JCjM7G/H26HlZWVtqdH7xlY4x2S7OCgovvSZoptkfiYdJYi6TGPPUaGaQTw3OxtbU1Y/23u8CCgnd4iIIChQ+/fK77Q5LtHS68kwTH7fdd28JtcNtOXod1A0jIasSSkf1Yd4G1KUhcfe9jxJ+59TFlIJJl1n+IggLTWbwGDsuxd7ueR47Xa5QRfI6TKRx0GkQxILov4pzWBAPeO7bD82rpFlEIiIUrfW9q6QacZ48rpsxEB0mtvgUdNr62+83iqTEdwqKEv+s1N8M8xH7GbSoTiRp23vJ23Xz7x7T1zJ0UFE44dt54Wqu/lXbbROJqxNLHNvXw1/9zveBBv6w7L5867u4kzgOPf/sjpN++Sad+PZ+7i4CLEhRKKd8h6RskNZJeJ+nrJK1Ker6ke0l6p6THN01z+2HtTKe7uySQVDGHmyRieXm5jaA7TcA7KkQCQ3Lr9AifPxgMZkhSjKrT6mxCZtLpaD0JvMUJSa0TgLnZJvAkObTPe5tJb1XpyDjJqOfJBHp1dbWat+/zSFYjMSYpNwGzy4Kk0n0ejUY6d+6ctre326gy60XYvcBihGwnuhTmrKcZsmu3hee6lNLuRuH54HaOJKQxys75YcSa957CD3dniOJAjOq7n5Hs897R0WDSyzmaR+JJsH0Oa2d4XXGcnptaCgXFtyhQ2CFjeLzeXlTSjMgSI/78ztYcARbL+F2NAhE/q20LGsEdOzzHvEdHwX3mGqEgdSGpEseJS/UsTiQSF45bt9e1tHV0IdrEtY18Dl+92Pn7t6n3RdIr3/JxesypzePuTuIQ7DRT3bqzqXPfcmfd6bUpJiwK7rCgUEq5m6Rvk/TgpmmGpZQXSHqCpAdLeknTNM8qpTxD0jMkfc9hbZko12zVJsd2FDiCbnLl6Dqt0SSWJsOSWjK6urqqwWDQXltSG/Xf3t6eKbBo4swtKi02OIc95nhHYsnILkmq873d1+3t7bZwJHe5MEmzmODaB2tra+0OFe430yeYc8/0DdYCsFDiSLbH7eO8K8ZwONTGxsZMAT0XdFxfX59xbsRt+xhRJtGLc2REUaDT6bQks9vttoTcc8qofiTnpZR2LuneYB98Lc+z58/z4ffYZ17DaTW02ntN8XpOr7EDgmOI4pHXnfs2j8QfhjhWrlOPgSTdx3vsFhK8Fjy2mjuB82nwuFoqRa3uQ0xhkHSggGZEFN3mzdNRglYNd+ScK41L+SxOJBIXjq9/zJN1z9e/OreJPMHI53AicWXwvzau18996udoOnzTcXclAVxsysOKpEEpZUu7Kuz7JD1T0sP3Pn+epJfqiIcnI8ySDmx9yNQGE2ALCawV4M9ZR4Akki4HRu8tEoxGo/ZF94KvSbLMAomOrG5ubh5Ix+D4XHiSRNqCAAslmlRZQImpBxYVKCKY6Dt6v7y8rG63O+Pu6PV6bQ0GR7/tpnBfuGOG59GiglMier1eKyh4PljbgHPOIn4WK2rRY0bnuS6kXSHIolGs20D3Q+wHr8tXLWUiwqIC22G7MVoe6wnQek9xg1H42I7XjUUTFudk+oaFiThPnJfDrPqO4LMfdE/E4pO8BucxpibUriMdFNkMOhTowGAqjb8vh4kZ/p6yHsVhwoJhMZA7cDRN0wqQ88a1oLgkz+LEhWP60Y/pkd/+dH3p9/+xvuemtxx3dxJXEC/e7OsHn/lEnXnL69XkjjCJfA4nEpcVD33N4zT46RvU33z1cXclEXCH/7fcNM17JT1b0rsl3SrpY03T/IGkj2+a5ta9Y26VdOfzaS9W4jf5IMFl3j9dCo7KkyjaKh+t5Qbz6ePx8VgSTwoR/Gk7t4m+EaPYPIZCAreJtEhComPBgwUFLQiMx+M2Qk4BhpHeGHG2QME+mcz5muPxuN3VgU4Rv1h8skbeaFs/LLIdUyL8Owm214DnhG3HSHcklOdLMCNiv7lm4u4atTFxTXvtkoxHMYHH0tVC0cP3lgU5DxuT24tbqUZBTdov/hlTDNhfjz+ms8y7xz43fq9i5J+pHTFNh6JVDVHsiAJGzb3EftCRUpu/RcelfhYnLgzN9rZO/fqr9KaNuxx3VxJXED902/31tD/6Gq392qs03dg47u4kjhn5HL428PQ//Vf6fz96j+PuRqKCR77pn2n7f99J/d9OMWERcTEpDzdIeqyke0v6qKRfK6V81QWc/2RJT5bURtYZiXf00vUOGMmP1f3tIiB5J+m2m8FR32gjZ62F2FYkQZFsMV2BaQo+nn1wrQEfQycFRQb31Vb/8XisjY0NbWxszGwvSUJrQcFEluSRqRsUAZwPbyFhdXW1FRu80wQLDcb6E5EERpLGqPH5EHmSTApE7hMJIS34ruzPegrRoXDYNWu29uiUiGQ6HhudAbT0R2Jei9iT1HLdENwNwed6/kmI3U//7fXke88xeI6jI8FrKRYXjY4U3pc4jzXxhXNbq41AR42vYTFr3taYnEuvgZj2QrDfcb4pEM0TGRYNl/JZ3Nfq5ejiicD7Nq7TGyZDLanRg7o5j9cy3ra1rl940RfoAd+X+buJXeRz+NrAA77+L/Xs5z5S3/Lonz3uriT2sNNM9aatsZrvvUkf98p85i4qLibl4QskvaNpmg9JUinlNyV9lqQPlFJubprm1lLKzZI+WDu5aZrnSnquJA0Gg8aFFvfaaosokrxOJpO2xoDt9ywOKB20ZJs4mzS4gGO3223JroshMmpsYsKILh0MsRjeYZFiX4Pk3AJEtGuT9LMuwXg8bvtfStHW1lZb04D9YGG6KDA4jcMCiMds94KFm62tLa2vr7d98zz3ej2tra3NEFPunsE+RxGGUecI7hxBIUWarSGBtdMeH2tfWFipHX8UmHbj83yu54yEk0IC15fXTc0V4zZq0fyYIkDi73vAe+vrUbww4ffvdD343po4x8g9a0h4zXrdSbupJyw4ypQF3+M4nxQTmLbBYygEsv6J5zHulBHBWhREFFKm0/36J3TsODWIoofn1eLdguOSPYvPlBszDfyO4gtv1b9Z+lwt3/2u+l9//lvqlMUXoxJ3DN/yL75Z9/rLVx53NxKLhXwOJxKXAX86WtGzPvEzpa2/Pe6uJA7BxQgK75b0maWUVUlDSY+Q9JeSNiQ9UdKz9n6+8KiGSEin02lL9vv9futMGI/HM4SeRNn2fkaSR6NRS2IY4WROtgmGyb4j9o74SvvRzFq+OEkUI7WG+xMJlbSfx25nggUUt2NnAgkod6aYTCY6d+7czDy4H55HX4fvkSg6V9z1Fnq9Xtsnk1qSrtXV1fbeWJDY2Nho24rR66Pg+Wck2Pczpj94PkmYDTs9Yr0Mf8a/j4Kv4fYsVHCNcH0Q8+oaeKw1p0QUJDwG94OOB669KCgwou/+WYTwGmBaD68f1y3XbM2xw3SkKPjQVUAXjMdAMYRrxfNlsS/eL/7N73Vtbrnm6drw/WRqh9cy145FBAo1C45L9ixOXASmO2qm0s57368v/Man6HHP/j19y/XvOe5eJS4hXjpc0g9825M0+Lu/u6D0ucSJQD6HrxE86MfP6pPf9FT97Xc957i7cuLx2X/75eo9+wZ1tv7quLuSOAJ3WFBomuZVpZRfl/TXkrYlvUa76uqapBeUUp6k3Qfs4y6oQyhq6N8deSbJmWexZqSRRN7W+ZqY4KgriY2JFKPW8WckcLX8dFrcY9Se+eEGiVuMUJP42e3A7QMjoY3zs7Oz086lxx0j3NzhwgUAKdy433Z1uJ1YE4DXj1Zyz6GFGgso8bM4Hs6pj3fbJst3FLwmCWZ8cYw+nkTffYqkORJnX7Pmvqi5OWKNEIIOkJrA5WvEwqJxTfna/g55Pi3GxboEvD8UQSQdOJbz5c99TY6TLgY/B7xGa9+rOKf+TsQ1VHMw0A3BueP3/CqpoXBZnsWJO4Zma6Le7/yF3vmf7iQpBYVrBT/44Qfq5172cN3/xa/S/CS6xElFPoevHey84c2688d9+nF348Ti9p1NPfRPn6pG0pmXDbT2R5nmcDXgonZ5aJrm+yV9f3h7rF1l9oLh/8DbmSDtR7FtZTehYH0AH0diySKJPi6SHZNiuxmk+m4DJEbRncDIZky1YG2GmIvO8zkOuhqcT25iTxGC9mwLAiSGFkRoo5fU1kVwG+zPzs6ONjY2WkdCr9drhQTWVtjZ2Wm3krQ4QedHFDPcn5i2wXFzDZCo1+oP+G+TSaaTRCGCokZNZPH7JMiscUDXRU1MiIUMI7mNbUTCXEvVifB9nOeymHdudDRQUKjVD/Ac+rvjnUNM0GP7UVjjmmJaSuxrnH//5HwuLS2168/3xOKR1xrrJcT27aSp9ZvHxt05YirT1YJL/SxOJBL7+JvxWL/w+/9U9/+3+R/bxHzkc/jawdJkR38+muqhvSbT164gPryzoeef+0Td56teJ00PpkgnFhcXu23kJQNz5klgHAGPhMlRc9uTfZxt+HHHBddoMPHxVoij0WgmtUBSlWxJOkBUWY+AZJX1C5xe4FSCmKtuAuWilCT7zuF2pFZS29bOzs5MYcTxeHxgi0b2o9mrQeG5YQ68z//Yxz6mfr+v1dXVNg3BwoIFHqc3WFBw2oSvGW36nD+PlUUUYwE8ElASVYoWsagmd8eoCRQkurS6k+BTEKF4FdsyuJWppJlxu+9cs3GnAqeT8Nx5xDdem2B7TINwvzxur0Neg9ujUhCoiWQx9SK6BOb1vZYGwrmNAhR39HDfDAodNWcDxYnolvF1ojATHRfRRZRIJBL/9qu/Sff9sxQTEomTgvLy1+r/ut8/0ve99a/0ef2jj09cGnzuK5+iT3j866UmxYSrDQsjKEj7EVUTAIsEMfotze5c0DRNKxBYHCARYmE3kyFb/2tiAiP9/mmCYaJjgu6oqQssktQ7ek9CayIfQQInqR2bben8zONne+wzUwIsemxtbbWOApIoz9/W1taMcNHpdHTq1CkNBoM2z9zj9Dw7ok3HhN+jTT7eM/aTFnVa22sOBNrwfYzTLXiP4haNFC7s+ojWeRLpra2tubnzdovwvkj7ef1RTOH4Y7pDjQCTKHtMNfeEybGvEQk026A7gS4OzwXXIIm5P/O5TI+ZNz+M+NN143567DGFxN8dbovp9RNTmDjeKHhE4cX3mK4X94kFGDne6GpJJBInE68eb+l7v+6b1HnNmzPNIZE4aWjyW38lcMv2ur7m65+upe1G9/7AOe3k/7uuSiyUoCAdjLiS7NPFEPPCLSiYcEbiZTJkocIRW9YpIGGKJIhbMS4tLbUOCEZMmeNNAuxj7CrgWHwNuhx8DdrpTQBpo/e5nA/2gW1bPIl55J5DX2MwGMy4P5zm4P6zBkMUbmqRbNYY8JjYh5im4HtGsk/xgs4LFkz0uvC94vgjcTXBjGSVkfkafC94X2JdBxL9WOch1jdgXYCIOI9xzXAskVBHcSKmI/hcjov3j9eJkX+SbqbuUMCpRfcPSztwHygScj3Eeii1tIl5czhPEOA5Hj+/9z7/MNdIIpG4dvEfP/Rg/dIffZ7u+9JXppiQSJxENI2+7n89RU/6gj/R997pzcfdm2sSz/3YXfWsP/pS3f+P/1Ka7ih9CVcvFkJQYHTZYCE8H2NwK7jRaKTpdKr19fXWDRAjo45+moA56k2S4qgraw5E+zMdFKy/4G0p2efhcHggsmoSSxeGo7UeuyPf3W73ALGLBQKl/S0XfTzTBDwOFk6M0WcKE4zwe46bpplJs4jOBBJJtkEhJNrMOZZI2Jgr73vEHTvcP4o1LOwYixdGoitp5l74fAoWdEoQLBRIEh4LGEbwOLpcPF4KALVofs3twP5F4us1xfbjuXGnh7hu4vxx7ime1dbcYfUeODYSep9Dccz3h2shrpeY1hPnseYOYR9qffNYfc8SicTJwstG0n//48/T/f5Nbg2ZSJxk3O87X6mf+6mH63Me9eZMfbhE2GmmevHmmqZa0rNe/Ujd/1tfddxdSlwCLISgIKklar1eT9Is6YyF1ehO2NraausCmFCaEDjH3TUAmFfOdAQLCY7Ix6gvbdgkdyY5TbNbMZ82agsNJPEm6Cbj/tv9cjFKXyemergOA6Ppjui6FgLPiU4K11lgagbTNXwPXDdheXn5wJaJ3CWgRhrdtgUaj899Go1GWl9fb+d/eXlZg8GgPZ/1EnzMeDyeIZ8+xoKCpDY9ZDAYtLUrmI7ic2OagufUoo7bcZ89VkbQV1ZW2mvbsSGprYnAGg1cy9FNwjUd0y88JhJinud6GzV43FGMiz89T4eRf34XPD6CDh3PAYU3rgnPudvl96Lb7arf76vf77fz5Xu8sbFRFavcDu+p551uIM4LEcft+XLx0BQUEomTiR94yjfofn+QYkIikZDu/7RX6T886hv10p/72ePuyjWB26ZD/fSnfq6mGxu6v/76uLuTuERYCEGBufuMvLPuQIz82pnA6PC8vG6SD+aUm6StrKyo3+/P1FdgpJJkVtIMSfU1mRfu/pEYMuLLsZj4uKI9i0y64CEj3IzWdzod9ft9dbvdmeJ6Jl4uoBjrGphYm7RZTDGh6/V6KqW051qw2dnZaQljFDF8vyzguD++tqTW7cC6GHF3C451Z2d3NwmmIVhosdjgebAIQiIbU0N4H30vPAe8TxaVfB3m4LstiiwmtUyH4HHD4bAdqz9nZJ995TzGooQUIKL9n/M4r1hhTZSbB4sS/J5wHfv+MDWD92jetXzfSe4p1rAWB9ev26Ugw7Z5T2tjOSx1gaJdbR0mEomTgTdONvXtj/8m9d7wxkxzSCQSLQZ/+iZ98Zd/jX7y+T+tB3ROHXd3rko86Geeqnv+zlmpadRs/t1xdydxibEQgoI0WwCu5kiopUPMK6YY242kjM4CEjcW5yP5ZIE45sMzGu+2WbOAedkkdRyfiZBdEKwPwAiz6wUMh8PWVdHtdmcK5JEUeZ5MeKXZ7Ropqvi6nmemAJjUMWXC82xyb2JZK1jo8XlOvDOE+2SXBueP7oNY04CRfApCvg+0+xsxL551IShsxIJ9dJhwHbEwpYWlfr8/swZ9vziGuBZN/kne6TzhcZHw0vXgtuNYYxpCnMfajgcUfzw3TPXwZ+w7r8+1TcFIqqdfWESzK4Rzzx1eolhj1NwVFijch1i/gvNUux90+RxWUyOROAy/+/yH6c2P+ni96P6/d9xdSZwH/tOHP1H//cX/RPf+i1dqWhEmE4nEycX03DnpVa/To3/lu/Skf/ZH+p6b3nLcXboq8IL16/TM3/lKSdL9/mBdzV++/ph7lLhcWAhBIeZrx+JoNWsyI520VNcilNJs4TkTPe4uQFLn4/y5CTJFDKYsSJrZzcFEyESM4gFBMmhS5blgUUlGujc3NyWpjcazAGDMxWf0XdIB4YNEl9FnuxIktYUradm35V/SAaeAUyUYpfbcjkYjbW5uajgctmIObfjuEx0Pkfh5Ljw3FBTmRd1jPQTeRwtSXGO8x5HMNk0zszXpdDpthR06E7zGmIoT75dfsdZG7A8FIn5PDiO70akgzZJ995OODt9Hrh9u9clil0zNiHUeYp8pFlKEkA6mE1GQ89pjWpBTHngt1lGI/YlzyqKgsXim+2uRaJ7jIZE4H9zth16ud29+ln71aTfoCadvP+7uJCrYanb0y+du1k6zpF942efr/s/MrSETicQcNI3u/YxX6Geu/ye60+ef03KZ6qtPv1/L5XDH50nCh3c29ML1+7Z//8gbvkD3+/ZMHzsJWAhBYTqdtkSZJJwvIroSYvSWUVG/Z5JgYuvzTUQZHWbthF6v15L3uAWkNBuZNbl29NrpC46+OhrrVAE7E7rdrtbW1tprmEi5v27TueSROJv80WHAcZoUuVYCz3PKRK/X06lTpzSdTlsxIdYfcH0Lz7ujyJ5ztxOj6CSInkMTQxZQjHNbg0USEj2STbodvCaYluJ+Uzwiai4U95E1OzwWi1ndbrcVncbjsc6ePduKLk5NoevAc0KLf602BYm5+1QTEvw9oEMipmrw++K2KDjFmgweG4ug8j5xe00Kcz7O68JzTIHI51iA8nfQhU79HYrrPRZItbASxRLez9p8+jNf1/31+qs5GBKJC8XH/+TL9d9/9+F6wst+67i7kqjg3dtD/eqn3FvNeKz7KwuDJRKJo/GAp7xaL9BdtNTv6/Pf/Hbdu7N23F1aGPzA+/+p3vKPxu3f91A6Ek4KFkJQoL065oRLqhIokhzmekfC4qinaw/4Gq4VYNLPaHIpRaurqxoMBq1rwHZ9WtjZR9q0GRH1q9vtanV1dSYi7Ih+v9/X8vJyS7od3XbfLSiQbFo4cPqAHQ4mtR4vxRdGdO28sGjiYnibm5szefIep10HvV5vhnTz2hZeWLdgZ2d3x4v19XWdPXu2FUXmpWvUdn7gOmGdChdQjAUzTZQpGHAteI4p6rgP7jPvHdeH1wFrT3gNeQ1sbm7OiA0mzbT7W0CgS8TiFsfBuh8k8xZKoihDR4tdNHYBSGrTVywUGRRgmMoT0zhiqgi3UuUY6WSouY38k24Wiyy1HUk4JzWXQhwLv4e1eXU7TM+I6RGJROLaxRe/8dFaftpAzTity4lE4sIxHY30LY/8Oqnijn3nl92kv3vqc46hV1cO9/nNb9In/vRHZ94rmyNJ7zqW/iSOFwshKEg6NPpKYmESGS3uTH+QNGPVdhSSOeG0WDMy6fNMVElCaySwBpMXRuFpiWfk3MSaDgmjVtPBc+DPHZ3d3t5urxnTBeb1iztg+LxYz8Bz4fN9TfeNbXJsJOcm8NEiz7GQNMfdMWLqh++z59T3Lzpb6ITwfLkmBB0IXH9+RQLKHSdIVC3iuN9MAYniDwWTeK95Pf9k5J2CwlH5/xY2OI7l5eWZrTGZikAhrvYdqq1HputQrOG9t0Nh3vfFu6qw77U6C+xfnCOjVkvC42c6kMfBcUYhMqa/JBKJawsP/NOv0fW/fUrXvzFTHBKJxB3HzhvrguQnrH6SHjj45kt2nc95xOv085/wZ5esvQvFvV/0ZHVvmy18f+8/nmjnDW8+ph4lFg0LIyhIOkAiSVRNirgjgrTvbiBR9k+6GEh2LEj4fBYV5HkkmyahJIHuYyQjJmGOvsbid5JmrmV3AusmeD7ovuA1fH3nuVMUqVn5fU3uZOCdHej0sO3d12N0t9PptG27by5GyD7FegjcopNj51xFIkpS6bYsKHhuY40KFjiMhRB9ny0ouB81QYEuEhNl59Zzq1E6LOJYPddOA4hEuVbfwIg5/ZyfeXn9vv+sP+H7yj5Gsj7PDRLnhyIIXR8G55gEnvNIZ4C/y+5XFM94bE0YI+LnHFOsk1BLq5mX3jBP4EwkElcndpqpnv2RB+rm/95T78UpJiQSicuD5i9ep3v9xaVr7893Hqb/9M8/fORxnbKj77zxTeqU+q53EeNmSz9y2z/QVIendz7ox2+fK54kEtICCQokh7Wot6PBztNfWVmZiaIzT5wFDt2mSbeJsTRbAd5EMooQdidEMcGfu3+0YpvAkfTGNldXV9sUCLbNvHBur0iSRPJNwcW1IkzQTJQoXFggWFlZ0enTpzUYDNp2vXuB597H0hbuLRB9jcFgMLNlo6Pgjtbb/u/+xCJ/JoxuM7pASFJ9PueWc8p+RQeCUxU2Nzc1Ho9nXCMWIbwGYrt2JjDdxc6O6E7w59zKk+Mi7KrgcST8XNMxlcBzI+2TZK9TH0NhjKKG59JCHL+DXktR7PEYnIoTayvwexTTlmK6Au89RaBa2hJdCh5TFAnifBGxTxQTDkttoECTSFwsdpppFu5aAHxwZ1Mv/cw7q7dxCf+nn0gkEpcZ9/wPr9Cf/of+kcct9fv6F28e6l4rq+fV7usnjf7Pp65J06OCJykmJA7HQggKJhkkGNymMaYPkFTUopHSLJki2SThd5V+n2visb29rU6nMxN1jjnnMUrq92jhpzuBOz/EvpEY0sJPUBxgVD0eF+s42I1hkcU/SYY97lgfgqSThNb1AUyq/R4JvXelGI1GM/b76BzwPfQ5sTgmxZFaTj2P81ySKDtdYWNjQ8PhUBsbG230nuvMrgOfw9SOzc3NGcIb11/TNDNpFJ5fOkdqgpRBssu0HK5LCiwcu99zTQiSefbT9UEI1omw6EBnRa2fMYWHhN/zyLXPz7yzih0KvqcUznjvLQRaTHRR0CggeSw1zJvzw8QEnxfrPyQSdwQ7b3+3HvM5X6ZHvfiv9S3Xv+e4u3Ni8eVv/UKNv2ag6ca7j7sriUQicVkwHY30bZ//r6Q5/yc6eMJUmua/S4mLx0IICtJsoUCSZBKkWIAuRmxNjEzmGAG3aOG2SBRI2lzITjpYD4CEio6KaLFnpNfkK1q97UygMMFItK9PYsuid5LaQoqOkEuacSg4Euy6E6urq+3fjBJzDCaVHL/HZmGFc+xrM1WAEWfm7cf7VLuXkYCTNBpx+0ufQ3GG7hQLCdyGMEauOV6PmekDbNdz5z74eNaFoJjAMdTs+RbSLHC5X3bhcKxeJ7EuQ1yDNdEjpixwLmv3hvPiz5gyQxEuumYoFsXvT+19ChKxbgi/9zw31qGIYMpEzdkRx8Z7kkJC4pJhuqPtd7xLv/Bjj9bzv+L9etkn5Y4PVwrjZkuf+rNP19JYOvPOqc68M7cvSyQS1za235miaeLKY2EEBZP46DxgSoOJRfzPfiQ8jsSzGB/JkIkmo6vcmYGCQCSfrM9QI8McA2sWeIxxCz6SLI835pFzvCRm85wNkTB6JwLPCaPScR4jeXP7TMNwO6wPEIWIKArwPsWUlpiqEHcS8L1gP30vLGgwNcT3x/Oxubmp4XDYHsPrGnRhSJoRE+K9nSe4+PO4+0gUVHhNzy+PZQS/1leuGQpOtbQbignxGrzXFETmCQZMwZhXM8OuD9aeoNDA7zddH1zzXDNxrR7mTqiJABQT5okEdkLwb7dbc2okEncEd3ruK/TB7mfpaTf+Y0nSD9zlj3Wn5VPH3KtrF3+/taH/cusjde8ffb12zp497u4kEolEInHNYiEEhVKK+v3d3CCSC2l/y8K4LaKPNehC6PV6Wl3dzR8yCTZBIwGSDm4x1+l02kKFJErsa7fb1WAwmIlemzzTMu5aDT7PYkIs+udX3C4vzoNBQu7PSd5JLG2/584Y8wQZ7zjBPpMQWrRwdf5SSjtvJNxxtwPOc9x9g04AFj3kTgXz6iXw/lCUMJmVdl0VZ8+enUlZYWpDdIl4Lkl0/TcFoiieWFDhvFBMiKJCFCY4Jo+Z96ZGsKODhp/znOl0eqAwJosicr25jZoLxOdFp1CtWGMUW2IKRhS+ovgQnQ7sG49l4cs4vz5+ntBQ+zu6ImqpTYnEHcWdf+rlestP7f7+63/3AH3dde9sP+uVTv2kxAVhq9nRVFN977sfq3Ofe3QRs0QikUgkEheHhRAUGHGO+fKSZrZwnAcKCadPn5akGaHAFnRpNq+aAoYJf7fbbY9zDQWLBc7ndo0F99kEmLsiMK2ANnlffzAYtJ+b8Emzlm5p1uIu7YsTPtaweOLP+/1+K8SsrKy0pDo6J2rpII787+zs7oxgC/7p06fbgoPMf7crxMfHF8ksI+A+37UfdnZ2NBqNDtQDMOgksIjitAo6PtzG1tZWu6sDCSrrLEQrPqPknlOfT4JPASD2z4TZ66eW6kAS6zGwDR/ncTBVxXMfUxgiPK9u32uJW266H0yRiY6AmpvGfa+lUtTOieKKv5uxVkGn0zkgFlKciI4Jvi/tpw7V0jZq/aDwl0hcKbzo8x+s/73ySe3fT//Tl+iLVreOsUdXP8bNlv75o75GSx+8XU2oe5RIJBKJROLy4EhBoZTyC5IeLemDTdP8g733bpT0fEn3kvROSY9vmub2vc+eKelJknYkfVvTNL9/Ph2JNn6TBhIcRh3900IECw4uLy8fqBhfs/fXIqtOZWDE3J+RiJN0j0ajlrRyFwJfN9YriOOOhJIpA7UoKQlhJMIew+rqqgaDgfr9fivG0KER7fHun6/regnuF4vj+Xqem263247B8zGZTDQejzUcDg/sfkCniQUFigO+JgWAGEHmT7oTpNk6EpFISwcL9cXilDUbfqwtEJ0SMZWGqQhcb9GZQrIcUxxiKgGj8HRAzEslYYFOr3MLXqwb4jZIrL0GOcb4PfIxFO54v3gOi0PG9RPnI85rdB9QHIjioI+1gFhLoYr1GWIxTvb7MLHmSuNKPYsTVwY7H/rQzN/f+1++Qd996jwLaSXqaKSb3/zX2t779ziRuNTI53AikUgcxPk4FH5R0k9J+u947xmSXtI0zbNKKc/Y+/t7SikPlvQESQ+RdFdJf1RKeUDTNOe1mXu0PUuzZIRYXl6esVOTuM+zgvsatLLHfGmTCzoTpFmxQdKBSLwjyLXIaoxic7z+GSPjjIrX8ujdp0iYnB7S6/VaMYG58BYpmEpA+7sJ4ng8bncusHODqQcxXcD9txAR54akm/n/vh6L8dllwToNFhhoz6dLgQKSdzzg/a3NlccR7wMFBb9Hl4TXBLemtJjgNikoUPAgkWUfCK6XSIC5VlgskmKEj6OgEOffjpd5DocomLjP8RoUgyxo+ad0UIDgnNI95GOjyMHtXqMTpPa94jzQlUThxtetCXJRPFmwlIdf1BV6FieuPG76+VccdxeuCSyOBJi4RvGLyudwIpFIzOBIQaFpmpeVUu4V3n6spIfv/f48SS+V9D177/9q0zRjSe8opbxV0kMlHfk/pUiUnE6w14f2OJNMElsj2rgj4TBhMFknIXP0nUIFrevMqZ5OpxqNRlpfX9f6+rrG4/GB6DK3P3Q/3OeY+sB0DxPy7e3ttpaDyT773DT7KRp0S7B2Qr/fb/vLood0WzCVZHt7u3UXeKtFzivJoUmZ3Qlum+6Ezc3NNvWAgg9TOnwtt2Ehw2klnp8IujjsDnG7LMDIIp08xm0wwu3PLHAwSs56A3Y+0FXguhIcW0yb4HqMboIaQY7fhRiNd4S/RqztFGEdCq+HuLbpBOA8+OU1ZUHNbcSilW6HzgxvK0qxIDorPB/+TsRdQ5ie4mNrAh3nJgoDniOuC35fo+AT+7UIuFLP4kQikUjUkc/hRCKROIg7WkPh45umuVWSmqa5tZRy57337yaJ+zLdsvfekTAB8U+TF79Y1M0kWpotsGeSRdt8tIibrPscad99wEJ0Pi4SH38+Go109uzZlrwOBoO2fz7fhMX2fosWJPBGKaUl4yb9FgyYimAhYTAY6IYbbpght6UUnTp1qk13cG0Gui1Mjl1XwQ4AE/mNjQ0Nh8N2i0UTccP9cK0JF2E0gV1fX2+vySKJrnEhSaPRaIbEObXCQgTvJ0mu7y/rOjBNwuPkfZc0sxUpibKvwwg7SacJsgUVt+++Mo3DbXONuH8x/cafR2Icj2FtiKWlpQNzw7VJIcxCBtNofE2LHp5DCwReYzE9xOKT17avQ+Ifvxs+l98HOmSiA4HCAets0D1CxJQVH09xhgIEvz+eK7ZF10RNjFhwXPJncSKRSCQuCPkcTiQSJxqXuihj7X/f1VBiKeXJkp4saSZ3O1a3x/Ez5C6SM1ql/V4kI7SH86cJL3OmTQLZBiPQ6+vrM5FUX5NpGMxXZxFFEhuKC4zW033gQoWj0ahNYxgMBup2uxoOhy2ZdhTaRN8RataCYKV9j899Go1G2tzcnBFdSDibptFoNGrHsrKy0hJ8Oxo2NjZmCO90Op0ZO90EFIGGw6GGw2HbrkFCThGCKRJOq/BY49z6eryvFCqiI4GfMyLPdBC6ExxBjy4VktRaRP2w9RnTDWJtgligkJ95nfp3EmyKDRxrdOHQlcL36Lrg+e4Tr+e5Zt0RCmMx7YPOBqaR0CVhB0S8R27D37souvgcigl0ZkQByLgKBIV5uEPP4r5WL2efEolE4iQhn8OJROJE4I4KCh8opdy8p8TeLOmDe+/fIukeOO7ukt5Xa6BpmudKeq4kra6uNtHSTLLFvG9GT2uE8TCQNNQKPJqgsJAej/HfrNxPwklSaoIWhY0YHfd1GfUmiTPZd+TdBRdPnTp1oJhgt9ud2YFhNBq1ZJuR51hYcXt7u3Uo0Jnhuafowbxz95vuhtFoVLWJM/JPEud+WhiJBfI4ZySddJy41kNMlWFdCKMmKESHAu8riXgUfUycvaZIgjm+mpgQr8X3o5gQj68JH/yMf0cxgcJMBNulMMA2eA84Tq5rzwP7FusjGDHVIn7n2KYR2+D3gKKg7y3nKX5nfFysycG2FxyX9Fl8ptw4P5ckkUgkEjXkcziRSJxo3FFB4UWSnijpWXs/X4j3/2cp5Ue1W4Dm/pJefT4NMqK8tbV1YOs31wUwGa5Vd49R8UiESCIoJNAJIM1uP8foNG33jLwa0SofwUgpj2mapiX+0j4RdpTXJL/b7WptbU3XXXed1tbW2tQBR3vtWpCk8Xjcph94LNPp/hZ5jvTSxbC5uTmTE8+6EhYEmLLRNI02NzfbOhJM16BlnmKAx0fHA/tJkk7yy/tn8aC2G4XXkvsXc/xrRJrRep9Hi7/7wPoW7ivFFUbvDwPHFNshuZ03H/zpOfaxHAPXXZxHo/YdkVQV3Sjk0ClCtwh3kOA9mOdiYMHQ+N2sjSGKLbyW17TXK+s1uF/uo10lPic6LzjvC45L/ixOJBKJxAUhn8OJROJE43y2jfwV7RabuVMp5RZJ36/dh+YLSilPkvRuSY+TpKZp3lBKeYGkv5O0LelbmvOsZsuUA9qaGVm3ndkE0uTG+f4xEhkjzCwiR1s9iQbfi5F0uwT8eafTaa/pnH5/5h0jWFTRVnkiRnwtmnS7XW1vb7c1GlZWVnTTTTfppptu0mAwkKQ2ql9KUb/f16lTp1pbvok+XQXM9bcrwIJCzDF3v1mjweKCSdzm5qY+/OEPt0IEU0fivfVYmevvfloYYbE/bikYBQE6Olh4cG+9tqSVa+IwxwBt9V5nMbff8+rjfK3o1nD781watetTjIifk4jTfRAFNa5n9432fr/Hnz6X80sBj5+TeHMcFBV4f6R9YSfeP9YsYf0Cjyl+D/1dnHf/ooiyubk5I1DEeaCLxX1i2kt0pywKrtSzOJFIJBJ15HM4kUgkDuJ8dnn4yjkfPWLO8f9Z0n++kE5EOzTJrSPFvV5vxsLu6GMkw+hHSwhMKBg9dc2BaAl3f+gSYFTY8HaMJiNu32SEBelM6r0bBEUPkhYXOnQdBEftO52OVldXddNNN2l1dTe3zjUVHJHt9/taXl5ut2p0+oL7T4HE7bqQosmX+2mCGiPhnkenZgyHQ21sbLTj8nhJ1g57z6IA55XE3PNP0uljPM54Ph0lJL1xXXguGDX3faNQ5H46rYJFJimA0B1AUcPgdqY+JgpWRCS8XH/RYUAnDUF3SDzH7cRIfxQbCEbxYzHDWtsUEuJxBl0HFJXmpZz4extTbyjk1FInKIz4fTpe4jzxO7MouBLP4kQikUjMRz6HE4lE4iAudVHGi4KJvqOFjmK6LgAJOoUERihJihhBriFG1GnJZwE46WCNBpIZFrOLgoK0n8PPvsbcdLowOBfe9tA7NywtLc0Q3LgtInc9sNgQ0zI8HpNyX8/Hc+4iGXX7TlUYDocz8xZhIu32GO1mrQb3KRbF42fMeff9pwjkcdQi/BEx0k5EsslrRfcBBQvey5gy4DZ532OKAteDfx5FyLn23A77Ft+bN0/8jJ9Hh0QUE+hIiKAAQsLPsdXqjsS+8Fp0krhtigHxnnLefc0oJsVUkHhPEolEIpFIJBKJRB0LIyiYMJjkmlh4i0RHjU0mI8mT9kkiLc4UBUjMLFL4WJN9ksLaTxKMaAunqMA6AaxeX2sjkkFH4L0d5alTp3T69Ol2VwW7E6TdLQudJsHaAoymx36aKFMMMEiOl5eX23QLt+GdIDY2NrS5uanNzc2ZHSl4H+j0YC0C9yXOi6S2ToHBHQJiDn8tMu61FIWlOL92QczL5fccuT+0wtO9Eecsum1YXNPHxPeiU4BCToz0E1HIip/HmgT+fZ7IYkRy7fvJea/VMzhsvqOYIqkVvWpk3rCAxXtKt0FMhajVnog1Hfy98PHRwRLnLJFIJBKJRCKRSNSxEILCdDrVuXPnZnLnTdxs/19ZWZmxJseIbSyUR3Lhzxnh7HQ6M3ncJD2ugWB0u92Z67l+gmsx2CZPuOAhiQ634rOzgLn6LHBnMt7v99tCjBYBhsOhxuOxut1ue378LEaOTTxdVNBzWSsg6Dm2GGBSN5lMNBwO27oHFjW4rWOsM7GysjITea5F2n1OJNDS7DaXJPm8V77vFB38no+J9nwe4zVAMu/xcsvNaIFnlJtwX7iGptNpe79NdLme4/nRDVBzttS2xqyRc/Y7Eu/DHDysXUDy7z6xzgXh75hrcHCeuYVoFIWk/fodh81RTRCJ3/c4D+4TCzbW0kHc13nXSSQSiUQikUgkEvtYCEFB2i/Et7W1pV6v19YS6Pf7Bwr90ebMugssphcjjIzm8hVJYcz1JyEmCbPIEFMumBLAHRbssPDf3EFBUutI8Oeui+CdG7a3t9utGU3kHPV3tH04HLb1DaJd+zACy0hzKUXdbvdAUUr3z84EE20LD+4zt770+Og4iP2isEGS53thh4nvE3cTYLQ7pktEsl0TK2JKDPtBAapm1ae7oCaWxIKELEBYs+aTvNdcAFybPt6YF02PxQj5vYltEBTlfD8tcnGO5iHWh/C1PMboLOI1Y7pJFB34LKg5PI4CXQ7zzuN7tTSTRCKRSCQSiUQisYuFEBRIFB3Z7Xa7rbDgqGYkQDUxwEQ9ks1IbEgCIzny8bUdC9yGhQb2g+4JphxY6KDdPRZujARxZWWlHb/rJpjc0WpPd0B0JtTmiwSJIkOtDkK0h4/H4wM7Q3h+KG54PE6Z4HU55mij93GxRkGtwGJMFSERZ7FN38tI5uM6oMOB5/kz3mf/TrdArMnAehFHEeCaeyDWKGA6AcUUkne2G+sMRCdFLV0gCizcHpL3uiZKRcT0A68Hfk/mCQq8ZzUnQu29o+BjaikQhx2fSCQSiUQikUgk5mMhBAVG+k20u91u+yIBkDRDqCS1EWuLCUw/iESfBP8w0kBixvdYYT7mYZtAkaDHrSO5nSSj6CRU/tw7N9iCb8HA12F+v69LojtvTG7DAgUjzhYGfBxTTey8GI/HM4UzSWiZSsAUCM99LX2BIkck+RQ9aKWnYyCms9AyX0sbiGJCrFnAufSatNDgz7gGaw4XjpdrJRLteG/oSohFPNlvFs/0vao5T/g7i3TGvnNMfO98HAnz1hmFG697p6vUjvH9oFslztO8WiTz+uDfj3IlzGsjhYVEIpFIJBKJRGI+FkJQkPb/0+8dC1w7IUahJc2QWBMpn2ebfSR4sU4CI7QGSSrJr69t58Ta2po6nU6bBhAjtsxxt5jgPjGvn4KCP/c5dllMJpPWETAcDtv+sFgdSZvbc70ECxmcKxP5mGLAe7G9va1erydpX7hwfQbvMMG5omhjssvotgUfaVZMGA6HM/NkscAR/lgbg6kq0V0SnQmst8B73O12Z9IfWD/BbgPWmfD1Genn2og1DlzTIo6FLwpIniu3R0JPsI+ceyIKWzyWThmPJyKeH8k/1/g8cC64Jr1eKXzxcwpZtVSD6L6I3994nBGFiejcOWwstfYSiUQikUgkEonELhZCUHBUWdqP6Ev7xHNra6v9T3+n09HW1tbM9ooUIlzbgLZ6FyJkFN6w44AihLRv/ff1JbVCR6fTaaPWPifm3bsN7oBgYmIHhtMmPGYTHRM/kmLXZOCuB65NwHoMLJxnkKDaEVDL5zfJdZ89vslk0goJsSCixZ1oxfc1LTzwvrr+gu8jnSUWkeYJNR6PP6NI42O4AwjrUvg6bH86nbbXpquChSI9Nt4/riGmJPBv30f22S/W5DDo3vBYfO1utztDpGNaiH/G39mvmpDh61AguSMiAhEFDLcThQLPiefWYg7ve+wnhZ3z7cu8FIkUChKJRCKRSCQSiYvDwggKJh4mF44Qm3SSmDBC3TTNTIoEt4GkdVyajWAbJu60fDNFQdq3uEe3Qc1GH8fFl4mrd5gggeT57qeJ93g8PkBw2X8S+ZjCQHGBhNbnRueG+805dD/8N9MKYsS8RnRN5LvdbtsuUyb4uQUh9pd94pg8HyTIXjvcatDrx3MVSWssuGiRItZXMOIYa4SVbgJpNiXB7c1LS2GqBaP4sXYCUyg4V5z72Dbncl7fz/f8WspGfJ91I+bVXqgJIueDCzl2Xl/n3YdEIpFIJBKJRCJxNBZCUJD2SZoJnyPz0r5bgGSLOd4monQOsNhgTAtweyz2aFv+8vKyer3ezO4OJqKse1CrUm/USNnS0pJ6vV5LnO1aMCJplNRuzWhxhXPECHiMLjN6X0vFcHScdSSiqMG0CosJFAhiX+I8kKxTLKA4YdLMz1dWVtoxR9GGNveYY0/izvZjzQpp33ofU09ox4+7RETxiIS+RmxjnQc6Kbx+Yt/jGo/1F+Jc+/goKNSi+zXM6/9RRN0kPN5rgi4V9pOfH3a9eX0/HxEhnpuCQSKRSCQSiUQicXmwEIKCI94kRhYTTL5M0ByBjkUPO51O60YYjUYzBItuAxNhuhBM2B11jzsyUFAgoeWxFjAYHWf9gOXl5RkxQTpYYI5E3e04ku++z3u5PRMuknEKFRZdPK/c2tLnkZDHubTYYsIY8/RjMUEKNNvb21pfX9dkMplJU7FjgwKH7+NkMpkZp9vxNUrZ3+aSQlQUC+jacJt2tvR6vTZVYmdnp+0TCxJ6nF5vMa3E99Avpyh4Tr1tKAWLeQ4G34/a1pcG01VqhRNjWkQ8x9ec5xo4X9RqGMS6E8Q8V8a8z2o4n+PnCTX+veayOOxaiUQikUgkEolE4iAWQlCwSOAouUk4Sam0b0dnjrw0uxUhSTLPj2kCPEfSDLH1y7UTatF4E+Xt7W2Nx+O2f4cVaPT5TMNgKgXnwkUTYzoIRQcTYV/bOzCQBMeCh7FIYywUyN0MTMLo6uD9IEEjqWX03cTa98X1MLwtZkz/sJBgch/dCXFnCIsQFhlcMNE1JXxOjMZT4IlFPJnO4bHV0mV4j0ms3adYnyPWtSDxjvUaKAj4WNejYIrKPLcGj/P78XtQQxSH7ghqjpXzPf4wzBMSDhMYamO4EMdCTRRJJBKJRCKRSCQSu1gIQcFgjjjTE2h1Z+TazgXWQWDkmoXzGJGs1TugmMAt+RgppihgMYLke56gEGtASPvRYrogSikzuy/E+gHsT4yUm2hbUJBUFRNo72d/OO+x7ySpHB/Hwl0nasX/aq4S94dCB4tbxqhyJOEGhQy7ASwGuD2mK7BmA9eXP3f7teg6ST7nLN5L7qjA/sc557rx9Vlbg+dxvfl8OlFi3YZ4j7lO+Tnb41qLogSPi+3Ge3JHSPjF1jOI58/rQ9ZNSCQSiUQikUgkLg0WRlCgC8DRY5N8aT+izh0PJM0QZEepHWWO7dNdQMIYaxJQiGC9AZI9EklJB6LPjDazzkEsONjpdGbGT8cACR+JvufHhJJiAndhiGIC54SiAuclii10cTjyHkUF9qHmCqFDwNegg4CIYgLvUxQ/3L8oQjBdgU4PFt3kFqNuI9rgI5nmdeM99tj88v1x/yk+0I1A50Q8Jq4DCjt0T8Q55zVr9Q7iqza+uEb4nnHY3FwOzBMBatdNV0EikUgkEolEInH5sVCCgsn3YDBot2fk9omj0Ujnzp3T7bffrp2dHfV6vZZ8jcfjGfJDG/35XJt9MGxVp2OBxCmmFsSieRREDO4+EQszcicFg6QvOg0ktWMfDoczIgu3pqSYQPt9FCx8XMztr0XlTWbn7UDBeeT1er3eTE0Kz4lFh7gtZY1wR+eJtwX1HNV24fD7y8vLMwUgY0FLX8P9ZaoC6x/4HJJ91vMg4a8RYYomdhewvkV0J0TyH7dN9b3zvaErY55wwF0+3CZTh8435eFSpEm4nYvBYecflhaRSCQSiUQikUgk7hgWQlBYWlrS6upqS+gtJkhqyepwONRwONT6+npLgmyzP3v2bEuout2u1tbWZiLr5xOtjNtNxhQFWugZsXdBQEkaj8cHosKM0pvAsm/SLgnb2tqaqR3g9plG4OKGJo7j8Vjj8bgVIiS1IszKyor6/X7bP0fh3Z6PNxllKggFll6v1/bRuy/4eqwfwfOZnjCZTFoyT0cA593k1+JFdEi4fboMuAbsSvH94O4U0+n0QH0M9qGUMuNu8Htu121EpwndAdEN4uPYP6ZkUDSK804hp+Yi8JzQLeLrUwyIRR6No1wX887zsTXU+ngY4vWvBKLzYh4yHSKRSCQSiUQikTh/LISgUMp+pX6TMlq5t7a2WkFhNBrN/Ke/Vriw1+vNFHiU5osKMULt32vW70iEGGWvtUMS7GNI7k3KfR5rD8wrJsfPSISZRsBigEylIAlnrQP2n+kPcfcMk2SnN3BXBN831izgXMRaCR67j6VIQzGGtQE4dz4n1mtwX32MhYxYQ4J1K2JKAdeBr8H0jFgrg24Qn08hiCTffWN6RU2ImScm0AnjuXG/eR3Py7z0Db9HRAHucqYuHFdKQgoGiUQikUgkEonEpcOROQGllF8opXywlPJ6vPfDpZQ3lVL+tpTyW6WU6/HZM0spby2lvLmU8sXn04lSdrcQ7PV66vf7bdR4Mpm0L0bja3nh0sEihCTztboEJK783KTbx0iaEQB4PdYdiBZ4kmCTThJPkkwTUGlWnJhXR8F9IRGP9RJ4PIktiTLHaLAOAFMgWHzRr6WlpXbrRbo12OeYguGxcWtMFm3kfaFYwDnhvYpOEM+LhaY4jiieuJ90CcQ5isUSozvBu0V4HWxtbbWiC7cUjX2uOQSiWyL2Mbpnaik4nMcaPEa+OK5I+C81CT+sbxfqeLiUWGSx4Uo8ixOJRCIxH/kcTiQSiYM4nyIDvyjpkeG9P5T0D5qm+WRJfy/pmZJUSnmwpCdIesjeOc8ppSzrPDAYDLS6uqp+vy9J2tjY0Pr6utbX19s8fZMzRuC99WCn01G/32/PJ0liwUSCpIaEr52cEPXmVo8WB0xW4+4M3kVgMBhobW1NN954o06fPq3BYDBTO4EpBCSLktraALbt09ZOSz+dHbX6BFtbWzO1Dmi7Z0qHtF9c0ts6smjhZDLR5uZmu5PE0tKSTp061d43p2iYMC8vL2t1dVWDwUCnTp3S2tpaO3YX17RIxL6QaFMccs0GOhAoEHBrSjs2fI+4JigAsfYCCzVSPKKzwdehYBFdA3ZueC1wq0vONx0kHlN0wng+pH2hhwIYj6VYEXeZYFsc/zzU0nauFC7nNRdZMDgP/KKuwLM4kUgkEnPxi8rncCKRSMzgyJSHpmleVkq5V3jvD/DnKyX9i73fHyvpV5umGUt6RynlrZIeKukVh12DBem2t7d19uxZjUajmeiwCw6aoEfybHu+I/+MVG9tbc04CUy4jFokmoTT9Q2YUtDv91vBgrssmPxfd911OnPmjLrdrvr9vlZXV9XpdFrhgaRUmt2SkG4HkmzPD2sXWDhg1J7RZ4oHsdgjx2+ibYHG5JrCgwm7axb0+32tra2p2+22dS5Yy6HX62kwGLRtLi8vt/NkMcE1M1hokmN2n+P4mLowHA5nCDZdIXRqeJ31er0ZccEuBmmX2HscdB/E+gTun1+cb/6MaQw+j2Olq2BeqoPH6rYsmlD0crt0U1jg4VqJzpfDUNvu9GLBebjYFISTlMJwJZ7FiUQikZiPfA4nEonEQVyKGgpfL+n5e7/fTbsPU+OWvfeOhAmhCScjuc6Fd9R8bW3tQHE/RnqlfdIUtw1k7jxBgirtF+tjsUSmUVi4IMm1KLK0tFtk8vTp062zwJ+5jyz+aFLqqvsxku3rxeKFJKEWNlysz6SX0X8TaIL58kwx8Bz43tjC74j9ysrKjNvCc2X3hnfq8O92OXg+TdidLsF+RTLOmgyllBlBgCkoFIsoMkVXAO89XRDcaYLtMQWCtRliIcVa2kDNeUE3QzymBp/n45jSwHnhfbPLgsexTsP5pBRw7F4HF4OYnuJrJC4ZLsmzOJFIJBJ3GPkcTiQSJw4XJSiUUr5P0rakX/ZblcOqzKWU8mRJT5akXq/XEmyTuUiyTQ5XV1fbHSFMRmoR+OhSYDTaxKpGbBj9ZrpAJGEx+m9ybMK9urqqU6dOzaRnxDx6jjMSfRbVi2KJtC+gHEZGY52F2rhJSKMbwu27jsXW1pak/XQI78bBNIRut9umOayurrZOB6Y5UJjw5ybMdG+QcPPeuOimnSF0JdhBwm0iuXsE77PnhJF7p5Jw/Xk9sb4BBSrWvHB/OZ+8PzVBYZ4jIZ5XS3PgfeR68r3j+bFNnzeP1M9bJ4uERevPceFSPYv7Wr0s/UskEolrHfkcTiQSJxV3WFAopTxR0qMlPaLZZym3SLoHDru7pPfVzm+a5rmSnitJa2trzcbGht+f2Q1AUlunwNHs6667bqZiPqPU0r6YYCIsaWb7xFqk1STP2y2aOLrtGKm284F2cr9OnTqlm266aWbLRZ/jegnMc2edAII7V9RAEcXOBJLJWBOCAsW8OYhR+clkouFwqI2NDY1Go3Yu+/1+m8rA9As7SFxXYXV1tXUmbG5uttt+WhjgFqHcjrKW7uFz7CZwTQW6DOwEsShEd4t/1uA0ks3NzfYc1o9gjYPanPF+eA1bIImpJoz4c5yHpQLE+0iwzeiCoZBGh0U8fx4xp+viYnEc5H8RRZBLjUv5LD5TbjyeapiJRCJxFSOfw4lE4iTjDgkKpZRHSvoeSZ/fNM0mPnqRpP9ZSvlRSXeVdH9Jrz6qPUY/SylaXd1XZ024nI+/urrakufpdKrRaNQSXRNw2uqn0+lMHr3JoTS7mwLzz3d2djQajbSxsdHWDOh2u20xQkfi3T9JbWTe9Qf4udMPXBiRdQaY5+9iflEgcV+ZzsBigoy6k6TaWbG8vNyKMdzakUJFtM17nOvr6xoOh62AYveBUxrcD5N1O0gsOPh6JusWAHq9nk6dOtW24Zeva5HA/XGdg8Fg0NZr8PicfuHUCRJ0igN0LHB9cVvSyWTSjoXiEdeIr2lBxWP0PfA9iYUW41ac0ZlA4msBYN7nFDH8004PfwdcsNP3leM+imR7LZ3P8TGN4XxTKo7CpRADToCYcEmfxYlEIpG4MORzOJFInHQcKSiUUn5F0sMl3amUcouk79duBduepD/c+w/7K5umeUrTNG8opbxA0t9p1/b1LU3T1LdYqHVmj2x1Op2Z+gQuFmiSbsGA9nnmsTMq7HNNNE2maWmPNQMcTedWhhQWJM1EvQ1un+gcdm4bGHcHIPg5f49FIkm4bdfn2HmtKNREh0bsk++BrzUejzUcDltxhrUh6BRgPQHvtOHaEU4jsFuk7NWaMBFnv+0qoXuDzhETZooPFie4HWck63Ft1AgvRQwfX9uCkfPE+x+vySKSdgnE4+M9ImpiA90V0TXgeWVf2Oc76jI4itRzTqKQ48/vKK51MeBCcSWfxYlEIpE4iHwOJxKJxEGczy4PX1l5++cPOf4/S/rPF9IJkw9uA+kIq7QfyTfxd+FGbzkozUZsGS12ZJuRdxN1HuNzbaN3IUa3ZZs+rxXb4FaSJtIkv6yBEBF3M6jZ/bnDQNzKcF4bFB663e4M4aYbItZ6sPvDO1eUUtoUhsFg0O7sQFGDaQe+X3Z72OHgeeK2lp4fbgtKQcG7M/Ack3GnqFjEiQUdPYeel1JKO4c+xgIKx+J5odhCYYbFNGPtB7Yd72HcwWNeJD+KCT7f44jtez3U1s7FCAruS43cx4KUMXUjcWlxJZ7FiUQikZiPfA4nEonEQVyKXR4uCUx+XOuAFvNYF8DuBBN+5suTzMSUAn+2vb09Q4JJiux+cETdJMznuB9ObTBZ87XcFsk4SR7t/e4X+890B0bBTYK5bSW3keROCB7LdDptRY5+v6/BYNC6JjyX4/G4dQz0+/12a8fRaKTNzc22Dac5nD59Wv1+v50Hzi9/Zy6/59PH93q9lvxaHHJ9iZ2dnXYu7UiwKLS8vNwWybRjwltXMh2E0f+YJuDP4+4QnlunL7Dgpj9jOzE1xOOrpaqwWCTP4bE10k6HgddIFIvct16vNyNuxO/OHSX5NeeExxWLacZrXCqHwby0j0QikUgkEolEInG8WBhBgQX1aN82UbSA4Hx3ugdMxv27I+CMzNO5wIKCkdiORiOtr69rNBodIKUWIHy+SRzt5c7J59aILCJo8i/tCx7cVYLX8RxY6LC93wKANOtK8LkkrnYEOIpPAjwajdo0DacwuN9OP+B2nWfOnJlxArC/tPR7PDs7Ozp79qzW19fb1BTPGbeQdHoJhRqSYbfZ7BWJ9PaUy8vLOnXqVFv8kg6QGvE1XHvB/fZces6YVuJ6B3SjcDvK7e3tdj1aPLDw5PXGa1gMoPMh9tnX8bmeV9aYcP+9Fnq9Xrtm6UagGBevdUfJOd0WTNEhLiXxvyNtzUu5uBR1GRKJRCKRSCQSicQuFkZQoH3af0tqya/FBKYRmBzEOgEmObHOAXdCiCkDFhMYTWfdAWl3e0sXHVxdXW23L4y1D0z8WJ+Bxf3cl6PmwkIE++x0A0kzEXSCdREoGEj76SJOFXH038TZ47cY4kKTro2wtLTUujdYkNFjdN98nY2NjdZNwLQFC0MWiugEoFuDaQIu7uiimC7S6TGbaLN+Bgss0nXANI+YDsNtI2Okn7UMuDUpXQh2QjCVgu4CCg2xxgEdJnGry3iMxRfXHGEqiNs4bI0Z5+teiIJHTKVYJKI+ry+L1MdEIpFIJBKJROJqx0IIChQDCEf0LSRE4k4hwW4DR/ppNWe6g6PNkbi6cKCvw2MMpw9YUGDOPsUEbtfHa7CQYNyiUdonkdLBrSK5ZSLrHPi8WlFAuxNM5D1Gk2qTZUbALTY0TTNTZNKpKNLBtA1fz3PLbSKHw+GBOY/3lYULKcBw7t0mt5yMW0jGIoh0S3iefCzXhx0TrClBR0K8F+4Pt7hkqodTUbi2OUcUqyhcRCGAOzT4fUbemWbD4p+HCQoURuYdE4+tpTJwTFkzIZFIJBKJRCKROJlYCEFB0gzBNkmMpDO6AGhblw4Wr4vEndtFkhx7C0IXDnQbTGnY2dlp0x1OnTo1sy2kj6GTwohig6SZyHhMd6gVujN5dI2DmsXcfWFhQG5haZLLebSdnsUuuRNDr9dTv99vj2EqBGsQmOT7uk5lGA6H2tzcPODU4PaZ7IvFDf/N9A2fU0pp6znYVcF0EjodWNPB17Eo4bQFp4F4XExdiKBYE50yvqb7G+sjxLoMFB98v2OKDR0PJO6cK39GYcbXpEhBnG+UnsfF1J95bScSiUQikUgkEomTg7IIpKCU8iFJG5I+fMxduVP2IfuQfcg+BNyzaZqPO6ZrX1GUUs5JevMxd+Okr7fsQ/Yh+3AQJ+k5nP8nzj5kH7IPi9qH6rN4IQQFSSql/GXTNJ+Rfcg+ZB+yD4vYh5OARZjn7EP2IfuQfTjpWIS5zj5kH7IP2YfzxUFfdyKRSCQSiUQikUgkEonEEUhBIZFIJBKJRCKRSCQSicQFY5EEhecedweUfTCyD7vIPuwi+3BysAjznH3YRfZhF9mHXWQfThYWYa6zD7vIPuwi+7CL7EMFC1NDIZFIJBKJRCKRSCQSicTVg0VyKCQSiUQikUgkEolEIpG4SnDsgkIp5ZGllDeXUt5aSnnGFbrmPUopf1JKeWMp5Q2llKfvvf8DpZT3llL+Zu/1qMvcj3eWUl63d62/3HvvxlLKH5ZS3rL384bLeP0HYqx/U0o5W0r59ss9D6WUXyilfLCU8nq8N3fcpZRn7q2PN5dSvvgy9uGHSylvKqX8bSnlt0op1++9f69SyhDz8TOXsQ9z5/4KzsPzcf13llL+Zu/9yzUP876PV3RNnHTkszifxXvv5bNYJ+9ZnM/hxUA+h/M5vPdePod18p7De+1enc/ipmmO7SVpWdLbJN1HUlfSayU9+Apc92ZJn773+2lJfy/pwZJ+QNJ3XcHxv1PSncJ7/1XSM/Z+f4akH7qC9+L9ku55uedB0udJ+nRJrz9q3Hv35bWSepLuvbdeli9TH75I0sre7z+EPtyLx13meajO/ZWch/D5j0j6D5d5HuZ9H6/omjjJr3wW57P4qHHns7h9/5p8Fudz+Phf+RzO5/BR487ncPv+Nfkc3mv3qnwWH7dD4aGS3to0zdubpplI+lVJj73cF22a5tamaf567/dzkt4o6W6X+7rnicdKet7e78+T9M+v0HUfIeltTdO863JfqGmal0n6SHh73rgfK+lXm6YZN03zDklv1e66ueR9aJrmD5qm2d7785WS7n6x17nQPhyCKzYPRimlSHq8pF+52Osc0Yd538cruiZOOPJZfBD5LM5ncQ3X5LM4n8MLgXwOH0Q+h/M5XMM1+Rze68NV+Sw+bkHhbpLeg79v0RV+iJVS7iXp0yS9au+tp+3Ze37hclqr9tBI+oNSyl+VUp68997HN01zq7S7qCTd+TL3wXiCZr8kV3IepPnjPq418vWSfhd/37uU8ppSyv8ppXzuZb52be6PYx4+V9IHmqZ5C967rPMQvo+LtiauZRz7nOazuEU+i2eRz+Ir/CzO5/Cx4djnNJ/DLfI5PIt8Duf/iQ/FcQsKpfLeFdt2opSyJuk3JH170zRnJf20pPtK+lRJt2rX2nI58dlN03y6pC+R9C2llM+7zNeropTSlfQYSb+299aVnofDcMXXSCnl+yRtS/rlvbdulfQJTdN8mqTvlPQ/SylnLtPl5839cXxXvlKz/6Be1nmofB/nHlp5L7eruTjkszifxUchn8V73aoce808i/M5fKzI53A+h49CPof3ulU59pp5DktX37P4uAWFWyTdA3/fXdL7rsSFSykd7d6oX26a5jclqWmaDzRNs9M0zVTSz+oyW0aapnnf3s8PSvqtvet9oJRy814fb5b0wcvZhz18iaS/bprmA3v9uaLzsId5476ia6SU8kRJj5b0r5tmNzlpz0Z0297vf6Xd/KQHXI7rHzL3V3oeViR9uaTno2+XbR5q30ctyJo4IchnsfJZvIeF+N7ls3gXV/JZnM/hY0c+h5XP4T0sxPcun8O7yP8TH43jFhT+QtL9Syn33lMEnyDpRZf7ont5MD8v6Y1N0/wo3r8Zh32ZpNfHcy9hH06VUk77d+0WP3m9dsf/xL3DnijphZerD8CM6nYl5wGYN+4XSXpCKaVXSrm3pPtLevXl6EAp5ZGSvkfSY5qm2cT7H1dKWd77/T57fXj7ZerDvLm/YvOwhy+Q9KamaW5B3y7LPMz7PmoB1sQJQj6Llc/iPRz79y6fxTO4Is/ifA4vBPI5rHwO7+HYv3f5HJ5B/p/4KDRXuApkfEl6lHYrWL5N0vddoWt+jnbtIH8r6W/2Xo+S9EuSXrf3/osk3XwZ+3Af7VblfK2kN3jskm6S9BJJb9n7eeNlnotVSbdJug7vXdZ50O6D+lZJW9pV1p502Lglfd/e+nizpC+5jH14q3bzkLwmfmbv2K/Yu0evlfTXkr70MvZh7txfqXnYe/8XJT0lHHu55mHe9/GKromT/spncT6L81l8cp/F+RxejFc+h/M5nM/hk/sc3mv3qnwWl72OJBKJRCKRSCQSiUQikUicN4475SGRSCQSiUQikUgkEonEVYgUFBKJRCKRSCQSiUQikUhcMFJQSCQSiUQikUgkEolEInHBSEEhkUgkEolEIpFIJBKJxAUjBYVEIpFIJBKJRCKRSCQSF4wUFBKJRCKRSCQSiUQikUhcMFJQSCQSiUQikUgkEolEInHBSEEhkUgkEolEIpFIJBKJxAXj/wf8qsu3q9+A6QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 0 274942\n", + " Min thresh = 1000\n", + " Sliding\n", + "\n", + "\n", + "034s_iimage_3401832241774_clean_ClassS_31-159.roi.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADYCAYAAABberBAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADUdUlEQVR4nOz9d5xt6Vndia+3Tp1YVfd2t7KEQEIBhDDBYBmBjWWCCRYI8BDNECwQSOQZWwT7N9ie8Yz8A9vCAbAAkYMEMyRbgLBsmQEkgkhC0coSSK3Q4d6qk8/Z80fV2vXdT+1T93b37a669z7r86lPdZ2z97vfdE7ftZ71PG+pqkqJRCKRSCQSiUQikUgkEvcEW2fdgUQikUgkEolEIpFIJBLXH1JQSCQSiUQikUgkEolEInGPkYJCIpFIJBKJRCKRSCQSiXuMFBQSiUQikUgkEolEIpFI3GOkoJBIJBKJRCKRSCQSiUTiHiMFhUQikUgkEolEIpFIJBL3GCkoJB5wlFJeU0p52ln3I5FIJBLHKKW8rZTyaVd5bVVKefy9fM69vjeRSCQSicT5QgoKiQccVVU9uaqql591P64WpZQfzX8AJxKJxAOHUsptpZT3lVJ++6z7kkgkEucN1/rfpfekvfx3cSIiBYVE4hSUUv6GpMeddT8SiUTiJsO/lPS6s+5EIpFIJI6R/y5OtCEFhcQDDtpqSyn/tJTy86WUnyqlXC6lvLqU8sRSyneWUt5bSnlnKeXv4N6vLqW87ujat5RSvi60/dxSyrtLKX9ZSvkaKqillH4p5XtLKe8opdxeSvnBUsrwlH5uS/p3kr7x/pmJRCKROJ8opTyllPKKUspdR9+p/76U0guXffbR9/D7SynfU0rZwv3/4Oi7+s5Sym+UUj7kHjz7qZI+UtKPXqPhJBKJxLlDKeVJpZSXH33PvqaU8rl47+WllK/B319lx1Yp5beOXv7TUsp+KeWLSylPK6W8q5TyXUffyW8rpfz9e9vehv7mv4sTrUhBIXEe8DmSflLSrZL+WNJv6HBvPkrSP5f0H3HteyU9XdIFSV8t6d+UUv6qJJVSPlPS/yLp0yQ9XtLfCs/5l5KeKOljjt5/lKT/7ZR+fZuk36qq6s/u/dASiUTiusRKh9+BD5b0VEmfKuk54ZrPl/Txkv6qpGdI+geSVEr5PEnfJekLJD1E0v8r6Wev5qGllI6k/6DDf7BW93EMiUQicS5RSulK+lVJL5X0UEnfJOmnSykfdqV7q6r65KP//OiqqnarqnrR0d8P1+F39qMkfaWkF9zH9iLy38WJVqSgkDgP+H+rqvqNqqqWkn5eh/8AfV5VVQtJPyfpMaWUWySpqqr/XFXVm6tD/HcdfhH/zaN2vkjSj1ZV9ZqqqsaS/pkfUEopkr5W0rdVVXVHVVWXJf2fkr6krUOllEdL+jqdLjgkEonEDYmqql5VVdUrq6paVlX1Nh0KuydE2qPv03dIer6kLz16/esk/V9VVb3u6Hv9/5T0MVfpUvhmSb9XVdWrrslAEolE4nziEyTt6vDfu/Oqqv6rpP+k4+/Re4v/X1VVs6N/I/9nHf7b+D4j/12cOA3bZ92BRELS7fjviaT3V1W1wt/S4ZfuXaWUz5L03Tp0GmxJGkl69dE1j5T0h2jrnfjvhxxd+6pDbUGSVCR1NvTp+ZL+eVVVd9/TwSQSicT1jlLKEyX9ax06EEY6/PdCJPn8jn27Dr+DJelDJH1fKeVfsUkdRs3efsozH6lDQeHj7lPnE4lE4vzjkZLeWVXVGq+9XYffk/cWd1ZVdRDae+Smi+8hnq/8d3FiA9KhkLhuUErpS/q/JX2vpIdVVXWLpJfo8B+qkvRuSR+EWx6N/36/DsWJJ1dVdcvRz8WqqnY3PO5TJX1PKeU9pZT3HL32ilLKl12j4SQSicR5xg9Ier2kJ1RVdUGHKQwlXMPv2A+W9JdH//1OSV+H79pbqqoaVlX1u1d45lMkPULSa4++d79P0lOOvoc3ib+JRCJxPeIvJT2atWd0+D36F0f/faBDMdd4+FW0eWspZSe05+/le9Mekf8uTmxECgqJ6wk9SX1J75O0PHIr/B28/2JJX31U5GYk2LKOFOAf0mHNhYdKUinlUaWUz9jwrCdK+mgd1lv4mKPXPkfSL16z0SQSicT5xZ6kS5L2SykfLunZLdf8o1LKrUdW2G+R5LzbH5T0naWUJ0tSKeViKeULr+KZvybpMTr+3v3fdFhX52PgWkskEokbAb+nQ5L/3FJKt5TyNB3+O/Pnjt7/E0lfUEoZHRUXf2a4/3ZJH9rS7j8rpfRKKX9ThzXHfv4+tmfkv4sTG5GCQuK6wVHdg2/WoXBwp6Qvk/QreP/XJP1bSf9N0pskveLordnR728/ev2VpZRLkv6LpNZiNVVVvbeqqvf45+jl91dVNWm7PpFIJG4w/EMdfsde1qEY21ak65d1mAbxJzrM1f0RSaqq6hd1WAT3546+a/9c0mdd6YFHeb/83r1b0gLfwYlEInFDoKqquaTP1eF34/slfb+kr6iq6vVHl/wbSXMdEv0fl/TToYl/KunHj06IcJ2E9+jw38d/eXT919/H9tjf/HdxYiNKVWUR5cSNiVLKk3T4D9n+UWGwRCKRSCQSiUTihsKRw+Gnqqr6oCtcmkhcc6RDIXFDoZTy+UdWr1t1GCH71RQTEolEIpFIJBKJROLaIwWFxI2Gr9NhjYU36/Ac9ba830QikUgkEolEIpFI3Efcb4JCKeUzSylvKKW8qZTyHffXcxIJoqqqzzw6veG2qqo+v6qqd591nxKJs0J+DycSicTZI7+LE/c3qqp6eaY7JM4K90sNhaPjnd4o6dMlvUvSH0j60qqqXnvNH5ZIJBKJE8jv4UQikTh75HdxIpG40XF/ORSeIulNVVW95aiK6c9Jesb99KxEIpFInER+DycSicTZI7+LE4nEDY3t+6ndR0l6J/5+l6S/vuniTqdTbW9vq5QiSSqlaGtrS6WU+r/5U1WVlsul1uu11uu1JKmqKtlt4d++3+1WVaX1eq2qqk60G69drZpHXsd7SynqdDqN69vcHnyNzyyl1O3F6/3DPrFv/h2fEcfdMs+NMXc6nXoMpZTGGKuq0tbWVqNPsU3P/2q1qu/j/ZznTfA9vI/r1Xa9+7ppzdvANk9z5cQ55nPa1jLur9jXtnt9/6a+cA7axtM2lrb1ife3jYHvtd276f7Trt90zdW4oTaNgW1uGuuVnnPaPVe4//1VVT3kqm4+X7hH38OS1NndqT74MUXvne2p86bZaZcmEonEA4apDjSvZlf3JX7+cM/+TZzfw4lE4pzisu5s/Tfx/SUotH3pN/6VXkp5lqRnSdLW1pYe+tCH1gS32+1qZ2dHvV5Pg8FAvV5PvV5Po9FIOzs76nQ6uvvuu3Xp0iVdvnxZ8/lckrRcLrVYLLRYLLS1taXt7W1tb29rMBio0+nU78/ncy0WCw2HQ41GI+3u7qrX66nb7arb7arX69XXWbCYz+eaTqf134PBQKPRSJ1OR5J0cHBQX2+iaeGDYsNgMNBwONRgMFBVVXV/l8tlfa0JtsfQ6XS0vb2t4XDYEDE8dyblfL6vI9H2HHoed3d39aAHPUjD4VDb29uqqkqTyUTz+VzL5bIWPaSmoOL/Xq1WGo/Hmkwmmk6n9e/5fF6PY7VayWKR5yXCczubzTSfzxtChueOAs/29nYtKM1ms3r+/B4FjK2tLfV6vfq15XLZWNdI3NvEluVyqdls1lgjz2e/31e3263nL4o6noPJZNIQwba2tk6IL21iEkU0tuu+rtfrxr6JYoP3D691H9iW54Mil8flPqzXay0WC61Wq/p5BOe+TSjy5yHuXfaj0+mceC3u8eVyeUIM9PscixHb43q3CVLc60d4u65PXPF7WGp+Fw+6F/WoJ/xjfehdC229+Y/v7/4lEonEVeH3qpeddRfuC+7Rv4nzeziRSJxX/JfqF1r/TXx/CQrvkvRo/P1Bkv6SF1RV9QJJL5CkbrdbzedzdTod9Xo9lVI0n89rkkbSsFqtatJvEYAkdFMkmpF4vj+fzzWbzWoC6Xv6/X6DyBgmUiSdVVWp2+2eIDqM0K9Wq1rIsGhCcYBE3SRUapIjEkb/TbLH+5fLpTqdToOILxaL+n23NRgMtF6v1e/3VUppCBx8tskgyWtVVbUQ4OspNvi3xYno0OCaxv57HdoEBc6V3/N16/Va29uH25oigl9zH0js45zy+V5j70WOjeQ4wkKTSfZqtdLW1lZjDa7kquB449h9XyTLJMhROPB+W61WdT/anh33PMUpumWiO8JrsMkhE/tIUYf7I46PY+Z6XY1bIc7JlXA111xHuOL3sNT8Lr5QbquGv/z7D0zvEolE4ubAPfo3cX4PJxKJ6w33l6DwB5KeUEp5rKS/kPQlkr5s08WO1DPCaBLX6/Vqp4Gvs2thOBzWgkBVVTW5397e1nw+VymlJpIWK0xMSSonk4l6vV7tYtje3q5FCxNpE5nZ7Nh+RgJEccHR69VqpU6nU0dW/WMivwmOBJuk+Vl2XkjHkXY/189mGoidG25TUk0mLcKY5NptQZeHCbdJ+3K51Hg8rkm1I/18v43g06HhuXG7dCF4XCSQHj9JrteD+yf2wWvuveC/YwoGxxhTXtxmv9+v95/dCex3FAYomvjvnZ0dLRaLeq+6TyTn0VHisbkNjlU6FIjanAu+jiTf47eQxc8c5yTOPZ0WUVDg9V4fptW0pY/ENWubNz6H+9miCMWkOP5NgsC9EQo2pbJcR7hH38OJRCKRuF+Q38WJROKGxv0iKFRVtSylfKOk35DUkfTCqqpes+l6/8PdhHswGDSiqhcvXlS3263Jht0LTok4ODiQdGjRrqpKBwcHNbmUDt0GnU5Hg8GgtsBfvny5Jivz+Vx33nmndnZ2NBwOJR2mJtjyLUnT6bS2j5tUU2gwqWeUdjQa1eTHjgenA1y+fFkXL15sRKpJhi10WEzpdrsaDAY1wbYwYJHBY/fz7CRwWyZ7JPwmlIvFQtPptB7zdDrVdDqt3SFuY7lcajKZ1GkRFBO8jhQS3D5FAQsjjHp7rTyftrW32fD9HDsA/DeJreeE4/Ze8H18n04S7seYekLnw2w2q/vt+bRjhnvDe6bb7dZt0r1h0GXieymAeO1IpiPosPFaxDQHOybsBIq1SCiSUQyyOEYnAefVoIBB94zv63a7JwQn7q/d3d06Rcbt0f3iNr2f4p5wfyg23Ky4p9/DiUQikbj2yO/iRCJxo+P+ciioqqqXSHrJ1VxLG/pqtdJ0Om0ICtPptBYPTOpMcEajUZ23T5BI2W7e7XbV7/frdpyz7yi2c+VLKZpMJqqqSv1+X/1+Xzs7O/VznbfvZ7JGAK3iJIWOJpdS6noDkhoknySI4oTrEJC80XHgH5PZaMv3+7be24XgtIjpdKrRaKQLFy6o3+9rNpvVY6TV3+1SkGBdCa+XCWSn02lY/Bm1tnhCUYLpGhRXsKfqdkhS3UdJtQPAc+/7GL33e36WXS0eR6xT4bmLtvs2p4LXwe3Tlu++9vt9zefzxvjb0hLimPl5iZF5iiCbIvd2HHgMFjxiPQSKRCT9ntc2R0FErGPAvntdIvm3UON5aiteSvGK9/o1CmCc+9PAOWpzfMQCrdcT7sn3cCKRSCTuH+R3cSKRuJFxvwkK9xRMFzDh7XQ6dcG+nZ2dEznfJGiRVJiYMBJqUcFEpdfr1SkTMfLp+92mi0T2+/1aDDA5p8WbkWZJDWLreywu0LIeI6oWTngfaxHEaDVJPaO+LKBnAhcj3CbwkrS7u1vXerCwQMLnonysj0Dy3+12T1jdYx/9WnQgUATi+DyPvNeIp1a4j9wjfJ4dC14rz5fJtkUXr5n3UCSlMcWAc1JVVS0q8Hr20+IP14vXed24p9qIcRQUSPCZnsE5IBmPjgQ6Ibgn/X5MK9hE1uPndFN6g9t2/yxicVy+LooJBvvDNq8kJMS+RtEpkUgkEolEIpFInI5zJSjEqvW29Lvwn09hoDXd9m2pGemkc4Fk2rUUHJFeLBY6ODhoRI1N8nzvarXScDhUr9fTcrls1ACI1nUj1g0w0TYBdy2GSLKlZgScIgBdDrGGAFMtfD2JlsnkbDZriA8mru4XX/O8u08uPEmRIroWTEqZ0kBnBU9OYOTda8f2JTXqRtBmT6Lr95wGw3QJk+ooGrC9KNZQzIkFCQ3+N+efgoj3pZ/t1BunsLSNg/8dBQF/RkiAI+nmerMvvj4KA1FQoGBFQY5rFLFJbIniQ1uKgvvq9XJtEF/jVJO2UyX8jJg6QlGlTRjZJMwQ0U2TSCQSiUQikUgkTuLcCAom3I7cmyys12sdHBzUNQIk1SkLJg+ujRAJhiPBTl/wcy5evCjpmAjeeuutuuuuuxoE2akAtvTfddddunDhgobDYZ0S4bQA10ggYXLRQj/HufQuxrhcLjWdTmuyYoJF4kRr+Hq91nQ6bRytSVLPtALpWJwg4aaVndfbBWKC63z/yWSi/f39mnQ6csx5sjDj5zmFxM/09R4ni1GyD23CjMUFu0BcKJNW9OVyWZ9QYbJo0aEtn9/P8P7xuvGkCqeCsKAni3lybITn10LYaDRq1OGYzWaNQqOe5yi6cG64htGN4NcsjFhw4PrzCE8WTHQ6CueH7h0KblxvunG8diTsFCW4Z+jIiW4Kv0YhJZ6Y4r67HT8rCgeniQVXci1wbuM8JxKJRCKRSCQSiZM4N4ICo8XD4fBEsTZHLn3EI//h3+l01O/363ZMPGiVdgTWxIoFE9frdX1ihEnSbDarCxBOp1Pt7+/Xz+n1enrwgx+su+66q45sx+rzdDmYMLrPFhZMjKqqOpEW4dd9vV/3j0948HUxesv5M9g/z4/J7nw+18HBQeMkDP/2vNAdEtfO7TAFggUQ7Upw8UcLLG21EiIicYy2fKescH5Zo4F94LhMnKM4w3QL70u7UtwWwWi7+2lnB2t2eH4ofJCoc50seJDMRzdCJMDReeF1mc1mtWDEgofxmRQL6DCgCOXPkgUMzyfFIK4N00t6vV6dMhOFLs4d3TgUQtwnzxvXks+OKQx8rW2vtaVwtDmBEolEIpFIJBKJRBPnQlBgBLbf77eSBAsLPNlAOrakk2x1Oh0Nh8NGAULauqWmI2K9XtdEmtHSS5cuNSzxrqtgkmhRwASQ6QbSMdlxPQi2zYi5xQeSL5LbtvnaFJGNUW3D7cZ5MFGrqqouFmkyS8HFJC+STkakebRiFEX8DB9XyaJ7Eeyr54hzQfHFY/actkXxKfKQjLt/PHqT9SaYDsD+eqzcp5GEM82CNSLsoIl1AtrGzz56XttcEUSs0+Dx+nNAIh/biNF5nhrh+WUByrZofuxfFEK4r9xmW0pFFDLovuC8nZZW0daftms2CVqbUjwSiUQikUgkEonEIc6FoCAdExYWsyNxZp4/BQVJDXLGNAhfS2IVo/MmeDGnezAYqNfr1STz8uXLms/n9XW9Xk87Ozt1AUOewkDCzhQG/jdt5bzP77kfBlMD/Pd6fXwMYJzLNmIVo+TR1bBcLrW/v69+v1+3y2KDjqSzRoLTA+jQYD2BSLpZmyL2PToAPD9eI5PYNus9SS6FAO+d+L6fw9ec5uATMNy25yYe47hJDOA+9LrT+s8Uh022epJlijSM/HutSao5DoogsXjm1UTeo6BAQYOfo5i6QHifct6MNtdFdDrQXcR7mdoRBYVrJSqkoJBIJBKJRCKRSJyOcyEo8B/8nU5HFy9e1GQyaRytF4ktc85JLm2tdruMmtOibVEg5se7Hac2DAaDOi/e4oEFBBNvpga4DVq2TSBns9mJ4nIsZiip7rvrL9AhIB2f/lBK0Xg8bvQ75rNLTaJkommhwD9MIXEaxmq1Uq/XazgefC0j/lV1nNPuuXfevvPg2Q8WC/R4IrnlWlJk8Dq4ZgVJJetmRMGD6xD3gcftuga9Xk/7+/v1+xZAuEaDwaB2ALDtmCZA0u2UHILvRzAa73W1KGCBwi4bCx8k3aWUuojpYDDQcDjU7bffXo9lPp/X9SxOI80UJTgmujja+m1QYOJ4/NwoarXNEa+hS8QCBfd8dL3wfs5V27jZzibHRSKRSCQSiUQikTjGuREUaIcfDAYajUY1OWWEf7FY1ES3LSWAtngTvr29PS2Xy7pAnkmC/zbJ4v3SIcm8ePFibbe+fPlyHb12PrprAfiZToswAfR7FkeiGGJCGV0AJJK81iTd5JdEnUUZ/RrBiDD76Kj21tZWTVgtHJiYW3ihkGCxhg4B1gNgvQCvMwlgLLzXZn03GadI4z57/ksp9RpSHLKA0hbF57M4V1tbWxoOh5pOp/WceVzen943w+GwJvXuG8mz24/rGufDcxWJr/vtsXg+49y5n14jOgssCPR6vboWiIuJsi4EayOQqFvAaRM+Yn/b4NcpyMR0JX6Wo0BAAYOfbToivMZcz/h8ggKa57Lte+RKYkcikUgkEolEInGz49wICiaU0+m0UQlfOj62zeTMaQxtlmSSWhM2kz63SfLqSG4kEPP5vL5vMBjolltu0Xq9rk93MHHbdKyg0zIi2WKRSb4WUxra5ojklyT/SohRV85ZzMunsELSbnIexQOvEUmh19NiTSTYHGuMCjt1JEaW3V50G7BegB0JvIenA3CcTCfgaxQiomhl0YdHh0qqT2tgzn9MAaAzgoTW8+BUixhp93g5N+6XRYXovInk26KMTzfZ2trSeDyunTZMsaGDoE3UiikP3Ct8n7/pCOC8xPWIbfnv+LutP2398t9RrIrPiQVViRQVEolEIpFIJBKJzTg3goLJp09zMOkysTPxcgQ9RmJJipjvziiwI8ssDGehgSkVfo8R+r29Pc1mswaZ9vvso/sQrdmOsrNQZIzu+17Oi+9330g0GZ29UkTVfeLY/BqdBO4HI+0WFLa2turTCzx3nHvfJzVPGojiCe+3oMFigvEIRem4ECP773Vw6grbpzjgUxzcrzgvfp0k36ksFCjoMPHc9Xq92jHB4wxjoUjWEqDo4rExrYfzx78t3tg1YEEh1inwvjAsCu3t7dVryjoRFDi4z+hUiAJIG3H3PMV9Gx0hbddG4aHNWRAFCSP+d9vngAJSFBU8z96PsZ+JRCKRSCQSiUSiHedCUJDUIEuTyaQmUBYASFBXq1WdWkCxgGST0WKSJpJgOwW63W4tKliw8PF2vn57e1s7Ozt1W9PptEFe+/1+LRLYuTCZTCQdHxPJ4pF+lv87RuQJEm6i3+83LPUmwYxy85QBpo94bli0L4ogsQ8kuJ5jn2AhNU8jiBZ2r4fX2ddOJpO6XoXfcySeBI8k2ekP7guJsYtxMpXC63FP8vXpxnD6g8c9nU61tbWl0WhUn/jha1xbYzqdNvoex+Ln+Tff89/cqx4f59e/mWLi+y3QGe7XxYsXaxHKx55WVVWLMnRA7OzsNFwzrOXBPRJJun/b/cN6HQSFC9ZpYDtt8FxQaCNi3Y4290EUDJjaw+NcE4lEIpFIJBKJxGacG0Gh7WSH06KEJnZVVWk0GtXkJUbETSZMrkwUmZIgHZJzE7bJZFITVhI5SQ3CFfPXac1nbv1sNtN6fXhyBHPwTfAdyaaLIJJIvicdR9T9LJJLR68NkkKSLb4eo+ZMBeF7u7u79RywSCLdD15L2vmjjZ0OEbfje0z+25wKFBW4P0hKvS8i2upLMMLP9z1+ij/sv4t0eu943d2WnQtsm+kX8/n8hLjC/ep9ZYHA4tCVSK6FMK6D5204HNZ1Nzy/4/G4FtG4hhaKfOqKBTf3IxYX3QTPo1M6fB9FCo+7zZUQUzjYrt1B0V3UBu6XmHLBfcvUmauZ70QikUgkEolE4mbGuRIU/A98R1qZQx6PvIupAHQGMNechMDpFPP5XOPx+ASxNXGTpOl0WpNc6ZjIOl2BpIoiAKPikupifiRfbZZtFpZrs4xzbtyGCarnxP2hFT7OMcfr+zj+mHJBUmVy6WcxokyCyXQDrw9PH4iRef94HmiD34RYiI/X0qZP0cjXcnx+j/1nX53WYCu954hFGnlSBfcoCT37wj3te7hXozOBr/F1EmLOhfc+yXav16vJcqfT0XA41M7OTi0IMY3B45tMJo20H6ZRXI3oF8UoCjQxNSGOPd7PfcN58Nz7+6FNhIr7KH7OOG6vJz9//B5IJBKJRCKRSCQSxzgXgoKJAaPEJgomu6yC7yJ4vpdkkKcuWCBw3r8j4banm4CYnJIA+joTahYfpJjg6CvFCLoLTEhiioavk5pHBFJYiaICCxMaLArJtkjGIoHiaxREonXcpDfm8XusnjNG4g06LmKdAhLhSLBj7YsocrB99rPNhcE5jkSV9S78XqxxEEk054LijfvdJhTFPcG55zGMcc1iSkHEaWKLdJw65Hud0mAXT6/X02g0qlN36Jbxjz83FiN4ukKM+EdhIb7OudyU2sB14XvRjULxhalAdDtwjrimnD9+vpgq5eM2XfQ0BYVEIpFIJBKJRKId50JQkNpFBb8uqUHih8OhpGMyYedBt9tVv9+vT4kwGbBF3X9PJhOtViuNx+Pakn3rrbfW7Toq67QKpyxQqHDNApNQEzYSZua2u+DkYDBoCCK2vzMSHkUHng5Ay/hsNmvUmIjiA6OvBtv2GE2kLNyQuC2XS02n0zqqTYJM4sbjBT1+OkZIRCkUeM5MzGezWV1vwm2b2MYxcp4pxJAce46ZdsGaCCS7trmTzFtEoVPDY3EqxHQ6rVNmKH6xD21ODbYZRRMSWkbQfW8UG+Kar1arWhCjC2F3d7f+jOzu7taft8uXL2s8Hp8QlZwaxPWI60thJQoCdPHEmihtIpbnnPMShQ4KAJvEPs9bdKm0uRz4HeM96vQkp4UkEolEIpFIJBKJkzgXgoJJs4mGybffk44L9Znk7+zsnIhIszbCaDRSt9vVYDCoiRkL5ZlkmRSOx2Pdcsst9fUmfNPpVJcvX64t5I5eLhaLulK+Sc3u7m5NnBzV7ff7ms/n9XMmk0ldCJJElaTJfSRJNkhI25wMFD1YuI5E3LCI4Xkg0Y6wxd/EmW2YJLpYZRQwSDotMFDs6Ha7ms1mms/nmk6ndX2Bra3D0zGiLd3W+TgvJI0WIQjvL+bz8166TdpcCoxYm9DGWhVEdB8wpYKiSrT+W2Ri6oj3EEUb1hfg3HiMFkjm87n29/frZ41GIw2Hw1okonAUhQsLV8vlUv1+v+5nFESiGyOOh+SeThWLdRQQTnNf0E3CQqKS6loinHP+jv1yO37P42UqC/d6IpFIJBKJRCKRaOJcCApS8yQD1iuQmkfmkcjZbm+S51MPpGNC7R+nNlBIYITZxMJkiycHSNJsNjuR709BwnbyXq9Xk0AKEOxr29gtJHAeIrH1XJC4trk5WL8gpkjQQdA21z4ak+0zJcGiBZ/hOfJ4LbJEskkHB+3/7KfdBZyn6AyJBDHWSaDjwG2x7gaPpjSZjcSR80TBhKdL8NpIbvmewftY/4KpH9wLFoKi4GZhIz7HY/E1TvfxqSieK3+GLBD4BJPJZFKLBxQ6/HuxWJxICWnbK3HsMa2F6880itNSRuJ+8hzx80eRhWvLvdKGtrQYO5uulFqSSCQSiUQikUjczLjXgkIp5dGSfkLSwyWtJb2gqqrvK6XcJulFkh4j6W2Svqiqqjuvss1Gnn4klk4xkNQgE7PZrEFkpWMy0+l06iMdt7e3NZ1O6xQEFhScTqe1SBD7s7W1VbsR3Id+v1+T2/l8Xj/H6Q+McJrcmQiZzDJSbcu4XycoIvA0CfaTv+nYiFXyI8ElSWURP0Zuae83eYuRZvfZ6Rwk7DEVJBI1RustBDBSHiPfzL9vI3x0GTDVIEb32wp3sk9tc+q1Yr2Ftig8Eeecf8dcfrdBW7/Xh+Sb6+NnkDy7//y8uBgp19dt9/v9OuXHKSw8htLun+hEiGkYbfPBMVnwYCpCm3OAbfI9rj1TdTgXFCw2IQpb7KfnLaZwnFfcH9/FiUQikbh65PdwIpG4mXFfHApLSf9rVVV/VErZk/SqUspvSvoqSS+rqup5pZTvkPQdkr79tIYYnW+z8ce6CrzPKRB2B8zn8/oYSYsO/X5ft912myaTiSaTSX2Cg0mORQmnRLhOg8mPCerBwUGdTsGo+WKx0N13362trcPTD/b29mpSZ+eCBQ+TUT/feeW2/NNBYUGCLgCSf+nYIk5yF1MfPJ/x+EP3p9fr1SII6z2wbUe5Dw4OGtZ6w2OhQOG0AhJtk0oKNyaJTsFggUUSahJtEuhYU8H9cL9JPOlQ8Lo6fYWIZNZk3v1k36LbgqkMMWLvPcVIfVtU3S6EOKZIwmPhSooFLMToIqPj8bje60wp2dra0s7OjjqdjmazWWOtKYRtIutRxPCcR9GHLgUKZRSLKL5Fws8CrP688fPEPc89wP3C9Y3r7LY9pz4a9Jzjmn0XJxKJROJeIb+HE4nETYt7LShUVfVuSe8++u/LpZTXSXqUpGdIetrRZT8u6eW6ii9PRgRJlk2AWW2flm6TgcuXLzfSEUoptYtgvV5rZ2dHg8FAFy5cqOsiDAaDWiSQjomtT2QwQel2uxoOhw0ytlgsNBqNJKk+xYHOir29vZogm5TQiWBS6/EOBoOGq6LX69WEyqID3Qm+LxJ0Ejv+Zo48XR+06g8Gg7rwosWNSLZ8lGCv16vXhPZwR7t7vZ6Wy6UODg7q55HEeT4scvh3VVW1U4ICCNfc+4IkkcIJaxV4TSIBHgwGjeM1GVX3vHAO6SRgXQOP3cR8E4GNez3uZbo4Yh0ACgQUwTjnXouYDrO1tdUoVmpnzmKx0J133lmvletauK31eq3BYNCocdAm7JGAt60T176tHkFMH/FrFKBI+rvd7glhgetj4cGvtaWhEBRoKGR5TJvW8DzhWn8XJxKJROKeIb+HE4nEzYxrUkOhlPIYSR8r6fckPezoi1VVVb27lPLQK93vtAFGlkmoYvE8ExUX0Sul1AX9HD13PQVHhPv9vgaDQX3KwtbWlsbjcR3lNKk1cbJAYBK1vb2tfr+v5XKpxWJRE2UT1tVqpf39fUnHkXYKAoPBoBGxl44juaWUuk8mNKyq73nwHFhgcP88HzFnPEaNebRhJOMed7fbrdukm4GweyH2wW2RoPV6vRPFHiPBN8F15NpgLQlHrv1M94N9jNF+t8HodoxMs+4Do/wWG7jGnEtG61ls0s/0ulLo4dji/vbej3MU3Qhuy9FzEv24rr7H93s+mSrk/7abgdH/Xq/XmOdIruN4KDjEveffHE90DPg17g+KBHQLOQ2JAiKdI+xbLIAZHROsZ8G0jesR9/W7OJFIJBL3Dfk9nEgkbjbcZ0GhlLIr6f+W9K1VVV06LRoY7nuWpGdJOkHoJJ0gqSSVfEYppT4i0rUQ9vf364i/icHOzo6Gw2HD3m8iYju4Sa2JFkkFyex0OtVkMqlJJkmIr7N93OTIpz6Y9DN/v6qqxukRfh7z9tkPk9dYm8CiCMkRnR10HMTIL1NL+Iy26H48lo+RaM+B++Y5Y00FzxfXmm4Ez6v7RzHA0Xxfx33ja3lKRwTHSVGBtQZMPi0qxLEwDcPXuk4Do/AUb7hf29IgKFjEegq81+tpBwhJMgWFtii919rjcj0Rj8EOiLh3Yrtsm33j87ge/OF1bYjPcBtRIOC+ifMcxYBY8yF+r3CvWVRpc06cd1yL7+KBRvdfBxOJROIGR34PJxKJmxH3SVAopXR1+MX501VV/T9HL99eSnnEkRL7CEnvbbu3qqoXSHqBJA2Hw8rRxvF4rN3d3RNkxmTYFm6SjuFwWAsDy+VSd911Vy1SuBjdaDSqHQp7e3t1zYUoRvhYR1vZJZ0goJ1Op3YomESafNv1sLe3p36/3yCG/tsRXxZ5lNSoH3CaVZvR3+gQYDoEya8dILwuwv3xMygEkIz6b6ZveJ0YpaZow5MJ2uonUFRwxN5WfAsKXhM7UzwHJsbsJ1MFPB4/h+SWp2A44m+S6noWJp3+7b3j5/FIRxbgjASWffF70R1iZ0s8TtGwc6Dt1BKOy8ISHQreg97zFmRiukmbqOA55XPa3DAc/6b7ohDhvUO3ie/xNb7XR5e6b0x9Ydtt80ZxapMTwg6OKCied1yr7+IL5bbrZ9CJRCJxjpDfw4lE4mbFfTnloUj6EUmvq6rqX+OtX5H0lZKed/T7l6+iLUmqBYHFYlGnLTAVwMSLBGQ2m2lra0sPetCD6jbuuOOO+tSGqqq0s7Oj973vfYcD3t7WLbfcottuu02XL1+WpJpQ0WJ+9913N46JlNQo/Miig+yjreiXL1+u++zrOp2ORqORer2eLl++rP39/dqRMBgMGsJErGbv55MgsvK/ibTdFdPpVIPBoCHCeE7a4Hl1vQdGawkLA54zCzdcS9cW4NGZnoOIWAuD1nSLIP6hU8FksNvtNo7xdLqKEV0eJtuM3Lsd2+jjmBeLhcbjcb0fncLimgR+NvsQRZVo9zfovvHcu30eexmj9oPBoF4H7yEKYF4fr2NEKaV+hn9iCoGf1ev1aiFiPB5vXEuPlWKP65G4X7EPdPh4nvhZ9Ofc13p/eV+VUuqjLpkatUmQY90Pz6t/RycHP4fnGdfyuziRSCQS9xz5PZxIJG5m3BeHwidJ+p8lvbqU8idHr32XDr80X1xKeaakd0j6wis1ZELn0wV4GgKj8Qbt6YvFQpcuXdJoNKqPvuv1etrf36/JvMnteDzW/v6+ZrOZdnd368KJPDbShKXX69XkXGqmGvgYSleW5+tOXaAYYZLk61zTwZHt5XKp8XhcFzS0mCKpJrgWJ9wfkjb3gfZ7RmBZnJHXRoIbyRPdA3QfME2Cwofhsbrf0crPugKcWx7lSFIeT6yIrg9H9dsiym1RfpNUjoXpD3we3RGeE58i4nW0U4BrE5/dRuqZEkBRi/ULmCJCIcT7jacc0PEgqVE4M6ZdSKpFFBPpuN50UtiZ0e/3a1GJdRXaXAcet/tE109cDzpG+PzohuC+qqqqTtOwiMVaKGyTffQcsu2YAkTR6jrANfsuTiQSicS9Qn4PJxKJmxb35ZSH35a06V/bn3pP2jIxc/E+RkodEaa13yTLhGYymWg+n2swGGg0GjVOXzCRsU18NptpPB7r1ltvrUnbfD7XeDyuCbJPcoh1DlgQ0cSK/R8MBnWtBB4zSOJi8ux0C5+8MJ/Pa7dFp9Op3QV2QpCwmgBFcka7N0UMEncLKHH+pWYEmSICBQCmY5hYttn6PZcktOwzUy+iZX7TuGKagEkfi/VdTUSZfViv1w3CSbLZlprhtWINC4tEdhgwveM0REGBzgKnv8R14V70nmbRRAoPThNi2gKfHUm/2ychp6BhpwvXna6eKFCZ/LNfnMfo3PDcW3givNZ+3WtnAc/wHLJOQkwh4hrHEzX4PAoM5xnX8rs4kUgkEvcc+T2cSCRuZlyTUx7uKzqdjnZ3d+viiJPJpEEyd3d3T+SjO8psZ8H+/r5Go5G63a52dnbU6/V011131cUTTQx8GsN8PtfOzo5Go5G2trbqYydNSHw8orFardTr9eposAUBg7UZmEvuvpJkWjCYz+c18ZfUsHJLTRcCjwkkueLJCCa2JkuLxaLOid+UD05LvCPRnAeSOBZTbIvcRuIbSWHsA4UKCwJMueB1sdCf4bQLXtt2IsGmPrgNikOsPeE5iUTVRTcpiDDK77VwKkEk8HGe4pqyT23zy7467YQFPSXVDhqLJnFOSc69BlG0cq0Gk2vPNV0RFAKiqOB7PDcU1ygM+bNOAYPrzj6x/0w58t6lU8evRdFi0/6kwNEmbiUSiUQikUgkEoljnAtBYWtrS7fccosk1Q6CKBzQnm0CbsI9nU71gQ98QN1uV8PhUA972MM0Go20u7ur/f193XHHHY10g/V6rbvvvlvSYUHH0WikRz3qUbr99ttrMkH7uUkUaxD4NROPwWBQ2+/7/X6DINphwPQL28cZ4XcevaPPrqtAYskov/tpUmYxxW6HxWJRux5MLNmOpPq4QBNKnhTBApEcRyyKGNHmVnB7URDweyaTJPMmk3QEcA9QjKHzQ9JGOz5Fnk39YD85d27T6+T9xFSSmArg8dB9EgslSscuAUbxKVhRzPD+c7qFxY3xeNxIDeAe3HTiBeH9HoUhk3SehiAdiiqsf9C2H5hew7SdNtcFHTzsE39zDbim/kwNBoN6vphq4Xmlsyg6cLgPEolEIpFIJBKJxJVxLgQF6ZA8jUYj7e3t6a677qoJvUmBbdvOfScRc477wcGBDg4O6pQGiwVOG3A018X0xuOxJNWRzL29PXU6HQ2Hw8ZpA87NZhTapNNE17UbWATRbZdSNBwO65oMJMw8VtHiyXw+r+tJkCi7AKB0bBk32nLU2yzzETF9gIgWcRNCFmFkO20RZdZTkNRqv2d/o6DA9rxOkbySFNLiT7GB0WmSdjofmD/P36zlQAHI6+M19DVMf+BrFIMoFsRouAkzU1Z4P9ea4/KxpHymx8ATE04DnQbcF1xLCgj+rDiy7+dS0OBn1SIM14CwG2JTTYatrWbhTLfFOfDc8LNGQchuGDqXPO/eT7EPiUQikUgkEolE4iTOjaDggoS7u7sajUY12Wc00uTN1m5GeiXVxQ2n02mjrsF6vdb+/n5N+E10XFPBpMckr9Pp1MdHbm1t1dF+P6+U0og4d7vdWrggQWf/HNFm5NT3m+AwnWGxWGg+nzei5pscAZ4nCgcs0uj3CRJUWu79Xlv7JIEsnNcmWEQHgP/bFvpN4oXFlSgmsJ2Y3x7FFYoWkehumq9Yy4E1O+zecD+ZEkICz+fHehEWsaIQ4TZJwv3MOF7OKwUCzl2sTRHHzHba5t/3tqUvMEWF1zFVos2xsena09JwPDcUkdj3WOODjhAKBnEPMpUnzp/fP+1zlkgkEolEIpFIJI5xLgQFk+vBYKDd3V1dvHixtpXbak+S7sgziaLJ1GQyqY+229nZ0XA4rCOXJFTM2WdKhVMAHvSgB9VOBDscZrOZer2ednd360KQPuJvZ2enjiqzf66psFgsanFjPp/XYyZxpePBJ09IqoUQRvrbUgdIPh3ptWDCa0kS26LEntdYByKmTpjsbVpTE2lW5o/OgAiSSV7XJlr4vUgQN7kUPCb3wQJJFC8o3nC+XUPD7gOe4kGHgnQsjPi/3ZadLxbFWNuAKQqn1arwe47M+7mxqCUFhbY0hjiXrDNAQYpCF/+2yObnR3eM9yDn0NezloH7R0cBxTgKat7jTr+hqECBj3Pk5/mnLdXDiPOUSCQSiUQikUgkNuNcCAomE9vb29rd3dWDHvQgrddrHRwcaDqdarFYaDKZ1Kco9Pv9Bnnudrva29tTv99Xv9/X/v6+Dg4OtLe3p+3tbd1yyy2qqqo+UYFWcBNEp0Q49WIwGGgwGOjSpUt6//vfrzvvvLNR/G84HNak0CkN3W63rgExHo81m83qFIvhcNggK3ZExGJ5JuBM5ZBUHyfpPkvHJN+EltX+/QwWqqM13JFYzgUt826DR2CSZFNUkI4JbUwzkI7TVGxH35T+sEk8oKskIqYSxHns9Xr1uP2aiwRuIqSxD3RucL0sELCeAt0M/X6/Tn9g215Xr4kdEW3iTExZiKBYRKeDRZLoKuB1FqyiU6ZNkGAbni/OG9ebTgDO59bWVmN/SmoIEvx8bXrN/WUqhueS9SMsKjBtJLoR2uA5y5SHRCKRSCQSiUTiyjgXgkJVVXV9gaqq1O1265oBjCbbLs+IL39bDNje3tZ0OtXly5fV6XR08eJFDYdDScdHUjJfvaoqjcdjdTodzWYzLZdLXbx4Ubu7u5JUCw4mw1tbWxqNRnVb6/W67rPJ3HK5rNMmJNXklv1wBDfau03iLCYwqs9+84SHWFfAsBjg3PFI6BiRbiOFdEwwxYHCQ7TAM3+dbgm331aDIY6BBLEtFSOelMAUBp52IR0W+nQ/SH79ezqdNtI+eK1FEl9vJ42dBp6P6LywK8NCGUWHuI7sf3RKUKTwvuKzN6Ux0KXB4pUEUyQsysTUD35WvJ+8Vv6baSV00fCZHjP7FEWimLoSBQ3eZ0eRP5P+PHjOLCr4egotdENscu6kmJDYhK3RSP1f29OF3uSsu5K4n/Deb/4QVX/w6rPuRiKRSCQS1wXOhaAgqRYPTAjsRDApYTE8Rhv5OusSOGViOp1qOBzWhMdkgmkUJnM+em+9XmtnZ6dOZ9jd3dXBwUFNiphWwOi9I6E+oWE2mzVy5pl6wQJ1Jse20pNomThaTDFYq4Ek1u95bmgVtyshEjfa5f18igZ0H9C+LjXz6mNfYj5/jPq2teF7af33urK/sf9sx237Hke5KZh4LZiuEEm9f/t9txnJuvcTI/gej6P+kRizzsKmehQx3cTCDJ+xKXWEnxNfQ4If0yFiOgMFF/fB+5xpCm01OviZalsbplCw/U3knve0iVcWyfj94Gva1i6mOJz23ESC6HzY4/WOz3uoXvm4f63drcFZdydxP+FDv/zrtfc3PlGdSaWH/OArzro7iUQikUica5wbQYFHEtql4GMVTYRMzn30G0k3I7cmMcvlUtPpVPv7++r3+/WzVqtV7YggeXVtg8Viob29Pe3s7Kjf72tvb68+ZpLk0OkAPAHCgoILS85ms1ooMDHv9Xq17Z5pG45AGybwTH2gI4HRbUaHeQ1JqK330frN+gImkoyCk3Azb186toh7fG0RZdr1WVOhDW2CEZ8VyX4kvl4PuiPYx+h2sGjF92PfLEhEBwBrODCtgcIYRR6f0uH+WkQjMfeYLCJxTWj19/MoOvhegqIVnRDR0eJ1onvDoks85jHOUxQYfD/rSLSR9ii0tKW1UMCLAgdPEKHTgu20pUzEfU7hymt7Wg2LxM2JzoNu07s//aH682/5fkkpJtzIeMsX/qAk6bem0r/8T39X8vfSaqXle24/w54lEolEInH+cC4EBZJBFz40kSDpob082tqn02ndzs7OTu1O8OkRsTDgZDI5kQ/PWgPvfe97ddttt2kwGGh7e1sXLlyo27Cd2kUj/XwSsk6no4ODg7of0+lUe3t76na7daFG57BLhyRnMBg0UjIsoNCyzvx4kyCmI7QRKPcrHitoEcPjZz673RmE27bw4nFEu/wmO7/XkPNuoYRjiXsj5rTTodDmXoh5+dHm7ns9tz45hCk3FgbcbwtSMbXCxNYnjFCcYb8obHiM3ud0CBB0xLgNC1ZeV8+R+9YGr71FCtY/8HpRiImiED+DTO1g6ofHwFNMYroEP6/sNwUOknve6/3JefQa8dQQimkxbYOv+Z5er9eYkzaRI5GQpDt+8jb94Uf/e0ntrqDEjYdPHkhP/b1fqf9+8f5D9RMf9ugz7FEikUgkEucP50ZQcD70fD7XbDaTpBPRcBOCNoJpojadTnXp0iVtb2+r2+02igRSMDBJJ1kjqZvNZrrzzjvrwonSMaE2YTRBN2H3iQomqT6tYrFY6ODgQOPxuD5e0hFcEhna4ClWuI9O0/C9jLx7vkicfG/M3ff7g8GgHouvsVhAgcXtuI+uM1FVlfr9/glbfMy5j4Sea87UgbZcf6egxPSL2I6JMP92vxxlj/Pla5k+4r1AYcJ9Z2Sb7bAGBmt9UPhgHQkKLyTzjPT7d0xXYE0FXxPXiGvBefZe5mfgNPEqFs3kXjR4sgQdC3b6+HhVRv2Z4mF3DV00FBPif1Msis4TzgPH7euiSEG3C0WWRIIo/b4e/N+G+p5H/pQ6JZ0JNxu65VhQ/ezRO/VHr/qQE9e8/u99kJZve8cD2a1EIpFIJM4NzoWgIDXt8iYhBEkfI41Sk4A5zWE6ndaFEh19lo7JRoxWx7oCFidcPJHOA4sVfCZJuAmUT4pwtX/XaHDxRlvCSUKjvZukiYSHRR3df1rkjTYyxzoArvfgPnmulstlXQOCa2BSavGHxJmRZc8vxR6LRozicw0p8MR1NfGlkON18rowzYCvu39McWH02n0n0eX+495hOg0FL4oKJOfuUxQ8SHLdZzpo/Ey6IVg3wevHopvuY0xBcA0P72Pude9di0VOw2CqEU9JiIiinvcJi1FyHdvA+eZejU4F7hGKcl47ikzxe4KiwWnP5z5OJDpPfJze+qUP088++nt1a2d01t1JnDFu7Yz0rx7xRydef/w3PkW9Oz+o8doH/dcDlVf86QPVtUQikUgkzgznQlAwqWKRNemktd0kJZKEaI1eLBYN+/lgMNBwOKzJqHPeSYDaosqu6yCpTgGgO4H56P5vEqLFYlE/u9fraTqd1qKC0xMoELidSGg9F2359jF9gKkHHn8k+9JxwbrhcFgfk2mRZLFYaDqd6uDgoOGgcD/6/b7m83k9x1FwMfHjsYx2asS0Ct9rwcH1JjgPnuP1+vA0jcFgUPfL68h+8AhGihcm4LS103ng1AXfZ1DkiTULWLPD17lPdNJwfrxHLBq4X5Ia88b0D5Jyj8Vtue/sL10Hfgb3EteBzh33weOw4EBxhgIGxQaKX1Fo8OsWN+gOMehYYeoEvwMsSEk64bgwohhA0Yp9iSIiXT0pKiQk6dJHPViv+7rvl5RiQmIz3vRlP3jitSfuPVuPf99j67+r29+v9eXLD2S3EolEIpF4QHAuBIX1el2T7WjZjvnoJH2MhMf2FouF7rrrLh0cHGgymajf7+uWW27RcDhUv9/XYrFouAN8n6P2JrB+HtMRTIQZrTZ5ZMTYx0ROp9P61IflcllHgZ3f72ft7+/XYzDJllQ/L+asM2JtoaUtcm7S5yMrTRRdPNI/u7u7GgwGdXrGcDisj8x0bYFSSr1Wo9Go0QcTXQoIk8mkLiBIsui+ea69nvP5XJPJpHEkI4URu07c1mw208HBQX2/90+/36/HzrWjG8SwI4brbVDkMQn2vvRxlB6/U2y4H7w/WFTT68k+8cSJXq9Xz998Pj+R/uI95togvt6OEj+b9TG4BiTRFNC63W6jrof7bSHIhVKjSEBxwXPhcVKA8OcyCoh0B7AGiMdKYu894jFb4PLaeW6YWuI+UchhioafxX3I9UskEol7ijd+xQ9IX3H898c87zl62L/93bPrUCKRSCQS9xPOhaAgNUk5q8P7b5PU5XJZF1Q0aTSiU8FR1suXL+u9731vTda63a5uueUW7e/vazKZNNIFJDVEDJOQ2WxWk9PZbFbXQ/A1JjgkdCZy/X5fOzs7mkwmNelhWocJM+3ntLyTFPV6vQZhN3miM4HX9vv9RiHIqqo0Go0a5Ny/R6ORLly4oIsXL9YpD+9///sbqQ/r9VrD4bAep4tRchwkybTmm/SxyJ8JscfAWg6bTregG8FpFDypgY4Ej5tkkeNhLQnOK6PXFjdooSeJNrH1/pLUEAJI7Om8cDt0KHD/mjhT/GJ9AooTJu8Wi+iOcHt2B7jfHj/nx2shHYoyXkvW5/Dz/LllugUdM/4MMA2Day8d1yVhXy3OxLQPzo3HH+eA6U0x3ceikb9f3L/YJzqN0qWQSCSuBZ73zT+iVz/rOC3il/7Zp2n353/vDHuUSCQSicS1wbkQFPgPd9YWkI7JBNMbHOVncTunQzBvnRHi/f19Xbp0Sd1uVxcuXKhrB5icmLC5D657wJoLtlubjNM6btAa3uv16p9+v6/BYFAfHRgdBiS8nAsWAiQRZc66YSLm/7ZDwqICLfKeW8+Dr/GpFhZjSimazWaazWaNExlMUB2Vj+MxcTPhc7Td8+Vx0tnA/zYh91z5eooGJtGDwUDT6bQxH2yLJNmk2G2S5POUDj4v2uK5F0lqPbbd3d36dA+LCjF1p9vt1vPj50a47gbdEHTlxPQV7pEY2fd6s2YERRruH39+6JJhwUYKbzElhmICxSTuaa5nWx+cxsB+RpeCdHxEKJ0R0YHBvvizaVCE4j0UEzbVfUgkEol7gs8czfSZozfXf//U33+K3vdxT1VZSI/9569StZifYe8SiUQikbj3OBeCgqQTUW6TGRazY1qBBYVYd8G2fJKI9XqtyWRSn/7Q7/c1Go1qq/RkMpHUjCDv7OycyJt3VLOUUh/5RyeDYeLiyH+/31e/39dwOGyICbR+x4r60W1AYSHm4PN19qPX62lnZ6cuuuh+03XhGg+uoeD+Wpzp9Xp1CsTBwUEjau8jPm3zt6uA0WsXevR60SbPObCbwOtjQl5KqU964BqQPHoeHJ32/FtMcMFJP5fFDC2SmLx7Dr1GMTffEW26SxiZ9+sWZizGGCbl7ofb4HM8vm63Wxff9DwxFcTCBPe6pNqpEOttUFCI5NrPZZoIP5f+jG16rueTqRYx7cJjZaoHRQXuYQo/fr7bZD0Qpq9wTKxpskmsaRPl3E4UXRKJROJa4k+f8rPSU6T3rw7093/167U1XWjr7gMt3/7Os+5aIpFIJBL3COdCUGDEnHZn5rObwJiQTafTmlSaBJkkT6fTmtCbYDjX3lF41ziw5d/Pp6Xc79l+TlJlsuwIP10N0jGZtpAwGo3qKLMLD9q2bZLqcZPIWkhwWyRTHrNJ02AwaJCn3d3dWlDwXFhQoJPCxNsiC50Vo9GoTplgqoNTInwShsUHFmKk0MFc/3iKgNew2+3Wx2paUBiPx3VaheeFhNSCiPeOa0NEMcf7LKYAWFRwvQD3iSkGhvfjarWqRYr1et2w7XsdTc592kgs+GgBxuvia0xi3aYFG0n1XDNyziKHFAKcCkJBwLiSjd99tyjS7XY1mUw0Ho8b9SUuXLhQ1/UopTROO+G+pZDEYxx9rKT747l0Gx6L9xf3UyT6dIv4M8u+xuNJ6SzhiRxMP+F+SSQSifsDD+7s6Dd+6SclSX/tj75Itz39jDuUSCQSicQ9xH0WFEopHUl/KOkvqqp6einlNkkvkvQYSW+T9EVVVd15hTbq/zYxdfE35sGbLDv6amFhNBo1SNZ0Oq1JJU+FcLR7f3+/JlyS6mewWJtdCybdJu8msm7LzocLFy7U0VIKHDxVgCSNUfdIwigWkPjHavUk7u6T3QUWTlxw0QUZLdiwjxZFRqPRib73+31duHBB3W5X+/v7tWvA1niSSLoXTMZM1OzoIJE3yaboYCLtfl+4cEF33HFH4zhDp54w199CjZ0QTDUZDocn0kooUPhUEMOuAJNQC0mMinNcvsbzS7fFYDCo94mFEe4jOlm4X+wC8GfA+8AFKxnp936ItSm8t3lNdF1QgIifRQpBTDWyGDCfz+s9QyHL+9gul7aaBCzYGGuHxKKVrP3Q5sRhv6MIxKKtFDPYlj9TXvvrVUi4Ft/FiUTi7PB/f9QL9RN/9vH67Y+7kCkQ1ynyezhxveADX/tUffP/+vP3+v7v+eEv0iO/NwvNJg5xLRwK3yLpdZIuHP39HZJeVlXV80op33H097ef1gAjhQYjnP4Hvq9z1NbklOkP0nFutUkuCY/dBpPJpCZhJCG+x/n+zE2XmvnbJmf+sRPBBJYnMnhMTAlwBDnmxLfZxmkLZ943Uy48VkflXQxyZ2enLsToflhY8D0mwEwZMUyMSYZdP8GEmiTb4yCB5Ni4prFGAWtEWNjwmnm+XEiT98SUA7sqXLsiriHXztF1rz+dBIz+t+0D1lxgqgJJdUxZ8HzxeT65gmkN/Cz0+/3GXvFpDJsi9kYbOW6rvcFx+b+ZOuQ+cK3n83k9Pq/BpraZokOHANvkfuG9FE84Fo6N98Y0FaZExXQhrmPci3z/OsF9/i5OJBJnhw/e3tU33fbH+pHv+xY96T/crdVr3nDWXUrcc+T3cOKaYPvRH6TXPfdR91v7T3zyO/QVF95/r+9/yee/Xr//IX/9mvXnw3/wrvzOu45xnwSFUsoHSfq7kv6FpP/l6OVnSHra0X//uKSX6yq+PGlJlppkwoTGeecswmerOo9gZNTTbVFQ8EkRdgLQSu/nOwrrvrURDRM8Wv8l1eScBPBovhqR4ygmkLyQ1BG0Zbfl8VtwcTFGCgq2k3POTZSZ/hDHyZQLpirY3eAxsEgf+840Db/OvkfS5jHSleHTC3yEIcUYOyZM2pnOYmGFJxm4fzzRoc2BwBQGj48FK9lf7jPOpUUWnsZhd4vt/pw/Ci0UKUo5rtthxM9KBMUn9jNey789BxYBeK/FI0m1Q8EpNB53G9r6ZmGNe9ICHNuJY2NqQxTZ2sg/XRz+vPO96FZgO/EzeZ5xLb+LE4nE2eHi1lBv/bwX6KPf+Bw9fO+jVBYrVa96zVl3K3EVyO/hGx/l4z9S1fbJukz3B97/hB295e/9wAPyrHuDn3vsf5Ue+1+vWXsf/ebD77wrYWu61PpPXnvNnpu4NrivDoXnS3qupD289rCqqt4tSVVVvbuU8tC2G0spz5L0LEk1+TXR2nRygsmFUwucu22bMu+LYoKJIIvisVieHQW0hkcLeoxGm3xvb29rPB5rMpnUJMdRaReQZB44reAeny39dEq4X4wUx4g0j1VkPQSLCU4dcPqA7/GckQyaxDMVg/UOTI5JzD0vbYXv2mDCyHVxuwZdAtvb2xoOh/VxmbPZTMPhUNPpVNPpVAcHB43xj0ajet4s7LAwYymlXneeDGLC7tMsLBj4dYsK6/Va+/v72t/fb5B1zh/dEh6bT6xwm27Pwsh8Pq/TYfw66ySwNoOf4bQcuj74mfE8cH4ZhaeQZbHD42Z78WQE96M6qjVC8cQuHF/rz4HJPAU210xwwVDvTTqO6FThHuS+a0tdYA0S73cLTUwd8ncIwc/ldZT68Hxdg+/igUb3czcTicTV4E+f+/2SpD+ZzfTtj/tEab26wh2Jc4DnK7+Hb1iU7W39/3/hh/VRvcFZd+WGhL/zroQX71/UjzzxsfdzbxL3FPdaUCilPF3Se6uqelUp5Wn39P6qql4g6QWSdNttt1WOVLZFBWOklkX47BCYTCZ13QBb3U0kL1y40IgoH/W/Jsx2OPhZTqOI6RasSh8t9nYpmKS5GOJwOFRVVdrf35fUTA3wcY0+1pJkizUd3K9IYH3UI0nmaDTS7u5ufTSmxYXRaKS9vcP/x1kksIjB8XluIgFtI6GMFrfltvveuKYUZxz1piBkwcEElwU2R6ORFouFhsOhxuNx7VwwPK8k9xYlLACZZLq/u7u7NZE1Uadw5AKB7pPvsxhgssx54PXuF0Wk7e3t+rmz2awWbXyfBQff698WfLz+McUg7vFNpLjNNeIUBLpmoqjAWhi+xv2PtRS83yNieo/X3qKRP6vRtUR4nl2Hw8JDdCowZcOfde5lOhhYtJSfxfOOa/ldfKHcdn1YMh4AvPFHPl4v+pR/L6l71l1J3MR4cm9b3/bGP9e/euaXaeu///FZdyexAfk9fGPgI1+1pU+52B797qjSk7r5/4OzxjN23q+dN802vv8f/+Jpmv2t9zyAPUpI982h8EmSPreU8tmSBpIulFJ+StLtpZRHHCmxj5D03qtpjBFJRjD9j/02Wz+jsCZ2y+Wyzpn3dRYLTKAdZTWhMqlmhN5EhUIGizZKqgsg+r+ZAjEej2ur/WAw0M7OTl000ARIUh2h3dvbO2G357PaiCEJnMlgPKaS5DrmwU+n07rIHmtBuD0TYhIvSa1E1PNHwub3Y//ZDu9nmguLcDLn3WPw2BeLhS5fvtwgrp7TeD+dLiyy6b3i6+xycJvsE8cxnU5P1PBguobBtImYcuI+uqaH157rGueTxSuZqtPmEomiTkyD8P1tRSiZ5mGHD10HnHN+ViM4ZgoZXJMoxkSnUFttBrpA4mczXst5iPUTuC7+bLpf10nKwzX9Lk4cYve2sZ7Sz388Js4W3dLRZ45m+sf/8EB3fMXHa+vyth7/ra88624lTiK/h69TXPrST9B7Pu3w3zM/+ODn67Hd3VOubk/tTDxw6Jeu/u5ouvH9h3zwr+qLf+TZzRfXRU/6X9+g1aVL93Pvbl7ca0GhqqrvlPSdknSkxv7Dqqq+vJTyPZK+UtLzjn7/8tW0R1JJEm2i4IiydEzQTA7aisHRSWCixKMBeb3JEV0HPE3AEWgTWFedZxS81+s1BIvJZKK9vb26OODOzk59BCKJEo9M9AkKrFHA+eH4pWZth62trdqxwGMeLTK4/z7aku4H2+tJJJnTz3nyT4xg0yVBEkhCTJGCDoeYykECLzUr9TtdwH3zmk6n04YbgA4Bklf2w+IR19jzZjGJ93kO3Xan06nTJ5hKEEUAOw44t15773fXU6B41iYieQ/w9AY+l7/931yv+DlhoUS2z7QTijsUHehWMal3v7hn2D7v5d+xfQt6fEYEvy+YnhSFFX52WHeD4Hg85k0CxXnDtf4uTiQS5w+v+rgXH/6ezfXcX322er//Rq0vXz7jXiWM/B6+PlF94kfrA88Y662f/BNHr5wmJiSuBzyl39VbP+uHG68tqpX+9q8/R/07m67Z/mveqdXtqfFdC1yLUx4inifpxaWUZ0p6h6QvvJqb/A/8WO3dUW8SBqcDkMSYiJBkMoru1AISUKcLSMcnQ/A4O1uv7XjgiQbz+bwmhSxY6OKM4/FYBwcH2tvbU6/X02g00s7OTk2SnINPQWI0Gmk8HjdID6PitP6zQKD7NhqN6tMCnP7h/rENE9Z4QoRJJItaRreA34sFJd2PwWBQpxSQlJHs8zWeEEAHQ3RASMc1GxxR7/V6tfODxSIXi0UtothGz6g0iz22EUaLSX4+nQ4UTizcdDqdxpGQXle6DHq9XqOQJIsP2sViYSfWquBnhAISo+hcYzof3B/v+xit5+fK88p54+kIPkHE/S7luB6Fn2exLaYVEBQJ6HLg59jPaEuZ4HwQ0dFDMI2GYhoFFAoj8VSP6xT36rs4kUicX3xcv6eX/eSP6NO/+Ku19dt/cvji9eGkulmR38PnFaXoy174a/qqC0kob3R0S0e//e/+44nXP/67n60H/fD7Tt6Q36n3GNdEUKiq6uU6rFyrqqo+IOlT72kbTmGoqkqTyaRhcTfZ9T/2TZpMoieTiYbDYd2Wyf54PK5Jp8nEcrnUeDyuCU081s99ccTb4sDu7m6DZMS8cRKh9Xqt8XisO+64Q4vFQqPRqHE6xWQyqQv1uT0LACY2LjYYSU1b8T+TWwsbrK3A4wij40Fqr3Rv0YOnXPBECIoLbdFophuYJLOCfyTGPHqQ0fk2G7+PjWR6xHA4VCmlLn7JegVMQ/HzXGPDfSYJ5RGZdqRsio4zhcQuAwtRJO5s2/1ykUbPBx0HMTUirpnHwNcsAEVnBPeMr3N/fT8dOXSOuPBprGtgwYFrcqXUgLjPolDEMbAtOpbie5ueyXYoVlGAocjBdbjecS2+ixOJxPnH83/y+3VQbetX7v6r+oOPSRv2eUJ+D59/dJ70BP3Tl/yMPronZZ2cmxcv+iffow98V7/x2t9/xdfqQ7/sT86mQ9cx7g+Hwj0GI8gmlowoM9IbI+JtR8xZnFgsFppMJrp8+bL6/X5dL2C9Xms6nZ5o1wTQZNLChAs+uiCdhQ+TZFrr3Q8TSwsDdlXYTWBy6cixiw9GQu3nxRxzRsdNGB09puuBKRBtp2BEYuXnmogzaus0E4/b/Y7RXrdlRwUr6bdV1Y9pDpzLSCYt8vh6k0Va7U1C7QjwesTxxOg0fzyPtN1zj0R47Wi/93wzKu4+Rot+JLWMzPu9WFuEtQe833lP2xxz/WN9DqaG+HPI16NbgfuzzYlgcF/wGopc/u3PfbyXqSnxs8Z593i4DvHzQ5Eupod4rj23VxJKEolE4izw5N5hEOXht71CP/+i5+jxz71Ty7e/84x7lUicf1z60k/Q6ss/kDVyEnpcd1ePC6/97x/3y/ruF31O/ffglbt6+L/53Qe2Y9chzoWgYJLIqDOjzP4HPokJxQBHiX1vt9utxYPZbKaDg4MTR0K6or8JhNQkr77O97Xlhpv8bLKns55CtHZ3u91GKgfJIOs4MKebpNu5/vE1ChIsQBhJEueC4yCJjNeR9FlUsKAQUyjcHom5pAYp9XPcXxLbtrx52vfdBu+3GBHTKtxnppLw2MG2yHfsT7Tex/vodGHagveV54tjc/pGTD1hKgn3ehQ96FDxM/i5YF+j24NE/jTSTEGBfWG9DCMKCtFpwOdxfokocvi/o1hDkSWKAxTGJDXEI6Y+cIxxzPwOStx8mH3WX9PjbnvHWXcjkbgiPnh7V2/4mz+hj336c7T3rkeou7/S9steddbdSiTOJZaf8nF639NnetPH/vxZdyVxTvEle3fqS/7mT9R/f/ZDP1v7b3mKJGn3t9+k1QfuOKuunWucC0HBjgES31iIj//IZyTXhIyF+kiCZ7OZLl++XBN2k0MTkfV6XadLkJyYaLtewnw+14ULFxoOChIcSY2IdLSi0wZvckeSZUs+T1nwb1b19992H9C1wNx5941iB0m8x+digLTk21XgdAX30f9tZwILXJZS6tMzmGPv51JU8Fq477TP+1mskUHy7DWhTZ71F6I44WvouhiPx41UAzo3uA88X7zXY+TxiXYLeBxOD2BxTdd5oCuhra4DCTz3lq8jGef6xjoiUdBoA10FUVDh/Z5HC0h+Dt/jvPkzyRQHXkMRg7USuMcoLra5QiwKtrliOAZ/3r0Ho6gSHQvScVqHn5+4uVC2t/Vvf+Df5VnjiesKf/yPD89w/8G7HqVf+uhHSZKq5SJzgRMJ4DP/7cv1j25781l3I3Ed4SUf9hLpBw7/+2nP/FoN/st+/V61mJ9Rr84fzoWgUEqpSRjFAkecGXnlb0aDaX339SbFJqc8atIkz6SDRJiuAQsK6/VaBwcHdfpAr9dr5K1H0mTLO0m+yZGJKYvySdJ4PJZ0HE33uOy6cLFDP28wGNSFF+lUICk1GePYPG+z2azhntjd3a2dE26HlnH/zeKC/m/Pg6PBrLtgoYKk3H+7QKZTKiySmDDOZrNa4IhzSCu+Sa5THRj1J0n1ulOU8NzyehfwdJ+9P0spdZFOP8/XmiS3HenIPnPNfXynBYlYzJHiGtfU+5lHOpLEb/qc+TNF3FNbPwUH7i2P23Df/WzvBwtVq9Wq/kz6dc+bwfFERwT7ET9/3W5X29vbjQKjXnvOh9RMvXC/o9smkUgkrgc88+I79ClveqMk6fN+6B/p0f9HWnUTiUTiWuAn/uO/0bQ6DkB90xc/W3rln51hj84Pzo2gECOzfE9SgwBGe7nJeYzUk0THox4Nk0USLYsI0nFElYUKffIEybpTL2jZjykRTg+IaQYk6ybZTIHwGBzJZh/7/f6JfPdoqd8kKkhq1EHY2trSzs5O4xjMyWTSuJ/9j0TUIoDXiMSa+e0xihxFC/drsVhoNpvVBQwZOWabHGOMuse9FNMqPOcUFUxCKRSwnxagTDaZAuI19fUUkNgfCkAxAl/KYR0Quhm437hPDc+L14hk+Vra9tvEh03pC+5XTKlxPRGKcdwD8aQHCoenve5ncJ/yWqlZr4UOCI4jji2RSCSuF3RLR0/s7kiSvvgLX65ffspfUVUVPeJrPqDV+1qqmScSNwG2H/4wvfsFt+gZey+UtHPW3Ulcp/jg7eaxot3nvU9/eenDdOcHdvXEr765U83OjaDAmgIxx5r1DySp3+83csAdkXZqACP2jMgbJI4WCUwQ6U7gvXy+Saj7TgIUyY7/u5RSt2lSE2tCsAhgtGv7t98z2fV1tOhLzbx9Oh5iHr7Hb1Gm3+/XpM/jihFjt8M8f7dHmz+t8qwfwLVxmyaUntPoQDDxtqjA/ke7vp8ZI+mc6yhG+L9NgKOowHE7VSQeO8r0jCjqcM7ZD/bZY/eeskASBRTf01bAkOJEdMbcW5zmYGB9BopynBeD1zGVhGOnOyOuWUzD8PWxvkUUUygwsBaD5/C01IYUFBKJxPWK737Ia/XdD3mtJOljv/A5Gt7xOPXvXKr3G394xj1LJB5YVLsj/dHHv0gpJiSuJf7TE39NkvQ707X+0Zc8R5J08XV3a/2nrzvLbp0JzoWgsLW1VZ9QYAu9XzdILh2V9+tOA4i1FBgNZ355FBpMqmPetlMdTH5IQk1iGBV2RJ52eEZJ3Z7vIygIkOib7JuoSsf55hYM3OZgMGikHkyn09qeT5LKtA+3s1wuazeA59DEmJF2kuVI5t03ti8dk22OhWOOjgK6S+jciKkrFE84pxRe/Aza1ymUcL7b8vSZ0sH9cnBwcGIfci0IFoKMY/ePx01RhfuY+4T70b9ZIyAS7yvhaq6hQNTmIIr7Sjp2Ehhc+3h84ybBo+2YR0mN9YxtbxoT3UD87EQ3g9OV/BlI3EQoRVu7O+oo884TNxb++J8c1lj41nd/vN7w24ekaj2ZSuvVabclEolE4gr4pMGWfvdf/6Ak6UN//uv1Yd919B17dNLfzYBz86/lSByiC4DEl8UZfe3ly5frQoG33nprIz1AUoNw+XkmF6wJEJ8fiSafTaLt9waDQW1XJ1mKuf8UO/i8tig0I/sm+67hEIUOp3y4QOBkMqlrETBizRoNPg5yPp/Xx2l2u926PsN0Oq1dIBQy2BbBFIrBYNAobMn0FM4rXResC+D76dgw0Yv3s4gi91Jb4T2CAlEUsSgq+DWP0QILT1lwTQSfPELHC0Fyu8lBwMh5dB/Q7eD/5v5m9J2CA50gcbx8bhsoovFa1jZg+95HrmXCPm1vb2swOCx6N5vNGmvF9I24FnQjMMWJgiNhwZFts4Cl27TgwxNf+Hfi5sD873ycfuaHnq9HBFtjInGj4Hse/nt6/+smkqTP/pfP1UP/Q9ZYSCQSiWuFP/t7z9flzz/8t+gzP+0rtXrjzVEE9NwIClJ71DZGrUkcfJ1rGpi4uSaC1CQRJlckcm0RY5PWWODQ71s0mM1mJ4r32S1BQktiyGi4SRafy4i4rzfhmU6n9VzZUWCiy0Jy/G/f76g6I7H+b0f8Y4S31+tpOBw2RAmTRbon2sh4FE9iyoD7zLGb1DHKbvLpGgJcr+hQcJt+jaS7jbBz7imUWIyJ+fh+jaSex2Ey4u3TM2it5/0UiZg2E10fsT4BU1z8fgTFCo5VOi4U6c8NEfdAXMu2egV+v63+gJ/r8VE0s5hl4cWfW4NpS36GX+e8UaxzQVZ+dtrSGehuiA6JKLgkbi5UnZJiQuKGRrd06j3+ec96uX77C45PYV/8q4er/5I/OKuuJRKJxHWP3a2Bdo/+2bn7wrv01h95qm770VecbaceAJwLQYHEL0aSacuP+dmMzLaRJxaBi8XZmO9NIk4Bw8QnWtmdorG1tVUXDGTtAFrc3b5/+zVGRg1a++M4mdPvPkS3A6v9+4dE0EKL58VkjPUjmPZhh0C/328cEek+sU4D59b/7fccwd4UhXefvcacN5JHPpfPYp/4fEaZ43tsj4KH55ZR8ri3orWfDgqmRmxyqcTIO+eBqRF8VhxfBN+LjgwKYt4TJt9EJNl0AUVHREzn2YS2tvx6VVUn3A10VUjHJzvwtTbC7zWOooLbiCINRQaKHVLzuM/T5jyRSCSuZ3z3Q14rHdVYkKTHPuNr9aBHPrVxzYV3LNR9adZcSFy/2ProJ+mdn3HrWXcjcRPixR/6Mn3k5zxcH+g8Vaqkh/zsn2p9dKLfjYZzIShIzchsJPeSWkm2iY0JPolCjNZ3u90T6QluzySGefsshsdjD5lv3ev16sJ8/iF5MzwGX+taBdGmzwKAkhrPje4HEl333ZF1nobAaDhTOGgfdwFGCiyeS7sU3Dc6BSykxLXzmGMaySbEfH8/w/McSbXbpehDUcHj83rRqh+j8HQw+HqKKhZq6LBgjQL2KdY14PiZuuC+RMLq8TCS39bnCDpiYmQ/jtHOhNPao3MnppZIOvF5iffGtTDisY8+MaXX69UCmUUoOowsEjC1pi1Vg2PjWhJ0U3ieKKw4PYJHmyZuHpRVpXcs909Uck4kbga89XN+SPqc5muf9GdfoMEfHJKx9eXLqoIQnUicd7z9c2/Va5/9/WfdjcRNij//hJ+WPkFaVWs9/VVfrs7b3y2tVlpdunTWXbumOBeCQlVVmk6nDQs6j+UzQSapJZnxMXQxRzqmTxgmJ3YumCzyZAOnF5h0DAYD7e/v1wTRuf4m8exvdDPQwVDK4fGSsdCfiY1z8xkdt7BhQcHki6TJtRAsWrC+hEldWw58FG4ME69ut6vRaNQgukx1IBH3eB0F92+np/jZTMmIOfdMfyAJN1F1P+Ie8D5irYIoPmyy5EtqnOqxWq00HA5rYYKnd5Bg0pXg58YoOklpdMQwlcLzYBGHR5fGtBSKa/5s8OSEKF7ElI0riQqRRDM9gmkEXgcKYIT3q9fcnyOemmHBzqKC14HjtiC4tbVVf08QcWz+DFCc41gomPlv71F+H2xy1SRuXPRe+ip93ZM/S9/76pfqyb3hWXcnkThzvPyv/LzGrz78f9HnPvtbNPjV3z/jHiUSicT1h07Z0s//pxdqpUrf+q6/o7/8hLPu0bXFuRAUDBMAEyX+SMeEwSSe/+gncXHBNxL8mDbg+9w+C+/1ej3t7BxW6KQLwASIz/J7zI2XjnPVGWUnmaE1m2kWJjRugyTJYoMJPJ0Inh+TKRJ8RvHdNgs7MroeibeFin6/r9FoVM+dhZ1oL3c7kYC73XhyAecwpjYwUs1IfRQxYgqE76e7g31gBNttcx0saDA9hMJLG6Hl65w/9pkCCAskUnSgs4Z1NXwKivc+RYVY5NLrE10s7gej84bvd59iilFbmkYce0z78d/e0xb5uKYU1La2tjQcDus0Iu4BCi0UHTjfbekV8VrPHcfD8UVxIlMebjL89b+iW//VO/XY7SzGmUhIhzUXLpZDce1p/8fv6A3f8TC96/It2vmst0r5/ZhIJBJXjd2tw2Lk3/mIX9d3/Nbnafr5K60+cMcZ9+ra4FwICvzHe4zuO/oaC8kxOspIPYlrrNhOUm2Hgsm9iwyaqDsySnLoZzLloC3y3UY643Vse71e1xF3FgGMqRQkXn42RQW/TmLeRtSlY9cH8+LbSDnFk16vVxejNBmlNd9/s49ONSGJJaGMv30NUzPaEPdK2/vxx6Se6QteC7bp9WhLLYl95vxFxGv5enwvjiWumR0xjKy77/z8xBQQigZ8BsUdPs9iQluNhXhkqNtnKo10vCeYCkKxLgpq3B/9fr/xDO6vtvSHmC7jcXp8UXzyfMbPk+9rq3ORuDkw/4yP19s/e1u/8dj/Jql31t1JJM4d/tlDXiM95DV6x3Jfn/Mtz1VZS7e9dqbuf3nVWXctkUgkrhs8sbujFz3u1/Uxz/omffB/vkPrP3v9WXfpPuNcCAomGExRYKRWUqNwIG3djIS6LYoKtMpLTbdCjCibqDCFgGTdkWsTjrZ8daOqqtqy3tYXuiNIAmlF53yw3kK321Wv12s4OPye26DTIQoTtLyb1Hl8JFMxFcFOhel02hB6InnlWLvd7olj+/y+56mNTPs9zmf8m9eeBt/L8bAORBRdpGMHgAWm+MxNYoGvaxMh4lqwSKf3VpswEVM5pGNBKgpTFEnsUojzx+fHvev34vPa+h9P5GCqRHQtcA+xPgLX2nvb88EaGP6scW9771JkiXPv/nH9+B3C/25L67ia/ZW4MfDOr1jpLX/7h8+6G4nEuccHb+/qT597mJP+xP/+lXr8qx+q1e3vPeNeJRKJxPWDbunoNd/0/XqynqPHvO/hUlVp+Z7bz7pb9xrnQlDY2trShQsXtLOz06gVEPPPGY1drVaaTCZ1YbdoWya5iqICiZhJyvb2tqbTaZ1L7XoKfl86zhEnufczSUb841oJkhqFIdfrdf0sE64YSTWhMQFjegIJlEm6HRV8rZRS38cfE6xer9dI0XD/Y0FAFiW0mNHr9TSZHJ5lTWs7beLMqfecWYiJrgCnJphkU2Qh6TTR5fq1CToRFD08JhaMZFsUn9w3CiAk5O6L53CTOELQweH2TJyZMkLBweIU035Yf8J987yx3gbFJoJCi9eEboPodojjssOFn7u4FuzTfD7XaDRqzDFFDwpmnU6nPqrU9/szORgM6vFwXlyHgfAebEvNoSOJqUB0TCQSiURiM173yT+q3/ydof7N45901l1JJBKJ6w5/9o3/XstvXOnu9Vxf9VFP1+rOO8+6S/cK50JQKKVoZ2enrmPg+geR1ESy3O12NRgc5qOQGI/H45qk9Pv9OrLOtnyEIvtgkjIej2uC7nZNZEkmmbtO0ss6C7Siu+/MU6dNvK0WQHRcWPxwLj3rTrjPjOLSJj6bzepnLZfLmriZXM9ms4YAQrIeBYwY3fa47SShu0Q6eYoHSS6vZ80Dj8/Cjq+nu4DHCm5yC/i3o9rso/vG6+kUoIMiRrr9PAs6Jrccpwmr15999Jg9JgtGq9WqPpaUQlRMNYj7xa4BtxVdCLzWohwFNa4nBZOYTsFreC3FGfbbn2s6iZjaQ9GCfaF7x3uCIp/FMroh6IDwmsX0hVhMNAqMVyNQJRKJROKw0Fi35MkPiUQicW/QKVvqaEsP2uroyS+7S6/83/+6Rr/4e2fdrXuM+/Qv51LKLaWUXyilvL6U8rpSylNLKbeVUn6zlPI/jn5f8fBXiwP9fl/9fl+DweBEDYNInBy994+j5iQxLLTI9AATLxM4RoYtNvjHhQftnGCbrK5PS3mbjZyCgvtra/l0Oq2PkozCAqP0JN4kgHyu+9TtdjUcDjUcDjUYDOp5NZFjDjprMhjMfWf0ls+NBJ6RZ4MCBwWiaL+PY6ONnyIDnSsmzm4v1jOIefhtzhUKC1GUIIlmm3EvxrlnexSBeApHbDf2N57gEeeEIkp0H1A88R5mXYM4BhJ6ttm2Pm1zRvGJAhs/cyb1PGmE+7dtflmQ1XPC01yYpsC9wrFwP1C0oODV5t653nCtvotvVrzn2z5Rf/vxbzzrbiQS1yUevX1J7/quT9T2Ix5+1l05U+T38PnDB77mqbrw1EzHSZx/dMqWvufhf6zbv2iqS192/R0BcV9Dcd8n6derqvpwSR8t6XWSvkPSy6qqeoKklx39fSpKKTXptShAEhoj0CYjJM+9Xq8WJLa2tmoi5cKNm4gZT34ggZxOp5pOp5rP57WgQJGB1ncT9Fig8MRkow7BaDSq89wnk4kmk0n9LIob/JsR5zZCxnnZ3t7WcDjUaDSqRYXhcNhqASdBYzTXY2JUnJHcuIacD78WBQWOLYoPXqNIWmMqiOfFPxRh+EMBgf8dj3GkC4QklM+JfY0ihtSMrpOIs6BlrAXidujIodhlYs5jSaMYY0QHgoW1KFRxv/AzEIn4pnVvW3uPkQKC195Civc7SXssfNo2p9wHTMloE/R4P50TFA+dHuE59ckRnqu41tcJrsl38c2G0u2p8/jH6oe++fv0Q4/+nbPuTiJxXeKJ3R295hu/X4sPvbkFBeX38LnD337OK/XKj/mFs+5GInHVeOPf+nE96tlv0vZjP+Ssu3KPcK9THkopFyR9sqSvkqSqquaS5qWUZ0h62tFlPy7p5ZK+/bS2TLRtW2Z0POalx7x1W/9jewcHB5pOp7X7gVZp1zYw6TLJMaFlNNRkg38719+ExeQw5sazRoLfo91+Op1qMpmoqipNp9NabDCBsnAxn8+1Xq81GAxqskaCuVwuNZ1OtVgsancH2zGhWywW2t/fr4nswcFB7ejwdRy7UxhoybeF/LQq+CSkjsj7NY/J8xUFCK9pp9Op+9vmeqBww+J8bYUGSYzjsZ/eA9G9EP+77aSAWMOAUXpez/x+zkWbWOTnuQaC72+b203jpHjjn9lsVpN6CxoUTxaLRd1395s1Fa506gH7SkcI0ybcP9akYJrLcrnUaDQ60RZdEKy9Edcw1v7gOlNUoGvE62AhIR5Re6Vxnwdcy+/imw3LT/pI/ZefeaGk7ll3JZFIXMfI7+FEInGt8AuP+y9693/f1z940mdofXBw1t25KtyXGgofKul9kn60lPLRkl4l6VskPayqqndLUlVV7y6lPPRqGiPJci4/3QMxl5xkjZZqkzGTCLsKWOCOpyuwxgDh5zG6bjLsegPsj2ss0AXBiDKf7boPHO9kMqlrHPR6PQ2Hw0YNB7fjCGuMPJs0kmy77ywY2e/3a/Lktije8IcigufV18YIPNNANq2v55xkm5Z1Elnvh9Fo1DjSk+vcluYQx2DXB4kiC2EW1B3Y9MP1MyiIcK1jTYA4Bx5XTOPwnqGAxRM4NrkS2kCnh6TGvj2tjfl83lgPXsN76YahsOH55PW8j2IG14SiA51HrDeyyaUU4c+8xax4korrXEhqvC+p4Qq5HoQE4Jp+FycSicS9wRf/8K/re1/0Bfrgf/q7Z92Vs0B+DycSiWuGh3ZG+pTfe4/+87d/ivr/+Q/OujtXxH1JediW9Fcl/UBVVR8r6UD3wMpVSnlWKeUPSyl/OB6PJR3bnU1cmUpgUmmSFXP7SewioWJRN0Y2Hcl35N8/Tr0wIWdKACPEJvWss2AC2FY7gK8PBgONRiPt7u5qb2+vrto/m81qAuh+sC/uBwvlmSxZmLDzgX2L9n5J9fNMui0eOGLrdnwNU0gczaV4Esl1dB/QOs81ZPpCJM4ct+eeaxLrbHDP0AEQ2/Qa+rncXx6j7yHh5XOYsx9TOBxdj6kGGz4LJ44Cjc4H7sXTwHSYXq9XpxLFdBO2HdM8YqpD7Cs/B57HthSEOO5NQobvZboI643QYeR+xbQYIgpkbs9zyLQSqVlfhe1dR/UUrtl38UKz+6uP5w7jz//revP/nAU4E4lrhWdefI+mD79pCzTm93Aikbhm6JQt/aPb3qx3f8VMd/3PTz3r7lwR98Wh8C5J76qqyqUof0GHX563l1IecaTEPkJSazWUqqpeIOkFkvTIRz6yZlrx2Dpa0v13jBZH8mViw6i1yQGdDT4BwhFMSSeIq3PAmdJgksVIO6Ozvq7X6zUs7bzfJ1RcuHBB6/Vak8lE+/v7tdOh3+9rOBw2xhWL3DEXf7VaaTqdnnBFkJDFegKO4Pt65plbQOD8kqh7fihuRGs6BQW3Q0cDberxOrdvV0J0RpAE013C8XHfcN3Znp/PVAzb4k1u6fCIv2P0nE4Mz5l/nxb19h6L5J5kuM0pQVAIoHjDegpsk/PYRsz5WhRDOLexDbfLIop0Fvj5MdUjfk58TbfbPTE+7iW2z7WxA4fOFh4XSkGS4lzb+M85rtl38YVy23VZQOLe4F2ftdZbP+uHz7obiUTixkB+DycSiWuON/zNn9BnPPjp6vzhE7R63f846+5sxL0WFKqqek8p5Z2llA+rquoNkj5V0muPfr5S0vOOfv/y1bbpf+TzbHn/ns1mjUh2v99v2KIpBJh00a5vouc2LRSwWB5rJSwWi/p1P6PX650gk/5vk13mcTO1weNjtLbf7zfGd+nSJd19992aTqe1GGD3hGsmkEAx6mw4DWKxWKjb7Wp3d7fOj/fcxIKGjFozWj+ZTCSpJnRu22OOkV2KJYxS8z0KHl5rChB2DbBWhkmg+8E1qKqqXpfoXOGeomDEfjC1IKav0BnA9Tstck3Bgrn7FgRIrDkWz7N/ptOpxuNxo1+O0p8mLMR18N7pdDq6++6763Esl8tG/RGKcvwsWayJgkKsW+D9H2uAsP249nxenG+Og2kf7Een09FgMFBVVY1iqXwmU406nY6Gw2GjMKTngXuQ83g94P74Lk4kEonE1SO/hxOJxP2F33jSf9Kbf31f3/DET1U1O58OpvviUJCkb5L006WUnqS3SPpqHaZRvLiU8kxJ75D0hVfTULSR8x/2JOomOCwiF4sZuj3fL0nT6bRhn+f7LgLodAOTcZKgmG7ge9vqJEiqT1TwyROTyaTVGr+9va3RaKSHPvShuvvuuzWbzbS/v6/xeKw77rhDe3t7Gg6HWq/XtYhCWDxwNNbvU0xhxDdG7ekQYGqIx+V0CK+B/1s6Pp3D68KILwl7XBMTN5PsWJww9sH3SM0CiSTlXCeuCdNe/Hz32RF7Et9YOHC1Wp2oibGpRoLnZGtrS8PhsF4PCxZeo01uADoK3H/OH+sRtBUjtYgRxQH/xGNPuV8iEWcaEUWXONb4t9fVwsfBwcEV7+Nr0YHiz7/7M51OG46Q7e3tE3Phezzncb9yr8bvDLpLrjNcs+/iRCKRSNwr5PdwIpG4KXGfBIWqqv5E0se3vPWp97CdBuEzkTIRslPAUcj1et04Sz6S5hilJmnlufaM1LN4oUlUWxTZ7zsCTPLCvluocNR9NpvVZDgedSgdRqd3dnY0HA7r6PTly5cbBNFtkQyxnZgKQEJFgh+dEm6TxN7kio6ESKTpUqBlPPalLd2E87a1tdUgeRQ4IuGjXb9NBKFw4rWgQ8PPsNuB60Eb/WnrHtMsKAawH/5vOzuiYLBpPZhq4/0dQVIeyTfTCvjfdswwDSC6Bngfxas2EWVTGgZdQL1er3GKSqx54XXkc+Nvknw6mHhiA9/nM5zqw70Rj/Zk/ZBYCLVN/DiPuFbfxYlEIpG4d8jv4UQicX/htq0tvfF7P0Yf/oN3afWaN5x1d07gvjoUrgmiVZ0kxZZ2pyQ4oky3gXR8KkNsi1F56djCbSK5WCw0m81qkkG3QrRYx/xqFl1kPr6juay1YALrZ5JUmlAOh8P62Ee7FCxK+Dof7Sgdk6XofCBhYz0KP5/k3W3EInacU4sNJG3+zfx+iiqeo0h8SR5JHCkqROIaSR1JP+tYeDzsg9eZxNl94Nj8O9Z08LyyJgQj8OwTf2IxT580YhJLMYrPdN86nU59vKn75b3scUThwHMVhQX/WFCwSyEKOxQZ2oqQRoGFaRxtKRF0D3ivUJRpq4XCGhwxTcZz5bUyWAOBYqOFk+iSicVE+VmkoyGRSCQSicT1h7K9LX3sk/TQ3k154kjiBsStnZHe8vf+oz75Zc/S8DVn3ZuTOBeCgnQcATXhJcnf3t6uCxT6Gh+RaDIxHA5rQmHCxOJ7PO1gPp+fIHSlFA2Hw0ZFebdDe3y017PGAusRTCaT2vZukcKnKtD+TmK8vb2tvb09LZdLTadTXbp0qS7UOJvNtLOzo52dnTqqylMEYioDXR6sA+DrfbTepjxxEl8LIDFibZAEMhWBRJAkPRJv/1hskdQYB4kvI9B2r2xvbzeO7bQA5bXxMymQeG5Go1Hdvo8YpTDj/cFjJ90WiSprSXCe6NRo2zNbW1t1KoIJLteLogGdPE6BiYICT0PgnJdyXLMjzhedAAbJv90Sk8mk/gy5X6xfQTFE0onjUblXOLfcS4PBoJFaFB0XTFmgaOjP82KxUL/fb9RL8V7f5Cyhc+m0dJZEIpFIJBLnH52HPVS/9Es/pm65ro6ATiSuW5wLQcEEt6qqmtC35Z0zoshjAaVjwhIJFYmUxYpSig4ODupCi65NYOJrQuL2fWxijIaTyEVLvU9QsJiwvb2t6XRaiwM+KpORcQsfJmq2i0vN3HKTbJNhksler1dHsieTSU0+HfFm1JYiCJ/B8ZHAm4h6raLLwYTOc++59HpRlPEzSZw9FtY08FgZhfYzLUT4XveVYtFyudRoNKrHw1QC/+zt7Wl7e1vj8fiE1d97yKIT+0t7/CYRxXMaT37wnqA7g8UoLZR47DyhwSScdT3a0i0iOfZnwcVIKZTwBA3Dz6eIxsKl/Az4s2pHjfeY90YbuG6GU4M2HZNpgc7j41i5hyg28Pput1t/ptoKQ0pqiA6JRCKRSCQSiURiM86FoMAaB1tbW7XVm9Z6pwz0ej0NBgPN5/Oa7JAgRkLIyLQLDNIBYbLmIxdN5mm7tkOB5DvazCliWEyYzWYNkuP3WDmfpy04WmpngI+dpJDA2g88epFiiZ8Z8++3tg6LBbK9eBJGW3Sd88C14BpR7KEA5DkmOd2UKmAi6OdQfIipFVxXP7+txkK/329E1X1tTJnp9/v182K6y2mEmOkhsWCm13gTOG4TXboQPEa6JOgE4Fj9HgUFrrNhIYJtx/mjOMH3/RpTQ2K9AossHAOj/23zQRHDAlvch+yLBQILWxQe/DlwW5wPixcUZVg7gz+x7kcikUgkEolEIpE4iXMhKEhqROIdmWe9A57iQBeA1Kxkzwi+26N127Z6t29Hg3PcbUUn4TTBaCt+SBLCqL0j+SRurK8QUzxiNNfCCa3pFC1YdJDFJT0fJlokRHYpeEyr1UqTyeTE0X9x7vxcWsP9t0kdCS7TApgC4Dmis8RkmE4T2uLdL6aZkDjHFAM+h26FNmcEBQmPx8/j9SagnBeD4g2j6VE4icQ+zq9TB5jCEtukSBTFhDgv7Bv3C+eKKRsk222CAvegn8k6DNJxoUsTddcrcFs8dpQiBB0BFgH4eeMzWCODp45wz8TUnzjXRBRGOOboSEokEolEIpFIJBJNnBtBgRbqwWDQiISSdO3s7Gg6nerg4KBRPZ+1D5g6QEJvu7vbZYHExWLRSE3Y2dmp73V0vS3CajLD4omr1UrT6bROd6DV3u4IRlFNsqfTaaOvTMWwoEKCyWKKFBRYLNJpDyZmPsbSxR2ZbiGpUfCSpJ8EkKSM6QlevzbyRtI9nU4bRI7uBKYueKwUYtoIHgm1n+X7mCLj17wvXGsh9t8uBe6/KM54Xry2HLdBgSkS2Tgvhl00Frg4RostbpP1MTb1QVJdV8R9imkavsZtup2YTkDRj44PCm8Uy7yv7Nbhczxuj5HpGRQY/DmgkMBnUUygQGRBz/2lGELhq5TjoyhZk8PzlOkPiUQikUgkEonEZpwbQcFE0nUNTPZMCgeDQUMwcK0Av8+0B4sRJBUm/L7WEc7FYlFHUkm8nXLQ7XY1GAy0s7OjS5cuNazQMU/7lltuadRJcB9MdAaDQU3m6KJw5J/F47a3t+sCdJJqQUJSTe4mk0ldDNBuBqdueL4c+aag4jZ2dnbqnHW7DSTV5D2S3Rj57na7Go/HjahzFBPiPaWUeh5oSfd/R9s8BZRI7piiQSLLSLvnoK2eAMklnReDweCEQ6GtSCL/mxFyr6nvd+0J7pk4DvfR11hUYIFGz2e32224bugE4fWuu+D9afgZ7hOFlzjv/qx47pmuE9eWqQ08MYT9nU6nDZeOPxt0ZzAtaDwe1597uk3iXNOtMhqNtFgs1O12ayGD/fT8+lmsb1FVVf2ZiY6cRCKRSCQSiUQi0cS5+NeyiR+JhkmIQcLW7XbrCvdOW3B0kXZ3EyYTZdYJMJnw9STQrrrPdi0ukCwRTicwTKZM3Ez67AyI1m9G6f23SaWkWuCQTh6JeFr6A23jtPuXcniqRb/fr8fL3PFNIkEk1P1+/4SVndHnmA7gOWD6iNuiJZ/k2+vlAp0UdWIqQozOe/14eoPhZ0RCvFwu6z5yf3K/MuUiPjfa8ln4kAJJFF7c17jH2twNbX1g2o/7EVM9vCec2tP2vkGRwdezP/G37/G4LETws+L/jkUd3Q6vp7hiMYwClNtpO7mBcxHrfDAdiOIV55bOiUQikUhcGR/681+vx7wkXV2JRCJxs+HcCArxH/aM+ka7uiOxJKVMLaiqqpHaYFISCbGkmkizHbsLHKH0SRCOXEdLN4mvo60cm/vufrMAX8z/N8F1VNv3u6ZCfC7JYEyBkJp58pwvizK2eLNWBOsGeC1I/DkuE2A/iwJCrKHg+0g43T73gd+jW8NrwT3i8bI/nG+37XSYtjWhCyFG+e3miOsUr42klZZ8iyFMbWG6AH9z7/IkjTYhwmPj/HJ9OKdxH9B9YMHqtHoP0XWySUjgteyfHQQWTJhyEfdUXJOYlhNTOzyu+L1BocXFUePn32vD9WC/OK5EIpFInI7Hv3iq8jt/ctbdSCQSicQDjHMhKEjNXHLa1v0ai6+R4DJVwmkPJi2OUpI0OVpPIYBHGkqq7zHhdk0HkkLXSTA5MmntdruNY/kcDY7RYzoXPH73hXZ9j7Xb7Wo0GtVpFD6JINr8ScQpLHhMjr7TeeGTEFys0v3zPJlwtdUo8LhYX8JpGJ4LkrVYJM//3WbLj8TfoKDAtIBIhI1Op6PhcNhYD84dia2FBO8hzyNJpsdtMYbuGo7HbUuHaRSdTqdRhJN73/e5XR7PyWs5Z3SBECTp8RlxXmLaANfIn6vYFvcBnS9tOC1thp/xOC6LgDyVhfPDtXJbTIXgZy4KZXTBtAmZ/MwmbmCsi2bVQv3SvfK1iUTiVMyqhXTK/wsSiUQicePiXAgKzvnn0YyMrDLnmZFFkmiLApLqIm4WAgaDQd2W7f3MV/f9JuCOEpNokHivVivt7+/X/WLBOxIZR69Nlk3qaaM2GXM7Jo9OsWA0lkSIpwF4bpyC4PoJnkv/uDgeUzhGo1GjeB6FFYN/t6UkkED7b/aZjgT/8Fre4xM+vNaMQlOUoUuDBTi9zhScvCd8D4UCg0KO72NuvdfC82EhgTULom3e81RVzWNHY6oEx+rnc/+RwFMAiS6JOLfuB9uJbgOKD6xFwFoDJPzcs14T94eFM6N7hoKGnR8smkhBh0LYfD6viyZKarhpmLISBTs6DNw3Ftnkc13YleOj+Ji4MfHh/+h1+vRf+wb91g+84Ky7kkhc1/itqfQvP/HpKu/987PuSiKRSCTOAOdCUDD4j/cY9TQxIuElMSQpczuOYDofntF3t0M7utuMJye4cOF0Oq1JN2GSQgJFccEFGX1tzDMnOCY7CexUiGSe6RquL2BnAE+YMEGP87a1tdWooXBwcNBqZ9+EtmsiYZWaJ0OQLDKi39am/9vpCibfjuC7PebZtz3HhNNklM/n2kVLPH84Nq8f95Th6DbX0/sppsfE/e62LWhxfI6kMz0n9jOmBnEeScCj44OI425LueBY+Xnza9xrsW2LMZIaKUnxc+v+2zXj9nxKSfzs8HPX1lfuybZ0jjiutrElbiysL19W7+7M904k7isWVUfL99x+1t1IJBKJxBnh3AgKdh3EaLakRpV8CwFt17FOAlMJotBAQkkxgWB6g6PLs9msFhVMYB3dJLE0AYs2eosMbRH7GNll/YJIahlBjyQpChilHOaQtx0b6LmNJwn4utNEBUbX2S/+5rVsP5LaSAzbyCjFhZiu4PsYaaZQROs7BQeDdQ1iAcm2uWdKgO9nrYAYzY91L0ppHmMY54UuhfjcuH78u02givMXxx7f899MFWgDx8W54rxv+myxfYqBfJ+fHzpxPI9tRN9zwX15JURHQxTdTkvnSCQSiZsdv3Iw0j993efoIXrDWXclkUgkbljMqoX+/ls+S/33z8+6K604F4KCyTFPRiBihNUEjiTGMLFkPr7bN5mfTCY1GSJpiHUbHOWeTqfqdDqaTCb1jwUFnyzB4/VcPM7EUTqOurJuAokx+0NwbLHwXCSw/rvf72tvb69RnM7PO80NwH6dJii0EVD24zTnAiPsJNpcv/ibJ1nQ3u7IPa360W3Advx832NYbIlCAsky5zIKPxYyYh94HdNZ+ByDJ3NQmOFpE7HugueGwttpgkybiBPFD4tyjvR7XzN1wX87fYcpNG7Hrhf2N4JCnD8DLsDpvvX7/bpeSPy8bHJNRAfH1aJNFEkkEonEZnzr73ypnvBVrzrrbiQSicQNjXctZ9r/tMvamv3JWXelFedGUOh2u41ig23HEMZrmAYQI5lOBzCRZ+X+wWCgg4MDScdExmkCPv3AdRjc/v7+vvb39zWdTjWdThvElMdC+hmsrSCpfi6jsxYfSOBJ/Jz2QNA+77mLZNECynA4rEn39va2ZrNZK/Fn/jnFB6mZrtC2bhQh3D+uG90I0T1Cgth2FKfXh9FwkmU+388spTTqcWxK9aAA5OewXYo3tL+T8EYByAKUU1SuhpCSwEZ3SozUW3SzwBKdNl7r04oJ+thSugsM16Lge6zPQMLtPdHmCmKfPI5I0qPosSlVwqIC59yC4qb55WeBe4YiCt1K0Z3A/05RIZFIJBKJRCKR2IxzISiUUupTEtqKAkqqSXGv16uLCzI6TEIcizaayJgQ+vQGE0I+z22wuGG0rVMUiKRWOib0Joeuu2C3Aq3cJDyMpsaIdxvpiVFYpmeYwPu0As9xv99v9NeiiWsvRPGAAkTMPZeOj40koWWBQ993GjGLDg06Dvgsj5Fkj3PmeXcBRYo6FFEowNCN4tcc9ee+YRvxlIho/a+qqu6D94H3G/sZTw9hexQwPBc+9YEihEUAt88+RjAtw/POzwznQWo6N+i2sdPGLo7o8IhCTnRB+Ddf571xLrhu3C/+byOmhkTnUryWa7lpf7aJXIlEIpGQPuxHn63H/drkrLuRSCQSiTPGuREUXIV/vT48CjDaw2kBJ/khiTIx4gkH0vHxdyRGPE2Az4lRbBNkt+Vnu9ijCbnFAz/DJ0L49dls1iBkzFFn5JapHCZRMQ3D/YzXsJAk6wc4Gs/cfc49hRHWeOA1/h3FhdgHXk/3RFt9AYI569EtwBQE2vLZD4orHqf/mxF/Oici+d6U/x/nY9NcuA2mXdC1wsKK3j/ui90qrhXC+ePasN/cuxRxTnOUsP8Ubtg+xbOYnmHCzuul4xNUSNCvlDojHRfcdJ/aBJ0oJvg9prRwz9HlYUTBwHuE420T9tKhcGOj+/6xnvbnn6dffNLP6NbO6Ky7k0hcV3jUf19o67f/5Ky7kUgkEjc0Xjru6ttf8zV62OpNZ92VjbhPgkIp5dskfY2kStKrJX21pJGkF0l6jKS3SfqiqqruPK2dqqo0HA5rMeDuu+8+QRaYL9/v9zWdThvk2UUITd4YqaS13YRnMBjUpCQeJ8cCi3QAMALuvHHfYzJvomLbPU9Q8P2SGmIEhREXSYzuBAsQMS89uhRcFd9j4pyQCJL8s30KJPG6GAEm6CggqaQb4DSC7tejJd59I0mM1vQ2UcPzvL293eo4iKkdtOVfKSpN4SK2YZBIW8ShMNUmKHjtfD9FAq8b9ynnNc4BiXpcJ86b19z9i06RmLrg3xbtKD6w8CfX5zT0+/3GM9wvf65Zn0Jqfs4i8T/NoUBBggJdXLfrFdfqu/hmw/rPX6/+ZxS9+s0jffLmTKFEIpG4IvJ7OJFI3B/4x6//fD30Ga/XeQ5x3WtBoZTyKEnfLOkjqqqalFJeLOlLJH2EpJdVVfW8Usp3SPoOSd9+WlsmACbikhpkZTweNwhlr9fTYDBokB5fbyJsxwMjj/57Pp83SJcjlSQuJFGM4Pq1brer0WhUExjXdpCOo6SDwaAm5ePxuO67RYnd3d1GsUcTS7fPyLnhmgq0r8eCgT6Nws+PRJqE2uPpdDoaDAba3d1t2OujANEW/XUbbifm9FsoiNX5KRZIqgkz22NRSxbWZP0Jz5VJdTzVweviNilOeQ5JnieTyak2eAoKp7kB6NAwSHb97O3tbY1GowaRjwVDr4RYf8F9YFoQBYxYr8CuCaZVuF1eEz8XHlObGEE3DdMrDK8Tn0dByalCTGtyW/58s8YI18V7q+1EC7qeLDj5s2YhIzozzjOu5XdxIpFIJO458ns4kUjczLiv/1reljQspWzrUIX9S0nPkPTjR+//uKTPu1Ij6/Va0+m0zgcfDAYajUYaDod1zn8kQa4HQNLuthzF7ff72tnZ0XA4rKP70+m0cfwjo/gkz5PJRLPZrI5um8y2pQSQ7Hosly5dqomrI8AHBwe6fPmyLl++XKdAOFJNMcPjkHRiXPF5JOsxMtzmCPDrJG6O7npOPe8m85HYRkt7jGab1LuPrAVgUKRhSoD74Z9I2Fn8sq0IIEmtx+227CpxDQ27REgy4/wQ0YZv0YApC233MbWCz5nNZvUek9Rwv5A8b3J4xLQLknkesSg1i3n6WgpuJvWDwaDx/LY9FVMEOD92EESnDNuKglbcz0xfoDPBbh+3yz18JWfJaS6E+P0RU1+uE1yT7+KbElWlf/Jtz9JnvO7pZ92TRCJxfSO/hxOJxDXFE37y2br1/zr/KZn32qFQVdVflFK+V9I7JE0kvbSqqpeWUh5WVdW7j655dynloVfRlmazWSMNgHnu0b5tgup/7JsMkUz5Ndq5pWPLtI+8k44dB7T1+7qYNiAdk33a7U2YfZ8FC/bdhIjOCBeJtHOCYOpDtPZ7vO4H+3raPDtCHx0KFgF8CoDbZk4/UxgoWLiN2B6J4WlpDl5LkrrTCD7bj/UmKCxY0DE55rxFazxJO9vi3LmP7J+vJTH3Nd43dG64zUi2LY6YXLO+R3QTtIkJbUIGHQLcx36PpJx7wO97vDGVg/NLR4n7yloem9af6RO+pi3Fo028sKOAzgK3xTnj54HjjK8Zcd/EPXBecS2/i29WDH/59/XmL/pY6Uln3ZNE4vzjztVYT3vVM/XI9+zrupFc72fk93AikbiWmFULPfVVX67H/OpE5Xf+5Ky7c0Xcl5SHW3WovD5W0l2Sfr6U8uX34P5nSXqWJF24cKEm0yaYjOY6Yup0AJKz9fr47Pr1el3ncTt1wiTS5NzXkLzHtIGY1+4+8ajBaOt3hN027aqqNJ1OaxHCaRG2/ft6RsklNUgYj63089rqBfjoO9vVMcf1vZyvtvY4ftZciBX7SfLanmVyzeiy58jP9Wsk7xQHKGAwqs7IsRGdJRSVoovAc9A2h2wzChScL/aZ4471HTqdjnq9Xt2e33MbXivvxX6/37DrU/BYrVaNgp4R8bU2ZwELhMY+u79sLwomJvx0KERRjmsWT+OgcMD0ouic4ec1OjO47/y59H71WvlzvUlkaVtvgmt0mqvhPOFafhcPdP5V8EQicbZ4+7Kjh3/BG7Ve5yk4Rn4PJxKJa4X99VS/N9vRw77knVofpcyfd9yXooyfJumtVVW9T5JKKf+PpE+UdHsp5RFHSuwjJL237eaqql4g6QWS9LCHPayaTCaaz+fqdDra29urUx22trYaxzzyiDrbxvf397VcLmvLviRNp9PWaLzUtG5LauRoH41Fq9WqrmtQVcdFIy1s+OQGExymZsxmM12+fFnr9Vo7Ozvq9/uNnHA/ezgcand3V8PhsCafBwcHNXGy8GCyNJ1OGyTMY6E74+DgQIPBQDs7O1qv13XePF0aV4tYeNBj27CeNYmkdd157CRwUaSILoQ2IrdcLjWbzXRwcFAfWUhxiW4Et+m5dr0Ntk2y7vWkWEEBhBF+ukU8FjtPPB6n0lAc816k84NtLpfLRooJI/Jee55eElNaYgoI77eg4LbahBK+Hz8bdAnxOvfbbfoauhdYx8DP9J5uq1kym80ae8fCoOeXgoadQBYL/fmjgMQ13+SSoQOi0+m0Fpc857hm38UXym3XzaATiUTiHCG/hxOJxDXB33vD/6TyGe9Rtbw+xATpvgkK75D0CaWUkQ7tXZ8q6Q8lHUj6SknPO/r9y1fTGAmQo49MfSC5Zk62yZBrMDhab3cB0yPoVIhR00g0Syn1/S7y2Ov1Wsm5SaXFD5MuR58ZlWVhSBOu7e1t7ezsaG9vrxYynJbhtAg+y5FZpyeYwI3HY43HY+3s7Gg2m2mxWNT1I+xgIFGUThay22Sjd1Q4uiTabOMGax0wd5+R6ygunAaSSacJkCRGEskov9E2PtrqN/Ujpgfw5AkLKRyXxZ/lclkLPJ4PO1J4mgij7n5eG7j2Xs/orojwNdPptL6mlFK7UDgXXBOLIPycUMyIaRNxjuku8Wsx9SM6UjyPnuO2fRnXg58tOoL4fLqPKLxw/pkmQafQdYBr+l1806EULX/z0Xrhh/7oWfckkTj3+MzX/13Nn/cIddd/eNZdOW/I7+FEInGf8YSferY+9Bf2VS3fddZduUe4LzUUfq+U8guS/kjSUtIf61Bd3ZX04lLKM3X4BfuFV9umCart6iYC/k1iTUs7I6oxH5550Xyd0WHb0xlJJmE0cXJ6gkk1be4+OYJRaamZqx77u14fniiwvb2t4XCo4XBYk8TxeKzZbFY7H0iaDYsjnqvFYlGfGGFBgZH77e3t2mpPQcFtRsGljVzzddYm8A8JYVvqQ5tbweKK14gpDBQFTrOxc344nmjz9+u8ngUKOU637b+5Z/haJNXuJ235XkfuOQtNngc+PwoFVVU1amq0FaRkexxDTN9hGkOcV7oLOF8UEtr+WzopgrS5TtoEEF/HoyI5z5tAxxKFLn9GKY7EdCamScTvi5iucd5xf3wX32z47g/9FX3y4Kx7kUicf7zt/bfpQ16aYkJEfg8nEon7gkW10kf97lfpQ14yk37/1WfdnXuM++JQUFVV3y3pu8PLMx0qs/cIJHmO9kvH6QdMRyA5p8hA0kAii/6eiEQ6EupTDaqqqlMvTHJsibdDIVq1q+qwqCTft/06kndHpy0cTCYTbW1taWdnR7u7u/WznALivtBOLh1b8mn5t1PDTgUXhvT9JMJ0Ypg02Q0RbeiGrzVBp9U91iqgkONnxtQG6TiVwekg6/XhkYBcj9gWSbH/5hqT2DIlxHvE9StIOKPrhWOOz6B4RbEqWuvpXDHxNWKKgqSGqBLdEu6r19L7iP2NQgPFAZ8mEQUF//b18TQI1veIwgPnJfaVDpY4h34Oj3zkvRSk+Fy25X44rcU1TuLa8zMY0zc2XceCkm1uhvOIa/ldnEgkEm14zXyi2eX+WXfj3CK/hxOJxL3B3euJfnt6qx77te/Q6q67z7o79wr3SVC4ViCJMJGw3Z8RdJP/Xq9XpxKYINrF4LSIXq9XH38oHdZUiIRMOo7y9/v9muA4PcDXsyCdiYv7S8HBfRoMBnU6gsG8exOj+Xxekzz/Ho1GtaBwxx13aDab1cdouvo/LffRvVBVlSaTiT7wgQ/UdR9Wq5WGw2FNHt1f1qOg+NKWax6Jpwmd597vc66qqqrnNBYFJMmbz+caj8e1s+LWW2+t554na7DQIV0Xm04D8H3RteDxsA/scxs8vigmxGd6bfzfXkvvCx6TadK6Xq/rfeh6DG398RxSyKFQw1MSfA2PcLSI5bG42CM/Z342yfx6fVyLw/Bal1I0m83qe9tEtbh3/EMnAEFiz/3UhuikoBDhtXH/pMMCr+4r1zTOs9dmU+pJIpFI3Gz4+m/7Vj3xF3/vrLuRSCQSNxS+7u1/V3f+jTul6voUE6RzIiis12tNp9MGGTGRice3mbAxj99igAmmo9s8AYAEcDAYNCKQFgAGg0FN1JifvlgsTjgQLF5wDJG0RvcAo8+xEv7ly5f14Ac/uCECHBwcaD6f14SU6RbL5VL9fr8RcbVQMJ1O1el0dNddd9UklmkYRIz+muya8PLYyO3t7fpvktu2vHRfQ7dHJOAUIjzP8/lcd955p4bDYV1Mkeu3tbWlXq/XED1YKLBtb/ka99WCEffVaWKC9x2vY5S/rfBkTEmweOO5jYQ7ui6iQNA2HvZhfFQF1p8FujK8/ywUxLoFfi3Wg2D/LBbQFeF72ZZPWaDrI7pqfG10rDA1wfvnSoVEoyMjukzi3xb9WKOBLiKvJ0WFRCKRSEjlOkgBSyQSiesBi2qlT/2GZ6t311Ldu6ZSdcdZd+k+4VwICtGSTCIVrf6SGi4DE0y/7ig2o6T87+3tbfV6Pe3s7DQINMmZ2zYhYtTYRMukw30jUdsUdSXhYe2Aqqpq8WB3d1f9fl+LxUKj0agWM6qqqsdFu7vbjjnx6/VhXQenEyyXywaJjfUC+MNaCux7jDwzik7Bh1H82WzWKP4X76Ol3sSXa+kTMjjWWKQvRph5soARBQi205aKcdpepfWebXNtJTXWyekcMVUg9tG/KVowwu95MtFnn+068V6JYM0POhLYf554YQHBfaLLxu2w7kEsMklhIo6Re4r7heP2a74+jjd+BijYEe4zxayYjhHf4zgSiUTiZsbd64k+5te/SR/+lku6cvnkRCKRSJyGl006+prffJY+/GWv0/ry5Rvie/VcCgqGSS2joBQBnH5gMm8Bwj/MU2eFfd8bc/9JXtwu7eKO0rofJGF+jySFfZZUj8PXm+ivVivt7+9rMpmolKLBYKALFy5ob29PBwcHmk6n2t/fV6/XU7/fr8nwJiLsvpnweQyDwaAWSljMkWTYZJN1Iiga+P44X+4DyRtJJeeEzgyTbgoidDJsIvoxHz++FwsUtkWyWRiRokQb2SdOEx8sHjC1QlJDkJKOU0V8T9vzowsiXtuW3mGRyve01T+ILgO2Q4cCiT3FqvhMjy0KCkyb8G/vS/bB7bTNwSaHAuco9oefTc81T2/geO36oXvDgpr3aiKRSNysePdyXy+6/JH6sGf/mdaL+Vl3J5FIJK5b/Pq4r2nV1fe++e/oiV//+zeEkGCcC0FhvT481cC55LT2O62ABCG6Dpy2QCuzr2GU2ISOJM3EzwUQTSyi/doFDv2cSPDaosaMLNNqb4I/nU41m83q/voZw+FQOzs7uu222zQej2uXwnK5rAk9I8kWUkiyeDyh+xgJpusUkFC5r04d8RGWHJPXxzZ+ihHRZi+pJmqeZ99nK71rWOzs7NSiktd9Pp/XDhKeQEFbPE/YuJoielE8sbhDkcP94z2xYB/3bwQLANIZ0UZ4mSoTCyX6Xhb5lFQ7HthHuxO8zoPB4ETfKBBQFGIqBZ04cQ6YFkRBwnvabft6z0V0KrStx9WA/W+bx6s57pHzzdoeMa3GKT6JRCJxs+Jz/+wf6Lanv1FSigmJRCJxb7Gq1vp3n/6ZWr717drRW866O9cc50JQ8D/oHem0Ddvkza6AaM13egMt3iY4JkYm4RQQfK+JqsmESREjqkyVYOQ85mBLahC8mP5gISBGVFln4H3ve19dPPGWW27R3t6eRqOR9vf3G8IKBQ1Gok3EfQTlYDBQr9dTr9erXRnRSt525CHbdS2FmNqwtbWl4XBYR50pBLCmwGw2a/Q5FjF0TrufNRgM6vYlNU74oBDgvxkdt4PChTg9zpgmwfHTxcGxRUJqstlWsHDTnjbicz0nvI5FMr23TI49v+yHxYk4Loss/rE41Ov1GseX0n3gzx9TM/y3186fRwpgm8D14d/T6bQem8cT6yr4ubEo5dW4Rii4sM5KdNMwdcMOKM4pT4G40nMTNwCqSv/X53+pvu3/WOlVH/fis+5NInFu8Fee/xw9+v95t06vZJNIJBKJTXjsrzxLH/bDh3XO9M7Xn21n7kecC0FBOoyumlyQpEXiQ4JBotp2nds8jRQwGsxq/3yPkVC6F1jssK0oIdswyXXtBIoWFhUuXbqkS5cuaTQaaXd3tybYw+FQ+/v7DcGCv53GYVI+HA41Go20s7NTpzkwgu9ocaw1wAhvnGMTL4JpF3Rp8F7PmQlp7DtdDJLqEzRIlF3oLxJzCgl8NgWXmJbBPdTWBsl7fBb7EIswxj0W36MowvtjH9gWRY22CL7boLjk9fDe58klnlv/HdMxOC8UJujkYS0IpqVsQtwXvt+FOtvGSTFw02eXe4RiAsUe1vvwfPG7JaaccP9fL8dFJq4N1n/6Ot196WPPuhuJxLnAeD3XR/7SN+mJv3m3Vm9661l3J5FIJK4rvGo21xf98jdLkj7kpStVf/jnZ9yj+x/nRlDwP+rtBDBhcOSWxJD59tEmHh0DJqPOiTYc+aYQ4fZZVC8WACT5o3vB5CdeLx0XGGSUV2rWAVgsFtrf39elS5e0u7tbR+77/b4Gg4EGg0HjqEwKBI7K24kwGo00Go3qYzPjCQ8UCThu941iQBQwSMjj75ifzvFFsh8LSNIWH0UcCgoWRyz+xOKSnss2khsFKa9nPKkg5vhTJLFzIBLpmKLg99leJPyb+tsmKLQR6+jYoIvGYgCdNKwZ0Sa4UNSgAMD740kRsZ4GwTF7f3gPx6NbPd8UMlarVcMtEEGXCT+3diVwLG2uiVhnw89er9e1QHda6kQikUjcaHjXcl8/fffH6sOe+2qtj04PSiSuN1TLpX7k7g/W/7T3Rj24s3PW3Unc4Biv5/rZyx9c//2Lt3+sHv+trzzDHj3wOFeCggmsI6v+B72LFxqM+JIcMwXB0Ubb2Xd2dhpkwiSOufhuz2SD5DcSL+ft+x6nFLgPzClnFNlHVk6n0/oIQROh6XSq8XisS5cu6b3vfa96vV5tMd/Z2alPeeh2u+r3+/Wz/JpTJCwu2Kng+0j+SKQ8V7PZTNPptB6TpMa8S00XRxuxlNR6nCYJNueNfaKbgfUr2sA1YZFJEnqS8NOOH6TQ4L85xuVyWafHnEYwozA1m80aBRrjnETHRFu/LBi1jYHHcfr5rFVhQYEiHNuIJ5VwvzJiP51OtVqt6n3EWhAk/23zUUqp05LszpGOHRNtx2h6j7k/FBXiXEUHClM1iDY3hccQ0yG4r04TNBKJROJGw1f/jy/V1qe+U1KKCYnrF6vb36tf/IiH6M1/9FB9z8P/+Ky7k7jB8Z/GD9GLn/RwvPLuM+vLWeFc/GvZkXiKCIyosuK6XQcumiYdiwCMes5ms4Yd30X3lsulJpOJptNpHdFvi95Lx8TPYoHfN0imWCuALgKO0YSJR/q5DoSk2qXgfrmegKQTNRSkpoXbc+hUh52dHd1yyy0ajUb1+OLJCxRc5vO5ptOpJpNJLahY7PA1/omOAkbFPW8mstEFYWcIxQUSd5JIFt9kNJr57xSXjGhtj2D/YvpDVVX1XHtt3Z775HVpI9JcG+6hiDYRgakVdFLEE0mk46MxoxDCGiH+vGyqeRDdOW7X6+JCpXTk0FHCMcbxxzY9J15jOiKqqqrdFR7HaSJLnHPOmZ/hPUNBgOKW91V0RVjw8L3pUEgkEjcLnvzvnqPH/Mw7lWfbJBKJxGa8crrSP/+cLzt+Yb6QbsBCi/cE50JQoHXfZI4nNZgcOCLqKux0FzBSa6JJe7YLPUrHDgWTCxbxM3Ei2XL/WDOBToXpdNqoLm8Sw0g0c75jzQYWa6RbwO2ZKMY6EXyNTgULC8PhsOFOMGkyIbRAQOK8SXSgsEAi6GtI9LxWnD+uj5/BwpUkqWybqREWjigq+LVIjD3vFA5iigCvbbPuc+zcWy5ySGdGGznnHMa1apuXGD33336GXRK+l9fys9SWmtEWtef1MU3H4oVdDrG2iKTGyRisW9H2HLojmGpip8lqtao/+3QabELcJ23vx7mRjouQxtQUIn5uE4lE4kbGrFroyT/zzXr8S+/W8u3vPOvuJBLXDL/5o0/V3/7cD9Z/e/Ivn3VXEtcpvv32j9EvveSpjde294s+6DW/e0Y9Op84N4KCo7AuHMf0ARMN28dN6kh0HPn2vSZrvocF6uIRfBQtmHZh+DUWP2RU3iQ7ks5IoKLzgkSa47VYwYh0JK1ujz8UPbrdrnq9nvr9foMImuDaleCCfLSEk6yxAr5FCJIyvx9dASSYJH7ui0UXCgrxmV5LEj5W7o/CA0mxI82M5Md+xqJ+MfUiiiwWkry+FqmYpkHQuh/razClI0bcOa5IbLlHOKeR+LovFFIoanjPRUGhTfiii4Ofi/X6+MQKOng4D9zDbe4fFij1tZtIPIWAuE9iiozHGO9nnQX3O+5bfi6zOGMikbiR8Y7lvv7DB/6Gnvi/v0arS5fOujuJxDXFw/7d7+p9y6fq+Y98jL711reddXcS5xSraq3vvePDtKhO/pvvF17+CXr8P37FGfTq+sK5EBS2tg6PIGTxQpMa245dmJD/+N8UeaYgYDeC2zLhdiFF2uwpKBCz2ay2Zbu/UjMv2wTdRJ5pDCSwPoaR6RFO3+DxjhQdTEwZoZaaRz5yXCyiR6JHArxYLOocf4oCfq8tJz4SbLcbLfB+3X9znlgkk+IM24u2eooPba4Dr53BUwvcBx5J6uMZ6YhhrQje777EXHoSWxNjrwP3EvvnvkdXxWmReLom4t7kvF4pmt4mXPDZ3o+bhAmLUBSJmKJhUk83Bu+n8MVxjcdj9Xq9uh1+xk6re+E27JKwyNMmADAVwuPzcbJMa3AbdPKctjaJRCJxveMfvuMZuvtvfEBSigmJGxMP+YFX6KW/+bH6pv/+FnVKpjHe7FhVJ/+t/N7VWC//hIdqfXBw4r3H6+YqrnhvcS4EBZIZRyxJkCXV1n0XeTMpMzGmld/RWBao82u+l0TWZJK53aPRqH42q9NLqttxH/3f/s0UCek4jYJiwmAwqMWDqqq0u7urixcv1mkKFhfcJ4/T7fpeEkymiZiQWUQwgXV/1+u1ptNp7TjgEX12JFAIicKN2/NzokOBxQBN6Cy68D0/jwSV0efFYlHXLOCzPc++hmDuv3RYf8LjXCwWdeFJihokjhyLx2zBwH+biHq+PTaLRiSxjHSThFNwYG0EzhlFHgoSJuGbUgOuRqzwc7lnuJ9YXNN7wHNHuK+ubcL0H/eF7UbxgsTdn9O4P+hMYYoP14miEIVJ7wWKM3QzJBKJxM2Ij/iB5+ixP/Tms+5GInG/Y/WWd+hz/8bn67P/8x/pG27JtJ6bFR/xA8/RY3/qL06+UVVaH7zjge/QDYRzIyg4om0Cxui9yTptyiYTJh7MVe/3+zVxMBmTVBM+E28SYZIR2t+ZYmAyRdK3vb2twWCgqqoaDgMKGr7Hee0khhYtXO3eJNdOB+mYLLEgou9x2xZfSMJidJvP5ZzTmh/dAV4f94HEjKR1U4Sc62TwOZ472vv9TI/DUeho/XfbbWIIXQZ+pkUZ16fwmOnqcBsk+xZ0OIcx4k0HQHR8cM2jqyamIzh9os2BwflpEyX4eaITIK4Pn+U2eC/hlICY/kCQ/Md+UUzwZyCuXSzSyX7E53EMbWBfTwP3ERFTUxI3Dx71c109dv9r9dbP+aGz7koicb9iUa30kS/8Rj32JXdr+Z7bz7o7icT9j/VKy7e+XS98/tP1or/3Hv3WX/nFs+5R4hrjCT/5bPXuOv3fbh/80ru1fOvbH6Ae3Vw4N4KCpPqIuvl83qh5YIJtomVrMqPVJLlMYZBUkzRG4mMeeszfjrnZrAJPUkTLNFMMPC66GkiSGGVlekJMy/D1nU6nJtbul8mbo+J0Rfg6iyyR1HMOojOAwo4Rc9Zj+gEFCI6V9Qv8noURE3X2g8/zj8m8+8lIdbTy203g/ruPLDzp/cG6G55z7gu3R8eG9x/HFftOgYs1FKLowT5fKV0hukM8D5tAB0d04vh9zmUbNtU0oAjCSL/3ZbyeaTfRrcDxO70lukViXQY/y33k9e4DxYk28HNEJwbrKpy2JokbD4Nf/X094QMfrW/+uL+m5z38dzTa6l35pkTiOsNbF/t63u2frsd93xu1ev8Hzro7icQDige/4BV6b+8T9Y23/XVJ0j99+H/Vgzs796qtVbXWc9/z8Zqtu1e++AbBw/t36588+PX36zPG67m+4z2fpHV1z9JTnvgDf6Hl2053GaQv9f7DuRIUVquVxuOxDg4OanfChQsXNBwOG+RaUm0rr6rjY/7m83lda8CkgBFdkl7b4lerVe0EiAX/SCjsLnCRx263q9Fo1DhFgUTbhCvmzvs5bRZzz4VfZ9V7H3dJ8ubrLb4Mh8M6lULSCfGEUXaC0XQeD8lUgkiyI+Em2aVTgi4Hiicm2tHJwYg+14CkU1LdN85fTDMgkfbrHhfXZ71e1/sp1kqIbXvcdsF4XilSxHl137me7kOcG98X58b95fzHNWgTrdgXiyIUGtquNbzPPQ6P0fvJ10QRzm16PmJ9DQtxFg/oKmERzVg/w33k3A0Gg4ZzxmJC2zjZb4PuFo6JDo/EzYPyu3+qN37Ctt70prU+KvWExA2GVbXW827/dL3tKRNJk7PuTiJxJnjov/9d/Y9/f/jfv/DaJ+qrL77tXrVz93qu133aRa3uvPPade6c401/7a9p9kuvvl+f8Wfzjt7wlLW0Xlz54gYyZeEscS4EBYsCtj6vVivNZrO69sFwOGxUxCdxIDF3HncpRcPhUJIa6REx/YEEkY4A2t8NE2Hp2EZuYuR89ul02iB6JIgk1sxZp4OBxNfRc79Pouu2JpNJXQehlKJ+v6/BYNBwUJCczWazRpTef5M0MQLu2hQkWlyzqqo0m80a9xibBBOmffjZ/X6/UfwvCgPxmZteo7jBWhoml3QhRAdKXCciClMuZsn3WTeA4gJTI9wfthVJbFtfvM94HdMtPA+O5nMvM/2C5NqfBboHTOYjuDYUD7impxVQ9HxwDF4LtuO55bMopEjHBTPpUHB7Fo8savn1WL/B8+VxxBoccXyJRCJxI+AjXvgNetz3vVEpJiQSh/iVv/UR+tXtv3Lvbq4qre68uVKGqle9Vl/w8Z9z/z5jvZbW771fn5G49riioFBKeaGkp0t6b1VVH3n02m2SXiTpMZLeJumLqqq68+i975T0TEkrSd9cVdVvXOkZ/kc9Sb8FBUcQSXxcIM+v28Fg+zqJqMl1tPZHQuYov6+NJCOSEkeVTYyiS4HEK0atHW2l1dr1F0zCGXG146LX69V1IGJdAxJa5qhbaHExQp9YES30TudgFJ91G5x2IZ204LMdRtFZO8B99u+YckHEoyzZbiTR3jsxYn/amtES32a/ZxSbwgeFgHgPUzBiH6OwEsn7ptQJ7iHvddbeoJOD4441JTaR/Zh2EaP3nB/PHVMomOLAOghxDehC4OfYDgX3ry0NxGKZ9x73YxQb+Cz+sC9MZ4guGPb7POKB+C5OSNVqpa963rdp3Su6+0lLvfUZLzjrLiUS1wTb45JpDvcR+T18Y2H1vveddReuL6xXWr77PWfdi8Q5xNUkqPyYpM8Mr32HpJdVVfUESS87+lullI+Q9CWSnnx0z/eXUq54kLuJA4mPI7t2EjDqbuJgkhOLIZLgObrrqLTJckxFcOFHR/ndnoWKWFCOYgILKfLouiiQ+MeihkWMfr9fF59k7jsj2BQ8GMmONn6S9miJn8/nmkwmDWeD7+fJCGzT7/GaeH2srcCxb+of3RdRPKBIEiPs3DP88bPoqPDYY2pB3EsUOdx2JKZ0G9jd4R/PSZwv9oWiAfsSPwdxHjmfHBf3CtunIyXeExHnmCTboPjDZ7WlsjDNhe3FuaO7gIIc55zrzv3APsf0mKsBPzvu72ntn+a8OAP8mO7n7+KEpKrSQ37wFXrYv/1dPe5FS335256mWXVPrZeJxPnC177zk7T7rvMrmF5H+DHl93AikUg0cEWHQlVVv1VKeUx4+RmSnnb03z8u6eWSvv3o9Z+rqmom6a2llDdJeoqkV5z2jNVqpclkUluVHbknmZCaNvoYOfVRi5GwbG0dnvpgAiypzgv3/RYTdnZ21O12T9jnDT7T4oMFCDofSEYsJkyn0/qkCo/Lxze6j71er1HkkRFbFn4kEbVIYoHA/WNffd18Ptd4PG5Exg8ODmpSTAHApJiOBs6p+0dhJkacOQ8WWSyKWPBx3/zjdSK5bIvyR9LNIoyeZ4P3b29v1/uBEe6Yq8/6FyS4m9IuVqtVY27iPvUzvN7sL8dEcHxuP7o9SN7pSIl7tq39KPJE8SXeH+ed4HxJx3vX7fs0h7in22pHEExd8fzFa6L40uaU4HzQaRNTQdoEqPOCB+K7ONFE5+V/pA98ykCve91aj+2etIl31cnijYlzi1m10LRaal1V+ssvfpBueVt+/O8r8ns4kUgkTuLe1lB4WFVV75akqqreXUp56NHrj5L0Slz3rqPXTsV6vdZ4PK6j/TwukZHfeCyio/DD4VAXL16sScdsNmukL5AU0R1gcun79/b21Ov1ahI5nU5rcub2LCbs7e1pb29Pw+FQvV6vrp9gsmjyRGeAX6dzwnZxOiNMFPf39xsnN0jHxM11Ira2Dk9N2N/f15133qnhcKjhcNjoq0nSYrHQZDKpawBYUHAqhImaT9qwSGHybZcEI9GuWcH5IbncVAiStn+KMHaqRGHIax0t6gaJP+fLz4kEl/n7rElgws9ovMUWkk7+ZmoCI+xMsZCaNQQYJY9z00bYPZf+b4oKnm+fQGKHC+eJNRp8rwUj6fiEEn8+OG/RMROdFJ4rpj9Iqh0sRDxSNR7bGPvM16fT6YlUpTifXj/3M7bvOffei/daZKB76Zzjmn4XJ05iPZ3quz7270jlpLj0F1/5JP3pc7//DHqVSFwZH/lT36wnPO+wIvvqrneecW9uaOT3cCKRuKlxrYsytv3ru9VjV0p5lqRnSaprILDQonQcsTQRNzluq5Dv1AETOUfyq6pqRMUlnUhlcLqCHQfb29u1Y8LpEYw8+6fb7dbpFm0pFdHGzzx+SfV4SAxNCFlA0jBhI5lk7YjxeKzZbNYo4GiCZIFgPB5rMpnUR1AeHBw0Uh3KUY0K2/k9Fs81STXt5s51j2vn66RjKzwFB/cvnizBdpki0RZ5NgH0z2w2a8xRJOiRbJMcUxzwmO1a4ev8bwomJKUExS2T3DZRIUbIKWxITVcBj0t1XyyotKUXcH9xDaKo4Xt40kRbOkREFFwIOhfc7+3t7Xp/8XPitYtrEdM6KGxxrphydCU3Q3zPe7RN6LnOcK++iwca3Z99um6xuuvu1tcf9ZLb9dcuPfsB7k0icXV4/B/dfVNVoD+HyO/hRCJxU+DeCgq3l1IecaTEPkKSy3G+S9Kjcd0HSfrLtgaqqnqBpBdI0m233Vb1+/3aGu1UAFZuJ1nd2tqqixNGizlrDUiqo5CSTggIzKdn6oOPYHRknjUcmE8eSRqJDIk4CwGSJLHPvpftmwxFEcFtsg6ApDr1geKJiZnTLiaTSZ3mUFWVxuNxQ1Dg8ZixJoHbiukIJIs8rpOC0NGan7DXkyT6J75vYkyrusfnsUZC7+fEQpLeE5FAsx90gZC48rmMnvN1jimKDxTLuF98H6/lM6Ko4HViu5zfmHLisbiQY3S9tMHz7vmlk6RtvLHvHHsUSfx54rrzPgomMXXFz6YQwr1u5wFTQojobqDAtWkezjmu6XfxhXLbuR/wecLqjW/WbW9881l3I5FoRZ5V84Ahv4cTicRNjXsrKPyKpK+U9Lyj37+M13+mlPKvJT1S0hMk/f6VGut0Otrd3W1EJX0mfRs5j0IDI99+z/Zt2tj9vtMLTPBIYE28hsNhbQdfrVa1yOE+MPIdRQ2SHjsZXGfBP743FlkkKTKptwjS6/Ua4oj/9s9yudT+/n4typg4LpdLTadT7e/v6/Lly9rf39dsNlOn06mLNFpg6Ha7jf4zwksBIRJJ38NaBLEGBom+2+Nvjz/a6ikyeD1IKJkG42dSTPAeaXMOWLxhdJoFBzk2jpdRfs5BFBMoAnh+4pGGUXzgnFC4aOt7JLzRucFUDqcN2dnCFIwIOz0osMSCl+4nTyTh/dFZYJjos/8UF7hH6LZpa5ufJ6f4uJZH7FOcW86j99d1kuZAXNPv4kQikUjcY+T3cCKRuKlxNcdG/qwOi808uJTyLknfrcMvzReXUp4p6R2SvlCSqqp6TSnlxZJeK2kp6RuqqrpimfROp6Nbb71V6/Vak8mkcZyiSa1JqVMTJpNJ43hBkpp4UgIdDibiFhR4ZB1J7NbWVk3YSynq9/uSVBN9pwzwekkNImvyZjHApyvwOEyP3/e7PxYRHBWOOfPOeecpEavVqk5hYJtOX9jf39fBwYH29/frmg7r9boeC+fKr0fhwDUTKN44TcHkz78jCeVxnlx7noqwWCwaooZdF55b33O0N+v5jScJUJyiYOBnsJYA+0wRhWSUzzTobKCYRAdBFCo21YbgEZ3x2d4XnEsKHLG+A/+b9SlM5E2441rFteHaSqrTWvyehRr3y2IA22M6ioUMz6Pn2XNCNwXX7TSCz/5Exwv7ciXw3vOKB+K7OJFIJBKbkd/DiUQicRJXc8rDl25461M3XP8vJP2Le9KJra3DUw78j/nxeNwgTDEf3FitVo1jGBnFjmIDj4Aj0XT7zOF3OgTTIvr9vra2tmqC5aMDeZSj73d/LSQ4cmqC7DG7DyZuHjOPwTya05rsML3ChJoCgAmjBRG/PplMdPny5bqGwmQyaTgm6EggSXN0Okai2Sfn9cd8dR5JSCJMUFAgQfe1THugg4Rjd19JYv0aU0iiNZ8ClNuPkXS6Gwg+z/PkvtC54GeTrHNcrAPASLuJdZwLP5sujFjnIIJz774wbYfrxbFFAcP3x5NG3H/OeWwjphd5nugcadsnbQIO0TYOCn38m64gihZta3oenQoPxHdxIpFIJDYjv4cTiUTiJK51UcZ7hUiQTVgiwZSOrf6skeAifCQ8PEJRapIROwRY6M+FC+fzee2QcFt2AZgQMQLs1IxSSkOUYJ43nQqscs9TK+hEiDUVTD5ZjNLuABI3z59dBB5nFBTiMZExjYFiB8UDppDwPYokrm3hMTHyHVMZJNWF+Rhl99h4LQUFXkMySQGKe4tpJG2pBdwDvI/kflPk2v2MBNX98zOiaOH0g1hAM85B3L/RfUC0FaCk2BDJs9vlsykg0V3AdWfbvpc/RpzvTSQ93sf+RIErCgjs86Z7OXdeVzqK4n10NyQSiUQikUgkEonNOFeCQrR7R6LhIyWZjuAIvEk40w1MEl1fwASjqioNBgMNBoPGqQrT6bQmeSb7Ji/9fr/hGjCWy6Umk8PzyU3UTZDZf4/RY6iqqu4vXRRMaYhoI94WGZh/bpi4+tSG/f39Rv94qgIRBRzpuG4Bo9YxTYNk2XMTiSZdCy7OF632fBbnkteZXPL4v7gusZ9sg4S0bQ7aIu4EnQ/+23BhyjYybaJrESymIPiZFA+iqMC95X0UxQSKPm0/vI5gvQQWBWU6gvvsNKA4t+wrRZH4nDZE0SO6BSzQ+X2uM9eK4lecSzp9vAfZxnlOe0gkEolEIpFIJM4Tzo2gEK3rtKRLqtMOdnd3NZ/Pa4JPO7kJlIsq+kjF+Xyu7e1tTadTrdfrxjGAJli9Xq92IUjHpJCRXAsLTm9gzr4LIvpIRuebczwWNNwGo6cWNFifIRJNOw/cl8lkon6/3yhO6Tn0fe6jj42MVfUjTovEM5LPKC8jv667wLZIiKfTqabTaX2N1yj2gfUOPL+sL2HyaMLJftsZEcUoCguc9zhnkXBvIr90oERsKnS4yWHgNbHIQ9HMpzPElA6uOR0tvj6OO4oJnGu2Y+HLjhPvXfcruip4+oPBNJMoxhBcWwqKbfUPmObCcfBzFMfHtIqYNuL5iKJXTFdJJBKJRCKRSCQS7TgXgoKk2mngYwxJmmibN6nf2dmpj0I8ODhokNxYQG8wGKjf72s6ndYFCieTSX2dizT6xzUMKAIwtcJ9MflztN+nJTjlwcTZpCnWe2AuukmaCbJTBxhljVHzwWDQmEMWzfNv1pKIUVuDLgoSMub1U+Txa073kNRwiNA6zmeYMEeXhWECxzllqoPbZtS6zcZPAh5PmGB0m/e1ORrYbxNZPs99imBRx02ElOkm/E1yTQGgLXLOoz7b6hqwn67lEV0M/s3/rqqqrh9iUYtFS93maXUb+Ow2Ys5UE+6XtjFEwbDtmk3k33uA/fTnhG4gfs9wnJvmNJFIJBKJRCKRSJwzQYE2/GiVpo3Zpxv0er26noJJOiOjJkR2H/R6vZq8ub4Ac/m73W6d1sDaB36+iaLrLdhRYBJosYJRc7/va5nTT7Div+chEjYSdFrS/bcdDIzkMgIdo8WbyC5TGUh4YxTX6+Q18LNJPqPzhOKGdPLYTI85CiDsL8l1LFzJ/nsMfhZrY7S5OLgXCafjeM1Oq0nQFqXfhBgxpwhD4YSiCJ0AXIvVaqV+v98QDU6LtHMOY3qGib33f0yjYRoB53FTeoP7EK+JAldbWonvoSOF6R1RIDutRkNbagTv47gy7SGRSCQSiUQikbgyzo2gYFA4IMlkxDqSf0dRGWEnuez3+xoOh/VRiczJZ2V9tltVVeNIPUmNyLlPS2CO/2w2q4m+UyZMrvf392tS6hoKbtvPdyoGyToJDwkXyb7dHfP5vB4z60nQXRAt5BEWBtyneF+McC+XyzqFIx5BGAmmxxrTF1ywMroA2ogd00jcn7Y6AKwFIKlRANF1F5iyQqLOfcS58O9N5LhtHgm6bEhgTyPSsc5EFHXinrhSRL3NpcD5o5DRdm/sAwl42/z4vjhn3Aeb1pnwM+0Y4vvRxdIG7pMoTLFPm9w7iUQikUgkEolE4iTOlaBgAmgHgAkCi/jN5/PamTAajbS3t1efXtBmzTYh8GkNJK4UFUxqnf4wm81qEmOSZlfCZDLR/v5+oxYAybLdBRQ5WPvA8Lj8jMFg0KgZ4HoE/jH5dluz2aweIwssugglq99HktRGsOJ7V8pftwDCooaO5pM8M/Lr9SXRZzFKkvQ2YsrfseZAFBKi68DFBOOei6kV7lMkk5wXzk1bXYK2yD4RTyY4ra2253mMXi+LAHbXbIqwc32jGGA47YTCWNs8xBMY2GcKelEkoqDg9KboLmkj8h4n25XUEK+YKkJxYZM7p6qqWohru4YnxiQSiUQikUgkEokmzpWgYJJhJ0Gn06nrJJjIT6fT2tptAYDFGRltdJsUFXiaBMmayZkj7SZUvMa1Fy5fvqxLly6dyO0mTJz8Y/Ido8++38Qt5s3HyLnbpvXbKRXr9bp2V3Dsm8hlWzS7LWrOvlEAkNQQe5xSsKltvx7Jnud3U2ScaBMX4ry0jdfjcj/panG7FFj4HveGxxDFAhcv9HydBs8B9+wmcWHTWNznmALBtJzTwHuZUsC1d/HRmL7iPrSlJGwaL08LcZuxVgrThNo+U+x727y431F0cFsUCJkaxT1Px8Kmeg2JRCKRSCQSiUTiEOdOUOA/6mlLd32C6XSqnZ2dOhLrqP1isahTDtoK6DH6LDWr30vNfHNGy9mHWKSQpI0nMjDlwGKHCSdJCvvH51JQoPDAYpPuH0k0hQapWT8gWt1JHmPkP4JWcj7bz/Fz6QjgnMa2IknzGOlQsIgRj+A8LaofiWGE0we8R2jRd78oIEVC6fnz/YT3h+cw7q9N87qpsOGVhJW28UbB6jTEz1p8z+3zWv53dLy4nZhyQHIuqfE5YiHMqxlvW//jWPkanSIULCyG8PMWhZn4/ZFIJBKJRCKRSCRO4twICm0kJVqjJ5NJfZKC3zNhmM1mOjg4qE9icM68BQe6D+L7khqk3e+7wKJt9SbMtMWbzLM/bseCgtMpjDbBw69TTCDZ8+9YKI92+Jjq4X6fFu1lGkUUYDYJAjFVIpK0uIZxjBZfGFEupdREnWtgstc2Rj+Da9xWfNKwE4WpERyX+8dnkYzS6h9dCBQUXCT0NMS5iY6Cq42Mc52YgnA1YLoDCx263ehaiD/x2pgawDSZWEeB6T6xz21jiK6RTWtMMaTtM0bxSmq6TTYJK4lEIpFIJBKJRKId50JQMCmK0WGnNKzXax0cHNQCQLfb1S233FJHsI3FYlFb/31UpHRcxd91Cra3tzUYDBpR+1jPgMUJTcxdKLHf72s+nzeOjaTln7Z+Rv9ZQ6HT6TSItd+LrgjDqR3sF0UHRqhNMF2okVHgSFTdpo/JlJopCL7PYIQ5RrBdU8IiTbSY8/XoZvDfrofgeSTcp7YCiERbTj5TW7xWXIvYL/9er9cn1orvG953XhuvEwWKWCgy1rigYEVHCMm624yihVNymE5xGtqi+3yPotGmaH2sj0E3DcfA693+JkGgDUxT8jPpOCAo/FB84r5pS+vh54npHJnykEgkEolEIpFIbMa5ERRms1lN0E3Mu92u+v1+o0YCiZwJjGssuM5CTEswKej1eo1jJE0eeKJCJFImeuPxuHGc3t7eXk2a/B6t84ZJjIUHafMpDC7oGHPAff1wOGwck+j72Jbbc10F2spZN2AT4YwWevZjtVrV6+Q2eWICbe+cA7pCPLcko/7xUZ52gFTV4UkbJPebakqw/36vrY6ABQ4LCuyH1zCmwtCeHwtKbgL7tCnfn/uUrpe29IWYkkMxzMTa+9MCCAuathH4tj3A9JmYgnOlugwe6yY3QVsKBdMSpOae5/peSYDgnub13k9tr3mPRGEkphMlEolEIpFIJBKJdpwbQcFk2mTVxH84HNaE2US11+vVVnipGXknEXDxNwsJvs7OB1/DyLFJj4+Q9H2LxULz+bwm7n6P0WsWn4tiAcljTGUwufTYOR4TOhNguh58rU97MNGNzgWKCHQWsF32hcf5mYyZJJLwRmLr8ZLgcgynRXtJutscCFHoaHNbcFzxmEW2TyEgRvRJKgkKAIT3ThSRPI/cW95fPAbSbUvN+hTsexQU2kQhz0tbSsgmN8KVRCX2i8JW7HcE6xNwTunWoWDHuYwpEm1uBu477k+C88DaCex3bDfuqdi/RCKRSCQSiUQi0cS5ERRM2HlcnY9wdPTWP/1+vyZljnwzKmsSYEGB5MZExdcxqmkibXHAx1P6WT7KUjoWDJje4D605dzHwoLR6h6PLiQJp5jivpPYmWBTQIhk1EIEiScjsSTt0QnCtIFoHWdBOxM7ig4Wh2xbZ58i0Y1RYc41RYS4pu6LQQJsEs80Az+Pc9yWx08C3CYkxD5yzukwoPvE2ORuoKhwmjU/OhUoIEXyvgnc/x4ThRj2py3VIs4JhQ5eG8cSiXtcjysJChTVokjg/44uD+63tuuju+hKKSOJRCKRSCQSiUTiHAkK+/v7Ojg40GQy0WKxUK/Xa0T9TUrtWnDOv9/rdrsajUY1ifSJDz5j3mkTJgxOLaDd3adIzGYz7e3tNVwIjHKagETxYTAYNK61oBFTAhjppyvA7bJYZHRC+Hck+Z4PixcWKGzvdtssDrlerxsiieG/6eDwa3RBxHmk0OC+eKzT6VSDwaBug6JKJHueV5Jik9NYuyDWa4gpIHR6MPfe7fp9poZwDijkcNyn7eXYz03WefZpE6L7xq9F4WBTX9r+O/Y1Cit0aVAk87pQQPL4YspAnNuY9kGxIL7OvrUVb/R+YBvxGVznNkeHnxvFOenqUjsSiUQikUgkEonEORIUSIJ9osNwOFRVVY2ChCZn/X6/JkGxLoKJmokBo9smFSb7kegwAt/pdNTv9zUcDjUYDDSdTus8f+m4oKFz3weDQe1omEwmmk6nJ6LszOleLBaN1+fzed3mYDBoEEZGbre2turx293RFkWPdR0YffU4q6pqjMmgEOLIuueVP1w/zrlfm8/n2traqsUEHwdJeA7c/9gXjsf9iBFuElyP0USRxzxG94avdX/jM0w42xwbbSCRjuktbe+zTQpUniuC6TNtEf4rCQwR0WlAYSGO0aJZnGP+jqA4EdNFmJ5Csh/FN/aPY7Q4xv7EfRUFDbdjgYSuGtb9oBCR4kIikUgkEolEIrEZ50JQkJqkwUTZJNvCAom3T3Aw6SMBrKqqJhusexCjzCSUkk4QZUZamX4RTxGw+8EpGd1utyasPuKSZJxEhbUWNhWk82+LDTGqGlMs/GO3htuys4EOArfNEwZouedPLAjJGgFtYoCJXCmldktwvUlIXYdCUkOUaHMGxEhzJLSMSFsM8JgiOSUJj3uQjhBeGwk916CNXFPA2HRNFISiCMQ+sw4G+0U3xmn9YZ9iH6KgwNQBk/hI+D1XVVXVe7PtMxUdE6zJENNxotjDe3niRUyL2CSqcK/FueHfHEvbiSKJRCKRSCQSiUTiGFc8E62U8sJSyntLKX+O176nlPL6UsqflVJ+sZRyC977zlLKm0opbyilfMbVdIL/uGcdBEbRDacm2KJOQYGRxm63WxdfjJbxSG4Mk2Ra8qOg4GMnaZlmWoSk2kHAYpAmO7FWhFMGPBYSG/fZ/aVo0kY2Nwkl/m+TJYseFkIo1sR6D22R/9Pei6IMx+/2/QyvYaw/wTHEscVx0Q5PIcTrQIHmNILN9ygmeE8xDWUTSOhj27HfcWwkrvH6tnXzj0Wi6ERpS9O4kuDRdr8/gxaDYgqI+8c19DVRlIrOEH9OPYaY4hB/LDiwgGssdtr2ndH2ueLf3Bs+QpXjOC94IL6LE4lEIrEZ+T2cSCQSJ3E1/1r+MUmfGV77TUkfWVXVR0l6o6TvlKRSykdI+hJJTz665/tLKaezMJ0kuyTLJB/SIYHc39/XeDyuI5Uuntjv9xu1Fky6nCpBMhutzrb+u47CZDLRfD7XarVSp9PR7u6uLly4oL29Pe3s7DSIRiRQy+Wy0Z+trS3N53MdHBzo4OBA4/G4FkU4fhNY/jcjvR4XiTdJI+fQ15iE9nq9hmjDEyyIKC6wXY8xrhv7IR0fPegCmp4H5rpH0thGdiMh9VxHosf8fQsUPKrS6QS8jmP0HiK5jWiLvLftY/fN7cQ1jakKdtywhgbfZ7tcW+8D7vEoKriNNjfCpjWPa+16JD6WtS2NxmNzn6KYQaErrrnH4ntZGyGmPbiP/ox53riXfA1FujYBJLoS4rxRJDlH+DHdz9/FiUQikTgVP6b8Hk4kEokGrpjyUFXVb5VSHhNeeyn+fKWk/+nov58h6eeqqppJemsp5U2SniLpFac9oxxZqTf9492Eijnx8/m8QZp7vZ6m02kd9XSKAAnNbDar77t48WLjBIeDgwMtFouaOFlMMEHZ3t7W3t5efc/+/n5tfefRkSarjKDG6D8JmB0PrD8Qo6l+zzUZIkGNRNwOj+3t7fooSveJRKrb7TaIbBtJdlFLj4259H4vRpeZEmCSzvf5nLY1b3M/+HXPj5/b1meLQO6DC3xSTFoul435s5PF46Kw5dc57xQtvN+81rGIp/vKvey5pa2eR5vyHsL7va3OBMULX3uakECBqE0oKqU0inr6Z1P7m6L5FIui28ifU1/DdI44b6WU2t3jeYxiEtuiUHCaqOLrWdfEf5+nlIcH4rs4kUgkEpuR38OJRCJxEteihsI/kPSio/9+lA6/TI13Hb12KkwOSIak40gi7ccmHT6dgKc88HhCkx1GNU1Uut2u+v1+Hd1lJNn3zOfzRk42n79cLmtyzz7yubRlO5LKKHe/36+LODqCziP5JDVINWsVtKU0RNu/I/UUKXg/ySDHJ51MIzDiNV4L3kPCzag6aylciei2CQ9tTojTYPGDhQ1j1NzPoauALgE6TjyfHgPBOYmFFDnf7gOFkNNIboTXs60uAcUBikZtcx1TQ9gP7re4H1ifIIoRm4QJfkY857w+Ci4s2unffCbnjsdC0uXC7xLv0biX2S7n2mN0f692v50T3Ofv4kQikUjcJ+T3cCKRuOlwnwSFUso/lrSU9NN+qeWyVsZUSnmWpGdJ0sWLFzfmqUdrtaRaJDARJHEleYk1ERiJn81mGg6HteOA0WHezz6YcNoeH63fJGiOdjLPmzZ427xZx4DPZS44I7wkk3ydZMrElg6NmELi/ybB9dwzJYSCRJxfPj/a5Zl+4XXymrW5Dxobpjp54gJ/Xw1IWnu9XuN1uzbouvDc+QhOiwie67gH24r/tTkmNqWItPXX4FoQcQ+QoG8SFOL9MVWEzyaBpsjG/daWttEmELgNilx+P6YxxBSIWAOBYyfZ9/3sT9v3xWl7jde5TxQGrxdB4Vp9Fw80ul/6l0gkEjc68ns4kUjcrLjXgkIp5SslPV3Sp1bH//p/l6RH47IPkvSXbfdXVfUCSS+QpEc96lEVSXa08ptgmYzO5/Palk5iy+j4bDaribFJPQmVHQTz+bx2Cdi5MBgM1O/3TwgRJlTdblfD4bB2MURngPvowosm+L7XbgqmeVgIiPn9LMDIvHY6Kzx3JsOETzmIYod/ez6YUkIhhq4J99/XMdWBwgHdAb6e4gBFEQoUMQre5saI7gH3y21jfzWi9xYVuB/sDKFYRHgepGNRwuvUsp8bZPlqiWgcT5sQ0PYsCyMUvdo+NwRra3ge4njjfvT6W2DxfFGg4lpEYST2h4IAUwy8nynqbZqnmDbBefFa0nHkNWwTd+gaomslnjZxnnEtv4svlNvO/4ATiUTinCG/hxOJxM2MeyUolFI+U9K3S/pbVVWN8davSPqZUsq/lvRISU+Q9PtXao+ExIX8pOMTHWazmQ4ODmo7uVMOdnd3tbe3p9Fo1IicshK8iX11lF9N8u0jHU1uWfBuU7Te/+3oP0kSiz9iriQdR3ydatHr9ep+V1VVF75zn50mYSJrIm4ngN0PkhqEiNb8fr9fp4aYHFlAYf9ogY+k3L/dhp/PSDCvdT0BCgruI4sgRlt7TEPYZImPoKhgUYjugnhcpdfVRNNklv3ifbzXosNpke8onLQJBDGNJbbF9fS+Y70AuzfaxASmA7jPMfXAsGuE7hgLBhYTvM95mgILM55GuttEEro+3FenwfAz55+21A06GuLYrlRE0dfQDRWdG/FYyvOMa/1dnEgkEol7hvweTiQSNzuuKCiUUn5W0tMkPbiU8i5J363DCrZ9Sb959A/uV1ZV9fVVVb2mlPJiSa/Voe3rG6qqumJVMxIPkxgTotlspslkUke5Xd/ArgI7Co76KkmNNAe3bzs1XRB+z8UFXdF+Nps1ItomU9FFQGJI4sbIOKPfm6zZfs8RWwsK0nFRRBIbOyMsRlgkmUwmdZ9NMF1AkSkUFA5IZD3/0fVBsl9KqYl42CeNNjgvLiLYRsBJLPmMtnQO9yfWEfB78fjBSF65LkwTcJE/9oX3RFu/2+Ba8xhMPsdCVRRSOG9c2/g3xRz3x/uGz2e/OJ9R/OG6RbIcLf6+N/bH+4nzHeenTWTY5Drw9bGd2J9N+4IOHp52sek6CgrcIxQGKVqcFzwQ38WJRCKR2Iz8Hk4kEomTuJpTHr605eUfOeX6fyHpX9yTTkT7Om32rndgkWG5XGoymWixWKjX6zXs6/7HPwsh0vnA4o1+7mKxOGHTH4/HjeMDSepMVp3OEG3TUjPn3++3kZNIeNy2TyOgQOK2bHO3kODn0srOaDCjr0zfiKkGJGHxx23FmgaRQHJ87BdTU0gYSeDjvLiPkSBaUPCeiUTW1/g9CkIxJYGui7gPeT3X3WNyG7EfnCNfG9+LY+U4jViPgeNsi9rH9uKzuNe8PlHQii6QuA/aCD/3UZsAE6P/bX3aJNq0fV6iwEExYdPe5dj4eaVA6H7EudrU97PAA/FdnEgkEonNyO/hRCKROIlrccrDfUYke6yUb9Lv1IXVaqX9/f263kG0/a9WK00mE43H4/r6WATRhGs2m0k6JsisXbBYLE6cBGECapfEfD6vI75OY4gR6nhyQLR1kyjHaCyjp9WRRZ9k2ekEJEVtefHu06bTCdpg4uV0EYoRdiiQENoVwbx5t89xtVnko6jASLrbtTDBIyg9j+6TwXvt+qAo4GsoQHG+Y2FAnzzAeeYxoRaAYjFBk3Y+N4oCkehuEhVYoPM0bHI4WNzgSRV8Jgsw8l636XH4b/fJ/aSQwYKanoc4Nq+Pn9MmJrS5KSgY+dnRhRGdQJxr7qO29B6mNfn6RCKRSCQSiUQi0Y5z8a/lqqo0nU5rMj+fz2ti6gKLJvKz2Uzz+Vy33HJLnTPPnHPa+1mgbTAY1OTA7ZC4Op98uVxqPB5ruVzqlltuUSmlFhRidN2Cgok0SY2vkQ7FhsFgcIJwMlfb8+C+RHI0m81qEuRx+OjK1Wql6XRa12Ag3M/ZbKbxeHxiHI4yM6ec5DEKPbwuEkqDf8fnxTY5bs+F55KnSvDZy+XyBKGPaHM/uB/x9fj3dDqt/9tiBgUFCjtXA7oa6JiI5D9a8/3cSNDZ70iWvR84rk0iBMmyxSkWX6TDJ64jXQvRFROdIOyH14quGn+GLOS09ZNz5fkn2gSZq0F0y3C8LFSaSCQSiUQikUgkTuLcCApOI2AqgXRMSGazWV3jgAUX7VyI5CkSUUkNksRoZayXsFgsNJlMtLOzU6cWsF2TH/bdxFw6jpAz8utaBiSlPCVCUu0GkNQ4YrKqqkZdBQsprP0wn881mUxOiB5+z/Pm1JEY2XV/o9WfY2KE2zBJjHZ/njjAtYnpEm2OBc4194jJKHPfPWd+7/9r7+xC7LrKMPx8yaQz0dSf2ipDW5tEqtArG8QbbW8UbYI2/oBEvAgoiKBgEcFIQHpbRW8tisUi1RbRYm6Eiohe+dPGpE1JY5IaMXZMtF60OGbOVD8v9lon31mzz5k5pPtn5rwPHHLOOj/rXd9e+82sb6+1dh741k2/jwPwTKmn1FKns1waMel7k4gJpLL9cXYDsGYPinL2QJxlk/vYYDAYSTTEBFrsXzFuOZYx+VUuXYgJozJJNm5/i3GzBuLyg6yhXM4RZ/DEZRrlDId8nMolD+Uxn3Q8Ss3TJiiEEEIIIYSYJXqRUMiDhzz4XV1dHc4KgNFlDysrK8PXq6urrKysDBMKccCRv58TBjlRkAcfeQlEvqtEHhjnhEbWFQdredCS79YwPz8/cnW2HJzHQUm80p0H4Hl3+3y1O+7en7WX097h6tXU+L2ccIhXigeDwch75YC0bk16fD+3NScR4hKOeDeAGJ9YR7waH5d35PfKmQllMijXHweM8S4T8Tvl8pA6PbGuXE+5B0BJ/r3yONT9Rv7t9ZIJ8f3Yv+pmK8T25X4Tv1sO1qPmcsZOfp6TYXEWRG5f1h83Hc3ERFk8jnXJm6ilnM0Rdce9HCb1xzJBkPtvmTCK8S2TgLF9pda6JRcbTUQIIYQQQggxq/QioQBXr/THgXHc/G4wGLC8vDy81WOe4n/lypVhWU4kzM3NsbCwMLxjxM6dO1leXh5e0QaGd4fI+yrk/QLylfyFhYXh++VdCubm5ti1a9fIdPs4NToOmGLCIbcnDsrj2vucJMmD9YWFhTXrxeN+CnGQmJMxeep6fi9vTlmu4S83v4Srg7941Tm3K85QyG3OA+s4ayHuVbBt27ZhIqPuinLWnX837n2Q25vrKTeEjHs6lIO+WF9MeETi3gGxLXnAXbffRNwPIc6iibcsHacpaivbVy5VyNQtI6hbxjBuAB5jlTcfzcRzq7wSH2cMxbbv2LFjTdvqEjkxEVcmJWKiLSaq8rHIx2tcm8plF2UyoW5GRD6/Y3Ilf2ZS8qcuWSOEEEIIIYS4im1kanbjIsz+Afwb+GfHUm6UBmmQBmkouM3db+qo7lYxs5eBMx3LmPX+Jg3SIA1rmSUf1t/E0iAN0tBXDbVe3IuEAoCZPenu75IGaZAGaeijhlmgD3GWBmmQBmmYdfoQa2mQBmmQho2i+bxCCCGEEEIIIYSYGiUUhBBCCCGEEEIIMTV9Sih8p2sBSENGGiqkoUIaZoc+xFkaKqShQhoqpGG26EOspaFCGiqkoUIaaujNHgpCCCGEEEIIIYTYPPRphoIQQgghhBBCCCE2CZ0nFMzsHjM7Y2bnzOxIS3Xeama/MrPTZvasmX0xld9vZn8zsxPpcaBhHRfM7JlU15Op7AYz+4WZnU3/vrHB+t8R2nrCzF4ys/uajoOZPWRml83sVCgb224z+2rqH2fM7IMNaviGmT1nZk+b2eNm9oZUvtvM/hPi8WCDGsbGvsU4PBbqv2BmJ1J5U3EYdz622idmHXmxvDiVyYuZPS+WD/cD+bB8OJXJh5k9H06/uzm92N07ewDbgfPAXuA64CRwRwv1LgL70vPrgT8BdwD3A19usf0XgBuLsq8DR9LzI8ADLR6LvwO3NR0H4G5gH3BqvXan43ISmAf2pP6yvSENHwDm0vMHgobd8XMNx6E29m3GoXj/m8DXGo7DuPOx1T4xyw95sbx4vXbLi4flW9KL5cPdP+TD8uH12i0fHpZvSR9Ov7spvbjrGQrvBs65+/PuPgAeBQ42Xam7L7n78fT8ZeA0cHPT9W6Qg8DD6fnDwEdaqvd9wHl3/0vTFbn7b4B/FcXj2n0QeNTdV9z9z8A5qn7zqmtw9yfc/ZX08rfALddaz7QaJtBaHDJmZsAngB9daz3raBh3PrbaJ2YcefFa5MXy4jq2pBfLh3uBfHgt8mH5cB1b0oeThk3pxV0nFG4G/hpeX6RlEzOz3cCdwO9S0RfS9J6HmpxalXDgCTN7ysw+m8re4u5LUHUq4M0Na8gcYvQkaTMOML7dXfWRTwM/D6/3mNkfzezXZnZXw3XXxb6LONwFXHL3s6Gs0TgU52Pf+sRWpvOYyouHyItHkRe37MXy4c7oPKby4SHy4VHkw/qbeCJdJxSspqy1206Y2S7gJ8B97v4S8G3gbcA7gSWqqS1N8h533wfsBz5vZnc3XF8tZnYdcC/w41TUdhwm0XofMbOjwCvAI6loCXiru98JfAn4oZm9rqHqx8W+i3Plk4z+h9poHGrOx7EfrSnT7WquDXmxvHg95MVJVs1nt4wXy4c7RT4sH14P+XCSVfPZLePDsPm8uOuEwkXg1vD6FuCFNio2sx1UB+oRd/8pgLtfcvf/uvv/gO/S8JQRd38h/XsZeDzVd8nMFpPGReBykxoS+4Hj7n4p6Wk1Dolx7W61j5jZYeBDwKfcq8VJaRrRi+n5U1Trk97eRP0TYt92HOaAjwGPBW2NxaHufKQnfWJGkBcjL0704ryTF1e06cXy4c6RDyMfTvTivJMPV+hv4vXpOqHwB+B2M9uTMoKHgGNNV5rWwXwPOO3u3wrli+FjHwVOld99FTW81syuz8+pNj85RdX+w+ljh4GfNaUhMJJ1azMOgXHtPgYcMrN5M9sD3A78vgkBZnYP8BXgXndfDuU3mdn29Hxv0vB8QxrGxb61OCTeDzzn7heDtkbiMO58pAd9YoaQFyMvTnR+3smLR2jFi+XDvUA+jHw40fl5Jx8eQX8Tr4e3vAtk+QAOUO1geR442lKd76WaDvI0cCI9DgA/AJ5J5ceAxQY17KXalfMk8GxuO/Am4JfA2fTvDQ3H4jXAi8DrQ1mjcaAy6iVglSqz9plJ7QaOpv5xBtjfoIZzVOuQcp94MH324+kYnQSOAx9uUMPY2LcVh1T+feBzxWebisO487HVPjHrD3mxvFhePLteLB/ux0M+LB+WD8+uD6ff3ZRebEmIEEIIIYQQQgghxIbpesmDEEIIIYQQQgghNiFKKAghhBBCCCGEEGJqlFAQQgghhBBCCCHE1CihIIQQQgghhBBCiKlRQkEIIYQQQgghhBBTo4SCEEIIIYQQQgghpkYJBSGEEEIIIYQQQkyNEgpCCCGEEEIIIYSYmv8DhLbC9dWZs+kAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 0 424466\n", + " Min thresh = 1000\n", + " Sliding\n", + "\n", + "\n", + " Winner = Sliding\n", + "\n", + "\n", + "035ns_image_1394469579519_clean_ClassN_11-139.roi.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADYCAYAAABberBAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAD5AElEQVR4nOz9eZRt+37dhc1Vu1177a6qzjm3e40kI9vYUWzLxm0gSmwIGLDAuBGERNgCmTACDmls2QkJ8AcRzQCbwUhAMY0SPOIOEtE4GBBRgmNbgLAZxhZGtvWa252mqna3dldVe+WPOp9vzbVOvXffvffcd+u8+5tj1LinqvZe69etfWvO7/c7v1lVVUpISEhISEhISEhISEhISEj4MDj6tAeQkJCQkJCQkJCQkJCQkJDw6iEJCgkJCQkJCQkJCQkJCQkJCR8aSVBISEhISEhISEhISEhISEj40EiCQkJCQkJCQkJCQkJCQkJCwodGEhQSEhISEhISEhISEhISEhI+NJKgkJCQkJCQkJCQkJCQkJCQ8KGRBIWEbzqyLPsLWZZ9z6c9joSEhISEW2RZ9qUsy37dN/jaKsuyv+Yj3ucjvzchISEhISHhfiEJCgnfdFRV9QurqvqJT3scXw9Zln1PlmWHLMtW9vX9n/a4EhISEr6VkWXZv5Fl2b7x2dv6tMeVkJCQcJ/wsoXZD7pe+rs44euh/WkPICHhHuPdqqo+92kPIiEhIeEzhn+mqqr/3ac9iISEhISEGtLfxQl3ImUoJHzT4Wm1WZb941mW/dEsy/7NLMuWWZb9+SzLfm6WZb8ny7InWZZ9Ncuyv8ne+9uyLPvp56/9q1mW/Y7GtX9XlmXvZVn2bpZlf78rrlmW9bIs++eyLPtKlmWPsyz7l7Msy7+5s09ISEi4/8iy7JdnWfansyybPf9M/ZeyLOs2Xvbrn38OP8uy7J/NsuzI3v/bn39WX2RZ9ieyLPviN3kKCQkJCfcaWZb9tVmW/cTzz9m/kGXZb7Df/USWZX+/ff/3ZVn2J5//+//7/Mf/1fNMgd/6PIPg7SzLfu/zz+QvZVn2P/6o1/sk553wrYckKCTcB/ztkv5vko4l/VlJf0I3Z/MtSf+kpH/FXvtE0t8maSzpt0n6F7Is+25JyrLsb5b0v5T06yT9NZL++437/NOSfq6kX/z8929J+t9/nXE9ei48/GyWZf9ClmXFx5hjQkJCwquEa0n/qKQHkn6VpF8r6R9qvObvlPTLJH23pO+V9NslKcuyv0PS75X0GyU9lPSfSvq/f4h7/0NZlp1nWfZTWZb9XR9jDgkJCQn3ElmWdST9u5L+Q0mPJP3Dkv5glmU/74PeW1XV3/D8n7+oqqphVVV/+Pn3r+vmM/stSd8v6Uc+5vWaSH8XJ9yJJCgk3Af8p1VV/Ymqqq4k/VHd/AH6w1VVXUr6Q5K+LcuyqSRVVfXvV1X1V6ob/H9080H81z+/zm+R9K9XVfUXqqpaS/onuEGWZZmkf0DSP1pV1XlVVUtJ/5Sk7/saY/pvdCM8vCHpfyjpl0r651/mpBMSEhLuK6qq+qmqqv5MVVVXVVV9STfC7gsi7fPP069I+n2S/u7nP/8dkv6PVVX99PPP9X9K0i/+BrMU/kVJ36mbP7D/MUn/RpZlv+bjzyghISHhXuFXShrq5u/dfVVV/4mkf0+3n6MfFf9YVVW7538j//u6+dv4ZSD9XZzwNZEEhYT7gMf2742kZ1VVXdv30s2HrrIs+1uyLPszz6NXM0m/XjdqrCS9Kemrdi3/90NJA0k/9Ty1bCbpP3j+8xdQVdX7VVX9xaqqDlVV/ayk3yXpN33UCSYkJCS8SnheevbvZVn2fpZlC92IAg8aL/PP2C/r5jNYkr4o6ffbZ+25pEw3UbOvi6qq/suqqs6eCxl/XNIf1E2mQ0JCQsK3Et6U9NWqqg72sy/rG/ic/Dq4qKqqbFzvza/14g+D9HdxwtdDEhQSXhlkWdaT9G9J+uckvVZV1VTSH9fNH6qS9J4kN4v5vP37mW7EiV9YVdX0+dekqqrhN3j7yu6TkJCQ8K2O/7NuIlLfWVXVWDclDM3PQP+M/YKkd5//+6uSfod91k6rqsqrqvpTH2Ec6bM3ISHhWxHvSvq8e8/o5nP0nef/LnUTCAOvfwPXPG6UIfjn8ke53tdD+mxOCCRBIeFVQldST9JTSVdZlv0tkv4m+/0fkfTbnpvcDGT+CM8V4P+LbjwXHklSlmVvZVn2P7rrRs/Nbb6Q3eDzkn5Y0o99IrNKSEhIuH8YSVpIWmVZ9vMl/c/ueM3/Jsuy4+efkb9TEnW3/7Kk35Nl2S+UpCzLJlmW/eZv5KZZlv2mLMuGWZYdPTfk/Xsl/TsfdzIJCQkJ9ww/qRuS/7uyLOtkWfY9uvEU+0PPf//nJP3GLMsGz83Ff6Dx/seSvuOO6/4TWZZ1syz763XjOfZHP+b1JKW/ixO+PpKgkPDK4LnvwT+iG+HgQtLfI/tDs6qq/5du6m//35L+sqQ//fxXu+f//d3Pf/5nnqfw/seSvpZZzXc/f38p6U9J+q+f3zshISHhs4D/tW4+Y5e6EWPvMun6MUk/pZs/VP99Sf+qJFVV9f/QjQnuH3r+WftfS/pbvsH7/k7dROhmkv5ZSf9AVVU/8RHnkJCQkHAvUVXVXtJv0M1n4zNJ/ydJ/9Oqqv6b5y/5FyTtdUP0f1Q35V+Of1zSjz4vLcMn4X3d/H387vPX/4Mf83qO9HdxwtdEVlXVpz2GhIRPBFmW/bW6+cDrPTcGS0hISEhISEhISPiWwvMMh3+zqqrPfcBLExJeOlKGQsK3FLIs+zufp3od6yZC9u8mMSEhISEhISEhISEhIeHlIwkKCd9q+B268Vj4K7rpo35X3W9CQkJCQkJCQkJCQkLCx8QnJihkWfY3Z1n2l7Is+8tZlv3QJ3WfhARHVVV/8/PuDSdVVf2dVVW992mPKSHh00L6HE5ISEj49JE+ixM+aVRV9ROp3CHh08In4qGQZVlL0n8r6W+U9Lak/1zS311V1V986TdLSEhISHgB6XM4ISEh4dNH+ixOSEj4VscnlaHwyyX95aqq/upzF9M/JOl7P6F7JSQkJCS8iPQ5nJCQkPDpI30WJyQkfEuj/Qld9y1JX7Xv35b0K77Wi/M8r/I81+FwUDNjoqoqZVmmLMvUarXUbrfVbrfj50dHR2q1Wrq6utL19XXtS5KyLFOn01G/31en01Gr1VKr1VJVVTocDvF1eXmpq6ur+P76+jruwX2zLItxcb8sy9Rut5XnuTqdTrzGr3N9fa3Ly0sdDod4/9HRkaqq0tXVVXwxl3a7HWNkPbIsi/XxL9aG+/q8qqpSu93W0dFRbey8jvtzD8bk1261Wi/MycF92Ivm6zqdTvz8+vo65smYWCPAdZhTVVW6vr6OnzX3rqoqtVqtO8/VXevEe30MjMPXj7H4+/xsVlX1wjib9/Rx+v2a6+b7xzX87N+1/7ynuZbN8+XPVHMezf+yT6DVatXGfNd771prH6PPwa/vr/t68N/7OPz7r/V7ftZ8XfMMf637gaurq2dVVT38ugO9n/hQn8OS1BoW1Re+LdOT3Uitv7z7ei9NSEhI+KZhq1L7apd98CvvJT7UZ3H6HE5ISLivWOrizr+JPylB4a4P/dpf6lmW/aCkH5Sk6XSq7/u+79PFxYVWq1UQTyeqWZYpz3NNp1N94QtfCGGh1WppPB6r3W7r4uJCT58+1cXFhZ49e6btdqujoyMdHx/ri1/8ot566y299tprOjk50dHRka6urrTb7bRcLvXuu+/q2bNnWiwWWq1Wury81G5380He7XZ1fHysPM/V7XbVarW0XC51dnamLMs0Go30Xd/1XXrzzTeV57larZa2262Wy6VWq5Xm87neffddLRaLECoOh4P6/b62261Wq5UeP36s9XqtyWSi0Wik6XSqTqdTW4P9fq/9fl8TIQ6Hg1qtljqdjnq9XogX2+1Wm81G3W5Xg8FAeZ6r3b7Zbu6/2+20WCy02Wx0dXUV4ouLH91uV/1+P9673+9DBOA+V1dXarfb6vf7KopCZVlqu91qu92qKApNp1O1221dX1/ryZMn2u/36vf76vf7kqTtdqvLy0tdX1/HXPr9vnq9niRpPp/HPU5PT5XnudbrtcqyVFmWMUaEhcvLSx0dHQWZX6/XQbzb7XacrXa7HfdiX66urmp7z7xc/EEA6Xa76na7ITZdXl6GAMI1ttutyrLU4XDQaDSKefE79rfX69WEkSzLYpyHwyHGfXl5Gffp9Xrq9/sxf8aA0MV+7fd7XV5eqtfrvSBk3SV6QPzb7baKolCn0wlh6nA41M4e54T/7na72rWd/LOWWZbFM77b7WLtm4KDpBCTEAJZF+7n4+U+TWEFIdHXhGs0xR/OINfKskzvvffel+/4PHsV8IGfw1L9s7jfmeit7/zf6jtmlzr6K3/2kx5fQkJCwjeEn6x+/NMewsfBh/qbOH0OJyQk3Ff8x9Ufu/Nv4k9KUHhb0uft+89JetdfUFXVj0j6EUn64he/WE2n0yCokoJkSLckYb/fqyxLrddrHR8fB0m4vr7WZDLR1dVVEFkI8OXlpcqy1Pn5uYbDoQaDgfr9vgaDQVzbswI8mkomBPeGjEGwIN/b7Vbz+VzHx8e1LAi+uPb19bX2+72ur69rpKfb7QZJ3m63arVa6vV6tQhvMwrvZMgzJSTF+yFNl5eXMWaPUrtYAckEkMf9fh/rT8T6+f7ViBz3kaRerxfXQ9hA0Oj3+0FwJWkwGMQ6c10neIwbklqWZZDvbrcbBJY18DH5+vt69/v9mKtnSLCGjB3SC9kmO8IzKiDV3Ofq6kqtVqv2s06nEyLL0dFRCBEuDHEOnDzzHHAPxlZVlfb7fe3+19fXkQ0C6ec8Hx0dxdnjXDUzKzgDDp4dxJ9utxuvZY6+V/48VVUVwodfl3XhLLkg4fvHNT3rwJ+DZhaRv6f5ueFn+q4smrtwV+bIK4gP/ByW6p/F4+ykyn/sP/vmjC4hISHhs4EP9Tdx+hxOSEh41fBJCQr/uaTvzLLs2yW9I+n7JP09X+vFrVZLJycn2u/3Wq1WWq/XNeLAH/YQyouLCx0fHwdBhniOx+OISPd6PW02G+33e63Xa81mMw2Hw4jqEs2H4HhJhKSIYAPINUSm2+2q0+nEmN57770XBIVOp1MTHyCCu91OR0dHQfQlKc/zGNN6vY6sAEgPogRjaxI1ouJeGoBIQbScjABIsQsICDPMzYkX69jpdOJ3fHnGBESWEpCqqjSfz1WWpSSpKAqNRiPt9/vIbPDsB0k1Is/+kiGw2+20Wq1i//r9vjabTYhIjI9xM8ZutxsEnIh1p9OpZVpwL0QF9oUz4qUjHp3ni3IXsgQQFxBR1uu1NpuNpBvhYDgc6nA4aLvdxplwsYrngrlcXV1FNgTj4nfNyLoTdea12+1CFOMenGfu5eSce3AfMoI4K/zXSbyPwTNBnLhz5hCE+B2vZR29HMczElwg8iyO5jPhwhllNlmWRYYRYyYzh/e4ePYtICh8qM/hhISEhIRPBOmzOCEh4Vsan4igUFXVVZZl/3NJf0JSS9K/VlXVX/har8+yTOPxOMjbu+++G9H/3W4Xf/xDnM7OznR6eqp2u63hcBhkaDqdajKZaL1ea71ex7WJkr/33nva7XZBjPI8D1IyGAw0nU51dXWli4uLINAQKQgmY2pGa2ezmb70pS9pv9/rzTffVFEUQWCI7rZaLV1eXsbY8jwPgpVlmY6Pj1WWpS4vLzWfz2tR43a7HdF8r/dvRrQ9Usz4qqoKwk16v0fZeT3jc58DJ3UQPsQW5nVxcRHCxWaz0Xg8VlEUQZopYzkcDhoOhyqKQpK02Wx0fn6ufr8f82Be19fX2u12IRKwDrvdLrJN8jzX6empZrOZdrtdRMTd74LSACf/vAZyetdaOKlHGOD13W43MmkcRN0RjshyOTo60nA4jNKOxWIR64cwcn5+HiKLdCO+cO46nY5Wq1Vkr1Ai0cwK2O/3cb/BYKD1eh2kutPphJBDyQnnj725y4OAs8N1uG/zNZxFLwvhDJGdwzlyIZB17nQ6Ie64CJfnucqyDNGF80C2BvvezDZwMYDsDPaVtT86Ooo9cb8QzyD6Wv4crwI+7OdwQkJCQsLLR/osTkhI+FbHJ5WhoKqq/rikP/4Nvlb9fl+j0Shqy5fLZZCR7XYbhOT6+lplWers7Ey9Xk9FUdQis71eTz/n5/wcrdfrGlm6vr7WZrPRxcWFfvZnf1atVkuj0SgIJUSnKAo9evRIX/3qV4OskL0Amb+6ugpRQFIQ8dlsFmTp85//fBDKXq+n6XSqx48f11LSpbqRHNFjSZGpwNwg+aT7t9vt8AZwUuaZBU0yB1njd5BP7g88c4MxQhY3m02sA1HmyWSibrer1WqlxWKhw+Gg8Xis0Wik09PTyO5YrVZBCLkH++QE3u+92Ww0GAxeyACAsOOtkWVZZEtcX1/XPDaOjo6U53nNeNO9OTz1388k60gk330Y2BMXMJxAOyg1cO+C9XpdI7eDwUDL5VL7/b52TX+NE/vmWBGvvEQDko5gQkaNZ5L4+WL9OZOeZUB2BWsLvPSA+7j/AevrYlWzxANwvllj3z8yPFarVWQauXDU9I5gHL5WZIHkeR73YpxeYsX5bpYBvYr4MJ/DCQkJCQmfDNJncUJCwrcyPjFB4cMCAkRaPCIC9d/SrW8A5HS5XGoymWgwGNTIwOnpqR49ehQEhpp96vxns5mePXsWxoiQIVLXR6ORRqOR5vN5EDwixZD2ZoQaAWCxWKjb7Wo0Gmk8HofRYZ7nGo1GWiwWQRw9ouxR8matPiLEZrMJssU4vI7ciS0RYL+2ew2wnndlNHhtPL/jdWQBsNaIClyPKDjEGqNGT+9HZJEUnhKSQkzxzgJkKkB0m2nyeAW43wVwf4Bmbb7X8vvZ8vPoxo5eU+9+CYhREG1+j1cB42xmuXAmKY0piiLOBOeU9XUvCO/KARg7YyYi78KG+2X4+3xOfpb8DCFCeHaPiwpc/y7y7R063KuDtUUw8NISfsacMXKUpMViEYaZvhc+p7v2E3D+KE3qdruxHy7yeZeMhISEhISEhISEhIS7cW8EBYhunucqikLL5TKi6hBWSDZmccvlUovFQg8ePIjfS9JoNNJbb70Vhonb7VaLxaLWBeD999+P1xJ95/eDwUAnJydBgMuyDE8CRAV8BZxw0LEBQuntKjudjh48eBDj3mw2NTKPHwFkitICJ/ZlWYYAQVeH1WoVRIioLqIDNe1EkekS4BF2xuDeC/47Tx0n/Z+fkYLPPCWF2LNYLHR1daW33npLRVHU9q3b7cb6sGYQ2SbpraoqPDEgmxBzxulZAWQw+HlwgiypVkbDzyHTvIcyC17jJQH4MnB/SCqih6fUsyaICl66g3molx94en/TKNTFDzdlZF+b3ShcHHAvBMbl4hKCgmdi8LOmuOPr6aUxjAe4L4dnTDQNFV248ffyRSZDlmXhmcFrB4NBLdOBZ9KFoCY8u4Wz634LzfsnJCQkJCQkJCQkJNyNeyEoQDzIIphMJrq8vNTZ2VlEp/EgaLfbYcxILflrr72mwWBQc7d/6623tNlswl1/s9kEaciyTOv1Wk+ePNFqtdJgMAgCR8eFoih0enqqVquls7MzzWYztVotHR8fazqdajqdajabhecBEU9qsklbPz09jXr/wWCg09NT7ff7KA1gbqTsU8/N9SCOzL8sS1VVpZOTEz18+FBVVaksS202m3ifZ1JQR+9EzgklBFJStDOETDYzANgr6TbSz9wRODxFnXaYk8lEeZ7rcDjo6dOnca3RaKQHDx5E9gJklft56jkCDGUpZANApp3gIqJ4pN/NGDkHzJ+1vcvsEkHBO0EAztt+v49yA+5/dHQUhpOdTkePHz+ObBfv4IAoMxgMonyHlpiUOHiUn7UjS4bzUVVVeAtgQumiBMaQ/gy4SSf77WadXAuxi5aVnJdm9wz2qll2gMBzOBwic8PFiaZQwt66Sap0053j9PQ0PE6Wy6UOh4MGg0FNRPNsDelWHHODTkwu8zyPDAg+W/z9Lm4lJCQkJCQkJCQkJNRxLwQF6ba+e7PZRIR/OBxqv9/r/Pw8SA/GhBgBPn78WK+//rqOj4/DFHCz2Wgymejzn/+8Wq1WtBZcrVZB6iA1mLX5fyl9GA6HQRDfeecdXVxcBLGcTCYReffIP8QPnwf3LiC1fTqd6uTkJMouIFrUyRNdphMEhNYN/2azmR48eKDpdBqmkLvdLjoq3BV5ZayQJ67npnze/SLLMq1Wq6hPh+i7Az7eFNfX1xFpn0wmYSSIzwPkkDlKN2SzKAqNx+Na1of7QPiaUvZxOBw0Go2CDLK/0m27T8++aGaCUF7AujRr+XkPa+e1+g4IN3vMNZqlEa1WK/aJjJmmYSCtJJkr+8J+eVYGzwLtLzkv2+02RB0EHCf5XqZBtoQbESKKIKh4l4put6vNZhMCCnvjGTEubvga+Twpd/FyCl+nsixf6ATRzAyZTCYqy1Kr1UplWdbWx30xPOvGjV3xEUGQOT09De8GhA7mkQSFhISEhISEhISEhK+NeyEoQNo86gxJ6ff7tUg9ZmqDwSBSxJ89e6bXX389as23260Gg0FENF977bUgoh6BhrCRck2WxOXlZYgJeZ5LkmazWWQ84KLPOEjlh5y6oeBqtQoSK91kGhRFoclkotVqVes6QKtFyKR7HTSvjVcB3R8g9hA+J6kIHggDRJabvgJS3dgRQQORA0IIQXWfB0khSBD5lvQCQez1emHEuN1uo/2mZ44wXsbgpRYQaKLHvV5PeZ7XMkOaJQ4Oz2Dwtcb00cFrIN2+Tl6W0hRrmmSWPcLTg2vxXy8v4cyTvcDecy3G4Kaabnjo7R+9FKG5Hu7R4KT7ro4MvtZ+Xrwdo3SbseD+BU3vBO4LgWf9GQtZMu7Z4Jkvvjd4HzSNLFlXBAEEBC+r8HuXZRnj4XlnDM0OIAkJCQkJCQkJCQkJt7g3ggK10p1OJ1KZ3YPAOz0MBgONx2Ot12ttt1s9e/ZMFxcXUZu/Xq/j38PhUG+++abm83kQN4i8kzVq74k0V1Wl4XAYkfXpdBok7+zsTMfHxxElJ7MCkz1EEFpEekkB0ePRaBTReoikEx+6SCB2uCs/RHG1WmkymcQaXVxcROkA94GkQeClWzM+b3Po9eaICkS0IcxOiIlqN/0H3PCOFHTeJyk6PLiHAOIMhBRfCKLg3mGjqqqIIEuKNpTc39PomZen+bsRI3Nj3yCkENHme3y+Lig4+WRtvESEORIRX6/XNaLqqfqeMcD42H9H08CQ63k2iQtSnjXA9VhXF0Eg3Lye75mPmzRKdR8GPBI8y8Eza46OjmotV3k9+8RZZR6Ye/qZ8mwV717ytcQfN+zkLDIf3kuZA9023NgymTImJCQkJCQkJCQkfG3cC0GB6He/39d0OtVisQgCgp/BarWKNo6DwSBKH2if+JWvfCVEiaqqNJvNNB6PI0vhjTfeCNIBifR0csgFtedXV1fa7XbRdeLNN99UlmU6Pz/XbDbTO++8o8997nMaDAY6Pj7WZrOJ6Pp+v9dwOJR02/0BgQSiOx6Pw4eBKGu/36852tOiEbGDLg+IBZChPM+V57mm02mY+lFjPhwO1W63NRqNIqPD68mpKXfiBFlGkOh2uyrLMkQZxuCp6ESUd7tdpMj3+30dHx9rsVjEehMBxlwPwYXsCwgdAs1qtdJ0Og3BgcwMMh+IYA+HQ/X7/TC89CwLqV7fz71c7CDi7aQV4LMA0fQsGspYuI63TqQjBaSYNqWtVkvvv/9+jJ/sEkk1PwrECjIVIMzMabvdxuun02ntXLsY4vsK0XchhL1yMH/OBpknlBB5eQP3at6P+fCcSbcdLrIsC1GNdeM+ni2CpwfPhnd04H7L5TIEgDzPY03ZU84XAqVnzLRardqz2+l0NB6P1e12wzA0ISEhISEhISEhIeFu3BtB4fz8XOPxWIPBQNPpVOfn50HGIKiQq7OzM52ensbPicrP53P1+3298cYbtVaJCBXr9TqimRBvCAfCwWaz0W63C9NEIqEnJyd69OhRRMoXi0UYDg6HQ41GozB7W6/X0S6RMSBSeDYAafC8BrLr0X+IVa/XC5M+CBxkDdJFdLfdbgexpKyg1WppOBwGeSZiS4o5ZQ3SLVHzTAVPhXcDRPcngPBDVCWFSMBa8zPq6MnioIaf0g+MHREQIJPj8Tj2b7fb6cmTJzo+PtZkMlG329VwOHwh5d6NJL1FJZFvzoWkEH7c5Z9sCifNXAvBhbIA78DAPY+OjiLbBbjpohtIArpEUHIAsff2ii5wIAp4Vgnz53xB9t2cEFGlmdHhRpCIcH5GPXPGwTlg/ckQIHOCNUYMm0wm8frdbqeqqmJvMJ7kbF5dXWk4HNY6evA8kl3kBqmeyUC5jhtRco1erxci3MXFhY6PjyOrJCEhISEhISEhISHha+NeCArX19eaz+fxBz8p/KTGdzqdGokhsi0pvBKqqoqWjCcnJ2q32+GbkGWZiqJQURQaDAZarVZB7iAhEBlJ0YUBgiNJRVGEIRyR/vl8HoSOcUCmuSbwKKy3zGNuvA8SSXQbEttM6ZZUM9lrEl4XVHitdBsx9hpzMj28xh2i5inxZAw0U+TdD4CxemQYcaJZLgAgxqyZt6L0kgvWhZ+TsXJxcVHLUoAcsn5e1sEcEW6Yv/+OffFuDBByj/JLt+IL82APvWQAEcvT8elK4m0OXURinbwFpZNyqd7qkQyXZhmEj9WzFlhnLwVwj4Kmjwfr4K0x3fTSz4ELEb4+nGnmyt565wc3auScII6t1+sQo1gb6VZ84bz7OCj34bpkljBu9s3Lc/BgwSslISEhISEhISEhIeFu3CtBgQgzaewQiV6vFynL0g3hh9h2Op0waCTNvyzLiFRDTlxQ8Hr5LMsiwwFCKinS9yFVZVlqOp0GwXj27JmePn0aBGUwGCjP87geY4dcuZjgtdyQJu5FpBtBxQmdG+45aWp2b+C6zN+N/JxEuvs/GRAuKEBOyVQg44FUcYhi06zQ083dmJC5IDo0jQMhfGQo9Pt9XV5ehtiCR0O/34/3bzYbzWYzjUajMGjE3NIFChdY6CTBWiGmeDS+aXjoawZYY193hCmv62d/WE+yMBATILzsN/dk3b0LBWvn58Ej8M2OFS7+eOYEmQZOtpvGlD4m9yFoloXwfm+t6caXvD/P8+iiwDOw2+1CVMNTxPeaciQyVThflEZ41oEbL/oZ5TxyHQQIz7Bh//BD8e4WCQkJCQkJCQkJCQl3414ICvv9Xu+//76kG5L08OHDiEJDYGlJCIHEmA+Cg/fAdrvVe++9py984QvRHWCxWESEezKZ6NmzZ1qv10G0SP/ebrfK81zHx8e6vr7Ws2fP4ufr9Tqi5nme6/Of/7y2260Wi4XefffdKKsgW8L9CqiHhyx5NwmIu7f5g8RDyCFW0q3pnpdOkC4O0fI0d+m2zh00PQK4nxNZyCH/bbVamkwmOjo6ChM7CB3lHKyx3/9wOKgoipgna9OM7CO0QPoofxgOh0Gi+Tk17h5Vfvr0qS4vL/Xo0aMo/SBdHmLJmnk03kWFZuQcQu8CgWeNNMG6kkbPdbwsBeI8GAxUlmUIF+5hwX1Yd84A+0NpDe9FJMGHgevjQwHcTBFCzRqyfz4HzpufHV7P69wnolnWgFDj9wLeOQSzUMQ6TDmvr681GAyC1F9dXWm5XEYJDL9jv3kN8+Rc8TlABsr19bXyPA9fDs4kc0KYvLq60ng8fmGfExISEhISEhISEhJucC8Ehevra73zzjtB9Hq9XmQlDAYDLZdLjUajSO1fLBaReUAttkeIy7LUkydPNJlMVBRFlC5APh48eBAmj5B1TP4g1Kenp2q1WirLMr64B9kOr732miTp4uJCb7/9djjFIyCQpr3f74OUeoYCRKpZlw/x9Mg86+JCi6d3dzqdSPX3kgW/phvmeeSaqLmTYMg7JBtSjqkiBJsSCi8Z8FaD0q2w0Sx9gOwyf8oqiLjz82ZqP+uDyeFsNotyjG63q4cPH8Z8uBbkUVLsCYaEjIExM38IM8aHTuRZVy/hcM8D6Vak8PaPrDVGjuv1Okw7PSuCtYAY0yHEPRWaa1yWZQhVGJIyN0kaj8c1kcNLTxhLM9PFfRIYFyUdXmLjngesCWsg3WZz8Exj7ojQwhxpq0o5y3q9jmszH4xOMT/lTHqLSfYGsZE9dR8V/FVYB89SQEhJXR4SEhISEhISEhISvjbuhaCACHBxcRFmhuPxuEauIM14GWDyhxGgp7dvNpvwSfC2iVynKIpIp/f0akk1ojEej+P+bmCHiV2e5xoOh9psNrXU+6Ioar4HToQ9giqpNm6i0NJtKYQTG7IXSG2XFMSJfzfr8YmoI1hItwSTNeX3GFwyXjcqhJxxb9YEwguBZLw+F/ZYUq1Mgqg2a+EdCJyUenYBX4yjqqowm7y6ummlmed5kNZerxdiEfMlA8NFETI9uL+bGiISSbddD3g9r2WMXMNT6nu9XsyRPaJUB8EDccnPPPMnA8WJtWd6sBacK8g4whJ7KKm2L03PA0i3t1zkdYzBM0scnA336PAsCn8fIgZlKS5GITo1f49YQ2kO+0emkfuKMF4yL9hHninWm72gtAEBCeEIQTAhISEhISEhISEh4W7cG0Fht9tpuVyq3W5rOp1G2jjEjBR7CDtEgzpsyC8Em5aIEB3gvgsuEnikl1pzSKkkLZdLSbeCg7ehoxRjuVzWotROIhkTxImxNB30m7X4TqK9fp3ot6d2QwSZU7fbrQkLThKlW/LKv90rgW4NXo+PcOGp8l43z2sg3JRA3GViyDgRXTwazPceBfcyCq5LVFtSpPfToYPWi91u94XIO+vqGQY+T+4jKWruPVuD7IXm/nopgJNozi/XpDQFUYtShaZJYNOjwMtMOEuA7yHD2+02yl8Q3dh/snXcU4GyG+ZMyYdnY3BOXXhpls74691DwTszAH7PmpAV4x4iXkbB3rkI4fNnzVzM8efbfSN4Dl0Q495eYuFrlJCQkJCQkJCQkJBQx70QFCRFZDzLMp2dnen6+jrEA8gI5oqvv/56mKft9/tIn4Y8eeQSwkAUG4IzmUyCNHsknq/dblfLNoBou0N8p9OJLAVaHy6Xy/ANkOrk2LsreJT96OhIu90uyhUgQV4e4GNzwumkyuvh+er3+zVSRSTWBQDKCig1gYhhTgchpn5/MBiEad1yuQzCSAtG4MTayaNnREg3YgCCCGJD06SQ8bLfCAZuEEjkebFYxLUHg4GKotBisdB6vdZ2u9XJyUktQ8TLGByIENvtNrJaGC/zYFycP34OeXe/CheByGro9/txFt3Y0AUFxuV7jRjBzxBWENnwGcBbBHLM+fGzJd2IGJSQrFarKJ/xkoDlcqnNZhPCgfsPcK5dOPC1dRGM9yD4MYftdlsrW6BjB5kXPDOIDZSTeKkS++5iGWIPggIlSXxO8DxWVaU8zzWZTKKVKkJiQkJCQkJCQkJCQsKLuDeCgnRbB/7OO++Eod7l5aWKoqi1/RsMBjo9PdVsNlNZlvFej+Bvt9ta67vr6+taK8Asy5TneS1aCciYgGAPh0Ptdru4NtFQorhNg8DNZhN+CmQhuLld08kf0ka3iWbXBAi/k1PveCApxBii75Rm4Ibv5Q+8nntAMrMs03g8jhIU5sw1KCeRFGS11+tFmjyksdk5oOkPgdDg4gj7R/YBc4SQetYH6wyxpWUnHhvz+Ty6gPR6vch42Ww22u12Wq1WNaEKIss9/RxAzhkDGSkXFxeSVBuXR9MRG1w8anoW8P1gMNBwOAyzUc4xGSPuWwD5xosAT4DdbhfdMfAmWK/XUSKBWMDrfV39+ePMZlkW5oiQ8Hb7phWrmxvii4Aw4GccUcQ7LrgBp7fo9GwHF5JoxerlC55lsl6v4/eULwDOtz8zmLmytuyvPx90e0Hwe+edd76Rj6+EhISEhISEhISEzxzuhaDgNf7ULUO8mgaD7n5PPbx0a6TWjN4TsZYUrvCeFu3u+Z5mT4QWAYFUad7rUU434mMsLnBA0LxVpIPrQciYh/sfuKDQzFbAS4C2eogQ+CCwVr5+TfImKSLMg8FAR0dHQR6bJosQQRc4GI+32SMq7uMGTjybfgFe987PfM+aJRLe7pAyD0gznTuGw2GQWYg2AoFH2T0lH5COz3vISPEMAW9NyZlgDqyNn2nmy/5SnkFE3jNu2E8vo0HsYV8x8PTUfz+HXH+73UamAvvNurqA4ftHZg5rRVYPc/dnyfeYvUUE4lljHfx1fi6aXhQ+HhdlfIzsoYtDnqXg4plny/B71hwRg8+du/wiEhISEhISEhISEhJu8JEFhSzLPi/p/yrpdUkHST9SVdXvz7LsRNIflvRtkr4k6bdUVXXxAdeKCH/1vG1gWZY1Mk8qvKRaWrin+XuttF9PUhBRNxds1ncDouuk10OWAAQQ4YHoLYTVo+1OCqVbw0EXUSRFvbp7IXiJRTNDAeNEj3wT6Wd+HrmFXHkUmXs5QSctHCLo/gMu3rCmkC4i9E1/B8i1lwfcBR8f33M2+N7X0K/F2Dgv19fXWq1WQX4h1JLC6X+9XivP84hCe2YB+9g8D+wH/gfstRseuicG4+RnLir4+BE2KJMhM6e5bk6OKWlgvSH5CAeHw0GbzSbIPGcMYYzfucGnC1fSjQDn2SZ+Bu7y/nDBozlH32euwfp5SQvX9hIKPxd4kfhZ5IxfX19HBkLTs8EFOhcUXOxCVGgKk/cdL/OzOCEhISHhwyN9DickJHyW8XEyFK4k/a+qqvovsywbSfqpLMv+I0l/n6Qfr6rqh7Ms+yFJPyTpd3+9C0FUINSY3nmtdZ7nQcD9D/5mtJLreco5kfvtdqtOp6PhcBgCgUdOnVhALjzlnNe4yIFA8PTp06jnJtXfyxaoeccIzsfO90VRBEHyum5e40IGmRxeNpDnedR881onvRBWT1lvkjlEFDIVXCBhfdmX3W4XJLXp5+B172Q69Pv92Gcnym5k6eNploj47xAYiEhDMrMs08OHD6M8A2GIEo3pdKr9fh/lBbvdTpPJJLI8EAE4B25kSYYJGQ8A3wj2jDnjjyHdZhTgEYAPhZ9V5uomiJ4F4yUUV1c3HS0Qs+hmISnKdBg/2Ta0ZMQPZDab1UoiKJngzA8Gg1gjykkoFWG8+F+4eSXnlUwW9guw356VIymEEPfP8NaXCC1kzeR5rizLaiURnpXAM970xyCbhL3le871crnU9fV1bT73HC/tszghISEh4SMhfQ4nJCR8ZvGRBYWqqt6T9N7zfy+zLPtpSW9J+l5J3/P8ZT8q6Sf0AR+enrqe53mkk/NH/rNnz/To0aPaH/cQB6LyUj26DLlwEziI0tnZmU5PT4Pwedo/0VbEBIg/14KAQGARDh49ehSp5NJtKjbXQxBZLpcxPyLM2XOPBwQFzA8hmqTwQ5wGg4HyPNfx8XGQSDpgQGZpM0jKOm71rCHE1FsBemo5Ig9CCHvRTGsn6s516XSB/wTt+RAg3KCPtYPEe1aArwvjgyB6TT5iENkJdCpotVoqy1KLxSKEANqRMoflcqmyLEOkAa3WTUtQjDIhxt6dInvuz8BaEhlnjO51QDYDhp1HR0d64403IpugGQnnep5R45kbEG3OCuPDz4J1LIoiCD8Gm5wV/C/wWuA+RVHEmpKhwPMgqVYGxPjIDCjLUsfHx3EWyrIMAe0uQ0XWy59fRAw/C/1+v5adsdlswnui1+tpNBrFmUfIAOy1ZyKRkcJzgdjCOiM8Nj0m7ite5mdxQkJCQsKHR/ocTkhI+Czjpfy1nGXZt0n6JZJ+UtJrzz9YVVXVe1mWPfqg9xNF9cg4RGi322mz2Wi1WinP8yAkkmoRba+x55rA06ohQZeXlxqNRuGF4HXlTqybHSAkhd8CQsHl5WUYA0Lo3EAQgg7ZxZ/AMy287SAu9x695b6QaMQXUrT5HfNpek7wGiL1XnvP67xdHlFwyK53imjunZM1yDPA+JL1436Q6TzPg9R5hoC3AHQzSf+viwzsa/W8JSLCAXvL+vZ6PU0mkzDOnM1mms1mIfhwXy+HQLThHpLiPLEPjIkzyVzYF7JaKLd4+vSpRqNRnBt+PxgMYg0g2m7kyFp6JgHz5v7sq4tH3uHBjTY543RFafoceIZAsxyF9WFMnBHO53A4rK0d72EPnfj7c+rZGJipIoJQroEYwLpxvshG+lqlCs2MHJ5l7o3AiFHjq+ah8HE/ixMSEhISPh7S53BCQsJnDR9bUMiybCjp35L0v6iqavGN1hxnWfaDkn5QUrR9pL6a1oVE17fbrcqyrBFMu84L9dJOLiFCnrFAjT0dI7rdbkRSpdsoMKQFos91+RkCCO0l8zyPtGyuBVmHzJKmDTlk7AgIdEVomsmRlk2kHyLlRnmSIurvRniULEDaya4ga6FZU+4p4c3sBdbG0/v5OXvHfdgvxgB59Xs108rdNLJpRMg6OPi9l6oMBoOaKDSbzWrzGQwGmk6n0fEBEgqJZv0Rr1zYcVHBzQz9+kTFOYPsg5suzmaz+J2XrbjZZ2WdM7x8B2JPhoR0W7qDwODnvVn2gBBCyQFnqqqqWDvW37M3ttttzcQRUc33jTIYBADEDF7D+nBWWVsEH0qcvFsI60C3CTq4IEK6sMFz4N4RfmbcNwWPBn9OEaHI+ngVMhTAy/gs7mvwyQ0wISEh4Vsc6XM4ISHhs4iP9ddylmUd3Xxw/sGqqv7t5z9+nGXZG8+V2DckPbnrvVVV/YikH5GkTqdTkXbtqevUyG+3W61Wq8gIODo6ivRmIvqQ+KYRo6QwFySFGf8BjO0ePHhQc+v39xG9PT4+lnTr+L/ZbDSdToP8PHjwQGdnZ7V2l01zQ+rdB4OB9vu9FotFzSTSI/tu+ijddgbY7XZBgAeDgcbjcXR0wKeAeZKuD7EkLZx07jzPNZ/Pa2tJFghj9qwBj3gjiEAIm+79ni3QbrejnWZZlkEeIYpFUYSQguhAeQkZIG5yCAmEjLsZ4m63C1La7XY1HA61Wq1qpQqdTkeTySRe/+TJkxCJEF88kyPLMi2Xy9oYmAMgSs56OdEmS4FMhvV6rfl8ru12q8lkEtdgL33OXHMwGNQ6oUDu/byyN6yNZ4bwDA2HwxCUaMnI2drv93r8+HGULjx8+LB2hj1Dgb3ybACEFM5nr9cLzwUyZPyMuikp9/CSin6/r81mEz4ZlNH0+/3oViEpskkoz2GPXJhxHwzWDMHEhS72jmyL7XZ718fXvcPL+iweZyfVXa9JSEhISPj6SJ/DCQkJn1V8nC4PmaR/VdJPV1X1z9uv/h1J3y/ph5//98e+kevxx/98PleWZWGciNkcrv3X19d69OgmYwyS4qUOTWPA52ONVGlJtcgppHQwuFWEid4Sqd9sNjo+Pg7idH19rSdPnmg0Gun4+Fh5nuvk5ERvvPFGvB7inOd5RH23222kmp+cnEi6qTPf7/daLpfa7XbK8zwIUJN0ecScdRqPx+p2u5pOpzo/P4/OD7R+XK/XWq1WKssyykcgZcPhUOPxWIfDQavVSrPZTFmWqSiKINPMA/JPCvz19bXKsox6cwQFIuz4D0gKE8LRaKTtdquLi4vYD/dboFZ+tVoFYSfyzj0RC3wvvMMApTGIKsPhUCcnJ7USmjzPo/b+9PRUy+Uyfu/RaUmaTqdh8ognAGS1maXh5ReIIrwO8arf7+vNN9/U4XAIY8iyLEPUImMG0YlSBbwzINrPnj3TcrmM7ykHYDyeXQJBf/bsWZhQHh8fazQa1bpb4JXBWng3BfaJ1x4dHWk0GqndboeABhln/1erlSaTSXiDUGbCWkHc3ecEsaSqqprPA89ynucxZvdNIIsGMaYprDBu9+pwHw/8MZpZOa+CoPCyP4sTEhISEj4c0udwQkLCZxkfJ0Ph10j6n0j681mW/bnnP/u9uvnQ/CNZlv2ApK9I+s0fdCGi45AXTNcgNGQVQF7LsqxFHCEEzfp+J8LcZ7/fB7H3qCgEh6yAy8vLiJzzGjIMIF6z2SyI/2Aw0HA41Gg00mg00sXFRdyr3W5rMpmEIEK0HxJINNQJKOvh6fRkEDAesiUg7Ov1OgztiHR7GQjp8kSK6Qaw3W6DnOHWz1zZDydp7A2RZ4wdvdsCJNjbeCL8EMXe7/dBPClFGA6HYUrpnhbeUYPSEG8j6ZFuWo4yD9YMog9ZLopCl5eXmk6ntVaRHtHnXCA4MW7IKefMzS1ZNy99Ya+43snJSW0dlstlRP0RCMh6QDjL8zyi++wXz8VwOFSv14tMA8ixjwdhTlJkcBChB15qM5vN4n50hmCOh8MhhCCyFxD3EOJ4Xt2zg7NbVVWcby/d4HyQPULGDPOE8HuHCM+SYQ5ecsR9m94K7tfhJS3uW+L/vsd4aZ/FCQkJCQkfCelzOCEh4TOLj9Pl4U9K+lrFYb/2Q14ryL87rUsKYuvmcZvNJggeRLnpPeD16c0aalr4eY2+t1D0NHXp1kSRyDhRTo8Q53ke7QSLolCv1wsi7p0KPIKM3wCRWSemkCzG5CSMMbkAAXFDaMAokjR793Ig8g3ZxgQTQYJae9Ls3aPAI9edTkfr9TruSTkF2QqQOMbL7/g3GQ4IOKwJY2bO1OtDaj1roWnWKN3W+kMWvdSFNWAO7BmkHQKJeSLCDOsr3QpVROoh8awxZRWSYrysn/s4jEajOFubzabWvtDXjXtylhFDttttdAzZ7/fRitLPv/s3dDqdEEp6vZ5OTk4iC8h9N5gHBJ71Yz+9pMOzZrxsgOeIebmXhj8PzEe69VhwocDPkD/r7K3vqZ8Fz+xxg9Km6Mi4/DXc61XBy/wsTkhISEj48EifwwkJCZ9l3AvHsaqqwmV+OBxGJBlAAiDfRVEECYHwQvgh4l5/jlBBhLL5eq6PWED693K5jBT3xWIRkXnIPISz1WrpzTff1HA4jK/JZBKRYjIChsNhzTwQMQJCRItFSD3EFBEAsYFxeFQVkuokHXLu7fr4HVHtfr+v0Wiky8tLLRaLyKjodDq1TgnSbRtA7k9Hgvl8rv1+r/V6HdFoCHUzclwUhYbDYWSh0NaRNSmKQqPRqFYDz964GSDk0Lt8ANbJI9DsPXOHlJKlQfkF40RgmM1mYeKI7wTryNnE1BNR5OrqKtaddZFuhYjdbqd+v6/JZBLrNJ/P471eFuAkm3tS4sIZX61WWiwWNZNLFzgQAIbDYRD/p0+fRoaBt4B0wu2+B4gdiAvsDdeghIgsBtYbERBfCvbPsx2884P7YBwOB5VlGc86JQiIBy4USbeCBLjLb4OfO+4SFLhWU4BISEhISEhISEhISLjFvRAUJAVZIr0cYuWRbQjX06dPJd14IZAtQJo77eq81d56vVZRFDVvgcViIemWELrBH6IEUerD4aDpdBrtBSHi3m6P1O3hcKhHjx4FOSfyP5/PwxCv3W5rvV7Hvb1zAvNeLBbhcUDqu5MiouVOslutVoxzsVjo/Pxcp6en6vf7Go/Hurq6CnNBshGIdhP9ffLkSUSx8YYg8s34ED0wPaTMoCxLbTabIHveSQLyD5HvdDoaDAYRNZcUXTWImJNpAXF1g8vD4RAlDZJqZ0W6ERV2u53W67VOT0/jnF1fX2s+n4c4wJ6xLpS6PHjwIPb/7bffrrUZpTUmZPvo6EjT6TT2erPZxPwlRQYG9+c+lDacnJyEYID4cHV1FcKKGyty36IoNJ1OQzAry1KLxUKHwyHO6Gw2CwEJ345ut6vFYqHZbKZnz57p4cOHsYZ3CTHua+Dn7+joSJPJRNPpNLI3EFp4D1kMCGT7/V7D4VDSDWEnU4izgdmiZ6NwJtjjqqpC/MFjpNkJxOHZCqyjZzwgonAum9kObryZkJCQkJCQkJCQkFDHvRAUPJq52WzCGR7y6KSb9HI6JBAJlhQZAV7jLynq/CGgXqdNZJL3Q6Z6vV5kBjAGJ3cYO15dXWm1WtUi9kSDybagM4NnBbRarSBPkl7wVPD2lL1eT5PJpGZgJynIGWsoKWrVEVkgX0TZu91uZDG4geFwONSDBw+ijSLkFnPMTqejoiii8wN7MxqNlOd5RJq9zSb74rXrnlVA5BnSC/GGJCLaEPnmHkSU8SRAXGE//DxBWv01tCHF+G8wGKgoisgCWa/XUQpydHSk+Xyu+Xwe7/dWkRBexCHMGz1SXxRFTRDi7CEq0XWCch9aqGIMCpGG6JJpId2UBI3H4yDziDODwUCDwSDWabFYRFcD/Dw4AzxH3saRsZPdwd5uNpuYS1mW8ZzgdeLj9RIJLxPxNpjMwzNQvE2pZ354GQdiA2fCBQXu4+D6Pjbptl0rZzzLspp5ZPM6CQkJCQkJCQkJCQm3uBeCAn/sE4XFdI9Ub/rNe9SwLMsa6YEYkNIOQYLA4AYvKSKyEAevm4asEL0mtXu73dYEBcf19XWY3TEPBALvJEGHBdLM+Z2kiN4TmZUUJJtI9mAwiHHgm+ClHBBOIti03IN0IWR4WQdr2+v1NJ1ONZ1OdXFxER0hfO0hjZAyyC8lDvhauHhwV2mGG2iORiN1Op0QPhBUWBPWyUscMMZkX9xQkzPBeUDwkVRLrafjh3Qr5tBRhAwD1gU/DPYHoYEyAPeWQAgjou9763vE2CDRmAzudruYG4LJXR0IEDG8xaJ3hSATxssuyCjpdrsajUZxP58nnh8OzhcZJzwzvL9ZZsD5dFNOnhPfL8864j6eZeJnyT0eXPTwcqavVdLg5/Gu59d9HxAWvDNEQkJCQkJCQkJCQsLduBeCAsSRFPOyLDUej2sRQ6KIZB0Qia2qSuPxONrLQbSo9ceQzn9HuztItVSvt4aQE0Enxd/JDAQSYrlcLmtmdRAj0vfdDA/vBowLWQO+mCfiCLXn4/E4xkfEFtPKo6OjIIcQvtVqpfV6reVyGePFaLHVamk2m4UPRKfT0XQ61euvv67D4aDz83Ot1+saAfSsAwSFsizDN4HsD2+7CNGVVEuXd5LqZA4jSwCJh0wiolBnTzkE1/X3IISsVqvokOHZIQgSJycnUcrQbrdrXSf6/X5kL5BRQnYFc6AkAHJPyQ7iAIKLC2d+rg+HQxhotlqtWHfWkzVHgOA8umlonufx/FxeXsY42DvKIdrttkajkSaTSbRy3G63UfoC6aecw+EdGRBRELjcqwK4MIgI5OeJLB/2FiAeuYDkmR1O9hEDeL2fs+ZnzNcrX0D8cHHma5VRJCQkJCQkJCQkJCTc4N4ICqPRKEjwfD4PwobhHUTTI5uIChC1brdbI0lO3iFakPDRaBTX9l72ED5vx9jpdKIUYLlcarPZhCgB4UHQaHaOcIO9o6OjqJE/OTkJwsRrIaIQP0jbZrPRYrHQo0ePdHR0pO12G4TavQi80wIlGm+//bbKstR8Pg8yTRr+1dVVeElIN2nyDx48kHSTxfHs2TOdn5/H2NgTiHS32w2fCIwOJ5NJZCVUVRXtCb2Mg7VA2CCbBK8IMk0QToiyQ3Kd2G63W83n8+is4QIFa7NarWL/KP1AEIGcsi7T6bSW2k/Hi+FwGKIC5TN+Rmn9CFF2M01EG+m25IOWnqzd4XBQURQqikL9fl/n5+e1NokubpEt0Yye0x5zu93GviGU4KlAFsh0OtXx8XEtg2E0GqkoivAYoQ2kdCtmINLhUcGZ9ywRxklZBevknhKUZwwGgxAkEA3W63UIgewj12232+Ej4d0ivGTB18WFBkQ6fzYR4BAK9/t9iIl+PhISEhISEhISEhISXsS9EBSyLNN0OpV0W0+PRwJEkWg0hNRJASSOuntJ8XpSv6n1JqoOifVsAOBGf6SDN8sQFotFpIn7az3F21vPQYIQBGazWZghQmQgj06I6PZAe0bS6j1dPMsy5Xleq/uGeBE5XywWuri4UJZlKooizCspu+D6+CzkeR6CA34DTvykG4KGbwQZHJRnQKAhmc0yBG/rx5gpJ3DxwU0dmS+ZB6wDngOQz2b6O8aPXIsxuoDhfhpEqBEwIK5kC5CRgF+H+zqw5uwTnh+YVWJg6N4PzTap3W5Xk8kkhC4MMP0ekG+P0HvZCcIcJQ6Mc71ex7Px4MGDECroaoJvA/vqRox0JsmyLPw+OLsuKLDPZJpQnuNlKTzrlGf4nnJPyivILPASGkQAREY/Q4B/N70Z3Itht9vVDD89+8PbzSYkJCQkJCQkJCQkvIh7Iyj0+/1wp1+tVkESPdWeFoxkGkiqmfPxOu9IAIl3ckeUGdJANLlpesi/IVgefW2ayfFaT8P2DAWux9ghWV6PTkq/u9AzP2r7IYhZlgXhRFTh54gIV1dXkdqOGMPv/D14JaxWK43HYxVFoSzLQkyAJBNZd9M70vl9bxB3WHO+EFVcJGgSQDJKGCvlE5BX1sPXniwTr4F34uoeDt42EpJLKr77N3iaPWn93pHATTM9Y8LH5/f1MhCu7QaaCBhcH+IMqaZ0wn0AIMCMmUyAXq8XZ7yZ5YBIs1wuw5ATMcY7rVAm5EIL5xQRjutJt21aOQsueDFOhCY3RuQMe/YL4/HXuUDk5UFkKvA+F+W8owNj5lnHz8L32wUvN6ZMSEhISEhISEhISLgb90ZQoKXjdDoNkuDp4qRLQ0L4g58UaQgiogJkzEkrr6e9HxkN1OUjAJAJABFqtVrReYLX4ZnAdTFwBKTrQ4Q8VZuUfo86kx4uKebqZGqxWGi1WoXw4l0GyJ6gI4NH/71zBS0hIbH4VECyZ7NZGDNOp1M9evRIT58+1WazCeJHNBeyxdzd6JFODU4SJQX5h+QSMXbSxvsgxU7yAQKS1+Z7zTuCiBv6gcPhEC1GKTHAt8BNDd0ocbVa6erqKjwVXEChxMQ7Mng7ST93nglB1gxrV5ZlzCPLsthLf18zA6DZ8YDr0tUCQQGRB9GDEqLZbBb34eeSan4SHtGXbksf2CfOLp043L+CzB9+J0nj8Tiuie8Hc+Ce7sXgIh9jcO8NBDqeVT9PLujwRXYKIttms6mJHWQweTvJhISEhISEhISEhIS7cS8EBf5wv7q60nA4jC4OEO/1eh3O+nmeS1KICpLCN4GafU+P94g4ZGO/3+vi4iLej7BAVL8Zlb2+vla73dZkMgkjOYga43Dy4TXZnjLuEVWMHOlyQDvH+XweZJO5MY6nT58qyzKdnJxoOp3WzP/W67Umk0nU5jOmBw8eBJmsqirIEuvrJRvn5+dBxoui0HQ61ZtvvqnHjx8H4UXUgFQfDocwO9ztdlosFjXzQs9ogAy7IWJRFBqNRjEGxs0673Y7PXnypLaObnwJyCRAqGFdESa8fAHBgOuNx+MwvNxut1osFiEyUZqA4SEdRLytKALFaDQKgcA9CCDoCDMYE7oJ4Hg81nK5fKFzAuvBGWbufs74wjeEedMVhJIWT+O/vLyMMdIik/PJGPC/4NlpZkawNl4GxN65SEEmh2fF8JwiQCEW8BwyV7JNEKEQTfwa/M5FRhfaeN4QAzGrZDyUTbTbbeV5Hs8HAmBCQkJCQkJCQkJCwt24F4ICxFNSpJBDZJzEONHw6D8RUsgE7wX+Xn99WZbxM+7P68huAGRQ9Pt9nZycqCzLGulg3Fy/ScC4BgTJyw8g6J1OJ7pReOTfiY1HcTHQq6oqauO5DvPxLhCSwuyPqDGklxT3xWIRGRCIChhaYqTXXEtPqSf6yxx8zi7gYOjHNSgn4HrSTabGaDQKU0UIIq9xMz72+fr6WvP5XJJivxBe2CfWCxLKecvzPNpJ0max1+tpOBxGZgxeA572v9vtdHFxocvLS41Go2jJSPtNb/+IQWVZliHGDAaDuIcbbja7FngqfjO7A3GBZ4hrNsm4G1ayT+wJIgBlG95hwc0reQ1zIguFTiZkAtBpgrVD9HP/ErqgUFbDXBCs3AMFQYxnqVkawjPSbKXqmUqehcHZcSNWspGqqgoBKCEhISEhISEhISHhbtwLQUG6JdtEWIkgEl0E7qdwl+khxBbSSfp9M7LrqeKQTaLCEFuuT2r0drvVcDjUeDzWZDIJEgRhgthCWiHUnvXAXL223EUUSiXcwd5N6DabTbRqJE2bevWyLIMgQVyZj0fkibZD/nxd8VIgHR9CTpcNN7Qj4st7IXheh47RoncAcC8KiD3EUboVgIggu6+Etwx0gYn1wVRvs9nUxtWMzgMML7lenufRvcIzWzBQRIxgvxF3PPOAjBCyLNhT1pm5Q3S9/IFz3PTjQLRhTz37xf/N+mCg6GUO7An7wvURi2hbifiAYSHPj3c8cD8Fb2vp5SicUcYIQfcSGM4pWQzsDeab7C/Pknsz8Ds3p3Tvg7s8Fpgv33NtnjkyNtzENSEhISEhISEhISHhbtwLQQFSSxTSI4NNt3XvYCDdkmWyBZy4QzCbkV7/He8hOgkZaWYZkOpPy8kHDx4E8fO2ibyHKDBzgMxxDxc9ECB6vV7Ne4G5OhGiZSCRbUpBsiyLMSI0cA8IKySN6LGn1/u6bjYbzefzEHfyPFdRFEGyWTe+uL87/TtJJNuCunf2TVLUsEOAm2CtfB1cSGJ9IZWIGd7OEEEDQkrdPnu8XC4lKTIsBoNBlIRwzoj249lBpgbrCWHfbDZxRigfWS6XkVbvQghrxDjxCoG8e7cP9xDg/Po55mxDtne73QtzxpPCs0B4z2aziW4QlP40Mytc3JBuykPImEEMLMsyMg1YTzd09MwU5uvmlP7Msk7e2YQWsKwJJSWAzBieMzJE3NeBMiXu7aLdfr8PUakpWiYkJCQkJCQkJCQk1HEvBAU3P8zzXMfHx7q6utJ6vdb19XVEWr2uHJEBwikp0vghC5A8ouAAwrRarcKZHtIPGeF1/Pfi4iKIU1EUev3116MUgFT4siyDNF5eXmo4HEZ6N5Ft6dZFH1LoqffD4VCdTkfL5bJG2PBc2O12Wi6XMTZ8E1iDp0+fhqjQLHd47bXXdHFxUTOwPDs7C88DiDHEijp60v69Vh0Sy74R0WZ+eF8wx8FgoKIoavXtRIR5b7PrQ6vVihIC7ustLP0MeFkF2Rje4QDifzgcwquA+n2uwV7RacSNGulyQTtFShPwKsDYkZKIwWAQ12u1Wnry5EmICggkrCPlD8PhMEQlzjKk3Ik6Z4ZMDgi/pFo2DM8TfgN0y3B/AfdE2Gw2QfI5n7TA9A4i3n6R8+JtMPGh2Gw2mk6n6nQ6mk6narfbms1mISxIiq4lXnYgKcSq1WpVE5R4HjlHvV4vBC3eRzlGu93WaDSqZa8gypC9RBtP/2whA4iSmS9/+cvf6EdZQkJCQkJCQkJCwmcK90JQgGz3er0w+BsOh5IU6eieEg/JI3oIIYAIr1YrjUajIJreAcCzAhAfXLBAgIAc8Z6qqnR2dqajoyNNJpPogoB4MJvNghxDeIgSdzodTSaTGLsTSwghRBii6V4EEDxKIoiOQ6Z4L2Mn5b8oCo3H44g8c03uyVgpgSjLMsoYIHO48kMYvVUl44DoebtGCJpnjkDgHJjieeYB16cun/aGpKLToQPy61kPjJ/rIPiwJ+w343EPBUkRHS+KIq653+8j8wDvCkgq18YLgDMAEcasczQaRWSc/YeYu6BCNgklJoAMAS9t8Gg89yE7xL0PKD8YDoc1AYwsDe8+4gaFGEmSmVIURWS6IFj4c0QmC+u43W41n881HA7V7/dVFEWIFC5skDHja+HPkftluH8KYhbPgFQ3PnVvlrIsI2OGe7kg4mfWz6ZnPyQkJCQkJCQkJCQk1HEvBAXptmba3eO9FAFC4bX1XtPP74k6O3mFmHiE080OiTa7qSKkx9sj4mT/5MkTjcdj9ft9TadTbTabiHp7lgPE/HA4qN/vazQaRaSZyLl066AP3IsAgovIwPi8ZaEb8/E9IgpiArXwGBTu9/tw1IfcSooItHQbJYasIig0MwyYQ9MnARM8N8lrigY+f67nRJqINWtSFEVkPlCDjwjj13PcFaH263u5iqQ4Z9TRe1YG8/LafTfD9Og54+aaXpJD9gFnm3l7qYsbAvJaRC8/w5BkftbMsGGMCHLMgbH4erEPRPm5B2Nm7qwF73EBzUtsEJ04m5w5hDXOkj/zlIJwPzeU9D3ldZ69wO/cDJWx8POmCai3o+TMsqbuvZKQkJCQkJCQkJCQUMe9+Gu5ma5MrTTE1w3tcH93s8Pdbhe+AUdHR2HMR2YD9dBEIT2qTiQVIg0pI/276X5flqXef/99PXjwQG+++aZGo5H2+72ePHkSdfeMlYg1IgPp1044PV2befoY3TwSQQHC4y0xWbvhcFjrloB3AZ0k8jyPevperxfRWjetI3LNmBBrMBrE1I5MEUgs9f9ugth02W/6IJCJ4ATR205illkURWQHXFxcxPqxv3d5K3gtPUTSI968x9s4esYHZRKsOfvmApd3noBMux+Anztvpch1KImgnMB/Dulvegr4uWTf9/t9RNPdXJSxuYEi7ydjwp8lSZGpwDPF78gWaZaluA8J96d0oyzLKF0iU4H7+70QcIqiiPPt3gduuOgGjAhWnoHEfxmXd4mgjaZ7J7jvCmIMZyUJCgkJCQkJCQkJCQlfG/fir2V30XezRQgqqcr8vNfrhQBAmj+krN/vB9mGQEHuJcXPEBkQFDDmI4IK+eCe/Gy/32s+n+vJkycqikJFUej4+Fif//zn9c4776gsy0jZ7nQ60cmg3W7r0aNHOj4+Vr/f1/n5eWRWQACpV4csulkd7QxZl6qqwuOAdVitVrU2itT0My9EhWYbxaIoIpOBTAwi5ggPgDILIsqLxSIEE67NujI2zzi4y1DTyyQwCCQTwjMB8CQ4PT3VfD6vjQ/xBe8H32sXNzwTBMGBbA9e62aM0m12gEfqmb9HvV2w8vaKCD+sm0foveSCa19fX4fYgwHk4XAIrwbmhfCy3W6DlHu03kUS6Vb0YN6edYBgs1wuayIW+4U3BJkiPJc+HsbKOvpZoE0rYoKXnUDyj45uOoKMRqPa8+ZGkNzTz48/R6y/Z7x4JgvXQPzgeeNZcJNSTDYTEhISEhISEhISEu7GxxYUsixrSfovJL1TVdXflmXZiaQ/LOnbJH1J0m+pquri612DSLBHYhERIE4QAMoHSI+GCEBW3FzN6/Y9Hb/b7UakleikZw5AkDy1n4gm5OzJkyeaTCZh/HZychJjKMsyIqcQdYgyUVg8CpiTdOvcD/lBGCBd20scIEeQZU9j5737/V7L5TII62g0ivIHr1knkwOhYrVa3ZlN0G63g2BxX+rsIXpEoMkwoWMCxBqy7OUNjIX3DwaDiNhfXl6GZ4KkMDv0cgAi5y60eFcBxA1JsY+IHO41gI8BZ8vr6n09PJ3e98IzbTzro9PpRITfMxbILHDxhf120UJSzKkpOHHfzWZTK9FptVpB7v08+975z/AbICvE14PfV1WlxWIRzx/v5/rj8TjKURAqWEu+1ut1zMGFLdbHM2qYj4s7rJ+LUTyjzVIXPgd4Ft1Us7mv3AdBiYyUV6nLw8v4LE5ISEhI+OhIn8MJCQmfRRx98Es+EL9T0k/b9z8k6cerqvpOST/+/PuvC9LBIexNYQBxgC8irZAPr/n39GU3sSNiCSDZnsUA3CDRSxI8Grvf7zWbzbRYLMKwbjqdRlp3nudBYriGmzZiMOiRbCe2ED3WBwLqhoUQWSKwABIL4aQzBF0mPKWeSDllAO5uD/Hz8TEf9onXugDAPRBPXBhBJKJ8gn1z7wBEA8QJ3utmnO4L4S0gvWMAbTYRFTy67uSTDIxmiQ2Rdco6mLN/QbRdfPD2h01S6l0uOKtExu86q+yzm0A6YfdyFj/vvNefIS+TcU+Rw+EQ5RZ5nkd3EvccYc0g/ogjfn06XrAHiIDsN2fUs0R4hiVFpgjv4VpNA8vmc+D74HvB6100JDvJPVT853zxfLxKgoJewmdxQkJCQsLHQvocTkhI+MzhYwkKWZZ9TtLfKukP2I+/V9KPPv/3j0r6O76B69REBCdnToY8Y8CjtJB86dbszwkGpMLT0yEyLibwOwiGiw6QaI8ML5dLzefziKCPx2ONRqMgxBCrpoGepCDsbjQp3ZoENr0jmsIDP5duybsTfYgmKetlWWq1WtXIEyaWu90uCC0+C97ykLVEUPD9QTzpdrtBwN3I0Qkm0WLKVjyrwAlit9uNNpNuuggZRhzwrBEECfZUUo38ItB4dw3WE8LKPXitlyu4MNAUFu46s2442CzxQBzwbIfdbldre3pXFgTnGJHD/Ua89aE/A/4MuZCBiMQ60c0BIl8URS07wU0MWVfGwLkmy4Fzxzw4C56Fwfz8+aX8CB8JiL2fQ39vU/hjfL4XPj4ve3JBgf3xcijuzXjvO17WZ3FCQkJCwkdD+hxOSEj4rOLjljz8Pkm/S9LIfvZaVVXvSVJVVe9lWfborjdmWfaDkn5QuulFj6s93gde++1EnLR+2jzyM2+rR6tCvnezRumWOJCyTeq9t9+TbtsgMg5v80gZw2KxUJZlOj4+Vq/XC1PEsiyZp885hBGIFGnd3hWC13AtL2dwV3r3B3AiDXF67bXXdH5+HgR0NpvpwYMHMc7hcKj33nsv1ivPc52cnASJQyDwFHNIJD+DgHJf6uwRTK6vrzUajWr7u9lsopVip9PRer0OoQCC7+INpn7s9fOzFYQSMYXf93q9mg9EWZZBNvM8j84cEHREDmr2abnJnqxWq1onB4+Ys68uNlDi4C0J2S/W0VtlukcA++3Xg6DjUeB+GqzzZDIJUQKzRVomIlhwZqWbMhEi+BD52WymPM9DFKPto4tgnE/OFFkHeHhMJpPIziHzgj11Is+4EEUAmQ+8HqHES1C8HIEsmTzPVVVVtId0QYbPEODmp3zvGUGe+dNqtTSbzfQK4PfpJXwW9zX4hIeZkJCQ8C2L36f0OZyQkPAZxEcWFLIs+9skPamq6qeyLPueD/v+qqp+RNKPSNLDhw8rTNp2u53m83kQpTzPIxoKacTRvtvtajgc1mrFKUtYrVZBzN2MDhKC+Zq71ENYiFBKt34GAPIOiZakzWYThpAeyYcUQ5ioSee+TkpdTIB0X19f1zIZxuNxRFSJFHvkFW8BJ9vT6TTaYm42G81mM02nU/X7fU0mE02n08iKwG9iMBio0+nE2tqeR22+ly9AeFutlp49e1Yzsut0OiqKItaeexEJHgwGOjo60nq9DpIv3WYOENUmer/b7TQcDkPQ8LR66t8h/Ygi1OazD7TwRKzA3JJMByL2RKhdIECw6Ha7cc1mRgB7yzpVVRXnife7Rwcp+c2OApx5ngM3P9ztdiF09Pt9FUWhk5MTrVar+D3jZF6S4l5NIp9lmdbrtRaLhaQbr4rBYBAeFpSyILKxrmS18PziE4IPBh05EBZ8HwBkHgLvLSOd3LsowX7wO3wdBoNBZEvwfPG9i4MINtwHQYkzhDDU3JP7iJf5WTzOTl6pGo+EhISE+4D0OZyQkPBZxsf5a/nXSPoNWZb9ekl9SeMsy/5NSY+zLHvjuRL7hqQnH3Qh/riHkBGRhpg1/QE8Fds9ELw2H3NEIt9N8cCzDyAxkGcnYQgApOZ7qjS195Cru+bUrPH2sTdTqj3ifXV1FVkOkErv6OAt/iBgrFX2vFPD4XCo1cIfDjdtL73bw+npaZQFrNfruCdr2O12I5ouqbYOEGb2hLV3IzzIposcZFm4MAQpx1yQ8SLUYKToHQEg5c3SEIwCm1kukFAyKLiHzw8TUObFHDxt3j0O6ApyV6cH9px7Iz64F4dnKnjk3LNSWA9IPvMiI4FxIzxIiqwTv5+LNawFpQmc2bIs494IRYyT/fdSCgQFL91g3og6zTVwYs94mh4nXtbA9+wxGUReAsJe8ax4u1Y3r2St/DnlnHmpSTMj5p7jpX0WJyQkJCR8JKTP4YSEhM8sPvJfy1VV/Z6qqj5XVdW3Sfo+Sf9JVVV/r6R/R9L3P3/Z90v6sQ+6VvMPeMi0pz+7ORtRSicRTv5OTk50fHys4XAYBNtLBbifk2RJkRlACr6TdcbG+52E8l6i/GQRNA3yIDJOXj2KCuEmFR2izxhcMPFUc+7lZoukm5NBAPHFM4Hsh+l0qslkEjXzpNQ3xRXIFtej5MQJfbvdDkLbNP/Dm4HyBPcRcB8ASLcTO/wgILgQQCfKrLVHsr1chPFDbF0AoX6ffWIMzM3PWPW8iwT74l4XwOv6OXvupcB/GX/Ty4Nr8D1ZAqz/cDiMFpLu88BZRjDyrBefA0BUcCKPsEaGjD9vCCb+Mz/PPGOsD5kZiBBuqopY4CKHP5P818udJNXuz95T5sGZ9fXkTPhnhb8f7wy+fB48//cdL/OzOCEhISHhwyN9DickJHyW8Unk8/6wpD+SZdkPSPqKpN/8QW8gJdozDohUe1s6/uCHhJPBACni/b1eT48ePVKe55rP53r8+LF2u12QB49aS4roPx0B3KhPUq0FJGR/s9mo1WpFKro7+0u35Q0QGvwEuC/zIkvBI9Gejk35QLvdjvr0qqq03W61XC6DUJKOT9SelpE49vf7fS2XyxAVNptN1Ms/ePAgsi7oBkEWABkE3nliMBhE60eyQLw8gLG7UaJU7xbgvhZuroiY0YxWuwEixJHsBdoRXl5eajQaKc/zIPpNwox4w3mgTMTn3O/3a90UyLLwM+MeDMPhsOZPwHgplfAWl+yvd/wYDAbhL+FjdQFgu91qsVioKArlea7j4+MQh8g84TnpdDoaj8eRpcB6+z54a0iEAs7rfr/XarWKsg72k3X3ZwHyzV7wWs86QlCg9MafQdaAZ4BMCN7rzwNAEOD8MDbPaOH9tHD1LhOIWMyXfWvep+mt8AriQ38WJyQkJCS8VKTP4YSEhG95vBRBoaqqn5D0E8//fSbp137I92s+n0crwNFoVIs6kuYt3dane6SV+m1+nmVZtCvs9Xo6HA56//33X0ir9nKDfr8fWQHr9brWYrBZYiHdmtB5mjqCBWMiqkzZRa/XCwJGrTlRfe/C4BFvXo/HAB0YiPZDVne7ncqy1HA4lHRDfJfLpTqdjqbTqcbjcXgiICjs93u1220dHx8ryzItl0tJCrKLaEKGAWMkCv7GG2/o/Pw8otluqsg83JtCqqebexkCv8/zvOb2jyiAGDEajeK9rBOeGIgKb775psbjcZD8J0+exB6RBeHGlnmeB5mnTITSBzIRyPDgtQgpiA7Hx8dxniDYCAJ4PbiJpdf/N70CXDjjDGLIyJkYjUY6PT1VWZaRzbNYLGodLCDWZFU0xRH+y7PGz9g7F4lGo5E2m00QdMbmBp0QfdaxWQZEyY53hWB8lEh4mYP/18m+Z6JgHumdJ4qiqAlXCEiIV3xG4JcC3AODe74qXR7Ax/0sTkhISEj4eEifwwkJCZ813AvHMcz6PD2+0+kEYVuv1xF9lfRCjbrXoFOK4HXWRHPLsqz1pPeU7l6vVysfcNLj93HyxDUPh4NGo1HN94FMAbwCMCLkOkRqmRfEiOg83RWYQ5ZlIbAQRUdo4ZoYCfqaXlxcSFL4BnhaOa78mFs+fPgwiBlCANFkyk4gnxDxwWAQ94L4E/VFKHBzyuZ+ITpAgtl/N56UbjMDEDMQANzDgfOyWCyi00BRFCEWkcnh3heQ36bjP6+pqirIvJN/HwNiBoaDZDpIt50dmAvnjzm6VwCCFf9mXIfDIbIYyCqglCDP8xc8DVyQcnNQLzPgZ37OfC0xlSzLMspURqNRlFe4yOPZI8wBIc0j/C4C+vPUzCC5S1Tz3/n6kP3AuNgnyh7c9BSBoGm02BRx/Oe8PyEhISEhISEhISHhRdwLQUG6JYy0onOHdU+DllQzVQSQKa+5hviR8dBqtbRer2ukRLolEWQ6QPo8XVy6NYYj8u019BBYSAgihZNAoqPMl/psSiIQUSCfTnSoQSdrgMg1ZBlS790wSIUnyuxZA3R0yPM8Mjkmk4lms1nMm3tD0GjHSIkDvgbeztI7HDAXSCcEtOln0SSPEFrIOWOGEDp55Tww591uF608SdkfDAbR9WO320W2Afe/ywyQshr2mXX3doYuYkBk/ToetedaiEyeCdBcA+blHhCk97N2CFReYuJZFn49xuzPhgsHLh65eSK+IAh0/X5feZ7HmrkZoj+Lzb1zIcONR114Ye+bz7Sff37G8+PPOGuMUaVnPbD2zJ/7NEscmpk0zfEkJCQkJCQkJCQkJNRxbwQFN3SDJECsEQP4njaNnr7sju9EiyFSRVHU0rSd7Hpk2MsePCXdyYx3Z4BU7fd7lWUZrfIga17iQDkD2RfNyLTfy0mmm01C1HnPZDKJtHbI0na7rbW63O12uri40G6308OHDzUcDiNSf3l5qTzPVRRF+AngJ+HZAUTZ3atgvV5HZgNEllIJxgoh5ZpZlkXkH4GESDcgw8Sj6lwXos9akd7vmSZVVWk2m0XWSFEUUepBmQpmjH7uXGBg3s15uHEgxpS73U6z2SzINb9zT4/BYBCZHZwXTC29TAbRpHnO3IuC1yJ0IEQxR67PXnW73RB+3OOBNXaTQ8/KYe3xMqEUaTQaqdVqabFYaD6fx/U4J+wt5SHZ844jPG8IhV7aANzHoSksNOGCH+arCIKUZbBmZAshajQ9LbxsyX0rkqCQkJCQkJCQkJCQ8PVxbwQF/qj3HvC9Xk/D4TAEBMikkzeIKpHWzWYT7fOo2W61WppOp+r3+yqKotYmkTKC4XBY82a4uLgIolxVVXQvgDhDEok4LxaLINM+dsjr+fl5zTjPTfKIljJW5olRJcQJf4Grqys9e/ZMh8NBDx48iOyI1WpVyxZABCB1nWtx/fV6rcePH+vk5ESj0ShIo7v0e7YA/gWY/ZHtQQnG4XCIln1EtKnxl26jyYyD/SK678JN0yyP+Xj3CV9L7ouhIq+DDFNSQhnIo0eP4ny4FwKEE+8O/ANYR8/a8C4RiApO/iG1/X5f4/FYi8UixCeyC/xcMwYXSFg3sgY8m4LnpllewbNBZgXimJsVsgfN9H9MHhHg/MxfX1+rKAp1u12Nx2NJqhktcva9ZME7j2AE6SUvPm5EEveUQExqwsW37XarXq+nTqejyWRSK8Gh1McNVu/KbAL7/b7WjQQBLCEhISEhISEhISHhRdwbQQECQYS4WYYAwYIASnWi6V4HECkIE2SDdnpEdTudTpBthAxej+FcVVVhYkhkVVLt9dRwc0/pxp8A34FerxfGix5xh9h4lwPEFOYNmSMt3TtKLBaLiMqPx+MYnxsZevvAxWJRK3PAH4D1mU6nOj4+DsGFNH9IIaTdjSaJ9nrEmag4kWlJtXmw/og13nqxadTHz5qeGXRFYH29NIL3e9u/pkEie8HaA18/b9WJuSfzZlxkm5DVwhicqB8OhxA1vAsH13BfC6/5d68E3tcUD5irg/2iRAXxh730cgPPDnHfkeYeeAcK7o0BKNkuiGoubHg2BD4ljMlLmZptID07x3057spq8KwOunaQGcHeu58CP2uKVnyREeWGjQkJCQkJCQkJCQkJL+JeCAqefi3digpu6Md/IVeQBQgB5ANi6e0fJdXei/gAwXKSz2shqRBL78rQ9D+gzSXk+ujoKF5PLT8EG1Lk3Q8gL5Bjb5VJanfTbJJ7LBaLEA48ouyp65gpugeD+ypACKWblpBFUagsSy2Xy1p7S0QZyBvRbydjvn7MCTAuL+NgfkTnIaLsvZN3vtgv9p+OHnTSkFQzc+S1TljJemH9m6nulCVIiowXNzz0c+f75l4BLo6QxYGg4ZFxFxS4ZtNwEsNH1tlJ8l0ku3mGKbnwaL0bjHIeEdKa/gb8DO8GMkQo60E88nKjZqmQn2meA88OYB/8OXaTS+bp//XPDPYKo1A/k76O7iPhAhSvRVDwTImEhISEhISEhISEhBdx7/5a9n70Tlw8gj0YDKK2Xaob4EHkiKhCSCB9brbmkfeLi4uaKz3EWbopDSjLMmr2uQ8kvtfrReq3k07v6uDlCtfX1yFAkGZPrT8EkY4NnoaPSEHq+maz0XK5jHs+ePBA0m30lQwNBAdI3263i6wJsj4YE+nsV1dXms/nWiwWtU4Y1NATAWY+7nHAa2mPCAHmNYgUiA2INhByyggQe5rikosQu92uto9kUUCMOR+8H1GJlp6SojTFDQ9Jo2dOo9Eoxu/dITD+63a7tf3kXtJtKYNnorAungXjcPNByja85SLPineQcNKNgME4IfucS/YQccGv4ffnmWu329HNgnNJSQivcUNE78riIpITdMQOnhvEGYBo52PwNWMNvFSJzAmEBvaZPSFrw+fInnEfFysHg4ESEhISEhISEhISEu7GvRAUiB5C5kn3hwgURRF12pBDCBZR//1+HyQGXwUi0ZBUIt9Es71lY1VVms/nNcJL5Pvo6Ejr9VrL5TIIJtF1SO5gMFBZlkHM1ut1pK1vt1uNx+MQFYikz+fzED46nY5ee+21WtmGpCDt8/lcw+FQg8FAg8EgCO56vQ6jRKKzXIMWiV4uQvR7s9loOp2GtwSEkXr/o6MjzefzWpcKxATIO2aX+CDQ8rIoilo2B5kbZGyQ9n50dKSiKIL0Xl5earVa1QwXIfpumMe/d7tdrWUjEXY3cfSUdknxGrI1qLOnBad020Fgt9upLMsQIUajkTqdTpwDCDEZHB6tp1wBUYJsD89U4Ky5f4OXZjAWRDLGuN1utVgsVFWVBoNBXM9FEifQlDhg4uglHp4hgyABeZduMz3wK0GU8ucHLwgydRgz10coQoTwbCP26+rqSsvlUkVR1AQPMiK8WwbCj2cacB+eXXxF3K/DRQeyQvBKoGQFLxNvL5uQkJCQkJCQkJCQcDfuhaAAyZfqJmwIBZBTCAPigaQaSYCgEQkmont1daXZbKaqqiIaDcggKIoiyDv/xdDNSQdR3vF4HCTHU9wh3959AbLy4MGDqIkniwL/BgQIiBDrQFtGvB4uLi50dXWlyWQSBBfR4unTpyFc0KmBrhmUXTBf7n16ehrZCpBJBJuHDx9qv99rsVgE4UNscNEHcujRfX7ugkHTswBS574WiBBuUummfKy5mw82OzW48R/niLl5xgtZJfhdICxAZBEHyrLUcDismU86cXYCzP3I3IC0Sgrxi/PiIg9dKFyk8tR+hA/KVLxsQ1LtGXEwV291yjPnPgxcZ7vd1kpieOYg217GgE8H2QfNkhzfO8bcFIsYoz/bPHs8J5wfRAzvjsHeuhDgZp2cSc6FezJwBn0O3MOfk4SEhISEhISEhISEu3EvBAVJtbaQ7gDvBMzLIe6qHXfDRO/wQMkA0U5JNTIiqZYyj+Gf130zLiLy/X4/MiGkW4LmBAwyB1Hs9/shAhDhh/AgRFCvP51OI2q/3++DWNGtod1uazgc1qLdlEV42cfhcHiBwEHQaAkIUSZLAQI6Ho+1Wq0io8G9HKTbyLATUCe1EHgi283afL5n/1nrpp+Ap9V7lgKixV3lAj4GfuYmmC6ukOkwGAwi5d49GGh9iRhCKQGCgWetsPeQYzIX6G7RNKB0n4tmVNwNGptEH0NRyLLvhT9DEGW/PmeU8+uGpog019fX4bfgYp2fd86Rmx260Mc+IyBxDS+34Gz6mWVfEAVcNPJ7eCYOP2f8vMbbz7oogXjgvh/Nc9L0eEhISEhISEhISEhIqOPeCArSLYGCuHhqM3/wQ5jcWM5T2/3fREMhJJAvCIcTIkh+szsB95xOp8qyTKvVSuv1OlodAiLfEDAyAzzyCzFGNJhMJjFO0uvzPNdwONSjR4/UarW0WCwi44G2g7jpt1otFUURtey81gkU60nZBySSlH/vhjEejzWfz4P0F0Wh6XQakeeyLGtdHXzfEAL6/X4IJNSz03KT8gyyABADiPR79wf2iXlCUCH8Xh7A753YMmfItwsECAqMfbPZaL/fRxcQxtX0r2DvKGOg9v/q6kp5nkc6P6ICIgCtJ10gcMItKUSKZjcFL4lot9sh/PR6vRDJINRFUdTMLD37ADHkLlNQfyZ4Lpg/Qoh7R3BmXfiTFCKa+4xA0N2vgPuwBpQVeftO3sPvPEuBZxIBDOHMy52YN5k3lO7wWeDnj7kjnCCsMM+EhISEhISEhISEhLtxLwQFj4zyvTvwr1arWrS00+nUotKQGiK4njYP4fMMCFroOSDikNbhcFgjXZBgrrNcLmtChEdNMd3DMBDidXFxEeT0c5/7nKbTqSaTiXq9XpQ+7Pd7XV5eajgc6uTkRO12Owi6JC2Xy2jpCHHL8zyEkO12G8Z4gEj2YDCI1P3r62utViu99957QZIRJyDEh8Mh2lFi4EiZgKenu6EiBI6xQOpcxLi+vtZoNAqBo9n1wMsHvCuAZ2aw3ozFxQWyTCDAlJE4AUY4gKDv93utVitJ0mg00nA4jL24vLwMnwo3s5RUew3jHQwGURrjppH8rtPpaDab1YQT9zto1vtDtslO4bX4dtAm0UUB1pUz6WeXdbi8vIxWlpBuLwdABGu325pMJrWMH54lylscPA8IOdwfEYbsCM8UcH8PzhXj8fKlpqjAnMiiQbRjL3zNMY30shnOtK835xbhJiEhISEhISEhISHhbtwbQcEJI+TMzRo9Ig0ZkupZDV4nT6S7me58eXkZUWvPZvCuAAgW1HBTt05kGsLtZRGSgqD6mJmHdBOh5+d5ngfR5d6MnTlhCkl7yNFoJOmGSNHWEQI1nU41HA5jvpBS70xwcXGhfr+vyWRSM29cLpc6Pz/XdDqNtH/ImqfEt1otrddrLRaLILIeyUf04L2IKk6mt9ttlFFI0oMHD0KUgWyylmQSYKyJwSN+AQgSdMyAKPb7fa3X6/AZ8H3xFons3Wg0inaanEf2Xrptd+n+HogKXg7AeyGqvob8nJ/1+/1aVwjOiV8T+HNAlg0iEq+jlCLP84jqS3rhOv687ff7WhcDz5pAYHCzSebi5RXeCpVxgLv8LjiblB8xXi+HweSTfWW/u91uCISMsZklsdlsIiPG50S2EGvLz73NKD/nrDHnhISEhISEhISEhIS7cS8EhaYPAd+7sRtffM8f/JAESbVIZ6/XeyHtn2s2sxf4vdfn+3+5JvfO8zwi7e6R4NFRzBQdRO7X67Vms5nG43FE20lJd6O8Xq8XP2fMkFpM/2glSaQZIaXpUE9HCDIx2u22ptOpyrLU5eWlFouF5vN5RI7ZB48Isya+fqvVqjae5t65iSbXXq/XQeDH43GUGhChR6SQboUFFxSIMiNEsKe8nvfgjUAEGqEEgYB1pozCiS976WsOIaacxduGehtIXysvKeCMNw0P7+pE4V4S7lPg/hw+V84yIpekmrmnn2PPBPJz72eeLAEEDH4O+ffnVlJkmfiZI8LPe5teEf58+JlnrV3EQZBplrZ4qRPnD0GFa7ggxlr5nOmEwnv8MyaZMiYkJCQkJCQkJCR8bdwbQYFIYDMiSFTUSVfTI8BN+xAe8jyv1VaTzu5RaIgx/gpO0qRbUgwR4X2UBTiZxoCP61OC4MZvEJXLy0tdXFxElgBlCO4VADHiv5KCUEOwqJ8na+D4+DgIE/f1SDVknBIQMh7o4PD48WONRqNayz0IHuDfROBns1mUZNxlpnh9fa31eq1+vx8ZBaSV73a7KPkgUtztduN63mmD/cIgMc/zIINkN/iZ6fV6kaGwWq2C7BdFEZF1hJV+v6/hcFibn5tBImi4p4JH6VkvyLeXaPi6Na9N14PmeXRBoWnQ6N4Nk8kk1lNStO1EcOB5gLhT2uKlFoyZ0g9EIOBiDBkjCBf+bPIMuPhHZopnCZCBgwCCp4ILg7zm6OhIy+UyxirddrNgbXimKPVpmkn6Z4s//743jJNxeLmMn6uEhISEhISEhISEhDrujaDgkVPQJGHN1nyUEBRFEVFGSWGgR/o+9fF+vWYZhGdJHB0dRcRfUpRI8HtJQcrcPwAC7LX5vIY2hNJtpsKzZ88iIp/neZjqeao8ZEdSzbDP3eipuydDg/T+zWYTogVkfLFYqN/vqygKvfnmmxqPxxHJX61Wevz4sSaTSZBkyC+p8d4qEcHg3XffDUNI0Ewnxz+B8gLI2ttvvy1JOj4+1nA41MOHDyPVvaqqyOLg3rvdTuv1OqLu/BffDL5YO8wL8RmgpaabLV5fX2s8HkdHCubNPChv8TPq5pSsDRkB+EdwHhE/2DeIsJfdbDab2vlE7HDDQggzwgNmnXme1zIovByI7Ave774A3qrRS0gQvXg+VquVrq6uwtOD9aG8wZ899o31dbEgy7J4Lrg3++LPGmeHdq28hs8AXusdGBjzfr/Xcrms7YuXQ/lniIttnsGAQaYbXiYkJCQkJCQkJCQkvIh7ISiAZj00gEDwGm+DBykhmk/EsizLaNE4HA6jfr9JQpyAQhghj94uEnIKCRkOhyFWUAvvWQHujUDEl/aPYLPZaLlc3hmlJiruHgYQTE+x9ygx5Q9ElMlIcGIKQS7LUovFQq+//rqKotDl5aVWq1Wt9aRnamRZpqIoaiUAWZZpMpnEej179ixEDf8i44D3FEURa79YLHR2dhYR4vF4rOl0qvPzc2232yjDQChhvdlr7tfcQ+mWUBM5Z95kMLjh4WKxUFEUIaB4C0K8KfCM4Jx6+YMLEP7epvcCgoJnknAWAdeSbv0oeI13xbi8vIwyEjdh5Fxwfpv38LOJSLFer2vnFqHBI/X7/T78CXjO8KPgOZP0QlmOiz2erdCEl66wd9zPfQ/cs4TnjWfEzU0948fXmrPmz46XTpCVw9mYzWYvjDUhISEhISEhISEh4WMKClmWTSX9AUn/HUmVpN8u6S9J+sOSvk3SlyT9lqqqLj7oWk4E3ZTO66fveo+bKToBJ3oLQYIkSS+WVfj1uKeTIgigd5GAcFDHTxQb4oLfg2cYQL6er12IAE0SfFepAeP6WrXgZCl4Sz5fG76HDG82G83ncz169CiiwfgbXF5earPZ1MwiWUei0ZBlsjnIcKC7AePyayAAdTod5Xkejv6UbPT7fY3HY43H48imWC6XGg6H6vf7MU46KzjJxPiQsXq5CsSaPbi8vIxovJ8x78jg5wEDRdYSQk9GAOUuTQ8BLwXA5NPJL2N3wYD98TPqe+fwbAXOOCKAZ244ueeMcUbcswJhTrol3ZBtsmqav/MuD579QEYE7+XcU+bhz7M/981MJfeHuOtZZd14vnkGmY8/K6yDd5k4OjqqtZNkfSgleVVMGV/mZ3FCQkJCwodH+hxOSEj4rOLjZij8fkn/QVVVvynLsq6kgaTfK+nHq6r64SzLfkjSD0n63R/l4u783iQQkmpEvRnh9baNROghQZ4y7STfDd+cgPEaL2WAGEu3mQWLxSLKMKhjh4hnWVYjX4gmZDfwen6PSEEkHeKHuILjvV/PjRGJwpOaT7o5xInOEe5vMBgMImrtpRyQ0zzPNRwOIxuE9PZOp6OiKKKcAXh6Or4FCBWUAVxeXkbnBzpQcJ3tdquyLFWWZXgl9Pv9SEXnbHjWB9F5L1vwzgmIRQgjg8FArVYr0vrX63WQc/fT6Pf7sc5E7Dk/EG0n3z4eyLVnibiw5IaAnkHjUXzW3Et+OMNE1TEibZ4LSD57wxnys0WKv3epQMTwkh6EEbJGEGIwd2SdEK3IkCGbwAUnPxte4sM5p+yD9yJ8eOZM08iSriAu5vB7zrYLOHhGsGZchy9Ep1cAn+hncUJCQkLCByJ9DickJHwm8ZEFhSzLxpL+Bkl/nyRVVbWXtM+y7Hslfc/zl/2opJ/QN/Dh6Z0J3NSumdIOMfCIIgTVDRc9ekzkFGGAazbN7yA5OPAjaFxdXWmxWEiSJpOJptNpmNsRAcWcb7Vaablc6uLiInwbIPfD4TDS/10MgXBWVaU8z7Ver8P8EZIG8Vmv17WWdk5isywLwg6xg9ASlXXzweVyqXfeeUfSDambTqc6Pj4ODwMEA8bcarX06NGjyDB48uSJyrIMcvno0SM9efIkSksgrZhY4hlARB0/g6985Star9c6Pz/XYDDQycmJptNpZDBwDwwjaSOJaOS+Ek4Y8b7wrhFgv99HF43RaBRrd3l5qdlsFsQdDwp8Kbheu92urZNn1HjbUx+X+3Cwd+xbs1MEZ8+zCTgHrVYrjCFdaMMwEeKMN4hna3BtvEcQk46OjrRarWL9INOenUDmCuvW7/eVZVl07bi+vg7hgzIH2nbSIpKSGsp/EDWabTbdE8Qzh9zI0edOVgHXIIPFBQ2+OAuIi77ejGswGNTMOu8zXvZncUJCQkLCh0P6HE5ISPgs4+NkKHyHpKeS/vUsy36RpJ+S9DslvVZV1XuSVFXVe1mWPfpGL+geCl7vLdVTpT2qut/vg0gQAXby5KQKkkMk2FPBm070kBGIvhs7QsYQNCBXToqIsGPQB0HhPUT9ifJSgtAcj5cODAYDLRaLIKysDSSLiK17C0iKdVqtVi8Y/V1cXES5Q57nEblnrSBY19fXKssyjA0Ph5tOGmdnZ1oul+p2uxqPx3r06JHOzs602+1UlmVclxRyfAy87v61115TWZY1L4NWq6WiKFQUhcqyjMwASDBEnLVAFIL4eumAewn4WiFOeXtD9oyMhe12GyUXTnxZd67J/TEGpAuCZ5eQoVJVVS3jgfNJ2QQCRVMw4LyQws858ii9/87PGoTb/TwQiRAryB5AjPN2oZwp9pX98XVZrVYhlnhGAs8MQhflQc2yFTd8xMyxmX3kZUh3mbgi7HnbWG+N2W63oxTDW4f65w3CCRkSrwBe+mdxQkJCQsKHQvocTkhI+Mzi4/y13Jb03ZL+4aqqfjLLst+vm1SubwhZlv2gpB+UFATRvRA83d5T2t2kDmHADf+akcvm+7zevpnp4KSCa3lEF4Ip3RrCMU7c9onQzmazWpQUos4Ymn4KTjohhr1eLwzhRqNREC6u6TX5koI4QWYZC3PDWA9yRVo6ZQVlWYYBIWPydpCHw43ZpXRb1y8pSDh+CmVZ1oz8vHOCm+FJN9klk8kkIt2URbgBJRkP1Ph75N/JND+DMMZBtZIHj3CzP34NyDBCBb9n3KwpZotkjjCWZnYB90XYYlzci/EhJgCINmOGLDfPvpdyuGcEZ5PXAvcnceNC9wZpene4GMcZZcxk59BWknPt/iK+X/hwuOkje+LeD7wHYYw98/H5nvu6eZkT5RheAuJr4CBLCWHOSybuOV7eZ7EGn8wIExISEr61kT6HExISPrP4OILC25LerqrqJ59//8d08+H5OMuyN54rsW9IenLXm6uq+hFJPyJJ0+m0ahIZSCERQsgD9e+QCE/pd0IgqfZvzx7wKKfXrHM97geR8ug/44IoIQQMh0NNJpPIVJjNZpHhwPicuFFO4PfZbre1Dgb9fl/n5+cxRqLolCFcX19HfTwEyM0J6VrgIgTkCtK73W5DVFgsFkHY3T/CyRip9nhSENHF0+D4+DhS7z0SzZo64WV/ae/Hvm82G+V5HsIKwgXXRJBxzwgnlcyTfW/6AXiWAuvQzFLhXqwbghFj8S4WrL/7ITg4b+7V4WZ/LlRwDRcLfC98PTwTw7trUFohqZaRAxgfAg1fdAbx54DXIqIgqnEGPDMHUcS7KTBWruOGnJRJeLmTP8PNZ8ZFG8Su5nPbNCallIXrc25dbHHBkjPH670V6j3GS/ssHmcn1V2vSUhISEj4ukifwwkJCZ9ZfGRBoaqq97Ms+2qWZT+vqqq/JOnXSvqLz7++X9IPP//vj30D16oZJUIIKBfw10GQPGWZdn5uSCjdGrVBaihlgJB4BBlSQZo/9+P1mCDys4uLixrBXC6XUXM9HA71hS98QZK0WCwi+g9ZgtT4WCWFVwERYNLFIdFFUYTxHMTbx94UYQ6Hg0ajUaRwk8bNnEjth0QPh8O4h/tHsK5FUdRaZGZZpuFwqPPz8/CNcHHl6OgoukZIijl79BwC2Ov1otTh6uoqul9AkiGd2+02PAQoDWAvXWTCYLDdbqsoipoAhMjDOdvtdnHdZpcHyhguLi50dXUVJo78HrJLlN5LdlhXL7nwjBG8CDijzayMpmiGqSIdL1qt25ac0m1mjZf+UIIhKZ4R9oL3kzngrSc9O4VrelYH5pUIGU0PBM66C1ycd8Si3W6n+Xxe87jwPecseGmQe0/4WjezFLh/URQhIDHvoijCx+Hq6ioMQjnv/vw0vTfuI17mZ3FCQkJCwodH+hxOSEj4LOPjFgj/w5L+YHbjZvtXJf02SUeS/kiWZT8g6SuSfvMHXYRUasiWCwqQQ+CRRsdmswky5gZtUl1YQJRwYuU+C4wHMkNatpM0op5u7kZ6P4R+NBppPB7XSjc8gwBAsiBtkCved3l5qeVyGW0wx+NxjZTxeveDgMzu93tNJpPwSIAs53muPM+DqC6XS7VaLb322mtB0J3IkzWR53l0gmDuo9FIx8fHQcaWy2VEvIfDYU0M8LaFrPN6va6ZTzqJJgLve99M4+e+7gXAOmy32yghmUwmNfGG93sJiu+Tnx8yRzgfnlHhEXPKQDwDA7LtZ5czuF6vQ3To9/tB2slW8MwOxBkEAMwU/Syu1+sQbYCXpnhJUXMfEBK8JACjSM4DZwczzNlsFuIG2QqcZcQ3v0+zbGMymYTIRUaIl7FA/oE/s9Ktoaln0HgGEp8DmKHyVRSFBoNBrd0r1/fMma9VGnFP8VI+ixMSEhISPjLS53BCQsJnEh9LUKiq6s9J+mV3/OrXfsjrRISYP+C9LaITd0iZCwDSbTo8adz8HgJDxBLC5oDsesSzST4hmXel7fMahBHePxgMosWhmxs2CQ9kjGgzkXjmytycTCKeMHbP2vD678PhEG0duR9fEC1Ei/l8rpOTkxAEECLopIApImvEvkwmk5hXWZa1tPNmGr3vXbPcgCi/dEsenWQ64XfhgTn7NTAgZD0plWH8XsYCeXQyiyiDGMWYOF/ck7m4ueJgMAihQ7oVLZpnjGtC2hEDOKMeeWc9fQyQeekmE8bv52vovgR+TebrZTCSas+WP2PeKcFLCci84P7ui9C8Hh0yyNTJ8zwyRjiLCBPcByGwWYLAM+itSt1EkfPCWSBThD138aGZ5eCC1auAl/VZnJCQkJDw0ZA+hxMSEj6ruDcW5k5qPGrrkUsn/p4tAJnZ7Xa19pBuzuYE0Qmel000swXcg8GJkKTIJnBBgfEjPhRFEVFRz8BgHpAfOiHwOoQFMiPcJ+JwOGg4HGo8HtdEF/9iPd0UEeLJuh0dHWk0Gmm5XIb4cHFxoddff11FUajX6wUxR9wgEwBBhjVx4ureFLy/2RIUgYcvX1vII9dzIYF19u4DGB26GOBii+9Jr9eLDhVknkgKEcIzKXysEE+ug1DDmLxen3PL+pC9wHnhvi4ocF4pY/A9Ym6MkbNBVJ1zSpaCR9RdbGG9gPsu8Py4oMB/naB7uY57HPgzzN769f2aXtrAM4L4QAYGXRo864P58FrG5mfFMwv89ZQmNZ9PF2n8GWZ8nlWTkJCQkJCQkJCQkPAi7oWg4EZ0EA4IML3rPf2dFHQi6YgD+/0+UugxNSyKIiLK1E171J46c8iXEz1PrcY7wOvEneT6l3RD9AaDQZB63g9Z7PV6tRKAXq+nBw8eqNvtarlcRttC6bY2HnGiLEsdDge9/vrrGgwGYei4Xq+DFEHUafGHaEEZiXRTiz8ajSQpBAU6LdAOcDgcxprh74BAQeo/LTHdOJN58XOi0C4YkdaPyZ+3tISYevq++0V4TT6ZH6wn2RcIGrRD5N7T6TQ6UxC59rKAZrSe1Hj22iPaXhriEXzWzU0RER0owwBHR7ftNPEz4OeMhTPDXpGNQ0vLLMt0dnYWY3NS7ecafwzmTmkHZ4jXIRxw/l3sa3Z1YJ0Ys2d0sC7sFWakfiZdTDg/P49skeFwWBsHwgfn38s0XEgbDofx781mE2Nl7Slf6Xa7Oj4+1mq1ip8j5DXnkpCQkJCQkJCQkJDwIu7NX8tORt0czSO+Ho13d3g3oNtsNloulzo9PQ1SPxqNVBRFeB1468d+v6/BYFAjvERBcbCHvHhUGCIG6YVs00YPAoNRIwIBWQ+tVuuF+7mXwHA4VK/XC2JIRJXU8MVioZOTkzAcdDND7wqwXq9jvKPRKMgXteO9Xi+EFsg95JcaetLMIcgQssFgEOINAgY+Ch7d964GTq75gshB5vz1ntUBaWSu7AuElXOx3+81HA5jfL1eL8SWy8vLyO7YbDYhNiBOefTdBQeyMhAwXJhptVoajUYRVZcU++hj4qy0Wq3wT3BT0MvLS63X65rQ5OUCCE8IHFy71+tpNBqFHwZZDMzFxQUIspcFuWeG+3FAxF388vIO/DRA0zOh3W5Hm1HmTvkBIhtlD1mWabVaab1eaz6fx7PjrU8p9+FZ41wyTz43yHgh64QzQhnSarUKMWIymWg6ncbnAh1P+Gzx0qeEhG8G2p//nP7qD3zh0x5GQsK9wv5f+TOf9hASEhISEr4G7o2gICmilqTNkxFAKjiEE6ILgfBacGqq1+u1ptOpWq1WkEsIMaUFkKM8z7Ver4NMeQ04hGe320VaORF8J8mIFZAvjyoPBoOIWCNKQMi9jZ2b7U2n05gjdfaIGzjkuwFir9eL7g/cH9GALAmPflNG0TRMXK1WEUUmggzJhxxC6FqtloqiqJURQMY8LZ0xewo+WSJ0X0DUgOiRqQCplm5T8CHIXvfe9NTAUwExivR4CHWe53F/5tLtdtXv9yM9HtLq94B4kyqPoIUARLaCnwsn3czF94GxenaMl3YwfvcvcEEAnwAvH7irJMPhQoOXazRLShDIEGOa12gKRn6eXIzgWoAuHcy92+3WPEcg9v4e92vwrCbGwl54KQfniLX3Miovk+JZZK5u9piQ8M3A5nt/ua7yI+2LTPtJOnsJCY4qabsJCQkJ9xb3SlCAAGAC6KnkpFeTYu1RTogOBHO9Xmuz2cTPcaGHYM/n84gEc09a5jVr6KXbNn1EfomMQuogW0RD+Tdkn9KC1WoVAgFdE8gugITneR6lGqSB0x7R/Qskab1eq9/vBzn2iDSCAuOBQHlpgnRLaHn9crkM4YSyEemWsDEWhBlEFzI9er2e9vt9vB4C714UnlUC4XMhxzMRPEqPMOEp9ay/izukzEuK9fW2n1VVhZ9CnudaLpeqqirEo8FgEOKLR8IZB5kHZFZIimshNLjYBbnn3vhLMF4IN2IK83cC760ZIdO+rpDlZtcPzgPCDu9xsQdgOsp7ua/7ifjr2V/Wl44piFeeqQMoP+I13r4TM0vWdrlcRlkS+0l5EgKjr4ELcy6m+JwRI1l3rkE2BoIEGSNJVEj4ZuHpL2k/FxJSC/qEhISEhISEVwf3QlBwwkHdO+nmbq7oHQAgtBAdL4cgdXmz2URnhNFoVHvf+++/H2QR4kNkmjHxb6K/6/Vau91O6/Vao9Eo3kMnBO4PiSf63u/3dXp6quVyGV4OkD0MELfbbQgOrVZL0+lUjx490nK51MXFhTabTURyIUeXl5eazWba7XbhZ4D3Aeu32+3CR4ESAAQIT7+/vr7W+fm5iqLQ6empptOpJpNJXI+sCNbkcDhovV7r7OwsSjWISK9Wq1pHBwQhF0OILHN95oa3gQsv/X6/lqlBKQrXc88AzC/9TCEIeQYA2QgQ2cViEaQSXwmyWtbrdc0zgZaDpOgjUBDl9rEifLlJJHvskX/KZVi3VqsV5SeIB5xT95pwzwcyJNxrwTMA/HlrCj3uP8HYpdtSBc4Logfj4RyzBwhQPk/Gd3l5WRPZXCD0MSJULZdLTafTKImgrMkFCx+Ld4lBMHCfFa5BmQ5z4VnlC/HOxcqEhISEhISEhISEhBdxLwQFyCikBq8AN+VzMgU2m02QCm9NeH19HW0QKR3odrs6PT2tmQTO5/N4n4sWTtwppcB4EDHgvffe09XVlSaTiUajkabTaa0LQqvVCiIEoTo+Po4xYsCHz8N4PNbFxUWQoPV6rUePHgU5XC6XQfyJCHNtUse9zp/UeAwLIUfu69Dv96PN42az0dOnT/Xs2TO999574T3x4MGDqH2HaEMEd7udLi4utFqtagSdvfTMEdDtdsOIjywAT0MvyzJM98goIMMEoaHpUeElAqwFLS9ZA6LgZKqQzdFqtTQej2trB+mE7CNwcTbJRnDBwTM0EJi8ywblLGVZarVahUCEAICXBM8AfgzuLcHZYB53GUlC6h8+fBh7yzM2HA5rXThYE77HT8L30DMgINvuBdE0KGVMnDvvbiLdZl1whsk84L+YaTLvZ8+e6fT0NM57u92O8iTm6lkslFg0SxY8e8d9Lrz8AaFjOp2q3W6HIJmQkJCQkJCQkJCQcDfuhaDQbrejxaKbMUKQnJBIt+nLRMQ9cg4xgfBS/uB+CEVRaDwe1yKRkHAnZpApL0WgvWNZlhGN5b5EiCkV4PeejQDR9DGTfn9ychIeBhcXF/riF7+ofr+v8Xis0Wikp0+f1lLsuZ63I/S1gahLqrWj5Pd5nuvo6CgyNd5//32tVis9e/ZMw+FQjx490ng8fiFCzj2qqtJisaj5NHg3jmZphZNOiCwlCRBlL5Mg24P9wc+BM+PCCetAGYLvhRs9emaDlwO4waYTzl6vF94LXMMFhevr6zhL/N7PUvN6iFTetpL18P3DE4N19d/5c+N7QSYF/hxe5nE4HGL9OC+M1efqzxelDy7quXeEexW4kSNiARkDnAfOoT/HzRIOb6WKkLLZbOKsuJ8KzyriH+PzEikyNBAjmgII4/AOLYhJzc+dhIRPEp//j9Z68ksHWn57KrNJSEhISEh4FZH90l+oi18wfunXPbqqNP5DPylV97Ms8l4ICh4RhgC4oEB08q73QcbIDuD90q2osNlsam0mIePUSHutufQiEXYSjxP/arVSWZZB5g6Hg6bTaRBuyI+3RkQ4QFBws8HBYKDT09O4/mKx0Gaziah3nucxP9K9j4+PI0K+Wq1iPj5PCDalIE5OIV/egnC9Xmu5XOr8/FxlWUaEHUDgWZuqqiIrYLPZxLpLdeM/FxQw8uN6RL4pXXGfByL5eZ5LuhUZyGqhbSaeGaytCw6IHBDXTqdTI/tkOnB9FwB8ztwTQcGNCMku4D6sb/O8ch5YW+Dk2s8PooJHyr01KOSZbAZItndHodwAgcn9JrgfZ8u7c1RVVbuv+y64sMP4m11XeBZcZGquR1NUQOzi2pxf9txFDebLe13QYQ32+31tn5lX09uB9WBcvnYJCd8MZP+/P6fB536llt/+aY8kISEhISEhQZJa04n02sNv+PXPvmuss1/08kn/0T7T8X/1ndL11/+79PClr6p6nn3/zcS9EBSI3pPW7XXjpJh7/Tsknve6i72TQFKfy7LUZrOJlPxerxdp9G5mCEEm1d0JMZ0dINCLxUJlWYZgwZjb7bZGo1HU5nvWw36/V57nta4QboD36NEjrVYrbbdbrddrvffee3r06FEt44FSENofDodDbbdbPXv2TG+//XasU6fT0XQ6jQg/11wulxqNRppMJjWifnl5qddff12bzSb8ESDnkiILQLolxhBS7kF2iRNjMgTckFBSjeATGUdYcI+AxWJR63AgSbPZLIgnpRukrrM3nqWBoAMJJ9W+WSoA2WQv3aMAMYESDTfUZG8RbIjqO1nmTPL9fr/XYrGIKDxzd6JOJ5GqqrRcLqPLBqUPZGLg/QChJxMFrwxS+9kLzvZ2u62NCbHDjUq9ewrj4sxyP29bSjkJJRLeupG99WwAsguaWQScEXwTEMsQ17IsC48JRESeZ/bE22/6Z4d7JZDZ4kamfEb450xCQkJCQkJCQsKngE8xY3T/S36OfvY3dD/4hYFP5u/GQ7fSX/oHTj7wdT//X7zU1Ze+8vVf9An8bXsvBAXIL3/ge7QSYudp8E44IHtueEf6NyZ/i8VCy+UySLmnT2+32yBE0k10HU8Ar83e7XZhzshYnjx5EiR2NpsF8SqKIjwHIHqQPPd8cNJ2eXmpPM/14MEDHR0dabVa6fz8vOYxwPgglPgytNttTSYT7fd7XVxc1CLxDx8+1H6/D0+J3W6n1Wql+Xyu0WgUGR6j0UhvvPFGeCKs12s9efJEjx49knRbG0/Elz2h/p+987p7CKFnIEBQ2ScyN7wMwlP2i6LQcrmUdNs68cGDB7X1RBxB7CmKIsgre7FcLoPwEzVHCOFcsR8II16XT6ZEk2BCUCGz+/0+BCbvSOBCF8Qe34L9fl9rb8g9iqIIUaEoCp2dnUVbRQg2Z/Tk5ETT6TTI+Xq91uXlZawtpp3sIXvGeNhPF3wQJGjhyLlDOCNzgPPhPihcD48LXutlKggQjAP/CRdhXCzy8hf3neDZ5/lgX5gXwoD7bDAOxCzWHJHEBauEhISEhISEhIRvPlrHx/rLv+vnf2r3r46kV6n70n/7O95UVr35dV/zuR/fq/Mf/9RLve+9EBRIOYeUSLctICGe/ByzNvcKgBx5yQS11/P5XPP5XKvVKkiVp4zzPePgC8J6dXWl4XAYrvBEz4+Pj6OTBKUVR0dHms1myvNcq9VK0m3bQiL4RMub5RlEcclGIPpKxgLEjbFjKnl0dKTj42M9fPhQV1dX+spXvlIz14NQQqK3262Wy6UGg4E2m02t+wCdCoiwz2YzrVaraIeI8OFrRckCxPzy8rIW8WbNeK0TPogx74H4sgYICly/qioNh8Mgkt4KEwEIgsp9i6KI/Vuv11qv19EFg7X3NP+meR/Elsg9hNmzMHiNp9HjfeBtIaXbMhBKJ1h7F5sYE+OC2GM2ShYJJJ3UfiLvnB9e4+aUnn3Ac8J83IyRMXiWBEIJJRluFol/AvfgmXIBwssj3L/hLp8DngnGy+spq/HSCO7nmQb83MUcBEfOiAsq3nGi6YeRkJCQkJCQkJDwzcP6N/4KbY6PdOhI171KSrZW3xAOvQ8WP578sp76X/xVH+0Gf+CP3fnjeyEokHoPMZRuuzVIqhnSQWDca8HN6SB5RCLLstRyudRisYhUaU+7bqZ0S7fp/fwcYu7p4HRBQHzAmwDCjlkhxpGj0SgMIj3lmvlBZrwuXrr1EGDOkiIbYLFYBJE8OTmJdpnn5+dB8L0kBHGCddlut9FWk8wDyiro/FCWZZB4CBnjhnQxH4gthExSRN894u9E3aPORLS9LAUyPZ/PY66UHJANwM+I/CPYIEwURREknvR/94GAuDYNFV1YaO4X8+cavtbeFpLz6maTHh0n8o6o4j4efv4g8ADBCZGIjiduiMi5wpDU94Az5uagCA1OuP1a3jnBfU54PhH6PMPgLqNKfu5nykUIf6+XM3h5iYsjnlXAtfyzxf/LmnhZFc8UooSXOyVBIeGbhdYv+LnaTTO9SpGQhISEhISEl4XW6Ymqz70mSTr7BS3tTpOP1SeBzWsHbV57ude8N4IChoCkMhP1lxTEiwwGoq8QFaLwXpcPkaPk4ezsLCKopDETwfXuBx6x9Ag64gHEqNvt6sGDB+p2uzo/P6+JGrvdLkwNHzx4oMFgoMPhoPl8XjN29KwDSLx3QqCcwqPYkKXtdqvz83Odn5/r4cOHevTokb74xS/q/Pxch8NBy+UyshkY72g0ioyKsiw1n89rbfZIkccI8Pr6uvYaJ29NDwTW0U0NJUXWBcS0Sdyvr6+jhWar1dJwOIwx5Hmu4XCooijCR4CMBDwEWHvPbsHPQFKUCzD3fr+v8/PzmviEUMTeO3lnvFwXoYqMAogqQKRC6CKLAGJMKYq3f6R8BZLOOiEYXF9fK89zjcfjOGPclxIILxngurRXdALN3nU6nTAmdaPPwWAQAoV069cwmUy02Wyik4SkGDfPCl4QiEL+fHvWgQsHnungGRWsrZdAYZTogqKkeG48S8EFK8oagJt0klmBsIFYxPia+5uQ8EnhS3/XA+2n6Y+nhISEhITPII5a2v2ib9eX/vbO8x+k/x++SrhXggIR84uLCy2Xy4hGQjjG43F0PXBRYTAYRBQdozmvB3fyjGkdhAXyATGDbOEwTwTZo6QePe52u5pMJhHp5t7Pnj3Tl770pSDGEEIipP1+v9aZgc4GiABEfff7fXRygNCSVbFcLvXVr35Vk8lEb731lt566y39/J//8zUej/Xee+9psVgEyWq32xoOh1oul1qv15rNZhoOh7VSgYuLiyCMiDJPnz6VdEPMiqIIoguBy/M8Wvm1223NZjOt1+sa6WPOvNfJOJkGZVmGkeDDhw/DP8CFiDzPdXFxEWLB0dGRJpNJvBeCSmmLt9McDocaDAZRDkA2BYKCR8olhTjBvnq7Qro0uGGj7xvzd/+I1WpVMxVkHN69QLol2ZBgSneGw2EYaHr5gosWy+UyzAS73W4ICpRFcD45Z9wHY1GMSrlvWZYhVCCKPX78ODpUeGcFBEAvQ8GU1DMWKJ/gjCGi+Lnya0uKrBoEk6IoaiUKrIGXSXFNSnR4dlk/Xs9+ZlkWpoyIDdfX1zXviYSETxJf+Gd+SvPf+Ev05Jd/2iNJSEhISEj45uLJP/QrtPxipZSl92riXggKrVarFkGmZl9SkD13pHdST1TUTeCIAiNQXF1dab1eB0GCcPHffr9fc66XblpEQnAgdRAahAlSwEml91pvIsQQ+OPjY02n0yBeRVFEyQLGhHS6QKzwEgeyFVgvsjaWy6XOzs709OlTPXz4MFpPrlaruI5nPkAYLy8vdX5+rvF4HK0Vy7KMTgKQzrIsw2mfkgM3uaNMAsECAkdmh5dyuP8DHRjIhsCPAuLNGvJfBCNfH9ZCUmQBsP6QXIgxwgfZCufn55IUfgCMm2wRj5K7gARpJbuEiDqiAvvkpNh9NBAgOHeXl5fR1tTXqWleuN1uQ2ThvogWbnLpJpNe3gFp9iwXSdGFgS4gRVHE/pNJQ8bDaDQK8YZz6xH85hq5hwfPCuUK3pnFu4DwvT9XzI/z56UbCG+eLcHPODt+9nzuzYwEnhU//zw3CQmfNC5+63dr+cVMKSqTkJCQkPBZQdbp6ulv/6Uq36xUtZOY8Kri3ggK/X4/Ut1x+IekUSsPQUE0ILpIJFi6Nc+DGBFFhgBBUiCQkDsyEkCzAwPvx7WeiC+EBF8FiBI+B6vVSmVZKssyDQYDFUUR5LnX64V7/mq1Uq/Xq5EfTw+H7LgZ5eFwUFmWuri40NOnT7VerzUajTSdTnV8fBxZF54hABGrqkqr1UrL5TKi6F4qQPYGqe+IEp7VAIFF4KBVpqTwZiDq774J/Iy2h/g2bLfb8Hbwkhbm2+/3NRwOI/PCPQ0QLxCWAGuLfwZGj7PZTNJtSYP7BrhhJ4JFs1Ui58z3hXVyg03e32q1wvfADRDx2MDwkL2GJHNvWo7SdQIxgrE3fSGcCLM+ZAc0PQZYY78OEXuEvF6vp+l0GiURbnAJfL8poSHLhOcZAYbz5NkdnpmDWIAoQ6kJAiJz4Bpe6sRYWHd/hrwVpZ9F93OQbrMefK0SEj5JLL4j036SxISEhISEhM8Osk5b8++sVCXLqlcaH0tQyLLsH5X09+smP+XPS/ptkgaS/rCkb5P0JUm/paqqi693HUgSqdWTyURFUWi1Wmm1Wmmz2QQRciLm6f+edi8pyLkkLZfLIHkQZkkaDAZB3IiUuxEeHQc2m02kp5PW7YZ0h8Mh0tiJbCOCLBYLzWazEBBGo1FkKeR5rm63q7IsdXZ2FqIKte7Uj0svpopDeCgReeedd/Tzft7Pi/aBb7zxhsqyjHaWTpghbOv1Wufn50G2ia5Dqnq9XpRckO3RFBWIUpOpQFmEVI8Ae3kJe7bb7TQYDJTnuXa7nbbbbbTLHI/Hmk6nta4DiDbr9TrIK+u03W6DBI9GI0m3IsxisYj9Go1GIX64QaT7WCBQURYgqda6kD3gfqAZZXdvhm63GyUulNUgpLHGiDdNjwK8BIjQu2+Fmz86KffsFtbIPRp8vE7G7yo3QNCZTCbK81xFUUTZDJkaCAOsFV4idOmg3AYPD+m2A4qPm+wV9pdnApFiuVxGSZKXb7hBKNkqPje/h5uDIg7xueHn6lXKUHhZn8UJnx6ySym7VvqjKiHhFUX6HE5I+JDIMmUNn6uEVxMfWVDIsuwtSf+IpF9QVdUmy7I/Iun7JP0CST9eVdUPZ1n2Q5J+SNLv/nrX6nQ6evDgQRBwDATX63VE+ClbkG6ihxBDSdFGz538vfxgvV5rt9tpt9tFqvlms4n0a0gGZMsd7j36SVRfkl577bWIakK6RqORhsOhhsOhVqtV1NPjCXF6ehokaj6f68GDB0G6d7td+Bq4WSHEzuvQnaRWVaXZbKYvfelLevfdd2MMDx8+DGPIsiy1Wq1qRFy6IZvPnj2LcgAXFCDjtJckE2K/3+vNN9/UZDKJUhFaOrJOiAvuT+DCCPPjfmSD5HkeJRzj8TgMGZ0sIyowTsguZHU+n2uz2USmRJZl0fmCbA3PioDE73a78KlgjyD/nv2CuIQY4F4L3O+uiL+TeDIVfE0g0czTvUD8nLF+3j3Bsw58f8mMIcuGuUPIOQNHR0e1VpOQad6HX0Gv19N4PA4zR8Qf3x9vD0m2Bmf15OQkynwOh0Psk9/PBSg3TeQaCFveheEuo0vWkg4XwMsavNNE04STdca34j7jZX4WJ3x6+MI//Z9p8Zt+mR7/ik97JAkJCR8W6XM4IeEj4Fd8l/7bv6tQdZRKHV51fNySh7akPMuyS92osO9K+j2Svuf5739U0k/oAz48j46OgggTkYQg4N7vHRnwHIBkIA44AeMLouqdHCAMkF2pXoPv0eqqqiLzgDT+9Xqt+XxeS7GGtJOWXxSFyrLUZrPR2dmZzs7O9NZbb0Ut+qNHj2qR/8ViEeTayxLIUmAepK4zDyL9i8VCP/MzP6Pj4+Mo+SDbAWKIPwIlEJBUXy9M+lzo4D3X19daLBbRiQGjQ7wBNpvNC238SJF30uYghZ0sEVLpF4uF5vO5xuNxbcyst5dQOInFVBJyi7El5R/SjT8Gv0dcIq0ewYDsEQindEvWXYhCuEJ84Mx5m0M3h2RtOCuQaTdwhFx7NgTlAogRzW4JTpQ93d+vgfjD3ng5h6Ray1a6JUiKriDeHQNfCww1WV8EGe6PsOYZGdyzmQHAvzn/CAFeHuGeEb4vvMezFnze/lnj7Svvgmd5sEavAF7KZ3HCp4fq6ip5USUkvNpIn8MJCR8CVZYl34RvEXxkQaGqqneyLPvnJH1F0kbSf1hV1X+YZdlrVVW99/w172VZ9uiDrpVlWUSNvfWdu8BDliBVkHxvzweRfH7v20m222F8B7GDsCMaEMHl9RBBIqxkQyA0rNfrIE7STWr4crkMgj0ajUKwWK/XOjs702q1isj+aDRSURQaDAbx5YSb2nqiw+4N4Kn1jH29Xuu9997T+fl5ZG+4gR1k0smYG9sR/Se662njiA2s/Wq1UlEUUf6AqSNZBz4+9tFN8e5qtSjd1vMzHwwtaS3oLRB9r71tJIIPe9Yk4m5MyHh8TMwDvw2yFTgnzNH3AcNFv/5kMqmJOXgKMNfLy8sQyrycx3+PCOM+AdKtuONdPxgPZNi9Kxg392HMfk3KM1ysctEGUYHOEIhFlDzwGv9irD5v30sXRnwd+Exo+hf49z7n5jOBCOQZD833sefeStPv4+frvuNlfhYnfHrI/rrv0ubhkZIpY0LCq4f0OZyQkPBZxscpeTiW9L2Svl3STNIfzbLs7/0Q7/9BST8oSV/4wheCvHnHBv9y0kG2AV4HZANAVHCud5M4os+r1SpMHz2y6x0JvD5bunXy91Z+pJNDSK6urjSbzaJt4enpqfI8DyHj6dOn4ZNA2jgmjUVRaDweRy03Kdxct5mKDxFzor5er/X06VM9e/YsRAsEBUQDoskQYsbqqfeQRe8Q4FFa6thp9zgajUJEKcsyMgSAR4T5crNF5uDknPnMZjPNZjNNJpNaiQSk3/0gEKS63W5kN0B+EQhoP8gZcQ8ExlNVlTabTdTq03GENXOSDxAsyAYgS8UNQPHf4MzeRVjdZ0K6zYhw0s36cc3nz1Jtn5skXlJ4KPgz4SIVmTAYPzJ2vqQb0Ww+n8fZ9UyPTqdTE/V4ZhBYEPEoreF1ngnBvL0kw3/O+jc+R2reHHzP+eU+/J51bT67Td+JpunqfcbL/CzuK7XJ/LTw1V830u4kRWoSEl5FpM/hhIQPh6N+X5e9VyYLNOED8HFKHn6dpJ+tquqpJGVZ9m9L+tWSHmdZ9sZzJfYNSU/uenNVVT8i6Uck6Zf+0l9a8Ue+kwf+6IcoekYB4sLR0ZHyPH8h3RuS4oZtdF0Yj8dBmDB7oz4eMgHRhSxKioh3lmVar9e1Ovp+vx8GgN1uV9PpVEVRqNPpaLPZ6Ktf/apef/11FUWh4XCo8Xis4+PjSPEnNZzyhtFopNFopFarpdlspuVyGWOQVBNMII+r1Uo/8zM/E2s3Go1qrTal23aO0m0HA9L0SWEn/R7RAni6OmUfm81GDx8+jJKQL3/5yzXzQQilm+JJChKa53nsDePCaJK9fvPNN6McYLlc1rpAFEURwgfXu7i40GKxkHRLTiH05+fnms1mGo/HUVqDgIPh43w+18XFRawNY+X1ZKkgTNCilE4NV1dXuri4iJacnA8EDcwKXRDxWn/OPddyAQVBAtGDDJrpdBrv9UyGpljG/uENwWu73a6Wy2VkqiDuNU0eEbgOh0MIYbR6zbJMZ2dnkd2y2WxqhJ97c964F+vsRN8zjxAgODuePcH5JksF8dFFMZ9D06PBM0NcDGHfXwVBQS/xs3icJUb7aeFzP/yntfytvyJ5KCQkvJpIn8MJCR8C7//Ad2v5HSkj71sFH0dQ+IqkX5ll2UA36V2/VtJ/IamU9P2Sfvj5f3/sgy4ESYFQSrekhz/6ncxKt4KBVDf6c3M1yALp/7QlnM1mET3lNURYKYvgetwPR31JEQ2GVEIYIUv4JpB6nT036Hv8+LHG47FarVaQcE89h8iTuUAXCso71ut1TWTx8oLdbhfmg48fP9ZwOIwx4oXgZR3Zcxd+BAoIGcTXBQEvD0EgoEsE5pJ5nivP8zDdI5uA7BBIHRFpJ5BursdauzkgHUAQTcgOwW+CTAPPVIC4l2UZghOZCvv9Xuv1OtbZxaV+vx9nDW8LSkE8swPviaahIHNHkHIBSLotSyjLMog755mzwnn09WDv8PSQFN0tuKY/I06cXZzg3F9f37TTRBC5q3PK1dVVZF2QtdCM7JPVwlyOjo7CU8G9HFzkcENIrs2ZZB392WAMnp3gwgPfA/bT78G93VPCnz2ed97HWfWSjnuMl/ZZnPApoqqSh0JCwquL9DmckPBhkEnV0Qe/LOHVwMfxUPjJLMv+mKT/UtKVpD+rG3V1KOmPZFn2A7r5gP3NH3QtCO9dtcxEj+ka4FFa/vh3nwXPSIBs9no9FUUh6Va8aHogQBghb7zW6/WbUVFPSYfMQZTLstRgMAgSdjgcdHZ2FgQWggyh8TIGiL2nwBMVh/QQQfa6eXwSaFVZFEUQa0/rds+A53sZwoUbUNLCz9PiJYXZo6QwxJRuzA5PTk6irIIWgYyPf7M33rrPa9shq4x5OBxGJgPXlRQlDf1+vxbddjM/J8TMn7l59wJKIzgvCFP7/T6IN693AcENIN08cbPZqN1uR6kBZ4s0/81mo6IoaqQWEYA99qwE1s/LNA6HQ+1ccD32xrNLvLOBZ6uwN0T3XVDwrh/evcNbTzqxb7VamkwmcY/9fh9z824ld/ke8Fy5qMjP3BfCwXVZIy9F4Tli7jyXrBv3bpq4cl1/7X3Hy/wsTvj0UP2aX6z1a8lDISHhVUT6HE5ISPgs42N1eaiq6v8g6f/Q+PFON8rsNwwix04a+AMfJ/5+vx+kBmLlRAAiBWF1Ii9J4/FYWZaFp0FZljocDuFL4HX91XNTQidrHtWEcEPy9vt9GEoyLsoYEBCqqtKzZ8+CYOV5HiKHpEjJJ3XcTRX997StJEXfyRFrs91uNZvNlOe5yrKMebi5nwsjIM/zKLPgWhB2iOPl5WXNOJPuEaPRSOPxOFoDYlLpawhRdsEHIojBIHuGELDdbqMcgzOAF8H19XWsU5OYQjTJGEDA4X5EqzH4LIoi3sM+SrdmhBBrN1f084og4ftZluULLRQpOVmv19Ea0ttSsk9eWuFCAwKOt0JE9PBzyHW9ownrTvYD1+Ie7LNH9L0UhTPimRWsOffBjLLdbmu1WtUyB7wcgS8XHZolTZxzzzySFOJe8zOE9fVWkhhqMgfPOvDyKO8QA5odIu4zXtZnccKnh3f/e4PkoZCQ8AojfQ4nJHzjaG0rtXaZrnvp/3vfCvi4bSNfCiBYXrNPlJ7MAVLc3fzNPQB4nbd7g7xCfrrdrsqy1HK51Gq1qokIkmqlC/P5vHY96ZasZlmm4XAYNfMQnqIoamMuyzJIL3X8lFt0Oh298cYbMW+PXJOdAElFPKD9JcSp1+vp4cOHyvNc5+fnMd71eq3z8/Mg/HhAsAaeUk9pBQIMJSJcp5mCv1wu1Wq1lOd5tI+kpSC19H5NSiCYo7dKlFQTbhCK3POAdaRefzweh9DgZSKINogS7K2TVCehZBG44IRZJ2eBPc+yLEwd+eJeu90uylT472q10mKxiP3Isiw8Mrhmq9UKnwfELq4HuceY04UK9tOFIIQQb8/JPGh/ybpKN8Se0hs8KdbrdfhK+LW5H6U9nLu7RDju1263NRgMNBwOI1vFy1fc2BKvDn4mKe7nWTPsJWfZs0U8A4IzyzOX53kIlpw3bxvp2TOIMIzJxZWEhE8ab/3Tf0rL3/or9fhXftojSUhISEhI+GRx+gf+tE5+9S/SX/nN+ac9lISXgHshKECGIKqQ1263q6IoaqUBRD8xfqMzAqICxBxSBenhWhApxIDNZlMzcyM6Cgn2tPaqqoLce1q935OxuqGdR00vLy91cXFRS/3ebDa6vLzUYrEIUj2dTmM+0q1PBBFXhAWMCIuiiGg+ogdkkC9IWqfTUVEUmkwm0RGC6DQ1+mQCeKr8cDisZYeQOUCq/GKxiOgxpRIQP+ZBdJioMOUAGBaSxQBRJe3ey04wApRuTSYhwV6374ICUf9mJwX2h3PIfPysUX7g72Ut/QyzP/zes2X2+32cOTww8AdYrVa190LAybxwc0UXKdhrRJr9fh8CCOvKGrhQJN2Ur3iZjnfUwAuBbAcEn+VyqaIoItsDEcozP4Bn13iJCQIA60o2EO/lvFxeXkaGD+IKJTz4rbig4wKVZ7jwmUKmDeeELBfPjGCcCDy+vwkJCQkJCQkJCS8RKTnhWwb3QlCA1EH6iXAToUY8kG5rmj2q6eZ8kD8n8d5+stPphBeAd4aAQHKPXq9XMyd0/wEisHgWuBGkdOsgD6mBJDE2Si7m87mOjo7iPqR/4+A/HA5rZJK5u+iBHwPCi8/1LjDPXq+n8Xis09NTFUURJNJr3l1UgIy7vwCkkveSbeDr2SwNkFRLoR8MBmGGCeFmHSHZiAp09KA8wU38POLs++HRdt8/zoYT2d1uF8TbMxQQYaRbXwIfIxkCLv54Zg0CAuehed4Qo9w3gjk1RQs3MkS8Yg8g7Kw1QhdiB88IJp4IY0TlKQGhAwTzY478HpNLhITmHnhZy2AwiLVnjfk9opNnRSA48byt1+taSUK32411Ze98nXgmGQfPR/OZdVHIfSqYI/fz85OQ8Elj/JeXuizGOv+u9FdWQkJCQkJCwquBeyUo8Ef/ZDKplRwQwYcgSYqotXTbglC67f6AoAAZ8YjzZDKJ8gKIC4SZ90AqILRuakh0ntRqIqweZW6WYFDf7oZ36/VakmoeB0TrV6tV7fdkTDiBg9wdHR1pMBhEnbyTQF8DxgbhHQwGOj4+1nQ6je4Ono6OwSCtJCGfbgTJXP21EFrvKEB2AXP0NHPWgzIHJ7MQXfdDIPvEu0Vwz2abRCeETuKpzXczT84E68V7+J6METdfdOHEhRYXK7IsU1EUMQ/GynW8+4D7JTS7K3gGDd8zn16vF0Ta59o0jvRnzjNW8jwP4YbnyLNFEOLogsL7m6KCmx969gQihncqYfycHy9jYoxlWYYg4+07eZb9HCLUIAJKt6VTvHcwGISpJ8IE4+Psr1armkFpQsI3C9VP/QU9Ov+izr/rjU97KAkJCQkJCZ8ojvZX6iyOdDk6SNkHvz7h/uJe/LUMoTo6OtJ0OtVbb70V/gOIDev1Oog1qd8Q8e12q5OTkyDM1GkTbSU93MnZarUKkYL0bsglhIKIJkTZWy+Ox2N1u90gWZLU7/cj2kvKOfPjOpApBJFmRgC1/ev1WmdnZ7UyDuYOQVwsFhG1J9LrEXgEDIwLKfVAuKG04uHDhxqNRrq+vtbZ2VmYKfpakSI+mUyCfGH+yPodHR3Fe4lE93o9LZfLILSUlnipAWIQpJMx03JRUpwPFyIgl94RgdICzDedcEq3XQ7ckA8SCtx/g/ERTc+yTKPRSP1+P0pUvLyCsyzddgu4vLzUcDjUyclJGGVCvlmP2WwW5RAuZHEd4J0RWAN+z7l3EcDFH+7pvhBcE/LPOpIZwL4R5SdTYblcxvq5Kaivq3fhYH0QbbzlJZkSo9Eonm1wdXWl2WwW/hysx13mnqw9/2YOg8EgxkBpkGc6cYYQM7xzScpQSEhISEhISEh4+ah+6i/o2396oJ/5J/+7qtKfW6807oWgIEllWYZJXlEUmk6nEQklRRnygh+A1+cvFotauj9k0OvyITdHR0cqiqJG2IhIQq6cxFMDv16vI2p+fHxcazfo6dGQOI9+Q4IhaYyd6CyRVKKry+WyVoeOGZ6LFBg69no95XleazXJWBgvHRwgXbPZLDpGkKngrSghmxjUUdPu/gWIOV4qwNyJPlOOwT5AmiHBtO90Q0bG7PsFUXTxAaLc7BLQ9I5wuPjBvpJFAUHnLODlgSBBNsZ4PA4xg+vneR6CCHNF+OHaCDkISl7GIt14DSAQDQaDWpYEYgbZM763CCDr9TqeBy9bYP+4F2vvUXkINOAMeIkF9+Es4PPA690gkWfVfRzIhODa7BNZApx3RJbm3HnumZ9n43jJRJZlNdEC88vD4RB+CjyXrBlnlXPNujTPT0LCJ4nd3/rX6Su/rKPUOjIhISEhISHhVcG9EBTc4Z4/+vFRWC6XkSngmQwQDkDmgJvnSbdR7/V6HQZvEEfS3iFfRVFEZH+9XgdpJDNAUpCv9XodkU9q+j3FHBLnNfDuUeAmepDI6XQa0WvmxPpINwQS00BJURZBGjpr1yRjECh8KTabjbbbrZ49e6Znz57p5OREx8fHGgwGse5EbcmQ8JIML5+gJp1yCM+2ICLMPDCSbGZk+PeILk5M2TNIqWcDsO/8zOv5OQ98MV5q+0n5RzTi/uw70X9EHvc/QEiCYJMd0mq1IpuG8+fEmvPlPgnuD8L4EQu4r683++AEHtLt5QUIVohWXgrgpQrcmzPkppVuSMo9mA8tSf3nvJfxNltFMi8XW3ytmuKFi4NeYuHwkh4EFz4n8G2gTSzv9RIeF1O4lnunJCR8s7AftrSfJjEhISEhIeGzgWq/15t/8qCnv7it/ST9/+9Vxb0RFNy8j4g7X0R9ISMQGN4r1Q3rSE+XFORnu91GS0bIB4IC70FwIPUfwuSO+JLCmZ+abG+7SEo+0U0nZy50HA6HqOWmJGE6nQYhckHEjQE9a2G9Xmuz2YRHA2QMI7y7jPgg4GVZ6uLiQm+//baOj491enqqR48ehaiQ53mQX4g/6ej8zP0lIHtueNhut1UURYg2+D5cXV0FYSfjgDVhHZ2Y0vrPTSel21ISBAsnxy4ouCcEryWFn2g2Y4bM+u/du8KzIohoQ5Q5d6PRKCLfngXgYle73Y7yDs8ccEEB/wEvleH+XM+NEDlnCFmIP77Oza4lvm5eAuRZLryGs+jn9/LysnZ9zxZxkQcRkDIMrummpszdu0CQTcJ4WQt/9vk3zzSCgntvILaw94yP7BjA3rjhY0LCNwPt11/TVT9Tsr1OSEhISPisoLq6Uv7//M80PPlVWnxHpqsi/T/wVcS9EBTc8I5od57n0ce+LMuICB8OB/X7fZVlGeQCMuPmhU4GyTDw2nlPc4bI9vt9jcdjtdvtmimk12UT9dxsNjHGXq+n4+PjWpnEZrOJqDfvcZO73W6ns7OzyAig08J4PI6MDNLJpVuzSYCQsd1uo2PEcrmM8o3j42PleR6EibaQksLUb7fb6Z133tFoNNJwONRbb72lfr+vyWSi9Xqtp0+f1joESKr5EUDIEDkQEZzYS6o57X/5y1+O+fR6PQ2Hw8gCQGDxKLlHtj2q7EaZZVnGddgnHwOCAq1JKWmgrIHUeIi2CwqsFUIEe+nCFl+UlmCQeHZ2FmeHs002Bdkc7gkC6eaeiDr+Xum2YwJz84wd9gYRDtGDezazNyDdvJczT1kQfiBcD+FFUuzZfr+P9fKSFEmRjdA8ezzvXn5BhhJzQkxqt2/akrLm3vKx2anl+Pi4NsfVavWC8aULdoyB9XRD0SQmJHwz8Vf/wZ+j/TiduYSEhISEzx5O/rU/rcn3fLd+9jfccp9k1Pjq4F4ICoA0aogUBCXP84hsk2LN7yUFcS7LMswWl8tlRDmJFC+XyyAWHuX0uv08zzUej7Xb7bRYLELMkF5sL0kpxWq10vHxcS0r4vr6OkzmIF10S/DuBS6MDAaDSHOHeLoDPpkACCXuQg8pXa1WWi6Xms/nGo/HmkwmQZ4hTUS/yXB4/PixBoOBxuOxvv3bvz1KAgaDQdyHjALvoODZCJA21hQC64aFmBPilQFxdb8Cskm8QwJrQfTY1whxh7XCpwBizD5zzcViEfvMOet2u7XItpv2NUtZKI+5i2x6RsWDBw8iu4VsBY+Gc6aY03q9jmt65B5vDcg+64aogmDBdbwcoizLIOEQ6Ga5EGIIv+N5YTxFUYRY4t4XDgSP5vPBnnN/9svbwCJAefYHwg5EH0GKtcCMlbPC2ScDh7PC69280X01vMzGy0UYP89cQsI3A9/+L/0lnf36n6tnvyRFZxISEhISPnvo/Jm/qJ/302NJ0pd/+1+j7aMksr8quFeCgqc8kzEA2cOQ0Mk/BBtSwGvm87kkBVGV6v3pr6+vled5kCnSohEeOp2OTk9P9fDhwyAplBV4lJzosbd0hBRCLIncSooIr9eG4x0BMfJIb6/XC3M+IvHMgS4KThYRL9brtdbrdfhPIAYMBoMYK6QNAn1xcaGnT5/q5OSkZiAIWXcDQCK9TiAhbF7n7sIC5HQymdS8ADz7gD3j+ognTu79397dwYUJsib4OfvCGuMjAVGGfHJPzxhgXB71dnLNGSRNnvkOh0MVRaHVahVdMhBHJIUwxjy8/IZyAgQg6TZi7sajnEsv+XBRoJn9cBeafiPSbZYDc2M9GTvZI3hy+Jya1+M8kD3i56/pT9D0GGEOiGr+e99/hAoyHMg6ck8OH5dnZXCum59DvLb5u4SETwrXz87U2iUxISEhISHhs4nDdis9D/q8+Z++qbPvyjX/uen/i68C7pWgIN0SN/7Qd88DJ1NEFb2UgFpuSIynNUu3pm6evu7Ggp6SPplM9OjRozB0I2oNiYekS7elFl7r7RFSSCvkCJKCUABx4veQILIlIHNu8IcY4oZ8ZF/gF7Fer7XdboMAQwz3+310UWANF4uFzs7OdH5+rtFoJOmmrGKxWNS8BZwUe8cGX8tmjT4iDCUiXt/ezGrwNoDMletAlNlP7kOKPGvq/hiQWQQjN9V00z1/PZkFza4dZGdQzsJ8GSNrxNrSeaPdbkfqPSIURJ399lICBIXtdhuZG06ifS840+wH64gwstvt4vzd1QLxLr8EX2vWhDOACMTzxtqyvu5x0Xw+WSsXTlhfz6BwEYk15/6cJ8bgGS1kdbhQ0Ty7LkK44OFlPW4MeVdGRkJCQkJCQkJCwieHoz/55/Tg8Iu0nxSSpN1JpUMniQv3FfdGUICoQqQgvxCypqgAuSDCT1o40UzaKkKeSbsnhXm/30eJgafiIwwMh0O9+eabQba3222kZ1MywBh2u52ePXsWWQ9VVUXtN6UEi8UiTOw8kttMryYqX1WVJpNJ1PNjHkj9t7eF5FpkHHhk+uLiIubq7RK9tn6/32uxWOjdd9/V8fFxdIQYDochLrjpn5cbsG9Nksb3kE6uQeo6xH65XMY42DMnhU5EEQfIGvHyC1LdvVSCL8o9IJTb7Vbn5+dRCpLneYg0RP5ns5kOh4PG43EtE8XT4iGhjAUyD6Emy6bVamm73b7QpYISC8463guHw0Hr9Vrz+bzWGcEFBc4ea+VeE/hCYILpHRA4Ww7OEEKK/5515cw3jSXb7bbKsoz9IfOD37vYwRfdPprClJs7ch4QyFz88cwlype8xaN37eAsAC/BaRo9uqjiokJCQkJCQkJCQsI3F9mf+q/01p+6+ffbv+dXa/uwSr4K9xT3RlDwyL0LCsPhsEZKvd5aUpC14XAYrR9PTk7CL6FZB03UmywFiMPjx4+DOB0fH2s0Gmk8Huu1116L9PPZbBZEDWIu3RCi2WxWi6RC7EajkY6OjnR2dhZEik4JtGaEiJdlGTX6EDzPdMCgEjJJZwp3xYf8ErmVFJHq0WhUq1Nvt9saj8dBbOfzud59991Yp8FgoMlkUoviIgR4qUfT44Gf+7gYk6QgokT72YPr62stl8soD/BoN4TRS1MQZyingIh7mQpElY4JiBD4Eez3e81ms8g6gXzjI4CI4TX62+02xndXBNszLZrtDClVcaLK+W12Y5jNZrFew+EwXu9iAl+8jjnTHcWzX/z93ikDkaHf78ccfX6eSeJCmotMfsaBZ840O3J4tgJn6PLyMjqmuHmqC1c8u+yVi4suGLp/BqUtbrSI6MHcXHBhbRISvpl453f/au1OKqUuDwkJCQkJCXV84V/681r9jb9A7/71SVG4j7g3fznzxzzGaaPRKKLzvV6vln7uIOK5Xq8lKUQBIpxc28sRvAUhhH2z2WixWEQ2AZ0iINX4CUBwvJYfcgvZhzBCjgaDgabTaUSfEUU8bd0jsZeXl+p2u2Ew6aJCs+5euk3zx0jPiRLX5HXuaO+GipJUlmVE7omKQ9y89R97BcHjmu5r4a0aEYogkYyNiDhRZqL2ZVlGNwZaedLC0wkoGQ2enu5lCJ6twF6xVlwLgYi2oBBKPBcop3AjQElaLBa1UgUXCNgjyDlwP4F+vx/CGGUEw+EwzjxjW61WtYwH1pGxQqJ9bzx7h/+6j0LTi4D7c29JcVb9OWOdmmUJnJWmeESGCs+tCwvNZx9xhzVtEn7GwJnBXwQRBtGx2QqTUgg/63SY8GewKY54WU1CwjcD17l06CYxISEhISEhoYnDcqnxn31f3fkDSdLb/4NuajF5j3AvBAVvlScpUvYhKXmeRykDZJz3EbnGPLBJur3m22vzIVkIEFynLEut1+sgrd1uN9o6LpfLIOhO6ohgk+5NerikSL2eTqcRfWfsTuyIvLrggXcDZNDr6aXbSDh+DqvVKlr4NUs83KPASblfZ7vdarFYaDgcKs9zTSaTKBfhGu6bgN8AIgg+BAgKiA0uCBE1J9KPEARp9pabiAZ0+cBbgJR2STXHfkpeWF8nr24S6SKQR/jBYDCQdJsVId2SWSL9CE5kokBSmWOr1ar5ciAcEDl3ksx9WCfKcBBbEBUGg8ELhpZ+Fn0dOFMu/LiI0MyS4Jli/Sgt8fabzXPj63pXtoAbWPpZdE8Mru0moZ59wDOBAODmmpI0Go1eMKr0sTF377DCGXZBpOmX4AJkQsI3A/n7laqjTJejdOYSEhISEhKauPrZL6v9szft50ff8au0Hx/p0JE2r6Xgz6eNeyUo8Mf7drvVfD6PWunj42Odn59rPp8HAZNusxPKsqwJCRjdOYHrdrs14k7tOdFxfsf19vt9RGNJOR8MBkGCIVIeDd5ut0HwIaIQ49PTU83ncy2Xy0jTPxwOEVmF6BPBz7JMy+VSs9lMRVFoPB7X6ufJMEBkoLQCgu5lE07wvUZduo3a012B1pPF/7+9c42RLbur+9q3u7rq1KNv3zvjMePn2DAgGSLCIySCQJCMeFgG50mM8sEKTiwkR4REkWzLEfDFEgQFKRIKyATHENnYRAThLxGvPAiSHWLABhtwPH7hsYeZeHy7u579uHXyoeq3e53d1fcxvt1dM/e/pFZ3V1eds8/e+5x719rrv3avp+l0mneqgIRDpH11nD7kPZ7hgHPByxfYSnEymeRSEUoOPBOA1eXBYJCPQdBkr9fLJB6xYT6f5zGjLZSZMEbSycq+k3nfFYF+5fzlaj1iD9eM6ITrgDGlrbghECOYmy4O+Mo7pSz04WQyyaKXl5e4WOZjyXs4jwdX+so/2RyIbJ4lwP3i+QXT6TR/lnnkIIvC5xvncPHCMxY2Nzfz+PFZDz/10EmECxetvLSEeen3Ce/FXUQuic/XUkxwEaHciSIQOC887+fer9H3/w09+delevWmLIFAIBAIBCQ98PPvlyRtvuiF+ti/eHHjb/Fv6MVjLQQFyFa73c7BbvP5XP1+Xzs7O3m3g9FopN3d3Uy0XBjwenOv0fet7yCKEFpKFAhOdPu/7wIAaaT8gu0pWZ3nGsqguclkknc2GAwG2tnZyWT08PBQ4/FYvV4vE9K6rhsZDRsbG9rb21Ov19POzk6+PhwFbKNZVZW63a6uXbuW3RVuIaevfAUYMiWdENGqqjIRnE6nGo1GmViS+YCQQT95joEkjUajTN4A40FwJsINtvjRaCTpJJEfUg3J8zyEuq5148aN3LdVVWUyznkfeOCBTChL4om45M4BMhMQEFJK6vV6eV4SOggxrqoqjxWiBeSVfm61Wo3yDq4PgsucQmTxuSwp7xJB23Bm+D3jBNwdM8wPCD7nLF0xEHe/B/k8uRM+f7hWd0iA8tiIFO5woDTCxRmfz14OxLwkqNKJPyUhkrLI4fcMx+W+Go1GjZ06EGy4R0sgynDOQOCiMPj1P9LVj7xUH/un1y+7KYFAIBAIrD2OP/d5Pfrj+/n39OKH49/QS8BtBYWU0jskvVrSU3Vdf83yteuS3ivpEUmflvT9dV3fWP7tLZJeL+mmpB+u6/o3bneOcus9yI6LAZQddLvdU2SYQDfcBV7y4KvAEFsC67x8oaxLZ7u98jy+GiypISj46qgTPmkRZre9vZ2JkIcKcjwPhHPXAmSZ1WGIE6URkjKBZAV3Pp/nz3GdEOsy4b4M2aPvsdwPh8NMkvmCaCFA8DUajbKoAXnHgeDhe5BnCDdWdY5dOgJYNUcYgmR6rgA5Fl7y4dZ/xgY3hK+c+84D7IzgrgxKVSCqHM/FG7fYUzaB2OI5D7SX8fAQQJwS7EBCG32eep/TP1w/zhQX1Dgf76VfCP3k7/4e5pRnC/hqvWeQ8HkEAD+ehz76vPPSII7BnPP3eBmNCyAuXLgQ4/e7pNwedwX52PL+sqyCsVrlxLgsXMSzOHC5qA8OVH/2Cb38VxfPj6e+oavRI2HlDATWBfEcDgTWDHWt+XLHOEm68lnlf0NXYfJwW3/5zRHseK9xJw6Fd0r6GUm/ZK+9WdLv1HX9EymlNy9/f1NK6RWSXivpqyW9QNJvp5S+sq7rW/qGIdcQhrIOXloQckQF/zuEC5I6m83yVn2QOLeHIyiUAYslgS3D4yCQvjpf1ovzGiQVC/3NmzdziBxJ/xBYbOaQSr57rT/X5VZ5T+mHAOI8gBhB3n3nAl8B5vMQfcIXPdgQ0nrlypVT/crnqfefzWb5y4P+yoC7MpzPiThWfCd3btdn20mcEIgHZagjQZAEMJZj6Fto0seck21IXbgqdwpB0PGSBeYvRBoRxcfTCThjQTs878Bt/4wH8wVHhhNszziACJeiiO9mwGdK0c2PWYLr9RKE8h5hjnINLlh5f/k9xFi5MECf8Z2/+Xx0UaG8h1084JoZI/oHxwolKWVmwhq6E96pc34WBy4f8+FQV37vQ5Kk671vlLR1qe0JBNYBVw4uuwUZ71Q8hwOBtYX/G7oKOy97qUYveOEzPv7RQDp4IIT+ErcVFOq6/t2U0iPFy6+R9O3Ln39R0v+Q9Kbl6++p6/pA0qdSSo9J+iZJ77/VOVhNZyUbEuphgFtbWxoMBnrggQc0GAz05JNPZgIAuUaYYBs+J8isBkMUh8NhJjKSGjs3SDq1KuxkFqLo2+IhDEgnq6eHh4eaTCY5ZM4/j5Wc85bhiWQvQFAJ7XMCWqb+03cucIzH43xcJ3i8z1fvsdizMu4ElVyLbreb+8ODGSeTiabTaR7HMh+C95VCgpNNXCqIMBD12WyWr7XT6ajT6WRBIaWUMxYocRiNRtmuz7V7zT6CQKfTyePGNeHKcJeCzy++2IYSkQaCz1iRP+EWfK4bMcK31yTEk3vB+87dKJB1yiy4Js4NIWZ+0L+4VHCAeD9wXr++0rHgLgzfJYF5wLwvBTXCEDkHwgeiAq4Krt9FDxfZPMiT1xC4PEeCNiES0Re0j/IH7jH6iPvAgyj9WtYBF/EsDqwXtn7jg/qyWM8MBPSZenzZTZAUz+FA4NmO4099Rl/27z7zjD9/9B3foL/4rlsI/Vfq+zLD4ZlmKDy/rusnJKmu6ydSSg8tX3+hpA/Y+x5fvnZLzOfznCvAiiWCgpcvQALYxpFVR+qivR69rPWfTqcNkgkhhDhLJyvnLkKw+g7hqKpKOzs72QnB59jBwVeofSWe3QA6nY6qqtJkMsnnwOpdkiXIDgKLk/GNjY0c3OckluuDeNIGVnbpUydiEHmyJGgr56ONk8lEvV4vk16IJCSU/oIkS8phhVzr3t5eI3sCoYaSAu8LF1b4O2PHFouModf7E6SIOALpbrfb6nQ6jdBH7yPP2IDMM//6/X4WDzyHYnNzM7+ffmC+IDxsbW2pqqoc2kifTSaThvOBuXN4eKjd3d1cXgHh9lX/yWSScy14D9dOMCjtp20+LrS9dIl4WQav4Q5gHrgrpnQUUEqCqMY94Y4Wznl4eJhzO2gTghVzwR0xLky4G6l0J7gDg8BW5hqlKLQXdxNgfN0Jsea4p8/iQCAQCNw14jkcCNwnaP23D+nR3zu7HHb46q/VE99y/5VU3OtQxlU9uHIPrJTSGyS9QVqQTkLynDzlRi4JLmUD29vb6vV6jZVLdzNgC8cZICnb4XE7uGVaOlldlU7s476STIkCBNhLBFjxhOiwraHXq7u44TXqXlMvnWQSHB8fq9fr5euvqqrhCnACRY3/eDzOK9vz+WKLRRc23M4NvE3Hx8fq9/uNbR7pU1L+EX08WJG20J9cE9cF4SXPgHITXAy+W4ULLLgIyuOxhSJZCrQfKzuEHrGgqqrcPsglTghJjZA/X+FnfMqAQ6+rd3eJj4k7HMp5xgq/79rgO5MgDJQlLrzHHQQ4S6qq0t7eniTlnSHIYUB0IOzUXS5eEsGYuBBBv3hJhLtcKCeh/+k77g9cGNyj7oSgn/ze8PBM5r6LIV6+wbX6rhy0m+NwL7ogQXu5x313iLKMY9U98yzBM3oWd3R23WEgEAgE7grxHA4EnmuY39R8dnbV0tUPPK7+Z5qhkLMHO/rsd66P4/U88EwFhSdTSg8vldiHJT21fP1xSb53x4skfX7VAeq6frukt0vSzs5OjWX+6OhI/X4/kwZPp2+1Wo0t+gjo432QA36HGEN8WH301Xm3VZfE1e3fvlMCn0fQ8BXdcrUUcuTCQRkC54TTt8nzLSR9NZn2uL0bou45BfQnr3EO+mfVjhis/rsl3sMHIfCEF3oYnosyfh6v6S+37wRlkCBE0Es9nEh6+KDNqcZqOP2E2wL3i/+OQMA5/BiezYCI5JkAPlfcxl+OtXRS5uDElmsgN8JLGyhRYOwRx/jygM6trS31+/3Gjhs+V7H2UyLCl5c++BymvQgKZSmPXzNz1p0W0omo4A4YF21oO/ejz52yLavGw9tAeKqLCfyMQMdxfMx8vLw0xYUHv5fXFPf0Wbydrj9rFZRAIBC4JMRzOBAISJKOH/+c9PjnGq/1vuz5uvrIy0/eUyWNX7z2/7+8KzxTQeF9kl4n6SeW33/dXn93SumntQigeVTS79/uYPP5XLu7u3r66af19NNPazAY5NePjo6ynR2iUFWVer2eBoOBer2e9vf3M9FlFRqS5Cnvbt32DASI7ioiAdGBQPtxfRUUggI58lVRt8MDiA7kyQk5xJl6fkgdWQQQbj8eAoKXcbiDwFeBWYmGqDoJ39ra0s7Ojnq9nuq61nCZnOqZEFjCaYOTUK7ByyR820dW9w8PDzWdTiWdkDjfahEHRKvV0vb2diakXhbiYX5OEBEMcBTQj1zzYDDIAhTH9BIBthJ0As0YrAoxRGhxwu/uBIQwchYQjTwHo6qqLBLgvPASh/l8nssm3HmDqNJqtTQYDDQajXKOBQSecUY0YS5RDsKc8RBK7gsvBfHSBPqhnFOOcltMB+dinri7xd0qR0dH+XwuftFG5p2kLFrxxesecslrzCd3+3A9lFy5+2SNcU+fxYFAIBC4a8RzOBAInInjv3xSz/vZJ/PvG4++XB//J88/9b55q17ta1oDpLmUjs9u3J1sG/nLWoTNPJhSelzSj2nx0PyVlNLrJf2FpH8gSXVdfzSl9CuS/lTSsaQ31neQZjufzzUcDjUcDvO2g9LJLgmj0UhVVWWC5OUP/X6/YYWGpENMeK9bxZ0kuD3a6+yvXr2qra2tHH7ntv/j42MNBoO8G8GqGm7f4hAyTikDZByyxLFZ1YVwjsdjDYdD7e/v6/r16/l4XnLgJJ6Vf/rUxQiIK2Tba9khX7QL0g1hJ1zPAyl9Vw3f8rMMsRuNRtrb28vtc5s95RODwaBRRgCJ5WfaBHmdTCaZqPd6PVVVlfuTMg9fdZ9MJmq1Wup2u1mgqqpK4/E4iwFcH+4Xd0SUJTAewui2eUCWAHMPscCP52UMtI05Su7AZDI5VQqzubmZt0/d39/P24JSWuK5HN5vfk2MOQQa4YvSIwfj4nPIHTd+7tls1ihB4tzuCqHfaAPzARGJ49Nf7gihP5nX7oDxe+P4+Dj36+bmpkajUS7NcBHKBTUXJzw/ZJ0cChfxLA4EAoHA2YjncCAQ+FJx8+Of1Jf/68cbr6XWph770a/VvL2eBqXBJ6/o+W//oD55xt/vZJeHHzjjT6884/1vk/S2O2wfn9H+/r6eeuop7ezs6CUveUljxwLIKu8tVw0J41sVIgep8u33IM8e9sgKqK9S8rdSHIBIe54B7XQ7t4sQrAS7jdst/BBMSA6E+/DwUKPRSLu7u7p+/fopC72vnEOiPQsCcnflypVMciFKXpfvbg76lB0VEGFYaYdI4xJg9d9Xv71PyKDwgEH613fkYMzdfUHYJMSP4zEXyAhA5EAc8PwDyisODg40nU4zMWV8ECIYh6qqcjAkqf9lSYyX2JD14P3vK+6em+AlCbg2EAnId2DMCPr0HAPEAYQvxCUXAljd57VWq5VzJNx546v5nNe3Z2S8vezF7xnmLH93tw2E3O8b7mO/Jt+JotVq5bFj/H2XiLI8yB067ozxEhscDbg26H8vUfHdQLydvLYuuIhncSAQCATORjyHA4HAvUB9dHjq96949w2J/+O2NvTYPxyo3rx8geEF/6vW9oc+r+OizY57Hcr4jEGo4N7enqbTqXq9XiYuvlIIoeQ1SKPXZ0OGIJJuqfYAwHK11sk4x/IVZSdOTuBYHXdBgc97wKA7CCSdEhggYC4IYMlnm0t3NnAut+BDxiB1LnT4irR0sh2niy0eZgjZcnu7lydA5slSgIitspYfHh7mlXcnspRpeJkIxJB+ZGWeNnvf4khhlZ354SIS/T6bzfLcIWhRWmytSR+5uORjhABD2+gDHA6+NSFzizG5efNmFkR85d3JKyIH8512TCaTxlacCFwElyIoIIjgbimt/L7qzlxgFd/zA7x9Tqy9PKgs6SiFBJ/P/OxjgWOHz/ixfN54WYI7CHDJlDkkCCku6iCk8X6/NtrGd9rm7V4nh0IgEAgEAoFA4LmJ+R//ef45bW7q2l/5a6o3mgtbw0ek4975iwyb46TBpxc/D/7kKR1/8tO3fv+5t+gO4Kv+w+FQu7u7OZme/9T7qiIEi89S3w05wErPCny3281Ex2vHvQTCg94Ii4P4QHrdxk2WAAIGddp+HF8ZhYT6tnvuZnAnhhPrmzdvajKZaG9vr0FunUBJJ+THV3eddPHFORAGsONDxKfTqcbjcUPUceLoOQgQdcghORWlMOOZCPyN8R2Px41VZezxnnnhAYBkDyB6uEDgpRuA8cLpQIkAbWi32xqNRlkQ8h0KyvwEd6SUfSCdrLanlDQajRpbYFLSwHiVpJ+2Up6D2NFqtTQejxvlD5ubmzlXgv7f39/Px/EcBP/yYE/uA3cbIMp4joWHlvJevzddUODYPk9djMPRwnHoN66b7TUpneDLxTDuaXcg+b3t4+ZlTH5PlCKB51G4c4FjBgKBQCAQCAQCF4X6+FjX/+P7T71+843frPGLV3zAP3tlmcdw1yeVNg4X/4fufU564D8szn8ndVprIShIyoF/w+Ewr7b6CjA2aWzjJZHwL4gMVnvEAf/a3t5ubAnJjgis9o5GI3U6nUY9Om3CEg+ZOzg4yAQSKz11+06ytra2MhGm9t5FE94HQZaUa+pv3LiRCRikvt/va2trK/cLeQYAUYNVV3coYLMvwyiPjo40Ho9148aNRmYAx3AnAlkTiAGIEAgSbDOJk+Do6CgLBpB5RBGIY1VVmZh70CbiAuTUhZuDg4N8XEI6uXYnvNTw8zrnf+ihh7KI5DZ4XBCj0aiRP8C5KSFBeEIQqapKdV1rMplkhwl5FxByHyNcNC7YdLvd3MeENPqcR3jy7BD+Jp2QZFA6SFw44bVer9c4ByIfc9R31tjY2FCv18vCimcgSCdOEsozKEEAbO8pKYdNUvJBfzGf3S2BK4ZnxuHhoYbDYQ6tRGShj3DheH97mRGvMa5l2ZD3aSAQCAQCgUAgcFl46N+/X0pXbvme2au+QY+/8tbvWYVUS1/xE3+qm/sjqb47h+7aCApuxa7rWv1+X1evXs35Cu4iQAgok+OlExu/p7RPJpO8U4SkbG3vdhd7/R4cHGh3dzeTJQg6QgLkRlKul3cij6DAZ1iJ9lVtr/8ureGQLUQLXxGnb1i1ZdW12+1mMcCt/u5GODg4yOd3gifpVEkAbZGUSRrv8RBGVt1Zpac/6Hva73Z1SCtkj7yGwWDQEFh8dRjRw9vO2CGO0BcIGnxuZ2fn1JaWHngIaWZM+v1+dmdAUumPUvAp20Ff0te0+9q1a3lukXHA9obSiVjmpSk+h1NKeX7WdZ1LgShFwWXjJQ6eYUG/lGUxLir1er3sTuB6GR/6oCxB4Geum77BgeMOCL9XfMXf+9Tbz/x0Mo9A5/3jwgSCFf2PY4Rj8DnOi7jlJQ/0De0ocx8CgUAgEAgEAoFLR11Lt8l27X3gE/qqT1x/Roe/uT+S5ne/mLY2ggLEhf/Ys4sD5RCs9pZ2eqm5jR3HcjIPEZaa6fbYyzc3N7Ng4IFybrv2enQIHaUVtNtr2v39XtMtnba7s2pNW11s8HII3/qQz/muCZA0BACcGRyrLA9gdZ33YCU/PDzUeDzOwYySGltZMhadTieLCljL5/N5DnLElcA1u2uA/u/3+3lXD97PMVlZXtWXXL+TWohyVVX5XF4PTx9CQiHYHlrIfOP4fDmcAPvc5fO0n21GIc1OWj3Lw8NHPS+k1Wqp0+nkHSjcfeO5Ae4i8WBPxpf3I0Y4yfbdM/ycfk2eB+GinAs27g7itVVbOHofutPkLOLuwpKXciD++Rzh+lyc8meBzyk/lvd7eY5AIBAIBAKBQODZgptfeFr6wtMXes61EBRYpWd1kdVv6vt95R1y4kQFcuxOACdKvp+9r+ISSpdSUq/Xy2UI7n7wOn5Hu93OYYsuhrh9vwwpLHeuKHMd+Dyr9mVAo+9iUNd1Jn7kLXjbKfWAUNEOJ9EeJMh7KBVxgcJXqclYoIZ9e3s7k0dJuazBy0ncNUFgIk6Sfr/fEEGm02m+Fq6r3MHAHQuMn5Pqdrudx893SKB9lNC4cOC7IPj4u/thlUvBiaeverfbbfV6vdxnLhSwCu5ZGU786Q/+Dsn37ADcKsB33aAsAHeJl2owrt5W+pSyHOnEfYAIQ6AmfUQpB/cI95Rvher5G36PAN7jhJ75z3faUpaccI8jXpXCAPOJc/t3nhXuFvLPuXslMhQCgUAgEAgEAoGzsRaCglvSp9OpJpOJRqORHnzwQV27dq2xd7zbvVmJpZbbV8QhmtIJAWIV24m4hxNiKZ9Op7px44Z6vV5eyd7f32/sbQ8xYSWYOn9q57Hcu/2cc0HgIIa+hR7XeXh4mGvLfWs/CA+ZE4BzUJ7hwgLHZvUWkoyjwEmfBxhCuMkaAFjMDw8PGxZ1CHHpgHBwzZwTWz9hicPhUCmlbJXn3C40IZxwXS4mQVi3trZyH7vYQL7FZDLJYojnCWxuLrYgHY1GjfIHX+0ut/vk2Dg4CDMsy1Z89d4dHswLxAwcOWQF4NhhvDimX7Nv89jr9fLcpVSGcXbBwktHynnkuz9UVZXnm+8U4UGjiD6+fSZihIsWCBG+faO7Bpi3lKAcHBzke6zdbp8K6iznJlkrCCYIXF4i43PVhSbu39ls1nDeBAKBQCAQCAQCgdVYi/8tt1otDQYDDYdDjcdjfeELX8g149KCpJD+DlH1FV4Pi4MQusUb+HZ3kDkcEE7OZrOZ9vb28ucgj9SXl1voQXyd4LuAQU06K/usoh8cHDSyBqST7RAJ+fNVcH6HVLFrAgQd9wBhdm4jh5S6rZvdLzgHAgCkn34YDAaZ3LqYcfPmzSx68Dd2TIAU0l63lHvZBaUtkN3ZbKbxeJz710MaPZ+CcXWS6KvbOCDYAQSyyFaVo9FI4/FY29vbDfcBogqE1beIhJQSrkm/IqLwfnZkoC2MUxkCyJz0cgZEHFwBPtfYKYL+5TPMTw+G5FrJakAE4Z4hT8KdKYwtbgPG1cUI5ixziF066A+uxV0KjI10kinBufz+5Biz2Sy/z/vZAySZS9PptCHMcE4vG/JyEL9/GDfPB0FkcVEoEAgEAoFAIBAIrMZaCAqQF1YuIZWTySQTp7J0wIk8pQdeBrGqTMKzFso8A0kN4jWZTHLJBX+D/HstvOcxeE24uw8gfpB8t4ITnojV323xXmrhdeD8LqkhRiAoEDqI0MLnSnIECfPwRN8VgpIJgvH8unAMeAnD0dGRJpNJY0cOCJ1vYYk9n9e91t5LDpwUegmL5w74HHJHAn1Ujo33OQ4Ezuvj73X4HN/DCMstIL1/cIVAin0F39/npNZLAiDbiBn0FQ4WFxK8pMUzP/gbQEygDxkrxojXyjIO+sbLStwlsCr3w90N5Xu4x2kn7gHubcbd8y8QWlblGvA3+gHRzXNF/L7nOjg/Ao2X5dR1nZ0NZZlLIBAIBAKBQCAQOMFaCAo4BlhZPT4+zoIC29bxPg/Ko7YcMg6ZcIIIGXJ3gqSGKADxkE7CA1kl9a0fqcv2rfIgYNSu44qAGHtivNe9uwVcWqz0UiMPvI3SCUFGIPAVbUmaTCZ5pwIvG6DfaLfXz0OyVlniqZuHDHNNTrLcEYBzAaLqOQgQRUgr48J3Fwl8VwkvG/Hx9Fp3xtdD+Xxcyp0McBMg5Ljzg1VxP790EljpAkNZOuBkFOcLx/G5W7bfx8IDNb18hDa4OMV5EMxoL4SZOett5liIKZ4zgAPHBQHIOOd3kl8GKfI37kXKZxg3RAwPxXTi72VLvqsLx/b7h/F1QYHyF9wknpfigpwLNog/pZvH50MgEAgEAoFAIBBYjbUQFFJK2tnZkbQgxZAy8hScOEO82N8esuCkkd8RBbDOQy6lE3GA36k9Z8cHvo6PjzWdTjPJgTSxQg3hZMcCVtwhtpyjdEV4OzgOO0dApng/RLlcoXXCClmjjeRC+E4MkC4vL2B3CfqcHIPd3V0Nh0P1er1GWYXvlsFKvwdqjkYj3bhxQ9Ki9n57ezuTYMIQyUKAdLMCv7Gx2MoTEkeAogsf9JvXtjvppQ6f9hI06LkO3W43E/DxeJwFK8pScFngYsAN42KTE1CEAHeN8HlIOq9zDMomvDSFuYBLRzpxRpAjQF/5+7Hne2kG/e3zAeGO/hyNRprNZlmUIC+COdHr9RplKoxBmbnA+PpOKbiOyPVAVCCfg3O5Q4bx43wuFHC9lD0BD4L0ee5i1VkBkb7dZCk6ldcZCAQCgUAgEAgETmMtBAWpuU88JOXmzZsaDoc5EwArvXTiJICMQNx8hbVMa+d1iISvxLq1n9pschTKsD2vJ8cujZDgNemQPerasXez+gmJc6s6cOIvndSx+44L5eelRS4CP3c6HT344IM5hPLo6EhVVTXINO1h1XZ3dzd/7e/vZzI6ny+2gyyFHfqZMpHhcJj7DTEAUswqtYsyrMR7H7szw3fn4DOQ5rIEgp9xUjB29CeZDZTK+Eo2n8GSDxnnvB6YCdwiX5JP+oZzeNkFbUI8IHiQ9tJPHMfFFnecIBYcHx+r3W7noEfGG/GGfkNU8JBPwkNLwWpzc7MhSDDnPMiQ9vl953ARxsMk3d2Ac4XfXWibz+c5jBJRCwGN9/rOF7PZLD9H3B3j2Qvc5/Q7/cz7fGcVH6tAIBAIBAKBQCBwGmshKJQ19pAYJ3pe8w4Rc3LqxI7VRlaeJTVC/Hg/JII2+C4OXmftYoYLFGWYWwmIFLXivr0lr7kgQZvK1VHPUZB0ipj665C4lJK2t7e1s7OTV+RHo1EWKnAUeNo+GQyj0SiHFiKGIJLQXg+/8/IAt91LyoKA9wXX5JZyfuYY9FNZT8+1lXkSLi6UWRcuzvA5CLafm7nlBNet8y4ScA1+Hg9tZF4xNgREcj7ECi9xoO0+9l4SgSuH/uz3+417A8EEscRzKBA1IOcezuiBigCBx+8PLwMoyyXoGxcQcG2UDhPEEL+/KA9yYcOFCHemuKhDuQttLO9DFx3L8hqEBv+Ml5AwfwOBQCAQCAQCgcBqrIWgALl0C7cTOyf1rCr66qkLEdJJDbcTBlYrAau+TpbdIo/1n9IHBAUP0oMQlvXwHN9D/ubzeSZ8EHEXFEC50u2ruR4yR2aBW7olZQfCxsZGFhR6vd4pZ4N0UlLg9e2j0Shv4Ui+AESYPvfVXmz7Tv68zr1sP3XwvAeHghM//xxOEFbRGV9Inwf68TcXIli1d7LpJBhC7XPLSXg5Hm6pL8cfcougwOcRNSg3wM0hnbgUZrNZ3lWB4/i8QNhpt9untgj1e8FFB8aH/kdocHJejhXiC7kXPg+5Thcx3PlDSYyLcV6GRP+5q4C55wGZvr1q6V5AjPDxoP2rShRc7HFREUGhFCg4ppcbBQKBQCAQCAQCgdVYC0HB098hK6yQQ1qkk1BAyJ+7FnxngPl8nrcilE7cCV6aIJ2UOZDmTt012QLD4VCHh4fa39/PwYR8rqqq7GRwl4RfkwsNHh4Isdzd3W1kEji5dlu3rwBLJyvyXjcPkcbyTn7B9va2+v1+Fi/G43EmcRB8SO14PM4iCsTwxo0bOjo60u7urqTFKna321W321Wv1zsVLNjr9fLnywBCd3NQCoLIAmFOKWk6nTZKGJy4U9Lgbg4XCMqxxgFASQH9V4ZPEgBKvb+vYHuf0weITljt2UUBksqWnMwbxt1LFshiYI67PZ8SBs+HwP1A+QRCAjg8PFRVVdmFwPE91wOXTKvVyvcXwZteGtTpdHKeBSVHXm5EHyP+IaS4K+Hg4OBU2QMuCO493wWDPnInyfHxYhtOhBLOgcODPBW/N4ELU7SJ60V07HQ6jd1X+JyLUoFAIBAIBAKBQGA11kJQkNRYMTw6OtIXv/hFXb9+XcfHx+p2u5mYsvpLWOJ4PM7Bh5AT7NNewgDh9u3idnZ2cp22dEI0IRmj0SiH4DlBZVW70+nkY/OzW/69Hp5VfAgbpNNDGCFYCAo4Mzqdjnq9Xk7Z9xXbqqoa5RIePIlAQfvb7bb29/fzscuAx729vVwC4bXmw+Ewn9f7DVv9dDptrOQiNNAeSfkaEYUQCkajUSZ3vnouNXco8FIV8hGkk6wJXBQe1sn2mT52rOhDoN2d4RkO9K+LUhzHnSG0F/LOZ6qqymUG0okzBDFic3NTo9EoE3WuiXnrIYPkMHCPILxUVdUo05hOp42sDg8zdEEAZ0Kv12uERtKffDEfOTZj7nOae8bLllw02t7ebgiFiBvukqF/6Fc/Dq8BRCSuy0taynni9yF/o1/4jhjB/UDf+DUFAoFAIBAIBAKB1VgbQYH/5GOTZmWUlUv+o4+FHULCKiJ/94R3SEFZigCxZOW1DDsst6FjtZhjQqQQE3w12y3ZvsNDq9VqEFba6qvrnjMAcYak+go9K6pezw+8JhxHAsTWnQKeHyGdzjQgpX8+n+cSCD5XEk52weBzXiZRZk34KreHQeIS8RVo+qDcBYD2ermL1AxC9LKEUuShlAORBdGEc+GC8GN60CYE2Ve+vebfS2wQili5p+2SsljFvPd8CeZTWdJBmzgnjgPKdxCrXKDhvnFRB7Gn0+k0BAefz15+wDEQgphrLrr4GEHox+Nxw2HC3Oe4pWCH6OD3AuUfPnf4vXTyuEjk7qBVYZousJyFVdkogUAgEAgEAoFAYIHbCgoppXdIerWkp+q6/prlaz8l6XslHUr6hKR/XNf17vJvb5H0ekk3Jf1wXde/cUcNse3nIBTUlnty+/HxcbaOux3ek/6l06TBVzAhHJRZcH5fZXXCBrH21VcntNKJw8JXb70GHYu7b2lIe5w0ermDE39KBA4ODrLA0O12GzZ6J+isCO/v7zdItZPrMvjRd1NAOPDyAFbhqeNHBJhMJnkludvtNsiwdDpPohwjaujpa2rsnWD62AF3X9B+Lxs4S1CYTCYNgQBbPSSUkhRQllFQakO7fO55/3kJgYsJnNeDDBlv/ualEZyjzAjwrAEn99wvCAye/1GS+na7nYWk6XTauOZSVHBxruxnxsazB9w54/cjn/EtLj1o1cU7nzsIeX4sRBJ3/njQqM9f+tyFKMQfxs77cd3EhIt6FgcCgUBgNeI5HAgEAqdxJw6Fd0r6GUm/ZK/9lqS31HV9nFL6SUlvkfSmlNIrJL1W0ldLeoGk304pfWVd17f0DUMuICkIBAcHB9rb22uQ2OPjY1VVlWvFsbZD6MuVeBwFdV2rqqq8ck6t/mg0ysd00QDiLy2I22AwaJBU4Cvk2KePjo60t7eXHRC4Enq9niaTSSPEjvbN54vUfq8/39/fz+F4BwcHjVDDdrutqqrU7/fV7/fzdY/HY02nU9V1reFwqNFo1CgzkE6IsQswHqDnJE5qkuPpdJq3k8QCv7+/36hNZ6wYyzIUz4m/l6/Qh5BkShGkE8GG8XCHCn2MIMMKPcd2Ynp8fJz7xHcaQCAo7fQO5tRsNssr75JyPkUp0kC4vXTDz+fzH5GIeUffeTmNZ2W4k4D5NJvN8vEo/eh0Oo2wScbNQxI5hmeWcC+Q2VC6LPzzZR8xx8o+5T50MYGsCcQCMifof0TE0pHCd9wvLir4GHDd5E1wPHcy4FYBpTizRninzvlZHAgEAoFb4p2K53AgEAg0cFtBoa7r300pPVK89pv26wck/f3lz6+R9J66rg8kfSql9Jikb5L0/tudh5r9lJImk0mj1nxjY0O9Xi+TiG63mwUFiJfXZhOYhwuhXu4UAKktV0bLlUwEAfIZ+IxbqCHOCAIQG9qM48Gt5JRZEHiHy8It6RDlwWCgyWTSSK8v8wM2NzfV7/e1vb2tdrvdcBlALql9Pzw8zPZ2SY2AOt8twwm1uwMga7w2nU5zX7NiL6mRmUCbl3Mml1H4edwVQr92u928cowLgtBGAiHL8oHZbJbFFwIScUv4NeGEGA6HOUuBvAPey1h5v5AXgcvECS4CD0SV9yFAuZAD3ImCgOL5Dr6SnlLSYDDIvyMG4QwAtMvdPl6G4C4FD7f0z7PrR7/fz4LC8fFxI0DRhRZ3onh5igs2HjjJZziGu2AoRXKXkOcZ+Hi4SOMlMp41wX3nQqEHMCJw4VjhWP1+Pzsy3Kly2bioZ3EgEAgEViOew4FAIHAa9yJD4QclvXf58wu1eJiCx5ev3RaQEA+7cyICofcSAf/PPoTVQxshbL7izjn4POTEVyW9ph2Cyk4EkBNWjjkHpAQyA+HzAMTSJo9oArmDlPM3SCrtJV/Ar6HT6ajf7+eAvcPDw0YQpa/+sgruZRoIKogivort5RPu1pAWhBjy6X93ou3Xzniyc4CPC2PgRNzdDL5KTpkH7YCwcm4nl7QX54gTWeaRE1ufAwgK7gyhjW7HB07uvQ/LsEDGrVztR7SiH9l1g2tghd3LZRAb6FsvaeGz3kYXENxZQxvov9lslkMq3TnkYpH3MdfO/eHt4D30BfPS7xU+j8BVBrR6m8vMEMbIwyRXXRP9UJbP+HOAvyPoPAtxT57FgUAgEHjGiOdwIBC47/AlCQoppbdKOpb0Ll5a8bZ6xWtKKb1B0hukk10BsK3bexpp906AnIi4yIBrgeyFW2UeSCcrty4A4BjwsDpEBIgV31nh9xVQr3eHXHFsrqHVauUVYH72sgQcG5AeVtARFRAN2AGi3+9n14ALLTgu3HpPG1zIKG3xnmHgu0V4zb9bzj33AdJGqQYkb3NzU1VVZfKLsFCWWtCHEMter5ct/DhTILduq/cVePoaV4SDcfRx8jIJ3uOCggsfvgrPex3ufPF5XM5pd2WwvSICCW6WlFLDccNYugDnq/+0j7ngbSjFIp8LZZYBggIr/J4RwvW7uFWKfKUbg3520ca/mI9lSQV94uPm/c0YuTupzEnw7y7I+L3m48V1r2OOwlm4V8/ijrrn0r5AIBB4riOew4FA4H7FMxYUUkqv0yKY5pX1yTLo45JebG97kaTPr/p8Xddvl/R2SXrggQdqVmBX7VrQbrcb1mpfxYSMbW1tqaqqTDwhyNRkS2q4C0pyxeqqh+VBlA8ODrINn2M4KQJeG+/vkU6IHu3HmdDtdvP2l9PpNP+N776NpKRs979y5Yr6/X4u/2CrS3cbYIH3PoXEUo7BSjg7NXiw5GQy0WQyaZBOt9q7i0BakHuyEDwwk/FiFZvgPOD16hBtjltVla5du9YoESHPApcENnknui5y0J/A3Qi4FNwJQ5vcNcL5yt0qmFf0LZ+ZTCZZ8HHBgH50gYH3USZDP+IsmUwmeYxWBY8iOrCi70KIByPyOyIM84X+cqcJO3v4yj3j7/kD7j5xt4TvnOAuCcbCXRaeqcF1+Y4UPmcp6aCvGH/vV/IecNe4SOZ9hlDCnPOMDNrku0OsK+7ls3g7XV/5n91AIBAInI14DgcCgfsZz0hQSCl9t6Q3SfpbdV1P7E/vk/TulNJPaxFA86ik37+TY0J6IETYv8uyBV8ddzKC/X9nZyfXu0OWJpNJg/T45zmu5ypIJ1Z56trd0g8Zq6oq1/xPp9NM5CDRTqS4BulEUJCkq1evZmLsgZGSGltWQtwQD6qq0oMPPqher5c/hzCxv7+vGzdu5FDHTqfTcExwDs47mUw0Go00nU4b9exHR0caDof52lutlra3txtEvFy9h4xB/iVlJwJ9BSHkmrCy0+fulNjY2MiCAg4FAjQRTHx3Ai8z4HpTSrmfSqu9pEwiycBwUYPvHhYonQgm7vbAoQIg3wRNuqBAfzoJZxvHTqej0WiUz4m7AAGIdrjQ4yU4XI9nPiBMIb74uDCncb9wvuFw2BCUfNWe/keMo99cEPPx5Yu2+hziNRf4+PIcBdrgu3YgQrD1p9/DzA/cKi7SMXYIFAgaCDG4hXw81xHn8SwOBAKBwJ0jnsOBQOB+x51sG/nLkr5d0oMppccl/ZgWCbZtSb+1JEcfqOv6h+q6/mhK6Vck/akWtq831neRZluuLpcrzl4zXsKt1JAyiE25ysm5vBQCUuc5Cr5lJK6G0j7NCifhdf6626XZyYDcAc7RarXU6XTyqrtfO2F/kMejo6O84o31HxI3ny+2bxwOh9rb29Pe3p52d3dVVZWkEwKMCwERgnIHxAgncVIz8M4t4/SHCxRkV0CEaSOkjfe57Z/XyEigH3GKVFWlXq+na9euqdfrZfJX5jYwNxBh2u12HmeOz5aUXB/XOB6PM/GeTCa5z7DQu+vEvzMX3QngJS6z2SwLJX4+2kSfuY1/Pp/nnAhJDaGLQEnmLMTYRTE/FkICX77lqKQc+lmWPjBfyWFwFw/3w6osCC8lYU7SL7STe4Pr5/PMMUQZ2s495SIE8455Rfu5xwh39evhOuhTh18P/eOiybrgIp/FgUAgEDiNeA4HAoHAadzJLg8/sOLlX7jF+98m6W1304iSbHmoG2TK3QnuSlhFHMpVUidrLiw4GfMVVcgFK8YOd0w4iYVE+cpx2S7yCLwm3AWFVqulyWSi2WyWyx9ok7edz0GOaRfbYLJd5Gg0yqSXVXcEDc4P0aRm3/MkVlnQfXtIJ8+Mje9cMJ/PG8ReUj4+fQMJxX2AoMDKMELA1atXtb29nY9ROhHK8cABgvuB4/vWi/45SCw/0253tbgg5WNbOjXcxQIpRlTweedlD+7UQAxD6KK93sa6rvMOHlw37XXRxbNACOykzQhIfN7LOMhhcKGEz3q7mR9eSuB/LwULvz/4m4uHfp04DDgW83HVfQtoq88x5mJZouOf8TZ7BsM6ORQu4lkcCAQCgbMRz+FAIBA4jXuxy8M9gVubyyBEJxu8xkqoEwepuVsEq7++N70nvjtK18DW1pb6/X4meBBvVi1LC/fW1lYmYByPdmElp3yCz0N067rONeH7+/va29trbAFI26kV97IMiOBsNssiAtkH0+k0r1p76KTbyafTaa6X9x0N3KLvIg9t4O9ci4+Bk0RIKL9zDl7zbQVbrZaqqsrXw/VvbW1pMBjo2rVrunnzpkajUaMG3wUP5hLujTLUEfGH62RMp9OpJpNJJv/b29uNueJCgecu+LWV8xBSTMikl4b4sd01QD8gKLjrwYUWJ/yAOeMCnY/f4eFhI7SQrAaEC9rPdVEGwpcHH7qY5/ew9wFzwcVAdyrwXt/CknbxxTznyx0KZUaGZzvQr2xr6uUR3lbGb9XfyqyMQCAQCAQCgUAg0MRaCAq++sh/4CGIrK6XJQStVivvbkBd/tHRkUajkSTlrd8glV6uQH20E6/9/f1cXtBqtdTv9zNpdLEAYuMEtgxf9CC/MryRVWtJ6nQ6ecUWOz6Eb39/P6+0QvbK40KeqB8fjUbZuj+fz/MqPSvUCAq0A0HBd59wO76LMhDYvb09HR8f5xBBX0XGau518JKyWFLuLFDXtSaTySlRghV2nxcQ3dKV4gSYc25sbKjf7+fyl+vXr6vf76vdbue6eL4QVGgbJSDMOwJBPbTQa/JxBJBZUIYXcp2UmkgnJBvCPp/Pc5kF7SrdEIyhZw3gLHEC7WIaQpbvwHF4eNi4LzgngY84cnCzeJ4F4+UZJ6sIt4c8+raPnl3BfHAnDkC4wlHhAoYHPiIMcb1+/RyfcpeUUmN8vNTEyy0Q90JICAQCgUAgEAgEbo+1ERQ86+BWcNLIijbEGdv/lStXGun/nrsAWSEoD0u910ojVlAHzwq+k1yOg0gByvY7KWbFFDJHfT7XQ9jgwcGB2u12Li+ARHlyP8QWMkwOgLs5aA99BnH3Onks+WehFEU8xR+hheun3U7ozgr0k5pOBpwknU4nf1Y62TliNBrlLUHdueAOCMQN/t7pdLS9va2HHnpI3W43E1BIMQ4FyjY4JivaOFsQeXB1+Dz01XgvxYAI81mfJ1xf6XLxMhIEBDCbzXIeBXP54OAgk35JeScJdzYwDyDcnLsUurzUpQy1hHAjDDmcwHvZT0nS6ceyHAL3BvcWn2Fuet4BzwfPaPB8CuZlOfc8y8HHetWc9HwNL+UJBAKBQCAQCAQCp7EWggIlDKzM8hr/uYfIQhi97IFVZCcw7FwwnU7zZ5w4EW4IAWHLSFbx67rOpQiSGsSOtkjKBN8JjLffA+qw4bv13q3ciBuE8nW7XR0cHOTjsC0gpMtX2CkR8EBHCLlb9b1tbh13eF+5W6EkWj4+XorCOZzUev6DEzfIKNcDQfZcgIODA43HY+3u7mbRBWLv2wfiLPDa+s3NTVVVpe3t7SwQ0T8EEtI+xB7a41tZOvH01f5VFn8fe8bM+9PfT184qWZcfbzoH3fJMP9wAfi5y9IKSaeCH10cOcvxwXh6n5alFB6a6K/zN/rLiT9tKUUWxAjayFiV7eVYXg4EcBes2t7TxRQvjfL8i7IPQlAIBAKBQCAQCATOxtoICk7gJeXQQQ+Z8xVDSN7m5mYm3xAZSCh2eknqdrsNJ4Sk7HJgFRR7tq+AY4N3ccPLF5zwuKW/qqq8agr56Xa7uUSjFBQIJpSkXq+nwWCg6XTaKPtA+MDF4PX0kHEPfvT6dSeXHvS3CpA5D71zwuhBhaAkYX5OJ4c+5ltbW2q321lEIAeCbS45z97eXhaUtre3c2ghfeJjDihVIFiz1+vloEJ2S/D5xLFwu1CC4pkLXBNbOvpc8X5gvDznowwXpG/oE8oZEEZ8+1H6pq7r3GcppbxriLtr/LpcmCjJN+Pru5u4sMB3rtvzSDw/YzabZYHNrwlSj0jnIgXnK7eEBd7XiGqQf85F33LeUhDgdc7v4hbChYsPfm/4fVPO80AgEAgEAoFAIHCCtA4rcCml/ydpLOkLl9yUB6MN0YZoQ7ShwEvrun7eJZ37QpFSGkr62CU3436fb9GGaEO04TTup+dw/J842hBtiDasaxtWPovXQlCQpJTSB+u6/sZoQ7Qh2hBtWMc23A9Yh36ONkQbog3Rhvsd69DX0YZoQ7Qh2nCnuHL7twQCgUAgEAgEAoFAIBAINBGCQiAQCAQCgUAgEAgEAoG7xjoJCm+/7AYo2gCiDQtEGxaINtw/WId+jjYsEG1YINqwQLTh/sI69HW0YYFowwLRhgWiDSuwNhkKgUAgEAgEAoFAIBAIBJ49WCeHQiAQCAQCgUAgEAgEAoFnCS5dUEgpfXdK6WMppcdSSm++oHO+OKX031NKf5ZS+mhK6Z8vX//xlNLnUkofWn696pzb8emU0p8sz/XB5WvXU0q/lVL6+PL7tXM8/1fZtX4opbSfUvqR8+6HlNI7UkpPpZQ+Yq+ded0ppbcs58fHUkrfdY5t+KmU0p+nlP44pfRrKaWd5euPpJSm1h8/d45tOLPvL7Af3mvn/3RK6UPL18+rH866Hy90TtzviGdxPIuXr8WzWPffsziew+uBeA7Hc3j5WjyHdf89h5fHfXY+i+u6vrQvSRuSPiHp5ZK2JH1Y0isu4LwPS/r65c8DSf9X0isk/bikf3WB1/9pSQ8Wr/0bSW9e/vxmST95gWPxl5Jeet79IOnbJH29pI/c7rqX4/JhSW1JL1vOl41zasN3Stpc/vyT1oZH/H3n3A8r+/4i+6H4+7+V9KPn3A9n3Y8XOifu5694Fsez+HbXHc/i/Ppz8lkcz+HL/4rncDyHb3fd8RzOrz8nn8PL4z4rn8WX7VD4JkmP1XX9ybquDyW9R9JrzvukdV0/Udf1Hy5/Hkr6M0kvPO/z3iFeI+kXlz//oqS/fUHnfaWkT9R1/ZnzPlFd178r6YvFy2dd92skvaeu64O6rj8l6TEt5s09b0Nd179Z1/Xx8tcPSHrRl3qeu23DLXBh/QBSSknS90v65S/1PLdpw1n344XOifsc8Sw+jXgWx7N4FZ6Tz+J4Dq8F4jl8GvEcjufwKjwnn8PLNjwrn8WXLSi8UNJn7ffHdcEPsZTSI5K+TtL/Xr70z5b2nnecp7VqiVrSb6aU/iCl9Ibla8+v6/oJaTGpJD10zm0Ar1XzJrnIfpDOvu7LmiM/KOm/2u8vSyn9UUrpf6aUvvWcz72q7y+jH75V0pN1XX/cXjvXfijux3WbE89lXHqfxrM4I57FTcSz+IKfxfEcvjRcep/GczgjnsNNxHM4/k98S1y2oJBWvHZh206klPqSflXSj9R1vS/pZyV9uaS/KukJLawt54lvqev66yV9j6Q3ppS+7ZzPtxIppS1J3yfpPy9fuuh+uBUufI6klN4q6VjSu5YvPSHpJXVdf52kfynp3Sml7XM6/Vl9fxn3yg+o+Q/qufbDivvxzLeueC22q/nSEM/ieBbfDvEsXjZrxXufM8/ieA5fKuI5HM/h2yGew8tmrXjvc+Y5LD37nsWXLSg8LunF9vuLJH3+Ik6cUmppMVDvquv6v0hSXddP1nV9s67ruaSf1zlbRuq6/vzy+1OSfm15vidTSg8v2/iwpKfOsw1LfI+kP6zr+slley60H5Y467ovdI6klF4n6dWS/lFdL4qTljaip5c//4EW9UlfeR7nv0XfX3Q/bEr6u5Lea207t35YdT9qTebEfYJ4FiuexUusxX0Xz+IFLvJZHM/hS0c8hxXP4SXW4r6L5/AC8X/i2+OyBYX/I+nRlNLLlorgayW977xPuqyD+QVJf1bX9U/b6w/b2/6OpI+Un72HbeillAb8rEX4yUe0uP7XLd/2Okm/fl5tMDRUt4vsB8NZ1/0+Sa9NKbVTSi+T9Kik3z+PBqSUvlvSmyR9X13XE3v9eSmljeXPL1+24ZPn1Iaz+v7C+mGJ75D053VdP25tO5d+OOt+1BrMifsI8SxWPIuXuPT7Lp7FDVzIsziew2uBeA4rnsNLXPp9F8/hBuL/xLdDfcEpkOWXpFdpkWD5CUlvvaBz/k0t7CB/LOlDy69XSfpPkv5k+fr7JD18jm14uRapnB+W9FGuXdIDkn5H0seX36+fc190JT0t6aq9dq79oMWD+glJR1ooa6+/1XVLeutyfnxM0vecYxse06IOiTnxc8v3/r3lGH1Y0h9K+t5zbMOZfX9R/bB8/Z2Sfqh473n1w1n344XOifv9K57F8SyOZ/H9+yyO5/B6fMVzOJ7D8Ry+f5/Dy+M+K5/FadmQQCAQCAQCgUAgEAgEAoE7xmWXPAQCgUAgEAgEAoFAIBB4FiIEhUAgEAgEAoFAIBAIBAJ3jRAUAoFAIBAIBAKBQCAQCNw1QlAIBAKBQCAQCAQCgUAgcNcIQSEQCAQCgUAgEAgEAoHAXSMEhUAgEAgEAoFAIBAIBAJ3jRAUAoFAIBAIBAKBQCAQCNw1QlAIBAKBQCAQCAQCgUAgcNf4/5hFeUJN4INPAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 146803 0\n", + " Min thresh = 1000\n", + " Not Sliding\n", + "\n", + "\n", + "035ns_image_1394469579519_clean_ClassN_130-258.roi.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADYCAYAAABberBAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADo+ElEQVR4nOz9eZTlW37VB+5zI+48RETGy3zvVdWTShJVEhIgpqUBDC0vYQY1jcBtyYANQoguuQegcRsQtNzYLAPyatpA28vG1SAoWgINGFqYwQhEq7HRiBBCaCipJFSq4U05RMSdb9x7f/1HxOfE/p28WW/KfBmZ77vXivUi7/D7neneF3uf/d0nVVWlQCAQCAQCgUAgEAgEAoE3gsbjbkAgEAgEAoFAIBAIBAKBJw8hKAQCgUAgEAgEAoFAIBB4wwhBIRAIBAKBQCAQCAQCgcAbRggKgUAgEAgEAoFAIBAIBN4wQlAIBAKBQCAQCAQCgUAg8IYRgkIgEAgEAoFAIBAIBAKBN4wQFAJvO1JKP5ZS+pLH3Y5AIBAIXCGl9HMppV/3Ol9bpZR+wZu8z5t+byAQCAQCgeuFEBQCbzuqqvq8qqq++3G347WQUrqZUvrrKaWTlNK9lNI3P+42BQKBwNOOlNKvSyn9i5TSNKX0sZTSVz7uNgUCgcB1wsMWZl/P9eLv4sCDsP+4GxAIXGP8LUk/KOnTJc0k/aLH25xAIBB4upFS+lxJf13SV0n6R5IOJB0+zjYFAoFAQFL8XRx4AMKhEHjb4bbalNJ/llL69pTSN6WUximlH00pvT+l9MdSSq9c7k79envvV6eUfuLytT+bUvra4tp/JKX0Ykrpkyml3+eKa0qpnVL6symln08pvZxS+osppe4D2vjrJb0g6Q9XVXVaVdV5VVU//OhGJRAIBK4PUkpfkFL63sudqBdTSv9NSqlVvOzLLr+Hb6eU/u8ppYa9//deflffSyn9w5TSp7/OW3+9pP++qqp/UFXVuqqqO1VV/cxD61ggEAhcE6SUfmFK6bsvv2d/LKX0W+y5704p/T779+9JKf0vl7//08uHfySlNEkp/fsppS9JKX08pfTHL7+Tfy6l9B+82evtaGv8XRx4IEJQCFwH/G8k/b8lHUn6YUn/UBdr892S/qSk/95e+4qk3yxpJOmrJf25lNIvl6SU0m+U9B9L+nWSfoGk/1Vxn/9S0vsl/dLL598t6f/2gDZ9kaQPS/pQSulOSukHU0rl9QKBQOBpxUbSH5L0jKQvlvSlkv4PxWt+m6RfKemXS/pySb9XklJKv1XSH5f070q6Kel/lvQ3Xud9v+jyGj96KWR8U0rpxlvqSSAQCFwzpJSakv5HSd8p6Zak3y/pm1NKn/1a762q6tde/vr5VVUNqqr61st/P6eL7+x368Ll9cG3eD1H/F0ceCBCUAhcB/zPVVX9w6qq1pK+XRd/gH5DVVXnkr5F0ntTSoeSVFXV36uq6meqC/z/dPFF/Gsur/OVkv5KVVU/VlXVTNJ/zg1SSknS/07SH6qq6m5VVWNJf1rSb39Am94j6ddL+v/q4gv6/yHpO1JKzzzUngcCgcA1RFVVP1RV1fddugR+ThfC7n0i7eX36c9L+vOSfsfl418r6c9UVfUTl9/rf1rSL32dLoX3SPpdkv63kt4nqSvpv37LHQoEAoHrhS+SNNDF37urqqr+iaS/q6vv0TeL/7SqquXl38h/Txd/Gz8MxN/FgQciBIXAdcDL9vtc0u2qqjb2b+niS1cppd+UUvq+lNLdlNKJpC/ThRorSe+S9DG7lv9+U1JP0g9dWstOJP1Pl4/vwlzSz1VV9ZcvbV3fcnm9X/1mOhgIBAJPEi5Lz/5uSumllNKZLkSB8g9H/479qC6+g6WL+tq/YN+1dyUlXeyavRbmuhCGf6qqqsnlfb/sLXQlEAgEriPeJeljVVVt7bGP6vV9Tz4I96qqmhbXe9eDXvwGEX8XBx6IEBQCTwxSSm1J/4OkPyvp2aqqDiX9fV38oSpJL+pCQQUv2O+3dfFl+HlVVR1e/hxUVTV4wO3+laTqYbY/EAgEniD8d5J+UtL7qqoa6aKEIRWv8e/YT5P0ycvfPybpa+279rCqqm5VVd/zOu4b372BQOCdgE9KesGzZ3TxPfqJy9+nutgIA8+9jmsepZT6xfX4Xn4z13PEd3PggQhBIfAkoSWpLelVSeuU0m/Shf0KfJukr74MuenJ8hEuFeD/ly4yF25JUkrp3Sml3/CAe/1tXXwxf1VKaS+l9O/pQjX+Zw+9V4FAIHD9MJR0JmmSUvocSf/7Ha/5wymlo5TSC5L+oCTqbv+ipD+WUvo8SUopHaSUvuJ13vev6OJ7/DMvv8f/qC5swIFAIPA04ft1QfL/SEqpmVL6El1kin3L5fP/UtK/m1LqXYaLf03x/pclfeaO6/7nKaVWSunX6CJz7Nvf4vVA/F0ceCBCUAg8MbjMPfgDuhAO7kn6nZL+jj3/DyT9P3VR3/URSd97+dTy8r9/9PLx77u08P5jSTvDaqqquivpt0j6TySdSvo6SV9eVdXth9urQCAQuJb4T3TxHTvWhRi7K6TrOyT9kC7+UP17kv6yJFVV9bd1EYL7LZfftf9a0m96PTetquobJf01Xfyx/VFdfH//gbfQj0AgELh2qKpqpYu/M3+TLly0/62k311V1U9evuTPSVrpguh/SNI3F5f4z3QRkHiSUiIn4SVd/H38ycvX/0dv8Xre3vi7OPBApKoK90rg6URK6Rfq4g/Z9mUwWCAQCAQCgUAg8FTh0uHwTVVVvec1XhoIPHSEQyHwVCGl9NsurV5Hutgh+x9DTAgEAoFAIBAIBAKBh48QFAJPG75WFxkLP6OLc9R31f0GAoFAIBAIBAKBQOAt4pEJCiml35hS+nBK6SMppa97VPcJBBxVVf3Gy9MbblRV9duqqnrxcbcpEHhciO/hQCAQePyI7+LAo0ZVVd8d5Q6Bx4VHkqGQUtqT9FOS/h1JH5f0g5J+R1VVP/7QbxYIBAKB+xDfw4FAIPD4Ed/FgUDgacejcih8gaSPVFX1s5cppt8i6csf0b0CgUAgcD/iezgQCAQeP+K7OBAIPNXYf0TXfbekj9m/Py7pCx/04uFwWN24cUObzUbn5+dar9fCOZFS0maz0Wazyf9OKamqqvyaRqOhRqOhqqq03W612Wzy6xqNhprNpprNphqNhlJK2m63Wq1W2m63+f087vficUnabrdKKWl/f1/NZlOdTkeNxoUeU1WVNpuN1uu1NptNfi3vp70lvA/b7Tb/mx9/jLbu7e3la/qYMAYPugfvL+Hvpa+0qaqq2nPeXx9fH/fNZlPrq48DKO/nr6XP5WP80B9/L/9uNBra39/PbdrV713v92v7dfb397W3t5fXjr+eud61Xqqq0vn5eW3Oms1mbXy5J+/fbrdqtVra29vT/v7Fx3K9Xtf6vGvufL14/5i7B821z5u3p7we7/Px4zHaylrwsSzn7LWuxfUajUbtvX5trl/Op/eNa9AH/y4o1wDjzxzxfu9LVVU6Ozu7XVXVzfsm4PrjDX0PS9LeoF992nuTXlkOtfeR5ad6aSAQCLxtWGiqVbVMr/3Ka4k39F0c38OBQOC6Yqx7O/8mflSCwq4v/RojSil9QNIHJOmZZ57R13/91+vu3bv65Cc/qZdeeknn5+fa29tTp9PRfD7XbDZTVVXa29tTq9XSfD7XcrnU+fm5Op2OhsOhttutFouFTk5OdH5+rv39ffV6PT3//PP69E//dI1GIzWbTS0WC330ox/VeDzWer1Ws9lUv9/X+fm5ZrOZTk9PtVqt1Ov11Ol01Gw2NR6Ptbe3p8PDQ73nPe/R533e5+nw8FCSdH5+rldeeUWvvPKKzs7ONJ1Otdls1Ol01Gq1tL+/n8mNE575fK71ep1/zs/PtVqttFwutVgstFgsMnk9Pz+XJHW73UxwJ5OJttut2u22BoOBBoOBVqtVJqlOYjebjVar1X1klvFst9vqdrt5fvb399VqtdTpdNTtdnNfms1mTfBpNptarVZ53E5PTyVdkWiutbe3l3/8ehB3yPHZ2ZnOzs7y9ff393V+fp7Hgz44QVyv12q32+r1ejo8PNRgMMj9XSwWuT3MwXK5zPOQUtJsNtN4PNZyudRms1G73daNGzd08+ZN3bx5U88++6z6/b729vYkSYvFQqenpzo5OdHJyYlu376d55s+3759W9PpVJI0Go307LPPqt1uZ7FhsVhoOp1qMpno7t27mk6nevbZZ3V0dKSjoyN1Oh2Nx2MtFgstl0stl8uaCNZut/M6ok+r1Urn5+dZoHDhptlsqtVqqdvtqtfr5TGaTqeaz+d5bP1+6/U6XwOhhvHf29vTYDDQ4eGher1e7ttqtcqf18lkUlvjXKcUViSp1Wqp3++r1+vldszn89r64LNWCg30tdlsajAYqN/vZ3GS7w1e72LQcrnM3wG9Xk+j0UiHh4fqdDpZ2Fwul/rO7/zOj76ub73rh9f8Hpbq38Wd5oHe/b7/qz7z5FyNn/nhR92+QCAQeF34/uq7HncT3gre0N/E8T0cCASuK/5x9Td3/k38qASFj0t6wf79Hkmf9BdUVfVBSR+UpM/6rM+qyt3d1WqlZrOZdxjZtd3b21O73dZqtZJ0QSYe5GqQlAkWO7YQvna7rel0qu12q+VyqXa7na+/v7+v9frqpEGEDd7vxEySZrNZbbcYss5/2XWlL9IFCYbEQarOz8/zz2KxyCKCpPvcENxnvV5rb29P6/Vaq9WqJlBIqu16NxoNLZfLfJ3SdYAIg5gAwYP8t9vtLCj4PcrddnZ6O51OnhNvA/dkXlutVr5OSql2bfrLeNr6qYkKEEjmmzFDzEFQkO4XOBCifOzn83kWrVarlVqtVr4/7XQ3AQR1u93W7sVaZK54LW3kcdYDawLxgrHk31yrdAe4G6F08fjuv4sMjMODnC3u2uC6PAfZRpyhDawD3BX00T8X7gZAoGD98tl7kKvB4S4X+nB+fp7XuN8fuIuIvtFeBJlWq/UpXT1PEF7ze1iqfxeP0o2q+x0/8Pa0LhAIBN4ZeEN/E8f3cCAQeNLwqASFH5T0vpTSZ0j6hKTfLul3PujFbotn15WdSP/j3ksInJhCxhqNRiYsZQkDBKrdbmtvb0+9Xk+z2SwTI0hco9FQu93O7gBIxXA4lCQNBoO8I0vbIPQQUkiSkyL+Dak8Pz/XdDrN/eQay+Uyk9nSgi9dESfGA0FluVxqf3+/RuhKUgq5Xq/XNULcbDbza9nN7na7ebcft0G/31dKKY8X5J/2MAa0FXGCfjiRh/ByP67VaDSyKOBkb5f9n/dzb3bHEUC8zyXxpN+Q8tlslgklO+Sz2Uyz2UzL5VKtVqtmpZeuXBi4KBB69vf3s2Dgwo/b8L1Mhr4hKLD2eC9j56S8FJtK0cFFCy/bcKHBSwRYk162wtpnjng9n4v5fJ7FoKqq1Gq1ai4JFxZcQKE/iAe4ahDsXFAq13xZxsBaow3L5fI+gYV+8L3C+udz598h8/lczWaz5uR5gvGGvocDgUAg8EgQ38WBQOCpxiMRFKqqWqeU/k+S/qGkPUnfWFXVjz3o9eWuaafTyVZ1iBN/3EM6Op1OJh6Q8F11+bzXd8NbrZZu3LiRSTc7mrQFqz/tgkx3Oh0dHR3p+PhYvV4vv3c+n2symejk5ESnp6fZqg35css3RGe5XGa7+fn5eS0rYrlcajKZ5HIMyhFwV1yOce4b5N5r9SHmEGcvvXBbPNdltxgC1Ww2dePGDfX7fbXb7fyzXq9zqQXkzQk2wghkbTgc1nbH6QMkE5dI2TfmbLlc1kj8rtwF7ke/ut1uTURh3QDEBh6jrANhhntLV6UirBF3CDDm3W4379YjXlCOg+iDi8WdFqztVquVf18ulzo7O8trx8UzyDSkHeFEUhbLPNvBhQPa6tb/ZrNZc5c4gd71OcIBw+dEUi4Z2Gw26vf7+TUQd9om1TMhWGP0zUWh0gHjTooyD4Hr+OeMcil3A/nY4YTgmp1OJ6/JxWKRx57PypOKN/o9HAgEAoGHj/guDgQCTzselUNBVVX9fUl///W81i3ZvkPuu/9uX95sNplAQfYQB8oAN+qoz8/Pa0F1WPol5VwF7pNSUq/Xy/f0PIVut6t2u51J0mq1ymICP4vFQr1eLxMdyH15zdlspul0mom82+ed+NNGyLEH1rHLi+NhOBzWygjKMEQEB3aEB4NBJnYQusFgoOFwqOFwqFu3btV2t6fTac367rkWZAi4QNTr9fLuPmQwpaTz8/NcUrBcLmtugU6nk/MM/D67yC5j4QQWQafVatVcL77WvE+NRkP9fj+PI2uQ67utH3eAuyU8WwKyj9PBHSaM8WKxqDkXpAsxZrPZZCHNnSRkgZRZAJBd8hTa7XZuo7thyDZgHgD94DNF2QcCgXTlMuE6rBt3ayDEQMzpj5fTlG4RX8NeIsL40QbGrHT7SKqJGx7o6iIA3xUuWtBv5oXPaUopO5V8jT/JeCPfw4FAIBB4NIjv4kAg8DTjkQkKbxTsbu/v7+dwQCdEZUYBr3WyAAGRVCM8ECUIqWcE4IgYj8d5t1xSLmfwH0//h7ghDEwmE02nU02n00xAyXkgzI4+Ys0mfBHhgGvTBnaNfVfVyzikep04O7T0zy322M93EetOp5OFGwgsrobDw8N83/V6rdlslu/npJCxIZyv0+nUnA0lCUW8YSff2+K70F7L72vFbfk+R04syzIAQDt89x/nimcl8D4EAv5NSQLE2F0A3mbu6UGZlGWUpJf3cX1em1LKjgoXUsqSGhcK+DyU5SHeLhwz7k5ABPFyA3byfc553D9rrA8fU3cfMG8OL0/yMgUvBUEwY7xdUGEdeT98nn2d+WeW9cHnzYU6HEL+vRIIBAKBQCAQCAR249oICljU2+22+v1+bcdXUt6x9l1xD6aTrggZ1+Nxav6pvaaMQFLe+YW4QEB4HqJVEnFJmRxOp9Ncbw9ZbLfbuSQAso6dGkEBV4TvCAMEFEQAJ3CQt9LK704OxoVxg5y6sOACCT+cDoEowUkWiAle4uBklH52Op0s0pA14YICIoLvinNdt+A7nLTTZ7fol0QbAcDDAj27oMwOkK4ELT/Fwsk3AgDz6CIAz3lJC+2mff5+XC3eBtYr640f3ovYsQtlCYCLPT4uHgpKn128QrhyUY2x8vXl5Su4DhgHxA9+yjFxUYGxYT25owHiz+v9CE/eiyjgApOHoNLm9Xqd2+XfKZTHeEkGY8A9A4FAIBAIBAKBwINxLf5ihlhAQjnhgRp0dpudRPoOqKQaEfKdaUnZpQDZ6HQ6mk6n6vf7tbr+yWSS6+Aho+VpD5CV1Wqls7MznZ6eajqdZnEAwQAxALeCW7i324tAu3IXGUDiILeIAggAWNjX63W2ufsuLbvv+/v7uT8QMLeoQ/y3222tXMFPL5DqxMp3oL1fCBEHBwf5CEfKJtj199MMZrNZ7VhMCC1uAebbT/CA0HoehB8l6fPuBJodaB6bzWZ5HTH3OFhYY6VFHsLPKRB+HKGLAggxy+XyvmwACDptn8/n+X0cdYig4HNeVVWtzYy395W+ef4ATh7uyWfNHRwO+sYY+2fMAxBZ435dF5lYM7hVfE0yt95eL69wV5Kf/EAfWfeMhffVnSwuKvAe5onrSao9zljxXYFLJxAIBAKBQCAQCOzGtRAUIBudTkfD4VCNRiPv+lNTzu45WQFeK+719dIV6fXgPALscCeQJQDxGY1GGgwGmVBB6D3VHkv4arXSeDzWZDLJpwOU93dCSzv39vZyecNrhb3Rfkgfv0PO2eVHGPAafQgnu7e0BQeAE/XZbJav7f3EeXF2dlZzazCGXNdPJMBJMRgMcnhlv9/P11wsFtktwjjgSkEUKEUhCB73L4P9JGXizfj4rrOXRbgg5ceOknHhJxIgvCwWi9rxpVjiaa+fwMC4M7c8hzDlc4kbgbn2PAz6xHu8DAb4GDDP9MGzIPyoTi8poN8u1EHgy7IhD0d0UYHXuLvCTzhx0s9ck2vhc+NZFr5ey74yvn5dH0u/lgtJpTOjdDBQjlRmM5SnSAQCgUAgEAgEAoE6rsVfy7573mq1Miljl9d3xSVlEu271tIVuYGE8Xun06kJCl4qgcDQ6/XU7/fzUZL+GkgSRI2gRyfIkJ1S5HCHg6Qa0Sof9+fpj9eNuxOBcSst9j4mTqYhVG5H9xMMcGpwzfl8rvF4rNu3b+esCenquEXagaAAsOZ3Op0c7lienuD9xyGAGFIeY8n8QTB9Xfh9mXsXV3wH3sP/vN6f9zKvkF9EAE/99z4TrOh5DCWR5v5+YoTPg5dwuNPB57IUx7gOggguAC9z8FNFuH/Z/7Icwtvu7gA/HcLLbmijuyCYH88ycIeCr3EEExeQSqGIe/h/6VspOnh7PFSTsfX7e9/9el5itOu1gUAgEAgEAoFAoI5rISiw0y0pOwM89b8UFBaLxX27rdIFefASAA/6o54fsgpJQlBYr9dZUPBTFyCpbkWfz+fZsk6ooKfTS1fkpiRI9Fe6IppO4iCRXn/O60uL+q4sAK8ld2LnRJZSCncj4D6AdKaUdO/ePXU6HY1GI/V6vdoJFwgM8/k832Nvby8fp0l2Qr/fz7XwbtOnTS7yrNfrLPz4znN5jCiuAfrkhJl1w9opx45rOrlPKWVxyMM7XSDC8cG8M2bMj7s/PK/D57Cs8y/n2f8NMfbwUdpEoKd0ZednfN2h4M4GdyP4evH1578jIJSuCv7r/WEMabefTuLlGDg8eBzxpjz9wT8n/m93UbgQ4XPKfbz97t5w0A9/zgUlz5gIBAKBQCAQCAQC9+NaCAqSNJ1Oa8TM68WlOnn2JHoecxeC71xCLDg9otPp5J1lxIJ2u63NZqPhcJhJ5Xg8zuRqf38/70qfnp5qvV6r2+3mHezSUi/VcwfKkgBPnOf9kFPfOee4QJ7zEgy3nu9yLmw2G83n89r1aANjslqtcvYDR2O2Wq18cgX5EDdv3tTx8bFu3bqVxxhxBrcGbeIoTuzthF4yr91uN4sIm80m16hDKumzu0NWq5U6nU624+N2cDu/z7eLDTxWCjwQScgvgZqeocFrx+Nxdk+klDSbzXRycpL7ud1u1ev1JNVDF1mTzWYzj7U7IZgbHB8u6FD+4III/Viv1zURiDICsh1ms1nOYCAHoAxudMeDf44g314SQj98DUmqiVWl48WPdETgwDXh699LF0rHCWKGjxcCFvdERPI1UIpzLuyQaYKAs9lsNJ1O8/sRRMrPcCAQCAQCgUAgELgf1+IvZj+NgWMJ2THedQICtnMC8AgXbLfb+d+z2axWy+6kohQpEBR4v6TaSQh7e3vq9/u1GnPfCYa8eYI8bYMkYdP34D5qznkvbYXcQIz9dAInmBDP8pQDSkZ8p1u6ci/4rrWfJOC7yPRrsVjkrAjyCSCCngvBiRYuynhZgxPTXq9X20mWlEmvW+8hjT72+/v7mkwmWTTpdDrqdrs1Szzj4yUFvvPOkZqMOzv+uEwYG8aTsYO4IgrQfz9m0E/t8LIICDNj6uGB3IfX4qpBqGEs3XWB8MF6Zy0xj6xfxszvyfj6qQd+FCafEe7BemZ9uniG+4S16aeXMD7MAfPAXJUOhDKXQboKW2WtuAuBeXEnggdwliGpXlrlIps7QOgj4kiICoFAIBAIBAKBwINxLf5aZjd7Pp9n4uNp7m6tlq6sz5KyO6Hb7WZLPkSp3JX2uu2y7GBvby9fo9vt6uTkJL+/JIuz2awWxIcoIF0RerdysxsOQZYuSHZVVWq325nEOlGjXVj4ncSX1u6S/Lod3cmbB+65SME4lnkNm81G4/E4t+P4+FgHBwcP3DlnXjyc0Hf2EW8IapSuUvZ9x9gdG8yLuyg4HYF2MTesDSf/nhtAP8t5cuGqFCbcWs964XWsJwQizwFgrUjKu/vct8w48HWKe4SgSh9TzxxgDj1Tgs8M9/XnWG+l+IQo5mvY2+WnRtA22sK69fBQ3sf1KEFinfJZcvGCNnk/y7XsIkM5Bt42Fxp4ble+ibeV93tbvLwiEAgEAoFAIBAI7Ma1ERQ6nY7Ozs5qO6wlyStrvb28oNvtqt/vZwLDLik7ydIVAfPwOX5vNpvqdrsaDAbq9/tZlJCuTqFgR9aJn4sbwMsbfCdYutqtR0Rpt9s1QgvZgtw5AXMyWpJDQDvplwsKHmbpBLYUEyDGjCO2/Hv37unw8DDb8dntp41O4vxEDJwWzDNHJLKL74IC80T/ydNgnMfjsc7OzmpjWJ6awH/diu/jA7imlz6UWQIuUEhXJx8wF9KFm4YSEG8D84RI5fdlZ582np+fZ/EI4WU+n2diTjCoC0GsZz9m1e+PgMRa9flmTZWCQukk8PVGYCbrCUGBvgDa60Tff3weXLjxz7yXU7gIwBp1x4GXR/Bfdwa5SFUKibzWc0B8/snuCAQCgUAgEAgEAvfj2ggKw+FQZ2dnkq6S1yEXkB1IH3X+7FhS8kDZg4fZefAiJAxC5/Z1TiXYbreaTqfq9XqaTqe1XV6vf8fCD7Eq8xGc4ELidhFtygjKHXEP6fPaeSe+fsSeE3A/ecBJpv/bHQCA+0HgOp1O7u98PtedO3fU7/fV7Xbza7Dn++4vQY+TyUTj8XhnUKYfFem17vQHYOuHwA+HQ00mkzz/uAOYW3d58DvlDN5v1gABi+54QQDiZ7lcZkEAcYSSFS978blOKeV1Mp/PawGfvj5Y32R/sNtP+CVtmEwmuRyH+3uwppNmL39w8Yi++24+bS+FMoI7OeXCCT7rlPt75oePP+/vdDq5/553QAkIQailGwDxwUseOMLUxR93GPAd4CJd+RkoUYoM7sIoxcJAIBAIBAKBQCBwhWshKOzv7+vo6EiTyUTT6TSTJCzHXhvurgRJOczOd3cl1cjX8fGxjo+P8/GHvtsLAaNWHzL5yU9+slZ2QRsI7iuD3SRlEsj9nQj5SQUQFUIWCdaTrkL+uC914JJq5BAC5ZkJbsuHsJaJ+H7CAwQXF4DXnUOc3TFyenqqV155RYPBIO+q0zdEje12m8MBp9OpptNpdo74iRQIPV5fX1VVFgvYefbAQjIuaB9jh7CzS0ggcJFx4L2Q2fl8rul0WttJZ159HVJmAantdDpKKeUQQtoN+XbBYLFYZCdHq9XKwZWsA8aMPrGWOX3EywsYP9aMO1d43sMVGQfWBOKLv4/cA8p0/AeBiZIKzyjwEovz8/NcvuOOAnfKMNdlaCbXYd5oIyIcfUZcc+dQmZmA02PX/b3Epyx9cOzKewgEAoFAIBAIBAL341oICikl9ft9jUajTMzIUoCU+W4rgKBhw3ZSBTnb39/XYDCoEVoeL2uyvcb/6OgokziOifRkeUn5eYQDD2GEUELkIPLcsySJ7Xa7JiQ48Yb4uzWb9/l4lLuwZY4C4+MhkGWYHbu9PNbpdGrvm8/nmeC7uNNqtWoWeIIOXRTxkwVoV5kB4QTVBQ3vG+0rjwBlDFarVX7der3WdDrNIlKj0cglFy6W7DotAoJL/90V0263a44M2uvwsgJvEw4N3u/5CPTVBStfn/zXd++ZW97jThkfV7++7+77bj9j6Z8P+lK6YXzNuLjmjhPG1dewr28n/j723rfycUSOXQGLrF/vI8+VAoK3FxHIP3dluwKBQCAQCAQCgUAd10JQkJRLDrC0S1e2ag/B851GdnHZcWanEzJEzT7HEHoZge+COplqNBrqdrs6PDysEWKuK12QKyzV3h4n2ZCb0iJfPu9hhX4cJoSM+2GJh4Q7KaNfTgC5h5NxiKAfC+g70S6Y+PhBvHkvwgHA5eAnZLCzTzv4r7dxV6mDBzpKyg4V34XnOu54ADgPGCccApxY4EGNPn/kB/BfF7NcFGG3HzeKl1Dw4zv83h8Xs3w+GVsXgLwUhX5xbebKMxUYY7+HE3i/F+4FxpdxQIRwp0ZJ6ncJCl6SU+Y0eFsYdz+BhPeUgoavG/rla91fUwY7IiT5+irh2Qw+d97fXe8LBAKBQCAQCAQCV7gWggJ/+LdaLfV6vew4OD8/12Kx0Hw+r/2xD+nD9o31XFKNEEH6yE9w27eLAxBPz124efNmzm7YbC7OqvdAw8lkoslkkneXfdeYunivh5eUiZyTMMi4kyL6QfsQT7D2M2Ycd+kWdifer8ehwLit12t1u937dvxxe5ShhL6rXQb1OTnERSCpVmZROgJKNwqigJexsB78NIIyvA9yDPGnj36KAYSXx8k/YFzItOBaTrYpaSDgstVqaTgc5rGH4HKUJWUXlFxQusHzjBVOG3eweFAgmRl+ogRj4iVBzB1rgzIb2uVhjohiPI9zwsfc8xPYxaeffqSir1+EFPrljgnPCvHPM3Pv1yzdAV7y484EdxyVa77ZbNZKm0q4MBFuhEAgEAgEAoFA4I3hWggKEB/qpwlxq6qrlHV2Qx1OJPw5SBA75dTzQ3qGw6FGo1EWEtzKDhm8efNmJpJOZLxMgmMu2Q3FjeDEHuLlIkl5eoSkHM4oqZZ7gAjiQXw8DvniMSdtOAmm02kWHTqdTi0zAlHDT8TYbDbq9XrZ+VFa1l1oIO/BXQ1kASAOdbvd3E4nre12W4vFIp8iwTooXQqTySQLEZRceFAeeRa+U+3lBSVBJSiQcfNAQoQh5o0wR8abPrpo48GY9AHhoNvt5jDP+Xye596zDPy/HqhZrgFEiE6nUxNw3PHiYZ0uQHlpza4yCM+xcDeBOxvcNeH3dWHOBSPWIf3zdcp1vTzBHT4eNsm8uvPB55PPKPfx0FJ3SnBfF7RKZ0RZ8hIOhUAgEAgEAoFA4FPjWggKVVVlcu473MAt+E7qCa9zguCAMBK81263M1keDAaZ9ECAnDz3ej0NBgPN53P1+33NZrPazniv19NkMqkF2jl5crGA9yA4EDbnu/z+e0lsnLDjyPCdWt7jx/L5KQXl7q+TbYg6Y+9lIOfn5zW3B3OAYADp5Joe6udZE062pXqJBPkGXt7i64IsDfpP3gS762Q6QHp3ZQ4whhBKRAInnm59L/MFAMSV+9BG2leWLFAC4tclF8LLcmirCxblUY6Mt69RF3O8fIDPhoP2sv7KnIJdJTPAQzJ9blh3vs59/DzTwQk844qg4O1jrfLj7h9fb8DXvY+du1G8fWVWA8IaY1q+NlwLgUAgEAgEAoHAg/GmBYWU0guS/pqk5yRtJX2wqqq/kFK6IelbJb1X0s9J+sqqqu59qmuxI0uQnxN3PwnA68aleqAg5E2q73SzC46FnhIEjjJ0Ag6pwCXR7XbV6/XU7/c1Ho8zuSVYz4PrID++I162l/4gKOyydPM6SbV+Q6ggrTgQXIjgdWVdOPd3J0NpE/eEfK4hXTknyvp6zwig/4gNEGUvQ2AcIHhluKU7JEqRYrlc1gIYIfWUQEBcS0GBcWTcXHhw1wnHM/Kc76SXu/EcYemBnC4eubWe8UCoKUUen7NyzPx4Uh93d6zsyhPwsoRda8vX5usB/S+DJYELaJ5H4SUWPpde2sKcuFDBWnRBoRQv3H3g3wGeGeFz6/31zwpz5G3kNbxuV5nEdcPD/C4OBAKBwBtHfA8HAoF3Mt6KQ2Et6f9SVdW/SCkNJf1QSukfSfo9kr6rqqpvSCl9naSvk/RHX+tinpcAccE2XxKPxWJRs2Dv7+9rOBxmBwDH+M1ms+wggOB4HoBU35ktjyHsdDrqdDrq9/vqdDpZ8IBcOZmXroiICwcQXE+R39vbqx2Vxw43xAhhwsMFaRunCWDdd3Lqu6xOjiBXiCZck2wHP/4PAsZ/OY0AsuvHc/qOrpNCXBRlwGIZrun3RkzwsgBEBDIOuDbHVJIDICmPN+TXyTfwcXBi2ev17jsCkdczhsyB74SXLhMvDUCcKQNAaSNretf4leUIOETcAeP9cdLvpz/42uR5fz87/u648NeX/y6PpnTxjNIhxpA1VAZ1IpKBMjfE1wd986BMxofrsx75XOOS8f4/yKHgwl35/BPmTnio38WBQCAQeMOI7+FAIPCOxZsWFKqqelHSi5e/j1NKPyHp3ZK+XNKXXL7sQ5K+W6/x5em7svP5PAfqsTt+fn5+35F4i8WiRqAJu2s2m+p2u/majUZDw+FQBwcHOjw81Gg0Ur/fr9XPr9drHRwcZOFgb29Pk8mklneAWLFarbJYQRmEl2Q40Xbr/Hw+z6SHvlL/D8l04ooA4TvzvuPt5Eu6Ile+48p7nHAyJvv7+zmzwYk84gvtlJTH00/VQMzxPAPcH7gHmEvuv1qtalkCZFd4OQt95nfGg+szz/TRhRkvXbhclzVRozxVgXHjJBCI/HQ6zTkLHgxZ7mrvqrMnk4L14kKEk393Gng7/VQJz/Yod96ZfwIZvXyA8feSDg8M5XWeiSFdBW66yOCkHEHAS2toO44ZXsP1vO3uXPDsExcGEQ9cmPBSCcQ05sGdD7TTv1PK8hcXCrimH3vp30VPgjtBerjfxYFAIBB444jv4UAg8E7GQ8lQSCm9V9Ivk/T9kp69/GJVVVUvppRuvd7rlHZpP16v1uhLIuTlBM1mMwfW+Q5vu93OggKCQbPZ1Gw2u+84Qcgq76dcAnIJQSLo0U8ckK7IGqQY0gfxs/GqOSOcKPoYlEcHSlc2eki977aX5QJO/JzESlf5AKTwe6mD92mX5Zx7QSRd6CnJMWIQjy8Wi/tcCWWWQOmSYG04EcWlQEYGZJO2l04IF3x4vsyE4D6lSEDbV6tVdgmUFnq/LoTUbfhOWN2tgK2fsWasnNi788JJLusKt4yTaEQGJ9/Mm6+H8qSGsm/+mItHrDHmsCzl4Hrci+fL8hCu7fPv5UelM4E19aCSDXf5+HvL0gzGy6/na8/n8knCw/ouDgQCgcCbQ3wPBwKBdxresqCQUhpI+h8k/Z+rqjp7vbXZKaUPSPqAJD3//POZRDlB87A1t6tfvv++jAAnphDOzWaj4XBYExO4HsF3vJf3Q3YpwUB0oG+UUTiBgjQ5MeFakD7pirCWRMXryyFOZUYDJMjHxndSIaROzvxEAJ8bvx7Czf7+fq2Uw0ldmWEBaV6tVlk8edAuMO/jPeVutl/fj9F0QQUCXIoAzWYzuypol48j4+DvhWj6PTudzn3rzAUexoxyHO9nuZPtgoo7ZejPrvKGqqj3L8k4ZRh+v1JkcBGC5520+z3dGQBYb77L764b+sZnj8+Fk3RQ9tGf578+Lh6g6WU5pRDg/dtV/uHrmTwWHneBwee5FNsYA9rxpOBhfBd31Ht0DQwEAoGnHPE9HAgE3ol4S4JCSqmpiy/Ob66q6m9dPvxySun5SyX2eUmv7HpvVVUflPRBSfrcz/3cynfopav0dogBu9qSakR7u91mtwB15ljz+SIfDAbq9Xo1MYH3uqtAuiKNnAwxn89rNn0XGtyWDzmhXeVxeRBC341GgPCdZQ+l81MCILJcE+LtJxFA2D3hnnaU9fM+DpDz/f39vNvfaFycZNFqtfIJA1V1EZ6JE8GFEu7n7cGpQfZDSXwhewgSWN5LMslOsr+fPuDWgFxzTd9NL90aXo7Aj4tX0tXRnW6nx2GB88X7Udb9ewYC88VclvPN/Lr1n7XPqSeeI+ECkjsN3JHA+CCmlOUvpcjgwpELMOXnrZw/F/jKawEv43BXDcIEAhEiGp8VF2PcJeGigI8Jbpl+v19zdXg5ROmwoW2eDUL/y/G8znhY38WjdOPJsmQEAoHANUF8DwcCgXcq3sopD0nSX5b0E1VV/Vf21N+R9FWSvuHyv9/xWteCgLHjDZmjJt8t8n6MHARytVppsVio2+3mFH6yDchhIICOfIaqqmq1+I1GI9ejz+dz3blzRycnJzo7O8s7nZATSKyTDbd+S9JoNFK73c73LTMHStIMfJffreEQTsoyyDIYj8dZcPHrQiJLp0MpgvAY/3VRx0s3NpuNptNpvh7vh+hCMP1IRMa+2+2q0WhosVio0+lk4uauAvrK3PputDsmuBdtbDab6vV6mUwiEDmh9/64AwLRivFlnig3oYymzAvgtazXUjygDy52gPJ37j2fz/Nj3W4335s5lKTZbFa7D2IRAtpsNrvPucM68FKYUljydcbvnhtRls74qR1esuKiDI+V5UpeeuEuHe5TCh20lzXrAkb5+dhut7UATC85cadM6Wagv81mU+12u1Yysavs6LrhYX4XBwKBQOCNI76HA4HAOxlvxaHwqyX9Lkk/mlL6l5eP/XFdfGl+W0rpayT9vKSveD0XK63qvlPt9emQNy8p8NdLV7ulkLJOp6PtdptPkFgul5kUQxghzgQockwkhMnrwCXViEZZvuC7xry30+ncV/aABdtt7G4t50QJPy6xJN+74DvW/NcFBt9xRywpj6CExLkIw+sQbjxTwvvhO9RO6hEZcDgw1uxI0yau48csAubNy1y8VMBDB1kr9J/54HQLv+d0Os3tpr1eU+8CB2uOtuFaoC1+pGgZQIhTg7a5EwL3B+sbwcvLGhCtUkpZsIIoI4b4WHj5jIsJ7iJh7rzUgde6WFC6ezwDg5INFwM8CNPfx2fAnQbMsTt0WBcubviccN/yHqxND9JkTZVihTtU/KQVb98TgIf6XRwIBAKBN4z4Hg4EAu9YvJVTHv4XSQ8qDvvSN3nNmg3cf7yG2snLrhA3t8o7QUAg2N/fV6/Xy2JDp9PJJMSt/KWLgB3ZXYKAgzYgUrBLfXp6WssNcNt4We9PngGCAmGTjIETIydTkFnfVYd0Ocnnvx6oB3F11waPr1ar++zynU6ndh0noGUGQJnL0G63c98YE0o2eL2LCl4qgNDh88C4OYH0tkHUXVhwZ0x5JKLvins/yvHzcEmECsaf9/q4+FrelZtBtoSvIZ8HFwh8jePI8fHxHX3G00m2C3Ce9+CiRIldY1LmLviadFcAj5ePuWDkoZGlG8FFBXccuLhUCkyshdLlUl7XSx3K9153PIrv4kAgEAi8fsT3cCAQeCfjoZzy8FbhpH29XuddcwgWBB9iCTHwHAFq/VutVq3m3onHbDbTdDrVdrvVwcGBjo6O8nsIL/SdXcSIlFK+vxMTt5ZL9RMYOJaRIxc5rYKyAQjLfD7P5Knc2eZEBNrkNd9SPdzOLdq0wQmiOw+k3aLCLjKJmAAgpbSzDBp0QcEdH8yjv2e73arX62k8Hue55rVehlHmL0DMS5K4K1CQUhYn8m5rp2yDYEeEEtaDZyq4AED73UGx2WyyAOAk3csI6AMCjYO1z3qh/WX4IPD58teWYYJeTuSOCb+ml4swFz7OLuowh77rX/bFx8nhghVtY/x2uWP8WiXZL6/n7pGytITPLk4EF3n8x9/D5y0QCAQCgUAgEAjsxrUQFPb393V8fKzz83NNp1OdnZ1lYokV3AUC7P9+xJuTAiflLlRMp1OdnJzkExqazab6/X5t51iS+v2+jo+PVVWVxuOxptPpzt1sbN/L5TLvuvf7fQ0GAw0GAx0fH2s0GqnZbGowGOj8/Lx2KgGkTVImO4gkADJf5g54SCRjU+6u+y57WQbAPX3X3kspECVoC33udru57+v1Wu12u0b8vF3T6VR37typOU46nU4eE64H4afEw90O0v075RBc3ucEl7YiKCDk8FiZWUHQ4mKxyI4ABA2I+Xw+r+UXlCUTTn7LdYEA0+v1anZ9F6i8LS62eJmCj8mD7PysE+COFkQ5Lx/gPtJVSKe/x50ru0IuySbxsqTSbVC6Vfivt3mxWNREjl2ODs9rKEtq/J4IRC74sSZLZw/XwZ1UOnb8FJhAIBAIBAKBQCBwP66FoJBS0mg00mw202AwqGUW+M68pJqYQCkDBLjdbmdHADvFbndeLBaazWaazWY504BrEy5YVRdhjc8880wmlTgLeJ73sKM8n8/VbDZ1cHCg4XCow8NDHR0d6caNGzo4OMhBivfu3cskiiwH75sTKfrYarVqAgDktRQ3nLgBLxHxGvly7CFuZR15GV7YbrdzmQNj5sF29GW1Wt03Xn4/nzPGhvHEjYAIQg6Gl5oQQsn9fGe5FFm879yb4w4J80Rgwt2CMMIYInQwR2VpRVmW4+IT96a/vL8se0A4YG79VA93HPga4T4Q7bL239cV/+aeLgS4kOSlIn5iiH/egAdO7ioRYB27qFeWMXhehs+hz5nDx2rX87yfPrjY5Rkhvg4ph+G9/vn2fI9AIBAIBAKBQCBQx7UQFBqNi6PeyDXwbIIyo4BdZMIUISMergZR9V15SXnH0UsH3NLv5HkwGGg2m2k+n2cytSuFHqJCm0ajkY6Pj3V4eKjhcKjRaJTbOhwOcxmDk56y1ADCRF/K+nbftQXlTrCXY5QOBuBWde4HwUJY8NdDiqUrQaHc8eakDEihk9RGo1Hb/Wd32G3ofryhz6nvOJdZG04snQgyPl56gKV/uVzmvAJ3F9CuMnjRn/P+Am8PhN3bVx776WUEkmonC7AuGYtyl522sP4YX8+J4B68BnBf5rMUE9yp42IHc+BrzoWNMheBzymlG74GGS93dvgc+H1Lh42vXXc0OHwcy89X2cddZQ44S6LkIRAIBAKBQCAQ+NS4NoLCaDTSdDq9z05eBu5RWjAcDjMJw10gXRANdtIhJn7Mn6QaaWU3nR1634n3gEOOauS4RhcyJGXB4MaNG3r22Wd1eHio0Wik4XCYT0UYjUaaTCb5eD93O+wKwiMfArK9K+PAj5kEWNwhzU7W/NQCSbU+4BZoNpv5ui5kuJsB0u61/tvtNo8lJx+02+38XsoPvMwCscV3nJ0gIj74jraT11JYkS6EI1wHvN+T/xkbxIKSrPpRkhB5BBdEHhc1ECk8ONFLCnDHuKCDqOTj6v3mmFD6hpPCSbmTZi/zYdy4BwIC7S5PzShLS3wOKNngtSXJ9jaXTqJut5tPomB8WMflYy7UlXkNpaCwS1wof98lJjAupaDAmuY7wk88KbMhAoFAIBAIBAKBwBWuhaCQUlK321Wv18vk24/Ew1XgoX5uhR+PxzV7s5/sALmFeDYajUxiIVfL5bJG6EoSgYjR6XRyzT8kCwLS7XbV7/d1dHSkmzdvajgcqtfr5R143su/2e3FNbHdXgRFsrO7v7+vg4MDdTqdGlGlPbTJx9B3lt3OL11Z1jlCE8JcElQPhpR0X3ig5yGsVivNZrNM2CXlgEMEm6Ojo5rVvyxHYI7dVVGG/JWOC0oe3IXglnuCIBENEHVwVyC0sB54nD7R7zKEkxNBOIHDyx1K1wrrULqy+lMiggPC16uXkng+BEAgkZRFHNawW/RdCCj7WY6Tjy/z48IE80U7Wq1WHhN3oDAvtJF1RjCoE/h2u50fW61Wms/nNQeJuyoQWjzks3QjeJ/4TJUBo+U64nqsSxdufDz92oFAIBAIBAKBQOB+XAtBQVLe+WV3nP9CmiCZEDFIy97enmazWY0Et1ot9fv9TCo9oZ9cgm63q+12m0sasGdDKBaLRSak2+02BzhC9FyAaDQaOjg40PHxsZ555hkdHx9nQgVhabfbWWBwogZ5ZLfZiR/j4W1yEkqQY1kqsFgsstBRBta5xdx3yHEuePmBJ+N7EJ+Tx8ViUXMZePifn9bgogD9k1QrQSHIEMEBeJsRSngdrhPPJqDdiDX9fj+/xseiDPjjNZ6DAEHu9Xq5JMddGmW+gffVr+lOGj8a1MfDy2o8g6Gcq10kFwLNOndC7G100aCcF3fpIFqUcALOfbzcw50BPn9+BKqP1S7njZc8eNYD4+XOA+/bLlcC3xOejUEfdpWveJlNuWYCgUAgEAgEAoFAHddGUChr+Qnq47nyeD4s9K1WKzsVnOSxE48gAHHlHuv1WrPZLNe7DwaDGhlZLpf5B1s8rgjItFveh8OhBoOB+v2++v1+FgKk+49a9F1QJ54eiAj5gsw7SS5rwn3MeIy+ef2/794ynpAqhxMsrs04dzqdWj2/29Np666dYeaN99IuLyvwjAvvI/PGrruXK3DNcmfd7831aIevtfK0BP/dSaufeoHgxfNlSc6u+7rIsCsfwMUzronoVK4RFxV4r7spSkK+C2XJDfNYugm8L4wZ/fQx8vVclhj49TebTXazIF55/3y+Hb5Od4kWDp9rgiE9E8HXh+eT+Hg+SLgJBAKBQCAQCAQCV7gWgoKTIKz87Fazg88PwX4Q2Ha7rVarpfl8Xktlp16f4wt9t369Xms8HktSLq0YjUbq9/uZjGDHZrffHROUBTSbTXW7Xe3v7+f393o9tdvt2g6/k+7SaQEgrWVNt9/Xbf6els+12VXmfV7mIV3tFPP+zWaTQzAhpcCJLu6KwWCgXq+XXR8equekexe5RwDAXUAOhc8t2QZOwnkvhBCHgpN0xsVdK+4gYR044ed3362HHJdOCq5H/xCseA8lM36tkqDvCnb0UokysHFXaYLvnvsRlL6uS0HhQWUC3IfX8/lwkcsDIvkvj5chjg9yJvhpJKvVKpdBIA64oONZFLvyD0qxx10YpUjA2PrcuevD2+whonyOdo1/IBAIBAKBQCAQqONaCQqS8vGPLiZARiEJvkvK7jm12Lwewidd1MyPx+NcBoCYgONAUi5HkJRzErzsYTgc1mrFvcyi2+1qNBqp1+tlwiTVj69zu7aTtGazqV6vl/vBLr/vsFJ3TiZCKRRAkNw2326387WccHHKxHa7zZkOTmTL60Ge+/2+Dg4OdHBwkLMAJpOJpKtd6729PfX7/do8QQyZl2azqcVikV0YCCTuQpjP5/cRVd6/XC41m81qwZG+fijRYFcagQqXhxNHyD0naUgX5JTSBBcinKBCThk3gic9xNPdFmV5Q0m+KYFhLMusDP+cuJvB7f6Scv6DZwowDu4KAaxnnnO3CKDvvpbLdewuGcqKyD5h3jzvwq+NsOQixq7jVMtsBMaP8XUnhgsqvJ8xQ4yhL3wWXEjpdrv5WuWYBQKBQCAQCAQCgStcC0GBXUJJOd/Are3sPjs5LklZabuGKJalAxATTgI4Pz/X3t6ezs7OstugJHVOUDkqsQyMQ0jwXVXfoYXQlnXwkBt2vkvyR9/9NAUXVdz1QP9Lt4CPmR9ZCTmmLZSJAK9DJ5QS9wXZBIglZFAMBoNazgV16xDs/f19zWazbOt3ku+7wfSFkhTWyGw2y8IEu9vMuR95CXmk/eVOvIsxiCzuHiidCi70+EkAkOIyAwGSDSlGQGFNleNMWY1nC5RHcvJ+xtRBH6V6QKevMdrEtXzN8D7IuF+X9nAtnmf903a/B210IcDXGvfzcfGSEP/h+i5WcG9vm8OFh3I8edxzH8pyCBfDAoFAIBAIBAKBwG5cG0GBXAII2i6y6GFqbtHmGl5HzmMQbCdmlFNASObzuSaTiYbDYd7Zx3oPOWcn//z8PIcQcm8nN9wTosUOKL/7bq4LEqXg4UGN9MkJM0SotHqX9eNl8GBJkDyATqoTTelK6ECcYBy63a663a7Oz8/zUZOME+Um5a4xgsZ0Os0E03eb/Qfi7hkFLiJ5iQjthmh6pkRZeuG/e5aElzjsIpEuMLgtH+AuoT1lxkGZZfCgHADehyjG/JQhii6KANaQz2N57V2lAeW9mX/u5WUiZRmFixi0b9d1do2lVHdhsP69jT7mfB7KMo4y64DXMU4e7FquA9aVt7Ms5QgEAoFAIBAIBAK7cW0EBU5kcCLlxNZ38tntx6LNH/4QEggftf6UFvjOqbsF5vO5ptOpptNpJse0RVLtdIP1ep1LG3g/ZNsdCZJy2QT3ovYfkujBfn6MJW3HYcF13XLPdZzIOdHl9eUOs5MxJ9FOtN0GTsaEn8KBlZ7QPkQEdyrgDCnJ3nK5zIIC+Q0PEhS89MLJH3Xu5GfgmHCy6bvhTh6ZT+l+4vyp4OvKLfzu4nCXiZ+64bkHLiJwzZJ4+3tYW/SD9yIo+HPlenC7/q4AyrLfZXmMP1+Scb+uu2RKpwX3Kq/n9/T1SDt9rFxU8FMfHjRn5feHOyjcAcK13LHga4zHAoFAIBAIBAKBwG5cG0FhMplkkQA4gUZQ8Prs+XyeyxUWi0UWAmazWRYbIH7tdlvtdjtnLZREZbFY6OzsLBNCBA5q8MlV4HcnNFjbcTpgfacdOBNms1kusWi32zkPgfKAkrBKV2GGOB68FEOqp+h75oSXNpT2/9JuzxhLqokxPAfxokzEyZeXYSCuUJ7hJJt2rlarXLawWq2y+OBuk9Ix4GUn3W5XzWYzB0R6KKfX6ZfWddrHbn9Z0+9lIAhT/Jv++KkSjI+LBZ4lQT6HZxJ4CCQ7575GvaSBcePzUYYVen6BC0KerVC6dcpyA9wBu4Q7xoQ1UOY57HqvO4t8/Pl80E+EA0qIvGzIHUl8Vr2vninCOJbw4EfPwUC443PgJRMuQJChgUASCAQCgUAgEAgEduNaCAqbzUZnZ2c6Pz/PpzU4WcNCz78hfJARQtwgxeyCQ2Ag1J4p4LZ5dz2cnZ3p9PQ034/sAOlql5agwsViIemKhC6XS929e1ez2axm0YcEjsfj3FbItxMmL41YrVa12nffLYUs0Q9+NptN7jcnVNA+SJikGpneFQBIe+k/7onZbJafJyDSMwUga9yr3W7nnAV265m30u7vv5fWej/pAnLf7/fV6XRqp0V47kK5K841CN6cz+c18cp3+iHl5GbwHtrtJNXH1IULP1qSPjkox/D53fVa+uK5GmVJAe3mhAv+XZY8ePmChyh6wCfXLgMvd5U+0D7PwPB5Y64QXzwTgbXuGSf8+Ov8xAY+/8xVuYZpGwKFh7SCXXkL7iYphZcHHbsZCAQCgUAgEAgEromgUFVV7dhH3/mHbPhOLGQJQgjRg+xNp1MtFotMONrtdia+vvvNiRI4DhaLRc2ZwMkPiA1l3Tdk1uv4cTd46QbiAiTc7fk+BiUZ5nGv8XZ3gWcQ8F5cBLgAEAR4LWQZUcMzFsqwwPLoRQQKfuffEEN+GJtut6tOp5PnDoLnRLDMCmC+PSyQ17AecCjQF88Y8NIB/x2CS/Ck70JLum+NUcbBOHhbEKMczL2XW3DNsqxgV9ZCWaLg5Qk+754J4STehSsn/r6WSmGA1+wizX5dPm/8uPj0IDGB5yHr5Ri6iEa/OBrVPwPcm7n3vuEaKeFlDKxJL61wQYZ/e8mPr7ddAkQgEAgEAoFAIBC4wLUQFCB4kH63u7uVnMcgOmQkQA55/3g81nQ6lXS1w0hJAvdhtxtBIaWk2Wym2WymxWKRiTjEn3ZBNlqtVhYUcEawU84P7gfIFK4Bz3ZwIijdv9vKYy42QN6cqEHyy+wIJ7CbzSYTanaWS+LE9aUr8sq40kfuwfGPXrpAnTtiDTkL7ipZrVa1unv64i4S35328opms6l+v69ut1sTRrxP5ZixfijH8NwNDwF0gYfsCN6LQMPr/FQFSdmx4Cc9uCujfK+XBrg44CGiHvTpc+I79P6ecofdXQSlm4F16bkTpaDk4Ya74GVDXprC5442uWjBXPn88LiLALSZcXYhxT8fu9rMmHmZhTszfJ27qOBzwWvDoRAIBAKBQCAQCDwY10JQqKqrI+Y4KvJBYXBe485rJeWTGSDWs9ksW/0lZQfCer3Oxx9CTJvNpsbjsW7fvq3T01NNJhMdHh6q3+9n0uMuiGazqdFolAktfSCEEadDp9PJJ0LgHIBQe86BH7NYjovXlAOIFPkB0hWhpQyk3CmWlAk1AgGlGdzLbeZe7oDro6qqbGMvHRO4S/b29tTpdNTr9dTv92u7/H6tsu7eCTTj4aUMzHGv19NoNMqOCwQgxtbzKDzIj7BN1o7nTvjON6TYsyDIXPB1iTCzXq/z8aM+fx7ICDh5guNJuSYlI17KQshlOR5cr9Vq1cbGSbULB/xeloG4Q8VLCoA7GbwExp0TfP5KV4e/j7ayZviv56Xwb0Q3XA+eXeGf//I0CxcJStePl0m548KdEXymvJxil4ARCAQCgUAgEAgE6njLgkJKaU/SP5f0iaqqfnNK6Yakb5X0Xkk/J+krq6q69xrXyAFrBN45QYL4+UkIiAObzSaXJXigGrvm0lV9PDX/7XY7HxFJjfd0OtXZ2Zkmk0m+tp8kARmFeAwGg/xeP50CYsy9IXSIB9xrNpvVgvC8htt354GTXumC8EDYq6rScrnU+fm5er1eHlNcEqX1nR3qXq9X25VFEHHiylg76fcdcC9TYGce8k6fvKyg3+/X6uhdSHBBQboKxcMd4ePlNnwEhfPz81o2gJdSuCvAhRpvm3TlMvG1g8DgmRy9Xi+vN+5NaGDZdsQCxAQyOQBk350UvV4vj1+Zn0AJju/w+ziyjsguKF0wLiI5wXYXAXNKoCifM9w4jE1ZnuDlHAgDrFvGkjnwkhUec0eBZ564MMJjnhvBOPF5dREK8NnyteCOEG+Hj9OTgofxXRwIBAKBN4/4Hg4EAu9EPIwC4T8o6Sfs318n6buqqnqfpO+6/PenhJNa37l3a7SXB0Dk5vN5DtfDATCdTnXv3r18woLvRktXZNp3rDkxglIFyJqHx9FOCFCn01G32827qIgIkEaIox9RyH+5Zhnk57b9UlRwtwFtYEeYH04W6PV6Gg6HeSdcujqi0Il0GVzI/elrmc8AYXYCRi4BjoRer5fDEp0gSsruhU6nU9u1hnRyPe8bBJa2lBZ6dwhADv3UBT+lwcsPHkSCvb+IEe5UQFzAHeLHOjrcIUG7ylIGR5mBwD382qUQ4CLRrhBFn+vS4eBrsvws+n/L17H2mXMfG9rBD+PqpSN+fX+OMfPHy/ezZkuhrcyh8CBH5sdzJ3xMypKH8vcnDG/5uzgQCAQCbwnxPRwIBN5xeEuCQkrpPZL+15L+kj385ZI+dPn7hyT91tfVkMbV0XJYwZ0QORkm3I/dYYSAxWKh8Xis09PT/LhfS1ImiH6cIUdNssvvYW6ICogJEB3yAbiOk3l+EBQQCy7HTFI9od8JUdlnJ74l2fKddyzn7XZbvV4vH6tYHtvoYoULNR7Y5yUmLjawi+1kHwGl3+9rOBzW+s0uOWQfK787GJxIQ+AhgV524OPhY3h+fp5FIAQPxoMfnwNfCzznoY6lkENuQ0mUycfgudIi7+vHBRMnwGUdv5P+kky7O8Xnw9cG1+T+ZX+9FIbrlJ9BDz8sRQA+P51Op3bKhjtMvNSmFJ/csVLmTdB21viuttCeXUGJ5Tr1+S1FBx9zPn+7BAQX2K47HuZ3cSAQCATeOOJ7OBAIvFPxVkse/rykPyJpaI89W1XVi5JUVdWLKaVbu96YUvqApA9I0q1bt+5LZafO390CkmrPIRhgcUcY4PQBiCm73k4wILzn5+eaTqeaTCa5phsrNCGNniQPEaItEB6I+3Z7ccygB0Y6eWfX1PMg3B7vu+xOoFJKNRu8W/QRAiDOuAYkaTKZ5HGU6mUD3AsC5oIC/fTyBK9BZ1y73a6Gw6FGo5H6/X62yTM/p6enNeGBMeQ+EO7NZlOzuCPaIB4hJrBGttttdqT4zjaCha8Z5tl3qN3e3mw2awIA8PVCH9yKz9ghfLjTBDGF67mQQr9dDCnFDye4u4i9wwWhy89d7bNC+x+Ecv260OIE3B0aHHlKgKa3wfMXis/8faUoHprqnxHPNijnwQUW1vODHD2Iab5uvKRjl7vEhYldLo5rij+vh/Bd3FHvETczEAgEnlr8ecX3cCAQeAfiTQsKKaXfLOmVqqp+KKX0JW/0/VVVfVDSByXp/e9/f0WpA64DiCR5BtLVSQ2UKEAyF4tF3q12IrBcLnPtugckUg9PmUR5Vr2k2okPkFG3TXvtvZc+IDKUyf5emkBQ5Hg8rpVwQHQh64D+cA+3rntbStt5u93O+QOMx65j9iDiKaXaMY+ULTC+rVZLh4eH+T1O4rvdbj7KERHGT9WgnQgOBFeOx+O8681YOenzMEeIIcLLfD7XdDrN7WZuvUTDXRb+u++aQ/5pJwIB5N/dJb67z+NOsL1ExoWhfr+fybCX0zCWnU6nVmbB/RB03J3hIhDvd3K8a453kfxdZRIubCDq+Ou9ROFTlUwAL1HYtU69rx6w6G4NPgt+P19T5Xz7OL1elKUhZWnNdcbD/C4epRtPjIISCAQC1wXxPRwIBN7JeCsOhV8t6beklL5MUkfSKKX0TZJeTik9f6nEPi/plde6UHUZCAjJ56QGSCeBd+zSQkQgE36koaRM7CEcvV4vlwRw1KMnyzuBgKyxW02buIeLCtyr3W5rMBio0WhkMQTi666Evb29fB3EBVLyIS5u9Yck0RaCAPlx50FJ1qT6qQ60Z9fYA8QBJ5Z+wsCDdmzZOebEDMIAy+wLRCOEI35KW3m52+wZGwgjiDAEMeL4KMtGnOB6KQfthuBzL8QN3AiszTJ/gqMvfc6YQ94HWfZdfdYpc+qiAw4Zd6549gbX5sfnZNe8+FpgfDwzYFfQp4sJCDl8VnDulGVBtLksqWAcfPzdEVA6MkqxxF0RXkoC8ffPYXkPb4d/F/h7/H5c08uMnqAshYf2XRwIBAKBN4X4Hg4EAu9YvOkMhaqq/lhVVe+pquq9kn67pH9SVdV/KOnvSPqqy5d9laTveB3XyoKC79i7oCDpPkEBwoDTwHd4PWcBazakDmLkKflOaNiV9td48J8HuiFUDAaDXFcOsXWLNQ4JwvzIYPA8Aidz5ckPlCfwnkajkccIF0dJrrgGFv3ypyR8HhpYZg54hkFJdD1DwuvqvW4dUurOj9Vqpe12WxMYIO+7iLJnJvBadzOwy801/HGv53cLvYf9IfyQPcH1fO79/i4YuRBUlm2UY4JI5FkCPkeMm7tQ+LfPkZcMPEjoKctmduUb+OepzObwdrnYxhi46ON5B7tKCbz8yD+Pu+bIxQlKeBjHMlsBlN8PvsZfr5vi9WQrXDc8zO/iQCAQCLxxxPdwIBB4J+MtHxu5A98g6dtSSl8j6eclfcVrvWGz2eQMAwiLBy4iCEBUIKG8d7lcZgJDWQCEDxIKucOhsFgsajvkvkvqwA5/dnamzWaTRQGOt5SUyTQ70GQ40EaOqdzb29N8Ps9ElfpzdvQl1Qgd93drvZcATKfTWo2+W9EZR8874HXl7jJEyp0MlAW46MLYuR2d15GR0Gw2NRgMtFwuNZlMcobDZrPR3t5ePn3D3Q4Q9bLmvXQZbLdbzefz/DsuAX8Prg2350NecVx4iCCuEoj9/v5+FhSYQxdtGNP5fF4j7J1O5z4nBYQZQoxDxQUpxpW5598IC06unehLV2UClMqUpRAuULiQsIsku1OCe/qRjMxhmWFRuixc9PDSC9wv3g7Gj2u48OHZCd1uV+12WyklTafT/JmlXWV/PCiT+d7VZ19njAFrepfj5wnEG/4uDgQCgcBDRXwPBwKBpx4PRVCoquq7JX335e93JH3pG3k/5Hg+n+vs7Eynp6e1UxcgZRyjRz3/fD7X/v6+zs/PM6ltt9s1izM76Jdtu6/e2lPg3aoOocIJMJ/P1W63M9lgp5odVEh7r9fTcrlUv9/XfD7PrgIEBYhYu93WaDTKGQVu2S93XqWrHWAPKoSgQsghUV5iIF2QIj95gRIO31328fFTEzzMz0tAuBf5CZwsQUYCYwYZ9+v7jnun08njWO7Iex27k2jmycmn9xmS2Ww21e/38xGerDMEBMYGwl9VVY3Al2UerCeEIsojer1eXhvMhZN/BKAHWerd5VFmHZAhMBgMys9cboOkmivGwxi5hxP+cs5L8uzCge/6M/e0eVeOAw4ahIjJZHKfyMG9nPTzWLfbrZXAlG4SsipoP98NCHy01Y/z5BqlgCUpizF8hvf29rJQV/bxScBb/S4OBAKBwFtDfA8HAoF3Gh6FQ+ENwwk6xICdXC9tcOIDaUkpZZIDKYBUuZ3crc++I+9kEbEBout18bymJN2NRiMTLT8FAKKDoNDpdGphgIQYQtqn02ntNAPfVXbbuZdGOCGl3WVegZNaxoa+QLIQGSB3DyKlnifAPNA33B+QbA+q5D5+T94vqeYQ8UyDsqwEIQnRyEtTnEz7LjliAa4S74+Tat/d35UV4dekfINrYcf3IE6383sffY3RPk4F4bUuBrEWECy8FIcxdAcHbffPTbnrz2vpF/fxx3DQ7Lq2k3YfS8QYF2S8rMbbU46lf578te6IoR8uADJvrPXlcnmfE4I+8d4yo4ETPJgvz/B40gSFQCAQCAQCgUDg7cS1ERTISyAzwcmk25XZRSagEAJQ7uxKqu1U+u54SRJcKOA6kIuyxly6InwemrhcLvMud2mzpw2QdndAAEgvfUFooL9cAxLnNeL0gX55kJ5UJ1NczwkdfadvbgUvx8qzA+hDmQHBLjVtdVGG0gtvjzsKyv6ULpJ2u10jrT5v9Ie5530IG+RQlKRyV319OW6MtZeKMA+MAWIGc8cOOXPhopWkmkjk5Ru8h/bxWnc3lLX+5Zr0EEju6/NQ9hO4qLDrM+XCAWUvtM/bX45rKSa4s8RFrDJHgjb5+vZr8BlxV0/5ftpd5im468eP9PS19aC1EQgEAoFAIBAIBK6JoLDZbHRycqLxeKzxeHzfsXdlCUCj0VCv19Pe3l62gk+n0xpZozyi2+3mTAUnsZIyyYRoQebZ4YRIdjodDQaDWuCik5z1eq3pdFrbjSZXAdLpO6qQU+zd6/U67+r76RNY6yGnODAk1QQFxoYdeAgkLg+3lfuJBiVZLHehS2cI5RqLxSKfnNHv9/N4uSPE24Zzw8eG+9MeyD/iEvODGMTcMUbkMPhudXnsou9OA6/TR8xg3l1ccUeCt4MSE9Yg8+bjtL+/n90nhDryPPfxjADaW+7kl4Tc56Ekup4rwrp3QYPnfCxcrPO+M64OxqJ0y5AjgovE5xnX0YPmgPIUP7rVxQYfM58jroEwxuvKvATGib5QvuQnq1CyQ0nQLsEmEAgEAoFAIBAI7Ma1EBSqqsrp/57yDzlkVxoS0+/3dXh4qEbjIlDv7Owsh/9B+Pr9fu3YxNlsppRSJg+9Xi+TPQiUEyrpiviQ/N/tdrVerzUej3V2dpZJVlVVOj09re2Y+i4uhI7TArDJu2OAUEPaQw4B7WCcXJhot9u10xKkKzLqeQn+Hl4DmYVQl8fxeZ5DabXn3z6+PAfxdaGgPPWBUD2INeQX4acMLHTyjYsDIQjHA2PJzjxj5/fhdTzu7XY3DA4M2s1/Oe2Dse52u1lQYcwZX7I0SreIdH/dPnChRVItW4Dn+C/lE/SBcfMTRChdkJQJM2VFrE9cIdvtVtPptCZ60Fb6hkOEdpeZELTZS278Pp6FIF0IYISx+vjsIvPuMCrFHs9T8DaUc+/riHFy4aUULEqXQyAQCAQCgUAgEKjjWggKnhgPofUyBLfgQ9rLMgivER8Oh5k0NxoNrVYrrVarHLKI2AA5dFu7pBoBgXzgNmAn1Ou9saOvVqtMTHm/766yO1qWFCAqEC5X1sk7KUU8KO3fEPlyJ9jHCDJFG3a1BeJHu/x5H2sPgASQPK+x5+QH3svv5VGgOEqwvftuv/eT9eL3oy0Qb5wZLnCUJQG0x0mqlzhwbVwIjUYjl6zgOEBkarVaNaeLhxL6WvEyArf2ly4NL8nwcXfXh38+uLefEMJrfHwQFGiXdOXkkZTXJ26Dfr+fczMk5TBLzybwXA76wjr101X4DLlrgv96RkLZZ4ScMveiLIVylJ8fruUnYpBd4Z9Rh38HBALXDo093fvdX6Dttfg/eCBwhRs/PlP6nh953M0IBAKBwNuIa/HnCDvppaAg3W/7hhhBeCEunivQ6/VqtdmLxUL7+/vq9/tqNBq55r2qKi2Xy5qdW1LtrHseb7fb+fUeyufWcEgyifi8Dms3BN5r/z3/wUsQXEABXqPvpBoXAK+HbLmwwfggArjV3V0ZCCe4JCCTDr8HbYDQOilnBxiCDCH3shHEBFwoOEnK0L1ynZRrogyrLEUE3u9hhqUYQp+cgFO6Qr83m03e/SeM0YUo1gv38tMyfH48uJC2QnIfdCoE7UopZWGpzIxwMQFBxbM3/Dley3+bzWYtVJIgSNaen+6xi9wjurjjhfEj5NQ/u/75LoUxd0p4m8p7l8JL6aTx1/GYl23Qt7L8J0oeAtcNjV/0OdLepVttv6F7nyttm7FOA9cLVaOnZ0/er82P/9TjbkogEAgE3iZcG0FhPp9nklRa86U6mZKU67Mnk0k+dnEwGKjdbqvX62mxWGg8HmuxWGg2m0mSRqNRJrpe68/v7Czzu+/4djqdLBh4CKOTQ8o19vb2cokDIYZO7qkfd3HCXQDAA/DosxMmCCM7rR5mmVLKO+deIuG70/SFNrTbbQ0Gg7wrzBGL5Tx43gE70Ig0TvAJzsSdUZJgxu7g4CAT7jIYD3AdJ6LuECkdE7scHog8XNudMB7ASaAk4oTvqnvpjZ9u4QIIQaEukBG8CMh84DWS8jh6KQr3pZ+sC8ovuBYuADCbzbTZbNTr9fL6ZS0AF07cIcO9KN9hnh9UBkCfXayoqiq7HDhWk8+SH1nqn3MXvBCDEOdorx9j6uvBhRlfX96mMhuD9z0oe6F0/AQCjwup3dbP/AdH2nRcQAgxIXD9cPILK82ef0af/qd/TtX5/RsSgUAgEHj6cG0EhdlsViNWDggZRI+dc9wH5+fn6vf76vf7Go1GGg6H+sQnPlETHNghdeLl9dQc68hOMVZ2CI6TeAgL1m5IGrkIED5ILMTQ3Qwcb+duBd9t9jBAyPt4PN5pnS/JGcDB4eTZd7why/y73W5rOBxm0sdRmF7m0O/3a0dqdrvdTBad0OMU2dvbyyd3sMtNOylPOT4+zvecTqfqdDo18aEk56wDSTWSjIPBgwAh7k7e/XhR37WHeI9Go5qY5PNNSQYighNuHwMn5syRuxcQe9wt4MII7gBKdnyHfbVaaTabZSLMGmbO3SHg5Qs4deiTry8v82CM3Zlxfn6ubrebx5p+E7jJ+zj+EkFhOBxmkcRJPGNO+1y0Kk9tYXxYN+6ucWeCl8lwP8pf6IcLdAgQ7uZgfD1TIxB4nNh732fqp3/fs+FGCDwxWB1s9TP/xa/Q+//cz2r90suPuzmBQCAQeMS4NoIC5MAt+WV2AqRnuVzmnX9ODTg6OtLh4WE+9UG6IoCSaoKEk3F2hdlx9pIIt8+7mOCk1evyPcAPYuVBe279hxBC6HFouKiAMHF+fp77604N+gK5k67C8xhT33WFKNF/J2bcEyFltVppOp1mez+ug+FwmHecGTveQ9/29vayuEKfCUv0zAgEjMFgkO3ynqVAvxhv6t+ZH4gugomXFDiJJ7QQYYR5p89cw90pjAvXZPwQIbwO37MNXGRgzDwngT7s7+9nMYz1AZgX1iNEnbVA3oi3l3IAwigh+71eT71eL2dL+PGWEH0vM/DPBdf0Up8y26R0LdBnd3CwJkEpenhJTvm94MTe12wpMjl8LrguffHPta977ufi3642BQJvJ9Zf+iv04i9ta9vavvaLA4HrgiRtW5U+/u9/lp79weciUyEQCASeclyLv5a9Xpk/6j0DQKqHoy2Xy3xMpCT1+30dHBzo8PBQvV4v270hHU6UIbjuAGA3E/Kza0eVwDp3R9AuiArXgLzN5/PacwgHlDt4+YGf1MCYOJn1n9L6XZJB6f4QQxwCbssvyRK70uwYE6rIdZ2Y8by7ODwjwd0Py+WyRk7pQ6vVyqGHTv58F7ksVyiDB319IKK4K8DdIpLyfcsTAhAUEAmw5bvbwMsufAy8tt93yj0s0ksfINEe2Ojv9z5A3r08xgMtmRP6w/O4DBAbvLwBVwFuHVwcnmfgR38iDrjjhrFxVwpzyHs5QcHLErykoSx9cWGGsiAX/9wBwriwlkpRw8fU+8Nc0Z4yK8EFjBAUAo8b0+ebmr4nxITAk4nJe7c6+Ghb3cfdkEAgEAg8UlyLv5YhIU6YIOA87zuTs9lM0+k0v6/f72eHQrPZzLX/uAja7bYODg7yjq/vZDvp8Bp6SAqkfzKZaL1eazqdZjcB7oTNZpMFC0oC3F0gXTgH5vO5FotFzlaADEnKpRO0h1Mj3MruTgQEBcgZtntejyhDG3AAeO4DNm/6SngeJLPf72eC7yTdiRw73pyYUQo3iCg+ni6KIChAEJ34leGWZcmDCwpOQLHquyuA9zox9fd7OYxnCTD2Li55pgEE3d0npaDA/TwsEFGJ97l4UFVVnifpKuyTMhTPj/A163CXgWdGePCoH1tZls34WmJMub+LR+4Q4XPk7hX6RFtZm/TThSrcMP7ZlFQrsWE+HgQXzFwgoZ84acrvFr4XGKtyfQQCgUDgjWO7l5TabVWX7rlAIBAIPH24FoICDgLINkTaQ/GwfS8WC33iE5/IhHc4HOZSB05uGI/HGo/HuaRgNBplclzu5Euvnei+2Wx0dnam2Wymk5MTvfzyyzo9Pc2nGEBKqL8fDoe5LX483507d3RycqLt9uqYTN8hhuyVYYQQMEgOBJXgR+6Bw4AdcCflCDVkHrBD7nX0vV4vk/WUUj4W0YnpdDqtEeTFYpGJJ+9hPMqAQ3cudDodDQaDWomFh/kheEBGuf9wOMxjzrzxem87ohKlIhBgyCvrjnZxfZ+zXaGQvsvf7XbV7/dz+QQik4tTjCsZHczneDyula8g/jjx93H1viBAMC6Mr6Rc3iApn7BBnyjnYf497BNBqCyh4B5cg9chWAHazPwgEC4Wi9rny9cz70HIcVGxLEnyTARfFx5C6iUnPC/Vjx6lHMnn038CgUAg8PDw0q9Kar//V+g9f+Z7HndTAoFAIPCIcC0EBSzJlBWUu6VVVeV68/F4rLOzM/V6vewGoAafOnfKCqSrnVrpinxAJMlimE6ntZMPvKYed8J2u9VkMtHp6alOTk40nU4zAWs0Gjo4OMgBdJAknAq8BjLugYWQMkiPuxCkK1LrteLs8jNe0pWVv6zhB7zH74HgAqHGCu+k1stFcAFwjeVyqZOTk7yb7eUikDrIfJk1ISlb+ZkL5tizFxaLRe2EAAgz/fGdeOmqdMSdDbg/uC7v32w2uc9emuDlJ54zQX9wJLgDwcd4sVhkgtvtdnObERRoi7sH+Le7R8pd9HLH3Y9kRGShjAKxCKeLZ0s4+SbHwMl1q9W6b1yki5MjyLNYrVY1UY7PFP0ljNPJv69l2sJn0k8o8XIK1iXCCHPKPZmb8oQHX/f0mfuXwoGLdLQvEAgEAm8dVePiJxAIBHYhtdt66QO/4i1/T7z7Qz+mzcnpA26S9OrXfpE27UcbtP3ub/pJbe7cfaT3uK64FoKCuxCcTHtdOYRzNptptVpl4grZhMgtFgtNp9NMUCAJHiIHEVkul5rNZpn4SLrvNU4kJ5NJLnlgZ55d38FgkMUEyAvPs9NMe3u9Xo3AemkEbdglCEBGXRyA1PoutRNR7lPmVHiII230LAB/zAP6PF/AAwIl5XIBzy1wAsqutpeSYPtnfp38EyzY7XZVVVXOdOCUAsYIMsu1V6tVzrGgP6W13omnh0UiKLh7gLb6mPM848x/fdeee+KgKEMEywwPF3MYX89s8Hu4mOCuAy+b8XXPevZyDy9f4fPmIgclAIwx68gJvN+vDKlkrflc+fh4GQn/LR0Hnv+Ay6b8jJaZDA4fu/L+Ppeez+AIcSEQCAQCgUDgjWHvs3+Bzm8OXvN129aeJu/dvjVBoZLmX/R+7U/Odz+/lzT+DD3ygOPZF36Wmmefpr3FWtU//9eP9F7XDddGUPA/9stQNU+394R7LP6QyPV6rbOzM52cnNRexw65lztst1vN5/N8rCTkjV1bD9BbrVZaLpdZSFitVvn1HI3HcYtOuDx/ADdDr9fT4eFhdkFAuLm2h80xLpJqpM93qD1AEULkNfxOttmxdrgo4mn8ThA9qR9BAXcBbWZ32oUYBIP5fJ7dFE5MCa7EgYJY40GHJZH3vIJy7TAO/sM40XZOPViv1/k1HFeJi2K73WowGGRijWOB9ePlONKVgFO6S0qxw3fRS7eBl4kwfqwP3+H3UhJKUhCygK8hz5FApKEd3l/WAm3xcEjPGKHNDtaP52dwj3I975o7z7ko8ynI9HCBqsyE8LBMFwxcePPxKzMUPKCU5/3zFggEAoG3gIbUGA61nUyk1ygxDQQCTwZSu61U5Hc5Xvm1N3Xvc9+mz3uSfv437Ena+xQvevRt+di/c9GG9t2GPv3Dw4u7LpaqzleP/N6PG9dCUJBUI4TS1W43ggCCAu4EyBRk4+zsTKvVSpPJROPxOB+1SN0/9n52c09PT3V2dqazs7MsVDgpgfB7AJ3XXe/t7eV2lJkJkDY/TWCz2ajVamk0GuXdUAj1bDar7UgzHr4L7qSSx8uwOoQOF0+c4PlrpftryyH2vkPtpQIQPs87QChhp3x/fz+LAFVVZQcIYkK73c7jw3zNZrPsPqEMwcstSjGFtYCDoTzxwXecIZFY8UejkXq9Xq0W/+zsLOcDrNdrjUajWhkFxJsxKy30tI81RwaAuxsonXGBADLs88o1mQc/MpT3UPpBXxCFPGPB21GOjWc20PZ2u63lcnmfo8VDG12c2Gw2WdjwnIMHEXB/j7cJYYPrkivigiGvw2nia8FFEdas39NLn4DPJ58LhA3Gm7bGKQ+BQCDw1rA82uqn/7PP0/v/zE9rc/vO425OIBB4CBh/+S/Ty1/44Oer9M4VD/nOk6T3/OON2v/gBx9zix49rsVfyxBMCKeH05UlC+wq9/v9XJsOwcRx4ITKA+R4L7X/r776qm7fvq3FYlFL4GdX2skX6fAAcYIdVN+B9j75Ti3EFucCte20l1wGT9MvnRouFIxGoxrR9xwIXsdxf1Ld8o2rgMe5Dv0uj+lDrGCs6AshfJBArslrfGffsw9cQPHrM8cuaODwYC2Qi8CaWSwWNRdAmS2BiEQ76TO75zhQnLRT7uGEs7Ttez9oF+vNX7ter3V6epoFiweV9bBGuD6nieCQcMcDJymwlhBoEKgWi0Vep5Lymvb7uuAEWWetuGBE3xhXfnzOy7INFx98XFhTiFS+Zn08PPPByysQrBAFPJujRJnT4EGOLvqU4hDX21VCEQgEAoE3iHS5N5jC8RUIPAm4+3u/WIsbnzpvYHVQqWq8c0WDT4kkVZfD9/IXNjV47ot146987+Nt0yPGWxIUUkqHkv6SpF+ki/9f/F5JH5b0rZLeK+nnJH1lVVX3Xuf18q6jVD99wf/wZ1fUSYnX4DsR8AA8iCqCwsnJicbjca7bd3KC/RvLPESGNngQodejc0+3wSNW+OkLEDDqwr1cwl/v1mwINI4AsgU8NR8HAqSOQEoXJDz0zgUQ7utZFhBm3AuMAbkRg8EgE1v6vr+/n0k2Ao332XfSyb5g55458vn33X4fZ/7tdfWS8pi6q8BzICC47EYjkvhrvbSCden1+G7Th7D62DpBhehzVGhZplGW+rjQQVu9DMiFLuYVhwViQukGKHMgGo1GbW0gJri7xMcYEcfFEubaxQTuxY9fz8smyvmlHWU5Aq/jx8sWEBZKMaHMsihdC+4C4vPr7eX750kqd3jY38WBQCAQeGOI7+HAk4bUbOn81/7iTH7B+L3S+TAypB4GVgdbzZ99cv6efLN4qw6FvyDpf6qq6t9LKbUk9ST9cUnfVVXVN6SUvk7S10n6o691obIO3cmaEylqwf34Pz9FwG3ckG8vn8ANcPfu3RyyeH5+np0OnkrvxKkMzUOgYHcYclom99MXJ9Fcp91u1wQF7l1asukzYorXq0Pc3aLupB4S3Wg0MiF0waasFyf4kf8itkD81+u1Op2OhsOhjo6O8skW9NVJmJ82APGcTqc1NwUnd9CP4XCY2+ZzAcr2Mvb8G4KN6wBRxXfyWS+r1Uqz2SyXWjCvfrQmpS/+U67Pcs2y9hgD8iaWl+dwezAicCcKbfQSGEp7Shs+z7szgbFFxMElUZLlVlH7xpi7IAZxp/0uDrjToHS/8DncVS6CyOCPM3bcgzbyOi83ouyF/rggs91ua0eU+lp314GvSRdlXLyQ6keHXnM8tO/iQCAQCLwpxPdw4Npj7+go/54GfX3ky5o7AhHDefAwUaWLcd+cnDy1OTJvWlBIKY0k/VpJv0eSqqpaSVqllL5c0pdcvuxDkr5br/HlWQakSaqVKbhN2uv1ySZwCzSECGJPrTlEZjabaTwe5x1jLOUQB99ZZgeTI/SctLODDVmcz+eZIHr2AbueZDbQp+FwmMkrGQ281o/lYye53W7n8Md+v5/FCM9NQEBgl78UQUoy7EGU9B0XA0TMydx2u1Wn09HR0ZGOjo508+ZNjUajPBfSlbgDwV2v1+p2u7ldPAf5m0wmun37dnaFDAaDHLyHjd/vD6H1IxE3m03Ok6iqSvP5XOPxOBP4sryEvIHpdKrpdJqPeUQowc3gYgHilZeAQKbdFeKlIk6qaYuveUoI6A+vJaizLLHwkE8n1dvtNgdaMp98VlhXkHVECT4fCHPuvAD0c7FYaDKZaDKZ5LKJsuyCtUOphRN05qDdbmdhhLEl/wHBilIcP7XEhUUn+KUzgbXqIaSUNtAWF1sohSHskfFhvEqnw3XFw/wuDgQCgcAbR3wPB54ENHo9/dQf/xxVe08nqb2uWNzc6qe+/rP1/v/iw9rcezoNSm/FofCZkl6V9FdSSp8v6Yck/UFJz1ZV9aIkVVX1Ykrp1uu52K66aq8X91prD8uDzHu5ggcWEloH6VqtVjo5OdHp6amm02kmdeQgcE9q6H2n03eM3T4/Ho/V6XTU7/ez2FFdBhJCyMbjscbjcQ5nZGc/paT5fF4j/b77i+gwGo3ykYf0p7TtS/XQRs+i8PIAt9FDwHBy7CrVoM/7+/s6OjrSs88+q+PjYx0dHanX62UyPJvNskgznU41Ho8lKQsOXrsO0UV4oJ2QaXca0B53ALjdnXIRMgcgvjy/WCwyYW6327Wdc1wp7mJwcac8flRS3gV3uz+Pe92/E17WdUlQfc35zr2XipQZHQgttANxwu/P+nWRwgMgSzDWjK+fEsEaxjXh7UJYo//+ftYa93R3COUL9JP3lfPAe/ms4Wag317C4g6fctwRR6qqui/7xPMhWE+4gkoXxzXFQ/0uDlwPvPQHf5Xmz1aKnaJA4IlAfA8HrjUan/8L9fNfdqRqbytd/72Spwvp6f8/+VsRFPYl/XJJv7+qqu9PKf0FXVi5XhdSSh+Q9AFJ6vV6O4kw5Aj7ue92QiiwtkOAISoexMdu7nw+z7vXnPzA9Xw3v7Sfe+gbYkW/3887qJBgCFar1dJsNtNkMsn3PDk50XQ6zf3HRQFBKy3WtMGJW6fTqZFdvzc75mXpCEBM8JwH+uzj6TX+Liawo3t4eKijoyMdHBzkQEZInTslKPGAdEMmXeSQrsIbnUC6O8Lr/r20wB/nPbgfKIHwYw4h4hBFnwc/EYJrQaAhmh5uKF2dQuJlLz5nvhYfFBzorhe397uA48deOmn2eXUiT7s8+NPLC2hvmfuBKMGc+fiWpTi0ycUE+sF8ukOB+UVU8nVWlm/4a2mjjwvv53V8dlz8QbTydeO5CT5GCA1lvoQLek8AHtp3cUe9R9PCwOvG3uGBZr/q/Zo9X2nbftr/BAkEnhrE93Dg+qGxp9Wv/+WqGtLk+X0tbkUuwuPE+N9+v0b/4kWtf+7nH3dTHjreiqDwcUkfr6rq+y///Td18eX5ckrp+Usl9nlJr+x6c1VVH5T0QUk6Pj6unMRjyyZngJ1ziEGZbO92dkgJu5DsSLM7WVVVPqqQ8gh2dMuyB6l+9Jw7HzhhQVImTmQbQOTOzs6yqEDKf6vVyqdTQBRLkgjBh9BgLceeze6vk8IyF4G2O3H3OnTIKu/xunfPfmC8OVkDMWE0GmkwGKjT6WSxYj6f55MqIJgIDr7LXY4v+RaUlkDuXDhwMu6W+V2lIrQZePAez3lZAOGEjIXvxnM9rPmsg263m0/soG1lmQ7z5GNc5jEg3vAanyPEJBcHuA6k2z8XftSi9xcxg/fQf+aC+/vJKJ6j4c4WL0ngSEfaTXu8DMnv66II13Ehi8+ei0suZPh7+ZwgUjD+tNUzKnztMK6sCdwJPkYeOPmECAoP7bt4lG4Eg33MSEeHl2dZx1QEng6kjdQcN6TtU31yTnwPB64N9kYjqdtRajb1M1+6r2o/3G6PHUn65K9Jap3e1H4ICleoquqllNLHUkqfXVXVhyV9qaQfv/z5KknfcPnf73ita/HHO9Z9CIFUT3p3siapZvfH3s2upx/750foUaJAmUGn01Gv18vEmHtxb3ZAOX4Qd8JgMMglDNvtNpPtfr+fQx/v3r2bsxrG43EONOz1ehoMBpm0eRkChAoxZDQa6eDgQIeHhzVyDemDZPmpCYyVP854QToZR8h4GV7HvBDe1+/3devWLb3rXe/SaDRSv9/PeQOUdnBqBo6KXq+ndrut8/NzzWYznZ6eaj6f1063kJRFGna8XVBwcov9vlwb6/U6h2syxi7WSFcBhR7sSaYD5QIIGB5eudls1O1283hQRnPjxo282897PHSx1WrlU0d2uWHIEmD9IGDwfsQEd804aL+TcT5HCF3cn/Hkek70uR+P83oEEZwlflyon5rC+NMGsi1Yd/TDx4ncC/rp2SesN9wDZJS4WFiKBZTFMH9+YoWLZtKFg+Pg4CD3dzKZ5O8bHzsPbbzueJjfxYFAIPCw0brX0At/6nv0NMsJ8T0cuE54+Xd8nk4++1JASCEkBB493upfy79f0jenizTbn5X01ZIakr4tpfQ1kn5e0le8ngtBQtg1hXR7DTOEbjgc1mrs2RX117nN3nfFIREQLEoJIJolOSt3pfv9vvr9ft5x3d/f12Aw0PHxsfb397MzwY+kdMLux03SHq/3RzSRlMsK+v1+Jl7eRt4PQfacAizsiCnsWEOS/NhJXse1PWgQN8bx8bHe9a536caNG/kUhLLkA1JIqQmlKogJ9+7dy/OFY8HbxH29LMJ3tyGFCCP8UPJCe/v9fs3pULoiILg+t5JqeRnuBqBUo9frZTHh8PAwCzqcgIBjgvuz843w1el07iPR3MtLHZyw0yYPqpSU3TsQfXJAfF14fkGZc+AnJCBC8VlBnIP8n56e1o5XdRdBebQl4+3jgejBOLFOcFPw2WWtInJ5QGh5rXJt+PcIY+F95rPq7g13UrC+KIlwZ9ATgof2XRwIBAKBN4X4Hg48XjT29Ik/8oVaHlaRkxB4W/GWBIWqqv6lpF+546kvfaPXglhBTDw9HpILIWi32/mPf3+/79yX9fZe173ZbGqnRXD8IjuiXn5BLXWn09FgMMgnLGy320w4Dg4ONBgMMkl+9dVXdffuXc1ms/vq270MYzab5XT+XbvGkPLSyQABc9LlpQ2Xc5NJq1vtvW9SPQzTd309i4IjIm/cuJHFjV05BBBan7v5fK6zszOdnZ3lExV8viF6ZSBi2VYv4yizIXi9n4LgNf30hzGBwJcBlZ7t4DX47HT7OsDu74GHZV4AYyndf0yhr03ag7iCoOCnHJT5C5KyAOAulDJPgHv7e7gXwlWZS8G/F4vFfUdRet+8FEG6OiWkDF50J8Z0Oq2dMtFut7VcLvNc+3gyL9zXRSVH6d4oT4nwdne73ZpoVIouuDh2He15nfEwv4sDjw+Nz/+Fuv1LDhXW1EDgyUN8DwceJ/afe1anv/q9WhxXlyUOgcDbh2vj5y1JhNuNqXtvt9vq9/tqtVpaLpeZBDjRhihxLd/9h2R53gG7xpwQIF2RC8glRKTf76vX6+XSCdwKh4eHarfbmk6nunfvnl5++WXdvXs3X8+t3C5glIIC94LYeBglpyf4UY8e0gcJPD8/r5FpbPSSahZ6D6+D+JUCDE4RSi5Go1G2/0tXRNRLARAWcBpMJpO8wz2bzXKpCfPg5JIxd3Lvrgtvc0n2WCt+hGHp6EBUICuANeOZHWWugdvoOXGDUg7PvmCcfQefe0q6z3Hg2ReQaEQRdschvk70fYeeHX9f1+7KYFefPpVugjKMssypWCwWuWzCxRJeXwop7soogyPp62KxyMdy0ldfb3xmub6XTJSCAr+7Y8ezD7g2fWRc+S5g7Mr30E93KAUCjxr7zz+nV3/Zoe58fvwhGHh6sD9Lap887lYEAk839o6OtPrsd+nFfyspBOnA48C1EBSwQ3sNuXRl20ZIoAxCuiJwkCiIDKSM2mvfXXWyyBGP2Lsnk0kmlm5L530QG8oVECPIREgp6eWXX9arr76qV155RScnJ7mGHPKESNBsNvPJD+Q5uEXcAwo3m03OKPBTGtht9yA9J5zs9rpdHEKGlX02m9WOzuMIR5wgnOpw69YtPfvsszo8PKzV/jtp3N/fz0d0co/ZbKa7d+/mUzXY7fZgvFJIQBDyYxnn83nN2t/tdvO4Qq59DBCHIOrs/ENYGWt29xE2IJBOUCGtrMHhcKher1fLIihLWjz40DM9sNuzthHCaDuiFdkU9NkdDLS50WjkEy24t4tJZElQJuEBkzgter1ezf3gbUaM4ihQ/yzwmZ1Op7WQRgdz6ScvIEywvlnj7kRxp5KkmoDheRG+Bj3zA3eMjzNCDuuFo2YZX8Q+Xkd/3NkRCDxq/OzXfqZWB5HAHXi68OwPbtT9//zA425GIPBU49Xf9jm6+4tDSLj2eIqn6FoICqVVHDeCuwgITkwp6fT0VNPpNO/aLxYLTSaTvLMvKdu15/O5pCtrP2SZHITNZqPpdKrpdJoFg1arVQuBcxK/v7+fgxKbzWYmTnfu3NErr7yiu3fv6uzsLPcNkYMSC0gNx1eyc09IHaTO7d8QO0k1AlqGLvruLacCeCCl2/4hYp5dcXp6mokou8LPPPOMbt68qaOjo1yq4UKCEzrpimhybCYnXTAXVVXlExI4EaNM2UfMYLd4PB7nnXJ3epTuBfpSljO4OMTacHdCuQvtYZDMx+HhYXZp9Pv9THzZ6V6tVrUAQC8VYE0hVjAv9Ingx6Ojo9xvJ/McCeqZC+SAeN0/1+ffuBxwLJRZAr1er+bU4Dl3ICBWIDwhHOAiIEjTBRv/oS/eNhe3PIDTBTHWsLtqvLwC4NKgnbSV9+AkoZzm/Pw8n7yCcIEI4aU3Lt4EAoFAIBAIXDukpI9/3RdrdfgUM9WnBZX0Of/NS9p+8iU9jVsH10ZQ8LA5hITBYKDBYFBLlCdxHvcBv/sxe9i12YWECJW5CJC72WyWd/E5nYB7QeCOjo4y4ep2uzo8PFRVVVm4ePnll3Xnzp2c6O/5DtJVoCRtQ8jwoxRJ7YfM8DrPfmDnHXJdigncu0zsd8LnNn/uM5vNNB6P83XIeqCsg931ktBxD99Bn06nWSwpTzhoNBq1ky7oE3Pv+QFY6LnOcrnMYoKvB+4PaYaEe3aFu14QHTy3wnfemQ8ILSISpQ44RzjZgZIVL7XABVFmDuCm8fKDZrOpwWBQO4aS9e11/i4AeQgma5v38hlCGKPPvAbBxk/58LIFxsHzH5g7d3GUuRz+Ps/moO1eDsKPOzVc9HHHiAsPu0oQ3KHgP/44a5OyC9aHlzd4OYqLKYFAIBB443j+n1Ua/Pidp/p0h0DgceN8WGnbCkHhSUB171Tby43epw3XQlCQVCMT1OPzI+k+67YH0hGyyI9bmiFS7HZDHCHdfhICZLXX62XCxpF15+fnWUyAZC+XS02nU52dnemVV16pHSMJ6eRe/EC4OU7QU+/dao5Y4rvQ7GxDTLFls6vLD9Z3P8aQ3WraB9nlmjgKeC2nWiAssEMNSSvzCCBn8/lck8lE4/FYk8kk9wFnAWM4GAzU6/Wy4FOSTS9PwN1Quic8g8BDGynpwN7PmqIUw90JHmjJ+C2XyzwGnt1BqYW7DObzeW4bO+AuMnidf+lo8N3/wWCQ6/u5tmdm7HKY4H7wEhIXUXyMWIuISzgLGCfWYGnzZ254nwd3SrqPwDtJR+jwzzfP8Thz5eTdMw8QL9zxwGfJwzb9vYy3u4voIwKkuyDKoFK+Y3z+AoFAIPDGcPDPPqr1iy897mYEAk8lUrutxgvvujhHJHCt0ThPat9Jqp7ijaprIShARCA1HJUIgYNs+A69E0nKCSh3gJBBxtjNdiLCzijXQ0yAQEPmXGwYDAbZ+s7u+enpqV566SXduXMnE1gn+h74BnmCiJONUFqyF4tFLhuQrso1eD0EHQLqJxmw2w/p7PV6OX8CMss1ETi433q9zoSeshB2srkmcwFB5n0Qr/F4nEMYORaSvjFPR0dH6vV6WfzBVQLR5fqEOjIX7mJBOPHsDN+Jns1mWRQp3RkISWVZg59a4LvohPmxHs/Pz/PJFZR0+CkjlI+4w8SdAi44cGpEr9fL5R8IFbQRosuxpB76iKOG8hEn0Dgo3EECaJOXDHjZBISb0pIHiQnu/uDzxnrt9Xq1TA9Af1j7Lgh5uCYilud1cG0vjXA3BZ9tfvcMCj/9wufe+8aY+3dMIBAIBN4AQocNBB45Gu99QR/+j55RfOCuP9p3k979X37PU1nqAK6NoODhgRAkdlHLP+ohefxOrbR0teOJMwGBQKoTHt+1xdoOcez1ejo7O8u16K1WK9fPt9ttrddr3b17Nwcw3r17V8vlMu+oQno8MV5SbUfbAxbd1k25wN27dzOxd3s4O+EQOa899xBCSVkAYbd6Op3mcfHQRtrSarU0HA41HA4zQYWE+24/hPjs7Cy3E7Hm9PRUZ2dnms/n2mw2efx5DWUp7hbwkgzCIXF4nJyc5MDMVqulfr+v7XZbc1U4mXbRifYydjhKxuOxpCtHSqvVqmUJQKwlZfeLlyKMx2PduXOndnKFO2wk6ezs7L7wSmz0CFmSchkN4ZM4XiiHYQ2ynnzXH6cMwg/1/hDi8pQGF0kg1e4QKD9v5ckUZVlDeQqCCzGMrbdJUk3cwanhGQjlZ8hLKHjM3RC7vkP4jHjpiIsIuFVolz/n4xeCQiAQCLxxtM4a+ow//2Nan5699osDgUAg8MTjWggK0hVJ8VMRIJUQZsjXYDDQ/v6+lstlLcQQZwJHSro93nctJd234+22bS8V4H79fj8T+Nlslk8wODk50Ww2q+2SSleZCTgiPAyOXXXqtmnXYrHI2QOLxSKHUJZ2cq9l96A6J1nebrfiu/AhXWUuMO7uDPG58ZMEOA1iMpnUrrfZbHL//NSDkphCKH3nnLZDMiVlhwLiAOJOGZgHiaVchF1mxteT/bkeawOXh9fo+3hDZhExlsulXn311exAYC5xajD+rC93kDAuHsTopx34+uWHPuDCQJzgCEuuwVyyHrbbbW0uqqrKLgjWNUSbMXR3AkJGedSlrwl3XiAG8Tn1MhIPv+Tz6PkjvKc8KYLr+2kZnk3iZQqluMAawqnkooSHZ/L593/7awOBQCDw+jH82YZu/dBUm5PTx92UQCAQeOw4/MmkZ354/Lib8chxbQQF6YoksfvuRM+t837cXBl4xy4w9nknWw4nf15DTZ11SikTsNFoVNtVr6oq5wR4RgCki7ZCkGgXr/eQQuAECweDuxMgZF5W4YTKSRHBe1jp2Z3HieCherTDj8DkaEvvE6SYHW3cFpRreK4AThAvGUBYYMzd6u7/nUwmmQDiVpCu3ATY/pnnstShrMenrAMRiPnDKbG/v5/Xjmc5SFe715Jyqcl6vdbJyUkuWSgzLzzcsKzzL8P+3CHh2QmIKi6YlAIM5SOcUODZELzW57xsF2vASyFcJOC+TuJ3rTUX0srPmOc9QNK9HAjRxMuEXJjw3IVSfNuVbcBjfioLY4I4gJji8+v98XEKUSHwdiA1W2p85qdpux+21cCTje7LDR3/+FLpe37kcTclEAgEHi8qqfdSQ8c/OpV+4Ecfd2seOa6NoAChPTw81HA4rNX3s7PpJLBMioc8cfqBBwqyc+47kBDLqqpqtdqQf4L4SOBvNBo5TBFB4fz8XHt7e/m0Ard3I3Z4zb6/H1LjQXCEGHqWge+yQ3T8CErfDea0i06no4ODAz3zzDNqtVp5F1iql3cgfHS7XUnKfabkxI+5hCy76FGebABp9110dxbgYvBQQQ/YJJMBAsprut1uztVoNBqZvDNOhGdyf0/uxz3gYg6CC3NAX1hfpY1/vV7nIxw924Ln/fhSSdn5wPO+e85jHjxKlgTtx8nilvuyfKLVauX3UubhAYsurrlrpTx5gf96AKk7Amivl3S4iMDr3Y2Bk8fLivgMk3PCZ4LsBi/hcVcD4paXOjzoqFQEBM/8YM0jaHU6nZpYwfu8dIj2uigYCDwq7D17Uz8ZdbCBJxmVlCrp0//Gx7T+6Mced2sCgUDg8aKS0lZ64Rs/rM3tO4+7NW8LroWgsL+/r1u3bqnX6+n4+FjtdjsTTKz//HEPIfEMAmz41J2XYWtOciRlmz67u5JqBEm6IoX8l1MW2AmGVOKCIIhPunI8YIenL3t7e5loerYCpNTt2a1WK2cD0D4nRexsQ355H2F4R0dH6nQ6tfBCbO+8d7Va1cQJSklGo5EODg40HA61Wq109+7dGsksidpqtdJ8Ptd4PM7CDTvbHkzpr4WYEzLIGEFq3SYP8SbrAFEG+KkevIc+uQBRVZW63a4ODg40GAxyWcBqtaqVZhC8yG41pR3Mj5+oAHEv3QmUqzBWnhcgKZcrINiQb+Hig+/K+2kNXJ8yCXIdOO4SwuyOGe+fCzsuDvB+zy8o3QIeaujZF95G5hSxw09sILsD8Y3PGKKBzyMuIbIdJOXPOGMtqRaIyb+9NMKFFBwpDhdq+PyWjwUCgUBgN/anSZ/5Df9KaxPbA4FA4J2K9t2GPv3P/Yg20+njbsrbhmsjKDz//PPq9XoajUa1cMHy2Dos0ZAaDxWUrmrBPXgOAua2cHZFfcfUa6z9aDsILqScHXQnzRBF4CUY7BS7jdp/IGIenAfhdCFEUhZCaLuXMNB/XiOpVgLAcY2IKIw9QZTD4TCf7sDvlDUwhhA7LwvwkwnYfUfM8WMgpSvxx4/vK+33/Je+QJ7Lun3fAWe3G9Gm2+3WwjdpS7/fz44TL5FgJ9yPKpSUHQ6+lii58eA+duq9TMB3vN36T4goa1lSjUS3Wq1MuBHRvDyH+/j693IWz6hgTSCwMBdeTsAccn13CrAu6Qdztt1us5DmeRz+eSErgjYwJvTFj5D0kMgyFNL7gzhUftb4PO4af9ajOy5KAaLs+66SikDgoeMLfrE++SuH0lOd/Rx4mjH82Yae+76xtu+gP5wDgUBgF174zo1aZ+dqLM7fcd+J10ZQuHHjRia8k8mkVq9dEnAn6fw4AfUyAEiLn1jgDgAs0LPZrBZY50fT+Y6q1127e4A2SMo5DF7r74JCGSTHPTy0rt/vZ9IJ3KXhO+m7+gpZRZjZ39/PZQO0l7HvdruZaA8Gg5ylwFGXHqhXgh1pfijJQFDwkwDKvAFezxi6M4G+4kwok/09pBIRAsJfhjfiUPHMAheXnIy6YMI4MYeIFZ6P4KIG7/P2+ckDvA63AOPHGPocQ/55rWdF8DuCiOcycG/GhPmg3Z5rUJ5qQNv8lIRSUPAyjL29vexy4b7edxf63MXgc1WGN+KA4HPoIoD31QMVvZzHXR2sD78Wn9+y3IOxKPMz/PMXCDxszN7d09n7QkwIPJnofbKhGz+xVPWDT399cCAQCDwIjfOk/seSej/wU9rcufuOLGC8FoLC3t6eDg8P1e12c4ig78SW4Yuz2SwTUicI5dF2kKlut5vJCGT18PBQh4eHeZfVLf3Y+iG8EA4nMS4mYONHdIB0kScACe73+7ltXlvOv3EVtFotHRwc5FIAJ/Q4FyDNlHgwjh54x3VTSlmg6HQ6tWDIfr+v0Wik0WiUBQcvp+D9HuZHvyXlYD0IMffwYyLpIzvMHjwJ0fW6fwQfgiWdVDJmZCfwOGvARRsEhaqqcrsoRfDQQxdpfE367j9riddBfv20ENri7gnvlxNc1o/nR3hIJ4GgZFB4doATdsowyIBwNwtziEDBWmUNl+TahS1+PFDS+8YYuZOI63Itdyh4toPnOkhXWQf++fSSJS+T8LXmIoB/dn2t+HVKB0QpOLFuvI/u5gkEAoGALuqDN0kv/O0XtfnIv3ncrQkE3pmoKqV1UrVXSbH38diQtlLzLOnZ//p79E4ulL0Wfy1T8oC1+969e5k0QnCwhEvSZDLJZAWi42TNHQFY+Dk1gp3qg4ODLChQQ+8kx3+vqirb+dkd7ff7mZhDqh1lJkKz2axZwiGp2M9pA6GI/X4/2/jpBwTb7fJuxXdCBemSlB0DvV6vtnPeaDQ0GAx0cHCg0WiU3QBOwNyVsNlsNB6P76svRzggoNJ3+RELIHOMGX1irJxwIyYgnpQlEX56RGnLh1w6UWcMcKmQV8D1/DQNQjyZJ9pNnoWHQPpOeQme98BEF8eYfy83cDeO5wrwOXAnAcSaDIjtdlsr0/HSHYSF8Xh8n2vERTsPo2TdO5zYM96IYP5ed8CUn1EXhXitu3+4HqKCC3az2ayWM1E6PnivnzLip0qs1xenhrjrgLwFPiOIXly3HJNAIBB4p2NvkfRZf/KHtSn+7gkEAm8fNj/9s3rfn3hRP/Offr42nXfinvj1wK0flEZ/+4feka4Ex7UQFCC2hLLxmO/mQrywh5f2bXanvbyBXXJIE9kDhBZyagAWayeBEC8/QQEC6SdClHkP0v0hb05ynVj57ic76BB77OSQc8SEMqTP6/f58dIAt/p3Oh1NJpPcDz81A7LIOFJugJjDuEDyuD9th7SS6+AEX7oSUdxVwtj4SQ9kFOCScNcF407uA23GCVLudNNmL4Fx67yvG0ipizLu/HBiSl4EORBlIKNnN7A2WK+em8Fad4HHszC81MPFEQ8NLHf7pfuPVXTHBJ8NTjbhs0GAZ1mi4J8B1q+vH9rPe9xlscuR4C4QPjueXeLOpJRS7fSWsvyC9nFKSTnerB3e72U5zC3lJN4eBDraFAgEAoELDH6uoef/6am2RZZNIBB4m1FV2s7ncUDQY8DeIukz/9bk4veX7mkd4ur1EBTKI+qc1AK3THsonRMcCACvgShAUiBouAB8J90zB7bbbU7g991NdlK5By4JSKvXaHNdSCI7reXzvAYCT4aB77DyXKfTqeVGQLLctu52dcixH9sIeN5PukDAYMfeA+rcGcB4Q8gpaygD/9w2T3s5+cJr/r0unjbxUwoKCDHlzrefRODzUrosSpu/z5P3gcwEz6RwizwnVJSlE14K40ICY+mCQmn7L8tL6K8HHJaZE6B0HQDPb9hut3mumB/aSyZDeU0It69fz6/w9ezz5E6YMnDUP7f0uVy7tHFX4KQ7Ufwzylz4GDJ2XiLlnw+fWw9e9TkIBAKBgNT/WEPHP7FS9cM/9ribEggELnHwEWn86Q2djyKP5+1A615Dw49WOTtm/Rqvf6fgLQkKKaU/JOn36UIf+1FJXy2pJ+lbJb1X0s9J+sqqqu59qutAbCCc6/W6RmYgIBDGTqdTq2F3wlIeC+e5B1yzPI5RutolZgcTyz27pB7ehttgsVhkgkKKvgfO8ePWeS9R8L67O4GwRXaRcVfgovBd2zKUz+v8IeVOdKUrOzmnO1BfzxGdLvBQtiEpn54wnU4zwS1D73AzIOBA/rGbz+fznO/AmEIC9/f3cyAkAooTcaz5EEzPL/D/cqykuyScjDtZ9Hly8aA8ZpD5cwu+Zyz4CQo+zmUpgbtYfLedMeY9rDEvqfF1w/gxrx4m6jkALkjwft/B98+XCxheAuJCin+W/LPmZTKg7CP39DwNdyO4kMN13BXk80YbcMS4yOYBlNyHzwnijp/k4uuwFHXcaXSd8bC+iwNvH1KzpWrvtV8XCDxOpK2U1hf/33rPP3hVm5/46cfcouuL+B4OvO2oKt34xu9V43d/se7+oqRtM+wKjxKN86SjD281/Nbve9xNuXZ404JCSundkv6ApM+tqmqeUvo2Sb9d0udK+q6qqr4hpfR1kr5O0h/9VNfCVj8ej3VyclIjmJLyrrakXDcPiYDUQ4y5lpMmP65PUi20EOJSEibCCXkfIod0P3nCdu27zrgL/H6TyaTWZ3ZJW61W3o3n9WXmAfkFk8kkj4cfwbhYLPIxkzgS/Jq+S42AQcmHuwYQa6jNn06nWXwg48LLQgh7lC7Eh+l0mkMVXYBAgPFyA3cqICQMBgMdHh5mMcXdJpB5r6UvLfrSlQXfBYVOp5OzJ8jDYB48dJBdb9aVl9Twu5+uAKlnrL1cwoMXaaPv3Pt6fFB5CP+lD6zx5XJZE0TKkxxcqPD7cZ/SfQAhd8EDMYh/n5+f3xdy6G4DF8t819/LKhAnEMVwj/BaskRKEYbPCnPi7fByBr4jaB/CjwtYfuxqo9HIr0FIAR7OeJ3xML+LA28fPvaHf6WWx7GjFLjeOPhw0s1v/EFJ0uYJ+D58XIjv4cDjxOE3/YBu/JLP1k991ehxN+Wpxvv+8qva/HQE0e7CWy152JfUTSmd60KF/aSkPybpSy6f/5Ck79ZrfHlWVaXpdKrJZJLryv3YRrfQs4vKTjfk1cP72BnnNIRd1uX5fF7bOaWsAKLsAXqQDNwL+/v7ebea97OrCpmDFEIIJ5OJZrNZJnN+JCREpwysa7fb+UQLQvg8EA8xwbMHvHTEhRh3S9CHfr+fd2Eh0/STe2w2m1x2AcEswxEhiQTn4SyALC6Xy/yc51S4IOPBepQEcF1cE1jSuQYEmHXhIo/PORkSXsJBf/0IxxIQ3OVymdvkQYuQTbIevP7fAyMRcZgX2uBCCe9j7rHp004EGvrkpJkxZK1zPdro4hVHpfI62sTuvmcQMAasYYi898OFGHdBODFnXJgz1mUpTrirwoM3dwVh8noviWAu+Ox5WQjrw0tnaC/3dDeJOzueEDyU7+LA24dqT6oi8zNwjfGef7LV4F+9+EQIq9cE8T0ceDzYbqSf+Zje/6EX9JHfeRBOhYeEF75zo+4nxvnf1cc+eTHWgfvwpgWFqqo+kVL6s5J+XtJc0ndWVfWdKaVnq6p68fI1L6aUbr2Oa2U7vB/hKNUJmO+6ek05ZIudVj8ikCP3nMBJqoU/eqK+EzTf4ZeUCZvbpP26kBPIv+9we+hgSR5dfHByyU7ubDbTbDarjRmCAaIK16MNTuK4Jn108l4SLUk1IupH90m6T9xpNBqZjFLuABH04ze5JmPGNaR6mYbvQvsfMW6Td+HFd8RdNPKSBnak3dLPcz4PLqKUJSWEUQIPdPQMAPrOcaSsUXdNlOuZ9VYSWt7D+LgoUZZXlOUAnhFA+3Fp0Bcn5og+LkDQT58LLwHxshIPiPTSEubC1zn9Zr4Ra/jM+Fh42VO5frwUw8fSnRa71oOPL/1iPH398Zm87niY38WBtw9HH97q5LMaWtwKl0LgeiFtpcOfSBr86Etaf/Rjj7s5TwTiezjwuLEdj6V/9WHd+CVfoLPPbGh1EP9vKdH/eEPte69fbOn/6Ce1/vgnHmGLnh68lZKHI0lfLukzJJ1I+vaU0n/4Bt7/AUkfkKRbt25pPB7ntH52GdlFZMecP/j9mEY/wcCzFEajUSbQlDf4sX+URUDWKC+AmCBKsHsNKXRrthNx382mBMEJoO+W0kbfVed9uAaazWYWEs7OznJJAzvf2+225k7Avg0pk1QjfuxI9/t9NZvNTC69RIO2QrhxfkBMEWwgq4wLpx5Mp1NJqjkacCV4u7x+P6WUCT/kEXHi/Pxc3W63Vgs/m81qAopb6l08cVKNsOQnL5ShfG71J3RxNpvl8ggXH1yg4t/0i/uRS+FkHFcGu96lq4HHaAvPu6DggpPX93v/yzFGVOH4VNqC4MTam0wmee3563AOeKiiX+Py83xfaQfgdw9h9Pnmce6DmOBlNpRI+HV5r4svpWDFmPEY/WJOPP+C//I5dufDdcbD/C7uqPcomhjYgcG3fZ/2f/MX6MV/a0+bduwmBa4H0kbanyU986Ef0vr8iXFoPXbE93DgWmC70eFf+15tv/qLdfr+y79r25X0DsmXbpwnpU/xZ9tz3zNV+t4fed3XC2/W68dbKXn4dZL+TVVVr0pSSulvSfpVkl5OKT1/qcQ+L+mVXW+uquqDkj4oSe973/sq36Fnd7gkOk4i3eI8HA5z7b+fiuBkgrwA6epUASzgzz33nEajUS4t2G63Go1GmcBzH9o2m80y8WaXuqqqTHgJLcTy7wF/bgdnx1a6ste7CDCdTjWdTnP2wGAwyP3HDcD1EVRWq1UOhyRU0nfFIXOc5CCpZs/HIcI4QtoI0HP3ALvf0+k0C0Ltdjvb0zebje7du5cFEcacefG6fH6XlMmcJHW73SzQUKbix31CFMsdckQW+snY4EzxwEoIKULVfD7XvXv3NJlMtFqtckCniwQuEJUCDG4ZdwyQS8E9KFnwUhX6wzh5yY07KbzMw8tmGDP6zmfET+5w1wyfL0pnCDT0Ez4mk0nuZ6vVqh3h6G4C1rK3i0wCJ/2QdsQX+uuEnzwNsjn4LmBdfKqjHEsBwMUfdxv5/FEuQp9LIe4JwEP7Lh6lG8Fs30Z0/u4P6H0/8h795H/8nsfdlEBAkjT82YZu/XffWxNvA68L8T0cuDa48Ve/TzckNdptfeRP/rJ3TAnEu797rfY/+OcPfkF8rz0yvBVB4eclfVFKqacLe9eXSvrnkqaSvkrSN1z+9zte60LsOEOEISheq8/Ortf7U5bgAYMQO6z45+fn+TQDyPF8Ps+vGw6Hes973qNer5d3pReLRQ4UhABxrel0ep/9GjIK+fedVE/L92MncROwCwoJdVfG6elptqEjbHhJhYPQQ8bTbfflDq3b9L3c4vz8vHaihAfmlUQU4YFyFdrUbDZr2Q3j8Vjj8TgLNeUusJdIQNZxj3goJyGRzHlZ90/4IP10hwJijwsO7PhDfGlvVVU1ZwJkfDgc5jmTdB+55zHIOOvYnQ+sGe5D+5gr+sNzHm6IsOGOCki65wsgblEu430ty04Qitza70ISJUism729Pc1ms+wkKDM7nLR7SYHPiZeaeOkCn2ucM/STzwL9Y5x9zPnx67iwUd7fc1lwbvjpE17e8YQICg/tuzjw9mPz0iv67L/Y0c/8rpta9+OPncDbj7SR3vfXTpSWa6XpXOv4o/vNIL6HA9cHZGQtl3rfX3pF2vG3zNkvPtaLv/qJ+Bunhv1J0md906u7n7x9V5v4/noseCsZCt+fUvqbkv6FLlwhP6wLdXUg6dtSSl+jiy/Yr3gd18p/7HsYo3S1e+jHI2ID96wEQvcgaSUx8NMh2Ik9OjrSrVu39Mwzz2TiCbmEWEFusJhD+Mt6bg9NLEUPSJ3X4bsjANB3LP/T6bRWruHE3mvVJeUTGdh5h2A5eWKs+a8ftQephLRCDCHGXtrgZJvrMF/S1YkZ6/U698FPa6D/zAW2dnen8Fr6j2BAFgLvRQTieYeTWh8ziDBz6nPmTgIXZlg/bqcvMwucfHrpgt/D3+sCRPl+L60obf6QZM9A8P5Dmv1z5UKQjwtCC31l3BCocBl4aQKCh5dGIACVpRLcy/vp65DPm39ePA/EszkQF92twefdyx7K+fC8By/RQFT0o025D+//VG6I64KH+V0cePtRna+0+fBHdPNfHuu829C6J518TvxBFHh70BwnHX64UvXjH9E2whffNOJ7OHAtUVXa/NTP7HxqJOm8e/Oh3WryQtLi5pvPbRj9dEOt8Wv/v68522rz4Y+86fsEHg3e0l/LVVX9CUl/onh4qQtl9o1cR5IyweOn0Wio0+lIugohhFT0er2cfdDr9TIRhgi4m6HT6eTdZazTzz77rN71rnfp3e9+t46OjrRerzUeXyR5QkioXWenEoLDzq0TdgQFyDnXgWThmoCQeQjd3t5efp5shNPTU43H45qNHcLju8aQJcIb2Y3mJArGrBQYnGDS7s1mo16vl9vsmQS87/T0NLsKOC0AMuh94Lru2PCSFfrh8wTxXi6XWdDgqE23rTMPs9ksH6XJGO0irLgKXFBwgYl7eptwW+DYaDQaNScEa8SJbfkY98RVUrpWIMNu/XdizO9OcP0z4zvqnk/gIZCIDx666NkOnm3BZ43HfB2TRYIo4seT0kY/kQFhjDbxvIsskmoiB+uW1+AmYg1xX8bYcyccPrYuJgDPrcCF43Pv7haev+54WN/FgceH/t/8fknS/qe/oMkLUQIReHvQ/7h08M3fp5Cw3jriezjwJGHz4Y/o8CES8/2v+ELd7r35o4ue/8cvP1D8CFx/XJvtNwg8xBnyAUmZz+eZILTbbQ2HQ3W7XfV6PR0cHNSs1uww42YgX4DHm82m3v3ud+szPuMz9Nxzz2kwGOj27dt5B577u/NhuVzq9PRUJycnmk6nmfxBMn33frVa5RILSJJUJ7eQPuz+ENbxeKztdqvxeJxPNIA84QyAnPEeauEpByDwzsdAuqqzJ9BSUn4v4XScmEE+An2kFOH09DTfp6zz9/7xO2UgnmtApgIlGt1uN9+P5zz4kTVALsB8PtdkMtHZ2VmeLyeVkFgn4y6OuLMC0WUymezcLWeNrdfrHJA5n89rpQeQZxw0EGpI/HK5rJ2sINWPsmQeWDseHslaISPEhRKcGbSbPrs7h/mbTCb3HaWIYOElA+4ukZTn2UMX3R3E/aQrYu+nRlRVlYUHdwF5hgbioZdb+LrmNcydC4cuDviRkzznzhheu9lcHVkpqTbunhfBZyEQeDux/ujH9N6vj2T9QCAQCDw5GHz792vw7W/+/dc/AjvwqXAtBAVIj9vxITL7+/s57A1SORgMNBwONRgMNBgM8m4zxJ4cBCe7JycnGo/HWq/XGo1Gunnzpo6PjzUYDLRer3VycpLJqdeCQ4wREnyn+fz8PIsIkDu317Oz7aUSbiHv9/uSlEUHBAPIq9fbcw3KNxqNRi1Mb71e3+dygNx7+QA7rogF3KfRaGgwGGTCJSnX83O9u3fvarvd5pMovASAnXx293Fy4GiATO7t7dUCJREJGFdCLf0UBoIOKaFYr9eaTCbZKYLjAALpu/OSanX8rDfILGSb3AbeA+GHUOKEIJzScz7KYxjJlXAnSwlej4uDbAIvR3ACj+DiDhB291lzfFZcuHByz7y6c4b5pi1cH6GB97jLhHkp+0NZhJcOlGU6fuwn4PPgIaBejsHz5TgiQvg9fd65J6+lnX5PL6mQrkIh/fMfCAQCgUAgEAgEduNaCArsFvuOL0f9ubXZrciEqQ2Hw0xUIImQe4iYn7ywv7+vo6MjHR4eZou3Ey4XIaSrbAJOK+B1kH63ZHNKhIfA+U64dJXnwA4oRAxC50foOcFFiKB9TpYhPRAydxWwQw9ZhKRCWGezWS4D8JIEzx6gnGIymeQ2S8pkzXMFfGfeiTp9L4/jcwLrTg/fsfZ+uV0fJwHjCfy0AdrpoYF+mkgZ6FjmG0gXO9g4J1hXvtPu4Yg4Ydwls0tQYA6Yd04OgYSzliH/Lt5Q/oNA5SGLXjIhKZNlP6oSYc7FI4j7rra6a8N3+r0kw+dwV5/9M+6PuQMH0u8lHDgOaAd9oB2eBYKLwa/vr2dsPUgSZwltwDXCaz3jJBAIBAKBQCAQCNRxrQQFJxbdbjeTHq9LhxRyckO/38+Elxro2WxWIzTsAEsXO8/Hx8c6ODjIRBtbvqSaFRqyce/ePd25c0dnZ2dZMHDC7CUBkCYICWQOxwR2cWz+EDJ2SD1DwkMMERfc4g0hgnRBnBADILkQx2azmQkSffDTA9yyTls4tnM6nWo+n9fCCSGy3l8XHxifMpOhTOyHiCNELBaL3D+s7LTLBQXIYRkO6HX7uyz5tJv14rZ7J5y89uzsLOdZIGBAdksLP84Q1oWLLl5uwP293y4E8LxnZ/g1cIE4/HW0vXwdJTYIQ7t2953c+z3d1VCuWc/3cLEHuNDBtd0J4f/2kEnPo3DnhQtqvp48q8RFEN7jAg0uiJRSLeDVsyVKN0UgEAgEAoFAIBC4wrUQFNiNxf4+Go00Go3ybnJZ29xsNnOGghNpCAIZARAvSNZgMNCzzz6r559/XgcHB1osFhqPx7p7926u9WZH/sUXX8z3d3LM9e/du5fdCpA/CA8kG6Ll1u1Wq6Vut6t+v5/7DRkr6993HX3nmQzT6bQWkudH6HF/P6XB27rZbDSdTtXpdNTtdjUcDtXr9WoEirZPp9PavUo3hR/NeOfOHZ2enmYRQlLuK/kHtBdxYjabZeKL6wOHCn33tjO3jCftdgHFHQiS8vrw3XX6Rj6H51nQJ47vROSg3YgL/oNrgAwAH8tSROF3ymY44hEC7Y4WsjWcoPN+4LkDrD/EEkQSXyOsJRcDXJRhjDz7wh0MPAf5596e8wDKfzMufC4Z80ajkXMT3HnjIhJjzWfbx9Uf9/v6Z5KTLKSr7x1Kp8iEQBDCFRQIBAKBQCAQCAR241oICl57ThAeZBPSxx/32JIHg4F6vV5+HTvakH7qvbHUHx4e6j3veY9eeOEF3bp1K5Nb6txbrVYmMZPJROPxOO/w4kZgB3o8Huv09DS3qSTz0gVpmkwmmaAQ5CddkX/uV550APnxoEnpQkzp9/tqNBr52m7RRwCg1IPr8MMYQaQI+yPrwUklpNpPYgBeIsAYUAJy9+7d7OTgGEqIOaSTgD5JtVIVt+a7KOCE0d0QvvPMPHsNvnRVBuIOD3bnEY/oK+UVrBtEjtPT01yG4yUa3gZKSljPbt8vj2sETsjJwOA1lOeUIok7VqSrEw2ctJcZGH4SBYIc/fMyi9VqVROsfB00Go28m++nH/gJGb5GdjlDmB8v0fB7ecmEz7n3lXv6GuR1jAt99rIlgPiIg6TX6+nw8DBnMUyn0zzfu3IbAoFAIBAIBAKBwBWujaCwXl+d7EC5A4QIccCPeiOB3UkY5AYCwY5ms9nUYDDQzZs39eyzz2owGGRhgNp1J8Wnp6eaTqe1nVfC5BAsIOR+PJ3DA+jYzfcdbreNex27p9lLV+QQZwP99bwH7g2596R76Ypws4PrAY/sPPuOtN/bcwZ8R5vr4AaBOHtaPvd1pwaOBj+VwPMHGCfGkB12r9+nvyUZpb3L5XKnXT6lVMtacAs+xNzHyXeqcTAwVn5v3AHAHTMe+udiEWUTnhVQ7qyXnxEn7B6OWN7f19UuUsxYliGiLoohItBP5pd7lpkJ7phw4YTXe8AjAqKLXX4PHyefJ+9bWcoAPGukPN2Dcg1fH5TLMFd87v1zEAgEAoFAIBAIBHbjWggKkjIJJdUfwiVdkSdIMDvJiAqQWD+6T7qyxXc6HR0eHur4+Fg3btxQt9vNpzpQ4y+p5j5wIu3XRVDwo+e8rWV/IEnsmnrIoAfqEZhImwn+g8hj7fdgQ889cHeDpBoJ96P2fHffnQKQQO4tqVZH7rX0vouOw8Pr3yGLkElcGORU0G/u664DSTVS704AroWY4rvSkFsyDEqSud1uc7/KXW/mxcP7mDfIJ3NdCg/0YZeIwftZL36SAGumFBVAGVTI8y4WIQaV7hYva2F9uKjg+R5+b88rwc0AKecz4EJKWY6EKEe/WLdlNofPjQsWtNvHsSxbQCQp58BRBjwyZlwH8cU/Z5TbIDC6gBUIBAKBQCAQCAR249oICpBGTm/Akr3ZbHJtM2SCYwT9mLmTkxNNJpO8ywv52t/f1zPPPKMXXnhBx8fH+VqURbjDALvzeDyutYsgQcghIgP335UsD2lBlKC8gPdwLa9XRyRgFx4C3m63dXBwoF6vV2uD15ND0EuCBWkivR6bOaUlTgIRbnBBIHpwXY7UoxTi/Pw8H+MoXYXtYamnrxxNidOE+XFSjG2+2+3WiJzvOHsugtfdc1oFeQjeBrIdvE3cD9LM693aP5/P88kg9M1DCRlbL9fwdeeODX64H9eBpEP+XbCAaLvg4FZ+nycfFyf57mpwEi5diR1lSQl9RQygJIMAT58fhAN3yLiQgQDmAZblfVw4KEU5rum/Izw8KFySkg4Xsfh807bValWbB4QEHEXMwS6xIhAIBAKBQCAQCFzh2ggKjcbF0YU3btzQcDjMpJGdechtucu/Xq81Ho8zOfOgNkiinxjh5AbiRG7CZDLJRNN3w0vrf1kbzk49ogGCwHQ6zbutBwcHGo1GOdBvMpnUXAYQYSfPjMlgMFC32819xZa9Xq8z0YNMETzIGJGR4BZ2fq+qSuPxOAfjcfJFuRtMAv5gMNDBwUEWOzwXwp0LkLpWq6XZbJbJK0QTyz/ihJNKwhAB4+OEEzFpb2+vVorCvCBIQSKlq5IRRB13VUDkpasgytPT01qYZ7/fz+11Z4KTeSfMzA0CkKRMsKnh92BLhDPWLIGgPEe5Aa4csik8gwGnhqSa+OHZEaxrz3VgXTjJZnwJ14SEu2OhPE3FhRHmV6qfXML6KnMvvAzCy1oAohnCjLtJcNJ4PoaX9rB2PNeB13AqCeuzFF4iQyEQCAQCgUAgEHgwroWgwE51v9/X4eGhBoOBzs7Oss290+nULOXsjkKkIOdu+YcgOQn0HX2IKtfh2ElJedfad5u9xt/DFGmTnyBAWj1uAI6JlK7KCKgDB17v7rvKCAOQwPF4nMsMvD1ejsAYQeog+NKVE0RSFgUY57KEwEtQWq2WRqORer1eLvugD57BIF0RfqkeoCcpt6nX62UC7fNW7pj7PNE+5hNCyJhy706nkzMCsOmTu8GOudfVe9mHE3QvsfF6eierLmTRZtrmc4Nwwhx73gRrzgUFHveymBKePeFOAS9bYAw9CHRXu8ryGQQxBBvWoqTayQ5O7D2XoN1uK6Wrkya4n8OFK+7rooi/zks63D3gDqAyi4F8Dy8F8ZBKLxXxdeyfw12uiUAgEAgEAoFAIHCBayEoSKrtgLfbbUnK1mbfFZaUbe6SshjgtdwQJHbnnSiU5B/iAHFit5adTw8hdJLIrrjbo51w+bF/EEXfjYbMSaoJAfQBgoMTg9MucFFwjZJ80XccAuRRlCdGeGAgJ2U4MfTgxmazqW63q6Ojo0wSeV0pCLit390ivoPc7/fV6/Wyc4LSD+ac1zKmlGUwfzgMmHtcJe12Owd1OlGlD1zTibwLFsyvh2h6+QHjx2vdtVKWnHD/8j4+9owjghriD69xgu1k3B8vBQfu4VkPvqZdUPCcizITgjFw4cFLB/hsQM5ddHABC0GhzL2QrspZGC9fn+VjXu5QBjkiCLiQgwODNnsOiDtevHyFe5Z5IYFAIBAIBAKBQGA3roWgkFLS0dGRjo+PdXBwkK3sftybk+7NZqPZbFYjh+w8QizZVYdguoXZiQrJ7gTn0R4s3QgNvB5ShgsBwaPf76vdbudTBiRlq3yv15OkHPgmKRNjrstjbsMn44A2npyc5PbgHnCiJF1Z+/v9fnYUlKcd4Bigf04kyWaA0Ha7XXW7XQ2HQz3zzDMaj8e1Nrbb7ezuqKpKvV5PvV6vVsOO+LO/v6/BYKDhcKh+v5+FDK+79xIIT9pn5x7SyJGfk8lEKaUsHuEEceEHot5oNDSfz3V6eprb4w4FXo+t3u33EGK3zUOsXewoXQ7SFbn3Uw58x55x6XQ6tVM7gJckuMuiFBq4l2dd+C67C1qMqQd2etvKsiDmAWcKfXOS32w2c1kHr/XPp7sKKLPxvvpJEU7sfZzL50qBgXu6+8LdRe5QYY5pr/e9PJYyEAgEAoFAIBAI3I9rISg0Gg0dHx/r+PhY/X5fd+/ezTugkHsIOMQKS7vXP0sXlvfj4+O8I81uabvdzkTUd6OXy2U+8cFr1glq44QG6crqXVWVZrOZJNVOSiC8bjabqdVq6eDgIO84n52d5R19dqMRC9xdIV0dO7jZbDQej3Nd/2QyqWUksMtKOchgMNCNGzdy2Qj3cMGAMgGcA9wPgYS6eO4JSS9r9hEbXIRpt9vq9XrZvUGGBI6JXq+nwWCg0WiUxZLJZFLLjXB3gp/G4DkHBGeenZ1ptVqp3+/noE7IPyJGp9PJmQrMj1v1cYCUYD4QRiD65Y431yit8X6ig59SwrpmzAg/7Pf7ea2UJQAICqxpXydevuMCSa/Xy+GTkvJ8l24Gd/8wZvybOeD6tN1dNO4iQsRwJwTuCw8/RRTyPAQfd3cylKGUfmoEQgPj4GPLdf1xzxBBbHARiO8DP/XC3SmBQCAQCAQCgUCgjmvx13Kj0ciOAsgIRIKjHdnBZrfZ7c0QISzv/X5f0gVh4jHpqkYeUs0RkZRMQGhxJ0AunHTQLg/hI23fQ+kGg0HuD9chDwFi6HXhtNfJP2IGBBli5AQc4tpsNtXv9zUYDLIzwgMNIWqEOGIJd6s4xy7ybyfzuCnKeZhOp5KuyCVtZc48IBIxpbS+0x6EkbKWnzZ4boJnD7ArTpkK7XHiiHMEQcnb5O1nnsu6fUCb3FXC/LvrwMkoRNqFIy+n8BMrELRKkamEn4Th6wDXCPf0QELgbSxLB2izu0RcxCjBGHtuhosAfiqFpNrOvzthvF3ex7K97pagfcydZyTwmDtFXGAs3ScekOmlIK1WKztaAoFAIBAIBAKBQB3XRlDAfu1hixD7+Xyed/fJI5BUI/m+Q9vpdHINPIICZBTCxhGRp6enuYYfUo07wYMTvV1uG3fiichAG9gh9rBHdzT4TjcExrMaXMxwkglZ4jXShaAwHA7V6/Xybr10tYvtZJxQxc1mkwk+AgV5BLTPd3U9FLHdbmuzuTgdw+v8d4kDbpv3/jOOZXBjSe4RRSCICAoQRN8Zx33gtfy4OLDD+zxggXcCynjvIq6Mi5cDIFj4muC9kOBdYoLnXfB6X2de2lKKMIB1sFqtagGLZV6Cr5tdQoULSLzfgwqd1AOIN2ICuRnuKHBHwK55drHDx4117+U8rCFvg7evDGx0kcfXhH/+EBN8/tzxwXdNIBAIBAKBQCAQuB/XQlDwQEN2t5fLZc4NmE6n2tvbyycDEOTn5MWzEzhb3gMFnWRtNhvdvn1bt2/f1ng81mazUbfb1Wq10mQy0Z07dzSdTtVutzPRPjs7y3kAEBWcEtLVrizZB+VJFL6T7q/34MCyX359yLq/n/FCaDk4ONDh4aG63W4mWWUi/mQy0dnZWT7mEtJNe7GhQ2Zv3LiRCTjkzW3tnFbASQseEujhiJSq9Ho9tVqtHIQ5nU5rThAEDt+p9zDA2WymyWSSyw/IqHCHRa/Xq5FHBA53svhONa9hXv30DgSVMtTS3Q/uECgdJxB8AgKBn1xBW3C+IH44qacv7hzAccEYIh55aKgTal9znh2ByFA+5qcfQLBdZPMyB0QT8gt4HjGPEhocMO582CVwuIMAMcSdDggICEJ+qgX9Zw2RK0JAqXSVsYFgyZx4SdUuAScQCAQCgUAgEAhc4VoICo1GI4cakk8A4T85OdH5+blGo1EmtpA4fspSAhwNWPNxC0DKT05OdOfOnXxkYq/Xy7vzEAxIMyRosVhIqucbsDPLyRFu2eZ6OCs8nNFT/iXl8MjpdFoLn+t2uzXiXpI+7PvD4VDPPfec3vWud2k4HOb2OdldLBa6e/eu7ty5k+vqOb7RE/nd7l86AKhXx50Amd11IgBkkXYjGkH0FouFxuOxptPpfXb9+XyehQp3jmw2G52dnWm5XOaykuPjY0nSZDLJ7WM8IdGICawJz7BgjieTSQ7npC2sKdwdvrPOjjziB+TT6/JdbPITPHiMIy4ZF9YErgxcEuzUI65wrclkoslkksUHxtVLY9zNwuvK3ALWtXSVo0A/XUxh7dI3FwTcDcH1WYfuoijLRzxYsST0Xn7A2JbtZq68fX5NPv9l9sJ0Os3lVFVVZZGJ7yCfp0AgEAgEAoFAILAbDy6OvkRK6RtTSq+klP61PXYjpfSPUko/ffnfI3vuj6WUPpJS+nBK6Te8nkbs7e3lzIH1eq2zs7OaoOC7mogCEEyIr3R/7Tak0Ov2t9utptNptsaze+mnOkjKVnnIJmfdcz12XgEkblcCPSTJ2wC58p1VD5SjDp7d6u12m3epIcHL5TIH+nF6gte7E2h5cnKil156Sa+88kp2OfR6vSzSSFc19KvVKhN6b7fvWPvrmAuIJrvWiBBSnZw3Gg0tFov8XvrK6RCIM5ROMKacdHF2dqaqqvI9COfk/gRw0k7f7XexgT7zPGGai8WitnbKExDKOn8vFWDMWdPlKRLAnQ8uStCP0r7v5Sa0AzLsnwMcGqwNL5VxoYp17PO6a+3SD8bSg0uBn8DA9RkTRBhKHVx04x6ep+DjwWtoLyULXg7E+7gnbXAhAjGBMcQVw9ghJrhA5Nfj++A64O34Lg4EAoHAgxHfw4FAIHA/XlNQkPRXJf3G4rGvk/RdVVW9T9J3Xf5bKaXPlfTbJX3e5Xv+25TS/VuKBSB67Lreu3dP9+7d03g8ru2qSqrt5LLr7D9eQkB+ggcTYnPG2UBZg+/sQuSwlOMEcKLppwM4mZJ0H1FyUup121J9R9vb7kGPvoPvu72bzUadTieHMOI0cKKFIHJycpKPfHTS71Z+CDZk1MP9nLQjJszn8/vIHbv/ZYkEhA1iSlkB5Rrs1ENu/ZpkP8xmM61Wq5pDwMeC+/t8e40+84ct3nMV3B3gO/O7sguww+8i4L6mXUwobf2lpd5JP23295TuBm9vSdz9NAZ3w/A58nYhODwoW6FcG9yPPrszoXyPlx2UAoALDh7c6J8FF9iYC88dYczLeyE++pGY3gcvXSozQvx7gvG8RviresTfxYFAIBD4lPiriu/hQCAQqOE1BYWqqv6ppLvFw18u6UOXv39I0m+1x7+lqqplVVX/RtJHJH3Ba90DW/fp6ak++tGP6mMf+1h2JkjKNeaSshXed5Yh/JAobPmEE3pYIK+HyOKKmE6ntRMMsPNjKYd0eJ4ABNmJB0QRwuw7sr5jzgkOkB52fiGziByQPYgPfSA88eDgQDdu3NBoNKqRQ3bup9NpLi3w0w28/t9DJXkdZSgcF8iu7nK51NnZWc62KMk6oZDY1j10EHcIgZccJYmYwA4yY8dYIELwPieA8/k8B0N6iJ4TZF7Lz2azyVkMzC/3ZA4RErzWn/e7yFCKCcwVa9aDNn1X3nfWV6tVTdhAvCkdB34PTiFxRwOfDUQRhAdEIuYCEQ2hpnQvePkGggQkvBQ8dokpwN0EfC4h7R5iWq4R/3zzPCKQ95cfdyYhNnE9xnu5XGoymWRRyl+LqFZVV6GfjPl1Knl4O76LA4FAIPBgxPdwIBAI3I83m6HwbFVVL0pSVVUvppRuXT7+bknfZ6/7+OVjr4l79+7p9u3bevXVV7VYLNRsNmvBa+v1upaNALGezWa5fMHD68gGgNxLqgUSQppWq5Vu376txWKRictyudTdu3d17969TPw9EBKS4WUOkFwICqcoYKcuHQ/sjrrjwk+vYBdfujr1AFIPYTw6OtKtW7d048YNdTqdLGpAAs/OzvTSSy9pMplkAcLLQLbbbbb5Q9Q2m436/X4mk/fu3cslAuQwnJ6eZuHBd57Jiuh2u/l67Gj7TjFCA+UUtNnJM2Ga+/v7ud6dIypZD+QeuAOCcfYyA9rGvcbjcU3wcTu+ryM/CcJzA9yd4LvZ7iQhpJC5oB3SlSvFMwfKHAIPd1yv1+r3+7kd2Pb96FK/PvdwkY3SEhw7zD2OD88PYFyazWYWHBAUynXu48z68XEpnTq0h/9SdkN7CQt1YQ33hR+/6kIcfWd+3XWDiFcelco93JVA+13Q2pXZcM3w0L+LA4FAIPCGEN/DgUDgHY2HHcq4KxZ95/ZlSukDkj4gSc8//7xu376tu3fvaj6fZ7KAqAD5YSeSnWkIkZMc/y/OBEg75NmPipvNZppOpzVSNx6P86kO0kV4oZcU+FF8bvUnj4AdYYQG6cqmDjkuE+4hYn66ge+O014IUbfb1fHxsTqdTt6xJszPMwc84JBda7eqn52d1VwQbsWfz+dqtVrZPXF6eqq7d+/Wyk3Y6W232xqNRhqNRmo2m/l5dpmZkzJToAwr5FqQcspgvEQEwcXf40TQT66AcHt2RUnwyxM3/BSIXfkFbvfnmp4P4JkIbq1nVx+RAQHL156T8vKUBd7Huve+cd8HlQd4ToefsIGbghM53KXB2vFcEhelECdYx2R98H4+g2VZEq+hnaUAwXPuWPCSG38f/S7n06/J/LpQUjpEyhBJPgdPgKDwILyp7+KOeo+yTYFAIPBOQnwPBwKBdwTerKDwckrp+Usl9nlJr1w+/nFJL9jr3iPpk7suUFXVByV9UJI++7M/uxqPx3nn3neFIQMIAZA+nAkcC8d7fOeb3WcIHTuUWN5xC8xmM0lXu+Rui/a8ASfKvoPstfvsphI4eNnXGsFfrVb5ZAknP9LVript9nbN5/McItfr9dTv93NpAwQXss6uMn1md9l3YXkNYwqBps28j/6cnp7mIxud+FG6cHBwoNFoJOnKLt/pdPLrKBnxMgBbD3k8vRwDV4fvxpf3d7Fgu91mZ0Ox3naOLePG/d0y78dp+v1cTMCdQEmCz5mTYJ9bD0AscxRK54OfmOAZFy44cQ0XH3ycEBS8vzgOOp1OTdxyxwNz79keuFs8I6MUZGhLSfRL4cjH0v/rffJrl+NV3mfXfHrJBfPnY4FA4ePu135QOcc1wkP9Lh6lG9e+w4FAIHDNEN/DgUDgHY03Kyj8HUlfJekbLv/7Hfb4X08p/VeS3iXpfZJ+4LUuxo4pO/rtdjvXxXtKPYQegitdEVWIgp/q4ATHQ9YoB6B+frlcqtfr5V1br9XnaD8yAWivE0K3fkP6VqtVPoVAuhBA7t27Vwuhc8IHkfFdV3IUZrOZTk5ONJvNcunFaDRSp9PJIZN+MoTvQjuxZdcVd4LXibvNvNzdJRARQQQiKV2IEKPRSAcHBzo+PtbBwUF2Q2DVpz9kW/huPHBxBSJHWYM7ItipL8m0B/h5PX5psXfC6k4Nz6/wNcRYcMqHdEU0cSGQf8DuPevAcxk8ONDnAjJb5hLsOhHBa/sZC9/JL08MQRTzMaZdCCCMH+6W8rXuOPBjLl3k4DOFaEUbaJcLD07m3cnhbhd3hfjc83kvnTTMk8+VryOfd35cZHDxkvHyOb7meKjfxYFAIBB4w4jv4UAg8I7GawoKKaW/IelLJD2TUvq4pD+hiy/Nb0spfY2kn5f0FZJUVdWPpZS+TdKPS1pL+j9WVfWaf5Fvt9taOBq18m7xh7xw8gOWa8oQsC173TlkADHAd+/Z6WW3lxIHPzKRYMder5czB3aMT94h9xyA7Xabd3+Xy2VuN7v0EGt2WAmHhADxuNfgc7Riv99Xv9/PRNbLQ3w3uAxpbLfbmcARUidd2csh0m79vnv3bg51ZFw8Qb/dbucch6OjI3U6nexiaLVaGo1Gtdp2AjAhu9TpM27Mt4cBuhhAn/yIP95D0CZj7mUQJWGH7HqOAWsEt8Plmq611eeEtUNpTLvdzjkKjIGvQ7f/c3+AI4T16yUG2+3VUae0hfFnTBBSeC/r2In9bDaruTs8V0K6Cq9EJICEuxOHdck1/XQU7uWBiC5oebmIiymlOwTC7+UpiHa+zhFwmEPPsaC93i76glBSljS4SMHvpSPiceLt+C4OBAKBwIMR38OBQCBwP15TUKiq6nc84KkvfcDr/5SkP/VGGgFBgXBhcbdr1gLusP1DEjwtnh1UyhgIaGSH123q/uMJ8uxO+xGI0v2WcN8hLZ0Ao9FI3W5XjUajlqLfarVqp0/4jut0Oq2RN99FxYLf7/fze2ezWU0EIMm/TOrnNc1mM7sW2PmFmPnrcHxATJkPD5nktaPRSMPhUP1+X4PBIN+T8ev1ennsEBM4bpLXQpTLbAZ3LOCcKAmeE1jEGtrq84wDpnSZUNbiJJddbkk1cs1axP3hRzeyxhCXeK8LCuzUO1Gln74T7mUO/LiAwbr21yIMIJLxOdmVAeDlAMyVhzX6+nYnBWvDMx8Ya7IJPLsC8QLi72NM//11wHM+EDUoafJgz9KR4eKZr38v6XA3irfLy5i839ep5OHt+C4OBAKBwIMR38OBQCBwPx52KONbQkkkpXods+/uOinhMcL0eHx/fz87DNjp9Pv4zibkHaLhIYIQFif4bruGQHn9fa/Xuy+cD1I2GAw0GAzyeyGhbtuXVCOi7L5z5B/Ekh1bt5P7dd2CLl1ZyBkPPwoTYu47uW4392wBXBYcE0luAe4M5gNXBCSXfAqIpodNeuaAOzX8WD/Wwq6TGNyx4AIU7ody3rimg3v4NbDyO3Etjx8sd7Pd/eBlFn5/L8dw10W5a85r3Mrvz3NdF2bKkohdwoK7DfxIx1I4c0KPkOFlK07OXRj0coldeQ/lnHqZgbsWfMz8MV+n/vktBQXG0EtLfE25e8XHdNf6CAQCgUAgEAgEAle4FoIC5ApSyWNOGshX2G63WThgdxFXAY9Tw9/tdrNTAELvNnLfwfadTK7rJLIkSbgW/Hrs8kKmvQRitVqp3+9rOBzq6OhIBwcHtfA8D9pD4KDNkDjcF7wGi7vXetNHCCKlFJLyTj0ErNPpZEEAscKJFK+jT41GIzs2+Gm32xoMBtk1gTWf8W+32zlAkxwGnpdUC410yzpCgh9R6GNCyUun06mRQyffkGtO90Bg4b/8Tl/dGu9lMZJyAKak2rGNKaWclVGGJ5bHD/qpDn6ah4ceeiCl5ymUeQZlGQLlB56v4G4TRCgn8B6w6GPBfd1RQLu8xIDcBd5bhkE+yO3gJN374f0GLoa4y4f2lM4Nv5+7F9yBUOYt+Jpz0cPHKhAIBAKBQCAQCNyPayEoULNekjicAt1ut0ZiIONeY+3EaDabqdvtZicA+QfuMoBo+FGD0lXSPvXnD9ohl1QjWbyOHXzf4ea0g1u3buld73pXzhzwHfRdlnUPdmQH2y31/X6/RuIg93t7e1mYQYQhpwBreq/X02AwqGUcMOaMo3S1k+x99p10SjAk6ezsTKenp7n0pNPpaLvd6pVXXtG9e/dyFgOiiBNmd2eU400mwnZ7cQLIYDDQcDjM92Uc3RGAWDSfz3V2dpbJMSUO7vKgBIO53Gw2Go/H2YFA2QYCwL179/KRi51OR91uV/1+P6+nyWSSjznlNS7WpHRxJKOfsEE2hmcPMC5cV7pyiTA+Loq5mMA68N12F+Ak5YyQXWKCz4eLOqxrzzbgdaxTz6Vgjsrdf+5Rnt5AG7ivhzi6+MA1mbuS+JcBmdzHr+dBmS4k7PqsBwKBQCAQCAQCgftxLQQF0vw9fE+6OqaO+nQnQpCB8/PzTIARJvb29vJpCI1GIwfUQRDd5iwplypAltjxdKt6eVIAbeO/vkPNbrFnQfT7fb3wwgt67rnndHR0lJ0D/h7fSfUwSogRLgAeg+AhvPjJD+y40z9/D86EwWCQd5y5LsGPzWYzk2/fHYe84hDY39/Pp0CcnZ1pPp9rMBjkEMCzszPdvXtX0+lU6/W6RqyZe6meBeAlLzhOACUjzWYzz7eftIDwAtH2oEdEBAQmiDEnNCBycAIIAgZtYm0geJGxwfzM53NNp1ONx+Oc8+GvgUgzZ16O4ieJUEYh1d0nlKU4UeZ5fqeEpQxc5PPiGQKsOwQ237ln7dMuP060LKWhDXy+/PQE3lOWgDDnZZkO73PHgqPMaOC9fk0/VaI8ucFRujzKMocQFAKBQCAQCAQCgU+NayEoOMF3MYEMBAQE6YIw9Ho9zefzLB5A3NgtheRDELHbYwkvxQWvaccqD1nCcu22c7fGQ17clg25In+g1Wrp6OhIt27d0jPPPJMJt9e5e425kzse96BEz0OAeLVarXxEo+cMIFBAAJvNpobDYa0UBIJGyCJCAWSfcSmdBLg6JpNJPjWCXWp2z+/evZvLLBgnruEWdK7p2Qn0wWv0Kfvg+swl95Dq+QUulnCP8jVOIBGDaK+TZ+5HGQiumL29PS2XS83n8+xMcGLvc0wb/WQOrlXunrubxsMnaX/5w/ziYHB46RD/Lgl2GUxYhnSyvn0c3Wng5QOeyeClHQ8i8eXvZfvcZeFuCl/vfh366vcE5b+9LWVJRiAQCAQCgUAgEHgwroWgINWJQEopB/oRXgiRbjabOj4+1ksvvVQjmRBNyIin9c/nc00mE00mk3zKgBNQt5mzY93v92shhW6PdjEBQFzcfs5u+HA41LPPPqtbt27p6OhI7XY7H41Z1pqXWQ2MTWlfJ+iQQERyEDgakN1lD6DjscPDQx0eHmpvb0/T6TT3ZzQa6eDgIM8DJJQ+4zKASHe7XW2321zKsFgsNBwOcxnJYrHQ2dlZdmL4MYdO+F2koL2+g+6OEEpAKI/x4yZ5nXR1OoMLML4L7nZ7PyXBT3Xgnq1WK7eb58iPgLyzvpbLpRqNhrrdbi1fAGFoV1imCwpOzj1PBGeCt8PDK6V6JgKv83t7foCvJe7hIgZrBTGhzBXgnohsnoHhuQd+2oa3pxQQyu8BdyiwFss8hTJMcVf+wS4xYVd5RPlefy4QCAQCgUAgEAjsxrUQFEpyc+PGjRqRmc1m6nQ6eWc9pZQt7vv7+3m33V0JEO7z8/Nc0z6bzTSZTHRycpJT+nE88NxsNtN6vc7OCM8ggPhCStjF5nGvL+dUgV6vp5s3b+q9732vbt68qf39fZ2fn2s8Hms2m2VSTGAh/YKIQRrZ+ffHU0o54PHo6Ki2q99sNnP//MjJmzdvqt/v5+MVl8tltuU/88wzuZTACW1ZHoB4Iylb/BERvMyAfnQ6nZpg4/kS7OZLV6da+C40r/eSCIIWKbVgrHkf4897GRPEJ/oEsYdM02fEBDImOp2Ozs7OcvvI9aDdk8lEd+/ezcLLcDjMuQvAnRfkNEBWcS4wr4R58hwuHBdjKOPw0hAvv/DjVd0p4C6gzWaTTw2RVBN3cAeVx0SWTgTPJWGdepmQfy5cFPB7cq39/f0cbMqYebkKj5chnv488+9OCD95gv6V3z3+vIdQli6OQCAQCAQCgUAgcIVrIShIyqSEnV+ICzu+/X5fo9FIw+FQL730Uiaq/X5fzz33nA4PDyUpH+mH9Xy1Wunk5ER37tzR6empxuNxroEnYwHigmuB/AVIEbZ47PoQVcoyIEnsliI49Pv9XOrwaZ/2aWo2m7nOfjab6fT0tOZogLCTv+Dp9eyiehAljgII7GazydkGvN5PanjmmWeyWFNVlebzeSaOhCuWJyRAzGkT8+OhmJ6xQAAi7hFKJ1arVS5TKTMqKJ1gHUjKbZjNZtkRgANlPp/na3nyPzv8vnsP0fSTKXxH29vvJxcMh0MNBgN1Op3clqqqslOAMhhEjfPz83zqBKKFl1tA9CVlB46T2zLEk5BNLzfw1/BZYZ4RkVx08jIgxsTdKl7+wTi468dfQ38YC7IqfM27QONuHca7PMKydBa4U6AMhvTxdEEBN4VnP3hmQnkCiJe/AHcDeXtKoTMQCAQCgUAgEAjUcW0EhXIn2Ukqqf7dblcpJU2nU2232xzYiAAA0SErAfLPv53EOlFbrVb5GMBGo5FD/9zt4LuY6/Va8/k8iw6eqSApE/jDw0M988wzeuaZZ9Tr9XLOAKchENrID22FvPspADgCnKQiJuA4wLHhpQOQdRwKbkWHlNJXd3W4k8DJG9djbD2DgPaTHwDhRDDxEgXmttPp5D5C+FzQQLhBpPFyEtaIHwHpO+a7xATa5GvOd+15fb/fz0dScpIAhJm58HHicZ8nF4P4HXAtXsd1KMPwkxW85KYUSrz8BhdImRvh5Q/cm8c9rNHzGriur3ufl3Kn3/vl7+GaXNcdIZ7n4P/1Uo6S7LtTomxDmTvhDg4fuxKfKjMh8hT+/+19XYxs2Vnd2t1d1fVf1XW7595h7MGeaBzJiaJgRbzwEyQQ2BaxExJFRnmwRCQLiUhBUSRsWUp44YGg8BiQEZZRZLBBYOEXJFtRFF5wCBjbjGMPHoOjTDy+vrd/66+r+1afPNRZu9fZ99Tte5mp6rrTa0mlqT516py999m15661v299hmEYhmEYhrEYayEocIeURBQohr/3er1YKvL09LQgKHAXmRECNMdLybCGVVer1Xh9ChCsMsHqB9vb25HgKeEl+ZtOp9FUjwJFWp1gb28Pd+7cwd7eHkIIMd3i6OgIw+HwodBtCgl8cXded2z5d7Vaxe7uLrrdLhqNRiTdHD9GXDBagcaVJF3sm1YWUG8JTXHQ1AEKD9yxJ+mczWYx/YC+FxsbG1EAUKFkMpkAQAzlJwFm2zSKgVEXmnbC8SJJVENDPif1J2D6Com3ViLQHH22iZ4UHFMl2xQv2CeOA6shaBQLcEneVVDQiBamdaTRKBqRobvrKnxodMLW1lZ8dupVoP1Mqyawb3pcx03HM50fvJ6Ou5pb6j3VWJSCjqaA6DjpPOB8Zx80NSU1VNXfZ5nBonpHPA70voZhGIZhGIZhlGNtBIXpdBoJ8XQ6LZgt9no9bG9vx1x1VnfodDrY29tDq9XCZDLBYDDAyclJJBzcUQUQc9qVAJEgHR8fYzgcotvtxuiEEEJhNxxAgRzrrivPJ1GqVqu4desWnnnmGTzzzDPo9/uYTqc4OjrC/fv3cXBwEHe9SW4ZOs+dfG07SeNkMonpH7u7u3j22Wej0ELirQaWFBf4/QcPHmA0GhWiHphzzvakFRIozpD8MSqB4fjVajV6T5ycnAC4JG9nZ2fY39/HcDiM5JvGjiSXfP6an6/pJ4QKRLoLz+soeWakAEk1P6cYovc8Pz+PhJzkkwKNijyMXKBwpLv0WsqxLLdfqy4wMmZjYyOKX3wmGlGhHiIcS43a0UgCPnP1KUjJvvZfd/5TbweNLtGyj2wrK4uwnRR51BBT/QuYHsN2qhhUZnjIua+ig0ZLqLil4gDnnD7H1Oz0cQwWrzJ1NAzDMAzDMAzjEmshKKhhHMlmvV5Hu92O1QhIuOmD0O/3Y573YDDA0dFRTFtICR8rEjSbTYxGIxwcHESfBUYLbG5uRp+GZrMZw/J1h1PDzVOzurSqwzve8Q688MIL6HQ6mM1m2N/fj+RaUxs03WEwGMQxKQsTpz9Cv9/Hc889VxA/gMu0CIobNGbU1Am2naSbAgnbz/QH7l6rESVJvKZ60PTy5OQE4/E4VoOgGHJ4eBhJokaKaDtVwABQIJ2VSgWnp6dxjvD5clxI5pXM6vdVtNCXloakcaGScD4fnkfDQ/ZZ8/dptEmiq89P+8OIFjVeLCtDqX1i9E66u55WJaApJu8NoJDeogRZqyikO/bqV8BUDZ2rOk76G1PTREI9RnhNepHw98Nnq0anKpxof9LUjLLUDc6px41EWHSetscwDMMwDMMwjHKshaAAFN3iSewbjUYkvcfHxzg8PMRgMIiGdQyFZ4UEkuLUBI4kmTu5LKunxLPVaqHZbMZqEYPBIH6mpJrXVTIMXBIwRlTQKJLmhYw+0CgARkhMp9MoVmiYu5I3/t1oNNDr9aKgAqBAJHVHlQSc9wkhRDGAY8fUClYVUEd89UjQ3HQtAcnqGLyH7sDz+lrRAUBhF5ztZx/SUHcde00p4XNNBQWC19PdcJ0DatBXRirTVI+0GoR+V8eGAkOaqsAIAI3eoDjCFAeNTFDjQvZdUw3SNJhUKNDnqJ+n6Q2pT4K+NGVIPU7SNI70OpyLKtBoJIQe01ea6sB5qqaLvF+a1rAoReFRwkLZZ3odRygYhmEYhmEYxqOxFoICdwJJVnZ2dtDpdGKINqMKDg8PMRwOIwHjDip32blrnIa+1+v1SI5IPtOIg16vh3a7HaMeSODSHUoNrdcd07OzsyhK3Lp1C7u7u6jX6wX/AE1x4M4voyqAuUEhd8uZ9qElFTc3N9HtdqOnBHfvSZjTdqXlKElU6Tlxfn4eK06cn59HoYXPg0RSiRcFBfVNoCjBSATdmSdBTP0lSJ5JFnVnnHNCc/z1uXJcKpVK9C1QQz+SVo180Dx+9VBQgq0ihJbv1HZyXDgW7CejIXSnXn0elOCnERnsB8mzXlsjRdKqB6mvglZLYIqLfq5+BYwUWESqeX31stB7sy8qIGl0gHon6LMrO8brpekYFGFUtNF+auSCpkhoakOZn8IiaBv0+4ZhGIZhGIZhlGMtBAWSLJZZvHPnDjY2NjAajbC/v4/79+/j8PAQx8fHGI1G6PV6Bd+F8XhcIFcaik7iSnJLEkeCu7m5iVarhTt37kQzQZZsZBg5d8PpVaBpCiQplUoFnU4Ht2/fxvPPP49utxvTGJiOwR1YEn0ScIbDN5vNAhEmQSWxonfC7u4u2u12bIvuWuv179+/H80fmapAAphlWaw2QRGg0WjEHXi+0t1tmhsybWA0GsXncnZ2FqttKIFTLwCmGGjKiJI2PiMlphq9wggWihI0duQ80rSIdD7oXNMdfY4fzxkOh3FuMeoEuDS6VGGI0IgJ5vrr/En9IpgSoqKIRtakopBGSlAQY3QDx0/fU/jQnX4iTaXhtYBLUq2CGvuqwgr9CjTlhsfVxyE1o9QqGxx/jYhQcYkCGOeDPjONDlHhhnOoLFqDbUyh0Rnq21DWB8MwDMMwDMMwLrE2ggJNFnd3d1Gr1SLZPTw8xGuvvVYo60iSQdKXZRm2t7cjueBuPglelmUxLJ/Giqm/Ais/0BOAgoJ6Dij5JWHl7nS73Ua/30e/30er1Yo55jTdo3igngW8XqVSQbfbRafTiX3S0HeSnU6ng16vh2azCQAYDAaFnWM1ERwMBhgMBvE+PEcjC/iZ7qpPJpNCeL1GJKhvAsdH26AklSROx40ELU3ryLIsXo+eD2yvGgkC8ygOkmMSRz4LppFoidBULFBCX0a2maahQgCri3BuKQFlOzW6RMWmNGIBQGm7ABTmlla7YP/1OajQk5owpmkZWoqVf3McU3FESzGqEaRGWmgEgooJWgmE7UjP02sRGi3EeaRmlhqdkfo0pNEvHEf1o1CRpCw1IhWf9LfilAfDMAzDMAzDWIy1EBQAoNPpxFSBjY0NTCaTWBXh+Pi4QIZIWJj60Gg0CqSU5ohMRZhOp3EHXckFQYGCRJmVCIDLXHDuCocQHvIEqFar6PV62NnZQbvdjiUnWSKR+fJsn4oAjKBoNBoFQrm1tRV33kl42u02Go1GNKlkX3mt2WyGwWAQRQXehyRU0yeU1JI0KRHnWOv3dexImimocKedUR4AYgRIuuNLaKqGikF8JmlYe3oNfk7SqxUg0nvoGKkwoP3U/qUVFDRKgvcmdKe+jJTqtfmeWJSnn1YYYTqEPi+2UVMXNLpA0w7US0Kfp+7Ksz18HpyrqS+C9l0jgxgxsQiLfBr0uXPc9JmUXUdfKdJxSc9NIyr0Pmkfy3wZDMMwDMMwDMOY48o6aiGEj4cQvhtCeEmO/UoI4eshhK+EED4TQujJZx8JIbwSQng5hPATj9WI3MOg3++j0+ngwYMHGI/HMV1AHfk1Z55iQq/XiyUSlZzMZjNMJpNYgUAd5EmECUYS0KAwFRQY8aCh64wkaDQa2NnZQbfbRb1ej4SfUREkhoxS4M46nf3r9TpqtVqBdDJdg+cxJYIiw3g8jmIJBYTRaISTkxOcnJwUqlRQTCC5174r6WLJSiX1akCZCgkknOxHu91Gs9lErVYr7BBz955GmqmoQCEgJfNauUGJcJrjzvQXFUT02WnePvugogLvkRofqi+A7qDz2voM03mh9+X1ef9H7XrzPBVrOO/VGJJzj2kIvLemAKgAkVZO4O+D31FhgREcTHvR9KDUL0EFDB2j1HsgFRPSlApNZ0jHTccrFSQU/C4jk1SUSJ/dIvAaeq91wSrWYsMwDGMxvA4bhmE8jKsLswOfAPDu5NjnAfz9LMv+AYC/AvARAAghvBPABwD8vfw7/yWEsIkrUKlUsLu7i1arBQA4OTnB/fv3sb+/j/F4HPP/SVS3t7fRarXQ7XbR7/djNQWSRQAx/J0lDRktwJeS7tPT00jEGZ2gu8wkUlrSL+ReAK1WCzs7OzEVgWHkNJKkvwBz4dV3YWtrK/aL1Sy4y1uv16P3w3Q6xfb2NprNZvSMoEElqywcHx9jf38fg8EgjoESPf07f1aFsHIKHpriwRB+Rm9oVQo1bKzVami32+h2u1E8oPBTq9XQbDbRaDSi6KOkMhVdNP+e7eKYMP8+JYgsKToajTAajaKAsr29HceRRJlCSJqvrxU/+H2ScT1foyZ4D4pBWk4yNYrU1IJUdCAoamiqA9uiYoKmY2jkiLaTzzAN99cKEiT0KqqQ+Ot4AIheFSpA6ZjqvGKf+fvh3ypGaRqHVmOhv8Yi0p+KFpruQZGxXq/H66S/gRRl99FnvGYpD5/AktdiwzAM45H4BLwOG4ZhFHBlykOWZX8cQnhbcuxz8ucXAPyL/P37AXwqy7IpgL8JIbwC4PsB/Mmj7rGxsYFGo4GtrS2Mx+NoxHh8fIzJZIJGo4FutxtJ6tbWFtrtdiTyrPDAqIbt7e1YeYBeAdVqFdPpFCcnJ7h37170KiDRkb5FckKSU6/X0el0CjvDDPFnO1qtFqrVKh48eICTkxMcHR3h6OgoknCSrnSnlNcBLo39SPwopjSbTezt7aHZbEafhOFwWEg/4D24Ez+dTjGZTArkTMks25FGBiipA1AwjqSRoLZfIxIqlQrG43EkrxR/NNVgPB5HYqw74WwPw/PTvHnN0dfKArPZDEdHRwVjSVYAUWNDNdLUah8UonSnPE0LSJ8ZxQ0l9akIBRSrXOg19aWeEuqdQKNOvvisAMRnpP4aqadDyL0c9LiS5LIKJhSVOBbsm0bLpKkfej9NL+FxTWtIRRl+zvtoOkc6P9MIEfaH0Rt8r2af+lzL0jz0GvxMy3WmqVHXjVWsxYZhGMZieB02DMN4GG+Eh8LPAPh0/v45zBdT4tX82CNBYsad5uPjYwyHQ5ydnWFzcxONRiN6BwCIRJW74dydpkhAIkVyxB1qDePWnO80LYDEi2SP95tOp7HNjCxgugJLLtJY8ODgIEYLpASMIFGjoKC54yQ49Xod7XYbrVYrRlOQIDNNIe0TiToJI4knSRR34Rc9ByWkp6enD7Vfc/g17J7kkcSM6Q26686x1lB7LePJ76dmk7y/ltJUE0c+q7QtfPFcpmmQkAOXnhL6zFOfhlRcUHKuBogUo1jh4VEh83zevJZGElC00jay/3pc+8k26Py5aodd/Q90vihB5/3S1A9GCOicUMFAn2lZKkpatlLFLv3uonQTTU/Q44u+uyjtQT0T0giLpwyvey02DMMwXhe8DhuGcePwugSFEMJHATwA8EkeKjmtlNGEED4E4EMAsLu7C2BOEMfjcUw94E5yo9GIu7gXFxfRO4G73wzHV1KtIdVK8JR4kXgCl87yGkbOEGoSVSXETEGo1+uRgJKsTiaTGF2hZnf8L4kZxQqGZpOgKbltNBpot9uo1WqR4KvPAXfduTusuekkiFqqLx/7wnslwiRos9ks+hIQ+hm/qx4L3PnWsaTIolUzNEyf7dNdaBUT0vupYHB2dhZTVFgSs0xM4EvTNDQlgffmcRUUdHe/zB8gNXdMr7loJ1yP8T7aDs47nTOajsKqDfpSgv24ofr6e1FTRQptmuKjokCZxwHfaz/Vg0HnTGqwyXFW0WKR5wTnUGoQyfM0tST9/ZVBnwPPXZRysa54o9biGhpLaZ9hGMabHV6HDcO4qfhbCwohhA8C+EkAP5pd/mv9VQBvldPeAuDbZd/PsuxjAD4GAC+++GJGwkcjxvF4jIuLi5h/r+Rge3sbOzs7qNVq0a9ASTaAglEeSROJA0PGSXY0BF7DyxkFUa/X4y47BY2NjQ10Op3oEbC1tYXhcIjRaITBYIDhcFggJkytUOd+mixSCFCcn5+j0Wjg1q1baLfbqFQqsYIDiR933ElCeSwVFEjQlPRSuKBwkkYmaHnNtDqDzIGHzA7TPH2aU/KzdrsdhRc1YNRcfM3Tp2BCPwaOF80z6fvASI/Nzc1CtQf11OAYp9EJZVEVSvyBh8sIkvDyPaNb2GY1vnwccqo+BPQrUPEpy7LoTcGIFk3h4PPVCBDFouoLKkCpoMXIEfWS0MgUzqHUa0HnBX8zOvfUVJWCUzr3NWIiFQJSzwSg6KsAIH5Pj5VFOPC76bNOz3tccea68EauxZ3QX+/OGoZhrCG8DhuGcZPxtxIUQgjvBvALAP5xlmVj+eizAH47hPCrAL4HwIsA/vSq611cXMQd/YODA3znO9/B+fl5gawfHx9jc3MTnU4Ht2/fRrPZBAAMh0PcvXs3Rg8wZJ1pCCTZTA9gtQHuVJNw8nzuxlJ4IJkajUa4uLgo+AWQ5NJQUasszGazwg4zd/spAFAk4Dlp+Ha1Wo3eDPRTmEwm8XOaPKphoVaSoLCgKRTcbS4LNafgwhQCej/QeJAh79PptJArzwgEkkqeH0LAdDrF0dFRbEe9Xke1Wo1iEXfiaZpJ4YBjQjDtpV6vo16vx0iN8XiM8/PzOBcosJBgk2iyfYwsqdfrhWgOFU0oTiyqIECyO51OI0lOvRjOzs4K6QAcJ01D0FQDfk/nnqY/AJcGnuqRoSKaXlPTd9I+aESFloWksKORBIwc0aop6i+SVpcALktzMlqFz6/MdFHTEnS8NTKhrA/pvVV44XNWpIKACgppJQiNTuLxdfJRSPFGr8WGYRjGk8HrsGEYNx1XCgohhN8B8CMAdkMIrwL4j5g72G4D+Hz+D/MvZFn2s1mWfTWE8LsA/jfmYV8/l2XZlf8an81mODw8jGaDACLx39jYwGQyiXnvzWYT3W4XW1tbkVSenp4WBIBKpYJerxeJKY0ZSZK3t7fj7rbuZGr4f+ryDxRFh1qtNh/AnLidnp5iNBpFYsxda36fKRwk3ZqyobvQ7Ad9Iyh6kIRzvLQ0IMmR7swDKJgHqlgCXO6wpwaIqRjBKgkkiqmpI/vEvznmZ2dnMaKCqR2MKFHzQI2E0HFXgsnUEu7Mq3jEHe8yc0KNCtFdchJr9pXPXj0ktJ+6U52WllQivmhXnX2V31TBA0HbxmeT+jpoWUrd+SfUY0LNInVMON/0OK9fVmIx9TRQMq/CR2oGSTFB03goJqhYpPNe71lmwMhxS1M6VDjSZ6XtT5+DPouyyIW0z+uCVazFhmEYxmJ4HTYMw3gYj1Pl4adLDv/mI87/JQC/9CSNYPlAGg5yd5SEfDweY2NjI5YnrNfryLIsChDcEeYOfKPRQKfTid4BFCP4YuQCcEnESB6UoKtTfLVaRavVirv1lUol7mxzt5diAnffNRWA6RUke4xyUEKk+eW1Wi0SZe66s50UAFQA4X20WkFKktPcfwoHugN9enoaBQmG16cEW551IdyebaenxWg0QpZlhXQE9WSg2MJrqIcF27OxsRGfmXotcI4QqSij46S757ozzpcSZCWbvCaPp1Ub1AcgNd/UsdZnpO1Q4lp2jOfyM15fnxnHkdfgGKpvRnoP9k3nfCriqOigURIa3ZKOuYpV/I4ad/L3qb+r1CNhkaCgz2eR6KF9WSRIsI1pKkMqHGi/1gWrWIsNwzCMxfA6bBiG8TDeiCoPrxsXFxfRVJFh75qDf3p6it3dXXS7Xezu7qJSqUTjw/39/bjLTDFhZ2cHnU4nhqGfn5/j5OQkhuMz5J1Id15JlOmXwBSKnZ0d1Ot1bG5uxntqBQOmGwCI92b7teRfs9kspGPoDi/FBvoK6HfZF5LaSqVSiDBId8cpJJDU8TOezyoUqZ+Api5oTj3JnxJcElsli8PhMD7PZrOJVqsVUzLU+I/PZTabxX5rOzmO7AfbmEYysG2LTB6VjIYQClUweI4SUQoNauyZjgFFEq0gos8xnV/A5W64pk7o/EuJuIoZ/C2k6QEqQFDoUvEmFQP0O1rNQdunES8aZZCmGqhPhEKvzzGiHwmAgs9HOp/KqjroGPH3WWa4qL4MGsGQPn8iFVHS9utYGIZhGIZhGIbxMNZCUOBOtZLZi4t5icSLiwt0u130+310u92YR350dISDgwMcHx9jOp2i3W5H8trv99FsNuM1uDtaq9XiNdUckcaLJPHD4RAXFxfR46Df7+P5559Hq9WKIduTyST6JozHY4zH40iiSIInk0l8sV+1Wi36AZSB5Ich7SSdShAZjcEoDYoYTPcgCWJpS16PpTcZQTCbzQriytHRUSTQJKAkjSThJHK6c66pIOPxOJowbm1todfroVqtFgQPej1QLFFfCooBmjaSVm5Iw/9JvNXHII2m4DwjWdXdcd151woBaTQG/9bKByrylD1HvjiuvBaJOuemEuQ0v199BvSa2k8aOTKtgQIXx4XpIhpFkYo32lYaWqr/gY4hBRxtk0YGsG8qvABFnwudR2nEjIoEGnHCYyoA8TocL40I4vPS+ZpGgSjS76h4aBiGYRiGYRhGEWsjKJAoV6vVwk67EiWGvk+nU9y7dw/37t3DYDCIO8YqDGgKgBq2sTQlSQLJDj+j4R+jHXq9Hvr9Pnq9XiTfmoZAYzuSeZKc8/PzQvUJXo/kGbhMt1AjPx6n2AE8nH9PEsUoAOCS5E6n07jbzXFgm0jc6CcBAPV6PfaH99I8+NRngSkCfF7ceSaZo2BDHwitYqG7/7wmRQ/d7U9z6zUtQXeg+XpcwqdEWHfeVRzgfFSRQtvPZ0Dine5m86VRNkri9Zny2rxf+nvg9dnuMg8MrVxRrVYLqTYk+RpZoDv1jILgcQpqvLZGh5DQs00aEcLvs6/83WqkhopfnFc6tmllDIVGG+g1Uw8Itl/FIO37IiFBx1pTIhydYBiGYRiGYRiPxloICoSSHv6Xu6MknltbWxgMBjE6YTKZFComqO8AiTrJPw36WHqRu9IbGxuFCgmsMNHpdNDv92O1BTUFZJQDd+3VuFCvQ2GAYd8pQSOxPj8/j+0AiqUI+beGaPM+AGIah6ZrKHFWcsf0jNlshmq1iu3t7ShmqJiQkm81fNSygUyLUB8B+l00Gg1UKpVIFJWMApfpDHyuadh7Gt5P0qj+EUS6U66+EEpI09QNNUfUc3g/vX4aBp+Set0FT80aeb7Odc4/jT5I01LK7qvX4v2Y5qDtVzGhzNNB0yl4bx1D7U86Rqlvgc4bFX8YmcDnqv4P7Lv+VlLCn0ZQpH1Jxz0VeMoqmqT+CdoffX4WFAzDMAzDMAzj0VgbQUHDmtOdwkqlglarhWaziUqlgrt37+Lg4ACDwQCz2QzNZjOSUmBe1YFkhWkJJMU0cuSOr4ZbM1Sf1Q12d3dx+/Zt7O3txXszXYAVJhiaT0LH6hEUL0iw1BsBuIxCUIFDPQAYkaHn0whSCX6n04npHrwfMCdwk8kklnAkeT88PIx9bLfbqFarUYRg+UsVIviZhqmrcSSFDK2mwKoMzWYzCg0qKnBMKLCwDRwPjThQcqxeAwRJs3oFkCQzbF+jKspIM0ktoRERJPQUjhj5QbDdKrKwHfp9iiVKwtU3Qfuk6R2a4qJChh7nfOF3+Vnqe6CEWX9f2heeQ/FM25RGhrCfBAUQpnEwYkf7Q8GM9+Vvpcw7QYk/zy8zkEzFBBWENLonjUJIIx84Luw7n61hGIZhGIZhGOUIZXnEK29ECPcAjADcv+am7LoNboPb4DYk+N4sy/au6d4rRQhhAODla27GTZ9vboPb4DY8jJu0DvvfxG6D2+A2rGsbStfitRAUACCE8GdZlv0jt8FtcBvchnVsw03AOoyz2+A2uA1uw03HOoy12+A2uA1uw+Ni4+pTDMMwDMMwDMMwDMMwirCgYBiGYRiGYRiGYRjGE2OdBIWPXXcD4DYQbsMcbsMcbsPNwTqMs9swh9swh9swh9tws7AOY+02zOE2zOE2zOE2lGBtPBQMwzAMwzAMwzAMw3h6sE4RCoZhGIZhGIZhGIZhPCW4dkEhhPDuEMLLIYRXQggfXtE93xpC+O8hhK+FEL4aQvi3+fFfDCH8vxDCl/LXe5fcjm+FEP4yv9ef5cf6IYTPhxC+kf93Z4n3/7vS1y+FEE5CCD+/7HEIIXw8hPDdEMJLcmxhv0MIH8nnx8shhJ9YYht+JYTw9RDCV0IInwkh9PLjbwshTGQ8fn2JbVg49isch0/L/b8VQvhSfnxZ47Do97jSOXHT4bXYa3F+zGsxbt5a7HV4PeB12OtwfszrMG7eOpxf9+lci7Msu7YXgE0A3wTwAoAqgC8DeOcK7vssgHfl79sA/grAOwH8IoB/v8L+fwvAbnLsPwH4cP7+wwB+eYXP4jsAvnfZ4wDghwG8C8BLV/U7fy5fBrAN4O35fNlcUht+HMBW/v6XpQ1v0/OWPA6lY7/KcUg+/88A/sOSx2HR73Glc+Imv7wWey2+qt9ei+PxN+Va7HX4+l9eh70OX9Vvr8Px+JtyHc6v+1SuxdcdofD9AF7Jsuyvsyw7A/ApAO9f9k2zLHsty7Iv5u8HAL4G4Lll3/cx8X4Av5W//y0A/3RF9/1RAN/Msuz/LPtGWZb9MYCD5PCifr8fwKeyLJtmWfY3AF7BfN684W3IsuxzWZY9yP/8AoC3vN77PGkbHoGVjQMRQggA/iWA33m997miDYt+jyudEzccXosfhtdir8VleFOuxV6H1wJehx+G12Gvw2V4U67DeRueyrX4ugWF5wD8X/n7Vax4EQshvA3A9wH4n/mhf5OH93x8maFVOTIAnwsh/HkI4UP5sdtZlr0GzCcVgGeW3AbiAyj+SFY5DsDifl/XHPkZAH8kf789hPAXIYT/EUL4oSXfu2zsr2McfgjA3SzLviHHljoOye9x3ebEmxnXPqZeiyO8FhfhtXjFa7HX4WvDtY+p1+EIr8NFeB32v4kfiesWFELJsZWVnQghtAD8PoCfz7LsBMCvAfg7AP4hgNcwD21ZJn4gy7J3AXgPgJ8LIfzwku9XihBCFcD7APxefmjV4/AorHyOhBA+CuABgE/mh14D8HyWZd8H4N8B+O0QQmdJt1809tfxW/lpFP+HutRxKPk9Ljy15JjL1bw+eC32WnwVvBbnzSo5902zFnsdvlZ4HfY6fBW8DufNKjn3TbMOA0/fWnzdgsKrAN4qf78FwLdXceMQQgXzB/XJLMv+AACyLLubZdksy7ILAL+BJYeMZFn27fy/3wXwmfx+d0MIz+ZtfBbAd5fZhhzvAfDFLMvu5u1Z6TjkWNTvlc6REMIHAfwkgH+VZfPkpDyMaD9//+eY5ye9Yxn3f8TYr3octgD8FIBPS9uWNg5lv0esyZy4IfBaDK/FOdbid+e1eI5VrsVeh68dXofhdTjHWvzuvA7P4X8TX43rFhT+F4AXQwhvzxXBDwD47LJvmufB/CaAr2VZ9qty/Fk57Z8BeCn97hvYhmYIoc33mJufvIR5/z+Yn/ZBAH+4rDYICqrbKsdBsKjfnwXwgRDCdgjh7QBeBPCny2hACOHdAH4BwPuyLBvL8b0Qwmb+/oW8DX+9pDYsGvuVjUOOHwPw9SzLXpW2LWUcFv0esQZz4gbBazG8Fue49t+d1+ICVrIWex1eC3gdhtfhHNf+u/M6XID/TXwVshW7QKYvAO/F3MHymwA+uqJ7/iDm4SBfAfCl/PVeAP8VwF/mxz8L4NkltuEFzF05vwzgq+w7gFsA/huAb+T/7S95LBoA9gF05dhSxwHzhfo1AOeYK2v/+lH9BvDRfH68DOA9S2zDK5jnIXFO/Hp+7j/Pn9GXAXwRwD9ZYhsWjv2qxiE//gkAP5ucu6xxWPR7XOmcuOkvr8Vei70W39y12Ovwery8Dnsd9jp8c9fh/LpP5Voc8oYYhmEYhmEYhmEYhmE8Nq475cEwDMMwDMMwDMMwjKcQFhQMwzAMwzAMwzAMw3hiWFAwDMMwDMMwDMMwDOOJYUHBMAzDMAzDMAzDMIwnhgUFwzAMwzAMwzAMwzCeGBYUDMMwDMMwDMMwDMN4YlhQMAzDMAzDMAzDMAzjiWFBwTAMwzAMwzAMwzCMJ8b/BzZxO0oeinNhAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 117480 7321\n", + " Min thresh = 1000\n", + " Not Sliding\n", + "\n", + "\n", + " Winner = Not Sliding\n", + "\n", + "\n", + "035ns_image_1404802450036_clean_ClassN_141-269.roi.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADYCAYAAABberBAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADseUlEQVR4nOz9eZxlW37VB659I+58bwyZ+V6+oepVqVRPJSQZCbCFhG2sbmFbdmNkaMTgoWXAXbjttjFutxF0Y8D9gS633Rhw46HcYITBBgkDwg3dCAsXho8mVEIgC0moVFJVvao35RBx5xt3OP1HxHfHOjvvGzPfy8jM3/p84vMyIs49Z5999r0v1vqt39qpqioFAoFAIBAIBAKBQCAQCLwTNB72AAKBQCAQCAQCgUAgEAg8eghBIRAIBAKBQCAQCAQCgcA7RggKgUAgEAgEAoFAIBAIBN4xQlAIBAKBQCAQCAQCgUAg8I4RgkIgEAgEAoFAIBAIBAKBd4wQFAKBQCAQCAQCgUAgEAi8Y4SgEHjfkVL6iZTSNz3scQQCgUDgEimln08p/Yq3eWyVUvrou7zOu35tIBAIBAKBq4UQFALvO6qq+uqqqj71sMfxZkgp/a6U0sS+5imlbUrpxsMeWyAQCDyuuBCc/bN3nVL6Hx72uAKBQOAq4UELs291vvi7OPBmCEEhENiBqqr+QFVVA74k/YeSPlVV1a2HPbZAIBB4XHEhOPO5O5T0eUnf/ZCHFQgEAk804u/iwJshBIXA+w631aaUfm9K6btTSn8qpTROKf14SukrUkq/M6X0WkrpCymlf8pe+5tSSj95cexnU0q/tTj3v5dSejml9KWU0r/qimtKqZ1S+o9TSp9PKb2aUvovUkrdtzHeJOlflvSdD3YmAoFA4GoipfT1KaUfSCmdXHym/r9SSq3isH/24nP4VkrpP0opNez1v/nis/puSumvppQ+9C6G8cslPS3pv7+fewkEAoGriJTSL0gpferic/YnUkq/yn73qZTSv2rf/ysppb918e//+eLHf/fCLfDrU0rflFJ66cJJcOvib+1/8d2e7y3GHX8XB2oIQSFwFfDPSfpvJB1L+juS/qrO1+bzkv4DSf+lHfuapF8p6UDSb5L0n6SUfrEkpZS+RdK/I+lXSPqopH+iuM5/KOkrJH3dxe+fl/Tvv43x/eOSbir+qA0EAk8ONpJ+u6Qbkr5R0jdL+teLY361pH9Y0i+W9K2SfrMkpZT+eUm/S9KvkfSUpL8p6b97F2P4dkl/rqqq6bt4bSAQCFxZpJSakv4HSd+rc+H035T0p1NKH3ur11ZV9csv/vm1F46BP3vx/TM6/8x+Xuefn5+8z/O9EeLv4kANISgErgL+ZlVVf7WqqrXOra1PSfpEVVUrSX9G0odTSkeSVFXVX66q6merc/wNnX8Q/+MX5/l1kv7rqqp+oqqqmaTfxwUu1NT/vaTfXlXVnaqqxpL+gKTf8DbGxx+1kwdyt4FAIHDFUVXVp6uq+sGqqtZVVf28zoXde0Tai8/Tz0v6Q5J+48XPf6uk/3tVVT958bn+ByR93TtxKaSUepJ+raQ/cX93EggEAlcS3yBpoPO/d8+qqvrrkv4/uvwcfbf43VVVLS/+Rv7LOv/b+EEj/i4O1LD/sAcQCEh61f49l3SrqqqNfS+df+iepJT+GUm/R+dOg4aknqQfvzjmOUk/Yuf6gv37qYtjP32uLUiSkqS9NxvYRUvEt+m8+hYIBAJPBFJKXyHpD+rcgdDT+d8Lny4O88/Yz+n8M1iSPiTpD6eU/p9+Sp1XzT73NofwayTdkfQ33tnIA4FA4JHAc5K+UFXV1n72OZ1/Tr5b3C0cXf65/EAQfxcHdiEcCoFHBimlts7tVf+xpJtVVR1J+is6/0NVkl6W9AF7yQft37d0Lk58dVVVRxdfhxfBMm8G/qj91P3fQSAQCDwy+M8l/ZSkF6uqOtB5C0MqjvHP2Bckfeni31+Q9Fvts/aoqqpuVVXf/w6u/+2S/mRVVdW7HH8gEAhcZXxJ0gc9e0bnn6NfvPj3VOdiLnjmbZzzOKXUL87H5/K7Od8uxN/FgXsQgkLgUUJLUlvS65LWF26Ff8p+/12SftNFyE1Plo9woQD/VzrPXHhaklJKz6eU/um3uGb8URsIBJ5EDCWNJE1SSl8p6f+w45j/c0rpOKX0QUm/TRJ9t/+FpN+ZUvpqSUopHaaUvu3tXjil9AFJ/ytF4FcgEHh88UM6J/n/XkqpmVL6Jp1niv2Zi9//mKRfk1LqXYSL/5bi9a9K+siO8/6+lFIrpfSP6zxzjF1y3u35SsTfxYF7EIJC4JHBRe7Bv6Vz4eCupH9B0l+y3/9/Jf0RSf+TpM9I+oGLXy0v/vs7Ln7+gymlkaT/UdIbhtWklJ6X9L+W9Ccf6I0EAoHA1ce/q/PP2LHOxdhdIV3fo/M2iB/Tea/uH5Okqqr+gs5DcP/MxWft/yLpn3kH1/6XJf1AVVU/+24HHwgEAlcZVVWdSfpVOv9svCXpP5P0v6uq6qcuDvlPJJ3pnOh/p6Q/XZzi90r6zosdIshJeEXnfx9/6eL4f+0+z1dD/F0ceCOkEJgCjytSSr9A53/Iti+CwQKBQCAQCAQCgccKFw6HP1VV1Qfe4tBA4IEjHAqBxwoppV99YfU61nmF7H8IMSEQCAQCgUAgEAgEHjxCUAg8bvitOs9Y+Fmd76O+q+83EAgEAoFAIBAIBAL3ifdMUEgpfUtK6adTSp9JKX3He3WdQMBRVdW3XOzecK2qql9dVdXLD3tMgcDDQnwOBwKBwMNHfBYH3mtUVfWpaHcIPCy8JxkKKaU9Sf9A0j8p6SVJf1vSb6yq6u8/8IsFAoFA4B7E53AgEAg8fMRncSAQeNzxXjkUvl7SZ6qq+uxFiumfkfSt79G1AoFAIHAv4nM4EAgEHj7iszgQCDzW2H+Pzvu8pC/Y9y9J+qVvdPDx8XH19NNPa71ea71ea7vd6uzsTKvVSqvVSuv1WiklpZTya8p/+/dVVanRaGhvb097e3tqNBpKKamqqvy13W613W5VVZVSSmo0Gvm1/I7z8tr9/X01m0212211u101Gg1tNhstl0vN53Ot1+t8Ps7Fl6R8DUm1a/j4GJP/2++TY/nvZrOpHe9j9ntPKeVr+pzxesbXbDbz68p74L58jOWYJWl/fz/Pffmc9vf3tb+/r0ajoUajoe12m5/7ZrPRarWqrQ0/vz/nzWaT76W8Fr/zMfE75m5vby+fm+P9d34PzWaztn42m01+Da/3a3JvjUajdg0Hv2NMu+aT3/lzZE7K90D5XBzle4Pfl2tzf3+/tk7KMZfPwMft1/Jxrlar/JxYX+V9lGvUx1ceu+v94Peya437e9h/7yjnmOMuPotuVVX11D0vuvp4R5/DkrQ36FcvfDjpteVQe59ZvtmhgUAg8L5hoanOqmV66yOvJN7RZ3F8DgcCgauKse7u/Jv4vRIUdn3o11hOSunjkj4uSc8++6z+6B/9o7p165Zef/11TadTvfLKK3rttdf0yiuv6O7du5mgQfQgHxDiXq+Xf75er9VqtTQcDnVwcKCDgwPt7+9nsrJcLjWdTrVYLLTdbtVsNnVwcJBfO5lMNB6P8/WazaZWq5UODg703HPP6cUXX9TXfd3X6fDwUOPxWF/4whf0oz/6o/rCF76g5XKZic5yucyiyGazyWS9qiqdnZ1puVxqb29PrVYrj2+xWOTjl8ulzs7OssjSbDbVbDbV6XTyF9c4OzvTbDY7f6j7++p0Ojo4OMjCh6R8HhdGRqORlsulttutut2unn/+eR0eHqrX66nRaGixWGg2m2VRp9FoaL1e6+zsTPP5XJPJRJPJRPP5XIvFQvv7+zo6Osrz3u/3a2N66qmn9NRTT6nX66nZbGo+n+vOnTv569atW/mZurAEsW6329putzo5OdF8Ptdms9FgMFC/31ez2cz3OZ/P82sBYsZgMFC329VqtcrXPzs7U6vVUr/f1+HhoY6PjzUYDDQYDHRwcKDBYJAFpOl0qtFolO95PB7r9ddf13g81mq10v7+fn793t6elsulbt++rfl8rqqq1Gw21e/3a4QdMWW9Xmu1WuW12Wq11Ov1NBwOswjB3LRarfy+SClpPB5ruVzmdZNSymtmb29PkvJ64hqbzUYppfxsUkparVaazWaaTCb3iBY+j8w1X/67vb09rddrvfrqq3l9dTod3bx5M4+bazNGSVmA4B7zh8eFkOPXabVaarfb2tvb03a71Wq10unpqUajURYjeJ/s7++rqqq8ZlljiA2tVkutVisfu1gs8tr//Oc//7m39al39fCWn8NS/bO40zzU8y/+X/SRk5UaP/t33uvxBQKBwNvCD1Xf97CHcD94R38Tx+dwIBC4qvgfqz+382/i90pQeEnSB+37D0j6kh9QVdUnJX1Skr76q7+6gpQ40ZGkZrNZq2hDVsrqMoR3l+Cw2WzyayEmXmWFtEmXBGm5XNZcDqvVquYwgOBC8Lvdbu26vBbXAiIBVWDIvXRO8iA4Xu2+mKd8f3zP9SF1XhX2iv9qtaq5Dfy+GV+n08nkjrmDrHHfzJs7IBgLRPjs7CwLCtPptHZcu93Oz5FnyXjKar87R3Y5NHz8zPXZ2Zn29/e12Wzy2vBnxNyyRnyemSd+x1g2m00WTVh7nJtnwXh4Dsy9r7lWq5XHwXWbzWbNwcD5uAbrcLvd1taUr1nmkd+7a4W59XNyXn9PMFbWI+IL8wEYK/A1xTrg3twlwfPg2ozLHQQ859VqleeCc5cuHNYG9166cXjfIXo5WBOlO4H5Yr6rqlK73a65Zh5hvOXnsFT/LD5I16ru9/zw+zO6QCAQeDLwjv4mjs/hQCDwqOG9EhT+tqQXU0pfJumLkn6DpH/hjQ6mGk9ldTKZaLlcqqqqTHqlOuHiddIlkSuFB7fUt9vtTPyc8FAh7ff7Sinlij/X5/cQbs7hRJhjvIIs1a34y+W5bQ1ijcDg5JN7YYyQPxwBbtfe39+vkabS7g/Bd5LF6/w8vV5PrVarNhftdlvtdlutViuLBIgifo+77PW4A0Cj0cjno+Lfbrfzsym//Lkyh8xPKSgwX7PZLJP3UjxB1EHY2Ww22X2Be4R1JykTW8QYXytUw3l2ZTuCCz/uqmA9AtaVPwsEDdYLTgxe7wSd1oFdc+LPmueFSMS1XURhfWy327xGmRMXwHwtOwnnnO4e8HYJX6e4H7yNhPXvYKxlCwIij993KTgxXp9rxleuV56Li0CICtzPrvaIRwjv6HM4EAgEAu8J4rM4EAg81nhPBIWqqtYppf+jpL8qaU/SH6+q6ife6Pj1ep1t9W5z54957NCSahVbyBEkw+3WXkVvNpvZ0gw58+omv/eKer/fz4IG7RO9Xk/dblcpJc3nc7VaLc1mszx2SIi3FkBiGKekGrmnsuoihKRcNT47O8s2dX8tpMfJFUTRK7zz+TwTyk6no5RSFicajYa63a5arVaeX3de9Ho9zWazTDQh4cvlUovF4h77OcQYQj6bzXLbw7Vr1/TMM8/o6aefVrvd1mazybZynh3PoCTc3mvPHHkGw2az0Ww2y/ML8WY9uPNgvV5rPB6r2+3WnhdzRysKhL7RaGg6narT6ajVamVxydcfrgOIMPe1Wq3yvJTAUeBrwUUk5tpdCJB6vy9f5/4MWOc8a+YEIaGsvuMScIdL6Yop3SV+nL8PfQy8vxCGcJN4ZoKLaAhAvC9YD6vVStPpNLsoWKO8X8q8jPJ9wrOaz+f5vekCobeCMC/kYTyqeKefw4FAIBB48IjP4kAg8LjjvXIoqKqqvyLpr7ydYyGXbmfOA9xBnqR6aNp6va4RU4iAW/SdmEEM2+32PVbxi7FncuNtDb1eT/1+X41GQ6PRKBNHMgScoEFgvBo8m81qZJk2C8Yq1YmmV1tdaOD8VLA5h1daq6rKhNxbGvi3V19xKfjz4NwQ70ajodlslokywgHzQ9Xc2zcglcPhUE8//bQ++MEP6ubNm9psNrmVAMGjtLA7GXWbPnPAHLZarUwGue5qtcouiHKdkaHBvfM6b58hW8FbDMhY8PYGDy8sBR9fkyUh57mWThbuz9sV+B4hoVyrvt6Aiy2Mhet7+4A7Y6RLUu3iwK6KvrtTeA3vubI1wdeuj8fbFMoMBtai50N4qwrvKQ94dDHLnxHX83YUjmEMPGN3zfg9P8p4J5/DgUAgEHhvEJ/FgUDgccZ7Jii8ExBGCOmFKOzqDZcuybS/vqyqek+0Zy9AEKiSS5eEHhLsJAoi1+12a8R7Mpmo0Wjo7OxM0+k07/JQtix4T/kuvBFBdMcFRNet7tyjpJpjw0m3t4eUlWCq0e12W51Op3YshJKqd6vVyrkSLkZAzNyOLylXxT2f4uDgQMfHxzo6OsqBgeQzeB4AAgGv90oz9+DCkD83d7j4/PmcMn6EHQimZxrgrvDXrdfre3bAYF4ROxBXvEWEe+V63h7h5y9FAJ5haenf9V/mx8+167mXolQJb68pcx08t8FbU8rMiPJazLmPkznDVeMtKf7a0iHAfDBGd3/4WBjzrpYJF7u4Dq4IF+tKATMQCAQCgUAgEAjciyshKGBZhwx5//4biQneA+5OBWzvkBWIi7dD7O/v58wECAjhgvTQl4FvEG+q/qPRSJKyoIDlnut58J9nQZS27PL+nCziopCUCZCTf3InIHplqJ1vd+iA7K5WqzwmSBiEnLYTRAwPw+SemFefL0gexJ/AStwd7O7gLgVEJO4XW3ppufesDH+ekrLDpayyOxn2czBPToC9TcB3h0A42tVy4G0FCCKIIZ4X4M+dcZQOgdKB42CtlIIGx5bCQyk6ObF3gc2FGunSneLVfhfjSvHN1zgotwXlGm+UueFiEO83X1Pe6sK8NhrnO5Cwi8mu85SCgL8nmQdEIhfGmMMQFAKBQCAQCAQCgTfHlRAUqqrSdDrNYoJnHlDh5TiIDO0GviOE99BjuabfH3KEw2A4HOY0d6me0I/VH2LiyfRY5l9//fV8PBVtr3x7eB/X21UhLUP3pMuqMGJCq9XKIX+DwUCScquFV8XLMMN+v5/vywmykzwXZgiow+7f7XbzHHqLQ6fTqZFIRBjm2Mfd7XZrroq9vb3sfkDYmM/ntRBD5g7BhHYAXBI8i3a7ncdIngXkmDlFcHFRwVscEIC8Al+GWTabzVzB5nuEHe7BX7+/v5/FJebdww+djPO6cjcEb9nx3zFvrEu+yoDOXVb90gXhW5IyvvK95kKIC3el64BxeKAi68ldJu4eKYUi3zKSZ8bzdweGt2SMx+PsNnJHCGN2MC/uiGDdM9cuFL2RqygQCAQCgUAgEAic40oICpLuIfYQN8ioEycPlvO+aCcE9LuXZJaKZK/XU7vdrhFbiPFms1Gn07nHBu399ePxuLbzAtkC0iVx8XBISBSECaLkgXXSJdmFzHggpaR8f1xrsVhouVzmnRr8Wm5/LyvQnN/D9bzXnd02IMcIMyml7Grgvt2R4Q4TdyRAgD2Dgbl0VwH3jBMBkujtKF5FxhHA+igdJryOed7b28uihJNGd684QYZoOpzw+u/89e568f58fsa8s8673W5t7QDWEeuA13FtzukijecE+D3uygfwnAFviXBSXmYjuIDh88VzZTcMd0Hw/B1cw4U2b4coMz8874J7Z53scnw4GAfvSXcOuZDD832rVqVAIBAIBAKBQCBwRQQFJ6SQLbfhQyrKqikoQwjZ0YBkfs6DJZ3qO9cmcJBrY1/3qqiTH1oCnJiW+Qle5fRKKCQOocPbFRy7yN8uG7YLMW7fL7cz9PFwnP93vV7nueEaOBNwCtCiAAFzgsg8MvfdbleDwUCdTqdGCtmikXMiiPjOHoybeS3noFw7PFe/NyeFzI07EXwXkVI0cheAg2fkAkzZslC2LXi2BYKUixXenuJ5D37PzLmTbp6zP1N+7+4R5pFrlwGJ3BfE3OeU95SvI78XxlDmJ7AuEBvK/JKyfcPbi/w5+PXKjJRy7Bxb5keUa8WzMsrPEr+ur51AIBAIBAKBQCCwG1dGUKBPHZLOH/IQj7Kf3olD2QfuIYrkHtCfTz97r9ertQu02+1MMj3YjWvtCndz67Tb50vixX9pBXAHQ7nFpTsHShJZuhX83GXF1d0JXs3eRZCcWFN595YBdndYLpfq9Xr3BP/5PRHCOBwONRwO1e12MzlFiFksFprP53nLzdlspvl8np99KTC58FKO310NPhbPUWB+JNUq52VOg+df+D35OivJOe4Lt/WXrgAPO6SKj8jCGiP40p+HE293OXDukgz7WiyFFa/m+1hZa5LyPeGaQAzwrAon2u78cdEB8Bref55vUgpk/r0LJIwP0YA58/eM33e57n0uGIsLMe6ecPGCMZQCRiAQCAQCgUAgELjElRAUsMlDWsu+ebeSe9Xa7fxOljudjo6OjnR4eJgr5f1+X91uN7c5SFK3283V9KOjo1olWFKNLEKseK0TrOVyqdPT0xpRbDQata0k3ZYNUW6327WtIUtAQEv3wi6y6uSPdgMXN3idOz2Yd9wckH8niO4k8N557+33QMZ+v6+joyMNBgMNBgMdHByo2+3m7ApCLE9OTnTnzh3dunVLd+/erRE32hwQHxqNRnab4DhhnheLRW0dISDRSuHkl3UkKY/HbfzcF64KSCztJG71R4hiHphf2kVYwzxbWmrI/fAWHRwxpQOE51Du1kHLgwsNiA3eFsC/XVhxxw5rgHtdLpc1Ac7/69V6xu0tQYg4ZBvwcw+k5L3r88V7BaLvThp3wCBwMX7mnte7qMMzdnHFW1toyfD7R2Dysfr3gUAgEAgEAoFA4F5cCUEBMuohd04EnNTvqvzzmpRSDmn03QUgEFxLuswZoKLe7XY1mUw0m800mUzuCUj0Xut2u50JFBV8XoP9noozBJ5cAFoH/N5oNXCRwoUNPw4izdi8NaCqqhwWiKDhBBNiXQoK/X4/CwDleUuyjIsAEsoxEK9ms5m3iTw4ONC1a9eysNNoNDKpns/nmkwmmk6nmk6nNREHAQOBycWLdrt9jy3d1wgkk9cgCvl94VTxnAOIt8+t/5ecB6+aE0IImcd94Hka3LOTfPIjcFUQhMl9+HrjOtJlfobnB/Cs3eFAWw4E37eB9Gs4oWbnDYCY4GKGO2tYp57fwFzwXkZ4cFcH7zlIP4IKLUG4kcp2Gp7lZrPJ7xdQ3pvv4LHL7eRtRgSwsiWqpFqA6RuJfYFAIBAIBAKBQOAKCQoeoFgGFDrJ4xgnylLd2u095BAmvryiCkGCdCJCQDD89byGXQ46nY6azWbeLpIKPkSJirBXOCGv7GDgIoLv9sC1gBMht3ojingYIUSOSnmZSeHtGBArdtXwtgEXHdyGvlwuM+FCQEFgaDQa6na76vf7Gg6HWVTAoeAE3nMZJpNJPsd2ex70yC4JUn0HDqlOQrm/XVkD7gDw+/IsBQivk1JIsa8Zd3eUtnzPR/AsCK+0O0FGUHBiz31460jpiuh0Ovesd9aHCyp+nVJ887yDXa4AX6/usEDk8p8hKPn69FaI8pnhCnERhjXMeLhuiV1ZEy6klXkH7l7y9xPCnAtRCBWMydfTrlyLQCAQCAQCgUAgcI4r8dcyRBiCx8/4rweuQWg89V2qB+v5VnhlPzqk3QkGRB37v2cd+JeTzV6vp/F4rJRSJsjeesC/gVeV3f7uPe1+TcD9Qua83QERxlP/eS0E0iuvzK27FZgbbwdwR4OTNQ+e5Huqza1WS51OR71eT4PBQMPhUIeHhxoMBnmnB6r1PDucCNPpNBPW7XabnRVO3r2P3u+Dc7n13yvMXn13wakkjL69oztinEAzNzwHxgQRRSRBLPA55Nys0TJk1IWDMuzRhabSMVIS6TLPwe/bWyWky5Yef0+V+QUucLkY4/C55Bq8Dz2XgZ1TSmHPRTt/f5Y5C5LyenNhzOeA+yyv4WP19ePzzbV5b/hcBQKBQCAQCAQCgXtxZQQFSVlQKK38ToTKgDiquhANtgXEIQD89WVvtfdeQ3yp2LvlHXJEawHigwfX+T727oKAdDqwx6eUcktA2Rtfiincb7PZVKfTyT3rjJX2Du/ldwEF4BbgGGzxtAxgl59OpzmUkS+eGVsE9vt9tVottdvtLCQcHR3p+PhY165dyxVhhBS+IH/uekBo4b5dnGGbScYPyt0NvOWB5+gEfLFYqNPp3EO+IcCc3wUhF1f8WvwOtwXOCsg6woKv9Tfqyy93Q8C1wPrlObM+CDn05+lCHK4V1oW7fxAQPAui2Wzm9xQiGfCWIZ97/5mTcheAyvl0hwjzzRrFleHtGC428F7zwESetWdFuPjo7yfOUwpFfi1vOYmWh0AgEAgEAoFA4I1xJQQFqtJOkNwm7nkDJXAWOEmh195bEyBOEDZ2D8BiL6m2lSC92hDSdrtd257Od4hwosNr3NYNmWVckCWvwJfWeLexQ27c9eBtGF4hdkHAd8zgeK+4cjzCAfNLy8FsNtNms8nZEpDlUghgq8iUUk1QuHbtmg4ODmpCSEksN5tNLVeCLxeA/L5dDAIIKNLllo4+tz7HLhj43JStDbuq/4zZ1y0iBHMGyXVhrKzCcx+lsMAaoo0Fcs9c+zaMkH4XnPi550EgFEDenXC7IIYox3tws9loPp/X3Brcuwdx+rxwv1ybuSbk0h1DrEPG6u4MF4b4GQIabRPAnxvP39ufPFNhlzPCXS67Wjii5SEQCAQCgUAgEHhjXIm/lquqqpExgvnKNga3/kPY/N/SZa82ZAAxoQyXK630Tjol5TyAwWCgTqej2Wym0WhUs5BzXKvV0mAwqGUROKlBTPAqOdfzHnYnsRB1rwz77zmnE1bmyqvMLsQwXz4HVHWp/EvKmRDT6VTz+Vzj8Ti7BrwtgufieQftdlu9Xk/9fl/9fl+dTiefd1drBwKPixQIQzxPr767A4H79fNIytV1hCNveeA8Tpy5Tpln4TkNJfl34QEyCoH1deoE1p9fuT4gu+6S8VwHJ+mIGOU69JYO5shFLuaH/Axv6XBRys/DfPj68Z0VuDcXvXzMfHk4I0JSuX5coOB3gHP71pqej8AXOSClW4Njl8tlzeWxt7dXa8PhWmUQayAQCAQCgUAgELgXV05QwNbtPdGSMonhv96+AFnyVgB3JHgbAq/nuhDCkjjs7e2p3+/r4OBAvV5PkjQej/Pxbst2QYGKr1fzOV/5/S7XhQsKnl/wZv3yTqi8ultuL7irUu5tF1SUIfbj8Vinp6caj8fZ0TEYDGrVd8gr42X+2aKTZ+nk0EUbb3PhON+u08fqa8IJvqf2p5SyVd+3fYQgu6jA+GkJcOEFku/P2+edNcnadXJbCie72l04R1m197YGbzko1wU7K/hclu+ZN6q0c28IF/5ad5A4+ZdUE7nK+3GxysflbSIuCIFdbQqlC8WfnQeCukBRticg4Pj7hmfNffBsXBDiObhwGQgEAoFAIBAIBHbjyvy1TJVwu93mrQ8hVJ6EL50TDLdAd7tdSeckotPpaDgcqt1u19oPsNaXOx5AhssAN85LqOByucxEigo4r2NrShcxJpNJjdC3220tFgs1Go08DidyTmi8/cHJl3TZ6839l1Z7r+D61oTcm2+5t9ls8jabk8kk2+mZ6/F4rLt37+bQxG63q4ODg3wOdziwxSPkHDu9B0mWVXnp3NHguQ/r9To/fyeo3Lv3zzOH3sqyt7eXW1h4vmdnZ5kYQ159Xsk8cKcL5/cvJ5wuCDAH3p6yK/iRthkEDl5/dnamTqeT3QQ4KjwvwHeroMXC8z9K4YW1x/c+DpwxLrT5uvPz+hzxvP34NxKq3DHAfJVreZfrwwUDnpW3NCEQuHDG3OFGYpx8+XvE1xVj8xBQf4Zl/kUgEAgEAoFAIBCo40oIClT5+eOdnnycBvP5vFbhlJRdCQgQuBsgl5ATQgmdRFVVVSO7WLKdqJdtFYyLiuZsNsvnbrVa91RIIVuQnFarlTMNIC+EFUKSfLcGzsH88DofE+TdQwt9m8jSGUA1F9JFToJX/Lvdbu36ZdXZq/ll+4Fvh8jvz87OcqClE1F/9mUV3cMUcU6UxK7cFaHMZ+A6HMdYEK7ctbG3t6dut5sJtrcTuNW+dJS4rd/HxRai3W631i7gax0Bye+BtdJoNHKmCCIPz5sQTTInnMi7q4J14KGLrGGuV84R4hLHlW1CLkgwdg8y9HYgxL1SLEIMZEy0xPj2n+X68GvO5/PaDhQumDHuXq+Xn8tsNqudY7PZ5DXPGmOHFtaytyAFAoFAIBAIBAKBN8aVERSazWYmox50yB/+ZaibV0V9NwYnuu4+8J5sJz2eaQCx9YR+J/xULr1C6q+TdocGMsaS4HJOb+XY1dLgZLSsyHtgpIsnZdXZ79UJm5NsrunV8m63m90HTsCdwHtvP/fnYo7/XKoH8TlJ94p3KVJAIr1HnvOVQYsIArzGr7+rSu52f39mvj0hx5bP3l0Evl7Ozs7ylp78jjnlnB6aiVjDc+K5lCGdvg5Yyzw3CP6ujIbyvrmfcm5cpCiFrTLvAscNz8QFMOmc3Lfb7XtcKawhb7lwl42/B3xe/Hn5+9evzfUZE58lnh9RbuvpLUxvtDYCgUAgEAgEAoHAvXjXgkJK6YOS/qSkZyRtJX2yqqo/nFK6JunPSvqwpJ+X9Ouqqrr7FufKxIwqvLsBcADsEhTKnnWOgzh4O4P3S7sIwfkYB5VZzuN2aLfElz3XHO+tCmWfOsQbsvJGW9SV4gLn8Hv2DIIy9NHhlXDG6AQN8p9S0mAwyPNA9Xg6ndZe49Vqfs41ETYWi0UWUXxcXt12Ise4/D6Y+zKjgDG7cOOiiYdEMiavnjtBdZTz5s/N119JjFutVu2ZQ9RpOfGqPNdnzH4fPj9O8plrrsdz951KdgkM3vLB78t2DV+z/MzXGMTd3yOlM8MFIP936XJwsaIUAsk2cFFjV5Aq81s6Ufy5eMsJ7y2u6UIW9+bzXzpyyjVxFfEgP4sDgUAg8M4Rn8OBQOBJxv04FNaS/k9VVf1oSmko6dMppb8m6V+R9H1VVX0ipfQdkr5D0u94sxNBLmhHgMxABuh1LqusXumlqg6JWSwW+XxUiyFms9ms1jO/i6R7ld3JGMdCdN2qTpV1MploPB7XbPsQl9VqlVs4ut1uLXeBayJWUA1njtrtdq0XXqon3O8iyeV8ucUehwGk0rfc7Ha7ueXEwwEZi88/cwDJHY1GeXtMxAd3SEiXQgYWfmzn3vohKWdVlPfhrR3+e3cP8KxcTIDcl9V3zuNVaZwn7ATgrRCsT8+SkC6t+8vlMs8B58Jpw3NdLBb5eTMPfj5f7747B++Lcl44jvv3e+J3Lj44Eff7dmGD511mMPg8vBG4vrf5cA88G85ZEn6u3W63a9fEhcE8uTi0y73ENcilKJ0xpfvEBapdGSZXFA/sszgQCAQC7wrxORwIBJ5YvGtBoaqqlyW9fPHvcUrpJyU9L+lbJX3TxWHfKelTeosPz5TOwwLZ9166JKvpouffq8CQOQg/ggJfHgRIT7WfFzs5/d3817dZRJCg593FCrf1b7fbTHou5kLb7TYHA/o2f25j9x79ssXCK6NOiEr7to/Bf15WbyHps9lMKaUcWOlCim+zydaPiDSj0Uiz2axGuJ2MSZctAggKkMN2u62Dg4M8d76NZ7rIccD6z/0SWikphw96hgBbXLqrxLMasNpzPUSlXfZ41gT2fUnZKcG629/f13w+z+PkWeKcKdtdOL9X/6uLLARELkI+eTaMv8zs8P/uakXg2bdarewocecAJDxdZEO4G4gxlrb+kqD7uXj/IJ4xvyXK9p7yd4zLXQjuXmAePK+D411w2uXM8dYLz+fw9hQXhGg54jzllpxXHQ/yszgQCAQC7xzxORwIBJ5kPJAMhZTShyX9Ikk/JOnmxQerqqp6OaX09Nt4fS19XVKuJFIZLslraYGmAsyOD5BKdmrYbreZqBJqRwChkysn6d5jXeYP+FaJq9VK3W5XrVYr29whop5wX+4W4IQHwllWvakqO3FlXAT3+faIns9QjhmC69cv2yyczEG+uB+fG+a9vCfmBaGAeWi1WpJUI3hOqPliLtyt4KGCVPYZo4sTjMkdLpBF77v3e95Fbr29w8fsgoNb8zmG5+QVcq7BmvR8AR+zV84RCEoy7gTXhQp/foylzFJAEGBd+ZaeDncclC03vNZdBN5y5CQdIG54cCX37M/ZnUHlsYzFW1d4zrynfTcMb+/hOH8mrBkfqwt6j4grYSfu97M4EAgEAveH+BwOBAJPGu5bUEgpDST995L+7aqqRm9lu7fXfVzSxyXpqaeeqvVbU1GmPYCe+LICKdUD4FqtVnYLQDa73a76/X62zkPASbT3XnEXMHYJCk4k/ecQfar7i8Wi1oLhzgPp3j51yJ6TeSfoECPs8vyceynHASkqe/79e7e6+1y6qFFWeHEd0ELi9+Pj8nny1zu5Az5OH7vDxaYyPNAzKFwQ8THvsui7vf2NrrtLgPBx45bh2fMsXYDg+qVoVrYKeFsAlXn/mc91OQ+e+eHn5Z4YP0S73L3E790FgnKefB55P/q8u9vFX+9fvNbFrFLEKHcmYeysd/8sQDAia8XbSlws8veQr21QikyPIh7EZ3FHvfdugIFAIPCYIz6HA4HAk4j7EhRSSk2df3D+6aqq/vzFj19NKT17ocQ+K+m1Xa+tquqTkj4pSS+++GLlWQKE+s1ms5xHsIt4OnEhr4DWCBwLuBR4HXZt0vb5sPf2iZLQIDT4fvaIE271h0h2Oh31er2a9d5JlYsgkrJrAqLl2Q8IB96P74KBV7F5LeSpDDSkZcBbJvx+IYf2jPLryuyIkpD783GXACRvf38/H4Nog2jk42POIfLtdvseK7+3D9BC4SIG68BbSfx5lmILgo/fv5PK0nGA7Z/jEBPKXULckcCxb5Q74C4PhDBaOTxfwsUFF74QltyR4RV3DyilQs+2pb5jhjsncG2404P3j7ceuSDGPePKYf7cJYG4520IjNW3GGUNMxbfkaR8dghc3JvPqzt5XCxzd0KJR01UeFCfxQfp2qN144FAIHBFEJ/DgUDgScX97PKQJP0xST9ZVdUftF/9JUnfLukTF//9nrdxrnvs98DJEMdCJBAgIPEQub29PQ0GAw0GA3W7XbXb7UyClsulptNpbk84OzvTdDrV3bt3dXp6qul0mi31XHdvb0/z+VzT6VTT6VSz2SwTK7BYLNTv93P+wGAwqNmrl8ulbt26lbMInHB6X7qkfB+LxeIe2zlk3ckWKJ0Ibot3ogwpg6Rxbqm+xSJhjNwHW/GRJcB5uRZCw67XcL7ZbKbpdKrT01OdnJzkayCE+HhbrVbOcvAxu9Ue8YCfIUyRb8B8eoijC1MuOLjAxDwtl8uaSFNd5B/4a7xdwsUiFxTI1PDnzVx5SwzEfDgcqtVqaTQaaTqdajwe1wQVF2Nof+G94G08HO9ZAT6Xvi58TbkYwXvKWxs8aNPFBV/T5bVdCMOFc3Z2do8DhmdVChK8R8r17fPH8+bZICiUrgZ/xpzTnSTubrjqeJCfxYFAIBB454jP4UAg8CTjfhwK/6ikf1nSj6eUfuziZ79L5x+a35VS+i2SPi/p297qRLuqyN4K4NXZsj/b+8IhMV4Vd3dAmSGwXq9z9fLOnTuaTCaZpFHJ96rsaDTSycmJTk9PNZvNsvDQaDS0WCyUUsq7IzgZqqpK0+k0/w5xxFsb+N774DudTiZ93gvv88Q1fBeA/f392tjchl/O39nZmVJKOePAAyedWDk8JR9C5zkAZUsFFefFYqHJZKK7d+/q5OQkk2QEge32PByR3AScGrts9mDXNoPlVoXeauFzXLZ8ONzlwTpkflkXBHe2Wq28Xmg9Kc+LCMA43JXB+cqsB3dF8Ex25RV4S42/jvXlIok/N8+scPfMLlcFooHflz9zBAEPkGS+mE/EDM7jeQe+tvyL9xHX8rXoc8n71ueWn7tgsNlssuDAvSGquRDjgsUjgAf2WRwIBAKBd4X4HA4EAk8s7meXh78l6Y2aw775HZ6rRvp3EUC+d4IFGUgp5aomNvl2u13LZfBrSZeVYuzk4/E4V95pDeA6EJLJZKLJZJJdDBBct5h3u10dHh5KunQKMFYXFLx9AdD/LSnb3d2V4PDvywwBz1Twyr2fn/FhPd/1M3a0YLzMmT8j/y/36ltBQug2m012Jpyenmo8Hms+n2eXAQSXXR1cyHBHgd87c78raNIJra8lSKNvubiL/JdigpNb1oVb/RFguLa3NrBOeI23A5RtKm+0M4KvMc+NcNu+/xtBgXP6e6oUGMp5cMeQOxb8OXO8uyZooShFMu6Ve/Nn44IU88m4/Ln6eMvPAl+TvvUm4yt33vB1xXUYq8/NmwlOVwkP8rM4EAgEAu8c8TkcCASeZDyQXR4eBDzMT1ImwfTQU12HoEwmk1rF090KnU4nb43I67xq6ySOqvl0Oq31WHtuAi0I4/FY0+k0uxpKx8D+/r76/b6uXbsm6bLayrH9fl/z+fweggrJdaeBdLmdIeMqq9MuGNAi0Gw2M8nDZl9uncfYmG+vdDOn3Jdb693KvmuHAcY7Go1yKObBwUEWfk5PT2utJWydSEYCVfByXrHoQybdeeKChz8Hb6HxXQ/ItXC3Cg4BnoHPDevLx+AV+5RSzba/q0ffcyKYZwQrMhf8euX2oi6CeVuB7wTBz50Uu2ulFAZKcaEUJpxYOykvsxwQSfw9vKvdwd/n/qwQsMq2kVK82DVe1oJfF2HHr+nPYpdQ4FkM/rNdQl4gEAgEAoFAIBC4xJUQFCCcEBeyC3APICzQHz+bzbRcLrM7wS3SVVWp0+loMBhoOBzq4OBAw+FQzWYzV8Yh9JPJRCklTSYTrdfrWg5D2Q7QaDQ0n88zwZeU8xEI0Wu32zo4ONDNmzfVbDY1Ho9zoOTe3p56vZ56vZ5Wq5Vms1nNwt9qtdTv9zOBgWDhaIAoSZc95VjGIZqMg6qvBzAiqPj3EGvIlLsyms1mFkJc6MEiDwl3gi9Jk8kkuyr29vZyuOB0OtXt27f1xS9+UScnJ1qv13lHDm9jgFAzRgfPAjGBeUCYKIUj7mWz2eRn6HNFxRxBoGxZ4PdOgn2rSnegLBaLLOi4oAHJ9ayIUgjyscxms1oGBE4Y1hvbk/J+cQdLmTlQZgnQZsA9ME7P2nDCDql2EclbFFjXvi7dtePH+Xu0JPx+HAKPu2Yc3nbBenDRgzl214NnWbiYV7pvPEOBe36jcQQCgUAgEAgEAoErIih41RAyQm4B/dmQtUajkQmk95FT6fUe7k6no8PDw+wYGA6HGo1GmVDM53NJyoST156dnWk2m9Vs69JlZgHiAGTKU/NxVHS7XS2Xy1poIeMqbe8IB51Op2aj5978v5CuXf3kTra88g/xdfcDQZZOAmn5YE4gj57D4BZ1rss1IOd84f5Yr9c6PT3VrVu3dOfOnVzdb7fbNUGIZ+j34DkAkG8cKawbf0ZudYfMcy53gJRVds7JOXw9llZ7hJzSql/mLPDcF4uFFotFvhcXK3gWuA0QFWhR8eo96xtBwvMPvL0ClJV+b4UoW4H8Wbr4VFb0/R5L+Lp050fprHBnwy5Hh79HfH35+8jnmcySN2rt8PeS34e3Hfl69vdfCAqBQCAQCAQCgcAb48r8tex90KWgAGGn8ug91BAFr7hyLkgz2QVkK9B2sCv5nYq3Vy6ly0R46dKmTgXYCRhjw+lQBsNJl1b0suXBw+KAV8s92I5cAkfZv+7k0wkyRIvrMc+Qeu+LLyu8bql3waG0xnM9D2K8c+dOJsvNZjMf4y0BngdRVrJLQcAD+8osB+bKA/ecIJfEmOO9/76cTx8D5/DX+7OD4OJeYLcIzuHPDrGA+WDnEV5fWvQZgzsxfJ06iXeyXK5THzdrFXHFWwTKPIs3ao/w9gcn6579wPpyscfbfRCYXAzgfbhrDfs6d1EBeNuFn9PvzeeIf7t4EwgEAoFAIBAIBHbjSvy17L3Zkmqk2QWFss8ZclQ6GHidkwkcBDgROIbKvffj004hXfbfu6W61WrlXAcnfN4eAGkkoNDzDJyA+z2UgogTdsZA5d+t8JBBcgBcQHA7uhN3evClejhd2bvuVfWqqvLWmBxHiKLfOwSZZ3H37l3dvn1bJycnuSUFt8NiscjiESIOooILGZ7fwPNirbhI4HkJ3s4AynnlOi5Q7KreM4eMx3v+GQdzQP4G/53P5zXC7s4GF6A8c4M14u0CCEC+/l1k45oICpzDrfz+PvJ2Fxc53GlQCjBeyXdhgznx3yEOlC6iMkPE3xdcw3MqSgeTgzYOXutiIPfi7Qz+LH3t+zV5zrtCXQOBQCAQCAQCgcAlrpSgAPmWlImHdBncBgGhsokLoNfraTgc5n5qCCqVTYhUp9NRv9/XZDLJ9n4nKIgJs9lMq9Uq97G7dZvdI3q9nqTz4MP5fK7lcqnJZKLRaKS7d++q0+nkcbDjge9YARFC5CAnAhI2n89rtn7mCHECkulWfSdkTticjDshdKINcSpdEm7/TynlnIh2u61Go6GTkxNNp9Oag4N7abfbuUIPyaPyC4FdrVY57JKE/na7vdOd4C4Sd4M4NptNzt6ACPf7/TwnTtg5L4DoenuECxReffe8Bs+TYP1xHYQx8iJ4fZk/4c4IMkUYP3Pn7S5e3WeNe2Bi2RbjgpWvDxec2u12LRzVww63221+pk7GfdyTySQLd7w3vS0F8ca3ZnXRgO1OXdRjxxEXXhxlaw9CoP+etemtRv7ZwLPgHLzHSydJIBAIBAKBQCAQqONKCApSPbgNcuFkGqLgPeMk9g+HQ/V6vUyuId5UKyFPTkBLIuoVSq/iQ7gg/yml2m4K3n4hSfP5XKenp9rf39doNKptL+mkChJJdoL3a3MPkGyIEuGMzInnRUiXwgvn8Moy+QNeWfYsAHr2PSCwrN5CSrvdrgaDgVqtVrbzl24Kz13wdhS34UP+p9NpvleCByF05a4HPnaeoQd6sn5K63tJDN/o+bPW/Lm7sOHuDV8fZa+/Py93UQAEGUQLd5uULQn8jnVdtmHwOnfM+Fj8vIzDBQm39ruI4KKSCzAcW269yThxyuyaM75H1HDRgXXPe5YWHBfhdrkYEAtKEYXjSpQuJ3dUuIvD5ykQCAQCgUAgEAjciyshKEDiEAH4w57q5a68AMhYs9nMhJxKsWcwQE64jnRJkJzIOQnZRaAg5JJq1UuvVEMkx+Ox9vb2NJ/Pa1kMiBG0TGy321qrRulEYDeLMpvAr8l9lWJIae1n3H6PAALlwZSeQ8A5cUS02211u90894vFIs+Ttz648OOtHm6jd2fKarWq5WVIl1suck4XLHyXAt9FwJ9nKRxwvyUYj2cjQJJLl4K3qJTtFz5v/j3z7/kbnkdREn//XSmMeKuBj6XVatXaV1ygc9HJ58lbSny+ytaG0pXB78ocAr9/dxl5K48f7+P0VghfP6V7wx0drBG/t/I9smtsPq5y3nmmISgEAoFAIBAIBAJvjisjKCyXS83nc83n81pGQaPRqPVEO0HFXu15BggIiBNevYakOBlzlDZ3gBOCsbq93yvm2+02CwFSPejPt7ej9WKz2dTs1Yyd7Smn02lufcCKXVZR/d6o+ELe3MotKd9DKaJwv6Wd3KvtknILCIS41Wqp2+3q7OwsiyKS7slD8F50xuUVbe6B8XjgZWnjxz7P9dz1AKHclbfgu0V4tdsDMp18M05e56IC12UrSkk5I8NFCe/5Zw10Op0s3Pi1OS/Hlv9mXPycsbmY4HPkrRecx8UEXxusKdYgIg3zx32588Rf64KH37P/txSa/LVsieoOBb8e98968OwIFxH8GbpI5td1QcE/C/x9zDPnfIFAIBAIBAKBQGA3royg4KTSK6jeBuDfO6EdDofZyYCIMJ1Oc+CfV689/FGqW+GdKHHM3t5ezmigpQLngVQXODabTd5BYjqd1naB8K3tsMJ7RZ6AQoSE8Xhc6yOnOn9wcJBbAsgnmM/n+T4hWW6bd8LIvZUtAZKyE6QMFXRRhPNxX+12W4PBoGY1910teEaIIbPZLJNCJ5OQ7MFgoG63W3OPcC0XALzC7EQa8u9BgIybdeSBnT433Je3UzAfVP+5NjuINJvNfL9OphEy3JXCWmHnEV9PPD/us9Pp1EJD/f44j++GwHalfO9ODSfjTqh3hTz6nEjKc8e9+DpyVw1ijWc1uHDl6w0xhvO6u8edGmU+AuPxNg3eNwiIHuLqThcXsPz+XFDw+/NnGQgEAoFAIBAIBHbjSggKUr0fXbok916V5Rgnl16pZAeE+Xyu8XhcI2qeCQARXy6XmWRgz/Y2Ca9IQwA9HNIJkldbIeC0BThhdWu1dEle1+u1JpNJLZOgrO4PBgMNh8Ocu0CrAeck0BJAptya7z39jNur2AgeLvBAoL1NhDmEMHN+33GDZ+Xf+71BjHu9Xia3vV6vJggQ7Mi4XWRwUcCBQNFqtXLAI20wtFh424BXzP0cboF34uxtBt5KwPNqNps5qNPDF71Nwl/HumWeIdu+zSShnqVAwvrjv+5YYD0wb6w1zyVwxwPPm7lpt9vZ+eC7WLAe3T2AgLDL4eOtBn5d3y7SWyKc5Hswqbc7+FySK+EOk9KB5Ofwsfv1XYBwQSkQCAQCgUAgEAjsxpURFCBibjcucwx2kXLPM/B+fDIUIJFOSFerVQ4BhARRgfZ+fs7rJKcUE8oMBc9igGwRhlj21nsv+dnZmWazWU65p4LMOVK6DHDENs/rqPI3m817LOdOnNzuztjLaqwLCt424G0ftJT4uVw8oIrsxI7f+y4eiAgIEggI/jqcKMwnY+T++Hf5mk6nkwmxH0sVnOuVtnqfMxc2HDgzfE14XkS/38/Hun3fr1m6OXaFWjKvCA3snsHPgDsGeFYucnmrh1fgeY27GnwcCDJl+4RnWUh1t0iZT+EOCe69bDtx8s5aB4g/5Xufe/F7c6HCx1a6Uvw94c/UhRnaIUrxJhAIBAKBQCAQCFziSggKkG6IJaTaq/hS/Y9+yA4Ei/YGz01wt4H3Z7OzwHw+12azqVXYV6tVDkPcbrc5PFFSjaCV/fHSvdkEXjklY4ExQs4g7vP5XNPpNBNeiLFvN4iQwK4JZUW4tGt7HzrzjKjh4+Z3uDew70uqBV8yFkieix1eGfdciJLsIew4IfZ7cAJHlRxrvwfkOWH2MSC80GbhtnieBWvKK/YeWOmEE4LKHPFangPrCQdAq9XKgkLZ9+9uCsZCmwvtL349joMg8/xp7ykFD8bt91YKcKV7wNcHopyvvXa7nZ+VCziIMg6/jocuunjhIqE7RDz/wNckO3+Uzg5fvy6WsF6ZQ0RFz0/x57nrfcy/yx0+AoFAIBAIBAKBQB1XQlCQ6tXL8g99JynSuZgwHA7V7/fV7XZroY6QM99GcLlc5lYIfo/N3J0BXsXmuogQ8/lc+/v7mRB7S0A5biq4iBteDYVALhaLWj4E20t6i0Gn06m91ts9nEyV1XmEA+mSJCIkOHl2R4WTXVwKkDP68+lnR3DgnnFgtNvt2vaTfl6+fMcNWiR8DZStLq1W654tMD2Q0Yk6Qg8CiN9nuUsEbhjpMnST1gh3FJTk2+ePNTSZTLRer3V4eJjFDHYIKCvdZCYg3rBGfJ17Jgf/dYu/C1veeuEtDBB+tjrl2PJ95nkR3qbT6/VyJkOZa4CowLhcWNjf36+1SLgg4u8pXz++04Pfnz+LMsQSkc4/I0rhy4U/b5XAIVK6j0r3Aq8LBAKBQCAQCAQCu3FlBAWvnkO2IAtUcyGO9N0fHByo3+/r9PRUi8VCs9kshyJK5+T99PRUR0dHOj091Wg00nQ61Ww2q+Ut4ByQLoPmEA8gjAQhcmxZ6WbXBkggRAxiiSDiFWkq7k5sXAgoreXMBX35Xv31YEMs6jgeOK7ZbGowGOT5RsRwAoWw4vZ/CHfZTy/VA+6YP8YJoeYYJ+NO+r29oiT8zAuiRUnyqqrKVXueW6/Xy/NPy0FKKYscpVDAOKhmMwelQ8FFDn+WtHF4CCOijKQsKjkp9uBL7onKumdfMHZ3mbgjw3/uYpffM2vFHQy8bte8IgrhDuF5+hyXuyC4G8NFAhcSaCviuTBvLhi5u4ZruQuDViQXpzz3gTn03AZ+zvsDIacULJkX3y0lHAqBq4zxr/8GnX4k1uijiBf+8h1t/95PPexhBAKBQCBw37gygoJv7Va2FTgphFx0u131er28e4Bvn8j5ZrOZRqORbt++XRMTIPS0GfBa384PMkJ7BIKCdLnNISSp1+up3+/Xdm/YlSjvAkCZowARBZCuss/biZefHwKOxZ858RYKXA9+D16hhth5NoITWq+EA+/H9/vy+/Px87yw07fb7ZrjoSS9VNG9yowLwyvbvqUlO2r4c/BzeruFdO9OIj6vTmidXHoLDfPN6zhns9msiS8utpSijF+P40pnhnQpWvi8ck4fF8f5+vM2g7L1wB0qLnyU683nr3QZeHYHr+V3PvcuRrh4yPVdUCgzJTgnxN9/5s/O1xzPArGhzGnwuS2DId1BEwg8bKRf8tWaP3uZ0XL6kYYWT2/f5BWBq4rX/5Fj9V/4+vz94Ec+p/Urrz7EEQUCgUAg8O5wJf5a3lX1djKyXC4zqYBY9nq9TPIhJU68cBecnJyo1WrlrRgRFGiRmEwmtS0gIVcuTnC9st+cVgC2OvQdJ9xRAenyDAB3RUiXVWF3avB7FwSc9LiDoMxQ8GtAhiFV3m7g8+pkD5LsuQFltZjrl7kAuyrOjIEtIZk72iQ4F04Ob79gXnn2VM5pFUFM8dBC3BHedgDcYeKEm/tzN8Wue2Z+XHjhXD5OBAV3e7hYBmgj8JyDMlfAn6+3HTjxTinVtg/1lgAXGHwtea6Ct4+8kaDgz9rFDl+PjvI4Fww9oJR58LnkPVmuMdaZC3UIX3zvzh0XE2ihKVtxeB3XYE7KrTUDgfcbaX9fezeuS5Je/kcOdPoxFxNDTHhUcfdrKt39msvPy4+Mn1NLF/+PefW1hzewQCAQCATeIa6MoAAJhTBOp9NsCSeYDaLnAY5Yz12MgLCwfSQEczKZaDab5R0eCG2cz+eZjEJeCdpDBBiNRtkaD1nz4DoIGqQRIuTBc5Ahrj0ej7NrwHeacELuffLY06XL3QPKnztRc5eEtwXw5RVbWiRwRUBevfUkpfPAw7IazHNwgl8SXgSMa9eu5cBEet2xn5fuA+a/JN/7+/u5LQHSR26D74zBPXa73ZpzwkUqb39gLp1oI7qUDhrpsvrd6XRqVv+zszO1Wq0coohLhPVWWu3dGcE5PUAU9wwOGtYfv6e1YFfeg7fI0LribQH8m2ftooK37ewi/S76MTesM0Q5X5PeruDwNpdS1HCRx9cz7yMX3nwuXcThveXvkzKE08fprVW7nAyBwPuJxpd/WD/1W2+cf5OqNz848Mjis9/alvRl2jtL+rLfdVvaxpa1gUAgEHg0cN+CQkppT9KPSPpiVVW/MqV0TdKflfRhST8v6ddVVXX3zc7h/d8emOahhmUPN20JnhUAaSX4Dls0vdqeX+BVTOnS0UDP9XK5zKKFdEk2pMtKdulI8Mo1RBMhpKoqtdttjcdjbbdbnZycZPeApBye55VZxghx87R7r4IzL4RMIkhA7CHKzAH3wdicbNtzrbkT2u22BoNBFj0YY2lHd3GG80Lyms2mjo6ONBwO87hpV3AXBXkYEEWcG16dh6B6+CbrCLKIOMV9+3PyXASp3irguyRApt1Nwu8hqY1GIwsULqBArrvdbr6+Z2c4aV2v1zkIsd1u5/VYPi+Hb+9ZulV4Fv6sEBNYP07ePa/BW2D8/UK7DL9D1PI2ARcjIPge8skc8H52N4jfH2sPEYXn6TuQlG0orEEX5Di/iy7+7H08vAf8fV+2llxlPIjP4sDVwuxX/1K9/nV7UgonwmOPC+1y26z0+f/rL83a0d5Seu4/+gHpEfosepIRn8OBQOBJxINwKPw2ST8p6eDi+++Q9H1VVX0ipfQdF9//jjc7AVVOgAiAoODZAt5bD+GZzWaZFEjnRAFC5sQfwu39/U5KqE5CSiB3vmMAlU+qprzOrfq+/Z/3xDN+76EvCV3ZIuAVUq+m8xoCCJkLzg0xJrOALw/S80A+r0D7GNyFAUEGEMJdz5LreI4BDgKvtHNNJ6Fc3+fa4WTb8xcghU70PWOD+3ab/y6bvI+NZ+Jra29vL++AwBzyPJgDbzHhPLPZLJ/LhSHum7XGOUt3gAshjIX3Atd3J4oHjfqzKttYOAfrimNwPyAKeGaCP29vUfE55f58Xfjx3qbC2MvWCN+Ng2frLpFytwdv1SlbK2iTKNtf/D3jc8D5HiHc92dx4Opg8Su/Xne/Yk+rgxATniRUDens+PKZN1ZJ01/z9W/yineG9t219v/6px/Y+QL3ID6HA4HAE4f7EhRSSh+Q9L+R9Psl/TsXP/5WSd908e/vlPQpvU1BwSvaCAqQKIgd/c8QptlspslkkoWCi3HVbNY4FEjxh+iCcis+iAV2+V6vdw/hLwP7nNRBYt3C7UKACyhepfa2CLf/O9n2Pn0nkMCFCief3sIAsfYAS4icOx4ajUbeLhKSvotgOQn1ufdgRCffTjrLeyt768tsBd+JYbFY3NMPz33wbLifxWJRu5bb3xEl/Bkyp6w57oGxe9uA3zvP0lsx/PpluwTzz1x7S4KvGX+vOIF3R4HvckBFnn/7GkMAc1HFwyulS3cC7ytf476mWCe+FiD4TvTLNcJ1PUuDQFEXAzwgsqoqdTqdnfkN7uYp259YT2VWhgs15VorhZOrjgf1WRy4Onjll+5pPQgx4UnHtlnp5X/swbVedV9t60M/84H8fbVYavP66w/s/E8y4nM4EAg8qbhfh8IfkvTvSRraz25WVfWyJFVV9XJK6eldL0wpfVzSxyVpMBhoNpvlXQn4gvR7GjxEHsHh9u3bevXVV3OLQ0mczs7OMnFz14NnEPBlY8vbUg6Hwxy46NsslsGCrVYr2+273W7eOrAkamUrAfZqshxWq1UtvNDJuJNgH4NUr7Ry7jKE0XdxkFRrFZAu7eWeun90dJR30/DgP8bgJNMFhbOzs/xM3kgY2EUYl8tlJrLMhYsFi8Ui79hBjoJX+rlWp9NRo9HI7hYItM+jOw8glfTbY9dnPBBk6XybyX6/n9tSSqGpDDmULndh8NwGdxMwNq+ge6YGORs+zy5O+Hmd9Pv6piXERQjO52NjXngfpnS5A4kHUXK9kpCz1ssWCM7vQoBnQ5TuAW+jYJxsz+ptUZ7VwPt+1z1yPZ6tv1/cZeJjeIQcCn9ID+CzuKPeezzMQCDwMDG/udVP/TuXgsLg5xt65g+HoPCA8IcUn8OBQOAJxLsWFFJKv1LSa1VVfTql9E3v9PVVVX1S0icl6caNGxXEoKzSS5fBft7bvFgsdHp6qtdff12np6e5NaLVatXIL0QaeHuD929Lqlnih8Ohbty4oaOjI7VarSx4QBpbrZYODw9zJsBms8lbUGLVnk6nNbs19wKZRIDw3nJINBVbb81wkaXZbKrf79cIIMSQORoMBvdYvheLBfNfExP29vZyeCHkuNFo1Pr6u91urnw7eXMiDkkmh8LbAyTVshH29vbU7/fz70rnyMU6q7lBePaIDtvtNpN77stbLLg2mQ7lDgkuwJT3xXqhd98dGx7EWbZkQJ7LKjpz2m631e/3s2DgpJZjEYtcMCl3ISi393ShB7GGecEl4VkQ7uhgDgiRPDs703K5zNfiPePXxFEAEF1433nGBoKJPyPyM1z0cBEAMcVdOghliI88Z95DiAnABSl3UvB63wXE3QkuEl11PMjP4oN07erfcCAQeGCYfqDS537fL8vfH/xcpeM/8QMPcUSPJuJzOBAIPMm4H4fCPyrpV6WU/llJHUkHKaU/JenVlNKzF0rss5Lecv8jJ0uSMhmSdA8BJGxus9loMploMpnUWiPKlHhPsYdQeC4DJMWvgUPh6OhIR0dHtXBDLPbtdlvHx8e5go9t3rf5IzTPwwMJS+z3z/cSJ5AQlHkCZbXUCfdqtdJsNpNUF0O4B4g484uYwDyuVqtMytzG74QR94XnEhCm6Mn9EOVut1vrXS/bA3AWIBBh8cdN4hkXjIEvXCVl6B5uBK7rz70M/XMCz3rAVeLXZd1xv+U2l1zP22Oc+Pra9nMiijE2Pw9jg9jyVY6XtVAKF6wN1gznL0WNskXE55rjEGvcaeGOm1Ig8PXGsS4oeF6Dix1+fr+fsn3BXR9+TZ8XXlsKCv6FC4Z8CNYL4/E5eITwwD6LA4HAk4Vqv9Lq4JK/jl9oaP83fIMk6fhvfUHrl774sIb2qCE+hwOBwBOLdy0oVFX1OyX9Tkm6UGP/3aqq/qWU0n8k6dslfeLiv9/zDs6Z/+17x0MAJGUhYX9/P28DSVXfyYkTGbeWQ/QBx0H6pcvK+XA41MHBgRqNhqbTaU2E6Ha7Ojw81OHhodrtdnYweNXfiaefv91uazgc1qz6ELKS8LnTgvwHSZlgz+fzTOD8eL5oiXAxwtse2OYR8upEzcWEsoLsZJQ57HQ66vV6WUQh2d/741NKWRjgnlqtVk14caJe5h341obexsB9easHY95sNmo2m9ll4HA3CHNUtnFAMn0+uJ7vYAAQdbzNRFIWE7yf3+dy17aNPt/+vTsjeA5l1gEOCAQgFxR4P/Bz/95zNsoWCn8mrEHG54Tf34/l+inDGTm+FM98vL4eyiwHFzx2zZePq9wdxAUv1tQj1OYg6b35LA4EAk8mzo63evWXnv+7ffdZ9dZrrV959eEO6hFAfA4HAoEnGQ9il4cSn5D0XSml3yLp85K+7e28iIokf+D3er0ayYDsnJ2d6fT0VJI0mUx0enqq7XarXq+nbrebyTFEhso61WnIqZMaerEhR/TID4dDDYfDLCgsl8tcybx27ZqGw2HeSjGly8BDJ9qSavZs3zWi0+nkSrCkGqF1QiZdEjbIJ2OWLiuzHMc1XUzheI4l2LCqKnW7XXU6ndzSwPg92JBgRirPbp2XLrdoHA6HWeRAeIGwMybuVToXNBiTBziWxJDn5C0nEMBS1OBeuC45GhBscgFYJ51OJ7s1mKvyv9K5IMAuDO7QODs702AwqJFWDzPkPrrdbr4XXBoQZRdZnOw63GXDPbsIV64Vd5P4MawjqvSS8vtjPp9ncYzz+HtwV+aIn9uvhahRijvu/liv17lFCfHQRQ13P7hz6c3gYoI7HTgfYZ60JvGZwfHe8lO2szxieFefxYFAICBJn/+WfR2/8BFd/69CULgPxOdwIBB47PFABIWqqj6l8+RaVVV1W9I3v4tz1EICIbD8t9Fo5J7u8Xis7XabCfWNGzeykwACwQ4Ng8FA7Xa71mPN+ebzuRaLRe71p0rZ7/d1eHiog4MDHRwcaG9vT+PxWLPZLFe0cSZAXLwCiyOB60rKoge984QLOmnq9XqazWaZ8EiX/eH7+/vZjUF/u3QpHEA+uSev1lNRX61W6nQ6ms1mtcwG7PqQTUQXWh7KzACvKkPU+/2+Dg4O8tx2Oh1J0rVr19Tr9XKgIiKPuxBwXvBfb4Epe9q9VcDJtQtJtEC4EwPCzPFOlhE7mA/WlmdfIGIgMJDjwHpysYBwTcblbS27QgO93QE3hWd/eOuL2/J9q1Rfv6C0+rNDAtcsBSkPRMUtwRpGhPOdTXyHDc9K8CBFb4twQcvFFMDPnfDjSODZeztE+Tpvg2FMnr3BPXJvjJXzeluSpHyPjxIexGdxIBAIgJOvkMa//xslSV/+J1/X5qc/85BHdPURn8OBQOBJw3vhUHhX8KokFUnIJwQPou727larpcFgkHv3IQTen1/a4iGXhCJut1sNBoNMYGhloBrt/eFVVWXrulc+GQuVaU+tL9svcCi4gOLVVEm5qg6hI4QPsoTNHrLoVX637TsRhtz6zhKls8GJFnPI8RB7xAYcC4gpiA8uBvjuBJ5n4K0APE93R3A8RJS54Tpe0XdhwAk0xNHvCzGDKj2vcUEL5wbuEYQjiHy5nSLiFa0zjNdFE17r1n2+Z+7ddcBxXm0v1xPrAXhriBNpFxv8PsvcEkIKff3iHvBzeo6B39cusQcglrjDgHt09wCCGuuM+ylbRHxOuBdv+ykdPtyzu1N49r7u/LOF4wKB9xN7Tz2lW//sR7VtP+yRBALnGQvri4/tl3/F07rxzFCNv/F3Hu6gAoFAIHClcCUEBSc5JQmEuNJnX4b9NZtNHRwcqNlsZjInKVfU3RaOsAB5KrcUpNo/GAw0HA5zpdsrl95/zpidoJR96rgEynBAWjJcEEBEgPxC0Eti6K0UPlfeNsDP/Muvz3yVJNGFEJwJiAqc0+fy7OysFjLIzgR+vbJqzvHe8++VYY5DwKAVBdK6KzzSCbTPjZNMRCVvH+HePceAloVdx0mqkVdaV3q9Xu3cvK6s2nsrAcKBn9t/5+Tbz+NfLr5wf5zPAwaZHyr4vk59zjyjg2fPOfy5eOsJa8/XruceuCNhV3ClZzf4zgvcgx9bZo64GMO9levehYL1el17P0qXW676GHkWpYsiEHgvsf/MTS2/8nnd/rpYd4Grh9FHt5K6evb1r5AkVZ/9vLYXYc+BQCAQeHJxZQQFrzI6vJ2A3QA2m00m2/1+X9euXdNqtcrbNroFXtI9/eBYyqXLXRbG43EmSb1eT4PBIIsM8/lc0+lUs9ksCxmIFx4MyPkhyFT4O51Otvt70r3foxMjsgLILkAEoeWCY3EpcJ/L5TJXzr3Vwe3lEEUyKsgb8OA8nB0QZfII3N0BQT07O6v1oPt5mD+vAEOU3cburhOeM0BMYN6azaba7bbm83kWgHq9Xu1Zl84RBAifO197ODBwJbBzBj+TLq37fg/M39HRUXbISJdCDoS82+1KUm1tl/kHkFvuH0LtjgfuBRLv4hHz4hV9bwnhmfFe22Xld8GMNhaetztKyufhYlApcPmcuRDgIpJvqVpu5cg64j5p0eG95sKMC4cuqjB2PmNY397q4PfH+cu1Egi8p0hJd7/py3IgXiBwFTH66Fajj16TJH3sP99IP/NZKYTXQCAQeKJxZQQFSdmN4CTZbftsUSgpk7mDgwNdv35d0+lUUr0aW24DyOsGg0EO4oNMLJdLHR4eqtvt6plnnskkcLlc6vT0VC+99JImk0l2Pszn81wRxWruJITKqhM0r6hKlySVyuxyudRsNtN8Pr8nI4AQOwgnzgW2n0RIYDz8nmo758F5QEggQZa0YvAFGT44OFCv18siCu0kXHM0GtUq8K1WKxN8D97z4EuIMXNTEma/Z4QZRAryJxgT+QUuStE64K/xtUYLje/IQdW+tMz7Vpm+Tpnjfr+v69evazAY5GvjcvFAUHr3nbR62wsZDB4gulgs8nphHjgnaxmRYJcbBCBuIFRA2plXX5eINNwbwoULdVzLRaJSUMBZ4u04iD/kMXheAs+G1wAXPtyhwjU8a8HnxwUV3zmE9wf3wHvDBQmeezgUAu8nXvqOb9TyWiUp1lzg0cDP/Oan9fSnb2jw3T/0sIcSCAQCgYeIKyEoSLurgpBE7zd3mztV2W63m4mzEwTIiJN8CDPVUML3IBGDwSAHJy6XS41GI73++us6PT3NYYY4CErHQ5kQ773ejIMxS5d93fTtE6h4dnaWj6EKXW5zB5lst9v53quqyoIHve9OpmgD8NBFHBAe4IizgnBKiKXPJeSb++c5dLvdbP/HSg7h5N/MF3PpO2B49ZrngqMClwQZB5Bf8iAkZfHG3SA8e8buAgvXcTIJGfVWE3/G5CoQsnl0dKRWq6X5fJ7nVFKtZaasvHOfkFbCR7kf1qUDsgzJLwMLPbfAiTCCSKfTqa0jSLhnCXAdBAjPFnCBjDnyDA4XJfxnCDqsMX8P+XjLjAVfO+W9uePA24t4zj4uf7atVkvD4TC7Ofh88fc07wdfK4HAe4Jv+IW6/TUXovBRpWo/xITAo4Ntu9Ldj+1p8y9+gw7/9A8+7OEEAoFA4CHhyggK3gPvVmiIolS37kPyqFDjMoCIObmn6tvtdtXv99Xv9zO5gzC4nZ7gvvl8rtPTU926dUuj0SjnLpTkE+u/Bwp6yKJbviE97BCAWLBcLjWdTmuBdNwz8wDBhqBRiSU3gnv1qrz3heNQgJgyd751XjmvZElQPS7JN5VshBgCJ8t7KHMHEARwCkAIaZPw54xI0W638zaDzFvZPsK9e5XaxR3myYkyP+O5lXkMCDQudnU6HQ0Gg5y3wVrCAQJR3/X8WGsuKKSU8tzxHoDokkuB4OIZC9xL6UwowxndVcCz8zwK5prfudNg19y4U8iP9/n1n+8SIUpBwc9Xrh+/PxfiyvdVmc3AuRHiaPFh7sqMizIXIhB4LzF7tqu7Xx0iQuDRxfL6Vnd6Scdf91XST302MhUCgUDgCcSVEBQ8bR8xAXu9283545/KNPZ6dmig39xFBe9zPz4+1tHRkfr9fhYIpMt0fSehs9lMJycnun37tl577TWdnJxkMcET9yExi8WitmuC9/HjHvC2CLfAr9drTadTnZyc5KBEzuthdV5Bdcs82Qm0I0Bm+ZlX3N1psL+/r263m1scnISye8bR0VHOOZjP5zVBYW9vT9evX8+7Yvi2kS5k4ELwPAR+D9nmdYgzkEXGMRgMtL+/r+VymR0AvBbC6RkQHi7plXbcIMzNLiLO/bsbBicHroBer6eDg4MsKIzH4zz+fr+vXq+Xt5fkfkoXiLcqSMquElwMnjfgRBdxhDYXvvz5cj7PH/HcgpRSFs9SSveIRYgZrGvEKlp3pPPqfdkaslwu8/j8Gfj7mOdeil1cl9eWzgieD1unIsqVAawuVHgbCi0X7MjhAg+OIOZFUk3MDAQCgcBubLqV/sG3H+hjf/RZ6bOfl7abt35RIBB4X5D296XUeOsDd6HaqnrEts8OPBxcCUFBurRJr9frHD4oqVZph1zQ79/v97N9meowrQyk9BOKeO3aNT399NMaDoeSpDt37tREC4g1u0mcnp7q9ddf16uvvqpbt25pOp1mQkUQ5OHhYd7WkmtC3hABZrNZDvmjKnp2dqb5fJ5FkMViodlslol1r9fT0dFR7r1HJPEwOQQHFyZwL9DSQKI9hNjJs2ctcN/NZlPz+VyS8rwdHh6qqqocSAlhbLfbGg6HGg6HuS2CoEe2roT4kZ3AM/ZwTQ8adNLLGBE1IIEIRNy7pBoxdNLtrRPuBoE8l4GN7hTxzAqeeb/fz1kHzA+EHDg5ZV3QKkNLzWAwyKKVi0RkQTBXvluHuy64d8buLRXMJYKHOx7m83kWnwis5Jm4MLNerzUajWoODoQaf48hYrizyAMOPV/E3QZO+D1wcW/vcptKv093mfh1yswLxEZvFaGlAffRcDjM71nECP/84ToueAQCgUDgrfEzH39Gz/zg0+r9+chUCASuAlKzpc/+vl+i6l3ugN06TfrAH/j+BzuowGOJKyEobLdb3b17N//xTgCdtwt49R/CBKGlIk/vNOTKxYQbN27kKjdVVycykBKCBufzue7cuaPxeJzbEKgSd7tdDQaDTIw9u8GJzWKxyBVqquSEElJ1lpSP3d/f13A41MHBQW7L8J0vfD743nvzvUrLfFGxhQQjajCPBFR69d0rum799mA+5pUgSyrKLiAglrjogeDigoCP2+8XUckt6U4svRffbfhUlplfQhiZT98pwTMJ2M0DlwhOkFarpaOjoyxeeQsAZJ41xbhZFxD4MjSQ4/iimu82ew8mRdjgeTipLltqENsQ41woQQjgeG8vKi3+3I9ndiBg+Hpw14sTfRcUWFfuIMCp4K0L5De4W6b8rPDxl3kZZVuLt/AwFn7PveGKYWysV2+9CQQCgcCbY9ustH2XxCUQCLwz7H/geX3pV33ozQ9K0ra9VfUuDQpnh9Jr//ove3cv3oHhF9fqfs8PP7Dz7cL+Mzf1pV/z5W96TGNT6ak//mlVq8jJelC4MoICFVGqsWU4mxNN+qB7vV4OvoNYOdHiXIPBINvx3YZeBsORRbDdbjWZTDQajTLBpKILsYOsQRxpN6BqTDZAmefg1XQnnlRiubd2u52FAidgTspKq7j3n/u9QaK8RUNSDl5EUJAud4vwKr9nDkiqkdZ+v1/bcpFgSXcpuJ3eibOH5/kzdpLs88fxpfPA20k4l4sspVDhNnwXdZxEUpHHDXN4eJh3bqC1BiLO7hx+fm93QYTx/AEfMz8rcx7K51beH+N1Wz/jhZS7sINDwTMOvBUEYcbvy6v7nNPXA6IEY9s1x752fD368+W9hQjI68osA4j/rhDFMhTSAznLjBa/Js+B51quhUAgEAi8PcxvNHTwdV+l7Y/9/Yc9lEDgkUaj09H2F774hr+f3Oxq9OJ7m/W0bVUavfjg/g5aD/bV/fp/6IGdbxemNzpvOS9pI137pV+lxtl73561/4XXtX75lff8Og8bV0JQ2Gw2Ojk5yaScIED+0MemDuHBnUCgoAcyupOBSvpgMMg97WdnZ5pMJpk4O5Gdz+eZ3M9mM41GI81ms1xl9vyEzWaTr4XY4GRoPB7fQ46dPDoxxRLP76mMvxFcZHBbPufmepxz184MhB0eHBxkh8Fms8lj4fyQKn6GmODZC97TjrsDwutuCVoMnDi72ODjdlKLw8Mt7VT/nTxCIAlr5OfcM3Pn5HxXQCNuAtpBBoOBrl27lrfDZE3wNZ1ONZ/Pa9Vy35nDsxKcIHuugJNvnwvP6uDe3PnirSTstNHr9dRqtWpreTKZaDqd3uOuYF3wMyflvusDbqDpdJqfje/A4oKej5lj+bm3YDD/3sbEl7sdfIy81p003rbi4LkjGrAWSzHH5x4BJloeAoFA4J3j9CsqzZ8+0gs/9rBHEghcfTQuMsF2/u65Z/QPfmP/fRzNe4/Zs1t95grcU7UnffZ/+8Zz/yDxgb/eVe+vnUjSYx1aeyUEBazykjLB2vU7/vh3izOOg8lkkomspLyt33A4VK/Xy60O0+lU0+k0E4bVaqXxeKzT09OahdyJhaQaYVmv15pMJvnne3t7Ojo6ykRotVppOp1mh8N6vc59+LRyzOdzjcdjjcdjTSYTLRYLHR4eSlKtUlw6DcodC6gal1vfcZ7FxeJFeCBcjx0cmJ9ms6nVapUFBQhcSW69JQOCj5jA3BKW5yQTtwg7Nfg5fZ7dZcLWiHfv3s3kcTQaaTwe52fN/TBf3p7BvHl1nXmkyu2tIezQ0Gg0ciYEeRaIV8zJfD7XaDTKThbWR+mIwHbPPPmuCggKLpJ45d9DHL2NZjweazQa1VwY5DOwGwa7f5ycnNS2PKVtgvYewPNxB8z+/r4ODg5q76Eyh8NFLOlya0tIurcDIRyU22HidnFxy58P24RKl3kZnp3gbRLuavD3gTsOEMJ8bnftLOPvs0AgEAgEAoEHhb3jY/2D3/WVb3xAioLG44AvflND+uW/SJL0Fb//72tzcvqQR/Te4EoICtIluaJfG3Lg4XiICZCbs7MznZ6ePxhIOWn6g8FAx8fHun79urrd7j2El6/ZbKbbt29nR4FXLd2a7dVleu273W6uSvd6vZwLUIoJjUYjV41LS7nnJOyyb7vDQLoUFdw+DxnieN9aENLJ7wmhw2kAsYJU4Y6gogyY05SS+v1+JnAQsNIe7m0ZjMe3heQYCLW3dXgrw3K51Hg8zs/AswA4NzsmID4RyCkp32PZIlK2W5RCFdV+hAXfcYP2Ado7COP0gMJyXvi9u1ScxJbZCNJlqwOV/vl8np0Gy+WytlYR0Ai2RLA6PT3NjhzIPsKIOzO85QLSnVLK4hHndRcHLQplu0MplPi6KNczog1fZI0gUnk2hQtBrCfftcHH50GN3jYDmLcyUNJfG2JC4L3End/0jZq8kCTF9qSBxwvrfqVXftsv0/N/6qe0uX3nYQ8nEHjoaHzdV+lL/8RR7WfVnlTtbaX4U+OxRtWQ1KikSnrpN3+1nvsbp6o+/RMPe1gPHFdCUKByCZGjQgnBki5t6Fi6fVs7rPr821PuDw4O8u4F7LgACURQQCBwAucOAdLgSyIIqfHgOQgntnhJuXrs9nAq1p5KX9rb34yI7RI9EBs4H0SK7706XJImyCQtF062+Dnzzu4GbjH3am7ppHDrOdiVe+DXguCRy4DYQnsFuzR4hdx3cuDZUOl3oYLj3dLOOD0kkVYSBBZJuU2lbDfw5+AtOLgOfF35eLy1oBxjGT6JWEKwJ+f0vAee/3K5zGTcXTasV1+HLhJsNps8TpwsiAblM/J2gfL97O4UnjVz420gzWYzZ6GwPtwl4aJiuVa5b9/VxFsjfI7ddbHLqeKv9YDHEBUCDxqNTkfrf/grNfpyad0PMSHw+GHbrDT5cKV0kTUVCDxp2Lv5tFYvPpe/v/vlXU0+HJ/3TzSSNP3gVrd/4YFubB6/nJkrISgQRkjV3Akl+QRUVnu9XibnHON5B+v1Oh+DoNBut3X79u1crUVEmM1m2bHgifadTuceMgL5gUB5cjxVd4IJacGAnNEmgBjhoW+7tnzcRdB2kXPfGYEqe9mDv1qtamGNfk5/rZNFCK87FLwiXYYEuivC/y3VQ/ogu2UV2cMfnRRDjOfzeU1koqLOc4ColgGQLlr4veIkgdy6AIJrwp8xc1dmdfizg0TTQsEaI2zTAwfJN0Ac4Vxly4OTcK7rtn3WHpV6WhbYscJdHE6+XbDyNSld7qrAe9JbHbyCz/PfFTLJPbjww1rgfiTlNqBut3tPOKYLPfyOc3NNWllYG/4aXwO+jSVhqj6mxWKh5XKZx+run0DgQSI1W2o8e1Of/TWdsLMGAoHAY4ZGvy81Gjr7BR/Qz32rC2rxeR84x51fWGlx40gf+Jm+ttPpwx7OA8OVEBSazaZeeOGFXI2EFEKIzs7OdP36dQ0GAx0dHeno6CgTgcVioZOTkywUbDYbHRwc5G3+IFl37tzRnTt3dHJykt0DEImUUiZoWK9Ho1GN3GB/Rxx45pln1O+fB4vgeGi327nHnao6rRf9fj/3lGOZp7ccscRdB6TxQ6ggS1459iowJBQRodySsdxer2yNKKvPnAcyz7FexYdwYVN3ocHD+LzizPP17QURKRBuyt5+SCGk1vMFms1mzRrPNbzKTAuAb1/pu3xA8JljF4sQRiD0PGvA3CEIMG/sAsGzOjo6yq0D0iVxJlzSz+Uhjqw/3De0zzAu5oG2Dg9h5N5K948HRJbtFR4MikjB9RFPfMcKf7aSau9hjmfOaUdCtGMdITqRP8JcSFK3281jZN4YHwGOnnnCvbmQwJrxcfrP2Bq2qqpa20iEMgYeNBb/5NfqpW/eC4trIBAIPGZIzZY+8+//QlX78XdD4M0xe3arn/m9v1Av/t6/99iICldGULh582YmQ6enp1lUWK1W6na7mZQ9/fTTunbtWm07Rwg0VvdOp5OdCZvNRuPxOIsJ5ChQjYRsrdfrWn857REEKj777LP60Ic+pOeff17PP/+8BoNBFghms1km3ycnJzo5OdFisagRU4gyX4zVq7xOgKlW83u3pfM9pI02BNotOL8LJV7NRbyQ6rb3ssrPGOlRd/HBbfll+wLn9RYEr/hCjp1IuoMCIueBe2WegwdkQt7dCu/J/QQo+g4gfm0XrxCBPFvC788r6TxL7sXXrOcqUIX3rTkRQMq2B8C8SvU8CgfPFsu/7+Ywn88z8Qalswbhgusxr6yXVqtVaxdwR4o7YcqQxV1EnOfE+92dB/48GAu5EKWg5lkcLqJ46xDrwNc268/bSHCalC4SRMgy/yEQuG8kvev9wAOBQCBwNbH3C17UF37lU9o2IxMh8DaQpGqv0kv/xtfqA9978li0P9yXoJBSOpL0/5b0NTr38/xmST8t6c9K+rCkn5f066qquvtm54F0pZRypdC3BERQYFeCTqeTAw+pTvtOAhzP+W7duqVbt25pNBrlYyFbEMrlcplJKG0UhPt1Oh099dRTeuaZZ3Tz5k3duHEjb1dJNZpzsGvDer3O4YXYrL2HfFcGgxN9bxVw67Xbz3FkSKplEUBQyxwAqtDenuCVZQgy94PzgPNDcssASL9uKSSUuQUQcRcUnNRyDPdOK4yLGe524GcQT8gu56KlgGfCddxhwVh5FuQG8Fy4VxcxysBAJ6AuiPAMPOehnAMXFPy5lEGXDncSENo4mUxyOCnX9/XD927p5/l5cCbz4FV+SbV1XAozPEfGzO85B2uB+/P1Wrb0+D3yvFh77ubB0cB7muu5sEXLh9+3vw9Z84htuHh8l4hHAQ/qszjw3qH6xq/V6IP7CutrIPB4Ij6Hn0w0vvYX6M4/dKjZc5GREHgHSOdOhfWgpUfnr803xv3ewx+W9P+rquorJX2tpJ+U9B2Svq+qqhclfd/F928Kqo3YnyEJ2NQ9h2A4HGpvby87AghZlJTDGCHyuBNefvllvfbaa7p7966m06m2221OxSclHtJHwONkMslhesPhsCYmHB4e5twEKpzsOMHuDlzDBQVQti9gS4c8e9Xfe++d5LLbATZ/J/seZFeSqbJ671VwKueECXq+QBl+6LkLkHte4zsc+HaQ6/U674yAk4IqOUTOt+3D1g7p9RwEF3M844I2BVoPcLxMp9PcFoNgwv37Gup0Olm08gA/v3/WHQ4DSfl8LhZ5a4jnJSCWubiEe8IzLJjDMkhTuhRF+J71x44O0uWWpv7cnYxzTubfHSyereCtIu5KcMHDQzdZG/6ccNx4kKMft0sIcPGINY6AwrEu7JQZIcw99+RtGoyJZ4FbiZ1YXLB5RPBAPosD7x2++E19nX4sxIRA4DFGfA4/Ydg7OtQr/9ixXv8lD3skgUcVm96+GsPhwx7GfeNdOxRSSgeSfrmkf0WSqqo6k3SWUvpWSd90cdh3SvqUpN/xFufKFX5CEukB73a7unHjhp555hk988wzOj4+1uuvv55bEubzuTabTd7V4ejoSNevX9fe3p4mk4lef/11vfzyy7p9+7ak820T+/1+dhlst1vdvXu3Rn7YYnJ/f1+Hh4f60Ic+pBs3bujo6EiDwSC7EyCIVMKxm7NFH3kP7I7gvfce/gjReeqpp/K5gRMcCD4Vd9+Zgh0c2JGA6nNZ+fX7xMUBefMdAZrNpvr9vvr9fo1cYw+H0EHaEX8QFmidkM6JLT8fjUa5RUFSbgXwar3b2yXVBAx3VLgVn3mivcLdFhBO8hro32dM4/E4hyUeHx/r8PCwtosFz3c6ner09FS3bt3SbDbLAgAiRrmrhr+WTA2s9ohbPudO/J0gQ24h9e5u4T5Ho5FGo1GeD565tymwzSlrCFeGOxUQBVxMcLJfEv2yFaR8Ti4uuXCEOFMKI41GI68df12584hnNfjc8Vni7UT+eneEsOYQ/hAPfB0+CsGMD/KzOBAIBALvHPE5/OQh7e/rZ77jq7RthTMh8O7xuW/Z1/Ar/yHd/CPf/7CHcl+4n5aHj0h6XdJ/nVL6WkmflvTbJN2squplSaqq6uWU0tNv52Rs3eh2/b29PQ0GAz399NM6OjrKBBxSd3p6qsVikXMT+Go0Grp9+7Zu3bqll19+WV/60pe0WCxylf/w8FDHx8c5jV9SjaxBmjudjg4PD/XUU0/p8PCwtt0fRBo3w+npqV5++eUcXnf9+vXcetHtdmv92F5p5T57vZ6Oj4+1Xq81vQjo8JBGDzlk5wPPJvDj3Cbv/f17e3v39Na77Z9qf6fTUb/fz+QaoubbFXI9nhvOBt8W0PvfadEYj8eazWa1HnivZmPX91wFnzcIp+8W4QF/EE7maDqd5uBNyLTb5afTqaqqUr/f19HRkY6Pj/PcQJq3262m02kO9jw7O8tVfMi7tzvg9OCazLvnNUwmk1rwJkIH4hF5A+4gWK1W2e3iYsJ8Ptd4PM5hlJ1OJ4sHnIMdDqjQM9+0BPjWp5B1X2Oe8+HPxcUIXEXeJsG1uD7uERdeyl0cfC2V7xPaofz6rE9vY/F5c1GgbNthvlgPrHFfw48AHuhnceDBYu/gQJ/7N75GZ8fhTggEHmPE5/AThL0XP6LP/dpnVEVmQuB+kaTqMVhD9yMo7Ev6xZL+zaqqfiil9If1DqxcKaWPS/q4JB0eHtZS+iVlceDGjRt67rnndO3atRw8SOgc1nUq1F6FhADevXtXk8kkkwtEBQLnyrA2rP9kJwyHQ12/fj2LGbgM3DJNdgKZBrRecB2qy06CJWWiRXJ/p9PJ2036cRzrPd9YyJ0gl8Tbe8+x0I/H4yxoUHnmvB7CeHBwoMPDw0xyEQV8dwiINu0L3sfOWBAzIL1Y8t22zrkhkU4g/Rjmoezt9/YC3yGE1g2CNQkbJCeDeUQ4Ojg4UKfTkaR7dhagZWI+n0tSPg9jclu/5wV4lZ9149sUehggxBYRyAk7xzEuquhY/nk2voODdJmN4EGM7hooMzpcgEJY8zYF7pd15o4Gb2Nx8QEhznfN8Ofp5/UMDhw3/v7kmXH9siXBhTvf8aF0jbB+vcXIRSHmmfu74nhgn8Ud9d6bET7JaO5r8VT80RkIPOaIz+EnCFW7pcXT4UwIBMD9/LX8kqSXqqr6oYvv/5zOPzxfTSk9e6HEPivptV0vrqrqk5I+KUk3b96svOooqeYOeOGFF3T9+nVVVZWJHaRsu93W+qPpiT89PdXJyUm22EPYer1erZcasgLxgEzgGjg4OMhVa6q2EDj+PZ/PM1GmEjscDvMWdIQoup0fYgcpYlxO7jmuzAxw8u52ca/YIhZAnHgt1WDcAZLyNSFYvV5Pw+Ewb3XJXEEOPUuBFg/f9UG6FECYJ54JggnWd+aBNgnpkgjyXH3O+GI+uZ6TYg9/9HYCcgJo3eD33W5X165dq+0MAmmlIj4ej7PbgeBPiCjigGcN+Dh87IgAZYWdIEielc9FGaDo98f7gOftx3s7CMIWY8RJ4OIDawExAceDZzGw5hDu+K/nESBmuaDAvbjI5XkTvhbdYWOfFzXXBAIhLowy8NOvvStAkvksQ1BxmPAZ8IgICg/ss/ggXYsy+gNEo9ORrh097GEEAoH3HvE5/IRg7+BA68POwx5GIHCl8K7/Wq6q6pWU0hdSSh+rquqnJX2zpL9/8fXtkj5x8d/veatzUQH2EEC2frx586aee+459ft9nZyc6M6dOzo9Pc1iAqIAxA4yNBqNckuEJA0Gg1oegPeAY3v2ivfx8bGef/55Pfvss+r3+5KUwxYl5cBHgv4mk0l2NZDlMBwOs0hQ9m5DfAiHHAwGmSCSWo/924MKqSx75dpD/bB4Y5vnmuv1WpPJpJbnQFsAOQOSajtpeCVaUt6+EcLL/RMsyTX9XkejURZcEBQgnGWrA2S93+/XtkO8WG/5eFwR3K+k2nMpHR6ISSUBZXeR4+NjHR0d5bYC8iD8Od+6dSu7E4bDYRYeWIfL5TI7VBAvIMG0L7gbAKJKlgbOiOVymQUzxA9Iv4dTsjY8g4F1zZgQSLh3sjd4brgsINaICb7GXNwB7oTwFg/EBD+nCwwudJQZDcwP682vwWfEGwVB4uood8pg3hDLfI4QLtwpwdrx4x8FPMjP4sCDxfKXf40+9y374U4IBB5zxOfwk4PXf+1X687XhOYTCDjut/z2b0r60ymllqTPSvpNOt854rtSSr9F0uclfdtbnYQ+bq+CIya88MILud1gNpvp5OSktm88oYYesuY9/dVFsKO3OpS7Lri9nJ0frl27po997GO6efOm+v1+Jt5UfReLhU5OTjQejzUej7VYLPJ1aJPodruZbFIRR/CAnEK8yIagEj4ej2up+mU13okRZIhcAsg6xJJ2Aq7t5AyChqhy/fr17Ezw1gRIMuIFThEq4BA/tttk/gmPnM/nmayW22jS6oL1v9vt1si3B/AhxJRuBUh7SYZ57ghJ3pIAmT86OspraLFY5MBF1sZ8Pq85YRifrzcCEdnqkpYayCm/c3JNdgGtCKyL+XxeE7sg2sxZ2X7i9+Uhhr5zw3a7zY4a30XDMzQII+XcnU4ntxG5S8TdFf5MOJdnLnibRkopr0PELj83x3orhd+7Oz5on+Ca3sZR7n7Be4O17G0jvH88sJE2GNbOI4IH8lkceHC49fFv1OQFSSn+8Aw8WWiOGvryT/681q++/rCH8n4jPocfZ6SkL/2736jl9SpE4kCgwH0JClVV/Zikf3jHr775nZzHe6GXy2XOFDg8PNSNGze0t7eXA/0mk0nNVn4xjlrvt28jh2uAFHeIile+ISCQ2W63q+eee04vvPCCjo6OVFVVFg0gO07+qGY3m011u10NBoNMRCAoECkn9ZKy3Xu5XOrk5CRXpz14kHvzPnYAGfKKPsSSij5fu+ad4EDfuhJBwm33/IzngGjjlnjvfXfS6CF8kMgytI81AAH2HR4QYrzNwXMifPcMiKVb593a7m4PRBIPOGT9YIHHYYC4UoZkkqHh4+/3+7XgP9aYj6PMGUDMgPRzvvJ4nzPOz3xCpskr8PWC84J2AMQC5oT3nrfSeDsAc+4iF691wcRzPXzsHvrpDhKIvruGvLXC8xV4/ogQvDf4vb+XcUL4+wwRwtcLcMHE2ynK99tVxYP6LA48OJwdJq37j47TJRB4UEhbaf3FLz3sYbzviM/hxx/L40qbdojEgUCJK9EgDOnn3xBzdmNIKWk8Hms0GuXqsVvgITyQ2HLLPch2SbIgERxDRffo6Egf/OAH9eyzz6rVauXWCTISILFOmDlHt9vNbQUEIbIdJuSTqqlvUzeZTHRycpKPg6hBjlerVXYfuDXck/07nU4ttNHt4dwn98+/PX+C4D7pMnRSqlvpyabA/eDbWnI9F0KYGw+HdELpxBK3Q9nTD8H3nnsEDEm1Lf68ncRzBZxguqDAmihzEPx6bufnGu48IfSRZ9Dv97MowDpljn3HDCfL3CdrZJdLAzihL3Mr+Jm3F7io5WIDc8j7iHkuQxg5twdGQtSZK9aXt0nQ7uOZF/78vJ2C9cN72XduYH7coeABit4KgRjl68zH4xkOjNlzFiRlh0mZLxEIvC2kpP3nn9P2SvzfNRB4f7E3T2rffdijCAQCgcD7iSvxJ0+j0dBgMFCj0dBkMtFgMNDR0ZGuXbumo6Mjbbdb3b59W3fu3MlVVsiXdO4MQGSAKHgFG7GgrNj6tnkEKA6HQz3//PN68cUXNRwOM8FjK0dIDa0XXJ/ref88xH6xWOju3buZiCMS0EIwn89z5gMWea/OQpg84M6t4oy73W7r1q1bWiwWGo1GWiwW92yV6LsAdLtd9fv97Arw3nzfRUI6J7GTyUSvvfZatuQTclmSPp6DV4v9WSNiuEXed2pw8gppZ06azWaeP9/pgPvzYD5/9pDMsjLeaJzvcjGbzbLY4NkOjIFWAlwauAkIuiSEk2t5GCNj9fUJGBPuFQiwt+V4TgjnKh0E3i7kgZe0a/h5mW/aOxCHXGRyN0/pQPBcDl4HvN3Cd2XBdcOc097CWBBzPD/B1787e3xc3j6Ey4jjeI+z4woCh4uAzBUik7dFuZMmEHi7aAwG+unf/kFVjVg7gScMlfTU39lq8N0/9NbHBgKBQOCxwZUQFCAV2LKHw6GuXbum4XAoSbp161YO90NMmM1mucpLVd3JmoewET4H4VwsFrVkedwR7XZbw+FQR0dHudo/nU41m83ysZAUeuq9Ug7RYVeA5XKp0WikO3fu5HYGyCGECYGBjAHcGq1WK4clQt7IAYBsS+dhk91uV81mMwcvsruFiwlO8Futlg4ODnT9+nU999xzmZjRTuKEfTQa5Yr6ycmJTk5O8jPb39/XbDarhfOVlXR3UyC24IRwIgqxXi6XmQyvVqssjODC6Pf7tUwFyDXnQEygFYTnT5UcYu99/uQ+lG0YLgBALhFbvG1lMBjo+Pg47/xAYCXulMVikZ0BACeAw8ftroPVapWv75kaLsJw/y7g0D4Eut1uLeSwdPMwxy4mML/kG9Di4+cuRRpajBATZrNZJv3kVrCrhe/GQb6G7xJR5n14K4VvUclzbrVaNRHI3Uf7+/s5fJT3rouB3AdjQOQIBAKBwFvjK77zVPrM5xVSWuBxw/5HPqyf/fbntG3H6g4EduFKCAqScsV3s9nkXQ+clGBJR1AoCaD3d/Mzt1ZLl1vDUSmFVFD99UR8qrtUo91q7UTWRQxI62KxyDtRQMLH43GtD5++fSrw2M25frPZzJVjt+4T4CepRqKazWYWMajOQ6I8MI+fDwYDDQYDtVqtTBI9cd/v1SvBECzmzYMD+d5t+FwTMYEWDSfCzB3XhNAzP7SHlBV5f9aljR3hBMHFt9pMKeVMjUajkZ0G3JePxzMs3CnCNdlCkh09fNyz2Sxvq5lSys+43MWAdcS4PcDRHTeMx9t5/Hl5JkN5nF/PHRi7nAn+es9ugPR7oKLPlTtSSleBOwJYr747Q5mLwvy608AdM+6UwIGAq8MzN1xE4Z4Qdjy7gfkrwycDgUAg8PbQOJlofeHmDAQeJ1TNfa0O4m+CwIPH8U8kXf9744c9jPvGlRAUqosdHHAODAYDHR4eZsu0b48HofE/9t1S7kF4bvGXLvu9t9ttLcHeswggeJAhWivYicDJTWnTh0yS8zCbzXIrg1doIV2+bSNVaO/rB16BdQIEifK+fMa5K6iRsXY6nbyNpnQZ2EdGBEQVi71X5JlnJ9mMg4wHD02ULm3wkHPu30UH73n31gVcKP4cIaFl/oLf997eXg7I7HQ62dLOM/BQQm9d4LW7Mgv4r2dQsM0lYZbMEzsmzOfzPPeII8yH53p48OGuuSkFs13ZCV69Zz2W7Sb+GuaL9UVl3sUEF328JYTn5XBhB7eJP6ey5aJs9XCnha8zf8/5GvD2D+YUsdHzIjiv74Lh87XrPhhHIPBO0BgOlV54TlUkgAeeIKSN1LnVkM5Wb31wIBAIBDKOf2ou/fCPP+xh3DeuhKCw3W41Go20XC7VarX03HPP6bnnntPh4aEWi0UWFCD4BN5BjugTL6uL3k/ulnzaByAUkP9Wq5UFC9L2PXnfq9wQe9wGXHM2m0lStuvjTiAzAWK8WCyyawECQ6gf2QpkAHhvvJNdKrOIE9i5EUV8S0LOgT3/+vXr6vV6edcGxnJ8fJwJs1fkPSPCwyh3tZ14xZqqMWKCk3Z/XhBHWig8UBIBpNvtZgLquQEuwHB+duvodrv5+oT2kXeAADAajSSptv2l2/ndQYDbAmGG3Ujo3cfJcXp6mkUy6XK3D+6p3+/XsgpczHEyXe5mgaOF40qBy1GGYPoOFZJqWRblTh04cvr9fv65t5N4NV+6dKGwJrbbrcbjcc5oKPM7OB/ZFcwnc857iDDQ7Xab17o7GmgD4t7dUYTgI6k2V/4M3cnhIY4+jkDg7WL9iz+qz37rI7PVaCBw/6ik/VnS85/4fq0f9lgCgUDgUcFjVrO6EoLC2dmZbt++rWazqeeee07PP/98zjA4OTnJZB4yCYmEJEBwERgajUYOyKOqD3GAJJCr4AGPZDNMp9NM4FxMgBDyOmzzECl68enlR5CALNJKgZjg2xNiA/eK6t7envr9fg5QlFTbDhORhHNUVZWvsatNIKWkw8NDDYfDfD4yCshuoN+ctoB2u52r7VVVaTqd1irVZS5A2Y6wCxBWdxZ4ewP3ggBAvz3bh7r9nUDNkgQSNtloNHTnzh0tFgttt1t1u10dHBzkUEJ2DiFnATjZhPAiQPEsB4OBhsNhFgdYO3fu3MkCDc/Rd9LodDo6ODioBTiybty14K0RvqMBVXm+Z7ylA4HrI+wgRvG+2dvby8eUz21vby8LXLxH3A3ANXjfec4CogdrBeGC9yGZErynPCCzDH0E3hrigaG8bxgjWSUuZnH8m+0g4a02rC/EqUDg7WLv+39CX/mzT52HMoZLIfAE4PrfTbrxF35Cm7c+NBAIBAIXSJX0sT/4eW1eu/VYaAtXQlCgKvjUU0/py7/8y/Xcc89pb28vuwPcneDBbFimqWDiWkBEcDHBK6sQDVoNxuNxzX7tYXqIBBBSiBtkG0IDMfJ2AA+O9G30PDNBuuzl9jA+v0/PXHDiBzGULre/w91QBiIy5hs3bujo6Ejtdjtb/RmHt1B4hd5t4ux64e4Mz6Eoia8TNci+iwlOgKnMMycQOtoJvGWFe3bXB2PwyvRqtdJ0Os2Bf7gKIL0EZXoLA8/RiaVnHBA8iJuk0WhoOp1qNBplociDN11MaLfb6vf7tZ0n3iiMkXvc29vLogPCmotnvBf8WgQTSsoiEfPhO2H4l69FRAAn9zhmGDOE39tbVqtVFtJ4z3BOBJ4yv4Hnhqjiz5l7Yu69jYJ75Xs+L9jGs2zf8CBMv65/DrmAxHwEAm8X1epM29PRwx5GIPCeonGW9ML3nkmV1P7iqTajWPOBQCDwdtG629Dzf3OhzauvqVo/Ht6uK/HXclVV6na7un79uj7wgQ/o2rVrtbYD+rE9DBGXgBMbyBUOBifxkCuvlJIdMJ1O83aEkKfSWu+BfhBdCCr5AJwDUgJBcuKNOIIQ4KKB9587yXXLu2+JSD8+PfZcBxJEqCXX6fV6un79uo6OjtRqtfK5vCWiJOdOXhFDvB2jDLZ08cC3YCzt907QvWfd7wECTpXYw/38OZfVeUgv5HYymeT1Aakl54CWBAi/PyfPTODZM8+IL5D36XSq8XicQxgRO5xQcz+dTqcmJjiZZ768r9/vhfeDrxl3CDAvvguFu1RYlwhJrHcXoDg3WSK8LyD2nqVR5ltwfsQ//32Z78AzYWz8jvcNjht/XRkkSUvEer2u7dZRZpt4zoS3S3EdX5/uxCjzFQKBN8Pe0aG2X/aBcCcEHlvsT5N6Lyftf9+nJSmcCYFAIPAO0Lrb0OFnt9r7n370sXAmgCshKKSUdOPGDT333HO6efOmWq2WXnvtNd25c0eTyaQWCgiZhQhBILxSTZI8xNjt35JqFmm2tNtFWiTViJoTGSeIEA/v+XZi4ySdNgqvsHplGqEBgsfvqLRDtqj4eqAebghI63A41Hg8zgT7mWee0bPPPqvDw0Pt7+9rPp/n13OvvisG8+D97uxYwO4GtCIwZrfUQ1qZO54Xx3rfvc9zt9vNRNKfC6+hHQY3iudK8LxxmJyenur09DTvwuD5FZPJRPP5PLtMeJ4eCOlEl2dEOwBCx3Q61cnJiU5PTzWZTPIuIu4Q8R05PNODOWbNunsFh8B2u80Bjx4u6TkUuAr4Gedpt9t5/AgJ3sLjZLvX6+U1wJqZzWZ5DsgdkVRbB4h3PGN3mrClqYsl5c4VDn+OvjZxLrD2OYZ74r5cwEkp5UwT5stDUX29uFMDEc2feSDwprhYJ2e/6Mv1c7+q9ZAHEwg8YFTn9lxJOvoH0tGf/P6HO55AIBB41HDxOfrc31pq/69/+mGP5oHjSggK+/v7+qqv+ip99KMf1Y0bNzSZTHTnzh2NRqPaTgtecaWKCMnx6rL3W7PtpO+iQLAgVVS3sNO+wHUgvZAliL5vpwdBKquhgEotZNO3LfSdFDwkj3PjzPBQSEhfv9/XYDDI88F1Wq1WJocICt1uVx/72Md0/fp17e/vZxLmwY/YxzkX4YKQ7+VymbfhQ1Dodru1dH5JWUxYrVaZ8OOqYCs/RI92u53Jc6fTyTszQBohjJ6XAMFlrJ674NZ3Mg14ljy3yWSiyWSSWxP6/X7OXMD5gXWeNeTCEEICz2MymejWrVv5+fq1PAtiV04ApHx/f/8eAcPXBmvYbfu+Rpk/F9kg0LhYCEjkPcV7DyHCHRez2SwLE95GhFuBkFHOTzuCt9uw7lgDZaBi6aLgXNJlJoS3EXH/ODIYn/+OnAxEONamu5rK9hvf5YT3J+4Sz3EIBHah0enos7/7F6lqSFVDeuySlgJPPBpnSS/+gZ9QtdmoWq9jhQcCgcC7wMf+4OfP2xwe9kDeA1wZQeHZZ5/V9evXlVLSyclJJlDSJVGHbHlgXbPZzJVfyJtXzCFjm81G3W43kw9EA1LiB4NBbUcCFwuwfS8Wi0wMfUs9guggW2VftleMIYSeleAk0YUKyDTj5d7a7bZ6vZ6Gw6Ha7XZuL4C49no99ft9nZ2dZaFkMBjoqaeeym4Kxgk5Zj65h+Vyqel0qul0msdNWKMLN6XdHYLP/PR6vTyHkmrE3Imx5wt0Op1aLz1iAjZ84OSclgtvZUCIcrcK64EtShFl2M2A0EzaNXgmHuSH6MBzYZcMwgZ9rN6+whxBkMt8AF9zvk2kV/7dycFxPp9O0D1HxHfRYK2QT+FCh7srvLXF24R4lrzvfOcId+X49pyQeZ6TO3pKZ4y7EsqsBhfvaL9gblgT3n7Dz/yzgtd7nom38kiXIZXR8hB4SzQa2rQrVXtvfWgg8CjhmR+Q+l9cKG22kZMQCAQC7wLH/0vStZ+aS9J5AONjWqi6MoLC9evX1e/3td2ebzeHIwHSULYb8G9J2S5OtbFMcId0NJvN7FhYr9eZELEjhAcLQoAgjT4eJ/3el844IT3ekw0ZK7cBhAw5seS8EB0nVJAiqur0y0OesO4zH2wteXR0pMFgUGtL8OsxXt+dYjqd5rYFd1V4loAn4XuGAmPp9Xq1LRH9+UmqhVY2m00Nh8OcYYAw4VV0F09YExBBJ9+egcF4eS2VdKr6hCR6u4pnZvjzdiGI9hXEBIQNxuvk2VtpeJ7kObjDg3t2caHMCXEBgHlF8JAuBTHcJL5O+UJs6Ha72ZVA9oMLNJ7LQBZJGZbIOF0coHWFe/TATs8pwVHjwZHcA6KOv5Z75hj/cpEPeLYI94Hw5HkmvGf9c8PzPQKBXdg7Ptb2ox+QojMm8BghbaXB5xo6/NGXtfnMzz3s4QQCgcAjhcZZUv+l8z8Mrv/4WPrhH5f0ePsXr4SgAOHd39/XdDrVZDKpVbtns1mNPEFmJOWKPX/8Q9Yhn97PjY2f9gIEBazinu7eaDSyZR7CCCmhYgsJo5rvYoJ0WQX1e4EYU0lnzJAqqt/L5TLfNxZs/stOBWzpx7U4j5PLfr+vw8ND3bhxI/foe35BKbzgSpjNZprNZrUQQoinO0Uga07oPVxxMBhoPB7nZ0ZFXFIeC60PtFBIlyF9EF8qy6PRqFYlB1zbtwX03yGWIAQwlsFgkNtGCAKl7953UijbFbbbbQ70HI1GWbjgdQR1cm3GzPgQMTgvv/c15K0stFIgVnjWAOPzqjzr27MNfCtGxJtut5vbIRAa3HHgLQ0eJsoz5FmVgan7+/s6PDys3Zu/XxBgELzYMUNSFu8QYnhPuLBWPnsXNDjGhQTPIuEajAUhBTHEw0RLgSIQcKy/8gX97K/rPuxhBAIPBGkjqUpqrKVn/vMf0WZ19pavCQSeCFSV0jqp2qtCQA68IdL6fHG0TpJu/qdPVtbMlRAUsESfnp7qlVde0WuvvZYJAGSXML52u10j2wgNnuI+GAx0eHhYa2uAwEBKjo+PsyW71WrV7OqE4J2cnGg0GmkymajX62XCS24APen029OD7wn+Tn49G4HqNvdFJgEtDuxwwe8gdVTUEWAIldxsNpl4U2Xe29vTcDjU0dGRDg4OcmXWsyS8ej6fzzWZTHR6eprng7YKngc7JkCKB4OBUko5kwFy5iIAx0MYGd9sNlOv19Ph4aEODg6yU2S5XGZSSisCIgytMN5aAJmmck0bCETcBQavzpPZQKYEIgp9+N73XwZO0j7A3Ev1dhVA+4gHYJYCDNX4crcFru1iQkn4EZHa7XYWQljXOH48kJQ1ynzT4sHWqVyXc/v1/F7L9hB/b9Fm02g0als5urDCDg64Xvg3YoKfz4UZd0V4u4tnSXhbTRnqWDo1GC/HeCtG2WITCAQCjzM+8hcWavzIT0o63wI1EAicY/Mzn9WLv+dl/ezv/lptOo9znTlwP/jYH/2iNi+/Km2rx9qNsAtXQlCgikp1HPK0Wq1yGCCEtN1uZ+LmbgAIAC0MECdvdfBANnr1uTbjoEI5Go00Go0yuYUge4q+5yY4sS2JkNvmPWhvu91m8uVCgAca+i4KCAqQXbdsr1arTIwgkfSNO/lzS7rb6dnFgd0EqB5TSZeUK+xOAHu9Xp4Dt/tjefd0fghaeR5cArgTIP3eF4/Igk3edwpAxOF+aSFhW0tJ2ZXgu2CUuyLQ6gAhd5eLt1kwv96O4vZ4t+t7dd5zMsqMCNamdLnNI8+33AqROWq1Wvlnbtln7tnG1MUIb1NBIJrNZrV8EAQ+jmEsiAfunODLgxh5PaKZuxfKdgnPg0A88blgvn1t+c+BCznMgT9f6dJJ4TtRIEb4Dg+8n2OHh0Ag8CQgbaSP/Pm59n/6C9pcbLEdCAQMVaXtfP54e9YD7wqHP5309KfPi62bl19V9YR+hl4JQaGqqtxaMJ/Pc1XUcwQ8Ud6t3U7WvVoLIYWEOCmsqipXRiFj3ve+Wq1yjgPHQvh9XPxeunRZeJibk153P3jCv5NXJ2nb7TYTIkhR2Rrhlm1Prec8ZCwwZq/wUnV2wsw2mogo3W5XvV4vj41qP3b6Xq+X59Yt596vTlsDP3dyDfGl197FHZ4n68N3L+A4bzHwXQVYL76VJnAbvLcxuL2eZyJdtl6UoX+ICTxXX5PMVbkOgD8PBJFSIOE83mLiWQTSpevDWyBYMx6syHx7m1Cj0ciuDN/G1F0QvNcQNnCtcG0XE3jGZdaF71zBc+LYMkCxDFiUVBMNGJu3nfj6BmVbFHNZZje4s8Gv7y0UgUAg8Lii+0pDrdNKaSs1/vZPRotDIBAI6FxkPfjZ9LYEpOs/sVD1t3/8vR/UFcd9CQoppd8u6V/V+ZT/uKTfJKkn6c9K+rCkn5f066qquvtm59lsNnr55ZezIwDbOyRmtVrVtifcReYg21T8vSoLyYGckUUAmaiqSr1eL5MkiDXV7H6/X3MfeIWZfAGq+LgPynBIyIs7Gxgzr6WPvcw4cCu/V13p4WdrP8YO2WLrSEk1Ul+G5EG2aHnA8n9wcJBt88sLxQ0hgS9ECYiadElYN5tN3rYRwYV52dvbU6fT0cHBQW47KHMYvD2EZ+5OEAciAAJIv9+vEXIPq+RaPB8np76GeK0HZ0rK7R1O4su5dPAMXdgoe/S995915PPgxBnyj9BFyw7H+A4afp+euVFVlU5OTnJeiWdPONn33SHYapJz+nuBZ8rYyQHBXeTrrsy3YP55/zE/7vZxQRFhAyeLt6as1+t7dq4oBQvcHTg8PLuCZ4J7x3ciucp4UJ/FgUDgCUAlNVZJz/3NqdL3/11+FLhPxOfw44/GKmnbil19HhWkdVJ6F9najTPpqf/yh6Vt7PT1dvGuBYWU0vOS/i1JX1VV1Tyl9F2SfoOkr5L0fVVVfSKl9B2SvkPS73izc61WK52enmZberPZzDsM0LLgQX44A0qy5F+QiU6no6Ojo1olnwq7ky5EDEg6KfmQeO/9lu6tWFdVlV+/XC5zBZ7gRRcattttJuadTkfb7TYTO8QHKvYeFle2XLD9oYsXhEOSX+DkkMq6k3ECJSeTSQ6fHA6HOjw8VL/fz+0iVMM9UJBcA28Z4bo4CphHnh25CYgJg8EgP1vaPZgnzs09VlWV14LvqEGrC3kTJWnFCeGk3q32LjIx3pSS5vO5RqORFotFbXtE3CnMKa4W381DuhRRWB/eFuDiAs/IxRnOhcjhroZGo6HhcKjj4+PsBihbHty5w7NjjBB98ijI8fBnzHh4ZghNzD/nRYxgnnlu7KbBmsAxhNCEGOF5B4wfFwKZEDzXZrNZC2zkmu6Q8HXAvHLfrC9EGMZPUCt5LP658ChkKDzIz+JAIPD4I1XSi5/4KW1OTh72UB4bxOfwE4Cq0of/bz+sW9/+j+ju14QE9yjghb+2Uuuv/9i7em0VYsI7wv22POxL6qaUVjpXYb8k6XdK+qaL33+npE/pbQgK8/m8Fr4H8XbLP5VqqvtUq6lMlz3TTlTp/UZ84OfSpZXcK8JUMN1S7j3WVDkhbvP5PIfWQYrYctGrwtwP5AdLuaTcPgBB3eUo8Oo31+T1/NuD7nxnDAiitxW4zbzRaGgwGOjo6EhHR0fZOUCrROnqQEChLcVt5eVreJ6S1O1287aXPgZIJE4N/znPk/F4noFb+iHekEHWB64VnjdrBUHAq/MppdwK4IGaZWgf6wxS7SKGiw2cn/nwrAs/t+cC0NZCm4g7NJrNpgaDgdrtdl5fXmH3sFJ3BWw2m9rz4nzkjnBNxuDhoIhKvjuF/5z3mgsiOEX8fYjAhljC9T0bwl0evisIu0MggpCTwhwiunkIJ+8vhCpEKX8/+Hrx7AR3Bz0CeCCfxYFA4MlAtV5L0db1oBGfw485qvVaN7/3Cxq88qy+8Csemb8PHivsT5I+8t1vz+STvvS6NoVrOPDe4F0LClVVfTGl9B9L+rykuaTvrarqe1NKN6uqevnimJdTSk+/jXNlAgRpc7JFdd9bDiAhTvqd7Ep1q7mTRhcC3MoOIKJUY6mYQoqxu3s1HpLmyfhO9CB2HhjH9SE5vqUkx3oPOeQZ0udb8HlwnWcKcF3OyTwyR4xBumwbGAwGtTBGd4Iwbzg2IJXeXuA2fkQTv44HBDKvjBGHhzsUPO9AUi3wEJHGbf6eh7C/v593j/C2gl1VfHcbIGzwTH2uXCQCTmK5dumSoDLuVXXGU7oMfM5daOB+cOG4mwGBgOs5OfYgSb58rfv8lsdzr4ghjMnDFnmNr1cyLVgvPE/PlfC2Hl9H3Ku7M3wnDG+xYI3wHHlWPC93vPjvOafPuQdn8rOrjgf5WRwIBB5v7M+SDj4jVWeRl/AgEZ/DTw7WX3hJfUnHz3xQJ78g2h8eJFp3Gxq89OZCZ3NWafv3fup9GlHg7eJ+Wh6OJX2rpC+TdCLpu1NK/9I7eP3HJX1ckg4PD2t90B7iBgkGkAmq8JD+MpUdQgbhhGxwfEl6y6R8Fyq8Zx8S7+T67OxMo9FIkmpVfa8et1qtmuOi1WppOp3m6jakFyIjXRJjCCpEDDIHAce63m63NRwOa/cp1au+EDJ3Y3BNAhKHw2GNOEJWIWkurODCKF0l3qoB8XR3hPe1O+FkTrC2u42defWdLXAb+DMttwSk+s51/b5dUGDOp9NpbnVw4cjFBF+jvpsEhNSvxz2wZnmWLnC4E4L5azabtbwAnhFbeULOvdXCswdwQjAniDWISt7iUAogvsak8+wMXBFU/D3csMzqYCeNTqeTWwpYBy4oIKL5/Pqc0W7E+vIcDRcyXDj09b1YLLLYxz1LqrVOMOecd5dgdJXxID+LO+q9F0MMBAJXAI2zpO4rSdf+6++PzIQHjPgcfrKw/sJLuvGdr2jyu79e6/42RIU3QNqc5068XRx9ZquD//YH38MRBd4r3E/Lw6+Q9HNVVb0uSSmlPy/pl0l6NaX07IUS+6yk13a9uKqqT0r6pCR94AMfqCCvEIaSpHpQWqvVUrfbzdstSspkFbHBBYKL8dV2J4BEYIlfLBa1SizVZAjPeDzWZDLJ5IjXuPV/MBjkarNXUyHWENtGo5F3kaAF49q1azlzAeLlYgpuAd9JYDKZaDqdajababPZ5K0XmRucFeRRQGKx0KeUdHx8nG3iXMfJNaSM+2YMLmyQKUBwIz3siAmEXLIdpecfSMqkz9tGyqo4AsdsNstkH1u9izgES87nc1VVlX9n6662wwLkN6WkxWKh8XisW7duaTwe14itt7I0Go0cgri/v69ut6tWq1Vr9Sh3NijJO8d4S4dX6z0skP/69pouSJWtIU6sN5tNnluyR3w3B3eLuMW/bDOh3WGxWOQ1t91udXh4mLfgJGMBMaTX6+X3xnw+12w2yyIO8yZdCkCQfA+b5OcIIS58eB4G8JYgdw6546Bsu+A9yOcO7xV3vVxxPLDP4oN0LXhGIPCY4oN/7UzN7/vRhz2MxxXxOfyEoVqv9aHf+wO69fFv0MlXxiPbhf4XGnrmj/zAwx5G4H3A/QgKn5f0DSmlns7tXd8s6UckTSV9u6RPXPz3e97OyTw133ub3UpOJZYdCCCtBBE64UOgwPoPmYegEgYI8ZpMJrX8BK/SQ2qw97NDAZVaSPDh4WF2WUBKqHx2Op1MoBaLhU5OTrRarfJ1CIUkTd8zB7gHWgTOzs40Ho919+5djcfj7ICAaHKfjUZDk8kkuyqojEN8e72ehsNhJt3uYMA5AUFHEChB5Zv2A3c2MA/04Xtl2ltbaC/gOHrkIZ1lEOVkMsk7N7A7h3TeCjGdTvM2iJBkyCPXhHR6aCL3MRqNdHp6Wsvc8Eo5c1kKDMwFzgnWrBNS3zXA3QTulHBSz/U2m406nU4OyiQ7gdd5cCXrhHXrFXpJtbDCMhjS8xPKXAnCFP1ZIiS4y8DbhSTlZ4vY5IIKz7XcfcEzDiaTSRYaEAW9RcOfK8+AoFOeFddFMGCczHWn06m5jc7OzvJ1ECyvOB7oZ3EgEHjMUEkv/rcTNX72i9pEbsJ7hfgcfhJRVXrmL39eNz/VzT/6wj/3tGbP37u1wN4y6aPfeUva1t+DP/frn9bZ8bvYiuAh46kfka79yK03PSbNFlrHZ84TgfvJUPihlNKfk/SjktaS/o7O1dWBpO9KKf0WnX/AftvbOFdthwMnfZBKKv5UE70q7UTMQw8hEBBybNiDwUDD4bCWRSBd9p379oL8HhLlfdbsZLBare4JgnPiwrWxsPPluxNIyjZyJ5t+T15BhaRReYXUUQlnd4ayZ57q7P7+ft6yERGAMXuw3unpaSb77F4BGo1GPneZkO+p+ogUPjdcq6xgc38QPloEXNRh/DxPxg4Bh9DzPKhQc93VapXbSwBziqDj4YjSZZYHbgzu390EfLFOuL63Enhvv4sC3prD/LlwQZAlbgon0v58uQZjobqPEOY7XXi7Bz/3NhkXS7x9AHKPi2BXqxHPn+NxJZS5BN62wZz6ji4urPG6MoPDRTLWiotjbySeeKuDj4M58dyNq4wH+VkcCAQeL+zNk45/Ukp//7PaXOycE3jwiM/hJxfrl75Y+/6pDx1p+mrznuP2ziptfvJn7vn5U3/3mpYHb+6GnHwgafH0+y86NJZJ135i9++Of/yuNj/9mfd3QIEri/va5aGqqt8j6fcUP17qXJl9J+fJgoIHEUJAhsOhptNpJq5s5wh58EqqZypAsH37ul6vp8PDQ3W73Uwul8tlrVpNywM5AWzPyJgQGrwf3YMePXAPgsTvOR+VVO7Fe9x914BdgYSem8DvmQ/f1s/T/CG6o9FIjUZD/X4/t0dg6fdWBubm5OQkhxNWF+GR0iW5QwTh2t6awu88qA+yy/xgn4fIc07aVryFBEJLm4qLId7X7/kEtEGU7gSq46yh2WyW3Q2Qc7fSl2uBlhKOQWjw/Aaev3/53JaODX8vIATg+kD88XaUsuUEkYQcCL9n2hFYS4zTyXm5i4bnmhBUyTPy7RkZj8+nvz9Yz2X4KfAwTxfOmCPm0VsdXHwp8zv4nOC6pQjmr3c3DdfD4cNafxTwoD6LA4HA44PGMqn3StLRf/P9evTqn48e4nM4IEnN7/0RHb2D47vf88PqvsUx7X/+6/Vqvy46VA1p032H1f/qPJj17aI1Ov/82IX4TAk47nfbyAcCyIdXAweDQSYtVBD9v04aaSWQlAWBg4MDSedVTnq/CbQ7OjrKxA3i1O/3M6mDzM/nc43HY52enubKJcSGPn0cEOVOEE4WIVmLxUKnp6caj8eSpH6/nwnQdDrNQoN0GVbntn1aDyDhODa84kseAlVrzrfdbnP2AETw5s2bGgwGNcs9x67Xa43H43wtXBi4SCTl/AjmULoMgITwSnUyuF6v1e12s+DBfHgYnwc2IgZ4QCDhgOyUgZDgIZEQUs+koPWh3W7nZ8ZzoX0EwcJDCyXlcTIedlqg5WY6ndaeAy0mCEm4OdzVIqn2jBkz48adQ2sK6x/XzGQyyeOC6PM7XBweEkkwqIt37t5pt9t5rnGOSKrlYNBeQ9gl42bNs4Y5j1f8me9S7OM4BAfeV6vVqrbFK6IW70+ePVkmrJ3pdFprZ2BeEFVcKPD2qqqq8vvH2yMCgUDgUcTz//Na7b/ytx/2MAKBwH2i+xd/WB/+i/Wf7X3so/rpf+3GOzrP3lnSl/3ev32+bWwg8ABxZQSF9XqdK9wQFsgUhMb/+OePfa+i4gaA7LgIASnj526H7nQ6mWRBgmezWSbwEB4q6ymlHDAHIfM8BgiWfz+ZTPL5EEMQJrDSQ6qoIEuX4oa3Xng1nOMJzfOwPw+qdBdIq9XKDgXcEQgGkvLcQMaZZ+nSsg9hXCwWWfygB90FBd+ekZ9D1kphhLG7Rb1sISALoxQ1vL3DWxaky5YH5pMdNRCNTk5Oag4Y2lGo4p+dnenOnTv5vN1ut9bn79teuqhExgdzR/4AgY5utadNwEksLR2MlXWLADUajWruGW8bckcAc7u/v18TV3D04Mgh9NJzF5gTBAp/f3lwqrej+Hua90gZGsl9e8YBgoY7KtLFDhhch0wN6bItxNsdWBeeI+L5Kjh53LnhYZIuVjDXgUAg8Eihkr7iT46Ufv6LClk0EHg8sf35L+gr/8jqnb3o4m+bQOBB40oICpJqOQgQFshUaYeGvPK6ssXAXwcRwtqfUqoRTD8PwAJPTgHEimo8x/iYqI56y4CTK0mZbHM9t2ZzPkSCckyea+A7XwCvcvuxzBW99rQteIXd+8zdRk9F3cUB7913i7j3/vMangeEk5R+foYw4lkEzLHb0N2W70Te59sJKhVunhWiiO+04KGFVNXLXAPGQMsH1XUyNlwEKL88x8PDLRFpGEuZLVGuYXd+eNBg2Z7hrUIuILg7gDXKekIIQxDivJ674AJH2SbgORkICqxJnglCiIt+rF1f94zVg0hdHHMB0N8P/NxdNv7+8TnxNc5rGQtfnnHBug0EAoFHBXvzpBt/t5J+5nPaTKcPeziBQOA9QrVcav1zn3vYwwgEJF0hQcEr/bsqs/RC7+prdkfA3t5etsNDYviZ75LgrQRuh6cqybaOkF7vHwcQcloBnOR6hoBXh11kwELumRGSam6Nchs/CK9b1qmskhfg5+x0Onks9Nm3220NBoO8QwIiAySPgEREBa/2u+gA2XIXhTsKmG/mkbYTFy1ogUDYoBrtwoOTc85ZVrwRTMiX8Ko1ux+UIXzL5TK3dVCR9vl1R4znKhCOyPHew+9jgoBvt9u87SiCiedNcN+IXzwjJ9msJRwY4/E4u2R4/u7k8JYZX6OMl/H5bgv+3D2TwIMnWYvML+sFhw3vT65VZj64M8NFAp6NO1Q8v6FcU/5sdn2WcE/uXHBnA60luDQQKjifi2CBQCDwKGBvmdR9NWn4Z38g+psDgUAg8L7hSggKpNhDpAi8w35+enqaSRh94BAPyDvWairI9Nc7uSoryJArdhmAsOFO4Hts8d4PPhwOc7XbCZJ0SVhGo1G+fr/fl3TZsw1ZQWxot9uaTCZZ/GBLPretu6UccsT1aZ+QLtsSmCsI/Hq91sHBgQ4ODnR8fKyjo6O88wRkkdwICLBXgbl3fsZuCdyTpCzg0Kvu20FCMPm3pHwc7RJlqGKZEeEZBJ77MJ/PdXp6mrMQIM1erScngGBLXAPu/ED86PV6NWcHbTMHBwc5z4DniFgCYWarQeac67gDQVJ2bHAu1i/r3/MvqqrKWQnMp4cqMrfeYoELgfWBeMKxrDHErdPT05pwIV1uM8m68jaBzWaT3SAIelyX9yT37A4iyPx6vc7tTb6ufMcU5pZMC38P4bhxlxEtU6yV7XabhT9aL8qskm63m6/Nc2R8kaMQCAQeFTzzgxt1/+IPP+xhBAKBQOAJw5UQFNyW7Unz/IG/2WxqYWluxXdru1unIUVu++c4rumWbYgjlXwI/2w208nJicbjcSbKZBB49XWz2eQ2CyrfXl334EC34Hu43Gq1yj3e2Ool5TGWWQDSpVUe94SHR7ZarVr/uSRdu3ZN169f1+HhYSa+nAeyhZ3eHQNcl7l3Ms/3CAEuBnEuFwn8eXFOD1XEneLZFFTpIXhlSwMCCGTb0/w7nU4mrZBgd59wDt8eFLGKNdhqtTQYDHRwcKDBYJDnFLHArfOIEz633prAnEmqhf95+wGkGXKOkOBbQJI5gLPBq/HuluE5sn729/fV6/Uykea+IdXMLW0SOFcQrPwZE9yIkCepluPA994qxDkajUZ2yThcsCiDGN0V4msQIBoAd4p45oK//xDUcGV4doS3FQUCgcBVxVf8iVPpsy+FMyEQCAQC7zuunKDg1nv64fk9okLZdw6x8BYBxAFaDjjGbd5ebXUyVZI4yDVuAyq70mXF3FsZuLYDYlrmJbgtHxLnRMmJlafRe2YBrwcQQSdmhAkOh8NcZW82m3kMnrtQ5hOUOQXuLkAI4HgXKVarVe7Jpypehud5gKQHOvJsaX/wbRYRYQDChbeluDvBWw8g1r6lJUTVtzj0FhZJWZSgdcLXBjsylBZ9B+Pmej5+1o5v60g+As8EAcQzOEoyDZhD5ttzCLztw4UGF4o4v78XId0uiHj2hodvcr/le7wcb7lOfS16Wwtj9haR8vyeDeGChrd0+DV8LLT2MLcuOgQCgcBVxt4i6eYPb8/FhIsdpAKBQCAQeD9xZQQFKv+dTidXealYk4lA1d5Jv6QasYF0UH2meitdVit9u0FvCSjJLFvlQZgRNdju0avavpMB5Ixqs3RZAXeCDqGlgo1dHnLEeKjgc17PNJAurd30sEO+nKCxu8FwONRwOMz34Pfr1nWvzLq4QcXY8ye4L8Qaz5Cgqg4pLIMmcV54hZgKf6PRqAVXOpl2OLEnL8HdLh7kt9lscjuLz2Npw2ddca+dTievw9VqlXcBwT7PXHrrC9f1HTJ4ru5u4Rhvn0EcQQiA1Jf3VJLrMlASl4wHeXomAmvKBTUfD898Op3muXVi74GZrEW/V55X+cw8PNGv7/fh7T0+nl33zc/KQEwP8Szbd/iZZ5m4m+TNRJtAIBB42NhbJHVfSer9hR8KZ0IgEAgEHhqujKDQ7XY1GAzU7/fzH/mQuX6/r4ODgywEQOp8e7der5cdDITWQS5wPvDV6XQ0m81qGQyQSUjYYrHIrQ701DPG4XCYx0j2wt7eXq4geyW4rFh7xbjdbtd6z6XLzAAnvrReUEnlPNw7BKnT6dRS+N1Z0Wq11Ov1dHh4qMFgoG63WxMOIFNU9ZljXAyQZa9SewsHORieLTCZTHRycpLzHHxrQOZ4Mpnc06/uoovnUkiXRJfjaC9hXtj+0NsHWDcumjgxRXyC6LOWuG63263tEjIej3X79u28NqTLqjYkFyIL4XYXizsm+Blzh1Pi5OSkthMBghOv595Lx4c7OcodFSDx/JxsAsB4GDdtDohqrBfWKEJLuWVoSfSZZ+bJWyncHcG9ubuDuUKw4FzumNl1D/6+9y1AXTjwlifWlDuFeH0gEAhcGdjH61M/utXgu3/o4Y0lEAgEAgFdEUGh0Wjo4OAgp+ePRqNMTghqZAs9CATOAFoLqCqT8j+bzdTtdnVwcKBOp6PBYJArzI1GQ7PZrCYkuPV+Npvpzp07mTDSLuDp/h7+B3mTVNtpoqz6evV2vV6r0+nUyA0kFvdEVVW5+o64wHxhr18ul7WtNskJgKSxZWa/39dgMNCNGzd0dHSUiSDbNrZardwSIV26ERBKvLrLGL21w/vUyRYYjUa55YQqMxkG0+m0FvrIcyBIEDGBfzPHnhvAdRgXpNN3JvB2Eg/dczGJ1zNO367Rdx/ZbDaaTCZZTIDku9vESTfPHOIOyYWsIwZAZplnnBaIRozR3Tuei+GE23eLYFyedYFowtrg58y9C0xlm407iMq8E56R76jgIkApgODCcFeCOyn8feKtItKlc2eXeOFhk+408TYKXoeognhWtkSUrSmBQCDwsLE/S/ry//RnJUnVZBrOhEAgEAg8dFwJQSGlpH6/r16vJ+ky+A8C2e/3c6sDuy7MZrNMdiBGWOcJUKQi7u4Etm90mzVfEGSC9iCfzWZTvV5PnU5HkjSbzXI2QBkyh2ABuS4Jya7+ekgoJIb7hHzTr+92fN9ib1cl1oMfGVev18up/V6pZYxOAnE1eBgi5A4yToXYdxUoAw8heFyXijek2ecfEu0VdRcLqBbTnsBaYA4k5TnxOeXnPu8lwSxzOlwg4rq04FCxZ2yeT+AtBVyHtcz33lrCmoTAMw+sg5I4cx0n5x5c6fdV7oTBWoWwu+jBs3BhiPeTuxaYG9921Ym4bwHpzhAXFDz3g3stxQf/8mfh52PN+nuMufD2Gt5LpTOBc3iIJe4GDz0NBN4IzS/c0vOfel5f+uUNVZHfGXiP0X+poad+bKnNq6897KEEAoFAIJBxZQSFbrebtzDEPUDlnX5/dxBgtYcw0bNPG8Lx8XF2N0CUvc+b6iukBhKMIwACj6jhW9txjbInG4dB2UYAcBRUVZUrvZAkCBhjhLD6mNyy7v39vvUiRJ0qtQdRYquHADpp9TA+iFar1artNIBjwIld+TrmERJH9kCZDbBLTHDCX4ounulAuwQEv9vt1u61BKTfx+s99YhGLswAd1awNqmsu6Dg+RU8Iye+Dl7rmQlkSbBmWGtO1r2aDxH3fJAymNDfX+44AZ4fUopjZTWf+yrbZFgbPC8Xc3ytueji+ScuYpSCQfn+cQGD+3JBoQyc5BplyxHvedqnPCPE78F/FgjswvqlL6r3+i11P/ZLtLheadsKASrwYJG2UvtWQ6mSrv3USvvf9+mHPaRAIBAIBGq4EoICZGWz2Wg6nerOnTuSlHv9e71eJqpsQ4gYIJ0T39FolKvf7XZbvV4vOxukOsmHjOJI4JrT6bTmBpCUK/vYsen7ly5zDCAstBFQYae6Sq+4by/Y7XYz6cdK7mSWav94PM5uDBwc0mW12bMjZrOZxuPxPQIFuRGDwSCPl0BKSCzE0tsqms1mvrZXkndVeSGO0+k0V9+5N28JgKRCVD0HgrXg7Qj8DJLqxN6fkQcflqKBCyKMrcxo2AXfBpIWDdo1uJaTW7a6LLcpLUMLERNoG8GZ4K4a3BnuZvB7QcDy7TWd/Hp7Dd9vNpu8liHnCDxkQfi9+3NkHZVODxcAEN84v7e/0BrD+9Bfw/Mm8LMUE1ww8HYEd0O4g8JdNZzf1x2tJcxh6XrwewtBIfBWqJZLPff/+H698m//Mk1eMEEh8jwD94OLpbS3SPrAJ35ACrdUIBAIBK4oroygALm5e/euZrOZjo+PdXBwoOPjY6WUMpEjtwBLNoIAlf9ms6nj42MdHx/XAgWdOCMoTCYTjUajHL4I8fHdIWiZmM/nki4t9c1mMxPBs7OzmnPA7eMQ2dPT05x3sL+/r/l8rmazmXML+v1+JvgQMc9wcGLkAXa0EiwWC52enkpSzkPAVeFbXZI9QXglbgIcHwgKe3t7ms/nOjk5yWN3gg1pI2xRumxVgfA1m81c+XbiR/VaUiapfgxw8uhVdvIkvMLswYTMmQsJZQYEz9JJs4c9egtBVVW6c+dOJqIOSG273c5OCUIYOZekmvgCQfex+Voj48O3MixdFv1+v9bKw+99t4xy5wlcQJ77QEsNa5Pn4+0GkHXPdeDeSieEuylSSlmMQgShfcRf606dXa4EbyHxbIxyB4ZSINtut2q1WllAw8FEmxSOC58z3/2B5xYIvB0898d+XGl/X2nQ10//2x9QFYJC4D7w4n83VeMzL0nVVpsQEwKBQCBwhXElBAXpMrxuOp3WCDEkGLIPoafFgYo4DoFWq6V+v1+r6NI6AVGfTqfZ6cBOBFS8vfrqoXVup04p5R0dEA/YscEr7761H4RKutyOrt/vZzGh0+nkXRl8C0PpslLOWBhHr9fLpG0+n9d2JCAvodlsqt1u5/EhgLDV5XQ6zYICQoqkHEA4mUxy5Rjhh6o6QgVCimcFeHig96V7aB/PqISTSwDhY168au32dN/lwIM2ndDvmldvKfDcAUk5s6MMLuQY1pc7EZyYey6CW/LdgQC5pW3Fr+fhjJ5PQHgk5/I2nkajkf8LkcfJwnz6lp0835LY+/z6LhmMyUUHJ/I4CLzdwHMJSuEA+Nz7Wil3l+BZuovBxRM/j9+rC4IuIHG9MusiBIXA28V2PJYkpclUH/rLN8OhELgvND7zkjZ37z7sYQQCgUAg8Ja4EoICVUGIdLlNH+0OEHu37fu2jYgQ7J4AsSHFHRHCdxmYzWaaTCbZkg3Knn3fqaCqqlqGAteR6hVN7wnnnE7yERN6vV4tF8HbACA5EHRJtewEFwj29vbU7/fzPHA9iKQTbMZLtZ+QQ47xdgu3jiOiQEDdns89OrFEZPAeeebGCWZJLiGcu87r88vrIZMuxLiA4q9lTE6Evaffn+dms9F4PL5n9wF/LrR2eFuDg/H5Fohu7/f15i4DJ++ereC7WPBzBCEn8AgruFTKnS0868LH4PPhz8MFIncp+DaY/joEqLJlgZ+5SMDvS7Fml6BQjsndJGV4qH+ueIsM87FLnCrPFwi8E1SrM+3/9ehzD9wf4pMnEAgEAo8KroSgINX3jz84ONDBwUEOBSQzAXJE5Xw8Hms8Hmu73Wo4HOYdBbBnS5e7IUAKl8ulxuOx7t69q7t37+rk5CQ7A5yglgQJYi6ptosBZFu6JKpUnKmKIoawU0Sn01G329W1a9fU7XbVaDTyPTpphUBBLBeLRW4x4B6xxkvScDjU8fFxFhMILCwFBdwehEQy/95qcXp6qpOTk9weAaFzYk1YpVv5S0KcUsp9+95/D7H1/noIOffr2xbyDJxQenWaa+Ic4Xoe/uiAZJe7fnjQIfdCZgIklesi2PBM3O7vDgTWiNvsgQsDtGrsypnApo8YhYjDFy4Kxsn1Ic5kBfiOHd7C4S4TSL/neXh7ht+/twmwPjzfoMwg4H3MmMiS4D1H+0bZcuGOFuaIeXKxyj9HcHu4SIT7yT9zSrjowToKBAKBQCAQCAQC9+LKCAo4DXAn8Ic8WzRCIBaLhV555RXdunUrk0dIHS0SED3f/m00GuXdEshcGI/HGo1GmahzTaq9VIPZaUJSbrM4OTnJ5AlC6a4IyCgkdTAY5JDJTqejg4MDdTqd3MNNRgMVWcIkIduQTY6RlLe2bDQa6nQ6Oj4+1tHRUSa3jUZDvV4vf3mGAmMjNJG5JVfi9PRUo9Eokz+3hyMwICY4ISSbAlJPEKQH/zFXXBNAnKmc88zpu+cYhBcIrzssyLPw710okpTbBTzk8ezsLJPXVquVq/2QVsQHiKq3bUjK2Q7MO2P2fAbmULqs3pdtGE7ccYJIlyGZvuMEY3MXho+R+0SAQJzxsEuu76GWXA8BwlszHMxLGQoJwec6Xu3nubGmyiwEd7fsWnus3zKwk9esVis1m82aO4VnheDozg5fu+W4d+U0BAKBQCAQCAQCgUu85c7ZKaU/nlJ6LaX0v9jPrqWU/lpK6Wcu/ntsv/udKaXPpJR+OqX0T7+dQSAcUGmH/OACQAgYj8d5NwaqvggBThi63W7OJaD6T4sDwY7kJnifuVeFpcsqNi0T0+lUo9FIo9Gotm0f5J/KrO9UABE8PDzU4eGhBoNBbnPw3QAg6ATzQdqZHydzECsPkqPyymt97B4YSSUbQuqtI6enp7p7965Go1HOpkCoIb3fSZhb4CFzkD3GtLe3lx0dEHTf2aBsPeD33oLh/fruNvAeed8qU9I9x/GMCT8sj3Miz7ag3ndfijmel3B2dpazKLyaXWYmuP1/V36Ak2l3gpCZgBMD1w7vD+bR10zp5PD7lC6DEMt8BH++Lqh4Gwjn91aKMhPB80T8fe4CSzkPrClv9XChg/WFS8KdC4zNW1j8GG9zKNewu5NYY2UrylXA+/FZHAgEAoE3RnwOBwKBwL14O38t/wlJ31L87DskfV9VVS9K+r6L75VS+ipJv0HSV1+85j9LKe3pLbDdbmvJ/dvtNosAkF/I/N27d2uVbgg4VnDfNYGqKSGMuB0IYyxbDCCVVNchPnt7e1qv11mMcEGDY5yweouAixy0O7DdH/e+3W7z9pQES0LW/Bgnhm739pC+ciy+jSFVdMg9zgGf69FolHeXkFSz9O8ijV59ZjcNqb4VqPewlyGJZV88ZNJJrLeUOMF3i7tX1jmPZxQ4ufeKtxNmvjzc0Am4B056gCGhlrvIutvxnSy7O8FFhl33w7XcjcAc+jz5s/eMB+bOSXIpkDgYhwdc+jmZQ8+NYMxl60F5P/6e8jXk7Snck7sTaM+hZcLvj2t6q5K3TPDcvaXGnwP3zPvrrYSfh4g/off4szgQCAQCb4o/ofgcDgQCgRresuWhqqr/OaX04eLH3yrpmy7+/Z2SPiXpd1z8/M9UVbWU9HMppc9I+npJP/Bm11iv1zkLodPp5AqxW9kRE27fvp0r596TPhwO89fTTz8tSXr99dc1nU5169at3OYAGZvNZpkEeuWbr5Kc0w6AoOBhfJAe78v3XnOvjvIaAuEgMIgObN/HmKRL4uuVVOC29na7XSOLfi13D+CaaLVa2bWBC4QWkPV6XcukwGYvXfb9Q9I884C58+0PZ7NZHpOTPIil7y7hFWEXSlgn3vePSODEEmJaVty9gu1zirDiP4fYQtR9hwRIqYsE3Lc7Qryy7uSW+3AiCzl2EcTvTbrMHvC54Z4g++12u9bSwLPnXt0V4PPCNRCNXATyYxAtXJgpcyL8nqW6u8bn0UUAd4i4OML7D8FmPp9n8c2fuz9vD+9k7O7cKEUkz3rwQEeO3ZWx8LDwfnwWBwKBQOCNEZ/DgUAgcC/ebYbCzaqqXpakqqpeTik9ffHz5yX9oB330sXP3hSr1Sr3689mM40vtt+Szv+ov337dg5PlKRer5f7wsEzzzyjj3zkI/rwhz+s69ev64tf/KLu3Lmj119/Pe/mQHXed41wQQEC4f3gq9UqhzdOJpOaAADZls7J2HA4zCSOSr07C/b399Xr9XIo3NnZWc5o8J0e6E2XLqvyZAM4vM8ckuXEHJKKkDKfz/P1Ifsvv/xyFleWy6VOT0+z1bzT6Whvb++eXQfcFSIpk+rZbJbFjWazWQvRgzyWwZLL5fIeQi8puypcTEAUkS5JNOKSCymey+D98GWopJNeJ5U+r+xk0e12MzHlnjxnAeHD8xncSVDCCS9j8C0x+XkZylj29UOsmSd+1m63NRgM8rld4CgzArhP5tmzDkC6yAGh9YLx+lwhErD+IPkIbWSc+BwzPsbkeROe+eEOEHcnuFvH2xx2tSpwjAt5Hlbqz8QdMFccD/SzOBAIBALvGPE5HAgEnmg86FDGXQlmOz3DKaWPS/q4dL47wWQyydVgqoQQcd/ezsPcIB7D4VA3b97UU089pYODA61WK925cyfnAZAJ4DsplBZnr8J6OCBEdT6fZ8ICYfP+f6r5rVYrZxVAVKTL1gGIP2FxuAharVZN1OC+3QZOddht4E6cdqXRQ8So9kOMq6rK20JOp1MtFossuLhYQGW8qqpcXYYwS6qFH3rmAuOB4Hnmg4cpIrS4rR+i6zsgeKXbSWvZGsKcuwAiXQYQettC2VLhbQx873PGPXk2gGdgULl3272P16347jDgWbr9390I7gzw6jlCkos3jIMxe7XeHRDuUPA2BXckcAwhoTxXH6u3TpTn4tmyvn2nj/KLOeQ+y/XF+8i3zPQWoPJeHLyW4/2ZMZfcg7fgXLF2h3eKd/VZ3FHvvRxTIBAIPEmIz+FAIPBE4N0KCq+mlJ69UGKflfTaxc9fkvRBO+4Dkr606wRVVX1S0icl6emnn64g2JvNJgcAYqP38EHPJ6CKfu3aNR0fH6vf76vRaGg8Huv27ds6PT29hywjVjhxK6uxJWnEBu9uAN95QLq3vYCKP0IAv6cVwF8D2UI08bBE7+OXLnvefYzupnBiB6mDKHkaP24Ez5WgJcIt5U4yy3BGyBzjlC7bO/g988c9ue3/Yh3UBAruD/LsgYYu/kiX+QLeLlBmNPDMvErvRL5sI/Fz+vNxYcPvySvtnM8r8OUacgdJSb6dqLto4iKajxnBgyo788Z2nqwprl8KCu52KN0ZXGdXm46vvbLtohRTPNuDufEWh10ZDd6G4OIQ9+zz5u/T0tXhcKeHH+tj9fwJ1hmfSVcYD/Sz+CBde6RVlEAgEHgIiM/hQCDwROPdRpj/JUnffvHvb5f0Pfbz35BSaqeUvkzSi5J++K1OBhEsq5HeX+19917l7XQ6un79ug4PD7W/v6/FYqHXXntNL7/8sm7fvp238vOtCN3O7ASD69EiwFaHvk0dFWu34iOCQDoXi0XOWoBo93o9DQaDLIgQKNntdnP7htuxsfc7WfeqrGcJSJc7P5T3B1lrNpvq9/uqqkrT6VR37tzRrVu3dHp6mr/Y2YH5cDLVarU0HA41GAxq9+q7MkjKRNZJOnPIMZ5Vsbe3l3e9wAUAcYRE+7yUOwX4FpSsH65XBjiWJFq6bHdw0EIAMScrgOq2ixzuhMCp4deG2PradrKLuMNuDbuCFn1XCifPiAlOgNnilLYWfw3XYz7dCVAKDogGuBPa7Xa+jzLgsQyhBLzO3QmsFd+Zg/OU7gMX1fw4npsLDaVA4PdQzmv5uVM6VXytlG1GVxAP9LM4EAgEAu8Y8TkcCASeaLzlX8sppf9O52EzN1JKL0n6PZI+Iem7Ukq/RdLnJX2bJFVV9RMppe+S9PclrSX9G1VVvaPyHmTSK5j8nDaEvb09HR4eqt/v69q1axoOh9psNrp165Ymk4k++9nP6vXXX88klswEt8c7IcdmDVmir9+JMSQalwFBg947jwgwHo81mUwknRPswWCgwWCQt7HknrziC9FHiGCnBcbplX1yEcgz8PYIqsHeG08Y3mazyRkVJycneUcHMhRWq5V6vV52UeAaGQwGeZcKfk61l3FwnV7v3KoHQcYd4qIQrg3EIMIovdWgbAdw0cLJp6S8Vgjvg7hDCL3aXFVVFgi8HcJbXdzNwfUnk0m+x5RSFgGYI+lS1JFUyzTwLAEXxhAgPHAR8YNnBsF2p0pKSd1uN88l42Z3E8g/9+iuF79nJ9lllZ98AQSvvb297GLxFg+cBz5+b+XxNodyZwq/jjs2OIa52RW86Z8PPBOf63JMvL7ZbN7jAkHQKwXMUmh62Hi/P4sDgUAgUEd8DgcCgcC9eDu7PPzGN/jVN7/B8b9f0u9/twPyiimkvtPpZHJEAB6hiK1WK2cmQPxOTk5qtvCUUiZFKaV7tvmTLrel4+duw5eUyRG96mQGQN6Xy2UWAabTqaqqymGLVPZdKPEKKvflu0gQIulVWIijCxJekfUecO97h0CzPWS5s4PnU/T7/XzvtCN0u93ck89rSN0nK8LJJ86K+Xyu8Xis1WqVxwPZZG7InPCQP4fvxODbFTqxL50SiAmeN1GSXJ4fIpH34XtAISTTXRFlrgdBg4gWEGR/vjgKWEOITy4oMU4PSWRefA48GJH3CUJSmeHg1XoENNZImT/A9Tw3wVtkEE88O+TiPV8TCHwdlqGJHO85Bn4e7snH668p3RHMtbds+Pk4B2PyLAnPbHABwneFuEp4vz+LA4FAIFBHfA4HAoHAvbhyfl6vQEp1gWFX20Gj0ag5ESaTic7OzmrV8EajoU6nU2sFcGu/dFn55/wcD0GhiunWdrdDQxA9p6HdbudWh1arlYmvE03ubTab5d0oSsu8k0wIm2/d6N9DaiGEHtiHSEGlGRcBBBIXAveFA8OzF3a1glD5xcXBXHAvbt2HwHs2gdvXPSPBn4uTdc9w4Bl55dszNiCRPoc+904cSzu8V8K73W7t+Ze7DrgDw6vtTlI92JG5dzGBczH+0rpftmp4UKE7U9y1sGsHBO51184Gvr4QLjzjYVfOQZkj4XPogoK/3/i9zxPX4d/ehsDxpfDi4ZGeb+Fw0cLf0y7ceJvDVXQnBAKBQCAQCAQCVxFXTlCoqirb32lRcLJAlZlKOpkF3toAQcaKD5mDCEKknJSzxz1EqtPpZJJL0J2kWlCiEziq9j7ObrdbcydQaabq7rsd4E7w/n8nVbt2gmB+PJfBSS0tCrgvFotFFhOcFHPPx8fHWUiBBLoogZjAOdieETGB57FarbIbgnyJTqeTSTnPkPHO5/M8L7vWA3CBYLlc5t973z9zJdW3lnRy6jkd3kpS2uQRHng9c0+LiAs6HOPZFYyhbM9gDkshgf9CaF1koQ3CSfx6va7tHuLBh17tZ915DoOLDPwMBwLj9S0VcY/41pV+LeaS+/D2gTL00FsSXAzw1hR/Xry+dBBwLd8JhfM7ypYWdyd4oCdjvIruhEAgEAgEAoFA4CriSggK3rsOwUAEgAiklNTr9dTpdHR8fKz9/f0sIjhZoKruBLPX62VS5GTe8xoQCHA/SOck07eDxFKPAwLXAnZ7CE2n09FwONS1a9c0GAzUbDZrYX2e3QDZR1DwwEKC82g78Co3GAwGOYRPutzqkCwEb02YTqe5nWIymWRBoNfr6fj4WE8//bTW67VGo5EWi4U6nU5NTGAbTlwYVHqZH0n33Cdz0e/31el0apX8qqryWHYFFgJvP8Eh4HZ+tjP0dg8nymUeAmsG8uhV8VIQQEzy1oP5fJ4Jt+c9+Dnp/XeSz7yQBeHk23dy2G63Go/H91TjnTSzzlmznJ8xIQQgtnmQJOf19wnH4EhptVq19hxaNsrnwHjK1gVvg+DnzIuLGQgAPof+5W4DnDAuaJSBi2X+RtlC5UIlz6YcJ6/nmczn83s/tAKBQCAQCAQCgcDVERSoikLQIS8QB8g71VhcDNvtNmcF4EpAaABeSZYuq8ZOdLD6Y82fTqeSdI/DAVLDf52ocRwOBzICGNN4PM7VUwgbAYwnJyd5zG5nd9IpKSf+Qz4hgMwVQgfk3XMFII60O3APw+FQBwcHkpTbOcgGIG/g7OxMo9FIo9GoVkkmk4Avzs/r+/2+Dg8Psyjg2xienZ1pPp/XevnLe8bRwLwwdm/tcLGA10IgfQ25QwRiWrZEOOn0106n05ro0el0aqTW11jZsoCIUbZ0uHOCZ+iOCF+//A6U88IYOAbhrLym36OLM6xJ1hPvpfJang3BNZ3gl64D/723WOxa25zDPxdKUaW8VtlyUZ7T24r4GWvWf1+2OfiaDgQCgUAgEAgEArtxJQQF8gaorEr1oDcIHuSRyqukTMScXLlN3KvhnGtXrzQ2fAgXIXi7Atqw1btIwXG4A3wbRKrai8WiZrXm52QnOEHFYu493tKlAwFHAgRLUi2bYH9/v0Zi6dunNcPdBTgRyqoz83Z2dpbzF7iHXS0WkmriwP7+fnYmePCdtxLwHKU66XNiyTpAEMG54VtHlgF+XuX+/7f3dSGWZed1a1d117n33J+uqq7uofVnSUExyCHEIvglsRNwiCXhWElsgkweBA4IgwM2IWAJQeIXPzgmfkyMgoVMkC0lJCJ6CUiEEL9EcWxFkkeRxhrZChlrounp7qr7f+vv5OHetWudr051T3vmVt2eWguKrrp17jn77LPv7lprr29tvlefv55b6/v1eRLqbqFwpEGAdLdEaLigBkXydxyDvId4702r9joGVfDgOVXE4BjS8oGmY3XVnmKC9iPbwLHJ+4pukigoxLIFvV7MKLhITHoctCwFQE0A0LHE6/IYLU1RcUz7SAVOwzAMwzAMwzCasTaCQrvdxsbGBiaTCYCz0DhdMeYf+LTIkzgzTJCEmO8ngeOWjpFEaKgbiTiAvApOEsxjSMJ1t4DoemBWQFmWeWs+uhOOj49RFEUmbdyykURdgxuZBdFky6YDgsIHX2u32+h2uzn8kK4EtmE0GmE0GmUnBPuOuy9oHT0Jpooe7HddveWxXNHWko6tra0sFAFnK+nMsdDSj0j+lEDrbgskkCThLHcA6mJBXM1WIsvnqSIDcJbRwPthv9HlQaLJgMoYrslxwPvQvuf5CQ0G1G1L1ZofRQSeXx02sdyA/cd2sy+0zUru2a4mMSG6BSjoxN9pH6owEPtfSb72lZ5DP09NiONEgzi1JIilFPrZ4VjVLAV97upWaRJxDMMwDMMwDMOoYy0EBRJxJaO6skwCxVr+/f39THi3trawvb2NVquVt0BknT+zB7a2tjAcDvMK/dHRETqdTs0iTgGA4YXz+TznEJRlidlslo9lAKEG1KlzgNckeWbJAMWGra0tzOdzvPLKK3jw4AHG4zE2Ns52q2BgYlmW52z1LGfg8Sw76HQ6uH37NsqyBLBwRZBsHh0dYTAY4MGDB7kenNkAFB8A1JwLJJij0SiXOozHY8zn89z3Kq7w/RRO6OJgqCZzJqbTKSaTSX7OFAR4DEWNphVqCi1FUWQRqSzLfD7mJej44TOOJQOawwCc7cJAwYflAiyfobij7hIN7aR4QnGA4yi2S10WHF90WOgXoSvnWuOvnwsSYopRWu7A9vK9fJ1CGe+31WrlrAgKEkDdBRB3hdC+fZwAoFkMUYjgMQqeT4UAPT+FHN6HClxRiIwlE3x/LHVQZwQFNnWvGIZhGIZhGIZxHmshKLAum+SbK9AkTsAZAaR1vNvt4vbt23juueewvb2dSdR4PMZsNquRpKOjIzx69CiTXa7WklQwVJABgTyu0+mg1+uhKIqaoEBCHS3RJPt0Gkwmk9xuCh8M0BuPx9jf38+1+cyFUAIanRG6BSTzEbrdLsqyRL/fr5FWktLRaIT9/X08fPgQs9mstgpPwk+CTEGHz2M4HGI8HucAR/6e2Q1bW1vodrs5X4J5CNEJoCv9k8kkix0k8FqTH/MUdBcFjgs6QJhDoUIBn49a3yMx1BV69i2dB9q/SqbVIaPkmqRegyNVFIhklffEMZRSyuJELAfQrIC4as62qAtAdwAhMdacDwpGJPnaDt3RQV0OKgTErAPNZtASoljeoJ+16D5RxL7Ssc/3as4ES4IomNCVE7MYOBZUpHhc2QWvpZ8jwzAMwzAMwzDOYy0EBVr3tfZeV2VJuoAFKWi1Wuj3+9je3sbOzg6Kosgr36PRCMfHx+h2u3nlnCKDCgK8biRkJM1cBS+KolZKoWGMms1AUsm2R6t7WZZot9t5hZpkndcjgYurzjy/2rmVcFM4YUig2uzn83kuqaAzgc4DbvUYyxF0Sz9mHMzn89p2mRROOp1OLXuBTgG15CuhV7GB5QoUWGLtfdMY4bMneVfCHwmkiisknnHVOr5HyayKGxcRdx0PuiOJ3k/TSrdmfqirIJY5NIkRfE1FLb1PXblX0SsKA7yW5g7wmcedE2JJh5YdRHEgijWxz5ueq/ZLk9uhieireyEKGY+7Fp0ZsaRBRbCmshDDMAzDMAzDMM5jbQQFXf2mpb/JTs0yhu3tbezu7uLWrVvY2NjAeDzGYDDI2+3Rtjyfz3FwcFDLBiBpUPLK3QkoHNy6dSuTdJYs8Pq6Ak6CxQwGdREAyKvw3W4XrVYL4/EY0+kUg8GgtutAtKBrnT/LE1g+wNcpJERiTjFhMBhgNBpl54Bui6nlDkr4+S/7Tp0DFDz4DHq9Hm7cuJFDJSko6I4HJHgxM4Ht1oBDJbkKzbxg2/WckUDyPvl8OI5UCGjKPeA5OR40oFJX5XXnBJZ2XBQ+qKRUV9J1u1IKNTE/QMNAlbzTWUDBTMcE71EdF3pfkcCreKdbY7Jt2p74fnUP8GdmLGi7mgScCL23x4kQsV0URGIZRHRT6M/6LJraoeLX49psGIZhGIZhGNcdayEosDxAreXxD3mSZq6M37t3D91uFwAwHA7x8ssv49GjR9mdUFUVJpMJxuNx3gJya2ur5kQAzgiGEu+bN2/izp072Y4/nU6z0KFiAnBGkjqdDrrdbiYkp6enuSyAAgjJ/nQ6xXg8Pkec+v0+2u12Fgcmk0m+536/n9tDF0ev18slBxRDSOqm0ykePHiAhw8fYjqd5h0dWCqgIYokkixt0H4haSeR7na7uRSkLMvsYmBfU7hoOgeJKtvQFDipSfvsl+hWiaRRdwfZ3NzM40ID+7Tmn+UFfJ12f7ZZSxr0PpSwsuyD7gR1YlDQ0ZX0uAuE9kdTnb6uuqvjgKIVy2q0hIFkXoMeec8cU+wHCl0UHfgZZBgoj9FVfIoN2u8Uv4CzsiQer66b+NUE/Tw09Ys6KHh95k/o8TqGmkIzL8p80PKcWOZhGIZhGIZhGMZ5rIWgoFZktYLzi+SNWQGdTgenp6fY39/PgYOj0SgLEhsbG5hOpxgOhxgOhzmjIFrZCa5GctWeZJfOBL6fK9EkoSTPRVHkbSJ5L8xvYClESimLG5PJJN8v77nVauH27dv53k9OTrLrgTZ/QjMQKI6ow4BuC7og+B7NTACQiSoDBIfDYXZEkIgyWJCktNfrZeHj+Pi45gyJ22ICdeeHuiq0fAOoE24l8hcF7alrQFf41XVBAqqCA90BHHfqPODPMUSQ96LlBSpSsCQnlgnEsgi12mteCI9p2q0hWvS1/ZH0KvnlsfoZU1dFLNOgI0MFB90RoSmrQoUWjtno5IilGnH3jUjYtd9jfoLeg/ajPr+mbSO1vVFIiCJVk8vBMAzDMAzDMIxmrIWgAJyRk2ivVkGBRB9AJrrMCVASwLwEHsP36y4CupKuRIROBA1kYxmDrmySbGgWAN9Psk8Bgnb72WyG6XRaI+kk351OB0VR1BwBN27cQFmWKMsyb4vJuniWQADIbguuIHOFPJL1JnLGHSWm02nN3g8gixV8BrwuiSZ3dWAWhD4/DSgkEVUbfuxHklglrbSzkzRG2zpw3jWggpSSRH1v7AeKDTxGV/sjCY35BuxHDTBssuXzOesquxJWzTJoyjpo2qpUhQRek+ehgMFnqMIS28N71YwQOhtiNkMUL7Sv1WUSXTcqlKgIo/dJcJzF12Nf6OtN7dLjLxIV9LOsY+WiUhjDMAzDMAzDMM5jbQQF4Gy1MNqeaS3XrSMpGkSL8snJCWazWa0OmiSWZJvkSa+r2yBy20AAOTNAyYyWZJDosd0kY8yBIEGazWa1LxJ1LWnQconT01O02210u1202+1c1qCuBbZD695JHnmPJIZNwXUUX7jdJgMXte5eRQndmo+Em6UiUVDg6rISvaZSEbaNoKOALgngfN28OhD4zDW3QUMFOQ702touvl+JKt8bLfrRAaDHcwyqWKDkPe4QEcMetfRAiTKvFXcWiYSb16ezgOIM23Z0dFQrhVB3AY+hEMG+18DQSOopEMRQTB6jbojovmD/6/nUpRRdF7HfoyNDXR78uakPNachji11lMTnaxiGYRiGYRhGM9ZGUNDt30jAWYeuuyoAyLsOROJJxwL/JYne3NzEbDbL4YGnp6e1UgKG/OkqpVrNgTOCTLJG+z7LGrgzBAWCbreb23J8fIz9/X0cHBzknAaSXDoQ9PjT01OUZYk7d+6gLMts2adQwR0jSOx1lZk/K9QmryQbQBYD1I3B/mOeghLj09PT3M6Tk5McMqm7YKgYEQkd20BomB5JXVmW+TzMZQBQI8qaWQCchWVy7LA/Dg8Pa2KDXp/HqI2e5JyuFg3xVDcE76mqKkyn0xqR5u9J0FnioVtnUjiJ+Q5KltXdoKIV285/dScLzabg54T9Fx02fM4c2xTu+FmKJRwcs7oVpe5Owb6NIpIGUWp5CMd6zDTQsRLLLGIfx+tofzS5EyjM6PjRNkdouYxhGIZhGIZhGHWspaAwmUxwcHCA09NTFEWB7e1t9Pv9TBjm83lttZFEiORRVyxJCEh6VUygAKAr9yQPGr7IFXBdIY6r9Tdv3kS/38+7OTDHYTKZYDgcZjGDBE/bDSAHG1bVYscIBi4y++Hk5AT37t2rZTXweCVGujIMnIUMkvzFcgH2VVzVViKn7gYKIgByGYceq1kEMQ+ARJ3vBZCJL49h2CCt+gzUVAu/km7uKsHveW4lxHScqPB0cnKSRRO9dz5/3YGC546r2Ooy0HFHp4ru/MHrcexy3HEcRTcEPxMkwBpgGS36fOYssWHJxnQ6rZUM8ZoUTbQcSHfG0DIJdScwh4Ofi6Ojo1rZA/tIsx70c83np9fW8gMtPyFiiUMsS+Az4vs1l0Kh7oym8oY41nk9iwmGYRiGYRiGcTHWQlAgGeLqJUnBjRs30Ol00Ol00Gq1Mvnc2FhsHxiJjdrBVQzQEgkSJ5YMKMlUq7oSJQCZdBFas84MBO6AUBRFvh7zDJoIOslfvA5LIEgAU0rodDrY3d3N4Yyz2azWfvYjSVvTKm1TSJ/WuivZ4vnYN+xnukbY9qY6dRJ0kmw+TyVn+qyUiNJhoDtDULjRlXi2n9cgQVXXBoUNvk7oMZHQcizGrTvV+RHt8LF9fE1zNCgkaZtiQKE+RxUSKCqpM4MlJzyfCmDsQwo4GkIZSXnMVFDCH/MJopNAXQFa6tEkjrAfI+GPmRDqdohOhSgARAeRlvNoX2rZiV4nPkst0dDzGYZhGIZhGIbRjPMbsQeklD6VUnolpfS8vPbrKaVvpZS+nlL6fEppW3738ZTSiymlF1JKP/FaGpFSyqUDJCYbGxuZWJOkkxDcvHkT7XYb7XY7p/qTxCpZA85W0bkyTHeCEkYSNBJxigrAWVAcz69Wb5INOgo6nU5t20eWEmg9fVP9Oskm77nb7aLb7eY2bG1tYXt7G9vb2+h2u+fumffN9rIPY8hiLBFRohjJIp8Lj1Oiqav/UUzgKjbdHypwaL+pdV/zDrh6zrDImL6v9fFKIEn6+aWEWVe/9TiKExrIyeBJFTyUYOs5dSVe2xMFAQDn2sTraR9rv+uzVSt//FJBQQUV7Tsiuhs4JnS3h1iqEseJ/qxjuYl8673xOevnIZaiRAFDxRb90t/x9/G+tA3qkmiCnjO6ai4qhbgKXMZcbBiGYVwMz8OGYRjn8URBAcCnAbw/vPYlAH+pqqq/DOCPAXwcAFJK7wXwYQA/tHzPv0opbeIJ2NjYqAkKp6enmVjfunULt27dyrsLbGxsoNfr5fwDbiepQXu0d3OldjQaAQDa7Tb6/T7KsgSAXM8+Go1yKOHyPjKJ5Pm01IDkkAJAr9fD3bt30ev1coCjBiXSaUEXBu3vk8mkthNFr9fD9vY2er1etuBTrHjLW96CXq9X24qShJVfwJlIQZcG+0JzKFQ8oOWdq+mvFUrsNceAAhCfD0kkywt0JwRuKamkjWRYn0ccKyoKUIyIAgdzB5hdwHIDlpYw80G30bxx40YWqXiP0XlAgso+U/FIywvooKENX8dWFG6As/BMADUBSkm8BihquQLLEFjaw1yLGFYaRZmqqmphj00lC9omtofjSJ0ZTc6CSPb5eVLhRstKmvIRtO2xX1SY03IfHSsqlkQRRp0hFBz42Y33tCb4NFY8FxuGYRiPxafhedgwDKOGJ5Y8VFX1eymld4bXvig/fhnAzyy//xCAz1ZVNQfwpymlFwH8CID//rhrMJ+AFm2uyO/s7GB3dxetViuTEZI5DbmbzWYYj8e19+uK8M2bNzPJJUkiMdNAQhJAkkCStbIssxBA4rK1tYWdnR3cuXMHe3t7KMsyBxrSjq5bSvJao9EIw+EQ0+k0lzJQPLl79y5arRYAZKt/r9fD3t4ednd3804Px8fHtf5aPpNMxkiimnZVIBlle5j3ACDXzWtYHnC2cstyDJ6PYgmPI5GmkDAejzEajXL5h64Aa6lHXA1WYt50H7r63rTyzHsikWWfKXmkMENyquKMtk13mIjWeR5Dcq87fKg4RrGDiH2rpQq8Lx2nWqKh96iZHpp7QLdL044O6i7gOehsUEeLfha0bKBJKIilM02uC55Ht2CleyWKQfp+7X8+U33mKhLEcgstLYquCn4GOIbVecT5QNuyDriMudgwDMO4GJ6HDcMwzuONyFD4OQCfW37/ViwmU+Kl5WuPha563rx5M2+VWBRFrkEHULORc9V7NBphNBqhqqraijG3fdT3kRSppZ5kRskSsxFiIB5wRgC73W4OTux0Onmlm5kBug0fgLxVJLdp5K4QRVGg0+mg3+/nnAgStU6nk6/BXR2IWNqh96qryxQ3+N4oirB9F5UL8GtraytvXwnUt+ojyYuOAJJbvT6fg7oK9H60j/U+2G7u3BDvPRJJnp/Hq6ChpQR6HQ1W5D2q20PLIPSYmIugYgDHYlNtv7pGNFtAbffsO143lmVoNkE8h4Y98pqxf7Wd2kf6M0sq1C2hQpBCn0PT6zH3QMUEFRp4HYocTefScRivrcJH7HcVbvR56TjV/nqG8LrnYsMwDON1wfOwYRjXDq9LUEgpfQLAMYDP8KWGwxqLkFNKHwXwUQDY2dnJRIL2fM1IUCJCYjObzbIzgSuyXP2cz+e1a8Wt7mi1n8/nFxIZ4EyIINHk+zc2NtDtdlGWZbb2c7V1Pp/X7OYkNdzxgcICBZB2u53FiY2NjZpjgttJcrcHvi/WfLPdavGmhR2oW/fVfcAyB56X4ZFKnLmazy+WkvD68jwzyeWOGhQz2DY+vyaCGMUBrhor2Y6BnU2r0bxfFROiaKEiQpMwoyvwGrKoeQx5cIeVcX0emhugfaZBiGyDtlHdAdGSz2fMsa6OE34OmjIadFxrH/AaurUkj1PCraUJ0VESCbv2hR6j/awlHOoeYB/rNZqEI+17HYsX5SREEUI/4xpGGssc4vNeV7xRc3EL5UraZxiG8WaH52HDMK4r/tyCQkrpIwB+EsCPV2d/cb8E4O1y2NsAfK/p/VVVfRLAJwHgHe94R0XSwjr+Xq+HW7duod/v10gdyxn29/cxGAxwdHSEoijQbrd53pqgQAJWFEX+3XA4zNsRaho/cGY711wBljJwdX5jYwNlWWZ7f0opZzVMJpP8RfFiMpng1VdfxYMHDzAajTLx03tst9uZAFdVhbIsa5kKJP6xhn75LDJZY2AjSaLa5XnutCwL0T7jOTWTgddotVo1i31TmQEFnZhvwD5mG7ljweMQcyHoJlFnh66wkyCT/Kn9n24TtoMCEY/n+KBoxP5RcsljCBUHlHxG4aopf0HHI/tC+56Emjtp6DWYlaC5AHSDaJkDCXlsH3dDiSUDFJjUDcJnpKUgej96/ki6VViJDgH2BcUWLWGggMRraIkHrxFDKuP40vbTWaKCUywrKYqiJrgR+uyjC2Pd8EbOxf20u/7qiWEYxprB87BhGNcZfy5BIaX0fgC/DOBvVFU1kV99AcDvpJR+A8BbALwHwO8/6XwkRvxDf3t7G7u7u5lIDwaDTIDm8zkePnyYt03sdDo16zadAUpmuVo/mUwwnU4xGAxwfHxcCzZUmzdDGCkqtNvt2iouw/uYFbC/v4/pdIr79+/nFXQSEboohsMhRqNRFju63S729vbQ7/extbWF6XSaswZarRZ2dnZw+/ZtdLtdbG5uYjKZ4OHDhzlQMO62ACCTIxI1hhuSXJ+enuYyEgoPDKWczWb5Xkm8VGzRoEslf2yzEkW2j+cAzoSdSP4imDtBAr+/v4+DgwPMZrMsDjDMT0UK4Iwc0wUSt6lU10OTo4HQvqO4xHHKc/G46GbR7UY1NJIiDq/NLAqu0MeSgriazz5UwSI+VxVF2B6+nwKFZkDojht0hfBzyJIYCmZaDhBdGNovcaeVuPLPUiT9PFEQ0hwDvo/lRmyfChscD1qy0BTkqY4GhnGyH/TzosIH76UoCgwGg8axug54o+diwzAM4+ngedgwjOuOJwoKKaXfBfA3AeyllF4C8M+xSLAtAHxp+cf6l6uq+vmqqr6RUvp3AP43FravX6iq6vxf+A1QyzZDCouiyORC6+Kn02lttVnJm+4coKUAJPYMb2RZRSRiJMvML6BwwGvoyizJ+uHhIe7fv4/xeFyrcweA0WiEg4MDTCaL/2NIKrnFJEMASYS4awTLIDY3N3F0dITRaITxeJxXo+m2UCFGE/1ZHqBhfiSZapfnqj9/r6GEfC2GBrJPNauCfRhX4yM5JrlToUGJJUksd8Jg+QifDcWGaHvXLSFJ4HkNJcRankBQmOHrKkyxjfoeXenm+NSARJ5T+0MdDk2WfV315xiMpQccOwDyrhV0kPC5qbMgrvarc4Ln1WcVxYW4y0Qs9YilD1omow4WvjdmLsQyJgC18dxUvqGOjyanTFM7tR95Xra1aecLzi0UFNcFlzUXG4ZhGM3wPGwYhnEer2WXh59tePm3HnP8rwL41adpBFcOT05O0Gq18s4HFAKUEFA40JBFTWwniQbq4XbMMKBDgDZ+EobpdJrfQ1KvO0NoqCGP40r4ZDLB/fv3s/Chu1BQCDg8PDwXPEnLO4kpnRG8NgWV+XyO8XiMyWRSI7oqGKhtW0MntS8oGJBMMSQy2uXZZ2oVB86It7o5aNUngSf5j7XtKioQ8Wdd1dZtNdkWOiZiSYIS+5hXEOvmo5igwYBE3FmgiSDH9/EYLbtoCv5ju1TgiPZ9vY4KVHSIsKTj5OQku0fYD7EMIZL+aN/X+6NQxetdJCZoHzQ95yiYxHbw9+p0Yfu1P/Vc2sYYXhnbo23SscJjoqMh3gf7miGj64LLmIsNwzCMi+F52DAM4zzW4q9lEkgSbYY0Hh4eYjwe12q7KQhoPf/x8XHePYECBIUG/o6kHgDa7XYuNeCKNIlfu93Gzs4OdnZ2UJZlJjvcRpKrvCkljMdjDAaDbMsn4eVq72AwwGg0wnQ6zaUUKSWUZYmdnZ3aqnJVVSiKAv1+H9vb2+j3+6iqCoPBAMPhEIPBINv+Sahoy1cxYTab5bp67QvdwpKW/tFohMPDw1rQH1C32McgPvYVyZhmXzCQUdsInK9xB87IHs+rZSssweAqPO33zB3QML8bN27U+oDn0CwCdUko6Y+iAO9LAwqbtkukEMP3aSkDr687S+j983wqJJEka75BdCxwXOkOGnRzaB+o20DJchQxqqqq7TKRUsohpUQUH5Scs7/0merqPz+vej3Ns9ByFb1fPtMoGun1tT36Xs2D4Pm1r3XnChVyVEzg56TdbtdcIoZhGIZhGIZhnMdaCAokAfxDvixLDIfDvFtAt9vN4YIsV1CbNAMRSZC5Uj6dTjEajTIZJ1ngNowA8op+SimXGezt7WFvbw/A2conxQdgQTx4zeFwmMsZSGRIKIfDYSbEdC4URYGyLFEURY3sUkjh9pGbm5t49dVXs8NhMBjUCB6zCjQAkQGQJKgMMCRxBM62h5zNZjmbgqSUBFeheQ1K/IGFjV/dJHRTaHK/2to1aFEzIFSkoNjBe+I9sPSEQlOT44FigG4ByXOzH+gK4Qp/LONQV4auoOtYYY4FV7K5AwYdNHR96DmAs7p8bRvvk7/T62iGRUopX/fk5KR2TXWicGzoSn7sIz4PFXXUWaLWfy13idDAQpJ0lgdxLKiYw/bq+9ln6tJREUDFC31O+tmkUKPPSdukrh46h5r6hPkcZVnmfomfB8MwDMMwDMMwzrAWggKwWOXtdDrodrt5FwauaOrWhsCCFHS7XQBnhJeEiMSAhEa3GSyKIosWtNaTyBRFgZ2dHezt7eG5555Du92uEf6Tk5P8Gl0PwFlQHkP2gAVpPzg4yIRKd0ZgSQMDFAHUiClJ5Xg8xqNHj/JqPd0VURhgeQOP0R0u9HwkeVzhppNAHRW0zBMqWmgyvpZPKEGmmACcrUDTLcC+0hXlw8NDjEaj/Bx0RVsJoIoJmgmhpQh8v66G854YRKmhf0qECV3x1gwBEnwVP6JAEssXtK+0P7Ssg2OX59NzxJVxjmeKOrwfCgzqDND3NpWfqMjB62vfxX5RUh/Po0IDy4f0PGyXhqNq+/S5qagS70ERwzBVYFAxITpUFLHEQZ02fB8/K4ZhGIZhGIZhNGMtBAWWATBcbjgc1laASUx1tbnVamVSFuvPdeWXBJe15iTZXJXle1mGsLu7i36/XyOALBPguefzeSaTXJHlyidFDM0mUHcCwxi5QwRwFobIrAYSzcFgUCvV0EwIChsaDKmEk9ckNF9Bt1OM9eTqxKBworX1sa6d52ZbImiDj4GFbO98Pq9lIPA5qquhKIraajPPSbKqdndeU0sG+OyjtV6JqdrktTxC29uUMaD2fhUyYgaAXkOfhx7bVM/PY1XwURGFx+u2mfFLEfvtIgFDSzzYp/pvkxCjoY+acxC3GtVz6XOKWQp8PWYyaGmHClq8D3WuROGoqf2cZ+LODxTrDMMwDMMwDMNoxloIChsbG+h2u1kkGI1GmTDQoq7b+NFmT7LLlH2SJBJV3ZVBQxhTSplYczX67t27uH37Nra3t1EUBebzec0CTSLDzIHhcJi3rGR4IgnIeDzO21ry/Nw1gjkGGoCodfWszWfuA1fw6YJQVwXvQUsESNxIjrRWn9+nlDJJB+qBhWwXr6OhiCTlGu6o5RYkXzEIUN+jGQTT6bT2nEgGWaLBe261Wvk+eY8qEJDssy/VKr+5uZkdKUrKNUNBcwTYXtrxmdvBlWoNhuT56DjQbTy5e4iSfJJfuiR0dVzFCAC1QED2L6/P8hLdmYKva18qIY8iiJZ6EFrSw+OjQACcdwzo86BYpYGUTWIOz6HiAN+vJTDqQIiiiu7CoAIEP3fahpjJoGNfBQXtbxUcDcMwDMMwDMM4j7QOoWMppfsAxgBeveKm7LkNboPb4DYE/EBVVXeu6NqXipTSEMALV9yM6z7e3Aa3wW04j+s0D/tvYrfBbXAb1rUNjXPxWggKAJBS+oOqqv6q2+A2uA1uwzq24TpgHfrZbXAb3Aa34bpjHfrabXAb3Aa34bVi48mHGIZhGIZhGIZhGIZh1GFBwTAMwzAMwzAMwzCMp8Y6CQqfvOoGwG0g3IYF3IYF3Ibrg3XoZ7dhAbdhAbdhAbfhemEd+tptWMBtWMBtWMBtaMDaZCgYhmEYhmEYhmEYhvHsYJ0cCoZhGIZhGIZhGIZhPCO4ckEhpfT+lNILKaUXU0ofu6Rrvj2l9F9TSt9MKX0jpfSLy9d/JaX0Zymlry6/Prjidnw3pfRHy2v9wfK13ZTSl1JK317+u7PC6/+g3OtXU0qDlNIvrbofUkqfSim9klJ6Xl678L5TSh9fjo8XUko/scI2/HpK6Vsppa+nlD6fUtpevv7OlNJU+uM3V9iGC/v+Evvhc3L976aUvrp8fVX9cNHn8VLHxHWH52LPxcvXPBfj+s3FnofXA56HPQ8vX/M8jOs3Dy/P+2zOxVVVXdkXgE0A3wHwbgBbAL4G4L2XcN17AN63/L4H4I8BvBfArwD4p5d4/98FsBde+xcAPrb8/mMAfu0Sn8X/A/ADq+4HAD8G4H0Ann/SfS+fy9cAFADetRwvmytqw98GcGP5/a9JG96px624Hxr7/jL7Ifz+XwL4Zyvuh4s+j5c6Jq7zl+diz8VPum/Pxfn1N+Vc7Hn46r88D3seftJ9ex7Or78p5+HleZ/JufiqHQo/AuDFqqr+pKqqQwCfBfChVV+0qqqXq6r6yvL7IYBvAnjrqq/7GvEhAL+9/P63AfzdS7rujwP4TlVV/2fVF6qq6vcAPAwvX3TfHwLw2aqq5lVV/SmAF7EYN294G6qq+mJVVcfLH78M4G2v9zpP24bH4NL6gUgpJQD/AMDvvt7rPKENF30eL3VMXHN4Lj4Pz8Wei5vwppyLPQ+vBTwPn4fnYc/DTXhTzsPLNjyTc/FVCwpvBfB/5eeXcMmTWErpnQB+GMD/WL70j5f2nk+t0lq1RAXgiymlP0wpfXT52nNVVb0MLAYVgLsrbgPxYdQ/JJfZD8DF931VY+TnAPxn+fldKaX/lVL6bymlH13xtZv6/ir64UcBfL+qqm/Layvth/B5XLcx8WbGlfep5+IMz8V1eC6+5LnY8/CV4cr71PNwhufhOjwP+2/ix+KqBYXU8NqlbTuRUuoC+A8AfqmqqgGAfw3gLwD4KwBexsLaskr8taqq3gfgAwB+IaX0Yyu+XiNSSlsAfgrAv1++dNn98Dhc+hhJKX0CwDGAzyxfehnAO6qq+mEA/wTA76SU+iu6/EV9fxWflZ9F/T/UlfZDw+fxwkMbXvN2Na8Pnos9Fz8JnouXzWo49k0zF3sevlJ4HvY8/CR4Hl42q+HYN808DDx7c/FVCwovAXi7/Pw2AN+7jAunlG5i8aA+U1XVfwSAqqq+X1XVSVVVpwD+DVZsGamq6nvLf18B8Pnl9b6fUrq3bOM9AK+ssg1LfADAV6qq+v6yPZfaD0tcdN+XOkZSSh8B8JMA/mFVLYqTljaiB8vv/xCL+qS/uIrrP6bvL7sfbgD4+wA+J21bWT80fR6xJmPimsBzMTwXL7EWnzvPxQtc5lzsefjK4XkYnoeXWIvPnefhBfw38ZNx1YLC/wTwnpTSu5aK4IcBfGHVF13WwfwWgG9WVfUb8vo9OezvAXg+vvcNbEMnpdTj91iEnzyPxf1/ZHnYRwD8p1W1QVBT3S6zHwQX3fcXAHw4pVSklN4F4D0Afn8VDUgpvR/ALwP4qaqqJvL6nZTS5vL7dy/b8CcrasNFfX9p/bDE3wLwraqqXpK2raQfLvo8Yg3GxDWC52J4Ll7iyj93notruJS52PPwWsDzMDwPL3HlnzvPwzX4b+InobrkFMj4BeCDWCRYfgfAJy7pmn8dCzvI1wF8dfn1QQD/FsAfLV//AoB7K2zDu7FI5fwagG/w3gHcBvBfAHx7+e/uivuiBPAAwC15baX9gMVE/TKAIyyUtX/0uPsG8Inl+HgBwAdW2IYXsahD4pj4zeWxP718Rl8D8BUAf2eFbbiw7y+rH5avfxrAz4djV9UPF30eL3VMXPcvz8Weiz0XX9+52PPwenx5HvY87Hn4+s7Dy/M+k3NxWjbEMAzDMAzDMAzDMAzjNeOqSx4MwzAMwzAMwzAMw3gGYUHBMAzDMAzDMAzDMIynhgUFwzAMwzAMwzAMwzCeGhYUDMMwDMMwDMMwDMN4alhQMAzDMAzDMAzDMAzjqWFBwTAMwzAMwzAMwzCMp4YFBcMwDMMwDMMwDMMwnhoWFAzDMAzDMAzDMAzDeGr8f8r+7pMkg+44AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 168833 3300\n", + " Min thresh = 1000\n", + " Not Sliding\n", + "\n", + "\n", + " Winner = Not Sliding\n", + "\n", + "\n", + " VFOLD = 5 of 15\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsIAAAGDCAYAAAAh/naNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAACjE0lEQVR4nO2dd5wkVbn+n1PVafLM5pyXXXJayRkUBBUjCmZFxByuVzFd81Xv/em9ZgzXHDBgBBQQAUkCS2bZBRZY2Bwnz3SqOr8/qk7VqerqNNM90zP9fD8fPtvTXV19qmeofvqp531fIaUEIYQQQgghzYYx2QsghBBCCCFkMqAQJoQQQgghTQmFMCGEEEIIaUoohAkhhBBCSFNCIUwIIYQQQpoSCmFCCCGEENKUUAiTuiKEkEKIVZO9DkIIIdUzHc/hQogNQogzJnsdpDGgEG4ihBBbhBCjQogh7b9vTva6wggh3uSefC+a7LWMFyHEMvdYYpO9FkJI8yGEuF4I8dmI+y8UQuwaz7lJCHGLe347MnT/H937zxjrvse4HnW+VZ9vu4UQ1wghnq9vJ6U8VEp5y0SujTQuFMLNx4ullO3af++e7AVF8EYAB9x/aw5FKSGkifgxgNcLIUTo/tcD+IWUMj/O/T8B4A3qByHETAAnANg7zv2Oh24pZTuAIwHcCOAPQog3TeJ6SANDIUwAeC7sHUKIbwgh+oUQm4QQZ2uPLxBC/FkIcUAIsVkI8TbtMVMI8TEhxFNCiEEhxH1CiMXa7s8RQjwphOgVQnwr4oSsr2MpgNMBXAbgXCHEXPf+K4UQ/y+07Z+EEB/U1ne1EGKvEOIZIcR7te0+LYT4nRDi50KIAQBvEkIcJ4S4SwjRJ4TYKYT4phAioT3nBUKIx9334ttCiFuFEJdqj79FCLHRPabr3XVX+56Xek+PE0KsF0IMuK7GV937U+5x7HfXfq96jwghJII/ApgB4FR1hxCiB8CLAPy03LmwAn4B4NVCCNP9+WIAfwCQ1V7PEEJc4X5G7BdC/EYIMUN7/LeuO90vhPinEOJQ7bEfu58b17qfL3cLIVZWsjAp5S4p5dcAfBrAl4UQhrvPLUKIc9zbRT+/hBBrhRA3uufox8U0uEpJCqEQJjrHA3gawCwAnwLwe+1k9SsA2wAsAPBKAP+pCeUPwjn5nQ+gE8BbAIxo+30RgOfB+XZ+EYBzS6zhDQDWSymvBrARwGvd+38J52QrAO9E/gIAV7knt78AeAjAQgBnA3i/EEJ/nQsB/A5AN5wTtwXgA+6xnug+553uvme5234UwEwAjwM4Se1ICPFSAB8D8HIAswHc5r4/1VLqPf0agK9JKTsBrATwG/f+NwLoArDYXdvlAEbH8NqEkCZASjkK5/zxBu3uiwBsklI+hBLnwgrZAeAxOOdjuK/z09A27wXwUjgmxwIAvQC+pT3+VwCrAcwBcD+cc7TOxQA+A6AHwGYAX6hifQDwe3ffayIei/z8EkK0wXGTf+k+92IA39ZFOpkmSCn5X5P8B2ALgCEAfdp/b3MfexOcE5rQtr8HzuWzxXBOlh3aY18E8GP39uMALizymhLAKdrPvwFwRYk1Pgng/e7tjwJ4yL0tADwH4DT357cB+Id7+3gAz4X281EAP3JvfxrAP8u8N+8H8Af39hsA3KU9JgBsBXCp+/NfAbxVe9yAI/yXRux3mfsexEL3l3tP/wnnxD8r9Ly3ALgTwBGT/ffE//gf/5sa/wE4BUA/gBb35zsAfKDItt650P1ZAlhVZNtbAFwK4HVwvtivAfCE+9g2AGe4tzcCOFt73nwAufB50X2s233NLvfnHwP4gfb4+XBEfNR6ip1vU+79J7s/bwFwjns78vMLwKsB3Ba677sAPjXZv0/+V9v/6Ag3Hy+VUnZr/31fe2y7dP9vd3kWzrf3BQAOSCkHQ48tdG8vBvBUidfcpd0eAdAetZEQ4mQAywFc5d71SwCHCyGOctd1FZxv5QBwCXzXYCmABe6lvT4hRB8cx1aPDGwNvdZBwimi2OXGJf4TjiMC93i97d3X3qY9fSmAr2mvdQCOWF6Iyin3nr4VwEEANrnxhxe59/8MwPVwnPAdQoj/EkLEq3hdQkiTIaW8HU5m90IhxAo4V+h+CZQ9F1bK7wGcBeA9cM5RYZbCyemqc+ZGOEbAXDea8CU3mjAAR6QitIaKPkNKoM6rByIeK/b5tRTA8aHPldcCmFfla5MGh0KY6CxU0QOXJXBc4h0AZgghOkKPbXdvb4Vz+X68vBGOoHxQCLELwN3u/eqS3q8AvNLN4x4P4Grt9Z8JCfwOKeX52r51gQ8A3wGwCcBq6cQPPua+NgDsBLBIbei+J4u0524F8PbQ67VIKe+s4lhLvqdSyiellBfDuST3ZQC/E0K0SSlzUsrPSCkPgRPXeBGClzwJISSKn8I5V7wewA1Syt3u/aXOhRUhpRyBc6XsHYgWwlsBvDB0zkxJKbfDMTUuBHAOnNjXMvc5Va2hDC8DsAeO+xu1tqjPr60Abg2tuV1K+Y4aros0ABTCRGcOgPcKIeJCiFcBOBjAdVLKrXAux3/RLdY6Ao5jqRzZHwD4nBBitXA4QjiVwxUjhEjBya1dBuAo7b/3AHitECImpXwAjqvxAwDXSyn73KffA2BACPERIUSL6zAcJoR4XomX7AAwAGBICLEWzglccS0cJ/qlwukw8S4EXYArAXxUZcWEEF3u+1WKpPvepdxj3Y4S76kQ4nVCiNlSShtOhAUALCHEmUKIw93ClAE4lxetMq9NCCE/hSM23wbgJ9r9pc6F1fAxAKdLKbdEPHYlgC+4JgaEELOFEBdqr58BsB9AKxxHuiYIIeYKId4Np+blo+75NEyxz69rABwkhHi9+5kYF0I8TwhxcK3WRxoDCuHm4y8i2Ef4D9pjd8MpWNgHpxjhlVLK/e5jF8P5pr4DTkXwp6SUN7qPfRVO9vcGOCfU/wPQUuW6Xgqn6Oun0qn03SWl3OXuywRwnrvdr+CczH+pniiltAC8GI5wfsZd/w/guAvF+BAcJ2IQwPcB/Frb3z4ArwLwX3BOzocAWA/nZA0p5R/guLRXuZfyHgXwwjLHN+Qen/rvLJR+T88DsEEIMQSncO41Uso0HEH+Ozjv80YAtwL4eZnXJoQ0Oa5AvRNAG4A/aw8VPRdWuf8dbgQjiq+5r3mDEGIQwL/gXNUDHIH+LBxz4DH3sfHSJ4QYBvAInEzxq6SUPyyybeTnlxtbewGA18A5R++Cc95P1mB9pIEQwUgoaVaE02PxUinlKZO9lkbD7UqxDcBrpZQ3T/Z6CCGEEFIb6AgTEoEQ4lwhRLcQIgk/M1cLp4IQQgghDUJFQlgIcZ7bTHqzEOKKiMe7hBB/EUI8JJwZ3m+u/VIJmVBOhFNJvA9O7OKl0unHSUjDw3M2IYRURtlohFuU8wSA58O5PHwvgIullI9p23wMTs+/jwghZsOpzJwnpcxG7ZMQQkh94DmbEEIqpxJH+DgAm6WUT7snyavgtDrRkQA63DZT7XB69Y13fjkhhJDq4TmbEEIqpBIhvBDBYQTbUDg44JtwWm3tgFOl+b4ibUoIIYTUF56zCSGkQmIVbBPV1DqcpzgXwINwWkKtBHCjEOI2KeVAYEdCXAanTyza2tqOXbt2bdULJoSQRuC+++7bJ6WcPdnriIDnbDJmJOCMnRW1m2excecA8rbEwfM7ETPK7/fZ/SMYSOdgCoFDFnRW9Bq7B9LoaokjFTerWtvmPUMYzVk4fGEX9g5msGsgjVntSczuSGLjzgEYQsB2I6SLulvQ05YAAORtiaf2DmFJTytaEoWvua13FL0jWSzqaUFPa8K7/8ndQzANgRWz20qu68BwFtv7nLKUQ+Z3wnTft96RLLb1jqItESu6j76RLLb2jqKnNYFFPS3Y3jeKA8NO6qnY72AwnceW/cPez0tntCJmGnhq7xCWzmhFImbgyT1D3vuwzV1bZyqOgXQOcztTmNPhd5bLWTY27RpEMmbANAQyObvgd5nJ23hi9yAW9bSgdzgHCYmVs6sdGlg5xc7ZlQjhbXBGECoWwXERdN4M4EvuKNrNQohnAKyFM+jAQ0r5PQDfA4B169bJ9evXV34EhBDSQAghnp3sNRSB52wyZr5+05P4y0M7cOMHT6/ZPo/7wt+xZzCD6z92NrJ5G4tntJbc/rU/+Bfu2Oy0sL/z8y9EIlb64nU6Z2HtJ/+GXMzAo58v3dL9wHAWnakYYqazz7P+3y14et8w7vj8efjqjU/gu7c+jQuPWoBXP28xLvn+3YHnXnTcEhw8vwOvP2Ep/u/2Z/D5azfiResW48uvPKLgdS668i7cs+UAPnjuGrzrzFXe/c//6q1oTZj407tLdyr91s2b8d/XO4Pwbvj4OZjtikx1/+yOJO79+DmRz/3ZXVvwyT9twPOW9eC3l5+Ey392H/62wZlS/ed/PxNLZha+/396cDved9WD3s+/esdJWDOvA4d96nq879w1OGnlTLzs2+7wVENgvi1x4oqZ6GmL47pHduFNJy3Dp19yqPf8DTv6ccHXb8fsjiRaEyae3T+Cqz54Ou7YvA9vOHEphBC4fsMuvP1n9+H37zoZP7zjGdz/XC9u+/BZJd+X8VDsnF1JNOJeAKuFEMuFEAk4zaX/HNrmOQBnuy80F8AaAE+PfbmEEELGCM/ZZMzsGkhjV3+6pvtUDuTNm/bg1P+6Gdc9srPk9oNpP66unMxSKMc2k49O91i2xK/vfQ6ZvIVjPncjrvj9I95jA+5r5S2JXve1dg+k8cSuwYL9/Oqe5/Aff9qArQdGsX5LLwBg9dxoB/PZA467urM/2GzIsiXSOX+dUkrsG8oUPL9XO+6sZSOds3DTxt3YM+D8bvYOZjCYzkW+9lDGGTb6zL4RAMD+YX//I7noUoCB0eC+5nQk0Z6MYVFPCx7fNRh4b09ZNQvLZ7XBlhJ5y3nvw8fQP5LzjmPfoPPYv/3mQXzqzxvwzyf3AXDceABYOacdczqS2DOQQbkGDrv600jnajtMtawQllLmAbwbwPVwJln9Rkq5QQhxuRDicnezzwE4SQjxCICbAHzEnc5FCCFkAuE5m4wHy5LIWrWNi5umI4TVpfXbN5f+UxtK55F0XeAokRgmb5cWTz//17P4yNWP4Md3bAEAXH3/Nu8xJSZzlo1eV7ztGcjgCXetisUz/GGp6589gHu3HHCfV/ja6ZyF3QPOusNfKiwpkcn7Qu7Hd27Bus//Hc/sGw5sp9YCALm8jS//bRPe+pP1uPWJvd794edIKZG3bAxlnOfuG8pgKJPH/qEsOpJOAGA0Gy0iB9JBgawc6DVzO/DEbl8I//byE/GTtxyHBd0pWLb0voTsHwp+YVHrz9sSw+5rbut1vhR85i8bcOE3b8eNj+3Gwu4WtCdjmNORQiZvYzBTumb3nb+4D2/60T0lt6mWSqIRkFJeB+C60H1Xard3wBlFSAghZJLhOZuMlbwtywrLaokZjqhtd8VYbxmXdzCTx7KZbXh892BFQtgus161jz7X9VSmYzZvewIvF+EIz2xLYP9wFj2tcczvasHWA46Q+/W9W7Hf3Va5k1/860YkYyY++PyDsPWA48QKAewMCeG8JWFp6732Yccd3zuYwfJZfua3b8R/jzbuHMBP73Ku6m/ZP4JZ7UnsG8rgmX3DOGJRt7fdnx7cgc9d8xjOPWyed9+WfcMYSOcxpzOJwb354kJ4NIeEaSBv2+hI+Vnrg+Z14J9P7sWwK1Bb3PsNIQJ/K8p17h/J4dT/+gdOXjWr4DXUe/b0Xl/An36QE9lVwvuZvcPoaU1ExjeklHhq7zBedMT8yGMYK5wsRwghhBAATszAsmVZcVkNKhqh9tg7UkYIp3OeEApHIx7d3o/frN8auK+ccFeurRkqANSjBTnLxgF3XcNZCw9s7cNZa+fAEPCK5wBgQVcKdz9zwHOs0667+91bn8bXb3oSgFPsBwBr53UWOsJ20BHud8V5RyroS+7XjvvaR3bCsqWXlX7esh4AwHPu6yg27hrA/uFs4P5n949ASul9CfnRnVvw+v8LZp/VOrpa45jZngwUva2a3Y6cJfGU65Cr444ZwvtbAYB9riO8tXcEA+k8bn58T8FrAMDFxy3G1e84Ca95nlPGsHqOEy1Rr3nF7x/By79zR2RE4sBwFv2juZoX1FEIE0IIIQSALypzdul4xA0bduGzf3ms5DYK1fFAuYp9I9HZVsARpOmc7QnPcO73/25/Bp/7y2MYSOfwkzu3QMryoj3vRj0MIyyE89o2En0jOS9CYNkSJ6+ahUU9rZjVnsSauR1YOrMVr1rnCLg3n7wcnakYMrng+qSU2NrrCNHjl8/A/uFsINPqRCP85wy4Ylzv0jGUyeOxHQNY5YrE/tEchAAOdbsuLJ7RilTcwFAoRrBv0BGj23pH0Op2shjO5iEBr7PFrY/vxW1P7ivI2Q6kc+hMxTCvM4V5XSnv/s6WOABfmCdjzn5Mwwi4270jWeQt23Pf07nov58Vs9px7NIevOnkZTANgcMXdQEA5nQ6v++NOwewbygbiGpIKfHpP2/Ab+9zIi0r59RWCFcUjSCEEELI9Mey/ahAsoRC+M36rfj7xj143zmr0eWKpWLEzKAQLlUAp7aZ5bYpy4QE23MHRjCUzeOGDbvxqT9vwLFLezCjzW9PZtuyQPAqcR/uGqYL4UzeQt9IFscs6cH6Z51CuPMOm4eWhIn2ZAwnrpiJy05bgR19o9i8ZwjvOH0lfn//tgJBuXsggxE3fqAK6U758s348Zufh8MWdrnFchaklBBCeI6wrTmgtz+5D1nLxvmHzcPX/7EZA6M5pGImDl3QiQee6/MK2cJ5WhVP2N43ihltCWcd0tl3W8L5Zar897beEaya0+E9d2A0j66WOD574WGe6wv4UQi1zmTcd4Qt2xfCUgIjOSuQFRbCj6G0JkyMZC0sdZ3+tfM68c8Pn4n5nY7ont3ui2/AKTJUf1ejOQs/vnOL99jKMq3nqoWOMCGEEEIAwOsCkC9TMLdxp9NV4a6n9uE367fiwHAWr/3Bv/Do9n5vm/7RHPYPZWC6GeGhChxhJU5ntjsOYbhwz7nU7+R4AUfQ6ZnbgYhOCnlX3BdEIzL+tvuHs7AlsHa+Iw5PXT0LqbiJcw+dh5NXzYJhCKTiJlbMbse3XnsMulqdHG1YCD+9bwg5d83LZjqCbd9Qxntf8pYNW/riXDmnuhC+aeNudKZiOGHlTADO+9iSMHHIfMc9ne0K4aFQgZsSoTlLoiMV9/YrJdAa+laztTfYzWIgnUNnSxyHLezC6rm+QG5JOL87lVlOeY6wQN62A+99Lm8HOlQs6vELDA+Z77jZS2f6InZhd4v3paWzJRZok7ezz4+U9GsdLVJxAwu6/P3WAjrChBBCCAHgC7JSnSP6R3PesIeP/eFRHBjOYt1Sx0m96t7n8PmFhwMAPvuXx7C9bwTxUDQia9meIxrGF8LKEfbXMZLNe5feVVuyrQdGsXaeP6jhwHAW3doAC8AX96WiEXvcFl/HLu3BSStn4Yw15WflpOJGQQTgmX3DsGwJIYCTVs7EZy88FP/xpw2e8FW6MZ2zEDd94ad08LUP78RfHt6Bcw+dh1bXxR1I59ESN3HCihnobo3j0AVdaEvGvPdToRcWqkywGpDSFhr6se1AMF88MJrzhHvwGJ3n9YUcYdMQsKUT9VBkLTvgCC/qbsWu/jRa4iYWz2jF+md7saRID2khBOZ0JL3OEju0tnO6EF4+q73g9zhe6AgTQgghBIDvVOYj2oIpHtd67KqYg4oT/P2xPV6h04HhDPpGcn5GWOtY0FvEFVaucXdLAoYICnLVtQEAdvU7ou+5AyOBYrmoQjyvWK6UEHYd5p7WBM4/fL4nQkuRiptI561AYdcze4eRtyXihgEhBF50xAIAvsOu3Olw9tmWEtm8jQ/85kGsmduBj59/MBKuUB4YzSEVN7Bidjse/I8XYNWc9oJohJQyIEJV8Z2Uzn/hiXthR7h/NIfOlsJj9qIR7u9LrSkW6QhLr2gOAHra4uhpTWBWRxJnrZ2Dlx61IHIKn2JORxKmIWCIkCOs/a3UOhYBUAgTQgghk07OCoqKyUKtIVfCEd6405nEfYrbIuuCw512VuceOhe7BtJ4xI0BWG4+NZwRBvxoQxjVyaE95Vwq1wXjs9oIYM8R7h0JxAoODFcRjdBiFHtdR1jPG5cjFXOiEfoan9k3jLxle6JbHbsS65YXiQhGKmzprCebt/HyYxZhTmcKiZj/3LCQ7Ug50YhNuwbw5b9twk/u3BL40qCEsC0lJJwvAS3aPrb1+o6wlBID6Tw6U4VZbyVc+9z2asqNNQ0BK9QKLms50QgllrtbE5jRlsCs9iRefOQC/O9rji75fq6c3Y7DFnZhbmcq0hF+71mr8J6zVpfcx1hgNIIQQgiJ4MndgxjNWYFerfUgb9k4+Uv/wIHhLD5z4aF47fFLvceGMnlc9/BOvGrdosgoQe3XUl4Ib9o1gJ7WON56ynJkLRtfuehIfOD5q9HTmsD1G3bjrqf244hF3bBsJw8bzggDjhA+eL4fabhz8z7c92yv1zatIxVDMmYiq4nM57TL+aot2dYDIwH3+sBwYd/hSqIRysnsiBCDxUjGDQym8wFRu71vFEtmtnot4+LusStXWgnHTD74xUeJUQCeM5swfeHaEhLCbckYhrN5fOR3D+Ohbf0FhYAdSec4JBwxLOAUrI3mLAgRdNdHshYsW0YWParX7RvJegV3gCPw83ZQCOfcaMShC52ivp7WON539uqSLrDOZy48FDlL4i0/vjcyI/yqdYvLjuceCxTChBBCiMa3bt6Mo5d045LvO/1Wt3zpgrq+3kjO8jKqerEZ4LQp+/DVD+PYZT01758ahcp8Rk1MU+wdzGB+VwvOXDsHZ66dAwBYNafDzf36zm/eciaPhTPCQOEksr88vAN/enAHPnb+wQCAjqRyhH2RqQth1c5rW+9oQIyVcoTD6I6wWlsqXvmF8lTcxN7BDEY1IZyzbOQt3wX3HGHLhm1LLyOcydmBsca29MccKxGrF4+FxaQqllNfFMIXE/xohFMsJ4Qfj1g9p91r8Qb4BYadEUJYPceWfj4YcNq9qa4RSde5z+Zt7B/K4KRVs3DB4fNxxpo5Xgu4SlBxlPldqYKiy2LrqwWMRhBCCCEa3/zHZlzjTvyaCPSCsHBfWpWr7SszhKIY1Q7HqCQa4bi8he60EMITRWpfUup9hIOCUWcka2Eka3mipz0VC+wLcKa0hZ3RTN7GLi1mEZURVo5w+H3QHeHhrHNb9cmthFTcRCZvBwrm1LQ15YIrZzhny0BhWTpvBdYqpfTWowRf3PTf43A0oj3lZIQPDGdx8qqZ3v2z3CJD5WxLCUhIGEJ4vYWPWtyNvpGc90VgYNR93Qg3PBkzoC5E6O9NzBCw3IEaam1Zy8a+4Sxmtidw6akrqhLBOgu6W7CjP41rHt7hOOVuH+WOUv38xgGFMCGEEOKSzlkYzVmBS/KlRGGtXlMRLqJKe0K4eMuxUqz5xF9x3tf+WfH23kCNEo6wLWXBpXhFMmZ6x5C3ZSAjHHZOdZRI3tk/6uVZEzEj8HtI5yxv0IbzWo6E0bPDgxHt03KqAFATwnnLDghhFdvQXdhypGIG0jnL+/21J2PukAnbE7FCCKewLJQBz+RsrxMD4DrCnjMbK1hL+AtAeyLmjYg+ccVM771Q4lPPCNsSgPBd5SMXdwPwxz/7jmuh0BTCzxbrjrBpGE5GWErv8d7hLLJ5G7PakgX7qYZjl/bAtiXe/csH8Pv7tzuFfKl4zbtFKCiECSGEEBd1eVoXauHL+LVASuldjs+ExJ6OEo9jFcJ5W+KJ3UMVb+8P1CjtCBcTJUlXHDr7coSwckcBP3oQFtqjOee92NmXRnsy5rrLZuC9yeRsr60aAMx1hzHoEYNsvlDAq2OytIhEOm8jk7c8Aal+F8lqhLDbRzgghG0nGqE75lF52rQ7wENhS+mJeOXm6u3VwpGNdm0k85yOFA5b6PQYXuHGZ9q1rhGQTpShJW4iYRpYO8/pE6xa4Kn3L8oRBnwRHnCE3WPKW9IT2MqZ139HY+HcQ+dh0+fOw1GLu/Glv23Cjv502aEt44FCmBBCCHFRLp3uRKqOArXkjs37ccznbsSB0AjeAkdYCeHRsQnhalH6t1T7NCllYCSwTjJuBB1hG15GGIBXcBXO7appbDv6014P3AJHOG+hMxX34gY9rY44ypRx75Xo1h3hkWzey7cCjiNtCD/KUAmqj7CKRrSnHEc4b8uAiI0bhpMdDjvCI7ojLLWIgiqWK+4It2kxgZ62BE5bPRur5rRjljuIpDPgCDvFci0JE7PaE1jY7RSc7VBC2BXgxcRmyhPChRlhW/rRCOUwV9N5oxgx08CHz12DvYMZ3LxpD4UwIYQQMhEocRIQwkPRrb7Gw7beEWTyNg4MZ4OuZz7aEe4fY0a4GNm8jQ/99iFsDQ1WqMwRLh6NSMVM7xgs2xmcobvHrUnT3X9QaI9o0Qh1WT9pBovlMjkbqbjhicAud3BGOSGsevgGHNmsDUvrrzuUySMZM6vqzKH6CKsvK23JmCt47YAjbJrCKRzUhXDewu4B/wuWdKMRQvhfFgxDeMI8FSqW0/OyM9oSeM9Zq/DX953qfTnQu19IOMVy5xw8Fy87ZiFmdyQRM4QvhMsUoynHVxfCKiPstHbz+x2r96EWHLWkG0I4X2DqKYTZNYIQQghxUXnJrOXkPHOWrIsjnNUGLGRcIdWaMCfMEV7/7AH87r5t2NY7gqsuO9G7X7mWpSbL2TaKCsZk3PAK/vJalwSFEnkFxXI5f/zyajfnmowbgU4TTpTBRHsyhv7RHLpb4t79iighbEVkhEdyedi29HKvQ5m850RXSipuegIWcMSpigvoznLMMJzIhPb6g+k8fnnPs97Ptlss15GMBb44JGIG8lmrMCOcCgphwxAwILCopxVCwMtSOwM1HAf/dSf4bfnmdaWww21Rptq2daSij18V2SW1NZiG3zWiRfsyAVQXLylFayKGJTNa8ez+ETrChBBCyESgcpvZvO19+NZFCKv4gCU98duZihd0jVCX3ceaES6GynuGRwR7orEGxXLq0rk+8CIZN2GIwv2PaB0lvGiEaYTy044jrB4PRyNMQxR8kQAKe/gCwKjbOzflvg96TKJS1Pbqy1OHFo2IaR0f1Bcq/fV/dc9z2HpgFO85axUAv31a2JVVEYtw1wjddZ2hjZQ+e+0c3PD+07Cwu8Xdr/NlJPzrWtDdgu29viPcmjADcQ6dqGiEEvrZvO0JYVV8WE3njXKsnuPkmevVOg2gECaEEEI8+gPFcs6H/b4qiuWklBV1mVCCLWfZnqPZ1RIvjEZk6+MIK1ETLs7T26c9sXsQZ33lFm+Km0K6xVfF9qv26fQRdgu2XBKmQNw0ItunKdRl/WQ8mBH2HGHXuewORSNSscL9An4eWRffo1kLlpSBTgjJKnoIA75A7HV7F7cnY8i5zq9eIBgzXfdUeyM27BjAnI4kzljj9GF2BmrkCgZ6qM4RYUdYRSNMQwS6PRiGwOq5Hd7vR2nvsIO/sLvFK5ZTXRmK0RIhhE3TF8IqtqGK/WrlCAPAmnnO1QE6woQQQsgE4GWELRtZV5RW4whfff92rP74Xwuyt2GyWkGZcmU7W2IFjuZ4MsJSlnZ1gcLiPF0I/8efHsXTe4exfktvcJtSxXKhPsJhRzgRM1wh7N9n2zLQWq09Fe0IZ/I2kjE/I+w5wu7715IwI9u++eON/X2N5izYmiOsXq8alBDuG81665YSyOXtQIGgKpazQmub15XyssROxCLvFbmF11QsGtHTmoiMqai71Hsf3mRBdwq7BtKwbEeAlxKaUV0j1LjqrBXhCFf5haIUB811HGEKYUIIIWQCUKImm7c9UVWNEL5hwy4AwIYd/SW3UxncQkc4WgiPxREulfNVxxZ2hPU+wv96+gAAP6rw6PZ+7BlMO10IihXLxf1iubwnhP3HE6bhtt4KilId5XbqI5allEjnLKTipve47whb3mtHF8tFdY2IcISrvKSvisT6R/yMMOB0tyhon2bJgk4ZczqSXsTEdgdHhCMAyhEOF8upLwMzy3RoUAV6AmFHuBWWLbFnMI2B0XxkD2GFKpZLBfoI+/srzAjXLhqhhLD60lMPWCxHCCGEuChHOGdJT0juHSouhDftGkBL3MTSmW0AfNE4lLGKPgcIZoQ9RzgV9wrnFJlx9BHORuRlFaqTQlgIK+H0yPY+fz/uti/6xu2Y25nEvK6WCh1hNVbYF6Bx0yiIRuixCADB9mmW75zbEq4j7AitrrAjHDcjj1kdq74O5QjHDAOGKBwhXAnKTe4LdUsYzVpoa/fllSqWs0MO/eyOZCDCMJjOFxSsFXOEVdFhT1u0QFT7VXGMcKZ7QbfTg3lH3ygG0jnMc3syRx5nVB9hbYdKICtHuJox1eVYO68D//XKI3DuofNqts8wdIQJIYQQF5URTucsLyawvXe0qKg8739vw+n/fYv3sxJDereDKPxohO8Id5ZwhAfSuUCxVSVEFY4p1L7CxXLKNX3guT7vvpxle8J190AGUsrIEcuAI5b0gRqqa4EiETMQN0QgwjAaEsJKDCZihvdFwMsBx020Jx3x16McYcuPRmQtG30jWewZ9FveeZPlIjLCpiEQc8XmmKMRI1kk3ciHWqv+/qhiubwdFsKpQIRhIF2Y1Y3H3PZpIXFpGs7I5GI9e/39Bn9WqGK67X1p53UriUbojnBg2EfQEa72fSyFEAIXrVvMaAQhhBAyESghrD7UD1vYiaxbOFYJbZ4jXJkQzumOcEvcbb9VGBuQ0i9Gyll2oCdtudeIQonDdD66WE4fP5yzbPSGpqAV7RoRj8gIa8tIxAzETCNwjMPZ4HvVrorlNEdYietk3EC76wj7GeFgNOKzf3kM7/z5/d7+vD7CIUfYsh3nVAm3ZLy6S/pKGPaN5JCKm/4o6awVbJ9mGt7EOR3dEbZsiaFM5RlhwHFLD13QFbk2z2lW0YiQEp7vCuEdfaPoH8kVvK5OS8J9f/RiOW1/McNw+grbTtu4WA2F8EQwtVZLCCGE1Il0zvIiCMrRXbd0BgDgoW19Fe1DuZllhbA25CGTd4RTm5vF1LO9qmUY4McjXvLNO/DtWzaX3P9INl8Qe9BR4jBcT6dyrKo3LgDk8tLrjNCaMEv3EY4V9hGW0Bxh0/AcUn+txaMROXcQhRLXyZiBo5f04Jgl3Z4bqgR/S9xELi+xdyiDnf1p5Cwbu/rTngC1Qhlh25YwDXgCttpuB3o0IhU3EHM7RaTzVqB9Wsx1wAuiEe1Jz6kdTOcgZWGbsGLt0wDg9+88Ge86c1Xk2tSrW0WK5dqTMXS1xLGtdwSDmXzVxXKxUAZaZZlr2TFioph6KyaEEEJqzL6hDNZ+8m94zu32oDTTitlt6G6N45FtpYvfFMrBG0pX6gg7I3qTMcMTEXov4XTW8vKbypXdsm/YW2exfZ/8pX/gV/c8V3Sb8GV6hXJvdSGfs23sH3Zy0j2tidKT5dxiOSml1jXCf9zvGqFnhJ3XUmJMuZNKeGUtO+D6nrl2Dn7/zpM98eXHJhwHOZO3MZDO4df3bsXZX7nFc5z1Y07n/GiEEptVC2HvC0oWLZojnM5ZnigGHDGbD41YBoA5nb4jrK5EhId6eO3TEtW51V40wlYZ4cJf2ILuFjyxeyhSgOtE9RHWox+G0N7DKl31RoBCmBBCSNOzsy96jHLCNHD4wi48XKEQVg5cuYxwRiuWy+SdbghKRGTyNm7etAefu+YxjOYsHLrQufx951P7vVZjpfK/ewbT6B3JYfOeoaLbFBuYoRxh3bzMuaOgAUeslusjbEt4mdiCjLDXNaLQEZ7b6UxDa9cywoDzxUDFR4JDHZQQdp7vOMKOaB7K5LH1wAiGs5YnxK2AC+1MljOE8FqdJaoWws7vy3ZHNcc9IWwHHWH3eMMZ79ntftcI5ZCHh1qUikaUQmiRC6BwoAYALOxOYeOOAQCl25N5I5a1jHDY8facazrChBBCyNRDRQGOXtKN8w/3K9TjpoHDFnbh8d2DgVxrMZTwqDQa4YxYDjnCeQtv/vG9+L/bn0Hellg7twMnrpiJX93znJcZDk+g01Ht3kq1XNNbeSmhaodGIithl7OkJ4S7W+OuI1y8WA7wC+AqcYRHPSHsON/tXvs09/2wLE/sBnrZGgJCBPsIK0dYSmBHf/DLjS6+85b0HWHvsv7YMsLObTPgAgfapxlGwWQ5wMkIK8GqvpiEixC99mljcFqFKB6NAJyCuUH37/R5y2YU3Y8S4XrPZf33bxgCCRUvoSNMCCGETD1UIdp/vuzwQAFSImagMxWHZcvIYQ1h7AqFsLrUn7Mk0nnbcYRjviOs05Iw8doTlmBb7yhu2rTH3aZ4/lcJ4f4SLdd0R9grbgtlWFUHg6wVdIStEn2ElThUcYTwQI24aXgDJhRq2zkdjhBW09V0R9jLCIe6J8S0scqqWE79HB5qog/UsFyH1hTCy7tWH43wRV8qZnhfHABniIZ/zAJ5yy4Qwqm4qRXLOWsLv6/xMTrCgCNWy0UjACf+s2xWW9H9RHWNCGSEDWaECSGEkCnNwKgjxjpb4oEP87hpeB/64YEIUeSrdYTd/GsilBHWW1Al4yaOXdoDAHh8l3MpO9z2TGdPlY6w6hARFmqq8C+nCWHDEGWjEYCf+7UlChxhNWACAP7wwDb86YEdAIDVc9vRnox5wx3UvrKW7XeNCLm2McPvLJGKm7ClH0vZ1hscDa07wpbtFOEZ48gIt8RNT7im4mZgrLIZiEYYTjeQiFy20pP5IoJ1PAJTIPjeh1FC+Cx3zHMx1DCPsBuvGM972AhwoAYhhJCmR0UjOlKxQE4zGTO8D/1SOliJKuV+DpSZBBcYsawc4bgfjehujXuCtiVuem3ZlNtbiSPcV2Iss+5uD2XymN2RLBDCbckYTMMRrftdIawGZBRtn+aKpWFtoIje6k3121Vi9QO/fsh77E0nLcPLj1no7cMTwnk70DVCR3cmw6N+94UGoejHZ0k3GiHGLuLipoETls/EXU/vd7pGhHKz3naGCLS8+/rFR+Ogue0AfOFbTAjHTQOpuAGj2BteAkMIbaBG4fMPnt+JhGngRUcuKLkfFVXRXeliGeFaTpWbKKaedCeEEEJqzMBoDkIA7YlYoGgqbvpCuJQjnNbGCgPAQKhrxKU/WY//+NOj3s96H+FMznIzwn40Qh+U0BI3vUlivhC20Tucxa7+wiI/JaBLuYG6KFQdLsKOZWvCdFudOa/l7NMVwkWEWSoUjXD2679v8Yj2af5zTS8eASDQFUKPP+jozqsSauGRzf46ZOC2ZSs3c+z51he7IvKZfcOBOISeF/ZHLDuvv3xmG9bO6wTgRyH8jHBw/0tntmLZzOKxhZIIvY9w4cOr5rRjw2fPxVGLu0vu5pglPfjCyw7D8Sv8HHHA/RZaNKKGU+Umiqm3YkIIIaTGDKTz6EjGApd5AUeMKSHsT2OzAp0QnPvcMb7uNv2jucA2T+0dwuO7/KEcejTCzwj7jrCamgY44tI0BFriJvYNZd1tbPzbbx/CCV+8CY+5lf8KJZYVUVPg9IyuinFEZVjjbvTggCeEHWe8XLGc7gjreeREzPBGDpfDa5+W16MRYUdYn3BWWtLox6ecbaeP8Ngv6593mFNYOZyxCjpF+Led41U54HDrMWdtKiMcfF/fftoKXPfeU6tel7Pv0l0jgMIuFVGYhsBrj18a2FYfqGEa2lASOsKEEELI1EMfMxt0hP1iKktK7B/K4MjP3IC7ntofeL5yIZXrZ9kSw9qgiMF03usVCwSjEZ4j7Aq5dM5Gd6vfzko5nW3JWCAa8dRepz3ae696ILCWvaFIgF7EpdDd0WJCuCVuIh5zCtv0aIQsGY0IZoTDr5UwDXefzn0zi4wIBnRH2CpZLAe4YqyMkC10hFU0Ymzt0wBgRlsC337tMfjhm54XeJ8LoxGOAw0ERbLnCBeJRgghxhSLAAABLRoxxn0UQxfzTucN5apPPVk5pVZ81T3P4Ud3PDPZyyCEEDLNGBjN+90KQo6wEhF5S2LPYAaZvI1tfcFCLNUCTBeTuvAdzhQTws5l/2DXCCsgiFSxUnvS9HKvmZwfnwjHI/YOBH+Ocv0C0YhMruA+wI9GZPPhaEQJR1hFIzRHWN9vPGZ4mVmg9KAI9XvI5oMDNXSUqNSzvsWww47wOIvlFOcfPh9r5nUE4xABoagGajjHHGg9Fur3W0u9KvRoRO12CyAo5sczlKQRmFIr/tuGXfjDA9snexmEEEKmGQPpnDfRLBHzP+QTWtcIyx1mARQOpFCX7gNCeCQXeF6kEA5khP2uEfp+dEc4r8UzlPjWC+eklBGOcOFHfSAa4WWEC9u2xU0Dg+m897pOFwhZYsSys9ZSjrDeNcKynV6+n7jg4MJ9ecWD5YvlTKO8ELbCjrBU7dNqc1k/HIdQxE2BnDZQQxfJBY5wDZWwUyynXqe+jjCjERNEKmaWnJ1OCCGEjIWBUS0aYfof5oGMsJSe+MyFhmsogaz34lXCVxWOjWQt73kZyy+WS+dtJOOG53Zm8nZgPylNCCsyedt7TX1YQ/9oDjlLhgY6REQjNCE/WCIjnDCNQCs43xEu2KX7nChH2H+vVNeInOVHQy5atxiXnrqiYF9hR1iIoFsP+IKskmiEOr646XT3UCJcffEZSzRCp+hAjVAf4eiMcPHuDmPFaZ9WvFhuPIQzwv5QkiklKwFMNSEcN0r2TiSEEELGwmA67w2QKNY1wrKLC2Fl0uiX31WLMH3csiqiC0QjchZSsWCxnB3hCLeHhLAuNtX+VHRiXqfffSGqWC5vSyRMA0IA6YhYh3rdmCkCHTC8rhFjdYRDQtiyZaRQB6CNnHYywsmYUeBsKhdYdyV1lMvvrMN5zZhhOH2E3e4XviM8TiFcJCMcM/yx02qtisL2aeNaQgA9GlFLgQ2EHGHhv/djmYA32UwxIUxHmBBCSO1xiuUc0aQXPTldDvyMcLgoTqEEclQR2pAmJPtGcoHWYTlLOiIvHoxG6NPYWiIcYcBv+Qb48YheN46x0B2WAAChBhfusdiImU4nipEiQrjVjUYMpf1Ih22jTB/hwvZpgYxwqH1azrIjhToQdITTOSvysrt6bqxINGLxjNaCdcRNESqWq81l/UD7tFA0AvB/R7GAEHb+VeO7a+oIC1G2a8RYCWSETa0FHR3h+kIhTAghpNbYtsRQJl8w2hdQjrDzsy19IZzLR0cjbFt6YsATwiFHOKu5yZmchbwtkYqZiLnusxONcB5PxgyvoKw9GRRqWcv22qypDG2fK4QXdPuOsB2hhPOuE9sSN4uK+1TcFcLhaIRdQUa4VPs002+fVtoRDmaEo0SWEpx6P2CdxT2+EM57Qlg5wsHnjTsaUcwRNv3jAIJuqihwhGuZEa5fNCIWdoTZR3hiSMYNpPOMRhBCCKkdg5k8pPQvowfGG8cMb8hBXo9GhERjWhOTXW7WeMiLRviicGA058UY9G2UgEjGDC8accj8TlzznlM8kdGaKBwGq9qsZdzYYK87TW6+5ghHDdbI27Y7tcwXwrpjCjjFcgnTCDjatpSQMjpuoR9HMUc4YRpeOzEpnSETZoSAVdsCvhCOuuwe0xxhXciq3+XiGf77YGlCWDmw45ksV7CWYn2E3TWq35EZ4QjXp2uE5gjXPBoR7JDByXITRCpmIpu3A9kpQgghZDyoccjRfYR9R9iy9QK1cEbYdTilRHsqBiH8bHDYEda7PCjBqESeI4Sdwqq2pInVczu8bcPRCADodtes9qk6VSzo8h3h8PAPwHFpTUOgNWEWtH5Ta2lNmIjHhNcPWQi/a0TZaITuCAcywr5oUvEEPVKgo3frSLudNcIoUWmE2qfN6kgiYRqYq2Wl1TpiptDcWV+0jtfNjBdpn6bWpaYPlnSEa6iEBeB3jajZXh30Yjkj0DViSslKAEDh/1UNjF5RW6r3ICGEEFIJj27vxyfd0cfhYjnTEDANbaCGrWWBLTsgMD1X1XIu9bcnYxhMRxfLBR3h4MS0ZMz0MsLhy+ThaASAgmhE70gWMUNgVnvS2yYqGpGzJOKmE7sIRyNScROD6bxTLKeJu9a4WbaPsHAvkwcdYRsHz+/EytltWDyj1YsK5C2/c0MUepGiylGHUe51zAw6ws8/ZC72D2W9LzdqP4DjNKsvMkERV8P2aaERy4B/1UB/rDAjPK4lBBBC1K9YLuR4q/d+KhbLTSkhrE4U6ZxFIUwIIWRcPPBcLy75/t2eEJzV7ohK5eApkeVX9vujfnOWDEQOPFdVSpiGgfZkzI9GZIPFcgEh7BaieY5w3I1GSBkQTEC0I9zVGnSE+0Zz6G6No1XbNuoiqmU7xXKpeJQj7Isa3WVtScS80cSlLrUnY0YwI2xLLJ3Rim9ecgwA/331hWFxUS3cnGsm73TWCKPc+vBAjVcduwir5nSgfySHfedl8L1/Pu2JzZgpvN+5KYQnVGvZPk0XxcopVl9W9F9rYdeIWhbLTUxGuBZDSSaTKbVidaJI51kwRwghZHz89dFdsKTEzR86Az9+8/Nw7NIeAL4gUk6hEjWWLb0OCzkrOPRCH6hhGk6rM+UEK2c4YRpuNMIXwuqxqGhE2CltjxDCniOcU8VyWXS1xNGqmUWRjrCtRSM8R9jZhxKcrYlYYLhIa8KELZ0uFKWcy2TMLMgI6+JPiSZPjBbJCAOOUHWiEUUc4SJ9hJW729UaxzvPWIWY4edlY4aBXN5vZVaPjHC4jzAQ7QgrgVoP59YQ0DLCNdstgNDxTXEhPKUc4ZQ2h50QQgiploF0DjFDoDURw9YDI1jU04Lls9qwfFabt40SwHpEAnCL5bSMsB0VjbBdRzhlaMVyeTeukCjoGqGEsGqRFjcNpxZGFuZF29xiudaE3/LMzwj7XSN6WhPe/oDi7dPihuF0jciqjhfOY+qKa0vIEXaEcOk+woDrCGeDjrDuIBcKw+L7MoSALZ0WanpPYIU+UEPvGhEWZEIIrWuE8H4HRi2L5UK9g73bqugvVxh/qKsjDOH9jdY8GhEaE+21T5uC0YgpJd09R5gt1AghhIyBd/78fnz6zxsAAFt7R7BIa6+l8ISw6V92BxzXTh+xrAvhgCMsEIxGZPJoS8bQ1ZooyAir/anPN9MQsDyxGVyXikYoFxgAuttURtjvI9zdGg/EB20pcedT+/Ctmzd791m29PoIF3OEWxJGQNC1JExY7mjiUo5wKh5suZa37IAQU1EBzxEuUiwHODECW3WXiNhOierwQI2wINNbicVNw2t/ZxoCJ66ciZcdvdD7ojFWhBCBLhYK5Vpn8hZMQwS+FOixG3W8tUJ3hGuNGeqQ4Wfcp5SsBDDlhLCfESaEEEKqZd9QBnsHnelr23pHsbinpWAbwy2Qi0c5wq7TmbXsYEY45/fFNd1iOdV2bChjoT0ZQ1dLDP2jWU8Ip7RL/S26ENaGPeioaIRqmQYUOsL9I1l0tyYC0QgpgWsf3onv/fNp776cW9TXEtE1QkUQWiKjEU77tNIZYTMg9sMjmeOxyh1hFY2w3chJGCXUwwM1woLM0FqJxUzhjbg2DIFjlvTgf159VE06NsS04j3/Pv9qdjju4hfL1SMjLLyuEbV2hMN9hKdyNKKiFQshzhNCPC6E2CyEuCLi8X8XQjzo/veoEMISQsyo9WLVt1RGIwghpDiNcs5uBGxb4ls3b0af219XSkfQDqZz6BvJBSaP6cRNIzIj7HeNkAG3LVgsJyIcYRPtyTiGMpYnEnUHsiXhu89KCBdEI9yuEbojHM4I947k0N0SR2tcL5ZzHGa95VvethEzjciBGkqUh6MRLXFT63dbQghHZHn17ZV4TUf01S14nvpiIKO7SyhBZhRkhEPRCPhFgyp+AqDgy8Z4iXvCPLprRFj0qy8UlbyvY0Flj+uZEdZz1lOxa0RZISyEMAF8C8ALARwC4GIhxCH6NlLK/5ZSHiWlPArARwHcKqU8UOvF6nPHCSGEFNJI5+xG4Jn9w/jv6x/HTRv3AIAnCLceGAUALIpwhAEnH6w+3PV+tnqMQBaLRhgCbZoQHnKjEXFTIG/ZXj61VWuHpoq7lPCTslCkRTrCWteIdM7CaM5CT1siEI2Q0sn/BoSw7gjnLEh3YhwAdLXE3Ry1L4SFcNZYyeCHKFdQP5Rw14ioiXAK0xDeNLsokeg5sFqbu2TMKHCs9Z91cR/lMo8HU4tqeK+ndY2IEt5C6Bnh2q1FxUoAJy9cS3ShbxoCK+e0Y2ZbAvO0vs1ThUoCMccB2CylfBoAhBBXAbgQwGNFtr8YwK9qs7wgLJYjhJCyNMw5uxFQzp+KDtjScVu39Y4ACI7g1YmbhucwGpprp8RbNuQIp0PFch0pp2uElGp8c8zJplp2EUfYEa4xQzgdKaQsyItGZoRb/WhEvzsYpKsljrgpvJiFLR1HVU1zU4VjqbjTR1hK5/lKjF18/BK8+nmLA+3TUjEThjsRDig9+CGqH68RIUQryQh7DnkRR1g91xBO9jZhGpFCPNi1ojCjWyuUQIyHMrSA8zcS1SHDEELLCNe2WK4eE+vC+zMNgaMWd+O+Tz6/ti8yQVTyXWghgK3az9vc+woQQrQCOA/A1UUev0wIsV4IsX7v3r3VrtW7XDOay5fZkhBCmpaGOWc3Akp0KjdUSicfu7XXcYSLRSOSMS0aYfiT0Ea0gRp6Rnjz3iHsG8oEiuVs6Yi94Uwe7ckYYqYjJNWa9ByvnhHO29EOaFsyhv940SG4aN1i7z59oEafO1WupzUBIQRa3X2qaITzPkhv/TG3awTgRDuUaOppTWDdMicp43cDMGCKyi7hpyKjEf5tPTPrvL+loxG2RGRmWn+uEptxtzdy4esXZnaB0rGMsRCPcoSVEM4XRiOctTmDWMLrHC96gWCtoxFCiEDHjqlMJUI46giLlSG+GMAdxS6xSSm/J6VcJ6VcN3v27ErX6NHutk4ZyjAaQQghRWiYc3YjoGIIWc0Rzts2tveOojVhokeLGegkYr4jrFw8vWtETpss94YTl2Ika+Hjf3jEc4SVezuUzntdIxKmgbxte4VarZojrMSb4U4DK+aAvuWU5ThoXruzLje+IASQyVkBRxgA3nTyMhy5qMsZi2wrIey8dt6WiLtdIwBHsHsjiCPGA6diputcVhKNKOMIG8FoRMmMsHDWbkdkpgG9a4Tf8q5cRjlRRyHsC3L9Nfz2aVFCV1T4vlaL0AoESxU3jpVmEsLbACzWfl4EYEeRbV+DOl5ia9dOLIQQQiJpmHN2I6AEsBLEtnTysSNZx6UtJhDipt8bVTmReVsi7Q3UcMQqABwyvxOvOGYh7n7mgDdQo8M1brb3jWLPYAbzOlNFHeGEaXhiIqa1TytWyKWEXGvchBDCG8KhRK5a97+9YA3OXDsHALzuAZ4QthyhrSIZI1nLH+oQIYSTccMVbH7/3WJEZ4S1fWpTYtUxF8MUzvthFXk/1HNV4iBuGpFCXH9qYCpanYrlwgMngOhiOWcN9SmWcybLubdrtlcf/72f/kL4XgCrhRDLhRAJOCfOP4c3EkJ0ATgdwJ9qu0SflrgJQwTnthNCCAnQMOfsRiAqI5y3nbxsvESl1MuOXoQXHjYfgC9qLNsODdRwtjWEQFsi5nSScEcjK+PmTw/uQN6WOOeQuc5EMy0jrISwHiUwDOH0KLaLu3hK/KYSahqd6U2j09er1gbAGy+svhDktK4RgCPSoh1h53YqZsI0/DZfpbRPtCPr31b7V502ynWNsG0Jy47Oz6qYg+llc40i0YxCIV7utceCHtHwXk9FQfJ2iYxw+ex1tQjUrxsF4Avg8CjwqUbZYjkpZV4I8W4A1wMwAfxQSrlBCHG5+/iV7qYvA3CDlHK4XosVIliJSwghJEgjnbMbgXA0Qrp5U6d9WHFx8I4zVnq3fUfPLyhzxKovXmKmgaw7dtlwu0YAwNX3bcO8zhSOWNiF6x7ZGRTC7jZ6ptUUwivoK9XRIBkzPCHtOMJWESHs/Jv3ohHOv5YtEXcn7AFONMKyC9uZqXhIKm4Ei7rK9BEOE1Usl3Y7QJX6PegDRqL7CKvL8/56o1/fvx2voyMcM4LCHPCPL1uka4Te47j20QjbvV27/SqUqJ/iOriyEctSyusAXBe678rQzz8G8ONaLawYHRTChBBSkkY6Z082XjRCc4Rzlu21D6sE5dINap89+ohlQwAJ0+32YDv7VY7wYCaPlx+z0BvSkbec1zeEHyHQW53pnR5KuZXJuOm5ucm4gUwu2hEWIUdYTVRzohGG1794JBvtCCthl4w5MQx/8EPx96tcsZzXNSKrhHcFXSOKFMv5kRJ/GmBk14gJKpbT27kp4kbp1xPCj6zUulhO1qlYDtAKFae4Eh7fPMFJoC0ZYzSCEEJIRfgZYcd9tKWEtBzhUSoaoaM+8PX6lJwdFJ5x04CUzusZQmCu20912cxWvOusVQAcAZi3JbKWHehT3BIPCmFbOussPb3N8AS0F42QhZfB/RG+wWI55/j9Dgt614hgRti5nYwbTjSigkv40RldXYj6XRSASrpGFC+WU++heqynLY6Z7cmKXh+ofR/hcBeLgtsRotHQvmDUUrAKCO9vop7FclNcB089IdyeoiNMCCHNyGM7BnDtIzvwoResqfiDvbBrhOOS5W1Z8pK8jvrAH8o4XRkSpuFEI1QhkvDHMY/mLJgGMLsjiQf/4/noTMU9kaZE5Ug2j7hpeKIpFRLCeVdklypCiopGqKiGflxKOyqRq94Pyz1+FY1I53whrAtTPxphBgR2OZEeRt9cFftVUizndI1A0WI5vcgQAL5+8dFFxGbh6zv319oRjiiW038fRRxh9QWjloVnQgBqhko9ytmaJiPcaLQzGkEIIU3JS791B7KWjXefuToQJyhFOBohvWK5yh1hXwg7nz2dLbFANMIU/ojZdM7yLvV3a4MvAN+9HMlYSJiGJ5oCxXJCOMLPLh2NmNeVwrxOZyqe6hoRJabCjvCewQxu/seTyOaDfYT1aESwB67hvYYuGsuJ9DBGlCOcK58RNlTXiCLvh58Rdv6d0xE92SxqxLP+vFqhvuzocQj9dnTXiPpkloWbN6/1fhVeRrgeKnsCmZJCeFd/erKXQQghZILJap0PWlCZEM6FuiWo9mk5yw4IlFIo0TfoRiM6U3HsH84WZIQBd4xukd0q4TvsOsKqaEuPRsQMf8RyKfHyndcd660rGTORyWmZ5UBG2PlXZYRv2LALv7pnq/daeh9h3xHWRJzpO8L6ckr2EY4caOHfVvtXAzVKZoTdrhG2LNJHuMIWXoGMcqwyQT8WvGK5ItGIKOFtBN7X2maE/T7CNdutR8xw2v7VI3YxkUw5P5sZYUIIaW4y+cqHKmUiHWG3WK7CaIRhiEDrzvZUzCuMU4/rBVjFLhUnvGiEhUTMd4R1d9swnFZalpQlxWZnKu51pkiEu0ZEOIzqsQEt5xwz/ZyxHo0IiFaVEY4ZkfuNolz7soRXLFdBH2FDc4SjohFmofCMItDHWPv91LJdGVDEES5TnKevTdRQlTl9hF0hXIdwhGmImjvqk8GUE8LtyVigcpcQQkhzoUQtAGzcOYCRbPHPBL9YzhEEniNsy4B4LYdpCIzm/P6/ectxbQFH5MUryJ2q1xvJWoGBHamYnhGG1j6tMpFREI2IaJ+m2qYN6kLYcNZgGgIj2bz3miJCtKbiZqTTHL2eyorlRiuaLKe6aESL1niFjrD+cLyMQzseoqatJUzD+z2Uc4Rr6VCrKYXh16gVMUNM+WEawBQVwsOZvNcShBBCyPRHXdoHfHE7lMnjhV+7DR/89UNFn+cXy/ldI/K2RN6yA/1ky2Eawsu0tiViXs9gwBEZ8SKXwnWU8+kIYX+aXCqhRyMMr31apW5lMu50jbCjhLA3DMR5bCidC6xTCCceMZp1hHRYqMW1HHMwGlFtRti/XZARLuMIq44KpYrlygnaYu3T6lUsFwv9DlQniwnNCANe14h6VMsZQlTcgrCRmXJCuC0Zgy39b5KEEEKmP7sHM95tJW77RrIAgIe29RV9XmGxnHN/Jl96oEaYmGF4l/LVIAyv96shKupEoDowjGTzwWiElqlVLp4tK3cHkzEDmZzliZ5AH2H335ztf3lQ6IVwmbwVOdbZa58WM4PRiJLDPkoP1PCiERU5wv77HGXgxyO6NBTbD+A4w7p4q3mxnBujCX+JmdORLPp6wW4cNVyMW3gZfo1aETNFzaMlk8GUE8Lt7vx2do4ghJDmYUffqHdbidoRJUxLdJAoLJZzxOJo1qoqGmEIeBGMNvf1VP44HI0o5pKp7PBwxgoUy+mZWtWr17JLZ4R1VDQiyhFWkQTlCOvRCN1NtaWMHDKiO8KVOpflRiyrEdHDGeUIF/89GEIgV6J3cbh9WjHU+2CIoHirebGcaUQej+orXWyghreeGgpLQ/iOcD3kqmnQEZ4U2pPOCUj9D0QIIWT6EyWEB93L/KoXbhRRk+UA57J8ogohHDMNr8uBej1VtGcKUbZXLBDsI6y3TwsO1DAiB1uUQg3UKNk+zVLRiGBG2HlNJ35g2XZB0ZnvGpsFYrYYqTIZYWd/hvfFotyIZTUNL0q0htunFcNzhBGOLZR8WtXETRF5PJ4jHHEMlUZOqkUAkZ1EakXMoCM8KbQn4wCC/zMTQgiZ3uzo89tmKlE7MOp8DihHeM9AGtt6RwLPKxTCzv2jOasqN8s0hOcqt7mGTCanHOHgkIZi+41rkYB4zPCL5eLBYjn1OhVHI+LBrhG6OFE38yoakS2MRqhevXk7yhH2Xeuo/RZbT5iwwEvGTc/RL5cR9qMREUK44miE7wjr29Z8xLJhRO5TCeFSa3Nu124thhCoY0R42mSEp1wfYXUCYjSCEEKah139viOccYXRgOcIO58Lx/3nTQCALV+6oGBbvX0a4Arhahxh7QPfd4T9jHAl4koJTymdVmrqEnpACAdyuJVnhHOW9DpDBLtGBB1hvc48EI1QBXohwbqwpwUvPGwejls+E395aEfkOqPWEyZ8KPo25bpGeFnscTnCzuNCBLetdTTiRUfMx4LuloL757jRiL7RXMFjlU7sqxZ9V3XpI2yKumSPJ5opJ4Q7lCNMIUwIIU2DXiDtO8JVRCOsoCMsZbDTQzn0D3zPEXajEZW3T/Pvj5uG93OgWC5CxJYjEQsWn+mi3RuoYRd2WlLHH3N7F0dlhJMxE9953bHuevz7S49YjiiWK9hv+b7LgHKECwW+91z3GCptn2YIMaYvG5Vy/IqZOH7FzIL7lSO8fyhT8JhaTq3daVEnga0wDaOqgtNGZcpFI9q8jDCFMCGENAvK0QQ0IexG5MLjlm1N9Ck3MRPKCAOlBVgY/QM/7AibRqh9WhlHGHDEq3pOSyI4WU5RqWGtnpPNFzqn4YEawee50Qi3WM6yZcnBFKLCS/hRjnBYh+liudRrGsL/ElOqWK7cQA0/GlFfR7gYyhHeP5QtubZaIorcrhXsIzxJqK4RHKpBCCHNQ07rohB2hMMfxr0jvtjQM8JSykA0oBpHWIknQ/hdHtS+hQi1TytTLOfc9rsLjNcRVvvJ5guztErrq4xw4Hmam2rZKiNc2p2tZG0q6lGqpZyeIy6VMzWE8HpIRxfLGUUfC+7H3189M8LFmNvpOMJR2sVv7VZrR1h/jXo4wpwsNyl0ppxoxEBEzoYQQsj0JG/Z3kjhbCgjHL7sv28oQghbNsKmaLyKjLASWomYL2AzWjeDWBXFcup2V4vzedbTlih4HaAKIewK2qylohr+Y+GMcOB5hl9oZtkoO9Y5sN8Sb52KaujCf6wZ4WA0ovBxT8yPMSM8UV0PZrWXL5ar9VLq1p/Y5YiFXThqcXftdzzBTLmMcCpuoj0Zi7y8QAghZHqSsyTaEjEMpvMF0Yiw27lvKIM16ADgi2Yp/ZiEopp8oxJPcdNAIubczuT0jHB5caVvkzAFjljUhT+88yQcuair4HXCtytZWyZnF4xIVrejMsL6AA7LtmFZoqQjXGlRl2k470c8ZgBZ/z3S0aMRJR1hrVtHqWK5ivsIhwsbJ+jSvvoStHZeR9G11XotgWK5OoQj3nP26prvczKYckIYAGa2J7AvInBOCCFkepK3bbSGitTUlUEl8loTTksu/fNBiWbAb3emqMYRVqI5GeEIC1FZ+zRdZMZNA0IIHL2kJ7DNWNxKLyNs2QViqtQuVK2NYQhYEpEjloP7qtytTsbMwPsb1UcYQIFwD2OK0u3TKh+x7K87KjoyEdxxxVnoTBXKLn1ttaTejvB0YWoK4bYE9g9TCBNCSLOQdx1hoLBYTmVIe1oTGMmOYm/EOGYASOeDg5iq6iMsfEdYCbyMlsnVRV8xZy+uxQESEQVlal/l9lP4HD8jHBZ2pcSVEsKmcAoMLVF67HQwclF6TcmYEcoIhx53c8TlBKxp+L1wo7b1RyyXVrSBYjlR/XtcCxZGtFUDfJFaz6VQCBdnymWEASdrs2+Q0QhCCGkWcpbtFZV5k+VcR1h1RFDdF/ZW6AhX00dYiTC920OgfVoFmde4dn8xNzpYkFbZ2pSgz+TtgmhDqX2oNcQMA3nbhiVLC+dqCvlScTOUEY52hMt9GSnnQvuOcMndaGIzOPmtEYq9PJFe47VU4+A3M1PTEW5P4v7neid7GYQQQiaIvC2RihtIxIyCgRqqmEq1TdONkmzedjOwssARrqZrhBKYAUc4F90+rdxADaCEIzyGHrfq9bJ5u0D4RsUOLj5uCVbObsMlxy9xXwewbcCy7bIdHKJuR5GMBXvMFiuWqzTSUGzbdreAUhVSFt+PWyyH0HE0gBCekIzw5B9mwzIlhfCs9gQODGdh27Ih/ogJIYTUl5xloz0ZQ9I0vFZoasSycoRVVjiQEXaf1z+aQzoXjkZU7girTRPaIIyM1j4tbpR3hIMDNaK30T/TKhVGeh/h8GtH7aE9aeLSU1cE1puzbAir/JQ3/3bpNSVioVHDRYrlyjnC5Vq2ze1M4XeXn4gjFnWX3I8+UEP/vTdCH9y6tU8L3J7842xUpmQ0oqslDlsCg2n2EiaEkGYgZ0m3Y4MjhDN528v/qq4RVpQQztuea5guKJYbgyOsZV9VNMIUItCNoCJHuFg0IuBWVrY2r2uEZRdkZaPEY3jym2kYsGx3oEZJIazdLiNg33/Oalx66vLI5wJ+H+Gy2d4KumisWzajqMPuv76fEdZfsqGiETVeSjVfXJqZKSuEAaCfvYQJIaQpyFs24qbwhLDeS171yFWC+LGdA7jou3fBtqXnJAMocISr6iPsKomkaXjZ4kxokpsS1sViA4E+wkWEW6xErrYYnkOdswqyslE6MxUP3mkK50uEJavpGlF6TecdNh+nrp4d+Vyg8oxwoLBtHIpFd111R7gRsrNqbbUfsRx9mwSZktEICmFCCGku8rZETDnClh04/6tIhGVLnLRyJkxD4LYn92E4m0fOkt5E0oJoxFj6CMeEX5yWU6N/nW3ipoF0rnjO1jQEDAHYsrgINwLCr9KMsNs1IqJ9WtTl9kJH2MlQC1G+p2+p/RZsX0I4qzVU0jUian/V4hekBQV1IzjCXo/jmmeEq/t9NStT2hFWhRKEEEKmNznLRtxwRhln8zYODDsFccmY4TnBeVti9Zx2nHPwXAB+fM5zhPOhrhFVZIS9rhGuGAeCXSPUY/q2USg3uWg0YpwZ4XBkITIaES+MT9hSIm/JklGFqIl1pQhGhKMd4XLxlLF8MYhCF5tmwBEe8y5rhu9W13a/oshtEmRqCuFWOsKEENJM5C2JmBaN6B1xhPCczqQXjbBcIafarKnPCOUIZwqiEdVkhF2xGzMC7coAX6BVMu5XtVCrpH1apS6eqa0n7OhGLSUVcoRjpkDeywgXf51qM6cisH1ICMfLf2kIv854CtsCAzW0TG4jOKWqkK2eAzUaIQLSqExJIdyZohAmhJBmIm/bgWjEftcRntOR8qIRTnxCIOX2E1Y54o5ijnAVoVNDE7DxWDAjrDRGvAJHWD23kvZplTqgNXGE3YxwyRHLVcYUSg3g8LtGlP4djGXSXvRanOcKAZgVfGGZSNRbwIzw5DAlhTAzwoQQ0lzkLOlFIzJ5G72uEJ7dnvS6RaiuBylXZKrJc6rHbIEjXIXw0B1h1SpN7c+sJhphlI4EBKIR1XaNyFsRGeHC7ZMhEW4aApasrmtEJcKqlCNZcR/hCrpGVIISm0FHuDHUoS7Sa0lACDMcUZQpKYRbEyZihsD+IY5ZJoSQZiBnaY5w3nGE25MxtCZM5LQ2ajFDeBPmlCNctGtEmZZbOnpGOB7qI+x3jSgv7hJmUDQXex19v+WIaSOWw68d7QhHF8vlqxioUYko1bcPL8PrGlEmnmLW6PK+nxHWp9E1hjicmGK5mu56WjElhbAQAiesmIlf37sVI1n2EiaEkOlO3u0jnIz5jvCMtoQn4mxbwpaOuEmFMsIdqeg+wuVad+l4rq82KKJACMfKCywVxygmwsckhF0xqY5fJ7qPcLh9mvMeWlbpIVXVZk71TQozwpV1jaiZI6xnhJUQbhB16K+ttvsNFMs1xqE2JFNSCAPAy49ZiIF0HrsH6AoTQsh0J2frfYQt7B/OoqctgZhpIGc5+VbAEbeqWE51FqpFH2ElNuOmASH87hVAsH0aUFpgxcs4wmPpkhArIRajdlGsfZqTEa4sGlHJ0iqJRlTVR7gG7dMA/z1qlMm0Rp0cYRbLVcaUFcLqxDacoSNMCCHTGcuWkNKJACRMp1iudySLmW0JxAwBy7a9zhGmYXgDI5Qj3OYVy42/j3BCu6SvJtt5jrBRQbGccoSLCOGxDNQwSwjhqK4IBQM1DKd9WvmMsH6pvfzagu528LGKM8K6+B6HYlG7CTjCDSOE1b8slpsMprwQ5phlQgiZ3qgMcMwUSMZMp33acA49rQmv9ZfqJRzTohEDo6pYzvk5UxCNqMIRNoICVhey+rAN/eco1PMSsehtxjIWVz+OsGtaqSPsvIdlHGHt7Rp/H2FnDeVc+VpFI7wcruG70I3ikuprqyWBLy4slivKlJwsB/h9IekIE0LI9Ea1R9NHLPfncpjR5nQQylvS6xwRM30hrHoNtyWczwu1jaKaPsJKVEQNgqimfZoesYiilLtbDFN3kceQETbcjDBk6bjA+PoIh9ZQYR/hsQwYiUKPH6jb4xnZXEt0t7oe+3X2XdNdTysa5M+getSlrmEWyxFCyLQmrxxhw+ka0T+aQzpnY0ZbEjHTcDseFGaE9w46NSRqCFO+QAiPJSMsvLUolECrqI+wUToaEeiSMJaMcIn2aWqzVETXCLuijHD1sY1il/3HkhEeXx9h518h/BHZjVMsVyeHWhS5TQJMWSGsGqQP0REmhJBpTc4KOsJKz85oiyNmCORs23N7nYywI/T2uS02Ve95FZ9QjCkj7HV9KBSFiUqK5WLBrHGx1ym3n2LPCR+TLq7U+xIeqBFz+wjn7XIjlgtd8HIYRS77q2hEVV0jxuMIe3EI7XaD2KR+j+Ma75fFchUxZYWwcoSHmBEmhJBpjZ8RNgLdFma0JREzDEgJr4NDzHCKoRKm4QnhjlQchvAFtSJeRSjTb59mFjzXnzpXPiMczhoXvM6Y+ggXf47+47KZbZjdkURryBE2VNeIciOWq8wI69sVZITjyhEuM1lOe9r4MsLB9ai/k0agbn2Ei9wmQaasEG5NmBCCGWFCCJnu5D1H2Ag4qfO7Up4DmnE7Qihxk4w7bdWEAFrjptciTGcsjnA8lPHVtVSskmiEKpYrKoT925Xq9FK5Yl1cvfyYhbj7o2cXjJb2+ghX4QhXKtrCAlRRadeIWo9Y9qIahpj20Qg6wpUxZYWwEALtiRiGMlb5jQkhhExZcm6kIW4KT0AlTAOHzO/0hJIalqHErcoJtydjMAwBIYTnLCuqyghHtE8DgkJN7a9U7jUeyhqH0YVo5X2Eiz8nLIaixKTTPk3tq8KMcIVvXViAKhIVvFdA0EkeX7FccH8xI/q9mAx8cV7b/bJ9WmVMWSEMOPGIoUxuspdBCCGkjihHOGYYnnA6YeVMGIZf+BR2hFUeVtWTmEJ4+1FUM1lOiaZEqH2aLtTU+ORSAituGjAEClxZxVgGSJTKFetLKSasK+1UYY4pGhG9vRDOl5rqHOGKXrLIOoKC3BTT3xEOjFhmOKIoU1oId7XEsW8oCyll+Y0JIYRMSfQ+wk/uGQIAnLhipnOfEsI5O/CzcoQ7Uk6hnNMrN+gIV5MRDTvCytHVd1GJIxwzRUknWhd7lQytCL9eqYEaxQR6pUJYjOFSu5cRjngsGTOKfiHw1lMjRzicwzXNxnGEi8VHarVfABBTWu3Vlyn91hw8vwP/2LQHl3z/7sleCiGEkDqh9xG++LglWD2nHRetWwTAd1bTniPs/Kymp6me84YItk9LuKOSK8XPCAcdYV2cxV2RXEpgJUIFf2FKxRyK4UQ//NuBx0T07eA2/gOVt0+raGneuqLe69MOmo2jF3eXfH6tBmqEnWlTiIbpI+x31qixEC5ymwSZsgM1AGD5rHYAwF1P75/klRBCCKkXeh/hwxZ24cYPnu49VswRTmkZYcARGXo0oppCOSBqxLIqltOEsOHnT4sxsz2Bme2Joo/rjnA1DmjMEMhZhX2AjQoc1VKOcnBf/u1Kv0So/UXt9puXHFPB87XXr0GxnFq22UDFcmoVbJ82OTTI96Gx8YpjFwKobjoQIYSQqYVqexYlXpUgzbjt05TwakmoaISfEdaL5arJB+vb+10fCl28RAWdEN515ir85u0nFn1cF2fVaBdfcBYXwsXEkH4MtXaEx+t2ViLkK9uP868S8GZDFcvVKyMcfZsEqUgICyHOE0I8LoTYLIS4osg2ZwghHhRCbBBC3FrbZUazqKcVbzppGVoTU9rYJoSQmtKo5+yxogRsVLZWCbd0zgr8nIoFhbBhiEA0opqOEYAfufAnohW2T3vp0QvxxZcf7g2LiKI1EcOczlSJ1xlbFECtJ3xYgclyxTLCFWwDjLV9WnFHuBICQnhcfYSD62gkR3giBmqwWK44ZRWkEMIE8C0AzwewDcC9Qog/Sykf07bpBvBtAOdJKZ8TQsyp03oLaE/GMJTJQ0pZVd6LEEKmI41+zh4LebuEEDaDQrjQEXaL5USwj3D10QgE1hDVPm1RTysuPm5JVfstfJ2xCT+1bbgPsC5si+3O1N7Xko7wOLpGjPXzeSwDRqIIF6Q1kiNcr4Eawdeo266nPJV8JT4OwGYp5dNSyiyAqwBcGNrmEgC/l1I+BwBSyj21XWZxOlIxWLbEaI79hAkhBA1+zh4LXjQiQrh4jnDenz4HaMVySb9YLhiNqM4RVgJY72MMjF3gFWOsws+fahe8v6L2aQHXtfj7MpbYxngv+9fKES5on9ZIjnBIpNduv2OL2TQblZwJFgLYqv28zb1P5yAAPUKIW4QQ9wkh3hC1IyHEZUKI9UKI9Xv37h3bikOoimCOWiaEEAANfs4eC/pkuTBK0FZTLCdE9bUlZx88F59+8SFYOrPVeR0lPOs6Dazy53mOcImMcDHRrr+tpRxhMQZR6ou8ijYvwKzA0a5mHV5GWDTOiGU/R13b/QZiMVTCRankbY9698KNe2MAjgVwAYBzAXxSCHFQwZOk/J6Ucp2Uct3s2bOrXmwU6iS3sz/NfsKEENLg5+yxoKIRUXEGU0Ujig3UUMVyWkY4YRpVZ4S7WuJ408nLPSEVNWK5FlTawaHwedGt2/Sfiol23QUunRHWb1ebER5rNMJ/7fG471GOcKNEI/yOFjUulitymwSp5EywDcBi7edFAHZEbPM3KeWwlHIfgH8COLI2SyyNOsld+K078I1/bJ6IlySEkEamoc/ZY0FFI+IRlllB+7TQiGW9a4TlCuqEWX6QQzk8IVxjMRWcpFZ9Rjjs6IoKHOZKHeGxuLPqVzZWjadnesdDWJCn4iZSscZonOW1dKv11QXtPWMNVXEq+Su4F8BqIcRyIUQCwGsA/Dm0zZ8AnCqEiAkhWgEcD2BjbZcajSqEAIDv3vrURLwkIYQ0Mg19zh4Leau4I6ycUOUI+9EI5371GSGEH7E46+A5eP4hc8e1Jn+yXI1dPCHGJIzUcZccqFFETFaaw60kZlHsOePNCI/3fQ7ncD//0sPw4fPWjGuftUJ1dKi1Qa3vrkHM74akbNcIKWVeCPFuANcDMAH8UEq5QQhxufv4lVLKjUKIvwF4GIAN4AdSykfruXBFV4svhEdYMEcIaXIa/Zw9FnJ2qT7CQUdYXeZvCWWETUMg5zrCbzppGY5e0jOuNcXqFI0A/OEY1Yi/SjLCxfYX6FRR4jX9zgsVL2vcQtbvhjFeIaziB87Phy3sGtf+akm9iuXEGL64NCMVNeCVUl4H4LrQfVeGfv5vAP9du6VVxqrZ7WhNmBjJWpASGM1aXtscQghpRhr5nD0Wcm5HiFLRiLAjrPrLK7PEEH6xXC0ER72iEYBan6yqeKpYNCLo9kY/N5BLLlFEOBZROxbxHPWa440N1Ets1gL1N1TzjLAI/kuimfKTKAxD4F8fOxtX3vIUvn3LU+gdyaIl0TLZyyKEEFIjvD7CEZnOcNcIJQjPPWwe8rbtdXnQi+VqIoSLTHKrBcXc3VLEIibdAYDQ3rJiQks/hkoywlU51eMsBPNes0YZ4UYUhV4UpsaRZa9TRm13O+1ojKT4OOlMxXHEIucyR+9IdpJXQwghpJaU7COsohEhR7g9GcOrn7cksmtBLcSQEuX16EU7JsFpRK+nkhHFlQ7xGIvDGO7WUC1614jxUK8xxrWgbiOW0bjH3EhMCyEMAN2tCQBA30hukldCCCGklpTuIxzOCBdxPWs0oSz8uvXQGGNxQdV6wtGGSlqeVZoRHl80YnzFcuPPCAfX00iMd/peMRiNqIxpI4R7XCFMR5gQQqYXeduGENFiSBWt+Y5w9Mearg9rMbggoRzhOmSExzLsoaJiuSLHrb9WqdHT5hhEaa2K5cbfNaJx3dHxuubF8OIgDEeUZBoJYacg4i8P7cDqj1+HXf3pSV4RIYSQWpCzZGShHKAVyylHuIiQ08VbLYSBN8CiDsLKGMP4X88RLugjrO23mCMcKKgrLgvCnRcqoXH6CKv9jWs3dUHU6BgL9uvtv6a7nXZMGyGsohHXb9iNnCXx+O7BSV4RIYSQWpC37KJOpRIP4a4RYSoZLFENxYrTakHMEFWLl2LOaSU9gvVjKDli2cvrjsERHuP7VLs+wo3rCKsV1XptY/ni0oxMGyGciBmBnsK2zXHLhBAyHcjbsqhAU4I0nSsthHXXsxZZzEQd+wgbY4hGqOMOf2EwKvgCoL9npcSYOYZL+GIMzwm8Zo36CPt52cZThfUSrOPNZzcL00YIA348AgCGs/lJXAkhhJDxYtsSUkpkLTuyUA7Q2qflSxfLjWU8cCmU4KxX14hq92sWiWpUUiwXcIRr3EfYb+E11oyw+rdWjvC4dlMX1JpqPmLZe+9JKaZ8H2EdfXb8SJZT5gghZCpzwTdux4KuFGa2J4oLYc0RNg1RvFdujbtGeAM16iCEY4aoOkpQPCNc/riDGeES0YgxuKrjFaC1ErCN7I6q33WtYzZ+7+TGO+ZGYlo5wp+44GDvZDCSoSNMCCFTFSklNu4cwE2b9uA367cVdSq99ml5u6SIC3SNqIkQVuJl3LsqwDBE1cJPFQlGvQf+wIbybnmpjPBYROl4W4PVesRyIzrC9W5zRh1cmmklhM9YMwePfuZcAMCn//IYtveNTvKKCCGEVIrK+QLAUMjMKCaEVDRCyspEHFCjgRp1dITH0j5NTbqLurxeLoNqVuiWj6WV2XgzwrUulmtEd7RehXzeMdd0r9OPaSWEASCpjeD87F82TOJKCCGEVMrNm/bgqM/egP1DGQD+cKTTDpoNAHh2/0jk83TxW0o8BqIRNbAF69k+zTRE1fv1JstFHJuXQa3EES6ZEQ7+W9G6xinyjJo5ws6/DaiD65YR9uIgjWiDNxDTTgjr3/Y4ZY4QQqYG9245gHTOxhZX8Krz96uOXVTyeXqMoJQjrIuMWuiCRKw+uU5gbEJYHXvUerw+tZVMliuZEa7+mI0xtFwLrK1mfYTr47rWgnrFNlgsVxnTqlguTP8ohTAhhEwFntwzBADYM+AMQ+obdaaEzu1M4TMvObRkAXTMMJC17JLDICq9/F8pviM87l0VYBhjmCznOrlRXwbK5XQDxXJl3ptqRbp3eX6Mttt4hbS/juC/jUS9itpUp45GFP+NxLQWwnsGM5BSBv647npqP254bBc+9eJDJ3FlhBBCdDa7Qni3EsKuI9zTGscbT1pW8rkxUyBrlRkGIaJvjxWVEa5L+zRRfRGe5wiXyAhXVixX+oUNMdY+wpPrCDfjQI16F+FNF6ZdNELnwHAWT+weCtx38ff/hR/dscWbS08IIWRySecsPLt/GACwe1BlhB1HuEvrD1+MSjoL1NoRVl0j6lF8FTOMMfQRLv4elLv0rkcdio2oVghRrSMc/LdavOMaryPsjXpuPFXoZ7hru1//WBvvmBuJaS2EAeCeZ/YDAIYzeYxoQzZ6hxmbIISQRuCZfcNQw0Cf2z+CD/76QTy8rR8A0N2SKPv8lrgJoHShVzAjXINohHKE69I+rfo1epPlSrRPK7bPWMARLhONENWNfx6vE+vnksf09ML9NKAmVF9Eai3SGzkO0khMy2jEf77scKRzFr5w3UY8d2AEti2x7vN/977BA8D+4QzmdaUmcZWEEEIAPx/ckYzhpk27kc7ZSJgG2hImErHyCmhuZwp7BjOVd42oSTSifpfazTEM1PAmy5VyhIvs06jiS4ITjajeER7r21T7PsKNpwrrVcjn+cGNd8gNxbQUwpccvwQA8J1bn8L3b3sGB4ZzGM1Z0GvnDgxnJ2l1hBBCdJ7aMwQhgOctn4F/bNoDAMhaNmZ3tFT0/LmdKTyyvb9MH2H/di2cN6+PcF26RlQfjYiViBCUa89V6UANZ1/VRSNqlRGezsVy9VpbI3fKaCSmdTRC/eqvvn9bwWMUwoQQ0hhsPTCC+Z0pLO4JCt+ulvL5YACY25kEgIq7RjT+QI3qBbY37CLiLSiXETa9S/PlX1eI6t4/X+SN7X1Sx1MrR7gxM8K1cb0L9+v823hH3FhMS0dYUardzv4hCmFCCGkEtvWOYlFPK+Z0BuNq3RUUygGOIww4Y5mLUc3l/0pQeeQytWVjYm5nClbxQ4lej5cRLlTC5fr/mt5zyx/MWNunjblYrkwP5EpRz25Ed3S8Y6iL0sDiv5GY5kI4X/QxOsKEEDK5DKZzyFsSW3tHcOLKmZjT4Ti73a1x9I3k0NNavlAO8B3h/SXO68GuEeNYtEuijo7wp19yKOwSoj4K1e0hqnivnCtbTfzAqHL883idWN/pHqcQbuBiuXqtrZGn6TUS0zoacdDcDgDAGvdfnVInTEIIIfXn/K/fhqM/dyN2DaSxuKcVi3paAQAvPmIBgMpapwHwnGQ1njmKmjvCdar0B4BU3ERrojqfqqI+wkXWqkzkShxhp31a5esSYnwCr9xUvErxvgw0oBKul1utBmpQCJdmWjvCP33Lcdi0axCnrp6Fu57aj0t+cDc+fv7B+M36rTgwXPyESQghpP5sPTAKAJASWDyjFSesmIFfXno85nQm8bN/PYvuCjPC81whbJcwUXWRUQthYBpOG7F6tE8bCyofHRWN8JzBImtVz6nE6TWN6sT/WMZFR+1j3BnhBhTAinJdPca+3+D+STTTWgjP6Ux5TsFJq2bhd5efiGOW9ODvG3czGkEIIQ3E4p4WCCFw0qpZyOZtHDS3HUcs6q7ouXM7y7fC1AVrLYSBEAJxw2gYkeE5whFit5yrqgRTrAJVb1TpCFfbZSIKU1TfTq5wHf56Gg1/jHRt9+tNlqvtbqcd01oIh1m3bAYAYGZ7Apt2DU7yagghpLlZMqMVzx0YAeA4wopEzMANHzi94v30VBChCPYRro00iJvjF2i1olS/3XIDNVTcodKMcHXt08bvwBvG+IsSGzkjXK8ex340ogEPuoFokIs6E8uMtgQdYUIImWQsN8sQN0VFrm4xKvmgD2aEx/xSAeKx6vv91ovSfYSLu8X+842KMsLVTr1rHEe4PmKzFtQqB1243+C/JJqmcoQV3S0J9I3k8PfHduOcQ+ZO9nIIIaQpGcnmMa8zhZcds3DcGdDLT1+JRT3FB3DoIqNWDtnHzz8YB8/vrMm+xos/8jlKCKt/ix+3YVSWETaqHrE8/i8ehiFqVizXiKKwXmtTf+cNeMgNRVMK4dVz2wEA/3vTExTChBAySYxkLbxq3WJ85Ly1497XFS8svQ/lKNby0vir1i2u3c7Gydp5HVg7r6OgFzNQvmuEeqxSIVytIzzeLx41KZZrYEe4Xmtr5Fx0I9GU0YiXHLkAxyzpxqPbB/CqK++c7OUQQkjTYdkSmbyNlrg5Ia9Xq1G9jcphC7vwt/efhvZkob9VySVy0xAVtk8rHbEo3L46BzmKhGkgGRufXPFz0uNbSz3wW7vVdr+MRlRGUzrCQggctrAL9z/Xh3u39EJKyTA5IYRMIKM5Z/Jna2JihHAzu2Oq00Opz7lKXVezakd4/O/5/77mKCzuaS2/Ycl11KdFWS0QdXOEp/eXv1rRlEIYCPZa3DWQxvyu4tkyQgghtUVN/pwwIewNwJiQl2soKokzVCqEq41GdKTikS51NZy0cta4ng+Mf8JdPVEromCdHJpWCM9xR3ICwKZdg9jeO4rls9owsz1Z4lmEEEJqwWhWOcIT8zHkjeptQrHhxBlKH3elo5OrnRT3jjNW4tXPm/wstX9FYHLXEUXd2qc1sPhvJJoyIwwAbz1lOf7jRYcAAJ7dN4xXXnkXLv/5fZO8KkIIaQ5GshMbjfAzwhPycg1FJUMwYhVmhBMxw5tiVwldLXEsn9VW8fb1olwv5cmkXgM1Gln8NxJNK4TjpoHXnrAEAHDHU/sBAFv2j0zmkgghpGlQQrhlgoSwXzjUfKrAGUhRxhGuMBrx8fMPxvvOXl2rpU0YjdxKTNQpv+wP1KjpbqcdTRuNAIBkzER3axw3PrYbAAI9KLceGMGC7pZxt2whhBBSiJ8RnthoRDOKgkozwrEKnN7jV8ys1bImlEYuHGP7tMmlaR1hxXAm792e0ZoAAPSNZHHWV27BXx7aMVnLIoSQac2ERyOaOiNcfjKbaYiat+9qJKbCQI1a+27eVZDa7nbaMY3/7CsjZzkjPpMxA8OuQ7F/OIucJfHU3qHJXBohhExbRic4GmE0dUa4/NQ4U1TmCE9V5namcOaa2Th6SfdkL6WAehfLNaT6byCm7199hZx36DwAwEkrZ+JfTx/Ayo9dh2f2DgMAdvWnJ3NphBAybZloR7iRL43XG4HyXwBqMb2tkUnFTfzozcdh1ZyOyV5KAV4hX80zwu5+p++vtSY0dUYYAL712mOQt2186LcPA3CmHd2+eR8Ap78wIYSQ2uNlhOMTlRF2/m3KYrkKMsLJuIlUvOm9sUlBFbXVPhrRuAWCjUTTC2HnW7AZaPidyTtOBR1hQgipD4xGTByVCOEvvPQwpCZo3DUJ0tni6I/OVLym+2WxXGU0vRBWdKT8t2JHnyOA6QgTQkh9GMlZiBkCidjEuJDNXSxXPiN82MKuCVoNCXPogi789X2nYu282sY2GBGuDF4HcdFPEnc/4/QVHkznva4SUkpcdc9z6B/JTcr6CCFkOjGatSYsHwzQEaYYamwOnt9Z89gOJ8tVBoWwSyrmn5DTOdu7rVzhp/YO4YrfP4L3/fqBCV8bIYRMN0ay+QnrIQz4hUjNKAoMo7wjTKYfIvQviYZC2OVtpy3H1e84seB+lRO2nS5r2LhzAABw08bduGPzPkgpccXVD+NDv30IUsrAc39z71Y8tLWvrusmhJCpyMgEO8LeiOUm/NSrJCNMph+G5whP8kIanIpOCUKI84QQjwshNgshroh4/AwhRL8Q4kH3v/+o/VLrS2sihmOXzii4XwnhdM4p7DgwnAUAvPUn6/HaH9yNTN7GVfduxe/u24YhbTgHAHz46odx4bfuwEd//0jBY4QQUi+mwjl7JGtNWKEc4HeNaEZBKIRoykhIsyNYLFcRZa9LCSFMAN8C8HwA2wDcK4T4s5TysdCmt0kpX1SHNU4qzx0YAeBXOKsBHAp1PwBk8zai+NU9z2FuZxLvP+egOq2SEEIcpsI5+2+P7sT6LQewpsbFQaVo5j7ChmjO4252VFs2/upLU4kjfByAzVLKp6WUWQBXAbiwvsuaPD5xwcHe7XVLe/C7+7bBsiVGc1bk9vr9uki27aBgDv9MCCF1ouHP2Zf//H4MpPPoncDi42a+TGyI6T0sg0TD9mmVUYkQXghgq/bzNve+MCcKIR4SQvxVCHFoTVY3CVx66gps/Ox5eOhTL8DLj1mE7X2j2DWQ9qIRQFDU6kJYd4QzIXeYMpgQMkE09Dlbr6V4yZELJuplm7p9GjPCTQp/5RVRSclu1FsZ1nX3A1gqpRwSQpwP4I8AVhfsSIjLAFwGAEuWLKlupRNIS8JEC0zM704BAJ7cPYjLf36/9/hQ1s/7BqIRln+7mINMCCF1pqHP2VnLMQn+/dw1eNeZq2qyz0rwukZM2Cs2Dm85ZRkG06xTaTYMtk+riEoc4W0AFms/LwKwQ99ASjkgpRxyb18HIC6EmBXekZTye1LKdVLKdbNnzx7HsieG+V2OEP7GPzYH7td7CQcdYf+zJk0hTAiZHBr6nD2Scc6NE9kxAtC6RjShKDhp5Syce+i8yV4GmWDUXzpTMaWpRAjfC2C1EGK5ECIB4DUA/qxvIISYJ9yvHEKI49z97q/1YieaeZ2OEL7v2d7A/f2jmhDWHOGtvSP+/SEhLJmNIIRMDA19zh7JTY4QVmKgCXUwaVKa+SpINZQVwlLKPIB3A7gewEYAv5FSbhBCXC6EuNzd7JUAHhVCPATg6wBeI8NNdacgXS3Rc79VCzXAaQGkePvP7sOmXU6f4bAjLJkSJoRMAI1+zh5xW0lO5DANwBcFzegIk+bEd4T5N1+Kis5E7qWz60L3Xand/iaAb9Z2aZOPEAIrZrXh6X3Dgfvf8MN7vNujuWDu6vFdg1g7r5PRCELIpNHI5+zh7CRFI5QQbsKBGqQ5EbwKUhE8JZThqrefUPLxD/z6ocDPw27+TR/TDDAaQQghgDNaGZgER7iJM8KkOfGL5Pg3XwoK4TLMaktWtb06yevZYYDt0wghBPCL5dqSk5URpiggzQGL5SqDQrgMRugv6LCFnSW3V6OU0/mgEM5bNvYNZXDDhl21XSAhhEwhJqtYzu8jPKEvS8ik0cxDZKqBQrgC1B/R/K4UrnnPqVg5u63otqqQLuwIZ/M23vyje3HZz+4reAxwiuuKjWgmhJDpwqQVyzEaQZoM9afOv/nSTOyZaIqy4TPnQkCgxXUwkrHiTsb+IUcIp0OiNpO38eSeQQCOa9wSckPWfvJvWDm7DTf92xk1XDkhhDQWI5NdLEdNQJoEOsKVQUe4AloTsYBwTcb9t+3whV34r1ce4f18++Z9GMnmkY5whBUqPhHmqb3DkfcTQsh0YbKL5ZgRJs0G/+ZLQyE8BpIx/21bO68D5x3mT+zpH83hxsd2YzgbFLsZy/Y6Rwxx1CUhpEkZzlqIGQKJ2MR+/Jjuy9ERJs2C1z5tcpfR8FAIj4GEFo1oTZhImP7bOKMtgVse3xuYPgc4jrASwoMZ/7GHtvZFZoZLsWFHPx7Z1j+GlRNCyOQymrUmPBYBMCNMmg9eBakMZoTHwMLulHf79ScuDQjh0w+ajVse34Mz1swJPEePRgxnLNz3bC/2D2Vw2c/uw9KZrVW9/gVfvx0AsOVLF4xl+SV5dHs/fnrXFnzx5Ud4mTpCCKkVw5k82pIT/9FjcrIcaTL8YrnJXUejQyE8Bj5xwSE4ZEEXXnf8koJvWmeunYM/PLAdf3xwe+D+TN7yxiwPZXJ420/Xe489u3/Eu73simvxm7efiOOWzxjT2nb0jWJORxIxc2xm/zt+cR+2HhjFu85chaUzi3fHIISQsTCSswqKhScCFg6RZsP7m5/kdTQ6jEaMgbZkDK8/YWnk5YYz1szGrPZEwSQ5PRpx6+N7S+7/5/96dkzr2j+UwUlf+ge+/LdNY3o+AMRdAT3IHDMhpA6MZPJom+BCOcDvCc/LxKRZ8Adq8G++FBTCNaYzFcfbTl1RcH8mb3vT5f744I6S++hqiY/ptVUP4+/f9gzu3XJgTPtQreH2DWXG9HxCCCnFcHZyHGFTsH0aaS4Eq+UqgkK4hszrdLLDy2YVRgr2D2Vh2fUZtPzib9yOT/7xUViaDf2qK+8KbPOXh3bgOS2CoZPN2/h/1z+OoUze64ixz+2HHMVV9zyHd//yfu/nPYNpLLviWlz78M7xHAYhpAkYzVpom4xohNc1gqqANAe+DubffCmYEa4Rt3zoDHS3Ok5uVPHbroF0xfv6+d3P4t1nrcLugTSOWNQdeEwX00/tHcK9zxzAI9v78cj2ftjhPIZLOmfhPb96AAAi88d/eGAbvnnzZmQtWxPCxR3hK37/CADgm5c4Pz+xawgA8LN/bcEFR8yv+DgJIc3HcDaPJcnqCoRrgUFHmDQZfjRiUpfR8NARrhHLZrWhuzUBAFgyo/hJ/t1nriq7LymB4//zJrzkm3fgqb1Dgcf0/sQv/NptnigFgF/c/Vzk/rb3jXq333fVAwWP511xPTCa88T0/iqiEaoau16ONyFk+jCatdAan7xoBDPCpFlggWhlUAjXgdZEDDd+4DS8et1iAMDRS7q9x15y1IKC7dV2qXjhr2PfYFCQDmtT6bKhMc5hLFvi+/98Gk/uHvTuW9jdUrBd3L1mmLOkVyTXO5Ir2E7tU5G3nNdX3TDyFMKEkDJMVvs0gyOWSZPht0/jH30pGI2oE6vndmDFbCcrfP5h8/HAc30AgEU9QSGaMA3858sPxxtPWoZDFnTiWzdvxn9f/7j3eNYKit3hIuOZo/jzQ9vxhes2ot390FkztyNSrPpC1vbGP6dz0UM+dvb77nI6b6PdNLxtbQphQkgZRiepfRr7CJNmg45wZdARriNvPWU5rn3vKXjp0QsBALPaE2hNxHDxcYuxek47AGDJzFaYhsAhCzoBAO86cxWef8hcbx99IWd2KFP5FLp+97lDmTwSpoGVc9owkC50etU+85bUhHC029w77D8/4wrgEXcyXlhkf+Hax3D4p66veL2EkOlNNm8jZ8lJiUYYdMdIk8I4UGkohOtIzDRw6IIuzO5I4p6Pn43r3nsqAOCLLz8Cv3zbCQCADz7/oILn6fGFPndU88adAzj5S//AD29/puLXz2jRiVntCXS1JDAwGnSU+0dyODDsxC+ylo0hNxqRyUcL7t4Rv5vEb+/bBgDeiOhwRvj7tz2DwUx+2jjF/3p6P9720/XT5ngImWhG3S/PHKhBSP3xemdP8joaHUYjJog5HanAz7M7kkVHJM/v8rftd4Xn7+7bhu19o4HCt3J88a/+YI2Z7Ul0pmIFjvCRn73Bu72rP+25upmQI7yzfxT/c+MTWLfM7zjxpb9uwiuPXeR9uCkhbNsS12/Y5W13YCSLvpEcLvzm7fjRm49DImbgqMXdeHR7P9qTsch2c2PhZ/96Fot6WnBmaLx1rbjsp+sxkM5jMJ1HV+vYej0T0syoq0ipySiWYzSCNBnqL51/8qWhEG5A5muO8I7+NF515Z24d0vvuPY5sz2BzpY4snkb6ZwV+UH0tNahIu06wo9s68eDW3vx6PYB/Gb9Nvxm/bbAc/YMZLxohBLCv16/FR/VulnsHczg6vu2YThr4aLvOv2Nt3zpAnzotw9h6cxWfPf168Z1bIpP/vFRAMAzXzy/rpeC8nbpIkVCSDQqcjUpQpjt00iTwWK5yqAQbkAWaI7wDRt2R/b0jRmiqi4NM9scRxhwxidHfRANu4I2GfML4F78zdsBAKeunhW53539o140IucKxN2hnsl7BjMFRX/ZvI3+0Rx29VfeX7lSntwzhIPmdoxrH1v2DeOvj+7CO85YWfBYpky3DkJINOoLdlSHnHpDUUCaDS8ONMnraHSYEW5AFmiOcJQIXjm7DZedVjjGuRSzXEcYAPrd3HGxvr8LulsKxN5tT+6L3HZnf9qLRqj8sRn6oNk7mClo9bZ/OIPhTB57Bms/ynkwoiCwWn7/wHZ8+W+bAvtSLjOFMCFjQ33BTsUm3hEWQsAQLBwizYMfjeDffCkohBuQOR3Jkpfv2pIx/Pu5a/CtS44BAKye044vvvxwbPrced5Uu9c8b3HgOTPbE1juZnEf2d4HABjJRrdiW9CdwrP7R/DCr91Wdq0bdgzge/98GoAjsPcNZbyAvmLfUKEQ/sjVj2A4a2HfUKYmxWdSm6o3mh2/UN076DjVUaK3WCEhIaQ0kxmNAJycMKMRpFkQLBCtCArhBiRmGvi3F6zBEYu6AABnrpmNWe1JfOnlh+O8Q+fhdScshRACFxwxH498+gW4/v2n4eLjliAVN/Gnd52MP73rZHS1BIu5ZrYlcZjbweIDv34Id2zeh8M/fUPUy2N+l+NIb9w5UPDYK45ZFIhJ/Oqe4DS7vz26K9AHGQCG0vmCaMQ/n9gLy5bIWRJP7xsu+l70jWTx63sLJ+blLdtztO/dcgCfu2aj91ixHsjF+MFtT2PZFdcGnrdnwHGqI4VwqJDwZ/96Fg88N74M92QipcQfH9heEyedkFJ4jvAkRCMA51IxRQFpFtTfumA4oiQUwg3Ku85chbPXOv2El89qx/pPnIPXHLcEV77+WFy0znd7O1LxgAPb3ZrAkYu7vRiEYkZ7AoYh8PmXHoa2hImP/eERFGNGW6LoY1+56Eh8+iWHFn38E27Bms5QJl9yEMg5X70VN2/aE/nYZT+7Dx+5+hE8t38kcP+qj/8Vl3z/XwCAV115F354h99WTuUQb9iwC0d8+vqizjcAbNo1gM9f64hovaOGimxkIkR1WBx/8o+P4mXfvrPoazQ6d2zej/f/+kF89cYnkM5Z+PNDOwIOOyG1Ij2JXSMARwgzI0yaBYMFohVBIdzAtCWdD4vls1qrfq4qjFPMaksCAM49dB4uPm4Jng0JS33iXSpW+s8iGfH4ZaetwGkHzY7cfiiTLzqyWXHPlgPR9z/j3P/Qtj4su+JaXPfITtyx2ckr3/1M9HNU8d5Xb3wCA+k8Nu0ajNwum7dx3v/68Y+0FqnY40YjogaLTLdoxGM7+wE4be8+d81jeO+vHsB9z05dh5s0Lum8ikZMzkePaQjmJUnTwPZplUEh3MC8/sSl+MxLDsXFxy2p+rlh4Tmz3Xd59fZsCjXEIxEzkCzj1oTdnDkdSXzs/INx2anRBXzDmXygO8SLjphfsM1jOwpjGDrv+dUDAIB3/uJ+vPYHd5fcVn3Ydru9fl/+7Tuxec8gll1xLa55eIe33bbe4JeBR3f0Y9kV12LjzgHsG3L6N5//9dtw6U/WA/BPJno0ImeNL4+czdt4eFvfuPYxXp5xoynzulq826olHiG1RDnCyUkolgMcZ4zuGGkW2CmlMiiEG5hkzMQbT1qGmFn9r+k1z1uMC49agKOXdAMIxh309myK2R2OY9yZiiFvOZfF53WmIl3esCM8p9N57vErZhRsCwAHhrPYPegL4Y5UYde+DSEhPJjOFRTYVYqKM7Qn/df5/j+d6MR3bnnKu09N7VOovPMv7n420FHj7xt3B/evravaPHKYz16zAS/55h14dn/xnHS92dHn/G5ylu397nneJPVgMgdqAM45oS3JrqGkORB+SJiUgEJ4mjKnM4WvveZozOlIoiMZC3zwzIsQwkootyf96XNvPnkZPvXiQwq2bQl9iM11p+bFTQP3feKcgu2f3DMEPXKajJkFrsy+oQze/KN7cNPG3bjl8T04/NM34M8P7cBYuPnxPfjNvVsDrriKXugNKvpDQlgVyEXFIQD/XKJHI0Y1IfzU3iFs2NFf1Vrvf7YPAApGX08kKkOdzlnesJBSme56sWcwjS/+deO4v1yQxsXvGjE5Hz0/evNxuPz0wt7ghExHWCxXGRTC05z5XS1YPjs4wnhhT2E04tilPQCA8w6b73UP6GyJB1xVRcw08K+Pno03nrgUQDBfPLM9WbD9gWEnZqCc5JaEWTByGgBufnwvvvTXTfj6TU8CAP6xaXfBNmGiRNMdm/fjw1c/jKf3DuHFRy7AKatmeZf8pZQYzuTxozueQa+7rpcdvRAAsMsdBDKUDorARMgB151qPSZx9lduxQVfv73keqWUgfyt7X5DMLSX+OHtz+C+Z4P559f94G786cHtJfc9VgbTSgjb3pCWwfTEC+GLv/cvfPfWp3Fvkbw4mfpMdrHcmnkdJYuBCZlOsFiuMiiEpzlXvHAtfn7p8YH7ZofE6pWvOwYXHrUQt/77Gfj3c9fgqMWOKD5sQRdaE9EfWPO6Ul5kY27IYb72vafgracsD9yXiBk4fsVMAE4zfSW8w2Qt23ONntw9FLmNzk/u3FL0sd6RHGa2JQJifu9gBn95aAc+85fH8I1/bAbg91xWDvFzB4LZ4YRpYNOuAc9hzuRtDGXy6B/JBRzhSrj6/u14xXfuxF8f2QnAH2qiIglSSnz2msfwiu/chTf+8B7c+Nhu2LbE7Zv34X1XPVjVa0VxYDiL5R+9Frc9ude7b2BUHZeFnLuOyXCEn9rrfFkJv/9k+pDOWzANgfgY4l6EkOpgsVxl8Gw0zUnFTXSmgq3U9Krp1x6/BC84ZB4AYOnMNpiGwMXHLcadV5yFwxd1oS3hi8jzDp0X2I8Sjt0tQYfl0AVduPi44ECPd52xCqtmtwMAYqbAf73yCHzj4qPx1YuOxOdfehju/+Tz8W/PPwjP7h/xitie3FNeCH/xr5tKPn76mtmBTPL+4Syu+L3TOk65xKpvsiKc1w13l8jkLZz9lVtw5Gdv8DpU6JQSkWrfj7oRCst1hFXueEh77q1P7MXbfroet2/2p/q95cf34qIr7yq6/zBSSpz+3zfjN+u3AgDu2LwPUgI/vetZb5sB3RG2CtcxUXS4X1i2lOgrTaY26ZxdtisNIaQ2+I4wlXApWDXQpHzhZYfhukd24gsvO7zgMSGEN+bZMAQe/vQL0BI3EQtdX4mbzs9zOgrjEKvmdODhT7/A7dgwhJNXzfTanQ2M5tCWjOHFRy4IPOeQBZ3O40Uuyy+f1eaJ13K84JC5uOT4JThjzRz884m9JbdtDxXvDYfEbXgYSCZnY7ebJ1auss6ugTQSpoGekBut0+e6y2qqnsodh3PLAPC41v7tH0X6LRcjk7fx7P4RfPh3D+OidYuxrXcUgN8lxLKlJ3rTecvrFjGUmdicrpQSI667/sy++jrCf3pwO9oSMZxzyNy6vg4pJJ2zJi0WQUizwVq5yuBX8ybltccvxS8uPaGibTtTccRNo6D/5kfOW4uPnLcWZ62dU/R5l7it3w5b2IWZbjZPtSYLo4SwjhLbRy7uLhrT0FGFfGvndeCMNc66OkKOeBh9v+r5UeJeMaLFIcIdJQDg2zc/hVP/62a81h34obPbzSErQa8cYRUHiSqa+8J1Gwvu26N14ZBS4uZNe7yYxfa+UbzrF/djIJ0rcHY3uy67+lKj56F7h7PY2e8I5aFMZVPmXvuDf+GM/765om0Vz+4fxmf/8lhgtHYm708K3KsdWz1431UP4tKfrq/ra5Bo0jmbQpiQCcITwnSES0IhTMZMd2sC7zhjZWCyXZi3nLIcz3zxfKTiJp633GmvdtpBsyK3ndfpZ41f7U7PO2HFTDzx+Rfi6stPrKjtkapG1wtiOko8762nLA+0g1MxisUzig8x0VuwRXH1/dsAAA9tK+wgsct1kne6fZXdJg0lHeEo9HZzf9+4B2/+8b34wW1PAwB+8a9nce0jO/Gj27cUxDSUgB5I5yClxKZd/n7uf67X66oxXMQRTucs7B/KeD/fsXk/tuyvzsG96LvOJEDlTgPBKEa4rV05Ht3eH5gKCDjt9/QWeKQxSOctJCepYwQhzYbqFkEdXBqekUjdUd9GV85ux6bPnYcLj1pYdDt1yf7MtXPwlVcdia9edBQSMQMx00BbEUf4cxc6I58TpuEV8PXoQjiib7HiExccHPi2rNzhRRGdNSqhmDuu2NHniL9n9g3j0e39XtcI1X1CF8Kl1v3YjgHs7B/FD2572hO3X/zrJrzoG7d547Uf2d5XIGhVYdxgOo8vXLsRr/6e71orV3pWe8LrHKLYsKMfp/3XzVj7yb/h2M//vWA9+SKDRR7fNYj+0HAXFSvR29A9ut350tCejHmxkUqwbIkXfeN2vOVH93r32bbE4Z++AZ/44yPusea8ziVkcsnkLKQmaZgGIc0G26dVBoUwmVDKXRZVueGWhIlXHLvIG/QBoGil+SXHL8UvLz0ed1xxFr5x8dE4ccVMrFvmD/cIZ4B1wpeMWtziQN2dBqKHkHz94qML7lsZalUHAP953Uac+MWbMJq18PTeIc+BftE3bvdcy7QrClUs4KrLTsCt/35m0XX/7dFd+NjvH8Hnr92Ie7VR049uH8BXbngcgNN9YTgbdISV0B5I5/CD25/xj9v9vZy6ehYOnt+JvYMZ3Ll5n9fK7oKv3x7o5iClDLSu2z3ou8QA8IPbnsZlP12Pc//3n3jFlXcGnqcYzlqQUsK2Jd7kCtmF3S0YSOewfyiDF/zPrfjSXzdh3ef/HoiC6Khox3qtJZ065l/d4xQInvWVW3HM526MfD6ZWJxoBD92CJkIYobAK45ZhBOKDLsiDiyWIw3Fh15wEI5Y1IXTVhfGJy44Yj5ueKwwk2saAietcraf3ZHECZfNDDyuZ4SPXNyNh7b2Fezj5289Hgu6U3j7z+7z9qOzdGYbfn7p8WhPxXDcF24CALz4iPl4rzv6Wd8uzPf+6UQW7ti8D7Z0XOO/ProLgN9XNZOz0T+awyf/tAGAk5cOd/vQeWS7H7u45uGdgcdUC7Rn948EnN1n9g37QjiURW5NmBjNWXjJkQtw9zMH8MTuQVz2s/swlMnj+OWFJ9HBTB7HfNYXl+/+5f3I5Gxc855TYBgCn7/WzzVv1rp/6MNKnjswgkt/cm+gonlBdwqP7x7E//79STyxewhPuC30/vnEPrzy2EUF6whHIoDCWMdeV6Sv33IAq+a0F2xPJg4WyxEycQgh8JWLjpzsZTQ8/GpOGoqYaeD8w+dHhvsvPGohnvzCC6veZ5cbFXjxkQuKtjY7ZfUsrJjd7rVsO2huR+DxuZ1JrJjdHhgEIoTAYQuDBX7zQ86xnlNVBVonr/JFvuqQkcnbgSEa7Yni31H//dw1gZ/zRbKwmbwd6MV85v+7xeuF3DcajAqozhgrZrdjXmcKuwcyXm737xt3F8Q09gykA6/7wHN9eGznAA6MlI4g6MJ8w45+7BvKYo/mJqthL/c/1xt4XrEYepQQLtb67ZVX3oW3/PjeyMfIxJDOUwgTQhoLCmEypVDxiNedsARXXXYCfvW28p0vjlzUhR++aR2+etGRXi/kH7xhHf74rpMLtp3V7mSLT1o5E397/6n4f69yvk2fsnq2t80Ri7pw7qFO662rLjsRv7v8RO+x7tZgT+VwNvW9Z6/GGWtmI0w6Z+HeLY74+93lJ5YsQFwztwNHLe4u+rhOsT7LO/uCUQM1SW7l7LaCASlP7hnCcCaPtfP8Lwd3Pe2L9qUzW9HpCuXdA+lA/CGM3hpvu1Ysp1jY7RQp6sWAABC1y76RbGCS35W3OkWM+ped/7nxicBz7n+uz7tdLNdM6gejEYSQRoPRCDLleOaL5wOovCWMEAJnrXWE6weefxDecsryomNW//DOkzGczSNmGlg7rxNr53XikPmdgdZuf373Kd7t9mQskEfubg3GGf7y0I7Azy86Yj4W9bTib+8/NTSkw3GEj1rcHdhfFPGYUbQ/saKrJY4PnLMan/7LYwWPzetMeeOkAeCS45cgYRr48Z1b0N2aCOSjO5IxPLKtH7Z0Onhscnsa3/30fm+bd56xEgfN7cDLvn0ndg+k8UhEt4zv3PIU3nrKcpzz1Vu9+1ThoE44kqIIZ50BeGtRfOmvm3D56SsDQvhrbsY5ipGchU5OOJtQ0iyWI4Q0GPwUIFMOIcSY+yKahigqggGnbdraecG4Q1R/42KEc72fvSYoRFe60/UWdrcELvdfeetTuHdLL46LyOOGWTO3A1e8cC3+/dw1eJWbm+0MRRdu+MBpeNPJy6OejhVaQd83Lzka//myw/HplxzqfcFQrjgAHLusB/tdV/uguR246d9OBxDM/Y5kLcx1xfNbfrw+csjIl/+2qWBi3w7Xlf6/N67DwfM7sXZeB85eOydS5P/63q347q1P4cGtfXjHz+9DJm9hV39hAd2F37wdG0MCuRgjEzw0hDiOcJLRCEJIA0FHmJAasGxmK5bMbMPMtgRedvRCXHL8Elz03bu8S/onrpiJ77zuGJiu+u1IxXHzh85AT1sCR3z6Bm8/J62cGbV7vPOMldjVn8aXXnEEEjED87pSOGxhl9ci7LCFXbjzKd+lnRvqevH7d56El3/b6d5w+CJ/W110qi8X+heF15+wFLc8vtddcww9bvRDF8KHLewKOLnb+0Zx6upZuO1JfzQ0ADz/f/4Z+HnXQBoxQ+CstXNw9sH+lLcvveJw3LRxD57eO+T1Yt6wYwAbdgzg4Pmd2LhzABc/fQDPRvQvfmhbP57eW9n0wSiXmdSXTM5iNIIQ0lBQCBNSA27RWp39z6uPAgDMbEtinzt84uD5nQX54XCHibeftgKnH1SYHwaAD5+3NvL+XN5R2mHhq/jDO0/Cfc/24pglPd59J62che/e6nSyiHJf9XUeuqDLu92RiqG7JY5EzEA2b2PxjBZc8+5T0eXGQeZ0JL3Ct0MWdHpC+GVHL8QfHtgeub68LQvc/RcdsQAvOmIBPvy7hwqGkqjewzc8tguj2eiM72BEsdyHXnAQfvavZ70exgAd4cmAxXKEkEaDX80JqRO/u/xEb6pduYlxi2e04KPnH1wgCq95zyn4wRvWlX2tYm3Bjl7Sg0tPXRG4b26n795G9VjWYxadLTEvKtGRisEwBJa6U/dmtCU9EQwA//yw/2VgQZc/kKSYSC9He7KwfZxye391z1Y8vK2v4n0JIfDZCw8L3BfunEHqi2VL5CzJjDAhpKGoSAgLIc4TQjwuhNgshLiixHbPE0JYQohX1m6JhExNls1qwy/edjwA4PCFxXPGGz5zLm78wOmRjx22sAvnHDI38jHAKf57yZEL8KaTluGRT78AgD+UJMwdV5yFuz92diD60BbRpk0X4y1x05v2p+5XTvasUNZad/p08fuOM1bi4+cfXPQYipHORzu2bz1lOSxb4sk9Qzhu+Qxc855TcOSiroLt9CbyOcvGuYfOwy8vPd677x+b9lS9pqlCI56zVc9sRiMIIY1E2TOSEMIE8C0ALwRwCICLhRCHFNnuywCur/UiCZmqHLGoG//4t9PxhhOXFd2mLRkb8+XieV0pfP3io9GWjKEjFcf9n3w+vlqkgfrC7hbM7UxhhhZ9KNd9QgiBr73maLzkyAU41C0aXD5LOcKFRYfvPnMVWuImDpnfiWvfewr+7fkHoasljred5rvSv7v8RFx++kq868yVuPtjZxd97Z1uV4kPveAgfOFlvpt7wRHzvaz1op4WHLawCxc9b3HB8/VJhHl3yMhJq2Zhy5cuwPMPmYsbNhQOZ5kONOo52xfCdIQJIY1DJRnh4wBsllI+DQBCiKsAXAgg3JfpPQCuBvC8mq6QkCnOitkTN82sVEcMRcw08MtLj8c/Nu0paPcWxbJZbYFx0q88djG29Y7iJUcVOs8fOncNPqQN/NAzxrd/5EzsGczgmCU9ZVvEAcDHzj8Y87tb8PbTVyKTt/HxPzwKADhkfidWzm7DE7uHPFE/qz3Ydu2Jz78Qb//Zeu/nntD7cvzyGbjxsd24fsMunOv2lp5GNOQ5O513Mt10hAkhjUQlZ6SFALZqP29z7/MQQiwE8DIAV5bakRDiMiHEeiHE+r1791a7VkJIjThp1Sx84kWHFG1Dt2ZuB+JmkcfmdeA7rzsWp66OLuwrxqKe1kDRXjlWz+3Af77scMRNp2/y9e8/Df/3xnVIxU0cPN9xp5XAPUKLRqz/xDlIxAysdbe55PgleOOJSwP7Pnaps463/+y+kgNApigNec4edbt00BEmhDQSlTjCUZ+G4U+O/wXwESmlVaq/q5TyewC+BwDr1q2bdp8+hEwXrn3vKQX/k082a+Z1YI073e7g+Z3404M7MNMVwvO14jzlDn/w+QfhhBUzIztxHLW4G2vndWDTrkH0j+YKOnpMcRrynL130ClOnN0ePTSFEEImg0qE8DYAegBvEYAdoW3WAbjKPaHOAnC+ECIvpfxjLRZJCJlYYg0+ce0Q1+2dqYmq773+WLQkfLcxbhpF29EJIfC+s1fjHb+4H9v7RqebEG7Ic/aeQWcAypxOCmFCSONQiRC+F8BqIcRyANsBvAbAJfoGUkpvhJUQ4scArqEIJoTUi5NXzcIXX344TjtolnffC6rM+i7scVzk7b2jgSzzNKAhz9l73R7TszvG1k6PEELqQVkhLKXMCyHeDaey2ATwQynlBiHE5e7jJTNmhBBSa0xD4OLjloxrHwvctnA73O4U04VGPWfvGcwgETMKxoETQshkUtEZSUp5HYDrQvdFnkyllG8a/7IIIaS+zGxL4JRVswo6SkwHGvGcvXcwgzkdyaIFmoQQMhnwqzkhpCkRQuDn2oANUl/2DKYxu4P5YEJIY9HYFTGEEEKmBXsGHEeYEEIaCQphQgghdWfvUAZzWChHCGkwKIQJIYTUlUzeQt9IjtEIQkjDQSFMCCGkrqjWaYxGEEIaDQphQgghdcUTwhymQQhpMCiECSGE1JWd/c5UubmdzAgTQhoLCmFCCCF1ZVvvCABgUU/rJK+EEEKCUAgTQgipK9t7R9GRiqGrJT7ZSyGEkAAUwoQQQurKtt5RLHRHWhNCSCNBIUwIIaSubOsdZSyCENKQUAgTQgipG1JKbOsdwaIeOsKEkMaDQpgQQkjd6B/NYThrUQgTQhoSCmFCCCF1Y1vvKABQCBNCGhIKYUIIIXWDrdMIIY0MhTAhhJC60T+aAwB0t7J1GiGk8aAQJoQQUjeylgQAJGL8uCGENB48MxFCCKkb2bwNAEia5iSvhBBCCqEQJoQQUjeUEKYjTAhpRHhmIoQQUjeUEI6bYpJXQgghhVAIE0IIqRs5y4YhgJjJjxtCSOPBMxMhhJC6kbVsxiIIIQ0Lz06EEELqRjZvI0E3mBDSoPDsRAghpG5k8nSECSGNC89OhBBC6kbOoiNMCGlceHYihBBSN7J0hAkhDQzPToQQQuoGhTAhpJHh2YkQQkjdyFo24oxGEEIaFJ6dCCGE1I0c26cRQhoYnp0IIYTUjQzbpxFCGhienQghhNQNZoQJIY0Mz06EEELqBgdqEEIaGZ6dCCGE1A1mhAkhjQzPToQQQupGlkKYENLA8OxECCGkbjAaQQhpZHh2IoQQUjeyeRtxOsKEkAaFZydCCCF1I2vRESaENC48OxFCCKkb2byNJB1hQkiDwrMTIYSQuiClZLEcIaSh4dmJEEJIXcjbElKC0QhCSMPCsxMhhJC6kLNsAGCxHCGkYeHZiRBCSF3I5h0hTEeYENKo8OxECCGkLnhCmI4wIaRB4dmJEEJIXchQCBNCGhyenQghhNQFlRFmNIIQ0qhUdHYSQpwnhHhcCLFZCHFFxOMXCiEeFkI8KIRYL4Q4pfZLJYQQUgmNcs7OWnSECSGNTazcBkIIE8C3ADwfwDYA9woh/iylfEzb7CYAf5ZSSiHEEQB+A2BtPRZMCCGkOI10zmaxHCGk0ank7HQcgM1SyqellFkAVwG4UN9ASjkkpZTuj20AJAghhEwGDXPOZrEcIaTRqeTstBDAVu3nbe59AYQQLxNCbAJwLYC3RO1ICHGZexlu/d69e8eyXkIIIaVpmHO2ikbE6QgTQhqUSs5OIuK+AvdASvkHKeVaAC8F8LmoHUkpvyelXCelXDd79uyqFkoIIaQiGuacTUeYENLoVHJ22gZgsfbzIgA7im0spfwngJVCiFnjXBshhJDqaZhzthLCSQphQkiDUsnZ6V4Aq4UQy4UQCQCvAfBnfQMhxCohhHBvHwMgAWB/rRdLCCGkLA1zzmbXCEJIo1O2a4SUMi+EeDeA6wGYAH4opdwghLjcffxKAK8A8AYhRA7AKIBXa4UYhBBCJohGOmfnmBEmhDQ4ZYUwAEgprwNwXei+K7XbXwbw5doujRBCyFholHM2M8KEkEaHZydCCCF1gX2ECSGNDs9OhBBC6kKGjjAhpMHh2YkQQkhdyFlO7JiOMCGkUeHZiRBCSF2ImwI9rXE6woSQhqWiYjlCCCGkWi49dQUuPXXFZC+DEEKKwq/phBBCCCGkKaEQJoQQQgghTQmFMCGEEEIIaUoohAkhhBBCSFNCIUwIIYQQQpoSCmFCCCGEENKUUAgTQgghhJCmhEKYEEIIIYQ0JRTChBBCCCGkKaEQJoQQQgghTQmFMCGEEEIIaUoohAkhhBBCSFNCIUwIIYQQQpoSCmFCCCGEENKUUAgTQgghhJCmhEKYEEIIIYQ0JRTChBBCCCGkKaEQJoQQQgghTQmFMCGEEEIIaUoohAkhhBBCSFNCIUwIIYQQQpoSCmFCCCGEENKUUAgTQgghhJCmhEKYEEIIIYQ0JRTChBBCCCGkKaEQJoQQQgghTQmFMCGEEEIIaUoohAkhhBBCSFNCIUwIIYQQQpoSCmFCCCGEENKUUAgTQgghhJCmhEKYEEIIIYQ0JRTChBBCCCGkKaEQJoQQQgghTQmFMCGEEEIIaUoohAkhhBBCSFNCIUwIIYQQQpoSCmFCCCGEENKUUAgTQgghhJCmhEKYEEIIIYQ0JRUJYSHEeUKIx4UQm4UQV0Q8/lohxMPuf3cKIY6s/VIJIYRUAs/ZhBBSGWWFsBDCBPAtAC8EcAiAi4UQh4Q2ewbA6VLKIwB8DsD3ar1QQggh5eE5mxBCKqcSR/g4AJullE9LKbMArgJwob6BlPJOKWWv++O/ACyq7TIJIYRUCM/ZhBBSIZUI4YUAtmo/b3PvK8ZbAfx1PIsihBAyZnjOJoSQColVsI2IuE9GbijEmXBOqqcUefwyAJe5Pw4JIR6vZJEaswDsq/I5U4npfHzT+diA6X180/nYgLEf39JaL6RG8Jw9cUzn45vOxwZM7+ObzscG1PicXYkQ3gZgsfbzIgA7whsJIY4A8AMAL5RS7o/akZTyexhHFk0IsV5KuW6sz290pvPxTedjA6b38U3nYwOm5fHxnD1BTOfjm87HBkzv45vOxwbU/vgqiUbcC2C1EGK5ECIB4DUA/hxa1BIAvwfweinlE7VaHCGEkKrhOZsQQiqkrCMspcwLId4N4HoAJoAfSik3CCEudx+/EsB/AJgJ4NtCCADIT+dvI4QQ0qjwnE0IIZVTSTQCUsrrAFwXuu9K7falAC6t7dIime4tfqbz8U3nYwOm9/FN52MDpuHx8Zw9YUzn45vOxwZM7+ObzscG1Pj4hJSRNRSEEEIIIYRMazhimRBCCCGENCVTRgiXGxna6AghfiiE2COEeFS7b4YQ4kYhxJPuvz3aYx91j/VxIcS5k7PqyhFCLBZC3CyE2CiE2CCEeJ97/5Q/RiFESghxjxDiIffYPuPeP+WPTSGEMIUQDwghrnF/nk7HtkUI8YgQ4kEhxHr3vmlzfI0Kz9mNy3Q+XwM8Z0+DY5vYc7aUsuH/g1Pw8RSAFQASAB4CcMhkr6vKYzgNwDEAHtXu+y8AV7i3rwDwZff2Ie4xJgEsd4/dnOxjKHN88wEc497uAPCEexxT/hjh9GVtd2/HAdwN4ITpcGzaMX4QwC8BXDMN/za3AJgVum/aHF8j/sdzdmP/3Uzn87W7Xp6zp/axTeg5e6o4wmVHhjY6Usp/AjgQuvtCAD9xb/8EwEu1+6+SUmaklM8A2AznPWhYpJQ7pZT3u7cHAWyEM81qyh+jdBhyf4y7/0lMg2MDACHEIgAXwOkpq5gWx1aC6X58kw3P2Q38dzOdz9cAz9mYwsdWgrod31QRwtWODJ0qzJVS7gScExOAOe79U/p4hRDLABwN51v4tDhG9zLUgwD2ALhRSjltjg3A/wL4MABbu2+6HBvgfADeIIS4TziT0oDpdXyNyHR9H6fd3810PF8DPGdj6h4bMMHn7IrapzUAFY8MnSZM2eMVQrQDuBrA+6WUA0JEHYqzacR9DXuMUkoLwFFCiG4AfxBCHFZi8ylzbEKIFwHYI6W8TwhxRiVPibivIY9N42Qp5Q4hxBwANwohNpXYdioeXyPSbO/jlDze6Xq+BnjO1p8ScV9DHpvGhJ6zp4ojXNHI0CnIbiHEfABw/93j3j8lj1cIEYdzUv2FlPL37t3T6hillH0AbgFwHqbHsZ0M4CVCiC1wLl+fJYT4OabHsQEApJQ73H/3APgDnMtm0+b4GpTp+j5Om7+bZjhfAzxnY2odG4CJP2dPFSFcdmToFOXPAN7o3n4jgD9p979GCJEUQiwHsBrAPZOwvooRjpXwfwA2Sim/qj005Y9RCDHbdRUghGgBcA6ATZgGxyal/KiUcpGUchmc/6/+IaV8HabBsQGAEKJNCNGhbgN4AYBHMU2Or4HhObuB/26m8/ka4DkbU/TYgEk6Z9er6q/W/wE4H05l61MAPj7Z6xnD+n8FYCeAHJxvMG+FM+L0JgBPuv/O0Lb/uHusjwN44WSvv4LjOwXO5YiHATzo/nf+dDhGAEcAeMA9tkcB/Id7/5Q/ttBxngG/AnlaHBucrgUPuf9tUOeO6XJ8jfwfz9mTfwwljm3anq/dtfKcPUWPbTLO2ZwsRwghhBBCmpKpEo0ghBBCCCGkplAIE0IIIYSQpoRCmBBCCCGENCUUwoQQQgghpCmhECaEEEIIIU0JhTBpWoQQZwghrpnsdRBCCCkPz9mkHlAIE0IIIYSQpoRCmDQ8QojXCSHuEUI8KIT4rhDCFEIMCSG+IoS4XwhxkxBitrvtUUKIfwkhHhZC/EEI0ePev0oI8XchxEPuc1a6u28XQvxOCLFJCPELd+ISIYSQMcJzNplKUAiThkYIcTCAVwM4WUp5FAALwGsBtAG4X0p5DIBbAXzKfcpPAXxESnkEgEe0+38B4FtSyiMBnARnYhQAHA3g/QAOgTPR5uQ6HxIhhExbeM4mU43YZC+AkDKcDeBYAPe6X/xbAOwBYAP4tbvNzwH8XgjRBaBbSnmre/9PAPzWnVu+UEr5BwCQUqYBwN3fPVLKbe7PDwJYBuD2uh8VIYRMT3jOJlMKCmHS6AgAP5FSfjRwpxCfDG1XalZ4qUtnGe22Bf4/QQgh44HnbDKlYDSCNDo3AXilEGIOAAghZgghlsL5232lu80lAG6XUvYD6BVCnOre/3oAt0opBwBsE0K81N1HUgjROpEHQQghTQLP2WRKwW9SpKGRUj4mhPgEgBuEEAaAHIB3ARgGcKgQ4j4A/XAyaQDwRgBXuifNpwG82b3/9QC+K4T4rLuPV03gYRBCSFPAczaZaggpS12dIKQxEUIMSSnbJ3sdhBBCysNzNmlUGI0ghBBCCCFNCR1hQgghhBDSlNARJoQQQgghTQmFMCGEEEIIaUoohAkhhBBCSFNCIUwIIYQQQpoSCmFCCCGEENKUUAgTQgghhJCm5P8DAqjQVpQ3Jo4AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "037s_iimage_588413346180_CLEAN_ClassS_178-306.roi.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADYCAYAAABberBAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADh/0lEQVR4nOz9eZhle1rVia8dw5kjIiPzZt2p5oEqKJpChIIC0foJ3SrIKNDVoIxago22tjaDtg2tYpettKAtJQUtgqAMSostCChSCArFIENRFDUXxS1u3SkzI+IMcWI4+/dHxOcba7+x406ZeTMy77ue5zyRcc4evtM+GWu9632/VV3XSiQSiUQikUgkEolEIpF4Kli61Q1IJBKJRCKRSCQSiUQicfshBYVEIpFIJBKJRCKRSCQSTxkpKCQSiUQikUgkEolEIpF4ykhBIZFIJBKJRCKRSCQSicRTRgoKiUQikUgkEolEIpFIJJ4yUlBIJBKJRCKRSCQSiUQi8ZSRgkLiGUdVVW+rquq1t7odiUQikThBVVXvr6rqU5/ksXVVVS99mvd52ucmEolEIpE4X0hBIfGMo67rV9Z1/eZb3Y4nQlVVX1hV1e9UVTWpqupfV1V18Va3KZFIJO5kVFXVrarqn1RVtV1V1Yeqqvqfb3WbEolE4rzhRguzT+Z6+Xdx4iykoJBItKCqqldK+nZJf0rS3ZKmkr7tljYqkUgk7nx8o6SXSXqBpP+fpK+pquqP3tIWJRKJxLMc+Xdx4vGQgkLiGYfbaquq+saqqn6oqqrvrapqp6qqt1ZV9WFVVX19VVUPV1X1u1VV/Xd27pdVVfX242PfW1XVnw3X/pqqqh6squr3qqr60664Hke+/l5VVR+oquqhqqr+cVVV/TOa+UWS/r+6rv9TXddjSX9d0udWVbV2c0YlkUgkzg+qqnp1VVU/X1XVtePv1P+7qqpOOOzTjr+HH62q6u9WVbVk53/58Xf11aqqfqKqqhc8yVt/saS/Wdf11bqu3y7pOyR96Y3pVSKRSJwfVFX14VVVvfn4e/ZtVVV9pn325qqq/rT9/qVVVf3c8b//0/Hbv15V1biqqv++qqrXVlX1QFVVf/X4O/n9VVV90dO9Xktz8+/ixJlIQSFxHvAZkv6ZpE1JvyrpJ3S0Nu+X9Dd0pIiChyX9cUnrkr5M0t+vqupjJOk4ivU/S/pUSS+V9IfCff6OpA+T9NHHn98v6X87o02vlPTr/FLX9Xsk7R2fn0gkEnc6DiX9JUl3SXqNpE+R9OfCMZ8j6WMlfYykz5L05ZJUVdVnS/qrkj5X0mVJPyvpXzzRDauq2pR0n+y79/jfr3z63UgkEonzh6qqViX9f5J+UtJzJP15Sd9XVdXLn+jcuq7/4PE/X1XX9aiu6x84/v0eHX1n3y/pSyS96Tqv58i/ixNnIgWFxHnAz9Z1/RN1XR9I+iEd/QH6hrqu9yV9v6QXVlV1QZLquv7Ruq7fUx/hZ3T0RfzJx9f5AknfVdf12+q6nkr637lBVVWVpD8j6S/VdX2lrusdSX9b0uvOaNNI0lZ4b0tSKrGJROKOR13Xv1LX9S/UdX1Q1/X7dSTsnhJpj79PPyDpWyT9D8fv/1lJ/0dd128//l7/25I++km4FEbHP/27N793E4nEnYhP0NF33hvqut6r6/o/Svq3Ovkefbr463Vdz4//Rv5RHf1tfCOQfxcnzkQKConzgIfs3zNJj9Z1fWi/S8d/aFZV9ceqqvqFqqquVFV1TdKn6UiNlY4iW79r1/J/X5Y0kPQrx9aya5J+/Pj9Nox15IJwrEvaebKdSiQSidsVx6ln//a4MOK2jkSBu8Jh/h37Ozr6DpaO6h98q33XXpFU6Shq9ngYH//079783k0kEnci7pP0u3VdL+y939ETf08+Hq7WdT0J17vvrIOfIvLv4sSZSEEhcdugqqqupH8l6e9Juruu6wuSfkxHf6hK0oOSnmunPM/+/aiOxIlX1nV94fi1Udf1SO14m6RX2b1fLKkr6Z03oi+JRCJxzvFGSb8t6WV1Xa/rKIWhCsf4d+zzJf3e8b9/V9Kfte/aC3Vd9+u6/i+Pd8O6rq/q6Hv8Vfb2q3T0fZxIJBJ3En5P0vO89oyOvkc/ePzviY4CYeCeJ3HNzaqqhuF6fC8/nes58u/ixJlIQSFxO6Gjoy+vRyQdVFX1xyT9d/b5D0r6suMiNwNZfYRjBfg7dFRz4TmSVFXV/VVV/ZEz7vV9kj6jqqpPPv5y/huSfvg4VSKRSCTudKxJ2pY0rqrqFZK+quWY/6Wqqs2qqp4n6X+SRN7tP5b09cdVwVVV1UZVVZ//JO/7PZL+1+PrvkJHqWr/9Dr6kUgkEucRb9ERyf+aqqpWq6p6rY5qin3/8ee/pqOih4Pj4uJfEc5/SNKLW677v1dV1amq6pN1VHPsh67zeiD/Lk6ciRQUErcNjr+0/oKOhIOrkr5Q0r+xz/+dpH8g6aclvVvSzx9/ND/++bXH7//CsYX3P0hqLVZT1/XbJH2ljr5AH9bRH9exIFkikUjcqfgrOvqO3dGRGNtWpOtHJP2Kjv5Q/VFJ/48k1XX9/+qoCO73H3/X/qakP/Yk7/sNkt6jI6vuz0j6u3Vd//jT7kUikUicQ9R1vSfpM3X03fiojrZg/OK6rn/7+JC/r6Oihw9J+m4d/T3q+EZJ332cWkadhA/p6O/j3zs+/iuv83re3vy7OHEmqrqub3UbEombgqqqPlxHf8h2jwuDJRKJRCKRSCQSdxSOHQ7fW9f1c5/g0ETihiMdCok7ClVVfc6x1WtTRxGy/y/FhEQikUgkEolEIpG48UhBIXGn4c/qqMbCe3S0j3pb3m8ikUgkEolEIpFIJK4TN01QqKrqj1ZV9Y6qqt5dVdXX3az7JBKOuq7/6PHuDRfruv6cuq4fvNVtSiRuFfJ7OJFIJG498rs4cbNR1/WbM90hcatwU2ooVFW1rKNtRP5bSQ9I+iVJ/0Nd1791w2+WSCQSiVPI7+FEIpG49cjv4kQicafjZjkUXi3p3XVdv/e4iun3S/qsm3SvRCKRSJxGfg8nEonErUd+FycSiTsaKzfpuvdL+l37/QFJH3/WwZ1Op+73++X3uq4br+XlZa2urmppaUlLS0taLBY6PDzUYrFofdV1raqqtLy8rKWlpfJzaWlJVVWpqqryb78f50oq56+srJQXxx4eHpb7+/H8zv2XlpbKZ7znr4j4nvfHr+l98bYvLS1pZWVFy8vLpc9xTA8ODhrX9c/bfra1K77vn9MWb7d/xrieNQfRMeN99LGO48iaoH/xvm3Xje2K14vzG8+J1/P+HB4eNu7rc+H9artWvIe3LT4bZ/UhzkPscxyHeExbm3wdnjUW8Tnzz9va7deJ7Xsy/ZTU+tzG+581bvGY2KeqqjSfzx+t6/ryqQE5/3hK38OStDwa1s9/YaWH52tafvf88Q5NJBKJZwy7mmivnrf/MXL+8ZS+i/N7OJFInFfs6Grr38Q3S1Bo+9JvMJSqql4v6fWS1Ov19Amf8AmNg3d3d3V4eKiqqjQajXT58mWNRiN1Oh2Nx2NduXJFOzs72tnZ0Xw+1+7ubiGTh4eH6vf7Go1GGg6HGo1G6vf7Wl1dPSUSQAQPDg40n891cHCgw8NDra+v6+LFi+U1GAy0v7+v3d1dTSYT7ezsaDabNYSM/f197e3taX9/X8vLy+r1elpdXS337XQ65Z6SCvEBS0tLRThhDHZ3d7W/v6/9/X1JUrfbVa/XK/3is729PXW7XV24cEHD4VDD4VD9fl/Ly8uq61r7+/va2dnR1taWdnd3tbe3p6qqCgmn35KKYHJwcKCqqopIgajiogz9QWjZ3d3VeDzWfD7X3t5e6Qvzsry8rOFwWPrR6/XKPQ8ODjSbzXRwcFBEkZWVFR0eHpbrLRaLci7jure3p+l0qp2dHT322GPa2dlprCUnnBBSBCF/r9PplDna29vT7u5uua+LWlE8Yg13u90y3qyPg4ODMm/enpWVlYY4VVVVY+4Xi0Xp7/LycukzotB0OtVsNmvMR7fbLYT+4OBAOzs7Za4R5lxw63Q65X70w+fT54X5434usrH+V1ZW1Ov1tLKyok6nU0Qt7rm3t9d4xngGXPirqqqsR14umtFGXnVda3d3t/Sp2+1qNBppZWWl3Jtnc39/v9EHnw9f81H4+u3f/u3f0e2JJ/welsJ38eqG7n/ZX9OLr+1r6T2/erPbl0gkEk8Kb6l/6lY34Xrw1P4mzu/hRCJxTvEf6n/Z+jfxzRIUHpD0PPv9uZJ+zw+o6/pNkt4kSRsbG7VHCiFQkBrIiXRCtGazmcbjsSaTSSFtEJyVlRUNBgMNBgP1+/2GmACZBO5eWF1dLcSu1+tpMBgUggSRczK0urp6ioxARCDx3LPb7Zbrt0VJIc9OKj26vbS0VMbGo8AQQBcsPFLOdRaLxSkix33ieEBQY4Sb6/LTRQbGwQUOSOby8nK5B+2L8PlfLBaNKLS7MjxyHMWK6EwAnMuxzI2Ta+8v50B2fRy9PRzr4xndAThHWKOxfX5Nxj4S6LY+uSDiayeezzy5owfQNm9LmwOhra2MET/jXCGE8BmiSds1vS+StL+/3xAU/Fh+sp79/bgm/OX3oB0+hz4HdV0Xsaxtrd5GeMLvYan5XbxeXaz7P/KLz0zrEolE4tmBp/Q3cX4PJxKJ2w03S1D4JUkvq6rqRZI+KOl1kr7w8U7wP9yJdEpHZMGjpgcHByUKPh6PNZ1OtVgsNBgMCqnCnUBUt9/vN4gehAUigouAey8tLTXEBEkNsgxZWl1dLYRob2+v9GNvb68QashJr9c7Rez4bHV1Vd1ut0S4nfA4SYO0xSgyhNKj9m22cyfLHml3MA60k/56exEJ+DfzQhQaV4VHsj0Vg/bGtkUi7U6Os4gqbXWxZGVlpUGeEWlcFIJk0ic+b0tliUQ4tt0FD28PbYBQuzDg/WB8GHvO9WeD9kGkedEWxtfnjrGjH4yvi0qIBLQprhEfdwQiF5UQLHA/sKZ8bXH9NkHB+8ka8vE7ODhoJfXcw+cIZ4RfF7GPeYrr3dOSfA557m9zQeEpfw8nEolE4oYjv4sTicQdjZsiKNR1fVBV1VdL+glJy5L+SV3XbzvreAi3EwiIsaRCuLG/7+7uajabFTs3RGFpaUndbldra2va2NhQv98vUXtICgRZalq3sZN7e5ygRWu6p0xIKnZu2gZp80ix27CjG2J9fb0QSogvnyNmTCaT0saDgwONx2N1Oh2trq6q0+loOByq1+uVe+zt7ZX70Mfd3d2Gfd3TKrrdrvr9fhmvpaUlzWazxj09YgwhZmxwJnAMoounNczn8zIXHrlnbiDDLpj4vNBfH8uDg4Mi4rhN3gUJyDOiB20mKu1z5eIRbfKUgCgg+JyxPufzeVmTkVC7OIOgQPqBrxv64EIHbXJBzAUeF0Ni3Y/9/f1T9Q7aXDu0KUbvIesQeK9rQr+4jjt3/HeeGVIbXLhxMJ4IU9FF5GPPeiBlxdcoayu6GNrqS8TUi9sdT/V7OJFIJBI3HvldnEgk7nTcLIeC6rr+MUk/9mSO9Wivk2yPtkO27foNa7l0RKBwJWxsbGg0GqnX66mqKs1mM00mk+Ic8MhkdETQDsgqRAUCjIjhlmhPVTg8PCzt7XQ6xX3Q7/cbxQOrqip1BFwIiCkI0klEm75SUwERZTAYaG1t7VR6BgSJMVxdXS3E1wsYOrHlGtw/pjF4RDhGlJkHRBkECq7l4gDtlNRwGDAPjL8LA/z0qDjnQrq5ZiS9nu7g13GSW1VVoxZGHCPEhZhC4+fs7+830jNYH57q4mTd009iCkBMj/Gx8Xog9NHFHR8zCLzXBkCcoU9et4FzXazzf7e5DlwQpE1eAyGS9ehIiQ4CT0mJ4+AuG9rqLiSOYZ3GFAh3xHh7vf7DnYCn8j2cSCQSiZuD/C5OJBJ3Mm6aoPBUECO3/FEPAfYc9ygiSCeRa84ZDAYajUZaX18vzoPDw8OSHrG/v9+IwLpdnGMjgXHSRpTTBQWI5cHBQYmYch79oC4ExA6yw+dLS0sNBwVj4v31/juZQkghrcL7Qfs8dUA6cV7wGQKAW+FxKUBy6SPj5ykCFF1EfCFlxMkndSfinCMK0E+OgZxzfky58Ou0kelI1p3Ie968R7xjDr+PkQtOseZBtNf7+nTxxd93ISOubxe2ogjm7gav9eDnxt00vP08MwgfPjZ+7+jg4JqxtoSn/rgzIjoDWPMAAYLPXHCJ4xNdA7zHvT0Fxs9ZWVlppKDE830M+Q65UwSFRCKRSCQSiUTiZuJcCApSsxI/f9ST5gDR5rhYbR7LPy+i9Wtra+r3+6XuAhFc7Oi4EtwSH6PDUnsxQndNcBxkCmJS13WjXVT6d0u276AQ8/id0CI0eDQeEaLT6RSXA46CGN1nvBhDPndXyGAw0HA4PBWJdpLuhNcFBndEUIDS01Sc5MZ59/Od8NFPXBOx5oCTRtrlO2Kc1W8XTPyavr587BFK4vW8D07kIf5e4BJBAaeAr7uYMuCig98jknva5U4JTxlx8u7pAqy7TqdzSkTw9RxFA4h6fB7admWgvYhPPKfuVom1Prx4J+fHeY7uBr8XQhDX9/Xm7h6fGxcKXdy7E1IeEolEIpFIJBKJm41zIyhEwt4WecVWjl2bmgGdTqc4EtbX1zUYDAoxcCcChI2UBRcmnJTiMoCEOSmDaLiY4Dn/LkKsrKxoOBxqbW2tbOMoqRB9CI/v1AAh29/f1/b2dsn3j24A2uB1CkjvaNtx4PDwUJPJpJAufuJu6Pf72tjYKKKHk3nGj+0Ku91uEUl8XOl3jPq3OSUg4GzFSd84zyPpwB0WMZLvdRQg2gglHvmmvT7nvgUh9/S5jDn11ElwoSHa7KNowVghzhweHpa1u7q6qtlsVraohBT7WCKaUfeBezu5dyEiFiikfoE7Zzw1Jjo33E3B+fP5vIg70d3AtqusK3fC0E4X1aLjwsdusViUvs7nzT243UkR4dfhHtwnpol4ihLn8jt9i06MRCKRSCQSiUQi0cS5EhScuEUrOELAfD4vdnrITbfb1fr6eiHvFy9e1NramjqdTjnfC/4RgQYxt9ujlZAMt2W32ewhzZBYagdAvonYx6KBLlJAAL0+gueVQ9wgvX4+1/O0gE6nU/qNGDOfz8tLkobDYWOLTaLKEHTPffcaCwgtHpH2HSz43dvv0XSIKIICJN+JaHSKuMDQlmrg94/R9TivjLELMPyOYODbkUYrvK8pxswJbFs6hafYUCMkuhMiWXYxAeHJ++jpMrSF4yh06iKZCzFeO6HteXSxgC1QEQUQ1Py58mvST7Zs9f6yVoELfj4OLsz4WvBx8vXC5wiG7uhA0FgsFo26E9JJigTHuWPC0zMSiUQikUgkEolEE+fmr2W3KMe87ki2IAdYlsn995dvwcfLt3306DPkAwLi0dpIuGIE1wsSxusS+e/3+436BpDCmBMP4Yk53G02b4/4S6eL/GFFp7J/HE/GutfrFTGBqDBiAhX2GXPIeFv9AncceGQeQuZWe+DpDi5cOPH1on7eB38/2uEZX+7h4o2LIMyTR6ejpd9TSjyCjpU/RrC9DZBWfw/EOWb8XOBoq7cQf2/ruxeb5Nlxcc7FNHduRFLtqR8Qcd9lI4oS8RlgTj2toO25juKerx93azCnLuL4zhPcM7pF4pi5WEg74ni4+JVIJBKJRCKRSCTacW4EhZh3HiORHOP1CyArvV6vFCUkegpZ2N/fL1Zy36mA63FNT6+IOwb4rgEAMhQjtBAmL3JIukPMUeea7gCArHlkNaZUuBgRCZpvp+j59h4VdgEDMYECiowRW0l6O+KuAm1E0nfR8B0GPBpM+1wcYO5JpWD+fcy8JoQTaU+RaXOQuKMDwQI42aV97pbw+hwQ8piW4GIOP+N1Y4qNu0/czRGfAfru8+/9iZ970UQfD87xdBvGyOGRe0kNUSqKSnt7e40xcxeBixMuLDHvLla408MFKMbJHS5cn3t6GofPOfDxZ16jq4O1FZ8VX8OJRCKRSCQSiUTiNM6FoOAECbLnUVXIB3/8k+MMKR6NRhqNRoUcQ4og/NPpVLPZrGHhj6CAoKRCqiG8dV2X3SLIFYdUuojgKQ/dbre0iSjq7u6udnd3iyU7Rpa5HtcYDAZnbonouyI4SZNOIv8xL146IXjY0Ik4V1Wlvb09jcdjTSYT7e7uqq5rdbvdRsFKFwH8p4svLniQu8/5pKzQTvq6tHRUzHE4HBanBGNMqgZEnTQS5tkLX3o6g4+JzzlOEQisizCsNdpVVVURExhLv1500Dipd0FhPp+fIrqsCyLtLsC4iOVCFwScfiAO8B5kmc/aIvBO5r09XBPRbj6fl3QUxJWzrh2dHVzTC2hyf+oscH1EKBevIlzM83FiDhC4mDtPzTgrlYTrxCKebSkgiUQikUgkEolE4jTOhaAgNVMPQLS4R2LgNnYcCpDkSEo8RUFSIa9eyNHt1kRfIVLdblez2ayRDgAxItoLSV1dXS31HLrdrqqqKjtLkApBVNb7iJBBYUG3lrPVpefKx/4RPaefFMnjXk6GsfHTPo6H4Pk9vIgj5Nkju55G4iST/vr7LgTQbhcKyLVnjOk789YW5XfnhLs7vH6BrwHa4XZ8rzOBmOQk2a/hkXIn5XEXCuBjRtu9OKjb8H0u3QXiolJ0rbhowlolbcTrdXh6Ae108QcSTtqPC1aeBsE8UGfChRTWBeu8zcnia8TXlbfLx9bn0L8DfIx9jrygK3MbhQ5eCDaesrO6ulruneJCIpFIJBKJRCJxNs6FoBDzwKWTfGd3CZx1nqdCeOTUyXokZNQ2gMR6QURIEVH8wWAg6STyT+TcRQ4nhYgVRLghq05QnRh5hBkizf0lFVLoNnru59spIii4OOHFIhkzIsaxMJ3f24kW1/KtOzkn1mXw2g6eGuHvIwC4gMP7Tvwgy+yoQB8gwjE67teVdOr3mEYR6wxEez/k1m3vZ1ngEU/8PBexfB5i+kpsJ++54OTuBq+z4GOLQwMhyoUuzjsLpJt4KoCPrfcJEWB3d7e01+fQUzD4PDpoorMDuFuE+8dUIxd5XBTy1A4fTxdguAfrwceU6/Ms+JpLJBKJRCKRSCQSp3EuBAXpdJE5SIwTJhCJgEcjPbLpxDdGNkmPoBjhyspKIXAQ5263q8FgoOFw2LCKx7oJkBVqEnBt7o0Q4YX42FqPdrrjAQEBQcFrIriLw+steN99l4aY3+8ky63rvquDk3tqUOB2cOs6fXC7v88JbcNp4MQUi78LEU5CGRcXcBBs2iLdLrS4cwXxJApT9N+j8Z5OQLSfY7xv/HQi7PUKXOCR1HCIOEF2gYGx8nH14+KajwTYx5t++9xHN0Ukyqxf32rS7+XCk68xrwXhO2Dw0//t8PmIc+Jj6vU1XDCgbT6P/nn8TqANUbhpa1vcSSWRSCQSiUQikUi041wIClEUcILgkV0nuX5ut9stNRDIP4fkemSXQomdTkebm5u6cOGCRqNRw2LtBeL6/X6pz+CR/7b6BBBQCjF2Oh1Np1PN5/NCht3W7veRmg4Bdzw4CfWIuqcKQJKoNYCAQtpGzD9vI9NE5imISI77ZDJpODKicOCkMBYFRGzwHPm1tTWtra0VSz4iBm2jr231DJzce3FBT4nByeFFGr0GB/UKonMBFwYEFnLN/aKo5WkYsYimi0Y+p4yZE2ivS+DtkU4IuadfuP0fkYdrucjgP3km4vz5M+QiD33yn0tLSw0hwXd+8Ig/6z2mwPg9GU9Px+D+vlZZR97G5eXlsuUpz7OPf5uzIl4r1pTwNnkqSkxdSSQSiUQikUgkEk2ci7+WEQUgE2yxCBALYgS50+k0SD+RUq9t4EUCyc/v9XoajUaFwBweHmo6nWp3d7cQIkQKSFYkU5AYiC+OArebc72YrgCJcdK7WCw0nU4LoWU8XEzodruF7NR13ShO6BF7t9NHu3+8Zozc49SQVHZ78MKL2NwRN7xSP2KGuyAODg40m81KIci1tTUNh8OSnuHRe6LCuDV4QdIZ35gCgPhBsUwHIgJj4vnzkkq7Y6oLggJz6QSZ63gdCb8mQgk7Zfh96YfvluBimtdOcLcKdR8Yp5ieEkUST6fxdRGviXhF+7rdbmPtcOzy8rJ2d3cbzgsn3Z46wpz4PRC5/Ll0YQ648OCpPfyOiOFChLuB/DuFPrW1JaZXce22NIxEIpFIJBKJRCLRjnMjKECWPDLPZ/x08kZ0EjGBXRjcSRCJC8SBgnxecwBSCqEfDocNcubCgaRCDD0v34mg12uQTiK9Hr31ftIGF0wozMh95vN5+TfEF0FCOr2FpI+f57nzvjsB3Cru9v+4i4PnsPucRILoJP7g4KDk6EdSTH0EF5D8Wu7CcPHFCxEi3LgTgPFwckj/ut1uY159bNq2n4w/fc5jtJ97Udwxjhnne3varu8iwGKxKLUN/D6sVQg2x3oKijs44nz6OPmaaEsx8vt56oo7ZHydu/Dg9/Q5wbXCuEP+3XnibiX6zViyplizXNMFLf7dtqsF4+9jxr9pSyKRSCQSiUQikTgb50pQcKLK+/z0HHCIBDspICj4jgYQBLemc30vdkgKhVf3j9bySDjcoi2dFCfE7QCRjPnciBxcz/Pm3eLv0WGq7ksnNRNoC797Pr+nH3ihujZg9YfoeRqEp384oWyL8vt4c6yPi6Syi4MX9osOBU+/4HoxhcLdCdwPJ4AXyIyOAtaSuw7a5jQKPX4fHzfvr+/6IDVdD14PI7pBfP37+T7WLobw06P9MbLO7y528BywLmMxTfrvaydG6f35g/z7bgo8ty7W8fJaHn493AZeUNUdLoyN13Dw1BLf8pR+cs2YAuLODK7jz1/ssz9PiUQikUgkEolEoh3nQlAgHcEdAU4yZrNZgyCxi8LGxoYuXbqkzc3NxrZ8EAjPnZfUiHR6RX8npW77jqQrFh+EIPv9ZrNZ6ZN0shVfVVWNLRljpNzztxEVRqNRI3obd3ng2kSvESIgQ0SLneD7vaK93Os70FYnmowhr7Z5lJoFIBeLhbrdrkajkTY2NrSysqLd3V1Np9NSY8Lnh3nw1A+EBMgpaRegbftOJ811XTfqA7SlMEBaERRcqPE1BLH281zwQhDBecEa8Cg6ogwiA3BRKe444TUp2N4T54ePDw6XKJhwnosViAzAnSZcP+5Q4UUxEbw8LYFxZK5w/bhjByLvriTWtIuK7uCgP4hLvgYZK56d4XBYnovo1IhjHcULxi6+l0gkEolEIpFIJE7j3AgKkGv+mPf6BlKzQB27NKytrWl9fV2j0Ujb29uFOMTIJBFS7oN4AVmizoHU3KHAiQzXg+B5xB3y5OkKFH9EBNjf39d4PC6kDicAEVYcEkS2uQ9pAh5d9voR1IWQTqzlXoDOXQrRGk6Em+MYP9+VwccFEuw2ckimkzb6TRtoK/efTCYaj8fa2dnRfD4vLhEnxFIzTYR5nE6nRehgnn3+VldXG6IEaSPuStjd3W1sb+hRaoimE2n/3R0UXkjR1xq1HJw8SyrzijuFa7hIxTXcDeIFR303kJhyEdMFokDl5Hh/f1+z2ay4clZWVkraEIKCP3PSiTvAUwu8FoSLAtwXYYL5pIiiP/v8dNGM+8VnkO8IF0k8nYPn22ucxDSfWOtCaopQ9AnBLpFIJBKJRCKRSLTjXAgKHuFsI3ke/ZWOijZeuHBBGxsbGg6Hp4iOW8I9CgtJgOxzP8/d9siokxuvSA+xjlsSegSVgom0fTKZlKi/R8eJXkMUIWq0EzIJGZWauwO4bdvH86zIqpNMrgURhHh6sT8nzYwhfXUBJ0bgfQcE3y0BMYHxcFEDxBoGRPx3d3c1mUxKpDn206P0s9mskQPf6XSKGBBTajwq3pYi4jtV+Bz48XH3j4iYNtPtdhtuAs7zdeARe3ewuEDGy8ecf3sKkPfXBRragIPG3QuMX0z/iGKVt9HTC1x4wJHgxVd9DfK89Xq9xv1i3QMEEB9nT+PwrTNdOHB4W328XFjx5yuRSCQSiUQikUi042n/tVxV1fMkfY+keyQtJL2prutvrarqoqQfkPRCSe+X9AV1XV99ouu5hd6rs3tl+OP7qtfrldoJ7mxoIxrRNt7tdjUYDNTv9wv59HoAnlvNv7kWbXMBRGoW98MuT343pI1osNd4gLh53QKu3ev1CrHxGgm0FcJzVp2ESJqlkx0PEBRcMMAN4mPmTgfGhm37PDruZJz7MB4uDhCxnkwmmk6njRoNj7ceSHOYzWan0h08dYDxZMcHH0/6RjvoW9s4sZ48lcEFnTYSHdeerw1PnfFdECDz8Rgn8j6msbCiCwoxgh+LjLaRfh8TdxX4HJ41NlwzphG5UIHAhvMA5wrXB/7MIDjEVCPGyfsO3IER1zTnRfHJ58pTOvzZjWLaecWN/i5OJBKJxFNDfg8nEolnM64n/HYg6S/Xdf1fq6pak/QrVVX9e0lfKumn6rp+Q1VVXyfp6yR97eNdyEkAkUXPJ2ffeT7r9XoaDAaFcMeCax6ZhDiwXeRgMND6+ro6nU4REyC+RFF7vZ76/b4Gg4FWV1cLMcM54GkM7p5g5wfcCRAjJ4EeNXZii3CAZXtjY0ODwaBBxIlsr66uan19Xf1+v5DoSACdKDMue3t7ms1mJQLuOy7wws3hefsIK6QNQGydlHlqgBM4XBq0cT6fl7QFJ4rAawUABAUcHk4YvYje/v6+ptOpxuNxw1FCuxBunKTGCLT3Qzoh/p6KgZDj6wtizXHUN/BrMLa+Lpwcu+vD62VIOiWUONyVw+9eVNPn0AWD6Kjw1CMXsNzJwbNCWoCnfJDqwfNIugmR/l6vV471FBWcODxb/iwzJ/Rnd3e3pO/wPog7Tvh9Ilyw8jQh38qTcboNcMO+ixOJRCLxtJDfw4lE4lmLpy0o1HX9oKQHj/+9U1XV2yXdL+mzJL32+LDvlvRmPYkvT0gHBA/iCxmH/JO2APlwqz5OBAibRx0h6v1+X/1+X91uVwcHB4WAQFRJpxiNRqrruhBZSafyqYnUO8kaDocaDofq9XrFmh6LwUEOITD0v9vtlnZiiW9L26B2QlthxLYUAI9uU1/Aa0F4qkCsJSE1XRvUeEAYgPx5ZJp5QRhw8WA8Hms2mxUSF50esYDmfD5v1FuQToitp2ogPPl80T/GBLHAxw0BxMm6p99Qc4E5JnrNeb6zQqxvQF8gwbSXcUR0oD2+PaaPG+vHHQSxcCRz7HNf13V5Tjz9BvEBoYFjvagov7sg4IIdwhZj6DulMLfUKnFhxNNlECV8+0kXfHwnEN8WNM6nj4eLPcyd15EALjyw3jlfOnFbuJB0XnGjv4sTiUQi8dSQ38OJROLZjBuSIFxV1Qsl/T5Jb5F09/EXq+q6frCqquc8mWv4bgVux/Z/404gmh9znzudTiGHkCV/RVLjkUmIIs4HiBbkK9ZMcHcC4kUbqTkeh9JPyBXt8X97TQTphIhCqCA9XuQvOgwi3OIOOXNyDHm1uWyc61Z8BAK35kOg3SXi6QKQQo8oe/Q7EriDg4NG7vpsNmvUn6CGA/Po5JsdIxAjWBPUy2irgYBrIW436nOHc8RTYXwcvP6Bp5TQr7iNIWv24OCguETcVROvzfE+bi6+SSfilqdjOFFHeIhOnpjW4KTbr+VwEcTJP+uV4+Nz589rW/t87FwkQqhwIQznCffx7SfpA98bXlDTi48yBu7scOcNgsTthBvxXZxIJBKJp4/8Hk4kEs82XLegUFXVSNK/kvQX67rejuTjcc57vaTXS9Lm5maDWHjldo/6Qj6doDg5oXo+n1dVVc5xUoXbgWMg9kT+O51OIRoQMFIhJBWSHImKW8E98h9z7z3aG0UPJ2rsCMH9Yh54jJ62kT+u5YXyOJaxguj5+U6o3TnghNsFA973qG9su3RSi8LHyiP6tJHjcDR4UcRYZBBCy3WwrccdCKJAgqDkpJP7OjFm/biY42PjbfDdJbDm+5plXBCpPGXCBS8vaujFFl0sQKSJNTy8loC32YUY1qv3NQpTLnr5eHN95iOmwLgQwfkxLYO15y6HxWJRttv0egy4ExAVfS7dAdFWe6EtHSSKb74uEDRvR9yI7+KeBjevgYlEInGHI7+HE4nEsxHXJShUVbWqoy/O76vr+oeP336oqqp7j5XYeyU93HZuXddvkvQmSXr+859f+x/4s9lM0+m0vOJuAE6ipOZOBZ5Xf9zGBnEhkgp5d5JPuoFHtKUjYkWaBMQRi3ysW+BRcXdRtBEpoun+cuLtogXkN5Jij7TSbsaIPrjwwbF+TyeqwO9H9J7dJjyFgnHg2l6lvz6uyeBCCPNI6orXInDHA/O4tbVVrk97vJCgCxFuo/e6D5zn5D+mJBAFJ7WE+UOU8p0DvA4G12AsfK3SFtw3UTTxa8bUDBclnNC7mODOkkiso0Dlz42vF39WIPPMPa4MT40AuEKYUy/+6G3iWJ+jWN+DHTn43J0U1NuI9RBcMHLhgrnwlAn66M8EP128cfi83A64Ud/F69XF9qITiUQikXhc5PdwIpF4tuJ6dnmoJP0/kt5e1/X/ZR/9G0lfIukNxz9/5ImuBanA7ry1taWtrS2Nx2Ntb29rd3e3QerIC/eigZAbyFgsLsh7s9ms1GfwAouey+3F5iBebE8JYYwEKaYseK0EL1bHNY/H8JTrAPgOCF4fAgK0u7vbII/xGljCERT29vYKOYv2fSKz7twAtJv713V9qjAghNGj1swD0WXmCtHGx8kdFC6i7O/vlwKLfi/pxHFCET/miTQOB9dyMuuOC8bH3ROeU09NC453R0bspws8rAlqCURi64KDjzXt8LXhdRg4FwEJdwmuB3dF0L76uB5IFJVcpHG3D+3GTRMdKNFF4eua41mDLuBE18N4PG7UXvB0pliTwlNDfI27KIVToi0FKNZeWCwWDRGJdiEisF7PO27kd3EikUgknjryeziRSDybcT3ht0+S9KckvbWqql87fu+v6uhL8werqvoKSR+Q9PlPdCEikZCI8XisyWSi8Xjc2OGh1+uVgoeRRHsOuBMnJ01e4M7JM2QMMuXReicxHpmO+eBEsiF0bsNHgHBA+mJ0lfHgmk6CXVCAyFELgeOjtX8+nxcRJUZ5uZeTLxcDDg8PixgCmcSm79fxPkTCGWs2eL/cFYDwQtFITyFwwuoEGKHI59mvH50c3k+i8NzH++DpDZ6vH3PsmY9IdCHrCBwITe6ycKcBawuhhrF2Mo+Y4DsZeMoEzwiiG3OJyOFj6akCjAVj6Kk7vsWjpxK4CBVTOTzaz7hGeNpCrDlRVVVxTlRVpdlsVu4RXRcuJtDfNvh3A8+6rwN3IfhuLzzPtwFu2HdxIpFIJJ4W8ns4kUg8a3E9uzz8nKSzksM+5alca7FYaDqdFkIynU6LiwCrve/S0O12G0IBUfiDgwPNZrOG7TySbD/eyS4ihW+PeNzPBlHyIox8BgnBxo9joq1goadmQKw8f94RC8i5W4Fxw01BxN7FDsQVLP31cU6/3y+2j/foK4SfeZDUEGZop5Nod2B4VNuJHXMQ0w183Dwq7veLBNKJv+fR+1y3rbn4uTsT3B3gtRucMOMOoY0uaESRhd9ZYz4uLp64eOBiAu2L6TFRyPC6GJ6ewhxy7ejiQBCjT4ggCBKMgbsCIOPej5g+4ONCH5g7fwb5LBabZHw9jYM5Ya2SjuHfB/4stKXyIO54m7wNUSA7z7iR38WJRCKReOrI7+FEIvFsxrlIED48PCwOBbYjJFoL0RkMBhqNRsWh4ASa869du6YrV65oOp1qf3+/YZ92Esg9IRerq6va2NhQp9NRt9tVp9Mp0VVs0RB7j/JGl4DvQAEx9m3vJBXC7W4IjzpDvpx4uWASCaunDEinCzDu7u42ahDQTrYR9FoQECjPP/f6Cy6iQHKdgHc6Ha2trTWIIv0l4iupOB4QjyDTjJWPsTsPfDzc1u/1B3BleLQ6Oj58vLwQY7yWp5zwu1/Pz1ksFur1esWVEXc38OtA2Jk/0lHc2h+3pmSsXajwNrio489FTMdw5w1gLJ1I0yefe++71yHw59iPjUJQdO5IJ+LV8vJy2TYVEYH3HPTN55bdMtxpRNu8Law9n7dYxBXRIhbgTCQSiUQikUgkEqdxLgSFuq61tbVVyAYpCxD19fV1Xbp0SRcuXCi1DJy4zGYzPfLII3rsscd07do1Xbt2TUtLR1tMkr8uneTdQ1icSEIwINyeA44luy3qifV8MBg0yJBH+L2OANeBVLrN3PPLIUeRpEknEX63trMLBqkEjKFHgCFskMXxeFy2xYOsOomNuxZIp2sPLC0tlb73+311Op0inhwcHKjb7TZcIlE0cFdCLHToEXgEDy/kKJ2QYW8vffKijC5M+LjQ1+hucMTUANaJCwKefuG1OBCY/F6kThCl9/lCmKF/Lni4qOUkGHGBe3EO7g/mz4UMn0va7M4HRDEXElzQcrLt4oULd1FIYb5YN/E5YA2xdiSV3+Mz4M+Gi0uxrkMEY8Tx7obwcXSnRyKRSCQSiUQikWjHuRAUgOeoO8Hv9/vl1ev1CjGVVIrNkeoAiSLK6NFLj+x6rjokwusyHB4eajKZaDKZaD6flxoOHp2FnJGK4YTOCSv9kpq7PDi58eizR5id0EQ7uVv9PQLrJD2OJfbww8PDUgiT+7vN3lMO3J3gc4XDw8mziyPRMk8fqJPAPXZ3dxv3gWhC2CGgMbLvpNu3GHX7u6QianAs8++E2gUdxCB3YcQ0DvrjY0IbneT6sbhuXCBAUGAeEKTOEnAYb18z3NsdBaw3P96j8cydt93dLwglniaBYBXTSNyt49eKDg+EEK9LEF06cZ056fd16Wk3MaXBi3j6c+/CYqyn4cd7bYa2dJlEIpFIJBKJRCJxhHMjKEQrve/ogJDArgxex8DrBHhEVlKDFMcijqQ0OPmFCBEFns1mpTAkBQW9rgFEmvZB6jyy70TL8+jjln5u024bDyeLMeLuwgIkyIsNen0HIs2kGMzn81NOAE+xcFLo5JD7IMR4dFtqbh/o9njui+DB/ERLfVt9AxdhnFR64Usnymfl3Uei6GMIEBTqum4UP3TBwdduTAFxgu5pFm73d/HGt0X1Gh5+TUck0y7YuGjBnMTipG1z5CkaPifejli/wsWmWNOB63pb29JlPNXCxQk/Lqa8xM/aak5wP9rkaSG+lv2nu37iPCcSiUQikUgkEokmzoWg4KTLi8ZRjHFtba3Y6aUT0gThnE6nmk6nRVTw9IRIMqWTSCdEhvx+SAl55+PxWDs7O5rP5+r3+4XUQlRWVlbU7/c1Go00GAwaQgRpDh7hjbsHxBx7f3m+vpNrJ0ixnoJfD0EBdwb3ROxg94b5fN4410WQWCiQ+YmR+7YCdhxLmz1K7Ts7LBYnhSUZ10jWsaCza4K3pa2wHz8RfJzIMr+OKCa5qCI1t1hk/HEA0FcXerimuyna0kfcweJrn7GN/fE1zNjQvrbIve/4wNx6u11E8rXn687b4m2mvoW3w0WZ2Dc+j7UkeC7cPRTXe3w2vE3MjXTiPon9A+4A4jgXX9z50paukUgkEolEIpFIJJo4F4KCpLKtHiSRWgaDwUDD4VCDwaBYpSOxcKIIWeV9J4PSiZjgEX7fHm4+n2tnZ0cPPfSQtra2NJlMyvEQ4EgaKaBHgUNSCTySGrfhc7eBiwi+1SJkC6HCc/2dKEKUIK60w69Le9xiT3qAE2yfAyz6XgCwjXBxDVIXqAlAQUh3BpCeArl2Auj3JeK9srKi0WhUdvdgLCCC7kjxsfAtG9l1w4UoRCaP3tMGT4VpI9VRkIi/+y4JXM8FFB9HP57+RrcH8HmgTfSJbUFZMxQX5V4IbRFO3l2cijt2LC0tlfn1tJQ4frE4aHRSuIODfrpI4eKQ99Pb5u9JzZQW+uT38/mMY+rOk1i7JAowiUQikUgkEolEoolzIShAAN05gKCAmEB0s62KPjtE8Nn+/n4h3BAsiIWnAiAIQGo4d2dnR9vb26VQHnASDbkhlYBaAET+vQaCE36Im0duIZwQZc6hXoQLA14rIV4TIs/9pRPr/uHhYSG4HiV3ksXYOOn2vPu6rhtChZNwiK07IBgP+os7wVMUJDVs5l4Hgbljjrg/5NgLFjohpDgmEfo2IhldFT7GToKjeOPCT9v1fItT6inQVo+Y+7i6sOIulkisXcziPE+ZcAGNFCHWlhNxFy1814OYRtDtdssag5RTRwEhLtZl8HXqDgZ+97mRVBwy9Ie2utgTUy+i28fFLn8228QDd8L4XHNdrzGCUymRSCQSiUQikUi041wIChAHj+IjKHS73eIecPLsKQpSs9J8LKgXbdTRGu1pDovFoqRQOLGNReu87oKkBpn2PHaPirsY4ZF+2uQCBjUb6LeTJbfluz3fo7ue649Iw/uQyrbCf95eiJvXIPAUiFizwV0NROR9e0aEBq+dQDtJUfEdNVwM8vax+0DMzyfS3+/3Sz/dxs5cg+heOcvmjjDgx8R/SydiALtpeE6/C0tO6hkD7uFryuH9iHZ91p2nEOCcoRCiuyGiu8BTJxhLfrrgQh/5jB1D/Bny58rH1uslePqIOxqYez5HAPO6CF4HIdbHYGxdLAO+XlyI8+eFZzuOayKRSCQSiUQikWjHuRAUpJN8byKYWLaxM3ukfnV1tURPIdFO5qNNHRLhOeZeTd9t4wcHB5pOp+XfXs/BSUxbCoNHjBeLRUk9IN2ACC8Ery3dwQUMr0bvpNhFEifATk5JLyACTZ89X90BmfOtAmkv/fTCgaCu69I/32mBtArah2DDe06Mvb4CY+jz77n3MVXCt2tcWjrZccOj5t6OtoKEkXj6OLugEY/3sXehAHcAZNTTCeJ1o0shFof0uYquFsY0Cgq4ZmKaCuPF2sKB0pb6wT29CCrnu2vE2x/XhhP+qqrKLiPeH64dt7f0OfeUmeg+aEuP8LmMc+dzHNehXzMFhUQikUgkEolE4olxLgQFHAe+s4NHQD06v7KyouFwqNXV1WJ/xwLvud1+bY98O2Hnc0gpW0+Ox+NGlBOBA7dEJHluKYcE7e7uamdnp9QLkE5cB7FgHy8newgpMT2A9rDjhUeGPXK7t7en6XSqvb294vbo9/uFIEoq2zpS/2BnZ6fUr0C08S3+nHjxb7aARBBBiPEdDZw4egFE4C4Ht7N3Op1SOwPHw2w2a5DKtv5DXN3a7gIN8yad1IxwMi6dbAmKc4A2epsdpBkMh8NSQNTXGjUS/DruEnAyzpoCMfIe143Xm0CIcScL53hBUBerXFTzNkhqPDOsB+aG3S886u9rxdM2/HnhJ+vCd/xwISE6ibhuTFVxgcfbzzFeMNMdPe468XF3cSN3eUgkEolEIpFIJM7GuRAUpBOyjVUb4uKEFlKzvr5eyNju7m7DMcDxEKulpaWGawECBcHwnGkI62QyKbndvrsARNELOrowQdrC9va2tra2GsUZ2+zoiAIIILQXAupRfYg+L4i5R9QZQ0jb7u6upJOif05yIaKz2Uw7OzuaTCaazWaFSHt+PMTPCTXEDBeEOxNIdfD0E685EQWfSKYlFQGEwoKkTBweHpb6BJJKjQaPnDPPvBAZWENus19aWiqOBoisCwDMayS2nq6AM6LX65Xx83mjbb4OuYZH8NvSD/i3izjR/s/nXohSUnHvMAbxWjhPEOt8XttqRbhLh2P9ONY6fWPMozsCeCqQrwV/VmJxSnctRGdBFHl8vUZHz1kFI3E9RbdTIpFIJBKJRCKROI1zIyhABnElxBxpxAYK3i0tLWlvb68QDicgpEV4tXzPw5ZOyBxE0skwRBAS3u/3C1l0J4VHS0lxmEwm2tra0rVr10pNBm9fFEwgVBBYJ3xO1iGAvnOBE6tY54B6DNjvfftEr7mAwwOXhxPpWB/BUxIgkd5G3w4yRnhpeySIsQAfoopH2rkWrhUvFuj1Htx+7+TVnQd87nUMPK2CefcIOH33WgR+PwQb+uKpGQg4Dl/bLki5aODrmnmNiG1hruO5Pr4uQLhLoS2VpS3NxsU0XxdE9b32hgsWLgDENB13FkUXRVwvrCcX0h4vjSWmPXhdkZiuwr99u8o4LolEIpFIJBKJROIE50ZQIF8e4i6dkBhIChb4fr9fov4c5zZ5SQ3LPmJCtH97ATzf5hAC3+/3tba2prW1tWK9h/TiEpCOSAt1F7a3t3X16lXt7OyUe0EeESggy7SfzxAp3DGBuBHFCCd0Tm5JdRiPx1osFuVeiBeejkCfEQQi6YvpCm6Nh0ROp9OGG8F3YeBcJ4YuwPgcM5YQc9YBNnSvAdHv9yWdFCX0HRTcTQBJddeCR9yZSwQFjoFMejTb617QFy9U6GIWayhGwH2tIpyxvn0nCV83kF3cJi4ssK55NlzU4BouKtBnF9p8FxBPo2hrO9djrDxdgZcLX91u95So0nYv2uXOmLZaH6wBT1VwQSJ+J3BMnDMX1egXa99dDTE1J5FIPDksDQaq7rv7VjcjcZ2of+8hLabTW92MRCKRSJxznBtBAaKCnT1WZR+NRrp48aIuXryolZWVUucAgkj0GtK6vr7eSHlwy767ASAg4/FY0+m0kOHhcKi1tTVduHBBGxsb6vV6DdGC9AHqM+BMGI/HxZngrgZ3YBBJjv2XTnaL4HrUZ+Cebs33HRE4d2dnp5B8j1i7Ld0FAYi/uxwQMXCBuLuDyDtujNls1ih2CZl2oh8j5A6EGyfBkkpbSHNgrhg/iCrvEVmeTqcaDAaF4HvNCIC40ul0NBwONRqNyv3ckcF4LS8vq9/vN4QXFxh8W0vG1fsCWJ+rq6saDAaS1Eqq/cUx7rbwFAIfQ08n8d0lvN/eJk9X8FQHX5OxbX5tzmW+pZPdWdzpgpsm7gjB2nYRwR0KPj6seQQL5p92IBhwvvfLr+nimNcl8fu7QJWCQiLx1HHl816lt7zhjbe6GYnrxGv+yldq/Z//wq1uRiKRSCTOOc6FoFBVlXq9XnEBQBggI6PRSHfddZcuXLig4XBYdmLY2dkpBFo6yfFeW1vTcDgsEVjs/0SvSTGAhHpxx8ViodXVVW1uburChQtaX1/XcDgs2wCurq4Wou5Wf4/ME2EfDoencvNjGoZvXUfbEBRIHfCceOkkcsq2llVVaW9vT7PZrAgakko7IYY4MGLOuxM2alK4SEHbfDzZWtN3hYC81XXd2KbSRRjGg3t4CguIOzIgGDB2USBibIiEr62tNVIm+Jy2MBesOXcoeDpILDLINWOEHDHBUymkE8LvAgGOCcbSXSF+jNeZcCdE3IWCY33HEa7nDgZHTGWJdRMc7hRwka+u6/JcMU7Ms9cF8bbh3vDjWafMAfeJQoePD2Pu1/FUDhcMojDpaRj01cUndumIYkwikTgbe3/kY/Vp3/zT5feXdf/ZLWxN4kbhr3zjP9d7/+rlG3rN7/2OP6J7vvW/3NBrJhKJROLW4lwICpIaf9BDDPhJ6kG/39fy8rImk4kmk0lxFGC1hrAiTMTcf3LruZ+k4jCYz+eFfA2HQ62vrxdhAteE10GA2Dgxc3s1zoQ2e7UTYyc70kkNBE+9kJp2fXdYxHMgtb5Dg5NFjyoT/QeIGV60MLabe/mYek4+8+i56z630gkRJn2h2+2W+zMnToQ9b99z7yGzXvjRC14y/i6K4Pbw7R09JaOu6yIUeb+9vgFj6fUHWA9tggCCg9cFcGcJbeN+MSruYxnP8TZ5moanZDhcJImOBObFBYu2873/tNnn2Z0Scf166hFjEUUIngtfny5yeYoCc8r3hqdEcH93H7izoe1zn8t0JyQSj4Oq0gf+t9fosF+retFE/8vF99zqFiVuMP7EaFvS9g295k9/9vv17ntfI9XSS//Ob+nw2tYNvX4ikUgknnmcG0GBP+SddEpHpGMwGGgwGKjT6WixWGhnZ6ekKBDxdLKPzd/z+j2SHolhFCVGo5HW1tY0Go3KfSUV9wTX9m0RIX2euhFFB/+cz/xcLwBIv1z4YEcDj/q7zR7iTBoA0XgXPdydECPMTtLbSCPReU+biGPPdWIRQY+SO+lnK0snw1wzkmJvpxd9RChCJPCIN/PrfajruuT4x5x9J7zedncb4C5gfGIqh0flvd1eE8EFBcQGCLITe5+fSHS9LgHj5sJD7EesOcB73s+ziLS7UOL8urOCZ8/HK9bhAE7k/Z6sMd9Ksk1oic6OWASSeyBYeM0ITxtxESSOR4oKicRpLA0Gql/+Iv3Il/9dfdjq8FY3J3Eb4cde/mPSy6XDeqFPffPr1XtwrGo61+G733erm5ZIJBKJp4lzISjEYmmSim1+NBppc3OzFGLc2dnRQw89VAofOin2YnBci+KD8/m87BBARBzCMpvNJKnk01+8eLGkO+CK8BoDBwcH2t7e1mw2K9F6T1uA0FN/AGFgOByW69EmyCRknyKJLlBAhObzeWN3AKzZs9msuBO8VoOkktbguzL4i7F2EYHj2TrTayvs7u5qPB6X9iMM0Dfa6k4HUkmWlo52byDNgJoCcftA6YQsUyvCib4XjGTsSV8YDocaDocNYcqdATFnH7Lpa8LFHifzvpUmKRbSCSl1QcIdJA7INXPhO1i4q4GUmFjbwHcXkdSYL9YzUXfvAySadnsBUPrnTg9PU+AYhKRYk4I1inPH6z1wDfru4kp0JTE2uHN4Jhh3HEguZPkWqv4c0WcXuliXPt5R/KHdse2JROIEs9e+Um/+zu+QlGJC4ulhuVrST3/Xd0qSvvqDH693fdwtblAikUgknjauW1CoqmpZ0i9L+mBd13+8qqqLkn5A0gslvV/SF9R1ffWJrgMxxZYMgSPSPJ1ONZlM9Nhjj+natWuFzBPN9Ag3ZPfatWva2trSdDotpBLy4GLA/v5+Kb546dIl3XXXXdrY2Gjk1kdiP5vNSg2B+XyunZ0dTSaTYpWP5GswGDQs9m7/RgxBTPA6DLEGgKRGJNgFgxjx9SKCECwEFtoaSa/byBFmiNyyqwPtrKpKo9FIFy5cUL/fLw6S/f19LS8vl7H1FAOO9TYyThBAHCHMpRNqrkufqb+BoLCxsdHYBYIINy/WmacmOBmN+fd8Tv+WlpbKmEfxxms/MIbuUqHdOErcMRMdChFee8OLEfo6ciJPYcjoDnAhxUUI1hzne1oP4hACiKTGs+QOBfrh4khsB+fwk/Xp25DiZGBueXZi+oq7CHzu+E6hmCprwQUX+gFcWLsdcaO+ixOJU/iEj9IX/dMfK78+Z+Xtt7AxiTsN33jPf9QPv/1l+td/8JU6fOSRW92c60J+DycSiWcjboRD4X+S9HZJ68e/f52kn6rr+g1VVX3d8e9f+3gXINUA2zGEzaP34/FYW1tbeuyxxzQejxsRTM93J9IK4fdCiy4KTKfTEq2lMr2nOlDtnet6mgOEHOHCBQUIOOdDEKl83xa1JuLuOeOQeUhoW5E4j8QiQHiKBESQc9mNAkeD1F753//tue8QT+ar0+mU2hYUTvSoN+fgGsFBgDPBiTvrAFLq6QzSSboAgoLXDCA67ltk8hkk3FNRKLDpUWpPCYnpI2xX6sUXIas4LXBS+I4UHuV2ksy4c1+fQx8DxsHrM/jc0C9PBXHBIc6njzHwNBfGysU937Uj1vugjS4oxPQEiHxMv2ir/8B8u8ODdRYFCr8O64z70Q8EoOha8PoO7sRoExNuM3Hhur+LEwnH+7/pNdpfX2j1OTN98fqjt7o5iTsUdy0P9RXrD+j/+Nufrpd+73O19DO/equbdD3I7+FEIvGsw3UJClVVPVfSp0v6Jkn/8/HbnyXptcf//m5Jb9aTEBTI+Xc7O0Rjd3dXV69eLa/ZbNbIoUdQAHVdazqdluOkk+32uPbOzk6JMg+HQw0GA62trZVCjAgTHtWFNE6n07KbAmkA29vbGo/HDRIEifK6DtLpYnjeLumEPLuroI3oQAYhSRAprx3haQK7u7uazWaazWba29s7VQyPvHsnpG6bh0xiQR8MBhqNRsXJ4S4C79fq6moprDkajRokD6LnBRy5rzsMvHBiHAN3syBKuTOBseeYbrd7SizCNYCg4Dn4/X5fvV5P0smuF4hQFAAl5QSi79uCOuHlnp7u4VF12hNrIJyVz+/uBtZ4vBcCAATa00n83lGYYVzot7fHi5R6DQNPNYl1GnyO3VXgcxn77EVa/XMfi7hGo1On7fmifb7+WfexNsXtgBv1XZxIrDzvuTq4/6Ik6dtf9+16bf/2eAYStzeWqyW979O/Qx/22FfppQ+/TIdvf9etbtJTRn4PJxKJZyuu16HwLZK+RtKavXd3XdcPSlJd1w9WVfWcthOrqnq9pNdL0qVLl0qeM1F/SCcOgEcffVTj8bhsp0i9AVIXqOjP8bwvqVxrNptpMpk09qdfXV3VcDjUXXfdpUuXLpWtKanNALzGwXg8LttVcq/JZKK9vb1G5Jl7e5RcOiFyHpGN1ewhQU4WPW8+pjO4O8NFD3csxK0eV1dXNRgMGlFuz73HKu5pGGtraw2rP+kFkex5Tj31FShyibhBv72P7hZw8u41CqLLo9/vl3tA5D3K73UScHHgtMAp4S4M3BsIIevr6yVaH7cFpbZHLGAZRShAe0hnYV26IyKmsrgrwIk648G8Mc+cF90ZCEGSGtuGct9er1fEk263W2p8+Dr18XSxpi2FgN89HcmFHifuXi+CvrlQ4WuUc85CFDf8WeR7JopTAHHT18Rtgm/RDfgu7mlwk5uZOO/47b/8XL3nC/7xrW5G4lmKd37xG/W6T/7DuvpJt7olTwvfovweTiQSz0I8bUGhqqo/Lunhuq5/paqq1z7V8+u6fpOkN0nSS17yklo6qmtw5coVjcdjra+vlz/4t7e39eijj5bIOlH7yWSi8Xjc2GbQrfROQGIkGEJMEb/NzU0Nh0Otrq5qb29P4/G4Ye9fXl7WfD4vtRwmk0kpCsn7pDhA+ImAQkq4HoUUZ7NZo41E6mNk1wk0hNd3LvB+s50m7cE5QMR/eXlZ/X6/CCkuGpDG4WkS9IEXogBbV8bUBNoECWTXDNwDXvyPmgmSGgST1I82Vwbve52HtbW1sqsGn9NeiDI5+AgOnou/t7dX5ks6yttfLBZlF4rV1dWS6rK7u9soEEhqye7ubhFRIOTu9iD1g/oRFO3c399vkHePtPs6cIGGteLrw8fV58tTRVgLtBcxh3EZDodaW1srIhRrgTWKEOJk3VOVuJc7EhBLWEc4M9yFEXde4FxPHfF0JV8P7M7i6SueduEpJAgisU6F95E1zfi2iQ7nDTfyu3i9unjbKCiJG4/n/sJI33bv35M0utVNSTyL8cbn/1v9xDvu1/d8/EfdNttK5vdwIpF4NuN6HAqfJOkzq6r6NEk9SetVVX2vpIeqqrr3WIm9V9LDT3ShqqpK5J8IOtFMr1eAoCCp8bvncLs1GoIWd2Fwu/7GxkYp5Le6ulrI/nQ6beSVQ9R3dnbKtpUUkKO9HAvp9wr2kDQKFVLDgTZJOkUoPf+cz8hp9+gt1/BIsqRiXYecElFmDBAFGCMIszsGnKj1ej2tra01toeM7fPK/ZBrj2j7tSnU6PDtGKOrA3j0mj4i1OBW4ThIvBeCxH0BsXSiyTkICsvLy2XccWr4OmPc9vf3yzV920RJDRGLehK9Xq8U9OTeCCmeisCYkqrh4hFuiUi8IeheN4T15akdvg6ohzEcHlVt5znzecXR4n3zdeiiEHPGvWPtBp9X5sFrGrCO2gQ2/95wR09bOgS/u8vHnxsEirNSKc6q3XDOcMO+ixPPTqzce49+6289V99yzz/QS1ZTTEjcWmwuD/QnRo/qr/3DF+vF315r6ed+7VY36ckgv4cTtz2WBgNtfeZHPa1zL/zqozp8x7tvcIsStwuetqBQ1/XXS/p6STpWY/9KXdd/sqqqvyvpSyS94fjnjzyZ62HRn06nkpppAZB531IRZ4AXwYMk+C4AkGyI4OrqaonOr62taX19Xevr64WsIWLs7u4WUkaBRdo4Ho+LmAF5cxKJTdyL3BEdxr3A9Z1MuS3cHRUQbM73CDRwAYIoNUQR8ohgEqO2RNkRRpx4SSrjRtFKSWWcoqDAeZ6L35b/D8FDUHBrve+SYOutYfWHLONMoE303d0Ca2trp0QHruM/ndR6fj3zxXx7UcnFYlHGwbd0RIgAXsOB1IKYq++pE7E2Bi4Ld3H4PHotA0SFGImPqTK+64Vv58l68JoCiAmkanghySg8eZ8YXx9jn1NfC07e3WFxVmqC1z9gzTBmbWvOhY+4LWZMqeDYuEXmecSN/i5OPLuw8sLn65E/dL/e98feKKXVOnFOsFot6z2f8l362J/5Kl36uVvdmidGfg8nbies3H+f1O2cen+xPtBDr5b0NMyZSweXtLF/9DfTwft+R7p9UkYTNwA3YpeHiDdI+sGqqr5C0gckff4TnVDXtba2tnTt2jVNp1ONRqNC1GazmR566KGSggAJmU6nhQgQSXaiI6lsQ4f1H1JEJJbXaDQqtQD29vbKLggQD4jG/v5+qdHgOzJAXGORO3YHGAwGxWoPWYu7U8SCii4m+PGQ0sFgcCpP3MWC1dVVXbhwQUtLS8XOT50JL+C4v79fHBls9+j59pyHJX4wGDTa4wUxIXRxbqWTCLCnokDyaRck1h0GLrr49WjfcDhs7JZQVVVxJCCArK+vl2vWdV2KVXqtBq9FsFgsimhADYSdnZ2GI4Cxm8/npVaFuzroM/NCPQbqTuCC4IVQ5s4DiDGiSK/XK8ILxBmBjJQcCikieADGl9QKXA+kMQyHwyIWuLhTVVWpO4E7wceOe9Nvj/zHQoixSKI7bVy4cBGBc1hf7mDwNcIacEEhCka+bliLPkaxWGTb7hS3GZ7yd3Hi2Yd3vf5+vfNL33irm5FItKOSVFXS7ctN8ns4ce7wwBe8UOPn39i/bx78pEoPftI9qhbSy77xMS12dm7o9W86nmqKawomDdwQQaGu6zfrqHKt6rp+TNKnPJXz9/b2dOXKlZJmADln94Tt7W1duXKlRIFXV1eLSICg0O12JZ3kQ3uqxGKxKFHqwWCg9fX14lDY2NjQaDQqufSkNbjlXVKpWxALBdIeSY10DXL7R6NRicLPZrPifvCdGzxFw90J2OlJq5BUxAmPBnsKAaQPAuskvdfrNQgUxSQZo+q4IB158pA/r5iP9Z9+uuBCW0j5ICLOlpm4JaQTgulFIJ044piIhfHqui6FJL2WAee7CEJBxc3NzUa7PG/fd5HodDqNyD47ZWxtbWk6nRYSzq4O9A83ijsEuAbnsE49XcRFDta+iy04BhClWIeskX6/3xCruJY7A9z5wtol1QSxgutQrNILhSIyIFwwzu4u8JQCxtXTdZgrHDKIJ7SR8XBRjXZyLveg8GlM4/B5c8cG8DZwvycquEi/bydc73dxIpFInCf8wP/6d/U5n/5npM/6D7e6KU8a+T2cOG947E+/RjsvOvn9sHvzgiV1Jb336z6y/F4dSi/8pv+q+rjg+XnE0nCor/71X9Hl5ScngvzM5BX6Dx+59sQHPotwMxwKTxkUE4TESydk98qVK7p27Zrm83nD4g2R9CJsMc3Bc8XJpSfa6lZvj0ZDgHxLQEmFPPsOB9iniQp7UbjBYNDI28cJ4PUcpNNb1UGIvPgipBWbP22IpMlz5peWlhqOCo8W8+9YMI8Iugsp3jYi6TgUnLDSdo7jXCeItIsoND+9ZgSkcjabFcIPPCWBcXYyDdydwMvTUBy0j+u5zd0j8bTb2+zj4OezptvGhePPinz7tUhzQOBBDIHossbc4cF8cB/AuvYUCU9LiVF7xp2xpt4G8+oFGLk2n/m48cwi2Lh4FtcWa8BTKBhzjiF1iLXk1wJt9Rz8Pi7c+TPvY+XnJBJ3Kt799z9Bn/fan7/VzUgkzsRLVke6e22sD9zqhiQStyOWlrX1hR+n8fMqHQyeIcdlJR0MrMj2QnrsCz9G1UIaPbiv1Z/85WemHU8CD3z9J+rgo8daXl7oU/tvVrd6ckGk5y3/ur7zB/7cTWvX8ltHet7f+i+N95aGQ73rO16m5eXT8zj4mZGe823/5dT7zyTOjaBA9XyipNjMSYPwInOQm2gxl9QgC7wgT253dlLFdd32TjoEpMUFBQQIRA36gNCBTdx3NXC7OfdwciXpFEkiSg9xdcEgFv5zyz1jgChBBBfCRqoCIg0kvS3H3HemIL0hkuXYbq/5gK0d4o7d30UBr33Aeb7rgo8N4+5We4gr/aDgJukOg8GgOD4Qd9wmz718LcX8ewQo7usCDWvIdzugH56uwRpxOz7HxTWAi4A15pH4uq6LEICwRdQfQh9dHax5xAh3iHixStaH17HwWgWMmx8vqUHsPVUA0YfxIW3H20q/+d1FDJ5Z+sDYugskiif0zdsMvNaIt9NFBC/S2Va/IZG43bHU62nyRz5K3/RpP6DXrV291c1JJBKJxA3G0tqa9KL79eirKtUrty59s16SrnzU0d9hu3d19NzfeakO3/meW5syUFWaf9rH6tWf9VZ91/N/9vjNJ+9IvXdlpHd88vfcnLZJ+uoXf7x+462vbry3P1zS2/7QP2wVPf7Axudq9sFXn3ofjN55VYdvf9cNb6fj3AgKkFv+zbaM4/FY8/m8EFEs2tJJVJNreETcSbN0knPtxBKSSFTa3Qlra2vFWs85nkqA+0A6It3T6bREy5eWlorogLuA3RM8Mu+F7zgP0YG0Ai+02JYbHokpZBBRhsg8UWNSLnjPI7lOyiIR9hoOT2QV9yKNDi9M6FsgeuScSDvEMdr3IZk4TTya7nN38eJFXbp0SZubm4XI0hci/rR1b2+vUTSTdtEm7odIBLxNuDtccIiE1IsvRiILSUaQcOcM8zabzUr73G3D+ZPJpOFi4FzWUFs6Rozc42hh9wkXWfid8fb5cUGBtYfAxrhFtwqpS07wEQMQTHimPC0G8QtxiLlDPHSHgrtBYt0Md7+4COa1RhKJOw5VpeoFz9V/euObbnVLEolEInEzUFWqX/FCvesLhzpPBUgmz13oXV9xWS/93x7QYnf31jSiqrS8tqbveePf1/NXzueuRv/3/W+R3viWlk/aRY+f+6gflh6nFNJLfuAr9bKv+R1JUr2/dwNaeBrnQlCATEES9vb2tL29XcQEopbk90sn2721EdeVlZWGHX11dbWQerdgEwGWjsjSYDBoFPZzMuNF/xAiIKNeV8HdA5B3dnQg390LNEon299xj/l8rul02lrUDmJLWgLkCAHFnQhenJJrkuYgqZA8J7ouUBC990g84+tkzYk9Yg3HxTQRotVEuCUVYry0tFTqUEBqJ5NJmXts83GHBKLp3W5XFy9e1F133VXqZDDWiBnME32bzWaN8fJcf8YOp4pvAeq7OpCe4KkDzCvncX13EOA8IDUnCkQ4c1hnpAQxjpLKnI/H45JOg4vDhZ26rsvY00fEAdJqPM2GeUSUoC+QbNYp/ZSaW00y3sPhUN1ut5EWFFNoSMnx4pU+nl6EMm7ziIjozhp3MNE+ni362ZZy4gU0uXYicafhg1/zGv3In/s/JZ3PP6QSiUQicX248qWfoGuvkM6TmAAWK7Xe842/Ty/551e1+I3ffsbvP/usj9N3fuv5FRNuBt7yed+sK58rHdaV/vJ/96eOHCI3GOdCUJDUsPC7TR9yH6O/LhhA9LyQIcSDKKnUFB+i7dsjt57O4NF+f39lZaXsPEGhPMgNJJetLb2QnNcdiGkbLgxERwJiglvrIYDcgzYgDtBvSBuOBa9DQd+cUHvBQt9KkvHkdyfAwGtB+I4RuDp8JwEKE7qtnfGczWal5gTtilF1bx/W+tFoVHYsoNZB3M4xOmIgzIgBpBDwmc8Vdv/YP98hgHvxb0mNHSI8jYa58doaXrjQRQivRUCNDNJiKKzpiHUMvN6IPw+IO1yH6L3vqMBzwmc8X1zPnRj00Qt8Qs7dkeM1Mnj2WScIZr6ePR0m1qdw94/XXPA55HhP0WFu/Po+z2fVukgkbke86x98vL7wD/6sXrL67PlDKpFIJJ41WFrW1S9+tXZeWGnROad/v1TSYbeWbkGdqge+/hP1+z7jt/Rhq8Nn/N63EnctD3XXsel2/m37ujp9ua797gW97H9sc0E8PZwLQcHzuiWVugH8ce+565BASAWk3wsykjbgZNwJjxMPJ1qRHHEfIric6xZrSJ27DSAmHvl14cL7DWlZLBYlMgx59EgpRDLmuyNa4ORgDCFY7lxwcukuAWpNeJE9r0UhnRSljLn+sbge48fYxwKYfg/ppP4A88h40y9qMPg9aY8X1uP6iBa+S4W3i3P5yYux9lSMWKDQo96RwDpJd5GINrirAzLrNS6cNHtKBPAIPOITa91dMi5AeH2CmL4QayyQasJ1fY36uV6fg3GIggLijO9qEe/F3Pl6ov4FjgZJp+odRIHAxwV3ghdu9HGhL+648DZxDO1JJO40/Ik/8Iv6W895661uRiKRSCRuMJbW1lR/2PN19SOkxeo5FRMMkxeMtHbt+Tp4/zNTcnXyJz5e/80f/2197wvf/Izc77zipz7i30iSvu/ll/SPXneyi2336oE6P/H0C2aeC0GBaDlEwHc2wMpOOgEkavc494Z8c0QIz/+O9m6P9GOhh/jEqvCHh4clSr6zs9OIIHtOOyKAOyK8FgS55F7cDlLjJHoymWgymUhSEVE6nU7DIeCV9d2ZAAEnt96JHGPlgoNf2wUR3+1Card8R6GgrQCfj6MTy+Xl5SLMxLkgQu5bWbIGqFcR3QmQ36o6KoKJvZ4tEWMfEE+oT8G8USMhbr/oNnmPqtPXuNNGjNL7z5jWs1gsyvphTDgu1o1ABPIUnNlsdkpM4Pw4b4x1vD798LH06/iadZHN29cGBCR2SaG2ByKHFyn13SR8RwtJp9wz/O7PA+kwXqSTMXJ4Go4LN769JaJGTFtJJO4ELA0GWq3Gt7oZiUQikbgZeMH9etefXNN5THNowwdfu6TN59yvS99x8wWFamVF3/bN36qP6vRu+r1uF3zR2mP6ov/rH5ff/+KDH6t3/NyRc2Mx25UWh2ed2opzIyhIKiR5NpsVEufRa4jPZDIphfQg77xH4TrP4/YdEJyAQHSjiwGSv729XQpDsrUg2z+SQ+6k3ImIR/e9yJzvbrCzs6PJZNKw93OMEx8ID0SS/HbEBMjaaDQqdRqWlpYKYeUYiDPtjK4LtiD0KDIig49dFGAQOaqq0mg0apA7xgV3AwLLcDjUxsaGLl68qLqutbOzo52dHV29erWMC2km0TUQBQFcCRQyRCChTUTfmS9IKkX81tbW1O/3C9GdzWaNteDWfOBzjVDjhRX9M0/LIcrv8+I2e8YzkmYvKspz4iKX1+DgPT/PnTB+H4/2Px5os98Tlwv94n4IVoiAPLue3uGpDoh/PJfR/cP4+70RIb04JWPrNRm4NtfEjeIOC8YqCpuIDInE7Y6V++/TG3/+B3Xvcl9SFhtNJBKJRCJxgr97z1v06NtnkqRP+ztfo+f8o6e2DeW5EBSkE6JEdNrJOFFi6iNANH1nAIBjAUEBcuCkrS0NAjJCGsF4PC6ugfF43Cg4BxmFnFKczvP8aQtRaUgx73GfyWRSChF6wcWqqkqev3RC/qghwU8vSMj5XH86nZbcetrA56QwuBUfQu6R5FgrwIsqes0GL3bpqRncC4K3WCzU7XY1Go104cIFra6uamtrSzs7O9re3m7sZODpHQgckErIoRNMj6Z7ygbijztJmC/azPzSJ+bXz3HyHFNkuA799foHtM9rU3gf3bnBfMdUHEln9t3b7aLFWfn/nhbhvzN2PHPRgcE8RxLuggKOIB8Lf1bcEeC1OOgn4g9zzVr3mgY84/1+X8PhsCGmeCFTxpO16u8Bfw58C03mLWsoJO4U3Lvc12qVYkIikUjcadj7ox+nRz9yVdLt9TfL+HmS/sxrdOk7f+GmbSNZfdx/o/oNV/Xic8N4zydWq2Xde1yo8rNf/2b93Oe+pP3AP9z+9rkYXrfwewTT8+29aNzh4WGJwsdIOcTZCUSbBbwtH9/vMR6PS6qA79Tg+fde7NCjvl4AUFKJejri+e6oYNu6eDw/PeoLiSQi7EUHp9Npida66IAFPRJhxAL66YSRyDP9iM6JWKzQc+99fLvdrgaDgYbDYXEFzGYzjcfjIqzEufNaB5EEM9++g4Gf6230PHqfD09BkZouACz2XszPhQDvK/Pj4omkhsjh24DGugQufNGXSMyjGNC2viNclOL3eA79w0lC3Qdvu9cXcOeEj6k7gjytIG6ByrjE1BEXElzI8TFmHfsacqHP3Sk+RvHlTg7fbjLWnkgkbnfUu7v65F//7/X/fMQ/0ys7/VvdnEQikUjcQIzvW9H0/ttLTJCk/bVa2y+pdKlakuqnZrF/sti93NObP/zfSsp0hyeLb7j8W9Ll32r97KywxLkQFBaLhba3txs2Z6zykEGq2ceq/ERE/VoezSQK6ojF6RAwfJcI0gVc6CD6GVM09vb2ylaGHsVG9PCCk27fdtu6p0N4YUcn1G2F9Dy/HrFgPp+XVA22yuTzXq/XiLq7Y4NieD42ThjZftPHygvcec6/O0e88N5wONTFixe1vr6u1dVVbW9vly1CJ5NJGWePZMeodrT1D4fDku7hRfkYI/rIHLiVva3GAs4R3DI+h/6KaQy+A4L3GXHG2868uYjgRR+Xl5cbbpK2SLkTfa/x4GTZrxefgyhy+fPR9jnj4OvB2+2ujTge/pNrsy4RFHBqeMoCtU64BzuGDIdDDQaD8vwiWiA4+nPorhAv7sgz5WKCP1uJxJ2CwytXdfGLav2Ln351FmVM3HboLh+oOuP/q0Ti2Y6lXk91xj4StxjnQlCABDkpkJoF7XwbyeFwWLYGdILjue7Y3J1oraysqN/vazQaNfK7ieTTjv39fUkq9RxwLEQyC/GFmEDSfYtA2uLtoqgjUXF2KKDopBeuc4s35IrrdDqdUmei3+9reXm5pGiMx2Pt7OxIUmP3A8bCr+9igDsNpJNotDsNPBUAZ0SM8nIOKQykOdx7773a3NzU0tKS5vO5rl69qg996EO6du2adnZ2ipjjOfDeHsgeYsdgMNClS5d06dIlbWxslHnl/l5okTXlZNL7hKvj2rVrRYyhzgICFm4IdydQKNSJqt+PeheAqLyLSw4XdTwVwNeyHxvXWKzH4AKatykiCg4eoWcuuKe7g3xuWNOIJb79pYtACBLuKvHUCOaXdc01+/1+SZWRVMbdn0sXQmiD183w+glt20zy7ydTWyKRuB2wct+9+u5f+CFtLvUl5V+eidsLP/KyH9WrX7l1q5uRSJw/VJXe+9d+nw4H+fdK4tbiXAkKHq11oi2pQWCoIO+CgleRd2LHywu4SUdEZGtrS9PptEEOJZXCfO5A8FSMtvxqdoXgGpAUL+7nbaRIoud3R4s31yEa3rYVoheSY7cIIv6Hh4en8tkRbIgCc0wcA69N4C4JJ/sQbM6PNn3IJSkOGxsbunDhgjqdTqmX4UUYfbtIxsJ3jWB9MF69Xk8XLlzQ3XffrYsXL2ptba0UjfSCmz5nCAPuEqGOBS/SHKSTnSu8b06CWWsQW8bMP+M6UWxx8YhjAHPrIkIUKzyVAZGI5yfuiuFz6230a/kY4QbwMff2u/AUC5DyrNJ3f7ZZ8y4+sb585wd3zHj9jvX19cZuJO5Eiv2g3QhgXrvCnzEEHa95kQ6FxJ2GjaWelqsUExK3H5arJS2nEJZItKJeVjoUErcc50JQkJqkw/P5sdlLJ5FRChdC7Lw4oG+BByngOlj+KWgoHZEJIp/kj/tOAlyLKHSMnDt5ckLmWFlZKSkbbnN3K7fngXtfPSXBiTX3ceLJLhe+FaFHkL3QYNzq0lMComXe6zc40Y7bbzLOkEbpJN99NBoVZwh1E3yXCyd9fh9vP4JIXdclh/6uu+7S5uamRqNRY/cORBYIr0fbnQTv7u5qOp02xs3HxdMTXExgznB6xLF0i73Xn4AcR4dETMGI+f9+vB/n8xJ3LohigqcBPN5z6OkLkay7UBHdHr4e4zU53wUVF9T82fUijV4jA5eOr9MognA9dxu5mBDH1sfPU2Eeb4wSiUQikUgkEonEEc6VoACcPLigAKHDnRAJMITESaHXDhgMBiXPnogopJFIuNvQnXhDPiH+nvcd0y2AF5Z0gkSbETA4hmsQZSXCflZxOE/1YFcHyHkslOjWb16kIkCWPdobc/Jd7EA0YB4QPBBt2ClCUkl1oM5BVVWazWba2trS1atXC4n3cXYxASeAb9/Y7XY1HA516dIl3XPPPdrc3GxsZek7ZTjR9bWGaES9BAQFotVOviHSrEvcILzYScPdIL7loQsurAMnubEOQnwuaG/bnNAv1nwsEhnFBE9T8LUWRYE2AYvz/TMcBbH/iHZO+r2Qqj8LUSxxN4ePO44knll/5rzPXhTTa5/4cxNTlKKQc1Z9iUTitsRiod/YO9RHdhbqVqtPfHwikUgkEjcZ1UGl5d0M4NwJOBeCgkc22Y/eBQMnDVixnQBLaggKEC1s0160r9vtNgiQR48hGaQ6eJSTooGQxE6no9FoVNrhRLSqqlIjAULEZ24b96KDMY8ekcOJUiReXFNSo2glkWAn4W4/l47IYb/fL2PieeQere31eo3Cdl6PATEBRwliAtdZWlrSaDTSxsZGcTKwowNpBhSNhGDGVBVcFxTpXF1d1Wg00uXLl4uY4KIIbghIJGPgAsPOzo62trY0Ho9LjQd3bgD6Ru0NHyfWCSIEY0JU32sJcC7rGTHBUxQ8bSCKH9EZgtjEZ76zgacNxUh+FOFYy076o8PA7x2dH9S7iIUvfR5jvQKeAb++E35EA3co+b9xJDFeLkzs7+9rMpk0BEZ/HniWfCcJf5YYG36mSyFxp+DgwQ/pr73sE/WqXzrQ37n71251cxKJRCKR0IV3Spe+8+dv2paRiWcO50JQkFSIOYQVwuQED4IuneQ4U+AQYgeR5RqQ5rW1tUaBvqWlpSJcEFGPqQ7UTvC8/hg99+J3TmDJqced0JYL79FpHBMurvj2gm1F4tzm3UZCsds7YXTbfVVVDTHF7euxmB/veeoI4oFHkEnv4Nr9fr8UJcThQX0K5qrT6ZSxdwLNeYhIrI3NzU1tbm5qfX29kGTaMBwOG0X+INI4OSi8iJPDib0LGaxHHA8ubtEH2ss68wg5a5V2e60ArhGdIJ56Eok9z4MXOXQRwYU2xsKfHa91QeTexQLWE23hGYvrxvuHGOPuB3e5xOKU3lfGMqbQuEPCHUD87q4E2uO7o7iIwWfu3EDA8OKM/izF3R6i6yiRuF1RHxxoUadIlkgkEolzhJsoJrz/m16jr/rsf3fTrp84wXUJClVVXZD0nZI+UlIt6cslvUPSD0h6oaT3S/qCuq6vPsF1GjnqEFW3wXv6gOfU+1ZwTn4QDDwK7xFI350AZ4Lfj8i4E89oC49V7qXmDgqSCrltO8YdCtyTa7uTQmpW62+7v7sXIlHleNJH6DMEKhZe9ONdDPEx455eVwDhg/byvkfkiQ67mOLXYyx8nhk/0mDW1tY0GAyKGILI0e/3y64AnOMCFKKGz6dHu13AgcxD0BmjWH/CBRrpJDXD17KTbL+v/3RXQdz9wM91EcnXAqkAXryT+aAPTsi9v3F9+vMV6yewptxRwRh4e+PWn20ihbsX3EHgaREuhHBv2uNOCK+VEIU3FzPaXD7eB9aUz83tgBv1XZxIJBKJp4f8Hk48k1je3NTux71E9W2aobn+7iVdeNfuTbv+h/7SJ+oPfuqv6y9uvv+m3SNxguutC/qtkn68rutXSHqVpLdL+jpJP1XX9csk/dTx748Loqu9Xk9ra2sl2kvUmh0WnOw5MXACAakiOs4Wk5BCj7JDgEgX4Ofe3p6m02mx5nN/J8uRAElN4udkygUTj2LTN67PjhJniQ1EtSF3XM9TEvwVxQ8s+56bjlMh5uV7lX2OpTYB4882ni5qeMqJ59lTo8CdJO4EgKzHQpgIANjqEQ0gyIgv7CSBmwBySJuZZ9wmvmZcWEAMIMrvYwRx3d3dbTg2EDG8oB9t8nszf6wjdxpIaow1c4Ww4DseICT4WvRdTGKKDSkbKysrrWKGt8fXk7sg4jx7wUl3YcT0kVho0+uTuADo9Tdicc0oKLCuaIsX1owiiQtlUaBzeD98Z5HbCDfkuzhxh6KqtPKiF2hjZXarW5JI3MnI7+HEM4fnXNLv/LEVLTq3Z7rAPf/5mpbf/F9v+HWr1Y6WX/oifcdf+FZ9x/P+8w2/fqIdT9uhUFXVuqQ/KOlLJamu6z1Je1VVfZak1x4f9t2S3izpax/vWktLS7p48WIhLRBJ8uw92u95+5B/J/tuf0dQWFtba9QugIwStfa6CWwjuLW1pa2trVILgXZC0tw+7gIAxNGJqb8gU+Sfu4WeGgWQRCdALiQ4+aF+A/eGvO/t7RUyRjoCZE5SIXAIN27TJ+efiPbxfEtSowq/CyvHa6CIJ7wfHR4U8XMSvb+/Xwih73bhJJ/UCc/hJ7XlwoULZQcJ6ahAoRe69FoMpFu48OFpHi7UxMi6Cx3uQuC+HM/57vwA0UWCmOa7lmD/92v6eOHgoc1O+Bk7fnpKDoKOFy314oOxwKivP4QfFwd8Nw9cOb5ep9Npo+AhbQZVVRXRxd0TXs/B3S+SSjqNdORwYJtUtvt0p4Tf29N+Yl0SxB+eB9JK6Pd5x438Lk7cmVi571798M/9yyzImEjcJOT3cCJxPnDwSR+p//DP/4mk/P/umcT1/LX8YkmPSPquqqpeJelXJP1Pku6u6/pBSarr+sGqqp7zRBdaWlrSYDAohALSQ/2Cw8PDRiFA0gGcPHEdyNja2lqJWLs7wdMEPMWB3PrxeKwrV67oscceK8QiEuaqOtoycDKZlPt63jiRe2z4w+FQg8FAy8vLpU/b29untqaEQHmhOie7nhYCyfKdCmg/EXii0rTXazowDtQ1WCwWZScMT+OAcMY2SSrtYB4kFXLouzNw7v7+fiH0kE/GI5I/RA4v+EhdDNrJ7hHD4bAIMTE6Xdd1KQTJvf1z1oCLNR79R6hB6KLd7vzw3Tr4jL77mvE0hFik0K39sRYB6xPBIxL7s+ARfsYaQcfFA39+otuFttH/WHvA2+jt8X+7aMFYe70U+uTfB+7oabsua+nKlSsaj8dlHkk98fYx357KwX0Q0DxlRToRUGL6xDnFDfsuTty5WLpuQ2IikXgc5PdwIvEkUB1U+rBv/5DqBx684df+nb/xGn3dF/yrG37dxBPjegSFFUkfI+nP13X9lqqqvlVPwcpVVdXrJb1ekjY2NhrEwfOuIcAIA/zhjzPBCSSfj0ajkjrhEW23bXv0GnIyHo+1s7NT0hy4rtQsplgdFwskWuqF3KSTegcQJtrh2wxOJpNG5N63yvNorEf93RmBswAhBEGBa0Zi6ikjfEYqBVF1xBq37kdSxfh5kT4njhBjz2/HBo9DAKdE3C4SEcHz+5lX2sZ2lcwxzgTGzB0F3IdUEsamzQZPnyQ1nBHMTXQn+DjGMYopDS7QcE/ppJigOx2Y2zgenuIT03zaSC9zyj1wacS6BRwba1m0tZ37u5jhW0MilNgz3tj61J9VdwpFwc4FBRdWeAaZ0+l0qul0Wp5VHEEILtGV4GNF3329ujDGMbdJUcYb9l3c0+DmtDCRSCTubOT3cCLxBOhcXdKltx3q8L0fkBY35u+rlXvv0bu/+kWSpD/wKW/Vl64/fEOum3hquB5B4QFJD9R1/Zbj3/+ljr48H6qq6t5jJfZeSa0zW9f1myS9SZLuv//++vi9RrTTCSUOhdXV1eJi8F0d/Lj19fVCNEltgMS4FZ17uqAwmUwaWz56zjhkw8kKwoHXDJB0antFRAjyvdmC0okpgoiTYydZnrYhqUGsEELcyk7knPvQVkQZxhAyS6TWc88dLiS4qOHv0wfIGVF92rm7u1vm2O33TlC9VoTXQvAdOzY2NrS+vq61tbUGqafNXn/DnSBtdS48L99FJvqMw8OLMTKOXqjQXSq03yPvnkbAfLqQgFjEWnHBxUl1mzPBI/HACzR6odBYRNEdFC4O2LNa7uFtiAU267pu9MHXqxfs5DPqLvg1o5vDnUguJpAyhLvFx9JFjphi4QIDbfB0C7YndZfKbYAb9l28Xl28LSwZiSeP5c1NzV92z61uRiJxpyO/hxOJx8HKtNLa79Qa/qujR2TlBc9TPbp+8Wzrwy/oHV/2xuu+TuL68LQFhbquP1RV1e9WVfXyuq7fIelTJP3W8etLJL3h+OePPIlrNbbwgzx4fjlkcnV1VTs7O+V4z6vHCn/x4kUNBoNGfrcTLem0vdsjnnt7e4V0e/69E6r5fF5qNXA9fq6srGg0Gmk0Gqnb7ZYaCdeuXSuvyWRSbN9OhrxNXI/+x9xwj/K7A8Gt9fP5vBDLtbU19Xq9BtlfXV3VcDgs7aXPbbsPsOODE2UXRRgPIrsQ2fF4XFIOAGOJyEBdg0hGEWT6/b5Go5EuXbqku+66SxcvXtT6+nqZe9aRdETcqd2AiONFAl1oQDjiPK9n4U4O0gXqulan0ynpNEtLS+UzF0MknSLTXmMAMuv1NRjv/f19jcfjQpYRMZgXd09IOiUGuLjGXNB2RBAvdIjYhOjgwgnih4+tuzU4nj55SlGbSMLnsajo4eFhQ3TgufOipGdt5+pODwSKtu8Yd1G42OGFIulHFIPOM27kd3HizsMDX/7h+o2//G2SbtNS4InEbYD8Hk4kHh8v/JGx9ItvLb9X332gH/2wH7iFLUrcSFxvxbE/L+n7qqrqSHqvpC/T0c4RP1hV1VdI+oCkz3+iizjB9YJxCArr6+slyj+fz7Wzs1P++IeMsTUkVf6dJJ5FMmLxR4/uQ2729va0s7Oj8XhcIqhORrzooVvHKSIIAZtMJhqPx6XIpAsgROAj3FUhNe3yRODjeEHSaCMuDQgm/Z7P56VuQtzJwAsAxhoSTpiJICN2eE4+7aPYogseEEKvpxCLMHI/Ci+ura1pc3NTd911V9m1AzII8eZ8FxO80CbiBVFuvx+kEgeJp8m4YFNVVand4IUbve4AaRJeqyPuDOEOBxeKGLOdnZ2GqBTrFPBsxCg86xJ3jAsS3Jd7RxdCW40ERzzeRb/quGYIQpw7AFzY83oRCGgIZNzXhRPGjvH3dAvu6QUteaZxTrTBd6VAHOT7BHHFX7cJbsh3ceLOwoP/+sP1xo/6v3X9GzolEokngfweTiQCqkPp5f/oQS0efEjjz/14fek3HWlqf2T4c5JGt7ZxiRuG6xIU6rr+NUkf2/LRpzzF6xQC4XZ3CAdWfN+STmoSJEg9pAZy67Z87iWpEZX07e2kEyId8+89zzxu7+f2cRcAIK5U2Idsjkaj4rhoqyTvTgOuxdjEIpAcT9sQVCB0jA11HBhrL1Lpc8H9uD+kFcJJZBuC6OTLLep7e3ulSKS3nYg57zPuXruBeUBsQVDY3Nws24oijDCfTkK92CZiwmQyKTtJeK68izNO/D16zrx5aojXMohW/VgLI6a3uHsBIQcyjOjEHMTUAkg88+SuEa9j4YKWpEK8WXMugMT6CJJObUsaHRLeb+8LY8fz6+vK3Qne7yhksIZ8y1je9zXPmPq1vA9+f9af14XwtnHN+PvtgBv1XZy4M7A0GOidf+uj9M2v/F59Uu/2WMOJxO2O/B5OJJroXF3Sc371QIe/+0E9/Kc/TtWnP6av2PjQ8acpJtxJODd7ojkhhNBBPLCWQ/CdVEGUY6V8R8ynJmqMWABZg1j5vcjz95oKuCI8Our3hNzs7e2Vn5BEbOekcHj0lnP56RFSyJJv5Rgt776lJG0iXQD7O/UhIFe+q0EsuOeCghdw9H62Fe3D3h/77dZ/PvfrSSeF8Lx+wmAw0IULF3Tx4kVduHBB3W63pMkgLrlTACs+qSqkXOBQ8P4jTHAshTYZPyfCtIX16OuFY1gHvhsDJJexdvINIM8UrnQnCOJWrL3g6THMhbseXKCTVAQwhAJ3Z7io52ku0R3TVleDvgNvo6+Juq4bO2nQL68TQX9p++7ubuta8/FmnjjHn3PgohXHtwkHXmfhNnMoJBIF1aCvX/+Cb9Fo6bTzLZFIJBKJZwKdLan3b39J+piP0Au/8N364Zf++1vdpMRNwrkSFCAXEKeYB+758NjefdcDj3Z2Oh1JJ7n6i8WiEbX1iPTu7m4h4pJObWnoJLPX65WtCofDYbGWx4J88/m8sZMCxHppaalE3J0IRTcCDoJI9qVmzrxHw3FNxLoTXszSCWNMZYhjCDyFgXFwwcfJnNvOIYNOyiDuODeYF+5L/0gb2djY0OXLl3Xvvffq3nvv1cbGhpaXl4sVnvoYTn5xP0ynU127dk2PPvpoKYIZ0xK8xgACBQ4IX5M+7/1+vyF6uRjlZJ8cf2oHuHPAQVHQa9eulbHhGHcnMC44c1gXXqjTHS/cm3khHYh7Irowd16XxF0uXsgSgSm6FBAOonPBBQWv7eH1Iugf8885nuLhwlcUoRh/b5PX1XDhysf+LHHEXSa3Sx2FRCKRSCQSiXOD4z/Vlrpdffv/++16/ko6Eu5knAtBYbFYNPKkIUW+6wHWefKme71eo06CpEZEmyJwkCoECo+eO2Hhd7fNSyrEVlKjTgNCAu4Iv56LAB6JJ0LshQs96uvF/Dza7Z8htkhqkCTGAucE6RSepw6JR1CIxMx3YeD6iB70hbb7Vpke3XahhnQEJ6Fex4AaDjhGnOB3Oh2NRiNdvnxZz3/+8/WCF7xAz33uc7W+vt7Y/hHy5ykz1G0Yj8e6evWqtre3G333OaqqqrFbAO11p0y3220IM8Dt8V63AteDp6S0pbVAmufzuba2thqpDtT9cPcMa4+2SGoULsQZg6uGuWQt+e4H1JpwRwouCtaNp1UgNMRUGxfCPAWBMaAN7lDh95jmxFjSZ/8+4Dn39row5rU+EHxYj7TThRcXgRBcosNHUkNYSyQSiUQikUg8MZ7/k4eab0hf/Zu/pvuXcyvUOx3nQlCQ1Iguep63pLLzAoTHiRvwiCoE1QUFIrqQDiLoEM22Cv2dTqcQoZjiENvoEfY2UgnR8uKFLiZAttos1rGuAefQZiLjRKEh/Z5bjmji9nInVxA4dmLAPs99EW0QehBSonXco/3uOIgF9nxMPBpMSsloNNLm5qbuvfdePf/5z9c999yjCxculDmJ0XF3SdAPxAsXe1wAYAxdzGK8/PrMW0wxYG5iTr/PW3SRxHMQFHxcGEe/rhfY9LZ7JJ+5QlTAdcJ6w2ES0wNcMPCCo14zIa457ong5yk6rBXuyVx7AUYfn7jWo9shCmB+Tnwv1qRAUPA2uqMBeP0L3wo0BYXE7YbFH/p9etdXVOpWq098cCKRSCRuTzz8mJ73k5v64GtXtOicv51G3/9Zle570cP69MGusjDwnY9zISi4hdrzwCGiHj32gnbSSeSeqCqpDljeIZPY2D2Ki6Dg2+RxDyKjkJl+v9/Y4pFXtIB7cT4HokSMkNIm2uXnt1m7Qcxp98r5TjohmF7gjrZ6igfRXFI1/Bpch7mhEGWMesf6Bb71IGKCzyXEzVM7ILWj0Uh33XWX7rvvPt1///26dOmSRqNRuQdjw/08yu7bDLqAEm3vjIuTb6+bEOsDMM9eqNDTQ9pqUfj8cg0XkxjzWHTRRQfmw2t1eDqGpwvwGa6YWIMjEnb/dyyYSL0Sf3EdBAgn4rF/niZDu9xJENc3z3tbeg/wc9rSEWiHOx+YA0SdmPrjtRiicBTTIhKJ847HPryn937qG5XbRCYSicSdi8OrV9X98V9W9cmfcKub0kQt9R5Z0h/9vF/UN9/7X291axLPEM6VoBCLuRG5JRffo9mQGkh6v9/XcDhUt9vV/v5+qey/t7enlZUVDYfDkkNO8T0q/0M83bJNigI55FihidBzLdqJe8JTFTwVg2ufVaBOau6sENMaJJVoL3CLOnZ4J2CQZS9w5/Ug6JuTb28v5Eo6sfSzzaWnbESS62OKIDSdTrW9va2dnR1JaqQO0Hf61u12tbm5qfvvv18veclLdP/995fdHRAq3LXhJDbWSfC0DenEoo/oEHcRgLTHdBNP34gCDZF6RCHEE8aS+hU+95IahT+9P4Dx99oDcftNdwxAkj2y7sUjmV9fP6w53C1ef4G1AiFHnHHhLzo1vE0ukPF8+wsRh3nxOaPdpOy4A+MskcGFHnd3uAjozw1j7IUsV1ZWisOGdZRI3FbIsh+JRCLx7EKt8/HdX0vVQnrBP/pN/eSrXyGloPCswbkRFCDtEFXfQk9SIfd8DuEfDAa6ePGiRqNRKe5HTjwiwebmpobDoVZXV7W/v69HH31UV69e1XQ6Ldsg4mzwaCXRTEiKbxWJ9R6C5edLKiQTIiU10zqWl5dLrQeIYiSQkC7GyLfEgxQhSLgI4VZ1xgHRgJQIL4RIhL6u6yLM4MiYz+eNdAwcGb5zgaRTkXbI83g81rVr10pdA8bKxxdyf3BwoF6vp7vvvlv333+/nve85+kVr3iF7rnnnsb4ei0Mj6JDjFlPLtBAQBGjptNpKd7IXOFwQVTwKHen02mkCXgBw06n0xCLnKTH+WAdeDFEF1Pcmu81KjjPRRwXEqKQIqkUhvSIv69vXzterBHXB2Sc8fWUjJja4c4Fd2d4DQ7qQHBfng8/37dvZexckOt0OmUOfEx5bqhnQhupfwH8eHZBcTeOb2Xq6zuRuB3wyL95ub7/VX9P0vBWNyWRSCQSNxt1rZe+4W166HWv1LUPv/VpD4MPLel5/+Qd+uy3vFufO/p3yv+Lnj04N4KCR4XH43EhFwcHB42oMSSUCCnV9734IPnzkkrkfjgclmsSgZRUcsXdXQCJ8qippEI4IZBO6j2XO5JDr68AgYNYuZ2c8x1u0XZbvxMjHArssOAE06PKXuSSsWIciNQOBgP1+/0iOHg74laKgOO8L9RSmEwmmkwmxRXixe+IsnsbBoNBERSe+9zn6q677mrs2OFOBCflTlrb0hsAYoLXVmDePWWEsXFHB/eKketYxwHxydMiXPhwtwr98qi7pxBEAcm3i/R0lrYdLPx87uv34X2v29CWluDk/fFqHkRBI4oOcS7cUeHpGX78WelD0f3jrhwXJ3EmeBoKYgLOBHedeKpOWz2TROI8oup29c43vVL/8CP+uT5sNf+ASyQSiWcLDre3dfd/vqLu9qYe+vhb25bqUFpc29In9N+ru5bz/6JnE86FoCCdED+Pqns033cVkE52M2C3BSLKFORj60iPuI/H40JgETHcBYBQAAEhKsuxbo2mzRAXjvNIMOSF3z2K3u12CzGCkDmhjHDBITo6aBv39OKEThDZpQBRwF0GiBIudPA5c8A9aIdb0SP5c0FhNpsV8u8uDK+5sFgstLKyorW1tSIo3HvvvRoOh0XYoT2eCsO5Tmq9ZoLXCOBzxAQnvowL7cNxwQ4A9Jm0AXcS8JkLMB6Z9zYxVqT1tAkfvOcOBBcJ3A3hKQ+x4GFbLQcn3zF9xotlenoA13EnSOy3n9+WkuD3jsJT2zr349tSGfz96Eph/JeWjrZojYKdp0F4gUtEKsbY25NInGdUnY5+8Q//w/wDLpFIJJ6FOHzbO7Q5e6HG99+n6X0L1bcgHtK5uqTBQ1l36tmKcyMoQCywskcXQrfbbVi3B4OB1tbWtLGxUaK2e3t72tnZ0fb2tqqq0vr6uu6++27dc8896vV62traKhZ3dxZAokgFIHIO8YgFFSFCnn9dVVVJoZBUbPmec851eEVrNwKFEz7eh4DG2gBcy0k3ZNjFjaWlpeI8gBh7ugcv6gV4Hj5j4qJOjPi65Rwivru7q+3t7bJzhLs/INi4BSSp1+vpnnvu0Ute8hK96EUv0r333qvV1dXGLg2Hh4caj8eazWbFaeLzQv0C3AX8TvQchwrjQgSbbTapFcCWioy9zxF9gbQyz05mJRWCijsj5vq37SAQhQ9fT4g+CDlsDUk/PS2FtYMA4ufSF4i+pxxITXGDa+PkcCLva86LU+L4iBF+F5uc/MciiC5AeCqPC1i87/1hDryA5fLycmP9MBZe4JJxPjg4aKQc0a5E4lyjqlR1ckeHRCKReDbj4L3v133f+oDe+zc/Tofd+pmrqVBLVS3d93NzrfzHX5FatklP3Pk4F7Ne13UheTGf3LfL4/3hcKi1tbVCAheLRSnCiDthY2NDly9f1t13363Lly/rscceKzn+y8vLWl9fl3RSoC3mwrv7IBbWk1RIKC6D7e1t7e7uNpwMMYc/FvzzYojk8bujgdx97kGU39uA8wHiB5mXjgi6j2Ov12tsU1jXdWO3iki8JBUnRSxU6NFlJ3CTyaTUTbh27Zpms1mD6DKXEH12lej3+9rc3NQ999yjV7ziFbr//vs1Go00n881Ho/L/XZ3d8tccn9Ekr29vZJisbW1pZ2dHY3HY83n81NRedpDXYxYjwCxxdMgXEzwYoFOhL3eAC6KyWRS0j0YAwQGr48QHQe+Dl04klSEIwSFw8PDRsQd8B59cEdMnEvWqc+1uw1w/cTz3MkCeI5dFHDhx8VBfo9FQX23EcbK1yDPrdcAQdRykcKdOtHtxFi7aOLjmEUZE+cd26/7eH33G7453QmJRCLxLEd9cKCX/M1f14e+9KO1/bJnzi3w8v/rAzp86GFlCObZi3MhKLTBd1MgQgxZiBHGw8PDsmPD7u6uVlZWdPnyZV2+fFmbm5slag5pohCbF5JzW3xbEbto4YZwQByJwtPGNiIFUYLokApAVNUjrl5h31MsuI5bvSGnHiH2ugAQxE6nU0QJxtjTGxBcXEDwSDERaS+8SO0Gr18xHo8LsYckxkKTiCmLxUK9Xq+ICS960Yu0vr6uqqpKEUfI9cHBQbkuBJIifIgpOB58lw/cJLTD60Aw77QFEkwaDWPAeR59dxGBdUE7aQcvxgvHha+H6EjxCL7vLOL2fE/5YF23OQJI0fGill4zwcH5/PSaFNKJOBFrHXhqSYzw+3h5GoGLGl7zwsfb6zh4n/g+YG24CObPlwsXnkrhaRfeP9axF9NMh0LiPOMD3/CJ+oQ/9tasm5BIJBIJSdJiOtW9P/2I+o9d0kM3eUfJztaSnvfvpzp8+FHVLa7bxLMH50JQcPLgedGe5xyLEPLHPxFSqvYvFgsNBgNduHBBa2tr6na7hcCS6uA1F5wMcg9IipO9tmrykPnpdNqIQLs44Pnm3Ie0AiKr0QEAyfEdB1xcIHpOhBwy75Z7Lzzn13BixRhCuhBdeD/a1hkjH0uP5JJyMh6PG2Te28+xRIWrqirzdc8995QdHRCJvFYDgoEXU2S8SPNwEu/iSVxrsZigOwI8xcXXo4tEnOfkHzHBRSbf9tQJsgtVLla5sOUOHa9pQD+9f75WuYcLcJ4GEYUCP8/XSSzE6OPt7fV0iShCeRFQ1m4k8n59f278M587T9PwGhrupPBnzc/lHi7++LzzvZNiQuJ2wMXXfEjf9fyfvdXNSCQSicQ5wuHb36ULhwtNn3O3JGl2T62DwY39m6b72JLW37dQ9Z9/LZ0JifMjKPiuAm53hkzGXHLEBCeTkPCLFy9qbW2t1ARwJ8DS0pIGg4Hqui62f7e58++6PtneUGpa5dmKjsg4wgBR5Ogq8IiwpxxQp4E6EaQCYM2mdsTS0lJJDWirY+Aky4kT21tChhkj6cS2Dynz3RY8Uu0EzHdVcMGCVITJZKIrV66UbSJJL/FdKCQ1yOrq6qouXLhQCjHec889xZ0A0SNFYHd3t+wAQv8Rf1gDkHhP3/BK/u5MoI8U6fR15ztRuLjCfLIdI2OOU8AFBd9Nwl0qh4eHjd1CgIsJHMvYseUpQgVr2kmw1wRh3HxLxJgC4GkOLuLF43xN+Bh6fz1dgeO9+Cj3l04EOxchopDg7Y2Cm7ePNevOHp4JSQ0hiN9dRPM1j5NjeXm5CB+eYpFIJBKJRCJxO+Dwne/R3e98jyTpka96jbZffByoWb7++grVQaW7f3lfnR//pettZuIOwbkSFKQTO7QXnoN4QA6Wl5dP2cMhA51OR5ubm4VA4yCgWj/EYjweF2s+JM0jr5GcebG31dXVxpaIXhAPcgQxk1QIKASGugArKyvq9XpFOJhMJprP51pZWdHGxoY2NjbK+ZBaorzeTo8K045YTDJGm+mTFzeMuzBIJ9Fe30GAdkgqxHZ7e1uPPPKIHn300SLUUJuAMUNUwM0xHA61vr6ue+65p+zqgNuC+e52u4U8evE8d1UwRhBMJ8IQbd+tAHeFOxRoW6yZ4GRdUmMO3RUC0UZcQUzwnQ+8yGO/3y9jGF0OtM933SDdg/kiHYS5dIcN89/r9cpcRleMpIZ7wAU8T59xEu+ClL+HEMcWraQpuWDCc+0CEAKgO12iIyEWKeWe/r0Qxz+KCHzmKUdeM4O++5ahzNVgMGj7ykokEolEIpG4LfCc7/wVPWep0tJgoHf+tZervp5YSS29/Fs/oIPf+9ANa1/i9se5EhQgM5CwWBPAo7Bt29hBCogYe3681z1ADPCifR6phHhAKsjV9xx2336Q6CwEuN/va3l5ubgeOA6CScrCaDTScDgsxBtyDLEFnpbhIPXDHQtOEL3+BGTTCSLv0x8v7AcBRmhgHCC4VXWytSJjubOzU4QXz59HTMAR4QLQxYsXdffdd+vixYsaDAZFUPC0EcaQgpueokBf3GVBHYhYnA9i77s2MI68/L6MrZNs5pH0EMbG14YLGy6OsD48au+2/ehMcBEDAYy16vUVYroDzxTPBm2PAoffj5+exuF1CLiGP3fupmA+vWZHTJdhfnznExcduGcUFxAQfUcJzvf0E0/DicUb/bn2HTdoM+1GcOA8RJ9EIpFIJBKJ2xH1/hHHOdw/0Eu/fyyRzt1b0Xs/p/ukHAubb6t016+Pj8576BFp0V60uj481Ov/2l/Uh331b+l7XvCfbkwHEuce5+Kv5aqq1Ov1GjZkj9pSJM+JghfDg0C7EOBRat8ODrcARfvcHg+R8RztWDtB0inbOIIDUVm254NYcg+IIP0dDAaNY+u6bpAb6YRkOSHmM68lEceCVApIIoiWb3+5xRsSzrhAWvv9fiPivb293aiZ4IIE9/M+QfrY2eHChQva3NzUcDhs7QsuBMi5V+R3B4iTTY9c+9hJJ+SyLb3Giwf6v90tM5/Py8vz853YevqMp1JAXqMzwUk7bfJCl9QIwWmD6yMWdfTnySP7PFOxTRzLPX0sWQO+TqKgwLMZ0y7cHeC1G3geWMecw33jODCuvkYR71z0cTHQnx2uy2eIBb4eEHl8Dl1McmEvkUgkEolE4rbF4lD1L/9m+XWl19OFj/h9qp+EoHDxbVPVv/TWJz6wrrXxfb+gX/28j5BecB1tTdxWuC5BoaqqvyTpT0uqJb1V0pdJGkj6AUkvlPR+SV9Q1/XVx7vO8vKyhsNhSU9AUPB0hlhgUGpGmL2OAKTTXQXYxikcuLOzU+zasUo8147547zPPZykIhD0+311u13Vda3JZFK2MiSPnrQM7OGSyg4FsW6CF46Lef7c14tT2ry07iDAWLF94Hg8bkTSo03cXSKkKGAJPzg40Hg8Lls4QvBxXDBGiBTMBZb0Tqejfr+vixcvFneC57njRGH3Du7BWPnctIkJCD78ZP3QNheKPM3D61D474yTOxQ8VcAFGLfju2DhjpIY/Y9uGxd9/LmAxMetLIG7Qrz+SNxakb6784dnjs+kE/HMRRx3JpCywNi6a8KfGeYOwk6NB19r/qIvrG13TdDemJbkNRvcYeFFSeOz7muCueA54PvmdsCN+i5OJBKJxNNDfg8nbjcsdnd117f//E259nx3VY8eTnJL42cJnragUFXV/ZL+gqSPqOt6VlXVD0p6naSPkPRTdV2/oaqqr5P0dZK+9gmu1SA/ROvdHu/RfyLdTn4BkWS3hFdVVYjpZDIp1nG3Pseorm93SDQep4OkBtHudDq6fPmy7rrrrpJysbOzU1wQh4eH6vf7RUzo9XoajUalMKRvgeg1ERgPSN7q6uopO7Y7Nfx9CvlJJ6QQwgQ5dPs5OfeQNN9Ckrz4Xq9XtoacTCba2trStWvXSr2E0Wikzc3Nho2fdntEvNfraW1tTXfddZde+tKX6rnPfW6jpgA/iczv7OyUWg2ITZ6yEQUF79/e3l4Rb1gLnqYCkfaIOuKTf04NA9aOOx2ctJOa4UQWN4anMHi6hlv2Y70A+uFpNbGuQ0zdcPJMioTPhzsU/FjGjvFlDcTnKroSYu0EdwjgjqCGiJ/Hbh7uPmDN0T5fo95HrwHCGCNo8KxKKs+cOyq8eCrfJTF9w+u1nHfcyO/iRCKRSDx15PdwItHEi7/47fqMz/vL+vlv/se3uimJZwDXm/KwIqlfVdW+jlTY35P09ZJee/z5d0t6s56EoOBWe48kLi0tFcICKSey6pFdFxfaLO+z2UzT6bTsAuDkijZEV4TXaiCi6hXnnVitr69rfX1dS0tLhfRSE4EaAuw84Zb3eH13HHjahxMet3vTB8bA6xVIKgUgcUlQFJECfdQAaNs9gmu6Nd23htze3tbu7q6Gw2ERSXq9XoN4eqSf99bW1nTp0iXdd999jR05yLNn7ufzuba2tkrhTM+f93ZCIBEQPIUFxwdbAVLcEfLuawfQTsae3SVIkYluENaciz8IOrEegrsjfO7cceGReY/sMxdt24BKaqxLTzGIBSS9v9zXRRlPxZBUzo0pHv5s9nq9Qt65HuKV1+9ADEC4ikKQw+s2+Lr39iIcIlrFlBcXCX18efmxPv/ehtsEN+S7OJFIJBJPG/k9nEgco97f08U3v1+v+StfqR/5O9+s56RT4Y7G0xYU6rr+YFVVf0/SByTNJP1kXdc/WVXV3XVdP3h8zINVVT3nyVwvkhipufUcEWZIhQsBHOtEM1bXn06np1wJLX0qbfGdJKQmWfOCc6urqxoMBlpbW1Ov12sQKeoFrK6uajgcajAYlHO9ECI27lhl34kNfXWbvReo5F5eSHA+nxenBLtRrK6ulsg1EWP6dlafaZNb/hFopCPyPBwONRwOG6katMnHu9fraXNzU3fffbfuueceXbhwoaR+MHZe/BAByKPOtA9S6TtoEOUm1QKXCmtiNps13CcIAqwTyLiT2batKF0s4RpumXcXQRwD+hAFK19bTra9TodvgenwNAP6ynqPNTjc3eP9jPfzFAQXBWgjz6anOnixR3fYeCqJO3C8RkNsVxwffzY8PcOfRxdr2uqt+LPEe/453ye81yY4nDfc6O/iRCKRSDw15PdwInEaBw9+SBs/dEV/4DO/Sn/v9/9LfeZwequblHgcHNYLfdKvf4Gme4+X7vs3W9+9npSHTUmfJelFkq5J+qGqqv7kUzj/9ZJeL0kbGxunyAzEAzGBXO3jcwshI7ruRBby62QPUupk0n969NV/h5xRnd/ztCVpMBhofX1dGxsb6nQ6hbCSY0/7NzY2GvZqL94nqXFNJ38elfVii7gZoijBGO3v72tnZ0fXrl1ruDJ8RwEECBchvIK+k2GIOrZ+rPTUjVhbW9Pa2lrjsygoLC0taTQa6Z577tF9991XHAr02a32FCFEuKAI4urqaoOARls/c8yawGlCIcXZbNYYq+gO8BoBXA8xxqPlTnid4Lvg4zUOcILwe0zdcHcKYhACDveIzgQn2i40HB42dyBxsQ6hhb76evCaE6z9NvIed6xwN4anbyDyeJ0DHzs/1tdIfP6iA4k2Hx4eloKKXNfrRLSJDCAWnvT7R6HuvONGfhf3lNtkJhKJxFNFfg8nEu2o9/f0otf9hr7+X32OPvrjvl3PXxnd6iY96/Hw4USPHC6den+3XtbFL9vWxkMPn3nu2854/3pSHj5V0vvqun5Ekqqq+mFJnyjpoaqq7j1WYu+V1Nqquq7fJOlNknTffffVHuHFIUDk2wv2QSggRisrK+r3+w1BwvPFyf1my7xYjC8SQ0+/8OKQFF30nRn4fTQaqd/vN4jZYrEoKRq9Xk/D4bDY80lDmM1mkppWcHcIeB0E8vq9lkR9XIMBsu0FCvf397W9va1HHnmkUVNCOnF+tOW7Q95cWHFnwPb2dkl1WFlZ0cbGhjY2Noo7A0GFF+kjvV5P6+vruvvuu3X//ffr3nvv1eXLl9XpdErBQUj7eDwuaRVbW1sNVwkEkPmm6CUEfH9/v+FmwZ0CwWZsPfLsgg3rA/EEd4db6d25sbS0VNYVa8dTRzzdw4k0a9VTV4ALJcyJR+FdCMAdIKkIK57i4CkMHM/8ckysQeHigbtVWC+sncFgcEo08fQFBBFfc7Td3UAuDPq64/zonPFnmOciOo/cnRDhwqXPE22MNS5uA9yw7+L16uJt0eFEIpE4Z8jv4UTicfDcz/9tfd4X/y/6xb/9xlvdlGc9Pvl7/ope9A2/1PpZfXC2mPB4uB5B4QOSPqGqqoGO7F2fIumXJU0kfYmkNxz//JEnulBd1yUiPZlMVNd1w0YvNQmgF3eDULWJCW6JJ1Lq93Ti5mICdRC8YCHCBsX1KLTH+ysrKxqPx9rd3dV0Oi21AsgvX15eLmQPgsu1ESicvFNzASKFmABZllTu53nwRLen06m2trYaqQ2xoB8E2sWctmivOx8goRDA0WhUikXOZjNtb28XFwBEuNvtamNjQ5cvX9b999+vixcvFgHGyT7CD8UPx+NxgzwCjvVaELSL/iEkHR4elhoMOCac8LMmvIAlIoGTcxc0YgFF/xnTETx1wKP1CEBe+M9TDKi/4deOgkRMW/A12yZiAEQET6uI9SncAeEpDjxzvNp2pPCXpIZzIo6LP69e1yBuDerz5Q4ET0vgmj4u7lTgGl4TIu5sElNabgeHgm7gd3EikUgknhbyeziReDwsDnX5J96n1z7yZyRJH/03flXfcu8v3+JG3bl482xJ3/gXvqL1s5e840M6vMEpvddTQ+EtVVX9S0n/VdKBpF/Vkbo6kvSDVVV9hY6+YD//ia4F2YIAerV6oppOSCA5FCCMWx36dT2n3okVxNCvCbkjnx6nRKfT0draWqMopIsZEFgEDKL8Xvk+RoEhpPQTEiupnNvpdBoF+ZywOmHmWrSZtITpdFqq5jOmXuGecfCx9dQRxs1TR3x3C8YDAry3t6fZbFbIMNtgrq2taX19XWtra7pw4YL6/X7pbyymiLCEo8Tny9NZIPt+HOODE4S5920mo9Xdd59wsu9bJTKn7uBwgSuOJWPmgoWnAbSJJBzr68jPj8eEZ7GMo7fBhSLggpGn3XBPh9d0wJXgO1cAzvMaFlzbd2RxwcrHKz6T/py4W8bTU6II42Pk1/faKi7G8H3g4+JrIBbqPM+4kd/FidsES8t68C9+vP7EvW++1S1JJBLK7+FE4sng4MEPqfujH5Ik/eTHfKJe+uEfeeax//w136FXd2+PrbtvBa4eTvXqn/1zOsvOtLjS1ct+9C2tn51OBL5+XNcuD3Vdf4Okbwhvz3WkzD5pQEghJr79HCTCrdAQGgiOkwqPcpLDHYmYpzlAHtzS7VHPlZUVDQaDUjwQ4o6ggE0bAguxZXcBBAcnuNE678XsIOEUcHTRwLe/QzRwSzokjM9wQZB2wZabbcXtnGBFS36MZEMwR6OROp1OiShTqwEit7y8rLW1NW1ubmpjY6M4TuiHFzp0dwIpDN4u2omjhDSJ+XzeED2kk50tvE6BE0Svr4FgxbpAkHG3AOIN68hJLmvOyShClI+pC0nRRn+WCOBtdzIdUwRcGHDhzN0ntBMwnpznYpEXnIzFF70o48HBQcOd4GlFXhuBsYqFLL2dLry4g8DTQfjM34siSBzLWHOizfUQgQjic3zecaO+ixO3B5Y6q/q3f/H/zFzUROIcIb+HE4knj+f9zf/yuJ//rZ/5DH3t837s1Pu96kC/v9u5Wc26JdhazPSbe92ndM6v7b5cL/6Tb5UWN0MeeOq43m0jbwggS+Tak1Ygney44JF4SDdb1FG8D3v+yspKY+tCzie6H7fi6/f75by6Ptm6cDQa6cKFC7p8+XKpEeAE3gv7QYohQVjCIfqz2UyTyUTT6bT0dTAYFMcAxJiaDMPhsNRb4DPpxO5PWoHn7S8Wi0YRw36/39jOz50IUVTxNBEizdJRwUx3iUBwIbO+wwL1HCCg6+vres5znqMLFy5oNBppMDgqNLS7u1ucBPSD8aO2hLfLiS+uhNlsVubJnSwubHghRE8dYU1Fsoqzwsk8RNlFII96S0fRba+3wTqNgoSDbQ5psxdH9LmRTkS0WP8j3sOFtLOs+tynrutSe4NjfTwQ2Pr9fhHacOd4nRHcItGd4C4N6aSGgj/L7ujhPa+5gADihSUZD8YhuhN4xn27yLjGOdedD97O201MSCQSiUQikbiTMH/tQ/ob+v2n3l/6b16uf/fj338LWnTz8Gd/59N19Q9cfeon1udDTJDOkaAQo5dOyiEqnubgefKz2ezUbg++S4F0RCAgJi4oSCoE2Mldt9vVYDDQcDjUaDRqkBeED995AjJZVVVp98rKSnEMQN44HueCV6JHAOh2u1osFtrZ2SnEGMHAo/meokHEnx0J6rpWv98vBS09Au3jHl9e4I7+EQWHvEP2INuMG6IN9R8uXbpUilgyJpIargSEAk9jcCHBBQfGkrQK2hmj2tPptDgpKHbpkXP67mTfCabUdBTQRnczxMKVXAeCTPSef0cyS/ucJPsr1i/wqD7He/qLiyXxXvE4jo0kuq5Pij8uLy+XYqO+fugz4hnz6A4j4EUdJTXcOYyxOz+iSOOCgo8JhN+v5YIBIh/zHvvqKSoufkShiOcykUgkEolEIvEMoj7DzP/O9+tTv/DLzzztsY/o6Vf/12+7oU15+95UX/3lf17V4ubUS129tivVV27KtZ8pnAtBQTohaESOKT64srLSqC2AoACh8Ci1ky4veOcWct+KTzqJxHIfiCzRWSK0TniWlpaKYCCpXNeJiQseHuHmc15OgqhJQPQYZwLCiEeAaYcLGpAzajN4oUGPzHtkNtrOvZ1E0fk8kisnqH4OxSpxflC7gfQUL97nWxt6TQX+PZvNGgQY8upz6AIE1/G1wHuQbbe0ezHHNpHAayhwTiSdfpynAXiKQawf4OOGIOPOBJ9bjm+771kvrw3BfV0k4cU9fNcK3xLSBSsXMXwOEYR8Xfo4eT2JWA+BdedjEesj+DqNW31yThxjP9ePdWHQP4u1FrhGIpFIJBKJROJ8YLG7q+U3/9czP7/3gy/Wiz76z9zQey5Nl/XSn37L2SLHdeJO+GvzXAgKMV+70+mUtAcn/pB/7Ptt28X5NT2q7y9Pd2AXgqWlpUL867ouxLjX6xUrOYQGwgW5itvjQag8DSAWf4ykHhGFPrP9ImLH8vKyJpNJQ0AhXcLJOE4Nt5f7Z5E0x9oJtJNx9hx9r2kQiR4iTr/fLykb1IGIjg3fBQCngddIIGWDcXViiNCCyES7vR6EpFNij9e3cALrkflISN0Z4VZ677OkhjDCuorE1RHrIXANXw+spSjiePv4SVuird+LlSKeRLeEr0nO4fnD3UGb/HrMHeuRe5DO42KZnxfHwOsneHv8vlEAiOkILlzEAq2ISy6MRCEKMcHvlUgkEolEIpG4vXD4rvfqw17/3lvdjGcdzoWgQIQWa/z6+nqxl0PyINy9Xk+SGtFRTx+AbLCfvF8/Cgq4HbrdbiFGuBOIsFMYcX9/v9Q92NzcbKRIkJbAjgqSipjAdR0QHCc7FKKEqM1ms4bIQNvcfcHuEU4kEUAQNFzowM7u0XyPyiLOICYwzpH004dIBJeXl3XhwgXdddddpfiiuzwYF8bMBRfmZT6f67HHHis7FnhKCCkPHs2PhSXd0g7R9X5CfH1XDU9l8Og71+Z9J92ITPv7+xqPx410AE9FiRF5d1P4+9HBQPtjLRGu73PgtQi8vgLn4eyIdRwQjLgGzxHPBfMV0yhcTEDwYf6jqyKKCl5g0gVBJ/2R8EfnT3yefP1JKs4eXDusZeYsplZEd4fPm/cnkUgkEolEIpFINHFuBIXV1VX1er1CRD3vG5LsRAl4TrWnBkA2d3d3NR6Py64HEKFOp1MEDAiXdFLbYDgcnrJX+xaI3Gd3d1c7OzuaTCaN6DQFC52QORnnp7szPKWBaD8uAwg2aQj0FzLNOe6a2N3dlaTi+vAxhXy704DrU4TPXQO0i/vSDsgwTgTEII5jJwhqPMxms1IDwVMb+Gw8HmtnZ6cQ9Jh2ARlEHKJ90knBROl04T7vt3TiCECYccIcHS2kRDhoC4IC94eQe56+R8q5p4sL0Wrvohj38hod3lcfF68xwBggaDkJ95QbFyF4HnAmRHdPXdeNOfPUjFjfoY30x/64GOHfBWe5BDwVwo/3Z4E2Mrbc04s/xrl0UcefI3dIJRKJROLG4bBe6A//2a9U/0PTJ3X8O9/97Te5RYlEIpF4ujgXgkJVVSWSPRwOSzTbyZFvVyc188c9ygrBcvJKVNst6VjwPdpLJBNS5TnwbJM4HA7V7XZLWsJ0Oi2v6ALwbQIhg54SEQEh80J8gDa7COFklHtDyCBQccyiw8AJqadKcLxvR8g9fNxcTED4gaT3+/3i5CDqz5j5rgAU1mTLSOomeAFLr4/g9RB8ffh8tdWJAFHYiSkMnuoAMXZrvBNtxsdrEJxl2fdIv9cy8DmOhSFpX6xPwD3jNWirdLIjiKcktK07BAXENK9P4ud7EcW29IW2GgYuXvga9P7TLhdGfEy4bqy3AJz4e1u4H+uX65DC4ushnu/fL4lEIpF4Yrz0zV+q+uHekzu4ll7+n9+hw6tPsrJ5vfv0G5ZIJBKJm4pzISgsLS1pMBhobW1Ng8GgEEgnfBBZj3K6Hdpt7wcHB4WcsqVkLMTItSAWTqY9ygxJ7PV6ZevDpaWjbR63t7e1tbWlnZ0dzWazIkSQbhGj/7gsIP5OwCBVbdFeFwacbDkJdpHBiZrnszM2keBBmnAmML4xioyowTHc2wsvMr7skkG6BjZ5xBdEAbaB5P3xeKy9vb1WMQESj5vkLNLKeNCPmJrh68CPA9GdAFwgQNxgfHz3i0iqfV36Om2bu1iQ0OeaNkQhxOGfkUri/XW4GOPPA1F+Lwzq4x+v4STei6CCmIYSi0NGcn9Wf/gcF0GcYx8Pr2MRnxMXIGI6x1niTCJxnlDXtb7r6qv1ZZu/qOevjG51cxI3EPv1ob5v514d1kunPntl94P6hN4zm4b1vv2x/uP0pU/q2Jd+877qX/m1J33t9H8lEonEnYFzIyhcuHChRP89R32xWBSiDlmPed0QeCLdWOcnk8mpOgaIAzF9YjQaFbLm0Xsi7RcvXmykOly9elUPPPCAtre3tbu72yjq54TbHQQQdvrG+91ut9RK8AiwCwtt7gevJUC6AmSr1+s1CJcXF4zkC/GEnS5iAUv6xDxIJ7UIKLjofSZ1ZTgcan9/vwg7/JzP5+VYUkam06l2d3e1vb2tqqrKDgOSGtHyGCF3R4DDRQjuB7w2gRPdmNvvrgCIr1vjfatEHDReB8C3KfX0A4QDT4FoI85tZNZFCxcoPN1FOnInTCaTU3UVouDh8+aR+ujScMcL4+2OhfjsMCbuMvIxa0vRAG31JHxeaXuEux2iqMF14/qPwp6/nw6FxHlFPZ/rv7yqo5/88S/Wf/6oH77VzUncQHzgYKbvf9WLVIf/tyTpd//65+q3vurGbof2RPiCt365Lv7xdz7Jo992U9uSSCQSifOJcyEoUATRdzQAZ+WTSydEbG9vT9vb2yWieuXKFU2n04ZlHKJBocNOp1MEDHcMcCzkud/va2NjQ5cvX9by8rJ2d3d15coV/cZv/IauXr1aouVra2uNKvMQshhxdeK2srLSSPXwPHuu5btbuBuDQpDe3uhkgNRCkBhDj+jHYpZx60bfWcNz62mbpIZgc/HixeIyIcVhe3u7UTvBo9PMF5/Vda1ut9vYMhQngFv3KaTo0WraM51OG86AuOMA2466YOFWd9wUTsadXLrAwbh6LQGuEcUZFx9cTJBO79pwlpjgZNmFj5iq4mMVnRttZN3rdHiqi4s/cQvW6XTacNYwNi56xPFwoYRjnLxTfNJTWPzzSP6jAOipEX4PX+M8sy4eRFdJW0pKIpFI3Ei87n1/WNuvv9x8c7FQPX9X6/Ev/Lbf1qf98H9ffn/7/7ih9332m25qm56zPVF7GdxEIpFIJI5wLgQFCHFb1BYSI6lB+D1SPx6PG4UXqZsQSTnkuNvtlm0NcUR4vQOvFeBb6E0mEz366KP64Ac/qEcffVSz2UySSpTe6zLEiG8sKEefB4NBSQ3wKvzupPAtIKNVHucDEeNOp9PYEcIJJeTLi86BxWLRKFpJ0UKKZeJi8DQAIvaMgRd/ZF7cmUBtBE8ZoGYCO0l4qonn7XMfFxLcsi81d3XwApIeNWccgEe8fStLikL6fHo9BQQHxp92ky7gxRBdWIpkPvbB0yMQblwEcMLr6QdOqn0seH68zogLDDxH7njwmgm+1rguQsbe3l5Zo55GgFDlfXTHiN/b+xSfc/7t78f2g7aaCZIa88LLBYfoYnDXB+OSSJxX7P+Lu/XyX/kqLVakX/+ib9VgqXOrm5QIOKwXevn3/zkt757+Lll/j3TxbT//5K/12BXpsSvl9xf964/Vy69+VeOYvbsO9L7P+I4ndb3f/ytfoPFvXLquNiUSiUQicW4EBY+UQ9SAkxwnyZBN6iVAiL34ItdmVwffTcK3M+Q+0ol9nXN6vZ4ODg60tbWlhx9+WA888IDG43FJx6AgoVv/26LETl6Wl5fV7/c1GAzU6/VK+oKkMhZO5CHHHkV2sQCXBXDhIh7n4+LCB0IMpI+xwsUBMQSQL64JsUScYAcErru7u1sILFtGMm+eAuK7a0DMfd69aB7HxyKJjGMs1sjYuIOBvvhWiJzPGHrRPo5lnrwuxsHBQelPmzOBa7DePJof6wTQVne9IMREwYHrR9HJr+kCHefGGhEuKsR0AK+rwTpEeHNxylNz2l6MaaxJQZu8/Wc5N+KYxWt5OoU7HXxsvd/cg/63uTsSifOGze/+eW1KWhoM9A3/7cdrY2Wmj+w/oM8ejm91056VePhwojdd/f2N9/brZX3Y//EuHT762A2/3+pP/rJe+JPN95Y+8hX6W695xZM6f+UHL+mF/yzFg0QikUhcH86FoPB4IHLq2/xRx2A+nxcxYWdn51SElCKCnuIAicdWL6lBHqqqKi4G0hGWl5f12GOP6YMf/KA++MEP6uGHH9b+/r6Gw6HW19e1vr5eIrVe0G5vb69hBwfLy8taW1vThQsXSq0D34aPIoe0MRInSFEkqJ1Op1FE0XcegBhRx4Frsr0kBRG5brfb1Wg00mg0KsSMbSi9HQcHB+r1eur1ehoMBqqqqmyhSa0JCHZd1+p0OuWeOEsg8G3FItsKI0ZLO2KI1yygQCTjgIvD00X8Hl6EUFIj7QKi7Q4IQHv93vTXCbAXx3TBwqP5ng5yeHjYEJO8tgMv5nNlZaUhXEQxIYpzUXDw58C3hPRnUFIRiejTcDg8tVOKu0Xc6eCioDsu5vN5Q+BBnOA6iEXubvBn1ecxHuOuDBcc4nU8PcnFNJ7DnZ0dJRLnGYvpVL/xMZLU0w9/5Z/SZ/z1fyRJWq5SELuZOKybKVH/6Mqr9QuvWm058saLCWdh8Zu/rZ/9qCe308IFpZiQSCQSievHuREU+IOfiKdHgj19QVKJao/HY21tbRW3gBON4XBYiMnKyoouXLhQBIJer9cgk8DzwT3y/eijj+qRRx7RAw88oKvHWxxdvnxZa2tr6na7xcXgZJ/IaIxAQyC73W4hvbSh3++fIqBu1Y5ChRPBw8NDTSaTQtxxZTC20snuC5yzt7ennZ2dskvF/v5+EUdwR6yurhay5e4I7kltBa+ngEtkf39fOzs7jag0W0ZC3omc0x+i7E5E3b1CYT/gzoTFYlFEANqOMMB1PcLPC6LsKQzuOPCotxNfF0AogNhm63fi6uTWt+CkKCWfQWiZK9/6lGtEocrh4pqnt3gtAkQWT2dg7F1Q8NQi1hEpLp4SQK0JTxtgjr0+gqeQsKb82Y27TXA+fWacXTBw14WPvX+/cA0XqPx59b6xBh5vjBOJ84i7/9lv6DN/4nMkSS/5od/TP7jvl25xi+5MvOjfvF4f8Xcear65ty/p925JexKJRCKRuFU4N4ICRJ4UBBwIkMe2iDrbD1LIz0UHiDtpC2tra4Ukcx0nIW4Jh6QQPZ1Op3r00UeLzX19fb24CyCwTrKpj+AFFiU1BAXOcXLp9nLGwPO+SRNwAhR3QHBRBHu7F2Akmk2/IPiLxaLhNIAwRpLs9nTG2ckf5NcLQnqk3tt7VoE+t9772DFv/ruTX0/rcIJKegx5/7HOgTsk3JXgRJW+x/bSp1jbwCPx7ELi0X0XzXzscMj4bhq00wUFj8ADX08uOPh9/P6eouK1HjgGsu0pEBBuXD/cl/u4gEDbncBznNdVYM68sKWPt4972zVcJIkpPi4kxLb6s8U5fGf4bhaJxO2ExWSixfsmkqRf+Iev0Svv+7hb3KI7Ey9+y1wH7/udW92MRCKRSCRuOc6NoOC56J7PTnE8iAGkGjFhsVgUkhMt8zgHSHMgIguJ9tx2L/YGyUFU2NnZ0fb2tiSVmgKDwaA1R99rFDiRgbhgY481FbzAIe2PRQZps0fL5/N5owilpzS4QwICSVtIF4HwUdPBnQnsagGRjWKC9525caLuxDQKBU4UnQS6AwKCGO3q/rnnywMvxhjb5m4Lr0XA+BAdd5cEoowLUHF3AT/WyXcsLsm40S6P6POZpzFA5iPhj5HzSJwZB8bfSbnXvPDnygk+4o3fl/WFSMeYuOjku49wDRe5vK2xDkR8fqNgdFbqj/fbr+Fj4+KB/+4CEc4WnBcpJiRud1BjIZFIJBKJROJm4dwICl7Yjp0a3Nbs29htb283ivX5TgS+WwLEZzQalTQHP9+jmB7R53ds6KQDeJHGbrfbsGpHgjedTtXtdhuRcWo6SCdkDzLlxQQllVx/IvKSGrnzdV1rNptpZ2enCCS9Xq+0A7JHtBUSOZvNNB6PS6oDaQudTkfr6+sNm7e7InBLOLnz3H7aF6PGLpQgKESyFncxiOTQ8++lZn4+a8fH0t0OCCYuHpBG48Ub4+4csQaCixgRTn5pm9cWIAUkugpiTYZer1eILeuGc7mup2UgogFIspP3mKrBWvX0BBc7XOSYzWaNcfa1j9OH63p6kpN3SY315+30z/35j+uF7wEXQNw9EdeRv1gXsUaCzyOuBMQ+/zxFhUQikUgkEolE4mycC0GBqCzbCI7H4wa5JvJJ7j1iA+eyU0KMgPZ6PY1Go1KbYGtrSzs7O+VaRHq5f6wcD4GfTCaNfHMIqhdu63Q6hQzxGS4LorYUePTtJWmv1CRzTng5JkaPJ5OJrl271hArvJBj3DmDXTBms5mm06mWlpY0HA4LmcJmD0HnOM/bd7u9k1y3z3vk14ktv0ey7pF8F2k4zx0Pnq6C4OCk310DEYwtWz5yXy+oSYHHeA3P9Y8pFTg+GCevjYAwwPsxrYdr0gbayVy5Q0A6KUoaBazobvHx4HN3Afl4eFqCCwyMM30lzYF2uujBWvcxc3GLdeupLqQGOZH3NY5g4HUXOMbXXhQQpJOCi16TIwpctDE+i77+EolEIpFIJBKJxNl4wr+aq6r6J1VVPVxV1W/aexerqvr3VVW96/jnpn329VVVvbuqqndUVfVHnmxD9vb2NJvNNJlMGkSK6L7bvj1KS7QUogPZ86J2s9lM165d0/b2donO4z6AuCMEQKTY9WA8HhdhwSPjHiXGBcA1uA7CBQTGI+HASR3n+b/9np5CgHMiOjS8Sr7bvynaiKBSVVVJcWAM6RORYSfJnp4gnbacEzWORDza6GP6gQsQbWICxNrTFbxwpo+jCwbMrY+hixPHa7UhhDDmrB/EGXcmeK69t9PFEa7Xlv7BONBXCnTi9ojuiDi2Ucjgej6+7pbwLR793DYHRKxHwHxTzNN3RqGWyWQy0Ww2K+vcyT2EPu6E4c4SL+xIm2OtCB9nX5Peb09hQCRw4YOxjSkhLkTEcfRn7jzgmfouTiQSiUQ78ns4kUgkTuPJhOH+qaQ/Gt77Okk/Vdf1yyT91PHvqqrqIyS9TtIrj8/5tqqqnrBMuqc5YK93AcHJjkeJPdff89ohhNIRmZhOp7p27VrZEQIC1EakIDQ4JXw7QifQnutOlNwFAUiwEyPIJtH4WPQOAugENFrtIfvcQzrZvcFFBI/Wcvx0OtVsNivtx9kRx9D74uTNaxU4eXUy10aceUkqogvj7nn4TtqdECMieRu8f3HuXABygh4LJjrpjI4JJ7p+T69L4eCangrixSedNHtajV/P+xzXmwsCcX7PIsRnRfKZB4S7tnXoLgKvLcB68ufV12wcoyhAIQZ6UUjEEU838ev5+d6+uGZ8Rwt3NfiY+/FxLZ/1Okf4p7rJ38WJRCKReFz8U+X3cCKRSDTwhCkPdV3/p6qqXhje/ixJrz3+93dLerOkrz1+//vrup5Lel9VVe+W9Grp8Tc7XixOdhwg6h6jvxABor8QaF5Opoi2O/G+cuVKESuImOMsIJrM/XBL7O7uSjrak96jxETyPe/ed51wUcGt6r4doRNNRAInxli9I3n2LRmJpseUDR9XxgD3h3SSMz4cDluJsff/4ODglFjjRAvi7ZHftjoDwG3xbbsx4AggAu72dIifF7Xk80ic3drvtRSo4RAj2BB8L1zpc8E4RYeA5+W7bd4LWbJmvN2LxaK1bgPEPoo5TpTpl5Not/P7emI8fK1xjLfP177X82BM2LUEMYG6HVEw4hx3QkRyjhAYayow3m1pDO58caeBj8vKykpJK+Kc6A5h3HxNxTSL+BydFzwT38WJRCKROBv5PZxIJBKn8XRrKNxd1/WDklTX9YNVVT3n+P37Jf2CHffA8XuPi8Vi0Uh1kE5Inh/j+eYUpHNiKKkUZZxOpyUa7oULIS/dbrc1XQHCNB6PjwbIItUQd3aM8Ei+t3+xWBTiTxuxi0NyvN4A5I4ieJDbmCfvNvrFYlG2d/Q8dAgz8F0gaL/v5ODRc4SRnZ2d4uJwElsdF490MsdcQcJim73tnsYSP/O8fsbOayI4oUT8oc1e32GxWBR3CkTaxSBJjRoGkEnSPlgLpLqwHg8PD0uk3gsSupjg6R0unLhtH0RnhIsJpG34tSnmGdvSRnw9HQVyT1qFuza8TYyVO4C81oe7PKiZwDqG1He73dJeT6twZ4mvVW+nCylepJG2tjli3ClCG9xt4E4Ljmlz0PBvF8weTxQ7Z7ih38WJRCKReMrI7+FEIvGsxo0uytgW1mv9y7yqqtdLer0kbWxsFAIpnUQgnTB4xBIy5ZFiJ20QGfLovZaBExvEAuzf1D3AyQDBjNswIgpAgPz6bZZxAJH2qLUTNSfrkGy3/3vEfnl5uQgr7tJwwuTCSlVVJQ8eEhgt5VF8IXXEK/AzF2Vyrb1xntx9wdjEwn3MoUfNvQgh1+Q+jO9ZdQSAR7sh4MyhixCSTrkZvH5FTGXw/nA8/455+r52mQOcCd5Ov5cLW8yzFyT0wo4+d+56gVDHdnsNA3fAeDvc4eHuE4QeF008ZSO6LRh/r8MQa0+0pWjEFAcn+G3pPzgzXOBxESquH1+rvr68/kMUWm5TPK3v4p4GN7NNiUQi8WxCfg8nEolnBZ6uoPBQVVX3Hiux90p6+Pj9ByQ9z457rqTfa7tAXddvkvQmSbr33ntrjyRCEvjj3iOMLigcX6eQIMiGE31eTmzcMSCpHEvkFWcBggKkwvPP2WmC1AbIK8JAW3QawuZpEBzvxSYhXkTCua4TNCzoMdcfeKRfUqPPTpKIrFNrYjKZFGEDqztk2wWPtnsyB07IIMheaI/5srVQjnUiyFjEdBDIY5sbwglwJI4+D1EAYcwQbqKo4TZ4f5/z+Mm9o7DCvVwgcHIfaxkw/i5iOeGNqQB+Hb+/CzaeesBaY7xjJD+mEnkb29INfMtH2uK1Qx6v9oS3zddEdKhEkcDhIlFcW9F54G4nXxf+3m0kJNzQ7+L16uJtY81IJBKJc4L8Hk4kEs9qPN290f6NpC85/veXSPoRe/91VVV1q6p6kaSXSfrFJ7pYjKx7Dnb8Y39lZaVssedkn2O8voC7B0hzGA6HWl9fLykTEJHJZNJIi8Da7jn1HDufzzWZTLS9va3JZNLIz48We0gX6QJu56eNvrUkrgBP63CRxI/p9/tF9JCaxNZrOGCZR4RwYkbaBv2ZTqfFAdDpdBrteLz8dh8fJ8cu1EDU/XgfKyd7iCo+BsyN1CT4UrO2QYxiO5FtI92877UmvE1cw6P93t6YUkFbvDigFyF0IclrJXgKhm9n6NH6KH7ENefE3AsjttVlYHyi68Dv7cUi45hIJ/UQ2A7U3R11fVKXwlMdnLR7wdPoPGgTEjjPx9nHI7o0ouvBxyz2J96Xc845buh3cSKRSCSeMvJ7OJFIPKvxhA6Fqqr+hY6KzdxVVdUDkr5B0hsk/WBVVV8h6QOSPl+S6rp+W1VVPyjptyQdSPof67o+bL1wgJOzg4ODEkmHpDjB7fV6kk4iwpAX366RFAas3ZBvz832+gekOdR1Xci3R1P9PKL4bg33lAei524bn81mDRGE+9PnlZUVbWxsFOLV6XRK36fTqba2tnRwcFAIPjn1vi0i16UOwt7eXqmX0Ov1VNe15vP5KaLJFplbW1taLBbq9/saDAYaDAZaWloqYsB8Pj8l4gD6EYvxcZ5Hxv18xggS7AIAwggiB2kAvV6vkeLhZBC4C2RpaamIPt5OQHoM4sp8Pm84Ydz10AYn8UTk4xh5wUdPc4Dc4iRBNKBGh7sxmC+P/HO9uCUjtSScNO/t7ZXx4FzOaVv3LvhEd4rvLMKzRxFTru+iBEDw8fXgpN2PjfN01jEuDrmrhz7EXWNoB58jukUXRWzbrcYz9V2cSCQSiXbk93AikUicxpPZ5eF/OOOjTznj+G+S9E1PpREeffbIudutITuj0agQeM81d0IHiYCIuZDg+dQe1fWigr4bg5MobyOF7jz3PrbZd4eA7BClhfCSioBQ0Ov1CqGB6LPVI0IDIgFRZxdjqIEwn8+1urpa0hxcwJBUIsrj8ViTyUSz2UyS1O/3G6JFrDXgYx3n0P+NGIKwwxi7fT+e6y4U3vPdChgrBAt3O0gnRfcg515TI0bunYx7OgkCFIBsetoA6yEKDe5MAD5WXnAUt0abo8AFibhW3R3irhBItddt8HoC/NsJsxc+pQgjqUQe4XdhIzotGD+eRe97HJu22hGepnBWSoRfy9dZnM8oBrjQEgUhH9fotGk77jzgmfguTiQSicTZyO/hRCKROI0bXZTxacOJlZM9/qB3+73btCH3HOuWe0hs3OveK/c7mSGi6sTHwXn1cUqEp0N4e7mm2/CdhEF6IO2dTkf9fr/UbZDUSBVgVwNPhVheXi4CAWLB7u5uY7cJr5kAgaNNkC3u4y4QdsDwezjpbyNZHhmXTqL+nB/z/qWz6zAwN070PXUA8urELxJsTw8ghcPJNveIqSqSTh0XxRL/zN/ztAiu78e01Uzwc72NMY0iHteWDuDFG2ME3q3/cR69ZofvPuK1ECLp99obcctOXxNxLHm/rX/cM4oCnuLQ5mxoS4/i3Jhi04az6iY8nislkUgkEolEIpFInBNBwf9w96J1kCHqJuAI8AJ/0gmRcsu625j9Hk4s/HxEB3LIiVS7wOBkzbeBJP3BSRJOA64XCyKurKxobW1N/X6/EHipuTUkZB8y2Ov11O/3G44DaiXs7u5qZ2dHk8lEdV03LOf01XdH8HQExhIHBZFq+hbt9GfByTKCAlZ6xtdFGcbb54GxPjg4KNtdxp0mvAhm3O0gFuZzR0kUGVywYF7jzzZRwYm736stFcTFJhdCPP3D150LAG7Ph8Cf5e5g3Lygo7sAEGXieawTF8h8jOI9Y82JNpeBiztx3F2oiO4Dd4hwDf8dseMsVwd9jjUl4hzGMYz/ZqwRJBKJRCKRSCQSiUQ7zoWgACAG/od8VVUaDofq9/vFpo/NHxIBAaNY4ng8LmTTSRrEwdMgfNtGSB3FC/13J2UQexcwZrNZyVHHFk4+OqR+f3+/XG99fV2bm5sajUbqdDoNcYDCgF6okVQE3+pyf39fs9ms3JvaDhSfHA6HWlpaaogs3W63ENutra2S6kB6BCkZiAm+JaZvnwlJpB0+jpyzWCw0Go0apB/rPXMHcXRSxxwfHBwUgQOyyO4arBeOdyLOnCMYdLvdU6kHUUhw0ivplPjkdSfOIveA9nm6htfX8GuyFjmePri7gbVD2gxrGLKMUOC7V7iA0VZzwe/vtSLc7cJ5TtoZVwQFxpu14SlFMY2BfjG3bYUY+bc/q/w77hKCo4d++fjFOg3A5/qsFBxPgzlPKQ+JRCKRSCQSicR5w7kRFLwCvJMGCCVRdcgZqQ9u+aeugtTcPpB/Q/YHg0GpQQBJieQHwcELK0onqRcQbidXtNnFBEA7VldXNRqNtLGxoc3NzUZkma0bqZtAmxExer1eqeXArhTT6VSz2awUPkR46Pf7qqqqOBBIafD2ItrQR/qMOONbbvo8ed0IiC9EE5LJWNMOSQ2RiD67OARJZrcNXBkUVWSOY9TZa1JAcJ00+7EuVriDhM8jIOJOOL3Pfo5f04UB31UiRuw9mu8pBm15/J4y4xH76Mzg5ZH8tu1CcaTw7B0cHDTWS0xzcPHIxQAfKxcT2nZh8XoG/my2pZXQZr4TYh/Pcj+0pUX4tT1to23824SIRCKRSCQSiUQicRrnRlDwVIMYwfUUCEmnIrpuj0dQkJqEL5L91dXVQvQiSaOWAFZ9SAjvkergFn93THjdAu4tnYgRo9GoOBOkk1x+IvuQcsbFq+/jAMCZ4IUWqcVAeoWTZ7eBQwqxxiMkMM4Q/dlsVpwb7rzwiHMcB+5FmgrCD/eLohH9dNLo6SrRRRLTE/zfTgydDEsnUWcv5OmktG3NOHHlMyfpkbA6OY2R8kiA24i2F0D0z7g269YFEG+TX9+v4/2IqRvet1i3oi1Noc0l0JYW4u2L5/t6bDu3zTEQ++PPLMf43LeJCT4W8T6xrRzb1q9EIpFIJBKJRCJxhHMhKFTVUU0CqVmIzW3WMecb4oM9m6i+OwUiIfD6ANzPI96QNSL8WOXdbo7IEAv6Qfi8Un6MyHc6HQ2HQ62vr2s0GpUUDifw3h4XQLD8IyZMJhNNJpNCJKkvQWoIToa4XaKTO67vIgiEj3MlFdEh7moBCeXazAniC04Qot0IBZxL3xFW3GbOPf24SDQjmWWeY349bhJezIVb9f0akbh6tJ+x8+OdxLszxkmzCzEOb3NbVJ1rsy59+8g4r4hOdV2XLRzdCdEGJ9AuJiD+0DZ3W7S5BLwvPjY+B6T0xFSHiPjsxtQDd5a0jXccWx8Dv3abCyGusUQikUgkEolEInE2zoWggDWeXP/d3d1TAgOEiq0Yx+NxSQ949NFHNR6PS2Tfd2mAfCEGQOglFQK/t7dX2kBqwWAwkKRCsNlhwbdOxIYPKYbwUbfA6zesrKxoY2NDGxsbpa4AzorpdFoKKnoqgjsHFouF5vO5tre3S9+jmOCFHZ1AQ7KccHkNA6lJJhmXg4ODImb0ej0Nh8NTkWavs4CYMBgMyjh6BJy2kZ/v73mxQk9/cVdBdB64FT+6Uby+AuPBeHkNDVwfUUzwugHRFu/t9vbQfhdQWN/Rns98sEajaIYIwjwhzni6iAsa7opxdwvtZ3cMF89cMKAeh4smLkA5UY/OjQjOIyWDdBx3hzwenPD7GHE/njFfV2f9bHNm+D0ez33AubGeRSKRSCQSiUQikTjCuRAUIELsVOAEBvLjWxk+9thjunLlinZ2drS9vV0KGC4Wi8b2d1LT8dDtdosoEUlwv98vL4QDiCHWey8YSZ5/XR8Vf8QZABGEoEP019bWNBqNyi4NpC6wNaQLBIgmjsPDQ21tbWl7e7tRL4GotKcM4DAgH97HM+bOQ9gRVlyAWFlZUbfbLW4NzveINue5CMKOHIw/IHI+n88b4+o2ekgz4+fnsh4iMW8rdhgj594n1oangbSlOnCuv/js8YiouzF85woXDqIogauDz/b39xvOENYEbfYaBzgYoruB1Bxfk7zv9QPiGLTZ//1ZbYv4+7FO6l0oiqkEZ6Wv0BcXJjw9I86Np+C0tdPP8fY+kZjgfUkkEolEIpFIJBKncS4EBUllm0SIkkdeiSbXdV2i9NeuXSuFCXd3dxtbIkartqQSMYeA+7aT7k4gZSFuS4mYQMFCj/Z6YUW3h0NeERQQEyBa9JlaCG1EDjK4t7dXRAzSFbrdbiFaHO+pB17TgH7SJm+zb1PJLgyQThwKvuWg38NTNGLkn/YzHvQj7tLQVuCPcz3SL6m0zUWB6Cxoq1HgayMS2rY0A96PJPnxEB0S7qRou4Y7G7zAoq9976vPpxcSdceAO1Doo5N5XAttqRwxhaKNdLuIEOtPxD4yd1GsebzxbCtk6gKRp5VwTBQ+4vy3tcvH+fGQgkIikUgkEolEInE2zoWgUNd1KapIZBciQaoCIsDOzo6uXLmiq1evlnxst7NjbyaKC7Fn60miwJxbVZUGg0FxJ0C0vQAgdnLfaYC6ChA0RIKYVkAtgfX1dXW73YaTAGfCdDotRN7JOmODewPBxes5RNLmDgXcB1Jzi0AfT14ukiAIkE5B/yGsjPl8Pi/tREygj7xoD04M34VDauaxM55RIHGxgPmgjgVjFI+JaQpxh4RImL0NkXw+mZz6eI6T9ja4FZ959/SCKM4g/PhuB359xi6KIZE8u0jh93Mh7MlE710o8X67ayLODee21S7gs3hOdCfEOYvpCGe1zYWSOF9tSCEhkUgkEolEIpF4YpwLQeHg4EDj8biQfIoL8up2u5rNZtra2tLDDz+s973vfY28dwgYUVm37i8vL2ttbU1ra2saDodaWVkproaqqtTv98uOC7gHiNR7nvlkMmmQbknFISCpEH7pxAmAM+HChQvqdruq67qkSRweHurRRx8tOylAhMhlpyCidFTHYTwea3d3t5B86jUgwiBCsIUkaREuJOA4gMi6y8BrJuDSIHXE6wkgDjCGkGd3knAvjkc08fHhmvST46Wmc8ALWzohhiAydr5VpKRG+oef704AJ9xOzhG1orgRwTjGXQ9cTPBrOqH1teUpCbSFuhh8hgDlRNcj+J4Owb9xjwCEBHfw+C4gvkOK98/vSQqH1yXwseT3swh5FBv8vZiKwHqK73ufXDjwmhegLW2DezqigyKRSCQSiUQikUg8Mc6FoHB4eKjJZCLpiPSQHjAYDNTtdrW7u6vHHntMDz30kD70oQ9pNptJOiEBiBDuTKC4Hzs2sKvC/v6+rl27pvl83iBXTj7rum64CebzeUOk4HNI1Xw+L+33LRbbXBFO4Hd2dhoRfraC5LiVlZVy7Hw+b2zFuLKyUoQDLzyIiyHWDEAg8P7OZrNGGzwizr0QCujreDwuNSvqum4VEohCz+dz7ezsNLb0xPHgEfEYhfa8++he8FSNuP2gF3KMW1g6sXcRAXgk30noWWkRseZArO3gBBlyj+jFeDr593XgwpgLBYgn0gmRdhIdt2Skjy5ycF8vdsnx0QXg48r6OCvNwccspkVExHSD6GBoc5M4XCCIKRxcI7brLFeE3/cs8SGRSCQSiUQikUi041wICvzhv7y8XKLvFPWbz+eazWZ65JFHdOXKlbJVYluxOKlZ5I5iiaPRqJDzyWRSXAEeqfXrQFIgvJ7G4FFyRALIckwVgDzjTHBBATEA0nV4eFgKFrpwQQTZ0xyI/CM+QG4RPrzKvxNtiJff31NFIJ4cF4tbxjQHiLpHvmPKyXQ61Ww2K8IBQg2ktm0t8BkpKbTJHQxxi0Off8bEdwhoK8QXSW2000eS7T/jOU6yvUhmrF/g0X3vaxQlfN15P/xnHDM/x8WEtloOCAptZNuvzxpqq5kQUyZ8rNtqWcR6FG2Cgjs9nORHcYlxjjtoxPlrq89x1hpIJBKJRCKRSCQSTw3nRlCoqqpsveh278lkoq2tLT3yyCPa2dkpFnknf050IBIQeraAXCwWmkwmZctFtooEnmfvW0NGskVdBBwFOAg8vcC3mIS8YS8nGk2qghN2dxt45Bq3ghN80g68mKOf7yKBE1F3MsSq/xBOiK9vmUiqA311a7mLEJKKGOCFJBEo2FmC/nk7GXMXCxAtPNrt7gPWDmMQUwMez2Lv6yg6F9ocDG3rts22zzi7qBHHKBbwZB1Hl4YLFmdF+znurK0129oV631E+JifVQsiFnLkvLZz2tIVmLd43FmiBWPkbXPBI6ZF+NhGEaHt34lEIpFIJBKJROKp4VwIClVVlTQHtockGj6ZTPTAAw9oMpmUHG+2Y4RI9Pv9Rq778vKyer2ehsOhhsOhJJVdIba3t/Xwww+XOgE4IWK9AMi2kxbqD3gtAU9PYIvFfr+v1dXVhoBAP3E0QHq73W7DncBx9NNJf7/fLxH48Xhc6jFAurhmtJwjgiA6IAxwXSexjL+nJuCqGI/HJYUAtNn9cUBQbNIdBogpEFq34VN80tMggBe/jLts4Log6k7hSifh3k5EI8aN9ji55HNcEvx0J4TDo+WIKbGmAqQftwfX90KkXNt382iL9vv4Q5694KWneQAXaxAffO6iS8GvgYMophG44OZ1MGIbnejHf8d58R084o4gvmbj/LozJr53FtKdkEgkEolEIpFIPH2cC0FheXlZGxsbhUyQcz8ej3X16tVCMh1EkDnHiczS0pJGo5GGw6G63a4ODg60tbWlRx99VNeuXdPBwUEh/bgJVldXG6RtZWWlUdjO87S9rgKkj20puQ5ElboNnmqAGNHpdCQdkZqYgsG9iewjslD8EfFBUiHRjCX9QEiAzOIYQKTodDqnosxxm0Ly7CFlXI/jZ7NZub73e3d3V5PJRIeHh0Wc6HQ6p3YqcBLt1v+2lAPf4tIj/7ST8fUoeRwP3BcUOmRu3R7vjg36FFM/XCRqq8XB8U5Y3UHg7gOv/eBk20nzWcQ3plScJRB4bREfVxcM/L14P67naRzRQeH393O8Df//9s4tRrLrKsP/6u7pru6amjaDx8jYJraRQTIIEQvlBRKQgohthZibkCMeLAXJihQkIoQUW5YgL3kIEXmEyCiWI+TEBoGFX5AcIURecEJibMfGdjxOjBhsfJ2+VXXPzZuHOv+Zv1af6svMVHV19/9Jpe45deqctffZtafXv9daW9HoDo2K0X4EBiOQtK+zMNGUCuWaCMYYY4wxxoyOiRAU6FAAqFfrl5eX0ev16jz/vNqoKQbqZOj2hVxR3djYwNLSEtbW1nDu3Ln6faZDtFqtAWdKi9xx5T+HqrNIY1PON9ugBfAADEQH5LDwqan+Dgya861bB0ZE7ahr8UgN1VcnVldxNWdetxwEMHCMYglFEnWAaY/upsDz1JHjrg6sK0FHUdNIdNVZV+31OfN9fpb2aPvZNi0uqCKF9q2KNdpmHYM8h6IJ+1ivpXbq9XntfC1+Ru3jmGhKR8hpPMPqA+i1SVOagdqpwlBO1cipBjlNRK+nz6gpIibbpudnNIpD54DclzkKJqeq5GiJbGdulzHGGGOMMeby2ZyUnYiIhyLirYh4Xo59KSJeiojnIuLxiLhK3rs/Ik5GxMsR8bGdGKGr1FzZZq0DdZhzgcS8OwCdkrm5uboive5mwK0imZqguzDQcaXYoDseqMOoznlTqLfWKOAqK7eCZIFCRizQfhUOtKih7qBAYYQihwoc2alrytenLbqqq3UR6KRr+DzbQAFCQ/dVRNC0CC1SyfQItisXyVMnWh1BzZfnqnWTTXrvvHVjTvnQvtDtFPO52ufqxGdBgTRFD2SxiLbTTj6L7AAPu8Z2UQr6/PVYU3pCU4HDYU67XmcYKt40pVgMc+yJjlWOrVx7ItcDUftz4dQ8lg4S45iLjTHGDMfzsDHGbGZbQQHAwwBuT8e+CeDnSym/AOAHAO4HgIi4FcDdAH6u+sxfRcTmpOoG6Nz2ej288847dWi+5qTnLe5yuDlX5ikQUKA4ffp0ve1iu93GsWPHcPz48YG6DTMzM1hYWKjTJI4cOQJgMKyaYoGmOuj2ioxcoNPLVATWglhZWcGFCxfq+g5Mt+B9WQuCTpHm5HPVH0DdRs3bp8PO3+kQ09nSMH064SsrK/WOFxQN2IamAo/sEy14RwGBTrqKLCyyqc456wWoI5kjC3Je/fr6OpaXl3H69Gl0u92B3SG0FgBTPChi6LMBLjr2+uw01YXCjm5Bymvz85qWkbcs1HapSEaxZVjtAraZ98vpPduhkSjDnHe9J9FztxIrtjqev4N520ptk44PflaLf+ZCkTmlSaNhVEjI0SbbiSD7mIcxhrnYGGPMUB6G52FjjBlg25SHUsq3IuLGdOxJ+edTAH6v+v0uAI+WUs4A+FFEnATwIQD/vt19tJAf0C+SuJVzpc408+bp2MzPzwMANjY26p0Y6FjOz8/jmmuuQafTGdiJodPp1FEGjChYWVmpHXk6hlrYTldO6VDTXt3RgCIDHeyFhQUsLi7WqRalXNx+ks4yRQ5d+VehQMPZVUygQ6znqIPGtAH2DZ06XoOihfYjnUVGM9AeCibaDxQMAAxEbbBvtLCfpmnoyj2fC7f61FQRfkZXxvWnjg06ozktYmFhoS7GmZ1X9i+fJ8cVn7tGiOgz0BoLAAbEA41o0PQRfUZ8LzvcKkw0wTGfnfWmegVZQMjiB+twZPg5bbPayHN0RwUdd03OvW4hSnt1Zw+tp6DXy8KEpkY0iSVZKGk6tl8Y11xsjDGmGc/DxhizmStRQ+FTAB6rfr8O/cmUnKqObQkdPnUYuYpMNDdbV0OBvjNBB54RBrxWRNTFEpnqoAUUdQVUiyGura3VK++6cqo1BtTpyYURgcFwbDpQ7XYbnU4H7Xa7LsrIVXMWWqQ9XFFnRARX0+m8ZScyF8VTJ4wONQtesjaFOnVaBI+fZzv4PmtH6A4UfAa8l4oUbIfWHch2K3m1W4WWUkodgUDnlvdWKKqo4KRjizt8aAoGU2QA1DtgNK28sy8o5OQaB3w2GrHB56B2ZueXPzUyI6ch5JV4YHDXhCy+5XvkVId8761s5PWbrqHXydfl78MiGnKagtb+yLY3jflh9xxmxwHnsudiY4wxl4XnYWPMoeOyBIWIeADAeQCP8FDDaY1/xUfEvQDuBYBOpzOQ36+r2MNWoIGLq5p0wCkUcKWc15qbm0Mppd7SkVsjUlBgMUQ679xhgrUANEdfdwZQx5ar67ryq6vTFDs6nU6dasHdBiioaDoAgAHnnW3RUPLtVmm1vgDFAEZsnDt3btNKsO40oakIfDa6mwKvm4vpKSoCNRXMa1pR1hoNLG5JB19D4HXFXcUFYNApLaXUggzFhNnZ2YG+5LUpdrCYJAWanK6gERlaV4KvHLqvznqTsyzfiXr86E9NudDvQo46aKrtoOc0jZMmG5u+c7x/tjdHWORnkdE0ER3L+n5uX66R0ES2RY9pP+/X6ITtuFJzcQsLI7HPGGMOOp6HjTGHlUsWFCLiHgAfB/DRcvGv+FMAbpDTrgfwetPnSykPAngQAE6cOFE09JyOYw7b1gKJ6tyzNgLD2DV1gM4u6xW0220sLi7WEQt0Prvdbl04cWlpqS6eSMdWV+NzjjwFAY2UmJubGxAI5ufnceLEiXpXiVarNVCw8ezZs7WDTydYaxOoiJKdVf4ctrMABQTdcpE26daRdKRVVNCUChUVVLBh/rsWqqStapNGbPC6TdEWvBbFlFybIDuOTFNQJ5y2sg+mpqbQarWwuLiIhYWFOo2F4hAjABhlwmgQ9t+ZM2cGHHotpMm20TnOuymoI65CSnaOc/2LHJ2gfcbPZ8EgCwI6fnPthqmpqfqZ6Yvv8Ro6zhWNmtC+p21NAgcjQVTs4v1yuwHU4z+LP3rdYeRxclC5knPxsTh+8DvMGGOuMJ6HjTGHmUsSFCLidgCfA/CrpZSevPUEgK9HxJcB/CSAWwB8ZyfX1NVKLbSm4dxau4AOeKvVwvz8fB3Czp0cFhYWBpzgI0eO4OjRo3WqAQsvvv/++1hbW8Pp06extLSEXq9XO93S3kbHSSMTzp8/Xxf5a7fb9XmMgDh+/HhdN4H37fV6dSQEALRaLQCodzM4e/ZsnT6QCxtqGoJGQfDabAPrD1C4oHOtu0qw//lTowS4xaW2FcAm8YMREMDgzgdadyILBKzpwFQPOpp03imSzM7ONq7uAxfTErIjSlsvXLhQR6W0Wq06zUT7jYJIqVIiuOWoCjB8DjnVhXZSZNFxoo5wjjZgP2t7KJo0FXVk9It+X3LUBG3i+yo+5ToOFJhyVIuOea2BwTbw8/xeqUih7c2OPI9xjCgaecIxoDU19FraZzm9Z1jkxm5pSp2YVEYxFxtjjNk5noeNMYedbQWFiPgGgF8DcHVEnALw5+hXsJ0D8M3qD+6nSimfLqW8EBF/B+C/0A/7+kwpZUcl61VMUIeW72moPYB6hZiOFI8zEmFmZqZ2SLg63Wq1MDc3t8lh7Ha79Q4CXBHVqvK6s4SmM2hoO3eJ0F0Fpqam6roNfI87JbAwIoUB1gZgNIHWY9CaCgr7h32hoopGJfB6bBfD/hklwbZkVGTQSIIcLaHbMKaxM7DbBZ8F+4ciA8+NiIFdGPJ2gvoMcii7/p7TGObm5nD06NFaROr1erU96niqaKERHYw+0ZV7jTxQ5zpHAeSIgeygqq1NwgjbzWfH+7Gf1JHOEQr8bJNzr8+IxyjgaBpLk0iQoxlUUMjX344soGh6w7B6DdqXelyFnCYbmsSHfHySGddcbIwxphnPw8YYs5md7PLwyYbDX93i/C8A+MJujMgrinkll6vYFBTo9GgIuOb/c0tFXeVm3QQ67rpN5fLyMpaXl+vwb12dVWFDHT7gYk67Cge6DSEjKBYWFur0AqAfgdDr9erCiOok00GnU822ABhwgDXEXbeRZDQCt33UGhCMTGBKRhZu1GFm3/On3lMFBXXM87OjzSq8qFCjUQL6rHOKgzqJuhKvQoc6t3wmfFFMYnoHBZdck0CvrQKW2p3Hpr6axA0VKfJnNb1AXzq+cnQBr63bV2aHuMnxb7KLr2HfvSxI5OuqUJKvP4wsEGh72a4cndR0H5IFkZ0yrO8mmXHMxcYYY4bjedgYYzZzJXZ5uCJkR17z+rmizNViRgEwUoBbKrLQIqMA6JAx3J1OfURgfX0d3W4Xq6urePvtt+vtKumAMlpAdwHQMHcWg6QzTyddHSVGJczOzqLdbmN6ehrr6+tYW1ur28Q2T09P1yIDV/R5XTp9OSqCdjHqgnUXWENCnXk64ywGqeJDVLntFB2yg0eHlmkdfFZMc1DnmGkB7Cc65eoc5tV8Pm/aubCwsGkc0Nnm86WQQOFE62uwfRR6Op1OLSKx/9lurRPBF8eUpkFksUKfiW6dyX7jM8p9om0FLqZs5PoBKiyx3/KOGYrem+/lNAeSowo0OoHnZhGDfaTHsyjBn1uxVXQEIy+aztG+3+7aW92jyfYc+aOfM8YYY4wxxgxnYgSFDPP3e71e/dL0BTraAGpHmFEC09PTWFtbq493Oh1cddVVdUpAt9vFysoK3nvvvbqGAUPjWV+Bzpw6wxqKrzskzMzM1OH0dLxmZmYwPz+PdruNdruNqakpLC8v14Ufe71eXXNhenq6rnGwtrZW13yYn5+vnTTdwpJOHdMsWMBydXW1LjZINKSeRSt11ZtREwAGnHh1+jNNK+fqFNN50/5jv+TtN4FBp7HT6QxEh1DsoOjCdAlN6dD78yfFGAo6FBOWlpbq9A/2jT4HFirU91nEkvcBMBCZofaq3bRHBRAtkJijEdTBpxCk/aMiUXbcNd1gO8c6j42mVAz9nEYqZMdcd7i4FNhu/j4MFX3y55vG6FZkkSG3fT9EKxhjjDHGGDMJTISgkB2V8+fPo9frYX19HWfOnKlrDbBgHgsKqpOnKQWMPpiZmcGxY8ewuLhYO5UUKdT5pjjAXR+4Uqqh17lwHFet6YxqVXw6kTkiYmlpqY4eUEe5lFI7yABqx1kLLDI9QkO12V6+z5Vy2qE7RGjtAq29oA5arinQVFtBnVVNBWmqLaCREU2r0XyP2ziyvgPbyVQDRiWwz9lWTQ1hm/U5UuDY2NgYGE/6XDVChM89bxPJc9jGXHxRV/s18iJvkajtz6kbOY1CxQRNMcl1BZqc4ZwqQPL5W6UQkJzuouJQjnC4VIZ9lvbq+Mn9uNt77yTywNEJxhhjjDHG7IyJEBQADDgtDNvf2NgYKNLHmgSsF0CnjQIDw+kZrs7aBa1Wq3YWKTZQTNCVZL1Gzo2nAEBRgU6HOprq2NCuiH6Bv263i263WzvoLAwJ9B1UCg10ztlGOra6aq7OKkPuz549Wzuq2SFvCrvXFX3armkH2bEFhoedU6gABh0+vb8+Y3XmGU2gER95O0G+zwgHrQuh92Cb9FqM7uj1enUfZyc0FwXk89fojhxNwL5WMSVHbGgdCPYlr6tpFOwr/Z39PayeQdOOF1s51ip88NydOM5NEQ96nUspxLiT87O92Z5hkRjGGGOMMcaY8TExggId13PnzmF1dbUWBegoM3ydaQkaNdBqteq0ARZaPHr0aB2dMD09XR/vdrtYXl6uQ+Wzw60h5bqrAXdF4Eq5FmRUR5DOJYUGigXvvvsu1tfX65oH3CKSAgjFEzrDs7OzdR691kRgpAbvqTs40BbdxlKh46UpG1rUks9Bt8LUXRiyCKHRHfy3RjQwiiIXL6RDPj09XadsaAQFYXoLxRWtqaEpAeq8q8DE/mF0AiM2NLKiSfDQ99lfFCc0AkH7kOOJYg9FEH3GTYUU9dlkQULTCTRFRMfcMIef/86O+W5rHigqKDE1ZFg0xE7YLjJBozP0/KYaEpdzX0ckGGOMMcYYc2nEJKzuRcTbALoA3tljU662DbbBNtiGxAdKKSf26N5jJSJWAby8x2Yc9vFmG2yDbdjMYZqH/TexbbANtmFSbWiciydCUACAiPhuKeWXbINtsA22YRJtOAxMQj/bBttgG2zDYWcS+to22AbbYBt2yvA92IwxxhhjjDHGGGOGYEHBGGOMMcYYY4wxu2aSBIUH99oA2AZiG/rYhj624fAwCf1sG/rYhj62oY9tOFxMQl/bhj62oY9t6GMbGpiYGgrGGGOMMcYYY4zZP0xShIIxxhhjjDHGGGP2CXsuKETE7RHxckScjIj7xnTPGyLiXyPixYh4ISL+uDr++Yj434h4pnrdOWI7XouI71f3+m517HhEfDMiXql+/tgI7/+z0tZnImIlIj476n6IiIci4q2IeF6ODW13RNxfjY+XI+JjI7ThSxHxUkQ8FxGPR8RV1fEbI2Jd+uMrI7RhaN+PsR8ek/u/FhHPVMdH1Q/Dvo9jHROHHc/FnourY56LcfjmYs/Dk4HnYc/D1THPwzh883B13f05F5dS9uwFYBrAqwBuBjAL4FkAt47hvtcCuK36vQPgBwBuBfB5AH86xva/BuDqdOwvANxX/X4fgC+O8Vn8H4APjLofAHwEwG0Ant+u3dVzeRbAHICbqvEyPSIbfgPATPX7F8WGG/W8EfdDY9+Psx/S+38J4M9G3A/Dvo9jHROH+eW52HPxdu32XFwfP5BzsefhvX95HvY8vF27PQ/Xxw/kPFxdd1/OxXsdofAhACdLKT8spZwF8CiAu0Z901LKG6WUp6vfVwG8COC6Ud93h9wF4GvV718D8Ftjuu9HAbxaSvnvUd+olPItAO+lw8PafReAR0spZ0opPwJwEv1xc8VtKKU8WUo5X/3zKQDXX+59dmvDFoytH0hEBIDfB/CNy73PNjYM+z6OdUwccjwXb8ZzsefiJg7kXOx5eCLwPLwZz8Oeh5s4kPNwZcO+nIv3WlC4DsD/yL9PYcyTWETcCOCDAL5dHfqjKrznoVGGVlUUAE9GxPci4t7q2E+UUt4A+oMKwDUjtoHcjcEvyTj7ARje7r0aI58C8M/y75si4j8j4t8i4sMjvndT3+9FP3wYwJullFfk2Ej7IX0fJ21MHGT2vE89F9d4Lh7Ec/GY52LPw3vGnvep5+Eaz8ODeB7238RbsteCQjQcG9u2ExFxFMA/APhsKWUFwF8D+GkAvwjgDfRDW0bJL5dSbgNwB4DPRMRHRny/RiJiFsAnAPx9dWjc/bAVYx8jEfEAgPMAHqkOvQHgp0opHwTwJwC+HhHHRnT7YX2/F9+VT2LwP9SR9kPD93HoqQ3HvF3N5eG52HPxdngursxqOPfAzMWeh/cUz8Oeh7fD83BlVsO5B2YeBvbfXLzXgsIpADfIv68H8Po4bhwRR9B/UI+UUv4RAEopb5ZSLpRS3gfwNxhxyEgp5fXq51sAHq/u92ZEXFvZeC2At0ZpQ8UdAJ4upbxZ2TPWfqgY1u6xjpGIuAfAxwH8QSn95KQqjOjd6vfvoZ+f9DOjuP8WfT/ufpgB8DsAHhPbRtYPTd9HTMiYOCR4Lobn4oqJ+N55Lu4zzrnY8/Ce43kYnocrJuJ753m4j/8m3p69FhT+A8AtEXFTpQjeDeCJUd+0yoP5KoAXSylfluPXymm/DeD5/NkraEM7Ijr8Hf3iJ8+j3/57qtPuAfBPo7JBGFDdxtkPwrB2PwHg7oiYi4ibANwC4DujMCAibgfwOQCfKKX05PiJiJiufr+5suGHI7JhWN+PrR8qfh3AS6WUU2LbSPph2PcREzAmDhGei+G5uGLPv3eeiwcYy1zseXgi8DwMz8MVe/698zw8gP8m3o4y5iqQ+QXgTvQrWL4K4IEx3fNX0A8HeQ7AM9XrTgB/C+D71fEnAFw7QhtuRr8q57MAXmDbAfw4gH8B8Er18/iI+2IBwLsAFuXYSPsB/Yn6DQDn0FfW/nCrdgN4oBofLwO4Y4Q2nEQ/D4lj4ivVub9bPaNnATwN4DdHaMPQvh9XP1THHwbw6XTuqPph2PdxrGPisL88F3su9lx8eOdiz8OT8fI87HnY8/DhnYer6+7LuTgqQ4wxxhhjjDHGGGN2zF6nPBhjjDHGGGOMMWYfYkHBGGOMMcYYY4wxu8aCgjHGGGOMMcYYY3aNBQVjjDHGGGOMMcbsGgsKxhhjjDHGGGOM2TUWFIwxxhhjjDHGGLNrLCgYY4wxxhhjjDFm11hQMMYYY4wxxhhjzK75f+oRs6XHgZmlAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 50039 189220\n", + " Min thresh = 1000\n", + " Sliding\n", + "\n", + "\n", + " FP ROI = 037s_iimage_588413346180_CLEAN_ClassS_69-197.roi.nii.gz\n", + "037s_iimage_588413346180_CLEAN_ClassS_69-197.roi.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADYCAYAAABberBAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADcuUlEQVR4nOz9eZzueVrWh1+fp6qetZZzerpnpulZgZlhiyziAKNGEgwiQUZJJGhiECGjScSoiQIqChrj5KeJmBgwoxAwoGySH24RFJwfyAwTGEbCMgvDMvt0T3efpepZa/n+/qh6f+r63vWtPt19zumq0+e+Xq96narn+S6f7fuc57ru674/pWkaJRKJRCKRSCQSiUQikUg8E/QuugGJRCKRSCQSiUQikUgk7j2koJBIJBKJRCKRSCQSiUTiGSMFhUQikUgkEolEIpFIJBLPGCkoJBKJRCKRSCQSiUQikXjGSEEhkUgkEolEIpFIJBKJxDNGCgqJRCKRSCQSiUQikUgknjFSUEg85yil/FIp5fMvuh2JRCKROEUp5TdKKb/zaR7blFI+8Vne51mfm0gkEolE4nIhBYXEc46maT61aZo3X3Q7ngqllIdLKf+4lPLhky+/r7joNiUSicTzHaWULy+lvKWUMiulvPmi25NIJBKXEXdamL3V9fJ7ceKpkIJCItGNI0n/QtJ/dNENSSQSifsIT0r6FklvvOB2JBKJROIU+b04cS5SUEg853BbbSnlm0opP1BK+e5Sym4p5RdKKa8upXxDKeWxUsoHSilfaOd+VSnlnSfH/lop5Y+Ga//ZUspHThTUr3HFtZQyKKX8jVLK+0spj5ZS/k4pZdTVxqZpHm2a5lsl/cxdHIpEIpG4lCilvLaU8tZSyvWTz9S/XUrph8O++ORz+PFSyl8vpfTs/D9y8ll9rZTyI6WUlz+d+zZN86+apvl+SR++k/1JJBKJy4ZSyieXUt588jn7S6WUL7X33lxK+Rr7+w+XUv7Nye8/cfLyz5dS9kop/0kp5fNLKR8spfy5k8/k3yil/KfP9nqxrfm9OPFUSEEhcRnweyT9n5KuSnqHpB/R8dp8RNJflvS/27GPSfoSSduSvkrS3yylfJYklVK+SNKflvQ7JX2ipN8R7vM/Snq1pM84ef8RSX/xbnQokUgk7nEcSvpTkh6U9HmSvkDSfxWO+X2SPlvSZ0l6vaQ/IkmllN8r6c9J+jJJD0n6SUn/8LlodCKRSNwLKKVsSPonkn5U0gslfa2k7ymlvOZW5zZN8++e/PrpTdNsNk3zfSd/v1jHn9mPSPpKSW+6zeslEk8LKSgkLgN+smmaH2ma5kDSD+j4C+gbm6bZl/S9kl5RSrkiSU3T/LOmaX61Ocb/T8cfxL/95DpfLun/aJrml5qmmUn6Zm5QSimS/gtJf6ppmiebptmV9D9I+ornqI+JRCJxz6Bpmrc3TfPTTdMcNE3zGzoWds+ItCefp+/XcZrCHzh5/Y9K+mtN07zz5HP9f5D0GU/XpZBIJBL3AT5X0qaOv++umqb5cUn/VKefo88W39g0zfLkO/I/0/F340TiriIFhcRlwKP2+1zS403THNrf0vGHrkopv7uU8tOllCdLKdclfbGO1VhJ+jhJH7Br+e8PSRpLevuJtey6jnPBHrqTHUkkEonnA05Sz/5pKeWjpZSbOhYFHgyH+Wfs+3T8GSxJL5f0t+yz9klJRcdRs0QikUicfGdtmubIXnufbu9z8lrTNNNwvY877+BE4k4hBYXEPYNSykDSP5L0NyS9qGmaK5L+uY6/qErSRyS9xE55qf3+uI7FiU9tmubKyc9O0zSbd7/liUQicc/h2yS9S9KrmqbZ1nEKQwnH+Gfsy3Ra9+ADkv6ofdZeaZpm1DTNW+56qxOJROLewIclvdRrz+j4c/RDJ79PdRwIAy9+Gte8WkqZhOvxufxsrpdIPC2koJC4l9CXNJD0MUkHpZTfLekL7f3vl/RVJ0VuxrL6CCcK8N/Vcc2FF0pSKeWRUsrvOu9mpZThyf0kaXDydyKRSNwP2JJ0U9JeKeWTJP2XHcf8mVLK1VLKSyX9N5LIu/07kr6hlPKpklRK2Sml/P6nc9NSytrJZ+26pF4pZXiSa5xIJBLPJ7xNxyT/z5ZSNkopn6/jmmLfe/L+v5X0ZaWU8Ulx8a8O5z8q6eM7rvvNpZR+KeW367jm2A/c5vUq8ntx4jykoJC4Z3BS9+BP6Fg4uCbpD0r6x/b+/y3pf5H0ryW9V9JbT95anvz7dSev//SJhfdfSXqqYjVzSXsnv79Lp+kXiUQi8XzHf6fjz9hdHYuxXUW6fljS23X8RfWfSfp2SWqa5v/ScRHc7z35rP1FSb/7ad73D+n4s/bbdFwfZ35y/0QikXjeoGmalaQv1fFn4+OSvlXSf940zbtODvmbklY6JvrfJel7wiW+SdJ3naSWUSfhozr+fvzhk+P/2G1eLyK/Fyc6UZqmueg2JBJ3BaWUT9bxF9nBSWGwRCKRSCQSiUTieYUTh8N3N03zklscmkjccaRDIfG8Qinl951Yva7qOEL2T1JMSCQSiUQikUgkEok7jxQUEs83/FEd11j4VR3vo96V95tIJBKJRCKRSCQSidvEXRMUSilfVEp5dynlvaWUr79b90kkHE3TfNHJ7g0PNE3z+5qm+chFtymRuCjk53AikUhcPPKzOHG30TTNmzPdIXFRuCs1FEopa5LeI+k/kPRBST8j6Q80TfPLd/xmiUQikTiD/BxOJBKJi0d+FicSiec77pZD4bWS3ts0za+dVDH9Xkmvv0v3SiQSicRZ5OdwIpFIXDzysziRSDyvsX6XrvuIpA/Y3x+U9DnnHTwcDpvBYKCjoyM1TaNSitbW1tTr9eq/knR0dFR/Sinq9Xrq9Xoqpahpmvre4eGhJKmUUu/Btf04d2eUUurxfh6/cx9eW19f19raWuu88+5Jm+I9u87366ytrdW/Dw8Ptb+/33qv3+/XseF9+uj392vyN/9yf8aS6wEfLx932nx4eNi6VhwD/vbr+zz5uT4/fp6Pp7ej6xiO82vTXs7hGsD7E8cnjpuPF7/z4+1nDfp1/Bqs7dgujovndV3H2+1t5fq0xY+P88C65N5+TX8eu543STo4OKjXYMx9brx95z1vcf3E+Xiq8Yjnxvs81Tjxb9f1HPv7+483TfPQmTcuP57R57AkrW1Ompe9ouix5ZbW3rt8qkMTiUTiOcNCU62a5dkvS/cGntFncX4OJxKJy4pdXev8Tny3BIWuD/3WN/VSyhskvUGSNjc39YVf+IXa3d3VYrFQr9dTv9/XaDTS5uamrly5oo2NDR0cHGg2m2l3d1e9Xk+j0UiTyUSTyURN02g+n2tvb0/Xrl3T/v5+i2wul0sdHBxof39fs9lMi8VCi8Wikqn19fVK0NfX17W+3h6a4XBYxY2NjQ1duXJFOzs7Go/HGgwGappGBwenmwn0+30dHh5qtVppuVxqPp/r5s2bWiwWWi6X9Zrcc21trUX8+v1+6/3Dw0M98cQT2tvbq+c+8sgj2tnZ0dramlarlR5//HHN53OtVivt7+/XH65ZStHR0ZFWq1Vt19ramjY2NjQcDvXAAw9oPB5rbW2tjgtjtlqttFgsJEmDwaCSy+VyqdVqpaZptLa2pvX19XovJ/obGxsajUZ64IEH1DSNFouF9vb29MQTT9RzSyna39/XYrGohHwwGGg4HEo6Jq97e3va29vTwcFBFXYGg0Gdm/X19bpOZrOZVquVJGk8Htd59XtAgAeDwelCNVHDX3Oyydz0+/1WG4+OjrRYLPTEE0/o4ODgjHgBOGcwGNR7Q8oPDg50cHCgpmnq3/v7+y2RBEGp3+9rfX293ocxYI729/frPDIO3HNtba0+M3t7e9rf39doNFK/39fGxoaWy2XrvpPJRKPRqCXyzWYzTadTTadTXb9+vT5TiF4bGxutuXXhYn19XRsbG63xZU79GVytVnUMXDRjnlzscLGK8aBP8ZmWTsVBSWfGmnH+0Ic+9L4zJ94buOXnsNT+LB5u7OiRV/15ffz1ffV+9R13u32JRCLxtPC25scuugm3g2f0nTg/hxOJxGXFv2p+sPM78d0SFD4o6aX290skfdgPaJrmTZLeJEkvfvGLm/F4XL/EQ8QgsqvVShsbG1pfX9dwOKwEA0BOIPXudvBjIMr9fl8HBweVXHpEH+cBJMNJHcRXUm0XpI7jPOILsV5fX9doNNJyuaztoo8HBwetaDGkan9/XwcHB5UMITLQ9qOjI83nc41GI62vr7dcE35fd2s48URocPI0n8/rWCJi+PtczyPYHg13Yufgfmtra3V+RqORJGlvb6+OC+POHMfIOW1zR4Dfg35zbdqDqMB8ehSdv/f391sReAQej9K7W4M280PbnRDH9jvcccL5vO4ODT/e1zziEMe6CMR1I4E+ODjQYrGoggXjxJphHPyZ4p6Hh4eazWY6PDzUxsaGNjY26njxbPb7/Xo+4xrdQi4GlFK0sbHRes/dDj4ujBNr36/FuHc5GzjHHU/0x90NLmB0OU3uUdzyc1hqfxZvlwea0Q//P89N6xKJROL+wDP6Tpyfw4lE4l7D3RIUfkbSq0opr5T0IUlfIekPnndwr9fT1tZW/Xs6nVYiQER/MBhU18L+/r6Wy2UlvQgBEKTZbKblctki6BwrqZJyFy48PQGCAcHp9XpVUICEEJmH+EPouO5qtdJwOKzkF8eBdExgZrNZi0AR7XcC41Fvd0dAmnAZMIYQYdruhFc6JZieQkJEebFY6ObNm1VwgaS54OJpHogg9Ic20U4fT35wJRC5nkwm2t7e1o0bN+r4enSaiDTjE8k+As/GxkZLXECAgfjOZrN6fhR96APCDn1kfFww8L+ZK+YaxwAR+cFgUMm4O0/i+CPYOPlnXdCWmMLCvLjoQbSfFATO9+seHh5WBxAODeYTRwJt9nngvjg+cGXgLmDM+/2+VqtVp1OAeesSaDz1w4/3ceGcKCq4mOVrk/XIGnJBytMb3DWBs8PfczHqHsQz+hxOJBKJxF1BfhYnEonnNe6KoNA0zUEp5Y9L+hFJa5K+o2maX3qqc4bDYcsaDina39/X3t6eer2eNjc3a4pDv9+X1CZnEHdIAeTIo8OQHWz+0qmlGsLBcR6lhVg7UXJyynmIILTJrzMej7WxsVEJL8dxrEdnfRw4B+cAdnaECRwcTtYg9rRROiWJTjadSM7nczVNU+38kK+Y+++Cgc15i+Svra21xohj9vb26lgMBgM98MADko7dEbgXBoNBnfvZbHamdgUCAoIR7g2P2nMdrP0IFp7K4WPv7zHO3jc/nnMQlTh+NBppY2NDg8Ggjq/XGOiqU8F8Q8SjoIEwsrm5qd3d3SpiSariEWuPeWfscOHwWtM0Wi6XdY3M5/O6ltxRwLHj8bi2CWKNwDebzTQcDutcMG7D4bCKahBy5sjXOOPqAhbXQjCgrS7EsCaZa46n7aQmuUDhwk4pRZubm3WMSH/xz4Qo7tyreDafw4lEIpG4s8jP4kQi8XzH3XIoqGmafy7pnz+dY0spldw3TVMj7xAO8vc97YEaBU7CnXh4hNLJBQQjFu1zkkOb+CHq7CQaskSE2SOj0XYOsfQoPgTKhQrp1IrNdegX9/GUBI+Ix5QJSKSnSNAeiBPj6E4LF08gpF4TIZK1mErhY8fYMq77+/taX1/Xcrms49Lv91s1MA4ODmq/mG8EH3dgeJ9cQHGCydyNx+Mz6SbusugqjEibed/XanyNNcr9gc+9R/67ihEyfi5sMK/0zZ8R5smLQ/rxjA9CgN+TcyXVuUCQcfGH8ZOOHQhdQhrz623wv134iWsUh4QLaHEuaB9CTCzeyjW7Um/oF+vBPwtI2UCIow08VzHl417FM/kcTiQSicTdQX4WJxKJ5zPumqDwTEAUkuguxEk6rafg+fweqYSgeGTViQ3Xl04t7LHoGmTJyRxwwuSRXK4DEXdSK6mmInANP5f+uruiK3feCbzUFhvcWl9KaQkWDtrtf3v6hKcWLJdLTafT2iaA44B7O1n0/jiZg+gSdYbAEo131wV2edoB0aR91EHADYC13+cdcuvpHrTJBQ8i6e6+iKkxceycOEPYY269k/QoqLio4lb9OF+sQSfaLpJtbGy0CH0UFrzAYRSZ3CGAqObjEZ8R3AyeduD9os+MIcJSXPPutvC17X1GoKGdUayJAk50efg6jPPCumWNrFar1r24no9TdHwkEolEIpFIJBKJblwaQcGJMrUQIEyeFw4xwMouqe5s4JFGItzuRJBOo57SqVPAc7PdvRCJi+d9IyQQ3Ye4etFG7tHv98/k4EfSxH0BxJlIqo+Vix5uz3fhAlLoUXDgpInUkaOjI+3t7bUi/JGgRdLHuLno4USSsYgWdcQL+khU2F0SjJkXYeRavO7pAl5Ms5RS14OLPVyDXTnok0envU6Dzw/HupjgY8pY+bkuEvE364S1wZhyH46nVoanzHRF3Q8PD1tunrgVpc8f6QcunlFDANGE+zO2XsCUMfIx8PojCEA+57GPjDd/R/En1kDweec+XTUuukQ3d01wPuuBsXLHCOPhz1wKColEIpFIJBKJxPm4FIKCpBapwzEgHRMKrMoQAo+IOmmFkEJ6iXJ78bmmadTv97W3t1evQc2FaA93UkwtA8gO9vzZbKb19XVduXKlphH4ln0UsaN+AtfCcUFOOgSH+zsBi+3gX0QId1nQDyeyXRHfpmk0Go1aDgdPMYnF7JzYQWwhY07gcE54VJ73IXNOgqXjbUNxpfh2l7gYRqNRbQcFMB0uBjGOXniTdjDurAvWltcYkFTvS1u91gXndm0vSBt9LXtbmTPqdfiWoWtra60CgWzpyfwvFot6PGPFuqGNXhvDz0V08TXBmDB+59UKoOBkVzoLfaQNcW7cjcHrTu670jx8feGSQHBgnKIbwvvlAkN0Q7i7yGtb8FxHgSqRSCQSiUQikUg8NS7Ft2bqJjgp9fQEhAJIFlFe31veI/xdee9ETzl/NptVsglBiZH+uH0k1yWXm/uRKsB5o9FI4/G4FnvzegoeFV4ul5rP51osFpXEePHFmCMfaxhATn2rSLe+Q5ggSl3RVs6jloFHbl0cOTo63qXBySqihJPxtbU1jcfjM/dijD0ijJOAuUcIoGYC841bAaJPagxzzfwvFguVUuruGrzv6yLWz6CdzLO/x7hwfV8b3k7Iuufu++s+1ghJCGSkhHghS95HiIEIL5fLVtQ/pp7QN8QY+oNYxDr2/jnJ7hJqaHNMJfA++dg6mfdrsy49dcjnhfZ7vYSYLsE69DHF5QIQFl2o4DlgPN2BxGeLC2DMmwtjiUQikUgkEolE4iwujaAQrfXR3k1EeLFYaD6fazwe14jtYDCoxNSvEbcwlE63hvOdIFxQiLZ3iKZHj2mbR+0Xi0Ul395uiCMEBVLsWx8iLrDbApXmIT/eF4+8ek64k0F3b8SUD+AEiutBzrzI3XA4rMfGwn285tH/mKrh6QGIGpGkUdDQx9bTXRgLakYgwDBXHu2m8GOX28PFlUhMfQycGDNvfg/u62JLFA5i3QaHk9sofFFQkTZ67QrgKQjAU1W83VFI8NQUqZ0S4e/72vTXfKxc1PA16b97GkN0KriwENMX3GEUC5fGtsY2ed+83oSfxxj5nHVdL5FIJBKJRCKRSJyPSyUouLDgOzrs7+/XOgmHh4e6ceNG3aGAKPpisTgTuY259rw+GAxqZB0Sijjh+erREeCRTa4NQfEtBJum0WAwaFniIaKIDZ7TT3SX/h0dHbVECS8MGFMJEFGI/rp4sLGxcUZkiTnqTjR9K0nuxdaAkD/aCekmZYI0BsYFp8V5JNAj29jqY5qKv0fbKeCIG8HH0McRZ4FHy7vWm4+NCx20uytfXzoVVyCmkF4XrrrEBG8D6zLWG/DtJt294HUE/Dyu506EON5xDbhT4LzjIwmPaQ9+Ha+tQBt9PFhzPD8+tv5sec0LBCQXHGJ//LVY/8JdCt4fnqcoNvl6Os+RkUgkEolEIpFIJE5xKQQF7OrkkWPThtx6TYLd3d0zRft2dnbqsf1+X/P5vEWayb33POydnR31ej1Np9OamkBbPDWC9IrhcKjFYlGt+O5SgMiSEiCpRQZ7vV6tS0C7fFtEJ+vSaZ2C7e3tei7kaDAY1Pt6JLbLcu6CjF8b+E4HkHUns9yTbSYh0Xt7e9VNQc0EiCD9JFXhypUr6vf7ms1mmk6nms/nNeLvtR88FYQxQVBwYcft8751KOPHOaPRqAoha2trtRBn3P6QOXIBwQsQMr6SqpDC2LFO2MrQ3Q/udgHuNEHo8XQF1hTtYZcFd8ZwDmPlaS5O6Olfl4sgOiO4vrsaXNjqOrbLpeCpBi5c0UdSOUgBiqkKvMe1PfUGB5LX9XAHBiKCP5cuIPgzwtzF9rkA4fORSCQSiUQikUgkunFpvi0T3ZZUo70QWyLly+VSi8VCu7u7euyxx6rbYDKZ1OJ9BwcH2tvb67wHpI8o92QyqUQVMiqpZafnB/KzWq20WCxa4oFHhynMCDFEIFlfX6/nQGKl0yJ/EH+IpKR6Hcii10LwFAePBMfIOsILKSORHPp1XMSR2lFaLP4QseVyWdsL8VpfX9d8Pm9FrtfW1jQcDluiC3UfIIykNvjuEt636D6hf54O40Ul6QuiihPmLsdAHAcnkXFcmeubN29W90ZX1Nyvg0DmiKQ+OiFYd6yfpmmqoONrgblhrCHJkGOvreEpDMyXizkuXrhA46JBl0vA10jX+Prx9IX2e6FTP4bruVuGOhIxPYLfPZ2B8RwMBlWY8ZoU/pz4ePm4xVSsRCKRSCQSiUQi0calEBS8KBykBFK9Wq3OFK5bLpeazWba3d3V3t6etre3a1QSu71HMyW1iAKRV+ooUJvBLd84EWgf21Rix/cIN4TMLfv8DnHiHk5A2SoRiz5pEpzD65zjUfCnip5ChDyNAHh9ARBJlred1/kdgWB9ff1M3QrEEheEIK70zdMwPCef+0Fi3W7v0XafS6m9u4KTWYigX4dznXBGot9VR8CJJu2B2A4Gg1bdiZjr74Q+Wu9jykWEE23fRcGFLp8jyLG/5+IOggEpBi5CABd1PAUhOg7cLcJ4ejFV7wP9iykF0XnhazGuR57r+NzFecL944KWr+WYMuROBhez4pafiUQikUgkEolE4iwuhaAgtbdl7PV6ms1mlfwMh8NWlX3p1Cmwt7en6XSq8Xgs6dhGPR6PK9ntsjVDhCBgsX6DdLonPSQXYkJk3FMz3B7uRQkRQhAHcEIgBHBMTEtwe3bMi/cijU5Cu6LkbnlHSIBAerpDjNxGUurbHdJu3xXDreUefaamhPcTUhht+Z4e4ORdapN+J8RdqQW85rUGovDCeEThwM+PLok4ti5qMC+0wWtrMFde7JH3OMeFldhOnwfflYQ59LF0schJdHQoeKFMd+B0CTp+LOuHtRLf8wKKvq78Pi6MeQqQw59T4PUUPBUkij7+XLMmPaXF57srDcQ/K+K8JxKJRCKRSCQSiTYulaAAwRiPxzo6OqrV/Mm5hsC4TdkLH3rdAFIgpNPCf5Bz8qOpzzAYDFquBsgJtn4Eh9Fo1CJtkBSI8XQ6rb+ThgG59GvTDrdhb21tVUFisVhouVyesax7XQeIODZ4+v9UIHrr6QOIJU70JLWILPOC08Dz1d1uz3WI3uPK4PV+v6/xeFxJoad2nNdeQJ99tw13DvjxHvGW2oKEiw+MN+kgHql2gcXJMHPBmHBtr1/g4yMd2+7jdpWQcNZD184NLu7wPBCpx7ni4on30V0Y3A8RxQtrxhQa+s0zEp0Afl3WtRNzrwnixB14fQOKkPpcRhcE7WD9Ib75WEZnCjU8/Llw4Saujy43UVxbiUQikUgkEolE4iwuhaDgRJdcfez1vV5Pi8WiJRxQwR9iulgszhThI1pK8T4n8ZyL8DAej9U0x8UXcQpAuvb39+s9Dg8PW1tOIhZARJz0evE4ag/gmnDiTgoB/YLk+o9XvI+RVs+Fj1sAOqHzyDL3ldQ6L6Y8EEWXVHfa2NjYqMIKBM+j1xCz+Xyu+XxeU0c4fmtrS71eT/P5vCU2dEXOvR9EpVkHTmK9foK7LDg/WutdVIh1Adzm7/AUE58/xhO3QNc13CHiDoDojPAUkVgTwoUjxBrWC+vZ28P8xjoLvsMI6TY8L16o0Im5rxVcJwgbPu5xN4rVanUmrcPrkaytrdVUIxfnaC/rmxQGnB48f+7a8Oea83y+ff1HcSi6dHitS6xJJBKJRCKRSCQSp7gUgoJ0SmyJmEtnC+9FHB4eaj6fa29vrxZY9Oi727kh416jABJCmgTEgx0MIIAQRLYqdGImtXPdvZgbggbkS1KLyHkkmeuORqMqHjRN00oX2NjYaBHSaAmHXEJmPb1DOiW9bsV3xBQBj0R7n4gye7u5P5F65ge3xdHRURWN6FvMx0eMiKkcXNvJd3QleIqDt83f97HwNUIU3PPmo1sgFq/0KHe02fsc8DrEmLUXhSHaF237vq66Cky6kOPCUBQ8otPCnTJOzJ08R7eKizyeTtG124ILBF3pA/SHPrkj5LxUEuDFJGPqg697T2HwtRLTN7xPXW3OWgqJRCKRSCQSiUQ3LoWg4DnZvV6vWuFxLlDIL5IDot97e3t64IEH1O/3W+TDLc5sFyipRrm9SJ3b7rsqu0O6iOgiKLhV3Mk64oVHZYkyd5E8/3FXBY6I4XBYHRtekd9z56nZIKklhETiFKP4Pl703R0SkXh6AUr6DkH0HPTVaqXpdNqqM4FbYzgc1r5w7yj0SGrtBhGt7b5+Yt9ibn4kh9Gm77t8RBCppr9u6/f+O+H2IpL0geKNTsA530UFxpb70oaYlhJJvb/mogfn+HactJcxi7U6ONdTC2iTt9WFD6L6nM/8ukjgxJ159YKW7hjx+/hc+nogNcjnns+RrjXgYlos6BlrqXSJGYlEIpFIJBKJROIUl0JQkE7TB2KeOVF7CJ8XL8RmzY4PEAS3wnu+tW9R5xH3xWKh4XBYI+ekJbA9JCQQ8iupplhAonu9Xt29IEaBI4nBtk3knv5j5eY87OW0DZGB1AkXBhBTSin1PbeDuzjjlf2ddEIWfYy5LsRusVjUMUD48DF30WS1WunatWu1FgVCBOfEgnkukjjp5RhEC67DvLq44ZFr7x+iBnDSjnASCWkUXHAaUCTUXRGSqujjtR4g6sy7b6Hp1vuYAkG7uD5ijK8PHD0+/4yj1+cA0VnB8+DPCevD3TA+Zt5ediFxYh7FKyfr9MMFAneCuOPFBYJYwyG6YqIDwlMtBoNBK6XGxRwXYjzFx6/ZJS4mEolEIpFIJBKJY1wKQYE6A27ld3LnFd4p5OZRTCKhkDhSHDY2NjSfz6u7wSOsq9WqEl2EAIgVJAYHBE4Bj2rPZrNKELkf93ISxnX8/t7X84rSra2taTKZVNI+HA5rsUrSL+bzeWf9gS54jr5HvyNhpNaDj6XXDiD9hLEiH95BisdwOGwV0UMMcfJJ30GsQ+DRbAQfJ+TedtbDYrFopRAwLpBJyK2nP3TVofB0Ce7hRB9ByMfFxzGSUfrrokJM/aDv3iZPB/KaGowr6zfWQIjw9jmZpl9eANXbC4F3nLfOwHlbmgJ/Lri+i1r+GeC7Qfg89nq96izyNBKugTvH3RFx69aYSuL3uVUfE4lEIpFIJBKJ+x2XQlCQ2oTPK657pJlIcjzPHQcQTYgXhJuIoxMIrj+fz1v55x49duKGXd8JCNfEAYBYwetuhfc2++vuXgBeYNKjuYyN1zmAQHqE11MrutrAuZF44jDwyDXHegQcIcZ3foD8MtaIAO5qcFs/93ERJxK5aFP3tAHf8SHuvtHVllg4s8uB4CTa2xxrACCk+E4Jfh0XByDyEH53REQhiPYy/11OkyjIuHDixJx/OabL/QN8zXiKgxNvnw/gaT4xwu9FGmPdCB+r6DCIaTk8w5724e12l0ucO++vO5f42z9PmP8UFBKJRCKRSCQSiaeHZy0olFJeKunvS3qxpCNJb2qa5m+VUh6Q9H2SXiHpNyR9edM0157qWl256B6p5os/0Xpy3vny78QK0gT5hCBDypyYenR5Pp+fKVLoooSf68JGjIDHAnlOnPnbyR//+r1cFODaECqIbFc+vef1AyefsX9dhAki60TU54fX2P3Cc9GlszsuUG/CSWUkecyBO088h97Hg+KWRK2pt+HpJ+4YYE10Wek9Yh+Fizg2XekS3oc4tiASY3c5IFxFou1ribH2dBDEK5/v+AzFegg8Uz4H7miQVMm/izAuOsS6Dy7cRAEmzi/nx1oKLnx1CQH83iUy+Vx4modfK7YtijgIVHF+3Klw2XEnP4sTiUQi8cyRn8OJROJ+xu04FA4k/bdN0/xcKWVL0ttLKf9S0h+W9GNN07yxlPL1kr5e0tfd6mJENp2s1UaekC/plMiw5SBf/H2bOMh1v9/XaDTSarXSfD5vETe3jS+XS83n8xapR7CAqEKGSil1u0lPHYCEeOSa9kIgvR6BW/9pq+8EwXmQJAgyOe7D4bDWO4BMrVarFpHmGl67wcdI0pm/JdW2xN0YGDcIGQUqiUwjHJRyupMFTg3GBVLshQ1xliyXyyoQAN732g+emsE1mSeOm8/nklS3PgRORBlX30EiOmA89SKuiS7HDO2lnZB3dylw/y4xwWsDRAGHH+bIxR/aHx0nTpJdSOFaXtDTi3qyfrx/XWkU9NdJ/tHRUcuZ4OKAC0pddR7cteP9iiIb8AKN7n7x8fWfrloOrJ/4LHc5eC4p7uhncSKRSCSeMfJzOJFI3Ld41oJC0zQfkfSRk993SynvlPSIpNdL+vyTw75L0pt1iw9P0g6oe+BRX8gj5BYyOp1Oa5Q1FoLzQoz9fl+TyUSSarFByO9wOFQppdZJWCwWLUeEpBoVh4RA2EejUYtUQnggJF2V/P26o9GoRRClU5GD850IInJA1kopdbxoE6kF7qTwtAeIsDsQPGoMccVVQH0ISdXF4VFt0iIoXOmuDIgj7XSHhDtKEAG4r5Nv2sm80fdYXHM+n9dxRLhxIQQhxufUI9WsF09diQ6NuGtC3D2D392JgVgQ02k8PSTa92NqAc/D0dGRbty40aorwH05B5EKIuwpH4hrrI3mpAaEu0lI6XEhi3Z1OYG8vz737giJfeUchKblctk6l3nye/nzg+jhbfM+eMFWd+14KgnvUe+EPsQUj/NShS4b7uRncSKRSCSeOfJzOJFI3M+4IzUUSimvkPSZkt4m6UUnH6xqmuYjpZQX3ur8o6MjzefzWvyQiLR/qYcMOuGPEU4IRSmlFm+EYJDiQP58FCvYPcC3MXS7NoSDwoJuQ485306ouVYUF5wIetSY97tSJBAO4niA6JiAWHMdCJs7O9zN4GPY6x0XvEM4IYrr9SUg+7SVsYVUMvbczws4OlkjNYW6Bk4A6TdjwDXi2nCBAfLZlToinboE3Crvdn+PUrPWvG5GrFng48G5rM14jh/jaTNRYPCikZ5m4wSYtATe93+ZW19fXrsBEYc5dwHIa4/4s8AYxh9f1z53PG/+DHgqAce4qOL1KOKcRoLvbgbu4e4Qdzn4c+KvISxwfkw7ulVxycuG2/0sTiQSicTtIT+HE4nE/Ybb/rZcStmU9I8k/cmmaW4+3ZzjUsobJL1BOq56T6TSSRgEyCP2vA6ZhRR5PQSirxBRItsQDa/y77UWiPC7GOB/c30EBQh+V6HICCdPTlp4z8WCSIRdeGCMnBDFKDfE04lbLG7p48F1e71eTZvg9fX1dY1Go3oeO0vQxhgxjtZyEHcgcNs710bs8DFHmGBeuaa7DeI2f56i4XAyi4Dgc+BrKJJS35GCscFt4PPO3z5P9Id/o1ODddoVDfd5QETrWgdu0/f+ecqM3xsBJ45TTLdxUaGLpHtKggsKLrT5GHeJELwXr8n93KXgogKCkIsTCIouOMVrR9HP3Sfnte9ewB35LNb47jUwkUgknufIz+FEInE/4rYEhVLKho4/OL+naZofOnn50VLKwydK7MOSHus6t2maN0l6kyRtb2831ETwiCYFFSEzEM5Y8JDoPmSKmgm+9SHCAddyW/Z4PNZisagWaHcB8Lsfz/3Y5cCt1bSLcyEwzUkqhpNGL+AYiWxMH+jKE3cCHOsmuH3ct8P0NvqYQD53d3dbKRSkC4xGI21uburGjRstgsdceTuiCOApGNSt8PfdUTEcDls1C/zn8PCwCkUU53R3hK2tKvrQb8bLnSmRXNIe3wHCU1dcEOFfH3tSUPr9fst6L7XrgMTdGtxtEkUz7kvNBBeeEG26ttCkLzESz7iNRqPaFtoYa5dwzegsiCKAr2efCxcI/VgvKBmLmzrp9zobPleemuDOEa7DeHjdEHcXsXbdSeJpNr6O/NqXGXfss7g8cFaJSyQSicQtkZ/DiUTifsXt7PJQJH27pHc2TfM/21v/WNJXSnrjyb8//HSv6dsRQo4h3UQqsbxDpCCO0jGZIJ+fFApJlYByDK9R+wCrM1Hy8/LaiehC2MhZl6TBYMC4tKzaEDvqLlB08OjoSMvlspU64VF3Fwzou0fipWNiRmoH5J++UGSPAosUbfRINuQS0sU4LZfLOgdsqbmxsaHxeKzBYNCqaRBdDT6XEDLmzJ0YCARO6A4PD2u9heVyqcViofl8XkUEfiDGXhiTcUFAYH0whl4XgbYwvz6eXgyR+zEnzKmTWCfk7hbo2sWhaw1y3cFg0EpR8PUnndaGcPHJa2RIqmue+3ubuR/XQlRw50fcztLnCDeGO2cQh9yF4Nfwtc0Pa2Jtba0KMKw3T3lhDqkh4W3i3u7gcVHKX+fzg7EGLsxFt4e/fy8UZbwbn8WJRCKRePrIz+FEInE/43YcCr9V0h+S9AullH978tqf0/GH5veXUr5a0vsl/f5nclEnZ16wkNewyEMWnYxG8cHJlue8Q+wgr0ThySt3cgw5g0g7KXFLNgQcEjMYDFrOBI/GOsn0iCuugsFgoNFoVMURt+N7tBfnAPdfLBb1ujEP3aPPR0enxReHw2Gr+OJ4PNZsNtNsNtPNmze1XC61t7dXyTaEzaPRkHgnwh7NhgDTdgQCzuU6kE+uzzwxH8vlst7H3ROIQJ5G4e4IBBOP+jOPnqPvdv/5fN6y83u/fA5xmDgJjvn38TouYkjt7Unp33K5bBX97PV6GgwGZ2otxLb58+N95DUIuT8LLvrE8YnPmI+Vb23Js8nrtNdFiXg+69RrazB2fm9P4+Aa7uDx/vg6j+kRXJOtIr0Gio+jixX3gqCgu/RZnEgkEomnjfwcTiQS9y1uZ5eHfyPpvOSwL3im13MyBCAoi8WikjDISoxyE7H13QScwDlJcYIGuSDqTY0AznO3QMyFixZwJ01eVwECT40GIrhOgCC+uAqGw6EktUj0ybhXQgXpJhWA65/XRqz4Tn4lVQGEyDvRbdwJs9ms5VCgD5JaLg13BNA/j/gyRr69pW/96DUmmGt2J6AvkG0XaoBHmLvs6p5m4IIO9481AjxtwI8DRLc9NSCmvfg5T5Wfz/y7u8Lbh4MGAcD7Hterw/vKGnangj8vcZyYU2831/CxpO+xNkmsS0CaSHQ5xNSMmErDmvSaEz7PfqwLEPQxijexr1HkiKkelx13+rM4kUgkEs8M+TmcSCTuZ1yKEuYefXSiAXlcrVY1Ig/p9vQIyJUTDc+x9yioE8nRaKTRaFQj4dPptEU4IIUQFMhcJM3UaHCLN32iP77rxHA4bBUphFRh40foGAwGms1mWq1WWq1WLVcA919fX9dwOKwuAFIqolABcfJ8dMj9eDyu15FU+zObzTSdTqvIMplMtLW1dcZWzjzgPvCxQSBw2zqEmLkFkGkvGImLwucQkclTPGIevf8NqXQHSYxku5WesWeN0Sfu7Y4En2eu62kK0tndB1wUcPGgK5Uivu9pJL5biRN8J/wuOtDemO7BGumK1FMIMgoVsf9RUPBnh3vxjLig4G6Xpmla64Fn2p09XsfCj/N59108/JwoDsRnwl+PO10kEolEIpFIJBKJs7gUggKk3KOnoGka3bhxQzdv3tRwONTW1lZruz8I63nXJcINMfItCNfX1zUej7WzsyPpmJD0+3098cQTms/n9f6Hh4caDoeV4JDe4DsOUHuAlAlJrd0RqOtAasLm5qYmk0mrdsNgMGgJIIgiq9VKs9lMvV6vJUZAAF08YbcMSa3rQbpjRNgJKO0ld71pGj366KPa29vT3t6eHnvsMV25ckVbW1stQQTBA6Ln5NYJr7srPFXCo+1uTYccelFNUgAk1RQPj8B7fQL+RpAAkFrvOygn9QyYb8beBSMXndwJ4eIT483aQHCBvLv9P+4U4QTfrf2speFwWJ0hnl7hkX3Oic8H12TsWDveFhd/nJy7OOHOB64bUwk4LwpLnjLhJJ81F9eQp8x4/3gGPd0FkYPxiOJOTFnxtBXWJHPG58fNmzeVSCQSiUQikUgkzuLSCArj8biS7Zj64KkNR0dH2tzcPGOLhnRCQhApIrFwKz6kZjgc6sUvfnGLyD3xxBOtqHRMmfA0BkQLctwhRUTPB4OBJpNJJWoeDR8MBrVmghdKpKq/CwKIB94X2re2tqbxeFzdFj4Obv+m74ybCwNuFx8MBrpy5UqNGFMg8cknn1QpRZubm7Wtw+GwkjEnyj52XdZ7+jGdTlt1MHxe/TVJ1cUxHA7PRKq5tp9Lu+g314vuFd9tw+txeCFFFymiiOHpOMytdOom8SKN9AMgrDBv0drv7gon414w0sc4pg/5/PMvLol4bRcwXJjw+3gtCuac933eu+oPuHuiK4Uo1kRwl4Cvz3gcc81xLph56gnzimOIvvv4xYKPiUTi7mP94Rfr4LsvxVeS5y1ufvtLtP0Pfvqim5FIJBKJ5xkuxf/eEGXPZ3ZAwiFvkEqPRDoxjBZwruEE3EnH2tqatra2KnFZLBZaLBatrRadcHuhOizxkFCP0kqq7dvc3Kzk1m3giAkIEoggHuGn8GAkRzGH3gv4+XgybjH9gWhsJFAuRGxvb1cHwXw+182bN2sxS8/rJ30C94bPLfd00uxzSA2IOO/0M/7trg9Jrbx85sWvRdt8PXmEHJHGt5mUTrc35L5e+8FxHqF2ss780H+vl+Bt8ut4H3yuaXvcMpF5i84Gd6b4dX1d+LPSdR6CizslfH5wFTDPLmjEFIc4n9H5EMfS7xPdSC58+HHxb0/NADynsU1dzpVEInFn0RsO9bE/9Jn178UDRb/4yd96gS16/uPVv+crtT/5PKmRHvrud+ioo+5SIpFIJBLPFJdCUJBUiwISPYxf5n17O3L+/ZxSSiXjTn6cZHoOv+enN03TirizywGiAtHzGAmGqC4WC81msyoIUEsA4uU1FtjVwNMcEBS2trbqsW79jpF1z7+PxA3Xw2g0qnn2HHt4eLotowsMUcBwB8f29nbt/3Q61e7ubk1PIS2DXRbG43GrvoCLE9Kpu8PFmMFgoKZpNJvNak0FIvmMgws7XUKKE3AEHbfvRwGA9jCPjIGLHpBpUkyOjo60t7fXKjrodn7g7gh3G0DKJbXcD4hMsS/MSRc5d4eB983TFaT2DgUuRHjKggs00TXQ6/XOjF2sE+HbuEbXkKetuGjF+MbjuacLGxznYkWEi0N+PNel/oiPcRw/FxxTUEgk7g7WXvDA6R8vfkhv/aa/rY3SnbKYuPN4z+/4Lul3SMtmX7/vp/6g1h57or53+MSTF9iyRCKRSNzLuBSCghOPfr9f87shENQncGILIfPovVvZgRMFt6d7ysJqtdLGxkbNtae44bVr16qwALngHtj0cSc0TVNJPG3Dmg/RhuxKx5b3nZ0djcdjjUYjjcdjbW5u1jbQPvrsaRCQpel0Wh0BMT1jbW1Nm5ublaDHugqSqjOA31erlUajUUs4cXfI4eGhdnd3tbu7W+3kbI/pUXPSTTw/31MQ+H1/f7/2lzoNN27cqLs4uCuFfuA0oCYBhNiJLm1zp4iLGlwXAUJSHdder6fZbFaPQVTAicJ80zcnsrgXvG4B1/TovjtANjY2aoFJ2ufCjrsb3OEwHA6rGIY4w/r0+fBnjD46wUc4Os8Z4KJCFAAQ0JhrnlueN+bBx97nIhZW5PgucE/f/QLh0EWbLgeEi0o+jsy7F5PsGrtEInH7WHvwBfr2n/thbfXs+SvDC2zR/YtB2dD3/8v/s/59/ehAb/j036PDa9cusFWJRCKRuFdxaQQF8tzX19c1Go1aRewgLW6nhpQ2TVN3J4AQQBjcwu658FK7AjzR1clkosFgoOVyqQ9/+MOaTqdaLpetiKynPUB8m6ZpFblz4k/KwtbWliaTSSWBvV5P29vbGo1GGg6HVYxwgcQFBYgRgoAXNzwvutvr9TSZTKpYgEPBr884Qdrn87mGw2E9ZmNjQ5PJpBJXnASlFA2HQ81ms1rPAIeIt5e58SKMzMPBwUF1bgDa6YUaPUWA8/z9aPv3AnxOgvnX8//n87l2d3drjQv67GkDo9FIOzs7dbx9XZIu4euBtkW7fYSLYF7DwQW2p4qUI35xLxe9XFiI7TgvBcEdDC5MdRX89LQi/mVHBndWuLvAhYs4b11pB9zfBTGvVcFcu4vHHRoc704e5tDbyXj5nCcSiTuH2Zd9jj7p635RL1wba61kXZLLgM3eqZgzKkd65F+stDza1r95+yfrVX/8bRfYskQikUjca7gUgoJ0nNLg0WLPySYS3uv1aoQakgyJi7Z9rglRdst5JFMe+WTnB9IqyPH3qLLn4FM3ALIVt/hD4BiPx2qapkbaIdsICl11CTY2NmrU21Ml3G7uBD7a47m3kyyu7yQWsQAHgNcWcHKN4MJWlnt7e3X3CSeiUjvi7CQWwua1BRgbhBnmuKvPy+VS8/n8jBUfPBXZpI3MDfdgF4fYToQNSXXnBwpQMo5xDphbJ7Ge5++kmvmKbXXB7Kmi5d7XGL3nXuftsnAevECjR+xZuxzjggHtY115GkFMtQCR9PvvUdCgL4gnXCemlPhcM45xTON80F4EBReeojiRSCSeOfa+/HP16OuX+smX/pSkFBMuI9ZKT3/3pT8lSfrvJ4/pB/7Uvy9JeuSfflSHv/JrF9m0RCKRSNwDuDSCAi4Fdj1wcg759tx3osulFC2Xy0qQnRRCNoj0+64P/sM2elyHqDxkGvdEv9+v9/BrkTohqbaz3++3SCTWfu7TNE2LpLqdnZQJor701S3kEGPEF3ds+Jj6Nbui/i5GkALBPQaDQXV2HB4eajQaaXNzs9r/9/b2tLu7W+s2+Px4ZNxTA2iDuykmk0ltM/UeptNpJX44QtbX17W/v6+9vb3aPwiw75zB/DB3RM5jWgQkc7FYVDIcxQbqOmxsbLRqRCBikRKBAEH9Dye/TuJdlHInB6kynuKBcIHgE0m5zyHimRNn1tR56QRe/6GLbHt7uZ6nWXjtCRfDYrFHH3vWkjsd4rqlzTw7LhogssS6DNzL59XTTdwNwVr3Nvt9XVRIQSGRuD1c/a/ep5969f990c1IPE38hQffpb/wZ94lSfqs+X+ph2cL6ehIBx/56AW3LJFIJBKXFZdCUMBmDjFsmqYW+oNMS6eRagiXdEwgp9NpJeBO3CDc0mnOPQR1OBzWPHjp1M3Q6x1vYbm9va3JZFIFAgoFeuQW4jocDmtNBd/1QWq7H7zeADUhIHqQUMQLCjU6SSW330mW1w+Q2nnuy+WyZYXHts7viDeQrcVi0RIVxuNxJboQ8VhU8ebNm3XscVm4SLFarc4U/HP7OsU1nfAhUOzt7bWs/4gaCECIBcwdYgXOCnd6kG7h8+Z1Gtxp0e/3NRgMqgtjOBzqwQcf1NbWVhVYFotFK7WA9AfEJYisb4fpxNXJvV8nigPnWfl5HmJtAXfdxHoNrJF4PIQ+pgK4qyEKAjwziAqMJ+2JBRndTeGuh+iY6HpuXDzgOt4eB7VK/G/60VVPg/GPx4AUFBKJxP2Kn/nG/01H39jovftL/anX/HtqTr4/JBKJRCLhuBSCAiBySMTYRQEvwgeIZkMcAWSF953I4h7w9AgEg8Vi0cqPJxWByGxMK4B8QIABZNuPRwigP7TNRQQnOhAciGq/369thKR6fQXGxq3b0e7tdnwcG4gr3It2IyzgyoBk0x5SPabTaXVzeGFDFzY8qg/x9yh63HqSYpbuDoGM08bZbKb5fK7FYqH5fF7FE9/Rwnf9wDHhqTSeDtAVlaYv1JbgetRbYIwh7+vr67VYInPj88O4e9TewRywrugL7eJcjo31EPzavq0j7WO+GUdPrYC8cw3u4+1kVxKu686J81IVfBy9TeelcdCm6OCITgTG3V0KHOsigLsbPDUj1nPw4/mc4LxEIpG4H7FWelqT9PEbG/p33rrSUXPnU1Z+4n/7HD3wHW+949dNJBKJxHOHSyUoRNLlef+87ySI392WDhFwYiy1I7dO0lwcWK1Wrfz70WikyWSizc3NFoGM7fCoJtFoj5z7sfTHrez7+/tnIsNE30mHQOSAOHOeFwmkf1H48GKGTvhwFHjUnsi61xHgeAg14oELGwgELuwg1HBf5gU7P3PgEfQYgfb7c9z29vaZiDlj6bUMvE1eVyBGujnOawL4D+IKghApDr7GfLzddeG1GHxuaAv9j7ULfK348f6sOFEn5cTn0sl1dNeQmvBUDghvqz8XUcTyehbc38+L4N7xnjhW/LlhfmOhzShguBMnpoVwDR83v467KmLK0FPVm0gkEon7AYOyob/+4nfclWv/li/7RH3g4depNNLLvuXf6mg2uyv3SSQSicTdw6URFPhiTyQxVtR3wgxJ5T2KCTpxJE1CUivi6GQdUu7EGBt3v9/X5uamdnZ2qoWd2gcQZXcYeJSXWgG+1SXX9ggzfUEMcRs+WxSSluE7R+DiYAxcUPB0A9oCcYpk1ndgoE0QR3cTQFYRFEgH2N/fb5EyFymc2CPUNM1x0UVSK7g39Sai/T2ilFLTRminF06kToQLC9JpqgxtiJF0d3ZwHeYDwcVFH9wUkmqRTa8F0Ov1qsOCMYT0+rgwPz5PLnjEGgg+j7zu/WPsaL+kzkKNLi74vHOPKJCRugDBdtIf01e8BgX3jeKgixyxgCN9jkId6yuKKt4ndy+5uOLjhWiASOdCgo+tXyuRSCQSdwc/81nfL32WtGz29aU//tVae3xXZb7UwYc+fNFNSyQSicTTxKUSFIATVUm1ngJky6PiWNKXy2WriCC7BXCMF3UkQu4FEieTiUajUb3flStX6j0hPX692WxWyetyuWzdDwJJigAEj9QBiIxbxnE2SKr94+/xeKzhcKjJZNKy97toIp1auWkzogGEeLVa1e0tSyna3d1tOQqcWOLYgNgiJNAGBAVSIiB6k8lEW1tb9fwbN25od3e3FdWm/gGR8dFoVFNLGB/WhG+LSCoE8+RiEmSUbT+ZY+o4eC2IuN48RYD+ch8s/i42QdaZa9/20lMMuLYLXaxXd+JAfj0dw+sAOJlmbjxthOsiYvhaoE2IOl60kmtDsBHC3F3j9RLcBcI9mQfWrYsx3geHp1T4mCHG4JShv/Q9ugqAC0Rczx0V7tBxt5CPabxmIpFIJJ47DMqGfuSH/r4k6ct/7Qt047ddcIMSiUQi8bRxaQQFt7R7hNzzvyFEHvGlrsBisajbD25sbGg0Gung4KAS8J2dndZOBAgC2KmvX79eiRFbOW5tbVXC2jSnWz56dJoih95eLyYH2WE3B8QSSD392t/fb6UdlHJchNGJMP3Cfo+wQNTcbe6Hh4fa29urtSCGw2GtBQDB9CJ9kur53o/FYlFfp70IN07WpFO7OyLF+vq69vb2dHh4WOsdRFdI0xwXj6QAJu1gniKxpZ7EYDCoczKdTquYg9ugK03G++rCSSw86Ds+xFoEtGcwGFTijUDiIlgcW5wV3IM5hEi7M4D17nU5OFc6TQHw2hQRrGX66UUiHe5uiAQcYYa/3T3R5RxivL3+SZwD/vWxiG4AxCEX2qJg4GkuiAfcM7p2vHglaw90OTcSiUQicXH4Gy/7YX3fL366JOn/+82/U5s/8LYLblEikUgkngqXQlCAQMQcaCcETjIgcsvlsooCpBhg0Yd4z2azSlpLKa1oMULBjRs3aiS/1+tpMploPB5rMBhoPB5rMploOp1WErS/v6/hcFi3EaQtREAl1Wr/iAL8Tl8gXtKpVR8i7sLJYrGo4+BRfEgSOzI0TaPxeFwJIQ6B1WpVnRKcT1TdyTLk2sUcxhWxA7EA8QIhxLdXJKLMdYbDoWYnOZFOvr1ooRNj5se3msSBIKlVWNBrOzB2EH4n9E4WI2GEzCJSQb67UgicVDOenOdiQCTmjKPb+r1OxXn1BrxwobfJ3QR+vl+jq3aBi00+Fl4vArhgwHwhXrkgEHeacBGwK0XBnRU+nn7PWNDR++9z5g4frkM6Bu+zFkjboP+8zz1i2kTX+CUSiUTi7uNl65v6Mw/8qiTpu//T12q583nS3/2xC25VIpFIJM7DpRIUQCyc5oTOSTBkI9YzKKVoMplUiz+kF5JAJJwoLK/Rju3tbV25cqUWZiTlIBLfyWTSuo5X5T86Oqq7VfT7fS0WC+3t7bXID/b+tbW1Svx9Gz6vD+CRXSfQHHN4eKgrV660rOJeAJH6AwgKnBdJrRNEruH1AyDS1Eog3WN9fV3j8bhV+HFjY0Pj8VjT6VTz+bySU/9BHPJ1ABnld9rHzg1upUd4YCwRICClvPZU0Wcn/l0FEHGAxEKIvj2lzxFtp1++lSTX5jyvwRHb56TWo/BOwpk/XAvxfXcmxGem6xk8b2tLJ/GezkHxyVjXwesk+G4a3NvrI7jLIaYvcC0XhaLbxHdQ8dokfr34+RLh6yXeP5FIJBIXg59/7T/UVzz07+tXv3t40U1JJBKJxDm4NILCeDxuFVzkdY/4emTfc+QhKxDbq1ev1jx7SNbjjz/eyi+POeqz2axa6a9du6YXvvCFNRqOxd/t35JqOgGR99VqVa/pOefY8iMRZPcI2uDpEpPJRJPJpIoYs9lMq9VK4/FYkqpLAXcARNp3heC+EEVSH0hBILrbVQuAthKF98KGuDOGw2FNKWE8ptNpfR/RhZoL1HzwGgpY1hE/lsvlmai9E875fN5K76CuQtztgj5EscLnJqY/MB77+/uaTCat9AeugXgxHA5r/YjFYqHpdFrHj3XD2kSY4V6MIeJDr9drbVkaUy+YW9oc28Tz4YICv0PecUi4eCKd7pAh6YyjgCKhYD6f1/O4H+OB0OBCRRQ5aGd0CDAunIP7xQs6RoEkOkAQwlyI9GvzE1N0fK24qNBVayORSCQSzz2+95U/rte+6smLbkYikUgkzsFtCwqllDVJPyvpQ03TfEkp5QFJ3yfpFZJ+Q9KXN01z7amu4QSL2gYQFM9ldwIwmUxqFBzSRPRyb29Po9FIGxsb2t7ervUEfMcBL7gH2YH4zedz3bhxQ6PRqBKQWDgOAsNuEF4Nf319XdPptBWZhTwjinjhOI/IE8leX1/X1tZWy4mACMDfEGsKJNJvLwIJUSZNg6KFEDMvJOlpG07WfbcD6TRP3l0gCDo3b97UeDxu1X4YDofa3NysogUFMbm3dFrgkPQIt8YzhswP5DtGyiGB+/v7mk6n9TjfjtKvx+9+fY6nkCPX59r0B5fL2tqaZrOZdnd3NZvNWqkPzB2CjO8+gUMBss065lzfMYM2eoqDF1bkfQQOFxWw+Pv2lcw7NTg8FYLngdf8+rSXfruoQB8QHfx5Yd17LQTqIzhh93Qmfy7C503tF8Iibfd6FH6eX4/irNzb00VczGGtu5PisuNOfBYnEolE4tkjP4cTifPR+7RP0vt+3wO3dY2NXenF3/KWO9SiNq595edp72V3t5bWS35sqvKWn7+r97gI3AmHwn8j6Z2Stk/+/npJP9Y0zRtLKV9/8vfX3eoifIn3lAbp1GLtNuQoJLglWjpNA/Bo8mg0qgUJY4TSc7MjCYKseu0FzvWoK6kRtId6BJ5L7rUKvHAj1/Z2IKp4cTqKQkL+XZSQVN0CXtyRvlD40BGL4bnAwNiwdaWTLM7D0eFknDaQdgBB7/f7Go1GGo1G1Znh/UR08WJ7nrsf0zAgtJ7L7/b2roKFHsGOa4pjvW4EooYfD2F3MWBzc1Pj8bi6EHz7yH6/r/39/ZrC4rsmOPFnLbgLIQohMU0AEu9iB84V2sh84ejhufE16c+Cj4W7aXz+XQTxNh4dHe/EER0gzIGPpTuLEFv8eJ6fKCgAnglPkfE5pf0u3sX0F39Go5jiz+s9hDvyWZxIJBKJZ438HE4kJOlzf5Omj4xaL81f0NPygdvblvtgUjT9jz5HkrT9rus6/KV339b11l/yiG58zkskSbsvL1pdvbvbhn/ssyaaPPw5T/v4nbe8Twcf+ehdbNGdwW0JCqWUl0j6DyX9VUl/+uTl10v6/JPfv0vSm/U0Pjw9cinpDBnhGI8iOonwyKITdiK9k8mkEqtIKrmHRzkhwpA86g/EHHXai3Dh9Qmk9vZ9LibglsBdIKnWRvDoLeIJZJHI8mKxqK4MCOdyudRyuaz3hLBxP3cf+Ni6KAHpZUxpI2Mb5yMSZdpHzQSPaHeNEWkiUVTwGgvMBz/0BTIec943NjbqPRhvFxcisQQISu6kiMUWnVRzb9JTEHmYO9YnbgTSIGIRTF+/nsYT13jcnYBjuB6pPPy4WEI6AuuB92JtBY53B4g/e/zuLhgfFxfAfCy6RDau5fCxiYKf9517+VzwfMbUl3gu6RJRIPGipN6WewF38rM4kbiTeNeHX6QffcmGvnC8f+uDE4l7GPk5nLifsXb1qsrmaeDyI5850Y1Xx+9Qt/+d6nDQ6CO/7cRFOriqB554kQ4++ugzvs76Ix8n9Xqav+ZF9XrS3RUTJOnmJxzp5ic8fRfE4NojGq4/Dbp+cHChwsPtOhS+RdKflbRlr72oaZqPSFLTNB8ppbyw68RSyhskvUGSNjc3W5XjIbIesfbIoR/nhNVJGdZ46Zjsb29vq5RSXQoxUukkwnPMsbhPJhPt7e1Vokl+uZNHaiq4m8DJk0fRqbvQ7/c1Ho9VStHOzo6Gw2FLGHGySOHBg4OD1laJtLNpmmrV97Fxl4Jb1REy2LmB/kCMOQfrPe4AJ4j0G7Hh4OBAN27cqGPQ7/freJaTmgweDUZYgcgzB6REIJIA6glIp/n2XIu+kq7BnE6n0zqvzLsTb+aCPh8eHta0hljLwYUXyDPbeVIHhDoQjM9gMKgpEh6N91QA2uJbRTq5jXU/PMWDMXNRwUl+KaX2ZbVatdKIYjFREP9GvGENI5J4sUPWAM+DpNZWq8ybOzOYFxcH3JFycHDQugfHeEqJFzL1tIwoaLhbxncZ8f556sc9hm/RHfgsHmp8l5uZuN/wCX/w3+rr/8uv0Rd+47dddFMSibuNb1F+DifuUzz5H75GH/vN/srdD8g89lukG6/8BL30rz4zQaGsr+s9X/tyHQ0uf9DoN37PhqSX3PK4jd2il//Fe1BQKKV8iaTHmqZ5eynl85/p+U3TvEnSmyTpoYceatgBwa3SntsfiQvEwG37XswOcu21Bjya7lFP/71pmlpL4ODgoJKz8Xhcbe0QX3dTIAy4W8AjpZBGiDy1GigGSSHABx98sFXoUTqtyE8/iEqTs0+/fccBL3znLgXGgbb2er1KTiGsFE2EgCMyEOn3XH5PM+C+s9lMBwcHms1mtZYFYoMTOKLFuC3cHYEohODg6QaMh4sE9NVdG75ThtfB4FzmHrJP+7ui0jGtxkUn6bimR9M0tTCl5/avr69rc3OzElnmFmEBFwXCjBdcjGuUsZFU6wHQPq/RwTmxRgBj4k4bCks6+fb7RUEs1hmI7XMCz9pyN0oUaWKKho/veakTrF3WcSwSyTPFXHg7u0QoHyNfW/eCQ+FOfhZvlwcuf4cT9xQ+9EOfqu/+zG+RNLjVoYnEPYv8HE7cj1h/6Uv0q1/zMknS4bDRcyEiRKyuHul93/w6ffz/8i4dPnHr4q1rr/lE/doffKGO+nffjfBc4mDS6H3f/LpbHvd0x+mZ4nYcCr9V0peWUr5Y0lDSdinluyU9Wkp5+ESJfVjSY7e6UNM0lTxLpzZsz2mHFHgFeKlt13ci2UX8IB2QBUiRR189skqBRPLSB4OBRqNRFTmIsJdSWtF40iM8/cJt+t5vCDNbOA4Gg+rYQDign1K7Er9vN0g9A09NcAJGTQInb26rHwwGNVXAHSJe7R4RwesbONHm3rgLiICTxiGdpmXgdHA3hhccjETO+8O1PB3BCwEiOHB9ruepLj5OLj54KgrCSlwfzAvv0QZcJIyN2/ZZQ54O4ztaeI2ImG7AHPo68L64qOAiS1eNDBdVaI/XPvBUBeaCY72oImMW74ko4GlEtJ+ii3FuOQei73UPXDzieaMdLqJ5++hXr9drFff0VJ4oxHib47q7B3DHPosTiTuNVzzwpD5jkGJC4nmP/BxO3DeY/97X6mDY02pStL99scS8WZP2t470+Je8Rg/+7JNPWVOh+a2foUc/bXThbb4baHq6db8a6fEveY3Wl2e/2w6uHaj/Iz/7rO//rAWFpmm+QdI3SNKJGvvfNU3zn5VS/rqkr5T0xpN/f/jpXM+j3kR3T65dyakXX5PaNnRImBckhMxxXT8HcC3qF/g2fbPZrHXsYDDQarWqWyl6Cgbk2+3kwFMHohsC8uY1FzzyDLH39vqWgFjCERUgVl31Afb392vahJNqd3aw3SapI8wB5zj5xbVAm6KQ0+sdb4eIWIHA4NtGcm23mkNifb59PbjV32skdFXup23uXPCx4fgYeffil74+fGwjYXdRwcUCSC799NQF5pfrdUXF/TW/v4s53MNdD77OJFURx+cUcSSKRz4+jJnPB2MVBQIXHVgD7p6gPz5m7qiI8yKdFrDkXG+7141AOPJdSUajUcsdw/NCP6Jw432Ja+my4k5/FicSiUTimSE/hxP3A8pGX2sv/Tg9+tlrOphcjCOhE0V64jMarS+v6uqNR3TwwQ91HnbtNSNd/6RL0uaLwMk4dWH4WF+v+JVXnHn94NffJz2N4Nqd2OUh4o2Svr+U8tWS3i/p99/qBL7we3QYUkP6AscRxY8kR1KL1DoxiS4Bj4y77Z+tJHu9npbLpW7cuFHdA5BJnABY1iE2MXKLS8HTG7y2gRMxjwg7KYXMEPGWVK9Nrr1bw7HvO3n14nM4PTwH3Ymnp5F0RbixzCOgHB0daT6ftwrdeYSaPmJBp14BQgSEnTmM0XPu47n3XksCkYS6GET3aQekdzQaVZGA6zM+vOY1Ddh1g1QP0mYmk0lrG09PV6B9vE8KgTsVWFu+O8FsNquigq8Jd2TQVxdXXIzytAGuP5/PW24Wd24A6nX488d64T4uJnmtAq8l4cKVE3zSX7hGhAsOzAFimhePxAnB9X09+pahLjD6PX2rVfrJfLngFEUMn9t7FM/4sziRSCQSdxT5OZx43mDtRQ/pXV/7Yl0aISHg0c+Rbr7i5Xrkjd2CQuJ8LF54dDK3pygHRa/6S4/paDa75fl3RFBomubNOq5cq6ZpnpD0Bc/k/LW1tVolv2mamoMP6ZPaW84RiXfS4BXk/fXzXAoIAy4UEEV3+zcR9StXrrSI+Gg0qmQT4uMkz3O1Ic9PPtnOWXHif3h4qOl0qvl8rsPDw+oUcIIJ4UQA6ff7lUxDfFzYiPZwyGOMynvah1v2scI7UaMAIWLEfD6v6Sr7+/uVvLvjAOLP/XEoeE0F5gXi7Pn6tBlBY2NjoyWkMMbu9GA+EQgYN95nTH3OXJg5PDzUYrHQ+vq6bty4oQceeEDb29uaTCba2NjQYrGoooGvKxdEEMMgsYhM3rbodHAy3QUX0bzmgfenOakfgrDS5X7AXeDPCefSXoQP2jwYDM48c13j6LuScJzXA/EUJNaHCyXMM2uMtAVPYfFaCS5W+PkxbcgFBcYQtxH3YExj6sa9gtv9LE4kEonE7SE/hxOJS4ZS9IE//3la7dxb3+kuGs1ao1/7858uSdr+VemB73jrucfeDYfCM0av19P29rb29/drHj+V+T1PHjKDhV46LcToJNa3jPToaoymkh4BMXEruRfvw0ZNpXwXLjy6SkV7rOVup44uiV6vV3d3cGcG1/Aou6caeLqCk0VPIZDO7noQI7cQJs8f5xj6jQgQdyHwGgDT6bSSPj/e2+FjBXH32hGeXsFYMceQe99ak3t4FN3nClLsUXUn7z5OtAkXBAKER+lns1nd+QISyny7WwO4HZ/2eP0Cj6b7/DqiSBDTPjiHeWI9u6jgjgyuxRhxvheA9HmIIgFkPqa9uOPDRQFENcSI4XDYcvXwTHvbOM9rIbh4wTGsxZhaJJ2mdfCcMl+c7+kxtJc15Q6mRCKRSCQSicQxymd/mj76m7d0Wd0JYLXd6Pp//nl64Ad/vhVZPxg3atYvd9svHcrxuEnS3st6Kl/5edJ3/mDnoZdKUKDSPRFs3zrSySMFET2fW2oXYISIeKS7q34CNQucvMQc9KOj4x0VON5Js9veIcnnVaf36v60jRQDigBStDAKCrSDvnnKB/eCQHo/cSI4GaX98X3Pl4d8UcjRo8a8P5lMqlOjy/7vOfddueq02cfaI/b0n3oVLgRwvShe+LVdhIHcU/shRuSdlLuoUMpxDY/5fF6j/j728X4AQYF2cR9/3VNkuHZMyegqeOhr21MvmE9PoYmCAmuT8fSdQWJ9CelUCIsOIJ5Lfrxd3gaECMQob6cLWF3j6O8hLNHvWIjRr+kpO6RgDAaDOge4Jdyt4c+Zu0NSXEgkniV6a1p88W/Wp209+yJPiUQikbgcmL50ck/UHzgcNXr8M6QX/JOBNJupNx6rvPKlanq3PDXxFFjtHOmJzzj//UshKKytrenKlSs1hxor+e7ubo2AS6f52ljROdfJMT+QQQiB5/k7KYTUE90l4ttF7ihaSMoF98RZMJvNWgUHEUWIykL4ISyep71YLHTt2jXdvHlTL3jBC2rfoqgQ+9Pv92vNCXc3MCbRFYEgwI/XWOA8j0Qz1r7VHjnrR0dHunnzZk1ViaSYtpPfT588Gk1KiYskXrdiMBhoPB63SCqkMY6FCzfRteJ94Fy/FpFpfieXn9SRmzdvand3V5ubm9VO7/Z/F49iHQZ3QLjdnn+JuFMA0q/ltRWGw2FrTSNG+Rw7kY+7F8QUCReqXLBjzrg2ogrrw+fPi5O60Ea/PQXI64J4/REXPfwZZr1wPV+vpDy4iMQz6muD+3ghTJwYiCPudvKUD382EonE00RvTWVtTb3tTf2jb/ubenBtctEtSiQSicTtoBTpHv06VF76cXr311zVZXdW3Ou4FIJCr9fT1taW1tbWtLOzc2Z7PtIfDg4OarE50iN8VwR+9vf3qxOA9znWo+LuLHC3QYxaUxSOAoSQI0g7hHG1WlWCPJ/Pq6CADduJF/2Wjm3a169f16OPPqqHHnpIL3jBCzSbzaoD4ODgQHt7ezVSTt88Sr6/v6/ZbKb5fN7a/pJ6FJBb0jsY3xhdpm/D4VDz+bxVtNCjtZBmnCXSaeE/d1f47gjuMoDMMUZeiJPXqTtAXYb19XXNZrOWrf/o6KgWS8QhgqAQ3R1eENLTRpg/r8ngqTIcM5/PdePGjerY8AKfrC3G8OjoqNZu4N4ITQgpvsMD14jFOl3UcgLv9yI1hHXW5Y7xde+Cj3RK2mPdiugUcPcJ8+/tpS1cj7l1UWEymWg4HJ5JkwE+t4ytpz2w5l2kceeGp4Lww/i464RxoJ+sF3ZycVEukUg8fXzoBz9JP/Sb3yRJKSYkEonE8wAf+rOfp8WDl2hXh8Slw6URFChYJx1vpUfkG1KLrR6SwrGIAk6C3Nrt+eLS6TZ4nAuxcFdCV4TSo66R0EJ+vZidE5ZYLd4j94gX8/lc0+lU169f17Vr17S3t6cHH3ywknLIJoIFuwM46fPoKtFa2s3uDjs7O5JO60e4k4I+QS4piudCC2PodnGi/wg9kdB22dsh64g1jDttitZ3v4eTRebTc+rJw/c6C06mPceecylGyf0gl15g0F0i3kcXAyRVMcHrNqxWqzo+rGUfQwoYIvK4KOLjHSPokHvazLE+d8ypOyZY06xvagi4WMCuHBzrY+f992v4DhAxxcLHlvVJmzxtw8/lWBc6PO0C4cKdBJ46Qftd6JB0Ju0h/ptIJJ4ddsZzvXojhYREIpF4vuCor6w/kHhKXCpBAYI3Ho+1ubmp+Xyu2WxWyb5XYneCK6mSE0hSjKx7DQVPh/CCf1wzCgDSKcE5TyzAiQBxhfw4wSZyj82a9tDW6XSqmzdv6vr165pOp5UoufjgAoDvxiCdFlIkSh+LNpKO4UTQBQcnlL7jQ8yrd4IL0XdXBPDIMvB7Qy5po5NsvwdrhDn0uYVUc2/fvtIj60+VFx8LXLqAQXqHp54wZh6Z99oTXmuDdeZ1PBhvF6uYXxcIvL1O4hEomCO/v6fyxDoZXtciFjt1J4MXvoxpEi6mcb6nLLhrxlNDuLbPVVe6g4s1/oy5uORpDrGuho+bp8m4wITwFMVH1qqLJYlE4mmiFO39x6/Vp7/g5y+6JYlEIpFIJJ5DXApBwe3WWJM3NzdbNQH4gu/iQsyR950BJFWiT6oCJHE4HEo63c4OwhdJqnRKmBASiDC7Y+Hg4KA6BpzMe2Q2WtDd9k9bb968qSeeeEJXr16t9SMoJufRX/pPW0jZWF9frzUPSPXwfHcv/MhYedoHkW0IJeczdl7I0G3zRPhdJHHyzf0Z8y4i7lHteB7Ch89rjJLTZo7x8fX6CtjmmROOwYYP+fStEllbnooTiXXMtfd6AowTKSe4AbDVs35Zg16fgzGJaxBBAYeFCwbMl29/6hZ+f944N84JQgUOEn9GuvqNUML88cNzwth57QTec3gdCO7lzh/fjcWfQdoQhS1/nl2UQlBAmAN+vXQrJBJPH73BQP/wf/qf9LL1zYtuSiKRSCTuEMpG/6KbkLgHcCkEBQBZOjw81HA41GQyqbseQNKx5nv9Ard/QwbX19dbqQjuUpjP5606AljOPaLsgIjTNuzwThohJ14RH+t4jLJixYYsScfkZblcajabaXd3V9evX687S0jHhHlzc1PL5VL7+/u1lgRjwLUp0kihRI+4InwMh8NaS8FJ6tHRcRFGiCRV+b3dHrml/060Oc6JGX31SLuDeSHC704QF5W89oETYMbRx8AdEKQTeO2BrrQKr0fA8RTipBin10cgzYE6FZBlF0BchKE9PlbRah9rOwDGFMcIa4XilRR2dMGD9sXioIwZIpU7J+gzpDu6Ebie1xgBOHLc8cEai/dw4YPnazabnXFT+DjSf2+3j6+7UGJKia9VXEN8dni6kwtbiUQikUgkEvcr1h56SL/y332ijjbStZl4alwKQcFTEGJEdTgc1ir//X6/CgxEdv3HC+lJahENSL7vWw95g0TGHG7/HRIGSXKreSmluhOoawAxIxI6GAxa+ejS2Wg5jgr6CBH0AoA4LCaTScsF4PZu39XBUwwgfP5DW6Pjwoka87FcLs/sOtG1fZ87IiDGMU2B8V0ul5VwEi138uiRe8Ynuhbc9s64SmoRaK7v7hSPgsf16GR2MBi0thZFeGDsSA3hvu6e8JQTX0suXHBPrsnadIGF8Y3Pil/b037cHeMiAWkG3g6vNeH9j7Z/Fxai8yauvTifCCixToWLUC48+fqjze4W8jXYlaIUn2EQUyZ4DqJTwh1KiUQikUgkEvcdekVHG809u8ODJDUf/Ihe9T1D/ep/vKWjQQaL7hYuhaAgnRJeJyWSqhvASaTnewMnNOdFF52cUSTPI+mRFPNvzBEfDAaaTCaVKJ3nloCMEBn160rt7Q0hVBAcfsdpMJ1O6+9Y8AeDwRky66KAR/IhZRB9RIs4/tyXsfbCdpJqegPXdHu75907QYzCjxfh86J9XvfAbf69Xq+OCxZ1J6m+JaCvDXckRPcKfe5aL07EaVdXRNzTaLzt3haf17iO/LiYIhLXuotP9I9/PUXAU05cvPE6DrTLUwRcUPB7duG8ehpemJRxdhHEC3B6CgtCiq+bKLbE+gjn1XXw59XnNaaE+PxEQSLFhEQikUgkEvcz1h/5OC0+6eGLbsYzxtqiaOvXpeZkJ7Cj6VR6+y+pfNnnXnDLnt+4FIKCkyci4S4qYJt2wSEWY4s26RhtBUQ5vQ4D5MvTHjiONkHyJWkwGLRqFUA2naD4Nojex0jGumztROIXi0WN1N+8eVPz+bweu7GxUVNCnDh5fQWImueMHx4etra/nEwmrfZgKfdxcdcIxDPmspOzT8qFt8PTOtxmjhACoY6FDHE4IFJQDwPbP8LKcDhsrR9EAvrL+AP6RR8h+11rx4UOd6NAkKk3EMUGJ/LuBuG6LnxwvOf+x/XiIoCvZ67rRNpTDtxlgqgiqVW3IaZmuGDi7fZrxrbzd5eo4OOOY8VTDHAiIQB5SoY7HAaDQWsuaWN0VPhzFz8HokPB28yacIEqRYVEIpFIJBL3G6af8Yg+8Dvvve2z+zeKHnzTWxSTNNZWRUf9Rs2916V7ApdGUIBELBYL7e3tnUll6Pf7lSBSWJC8cLdYQ2qd5Di5j5FdJyWR2ALa5iSVAnH9fl/D4bBVkFA6zdF3B4Pv1OAODNoFYb5586Yef/xxPfnkk5WgX7t2Tbu7uxqNRvU6o9FIW1tbWl9f12QyqQKEk3mvB0A/IMQQOdwOGxsbVcyB2FE7gloBs9lMm5ubmkwmLUGF3327wlj0zscGwWQ+n9cCkswhTgnml/k8ODioRTS96CXngdls1hJqfKcNF3ucOOO6kI63FPSIedcuI06WYy0JUl8gsDFdw0Ut1iJrIIpOIKZmeB2PmKqDC8d/uKa306P8vE8fvTgiog8pJN4eF06ktkuB92Ktkvl8XueWNjEHm5ubVWhyAcbdMC4SehqHp8H4eXE8PR3JXTznjX0ikUgkEolE4h5F0+hlf/lteuKrXqtrn5ZpD3cDl0JQAE4kPd++K8891gpwUgv5cAJE1LqLMJCzz3UPDw/rNpZuQYeMQX7Ix4/3jmTWUxXoJ32VTiPmR0dHms1munnzpp588kk9+eSTGo/HOjw81Gw2qykKniuPwIAjYTab1ag4ZN2t3k6M19bWal0ELzhIagGE0qPUnhaxWq3qeT7ukLRSSmsrTem0YCIiADUUED+YS8jqYrFoORyc2NI3j3YzHy4AudU/1h2g7Z6y4C4AJ8a+XlyQYA49r9/rULjAA2L6g9cS4DV3t1ArwsmvO0k4x+fIEfvm1z6vTVFscHeBt8WBoEF/o8vAHRGICj52OAQ8dYa14+vMxzamcXjBS9qJiOQiBYUsfSx4FuLYJBKJRCKRSNwPuP6ff552X16kM3H+y40Hf67oBT/9UXUm7B4dqqSWcNdw6QQFt/07aenK73ZBwaOLHqn0iGosMufEhKio10WI0U3Pw4eMOCFyQgkB9JoBtI1+QPycmC6XS02nU924cUPXrl2rEXS3mce6A15YEvLqkXgXQjx1hDoK1GLwCDuCQSTNtAXhx9NOEANiPnqcA8ZPUi206QUridZzHy8wGcfSr+/t8Nc4zufH+xUFEdJDzotYe2Te0yJiocDoaokE3F0jkdj7/V1Q4P7e92jjd+LscxBTGjx9wcm3z4M7G9y1E58lJ/ietuNOiK62IjhFsSDeK7opXKSI8+3z4uvG1wfX4dlwt0rXGkokEolEIpG4H7D3SNHygXtITGikK+8ueuAXbujwV37t3MO2f2Ol/c2Bdl95D/XtHsGlExScjHhk2CPRTlrI1Y4RY86Jheywc7tdXTq1xbsd2qOXEFLIO+THi8/5fbvy353UxLxzztnf39dsNtO1a9f0xBNPVCcEaQFSu+YEBIzIf6xX4Dn2a2trLacGW/Wx7SCuDE+/ODw8rKkkbvNHkHAyTHTXizEynnHsIYK00V0MPm+e9iKdRv6dDDqR97mKRQU9jz6uFeaVuhNdO1r4uMbc/OiO8bQPb5e3xQmvzynj1CUaREHAHQBeOyIKUcw9Y4Kgw7ViYcIYtXei7S4MH0Ofc9ayOwEktRwtng5CG30HFXe6+DMUxSFvr7tV3Jniz4PvpsE9Y02HriKbiUQikUgkEs9n9La27qldHcqR1FsWvegH363DJ558ymPXf/zt+riPvlrv/UMv0OHg3t694rLh0ggKTiy9iJ1b2SEwvV5Po9FIkmp0m2g5qQ4QAo/cxwJsRMudtBAV96r6tGF9fb3m/i8Wi0panezGwm5O0hAOIDdSO1JOdP/g4EDz+VzXrl3TYDDQzs6OxuOxtra26rWOjo40n8/r/UjD4BoQcR/TjY2NVk48KQWLxaKKJ9yflIn9/f0qZNAGyPLqpIIqKRvAHQw+n9QQaJqmuiImk0lN6eC42WxWbe/0NRJX6ZREuvDjkXAvyOhiAscxPrSHtcIcuWDhc0v9AhwcjGtsoxedjC6JOGbAUz48ZYP3vN+MjaRW8UOep+gKcOeHC0Hcx4k44+DpFIwPaTzcPz5T7vQhTcLhghDPUHTzICysr6+30ke4FukjcQyZO3/dhSp3jjB3CGk8q4h3cUwTiUQikUgknq9Yu3pV7/kLr1FT7p0Ifv/Jnl76P7xVhx1puF04/OX36OP/Yl+/+ld+c24jeQdxKb4xO4n3lAbPc/fcfsgekUyP5jrR5VwXBpqmqSTRHQbuepBOSbJHmxEzsOkPh8PaFi+u6JFbj5R6nQb+jRFl2rBcLnX9+vXatl6vVwsh0kcnmNwPl4Bb8iF60+m0ZaeHHPq4Qvp9PPb39zUYDCrRcneIixd+HikXkGrmE+FgOBy2ill6DQcnhNEdwDj5ODOPjGnXzhcuPoxGo1q7ATfCfD6v94U8s4MEv3skf7FYVGLs6SMUZKTvPg84WZykx+1EnZRH4cTHgHHwyDzt48e3uoTYO7mPTg2P2nsdEtofa4VIatW+YCxiO92tcXBwUAUgF8Bc6GCMve3x88FFPN8Rxufa++nCR1xXzDfzQ5HSdCgkEolEIpG4b9Araorumcj9g+8oevAnPqiDpykmgGZ/pVd9+6NSKZp94gP6wH+QWz/cLm5LUCilXJH09yR9mqRG0h+R9G5J3yfpFZJ+Q9KXN01z7VbXWq1WWi6XrR0cnDRFsiSpRcwcbqN2h8NJm89Y5T1fW1Il0RAlCA7Eg90JxuNxy/LuxeA8z99z8p0Qc2xM0+B17sPOCj4ekUxKqpFh2kObaYd0Gtn1CDgChm8PCfw4j9BDALkejgR3RDCnXrW/aZoa3XYwtpDSaLn39AEXiHAYdNVNcMt8TF3xyLcLNLQDoSPWy3Dxy9NYfIvMrp0O3AHjKRK0c7lctsQEdxjEH+8j6Eodob8uaJ2X3uBj6sUT3cHDWCBEuEjhLpA45v5c+XuIQT7v3i8cBN5HdxjwmotQnuYBokgVBRlfO16P5F5yKNzJz+JE4tmgOTjQ7/jRP6m/9tv/kb5iK5dZ4v5Dfg4nEs8drv5i0dVfuKmD33j/szqfWguT5UoPvuAleuIzGjUZR3rWuN2h+1uS/kXTNJ8k6dMlvVPS10v6saZpXiXpx07+fkpAnmezmabTqabTaY0gS6fFE6W2WODkkGhnlwDhOdtOEj3a6kXnnEBHcgzJ39vbqySQ6C3X77Jhu+jgZNmJGG2kHRB90hIiIYtj4u87SYIkD4fDVi2EGF1ni0hIm7fVLfxcUzom0i58zOfzVqR+Npu1tkuMfSOKH9voOfKQPNIkIKDc2/vtNQXimPtP3DbQUzNcVHHyT8TfbfUxtcS3W+Sa/OvjIqnWxyDdIopmLqK4C8UFAEAb3BXC2PX7/Tp27ixAvIs7Wbi7xp8NrzPBeo/gnC4RxMUMFyKiG8QdErHtXkfFxz+m8rhDIqZA+OuMkdeHcOHkHnIp3JHP4kTi2aI5ONCrv+Zn9Rff8Xv0S6v5RTcnkbgI5OdwIvEc4UX//NfVvOOXbvs6B+/7gK5+79u1cbOncnCPWDMuIZ51CK6Usi3p35X0hyWpaZqVpFUp5fWSPv/ksO+S9GZJX/dU1zo8PKxkNhZ688r7TgCdQEJWIWaSzqQ9UIiNugnD4fAM8emy2QO3ua+vr2s6nWpvb0/9fv+MY8LTLmJRPiduHiH11yTVsVgul/U+V69ePeNw8LQDJ7KeusA1fYwgc/Tr8PCwEkbpOHViPB7XccNZQL0Fd2/M5/MqKLgAMpvNNJvNWsR+Mpm0tqT0Cv/r6+vVbg45jrs/MN9e+HE0GqlpGo1Go3r+yZqUpBZZ9xQJIuy4HJx8xtQCd7RwDY6F7Hubu5wezKukmjLjKTe4cph75sGFKtYM7ooId034WkdA8vdZA/TD+8e9ve0uVLkbII5ZXNvRAeTjxvPkzwfPEgIT/XCngX8GuOPCRaX4/HlbXUCIz4iLVl11Li4b7uRncSJxu3jlV/y/+qqv/NP6f/7at110UxKJ5wz5OZxI3Lto9ld62Te/RY/98dfp5idkXYVng9vx9H68pI9J+j9KKZ8u6e2S/htJL2qa5iOS1DTNR0opL7zVhSB7kAsvnnZ4eKjBYNBpoZZOI6LuTADRpg+x9JQHzvH7xlx3SAukY7Va6caNG9rY2NB4PG4VdIOkeMoF5LJrizuuH6Pz0qmNnmvs7u5qf3+/1S53U1A7gGitb7noLg4nlX6fw8PDWttgOBxqNBq1Iuoc6+kTy+VSu7u71VlChNwdDxBL+sd13b7uqSiMES6E5XLZilqTrsDP3t5enTPfktJrZvh6In+fe9N3b6unDnBv1tZgMGi1lfbjFFksFmeIrEfpV6tVrWdBBH44HFahJc6PR9jdtu+pJ12IuzO40yKmY0QnQpe7gH8Rpsbjce1rTHvwZ9FFBi9uGdMcvJaG1zjx9BXWagQuk6ZpqljoAp/XmPDnxoUxfw2nxHlje8lwxz6LE4k7gdzrO3EfIj+HE4l7HA//wHu189kv1wd+Z9ZUeKa4HUFhXdJnSfrapmneVkr5W3oGVq5SyhskvUGSHnjggUps2KLQi7sBjxo7CQKQhhgRldQif5ArJ0sejYWQEg2nKKGklqgwn8/rcV3pAN4urwsQxqESGKLrcUu/WK/A8715310JEG1SMpxQ0g/qD0QLuu+OQWQbAlpKaRWDpPAiRQ2n02nLRs91PQLN/Tc2Nqr4QPsQfTzdYX19vSVi+FqAKM7n81bRyPPcBF0CBvZ9F248Ah7TDlhbsf4G13GRinO62s78MNZO9hkT1obX1fBrdD0jHmn3tAxPf/FrI3Q5effngut53QNft8yPuxpcjHCS7muatkRBxN0jXWkvcacSFxu6xjmOTzwmfn74+MXtYC8x7thn8VDju9PCRCKReH4jP4cT9zTWX/ly3fzMF190My4Uh48+pv6TD0saXXRT7jncjqDwQUkfbJrmbSd//6COPzwfLaU8fKLEPizpsa6Tm6Z5k6Q3SdLLXvayhi/zRGzP20EA8hwjl068uxwAHpGO59XBsOg4xHB/f1/T6bSe59H5xWJRX/d6ANKp5TtGp52QSWqROcQUL0TnIkqsdO/WboQPTx2B6LHrA+NAZDjm+nvbERQGg0HN/ef+EHyixZ7ysLu7W6PWWNXdUeFb9EXhwCPDLtx4jQTGBBweHm85SW2IwWCg0WjUIs64B9zyj+OE+3nag4+71+zwCLzn3bsQhjjgY+lrASHAx54dGSDLiC3nCQoudPhapz8c5ykl8TxfQ7hXPOXA0xLcVePugrgGvb/cE8Eirmfec6GH9cJ1vSYK48/YMG64Uvi3a514+1x8iOkY3q8uwfIS4459Fm+XBzK2nEgkEs8c+TmcuKcxf9VD+vBvvyeCKHcVvdWB+jd6Wm0f3TO7XVwGPGtBoWmaj5ZSPlBKeU3TNO+W9AWSfvnk5yslvfHk3x++1bW6cumxtVN0jxxzcvMltbYePGnTGeu1Exsn45APyOVisajEajweazKZSFKNuJNq4ORssVjUvPe9vb1W7jz35h7+O1FzrNYe7YWYeqQUUgWZ54ctECFhTu4ZNwgmkWQneH49J80+DtJpNH42m9WxIsWCQox7e3va3d2tdRQQAbwmAw4LJ96ew87rbMeJ6CBJs9mslYbgAsFisdDu7m4VoXZ2djQajdTv9+s1STVAPHFC3O/3W7seMA6+phhDj/R7Ckss2Mi53IOcfMadsVytVvW8mJ5DO9zx4qKa3wPhxtvoYgpz7wVGJbXcEb1er84RbYspKF64lNdxhnjdh67tMB1RzOsSO+Jc+PUYF54fhAJ3VHA8aT6Azxp3xrhbwoVHF/cuK+7kZ3EikUgknjnycziReH6gefsv6RXvHOtX/vJvUnNPxJQuB253X7SvlfQ9pZS+pF+T9FU63jni+0spXy3p/ZJ+/60uAtkjSjsYDDSdTlvRc+m0AKFHk4+OjrS1tdVyFkBEIVhSuwAdJBKyuLa21spfjwXqyG+HiJC7TjtwBkTSBCHxAm9dFfzpB+d45DSKGKQXrFYrDYfDKnSsr6+3CiF6oUX67BFhaiNA0J2QRmIsnRJoiD61Dfx+i8Wipj3QH8g7pHO5XNbIsxNnt7QjqEAQmRt2kHDyibuA/iJkcC6FGmmLpHoNd4YgYtAuny9exwXhcxUFBgg48DoOvrOGOwxcIHBRza/LGvaCijhkaB9pHy5m+Y9v6xlJuxd8dHeJP6MIY6S/4BTq9/v1GObSRUF/VjnPx9ALWMbUIcbbU3m8rdH9w72jE8V3UMFxRD+9bgmfE57+co/gjnwWJxKJROJZIz+HE4nnCL/2ho/Xwz/1iDb+1dsvuikJ3aag0DTNv5X02R1vfcEzuQ7k3IuxeRE+L1Anqb4WSYPbyaV2njsRSAgORJIILaQ1Ri678uwhMp6O4fUNqL3gaRJux3YBgXMktYgWpNZz8hETcAXM5/OWqyGKFbR3uVxqMBhUhweiQKyxwFggklAM0Yki7aPPkHy2+XRbP+fhgvAtDT2K7uMA8aMdCEykXZysuyq88Dtj5ySXMfG1RN85jn45eYa8Iga4WOC7hdAWF6I81cFrHDDOtIXx4H2vNeE1CLxIIuvK++GpKk7S/dlCeHFC7scxRlwrpiR4XxHVIN0+F10pE+fBz3dngo+Zi1gudPjngKc4+PNCW1w0cBELMdCf0zh2PqaXHXfqsziRSCQSzw75OZxIPHdYXTnSweaaLr+P9P7A7ToU7gggsG6h9pxyt6MTkXdiG3PLPX1C0pk8+f39/Uo62eOetIaItbW1VuTXBQzP/Xa4aOCihqdkSGe31vNoMveO7oTZbKbpdKrZbFYJd7/f13A47LRtM164FzwSS4HFmEd/eHio5XJZHRZOiD0ijEBBikMkZzGyTHSc8WOcfNw8jcDTQHwsYs4+ggKR89lspslkovF43BJ1XLhh+0tPMaCf3mbuER0vpLpwDn3zeg8+D7GIoKeAdJHW2Ed3rLBWPFUlFpOM65I2uuDm8+nPmBPyOJ+R6PvzxxjHdR7h6R0u3EQHj1/T4SkJsa1d93HRgjF0ITCKOfE+iUQikUgkEonLhf1xT1svfpEOPvronb3w0ZEGT/S0utLoqJ/fA58OLoWgEG3LGxsb2t7erqkGRL9JiyBv3kmuW7yJ/ELeyKMnMulEDII2mUxaVn0nEp5HLqkV9eY4dzU4aeYeHnGG+PKeb2EJycEy7u0gpWA6ndYdJmJNBSdbkCjy5akV4JbuyWRSRRXG1l0HLojQX8gpTgmvM8FYQNoQEoh+ewqLp1C4WBB35IjrIzoUImGMAkYUaqKdHVHGj+F9F0qc2FMzgL6sVqs6HqxXJ+uk1ZRSau0PT9HwNUffYhoEAgjrr0uo8e1KXdxgPqKLgvt66kssrAiiEMR5noIU0z3cYePPO2MaXROkuFCY1cVDr4dynojBfPpx3MfH2cUIX4++zrpEikQikUgkEonExeOx3yLdeOUn6KV/9c4KCkeLhV7y196ij/6p12nvZfk98OngUggK5H97vQFcAex3j+Ud0uvE3M9zQoVtfzKZtJwPpDe4E4AijDG9wgkkhQ6dlEdCLJ06JRAG6CPkyu31ABEE4k4ElWi6pFaBSsYAMaJpmioyeO6/k6PpdFrvI6mmE3Afd3FI0u7ubivlw6Pz1JRAePDod7SmMyYe+WdcifQ7qYznuWjjBBP4PalT4IR3uVzWGg+so+h08ag5YoCntDCfkHO/L/dA/ELAcTKK44N7Sadk2FNmeN9JctM0rbQHt+4jPEUxQVJLOPPUH2oeOEGPaRAuNkDAvVCkp9Uw99FJwnhyHQRAX6MIhRxL3QXfUYQtUV1I8mfAHSg4eRysLZ4rhzuNuAafMelQSCQSiUQikUgknhqXQlDgS7xH6qXTCLaT4KOjIw2Hw1aU2SOgEHIH5IM6AcPhsFr8IUCet+82b0/DgAxBUCDYnsMOYXGCQ7RYUoscn0ew3L4e0z2ItDqh9Jx2768TUEmV8NK/0WhUc/ljXr6TMHcwlFJqqsN8Pu8kXh7h5hpeC8D7hVhSSmnVofBxcwHB1weEE4Egpr7w/u7urqbTqfb29jSdTluuBYi4E01Iq9vtXeDxnSb8Nd/m1NtMuxBSEKA8ws9xMcLvcx9TYHy9O8nm+rTFiTj9c3SlDbhwwmuINS4SeL0QniG/vjsDXIQDLkLFOihegJJx6nIn+FqLRRt9njy9ITonEJHot4tFiUQikUgkEon7Cy9+656e2Jvo2qdkcOlWuBSCgtuyEREgBF7x3XP9JdUoecxR91QBdxAgArig4Hvdu1XfHQXcHwICeaUdIOaTAxcUnNS58BEdBZAozneRQWoTSa4Zayj4/RgHosG0gbQG6VSwYDtMSOxwOKwOElwgCApOCKOt3QUNFz6cKBJN7vWOd2RgDs/LqY8FAb1+Aff1dAX6gagwnU5b4gPriHUQ7fAxLcDv7yKDbxlKuyL5joIC1yD6TioDYxMt+5Fk+3Pj/eZ+Pi/uwPA58rnq6ruPkwsavoa9cKI/M+6UYe6crHfB5877jHAUnzFf+z4vcR25s8fbzvveR3f1JBKJRCKRSCQuJ5p1af2VL9fB+z4oHd3hINBP/7968ODTNH9wW4uHjqTu0mAJXSJBQTqtJ8CXf0iEb3HYNE3dBtBt134tnAOQNHY2IHpKEUOEBY6FoLh7QVKLxBHBh5j7Fn8uBEDivDikkxQXPlw4cCJNzr0T2y5S6CTOd6KIY3x0dNTaaeHw8LA1lvTPx/zo6KiKCRRtxOZOkUiEHbfce06+uzuc6HrUeTAYtAQId2jQXiem0WHgTg7OWSwWtfjh9evX6xaXRKmZC8baBR4XA3yt0S93cTCmrAtEkugeOTo6qqkP1LNwsuzpDF5fgXZ42gR9dGeAt9PXLb8vFovaR3eR+I8XnzxPaOA+gPv7XHsNAnftRPGF132d0k93I/mc+jNB3RDGBGeGOyNcpPDn0l0dXvMiimGJRCKRSCQSicuH1ZUjvetrH9Zr/tpMhx/72B2/fvOzv6iXvXtLv/JNn6pGSlHhHFwKQUFSrZdAnjb57vP5vJWf75FQdoGA0EqnOd9uWfcaBxAvJ3teXI86C07Q3C0QSSz26S4HgaQWcYnwdIpIvCGogPx0jzh73z1NhONiXQPSCubzeSXD0+m0/st9nfRTfwCRhYKDTgyjbT2OM/UwPIUFsWA2m9X+0S6Hk3gviuiik9vcuQ9FIxFGdnd3a8HEUkrdFcPTDZiD0Wik8Xhcd4rwtcBaYWcLH2NqgWxvb7cIqpNZ+h8FFdwavr5dEOAaXh/CCTvrzteZuyP4N26PynpnrlxMiKkssZ4A9Ri60iWc8EtqjZH3yd0r9P3g4KCuBepWuJAXnSMuBLI2vQZFbFt0LHEdxnG5XNZrpUshkUgkEolE4v7F0e6uXv1X3qn3/7FP1fxF+b2wC5dGUHDyEusJEAGOkcSuivZSezs8CIcf4xHjaJOGVLlI4LsXuAjgWxx27crg50S4q0BSa9vG6C6gj/FfJ/EePUZskU6t8ZBTr0kAoe31enVsXMRwyzzHIih4GodHxZ00dkWuXXxwwubuD3dqSG23QIxmR8LHOCBY+Prx+0EqY8oIZH40GtVUD59nt9D7VpGeTsN4unU/ilb9fr+VuuEiThx7/qaWSFzfHMea8mv4eow7XkTRIKb5cH2/j4tX3l5P5Ynz5+3y9vjYd82rP3eetuDPMGPigkF0UnRdG0cI679rXF1ITCQSTw8f+vrX6RN/969edDMSiUQikbhjOLx+Qy/5sV09/hmbWVOhA5dCUHDyF8UEj0K7td3JXRQUPB8+5lCTp467wHPPnZxJahFCj7BCjp0sQ+ic2ERxIUZT/Ri3nLvNHERyw/ux3oOLC06qvNYE9+M9RIeu4oS8zlgul8uWmME1onBCm2LhSO7l13DBh9QWb0Os5P9UiP2GPLo4Ee8fCfVgMNBgMNBwOFS/3z9TaDDWCKC9rLv19fWWCCapVb8CYcV3+/D+RfLM/NNGt+NHQcDTFKLYEuffxYLYhngefXBhBZHG1x3HubMk1pLwefV127UmcCj4nHn9CW+jiw2SqlMn3j+uX3e+xLl1gS2RSDwFStHqd322Puv1v6i///KfuOjWJBKJRCJxR9H8zC9o++pn69qnXAr6fKlwKUYEcgJZpSigE3lEBSdwfPn3qDevO7l1ogxxGAwGrXoF0inxplAhaRdsOQg5Ia/b0yOcIDoR77JMO9GO+f9OuPxv2se//jrEbDAYtAhZ7BN/u93diRxt8YJ8jA99YRzcuSCd1krAZcHY+FaC7nSIDgQs/6QpeMoI13Ci624Rh7sfmHvuh5OE8/1a/X6/1tbY2tqq6Q6ICqCU021KnezGmgPz+bzuguFRdO+/7zZA2xCIcILEFBoIvAtYjCOuFK8FwdrvSmHwNcea6RpTF9hcRKFfnt7ijg0X6fw5cAcQ50Shy+czttvb4euXe3kfogPF3RldThhP5+naZjKRSHSgFK1tbem73vQ39bL1zYtuTSKRSCQSdwdHjcqR1BRlPQXDpREUZrNZy6ruNnWpnb/uLoVSSs1n94hjLKQYrd9uQZdU7+f1DhASFotFqwBev9/X0dFRK/ruue+llFYRSY+QQrQHg8EZB4GkVv0Gz02PDogorDgxhVR5kT+Im9v8R6NRvZa7GJxkRVt/F2F0AYfxoYijR6E98u4kDsFosVhod3e3EnsXFSDfzJOkKqKsr69XoYM8e19bLv74XNDW4XCozc1NTSYTbW1t6erVq9rZ2WmltdB2H2cfO5wM7jBh7TEGo9Gos9gm/fP1ynj4+DrZ9loZPmeILx6xpy0ueNB/5sDbwusuRtAvhA6eB1+TnmLi6RlRFPC0BJ+T+Fyzdt2t4c8nz62vKepY+Dyw/l2Q419PoeL59PHsEmASiUQb89f/Fv3v3/ItKSYkEolE4nmN/pt/Xq9514v0rj/90otuyqXCpRAUpPbWiDEqGHPMneRIqvno0jEZifnpkBKPuFP0kGt6EUTasVwuW86ImP/N/ZwUuovCBQVIjRN9QFu9b06AIFhOzImmMnZdefCllOpaoK8QUd+1wYleV1HELkFBOo2ExzGA5LNzQ5fbwR0DbqGfz+fa29vTwcFBq36BE2h3WXg03ufRrfn8QGBpD38PBoNahHFzc7OV6uARcK7naQcUBmWdRoLP37gPfB34WuJvF6B8C1Mn34y5pOqW4Di/BveUVGsfOFmPThLWhIs/vkY5z4UnF1dob0y38Dnw/nqtD47jOhzTVfchCjaehoObJKb/uDjlokpsJ9fzOUgkEufjg9/wOn36l7xTn9wfX3RTEolEIpG4q2gODtTM5xfdjEuHSyEoQA5iVXW3/Xu+d7T7QxicSMUaBO5ekNSKsnoU1wUNyGkXyfYaBpHk+bXcLeCigLeF371f0XbufeU4dgXoygeHEG1sbFTHhxNTiDWE2e8XUzA8AhzvEyPbEHTIKdfgvEgu3VUBmWPnB0kaDodnSLC31d0RXAOiGcUAXyuIK95mijDiEoH4u6AUxQyfT1/HXnvDRQgnui4ERYu+i04uXng9AR8PF6VYKy4gdK03Xwvutolil58fU3GisOPPcUyz8Dlk7BA1fA3isuB6Pt/+XHe5XmIdE1+jMU2k6xlzscwFmUQi0Y3ea6/rH7zyX190MxKJRCKRSFwQLqWgAMmIZCKeA2GOkVEIHKTFt42E1Hh6gxMlFwGiwOCR59lsVvPuOd5zsj0vHPLiTooYxXXiJrWLJvI3/eX4xWLR2mnB++d2faL9HgGONnAXM5iPLrh4QBTfd8YYDocaj8f1vZiyEkm0k1fqDZC2AIn2Y2hzbKOLQl11IPz36BDwQoxeKJH3er1erUEhnUb7/RouIu3v72s6nZ5JleF6OEO6Co0yd4ypt8MFBd/uknOZS38WINVeBwL0+/2WgOJbRnp7ohDiffdzSHVAhPOaIl1igY8ffXExx0UXxrdLnGHtMC7eb0mtFBhPhSBFJDpKXHyL6yGRSCQSiUQikUic4tJ8W3YLMqQPciadrUDvRHs8PrZa4iiAQHgaRbRAQwq5F0QFYSCmOFDPwes7ODwyChHxYoAQU8+1p/ZDTIsgYuyWec/fd7JD/1arlebzea1b4KJGvIZHtn1nhVj00vsGOSOtAxK+vb2t0WhUye7GxoaGw2FL6HGS1zSN+v3+GTeJR/RXq1UllRBTtmRkfKmZwPEu4MxPrEiICIvFop7vxB/R6PDwsDoqmB+f30juu9YutQVwWezt7bV2l2A83HmA6MV5HtHHPeDj7ukaPBtRcGNM6LMLFD6vPDeTyaQ6NDydgDa76MVa8NoYg8FAklrPC32gTy5guagW654wB6PRSL1erz5ns9msPn+9Xu9MfQ1+XPjjWF//3n7g6502cy/qWCQSiUQikUgkEoluXBpBwW3iAMKyWCwqEYE8eBTRCa9Had0CLrUt114PAJcBpCgWvPMoqNcA8Ig453nOdrTm+/aJkahFKz/993ZxbaKq/X6/Vd+AyDACAWR7uVxWcuvXZGcF70Ostt/VB/qBG2Fra6uKILGfnmLi7gwi7mtra1UEimkfnOfpIl4Twueb6yKS4EDx7RrpA+fSF/rr9SVi1NqJK/d3V42nbMznc02n09qGWJzShafoKojpPKxr3+mC8YvijztqaGN0HjAvuEk8RcXn24U1F7Y4hmsiCPmz4a6CrvXtY+BrL6Z6QPC9Hol0KkS4MONio7uPYpu96ClrIKZbufiVKQ+JxDnorekjP/RqvfHTfuiiW5JIJBKJ+xQbN3t6xT/d1dH1GxfdlPsal0JQ8DQByICTSHcQuHDgxCRGf7t2E3Cy5CkHq9WqFVH1WgeQN28r14NwRIu4ExdP4aB9brl2chnJVEyDiKkCbk+H0BG19gir14FwkuwuBieAXXUefE5wKGCZH41GGg6HLaLmkfaYk4+13Ysugig8eMqCp3C4UBHXUiT6XfUs3I7v0fPRaKTxeNxyjnTNjws4rFt+fJtRT1WIaSxd7XbEegBxnUWi72kQ7hZA5PE0AeaPHTm8OKY7FNzFgePGx433Y22M2A5fSz6vTuQ9TaXrfXdQxOcnilfeVn/GoviAuOcOKBfEosCVSCSk9YdfrEe/+JX6p5/113Nnh0QikUhcGHorqfmZX7joZtz3uC1BoZTypyR9jaRG0i9I+ipJY0nfJ+kVkn5D0pc3TXPtFtep5JbceV53cn90dNQq9OeExUm7OwfcPeBEMlq0PdfdxQxJlRgidiBwANruRe0Gg0GNjPs1ISoe4fbouJNOJ4AxDcMJHX2QVO/JPWazWSVkXjOBMXAyGIm7k69SShUNnOAhKJD24OQz1nWAfBK1p2aBiyaIOpzHWDDuuFOim8PJJm3wwn6M0Ww2q5F5IuyQaraP3Nraqjt8xDHhei4eeO2AxWKh+XzeIrSxboNHwmm7r+XYN19nLvDQFq+jEQm8t923U/RUCC/S6QITqSk8l7hZfD4ZV8SN6AKK4gnHuEvG2+xim6fhdM0zx/h4uPPBXT0RLlp5WpW7Vu4l3KnP4kTi6WD6mS/Vz/6Vb5OUYkIiAfJzOHEvoxw26q2KjjYaqftr6KVDOZR6B7c+7o6it6bSUZfsfsez/uZcSnlE0p+Q9ClN08xLKd8v6SskfYqkH2ua5o2llK+X9PWSvu5W14P47+/vt3LsY3SxaZqaty2p5QaQTm3sMZrrefpOtLg3Rffcdu/EzrdD9Ag5cAIuHUd3x+NxK4fec+KdyHg7nUR7asT6+rpGo1G1p0MI+/1+q/Ah9QQiOaS9nrMfXRxcD2HGyTQWeXdZQMBcgIAkRjs+BJA6C14TwB0RiDeRVLujJL7u5NbFA+ZlMBhUIYN+DodDbW1t6cqVK7p69ao2Nze1ubmp7e1tXb16VQcHB9Vp4EX9aOP+/r6Wy2UVEFhDpJtwH09V4FzeZy0wfu6o8PHhvEjQPU2BufR7e/0C3AieeuHPDq957Qvujetlb2/vTLqI176gbbHwoW/Z6qJPV20TngvGn/UQnQK+nmmvr4kuMD60wddwdIJEceYy405/FicSiUTimSE/hxP3OtZ//Of0ql98SO/+uo+/6KY8bTz8U43GP/y25/Se+//+Z+hXf1dfx7phAtxuKG5d0qiUsq9jFfbDkr5B0uefvP9dkt6sW3x48gXec+MltazH0mleNxZyXvN6B153gcgt58XIN4DEQKAhaB7FdKKF+BAdErEqP7UZ6AsE0XPMY245cDt7jJxSGwFyhPMiCia855by2Gci+Z6vz/19fjwy7tdGRGCsqYcQt57ssu7TP8+797HxqDfnkF4Qx8YFJ1I+fNy8EKMkDQYDbW5uamdnR6PRqLVThRc/pP1OimOKw3w+r33mOIocIiRJp+4RBIoojHmRQl5DGPA0DsYnFv309Bzui5CAO8GfKRc73AnDvDrxjykg3iYvZOjiCc4GxmW5XNax7UrhYK0iKHgxz/g5wPhEx5A/y1zbx9TrpriY1eUKiSkblxx35LM4kUgkEs8a+TmcuHfRNNLBcx3uvz2UppGOnuNaV72iZv2e+W74nOFZCwpN03yolPI3JL1f0lzSjzZN86OllBc1TfORk2M+Ukp54dO5XtxSUDq1eBMt9eJ4ngMPnJh4lN3JL0Qo5vUT0ZfUIm91oMyy7gSV+8d0hRg59xx2j5B6H7xNLig4gad9Ttohwh4phki7fRti66TYo+WRuPnYeN/42491h0kkgjGlwoWarrGOwoLPiUewnTTGWgwu9DDnvIbbYjKZaGtrS5PJpBJMFzI8rcYLHnqKAz+kA3iUPhZiZNyjSOLHMcbuLvB597a4qIKgwBgjJgwGgzPuBB/juMZcfOMYRCJPI+AatMcFMhemED382XYhw9dSr9dr7bBAilEX4Y+iVnxumEs+P1wAccGpSzDwselyxVw23OnP4kQikUg8M+TncOL5gGax1AO/WHTjVdLh8HKT5p33FI0/NE+fwCXB7aQ8XJX0ekmvlHRd0g+UUv6zZ3D+GyS9QZImk0klyE48nJhgzXbiE67XEhuiFdp3J4D8Sqc7Dnjxx0haISdd2+iBSGaJ1na114UF+ulbE3ruvRN4SCME1h0Y6+vr9TUnWm59L6WcsedDHmPeuNveaZvnq3uEmzb7lppEun0XAIo5Al7juu6ocHLuxJ6+uxjiEfY41rTfyXC/39dkMqn1Era2tuouIi4O+A4Z2O8PDg40nU61WCxqygN9dsdIFBR8twJ3AdBfXAsuCtB2SLG/79soupDGeV2CggtK7i5wcu8OD/qL+MTz4HMYCbnPBc+dp+T48Z5ygZDBWDJeXWKLC0lRNDs4OKgpLvTFhQq2JHWhwtNNGN8ocl1m3MnP4qHGd6OJiUQi8bxGfg4nng84mk71wHe8VbNveN2lFRTKkdRbFT38f/2aDj766EU3J3GC20l5+J2Sfr1pmo9JUinlhyS9TtKjpZSHT5TYhyU91nVy0zRvkvQmSXrwwQcbz+s/ud4Z8unW/RixdLJLoUAIxdHRUc3/90juSTta9monT54v7vfz+gPcc7lctv6O6RqQTX689oGTwRi9l05z2ClGGImpn+OCAmSSPkOA484P3gZvL8Q02tj9WK+hwBy5YOPELkaJ6ZuPJQIEx9J3t+Avl8szogLw+gCQTRc21tfXtbOzoytXrmhnZ0fb29u1NkbTNFqtVtrd3a33ZhtICi1S6PLmzZuazWZVWEAQ8Ai9C0td69VTADgeLJfLmoqBIOBRc18DLiDw7PAMeE0Mdx24w4bxQlQB+/v72tvb03Q61XQ61XK5rG118Yc5dzeApCrAQdT9nsyN7w7iqSyxAGl0ArlI5n3zcXQhwwuFsquLuy04hufE/74HcMc+i7fLA/dEhxOJROKSIT+HE4nnABs3e3rZX36rDu6N72f3DW5HUHi/pM8tpYx1bO/6Akk/K2kq6SslvfHk3x9+OhdzUsUX+pgb79Xno+3aI9SQI7feQ6ycePD74eGh5vN5PT8SEEgvBMnJo9vpPUc/2tpdTEBw4HqRmEuqkWMEAtrh9SIA529sbJyxl/s4uU2fMY5RbB9zCkHSzsViIem0HgTHezrIYrHoJHee9uC1EWJKis+zF3bsymfnNc/vp5ZETJmA6G9tbenBBx/Ui170Ij344IPa2tqq/fOdN5jnxWKh6XRaCxJi/0dMwKHALh/0nbny6LmnvXgKB2Pr6RDD4bDuRoFY47syeD0Fn2/66XUT3HHAuMUdFuKzdnBwoNlspul02qoRIZ3uLOHOERdR3C3E2HpKBG30nTY4d2NjQ4vFolWzw9eRH3urdRGdPlFI9GvE9/3z4R7AHf0sTiQSicQzRn4OJ543eMX3fkhP/NaH9bHffGevO/lgTy/5p8ea2gd+zws1e+TpO0E//oeW2nhsV2X/IMWES4jbqaHwtlLKD0r6OUkHkt6hY3V1U9L3l1K+WscfsL//GV63FeWEqOAWgKh5JB0S40XspHYBwfNSJSI55zW3qPOauyjchUC7ndRJZwmJtyvWDPA2cgx9oh2MgQsXXNf775Zwj0jTfndGYIVHUIDs4XAYj8fVts5YU/DPSWisFUE7vc4E8+UulPivR40dMa3B5ynWUoC4cj/65HUTtra2NB6Pa/FEn2P+xZ2wt7en2WxWSTU1FNyJ4W12cSnOv6+X6DiIDpdYl8PHIY4d5zlRZzzdKeH9ZD5xFrjQsFqtNJ/Pq5vFBQzu67VIvD3+rLmg4HPkIpK3nTWMM8WFufj8IHz4GnRxIIoO/lnxVOkMPm9da/Gy4W59FicSXVh8yWv1/i+56FYkEpcL+TmceD7h4Nffp6vbYx0Mr+jap9zeNpLlSHrgF4rKoTT5yFKH736vJOmhl1/R9NGNetz1V0sHm6ffmXfeXbQxPb3Oxi+/T4dPPPnsG5K4q7itXR6apvlLkv5SeHmpY2X2WcOJlpMH6ZTIRLIsndrl/Zwu4hXdDRAmJ38uIADEBEiM28mdpPu/MYJ6XvFAP6bL6g2R9eivjwHHO7mHOEG8fBtJxssdCl57ot/vazQaaXNzs+ag41BwQYG+egoEdSqczNMe+gGYK4/ce/ujswMi6nPkLg9Pr/CxRBxhe8jxeFzFFLe3u/Ayn881m800m81qygPt9/XlqTl+z6cirThQulIQ4m4MXMsFB3683kIUImJNABcneI15YxxI9UFM8ZoG3mf/nXXo4+DrkFQM1oW318cPAcLfc0Sxwp9PL8Lqc8DvXa/7dePfLubdC7hbn8WJhGP9pS/R41811a9/3vdcdFMSiUuH/BxOPJ9w9PPv1As//JB2X/GJx39vSEf9p+8MWFsWlQOpHBY98A/fruZkhzyw8aM/qyv29/4f+zxNX3L6fezhH/mwDn79ffXve+Pb2P2L29028jmBk0MKCsbILeQCUupRcCff0ULvBeCctLmI4UIChNPTLrx6PohOCNriKQ8Q9aOjo9qnKDY4yYvpG9E2D8l3EYN+ec0Et85vbm5qNBppMBi07PLD4bBG8RkTUiri7gX0l/GIhROHw2Fr/Bln2uHpEC5OMJfUGnAHSrTQRwHH5w9XwpUrV/TQQw/phS98oSaTSU0J8DoA7j5wQQERwZ0EHoVHHDgvxcPXK2vQxwJyT12B8XhciyhyHe7nqRSQegQgXCasWxdB4vrid8aAOVsul5rNZrXIJ2ke3g9vh6+FxWLRElRY54gKXgDSn19cAbGPLsq4KOCio4tXjGuXQMecuWDTBXc7JBKJE5SiP/Pmf67PH90bxUoTiUQicXs4/NjH9Iq/8DFJ0uzLPkcf/u1P36rw8n+2UO8n3yFJT2snhof+zlv1kP19b21gmbhUggJf8ofD4RmiCMhtd0I6GAwqGYL8uDvBi8O5aMD1qOAfI8oeufQ8bP6WTok0/7qluyudwkk1ZBQCtFgsWpX6u3K6nZAirtAOnAN+H68JIKkW94O4smWi12bgWjgXEFMgzdJpwTvqPDB/XsyQrQZxDwD6Gx0hLvhwfCw6CYH06Hi0wkfXw3A4rIUYr169qp2dnVoM0MkpxJtCixRjhFjHaDVz7WkpTnqdcPu6pY1E/en7xsZGnROKiMY6EvHe/DscDs+ICb7rBlsw+nqNKQfMG8U7YxqGjzvtjo4bX7eQfHcOeeoEIhnz7OuY43zcXVg5r96Br6E4VhTf9J1PPN2D+yN+xHSdROJ+RfnsT9Nv+46f1WsHC0n9i25OIpFIJJ5jbP3r9+iT3rFd/37s3/s4PfnvnH4vffjfNNr5uY/Wv48ef1LPR/l5+NPv0asffUTv+cqd20oFeb7hUggKbh2P2+3xvtu3IbBO2nAlEI0n4utEGXJCLQKuQRQ3RrYdTvyitdy3fIw57fF3J9Jx+z2uH8kV4PWuCLfnoEP83aruW0wiPFBw0cfaI7gcx/UQbiBg+/v7Z3YpgCR6UUvy+uP2f8wDJPQ8sYa54704Px7xBhBH0hy2t7frrg70OwoP9MGJuLtSogji/XZxwyPt9MFdLh7pd2cGIo7vOhFdHd5/r5ng80ANhJiuwPj5WuV1CiF2bcnp7fS+xy1KaR/1D3gmEQp9LcfnMLof3PEShQgXD+Lz5uPj5yMq+rPq/YppSXGOE4n7FfPf+1p94EuO9C8efJdSTEgkEon7E4fXrknXrtW/X/DApjamW/Xv7V94vJWi8HzF4c2bWvvguqSdi27KpcKlEBSA53NvbGxUwuM7HUiqf0d7NOfHYnmQRCK1+/v7LWu6589H0gaZ9hQKyDY1CHyHBb+uFy30qGqXtR/i5xFkoqUUqXMC5W2lbZBK3zGBfkEqKb7Y7/drwcVYbwACRuoDpJvoNWSQ/nghRN8pgR+IHn2R2sJA3JYTOEHv2vmBvtLPSPY3NjY0mUyqmICgMB6PW6Ta3SVN05xLxv0eMcfff2csPBUGkcLnwecTlwE7O/icO5n3derCj48rLh364EKYk3H64oKaOwI8LcDXmzsUvK++5nCnxDSG2AfaxzPhboG4JlxQ8PVKOxGyokDpzhXaCzxliHlNJBKn+MAXN/r1L/57F92MRCKRSFwiNG//JW29/fTv+6rGweGh+jd72t88UrN268PvB1waQQECTQoDEdpoI4856ZBuyAjbFnrUmoKCs9msVUvAI5iSWtFoLx6HuBF3d3ACPxgMzrTP7dVN09Tor6Rqb/d8bq+TILWJ9vr6erXMA8QEXvP0Aq7nQgbpJL5NJLb6g4MDLRaLmm4yGAy0vb2tyWRSiyjSX+zwkDbatba2VlMdEHA4z+taeIE/+ub2c+Y6pkR4lJ95g0wztrSFfiIoUA+CPvjc+xajy+VS0+m07m7gBLtLvHHByndNoOAjJJoUCo/Kcz7C1GQy0Xg81mg0aqWSeDqOjwP3Yq2xBiDWjEkUOGKhx5hK4sf6s8ac+9p2p4U/Uz5vLjy46MB84TCC+PtzSF/8c8CFOK7tzgV3IlAbJBYkpW2MU0yvip8NiUQikUgkEonE4fUbetk3vUUf/IbXafHC52NixzPHpRAU3HIutfPm43Fe4X9/f1/z+bxVDBCHg+8EQZG5xWJRyS7RcggD5AKytlwu6zGIHB7VjnnYkC+PdHubXSiAAPl5viUkcKII8XciHqOtTpQ9su2uj8FgoNFoVGsIQLQgrxRjvHr1qq5evarRaKT5fF4FA09ngDgjEBweHmpvb6+OcXQ/RFHAUwUYi65aBUT3ozvB3RtscTibzWp9CNI66O9gMKhOEtZHJI4QzPl83iKg7kzw/kSXQvzxYz11YrFYVMHBnQYIPQhIvi68MCguHSfIXkBxsVhU4UdSdUTEmgX02esseLsg5xsbG/WeCCDUGvD+efoG/WV+EebA0dFRfSbB2tramVSTWMvB1zfXic4JL9LYlbbh7eVvXwtdaU+JRCKRSCQSiYQkvfw73qsbv+Pj9dHPu+iWXDwuhaAQUwX4cu+EIhI1Xvfq9U46PGrvQoFHezlWUieBoR0evYy2endCeA63E5tIml3siLnxToy68sR9zKSzW+k5acJRAUEcDAYtYg259ij3aDTSeDyukXKi925pd+u5p2DEInvUsfD+cJzb9g8PD2t+PceSBiKdWvKZv5i3z/V8S0ra5zta4GboyqHnfE8XcOv8eTUSPBUniki+U4HPvdcaYKyYAxeo3Lnhln5+vNClr+WY0uBr3K8VaxXEPtAPBATGHvdFTGFxIcjFP19fsdaIi1H+GRCfDb+Or0MXmHxtdgkCfk0/35+xdCQkEm08/ONretXmH9avfP53XnRTEolEIpG4NDh89DHt/MKOjtZeoMd+i+7rIo2XQlCQTouyOSmAfBLtBm4zl6TValWJCkXqOJ9rO8mKhC0SEa/BIJ0SGa7Fa5CQSMg8Gs/7ThTdru3CQ6zl4GKEEysXGtyW3iVS4E6QVHP0iS47oVxbW6t1FSaTSY3qez/dHRGFFk+/cBIeXRPucCD67WkMPm/cyyPzTdO0xpDjfctH1pET+/PqDTDuse6Ak30EGW+X9zGuS4/Iu2BCGzzlIwpGLjz5GvXxj6TZRS2vkRDHn3VF2ylU6Os5tsWP45qICfTJSXpsE/Pl9UY89cKdJ/E59fXm7fF1DuLvfkys3dD1ueDz6u3vEvMSifsJV3/qg9ofvVT6/ItuSSKRSCQSlwuH7/wVXf3Yk7rxCa/R6sr9W1PhUggKfNHnC71vrxfrHUSXgZNmagJsbW3pySefrDUTvBAjx25ubqrf79f78eNRVo/8E2n2yG4kexAojyJDdCkE6LtO0L/VatXKry/luACik2fcGE7kfTtM2uvk3NvqDgVSPdwlQH0Ftlfc2dnReDyuBB1Ayj3S7TUEOIZ+xGhxFChWq5WWy6VKKS2HgY9xTPXgfQSBxWKhvb29+iOd5vu7+EBtiOFwWNtMG9giki1EfV0ifPjcecE/FyjcjRBJNWkAXNv7SZuZO+aLNATGNRbuJB2n3++3tj/tcvXQX9Zs3EHE2+LHeqpC05wWG40E359HUlKOjo4LUDLu7ngppdQx988C/2G8XBxy8SC6C1w0iUVBXagEUahbrVYajUZnxJVE4n7FL3/jw/r1L/m2i25GIpFIJBKXEoePP6GX/vdv0Qe+8XVaXj35jnqffYW8FIICudSQZBcYIAyRZERCRUR9Y2ND+/v7leTF9AOs4v1+vxIHJ3yQC3Y44F+PUHMs12+aptZvwDbvxBBSTEQXkjmdTrVcLmu+uwsKFEl0Mhx3cXAixeuMJ+OH5d8JscMj05ubm9rc3NR4PK7F7KgpsFgsWjn03C+mQMS6FAgNTkA9sg+JYw58K0lqKnjUmHuR5kC9A3cXuDAEsaWWAnMPFouFbt68qSeffFK7u7t1HqIA5ddi/bGu2KHBxRx3RqytrWkymbSEJI6RTh0Y/uPr38U133bSHRfuUIFU0xbuFR0uEb6OWGP0HUENsQ/xA6eLp5FEkSWOBeN3Hvx59SKYXDuu4Qh3rfhnCdc+7xx/L1MgEoljfMpffL8+9yf+mH76//N3LropiUQikUhcWrziW98lra+reegBveerr1x0c55TXApBAVLpBNXRRVylU9I5HA41mUxahRO5LsQi5nhLp9FU/oUQQ3wQE4bDYb2fEy6pXVWf11zM6LKzIyh01WVwO3ZXHrsTMyeGkMqYW+73dpLp+e30G2GGGgvUMUDwcOIfUyyA9y+ONe3w4+i/R48hoZ6iwjlONvf391u7SkQXA8UZ2SqSSD7kmPGORTshoBB3d8+4u8L75K6E2HdPHaCIZSTVUQhwl4uLaQ5P3YnuGIi/ux98rI+OjqrwxtqIFn9P1cGlwXV9d5HYVx8nr3vgcFeLCyY+t76VqosC58HXhn9muBDF38A/L2hXVypJInG/4uCjj2rzg49cdDMSiUQikbjUOHziSUlSbzbXS//l1gW3phsf/u3rOhze+cLjl0ZQ8P3oIQRO3v3Lvf8LoaLYoKR6LS/G6KSQ1AAvGMj1EAMg2J5z7+TbSbNHfr3oXMxP53UnW/53rFXgfXahw0kg1yGaDOl3MknbEAg8auypBVjTnXT7jgGQydhmjxrHyHMkw064I0F3UuznO6mlTTgREBRcTGCOKDK5tbVV60L42LE+3CXiKTVOvqPo4/2l7YxrzNH3MfZCi/TPc/m9OCSEOpLgrug+BD3WkohrwNcs7o+4Nv0npm9wLuMX15m3r+u63mdvK331ApsuErE2vN6B98uv63ODcONzBjx1xAUXrhfFhkTifsTaJ75SH/vkwUU3I5FIJBKJewJHu7sa/POfuehmdGLy8a/T/uadz8e4VIICQgLRcd/+zwml1I7gR5u25/d3bVMoqWWtj9FPzu9yF9AuJ6XxGMh9FDHibgFePd/dA11uCbZ8ZCzoA+KGHwvJ8x8nnC7CeL/ou7sZyHFfLpf1/K4xd7u913Dw1APG2m37vvOCEz8/F2cG/YiuCSeQ7uoYDAaaTCa1JgQ1M3A2zOdzzWYzzWYzTafTKijEOh2MHUDUYG49hcIt9k7Eo5DAsay7WBzSHRi+LhC3fHtT5u769eva29vTbDbTarWq69TFC78fwprPJ3Pi4+3CFecyD9RD8PXvv8e1yPn0jbGnn+6wiQKAp794OpSPOyIFbWd8XNjyZ8tdKC4ykaZ0K1dEIvF8xzv/7INZQyGRSCQSiecBXvi333Jb57/znNcvjaAAWeAL/mQyqT+DwaAV1ez1eprP55UguIvBrdSQAy/OBiAvpFt4/QJIIsQKQEKINHNvrOAeheb9GI3vsl1L7VxtFxC4FukIHsUnv9+JfSxE54TQSRrj5SIHx3iU/ObNm7px44Z2d3frmEeHiKRqiXfBx230MRJOmweDQe2npDrupDFQdNFJLvMXUwci2ez1ehqNRnrooYd05coVSaquBhcTlstl/XGRgrlbLpd1PhE9YhFR6l14lJy58yi+OzCi2DOfzysh9vswptS1cKfAfD7XcrnU/v5+S0xwsQmBztvntT5cTHA3RZcgRF0L0iqWy2VdA8vlst4vpkUgXrjTwNM7YvqDCzq+nihSGV0j7rwg3YE+Iqz48dEx4cUcXdyjSGgikUgkEolEIpE4i0shKEinlnf+dVI9Go1aYgLk38mykxB3JEBoiU47sYLE4I5w8ruxsVHdADEfPEaaAUSMXHnaFWs5uHXf0zE8Uu/pFp4nL51Gf6NjwfP8I4HtSu1gfN09AWmDJC+Xy1YxSuD3QViJUXwIWoyUcx3m2Os5RMIcCa8TSV73KLi3i3mgYGcUHuLuEXF3DhcQPJLPMT4Xy+XyzFqI5NjFAR9znyeuBQF3h4tb+7k+a3e1WlUxgXmIQoGjlFL7FFMG/F/GJdbs8Pmh7bgi3IngawB3jPfJhTUf1zjHflx0sDjczcR1WEO0xe/rzh3OWS6X9Xdf04lEIpFIJBKJRKKNSyEoOFFx0g6RJuLpOc9+ntukPdrJ9eLOAjGS7NFmdyA4ifXUg+hcoO2cRy0C6dT2j43di+a58IGgADmnloHb0d3i7YKCdLrNH33g2EgCKTZJwUmPepP/j42dNkJgXSRhHKOt3ceVKP154+XRcxdLOMaj1F70MtroY/qLpxi4cMJ13GER14Pn79Nv5szH1oWB6FigX131EVyIiEKVjy1tcNHE78u5OBpwVng6if94bQfO9TlCOPGtSN3pEcURdxhwT+pzeDoQ57sTIa5JEGtTxFQhf+bdzRCFQPrqxTW9LoKPtQs9/Ov9SEEhcb9j9P4N/Y9PvEpf94JfueimJBKJRCKRuIS4FIKCdEoYIe0OdxpIp0QwktdYzA1ygp3eLf5dBI1IKhb8rp0QsOR7AUiIHG1nu8lo3XarOZHlaGvHlTAajVq5+YyRpFZ9ACfUWOU9/YH7SMfpBOPxWOPxWJPJRDs7Oy3RAUGD3Hzy2nu9Xt3pAmeF29G9aKUTZwgqY4ZTxCPIvmOGO0wYI08X8Kiz2+9dGPBdMOJuHcy7OyPc2UDb3W1ASgzt5jXfycN3J2CdeMpLLA7KjztPulwiLqL4mDFuzKunL+DeobAmggp99Lb6+awvj/ozFzwLrCd/vjiXZwkhheNddOJ8//Fx5p6x9oS7K1yQiM+uF1D1MSFlJYpaR0dH1Y1A+3BAeY2JROJ+xkv/+7foX/3kb9Of/Ae/rEHZuPUJiUQikUgk7itcCkEBYuJf+A8PDzWbzWoONCTfI6leO4BcZ4q9EcFHOHDS5AQHguLEl6i91z+giCFRfRcp3BlA9J/tAbkPREs6jZLOZrNWlBXiPhgMNBwO6z2cALqNf3NzsxbHgzg52YbQETnf2trS9va2RqORRqORxuNxzZX3VBMEjtlsVskzxG5/f78SU4gjhC7mw7tjwKPi7kiIBNYFFrfUe0qApwKsr6/X+gUIMZubm7WYZ7TLQ1LdreKCBXUUvD4GIoqkKoxEx8ve3l5tF3UhfE1z3f39/VaKQXS30A5IbRTNgIswTdPUuhBcy4U5iLzXFaA/PkesJSf+kHSKFHKup7TQD68/wHpgDvb39zWfz2t9DFJp3FXk6RPMEf2M4+DPJmICrh4+B/wZ9jXm/zpYp54Kk4JCIiGt/dQv6Mte+3p940/+E33uMHc/SSQSiUQicYpbCgqllO+Q9CWSHmua5tNOXntA0vdJeoWk35D05U3TXDt57xskfbWkQ0l/ommaH3k6DXGLNKTVhQZIP6TLI9BewI5tBGPqQiy6eGYgTgQDdhRwwoHdn60HESoQO4gAO3mOhGVtba21qwL9cru7F3T02ggegSfaTlt5HQLlLgauBTHb2trSzs6OxuNxrSsgnVbtL6XUNkKq4jUWi8UZghvJXhfZ5B5eAJNz6YPbzp0I0icXH7guJNTXBGMD+XeSG0m634/fXQjydBfuy/ywFt0qzzgSFWde3ZHiUX1PtUF0cmEmRvjdbeJuEPrgwo23h3Z6XQMQ624wNu5Q4T3fCSOmE/g68VQhdwv4ziHsrMF7jEmsdeEpF8wf7YwuIl8fHM/a8PNimtV51+mq03BReK4+ixOJiObgQAcf+rD++F/743r1H36X/sEr//VFNymRuBDk53AikUicxdnKgmfxnZK+KLz29ZJ+rGmaV0n6sZO/VUr5FElfIelTT8751lLK0wpnODmlxgBFAfmBjEI6PFIc7dRumY453RFEt6mPAJl30uFEnui3R4L9b/rjZJkIqosBLkJ4zQav+8B1OQeiHIs1urjCdXx3iM3NTW1tbbV+xuNxq0+IJfSBa3EN38Iz1h1wsuzk0d/3VA+3/3c5EyI8DcJ3BJBOSR+1Cxhr+hHPjT/erq60C36IrCPeeO6+r1vus1qt6jm87uTfhRcXyOhTTGWIzwI/cSwRE3h+/N5e1yC6R/xZ9LSXxWKh+Xxed5TwfsVntKuvzP1yudTe3p729va0u7vbEhT8WUG8iLVP+HyIYlY8LzoZYoqEixOsGxfgvDjqJcN36jn4LE4kzsML/u5b9Y4f/WT9uUd/00U3JZG4KHyn8nM4kUgkWrilQ6Fpmp8opbwivPx6SZ9/8vt3SXqzpK87ef17m6ZZSvr1Usp7Jb1W0ltvdR8vlub72x8eHlbyDWnji75/8XfC5ZHHWNHd0wA4hkg8xRQ3NjaqKIHN3gUF8uO5FsdHkuORcwSL4XBYSSlCB+kG0YrftVVidC/42Hmev9+Xtu/s7OjKlSstQcOJFw4IzyHnfE9HicQNV4mTSRwYEFvm0qPb9NVJNIgE0cUgnAdOFr3PWN+x/Pu2jovFovUzm820t7dXo/HuVmAOGRPmbDKZaDwe13bSFoj9crk8Y713EaVrnXiBSV5jnCDcpKC4mAOx97Y73EXjY8aa82fDCTeCiAsPUSSK6QC8zzOEUOLPEtt1slbm83nrGWBMvY6Cj1N0YnQhCk9eZ8RFFdYyopyn0XAff54uGs/VZ3Ei8VR42Te/RW992+foxt97m3Z6o4tuTiLxnCI/hxOJROIsnm0NhRc1TfMRSWqa5iOllBeevP6IpJ+24z548totQWTZ7faSNBwOa66/F8WT1LKxe4Qcwu6545wXbeaQ2bhNo+dvu0PA89L9Guvr65VMk3LhUU/qI0DIfLcAt+1LquTNi0D6zg2e8w65g0jTNu5NvYTNzU1dvXpVOzs7tQbE0dGRFotFK+WC+9NnJ3eIBLR5sViccRi4y+Lw8LBV38CdItIxcSSX310PLq70er3WfXwNeFoAbXSHCf27ceNGJaCz2UxPPvmknnjiCV2/fl03btzQbDarEfjZbHam6CA5/Yg2zDVzNp/PWyk1kur7Hun269FP0iMmk0nrGAh3TNHgHu6a8K0iuQZig9f64HdfZ7znwogLBtHyH2sdREcJaxwRg7mifbgSvIZCbJM7bmIxSta3H+trzVNVPL2Ia3Q5M3y9eVrEeW6ZS4Y7/lmcSNwK/R/9Of2Bz/xS/fWf+cf61H6KCon7Hvk5nEgk7mvc6aKMXWHDszkGkkopb5D0Buk0nQBCT952rPDugoBHdbss7ZBQj4pDajxnPKYL8He/36+igRfMiwTIRQNcChC9zc3NM6KCkxgIkzsYIN3L5bLWA8DZEPPrY745IgGEmnGdTCY15WE4HLYKKXqxSI/Scj0n+pIq2YWEey69R3Vpi7fP++4CSow6Mx9E551I+xjiFLE1VQUFiH/TNJpOp3X9zGYz3bx5Uzdu3NCNGzd08+ZN7e3taTabtfL5nUiydiC3Gxsb1RXQNE0lyO4QYJ3EFB3a4ekabsH3NAePprsTw2sceP0Bn0vGzutjeIoGz43PB231dAkXKuh/dIU44lqIbg+2t/TCjr4efa1EF0JMXfCxcJeIH8/1+NuFKcbDx6XrfvcontVn8VDju9mmxPMFR4c6fPxx/ZFv/NP6lP/6F/V/vOwnL7pFicRlRH4OJxKJ+wLPVlB4tJTy8IkS+7Ckx05e/6Ckl9pxL5H04a4LNE3zJklvkqStra3Gq/JDdmLuNP86QQExP57oLhZ0FxQktUi+R0OJdvsuEhB+JyQx/9ojpR7Z9etHYujpC4gpvL9ararjAIGDPnvuP9d3F4CnWlBPgEKMkE4nZjFC7UQsukJcoHES7edFccbJmxe87EpZ4HyHE3wXkuK5jAE7ZZBmMZ1O61qYz+fa3d3VzZs3q0Nhd3e31gfwufPxcPcFtRIQf1hrTmxj6oLPT+y73yMKCrFeQHQR+PuMLddDBPF16M8U/aTd7srwZ8YFCeAR/670AxdJcLcgtvEcxui/O026xok2R4HJj+uaA953MdCLbPr8co+YGnGJcUc/i7fLA5e+w4lLgqbRlf/zrfrpT3id/vh/uNLffuRtF92iROKikJ/DiUTivsazFRT+saSvlPTGk39/2F7/B6WU/1nSx0l6laT/51YXK6WcKXRIvniXLZrXSXcgig0BgPC5W4GtAKVjggpB92KMLjIQ4XexwQkWW+J5HyBBkYhBJHmd/qyvr2symahpmlbOPQ4H+khbYiSWHHevzyCd1hyg7WwzicsB0ujEzMc2RsN5Pxb+i+KOFxhkbtyFsbGx0SKYfj0XEbw9FJZ04ufk2McdR8fm5qZGo1F1jezu7tYtOheLha5fv67HH39c165d0/Xr16tLwdeM76BBO53kUqvDySeRby/M6cSfNrroA3AHkOrg9Qri2mcueM9TVXAR+Lk8Az6uHOcpBfze5erx+/g1IvlHmCCdxZ0Q1HsAsfgna8TXm4sR59We8LF2FxJwp5KDeWCdspYRde6RlIc7+lmcSDxTvOyb3qKf//nP0Uf+1o/p4fXNi25O4oKxd7TQ7tH52+3u9Poa9/rPYYueE+TncCKRuK/xdLaN/Ic6LjbzYCnlg5L+ko4/NL+/lPLVkt4v6fdLUtM0v1RK+X5JvyzpQNJ/3TTNLfddQ1AYDAbq9Xqt1AEI1ng8bhUHjHnREFrO8d0EOMbt455fznW9wntMU4jkyvPDIXcQweYkdz5WqYfwQKZxD/DvwcFBted3RWvjDgCQM+ossGuDR4JHo1Fr3HBskPNPPQUXTDzP34m8576vra1pNDrOnfU0Abe8xx0qvCYFtncXi9x5QJ99541+v3+mZgJ9Jd1hMploe3u7rpemafTEE09Usry/v19rKFy7dk03btyoxRmx4dNGj8i7UIDIEAUiL6AZUxm8loFH1j315rzUHBduXLRywruxsaHRaNQSEzx6f3BwvF0j7UTkop3RBeKv03/GJc4X48Izx3Wl420m4zWjEPRUKQe0ydNJGDPa4teOtSYcvV6vihwumPk8+5y6aHMZ8Fx8FicSzwbjH/5ZffVPvl5/5+d+WC9LUeG+xr/zf3+tPulP/vK577/rf/1k/foX/b3nsEV3Fvk5nEgkEmfxdHZ5+APnvPUF5xz/VyX91WfaECfdkRz4HvJuQ3dS4Lnf5MJ78TuvgXB0dLqrA0LGeDyu0dHzcrndMeCR0ZN+n4lExx0afBcE+oVw4YUSITxOxN3tMBwOqzDg96JeAoLJcrmsqRu0wXdhaJrmKetU8DfnLRaLaqNnC8tSSs2LR2xwEuZjSOHI5XJZ7+lpG05O3WbvaSFeE4Dx5xxI9Wg0qvZ/r3VA5PnatWvVlTCfz2u/nIw6gffoOaJXlx3eCbDXToh1Ohjf6AzxVBpPXXBnigtnnlbjx3nhQa5Nm9wdsbGxUfuNGOapPX59hDYEBubLt0pF7PH10+W08OeRvvrc+3hwPxe5HFFE4F5RuPF7+7qORR+5p6edXBY8V5/FicQzxtGhDp94Un/gv/1v9el/9uf1rY/89K3PSTzv8Kn/63+l1/zoDR2dBEa68JpvXeh1P/rHWq89+ck9veu/+Na73bw7gvwcTiQSibO400UZnxX8i79HS2NOPnBS4aIC6Q+xsB5bJHoUmC0giepzjOdfR+LnkVEntNGKzbFOEiHcXrnfxQSvoeCR/K66CJyDMAGpw6ngRM8dCO4egCiRQuDjSPvd/s64xkKVHmlH1OE6MersY+fWfPrqqQIuROA0cPLo48+9uUZ0ciAYIIzs7e1VEQSxgT4wj9zP60HQX685QL8ARJxxiE6EKIi5A4Q15+Q5RsiZkyjcMC5eMyG6cuiPz2HXvbke4+I1MBw+n9Gd4u1ijHmWPC3C0xZiH2NKjf/rx/J6rCkRHSaxXbzmr0eXzmUSFBKJS42m0eYPvE3/+lNfp6/+onV9+8v+zUW3KPEc4bHDqb7oHX9EL/+hx3T47vc+5bHNz/6itn62/dr2Z36qPusz/5OnPO89s2+/3WYmEolE4i7hUggKUjv/24lE1w4JXZFhznEyQHQZ5wEiw8HBgTY3N7Wzs6OtrS1tbm6eSWEgeulpB7TFSX6XFdtrCEBacU448ev1elXMINq/vr7eytmPhfzcpQCBh9jhuiD6i5jAa05ouT7E11MIXFxwVwMCBm2n8CHzt7a21nKHOPH3sfGtOaXTbS4hwB5pxxVAe2hfJP9+DV5HWNrb26tpHqvVSru7uzW9ITpOpHaU28ecMXQXgXSa/gIJ9rQFdwu4uOBj4+tuuVzWYpcxHSSKQZ4OEAkzr7ugAHDCxPoPUSTj+XEHiTsLYkqGpxhxrhP+mIoQ/0VciMJKF/GP8HUQ+8EzFAWROFa+3v05SCQSTx8v+6a36Jff/bl6zxt/5KKbkniO8OPTV+uhL323nq382rzjl/TQlz71Mb/WLJ/6gEQikUhcGC6FoACpc4JO9DRGL/0ch6c6QIA9SutbPw6HQ21tbenq1ava3t7WcDis6RIQsLW1Nc3n81Zufr/fr24CCLYDwoUYgaBA+7CEkzIwGAw0GAyqoEBqg5MbgB0doiZJW1tbZ/LWiegjUOB84Poct1wuNZ1OW4UwnYhRi4JoO2SRa5IuQr9xTAyHwxr9Zzw9195rVEBSfRzZPYGxZHx8vp0cHhwctKLu1FmYzWb1/Rs3bmg6nVZ3CDs6RNGKcYdQQpIRcFwAYY671qeTW9/a0l9HLMFRwnizjheLRStVAneNFw70dSepbjUan42YJkLRSRfYmAMn97FuQ4z+I6RAwkkv8RoNnq7k6SlSuyhjbC/PsbsuvE2c50JKdDS5WyWOnc83BVs9zeKpxItEIvHU2P7et+lP/OC/d9HNSDxXaI50XCIgkUgkEvcjLoWgIJ0SpFioTzqte+AWbKlty18ul5rP55rNZprNZrXooUfQIamj0UhXr17V5uZmzYn33HTPr+Yaw+GwFjhEmPBIfMxX78LR0VG9HrsyeLqDR+ghNh4t950oIIQeZfacd67v5zC+8/m89hcHBSTQCaZXuqeP7CjhzgkXLRAuIHo4B9zR4WICRDlG3ukDuzU4mfWaDE7IIfp7e3utKPx0OtV0Om1tLSqdpll49BzS62kHLhowZu6AiTtUUJuA9eAiQozKIzrt7+9rNpvVdRxdL7eKlrNG4nj7PPrOFTFtg7bGGgixFoOPCSIEYogXg/Q5Os8d4GkYPv/e15hSFGtP+HPiYxYLoroTxdvjjiiukWJCInGbaBo1+6uLbkUikUgkEonnAJdCUGiapkbyIfTR3g2RIBodI59eOJBreb4+pNcL90FGY6qE1zFwMWE4HFZi7u2LEVLp7FaMklpiAlF+t2M70fFosospEHHSOBivmL+OC8LrCnheurfbRQNIqNu+nVzSh0jUGG/IoQs0nmrBOT4vcXcDSCYuDtJVgEfu+bvX61VSO5/PKwnnb+pXRKLeZac/Ojou5gjhjk4Enw9PT0GUwWHDfXx847pACEFIgPxznxiBd/eGCyzREeGCRbx/V1oAv0ei7euc9vra5NlFrPH0Dq+x4dfyein+nteN8LUXSf55riUfHxes6Fd8tjjH/82aCYlEIpFIJBKJxNPHpRIUIrnxSvaSztRD4FyPUhJdj2STgoWQVE8x8KruXlOAqPt4PK6CgqRWNNwrzzuZjzn+2PH9ugganOvE3QmUuw/ovxcIxGXgJNAjxO7A6Co2544IiJ3bvr2GhEd4iVS7QOA1IDz/PZJAT3vwwo+0FVcFgoOPCesAUcFz7rGwM/bUr6Augfcl7rrA2NNnxjUKCqS1+Pi5a6NpmuoGgNBHhwLODIQAovwuePia8nnw1Bp/hvx5oL0xlQgxztNy4lrz3znW1wj95DlAgGI9eL0JJ/Rd6Qn+nPg8e8pJ7ON5QIjyMWKc/V5daSGJRCKRSCQSiUTimePSCArkvLtjwIu8UZxvOBxqPp/XKPJsNqupDuTsHx0d1VQCcv1jegFE3CPIsYDdYDDQ1taWrly5oitXrlSSSf6926xdmNjf36/55fQJAcGJsEftiRo7EXTCHd0FpZQavSc6L+mMiODui/l8rps3b9bikNFN4BFiJ3ie3uAWdoi5kzMIoJN+jzivVqsqFLALBffyufEIs+fOQ1p9fEijgDxGdwXve0qI2/0jEfZ5YUwZZx8HF5IYC9+e1N0Zklo7YGxsbLRIs5NhjvH15WKa1K6hwP1oOy4Fd93QT3+mSHVxB4ALXH4djudvBA3+RnzwwqVcy8U9v46Po9cGcceLz6GLd/6szOfzek3qbZxX34Ln6VaIgkcikUgkEolEIpE4i0shKDg8mgkxoRaAOwoWi4Wm02mt4L9arWpxwPX1dY3HY00mk/qv73Qg6cyOBRQAhKCORiPt7OxoZ2dHk8lEa2trnbsdONlx4gyxRURA3Hiq6KiTZCd56+vr9Z5+Pu31+gW4Hjx3P0bqiZa7OyC6EXw+SAFxwufWcrfck3bg+fReTwHE9Ie4I4AXc+xKOXBnhI+9iy9OWiHkoCtVhb8h+7zOvLsY5OjaucLHn2i+38Ot/V3CTYzm+1aitInzuf9wOKzj5OSba8Vig13k2sUTSS0ng69TP96FGE8JcnEGMc7HxdsRhRT/iWkPLmixthGFfKcPXwvufvKdKnxO4pyeJ0okEolEIpFIJBKJY1waQcEjo0SuAZFZSMFqtarFF2ezWavIHuR0PB7XVIXxeNyy65NOAVGDiLjggKvBUyNiUT+PwBOlJaoKueWaCB0AwuqRfi/OGMcGwhXTDqhD4PeIxf/c7u7RYCdeAIcA5zk557pOtiC6nioBAff+c03O9fZFK3usHeBV+z11wOfT7fFOYn1deDujwME5Pi/eTklnBApPZ/Ex8ZQPzokpEpznYo3vwnGevd/JtRNhJ/Xet0iKvc3MTxz38wQvX69c1+exS/jxNnVdl3XpAo6nFLGziI8/ffAxdYGLe/Ovj5ULNrzvohbwNZdIJBKJRCKRSCS6cSkEBb64e5SRegXk0/PFnij4bDbT3t5erYhPwUSKLrKDAzUQPIruJMXJhBNRxAS3fXuaAxFvyB2FICEq7AQAYUGY6CKyns4BSXPyhvvCx4qx4J44LHxnC0esE+DRfd6XVKP4TvL8h/lhvBgDHBS+/Sb36vf7VXSJkV+/ttQuEujX8KKSMULtgg5tdELutRa4rvfP24KdP46VIxJnj+hHccPFEe+nX4e15OQewcuJekxhiVuJeh/9Hl5vIc6pg7GPokE8LroYXDTy9dYV+ffxiqKIp1YwjtRDiXPggpGLBF6sUtIZYSeCdngxS3fFZMpDIpFIJBKJRCJxPi6NoNDv91sE3HcT8J0REBTYzQGyDXGj7sH29nZLFIBwOolxCzsCBvAdHZwc0rZYhI/aClTr96KR2N4hO7FOwnA41Pb2dssuzjn0mW0Facvh4aHm83kr3WE8Hrds76vVquaUI1p4nQlJdSwPDg5qwUp3KSDYlFJaFnTSK9w5QmFBSCsCD7UemDtIsRfM8zQJr8PAGDJeODKcxJKGEgtruljkIgHpAuT9x/sw3rEGgRNoFzV8no+Ojura9JQP2sOx/h7ryVMLnAC7qyK6ZGhPTLegvf1+v85FV8pDFKdoZyTmns5w3n3dDeBt9j4wdrEtEZ764OkvrDkn+r6VKtupdgkVLhjEdBf/nMmijYlEIpFIJBKJxNPDpREUHBRS5Ms9xNvhtm/IGaRiNBppe3tbW1tbVSiYz+fa29trET3pdCtEFxR430WI0Wik9fX1Wvnfo8K4CPj96OioFknEeTAYDDQajc64JHgdIcAFg/PqBuAIYOx6vV7tM04P7uEpBogALgB41B+Xg0drqd+AYOIOAa/14O4AyP5wONR4PK6k1Ym75+jzL7+7bZ1xcmeGF/3zVAuIJNfxmhSMLf3mOogNTlJdoIDAe3HMg4OD2i/mG3HLt090UYD168KDz5+7JDyi3hXp5zUvgshapI04ZnzsaRd9RZjxNvF80OaYfuMpHhFd9SCc3HvNjehQYSxc2IipIdE14sTfHUaxn4gj8cddN/TVhbKsn5BIJBKJRCKRSDw1LoWgIJ2SpKZpagHDWMQwigjSKSHjHFIecCmwi8DR0VHdHYKdBmJOvNcb8AimEz5vk1fdhwzt7+/XyDyRYfpCW3AfSKfk2MlbjOp6lNwjvx4xp+YDxNEJabSw87o7QtbW1jQajTQajVrpJ54aEYUKTzXgB1JGm7oKGNJ2n/OuugMQYyehEETfbcL740Umo4vE6we4oOREF7eJpxV4LQfglviudRnrC/iOBSDWInAHjZNp5t3bikDhgok7A+K6jvUSvPYG68XXnT8bviZjmkEce3+2fDxc2IoEn+u5C8KfO1+HXeD+/O6CC2PkW1/6+LtgyY8/14lEIpFIJBKJROJ8XBpBwUlM15d7yHokTBxHvYThcKjRaKTJZKLJZKLhcFjTA6RTOzv3dFLhbXGbuhNySA+CgnRKYrw9CAqQWgQP2uCEzSOktMnt7U62vVaA1K6fMBgMKgHz6H7XOEdXwcbGRi1kyf05l1x9ovyxroLXJPAor6ebeH+9TS6aML+OOE6+owLz43OAq4Cxice4mMGcxhodXjPD6wq4WBBTElwciRF82h3dBlEY8XmJgCDTXtaX16Twc52Mcy8XrZgnd8REeBFM5t6fA/7t2pWhS/jyOhGM0/7+fsuB4uvLnTIuKPg1WX9eY4K2Mz78HZ1J8cc/d1JQSCQSiUQikUgkbo1LIyg4yfOq9xAAop/UTCA3HOI6Ho9btRPcCu4kDocC93Ni6ZZ4xAKPBnvUOVbHj1FwSCTtYseJGE31PHaPeB8cHNQUDXcHeIqCk2wEBX89klRqO/gP5+LqcNGD88bjsaTTQoHURfACjtHt4ITaibSTX8YaRwCkOQoOnBf75dc9ODjQcrk8s7uEOxS8Pf6711josti7Q4J5WCwWNcLPGEhnCzR6Ko47PA4ODmqNj42NDc3n89p+T9nw2gFcI5Jw7hufp+Fw2HIC+JrFJeCFRh2+TjluuVxW0arf77eeIcbfax7QJj/HRThvsz9X7rRwp42vCa8hEa/h4+8CEscgyLiI6AIJ72XaQyKRSCQSiUQi8dS4VIIC/0YrOAQC8llKqXUHiM5vbm5qMploc3NTDz74oLa3t2tBQkiYR52Jhsd7OSEeDAatCOd5hCUSakgTtn9PeXCHgZMYSXWrzBhl7koJcNcEoom/BomFYFMwkSKM1HiYTCatLTaxwEMQvZaCOy34HZHBbfq+7Z+7LmgrffNik9ExIOnMdWMahpNZF0BcDIg5+uvr6y2XSnSo0F6KRzKPrAUXUdyWz9ywLjylgDXs9n/WrgsSXlvBnwsfc6+t4euUe7iLYzAYtIQbL/rp4xrvybj4+HI+TiCu5XU4WKfuNKJ+iNdE8TUef+8a2ygIAtaXP0OkrHh6COPoIlMce++3P3uxdksikUgkEolEIpE4xaX4tuzE2nPZY160E2ZSIbx+AD8UFpSOSQfF8rzInhdec+IBaeO+TlK9nZA/T0mIDgUKRPruC058gEehiSR32fWlU3t9rC0RSTPCAIQ/Emws5bRvNBpVAQLxwaPALlLEYn1O/FerVctBwTx4W52s+thxPKTdLfzuSIhV/GN9iJjiEMUKJ5CecuCpHi6A4MjwuWf8HE5+3U3hbeP6nu7gBN+fAe+jjzfCQXQluOBC2z1VwNMifOeD2Afvp9eRiGkBLo65IOJrzVMy3DHjYhwOiehY8HHzzwB3HuCoiWuRvvg1+dvdS1FQoe0xZSSRSCQSiUQikUicxS2/LZdSvqOU8lgp5Rfttb9eSnlXKeX/LaX8X6WUK/beN5RS3ltKeXcp5Xc97YZYZNVJQ7RkcxxRfyL//kNk2C31XoHf2tpyJPg1XdSItQg8chtzx90mT2QWss65Trq8DfTN0z1caHH4vZygxbzweKyTS4gyUWecDj5esS5AVzqFOwjiDglOMt1l4dFxvwfzGQsqeg0JF4ak01oEXoSQfkcxyOtceKTayac7KnznC3cbxL7Ftezzdh4p9fuxZhAwoiXf59nPpZ+8z/kIP35Nf80Fjthuv68LCnFXCdDlCvG17cfHtYDgt1wua+qLjyf9dDHP1zvtjmPknxdxzBGtmNOuHStc2LkseK4+ixOJRCLRjfwcTiQSibN4OuG375T0ReG1fynp05qm+U2S3iPpGySplPIpkr5C0qeenPOtpZSz39YD3CLtxMNJh28rCDmCsFOAcTQatcgfxG8+n2uxWFSC3EXwXJjw7fQgLZAx7PCz2UyLxaKSoJjy4EUhibgvl0vN53Pt7++3rPsx8g3pocgkaQm4KrpyzKOF3Uke9ziZo5YlnvaVcrz15Ww2qz/L5bL238k5149pJHGu3MLPeV4nwKP1iBuksrgwdHBwULf9nE6nWiwW9fqIEOTnxzXUVYPByX4k2AhFrEeuG4l2PD6mKzghZWy973GcSIPwVB6EBfrjRFw6dUG4m8fTDDxFxZ8Lqb1NJ+118s+4IyzhyHChhzEGXmvCUwaiyIMohIjgaTjnpWA4XNiK6540CK/z0eU08LmPosGt7n+B+E7d5c/iRCKRSDwlvlP5OZxIJBIt3DLloWmanyilvCK89qP2509L+o9Pfn+9pO9tmmYp6ddLKe+V9FpJb71lQywCbPdp7WzgFnjpNGrp5BuC3GUJdzI2HA61ubmpnZ0dbW9vazwet/L9V6uVpNNq+IPBoBJZ0gE8Si2dWtEpxkgdh16vp9Vq1Upn8Og/RIhrc6xveYkwEqPpsX+kHHSleXidANIxaB/kcT6f10KQ3IP3EAG6RIToRIDo8i/vQZA9KgyRhVCvr6+37sd4eJoBQgL98cg+9SGiO4C2HR0d1X5zDAIJRNddGV1OAv52q767HRCR/L6+diHptM+3KmyaRovFojWvuEfcoRBrAHh6BrtAeHpITCtw0Yx2k5oT55mxclGJIp8u2sQ1RlpBTHVACONZiik7LuxEN0RMS4n3dWdGdDj4uogpKQhe6+vrZ+bnMuC5+ixOJBKJRDfycziRSCTO4k7UUPgjkr7v5PdHdPxhCj548tpTwqP0gC/5EA2voh8t0U4MifT7cZAjdyjEugtU0OfYpmlaNRCk06hu3M7RXQyIDzgKOI/K/NGN4O3DveC7KdB3z0eHTHlEHlLsIgyknHFiXCGvHuWlir/ns0MgPZrMNZzcespDrFcAEXbCCPH1+eW6/i/j4gUSGTsfd0/H8DGKxfciIffdHTydQmpv5+mFOX3dRWt/7DdzFwtxxsKEnu7C64wbx0QhzUUNgJDgDhs/hr75GHtqAKkvjHHX84VYxbw46HuskxGFwFhDwYuQuruoSziLLhFvH/dkXl1sQISQTndoiQILQJhzUe0ewW1/FicSiUTitpCfw4lE4r7DbQkKpZQ/L+lA0vfwUsdhTcdrKqW8QdIbJFV3gHR2l4eY/99F5JxIuv3biYsTyfX19ZpGAAnz6CskHAv+eDyu7YgReUgRRB3LOud4FJ+IraQqMEinNvBYj8Gj8Wzx6NFYz2d3sueCgpN8xpd/o5We+7po4WICtSRcuIi2c9rr9TB8DhknHAKxhoILDJ5aAcGMkW4nvvzLGLm44OQ11lTwcYd0Q24hpnHNec2Mruh3XE+QU37sOWilGnTl/vv4xffoF+fH9eD9D8/fmWcSIYJ7xvUiqfbFXS/Mt8+RdOomiKKgCw3enlibwdesj7vPdTzPRRtPwWCsYv2IrhSLy+hOuBXu1GfxUOO70r5EIpF4viM/hxOJxP2KZy0olFK+UtKXSPqC5pTtfFDSS+2wl0j6cNf5TdO8SdKbJOkFL3hB42Q55rQTdYQseGS0lFJrH0AgogW/dta2vdvZ2dHW1tb/v72zi5GkquL4/+wy3fPV7IKgWQH5MGjCkxDji4ImGgWi4EdiID6QaGJIMJEYEzAkygsPaORVooFIDF8aJfJiAjFGnxAB+RSQDzGurKD4wM7O9Mzs7PWh6l/7rzvVOzuyVd27/f8lne2p7qk699Sts3POPedczM/PV+fWMgZmMbAXAtPutf6f19d68V6vV2UnrKysVKv+dHqYdaDbVgKHV0W1o77qQZ10dcA1mMIGlHR2mVGQZ36oM5077czU2NjYwHA4xPLycnXOfHcFyq33Sc9PR5aBDQYTFhcXq5Vs3RVCgyUaMMgzECgff5eZDNQLv8dggDaDVOdbA1DqJHOuaN8MDcpoUANAzXnlOHheZpzkAZG8OSTPofptKqdRJ1d34tAAHM+vc1/LPXKasjnyf4F6g0YNPqme+T3Obc1eUf3xedN5rM1QVS4d386dOyt9su9EnhHC39X7oWNhcI6y5DritpN5gGNSOZa2+OQ4tfGPXWOMMaOxHTbGTDP/V0AhIi4FcAOAj6eUluWjBwHcExG3AXgvgPMBPHoU56v1PdAt+rQun6vuwOGV7rm5OSwuLmJxcbHmwGqNPwMEbEzH/gm8zsbGRq3J4vr6Oubn56sShnwVWwME6hhx5Z3HeT72Tshr+vOtA1mTDqCmAzo3/X6/auiYUqqCI1pzrg6oOrH8XJ0sypkHKFTXKysrtWwMjocOsa5Ya/CE94i9H7SvBEtI2K+BDh5l0J051tbWag4vewNoCj3T7/ninAIOlxwA9eafvA/q9DOjYGZmpurFoY6qlnU0ZVdo2r02YdRgAINKTcEE/X3NbOH8yXcv0ZV0zrvcaed7zcDQ3h90/LVRJ8e0Y8eOWh+D4XC4abVfx6EBPP6eBoY0qKFj04BXUyZGXraSZ+nMzs7Wrsn7r0EanTPaT4TX0fs5KvAyiRxrW2yMMWZ72A4bY6adLQMKEXEvgE8AOC0i9gL4HooOtn0AD5fOwCMppWtTSs9FxM8B/AVF2td1KaWN5jPXroF+v7+pHhpAtXKpjhkdhfn5eQwGAywuLmJ2drbm8PL7+WoqnS9mMrA+nw5xXtcObHaK6ODSudV0d01xp7NEhyulVDmBdBJ11TRPuV9fX69KMgBgbW2tuqYGKTSlPS/xUOg0UecsX+CxvAQgdzx1RwKtb89LNdSZBIpsDG2aSN0zcMD7CmzeNYH3i0EVnldXvblDAHVLVCccHzMP6Ljnuyboqng+R4k6xiq7fqZbbzIrQp39PG1faSoJyJsMqoOsQQi9TzwPnfem3Sj0ejpO/VnPm+spz2yg7jRDQjM/8jKkPJjCoJdmWui4eW5ei0FCPb9m9VB+1Qk/yzNetC+KBlMmhS5ssTHGmNHYDhtjzGaOZpeHqxsO33GE798C4JbtCBERldOYp+cT/pFPR4alBYPBAAsLC+j3+9Vqtq4yat28rvjTieCqujYdzB03dYC0tpyOvjbAo1OtjRT54oosZcr7CGgfAzr7HG9e3kCd5TX+lJnnyB1E/Vw79lNWnkubWOYO5ajyBL2urgpTV7Ozs9WKsWYgcJxafqGN+vJeCJrmn1KqggkaxMmbAGqGgAZ+dDVeMw0UDdBo9oAGZ/gZdaq7dWimwJECPhpI0HvDsep9ZoCgKeil94Kf6W4fem7NUsjnhp4nL/vgvMvLPRgw0nnNeZSj/Q80o0Sf+7wPgt4jzSChTvJAm84r3U1CG23m2SfUGa83KXRhi40xxozGdtgYYzZzLHZ5eMdomQNwOJ2ajsTy8nJ1PKWiWeHc3BwGgwFOOeUU7Nq1q5barg6ErkCrU67f13R9DTio06Ur0nQy2LdBV0DVEQZQ7foQEdUuDtqjIXc2tVxjMBjUUukZWKB8LMnIO+NrZgTPDdSb5B06dKi2NSGdwSZ95PcqXzHWzygf39PxW1hYwGAwqLaEHA6HtS0qgcK50+AAdcxr0TlVuQFsWn3OV8GpK62bz/WuNffaUFKdYq6cayBCgzaUO892aWpAmfc4yOetOv95yj9LO7RRp2YscFx541DqmrpihojqkYEvnl+DG8zwoM4OHjxY3R/qVnXIgJFmRlDevAQo772RZytxPPoM85qqr0OHDlWZMJrNk2d88J7rsabgW9M8N8YYY4wxxhRMRECB/Q2Aw3/M6/Z16ozRYaCDypKH/fv311abeS46Uly5ZJo0eyfk29/le9iro6aOFfslsHac6e0cD7eipDO4vr6OpaWlWg+CVNbrR0RtxV5LNBg0UIeJx7mjhG5PSUdJHTNNL89LGDQ9nI42ZVTnkCvkrOOnPhi4UKeN46bD1+v1MDs7W+l8aWkJBw4cwIEDB7C6ulqllw+Hw9ruF7wPHPva2hqWl5dr3wEOO/IMivA8ef8B3svhcFhz6PM+CZwXefYIX9pksqkXw3A4rH5fgwFa/jAzM9OYXt+004eWvXBcutpO8oCRBhHyvgHsbcGxUG/8Pb7XwIkGZDiftOwhyv4XO3bsqOYxe3AAqD0z1K0GIji/9P7nzyDR8WlAIe9/wSAJ5wzHodkk1B1/5v1hMNAYY4wxxhjTzEQEFPLVdF2FV2eOq4lzc3PYvXs3du/eXdulAUDNYdaVdgBVV/i5ubnKUaBTkzcs1IZ5wOFSBnV8dFtEysmxMKDAYAOdZ23+x7IHOjyrq6tVwIBbVrJMQPsD6PXz7QapT3UeiTphGvzgK+/gz7HoudUR1gAOMzU0WKGrxTzP0tIS9u/fj5WVFSwvL9ccd3VUtfyFTjqzGqhnogEkruDTqQeA2dnZ2haHWkfPeaEBlxwGM7Skg9fVgI32fRile+pmbW2tmltaWsDAhM41fkdLRXid3EHW72qPCl2N5/UZAOFYqDP+rmb2UL86B/OMFM2yYZmDltL0+/0qsKTBCn3eNCOFsup91rFr+QdlZbCCz4UGXvS81EVegsKABIMKTf00jDHGGGOMMQUT8ddyXrdOB0VXa9Vh6Pf7WFxcxPz8fFU2oKnNeamC1vHryj4dJ91hgKvi6lAwzZ2yaep3Xm+uv0sHlQ6xOnjqXGrwhM45ZaRDkzcO5Kp1k7NHnebv1cnUFWtNB897Tuj9oGwsOWhKF9cUeWYHaH38ysoKVlZWas6rBoO0/p56YbCFzRf1mrnTrTtE8Hy8DmVj8ISyadmCjouy5fX3eW+KJj3w90edIy/R0YAKnXy9Tl4KQd1qhgThfOV91nuY92lQHXFu6vzMdaPkJQn6vGo2DZ8JLTtRfWkwodfrVZ/xXmmgRM+r39NsE71Gfn9Udr3PRHcTyWU1xhhjjDHG1JmIgAJw2FGnk6xODR0srjpypZPp0+oEqwOkK490WObm5rCwsIBer1c5W5pZwBVKpjvPzMxU9fB5ZgLlYsAjL4XQ2naORZsObmwUTSG1Zp/X584VvA5XrXu9XlXy0e/3K0dOnapcrzyu6fhckc8d43xHDG28NzMzU30nT7nXgI4GcXiM11xdXa3KFrTfhDr7dBipMy0H4cp+ngXAa2jmg36maf8acMqdT+3DoBkDupKvjR05vzSowTnBzAeeQ5taUl7NLMibBurqP4Mq2nMiH7uOWXfpUKc+7zOiY2BTU55Tx6Vya9BMn7W8ZwKDNgwmMFigQSQ+l3zl/U3yuclglmYOET5zGmRpyk7gz1rCwXPmJU9NwQhjjDHGGGNMQTQ5oZ0LEfFvAAcA/GfMopxmGSyDZbAMGWenlE4f07U7JSL2A3hxzGJM+3yzDJbBMmxmmuyw/ya2DJbBMkyqDI22eCICCgAQEY+llD5sGSyDZbAMkyjDNDAJerYMlsEyWIZpZxJ0bRksg2WwDEfL5u5xxhhjjDHGGGOMMVvggIIxxhhjjDHGGGO2zSQFFH48bgFgGYhlKLAMBZZhepgEPVuGAstQYBkKLMN0MQm6tgwFlqHAMhRYhgYmpoeCMcYYY4wxxhhjjh8mKUPBGGOMMcYYY4wxxwljDyhExKUR8WJEvBwRN3Z0zbMi4ncR8XxEPBcR3yyP3xwR/4yIJ8vX5S3L8VpEPFNe67Hy2KkR8XBEvFT+e0qL1/+gjPXJiHg7Iq5vWw8RcWdEvBkRz8qxkeOOiO+U8+PFiPhMizL8ICJeiIinI+KBiNhdHj8nIlZEH7e3KMNI3Xeoh/vl+q9FxJPl8bb0MOp57HROTDu2xbbF5THbYkyfLbYdngxsh22Hy2O2w5g+O1ye9/i0xSmlsb0A7ATwCoDzAPQAPAXggg6uuwfAReX7AYC/ArgAwM0Avt3h+F8DcFp27PsAbizf3wjg1g7vxb8AnN22HgBcAuAiAM9uNe7yvjwFoA/g3HK+7GxJhk8DOKl8f6vIcI5+r2U9NOq+Sz1kn/8QwHdb1sOo57HTOTHNL9ti2+Ktxm1bXB0/IW2x7fD4X7bDtsNbjdt2uDp+Qtrh8rzHpS0ed4bCRwC8nFJ6NaW0BuA+AFe2fdGU0r6U0hPl+/0AngdwRtvXPUquBHBX+f4uAJ/v6LqfBPBKSunvbV8opfQHAP/NDo8a95UA7kspraaU/gbgZRTz5pjLkFJ6KKV0sPzxEQBnvtPrbFeGI9CZHkhEBIAvA7j3nV5nCxlGPY+dzokpx7Z4M7bFtsVNnJC22HZ4IrAd3oztsO1wEyekHS5lOC5t8bgDCmcA+If8vBcdG7GIOAfAhQD+WB76Rpnec2ebqVUlCcBDEfF4RHy9PPaelNI+oJhUAN7dsgzkKtQfki71AIwe97jmyFcB/EZ+Pjci/hwRv4+Ii1u+dpPux6GHiwG8kVJ6SY61qofseZy0OXEiM3ad2hZX2BbXsS3u2BbbDo+NsevUdrjCdriO7bD/Jj4i4w4oRMOxzradiIhFAL8EcH1K6W0APwLwfgAfArAPRWpLm3w0pXQRgMsAXBcRl7R8vUYiogfgCgC/KA91rYcj0fkciYibABwEcHd5aB+A96WULgTwLQD3RMTJLV1+lO7H8axcjfp/qK3qoeF5HPnVhmPeruadYVtsW7wVtsWlWA3fPWFsse3wWLEdth3eCtvhUqyG754wdhg4/mzxuAMKewGcJT+fCeD1Li4cETMobtTdKaVfAUBK6Y2U0kZK6RCAn6DllJGU0uvlv28CeKC83hsRsaeUcQ+AN9uUoeQyAE+klN4o5elUDyWjxt3pHImIawB8FsBXUiqKk8o0orfK94+jqE/6QBvXP4Luu9bDSQC+COB+ka01PTQ9j5iQOTEl2BbDtrhkIp472+KCLm2x7fDYsR2G7XDJRDx3tsMF/pt4a8YdUPgTgPMj4twyIngVgAfbvmhZB3MHgOdTSrfJ8T3ytS8AeDb/3WMow0JEDPgeRfOTZ1GM/5rya9cA+HVbMgi1qFuXehBGjftBAFdFRD8izgVwPoBH2xAgIi4FcAOAK1JKy3L89IjYWb4/r5Th1ZZkGKX7zvRQ8ikAL6SU9opsrehh1POICZgTU4RtMWyLS8b+3NkW1+jEFtsOTwS2w7AdLhn7c2c7XMN/E29F6rgLZP4CcDmKDpavALipo2t+DEU6yNMAnixflwP4GYBnyuMPAtjTogznoejK+RSA5zh2AO8C8FsAL5X/ntqyLuYBvAVglxxrVQ8oDPU+AOsoImtfO9K4AdxUzo8XAVzWogwvo6hD4py4vfzul8p79BSAJwB8rkUZRuq+Kz2Ux38K4Nrsu23pYdTz2OmcmPaXbbFtsW3x9Npi2+HJeNkO2w7bDk+vHS7Pe1za4igFMcYYY4wxxhhjjDlqxl3yYIwxxhhjjDHGmOMQBxSMMcYYY4wxxhizbRxQMMYYY4wxxhhjzLZxQMEYY4wxxhhjjDHbxgEFY4wxxhhjjDHGbBsHFIwxxhhjjDHGGLNtHFAwxhhjjDHGGGPMtnFAwRhjjDHGGGOMMdvmf+gPB7r/H/H4AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 259624 0\n", + " Min thresh = 1000\n", + " Not Sliding\n", + "\n", + "\n", + " Winner = Not Sliding\n", + " FP Patient = 037s_iimage_588413346180_CLEAN_ClassS_69-197.roi.nii.gz\n", + "\n", + "\n", + " FN ROI = 048ns_image_1543571117118_clean_ClassN_188-316.roi.nii.gz\n", + "048ns_image_1543571117118_clean_ClassN_188-316.roi.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADYCAYAAABberBAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAD5SElEQVR4nOz9eZxlWX7Vh65z53mIISOrq6q7qrqqW1JLqFtqSd2SAT1LgGxADRgxGwGyGmwsbLCNJPAzYPuB3kdMen6mRTNZGAmQEFiAGQSNGhC0phZCQupRPdeUUwx3vhH3Hv8R8d2xzs6bNWVmZWTlXp9PfCoj4t5z9tlnn1ux1l6/9cvyPFdCQkJCQkJCQkJCQkJCQkLCy0HpXg8gISEhISEhISEhISEhISHh/kMSFBISEhISEhISEhISEhISEl42kqCQkJCQkJCQkJCQkJCQkJDwspEEhYSEhISEhISEhISEhISEhJeNJCgkJCQkJCQkJCQkJCQkJCS8bCRBISEhISEhISEhISEhISEh4WUjCQoJrzqyLPv5LMu++l6PIyEhISHhHFmWfSrLsq99ia/Nsyx78hWe5xW/NyEhISEhIeFiIQkKCa868jx/S57n77/X43ghZFn2q7Ms+9Esyw6yLHsuy7K/lGVZ916PKyEhIeG1jCzL/nSWZR/LsmyUZdmHsyz7nfd6TAkJCQkXDXdamH2x46W/ixNeCElQSEjYjL6k/1XS6yR9vqRHJH3nPR1RQkJCwmsfE0m/Vqefwd8o6buyLPvKezukhISEhAce6e/ihFsiCQoJrzrcVptl2R/PsuwHsiz7G2c7Uj+XZdmbsiz79izLrmRZ9tksy36lvfd3Z1n2obPXfiLLst8bHfsPZ1n2bJZlz2RZ9l+44pplWf1s9+szWZY9n2XZd2dZ1tw0xjzPvy/P83+S5/k0z/N9SX9J0lfdvVlJSEhIuDjIsuzLsyz7wNlu1LNZlv3/syyrRS/7T88+h69lWfadWZaV7P2/5+yzej/Lsn+aZdkbXsp58zz/Y3mefzjP83We5z8u6V9LeucdvLSEhISEC4Esyz4/y7L3n33O/nyWZV9vv3t/lmX/hX3/u7Is+9Gzf/+rsx//+yzLxlmW/eYsy746y7LPZVn2R84+kz+VZdlvf6XHi8ea/i5OeCEkQSHhIuDXSvo/JQ0l/TtJ/1Sna/NhSf+zpL9or70i6ddI6kn63ZL+XJZlXyJJWZZ9naQ/JOlrJT0p6ZdH5/n/SnqTpLee/f5hSf/TSxzjL5P08y/vshISEhLuW6wk/UFJOzol9F8j6b+KXvPrJb1d0pdIepek3yNJWZb9Okl/RNJvkLSrU1Hgb77cAZwJvl+m9NmbkJDwGkOWZVVJ/0DSD0u6JOlbJH1vlmVvfrH35nn+y87++cV5nnfyPP/bZ99f1uln9sM6dXi99zaP90JIfxcnBCRBIeEi4F/nef5P8zw/kfQDOv0D9DvyPD+W9LckPZZl2UCS8jz/v/M8/8X8FP9Spx/Ev/TsOL9J0l/L8/zn8zyfSvoTnCDLskzSN0v6g3me38jzfCTpT0r6LS82uCzLfoVOP5hfqviQkJCQcF8jz/MP5nn+Y3men+R5/imdCrs3ibRnn6efkfTnJf3Ws5//Xkl/Ks/zD519rv9JSW99qS4Fw3dL+vc6FZkTEhISXkt4h6SOTv/eXeZ5/i8k/UOdf46+Uvy/8zxfnP2N/H/r9G/jO4r0d3FCjMq9HkBCgqTn7d8zSdfyPF/Z99Lph+5BlmX/iaQ/plOnQUlSS9LPnb3mdZJ+yo71Wfv37tlrP3iqLUiSMknlFxpYlmXvkPR9kn5jnucffRnXlJCQkHDfIsuyN0n6szp1ILR0+vfCB6OX+Wfsp3X6GSxJb9Bp9sGf8UPqdNfs0y/x/N8p6Qsl/b/yPM9f9gUkJCQkXGy8TtJn8zxf288+rdPPyVeK/TzPJ9HxXnerF78SpL+LEzYhORQS7htkWVaX9IOS/rSkvTzPB5L+kU7/UJWkZ3UaEgMetX9f06k48ZY8zwdnX/08zzsvcL63Sfr7kn5Pnufvu3NXkpCQkHDh8R5JH5b0VJ7nPZ2WMGTRa/wz9vWSnjn792cl/V77rB3ked7M8/zfvpQTZ1n2JyT9J5J+ZZ7nR7d1FQkJCQkXE89IetSzZ3T6Ofr02b8nOhVzweWXcMxhlmXt6Hh8Lr+S4xWQ/i5OuBWSoJBwP6EmqS7pqqSTM7fCr7Tff7+k330WctOSWbHOFOC/pNPMhUuSlGXZw1mW/apNJ8qy7Asl/RNJ35Ln+T+4K1eTkJCQcHHRlXQkaZxl2edJ+i83vOZ/yLJsmGXZo5L+G0nU3X63pG/PsuwtkpRlWT/Lsm94KSfNsuzbJf02Sb8iz/Prt3sRCQkJCRcUP65Tkv+HsyyrZln21TrNFPtbZ7//GUm/Icuy1lm4+DdF739e0hMbjvsnsiyrZVn2S3WaOfYDt3k8Senv4oQXRhIUEu4bnOUe/AGdCgf7Ov2j8+/b7/+xpP+fpB+R9HFJHzj71eLsv9969vMfy7LsSNI/l3SrsJr/TqdlEn/lLPF2nGVZCp9JSEh4UPDf6/QzdqRTMXZTSNcP6bQM4md0Wqv7VyQpz/O/p9MQ3L919ln7H3TqOHgp+JM63VX7mH32/pHbuI6EhISEC4c8z5eSvl6nn43XJP0FSb8zz/MPn73kz0la6pTof4+k740O8cclfc9ZhwhyEp7T6d/Hz5y9/vfd5vEc6e/ihFsiS6WJCa9VZFn2+Tr9Q7Z+FgyWkJCQkJCQkJCQ8JrCmcPhb+R5/siLvDQh4Y4jORQSXlPIsuzXn1m9hjrdIfsHSUxISEhISEhISEhISEi480iCQsJrDb9XpxkLv6jTPuqb6n4TEhISEhISEhISEhISbhN3TVDIsuzrsiz7SJZlH8+y7Nvu1nkSEhx5nn/dWfeGrTzPf32e58/e6zElJNwrpM/hhISEhHuP9FmccLeR5/n7U7lDwr3CXclQyLKsLOmjkn6FpM9J+klJvzXP81+44ydLSEhISLgJ6XM4ISEh4d4jfRYnJCS81nG3HApfLunjeZ5/4izF9G9JetddOldCQkJCws1In8MJCQkJ9x7pszghIeE1jcpdOu7Dkj5r339O0lfc6sVZluVn/1WWZapUKqpWqyqVTvWO4+NjnZycKM9z5XkeXsPrarWayuWysixTnudarVZaLBbCfVGpVMLvJKlcLheOv16vtVqttFqttF6vdXJyovV6HcaTZZnK5bJKpVL4XlJ4Pe+161GWZarVaqpUKmFsq9UqXIOk8O88z8Ox/Xd+Tj827+F4WZapVCoVXuvOkzzPwzj99Rwf8HuHj5Fzrtfrwjk4d7lcVrlcDq9dr9fhy4/hc8S//Xzxuf01/lpe49fs88nP4rXj18z4HT5mf81LGWd8bf7aTW6gl+IQ4p7fag5uhfg6uEeML16Pm459q7H7eDaNl3lmHcTr3l+z6f287sXm1p+HTa+Nz+nH2PSeTcjz/Fqe57sv+KKLiZf1OSxJ5U47f/1jma4suip/fPFCL01ISEh41TDXRMt88dL+53fx8LI+i9PncEJCwkXFSPsb/ya+W4LCpg/9wl/tWZa9W9K7z/6tarUqSarVatra2tLly5fVbrdVKpX07LPP6vr165rNZjo+Pla1WtWlS5d0+fJlve51r9Mb3vAGdbtdSdJyudTVq1f1mc98RicnJ6pUKtrd3VWj0dB6vVa5XNZwONTDDz+sarWq1Wqlw8NDjUYjHRwc6OjoSDdu3NBoNApiBcJAo9EIX5I0mUzC13w+13K5lHRK3Lrdrh599FENh0O1221J0mKxCGR8tVppMploOp1qvV6rUqmoVqsVJmx7e1v1el2lUkmr1UrHx8cql8tar9daLpeaTCZBuGg2m+E8kOjlcqnj42OtViudnJxoMplosVioWq2q2Wxqa2tL7XZbWZbp5OREs9lMy+UyiA/L5VKz2UwnJyfh/PP5PFzHarUK19pqtdRut8M8IwKNx2NNp1PN53PN5/NwT0qlkqrVahB3IHjHx8eBgPo5eE+lcrpkXcip1+vhGmezmdbrter1uvI813K51MHBgZbLpUqlUriXoFKpqNPpBBGJeZvP52HuyuWyms1mEIeYCxeUTk5OWNeq1+uq1+thnNwvF3W4T77+ubfMnxNv/7cLSAgEjIefs964jvV6rXa7rW63q1qtplKppKOjo/A7ey6D0MQ95P4zNl7n9yU85HleEPuWy6UWi4VOTk7COBHr6vW6Wq1WEGvW63VBWGM9cG/4fOCcvG6xWIS1EAsXrCXGW61WCwLj8fFxEB83CRNZlmmxWHx6w+fZ/YAX/RyWip/FjWpfDz/1R/XEwbFKv/jv7vb4EhISEl4Sfjx/370ewu3gZf1NnD6HExISLir+ef53Nv5NfLcEhc9JetS+f0TSM/6CPM/fK+m9klQul/NyuSzpnKiwm+iOASeakCkIAmQMIgwB8Z3zcrkcSAxixcnJiRqNRiDavrPNuSBVMZzsxLu1kDLIvZNA373nGiFsThQZjxPdSqUSvnfyx3EkBYIL0fJz3cop4PPkJBgyGI+RuUUIiV0gkPZarabZbHbT3DkJ3eTOwGXAcd2tETtKNhF0FyR8Xl0UgPhyzX6PfQ36+rH1WzgH5+V43GefK44fiwPc61qtVhBjnLzH68vXN8d0YSC+n8CfK773Y7gLx9eKP3+bhA0/rjsMXEBx10LsMoif+xj83M+HyyIWOlgjfDEXiBzxuXnG4nvja+o+xYt+DkvFz+JetpU3f+gnXp3RJSQkJDwYeFl/E6fP4YSEhPsNd0tQ+ElJT2VZ9rikpyX9Fkm/7VYvhojxx3ytVisQTN9ph7Cw2+glD5AC33Utl8vBZVAqldRoNNRqtdRqtcJrW61WQVCILfpOGl3QYLd+uVwWCKCXORwfHwciiwsDkuWEOCb5PhZIJmOId+5xGMzn80BcF4uFZrNZIPbx9fiuLeSpWq2G8gBElOVyWdj9hYg7Ya3X62G8TkorlUrY4Y9LR3gNv3OBgXtcLpfVaDQK90RSQSyBVPoYXXSAxDNXzIePvVwu6/j4OJw7BmsNIOb4XPI6iKuTVMcmQl6tVsMcukDla4J54hi+DpxA+5hrtdpNhNvHEZN9J9JxmYK/hvsXl7q4w8DvAePhtfH54nP7GGMxJBY8vARnU6lEnucFMQFX0q3mxMd2q/VwH+FlfQ4nJCQkJNwVpM/ihISE1zTuiqCQ5/lJlmX/taR/Kqks6a/mef7zt3o95FE6JbW9Xk+1Wk3Hx8caj8eaTCaBGEIyO52OGo2GqtXqTbu1y+UyEAlIIwSr2Wyq3+9rMBiErAXIeUyiIGvYqt3+Xa/XdXx8HMoAIIKIF9VqVfP5PJCeRqMRyD/HRoxwcubkFMQZDZDQOCcAmzqWfIhvvGPrJBWi7KURy+UyfMUOAIiZ7+xL59Z+382nVMPFAxcfuN6YmHMe3CQQfsZG6Qvixnw+v+na4jlz10AsbsTElfcjjiBYuZjkQgwE1R0M8fFcNKlUKuF+ufgUlxew/hBnnOS6sOPiCW4Rymcg03meF0pLTk5OCq4L7pUff5OowDhcoPG58LwKny8XIvxY7hJxJ4Q7HWL3AdfDfHFOf43PuTuZYucK1+5CVHyM+xUv93M4ISEhIeHOI30WJyQkvNZxtxwKyvP8H0n6Ry/lte5K8IyCk5OTgjNBKjoOICFOmqTzHW5IKSSL2na30UPm3AngJBlSzniyLAulB05oIGixE8F3Q70kwa8p3mEFkETILQTYywucwLHLzpzFO7a+81+tVtVqtcJ1eGlHXI8ez7+TM8aJq4JyEsoKnOyv1+uwSwwRJXeC649LVPxez+dzjcfjIHY40d3kvuC/uBDiDIZovYY5cDeIk2COXSqVQkbC8fFxGIvb511s4Hecm3vgBB7BjPNzL5lv5oxSlBdbO4yD9/Nf7idw8YcSl9i54C4SFxD8d/7s+Rj8nlYqlcLz5WP29zPP/sy4+BLfc5/jODzVhUWEgzic1J+T+Jru85KHl/U5nJCQkJBwd5A+ixMSEl7LuGuCwsuFE10n61junaj4bq0LCl4HLZ3v5EOoIIYQZv8+3pF30gOJhOB4KF8sKPjO+3K5LNjaPX8grhv3nWInoyDe+fcdZeDXzTmd7DmJ8t1proc5QFTgPb5b7jvJvI/xQbQRFAiR9PwCBB6fT8YsKYgxkEfuH3MXCxwuajhZdjKLI8LXjBNXFyO4rtgp4vMRO008G2ET4mM52XcgLLiA5MGgvIZj+rW/UIkCz8em58bvj4+V+8w5WTPcO/+5ry++vIzGz8FxeKY4jt+D+Fixy8B/HwcxurvAS3Di+87v49IUd5L4dSQkJCQkJCQkJCQk3IwLISjwh76THnbcKSfwHXe3QnuZAcfgmE6kIDFu6aeeOrbR837+y7E8u4BcB3b34x3PODCQc8U78E564zwBSCekx8scfB7if2PTd0eE28g5N4SMrgZkQnjHAq7ZBQXuB7kNjA3CSXmH2+L5favVCmPj3jI/TvyZJ/8vc+JBi76T7EKIhyO62OQBn14u4MeOSbGT0Hj+cLU4seZ1sYMivg4/B04TLx2Ju4wgrjFnLqIg7Di8PCAWg1gLTvBjF4oTbZ4tzzeJz+nrHWLP65kDX98eAOpz7vfUhUbm4Vbiz6bnwQUG1oivnVgwYHz3uzMhISEhISEhISEh4dXAhRAUpKLlfDabaTabhTaH8R/32MXZfRwOh+p0OhqNRhqPx8EiX61W1Wg0AhFZLBZaLBY6OjpSq9VSo9HQcrnU4eFhONetdpudyHvNOl9eigCx9RBA36UmB6LVaoW2kU6mJIVj+nvcceA78U4EOV9MtGISled5aAlJe0FaLsZwooi938cGea/X6+r1eup0OgVxBTKY57k6nY7yPA/tDI+Pj0NLRm/nCOLcgLj2HTKMwyLOEcAp4aKAXxfOEs7F3LiAgJjCGBuNRkEAiIkpgg73AOLt985/xvrwa6vVaiFvAkGEFofeVcIJOffB14E7DVhXXmIByY7dALiEvNSBeeU+0ALU14iXHQDPiPBrdsGKMcZtKBHbvFxpPp/fJJK5UBGLOX5fcSG5WIUoxvlKpVIhlyEhISEhISEhISEhYTMuhKDgpOvk5ETT6VTT6TQQfO/uAGkhsG8wGKjb7apWq2k6nQZigf2+1WoFggshWywWQUBYLpdBiPAwR6z37hCAlLuLIi4zkFTYJYco8jOvJWfn3l0Rvovr4X+Qodgm7zvwHsbHODge3Ra89n46nQZyxnW79RznQlxbzlgh2e4E8WwF6ZTMNZvN4D6o1+vh3nI9HvToRA7Cx3jdmeAOCG+PyfsajYbq9Xq4dr9HsQDk56KUBILuDhdvO+gChs+L35e4A4ET3Vi48Pf5fY2vPy7dcbh7wtefi3WxI8AJeeyoiMe/aefe1yvzEOcXxFkJtxJu4nnw7AcXGtydELtZYleJO5NcQPJ5ip9hv0cubiQkJCQkJCQkJCQkFHEhBAWpuOu/WCxCOYHvREIAIBnNZlPtdrsQtAjhZIeXkEeIk3S6yz6dTpXnp90bRqNR2LmEyHjJALvDJycngeTEddtOdiAtkDK34vvr+e+tSB3khuNwjfFuuDsBILwIAnF9uHQu4DBWr21nvikNcVu+iyi+kw15R4TxcpFSqaRms1lwSHg5iBN2/10cvudEmNdCMn3upWK5A+sFocXnPM6v8J8hHrArfyvrPOfz4/i4JYV759fgcFGD752cc4zYJeNrGgHCAxzdPUD4ZUzGfc35vY4dAIyLteEODV/Lm9wB7qK5VZmBv9avP3bu8Dx5GKbfb8bkz6c/Q8wV52H8cTlGKn1ISEhISEhISEhIeHFcCEEhrol2QWFTXTvkudFoqN1uF7IFIKMICXwtFotAEBaLRXAk0DmAOnhIsQdCkrEAMXXi7bXokgq7/ZBAJ5/Ad3KdUPHf2HodW7KZDyfXzWYzuBC8WwPzAphjCL8H7UGyIGzMJ4SNeeIeNJtNNRqN4EJwssrcNJvNcG5vsbnJhRGXJ/hOus+3uxq8lj+2/kvn7Ql9vo+PjwsijN8vvjy/gLlnbfg1vFDXEL9/McH1Y8b3Pb7PPjYXXpzQI4AQfOm785QbeOmIuwdip4DPue/8c6zj4+ObxCYv6XAh4lbr3p9nvhCJNrk+vLTFW64ibLkbxeFrJ3am8AzwvZeIJDEhISEhISEhISEh4YVxIQQF6Xxnf7FYSDpvxwephbBBmhqNhnq9nobDoZrNpiaTSbCgSyq4E5rNZiDCksJurYcR8h6IJYGQfC2XyyBeNBoNzWazjdfg7gAn9P6auGsFxJGuEHEiv9eYu83bSw5o2YjVHtK1WCw0m81C6YKXb6zX6xCSiJAynU5vmhfInYcc0rGh1Wqp1WqpXq+HbATGdnx8HIitpBDiGJcTMCbOi2vChREfD64IhIDFYlHY1cYxQb1/uVwOOQ1eUoFAVK/XQ0cKFyq8I4XnBrhQ4Of1jAoXHeJddq4h/rnvkntZjbtufLffRSZyBhBBWq1WEIZ87XE8FxVil4cLIF56EQeN+vqlJaULKHHYI3ABjrXBGHxNuEDBl4sJ6/V5UCnzyDndKeHZG35sf578/YyRcSUkJCQkJCQkJCQkbMaFERSkoj3aSYTXSZMTABGs1+uFkgTey845xNJ/L52TWyewnp0AIYa8VCoVtdttNRqNm0jGpt1c/u3XBjypH5Ib7+pyHbx3k20b4otoQuAhY0YU4Xsnii7QUK4wmUw0m81ChgUkO94lr1ararfbarVaarfbgfxyPkjbyclJIP7r9fomgYLrwDGB8OFrgOsgTwPBAIHAyy98Tr27RKvVCmUXs9msUNZCRwrIJvPB8X0s/Dcux3GxhbXl74nJqt9X1o9fhzsmPHzUQyvjuv84x2JTaYGPKSb68VjcMYDzwks2NgkAsXDgQgWOH55ld8X4673biaTgpEFwirNOfG55llz0iMsf4lyKW5Uu+TwkJNyv2P9d79TkdWkN32m84S99TKurV+/1MBISEhISEi4ELoyg4MFqLihAUnAG1Ov1AplhZ5SWjxA4t6tDsrHTO6HgZ5BqiBwkfBOBl4p26NjqHu94cly3sMeWfxcQ3EUQ28JBLLKwO80OMbv6dFLw0gcvdWg2myFfwFtqQpqlU1LnpSSUCUDs3fHgeRHuRGA3WVL4HqGEcXqOBXACz7g9IyBO4/dSB3cc0JkBUsv9JnOCe0WbQ3a+/b5wTfHadHcCc7ypnWFsq/d582cgXmOM11smvlAmh5cnxG4YjusCGOd2ch0f10l6TOJdjAD+PDMXrCEXIRxxVxRvi0mZhYuC/lxwPoc/33FGQpzL4S4HRxIUEu43VB55WOO3PixJGr0h03Jwc+eehNvDwX/8Rg1+dqDVhz52r4eSkJCQkJBwz3FhBAVIIuQl3p3FjQD59fZ4TmQhG97mDps0dd90VnACFAcaskPvoYXews9t87ciI16i4URp066oixFOdMAmouM72t7SzzMQKAPheO74oGSBbASfJ46DOwNBoNFoFEoFarVaobzDXSU+Tu6J5zFI53Z0xkqAIXMVh1oinjjhB05iOY+XAvg9iZ0A3F/Iu6RCO0WHl7LE2QmSblofPgfxmFm7cXaCiwZxXgTv4Xh+fHcfsH43ZXjE68/XTrwueX0slm3qQuECmAcrxiUUXkriY8DZ4kISolicr+EuFy8BckHORUHG5c+Cr1V/TULC/YbK5T1J0vQtD+lzX4NYl8SEu4Hn3yHlpW1t7R9Jkk6uXJPWN+e3JCQkJCQkPAi4EIICNnYn007Kms1myDfgd3E9t7fxk1ToxnB0dBSs9AQXLhaLwk52p9MJ4kNcCuG78Y1GI5CdmDxxLIgp+QKNRiPsfHtWBDXssUgR72x7LTyv87wALP20UPRzOAmkuwUBjvHx/fWMw1s1rlYr9fv9IETQrhPit1gsCq0KOTaEj3sTE28vIXDyyXX4LjP3gzlGDIBMIqz4Ljj3fFOpAeeEHNfr9cL9QVzxWn9ft5w3LkdgbSCAeB5AlmUhS4JjxjkGLjSwrrhHs9ksdBJBPPHuHKwVxu6CCGOLhRd3DDB2b+XJvXNRwLMl3AWAMOhdJngmWTs874wRUcHvu7eNfSFRBLjzw9cuc8y44vaZzAOuJu53LOolJFxUZNWaPvqHntC6ktbrq4UrXyZd+bLHJUlv/lPrVAKRkJCQkPDA4sIICk64nAQ7WeSL7g6QHYQEiEKtVlO73Vaz2VSpVNJ4PA4EDFJDQjzH8J1WJ758QUohwJvs4b5TXa/XQ0vLarWqk5MTTSaTQFLZ8fcde58DT+X33VbGzHXGiO3slBm4AyHPczUaDUmnXRcoj/DrhlwixLgLgsBLwgxdEIjt/ZJuuoeSNooHsf2ce+GuEwQU5gARBIILWYU8uhMiPjbjxm3B/B8dHYWQT85brVYLZSDMLyJGvV4vkHrIOGUleZ6H2n+CR/26YkHBHQjewcDXeTyX3Gt3irhIICkIMbh03P1AuKWXM3igpqTCzzeVdkDOuf+IOLyv0+mEjiBck4NyI0qO+JmTe67bnznEDcbp43FnjD9j7gDx/Iz5fL6xjCMh4aLh8Le/Q4dvLEmZtK6spWSuefXAXOfSJ3//U3r4/Y+q/P6fvpcjSkhISEhIuCe4EIICJMt36CEDvsMNmW02m4U2hexmstvpmQWSConwkAonKbFtG4EB4uJEmPc40fUdXkSLZrMZiK/vikLAJQXy69bvmMBwfXHrv1tlTcR5Ar4Lz44vLgLPWSC80Xet/XiQUMhnbM2PAxH5nbs4/Jqk87p9/707ULzTgdvbfd3wM7pJkDXgc8fc+rHZ/WescbtQ7+JAmQdrxXfiEROYU28nSegj+Q3MkZNZFxK4JkpA4rXAMdyVwTzHNn1cFw7PGXAXAuIA4B76c+FrwAUDjuXPkd9L1iHzSAYH8wU2uWL82LzWRTREFC8jid/HHPk8x8d0USLOdUiCQsKFwjt+iSaPnLfhPXq8pOUwlTXcU2TSsr/W1S9uaLv2dlV/+KdeldMuf9Xbddwtv/gLI9RvnKjyLz54F0aUkJCQkPCg4sIICuwKekJ9XMeNVR/3AbvUhAjy3ziPge4C7oSA2EM6IJDsQjMWiJKTVAipk2EPHKRtH+QHYgvh9J1hCBE7tp4D4AF8ZAwwX7VarXC8eKeXMTFGFzNqtVr4HscEtea+A+1uA67LAxGl8+A/XocjQ1KBGPq9lm4m0jG47ri+nd8hVkAq3b2Cbd1LKii5oCTAr5V8Djp/ILxwPz1rgTF4xxGu1+FiA5kM3AefB+bWswG4rz4/cfkH6wTXBWMCcdcJzuXn43U8E6x1D6eMQw03uRY4trtsuFYPmvSuK55zwOsQ+nxunPyzvuLxuhsCcSUWFDZlI/jnyqaylVTykHARkNXrKl++JEl65ks6OnrKP1OTmHBRMH5sreNOTY9/5FFJ0vrGgdajUfh9eWdbWbt1x8732S+vabH18u9/8/m63vCLj4bv8/lCq+ev3LFxJSQkJCQ8eLgwggKkD0LjeQlu8W6329rZ2VG321W1Wg25ALPZLLQdhKRjn7527ZpardP/kUNa3J4uSZPJJIgTToSwVWOjh9QhUkBEII3kLeBOiDMZ1ut1yGxw+z0ig4csunixXC51dHQUiJnvesd16BwDmz7kyjs9cDzmH/Ll5Rdcn7dYhEBDNiHgiBy4Llx0Ia8CsgehrFQqms1mhTKPWESJyzDiPAAcKdyDVqtVKA9gXkulUsgfoOQAotvr9YKoxHoijNLt/17CALml/IN1w/hoqeldSTwfwMUafhfX9rvbY7lcajabhfsZuwRYo9w/RA4vB3JXBOdmPfA8+DmBPwvxLj9rftOxJAWBCSHBHQOsBy8l8m4e0nkwJusQR4+7T+Lx+BpyF4OXWHBejonDxZ+5WNBKSLgXKD32qD78+3bOvksCwkXGYmetD/+3px02HvuHl1R537kT4OrXv0k3vuhOCpSvbC3M9s7HKEmdT5V0+buSoJCQkJCQ8MpxYQQF301sNpuhNh4CBfloNBra2dkJhHw+n2s2m2k8HgeiCOEbj8caj8eaTqchTwFiSZ7AfD4v5BMQfOduCXaoGaukAvlvtVqBVDWbTXU6HXU6nUACR6NRoRwDYkpdvXRK2iCE7ohgtxX3RWx1n0wmqlar6vV6G90FLmggZng9P/Z5xuS7xpRHQI57vZ6Gw2Eh5JDyjWq1qm63G8L2EHNc6HCizFxyDxBcGB+Ejm4ATsq9JIG14aR3tVppMpkUyKh0mgcxnU5D/gRZHNxbFzEg7U6WORdZAN5q1Fttsia63W7IVmA9+9y6s8GFEi/14R5Op9Mg3LjgwzpFZHIhYFM3Ci8dYd3HXTTie8bP3VUSHxu4c8Tn0HMX4tBId2e48yUuH8GdlGXnAaMcy+fO55O17c8TrUPdtcCzsCncNSHhXmHyG79CV99WkpScMvcbPvu1NZV++TvD96vGPRzMC2DySK5P/8+n43zs7x0p/3c/f49HlJCQkJBwv+FCCApS0SIekwL+W6/X1e/31ev1AvmFtEMgPbTQQwh9B5WfIyx4ijykErj9G8JxfHxccCZ4/X6n01G321Wr1Qo73bzHQ+JwUHh9OkSdY0OW4rwHCDDlC4wTws04yUfAtu4EKk7A9+vzfAh3J0DAIa6MjzF70J7PvYsxEGKIJfPvhNo7S5B94XZ6Lw1wVwbn4b7iBECU4tqcgCPikMHhIogLO8yhrwcEJ+bYSXmcP+BrLLbSx3kh/Bdhhfe7i8S7iniph99HzuO79e4QQGTi914y4WOP8xJ87fh74vIA1puvTS+TcEcK4PngfnEOnARexsPv4vczFndreLmJCzK8n3G5CMXYExJeTZR3trX/K5+SJB29oaSTVnIl3I9YNfILKyI48kqu4+7pv5//qr62hl+aMhYSEhISEl4WXrGgkGXZo5L+uqTLOvXevTfP8+/KsmxL0t+W9JikT0n6TXme77/oQKwePa6d5vfNZlPD4TC0K/RAQboVeOI7ZD7uLjCfzwORdZEgTpN38iWd5wX4rr7nNVDqQAcKSLWTUd/1dgv6psBDJ6BO4LyGPSZJkCPOzXV6uQHz4KKBZww4wfdSAsIwcVfEhI/r8hBJv4+3EnacEHppBsIQ88u43bESd8jwXXcEJhdmuF7EBBwQBHt6gKfnFDDXcc5HbL2P53jTuO0ZKpTVcE/dGcBcOUH2sEoEDkpyPJzQ74N3jYgdF7fKCojbfPJc+XW42ODrxnMdbjUHPm/xa/35cLGxVqsFh8GmHA7ECMbh5VObXhMLbC4meYjlRcad/ixOuHco72zr+PMe1ZUv4ydJTEh49XD0xrVWtboe+cxpO8z8mee1nk7v8ajuD6TP4YSEhAcZt+NQOJH03+V5/tNZlnUlfTDLsn8m6XdJel+e59+RZdm3Sfo2Sd/6QgeirMAT253okDmwvb2tvb097e7uFkIYERakc8u02/wHg4E6nU6wO/N638H13VInXeFi7ffssselEAgKtKWk3GKxWASxgB3/2EoNafJdb6/nhmh62J6D8gGyJMgKmE6n4XoZr2cqeJAlu/V+7dVqtVDuAKljzihxgPD5jjgE3B0QLs7gEmHOyajwnXrmxsftNfasDxwPCER+fr+/kG/yD2ifSOmMZ2MgkDBHrFUvkfDsAS9H4ZjucIjzH8hfoK0oiMk6IoULGS74II74/eQ+uPPCsxEQWtxZsWlN+fnJcvCuHl6a4WOO7xsiF+NnjmJxjrly1wDlDq1WK7yPa2DOXWxxAcnFKMbabDbDuV1s8TKNTVkSFxh37LM44d7i4Gue0vPvuNejSHiQMXl0rY/8/j1J0lN/vSW9WAnE7eTMvLZCb9PncEJCwgOLVywo5Hn+rKRnz/49yrLsQ5IelvQuSV999rLvkfR+vYQPz1qtFkoHsMqzg1iv1zUYDLS1taWtrS0Nh0Ndu3atYNH3oLrlclmwSXc6HZXLZU0mEx0dHeng4CCUIPCeeDfWAZF30uddJFarler1urrdrjqdjprNZijBQCyBFDWbzUDK3SVAvgIlDC5ecA4nYT4uSYGc37hxI3zt7+9rMpkUSghiQcFdBBzLO0oQqNdut9Xv99XpdCSpUMLBHB4fH4c8ASeKXB8Cx8HBQSDvm7IEvK6eOXA3CfPvQgXv8baO3sGA15NvgNOC6x2NRkFMaLVa6vf7gUx6q08/p3f6cDHF58fdFMwl4hNigu+C+1qUznfYEW48FJR1ROcDdwggaMRiG2vWgzzd5QGR9xIZD3GMSx38OY13/t35gtgRE3QXE8g38aBPngkEID8XAhTfexAlc7FJEPDyJg+BjDtcbHJtXETc6c/ihHuDp7/tK7XYypXyEhIuCj7xm3saftE7NfjrH9j4++e/5Ss1u/zK1+sbv/MXtDo4fMXvv0hIn8MJCQkPMu5IhkKWZY9JepukH5e0d/bBqjzPn82y7NJLeH8gDOyCOnFotVra29vT3t6eBoOBJBUs/W4Hh+j4rnm73dZoNAo7975b7Du+Tj78mE6q3JLvRLDdbgfC6OKDp9NjS3eBIi7tYEycLy554Pdx6cN4PFae58EV4TvVjBUS5jvSm6zrTiohsxBwJ43s9LrNPs4fgIR6PgWE0UsmmFsn7hzDhZU4C8LP6bkUToZZRzgCfOcZ4k12gpcQOLn3a+R9zJsHCTKe+DqcOCO2uAPBxReORTkG8+DiUnwPPUyQe+7f+467z5kHZMbwsoLY+u9lEw5EnLj0w8tzfK35Wue1XurgwgvHjfMpXFzyZ8WfbX8OpHPHiItPnpnh3SPuJ9zuZ3HCq4/ycKhrX/95Wgxzrav313pLeG1jVc919HhJ+Te+c+PvZ5dznbRe4ZrNpSu/8QtUOpaa11dq/MOfuI2RXiykz+GEhIQHDbctKGRZ1pH0g5L+2zzPjzbt8N/ife+W9G5JIcUdh8J0Oi2QmXa7HZwJrVZLJycnhdwEjgGpQEzwvvfYviGOXj99Np5wHL6Puya4lR+bu7+f3WY6IPB7AhshdZvq/iW9oKgQ15p78N/x8XEQSrzMwnfQmWN28IGXJUDIPWEfkYT3MjYvzfAcBCdzBPG5GwJRASHI8wA23Q9JN5H6uCwD+DG8hh9iiqDA9XNcdvF5v4f/+XX57r+XacRzGrtI+C9iDiUjDs8D8LIO1gwtQF1g8vWDc8Hf72PeJAr4PMZrzO+Diy8+v4xh03VwvthpEh87Fodc6EOI49nZlC0hFUMwY+dI7Nxw4ckFHdZJXHJ1P+FOfBY31Lp7A0zYiKzd0vW3JiEh4WJiOVjr+lvvwoEzaf8tp+u+cbWiN3ziTac/f+b5+9q1kD6HExISHkTclqCQZVlVpx+c35vn+d89+/HzWZY9dKbEPiRpY4PjPM/fK+m9klSr1fJOpxPInocoVioV7ezsaHt7W91uV5VKRZPJJJQU2FjCF7Z2iCGdIDygMBpLYTdbOu/u4FZrd0W4oBDXckMw2dH36+HYfPnObTyW2BXBe5y0UUqwWq1COcfR0ZGm0+lNoY/eBcB37t1yjlCzXC5vclfwXu9yMJvNNq2LgjDj9eo4J7wMgBp75ob38XPaeMa5FVwbpQsxIYUkEpTJNfo6WK1Wmk6nhZ185tjFFuk8VJDxu9PBSXHsmuC6nDx7TkCpVFK9Xg/XRPtMdycw14gy7sJgnnzt+O8RSVhLjLfZbIYxb3ouWG9+bdx3zsHajMUc3svajMUH/u25IVwb8+Ghp/yb17gDyI+HsMK6cGeLr684j8RLd7xLxkv9Y/Be4059FveyrcRsX01kmVS+L3I6EhLuGua7a33km7ckSU/8X22V/tXP3Jf5CulzOCEh4UHF7XR5yCT9FUkfyvP8z9qv/r6kb5T0HWf//aEXOxahi/V6PfwhDykgjLHf76terwfiDAl00gOJ7HQ62traCjvoCABxyKF0TgDj3VtCIiGhTorjIDrpvD7d7drtdjuQknK5HDpOQIpjwkk9ODv7ODGoJ+e92L9xByAOeLkD58VZgKCA6wCi5V0G1ut1cH1UKhV1Oh3t7Oyo3W4H14WLHN4VwsMq+TfCA0LCcrkMmQ6IA+y8sxvP+LifXBuvZcfaiTl1+r7LjuDCdXjg32w2C0T8+Pg4jIl5YK48m8FdG/w8JsL83tseOvF1gcB/7kGXOCVcUIIkc3wX3bhnLtCwlsnrOHteC3NKMKiT503PJWuR63OBjPEyl/4eHD3M6a0cQLFrJg5C3LTeXEj07A8fN84axsb95WfuTvDn/OTkJAg3m459EXEnP4sTXl3Mf82X6ZmvKivlJiQknOJTv7qh7he8Q7vv2ZzbcFGRPocTEhIeZNyOQ+GrJP3nkn4uy7KfOfvZH9Hph+b3Z1n2TZI+I+kbXuxA5XJZ7XY7kFGvZ6ZzAoRrMpno4OCgsHvILjb5BRA0J4CxmOC18AQQ+s6/71RDpt05wO/dNeAhgI1Go1DKMJ/PC4SS9ncIGnFrv/V6HXbz/eeMmQBBH1N8bbGbwXe73Y7u7SmdrPb7fTUajUAquRZej1AQ29DjsgfIpeddQPp8fO5A4N46ueZ6IKEIPe5W8awAzuHdGiaTiebzebj+uK0mJJfyBO+c4HX1saDk842wxDwcHx8XSl6YO0nBAcP43GnAvWaN+1gRLVi7eZ6HDBK+Go1GIafD1xD3x//rc+euGncgUJrka4L7646OOJvBnQCeP8F/eR8CCCKAZ1K4SBM7Wvz59hasjN/Xg4/JX7dpPdwnDoU79lmc8Orh6Le+Q0ePl7Su31+lNQkJdxPraq7Jw5lK3/RO7fz1Dyo/Xt7rIb1UpM/hhISEBxa30+XhRyXd6q/tr3k5xyqXy2q1WmG3VTpvo0iXBgjeycmJpmd9kd3ufXx8XNiN9/wB/ut1/BBKfuaEJybhcR28k8O4TAISUq/XC6IFLQQhZL5DHJNz77YQCwpO6CXd1H4SxDvS/BthJsuyIHIwRn7eaDTUbrc1GAwC2UVs8JaEcQigCwte/uECBHPvAow7AzyTwAPzXAhxkWC9Xof14PfLj4mLgLaatPFkTHGZhM9JLCb4GvEwSXcU8DPvHIKrhbHREYN1wNxsCgH0TASeDQQFFzm4V14uxO/82O4i8XUdi2WMGzBe78bi84DYw7GYAy9j8XXiYhjzw73362IeXRD0e8a1MYexeBNfG2OKRQM+D7x05H5wKNzJz+KEu4+sWpO+8Cntf36m424SExISYpy0cx18vrT9tjer/LHPabW/f6+H9KJIn8MJCQkPMu5Il4fbRal0GrzIDrZ0nvDe6/W0vb0dyAHWeYgxZB3SEe84QlQgw+xANptNzefzQo01tfgQWI7lZQm4HxADsEwDFxSk81r5/KwrQqvVUqvVKljT2Wk+OTkJLgvpPKXfnQPSeeifk0efS8iSE13IFOPGKcDuL6JKpVLRcDjUcDjU7u6ums1mIQdhOp0Wdo0JAnR49gKZBe5QiIk718GcYKWXTnfw3cngJQmlUqlQIsD94Z573f1sNtNkMgnZEi6CcH5ej6OEriC4ABBI4vwEvvd7F5c7ICa5Q4HzuhuB3XRvXeg7/6xJyL7v1DtB9/XC+10443wuclDG4Y4X1qekIPB5+YjfP37POVgfLqa4W8IFubgcxEUF6TxA0//tJSG8njniGfVzIZR4aRHHcXHRXRZ8JiQk3CmUtgb6yH/elbJU5pCQcCvkZenjv7WtN/7A61X6iZF0858aCQkJCQkXBBdGUGBnkt3gRqOhfr+v7e1ttdvtQPIQD0ql0571kEQIcpzkD2Ghw4PnGGB/Z6feyRTCgCfue9tE3+Vl1x2yzO53XNPfarVCXbuTMroy8DNI8HQ6DTXqEEnINk4GCE9szY53pSFTjN8DEl2M2dnZ0XA4VL/fV7/fL5BWiLULHRBV5sLr17vdbnAFkO3AWBkb18EawKbPz1qtVrjuPM9VrVbVbDbVbDbDdXhWBPPhpRUEVdLNAdIbh/C5e8C7iNyqOwbziasjbnvqO++03sRpw7WzvrjPng/hhN7JrQtrngESOxLivAHmkXvKMZkHJ+a+tnlvp9MplDu4y0M6FRy4X3meazQaSToXO+r1uubzecHRQ4YG5/IuDYAxbMp5YC6Zb8bpgayxaOKZEQhAzBX308tmEhISEhLuDT7x61vqf+GXSX/xn97roSQkJCQk3AIXQlDwgDwEhXq9rmazGdLp+YOfADqIKh0JnEg6WaPGfjQaaTabab1eB/eAtzD0sLY46FFSYYeV9zrxkhQIcavVCkSH19VqNQ0Gg5BLgDsCK/5kMgnOBSd1zA+79H59ECSvk3erP+Nk/FwThHk2mxUIY6vV0nA41GAwCF0RPMCQjhIICswTrg+fPyfhvlPNuL10A6GGa3SHSLPZLAgRiEY+pji539fBcrnUdDoN1+rlEzgi3DkBsWYdQlTjLgjshHtYJNfLdXKedrutdrutZrMZdshZx76GXBBYLBbhXJVKJThFGJuLCfGaZG49VNAdDQgQEG/PQPDyFEnhnrgDw0UqPwdCD2Px9eBODJ4Vd3n48+IuBkmF64xLIvx+4GqiG4ykICACLxdCZPBr8FIKf34SEu4U1jcO9NT3jvSpd/V03E0uhYSEF0JeyTV+faaT3fa9HkpCQkJCwi1wYQQFOhZ4S0Z2uqXzpHsnp97i0K3J8Q4t1nXf2Y/JHICUejCgdB6458QLyzdkBkLFLq6n89dqNbXb7dBxYLFYFLofQABxIMQhjW4N91IOiBvX7PZxd0gAWl/i9IDI0moTFwXXEAcrxkGMvuPLnLktn9dzvcy3jw17v2cfeN6En89DMF0MQRBgvri3XKu/1ssPcBT4vfb7tinTwEMLaS3Kbj3rTlJwLXQ6nYI4xlgQALDqe5gjJBdnCaUcCDRx+CVrgB15n6/YvcI9oh2oJC0WizB+D350ccd3612AcaEHdxCtPr0Mg/f5mGNBJJ5vF2huBRwF5K14mY5fu5/Lfx6XnsRBlgkJdxL58VL64M9r+OZ3aNnJtKpnGj2RshQSEm6Fk3auVeNejyIhISEh4Va4EIKCJM3nc00mE81mM0kKYgJEDSEBsgdRXC6Xms/n6nQ6hR1HdnFxMmyy6ftupVQMEtxEwiBG3iKQn7fbbfX7fbXbpyq6uyiOj4/D75rNZnAa0BLSa/TZXWbMnMPJpbsSPOzQcxN8HiSFfzPP3mqQ3WfKMTiPVEz+51x+7V53zjV4SYefj3Gy+7/JXcB8QtTZXabMJRZ2PCOD63Ti7SUyOCfIweB9zJ0HCcak3cklJRZ80dED5wG74ghI3W5X3W63EFDpospqtdooSED6XaDyzAvuD/MXCyD8znf1ESoowaAbCnPszoZNHR+Aj5/ngvHy81hMiJ831nL8PLkzKHYUAP83wk673Vav11O9Xg9ClmdlcK5N4BpZCzx7SVRIuFvofd+PSZIqD79OH/2WN2hdy28d6ZaQkJCQkJCQcEFxIQSF9Xqtg4MDHRwcaDKZ3LSrSAcHCMpqtQqug/l8HogMBAkCi6BARgHJ+uQnxPXncUK9J75DMuId92azGQjj9va2arWaxuOxDg4OdOPGjUI+A4RluVxqNBppPB6HnWFcGpDtOGyw0+mo0+kUyLiTcnZYnWhxvRD/5XIZ5ozxc924KyDxHIfvEUDizg5OQCGV0vlu82g0CjkX3FvfBYcwe9Ag99KdHNw3J+8QRu8IgDjD2JhbgvoajUZBmEGYQoDxLAHum7cVRYBhvugi4YKXpCAmDAYD7e7uhtIKLynguH7t7mhht71er2u1Wmk0GoUxMydcy3q91ng8LgRMAhcpEI56vZ56vV4YE8KXpFDG4aGZL1RmgFBDe1fEKo7F8+ylMn6/fF4o+2HcfAa4qOAiD+ITz2Cz2Sw4iBCKuI5Nx6RcxbMtXCxJSLibOHn6GT3xR57Xp//YV+i4l5wKCQkJCQkJCfcXLoSgAFmaTCZaLpfBKu5hfNK5S8CJN4F4nU4nEBrfBSXcEJJDCBzOBidR1P3jLsCtQEiiW+HdUl6v19Xr9VSr1bRarTQejzUajcI5IYeNRiNkOkwmkwIx9xaSThp9J9wT8KXzlH0vFfAdWbeS83raJjJ/TtRxT/B+zySIS0QQPSSFRH1IKMR4vV4HMcfbInp7zPg9Loq4iMPxuQ5CNheLRUFQ8Jp5bOue+u8tJ718w+33iDn8DKGEnyHCUAbANblo1e12NRgMwrool8thTgjD9K4VLiZICi4KX48IM7yX/ANcFRBgSLvnPjAPCB29Xk9ZlgWRaTqdFnISCD0FsVjlJQWsn1arVSiNyfM8PI9ezuSOBcaN68OzKBBqWOMenOo5Fe12O3xmxMKcO2C8ywX30cMsWXO8PiHhVcN6lZo+JCQkJCQkJNyXuDCCglv8vQafHUMntp5wT7mB72zG5QAQNciIhwvSKi9u18g4pPOafIQEJx2QtOFwGHazCTzEPRFnCrDT7zXjHjzn1naEhHg+4i/pfMdWKpZoeFkERIvxextG3Aw+35uCAGNbPefxgL04b4ExepkC5/V2mHGrzjg7IS5n8R1nxunhiLwX8u/lIO5C4Rhe/sB7PZDTHQDeRhJ4OCB5FHE5g+c5cA8gwe6M4H5wzawpBBbv2OHz69fnWQcedFqv18Mzxz3yThVxCUI8p9yvODeD++ClOswpXzgWYrHQ53RTaULcdcHzP1wk8jUel8xwbi8jQqgDXKu7IRISEhISEhISEhISbsaFEBTW63UIzsNx4KRDUiBlXm4Aoej3+6Fd3Wq10nw+D/XqkAtIIg4H3Akcgzp13u+v97A8/3m5XFar1VKv19Pe3l4ghpRjLJfLws69W+zZeZXOrd9Ooj2sD8FDOifrcRq+Cy8QSm9f6RZw6bxdnu/cxy3yOCZOAA9y9DKCePea19AqMrarQ/CbzaZarVahlr5erwd3ipNKD5okjJN7664V5txFDEhq3FbRHRf+M9aEk2kvf+F+8jvOwRwwn+Q11Ov1MBe+5vw9cftOLzlg3bizpN1ubyTrvob8+hE5EBQowfDyCUqGPNCU58JDMD33AFdLLCa5O8HFOObQ15qTew8C5V75GvBgUkQIf77iOUZ0cfHI7x3r3p0//gylDIWEhISEhISEhISEW+NCCAqxfd7JBn/wQxbY3YcwYy1vtVohsZ8dXIg6x4awHR8fazKZKM9zNRoNbW1tqd/vB2fBZDKRdE4sYqs3BBYxYTgcand3NwQQXr9+PZQ0QHrm87muXLmi5XIZSjvYXfY8Bq+lr9frGgwGGgwGajabms/nYQz1er2wm02yvgseXgsO2ZbOyTnZCU6evd0e44O8s4sNIfOsC87JNR8fH4dyB+6VOz0oU+l2u6GdJ9kE5CRAsuMciKOjo5vaGrobgjFQX+8We+YvzquQzgWU2HXBetyUIcAcOLGHzFJeUKlUNJ1OC4GDcQlHLHr5PVgsFjo6OgqtRr0Dhlv7N4UWQqrJTWi1WiGTwZ8jQlBxLBwfH6vRaBSEDV9PiH9e/sFYGU+5XA7tOhG0EDMg9Mw998udEF7y4l0Y3H1AaYgHrXqmB/c1FgS9dShCA+KU3+/kUEhISEhISEhISEi4NS6EoACB8N1fAEEcj8ehhhwHAoSYcgcIhRNIasSxrC+Xy0B0nZCsVitNp9NwnmazKemckHkbPIgG5Q79fl+r1UpHR0caj8eBREG0pPMyCnbXvfsB5Mx3yQlipD68VCoVCGUcIuedHnyMHBOSyPUi1PhuuHeFgDiyi82Os9fYu4vEhRfCJjfZ8+fzeQhipOad35fL5bDzzr2bTCaBeDI33Dtq7r37h5dNeMcObwWIOOKdCrgmL2HwUhJIrM8ZxJOxer0/ZJzfM8aYjLMmvQyFbAPuL+/zrg1xCQbE2H/Prj9iQqfTCU4XxApQqVRCNgXEGvLPHEhFd4ILblmWhTIiyln8tZ63wP3xc3u4JPeJ+ffyD47F80+7WHdksK5YnzxjsXMB4chLZ1yM8zWQkHC3UN67pM/+zid13E5umISEhISEhIT7DxdCUJDO+9p7cr103n7RA/6k8zBEdlzdorypvABigOggKRAxSaEbBK/vdDqF/AIXFJy4dLtd9Xo9rdfrUOrAeD33wC35uCycJEMQJQXiNRwOwzg8hBIyyzH58rEBRAFvTenCAD9zyzoE2TspxOKDdE5+PccA94ePqdFohHvMfa7X66Hjgl8XzgsI4Kbd6XiXHuHCHQjuMIhzJ5hzFwFYe7gdGC9j43oh6i7a0DVjvV4HkaPT6RTq+nGieAjoptp9P6//m111xsGY+RnlBZSUuEPBW3AybndFuCjF81Mul0PpEWvC55G1Grs0fP5d5EIQiduQ+r0C8TlcHEIw9K4sLkK4w4Dx8tzFwgxjjsuAuOY4MyIh4U4i/6q36qRZ1rRX0fR1aZ0lJCQkJCQk3J+4MIJCHJIGEcRyz9disQhW9mazqXa7XejsADHl9dPpNBAdiB2ky3f6/fjSecq+EzHfuaxWq6HkYWtrKwRLIiiwU+5WfUgl5/E6fkmB7FB/v7u7q1arJenc4cDvfeyQwTjZ3/MPFotFIODU9fP6uAaeMeK0IKzPAxSl89IJz6WgnIM5d2u/Oyio55fOBQ0P9nMRxLsdMAdcR7VaLYgzbqdnDTHPbnv3VoVx2CKlM34+LwtxtwulHd6SlJaMWPH9erzDhZeM+L2Iwwt9rj14k2vE6eCiCfD1JKkg1jBnLsZwH3CRuOjAmooFBX7O2Nz5EYdQxqGKnlPC8+vHc/cCv8NZhCDloZT+2YGYQJ5JHMwYO0/icM5U8pBwV5BlKm8N9cmvbWk5SOsrISEhISEh4f7GhREU2NmFiLkFfzKZFBLpIZStVkvtdjuQCohHvV7X/v6+ZrPZTaSJGmpIJ2SPXW6IZavV0mAwUL1eD2QRslcqldTpdDQYDDQcDtXr9SSdWv3H43Fo6+eCwmg02hhwCCgNQCTZ2trSzs5OYQec4DxcAhBaD5Tz8onpdKrJZFIQSbwjxnK5LFjWsbwzzx7Wh13eBRXEHM4xn8+1v79f2EGmXAPRg3vrZRcekMeO/nQ6Da0MPUejVCrd1D3BnSg4HPwrDi70XXnplMS6a8N/z789iJHxsfPNGqOzQ7fbDdkJrDtvn+mlPU5wY3jmgjs3WOMIMk7cEWHW63VoVcq8knFA2c/R0VHBVeACBSKQu0q844V0XqrAGByQedwt3Hcvl2HeOT7j8HMj6HhQYrPZDGKSZ2a42INo4p8BzKPnanAd7qZwsSkh4U6jfGlXH/nWJySl9ZWQkJCQkJBw/+NCCApZlqnX66nRaASbtZMI6vghQ91uV91uV61Wq7BrDnknC4ESBt+BBbgSECLICSAIcXd3NxA2dpQh2LVaTd1uV1tbWyHBfzqdan9/X+PxOHQacFEEYuahd17D7rZ/chkajUYgiJIKJBzBInZnQIScxEqnYgLHlE5r6MfjceF4TkopdYC8ea067oJOpxNyDsieQCygqwDkUDrfZed4PnawWCw0Go10fHysSqUSggR97jy7YD6f6+joKFynW/rJuaA8BLLoaf+UWbCWvKMB52GevXTFCTRz0u/3tbOzo0uXLqnZbIbXMj/skHvwKLvhHsiIQ4Dfs3Z4Htih93aUiB+IB4ybf1O+wtdkMrmpRMHLCLzjgQsZHt7Ja9254+svblHqHRlYB/4cuGjHuFy0YB17a0sP4GRO4/IiXE0IGfHxvR1s7MCIO58kJNwxbNYRExISEhISEhLuK1wIQYEAOMoLvBYaO31sF4eQsquP2IBln+9j4i4VcxQ8vA0iB4nl3E5aSqVSIOe4Keg8cHR0FMoEqPl2yz27th5SByHkmhuNRhBMnMzEu/rewtDr1CFyuA2wjSPWSCqQLQQbjsdxJIVOBRA4iK0T8NlsViB2iAhx3gKAnHuGgO96QwDZTUbQQFhhlxrihyOEOZKK9ntP7PcyChehvLQFosr9cwGAMhVCQT1TgTWxtbWl4XAYOikgejix9vKNeC1SiiOduwN4H6Sc18Rry3MjvITE7zniHPfcj+sujLjEhzlknHHmgWdFbCoZcELvYmFM3rm/wEUGL/fw3AcXQFzMiDubcH89K8HXk4/ZhZOEhDuF8lNP6PCtu/d6GAkJCQkJCQkJdwwX4q9lyKNbs50YQY4pJYDssbuMkwCiDinlPezu+k5ubGnneJQysHsOKXSBo1KpaDAYqNvtqlqt6vj4WIeHhxqNRmGn3Mm0W9IhOjEBghA2m80gKMRhc076sOEzbifMXPd8Pg/vgeiT9eB1/4wRYuY70JRHQP7K5bJarVYQXJw0eoJ/HLTnxBBRoVwuh7IL5oIMCjIyIPruMHFhZjweF4iuBylyDdjeKYvwXXJfex52yPfeQcHPGxPwdrsdSmAGg0FhnAg7CAbexcEDQ120Ij/EnxHcHt4RAfKMcMRc8xquCQGJ9eeZCZ7L4WUWjENSYTyeZ+CCA8KJPzdOzl1QiEsl4nBGL7Xwc8SCkgsS/jxxnTxXzIkLJsA7aXi+BXOTkHAnUN7Z1uFbd/XcVyZrQkJCQkJCQsJrBxfir2VI6nq9Ltjm3bo/nU4lqbADDvmu1+th93g6nerg4CCUHkA62NXH+s15IX2tViuICWQnEOgIESQIDvJIpsBkMtFnP/tZTSYTrdenSf+9Xq9g+YboQvh9FxpSRAtMiDRE2JPt2Xl2YYE2jePxONj/Ib1xaQTdLKbTaRAEaPXnLR5xNTBOiOFgMAj5BRBiOgL4Lj9z7dkWkjZ2bHDBZTKZhNdB9Ck1ICgSYWKxWGgymYQMCY7jwZOlUimEZXqHBez6iFN+L8iNcELptfilUkntdruQkdFut9XpdMJ6JPeDshNIMbvgzKkHQ3oph3ckiG3/zJ+LRz63/h4vQXBAsrnfXprigYYe8uhhhxzfnRYuKHAd7oBgfTDvnk0B0Ud84TqZl7gTCfMX5yt4dxCEDV/TXGc811wH87ep3CIh4Xbw6W9+s+a7KTchISEhISEh4bWF2/5rOcuysqSfkvR0nue/JsuyLUl/W9Jjkj4l6Tfleb7/Isco2PDr9bokhUBCb+2H2EAgI6GMBM6Nx+PQscF3fymF4Gde/y2dChXD4VBbW1tqNBqBnHgpAoGGnU5HrVZL0+k0lDscHh4WMhbinWfffYcoxu6IVqsVSDyEOd7lZdedTIP5fC5JgVyTC5HnuWq1mtrtdghGJG+A3fFN1npJBRECBwEiCVkXkgpigpdneFtCSkTcCQHBhrQyfu4Z7gXWhQsCvM/zFBqNRsGJ0m63g+jhXRg8IBDnRalUCvMMOKaHSfJefk7WB2UeCFHtdluSwr12shq3UGRdeMkDQgxOChc8KAUplUqFIFHvhhDv9HtJDXCHhnfD8O4HkgrjqlQqGzsfuPMGd47DHRBcD+OSVHgGPVjUnx3cBcyPl3q4s4QuKt6ZwktsEKfcncBa8rHyX561+wV34rM44S4jmRMSEl7TSJ/DCQkJDyJKL/6SF8V/I+lD9v23SXpfnudPSXrf2fcvCpwDkGfpnHy61ZrdRnagCabzlo0IB96twLMLnDjwbxL6IbNxeQLnZvcb2zqdFLz9IjvqkBrKMLyzA+4Az0JoNpuFVng+ZumcXDkRhJDSBcNr9d3Wj0Dhr9nUXcDt8jg4cGcgeLh1HWcC98JbGErFIEnuqQcEco/Ju+B9EFTuqc+FE2TG4vNDu0ZfP6wrOk94iY103g5RUrhWyCo77ZTYcI/44vWsG0itr5/Yyn8ryz7rhWvz++xf3oUgLk9A6PBj+zz5fXbRIg6KjFtGuljB8fw6fTwuBPDcMCZ3A/g1Ovidl8f454K/nzH7ffZsCw9ujTMe4tBIvjaVRtwHuCOfxQkJCQkJrxjpczghIeGBw20JClmWPSLpV0v6y/bjd0n6nrN/f4+kX/dSjuWhixA5380+O18g9k6+1+u1ptNpIJ9eKw4RhVgiDrigwM4zRNPHw5h8l5XdWnaJZ7NZqNWWiuQG8jKbzQqtKZ1cSedtMyG5nhsRh9TFgY/xbnUcfMeuN0SX48QBeG7z9jwL5jvuhODCjncuiIUSFxS81aWHSCL8AEQYXCAuOPjxvd7dy0Gkc5HKQyY9MDIWOdzB4NcTC0qer8B9w7GA9d/r+Hm/k/pYFNgEf31Mlnmfr2XP3GBteLmCOxecPHv7Tq7XywZYGz7nsdARj9mfVUoduO5N98+JO8dw4c9f49fkDot4Tvx++/PmIYwuVrqYAOJA14uKO/lZnHCHUSqr8sjDylPDkISE1zTS53BCQsKDitstefjzkv6wpK79bC/P82clKc/zZ7Msu7TpjVmWvVvSu6XTHeHDw0OtVit1Oh01Go3CLiLWdq99p21kuVwOu/+QTkg+bgVIHgQFQuS77O5OODk50eHhoabT6caSBEnBnUB3B+k8hA9xodFohHPTyhIRJN5lh8hg0aeUAkEDIu8Oifl8rtFopPF4HEQNSJqLG4yJ/IHY5RCXU7gdn5IFsh28TIL3cizq0Tmf2/ARNLxdIeNzxwQCESUT/l7PSuA6mD/KLrzdImuBsgTEAlwUPl5KRGiH6TvZLr5w3ZBwQkEhrRzT3Sju2nBSG+cncO0+N14a4uufOXDHg88rP3OnANeySUSQzoUV5jnO6kDEYu69LIjnmHXnGQ1xEKV3WYiDO2OnhOdvbCqFQNTwY3EOxAyeFdYUc8G6ip0J7oS5jzIU/rzuwGdxQ627PMwHD+VhXx/+Q49KWcpPSEh4jePPK30OJyQkPIB4xX8tZ1n2ayRdyfP8g1mWffXLfX+e5++V9F5Jajab+fHxcWiZKJ0TTc9AgMx0u10Nh0M1m02t12sdHR2FoEHaGErnO9Tj8Vh5ngcyDymXzvMC+J4ShslkEur5IZkeRjgejzWdTkOGAQTLswQYA04D3wX1UgZ+Tr027gSEhbP5UrvdLoTP7e/v6+DgQNPpNJDx2JLuO+EQMH6HWwKSip3fCR/ZCYQx2v0v7Axzr3CUMK+VSiWILwRlOmFk/uK6fYilB//x5YIJ+QFOMD20TzpvEem73cB3tRuNhjqdTqFcgDnwgE238eNq8SwEwkERKcrlciDTzLkfz4UQ1qy3fJQUMjz4GdkWm0orcBhIKpSi+BwwZy4IuBvGhSJel2VZIOjSaX6HCwy+u8+81Wq1gnjDcZyw+5rkmWR98X7v0OLdTRAHEB8QWnjG8zwvuFyYO3dfePkLgh5zdT9kKNzJz+JetnV/WDLuE6x/+dv06a9pSErTmpDwWkb6HE5ISLiXqDz2ev1X//yHX9F7/+h3/R7t/W//9vbOfxvv/SpJX59l2X8qqSGpl2XZ35D0fJZlD50psQ9JuvJiB4KUeHK8W5il8x3PRqOhnZ0dVavVsBM8Go00Go0KifoQPFwL7HTSQhGCxQ48gsLx8bEmk4mm02kgL+xCQy44rrd7hCjxbye8XEccSgc5pqTAa8U9eBByzi4vIgWp+pBAXuOEDGIpqUDQIb+QMsgf44acd7tdtdvtQrAi44cgcn6EBS8lYb6w0OMS8Br9eJfcxQF3BtzKWs892FSPzzXzHu5JXENPK0wILONC/InzCbgOhAXPs+CY7O57SQfuDe4LpB03CwKJl7W4QOPrxx0CiFlethA7EJgbjh07Gnw+YjeHCzecn/lw4cGfZe+C4aURXI/Psx/L10Ds7HDxwh0FHDd22iC2+LVuEhM4r39e+HVecNyxz+KEO4tVvazjbuIGCQkPANLncEJCwquG8qCvD/3pp0LYc7W91K9uzV/Rsb73t3xIH3jr21/ai3/P39n441csKOR5/u2Svl2SztTY/z7P89+RZdl3SvpGSd9x9t8fegnHCsQaghiDXcdOp6PhcCjpdIf08PBQh4eHobsD5MXt7KvVKhAMBIUwAdbGjswGuiVAWOr1ujqdTsEq7QQJMukuBd+pJUtAOm9X5+UOdB1wQcXb3zlBpgTCux5wLCd80jnphGR59wzIme+2QwoZf7VaVa/XK3SKgJjleV7IJ5CK2QlOMF08gGT7/EFYGZtfgwsKMamH7DohdeHDyWccfOgktVKphM4QlUql0LowDguMhQsXLFwIY3zcM8/z8Pn3koT4Gp1cu/MEcu8tIVl3vr58x5/14ZkTXmoSr2fKOcrlcvgd8+5j5Jg8G6xxfu5ikM+Pf7kIxnX7vfdwSF+zXn7j4pTnXHhOgos+jJOyDj4vyBmJn9OLjDv5WZxwZ1EZHatxpXbaLvK+yvdMSEh4OUifwwkPMiqPvV6yv5dPPvlp6T74++m+Qqms1S//YuVnf9tPtir6+H/yHpWz2++v8H2P/4j0+I+8pNfeKg7qbhQIf4ek78+y7JskfUbSN7yUN7FTiD06/uO/1+tpZ2dHe3t76vV6yvNco9FIV65c0ZUrVzQajQptIZ3ArVYr1et1tdttdTod1ev18DrIPjvIR0dHunbtmk5OTjQcDoMNfm9vL7gh2Ml0suH29DzP1Wq1gigAmXeiLBVt9t7q0EMInSh6toC7JPiSpGazGeaONoPVajWIApPJpOAkwJkAAfNww3a7ra2tLQ2HQ9Xr9WDl9y4NXK/XpCOe4KhABHF3gu/Wx0F5EFFJN7kDpGLnCM8giN0CHIfzM+fxTny1WlW/3y/Y632nn/lgDO6mceLJnCIW4CKZTCYajUaF0EkXQbwUI3YZALfeIwCQEUG+AhZ/L/VwO7+P1Usk3EGDi4R1med5eK44j8+R5yT4s8B18AziyPD7ytpESPDr43WxeEHmied8cD8pK2q1WoW159dNa0vPkvBSB0pweA5cMLsP8Yo+ixPuHLIP/Hu94aNb+sgffdO9HkpCQsK9QfocTnhtI8v08W96WCeds7/X1tJTf/y61qPRPR7YawRnfx+Xd7f1g//nX1Cn1LBf3olmjXcGd0RQyPP8/ZLef/bv65K+5uW8v1QqBTLNH/y+q93tdrW9va2dnR0NBgPlea7Dw0Ndu3ZNV69e1cHBQSDKTrQgW+QgICiwu+v279lspv39fR0eHmo0GoU8geFwqIcffjgE9UHGnFBBgObzeSCTWNjd0eA17tTJt9ttDQYD7e3taWtrK5Agr02HFLp9G6LlQXrepeL4+Di838MmcV+s1+tCECWkzktLhsOhhsNhcE+wc++tG7GVI/54sB7k3UlnvV4P5SQe5uek0y3tseMBEaTRaASSPZ1OCz+XzstS4hID5oyxt1otbW9vq9PpFGzv3Ee39gPPvEBI8lIA7tNsNgvBnV4Kwlx5uUnsTKhUKoHcclwXCyDAzLmPP36mvIyFa4+FG4g5IoQHnnI9zB3H4p5yPNYcRNxLCNzZ4s+BpMK99m4fnvnB3OAwQuDxvANKh1xo4HfMO9fvLgrySiiZ6nQ6NzlT7hfc7mdxQkJCQsLtIX0OJ7zW8fS3fWWhnG/VMBdwJn3i277wlu8tHWd6w//6E8ptky3h1rj295/Se77we1VWHokJFwsXJsIc8hHX4NdqNQ0GA21vb4dd5NlsptFopIODAx0cHIQgRgiX7+6zu+yJ9RB9D5xbLBaazWZh171Wq6nf72s4HGowGIT3cWzgdmtECsQIiLvX1LuFv1wuq91uq9vthraDEDMPn2M31ltDImDEQZS+uwvpg7x5NoSHJkK4vB0iXS16vZ5ardPEYa6beQBcO7vRTrIRVrx+HnIcl7q4O4X7D1Hn+uKuCuv1OoRVQoZLpVJo0+kCDMdijUFACfg8OTnRbDYrkPs4MJCyCsoBXIhhHhCzEG/YJY/JOwGYvDd2YgDPKWD83kmD37k7wo/t18F69bXia7fRaIQWoTyTdEuRzt0Hvm68xaoLGNwfL2ng2r1sBVcJYgL3yp0LXjrEtbkTg/8iKHGMWq1WEPb8vvK8cY8QmTwo8n4oeUhISEhISEhIuJvI3v6FuvGW0+D8xTDXunaLv48y6aR167+dsnWuG7/jy27KKt7955/WydPP3Knh3tdY/9K36TP/9enf6t/1+X9bX16v3uMRvTgujKAAGeWPeghfq9XS1taW+v2+ms1mSMyfTCYaj8cajUahZaJb7zmWE2cIDcQc4kNXBVoTZlkWyPRgMFCv1wuvi3MDnJBJ56SmXq+HFHzfcXXCDzmCIDEObxUJweH8fp3L5TKQIc4tqUBymcvj4+OQM4FQw/F9t9mFnFarpU6nE0iZVCSzXqbgc+677E4wmS8XPGIngrsknLxCTAmvhOwhYLj9vlQqBTEHUYF5kVQI2+QavXwiFhQ8i4D3cR4nvIhZvuPtrgt3B3A8zwzx/Agnsi4oIMj4evM8Ae6hO088n8ARu024Nne08FwQDsrx/b55pwmfZ+67k/f4mur1eiGDIi4L8bXj4iBr2nMcmAc/hpcixaGeOCm8Jamvufg+JCS8EuTLY3U+W9L08gv8AZaQkJCQkHBBUX7ycV39oq5u/JLb/39YXpKuf/HNx2k/9zo1+53Cz7Ibhzp57vnbPudFR3nvksbveCx8/9w7y/roL33PvRvQK8CFEBSyLAu7iFjx2SkdDofa3t5Wq9UKNmfp1OpMd4fJZKJGo1EQFOKMBEgxLeSwiiMgQJxwLuAc6Pf76vf72t/fL4gJcVggJLXdbqvX6wXhA7Liu8jSeYo+9m0yIajjXq/XISRQUiF0DiLNeCFHkDMP/CMsD/v9fD4PpQ7+5cQfoaPT6QT7N+4NSDK7zMvlUrPZrDAWJ+tO0r32nvO12+0CqXXXgpN3r/Nnp95zEdzVAMElYBOHAESX+4tg1Gg0CtkU3j5ROieVrEnfIUcIcYGH80KwvQyDdQlp93vr5QTMh99Hfo5442UejUajUJ5BZocf10s4JBWIdKlUCusCoj2fz4PT4+TkJBzTXTOIDRzLwxn9XnnJg4ejttvtkDfBvLuAUqvVCmGRfDYgPiD+eYmNlzawnnhmeBZdXOT6PIiSZ8HFiYSEV4L1aKTL3/Xj+ty3foXml5KgkJCQkJBwH6FU1qd+60NabN3drlef+bqKpK3Cz3Z/akv9v3nt9Jv1fZ1ptRFZpSJlJR189RP6t3/uu+/1cG4LF0JQwI4PqI/vdDrq9/vqdDohiA1r9MHBgW7cuKGDg4OClZzdYa+TJghwNpuFc2CZlxTew8/L5XLINRgMBlqtVhqNRhqPxwXC76SSenxEgOPjYx0dHQX3hDsN2GWGyCOoTKfTQEQrlUqhHtzLBrDVHxwcFEo0vHsCRDTPc02nUx0cHOjo6Khgaadzg1vTIXSNRkP9fl+VSiWIBnSW8Pd4rgOkjuO3223t7+8XXhPnIsS74KvVStVqVZ1OR4PBQN1u96YSE/8eAcWJM2LTZDIJZBkS66Ucg8FA/X5f5XI5OApGo1HYrffsBZwMkG7cJ5zb3SJciwch+n1HUOF3OF98TZEPAakmFJPX8py02+0gtrm4hCjgAgLlOnHJCqUilJIwx+6wYP36Gl6tVqGMBgcD1+zuGs81QdxrtVrqdrshpwEniZdn4ELxsgkXvnjmEHQQdbydKSKTdCpqtNvtIKIgziDGucMlCQkJdwrl4VAf/8Ofp3XtvmhBmpCQkJCQIEkq7+7q4//dk1pX783/v669NdONL/pySdJT//tndfLZz92TcdwNZJWKvvkXPqovqj+rVvYvJHVe9D0XGRdCUIBwUPNMiCI77m6Dz7JMo9FI+/v7Go/HgaxzHN/JxwLNDihElpBBSBfhdhCgdrutnZ0d9Xo9VavVsEsLYYSExLZzJ2Sj0SjsfMb5AR4MBzliV5tadXbBnUTy2vW62DbSg/28TlxSqOVH2ECk6Xa7haA6RA3yHyCq0nnwo7fTY57ddi6ddpmgLMHzLJgDdyogBHmpB2IGgkS/39disQjjZC7cQcDYOL53+GCeWVfs5rubYzabFcQf38FmbpgX79aB4yC280vnlnpeG4cNussBIczdK4zD8xp8Himt4YvQTj9/XELhHUEQnVg73hYUkcfLNVhT/hxy/zmPO144Lq9DdJOKXTqYw7ijiYsXXI/nZiAgcA99nXp5h5cZ+fuYd8bjDpf4PiYk3BZKmVb1PLWNTEhISEi4b5B96Vv07Ff0tardu7bHeSXX6uxPwWfe9XqV54+qOsnV+5s/dm8G9ApRfsub9dyfKv4sy3J9betfq19q35tB3WFcCEEBggnJh7jFAW/8ezweB/INMZLOSS7CgRMEJ5fsyEoqkHXEBHausapTLuBtKRk374PYuV3cAwGdvNPezkMh2cH1+n4PqoNgQprm83kg+G6HZ674L2Nm5x+hgOtHHPGQPMizEz6OjXBBuYMTdggwBM3LMrxrAtcDufP8Ckoter2e+v1+2IGG3CIMuUjjAoOH7Llww5wyPi8lIdySNpuxk4TrgwR7aYS3JYznnjXi2QDcd4QnX5ucC8Q5FJ7vwH3iOcH54Y4EB2Pw3XvuJ1+U6eCy8GfL14iHW24qUYjH7M4MF1o8f4PxOLHn/f4zF0b8mXA3hodkumvHy0WAuyE25UwkJCQkJCQkJDxIKL/5SV37wp6Onro4zrqjN55tqE0yDb7485V/+BPKzzZhXynWv/xtmjxUvxPDe0EcvLGkX3j7X9jwm+ZdP/erhQsjKHg6vduv4zr51Wqlg4ODQCw9eA6y4TXXfEGcsVw3Go2QCwCJhMxeunQp7OATAHl4eFjIX5DOE+/r9Xog6uy2Q/g94A/hAHLvxJtSB28l6PXgjB3hATu/iw9+3dI52WbXFoLuqfpOoDwkEsJLFwnGxj2BhDvxW61WgbDzXtwfkGG393Pf6YYgnRLcnZ0dPfTQQ6HcBLcB4oOLEd5ukvtP+CTiD44JdymQx0F3D7o7kEvA+mJePDzQO4J4XoCLGr6uGTv31UsdWC/cSxw57Pi7iOHPAqUlEHiELeaF8wPcBO7gwQnkDgfuDyUdsdjkwZbMr4skPh7mApGCeeL6fR24YOjBiDiHXBjk+UNk8NaWLoB4GKTnPPD72MXgcFdDQsIrRpZJlQvxv9mEhISEhISXhE//hkuaX7qYf/+ctHN99Hf19Xl//pJOPvM56eWGZ5fKKjVPN4wXf3Rf//YL/687P8gHEBfiL52Y3JBBsFwuC7ZniI73nue/HlQ4n88DGYM8Y6Vvt9uq1+sFglGtVrW9va3hcBhCGHu9XnACHB4e6uDgQOPxOJBjyF+n09HW1pa63W4hlA+yi1BChgPEstvtqt1uK8/zYPc/OTkJ4/Y2dxA+CCzH7PV6hawEJz9u5c/zXLVaTd1uV51OR1mWFVptMk4n2svlUuPxOATglcvlkLswnU4LIgfA1k6NPi4SxkZd/tHRkaRzqzl292q1qocffli7u7vqdruq1WrhXnNM5haRgbEzBxB05gK3hbdXxDqPM4L7gpBVLpc1mUzCNeLm4J7QWUQ6zzjARUGJhKQwVl7HGBCRvEQBwu5lGThe/B5RyoPLJCbD7mLgWXBBBmcDOQbtdjs4UTyA0Qk3DgTmkXvpYaMeaMj647556QXz6KKXCzmsCw/alM4FAs+44DmmHGm1WoVjeCijt5GtROQu/t7vR0LC7eLkP/4SfeJX1XRTf6yEhISEhISEV4yP/v5H9Lp/9ZAa//AnXtb7pu96u77/u/6MJGmrXJd08Vsy3g+4MIKC17Y74fI0e0gl/4WsUYNOG0kIB+GOEBhCEz1Fv1arhVr9Xq8Xgvekc0I2Ho91eHgYdrEh0Z76D7mJ8wGkU5JHOQMkvNfrBRIKEfUSDXZtIWn1el37+/uFcUtF4gQgj74r7O0RIajz+fymQLq43pwdZZwJvnvvu8vSeXAfJB3XgRN9RBkP2OT7Xq+ny5cvazgcql6vh7mkRehkMgnX5p0hGLOLMKyZ2M7Oz1kz3lEDou1En/WFO4L/er2/5wRwvXEoYEy2vTwHsQFBh7WL68HXhpcdeGkAa8kdND5XiEIQcbIueBY8M4HjUlLD99561UtgfDyM1bugcN24KGJXUfxZwDryQFKuCReCuz8QQdwh4l8ITAgjcckMzyXj4zriUMuEhJeD0W9+hw6fKN2zMKuEhISEhISXg1K3q+d/xxdq2b/4Ivi6muvqWyvq9d+h/ve+SKZCqawrf+8p7XQmelv/p/VQ5f4OQLyIuDCCggcwIiZACPkjn51Rr8vH0uy5CpAzJ3EQSWzhEBPcAq1Wq/DFzuZ0Og0W+njnlh3lTfXiTuYA5J3dZV7rxNzFAQggX56iT3mFp+BL5yTSuyp4CYl0vtN+fHwcQgZjp4MTXe/+AGIHBqTSyxqwxLu7gF1t7gWiQ6PRUK/XU7fbLeyCU47gpNED9TbVyDN3vsMN+Lnv2lNqg3iCFV/STcd2F0KcJeCv5TUcG+Idk13mj3WEqBF37Yi7H+CQ8TIEd20wdl9PdIvwnAvuDyIJDhPPanAXgq9nFwZilwzHjssmfE35muFzwAMZEUni3I1YbPC17mGRsSDgY9r0GeQCjecxJCS8HGSVivIv+XwdvKl019tsJSQkJCQk3ClktaoOn7p/QoQX22sd1DL1v/yLlP27jyg/Xt70mspDl/Xcr31cP/S279Trk5Bw13BhBAVvn+ht8bBaSwq7jdjRncDeuHEjtIv0UEFJBcKY53nIK2g2m+p2u+p2u2o2m2q32+p0Oup0OuE8h4eHunHjRhgTpCP+YieZL+8IAchZ6PV6N9XFA9/9jfMMmKd2u61Go6Gjo6NCBgSZCXytVqtwDBwNnvQPCUOwYS49/d53+avVqo6OjgKJQ9hxcsj9804L/JsdcGr/IWvValXdblc7OztqNBpBZKA9KPebtRKLNE74vcTA59R3qCUVnCHMMXMUux2YN+bVszsgtb5zz9wj5rRarcL99jlinr2LBEKYE23GzvpjzC7CUcbCvMTPF+U+nknga8UFC8ImWR9crws2lIIwZy5euLgQOyp8vW36HOC6JAUhiS8XGxASEalid4GHn/qY3KkQjy8WobykJyHhRVEqqzQc6qO/ua28lMSEhISEhISEu4njbq6P/5a23vzJvlZXrxZ+V2q1dPAfvUEf/OPv0f3elvGi40IICvwB75ZtiABW/fV6rel0qv39/dBaEQJ948aNkNBfr9dDf3tA9wbCBOfzeQhgREzY2dnR9vZ2IH9HR0e6du2aDg4OdHR0pPl8HkSP+XyuZvM0mRN7OgSR3ILxeFzY6SYjAgGDcQHvFgDB2draUrPZ1Gq10mg0UrlcVqfTUaVS0WQyCRkTHk6Hjf/k5CTUyHsXAMgUdepxt4N2u61arRa6LJDzwHi9/IB7RRkIZHo2m4V7BPFj97vRaKjb7YZ7IanQWUNSsN/TXcPJHjZ8CHDs8kD4cCs/LRkRXhAScIDgUOE+sEa4v8w/YgXr0UtvPJMB5wfCD6QUB423B+We45TBScJ6ioM8PQeEtYWgRgkL93U+n4dyIl93vI9rRSQgTJPrRuiA/HvrVRewuM8uBCDKuBsBhw5CkgsQrEueXcpyCCFl7lutVrjvlCO5GONimWd84EpxlwJOBj43mF/Whn82JSS8FKy/6pfoF99VV36f7O4kJCQkJCS8VvGR93ye/sPX/G+Savd6KK95XAhBQSruRGJ/Jziu3+/rypUroeMAhICShMlkovX6tN2i14WDdrutUqmk+XwednHjtnveOg+ChjBACKHX6pOfgHtgNpvp8PBQR0dHhZ1i6bzcotlsFloSQnzX63UhqZ/dZH89qf6QOHbQOUapVAqlAZ4Z4VZ0iGDcMUA6L5Wo1WoaDofa2dlRv9/f2F6R++C16ZLC/WAX38UL6ZRAEuyH2FKr1TQYDNRoNMI84iCJreyMg4wNd7Mwz5QQcD6IOS4X5sOzDXCzQLAnk0k4HoIIa4bSE8/z4F57SUdcWsCuua8LBA3ELcQHDyx0twpCAg4GciBwJ7CO+J2k8HrWAqUDuFG8bMXFDQQgLzWi5AfEa5x1yNxzfYA14WUErBEvg3Gyj4vD7xUBp5PJJIiFzBufBZ6JwPVy//y4/nPGGmdoJCS8FIx+8zt08GRJeTk5ExISEhISEl5NfO53PqWH/s1D0o/9bPhZqZKrVUpiwquBCyEoQPwgoh5ECKlmpxYC6bZ7t/176YSkQl01r5VUqFX3dneSQocCiPN8Pg8ihQf7sQMtSaPRSOPxOLQTdELN7q23DISAecs8/st1UBZAoJ53s/CQR0if75Z7yYfPDd9D/Dy3Icsy9Xq98NVsNgvhdzgGvJyD8Xiph4cl+i4x4gD3nHlB1GEd+C5z3MWAf3tOhc9dbG+HlHONkG4PP8S14IIT64i5xV3hYZguEHipSCxQ+evjmn4PSfRcAyf7lDh4yQJlCZzbSTDXzZjZvfd5QFBAsIhDH/lZPIdxF4c48NLvU7y773kJ3AvvvIEbxLMRIPxxNw3mG2HPfx4/U6z/OBST8XtZB2Pj9y5MJiS8ECavK2mxk8SEhISEhISEVxWZNHlkrcWwLopxr3/zO/Xlj334ng7rQcKFEhSwJDuB6nQ6gbRCIPkei/lqtSoQLXYwvU0fVnQcEKT6O/mDQLELP5lMgrDQ6XQKafuQbsodrl27FtwMLihAGuPdZxcIPOgREQLBA/ID2aP14ng8Dq+XzstFIEetVisE7BEeSccL3uehfJC6nZ0dbW1tqdPphM4aiDlkSnCNvtstqWDP911nv8+SCrviEEkXfTx0EXHIAy7dDu+CAoTVgxVZL7zPux34uZlT2lRS0oJo0G63QzkIookLBJwHsQmhAocDY43DDnHVeEtGnBJelsH53ZHC2CifkIrtGhmHl1Ewpy4EuYjl4g2iBfeDsfC8eocJz3nwefb7znr3eWOd8zzguIiDU/mijAW3S7/fV7PZDJ8fiFwutHkQpIuSPIfMqa/NTTkaCQkvhNJCKi0zrWsXPx07ISEhISHhNYss05/99vfolzXu9UAeHFwIQQEBgJ3EXq+n3d1dPfzww3riiSc0nU4LZIE6fW9NCOGm3t3t1dVqVfv7+4Fct9ttdbvdQPI9JJBjHxwc6Nq1a5pOpyqXy4HAkmOwt7endrut2WymZ555Rvv7+6G1JJ0mnCjxb9+RdXcABNF37QHXAemlJIA8BTooSCoE+0kqWO8hVBBz7N+4NHZ2djQcDjUcDtXv94P4MZ1Odf36dT377LOaTCaFrgvSeVtI3Atcr5/XO3J41oF39/CdYwSHk5MTTafTQknIwcFBEJLYhY87P+A4gPhyLlwG7h6YTqc6ODgI5HkwGKherwe3CaQc0QnSGXdR8EyG2E3CPWOMiD6dTicIUzhuIMyMt9lsqtVqBdEBt8xkMtHR0VFY75IKooG3YZ3NZjeFhk6n0yCotVqtm8QfrjPLsiBOQLLJQ3BBybMruIf+bHJfgJcoSaei2Hg8Lrg4KBVifVCOwjOMmEBL0uVyWXBGVCqVcA4v8/CMBVxGXjrCtXvOSULCC+HSez6g7a9+mz759clemZCQkJCQkPDg4EL8tQwpgxwOBgPt7e1pa2ursHvNzi3Bg/zbE+shupDZSqUSCDAWaWr2vdSB3XtCFa9evaqjo6NQ508QY6vV0nA41OOPPx5KIwhtnM/nyvO80ErSAwXdSu72fm8z6DvXvB6i4w4BSYXdb+YBIk+5AiSc43g5AuSOLhh7e3u6fPlyIRgPZ8JoNAok1MMmIczMvWcqxKn7/M6D+CB/iBOIJxBXQvO8+wAOEL82t7h7i0rpnOiyC48zhXmli4e7CyD/BIO22+1w7Pl8Xpg76TwTg3tP2YLnSjhRJsiSdSopCBjr9TqEiyII4ajheik/oYzHQx4h0Vy3z7MHVfqYNxFn5oB16aUAvMdbeXoQKmANcG7GyLW3Wq0wp1yP3y/mhjWe57k6nU5wbCCsTCaTQsYDa5ySD67b77P/l9/5OvRMiISEF0WeS8mckJCQkJCQcE/w/FdUtfql79R/+qt+Ul9Sm0tKFoVXC7f113KWZYMsy/5OlmUfzrLsQ1mWvTPLsq0sy/5ZlmUfO/vv8MWO45ZodmQHg4G63W6oq0YUoHSB/0J4vBWfB615ACDHJwDPyySk01C90WikGzduaDweF2zqWMh7vZ4uX76sdrsdBAVS+7kOiC6ExGv7JQVrP6TX34eDwcUECNd4PA5kNibeCBLxLjy7/3HZiO+u12o1dTod9ft9dbvdQLIkhZ1+vshp4P3eTtED9Dh/tF4K/46t+9xPPyadClxUcpLLNbpgwxh9LKwF5jfuSME9891qf787KGgT6Vb6OPODuXOi6lZ/dv3JC3FRiXWGK8HH76UhHlzpx/UuHswJ4hBiHM4ULznwAE+/fheG+JkLES74OPy93iaSQFTmClGK8FPey/pwNwhiCWtrsVjc1C7T8zT8XrgQ5eKP57PEXSfuF0HhTn0WJ9weas8cavvfZ0lYSEh4AJE+hxPud+SzuXY/KJVn92eromV/rfVjM/35h35KnVISE15N3O5fy98l6Z/kef55kr5Y0ockfZuk9+V5/pSk9519/4LwgL5ms6l2ux3IbbVaDXZmCDVk03cT/WfsPCIY8Lp6va5OpxMEBSdq2Kn39/dDRwl3D+R5rna7rUuXLul1r3udsiwLO/dOhCAikBH/N9dKeYAT31iEiF0Z0+lUo9Eo7ETjgPDxeRK+kz3pvMWmh/0xXmrRB4OBWq1WoRyD3W8PLOS9nmXgAYLMPXZ7zuNzAKlDDPKgPe6lC0GSQl4AgoKLBRBiD6fElk9WggsPXjZD6YSvF2+lyBh9Z98FK66l2WwWuoxw7xiPC1Q4ITg+7pZ6va5+v6/hcBiIs59LUkEIiYMV/bWxEOJlIKvVKmQ3ICBxzxFNXBDgXnupSuxI2BQ46eNm3rj22PVBuYYLcV56gZOGdYV7xt0onuXA2FlfrKc4uyMW92Ih5D7BHfksTrg9rD76i9r+gZ9VdZwpS3meCQkPGtLncMJ9jfV0qv73/piqo/tTUEi4d3jFfy1nWdaT9Msk/RVJyvN8mef5gaR3Sfqes5d9j6Rf9xKOVWif99hjj2lvb0+DwUC1Wk1Xr17VwcFBCM3zHWLyDZzoel09O+uUQXS73VC3DpGqVquazWba39/X9evXdePGjbCL660s3/jGN+rJJ5/UpUuXCnXxCBhxR4JYUIC8EPQY5xl42nye5+G1BwcHev7550P9OHXliBMQ1K2trRAc6MQYQoXwwS40wXZkVrzxjW/UcDgM5QAIGbhDPMeCL8iYp+tD+jbNA4SNnWfPY6BMwI/Hdc5ms9BFIyaFvruOKBHnJDD/WPdxDlAGg6hEKYELLpIKu/se5MfvqeeHII9Go0B2vW4f4jscDkPWwnw+12g0Ck6RwWCg4XAYSHu5XA7Hpkzj6OgorCFJN4lIOB1Y46xXckS63W6h3WKcL8AzKZ0HUyIoMCbvAOFOG4StdrtdeB1EnbDVUqmkw8PD4AaicwrnXS6XoZyI+0RuCMKRn5f/cr+516xhBAsv8UAoYx7d2bOphOMi4k5+FifcPtaTid7wP31AzefvGzEqISHhNpE+hxMSEh5k3M5fPE9Iuirpr2VZ9u+yLPvLWZa1Je3lef6sJJ3999JLORhkr9vt6tKlS2q1Wjo+Ptbzzz+vq1evBtIhne9++u4pu9Xsukrn2QOz2Szs/F66dEk7OzuBNEDAZrOZDg8PdXBwEIIHfcfyjW98ox566CF1u11J0tWrV4NbIN4J9fp7Fwm83p7yBHbQnaRCfsfjcQjd8xBCt3F7q8J2ux0cBhA9iLs7Onz3ent7W4899piefPJJbW1tSbp5B9xLLlygwPHAGCDEvV4vEMPYueGOCcgrv3dbvOdIIFqwsx5nD2D5d6HhbP0VnC+dTketViv8ji8IMdcDoWa8XibAdbr7Ig7+86wJ1hDCCSLOcDhUrVYLO/CdTkeXLl3SI488oocffrgQKEppACU5BwcHQVBg19+7h0Dm/Tng2uig4u4HXAyITMyhdwEh/JS16WUCLowxH57JwL1F0Gs0GsGVMR6PgyDGmvEuLpQ58Axxbs7vjiRapfJaBEVcJXxGeKYDIgvzhojjZUL3Ae7oZ3HC7aHUbuvpb/tKzXdT3UNCwgOE9Dmc8JrBY3/9U9r78Xs9ioT7CbcjKFQkfYmk9+R5/jZJE70MK1eWZe/Osuynsiz7KUh7o9FQt9vV9va2ms2mVquVDg8PNZlMChb2mKBLKpB3yD1BhjgMBoNBCGSEYOBwIPDw4OAg7ORD1jqdji5fvhwcExBs7yQBuYodB5BfSCHj5jrcnu67opB6OicgXsT16Byr0+kUasudCMWdCDhvs9nU9vZ2EFkoL/F8Cgi31+s7oeN6uQY6FnCdfm4fM99DNr3W33Mk4nNDCr0loztU/JjsprdaLbVarRBUyD3z+eEccUaE78JznW6H92A/gv/YDWdMHi7ppNrnpNPpaGtrKwRiehmDd7sYjUY6OjrSbDYr7Mh7SKXnV0DMl8tlwbXgxNrFHXf++LH9vrkA484g1lec3cB7vawE4SUuo4jXjN8r7oP/N17TcYkGQhyvc6HAS2rizBE/332AO/ZZfKzFi78h4YVRKmm+u9a6mgSFhIQHCOlzOOE1g5Onn1FtdF/8/ZNwQXA7gsLnJH0uz3M0rL+j0w/T57Mse0iSzv57ZdOb8zx/b57nb8/z/O24E5rNZqgfr1arWi6XOjw8LLSGxNrtpIX3xzuTkHFJ6vV6GgwG6vV6gXB454CDgwPt7+8HizW/r9fr2tra0uXLl9Xv94NFndIBzu8/g7hBVMiFoN6fNn0uKvBzxu9CggsKTtTY2W21WoHIO+nbVP/tAka/39fOzo52d3c1GAwKbgBKDtzS7qGOkGRIPon9lJKwQ818+L+dzDt55Zq8nt/DDLnPcWZCHDQpnZdZeG6GByZyPg+B9Fp8J53uVOEeeq0+5N1FIC8t8TKMdrsd1jegXIUyB3bePXeCHJGjo6OwRhkDoo8Tc0pe/H4yVko8KKHwQMxNgoLfK78mz87weecYLgx4ECJCEM8m69HnhGPE2SOIPu5ucVeCr39yLHxcrGd31+A48fIPDzu9D3DHPourqm96ScJLRKnRUGln614PIyEh4dVH+hxOeE2hPFunLIWEl4xX3DYyz/Pnsiz7bJZlb87z/COSvkbSL5x9faOk7zj77w+92LFKpZLa7bZ6vZ52dnZCbfWVK1f0/PPPaz6fF/rF12q1sHMs6SaSieOA3cdut6unnnpKe3t7ajabkk4DGv21n/nMZ0J2AqS21WppZ2dHjz76qLa2ttRsNnVychKs/14OgMWddpRZloVWf5Bar1MnPNFFEd4HGaLundyAmHhLCudotVqq1WqFThDVarXgKiAIj53i7e1tPfLII9rb21O/3w/lIZBxxuZE2a+ZTIder6d+v69+vx9q3CFjkD2/Xx52x3W7oyF2HZDLAOHjfcyFfw8JRzhptVrq9/vq9XpqNpvh/YgF1M8z77RSrNfrgaRnWRbKJer1engfa5HXQvhns9lNgghi2fb2tnZ3dyWd1u9XKhX1+309/PDD6nQ6oQ0p94+ODtPpVIeHh6HUgVIAJ7xxZgJrmzXtokq5XC6sDa4bMcF/TxgiIgFrGBGNteIigHdHkYolLKzt5XIZSgw8O8TvhTtiYlcJz7F0nnGBc8NLRlxIYL5YWx4eimsiLuW56LiTn8UJt4fjd3yBPvn1NSn9DZaQ8EAhfQ4nvNZQ+Rcf1BM/f0kf+dYn0v/TEl4Ur1hQOMO3SPreLMtqkj4h6Xfr1PXw/VmWfZOkz0j6hhc7SKlU0mAwCLu0x8fHGo/HOjg4CPkH0vkupdvQIcoxWWFHttls6pFHHlG/3w87sxxrsVjo6OhIzzzzjA4PD4MtnOC4nZ0dPfTQQ3r00Ue1s7MTaq7H47Emk0kglkdHR8FB4LvAWO3ZuT86Ogrky1sqMk63cnugJG4ByjM8ULHT6dyUJxC3dYQUtlqtEFjZ7Xb1xBNP6Mknn9RgMAjzBkGE3BGEiG0eMYEwyk6no+FwqF6vF4IJ2dGP8xFcSPD/YlP3MSMkeIaAdF7KwevJNfBdcY5HecHOzk4IQPRSGHIyEJY8PJA8hlKppF6vF5wt7PpTvkC5y8HBQej4gXuAYyGW7e3theyExWIRRKVer6d6vR6CJxEAnFRz/OVyGa4NsQMBCLeNl6oQaNhqtUJIoqRCWCRrMA4QRZiJ24y6cyUutfA1yHrxMgLmnzlEaNgUJIpjJM7GcOeNiw9x2QtrnbIZ7q8LH7FzwUUUFzDuA9yRz+KEO4D7atkkJCTcQaTP4YTXFFZXr+vz/kxFn/jmx7TsX/xNlsv/NlfppC599b0eyYOH2xIU8jz/GUlv3/Crr3k5x4HssmOPvZtdYHbapfMAPumcvLMrG++CQ+z7/X6hTALxAWGA0EPIhlvTKQnw3X92MSlHgLRRdsGYPAgQsgbZhdh5uQO7q+zQQ+J9t9SvvdFohI4KlUolkEmu3636zEe1Wg3Bl5cuXVKv1wu70ezU83p3I3jrQ/6N8EIYpNfte76C7157SQOk1R0nm0oWcKYwLx4WGIsW8b330pL8rA3mpjn1tRPnTTCG2BXDa3EPME9xsCEuhMFgUOh8wBppNptaLpdB5GA3HiHJ2z06IWaMnrPgIguEnzXJe9zO77v5m0g0v8NxwTV7FwzP9WCMOCs800JSWNPcR4g/99sdF/G4mMv49wgjCBA4lvhc8GuNsyG8ZMRzK+433KnP4oRXjvUvf5uuf0FD0sX/oyshIeHOI30OJ7zmsF7p5Oln9NCPPqTrX1TX+PUX+/9vz31lptLe/F4P44HE7ToU7giwtENI2anF9g2JcPuzpAJxiHcnsa3Too5dUoge5AdRwcPlPLBwd3dXW1tbwQ7tbQ5dUOB9cU4CNnPs7V7njZBSr9cDMfV8AkikEyLmC8KMO6NcLgcyKymQM98FZk5oE7mzsxPIOgTbS0ewkfPFuNjVprMEZRcQZa9zZ7xef8/xIZJY99klRvDh+ORpxGKJl1UgMvB7dqcJYuQaCUz0+XShgPFyfgQbDwvkeghhpNTBO00garBGB4OBOp1OQZhg3iqViqbTqcbjcRib77x7aYZnSfiOO46bOMPA7z1rxAM3vVzB4YGPXk7iP2eueT+uBO7jYrEIpJ77g6DjJTyM0UMi4yBIP4/fI0lB3GPN4dip1+tBeIqPB9zN4SJJQsLLxZUvaV74P7YSEhISEhJeLqr//IPaLr1dy25Ny+EF/P9cLtX3S3rr131I3/f4j9zr0TyQuBCCghNrScGKLimQ4DhgDsLmtffSOXmlTSRhhU4Eq9VqSMunTaS3n6tUKur1enrsscf0+te/Xp1OR/P5XFevXg3lDcvlMtjb2QVGPMA9EBN2rqVarYbOE9Smk8MAYWfH2sP5vMuBk2XIGA4HDzWEtCOSDIdDbW9va2dnR3t7e4XdWXIfIPjj8ViHh4fBLeJuDO+aAeHGcs814GLA7QAB9iDKSqVSaNXo3S7ojgFR9fp3dycgREH4mSOcBZDv+Xweuob4Tj/3nvXjYZqUrPB+1iZraH9/Xzdu3NBsNgvX484Gd8mwvr20JsuysJbc4o/gwe/I6JBUIOKQdO8CEhN1RC5vayqdC3JY/l/o+XTRwAUub73KffcvD4Dk+XXhhzXMmH2t8/wDxumuCbI8mD/v9CCdl3a4q8ODQhEc3JnjwZz3SShjwkVBrlTykJCQkJDwmkP1h39KT/zCw/rwH3r09AcX7P91j333x/SBR5+UkqBwT3AhBAWIJALB8fFxcCVkWRbs5NReQ0ohsU6QvJQAK77brqmXRxwgNwACQs37m970Ju3t7anVamm1WumTn/ykRqNRIMbswrPT2ul0Aoltt9u6fPmyOp2OJAXnAK/xHAUI9fXr14PdnQwJ7xbg4YWQVHbiIXqxhR2bP8QaEWB3d1eXLl0K9fHsznrLPUgq1+ktAsluQCzxkgFKJE5OTkLLRm/dRwAnwop0TtwYt8+TpEJQHt8zFi/P8BaACBaILZBO7oV3KuAaKEvxFoLcH39tuVwOghRZGt4mlOt2YYv7hUvC22IiTHEvvKyEQEYvd+Ae+zp08UY67/Lh+QrcBxdNuN9epsB9Qojykgeul2eUHAkfO+uQNqbe8cLFBBwgjNs7VXAfvI2nZx5QCkLoJOstLm/xsha/Dnda+DH9GhBkEhJeCh7+az+v6Ve+SZ/9FTd3SElISEhISLjfcfLMc3rzn1rqE9/ypI67F6g1cib96n/5Yf3v7b8nqXOvR/NA4sIICp4FQOicpEJtOaTRswjYYfRe9BAodojjHcnxeKzRaHRT+0ecBVtbW9rb2wuCwP7+vg4PDwuv9ZZ1kF8PPKRWHucBx6Y0AELG9fHlGQrMjaQC0UJsgSRJKpQieG06pIiAwsFgELoxQPa8FIQ5n81mwZ3g7RSZU3eGQBYXi0UgeLhOuEfMHTv+HMPr7D1/AqEE0uyWdH89goG7VLgWSL5b7T0wMG4LiEOFa4xLbbhWF3wYP69H5KF8xNcku/Z+b9whwhcdFBi3B0a64MNrCYiklIf74c4C7oHnaVC2wRyTP+AOB88ccPHCf+8hje4swLnCHHrJi7/XMxkYc+wMQBghT8U7TZA14c+4l09sKmfx47Km+CxxxwKiWULCi2H+9id18MaqUoZCQkJCQsJrEuuVVlev6pEfeVRXv7ih8Rvu/f/vKpNMD/2bE731XZ/W49UkJtwrXAhBoVQq3dTSzv+4JzTRE+kJ8uNnkFFECUgW/4ZE0PaRWnonq7RfHA6Hwcp/fHxcsLRDvr0LAcfHnYC9HZK9WCzU7/dDHgDjWK/XIdAP0QR4jTlztIk881rfffYAO4gjJQ+dTkftdjvsmDv5cvJNNwtIs+9sc48gqnRmOD4+DmUbTnC9pIHMBc7lpL5UKhV2rLk21oHvLDvB5PtNLgOIvN9rjueJ/hyPLA9276Vi5wx3DbAz7u4RJ7X8vFarFUoCXLxhviG+jBWngAsZflwPvUQ88/IR7r/b/Hl2IPsuZniGiOdbeNgpc8aaibtz+M89+4RjelmSuwJcGHORysfE/UFs8HwPnwc/nt8Lfs8cuMiAO8K7ongOQ0LCCyLLVHns9Xr6S+uaXb73f1wlJCQkJCTcTZR/5KfVvvQOjd9wr0cilWeZ6v/4J3V91ZE0vdfDeWBxIQSFcrms7e3tQOLZ2V8ulyHngJ1gzzngNZJCGQAEADLtQYjsxFI6we4m5ILAwu3tbfX7fR0fH+vo6EjXr18PO87Y1ilZ4FzVajUk+Xe7XVWrVR0cHGg+n6tcLmtvb0+DwSCcP8/zcG3U4UtF0gNB8nR736nn/NTZ81rIV2zdh8jW6/VAKCkTgKwtl0uNRiMdHBwEccAt4LGDwG3i8/k81LE7iZ5Op2F+EY4g5pByL9/w3WaO6YGbLpggGECCJYVSF0o66M4BCeX+c12IGJRy0F5TOt/hRhghPBF3C+ugWq0GwYH5Z55ph8hOOmvYiTFzT9cRShjYKXerPmsAZ8QmNwWCju/A+1oloNHzDtzmzxfXxDj9+nCgeBioZ3t4y0cXZ7i3XsrgnwVePnFyclIof/Esj+l0Wmj9ybEQslwA4rpiMYP2sh6EylqlA0dCwguh1GzqI7//IeXlJCYkJCQkJDwYyHLd+9yg/GwcCfccF0JQqFarGg6H6nQ6hVyEyWQSQhAhDbSWdBLjzgTITrvdLggKkMH1el3IToAw8p5er6etrS2dnJzo4OAgEH46RUg3t65kDC4oQE4ajYaGw6G2trZUqVQ0m80CaeTYR0dHIeiPnfHlchkEAz8noYOUPvhOOePjd4QJ+jVubW0FwQNiC7mazWa6fv26Dg8PdXBwoGvXrunGjRtht9ydA25fh4zNZrNwj3CQ0P2g1Wppa2sriCrT6TSIFtxzAvG8TGIymRQs7XFdP84Fflcul4MDgs4HcYtPSKl3U/COHM1msxAiuVqtgqOFEMDYscEOPrvjrVYrjEk6FUZwLBDE6a+PXSFkXuAegMy7U4FsDNYM65txdbvdMJfL5bLQEUQ6b+9JGQOkm7nDMePuDBd0uF84BLyjCsfHQeTr2EuX3HXDdXm7VAST1WoV7l1ceuGCBP/m3LPZLIhPcZkJz5N3bpF0k4snISEhISEhISHhHL2//zPqffgxffR3D+7ZGC7/mNT7xz+XCg0vAC6EoFCpVEJ3BEkhqI6WjpAPdmvZXZXOWwQ6yWm1WuF47HhCSqm7pqaeXdpOp6NOp6Ner6dWq6XJZBKyEzx0D0u6W+8hud6pAmdCt9vVcDhUo9HQeDwO+Q10UJhOpzfZ5iWF77123lsBViqVAvHy0g+vQ0cMcDLpyfxeCoKAc3BwEMbm1npe78TTrfCIGtj5saRTSgJBhjjTIcNFCsQBCCSdLnBsxFb2WExwq713BkEMYEcbQuktPiGRjIXjk7ngXS7cESGpME/sqDt59cwHCDJiwfHxcVgT7MiTweG5BF7+4A4N5o+SEcpbOL+kwuv82lw08d97PoO/jnP7c8Xz6eKGu188eyIuXWL9OHHn3rDWEBBcBOR3zKV/lvi8epZFnPfguQn+nPGckFWRkJCQkJCQkJBwjvV8rspoJmlwT87/8PvX6v7cFZ2MRvfk/AlFXAhBwYMN8zwv2Jnj1Hm3K7v13Yl9s9ks1D67ZT3esYZ0tFot9Xo9dTqdkOLvO+jeTcF3xSE2WKQhUPP5PGQW4LyYTqcajUaBPELYXSSAjCEoeMs7CBiEzuvIId3SeZAjRIxdalwckEsXHiD6h4eHoXuB16eDeLfXAw7pKME4KVVoNpuB6LITz9zHeQmsARwP3iqRc5M5AFH1Vo3Y3RENKJlAePHMDM9NQAzCqu9rx9stOhmWzsk5HSC81p/30zKUchOEKS8VYb5xWDQajcJrnNDH9wFhh3/jgnAwHm+FGB8zfo3neDCnfn7WjZfYxLkfXqaBKMA98+OyxiH7/szzOeDn5/UuQrm7yd0R3krSxaRYWIm7o8ShnQkJCQkJCQkJCWeYL9T+XEnTh9bKX+UGR92f+IxOnn3u1T1pwi1xIQQFFwUkaTqdhpDC5XJZ2A3G5h6nwksKdfDszrqlHCEAV8JsNgvt+BATdnd31ev1NJvNdOXKlZBrMBgMVKvVCjvcXudfKpXU6/VCCz3ITLfbVa/XU6PR0Hw+DyUUkPbYVeDXCDFmt9QT/N2CDhHFZeEkkesjIwBLuteSV6vVYPkej8e6ceNGEHOwlUPiXPiAOELWpfMMCpwRy+Uy5Caw445Ig5uB0ghfC4vFQkdHRxqPxyHjwFtAQvClc6HBuzpAXL2GnswEzwJgvXB/nQBDmD04krlwASQWmDzDAhK9Wq00GAyCcEFJC5Z8rpUcEMI73UkTu1A8O8HdGy5MISQB76jg1+MdNrzcBIHCxRnPluB+MRYvn/E1w5wThuqOAReGmEcPtPQ2pKw/vx5EAObeBS5EtDiDIp4Hrh9RBjHMxZeEhISEhISEhIRznDz7nB76M8/pU//LO3XSeZXCDFJuwoXEhRAUvFvCcrnU4eFhKDeg9twdCr6zD7mjdp92iOyEsgMN0aeUYjQa6eTkRPV6XTs7O3rsscfUbDY1m810cHCgT3/606F8AlLlRDsWMdrtdtgdZVcekWG9Xuvw8FDXrl3T9evXNR6PVSqVggAhKZAZSK10vrPqdeQEOh4fH+vg4EDj8biQZeAtAieTSSBujIfd1+PjYzUaDS2XSx0cHOj555/Xpz71KR0eHhbyBpx4emAf80mdPXNfLpcLuQ67u7uBRC8WCx0cHIRdbbfTe0nLwcFByM4gH8PLKLyTgXdzICsAZwbrA4I4mUyCmME963a7QYSCLONS4F56KCXjpDwBkcrFJUJFIcGDwUDD4VA7OzuBJI9GI02n0yD6UDKD+EMJCl02PFiQL9Y9HUa89IE1FRN2L3GIQxNjUYX34KJwIYnjM284gny90A3Dy048rBJhxT8HPFh0vV5rNBoFl46LjsDFAe/ewZwgQsVdHOLcBuaNdc218CwmJCQkJCQkJCTcW9SOSnrsO/+9Tqapo8NFwoURFGjRCPHDFu+7kNJ52JoTG29H6Anv3pXAOzwcHh5qtVqFIMWHH35YjUYjBEFevXo1OBcgtJRJsGPpdmnvyCCdEpRut6tWq6VyuazFYqHr16/r6tWroRtD3Lrv+Pg4kByOSfYAhJkdXs8X8JIIhALmSTol+t1uV/1+X61W6yYiuV6vgzsBB4ZnS2wKPUS0QHBgjjqdToHMQ9o9FFMq1vNTkgFZnc/nGo1GgaS7fd9bPcbiBqSQHWrvHkCZBWuKdYGQ0Gw2Q6cGb0voJJVrZxx01mA9QFzpbME9bjab2t3d1d7eXuhugTjFffBsBe4JogwuBa7X21niRnBhivXna5TrYF6Ak/eYXPN7XwuSCveKLwg7cBECl4m7DlxMissiuCbOjYPAx3irLAjm1ueKzwPuKeeIhQnGRAYDx0+CQkJCQkJCQkLCrfHYPxjruXd2NX7sVYhHzKX1ZHLTj/+XP/mN+u7f+Wn9ozf/o7s/hoSbcCEizN3uD1GmbtqD99hh5D180dHA69MlFWzciBWQZuk0zX04HGowGCjLMk0mk1CS4O+HEMc7txAPiBWgvAAhYzKZ6Nq1a2G3FbGAFPnYgQF5bbVa6vf76vf7ajabgQQRNugtL72m3QMSsdkjbrh1nmMx5x5U6bbxeHxeE09uAmKOh+5hN+cc8/k8lCdAnL12Pc/zIGxI561A2Y13McQ7BDih5Po8D4CuGrgBmBe+PD/BzxWXR3gdvpeDuHOB90qnYg5dQ3CH4JbAUu+igN9fxkqZhs+bl8iQ7bEJ8c59XLrBumEupXNXg68lXzNeVhHPlZeUUFLk3TRciGDM7lLhWfJ5cIFjE+LxMk+IXB6M6cdzkZJ58K4cnrWQkHArlIdD5W95471tm5WQkJCQkHAv8RM/p+b1u//3Uu2gpM5nNm/0bP21D+hDH3v4ro8hYTMujEMBskWnAe8w4LugcU1zpVIJNfrsRlKnXavVwq4wpQ7s8NdqNe3s7OjSpUtqNBpaLBa6du2aDg4ONJvNgsOAUoO47hoLuKfCr1ar4DzodruqVCoajUa6fv26nnnmmdAOkKwBXBOQO+8aUKvVAhktlUo6PDws1KMjKHi4Iu4ESB9CAun7XtMPZrNZCIpEDHBBwa38iCtOIFutlgaDgTqdjlarlcbjcWh5ibODe0mJiXSevQBhYy6uXbum9XodiD5lFJ6B4CGZfM8xIIKQ3fl8rqtXr+rg4CCILBy33W6H/AzcIpBOSDEumWq1GkjpeDzWYrEokHpJBcEpyzINBgPt7e1pe3tb1Wo1lDDQ3pE1D6n33AUENS/t4XWsOQQ06VzEcFLMz91hwDgJxHSS726Gk5OTEArq2QaID+4o4pppc0rgKG1EeY5iICq5Y6ZWqxWeM37uTgEXEfye09EBcQsxy0NDmSPmgeN76RFf8TOZkFBAqazjt7xBn/jPGi/+2oSEhISEhNcwsrWUrXTXwhmzk0zb/2Gl9g/++K1ftMp0uJ6pX2renUEk3BIX4q9lgvT29/d19epVPfvsszo6Ogo7jp6BQM01O6SQ81qtFurOV6uV2u122PWFnGEfr9fr2tra0u7urvr9vkqlkj772c/q4OBAi8VCWZaFY3omAeTFj0MwHoSFEoN6va7RaKSnn35an/rUp3T9+nXV63X1+/0Q0AexJP+BvAW+f+yxx5RlWSE3gQ4YlE5AMrGJQ1Sx8nNc2kySZ8BO+40bN3RwcBBEBQQXnCGQU2r8q9VqEAiq1aq2t7fV6/WUZZkODw9DbgP3iy4L0nlnBMoqjo+PwzVD3iGy1NljQaeUYrVaqdlsbiSFEFtcDaPRSM8884yuXbsWrqHT6ajVamk4HKrf76vX66nZbIb8BUISr1+/HoIda7VaIVjw8PAwkGu+vMyi0WjokUce0eOPP67d3V1Vq1UdHh4WAim9a4WXZhBCiODiWQDstHMdzB1jj4UB5tlFC+ClOu4QcQHBu2KwJvv9flhrnu3AsQmYxI0yGAwK+ReSgshVLpc1m83CPFCeRGkKa3ET4feQVYS0arUanj2eW8YoqSDcAA+hZP3gYsFplJCwCVff/eU6eqMkpbKYhISEhIQHG/3v/ykNfvZJffSbBnfl+G967/Naf/IzL/h/3M/7gz+rd/2DP6D3/+W/dFfGkHBrXIiSh/V6rWvXrum5557T888/H0iXpFAe4Du/vksKYXYiBgl0EcIt5uz+I0LQJpE8AtwOHvgIAYdkeetFCI8HBOZ5rueee07PPfecbty4oePjY/V6PfV6PbXb7UB4GE+73S4QUgL82Ln3HXoneO12OwT5ORHHoQG5JhvAa9HH47HG43EgcG5r97wEsgaYL4h9rVZTt9uVpAIBlE4JKzX0lA2QDcD5vKyAXWQPJ2RX2233kEHeyz310ph6vV4oncnzPJQ50MaT+4TLASfF0dFREJbc7u5lE3QPYN59lx0S+sgjj6jX60lSEMomk0mhW0GcQcA1ejcJxCJcPJRp4DiBWHPfeJ68+0Yc+BiXS+DMcPdKXA5QrVYLzwXdM5h3SQXRbr1eh/wMBA/yKxgjQgBOokajEdw/XvLk4+Ga+eL3rHcPlvTshk1fgOtn/F4qtMlZkfBgI6tUdP2b36nJI1JeSWJCQkJCQkJCfnIiffppPfk3Jyot7lwdYHme6anvmyh/+rnTc7wA1vO5Wj/5KX3Z//hf6kPLFNr4auJCCAqr1Ur7+/va398PZM7D7iDDEHDIM10Q6A6BZR8i5rusEDTKEcgUwKbv5BRnQ0w+PPnfW9V5oBuEbT6f6/r167px44Zms1lwLrDLD5FDUMBajbsAgQEi5sQb4QFS64KCt+TzHWgPVmTOKS+h9aTPL/Ma16ND/CmpaDQaoduDhxS6q8Ct9LgruMdxbTuk0HMW/DiQRQ+M9EwAxj2bzcJ1IfYgPnFs5oLASEQD1oMHPXpgpWd+cI+YE3bx+/1+GMfh4WHoWBKX7OCw4HxOkuN76PkAPBMxafbODMzXpnURr424nMjXDO4BnEJeOsO8IyCRq+GdH1ys8EBFSkm435S2sM7jbiB+vS4qsGYRiXxevczBn2kQZ0wgCnkbzIQEUB4Otf6yt+jgzblO2klMSEhISEhIAOvRSPrJ/6DBR6Xq0e1TzNp+SYMPS/lP/pzWL7Grw+rqVW391Q/oN/zk79UPjnu3PYaEl4bbuttZlv3BLMt+Psuy/5Bl2d/MsqyRZdlWlmX/LMuyj539d/hix8F6v7+/r6Ojo0AU3abthN9t/L5biqBAHbaTcAh4p9PR1tZWCDmk84Onw7Nz7aTTU+JxCCAEQHggbqVSSdevX9f+/n7YoR8MBhoMBmo2mwXLNYSK60VMwPrNbj7Cgu9eN5vNQJAhcC5qSOfEinO5Xf3w8FBXr14NLRqZI97Pbr+T8MlZsmq9XtdgMAidGY6OjnR0dFSYKw9oRHSAsLsjwsUAn3/s59wfiDPzwW4+gkupVFKn09FyuQzui/l8HnbXaQEaY7lcBmeCuxAkFToucE6IJmuHFpKU3+zt7YWuHNevX9e1a9fCHEPaY9s+c+VBlTHx52de3iGdW/lx5CDAIAh5ZwWO6feYe+YEnHXDMVqtlprN05o08iUcLiiwbnBReKcKD9EslUqF0iS6ccTPo4sYcVcHrh/Ry0sYNnxeFZ5pd/+wFhE3PMz1fsCd+ixOeGGsn3idfvE3Ne9ajWhCQsL9i/Q5nJAgKc+19Vc/oP4v5iodv/JNmdJxpuFH1hp+zwde0ftf/w0/p//+R3+Trq1u7giRcOfxigWFLMselvQHJL09z/MvlFSW9FskfZuk9+V5/pSk9519/4JYLBb6zGc+oytXrgQy4bZ7rNuQG3bLIQ8EKXrwmgfaud292+2q3W5rtVppNBrp6OgodBXgHIgRTrLIDWAHE+LN632X9fj4WFeuXNG1a9d0cnKiwWCgy5cvq9/vB/FAUsGxACHFYn1wcKD9/f1AsNhtl05JD6GCWMWbzeZN4+J6vKyi3W4HYeBzn/uc9vf3Q1lAt9u9qVtFr9dTp9MJoYKSQjtLciCuXLmiGzduhPsU29G9nGB/fz8IMu6GQOzwkENs6JSrIB7Fu+KUuHQ6HTWbzZALMZvNVKlUQmaF50y46DGdTnXt2jXduHFDo9EouFy4FtwX3PtKpVLoGkJuQ7PZDB0jDg4O9PTTT+tzn/ucrl27FnbcXZiC+ENandDHDpm49p976zvuHpbpjhl38njphJd9SArig58HUo87AfHDHQSUWHBeyP3JyUkI+0Sc4N5Xq1UNh8Ow3ufzeXApebioh0p6txcXDfxaWBc+fs868TKi2WwWni2eYZ4RglwnG1oTXTTcyc/ihISEhISXj/Q5nJBQxOBv/ISe/L7DV/z+p/7KVXV/4Cdvawxv/r0/q9/wLX/wto6R8NJwu6GMFUnNLMuOJbUkPSPp2yV99dnvv0fS+yV96wsdZLVaFaz3iAAQQBLpN5UgsIOM9dnLByCslD+4SDGbzQoBdJwTwiKdB8DFpQ6xDZ3zUAM+mUyCONJut7Wzs6Otra2QOi8p7N76+fk9wZJcu6f0QwB9Nx+Q8wCZd2cCRBeCfHR0FMoxpHNSRg4C2QkE/8U5FJI0Go2Ci8KDBl3MYOeZkoG4rMLnxG37XDNCju8qQyY5fqvVUrfbLbg62Ckn8Z91xrG5r8vlUjdu3AgZGpLCTjchmAg5jBmy6Z0FXFBip53Wjx6AiHXfHQmSCpZ+1iLXy9xQ3kIpAXPB2vb3e1cIt+37c+QuBMYXl15AxrmPjJtzMB/+DLE+cCawbr07BS1T6byC08Of8bi7g4eJct2xg4a59JIHxsoc+X1dLBbhWeKzw10v94tDQXfoszghISEh4RUjfQ4nJID1SvrFz+pNf+28lePk8Z6e/urNe9mP/vBKzadH4fv8s8+cHuM2kB8v1fk3n9RX/be/L/zs6lszffR3vee2jptwM16xoJDn+dNZlv1pSZ+RNJP0w3me/3CWZXt5nj979ppnsyy79GLHguR6LTpECELlLfP8feyMOlGFcMcuAohVTDac1EsqnNMFBn7muQmQJHbAp9OpDg8PNR6PgwWfHXLGAIHzHWvGxY43AYWIDr7jD5Hz62U+4mvxenDIOy00p2f1SOxg+/uxrWPtd6cA94WOEy52xLX5XqPuog/k20sygJcBUIrh986DDXGeIOaMRqPgOGENMF4XQ7hW2kB6SQ272B6U6FZ5dxXEnRoo7WDOvMTBMx9c9PF15yU1rC/m1ufNswQg8nHJgq9VhIO4HEY6b9vK2BDQ/H5K5+GYXBNr0NcNIoALYf7sugBAdoWHqfq4+LcLdx62yLy4YOLuhViwYY45H/dwkzPGg0AvOu7kZ3FCQkJCwstH+hxOSLgZ69FI+tkPh++7ozdoa/t1G1/b/rlndPK5p+/4GFZXr6rz/VfPz/PZL9Yv+YLfelvH7DUW+tFf8ndvd2ivKbxiQeGsDuxdkh6XdCDpB7Is+x0v4/3vlvRu6bSNnO/Yuj2d9oRxzbe3+SOZHYItKZQCQHgA7zsbQ8gTgHQ6KfMdZ0lhTBAcFy56vV7IE7hx44bm87n6/b62trY0GAwKu8G0mfSdf3aAnbS12+0CgeLn7rxwQhXXwRPw6MIK5/PWl5Dsw8PD4Aao1WpqtVqFVpWLxSJ03IgDAbk/vlPsJJrxYIdH4PDwQIgvJB9hoNvt3uQcIbOi1+tpa2tLkkIAorf9wwniHQUkBYEDgSV2uJBX4Tv1ZBSQ/8A9cMfMbDYL68NzH3BMODmPnTBx1wYXrZyIs1adMAMn1PH4uE8+ly7QuYhzcnISupEwxjgcE+cCJJ1rZZ3ifvFSC7IYsiwLopY7cNxZw/hcQEN4cEGB60ZccbFoU2Al7gN/lrzV6f0kJkh39rO4odbdGOJrAlm9rnX9QnRaTkhIuGBIn8MJCS+Ok09+Wluf/PTm371KY8g+8O/10K+7vWNUHn+DfvZH5ipvaGK5V15rp/zgtRy/nb+OvlbSJ/M8vypJWZb9XUlfKen5LMseOlNiH5J0ZdOb8zx/r6T3StJgMMgh7a1WK9TKe+2470J6XTuW+G63G4hHq9UqlBhAErxvfZZloX6ekgoPxKPdoo23sDPOa/r9vvb29tTtdkOa/9HRker1ui5duqR+v69KpaLFYlG4ljzPNRqNgiU+y7IgjrA7TLkBoYfkLMTdHbxE4OxehFIA75YgnRNpSep0OmEn3cMFB4OB2u3Th8HDDU9OTtRoNMI88QXp85BKxsF/IX6egQFJ9Tmm1SRjJLSP13I/cSb0ej01Go1CbgJEVzrf9ZdUIPNkbuAm8BakeZ7r6OgouGbidbRarQrnQBDi3kKeeS31+ZI2BmaenJzo4OCgQH5Z51jxadno3TI4HnPueQUeLMh5vEsDOQjcF4Ipx+NxwcnhoajeVhLxhfaOTuJ5/Xw+DwJSt9sNTh1yEbjP7qrwzg6sKc9LoR2o/451jUCH6BFjvV6HtexZEtwThARKXNyVcsFxxz6Le9lWal1wC1z9xi/R4ZvT9CQkJGxE+hxOSHhAcPLJT+sPP/kfbfzdR//sl+oTv/Evvsojuve4HUHhM5LekWVZS6f2rq+R9FOSJpK+UdJ3nP33h17qAXEE3Crp3jGfzwPJ9Xr/RqOhnZ0ddbvdQqkARMPrrxElPPQPIoPTgfIBCBNjqlar2t7e1s7OTmgReOXKFR0eHirLMm1tbWl3dzfsdp+cnKjVagXXxcHBQSBvCAzedg9nBC4Mdpwhip4V4dZ3iC2uDpwGnU6nQGq9ph8Sled5eF2e5zeJCW6/964BcRcC4FkP3F/adUKMOR6789TTU3IB4fNOF3QH6Pf76vV6wUER75K7W4Ndfe86ANGG9CK+sCZYK5BZJ76SCu4L1oh3DUAA8R117hGk3scunZPY7Cy4kPnDweJrmtyLLMtCbgSlP4Rvcl6EJ9+5Z97JfCC7w10RjBWy7V0iyPvwHX/Gh/DgbUcRE3yOfDys+1iUcgHG3UV+XxELXfRwcO1cn5c4+O8Yl3dPuQ9wxz+LEwylsp7/r79C08u58vtCX0pISLgHSJ/DCQkPEPJbuFg/7z039NX/9JvD96Pfd6gPfun3v1rDume4nQyFH8+y7O9I+mmdOlX+nU7V1Y6k78+y7Jt0+gH7DS/leLVaLZDBOO0+rp/GWYAtvdlsFohz3E3Bk+JJ6h+PxwWRASKMbd8zHCAr2Nyr1WrIRuj3+2o0GiGEb7VaBVGDXALs7hBdchboQgDh9pILyJOTX8bl8xFb373lpZNySh+wefPl3Qa49vV6HRwL7OT73HhGQkz8+N7r9t1h4p0W4kBCzx1AMIlbgJ6cnKjZbIavSqUSchMYZxxOaGs23EsXRDzgknl3QcLLEDiO3yfunZdIcN/5nvWNKOWlJB5qydxJKhBaSiQ8aJMyjNVqFXIguK/Mm+d2SCqQdw8oJFcAMW3TukRc8RaVXqbD3DEnXkKCSBB3t3CHAtfubiQvReI8ng3BNXlgpL+X9/P88gzHolociOmvuei405/FCUVkpUyT1+Va19OmYUJCwmakz+GEhARJWn3oY6p/6Pz78UPv1JOj3xW+/2+++Ef0LcPNZR8XCT88req/+onfvuE3/+PG19/W9lue539M0h+LfrzQqTL7suCEC+Lku6HslNJFgVT+LMsKturt7e2QWYD9G4u7h8NBoJyMQ6aoU8cG7e0Ba7WaGo2GBoOBtra21O12Va1WdXBwECzkrVZLe3t7hRZ7lApQ508JQ9y+z2vgvZ6d8fA6rxeHIEKg/MtbGTabzTBGiBuiCoIFpSC00/P8iFKpFHIpIH2cl2PGNnEPB/R6fCdwnhGB3RyXRbVaDfcKB4KXJzCnTia9UwiuDH7vO+dck2dv+E53XCbi44+DO+P8DRdHXJji98wxAZlOcN0FgzBDa09+TvcKzuOtD7lHLgT5uL08AGEOcc4FiWq1elMIot9H1jbiSzwvzD/rivuNe8ODGH3NOlyEYIyeH8Jz7uvYXQ3cP//C9RIHdLI2+L07JS467uRncUJCQkLCy0f6HE5ISIix/Zc/oO2/fP79n/3uX6Uv+ZXfHb5/c3V2TzMXfmJxrOP85s2zP/axr9cbf9vP3PTzT97iOBfCzwuBcjLn5N+D9ObzeagVJ2egVqtpZ2dHly9f1t7enlqtlg4PDwvE2Am37/xDrujUAAFqNBqSzlPhx+Oxut2uWq2WhsOhnnzySW1vb6tSqWg2m+nq1ataLBbqdrva3d0NAXJec379+nWNRiMdHR1pNBqp3+8XQuq8G4J3W3Dy420wPdgP0k4NeqlUUq/XC66NwWCger0ehBV2k+NWjpBTbP/s3CO0eAaAuw/44tzuQkAoYT4d3umCe4H4gUWe2n4COunqkOe5Dg8Pg+BAO8z5fB5ItaRC2QhEl6BK36VmfXmnjbhbQOwEidcxpTSISdKpWOYOBAQVQgm99MPFBLfhe6Bhu91WrVbTeDzW/v5+uOatra2QtcD1IlZ5iQniDXkECDKsI8g01+0lDDyHJycnGo1GBdEiLjfwkgtEFdYXz98mEcrh4gPZB7geSqVSEL24T+4o8BIPnh0vFWKsXlLUbrfVarXC80iwZEJCQkJCQkJCQsLt4E2/7yf0P2dfGr5/5u9+vn7uK77vnoxlla/1J77mG3SyISizp0+8rGNdCEFBOrdiu6UbYu87saPRKATSUWfe7Xa1s7OjnZ0dDQYDSefBe7gZPNwNAoIDQDrfgYdkQsrYQa7VauE8r3vd67S3t6dOp6PJZKLDw0OtVqtQbtFut29qsbdYLDQej4M9v9FoqNfrqdvthhIMyCwCh++QsvvNzjJjls5LBiDClDgMBgNtb2+Hc3h6PYRSUoFUj8fjQNIQdbzMIoZnTri7g3M5kY13+D0sEdIb7xxPp9MQnJjneXAnSOdCwcHBgUajUXCteBeM9XodrocSkLikhXO5dd7LSbwjAGuD8hHEEHa12VHn9S4IuVPBQx8pTfAyCt+Rp2QCQaFWq2k+n2t/fz8ILe12W81mM7gZ4qwB1omX8OBO4D752ncRzx0wkHTcBS6SeOmC33e+Pz4+DkIf9ykucWCcjJ1cDZ5ZRD/GFgdFepmTj591hlDCeZhr7inZE4hUzGNCQkJCQkJCQkLCbcP+Xn70j57oay/9nvD9zv/nU/pbj/+LO37K7x/39d53/2eFn2V5rvJnf74wnleKCyEoxDXMseVbUqHVIQGBtVpNzWYztGZstVphl52cBaziceq/74i77Z3kd+k82R6bdL/f13A41Pb2duiC4B0Y2DmmZaATLLeVZ1mmVqulbrcbSj0gkE58fSeVufESAr8edrOxq+NMIGdAOrfux4n93APC+RAaEHM8H8FDCP1e+ZcLBp4zIJ3v4jtp9OP7l2cnsIOMMASxJcQRYkzpBmGFkFfKASiPgVxzXjIPPPfAOxcwJlpxenkKJNdDMrk2L/dwl4aLTXn0IPN71pALNqxLd22wZgnyhAizttxd4dfE3MRuGJ8TX8cc3zMTvPTF76mXK7H2uF9ewoOQBdzVwHPPuXCW8Ey4GMMYYgdMnKPhAoOXc7gDJw6YTHiwka9W2vvJtW58QVmLrZu7hyQkJCQkJCQkvBKsfuGjKv/C+fcf+v6v1ONveeMtX/+e//iv6+tai5t+/rmTsX7pP/mDt3xf9VpFj7//Azf9/E6lQ10IQUE6J82SCrvivksJ4ZbO7cvNZjM4ExACvD6drgAQH9+J9gR8dmch495aTzptX7i1tRUyGhqNRtgVp/2dt7GLLeLsstLOsdfrqdPpBGcB4od03u0Ccg6xloqhkZwHgQByW6/X1Wq1CgJHXLvu5RgcHzcGY2g0GuG9cdp+LG74PfNOBDHBczjR8/p5dzJAXlkXCAXcx8lkEu4TYg3k3u367EDTShM3x6Z1wT3zEhQEHjIK+DkCA8JLHIQY78BvKiHgmj0gMA5BRFxjvRwcHGg+nwfSTnkIwhtjc7HOMxQQHrxsZlP3Dy9pQHRi7bhrgeP7PYzLcxDNfL34/d40Vx6ayn11UYP16O6OON/DhRyO5fkd7jqRVBAbk6CQoDxX+wd/XLOdd2qxda8Hk5CQkJCQkPBaxeXv+re6/AK//5/+76/X/E3/+Kaf/5vR2/Smd//k3RvYi+DCCAoxkZDOiQKlC5QFQGQbjYa63a729vbU6/VUq9VCf3t2b6Xz8gkIB7uz7JTibPB2jNR6Yyfv9/va3t7W7u6udnZ2QhAjYYy1Wk3tdjuIGhAmd0pA0ilHoAb84OBAzzzzTLDOQ16zLAvW6+Pj45Dv4CSNXfXlcql6vR7yB/hyMWGxWOjw8DDMI7Z1sgOuX7+u1WoV6shrtVqww3vnAe6R7+xyXoIyHVwLdem+4015iFvmeR0ih7sO6ELh+RgeKNhsNtXpdLRer0MHhdVqpcFgoG63G36Hy0VSILousrg7BcLearWCyMK9KpfLwcnhXRziEE0nuV4Kwtwyr07+eT85IeQzjEYjjUajggAmKWRfcA8QIJxYI754GYFUDFEkZ8TdPR5QinBQLpeDyMez5mufLhSQf87nbguu00tqvOSD0gjuP+NyV0XcKcKvyQUPMjS8Tel6vdZgMFC73Q7uBObG8xcSEhISEhISEhIS7iWGv/pjeo+e3PCbe9uJ6sIICt7KLhYXII0ertZoNLS7u6s3vvGNunz5sjqdjqbTabCCs9MMUfMd+vj31NVjXYewQvRqtZr29va0u7urra0tdTodjcfjcC7CGD33oFQqBdLLsbrdrhqNRiCi4/FYN27c0I0bNwrlCuxGIyQ4wUQggBiSuSAVu1QwFg+mQ9iYTqeBqFPmMJlMQiAi84Ggw25zvV4P53cC2ul0VK/XVS6XC60AeY+TPY7LtUIS3c3gBJCuFGQnlMvlQktLSK+HaVar1RDcuV6vQ5gm70WU8gwKdqXdZcA1cs+8BMcFDs9GiDsixN0a3Png98zdGtxrt+Hnea7JZBJCPZfLpbrdbiDHrEd/RigJ8BDN2MUAKed6PMiS4FMX4jwPg+eJLAW/twhfOGgQFJgv5oxnzAUXfw+lTRyLzwFex5y7GMW8uuPDf49YwLrBmeCtLOOuHQkPMEplPf0/fIUWw7QWEhISEhISEhJiXBhBwW3LkBgIgwfHQQRbrZYGg4F2d3fV7XZDyByuAunmQDpIdRw6CAGPyyzIMsBR4MQUFwTHISyPMoWY7JDODylerVahZIJjQFy9hSaEHueE13d7Hb7v8MbJ+cwlc4TIwZe7EDiPW8UhgN7aUlLYnSeQ0Ls6xC33PFcBkgyRc+LmGQzegcOt+L4rzvm4h7gqfHebzANeD7FlbuLyDxcEOG7c+hIxxDsouKjgJH5Ty0xIOGvMswT4ub+PayKgknuC8EIZQxyeKJ2XMng2A//1rhesO9YK1+HPYvw8eYgqY/XsBA8CdZKOu8XFFH7vuQ7cd35PiYZnQcSk3++hCyDMayxMIvb4/fNnL+HBRPZlX6Tpw03lWab5Tq68kgSFhISEhISEhIQYF0ZQ8J1dtylLKrR3hDz2+/0QxthoNHTt2rVg5YcI8QVJovyAVn3ej97rxz39ny4SdGSo1+tar9c6OjrSZDIJlnhq853MOVFvtVrhNZRx0PEBZ0Cn0wlE13eDfffXBYA4/M/H72UGECxP9sc9AUHlPN4Nw+v44x1fSSEVn5yGuGOGh+U5SXMbv4cgSgrWeu+U4NfllnQXmLiHlJGwk42Lwon3er0uZEt4uJ9fH4TXgwqZ61jk8DXsgoLDhSbf1Wd83MtYzHEnCR0oEHAYs4tLHmgJXFDwbATWCs8CZQ3MSRzo6OvJu0O4COX5CC78AL82hAdfJ15C4WJC3L5zE+n3+8hrYgeEuygQFNw54p0tfHwJDw4ql/f07Ns7OnwTIkISExISEhISEhISNuFC/LXsO4++sw65YCcdItjpdPSmN71Jjz/+uLa2tjSfz4MFnjwD7NIQ4zzPQ+jgYrEI4Xo4C6TzmmtvHVipVNTtdtXv99XtdgNhffbZZzWZTIJY0Gg0ghDB+7HWc65GoxFEgatXr2o2m4Vrwvng1nKIK/Nx48aNQKT9d3xRn07Zgu+qkynAuGazWcEiL6nQWcLJle/+cx+q1ara7bZ6vZ7K5XLYIcd9wJy70MAce1kHNf84OTwwM3YIYHnndU6gIfaz2Uz7+/vh3lUqleBoQCDhXrHGIPebSCohfuxwu1jC3HnQootAvA+Qy0H4ppdR+C47zgPWLoQc8QnRwfMqPGRUkmazWcgw4NrIDeEaWdt0BGHu+apUKoVODy7OMS7vjoLg4HPLOSHxXB8iBkIZr3E3EsdGnGNcPt/uwvHrdxeCl5xQQsMzWa/XC8f39/l/Ex4gZJk+9gee0KqZRISEhISEhISEhBfDhfhrGbLinQQgfxAXrNntdltPPfWULl++XHAnjEajwm4kBIP3Hx4e6ujoKAS6QSa89t5b70HWKK24dOmSms2mlsul9vf3NZ1OAymilp1zQXy8zWCv15OkIH5AjLxUQlIhfd7r0Anc45jssDs4hu8mS6e288lkoqOjoxDoRx0+hAni6XPv5AtiTptCz5xwhwGZCe5KgGQ6kfRxOREk28JLLxBEuB5KFDgvhJF8DJwJkm4SKOK54+d+DdVqtZBbgXiCmODuEODk2bMZwHQ6DY6U1WqlZrNZEKG8o4evfebJxQQvifDnx58nd9kgRiDeSAqOBNYfz0hcNsHxGBfjYH0R/OnPnN97F4twF/Hcxc8MY2TNeBtMLynxMgd+5vO9Kf8CVwbdWFi7LiTw/k3ukoQHA5UnHtMnfufrtK6n9pAJCQkJCQkJCS8FF0JQcDLLbreLAezy404gGLFard7UkhEyKJ2H7UHGIZbVarXQCYHAP98FXywWarfbIT+BVpJ0ZWCn23dZPRkeUkRrS9/Fd7cFgoZ0TuR9Pqj59hA/J3BOLn1H3Hftvf7eOwF4JoKTX68j99aR/Iz5arVawS7OOREB4uT9+PeMyUsXXCBg1xsi6mMgtI/fSSpY9T2vAHHIwzJdOInLFfg3hBlBxZ0e/nuuC7GFe+Siiu+8ewaIhznGeRd+rU5046947PGc8/443yHumuHEXToPz4yP5WUHrI1NYoK7SHxNe14JaxsxgTnye8p69Gvwcfl1e54IggIOB+8KQYCoCzjxOuWYqcvDA4Qv/yI9/0UdLftJTEhIuEhoXC2pdpQcQwkJCQkXFRdCUJDOd9f5I56deSfmrVZL3W43tP8rlUohYNAt0l7L7rkBkAMIMYICwoCkUKOP26HdbmswGKhWq4XuAuPxWKVSKey0SucknHND9kmRh9h7fTjdFCA9bo93AgvpoWbfLfIxwYQ088U5vbsDuQW0InR4fbykQKZd3MGdgKUe8hwT9njnGEHB8yziPAhKBby0wAUCzwBgXcTZEswbIgPn3lSG4DX3Li54e0MvuYjFDMo7mFOO78IDpRiQedaEiynxfxFl/PlgXrkeXwcujvi1cR85NveH54kSH+5F7HZwePcDjuGZIVwz5/OSFMQEzypBIEBM8DmMib4/V/Ga8DXmzwXz5SGPcctKF2N8bl3ASHjto/LoI3rurR0dfH4iLQkJFwL5qZCQ5VL302tlh9N7PaKEhISEhFvgwggKvlvru5tY/ykt2N7eLoQjkovAzidEDCJN3TqtGylroOsCX7TZozSg0Wio1+uF7g6VSkVHR0c6OjrSarUKeQM4EygPcELoJOr4+DgIG95BgjF7RwiIsqQQmpjnp50inOg0m81A0GKCBdlcLBahxGE8HheEAl4PiSQkEaLL+CBe8/m8IMJw/U4keb1b92O3AvdkNBoVggPZOWcHGdLp3QyYR89XkM53zzkOJPXk5ET9fj9Y7N2dQDkFa84JPUKCdz/wPA/cJcwx7/EwQtYDgg5CVrvdDmIH88ZrGb+XLCBcMB/cv3jsvBZ4txMEplhMIJxzPB6Hcfg68u9ZG+6q4TxxaYOkgoOGciUXZnjOcQQxZ5534aUrnMPFR79vrAOul/XpzoV6vV5wgNwKfj0Jr318/N2P6qST7nVCwj3H2WOYrTK9/s/9tNbz+b0dT0JCQkLCi+JCCArxjmD8B7/X7LfbbbVarUDIDg8PtVgs1Gq1JJ3XVM/ncx0dHeng4CBY3j3Z/fLly2q1WqFWn5aSCA+tVkt7e3va29tTt9vV/v5+qIGXFEogvONBtVoN5CrLMvX7/bCLj52b64OYSyrs6kL6YoLp4XHSeecHdwOcnJyo0+mE90BkEUIYO6QO0oTo4fX8zJOHAkoK7pBWq6VKpVLouOAhmBDQyWRSIM2xwBGXe0AEY4GEezoej0O5CMIDdf2QWc8yQPzw9oOER3qZhZN1SQUXRryTvlqtgqMFy753Z0BgQDCAhLNGTk5OCuUFvM+Jrz8b/r2vY9YTuRM+Z7E7gPwC3r9arUJXFB8HwE3BuDgXQhLX4bv/vMdLQXAEuNOFZx0RAUeQpMK8UE7jwhRrl98jNvE6hDFe54GQm8YWC0msW9ZCCmVMSEhIePXwhn9yosZP/qKUr7VKYkJCQkLCfYEL8deyEzv++GcnEvIQd2WgBh/y5vbl+XweWgdC7iFz1Wo1uA48Yd9JU6VS0dbWlobDobrdrmq1mvb394NbgHNR++6tBbkedrYhNuzu8h6EDBcZXFBAEJButrdDDuNuGF4SsV6ft6akAwYdEmKCRj095/edbG8xyA47gXbxbrPnJ3hJA0Sfcx4eHgYSCakDHqrJcRGPKGvwMXD9nAOC6NfgAYyeT+FZCL7bjYDjjhfO76UpXlrju+SEiLrghPjDrnycAcG94P7eamec9QbZRsDi2gD/9hIDv26cHt7xweGBoJ7hwfG8zGHTGLkWxIf4Pe74iIMcvXyG++bCEqIX8FIIv3b/3sUW/56fxSUb/vuE1y7KO9u68XVPaV2/1yNJSHhwUdsv6XX/5rQ8sfHhZ3Wyv3+PR5SQkJCQ8HJwIQQF6VxU4I9934mUTsksAYpkA0AwIRMQOHaS2X0tl8uB4DcaDfX7fTWbzUDcPEyRjIDBYKBOpxO6GFA24SUZXirgIXYQUsgyx3aBgJ15fo7w4buocQtDSKtb653w+S48YZXT6TSICS7aMFdY9xE3cEdAQL2FX71eD0GVjB+Xg5NIQvYQDZzMIfbEtf0ISbGdHTLv4hBj9vH5OpLOHRyIAm7hRyRwV8SmcgcINbvp7uhg7l1M4Huu2Xe5vXSA47BWGDf33rMzXFxwsYd5RvDxcMS4xMHzNRg3mQUxEFxcrELw8vvjIoOLHx6IyFzG4ZFevsIad6HLx7+pfMbXk//O8x9YPy488B4X5/xaXMRiLpKw8NpG1u3o6pdKwWedkJDw6iCXWs+VlK2k5pVclfd9UJKUUmsSEhIS7j9cCEHBA+OA79pLp4JCq9VSs9ksiAbuGGCn3jsZlEolNZvNUN7QbDZDBoMTGsgqreZ6vV4oH7h69aqOjo6ChR3Ch0DRbrdDaGPcMtC7D9Cm0a36uAdWq1Uo2+B9vpvrgoRbvRmTzx9iQiyuxE6OLMtClwpKLBAOCOvjddVqVa1WS7u7uxoMBiqVSiG/gvsDwZ9Op0GA8Xu4Wq20v78fghKZq1iQkM5t++QtQM4984L75qTSwxoRFGLRg3IEqVhuAwn1HXWI72w2C3OP3d/XrbcfdDiZh7hSVsOcOwnm2inTceKLSEJGhAsz9Xq98Cw5mY7dE4QwuquE1zmJdocF64L15dfppUkIPX7d7jBwdw9CSCwWxMGN8TV4Zoi3EOV+8l+uLb4nLqrhlABx6UYSFF7jSPc3IeHVRS5l+el/H33vz2t1cHivR5SQkJCQcJu4EIKC29CxuLudmtaNlB9AWtk1Znedn1PXXy6XgyOBlpPU/8e2aHb+m82m9vb2tLu7q3a7rfV6rf39fU0mkwJxbTQaGg6H4Xjj8bhwHRBH3AG8n13e5XIZxATGyng838DD6Dyw0GvH3VkBYSYxfzKZFGrU3SLv7fOk8510T+4/OTkJc/foo49qZ2dH1WpV0+lU169fD0GNEDdyK46OjjQajYIYwX31Fo4IEMxr3MYy3s0nTNPzJBAQEAAggu4K8FIOJ7fxfEsKnT28TMXLE3y33R0JzLfvktOtwoMGmWdff4hZvhZxR/g5XUQZjUaB+FJy4+LIJmv/aDQK9xRBLC4HARBtF2JcwOG5lVQYX9xJwwWRWEy41WeBixAuFroAwrwxRlwlrDeujeeQ8SFieR4GQgnj9edgU0lHwmsD09/wFXr+y0tK7oSEhFcPD//Ltdr/4kOSpNVodI9Hk5CQkJBwJ7C5P5why7K/mmXZlSzL/oP9bCvLsn+WZdnHzv47tN99e5ZlH8+y7CNZlv2qlzwQ26Vl51A6JXiXLl1Sp9MJHQQQErzPPTX72Px5r9f9e0Afx3fyUi6X1Wq1tL29reFwqJOTE41Go5uyAEqlkgaDQSiL4Hj+5S0iGavvuk6nUx0eHhZ2maXzPATKNbzsga4OjBnnA6QaUu9WeL6nbMB3gZ1Q8jPIFZkB0mkA5WAw0HA4VK/XC+Ofz+cFEQV3CEKJW+IRAOLMCSf4Tp55D4GL3Bs6LjhpZt48mA9hJa7z9x18FwUkhetHkPFsAtwOMXH3e8Q1cB7uiZfzxFkGrGF3OMRuDUkFxwTrQzrPFvGOGzxPfm5fE7yPThH+Hl9fXnLEXHqpCD/3sp9NYoKLHD6GTfAsBOYonlsXk1zwwF2E8IIDyMtrTk5OCkJeDNazr6uLglfrs/hBwaqaaVVPYkJCwt1GZZzpiR+c64kfnKv7089oPRppfZ+KCelzOCEhIeFmvKigIOn/kPR10c++TdL78jx/StL7zr5XlmVfIOm3SHrL2Xv+QpZlZb0E3IoY4k5gF9x37b1cgd1kSDbkAhLq1n7p5p1TCHu32w2OBpwFBD9Kp6Sr0WhoMBio1+sVbOC+o+ptK72tINcwnU5DKJ4jFgR8Vxs7ub/OOyw4ceN9XgriZR1+LAgZDgfGjwDQarXU7/fV6/VUq9XCrq93N0DgwBGxXC4LO+6eV4CYwHi9bt+FABdLyMBAvMGVwb30Xew4h2ITsfUv3gORZH35PHqughNmJ/EuINxqjXuWAmIE17pJlPD7w30ky+NWORHSuQDB8WOnh98DEOcs+P1jTTBf8TXFzgSfH0QB7wjBMXwOOKfPqz8Dcaild4Ng/XibSS/18eeL/AjueyxicA2xqHIB8H/oVfgsTkhISLgTaD1dUudTJfV/USr96M+o9KM/o5PPfu5eD+t28X8ofQ4nJCQkFPCiJQ95nv+rLMsei378Lklfffbv75H0fknfevbzv5Xn+ULSJ7Ms+7ikL5f0gZdwnsLua61WCzvj/X4/EAV2G11EkIpEHDs/LQ7ZtcRGHtfsE064tbWlvb09DYdDLRaLYNufzWZhN5dSh52dHTUajdD2zndMvSsAJQ/sCLP7zXs8NI73cZzFYlGws3vnAI6N3ZvdfhcMyA/A0SEpdEbgfE4Gq9VqIXOBMot+v6+trS0NBgOtVivNZrNClwYI43Q61Wg0KpwPa7oTc+9ugdACYa9UKmHu2IXHWcLYPciP/ALPSfDSCalI9F1o4fecmzmkNaV0TrK9rt/zE7j2uGTFRRJ3JkCIuc8uWhA46g4Bdw3Q1YQSGVp3UlLhDhqEEe9esGltMI+sbS/jkFTo9ED2g8+xh3jGAgXzHJeHOGF38YwckVhc9Gvi+l0c8WfInS2sYXe98Dy46yTOZ/Dn7IXcFK82Xq3P4gcF2TpXtsqUpz/vExLuGLK1pPXpZ/jrv/cTOnn2uXs7oDuM9DmckJCQcDNeaYbCXp7nz0pSnufPZll26eznD0v6MXvd585+9oKAKCAS1Go19ft97e7u6uGHH1atVgtkxmugPfSP4LzZbKZyuazBYKBWqxVImnRuX14ul2o0GmGnM8sy9Xo9Xbp0Sf9Pe+cWY1t2Vucx67J37VtVddU51T7u7vieWOSigAJSlEAiEQWDCM5dJnlwBJKFRKSgKBIgS0AeHIWg8BiQE5ARMhcHcPBLJKwoCnnA2OAbNrjtBkw4trv7XKr2tap27aqVh9rfrLFn7dOnT/tU1e6uf0ilc3rV3mvNNddcs88Y//+Pf3t7W/V6XXfu3Mk152Q3rKysaH19XU8++aQ2NjbyGCDXEFuEjn6/P2OaV1VVznro9/uZyDE25qAkxxBKSgogVXg5ICjgMYBxYa/XU6/Xy4aCeAM4mWf+GVu3283lFiklbW9va2dnRzs7O9rY2NALL7ygbreb58YNCXu9ngaDQSZs7vfAs1tdXZ0x0oPgMse0A3XSyNx7GYAbUHoHCzIYnHBO12n+nnsmsJ6IoPPj8+7E2SPwHJ9MJjNGjclMIX3ciAel2ebx8XH2hvCyGL6/srKSMxMY99raWjbPZOw+No/8c58QaC+f4P4RhvydWl1dzXNF+YuvSeYAMYGMljLC711UvAzGfSq4Hhk8YG1tbeaz3rrT59YFB1/fGHgiOA4Gg5nMDi+B8Wyb8h1ZYDzWvfg6ofPh39fGZ9+oZ3/gxlUPJRB4zWDnE9LG//iUJGkyDQpcA8Q+HAgErjUetynjPMvsuf8iTym9R9J7JGWTPUh0u93OEXEn/kRj3TugTOmHiBHR9tZzkAbIPcfr9bpu3bqlzc1NraysaDAYZBd8yNLS0pJarZY2NjbU6XRylH1etwn3TZCUyQvdF4bDYY7ul54BXupQljj0+/1M9qWzOnhIKNkTzWZTVVWp2+3msgTIqvs6eN19VVU5m4Ksj1arpc3NTd24cUOdTiebLjIGNyQ8ODjQaDTKWQ0u/vgcIv5ACukegRDAuZhP/C+8jeM8DwKIrgsIZR28d8eYWaDTMbGWvJvCdK3mOS4JJpF9zs+ftOLkmK8JLwNw7woXBFzAKIWBlFKeM/fqKM0ePXLvvhXzPB1YG6w9vuteHi5cubhSlkEAymC83apnX2Ci6vfr2SXzynbcY8I7MfAdz0BgfXs5FPsDn/eMJY753vIqEBQehFe0F6+pOe8jr0lUk4nS+OjhHwwEAi+J5YOkN314oFRJy8/vXich4WGIfTgQCFwLvFJB4YWU0q2pEntL0ovT47clPWOfe1rSV+edoKqq90t6vyS12+3KyTdEttVqSVL2ICCySvTaiYZ7CbhBnKQZYg/R8Ig2QgHEsDRhhHg1m83c1QHyAvnwFHiPmnvJAmn83M+8aK6b0HlbxYODgxmjQ0goJG91dVXtdju3sDw8PNRgMJiptS+N9QAk0slfrVZTq9XSzZs3tbGxoXq9nsUQJ4iIINwXY3MC7inxRMClU+LNPRCt9wgzggPP08ly6XEA6ff0eD4rzWYqOLl1cu/z7udw8lp6DvAn5BNSTIkM66L0xPDsEJ6Pw6/H3DA2fnz+uR/uk3XrGQjus8C74s+J94rvllkFnLcsb+B58j3Oz3uAWFP+rjQrdZHCn59nj7jI58/DM5U888I9KhAjynaa/InYNG9NLDAe6168nrZetQrKK8L+gTa+mNR7s1StXK9bDwQeB2p7S+r8WSV9/A9USVqcIrFLRezDgUDgWuPlmDLOw0ckvXv693dL+k07/q6UUj2l9CZJb5P08YedjH+4e5eF7e1tNZvNHNX3LAP+se9iAmSDiLeng7vXAin2Xopw48aNXLtN1LQ0iCNDod1uq9FonHOal2brtweDQSaYdCbo9XrZiLF08YfQu9cBKedkQbi5Y6PRUKPRmHG3397eVqPRkKRM/n0MLij4dcfjcTaJZK5XV1e1tbWlp556Su12W1VVaW9v75ygQEYBY/e0egimp/57qQGdN8qSFYz0VlZWsqkmP95loTTsczHByaubEJZZIJ7lIGmGcPLffj4Aea/VajPeB5Q7eKmNE1rOyZ/e7tD9CFhPboaI8ICXhGcn+PddwPGMAs9O8POx7hHBGBvZCfPmGBHFRQcXK3gPhsNhFio47hkDpT+F3zd/InRRUlEKcf65UjQgc8bLKtxzhHFxDknnxrrgeKx78XXD5PkXdPNnfker/aS0UP6bgcACo5KWxklL46QnvnCiJz5w7S0BYh8OBALXGg/NUEgp/bJOzWZupJRuS/pxSf9R0odSSt8v6f9J+meSVFXV51NKH5L0hzoVqn+wqqqX9c80Uva3trZ069atTGhoT9hut3NmQfkPfohGrVZTo9HQ+vp6NrHjZ2NjI5NwCGStVlOn09ETTzyh5eVljUajmXaJHiXd2dnR1taWms3mTDQfIWNlZSWT+G63q8lkokajkUmwl2S40V6ZoeB+A2QZDIfDbFBICcDa2tpMycDW1pZ2dnZyycbdu3c1mUxyW8vj42PdvXtXo9Eon58yBy9dqKoqixNvfetb1W63cxr5cDjU/fv3Z0gigkJVVVkEgex7eroLAJRpQOz29/fzfFJq4l4Q7XZbkvJz844IPB/PBiHjQTolwdTh+z0SjS7LJdxvA0EKMYYf1oZ3nfByAxcunDivra3l3/Edfvien8NLIkph5uTkJJfOUNJCloN3sPDMBMQcMkMoHyJzZjKZnGsbipjGu+VlBJzPx4gwgTDka9qfoYtaXqLkohdriFIFL9vg917awjNnHnjerA3ELp8fxs8YyVbwzKNFwWXtxdcRb/gPH9fuv/hm3f3GxXnegcCiYvkg6c3//pPSSaXq+HptK7EPBwKBwHm8nC4P3/uAX337Az7/Pknve5RBUBPe6XRyK0ZI9Gg0yuTPDfQgLBjoERV2kudkt16v56wFCB4lDJA8SBQ+AJ41sbGxoVarlevWh8PhDEGTlMUP6tkh/ePxWHt7ezm9m/uwOTuXMi8piyHz0t1JSSdija9Dv9/X7u6uBoPBTDmBl2BA8plLL7dYXV3VjRs39PrXv17tdjtHyBETuD8nzJBGMhO8e4B7H3B/Xp4AmYV4I2gg/rRarRnDw9J1n+swr2trazMme8x1aWpYrr958DT8UlDAw0DSjGEhxJTMEif8HPeod+lJ4Cn/XLf0CeDcpccH84HgRuRf0gz5ZpxE7hFoEAt4Vp5J4Z4YTvIRzCRl4QmPEzInyvITL89YXV3N61Q6yw5gPXpGi2e5IEj4+879cz/eKaPMaOCH+XC/CjemXCRcxl58XXH3X32zBs8kPaC8ORAISHrmo8dqfGUgHVc6mf5/77oh9uFAIBA4j8dtyviKQPS22WzmMgfEhMPDw5za79FDLwEgMs4PRBXiC9F0QkSUFqLnRo9OSMkAaDabOfJJPbdHOCkbKKP1kPnRaDSTfu8EqGyPxzXmpZyXBHd1dTUT7+Pj42woOZlMsqABSSoJqKfUQ+Q6nY42Nze1ubmper2exZvBYKDBYJDJv5eaSGedGJhfRAaOOYFzYah05SejAEEBEciJrkeY3TeDZ4wRJd4SEF2IpmcBeAq/CwtO4n383Cvjgvg6OSWC754MPHMn6y7ulKJGSXrdT8GJtpdaOBHnGm5s6EKOZwD4PJYGpjwvDE69zaOLXzxLsib83fA59bl188ryXeDHM0iYQ38fyIjxufF3mDVVelJwjnk+JmQdleMPvHbRf4M0aS+8X0YgcOmodZfUun26H7Y++1VNbn/likcUCAQCgUXDQgkKjUZDa2tr6vf7uaPB8fFxLneQlIk7BoWIBYgDlEVAfIm8NhqNGSLuNfmQZki3R//r9brW19ezNwERZo9gVlWlfr+vXq+Xsx8YM0R8PB6fqxWXzkzjDg8PM2mrqipH7j3t3bsGQBBbrZY6nY5arZb29/dn2kTWarUZ8YW5kM7Sw71N5fLysm7cuKHt7W212+2cGTAcDrP/A14HRKJPTk47MUDuyATg+rRVhOR5p4XS1JIyAgQSxuAZEU44EUHW1ta0vr6ex+vCzfLysobDYRZZKE9BHIKsOoFmTQIvr1haWsrrtCTkiFkIYtKZV4TPtdfyuxDDWuLPUlRwXw/Gwp8QZSfzZN4wT965wsUzPweRfy/D4F1BHOMeEFW804dnTiA2lFkUCBuIesy1vwtu5OjvDO/e8vJyfueHw2G+R77nc+TlLC648Hs3BfV2pS7wBQKBwLVBJS2PT/flzp9WeuIXTj0SrqnhYiAQCAQegoUQFDA8JF19b29P9+/fl6RssAgB7fV6unv3bjYAxE/AI8Z4A1TVaR/6p556SrVabaYcodPpZJJ0eHiYzQghMJPJRJubm9re3tbOzo46nU4m+Zg2QrAoM6AFHm0OOS9lGxBsBALvVADhIUoKWff69NJMjpIN2m7ev39fu7u7ubSBeUCYgfg7KUe0WFpa0vb2tm7cuJH9JiDxiCKj0SgLPZBjMgnIDHjhhRfyHJAhwT2SGeLeAoeHh+cMBCkvqdVq2ZRzf38/k2BPS6/Vatre3p5JmXdfAgQozxYge8TJokfvKavwyL1306DcwTM1JOWsATf8JGuGEh7PTvByBM8aobTDsx4oRwE8X4gx65hjZN24X4N7KSCwAPcf8G4Lvubc/JQ5phyG5+MCQFnewlg5Z2mw6SVHLjAxT35thBjEMvdVIauBTijuW+GCCWVSnNszbuZljQQCgcB1wNIk6S0/8SmdjI+kKjJ3AoFAIPDSWAhBgRpz6dSHYDAYZLII+RuPxzNtCxETKEWgZABjOM7ZbDbVaDRmopKQIY4REXWjwLW1NT3xxBPa2trS5uZmJiukzyMs9Ho93bt3T/fu3ZMktVotra+vq6pOuyIgMuAF4NFYIu/e9QGiDjmDUEKAnDC2Wq18/xg4QoBJT4dAeWq6ixakrq+treXWmRBYiOfe3p52d3d1//79c10Y+Px4PFa/39d4PM7iEOno3joQcsp9E1mHgLZaLTUajSx8uC+FR6GlU8LearXy2vE0eyLRiCnuA+BRcWnWKwH4uVg3nkUzGAxypgaf9SwBzyiZTCYz3T0g0m4KSdTd58ffD+bSCTiCE0JBKUJ4VwkXBdxs0MskfF5cNGDOyb6BzB8fH8+ICWRB+HvE9z37geNeIsPznVcS4uULiACMyTOLAGKN+43wbCTN7CtuCsq8uMAVGQqBQOC1jnQsve0Xu0rj6f93TiodHx5KC+YjEwgEAoHFxEIICkQDifYeHBzMmLbxOyLVEBdSniErnk4PSW61WjNRZ4i5pExKhsOhJOWIOiULnU4nly5A8omIknnQ7/fV7XY1Ho/V6XRyRgX+D0SHy1pxSTPtC70MwMk36doeYXZvByftlBqAMn3da8zdB6Jer+eMAoQHSjsGg4F6vZ663W6OspfEGIGl3+9L0gyhZB7cXM+d/r0ennIH71bgqfnepcEjzE7OIZ9l+r9HzV1ckc5S25nf0kPAfQQQdZhvxuPf4z45H4KICxYuIvm1Sk8N3g/gfgFeHuEtE10EcaHEMzx8jfg6cXNH933g/PhUkAHBvXkmR2n86eP23yOMuLDG/Xqby9IzwTMt3O+A73INX8vMF+sMMcE9RPw5lEaUgUAg8GpH68+X1Lh7XiRIJ5Wqz39JJ5MoaggEAoHAo2Mh/rXsZJooN23knDBTC0+UmWioR7olZcEBM0XpjMDRFaHMOIAAQr4wJmw0Gpn4ICIMh8NcBtDr9dTr9SQpCwqQbEQB7oVafYgu4oikbORXOsw7QeIeyc5otVo5Ek2UGFIEgSpNEV1QgLRyPubayfve3p729vayNwOihde19/v9nDnSbDazeFJVVT4O4XTzPK6DAEH0H6JHhoVnNDBmyD2f9a4TbrxHxNl9KFgjTnI9Mu+eCXyPTAiItHcZYX05ILOUXFCK4QaTbqhIxL80SSxT792c0sdL2YV7bJRCFFkEXlbB+HnXOCfgveT+PIvCvQ4k5XfLhQTuxct3fIwIFZ6t4Z9xs04vs0B85Ds8KzKTEFJcdCjLIMpMGeaP8yBgBAKBwKIgnUjL+6+sHOvJT+xr6f9+au7vIhchEAgEAq8UCyMoUD+NGSK+CMvLyzmdn3r/RqOhZrOZze6cEEBaiLi7+Z5Hb3GkH4/H2RxOOiVMnU5Ht27d0ubmplZXV7OYgfFir9fLPg+9Xi97CZAtQbQeQgJJhsScnJxoMBjMZBR4BwNEAe9cQb04Y11fX1e73ZYk7e/vq9/vzwgjzAUixsnJSc4wcJLlZpbMP5H3wWCgL3/5y7m9oJswIj5Q9oEXwvr6+owXRr/fz/X/pXkgJBhTSbwYWAsQ1nLMPi9u+uhknDXBXHo6/2g0ygS1Vqup3W5n0lx2bFheXs4+EbQndAEF4o6AwLxLZ60qIfKMyUs/uIbfA/foJpa+dhBZKDUhawSyj5GiZ+y4mIB3BuuF0iHOD0rjxrIlKx0dEOp4fi5c+bhYi8wxngWlgOZdF3gnERMQz8iK4HreNcKv4xlAeKeQsYSYyDPzrIrSPDUQCAQWAcujpDf+2MeiHCEQCAQCC4OFEBTcxwDyh6CAmaK793u6MsQU0s3PxsZGFgm8LlpSJqvU1zsJqdVqet3rXqetra0sZgyHQ+3u7mp3dzen/1NDj8Dx5JNPanl5OYsJkGjO7cZyh4eHuabe0/7LdGuixoyNe0NQoRQEd303lcSDgAgz5JdrSmep5dJZxJ66+Mlkoueffz4LH07mEWUwydzf39fy8rLW19fV6XRy9HowGGTzTO5pMpnMiEPNZnMmDR5vCm/xyPghr0SfIcuQdkQHr713U0uP5PNsvBMFYgdZDIyLUhCIOHPirTHLkgf8JyDlPsfMuaflO7nlfKxXL0PwEgWfKzcw9G4ipcDiIg3p/97lAHKOyeZ4PM7lQ3S2IEMD3xEXeEpxx8sfmBtfl549wFrnnWWuvGVkWWLBc2VdlILGyclJLo2hXMUzdHyeeQd9X3KBJfDaxVv/2209/46ntff2IGmBxcSbf+NQta/sSsfHmoSYEAgEAoEFwkIIChAlzy6gpIEorBMPoqSSZiLKEAon8ggPfBYSgfGjk516va5Op6Pt7e3cctG9EjCgc2d5vybkFvM6jxhDSInsQjQ9OusZBaVRoHsnILj4Ocm08Mgq5MmFCye9njHAD6T24OBA3W43iy6QQ8YHGcTvAgNMRBUEG54N8+/iB+Ug3At18V7qQDS5TEtn7B4JLz0RmDfprCXh0dFRzsgoSyCks1IFL4+BKJOp4h04/BmVpQJOrqWzzgxcx+ffy0IYj6fyc34vkaE16mQyyRkJPKMySu++GWUJQOlV4F4OjBshqeyGgCDhBoustzLq7xkSpQEj84FYVb4Tvk/wfAD34O+7CxLsJV5a5cKao3z3qviH+7XA5M/+XKvDp656GIHADNbuLGnjT6YdeL5wW5M7d654RIFAIBAInMdCCApOsryWHhJAVNKj9JBaMgGcSHlkXzojMnyeyDriBdHPVquVOzuklHJXCTwTRqPRjKAgaaZrAGLCeDyeW3pAZgKRe0/L5/5LIlYa25VmlIgJR0dH+V5Kg0cneU6inLwhKBB59m4bjI0yB8gpwgAp841GQ9JZqr8bD0IGR6ORjo6OcgZGu91WrVbLwoGLCS6IMF73uXADQ+7NBQFAZNsNEz0rwsULz1RhrldWVvJ88Oz8PD5/HPd5J+3fM2U8ks5nXQziXKWHAusAgYOMCzcidJHEhQQ+j1jhfgfMn4sXZUmMl8MwXsqSpDOTUTf7LE0i/Xl5ZsI8MYFnzniYY+bSM0q4d0QPz7RgfbkQ5oKF70FePsF7FLgeWDmotNo7K106Xqt0UgtBKXA1WBklbT53ovaHPiZJip0oEAgEAouKhRAUpDNCVKvV1Ol0cicG2ga6YRvp2BAgj3KTnu1EkZIJCBxt5jyqubKyops3b+rWrVtqtVra3d3NHgCUOZDez7W908DR0VGO6DvR9UjxYDDIWQ6QLoiRiwoQoTKFmzaJZAJAcElfRxghtX80GuVoM8c8ejsej2eMLxEnvN0lUV4IGUQWcabRaOSOGGtrazNRfC9zoMXfYDBQVVXZA8O7PkBYEQ3cPNDT2v2eIMLeFYNMB+YNIu3lNKwRJ6mQR9LjEaX29/d1584d7e/vZ1NIPBXIFDg8PMxriTkqhTCELwQo7vfg4CB37GAeWAvzTBlp0XlwcJDXIFk9fk+8A97m1E04ece8vMQFBjJIECi4T+bAM0vIsvAOLXyP9xCBw0tRvIuCiwTcv5erIB5KZ2aPbs5JNpOLMfM8HVwwYG55Hz27gzEErgdav/a7av3a2X/f/76/qft/9erGE7jeeMsH7+n4D7941cMIBAKBQOChWBhBwVP519fXtbq6mrs67O/vSzoTHSAmfM/JN0QQIzqIHURC0gwRw11/Z2dHOzs7Wl9f1/Hxsfb29nIXh3v37uXI9LwU6OPj45zNwLjcWBHy2O12cxtFT9Mnsg7R8gg8BAm/AUwPDw8P1ev1sheDX4dIP4KGkzmi66WbPpFu/B8gV3xWUq6dh6wiJuBXcXJyksdTZg8Q2YYUQtoRJryswe8fvwKeKwTRo9yM1TM6Sr8ASTnaTicKnh3CDt/39pmTyUS9Xi8TbOYZAcLbjvp33NMC8uydSfBMIJJP5xEnym7IyfNz/wLGw/cRE7gX1iR/4vfhZqWlb4ITeuYBUYZ3gOyGtbW1PAdkyTAmF6lcKGBskHoX0/h7mYni752XO2FQ6kaRXI/9YGlpKX/f/SsAa7XMTABldkjg+uDmbz6rnY82r3oYgWuK4xejvCEQCAQCrw4shKAAQSMC32g0MiElKuwlDW745sfdiA43eEzruI6nvXt6+c2bN9VqtZRSykSdjg7D4fBcRgGACBMxhkRSniDNege4QOCeDozP54Pzu98ARA2SiJEl6dmeZu+p75Atj/RLZz4KXsbg6eeQNUQByDuRYW+n6CULEE0XMigTcUILGeUanmVQdgnwZ8uz8LlzIYJrIqywTtybw/0IuOfSQBNRSlKOXHtJCWNHaCA7wmv9PdLPud2Ms3zWPg4v2/HyBTJkIO+M17G/v59LdBAumHs3ouT+uQ5jInvEhbkys4Dfu1DlZollBg7Pyj9Tlt549kDZAQJ45whfE/zOPSpKTwaeOZkL80SMyEwIHN+7L927f9XDCAQCgUAgEFhoLIygQPS41WqpVqvlFoeQoZLoQXY93RnCAekiuwFC6WKCu8mvrq7q5s2bajQaOjo60v379zUcDtXtdmeEglJQ8JT7brebhQuPwEKKer3eTKkARKyMzjqZ8kyMWq2mZrOZI67cm0dd3dCQ+ndIORkCnsoP6S2ju9IZeSZtHrHBPRyI9nsEvRQ1INgQ79JQUtJMmrobOJZp6F4HD+aRQXfxd9PCsuaf67hBIUSU+/Uyh9IPgmuUxoEeUSeKjg9B+Vw5L+cszRK5R/cnQAhwQY1zOulGUCBzADGF5+WlIpBvfye9nIOsGje0ZF15C8d5Jowlmfc17tfk8+W8OLw0w+fTM33mPV+/PnPK9xiLj2venAQCgUAgEAgEAoFZLISgsLS0pHa7rWazmVPn7969m0sNIM38Ix8DQsiRp29Dar2TAmRDOjMXxH+h0Wjoda97ndrttqRTz4Z79+6p2+1mUYPve0o6hARS1ev1snBBu0oIkde8E82FpHm012vPqUlnjNvb29mjYH9/P6fhI1jQdYKMBUSD4XCofr+vbrcrSVmUcKIvndWkkwFBaYJ3kSAV3wUF7hWRozT/Synlv2OCSSq8dEaWuXcyHZgfrukGeSXJQyTwDAHq+Q8ODrJQhc8DZNi7ETBfCCh89/DwMK8v5oWIPWQXIu2E3z02Go3GDPGHyHv5BNkbEGU3C2VOvZ0mwo533WAskvI6YX7W1tbyGmdNIkpIs8QbIo0hKe+Q3wsmpJ5V4gKaZ9a4yME6Zy6ZVxey/FkisHjJBO8I9+7XYj3yLFwwQShw0cufXykE+hgDgUAgEAgEAoHAeSyUoACJgjD3ej2Nx+NcBiEpp5+7XwIkxtPQIbfSWbTdOz+klNRsNrWzs6O3v/3tkqS7d++q1+up3+/r3r172S+gbJVIOUVVVdn9H2NEzk2NPkaMo9Eojw+y7JkVq6urmaxJZ1kWmBe2Wq18PRdLXEzxiD5EHs8GSTlCDaktMyp8fhgD93p8fKxms5kNMyGpbrg4Go20t7c30y7Suwe4WOIp5wgxiBkIEv7MPKIsnYkKzJcbbhKZ57wICUTXnYQStfauHAcHB+r3+/n6tVrtnLDidfxObF2kcZ8O7o3PlT4Cvm4wjPQsC4xJWc9+Ly72IHKNRqMsPKyurqrVamXhggwHn0f3rvB79TWCmSX+FG6M6qKBeyGU2QFecuDZAXyWv7OGJc1k3TA389Y8ooa3ZEVoAC6+8Yx8zSPo+LMNBAKBQCAQCAQC87EwggKEDj8CIvqSclmDp2gTVeQ7EAWIOJ0c5qVZQ1harZbW19fVaDQ0Ho9zRBZC6oTHI8Vcbzwe5896+0ruBSJIpN2j024C5+RSUo6cuvldSimPz9sFOjH3+nNIH8R6eXk5m13u7+/PRJd9fpywu6ne6upqLm9AyIH04ucwGAxm/BC4F4QEMh48lZ3sBIidl0dI52vZ3TfBI9UA0Qaii4iCWOVEnWfg5NXFIu9U4JkH/nyYP56Jz5d3AWGdepmEpJkovK/rUqBwEcAFK9bTPE8DRCIyGUq/jlJUKLsxQNYh1lzTS2v8HXERYV6ZAfAsn/L3niHg4gDz7euA98h9VPz8vq79O15awjlLQ8YyqyIQCAQCgUAgEAicx0P/1ZxS+vmU0osppc/ZsZ9KKX0hpfTZlNKHU0qb9rsfTSk9l1J6NqX0HS9nECWZ29vby6nWkDIvO4AIQCAg9qR5e2tHr8vmWqRGr6+va319XSmlHPn3LgxOlBATXCDAx4AMgJKUQB4hg5AZCJITba87h9CR+s79kwkBYfZzOkkitd7HRpYD81z6FrigwA/XISJOBgWkl7IM5o52kYyl9BhwrwD3XPA0d/decF8E4PcqaUZYKo0cmVv3DuD+nfC6USIiUDlmhCpPu/fsBEQsLz3wTg1c18sspFnvDLIZ+KxnxHg5gnc7cfNH7t9LTEoDxdKTwDM/ymv6OmX+OD/P2c/nYsI874HynufBnzfz7qKLP2PWCIKCZ8T4fPm7VYoqnjnhz9yFxEXBZezFgUAgEHgwYh8OBAKB83g5YbgPSHpHceyjkv5KVVV/TdIXJf2oJKWUvkHSuyT95el3/ktK6WXlDB8eHmowGGhvb0+3b9/OrfgwaYTEuPkbte50ZHAjR4+2ErV2I8cbN27omWee0c7Ojvb393Xnzh3t7e3lkgcIIWLD7u6uer1eFivG43EuZzg6OpqJjnr6vXs4UNdPqYK38HNxBBGg0+lkzwOvoYfouY8DxnvSGTHudrs6OTlRu93WzZs3Va/XNRgMZspByICo1Woz53M/hkajkVPmnZz2+331ej3t7u6q2+3mUgfG4J0IeF5ebkGNP/OMD4MLQZBDL49AVCrbXjJHmD9SKoMJpJc6MH9eo09rRJ6PrzHmC9LpLSy9xMLXWKPRyFF9LxHw6LcLXG4yiHDlz9szHljnHOcarK96va52u52zI1xw4t59nt24ExIvzbZzdZPGUpxgXlzkmoeXEhwAQoJ3aHGhzkUDRBjEKNaPdCaE+NpBwCozW3gOLigsID6gS9iLA4FAIPBAfECxDwcCgcAMHlryUFXVb6eU3lgc+y37z49J+qfTv79T0q9UVXUo6U9TSs9J+hZJv/Ow63iUezQaaXl5OZNBIsBuvObRbDfJc6LipNRT3zc3N/X000+rVqtlsohYgBFi6Q+ACSJAvICgUJbh5RE2X5mseuS4TMcuybK3AxyNRvl6ToQ9Giudkii8EyaTiRqNRvZhwBsAoaBer8+Uk0DegLcl9DEjNgyHQ+3t7eVOAqUI4OaCPA/3T+D3kvJzoFSFe/eSA0QIxA/mDZNB5qfVamWRpswA4bpkMRDZHgwG+fm7mOAtEaWzCDrZGZBwT+GnJIHz8Dz4/rwyHI+w+7p240cn1L6OKGdwkcizIspxs9YY72QyySUbeJJwTQj70tJSzkBxs0NIO11DPHOANer3XIoJnklQChLj8Xjmuy4E4TvippKeUVFm3Hh5Bt/hXJzHPU3ceHVRcFl7cSAQCATmI/bhQCAQOI/H4aHwfZJ+dfr3p3S6mYLb02MvCS8fODg4yGQBouIO+ESzIQmeRu51005cIF1kBWxtbWWTQzIOIJMY2WEOORwOc8tHT52GsPuYHnRvx8fH2WehjIRKZ2ICY3ciDnkjFR2Swz06sYPUQcxTSjnD4/j4WHt7e1k08Ag78wfZBh7J9UwAsii8CwDfJ8OB73INj4hzbvdhcK8AyLWXVvCMIIXuFeG+ATxvPuPE0ufbwbm984EbfDqp5Ltcr0yhpzwEoYSsgQf5BTxITJhXnuDwkh8XEzzFn3n3tP7y/t3A0KP2ZckJY2M9+lplLZZlNPOyEEpvhVJgmFfC48+a77oYV3pTeEtYLzlizPPmslwvzIGLSa8CfN17cSAQCAS+LsQ+HAgErh2+LkEhpfReSRNJH+TQnI/NzW1OKb1H0nskqd1u5xRuoqSk4UuaIcFEXksDOf67NGaDQJDa32q1tLGxMWMASKQZwk8nBPwBSKOHOPF5yCdjKo0f3YsAUum193mCpmSH8XvrSdLLvaadzzoQFDxNnntGmBgOhzmy7b4BJeFysufRXkijG1ci9vB5J32e0TDPzNAJsRM/r4vn9xBGH6OLHF7S4gTaxZBy3iDN7ovB2BA5So+CsizEnx3fJapfPjcXpHx8ZRcLzs9czCPB3lrRSwz82fn692PlfXAtFwfK8SLa8FkXsXwd+RhKcE1fIzwD5sTXY5nhMM8Xgewlz+7hs35/pQgFfK34D/f9oNKNRcPj2ovX1LyQ8QUCgcBrHbEPBwKB64pXLCiklN4t6bslfXt19i/025KesY89Lemr875fVdX7Jb1fkra3tytI3eHhYS51gIxKZ4QZ8u6p0dSNO8mA6EL4m82mtra2tL29rU6nk+uz6YQwHo/z+Wu1ml588UX1+/2czr+2tpZr20nPhzh6u0iPdEKOvOacqG5JXiBQnhXgNe3uaVCSTJ8X7wCxubmper2e/R6Ojo5m0rsZE4+vVqud84JwIuYdOPBh8LaNiDCeEeLlKnwOku+p7U4KyUwh42J3dzcLMrR/9NR8nr+LQb5eyjR35oHMB7JNmHsXE8rMBr7jXR+cvNdqNTWbzVxGAMn2Wn5pNrrvZQguQDgxLzMc6JgB6S0FBK7jAooLJAhdPr6StCOKsPbwbOAdIQujFF8QSMrShpKgc4w1VxpQMo4S/t64ESZj5v48w6DMaPDyhhLLy8v52b2U18Oi4HHuxetpa/FvOBAIBBYMsQ8HAoHrjFckKKSU3iHphyX9naqqRvarj0j6pZTST0t6vaS3Sfr4w84HSZOUa/6JEuOnUGYnQD5I73ezQMgcpLLZbGpjY0Pr6+tqNps6Pj7OngieLt5oNDLRxHDw8PAwEye6T4xGo5myBMgTtesQpP39/Xyeg4ODnHEhnUVZIdsYAdZqtVyiQGYEpNszGLhfd7hH7CA7odls5jlxfwQnSnhAOElElHC/AYg3nSbm1eZD1CD8iCkOnx8EGiejKysrarfb+bp7e3t5HrxrgQscXMO7MrjfhotQHhGHJGPCyWdK/wKItpeTeHYCc7i2tpaFMDw9WIM8R567CxxO3LluGSn3Uhw+76IG9+/jYl0wdjIiEEp4xqVgwnr2KD/rlPVJmQ+E3jMq+Cm7Ufi9cV9lRoWXtPjz9HfM33WEJj6fpuaejNkzL8pzcV2egQt5Dys5WRQ87r04EAgEAo+G2IcDgcB1x0MFhZTSL0v6u5JupJRuS/pxnTrY1iV9dEoIPlZV1Q9UVfX5lNKHJP2hTtO+frCqqofmDDvRo67eSUyz2cwlAJBPJ3eeyswxyO3q6qparZba7XYWC5wUQzBw5D85OVG329X+/n4210sp5S4GEHMnIJJmIp6UU9BRwdtK+vc8+unmdtKsaFKSRu619Bkga4CMjJWVlZymXvpMuMklYkK9Xs8kja4RZHscHR1l8u5RX+ksNRzCCYH2dHPGSiScufdxefYGz3E4HGo8Hmci6WUwngXg5nzebrPMAmHcmG26WSLrxzMqEHAoiSjLHCDSdENg7boXBJ/19VGWlpQeGaxF90HwdcP9e4aJlwFxT+V75u+Olwj4e+jXdD8HF/Z4xp5Z4iUmLqR4WUVZ9uDvQSkolF4oZQZCWRZS+lD4nJfnd9HCM438vfPsiUXAZezFgUAgEHgwYh8OBAKB83g5XR6+d87hn3uJz79P0vsedSCQr7KuPqWUW+rheQDhdLf50tzv5OQkp8dTQpFSykTM68HxLFhaWsrtKw8PDzOZJJLOdyA2HtXms6Ty47/g5Rhl5NVrySGMRM8xP4T4lfXwzJmXIxCthVCXBMmFCYhds9nMggJZDszj6upq/i4ZCj4WhAw30XPvCCLgkEsvdYCMQgylM1GG62HSye/IAHHDRMpAuCfmBYFkXvSddUCJTSmMuAhSZgl46Yafr16v5/srn7d3ZWCd+7nd7JD58swCSZn0zsug4Hl4BxAviynHzDp40D26QOGtJV1MYNwuUrkQ4O+kv8t+Dd53xuxrCJSlN6w51qi/B4zZswv8+ZfiBO8xImYpKJWlRVeNy9qLA4FAIDAfsQ8HAoHAeTyOLg+PBR7N9ewEyLGXJ5ABAAnzenjaB9LRYX19Xe12O7fWo+MCZFtSji4fHBxks0GOQzI808CJldeuIyiMx2N1u92ZTAgXIdxjQdI5AuVp9U7YuE8IFtF+fCTG43HuMEDqPWUHLohIZwS90Wio1WqpXq9rNBqp2+3OdKM4ODjIWQLj8fhc+rhHn5lTJ3UuoDCfnq7PmLwEgLlmzI1GQ/V6PZN2xBPG1Gw283NAHHEfBsbJPOKbQZtJyGR5L55C7xkBHpmHaHvkXFJubenZAGRvlN4ILvaQBeB+A7wDlBgg+pTrxgk54hQEmrG674N3Q/AsEz+nmzCS9VF2wHDjRF/nk8kkd+YA/hy8pIE5YG1xb6WHSlWddmbxuXeDSu/2UL5n/q4xTi9bQmRykXKRBIVAIBAIBAKBQGDRsDCCgnQWYSatvlaraWNjQycnJ+r1ehqPx7kW20saVlZWMnmHaK6vr2t9fV2bm5tqNpu5pt2jr6TQt1qtTNYwYcTHYTQa6e7du7lDgnsNkKIunRJICNbR0ZF2d3c1GAxmot1kWnB9j9ACN5osW9bxfQSQVquVRZBut6ulpSVtbW3NjH04HKrf7+eSDUhSvV5Xp9PRxsZGFg56vZ6Gw6EkZSJOVoI069cAShNB96QoI7wQbO9ccXBwkEUKBInhcDhTdoGgQMSbUhK8Ily4cLEHMcDndzKZaDQaqd/vZ/Lt5JgMD4+mexmAey9A3CnDcOGHchPGhsDj6xwSSyZLrVabKTM5Pj7Oa21paSl31SjT8X1eyZSZl3Xg0Xf3VfD7KsskeO71ej3fp5dOlO8ua/3k5CS3SuU4ooX7gCBOeJeWMpOFZ5pSyuIWa9RFSAQBz7xAQPHyJO7J/Uq8Haq38Sw9QAKBQCAQCAQCgcAZFkJQcBJChgGR9nq9ngUGIt9OxiElbg4H2W6327k7Q2kiCPnkGoPBQN1uV8PhMBs50mWh2+3mOn5+PEXbuyZ4qr6nb3tXAsZRGghCuDydX1ImpBA7CDbCAyLI1taW6vX6DKHb3d1Vr9fL5I5SgFarpVarpeXl5dwFYnd3N88Tc02JiXef4L69K4HfP2P2zASEFE+Bd3NI5sYj8MfHx/m+fX30+/2ZKDQRdJ5n2V3C6+sPDw+zuMI6gHiCUuTxsg4vN/CyBi978ZaRkGQn+ID7JPOD8hoXEyDxdEFh/bs4wX2R0VP6CXgph8813/dsiHKsZMIg0pSeF5yD+y/XcTmHrA0XMrxUxbNuEAIoSWBuynvgWohHLmK57wLjZD26D0RZPsN76aJJIBAIBAKBQCAQmMVCCAqAf9xLysSXCLLXr0tnhNwN/vjH/9ramtrtdu7aUJrskS1A1LWqqty9YTKZZAJF5Bgy7i77XmvvngEHBwf5PJ527a0l3UPB67q9NhyC6L4LZCZQT8/YIP0YMUqnxH04HOZoPtF+SkFarVYWW4jYj0ajmZp6xuTdFUBpXgfBxIxQOiNzThLdjBFy6l0YSm+M0ohwOBxqf39/hmi64MExNyis1+t5bvm+e0lwP6yP0rOC/2a8XgbAZ8oU+bLkwwUK9wBhvXvmSml6ybx4uYITXy+XmGdCWJbOOHwN+jp1ku9tSUu/DF+/Htn3+0c4KMsjyjlxg1GEBubO11tpaln6g3A+xsQ5uR7vMXsHYqSP19d1IBAIBAKBQCAQmI+FERQ84k3rSAz4vCODdEZyIE6QAY51Oh098cQTajQa2WgQAgJBbrVaajabWl5ezu0QiVDSbpEuABx3b4LhcJgj85Lyf/Mdd/n3+nKP2HstuNeAU3rhRo90qyACn1LSYDDQYDDQycmpASUCCt0R+v1+FhyY11arlVtorq2t6c6dOzmLYTwenyN8CBiYNkI8Ifj+XLgH/i6dkTcIIc/SCbKTOMbr9+6+CXt7e9mPwN35KUVx8cEJLGIErUA9ou6dOyCZZAtImhFAGLdnYLCmmCP/jGcL+FrHEFI6E144hqjl5Q/eXcPFBM9k8QwJykO8bKMU5DgHz9Sj9l6CgFBDaYCXMfBu8LlSPOB+3dth3nGuj3jC2lldXZ0xKPXxM1Yfk4sNXM/vn+wjBBLKpDgn8+atTAOBQCAQCAQCgcB8JI8SXtkgUrojaSjp7hUP5UaMIcYQY4gxFHhDVVU3r+jal4qUUl/Ss1c8jOu+3mIMMYYYw3lcp304/k0cY4gxxBgWdQxz9+KFEBQkKaX0e1VV/Y0YQ4whxhBjWMQxXAcswjzHGGIMMYYYw3XHIsx1jCHGEGOIMbxcRE+0QCAQCAQCgUAgEAgEAo+MEBQCgUAgEAgEAoFAIBAIPDIWSVB4/1UPQDEGEGM4RYzhFDGG64NFmOcYwyliDKeIMZwixnC9sAhzHWM4RYzhFDGGU8QY5mBhPBQCgUAgEAgEAoFAIBAIvHqwSBkKgUAgEAgEAoFAIBAIBF4luHJBIaX0jpTSsyml51JKP3JJ13wmpfS/U0p/lFL6fErp30yP/0RK6SsppU9Pf77rgsfx5ZTSH0yv9XvTY1sppY+mlL40/fOJC7z+X7J7/XRKqZdS+qGLnoeU0s+nlF5MKX3Ojj3wvlNKPzpdH8+mlL7jAsfwUymlL6SUPptS+nBKaXN6/I0ppX2bj5+9wDE8cO4vcR5+1a7/5ZTSp6fHL2oeHvQ+XuqauO6IvTj24umx2It1/fbi2IcXA7EPxz48PRb7sK7fPjw976tzL66q6sp+JC1L+mNJb5ZUk/QZSd9wCde9Jembpn/vSPqipG+Q9BOS/t0l3v+XJd0ojv0nST8y/fuPSPrJS3wWz0t6w0XPg6Rvk/RNkj73sPuePpfPSKpLetN0vSxf0Bj+vqSV6d9/0sbwRv/cBc/D3Lm/zHkofv+fJf3YBc/Dg97HS10T1/kn9uLYix9237EX5+Ovyb049uGr/4l9OPbhh9137MP5+GtyH56e91W5F191hsK3SHquqqo/qapqLOlXJL3zoi9aVdXXqqr65PTvfUl/JOmpi77uy8Q7Jf3C9O+/IOkfXtJ1v13SH1dV9WcXfaGqqn5b0v3i8IPu+52SfqWqqsOqqv5U0nM6XTePfQxVVf1WVVWT6X9+TNLTX+91HnUML4FLmweQUkqS/rmkX/56r/OQMTzofbzUNXHNEXvxecReHHvxPLwm9+LYhxcCsQ+fR+zDsQ/Pw2tyH56O4VW5F1+1oPCUpD+3/76tS97EUkpvlPSNkn53euhfT9N7fv4iU6umqCT9Vkrp91NK75kee7Kqqq9Jp4tK0s4FjwG8S7MvyWXOg/Tg+76qNfJ9kv6n/febUkqfSin9n5TSt17wtefN/VXMw7dKeqGqqi/ZsQudh+J9XLQ18VrGlc9p7MUZsRfPIvbiS96LYx++Mlz5nMY+nBH78CxiH45/E78krlpQSHOOXVrbiZRSW9KvS/qhqqp6kn5G0lsk/XVJX9NpastF4m9VVfVNkr5T0g+mlL7tgq83FymlmqTvkfTfp4cuex5eCpe+RlJK75U0kfTB6aGvSfoLVVV9o6R/K+mXUkrrF3T5B839Vbwr36vZ/6Fe6DzMeR8f+NE5x6JdzdeH2ItjL34YYi+eDmvOZ18ze3Hsw1eK2IdjH34YYh+eDmvOZ18z+7D06tuLr1pQuC3pGfvvpyV99TIunFJa1emD+mBVVb8hSVVVvVBV1XFVVSeS/qsuOGWkqqqvTv98UdKHp9d7IaV0azrGW5JevMgxTPGdkj5ZVdUL0/Fc6jxM8aD7vtQ1klJ6t6TvlvQvq+q0OGmaRnRv+vff12l90l+8iOu/xNxf9jysSPrHkn7VxnZh8zDvfdSCrIlrgtiLFXvxFAvx3sVefIrL3ItjH75yxD6s2IenWIj3LvbhU8S/iR+OqxYUPiHpbSmlN00VwXdJ+shFX3RaB/Nzkv6oqqqftuO37GP/SNLnyu8+xjG0Ukod/q5T85PP6fT+3z392Lsl/eZFjcEwo7pd5jwYHnTfH5H0rpRSPaX0Jklvk/TxixhASukdkn5Y0vdUVTWy4zdTSsvTv795OoY/uaAxPGjuL20epvh7kr5QVdVtG9uFzMOD3kctwJq4Roi9WLEXT3Hl713sxTO4lL049uGFQOzDin14iit/72IfnkH8m/hhqC7ZBbL8kfRdOnWw/GNJ772ka/5tnaaDfFbSp6c/3yXpFyX9wfT4RyTdusAxvFmnrpyfkfR57l3StqT/JelL0z+3LngumpLuSdqwYxc6DzrdqL8m6Uinytr3v9R9S3rvdH08K+k7L3AMz+m0Dok18bPTz/6T6TP6jKRPSvoHFziGB879Zc3D9PgHJP1A8dmLmocHvY+Xuiau+0/sxbEXx158fffi2IcX4yf24diHYx++vvvw9Lyvyr04TQcSCAQCgUAgEAgEAoFAIPCycdUlD4FAIBAIBAKBQCAQCARehQhBIRAIBAKBQCAQCAQCgcAjIwSFQCAQCAQCgUAgEAgEAo+MEBQCgUAgEAgEAoFAIBAIPDJCUAgEAoFAIBAIBAKBQCDwyAhBIRAIBAKBQCAQCAQCgcAjIwSFQCAQCAQCgUAgEAgEAo+MEBQCgUAgEAgEAoFAIBAIPDL+P+F820nMwkY2AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 43320 156675\n", + " Min thresh = 1000\n", + " Sliding\n", + "\n", + "\n", + " Winner = Sliding\n", + " FN Patient = 048ns_image_1543571117118_clean_ClassN_188-316.roi.nii.gz\n", + "\n", + "\n", + "048ns_image_1749559540112_clean_ClassN_192-320.roi.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADYCAYAAABberBAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADszUlEQVR4nOz9e7Sl657XhX2fOde839ZaVbUvZ5/uc7qluSsICIhD0oxGQSE0MGwCKDYX0yQhSEgINJiIJEPTMQ7FJEPNUZSOEKBFHY1CRG3tqCOCgmCA5na6PX3OPmef2rtqrTXvl7XWfPNHrc+zvu9Ts/a19tmrdv2+Y6xRu9ac832f93mfd+76fp/v7/tLVVUpEAgEAoFAIBAIBAKBQOCDoPFJDyAQCAQCgUAgEAgEAoHAi4cQFAKBQCAQCAQCgUAgEAh8YISgEAgEAoFAIBAIBAKBQOADIwSFQCAQCAQCgUAgEAgEAh8YISgEAoFAIBAIBAKBQCAQ+MAIQSEQCAQCgUAgEAgEAoHAB0YICoFvOFJKfy2l9O2f9DgCgUAgcIuU0pdSSr/4fb63Sin9hA95ng/92UAgEAgEAncLISgEvuGoquqnVVX1w5/0ON4NKaVflFL6Kymli5TS45TSv59SeuOTHlcgEAh8mpFS+udTSl9JKc1SSj+eUvqnPukxBQKBwF3D8xZm3+t48e/iwLshBIVA4DB+RNIvqarqWNJnJP1tSf/qJzqiQCAQ+PTjD0n6yVVVjSX9Akm/PqX0qz/hMQUCgcDLjvh3ceCZCEEh8A2H22pTSv9MSunfSSn9kZTS/Eb9/Ikppd+bUnr7ZqfqH7TP/qaU0l+/ee+PpZR+a3Hs351Seiul9LWU0j/himtKqZNS+hdSSl9OKT1MKf1rKaXeoTFWVfWwqqqv2a+uJYVFNxAIvBRIKf3clNJ/fbMb9VZK6f+eUmoXb/uHb76HH6WU/i8ppYZ9/jfffFefp5T+bErpc+/nvFVV/c2qqpb2q73iuzcQCHwKkVL6KSmlH775nv1rKaVfYa/9cErpn7C//8aU0n9189//xc2v//uU0iKl9D9JKX17SunNlNLvu/lO/lJK6R/9sMcrxxr/Lg68G0JQCNwF/I8l/duSTiT9JUl/Vk/W5huS/g+S/h/23rcl/XJJY0m/SdK/lFL6WZKUUvqlkv7Xkn6xnnzJ/Y+K8/yfJf1EST/z5vU3JP3TzxpUSumbU0oXktaSfpekf/7DX2IgEAi8ULiW9Dsl3Zf090r6Dkn/i+I9v0rSz5H0syR9p6TfLEkppV8p6fdJ+tWSHkj6LyX9sfd74pTS96aUFpLelDSQ9P/6CNcRCAQCdw4ppZak/0DSfyzpFUm/XdIfTSn9pPf6bFVVv/DmP39GVVXDqqr+xM3fX9OT7+w3JH23pC98xOOVY45/FwcOIgSFwF3Af1lV1Z+tqupK0r+jJ/8A/b6qqi4l/XFJn08pHUtSVVV/uqqqH62e4P+jJ1/Ef//NcX6NpH+rqqq/VlXVStIf4AQppSTpfyrpd1ZVdVZV1VzSPyfp1z5rUFVVffnG2nVf0v9O0t94rlcdCAQCdxRVVf3Fqqr+XFVVV1VVfUlPhN2nRNqb79MvS/qDkn7dze9/q6T/U1VVf/3me/2fk/QzP4BL4fskjfREqPi3JU0/8gUFAoHA3cLPlzTUk3/v7qqq+s8k/Ye6/R79sPjfV1W1vfk38p/Wk38bPxfEv4sDz0IICoG7gIf232tJj6qqura/S0++dJVS+odSSn8upXR2o5L+w3ryxSY9qen6ih3L//uBpL6kv3hjLbuQ9B/d/P5dUVXVmaTvl/SDKaWjD3JhgUAg8CLipvTsP0wpfT2lNNMTUeB+8Tb/jv1xPfkOlqTPSfqX7bv2TFLSk12z94Ub0fgv6cn/A/7Ae70/EAgEXjB8RtJXqqra2+9+XB/ge/IAzouSMf9efm6IfxcHSoSgEHhhkFLqSPp3Jf0Lkl69UUn/jJ78Q1WS3pL0WfvIN9l/P9KTf5j+tKqqjm9+JlVVDd/n6Y/0xJI2/giXEAgEAi8K/lU92X36tpuAxN+n2+9a4N+x3yyJ+tqvSPqt9l17XFVVr6qq/++HGMeRpL/jQ3wuEAgE7jK+JumbPHtGT75Hv3rz30s92QgDr72PY56klAbF8fhe/jDHezfEv4sDGSEoBF4ktCV1JL0j6Sql9A9J+gft9R+Q9JtuQm76snyEGwX4X9eTzIVXJCml9EZK6ZccOlFK6VenlH5SSqmRUnog6V+U9JduVNlAIBD4tGMkaSZpkVL6yZL+5wfe879NKZ2klL5J0u+QRN3tvybp96aUfpokpZQmKaXveq8T3nzf/tabY6aU0s+V9Nsk/dDzuKBAIBC4Q/jzekLyf3dKqZVS+nY9yRT74zev/2VJvzql1L8JF/8txecfSvrWA8f9Aymldkrp79eTzLF/5yMeT1L8uzjw7ghBIfDC4Cb34J/UE+HgXNKvl/Sn7PX/t6T/q6T/XNIXJf3XNy9tb/78PTe//3M3Ft7/VNKzwmre0JOSiLmkv6InSeO/6jleTiAQCNxl/C49+Y6d64kYeyik6wcl/UU9+Yfqn9aTlo+qqurf15MQ3D9+8137VyX9Q+/zvL9K0o/enPePSPq/3fwEAoHApwZVVe0k/Qo9+W58JOlfkfSPV1VFLsG/JGmnJ0T/+yX90eIQ/4yk778pLSMn4et68u/jr928/3/2EY/niH8XB56JVFXVJz2GQOBjQUrpp+jJP2Q7N8FggUAgEAgEAoHApwo3Doc/UlXVZ9/jrYHAc0c4FAKfKqSUftWN1etET3bI/oMQEwKBQCAQCAQCgUDg+SMEhcCnDb9VTzIWflRP+qgfqvsNBAKBQCAQCAQCgcBHxMcmKKSUfmlK6W+mlL6YUvrej+s8gYCjqqpfetO94bSqql9VVdVbn/SYAoFPCvE9HAgEAp884rs48HGjqqofjnKHwCeFjyVDIaXUlPS3JP0Dkt6U9N9K+nVVVf3Icz9ZIBAIBJ5CfA8HAoHAJ4/4Lg4EAp92fFwOhZ8r6YtVVf3YTYrpH5f0nR/TuQKBQCDwNOJ7OBAIBD55xHdxIBD4VOPoYzruG5K+Yn9/U9LPe9abU0pVo9FQo/FE32g2m2o2m/n13W6n6+trPctNkVJSSil/rt1uq9PpqNFoKKWk6+tr7ff72mcajYaur691fX2ty8vL/Hqj0VCz2VSj0dDR0ZFSSpKkqqry8VJKqqoq//D6fr/Pr/PZ/X6f38drHJPP8btWq6Wjo6N8Ho7JOfyz/Hl1dZWvg2PxucvLS11fX9eumTkuj+nX5dfj18i4JGm/3+fzMnfcA78+v0f+px+X+eZeXV1dPXW/Ds0jxyvntpxj/yzn9ONz/mddt6/HqqrynPp68Dl9L9fPs173MZbXxHl9rg+d+1lzfOgevNt4Dh2X339QV1O53p91Tn7Pdfl6O/Q+v75D1/xuvyt/f2gM9vdHVVU9eH9Xe6fwgb6HJak5HFTf/Pmkt7cjNb+4fbe3BgKBwDcMGy21q7aH/4dw9/GBvovjezgQCNxVzHV+8N/EH5egcOhLv/Yv95TS90j6Hv4+Go3U7XZ1dHSkyWSifr+vqqq02Wz0la98RavVSldXV3y2duBGo6Fut6vj42Pdu3dP3/qt36pv/uZvVr/fV0pJFxcXWq1WNRLZ7XY1n881nU71zjvvaD6f6+joSL1eT8fHxzo9PdVgMFCr1Xoy+KrS0dGRWq2Wms1mJniQ3+12q8VioUajoU6no5OTE/V6PV1dXWm32+nq6kpHR0c6OjpSu91Wo9HIn200Gmq323rttdd0//59DYdDdTqdPL7dbidJmkwm6vV6arfbajabWq/XevTokc7PzzWdTlVVlZrNprbbrWazmd555x0tFgtdXV0ppaR+v69ut5uJFONBBODarq6udHl5qe12q81mkwk2Ys319bU2m40uLi50cXGhy8vLLKKMx+M8PubChRnpiQiy3W612+3UarU0mUzU6XSUUtLjx491dnaWRZ52u639fq/NZqPdbqfdbpfXydHRUb4PzWazdn84nwtH+/1eV1dXWq1W2mw2kp6IBaPRKB/r8vJSq9VK6/U6X/Pp6alGo1Gel+VyqU6no16vp16vp1arpcvLS11eXuY1WlWVrq6uMmE9OjrK64/fl+t4vV5rs9nksXGvU0paLpeaz+f5s51OJ4tmHBNBByK+2+3yPLrgxg/zwf11MY25Q5S6vr7OJJ/rs2c5/1mKYaxvfhg/r3Msfz/3sd1u5+eP8bjodHl5qd1ul9ce18T1MlbWMMdADPPx+TjKa9tutz+uFxPv+T0s1b+Lu62J3vi2f0rfenGpxo/+pY97fIFAIPC+8OerH/qkh/BR8IH+TRzfw4FA4K7iP63+5MF/E39cgsKbkr7J/v5ZSV/zN1RV9QVJX5CkRqNRQQggipJ0fX2t7XZbI2aH4EQAZwGksiT+4OrqKu/u+64vpAWScWi3m9cZK8f3sZTOAj9+CR9Xq9VSp9NRs9nM7ondbldzXyBIILJA+EpiVM4RRApyx677fr/P/+2vlce7vr7WbrfLZNnnUFImdO5o6HQ6WWBg3rnekviV94TfQ/zcbYGTg7H7bjTrxYksggHHZTysNca12+203W51eXlZc6n4HCAGcC/K3XxEDL+3Tp4lZREEcA8hyi5apZRq83Zolx3xg2t7N1eAk3fmmvtw6L4fIumlm8VdBc9yIZTrkveWzy/HLu8jcDHh6uoqrzs+69fvziY/Ltfk8Pvo1/MC4z2/h6X6d/E4nVa9H/xvvjGjCwQCgZcDH+jfxPE9HAgEXjR8XILCfyvp21JK3yLpq5J+raRf/6w3s0PfarWy7V+6JQ6Q1GdZ6UvijqAAeYB8+PsgI+zA+u6uVCdfTiogKJRVUNaw3W4zafX3lnb7ksQ48Ww2m+p0Oup2u/k1yA+7tqVDwnehD50XMBcQccgjO9tOoHiN+YDo42rwsfHjJBrRAsdHp9PJ416tVtput5nMcg7+XpJIyDT3S9JT4kc5nxyjLH9hrE462QEvXRmlI8WvlzWGWMI94PoPlSi4kODzyXsRzlycury8zMdzYuxCC8fmWIhcHKOECwgukPDMOBl3serq6ioLWf76IadCOSYXCZyscw3+fLA+cYtcXl7m7wSeNX+mXXgqS5J4Pni2WAP+fHC9Pj7A99JqtTo4ly8APtD3cCAQCAQ+FsR3cSAQ+FTjYxEUqqq6Sin9LyX9WUlNSf9mVVV/7VnvL+ulsVpvNhstl8vaznT5D38XCSCKEPv1eq3lcqnZbJbLBprNplqtViaO7AYPh8MaGdvtdtmuL0ntdjuTe8bDzvt+v8/OAsQJ7O/PquPmGrfbbY1I8TqAPPf7/excqKpKu90uW/edbDNv6/W6Ni+4Hdrtdp5jSXm8ZVmC50uwYw+5k57OIOAHAtdqtTQYDHR8fKxut5uvg51/d5JAWNfrde0cnMdLXRCe3MmCIHF1dZWv3Qk/5QaQTL9+zsFa8PF3u131er38eYQAXuPe73a7XKZQui2cQHMM7pevDTIvfPfcx+vXyQ+786XjxImyC2SMoXzmELJ6vV5tTrjnXpbj4gDCnD+XvoaeJdIhYrgDw0tu/PxexlAKKIdcS6wdF0pcMPASEOas0+nU7oE/N8/KcHgR8EG/hwOBQCDw/BHfxYFA4NOOj8uhoKqq/oykP/NBPwfRXq/XWq/XeTdbqpcOOJlwQgt53mw2NYdDuWsMUZb0FMmGsF9eXqrb7arb7arT6dRyGDgfpJaab0gku/alFb/VauUxUjOfUtJgMPC5k3S7C+7lDOywUlPPMdjhhvyTT9DtdvM8lDvRzKX/DnLNDzvvkF0nsOz+O+mFfHa7XQ0GA92/fz/nLmy325p938tRKDXguiHP1L9zXMbKfPBeRAfuD1kV3FsXC7hmFwm4VsSEfr+fxQjIpjsAcHcwdie7LoIA5vFQqUhJ7slkcPED8uulK6x3/mSM5TryZ8ZdA35cxBefE8JQG41GLZuiLJ8pn0l3Uvgz4GMoQza5t348dxaUzy8CBGPwZ9EFCJ8bdzr5Z1qtVs0h48LkC17y8KG/hwOBQCDw/BDfxYFA4NOMj01Q+KDw+m0EBUjeoZ1I4LkCEAB2jJ14Sbd2bydL0m0dPfCdXA8WlG4JI8QSMuKEr8xl4HNOxiDQkHSupdxRxv4NEUeYQHBhtxvCznWnlNTtdrNbQlJNEOAcXCO7sQgHEHDvIFGWTLjDwOcGgjoajTQej3V0dFSbb+YF0YCdcF5nl7nZbOaxH7K1l/eL6/EsDog/gY673e6pEhYXG1gP7oAo3Rg+f55DALguX7dezuBCl4+Xe11a9XlPOdels6cUFHx+fGxliQulNO6AYLzcZy+1cbfAs0Q+J+WMzT9big7+/Lug5kJheXx/NsrrdndG6Wrykh53ReCWAM9yQQQCgUAgEAgEAoEnuDOCAuSj2Wxqs9nkpH0I5SFAdgaDQU7+3+/3Wq1WeWdaUrbIb7fbTCDdyu1WcSci0u0OvlvWOSYlCHQ5KHeLJdUIoFvkcV+4PR1L+aHAOEk1twCChKfVe5lFu93Odv31ep1FASdnZQ25ZzJ47oSTZp+z0png5K7b7Wo8Hms8Huff0TmB++bE1UMHIbfevQF44KZnKHh5gJdFsJ4oDdnv97V55h55NsKhnelnXbOTY79vTu4RYzx0EaGMucAdgC3fz++hg2VpkN/LUmwoy2xcROB3/txJqjkouBe4b1woKfMcuGafK+bS3Sgeaun30AMlmRdIv8+vn5M5cUHBr9fzPko3SNlxxV/3cwUCgUAgEAgEAoFn484ICljMKTc4FDYIfCe60+loOBzWauU3m43m83lu69fr9bRerzNp5biQGEg34YFHR0e51IFyh/l8nh0TlBIwXkl5p9et7eUuOu6Jq6srzefzXJbgHRwg9t7dAkK6Wq1qO+7lLrik7KYg3JH3S7c7/17L7uGV5E4QnIgjwXehXYApcwK4Dsodjo+P9eqrr+ZShuVymeeO66J9JCSSEEfcEpA+STViWmY+OIHk2vk7gsKhtYRAg7jC/ee6cKOUXRa8FaWXOSAclO0ry/ewPtztwetOkFkXCBG818Ur7pukTJDdDUB5AOvLyw5cAOMcXLuHpDrRRmAqMwo4L2PEIfNuroRDWQXugpGUx1SGp7JGvAynFCyYQ89W8b+7+MFz4PcrHAqBQCAQCAQCgcCzcScEhaOjIw2Hwxrh9lT7EhCFVqulXq+nfr+fycdut8vEtdVqZdLT6XRy+0UIlhM+CBC72xwXgu7dIJyckVtwyM7v5MXt/Qgm19fXWQhxgcJbF0Le6CJR7uxDpCHpvjNMS0uH7xL7/DrhLev3PSRRuu0+4LvBThKHw6GGw2EWaHAFIP543gFiA+dhziGmm82mJmJ42YjvtCMeuCjgrgsEAT6DkMK94T74tbpw5bv2zEEpEiDyIChwjLJNoe/Ce7mBl5HgfnlWNoHnTLh7we37u90uzw1CDp8hTNFJuzuCvNSBMbjY4PNYlhZ4uQnrjfXkTgTcPZ6lwHPFtXsQKgIIohLr1HMu3HnDMXAC8Zzz7LtoAcqyC+YzEAgEAoFAIBAIPI07IShA6A7Z698N7N667d2P4YTXrf1exiApE95er5d39ctWdRCXRqORiZnXxJf16+ygOtHz4DfIEeKEtzZEVPDyht1ul23xjFlSra2hOwl8F9evk11ut487YSXM0i3gTuKk2ywKd3pwLZ1OJ/90u90sKHCdvV4vE3zyDJhX/5znGTB/5W4/5+Y+cV0QdEiwZxwc2hV3Mu/lDr7r7Q4FF0I8c+DQugOloMD1eFYD53TBAVHEywA4Rrmr7+QeEu/BjYgDjNOdEU7QfT7cYQD5L8smynWHgMea92fTBTa/Fy6EHcoxKNexl9h46YePqcy68Dn0z7jIxrgOlT8FAoFAIBAIBAKBOu6MoOC2cojNu9mNS/t9KUCUNmsnHh4wx+vtdlv9fl+9Xi8TDSeUvMfdADgJ2O3lWtz+7793uzjHc0EBAuytGgmYJH/Ar48dXf+7hwuWZKgUI6Rbt4GkHPboZB6XA/eHXWoPFqQsodPpaDAY1IQBCCs78f1+P7e2hODyGp/pdrs1R8iziJ3nDyCqMB5JNceAk14XelxgKsk9xNNFI47hnSqkWwJfCku83z/LNR+6NtZOed/Y+XeyW16LuzI8VNHdBtznskzAQzNdBPP2oXzOHTg+bsbOukZQIGOEOWWcTtr5vTs7yuwDFz/KMptD5UUcx59zFxO4b6zjMheCeQsEAoFAIBAIBAKHcSf+tcw/7i8vL7VarbRarfJOffkeALmXVKvjhwyQiVCWIkB4JNWICVZ7WtFJtyLA9fV1raSg3W5n1wAtG6W6iFESp91ul3MTsKh3u131+/2cH7FYLHLnBmzziArr9TofC8IJCaeWnLF4/bvvzpOJ4E4OHAteRw95Y2xkHVDe4cGC+/1e3W5Xw+GwljlB5w3IKWUkKaWamCDdOk16vZ4Gg0F2q7jDgPvBPDvp9XaH3hWEeWeuXIBgTN1uV6vVKh/fy0ogycwtY6VrhYtYlEOUAoGXBvjaLUsZyp1y7h33CfGozDBw8lu2LZVuLf5eglBep2cmOOHGReJigodiesaHCwPuXvBnD9GJa/YsDD7jZSVeZoKAUQo5rHN3Uri4gWDmeSml06HsyuKumLLcJxAIBAKBQCAQCNzizggKZB8sl8v3dCb4Di2ESLrdWYV0lKKE73jyfkl555ydbnZtfQcUGz5kZLlc5vIA3xXnuOzSQsoWi0W+NohZr9fTcDjMGRCPHj3SdrutheXRCpL8Bydg7OhfX19nF0MZ6udkyUsXqKNHUHAS6G4BD57s9/u5Awdj8rT8brebsyf46fV6kp6QQ8bqTgzmi3NCthE7cGaUu87+mW63W+tIIalGhD3kzx0kkGvEKe+2wNwhpjAGRAo/lzs6vIzFS0twGLjQ4l06OAfrw0sMGCPjL89bltVwH93BUO608ztyFjzXgPF6/gSCg5eFlDkcCAbl64gJPu8Qd8/z8N8fypxw0cavrSx18twHP44LZ8y7l1d5zoKvl0AgEAgEAoFAIHAYd0JQgKS9W2eHEk4uITwQAXZTJdWEB7c0Iw44kXTrdFkb3mq1auQK54CP1Y/voXM4L7bbbRYFIF+Qn91up7Ozs0xycQZ45wCs7IgKnp/Aj1vmIdTs6PsuLq4HxBDIMIGAiAlOsHFiQDR3u10tyJLdcD6PQMCY2e0tSz9KW76TPRcT3KHAWBEDuH7uv+/2sy6ciDJPjUZDg8Ggtha8g4aXMfg4WRelaOUZAS468Dn/E2GibKdYftbXFP/NuRmHf8YFF+8iUmZPlITZXRSlWCCp9qxQWuFrjjVwKMdBuu0y4iUgXkrCOTivC2ug/G8/FvPnY2C+eL/fU+6rlz+V9ytCGQOBQCAQCAQCgWfjzggK7OSXBO1Z8FC1snXh1dXVU+QPkuhCgaTsPvBwR6nuhPBdW8bpboeSlEHmIF3b7TaXMhC+6DvV19fXWiwWevz4cS6FwBHhZBNwHZ1Op7a7WtbZ0+bSSwQ8gA8bP3PpQgc/CAoIGNKtFR2hgPdBKl1MoNQAUutiQhn8iNgC4fO1wL30WngXQlww8JBESTWC6bvxVVXl+8A5Go1Grabez+8lE+XadVJclucwXsbsNfx83rsgcI/dEePOCv5elgT5bj/3y4MOfbe+LM3gmC68+e+ZR2/H6YJGGQrpr/P7TqdTu6cu2vi8ObFnnIfIPyjn3r8bGDfHRZTjvfyUnU+8vCMQCAQCgUAgEAgcxp0QFPb7fW5Zx47nIUu1pGwJ5x/6WPx991pSJooe5OYkBfLrLSCdvEi3JLbX6+VcB0oQfJcb8lEKFuv1WovFQtPpVBcXF5Jud2C9fGG322k2m2k+n6vX62XCWjoMgO+Cb7fbHAwJeed6PVPBLe7enQLC2e12NR6Pax0bvDOA1+hT7oD4wTE6nY56vZ5Go1FuG1l2TvDAQO6t3w923p1kH6rN5/66ld4t9MwbpNrh99yt9Kwv/nRngq8p8jT4PKULCFkIL05ICSYsXQEusLjgwj13EYK8DI7N5z0Q8lCXCQ9GLK8PUs9rpdPBxQkvDUG8Igeh7LTBPfTP8H4//6EOKX7u0qVRljiUJQ08O7zOuveMDRfYyrKU8pyBQCAQCAQCgUDg2bgTggI7h060y7wDh9dHS/UWepRPOJHF4o9YgTPAiY7vPEOGytpsiPv19XV+r9vuS3s23Ro2m402m01NdOA6cTwgUtBtot/v17oTSLcBe5Cq1WqVXR2QewjuZrPRcrmskWK3enM8zz3gmnw+er1ebafXXRuM1bMnyKMYDAYaDoc1IcBLW1wsKLsCEMx5eXlZC8jzDARcEP47XwOOQzvx3DNyKliD3vWCz3lZBz9OwtfrdU3k8SwGJ+V+DeWuerkTzq6/j8XFEQSXsp1lSbA9E4Sx8Hs+W47Td/k9g4FSFs4P3IlAaCe/8/ar/ky56MO1Mq8+Lnd0MG/u3vAxuyjFeBwutPjc+DHdPVE6TwKBQCAQCAQCgUAdd0JQAKVL4FkWbN+ddCLpFmpIsXQb0Cc9LQCUZLUkHV7mcMgxQMkEHSWcmNCGkQBHyhj4gXgR7ggR9Rp732Xt9Xr5mgjsIzeg2+2q0WjkY9F2sswe8B1sdxZ0u91ahwtJNfLrO8pct4cPch+8DWa3262F4EGCS8LLuSVl8YW5Zmfeg/Ik1YSVch2UBN0FDSeejJ2sC8QZX08uEHibT8QOz0UgP8KdIp4VcciOX+66+5j9urym/1BJkD8n3Ae/7pIY+/PlQBRzp5Bf36HPcA4vVUEMcDdRKXxwf/1Z9U4dfu2HzusiiJfVIHyRwcB7mZsyh+GQM+FQOVMgEAgEAoFAIBCo404JClK9rvlQLbp0S4x9d9oJwfX1dSahlBS4HR1i6ATPQxzdEg25Km34fBabf6fTyQGMlG7gElgsFtmh4OQFEotlHmINacSeTVAiLffYST9ENNnZZ6xOiNwaL6lGghEkylpySbXxeq0/4/UwPi8jabVaNeHEx8VOOUSd8VPCAamk3WTpdODeOGn0++I71YzDQ/vIePDjeF6BHw/C69fma8QzAjxjwIWvMjuB83D/DnUfKcWE8riHygb8HGV5Q0mOywwGd0Xw3JROnvIZdLizh/VVXjP/zVp0d4qLTny+dBq5GMEc+H0oSyu8zMlFQhefDs0Vn3+WSyoQCAQCgUAgEAjcIUGhtBxLtzuQTgCkJ4TLLddOWlJ6ElZ4enqaLfeQb+rf2UHnvH58r193En9I3KBUgF1pPktXh/Pzc11cXGi5XD6VyC9Ji8WiRqA4H2NerVaSbon/0dFRJtyr1Sq3nWTneLlcZvEE4cAt75R+IFR0u12NRqPsfMBV4TvCvstOqQLEbTwe5+uHbLrAAilFOKGzBK0xPQTSWwPiEuB+0fGidKaURJlxIyZ42CJEt9ls5pwHLPYlaXQHhTsa2L3f7XaSbvMgeH0wGKjb7Wbrv8+ZCxxci9f2l6Uwfp2sRb8nzJOX8pTdCsr8AV/DpWjkXRok5XUA4ece4X4hZNRFA59Lz34o75M/68yXu1hcFOJ1fz4JE+V++j3yZ4V1x/Vzv/mMO178GnhWy5KjQCAQCAQCgUAgUMedERSckHhNN685nJhQysDvILpOkn23G4LK5z0Iz9sFOoF0YcN3MN0Kzg4oZG+xWOji4iK7E3yM7j4AdHZgPO6qYA4QEqhT97aAl5eXms1mmei5O4ExQe7dzu4Wfe+yQdkIYsRqtdJyuax1cphMJrp37152CHj5RLPZ1G6303w+12q1ygGRjJ33UxbBOCHRuAfIeHArvJeoHErhdwLOdW42m3zdXLP0pHSEkpSynMP/24m2t6WEdCOO8DkEFO9AUpbnuMvAnRBka3ioZVlGAbFnDXFP/F4fOq8/b+6QqKqqFmLK3Hub0kNOHY7BOmHOynaewMWTslUr5/S5KN1EzCuOBq7dS1IQPnx8zDlr28udcGJ4WcUhITMQCAQCgUAgEAjUcScEhXLn1n/v9ebl79xd4LuOOBMg+AgEnpvg9dweAifddlEAXk7hY/TAOX8vBHy1WuUdeUoK3L7ttd8uqBBe6LZrfhAijo6ONBgM1Ov18q6tuxMg3lyjB/j5nHknAgQaxkUQJS0m2WnvdDoaDAY6Pj7WYDB4qpad0gXEFM5NeQdz7DZ6t9x77T2ks2whyeul7Z/X/RhcC/cJ5wJlKYgJZX6GC0bMYekQ4F5Q/oEbwl93Uss8u/OD93hZh+cBeB5CeT+5Xgh1eR2HBAUXYzw3wwUYHxNgffEnY3GhrLyvLj747j9z62ICYoCTfe8g4fD15s6EdrtdK+1hbrjfzDvnkpRDNbl+L48IQSEQCAQCgUAgEHg2PrSgkFL6Jkn/T0mvSdpL+kJVVf9ySulU0p+Q9HlJX5L0a6qqOn8/xywFhQPnfKb4IN3WbDu5g0Rg2XYLNsTMQ+BKQsR7SrLptd2Mpyx5IFzQiU0ZEifdOhc8G2Gz2dQIMmP09HxKCxATIHqeB+Dkk+vgOr11pbtD/Jq4BqzjOBDG47GOj4/V7XZzNgLnQ4CQlB0RLiqklGquDr+/zK2kmmjgooUTb2+X6NfnAZeScicHSC8uEVwb5f3we8xuuF9nmUXh2Qku3jCffj/4sxQcfD64BlwofMbXLSKJX6uvkUNk2B0FCFl8DrjYVY7XHQp+/FKM4/74uivn7FlZFR7AWZJ6n4PyM5zXu0kwN6wLd5UgVJVCgosJhxwwdw0fx3dxIBAIBN4/4ns4EAi8zPgoDoUrSf+bqqr+u5TSSNJfTCn9J5J+o6Qfqqrq+1JK3yvpeyX9nnc70LNs2WXZg9uSS5Lvu9eE+El1ouMlCZ5Ijz28JFuSDhJVLPXulGBMm81Gi8VC5+fnmTyTBeChi05cuFaEAUm13W/s7bwXyz6iyeXlpabTaW2nnXmCyEGGmWN3J0BCLy8va3kBXA+iQKfTUVVVGg6HmkwmWVBwZwTOhJRS3vn1HIXr6+vcitIdGW7Px7rPdfj8I0Yg1JStE72Uo9frqd1ua71e14gpDgoXCBCaXEzAQk89PvfB1x0uCgQSLwtwkg4B92t2y34ZzMiYykwFhCNKR3AmIGj49Ui3xN2FC0g/65nnxF067jZ5N/s/11ju8HsehosQnhPi8+Jr0gW9MhfCnTv+fo7HWmW8hG9S3iTdtgFtNBpaLBZPXaPPkwdR3mE8t+/iQCAQCHwoxPdwIBB4afGh/7VcVdVbkt66+e95SumvS3pD0ndK+vabt32/pB/We3x5eh05lmVC7YCLDk58nMTQDWEwGGQiu16vn9rFllQjaJBTrNG+I8z4INpOtGgdWDoMaBVZVVV2EYxGo0z6nFhyHlo8ehkF5FFSLbwQUg3Bnc1mWi6XNTIIIJ8c37sxuD0cYcV39VerVa4vh7gOh0ONx+McyIgoQw4BJRGXl5caj8caDAa1vIB+v6+UUnYx4Mjw++elHeRasD54nwc9lsJM2b7Rj1e2XaRbBfcPQl6KNrzOfSuJOTvdBDFynnK9+DlYvxynDOhkbXDsQ61LPT+A6/FARBfHSmeKl9pIqgkzpTjgggLrATeQi1f+THupDm6BsvWpiwlelsTnPdOD9SApv8+vg3vk+SbebYSxj0ajLL64I8QFK89kuOt4nt/FgUAgEPjgiO/hQCDwMuO5bL+llD4v6e+W9OclvXrzxaqqqt5KKb3yXp8/RD4gJ74zfYjc2BjU6XTU7/drBA5Cza77oVp2HAq+E+zHPUTMEAFK27g7HiBIBAu22+1MPqnjhihD3BkXifSQHrdeewjedrvNu7Z+fIiYBwhCjrxendIKdwT4TjtCC7vg0pPuFjguFotFJro+35QRsLvPeREYnMQyt16Dzzz7jjtkj3WBSEQAI3DhxV0WkjIRLl0iXvbgwg7z7rX47kxBAPASAS/N8DXr66p0CzjhLct2mKfLy8s8twgKXu7AWmE9liUtkmrPgJdhuJhwCGVpiqTa/AB/XhkT5+ZZwP3iIZh+HM9cKN0czKtnTvh1uCPJcxW4B+12uyaElc4EPouTgnv+ouCjfhcHXg40BgM9/kf+rk96GIHA+8b1f/DnPukhvG/E93AgEHjZ8JEFhZTSUNK/K+l/VVXV7JAt+hmf+x5J3yMp77b7Dm254+nEzH/Pa5AAdsAh9p4v4HXWZaCfn5Pd0JIsOeng/d5mkd1pdxV4uYMTTkgM14Lbwc/rRKqsc5dUuz7O56UE7Mx7lwtILucoOwVwHcwBJJ4de+bZU/z93nnQIPPFn81mU/1+P4/bd/O5Psg81+95AO5gcLeC78bjcvHylrLdJeUqTojdeu+CC/eMufVxeakLnwNeflCKVE6CvQyDa2q32+r1ellwYm59nhFr3PLv4ovv+HvZCPPEuVmP3lbT1yXv83GWxylLj8r8AT4PSfdn/NBz5QJM2VLTHQPuTPBxuJhQCgoIQ+4o8fVFuQxrHKfIi4Dn8V3cVf/jG2DgG4eU1Pwp3/bMl6+HHT3+GZUUmaOBFwRXP/RJj+D9Ib6HA4HAy4iPJCiklFp68sX5R6uq+vdufv0wpfT6jRL7uqS3D322qqovSPqCJHW73Yp2h064ndRAKkpSLd0SKOrmG42G1uu1ZrOZptNpjVhChLD734wlExgvjYAYObG/ue48Jn6urq60Xq+1Xq+1Wq0k3bbyG41GGg6HOeMAcocLgTFIt9bvVqul9XpdCwHEIg65XK/Xms/nuVQB8gsJo/RCUiZYbu9HbHArvJebMEaEEcoD+G9cGt55ohQQfBedAEcnlMvlstbGkR115h0HhbcRvLy8zESP1oqef+EdBrwdJEGWg8Gg5l7gde4BhBLC7SIFYhUZBp5zUXaoYAwezsj68d13t/0jig0Gg+yc4H1+LAQRrt0zQxjTYDDI1+WkvPwHziHxwF0Ivs5L9075DHHv2dl3pwTz7u6hMqOAcfozy71jjfsz6CURnI8fhDAyOUqRqxQsEJGGw2EtZ+FFwPP6Lh6n02en4gbuPlKSUkONQV9/6zefqrr7maKBwKcG8T0cCAReVnyULg9J0h+S9NerqvoX7aU/Jem7JX3fzZ8/+F7HYqfad8bdoeCEyM6f/xuiS0YBLRtXq5UuLy/z7yElEFgEDCd4LhwwDur9IatuI4eUQF7dMTAejzWZTNTr9bJdnQBDdkidgLJ7zo6q29DJZuB6V6tV/jOllJ0Z2+32KbLM8T24z2v6u91uJuYeotftdnV8fJyJlV//fr/XYrGo2dal23IIz5sod8wRCbDvu1jR7XZrIgo72wgBw+FQy+VSzWYzh2+WhBixxB0ciCn9fl/D4TDfV0QLJ5TuEPG1xhqhxIO14mUbkmpBh6wRP+5+v89lGJeXl3lstAFlDt2V4CGSiBP+GY7r7gVEH3d+lCUQZZkHr3m+gD8PvLcUMRATIPAEZyJ48PzxjFCCwusuICKMebkSAoqHoXqZFJ9DkGGd4vTwDhPcexeEuD+URHDOF6TLw3P7Lg682Hj0PT9f82+RKklVIzhJIPCNQnwPBwKBlxkfxaHw90n6DZL+SkrpL9/87vfpyZfmD6SUfoukL0v6rvc6EASGf+AfciHwPkiq74iygwyB2mw2WUxwyz6E9RAp8Z1ZL4mgdr0UExqNRs3SjmOALgAEGFLPTxtJdv+9bp7jYfsv0/69LANnBTkNZCfQgcFbF0La3FJOiYOXJUD2EBkY/2AwyEKDCx5O+GgPCRlnZ5d5YvyS8pzxp38Wsst4fdcekoeA4GNAQPD7CVmEsHOOslTDxR3PFvASANail7N4aYG7D9xqz3Uz174T72UMkPPBYJCDO5kPd+sc6gBBaCD3riwNcFeBl3H4OFgbzH9VVbUuEhy3zIAoxQYP7uTe+3X7PXfXCXMI3BHBGnXxwteHuyO4DrJKPJ+iFCw874RyFi95eFFcCYbn9l0ceDGRjo70+B//e7T4rHTdCSEhEPgEEN/DgUDgpcVH6fLwX+nZFZjf8UGO5eShdCI4nPA7GYcUQxwgRG63d0EB27yXH3hd+8311WrWfYfdd3gZB+f0XXXIuHdRcCLpJM1JG3Phr0PE+Z23gYQM+dxBoLwTAWTbd6c9V4FxQg4hZ2VnAN7nXRpwf/jxuC7fwWbsiBFesw75dPKHoOCp++z48z4vWYCs+w4097eswXdS6d06EGtc3PJjMq9+/30nnuOUO/l+Tt+NPzo6Ur/fV7/fz/PgZT+HBLZyPbpoA7ybhIth/jyxtl04KYU9sgZ8rfk95r9dTGA8/j536JRjBYeyFN4LPP+En3rLyUPXzHWWLolDYsL7Of8njef5XRx48dA8nmj/bd+s858iVUd3f70GAp9GxPdwIBB4mXEnmqyzA+s7lVLdag7hd4cCgHT6jrGkbHnu9/vZHo7tf7FY1NoplrZ2zwaQlAm2ZwdIt2KIl1i4K8IJNMcH7OAiajAWFwycVHm2AI4IsgTcng0Z9hwDrP3MJZ8hLNJbK3Ktw+Gw5siAqLHLvF6vc6cLbPtlOQjzyG7ybrfTfD7XfD7P46dmHYLrORaUNtB+08mvOzQ4F6TVSwq8Vt7nx9cK84Ag5e9h7lzEKYkqwpVnUZRlO17CwH3A0UDpAsGYCD+lpZ97x+d8DByP68WxwlosXTE8Oy42eTZE+T7O60TdXRbebcLnifGwbsprORRm6a97KUdZqsFnaBdLbgTn9vBV5qN8tks3QykuBgJ3Ean1JKfk+id+s7746wZ6UugQCAQCgUAg8I3FnRAUpFvb8iH47qEHJUq3QXbsTvZ6vZwpgJUbgsx7rq6ucglCaUf3XWt2ZQnzY+cVcuK2+vV6nYkf1n8PlvNyBLfqewmEpBxU56F4XpbhJHM2m2kymeRx8BnGOxqNngpf9BBDxsr1Xl1dqd/v6/j4WOPxOAc4ukMBMcCzCZyMuTDkhJG52263Ojs7y2LCvXv38txC2He7XRZnEIQQgxCPEGm4Ls832G63WVjwEg53m3g7Tlwr7nZwJwwZBqwVD+tzu727ZFxMcQu/BzGyqz4ajdTv97P1HnHJiT1j5j4g3kjKpJ5SEBc+3JlDKCnX7WsD54ALaE7oXaTzZ8VdQN6tBUGLz3vAIp9hvfqzXYpGPp8elurCQrfb1XA4zGu2FEN4/vg+cHHIgzRZo2XeQiBw15COjvQ//P6frX1bqpIUYkIgEAgEAoFPCndGUHC81+6g2909AwAS3Ww2804rx/JOAuzEOvFi97as5/bdSydGHvzHsUoy7bXywMsYIHgQZyeiTmh9XJAqdnwp53CyyY5tp9PJQY7MG7vo7oTw3dvBYJDJbVkKcHV1lcUEn1tIGMcqd3yPjo4yYV0ul9kpAdllLAgCq9UqZ1EwbieuKaUsFkAKfe54jZ8yWI9dc1pWUjrANdGhACLKeP3znlvANft8IECUhJRrRchgvj3DwctxELRYO17G4K4XF7u8QweCD2PC1cDfyf3gGlwY8Xvv69DPw7i9QwjPJrkJLjKU4oRnLCBKpJTyena3C/fayyh45ofDYe4i4Y4Hz6FgDZcdOnz9cG/8mgOBu4j9kbRvhZAQCAQCgUDgk8WdEhTc2v8seGCf7wx7in8ZgCcpkxWpXg8PafDaet+9hyxBoJwg+Y5zWXMPaStD7TgG14sgUobv+S6yuyI4H+UGBAV66UZpS0eAQXRhXrgOrhWHh+98e8CgiymMHZLLrrGHE0LW+f319XUeN0SZBH7fLUeg4fhcA+TPO4J4zoDPr98LXzueaeD5G05SKb/AKeDHcnGj3MUuxaIyvNF35KXbMEqcBRzL14yXDXgZAKUZXpJQlke4eMQ98PXMfPt5PE/AXQTMBeKDuwB8d790BxwqN/Hn2+cTEczvTRmW6a8xf8PhMItgLrqUAoZUF2uYJ18/fr/8d4HAXUHzeKKrn/p56YXLDg0EAoFAIPBpxJ0RFJz8HSKCh97vu9aQYVq+QRogu9jaPSDRybtnNJTnZceUz7j92sfj4/ad1bJmHyLvdmtJT6XWl+dxd8J6vc5jwuLvre48IA9SRtvFy8tLrVarvMMNmRuPx7lUBBLIHFAmUu7GMzZ2dj080UtF1ut1FkKwreM2oDwBRwBuD7e2Ixo1Go2n2jaW+QRlqYA7JjinrzPPI+h0OnmXHVHDySdEllIUJ8oIHPv9XqvVqjZP/qeTd46F4OLZCy6mlGKEE2cv6eCacH94bgL3RlLOmeAet9ttjUaj/CyUuSIuPvm1uovgUMBlKfpwDdwPF1XoKkI+iWej+Hh47in98G4knI97hnjoJTm+Pvz+sRba7XYuhwpBIXCXkFpt7f+Oz+pHv6unKHMIBAKBQCBwF3BnBAVHuYtZ7txjTceV4D8QC0inpJyjgK19Pp/XgvF899u7JUCuIFIQPk+IZ0xOPlwkgGhtt9tM4tklJdfBOxz4cVxMQCShlt6P4+0M3bHBHDWbTQ0GA00mE11eXtZqyDudTu4w0Ov1MmG/urrK5/SafgipOxa8rp9dYukJqZ1MJup2u7q8vMxODEgiJHi5XNZs97gCmEOOm1LSarXK9w9SWlWVVquV1uu11ut1vn/eccJbGvoaI4PDAxFns5lWq1Umo9ItkXf3C/fHswm435BlxrjdbmvZH2VIaOm0YG26sIAgxhrxEE/PqyAroCz1IBODzA/uSbfb1Xg81vHxcU2c4RoR0na7XU2ocVLO58oSCcaOQOalOZ5rwn+7e6Db7dbEC+m2xIF7iZhYuhgoaUFMcBeFO1jcYUP5kI/dyycCgU8aZ//oz9bZTw8hIRAIBAKBwN3BnRMUnuVGcGLi9eGQwHa7rX6/r+FwWAvWOzo60vHxsXq9XiZFEGY/ppMvt4aXRI/j+vu9/IHX3dVAur23jYRU+U4u5/M8Aoh1WdcN2WTnmPd7QKGk3PqRP8knYBcesQUhwHeum81mdgKUpRpkOFxeXmZBxHf/IYzD4bBmv5eUbe2+Y8x8uzODY3Q6nTyf7Bxz3xuNRq6JL7t2cP/5swz4Y35OT08z2YaEki3gmQUuKnhdP/Ptrg0v0yjLdFx8cYGjrPd3eAlCSkmbzaZWwlGWFHA8by3JzjvZCeRYjMdjPXjwQP1+v1ZG42PyrgguEDjZ93XJ38trQEBATPFyBYRARB46MrCuEagGg0FNrHGHD2N1B1JZNuElLP48+fPsolQgcFdQNaSq+d7vCwQCgUAgEPhG4c4JCu+GQ7ZpnAWUO7hlGiv/ZDJRq9WqkaVSdHBhAaHChQQnbm77L9vZQfwg5+4kcCLjgXQQaumW4CAUlNfJ38ud09LmzbncWs/xy6BIUAoHnlPg7gyOgdjgZRVej08HA8QBds5brVYe33a7fSqzwsMRu91uvhfuwnCiTEcI5szdB2W7Q8QQnBKdTkfHx8dqtVpZaIF0e1kFcAGozM/w2nvEEbfpMxYPrPSsAS+NKbMzILfuRPBSnfL58M94S1Vf/5SkEAyJqOJrsBQNfN372uVay1IfFwhZi7TI5JwurHjpDPeTZ3I4HGo0GuVSDp7fMq/E74uLLn7PSnANPm6eu0AgEAgEAoFAIHAYd+Zfy4ecCSUgCWUXAYgru55nZ2eSlMnL6elpDv/DLXB5eVnLHPAgOmzoXm/Nrjpk1MkSJMaJP4n3/HjdtucBeImDE0MIne8uOyn2bABIFcdyBwZkzB0Nfk7PHWB3t5zvsrOE51PQPQOC5/bxfr+vyWSi9Xqd7xdk0tP2Ibwcg11qrPCQQciw72CX3Ta4dg8klFRzP1CiwLo5OTnJgYPr9TqXYPg9c/gacHLqglG5niH0vFbea7/nTuS5V4gDhCi6sOD5AKxL3AmU1EjSdDrN83R9fZ07IyDE0Y7Twx99bbgA5hkOZYijz0u5XnGtcG/ducJ1u/iFwICTZDKZ1JxDHgbpjhF/3cUudx+42ONiCPcIQTIQCAQCgUAgEAgcxp0RFA7h0E6iVHcndDodPXjwIJc1VFWl+XyuZrOp0WikBw8e5NT+3W6XrexlWB/EmCwGBIhGo5ED7jwckSwD7PGQa4jrYrHQarXSarXK5Q6+s95oNLTZbPL1uPUdIul5CL4jD/FxNwWE1UMjncCSTVCWSLjNvCz7YCxkE8zn81wqAQkeDoe1dn/7/T7nNRwfH2diiijy2c9+NosJjUZD6/W6VgO/XC5zt47xeKzJZFIj1+U1X19f5/wEbPoutECEfYe91WppNBppNBppPB6r1WppvV5rOp3qnXfe0Ww2q5WneFYAf/frOrRWD7lbQNmmEAeHt7p0uz7XTG4CY2Ad+c46n+l0OhoOhxoOhznDAefFfr/Pc+yCgo/pEHq9XhY0EHEQj9xB484Ad6U0m02Nx+Ms/OEQYZ0hJiASIRCxlu7du5efQxcR/O88I6z3UhAjiJR74rkj3CO+B7wrSiAQCAQCgUAgEHgad0pQeNburgcklgSq1Wrp+PhY4/FYR0dHucY+pZTFgWazqcViodlspul0ml+HVHhnAnZM3VLtIYeeKQBJg6RIt7uqbp+nnhsLPwSPHV52ZMkD4PjkEiB2cN18BuLoO/g4CMqdWg9RhAyy+wsRJJjQCSUizGw20zvvvJNdE16OAClF4BmNRjo+Pq6JAY1GI7+HUEVJNbKMvd13r737Ae9HHKLzBNeMmODWdo7PDjzOiePj40xsl8ulzs/PNZ1OtVwua90SPBMAQJ6d3JdOBcbhZQllUKevP793XIfnYSAm+Ote7sBxeVa8bAfRqxRc3MHA2vN77+4IngvGwHPGnOLqwQHgYZjuohiNRrkTC7kYkH3GxrxWVaVut6vj42MdHx+r2+0+Na+escAzwXW4e8GDVH2c3t7U2616RksgEAgEAoFAIBA4jDslKLjl2P9e1ov7zi/t5ghd3G63km7bv9GVACt7mVR/SEQAnA9CD5mCxCyXy2yP90A+32n2vIIyhM+zE7z+HrINsSmdA5An/xMRwQUF5tBLMxhXGd7nJNRJ8na71XK51GKxyEF+XAudCnyHm9p4xAmOhfhRnhfi6dfHvXMRxWvjER/onOHXSs5FmWnhxBd3AuPh+shi4HMe4sh986BFHwuf8XvkoYFlGKCPt9ls1lph+m45x2bHvsy/KB0SCBQIKIhgBG36usclwNrz7A13Q/AZX0PkXCAica4yxNJLIVy44z55AKmvU8ZBiCPPYCnucE04JRAZmBNKOPyZKJ9zypzcSeFuo0AgEAgEAoFAIHAYd0pQkA67E7ym27MCjo6Osm270+losVhos9lkYgsJub6+1nK5rLkFnEC7dRwgWHAOdkadnE2n01zu0O/389jIaYCgYeVGUHALv9dvlwF4vB/C57vPzAmkl+uCdB7KEdjv93lckvKxES64BnZ4KSeYz+e53AHiRh7C6emp+v1+3r1GYEDI4Xr4nAseXL8LGJA57p10K7545wsI9mq1qpHpkmx7KCVix2Qy0Wg0yqLQfD7PLT1ZG6y70kbPD9fgQZG+TiXV1hbuAC8H4Bq9HMUDLb3kwkMiXRgAXDfzjKCDG4U1i4jBexBK3P3AfJedEjzHAuHDMzQ8w4CxQMp9599FEAQuF21Ye4h5Li65C8VzRnCheL6Elzq4WOLfJWRp4NRASHChLhAIBAKBQCAQCBzGnRMUHE4UIZe+493r9TSZTDQej3V5eZkzCyC7BKptt9ssNjiZZsfUa6jZTb68vMwt7brdrmazWbbGn52dabPZZDLrgX9OMimFaLfbeTylHR/Cy045pBES5UKHE113MmCL3+12Wq1WWQyB2FMrPpvNdHl5mctBsKCPx2ONRiMNh0Ot1+s8zx526KTPywjIIICosest3ZZLcA9TSnkeIdicC6LNfPguPbX/brX3PAjp1h3gAYKdTqfWTYC2opPJRFdXV1oul7q4uKi5HCCnvlPv7hXmfbFY5Br/qqryPLvrgDWLI8RLEhgbORLn5+c6OjrKnQwQLRBONptNzQHBeijFFifXu91Oy+UyOy9cRKPcAxHM7wHXt1wus/DRbrc1nU5z7gfr0x00rBPutwtWiCSsXYQ5niEPSGTOPcvABRvPQ9jv91kc6Xa7+ZlzJwPvczGH+4TDiXXL3HlpRSAQCAQCgUAgEDiMOy0oeKgbif6eITAcDnVycqJer5dJlxMaSZkUn5+fa7lc1sIOvbsD74eYY4+nNny32+nx48c5tA+C59Z/iCnhgd1uNxMb32H1enEEDLIAEAMgX8BDBt0mzjUSNulCBZkFBCsuFgtJyhkF5Cb0+/1cpgBhlJ4uQWGuIGHUw0tPdpUJr3TxBNI4m810cXGRMwoQD7gezscxyFBgd329Xud7CdGHWHpWhbtTcHi02+3c0YB7QtAkwYLuQPDOGaw95tnXGdcBmWWunJgzNxyPFqfj8ThfX3lf2u12rXSG83HP/J546KC7UXDqIHowBs/l8LwJxBnWyWKx0NXVlYbDYXbVeFYI8+RBjAhpXKt3KfFyJYQHBDREEN7LuvDsBq6L8hDWhLtZXKzwciMPmsQp5C4P1gXiiJeb+DUHAoFAIBAIBAKBOu60oOC7vVLdCg3phHhDOCFObnuez+dar9dPWb6dqHitflVVuZRiMBjkHVt2bReLRd4Z5XgeMOfWfcgyu/hlAr6XcLhIIdVbCgJcEBA3SA9hjuwal20V1+u1NptN3s2lvIFr5O+Mz3fkndz5D+corfq+M49LYbVaZQLpgZgQYe6BOzC8lSNkFcGFnWyILiINhJHdZt+xRxhgLAgw7gBxlGGZEFkIOvePNVh2HvC5Y60huNCtgPBOd6uwFiHeOC5c9PIyFs7j5JkxeimEB4x2Op3amsf9QRkP5S2c71AGgY+J45TCTJkjUbou/Jks78WhgETWBfcbQQERwp9Bnx93JHiuiIeeIo64CwKHTSAQCAQCgUAgEHgaL4Sg4DXr1G4jJlA3zS6ukxKI1cXFRS3hHocC7wEQeEm57R5dAGazWW5P6Lbvsqbed2j9POzycnx+z3nLsD1JWTzxsEafBwg5ZRLsqHsYJcSNMgPfqWd3lr9D2CGeCBbMmwsGEDG/V1jUIddua8d6j53dywkgxF57D8kl+8LH5mKHk2cIo4sJTki5T4gcHI9z+1pwUUpSJpfuIvHAx3In3LMEIMa4VgaDgY6OjmotRel8wLWTVYDjxrMHnNCzFhAZEBF8Z91FLw9sRIRgTZEn4TkknldBFw6eMXcF+Jy4oOBE3Y9ViiVeYuLz5t05Wq1WnhfPUGEdMl8u7JRhlbgTmC9cLGUAI86X5XJ54JspEPjGo/ngga7bn/QoAoFAIBAIBOq4k4KC7+JT/w+hgbBREw+ZY5d+t9vlIEY+M5vNcvcHyLB063gouy00m82cDYDDAbu+lxX4Di4tByH27Mo6SfXdWRc+IHYliS2dCZ6RwO65k1is/ogVV1dX2Z2x2WxqAgKBfBA2SZrNZvlYjG0+n2dyCjnHHTIcDvPvIXf9fj+XWFxeXuri4qLWjpH37na7LLx4GQi7y9xTOmkgGCAiOXGmGwBrwl0Tbu+HNC+Xy0xyJWUHhbdt9HIM3Cm+o+45Dx6q6VkMrAPKGCjnICyROfLOB5QOrNfrTHq9RId1wt+97IXr9qBCF2dY3x4U6T8XFxf5vIwJtwJrwDMRvPuJi05eFgPZZ5xeyiEpP0c+Jp9DhEPWKN1GyP9A9HABAEcLAh1CGHPP5z3XoXRYsCai5CFwJ5CSvvg7f4Kue9V7vzcQCAQCgUDgG4iPLCiklJqS/oKkr1ZV9ctTSqeS/oSkz0v6kqRfU1XV+Qc8Zi0x31PavdzBAwfZ9UQ4YNeeHXLpNkgupVRLqod8gWazqddee03dblfz+TwTYoi8jw+ijwPAbdqSau8hHM+JjqTa7ryLES4w7Pf7p1okej4DYoGHSnq5wPX1tSaTSU7/91IPXveQyf1+n0s7uA7gdnZvp8jn1ut1Jr+r1SoLOxB1r5OHREIK2Tn3tpDsliNipJTyzj6EFcLY7XbzeMhkSCllYux5BqwNd7CwK85uN84EiKXb5bl3Lnix6+1Wfw/+9EBNjs943c7v7StZK76L7gGPPi7uDUIRrgDWFaSaEhuu0/MpIPnuTEAk8DXL2nHXjbs2KAnCQeH/zTV7K1XuN2vaczAQCBeLRS4dGQ6HWSjChYOjxc/B2jk6OsqvebtYBD7mO6WUO5u8SILCx/FdHPjkcfQtn9OP/YY3tO/s3/vNgUDgE0V8DwcCgZcRjfd+y3vid0j66/b375X0Q1VVfZukH7r5+wcGhBmi6bXQ1E0TJAhpgqy7FZ5d51KggDx58BtEbDweq9fr5XaTjx8/zkKF7+qXWQEeVOe5ANIt8fQf4PZsiKHb+tmJx86Nldxt/U7MfPeeHd8y3wDSyvt8d57PQ8Ddxk5HA5wCTjARcHzXmzIRHANeD++dO8r2hIgh7OD3+32NRiONRqPc2g9CShcHb7PpgYGeR8A8r9frnIeBewMXgWcVuADk98tbgvLfnoPgoZ6sl0MCmYO5L3/v4o8LYJBf3uMho+5M8NwR7peXVJRhp+5wQQTiOtyR4WuX5wghAFeIr0d+XKTysTIWL09wwQDHAPPLs0ebVn7cJcQ9RcxwAYdSC55f5gMBiet6gfCxfBcHPllU7ZZ2J3tVz+P/1oFA4ONGfA8HAoGXDh/pnygppc9K+mWS/g379XdK+v6b//5+Sb/ywx7fE+ztnDUxod1u11o1stMICXFBQXqaJLp1HQIyHo/zzuV8Ptfjx4+zm8HzA5wgOvGGvDggUvzpHQEk1X7n4gek0OvpERQ8KwDy5V0gSvs4O8Zljb7PE0IOvz+ULcDusLcB9FZ+kFiOgTDhaf78cH1+7XwO+/1wOMytLcka4Achgev3nXr+7mn/ENTFYqH5fF5zr3hXDxdynFj6tfo9LTsouGMC4cXLO7iXZQeEUlTw3ASuzTMRfL2U7TYZJ9dNbgadFlwUYY2UgoKHbULMfR74rDtW+PEuEr72eb8LPhB7dzh46CeCAs8h645yDO/0wfFZF9xPf4aYJ9YsPxynDKC86/i4v4sDgUAg8O6I7+FAIPCy4qOWPPxBSb9b0sh+92pVVW9JUlVVb6WUXjn0wZTS90j6nnc7uO/+sgPbbrd1fHys09NT9fv9TCooB4BcrVarXPuOtf5mTLk2HVIKacASPh6PJUmPHz/Ww4cPc7YARElSTRjwsEfGzTmcgBXXn3/vu7z+Gm4LSCe17U6gnUA1m82nSh0kZYLbbrdzN4j9/kmXiouLi7xjTrkBtegQOEjgfr/Pcz+ZTNTtdnOZCUTQAx15zXe5yaXwjARq8LkP1K9vt1u122195jOf0Xg8zuSScEnm4fz8vFYqwli519ItgWw0Gjo/P9d8Ps/kErGCMgB3h0i3ZSt+b7Hhe1kKpJud/NIR4E4U36X3zha85sS3zNZgHC6ceN4A3RDKoM5+v19zAvj5+W9ItWeVeBcEDw/1TAw/hq/d8jlhrZbPBmvCBSLWOC0+1+t17Zn147owQJYI94H7iktlMplkkYFSCX/OSlHqBcEf1HP4Lu6q/zEPMxAIBD61+IOK7+FAIPAS4kMLCimlXy7p7aqq/mJK6ds/6OerqvqCpC/cHOuppClIi9d093o9jcdj3b9/X8fHxzmcr7Q5V1WV0+rLJH/pNrvAg+6qm5aD5DO88847evTokabTqa6vr/O52F2GgEBmPOQPwoal30UHSBm7o97mruyu4ISGUoNOp6Ner6fRaJS7Tfg5vB7+6uoqByUSlkiNPuTWd5AZ42azyaUAi8Uit5ocjUZ64403dHp6mnMGcDF4or87HHCU+I4xWRJuUUcMWK1Wms1mur6+Vq/X0zd90zfp/v37tfr70WiUcwsoNXFXCI4H5pPygMvLSy2XS02n01pI5Xg8VrvdzjvkTi5xUfgcS6rdF8QYzkXdPg4OQird6UHWQum+8etyd4Kf3zs6UGqBw8LFDx8P94A59JBGJ9LewcTDO6UnAZ3ekrEMfvQ15U4hL2dx9wLPipdMcB2IIgSKkgOBIOUlRt46lfXG/FdVlUNZyTghd8MdNNxrSbXyFc9Wuat4nt/F43QaqX93BF/9Pb9AV32palaS4rYEAncZ8T0cCAReZnwUh8LfJ+lXpJT+YUldSeOU0h+R9DCl9PqNEvu6pLc/ygCdFPZ6vUxynMiwk877fccTdwOvSXWLuO/+IlzsdjstFovc1QGhwgP9IIqQT98Z59wuKHAdACLqBNXt1YgXbm2HDGFd90wAShn8uqlnZ64gZlwHWQX+eUg3oXRXV1caDAbq9/s6PT3VcDisBS6yW+9dLzwjAKs98431fL1ea7FYZOs94+bvnU5Ho9FIx8fHuSsEFvzhcJhDI/2+Snrqnjh5pdQBEQTSPBgMaq4ARAXcHmWmgQctsh44T1kiwJjchcL68XBMXyte7uDr0x0OXgoE0fb7UFr+S3HLn69yJ55jeEtGb8fobhDWgpd+QMiZc86D6OQCia95Fxt8PbpAwTzwntKR4mUwnr/AffQyHe824SUyPlZvjXqH8Q35Lg58Y3E5rHQ1DF4RCLwgiO/hQCDw0uJD+3mrqvq9VVV9tqqqz0v6tZL+s6qq/jFJf0rSd9+87bsl/eBHGuAN8cI50Ov1ch09pJhyByftXkrgZATi5MF9EFL+Gxs0u+ceHgcQLqTbcgNJtR1adyAwNkif29s9QM7D9LwTACQNgUBSzd3ANZcJ+mU7Qs+aYKfXiSnlIwgqXgZyfHycOwRwLEghc+dBgH7vyJxgV3i1WuXOGOyYe0cOchp6vV6+1qurK7VarZqohHhQwkkv9wpHBTvS7GQfIo2QWXeBQDY9t8KzLACCAmGf5Tr0tVfeIyftZdBi6SrhWE7C3VkBIfYwztJh4dfl99JbcPpa9owDghG9tIG1eiiA0cNDvSMEc+idLDyrwgMsXUDj/nJN3BtKTXy9IWx41oi7cnyeKatg7u46vlHfxYFvDFKrreZP+BZVL0Z8RyAQUHwPBwKBlxsfuW3kAXyfpB9IKf0WSV+W9F0f9kD8434wGGQr9HA41Gg0yv/QJ60fMkSrPK9V3+/3tRBFsgVcaID0+zHdFl7uUkOYsGpLtzun2LCdjEKmIGeQLg+DxF6PfRuSjpDggXu8x3eFPS9AejqxH3jeAuOF1D169Cjv4pOZcO/evexOQJDodDq1HAMcGxDAdBPe6O0QN5uNptOpLi4uNJ1Oc/cH5g5Cyj0ej8fa7/fZ9p5S0mQy0XA41MXFRd5hpozES0tcnJH0VImF50pQCsL92+/3OZwPhwoEFQEAku4CEGulzCtgl93Js5Nvv3bKabh/nhfAPPGnB1x6CQa2f8bo5Fq6FRC81IFjIlgh2JCDQZmKiyCsVSf83INSMIPs9/v92v0uwyl5tvgTxxDPt5e4eGtMz+no9XpqNBo5C8TzKPr9fl77uFS4b/zwXeOiyQuK5/ZdHPjGoflNn9Hf+G2vKsocAoFPBeJ7OBAIfOrxXASFqqp+WNIP3/z3Y0nf8SGPk/8bAkInh16vp+FwqMFgoJOTE/X7/ewkIKwQEgABcRs0ZJ0fzgfx7/V6tRp22kT6Lqi3mZPqQX+cC6ICGYWsDwYDScoEbLlcZnKG8wKy63X1vpM9GAx0dHSUyxLW63V+j5NQdn49QNKzKJxIug2d+aDsYDKZ6PT0tDbfknKHDeryl8ulGo2GBoNBdhHgHmi325rP57ljRtmGsQwp9A4JHHuxWKjVamWXBMSSXAIXkBBf3NI+Go3yjjf30a/ZxSNJWiwWOjs702q1yuvnEOGE6LPeEBLG47FarZZWq1V2XfjuPzkApeugFLrc0cJrzBnPhmdusBY8iwAhrczNcPcMaDQauXsHXU5o+8la5nhkl/AsuFsEgQKhhjXGs1zeM67ZhRkXSVyU8LacR0dHuSwJB89gMKgJeovFIudxeLkO98NzJRCU3IGBAPKi4Hl9Fwc+Gax+1c/Tw5/bUIgJgcCLi/geDgQCLxs+DofChwZWZ69/xzbuO/VY1MtQQEk5U8FrtzkOJMpJDETTCbXXi0u3hJ2kfnbBXVDwsDtC+C4vL7OtHlLoddu+28vYyzIKr7eHKLlwgTDAHHh4IdcAEWaOfFca4QbSyXGPjo6yU4Dd3svLS7XbbQ2Hw0z4drud5vN5zTbuO7vcCxcSymBA7i27zggnkOz1ep3nkXNCdMtrdIKNUwICTCYC5NTLM3h9tVrlH++g4VkDkFm/3xB5nCR02sDpwXr2tezClq/H/X5fey9z5KIGeSKsG87BD6KOOxd8/XmpjOcFMMe4NFjzLkR52RBr10U1L6dxxwZk38/N9bm4R5mFiwpeloRQ0mw2czcTHDEIAHw3IEZ4NwrEHC/n8NIMnjXPdwgEvhG4biddd0NMCAQCgUAg8OLgTgkKkmoEmh/Ile9yQlIhE5B+rOoQCXZqPdivJHCSaqS+DIFzEgR5w7rupI/abFLnnUhCcslEcGIKsSkD77zW3t0G7PxyTh+n28a9zt5rxA85FBifk9nRaKRer5fJId0MvIXgfD7PDoLhcJjnpdvtar/fazab5Wt2wlySSg8zRICBYELYIfG0tPTAROaIcXEt3FfPoqAcgt8zT9vtNmdHsIa4xy7K+L3gmJQXMJeUpPgOvos6TqQ9g8ADGQ+93wWFbreb14KXrkCIEXU8j8OzDiTlsoGyK4UT8nJtuYDl68/XHdfCWsDVUpZHuEvDszd4lvyavWTEn3eOg0OJ7wWcI2UQpM+vdzgpwyYPlToFAoFAIBAIBAKBW9w5QUFSDszzYLtut6vRaKSTkxN1Oh1tNpvsAoDgYdX3ALZ2u63RaPSUtV66JRdlDsChEL1yJxNiA6HiNXamyRnAvi+ptlvtuQjSbd142TEBsocrw6/Ra9MhXd4xASIOyqDClFKtLaC3Uux0OnrllVfUaDRyNwbGzC72bDbTw4cPVVWVhsOhJOWyFHaPyS3wlozslJeCS+luwP3AbnRVVZpOp3r06JHm83kWOZgnxAPGiwPE2wMimLjQgLixXq81n8/1+PFj7Xa7mkjhVn4XhxAMIOQcl3IH7oE7BhConMi6M0Z62hXhlnxcImQceH6DOyVarVZel5vNJgdgcqyjo6Pc5YIyB+ZpNptpvV7XCLiTcsQ6xBAXKhCPKKHgByGQ58vdNIgALqAhenmZAz/cLz7T7XY1GAxySCvPGnPiTiIPoXSnDM+el5qUgkkgEAgEAoFAIBC4xZ0RFDytH/LgwXKTyUTHx8e5ZeD5+XmuyffddcgMAWzeYrGs8YZwYLF3q7b3vffdbbd/+y6zVG8P2Gq18g4/RM3dCWU7w/1+n0sJIJxYxnkfFn92tY+OjtTpdPI4PP/BSaZ3IvASABc3+CzkjHmbz+f5vDgTFotFDm6czWb5WkejUSb/EDucGoxvOp3muUVQYT5brZbu37+f8xrY5e92u9rtdprNZmo2m3r06FEmk2WmAdkXdChoNpt5rCkljcdjnZ6e1nIWqLWfTqc6Pz/XcrnMx8Rp4eTUsw5Yq4T97ff77KBwwcTLD3yNISSV6xcHAPeMshJKQrz9IUKZiwmsu/V6nTtquMuBtpzj8Vj9fj9nXczn8+zQ4JkohTfKRRBUKCXxThCcYzKZaDKZqNvtZucO142ggJDibU7d+eMOEcQEWrtut9v8GTq0cH+Ojo5ylxDuDffR3UZlxwnEKxcbAoFAIBAIBAKBwNO4M4KCt/4rdxURFNiVpX7eRYLSRk85AeQBwgBp83IIyKDX9rstu9x59dA53gNJhLDQCYDj0pHBd10hm/yOYEjImlvecUgwPy4mcH4XPtySXu6QezmHOyTKWn8cF5A/shSYk9Vqpevra41GIx0fH+u1117LbhACM7GdX15eaj6fazqdZnKPw4P/JtCQ+Vqv13mOud+SauUkkmrtDX0NQe7ZaafLwGAwqJHP5XKp8/NzzWYzrVarLKocCvN0UcodH4BSgaurq5p9HjB3LvowXl9XHp7I/aXkBweJu1RcuIAUI8hwD3jOEJiOj49rczebzbRYLHKQYrvdzvfKSwo8O4I5ZO15+Uq/388tXilPYD0xHn9mEBA9jJExu6jAcQgJReRwIdCFOObdy5tcMODYXn7kz1QgEAgEAoFAIPAyYvdL/x7NP3sjGfzrf/Lge+6MoOAoCVu/39dwOMxWe1rYOeEofyDKEEAXKbBbsyNKcj0kz5PvPRMBIuSBfh745+UWZeeEsmWfh/NBBHu9Xu4aUNbSe6kGv/O8AE/thxB5RoLXnZdOC8ir16+ze+wiSlVVmSxDio+OjvKu//Hxsdrtdg41xJVxeXmZywm8cwLkzQWFo6OjbLvHbcCccs8ROJg7ykE8H0NS7b6QzzAYDNTr9fIuNp0M2O3e7/d5TZQBj8DbeZaZCswRoozvtDtRLcfqgpp0m43hWRiIVLR0LNeI77BLqpWWeG6Gk326LiDg8H7EHsbPZxinBzxSruCdE3BJIHodElHKgFMPXHWxzq+Pc/M8Mk4vSWLc/LeD+8W5KVHx0hvGxpgDgUAgEAgEAoGXDY2/6yfr8U9rafnZd88Uu3OCAoTbQ/BGo5Emk0m2L0NenDSXZQhODNzt4KGPkDMEBezvTmYoBShb5JWtHUuHAIF5kEfIqu+EQjqpie/1erkNnjshID++W0rOAMF/7A6X4DpJv/cyBH7H2Nnx5ZzudmAu5vN5LShzOBzqM5/5jF5//XWNRiNJ0nw+zzX4V1dXuQ3j2dmZdrtdLouAaDIH3W5Xl5eXtZIKdp7JIiidAe48YdySamOnrGUwGGg4HObd/aurK63X6+yaQEzAPu9iEpkKpfUesu1uDu5/ef9ciGJ9OcoxIxghflDOQJAi68EFMpw5V1dX+V67gMP7+v2+Op1OdhnMZrNMnjmOO3mGw6FOTk60WCxyGQXi0qEuCWSeME+sL9qKIpIxl4h7HkKJ6OL32p8xXD2sX67TxRN3JHkOA+UynA/hjfnkmKvV6tDXVCAQCAQCgUAg8OlESmr0evrirz/RvvPeAeV3RlBwIaAk/cfHx9kKzW4/RIf3Srep+5A+CEO3283kVLptPedCBXXjEP+UUq4N32w2eWfdd/QROCBM7MBCFD1dn99D1iDFvV4vh01CavmcuywghwQ8NpvNbOf3Y3uOQ0pJo9FIg8Eg29c9IJF5Y5ce0g4Zg3RxPbRchNSORiN97nOf0+c//3m9+uqr6na7evz4sebzeRZmCPjDVeIlJsznZDLJQY6ID8vlUpeXl9meXgoJEGSIqdv7vR0lawh3wnA4zDX4EGOuC5EHUuq7+x4M6GSY8bC778GS7vw4lNHha98zOhBOWA/7/T6vE1wcXoaRUtJwONTx8XEm5ZzDxQkIM+S90WjkEo3FYpGPtd/v8/UcHx9rNBppOBzq+vo6l63MZrNMurlG5gl3Qr/fV6PR0Hq91nK51Hw+z2uaOcQJ4sGX/kyTUwHxd3cKLoT1el1zHPlz6nklXhJCQON6vc5zwtp3x08p+gQCgUAgEAgEAp9mNH/qT9Tf/sdPtW+9v38H3xlBATIjqfaP/06nk7MTpFsrtCewe302O6We5g68TR3HHQwGmfSwE854IH+4BoBnDFAaALH37AUvQ/ASA8i8h09KyiSX7AB2mhmPB/B5Yv+hUMhGo6HxeFwrdSi7K7hAwy64pDxmOmg4qYKQdbtdjcdj3bt3L4sBzBUCCju8EOMyHFJ6sus+GAwkPenOcHFxUXOJeAkLZJ4fJ+gIP9vtNotRXnff7XYzecVx4OUpJUn3z7LecC9AfiGqCBnc036/X9vl9vwC4GTfBQon3GVXEYiw52wg8NBOFXECR4V/hpIWHCE8N94BgnWGy4LyCjIWptOpVqvVU2QbkWc4HOYw1JSSlstlbsVJ6CdzwWe8o4WvV0g/Y3dHEs/farXK95uOJcw988j8sfYYA2u0vNfldQUCgUAgEAgEAi8LqpS0b7//TbU7IyhIemo31VtHeh26ZwFAKCGh5e6kCw9ORiA+7Opjx/Y2fuzcs6sP6fFMAVwRLkZI9Rrw8tweROitBp3oemaCJ/9zzDLrgWt2YsqxyxwAJ66lZZ3fcR7vRlF2Lej3+xqNRrmef71eZ1GHEgBP3Icwcm7KWTqdjtbrtRaLhWaz2VMZEuXOMvPAecrwQdaNB1p6+KU7BxiHH9PJJV0+ymDL0uFxfX2d55tyFJ9TD11EDOD4vvadcPMnu+9lfT/XhcDjhJh5QPzwzgqcByHJ8xB8TSHCIBbhPPHyGneP4Eoo22e6k6YsZ3IBhd91Op2asOFziHjAOi2zULhWnyvuseckePgqIgYiTlnKEggEAoFAIBAIBA7jTgkKvmsJKfT2eNITUtHv9zOBvLy8zCTUa6c5lu9qQ15arZZOT09zycJms6l1FPC6ctroEUAI+fDAPkgW45NUEx2k2x1cCC2EH/KFgOGOBv88afQuZDiZc/LFsX231633XIekWk0644bMueABCXNbO3X40m1IHwICc3h5eZlFBHa9EYXa7bYePHiQRZvpdJrbG/oPJQROJL1EwDsr0CoQuz0ugZKM+3UfHR3V3C2sGcglu/8eash95tyIDeQbePgg997XF+UcvO5Chjt1yrBFz9Lw7AmeE9YFpT7MO44IiLPPG+sfUQ6XBWIRLUDn83mt5MDHcnR0VCuvYSy00NztdrVyFQ/lZK0jJtCq07u4eP4BmSWU+bj7wLM03Bnk88m4+c7gGJQblfchEAgEAoFAIBAIHMadERQgFJAniNJgMMikg9/x98ViocePH+vx48eSlMmcdLu7CjlBbOh0OhqPxxqPx5ksXVxc1Oq7t9utHj58mLsS+M43O7buSvBd+NKR4HCxwdsJeigiooLvrnuwHKTZd5khSFVVZXJJ+KCT7jL1vuxA4PZ87sFwOJSkmiPCrfS73U6LxaLmAqHLw263yzZ4D8hrtVo5z6DZbOrs7CwHOTIfEE/WgNf8s5OOY4JrOzo60nA41Gg0yqTTySqiiId6usOEa6ObCASbcEHp1l3gIZx0Iun1etl2X7pBKBvgnOy0I7bQFpJ16nON2wJyjbjAGi7zBSD3CG/kY7jgdnl5qYuLi7z2F4tFTXCiPSViwsXFRU0UoJtFSim34pxMJtlNRJtQsjN4PhES3CnA8zAajXKwJ2UynjtStoJlDrx9qncI4fl0wYHSDa53PB7nEhXmm/wLz3IIBAKBQCAQCAQCT+POCQouJkDiIBUQEkgICf2LxSLvxnobQogWQgI7j+xeQyTPz89rmQek/mPhv7q6yrvenANS6sF4XIekmmDg11i+BxxqJehwsYUfiJu7N3if76A7YZaUCV1Zjw8B53XmlHFdX1/ne+CCAiQXYuxp/sPhMP/+6uoqE0Pmcjab6e2339Z0Oq1lNkCM6X6BQICrgPmF2EPQsfl73kQJ3CBlG0pfY959ouwi4uUjBGsOBoNcQuOlJ2QcuHhDnoSXcLhDwd/r5T04QxBZOBbXwHiZdzIGuLe+O4+QdnFxUcvsQIwaj8dqNBq1DIRDaxKnCgIW6418Ar8uRATGwFzihjg5OdFoNNJsNsvXxbry1qc8QxzL17B3PeHzni+x3W61XC6zA4d1yPtx3LgbJRAIBAKBQCAQCBzGnfnXsofvlTZ7yB0kjN18dsKx1QN2GSFs/E66JUGS8jHW63WttR0dHyBe7EDzOUiLdNtesQTkybMAfMfTa9klHTwGgDzjwHDyLt3mNLg1nrmDcCN6eCYBggQEzMsiIOieVQF5K7MIuB7ptoTCCRuODtphsuN+fX2dg/5oWeklIh426IGJZDFIyin9CCkEZnr3AZ9zL//wEEvmmPllPMyV2/P54byeG0A5waF77I4JxsrvpVtByIMaGTPXjLDV6/WybZ/PE6CIs2O1Wh28R4SI8uwwXoQ3js8zQkYE42YOKY0YDAbZOYSrg/N6EKnPAeOB8LuzxNebzz/31teIO3j8x0UiFyLczYKbx58lF/2i7CEQCAQCgUAgEHh33BlBQar3sPedWxcU2u12bl03n88z2XFS5A4HSJuTOxLusT6TPk+AHHZ9DyEcDAZZzGCn3MPdnBQ6GfcWhtJt6J87BPi9j9PnxMmuJ9V7Mj9k0AUFb33npNRrxkn4L0MepdsyCEQC6VaY8WBDxsc5IZK9Xi8TNpwUWND3+72Wy2Uud+A4zAHkmRIC7rOkHAgpPRF3IPIQRy+vgFg6EITKdeOuARcMEEAQRDx7wUsyPBjT72VJpiHmLsqUawIhAfJMNwxyCiTV7httPHHiuHDiLgHuKWvc1yz3rNfrqdPpZIGN95UtM1NK2ZlAichms6l1Y/C5RMhwAQwxYTKZaDgcajqdPtWBw9c8ggPw0hMXxRiDB1Ny7dw3hCByE7zTB/ciQhkDgUAgEAgEAi8T0n6v5ibpulNJ72Nv7c4ICti5aUEIUYAssTvfbDazswCi46UDlDSwYwwhWS6XtXaPZ2dnWiwWWq/XuZ6ccEBID8IGIgeEifpsz0wo0+GpX4foeKcEJz/eUUG6LX3wxHsIkQskdDaAILGbzzVyLuCiBMekRaN3uPDPuvvC69f9Ojz7AgKMmEONP/MAab26utJsNtPDhw/1Yz/2YzWHAO9jzrvdbo0kNhoNvfLKK5nAejAl92G1WtWs715awL0uSSuCTLvdzuKFi1gci/BGSgPYnWd83iXE54osguVymXMXXJyCMHvYJ+uZUozj4+OcGcD6Tymp2+1qMpnUhA3mBiBkeFgm50R08OyNqqr0+PFjLZfLWg4B94Dz4kxYr9c6Pz/P14Koh4uCufMykNFopFdffVWnp6fq9/u6urrKz2FVVXksfh9w1ZCv4J1FXEDjOSjXLPcZpwfCn6SaEOWCVCAQCAQCgUAg8LLg+kf+lr71n27rR/+PP1v7znu3j7wzggJEF1LpO7mep0Ayve/OuoUckuQ7m6TpS8p15bvdLv+52+1yaztv5+dkDuLn9dlOur0LA2P11oROasoshaqqcngeZKm0evtONwSVgEZ28yF3h1wPXBO7sOv1Ol+vuw28RAAC5jZ83+3Hru4dCEajUbbDs3NNy0Bq2ufzuc7PzzNhZecbYjcYDDJRl5QJsKS8m71arWqEjzGyRlwgQQy5urrSYrGoBfBxfIQmQh89wNLvNcckVJIdbsg995N7w2dwkzCfLpKwPnxuy+4gkGsI9XK51OXlpbrdbs4foEyB8SCquAjAmu71ejl3gPNPJpN8jMViofl8XhOsvMUj45KU1+5ut3sqB4K5oIuEB1ienp5qMplkt8n5+blWq1V+hlxEdAcM14WDwh04lDm4swe4+EVoq5ekSMrXyzo4lB0RCAQCgUAgEAh8mlFd7vRtf+ihvvrLXtPic+/u2P1IgkJK6VjSvyHpp0uqJP1mSX9T0p+Q9HlJX5L0a6qqOn+P49TaAroVvRQKIBJu5XZBgR1ediI7nU4tVFBSJngQL3bpPRUeMuK76u4skJTJou9wMga3vkNMvfzBnQBOuMp6ehcTnNi6OwPydciiDRFzkcGv2+fS3RJuS2e3lx1cJ5Se6+DAQu7hfIxhs9lkwupz6eUiHvroIku/38+k2jtXuKXdwy29K8Hl5WUOIOQeuOji4ZReruDzwXxD8KXblpmeleDlOhBf/u75FrgzSsHGywbcOZBSyvcOou/Em+N6WQdk+9BaQCSg/AAyza4/whzX6mvTr41yEF8r3p6Re0hGg4dY8jziTOB5p4THx4uDqMxK8OeKe8Y8e8glx/cyCn9mPHPCBcG7juf1XRwIBAKBD4f4Hg4EAp82XP/tH9OD//5YvXeebJZ/6Rnv+6gOhX9Z0n9UVdU/klJqS+pL+n2Sfqiqqu9LKX2vpO+V9Hve7SAICvzj3tP5IdUQGt/tlW7rv534eoghteAlWUSYgGQSYFcey3dZPcCOsfiuPp9ttVp5R97zEHAx+K4o5BB3AqIEu/Ze2+0hgmQHcI24KJhPjuNkivP5DjYODS/N8F1zL7mQbkmoE00P0fTwR8iv51HgjqBzgBNcdv+9pSACAPMwHA7z+F0AKvMsEDy8hIBr5nUXrjg/YgSChs8dYgddCbgPq9Wqln3gAgpj8gwIiLbPlXeS4BmQbttGko/ANWy32/w7z2Nw94qvV+aV8x8KK8UdhABALgXEHhGrFAsQpjiHh4K6U6LRaOQcCBdIWIe0oUQg8e8Enl8yT1y0cYeBh0b6exDbcI6wfrmviEasCw8jfUHwXL6LA4FAIPChEd/DgUDgU4fmf/7fafIe7/nQgkJKaSzpF0r6jZJUVdVO0i6l9J2Svv3mbd8v6Yf1Hl+eTkBujlXb/S+JBbX7EG/+m8+2Wq1ca87uNJZsyBRiAm3k3NpNCB9jgBi57b10J0iq7RJLt+SGkoabectEnWDC+XyuxWKRx45Fnz8hi2XaPu39IL8ubDi5I48C+7uPf7vdPuXOaDQaOWzw9PQ03xvs8dTO8x5vw4lTARfFbDbTbrfL13VxcZFbfV5fX+f7B5lHCOB6Ia6DwSDPxfn5uabTad7RdgfJbrerhVNKTwgjJS2sJ8gxxBtCDJEtxQReSylpMBhkOzw1/GQAQHzLLg7enYDzSbdlKJzTnQuDwUDHx8e6f/++xuNx7mqyXq9r64P1zLkh6F7OwLpmPTM3/qfPE3MO6Ydklx0y/DpcGIKMu3BydHSk0Wik0WiU3RC4c3gf+Sc4CBAtttut1uu15vN5vicIAZ7l0Wq1as+6u0goxSF4ku4hCHllFgfnvet4nt/FgUAgEPjgiO/hQCDwMuOjOBS+VdI7kv6tlNLPkPQXJf0OSa9WVfWWJFVV9VZK6ZX3OpAn50PkPETw/v37arfbOTywrNH3nV1ICXZqHAiefSCp1gUBQlHaoMsdSt9tZjezzFFwMgoJK2v9veUhO/XYyyGIHibnbTIJw/MOCr4r7uUIEGccGJBpjrlcLmvuhOvr61xb3uv1dHJykoUPxtRsNnOgnbdKlG6DKSlNWS6XWiwWkpRJL2PxMhQXYLrdbra2AxdJINUIAr1er3YMdzhQT+9tMXFYQLgpd2EtuRvDSaaXwKSUtFwutVwuc9Cgh4hyXh8DO/xkVzAOhAHfZWfdjEajHMS42+20WCwyge/3+7ndITkC3qmEe8u8MvaypMbXOOOXlEUZxBrKcbxExkt3eP5YBxyPbAkCVxEpcN1cXFzUOjKw/hAZCdGkJAhhwsUTnBSMFUcE40Hg4NlhDLzfgcjnPy8Antt3cSAQCAQ+FOJ7OBAIvLRovPdbnokjST9L0r9aVdXfLWmpJ1au94WU0veklP5CSukveLK6k7l2u53b5EGe2DF00gxZdcu87w5760MvC/DcAA9BlPSUmAD5LUUJz2PwzISSnPJ7zlG6JiCdTlzdvs05yuwCrsNb5XlgHqSL+eGa2fGFqEH8BoOBxuOxxuNx7rjhZSf9fj+TTW/H54IQBBTCzXxut9tsWWfefU5xbyDyYO0HHIM8AtZBOefcL+6Rl0dwHM/N4DjuIjgUQgnJXa/XmbBzzeQIsPuPyALZLTMznJBz7118ImgTAQgRBoEC0YZSAe4nDgafN7/vh0p23LXC8RGr3MHhz5A/R17Ww2vuwkAE8DagiAUISx7+6ffIXSBeuuAtLf1e+zh5HvgTwcpFMHch4UpA5HsR3Ak3eG7fxZd6Ya75U4nxF+c6/f+9j/5MgUDgriG+hwOBwEuLjyIovCnpzaqq/vzN3/+knnyZPkwpvS5JN3++fejDVVV9oaqqn1NV1c+RVCPv/OMfyz1p/+xwS6oRMRcGDhFdiB5kCDLhJQu+I+sE3X/Yyfe6bci+W7t9bNiyXUxgp9izBXzcXlOP5R9XhIsJHIfrcjKMQ8J3a70LAuF2CArY9CeTiY6PjzWZTHLbTIh6KShAtstzU0Yyn89zmQEiw3w+z+SQa3MxSFK+Z17Lz+8PEXcXYLyVJ/eY4+AewGbvXT2czEKSPewRXF9fazqd5vaPfAZxiPvJ3FBu4KUn3kLTA0ddXKHLBbkGHliIyMA9RGTxkgg6LjBmhAFfz6VAwLOBmOHr1Ns/uhPGBReIeSnelWsHZwTOirLTAuUyi8VCs9ksrxeELXeWlLkhpTuB4x4qZ/JcEq5ztVppsVjk+4lAdcfx3L6LW+ocekvgG4T0N76ke3959kkPIxAIfHDE93AgEHhp8aEFhaqqvi7pKymln3Tzq++Q9COS/pSk77753XdL+sH3Opb/4x+iNRgMdHJyogcPHuRyB29NBzlxq7W3g5OULea+E03InOcbeA07RAvyCQGFqHAMiA3Ed7/f53N7G0UPO3TBgt1Pygvchk9pAs4LCKOn41P/7cQN4gs58l1WrtvdA5BihAra+FHjLimPB7GBjAFIp7sqmJPVaqXz83O9/fbbNbI2m81ydoLvDCMOeDmG328XR3AGeAcMdtRdZPGARIi37+RDxMmN4Bq83ai7PzzvgjBJ7jfnwFWDm8aFpTKgsCxd4TVcKMPhsDYfVVWp1+vlNe8lF5Dv8/PzLOJ4hwcIOuuDYEzEHdYY6xQS7h0cXCxpt9vZweDOC+m204ILNL1eT8fHxzo5OVG73c73kmstxRwElOVymQMvu91uzqmYz+c5xJTwVYSXQ61Eeb7ploEIiSjB87VcLnV+fl7L9xgOh+/19fWJ43l+Fwc+WUx/+d+pv/0bRp/0MAKBwAdEfA8HAoGXGR91++23S/qjN2m2PybpN+mJSPEDKaXfIunLkr7rvQ7iO/L8jEYjjcfjTFwggZAQ6TY4jR1dchOcgHq9PWQR23rZzhCXg/+OGvXFYpGdE+xaeocEbO3saLMrLN06BsqWlhwf4YPjUG8OmW00GhoOhxoMBplkQhDdZeGlH9SZd7vdfE5IFOQaIaHf72s4HOrevXsaj8dqt9uqqipnCyB6tNvtTOLcbcF8X19f6/z8XA8fPtTFxYW2223uTMDuL7Z95nm/32eijMWeOfVcC0lZrPBMhXa7nXfNy/BLiPRqtcoE9vLyUtPpNGc0+K61E+XS2u/3m1aO7IhfXFzUHCAIGgRXXl9fZ4KMIOYiCNfG3JKPwNput9saDAbZ/YGwghuAe0unEp4nt+z7c4F44QKD50Ugqvkz4tkUwN0jrD2fe+4tYsLx8XF2w5AZ4veSufIsh+FwmJ8nnmfptkTJn3nO6Z1eWPuencA5mF//LsGV4K0lXxA8l+/iwB1AVDwEAi8q4ns4EAi8lPhIgkJVVX9Z0s858NJ3fNBjle0eh8Oh+v2+ms2mZrNZbbe9zA2A4HqZgO9EQxI8cJGaet/Vh0wRmAeJoczCW+K5DRzSXxLlsgSBz5e2dUje9fV1JvDNZrNm6cbF4HXvnMvuRyZQjMnLPxaLRc22znyz+0uJgx+X+wGxwqJ+dHSUXSJlLoM7STi3d3HwMgWINbvGHuQHwcftwXWz6+9uACeiOAIg2RBtxsi8ehkKZSQeRMi4PXsBdwyEHaGC+wlcLEDUcKLMemQteTYIgg73iLHh2vBwRu4Jx/bdfsYPaXehi/XucDHMu0S4cMS4ynXnIpyve0IlB4NBFqmYR8Qzf355zUUC5thDP720iDXAuMoyDG9xyrNetnVlrnhOD7UNvct4nt/FgUAgEPjgiO/hQCDwsuJOFAi7QwGiOhwOc3bCxcVF3t0GXifNjqI7BHwn/urqSoPBIJNidqo9e8AJmvSE2EH0IHucp9FoZHLuLgcnvaWg4GGRkGg+D8l1gs1uMgQKZwW/O5QDwXn4O3kL5Ai4mODhft5GT7rNRHBHBmSPuWHHl+4FODm8lKDsVuFjdEKIkAF5RFhpt9uZvEMWmSNv7+juAzqAsOPPGuC+Y993hwMCTxme6OTbhRAECwQUBCjPAfBrYl5YvxzDu0MwJkSNMiBRUnbK0HnAnSG73a7WpaR0r3gIqd9HFwa4btYkggbXzVhdqOAz/gyw9pvNZi6h6XQ6eZ17yCfz70KICyqUJLjAgmjGPOKsOCRy8BxwHs/UwMnjrhlfs4gwgUAgEAgEAoFA4DDuhKCAJZmf8Xica50vLy91dnaWd3g96R+CBpGCTEnKRPL6+lqDwUCTySSTJY7lu7BOkiDJi8UinwfngIf68ZqXYEDEpVsruQsJjPXo6Ejz+VyLxUIXFxfabDa6d+9edmZAZhBBIJ8AYgWZw17Oe7GDd7vdXB/OLi6vS8otIHu9Xo2U+U4tYkG6ae13cnKi09PT2q4zbpD5fJ4JOMGakHOIIq8jSiDoIHqQz0BApKTsWiC3AIIoKV8XQJRgPIgCOAVYE9wHyC3k1LMDEEYoOZBuw0EJQGQn20WSfr+f1yrn5N4gZLiYVVVVvl8Q2l6vl236Dx8+1Pn5eY3okw3iYYq0Q4T8Q+5x6UCUua/+DCLO8Ey43Z9nx0URympcuMBJgJhwcnKSW4FeXFzo8vIyBzSSaeAuAHcqMHe4GgiKZL5wsbAGgIsAvmYYr7d97Xa7ury8zAKPi1chJgQCgUAgEAgEAu+OOyEoQAwg2+PxONc6T6fT3GqQXeeyDhvSxS4q79/v97n+v9vt5lp6Au287GG73dYcCOzmk3fgnSb4vHdPgOCwS+tJ+3yeHedWq6XNZqOLiwtdXFxouVyq2WxqNBrlwEWIm4sTPl+eTi/dCgy4EnAdSLetMyH1gFZ+CCJVVeWxQky3222tTGM4HOaa+H6/r+l0mon7bDarCQ90KsAZ4I4SD0Ikb+Hq6kpHR0c6PT3VyclJbWcbEtxqtTQcDvOcuzMBMktbRxeNvEQG4QoSWZJSb1OIYwZyDdFkbXgnDMQERBQv/4DMQv4px+A+IuwwL4hgKSVNp1OdnZ3luYX0um2fNe5uEHeucFx3NXgGwqHODIgOzC/XzhpLKWWy7+sfseDBgwdqtVp5HjabjYbDoR48eKDT09OcFeGiBM+9d2tg/TWbTa3X69qaR3Tk/nvpgrtwuEYvUcH14+4d1guOCRcqAoGPE1/7Xb9Am/uVpBCyAoFAIBAIvDi4E4KC29i91IFdYoQACCIWdk/Rd2s9xAJSBMGDUCAmQKAgJKWFW7ptR+fdHrxFYFkWwPkRBCDiEBRcAAgKkMper5ddGRBW4H930QKyw9zhNICcIqIcaivpzgeIpo/Vj8/7INB0d8Cd4Gn5jIdcBggiBJj2lGUWBcRxMBhklwa5ET4XCCAcD3GJOadMxXfvnWz6jrWTb4I7vc7fgxp5zd0QrDmv5fcWkAhgvN/LD8rSA8QE3Bc4IjabjabTaRanPATTrf/usHC3jTtNpFtS7S05fX35Ocrr5TUPZ3R3Arv+OBAQzubzeQ4BHQ6HmkwmOfyzdDiQb0Kpka9VBBlEFIQZb+fKWmcuyo4rOF14HjmftxZ1gcTLWAKBjxNXQ2nfCTEhEAgEAoHAi4U7ISh4rTi72hAyWsf5DqLXwGNl9gA17xAAuZ7P57UWgtieIaWS8m6pVG+DJ90G3xGMh+3aySQWfAguvytrsmnpiJMC67XX3TsJdZJT7kBjc+/3+1lE4JqZCyevZUgf1wjphCwiwHCNZRCjZ0wgJtAO0V0OJbm+vr7O14kzBIJIiQRdHxA3ysBOvy5EA8QK1keZGeFlGJQVUGfvO9vcH9aDd59AnMC5ABi7i1ouWLGe3GXiWRiIQS7ElCUTuHF8t92dEZzfAxLL++rPD/fCBRcPI+QaXExgLbAeXOhhHXE9iAXL5TJ3i8DdghOn2WzWBBfPTPA2lcxV2XWD8hS/Nz4mD3v0z3tHFtalC1t+zYHAx410dKTmN72hfTPEhEAgEAgEAi8e7oyggE1/NBqp3W5nEQFBAYILySXTwDsQSLdtHieTSe145+fntVp/J6Sr1SrvRkLKyl16Wv8tFotMkCCcEHgECSdD7lyA2K5WK7399tu1Hf3xeJzFBEm1XV/q/yE4bucej8cajUbZNTAajbKdHzeHuyn8GL7L7V0HvIxgPB5nYgohhCz6fEIEPTARErtcLjWbzXRxcfGUk4N5RPwZjUbZpQJpHw6HtdA+1gD30AkhLTghpRB7bzPY6/VquQ1lhw9KZTwgEeLKPEJKfTeb++VZDawlRBPmm3vt7pzBYJB/2u22ZrNZdpjgXvDyFC9PgCBzb13sQiRg/ZINId12GXGXA2uYsg4XuXxn38M7eX64b/68NJtNDYdDfeYzn9Ebb7xRc+KQJeHhpH5cnj3m350DniHCM0KrUuYLcdI7W/B94Z/hpxQsXDgKBD4ONF97VX/jn3xdUeoQCAQCgUDgRcSd+NdySilb/kejkSRlIYH6a7c6j8fjbIdnpxT7PKUOnU5Hk8lEk8lEi8Uihx+en5/nlHy36tMxAOLp9mcI1nK5rAUx4qhg3JBx6vTZdYYA4biYz+fZzg2JZsdWuq3Th8giCOAAgLC/+uqrmkwmmUDhcqA2fD6f19wdTojLNnkIKYvFIu+c4xTw4MZms5mPhVjBn5JyiQC5BF//+tf11a9+VdPpVKvVSqPRqOYowBHh7giukTlxQgt59FBE3+HGRUIphDsKIJhkQ/DDvHIu3sfu+Gq1klQvFYF4+s43bguIKWNFOMLtwBwipHm5A3OwWCw0m83yHLGuD3UeYM74b3cpMI7VapXzLlxAYRyemQD59rHy4yVALo4glrhYxJoYDoe6f/++Pv/5z2s8Hte6fJA1QS4J4+aZIyCS4+IsokSJHAfWIBkbo9Eon8sFNcQwrnO1WuWWtGVZECUvgUAgEAgEAoFA4DDuhKAgqWaT9+BE3ADSbRtEdnCdzHmbuF6vp+Pj47yzfXl5WXMWSLctBAlpIwiSHUkPvXN3hHeWIK9gMBhkElRmKvguqwsY+/0+k2/fefZSC2/BBznDlXF8fKzxeFwrQWBHXVJtxxXSj9jhx/dr5TOUBfDDbj1CBWKE509I9bDFq6srLRYLnZ+f57BG4NkBviMM+S3nBeJbdhJAQMK5wLVynxBjPOuAoD3PEaCcADHBnRpeLiGploNxaJ14uQHjYifeswcg7CUpl5RFkUPlBpzTgwlxwnBtnjXgYkfpVCF8EHJfZn/wnrIcwF0upTOCvzPewWCge/fu6f79+1kgcnfBYrHIGQt0gOBZQzzwFpulmOLiAN8RlE0hNrhwhjMFwcKzNlhL/OllTIFAIBAIBAKBQOBp3Il/LROUx64w7gTCGKW6mMAus4fxQbwhtZPJJLerw0rtmQB0YWDXld14yhacTELovWUeO+jsLkP+va4dQL4REzzjgR+Is3d1cFJY2vbH47EGg0EutSgD+7wEgJ9n1YYjmPAaRKrX62Ui7GIBZNBr2r2TAGRtNpvlXXHG78JPGaznwY/8OLFnHrnnTi4huwgJCA6c10MxXRxycYNr9TGxm1+G83l5BIIHc0KOgJdDeC2/CyHuynALP/erDFgsswRcKPF14yIHbhJKFvwaXPjwlo/cC5+rct14QKgLI7zWaDRy68/xeJzFLs86WSwWWi6XNfeD3zuEJRc0+DzHYC54phCiXAxyocMdMjyPLgS5G8TPFQgEAoFAIBAIBOq4E4JCo9HIdfOXl5e5xRykot1u6/j4OAf2ScpkGUs/ZMLbGx4dHWm1Wmk+n2ei5NkCkGhKFwj8811uSIy3EWy1WtkFwe4pu9BO0LwWnNr+MsyxJLFu90YYYB46nY5Go5FOTk40Ho8z2YL0QKI8fBJhhpaDnjch3RJQiBzCClkG5X3yXXffsXaiutlstFgs9PjxYz1+/DgHCCIocCzmFTLJjjZ29W63m+eBnWIXAZhrSLMH8nnNvWc6sFvvx8H1UYoJEHqfs9LVAWH1gEMEJu4/IpDfV+4XPxzTgyJdOGAMpTjkYoR3cMBx4qKUl7Z4G09fBy5OeHcVwjR93rkffi1eIkBZzvHxcb5+F8rm87kuLi602+3UbDY1mUxyC1KcMvfv3685Una7XX5OGTfnPzo6ysIFTgTGUTqPOB7fMx5U6qIgxwgEAoFAIBAIBAJP404ICnQP2O/3Ojs70/n5ea5bJ6wOUnJ0dKTdblezSXvgXafT0euvv55JE4SaXWPEgvV6nXfDEQbYjV0ul/m4XjuO9b/b7WbBAvJRpslvNpsagaPkADJVOhSk20A/t+tDbCFXp6enOXMBRwdETbpNyndBgZBC7xLgJLa0i9PWz10THpx4KHGf8S8WC61WK11cXOjRo0c5A6Cs/WfXfL1eS5LG47Hu3bun119/XW+88UYOdEQUYIcZIuwdGci28Dnzrg4EDXIPcMT47r/vSLMOJNXKCHy+vFOCZxW4UwTniZ+fEMvBYFArF/CQRSfeCC2UJJS79JSdrFar7JRAWOAaEJJYZ+68KIUBP+5iscjOBHIxXHDwdeOtLlkrdHTwVqhegnFxcaHNZpPLdvb7vc7Pz3OmyenpqZrNZnYx0F2Fdc+acsfP0dFRzsTgd57BwfdCKViWwot0K0oFAoFAIBAIBAKBw7gTggLEADcB9fYQ2Hv37qnf72dCBCFhtx8Sg9Og1+vVdmwl1eqn1+t1TrWnbAGiUbahg4hATL00w+uusefjDoCIQYjdacC1OcF30cFb6UGcKLHAQUB6v7fUY24g61424kQJwutklp10nBqNRiPvHCOmUGpSZgY4uV8sFppOp5rP5/mc7tjwDAPKThCMXn/9db322mtqt9uZtCMMeOaDtwhENIIgsib8WiGdCCS4OnzenNx76YLnRfA7RAXIPq9D0Dm3uw+c5PucsBNeliL4ffJx+O95rws7iDCMxzM9EOO8TIBjsC7LfAwXNBiL53sgJrAmWatesoIzg7F7iCLCmKScd0AQKN1eZrNZ/l7gXDzPuJNcCGHMZY4Jr+NqQgDy59wzO7jfgcDHif3Zuf6OP/lAX/plPV33otNDIBAIBAKBFwt3RlBgVx93ADv3dH+ArGDph6i7Q8CJjXSbNO9ElN1nJz3shntNNUTda+A9oBBS6WQXgosgQrif12z7mD2kz90QTvYQFHq9Xm4HyU6sW+29BMHLQbykQLq1yDsx5O+UcuB6oIadeUVoYC4hYlw7bQJpdehkmHNLt+UqkMHhcKjT01Pdu3dPk8kkCz9lwr+XFXCvSOj33WRINHBrP44B1hzH9QyD0nnh5NqJfJl7APE+lGvgYhJCkocxurB0SFDgutwB4dfGWPyeeHZDp9N5KvfBAybdgeGuFSfl/sM5EbZwAnirSi/TcGdFWW6E+4LSA8S2qqpyVxRyOHAGMW6+B1jLPnfujOG+svYO5ZUgqrn7pszOCASeN6rrazUXW6Wq90kPJRAIBAKBQOAD404ICuzs41Cglr7f72s0GuVsAv7hD7mQVOs+4Lv+7F6SFO/15fv9Ph8fu/N6vc4OASdXbhdHfGCXlcA/8gcWi0UmS5BWSMtms3kqSM/JIsTfO1pwfZ5cj6jBLruXZEi3O+HkGDgpL7sKSMrlBC6wSMqki/NiS8dSLtUJ/maz0fn5ec0mTxmJl4zgxCAksN/v6zOf+YxeffVVnZycqN1u544cHkSJ0MJn2bm+uLjI84YjAuGDsXknBK4Fko+DBSLqFnpIKveGe7ff73MdPwIOv4OAuwDG+uJ+EhroIpgLCk6+fY1w/1wg4zXvQsFxGAvrBaHHX2Nefd0zB96aFXgWAWP3jALKHVifzLGHTHJfeba9tIXw1ZSSlsulzs7ONJ/Pa21JvcznUOcHD9h0oY9x8HzhwnGhj3XhImUg8HGi+eC+/sZvnEgKd0IgEAgEAoEXD3dCUJCU6/3ZFR8MBhqPx5pMJnn3kxA1z1egvIGyBMgkpNot05BUMgh8F5Qdc88M8Lp6Sg2kW9Lu5A8xAYJOoKEHQDphctEDoWG73da6LCAq8Bl2cyGZECS3+G82G83nc52fnz+VL+E71rgyfCe73+/XyF1KSffu3as5KiRlAg+Jv7i40MXFRRaDPFxzu93m41dVlfMxEBhee+01PXjwIN/ns7OzWpnKYDCo5QTQivLs7CzPOaSS+3V0dKTlcpkJMvNJ9gVWetYI99XLTXB/uMtAunUmuOgkKQsu3Cfpto0l64J1DAH2VqmUkhzKpvDMB3fZNBqNTOgbjUa28l9dXanVamk0GtXKA1ibkGeEDp49BDOfMx+Duw68zMPn37uBXF9fZzGA9c+18IwfHR1lMY8Wn4SXrtfr/GzyOdxBCDkepMja6/f7eT7LgFdJ+dm8urrKQo8/j7gkOEYgEAgEAoFAIBA4jDshKOz3+xweSA2178azK84uI+IBu5DL5TKTGHYVIa4e5gbp4XNeouDBf17Tzt89D8FLIrBdQ/IYg7efdNLvZQ7lDrOLBRA3iJLX5btbw3eyCdKjDMDb6bmYwLV42Qi/RwCAnHmHBEQdCCAuiPl8nkUe3+Vl3kuHgXQrFiDuNBqNWuaFn5d7tFwudXFxkYWEspUn87perzPR99KZXq+Xx7JcLnO7wlIAcAeH5yU4ILPMVblTX4oupXW+1+vlTAzWiosJ3DMvneB4uAOc+DIfnncxGAzyTry3X2WuPbAT4C7BvcB181x5ZoS7DVgvHhSKKMCYq6rKa4qgSu8iwXyTreHZHzwT/uz4XCG6tdvt7Eiidal3OBkMBmq323m++C7xso+yxCYQCAQCgUAgEAgcxp0RFLDAe6gbBMat/ViWnZyTCu+7+uxuQn6x6fM5FxPYGXV3gO/qe26AtxT02nwPnfMabw9u9DaBbl2Xbgmknx+xwGvtve6dY3tZBT+QNM5RticsMyA8vNB3qdmV9tIOt5Cz08+uPvcDolqGGhJKCAGEUDOHCBC8zu/X67UWi0XOaOAavewEsgt59fvB7js1/Ox8A+/kUHYG4P5wLX5sD810B4KLTp47wL2glMSFJ8/t8NBGD0Hk875OPM/C26b68X0dcw7WPqTZ1xLrxDMeypwHD6L0/BLELe+EUY6dY+EMYgyer+HBiYc6hQB3RniJCm6d/X6fxUncM4wNML8uzlEKEggEAoFAIBAIBA7jI0WYp5R+Z0rpr6WU/mpK6Y+llLoppdOU0n+SUvrbN3+evNdx2M2UlHc5yTeAMDnJoHTAQ+h8lxjyOZvNNJ1Oa+0CIVzYnSmDcDJfEmnG4G0f3ZmAwOC7pJIyUeLYHM9D7txa7ueG2EHAPKCP62Y3GaI/n8/zji9kzMPlfPec16U6aYW8QZAZM2PwlpY4ISB9CAAQf9/5Zrwurni9PN0xrq+va900uE/z+Vyz2Szb832HGTEBoYUARcbtrpHLy0tNp9M8duC74XQKgfT6PUMUwXVApxAPynT3CPPrhLXT6eRuGqwT5sYJs99zRBLPRKCLAveT+0b2SL/fr601F0p4Rjw/gHO6O4O5RajzkgueOxwgLqh4tkQZiulziUuCe+lCkYsr/Hg5DvfHs1MI6pxOp9nNwvcK84EoxTrxcEeunTnFUXPX8by+iwOBQCDw4RDfw4FA4GXFh3YopJTekPRPSvqpVVWtU0o/IOnXSvqpkn6oqqrvSyl9r6TvlfR73u1Y7HrTZQBSzo4jZIpdQw+UW6/XuV6cvvfU9F9cXGQSSr95UtwJ/ru+vs7EDNJNyCM78R4sCDxJ37swQCzn83nNhcCYEQw8l6DZbNYcFG7fLx0K7Ih7u0DIuHdZ8NBIFy24Fn6o3+eHFH3f9YdgX15eZpEGUj6dTjNhvLq60jvvvKPZbJbdDx7oxzVBRMtuC5z//v372UUCMZxOp/leuqjjYgLH5lhergC5vby81NnZWS4bwCLvzphOp6Ptdptt+Vybk33KFbjn7hxxN4HnbFCGcHx8rH6/nwUn77hQCkme14Cow3sh9jgtBoOBhsNhHhtrhHmSnggnZGxsNptaYCX3y9c5wlq6CVj0Upler5eFC+bCn2c+z3OLqEN2A38yBtaxu0IQXVhHjIU59TKMzWaj7Xari4uLfJx2u63j42ONx2O1Wi1Np1OtVqvanHhJBuP37il3Hc/zuzgQCAQCHxzxPRwIBF5mfNQm60eSeimlI0l9SV+T9J2Svv/m9e+X9Cvf6yCebdDr9fI//vkHv1usISr+391uV6+99poGg0Gum37rrbd0fn6edz8hRlVV5d1zr8GG6LsrAjGhTPn31oCQwG63WwuC8x1P3yX3HANq+iFIpWBQpusfqtH3Mgfqxb1VpofkQah5v6TaDnO/38815ox7PB5ngYUdW1wC5CZwXBdvmFffdS9t5cw74gPtI3EmLBaL7ITwHAy/D06EvdTA8xUoc5jNZjo/P68JLdxDSDHXyuc4D+OXlAMsCWJ0gos7ATeNh3Eyx9juyzaS5XX52uc1z1NwlwauB378OjjOYrHIwsxqtaoJXC4csG7cPcI9QAhg/TIHHvbo7TO9ywjOHXb/eS4R7zg2c8+4uacu+rkI5iUxhEAylvF4rMFgkINTZ7NZvicu/Ph9djcNzowXAM/luzgQCAQCHxrxPRwIBF5KfGiHQlVVX00p/QuSvixpLek/rqrqP04pvVpV1Vs373krpfTKex0rFaFqEBSvHXeyBslBiIBEpZS0Wq309ttvZ7tzSQzcdeCk3YmKdBuAh5jglnBJNSLsXRMYpzsKIEzuFoDIuTBS7g57rbyXQpBGD2mGUHkAnpdaQJyxq3M+t853u12NRqO8g8zrkGzOSe4Ec4h1/VAuAffWS0Sw7XOfnaQTnOh2c6/D9zICdyb4WvH3leUCHpzp9xvy7I4JJ/FlLgPzhoPAr5mgwTJc0UMmWV+MHbHHQx7d3eJgDrkPLqrh7uFee0tIHCzkilCi4yUt3PtDpTX8HtcAa8YDO1m7pVvDRQZ39vDDuiJzw4UonlMvlfDvA9Y669pDW1lTkmrrtry3XuJRhp2WYZp3Ec/zuzgQCAQCHxzxPRwIBF5mfGiHwk0d2HdK+hZJn5E0SCn9Yx/g89+TUvoLKaW/QBAfJQlu/QbYqCE4kLhut6vJZJLT+6fTqb785S/nnUos79jXIS9e140F30MLPcyRY5RlChArarMZFwKE7557yQNEHXLkOQfSbTiet4vkM7ggIPCQxPl8ngkTJBNXA8ctQy37/b7G47FGo1H+gcyxa8+1YSlHuGAO000II10T2JEuA/RKRwk79dfX17nUgCwCzuOBfZA8jlmWgjCXvk4YR5nfABnGGYC44TkRnu7vBJNOAS5Qkf3gpSe+881nvIRht9vVyj64JtYIhJpnobzvnv9xdHSUxRhCGFkLBGdOp1PN5/OcHeHrCzGFv7tTgXPyPCDOcf88aNSvBWcB69rXINeFuMI1cXyEIcI93b0jqSam8UNHCUqnWNudTieHM87n81o2g4dwHurswHN71/Fcv4u1fe8PBAKBQKCG+B4OBAIvMz7Kv5Z/saT/oaqqdyQppfTvSfoFkh6mlF6/UWJfl/T2oQ9XVfUFSV+QpMlkUkE6qJmG5HuInIfosfs4Ho/12muvZTHh4cOHeuutt3IYGzvDEF/aKnKOcreS3XbIGKQIGzlkD0BEeD+70ZBOjkloIUQWUglhdncEBJJSBOruW61WLSuBXVd28n03nxICbOu8R1K2x5+enurevXu6f/++xuOxjo6OcuvOdrut8Xica/EJRry4uMjlB9fX11oulzmPAmHI7nHeTWfXn3p2civ2+736/b6Gw2EO1HRRAkJ7KOAPcaDRaOS5wJXiopRnXWC7p96fY0i3gYPr9VrSbVkJRB8HTbfbrZFar8VnHOz8Q27ZncdV0O/3M1mFwDJ3LjJBvFn/kHvyLyjVoHzGy1ooVZjNZnr77bf1+PHjLGSUbStLNxClJt69BGGE3AR/BhAiWBu030Q48+cA0WS/3+csDoQAXDserong0+l0crmNZ1X4+iBPBffE5eWlLi4uagGprAnmgXvAdUvKnUFYG3ccz+27eJxO735oRCAQCNw9xPdwIBB4afFRBIUvS/r5KaW+nti7vkPSX5C0lPTdkr7v5s8ffK8DsVvqO/peFw9xg2Txj30IEcTka1/7mr785S/nfADPZaD+m7A2SKt3cpCUbdZeg192fGDHFOIH4XYxASLvu7GDwaAWFgjJ8bZ4Xtfu1wgBQ0ygZtxFCcbjuQiUh0C4OCaOhPv37+cgRreXdzqdTMx2u10O8qNmH7FgPp/XEvPLNojMIaSQsgrGSrBfs9msdZ6QbrMZvJSEc+MuaLVamTjjSiGMz63s7EJ7LgXzzm64k0p3RPiabDabtdISrs0zNziud30gfJDShH6/X3NUdLvdPCfsoiO6QO5xbbjIgcDBdXj5wGq10nw+12KxyM8ERBuBjG4Wft3eccPnidBHzgfJR2jzDhiURpRlE8PhsNbeEZGQ9d5oNLRcLrNTgDnjPrPmJeVx+3eCh0MitnmWBtfjpR58L+C68ayTFwTP7bs4EAgEAh8K8T0cCAReWnyUDIU/n1L6k5L+O0lXkv6SnqirQ0k/kFL6LXryBftd7+NYT4Ucuo29JAVew91qtXJyPd0AIIHercB38iGpZWo+hM4T3t0Sj/W/zHUo20Zin5dUq+dmBxni54SNa4boUObg3S62220mjL5D7oGVHIPxMjapnpmAu8N3yp2ss+sNoWVnGMLodfkliXcxAWKMkMEcMKbRaFRrSYgAw7xyr1xY8G4EV1dXufSDcfA673FBCIGFuYfsl6KFl414DoPb7Lln3kqRe8C5PQcAwuzOBM7LtXNsD9+EePMcsNY8SJSdfcQwdzNA0BHYuB+sMem204Fb/hHIEG7KTiYeaukZGZ4fwpj8WSKsEVGP43U6nTwP7tooxZLy+4H3eStNjo/44u/HteSuEQQUnEReBnHX8Ty/iwOBQCDwwRHfw4FA4GXGRyoQrqrq90v6/cWvt3qizH4gsOPqdfE356hZmtNNRwVP5Gf3nC4DkGJIwW63yw4FyDjE1dvzQeg8TM5bWTrh4n1ui0d48FZ2XBNjhWCxM+vp/h4O6CF+fI4dag+h8117bOOMgTIPrhVC6GUULgJ4WCPtBwkZZO4oA9lut7lbAATYQyadXLMT3uv18s4/JPj4+Pip7AipTqQRgRBQ3DJPPgBk2zs/8N/cF+YR4aEUD9xGL92SWemW/HvLSspfCJAswxz9HNj/mScPBpWUx+QiE2SXOT60bj2wc7FY1MJE+Sxjw5mAKDAcDmuCSBl86WIFDgL+zhwzb8yjC4MIB1wTAoaLKL7OW61WFj8874L1wDzgqvBATxfRfM1wHA/p5Dqqqqp1EOEZ5rtFUhY97jqe53dxIBAIBD444ns4EAi8rLgTiWP8Q57dYK+vL+ujqRvvdrvZcr9cLvXmm29qNpvl+n+3YT969KhGxiGt3lJRqpNGCD72dE+Xh7xDAiHrEHRvm+dBjATPYYunRAABBbIGyfeuALgrPIDOhQ1eo0yh2WxqsVjkeXOXwMnJSS51IMwSwWI4HGo0GmkymWg8Hmey7C6R9Xqt2Wyms7MzrVarWqBh2ZlhMBjk1oKSNJvNcmbCG2+8kcsdXFCazWa5xSFiAXMNkYU00r4S4sg9Y+4PiTK0u5RUm3vpNvzT22eW+RS4IBAfnCCzrjabTa28glIBiOxqtaq1QqTkwsUS7P2IKZJqgkm32611OGFNMjeeR9FutzWZTLI4xjNCqQaWf87B2mTM/tx5IKWk/AxwD/hv5g1h7vj4WN1uV5vNpub88eMhGpBvQAtRxsfzwfsbjUZ22aSUcoaGl0IwTkn5OvhuQYThu2AwGORcBQTBQCAQCAQCgUAgcBh3QlBoNps54d8T7j0gj51YCA0EF1LgeQS+606CvDscfNfc2wVyXg9so14cG7bb293FQA6B7xx7NgLEHKKDiOLCgmdIdDqdWgtDPud5CJ5wv91uM/mTlHenmVfEitFolN0H7Xa7lndAxsG9e/d0cnJSm0Pme7fbaTqd6uzsTPP5vJan4OUK/HAeAhyvr691cnKiV199VQ8ePKiVpVDWgU2f2n922CHfEGzyJHCkUNLheQdOVn2+fO2RX8Dcct8gxezy+/1m7jzYkzmAEHt3AgQFSTnrQbp1IrgzJqWUxQDfhWeN4tIZj8c5eJOSD16nFASRgMwMF5b2+73Oz89zhgDPGWuS8ggEqclkUitvYL369fM6zy9rma4L3AvCKuko4XNQ3jvEMj7DveE59g4r2+02iwOSaveA5xRBh/nhe8AzGMqypEDg48DVd/xsfeXndyTt3/O9gUAgEAgEAncRd0JQ8LR+J1hul8a6DlGAVD4rQA6rPkn1CAmSMrlwy7iknN9QVVU+X9lK8FBrSA9x8x8nyn4tkDDIP+P22nNPo0dMKAMjfZ6qqso785Ahvw52gyk9oCSC90HOJpNJDpWUVGufCRHDFUIQJXBxgutjt5dxd7tdnZ6e6vj4OLdS9A4buB8QE9i591wL34VHCOGamHNIMfPm+QResuBrjuM7yUWswT3g7REh0uVa9fA/BAu30PvxIN8IDIgBHk7pWQ2ITwgE3jHE14s7OmgRClnGUbJarfI8ei6Dl+ngSsD14oIWc+1z7P+NcweXT7fbzSIDO/+IAz6HPs8ejImrwc/BvPB5PufCFve4dNGQK+F5Et5lxl0ngcDHgd34SNv7ISYEAoFAIBB4cXFnBAUnCpBH/tFfljFA6qnTd4IPWSEZf7FY5FptiJmHH3rAH2B31u3VZUigE1Inpr47TigdlnInhFwzxMXH5mNxeOieXzvHJaPAg/08kNAzHspwRFL8T05O8i4wtntyE/b7fZ7T+XyuzWaT59XzCSB2XjMPCR2Px7p3754mk0kmqdJtZsJsNtN0Os2dLMgacDEAoQGnAY4LSly8u4OLMX4MX3fscPvvEG84N+vCswN8Z3273dbKESRlAkwLUc5PGQDABUKbQ4gswgXjhxwfHR3p5OQk77Z7LggiCG6Ycue97BiCWCSpJoxRpkPJCrkPvo75Ya4REfjBUUBZBuvdg1cRKXwte04DopULiuQdeP4E88b69i4d/ryXnShYox426QLFi5KhEAgEAoFAIBAIfBK4M4ICu8SS8j/4IRruKJCU8wOcYEOgO52OLi8vc397iJ53kCjdB+4igEB4twYPJvSOBqXDwTMTIGCe0A9BTCnl3Xnf1fZuD/xOuiWTnsFAWOVms8liALuvlCecnJxkyzo/Xlay3W5rlvR79+7lzg9kMHDNWP+//vWv680339R8PpekHJBXWuH7/b5OT0/VbDa1Wq3UbDZ17949fe5zn9NnP/tZTSaTLOZcXV1pOp3qnXfe0TvvvJNLHgjSnM/ntbaY1MlL0mQy0XA4zONwJ4mkvH7881VV5Wv2oEgPOHQxA9eCz6WXvrgo4+0syYqgVMCdNHQ08PvlLUa9qwhCzdXVlcbjse7fv6+Tk5N8TMqCcDqs12ut1+taK8Uyr2C32+n8/DxnOdAq1EsdJpNJzg+hZIX8AxxFLoA4QUewYh0MBgNdXV1lgcBbeOLaWK/XNfLPmuLvuAe4VulJ+Yi35BwMBrWsEcbEM4o7hPvIfPv3C2VSUfIQCAQCgUAgEAi8O+6EoODJ/uwwe326W5il251n+tJTyw+ZZ8cXQuFtHCmvgPhB4r1loZONZ5VfuAvBnQlY4Xe7Xc52oMWgdLtr3ev1nspicKLl5RIQSurkEVOoj2cX3MsQsJh7izzIE8dtNpsajUY5iA6CTeYDXRwQRB4/fqwf//Ef12w2q3VUcGK43+81HA7zjvRut1O73dbx8bE+85nP6Fu+5VtylgAk9J133tGjR490dnaWSSuiAqSX3X3EFYgr2QQ+v6WzwLtYUBrA/LBeWA/sorPrz71jzXipCMf3DgjML9fc6/Vy9wLvetHpdHIg4Gq1OtgKkbXOuCeTiU5PT3V6eqpWq5XvDfO+Xq+1WCzy8ejogDjmXRC4t5QgsN65xl6vp9FoJOkJwabMBbEE5w4EnTIMhB3ed3p6Wms/6nkbXpYEgWfM6ab1Y9me0sUC5s7DUyn34HvDS5ZYC7wP1wpZJnzWBR6+NwKB542Hv/0XaPV6Jan6pIcSCAQCgUAg8KFxJ/617HXxkg623/OSBs8JwLZNxwJ2bSEQEBvvJOClDm6590A4J95lRwfPOfDyBBdCvGQDIs97nIAzTkiNCxMcBwu7kyl2u71zAPPHbi5CijszvJ6c7AHfVcaRwU43BGs6neZOGpvNJpNs3/2VlH/HvUgp5TKH09PTvOMNoSTg8eLiotb2cDab6fz8XPP5PBNm1oQHakLwnaR6VwQEHtYQ7gRv7emkUrq10HvmhYs8XqbC79yZ0Gw2s0iDE8EFGDoX4PzAIeClBJJqotrR0VGttAMXgjsyKE2RVLufLnxxX5nrcocedwLCEl0xttttfn6YN86HoIJIwzMyGo2y2wUBjOvl2tz5QxCq5yqUXVhcLELIcOeFZ6mUzid3Krl46c85op3f90Dg48DuWLruhZgQCAQCgUDgxcadERSoi/fQO0nZVu2tHNvtdrakQ6pwFdBbntIFT3z37gvljjBEzG3rkp5Ke3dBAfB3J7T8uIjhQY6e/eDHcMcDogGknmNCzCTVdtmpsafjgYc+Qko9VwExwQMqnXRCJOfzuR4/fqyvfOUrWi6XueSDwD3OTzCktxZsNps6Pj7WycmJRqNRTXS5vLzU+fm5Hj16lEMYpXpbSlpfuhDiNn4PNixzEpycu8PBsxs8iFFSFmvKEoRDIY+IJn7vWJ90VJCUxShq9Tudji4uLrJwgVCCsODOFNYddn4cFAgCkmrhkS6K+Xo61LXCrf+4KxgjogeOEcg7awqBAFcHrhSeQRwL3knEBRTGTOgnY3F3AuuH9YVQtN1ua+IS95M5416528O7r3jrWBcUvRNLKUYEAoFAIBAIBAKBp3EnBAV2KiHcXtpABgHBjOyGT6dTXVxcaLPZZBJ0dHSUCfB2u63Z/bH4e+YBO/Flujy72k5gdrtdLTPBQ+EgnNjP+ZOadFwT/nls/dSuO9mEJHvLxvV6XQvgY1edc0BaIdtYzyGl7KKPx+PcxQEruhN1Sh0uLi6yzf3NN9/Uj/3Yj+nx48fabDaZ3JLR4EGVPn/7/V4PHjyodXTYbDbq9/tarVZarVZ6+PChHj16lOfx6upKb731lh4+fKiLi4tMTiF5vhOO2MS6kZR36z2LwLtFMGe4P/b7fZ4rrP2z2az2eXcnSMpr0UUE8ihoTdjtdvMaopUhIgjlMIhEXJuv77JM5v79+zmQ0NsosmtPS07WF5/3TAKCGDk353QxAYHo+vpa8/k851f4XPDcXF1dqd/v6+TkRPfv31e73c7hkqxDX7/kNXi50sXFRRYTECRcGCGLgQ4gi8UizwnCmYsJLg4hMJET4mGbLuQhbHjnB8bI+wKBQCAQCAQCgcDTuBOCAmQB8k1KOzZuwt2w8EN0SMtn53s+n9d2tSHJOB7KEgf/8RIGCBNiAjvn7O632+28O+sp/Lgmrq6uaq0CgZN8iBY72b1erxbUCPFzCzZj4brH43EmTU6WsYBDnhAtXn31VR0fH9c6G3gpSFVVufSA8375y1/Wm2++qcePH2uxWKjRaGTHwWAwyLX7HItyFOzrBPLReUNSDns8Pz/XV7/61Xxfrq6u9LWvfU0PHz7MxNFFGXbTCeeDrDP/kEDKGrg3XAvXKSmLVggHm80mh0DyeYQiPxbCFPeS65eUx+Y5FIQKUv7gdfpOmr1dYRkcyrpDtGEMrE92+Vk7EGsv70FMwHGAmEDGA8ID88p7IehlzsD19bVGo5HeeOMNTSaTHG6JMNDr9XR1dZXvtYeJ4pKYTqe5lSjPqbcd5VkhoLMs83GHCqID43THjjsYeN5daPMcCp5/Xg9BIRAIBAKBQCAQeDbuhKDA7iJECjLADqHXSe/3e81ms0zWIEK0E1ytVtnW7nXxnnvg9mtP6JfqAZHentHr4yEa7lRgF9xr2Nnp9A4C0i1hwy7e7/c1Ho9r9faeYcB8kCcgKYsVHnTHXJS5EOwiHx8fZ0s5O9sQY0mZ+Hkg4qNHj7JbQXrSotHt7YyR80PKut1udiZwzRBOyOT5+bmur6/zda9WK52dnWWCjkBCOB877cyxZxNAANlh9m4G3OdDAX2EOCLwIAC4oMA9ZscfMss1IUBQ7oGogoMF5wlknJ16xuA76ogeOG74cbGkXKPMuXSbu8CzxDXg9vFSgrJTiWcLcC53YVCGgxAymUzyukX0ocWkpFwyg6vGM0EQQxAQEW18Tvk7Qs/l5WW+N6wFz1pBPPH8C1pNlkKBCy9lRod3roguD4HnjcZgoNkv+zt11Y/8hEAgEAgEAi8+7pSgANnDlcAPBI7aatpBSqqRRASARqNR23mVVMtLgNB4hwV+IOdlpwA/FqTLa/Q9D4HdZY7H77CoQ6ZItB8MBtmdwA4qJBdyhMDA7j/2beaoDJtkNxaSh1PA69GdZHtA3nK5zLkJZ2dnms1m2ZFBVwh21CGpHjzZ6XQ0GAx0fHxc23VG+JnP59kJAZnd7Xaaz+eaTqe1TAxq8D0Q0FtASspkkD8hyqwJr7nn/YBSFcQgd8N44CZg7pkz1hslK9wX7wjCTrqTa8g6a8jzGigZ8K4f3gaRdQi5Z1xOxsvuCIzVgyZ9vXDvePYoFeB6SyGN+4sg5c4N6VY0Q9AhkwJXCW4Dju8CEEKhi4S4W8iRYC14aYcLdp6DwHz5OvGfcm3wDLI+AoHniTQc6Os/X1IKQSEQCAQCgcCLjzshKDiBcUs1Vv3hcJjLDJbLZS5poF0iJHWz2WR3ArXgbnOHKLj9GjLi3SQQEngPYkBJNoBbo7vdbibdXAcCBzvAXhZxfHycux9AvtzKzvtpnehEG6IG8WPXljmVnpRZnJyc6MGDBxqNRrk7wOXlpSaTSd45Z04otbi4uNCjR4/08OFDLZfLfA3j8Vj9fl+NRiPfC1wC0hMHw3g81snJicbjcXZuMO7lcplLGqqq0snJSS55mU6nmk6nWZDodDo5f8DLS9jZpgzCSwEgu4hGkFEIq6TcytLXBESaNQWB9jXKOkCEcJLrgYQeLgqhh0R7BxLPB7i+vs5zOxwOa8GCXLOkmpDhAoPb/MvWp2WnEo5TdirhmKxZygW45ul0qqqqNBwO9dprr+mVV155ypXC9SNMITghdBD0SKgkORwILmQw8D1AaZP0RKgajUZPla14KRNZDYzdwzQ958RFJZ4ZnmPECESLQOB54pBQGQgEAoFAIPCi4k4IChANJ19Yy2mVB7k4Pz/PAYleLw1Rc9s//3BzMlNa4L0+HeKDLbxM72dXFbFDuhVDJD0VGFiSO65huVyq0+no9ddf1/379zUcDvNu62az0WKx0NnZWa53L3MeqqrK7RvLnAgP82u1Wvr85z+vz372szo9PdXV1VUum/DdZOZks9no4cOHevz4sd555x39+I//eC0fwHMAGCevS1K/39dkMtGDBw80HA5z+0fIdVVV+upXv6rpdJoJKGLQO++8o7fffjt3B8DOzi4y64SSBJwV3ANKHWgfyjWtVitJtx0++G+3wHMNvV4v3z/uM+f2wEQEGdYF53PXjJeSlHX7EHbOf3V1peFwmPM02PF34ov4xXE8B0FSzXHiQZ+UX0CUWdfMoZfIIFBwrZTjcL8RgO7du6fj4+M895yr3W7nNcscIXox7sePH+egR9pKejcJvy+IW6yV4XBYaznqpR44jijN8bBJSic8D8UzMbhHCCqsMUpPAoHnhctf/LP1pV/UDndCIBAIBAKBTw3uhKAgKZNlCD0k2QkstdQQqTLd3QUAD92TVCM2EJFyd9Zfk1SzjPMaxyhFC+zqXnIAceS9EKlms5m7JOC+QExYrVaazWaaz+c1qzekXLotM8DeT02573y1Wi3du3dP9+7dyySbsEXEAXIAIH44E9555x09evQo1/ozr26Lx80ACcVVgECSUtJyudR6vdbp6amazaYWi0XecfZ0/vPz8+w66ff7NTcHBBOyzLV5yJ5b5xEpIPguQLiowJrhT/IPIJBlWYR0m0nBMRkH52PNQPIhvpwD8ur3CQLPuV1I8TISSgYQB9xhwJiw/TuZ5jUINaUnvmZwd5SdUPr9fhbScHWcnp5qPB5nF4GTdtwBuGAg8Iwb1wKZE6PRSJJqgYte9rPb7Wr3FeHDy1tYA95dxfMn6IDCGi/nrBQofK274ycQeB7YdxqRnRAIBAKBQOBThTvzr2Ws215DzT/svV+9t+fz3Vepbn2GcHiAnQsGbmcuSR9CA+SDnX8PcnNLOrvNbomHAHrongfFHR8fazweZzeDuxMQE9hd91A8J0fsCpdiAjurtGzEiQChZCfej0fLxPPzc11cXOQEfuaLuUXwIQ8AEthutzUajXRycpJJ6GKxyAS2qqq84+xzvN1us9sipZSzLyB5Pm8QZi/r4L6wS350dJTJLE4TFxRYM17OgD0eIsq94zVfTy4SQVgRZRgf97us0Xe3BWveMxNKsaPMWPDSAXd9lIICx/TsBMpsGF8ZHsla5XXeg9B2fX2dXRS4L3DfIO5Q0kE5CIGdPH8erMh88xnuv4uKCBaIi96qlXlCbPRMFMbPveP+MG+SagKPB2jyvcD9LTu1BAKBQCAQCAQCgVvcGUFBevIPe99VhmSt12vN5/NsTfeSAsi115JDJCHZ7GJ6QCJuAtrYOYGE6Hly/rMs8JBst5kfHR3ltoclAabG/3Of+1yuB0dMWK/Xms1muri40Gw202q1yudx8sX5vN0e80fZxenpqU5PT/XgwYNa8CAdJQaDQQ57hOg/fvxYX/3qV/O5uV4n4966kp3h0WikyWSie/fu6fT0VNPpVBcXF7q4uNDp6akkZeFgNptpMpnknf2zszPN5/NMdilj4dyedcGuOSUGiEQ4VnAXeKmIByZCMEvRysUEv+cOdwV4xxFKRS4vL3NgIG1PXdRyd4sHgeLsGA6HWRzDmYHbhTUJOWcciAl8hlBIxse8L5dLzWaz/Ox4WQfX6UIC7SSPjo40nU5zjsWDBw+ya4GwTzp0sC4QE3C8IBBst1vN5/O8/hG5CPz0Li9O/r2cB3ipyGaz0XK5zM+8PxMe8iopiwkuoiA2MAfMN/PQ7/c/wDdYIPAuSElV5CcEAoFAIBD4lOFOCAq+K7nb7XL4HzukWOddKHBScagO2uG7mr6LCxnjWGUQHqTDLfSEE7JzCSmDTCJ0SLc1+e12W7PZTK1WS6PRSPfu3dPJyUkuOaDU4a233tI777yj8/NzTafTLKr0+/1cN4+YMB6Pde/ePUm35RqEA56cnOiVV17RgwcP8jnYoX7ttdfU7/eVUsoW9eVyqbOzM33xi1/Uo0eP8hx6i0Fv4cc173Y7NRoN9ft93bt3T6+99lrOQ0C8eOWVV7Rer/X48WN97Wtfq2UBXF5e6tGjRzkTA+Lv1wTZhIS2Wq18PQgDtLJ0ZwTk22vvOR675Dg/aOsoqbbbDxCsGGOv18tCFETaiTpCiK85BA4PAiWTgvIBzxrAAcBaZQefkohms1kTVaRbUQABC5cL3UHG47Emk0lep8y778hzDzqdjqbTaXa0DIdDPXjwIJP1VquVRRCcE5Q1UFqDUOe5JHy+qiqdnZ3p0aNHOUyT55054n7788jcIsAhbuGWoDTCxR4vD+E7wwMoPfCTZ5cw2PF4/MG/0AKBA3jrd/69Wr9WSYqSh0AgEAgEAp8evGdPtJTSv5lSejul9Fftd6cppf8kpfS3b/48sdd+b0rpiymlv5lS+iXvZxDYxiFIJOZLyonxEGJv78g//iEQCAP+pzsPvO5dUq2EwUsGEBLcTu67pp7fwG6z75DTprDsuuC70d5Ccrlc6tGjRzo/P8/uAKkeBEhWAcGHx8fHtdR65qHf72s0Gmk0Gmk8Hmfiu9vtcggen2NnlxDIi4uLmsUdUs5ccX+8GwalDoT3ff3rX9d8Plej0dDp6akajYbm83nOTmDud7tdvlZvHejEDrLsjhIfB3OMYLDZbHRxcZHr9j0cEVJLmCIk2luSYqk/5CrwfALOxZpstVrZOSGpJnJ5KQDEn/ab7PB7aKAfE7cLcLcC4+KYOBO8/GC5XOZOC5TZME5vawmh9mPgKsBRcHJyol6vl7Mmer1e7TmE5B/qosA189n9fq/lcpnvlZcXeaaEXw/Psne48O4cfnzPruDcXvrkpSOSnlp3rBt3UtwFfCO+iwPPH43BQGe/6e/V5kGlfSvEhEDgRUZ8DwcCgcDTeD9N1v+wpF9a/O57Jf1QVVXfJumHbv6ulNJPlfRrJf20m8/8Kyml99V3zbsnQHohNexSS7dt87xVoH/esxI8BM9zANzh4JkK5U6o183jYCiD/STl3VUvwyCoEKLi1nt2Ubk+yBVdE7C8u/jhLRGHw2EtfNBJJW0Hh8NhtqMzdm8T6bvr0+lUZ2dn+dw+vx4wybn48/r6Wv1+X4PBIJd5XFxcZPFkOBzWhAPmer/f551s7rmXVficM7+l0IBFnjITHBy013TbunTreOB4LlLwJ/MMGAefQeBBpGFeIcDeuaEk2r5+GZdfr5dDlOdjLD4HXA+/d/GBrgkIRo1GI68b73DhmQll21FEMdwJdKAoy2y4H6ynskTFn7tOp5NLNwhiRExCqPH58ZaNCD2sQ378WWH8LkA8a+3wveDfB8wlgok7V+4I/rC+Ad/FgeeL1O3o7O+sdN0NMSEQ+BTgDyu+hwOBQKCG9xQUqqr6LySdFb/+Tknff/Pf3y/pV9rv/3hVVduqqv4HSV+U9HPfxzky2YOgemeH7XZbIw3sgHpon9v0ESDKgEV2d50QSrcE0xPfGZeXVbilHEKXblraDQaDvGNKPXu/31ez2cykrt/v511pD5ucz+d6/PixFotFrWUlwgMkC3cCO/KUgRCMiCsBazvz2mg0NBwOdf/+/VpQH20k3377bX3961/PjgTmjmv190OQab93cnKiwWCgy8tLfe1rX9N2u83nb7Vauri4yC0wIctcM04GSB+CDkKPk15+790bEFj2+33OgfBwR+r9IZ+IF04+PUiTe86fvsvtXRHKXXE6dTgB9lwBxuTdHFxI8PIS1rmHbfr8c/2Qdz8uTh2cGsvlUikljUYjPXjwILsKINXkRrgbYr/f53H3ej2dnJzo5OREo9FIg8Egz4O3xGRMpRjmogn3lvuEwDQajbJA5uJCGWTKs8l8Uc7AveFcLiZ6iUgpJvBMIcx5mdLx8bGGw2GttOku4BvxXRx4zkhJagR/CAQ+LYjv4UAgEHgaHzZD4dWqqt6SpKqq3kopvXLz+zck/Tl735s3v3tXQNw6nY7u3buXyfZ2u63tOLOzTV00n/Vdcy+D8N3Jsp0jhJCdYOq9+Tzkg7FBLgjj87DCbrebd16rm1aOlBs4WSRPgWtZLBZ688039eabb+rRo0daLpc1osr4vc6d2nd2/hEqcCV4G0pKDNjFp5Z/sVhkgv+lL31JDx8+1HK5zKKO7y5DxBFUmBPaUvZ6PV1cXGTC560qr6+v9fbbb+dMg6OjoxyYCOmDON6speye8N1nhACI5PX1dc0t8Pjx42ztTynlPAvGD/GGQEKIIa+S8vsgnL5jzfvcgUB9P+vHxQQXElh7iAPuCkAUcKcMgYi4LiDO3E+3+yNksVa2262m02kWVrrdrkajkY6PjzWZTHR9fZ1bfXL9uAe8BSulNb1eT/fv38/lGaX9nzGRw8F98evxkpurq6taK1SeE8QGSjo4tnd6QFjhO4Dr4LlkvbrrQ7p1LiEMMi7uMefgPuLk8DV0x/Fcv4sDzxdXv+hn6cd+SVuRmxAIfKoR38OBQOClxvMOZTz0r++D/5JKKX2PpO+RlP/hDmE/ZAH3un0vZ3B3A4S0bBuXB2LhjZwPMuJ5AU4i3Bnhtnh2zyHrJTHp9/u1bghYqNkV3mw2euutt/To0aPcotFLM3wHnR8nmezwYs+GhDJXEGPO2el0suMDEvv222/nlH1JtbwHzw/gWiHUnK/f76uqKq3X6yyCEPp3eXmp+Xyu2WyWwxMhxF5m4u0bAYGL3G923hEXnDhSOsH9K3MrvE7e2wD6rrmHJXo2hu9y+043ogCf5575zjniEsfknBB43y13MYL3uLUfRwLOGwQWyloQiqbTqebzeRbcyNMYDAZqNptZsPIxseb4nZc/IFARNlk+SwgJLhBwfNYOwooHSHpbSj6DaMV6OxSUSnaFtwPlfjJ+RC8XvvzZ5zvBS2q8FMlLip61Pl8QfKjv4q6iq8XzwuK7fp4ufkJT+/b+vd8cCAQ+jYjv4UAg8FLgwwoKD1NKr98osa9Levvm929K+iZ732clfe3QAaqq+oKkL0jScDisEBMgBBCucqfRiT/wNnAIANi3Hexy8t+E0Dkx5If3QfB897QslcBRgcDg1nLEDmzZ7FTT+WA6neYde+l2N7sUFBBIvDWfdBvG5/Z4CDIk30knn8cWT9cGrgfSzk64E2hIqNfRQ5y5dsox2C2nwwAED0LtxFlSbdycGzeCZ1tASKXbHfL1el3b/S/LFzz7gtf8mN55wcP/XFDgNd/h9nXF7j7uAd7nohZOAMQHJ/be2YFdfdw5iAruwEHIgvSuVqvcWrWqqlxew32iBMPXtY+f+88aJWwTJwaiDmBciEXME8+t54OUa8k7SSDgsAbKMFXmhOeJjAbGy5y6I4nn6dBz7SUfPD+eDTEYDLLox32443iu38XjdBpb6R8R6ehI+pk/Wec/uantaYgJgcBLgPgeDgQCLzXeTyjjIfwpSd9989/fLekH7fe/NqXUSSl9i6Rvk/TfvJ8DsoMvqUbKgNeRQ+zK4ETEBAi0p9CXbgVKFXzn1bMWPCzQd5AZCxkH3j4SQtLv92uEkKBJdj2vrq40m81ybgIlHS5ycB1O8NjxhRhCzLDce1AfgYXj8VitVkvr9Vqz2Sy3fpxOpzlln2stU/6x7LuTw3etj46OsmBAG8Rer5fdCYglnm9BSQdzVlrSEUu4ToiqpBpRZ37n87lWq1Ut86HMwvCAQ8/SkFQTDRiXj9XDNT1g0Ncb94axMxaIuBNgdzrwWV+bCCuUpVAiwO8lZfcAa4l54P6Sp4GDga4PLtC5K8BLLbx0hs97pwnug4sJ0q1YgjthvV5nwcpbZiI64QLgXrkg484Nf8ZY317+gyuIZ4F16+4mF7HImOCZG4/HOdeE59fLZabT6Xt8c33ieO7fxYGPgEZTjeOJvvjrhiEmBAIvD+J7OBAIvNR4T4dCSumPSfp2SfdTSm9K+v2Svk/SD6SUfoukL0v6LkmqquqvpZR+QNKPSLqS9NuqqnpPzzDBhhBuiCSiwHa7zcRburXkQ8TYzYbglWn71JhDSI+OjnR8fJzFBOzY/jl2NG+uq1brD6E7OTnJu79u95eks7MzLRaLbDuHnO12O11cXOhHfuRHNJvNJKmWJA/5RUjw0g12tRFDRqNRLQPAd4pbrZYmk0nOXCCPgjaR5A4gBrRaLfV6vUzkF4tFDs1zt8RgMMjjgZj1er1cq09Gw8XFhabTaSZ4EOjBYJAdDPwesse9nc/n2dbO9RH4xxxBPpfLZRZBPAvAA/kOdXHg/h7qLIGg4DvWiExcD0TbyeehTiTc33LXG7GK9YaA4bkJjBcHCF0a2N0nS4C2o9fX1zo+Ps5lDu12W1VV5XvPeX09cW/7/X5u84mYxbxKt64cOkisViut1+v8fkQEukvM53Odn5/XhLl2u53DOr2VJ/kX19fXtbXGc8D7ttttrVOLpHy9rPOLi4t8D9xVxHfEbDZTSkmTyUSj0Sg/e9zr8XisZrOpi4sLnZ+f6+232Wj65PGN+C4OfDTs/76/Sz/6K7qqUmwwBgKfRsT3cCAQCDyN9xQUqqr6dc946Tue8f5/VtI/+0EGUe4Qe4I8BNdtypBgyKHnFzgBgoi5ZRsyUooJkD3Oi2gBAYMAcbzBYJCP64IIu/Or1epgm8fHjx/ra1/7mqbTaRZFyiBJt56zO8zuLISS3W0PmfQWhh7Ut1gsclbC2dmZzs7ONJ/Ptd1u824vO+VkHkhPQiS9A4CXkkB0CbJjPnE+UMtPvgHuB/IjIO2Qf+mJmEBoI9fiHTWurq5y20sIpnSbj+AlAx70x73HGeAtEl3I8NaTTqxbrZY2m00OBK2qKpN7qZ754KGeiBm4b7zNIyKFOxu8FaOXeniOBwITJSU4ABAccMIwd5BxFzzo5IAj4fj4WOPxOJfqeNBkWd5BDgYCHNfqotV8Ps+hn57/wZrkM8ydOxK4L1xru93Oc85ccA+73a5OTk7ymkLg4tnh3jFmum1MJhONx+PsaOh0OhoMBlnsWiwW+TlBoLgL+EZ8Fwc+GqpmUnUUYkIg8GlFfA8HAoHA03jeoYwfCpA3bOVuC3f7OSIBbRLLnWDpts6+TOhn97600LtrAbs1oY1SveMBZIuWkBCqstMDZH0ymWQy2Wg0tFqtchtFuh44XFDgByHDa749vNLt9B7ASIAjbfqWy2Uue+C/KZvgeJBbhBNIqRM8J+cQRs938Fp+z3qgpMIzEiDfHsJJ+QLnlW5FH+4H99xLYspMBEQF/z3j9iwDXkOgwMrP7jUOCYQtdtG55jI34ZBwgYuFeYXosqNP+08XQhgXgoiXc+z3++wQQGxDSHJC7nkYOHi8PSVEmq4GXJNnXDhc/OAZ8zaOiAqEMPK8+Brz++PPql8jzwHX4O/3HIbRaKRut5vHwzW6+MUzSSlKv9/XeDzOZSx8l3jbyel0qtlsVnNFBQLvhcZP/8m6+KaOoqNDIBAIBAKBlwl3RlDw1nvsrHutNoQTUibd1pt7iQKkTlJtp97Jhmc1YAOXbi38OAHIVICcQ+a73a6Gw2H+LIn1l5eXWq/X2Z5PngK27cePH+v8/DyXE/T7/dpurwsgkBx3ILhzAULKZ3q9Xq4Hh1j6bjFdAGazWXYPpJRy2z1JtQwADzKEoHlphndPYJyz2SyXObBbzbzxPuz8CArsyrODjA0fQsj99/EwZ76Lz5ic0LsoVAY0uqCAMwGCLym3SWTMi8XiqaBL1qBnV3C/pFvxh+4E3Kt+v6/r6+taVwbm0ks3JD3lpkD8WCwWOUvDhQsXFLxUYLvdqtVq5bKZfr+ve/fuaTweZ4cJ972cL+Z0s9nUyhO4zx706Y4DL89AJKRrB8+ql6Tg4vESCe/4wJ84f46Pj9VsNrVarXJeiWePIMbRiSKlpJOTE00mk/ycI07gvNlut7nzCvclEHg/+No/cKrFN0duQiAQCAQCgZcLd0JQgLhDmq6urjSfzzWfz2vlDR60B9HwNpIeSAgZhFh5wCDkH4IoKZMOzylwQigp15pPJpNabTvE5/z8XLPZTFdXV7m2Gxv5dDrVV77ylZybMJlM8u6puyS8bIG6cBwTg8FAvV4vE1RKDsbjsV555RUdHx/r5OREvV4v7yazk71cLrOYwTVS0y49EVNms1nN/cFOursimDdII8LKdrvNrgd2wlerlSTlnWREB0oVyiwGBAas+ux+S8oZBIT+QaYhjpDU8r46GfUdcOm2LAbBgFaco9Eo1+Uzb+QmIFJBiOmW4aIWogNiCWsPwafZbOrrX/+6zs7Ocliidxth3D7/XJu3YfQWmpwPl0qj0cihiMzJbDbLwZqnp6d6/fXX8249c+7r2jNFNptNngefN46/2+1ydoKk7ADgulgz/MmxGTduCsJNESJWq1VNrGi1Wrp//35eU4hlZDUQsIiThjwOMk5eeeUVzefz7DygTAShi5IdxIler/e8vuYCgUAgEAgEAoFPHe6UoOAkzVP2pXp7P0l5h5qdRt+NdkLSbDa1Xq8lKe9KQ0hdpPAOAr7TKynvkBPcBmF3uz/kCqKLO6GqKi2XSz1+/Djv2GMD5+/sBnuHB4QQRBJ2tiFi7EoPBgNNJpMcMoetHJK3Wq00m80yefVOAcfHx7lTA2Pn+r3MgWtk3spwRCeKVVXluv6UUg6O9HR9L0cghJDjEKrItUv1NpX+e8pQnIyW2QOsHcQI4JZ72ltyrn6/n4MjCRlEtOAeScoEmrwMb2OI8ME4hsNhbhc5n8/1+PHjLOD4HCOecX+95IX58znwvAPEjlarVesQQYnJ1dVVdtc8ePCgJnpA2j0zg6wG5gAXACIDpRq4IDabTX5mKKlATEAY45oQzqQn4glOFIQr72CxXq9z6cxwOMzlKDgKPIyV+8y4NpuN+v2+hsOher2e1uu1FotF/p4go8GDJr0TSFn2EQgEAoFAIBAIBG5xJwQF6daWzs522eIOAgopLFsOsuvsZQOQMSdfzWazVpMv3Qbo8XncEpwb2z6uB2qv2TnGKQHpoTadc9FCz8suOK/bw51MQZIh34zJMxN6vZ6Oj481mUw0GAwygcO94URpu93m3X52vWnxCCFE7PASB7fhs9PPmNxC76UZdJyAgEvK9xXxx4WAMh/DHRCIL07SXZTwFH+A6OLBjCUQE7zbBPeeEhVeIwySH0IAmVts/BzXMy98PVZVlXMs5vN5ztFw8cot/77OPafBXQR+r7wbhZN9iLXnf7jjg2uF8HvY4nK51GKxyLkgXoLAvWP9MOcIIx62ybil26yQVquVP8+xeAYQBSixkJQ7myCauUuDueZ6cLfQzpR1yLz3er18z3CnMAceRsl9DASeiUZT17/wZ+hy8EkPJBAIBAKBQOAbjzsjKEDEsM57TfqhgD13F5TtEiFNEAsnyiklrdfrTES8ywK7wx74yHn6/X5uxediB+PGWt1sNjUcDjUcDnPd+XQ61XQ6zcSU8Dd+JOWxszvqpBriCCBko9FI9+/fz4n1EC2u2QMSvWac+Wm320+FJ3pHB2rRGY8LIOyguztEug1QxFXRbDazTZ+SCIgv8+fz7B0r2HUnU8IzMxgDjgZfA5BK6dbF4GuF++3tFDkn1+55GNJtHgfhmx5uWa5hyC5zjWDA+ShFYA4ht+X95noh3D5nvmbooIATxHMqELo2m42Oj4+zc8bbq9JNhXXFnNKlg4DCQ3PI+cpWry6w+P0hgJW1zvjIzsA1gfuAYMROp6PxeJxLdBB7PJjUz+WODC8Tmk6ntU4qtJrEEeWhlF5yEwg8C41uRz/6y9uqmpGfEAgEAoFA4OXDnREUIBYuJrAT6oCY+K42YgPkCss6O7PUZSMwEDxInTXHQUjACUDoIgFwboWXbgmtpLzL3ev1svAwm810cXGh6XSaWzRCvikLYBxuM2fs7JZyXbzWarXU7/f1yiuvaDKZ5B1n75awXq/16NGjvFMNaad0AncCHSBoW1iGQtJ2D1JaVVVtRx0CD5n2ueU9iAmQbO5hVVV5V9hDFj2UjzwJdxNwfD8Gc4djgnVDmUTpFMDe7uUwkM/9fp8Fg6urK41Goxxe2Gg0dH5+rrfeeitnI5CLIN22OoU4Q9ApG5jNZjo/P5ek7CopW5Kym75cLmtODXc/YNnv9/tZ7MKVQsaCB4S2Wq3cGtKFEReUKIHheZzP53kNuYvHn8XZbFZzeOAKkJT/fqiTA/kh77zzTq11I+PabDa5GwqdGcgd8ZIo/06Qbjt2SLclRJROcL+Gw6EkaTab5ev3MEzEH9ZtIBAIBAKBQCAQOIw7IyhAONnp9GwDFxD4u9uk2VXsdDoaDod555GdZ6z7kC0XJdi9llTbWcU50G63dXJyotPT0+ygIByOXUyIBwSv0+louVzq7OxM0+k0dw5wsoaV3jspeD6EpNqOL/NBnoDb1n1XmPEhEkj///bOLsay7L7qa1fVvbfud9V0z/QMbccfyAYMAmKhCAEJSEHEtkLMl5AjHiwFyYoUJAKKFFuWIC95CBF5DJFRLEfgxAGBhV8s2YoQecEE24ydMfbE48RMBg9T3TVVt+5Xffbhoe5v1zqnb3VPe+beuj31X9LVVJ0695y999lnT6+1///1v6iGUavVSiHjTpoJ9WdH3dMceC5ugkgkiFcToN0e0s6uPN+n6gb9hPz6+PO8IJluysm40K/j4+P7xBRJ2RsAQkgKChETnpfv5F9SFlkQYBhnxuLOnTs5hYB+sstOG7a3t/P4MP74LVDhA+GGfvNxHxEEFoiyR9yQ5uAeFUSIVFNMeGZeJQThyY04JeX5s7Ozo4ODg2zqWC1z6p4ckkpRIcwBvstYEnlxfHycr42QgzfFwcFBjoqo1+va2trKz5h0KN59jD/93eL5kyIzHo/zWCKkITQSmeGVMhg/n9OBwDys/YU/oxc/sK1iLaITAoFAIBAIXE+shKDALjN5/B5aDdyt38PkJeU8aci873xDbsg/B57uwMeJKySr2WxmY0HyrwnBJrTaK0ggNJB3ToRAlQRDfDzf3IUDSVnc4Hseqg2xJzqDvkDg2cn3/HV2ptmxZQe8Sji9nKLvLtNejyBwcYB7eSoC7vyIFkRieH4/z8Pb4GPpxo9efcDhZoU+bpgeVsk6Aof3SSqLPS6MeFWDyWRSKmPpqRg8p3llKb1ihXsY0Hf66vn/VdNJNw5FsPD0HK9+4l4TtInx9XfCxxXRbDQa5dKJjEXVW4BoFK+2wn08coX+IVAh7GGOiDgCmcebAnNTLy3q48CY8+y4n/tPeGQCY4VY5J4O9F+6KJ/q1w4E5uGsVdfhUyEmBAKBQCAQuL5YOUEBVA3o3Ayuulu9traWqy+wSw+J8HxoT5+okrBqLr+k7Ijf6XRKTvQQJ9+9d1d+dv/xVcDAkZ18J9hOZCSVSK6HcXPMUxK8L25ix+67mx5SdpLw+4ODg7y7Sxsg8e5n4X+H8EGmCU/3FAZ32mcH3H0iWq1Wfo6QNo/SYMfdd7MxlET0gUxKyrvzRAZwDs+JqA52rBEFSL+ArFbNLC8jwuT086wlldJTEFp4JggRRAJ4dAdjy/dIxzk6Oir5ZiAwIJAxTtVoDxeWvGqJh/JXjSWrRoqMz3A4zCVQfR5WTUiJDGGe47tBf6QLIk+KxWg0ytEUiHVO9jFJXFtby2lGvDsu0riA5T4ezD3eB09nQkzzVKN54g99Y34EAoFAIBAIBAKB+7ESgoKTRidECAAQXM+zd+KNpwDh94R6+457NaLB0wsIffcc8V6vp6efflrdbleSdPfu3Wykx+4y+ePkeZOv7bu73E9SqbQkZMWjE2iHdC5meJRGvV4v7dZCUsnfX1tb087OjkajUSbVtVpNBwcHWQBpNBqaTqeZLBJuDlHEpwFSe3Jyoq2trTzekPBer6dut5vLZ3pYOOSQ5wB5azabOQfeK0602+fW6F6u0IUZFxOAGwjSXkSAjY2NLPx4aUAI5vHxscbjcRZD6Du7+aQKsItP1Ai59u5r4RUKPGLAK4F4moI/b8QFBAjSP7gegoO3m8gEqnvQBkg15/HhXog17gXBHLp3715u871793KJ052dnTx/Pa0GAYHrHx4e5veNiB48IHxe3Lt3L0ftjMfjfF8EOwxCX3rpJU2n0ywmSMppUAg4RB0cHx+XKoAw/xCMvH98z8eR99LFSqIT5ol9gUAgEAgEAoFAoIyVEhQgvh6uzd99R9JN3/AF8NBzxASIf9WZXlLeOSaFAdM7vATI24awOlGnHCQEkHYQ4u+kycUESBDH3fugugvsfgRewQJCJ6nk7D8ajTQajbK539ramobDYYkwkv8/HA5VFEXJnwBRg9xyqlW02+1SNEG/388Glevr69rb28spHISoQ8zYZXYxxE0F3QTTd+qJCHDiiig0Go1yXr50sRvNfIG8r62t5dQCiDLnMabVdAKiR3y3W1Lum0dFeGlIdv0RIXhuwPuKiMHuuEdyuDGjp3l4OgiRCaRv0A/GChGn6p3Q7XZ148aNUjnT09PT7BFRr9d1eHio3d1d7e/v57lKtAkCjwtI3A9xqNfrZRGAMSNyhlSS4XAo6VykQEzgnd/b28tzBlHJq1sguiDIeRoH7fQoEiKDmJ+8qx5Zg9CIkIPnBs8JUSUQCAQCgUAgEAjcj5URFCCOHroOSYLMegQBJAeyKqlEQNklrZZfRFRwEz2PXCCcHLLn53lJQnaOITZEJ1D2knQBd6LHI8Jz5p3UQpyc7PouKekGEKh6vZ4JKSTSQ7cpxQe5HQ6HpXxySCL3YtzpDyLAdDrNERXdbjcbO3IPyKOXiWQ3300NGQcn3R6O7lEjbsAJ4USU8TGk/fTZqyLwvGgL6SzeFuYIz3iezwZAiCAyoZr/70IF7eGe7qHBtbi3R95AZL1cYbXcoqdp+Pn001NDiN65ceOGut1uqYIIFT8Q3TyCgPkLaa+WgWTOOUlH2POoDOYHaUikuNTr9ZzugDAxGo1K96x6m/B+VX0fXOyg7Z6egXhSHXcffxccPVXIo4YCgUAgEAgEAoFAGSsjKLBzTDQC4gBkxFMWIGdeUpFddM9ll8ok01HNy+d69XpdzWazFA0wnU4zESaSAQLvxn2j0ei+0HhIJWTIzfyq4e/eFggzpBFBwsPkPf2BiAjIIX0jdP7k5ESDwSCLDpAwiJenkVBFotvtlkSXzc3NvAudUsrkrepnQNg4qQ6Elzuhd5JYNZZ0803GgB1urlv1kGAeIaKQduAClQs57vvgc4frMUYu/HCuk1miBqpiEJ4cfr5XQaANtNmFEdrs9/V5UzUhpP0Ib95PiP6NGzfUbDbzXCiKQt1uN5uLTqdTDQaDkpEo4kU1bYj7UT2h0+nkVAqf615xoirA4U9CJA0VMBh3SSWDUsapamZa9T5wkYPoItIcqsII1/ayqpzn6SOBQCAQCAQCgUBgPlZCUPB/3ENcEBOqYgDnsrva6XRyiL1HC1Rd7D26QVImO5BZd84nOgHRoVpWj51Qwtbr9XoOj3YRxEk77UO08GgHwD0QC3xXG3KKoED0ABERTqIwo/PSeTjrez689x/UajX1ej31ej2tr69rOBzm6AmOcw/KL7oQwjE3LkQUIMqBn504M66S8u54Skn1ej37GmA4idcDBBtDT6IG+v1+HvuqGaITY+aSE0fGhmeAeOMiR1EUmWRD3OeZArqY5bvtHnLvpU89UgKRCrhnhEdnMNfcl4LxrtVq2tra0o0bN9TpdHK500ajUar4QSrC3t5erurgKSMuwpydnWk0Gmlvb0/D4TC/g91uN88XTBVJ7/GIhfX1dfX7fW1vb6vRaGgwGOQUCyI+XDhELITgVyubINRMJpPsaeJtHY/HeSxd6PFoGBeSKAFKNAzGpYFAIBAIBAKBQOB+rISgIJWNCyE1HoIMCYV8uZs8u+Qefs41IF0eyl4tqQf5ctM8CBDkhlBu7nV0dJR3phuNRklIgJy674OknKvu0RO+a4rY4BUJPDKj2Wyq0+loa2tLnU4nezsQwbG+vq7BYFAqT3h6eqqDgwMdHBzk8fEIBnacIe+Qz42NDU2n02yACAl1T4nd3d0S4cLwEeHAIzEgpURiuO9CNT2E7zMWg8EgG/Hx/KkEgZDjvgk8K8i8j7HvaEM6eV6QVe7LXHpQSoWXR/Qwek+zQDzw3XEXMVwcYN45sfZ3xH0YvMoIaSkubDSbzSw8TSaTnP7Q6XS0ubmZifhoNNL+/n7JD4FIHRcTTk9Ptb+/r/39fY1GoywyYYg6nU61t7eXxY1q9MTp6alu3bqlXq+nRqOhw8PDLCbwLtAHRADShEjf8NQV3mWEJkQ7n9s8I8bdBSyeqXRRieLk5CTPe/wYAoFAIBAIBAKBwHysjKAglcOaPSwcYuICg+82ezoCxmwuKEgXudMQHHYpPTzciaffS1KpRB4E2KMZaLfveDqxqZovIoAANyTku5Bkvg8hZIebyATugRgDKfYqCZT0c/KLYMK9MWEk5Hs0Gun4+DjvVDebzUxCCVF37wvaUjU99BQCnoF/JJWEGx8HnqW777dareyR4TvzRJgg7HA9N0iszjeelUdu1Ov1XHHC5wMfj2pxEcGjHqpiUnUO+jXc1wAxhecuXXh7eLtJCyI6wVM4PNrG+95qtXI1Eu6JiaMbOXqUj9+PSAaiPvr9fvZN8HKQ3j8fAyp9EHVCRAHnA09h8e/7OuDpUYgJJycn+bgbjXLt6rPi/fJ+EgkxmUxy+dVAIBAIBAKBQCAwHw+tiZZS+mRKaSel9Jwd++WU0rdSSl9PKX02pbRlf/tYSumFlNLzKaUfe60NgdxBjmbXknRBQN3QDgII4ZhHQtm9hTiQYoA4AOHgu9Xwf8e80HJ2sKWyyaOnKFRJO/1xM0REDa7lefXSBaFstVrZk4A0D67lofvs4pOW4AaCTnjdwM9N8hAixuNx3jkmIoAdYfwi3DgTw0cEGn+G1SgThBd/trTFxSIvEeipLp4aA8EkKsLnUNXw0cmpV32gzeyMe1qKP0va6OKQ/937BbF1UUFSyfySXXmu4dEcDvrgc4v57R4jLqCRloHARDTBxsZG9gZBTOCd8Gft/Ts6OtJoNMq+Gevr6yUPBkQmNz/EQ4Tn0+12s4Eq4oTPc/oJqoITqQ8+ttV30tMlPJoDVAVKT9fhnSJtx+fRKmBZa3EgEAgE5iPW4UAgELgfr6XI+qckva9y7IuS/lxRFH9e0h9I+pgkpZTeI+lDkv7s7Du/mlKavz1cgYdFe6SAV1RgJ7PZbGZyzk4/u7HkhHv1ATdTrEY0eMk5wDGuD4mG3LpTPecRJs093RuBNlfLCkIe/VoY5I3H47zT3Gg0tLm5qaeeekrtdrsUneA7/fv7+1lgYOeWcolO7jx1Y2NjQ81mU91uN6dwICbQhmazqWazmb0jIJaMBX2nX06IfVfYd4A9osPJP2MPWTw8PMx9qNVqeYfb0woajUaOWqCPCA+NRiM/A8bb5wjPGyKNIWW1ooMbHnrqAX1jnnCuiyfMBRdxXMRCHIDIYwjq86caQUOqx3Q6zTvpvtvvHhz1el23bt3SE088oVqtppOTk+yZsL+/n6t/1Go1tdvtLFox/xHodnZ2sndIt9tVs9nMQgOlGhlD+sBYNJtN3b59W7VaTePxWPv7+1no8ogOFwoRGzjH5xjvCWka/m5X31+PHOHdQPRhLDGZHA6H2t/fzykklMFcEXxKS1iLA4+IYvYJBALXAZ9SrMOBQCBQwkNTHoqi+N2U0tsrx75gv35J0j+Y/fxBSZ8piuJI0h+llF6Q9EOS/vtD7lHKj2cH1Xd8PXXACRfh2YRkQ6IlZSLOLipElogAN9RzJ/1Go5F3Pp3Q8l28BshDx4jOBQVIEgSrmm5Q3blfW1srCRaQskajkftBDrnvzNNvBI92u106Vt2BnUwmmYjTLiItNjY2sj/CcDjU8fFx9k1gF3p3dzeLCexsV1NH3J+APkoXO90QYPpAGgeikEc8kKvfbrdzXr+nlUDCEWPoF/n/nksPeYf84gvh6Q54aXgpQi9b6pEXXI+568/SU1ZIIeG6jLdHM3i0ikdzuPGgmwfiP+BeEV5Okv9ubW3p6aef1pNPPql79+7leTKZTDQYDEr+Ey5yeNTL/v5+NmHc3NxUu91Wr9fLpodEyiDsIPYQsbC9va2trS2tra1pZ2cnCxgIYR6hQz99TnnZSS8Hy7Opmiryd0+/4XzAfNjY2Mj9IOoGY8dGo6FOp/OgpWupWMZaHHg0rH35m/rTL97U8//sB1QETQgE3vSIdTgQCATux2uJUHgYfkrS52c/35b0x/a3l2bHHgjP53eHdhcSpIsykZ6jDwny3Vo3Y+PvnorgpE1SPgY5JRwcUYHQcnZC2f2G7ECQPYzaUwkwY6ya7AEIIyHWtVotG+rRps3NzVKItwsu7BJ7tIKXSkTE8KgAxpMxYkebXd+jo6McvcD4IXj4rrgbH/rOspNlnjHP0kUiL4EJyYNAejlFru8pBBBCr7iA6OBmiU4qIaCINJg4Vq/l5Q49Qoa5xTOrRtX4jnu1+gNiFVUqAMTZ56S/E/TZq2Hs7e3l5+Hj5IJHq9XS9va2+v2+JGXfCyoi4IUAEa96TWDoORwOSxEzzBUv44iYgCDE/MC3YWNjI5N2hKRqOU+p7DtCG7iWC3GezlNNb/FUCa7BfMITgXlP5AOVKabTqaQLoaqaerLieN1rceDRUJwc6+yVHb3t8ydqvPpYzZVAILAYxDocCASuHV6XKWNK6eOSTiV9mkNzTpvLolNKH5H0EekihNkJUzVX2gmfh51DYgnL9igCjPW4JgTNSR7EjWsjEmAEyH+dOENEIUUYQDqhL4qiRFrpIwTKwXXYxWbn3CslsJNaDQNnJ59qDE6k6F819166qBiAmMB32aGFdBNZgaDA2PhYz56npHL1BPrmuf3V9BWv5uAklQ+CgIf7OwGnD5BKNzD0qBbaBqEkiqHRaORnx/UQHqp+D1yX60FQaSP3ZC67bwdiB3OyKi65OSBzkusxtj7X9/f3c3TIPP8PSkb2+301m81swEhkiUeXzCPN3Ofg4CCLAP6OMPcklUQvooCI2kAUk5QrkiAkIGa4EOJiEWPvviCMTdUfhXnMd1ykcAHLx5JniJgwmUxyugxVZKrv6qrijVqLN7VSKR6PBYrTU238zlfUe+Yva3x48S4d3ix0rx65EIHAdUGsw4FA4Lri+xYUUkoflvTjkn60uGBHL0l6q532Fknfm/f9oig+IekTklSr1Qon+uycev49ZAb3eTepm0wmGo/HmYASlg0BrJZfnLW/tLOJf4CnBWAGyC50s9nMu74bGxvZ8d4NGdkx3djYUK/Xy2X7ptPpfQZvTqIgPezoIkI4GSaH3CMrIHzsFPuuMVER1dxxL0/Zbrdz1QhSHXzXGTEBMQN/BQwZfRfXDS99N9+9BBAlEIicpJKO4AKOewcQbeIEmJ9dICEaw8UVRJLT01P1er1sKEh6AkR/bW0tz7+qCONpHYgqpGyQJkPOfqPRyONwdnamTqdTqrAAGSeiw80jPRWA+yKaUOJxNBrlihCMjY9Zu93W7du31el0VBRFjk6APFMNxAU37kW77969m9Mq1tbWss8G79TJyUmJfDN2pEHgzUHky2g0KhlY+vPzlASEJSILfNwR0BAUJOVnmVLSYDAoeTEg+vDuIfIhGh0eHuZSl4wnZTW95OQq441ci3vpiWDA3yf6//5L6tvv3/u5v6LpMzGcgcAbghV/lWIdDgQC1xnf17+WU0rvk/Tzkv56URQT+9PnJP1mSulXJP0JSe+S9Huv8ZqlsHz3NoD4QAY81/v09DTvoJJi0Ol08o43EQTu0i9d1J8np31zc7PkT0BoP8SRKgv9fl/9fl/j8Vh37tzJ3gmkSLjPQ6/XK1Vk8GgL31GGOGF0x46u74pD6D18n1BtCDD94RxIq6ciOImnmgLX5lqkddB2UhsODw9znz2txFMsDg8P50aUEP3ArjjPs9frlaJCIKoenYIhY9VAE6LJ/7tdmEEMkJRLIq6vr6vT6Wh7e1vtdrvkRcF4c38Xf9idJ3WlOpaU06TdjCviSrPZ1M2bN0vPTlIpCgNC7oaBVfPGwWCgwWCQvQl41sx15vLW1pbe/e53q9Vq5b7784WsI1IQQYJh43Q61WAw0N27d3OpTt47f1+JoqG/k8mk9J2trS0VRZENPhExPG1FuhATEIVcwCK6w1NQEG4kZZHDU49arVZ+9/E/YS66IEKlCd5bImYYc6/ksapYxFoceGPwll99VrqkZG0gEHg07I6mV92ESxHrcCAQuO54qKCQUvotSX9D0s2U0kuS/qXOHWwbkr44+wf3l4qi+OmiKL6RUvoPkv63zsO+fqYoirP5Vy7DDRg9RL6aZ++VEjy/3QmsiwkeXu3XhfjxHemi0gQChFeK2NzcVL/fz6Zz8zwWvOLEzZs3c1oEH0iTh5l71QkiEwjdhng5OeY7p6en2TiRPnpKgIsx/l3P0Ycg0k8InxN3hBhM9hAcPD3ACbAba2I+CAEn8sFTHer1ehZtiEzwcPezs7NcwYFdZ+mijKITVBcSfMwx82s0Gmq327lSBv1yIu/pDT7uRHJQBcMjLCSVKix4CgblGpmTtJV546k+EGbmoaczHB8fZy8DIlXcUBNsbW3p1q1barfbWTzgA7lGwOA9QATDo2M0Gmlvby+LFkRBOMn2dBPErd3dXR0dHWWPkZRSTiUgmoC5Q0SK+3kw3swp3msvLemRL8wfL5+JwOXPk3Yi2jC+XnKTc6prSDWq6CqxrLU48Mbg3mTy8JMCgcBrQlGsxloc63AgEAjcj9dS5eEn5xz+9Qec/4uSfvFRGkH4sTu8V9MdfCeUHXfIFznsVcEBIuvRCVWTO8+9RkxARPC8a4gopQnJQfcyiNJF+gQk0nPG/b4e3i6pRLARQ+i/p2p4DjnpA54e4pEPjMs8M0pSCXwciQwhhF66iIyAaHJOlQTTR0mZ/FONo1rNwAUHCLqbMLqQgh+GCwreB48ucDGqOj+qRpfcj/lGP/ndQ/MJ6fcxoX+E1fvzp11EviBgAHbZPaqk+hwg5oCyhqRueIlJngXzrtfrZTIPMUfA4H4bGxslgYcxIC2CSins1lfLpEoq+U1MJhMNh8P8vBDTeE98fjI35/mJ+LvK+HgVB77D2KaUct/cp8PTe2i/e1AgKniVCRcpEDwQQlYBy1iLA4FAIHA5Yh0OBAKB+7ESCcJnZ+elF/nZc6YhNHgnQKYg8tPptBSd4GQAglYVFJzIQcrIK4cYu4kjfgiUUPRQaS+D2G631Ww2c76875JXUfUCwLzRjeekix1dCJHvYLtYIpXFBOB+C/zuVR3cW8CNCbk3O/wQTc9Pl1Ta5ZWUowm4/tHRUSa27IQjJpA+AMEjysLFBYijezV4KDrE08s0ViMceCZ4J0gqjZ+fe3Z2ls0FIa+E9nMvfBPcyPLk5CT7XkjnRHxrays/Uwi7Vy1wo0GPtmE8vESie3owX/BH4DpPPfWU+v1+jvrwiiD+PY/g8XlIZMJwOCyltDA3mf+INvhuUAni6OhI29vbeWzcZ0K68Lnw+YYgQrqTC2k8J77Pc8dMs1arZU8Iru8RM9K5UEeaAwIjKVLci/dhc3Mz+1x4SkQgEAgEAoFAIBCYj5UQFCTdRyQgc+z+DofD7E1w8+ZN7e7ulkreEdoMkZGUCRgRD767j/iAcSE+BJDTwWCQTedwy9/Y2NDx8XEmMfyXsPl+v6/t7W11u92SIZybzXnlBC9h12q1smcB3/Mc9SqBJmTbnek5D9LrHgn033eKIViQUo/s4Nzj42O9+uqrGgwGOaQcAkobPATfc+3xXYDwInjgcXF6eprHWVIeM0/h6Pf7mRByjhNHKh74LrQb8UHs/TrswCPMeKqGl/dkp90jU1yQgXQeHR2VKnKsr6+r2+2Wqme4KIBBp/uEkO+PwEPEjaScbsJ8rNfr6na7pXYz9xDbMLf0Z9lut++be+zaT6dTvfjii9kDA3GEOYio49E74/FYe3t7JUGFuY9w4pFAjD3RBIwv85l5VE2HcDGpVqup1Tp3wJ5Op9rb2yv5khBRwPvg0R9UKqlW5qB/fBASEEsCgUAgEAgEAoHAfKyMoOBh/fwOUWB3G7J8586dnMvvO56E5XMMMkXqge9wQ3whpb7bT1QDhKrX62XTRg/Ph/wWRaHt7e1c1YFwb8iXpwJU/R0gwtVdXQiPE3jfxfbyjk4+Xbzw8HREg2roN8ICbfSc8bOzM+3v72swGGSy54aREHLpItXD/QM8ZQS4rwK75/zdBQjI5jyXfcgmZQ3xPKiKJIwrAoakUtlL99fwdBAv8wiRdiFmfX09R8dAYOkX0RcQdzdgZLwYM48sQWzg+bk4RJu9TYgqa2tr2RuCVA7EBMi0GxJiYunlNieTSfY/oH/MKY8GQBih71QYQbwi+oMUBIxSuSfzlvniogzvHx4IjBsCko8t84Q1wOcFohDiDvPUozUYc9aCRqORIxOIlhoMBiWz00AgEAgEAoFAIHA/VkZQuAwQYTcYnGfS5uaB7MpLFzuwkBt2hSGkvkvNdRACCMuHiEGU2JX2MP1ut6tOp5NTM9yDAUBqIcSIHZBWN4IkFN13sT08nzZIKpkD+i66py54hQvOg8B5VIjvaBNBALEiXL6aFlKr1TKJBt53FxTc7BHhxseESBOu6cZ4nspA3v50Os1eDN4vcvlbrVapNCJjx8+MjwsKkGk3PWTO0ZeqESefRqOhZrOZd9kZU/facD8N4GTXn6cLV+6bwDPd3NzMggLmiPSPcUF0cLNP3o3xeJwJNCKWCwoedeHmnePxWIPBIEf7kBLB82G8EBMQsGiXp8TQd08Bcl8DonRIZ/L3kGfCf2kLz4n2ch/Gg/fK029IZzo4ONB4PM7vRyAQCAQCgUAgEJiPlf3Xsu/uzvvdj7uRI6Tc/87vbu42nU4zUSKigV1fSBeVAVyEwHyOCAFyuilfB0F3c0DuCRnHJK/VaqndbuedXfdxgEx5SLybDU6nU00mkyxiNBqN+8YLuDmldCHCQNA9nYJwcL4zGAx0enqahQ/M/CDmHrruRBcizS6xEzknebQJgog/gfsmOPHGpR8xgfB8j+KQVMqH57j7E3huvjv8EwbfbDbVarXUbDazAOKpHh6dANFFTGi1Wnm8EV0QIKhc4GZ/jJkbVuIvUY1kgeR72D5mk5Qw5XwiB3h2LsjwfAaDQU5bcJNHyDmCAP0g1efg4ECDwSDPYVKC3KwUPw7m+3g8LokiRBq4kAJcpOHdqdVqJXHATSW9hGej0cgRMNPpVOPxOAs5XmaT63pp0/F4rN3d3fxcu92uXn755fvWnUAgEAgEAoFAICCleSR96Y1I6Y6ksaS7V9yUm9GGaEO0IdpQwduKonjyiu69VKSUhpKev+JmXPf5Fm2INkQb7sd1Wofj38TRhmhDtGFV2zB3LV4JQUGSUkpfLoriL0Ubog3RhmjDKrbhOmAVxjnaEG2INkQbrjtWYayjDdGGaEO04bVi7eGnBAKBQCAQCAQCgUAgEAiUEYJCIBAIBAKBQCAQCAQCgUfGKgkKn7jqBijaAKIN54g2nCPacH2wCuMcbThHtOEc0YZzRBuuF1ZhrKMN54g2nCPacI5owxysjIdCIBAIBAKBQCAQCAQCgccHqxShEAgEAoFAIBAIBAKBQOAxwZULCiml96WUnk8pvZBS+uiS7vnWlNJ/TSl9M6X0jZTSP50d/4WU0v9NKT07+3xgwe34bkrp92f3+vLs2BMppS+mlL49++/2Au//p6yvz6aUDlJKP7vocUgpfTKltJNSes6OXdrvlNLHZvPj+ZTSjy2wDb+cUvpWSunrKaXPppS2ZsffnlKa2nj82gLbcOnYL3Ecftvu/92U0rOz44sah8vex6XOieuOWItjLZ4di7VY128tjnV4NRDrcKzDs2OxDuv6rcOz6z6ea3FRFFf2kbQu6TuS3impLulrkt6zhPs+I+m9s5+7kv5A0nsk/YKkn1ti/78r6Wbl2L+S9NHZzx+V9EtLfBb/T9LbFj0Okn5E0nslPfewfs+ey9ckNSS9YzZf1hfUhr8laWP28y9ZG97u5y14HOaO/TLHofL3fy3pXyx4HC57H5c6J67zJ9biWIsf1u9Yi/PxN+VaHOvw1X9iHY51+GH9jnU4H39TrsOz6z6Wa/FVRyj8kKQXiqL4w6IojiV9RtIHF33ToiheLoriq7Ofh5K+Ken2ou/7GvFBSb8x+/k3JP2dJd33RyV9pyiK/7PoGxVF8buSXq0cvqzfH5T0maIojoqi+CNJL+h83rzhbSiK4gtFUZzOfv2SpLe83vs8ahsegKWNA0gpJUn/UNJvvd77PKQNl72PS50T1xyxFt+PWItjLZ6HN+VaHOvwSiDW4fsR63Csw/PwplyHZ214LNfiqxYUbkv6Y/v9JS15EUspvV3SD0r6H7ND/2QW3vPJRYZWzVBI+kJK6SsppY/Mjt0qiuJl6XxSSXpqwW0AH1L5JVnmOEiX9/uq5shPSfq8/f6OlNL/Sin9t5TSDy/43vPG/irG4YclvVIUxbft2ELHofI+rtqceDPjysc01uKMWIvLiLV4yWtxrMNXhisf01iHM2IdLiPW4fg38QNx1YJCmnNsaWUnUkodSf9J0s8WRXEg6d9I+pOS/qKkl3Ue2rJI/NWiKN4r6f2Sfial9CMLvt9cpJTqkn5C0n+cHVr2ODwIS58jKaWPSzqV9OnZoZcl/UBRFD8o6Z9L+s2UUm9Bt79s7K/iXflJlf+HutBxmPM+XnrqnGNRrub1IdbiWIsfhliLZ82ac+6bZi2OdfhKEetwrMMPQ6zDs2bNOfdNsw5Lj99afNWCwkuS3mq/v0XS95Zx45RSTecP6tNFUfxnSSqK4pWiKM6Korgn6d9qwSEjRVF8b/bfHUmfnd3vlZTSM7M2PiNpZ5FtmOH9kr5aFMUrs/YsdRxmuKzfS50jKaUPS/pxSf+oKM6Tk2ZhRLuzn7+i8/ykdy/i/g8Y+2WPw4akvyfpt61tCxuHee+jVmROXBPEWqxYi2dYifcu1uJzLHMtjnX4yhHrsGIdnmEl3rtYh88R/yZ+OK5aUPifkt6VUnrHTBH8kKTPLfqmszyYX5f0zaIofsWOP2On/V1Jz1W/+wa2oZ1S6vKzzs1PntN5/z88O+3Dkv7LotpgKKluyxwHw2X9/pykD6WUGimld0h6l6TfW0QDUkrvk/Tzkn6iKIqJHX8ypbQ++/mdszb84YLacNnYL20cZvibkr5VFMVL1raFjMNl76NWYE5cI8RarFiLZ7jy9y7W4hKWshbHOrwSiHVYsQ7PcOXvXazDJcS/iR+GYskukNWPpA/o3MHyO5I+vqR7/jWdh4N8XdKzs88HJP07Sb8/O/45Sc8ssA3v1Lkr59ckfYO+S7oh6XckfXv23ycWPBYtSbuS+nZsoeOg84X6ZUknOlfW/vGD+i3p47P58byk9y+wDS/oPA+JOfFrs3P//uwZfU3SVyX97QW24dKxX9Y4zI5/StJPV85d1Dhc9j4udU5c90+sxbEWx1p8fdfiWIdX4xPrcKzDsQ5f33V4dt3Hci1Os4YEAoFAIBAIBAKBQCAQCLxmXHXKQyAQCAQCgUAgEAgEAoHHECEoBAKBQCAQCAQCgUAgEHhkhKAQCAQCgUAgEAgEAoFA4JERgkIgEAgEAoFAIBAIBAKBR0YICoFAIBAIBAKBQCAQCAQeGSEoBAKBQCAQCAQCgUAgEHhkhKAQCAQCgUAgEAgEAoFA4JERgkIgEAgEAoFAIBAIBAKBR8b/B1tq2CS2eCCeAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 28821 0\n", + " Min thresh = 1000\n", + " Not Sliding\n", + "\n", + "\n", + " Winner = Not Sliding\n", + "\n", + "\n", + " VFOLD = 6 of 15\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsIAAAGDCAYAAAAh/naNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAC80klEQVR4nOydd5wkVbn+n1PVYfLmXdhlA2FhyTmDAqKgouDVq+I1B65Zb/gpeq8Rs/eaA3LNERUVEVFBJOclw5I2sZHNs5M7VJ3fH1Xn1KlTp0KnmZ6Z9/v57GdnuqurTlX3VD/11HPel3HOQRAEQRAEQRDTDWuiB0AQBEEQBEEQEwEJYYIgCIIgCGJaQkKYIAiCIAiCmJaQECYIgiAIgiCmJSSECYIgCIIgiGkJCWGCIAiCIAhiWkJCmGgpjDHOGDtoosdBEARB1M5UPIczxh5njJ010eMg2gMSwtMIxth6xtgoY2xI+fetiR6XDmPszf7J99UTPZZGYYwt8/clN9FjIQhi+sEY+xtj7NOGxy9kjD3XyLmJMXazf347Wnv8av/xs+pdd53jEedb8f22jTF2LWPshepynPPDOec3j+fYiPaFhPD042Wc8x7l33snekAG3gRgt/9/0yFRShDENOLHAN7AGGPa428A8AvOebXB9T8N4I3iF8bYHACnANjR4HobYSbnvAfA0QBuAPAHxtibJ3A8RBtDQpgAIF3YOxhj32SM7WWMPckYe4Hy/ELG2DWMsd2MsdWMsXcoz9mMsY8yxtYwxgYZY/czxhYrqz+XMfYMY2wPY+zbhhOyOo6lAJ4P4BIA5zHGFviPX84Y+x9t2T8yxv5dGd/vGGM7GGPrGGPvV5b7JGPsKsbYzxljAwDezBg7iTF2F2OsnzG2lTH2LcZYQXnNixhjT/nH4juMsVsYY29Xnn8rY+wJf5/+5o+71mOedExPYoytZIwN+K7GV/zHO/z92OWP/T5xjAiCIAxcDWA2gDPFA4yxWQAuAPDTtHNhBn4B4DWMMdv//WIAfwBQVrZnMcYu9b8jdjHGfsMYm608/1vfnd7LGLuVMXa48tyP/e+NP/vfL/cwxg7MMjDO+XOc868D+CSALzLGLH+d6xlj5/o/x35/McZWMMZu8M/RT7EpcJeSiEJCmFA5GcBaAHMBfALA75WT1a8AbAKwEMCrAHxOEcr/Du/k9xIAfQDeCmBEWe8FAE6Ed3X+agDnJYzhjQBWcs5/B+AJAP/iP/5LeCdbBsgT+YsAXOmf3P4E4GEAiwC8AMAHGWPqdi4EcBWAmfBO3A6Af/P39VT/Ne/21z3XX/YjAOYAeArAaWJFjLGLAHwUwD8BmAfgNv/41ErSMf06gK9zzvsAHAjgN/7jbwIwA8Bif2zvBDBax7YJgpgGcM5H4Z0/3qg8/GoAT3LOH0bCuTAjWwCsgnc+hr+dn2rLvB/ARfBMjoUA9gD4tvL8XwAsBzAfwAPwztEqFwP4FIBZAFYD+GwN4wOA3/vrPsTwnPH7izHWDc9N/qX/2osBfEcV6cQUgXNO/6bJPwDrAQwB6Ff+vcN/7s3wTmhMWf5eeLfPFsM7WfYqz30ewI/9n58CcGHMNjmAM5TffwPg0oQxPgPgg/7PHwHwsP8zA7ABwPP8398B4B/+zycD2KCt5yMAfuT//EkAt6Ycmw8C+IP/8xsB3KU8xwBsBPB2//e/AHib8rwFT/gvNax3mX8Mctrjacf0Vngn/rna694K4E4AR03054n+0T/6Nzn+ATgDwF4Anf7vdwD4t5hl5bnQ/50DOChm2ZsBvB3A6+Fd2B8C4Gn/uU0AzvJ/fgLAC5TX7Qugop8X/edm+tuc4f/+YwDfV55/CTwRbxpP3Pm2w3/8dP/39QDO9X82fn8BeA2A27THvgfgExP9ftK/5v4jR3j6cRHnfKby7/+U5zZz/6/d51l4V+8LAezmnA9qzy3yf14MYE3CNp9Tfh4B0GNaiDF2OoD9AVzpP/RLAEcyxo7xx3UlvKtyAHgdAtdgKYCF/q29fsZYPzzHVo0MbNS2dTDzJlE858clPgfPEYG/v3J5f9ublJcvBfB1ZVu74YnlRchO2jF9G4CDATzpxx8u8B//GYC/wXPCtzDGvsQYy9ewXYIgphmc89vhZXYvZIwdAO8O3S+B1HNhVn4P4BwA74N3jtJZCi+nK86ZT8AzAhb40YQv+NGEAXgiFdoYMn2HJCDOq7sNz8V9fy0FcLL2vfIvAPapcdtEm0NCmFBZJKIHPkvgucRbAMxmjPVqz232f94I7/Z9o7wJnqB8iDH2HIB7/MfFLb1fAXiVn8c9GcDvlO2v0wR+L+f8Jcq6VYEPAN8F8CSA5dyLH3zU3zYAbAWwn1jQPyb7Ka/dCOBfte11cs7vrGFfE48p5/wZzvnF8G7JfRHAVYyxbs55hXP+Kc75YfDiGhcgfMuTIAjCxE/hnSveAOB6zvk2//Gkc2EmOOcj8O6UvQtmIbwRwIu1c2YH53wzPFPjQgDnwot9LfNfU9MYUngFgO3w3F/T2EzfXxsB3KKNuYdz/q4mjotoA0gIEyrzAbyfMZZnjP0zgEMBXMc53wjvdvzn/claR8FzLIUj+30AlzHGljOPo5g3czgzjLEOeLm1SwAco/x7H4B/YYzlOOcPwnM1vg/gb5zzfv/l9wIYYIx9mDHW6TsMRzDGTkzYZC+AAQBDjLEV8E7ggj/Dc6IvYl6Fifcg7AJcDuAjIivGGJvhH68kiv6x6/D3dTMSjilj7PWMsXmccxdehAUAHMbY2YyxI/2JKQPwbi86KdsmCIL4KTyx+Q4AP1EeTzoX1sJHATyfc77e8NzlAD7rmxhgjM1jjF2obL8EYBeALniOdFNgjC1gjL0X3pyXj/jnU524769rARzMGHuD/52YZ4ydyBg7tFnjI9oDEsLTjz+xcB3hPyjP3QNvwsJOeJMRXsU53+U/dzG8K/Ut8GYEf4JzfoP/3FfgZX+vh3dC/QGAzhrHdRG8SV8/5d5M3+c458/567IBnO8v9yt4J/Nfihdyzh0AL4MnnNf54/8+PHchjv+E50QMAvg/AL9W1rcTwD8D+BK8k/NhAFbCO1mDc/4HeC7tlf6tvMcAvDhl/4b8/RP/zkHyMT0fwOOMsSF4E+deyzkfgyfIr4J3nJ8AcAuAn6dsmyCIaY4vUO8E0A3gGuWp2HNhjevf4kcwTHzd3+b1jLFBAHfDu6sHeAL9WXjmwCr/uUbpZ4wNA3gUXqb4nznnP4xZ1vj95cfWXgTgtfDO0c/BO+8XmzA+oo1g4UgoMV1hXo3Ft3POz5josbQbflWKTQD+hXN+00SPhyAIgiCI5kCOMEEYYIydxxibyRgrIsjMNcOpIAiCIAiiTcgkhBlj5/vFpFczxi41PD+DMfYnxtjDzOvh/ZbmD5UgxpVT4c0k3gkvdnER9+pxEkTbQ+dsgiCIbKRGI/xJOU8DeCG828P3AbiYc75KWeaj8Gr+fZgxNg/ezMx9OOdl0zoJgiCI1kDnbIIgiOxkcYRPArCac77WP0leCa/UiQoH0OuXmeqBV6uv0f7lBEEQRO3QOZsgCCIjWYTwIoSbEWxCtHHAt+CV2toCb5bmB2LKlBAEQRCthc7ZBEEQGcllWMZU1FrPU5wH4CF4JaEOBHADY+w2zvlAaEWMXQKvTiy6u7uPX7FiRc0DJgiCaAfuv//+nZzzeRM9DgN0ziYIgtCIO2dnEcKb4LUgFOwHz0VQeQuAL/itaFczxtYBWAGv0YGEc34FgCsA4IQTTuArV67MvgcEQRBtBGPs2YkeQwx0ziYIgtCIO2dniUbcB2A5Y2x/xlgBXnHpa7RlNgB4gb+hBQAOAbC2/uESBEEQdULnbIIgiIykOsKc86rfovBv8Dp8/ZBz/jhj7J3+85cDuAzAjxljj8K7LfdhvzsXQRAEMY7QOZsgCCI7WaIR4JxfB+A67bHLlZ+3wGtFSBAEQUwwdM4mCILIBnWWIwiCIAiCIKYlJIQJgiAIgiCIaQkJYYIgCIIgCGJaQkKYIAiCIAiCmJaQECYIgiAIgiCmJSSECYIgCIIgiGkJCWGCIAiCIAhiWkJCmCAIgiAIgpiWkBAmCIIgCIIgpiUkhAmCIAiCIIhpCQlhgiAIgiAIYlpCQpggCIIgCIKYlpAQJgiCIAiCIKYlJIQJgiAIgiCIaQkJYYIgCIIgCGJaQkKYIAiCIAiCmJaQECYIgiAIgiCmJSSECYIgCIIgiGkJCWGCIAiCIAhiWkJCmCAIgiAIgpiWkBAmCIIgCIIgpiUkhAmCIAiCIIhpCQlhgiAIgiAIYlpCQpggCIIgCIKYlpAQJgiCIAiCIKYlJIQJgiAIgiCIaQkJYYIgCIIgCGJaMumEMOd8oodAEARBEARBTAEmlRB+x09X4jVX3D3RwyAIgiAIgiCmAJNKCNuMYfdweaKHQRAEQRAEQUwBJpUQntmVx97RykQPgyAIgiAIgpgCTCohPKOThDBBEARBEATRHCaVEO7rzKNcdTFWcSZ6KARBEARBEMQkZ1IJ4RmdeQBA/wi5wgRBEARBEERjTCohPLPLE8IUjyAIgiAIgiAaZVIJYeEIkxAmCIIgCIIgGoWEMEEQBEEQBDEtISFMEARBEARBTEsmlRCe2VkAAPSPUFMNgiAIgiAIojEmlRDu7ciBMWCAHGGCIAiCIAiiQSaVELYsht5ijqIRBEEQBEEQRMNMKiEMADO7CiSECYIgCIIgiIaZdEJ4Rmce/SSECYIgCIIgiAaZlEKYHGGCIAiCIAiiUUgIEwRBEARBENOSSSeE5/QUsGOgBM75RA+FIAiCIAiCmMRkEsKMsfMZY08xxlYzxi41PP//GGMP+f8eY4w5jLHZzR8ucMDcbgyWqtgxVGrF6gmCICY97XTOJgiCaGdShTBjzAbwbQAvBnAYgIsZY4epy3DOv8w5P4ZzfgyAjwC4hXO+uwXjxYHzewAAa7YPt2L1BEEQk5p2O2cTBEG0M1kc4ZMArOacr+WclwFcCeDChOUvBvCrZgzOxIHzfCG8Y6hVmyAIgpjMtNU5myAIop3JIoQXAdio/L7JfywCY6wLwPkAfhfz/CWMsZWMsZU7duyodawAgAV9HbAYsG1grK7XEwRBTHHa6pxNEATRzmQRwszwWNxMtZcBuCPuFhvn/ArO+Qmc8xPmzZuXdYwhbIthTk8ROwYpI0wQBGGgrc7ZBEEQ7UwWIbwJwGLl9/0AbIlZ9rUYh1tsc3uK2EmT5QiCIEy03TmbIAiiXckihO8DsJwxtj9jrADvxHmNvhBjbAaA5wP4Y3OHGGVeLznCBEEQMbTdOZsgCKJdyaUtwDmvMsbeC+BvAGwAP+ScP84Ye6f//OX+oq8AcD3nvOXlHOb1FLFmO02WIwiC0GnHczZBEES7kiqEAYBzfh2A67THLtd+/zGAHzdrYEnM7S1gx6DXVIMxUxyOIAhi+tJu52yCIIh2ZdJ1lgM8R7jsuBgYq070UAiCIAiCIIhJyuQUwr1FAKCcMEEQBEEQBFE3k1MI95AQJgiCIAiCIBpjcgph3xGmEmoEQRAEQRBEvUxKITyXHGGCIAiCIAiiQSalEJ7RmUfeZuQIEwRBEARBEHUzKYWwZTHM6aamGgRBEARBEET9TEohDPjd5cgRJgiCIAiCIOpk0grhuT0FikYQBEEQBEEQdTNphfC8XopGEARBEARBEPUzqYXwrqEyXJdP9FAIgiAIgiCIScikFcJze4qouhz9o5WJHgpBEARBEAQxCZm0QpiaahAEQRAEQRCNMGmFMDXVIAiCIAiCIBph0gph4QiTECYIgiAIgiDqYdILYYpGEARBEAQx1bjtmR3440ObJ3oYU55JK4R7izkUchY5wgRBEARBTDl+etez+MaNz0z0MBriqvs34bpHtzZlXWMVB1XHbcq6VCatEGaMYV4P1RImCIIgCGLqUXVcjJadiR5GQ/z0rvX41b0bmrKuV11+Z0suDCatEAaARTM7sWnP6EQPgyAIgiAIoqlUXY6RyuQWwlWHo+o0p9/Dlv4xbGyB5pvUQnjZ3C6s2zU80cMgCIIgCIJoKlWHY2SSO8KOy1F1mxNnqFRdjLXgwmBSC+Glc7qxY7CEoVJ1oodCEARBEEQbwjnHXx97btJ1onVcjnLVhTPJxq3icI5KkxzhskNCOMIBc7sBAKu3D03wSAiCIAiCaEce2LAH7/z5/Vj57J6JHkpNVHwndaScbPYNjlWwZ7g8HkOqmaY6wo6LURLCYU7afzYsBtz4xLaJHgpBEARBEG3I3tEKAGB4kt09Fk5w2oS5T/9pFf715/ePx5BqxnGbkxF2XA6XA2MVqhoRYk5PEScsm43bntk50UMhCIIgCKINETnbUnVy5W2FgBxOEcLbBktt21PBcTkqTSh5JtZB0QgDS2Z3YdvA2EQPgyAIgiCINiQQws13E1tJNWM0wquv2545YsflTck4CyHcivdw0gvhBX1eLeHJFoInCIIgCKL1CBexPOmEcLZoRKniNOy6/vGhzdjS3/zSZFW3OZPlxDrIETYwv7cDVZdj90h7BsUJgiAIgpg4hCNcbkFXslYinNS0EmpjFbchITxadvCBKx/CG394b93riMNx3aZMlqNoRAIL+ooAQPEIgiAIgiAiSCE82RxhJ5sQLlWdhvZNTCbsH6nUvY44mjVZTuwfTZYzMK+3AwAJYYIgCIIgooz6GdtJJ4R9J3W0kpYRdhuKH/SPenfUe4p23euIo+mT5aoOOG9uFHbSC+GDF/SgYFu4c/WuiR4KQRAEQRBtxuhkzQhndITHqo1lhPf6TnBPR67udcThcC6zzo0ghD7nzY+4THoh3NuRxxnL5+LGJ7dP9FAIgiCIFlKqOtjcggk9xNRmMmWEf373s3h21zCA7JPlxioOqi6v2ynt96MRPcUWCOEmRSNUod/seMSkF8IAcOSiGXh21/CkqxFIEARBZOdX92zAi75yS1NutRLTh9FJkhEuV13899WP4eXfugNAtslynHMpDOuNR0hHuJiv6/VJNKuznHoRU2ryhLkpIYSXze2Cy4GNu8kpIAiCmKps3TuG4bKTequ4XRkuVTEw1vwJSUQyk6WOsBCMYvKauOBL+ryr+1TvBaLICPc1ORrh+t3gXI6GS9xWquQIJ7J0TjcAyNsJBEEQxNRj0G+R22xHaLz4xDWP4z2/eGCihzHtGI2JRuwZLrfVRHvd0Q1aLMdPlitVmiCEfUe4mG+uJHSUqMaOoRKue3QrHtu8t651qTnjsSbf/W9+IGQC2N8Xwut3jUzwSAiCIIhWMTTmCYLRSSqEdw+XsWOwPVvhtjP3rd+NhTM7sWhmZ12vj5ssd+xlNwAA1n/hpY0NsEmoHdi4MsksyRFWRWG9GWjhQDejA5yKur5v/WM1fnb3s8jbDI9+8jx05GurUFEOZYQpGhFhZlcefR05rN9JjjBBEMRUZch3hFtRS3Q8cDmH2+TST9OB9/7yAfzfrWvrfv3IJCmfVlXEnnqxlxiNCDnCjU2Wa0Z1BxVVCIumZxWH1xVtomhECowxLJvbjfUUjSAIgpiyTHZH2OXNd92mA2MVt6F872SZLFdRPhvqnKeRhGiE6ghX6tw/MVmu6Y6wctE3Ugr2oZ7CBqrIb/bf/5QQwgCwbA4JYYIgiKmMmGiWVk6qXeGcgwzh2nFc3tBkq5HK5Cif5ihiT53zlBiNUERho5Pl0hzh6x7dKu/KpHHNw1uwSRHzw8o+lOpwdCsUjUjngHnd2LxnFP2+/U4QBEFMLWQ0YpKWyuQ87JIR2ai6bkOREpMjPN4l+DbsGkkVcBWlzNizypynJAd0rBnRCOEIJ7z+zjU78e5fPICv3vB06vqqjosPXPkgfn3fBvmYevFaj7tPGeEMnH3IfLgcuGHVtokeCkEQBNECpBCepI6wy/mkjkbsHak0XYRkwfHLcNX7WiG8VCEsxF8rEQ0uHJfjxV+/FVfeuyFxebXxxLO7x88RFtGIqstj3fdHNnnVHrJckHjNPcLjVuMd9UUj1DrClBE2ctR+M3DQ/B589YanJ+QPlSAIgmgdnHOZEZ6sjrDLG7vFP9G86vI78e2bVo/7dqtu/ZMMVTe15IupYz99Pf71ZyubMrY4bn9mJ4761PXYMVhC1XUxXHawdzQ5VqA2ntjaH5R1S4oCNSqEq44ryxI6rot3/+J+/NfVj0aWe3rbIABg6eyu1HWKiz3V+R1p0BEOTZZr8t//lBHCjDF89CUrsGXvGO5as2uih0MQBEE0kVLVVVrONscRKlddbBnHls3uJI9G7BgqYdfw+MYPXd9d1IVw1XFx/7O7U1+vOpHCEd4zUsEDG/obHtu6ncOxDv/VD23G4FgVj23ZK3Phae+96ggP++Mu5KyUyXLB30I9GeiBsWDdVZdj4+5RY3Oy1duHAACWxQAAn7l2FX5w+zrjOsXfqSrSh0tV5G3vtfVlhJU6whSNiOf0g+aiq2DjH09un+ihEARBEE1E7cjWrC/CX9+3AS/66q2hslUthQNtPl8rEcfh8nb/uG3T356uN29YtQ2v/O5d2JxyITOmXDSVm+gkbhsYw7lfuQU3rHou8pzrctzk65A124ekiE+7G6A6wsIF7irYIYGsUwo5wrW/N8PK5DfRDtkkqIUj7LgcVcfF929fh8uuXWVcp8kRHi476O3I+4/X/j6EM8IUjYilmLNx3JJZeHDjnokeCkEQBNFEhhTnqlnlk3YMlTFUqo5bNYHJXkdYZD/HEyGqdBEp6tIOp1QxGKl4z3fkraa+z1v3jsFxObYbGqQ8vKlfOudrdgwF+1CTI+x9xos5K9FJVh1hER/YPjiGi759B7buTb/boTraVZej6vBIxMLLhrty+VVbB5L3wxf06gWr43L0+i2c6yljJ8ZkMXKEUzl8UR+eem6w7esFEgRBENlRyzY164tQOMGV6viou4mcLOe6UYFTK04DWd16qcaISOGYpu2TyKbO7CygXHUjgrq7UFuHM8EeKcSjn8X7n/XMuAPmdWPN9mHpZqdGI5Sxif0r5KzEsmYlQ0b4ya2DeGhjPx7fnCxYgfBxdVyOiutGHOintw+Glr93nRdJmdNdMK5TfMbHNB3WU/SEcD0Z4arDkbMYOvP2xDjCjLHzGWNPMcZWM8YujVnmLMbYQ4yxxxljtzR1lDVwxMIZqDgcTz03mL4wQRDEFGQynbOzojrCzRLCQjiMnyOcfnu8Vj533RN4/pdvSl3uu7eswcu/dUdD23ImoA6yKOmlC2HxGUi7sBCCckZnHuVq9La/yLzWiijVOmrI7wqhd8zimVi9Y0jGSdKOnep6ilxwMWcn7mNospy/nHDJs9T8VY9rnCO8aU9Qys1xIYXwjM68cZ1CSJe0v1PhCJuiEZf8dCXe/pP4CYwVx0XettCRt5s+WS6XtgBjzAbwbQAvBLAJwH2MsWs456uUZWYC+A6A8znnGxhj85s6yho4YdksAMC963fjyP1mTNQwCIIgJoTJds7OykALohEiU6lmM1sJR7byU7VwRcbWwxt3j2DT7pH0BWPgvps93oa2cFH1a5UR6QgnD0gsN6Mrj017RiIir94Lkz3DXmZ92FDRQQjBQxb04vcPbMbOIU80p4l28Xx3ISfH3ZG34LheNpuxqGhX3dGRUhWb9oxIAZxFCKuHw3FdVBweuVjYvCeIWLic47HNe/1tm/8OhYOt35kPMsLRv7frU0rflh0XOZt5QngCohEnAVjNOV/LOS8DuBLAhdoyrwPwe875BgDgnE/YbLV9Z3Riyewu/N+ta7FzKJrdIQiCmOJMqnN2VsLRiCZVjRjnaATnfMKqRpSqriwfVg9CpHGMdzTCG7M+SU9cDKVNdBTLzejMo+y4EeFc7/shHGFTRQexzuULegB4OWEg/SJIjK2raEuxWLAt/7Xm16ii8Jf3bsALv3KrFN41O8KON1lOv1jY3D+KmV2eiFXrMsddkDr+e6YLXukIJ/z9xuWaK46Lgm2hI29NSB3hRQA2Kr9v8h9TORjALMbYzYyx+xljbzStiDF2CWNsJWNs5Y4dO+obcQb+40UH47mBMXz+uifHfYYrQRDEBDPpztlZGPKrRszuLjTPEfa/qCvj5Ah7dYSbt75aql2Uq57Aqfc7Ubh8rf5KfXTTXpzzPzdj0H+/4yaaichDWltg8R73FnOoODxyW77e92OP34TC1OzCcV3YFpMOqIj1pLnPYl+7CsHN+mLOyzDH3bVQYwIbd49gtOJgc7/n/KdNJFS3mbOYXxGCRy4MN+0ZxeJZXXL5oDyaeUym8mkA0JehasSDMWXtKlUeRCMmwBE2BWj0dzMH4HgALwVwHoCPMcYOjryI8ys45ydwzk+YN29ezYPNyoXHLMJbT98fv3tgE659ZGvLtkMQBNGGTLpzdhaEuzW3pxDJHtaL+MIer3a7zW6xvGlP9hrIpaoDztOFYxyuzLm2Vgl/8a9PYu3OYSmIRMxAT0BIRzhjSbKuoicohTj81MsPx1tP3z/T+3HzU9tx9YObQ48lTZZzXMBmDCJ+HIj55O2IsXbmgwl8HXnfEY75iI5VXDnhb++oJ85FM47BseyOcCHnRTAqjtkR3m9WJxgLN4UZrTjGz4PMCGuOcGfBhsXM0YglfqOOB/yJhmMVB39W9FvFcZHPMZx6wBwcvqi5sdcsQngTgMXK7/sB2GJY5q+c82HO+U4AtwI4ujlDrI//eumhYAx4bMveiRwGQRDEeDMpz9lpDJaqKOQs9HXksaV/DO//1YPyi79exjsa4fL0nGgtrNsZtOFNW6+pzXAtVDOKuUYR70kh58kTGcnQBJdwYtNc8armsg75wnVmVx49RTtTZvvNP7oPH/z1Q6HHRIvm0YohGuE7wpaf6RVjSBPdIhrRXQyEcJojXKq60nkW782WvZ4QzuIIi9fkba86RdUNZ4Q559jSP4pFMzthM881VvfDJGqdGEe4YFso5mzja8RFw0Mb+wEANz6xHe/55QNY68dKyv5kuf++4DD8+wsj1+wNkUUI3wdgOWNsf8ZYAcBrAVyjLfNHAGcyxnKMsS4AJwN4oqkjrRHbYlg6uysU8iYIgpgGTMpzdhp7Ryro68ijI29j1dYBXPPwFvzu/k0NrXO8oxFCzDWrcsRaRQinudqNCmFRvaHVlwxifHk/Gxs01DBXjUibLCfcyS7fNRUxhYJtgTEGzutzuVMd4ZAQNueco6/zHWE1GpEPXxDojFUcmb0ViJxttslygSNcdVzpCgt2DZcxVnGxcGYnLIvB4Z5YFhcqppiCEP66W1/IWSjmLeMdHfE+i4tbIeJHlDJ5Ii/dbFLXyjmvAngvgL/BO1H+hnP+OGPsnYyxd/rLPAHgrwAeAXAvgO9zzh9ryYhrYNGszppuHREEQUx2JvM5O4kNu0eweHYnOpTbxrNj6phmpSId4fHLCAO1xyM453hgw56IkFqvCOG0iIAQmPXGQOLq+TYbMc6i5gjrQlBkhNOc8MAR9oVwyRNahZwF27ch63Hp+2VGON4RFusXYj1tO9IRLqiOcLoQ7i7moBaUEGOrZbJcwbZk3V+1jrAwExfN8hxh1/WiEaImsCmvHzfWYs5CMWeZXWTtGIkccUl+brm8OGo2qeXTAIBzfh2A67THLtd+/zKALzdvaI2z38wu/OOptp8MTRAE0VQm6zk7iWd3jeCk/WeHhFxfZ6avsFiC8mnjVTXC+99xOfI19HH40yNb8f5fPYivvuZovOLY/eTjW/1b4IAv5ovx6xACs55mBoAiblp8qMT7K4RdVdYRDi8noxEpbr6ITohohMjN5m1FCHOeTQwp7JFVI8zupm0xuQ/C6U27BtHHCgTRCJO4/My1q3DbMztxxKI+5K1o57xM0Qh/vcWcJfep6otdy2LSXV40sxO2xeC43v51F23sHjZPmIt7Twq5+GiEuDisSiEsPq+BI5yz66v5nMaU6yynsnxBD3YMlrCxgdqJBEEQxMQyVnGwZe8ols7pCk0k0jtg1YoQDuPZYln9PyviO+yZbUOhxx1FcKTFO4SgqHdf4yIKzUaMT71o8H6vMxqhOcJCHBZylowuOC6vqRJBqepIAWyuGsFD0QgxxrRohD5WQHGEDa/9/u3rAADL5nQjbxCJmaIR/nrzdtipFZ8nUb97RmceFvM+c5x7tY6BwJkHPFH925UbYy+2vIywZawaId5ncTGgR3lEQ41WMKWF8HmH7wMA+OY/npngkRAEQRD1smnPCDj3vvA7FZHQ6MQz8aXbiKD+4e3rIhUF4hBaptZhC5ETaQahrCdtH+TEwHqFsBRzdb08M0L4uJzjnrW75K13/b0ekdGINEdYnyynOsLeMl/8y5NY8bG/hkRdEiJ60FPMGV1Xx+WwWRCNCCpfZBTC6mQ5PyNsen9ndxdw7qELcNmFRyCfi8o5U35ZRxy+fI6FjrEQ7+KYdBZs2BZD2X9cRCPU8m0PbuzH/7vqEdy5eqdxW0FGOH6CnXSEK9FoxIRlhCczi2d34ZXH7YffrNwUylIRBEEQk4f1Oz1HdOmcrlBGuJKgKB/e2I+zvnyTrEdrQnzZN1I+7bf3b8I1D+tFOczIjHCNSlg4YfpEN70ZQhJCfNRfNSIQqK1EvBdb+sfwmivuxl8e2+pvN7zcaGZH2AVjQRkyUTWiqDjCV/mTLkU0IA2x3H6zOlGqupH3syod4WAMpn2IjFVEI/LZohEu51g0swOzugtGtzTps6+uA0BEZIrcvDjOXUII+493+0L4H09sx1dveBpA4NLHOdFJ0QhZWUOLRoQdYYpG1MWbT1sGAFi1dWBiB0IQBEHUxfpdnpGxbE43OhTnK8kNfGb7ENbvGpFdtkxUGnRJAe92d9bXCylTa9UIKYQ10aeK0h1DJXzn5tWxt99lDKTBjHCr09RCAAkxtdd3XyOd5Woon5azmKxyMKw4wkIIi4sr08Q3E9sHvK61+/lNJvTXuVo0Qk40rHFiH5AcjXDcoO2yyS0dLpvr/IbWoUQjVMRnWrZ6ztmwGJOPC0f41ys34ls3rQ5Vm4hrtJFPiEa4uiOsZdrLVYpG1M3yBT2wLYYnSAgTBEFMSp7dNYK+jhxmduVDs9ST3ECeIdMaxAXql3cu55mjFfVWjSjEOcLKr//vqofxpb8+hbvX7jauo1xtUAg3saHGnx/ZGis6xfjERY649e6E3G9XvnepDTUcFznLkoIyiEYE0QUhhPeOVvHr+zakiuuntw0CAI7ebwaAaE7Y4V6nNjWDDKS76VWHw1LcayC5agTnkPugu6WiQUZaO3IhQAtatKIsRa2DjrwFy6+CIcSuqHW8Y7AEx+XYPjgm/47i8taFhKoRUUfYz7SrjrAh/tEMprwQ7sjbWD6/RxZpJgiCINqXwbEKXvz12/C40gxpS/8oFs3qAmNM5jOB5IiBzOMmLNMMR9jl6ZUL5LJu+phMCJGij1MVhzsGPZeSx3i20lmrt3xakzLCG3eP4D2/fADXP77N+HxFuzgRzq96iMcUIZXeWY4jZzMUbFE+TZks54tIkcO98Ylt+PDvHsW968wXE4Intg5iXm8R+83uBGAQwq4LKzRZToj7lPJproucbYVEadEX6aaLLZdzGb/Q3dIFfcXQ/sYhhlTM6Y6w98RIuSonqFosGo0QbOkfkxcQcS3Qi6KhhkGci4sE8bcURHmCCAxlhBvglAPmYOX6PXVfCRMEQRDjw4bdI3hi6wBWbQnu4pWqLjp9sdKvdJNLcu6CCg3x2xId5dIcwCRczjM7ytzgCHPO8d2b16A/IZ8qRI4uuFV3VrhwptvHolEC0Hg0otGMsBBmca6heL+q2m12dbuqm5wajXDC0Qi1oYYtohF+DvfZXV4WPXzXIbr+p7YNYMU+vXICnj5hzvHjGJYVjEHdtzgcbaxAIFBNx90TwsIRDr/v+/R1ePubIoTF+6q/Xorasiv305ssF45GCLbuHQ25yCbEZDnTxVhcRrhEGeHmcMZBczFacfDK796J792yZqKHQxAEQQDYOVSSdUoFYqa7evu0XHWlOHj3WQfKhgNJbqB4JsmFE8JSz97WAlcc4a///Rksu/TPsWLTNKZnd43gi399Ev94Mr7mvaifqq/XNMs/Z0XFgio86naEm9RiWZY9y5iXFdEIVQiOlWt1hKPRCK+hhreMcIQ3+GXq1M+efhu/6rh4etsQVuzTK0uIRR1hT6DqneVSoxEiz2ybWixzcM5xw6pt8o6CyyEzwkIkir+TBb4QTqslLCfLxUQjRitVGdUIRyM0Idw/JgV/XBxDRiM0oey6XN5pCDLC0WhEjhzh+nnBofNx7qHz8ejmvfj8X56c6OEQBEEQAD581SN4zy8eAOB9Ga7fOSy/uENixHFR8AXBsUtm4e6PvgBAcqWELDV7G+22JtYvxvHTu9YDAPpHze6uHJOyOSGSkgSdkLbRyXLRSVImR7isXVTUQ7MmywmRlObkVjRRpR6ekYrqCGfJCDNZdm/Ar6SQ91ssA4EjLISweox00bZ+1wjKVReH7NMn16nnnR0/jhEpn5Yq2r0JYSZH2HFd/OWx5/COn67ED/z6wa4bjUbsO8MTwMIRFg1E4pAtliOT5YJoinCELRYcG7X7HQBs2TuqTJZLyghHq0aIOyQF2wLn3n6J912dLEfRiAZgjOFlRy+Uv2edGUoQBEG0joc39cvb0X9/Yhte8JVbsGaH1zRCF28F5bZozhJRgQwZ4QQhLDvLNRyN8Mte+ROIRmLqt4rhhiZ+xbQQNr2urM22dzmPZDstZnCE1UYJ9dYRjmlsUSvC4c0iYIFAiKrvo1rvN62RiBClohKDyJjnlWiEmIS114/dlBMc4Wf8iXKHLOiVE8Z0R7jqO8JBZ7nsk+VsPRqRF0I4eO/EnCfX72An9gcIBHCtjrA+EU2tGiEywp4j7C1fzNmhuw9b+8eky68LYbE/QUMN850N8VmuujzSAMZrsUzRiIa44KiFOHn/2QC8UDdBEAQxcWwfHMPOoTJ2DZdRqjrYNVyG43Ks82u+qyWWKo4bEgciKpAkYHmWjLDsLNdA1Qg3ENRxt8qjY1IrIGRxC7k/Xt0R5pFb2ib0mEk9BEI4fpmHN/anXlSUZDQixRHWRJU6wVAVwmmCuuJy5CxLupqBIxw4tnoZPvHZ+9jVj+F3fo1hwc5hz+1fMKMo329dbLqch6pGVDIKYU/sWdL5ZEy96HMxq6sAwHNfvfUp0Yic5gjPyJYRTqsjPFZxpPOtlk+zLRaq6b1176jymvDxFAJXNtSoRqMk4nnxu15HWLjlrWDaCGHbYviPFx0CALjwW7fjr36RboIgCGL8USfDbR8oyS+8rXs9oyKSEVa+BIUT1UhGmHMuX9+II8w5DxohiDa+MXcdTZUsanGEI1Uj3Ohsf1PViKTMa1bScq5PbxvEhd++A1/8a3L8MIhGZHOER6UjHDynTmZLixs4rheNsC2GzrwN7sdJGGOyaoR+cVCquuCc49crN+Kvjz8Xem6vP6lxRmdeCkQxHs65/3ngXrkxFr5gSysu4riuV+HCf0/zliUv+hyXy2O/tX9MXlQJU1bcMTlu6Sz0deRwwLxuf1+Su8uJj5T+OSorx191hMWxUoXw/N4ituwdk58RvWqEyDmLaETF4aH3TdwhCRxhV1aNKFUdv1Y3p4xwMxBXSsNlB+/8+QMTPBqCIIjpyxNbB+XPXg1S74tvS7/ndkWiEcoXNfPb1yaVLXNTbuWr7mqj5dOE4ycmEA3F5DJNdYSFG5kshM0VHzjnsrxW8Fj09aoYGi07uGvNrthtxZHmCA/4sYL7n92TuB7h8KZdfOjVA0LRiISqDivX78Zjm/cqzwfxARFlEJ8lIVT141p2XAyWqihXXezSGrL0j1TQVbBRzNmKI+yN56Jv34FjL7sh6ghnbLFc8RtxCEFoW6prHQjh5wbG5IWBXjXizOXz8Mgnz8O83mJo23HIaERMRnik7MgLPLVqhGUxOYnu8IV92DlUkndCdCEslivattw39ZiL9t1hRziYNCvWq+eSm8W0EsL7zeqUmZ0st5MIgiCI1vDE1gHpZj23tyQFjxDCejRC/6L2hHB9jvDDG/tx69M7lPXXH41wFEdYCKPBmNvRMiOsOsIZohFCP0Ud4WhtVZNjq4qOPz2yBRf/393yOGclLecq3MHRlAYOSVUjTFUwTNGIkYRoxGXXrsLX/v5MaJ3isyPiESJrKg6dHo0pVVxZl3nXcCn03N7RCmZ25gEgIuoe3rQX/SOVoMWyJcbgPZ+Wr646LvJWMFkup7jKjsuhvv3iWOmT5YRYzFtB7elXX34XLo+pmBXXUEOd+GaKRuR8hx0Als7pBufAwGg1dDwEoWiE/7P69x04wra/bR4qnybiHT0d4UoVzWJaqUHGGG770Nk4cdkslKtuYt1GgiAIojW4Lsf9z+7BcUtmAfAcLvEFO+C7qWrRfd0RBoC8xVKqRoT/V/na35/GJ655XP7eaItlMQ4xWS7NEXYNgibJLZSOsDZOl3M5mSoYT/T1ahxiqz9HJm0SlU5a1QghcOIqBghEMwyTI6y+NohiIPS/ulxH3opcDI1V3ND76ZXdEo6wJ6TEZ4lpDS8EZcfFTl8I6xdJ/aMV9PlC2LK8CXF6xjiuxXJ6jEM0//CFsFp5wuWh7Qz6WWcR7xD72OXvo8gMVx2OZ7YPYt2OYfM2Y8qnxU2WEyLXYkEljvl+8w5TIQLGICu+eBlh72f1M5mWERaVL/Taxc1iWglhwOsNfvFJSwAAe5QORQRBEMT4sPLZPdjcP4rXnbwEhZyF7QNjxtvTgpITFcK2xVJc1HgHc3Csit3DgRHSeDRCywjHicw6q0bIcVbDy4i8a3g8yY6wcKtrdcHFONNczdGYiYIC6Qgbtj8WijxEJwYKhEPY15GPxGOqrhtaVjS3ABS31A5HI/T3v1RxsWMo7AQL9o5UMLMrL3/P+XcmuPae2izaWS7tLa74DTXyMhoRZIRdzREWpd7ENsTnoMsXmmKfK66LisNj756Ih03l0zjnGK0o0QgWVI2wLYYOv3LEnG5vEp9pYp7NGPI2g8UQin2oF7pibOGMcBCNEKK/ryOPVjDthDAQHExxcAmCIIjx43f3b0J3wcb5R+yDBX3FkCMsEF+U3C9PZqqXmyRgk8qnDZWqoRxj2sStJNQ6wsI5i49GREWvk0EIi9eZWizrjrBpNaZKEVnbQuvjjNPBYrtjKZOz5GQ5w/ZDrZMN7rfg2Z0jmNNdQG9HLvLeVZUsrbceLisvCLdUfJaE2xq9CHOkI6zTP1rGzM6C/F1ckKki0IlEI5JjJcHY/RbLdjQaUXV56JgFQtj7PW9b6CrY0iGW3Qgd7+9Hd60FIhphKp/mTRoEOkQ0wgouUHMWQ0fBxsyugow0mC4AbYuFuuWJcZWd4HMixhCUilMdYafl0YjWrLXN6fUPpsizEARBEOPH35/Yhhcdvg+6Cjks6O3Ac3vHZGkogcgQVv2uU7oQTnWEES8w9aoO9XZbA7wvcd0RjI9GiP9rc4SFhtEFm8ujGWGTY2uqFBHnCLsuh8N5tOVuipgTj2d1hKsOxz+e3Ialc7px4Lye0HPq9oL1Bz+v2TGEA+f3YGC0EnWEHR6KnlRcF8W8950vHGEhyuKqRpSr8Y5wf8QRtlBxOLYrwlnU941MlktrqKHVEc7Z4clyakWQnf4kPrGNFx62QGobwPv7YMy7oKi68Y6wrOEbcYRd+V52maIRvhO8cGaHHO+woX62bbGQuBfjVYcjxiaWKVVd+ZgajeiljHDzEPkecoQJgiDGl7GKVzP4oPme+FkwowPbB0sRsSbEqfjijWSE7Wg+VMUkOgX6F3YjjrDaGlZsc6hk/m4JMsKqI5xeNUI8U6q6eO0Vd8mJfq4bTDDSl1VR3TdBXNWG796yBi/75u3RsadkhMVxKFVdbB8Yi21cJS5wKg7Hh656BN+/ba18biyhGoQ4dpxzrN4xhIPm93gTJiOOcEI0QuRntWiEfiFUqrrYOWieQ9Q/WsEMRQh7F2TB5DpvDJ6gDdzcbNGIqus1jSgqk+WEmx2dLBdkdQHgeQfPw4fOXxFaX96yUHJc/7XJFzCRFstVFyP++9Epq0YEy9iM4b9feii++/rjpYA1lQ0MHGGxDjH+6F0R8VlWJ0OWqq68sKSMcBMRQniAhDBBEMS4sn3AEwzz/fJOs7sK2DNSjo1GiMdNGeGkElymiWkCPcvYaItlwBPTXArhmDrC/v9qRjhLaS11stzda3fjg79+SD6uHxfXIHjEsVRrxcZdRGzcPYK1holVgSOcPEYAOOlzN+LiK+42LqdGI8Yqruzmpj4HRC9OhFjaNVxG/0gFB83rQc62ItUn1DJjgCifFq6oEDjC3jJZHeGxioNy1cWMzmhGWBXCYrKcqFIl9sX03qh47aCVaIRtheIVarxBfG6U5m4RcjaTrm7sHYCE8mnitZ1+tQ21sZttMczpKWLRzE7FEY4RwnZQLSJwhKNCWKxnRFlPuerKqFEvZYSbh7DX03pwEwRBEM1l26BXtUC0gO3IWyhXXWNTAyAQKfoXdc5OKZ9mmJgGeKI3aWJerYghlJ3AiRyKabHMDeI8S0ZYt2FFFtlxoy2WjRlhf//UW8tx4r9UdVF2XEP3L1fshHmI2sMPb9prXE6NRpQdN/Q9XEqIRoj1r97uteA+cH4P8r4bq1JxeOgYOK4ry6XJigr+7/pkto68hX36OlCuuthpEMKiPbMpI7xdd4QZA/PbLKfFStTX5Syv0UdO/vMdYR5TPi1BCeesQAjHZYTFOk1VI6QQVqIR6n4LpBA2xGJyFkNeiXtIIWzYF/FZVi8k1cly5Ag3kZ5CDowFBcAJgiCI8WHbQFgIF3O2dNpUxO+lmGhELqV8GldupauYXKtGJ8t563DltoZi7ja6BnGerbNc+Dkxi9/liHTbMnWWE8dSFRJx+ywEsG4U1eIIJyHeT3FBom5HnWinZ3/F+oUQFtEI3enUYwAidwsYqkZYQV71pGWz8egnz8PCmR1+NKIUEV79o15cQs0Ii4iOcIQtFjjCgBchyFIiT4xVVIko5KxQQw29fJq4GyJKwJko5Cw5KTS+aoQ5GlFxXPnaLqWOsED92KU5wnN7irLBh8w8GxxhMVlORCMKtneRPDRWRVfBDonvZjIthbBlMXAOfOMfq1NrHhIEQRDNY5sfjVjg1x4t5iy4HDKPKBCCTLiZuvOZs5IzwtIR1owwPbZgsfRoxLO7hvHD29clbiecEU6rI1xbRlh/KhDCHLYVnkiYVEdYvbUcVzVCiGZdCAd1hJMFVRriO1eILHWuTpZoxIMb+tFdsLFvX4cnQh3dEXYjpcxkswlf2Oq36QFPoOVtr5lFqepg51AZ+8/tDq17z7BwhPWMMMd2/06HV04vEMJqE4q0QySqRgCeuMzZViAc/ayv3E/hCCdFIyxLcYTjJ0cCgUsu9qnicJnz7jA6wsFnTnz+RgyOsM0YPvayw3DFG44HABkXCUUjtIYaImvc25GTdw1aNVEOmKZCWOWhjf0TPQSCIIhpw/aBMRRylsxZChdId1FV5xCIVo3wohEurrp/E7bujXZJi5ssp0+U6y7kjF3OVK59ZCs+fe0qY0UEtbSZjEbExO4CcV6bI6yLz05FCFuMSRdRHY+KOJZdSotavZuavqw+mVyWAIu5ZtCH35E3ywsphMtR5zlpshznwIZdI/jjQ5vxyuP38+IDdrRyiONXvRB4uVvhCGuT5Qy3+gs5G/0jFZQdF4tnd4bWvcdvwjXDUEdYzQiXq24ghK307oG7hkq4+Iq7saV/TI61YFte+TTpoIZdXXEBYCc4wjmbSXEaWzVCitDg/erM26g4rnw/pCOsHi9lu/pFqoptM/QUc5jpV4WRLrzhYjDICHvb7e3IoVTxyqe1KhYBTGMh/L//fDQA4INXPhQK6xMEQRCtY9vAGBb0FeUtXeECqYKokLOkMxmbEbYYhsaq+M/fPoyrH9wS2Y4Qj7ow1N3azoKNiqG8mIoQMnpuVl1/VcmmmuoIc4MDBmTtLBf+XbQKdl1fCFssdlkx7kLOCt3+jptoWIpxhGVDjdhRhp/pKZonNgnXd9gohKNNFgQu5/i/29bCthjec/ZBALzPgBqN4NwrE6aK9arLla5r4clyNosK4WLOks1W9ukLC2Hx+IyII+zK/DDgHW/VEU7LCD+1bRB3rd2F0YojM8EiGiHeW0erhhFMlosXwnnbknda0h3hoFJF3mahaITMCCvbsgzRCBO6ULcN5dPER7Eos8Z+w5TOvOcIl6otmygHTGMh/JIj9wXgtfb8QcwtL4IgCKK5bBsoYUFvh/xdOIeqQJ3TXYhMlotmhC35GpOoi3eEwwKvu5hLjUYIkaoKNcATXmI7VTe4JT9cqkayyeoXvxty9nwhnJRTTsgIW4yFLhJMdYTLVRdFZea+ul2dNEc4rrOcrrPibmWLHLAakRDvX6iOsKF5yJb+URw0v0fmy714TFQ863Wac7JqRNgRVsVc4Ahb0vndd0bwOQUgTTNdCFf8phVyHyuuJoT98mkxYlQtHZhXMsL5SItl5Xj460rQwchZDGMpjrD3GQoEdc5mslmNcJNlZznlgiunRiOShLCW3RAXwOG7IpojXA4c4YrDsXe0QtGIVtCp3CLKJYVsCIIgiKaxbXBMChkg7AiLL/U5PYVIRjgihG0mnSOjmyq7uIUf1oVwV8FOzBp76xAT98KOsLrZilI+zeUIda7zHmueIxxM8vIywmo0Ii4jXMyHHeFKvRnhuMly2iC7i7ZxOVHKTa0zLC5o1Mly+iQ47mdv1e/rnB2eMGnq4FZ1AlEqMsJ6BQMg7AiLXdlHE8KiqoV64SHiGfrFlHA+LRZc5MR9zNSJorYSjbAtKxQlCE2W0+oIm8jZwWS52KoRfvMP8RnKWxbytoVyNSif1pE2Wc6Ol5KqYFb3T72gcqUjHO5QJ7oA7x4ukRBuNXETGwiCIIjmsn2ghPn+RDkgXDLpqEUzcMSiPhy130yvDJbLY6MRtsVk3tfktMU5wvr5vqtgG1sQqwiNozf90Fv5qr/rOWF1GOpw66kaIUSXI6MRVuyygCe0CrYVOoa1Vo1IaxOsDz8u0ylc3xElqy22ValGXUKVquOGcqoinysQx0U/vrJ8mqgjbMgI5xQhLJjXWwxNRhPb0ieNmTq32aJEm8XkRUfcxU455Ah72z/lgDk4fsmsUItlVWvLaESCisurGeGEToJqvCZne6XOKo4bXITK4xW8ThXFJkdYHCK9vJv41eEcq7cPwXF5xBHWhfCuoTJlhFvFT996EgBv8sZ3b16Dx7eY6x4SBEEQjTNa9ia+zO1RhLAyqWrJnG5c+74zsXhWFwDPDRYiQZ+Qk7ct+YVpEhgyI6wJFN0R7izkYisoCIT406sMqauuuG7od71hkxtywKKTnhIny2lPlauBO2v5mc64Zb3lXS8jrCiZuDhInCOclhHWIxP6hcumPSP40FUPy+OiVgkRj6kd8EwufUWZ+AZ4jqcaoQgm9IWjEbKhRkwdYSAQbOox6inmQgJMfM7U1+X8jLAuNIWAtRlLbaihCmGxf598+eH4wLnLYfmNOfSGGmK/0zLCYxnKp1mMyWNkW5bMCItxmyYXpkUjRKUJ/Y67OM7rdw7j3K/cgv+5/in5txFkhINoBOBFJeIy581gWgvh5x08D8cumYmrH9qCL/71Sbzph/dO9JAIgiCmLIN+6+E+JWPZobQIFgJFfCGWKq50vkyd5YRDa/qSDxzh8OPiS1Z8P3fl7diuWwIhsNIcYVUMqpOn1u4YCv1ea9WIWEeYc1gsXEvYXDXCQTFnhyfLpeRVoxlh4baaX6c/qi/3v9c/jd+s3BR00lO2Lx1hJ3w8dcpKTWDA+7xUQo6wORohPld6ZzmjI5wPPo+9HbnQJC1HTlBD6HVVPyOsXpCI9bEMk+XUhi62HRW2Ob9Em3i/AbV8WnJDDRFBift8OS5Ck/LySka46rhgDKG8syA0Wc4QjZAl6iKOsPf7br8U3W3P7JDvdVFmhIPJcoJWRiNat+ZJgjppQ8+yEARBEM1DxAV6FZdNdYTFF6F4rOQ40iXUv2xV0WFy2uI6yw2VqshZDH2deeweLqOrmF41QgrhyGS54Ge1fBoQCOGq4+Kc/70Fh+3bF6zPlBFOySmrBBEAr4NZWtWIsUo0I6xPRts+OIa8ZaU6wnGWsC7y9P2Z011AHOJzUa666MhbGKu4xgmQVceFrWSPRQ1ffZvi+Lp+bWch5ILOcoaqESzdERbHQG1ikbMZShUXVZejI2ej4nj7YknxGIw/7j0ORSMMOsTym3Iw5rUrLlddRZQnO8LqZE4Tri+uxTEKJstxlB0eGk9cZznGmNf8QnnPPEe4EnGExXFWm2dEHOFS2BHWf2420175feQlK+TP+87sSFiSIAiCaATxBdetCuGQI+yXjrIDR1hmhCOOcPC76S5/Ume57mJOTuby6ghni0bok+XC5axcOQMfAPr9CgNPPjcIAHjiuYHgdSZHOHGyXNQR5tybnMcyVI0YLTvoKthaNCK83Pt++SA+cc3jQUa4pEU7aswIC9F33aNb8V9/eDQy8UxFbKvsuPKWuqm2s1efV5moZlmhiIe8QPAfEsdWNtQo2HjZ0QtxygFzAMRXjRB0F3O45HkH4LQD5/jrc6FXQZAZYceVk8q8sbHQeoH4iYbq58rUPU1koR3Xhc28ShLBZDnzOoHwJMq4qiSumCwnHOFQNMINrcM0uVCg37HpMJRcA4JjLj5Ho2VHvk8FzRFW3fg+Kp/WOpbO6cYpB8wGAMzuir9iJQiCIBpDCJ6ekBAOvoaEYBG3p0vVQAhHHOGQC2qKRpidVlGcX5TS6iqkRyPEF7VePi0SjQAw23c++/0SXPet3w0AOHbxTLls2BGuvbNcWalZbOsZYcPrRypVdBVyWjQivC+7hsvYPjhWd0ZYfw/E8rev3olrHo7WeVYZVBxh8XkwOcIVx4WaHMjHVI0QFwNiH4VoY4zhmxcfGwhhzdkFgs9j3mYo5iy88vj9cN7h+8j168JTxBaqLpf1dgHVEVbEaKbJclFlK5xvx/W2ZzOmTJZLikakR2HEhMuoI+z6pefM4lcXuLoQLhriJ0BwPMT7NlpxghbLsmqEd2HQp7jAZyyfG7ufjTLthTAA/OjNJ2F+bzFS7oYgCIJoHuILThXCHYp4EF+m4ku0XHVlBzRTRlhgEpFqKTOVkZKD7qItKwh05G04Lo+dyAQEbmjUEQ5+rvoND/o68rBYUHN25fo9AID5SgzP6AjXMFmuUg3a7WbJCI+UHXRqjrCewS1VHQyOVeU+bRsYw+/u3yRFZVrViEjdZH/5qj/hUb1trk98DDLCgSNsyghXHB52hG3LWI/WkULY+z+uRKr6GRICTXzOeoo5GYGQuVyHh2IRYh1iYpkqhIOMcLBsbEZYEcL6+sU2xGQ5MXkuS/k0VVTHNtTg3OvSZ4mGGn75NJl7To9GANELVVGiNmdHjxcQuPcj5UAIy6oR5Spsi8nPQjFnYeHMcHOTZkJCGN4btmLfPjmJgiAIgmg+Q8IR7kh2hMUXYqnqxFaNUMWfyWmTk+X0qhFlEY3IIe+XigLi6+oC8ZPleCga4U2Wsy2GGZ159I9UwDmXjrDqyBlzrTVOlhOPedGI5IzwaNlBV97GCw9fgHc+/0D0FnMRF7xcDXdHe3rbEP7jtw/j6W1DofHH3d7XH69KIewJKrU0mp73FFUjKo5X5s0TeiYhrFWN8EuTcc7x0T88ivv8iw6Zi9WqHujo1R+A4LOnxneEmk1yhCtuOBoh1q0KxriPWEm5SNCrmnjr8OIXouavbQVOeHI0It0Rdl3P3RWT9ORkuaon7uuORuSitYfV8YrPX7nqyrHJyXIlB8WcJS9WP3Du8vidbAIkhH26C7bxA0gQBEE0BzEpqicmI1zUHGE1GmFqsSwwTpZLaLEsohF525IiMikeEXSWS3GEXe+Lf1ZXAXtGyihVXWwfLMnng/Wpr8viCAfPWUxkhL3fbStcR9iUER7xM8Ir9unDpS9e4TWi0FRZqerKjmoqonqEmyKE4zLCFX/CmnrHVV+HOlkub1uhbmwqFSec0c1ZFjj3Iiu/vGcD/vHk9tBY9WiETsgRlnWEvc+j+hmVtW9dHm0ZbDGU/fejQxGD4vOpCsEsjrAeSRHrcv1ohG2xUNvmRh1hWXlERiMsFHKey11x3dBnS/0T1I+pfqEqJsNFyqfJaESwz64Uwt6xLzteROb4pbNw7fvOwLuef2DsPjYDEsI+3cUcRkgIEwRBtIwhQzRCrRoRlE/zvxCrrhQ/0UlK2aIRuls8WvZKiXUVbV8Ix2dSBW6MI+xqjrDLORgDZnTlsXe0EhJ86hhVsSomMWWJRvzqHafgZUcvRMXhSk3bsOAxaa3RsoPOQnDMc3Z4khngTUwcMdwVldUvtPytjjgW//q8A3Dckplyf6ryFnjw/arWWM5ZLMgIOxyFnBXKwKpUtPJpwq0UkRWxDTGWwBGOEcIJjrDqWlshRzi8rpzF5AWS2rE2KDkWLJslI6yXrRPrUifLWSw4rkktlvOhjHBM1QjXi0bIjLCllk/joWOnHi/9OMQ6wjF/t+rnT3eEvZ9tMMZwxKIZxrhIMyEh7NNdsDFUqsJ1Ob5y/VP44e3rJnpIBEEQU4qhUsXP/kVLpgHKZDnVEfZvl+ukuV1B1Qj9ce/LfsU+vVg+v0fePi4nCGGhyfTyaeHGGNyvGsEw049G6JPpTONN6zoGBG7rSfvP9if3BdGItM5yVb9DWJci0vJWWGhyziP5Z4GofhFkhM1jFMf7omMXYdGsrkAI+/+Ljn7/dOwivO6kJfJ1M7vy8m5suerIaISJsiEaAQQXKCKDrsdN7JjSqOGqEeGKJd0GR7ji19VVsS1LTqJUM8Jifapg5Nx8IVFKcYRtv2mHdISV9y/O7QbC+dzYznIibsFENMKS5dOqrhuKV+hd/VSEEBZ/22mOsFoVRJZPU88L+fGTpySEfbqLOQyMVfHmH9+Hb/xjNT597aqJHhJBEMSUYrjkhCYhAX4N0lw4G1zUMsLmmfTZMsK6SHY4h2UBlzzvQFz1rtNQsMOz2E2Iyg5jKZPluO8Iz+wqoH+0HBKloVxwjXWERczDc389t85Vbo3nEjLCooObKoT1jmxVl4de9+HzV+D/nXcIgKD6hXAUeUzdCPF6xgCbqRlh73VDY1XM6S7gK685BrO7g86CHXlbHqeK7wjH3e6v6C2WlTJ7gOd8A8HFj3Ad4xzhcObV+18IMPWuBVMcYV145m3FEQ4J4eg2APOFRLnqyte+/JiFkedzFoPDvc+hEK3ZJsuFM8ImEe74F2+WxfyJl0yWT6s4WtWIpIywv60u/85DzrKQ80W7ivhdrd0t/vbUC149atFKSAj7bN07BgC49ekd8rHdw9G8FEEQBFEfg2PVkMAQBCWrhBAOohFlx0VByRELUh1hBALTdTku+elK3Ltut3crOHRL3J8sl+QIi2hEQvm0ctUFhycq5GQ5ZVl1Ml6tVSMCkRk0OwiXT4vPCAtx2BkSwuGObHrk48B53XjX8w8MVb9QHeE/PrQZP9DumorNina9uiM8UnbkOFXh3pG3peMuLnriXE7h5gvyejSiEo5GBI5wekZYXFgV7fhoRNUQjVA7HBZNjrC2bdP7XK66WDy7E+u/8FJceMyiyPOWcIS5tz21W11SakB3Y00fMVeZAOiJVwtqZ7m8wRFmLFrdQlzEdiqtlXM2MzjC3v/q35t4v/JaNGK8ICHsc4xS41GwdsfQ+A+EIAhiijJUqsQI4aBMEqBWjXBDtWVVQrPxExxhzjl2DJVw/apteM8vH5C3ggXiyzdxspz/nZ3UUMNzVT1RMbMrj8Gxasj1CleKUNadKSPMpeDJ+x28QuXTEpo2iNxvOBoRdoTLmhAu5CxYSvULdXycAx+48iFcpt01DaIaQSUFIBA8Q6WqfF/zISFsSfFecVwUcvHRCCAsLMX7KISoEP2O4jAD8V1jQ46w1vGsW8lUi6VEdzcV9dibHeHwNk2f1bK/33GI4+m6omoElKoRSdGI8DpNOWHV5RY1qYNoRLhqhJoj1hF/o+KCy7YZ8pYVzfYbohHiM5qzAuHcQdGI8ecNpyyVt4JW7NMLALJsDEEQBNE4w34NXx3xpadnhD/y+0dx1f2bjCJBdarSJsuJCUi9HTl/lrwihA2Td3SEeNEbaqiapup3lmN+1QgA2KOUIwtlhDUBHbcP6nbEmMVtayk8LZZYR1hMIOvMq5Plwo0odIEvLkxmdRVkRjjrZDnm32ZXy6cBXlkwIYBVYVrMBdEItWpEHCFH2AoiNN42HH8sXsvoBzfuibxGxTTxrmD7VSNUR9gfbtV1I8JWjeh0FqzI47oQNArhqjkHr47Ta9rhd5ZjTF7IZK0aAZg/Y67y95DzP0viYqviuOEWy7KucnSb4m9UXHDlLK8km15lQ1xIqBeJ4q6DOimWHOEJwLIYLj5pCd5z9oH4zTtPxdyeAu5ZtwsAsG7nMDbuHpngERIEQUxuBktV9BhaperRCLXJhve4KSOsRiOi2xKCzeXAgD8BqbeYkyXOgnXXEI1IbLHsZTCFIwwgVI5MFSFuyB3OMlmOS1cyb3slw4SLa6XUER41OMI52wpHIypRRxjwql+IjLCpoUa4EgbkeHIWC3K/riqEw45wzhc+Yj3CGU2aAGasGiEywn5W13U5LvrWHfivPzwWWk5H3YzeYjlcPi0+I6yuO+QIMxEjyJYRThJ+QdWIIBohjmuCfo6UHDTVElaFsOfiMhTsoElIqI6w4hzrCCEvjoFtMa9MoXYHSLxWHYsUwixwhCkjPEHM7i7g/523An0deZx+0FzcsXonOOc4+39uxplfugmPbd6Ln921fqKHSRAEMSkZLlXRmxCNKCi3Vz9z0RE42o+smRzhUB1hg4iUneVcjoFR4Qjn/WhEsFyWaIRYf7R8WvCz6CwnMsJAeJ5JJVRHuEZHGKojHMRGAE88hDLC2mQ2czSChaIR+n4JETJTiUaYWiyL4wqEoxG2sv6qIRqRs4MLH4sFx1E01EjQwcYJW6aydlv8eT9iOyaYX4pMXa+4O6FmhIWYjcsICzryyeXTgOB9Hhir4Nldw/74ncRohNpZLmioIcqnJUUjNEfY8BlXxb3I9YqLrbGqE7rbIFZnFMIGR/iKN5yAd58drgEsoxFOiiNM0YiJ5/SD5mLnUBlPbRuUj13wzdvxsT8+PoGjIgiCmLwMjVWN0YhiPuwUAsDrT1mKlx/tzaAfGDU3GRDE3fIV/+8dVaIRbu3RCHF7P6mOcNXhcF1vIpEQRGoDjnhHOMtkOTUjHJ4gxhiSq0aIaIQqhG0rJRrhC2G/+oU6ZnXsquMtJ/Qh7PLKaETZka6hWrPXtph078tVkRGOF5u2sq/6RUHcMUhymPUOcEtmd+ETLzsM5x++r7IM5L7oujOXIoT1aIDY11d99048/8s3y/FnyQg7HLK6Q6aGGlYWRzjYv+ctn4cTls6WF4cjZUf+fYT2KVEI5/xlLBy2sC/UWhwAmD+kkBAeqcDyJ+DlZDyqzaIRjLHzGWNPMcZWM8YuNTx/FmNsL2PsIf/fx5s/1PHljIPmAgBufGJ75Dm9uxBBEEQ70a7nbK+rWzQa0aFNlhMctm8fAGCDIZqWS8kIB+XTEBLCLuehCVfiSz+xfFpMZ7lIi2V4k6nUyVUCdf2m+sJpGWGhd9SJhIAfjYjpLPeVG57GXx57DkB48pdXNSJ+spwQITNSHGE1Ay22y8RkORmNcOX+5RUnWPxvMXVinbeMLh7VCyRzHeHod3LIAY+JRgDR2/2MMbzl9P0xoyv4nKZVjRCo0QhTZzkgeJ/VOUhpk+VEJznX5bIkWbYWy+Enq66Lqx/cjEt/94h8TP17+MprjsGrT1ws35+xsmOORpgywn62WlxwpTUxUe/A7B2tyNx4kBEeP582eo9KgzFmA/g2gBcC2ATgPsbYNZxzvdDubZzzC1owxglh4cxOnHHQXHzlhqcjzw2OVSMZNoIgiHagXc/ZrssxXK6GJiEJitpkOYEQwibSHGG1xfJeX7D1FPNwubmjWOJkOZkRTotGeMJECIaqwfkFgD88uBl/engr7rj0HDmTP61qRCQaUQnaB6tiRU2JfP+2teZoRMQRNmeERfWLqlKlgnNvXSNlR+aH1e2KLmW6IwwEFx3BxDQv7yp2XTjCurgr2EHTCvW904+FSl9HXu57XEMNdX3JrrH3v4gmqISqRijHWHwG9E3rWfCK41dGSQj75myGUsVFlYnOctnqCEeqRjgcH/z1QwCAL7zyKH+fom2jhYgdqejRiCyOsB27jDreqhaNEMepXTPCJwFYzTlfyzkvA7gSwIWtHVZ78NlXHGE8OZlaIBIEQbQJbXnOHqk44BzoMUUjcmYhrLpyOiFHOCkjzLmsfGAx0SY3WE5sM7mznC+EK1kmyzFFOKlZ4GD9O4fKeG5gDOVqIDDTOsupk+WAoLkHY2GRG7QXDrdMDtURtlhI+MdGI/ys88BYNVQ1oq9DTAZMyAgbIh8FrWqE107ZWyfnHGW/bq1ee1d1S1VRKzPChvdOveCKqxqhriNpGXH0q64hGqF8DtWSX3EVFkzl7cop0QjbsnxHGLKhRiVD+bS8tk+xVSMsXQgH0Qi1mkXiZDmtfFrc8RRvX6ojPI5mYxYhvAjARuX3Tf5jOqcyxh5mjP2FMXZ4U0Y3wSyd040D5nZHHje1QCQIgmgT2vKcPeSfN03RCH2ynMrP3nYS/vie0yOPhybLGcunBY6wrIXLvdvL6hd/IUM0ItYRVn4V5dMsxkKdyARxk/HqKZ8GhB3hfz5+Mb71umP9/fVeo39PdSnRCNEwQRBXNWKmXwauf6Qsq1u4HHIyYL8hI+w11GDg3Dtu6nb0qhEyGsG5PD4Fm0XEnXqBpF4rBVUjotEItepDXNUIb7z+/5kc4Wg0Ii0jHBeNEIyUq6nRCNu/gKv6jrQ61gSzO1MdYa+KSvgxeXFYDbe0TiqfJusIy6oRybWb1c/FaMVRmnq0pyNs+nTof7EPAFjKOT8awDcBXG1cEWOXMMZWMsZW7tixw7RI27FkTlfkscGxKsYqDj5/3ROyfzpBEESb0JbnbHEnzRSNEE6aqZbqmcvnyeoRKqq4SW6xHGSEOQ+XiwKyRSOyOcKunNRmGYRwnBtX62S5gpwg5o3FYgyzugt43sHz/H0MqhII9JJkOZuFYhtxVSNmdAXOr4xGgMsJj/0GR5ghOKYO56Ht6FUjxMQ41w2OvykaERbCwc85WUfY4AirQjgpGpHBEQ5u50djBOpxVSd4SSGsrTda59lBqZJWR9iKTJbTx2ZCz+luHyjJn8XnxOHmttGCUDRCHCvDhUXQYjnZERbHT5+4J7YzERnhLFvaBGCx8vt+ALaoC3DOBzjnQ/7P1wHIM8bm6ivinF/BOT+Bc37CvHnzGhj2+PG5VxwZ+YD+6I51uPLeDfjerWvxvVvWTNDICIIgjLTlOVuUEpvtu4wqSY5wHKmOsPifc+wdDWrh6l/82eoIe/8nVY2ouFw6wmnRCPX12RzhoKNZTsvFWppLJ4akVtpQoxOAJwxVB1ydLGexYBvC+R0cC4Swy4Njq1aNEI+Jhhpin4yOsBU4wrblHQcxBlM0Im6yXFz5NG883PgaHb1qhHEZ/2PpmKIRoc9SUAc3rnya+BgIXTFadlB23MRyYbYVtAoXtZeD8ce+LBI1Wq10y63K9zPqcquaJ591spyMRoiqEXHRCO9xfYJm0NSjPatG3AdgOWNsf8ZYAcBrAVyjLsAY24f5f6WMsZP89e5q9mAngoUzO3G1dlvuxie34/pV2wCAHGGCINqNtjxnC9E0u9skhM0Z4SRUl8/sCAcCMxyNiGuokVA1wlcvetWI0GQ5x5WtkLM7wtnKp3EEgkcIkzHpCCP0v2twhLsMDUpMGWHGwgJEuKpDpSAjDB7sd7+haoTFAnFYdXl4spwonyYcYT8a4XKuOcLx0QhVJCe5+er7mRiNSMi9CoI6wq6hakTYoRbbiiufJt4fIRwHx6pwXC6rLpjIWRaqriurVqjl5bJ24QOANdsDISwvbAxxD/V450yd5ZImy/mftbQ4iv6eibGK17VVHWHOeRXAewH8DcATAH7DOX+cMfZOxtg7/cVeBeAxxtjDAL4B4LU8rg/jJOSwhX346muODj125xrvO8PkRBAEQUwU7XrO3jWcIIQNdYTTUOvJGs1cOVkuiEa4LvcdsGAxsc1sneWS6wiLLK/QFertX5PQ5pxnqhrhKo5wQXOEZdkvPxEjVqM2u+jUHeGYaERfRz4kQKQQ9sWaGIv4qITqCCt1bYU4FLlWgZwsJ6pG5IQQDiYriiYbQHCBpN4mNznCursIhKsSJF1g2dKJzBCNcHkkk6s7wqKUnXhcr4nsaEJYfDbTGmq4fuY6ZzGofybJ0YjwOtfsGJY/i8+7MRqhjEX9mxSrMx0rPRqR1h1QfP7UTnTqutuqfBogb51dpz12ufLztwB8q7lDay/m9hSNj5sKVBMEQUwk7XjO3uML4Vnd0clyPcU8bIvVdDtUrZ3rxMQOxP+iaoTLDdEI2VkuoXyaf5r3HE5XOpo8Eo3wRHbgCMevU6xXdPtKqhrhCezweNWMMBDUGRaRgJAjXAh/1ecsbbKcLyRndeVDlSZEnnuoVFUywoFoD1eNgByPdIQdN3QBEEQjggsfy2KhaERRcYQLOQulqhvKqYYcYa25iIq63Swtm5MEpXjGSckI5+zAEQ4iK+F1ic+MEI4itpMmhD032vvZyuoIaxeWa9VohCMc4eg68oZjHN6n6DaPXjwDJyydhaVzvAIDSRcWjDFU/Pe7tyOH0YoTadYxniVqx09yT3KW+W/uS4/aFy89Mug4M1yq4o7VO/H6798TuirdPjgWuiIlCIKYzuwaLqOnmDOK3deeuBg/ectJNWWEVQFirCPsPzRSrspzc9XloQoMQCDKkqMRSp5WOa/r0QiXi7a95glBOi7nqCjRiDhTXqwXiHZTszQhp2eEbYtFHOG8zcJ1hP3Ix4zOsCMsmnAMao5wEI1Qq0b4D7JgTPoxDSbLqY6wqC7B5f6JfRGflbSGGiZHOJRNTpgsJ+vXJt7K9y9sFGdejkEbW84O76MuwsWwxLEQFxOpLZYdP4OuVY1I0MEy1iCO027l/QpnhMOvy4cc+OhkOdOFxUHze3HVu07D8gU9+Ofj98MpB8yJ3x8WNHQRraxlNEJmhNsoGkF4LJ7dhTsuPQffeO2xOHhBr3x813AZd6zeidtX78Sjm/cC8P4AT/rsjfiP3z6Me9ftxmP+4wRBENOVPcNloxsMALO6CzhjeWSuXiKqODLpTSHMxCQ9AEo3rvDtbO+59GgEANnYAQhH46qyjrCS180ghEOtl2MW55wrdYSFCyomyyH0v9jmwJjXtnbp7K5QBQXAcy7VyELJcVHMWegq5EITpWyLobtghzLCnAeu5raBsUhuWs0I68/FlU9zeSBmC7YlxamoJmKqxuD9HJT50lEvWOwEkZtUEkzdJ8B7j3UNqE+81DvK6esVn8uiFMLe5zOxoYbF/Aocrh+NUFzaBOdVHOeg5XdwTNRITrRqRMpkucRtWvjyPx8tnWETthXUQe71a1Lr6x7PyXKZohGEx6KZnQCApUpJtbU7htHnz6y9d91uHL90lqyX+ceHtuCPD3mTtdd/4aXjPFqCIIj2YddwGbO7zRGzekh1hP3/1Xq64stf1RxiPcnRCDVP6yiPe/8XbAsV15Uz8PWMsNppLTRGHhbgJlEilpNxAdFQo6JHI6IZ4d6OPC676Ah0a0I47wsRUY2iVPGE8NzeYqS6RU9HDsNKNEKMU2xr3c5hHLpvn9JQI6hqENexTjbUsP3yaX4zDcBzI4XQ68jb+Pw/HYmugo1bnvbK95m6ApqaoaiOd1JpMr1agQl1sly0s5zintpBlz8piCOOsC+EfZG/N4MjbPmfHxFjUIdqquAgEIK2I29HJvZXlUhOYpWOjJ3laoGx4DhEHGExWY4c4fbmrEOCMkKb+0fx50e2AgDuXedNoBsuUyUJgiAIlT0jZcxO6BRXK6prZRaZ3mOqSCpXfbEWurXMfCEb795WXS6/sPcMRyslFHJeOTIvwhAIJzGuuLyk7gjHTZhT6wjrbYX1LGqQEa6irzOH0w+ai2O0OsxC3KiTAIt5G5942WH4xsXHhpbtKeYwqAthznHgPM/xe8avRBBqqMHM2d28cbKc52KrjrA4fjZjuPikJVg8OzCfcqHJWyx0LFQqjovTDpyDZz774lSRqa7LuIxw23l08ltospxlyRhGbPk0HkRAgKDyRtIYc/7kMsefLBfOCMe+TB6rDkMFBtXhTyqfZpqcmCS+s6Aea9GlUC9j11ZVI4goM7sK+NIrj8Llrz8Oxy+dJR9fuX4PHJdjuBQN7hMEQUxndg+1zhHWmxQAQVa2ZLgdHC0XFUzeMeG6HIfu0wcAePK5AWW7weurbuCw6hnheCHsVyLwn46bMMeVMYv8pl4+zeQIC5GhIwRSVQphr5Xu3J4i9p3RGVq2pyMfqhoBeAL6wHk9sC2GZ7YN+tvl/jiC9Y9pAjWIRgT/i2hEUD4tcJTF26QKr9DktARHuOJ47npaSb4sLmeok5sejQi5pyySDY5GI8L/9/uT5ZIcUHFHwataERbCujBXEfveqUw8UycyAv5dCD0jHIpGKBMVm+QIq+OXjrDmpLdbHWHCwKtPXIzzj9gXLzsqmDg3WKpi/a7hyC2I8bT4CYIg2pHdI2XMjskI10NeERxxXduAsEgSt4N1RyuntRzWcTjHQQt6UMhZeGKrKoS5fD3nwUQ8KWyVaIQJ13f5xJe+EzNhL+QIay6oum7Gwp3l4oRwMEHQW4fnCJu/p3qLOT8j7MoxOC5HR97G0jldeGab5whz1RGOyQgH0QglI2xpdYRtWx4/k5g0iWJTQ42KE40xmKjFEdbHou4L4AvhiCNsjkaIiiJZHGGb+dEIzmFb4bEmOsKGCgxCeIqMruMaohHqZDlN6Kv7Vi8mIRxxhCkaMXl4waELQr/vGirjP3/7cOixpDIiWVAnexAEQUw2RspVjFXcpjrC83o7sKCviEMW9BodYaGN1YlUQhRHM5HJ0Qiv4YGFFfv0YpVJCFuBUPEmy7Hw8zGupOgsJ0RorCPMEYlGjMkmGKooYqGqEX2d5mlAwQRB/2Kh6sY6cD3FHAZGK3B5IKAd38VePr8Hz2wf9McYOMJBNMLsCKstli2mdZbLBQ0j9NJwgO4Ix0+Wqzhuplv44q1JFndmR1r/PW9oqKGvVhwncexlHeGkWse27wg7LnJWuAV12sQ1IOwIi5J44u4IN3SWUzPCasUNGcNpWAgHP4vJckGMKDpBstWQEG6QxbO78I2Lj8W3X3ccAOCmp7Zj3c7h0DKm2zZZ2bBrBMdddgO+f9vahsZJEAQxUcj2yk10hGd05nHPR8/FCctmGcuUiUfUnKq4HRwpF5UhGmFbDIft24dVWwakmAmErjer3+XmhhpxZoh4vqBldiP7oogVWUfY4AgLUQkkO8JCiIYc4RgHrqcjJ8WaGqmwGMPy+b1Yv2sEFb90nDeGBEdYqxpRsJmxoYbewSxcKUL5WaugoVJ1ok6niWwNNYKfoxlhSy5jWUqL5ZgYgd5JUFSNSMsIexda4o5DtmiEqUtbT9H7TMjW3jxaGzlvmR1hvelFvajHRDjC4rNCGeFJysuPXoiDF/QA8HJwOhWHGwt+Z2Fz/ygA4DN/fqL+ARIEQUwgQgjP6op2lWsUi8VVZAjcTkE1JqqQt63Emr8O9yYpHbawD3tGKnhuYAyA14wA8ISD6FrHFEfYUWrjmpATxHLJQtjlMJRPC2eEAfgVGLyfB8eqsqKRjuymJzLCFSdeCBdz2DlUAhBMbHJcLwu9cGYnHJdj51BJqRqhZoTN5dMKtoWOvIUZXQW/axo3lk8T+xaKRpgywobv17LjZhJsLEawqiRNTpPiUHO7hUjXhap4f8R7LXLUadEIOVnOZpmjESZHWAhPWTXCNdwhCUUjolUjkkrNZUF1+kVFE3ExMxGd5UgINwlxwlm/a9j4/B8e2Bw5KWRBLVhOEAQxGRHtlef0NF8I2xYz1usVEQH1qbKsvatnhFninTuRozx0X2/C3KotA/66A0fY5VAywoFzKsZoQjiy4ks/02Q5S2uoobqD8C4AHJdjqFSVokdHuJhVxRGOE2K9HTl5DEXpUK/MGzCv14u67Bwsy2XUyYLRaEQgGv/4njNw8UmLZSktkVkVbZcBVXhFx67ue9x7l8kRzpQRZsafvfGI98X/344fOxB8ZvQLr6QogK1kunVHOLHFshWUTxP0SSEcRCP067RwNELZloyRxG4yE3I9jMka1xFHmKIRkw9xwokTwpf+/lF848ZnsGOwVNN61U4wcV2HCIIg2pkdA955b35vR9PXbVvMKCD13HAxF0yIM5WLSopGeDPrGVbs4zVTCoSwGIMlM8IMgfgRE6LinMmgUkL2yXLi9rteR1j8zJX1xrWpFY6tEJ+llIywQBXCFmOY61/Y7Bgak81EvP0N1zoWqGL7kH160VXIyVyzcHULSmc5UyZVraErjqupfBqQrcxXlqoR6mpMF1He/+EayXECW3wuVfffYkGfAhNqJMW29CoW6dGIUEa4KDLCSh3hxGhEtLNcUs3lLKjRly6/66F0hJXSeuMFCeEm0Zm3kbMYtg3EC93v3LwGJ3727zU5w2rUwpSDIgiCaHe2D3pRAuEgNhOLMbiGU6OujQs5S3Fow88lRSM4D1rb9nbksXROl5wwJ8yJvO3d3heOsKwjLIWyWayIusapjrDW2jdvW0qL5WA5i3l5ZrmfMSJJ3DIXE6bKVSc2k6k241gyOxDCjDH5fu4YLPliPSz+9O53pglhIhohWyzngslgQURCjUMojrDl5bHjHOFsVSP8ZRMEZVI0QoxHut2aAI6vGhG818vmdkfaYMdt39YmyyVpUimEC/GT5cRFTWh7StY5lBFu2mS5wDXvNjjCeS3+0WpICDcJ5md4siAm0zkux7/+bCXuWrML1zy8BXeu3hlZVnWEB8YqkecJgiDane2DJfR15GIdykawLbOAjDrCtrHFMuB92ceVT5Our/+aw/btk0JYPJfzxZzLOSzL4AjH3EuORCNMih4ichH8nreZFJmqgBMZYSGy4gRLUEtWdYTjoxEAsKCvKN8/UTVibk8ghNUx6kK4u+CtI2/YhohGlGX5NIMjrOyGfihzFjNWjVBfn0SWaESSI6y/PheJRoT3wRSNEHca4lAbYthMa7GcsI8F28I/HbsIZxwUtC8XVRrEhQfn5n2XtZ61Cw9vDInDTcWygmOiO8KdeTvSCbHVUIvlFtCZt/Gzt52EsuNiXk8R1z36HH6zcqOc+PaPJ7fj0H37sKV/FH97fBuuX7VNuhd6K+Y9Sum0wbEq5if/vRAEQbQd2wdKmN/X/FgEENRY1V1TXRoXc1ZQPi1SLiq+jrCjuciH7duHvzz2HIZKVaV8mgXxcqY4wkJopkUjilJgmvfRi1wE6yjkLOmgsZAQ9jrLpXW0EyInU9UIX5Qsnd2tZJ+9rGpH3kZfRw47BkvoLOSijrA/xs6CjcFS1ThpMIhGiKoRLFItQndEVewEIZxlspxssZyg7uIm66nbEM5wzra8CZNa+bScbaFcdeXdC/WiZ4XfrCWOUEMMm0EvmRcHYwxfec0xGC0Hd6FlNEKtI2xYRd5mGK2YHWH9PagV1VkWF0mCt5y+P85ZscD0spZBQrgF3P+xc9GlvLkfWNCL0w+ag9tX78TX/v4Mvvy3p/CKYxfh//ySaKpxMVZxwHlwK2OXJoQJgiAmG9sHxzC/BbEIIPhSdnnYqdLnVBRzFkbKVf81uhBmkS5ogFe+UnT+EsLmsIV+h7mtA9pkuSAfHDjCwfMmKooLqi6vo9YRBjzRNVCN7osQlamOsNZZruK4sZUthHBaPLtLjsFV3N95vUXsGCph8aygEYYQh0KsdxdzwGDJHI1gQUMN0V5ZrIcpginYd12IWhirmL8bs9zC1yfmmZcJftYXE8dfRCPySqxAHUPeYigjuHtRiyOsRhu88nTmscVhKlcmoxHcXGZOZHTViXOB+52+zSTEMbQthq5i+C7RwpmdWJiQl24FJISbyG0fOht52wqJYMEJy2bjhGWz8dO7nsXu4TJO+8I/jOtY8bG/Agic4T0jZfT4nX0GKRpBEMQkZPtgCSco7eibifhSHi5XUcxZctKXKSMsbgebGmqYjIbL/rwK6/0omxA3+8/tBgBs3DMiXdq8bUlnLZwRTnZmy46WEfbF0cbdIyhVXRw03yvLKerHyvHmmFIBI1ifxTz3OLMjXFXa7MYsKzKlS2Z3GevXzustYsdgCYtmdka6g4mLC3H7u5CLbsNi3nEqV91Qt0AguLAJ76M5miAo2IHzn0WwZYtGxDuw+mQ5L8MbXd573pEXaOpFj3if41A1Rc7KXkdYfY1AL5/GDXWEvdeEJ/8B5rrO9RC8vyw0GXOioIxwE1k8uwv7zEi+/XfNe0/PtC7hFOwZrsiZummO8Ortg8acMUEQxETBOceOwVJLJsoBwZfz23+yEp/44+Py8eSqEeF1eNEIb/mf3bUeG3ePAPDqH4u5GbJ8mZho5nC5DTFZTtT71R3h2PJpVXP5tDO/dBPO/cotcjmuVI1Qx6COCxAZYS7XE+dyiu2VnEAIx4nmffo6UMhZOHK/PmOHt3m9Hdg5VA7VOg4ywp4jLISwyXVmvotdcVyZIdY7y6n7obvr+rjzhlv5Seji3byM+Wf1dUHbaM0R1lxyEX+puhznHroA7zvnIHlxFUeX6ghb0ehIGmJSIQD0yoYa8ZPlAO9iC4iLRjQmhNVqIB3jWCYtDhLC48y+M8KW/0nLZhuXO+mzf8fLvnk7tg+OYdkc749EdYRNebZzv3IrXvf9e5o4WoIgiMYYGKuiVHVbUjoNCL6cN+8ZxQZfwALRjHCoakQkI+xNlhurOPjYHx/Hnx7ZAsA7545pHdyEMBCdvsRzQUONwLHT28bqyAliaZPlEBa8asTA0kQX50EZtjjBIlxzkeH1ynKZxzinp4iV/30uzj5kvuaMev/P7Skok+XCojBwhP3JcjFVIwDPHRev08umqdtNanEMhMtuZasjbF6PSsjhNUQzALV9NAsto39u1PJpK/bpxX+86JBUV1eNRtgsvkZxEuLYBlUjeKgiio6cLBf6rIkxNCiEFUe40QoUzYCE8Dij/7H9+l9PAQAcu2Rm6PE9IxU8unkvKg6XV4vb/dJsa3YMYfl//QXv+OlK2fGHIAiiHdnhl06b39eqjLB3Th2tOBguBXfN9LhtMWfHZmfztoWq4walrXwhOTRWxahW6F/8X3W5khG2PBc2pqFGWkY4iEaY99FNcISNVSN4ihDOh5tyJDnCgNdRjjF1ul4gDuf1FjFUqmK4VA3VOgaAsarICMc7wmKzVb9ZhLdP4edCVSP0aEKCEM4yWS5LbdykBha60D3joLm44KiF8nnGwuv3yuxx2aQlC6ojbNtB+bQssQh9nOpkOXHTxCRsxcWWegybVz4tPCYgqFE9EUx8OGMa8sM3n4D/+M3DWDKnG4wxPPTxF6KzYOMvjz6HD/76ocjy+83qxMELenDv+t0AgMf9Yu43rNqGsYqDn73t5NDyo2UnsSZhs1m7YwgjZQdHLJoxbtskCGJyIC7gWxaNYMJ9dDCkCGHTZDn9NYKc5UUj9IlMg2PVSDc6IWgcl8uOdnnLq2XsMi8nLFafltUV6xZVI6oJ5dPCdYSjziwQ7iwHxAthUQatVHFrEmWmbKosoTZUkuvQG1105j2pYWqSINZTcdxIlQhz1QhNiNqBO2pbrGZHOHCf45cJl08LPxdMkvNWcP4R++L8I/aNLC+W+8CVD+HBDf0Asgl1IFw1QnVRa3OELQCubJNdcVz5eTetx+QI6zGQerG1Y37bh86ObQc+HpAQngDOWbEAD378RfL3mV1edx69fI13u46jtyOPUw+Yg9+s3BSJROzx6wyrLUaffG4Axy6ZJX+//ZmdOG7pzMgkPtflGByrYkZXYx/Ac/73FgDR0m8EQRA7hkRXudY7wiNKmSjTZLngNfpzXjSC+6dXl3sid6hcVV4TdYTzoo6wbfkZYU+kRBzhGJVV0SbLua459ubycImrfGw0Ilw1Ij4aIRxhJ1QLOQ1TVlasa6ziRASsyAj3duTAWPQ7TowZ8I6FeJ0Qx6aqEdHyZcGkrrzNQrGRWjLCSY6wKRut/x7n+osxqLWkRR3qrFlb1dhSJ8tlqZOsj1NEIxyXJ1YXCdphR2MhDTvCSjQC8OZXTSQUjWgjFs0K54ffddZBAIBZ3XmccsAcjFYcHPGJv+GBZ/fIZcRtjp3DQUTiFd+5UzoNG3eP4PU/uAcf/t2jke39z/VP4ehPX4+9o82pRnHO/9yMPz28pebXXXHrGrzxh/c2ZQwEQbQXY7KWbGt8F/EFzzlCjrA6WY6xsBCJqyPsKPnNoXI1JKZ1Iey4rlJH2GvzLCIMQicIg8LOWj6Nc/SPRM/HXJmIBmg5WC2362ZwhAPx6koXOosoCzujYTFWdbkcY9Bi2Vv3xSctwfdef7yxoYp4W1RHWOZ2DVlYXbBL19jyGnYUlMlXWfYpcJ3jl0mq0qDWDza+1uCiirq+WZ1V1cSyrKDrWi1ZXbEtEbNQoz1JDTXUCwQ5Wa7RjLD/8nbIBwPkCLcVR+03E9e+7wzsGCrhmoe24N/OXY4XHbYARyyagd1+PeFS1cWP71wvX9NTzGP74BguvuLu0Lr+/OgWnHrAXFlp4qYnt6NcdUMn0D88uBkAMDBawQzDbYndw2XM7i5kHv/ancP4j98+jJcdvTB9YYXPXfdkTcsTBDF5qKQ0lWgU9Ut8uFSVjTVUEZu3rFCN4bhohJzIxDmGtCo90tlTHGERv8jZ3vY859bkCCcL4bwyWW6P0k1UwBGe2W+qSgBEO8vFV40Q3byc1PiGimmynHTIHVdxcCHXD3hd6Q6JqZUbOMJubDe2xGiEIs4ued4BYGB4wndcszimXl1elpi3TWqxLKMPMcfP1LBDz52nEYpGWMEFSS16NGczdOQtedFVcVx5NyA5GhE99g1HI+oQ8q2EHOE244hFM3D2IfPx1dccA8aYzN3O7i7g4xcchrk9YWHqco7v3rwGa3YMhx7/t18/jFM+f6N0SIZKVbzwq7eEcnMV2V7Tgc5963fjuMtuwPWPP1fT+OM6/GRBz/QRBDH5qUVo1YP6ZerywIVUHWHbMs/kF+T9aIRwcB2HR8pVRhxhhyuxAr+kmu+KBhlhN/S8jjgHBw01IE0PFddF7GQ5db8Y8zPCKZPl8rbXtKJUdYNKGlmEsPqzwREWq9Ad4Ti3VF1PVckp65EIO+G9CxxhhnefdRDOXB60E842WS5938ORkPCyjHnl0uKiEfoxAWp3hMP7b9U1aS1nWejM2350x5ssJ6MRpvJpWn1kdbnGJ8uFPzsTDQnhScRbz9gfFx6zKPTYwGglkoVTefX37pI/P7trBFfet1H+Lm6JDZeiQviRTXsBAN+5eQ1+ojjQzeQfT27DAxuCmMeaHcOy8xNBEFMD4XomiaFG0L+U1XiEIGezkGCORCMsK+SQOZxHGhjpuUYRhQACQSNKiKniTn0eAC44KphIJYSy6gj3xzjCoclysdEIBq6sN07gMcZQzNkYqzippdZUTM6s+L/iBK61nhFOEnxCP5argSMsPipifUkZXdnQwjCxLlv5NJbqTKa1NLYtFh+N8JfPmxzhOv4mbBZEI2rNCAtnOWd5pQTdhIugvKFqRN5mOPuQeThm8cyax63SLEHdLEgITzL26fNqcR66bx/OO3wBVj67JxSV+ON7TjfGHARXP7gZH//jY9g1VJKdZYYN4rPg/9E+tLEfn7jm8djWn2ls7h/Fb1duND731h+vxD995075+7lfuQVv+AFlhQliKiHEYD7GMWsUXUuIi2nVEc7berev8GvytgWXB6JdTCQObUf58rZYuI5w2DUL/ncMGeEPn78Cv3/3aQBUR9gX1y6weziaEVZbGnvLmyeEBRlh/7kEoVHMWyhV3dTudyqm6gliKF75s/B2RdWIuPbNQCCGKo6rVEMIX3SEYyHhdemCPMk9Nm6fsdR9N2WjVXIWi49GGMZVqyOsosY4ahHCOYuhw88H52yGquMmZ4Rli+XgeDPG8KO3nISzDplf87hV9M/ORNMmwyCyctL+XgOOD51/iCyDonL04pmhmoMqXQUb96zbjZ/e9Syue3Sr0RG++sHNOOAjf5b1JQW7/JnfOwZLOO6yG3D/s7szjfftP1mJ/3fVI9hrmABi4n5lIiBBEJOfqpN9MlY96GJAOMLqnbJcSjRCuIrivFd1OQZLejRCXZ8VygirIl8VKaZYiFpVwpEXCSJaEWSE1fM45xxqFd/w9qD87GWEs0yA68jZKFVcZWJduhwwTRpT9yWomev9P1Z1wFjyOFT3PNpQw1smJPa1YUZeo7rHGYRiIWcZy7qpJF1EAWmOsPe/KihrzQjr26qnoYZtBV3cchZD1Q0iNKZ8dMG2Ut+7emm3jDBNlptkHL14Jp76zPko5mz8fdU2+fiRi2bgB286AUD8B/eo/Wbg7rWegN01XJaO8Ei5inf/4n5s2D2CnYNeq8y1O8OZ4617xzC/rwN/engLdg+X8Yt7NuD4pbNDZdsEpaojJ2Ps9U/qm/tHGy7TRhDE5EM6whmEVj3o5ztxYa86wjmLhYSs/sUvHFZxK981RSO0WICjNtSwDDlKxuT5UX2eIRAwQrAKkeRyjj1+RlgVTpyHBaCptqu3X6L0W/Q5nWLewljVSZ3Qp2JyRtVycuJ5NS5RSLH9hBiqOFwKUj1Dqm43zhGWgli76Ejjrafvj3NWJDucoYywYZ0524q945E0waweIWhb5kmE6a9jsgxb3rZQdd3gcxKTEW7V3yxFI4iGESLzhYctwDkr5uMf//F8/O5dp2G+H5sQf3AXHROu3nDgvB7584ZdI/IEOFSq4rpHn8Njmwfk8xuVVqWAJ4QB4JFN/QCA/f22z+LKVuWLf3lK/iyKZG/pH61xLwmCmApUHW8SVau+9PQvcdFdTr1Ez9lWaLnIZDnNEXYM0Qh1MlTOYqiqk+UMDS4YM3eWC1WVcMKOsON6XUWBcG14N+IIx2eEkdERLuYszxGuISNsrBoh90XtDJc9niCe9qpGhB8LhDALutZpqxPCWI9VeM+l79Pi2V04c/m8xGXSMsLvPuvAyPwd/bUmxzhugp0J8Rm1Lau+hhp2kBG25edXvPem7Vk1ja8WTJ+TiYQc4UnMWYfMN2Z1zlmxAD+8Yx0O1srVdBeDt3v1jiH58yMb98qfuf/18eyusBDeNuAJ4d3+SXrEF8AmgXv76h3yZxHf2KwtZ3KSCYKYelRct2UT5QCDI1w2RCPscHmsSJte4QhXhBBGoiNsWSxUR9gUVYiNRrBgGSGUCzkRLwiiEY6yAxxhVzRcRxihn11lEl+S0CjmbK98WkqFCRV1Cd3Vq7gcotytZTG/gkW62AuVT0vK+zIGzqJuvr5smntbD/ox1nn7mQekvtboCNcwvmLORsWpep3llAuErFx0zCLZd8Crmx1UjTCtZ35vR8ub4LSLI0xCeAry0ZeswBtPXYrV2z2xe8iCXlzzvtMxXHJQcVwMl6r4zcpNcvlfK5PZRvzbiht8R3hBXxHbBkrSIRZuy+BYBZxzvPCrt4a2feoBc3DX2l147y8fwGcuOkKesHXBbHKSs7B17yge3bQXLzp8H9z+zE5w8NSreZWhUhUPbthT02sIgqifqsPrmhSUlWg0QghhZbKcZUUiBCp6NMJx3WgdYeX1ImMpNhGKPij5TVPsgLFoneGwI+wL4ZAjHBbiQngzTRgyMLicS6c5MSMsJsvV0FAjnBFG6HWeIxxIipzldUZNmigHBGKoqlSdCDrLads2DFEcW9PEumY5jhHXvQZMneUEtfxdFHIWUPIzwiI7XcPrVbGes5kXjUi4YHrnWQfgTactzbz+WpCfnTZxhCkaMQXJ2RaWze2WeaDnHTwXxZyN2d0FfOJlh+PcQxcACM88ftXx+wFAaILIin16cc9Hz8UhC3qxfpeXGRZfDkNjVTy0sT+y7aVzvFaJ1z6yFf98+V1y4sr3bl2LL//tSXz5b09i11CpbiH8qWtW4Z0/vx9jFQev/8E9NVeZeNuP78MbfnCvnPxHEERrcdzWCuFo+TSR8w0ey9ks7C6mTJZzOGKrRojXqy1q83ZUKKmOsB0SykrtXSecEVYFuJpx5pwbc7K6kBAubFI1AIEon9ZoRliNeZieT1uveLrsuPJ90GMXYtsm4RRxhEPvc9oeZaPWkmym15qqSmSZoCgQ39e2pbZYrmkoynaZ31ku+F2nmLMxsyt7Q61atx+33YmAhPAU5rQD5+CbFx+LD52/IvT4Gcvn4qRls/HTt50kHzvv8H0irxcn5/3nduPvT2zHp/+0Ck9tGwQA3PbMTvzwjvWR16hC+pntQyGx/O2b1uDbN63BjU9ul+VjTAhXZvvgGG55OohZbBsYww1PbIPLw1GLH92xDtsHxnD1g5vxwSsfTKxFfM86b7KgyDzXwsBYBSvXZ6uWQRCER8VxU13BRojLCOuT5ZK6k+WlIxyUTxvQhLAqgHJSSESFrpoRdmIzwt7PUUeYS5NAFfJcc4T1SWXqur2qEenitpjzHOEs7rG+b+ry4cly4WOk7lv8OlVHOUnUmsuc5ezwa5LqRddLWODX9lrZYtkQEanZEYaYLBd1v2shb1moOq4SjahrNXVTT0OQVkJCeArDGMPLjl4YORF1FXL4zTtPxSkHzMG/nLwEH7/gMMwyVHT431cfDQCY3+flhH54xzr53K7hMv708BYASgcai+GDL1iO5x88Dzf951mx4/qvPzwqG3YA4faRANDv55Df/MP78KYf3osx/4vhtys3yj/cC75xu1z+U39ahff96kF88NcP4eqHtoTWrSJqhAIICeys/NcfHsOrLr8L2wdrF9GCUz53I9724/vqfj1BTDaqDm/ZpBsgKRoRPJazrZA7qH//SiFcEdEIr2qESfgBXl1gV60jbEXFl2UlZYTDjrBw+6oul+e7cDSCh1IBajRCxbL8znKiY1hiNML2oxHZhbCaTYhMlnNd4/FKzQgrFSbEa0x1ci3GjPsjLkJMLmmzPncmpzsr8jgZ3N/aMsJCCFvKcappKBKvjjDPdOegFbAGHe1mQxnhac5nX3EkAMje7ADw7dcdh0P37cUBfpWJV5+wGOWqi6e2DeLBDf2RdTz9mRfjL489h9MOnIOZXQX85K0ngXOO7oKNYYPzW3E43vPLB+Tvi2d34ultweS9zf2jWNDXgSef88a0cfcIHtrYj/+5/mn0deQwMFaNRCt2KlEHMbFPR838fflvT+H4pbNwygFzYo+NjshNP7ShHy8yOOg6VcfFtY9sxcuPXihP4M8NjOG5mPERxFSk4rqxLYabgS5Mgsly8Y5wpLOcoY7wUKmKmV0F2fI4nBEO6gjrFTHEqhnM1RuYwREWgs3lPHS3zPXbDnMezgLnldvkKiIjnG2ynOV1lqtBDKmLBG2Qvd/VznLq+mqJRuj1ccPbM69LZoQNLnKzHOG0OsJZXmsyxmtxhIt5bwUM6vGpb/9ythW+ozHOlrDMOFNGmGgnDpjXjTOXz8XV7zkdLz1qXymCAeCIRTPwhVcehYPn90Ze99Ij9wVjDC85ct9Qnogxhv1mdWXa9mJtuQ1+xYoO3ym+ftU2/L+rHgEALF/QazwRiQ5NAPBcTOxBb716je9oZ2W/WZ0AgPuVttBJ/PjO9fjgrx/C7x/cXNN26uH+Z3fjz49sbfl2CKJWHHe8HWFPSKp1afTOcqnRCH/CWXcxuFtlygi7nIeiDoBWR5iH1w/oGWG9oYYXjRCbEiLV9QW3Pt5oNMLb7yxxB9lZzlDrOA5TGTFd5AuEA1pTNEKLN+i5btP+ROIUCe9zvTSUETZENupZl7hroHbgq3f/vGiPm1g1opVQHWGiLSnmbPzsbScn9hDv1DrWPfLJF+Frrz0mdnm9/FAci2d34Q/vPg1vPNWbofrBXz+E1dsHZWTiy38L6hLP6srLx1965L7y8QFlW9sGzBPhBrTxPOPnnbMinJqnn8v2uk17vBzz3tFsxwEA7l67C/999aMhNyuO7QNj+JEfV3nld+8KueztRKnq4Od3P1t3m25icjPeVSOGTBlhbbKcLiCDyXJBLKHquujKBzdNo1UjXFnNwVSRgsUIslAdYd8xFufWwbEqXA70+HXIxN+M5wgH4y1IIRw+FqKzXNbJcqWKU3dG2DShLRRL8H+Z3Z084UocC5dHm2Lowts0xogjrMYzmuYIR8db62tNYrOejHC5GmSp6xWwoqJHlsYrrSDp4mAiICFMZEY4tG8+bRn+9N4z0NeRT7za/9SFR+DNpy3DXR85B90xbZ8B4J9P2A/HLpmFT194hHzs3K/cil3+LUmVGZ0F+aVx+KI++bgqNp/dNRx5HRDMAv/F20/GeYcviBWog2MV4zpEWaM1O8zr1ynL/F/2P/Z3/HQlfn73BuwYTK9q8Y6f3Y9P/WlVaOLgWJ3VOJJwXY51O7Pts4mv//0Z/PfVj+Gvjz3XxFERk4WWT5ZTvsRndObNGWHNTdSdKNndrOq9SFSE6FDOW3Gd5VSHV13OJArF42JxdVJbV8HGTv/vvst3ooWg5QjHDvI5s6PmVY3g2SbL6Y5whvOUsWqE4SJA7CcAHLwgeidRJSQyteyrLrJNgs22w6Kq1s5yWTA1EsmKqaybfK6GlYnv35IhQlIredvyPuMJDTVaSZCbJiFMTDI6/IxSTzGHI/ebkbr8Cw9bgE++/HDsO6MTX3rV0cZlbvvQ2Th8YbCub158rHHinnCLCzkmO+sdv2SWfF586fUWc7jxye24/1mvusOGXSNYs2MIe0cqMiPc25HDjM58rBB+/Q/uxfO/fHPIld01VJL56A27R3DcZTfICEcclapeGindEZ3X401MfCKD67zOb4pSrgaTAFvRwe+b/1iNs//nZqxVmrDUwpP+voz3yZZoD6qtjkYoAmNWV16pGhEsk7OskEjTnaig8kHQWa7icHQpE3n12/SijrDuVJrym2oNWXXSl3BjLcbQVcjJuQ6i+ZE4Z7iaIywzwoaqEZwHDYuShKDXUMOV+5zF6QzVLDaK1eDnbb6oX74giNmZMNX9NQk9i8VUjYg4wizyXDNghvc12+viRWst2fnP/9OReM0Ji3H6gXONXfRqwessF9QRHu9oBFWNICYtbzp1Gc49dD7efPqyml974Pxu5CyGg+YHJ8XzDl8gc7eClx29EA987IXy91+94xTc9J9nYcU+nvvruBzHLJkJAFg4M/xaAPj6xcegkLPwp4e9vOxrr7gLL/jfW3D0p6/HT+5aD8AT8n0d8UL4Yb/km6heAQDv+sUD8rUAsHu4jOtXBQ4n5xzbB8ZwwTdvw2Ob9wIIqlQMlx0su/TP+Mmd60Pb2TFYiojjRf7xUCcvxiFuAauTADfuGcUbfnAPvnnjMwC8+MS9fsm4ctWVs9RrQezn7uEyvn3TauwxOPVJBJMXvZPe3pEKrrp/U/wLDKxcvxvXPlJbpptoD6our6leaq2oq57dXVDq/2rRiARXT3whi7s4jl95QY2DqRdy0hF2/clyyvpMwkcXZPpkOdti6Cna2Dnk/W2J84y4de3VEVYcYX8wuoCxmJ9vzlg+DQgiX5nqCCs/m2rBquMR57Y0R9hU39nkNsdXjQiPI/Q+N1Fo1VuyLMn9rMUR3XdGJ774qqNQyFnBxVad+5e3RTRiYibLBdGIcd1sLCSEiczM6i7g+286EXN7am+7uGKfPjz2qfNw/Qefh5cc6VVc+OhLDjVeiTLGcMZBcwEAJ+0/G/vP7ZZfQo4LfPlVR+HHbzkRi2dHJ+Mtmd2NMw6ai1uf3gHOObYoE+due2YnAKC3I48ZnXmMVVx85YanpVD7zs2r8a1/PCOX37RnFPeu243HNu+VeeJjfREOADuGSrji1jVYt3MYL//WHTjpczfisc0D+MU9zwIIJvCJrnyfu+4J+dqte0dx4mf/jq///Wn87K71uP5xT2yKLzi9xbXOXx/bKh2voVJVznrfvGcUtz2zE/97w9MAgFd/7y68+nt3wXE5jr/sBlzwzdvjVhmLuCD4+xPb8eW/PYVPX7uqptdv952h0YonUP79Nw/hP3/7sOx8mIXLb1mLL/zlyZq2S7QHVcc1NhNoFqqYmNtTlHMB1GvMvG1likYIh9Z1PTHZGRONyFmi/FQ486suF6qpG6kjLLYn3FivrKVo9COFsIhGxHSW0++yeBnh7OXTAMjKPrV2ljOL1ehrTJOsw2OOrt/keFosuWqEHqsAmivwAqe/ttfpJeFU6r1TYspD14JX9aTW0nnNo90my1H5NGLcECfez1x0JF5/8lIsndMdu+wVbzweo2VH/oHO7+0A4FVu6CrkcNYh8wEA//3SQ/Glvz0l4wFzewo4ZvFM3PTUdumu6PR25DDDj19848ZncPfaXfjNv56KL/31qdByG3aPyAlohyzoxZ6RCj594RGY0ZnHeV+7Fd+7ZS0A4DcrN4VE3baBElyXyxnoou5wVflmvmet59Le9NQOPOo7yHdeeo50d7fuTY44XHZtIKqHS1V05L0+9A9oFS3W+4J6695RDJaqMqag4rg88UQonPPn/DHpHbfSGPBfP1r2jscaP2JRS555x+CYvOVNTC5aXkdYERhze4vYO+q1f1ejTWo3Lv01QPDFLO7iVF0Ox3VDNc7V29i2xeDwICNsjEYoIjUuI6wK1u6ijdU7vHOWjEYoVSPUEcdVjWDwLgBM9Yt1hCMs/q5qzQinRSMEMwxRN5Vw9lo8Fv4d8I6ROWcrYiKm9TUzGsEA8Lo7y5leVu/4THWWa8G2vWhPRataMl6Y3PuJhBxhYtyZ3V3Aab7jG0dXIYc5ivN81iHzcPnrj8d7zzkotNzbzzwAT3/mxVj92Rfjrx88EzO7ClixTy849yaemSjmLMzoDE7O967bbWxy8SelvNrWvaN4wylLsf/cbszuLuDsQ+YB8Cbn6M7mP57cjl/c86zscLelP1rO7Y7VO+WxELzph/fKznxxJeAA4Hu3rAlNkBsuV6WTFRc5EMIbQEgkPLhhDw786HW4Z+2u2O2JCIZwdmvN3QlXSxwPUQN6YKwSqv+cxPbBUqQm9dodQ+Cc410/vx8/umMd3vCDezJXKiHGj4rb2slyqjCZ21NExfFKkIUdYXOJs2Ad/lidQHhWXY4u1REOCVtvshHnnjAy1a4NCzItIyyEt5LP7S7m5AV9EI0Qk+XCQiq+fBoDeCCgk4SSFML+32WWv2uzI6w+n7qKCOFohN4cI7y9pO5sUhAb3otmYMp+Z3pdQp633gxzw5Pl/DsaFdnie3wFqbyIahNHmIQwMSlgjOH8I/aJ/ULN2ZbMER++yJt8J9o7z+jMY8U+we05xhj6OsIuxY1Pbo+s86+PBxnggbEq9p3ZIX//wj8dhScvOx+Xv/54+dh3/+U4fPyCwwAAf350q2zAYXJ3f+sL1vVKdYpntg9Jd0a0gB4uVXH4x/+Kqx/cjNue8brhfd6PCOw/13PUP3DlQ5EGI0BYFP/9iW3y54//8XEc8Ym/gXOO2/24iOi0t2e4HHJqVVdtvV85wvRl9NjmvbEOrxAkIos4VvFOvnet2YUTPvP31Lyw63LsGCyhXHXlifvONTtxzv/egp/fswF/eew5fOpPq3DbMztxw6pt4Jynus0j5SrO++qt1DJ7HEi749Aoqqs0r8e7sBwYrWoNNfRohLYOOXktmCznuBxFJY9pmizncA5bi0bAIJhUwaNWmXCcIKPZXQhu0Ir6xSFH2JAR1vfDsrxlnQwl0cQdOvF3mW2ynLItbWIb4DX0ENz8n2fhzkvPqWmd0hGOiUYkdWfT3WSgeZ3l1LHUmxG2GHDislmhsp/1/l2Il9VdPs32WiwHQnicHWFDfGgiISFMTDkWzezE7951qvz9R285EVe/53Scdcg8/P7dpwEImmO84ZSlode++oT9AAAvWDHfuF6BZTF05G0cogjsxbO78NYz9sfJ+8/G3Wt3ywoOcXWNgSALfNqBXoc74QTvHa1g72gFn7zmcQyXHXzw1w/hDT+4N1SpwlRdQ+U/f/uw/Pl234EGgJ/d/SyGyw52DJZkXOPGJ7bj9md24tjLbsD/KHWbB0aDOILIWwt98aM71uGah7dg695RXPDN2/Hh3z0SGYPaz36kIoSw9//K9V6M4+anohchglue3oG71+2S4xQXCqKE3c3aBcxYxcX/XP8UVnzsr9KBBjyBrwqjZ7YN4altg/ivPzwWu22iOVQc3tLOcmq72Vn+HRYvHhFu82tpQja0DpHZdYPyaWKSn6lCQ85icPw6wozpE/GC8cjlFUGmdparyIYGCLnP3ZnrCOvRCD8jnLGzHBA0IMnUUMPUYlkT+YJlc7uNE5p1TJEVUx7XsphxcpVeNYIxVneFhyzjrFW7qnnY377zNHzg3OXyubqFcIPRgrwWjRA1iscL/eJlommTYRBEczl+6Wz58+yuAjryNn78lpNwnF9ybfmCXtz/3+fisouOwOWvP04ue8FRCwEAB87vwbXvOwOffNlh8rklhsl5s7sLOGq/GTjlgNk4dN8+f91eZYwfvPlE49iuvOQUfOPiY3HxSUvkYyfv7wnhsuPipP29sR/9qeulcyy4f0PgYNZyEjXleh/Y0C9jC09tG8Trf3APAOCqBzbhkp+uxJb+UWzcE520t3e0gj88uAmf+tMqvP9XD+Lvqzy3+Y8PRas6iC9ZwHOe1Oy0uCUbV1ZupFzFm354L173f/fIx36zciMAyMlXeq3p0YojOwb+7oHNuOnJ7bjq/k049rIb8P3b1snlhFDY3IJyc0SYquO29Nar+Dso2EHkaWCsApcHjTzytpWYZY1UjfAd4ZzFpEjQhXTVUVssK+sSbp1hjLqTp05WErlgIMgIB1UjtMlyObMQ8pMRcFy/vnFSRlhMlvMvLu0M75GxOkaDUQTTJEZT1zqvfJrBEZYTB8PxE/31jSLWVLsjHN6ngqL+6h1fUH6srpfLOxrCEW5lwxsT4rMzqTLCjLHzGWNPMcZWM8YuTVjuRMaYwxh7VfOGSBD1cdlFXoOOBX0dxudFBlkVzWcun4tvv+44vP8Fy3HEohmh5+Im9/3xPafjyktOlSe1D52/Ar9712k4+5Coqwx4bs/Lj16IVxy7CGcun4sXrJiPs1fMk88/b/lcXHTMQuNr/+3Xgcur1g+uh3f+/H7jhML+kQquX7UNp33hH8YqE3es2Rkax81P7ZA/f/+2tTLXCABDiiu7fXAMB3z0Ovm7aBqitscWy3HOcdOTO6DzueueDLVi3a0J4Z1DJXnBcveaXXjLj++TzvhX//60XE58+ettt6cK7XTO9uoIt94RVoXw3pEKOMJuoSnfKtehVXEQ5dNsi0nhYmyx7MZXjQhHI/Tsq/d4xVEzwoEj3JNxspyuI0RbZyHik6gnI2xqLBEuV5a6igjqZvU6wvr2TOuX73HCepqBdJlrniwX/j+vuK/13ikRL6vX8c5ZFiptEI1ol6oRqXvPGLMBfBvAiwEcBuBixthhMct9EcDfmj1IgqiHN5yyFOu/8NJIa2idOcqENcYYXnrUvvKL6LCFQfe6uCiCnnPq68jj+KWzYrfXWfD+7E7afzZ+9raT8YM3nxhqKjKvt4gvvPKoxDEDiJSxU2s0C/7l5CUyk6beej3/cK+E3a/u3RBaXi0PF4fe/VnNV3/mz0/gdw8ELrZa4/iO1eEJeSIHLQr6A17296TP3ogbVm3DHWt2wsT2wZKMV+hC+C+PbsV2P4ry50e3hp4bKTvSAZ7KFSja7Zxddd2WOk7SactZMvsvHGEhkvNWSjTC/11clImLzCRHWHSW87Kr0XiAqXqB/pysGsG8CcKCnmI0GqGuT4pzbT8s5uX6Hc5TRZLICI/UVD4t+NlUR7geYRZqRW2Hj1MmR9iKvj+BaK15OLEEbnVtr9PLpzXDEW60xXLeFpPlJiYaYbqImkiy7P1JAFZzztdyzssArgRwoWG59wH4HYD4wB9BtCHiBHfm8mglC9tiOHLRDMzvLTYU7P/je06XP3fko8LcthhOXOaJ55ccuW9oGXGSOkOptHHm8rn40quOwnf/5Tj84d2n4WuvOQbXvf9MzO0phNY7t6coX/+KYxfhsouOwA/edAL+87yDjeP88quOwiXPOwDHLJ4Zelw41KccMBt5m+FgrVvUuYcukD//4cHN8mfVcY1rYFJ1ONbsGMKX/vokLvdL0n3ymsfxy3s2oLcYrfC4pX8Um/eMRtYPeOXintk+FPsFc/oX/oG9oxUMKZENNUs8RWirc3bVSXcnG0GKXdUR9jPCwonO2Va4FJfupEoh7AlgEd+xbSbdMnUfcv6tZZERNtcRRmh577GwW1x1vAgDY0yKXwDy4p2HJssF64stn8aYnCyX2REW0Yg6J8s1msMNOe3aOi1te6a/68ARjr4Hzcym17u/Mgag3LkQ1Pt3UW9eWWD7VU8mKhphGS6iJpIsdYQXAdio/L4JwMnqAoyxRQBeAeAcAOZgpLfcJQAuAYAlS5bELUYQ484Tnz4/dobx7999WsQFzcrP33YyhstVHL14Ju7+yAtw7SNbQpPuVL7/xhMxWKqg13e1PveKI+FyjoMX9OK6R7fi4xcchjO++A9s2TuGb158LGZ2FfBi3+091s8+ixPLS4/aF39+ZCssxuSEvjeeukz+XDF0mPu/N56Ag+b34qMvORTbB8bwnZvX4Md+N7xPX3QETjtoLl5x7CLY/mSUPSMVvPaKu/D0tiEcvrAPnHPc+OR2rNo6gJFyFe/+xQM4XHHUw/t6At7ul7fbO1rB2358n6x5DAQT8z72ssPwoavCk/C+9vdnQpP/TLznrAPxh4c2Y+NuTzC/9+yD8K2bVgMAntk2GHKEdw2V0TV7SpVUb6tzdsVpcTTCFwX5HENvh/c+elUjtMlyikDVL2rFOsTfheoIB80rVIdXLZ+W7AirjnGQEfb+r7qu3La4Y9OZt6UwEdEIDnODjmj5NM89dnh6vVs9GpElI2xssdygI2xyzk3tkuf0FDBHu9AHAlGlnr9bMRlLRhwajEao7mvdGeEmTJaruEo0YtwdYf/9nURC2DRSXRZ8DcCHOedOkmvGOb8CwBUAcMIJJ9QpLQii+STFJxrJT52huMz7zOjA2888IHbZGV35UPH5150cCA8xge637zoNnHPM7Ip+IQCeA7xtoCRvEY9Uqnj32Yfg5UcvDM3gztsWLnneATh8YR8+cOVDAIAXHha4uvP7OvDxCw7DaNnBqQfOQV9HHq8+YXFoW7O7C3jNiUtw2bWrsGhWJ/7thQfjZ3etx8f++Dhee8XdeGTTXpkf7irY8hYsAJziV8kAIBuK6Dzv4Hl49QmLI0I4SQQvn9+DZ7YPYcGMDszrKWLj7lF87TXHYF5vUQrhJ7YOhJzknUMlY5fCSUxbnbOrbmsnywnTr2BbyNkWeoo5zxFG4IrmlIywSTyIdYh63KWqiAtYKOS8c4NeDi2IRphrFKs5zqg49v53eeDGiQlynQVbCoQgGsHNdYSNneUyZoS1aEStLZbNrm3qKqLrNBw7U7zkWxcfZxTrOYNobkXVCFPr7Czool79W6jXiRW7VXf5NMsC58Gdj8J4Z4T9zbVLNCKLEN4EQP0G3A+APj38BABX+m/KXAAvYYxVOedXN2OQBEF4xLnJgv974wn48yNbceqBc/CrezfgrIPnI29bxjJGH33JoQA8kT1ajtbdtSyGL74qOav81tOX4chFM2SU4oRlnmB/ZFNY3F73/jOxcGYnNuwexh2rd4VuAwvOXD5XtsEGgIUzvEmOc3sKqDg8Nlqhvv6dzz8Q96zbjZcdvRDX+Rnhvs4c5vUGeeoHN/ZjH2UC5a6YDoSTmLY6ZztOi+sIK9EIAOjryPkZYcURVuoIG7uTJTjCBZMjbAfRiOhkOfF/IOpkTlRbBgjErBTCeTsQyv6NGzemfFqkagT8jHCG2s1iHaMNtlgW5eBcXp/wTHKE1THFdagzLWt6rFGC965WRzg4ToAX0xHHq+GqEXXunnDPR2u4CGomk9ERvg/AcsbY/gA2A3gtgNepC3DO9xc/M8Z+DOBaEsEEMf4snNmJdzzPc53Xff4lmRyDfWek1/qMgzEm3WoAOHTfPpy5fC4GRiv4/D8dha/c8DSWL+jBktldsCyGg+b34qD5vaF1fOlVR+Gq+zfhG689Ft+7dS2O2m8G3v2LB+RExTsuPQcMwaSlvSMVHP3p6+Xrz1w+F997w/HI217N19P9LPXSOd24Y/UuFHN2aGLh7x/YHBLiu4azdbebRLTVObvVneWEmBC3+vs687LNclA+jUWcWtM6gs5yweNyspzypxTUEY62WGaa8FEzxHEd0wCgW0QjCrZ0zGQ0Qpv8lrfD21DXxXm2JiZivwJHOEMd4Rj317YYXIfX5VCaBKwpZx2HXkdYfX071RFWzey8baHq1ne8gGiZuVoRn5/hcjXy+R0Pku7OTASpQphzXmWMvRfezGIbwA85548zxt7pP395i8dIEEQdTFTXnh+9+URweCf777/phNjlrn3fGXA5x1H7zZSxi0tfvAKA15Vqkd/0pJgLx1ZUZ+ibFx+L5x08LzTjXvDfLz0Uhy/sw2kHzgHnwEnLZuPE/Wfh2zetwVCpimLOQqnqGkvITWba7Zzd8sly8pZzWAiHHGHbSsxVCmGhVjDx1ulNlrOYVt3AnywnqjmYRRjk/7qwU4cgxmNyhEU0wuXRusQmASM7y7k8VWSIC4egs1zi4qF98/ZB32eeSbhG1xn8rGepswg00/sqXtbcznLi/xodYa1bHuBdhPBK/eUvG62TLO4GjJQc5G1r3L8r2q2hRqYZIpzz6wBcpz1mPJlyzt/c+LAIgpisZJ0YdcSiGbHPLZtrrtms0tuRw8uONtdbBrxyVP9ystc5kDHgN+/0ug2es2IBXvndOwF4UZJDFvTGrmOy0i7nbM75+NUR9oXdjM48NvrtzYXLmbOY0oI3+qUfRCPCMWgvI2xF3NJwRtick1VdyWCSXODkMhbuGCe6yXXmbblPruIIM02ECoGuIqtGuOmT5YQYKjuuL6xrE0NmJ7emVQDQLjA0JzeLYyjeG9PFSHPrCNfnwppKnRVsS+bR60Evx1crIh8+VKrK5kTjif73MNFMqanSBEFMDx771HnGGWFZOH7pLPzyHSej4nA8/+B56S8g6kY4mq10hIWoDDLCefSPeHlytWqEqROaIIhGhF06r2qEFYlTWL4j7LhislySI8yMQtFiDI5S67jLb6jRUbClgIurIwx4YkoXEgxB1Yi0Y25ZXkWMSg0ZblMWGogK2FpI6iyXRSjJY2ty5Zv4uQuc3RpfZ4hUFHJWQw2R6nWn5fb9v5WhUnXcK0YAk7N8GkEQRFthmmxXC6cdGK0ZTTSfqhDCLawaAXhCTDjCXoWSami7OStosWz68hWCQhfCorOc7iwGjrChvq1wuxC4duZsMOAo4+mR0QhLCgXhCOt1hAEvtqGPy2IMHN5xzyICC7aFiuNkvlBRNxeKRjSQWQ0LarE+//cM41Irg8j1JMRg6qXeJhYy5hHKeFuZytWljaVeHVnMBzWkx7urHNB+GeE2SWgQBEEQUw1Zp7SZLb4MWBYLdVsTAjyoKGF2ZQXiOf12tegsp4tKUUfY9esIJzXUYAiEoh5vUP8v5ryoQyga4etybhi30almnmh2M5RPA4Jb5A07wg3cqg9VjdAahWQZlm2oqSx+bKojXKd4M1Ur8eI2zRDC9a1DzLuYqGjEpGuxTBAEQRD1IITleDjCauMLuV3pFlqJ4kF8H5cNjrAqogVivVURjbCiAlG9PR9kIqPbtBVB3F3IeXWE/eeckCMcHoOXEdaiEX5GWIwrjbhWzXGEx28S/3U4wqqTq71HWYRSUtWIZkZyxJpqFZ+d+aAaiCCvTN6sB1McpBbE3ZMJj0a0hw6maARBEATRGqrjkBEW6xdf7jnL65oFKLfI7UCMmgSIqIUbcYRthkUzu0J1p9V1VKouGGNaxQIhUoLfTXVfTa7nv73wYBy53wyljnCQETZFI6JC2FvWdXmmiw/1mGXBNH4gmP1fz9scdpbD684iOsetjrC8wKntdfP7OvDrS06R3T8BGCdg1oJV51gERaV03uxuc3OmVpL0tzgRkBAmCIIgWoIoR9bKqhGAmPgVuJuiJbp4LJ/SUEO8LpoRtvCesw/Evz4/3BFSCMeK43pVI5TdCwRTIHRNFQdMrudbz9gfAPDIpn4AyZPlTK6iqCNczVA+DQgEUXZBEo0fAI1NljMfk/B6kzBVjdDfg2bQyAS8kw+YE/q9YLjLUNNYGshkA2FHeL7SbGi8aNTRbjYkhAmCIIiWoEcUWsUHz12Oo/bzyvGpAkO4XbO7Cxjz2ybHGXEWYygZqkbkbAtaKetQlYmcFlHQYwIsVDUim1iTdYTVaIS2zKzuAvo6ctrr/Iwwz1YJInCEs12oxDnCQQY602q0dUadXNEivrcjXaKYJsYlTYysl2Y26SjkGoxGNBBFAYILoHLVlZ+B8USMu10my5EQJgiCIFqCnCzXYkf4LafvL39WBcYRC2fg3194MJbO6cbDG/sBJDvCWR4DAmFfdjgKufAXepAlDX43rSapKUIwWc53hA3j/tbFx0aOK0NQR7gWIZw9IxwVrerPDVeN8H85YtEMXPf+M2V3ySQSy6c1UWfVG40w0WhGuOGqEYr4nYiqEe02WY6EMEEQBNESHK16w3hga67r0jlec5a0Wf+mx/MxOVtR3aDiuGAsFxZhmihUJ9OpxqtpAp1cv2VwhLXl5mu5ZbF+GY3IUjWiRiEcdoSV8TYgzEyOMIBMIhgwl0+zLFZXk5AkGpkQqDO7u4ChsWr9Y6mhvJwJtVtn3Ge8ldg1RF/GAxLCBEEQREsQndrG88tWrc8arnUr/jePxdxow+yWBZ3ovIxwuGJB9H9Thjax5bOYLOdnnb3JcunH0Ksa4TnJ+Xy601fI1VY+jSHu2LLI81kxVY2oBbMj3HyR1aj4VPn4BYc12FCjsZhGYYId4aC5zbhv2ggJYYIgCKIlyMly4/iNpzqDqkxIawNsEjhx2WY5Wa7qQm2hDETrA3sVKaLCJallr1if63Jw3xXOor8YgrbWnTWUT6unoYbREa7jbQ65zHWIzJzhgsJz4WsfSxJC5Dfj5sbMrsYqNTTcYrldohFt4gi3iR4nCIIgphqVcaojrFJvG2DT43Hun5wsl6XFshUIRHVtwfPx2xXd67zXph9D0VnOzdBiGag9GhFbR1gKszocYcMkt1qQbbT1aESzHWHp8E+8eGu0KkbYER7//Wmmu94MSAgTBEEQLcGRdYQnyBE2OLDx4jZ5XaHHffFQrrpgMdEI2WIZgVA2CcmkiXQOr80RFlUjqk5tGeHsdYSjgh9orI6wadJdLfQUc2AsXGHCK2nXXJGV5OCPN41WxSgoH/ZWlzY00W4tlikaQRAEQbSEqiPqCI/fF56tfLGbKhLEVo2oxxF23HhHWBGHJjc6a9UI6QhniUYw5r+mtqoRWUWjqfwb0NitbmZ4j2phfl8H/vTeM7Bin97QeJpdsk91+CeaRqMROb9qhePykCgeLxqpydwK2uAtJQiCIKYiFXcCJsup6sBw272WyXJxTrbaUMO2mNEJVR1E061s8aMpTqBWjeDgsctFt1lb1YhaO8vFidZgslztxFWNqIUjFs0IOZsWa6xhhYlm1hFulGa40+JuwMRUjWgvR5iEMEEQBNESpCM8QdGI8EQs7/+4732jMxtXPs0S5dO47BynZ0jVOIR43hSNMG1CbbEsuuRlET0yI+zy2IoXKs3KCDfS4MHUnrpRGGu+YG1FbeJ6SZv4mQV5ETSR0Yh2OJggIUwQBEG0iOpE1BEOVY0wRBZqiEakVY0AotljS8vLqtsNlRwzuMT6PlQcjqFS1d+OcSghZEbY5bGCX6XWznLh46lsNyV2krjOBqMRJmyr+Y4wEt6v8aYZE/fERdDERCP8/9tECFNGmCAIgmgJVVlHePy+bE0T19THa6sjnL6snBzHGABudITFa0LiMSGqIR76zcqN+MJfn4zsSxxeHWHRWS5DHWG7tjrCpjJxQGMNNZgfHeHcPGGxHvTcdnPWGax7omlGTKMwgdGIxbO7sKCviKWzu8Z92yZICBMEQRAtQdYRHs+McEikRn+upbNcFkdYX28gjMPPW9rtevGjsaGGv5LNe0Zl44Us5dMY85pweEI4dXEU8/W3WK7lIiMNmzFUeTbxngXLYk3/zLVTRrgZYxHd5SYiGrFwZifu+ei5477dOCgaQRAEQbQE2VlugjLCMIo18+uMk+ViRIJJbAcz+XVHOBDKxvJphk0IcTxWdYJdyRSNYAD3Jtllc4QbabGsHIMGJsup62rW5Cm1UkezMJXAmyjyNsMpB8zGEYuytaE2Id77iWio0W6QI0wQBEG0BMd3hOMmnbUCK8YRTivxVVMd4VBGWGzL/x3h39Vb6mFHNX48akbYtC9xiIywm9ERrrlqhCFzDQQT/uqZLOe9zl9nkzSZzVgL6gj7626DXCtjDFdecmpD6xB3AwoTEI1oN+hSgCAIgmgJgSM8fl+2cS2WWUo3q3rqCAPRrK8ucNXnwxnb8OtVTI9l0ZgMTJksl/6CQq1VIyzzz41WMZDltJr0OWGsFZ3l2ica0Qxke21yhMkRJgiCIFpD0FBjgibLqWItRcgYJ8vFLKtWWRAv09cfRCSC5WptqBEaX0ZHuJ7yadkdYWWMGd3tLDQ7GvHiI/bBjqFSU9Yl0B3+yU4x72WEKRpBQpggCIJoEaJ82kRNllNv5dfaWc5i8ZO/khxhsRq5OkXwqmvTy6zp29bJ5AgzpjTUSF++2EBnOVMjjHpFolpZoxm88vj9mrIeFaa9z5Md4QhTNIKiEQRBEESLkEJ4ouoIGyZ3xQlEXeAk1dZVhX3E+dVEoZoRNrZiNsYgWET4ZsnfinVVXTfbZLkGOsuFjq02UbBWxHs2np+TWmmn8mnNQGSEKRpBQpggCIJoERPRWU51drM2sNBfByTnVU21ivXyaaascFhI1u5QpyFeUnGyOsKijnC29yfWEW6wosJkyN/qFzyTnSJVjZBQNIIgCIJoCS8+cl8cNL93XIv2q25tLbVudeGb5E4a87Gxk+WC9VsGYZ7YtMMNqkZkqSMc3t/mO8Lx22o0IxxeTzsSbpwy+RGO8EQ01Gg3SAgTBEEQLeHAeT04cF7PuG5TFYCqeBRxg7gJWbpATir5Fp6QF570pkWDpXBizBzViNNV9TnCUZc2idrrCJsdYV3010rSxMF2YTKMsRaCjDA5wnQECIIgiCmDbXBd1efidIyue5NcUpPrHK0WERbGtTrC+uPZJsuZxxhH7Z3lzD8LLVWvWzoZohGNiv12Q1SNoIwwCWGCIAhiChE3WQ7wJ6ylCM8st+lN24hOjgu2Kf6vJSOsb76WyXJJ61WRtWRrdIQtprnPTYpGtPNkOWjv52Qn6Cw3NfanEUgIEwRBEFMGU0UHgWUlRCP8x/NSHCZUjVCeO2CuF/3QxaDeQjlaRzi8XR1diGetIxy8PnXx2htqxIyl0fbDk6E02WRwrWtBlM6jaAQJYYIgCGIKoQoVXbLYWgmz0HO+CAs6bmVzhM9ZMT+03biIhO4Ip91q18eZRX6Fa/u2rnyaPrZ26yzXCqZaQw353pMQJiFMEARBTB1UURdxLq34aIR4PJ/BJVW3sWxud2hbTHGAgUAQRzPCyeJPH2etFeiy3PGutXwai3F+G+8s5/3f7LbIzWSqOsIUjSAhTBAEQUwh4losA56IiTPAhAgTIjfLZLlFMzsj2xWvklUjlOdDbrUmlOPGI5fPVD5NcYQzOH3FnAXGAncwC3rEA1D2vdHJcm2sSIL3a2LH0SwKOWqxLKDyaQRBEMSUIa7FMgBcdMxCnHrgnMTX5WVJsXiBUMzZ+MGbTsBxS2bJx9LqCH/4/BXo6Qi+ctM63dVTNSKUEc7wgo68je+87jgcv2xW6rLBOKKVNxqNRljy4qN9RZnl7/eUqSMsHeH2PebjBQlhgiAIYsqgOrm6ZvnUhUfEvk4I06y52RccuiD0u7jDHJcRft7B87TtidfFRSPM40tCFWlZc78vPnLfTMsF40iYLFfTmsLrVP9vR0z7PZk5fFEfDl/Yh4UzOyZ6KBMOCWGCIAhiyhAubZZduAhjTGQma524pVdOSOtEpgvmyHj0aESNjnCrKjAwMENGuLFtTga3lSF+ouVkZMU+ffjz+8+c6GG0BeSJEwRBEFOGUEa4Bt1ia7fna61pmxaN0FEn0SWtT/5eoyNcS+63FhiLjrkZGeF2rhgBeA79FNLBhAIJYYIgCGLKkJQRTkLWEa6xtq7criZ8A0c4bnvh/+PGI8gyGvU13QU7wytqxzKUoGu4xbLV/rEDNgnEOlEfJIQJgiCIKUOjjnDBj0ZkaVGsEjTOMGeEI8unNJGIRiOyOMLBz12F1iQfmSHC0HhnufYXmVMtI0wEkBAmCIIgpgwhQVWDbtE7y2Wtrau/Xm86ESuENeEcfV53XbOMIfi5u9hKRzj8mF46rp51tr8QjmajiakBCWGCIAhiyqCW4KrFwZMZYV8I52uNRmg52bRohMwIx3a6My+fhLpMyxxhxFeNaKShRrsL4X1mdGDfGVRhYSpCVSMIgiCIKUOdhnAkGlFPRjhUtSFrNCJmM7pAzjIcdZFWOcKMRcciRHu9jqnFWFt3lQOAf33egXjr6ftP9DCIFkBCmCAIgpgyiElNjstrKueltjxmrPaMMGNxnePituf/n7FqRLbyaYojnG9VRphF3OmGHeGE1tftgm0x2FZrLi6IiYWiEQRBEMSUop7Mqq1kdm3Gas4I21rlg8yT5TLXEU7fG3XInS2rGhFt9iEny9WpKCyWrRMeQbSCTB9bxtj5jLGnGGOrGWOXGp6/kDH2CGPsIcbYSsbYGc0fKkEQBJGF6X7OFqKqpoYaShUH22I11xEWTrIgPSMcvM5EXA43CXWZ1tURjsYYpkPVCGLqknrvhDFmA/g2gBcC2ATgPsbYNZzzVcpiNwK4hnPOGWNHAfgNgBWtGDBBEAQRD52zg2YYtegytSGGbdUuzPSqAlkzwrHRCX2yXE2jaR1JLZbrpZ7jTRDNIssl40kAVnPO13LOywCuBHChugDnfIhzzv1fuwFwEARBEBPBtD9n23btDqU6ec1mtTvCeqOJ9IYZ/lhjq0Y05gi3jmgZsUYdYWpWQUwkWYTwIgAbld83+Y+FYIy9gjH2JIA/A3iraUWMsUv823Ard+zYUc94CYIgiGSm/Tlb7/KW6TVWUM7MqsOhtC19slxjGeFIZ7kaJ8u1CpMjbKfsS7Z1Njw0gqiLLELY9PGMuAec8z9wzlcAuAjAZaYVcc6v4JyfwDk/Yd68eTUNlCAIgsjEtD9nB5PlaneEGWN406lL8cLDFtS0zbhoRFod4djOcnVUjRDLdORbNw+emaIR0hGub502OcLEBJKlvsomAIuV3/cDsCVuYc75rYyxAxljcznnOxsdIEEQBFET0/6cXU9GWFSNsC3g3190SM3b1J3SYLJcnOMb/j8ynromy3n/d+ZbV+bL1GEtqCNcn5jtKNjobFEDEIJII8sn7z4Ayxlj+wPYDOC1AF6nLsAYOwjAGn/ixXEACgB2NXuwBEEQRCrT/pxt1SGEG62F60UjTOtL3l5s1QjdEc4wBiFEWymEGeIny9WbzLj0/BUYKTsNjowg6iNVCHPOq4yx9wL4GwAbwA85548zxt7pP385gFcCeCNjrAJgFMBrlIkYBEEQxDhB5+zAEa6nxXK9jR0sK9xogknHN80RTn5eXX/qGPx1dbSohjBgntjW6GS5xbO7Gh4XQdRLpnsRnPPrAFynPXa58vMXAXyxuUMjCIIg6mG6n7PtuqIRjeVcX3HsIhw0r0f+nuYwp02mi2SEM4xBLNNSR9gwsa2eyYkE0S5QKIcgCIKYUtTjUMqoQp2u5onLZuPEZbOD9aXMVwuiEcnPC2rpLNfVQkfYMrVYbtARJoiJhFosEwRBEFMK0R65FlkWuMjNEXOiYkVa9CFue2I8okNcFrdVbLNjghxh0sHEZISEMEEQBDGlqKeKgS0d2iYJ4ZSqEMJFjW2ooU18y7IvpaoTek0r0BuHAM2/iCCI8YSEMEEQBDGlkI5wLVUjGswIR9aXUidYCuW4aIQVFsJZxjVa8YVwKyfLofl1hAliIiEhTBAEQUwp6qsa4f1fb9UInbSSYmmT6WzGkLcZcn676CzNQcYqLoDWT5aL1BFusPQcQUwkJIQJgiCIKYXMrNbwmkbrCEfXB38MdZZPs4CCbdXUHGTUr8Xb2oxwNBohcsw5soSJSQgJYYIgCGJKUU/VCDsls1srQXk08/NpDTWKORudBbumfRmPaITFomM+fuksfOGfjsTxS2e1bLsE0SpICBMEQRBTChknqKWOcJNr4aY5vmlC+a2n74+vveZY5NLqsCm8+oTFOG7JTLz5tGW1DLUmGEwtlhlee9IS5OJqwRFEG0N1hAmCIIgpRT0tf+WEryZnhOMd4fByOkvmdGHJnC7pvroZGv/N6y3i9+8+vfbB1oBXPo0iEMTUgS7fCIIgiClFXZPlmp0RTinhljWTLNztqtseHbC98mkTPQqCaB4khAmCIIgpRSMtlptXRzitakR4u2njcly3KeNqlK6Cja4C3Uwmpg70aSYIgiCmFHW1WK5DPCeuL8XxTRPKAuFuV532cIS/9KqjUGxhVQqCGG9ICBMEQRBTCukI1/IaUcWhaS2WPeqtGiHHJR3h9hDCB8zrmeghEERToWgEQRAEMaUIau/W4gj7/zetjnDyGNImywkWz+oCAHJhCaJFkCNMEARBTCnqiTnIyXJNqxoh/m9sstynLjwcpx00h2r0EkSLIEeYIAiCmFLU12K5uXWE0+oEi6GlRSO6Cjm84tj9mjMogiAikBAmCIIgphT1ZIStJleNkC2WUzLCVIqMICYWEsIEQRDElKKuFsspmd5asVLGIKMTpIQJYkIhIUwQBEFMKWRb4nrqCDdtspw/hDghXIdYJwii+ZAQJgiCIKYU9cQOmh1VSM8IN1d4EwRRHySECYIgiCmFaEtcS8yhnjhFEmlVIdIyxARBjA8khAmCIIgpRT0VIGxRR3icJ8s1a3IeQRD1QUKYIAiCmFLIiW81hIRFrjjXJGEqtt1oQw2CIFoLCWGCIAhiSmHX0VBj6ZwufOJlh+GcQ+c3ZQxMCt2454Uj3JTNEQRRJ9RZjiAIgphS5OoQwowxvOX0/Zs2hvSMcHPLtREEUR8khAmCIIgpxYsO3wdVl6OYsydsDKKCW5wj3Jm3Q/8TBDExkBAmCIIgphSH7NOLQ/bpndAxWCk55XMPm4+fvvUkLJzZOZ7DIghCg9JJBEEQBNFk0qpGFHM2nnfwvPEbEEEQRkgIEwRBEESTYSkZYYIg2gMSwgRBEATRZMSEPdHcgyCI9oSEMEEQBEE0mSWzu/DpCw/H2SuaU46NIIjWQJPlCIIgCKLJMMbwxlOXTfQwCIJIgRxhgiAIgiAIYlpCQpggCIIgCIKYlpAQJgiCIAiCIKYlJIQJgiAIgiCIaQkJYYIgCIIgCGJaQkKYIAiCIAiCmJaQECYIgiAIgiCmJSSECYIgCIIgiGkJCWGCIAiCIAhiWkJCmCAIgiAIgpiWkBAmCIIgCIIgpiUkhAmCIAiCIIhpCQlhgiAIgiAIYlqSSQgzxs5njD3FGFvNGLvU8Py/MMYe8f/dyRg7uvlDJQiCILJA52yCIIhspAphxpgN4NsAXgzgMAAXM8YO0xZbB+D5nPOjAFwG4IpmD5QgCIJIh87ZBEEQ2cniCJ8EYDXnfC3nvAzgSgAXqgtwzu/knO/xf70bwH7NHSZBEASRETpnEwRBZCSLEF4EYKPy+yb/sTjeBuAvjQyKIAiCqBs6ZxMEQWQkl2EZZniMGxdk7Gx4J9UzYp6/BMAl/q9DjLGnsgxSYS6AnTW+ZjIxlfdvKu8bMLX3byrvG1D//i1t9kCaBJ2zx4+pvH9Ted+Aqb1/U3nfgCafs7MI4U0AFiu/7wdgi74QY+woAN8H8GLO+S7TijjnV6CBLBpjbCXn/IR6X9/uTOX9m8r7Bkzt/ZvK+wZMyf2jc/Y4MZX3byrvGzC1928q7xvQ/P3LEo24D8Byxtj+jLECgNcCuEYb1BIAvwfwBs75080aHEEQBFEzdM4mCILISKojzDmvMsbeC+BvAGwAP+ScP84Ye6f//OUAPg5gDoDvMMYAoDqVr0YIgiDaFTpnEwRBZCdLNAKc8+sAXKc9drny89sBvL25QzMy1Uv8TOX9m8r7Bkzt/ZvK+wZMwf2jc/a4MZX3byrvGzC1928q7xvQ5P1jnBvnUBAEQRAEQRDElIZaLBMEQRAEQRDTkkkjhNNahrY7jLEfMsa2M8YeUx6bzRi7gTH2jP//LOW5j/j7+hRj7LyJGXV2GGOLGWM3McaeYIw9zhj7gP/4pN9HxlgHY+xextjD/r59yn980u+bgDFmM8YeZIxd6/8+lfZtPWPsUcbYQ4yxlf5jU2b/2hU6Z7cvU/l8DdA5ewrs2/iesznnbf8P3oSPNQAOAFAA8DCAwyZ6XDXuw/MAHAfgMeWxLwG41P/5UgBf9H8+zN/HIoD9/X23J3ofUvZvXwDH+T/3Anja349Jv4/w6rL2+D/nAdwD4JSpsG/KPv47gF8CuHYKfjbXA5irPTZl9q8d/9E5u70/N1P5fO2Pl87Zk3vfxvWcPVkc4dSWoe0O5/xWALu1hy8E8BP/558AuEh5/ErOeYlzvg7AanjHoG3hnG/lnD/g/zwI4Al43awm/T5yjyH/17z/j2MK7BsAMMb2A/BSeDVlBVNi3xKY6vs30dA5u40/N1P5fA3QORuTeN8SaNn+TRYhXGvL0MnCAs75VsA7MQGY7z8+qfeXMbYMwLHwrsKnxD76t6EeArAdwA2c8ymzbwC+BuBDAFzlsamyb4D3BXg9Y+x+5nVKA6bW/rUjU/U4TrnPzVQ8XwN0zsbk3TdgnM/ZmcqntQGZW4ZOESbt/jLGegD8DsAHOecDjJl2xVvU8Fjb7iPn3AFwDGNsJoA/MMaOSFh80uwbY+wCANs55/czxs7K8hLDY225bwqnc863MMbmA7iBMfZkwrKTcf/akel2HCfl/k7V8zVA52z1JYbH2nLfFMb1nD1ZHOFMLUMnIdsYY/sCgP//dv/xSbm/jP3/9u4nxKoyjOP499cfxDQqwTYFGdWiArPaZYFURLmIFkZRyhAt27QLsT/QvnZBLloYSkShFK0iI8FFTGRqVkYULaTATRkGidjT4rzS5GJGzJl7zznfDxzunXfOPby/4d6H555z77y5nK6o7qqq3W14UBmr6nfgM+BhhpFtPfBokp/pLl/fn2Qnw8gGQFX90m6PA3voLpsNJt+UGurfcTDPmzHUa7Bm069swNLX7L40wgsuGdpTHwIz7f4M8MGc8SeTLEtyI3ALMDuB+Z23dKcS3gK+q6rX5/yq9xmTrG5nFUiyHHgQOMoAslXV1qq6vqrW0L2uPq2qzQwgG0CSFUmuPHsfeAg4wkDyTTFr9hQ/b4Zcr8GaTU+zwYRq9mJ96+9ib8BGum+2/ghsm/R8LmD+7wC/Aqfp3sE8S7fE6V7gh3a7as7+21rW74FHJj3/88h3L93liMPAwbZtHEJGYC3wVct2BHi5jfc+2zk5N/DvN5AHkY3uvxYcats3Z2vHUPJN82bNnnyGebINtl63uVqze5ptEjXbleUkSZI0Sn35aIQkSZJ0UdkIS5IkaZRshCVJkjRKNsKSJEkaJRthSZIkjZKNsEYryYYkH016HpKkhVmztRhshCVJkjRKNsKaekk2J5lNcjDJ9iSXJjmZ5LUkB5LsTbK67bsuyedJDifZk+SaNn5zkk+SHGqPuakdfmWS95McTbKrrbgkSbpA1mz1iY2wplqSW4EngPVVtQ44AzwNrAAOVNVdwD7glfaQt4EXqmot8PWc8V3AG1V1B3AP3YpRAHcCzwO30a1os36RI0nSYFmz1TeXTXoC0gIeAO4Gvmhv/JcDx4G/gXfbPjuB3UmuAq6uqn1tfAfwXlu3/Lqq2gNQVX8BtOPNVtWx9vNBYA2wf9FTSdIwWbPVKzbCmnYBdlTV1v8MJi+ds998a4XPd+ns1Jz7Z/A1IUn/hzVbveJHIzTt9gKbklwLkGRVkhvonrub2j5PAfur6gTwW5L72vgWYF9V/QEcS/JYO8ayJFcsZQhJGglrtnrFd1KaalX1bZIXgY+TXAKcBp4D/gRuT/IlcILuM2kAM8CbrWj+BDzTxrcA25O82o7x+BLGkKRRsGarb1I139UJaTolOVlVKyc9D0nSwqzZmlZ+NEKSJEmj5BlhSZIkjZJnhCVJkjRKNsKSJEkaJRthSZIkjZKNsCRJkkbJRliSJEmjZCMsSZKkUfoHA3eqMcYxpDIAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "043s_iimage_10391571128899_CLEAN_ClassS_100-228.roi.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADYCAYAAABberBAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADNrUlEQVR4nOy9eZxtaVndv96qOlPVvbfnxqaZGgFFFESNY1R+YpwjaqJxiCJqcEyMZkDNYDRRiSZOMaAYZ41TRMUYRyIaRRAQUQaRUWxpQKTpe6vqDDXs3x9Va9d3P/WeqjvXufc+6/Opz606Z593v9PZ3Ws963ne0jSNEolEIpFIJBKJRCKRSCQuBEsn3YFEIpFIJBKJRCKRSCQS1x5SUEgkEolEIpFIJBKJRCJxwUhBIZFIJBKJRCKRSCQSicQFIwWFRCKRSCQSiUQikUgkEheMFBQSiUQikUgkEolEIpFIXDBSUEgkEolEIpFIJBKJRCJxwUhBIXHVUUp5VSnlSSfdj0QikUgcoJTy5lLKx57ntU0p5VEXeZ+L/mwikUgkEonFQgoKiauOpmke1zTNC066H8ehlPK5pZS/LKVslFJ+qZRy60n3KZFIJK5nlFIGpZQfLqWcLaW8rZTytSfdp0QikVg0XG5h9nzay/8vTsxDCgqJRAWllMdJ+gFJny/pQZI2JT3rRDuVSCQS1z/+g6RHS3q4pP9P0r8upXzCifYokUgkbnDk/xcnjkIKComrDtpqSyn/oZTy86WUnyylnCul/Fkp5TGllK8vpbyjlPJXpZSPw2efVkp5zf61byylfGlo+1+XUu4rpby1lPIlVFz3I1//pZTyllLK20sp319KGc3p5udJ+pWmaX6vaZp1Sf9O0meUUk5fmVlJJBKJxUEp5YNLKX9YSnn3/jP1+0op/XDZJ+0/h99ZSvmOUsoSPv9F+8/q+0spv1FKefh53voLJP3Hpmnub5rmNZJ+UNIXXp5RJRKJxOKglPLYUsoL9p+zryqlfCree0Ep5Uvw9xeWUn5///ff23/5FaWU9VLKPyqlPKmUcm8p5Rv2n8lvLqV83sW2V+lu/n9xYi5SUEgsAv6+pJ+QdIukl0v6De3tzbslfbP2FFHjHZI+RdIZSU+T9F2llA+QpP0o1tdK+lhJj5L00eE+/1nSYyS9//77d0v693P69DhJr/AfTdO8QdJs//OJRCJxvWNH0tdIul3Sh0l6sqSvCNd8uqQPkvQBkp4i6YskqZTyaZK+QdJnSLpD0v+T9NPH3bCUcoukBwvP3v3fH3fxw0gkEonFQymlJ+lXJP2mpDsl/VNJP1VKea/jPts0zUft//qEpmlONU3zs/t/v4f2ntl3S3qqpOdcYntE/n9xYi5SUEgsAv5f0zS/0TTNtqSf197/gD6zaZotST8j6RGllJslqWmaX22a5g3NHn5Xew/ij9xv57Mk/UjTNK9qmmZT0jf5BqWUIumfSPqapmne1TTNOUnfKumz5/TplKQHwmsPSEolNpFIXPdomuZlTdO8qGma7aZp3qw9YfeQSLv/PH2LpO+W9Dn7r3+ppG9rmuY1+8/1b5X0/ufhUji1/y+fvfncTSQS1yM+VHvPvGc2TTNrmub/SvrfOniOXiz+XdM00/3/R/5V7f2/8eVA/n9xYi5SUEgsAt6O38eS3tk0zQ7+lvb/R7OU8omllBeVUt5VSnm3pE/Snhor7UW2/gpt8fc7JK1Ketm+tezdkn59//Ua1rXngiDOSDp3voNKJBKJaxX7qWf/e78w4lntiQK3h8v4jP1L7T2Dpb36B9+DZ+27JBXtRc2Owvr+v3z25nM3kUhcj3iwpL9qmmYXr/2ljn9OHoX7m6bZCO09eN7FF4j8/+LEXKSgkLhmUEoZSPoFSf9F0oOaprlZ0v/R3v+oStJ9kh6CjzwUv79Te+LE45qmuXn/56amaU6pjldJegLu/UhJA0l/cTnGkkgkEguOZ0v6c0mPbprmjPZSGEq4hs/Yh0l66/7vfyXpS/GsvblpmlHTNC886oZN09yvvef4E/DyE7T3PE4kEonrCW+V9FDWntHec/Sv93/f0F4gzHiP82jzllLKWmjPz+WLaY/I/y9OzEUKColrCX3tPbz+RtJ2KeUTJX0c3v85SU/bL3KzKtRH2FeAf1B7NRfulKRSyt2llI+fc6+fkvT3Sykfuf9w/mZJz91PlUgkEonrHaclnZW0Xkp5b0lfXrnmX5VSbimlPFTSV0ty3u33S/r6/argKqXcVEr5zPO8749L+rf77b639lLVfvQSxpFIJBKLiBdrj+T/61JKr5TyJO3VFPuZ/ff/RHtFD1f3i4t/cfj82yU9stLuN5VS+qWUj9RezbGfv8T2jPz/4sRcpKCQuGaw/9D6Z9oTDu6X9LmSnof3f03S90r6HUmvl/SH+29N9/99xv7rL9q38P62pGqxmqZpXiXpy7T3AH2H9v7nOhYkSyQSiesV/1J7z9hz2hNja0W6flnSy7T3P6q/KumHJKlpml/UXhHcn9l/1r5S0iee532/UdIbtGfV/V1J39E0za9f9CgSiURiAdE0zUzSp2rv2fhO7R3B+AVN0/z5/iXfpb2ih2+X9GPa+/9R4j9I+rH91DLXSXib9v7/+K3713/ZJbbH/ub/FyfmojRNc9J9SCSuCEopj9Xe/8gO9guDJRKJRCKRSCQS1xX2HQ4/2TTNQ465NJG47EiHQuK6Qinl0/etXrdoL0L2KykmJBKJRCKRSCQSicTlRwoKiesNX6q9Ggtv0N456rW830QikUgkEolEIpFIXCKumKBQSvmEUsprSymvL6V83ZW6TyJBNE3zCfunN9zaNM2nN01z30n3KZE4KeRzOJFIJE4e+SxOXGk0TfOCTHdInBSuSA2FUsqy9o4R+XuS7pX0Ekmf0zTNqy/7zRKJRCJxCPkcTiQSiZNHPosTicT1jivlUPhgSa9vmuaN+1VMf0bSU67QvRKJRCJxGPkcTiQSiZNHPosTicR1jZUr1O7dkv4Kf98r6UPmXby6utrcdtttWlra0ze2t7e1s7MjuyeWl5e1srKilZUVLS8vq5Si6XSq7e1tbW9va3d3t722lKLl5WVJUtM07XullPb9paWlth3Cf+/s7LT3j9cYu7u72tnZ6dzb9/SP77W0tNRpp5TS/vA1j5999z3cH7dVSmnvEz/vz0rS0tJSe93Ozs6h+/nzsd+8B8e4vLzcuQ/Hzj7Nc76UUtq++TqOKbbL8dXG6LbiOsX719Y63q82nnmfjfc53z7zvaPmKu6R2Ed/hvuLa+V5qeGocfGetTaOWtvjcNT36bjP1eAx166Je9jXXEjfMffvbJrmjgvu+Mnjgp7DkrR8aq152COK3jE9reXXT4+6NJFIJK4aJtrQrJle+H9AFgMX9CzO53AikVhUnNP91f8nvlKCQu2h3/k/+VLK0yU9XZLOnDmjr/iKr9BoNNLKyorOnTunv/3bv9V0uvcgPX36tG677bb2Z21tTW95y1t033336e1vf7vOnj0raY9craysaHV1VYPBQOPxuP1ZWVnRcDhsf06dOqWVlZUO2VtZ2ZuO7e1t3X///ZpMJh1ibuzs7Gg6nWpjY0Oz2UxbW1va2tpqhYitrS3t7u5qaWlJg8FAw+FQ/X6/JfTLy8taXV1thQ/3+9SpUy3h3t7e1ubmps6dO6fJZKLNzU3NZrNWWFlZWdH29ra2trYkqR2fPz+bzbS9vd2OSZI2Nja0ubnZ3m80Gkk6EEf8GRO/wWCgpmk0mUw0nU41nU510003aTAYdMQfiiez2ayz6BZ8PB+9Xq/t92w2U9M06vV66vf7LTne3t7WbDbrCAYrKyvq9/taXV3VysqKJpOJJpOJ1tfX27Y91qWlpXYtPN/7e67t13A47Kz3bDZrx7+zs9MRg9x2TYTy3onrv7Oz047L+3pra0vT6VRbW1vt/HmMXjeLAf4s++h95n5KUr/f12Aw0GAw6IxlPB63axPBsRErKysaDAbq9XpaXl7u7GW343WJwot/LHxROOH3piamsQ2KGO6n96fXsyYWcK94DywvL3fWzN8Li3S1+/valZWVtv3pdPqXhybx2sCxz2Gp+ywe9m7S3Y/+N3rku7e09IaXX+n+JRKJxHnhxc3zT7oLl4IL+n/ifA4nEolFxW83/6v6/8RXSlC4V9JD8fdDJL2VFzRN8xxJz5Gku+66q5nNZi3BYRTcRGJnZ6fjXOj3+1peXm7JBiO50h4h6PV6ms1mLTFYXl5Wr9dryUItAlxK6ZBtk0PCRKfX61XdCb1er+NeICGiM4DRdf9tUuaxSmrv5TlxRNrj9313d3c7IoVdCb6+3++3JN4EjILD8vJy1TVAh4VFHs8jx14TX0z+o1vEhNafIanma7X2eQ+6LCwseE49nqOi4h6DhRmSYd7Pv3t+CRJfjiu6KNjvSI4pMJAAWzioEfi4t0ygvf/cRi0yX3MxeN+5He8v9vc4RPdG7b7cA3RLUCCIr9cEB7/P9gzOp0UFiwzz3Cj8btZEj2sQxz6Hpe6z+Ey5tRn98h9dnd4lEonEjYEL+n/ifA4nEolrDVdKUHiJpEeXUu6R9NeSPlvS5x71AZNOiwkm/UxpYBS91+up1+uplNKSQUdWHeGV9oiQ2zbJdNsGCZyJRL/f71ilTewMEnf32ffY3t5u/3UfTHxINg2/v7W11QoKdj6YQHm8FCEciTc5IinmnHle7WJwlHZnZ6d1aXjsJl+llJaY2hHhdTLoKOCYSKxXVlY6zod5VvxayoDH5zkiweUeie3MS4OI8JwsLy/LglYUpkjaY/oM54F7gv2sCSnLy8va2to6RFxjOov7xNfnRee9dzwvg8GgvQ/X5ygybTHB7oqaYHUcaoJCFN34PZvnWPDnKAZ4rPPuF3+vuSA8/5I6aU10o8xLo7gGccHP4UQikUhcduSzOJFIXNe4IoJC0zTbpZSvkvQbkpYl/XDTNK866jO2489mszYdwBF129vH43Fr8V5eXtba2ppuvvlmPfDAA23kneTHBHppaaklcMvLyzpz5kxLdBl5dU0G6YDc2aoe0wEYnZf2yMpoNGrFC1r9TUj350aSWgJIMWM8HrciAD8TyTPJnYmnxQfayj0mt0FrvK3rTotYWVnpECwLGNJBusFwOGzn0X1k2kgkn3R71JweHAujy5FAkjhvb29rbW2tI3BMJpP27xqJnAfvMfeD7pAoFEVho2alj04R/s21rAkXnmeLO3ao8LMUEWrzOJvNOgTc7Tk9xmOruQbcvtd3d3dXq6urrWjn9imo1FwWnG86ULiGNaFhHuL3hiJHrT3WT3Hf4neCbpIo0DHF4jh3y6LjYp7DiUQikbi8yGdxIpG43nGlHApqmub/SPo/53OtSZAJkXP0TWT329P29rYmk4nuv//+9vper6fBYNCxihtOi+j3+y3Jc/uOyJpgOdJuIrGystIh12tra5pMJh2iF6PP7Lsj+SSOtTQLCw6TyeQQGaNDwVFjtxkj103TaDwetykeJKb+DEUCz1/sG9avdWr4b86Jo+KM+LqfjPCazLkdSZ054xyYyHPeTMz9GQs1FitcK+Mo4kfiSNilMRwO2/szou815ZgMriHH4Pu5/QiKUb5PLEDKtaAI4LQXryEdKXbFcJ9Hq7/74/sScX/GaD9TIOYJEkwvYF88N/FznmOuOdcqiky8n9uyaEKRzfuUzhJ+V2rr6TZrzp9rGRfyHE4kEonElUE+ixOJxPWMKyYoXAhMOO0E2Nra6qQ+MFJrEiUdEJjBYNCpDSAdECQLCibnFgRMOtyOCRBFBRMQE0C/HnPrWcNhHvmKUXhG+X1f5ukzwh1h0sVorIUDk3JG3P371tZWS0rtvKiRN/eXqQueh+igcD9i3YBaagdTJEw8fX+/5uv8PsfmezNVw7Uc5kWT3ffa+GLhRtfd8NxE1NaCYkIUZtj/6DKhEFNzMUS3DefVbVG4iYIaRSf/bRHtqHoI7AvTfOJ30X2LpL82fv/OeeJc8hr+ze8M2/Q18bVaykNsk26To/YM1yCRSCQSiUQikUjUsRCCwtLSkobDYXuSwHQ61XA4bAvMmZRZaGD0cHl5WcPhUJubm20k1z+shO/3p9OpxuOxRqPRoXQECxZOb3BqhYmfaxjw/pHwsmCi0xoMEiQKH7Hg5NLSUnvqAQl/JEB2DbhmhCOr8TMen9MO3D++T+u3SaVrVVDoMOaRUl9bcwR4/LbgW6iJRNNjdw2HWGDQZJ8iQKxxYdRy6aMIQJeK0z8oMsXIeS3STlLM610PgyKJ12aeW4XuBM4jo+gWJzw/cb4plNQKbEayH8fDmhJR3HNaRPw870FBiQ6CWvpP7APFhyiKeH7c/1obNeeDr+N+iikaFEm81+ftq0QikUgkEolEIrEggoJ0cGrAeDxu7f8mTJLatAAWMOTReiTHPubQxGB5ebmT3rC8vKzbb7+9PYbP1n2LCUxXGA6HGgwGLZEyCTH58Osm3yakTrOIUXAKENIBkXQ9BxM4km2KAtGC73u6tgQdFCbanq/JZNI5orHX62k6nR6yj5PcW4TwvNFV4P4dhygcGK7r4Dlk/yjkMJLPIpse+6lTpzpHKnqOvFY83aLmBvBaex29Bn7f8+i1ZBFQ94GRe8L3i332e9LhOgGce86Zx+S1cL+9JjWhg6kb3ld0xpBURxeH9yrrLvg75ft5vl1rgaIJxxndFJ7LWOvBYgX7zzoOFHXOxz1wnBDE1JDoZkgkEolEIpFIJBJHY2EEBRb9kw5HBk0uTGQmk0mbHiGpraNgUsjc81KK1tbWWvfD2bNnD5E3E1sT1qWlJU2n0zalQjpwKOzu7raChYmOibfz+nk0pfvPYyM5LooSfI+59uyXrzGxNBmLhN9kjCTOooir+Evd4nqsdh/TTVjAkWJPPErxKEI2z7ng+0e3BMm9hQ2enkFibWLq9xntt8BDYcBwyozfq9WFoKjh2hOs8zAYDDoFDT3HLAhqx4oJuMUL3kc6TOw5r5xb94kpEXQLsB0KHhQRantyHvh5kn8LPZGYExQZ5qXE+Lr4ee4BunHi/MW5im36WRCFLfaP4p331FEpIolEIpFIJBKJxI2MhRAUTFIc8a1VWOfvjmabgPb7/fZzzMmnKMH3Z7OZHnjggZZE0d5sYi9J0+m0Y/mv5X8bJCkk/LFGAu3g/JxJLi3iJPjRIcG+m+BHYs9UBUalTf6YA28xhsJEzY7P+gfSQdScIoRFHkbB4zyR0EXhxWtHl4DbYTSfaSKGxQCu0+5u9zQKpqj4Xtvb2+3JFybmR5Fd1ljw2OM81173uLhWTo/hHNEF470Q/45gn2v7lCkKFBXmfc/4t/cA27BYxfvNEwTi+sR+URBx/2rjZDpJrWgjx0xXBednnugRP3/UdYlEIpFIJBKJRGKBBAXpgBzXagXw9+l02goKzrk38SdJ9IkHUreo3Hg81ubm5iEbuKROpNrvjUajlvTNZrOWeEZrdiRwzKNnRf5ahNQOADsOKKqY/MX0CZIqR20pWJDUxrSDGHVl2/PEidim++lILtNLGC1nG0xhoROB7fn0DgslkTjSseB2KHL4migAeW5jrY3pdNruGYpCNZu934upIlxv70GLGOyv94L7S4dFjNpzX8WaAUxz4Gu8zmtF0h/nh/Dn5wkMjt67r3Ts1ASHmvBGwYd94jxHQYFiQ024OB/SH0WNecLgUWJIIpFIJBKJRCKR6GJhBAXmetOyTqLv/7l3PrqJm4m//51Opy15c2pCrAswHo9bctTv97W6utpGkieTid797ndrOBxqY2NDs9lMp0+f1vr6eks+eRyexyCpU5dhNBodInccMwm8dHDc3fb2tjY3N9v0As4R58RHVMa2HAmXDoixreZxXn1f991Cjclwv99v26elnyc7xHtF+73h90neSap5AoXXzqksnhu6KiwOWOBhOgjBlAVJ7RGWdLDQGeFrPBZb60lgPQ7P6XA47AgjFpBcNNJjtxPEEX5f72i/r6ETI4oDdJ54fH6fDgoT/ig0+D5OA/GcRmcKCzhKe46duJ5eK//MZrP2uzgv9YX34veHe9Lz47VhakV0MEVHUA2+PgplRE1MSUEhkUgkEolEIpGYj4URFBjJbZqD2gCllJbIWDAwITSxMPFkEUaTrBjtXFlZ0XA4bGsw0IbOyP7u7q7G4/EhocOk27ncJFO1qD8Rjw+kXZ81F5jiYHLpooIkmhZOXMhQ6kaf6ShgPQbpIB0invpg4WZ5eVmj0ah9jfUH2F/OtYm76zNEchcj6hQATExj6gOdBx6fhRY6D3gEpotOMp3Dc8/7WZCgMODrLWJ4TeIxkl4/p9DYUcHCm7wv59/7yH33+/6cr4vpHEZ0JHjfOyWGKRUxdcXzzvWhQBGvpTOAIgHn0fB3IKZe0GXj8Xpf+ZqauyemP7BfHBsdC0wnqoEFJDm/FIMovMwTRRKJRCKRSCQSicSCCArSAREmoTRq0XxGGkl26ARgdDemTbgdEyBHVhkFN0ktpbQnKNh9QELu/tGy7ddMoDwmR2WZW88+kUiRmNZIEvP/d3d329MRPA6nbzjSS8LlfnO+WEtiOp1qNpt1hAqnZXgsJva1yDbXKtZN8FpzHealucTX+Z7FBc+px8J5jvPPeZbUOjDmkVA7O7zm7FeMmrOeRUzv8B71Z1k0lKkdFL9qaQN+nf31PFCQifNk0MXA1BoKBdx7nC+mBtGtwe+ex+v3KEzQWSKpI3zFcVLkOF+CH/dfnAe3W5sjzk8cYyKRSCQSiUQikahjIQQF2pHjkXoxqi3Vi8oxUjqbzTqRylp0k9FqRoyZfuCaCdvb2xoMBq0jgYLCPCJUI7Qmkh4rj8OL44tjr13DKLik1hngz7vvTGFwm4zOss/u92Qy6aRcuE3WH/A8zbOSU7Qh4STpj2tKkluDRR3PKyPeNdGI6QmEjxs1LAhEB0esFxEJOAUFj8EiDGtt0IVjsSGeJkDBJ0bLuT5RUDDZrxFzzm/8ifsrntTAdAh+x2rzTHHMrzNFg4ITXRUskBkRP1f7PtOhwHES3E+xj/yJ8zOvX4lEIpFIJBKJRGIPCyMomMyYcNFizv+5j4SAjgVGRFlVP0ZGfUwgawIwej0YDNr2Njc3NZlMtL6+3rFKO2XC18U6DRYpWN/BFm9G0k3EokgiHQgj/oxJWsyh97W8n6RWEPFceQ5iRJl9Jvl3AUqefBELDDqFxP2kU8P345GFXD+ON7oljoLnZTgctieD8ChHFkn0vzGdRdoTFaKwQEeIxRO3G0WVKKSUUtoCoSsrK5pMJp1reR2FJK8/96HrKlA44v6OLhyPm66cSI5jGkQk69PptOMU4npQYCEJZ595Kgfn/CiRYx7Yvtvk0ZH8POfgKFiM4tGnTqeiyMETYY5Kn0gkEolEIpFIJG50LISgYPJqgtfv9ztRX1bntwhAW73J/WAwaMm722QdBaYTLC8vt4X3aufM93o9DYfDllhaUOBpCf6X7fs1E/TJZNIRDQieMhGJCyPf5zuHLkDJ0wXc3+l02iHOLAboGg2Gj4LkMZpM02BfTZhrBNLjMtll8UYKByRuRxE4OisoFvV6PQ0Gg7Yvse6CdJi8Mu1gZWVFg8Hg0LXcYxR8ann6JL6j0Ui9Xq8VdKbTaWceaxF9uxYobJn0SmpraHiuSimdk022trbaPUahg3u+Nrck5S7kSEGAghzb92fY75o7gCIA1yeKPXEeIyh41RwP/mxNWIguIBZ49TMgft5793y/f4lEIpFIJBKJxI2IhRAUJLXW/FgYzuTWdQBMfIxIlkxWtra2NJ1O29d5rKFJjCO6jqLPs+C7gByJJgmk7ysdkONonafF3++z+r/HSkJ1oXZrky7fh5HWWo47UxpqKQt2irDooufFYBSfoo2vj4SR8Fp7rjj++Dn2333jazHqHlNi/C+JrQtaui+eDwovdnNwL/B+sY+e99XV1UNr7Pmik2Dej0GnAut1sH+e5+hgiIVJ6YKI8xLn2H3kmlDgqAk085wYdGSwrgT7G0WcOBdxXujkiClF8d5xfSyOxfXz3ogOkkQikUgkEolEIlHHQggKkejwf/xjdX6SVRMYCwg8RtGftfhge76FhZr136jlrUcLtgnR7u5uh5TPi14zzUE6IJa8R60fR0VsI+hoYO57tNYTFAFiu03TtJZwCgTuc+wjCZrHTBIaP8tIei36TNeDRYcYIY/jiIIM+xT3Busu0NHB1AATdjszOKf+jO/hebYIEAtCum8UaLivogPB9/ePj0uNVvyYYuC+U5yhs8L3ZbFOj4mf6fV6rSjH7yb3VE0IcSoP3UUeN/eh24kiRE044Fjdj5qIwXSPKDawbf8d0ybiEaEpKCQSiUQikUgkEvOxEIKC/8ffFnT+RMtxJBTSHlE5e/asmqbRcDjsHHNIK7gFhX6/r9XV1ZbQmyjzaEYTshglZV45yQwJkt0PsRCgx+l7+LhLkkeSTeN8I6W21LPiv+fQAgYdIHQzxHn1e03TdAr++TQMj9HzzKM3iUj6ohOCaRlMrfB442kQS0tL7ZxRaIhwnQX305+J8xmj/dHF4nUh8SdRpijCPec+sz06H3zvGLX3+rNmANNTWIjT7gfpcESeAoHb7PV6HUElzoX75D3D4zlrjgEelxq/p9FpEgl6FMsoxtTSKuhIIPg5vkZBK94/ColOHfE9KMqloJBIJBKJRCKRSMzHQggK0oHF2kSWYgAJ3vLycvu6yQ/TCba2tjSZTDrpDoat7ru7uy3hJNFgDYDNzc3zqmFgosecax4hGG38jPSS2K2srGg2mx1Ke2CbkjoR8RrcJu9TE2VsoWf6yHA41GQyqYoaJNb+231gAcp+v98WteTRiBRN4rqYbPO4y5hSMo/c0SlikSbWijDiPvJrvM7CQxwnXSSrq6saj8eH3mck3vvLogHrZLiteMoE18sCEE/RsKPAx3qurKx09h5dErwP58399FzEOg4U8nx/f1+2trYOpRfwXvwe+n2TetYK4Z6Ool3sd3SdUEDy8yI6fbhfLIDF7w1rcVgAivOWSCQSiUQikUgkjsbCCAqM+jp1gaCN2hFFw6cu7O7uanNzsy2Ex3xqkwWTpRgJlbqV5Vk7oJZ2EMkHI+9s2+JIJEwm1ixqWLOym3yxoCHdExGMstKJEOe6JkgsLe0deRjb9jhcwI6pBExJ2Nraquaucx18pKLn0OvKe7m96GaokbzoGKFYFMUIzm8cP9MWamkrJsR2wDD9wAKSxzqdTttinFwTzqWdCyyASRcAU0womrjvTdO0821YkGGKTY00MzWhNrf+DB0DnEf2kfukllZQEwtqogQdA9xDNVdJfM/7i2lMfp2uEu4Jii/RKcE9lcJCIpFIJBKJRCIxH8ef0TcHpZSHllJ+p5TymlLKq0opX73/+q2llN8qpbxu/99bjmuLtuXhcKh+vz/XPm9i4NQFE9TZbKbNzU2dO3dOGxsbbbRfOiDhJFsm6a7Ez5+tra1WUCDRY9Rf0iHyz9oMJjz+uyYWOMJqRwGJlwlnnKPYh2hDZ/SXbfv3SKwJOgWild5pA3zPn5EOovI8XtLzEUlsTDfw3xQoYgTcqPWb9Qekbj0GXlMbd004qZHrOCYerUjhieIK91NMDaBTIpLWmK4Qx0MizbQgCxU1twDXP46rRt6j+yB+f+I8cgy1CH9NVKh9L+lY8PedbdQcMnQ78Hvoz3KNeG/en2O41lIdLuezOJFIJBIXjnwOJxKJGxkXLShI2pb0L5qmeaykD5X0laWU95H0dZKe3zTNoyU9f//vI7G7u9umKJi42jbv9yMcLT516pRGo1FLaKfTaTUib8SIqgkgj/ZjZJNkZV5dB98jnhBA8mZib+s6ayn4/pIOiSU10tQ03aP36GCozS2JrvsxT1Do9Xrq9/saDocd8ux+M21g3v04HyRu7gPJcexHJJRx3BEknuwTr2fOfDz1ghFyz4E/75NCoiDgefL+9L6hKOU13dzc1Pr6usbj8aE0HKYsRKEi9mEymbTzGufL946pDNFFwLWr1V6gUOExeW7ttDkqRYHz77Yiuee1UbziehLHuQS4x3myCAUDpkfFE1849poYcg3gsj2LE4lEInFRyOdwIpG4YXHRKQ9N09wn6b7938+VUl4j6W5JT5H0pP3LfkzSCyQ946i2dnd39cADD3SOD4xF7GrF3fy3yZ2Jn68/HyJi0hRzs6PwULOXm6i6foBTNZibzigzCV2/329rBezu7moymbQpBYyixuMoSTiZF+77RNC+7/GS7Mf5cJ4+UzBI2H0cIvvDwom+B0938JoyxYGfZ+TcJDvWOTAprIEOF6ZsUNzwPU2W3V8Xz6wJEhZgvPb8PIUR9833mEwmh0gy64H0+/12/i3UWDygmBBTC1hPhNd5jqIQxvoYXF+vrYWPaPt3XyaTSZtGwcKUcX9RjIkOAs6r2625j6JDIjosuM/j/dlv9qEG98l7i2JfdHh4Xhcdl/NZnEgkEokLRz6HE4nEjYzLUkOhlPIISU+U9GJJD9p/sKppmvtKKXce9/mmadoidzx5IRJDE7CVlZU22mvSsbKyoq2trU7+c4xQx2g07y8dFG00OXU7PInAYFpD0+wVf3MfSQBpNTchjFZufy7Maed0gJqg4mirxZCj0hhMmpjv7/biaQORbMf2SNpi/QP3r+aY8NzGo0BZK8DuDN6L7Xp9a5Z6igquIRFJuf91H+IJDhSZuIYUWKKLwjBhdh8ZIbdzhuPkvLEvHm/N/m9yz377h06MuMdi6gn7Fl/zfLoIo/cQUzZqrp94j/h+TGWxKDfPXcMxxH+537jvOVcWeKJTyGIX9xbX2+OIbV8LuNRncSKRSCQuDfkcTiQSNxouWVAopZyS9AuS/nnTNGfP1y5cSnm6pKdL0traWkteNjY2VErpFEVkhNJkKhKu/Tbb9qO13H+bcMVIJsmtiSlfj6cTMJppomISTlJNmzj7fFQOOvvPowz9t9sxGTKRnBfBdduOzEeBxnb26AKI9niKNXHeeB+3wdMmOC7WWeB6xDbnzQsJO9NSajUzGO3m6RV0kNDdEQUgOhSkw4UGa3vOAoIFIboBvO+czsIofkw94P38O90pfL0mCFGciH3n/NXm3e1ZmIliQw10gcS++fea84DrVBPW+HtMTZiXojCvzzx5ojbXXMd4/0XH5XgWD7V65TqYSCQS1znyOZxIJG5EXJKgUErpae/B+VNN0zx3/+W3l1Lu2ldi75L0jtpnm6Z5jqTnSNIdd9zROFL5wAMPtP9D74J2PsrPTgGTAZMDkzWnP0gHNQccuZUOyOP+/eNY2t957KO0R7QiOY4FB0nw3T8SvRiFdiSb0WXe344Hk65er9dJm2A0NfafcLu07PM9p4tYxOEcSQfHKLovjNAbsXaE22K03GD03+Sd9QNi0UL/HutpkBC7zoAJqdMevAYUDVwsMaaB1BwlR9XM8DijW8J9mM1mhwQnChTb29ttnZBIjt3uvPsSJOzx9BK6OTwP3otMO6iJI77eaRN2Exw3FxQJOB/8PtBFQDEouhsonLGfEXEcnJfaPHK8tfoN/E5dK4LC5XoWnym3XjvVKBOJRGKBkM/hRCJxo+KiBYWy93/aPyTpNU3TfCfeep6kp0p65v6/v3webanX63VOV5AOyKeFhdFopMFg0LGz+wg/H+NnsiQdWJylAzs2bdcxok7ya1JPESCSGxNaEx+LGr6f2yFJ9n08boOpCJJaIkc7OVMfPD9HpTvEkyJqwkCv1+sQLBM7klvWW5jNZlWHhT8/j5wS8ahAj53Wd1rtWSuC96LDwmvN+fJ1THPwXuIcMAWBAoP3I+9Zi5h7jug+8dpwvbj/lpeXNZ1OOy4Qvl8j/e4L54KuC0ntCSlOUYgkm4JRtPyT+EtdRwvdD5H4c70sOsTipuxr3Aecv1qKSxRI5u296G6QDpwcvg8FBrbJ73N0My06LuezOJFIJBIXjnwOJxKJGxmX4lD4CEmfL+nPSil/sv/aN2jvoflzpZQvlvQWSZ95XEPRWTCbzTp2fhNdVp6XugQpRrZ5zWw2a/PyaQX3+9JhQs7Uh93d3U4OPG3XTDdwezECGusqRHu7r9vd3T1UgJBkLwoRy8vLncJ6zA2nABGt5SShJmy03/ve0XXgcZksksCRNHJ+aqgRUlbnZ3uMkJt4um3/7R8See8bFoCkS4BiEtMw3L/oTqhFraO4wPofrEtBUlxzAdSi8FHIIdHl/aNIxH3DAp5009AVY4JNkSFeF8WymlOApJ1zwuuj+4Wfi44Xk31eF9OUjhKvav3xetQcEtc4LtuzOJFIJBIXhXwOJxKJGxaXcsrD70ua5wd+8oW0NS9CSUs5Ldgxul2z4TPCubOz0woWkajsj6VDdvw7i7ox4hyt2CZv0bbN/lNwIOl2Ff3YF6dYkGQT0X4eT2/gUYS1KCvnLtaLcD8i0aN4E+ebpD0SvygsxDmah5rrIxLWOFY6SWKqC9e5lq4SBSqOkaJM7HeM8HN94hxGESDOh+G27DJhPY6aOOF2/D7FJM4VwaKIFCviGGv9q73HvUTnA/tXayu2G2sfRGGAczfv9dq8c3w1V9K1isv5LE4kEonEhSOfw4lE4kbGZTnl4XLAdmnn9Ufrs3T4KD0Tv2ivdpV/Ekm2U6sqH23ZdELs7OxoMplIOqhJwMKCpRwUkTRZYdE8fyZGrofDYec9RlDdPgUCqVtTwVZ9k0gXtvQ9GaH256LQ4mg+P8OaAiankYDVRBm7JQzWb4jrF+cmigVuk+IL59Rg2gPXku1HkhnJJuf7KJEqigv84T6LdT5IiucJKL5/FNLclteFaQJMl6gRfDpjKChQiPHpKBQj6A6qEXSKZHS7RFcM5yz+bnA+YspF7X0KihZx5iGKEdzLUUA86vOJRCKRSCQSiUSijoUQFGIUlUUYTVpK2TuJYGNjo0OuTAb6/X77mo+gZP0ER875uu/tQn2xP7GAIWsWTCYT9ft99fv9qjU95mGzsCDJucnwysqKJpNJp2gh3RSuXUBS50KNzNUnwXbBRRaAJFxToNfrHbLxcxxN03ROg3AfSeackjKZTDrugBriSRpMRzGhjKJFzP3n6ySNFoNYW8F76ChyyPmJJNxCC0Usk/Fer9eSckf6a3UXWNfD685rYj2BWGiw1+tpOBxqNpu15N17z+sRBTe6LizU8Vqmy3hto9PiKAeJQRcNv0ccLwUIzktMFYoiEq8tpajf73f6zbaPcnxwndle7bqaIyKRSCQSiUQikUgcxkIIClJXVGBkdmVlpa3gb7LGaK6jorbGm1TVSJkRBYl4goMj/7EYoAmIyZcr+ZusxXoO/L021uPgdmnTJvGlG8HjZbTen2V6hskwC+hR7IggKeVrvn8kgoz0N03T9sEOC6+TCTRPxGB9iZg/7795KoSk9vhFz4GLHXqdYk0HzhHnZB6xjG6AWtHKWASU5J571J+3OMSxk2zX7PzR4eC5ppBEQYHfBa4b00B4LdN7oqOhBrppouvD4/deo3jkfjHthOtZWwvud+5v99djZ4oI9yTnLj4T+B7Hzjm4DmosJBKJRCKRSCQSVwQLIShEAhZt37FwHG3ysUaB1C3wV6shEO3xsVgcj6c8X0u1SXMsGkmYZM0TFGJ/TURr5NDjiOOPkV2LBjEtwA4Hp5eQEMbK+Bwv+0ghIFrbmS7BlAX3i5+lAOO+xXn2v3ZIRKIeo84WNqL7gqSaxJRzFhHnl7UtYq2DOCamLpg4x9Ms/D7TSaLrokbYoyBw3EkMcd7ZBzowap9xX+aJB94bFBMoEMW5pXOnNu/zBB6uB9OcuLY1txD7X9vT7EPcy4lEIpFIJBKJRKKOhRAUpMPHJPp3kx8eJ0k3AIvJMfrJNAMT4EjeeB/WRFhZWdFgMGgLOW5vb3ecApKqRMnRWEbUSY4pNkSC73Z4vUmq+2+SHiPuBAmVx+Z26EJYWlrSaDRq52I2m7V9jlX2IyEngTdZqxX1i6TV1nsew0lXA+eL13jt/Lsj88vLy+r3+1XC7TSP6NyoOTFqpDEKW0yhYPSacxP7zD24srLSpuVsb2+3/aPDha4Z92ne7xxvTcyq1YBwn5mW4f3CEyrYNlM+pIOjSpnSE3+iMFETp2rzPi/NIO5x7j+O1+Ohg8ZCiUFxIX6XakhBIZFIJBKJRCKRmI+FEBRixNWEx4TMpJOvmYwyzcCkbjKZdKL7TlHgsYEmeE3TaDqdSlJHsBiNRhoMBpL2SJSLMvqaSNJ7vV4nnWA6nXYIC8dayl59g8FgcKieAiP6vo//dW0JEyyS1VjUT5LG43H7GY/XbgVH192Hpmm0ubnZEk33sWb3joIF3SMei3QgTPT7/XYNGEmeFxGOboAavEecs89IvQWnnZ0dra+va3d3V4PB4JBAcxSYBuJaFCSwPFIzHgVac7VQZKIQ4/H2er12f1tAkw4IMqP+FGx4X7oUmFJANwD74fVgag3vxcg/54PCxHHzGGs5RMGhlIP0F57UQUGDwh6Ln9bSEdzvKKxx3v2sYNoPr+F6paCQSCQSiUQikUjMx0IICtIBUacd2+TXRML1E7a2tjoR2RohoNU5EtcoBtihwGjtaDTSaDSStFeAcWNjo5OPzTZqRQ0jeYtgpDye6MDouPtk4sVxcmzMoSep3N3dO/Wi1+vp1KlTLVmzEDEcDjvHEXKM7lN0XUTL+Lzorq/lCRUkeYzy041iAulx8Xc7ElyLwIUJOa8u8jibzbS1tdWKO/1+v7Pu7DdPD/DrLJgZnQjcUyxs6DmLYpL3cnTU8DNMiZjNZoeuiSkQkVDHqH1001D8Ibn3HPM0j6NQEwXo1qhdS7FiHuL+ohMkOjM4tloaA1+jgMB0iOPEAs5lIpFIJBKJRCKROIyFERQi+TYJoH3cRKtpmtZdULOBsy0Si0gKWRTP7gUTSBM8SS3BdT9YrNE/MXfc9yGBiXZ7EldGaNkm+8w8exIdEka+5jmzu4GnBERLP8lWtK5Hosi/SUhrYLsxRYD3rxFNWvrnjZXE2O/3er2O08VrEgtB8h48tpPj5Fp4Pbx//DnPswUhR74j0a0R8GjP9+s1ws+oOvf8USJATE/hmGvknP2tuWu4drF97lmuaXQg8XO8Zy0FIvYn7v2Io96PAkUUHmrpJIlEIpFIJBKJRGI+FkZQiDnXjIA6suvUA+an+7MkYX4t5qO7rUiiB4NBW0dA6trZSYgpFkhdUkyrOiOyJESM1DP1wZ9lIUhHquOJFkz3iNF+OjDinPpeo9GoUy+BbfvePKmB0d0ayYoiTSS8tMpHcYKfJWkmsfM61z5HEYfr5TnlUaFMy4gnZ3hteFII2+O9PL/ek2yfe8qixrw5475im1Fo8L0pPsUjKN0vChYWqOallvDznG/uW/aDezbuO/8b17MmerCuRBRr4hzFflNQiC4Mjim2F9vxPeMJEPx8re1EIpFIJBKJRCLRxUIICvF/4ikElHJgwzd5mk6nnZMLTJaPa5+Eb2tr61B01WTdhMPE2/eS1AoPq6urh0ih0zIcBadAsLu7q8lk0hmfUzfcD6dPxKKIHjePgfR8DQaD9j62+Etq3Qx0TQwGAw0Gg3Z8TJOIpL1pmjbFhP2LIIl0zYV4DCcdCv6XtSgiobMoYziFgQKD94SdAW7XokVMayG5dpFNkm0WhozzXoui2zHCYzB5OgZFDbps5u1PtxmLZ8a5pkvBeyjOV/xMdIDU7P926JBk8/0oBFDkiG1R0IjuiUjS6e45HwJfuy46WfwdjO4Ov0+3BI/epCMqkUgkEolEIpFIHI+FEBSk+hGLfI3V5xl5lg4i/ybPtbaMGHk1gbDzweRwPB53SBJFDX7O702n0zadwJ9zzr6JCosT0klBwk7iO+8kiEj86XbgdcPhsK07IOkQ0a9Z612jYDKZaDqdtkKGT76IVndJbb6/00h8LzoIolOjlibhscSTBphmYvDzkQCSeJPcMjLtfloUcK2IWPTwqHWwq2MwGLRFO2N0vFZbgIQ+Oi8oAMQ58jicjuN0FoswFxtRj8KH+1K7jgQ9IopO84i5v2fRjRHrdxh0N0Rhx6JF3C+xr96LdIHE9uP3at44E4lEIpFIJBKJxB4WQlCYZ8WOFm7/Lh2QC/84uupIqyPQrCVAgkHbOAvV8X6RtJIgUUyQ1N63Zo13H01aSymtk8CoEWTOi4UUR6ZjWoDJZnQGxCP/SL4YmTYhpYuDr0vqpGNEUYZr4/uyvgAt8LFeQ+yTX4857TXCN49ERyu+SThTHaI4E50qnNuaJZ7XU6ygU2LePeJYSGpj+kDNku954lxHYn3UvESwTb5WE0N833nvsc/RHcG2+a9REwJiSkZMv6AwFveMr+O+iv2suRkSiUQikUgkEonE8VgIQUHqEgwT0Rg5ZFQ4RvVdsNE2/WjrtqXd5Np1EygmMALKIw6lvSi8o7gk2yaSsdaBiYrbMOlz2gJz+mkvJ2GkXTwWDYyEzP2ig8JzRSs4xQj/7bmrHT1J4s0UjkgWKXhwzTjHBgUJuk7ifEQBh6JLdBH4mkg+vQe8TyzqxL3GiPfKykor+NREDvbT96aAUqvdUXMisP1aqoHniuk2nGeSdu/Jo1ICeH/u9XnX1fruvyMxj6+zb1GE4bhJ/D1Gj/uoPrEvUQSyOybeN65HFHvY9+PmJJFIJBKJRCKRSCyIoGDLtkFiFCOntvX7f/5NAJlT76MlHRn3a8zvdo57JO5uO9rA6XBgIT6nOjjSb8LNYosxlaFGxmrj9vu2tdPKzai4x2fbfWzX2Nra0ubmpqQDYcXHKsYCkCyaR9FB0qGaBUasN+DxUgxxCoXvwXlzH0zqnCJCgcbjpdhE0hcLNPo0EM4Z3SauNeHPMUUkEvjoGPH1g8Ggs+dqxTvj7643Ed047pPnJNZ+oDhD4WF5eblTO0BSm7LCOh7cY7WUCn9H6OBhv/1ZjtHfwejM4N81kcPf+ViroeYa4Pzx/djX6JapiT/+m98h9i+Ke+dzlGYikUgkEolEInEjYiEEBUkda72JBaOMkVyQWPf7/ZacMPWBufEkG7PZTNPptGPhr+X0817SgVWf0W5He5l7z1MAeOqDiafbktSSRgsfPOIwFnbk6QwmsizKF1MLJHXElMlk0ooOrGPgNtgvE7AaIWQBQ4+X5JjEPbpL3H5MB2FxQ7fRNE1bqDIe/UgBIM49xYZYGJAODpJjEufoIIh1Odhf7wE6H7a2tjpzRpLtPtPpEkUtkmT2hySdaRtu032ZV4uA3ycLCiTedDdwDdgnOgtin5lW4n5QhIuEn6/F/cH1qpF+gjVU/HftWq5BnFfOVS1FI5FIJBKJRCKRSBzGwggKtWKK/J99kxmTXOmwrT2SQP9EezdJCwlZJDMk/ZEQ9vv9Q0cDxr5QbCBZM/li9Nhz4Ci3xQWTKZJ0t2EXBGsk+Dqe8kCHAYUXuwA8j/Pm32CqgG3lkbzxVIiaVZ7vUVzg5+dF92sRda91PPKSDhaLQLWxkND7+kjcpcNHMtp5YsLr32MByjh+tzUvNYLXkoDH/VmrCVAriFjri+etFrWPxJ1rHmsMUHDweCggWFTw94B71e3E2gW1tJZaqgJ/j/NSE1I4hpiWkUgkEolEIpFIJC4OCyMoxIhnjeAzKstj+kgqSBJMpE0kaNVn+ySSJFSs02BRwa/1er2W0JNY08FAZwTJlvtoEsyierTNS2rJMiP//DxFBM+PnRl+323OZrND44s1DzjXfJ2CAwtRRus8nRJs322SQJLc+TqvUS3CPm/f8HPsl3SQdlETFEy6LWZxfqMoFO/pccZxMD1jHpi6EOfZc+h/Sf4j2ebn2W/Oy3FzR3GgJgDVBDyO2X2wG4euH34H/Pl4HzpSJHUcRUcJCnHO4/v8HNcvrk0KColEIpFIJBKJxMVjYQQF5s8zShzJKtMLIkk3iWYRO5NLEviVlRX1er2WlDhKH/PYaQNfXl7WYDDonJpguK6DRY5I1JnCEImgr+eJCHYReE6iA8PjJhHmUYJuw3n1rvEQj9t0W/yd9vF50W2eJrC1tdWeqFFKaY/O9HzFegKx5kLM1XefuQ9YOJPvR8T94jWf50ygcMP5dZ/sOvB6RdLPmhZ0HLg91hiIUf/aiQxRaOGpHFK33gMLkdJdwb3i1+PeZj94bTxBxHNYE1noLuB3kvfnkZasE8G55vGiFP0o2ERciLsgFgRlG56DGmpCTyKRSCQSiUQikejikgWFUsqypJdK+uumaT6llHKrpJ+V9AhJb5b0WU3T3H9cOyYZJo01O7Z0EJllnro/OxgMJHVz+hlFtqvAxMvtsm1GRWO+d7/fV7/f1/LyssbjcRvx9zX9fl+DwUDD4bAt7OeTILa2tjQejw+JBnY3rKysaDgcdgoBSgfEdTabqd/vdwjX5uZmS9g9PhK6ra2tQ66POGeG+0USx1MR6FRwvz02f573rEW1I0ljqodJdrTGO42BdQFc1NH34Okb7I/XczAYdNJFXEyTJ0t4XT1ut0uQfFK48pjZ3lF5/zVBIZL1eYUAOT63xXtyjHTcxPQAfp5tO42HaR9ce46L73s9fN8oXPleUQxgmorvwXvxO0jBh+17rij+UPCp9SOiNvfn4/JYJFyuZ3EikUgkLg75HE4kEjci5lciPH98taTX4O+vk/T8pmkeLen5+38fi3m55EddaxI8nU470eBer9eJTFNUYPoCCVeMnEdhgWSYUXWScAsKg8GgFS5ca4Gklq4Bk2dWymek2v3hv+4Hj8k0sYs1GRjdtiDB95keQCLG+Yp1D2IbdI7EgohuN17HoyqZlkEHQXRJMGodCbJBd0p0F9DxwP5E4ShG5D0G/lCwYOHL6ERgH9iOf+c9vQeioBZJcS0VyHPMH6ZW0MUQTxzhHHHNaz/sbxRBmG5R+z5z/mJf6GqopV8QUQTk3qulk0TENWKb8b7XmKhwWZ7FiUQikbho5HM4kUjccLgkQaGU8hBJnyzpf+Dlp0j6sf3ff0zSpx3XDglnfD0SMoLRfkbj6SRwO/v97aQskBySxJBkRvIY+8d/e71ee2+7IUzk3R86AUhCmbJBosZ7xetdc8EnZMSUD8+piaqFDrscWPwxRnYlHSKNJL4mfpEoO3JN0sq5pBBEUcHiCEUQRrTjHHg9o+gSXzPR9Nr7SMa4r44i0LHvcV/W5jH+xH3of9kvrl/NbXEUoqAQ/54nmsybB6buRFEptlETX9xuFO44H7xHFCviHEW3EtutiVpHzVnsT63d802pWBRcrmdxIpFIJC4O+RxOJBI3Ki415eG7Jf1rSafx2oOaprlPkpqmua+Ucmftg6WUp0t6uiQNh8M2Ok07s90HkjQajfy5zr+S2ui2yYiLJUYhgKkLJrC7u7stkeNrLmxIUmd3gUlzv9/v5OFbUGCxRYsIs9msY6WfTCbq9Xra3NzU7u6uVldXNRwONRqNWqK3vb3d1mdgNNztM3ed9Q9MxGezWTtHdmU4FcNCjIkmixpijTr1Ikx8/V6N/NuVYSGFpy74c0xV4NhIev06Sal04KrgPvG8eBx8PR4Jydf9HlNF+MMIOvdTzc4/75SSWKSQrhmnqlBEioTbe282mx0aW02AYx/Yz6ZpOrUnKJ4dJar4Gp5eEYk255WwUHcconjAvvAa750otM1LD2E/jhNSCNZPOa7tBcJ363I8i7V6hbuZSCQS1y2+W/kcTiQSNyAuWlAopXyKpHc0TfOyUsqTLvTzTdM8R9JzJOnmm29uaoQ2RncdvWXagsmkyZKj5iYFJCIkTi5qZ2I5GAzU7/dbEjMejzsE0HUQDNdKYJTdIgBPn/Bn+/2+dnd3NZ1ONZ1ONZlMOhFWE1IT8cFgcIjsMO/eZIenQgwGg0M2eUaA49ySBNcK4EV7u+s8WPiJKQiMrtOREdtiNN998TXz7u8+MrUlWvfp/PDnGYlmGgVrAbCuRizIyGMxGQm30FXbtxxTDUy/MGJ6iNfOc2Txh6kmrFcRHQG1iL7FkJjS4TnzulI4isJFjOC7j7HteaBwwj0anSXnm2rAdTzqmtpYCNYiuZacCdLlfRafKbdeUzkeiUQisQjI53AikbiRcSkOhY+Q9KmllE+SNJR0ppTyk5LeXkq5a1+JvUvSO45ryJHz44iESUyv1+scq2hSJB0cE0gyH4mpP1ertE9iQ+IXazUMh8M2hWBpaUmTyURSN6peK+pn4m3yHx0QJNckNktLSx1C7GuYN25CHx0ZbIvE02Qwtkm4f8zvZ9Q2HssYTxqI6+f36B4hUbbDga+Z3NpJwhQVEkoW5/N80/ZPdwX3QiT3vMbCQimlk5IRCWiM0ps0z0Os9WA3SbTis51Yt4EnK8TP1FweJNZxPfw6P0s3SRQMKJjFcdbGQGFrXloDxxG/C0chiifs24WAe/EaExUu27M4kUgkEheFfA4nEokbFhddQ6Fpmq9vmuYhTdM8QtJnS/q/TdP8Y0nPk/TU/cueKumXz6sjsH5HQiF1SUktohyLskU3AglkLOJWs6rzd5NKF1O0U6Hf72s4HGp1dVX9fr8lYG57NptpOp12IskcAx0Xkg6dkMD+1wohciwkmTVXwP6adQpUes793rx1McGqEe+Y/z/PERHXkYik16kjvs79dG0KRtFZfDO6PdxurFnhscSaEzFFwP2t1TegS6RWY6BGtrmnOZcWFGIdCX6W92PNBq5RjcTz3uzPPDcD14ljMEmPglF0L9BRRIHCn42f5709xlq60nGgKMHf409N+CFqYsii43I/ixOJRCJxYcjncCKRuJFxycdGVvBMST9XSvliSW+R9JnHfcCkzWTX9RCkA5LnNABH4Gez2SHiRSHC0WMT1JhXz5MF5tnWCRNTE/abb75Zg8Ggk289mUzaIonSgXvCKQAkOr4niY7HtLW11VrqaVdnioHFCUbyKRg4fYJjcxTcLg/3neTboDPD0emYw8+1M9lmnn4kvZ4Tt+/fLQpYNOA9SGT7/b5WV1c1mUw6JF+SJpNJu66eH/fR9QfcD84ZxQqTcs4TnQTup9/3+rrvFHe4bzwXvl+MzFMIsyDD2hXc4xZMfGRnjSR7veKpFnE/EedLnC0I+HsQxxXrYBgk+lGAobPE4l0UU2rEP6ZM+Pd5YpbhPe2+RCfRcWLLNYQLfhYnEolE4rIin8OJROK6x2URFJqmeYGkF+z//reSnnyxbbEOgf9n3mTcMAE0sRqPxy2RJYEmgTeJsdPAYoJ0QDJN7KbT6aGoN8k2C+31+/02Dz8eg8iie03TdE6jMGH0fXiU5Gw202Qy0e7urkajkUajkYbDYaeWAAl+PDbS/Y6uAqYFkIzzpIyYTmChwGkavt4EmILC0tJSO3d0TTAq7/Vk6gMJne/PVBCCLgHPG0WLwWDQqSvhz89ms7ZtE3Q7RShikHyT9HoNTcZJ3r1fvZ48icJgioRdFtyn8cjHKEC5GGh0ODAq77a8bnRv8D3uObfJdJCYhkJQqOj1em0b0WnA+YkgWef+rTlwuA/mkXsKTxHRQRJTNbgnLqR2w6Licj6LE4lEInHhyOdwIpG40XAlHAqXhBh5jPZoRzD7/b6m02lLwJkjz7akbkV7piWQOJvYmoxG67aJHiPWPJKQUXmLHCaiJizsVyRctHrzhxZ3XjebzQ65OKQDB4B0IMSQhJvwWySI6REx3cJOhpWVFfV6vUMOgFgcsVbMz32W9mpP8CQMjpNpIUS00tci8u6vHSwsVkjCSFLp+8wjqu5zrL1gN81RRJYpHNGR4HWivb4WDSeZ5hz6PQplFLmiuMA6EDVQZOE8zbueLoP4OgUXi3e11IUo9Pk1jjfO2TxQ6InCBv/1OO1KcB+Z8jLPYZFIJBKJRCKRSCQOYyEEhZizTPJD0hJTBkwQSO583bz7xBoDJEGsq0DhgGkSbscuApMrkxOmLLCYINthZDRGsmPqAWsA0Elh271FA9aSoDvBQgAJvOfVR2XWagiYnPrzbiOStGgN9z1IGCly+DW36zHSoREJMRHnj32hQMSjHimokOR7fDGKPw8cs8c1z45PkcD3iukJ8+oEcC4pOMU2KeRw/Jw/njgS5yuuH+fW7/G+cWy+Zp4gEvd2nF+OgW3xh06O80HsZ3wuxH5SUIj9SyQSiUQikUgkEkdjYQQF5nj7NZKpmCfNSC9PeHAaAkmRT4WIqQt+nxZ7CwJOMTCBZ1G76XSqc+fOtYR8MBi0TgmmUzDvnakQrtvANhmFZ3qGX3fdABO8SJY9HzUC3+v12j66PyZSHrvTGSaTyaHihRYUHNnl/LPQHkm+3QpMy5D2Ug9cXNHpBh4fySnHFefU18S5kNSKFCTNrr3B19k/1u+oCTwUc9g/9jeSfc99PNnAIHln3QUS2mjF55r1er1D18YTPig80DkSyTqFHx5/avcN+xXFHAo0HHv8TkdXiT/j/RW/a9FRQQdNTYSJc8d5o7OI10bnS3zeJBInibKyIpXF34fN9pZ0jacKJRKJRCKRuHgshKDggoYsnHc+VmdJR0YwmY8fUwdYSJDWeJPY2WxWtaD7tclkogceeEBbW1sajUata8E/JmZu37UZ3AcTOjoG5p1gEIlWPMnAxMwEyfPoQoaj0Uirq6stwTNBN0k3eer1ehoOhy2ZjMdDDodDSdLm5uahav1uIxab9Gtsj7nqPK3Dn+V9jwMFJYoc/ttiCutPUBSItSToPoh7KToPuH6DwaBdZ6d0cGyRELN2hEUwo5Si4XCoUkqnv36P7RG1lBR+hqkIvi8FNY6tRtilwzURat9Rt0HBjGTdfYk1E/w9jSlCUayItQ6isyYiHvEZU0dq88KaCxeyHxOJy4JS9Jl/dq8+cvUNJ92TY/HZz/yXuuPZf3jS3UgkEolEInFCWAhBgf/TbmJpwrG8vKzRaNRJbzD8P/2OMJN0kECZODPyLqlTkI8knznzhkmx+7u1taXNzc1OPQYfEWkngvu2s7PTifCbTJqgcx48LpNMj8NpFCZEJs0UIPweidFgMNBwOGzvtbu7q42NDe3s7Gg8HnfcHayDUBN12J5rVpis11JTKNr41AoXfmSbLHh4lIjEPsVIdyT6JJ8UDdwX1p9wH6TuaQwxSl4r1sh2uO9ifYBYMyKeZELBwJ/lXMYx8zPeOzH1hm4SknT2g4Ta95sHEuxa4Umi1mYUBejAia6DeaIG0zbm9ZmuCV/r70bcp7XxxblNJK4W3vFVH67ycX+rUho95dTv6/bltZPu0rH4qC95iX71ER+mRz4jRYVEIpFIJG5ELISgIKkl5dJB1JCRa1rcY0RR6la9jxZrpyMw2uuaACb6tLbXjpGMRISnCFgcMMky6XLENeahs8ieyWEk2eyjxycdRNhZn4FuBhJVn4bhn6WlpY7gEdMFYkV8wteurKxoNBpJUnt0YQ0sFmiitru72woLsZaF7+F/ox09tl2LMvN9WvoZhWf6BdeTKQNsi1F23o+fjYSZQkKtboPHRyEmXs+0ifMlt3Qa1NIGIhmvHbvKccwj3LUikfMQhR/OHQUNXxvvTeGGaRaxcGNtLmIfamPkffnZo1waicSVwPjTPlirn/I2/cHjn7v/yuKLCZL03Xe9VG/7u2d0/0l3JJFIJBKJxIlgIQQF5jsbkdDQ6k+ngHRQN4AnDphssKhhJCAULFw7we0xcmpHACPf0kG9ARdIZOSYRRJns5l6vd6hCLFrKXgsHD+LIVqYWFlZaV0KFg5Go1ErikRrdjyhYWVlRZPJpL2eIk1MByGBY/2BlZUVra2tqd/va2trS5PJpHo6A10KJuqeJ4ouTOPg7/G0CNaMkNSup6+1AEXiGsUAEnta8GN/3Vda8j0vseaCX3f/anvQoHsg7pdYHNJ9q5HreUIL3Rk8xSDWOKAY53mPAgbTM+IYDNZ+iIj9ju9xPqIQSBGB82mhhvUd4vrFeYvFVWtOGIqZsd7C+YgmicQloRQtra7qGf/lx/XJq5OT7s1FYaXsaml1VbubmyfdlRsKZWVFZb/+0ZFomlybRCKRSFwxLISgwMhlPGXBMPlw7r9Jtj8fjy9cWlpqiyRubGxIUktuJXWu6/V6rRWfxDq6IGjhdxvu72w2aws5uh8mvUyLcH8ldYi0pFYkcBsWHNxHixImz655YLFgOp1qPB63hIrFCJ124WJ+u7t7R0+Ox+N2HieTiVZXVzUajdTv97W2ttYSbDo7hsNhx20wmUza/nN8Fg1M4FxbwOP2yQ6z2axTCJBt+Xda0f27++STLmIE/CiQlFuU8Fh3dnbU7/fbfknq1Lcg4aaARGGFe8NtkhQTLExIouv59ZxGBwQJfUyHiHuN5J3kmnUFopuC/Xc/KUiwaKPvwbFF542kNo1H6u5/iiHe597jcW0p2ETRxKJgTZyMzpOac4Gnx6RDIXE1UD7wcfrh536/7lxelbT4RRhr+JGHP1+vf/VU/+KJn6yd+9OrcLXw5n/3wfqdp337sdftSPrSj/pcbb/5LVe+U4lEIpG44bAwgoKJg4kmHQX+2+TTJMKEz1FrpggwOs1q9owGk6TUcrKjFTumYMS0BxMbk1P/XXMjbG9vt8SJ0WHWFLCzwWST/XD9gsFg0I47CjG0tHs++v2+BoNBS+5NtEzk6QAppbQFJz0XrOvgOZDUOhWifdx9Wlraqwmxuroq6UDcMSll1LmWcuIaGTFNw/1kNNptMI0hpsfEfkZiHomwSb/XZjqddtJWDLoOYmpBdE74eo7Dc9U0TYccN03T1vyIpyK4fe9NCg7en7wmuhEoIrB+hkU29p1zRhGA3yP/ywKM88h5THOwcMN5r6UnULyINSWiu4jX8DvO9y9UkEokLgfe8ZUfrsd93qt118qpk+7KJaFXlvXglaw7cjmwfOaM1n/+Ng1Wto+99p/e9SvnvXcGPz7WbOuhx173pj9+iN7zX2U9jERCkv76uY/TXTedPa9r12d93fRp96pBMCiRuFGwUIKCc/ttN/f/7Dv6bneCCSjdBJF4SIet7tFCTRJEASPa5Wl59/tsKxJWkn7fw+6DKFpEwhNPHaD1Pooe7gPrQVhkIZn1nLmAYm38NZiA8jqOqWka9fv9VgwwASY4PhbYnFcbIKaVcMzxBAPOBUWISNIZBecP59H3qlncTZzpYohHg5o8R4Ludu0QOQ4eiwUUf97j4t6jGFQj2BwTayqwHc6122U7dgLEeePc8YffG6Yd1VKaYjssyFqbF7cbxaAoBHBOeA3XPLqD6HLyPdKhkLgSWD5zRu/4rMdJkgaf/A795CNecLIdukzoaVlv/ceP1YN//W3aed0bT7o71wRWHvkIvf1j7uq8tr1a9OL3/R4NyvH/vbgQPPdRv3Ve133DrY/Xb37JR0iSHvTbf32sq2HpCY/V3/ydm9u/b331psoLXyFJOvfZH6rZqfMUmhrp9p/84yRjiRNH8xHvr3c9diQV6ec/4L/qsf3V8/rcA7tjPemL/4WWZ93/d3jQr79F2/f+9ZXoaiKxMFgIQcFE2ikNrhNAcjGdTttjF024SOpiioThdmLVfJIu2u8ZcWYeOl0GkfzH4xCjACHtuSzolODYmKJg+37TNBqPxxqPx9ra2modBXQdMCrd6/W0urra9tkCiZ0DJrQ+jjCS+ShUeF54D/edaRSMintd5pG7lZUVra6utkckMgpPwsp6AqyX4fx5Wt0NChGMqPv3aPP39ecjrHDcdJ7QBeC+1qLltbaOw7z9HMG9EMUQCgK+1sKHRagozrD/TGugA8SvUdyg2yGKZrGfUXRxG0yHMGoFNLm+kg7Vn4jFJvlZ7tN5At28zycSl4oyGGj7fe/RS7/52SfdlcuO1aW+/uTrn6UPGn+5bktB4Ugs33KLJOltf+8uvewba3vh8ooJF4JvfdCf6lu/+U8lSR/UfLnufO65I69/w2ferNd+0cEY7vm1L9FjX7M3vq/8pp/X553+2/O677TZ0qe/8HOlt71Tzfa2ds8dfd9E4nJhaThU2S82Lkl//k+W9caP854+PzFBkm5aGunl//ZZh17/sM0v0y2/tik1u9p59wOX2t1EYiGxEIKCdECye71eWwfAJxFsb2+3YoLz3VmUz5933QGS0OXlZQ1C0SJa4Rldp+NB6p7GwMKO82zS0+m0Y2+3aOD+b21ttYIEj/VzW6yHsLOzo83NTW1ubmp5eVmz2ewQqXc6hI9ytANhfX1dm5ubmk6n7ectVHhcS0t7R0AyGr6ysqLhcNjWUCC5M8GKBM9wfxzlNZiWsrq6qptuuqkluS5YSWeD9wAFBaa51MBTLrgn/HnPr8chHdREYOqFr2N0O6aWeI/F/cd5sPBRA0UT7iMS8pjSQUTyH4m0RZ44h5I6YhlFNvc7ih8U+ihCWaiJBT8prMS0Ds8rC3zamcQ2KPRJOq/vHYuMev/ZzcSCqV4bfy/9feLpJv5uJhJXAm/6tx+glz3tuyQNj702cX1iaTjUt/7xr+ue3q56+g1J/ZPu0lz83jd9j7a+6ejn4bD8piiA/MUn/IA2P37vuXvT0mjOpw5jUHr6ud/6Ce2o0ee/4dM1/egUFBJXB6/7lvfXy/7Rd7V/r5a+pPML6pwPnv/t36utb9/Ry6dr+rZHP1Hazf/HSFx/WBhBwXnhJr4mdTx+sZbn7v/57/V6LfGvEaOYuy4dELCaoFCLIrt9ug1YyI9pGBYITMJNinyEYzwFIOa7M3+epy94nkiAmMbgUxximsjOzo4mk4lWVlZaEm/BxuAxk8PhsBO95/GXJKaMMvt3H1HpOXPKxfLycutQ8Fy6L/1+X9PptE3xYHtN07SiQm1dfR2L/fEaE+KYIsEim54Xr5PXLxbiPOpkg3kwwbfLZGlpqXXi0AHDOZ0nKMR6A9437rf3nt/3ug4Gg2oKC4UMg+ky7j+FouhcsZhTczxwjzDlI7qE6N6pzUFsjz8UFPjjNlgok3Uw6LRgTRGuRdM0bdHRROJS8KaffoL+7RN/XqeWUky4obC0rPGvPUwPPrUXmVwpu3psf0mDch6nM5wwVpcuXOzolWXdVM5fSCD83fi2h/+i/uMffLIk6b5nPkrDX/mji2ovkTgO9/7C4/St7/fTFyR+XSj8PfqgwaZu+X836d1f/WA1L33lFbtfInESWAhBgRF9WrFNXEzwpG4VdjoNSHwpBkSruu9Hom6XQrSPR1GBueCMYpqUMC0jpg7wBAATVJNc5prXTphgNX3a9fk3yaNJkUUD99Ek1q+7fYojdnT4xArPdywAaCIZxY3d3d1OcUzPh2HRgmsa61pwnpiyEOtc+LM1UYFRbTtBYloF9xtTaXh/p6F4fS5UUHB/WDzT6xuPM+V+c7855yTKsdAo9y2dCr7Ggpv3AtuMThTu7ZjeQ1GPDgMLZPyOuV8UvbivTeTdJ4oM/E5zvqOwQEEoumMktc4Jzht/vO52+xgUWB54IC2KiUvHP3m/39cXnHnnSXfjiuNdf3em0bs+RKvPffFJd+XEsfLQh+jef/gw/epjv10P6RRPPLmUhmsBj+uP9DP3/F9J0iP/wT26u/ch0i88/4R7lbiesHzLLXrr5z9Wz3ni9+kjhlenGPOppaF+5p7/q/f8vC/Tw2/+QPV++2VX5b6JxNXAQggKhm34jqZK6pDeaA03mNNeOwGAxMV5+yzKZmJH8uajA0ls/XmLFvyspE5RSfY1FnkjKWJf/flYdI6fYYTZ43b02+9LezUbJpOJZrNZS/Yc/We9CFrF7U6woGDSVUrpuAmYDmAyRleFTyIopWhzc7OTshCj0jzO0u4LHwtqIYGCQoyaU2Bh+ghTWZxyQXJMksxCi14HH7nZ7/d1+vTpjtNjnnugtp/dV6ezcK2jdZ9rPZvNWseG8/1JuN1WTOWgsGAXga/xcZ90MrBP3KPeG/7x+lDwYsTfYgHFr3iMpveo94PFpThf/s7U0kbcr+jMofPA8+T0KIpvrAfhduLpGVHkSCQS5483ftwP6e899O9Lzz3pnpwclh90p8rSkt71dx+iV/yrZ0m6tk/xOEm88eN+SJ96zyeoPG+h/nc1cQ1jaW1Nsyfcoz/5umfpJI7qfcM/+n495j2eqkf92Z3aefs7rvr9E4krgYV4Qpvcu7DgTTfd1In4SwdHQjJqacIgdQsgTiaTNirttIPBYNASFRJNVup3G5EA1+DcfkbCY1pGdBu4xgEj84wIswieCY8JVL/f16lTp9o2OHez2Uzj8ViSWhLKwpAmTibMFhQ8547wjkajNiI/HA61urrakn5+NgoKJLW7u7ttWkPT7J0CYct4LMrn10gMmZZgVwXnZjKZaHV1te2n3Q4GBRfXrpC6VnqmndTg8Y9GI62urrZuDa8v6z7QaeJ+R+GELg6P2/OztHS43gL3EMUDkuAajtqvjMjbocB78WQRgs4hz4O/l3ajeL9aaIu1G0jYmaphAZF7IfarNg6LGxb8/GxwrRQKYUtLS+33mW4M98NrYyGT380UExKJxAWjFP3zP/gdffRoU0ta0uXMxb5R8bxH/7o+6LHpFEtcHrzxGx6vV37h9+kkv5uv+agf0W/9wUjf9ajHnlgfEonLiYUQFBwdNulYXV3tFHhj7jft0LaoS2pTGpg+4GsN5mVHd4Hf98+8onqGiftR0eroSGCE2WIBSadJkUm+dFBwbjgc6syZM230lHUfxuOxtre3tby83KYYxIKBLHIZiwH2+/2WOEey3u/3O8KDT+DwWrEegiP4cZ38O6+zEOI+xSg2xZU4n4wq9/v9jnPA7zkazzV20cmYxuCTMGjFN4mmTZ/Re6ZNsFCj6xkwEk7nTExViGKMr+VYaecn0aWNn/2hoCIdiCwk1f6s60TQieKfmK7gtt1GrFcSnR+lFI3H4/a+dmnwHrWjNFnHhEVD2Y7XsOY6ieKNx+45pePD6+zvHdtMJBKJC0H5wMfpvZ/zWn348JwGJWtlXE4sKQXexKXjvl96rL7jcT+mXjlZoW+5LOnvDh/Qr79sRa/9okdr9xWvOdH+JBKXiksSFEopN0v6H5LeV1Ij6YskvVbSz0p6hKQ3S/qspmnuP64tkzFWfY+F1kgSCFqlo43c17MwXy2dgESbn6v9HW3lfp+khVHrGG2NNveYchAj0raGm0R5LLPZrHUa2K0RxYI4D7XChk5xWF1d1Wg00nA4bPvCHHWTOUmd103ELBZwbCTUdIfYbeAikm7DEWg6RzjPrNvg+zOqHesjxDoVnmdHyXn8qK+pkdLjIuYUByyGWDQyUeec+4fR/Jh+4LFwHv2ZuK50tdRqCfAaFlT0Gnt9o6hGQSGmWXis/Nfjszjmk018b54s4voFnF+KMXZ7+Hq3ayeN240pDF5DOxa8n5g2w+cEHRici/hMWGRczmdxIpG4cEw/6e/oLZ+8pF+/66XKUzxuTORzePHx+Y/6I33q2uZJd0PSXk2F777rpXrkl3ygHv6rf0f9X3/JSXcpkbhoXGoY7nsk/XrTNO8t6QmSXiPp6yQ9v2maR0t6/v7fR2KejZzRe5LUGkH3v/xh5JU1E2hBd7tMV/D7vJeJxzxRIvaLhGSeoBDJoK32zLc38fOPib5J6mQy0Xg8bmsVmMB6fIyik5CSTPm+a2trWltbawUFigWDwUCrq6s6depU62Kw6OMIr19jWkq8r9MQxuOxxuOxNjY2dO7cuU6tBa4bnQNeU5JcjjXm/DNthHPPSD6dEiw4yVSGWAMjrqXnh5+TDop4MiIfizBGkYxpIYye84SIWh+8V/gTXRDceybQdKLEv7nv+DPPXWGBRlKn74z8m+iPRiONRqNDwkgssMg96rQfCl+cG8693ShnzpzR6dOn288xxYfCE+fAbdIpdA3gsjyLE4nEhWPl4Q/VvZ+3rTd++g+cdFcSJ4t8Di8qlpa18shHaHVpdtI9OYQ3/oMf0Js/LR04iWsbF+1QKKWckfRRkr5QkpqmmUmalVKeIulJ+5f9mKQXSHrGUW1RUIhnwJv0kViaqMXceVaGJ2l3PYNoFfdPTA8wiXHf2G6tb/OIZoSJj6R2vO7XqVOndOrUqTZPXdIhsn/mzJk2J3x3d1ebm5tt7YRer6fTp093CHQsXtfv9zUa7R2N4zoKvV5PN910k26++eb287FeBesNrKystK6ISOJNgmNU30U2l5aW2noKLjq4vr6uUopWV1c7Yo+LQE4mk/aYTrsj7NJw9Ntz6sjzYDDoHDfK+fDYLDKRDBuObDsVx+vk9tfW1rSxsdHOiaPoLPLJYzZr+2dtba0jPHiPUkygQ8fXxRNDvNdqAhK/AxTCSNBJqH2d95fH5euZrmEHA9NoWFPBfeJpITw9ZHd3V9PptE03iadncEx+LjCFw/3yXPh6r5vTSywseB3dnr93PH3D+8Pih79ji47L+SxOJBIXji/97ecvTNQzcTLI5/BiY/mRD9PzfvcXtFwynTGRuBK4lJSHR0r6G0k/Ukp5gqSXSfpqSQ9qmuY+SWqa5r5Syp3HNWQrPEkYrfE84k46XDjOIKFyFNZpAMztl+rRY+nAHWELP+9LUujPM60hpjtQVCBZMREymWKklHn7jpL6PebGj8djnTt3riXojpDbHu65Y0SetQMsAjBa7CKM8+z+zFWvpXqYSE6n03b9fF/P1WQyaV0BFgxWVlY0mUzanH7XbbADgydS0JLOtBKPKRL3fr/fnnQRnSpefwpUFCH8ORbY9Lwwwu219TzQts+0jSg+0apP1wIJOV0MntOaMGbBiPufNQU89lJK604wuadY4/Xe3t5ur4kFC1nvweKPx8h0AveH4/Re9lhN7gk6DaJA6NM3PB8UFDiv7g/FmeXl5fb7QsT5ouB0jaQ8XLZncSKROH8sve9760k//TJ9zOhdyjSHGx75HF5wLLKY8LMf/9/1zS/4VG096b6T7koicVG4FEFhRdIHSPqnTdO8uJTyPboAK1cp5emSni7tRddpmTZxIll3OgTJ1DxEG7WkNl97Xv53FA5MlphHzaJ5kWhEQcGfNSgoLC8vH4rIkjCzCF60z89mM21ubrY/LpIoqSXeJlpxTng0o6PJJo0mf47Oclycs+jccIqACR8j+v6sBYgo4HgO+N5sNmvHwtMqPK/Rwl9b8+jQiK4JnqrBdkncWZeBYgnTOXhfrrGLTrLfJr6uleA1iOMhUY8OBbfl+8ZaACTEXiemSrhwZ6/X09raWqc+w8rKSqe2gufMYoIFBa8ThQ+mGXA+KCp4/8VaB/w9zqnvwWKWUeSiW8OiYXQMsY7HPPA7H4XDawCX7Vk81OqV6WHihsGTX/2peuevPkTvob866a5cUUw/+e/oLz9V+rXbXqcUExLK5/DCYudJH6DXfcbhAtCLhA8e9PQFD36hfkj3nHRXEomLwqUICvdKurdpmhfv//2/tPfwfHsp5a59JfYuSdVDVpumeY6k50jS6upqYyLg6HZ0BziSzOJwlTYPRSulg0iliUe0kZvo2fYtHeTa0y3hftTqOdTy9Gm3jxFtftafZxoGSaLft0V8fX29rTtgoSTaz2vH/znXn/PjYowWG3i8pucmkkaKALS5m5CS9FEU8rryFIG4Fq6jYGGC4sA81NZbOjgi0iKF34tCjwUermncf7EIIF0NPAXD6Q1sk3vY4/C/0TnDMfF1FqmMpD26GigKsb6AX2fqi/trws2aBdvb222agtNA/D2kmMA1Z/9KOTjZgbURKDxYgKHTgZ+niMN7xD3oeaytsZ8t/G7FtuI8zquZsaC4bM/iM+XWa2bQ1xr+4G8fpU869Uo9rj866a5cUTzwM3frPf7HC0+6G1cUy49+pP7yH+7qTR//QyfdlcTiIJ/DC4q3fuRQb/yHzzrpbiQS1zUuWlBomuZtpZS/KqW8V9M0r5X0ZEmv3v95qqRn7v/7y+fbptMAHKl2pXxbyP0//LbEn8//8NOubrLgyKwRo5C0+8frTLxM4pmiQfJDkkbCEu9DwkwSY6Jr0mSi7ZMRnApgosljEOkAYKE9j4vFDE+dOtVGoO1W4LxZSLGYE1NTbMGftxbz6gl4/mIBPgsnFBQ4Nq5V7Z7Nfj0OaY9Mc20s6HhO2Rfvtyhy0KpP58jOzo6m02mnBgOJu+9LJ4ekquOC+8HjjGIT9zsdIRZpYjFGChpOafD9LBzFvek9YTeB9wTFErfnFA+mFHmt3UcXTnQb7pcFqK2tLZ06daodJ8fosfh3zw/FEqav1NwjFD24d+hYqYkMFLSuBVHhSjyLE5cf449+uz79W79Wf/GFzz7priQuEZ/1K7+vLzxT5YWJGxT5HE4kEjcyLunYSEn/VNJPlVL6kt4o6WnaOzni50opXyzpLZI+87hG/D/8zEGXDqzKLMhGon4caFfn35GsSd3jCH0t+8c2Y0Q75nK7boDfsyASxQePMf74cy6cyOs2Nja0vr7euhNM/nj6g9StM8F0C9ZpoLWeNRVs0acbw/96rDs7O62gQSLnYosWBXxdrCFg8spUFkeSLSiR0Pn93d1dTSaTtv8WG1g4kXUeStkroug2OO8WFDwuritTXXgvp3UQFBS8Py2G1PapX+NetJDDPWKy7v7FNBMWTOT3gikCvIddFt4LdNDYHcSTVixGMf2GYglJN8k96zKcPn26k/bg7wgdA+6P22JBSRZcpNuFDgXPG10c/h4y3cZ7kY6K2qkVfBZdQ7gsz+LElcPu8x+qn37k90jqn3RXEheJ5ce8p/7BL/+B/uGptyjTHBIV5HM4kUjckLgkQaFpmj+R9EGVt558EW11iDbJ7nQ67Vik19bWWlIZC+C5naNcBr5ftEXzMyajvCZGr/m632NEm+9L6gglMX+fZEY6cGtYUHB7PvWAtnNH2QeDQfu7pPYUBzoUmE5RGwv7wxQS9svE0wUW3ZYFBQshFhRIrHnPmlvEgoJJXSTkbItzQJJrwk2RIt6D47TI4j7VambU1pvEM9bhmOemIPGWDvad54GpFLV+GxY5LFzxXvws00w8H3ZR8D3PH0UB7+d4ZKT74j0QBQU7Nex88d8UPCyQ0FVhAYX3ZtsUgGpj9g+FQb/HlCDvO96brofoCLkWcDmfxYnLi+XbbtVr/91j9FP3/Hd94OD6FROmzZYe+9yv0qP/dP2ku3JFMPmUD9Zb/sGOvvimtynFhEQN+RxOJBI3Ki7VoXDZwEJ4jJ4z6isdWKkltdFGR2QZoZQOF3mr5fYbFBNMfEhKauSb9/DnSMD8vsmJ0xZiP3lvExqTNUeMefKAo+mM5Dovfnl5ub2PpE7KA4/0I+aNy33nNY7yjsdjjcfjlkCaiLtQJB0KHF+s4E+bfKxLEAUFE8NawUT/7bkzIeV44vrTfeH1KqV01ocCFIUGvh+dL/OIKMdGMcTpH953dLTEz3sO2WdJnZNKDDo+WPvAjhWKJSTu/Dz3s49Y9OdcO8ICF7+/dELE7xbdFn7N7Xjs3t9eb6b2cC3j3DpFhu9TOGFKBr+nFKU8F+fjgkokjsUtN+kNn/X9kubXgbkeMGm29d7//i+0c//9J92Vy46l931vveVTm6yZkEgkEolEBQsjKEjdkw5YaT5GsRlplQ4s/dJB8TpWoo+I1mnfe17UPtqwGUFnGzz60RZ2E0N/hm4LEiOmKpi0T6fTDtEkOTQxGgwGWltb09ramk6dOtUKCiZIFhOcD8/xsR8mU3Qk2CVBG/nW1pbW19e1sbGhzc3Nzjr4BAqe9LCzs9Ox2kcnCdeeZJpFAtmWr/Fc+WhKknX3syYieNzuh//l8YZcY/eNeyr23e1Pp1NJakWgWG/D43Ib3uuMrPtzLCTJe3BvMq3BNRE4vl6v147D3wu7E+xQ2Nraakm+PxvTCVZWVjQcDrW2tqbRaNTO1Ww208bGhqbTaetI8fVcb66xdCAeUnCKp5pQRKydWhJRS6fx3PIYVb/vezI1wqk+FFkSiUTiY37mJfq1W99w0t1IJBKJRGIhsTCCAgu2OZpeixI2TaPxeKzpdNoSSJ9NbzLk93gUYiQ2tOCbjMRIOi3/fs2/m0CReHIszNEeDoets6AWeTboZNjc3OyIHfyMx8TIMS3+fs15+C6w5+gu22LBSt7HDonNzc1OZHt3d7d9fWNjozNXrH3gYx8pEFE8YUqFx0hCSOHDBJ51NBhd9ntxXmmbp2ASyavbZN0FpruQZJ8PufVnpINTFji3tO3PQ3Tc1ISxOD8G58E1Jlgjw6c2TKfTVuzw/vecrqysaHV1tU1bGI1GOn36tFZXV9trLLCw7ofHF1067pP3CL8/HiMFp9p4PTaLM74XHSucXwp5btNCn6+PaUxMzTiqH4nE+eBtX/Ph+s6v+oGT7sYVx1f89Yfqzf/4Idp5d5LuRCKRSCRuNCyMoECQkNPKbcv/5uZmSzyYlx3z6w2SAtqaI2qvsTBc7VqTeP8er4vF/wyS9FhQzxbyWloG/zUxXF1dbYkeU0AszlhM6PV6h9ILpIMIMJ0bMYosqY1q86QJ6aC+A10Cs9lMk8lE/X6/dUbQYu9rTUZJjj1Gj4VuEOa/0+0QwbSZeFSlSXZci/jD9fXRhp4v3of9p9uAxJrFK13oMNZ34Ng9ZqY5zEuT8Wd531jHg2kI/onFJWMKCK/nSSBMJen1ep2jUGN7jvp7juhEodNGOjh9gS4BtxP3TkxjMmL6C6+nwEEXxrzvWaY8JC4GyzffpNd8+2OkpUYf8T6v1pNHxwuQ1zreNVvVzmtff9LduOxYvv02vebbHqlvXfvvymKaiUTiSuEfv/lJesVz30cP1vV95G7i+sXCCAqRxPl/9mOBPkfITVIN5t1Lh8m31CUSMVJ/Kf2u/e57UzggGCm3g4JjmFfjgWkZdj+srq5qNBq1R/n5fToTTGJJslwvwH2J5N1WcUaEefrEZDKpCi7MWWeOeiTdtuDTAcDx1si2pI4IU1uPWhFBOgviPtje3m5TZuatLYmn/zXJj+PyexSMKCy5DkFE3Lu19zyPsTgh9z5TK9yeBSULA/1+X5PJpBPpZ+0C99H7k8IUUzl8YkicV/YjOkTiv7UxeVwcs+/D12trxucHvw/RrRKv8VrRJXE+bpLEDY6lZe1+5OPV7O/HzVt7ev0nP1vL5cbYO7+0cUov/cuH6T31rpPuyuXHzWf0pk/+QaWYkEhcuxi+s9F3vuuR+tpb33jSXZmLP/jTx+gx/yXFhMS1i4URFGKRwe3tbU2n09ZWT9Lm1IFobY4WdZJJWtj9GWNlZeVQtNafi7Znih50RcQ6D+4HI6b83YSPR/PxVATfI0bAWVdieXm5dSeMRiP1+/22foLnczQaaTgctgSRwozv5/t7zqW9lIfpdKrxeNzJjXd9An/W/zKtgfNiMh2JfbT/18ghI+2xD7XPMN3DBSrtaqGA5PtbTHCRy1g8MKZdkCy7ZoH3I50ckqqigfvH1IqIWhqGYWcFj2CMIpDbYAqMhYRTp05pbW1Nq6urnUKdFo36/X67l+lq8Xx6j3kOLTxQUOAxpx5D0zTtfnK9BacA1faIRYZYEyHWmvA9WWiRwpD7w9Mc/L5FMdaJoIvH34NE4jgs33arfuGnnq1TS6z8f2OICTvNrv7Df/sCvef3Xqf/I5wpT4nENY87nv2H+u3feoK+9vcWU1DYaXalLNmUuMaxEIICidPu7l7hQkaUTUAcTff/+JtUMdJpQmCC5/QIXk8LfC33nsX6WKAtRn6lA/LGmgaMjPt9uiz82qlTp1pC5nHbFeAf38+fsQXdRDsKEoyMO2ee5NYEzPNjK77FBNdZIPmbTqedOVlfX9d4PG6PjbRbhGIHCa3XNYoJcc5ZMyISeFr+azUZfHzi8vKyhsNhJ8/f9SiiVT6KK27P4kUkuf48o/ROAfE88n2OiyczuO81J0pNUHB7TDGJ/fdnSc59P+8DF+5cXV3tuFXcJxaypKOGooSFJ9fYWF9fbwtx+jvqFBGLW3QDeM95D3ItuPbz9gnXo+Ye4PfFbTLlgqIXRQ+CBUAz7SFxFO7/wg/T9/777wtiwo2BabOlpzzlabrrNa/Q9fgteeu//HD96Fd+t9KdkEgkriSe9FVfrse+4C90/SfHJa5nLISgIHWtyiYdLNrGiDatzy7yZgJpou3P0dJOUs+TA+ZZ62tWdooFvoaR5yg4mHjG6LfrG5D4xn6ZnLltnx4RC+zxOEha1i10sN4A+02nhKRWgLGgYKJMSz3XpRYZZ4FEj9d9quXZx/oIdDh4PUjGa6Q8pnisrq5qaWmpQ2RjTr7rckRCz4g3HQpxn9bs8HEfzBNO5mGe44L7iqIWiyCyX94Hg8Gg42bxv9wjdlp4npnaEWsq+Du0tbWljY0NnT17tj3tw04WphH4++k94TQZ1wjhHvDcRGGJdSGiY4SCoPeI93usC8I5raWy1Nb6uPVK3Jgog4H+4jmP01JvVx/08NfqQ4fX93GQR2H5r9+p7X0X4fWGnZH0gYMUExYB//lvH61XvWNy0t1IXMt4x9/qfb/nK/Sd/+QH9XGrhx3JJ4G/2NrQZzz7X+nhL3qjtq/D43YTNxYWRlCIEXQ6CCLBM3Gl20BShzgx4srUhdh+PC4v3kfqkg73Mfad0eCY326Y6JHkuT06LfhZChkWIXwvW9A93uii8LVMdeA4Yt64RRhHny0okBTaOVGLrkvqiEAWf2g5Z4SZ6+15tKDg97wOFol4RKhJe3RkjEYjSdJ0Oq2SxFjzgWtWEyC4zlzL+B4LGXLPEnRKxFQaihTcUxSl+F7ttAnPhVMaPL6a4MC+erwsCBpTDug8GI/HraDgvTKdTts6HkxNoivBbiO2fVQqA/eG26aDgKkJduN4vLW6F/G7SeExrlGKCYmIlbveQw98xMP18id/t25aGp10d04Mb9pa13+67xPUVI63vR6w+3ffX+NHXJ9ju9bw/e++W9//+/+fem970Ul3JXENY+fsWd39n1+or/2Qz9J/er9f1qetrZ9of14wXtI3vfFzdfczX6jtE+1JInF5sDCCgkFi46PlTCpMgkxsKDow3cCfZ10Fn3dvq7WPlpTUIbEkXCS2vr/B13h8Y3Q1sC6EiWEsRMhceLoYGLE1WbaA0Ov1WkHB19qpsbS01LoX3G5M7SDJ979OYbA7wSSRhRidlsFaApxzFtyT1BFZSPxjBDtGn91Xzy/nkmA9DZ5g4Pfo+vA+cf/9OUa1TajdN68FUyW4vu6vT7Pg0YfcU9zf0+m0I/S4L0zjiPUAohg0DxZcYpHOeMIBU3UI7yOn21icYbqQnQZnz57VAw880O4J19LgOKNYVvtOxxQFrx0LgnofeX0sbk2n03ZPeS/4uxsFQLqgKDTWCqFy/RIJSdLSst7xCffoJd/ybEk3rpiw1ezoW9/28br3Q0/2f8ivJN7/e1+h33qPl590N25Y7DS72t43gP+P//qpeswP/aFefMJ9SlwfuPszXqVn/KfP1yc+7Xs1KIeLcV8NTJstPe13v1yP+aKXnsj9E4krgYURFJxP7UhltP67boLrAbiom4vDMWffpMokhikSJgouyGYiyvoEJlnuEwkHi8xJB3nZttlHMBLNiPFgMOjUMiDRo13e//J4PhPB06dPt84ERmoZobbF3FHhmB5gZ8JsNmujzbG+hEmgRRgKBpI6BM3r4uj6YDDo2NXdX9rsTfRNCk3kPVYTPR4fWkrpFIb0+vvUCxcHtKPCn41wW5Fs+nU6CrwWnmuKRnQ4RAHB+4DkleP1HqbQRAcCo/WcP6YSbG1ttWtqYcPknmlC3rPxu+K/6QAgwfb91tfXdfbsWZ09e1bj8bittbG7u9vWWLBAZ1HKf4/H485xpCT68TtDgY31KjxeOh1qjoJaCgPn0fUeokMhpmwkEsZf/6/31q9/0HdIOnXSXTlRvN8PfZUe+V1/Lun6THVInDy+5K8+Wm9/yp5od/u7/zjr1SUuKx75ra/Qp/zG0/VbP/sjJ3L/J3/1V+m9f+PV12XtmcSNi4UQFBwVNYlYWVnpVOKnC8CkiwTDbdA+bzLLSOhRJMHEymRs3skQtnA7wuxj+GIKQ8zLdt8YkeVpCey34TEPh0MNh8OWsNFVYFLqe/A9WsxZfb+Wi+6oswUFFqWLqRj8vAkfybiFAwpATDWhq4CuDvenVvPAkWeusyPVXpMYYY5pLZ7T6HSIufvxPa99JLrzxk8xiFZ+Ckcmsl57umToWDE8BgpurGVRSumcxuA9yX1Ys/AzncH38CkHrpngPUD3CWtl0K3j+1jkiPus5gKJNUc499xrLFbK/cmxcU5r33U6H9g+Uy84puMcIYnrH6XX15t+8r31nY//OT1k5cYWEx73fV+hR/zaA9rJfN/EZcZWs6Mnfu8/VW9dWnvbjtbenp6ExJXB7uamen/2Rj3xW75C3/MvnqWPugo1dZ/2lo/Un/zE+0mSHvyHb9b2uXNX/qaJxFXEwggKk8mk4wIwaGdnSoM/J6kTWWVOvT9vkCzEmgmO6jsP2xX159UKYPV8piKQcDF9gdFW9tcki7niJqiOuvsejCQ7tYH3YPuSOgUUWUfCn2FKgEWH2vU1MAUg1gJgLQGScOkgLcLvm8zGkzdMElk3wGSRNSEs0nCdSHZJLO0CIMk1kWT6ga+laFATCSh0uL8UouYRWrcT9yRrF8T8/zg+k3GP0zU1eEwoT8ZgH2MEno4FEm4Kd0xBinVNnGJAYcKixLzvH4t8xu8VwbX1mGvpCTG1gt+pmFJEgYnfF7bHdJbEjY2yvKTf+rBn6WE3sJjwpq11fc2b/4Ee8cNv0Pbb3n7S3bliKIOBzj3liXr06Hkn3ZUbCq+ZbeoZf/kZetj/+HPt/O27Tro7iRsAO+9+QHf+9xfqS5/0+Xrsg96m9xid07Puvrg6Hd/6zvfSS9/9sCOvefULHqWH//e943WzZkLiesTCCQqllDY1gBXueVyiSYjJ63C4Jy+abJjom3jHEwkoKDCPnsJAPIfeJJiE2WkFo9FIp06d6hStq5FDHinptIloL2c9AadfmCTylAMLLJ4fR/tdU4GkmkTOZJ058T4C0rnwrLfA4oCSWqeD37Nw4399necn9oEnVywvL2t1dVWTyaQlrZubm+01XnM6MLhnKCgxXcA1IDwe5uCzBoLh+5F8W6iIc2UBhjU7Yl0FpkfEfR5TKmIKyTwBh+TY+9a2/aZp2mMh19bWNBqNOvvM3ymTaa4x9ylFJRJ+F2F0yoPXyykWrHHhebLjxevjscY5kA5Epvid55zFefIeYp0Gr73vRacCP0shpebYoYiSSNzo2Nyd6fve+VEaf/T1KyQYy7ffphd8139Xr9y4J3dcTTywO9Zu0+jb3/bxmn702066O4kbEA/7zD/ThqQ3ftD76v5f/L8X1cYvftfH6NYf+cMjr3m4/uai2k4krhUsjKBAMra9vV098o7W5tXV1Q5BYdSURxTOs7vTNRCdD77WZLYWRV1dXW3z1X1U4fLycluzgI4Jj8uig8UE6SA3nYUOXQvAKRj+iXn2rD3g9z1Pu7sHtQ88TtdL4H2m02lbbNH1DxjRpwOCKRZMayAJ9roxDcD98JhNeO268DyNx2Nt7B9BNhwO23vy5AHWwzDp9Wvb29va3Nxs12Fzc1Oz2awl1CSq0aof3Rzx+MdYV8Jzw/4YjG5z/8V9xP3t+3Le6CTxvWuFQb0fV1dX2/VwH50m4wKNJuBui5F/HwFJQWx7e7sVaCz4uFCnXT1ugzUwvKe8d/ido7jkQqCejwimV3C/+4fPAIsJTvVg+gNTK+hiYqrSzs5Om/bDWiCJxI2MJ/zkV+tR3/JKSWnRTVw+7DS7+uxPeprKW+5Ts5Ux28TJonnZq/R57/eJF/XZ29ZfknU+Ejc8FkJQkA5XzZcOhAHm4UsHxQ1NZExcTBJ8PXPH2b5dDbwPj+cz4TBZMllx1H11dVWnT5/W2tpa5yhHRtCZ6y3tFVXc2trqFOKrjZ9EnWICI+JMm+AYWUvAwgBJL2sjsDieybT/pushpiO4f563aBlnmoCktmif782TB2iRd9FHE1Vpj+CNx+OWiFO84HGhnnemb9h1wXoXTBGJ/Y1pACagnlOSbO61GgmOqQpcE89bREyTYApC3L9+3+kwPtUhuiWGw2HHmeB1cIqEXQ7eq+vr651ipd7H4/G43UvT6bS9PpJ31mGYB85zFGE4L9E9YQGilvIkHRYOo3DEoqQU3tyO95L3jr8PKSgkbmS833d/hR71m+/Wbub7Ji4D3u+7v0LDvzl4bt/++ldoZ3PzBHuUSOyjabTz7gdOuheJxDWLhRAUSHqlg+J1PK0g1j9g9JZtRJLra1lgLoLkwz++N/voqPpoNNLa2ppOnz7dklyTTkZETc78eUfafS/mn5vEmexQTKCgwBMFHGWmmEHBwPcwaOe2iMC8eKY6xCKT/hzvzzoKvEe0j9ua73Y5p+4z01L4ec9ZdGfEug0knRYn4ukOsd4D9xvnLjoJaJdnO7X2Yp0AWu5jvzln/LzbZTsUnDz3TIvxKSh04PhvSe06c5yS2rkaj8cdIu2++ASHeLKF14TfNTst5pFw9yvOE8fDeWC9BH5vY72J2g8FA+4vSW2KFPvhdu3U8Xd3XgpKInE94y3b6/qCP//Hetj//Ett3/vXJ92dxDWG+7bX9Tl//o8PvR73U1a5TyQSiesDlyQolFK+RtKXSGok/Zmkp0lalfSzkh4h6c2SPqtpmiNLQpsYkVybsLhivQmi/yffbgLWBailR5hcDAaD9trxeCzpcKE65nGbxJs0uWaBHQqnTp3S2tpap14BT1SoCQoen0kK0wfoxhgOh1pbW9Pq6mpb06EWVXVqBfPlOQ5GyqXDYoOj1nQR9Pv9dsyuP8F6Baw7UStmZ5GDzgm+Lx2kT7i/rNrPyL/fs4jktTHhp7jAFBMKCh53TCNwf2L9CqY3sO+93sF5xRw72+PJDbF2BPf6PJJKosw54H154onnw7Um/B2i44ZpCBaEYtrBdDptayNQ9PI8uG5GTDmgqML0ATpCuPeZCiOp812gY4X9i0KOP0eXTdxjHjfHTkcLBQVJrdvC4pdPOqmJj4uKy/UsTiTWdyf6ofs/RIOPe3MWD0vMxb3b63Pf+1/n3leDj3vzodev9/2Uz+FEInGj4qIFhVLK3ZL+maT3aZpmXEr5OUmfLel9JD2/aZpnllK+TtLXSXrGce35iEeTDNu1HfUkqVxeXu64AXgCgt83CTaJceE4RoBNbqKF22TNpyucPn26Q44sLPg+Ozs72tzc1Pr6epuHzqPxpAP7vv9eWlrSaDTqkB+TQtdk8BzwtAcSH5MeFhUkwTJ59DwxMm0C53QDnr5AklqL0rrPtUi6//Xc0PkQI9B0A1jE6ff7Gg6H7XuuqeCik07BiETd4kFME7C4wDVnH5iKQCs+Uxu8vwzvxXmiSBQlvGci0Y5iQXQ2eM8y1YcFQT1vLty5urrajtGpDu6H1zimDMTjQrlfPA7P59LSUlszxKkrTmOJDgO6jqKrJu4lCiX+rvg6rmt0t/geFEG4tvGUB88L61TENJf19XVtbm521n/RcbmfxYkbG0/4X/9cj37GyyVNj702cWPiT6ZTff3jP1E6snDt5Kr1ZxGQz+FEInEj41JTHlYkjUopW9pTYd8q6eslPWn//R+T9AId8/C0Q4GkzeQhpjqQxDuqHqPlJO10GziPmgSSpDcSTt+TJ0n4dVe839ra0mQy0dmzZzUej1uLeKwlQCIVCTmjyU6psDODBSYtELgPPO3C4gBFFBNdk0IKCqwxQdcC12RlZaW1wbt4noUU94Fr5LQPE2G/Z9JGR4idIs7jZyHEXq/Xrq3b4xrVotZxPSOx57hjBJyEV1Ir1lDkWVtbk3TgYohpHXSHkBAzek8hwQIWiTTbczFKEnqLBxaYojOA8xHTFPydsgjiookswujXLD5wzzZN0zlZJLoN+DddP55bulUoknDvux4DhQCKGfPA67gvvV5xb1Psopjgfc46IrV6FwuKy/IsTtzYeMJ3fIUe8/x3aXeaYkKijk973cfrXd/1cI3O/dFJd2URkc/hRCJxQ+KiBYWmaf66lPJfJL1F0ljSbzZN85ullAc1TXPf/jX3lVLuPK4tkmoTxmhjZ2V3kyxWvifJi2kELOJI0s1IvskTyU5MT4gV/x3dHY/HOnfuXIf8kdTUxhvFC+fBOxfe9nXOC8ki78O5cvs8IcF99bxwnkjEKMy4bTsYGPF1f2I027/X+uo2/a8r/JvcRlcF3QKeb4s1zPOPAhDXjjZ3zon7xL3l12M7jmp7D5l4xsg2BYp4kgZFA6bpUBiIYFsWW9wPi0fe2z66kXua/WOakPvrUzAsglFgYJFOikd285BsR1cC700HQBRy3F4UIjzn/CxTVWppK2zXDhUKedHhRCeN58tCioWseHrJIuNyPosTNx7+2/0P1w++7sMlSQ/9xXu1/ea3nHCPTg7N5lgf8Eefr594/x/R+w8GJ92dhcM/fMPH6g3/+z314F964Ul3ZeGQz+FEInEj41JSHm6R9BRJ90h6t6SfL6UcrsIz//NPl/R0SR1CtP+epG4k11bvwWDQphSYJEs6dDqACbnJuUkxCZp0QI5JAqMoQJJCi7vTG9bX19touxEJv6TOPTleW8l9FCWjtvGIPAop0gH5bZqDoyhJzljbwYTL/SBxZNTZ7VIgMTm1vd2oWf1pd2cdCa+pnQwm5v58jewzpcOfd06/564G5s17L3CtGYG3K6KWEmIS7+g5x+x5iicx+If1DCwCeG9wLvmeEd00tcKLpZQ2RcTpIFGMcR+5jz3/Z8+e7QgIm5ub7ZGJTKPxfNAl4vaY8lJziEQRiUJBjbBTRPB6UAyIggKFHLqNfK0FArp2vCejQ8EC4VFuiEXE5XwWD7V6Jbp4zePPZrfr1qV369TS8PiLFxz372zqrTsH36Hv/s1P1KO+5kWSrv8c9+Owc//9evCn36+f+uMP1fu/x8tPujsLgfXdif5ye+85/s5n3qMH/2qKCTXkcziRSNzIuJSUh4+V9Kamaf5Gkkopz5X04ZLeXkq5a1+JvUvSO2ofbprmOZKeI0k33XRTw5QCEzYTg8Fg0EZiXdWeEUsTAxKcra2tNmXAefex0FotMmrhwiRLUieSbKIzm81aMcGpD07ZaJqmzf2vFdFzCgWj4rVILdMXHB12NJmEzaSTRNvgsYCeS8+r7d20n2N9DpHcCBM5r1fTNJ1ofCSWFBPoFojR4p2dnbZvMUrO62opKu6PibHXgDUP3K6FKu8nujx40gbrBbBuBUm7x2sRxv2jqMVrYgFDz4/dA5PJpLMnLSZ4flyw1LU2LBbE+Y7fEx4POh6PW7HJx2w6tWV3d+/YSX+fPF7uEY9xZWVFOzs72tjYaMU1t+P+GjV3SXSiUPCJAoZTYPj5KFLUhEGPwyIkRTKedGJx7RrDZXsWnym35nHaAbuTif7be7+vvu1/P0y///jnnnR3Lhkf+Dtfpcd80Z+2fz9q58Un2JvEouNjXvH5uvUpb5IkDbZfcsK9WWjkcziRSNywuBRB4S2SPrSUsqo9e9eTJb1U0oakp0p65v6/v3xcQyTrNcLmKKzt3jFnf7BvTYwEUzogmT7JwO4E11WQDlIkDBJDR4HH43HHih2PXCRpiqkEJsRMa2BdBP9LAisd5L6TzDLiyyguCRmvIYFaWlpq8+pdSJKFA00O/b7UJYDMPfd7FjksJsT5p2Bg0jubzdq2ojWeqRP+mScoeK1WVlZawcTpK94/TXNQe8D3jAUoWfzQpJQ1DyLJNQmnAMQ6FZ5r/zCKb8RjUkmmSd65V+ma6fV6rZjgMdNtUnOjOALP9AaKdzzeU9Khvy1qsR+xZsJkMmm/Z7EAI/cV/6Z45bHTgURBx3Ppa+1A4Lx7j1pIpHPHbUUXlNeWe/BaSXnQZXwWJ+potrd1Pfwf/vt991fovX79XdqtfDcTiYj3+qEv1z2/fE5N7pfzQT6HE4nEDYtLqaHw4lLK/5L0x9pzSr5ce+rqKUk/V0r5Yu09YD/zPNtr/+eflnnb0e1QkA5SIkhGTAQjqY3kxATT1nFfE6+X1LHas7CcSQfbdH/chn9MNnnspCPift8E1hb5WtSdlnG+zvoFJKN0D5hAsT4BxQfa891/ts18ed8/ihhelxoJN8mlIENRwu1RWKBrgkUHGVmOefluh6IU9wvTOPx5Hs9IBwvXwekyFpAsysybM7ddE1c8JgpoFEHcPwoCrL/g8Tgdg/PNtBYKHRZRmNIwnU7b+gkUpygW8H5eW6Z6UDDzexQcai4Xri33GNeLtSPiZ2N6STyalQ4f7o3o9qE4FgVAovbaouFyP4sTdTzwgvfQp40+Xr/06N846a5cEJ7zwIP17S//OEnSY371b7XzqteecI8WH7/8mx+qjScP9Ky7X3TSXTkRTJstPf73v1gP/z+bal76ypPuzjWBfA4nEokbGZd0ykPTNN8o6RvDy1PtKbMXBEaAbRM38R6NRh3LN/P9WdvARIERZxMWHi1HAs9oJ63nfk3qOgVIiNxf2qpJdkiSnIfvcTAazjoJMSrq8dEp4D6ZYHGsNdt47RSMSKw9LxQqGBVmzQcKGCSYFFEYrXa0P7ofPMcUEwzWzYiEmoSXYgFFKZJrztdkMukIHKWU1jXBiHyMYPP0g+l02u5FCjUkrhTE2A/pwJ3gtaEw4z64jxagvNdN3qPDxmKH70UBzCkkm5ubbcqMRQWnVhjc/94HXrtY1NLvbW1tdY4g5TpFkYhrzHSZ2l7md437i+tpt0ssFFlLAaml2NDdEPcf3RCLjsv5LE7UcfczX6h3vOlD9aJv29GHDhf79I+dZlcvmTbaUdG3vfCT9Jgvfune6yfcr2sF93zdH+oF/+7DpS+/8QSF+3c29X/H76FHPu312t3cPOnuXFPI53AikbhRcanHRl4WxGgnTzewQ0HSIdLGSGO0YUtqHQQ+q96Ew4UPfe9YoM8kk9ZoSYdIPfPNIxl33+hAYEV+f5bv105zYMSXNRekLjH3OFx7IBJqEiymacSc+Hl1E0jYuQ5cl52dnfY0BN+LgoDnmMUzIwmV1JkLOgD4Q9dCPHXBDgJG+Bld93scL2s2sIAfUwXoYCD5jCkbdJqQKFPsGQwGHWLu2gmei8Fg0Kb5uEaBtLe3h8Oh1tbW2lSPyWSijY2N1u3BYopeM4s7dij43xjd52dcg8LtxaNcvX85TvchOmjiHrPI4TmnQMWxum26YzxHdJPwSE0eM+q0HooiXDc+T1jXgukxiYRx+mdfpG/+jY/Rj//Z/9Hty2sn3Z25ePP2pr7pfT5Wu9OpHtO89KS7k7iG8Fl/8Y+09LH3Sk2KCYlEIpE4PyyEoGDiYNLHOgMm9ySxJBwk3yzgRkJAosUTE3zk49mzZ9tTGhjNp528aZr22ELfv0ZQDd/HQoD767HwqERfPxgM2kKSHpN/KHRYMDDJZZuRwHF+XHSPefjSATl2PQKDpNRtmIRZHKDDgM4ESa1TxG0wvSKCgoA/Kx2IAySQ7qddE4w8xx+mAphY8z7eI7TTe3/wVIB4soTn1eN3Lr/niicl1FBLj2G/vFdJ1r1m3Asen50H/qzX3uPzfjGJZ3pMFG7odOFaxFQGOlzcd+9Bt+EUJs4ZxQPPUxSpaoKN1HUFuSYCT79w0VHfm+Ij+0ExgY6nWOgxkYjYeeCsPudzv0rNctFbPmGgv/iCZ590lzr4jNf/PZ37hru1NPmTk+7KNY17fvQt+vC/+DK98Lu+/6S7ctXwXj/85Xrkz92v3Xz2JRKJROICsBCCgv+n3qTG9Qb8XiR0TdO0RIKpBSSaJpMmLrRCS2rbNKEhIZ5nc/Z1bM8gaeF7dF5IBzZ9EmgSGn8uRt2lA4LufPjNzc0OkWY0nCKEx2sBxdFYCwruZ3RpRCEh2s4pLnj+WKzQa0ryLHXJdBSLDF7LeeDvLOzo92q58NEhQEEktkmRyuPyHuH+oQuA/Y82f68Di/y5WCA/S2Eo2vzdFx4n6nFZMPPJCk4XcpSe4/a1dLDEMVNQcEqD93Sv1+s4cSxmxJoNni/ui+gc8HePLoaamMA14pxEIcD3j3UZYkoRxSy3xe8u5yKRqKJptPT/9o4UfHjzRN1z6z9p33rCe73lRGosbO7O9Ljf/Appu+imP+vpQb+fR/tdKrb/6l7d/LLe8Rde43jexqq++nc+T5L06F8ba/dP//yEe5RIJBKJaw0LIShIOkRcYk62BQX/z74FBV5jokF3ggkMiaBJufPi3S7z7ZneYNIR0yBiugAJPIkX/yZB5H1J6Pwvi/NZ7HBl+42NDY3H405/Yk54LNhn0hmt37yfpENiSc0dQiJs8WNp6eBYP9vHa+QsEvAoAnCeGAln1NgknWkbnDPel0IQ++818LxF0srxcQ+xQCT7HFNujBjN95qxTkWMvPtzce/SYePvhYWi6XTa7v1er9cRFLzfWQvCEf5awU1/1lH7eLwmr3M6kaROOoXXhsc80jHBgpDREUBHQZzjeH3c//FoSs5bzf0Tv4Nsb564mEhI0tLvvlyP+d2Dv//qSz9Mv/QvT131frxj+4ze+6tenTnvlxlla1u/tHH11/Nq4pte/Sl6zNPzOMhEIpFIXDwWRlCQuvUTpG4ag63qJpIkE77ORex6vV6nWGOsaTCbzbSxsdHav03ATEhref20gJPUkfD4HszBdhvOmae9O5Id6cAybsLV6/XavlkUGI/Hbc48ybZ0kCLAubGbYWNjoyNORND+T1LL9yPZZm0BRuCjld8CgiPaXl9G7mNk2qkEHkskevyhzZ7jp8hCd0V0IXBNPNcs8OjCg1H4YfTfY7cYxki+91g8scJ9Y3qA348ilD9L1876+rrW19e1sbGh7e3tlvQPh8NOeszGxobW19c1Ho/bNXbNARPqWD9jd3e3U5+glr5B8a1pGp07d651P7gfdihIams++LvHtZ3n+OHrtT1Cd04UqGopPO6H++k5je3W3C6JxFG4/Qf+UM/+gUed0N1TTLjc2P7Lv9KzH31S63l1cKfSkZBIJBKJS8NCCAokHIaJwWQy6RB0WuhNyE3YWISPbUhdMuYordtzpDYW3mNxQEkdkSGSUOkgv532bka1o7Xf4gPJOwv0OdLrIo52JTAK7HZMDNmn7e3tVnzY2NjQdDrVaDQ6FGEmKWZxOhLNGC1nhNxzGdfQY2KKQi29we1F67vBKv41p0GMnHtvsF0KB+5XjajS5u/7sNAmxRQWdoxOEveTzg8WfJxOp522WWuAApMFBu8p1h0Yj8daX19vj4PkdyDWjfDe8R73vJJUs3AnUwoo9DGdgXMiqb0XXTlcC6YY+TPc/wTngm6WuD8oUtWEKd7HAk4U9mJNj9oeTCQSiUQikUgkEoexEIKCdBD9dh62o+UmXCbPkQww4hxzqUnmKC7QWl4jq46cUpzw/U1KTCijHZ1HHdJFEYm4P0Mwv3w6nWo8HrduC7oqTOJNfjmHjqq6n7bCM8WC81hKaaO1bs/EjdH2WtV/txFdErw/XQMs3leLdpPwua8UNlh80fvCZDCKGUwdYT9jOgRBy7sFGaaQUETi/rTln4SWjghfz4g7xxAFidg/v+a+27XBUxLYf59u4DHY2cLCkRSxKBxR/GH6ke/PYy253+xUiA4ROkhM/mMhz5obIYoRdNTEdBx/F2vfMwqK/mxNuKo5ITLlIZFIJBKJRCKROBoLIyjQbr28vHzIps6K87SSkwBRGPBn7ELg3yYyPJoyWs9tTx8MBpKkzf3cVPYnWtMZzWXxvEiASOgoSlBMoAPB8+BINMfh9hmF5z2Z1hFrNfikCR4j6blaXl5Wv9/v5KU7Cm43BAlxrI5vAknySGdJJGr8HNfUY+EP15L1IGKkmfvE4zOBJrGP94hzWksFoLvDLon4fiTTHCdt+hQUuHa1UwdYL4QFRSm4eA/ZgUBHi/tBAc1EnN8NF2C068b7kzUK4vxSrGC6BmtYuP9RTHD/o9BEkSDWI/Fcs2BmdJf4Pa5xTGWoiQlRkEwkEolEIpFIJBKHsRCCAsmmI+K0qjv6aTDNwX8zPSGmA5DcmKwOBoNDheRYTG44HLbEWVKH/EldyzwFAubA1xwI7LPbdduskWDhwOM3SfT9mNoQnR0UE0g4+VnObYzE93o9DQaD9lQJp0uQPDMVIhIyzlUUPzh2C0csnhmFGa8f269FwmPKQ1w3jpH1LbwfHIm3oOI1rrkHYnpGFEei88B99e8m9iTIjLD7dztdoujl+/sY093dXfV6vTaVh44RigBOq+D3gd83z0vsj/euHS90x3Cdd3Z2OulG3rd0vkTxIIpLvGf8XsX15vrGeeR3y/egQ6lWH4ECybz0m0QikUgkEolEInGAhRAUSCIMRkLpBmCkN7oBlpaWNJlM1Ov1Dp1BTzJpwmyhYjabdaL/JiQmYU4/YKS/BhM4Yx7RjHnj7pvFBOe17+7utg4DEnMSdJImugFIzH1v95HugZia4PlaXl5uCavnwdZyizVeFzoDKLQwNcX9tUDAoz1jpJ5r7c+6r6zZ4Pv589wLMUJO50NMSaDdn6JGbZ59nYuESuqIANG5EFNcokOAhDWmVLjOAteQY7LI5ms3Nzc7/ee8+rMUyeL4YtrG7u5u5yQU10igqyM6figoMPWFQkY8VpXrYvD9iDhvvI4iD9MdPH66K7gOFJHiNYlEIpFIJBKJRKKOhRAUpK7Nm5FVigLS4RoEtENH0hjz1U12IqmirZ1t8shK56+zr+wX+03Rw/2pRVJ5MoCk1pnACHbMOadgYBLI4nWMrFL4qFm6KSj4Ho7mWjywoBAFDd+LooXHaVGFhJLRaa4jo8VsK96Da0VC6Tm1EGGhwutu4s154xj4EyPzUbwhyYxjonhEAh/XIpJ57ivuDa6T2+TeZxrJzs5O67CJe4/j9usEnRfxu8Y1sCOCezg6R2J6RhxfTF2piQkeZ+06z2kUYSKi+ySuY+13Cg50QyUSiUQikUgkEon5WAhBwdFNEwkSMkkdJ4J0QCJYp4D1FAySFEaHSYQiASehY9E9kq0aQSKprEW2Tdpp5/eYfZ0FhWhZZ746o/0sDMkIq+9ZOzKPJJfR/Zo9nLnxbt/rM4+sUtShmMMoNsWRKBB5Lvg+o/8klSSTnBfOPdcvIgo+3iMUSKKgwOs9Rt6fJN+IVvx4PRHFM893HAP3FWtuxDoB3PNxH8QaH3EdKAi5FkP8HvA7Q8dC7d5R1Kr9xHmoCWVxDePvx4kotb3jf5miUXNOJRKJRCKRSCQSiQMshKCwtLSktbW1lhyRRC8tLanf77dF4ny9dCA0xIhkzCP3jwUIEj9G/xkd50kKMRJN8cHCgOsBkODTNeE6DS526M+ahM1mM62vr7duiNqpBYz8U3RxDQlHWBmhj9Z6RvQZRfe8RrGFc8ATF2KEl+3FKLvnLAoMXjPOe3xvXrHHGklkjnyMrrMWA/s0bz/WEElyrKnAPtI9wiNLoyuCiHUB4l7lNV7ryWRyqHaC+xT7znXj65wLCiHSQb2K6P4xYnpJnDv3n33idzL2M4J7Jp6mwXv4X37vYzs1sZJj5vOAaSyJRCKRSCQSiUSijoUQFAxGRElger2ehsNh+z/3MQVB2ktjcDTd+e10MCwvL3cq5K+srHSK+/X7/c5JAG5L2iOYvV7vUDG3SDosDMQI/e7uXi76bDZrSWKv19P6+npL5txvW/xZZyAS1XnR7ZqbIAoqPM7SfY5F6yhYxPZcb4DR4HnFJpum0WQyOeTsiM4IknSuf9M0h4r81UASPI9QEhyr72t4rSleMB2GpJ9/15wTFpt6vV7bJ49xHjzH0b1C4UVSp7aHUxGOqjvgdugWYO2I6DDwmOKeq4EiQnQZUISz2yDu3dpe9n7xd9R9j+kQvtb/RkGkBu5V1qeouZzSoZBIJBKJRCKRSMzHwggKjB7HCvAu9hYjryY8zHk2WbBbwCTONRTmka5ICBm1t0PCsNBQIzKM1DKy6giyx+BikIxax2MfGdWOBRRNrFiEkPdnakItd702/4yI+7Vo7fc9okOBv0cHCE8qoBBBYs9aGIzes881Elojo7Vx1VIT4hrGgo68l/+lSyamJ9TEBI+91n/CaxtdOG47ItbXOF/EyLzHVCPp5zvHMW2FdUjm7RPfg/2i44YpTvPGEN0iFzL+uHZ0LnC/nI9AkUgkEolEIpFI3KhYGEFBOlyTIFrGa+SNEWTpMCGVDsgfibuv9ftRRGA6Q6/X65CkCPfB7zPa6/uxmCBfi7n/FgA4thglpiWeLolI2ig61Ppfiwr79XnCS4xAx/do52e6ga9npDna6P16jbjH+/heR/UnkuT4GaZv1Eh1HHMkzbwu1vzwnp1HrKOowX3hvReFiGj/v5TTCKJwxvmIc3ZU+5HcR7Fg3mfjPHtcFhBrBR5r95HOz0VAtwf3l9Sto8L24vwkEolEIpFIJBKJLhZGUCCRoe17aWlJw+FQw+HwEKmuFZHb3T040o+uBrsdHNV1TYYYMS+lqNfrtZ81uTM5rlnE7TSw6EFreoSJNI8/dFTWYyDh5j1JeJqmaVNBnBYwz5buiG+/3z8ktPieJE/zCLV0IMLENAGKPa6DES37nl8T4Uhm2T6PgIygmyTugfj7PGcFyT7TTOaB6QKxFgcdJBSionMkriXnlU4SOzvcf6YO+F4+TpRzGInycaiRZc/LhUT8457jdyReE91Hx9WrqKXG1MZx3NpRmGBbdAFFYSmKlYlEIpFIJBKJRKKLhREUDJ5YIO39D7/JP8lFJJJMBYj1AEy4TdL4OYsMJje+H+snlFI6R0uurKyo3+9LOki78LUsXOg2/VMjk7UItkHhpGYJHwwGreji+TBBohjin1oufCSVpZS2Tebluz8kuJwfX1dL26BDJB776DF6jgaDwSG3Ra2QHteR/ak5DTwWjpmCUSSNFEIofNDt4b6b/Huf9Xo9DQaDVoSiI4YEmYJB0xwc3enPWfTi3llaWmprJ0wmk85+dlsXCwtiHnfNGcB55jzNc5DQJVN7n0Kd54UCTM3FUwPXft7Y5r0e3UwcW7oTEolEIpFIJBKJo3GsV7iU8sOllHeUUl6J124tpfxWKeV1+//egve+vpTy+lLKa0spH3++HTFhN4Hg/8ybRDkiW7Oa84jD87Gw2zLO4xyZ8x7z301qXFPBBN21EBjlJsmd14+jrOAmkZGMG+6DiauJ7crKikajkUajkfr9ftt/3p+iQi1FwONmBD5GoWt99JjYNlMypHqkOBZHjOkCtMLHtAHPBWs01BwJca7ZflybWjoKBZKjSCvrJjgtwY4YCl6xP3TJ+DsQxScLX3a20NFwnLvifEARZ96ac07PB/P2GB0AdBwZFAWPExN4r5rzI/Y7Cna1e/A7cr5jvRq4Ws/iRCKRSNSRz+FEIpE4jPMpYf6jkj4hvPZ1kp7fNM2jJT1//2+VUt5H0mdLetz+Z55VSpnv/9+HyZIJvlMBpIOTEyaTSYe4+3MWFGirr5EQRld3dnY0nU7bkxfoTogWe1rVLSjQ8TBPxPA9/S8FBrdbg/tBMSCSIRP/aKm3c8JFJD0etlNLNXDfnBbBHHa3Ha3ikcxGV0FNbKg5E2o1DaIwEK+rWeiPi5LP+0xcM85RrUZDbf2ieELnAk8OIXmdJwJwXmL0nnUTrkT0fJ6YEK+5kvfid/t8xYR57c4TE/l7bQ+ezzycEH5UV/hZnEgkEokj8aPK53AikUh0cKyg0DTN70l6V3j5KZJ+bP/3H5P0aXj9Z5qmmTZN8yZJr5f0wcfdY3d3V+PxuBUNTJqMnZ2d9n0LCvEIRxI4EjkSBYxJ0+lUm5ub2tzcbO3ltpg7Sk17+Ww266QQsA5CzAWviRlH5aaTSNsyPxgMOkX5ou0/CgwUIUjmLS54ziKh4md9XwsmBF0gNQcCx8VIvQUakvuY9x/ngu9FYaAmahyX8+/1rAkp54t5xQr9mt0iriFhZwLFiegOiX2ILgk7HLz/7NKJqQ6XExdKoo8TH2puDK8lv6PeTxfrtLgYl8Y898S8vp80rsazOJFIJBLzkc/hRCKROIyLraHwoKZp7pOkpmnuK6Xcuf/63ZJehOvu3X/tSOzu7hVSNHGW1MnntouA9RSYrkDyFXPT/Tna7k1CTTBJfKPl3W1byHCb4/G4vRcJu8WFSMqZmkBSSfLfNE0rAPT7/VbEkA7yxOk6MMk1gTdMhkjm6eagc8K5+czVj6knrM/gsbrvvV7vUBE+CiTsTyRonCf2IYIOCP4diy96TVk/w84NEsXoIKkVfqxFzdnmvLUt5eBYUH5+nhA0jwR738cihp6r6FDguObhfK65EMS1Oh/XBFM1atdTRDOie8A4yvXj97y/uEfnFYK8RnFZn8WJRCKRuGDkcziRSNzQuNxFGWtspRrmK6U8XdLTJanf72symXQK88WcatrJY8S6VriQxQhNXmrW95qNnbZ1En9ey4J08TVpLx3C7fg6/h0/T3HBke7orojtuc/8DE9AYCHGWj2ApmkOEfla2ojHbmJOF0Rt/iJ55ykUschhjVjWCGX8iWIAPxP/JYmORTCjMGG4bzWHRVz3eX2mkBWLUcY+zIuMs8bAPGEmjnHe65GQR1yq4BDX8mLaqo3vfISS2mf4zOC6U6Cal1axaO6Ei8BFPYuHWr2SfUokEokbCfkcTiQSNwQuVlB4eynlrn0l9i5J79h//V5JD8V1D5H01loDTdM8R9JzJGltba3Z3t5ubfK9Xu8QgSLhIsmK10WiGMWBmsU6EqFIMngcZIyKR2IZPzuPmPCzFAxiVP8omChR8IinIcR5ip+PNRYiyTKhtoDA/rOfNULv6+hc4PxHkcXrwzZqYgLbjaQ+zjHfi/voONgJ4H+Pa5/gGM8H0cUQUXM4nC9qfYjiwVH7tPZ+zfFxoai1XbvPcQJKFKT4veK6R3GB97uGBYTL+iw+U269ZicikUgkTgj5HE4kEjc0Ltb7+zxJT93//amSfhmvf3YpZVBKuUfSoyX90XGNkby6MKCt/9GiHKvC06Zfi/gyp531DuJpBkxxYL69iTRrLPge84oBstYAX59XAyBa+OdFrCMh3tnZ6dROqM3rvHu6XaZOxP6WUtq6Chy75zWeSFATeAzfN64T7+9UgVpRxCgmMPUjgu4UOgzmzc1RiAUcLxVH3fdixIILRdxzHFdtfPNei4JcTWi7kL4cd828PtX2G7/7dJTEYqcX2t8FxWV9FicSiUTigpHP4UQicUPjWIdCKeWnJT1J0u2llHslfaOkZ0r6uVLKF0t6i6TPlKSmaV5VSvk5Sa+WtC3pK5um2ak23L2HhsOhBoOBRqORBoNBp7q9ayNYEGB+v4UCv2eS0+v1tN+nlnwzdYI2fJNi/x3bkg6EC5MW2//nkRHa+12hn0IF23a/GEXlsZYxSu7X19bWOveMJwBEQu65pnjAVIeYpuEaCRwT8/drKScGRYqtra3OPS0EWNCppax4HBZ8TAj9eRJDr43biCc4RPLutWab3CvclxdCNKPbJGKevf4ocN1q4lJtjLHfJP9s13Pr+T/fYo+8Z+1eF9JGLDRKceN8BQ6iVtchOmHYVq0exaLiajyLE4lEIjEf+RxOJBKJwzhWUGia5nPmvPXkOdd/i6RvuZBOWADwj8m6RQQKCIz+x9McIvna709LUBlZ9Xsks27LxMokLObdGybEPvWBJyBIOiQmmMTNEyJ4LCYLI5KI10QC34tjmHcvWsAjSY2FHt0G78nTN2If5okXhgUKCgG8zv1yn2KEObo5mM4yz/nBMdOVwXkzqaQgcTGI6xkFkhqOsvvHsUTiTWcKxarjHDCxDfbzuJSd2J/ocKgVVZw37pqAc77zEvtU62MNnKP4jOD+W0THwtV4FicSiURiPvI5nEgkEodxuYsyXhRMbEj0IymIx0JKB+SgZm12O5EszIPJFCPjrBsQyYff4wkC0RlgouY2TbjcZiS+/FwsYOjrj0Kt+GKcA7dD4szX+dpxhQBrxDUSNt+HzhCuRa1vtfoZMXIdP8/5ie/HOeFeMaIoVUNNMIj38+sURmrt8nqu8VGiAv8+6lSM2A7nxX3zPqQAUNtf8/p9Pt+po8YRBaTjxnC+7cc+8l7SfEEhkUgkEolEIpFIXDgWQlAw0TSZ5BGNBt0JtubzPUeA4xF70vkTBpIM11hgqgEjuTF/3K+5nVo6AI97nEcEKUAQ84ib7xX7zyKNscYE3yfx5ZiiGFLrR4zo2tUQ54riy/LycufEA69dXKOaUODfaydS1CLlrPMQBRb32w6FGsGM88m+cH/WikPGfRNRc4jUUIu2UxA4jpBzP7PvLn7qdboQxL3JNZ+XPhDdQVHUuZykft46nk8f+e/l7lcikUgkEolEInG9YSEEBZJyWsRJhEmabZ3375PJ5BBh6fV67edriEQuRulL2Uu5YOSdtRZ4xGM8PlE6cFSY7FqgMKmuRVNJkHnqhYWIyWTSfsbjnM1mnag+nQ0rKyudlItYrND1Kdymf3q93qFIdC2lgKTdcDFNjm80GrWpLNFav7Oz0xFZoohB4WNecU63wf7X1jWuP9siWNOC943pAzVngtvlnMwjsMeJCR6/1zoeCUpRYh7YV//tIqPeA/H66LiJc1Nbj3mgQ4VHuF5JxPm4lPsdN7+JRCKRSCQSicSNjIUQFKQDsmTCwxQBSZ1ItKPddjL4fTsKbKufZzfn/fheTRyIBQNJwNyXWmE3vuf7cCwk0XQESN1TLwaDQRv5j21L0nQ67djY2fetra1DjovBYHDoaEo6CjgW1n7wfVnMMoo97i/H2e/3OyIKnRoeb61gIOef8+TX2O+4ZpzzWIPBiLUCIvF2GzUyyqM02eeI2t6L6RjzwDmoYV4tjXmIAknc3+wbnRdxDDHd4rhCkxRhLiQ94kIRi5oe9d1PJBKJRCKRSCQSlwcLIyiY2NTs49E90O/3D9nr/T7Jau19Wt3j+ySmdAvwBAgSvVhcsEa8/JrFkFpf2TbTIxjtr6UFsG+1uhEkinZ1OHrv/sR++z3+SyJqsYfrQ3cIhQOLOzFCzjWgOBL7xbnk7zEFg33g+lFoocuAa0LyTHGHa8x+z3MosIDm+dSeOB9R4Sjr/cVEzrlGUVTiWA2KDWwjztX5CBvHiQnnMx9HfZZrEttIUSGRSCQSiUQikbgyWAhBIVrqDboDTIZsoXdEnZX5Y/SXaQQxqhrz20lIeE2NHEZy7L9jfzg+klypeyQj+2nhoN/vazgctgTeR0L6vrE2g3Pko5BCIcACBYUCkkES/0i043tcK7fPExzojCB5tcPB6STx2EbOP+eZfawJRBwn14L7htd7LlkTw/3kPNNVwbWOf7sdOzpqzgiuyXGIe6tG7GvCC9cztsHUAzpEuI78HnnPxfmmiGYc51Q4bqzEce0c9T08ak4SiUQikUgkEonE5cVCCAqSOnnvBomryaqJsXP/SWRjwTe3MZvNDtUuIKGy4MDoehQs6IgopXRqG5hIMqLrtAsKE76Wn+f9Y9oHxYTJZNKmJLgfrotg14ak9jrWIOj1eq1AQZI8HA47x3KSVPuzJJgxeu9ruA6DwaATqff4PLfRSeECm1Fs8TXuQ3RdsG9R8JjNZtra2mrnNdaEYHqMf1xTgHUc4npEEk0RyvUILOp4TiiQ1NIHomAQBQBiXqHOSLCjw4JCAgWeiKNqItScCa4pUksLOR/RZN49OU+1ApC1z8f9diGYl9oR3TCJRCKRSCQSiUSii4URFBxhJ5n3v6WUlvCxZoEj+ibohkUEE8udnZ22fZOi2WzWuQ8juk3TtIRUUkvE3HaMTG9vb2symbQWf4sPPt5SOkySpYOorsmrx8HUgnkuCveLxfVqxQwHg0ErKFBQsQDhNnd2djpuAZJ/pgzYPcH55rxSNIk1Kdwnr5sFEsPjjWkSFHbisZOeB5JczzvFELZpAcVuAq9bPIWC7oW4v/wvnQlu1/uZc876GExV8fpGISeKL0QtEs+25v3NdXDbFnRI4ON3MK6l3/M8cz9GNw/f5/70mtBBEMWBCz19ooZaGzXXSHR0XIrjIpFIJBKJRCKRuFGwMIKCQTJjgkabNglpJM/+PIsFsrhjrHkQC9LxuMpoo3eUmzZ632c2m7VRb/9QTDDi/X2N+8r3a7UgYgpALWocxQcSZalLsHwffqYWAY7FJWsEmH2PfTBiegDb8md4vGSN2FH0iPf3nohr7lQPt7m9vd0KStxf3GM1EYcODc43xQkTZQs5PFGDRT1j5JsOkZguU1t/CgoUOIhInKPwwzVxHzye+B2IDg+mInHPRiEiCklMP6qJUtEZVEOch3njj+PjmkZBgWKCr0lBIZFIJBKJRCKROBoLIyhQSJD2ThjY2tqS1M1XJ4GP9RUkHYpsktSQGPGe82znTLFwWgXJqkWP6XTa9sFkuOYuYJTXdvEYaZcOSDxJa43cxJSESJgoKHBuSPKiq4DzYrJPQSEWpnS/Obf+1/dl5Nnuj1hkkp/hSRFO6/D7cQ0juWYNC49/OBy2bS4tLXXSU2J9DY7T7dfcA74XfzwXvV5Po9Go3QvxiE6mv3heuH+8z3jCRiS9JOm1azincb/EuhU110RNrPPeiUIcjyKtiRFc/7g3OSaLevG0E6ImUtW+H9wvvLdfqzk36E5IJBKJRCKRSCQSx2NhBAW6CnZ2djQejzvknddtbm6215rQ9Hq9jmshRrUtCEh7Ry3WTk2IZM259aPRSIPBoCNU7O7uajqdamtrq63R4L6Q6LmPJvZR0OAYIhFjvyKR9uucM0fd3d5wOGyj5JJagkrhg21ZwPE81qLYsR9ug6/VUhY83p2dnc5Rl66d4bleXl7WaDTqEFfOR3RB+KhK14LwGNzeYDDoCArLy8uaTCatCOK94XtTlGH6ieeUBNVpDltbW1pZWVGv12tTHU6fPt2S6d3dXU0mk86eIClfWlrSYDBo+9g0TZtCQ3guKBpQCKjVivBYer1eux8shm1tbWk6nR4qJEl4Ttxf1oXw+xRCLDqwpoT7473h+Y51UywoUMyK9VAoLsUxck7mfbctcvFZwTbn1YRIJBKJRCKRSCQSh7EQggKj1ibqTgcwAXBNA+bIS+qQmXkRTZMeSYeIvkmMpJYQmhiZ6K2urnbImCSdPXu2Q4yZMy/VjxuMY3b/TZ6n02nbjvvBegC1wpWsnUCrOe8diyPW0hA4txQ1KIIwPSCKDHHOo9uB/fTYSc79t++3u7vb1sCIkW3e144G7xH3zUUoV1dXderUqbYgpR0lFJl4T4+RBSz9wyj8ZDJp+1dKaUWLfr/fihhx3v3ZOG67YFZWVjrpPDHNx3Nh0C0ST9Ogu4Hz5D01m83aaygYeP38vaITqLb2bt+ixcrKSrW+gnTw/eIerIlk/M7zdX/GQkN05FhgY3oOPxvdOBTqjtrPl6OWQyKRSCQSiUQicT1iIQQFSa2g4IgviwSajPI9EoGYV18jCCRNJmYx99pEh1Z936ff72s0GrUR2/F43HEx0A0Qo6bRks+ChMzZZy6/iw+6nXkpEHRkUMygIMH254kbJLIUE5gbTxHG94mRdhI1jjUWjYxRZpI+ChAkpnFN7U6IjgXPn90la2tr6vV6HTLuNbZzxP1YWjo4MYMpHtGZwbE4rWI4HKrf73fEAZJ2j4NzynXnPZkuYSGkdoQj5z22SQHIoolFo9ls1mmvVksgphPUTrrg/uQYSODjmtX2oNvxvNXGF909Ma2CDgfeM15TcwGxD/HfFBQSiUQikUgkEok6FkJQsEPBpInRVRc4dGpBJNCM8Edya1Ll901Ut7a2DkUx/RkTzRiJdcTbqRUmov1+X7u7uxqNRh0HASPRHKfHuLOz00lHaJqmtYG7bUakHfmloFAbLwmrnRZS18LP/vhfphc4eh9Pc+D8xDaMKPBQVIjknISV/fd6e0/USKj74jmv1U6wCLS2ttbOhSP/rFUwGAzaOhieJ6Y0WJTxfegGsahhIcHFGNnPmE5AQYFrRwHDY6NDIe4nEnaScPfLe8o1QDwmz23cT1xDt0MnQM2d4H5EBwH3IPdk3HfRLUARjH2hoFN7BvjesX4K9xr3EH+v1VypiYGJRCKRSCQSiUSii4UQFCS1NQAsGvDIvclk0rHjS4dt9ZPJ5JBV3ATG+dwkiP1+vxMdJ5m33d6fdaT75ptv1srKimazmd797ndrOBy2keTRaNQW+5vNZq1TgYTEBDnWVeB4TIQjSWN9ABNi5+5TBOD8+F8SPJMntzudTttaEHZieB56vV4nR5/R/Fj/wffz+5zvWKiPIoCdGhSHNjc325SC6JBwG3QC0AXgeVhbW9OpU6faf5um0XQ61Ww264gGJs6SWvLttZxOp+3eY6oMT/Xo9XptSszq6mq7djylxIiOE6+x99B0Ou3k9dN9MR6PDxXt9Bx6HaI40O/3274xfYFiTdwPdHhsbm4ecp/UhDjuX4oK0UnkaD9TdOwI8b6PhUpjugL3Utw3UaAxak4EIxaA5NwmEolEIpFIJBKJo7EQgoIJk8ktI+kWGiI5Y+E/WuQldaKWjJDHvHETSuewxxxtpzOsra3plltu0U033dQKHLfccouWl5dbkk+CRgs/I70kmSbnq6ur6vV6LXklGSJpY4qESTML5EXCxXki4dre3q5Guj2fa2trneg97fcmfo5u87OSOmSVkXza0GPxQ7/mz3udLAxZ6InRacIRbbfb7/e1tramm266SbfccovOnDnTORkkprVsbm52ai70+31tbGy0NRlGo1FnzywtLbVix2AwaGs0eH5ISL0n7IpxociYCuF963XifrTTQDo6nSceMeq6Dlwf7g+6GpaW9upG+H5ct5g24GvovIgkn6lFvodTQGLhQwsYFMeiIOB5jd+vwWDQ+Y7Fwqf+PMXHiCi61b5HiUQikUgkEolE4jAWQlCQ1CFETF/w6ySMtH8zEi7Vj4msFXBjHjUj8r7ekePhcNgKCqdPn5akNnob7z0ejzsihccV7e6Oytoqz6h/zYFBcYLkitZ93isSJLdjF0K0gptE2Ynh6+nScH89P14TE1+S2hq5dZvuK4UcpzmYeLMQZa2IpN0JnmPWF4jpDjfddJNOnTqljY0Njcfjtg06KUymR6NRKx4QnF/pQBRx/+0A4J40eWaqDgUS1gPhHuFakNjS0cDvTHSJeO68Xlx/71WKb/4sHSk8DYR71n2gW4T7kg4Fpjfw/rV9TpdB/A5TPLPrgfuWqRx0GRgxlYP/xu/aPNEkkUgkEolEIpFI1HGsoFBK+WFJnyLpHU3TvO/+a98h6e9Lmkl6g6SnNU3z7v33vl7SF0vakfTPmqb5jQvpEO3bPM2BZICpBKxLwOJzjNrT3RBJD09VcBSYlfsd6b711ls1Go1aArq6utoegTibzTSZTDoEhaSGJF86OCaQxxkymm+YaHlstHj7x31muof7YELpPjhKXkuHkNQeXSipnTMTdBJOkznXkrCV3WCOfBQDKCy4ba4hj77kGrK9WN+BKQkWC3w6x80336xer6fJZNLe2+SVLgsLCr1eryO81MSQ6BRhiopBMcFuBjoUfE10G3hPssAix03EWgP8Xvg+dHZQTOA68jvAIp6sXRFTC2J6QRTxOF8UH7yOFN64r1k3xPuDp6v4da9z7HPcZ0fVh+BrfC8KSIuCq/0svpJYftQ92n7QTSfdjUTihsPy+lS7r3jNSXfjmsX19BxOJBKJy4XzcSj8qKTvk/TjeO23JH190zTbpZT/LOnrJT2jlPI+kj5b0uMkPVjSb5dSHtM0zXmVSTfpKaW05NckJhaEo4Xahfsc8Ze6ZMs2/Bj1NIF2nrmJ7Ww208rKim6++Wbddddduueee3TbbbdpaWmptcGfO3euJWfj8bitZ+AILnOzaZFnqsOpU6fa/lpUkA7yuikYmOywaCNt4CaATI1glJuuAoMk0e1ZgGGUmm6Kzc3Ntj88zYBgX2uF/FjrYHl5uRURaqdMeAwk1iTAOzs76vf77Xrb/XHq1CndfPPNuvXWWzWZTNo9IEnD4bAjVq2trbWpJ65l0DRNJ33Be8JEP66F19BCxWw2a8Wmra0tra6utvvNKS6eC0mtU8NzRQcBxReCLgCe2uD1tNuCpzp4fj1nXlfvf7qE4v1jTY34Pl+L31O7T9jHKEJ4brmfo3OIIlOtjgQFRX8mFqyMokIU4vydicLgAuBHdZWexVcaf/FNN+v1/9+PnHQ3EokbDl/11x+i1/2dk+7FNY0f1XXyHE4kEonLhWMFhaZpfq+U8ojw2m/izxdJ+of7vz9F0s80TTOV9KZSyuslfbCkPzzmHp0UB0aIDZIER6QtKEjqRDpjtNzE3wUHbZlfW1vT2tqazpw5o8FgoM3NTZ07d06z2ayNbt9+++264447dPr0aTVN00ZQbbV22oMJnwmICSXJscmkRYzV1dXWxi11c8VZ3JHjt2XebTUoNmjCLB1EqOPxi0zx4IkWTneQ1NZykA5Ot3CKAYtNMqpN0hvTKaQDB4VFDRI+5tWbQLJIJgnuYDDQaDRqo+/j8bhNzXCBxDvuuEN33XWXbr/99raIpot2mhSbnLq9tbU1Sd1aGBRamAriOaMIw1QNtu85cnFIprfEfU03gftK4lxzvXBuWffD9SBqRJ7OA+8jC0MswGlRiaSeggUFoxp5Zy0Jix5Mk7Ao4/vzu06nBUVCz4l/YtoHT8aopRD5dT5v2E+m5CyaoHA1nsVXEs2HP0HP+ImflCS9T+/3JZ06qa4kEjcsnnnX7+rFb9j7790znvl03faDJ/ZIuCZxrT+HE4lE4krgctRQ+CJJP7v/+93ae5ga9+6/diQYlTSi3TyCaQwmUbHYn9tmeyZow+FQp0+f1pkzZ3T69Gnt7u620ffhcKhbbrlFd9xxh2677bbWCm+Cwnx1kzWTGRMWk0t/xjn9ttY7Ih6t47Vof3QS8CSGGoklAYzg+4ysc+4YkWZ9AJN/k7AYMSfRo7hgwsdTBUj2/D7JItMs4jq60CDX2uT9zJkzuu2229qaFzHlxX0iURwOh61QwjmXDoQDppm4Hc6vRY14IoRFi7W1tTbVwcSa97L4w3Wct4f9O4/iNFGng8MuBO9ZplGYdPsoVDszPK8UfOjMsFsk7hvWSpgn7rEdjicSd35PR6NRR1Dh2lBQZHsUFIjaa3F+vW7swzWES34WX06sPOJhes03397+fftt5/TkkfdDigmJxEng1NKw/R4+8ql/oVe+x4frof/xhSfcq+sKC/UcTiQSiauBSxIUSin/RtK2pJ/yS5XLqlXNSilPl/R0aS8KyQgqLc1RJPD/8DPibhLFKCl/osXagsKpU6d0+vRpra2taTwet+2srq7qlltu0W233aYzZ850IrEm03YrmNQ50sooLyPrrsdgZ8Lq6mqbWsB+WYzgXHictIAznYFzY8JFsh/TBfzT7/c7JJr39OfpZLDbgW1EYYc/ri3AkwAotHiePKfsdyw6yXHSFRDrIPBkBx9DyOKSnAO3afdFzTlAVwiFBe9ZO0k8Nv/NtBXXyzAZ576MAhBTc+ZFxz0fbisSfIpOcX7ZhueMdTiiI4TXRncJRQeOxWtv0cPz6T3L4owUZbgXPSc8xYGCAot+EjVxIroTjgJFwzhni4zL9SweavWy9Gf5Me+p+z7mTr3xY599WdpLJBKXHz/3yOfrGz7jb/SiF3+wer/9cmk3nfiXgkV7DicSicTVwkULCqWUp2qvMM2Tm4P/S79X0kNx2UMkvbX2+aZpniPpOZI0Go2aSIpoiyYJ2N3d1XQ6besm8PQB5uHbPWDSSZHCooFTHobDoba2tlqCvbKyoltuuaWtcRCj7SazPurS9n9W72cdglKKzpw50x496ajrAw88cEhIiVFoRsJ96gRPOKBlOxKhpaWltiggT8pw+oVrEBA88YI1Fzyntu+bHG5sbLTvS2qj8Ezx4FGVTG9gdN1uCAooJvNea8+JCyfyhI3hcKgzZ87o9ttv1y233NIeb7m+vq719XWVUrS6utrOzWQyadfHlnrvFYpVrB/hz/L4TNdCoLjg40mZLmExwYUaedQlU2U8Pq4piTbXIp6kQRI+HA478+m9PRwO2++KU0QoxrHAIUUNHvVoQcVzwL3KvSVJ0+m0HYv3hr+/TqfwmOgiYUqNv3cUj/idqImRnJd5LieD10RRLrpwFhGX81l8ptx66cdaLC3rz7/yDr3xM1NMSCQWHd/6oD/VAz/8Yn3OEz9VO3/zNyfdnWsWC/ccTiQSiauIi/q/5VLKJ0h6hqSPbppmE289T9L/LKV8p/YK0Dxa0h8d1x5THkop7fF9fo/FCk0iGQn36yQlzIV3IUWLA45k33rrrTpz5oxKKZpMJi1Zd/0E2ttvv/32thjj+vp6SwpNeldXVw8JCSahJrs+wtCEGPM5N1/bxMpiiHPKHVV2QUiTYBaGNGn2Dws5mkDFe1qUsPuAtnULGialvm/Mi2etiuFwqOl0euj0Cq+rI/gm0VxDrzlFJYsBdgRsbW3pzJkzbQHG06dPq9/vt2LSZDJp1973spDhaDyLOhKus+F9wTXwHmNRTu8JOyI4X1xzj9FrQacH3SOcN84JHTqeb/fdqTX+/hgm+tGl4fVlKgvXyffyd9Mkn/vMAsBgMGjrRJRS2kKWbGtra6uTUuB+cx+5bf/LPnGN6KTxexYDau4FfyY6iLgfuX+vETHhsj6LLwfe/2U7+onb/6uktatxu0QicYm4aWmkZ77kV/RP/v3X6OYfz/T+C8UiPocTiUTiauJ8jo38aUlPknR7KeVeSd+ovQq2A0m/tf8/+C9qmubLmqZ5VSnl5yS9Wnu2r69szrOaLQkj8+YZheapDiQtfo9Rb+aXYywtCXEU1xFa10Hwv5LaQoVnzpzRmTNntLOzo42NjY6oYSJMx4KJuMUEpziQOE8mk0402/1j0UOeZuDPmewwSu+xMqLsIo224/uzLmhoy79JLlNMKDaQbLGPFhRI3EwufZqBnSOM/jKlwOOzc6BpmraOhe/POhH+vOffEXenOZw+fVqDwaB9z/PD9Iler6fZbNamQ3hcjPjHPeIaC5zf7e1tTadTTSaTtuAjx+c26CTh/o3ry/tavGBqQESsNeF+2aHg9a2lVkQxwf1j6lBNYPF+dn0Gf1c8FhcbpUgVv7tMc/D3MaYkMbWBjhX/yzH5/nEfuk0WaWSfanPqe1I0WSRcrWfxxWLlIXfrzd9zs77/1h/QnctZIyGRuJbw+P5Q7/Xlr9JL7vlwPeybsqbCPCz6cziRSCROAudzysPnVF7+oSOu/xZJ33IxnaFter+tNm9fUqcIIgmCr6kJCszvZwTdlf1XV1c7EerZbNapln/q1CnddtttOnXqlDY2Njq58hY+3Ldoo19aWmqjxbSfu79ORXBKBgkVLdcmmSwQaBLFkxPivDEa7Gg5T0jgUYpS9xhCz5n/NeGnHV86iJyTkDpNwGkTXF+STacDOJrOvrBPLLzH+0nSaDTSTTfdpNOnT7fikEm794DnznPLFIpaTr/n2OsWj3R0XyeTSce+H0kxBQW6a1iEkvUcmLLANB3WQGAdA6aV+Dq3V/brFzBNwO4cFkeMfeIYY40Gzkmv19NkMmn3g/vt9BF/NopC3AO1OhF0GVDcqjl46G7gaQ9R2OHnajUX/K/FBP9Y7FgUXM1n8YVi+bGP1ls/5g696sOepSy4mEhcm/jxh/+e/tnfH+uPX/khkqSbXviX2r7vbSfcq8XCIj+HE4lE4qSwECE4kjFGBSkImKAwl1o6sDCbsPk9E2o6CUjObZG/+eab2zZMHlxPwWLCwx72MPX7fa2vr2s6nbZEnZZwH18YI8+0vLOQ4HQ67URa/TmTIdrr/WPSIx0cS8lUh0heKTRYHLElfWlpSevr6511IAGV1JJDRowdgSbJ9zVLS0taXV1tSSsJqesReF1NNE+dOqXhcNiKMTzlgISOpJb1IE6dOqWbb75Zp06daiPz0aLvFA27FkiaI6H02vFY0Tg3TnOwO4H1Bjw3JKZ0pLgNOzhMyJ0e4BNAfNQlCa0Jth063lue19lsdki0YuFJ1oKwG8Rz7vXkGlj08nr0+32dPn26I6T5u+V59nfJ35H43aVrgMKYr7OQYnLv1z3HvqdBhw+fB1xfOh3saKJY42t6vV6b4lJLP0rUUXp9ve6pt+t1X/Csk+5KIpG4RHzvg18i/beXSJI+5Ou+XLf87P2SpGa/XlAikUgkEhELISgwqmsSYZjYkCAx6mjCykirdJDfLqkTQV1bW9PNN9+sO++8U7fffrvOnDkjSTp79mx7j6ZpdPvtt+uhD32oHvKQh+iWW27ReDzW+vq6zp07p83NzZYwTyYTbWxs6IEHHmgjwEylMJkxkWVdBpOf2GfnozP33yRMOhAMJpNJJxdfOrDuU1wZjUa69dZbdeedd2o0GrXz1e/3W8JIUsf8djsELKD4qMtIytlXrxmr8ROeJ0e7fT1TSZxuEGsI7OzstEduDofDVkxwoUhey/SBKBpZrPA88Z4m9syjtxjgPq6vr7e1E8p+wUe7Akya3RbFCIta3iPsL0UROys8v97HXBtfy6g8BTe3S8LPEx343eJ3yfPjPvh7eeedd+r06dPtPmNtCaZQsN4D3UIeA+s40FXgPWMxjuIRQdHRaTY8YYMOh7W1tbYdCozss+eG4l+8Z2I+3vtFu/rpO/+rlJXJE4nrCr/yLf9FG/+x0eu2btF3PvaJarZmJ92lRCKRSCwgFkJQkNQh2yy0aKIQbcz+H35W1ychYhScdv/Tp0/r7rvv1t13360777xTvV5PZ8+ebYmJSeCtt96qO+64oy3OePbs2Q6J9GkT4/FYm5ubms1mbbTdbdB2zkioyZphMiWpUziPiEX5PE6Tymb/BAHOpcmeCbcLFrIAnslWLJpoxwhrHni+XXiQtny7IFgvgXUFYhV///R6vfakBFrOKQ64BoTfP3PmTCtGnDlzpk1bsUhAEYGnBDCVJc4p00xYh4DFBKWD1BY7KuzKWFtba/eriz/SwcJUFZ6E4L3r+gOew8lk0kl/oZBgQSemnnitWMjS82ZHRHSOcA/6Nc6Lyfbq6qrOnDmjwWDQKTga++C9MZ1O2x8KfUz1iEUffT+n5Hiv1Oo50F3A/luUsAjikyW4/+zQ8B5fXV1tU4EsZiTOH3cP7tctyykmJBLXG+5cXpOWpQctb+ibfuUh2m2OF1onv/og3fl9WYMhkUgkbiQszP85M+XBRNxkNBbzI9k1IaHF2teRhJoQ3XLLLbrzzjvbEwFIdl10zi4GHx3ZNI02Nja0ubnZpirYDm7SJB0QZRI/5o6zbwYJN+sm2KLva/yvX2cKAEmV2zfZGg6HraDA6KsJcqzDYCGDAgIJLKPaFG0Yzef4YtTb80Qy6mucokBSxxoQg8GgFYU8HtanYJ0Mg6IJRRSPw38zxYRF+Vi40Gtlm320yc9ms86eY8ScJzpYMHHU3G4DigxcB3+eBQnp6uEeigUIKar5h0UuCZJuSZ3UD4tlFP2YksD0CIsKPGXEYD88NtZw8Nx4rBZt2C/ueYogTK+xQ8TrQrBOgwuv+rsRa7gsUg2FRcPS6qru/4zH65H9/3nSXUkkElcQq0t9/cHjn3te135E+Qy9+4EPa/++5ZVn1bz8VVeqa4lEIpFYACyMoCCpE42V1BEVjEjGaWXmtaw54PoBtv3fcccduummm1rLP8lxr9fTrbfeqttuu0233nqrRqNR60KwO8H3NXHa2trScDhsCSHt9DEy7vdrOdoePwlvJN8xMk1SydMBTOJWV1fb2gmOvJt02dVAsuY2TfS2t7dbgmeyRTeIxQSSvkhq2U+6ADxOOhe8dlzjlZWVtp7BmTNnWkHBLgCmkdAZEGtUuE+uV8BoPMUct0k3CYUXR8ztKrj55pvbMe7u7rYOFR5vydoMw+FQkrS5udmmrLCeAm3+3s+1lALWzIinNXivUOxhTQx+l7yfY+0BOy/8L4uC2s3j+ZxMJu1nLQSwSKnBYoveq1z/mJZRI/VM77GYyBM9LAp63587d64VJtyu97OLgvq7S8TvWqKL8uAH6UXf/v0n3Y1EIrFA+IPHP1d6/MHfj/rpL9N7vvzk+pNIJBKJK4+yCBG4UsrfSNqQ9M4T7srt2YfsQ/Yh+xDw8KZp7jihe19VlFLOSXrtCXfjRt9v2YfsQ/bhMG6k53D+P3H2IfuQfVjUPlSfxQshKEhSKeWlTdN8UPYh+5B9yD4sYh9uBCzCPGcfsg/Zh+zDjY5FmOvsQ/Yh+5B9OF/k2WiJRCKRSCQSiUQikUgkLhgpKCQSiUQikUgkEolEIpG4YCySoPCck+6Asg9G9mEP2Yc9ZB9uHCzCPGcf9pB92EP2YQ/ZhxsLizDX2Yc9ZB/2kH3YQ/ahgoWpoZBIJBKJRCKRSCQSiUTi2sEiORQSiUQikUgkEolEIpFIXCM4cUGhlPIJpZTXllJeX0r5uqt0z4eWUn6nlPKaUsqrSilfvf/6fyil/HUp5U/2fz7pCvfjzaWUP9u/10v3X7u1lPJbpZTX7f97yxW8/3thrH9SSjlbSvnnV3oeSik/XEp5RynllXht7rhLKV+/vz9eW0r5+CvYh+8opfx5KeVPSym/WEq5ef/1R5RSxpiP77+CfZg791dxHn4W939zKeVP9l+/UvMw7/t4VffEjY58FuezeP+1fBbrxnsW53N4MZDP4XwO77+Wz2HdeM/h/XavzWdx0zQn9iNpWdIbJD1SUl/SKyS9z1W4712SPmD/99OS/kLS+0j6D5L+5VUc/5sl3R5e+3ZJX7f/+9dJ+s9XcS3eJunhV3oeJH2UpA+Q9Mrjxr2/Lq+QNJB0z/5+Wb5Cffg4SSv7v/9n9OERvO4Kz0N17q/mPIT3/6ukf3+F52He9/Gq7okb+SefxfksPm7c+SxuX78un8X5HD75n3wO53P4uHHnc7h9/bp8Du+3e00+i0/aofDBkl7fNM0bm6aZSfoZSU+50jdtmua+pmn+eP/3c5JeI+nuK33f88RTJP3Y/u8/JunTrtJ9nyzpDU3T/OWVvlHTNL8n6V3h5Xnjfoqkn2maZto0zZskvV57++ay96Fpmt9smmZ7/88XSXrIpd7nQvtwBK7aPBillCLpsyT99KXe55g+zPs+XtU9cYMjn8WHkc/ifBbXcF0+i/M5vBDI5/Bh5HM4n8M1XJfP4f0+XJPP4pMWFO6W9Ff4+15d5YdYKeURkp4o6cX7L33Vvr3nh6+ktWofjaTfLKW8rJTy9P3XHtQ0zX3S3qaSdOcV7oPx2ep+Sa7mPEjzx31Se+SLJP0a/r6nlPLyUsrvllI+8grfuzb3JzEPHynp7U3TvA6vXdF5CN/HRdsT1zNOfE7zWdwin8Vd5LP4Kj+L8zl8YjjxOc3ncIt8DneRz+H8f+IjcdKCQqm8dtWOnSilnJL0C5L+edM0ZyU9W9J7Snp/Sfdpz9pyJfERTdN8gKRPlPSVpZSPusL3q6KU0pf0qZJ+fv+lqz0PR+Gq75FSyr+RtC3pp/Zfuk/Sw5qmeaKkr5X0P0spZ67Q7efN/Ul8Vz5H3f+gXtF5qHwf515aeS2Pq7k05LM4n8XHIZ/F+92qXHvdPIvzOXyiyOdwPoePQz6H97tVufa6eQ5L196z+KQFhXslPRR/P0TSW6/GjUspPe0t1E81TfNcSWqa5u1N0+w0TbMr6Qd1hS0jTdO8df/fd0j6xf37vb2Uctd+H++S9I4r2Yd9fKKkP26a5u37/bmq87CPeeO+qnuklPJUSZ8i6fOaZi85ad9G9Lf7v79Me/lJj7kS9z9i7q/2PKxI+gxJP4u+XbF5qH0ftSB74gZBPouVz+J9LMT3Lp/Fe7iaz+J8Dp848jmsfA7vYyG+d/kc3kP+P/HxOGlB4SWSHl1KuWdfEfxsSc+70jfdz4P5IUmvaZrmO/H6Xbjs0yW9Mn72MvZhrZRy2r9rr/jJK7U3/qfuX/ZUSb98pfoAdFS3qzkPwLxxP0/SZ5dSBqWUeyQ9WtIfXYkOlFI+QdIzJH1q0zSbeP2OUsry/u+P3O/DG69QH+bN/VWbh318rKQ/b5rmXvTtiszDvO+jFmBP3EDIZ7HyWbyPE//e5bO4g6vyLM7n8EIgn8PK5/A+Tvx7l8/hDvL/iY9Dc5WrQMYfSZ+kvQqWb5D0b67SPf+u9uwgfyrpT/Z/PknST0j6s/3XnyfprivYh0dqryrnKyS9ymOXdJuk50t63f6/t17huViV9LeSbsJrV3QetPegvk/SlvaUtS8+atyS/s3+/nitpE+8gn14vfbykLwnvn//2n+wv0avkPTHkv7+FezD3Lm/WvOw//qPSvqycO2Vmod538eruidu9J98FuezOJ/FN+6zOJ/Di/GTz+F8Dudz+MZ9Du+3e00+i8t+RxKJRCKRSCQSiUQikUgkzhsnnfKQSCQSiUQikUgkEolE4hpECgqJRCKRSCQSiUQikUgkLhgpKCQSiUQikfj/27FjAQAAAIBB/tZj2F8YAQBsQgEAAADYhAIAAACwCQUAAABgEwoAAADAJhQAAACALURok2fmkuXyAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 0 28043\n", + " Min thresh = 1000\n", + " Sliding\n", + "\n", + "\n", + "043s_iimage_10391571128899_CLEAN_ClassS_185-313.roi.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADYCAYAAABberBAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADeqUlEQVR4nOz9eZxmW17VCa8T8czxxJh5p7q3qGKoQkAZFBm0VVq0QcEC6YbGAUHwLURFFAfAdn5txRe1caK0GKS6wUZAW7C1ZSitlqkQSkApqoBirKJuVXEzb0bEM8Z03j8yvjvW+cWJzLz3Zt6MvPlbn098MuN5znPOPnvv82Sutddv7aquayUSiUQikUgkEolEIpFIPBes3O8GJBKJRCKRSCQSiUQikXjwkIJCIpFIJBKJRCKRSCQSieeMFBQSiUQikUgkEolEIpFIPGekoJBIJBKJRCKRSCQSiUTiOSMFhUQikUgkEolEIpFIJBLPGSkoJBKJRCKRSCQSiUQikXjOSEEh8aKjqqq3VlX1Cfe7HYlEIpE4Q1VVv1hV1e+4w2Prqqo+6Hle53l/NpFIJBKJxOVCCgqJFx11XX9YXddvut/tuBWqqnqiqqrvrKrq3af/+X3l/W5TIpFIvNRRVdVnVVX1g1VVzaqqetP9bk8ikUhcRtxtYfZ258v/FyduhRQUEol2nEj695L+x/vdkEQikXiIcF3SV0v6yvvcjkQikUicIf9fnLgQKSgkXnS4rbaqqr9aVdW3VVX1TVVV7VdV9d+qqnp1VVVfUVXV+6qqemdVVf+DffYPV1X1ttNjf76qqi8M5/7zVVU9faqg/hFXXKuq6ldV9XeqqvrlqqreW1XVP6mqatjWxrqu31vX9ddI+pF72BWJRCJxKVFV1cdUVfVDVVXdOP1O/UdVVfXCYb/79Hv4maqqvqqqqhX7/Oefflc/W1XVd1VV9Yo7uW5d199b1/W3Snr33byfRCKRuGyoqupDqqp60+n37FurqnqNvfemqqr+iP3+eVVVff/p3//T6cs/UVXVpKqq/7mqqk+oqupdVVX9hdPv5F+squoPPN/zxbbm/4sTt0IKConLgN8j6f+QtC3pxyR9l27OzScl/XVJ/9SOfZ+kT5W0IekPS/rfqqr69ZJUVdUnS/pSSb9D0gdJ+m3hOn9b0qslfeTp+09K+sv34oYSiUTiAcexpD8t6aqkj5f0iZL+WDjm90r6aEm/XtKnSfp8Saqq6tMl/QVJnyHpEUnfJ+n/fDEanUgkEg8CqqrqSvo3kr5b0qOSvljSN1dV9cG3+2xd17/19K8fUdf1uK7rf3H6++O6+Z39pKTPlfT6F3i+ROKOkIJC4jLg++q6/q66ro8kfZtu/gf0K+u6PpT0LZJeWVXVliTVdf1v67r+ufom/l/d/CL+Lafn+SxJ/6yu67fWdT2T9Ne4QFVVlaT/j6Q/Xdf19bqu9yX9TUmf/SLdYyKRSDwwqOv6LXVdv7mu66O6rn9RN4XdcyLt6ffpL+tmmcLvO339CyX9rbqu33b6vf43JX3knboUEolE4iHAx0ka6+b/dw/quv4Pkv5vnX2PPl/8pbqul6f/R/63uvl/40TiniIFhcRlwHvt73NJz9R1fWy/Sze/dFVV1e+qqurNVVVdr6rqhqTfrZtqrCS9TNI77Vz+90ckjSS95dRadkM3a8EeuZs3kkgkEi8FnJae/d9VVb2nqqo93RQFrobD/Dv2l3TzO1iSXiHp79t37XVJlW6umiUSiUTi9P+sdV2f2Gu/pBf2PflsXdfTcL6XXXRwInG3kIJC4oFBVVV9Sf9S0t+R9Fhd11uS/p1u/kdVkp6W9JR95OX292d0U5z4sLqut05/Nuu6Ht/7licSicQDh9dJerukV9V1vaGbJQxVOMa/Y99PZ7kH75T0hfZdu1XX9bCu6x+8561OJBKJBwPvlvRyz57Rze/RXzn9+1Q3F8LA43dwzu2qqtbC+fhefj7nSyTuCCkoJB4k9CT1Jf2qpKOqqn6XpP/B3v9WSX/4NORmJMtHOFWAv1Y3MxcelaSqqp6squqTLrpYVVWD0+tJUv/090QikXgYsC5pT9KkqqpfI+mLWo75c1VVbVdV9XJJXyKJutt/Iukrqqr6MEmqqmqzqqrPvJOLVlW1evpd25G0UlXV4LTWOJFIJF5K+GHdJPl/vqqqblVVn6CbmWLfcvr+j0v6jKqqRqfh4l8QPv9eSR/Qct6/VlVVr6qq36KbmWPf9gLPV5D/L05chBQUEg8MTnMP/qRuCgfPSvr9kr7T3v9/JP0DSf9R0jsk/dDpW8vTP7/s9PU3n1p4v1fSrcJq5pImp39/u87KLxKJROKljj+rm9+x+7opxraFdH2HpLfo5n9U/62kr5ekuq7/L90Mwf2W0+/an5T0u+7wup+jm9+1r9PNfJz56fUTiUTiJYO6rg8kvUY3vxufkfQ1kv5QXddvPz3kf5N0oJtE/w2Svjmc4q9KesNpaRk5Ce/Rzf8fv/v0+D/6As8Xkf8vTrSiquv6frchkbgnqKrqQ3TzP7L902CwRCKRSCQSiUTiJYVTh8M31XX91G0OTSTuOtKhkHhJoaqq33tq9drWzRWyf5NiQiKRSCQSiUQikUjcfaSgkHip4Qt1M2Ph53RzH/W2ut9EIpFIJBKJRCKRSLxA3DNBoaqqT66q6qerqnpHVVVffq+uk0g46rr+5NPdG3bquv69dV0/fb/blEjcL+T3cCKRSNx/5Hdx4l6jrus3ZblD4n7hnmQoVFW1KulnJP1OSe+S9COSfl9d1z911y+WSCQSiXPI7+FEIpG4/8jv4kQi8VLHvXIofIykd9R1/fOnKabfIunT7tG1EolEInEe+T2cSCQS9x/5XZxIJF7S6Nyj8z4p6Z32+7skfexFB1dVVZ/+qdXVVa2srMT3tbq6qqqqVFWVcFXwO6/x906nU147OTnR8fGxjo+PVdd1OW5lZaXx2ePjY52cnEiSVlZWGtfjWlyX83K8JK2urpa/cx3/HXBdSeWa/j7v+ee8HRF+DOfm+nVdN+4ztqGqKh0dHZV2cD+8F8chuln8GK5HP8fjLmp7m0OmrQ8cKysr5SceE8e27R7i+RkDH9+2v/s1vI95jfP6XLwIF82Pi+ZC23HxGrHd8Ry36teL2hvv3+evz//4bPqz5tdu67e29y+6x1v1aby3+Az48wFWV1fLs37RHJ7P58/Udf3IbS98+fCcvoclaXW8Vr/fKyu9b7mu1Xcsb3VoInFXUfV7etUH37jfzWhg70R6z0+O7nczXjJ49NcutLVycvsDW/CL7zzUM9ePb/8PwOXEc/ouzu/hRCJxWbGvZ1v/T3yvBIW2L/0Gg6mq6rWSXmu/q9/va319XcPhUG2v9/t9dbtdHR4e6uTkRJ1OR4PBQJ1OpxCHwWCgRx99VP1+X4vFQvv7+3rPe96j69ev6/j4WJI0GAw0Go3U7XZVVZWOj481nU51cHCgk5MTraysaDweazAYqNvtqtPpqNPp6OTkREdHRzo4ONB0OtVsNpN0k2RxvrqudXh4qOXy7B8BJzacs65r7e/vaz6f6+DgQJLKdVZXV3V8fKzFYiFJ6vV6Gg6HDdJDW1wEoS/A0dFReY37PDk50XA41GAw0OrqqiaTiWazWfnhfJ1Op3FPJycnOjg40PHxcRFt+v2+Op2Ojo+PdXR0pMViofl8rqOjo0LgXKhwksnrdV23ijcuFjiJPDk5Ua/X09ramvr9vlZWVsq4ra6uqt/vazgcqtfrqdvtqtvtls9xH91uV6urq+Wednd3tVwuz7WV+zo6OjrXr4vFoszDbrerXq9XjnHRCnEKguriRfw74s7x8bFWVlbU6XTKOTqdjg4PD8scPj4+bohvCGfMCa7n4otfM87Lbrerfr9fhLF4rpOTk/IsMg8PDg7K52kj/cNco430AfODzzHf/T64Tz5PPzBHaFMUjaKAiDDQ7/fV7/fLGDGHe72e1tfXtb6+Xp6P2Wymvb298kyurq7qrW996y/pwcRtv4el5nfxoLupJ1/1v+gDbhxq5ed+7F63L5EoWOmMdOPXfXj5ffbYin7iz33NfWnLh7z+j2nrZ070yKLWK976w/elDS9F/PF//TN6zdrseX32Yz7pnbc/6PLiOf2fOL+HE4nEZcX31t/e+n/ieyUovEvSy+33pyS92w+o6/r1kl4vnTkUgBOGuNrMjxMJyA7kA8LI+8fHx1oul4W88hnEA0mF3EAoIXiRsBwfH+vg4EAHBwc6Orq5GyGfa3ND+D21EZ8IyDVt8j7odDrlmn5eAPHlOggU7oio67qQZO7HnSFOqOlXFwCOj48bBA/ieXh4WM4ZV8K9P7x/IymMq8/RXUF/0kd+rtN51DgP16aNfl7uZblcarlcFvEmtpt7ciHk4OBAy+WyMf4RR0dHDddKPK+3O86do6OjxhjeyqkQxZqLwLj7vfhnGA+fk21uCd73sXTXQZt7h89xb20uFm+Hix5tzgYX0RBK+KwLIbF9UcRirvAaYqGP7a369AHAbb+HpeZ38Ua1Uw+/4z+/OK1LJAwns5k2/vmby+87L39Kv/ETP+u+tOWV/9ezOvmJt92Xa7+U8ad+6LP1/92ZPK/Pvn32DXe5NS8qntP/ifN7OJFIPGi4V4LCj0h6VVVV7y/pVyR9tqTff6sPxFIAf61NLDg8PGyUKzjp5hjeh0BL5wmKr8hLZ+KEpCIosLoKAWUlnuvGFWaIWyRVEFkndi400GaIEg4KhAFWerkuiCSO9vd6vYZTwFe3WV13Urm6utoQG+q6bqy6R6v66uqqlstlEVgODw/LebxNTuQQIXwFmuOjGNFW2sA8YKzahCEXmiCJTv5XVlZ0eHhYnCSLxeIcCWX8I7E9OjrSbDbTfD5vzI02QJxjWYhfg9fod9qB0OOkOTobOMbPE+Gvx2cgzh9cD7Q9ljT4tZ30c5zPe3dBcC5EJ+ZhFIrcneAOCx/r6G6I7/vcYn61laPwLEkqz8JyudRsNitulduVrTwAeM7fw4nEZcHRO9+lnU+9P9d+fqb8xO3wqj/0X573Z1frB9r6n9/FiUTiJY17IijUdX1UVdWfkPRdklYlfUNd12+91Wew4Xe7Xa2srDTs1qurq8W+3uv1yme8tGAwGDRIQm2lBxBe3mclv6qqcj0nKN1ut5zXiS5k5fDwsGH1ltQghFjwEQIccVXd2+sEkrZg0+a+EVKcpNNXENyLVsYXi0WDgHW73cZnyVSIogG/Q/S87txJsAs/iC9OqvkM/RP7gj5g9Zh+cAeI91kUANrcCUdHR1oulw2x4/DwUIvFoogglC9wDvreV+y51+VyqclkosPDwyJcxdV1HBsuhrnARbucrDKvINxtroe4wt7mBPDzRcEounxcpEBs8JV7EEtObuWwaWuzt4kfrhXPEcc5ujj8d4Q17pU/uZcoSHEv/lzS53xXTCaTRgnNgywoPJ/v4UQikUjcXeR3cSKReKnjXjkUVNf1v5P07+70eAinE+xIdHq9nvr9frEkQwYgDPznH7I4m81KLbSXSvC716j7+5BiSDKk5fDwsOQIeJsh+L4aHkm9/+4ruBG+2h7dFpzHBYVY4+7n93IFL3GAPHMs77vDwcsH3K7ubg3ulWtD1Jw0Q6wRgxCLGGPOyX1x/kh+41zh8+4wiS4XVrxxIHDcwcFBERE8O8EdLbEfERMWi0UZo+iE4O/MkWjJB8wTv08vB3AhgHtkrreVJjBe8Tp+LvrWRQ53rHCdmGlAP/tccSeA515EMHe8X7mWOx78nnie4/dAvO94XW+XPwvR8RLnTVsZkKRzffCg4rl+DycSiUTi7iO/ixOJxEsZ90xQeK6I9mJfpYyrppF8ebibdFNQ4MfJvxMEX/12gs454mq/r6xCnv18kEpIX3QeXLTS2fY6n6Ftsd3+d//x8oRYFhHbf9GqM+elz/2evL1OaL3cgPecdHqmRXQROJmnNMPP5+MRP+vukZjbwPzAhYAjgL5BZIikm+u67Z75wXniuOGGcfLvfelzxYUp7pWV+FhmEB0ETvxj37f1qQtX9JH3FffV1gdt8zKKCS7mcW2/ViTk7jBoKz3iHv2eougQ2+mlFX5cvN8oGrrTwctMvETlVg6QRCKRSCQSiUQicYkEBel88BpkC0IqqbEy7rXU7GaA1Z5VYq/FdoLK6n+/35ekc4TTieDq6mqjDr/f7zdKDSQ1CMmtHAh+r5HAOrzOO9rPId58FiGBsogYeuf9GuvgnVRKajgF6JcokjA2XMMJs1vIIdlO6Ph8m7uCtkRiyt/9ftoEDd7j3O5E4Ly4Epy8exu8vMP7PK6ux751QcGPpZ98B5C2nQ7ayLa3zXMBvH84h4+j53j4nImlDPSj31cUTPxPb4sLVD6vGA8v8fD7aOs/v6/43Phc8XnKub1dUUjw9re5XZjXbYIC8/5OyjoSiUQikUgkEomHFZdGUMAa70QLwu/bIcatEvv9vra2trS5uSlJpdSB1VMIGyIAwIYfA/4kFRGD60Iu3HXgQZBOsJz4gbYVT78HEMsknEBxL15a4aSYtrid3d0EhN15/7mVfWWlfdtJJ3MQU8QUd3kgisxmMy0Wi5Jb4G1A6KEkxd0IEU5YgY+fE1BIJeNS13UjKNJJtgd0usjiY9W2yk/fxp023JnibgIP9FxZWSklDt4GJ8M+X124cUt+FKviqrvPvdhuzud/p39cyOCah4eHDWdQnOdRjKHv25wvfu7Y74hPHBvdCXEORqGMfvDzutPFryOpIUzymSgWMU+9bxKJRCKRSCQSicR5XBpBAVIlqQgJLiZEcoyYMBqNNBqNSpDiYrHQbHZzn2NCHofDYSP7wOvEIR9xdXwwGJxzB7ht3Umfr+xyHNeIZRWRKLs1vN/vn7N5e8Cct4+/t+UrxFVczsPxnsPghM9dCaymu+Didfcc69tNQirbVqoh9AgJ0bUQXRh+j+Aiou+CDSTQg/b4LHPHxYgoKkQnhbtlLkJ0p0CC6RcP8nTxwR0xTvb9vNHe78cyhrzv5NvFn9hvPo/dQeDuBD7rIpc7H6Iw1vaaCx6xnxE0vB3xPv2Z8c+7yMHx0SEB2nITXNiLbSIrw+dpIpFIJBKJRCKRaMelERRiTbSvfvd6vWIZd5t9r9fTYDBQr9fT4eGhJpOJ9vf3NZ/PSykD5+l2u5LOVuM9mwFy4W6AWJePa8Gt7d5uX1nm+FjDHQmy37vvZgDchu/ChRPHSOyjUOJk0ssoXBDxNkfLfywD4Dwuqnh7nRxG4SLa6922Ttu8333F20mjryi37WoBWWWVORJaX1V3Z4OPhR9DP0dyGUlqdBDE49wh0nYun98+5j4Ofk3fBSHa/uOqvTsA2vqgrb1+Lz5+IJY0+N/9vTbE4+P4gZgr0ZbD0XYP8fn1fmsrCWJ8PHPDHROJRCKRSCQSiUTiPC6NoOArmfy+urpanAqQXU+BZyvJqqo0nU61v7+vGzdu6OjoqHwGYtvtds/V3Xud963Ij6RGnbuvhPrfPRjSSR2/t4HXERScdEvNvAAXFLDMHx+fbTEIGZaaWRNOyLxEwa/vhB7Q35HISmdk1ompuzTodydrcSU6kk7azzygrMSJr1v167oufe7nOjo6KtkJbBHqiGQ6kmdEENoNnKT7udrIeazl51xO7GOdf2yPn4dzRJIf2+/njGJDG8FuExP4sy0jwd0R/uxc9Pz4cbHv4jxoK13xNsaAy7Y23kqoic+v9xMukribxu2+FxKJRCKRSCQSiYcZl0JQ8FpzSQ3BoN/vF4eBb3cITk5ONJ/PNZlMStiddLN8AMEBotHtdkstO5/12nOuTekBluw7BSvbnAc48fF6d0B+AaIHtmtyCSDmvnLu5RsnJycNUcHvz8kR1/J+aasTR9xhN4RoJaf0gXPyu2/N2JYpgTvExRlcCJGA037GwEm3Bz4iZLibg3KHNreEE9ZI0P06LoLQbs7F7/z4dpqIBU50/V6dkEfXios27tZwIYU2en/EsgCOiffgu4BcRJSjQ+Z2iKQ/lgh5yUw8p2eStLXB2xmdRm0iV4Q7cviMi3PuhMHR4vP9di6LRCKRSCQSiUTiYcelERS8dv2ikgMngxA5ap09zZ9VTH4Gg0FZ3UeU8HA2/2x0StC+Nou1EylfOY2roMDFBA+OY5Xdd0dwUuPig69yOzmNq65eiuF97PkR/hkn6k7OuR8njLgjnKA6IlH31fNer1fcDZ6i74JC7Dsn+b7lIm10cSGWIPCahy16DgBtcPIZx1pSccZcJH5Eku7lI3H1vU04iefwuc64uzvH3R+cw/uS8fV+iM4Cb3ubWyGu9kfXTVu2gR9Hf8Vr+X3HPo394fOWLJI2V0W8Rgz0jOf2fmh77hKJRCKRSCQSicTtcSkEBam5d30MxvNAP3YPkNRYdXYiDPGI53Ri5QF9nBOi7bsW+AppDL2Tzlu4LyLFfkyn02m4LfgM5LYtq6BtpRQyJKlB7p2cRbGGVd4YPNi22usr3PSBtxmC70Qz5hV4voGPTRuB5ZrRVh8t83FFP7og2sSfKAJFEoqLwUlrG1GV1Ai2jGMbj43jFf9kvNqOvcjdEPsLAh3PH50pUcjwPmxzLfixcU55/0THRTxHmwAQ7z86LngvioOxf+J88Lb5/PXz+3357h9tu4q0jU0ikUgkEolEIpG4iUslKHigoHRGLiDfy+VS8/lci8VC0hmxizXk2KI5Jtq/sdwvl8uynSHEGFIpqVEuEFfUQSSx3Iv/6fBdJTgm2ux9lwC3vMf+chLJqru/7ySSfvUMBc7ZtusE53ahJrbJrfRtOyM4IfQxjiTYz+lheJFEOpxExpr3KPZ4eyJ5pn8QWuIq+EWr9H6/flybkBCFpkiy/RqerRDnA+9HZ0KbI8afB58DsY1txDyKB/G1OAZR/IkCQUQUAC4KkOTcXg4Vx7JNDLmVcyOKPpQ7xPDHRCKRSCQSiUQicXtcCkGhqs6s8E5WPU+An8lkooODA62srKjX6zVs6nGV02voPXCNXAYPOERocLIda6l5zbdXlM5Ipa/887m4mu3Ex8n2YrHQYrFoZDxE+JaHviofdznw6/u5yE/gmm0kyld4PRiP99wx4MKIl5DwOuJMJLfueuAYiHLcfjOSwLiDRRR4YrlKLCeIn0OA6na7hbg6mW2z8fsxbeTc+xIRx7Mi2o5rI+PRxRHLCDwwM16fsfZz+TnbyHNbG9p+b3MFXORQ8Pb7fIvnpW0uKHU6HfX7/TIGPKtxPGPYp//OWPuuLlz/5ORsN5C48wPHJBKJRCKRSCQSiYtxqQQFD3BrsyUvl8tCSDzdn2MgBHF7O+ruWTHvdruFvBDeB6GsqrOMAOmMMM3n8xKU2GZ3p91eFnERSXVi4/conZUVuPPhIpKGY8DD7yCu7sjwvuF+Yz9H4uer/k4YoxPDiWq8DwhtJHG+ssxuHPTdwcFBQ4S5iNzGlWbed3hfexBkJI69Xk+9Xq8Q0MPDw4bVPjoEuKeYARFFAt/K08n/RcTV+9cFLEmNMh5/H7SVirSVCcQ+8DbFHRS8bVE4AdFVFEWnKAC0uSDawPxB+PNSIMetBAyuT9/5vXG+mFeSSCQSiUQikUgk7hyXRlDw0DVCC6VmwOHq6mpxJTj5iTsZOCiZYCW/0+loMBiU9/kMxMgJEcJDG5mJxM5XzbkWJMYJZSR83m5W+WN2Aa/RN04KOT/nojwEsuQ7INBXft8uyEgq5Q5RjIiiCOeAgMeVdBdSnEhCDr3tXJ+2tokJft3Yd7463XacOyDoy1sRWxcD+HsUM2KZTRzbNuEoOieiUNN2bDwm9r0fH8en7d7ieLSVLdwK7gyIn7tdeYP3b7yX2PfuAmoTxtr66aL2xudI0i3PmUgkEolEIpFIJO4Ml0ZQcOLXRoIoceh0Ojo4OGjsFoBg0Eb4pTPywFaUg8Ggkdofj5eauyPEXIPYNrfV81m38vtxECUcBbRPUsMh0VbKEG3efi3a6eTJLeIuVvDjbfA2+gpurNWP8GNZ5fZx9OvhQqBNrGx7eYuLA22kmc+5G4VxioSYOYUw5Of0czmc2Lf92eaIiWBMfFzisZ5HEc8d2wPJ9n5oczm0/cR7vqjN/hxc5EaI57roPHe60n+Ry8SFGH+2L5p/8VzxfR97FyozNyGRSCQSiUQikXhhuBSCgnSTYGM9J3QRQlpVlYbDYSGS7MggqewdHx0A7l6AsHqtvJML6YykHh0dFeFhZWWllAh4qQAuiYjoGPCsAnIffCcBSLTX17tV/KJsBPrG2yndDK10shcFFgi93zMBlvSftymGNfqqOq/5yjn3H4m3uyo4twstBwcH5fqeYYGwEoWPi3IS3BESRSgvY4mugDhnPNST63lftq1sx/6hP7zG38ltzP5w0YDztLWNPmvLvmgrO4gCQXQFtLkZovvG+znmgbTNh4hblTq0uRO4Fp/zvr6V4HE7l4KLOO5sea6uh0QikUgkEolEInETl0JQqKpK/X5fg8FAw+GwuA74j32n09FwOCxEz4PUnHhyrtXVVQ0Gg8ZWitJNojgcDjUcDjWfzxtZB5Gw8UNdP7XYiAHevpWVFQ0Gg3P5Cm0BgLweV+sRVNyZ4ETU+4r3V1ZWSsAk50ZU4H57vV65Jn+62OF959dzEkZeRZvjwp0SbTX7nkEAUW4L0eTeIpm9iNx5O9qcJjgEfFcJdz/4dfxcVXUzz8PvjzGJ+Q+R5HqJhI9zJMRV1dzaFCeFk9s2ksuxCBy0zYn9RY4C/93vIYox8TNt84/X2vIWLnJZxDGTLnaXxD7w7wE+F0ucYhtc0InHXNQ3sb2JRCKRSCQSiUTi1rgUgoJ0Rn59VV9q7qAAOaZcIVqYIfQ4HSCBXlLAa4gEEOY2gse2kqxucxxt8IwCD3X0lf5IxljJRqyADOI24N6jGMHnV1dXy44UTqSjQOFhhLwfSbWvmvO6uwm4puOi1XZHPJ/3ga+ixxX1Nvg14sp2G9lts/y3nTuS8OguaQv7u5Xd3wk/Yxzf82wAv3fu00nw7YguQo0T6ZhZgfOlrd2x32IgpF/nIiJ+kdOgDS4qXHR/F8Gf8+fymefyeiKRSCQSiUQikXjueG7/SzdUVfXyqqr+Y1VVb6uq6q1VVX3J6es7VVV9T1VVP3v65/YdnKuR9u8r+JGMQSz4vdPpNMgtoYu+DWUkx773PLb/i3YWoB0eIIgY4Kv7/nlEDOz9iBZO+Hy7StpGSUYUOLyfEDY8NJDrEchIezgPPzEk0IULJ1ptoYXed37vkFEny74yH3eLcNJO233lPZLU6AhwMeNW7XTcTgxwASVa4uNKfXQmtI2PH+/wsYgEnv6KY3I7EcOvHc8ZAzzbzkO/x51L2u7zooDJW7XR0Sb23AludeytrvuwiAd387s4kUgkEs8d+T2cSCQeZjxvQUHSkaQ/U9f1h0j6OEl/vKqqD5X05ZLeWNf1qyS98fT3W4ISBTILKGlwwu2rolj9EQ4grtJNJ8NoNGpsQ+l5BEdHR1osFlosFsXVEN0RUnOnBVZI+aEMIlrZOf/h4aEWi0VZIaZko9Pp6Pj4WIvForEFJn0Qf9qIFOQP4SEScXIDuKd+v19+oshCX0D6o+siihdO5OmbKAa4OyOez+HHcR3afZGwAEH2hP4oFvk84cfFm5gDcXJyUsYiiioxlPIiV4T/PboMOJY+ckEhOkzifUXRhPO6E6VNpLmoz3i9bb55XoPfg1+jLTjS2xlxO0Hkdrid+PB8zhkFovj35yJ0XCLcte/iRCKRSDwv5PdwIpF4aPG8Sx7qun5a0tOnf9+vquptkp6U9GmSPuH0sDdIepOkL7uTc5Kd4GRfatqucStIZ+IAr7ODA+KArzp7oOPh4aGm02nZAYAQPwgyJG65XOrg4ECSNBqNSrkBhA6hod/vF3Eh5gpAlFdWVhqkzrMT2kouLlr55v7b6t0RUHAnIDrQV75lYySm/B5zG5zw8prfXySgXpvP+Wmzr3K3rZTTD06so1CAQEHbuL9IBDmOXQJikKK7RWJ7okvGwwijg8HHyM/j99pW3hD7NH7W+9j72vurbcXf/94mAsXPuFhwJ84PFwh8fHhuvKSBnVXuBjifizVtx7T1p6PtXlyUqarq3Daolx334rs4kUgkEneO/B5OJBIPM+5KhkJVVa+U9FGSfljSY6dfrKrr+umqqh69k3NAZhEIvMTAhQGIMkQxrqb7LgFO/iGqiBZ+PpwREMeVlZXiQODHsxq8Pb7VY9v7MajQj6EUQtK5cgQnvrGsgutCrqIdneP8fYf3i+/6wHVpW5sAEInWrVaP/R68PCWuuPuuGFzTxQs+42Q3rpq3tcP7OToGogDQ1vbodvBzxv6I7pa21X4XW9rawbGMIePu5N3LS9pEkVu5BSJiv8V79mMQOdy1Ec/Z5uK4SDDxP/3aUXzxtlzkdoiixq3gY+Kv+dyL7z9IuBvfxYlEIpF4/sjv4UQi8bDhBQsKVVWNJf1LSX+qruu9O7UMV1X1WkmvlaR+vy/prFxAUrHaIyqwyt3tdstxXqPvOQFS00LO5yFmLihAQmL4YVzR5jhIk7eL6zlh9PPH9/ndyain90tqiBhOmGK9O4IEr/M5J1dtK+rSrcm0X+8iMeF2iPcX33NRxcmcCxm3IuIuKlx0H74yT1vaCKW3yT/vRJ/546JGGylHJAG+au+kOz4rkchHMYNz+Y4bF/XPRXkHFyHOzzZ3RRuhj3+PfXvR+/He/XO3+g656F7u5HunTXjyOfRcgx8vG+7Gd/FAo3vXwEQikXiJI7+HE4nEw4gXJChUVdXVzS/Ob67r+l+dvvzeqqqeOFVin5D0vrbP1nX9ekmvl6TNzc262+0WMtzv90spgpcEEFroYgL2ZLaVjETUVyw9J+C0/arruuQdeC25kxvfrs5t45IapO4iZ4K7F9q2vEMs8dVsP89pfzVW8mmPZyrQL04w3V4fV/t9NRxiFYMdaQdtuJ0I4b/HVXrCLd2CHwWCKCw4iY/OkDYiGMUT7tU/s7q6qoODg3PkOW6bSR+RwUFbDg4OGnPFyzQAQoy7SaI4Ee/bx15qimrcgz8HcW5zXeZTnGt+rYucCS5C+fna3AsXjX98LwpiPlYuurWd1+/tdte5E3iw6kWOhwcRd+u7eKPaefA7I5FIJO4D8ns4kUg8rHjegkJ183//Xy/pbXVd/z176zslfa6krzz98ztud67V1VUNh8OyHaKkEqpIDoBvy3h8fKzJZKL9/X3NZjNVVdUI9IN8LpfLIha0EZeDg4NGvTRkA2LpJDFuA0k7gWc+QOgoKYAISmqc110OrDhzjHTTueEku41s+o4BTr4RPvwa3Lfb1jlPZbXjTrS9dOIiUhnLCfhsrPuv67pkUrQJCvQT/RwJP/fjYoULBu7yiLZ8RJdut6u6rhuiEu2MO1f4fcaxZ076PXr/uDOGvo0ZDk5uYxBj2/n9ecCB4mJUFLu8TdE50FbK0ua6aBM7LnIXROHiouwIhx8T+9FxEfGP99qG2zkfHnRh4W5+FycSiUTiuSO/hxOJxMOMF+JQ+M2SPkfSf6uq6sdPX/sLuvml+a1VVX2BpF+W9Jm3OxGEGoIsNcMKEQsgYLPZrGQc+Oo65AviRqji8fGxut2upLOVYyf7Jycn6vV65X3pLNPBMwYge34d/4yLDHG12YPq+JyHJ+KUYHcL7sd3BIDU+i4PLjY4caNv2ogZwA0CIfRV+7hyHsUEJ91ttfP0ia+U+3GRnMbV6+ii8PcjCWZuxNV0+oE5xBxz4YRzuTuBc7VlL3BvvstGJMo4EyKRbnNhtN2nC0VeehBFp+hqcQGJ60ZxxEl1mxDg70WBJooEsa/5uz+LPi9jO/x17y8XxXyutBH+NsdEG/x6bQ6hBxx37bs4kUgkEs8L+T2cSCQeWryQXR6+X9JF/xP/xOdyLicvBPd5+JyTZ4IbIdeQASdXXg7ByrDU3C0ihhG2iQFtuzJwHv8TQcRdCMvlshGkJzWdAVwTknh8fKzlclnaGy39vqLtK9VtZRW0LboI/D3aitAStyHk7xHu9vBV7zbBIa46RyLHNSLRpr1OUJ34eoaBz5W2lXnej/kaMVgxEnrIcFt7Xezi81FYiPdOv8exaSO2tMHvyYUsJ+JO2qMgE8fA2xWJOK/7ubzffS5f5CaI7gu/H2/TRffhbWibM3E+3qmjoM21cVHf++8PimPhbn4XJxKJROK5I7+HE4nEw4y7ssvDC0UkUqy+IiYMBoNCuufzuZbLZcOCHsUE6WY5w8HBgZbL5bmdEarqzN4uNQPsJDUcBDGHwVevvf2+iwHBj4eHh+eECq4XSenh4aEODg7OrXbHa9MnOCpwADg8zNKvG7MZuL6LCZEIRsLIqvHtVrtjdoCTw7iVYFzRjpkUfh5f8W77vAsQ8X4RpLz8IB7rLpm2DAIvnfDPkgHCZyJpjsJJJPXxOK5Dv0dC7O4FJ+lxzNuIe5tIEkl9dOrE8orojIjPsDssXMDhOrG93o44nrGNLlzFe/Xf2/o19k+8fvzsgyIqJBKJRCKRSCQS9wOXQlCQmv/x95VMLwk4PDzUfD5vkBw+c3h4WD7b7XZL6YB0kySORqNzx/HZaC+Xmiv2wFe5I3BQHB0dabFYaLFYFBdBTPxHDIC44qaYzWYN14LU3A1hMBiU8g/I5kUE0bMPAMf5/ZL14LkLcaWb8pDlctkg9PE6LjbwWT7vhD2KMr4KjwOFcfEwxLjS7/frgoOPuzs7Lgoo5JzMN+aWu2BoD33vIpaX00B64zzxLAtvv7fP+yI6BGKeggsw7iDwOYN442GlXn4Sc0D8vDwrLib4vcW5w48HqTLWXmLi7os4P+lz366VvuOcbQ6G6Da5XYnJRffsSCEhkUgkEolEIpG4PS6NoBDhogLuBIht/M++uwJOTk6KO8CDB3u9XiE/kBaISq/XKzX2EIu4ZaULDk5apSa5o43kNjhR8XN6W2K9uJ8b8gaJjaF8TqrcqeCkkr7zIEhfgXZSFlfQvewj9kW07juR87p7/xzE0NuLs+Po6KjkONBX7hLxcfeV7ig4sBLOdd114S4K3m+7r7byBW+TpIaA4vOjbfXcXQUucESS6/3q70VHgve5h1j6e95enqG2FX+H90ebO8PzTDinlxY5gfdrxnIHP6fPWZ/PLuJwH8ydKPj4Ofzc0d0Sj7mVcyGeO5FIJBKJRCKRSDRxaQQF/4+8kzkn8XH7QD4HkcFqDiGs61qdTkf9fr8Q00h8PbAvrny7vZu/OwGPq58QHNpxkbU/BijivuB3X4WlTb5K68TVV3OdAPqqsW+vGVdqDw8PGw4CX0GP5Rd+D9F+Hgkt7YurxAgiPm7uQsBBwrVi2YQTcy9jiIJI22p+FBMivO1tZNpzDdpKKryPIjHlPNEV4eKH938UotpKGnz8o0hCm6KbIooeLlzEsfc+YCxwaDAPmfMeJOr5H37/F5WBcEwUtnDz+PPJ88N1ozPD28rPRdtnxjHxOebvpVshkUgkEolEIpFox6UQFHw13V+TzlZKpfPp737cYrGQdJN89fv9hv16bW2tnAcC5lv/+Q4S3ha3wTtpYTeGNiECMsRn3C7v9eQuKPBn28o59+TCiNSsbY/5C+4swDEBUXeSV9dn4ZFcMzox/FhJDcLI+dvG7iJi3+/3W7fc9F01XMhpEy2cYEfngYsmbX3J7xetzDtJj8KTb7EZ+8z7FqLt54sE9qIV+9ieKEL4ajtE/ujoqLSRY1wA8Dlz0Xlpt5cX+T16dkdbIKg/Kz4/4rzysUVY4n58/GkLGSo+Z7yEwstC/Nnjx/s/tsnnqc9FP9a/fxKJRCKRSCQSiUQTl0JQODk50WKx0HK5LDs4SFKv12usuMcVZrd8S2qsdEMshsOhOp2ODg8PtVgsNJ/PdXh4WIQHX/WH8MfdGCBTZCPMZrNGyYSjrS6dDIe6rhvZDhGxZMHdEV6SQZ6B7wpBAKU7OCCbsWbeXRGxdMNXs9va6Rb6uKJLTb2vjhP6yH14DgTnmUwmmkwm54IRGRcnv21iQHQS4HSQVEgp/RbJrMNdHW2r/lyLY2J5grcHcsw5yDHwLAN3Wvh1biV2RLu/k37vC8g952be+Y4n0a3geSXcn8+/0WikwWBQnhvfepW5FcWmqqpK/0cxg+eVth0cHJTjcSZEAcrnV1tZhYsoCD8u3uBUis94nMfuamEuJRKJRCKRSCQSiSYujaAwn881n891cHBQXvdVbrfTO4GQzkoT3AIPAffgQwSBk5OT8r4TFl+Z9pIGyI/U3FLSQ+MgVUdHR40tLp08x1IIyJATf+67rutCrAaDgYbDobrdbhFdJpOJDg4OGp9HAHCy6eelrz3rIZLxuBIeXQu0jTFwshUJOOfz+/UyFMIMF4tFESq4X8bHz9dWSgBJjvkHXJs54FkQvjLupQttc4r2e5aDj3ksk+E80cEQV/VdjPB+9TIKn/9R7Giz8Le133M03KUS3RCUF+CuoA85F2LQ2tpaIxCUsWOO07fch+9UEV0f0Z3A8f1+v8wP2sTcjW4mf558rnp/eoikl2k43EXjv0dxJ5FIJBKJRCKRSJzhUggKrFLy4wTKSRPH8rsTDSfDvnos6dx2k1LTus+qNgQckuyr8bGsIZJnX/mGkLn1GkLK8S5iOLGK5QZelgFBpMSB+4l95VZ4X5Hmei5CgBiO1xbSGLMIOBfvxxyGtrp/X4EeDAat/YTIwzzwPo5thBxG54T3c/ws9+D3flEGQ9t9+9zzPo9CE8f5DgUc626QCCezPu9cVPC2REHB20wfURIT5zFzw8UAruXtxy0wGAzOhUp6ZgFjhiDmrphYluOOC8bBdzHh78xb/6z3lYsA7pCgHdybCwrxc1FIi32USCQSiUQikUgkzuNSCAqQDYjyyspKsUG7vZxjozXf/9Pvq52AFX3cCU4wYnAbZFs6W+WN20o6AXHCy3mAkyMnWpHc8xNt6E703KqN6MH9OCGjPyiLkJr2ds8qcALqfejuBc8HcMKOsEEehY+DE8xYFoFAMhwONRgMGi6Ofr9fVsrdYUH/uljgK/WR1PoYOWnnNQ8y9PKHuCLPOMTPxxVwP68LNYwbxNoFAd9O1Ff0vb0+52PwJu2Kz0EUQ1yoi0KICxK0xwUuFxModRgMBsVZA2I7aDv5B15C4tkSOFzoQ5wruFNwJ8TSBP/T3UsuargA4c9RHMs291Gcs4lEIpFIJBKJRKIdl0JQgFiQC1BVVckccKIn3SQCrGBDsvr9fnE5LBaLBulgVdRXqzudjgaDwbkEfF9dlpq29FiW0EY4nIhDjrBuEyTnq6hOlNzaDQHyLSI592Qy0XQ6LVkTToollVwFgiMhhU4uo83f7f1uTff20ocuvPjOEd52X5l2koltfn19Xevr6+r3+zo4OND6+noRkehH2umryU7iXVxB8Ol2uxqNRkWccjHA50/MEYghjzFrwj/L+07w+T2OrzstfL6QD8AcIBfAiTnCj4sfsdTBMybaBIm4naPnVnB/Eb6q7/N4NBppY2NDa2trDbcB84vPLBaL8tp4PFan0ynPpaTyrPoz5o6g4XB4LvgxlgW54NftdltFAB9XPxfjFZ1P3h6fYykqJBKJRCKRSCQSF+PSCArT6bRkKPR6vUKu+v2+qqoqxIgVcXcVeJAcK5x8DrDyDdxh4JkJLl5wXKx753VfhSfgEFI5Go00Go0a+QGRrPC6kzwnOhBoCBlEzldfEQsgS22lGe5acMLF/bvd27eRdEeC5xPEfol9zPj0er0GWe71elpbW9POzo7W1tYKAWX1nB0neI3gS86NiOCuCQjvYDAouwHQxtjPvvLvZRnRmeDOA+7V+xlRIs4N+tBLBBAnfBcS2iyd7ZLh89pf9wwEnxc+hzkv89vLYtxpEstQEBn4iePPHEeA29raKiJQnAeIIJyTMYmihbtMmL/0LYJTLF+Ku5l4GUOv1yuCQ3RxxHITH1cX0eJc4buFe0okEolEIpFIJBLtuDSCgpMYr6Gm5pnVVkmFNLIy21aL7kRROlvNlM7KJvhMTHz3cznp8FVk34IPwsfuEVi9PfeA4yJYQW0jL+zewAq1kyt3MXBPsfbb+yhuXci1/T5j/b87KXwlPIbiuaXcLet+PcSE7e1tbWxsNAQfiGdd10U44dxOXLnPWOYAeWdl+6KVZW+rf57Va3cHeImFuzyisyT2Jb/H3SW8HMFLWKL1Ps5jxtLnq99PHCvvI9+pIjoxnJR7eKnPaYQUSh7G4/G5coKYDeLZB7GvvLTA2+TOD98tAuBK4If7oHzGxR/aQV+09WlbLoo/57GsIpG4zFj9sA/WL376lfvdjETinuLg6998v5uQSCQSiQtwaQQFiCyroaw2s2rqFmtEhrjKzO/Y4EF0J0QBIdalRzLitn1+j4KEW8t994hon44rtrQzOgh4DQu5OwT8dz7vzgXuJWZJeB9xH5yP4922zyq6E0a3nDtB5p7ZjYL2I/j0ej2tr6/r6tWrxQoPcDIcHx9rOp02MgjoXw9/ZEz5obQEISOWBnjJBWPiq+8QfM7tYhHXagv7c8HEBQGEHsYrEui297wNuDBccHB3gc9HJ/7M/dhGd9P4Pbig0u12G24Srok4tra2prW1teIQ8G056W/uzXc28bIYnxfcs2eHuKBAf3mIqOdP+LhFd48/t95XbWPlryNicI9tJTOJxGVB5/1foXp1Rb/yO6/op/7419zv5iQS9xQf852/er+bkEgkEokLcCkEBQgrZGRjY6OQjcViUXZO4D/4XisNmRoMBsXJEIkeZNeJvQsC/E5bnLz6617W4GUXXssPmfLwOg/V88A7L9WgrMFXTiFtVVVpMBiUz0ZRgcyBtpyHaM0H8d4knbPVRzLGMe4k8QC94XCora2tMl6z2UxHR0dldXtra6uUO7hzwrfZhNR6YKZnKzjR9dVz330g2vu97MNDGyGxiFf0hedT0EeMlQdacg5KdLgeln/cCe508HwA7gci7qv93n4vCfBx9Xnq98l79B+CgYdnUh7kY4iow/wajUba3NzUlStXtLOzo06no9lsVnI6PItAOhMD4/lcLIyCQXxO+RzzOAp9lFIw7tyLfx/4s80c875om//+XeDfL7EEKpG4DFgZDPSP3vTNev/u+H43JZFIJBKJxEOOSyEoSCq29dFo1FjZd9s2q+NOyPkMhF9So/ZeOh+85qQGdwHn99Vkr79GTIAkIXjwORcuEBOcSPouDU54cV9MJhMdHR01whmxd0O23eEAScQZ4QTMt4t0whlLHoATN+6btvs121waOBlGo5G2trY0Ho9Lcv/JyUmpvX/kkUf02GOPFeeG2+65Pz7HvbkDxFfevcSB1XM/lnY5uY6ZAPQhv3t2QrxXL8/wP91x4PMNIckJMyUQXu4QQzWjeOP5DDFXILbTnxHpLOTT3Q0+7/1ZYLz9ulVVaWNjQ9vb29rZ2dHW1lZxTbgTx4Wxuq4bWz363JfOHCLenlh64A4ez5fg9cFgoNFoVO4PsYl+xg3jzqC4A4XfI+3iGu7sQIRIJO47Vlb1yjf39EGj90mSVrWnpzrD+9yoRCKRSCQSiUsiKFRVpeFwWKzrnkngOwb4Kj8rq4PBQMPhUMvlshEk6ITYiaKv5nqtua/wVlVViBEr6ZBdSQ0CynlI7m8LgfPQOOCiAfkQTlZjMCD5DO5OkNTY0cAFGF/VdfLrpIr7h9h639F/Xqrh4o5bx1mZZvxob6fT0Wg00ng81ng81nA4bFjvGS/fCtMt7fSPuzzqui4CBuSy3++fWw13AcX72//OdXAYeM6Ek2F3BsRgSxclvG/4k2OcgDOXpTOS7TuBxPa6aMGzEbMsXNySVLbgpB0upHAv9IGXX7hYx24cuD8ODg60XC7LXPHQTvollnN43gV94G4B718yQ/zZpJSHfuAZ8zKdWKrjoYpewnER/HvC+99dIYnE/cLqqz5AP/tHHtP/8cTf0aOra/7OfWtTIpFIJBKJBLg0ggKrjtKZrZ7/zHuSeyQ92N1dGIhW92gjl9QgyTgBnExAjGjPcrksq+QQTd++Lm51J505KhAMsL97G3j/6OioXBMRg/cREjxkETs9W0E6ofSyDq//bythgIhDEiPB9K0LvZzCRQrGgNIByj/4WVtbK9kKTsI9vwFhJNbSu1hCXw+HQ62trWk0GmltbU0rKyuaz+flPlwUibZ6zgG5RQgCuFX8HqNTImYbQGJjPgaENDoM6Ff6AfLPfHLXgs8vwkhxykTi7s8Gwg6gjZHk+xzn+WFMEYHISVgsFkW4w3HBZ5mXLlrEuehzApEF94cTehdMfM7xfEWBMboKLrpv2sTYtLVTajpD2lwdicSLhc5TT+q9n/CYfvZzXidp7bbHJxKJRCKRSLzYuBT/W+Y/7u5MgGzgRDg4OGgQIF6HyHe73bK6CZyIRkDGIaxxlTOKApPJpLSL93EwQPh8pdVt/wgD/O6ZBQgCkgoh9xVWjpOaifWICOQU8H4MJHTnhLeHvvHPQgq9fILrc14nstJZ3TwZCRzv2Qnj8biQ9qqqtL6+XoIYCWGkbbhOXMjwFfFut1vEBHenOGKJB3PB6/Tddg8xdpeDCxO8h6CFYBJ3C/B+8bYgsvj8cGcD7oS2LABvIzsaxPNzf5G0M6+9D2J/kOPAnKVkZ3Nzs7g/mG9s78lYIORxDgSFi547zhf73/se4c7Li+hbSpwQCBBhvJzFnUOSyvWiCOP94CGj/ozxXCcS9ws//bcf1Tv++9fd72YkEolEIpFIXIgXLChUVbUq6Ucl/Upd159aVdWOpH8h6ZWSflHSZ9V1/eztzgNxgNDhWGAlc7lcFsGA3QSGw2Gpl8aO7anyEJa2HIb5fN5Y2UcccIK4XC61WCw0m81KYCKrqZAQBA1qup1wSjdXvBeLhfb397VcLhslHOQncH3pzGrtJAjyB6GjnwgP5HNRCIg7Cvj90s64/aX300XlDqfjXrIB3KHAmFGO4Mf2ej1tbW1pfX1dVVVpsVgUdwYCEvfBeLqrgxIKiCnHc28EU3ob3aWBAMCqOMTbCT196GIB4+SBhQgfZDn4SjrzwssW3PkRXRPshhCzEegzAi/r+mx3hVjGQ5vccTGbzRp94aIS52Bcj4+PiwDEjg7uDEJw8P7r9/tFZOPe3PXjAh1iAJ+lb6uqKv2LAyLOYxcLED945l1M4Fms67p8b/Bc+f1yTuC7c1D+wjEPkqBwt76LE5cAVaUP/pGOvuaRfygpgxcTiQcF+T2cSCQeRqzc/pDb4kskvc1+/3JJb6zr+lWS3nj6+23hZNVT6SEqvrsClvfhcFh2d0BwiPb9GPoHcVksFuX4tvpqjqVcweu6ITsxQT9mMyBIuHhx0eqrEyYHpIvPHB4elvPGVW3vR19tjYKBEz//u1vO408sKXGSj3gwHo8L4Ydsc2+9Xk+j0UhXrlzReDwuq+1xxwTpzD3C9XwnB1wrrEQjIkTre9sKv+/C4bb72B9eJuKvu8uBlXzaFK32PldcaPA2uWAWARmGiLs4wXm4B8+xGAwGpW/b3AxRFKKtkkrAJeOHAOHuHb9vd4L4+HFu7gHxbzQanSsLYr4xp2NZUZxrfMZFB471550xd1eEOw/4jF+rbX7Efr/kuCvfxYn7i84HvFI/+w8/Rn/+0f+oD8xdHBKJBw35PZxIJB46vKD/LVdV9ZSkT5H0dfbyp0l6w+nf3yDp0+/wXI1VYyd8HhoIeUVMWF1d1XK5LNvZRUISA/VY+Xby4sdAxBASIO1RLIiCAueAgOFMmM/njbIESDuEyFdqI/nnPjiviwq+hWVb6JwTMsA5o7AQyyB8lTkKC75azMqzBy9C4CgB8ayL8XisnZ0dDYfDsvLvu3asrKw0nBe4E9jVgfN6n3iJQiTukFx3IkAWvVzF7xV3ggtEvsuAuzIIEmX84xi0CQrA2xM/5+2OIYfuPoHwergkK+wxFyAGcjo4F8SfZyuSaRdSoojSdg8uNuF48FIRqVl65M+jB1H6+DFeLv5EIYDze0mUB0HSby6EuMDDOfyZuey4m9/FifuHzivfT+/97U/o5z/jn+qpTooJicSDhPweTiQSDyteaMnDV0v685LW7bXH6rp+WpLqun66qqpH2z5YVdVrJb1WOtsy0gmKZxJQboDlfX19vREUt7e3p2vXrpWdBcbj8bkgQg9IhMB4CKKXMUBU2mz0Dkg75/FVUwSF2Wym+Xyuo6Ojco9Ovjx8L67wYoXHgeGOAq7jJRR8jvO73ft0PM45Enxl2cmz75jgf/d77vV6Wltb0+bmpjY3NxulDNLZtn9ra2va2dnRo48+qvX19dL/k8lE8/m8EQw4m800mUwkqZA8hCPGirY4eeQ+POvBw/x81dpXqz23w0sdmAceWolDZjwea3Nzs4wnmQjeX5ybMaHv3OlAX3rOgc9/z0HwfIw4B3kuBoPBuWBDd1QwrrStrusGid7e3m6UrzCG3ibmL3OJPvdzRmHQhRz6x106OIYon4iBqJyn3+83+oryC+6B0hPGHLeGdCaa+HMS+9AdUV4W8oDgq3UXvosHGt3jZiZuhZ/6C4/pFz41MxMSiQcUX638Hk4kEg8hnregUFXVp0p6X13Xb6mq6hOe6+frun69pNdL0vr6er22ttbYz55VRUQAdwNIKkR7Op3qmWeeKcTUreJOXGIQoROIuq4b7gYIs6RGaByAgLCS61ZsX3XHCbFcLs85BmIwHCQQIQFBw3eBiO4FVosRM2xsGiTb3Q30ga9c85koJrijIVrwcRw8+eSTetnLXqarV69qfX1d165dK0S23+9rPB5re3tbV69e1dWrV9XpdHT9+nXt7e1pNpuVMTo4OChuDsIBuY67BRBWWImHdNOnLgy1rTa7MBJdJysrK4WUe16F91G/39fa2loRtSQ18jXa5gpjGstRuC5j423GiRHLEuL4eUkAooPnL/g89zIbxpKdHBgryivoV897cCHm+Pi4XJM+j33LNdwdEJ0TXr5TVZXW1taKmLFcLkugp+eT0D53cXg/uYMEJ4w7EqKo5/kajuh6uay4m9/FG9XOA6OgJBKJxGVBfg8nEpcTR7/9N+hLX//Nz+kzv3jwiP7NRzyh+vDgHrXq1ph85sfqL/ytN9z+wOeJL/vaz9eTf/sH7+o5X4hD4TdLek1VVb9b0kDSRlVV3yTpvVVVPXGqxD4h6X23O1FVVeeIObbtaIOWVPIS5vN5WeWWmuRKOr9tnVueWW3mfIeHh43Vz1gTTzudHMVae0oRECfcxu3tom2QJG+jE6Plclnaxuo57YDgxRVV3o/3EC3zfpwfE/MI/Hpeq88q/fb2tjY2NoqLwFfgu92u1tfXtbGxoY2NDY3H40a2BKF6iAq4R3yF2/uDY52ke5/5cT5O7mrw2vl4/767BnOEkhsPYmQrRQQFwkJdsPBSlEj0ubZnNFBC444VEJ0ZMR/ChTEXR6KgQr/wvHleAoGakHPaEUsluI6kEhzK7zgpaJ+LCS4+0D/+fNO/4/G4CA9cA6HRHQzuvHDRzMMZYz/6vI/Pd3w247NyyXHXvosT9w8/93c/Tn/oY7/vfjcjkUg8P+T3cCIhSVWln/2HH6N6eN5924rlil79J94indz6+F/4mx+vw8cOb3lMGx55fFefMlo8p8/sDn5Gf+f1/4N0cj7j7MXAB7zi6efc5ueCf/0ZP6HvffVH3/HxH/TPjrTy/T9+y2Oet6BQ1/VXSPoKSTpVY/9sXdd/sKqqr5L0uZK+8vTP77jduSAHJKp7EJ7XSrOiTI099viDg4NGXb+v5DvBhfA6YWE12smauwWcWECwLiKyHvyIu8At4G555zP8yao+baqqqggK0X7NtX3F12v8OcaJJJ93kcAJU8xUiC4G+g9SPRqNtLGxoa2trbLK7eNJH7FjACScXAl3ctDfrNRjVXeBydvD/fnquY+vvxbt+V4S4n9nbJxoRocGYgq7i8RVfHd1tIk1tCHeG+2LRBdRwOcFP+5KYF76PPD3vS0QdIQeSgYg5u5uwf3iBJv+5E8XCTwE1MU3f168LX4vlG2wMwj34WUlPLt+H2tra+W5ozyC++H5cLHA3Q2O6Fi5aBwvI+7md3Hi/uHvveZ/12vWZrc/MJFIXDrk93DiIlS/4cN0uDl4QecY/Pyv6ugXf/kutegO8HEfrqNR9/bHtaDuVPqe3/N37zhU+F1HE33Od/wprRzeehHnL37Gt+kPbTzzvNr0XLG5MtQvfNLXvyjXuh/42pf/gPTyH7jj41/93i/Sy3u/4eYvb/z21mNe8LaRLfhKSd9aVdUXSPplSZ95Jx/yEEVs75AEJ7vkCezu7hbSDkmLoW2sercRMEg/9fwxLA6B4eTk5paEkbxB/BAecE3wp4sEEHFA29xd4A4D7pPzQNwApI/74D7doQFpjSGLcdXWSWqbmODkcDAYaH19vQQwbm5u6tFHH9XOzo46nY4mk4lWVla0vr6uwWCgk5OTUrogqQhAjC8EzkUY6uJjACPwFWj6T9K5HQk8L4GtOaOowLlZAWfMj46OypaJ9IGkRiDo2tpaw73AHI4OA9rjxzBXPfQyOljctVOd5lJ4OCbtjpkQzBPa4GOKILKxsaGdnR1tbGw0yH4s+WGLRwi7u3Eg+AgRPGcHBweFsHveBmIDz4QLOQgXiE7MC+7PszD4jAtbZJXgUPCwTMbe+6QtQNMFv7hF6gOM5/VdnEgkEom7hvweflhx+v+MJ/7xL+ufvd8Lc5998Dd8kV75l955N1p1R/gdX/cD+nM7P/cCznDnocJPdcb6j//s625/YOK+4Wc+73XS5938++oT7cfcFUGhrus3SXrT6d+vSfrE53oOSAukxLcDpP4bYjGdTrVYLBornE4S3Fa/WCwaddMQJyz3iBasOvM+JD0G+/luB/x5dHSk/f39QvqAk6poSQdeQ+8k0DMdfOXUt93jc/SVB0Ryry4oeJvaLPpeB89rEGAIGivJ29vbevzxx8sWkNVpzf7Gxkbp96Ojo1KXX9e15vO55vN5Q/DxbAfEAsbCXQMeaOkElc95KGLc9o/7pU8IlOT8lFk4Gfcxol9xThBO6ONJtoP3cSzT8M9Djl3s8TnMNotcZzabnctg8LIbd+EgMNC3nLPb7WpjY0NXrlzRy172MvV6vcaOIcwv3+IRQu79F50fDhdOfL5yb8vlshzLWCAAscME52BsXRBCsGFnEUnlnLznmRu+9WhbCYTnqfC7z4UHwaHguBvfxYlEIpF4/sjv4cT1P/zx+sd/+R9Ikj60e6ybVTDPH2/8Q1+ld/+B/l1o2Z3hI3qS9PwcComHE/fCofCcwX/8fYXQ0/WlZl2z17hDOjx4r6qqhrtBOlud5DNejkAtuddiO6F3Sznn8O3uJDVKHKTmyjTE3re7Ay4wRIdALGNwMreystI4VyxhgMD5NX17S+Cig1vvpTNizGo/IYmEUZKlgAOhrmuNRqOGq8KT/elTd0UcHx+XkpOqqopVnfd8tdx3rXCi12brj/X/CAisbrPy7Sv+sR85/ujoqKyWu5jhZTnMD8iok3RfUUdQAMx1+g9Rhe01j46ONJ/PG4KFO2X4HK/HbSZ5n+09H3nkkeJO6Ha7RaggB8K36CQUlX5xUczntzs/PIMBoYBzuTsBocrLQNyV4s+MiyU4Gdi6EsGp1+udKwfh3jm/f8f4XGH++rx1YSSRSCQSiUTiTvDLf+U36Td80k/pY/r8n/WFE/OnOmM9dSkYWyLRjkszPf0/+zgDnCB7bXjMBohiAauzEBhIMSQ15iKwIg5ZQiyI9fZck+uyMgohi/dzkaDAfbSFvzmx514inNTRtlgnzrlcdIjhfRwbLd5c1y3riAluNcf+jwNBUikfQSBABEBI8K0vKXfAmeJCAH0P4cP+7ztQ+Kq537s7UqQmAfewQBevnHxTi+99GtvGGCN80Vb61fudMg53Xng5i7edsoT19fVSvuO7QHBvXt7Dddy1EMWofr+v7e1tPfLII9re3tb6+s1drSgz4fMICr7jis9RH0PO78+Ii3v0G21dLpeNeeWCIEIL7XfBBjB+iAl+Xc7p4oa3wUtToqPDd47xe2orjUgkEolEIpE4h5VVLX73b9Dvfs2b9Xef+C/3uzWJxIuKSyEoOEE7OTnRYnEz2TIGpcUMBLeAt5Fi3mNlmFVjT9UnxK3X65UyCOz6kCHq6Z2Axq0c2/IJLnIi+GtOjj2/wY/18gVfsb3IueDiBWTd3QLuzvAwP/qX61NqgHiAe2BtbU0bGxva3t4uq8oQaggqY9fr9UpJAGIN7hEv16CNo9GoWNb9WggfvguFC0VxFdv7xnMvPCTQnSpRZGGlX1IhxC4q0MfcCyvgXs4hqQgEWPRZlffSD4C4heuDsp3ZbFbe58cJP8IZ48O9I3Csrq5qbW1NTz75pJ544gmtr6+r0+loOp2WMZFUsiEQb3gelstlo7zDBYaYScGWj8xvzkVft7mLuKe4VaY//17qwI4ikkr/R3ExPju87t8n9Fm32y0OEEpP6Md0KCQSiUQikbglqkqr25v6l6/733R1de1+tyaReNFx6QQFCKPXMLuteTgcNsLzIHaz2ayspDs5hKR5rgJECiEBsYEdCCBQkUxEG7kHN8a/YzN3Eo+LIToseM0Fi+VyeY4cYycHEGpcHQ6vH/ewwLZyA0hZtHnT55A93ypyZ2dHjzzySLHO079+jx7ER5sWi4WWy2XZ8nN/f/+crZ7yjF6vp7W1NfX7/UaAIe8jCrjrI5YluEhAf/V6vTLOuEyigOMr7V7KwAq6b33p8+Pw8LCETjJft7e3tbW11Qh/jHkLvV6v7LwwHo91cHCg3d1dzWazQsxxcZDhsFgsGrkCnlfA80SY5tbWll75yleWbRlxhuCUYOcHyjEODg60v79/rkzFx1JSozSIvneBjPO5wMLzzO9eIsG48bzM5/MyD/nBYeDujejSiG4knptYJkX7YjkV7YolQolEIpFIJBKOvc/+WL3hK/9uigmJhxaXYvnNV+AhOMCdBk6uPfAOMu2r8HHFGvLs5/fyAhcz3Bbv4X9eiiCdiQS+uunvezBgJKxtK5++84TXy8dVdV6PCf8XASLtNfcx68HLCxBZPIwQmzm7PKyvr5fwPq+3d3KJGOFjdnh4WMIZZ7NZIfS00evrIY/Mi+VyWXazYEzcLeL9dVGfeFkNP06aPTyRMSJDgX6hxKUt6BLBg9X0tbU1jcfjRk0/xyDkMFdYzed+vU3upPG2AQ+i5P4pndja2tLOzk5Z2ccFNJ1Oi3iGO4A+pa99fni5UXS/+Hh5foI7AhxeGuIOFRdxPCDRxRKujSDkgkKc34wP8PvgWh4O6uUx/swkEvcaf+NvfK4++e2fcr+bkUgkEonngF/+q79JH/olP6lXd1NMSDy8uBSCgnTmRIAYAifQng3AD6RQaqbru6AgqZAPrPcRvsOB787gq6duo+f6TqK9veQHxLIN4MFxfu9Ojr3Ew3cN4DPu4ohlD24bd4Id6+LbVvfdWk9NPQn8/CAy+Iox2ReeveBEGwHGxQEXXziX/0hqHI/rwoWgeA9OSt2m72PNj38WUSXuCOCZBayeIwr4vHDyPRgMtLa2VkoI6HsXwjxnw0spXOSgbbTromDNmBOBO2Btba04H1i5Pzg40HQ6LU4dzk/f4FxwQcPHI86dOF60yQUFzuPPQSwDctGMPnK3iD//sZ1RUPCxiTkbUaDzZ86fIX9GE4l7je03/JB++h0vu9/NSCQSicRzwM7HvUdf/37ff7+bkUjcV1yKkgdJDYLeBg8UhMxB7A4PDxs7Dbi9mhVf7OOQXifYEAqvC4dkuSuA1zjWt5V0ccBX2SWVFV+36rtrwQka54T0+PaCh4eHjaBBdzp4WYSvvDqRcqLlgY1Ool1AwbFAbf36+nrZAYDdHlZXV0vZBG4D31HBXQSICU4EyWmIjgsfa9/lwNvnYg79xeddcGIF3oUPxCXuk5IBL1MBLpywW4WLITHbYjAYaGNjo+zUQAgjThnPWPAVeMQKtt1054jPR67JffOev0+pA2Uq6+vrWllZ0eHhoSaTia5du6a9vb0iUjCvEW14JlzUkpplST7fY4mJz92YdeKCSnQMVFXV2CHDyT+f9x1W2nboiGUZDhdIOJ+LNy6KeMlGInGvsTIaSZ3zczaRSCQSlxMro5G6K+cXKROJhw2XQlDwFV4nCJIK4YVYQAjn83kjQyGukLqFfnd3V5PJpHG8p8nTBj5zeHh4blU/igAER0JEfSVzZWVF4/FYq6urDbECW3dc9YzW/VjzLakheHAN+sf70O3eEL9Y2+6r4x48yTaFkPlut6vxeKzxeFys+xsbG+WHe5zP59rf39dsNms4JJyYQuKvX7+u/f19LRaLQr5pm/cH4zSfz0sAJwRvZWWl9Aer7pDawWBQxCYEBXd3eKkBoo/nDxAwyfudTqexNSb9Te4G5QnsCtLtdjUcDvXkk09qOByqqqoiDvg4+dxHrIDUxp0n3KHg4gV9Qb6Fk9/V1VVtb29rc3NTo9FIknTjxg1NJhNNJhPt7u42iDelQL4LhyStra2V887n83OiG2Pt89HFGUSBGFiJIOMCVa/XK6Go9Jk/W97fHqzqLog2xJKNfr9/bvcM35KU+4tbfCYS9xK/9y2/qD+4/iZJOecSiUTismNlMNBf+cnv00f1T3Q3toZMJB5kXBpBwZ0HTk4gkk52IIsuDvT7/Qbhdws3uza4RduJr5M0L7HwoLbRaFTIKEF8rKz7yqyvciMUYNmHrLZlKkC6IPOQH6+353X/XFt5Bn0DyaUfY028B9BFi39VVUVI2Nzc1NbWlsbjcdkqEgI2m800nU5LH8d8CMSf2WxWMhPcQQJJ9tIED5l0sYA/Y8mB1/BDSt3B0lY+AdHFmRFt8F7T7zkQ9BnkNpZb9Pt9bW5uam1trQgTXv7i4pJb6r2UI24FyXk7nU65Hv0PGWcbRc7L6xw3nU61t7enyWRSRJoYSEjOCP1KaUsMv/S55v3FPfA8xt0TEAoYW8ppvJ2LxaLhfvDdGeIz4iUk8VnyZ9nnuotLcTcVxoG5hDsnkXgx8HjnhkYrKSYkEonEg4KXdebqV+P73YxE4r7j0hQIe4q/w1dRfRXfCWi0uUvNXAJIkpMgdwq02bi5tpNujmUVFpLHsW4Pd0HBswVivT2ITgna58Q4rlj7CrETKRdIQCRfLkTEEEPumRwAto1ky75o/3cXQay1h6Qul8tScuK5ARB6zxBwghozI1wg4Rqs8mPfZzz8XvkcbgLpzF3iuwdwrJectIk4sT9XV1c1HA5LCOJgMGhkb3g5QhxzF9B8J4uYjQDoOxcTvMxkZeUsWJIyivl8rt3d3eIkaXO2uKNEUgmJdAEsliD45xFp6FfG07cH9RBKz4Soqqq4ExAcuLbPT5+3LizEvAQvjfHP0dc+f/y1+BynQyHxYuFLf+Sz9I17j97vZiQSiUTiNui84uV67+d9lEbVrUPRE4mHBZdCUPCVfOrqHe4MiLtAkEvgRFo6q9dmhdRX4n1bOOm8xRyyzN9ZpfUwP8hWDHtzcgyZpozAyZmXHdAHXv/txNiFlhi+x716X3J8W1ie27+99l46K6vw19nVATEBAksuwHw+LySQlXjgtnJEBVwMTojbbO38eFvpD+lMJMDy7yGR7mKJ+QSeZeHXd1FBUmMcncxCVGOoY7fb1dramjY2NrS5uVn6CHgWB2MW3Ry+cs4xjAXjQ59wv3GbTJwSvHd8fKzFYqHJZKK9vb3iJqFv3KFDwCljREaG53f4tbzUgHvzdjEHyKvwc3hZBLkJOFnc9RFLk+L8d7cKn/HjPZwRocDFIBfi+O7h/hDVEokXAx/4+39cf+0/fdr9bkYikUgkboPd3/gy/Ze//LrcJjKROMWlKHk4OTkpmQjSmbvA33cLPMTAAxw9INEJAjZ/JyZOhOIqONc4Pj4uDoRut9twOgwGg1ICwXU6nU6pN4fI+WovK8hO3pysssIPyULE4F4h3bxH3oGTOQ9dBL6VH7+7pR+rPJ+XVJwJ29vb2tra0tbWlkajUSHvEEDq8Vnxp33cNwQRmz1E1e35s9msiBLuHGgjhtKZJZ2VZPIq2JpxsVhoPp+X+cJYcX2EFndaQB5d5PF5wvzhHtvm1pUrV7Szs6P19XV1u92SJ+FBk7TBt1uMmQrMQy/jod3eL2Q1MK8Q23xnEUQ43AkICZ4ZsbKy0hAdjo+PG6KAOyZimUZ0VnS7XY1Go0b5wv7+ftmeEiEHUcKzIw4PD0uuhucXuOjAmHugZtwJwoNF+S5wAcIzIngOeI58i1SesfX19dt8eyUSiUQikUgkEg8vLoWgwH/qvcQg2r89m+Dk5KTsKBAt2b76yAp53BHBSxw4Lq5Uuq366OhI+/v7DeLsaf/SmWAgqVFfH8sTfEUaAu+lG57W76uukECIMJ/ze/EcBBdeIFmE0UHEPKeBvoDEjUajsjuAk1TfCjCWD0DcIPRe7hFzA6LF3sfehQTcADGrwIUAD1JcLBZaLpdF/BiNRo1Vaeks54JSAfqL+/IVeOYFpLau60YOBO/v7Oxoa2urOCRwOqyurhYrP5/znBDGkTnHZ5hj3Dft9LnAnPPxxK2ByDCZTDSdTkuZA0LFaDQqZQaIDghjnDuW4XBvwJ1B9BGlPjgOfNxiWYY7k5gnHINggksiugroN+9n5rrPNx9XL6tygYSxZS7Rh8PhUONx1kYmEolEIpFIJBIX4dIJChASyGYMoQPuRoirvJzPw/98FZ7zexaDk3HO7dZ5wuJclKB97iDw0gW3WUtNyzxEOQZBxoBEPkcfeIig5yvEcDkvXfCSAlZ6IcIc64GYTqhwacRzuRvChYuYdeHkLVr8vdTEiXsk9C44eP2+iwu4WNpW4WMAH6QR8YQ20z9Oel0oiWU13PdoNCpbaiIg0Gf0g2cIQH49L8Tni5fi+LyhfyDb3BulCt5/dV1rsVg0gjBjbgGZEr4NpgsDjLOv+Hv/xLwCnCeMg+ch0O44Rz3vw58jhI9+v9/IqqAN/ncfK8QDn3P+WgzF5DMu5rkLKDMUEolEIpFIgOWn/Eb9yifmFr+JhONSCQrSTbLH6j+igCe9S2qQXwiBr+hLKpZoJ58uELiYIDXt2xARyAftkdRYgfVad1Y5OQfH+raGTqYhlNwjpAaSH9sV8x+i9Z5+9HIRJ0cQ/ul0Wt5zOz39D0lnFRsBg9cQGHAEMAYQfUgkRJofxgtS6QQbMulWd+6Dc9Fn7vbwfAhILKUGtLmqqkKYGS/KIOIWlAg7PhZOculrb89gMNDVq1e1trbWEG16vV45FocC9xpr+WONP6QcpwV5HZ5hMRwOS8kIK/w+VoeHhyUvga0zGb8oJpAzQv8jOLigcJFI5vkkkH/KJ3A9uBgVd1PhTw/olFTmbafTKe1zFxL9TH/yWRfHmFc8T17S4qGLzDn6fjAYaH19vbhbEolEIpFIJCTp2h+Z6hc+9p/f72YkEpcKl0ZQ8FVp6uljIjwE5+DgoEF8V1dXC2nyDAFf0ZbUEBz8fYgh9n1IiaRGrTzkgnpwLNr9fr8c6+eGSHEPXnrh7gJfIfUyDHYK8D6A3OKQiE4N2tDtdjUej7W9vV0s8NeuXWuQZSzvXhpCGQArtJ7aDwn3UgDGxW3lHqBJKQdtI1vBSwC4p7jCLqmMKyR9OByeG+fj4+OyLSXbIXLPiBKUzUAWNzY2ymcRdCDTkGjO0+v1NJvNSqgjfdXtdrW+vq6nnnpKo9GozBPOQakB2RtOeBE7uD6k2MsFTk5O1O/3tba2pvX19dL28Xisqqp048aNIib0+32Nx+MiyHl/VFVVdulwIYr36UdCKrH6kx3iZTVeCuS5HAgou7u7mk6nZfxdbGKO8HwAD8bkfPzu2RcubMSgUhfzfG60iYfM2+FwqM3NzUbwYqfTaexmEr8zEolEIpFIJBKJxBkuhaDgq7RORlmd9Tp/CAWEYDAYFCLHKrivtkPaIHK+Oukr+Xwe8kG7IC98RjoTDiDaXn4A2fYygbhTAKu4LkAQThdDIn013rdFxEbvuQS+wg3BvHr1qlZXV7VcLhvlFLTDLe+IBL4NoYsLa2trjXIMyCl95WUkgHPyGivvUWxwN0Cn02k4Clw84vqQVAi07xDiooNnXPR6PW1sbJS6eJ8TiAA+Hu5MYC4wpwaDgcbjsTY2Ngrx9M9D2CHX3me8z1gjaDEHmOOEYyKAjMdj9ft9dbvdsg0n/egEmCwJxBqeFa57dHRU3vdymn6/r83NTW1sbGg4HDbmh4dgukDgO2MQiInI4UKg37O7inBdMK4IL/5dgJjgQhI/tBuxwcscfN55Wc14PC75DBsbGw0XEeMu6dyOMolEIpFIJBKJRKKJFyQoVFW1JenrJP1aSbWkz5f005L+haRXSvpFSZ9V1/WztzsXduqYfQBhgVxCoBETIJ+eXUA9uXS2jZzXyDtR55hIhGmT5xtwfT8vQgHthnB5vkAM4YshlJzbwwchbS5MePigtxexwevBWX2FSPp5gW99GGvOYwkCdnmIt1vLncz5ueJqdNz5wq/j5Rz0vW9j6aGc0fKOawCBAmu9A1JNXbyPrZfFcG3PTkB04FgILCKLCyvAyyxi+UrMAKDNPv8QLMbjcRF02EEhltzwefrfwzLpNy/ZiCGX7tJBmFhZWTl3D95PfI4yh+Vy2SixwBHCPTPnPQ8CQQEnjLtuEEZcNItzCGERR4vv0MFzF7MfENrW1tbK+Plz7TtfeDnRZcfd/C5OJBKJxHNHfg+/xFFVevpLP16f/Iofut8tSSQuHVZuf8gt8fcl/fu6rn+NpI+Q9DZJXy7pjXVdv0rSG09/vyPE3QYgsjGlv9frFQs4//l3MQES5HXfkJgYbsdqpNe2s1IMSfVa/RjaJ6ms5EaC3haWGFdY/XXPFIiZCZBG+onVU8g4tnG39bPrgBPBNnIfib+7BTy80H98Rwyvi2cMnbC6TR3xx/vS0/W9T32HD97HKeI7IcQtKV2UYFx9K0TftSK6Mly44DrRRUFpAKTU5ybAAcDrXNPHADHBgy95fTwea2trqyEoDIfDUirB+CMmIcaxVafnW+DAwTngQZj0PffDM8W5nOC7G8ZLRCSVHSVms1kh4V6GQF/4bgzcu4dASioOCtwOPr9wuHjYows07lLgd+Zht9vV2tqaNjY2ihPDc0J8DvJd4u6SS467+l2cSCQSieeM/B5+CaNaXdU3ffHf01c9/mP3uymJxKXD83YoVFW1Iem3Svo8Sarr+kDSQVVVnybpE04Pe4OkN0n6studz0kOoXOslnpWwMrKijY3NxskCiKLmLBcLosA4BkG7nJgRdhfcyGA13zHAM8J8GPiqnsbvIzCk/49VJB2kuLvQXEucnhqvxOhk5OTQjzH43EhS07wab+fx/vW7fybm5uN3ITlctlIvY8OC0hnXP1HcIEkunjjtngXHSC/khpigKRzfU8mAWTfx6mua/V6vUL+2S7RhSiEhRg8yDWYkz6+2OZxo9AmBI7pdFrCBGPYpu/24Ns/UkJAICY5Bv1+v/TXwcFByUeg7z1gk90Vjo+Ptb6+XsaOwEoPMfSgRvqYchzGy0sBYubI5uZmud7e3l7ZWhXnEO4hFxPof/qE+cRzy/nccUJuCmUki8VC0lnWgmc8+Jgxp+iDfr+v7e1tXb16tTxfOH6qEALq3yWXHXf7uziRSCQSzw35PZxIJB5mvJCShw+Q9KuS/llVVR8h6S2SvkTSY3VdPy1JdV0/XVXVo3d6QojG2tpaCZCDYEpnye+j0aiQFVZqSfl3IgIJgsRJZyuVkhpOBlahnfj76nW/328QF0gznyc8MJZGxOwGLy2ALEFkIXq+m4Kvxjvxh9Sxyjsajcq5sPd79oTbx72vfbUc5wdiBFkE3MPKykpxGNB3TtwQKdpKOSC0fEY6c0L4ajLj6JZ933HAS0XcRu/uCa99R5xxOz9t8nbGlW13dLiTxEUXDwplFf/g4EDz+bzhEHBXi+cWcB2uSY5Cr9crYoILL5Df5XJ5rkSDPAXGmDBH6WxXFHdcuAPIBQ8IdCTlx8fHjRIMnAXPPvusJpOJptNpuWf6A0GFPiZk1MsReJ4omUD0QGzh2ab8gHP69wDPtj9H3re4XIbDoba3t7W5udkox/ASi+iu8JyTS4y7/l2cSCQSieeE/B5OJBIPLV5IyUNH0q+X9Lq6rj9K0lTPwcpVVdVrq6r60aqqftS3lotuAC8biLsAQDIgswQVSmek2+uhpWYuw2k7GkKAdGab9tIIr+F2Mgrc8h7zHAi2i2nzbuv31Wks2DFN31fUXUjACu/9F/sIok8/+vaL3D+CDSv5Tr59a0XPFPCVd8aCsXRHgdfHe+BhtKt72QvjFUsYvH89NyGKQrwOEfZ7ihkPTuyZPz6HbN42thn0e2A8Pb+B97yvfRxi3+NMiLtp4LDxUhLvd1b2CddcW1sr5ULAd3HwMXbhx0tYeAaZm5RFUBpxfHys6XSq6XRaRBQn8Z6B4ds6ch2ejel0qslkoslkUsQShCbEBJ6h6O6JZUbuoqCPEAX9nv1Z8bnj3zsPikNBd/G7+FAPxP2+JPErX/6b9Ns//G33uxmJROL5Ib+HX8JY/aD318//9d+ox1ePb39wIvEQ4oUICu+S9K66rn/49Pdv180v0/dWVfWEJJ3++b62D9d1/fq6rj+6ruuP9pyAGLLGD6TKdznAluxiwsHBQSEjkD1IPEQcwg1i7T4kCpLHtnIe1OYE0Vfc/Xfa4z++guq14V7n76UOvnrvlnys8G699/tjdRfrOtfmGBcUXDhx+7sHAHo4Hf3J5xkr37khtgHLunTmOogijgss3i53fbjzIwoHOEDIU0B0oWbed6mIgoKPG+PhK/d+LM4Qz2HwOdlW+uEE188PmfUyhxj06OUDCApeouGiFf1PuYPfl4/tcDgspRQ8I+QVRHGM0ghCDIfDoTqdjubzufb39zWbzYpgRX/5OFKagCOB+cBuFJPJpJyHciR3EXE8Ygnn83Ij+t0FBe4bdwKiEn3uJSf+7HqfPiAZCnftu7ir/ovS4MR5/M0v+EZ9/ft9//1uRiKReH7I7+GXMGavvqqf+bzX6dHVtfvdlETiUuJ5lzzUdf2eqqreWVXVB9d1/dOSPlHST53+fK6krzz98ztudy5IAgQLazhigq8m9nq9UmvtuztMJpOybSDEuK5v7gDAlomssvb7/XIspA2xALeE28Glm2RxMpmUa7oIIamUKUBOCI5jVdWdB5zPiaXvyHDav4Wo8zsk2Use6C+ItIdFStJ8Pi99xe4P0hlRo1yAYEdWtilvQEggm8BX2SGNbAPpwYhcY7lcand3t9TXr62tNRwfEHIvJyETwbcERMRwh4d05rbwleWDg4MiBu3s7Gh7e7uEJ3pYIuTTib6LLk6OIZY+hxAwlstlCYZkHNwtwNi7nd5LW4bDYSNkVLopRiEcIczM53PN5/PGrhbMWTI12GJyY2OjtDuGUnJv0erv9+/CDCUYW1tb5dmZzWZ69tlny84OjFmnc7YdK5kJkHufI1yDUgf6CscNuQk86y66MYd5z10bviuM55WMRqMSwujBkGSMeLCqX/dBcCjcze/iRCKRSDx35PdwIpF4mPGCto2U9MWSvrmqqp6kn5f0h3XT9fCtVVV9gaRflvSZtzuJ19uzCsuK+snJSSPkra5r7e7uNgi3hzb6Fnycq9PpnLPw+24DnkIvqUGyOX4ymTRIpW8p6CRUOttBYT6fN97z61NvDonf2Ngo9eCQ61gO4OUZEFsPpYOAIjpEor++vq61tbUSHLi3t1fIOEGMWO0hWB70CJl0dwikEPcB2RfL5VKTyUS7u7vFxu4ZBoytCyLS2RaYbQ4BVt9jKQzve5spddjc3NTOzo5WV1dLjkNcdUbAYpzcnQGxJIPAXTLuRnAxw4NBWR1nnFjtpz/i7gqeT0GmgqTiMvGyGb9/5tKVK1fK7h6LxaJR9uDOH297hJed9Pv9smMIW0ROJhNdv35dzzzzTBFSaIOXvHDfCB/L5fJc5gRzBzFhY2NDVXUzAHQ2m5UQT/qRUEff/tLLjxALXIzc2trS9vZ2ecb82VldXdX+/n4ZM8abXIjpdHrL765LhLvyXZxIJBKJ5438Hk4kEg8lXpCgUNf1j0v66Ja3PvF5nKusNHpqPvXPTvBYveVzniLvRF86W7V0dwArj1wHkhxFCVaLfRcHCKfb9WlntL7H0glfvYXsuJXcV1W9NAJ4GUCv19NoNGqsMtMOrNu0m1VySCGuBV+l93v267KSTvshXU7m4nnoU9+pgXbFcMlYNuDuAC9D8eOjmEDpCES50+loPB6XUofhcFjG18fFa+a9j11IgtwjMvnuIl6SE3cZQdRwuz+CEIKPZxrQbz5mHgpJiYDnKHjGQq/X08bGRgk0xRHAvHQSzzm8jIPj/HWEON8thDKH/f39IiZ4GQpOAoQtnk/6kPH315nTlHowd/yZ8+1KGZOYKcF5OC8iBUGSfB4hx7fTJIPCt6uktOlBwN38Lk4kEonEc0d+D780ceNzPl57r5nc72YkEpcaL9ShcFfgQX+QPkkNWzIrvJQS+M4HrDg7MXJxAEGCEDe29IPYODHxa0IcPQwOgu3XcBIKaUP04DOs3PsOBIgT/CCWXLRy7BkJrPZDNN3B4CvdCC2DwUDb29tFaPAV7hhk52QWwYN79jIOSQ1Cx2cgxrQNUgaxBpBAf81dGNwHJNVLE/jTr8f8GQwGZVV9Y2Oj7PwQhZ6YT+H37QKBiwOIQi7+eMAgK9w+lyDWPj4IZYyjE33cEDEI1K9JXzF2bONI6YTvrsA9enmEn8PFMT8/AYzs9rFcLsv2kDg9XIAAXoaCkIO7hFIaf+a73W4RLqSz7BHKktwR5G2MWR5cl2d7ZWWl3AOuF67lLpP5fF624uTvfAf5NqmJRCKRSCQeLlz75IXe8Zv/j/vdjETiUuNSCApSc5XZ7eKE1WGPnkwmOj4+1nA4bISn+covBIcadbarYyWSEDlfXXWyx3kohYAUra+vN2rnIW2+pZ/viODt9+wCxInBYFDq3TudTqkl9zpz4CvcvV6vbAkI6T08PCykiXZD5ofDoba2trS5uVks5LHf+PF+gHxxz4eHh4VIxgwIfnB/QNAYyxjC6K4IyKELB75DR3Q3+JhxLi/7cDFhOByWOUWuAURVUoPguhjl5SKQfwQpr6s/OTnRYrEoY0cwJWOPiMI1ECx8NwfpZtaFC2kxG8ODDL20gJyPzc1NPfLII4X8LxaLMoYrKyuNLA0PHuXznkHBex5keXx8XHZiYFy5VxemyJfw8h0v+eF++JyLat1ut5B6HDQIWvSjC2EuIuBC8j6i3IFzI8SRL8H3ybVr17S7u1vCIT13AuEhkUgkEolEIpFInMelERTcss5qJivNnU6nsSLqVmpC2Zx8Hx8fF5s2IW0cy/FO/CUVwsFKNC4DSCCp+e5McJt+3IGAc5IuPxwOS4o9BAs7ftzuENJJmYeH5UG+EEggoh70x7mw/kNeh8Oh9vf3G04IdwTg5mjbDQARwre/lFRC7uh3Dw50guxwAki2AW3xYL/ooPByCd9a1EtLer2etra2NBqNys4IbmMnvBBHCQIUDhYEBs/LcFHAV+Q9t8FdBL5TQdsOFR6oKakIXV7u4dtEulhCe91VgsBEO71kxndAcbcAfcjcW11d1XQ6LW4Mcj08EHJvb0/T6bQ8iwgv3m52HKFMwx1CVVUV94YHnyKEzefzhnsIwYlx5t4A48UYMXa+TSTPCuIYYsJsNtPu7q6efvppXb9+vZRwMO7+XCYS9xIrH/mh+qJv+9f6pNGupBSwEolEIpFIPFi4NIKCdCYqsHKKHRwy6/XZ7h6IdnInZb5rRCRWTlpZBfUE/Fjz7vXUHkQHgXeBAYLPii3vQYBWVlbK6j+rub5KHmu3fYtBL/Vwx4Nvf8dnBoNBIznfa8Uph3BHAgSPtrvYwfV81d7fx/ofdx6QdG5l2e383HcMaPQxdXLteQ2MBeQaIQRSi3vDywncncCfTh69jMPnj2/byHF+XwgMfj6fZ7zHdXALQM7pzxhcSf94kKj3j4seno/gIZHujnBBIY6DO1MQ7twFw/kIifT+82wRL7VBWPG2IUL4NWJYKufxfuXZpL95Xl1c8vnL/RDo2Ov1NJ/PdePGDV27dk3Xr1/X3t5e2f2D7wKeWR/vROJeoO6u6jVrM6WYkEgkEolE4kHEpREUIAOs7kKScBfwH3sPZnOi5qTf0/i95h1C5IKC1Kx1d5IlnZFff60t3yC+7kFyThCduCOYrK6uFnLmK8buIvCMA0goK+OswPq2lZBWrtPv9wsJ9F0ZnJzT57H/vAwAN4QLGBC+WKMPqXSxJfZnFAiqqiqr3rSPvoOM+paefjwhgmx7yRi7c4DrxiwHVv65DkQdscfvy4UHLx9gLnmmRtyRwkM5adtyuSzz2vs75hO0ZWswVvSzh5T6jhyIEjGAEngAIqv7tNOFBM838LFj/rkg5Dt2eD+4U4NrxJ1DXDSIbUZI4fqereHPFyILIhPbme7t7en69eu6du1a2fqS7xcXRrj3ROJeofP+r9B7P3x8v5uRSCQSiRbUv+kj9MjO3v1uRiJx6XFpBAWI1XK51NraWklmPz4+LvvQQ3ghNFj3Y7ihOw04t9dlIzJQwuBuBtwP0plAAGFxUui2fIQCX4FldTaSW8g/afyIDXzG7fjuvEBQcDFkuVyWdrNTRAyc8zZ4BkIMlOTeuS7CzmAwKP3Nn8PhsIyFh1p6UCN9EvuR1WN/DyeEb2vo22bG0pStra1G3b+T+batKZ2oxlVuLyNwVwVZBIg3HuKJYyHOD8YOwcNJfdzlgBwGL5FgvtJe+sfP43BxhFV+L5GgHCaW0kSxhvFClGHOcO+z2ayEMVKScHR01CjNcTeRjxX9z/MaAzY9r4K2+s4aLkrQd9Fp4s6PTqdTQhh5ngiWrKpKN27c0Lvf/W69733vKw4Fnr0ovs1mM+3v71/8pZVIvEC8/Uue0M991uvudzMSiUQiEVFV+ovf9Ab91sH9bkgicflxKQSFk5Obe9tD8rFb+0o8hIvkeA9fc1cCRBdyHLegg0Sxeum2dy8XcGILeWkjYhA+XxGNrgkIIefxoEaIoHQzVd/t27GGez6fN1ZvcT9AYAkhhJgvFotCpA4PD3Xjxo2SIQHcrs49QBBJ3YdYTSaTxpZ79BPnwd0BaaUv4ipzXKX2scWp4c4Hd62MRiMNBmff7sfHx2XMIYRSk5TzJ+NBf7jIE3MYWKH2nQw8M8EzF2gffYJrwp0JzEUn/9wnn/MSiigoQMq9H13QYVw5lucm7uLggZacm5/oOjk4ONBkMtHe3p6effZZ7e7ullwR2uxbsvK8eBu9n+ljd53QzliaAhDSGDsvu0EIcFcI4ZlcB8fK0dGR9vb2tLu7q3e96126du1aCWDc2Ngogki32y3bYk6nU02nUyUSiUQikUgkEol2XApBwRPfh8NhIdrYoCU1Evg9HM9r1iHEXisOmXciBQlxsg4Rkc7s9W6Vd1IWV8ZZ4fdVed92knuRzoQLt1VDZL3cwol43MLQSxzcmQF5grC6fZ7dF5zkev29507wmqSS6s+uAYgJHmropRi85/cRCSJCDvfhxzKWbpH3VX/a5SvS0lnAIASfcWJ+8TufiySbc3Eet/r7WLhrhLb7do5e0uDHeg4IhJzXaZ87YFzA8NIFn4O4TuhzL/GgNMXnuBN95qSLJT4WBHDu7+9rb2+vBG225ZUwzxAHYr/S3njPMXQyuil8LnFfZB24mOhlF7gZmDODwUB1XRdx4JlnntHu7m7ZGpJ5z7w8PDzUdDrVZDJp7OaRSNxt/Ozf/zh9zid83/1uRiKRSCQSicQLwqURFKSz+m3PPYBwQ+I9HM+JqteSO5F0QuY2d7f383kPdvO6ea4fV82lZs08280RKimdkUTfXcAdFN4eVte5hnRGTJ1QuouAJHv+pOZfOrPEs0Ueq+1epuEk2ksusPWzjR/tdzeBB1Z6uYAHVbal8jsJjLsg0BcQYo73Ugl+4uq1j3ucM/RznHO0E4HAnS2IOBwbx9y3tmSso/Dg9f7uiPBx5s8250vMb3BHiPe7k3N3HDAHmP9+7bjrA2C+ICbEOeBj4GONoMD5CAt1wu7PmD9n/jzTt8y1WLoSn0kvWaJ9fJesrNzcQhOnxbVr18oWn5IaIhVuJgQ0yjoSiXuBv/xJ/0qft/G++92MRCKRSASsbm1q+t99sLZWfkhS1jwkErfDpRAUpGZYH+TEV3Mhp4vFomx9yBaSvmUeNdpOyNmWz1f3WYX2EgUnnF7z7QTSSw4g36yoe3I9cBfF6upqKXXgnnyVvtfrNUie3zf5EuQXjEajsqWml1DgiHBbOudg1dnzBLxsAkLN/cxmM81ms0LgKKeAJOOKODw8LMRrPp83rgncgREJpwftuR2e4yjHoF2QTdrKNp84CtgqkHGEPHJ+ygOia8XdHL4STns4lvvxsEF3Hzjp5/64prtCvLwjPgueOxB3l6DvPFOAe/QSES9DcOcAQoWHGro4Mp/PdXx8rBs3bmg6nZb+4DgvFZLOSkp85wf6gXIIL+3wsg9/NpmzLrzR3xB9DwWl73wO8wx6v3Mf+/v72t3dLWUMPEf9fr/kZHC/7oJIJBKJRCLx8ODgIz9Q/+/rX68UExKJO8OlEBRIYocs+w4GiAyECfIffvabh1B7BoCv7nrNtdR0QXgYHQSbVVPPXfAyCgAx9GC88Xjc2LLPQwbZio/gRFL0fdXexQtWn53c8vn19XVtbGyUFVhKHgji454pf5jP55pOp6VfIX5kVXg5Qa/XK8KN1Ez/d9EBh8T6+npxP0SbPuPHZyF8nqjvoZT0q9v12cKPfiaAkvayNeBkMmmIOpJKBgCr9YhLTq4hyL66Tx/F0gn+zr24K8CdDCsrKyUYkCwLVrsZX995wR0XzBfaEHMYXLDw/o5BhpBx31qU312AoNSH43m2CCUk2NH7KooJ3mZKRHjOCND0MhaOpbwAQYp5yDXc9eCBp/4MkvuAw8hLZqbTqY6OjkrZDqUM3DdlR4SVcgxZJSkmJBKJRCKRSCQSt8alEBSks+0gPQhROkuBhzRBzk5OTgoBHg6HjZT8tvpsAHkDTtbccg6JcUu1l0dEyzfEmNwEzxHwVVS2dow2fa4L2XYiykpvt9vVxsZG2cmBgEeuzSou5FFSEVNYqfdzuiXf0/Rpi1vxIb79fr+QMZwhHiLoxNzdBF4a4WSNfvVwQK7pRBGhoNfraWNjo7E9pgcnMod8DGkXDg3fptHnAGISfcR4Ijh5doLPE78OYwIxZhWe1XfEKUQO7om/u7Xfs0L4jJdd0HbEL+Yq98br3gbfitQdAJwHMWkymTQcGj7fHTxrvgsFc3Vtba0IPvSX35/3i4sa/jxwD+5q8TwGdnWJIoc7MxaLhabTqWazmU5OToogRXmQO4BwPnk7Eom7ic7Ln9K7/9FYv234/ZJyy8hEIpFIJBIPNi6FoABpwwodVyIhoZ4D4CvfbsX3unQXFCKBjoSB15zc8jrkrW13BP6OMwJiF1dyfUvDKH5wr16u4GGSXl7gZMh3JDg5OdF8Ptd8Pi9kkfvwJH0nv16iQYCdt4vPQ94IgqQdo9Go9KuvUjNOntPgJQUuzHgwpfex5yx4f6+trZXdMGKGAH0FKfb+5N7Z8tBXzL3vo6DlwYY+dzy0Md4rY0Rfe2mDzw0v3YAUe2aCbxHq2Rj0nbs9KP/xkhsXJryfaIuHJPr7BHjGvIaLSLY/s8wT5oeX3bj7h3HgXpgLgHZ6UCPnQaBCuPHdUDzAlOsgpOFq4hmkv32XCcQIL1tKJO4mTjbH+rHf+C1KMSGRSCQSicRLAZfmf81eOiA1V8glnSOqlEhQBgC5wlruVnSIi28xF68dd3iIoYXSGfnn8zEckFVn3osryggKkCfuhXt08sT9Y0lfXV3V5uZmIdmdTqcIABA1tvXj/NGZwKoz7XHyNx6Ptba21iCAfiyCw2g0Ktvsra6uarlcFkGBkhRC7Q4PD4ubwvMGaDtlAR7k50Tet2XEsbCzs1PG23c18HBDX7VnHLw2nhIKFzjibg6OmInAfGRuEcbZ7/dLXxLSyZxtE5hweoxGI/V6vbJCPplMSggi9+6hii5yMMbugEF8QBhwgu3zlT5ASGDcXHRoy7a4qBSAvkF0WltbK+UdOBOWy2UpuUFI8vbw7Lmw42Ih84AMEdw5jBPz3IUFxgl3gn8H4E6gTdHNFPMtEolEIpFIJBKJxBkuhaDgQYlOlHz1GHLFaiZZAuvr6w1CeHJyUmr1XZBwdwIkE8LACj0kA9HAswW8PTgMvCaeazhR5drdblfj8bgQR6/nh+jgbOD6kJ/RaFTEE47t9XqF/EPgp9OplstlyVPo9/s6OTkpdfCLxaJRG06mw9bWlra3t0sZAc4GBAFeG4/HunLlijY3Nxurwrgidnd3de3aNe3v75fruHvEgwHH43FpYyxPkc6IHP04Go20ubmpjY0Njcdj9fv9MicggwgwlBnwPiKHuwSGw2GjHCEGcl40R13sWi6XJa/i5OREGxsbpRxlMBhoNpuV2n3yL5w4EwaIwOS7Kuzt7TWILfD5isjFHOPcEHGyAHACeG4Fjgjs/dzP3t5eKRsh/6HNyePw0haeIy91cCcH8zSWiHiORV3XpV3+rPHecDhslP2srKw0XAj7+/uNYEjPj/DwUb4DEFTcNREDHxOJRCKRSCQSiUQ7Lo2gEMUET8yPOx5gK4e8ORHFxu113ZzfyTap9RCNbrdbVkchw5A9bxPt9Np+vw8XE46Pj8sqNDkPkhoky2vPPQSw2+1qfX1dW1tbRRyA7OBAIEwOUcHvsdfraTqdNjINPLRvMBgUkr62tlYCMSFhhO25g2F9fV3j8biQMdwPe3t7unHjhnZ3d4tLQmra8iF14/G40RcxYJBx9D4dDodF+GC8IYHz+bxRusBYebAhoX8QRNrPtVxIchdA2zylf3xFm3BISkEIBIQ8u9MF4Yy/I2xMJpPiovCSH2+Hk++4UwfPB6QYscOFmriNpJdsQOJjVoILcVIzc8T7hc94NgjiAE4Jzz/xe/LzemimP8uM1WAwaDhk3FmxWCy0t7dXzu2iQcwv4RlFGHIRg++XuGNLIpFIJBKJRCKRaOJS/G/ZCRzk0C3sbn/HOTAcDgtxZkeCaPX31VsPFISU8ROdAdJZsJxvFQlR8lBG2u/gPL4LBdeNlnyIIYQaMaHf75cVeVawec9XZufzeWMVHMEEMgX5hizhLhgOh0UgwDlBTTkr/PSZ7y4BoT8+vrm94GQy0f7+fvkz5gkgsEDmERNin7WRePoaMYPsBHYGgKh6kKXveuCCEmMBQWwj7G3zMsJDBb2PWJVfXV0tIo/vEsLchNi6xZ9xZEcF5kO8vgsCPCc+j/2eGfM28u7lQAgjlJ14KUQs/eC6bePkY+jCC+4YSj88YNHzN2iXv+8lKVVVlTIZshmYgwgxlKHEvAffVtJ3FaEshDkrne084mJiIpFIJBKJRCKRaMcL2hetqqo/XVXVW6uq+smqqv7PqqoGVVXtVFX1PVVV/ezpn9vP5ZyQMCdOp9dqhDBC4CCJbgeHpMXwRn6oy7f7kKRzZQoe3Obn8ZwBPh9XuXFS4FDwkgqs+tixPQyOFefBYKDt7e2yUkqf0C5JRUyAEEG8h8NhqV33pHtJZavH7e3tsv0kRJgVW9q2srJSjsHNgIsBi/x73/te3bhxQ3t7e4VEM1a0s6oq9ft9ra+vFzLoYoyH8jEW7qS4evVqqZfHmcG2hpPJpJHBEHcd8BA/zunZFhflAfjciIGdjJWkhuDBVpJ7e3ul7IPSEoQeF8PoR8pE6HdvH4jOARe4eM3zKzzQkXb6/IPoR0Eh5iW4S4h5HUNTYz4En51Op9rb29P+/n4RgaIjxQNUmXtScztP6abANx6Ptb29XRw78/m8Mfd8m02ugzhH6RLPPnPIRRzmqWed3K4U5rLgXnwXJ+4+qn5fx+v9+92MRCJxD5Dfw4lE4mHF8xYUqqp6UtKflPTRdV3/Wkmrkj5b0pdLemNd16+S9MbT328LVgwjGfTaZw8GhJwS0EamAKuiLkRAFFjdhBhJZ4TDcxVYxaddlEBACrFaQ1wgeu6ukFQ+A4GElHoJgN8/7VlbW9Njjz1WQgsllZ0JEEwmk4lu3Lih6XSqk5MTra2taXNzs9TqQxax/EsqbVlbW9PGxoZ2dnYaAgvECgfDzs6Otre39fjjj+uxxx4rdv7ZbKYbN27o2rVr+tVf/VW95z3v0bVr17RcLrWyslLKUbjW1taWNjc3S/6Bk1IXE9yiPhwOdeXKFb3sZS8r97WyslJW/3d3d7W3t9cg1twDwgbnb8u7iGBOeOkFY0W/eO7F8fFxcVxsbGxoZWWlZEns7u5qsVgUR4nPA7ITZrOZnn32Wd24caOMUSTqF7XTwycZOxckaF/cMYMSGQIfKYmgr2JYoZe1+DaPPFdtIBByMpkUMSGWcbgwA7GfTqeaTCaNkhPulfKcK1eulOeXvka8cZHHnynyPwgdlaTlclnmEX1BSCbiD0LibDa75XhcBtzt7+LEvcMv/MVfr2/7tn9yv5uRSCTuMvJ7OJFIPMx4oZ7ejqRhVVWHkkaS3i3pKyR9wun7b5D0Jklf9pxOekpKvH6bVWZWKtfW1soKuKfIk6jvLgJC8Fi1ZwUXssmqNcf753EaeJibdJPgs4rJ64vFohFS50QS4udihu9CAeGFhHsJggssECfIkKRSV76+vl7ukdXeGIAHCSYzgV0ijo+PSz90Op2ymwOEHmcCwYHXr1/Xu9/9br3vfe/T/v6+lstlWZH3rAD6CJEmbqGI48AFBsaXn+FwKOlmff3+/r6uX79enAm4OiDRrHBzDci0W/Gl9tKaSJY5BtEoXsPdMpJKCQjv+7yBqHK/7kpxeDujKOaI2yrGjAP/vIsl9Bnii+9s4Lsp+H272BbLCbgW9+vZFZPJpGSVMNb0tc/nKPD5nByNRo2SFxeV9vf3i1jmORqUuPDsIQJyDCUYCAmMi4tbvkPKA4J78l2cuHv4+X/+kfpffv2/1ObK8H43JZFI3Bvk93Ai8RLA00cTfcaX/VmtHN/+WEmaPr6iH//yr7m3jbrkeN6CQl3Xv1JV1d+R9MuS5pK+u67r766q6rG6rp8+PebpqqoevcPzSTqzurdt34abAMKN8BAt7L1er1F7DfGDUEGqfLcGPwfEFpLNSqeTEqmZmO/BhycnJ8U6jX0aIulEz1eTvaQDMcFXiGNyPSurHgjoWw/6arVnSdBedyZ45gMEa319XY888oi2traKIEK9+u7ublldZwUawuk7Y3CduG0kbYmWcspKcKBQaoEQQYlD3CmAPud+3brvP/SfiwnMM3c68HucE/Q9c4cxrqqqBEQiVjlB9TyOOAdd0ABR+PDSA9oGPD/ChYhYNlGd7mbg4o1vqeq7rHDv7oC46Hl10YN7g/BPp1PVdV12XYn9GgU2nmnvDw9fJTeE0g5ELM8KQRRBzEMs4Nou5jDnEUo818IdHJcdd/u7OHF3sbK+rqc/79fpqz/mG/Qpo8X9bk4ikbgHyO/hROLBxbI+1Me/5Q/q6OTm4txi3tMHfNuPqm7Zca0NWy9/Sh/+239f+f2x9Ym+50P+zT1p62XF8xYUTuvAPk3S+0u6Ienbqqr6g8/h86+V9FrpZlCgvV5cCb4VIMSs3+8X67ykBiGB0CJI4BSAWFBfvlwuC+l0m3esOYdccX2udXh4WHZU8JV3t5mzKo0TgGO8ZtzDEvkMxBOLuosD9IULDOzAgAMDOzcWeF/Fl86IPG4ERBMnYuvr66XcwF0Pe3t7ZXvI69eva39/X7PZrJH9QHkH12CLRoIoDw8Pyz3Sp4ydpCIm7OzslFIJVpX39/dL3gD9EYMkPYOjraTECbOvQHv/+Mo5YpKPGa9xr8fHxyUngDFmHjJPXEzw7Rxph4cR0s4oKsRyB3+PoEt3AHAe4BkDXsrh26Y60Y87PXibAO4aD5gkpPPw8FD9fr8RfOqim6SGwEQbmNsrKytlbsdSCuYdpVIuJPE9wHPPdRASyFfheAQv7tHDGh8EQeFufhcPNLoXTXxosTIa6eRDXqkf/4qHe+UikXipI7+HX1pYOTzRWw/m+jXdvlarFxQ3l7ikeNvBTCe6+X/k9xyP9dhnv1MnVuZ66wLkJo7e+S498elnv1e/4cP01n8516u7PXWr1bvT4EuOF1Ly8Dsk/UJd178qSVVV/StJv0nSe6uqeuJUiX1C0vvaPlzX9eslvV6SxuNxzX/ovU5dUqnJ7/f7jdVKPxbSD1FlRwRfcZ/P54WQTiYTjcfjBkly4s17p/fVICWIAJAVyCar0576v7GxUUQFSYXoESjoZDqupkKSIO2LxeIcsST1noBKdlqgLW6/xy1AjoTfk++csba2ppe//OV66qmn9Oijj6rb7Wo2m2l/f183btzQe9/7Xj3zzDN69tlntbe3p8PDw8ZuDJA/L2nwFWSpuYMGIgzjtLOzoytXrpSwyKOjoyJi3LhxQ88++2yDLNenwYbuxHCHB0KAOyQYA8YSMut9zxziXphrlNS4cEUGgIsNzFfEFeY0WzRC1inB8UwNSDJzA9LL6+4ecDC//J55nesACDbzAuHHw0FdcHOHgZ/Dn6HZbFYyDSgJItvEywhoI+fEHSHdLBuhf8k+wC3EtpCeOYFA4KGKPBOj0ajhCKEUw+eK53YgNrn74QHBXfsu3qh2nsu/oYnb4Jf+9Efqx/7Y35fUvd9NSSQS9xb5PfwSQvUDP64/86rfpr/002/Wbx7c79Yk7jZ2T+b6Mx/76Tq5dr28Vh/dvcys+i1v1Z/5oN+iL377Tz40zsQXIij8sqSPq6pqpJv2rk+U9KOSppI+V9JXnv75HXdyMl815j/4TvQgNr7iC8mGxLPS6CQXkujhbb4jBMIEK9Wk4ftqp6RGzXun0ylECUI7mUxKqcTa2pquXLmi8XhcSh5Yncch4TXptMV3ijg+Pi7W8dlsVq6NfRzyxM4BVVWVrQcnk4l2d3cbyf380HcQNLZxHA6Hunr1qh555BE99thjxZlAicHu7m7JLiAMb7lcFicG7hFf6YWs+XaBvlKN7Z524Yyg3yChvj0lq8tOZN2ZQF9KKmNLO5hfkEuOcVeI5w34fczn89KflLrQh5BaFwEQFbrdbrk2Y0i7cJ+wyi+dbenIM8A9eZ+1lSDg2PASgHhPrLa784I2eo4Iz5uXpFy0Uu9lIOR6eLAnDgXaRn/7fXFtxEEPD8V140KcZ08gXtDnZImw4wafdUEhBkTGfvdSigcEd/W7OHEXsSL1qxQTEomHAPk9/BJDfXSo4xe2GV7ikuEDvv0L9X7fdSLV0uDaj91xScPzQX10pL/3hX9AXzVY0fUP7uq//tmXtlPxhWQo/HBVVd8u6b9IOpL0Y7qpro4lfWtVVV+gm1+wn3kn53MxASAq+PZ4Li5AdjxMzVd3eR8iweok5+J9X6n2oECvSXcSg9Ah3UyMh9RAoqj/J9EfQkoJggdO+n36KrC3GTIUt1ukrZJKrgICAOIJ9+oBiU60afPGxoa2tra0s7Oj8XisbrdbUu691ADHhJM/ch+4B7fZez2+dFaK4OSXnToIY6Re/vj45haMZDXM5/NzOyG4vd/ngTs5nCzGoD36AOKNcOTXQHBCZKC8gLa4hd5LdKJI4OeMuzpgtfdMDS9P4V4dUViIuQ/MbRcz/LnAneAZB54pQElKDKyM/e/lBAhlnNsdKvS3/8Tz0C4XYyj58a1WuScvW0Bg8+8ByoMQ9BC2XFDwOcmYPEBiwl3/Lk7cHVz//I/X2sc+c7+bkUgkXgTk9/BLEHWtz/3u1+pLf8t36Yu3f+l+tybxAnBcn+jD3/w5esW/O1Hv3/+IpOdW0vB80XnjW9SR9NQ7Pkiv+ujP0w/8ln+sR1fXXoQrv/h4Qbs81HX9VyT9lfDyUjeV2TsGZK4tgC4Sq7j1X3QiYE2H2EHOnYw4EfdacuzpvprKOShn8JBBHAd7e3uq67rkO2xtbRVBAVJGtgFEnOtLaogE0lm5A24GyBDng/h4iJyXdEyn00JyWX12+zmfJwNifX1d29vb2t7e1sbGRglhxCHB9n/L5bLh9JDOgvSiyCPpnJDgq+6MMe4S7O2+ZedisdAzzzyj973vfeWe3OrvpBIxwcUIJ7qeHeCr7QgEHIuA43X/zB0nyzELw4UT3w3Eyz3oH+aTBwMyF31Lyhjm6PDnI77m+QqxD7gWO294f0sqjgLun3nkAaVOxr30wJ0CzC0X5XCouAPCxzC2q9vtlufG7wHHAXPQyzbcEYJDwctbXCDhOyKKeT5fHxTcre/ixN3DJ/yJN+urHv+x+92MRCLxIiG/h196ePUf/c/6e//kk/TbPvkf6MN7WfvwoOEXDid69/FIi7qrV/yxX9Xxe1srju45jn/6HfqAP1DpDf/tw/W5m//1JSkqvNBtI+8KoniwWCyKrRxi4Wn57GYgnZFxViQh4G715jUILORTOls9RkyQ1BAkOMZXQgeDQQkpJIiv1+tpa2urBAlivT48PNT+/r6effZZTSaTQiA5B6vRning1nzIL6QbQsVnqBE/OjrSs88+W9wJfg/9fl+j0ai4DqSzAMhHHnlEjzzyiLa3t7W+vq7hcFicCZQ44Hx4z3veo+vXr2s6ner4+LgROOnEFsTVckmFlDppJWfCt1UkfI/rcY9O9OgnSCjzBLLp2yK6O8FXzz2Ez7fnRBQ4OTnRdDrVYrFokGFvi987ooYTW+4XoYOdEA4ODspKPXPXibW7HCKiu8X7ms+5EMIOH7zHXPaxo2wFESAS8Zil4LtGHB4eNjJLfNtTL+FA8AEeHNrpdIqgRQkPZSHxeWR8Oaf3OaIdIY6+BWScj96P/qw/SGJCIpFIJBKJe4NX/9H/rD/5KV+sN33t197vpiSeIz71n/x5PfWVP3Tzl/r+iAkFda3v/XUb+qff9Cf0jv/+n93fttwDXApBQVJZrWzbcs9r9CE8UtMmDXkk7DDuyuDJ9b4iLKmsnELWl8tlIUeer+COgMPDw0I067ouK6Q4FK5cuSJJmkwmunHjhubzeSFxfn23aruNHmK7urpaxIRut6vFYlFcGZIK4XJ3AiUYkC1W/6uqKsR4MBjo6tWrRfzY3NzU+vq6Tk5OShYD9ecQ++vXr5fPI6zQDvo3OkgAbXaHgqTikCBoEzGBzASCH6MzgXPQn5BjBBbfEtGDAL1cxckuf/eyFn5nnBAi3B7vDhgfW989gjmHA2J/f7/hTCAngntkhwIXyy56ZuJuJE76XahDSGB83KXjJQ4eXunEms+5E8OFEgQYzhNLHXyc3I3EPOdzHj6JGOjk3seV4xEveKbISeA5dReS51VwX75Frd/TA5ajkEgkEolE4h5g9AM/o0/8nC/Q67/h7+sDu+P73ZzEbXBcn+i3/qkv0it/6Jd0dMH/oe8L6lqv/uv7+ogf/WP6iT/30spUuDRpI070IbzD4bCsghM+2Ov1zhFArNcQ4FuF2LWRLl8l9q303NLu1mhWrWPYIMGCm5ubGg6HxdqOyAEpReyA3LKiS5u5L1a7CahzazrHzufzEtxIiQR941tbQrpo58bGhnZ2drS+vl5yC6qqKgIFVnfOj1jh5A/y6cQrrvjyd1/dpx0k+RPS5zkQlFm408JLY9yuTr9KKvXy9EHcVcDJLuPt2RbMBx97xtdzOrycwPMBuD8vs6AvEL0QG1yY8FBJJ/vxGfE57KUmvE8bvMQgigmeSRJFgNimOK48M14a4AGO3kZ3BLkrhHPgzkEYiaUi3odc0wUfLwdx8dB3dXDhx+/HyzDiT8w3SSQSiUQi8fDi+MauOv/hv+h3/us/q3/47Cvud3MSt8CbF8f6oP/7C7X5H35WR+/6lfvdnHM4/ul3aPunD29/4AOGS+FQ8Dp2SSUokJA+VvCp93bSwGfc2u5kzFdbnUhJZ4KDryqzgunWeUQKiKZb1iEz7O6wubmpra2tUrrBFo6UHvh123YDQEzwYDss3Wz7B4E/OjpqlDhgcYcE9/v9c3bwfr+vjY0NbW9v68qVK9rc3NTa2pq63a4ODw/LfUHIp9NpI+jRV71ph4sEMZRR0jkSixCAoOClAAcHB0VMmM1mDas744mowQ+uARcHvI9cTHAXg69iQ/y9pIH3Yzior67z44SccYQg4zyhfZ7hEAMLIdb+bMRnxYm69zHPDv0kqZEP4GPhP74zRsxd8P5vyziJWRFRvPO8BPre57CLPFFQ8L7x8eee2twUUYiQzhwq7jaIeRMx7DQGuyYSiUQikXiIUdd61Ze8WX/v636nXv7bvkUrOtGnjCZarS7N2uxDje+edTWr+3r9u36rXv2FP6L2vckuB1YXJ/rO6Ui/a7SvbnV+AfFBxKUQFCCFy+VSKys3txDc2trS+vq6RqORjo+PS3o7JQl7e3uNbfqkprUbwuArrTG8EfIwGAwKCeX6WNR9q0AcB5PJpJB7SPtoNNJjjz2mRx99VJubm9rf39czzzxT7O2QRA/w8y37eA8ChZDAFnhuA+fzzzzzTCPBnjIFSgHG47GuXLlShAxJRUy4evWqHnvsMW1vbxcxB/ED4kvJwe7ubqlF9xVv2gwZRPBxMugr45Bt8hLoZ4QQ7uH69esNku87ICD4uDOBUg4EHLIJmBMcw2uILm6f51jP8cBJ0Fba4cGAdV1rMBg0xjeKCQcHByXM0smsC0ueaYDDhHZxXify7qKJ7fMARD7vgg9j4s8E9+zOCv/xOepz2kNM/Zqe00AJiYejIlb41rDcjwsC0T3gpSCep0G/ka/ioaxtIZbxO4i+9z64KMMikUgkEonEw4dX/5Ef1ev0QVoZDPSRP/O9er9OlkBcBnz17/l0Hb/tZyW9+3435bbo/Ie36Gs+5EP1ynd8vz68l4LCXYMnwXc6HW1ubpayAScorJxTI+1lEtGa7cQnXkvSuTyD2WxWSEW/3y9p/05UvKTAV6UHg4F2dnb02GOPaXNzU1VV6dq1a9rd3dVsNiviBaIAq+PRrh/rybe2tjQajUr7+ByE37fC5Ee6Wa8+Go30yCOPaG1trZAiSh0ee+wxPf744xoOh42dBajl5/y7u7u6fv16cSawok2JCaTSAwTdFRBXwRGOKGNZXV3VbDYrW2/6n4yRpELcIaFefoDwQ38wjnwegurzxJP/Oc7LAihngSC7nZ/z+bhC7Llv3AmSihuC6zHP6XN+p59AzDNwAu5ZDr7C7tZ/Xnf3g2cn0D7PiYB4e7ijo62EyAWM6Hgg/8PnhbsY/NkGXqbi/cO1opjggpDfJ+3lGebZ97lx0We8TCYzFBKJRCKRSEScLJd67ad9obTavlBxuNHXv/nfX6fRSu9FbtnDgw/47i/Qq//RTc6gd/zM/W3MQ45LIyjwn30s+WwBB5nwPeXn83khpFj129LaY821W+99pwcECi9riIKE26ax+ZNRsL6+rscff1zb29vq9XqlJMJr5SE3vioeAxqlM6HDwyg9pZ7SBoi/EzXOORwOtbW1VfIJIEvdbrc4P0jSd6LuxHI+nze2uYx2cUhkXFmnj3wVnD/jdoK+44Fvjwlx5hpOMN3t4OdAXGG1PlrYaTeCjpP7OG9c8HEhgfbQVifnTuS9NCJmffiqu/enPwv+J+/7MSCOiwtLzAc/nxN9ztuWM+EZIw76hePashRcVGAHEL8Gx150nzH0MfaNCzIuKLhQSN/4M3tROU6bUBbbmkgkEolEItFAXav+sbde+HZvNNKv+9Y/eS6t7vW/52v1icPLbMi/3HjbwUyf+q+/VJL01JtOVP/oT97nFj0/1MfH+p++5U/rCz7le/VlV372fjengU/4yU/XO3/q8Qve/bOtr14KQUFSERM6nU6x+UMYffcFyJxvTeeJ+m0BbpIaRNTdCeQG+LFeJuGWaidpkOO1tTVtbW3piSee0MbGhiSVXRJ8ZZSVcV/Zd0EhEjNKKWgPQoL/OHGExONC2NraOufwIOOBgEe3gzuZg+TP5/PGirJb+LkvgjI96PDk5KRs8elElmM7nU4ZTy9TiFsUSmdCUlxpd8LOOSj3cGGIsff6+rgSH8MI464eZDzQRy5cIF74WHA+F7W8H72cwAWNthKDuErupSOAY7g3L43wkEefb963CDkuDEXi7WPrYg6EnPN72YO7IGLAo98D1/Jn96KQRHdUeGCqpOIUQdiKO0S4kOFChQsszEO/70Ti+eD73/sBevPWj+rjBi8NO2MikUgk7hwns5k+6EvffO71v/jBn65ffOUPXPi5/3n9FzVeGdzLpj0weNvBTD84/4DGa2+8/iH6oD91vl8fONS13v/Lf0j/ZOu/10f8jl/WJ4+W960pb14c663LJ8vvs3/+hD7oG3+o9dhfvOAcl0ZQgJytr6+X7Qtj7Tl5AcPhsOQPSOe31eNz7gbwFevRaKR+v19Wq6fTaVlJhTxS8uCr5X6O4XCo0WikK1eu6KmnntKVK1e0srKi2Wym/f39sp0k7eOch4eHWl1d1Wg0argHaAsiCe4JyD07HyAktNnOV1dXSyjk5uZmKZdgtfjKlSsl5HJlZUUHBwflfjgPQY/7+/uFoIO4WuuizsnJSdmukpIG7gFxAUEBh8V0OtXu7m4hq9EtQb/4KrTvakDmwt7eXhkrSDNk3Ve1yWmIIgmfcacDgpZnEzD/FotFY5tEyDzHIwRR5hBFKe6tzSHBPcacBYg7ghhCGvcXXRfMZZ6rWFqAMOK7TiAIuEvBXStRAGBueckIJUPepx6UGRFDGPk7/RPnOIKPuw/ijiPuQgFRpPEAWOaDz7VE4oVi43f9nD7/L32xfuqLXlpbQyUSiUTi+WPjd/2cvlUXrf5Kq28/0edtvO9FbNHlxae86Yv1qs97S3j12fvSlnuFV//R/6y/8T99nj75H/zT+9aGL/jaL9ZTf+sHy+/bahcTboVLIShA8rH5E6zmZISVfZwMlENwjK/4xsA9SCHkcTweq9PpaHd3t4Q7cgyrnpBtCJnnAkAaCTbc2dnReDwuRHmxWBSCxErp/v5+ERMIMHRLOM4ArjcajXRwcKAbN27o2Wef1TPPPKPZbFb6DOEDMgSR29zcLA4PVp1xLVy9elWj0aiEW0IanZzt7e1pOp028gzoe8AKNGGFEHUEEd+RIwYOMraz2axsp+nuBA+dhEC6Fd9dFD5PPFvBhRxJJWPBsxM8v4KyGeYMDhScDbwHAZdUSjcIcPSV+bqui+uCsXI3AvMplkng9PCxZT66SOJ943+PuxkgnLkLhjZxvD9XPIv8ifOC++c4F0EQlLzkwOcV/eAuIn/ucTz43OJ+vAyB51pqll54eUsUVpgvnutQ17Vms1k512AwaMy3ROJu4pVf83b99h/+I/oP3/h197spiUQikXgA8K2/57/Tt/a6tz/wFuh8za6+81X//i616MXBr//rX6THv+9647UPuf4rehiWedb/n5/UJ3/KH9DXfcc/1VMvQsjnB/yrL9Sved2N8vsr3vP2F7wrxqUQFKQz4l5VZ4n9EDy3NhPq50TYV2UhgG015/1+X+vr6+r3+w2hQjpfe+05C7SLdkLS19fXNR6PNRwOGyvYXj7h7WGlmBV7SWXF1UkOxHE2m2lvb097e3ul/KCNWEKAx+NxI6yvruuyAwVCgtvUOcZXoQmexNYfa/Kj1Z/7g7iNRqOyTaWTVAjhcrksu2T4+Pq2n/SbdN59IqnxmSgmOLnkT67rwoiTTHcxcC5f0XYxgT5lNT/a+F3kimTZr0G/I5bQX1EwaFtl92wGP6+T4n6/X0peJDVKIVwkcbHGHRDuTvCyC38/9jWiSsyj8K1MY9/SPj+vv+/Ciz/jsT84lj+jq8OfKXZoQbxom2MgMxQSLwTH165r8POb97sZiUQikXhAcPyzP/+Cz/HMN3y8PvjVX3T+3D3pbb//H92XrQp/3Q//fh381MX/Hn7gf/xVHf/0O17EFl0enEyn0k+8Xb/z6/+8Pv8zv0t/bufn7ur5P+Mdv1Nv/b4PKr+//3840PFbf/quXuPSCApuR2Zl3JPesTZjnXci7HXXHtTmgOyura01tgV0gsn1Se+H+PMeRLrf72s0Gmk8HjfKJ5w4uUABaUNQgMxCAMkA8H44PDzUZDLR7u6u9vf3y8oyooD3DS4AshEgTysrK0VQwIaPS8JXgr3kwPMI3K0RSz8g49ElQTkKK/WQNa4zmUxK2KOHCEL6Iwl0uP3fbe9eCuEE0DMRXBhxsYh2ehCgf94t9G0OGc9N8Ps8PDxsrNx7mQWCQBQ3XCyQzohxmyjBdTx/wMdmOBxqOByWtnj+QRQrIpH3c3o7XQzgOrEkhv7HPYIjxEU2v05bQCPCirs0YgkIx7vY4cKCl7S4qEJZDo6k+PzHvycSLxTV8lB/45lfU37f7kz1x7feeR9blEgkEomXMrbf8EPabnl9dWtTf+V3fJRGqweN179g60f1xAtYGf/qZ1+pyfGtcx82v3lda99+sZX+oY+pPDnW+/21H9TXPPnb9YpPeEafNd59QafbPZnrH17/KEnSz/zbV+mVf/sHb/OJF4ZLIShAoiCKvvLshMHJAYTKyRXkMa44Hh0dlTIAnAE4Alg1jYSi1+tpPB43QuwQM4bDoa5evart7e2yI4Xb21kpd7LpO1Z4uygtIGgS0jadTvX000+XLANJJRPBre6SSgmG2/29BGJjY0ODwaDYyCU1HB4uHEyn0yK2IDB4KCKlDJQEIDx4n7WtmHupA+4QxthDGemvNnHA+42xb8sIiK4L3AncK+UX/Ikbw0sM2F3DyzC4R9wJ/h7wUEffMYSyBX5nldx3G/GcAOksvNFzNrw/Yjjl4eFhCQq9cuWKqqoqbhBKXFzkYR7wXHmAp7ebfA5//uLuJMz5qqpKX+/t7Wl/f7/0HSKCCxHujADeT/F5dvHAxRcH77mrCDFhuVxeGDzp13BBMJF4ITh657v0fR9+9h+tlV/7kfqj3/XP72OLEokHD7UudpIlEok7w/GNXb3lo1YkNcn/s2/5rfr/Pf6jz+ucJ6r1PZ/6ETr6hV+65XFr+uHndf6HDa9+7Y/o7/6h36//8W/9Y0nSanVni1zHdfP/q//P9GXl/x5P6t6KCdIlEhRYhXTLuBMJJ43uXvCdAXyVOa7kjkYjdTodLZfLkhHgJQaQpqqqSmkETggINSu/Ozs7ZVtGjpFu1mP7SioiAoLCcrksbgII/Ww203Q61cnJSbGoQ36effbZstI9Ht9UDuNWkR5+6G6Ibrerzc3NEsDI+7G0A0Hg8PBQ+/v7mk6nhUSy04PnSSCqIMyQ+zAajbS9fVMPhYgeHByUsgh+J2CTcfHSE0h3DOrjnnBnxFVqdqzwVXvO54IC5JDQSMbAywAWi0URZjie8EPfPYLQTa7n4kJd1+r1eo1+9hIXhBSILUS9TTDwTAUvUSD7wR0Iw+GwuGZWVla0v79f+tvP60KcC2bRscIzGJ0E3Af37j8EZU6nU00mk1Iiw/tx7JifHkRK3kXcfcVLHbgX0OYIot2UUPkuIC7ktD0f/O59l0jcDdRvf4de89/93vvdjETigcI73vVN97sJicRLFm9/zeN6Te/5/7t09EvvuoutSex8+0/oNd93czw2v2lP//z9/+Mtj/813/85+sAv22u+eHQs6cUbl0sjKGBDjuICZMO3fYQEemI+8G31OA+kG7GC0ERfNYWgeegiBPbg4KAcQwkBYgIixHA4LAGFrN5DlnyF30mZr8r71ouLxaKUOfh5vF88BJA+giz1+32tra1pOByecy640OJE3ndAYGcJ3Ao+DjgUJDWcE2tra+p2u42EfcoRIMNY4GOIYJu13zMbpLNVay9t8ZDA6FCJ54+lDk4cY0aCr7a7CwRHg+c8RCGDUhnmqbsMvC2ezRGJK+fx3QsYH+anZzjgPmAcCOQkz4O5Qpv9T/7u5R08jzhPXEzx+/Z5yDgzd3B9xO1a3ZngO2X4OTwg0+cF433RPUhnLg6ux/PE3PZxdIdHdCJ4GVAicTdRHx3ddiUnkUg0UdcHtz8okUg8Lxz9yrvvdxMShpPZTCen/0/4+a/5OH3Y+33ILY9//L8e6ugX/tuL0bQLcWkEBbdiQ9I8uM1JoOcmOFF3G7Ofr9/vNyz+EEe3/yMCsALf7/dLWyCFvD4YDIrgACEaDAaNcDtWjyEt7NDgAXFuF4ekQ6T29/fLCi5J+m7/joKC28nJePCVeBde6D8n/pQgYMefz+cl68DDJD0fgfIBrsVqsJcX0G4/vxN+DxbkT1/F9rp/LyGIYYExj4HP+rHMI1+V97IID+N0cQMS7w4F2goBPj4+LmILbgPPHuBaLlDE/Aa3//uOEX4Nb08UzXxLUFwZ7jCgT/xP4MKIi3pcD9LvolYEc4cSC+7dy1di+UQUC33uRJGprQSm7c+YK4EoFnNMXIzyfojiTyKRSCQSiUQi8WJj85vfrAch2vlSCArS2VaEvmruZMPDBqWzpH9ftfRac96HCLNCDrEFkH/IZrfbLSv7BPGxMkx9Oltc0ma2u+S8Xr5A2j/Xcms3QgYE8vDwUNPptJDHNoeBCyeILPQTpQj8ubGxcW5VGIKPrdzzEyhJQFCgzh9hY2Njo5R4QL4p/WArxPl8fi7gMG7J6BkLfl8uALhAEuv63TVBMCTtd1t8zJmgb1zQ8XnBPPR55q9JTcLqzg7fEaTT6TRCNhEYKLtgfLxMJ86PXq9XSkIYD5wzvmUqos36+nopuUEg8XMiBnjwYSTULuJ4P/rPRSv5EG8vR0IIiyGHntngTg3yNDiHCzj+3Pv8ckGKe/FMCncj0e8+xm2CgY/LRTkLiUQikUgkEolE4pIICpB1SYUMQfQh1BAA6tm93IH/9EOOIcoEEyIweB29dEYy19bWShvYbq+ua02n00Lwr1y5ovX19YaYAGm/evWqxuOx9vb2yuvsJuEBgu60aAtq9HIBSY3wP15zEYVzuIhA+zc3NzUcDiWd5S64mIBwQ1jifD7X/v6+JpOJbty4Ue4bEQXCCjHlOltbW+W8s9nsXEmGbwF6EUFjbLhPX+lHMHBXQyyHmU6nRUzguk463VLPHKMvEVEgovSnuxgQS3x1HvGEc7HzQ7fbbWQuQMKXy2VxuXS73XIvPh/5DPdM3b87avhhriA+uIuF8g0XAnhefMcHL1uI5STMP8aC7BIXgehDnBCem+HCB3OX/nWRgVIe+pNdGHjPSxwAIoYLH9Ex4SU8sY84Pp7X5yPXT0EhkUgkEolEIpG4GLeNjqyq6huqqnpfVVU/aa/tVFX1PVVV/ezpn9v23ldUVfWOqqp+uqqqT7qTRkC8PNXd664hFf4Ta+shM6xISmeEAMu9v86f7jIga6GqqrJSyooyZQ64BlZXVwvRHo/HhTx5aYSvAPM654BY+cq3uy6cjEbrd8x9cIs+JQ84JNxSHy3t3meQfsocsNGPx+Nyz5SOsNMFW2YiUniNugcJRpu8j4Pft9e/e2kC56GtjIvXx7tw49fyWn3OxWdpN24Yz1fwueHtZVycsDqB9vISzyWQ1MjpiOGSfu66rksoIaGKjCvt8YBBzgkh91IHn18xONL7ycsEaI9nONC/Lkx4NgGiHeSdEEoPmqQ9XtaBkEDugrfL5zx9GQURbzPwsomYm+GlF7F0IzopvF8uA16M7+JEIpFIXIz8Hk4kEonzuJO9KL5R0ieH175c0hvrun6VpDee/q6qqj5U0mdL+rDTz3xNVVWrug3czs7KarRKR0EhWtsRIyAbkTzE1WAIHETD7epYryFmnpsAWep0OlpbW9Pa2lrJT+C8MfRPUkOUYDXbyZXXrUO2pDMrd6yBj3kAECMECzIN2nbCgBR6zTslEAgDlDn4fXM9BAss9r4LBvclqUFgYxlEW1u8jMFX1iHvuDf8szgtnBz6371kgvdcXIk5Fn7tSLKx4Eebv5dS+Dn9/jyHwVfHuYYTVxdQfD7TNt6Pghvj5/3hpQCeO9EmVEVy7UGO3l88a5RccF4vH+JzsdwmEnQcRbTbsxscca64w8PvzV0Y3qa275Jb5UFcUnyj7vF3cSKRSCRuiW9Ufg8nEolEA7cVFOq6/k+SroeXP03SG07//gZJn26vf0td18u6rn9B0jskfcydNITVRyzTkA9fUYcA+KqndFbq4IF8lCXwWSeH2NsJPJTOiKekkmWATZ30fJwJdV2r2+1qPB5rPB5rMBgUFwJELIbysRUlq/pO0H0l3lfGgQsM0tmqu5N3Voc3NzdLrgHhfDEM0Qn6ZDLRbDbTbDbT3t5eY+V7OBwWUYHsBNwJuCwojajruiFwOGl1AchJoZNSCJ4LMggGLhaRw+DkNsJJbBR33AmDa4X+RhDxlXna5GGUiBiSSlmOlyFAeOnnk5OT8nnaHkMJuSYE24MNcX3wjLT1t5ewtIlv0aEShSl/1ugn72cn8rSB8USYYK7govCxuah0YTKZlLb7mER3hbefc3vA6snJSSNk1F1B0aHic9Lb1Pb3i8oi7gderO/iRCKRSLQjv4cTiUTiPJ5vhsJjdV0/LUl1XT9dVdWjp68/KenNdty7Tl+7JQhPw34OqXN7txMc4GF82OAhWAgFiAdeI766ulqyGdydIN0Mldvd3dVkMikBjVeuXNHW1lYRAzqdjtbX17W5uVm2S0RMoF2QHVbuNzc3Sw03ZIekfn48XJL2+vaAkFvKHTqdTrGJd7td7ezsaHt7W+vr6+r1etrb29N8Pm+swhO2OJ1Odf369WJdp8SDvkA4oOQBEYQMCWrqJ5NJaQ8CBpkM2NijPd2JKfX+tI/dNZycezkD52CcnXS6SwSyznXoc+CuDS9TYd45OffSB0i99ymCkpNirg3RZn7FsXZ4+YC7bDxk0Ocw4givQfJdLEBIahN33IXAWHguB3kZ/pmY88FcYe7jNOC6XkYUn1vGJQoe0U3gDgIXOPx8fm+ehYEQxjMUgzvbyhxcfLtMgsIFuKvfxYlEIpF4zsjv4UQi8VDjbocythUct/qJq6p6raTXStJoNCorsl6DDQmAZEAAfLU7bqcHuWU1WTojj16b7xkGEBCC8Pb29iRJ6+vrZbV/OBwWYkSqvm/TR7hhDH7EneArt5CkTqdzbp97D97zunruwe8DAYasg62tLe3s7Gg0Gunk5KSINNJN4of4MplMithA2QOr3qxYIyj4Npru6CBv4eTkpGH3R1BwwuhujRjgB3lzVwYighNhSGG0zVMu4ivrccvFi9wjtIl785KCaJn3shzGjM9FJwjigqTGZ6M1vzwgliPhbptY9uOlFO6g8NedfN8uL8GP8fYyzrHdnlGCiEW/edaC77Di7XUBxN1EcXvGi8oTnOj7vfg9uuPDx5PrIPbETIVY9hBLYh5APK/v4oFG97JNiUQi8TAhv4cTicRDgecrKLy3qqonTpXYJyS97/T1d0l6uR33lKR3t52gruvXS3q9JG1tbdWs5jvpd7IQcxXcJu0rrvzp2+TFlWtIHuQT4rFYLEoQXq/X09ramjY3N8uqPOfwsEIS+bGq+24AiBsQLyc9MYRPOiNewLfN85VrhAkP6xuPx6WkAqFiNpuVLS85/2w2K2UOlDe4aENApQsI/OAe8C0mPbfAHSMIPYg+3LvvVuGknZ8YaMjfgY+nHxcdCtyvz422193t4XkcEGIfAxeDYpmCb1vJfeIsQARrKzmgPfzpuRNRPGkrGYi/O9Fu6xve8zBTD1R0YcfzFxCLfAcEhDiOb8tB8Hul/110YC7EUouYf+I/LjD5NbivmEsSHQf+PRH70O/3AXEo3NXv4o1q54EJlEgkEolLgvweTiQSDzXuJJSxDd8p6XNP//65kr7DXv/sqqr6VVW9v6RXSfrPtzsZq/v8Z98t15ADX3k+OTkp1n0XFPwYX4Vs264RsYH3Tk5OtL+/rxs3bujw8FC9Xk9bW1va3t7WxsZGo/Yd8k7tPHZxt9FD5AeDgcbjcUOQgLTH0DsAYUJwgKj77gaQMLao3Nzc1MbGRtnicDqdam9vr5Aw2siWkIROIuR4uzwzYjQaNXZ5mM/nmkwm2t/fL9t7MoaUTnj6P+1mBwJf+fUV5bbshYvgRNJX3uOciiULHmjodfZxW1LKSJhDTvS91IE2+84T3IOPdXW6K4Tb+/1efUzbVsSZoxFt5QIuAjgBj4KCC3O4K/x1LzVxh4CLfr6jhzti3G3hJRPudnAnhosJ/rz7PTBXvWTBz0d/e3YK7hvukWfSwzHj+aPT5AHAXf0uTiQSicRzRn4PJxKJhxq3dShUVfV/SvoESVerqnqXpL8i6SslfWtVVV8g6ZclfaYk1XX91qqqvlXST0k6kvTH67q+rWfYV31Ho5HW19dL+B0rxdRp8zrvSWfbTp624VyNtBMOrgdJ5rw3btzQjRs3tFgs1Ol09IEf+IF6+ctfrvX1dXW7Xe3u7qrT6TQyFTqdjmazWUOIgJy4e6Db7RYHA4QmkipIPSSUtnG+6XRa6sMhxlVVaWNjQ1euXNEjjzyiK1euSJJms5muX7+u+XzecHzM53Pt7++XIEWIoLspNjY2GjZ2r/+fTCaaTCaaTqel1AKyDHmbTqeSVH5HuPCAPMowIIDu0ojkN5I6L3txx4M7F7xcwucHBBXyDCEmYwPhQ1IjhNHPRz+5OOHzkOsDb2Mk1i6I0DbuJcLJvIs47oaJeQBR4PC+RABibNxxw/tcF6KNi8F3+fCQRi/V8DH1rAYXHNrgjhyEOT7jQpP3I3kozCUvAfHtTHHZUHrhfR/LR24lVt0vvBjfxYlEIpG4GPk9nEgkEudxW0Ghruvfd8Fbn3jB8f+rpP/1uTYEEs0WjDH4jnA1VkF9hdtJsa/+Q+ZYxeT9SMKWy6V+9Vd/VZPJRKurq9rZ2dHVq1e1ubmpfr9fVi3H47E2Nja0ubmpwWBQxIS9vb2Gxf/4+LgEOvrOAFwf0uMry1jneZ8+mE6nJdzQ675XV1e1trZWwiEROObzufb29rS/v19EDVbecRV4iB0EkP6HYPd6Pa2vrxdB5Pj4WPP5XLu7u4WYepnHcrksJRYnJyeFhC4Wi3M7NzBujLuvrts8Okc6I2F2wur3AyGH/EvNnUBiqQv3QGkGbhLGMm7NGbMwTk5OynUiAfU2OYGlfXwmzmXAXIj5B+6GYfzczn9ReQRzjhV5RBWyIKL44Kv70tkWmTFvgt0W+Czz2N0h7lxw+HPuGQk4l9wtwfm5FiIBriTG0a/lW6zSXp9Tfs0oWFwmQeHF+i5OJBKJRDvyeziRSCTO426HMj5v+JZ9XscuqZDRWJ8vNWvFITmcC4IYyZ+XRRwfH5fygIODA62vr2tnZ0c7OzsaDoeSVEg3gsJ4PFZVVSVHgHBDJz6sxvN5JzG85lsmut3bk/c5/+HhYVkZ5/5Go5HG47FGo5EGg0ERXNixwYks5Qexvt3LQBAUII2UObggMZvNGlZ+t4ljR/dMgbquiz2eQEQXE1wMiHX3MROAPyPZc0EpHs/5fGxinoKPD+TTHQkgntMFBkpNXLTgWtEhE+Hk34UUP56xog0QY67j24q25SbwupcuSCpjAxn3+/R+Q+xCYIrk3ctY4nXpq7YyAi8PYS7E7AOfF1GQoTQqOlCimEDfuRMEEcYFtuhaaHOLJBKJRCKRSCQSiZu4NIICAYDdbrexQ4CvvlLfjmVe0rnVTkiGE8a4VdxwOCyr0AcHB9rb29NkMiklDVevXtWVK1fU7XZLDfba2pq2t7e1vb2t8XhcQg9xD0BkEDtwJ2AHhxBClhaLRfkc8MwI7NqQdSeZ2M5xKIxGo3ItQiUh9G6P93p14FZwBIQYyjibzTSdTnXt2rWytaTb+32XCAg016NPuXd3DTA+0nkR4VYrw5FkOkFsczHQRgim94kTTBdKEBPi9pTuIvD7cWFruVxqMBiU+/MyDc7Bey6A+Cp5m3gRRZAoJMRSEO6V1+P4++o+JR9xZwkPWuS5QfTzvAF3FXibvJRgsVg0XmcMvFxFUkPE8GMZF8++wFnB8VFw9B0rYmYDZUbRIePfKSkoJBKJRCKRSCQSF+NSCArU6kOK2X2AgEa3KrMiGpPcnWD0er1ChHyru9FoVEoRer2e5vO5bty4oXe9611aLpd69NFH9dRTT+mpp57S2tpaEROOj4/1+OOP67HHHtPOzo56vZ6uX7+ua9euaX9/vxAqyBX3RJkAdfmshh4cHGg6nTbKMByQnmeffVbz+bxRJy6diSbuUFhdXS0lGNPptJA3CJiLNE6eyDGgTxAsCGQ8ODjQM888o2vXrpW2eHmB5whwzwg47JThq9mMKeQQUYZzuo3f+yaWAUCaIbWIHFEsICyQ9nn4ojscfOvD6XRaiHOcp8xLX/X2+zs4OGi0mXvxEhsIvgcK+v3XdV3cOn7v9Dn9zeq7ByNGMYfP+co/1xyNRo3+QISgzYR6erioO4i4B4fPIY71++R+onjC74wV4+xzmPnm4iNCAd8bzD1cN91ut5GR4GKN37eLCghLnv2QSCQSiUQikUgkzuPSCArYzCEEvjsDq6EQfKlZ6nB0dFSs2Kx+QyQnk4kWi0XJZ+CHnRAIGez1etrZ2dFjjz2mK1eulAwDSdra2tKjjz6qzc1N9Xo9HRwcaH9/v7QVEk3bOp1OcSBQeuCrxJD7uArtNeLcr6RyXwQbDgYDDYfDkvEAifbyCD7ntftOnKj7j9tCdrvdhuuBoMXpdHpubCDHkfi7Fb3f75d7hZhCwBeLRcl6iDXskhrnjKv2Tp7pc4i1k3PO7eTcV7+97YwjhJ734wq69y0iSizDcUBwvb987nvZhZdkOFn3VXjO56JH3DUBQcJdGJwPst/r9RqhirSdZwehhRBGSlY8gDFmlLgIwLh7GYePcXQXeSmG9627V2gP9+DPE/fu89MdLD42tCOW23g5VLoTEolEIpFIJBKJW+NSCAoePAfpiVv94TigJl9qknBIN8KEp9PXdV0s/BDw6XRaAhWPjo7KFpE7OzsajUaFrHY6HY3HY21tbanf75fV/slkUtoE+ffMgqOjI81ms0K4nFg5ueM1X8X1vAPfiYDV/cFgULZ1jH0EAfPV+rgi7NZ7Avk4F6u/kLXd3V3NZrNzeQ9tKf2QMtpKOKZvCQpRJn/CE/yZC7T7ovwCX6n3UEm/XwitE2U+e1HOAmNz0fX5iXMTUg6hvYiIesmCOz18DtBH7mrgM55/4Q4GdyXQVsQVL0XgPRwoUnN7yNgPjKWLE368l1G40wCXg3QWutk2D7kXPx+f96wIzzOI261GMYbxaQun5D3a7I4Yzu9hnbcrvUkkEolEIpFIJB52XBpBwUmGW8olFSs5tnVfhfbVWsomqNeGrErScDjUcDgsWzju7+/r+vXr2t3dlSRtbm7q6tWr2traUq/X03Q6LQRma2tLm5ubhYxMJpPiUEBMmM1mDZJYVdW5EgEv3Ygro9yLuxgkNaz8kLvBYFC2s2QlnbZ4GQWEEvId8wJY7WWLyriN4nQ61fXr1zWZTIo7wUslaLfUtPcjVPR6vUaGBAT44OCglGd4mYiTdS8p4Pwc46vqx8fHhTxH1wpksS2zgfO6O8FXuON98hnPGIDEMl7x3LHMgddiPkAUExhzF0NcCMJdQLvpQ5wJHgjKPdMWxpjQUp4tSiSiU4K2UB7gjoEYNuqhmHH7SX++XRhpc1D4mET3ANs+upspbt0Zt5H1wFPvS78uohSlEi42JBKJRCKRSCQSiXZcCkEB4gIZhjRIKivvEGyIEuSZfIHxeFw+t1gsdO3ateIa6Pf7JT9BkmazmW7cuKHJZKLj42Ntbm7q1a9+tR599FENh8NCkjY2NkoYI6UO5C5QXsB2iZQ8sFoMaYLo+c4BcdWY+3RnxeHhYSlBgJyNRiNtbm5qY2OjiADUkNMOJ0deOrFcLstuFC5O4NqgFMHDJJ9++mnduHFDs9msUbMfSb6PY1VVZfX78PBQe3t7xTEBYb1+/XoJs/Q+gChzX/HcXBMijAXe2ySpQRL7/X55ndekM/Ibx4nP++f4DP3q5SPsxAFBdQEium0YeyfhHOf3gqvDwdzxMgcvPTg4OCh9h9sEou0r9+zkIamUEMVSG8Z6NBoV4cLzCWhPzCRwsYrxjEGIjJvfu5c6eL4G4+j94mPlYgqigW+7GktLaKMLFS5e+XODCIeok0gkEolEIpFIJM7jUggK0hn5gjj4yn60Xx8fHzdCDQksZNVyf3+/iAmdTqe4C05OTjSfz7W3t6dnn322EMetrS1tbW1pNBoVYaPT6TR2UTg5OSnbS16/fr2Qmfl8XrIafBXfiaMTHd5zQs29IwxAYnyVHmcCP7gxIGzUvDuhhWh6noNbu3E6QBopR3j22We1t7fXCGKMK+3SeVLOWED65/N5w8J+dHSka9euaTKZNIIFubbnIEhNV4KTVvoZB4nXyl9U0uBlHk6g46p5XddF0Ig/fi4XfuLc5Rh3HEhqCE3cn5fWcJw7Nvw4nw/u2sG5w7xYWVkpO6JEF49nPiwWi4YoxNxzhxDX9kBPL33w4Ep+Z767mOCuAP+9LQzR3S4IDPRfPIfPPRd+2nIqKLVxQSO6oeJzGMWfRCKRSCQSiUQicYZLIygA/4+928FZ5V1dXS1ECiLhK5qsyPMZJ2oQwNlspuVyqaq6uYXk9va21tbWCnmBqLJ6z2rvfD5vbBPJtXybRidQCB6+gu61/5BBCFK0ruNOoOYdxwL94Pb5mEPA+bjnuA1nt9strg4vIUE02dvbOycmeOhhzH7wcEO30TOOvDadThuZCow5Nn1KNWLtO3BHg4fneekI5DQSx2i7d3Lq+Qduj3cxyJ0lHgTI/ccMBxdgooXeS15iqGV0fsTyC+93xAR3JvgxPua+QwPE2sUsd30wvxAPvNTBwzC9zcz1KPC4AOBigv/ufeD3GkWVtnPcSvyh7+kTxopr+PeDiw7+LCYSiUQikUgkEol2XApBIZKoSLqcnNV1XWzZkgrxQWSA8EtqkHnIDdb/4+PjUgqxvb1d3AmQL0oKIDkuJkA2OFcUFGibixrSGaGBuDkpIveBzyAeYGMfDofFrg4JaiN87hpA8ID4Qto8h8G39qvrWvv7+2XnC99RAxHDxwghwzMbGB8XfbyvfNcLSKPvNIFN3uFEGsQtHdvmkYsKvpuC97+XmUgqoomn/TtJZ/wQFLjHSPYh5S4kuQAQ8ygQxaIIAjzokPNxXUpVfIcTFy8QgySVEFF3Vrgoxf3HQEfGrC3rgPvw7IYoegD/O/AwRH/NQxR9rtFX3vf0M/M/Bm56n/iOGzzzbWICYloikUgkEolEIpFox6UQFCQVouWA8LmNHELooJQB6z9kiRVvXyFHFKjrupBqAg59Oz3f4342m5UQQcSIvb09TSaT8h5lBZEUQn4IJvTdErwOfzqdFkIHsaYtuBN4zVfQo6AgnYUeelkFx3e7XW1uburKlSslL8Kt+9euXSuEMwbdQcQ41oMyIXLL5bL8YJ9nfKbTqQ4PDxvCjTsTfJzpO1/hv9VqcXw/EvNo1Xcy7eUx9LnvduEOGBwpHvjpAg/XhsS7awOC7OUwEGnmeizJ4Bjf7cFFNtrreQU4KCQVUQyXDe2mb71kBrGpLfvAnQI+PvyJeEcbPUuEz/l8ks5yQ6L44i6Ro6Oj8sxJZxkqLja6QODtA/5seICnl+K4c4hntc3tkEgkEolEIpFIJM5wKQSFuNroKftOnCFivsrN+04IXITwsoDlclm2i+z3+1pfXy8Bh+PxWKPRqJB3iAlChBNlX21nNd4t0pAQFwBi/bwTeXcQeDgcDgont06+vM4bwsWOEzgqorgBWR4MBqqqquRAkC2B2BJzAdz5wPEIKMPhsNyTiwnY6hFbjo6OCsGNwZD0GUTYyXmcI+5EiAKOpHNZD3zWV55pLz9eNkAYYQwC5J7cneBbMHKPkkqpDNfhnpjDLng5kY7k1wMdo1snlid4CKOkhsOGOeuf9/IdJ/a02UUQxoZ55iUJHoTobgCOY6Xf3QDxHtsyD1zs4Vo+5i6q0B531bjzw58tF8C8PMef0SikJBKJRCKRSCQSifO4FIIC/7EnHNDhJMLt2v6eCwZOGPkcZAH3gqRi+6eUgBIDD6LzunEXECDT8XoQO9oGUfISDs4LMXWSCzFyZ4Kv4PsWkjgbYhaDiwyRaK+urmo8Hms4HKqqqiIMTKdTzWYzTafTc6vPUpOgu/Ph8PCwcY+IBy6UQNg8dC/+6avf/md8rY3weQ2+OxriinoMbPSSB0mlv1mhdxEFcu0CEmICwoMHHDrBdSHEy1wYD89d8MwB2hDJtsNFExfcOLc7PsitAAhabu3HPeF9jUMjuofiHI8lH7zv5SBxXiH8XSQm+PPlpScuKPhr9K1/Z3BNdxv4++5YiTkPns2RSCQSiUQikUgkzuPSCAr+n3iHJ7yzY4ETHakZAhjr771G3p0N5BKMRqMSyOg7TEDquPZ8Pi+kcjqdllV3BAp3VjjBdau33wc/HlAYQxjZvQLi6RZ6d2T4jxNe+g9S1O/3NR6Py4o6YgKlG9jepTNbehwD3A+4D9zmzjiwqoyIAyCWkF2CJ/n8RUF/CBaM5UV1+G2gXW2CgpNmXCCEVPrqNjsicJ6Dg4MyRr515/HxcXGWQM6d5PtccCeKl8AA3Bu0lb6IYZO8z5zg/pgzPjf8eHdZSGqU+NAWF35uJSr4mLU5Ri461l9zAcbFKBcFXLxyJ4eLCS4EeF/4dfwcMU8jilWJRCKRSCQSiUTiYlwKQUFqbg0oqUGcXUxYLpflGCdhvtLIaj7Ewi33WLtHo5G2trZ05cqVEsroK/9OlD1UkJKJ2WxWaq1XVla0vr7eyHaAEEFwECrYYhJiTnvJE6AcYTQaNbZQZDWc80BW3ZHg21eSx+B1/tvb28WdgDiyu7ur/f39xlaM9AMiBlZ8shkIxVxZWVG/3y/3i9ji2RC+uuyWc8QEyi6kJsnkHmNtfLS7c29RUPCSFQj7RQTRSy98pwkvc8ChQltHo5GGw6FWVlbKGPiuIi4mkM/gYgJuCC+BYa6wZamHIPpWqg7POvD+coGHY3q93rnX3TnCmEHW45aNnpfhpRC839a/cVzok+gq8XKJNqeRlzb5ezynba6C6FjxueS5CW2lGolEIpFIJBKJROL2uDSCgq8K+170rKa6IBBXOp0wejhcLIXgOoPBQE8++aQef/xxXblyRRsbG6qqqrgfJJWMAdwJi8Wi7IAAgSTkEELa6/UaIYmEIRK6ByEnnJD3EDhGo5HW19cbif0ICayEI1IgJnCPfm4n25DjXq+n8XhcQhVd2PCValbfPUwQAjadTktAHmIC23gSVug174wH5M+T9REUnIR6VoavTCNgOJn0FX7a6m4Gzypwl4DPG/qX/AwEm7quG/3i7gRJZZwo1ZnNZudKOiDtzAFvN2PuYympzCGEDS9TcGdCzJCIYgKvU4YRczvoR+YvK/iISrSF9/z54vwuAjiBjyUO0UkQHQf+OQ9g9HnBM8Z8RPiKmRNt8DIHrsNzw9hEx0MikUgkEolEIpG4M1wKQSHaqaOY4OUK0vktA92iDalz6zbEEDI3GAy0sbGhtbU1DQaDxmr0yclJqYuXVEiOBxFCvLDJQ7wgKZA5LPCSyk4OkGPKBRAMhsOh1tbWiuWefvD+8Vp8yKGvOHu+hK/M9vv9UtZBny6XS00mk0b5gosffBanBQ6Ng4ODshKPAwIHCCv4nhEQx4nXnZDG2n0n/55hEIMtXYRqmztc00k5r0F8cSZ4nkEsJ4GEM38QZtz54kKBByS6qAKJ9j72e3HxyEs0/B6jvZ+5xLwF7kBgLD0zwTMJPDOBOUC5DYJBXLm/qKzB379V+YOXUXAP3meAY9ocBFHQ4F6iK8JLHlyw4rMxTyNmOiQSiUQikUgkEol23PZ/y1VVfUNVVe+rquon7bWvqqrq7VVV/deqqv6vqqq27L2vqKrqHVVV/XRVVZ90J43wcgf/D75nH/gKcQyzc+LiuypA8H01stvtajweFzEhEkDOgcWc1fy4HSLtINzRbfdxpZXzIyi4MEKJAwGRTvLoG0B/UP8e/46I4Z+lpt8t9NwTWRCcoy2c7uDgoJGz4IJFt9st13VBwYks7WCcYiq/36O7Cvhxa7rv4uEWdj9HLI3w6/oqtfd/3GkAV4uHMCIAUeqANR8XQdwhYblcnss9YDzawju9DIRxijsqtIkJbZkS3m9OoL1UwB0CXjpE6Q2imosNEVEsiGGIF636+9jHMY7zty20su2cPu7xfRev6JMoJkR4KcZlwYvxXZxIJBKJi5Hfw4lEInEed7L89o2SPjm89j2Sfm1d1x8u6WckfYUkVVX1oZI+W9KHnX7ma6qqWtUdIK4+O5n3fehdfKCu33MTIGPL5fJccGKv19PGxoaeeOIJbWxsNAL1yGYg7Z/zsP0i54J8sxqNHdvzFzxokXbyWRwKfL7f72s4HJZsAyfVkDqcAuywMJ1Otbu7q/l8rslkov39fe3v75dMBvqo0+loY2ND4/G41PAvl8tyDu4NkcTzBihxuHHjhnZ3d0uph4dD4nJATPDV+rZVYelmuYALCvQZfcM5XFDgNX78/HF1WWpuOemk3AUD30UDQu9uiCiUMDdGo5EklZBOd5owzpPJpCFi+Hg7mXai2+/3izsl5gQw/u6Aoa9cCOPeXCDiPDwnMXDSxQTmojt03FXiYgyILoToCoruEc/RcCGBORjFIvovni8Sfs8V8fInF+hcaHJnR5w/fv5L5lD4Rr0I38WJRCKRuBDfqPweTiQSiQZuW/JQ1/V/qqrqleG177Zf3yzpfzr9+6dJ+pa6rpeSfqGqqndI+hhJP3Sra0B4oo0e4ksQHpZwqbnqDamDEEICvd662+1qNBppPB5ra2urEFs+Q+06uz4cHBxod3dXu7u7ms1mhbDTFsoUCK6D4EHUaSPkD0IO0fdSB0gc5/aSAEgSZAphAmLt9nyIq6SSmzAYDAoZpI0ICbTVbe4eBIirAlfA6upqI98BoQVyzRg60eNzODn6/f45EshnIZS+Q4ILDBA8RIDo5gC+Gn1wcFDay2p7VVWNrUIh7HFlHxLb7/e1ublZnCjcNzkEPo8gql5+UFWVer1eIxTQ/0SkkdRwnXAObwuiG31CX+KCiA4P5iDHcBzjC+kmv8GDGNvcJg53Tvg5ETgYH3eRRKcB98rncW946YKLAJIaJSrxftuyNVw88BBL5kS8VhS8LgtejO/iRCKRSFyM/B5OJBKJ87gbGQqfL+lfnP79Sd38MgXvOn3tlvA6culsxwAnzljl46q3/4ffrfpuaZZUSgsI4PMVdEmNMDxEADITIPEHBweq67rY2/k87gFfMXYyEy3wkB2uR4jf4eFhgwzFVdeqqjSbzcpq8/+/vbOLkey6qvDa3V1T0+WeHmMc0BCb2I4MUp6IhXiBBKQgsK0Q8yMhRzxYCpIVKUhECClGliAveQiIvBIZJSJCzg8IIvyClAgheAohcezExjG2gxGDB9sE9Uz1n/vv8FB33Vl3d1X3dGZu1e2p9Umt6b5dVXffc8/d02ufvffRGnoV/ewLoCUUuhME+0EwWKC9DrT3hIo9LVXQPhG6BSbHhq/j2NMeBhNyICGvyOcSh5ymr80PVVQDzV05uPKeV+NztkDumaAiFQCWl5frYAuzZnIDQw1EaI8PXZGnfbraryvtmlmg4j+XLmgvDeBqTxFtQpmDALobAu2gfQxu5SwOvUaOY+5RwN/n0gheo36mCnvaqWOt2UdKLmmiH+Bxzj3+XrMbcp8JnU9aWqHXpqUQuayj41y3LzbGGHNd2A8bY+aO6wooRMTjAPYAPMlDY142dnkzIh4F8CiAeutBXdFXMZsFoK4Gq3hXka3ZC7rLAZsTauo0Sw+48r2/vz+2zIGr2yyvAK7uJKHlFRT2XLHVdG7dWpAiTtPEWYahTR5VSG5ubh5aldU+AZqZwJ0qdPVYMxRYmqEr/SqqWZ5BwcXVYy0L0MAPr0vT5bn6zrp8fT/HNAt4zgFdhadAZTAn92DQtHVNudfADhtz8j7z+LjABsUlAzMMpDDLQ7NmGMzJK/O0WcdXxauKcwp4zl3O0XxPVLhzzHXua08AvW/a30HPrfdMBTjPR8al/uv9UrFOMZ93cdDAVw6WjTuHZrmovczu0LnD92tQQoOKOmb6eeOCGDqOk7IzusaN8sVnMWjFPmOMudmxHzbGzCs/cEAhIh4B8H4A7ytX/+q+COBOedkdAF4b9/5SyhMAngCAlZWVAlwVfRS9Ozs7tQBcWlqq/8inoKP4UlFFkUtBWkqpBfb58+frLSKZbs7fafr7W2+9hbW1tUbTQjY8pDg+e/ZsfT5mMmxubjZELN/HIADF8NLSUl3moEGHg4ODOmOhVI0cNe2c5R8qhlT4aGYCsxMorLUR45UrV7C2tlaXKBAtdVChx6wHimf2rmA/Bt35od/vNwIdDJz0+30sLS0dah6ZxeK4ngnMbNAmlpq1AVxN+S+l1IEQ2s7PYcNBBgh4rcyw0IAUd3NgdoL2n1hfX2/MO80uYUCoekYawS4NiGlvB85pCngNbGlwLIt9zezRkgDOb+0rsrCw0AialFJwyy23NHbsAHBo7LP9KvpZMpGzDHKGgAa/cnaCZmNoVksuz+DzmgNB7GeSs0ByGYMGmThGnFN6Dg1CnJaAwo30xatxW/cv2BhjOob9sDFmnvmBAgoRcT+AjwH4+VLKpvzqKQCfj4hPAfgxAPcC+Pq1fKY2aFNxpCv5FHW52z9XznWLSf3dYDDArbfeipWVlbqngK7iM0OCGQZsRsjSAO5uwF4M/X6/FtZaGsHf09bcFFKzEyj2mf2wu7uLwWBQ28MMAQZG9vb2sLa21lhV1TTtXq9Xbz3JZoO0j8KUgljFK9HUcO09oWnrvGYVnFypZ4+EXq+H7e3tWohRkAOo742mkbMPAUUcx0SzTyh4mUWSU/opCnd3d3H58mXs7u42shhU6LIvAa+RAQ7NkCilYGVlpZ4vLEcYDod1Lww2YaSw1d0+aJOWNqgQV/t1HuUtSHPJR75fvKaclaBzTYU5BTXHk88VbdJSEX4m7w+A+j7q/Vd0/mu2gwZC9F8GZTQ4Rtt5Tt4b3v+lpaVGBhODAjomGgjguTWYQPu0p4WOq15X1wMKbfhiY4wx1479sDFm3jk2oBARXwDwCwBuj4iLAP4Iow62fQBfrf7w/1op5cOllOcj4q8A/BtGaV8fKaVcU1czrrxzxRK4WvetZQG53l4FEQMRueZ6MBhgMBjUgo0NCClQKUgpLikaKZgpyjVVXnsSMItBBWzuyq+r/CyH2NjYqIWOil2+jz0OmMGg46Np5drwkAKNolx7CnBXiK2trUO15Lm2HkCdKq87Kuh1M/OCQpoiu5o3jZVvDVboOVUQ83O1Fl9LTDSlPaepqwDn+4jussCf+VoGFjiXNDjDZovcOjMHYnifANT3ludQUZzr8/OqPTMBcg8DLXnhmGnZQC7dySn/k4IJWkKkWQBa2sPz6VxQuzSgp0EMLTfIJQ76fPJYDgaoyOdYc2wYqOPcVrsUtTv3lNDyGQCNPhGaOaLX1ZU+CtPyxcYYY8ZjP2yMMYe5ll0ePjjm8GeOeP0nAHziJEYwTR1oplbnP+pVCFKMap25pilTrFBsU/QuLi4eKnGg8NFmhdoUULezoz0UNrrqTiGkwQ8VPhSdEVEHDNijgAEP4GoKPcV13tKR51Lx2uv16tVhFYja8JG7OjD1XeFn5pRzDZJwdZnCk9tI5iwSvp+r7Xrvcuo/RaT2ZNDj2oSRY6e7BvC92kQwNwJkqQqFpGbD6Ao8xaZmGjDIodtE6nhoWQeFuqbb8zoZNFKbNNU+9znQ7AQN9mhfiaOaP/JaNKNEM2T4LBCdryrINUslB8p0nPO/ufeHlmxMWvXXe8tr5XVoA00td9EMg6N6IeiY5MBffk/OAuoK0/DFxhhjJmM/bIwxh7kRuzxcN1wFHrfaqaKIwphCmYKC4iWLFW4VORgMsLy8XO80cP78+boun8KemQZcxaeQzM0BNWjA1X5uBwk067UZBKBg7Pf7jUDEcDjEwsJCo/SCvRNYaqFCTAWQrjJT0FK8axM63ZngypUrtb1crVa0zETFHT+L5Q0sxdjf36/LNLSPhQrXiGiMxbiSDe01wetjgISBgNzwUYWubhOqgRYGVTS1nsEnDdDoaj37NPB1e3t7dcaKrt7rFp8s9eA5VeRyrnAcc8CJgRctK+H9ymjvicGg2bRJAzX6HGk2Ae+TjhHPx1V/zRhh0CL3BOH1aOZFtkWDCdqPI4t7tVcDRAxcaHYC5wrnEX0Ef9aeErkXgp5Tg1Aa6Mm2dCmYYIwxxhhjTBfpRECBwkNT6zVFnKvrul2fisaDg4M6S4Digbs6rK6u4ty5czh37hxWV1exurpaNyzUsoCNjY26Npufxe+5+4JmAFAAazmEZjvoijkb/O3v79dN/RhM0MZ/WkKxvr5+KNWdwomilw0K+/0+FhYWDvWgOHPmTC0CNzY26hIFFbZ5+8S8o4aKO/5Mu7TmX9/PjILFxcVGmQADAwx8cIyGw2Fj5wRmlfDz+b3eAwaZtre3cfny5TqzgefXLAxu+cj5ouUevF6Ke/2ZWRjaBFSzYHgflpeXG+JTS24IbdF+Ajw/M1d0u9T8fi2NYUlGzljR5+bMmTN1/46Dg4NGRg4/D8ChQInaqMGEg4MDbG1tNcQ8n1d+aTYK/9UtHXNmQg4qaANNBuEYVOL5dY7qTigAGoEHLSnRjJder1cHCXMwIdvmoIIxxhhjjDFH04mAAoBaqOS6ahX1FAFaA81Vew0msOEcsxPOnj1b73zA1HxmAbCcYTgcHgoEUJSqiKTYWV9fr8Uy7dZgAsUXxd/i4iI2NjYaZQdsoMhGkcyQ0F0KMiqyVPDpSjDFEzMhNjc36+CH7hKhvSn42XlsNWWepSn8Xss3gOY2hSr6td8Dt45kCQSbRDIgoM0N2VeCXzwfbdvb28NwOGxkbTBjgdfE4AaDUzwv7WVDz3EiVcswVLznxobMTuB90H+JBhJ4jyjyNYskN2Hk+7RBJXtVaFYPM0P03rOMSLc51WCH3leOh2b55PIZnk8DCRmdM/ws7dHBz9VMJH2vzl8NUuQAkAY6+JkaNMrBBM5tzWTSsVP0/F1vymiMMcYYY8ws6UxAAbhavwzgkOjRFHXdWjGXOnAFnyKUq/hc5WYDRq2LL6XUq/cqOrVJnQYVdnd3sb6+Xq+oqy20l2KOq9gA6t0g+Dva1ev1sL+/30jdB1CLXU0xpzDSkgINdGjWga6w8/oo2Pj5R/VMYHBFhac249PXjztGUafbZXIlfn9/v7ZN+yZoaUMW7RR5mp3AFHzNbuF16jXlJoFqN1fwteGmiuh8//l+zjOiwlfvmd4jBjo0QMKx0NV22qZzO+8QwiAcr4XjwyAbV/n1PCruOU5ajsCvHLDL25XmYAKvMQcU9FrUxvw5OfCQ+2Bw/LXsRQMGeo5xmQm5eSttzmgwwRhjjDHGGHM0nQkoaJq1roxSzGhndxVp2gVf6+C5kwOzFAaDQS0ad3Z28OabbzbKA1TsAagzBZjyT9HPOnemwWszPQpWikNNZ9/b26szBXZ2djAYDOryC4psNoPkSn2v12uspmtmgooxFYUqlCm4dScKim/NRFByOcHW1lajHl8DEjw3yUEO/R0DA3wPgwmaxs5dKlRAM9Mk93Ng6cj29naj3IT3jMIw3xv2WdDsDE2955zQ8pEsVDVopdk0ujKuY8JyFB5npgZtYFmK3jsGIPSz+B5miug904aaHAedf8xa0CBFvkcqtnMzzfzs6RzIWSO5maS+ThuuauAp28LXazNPjqce5+u0X4IGRTgH+Pv8nmzjuIwWY4wxxhhjzHiiCym9EfEmgA0A/ztjU263DbbBNtiGxDtKKW+b0bmnSkQMAbw4YzPmfb7ZBttgGw4zT37YfxPbBttgG7pqw1hf3ImAAgBExDdKKT9tG2yDbbANXbRhHujCONsG22AbbMO804Wxtg22wTbYhmtlfItzY4wxxhhjjDHGmCNwQMEYY4wxxhhjjDEnpksBhSdmbQBsA7ENI2zDCNswP3RhnG3DCNswwjaMsA3zRRfG2jaMsA0jbMMI2zCGzvRQMMYYY4wxxhhjzOmhSxkKxhhjjDHGGGOMOSXMPKAQEfdHxIsR8XJEPDalc94ZEf8YES9ExPMR8bvV8Y9HxH9HxDPV14Mt2/FqRHynOtc3qmO3RcRXI+Kl6t8favH8PynX+kxEXImIj7Y9DhHx2Yh4IyKek2MTrzsi/qCaHy9GxC+3aMOfRMR3I+LbEfHliLi1On5XRGzJeHy6RRsmjv0Ux+FLcv5XI+KZ6nhb4zDpeZzqnJh37Ivti6tj9sWYP19sP9wN7Ifth6tj9sOYPz9cfe7p9MWllJl9AVgE8AqAewCcAfAsgHdN4bwXANxXfX8OwL8DeBeAjwP4/Sle/6sAbk/H/hjAY9X3jwH45BTvxf8AeEfb4wDgvQDuA/Dccddd3ZdnAfQB3F3Nl8WWbPglAEvV958UG+7S17U8DmPHfprjkH7/pwD+sOVxmPQ8TnVOzPOXfbF98XHXbV9cH78pfbH98Oy/7Ifth4+7bvvh+vhN6Yerzz2VvnjWGQo/A+DlUsr3Sik7AL4I4KG2T1pKuVRKebr6fgjgBQBvb/u818hDAD5Xff85AL86pfO+D8ArpZT/bPtEpZR/BvB/6fCk634IwBdLKW+VUv4DwMsYzZsbbkMp5SullL3qx68BuON6z3NSG45gauNAIiIA/CaAL1zveY6xYdLzONU5MefYFx/Gvti+eBw3pS+2H+4E9sOHsR+2Hx7HTemHKxtOpS+edUDh7QD+S36+iCk7sYi4C8C7AfxLdeh3qvSez7aZWlVRAHwlIr4ZEY9Wx360lHIJGE0qAD/Ssg3kYTQfkmmOAzD5umc1Rz4E4O/l57sj4lsR8U8R8Z6Wzz1u7GcxDu8B8Hop5SU51uo4pOexa3PiZmbmY2pfXGNf3MS+eMq+2H54Zsx8TO2Ha+yHm9gP+2/iI5l1QCHGHJvathMRsQLgbwB8tJRyBcCfAXgngJ8CcAmj1JY2+dlSyn0AHgDwkYh4b8vnG0tEnAHwAQB/XR2a9jgcxdTnSEQ8DmAPwJPVoUsAfryU8m4Avwfg8xGx2tLpJ439LJ6VD6L5H2qr4zDmeZz40jHHvF3N9WFfbF98HPbFlVljXnvT+GL74ZliP2w/fBz2w5VZY1570/hh4PT54lkHFC4CuFN+vgPAa9M4cUT0MLpRT5ZS/hYASimvl1L2SykHAP4cLaeMlFJeq/59A8CXq/O9HhEXKhsvAHijTRsqHgDwdCnl9cqeqY5DxaTrnuociYhHALwfwG+VMipOqtKIvl99/02M6pN+oo3zHzH20x6HJQC/DuBLYltr4zDueURH5sScYF8M++KKTjx39sUjpumL7Ydnjv0w7IcrOvHc2Q+P8N/ExzPrgMK/Arg3Iu6uIoIPA3iq7ZNWdTCfAfBCKeVTcvyCvOzXADyX33sDbbglIs7xe4yanzyH0fU/Ur3sEQB/15YNQiPqNs1xECZd91MAHo6IfkTcDeBeAF9vw4CIuB/AxwB8oJSyKcffFhGL1ff3VDZ8ryUbJo391Mah4hcBfLeUclFsa2UcJj2P6MCcmCPsi2FfXDHz586+uMFUfLH9cCewH4b9cMXMnzv74Qb+m/g4ypS7QOYvAA9i1MHyFQCPT+mcP4dROsi3ATxTfT0I4C8BfKc6/hSACy3acA9GXTmfBfA8rx3ADwP4BwAvVf/e1vJYDAB8H8B5OdbqOGDkqC8B2MUosvbbR103gMer+fEigAdatOFljOqQOCc+Xb32N6p79CyApwH8Sos2TBz7aY1DdfwvAHw4vbatcZj0PE51Tsz7l32xfbF98fz6YvvhbnzZD9sP2w/Prx+uPvdU+uKoDDHGGGOMMcYYY4y5ZmZd8mCMMcYYY4wxxphTiAMKxhhjjDHGGGOMOTEOKBhjjDHGGGOMMebEOKBgjDHGGGOMMcaYE+OAgjHGGGOMMcYYY06MAwrGGGOMMcYYY4w5MQ4oGGOMMcYYY4wx5sQ4oGCMMcYYY4wxxpgT8/8rp2VVECV/oQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 0 416351\n", + " Min thresh = 1000\n", + " Sliding\n", + "\n", + "\n", + " Winner = Sliding\n", + "\n", + "\n", + "043s_iimage_10395655826502_CLEAN_ClassS_189-317.roi.nii.gz\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAADYCAYAAABberBAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADjzklEQVR4nOz9eZhl6VXdCa8TETfuHBE51iCBBiTEZJvJDHKbpg0GjBnd2A22mxkx2EDTYDPY/WHztW1s3BjcfAzCTB4x0NhAgwEjI2MmyWCEQYhBEkhIaKiqzJjuFNP5/oj8vbHOjhOZlZVZlZGVez1PPFlx77nnvOd933Mr1tpr713Vda1EIpFIJBKJRCKRSCQSidvB0r0eQCKRSCQSiUQikUgkEon7DykoJBKJRCKRSCQSiUQikbhtpKCQSCQSiUQikUgkEolE4raRgkIikUgkEolEIpFIJBKJ20YKColEIpFIJBKJRCKRSCRuGykoJBKJRCKRSCQSiUQikbhtpKCQeMZRVdVrq6r68Hs9jkQikUicoKqqP6iq6iOf5LF1VVUveorXecqfTSQSiUQicb6QgkLiGUdd1+9d1/Ur7/U4boaqqv58VVU/X1XVZlVVb6+q6jurqhrf63ElEonEsxlVVf3jqqp+r6qqnaqqfruqqk+/12NKJBKJ84a7Lcze6nz5d3HiZkhBIZFox7qk/1PSo5LeU9JzJX3DPR1RIpFIPPsxkfTxOv4O/gxJ31xV1Uvv7ZASiUTigUf+XZw4EykoJJ5xuK22qqq/U1XVD1ZV9S9vRKR+o6qqd6+q6qurqnpnVVV/WFXVR9lnP6uqqtfdOPaNVVV9fjj336yq6m1VVf1RVVWf64prVVXdG9GvN1dV9Y6qqr69qqp+2xjruv7XdV3/ZF3X07qur0v6Tkl/6umblUQikTg/qKrqg6qq+qUb0ai3VVX1LVVVrYbDPvbG9/DjVVV9Q1VVS/b5z77xXX29qqqfqqrqeU/munVdf21d179d1/VRXdevkvRfJH3oXby1RCKROBeoquo9q6p65Y3v2ddWVfUJ9t4rq6r6XPv9M6uq+vkb//1zN17+9aqqdquq+l+qqvrwqqreUlXV19z4Tv6Dqqr+ylM9Xxxr/l2cuBlSUEicB3y8pH8h6YKkX5P0Uzrem8+R9HWSvsOOfaekj5O0JumzJP2TqqreX5KqqvoYSf+7pI+U9CJJ/2O4zj+U9O6S3vfG+8+R9P95kmP8MEmvvb3bSiQSifsWh5K+TNJlHRP6j5D0ReGYT5b0gZLeX9InSvpsSaqq6pMkfY2kvyDpio5FgX9zuwO4Ifj+SeV3byKReJahqqqOpB+T9NOSrkr6Ykn/qqqql9zqs3Vdf9iN//wTdV2P6rr+tzd+f1jH39nP0bHD6+V3eL6bIf8uThSkoJA4D/gvdV3/VF3XB5J+UMd/gH59Xdf7kr5f0vOrqtqQpLquf7yu6zfUx/jPOv4i/tM3zvOXJH1PXdevret6KunvcoGqqipJnyfpy+q6vlbX9Y6kvy/pU281uKqq/qyOv5ifrPiQSCQS9zXquv7Vuq5/ua7rg7qu/0DHwu4pkfbG9+mbJX2TpE+78frnS/oHdV2/7sb3+t+X9L5P1qVg+HZJv65jkTmRSCSeTfgQSSMd/727V9f1f5L0/+rke/Sp4v+o63px42/kH9fx38Z3Ffl3cSJi5V4PIJGQ9A7775mkx+u6PrTfpeMv3c2qqv6cpK/VsdNgSdJA0m/cOOZRSb9i5/pD++8rN4791WNtQZJUSVq+2cCqqvoQSf9a0qfUdf27t3FPiUQicd+iqqp3l/SNOnYgDHT898KvhsP8O/ZNOv4OlqTn6bj2wf/lp9Rx1OxNT/L63yDpfST9T3Vd17d9A4lEInG+8aikP6zr+shee5OOvyefKq7XdT0J53v0rIOfCvLv4kQb0qGQuG9QVVVX0v8j6R9Leqiu6w1JP6HjP1Ql6W06LhID3sX++3EdixPvXdf1xo2f9bquRze53vtJ+lFJn13X9Svu3p0kEonEuce3SfptSS+u63pNxykMVTjGv2PfVdIf3fjvP5T0+fZdu1HXdb+u6198MheuqurvSvpzkj6qruvtO7qLRCKROJ/4I0nv4rVndPw9+tYb/z3RsZgLHn4S57xQVdUwnI/v5adyvgby7+LEWUhBIXE/YVVSV9Jjkg5uuBU+yt7/AUmfdaPIzUBmxbqhAH+njmsuXJWkqqqeU1XVR7ddqKqq95H0k5K+uK7rH3ta7iaRSCTOL8aStiXtVlX1HpK+sOWYv1FV1YWqqt5F0pdKIu/22yV9dVVV7y1JVVWtV1X1F5/MRauq+mpJf1nSn63r+ok7vYlEIpE4p3iVjkn+36yqqlNV1YfruKbY9994/zWS/kJVVYMbxcU/J3z+HZJe2HLev1tV1WpVVX9axzXHfvAOzycp/y5O3BwpKCTuG9yoe/AlOhYOruv4j84ftff/g6R/KulnJb1e0i/deGtx49+vvPH6L1dVtS3pZySdVazmy3WcJvFdNyre7lZVlcVnEonEg4Kv0PF37I6Oxdi2Il0/ouM0iNfoOFf3uySprut/p+MiuN9/47v2N3XsOHgy+Ps6jqr9nn33fs0d3EcikUicO9R1vSfpE3T83fi4pG+V9Ol1Xf/2jUP+iaQ9HRP975P0r8Ip/o6k77vRIYI6CW/X8d/Hf3Tj+C+4w/M58u/ixJmoMjUx8WxFVVXvqeM/ZLs3CoMlEolEIpFIJBLPKtxwOPzLuq6fe4tDE4m7jnQoJJ5VqKrqk29YvS7oOEL2YykmJBKJRCKRSCQSicTdRwoKiWcbPl/HNRbeoOM+6m15v4lEIpFIJBKJRCKRuEM8bYJCVVUfU1XV71RV9fqqqr7q6bpOIuGo6/pjbnRvuFjX9SfXdf22ez2mROJeIb+HE4lE4t4jv4sTTzfqun5lpjsk7hWelhoKVVUtS/pdSX9W0lsk/VdJn1bX9W/d9YslEolE4hTyeziRSCTuPfK7OJFIPNvxdDkUPkjS6+u6fuONKqbfL+kTn6ZrJRKJROI08ns4kUgk7j3yuziRSDyrsfI0nfc5kv7Qfn+LpA8+6+Dl5eV6dXVVklRVlZaWllRVlaqqUl3XOjo6Ul3X5b3l5WVVVaWjoyMdHR1pf3+/vMdnDw4OhPtiaWlJq6ur5XOck/NK0uHhYeO1qqokSdHB4b8zxqqqtLy8XN7nh/ccfl6/vp+j7X2/Xtu4fL7azs38+BjjMW3j9P/28/Nz1vv+WpwX/z2OnzU8a5ySyvtn4VaumziWs+7f55sx+Lr6OBhn2xjiuf38Z40nfjYee6vznfX5OAfxHG2vnYWbPRtnjS+u7a0+x/tn3Uc8182+P866p7Pes/M+Xtf1lZsO8nzitr6HJWl5NKzf9fmV3rkYa/n1i5sdmkgkEs8Y5ppor16c/T+k843b+5s4v4cTicQ5xY6ut/5N/HQJCm1f+g3WUFXVyyS9TJJWVlb0vOc9T51OR71eT4PBQMvLy6rrWvP5vAgGg8FAw+FQvV5P8/lc0+lUu7u72t3d1XA4VL/fF8LEY489pv39fUnSxsaG3vVd31Wj0Uirq6va29vT9va2FouFDg8PJUk7Ozva3d3V3t6eDg6OmwIcHh6eIoqHh4c6PDxUVVXqdrvq9Xrq9XrlugcHB5rP5zo4ONDq6qpWVlYKSV5aWtLKyvGUz+dzzWYzHRwcqKqqcp6lpaUikszn8zKGqqq0srJSPl/XdXlveXlZq6urWl1d1WKx0Hw+Lz+dTqeMs9vtam9vr/G+CzW2Ng1ihhCDiLO/v6/9/f0yT9wj7x8eHmppaUmdTkfLy8vltYODAx0cHJQ5RMSp61orKytl/bvdbiF2+/v7ms1m2t/fL8d2u92GqMSYJZXfeZ9z+DwyBsbl98DcMtcrKyuq67rc8+HhoVZWVk4JVAcHB40xMg5fewQrSWVvsI7sRSfZUSRzgcWPYY2WlpYaYhn7ze/N945fD/h8tpFzzs9nXQByES/eA3u00+mU52h/f/+mApXfC/u/0+k05iPO+8rKigaDQTluf39f0+m0Md7V1dWGAHNwcNAQjNiz3OfR0dGbdH/ilt/DUvO7uNdZ13Ne/Lf0ws19Lb3h157u8SUSicSTwqvqV9zrIdwJbutv4vweTiQS5xU/U/9Q69/ET5eg8BZJ72K/P1fSH/kBdV2/XNLLJanb7daHh4eFgPIDQTk8PFSv11On01Gn0ylCw2w202KxUFVV5b2VlZVCdCE0kC0IF+QWMgkhWl5e1srKiqqqKoST190R4cdy3UgYHU7scCEgknDuGHV3Qgc5ZF6kY0LGZ1dWVgrJPjg4aJwzXtdJvV8nErq268dob5vbwInZ0dFRw3Xh54sOAD8f14twgsn54rghhFzrLEeErw2f9X/5TBSVWHefj7a58Dnz9/2+z4iGt+JmrgofZ5sTxMWUNteH/8vaxDWJYoILJmc5FdoEER9nnO94bT/XWeNpu2fOhfjlexK4EOJrHM/X9jzfR7jl97DU/C5eqy7W/R959TMzukQikXgwcFt/E+f3cCKRuN/wdAkK/1XSi6uqeoGkt0r6VEl/+VYfgjTHKLykQqarqtJisdDOzk4RFFZXV4tLYHl5WYvFsUUsRlkhLB5dd0DOPeLqr+3t7TVIEmICUde9vb0zUw1wCiwtLRUxwMUPrukEhvc9Ck30FGLe7XbLuRmDiw8eqd/b2yv3TrSWeY6Oh0jo24hVm0Xejyea73MRCSNOFBd8omAQ7fwuhvjv3HeM6N/M7s/6xvtyt0WM2nc6nVOik687/41Tw0UOxud7/GZCAvfEeeM6+DX9vZiq0SZwRDdBTA3g834udzXE9b+ZaMJ8+Fy6c4M96cIOcxzH2OZgcDcEzoW6rotLyedEOvk+caHF19Lv5z7GU/oeTiQSicRdRX4XJxKJZzWeFkGhruuDqqr+uqSfkrQs6bvrun7tzT7jEf9ut1ui6KQgDAYDHR0daW9vr6Q6zGazQlqdeHE+JygHBwfa29uTpJJGAfHk+G6327DmQwJ7vV4hKRzvn4WA7O/va7FYNMgbpAT3hd+rixcIBT5+ByTU3QzukFheXi6CBtfzY7GYe5oHpBbLt9eRcHt5jNxCwtsEhegaODg4aLgA/Bxu02cuo3MCAs/4SDfhGMbMNRBsXKTgWozJ6120OQUQE6LTwh0ikOB4/Rgt9zXFZeNukZh60BaRZ02isyOS6xj1j2NB+PL79HXzuXsypLrNHeBrzflcRHDBx4UfH4eP3xFTPSQ1zs97POd+H1Eg87WN+9vn8H7GU/keTiQSicTdRX4XJxKJZzueLoeC6rr+CUk/8WSPJ10B4kx+NaICRH9paUmLxaLktHukHUAAIb4e6Ydw7O/vl/eOjo4KeW4jQHyesdV13RAEcD1ITSGACLWkRjQ2ki93B0QiA+nnsw4cGXVdl9oJnjvvpIlcc48EO/mLpNVrIfh73KMXv/T7s/Uvn3ECD4n2lAwnin4+5h7r+llpCU4cva6D1ziIJN/FhDbSzJrEtBiuzVz6vTB3MWpfVVWpcYEQg1DmgoRHyuNeaIv+x/3Udg9+3y7GuLDje8HPGR0PbSKEH8OatQkNDr+m19OIn4vChq9lFC58bVkzH6/fr+/zNgHH/73fcbvfw4lEIpG4+8jv4kQi8WzG0yYo3A48cumkBKIB8YrkyImBpFPkxq3lTjI4H0TX7fbkXEdrthdE5DNOrCPZ5/do+WcMMTLqxDWSPBAjubEmBKTbr+OpHdGuzjFOohgbxDIWUPQ0irN+OEcbuXbhxMUa5sPdE56u4ffvLoa2VAOfb4/qR5LaNrf+uSg8xLXzOWkj0HxueXm5OBMYBy6YKC7FfH8XGECbG+LJEODoaPAxOtqi83Edz5q3tvXyY3xvRFdM2148awxn4az58LX059vn99kiIiQSiUQikUgkEs8Uzo2g4ATSc+m9AruTbCenTsohaxB5yJ4XeITEcD4XBYiGQ6pd6KDwYRvpb6tHEIlZG0l0QsV4PaXA7zWKDswPPzgt/DPUVPD0gDbSB1wIcOLL9bvd7ilRwudDOumEEVMdzhJqXLjASeIpCnHOYg0IH7eLSy44ufji0W5fs7PIcNseiR0Szro/xAQcMIwBh4OLaW2ChI/Px8E9niVixPvwNeX16Dbw19wBEcfThjZBpu3avo5t449jjIj3F+e8be4ifP2iuNd2nyk0JBKJRCKRSCQS7TgXgoJ0mijs7+9rb29PdV2r1+uVlpBOvPjpdDqnCi3iPnAiDZGYz+eFnMVq71jR6/qklaE7E3yMng7g9nUnRJBkahc4meS9o6OjkvftRSkhSj52iDafcbJPmgPXWywWjTFOp1PVdd2oLxFFFS/o6Nflhy4b3F8kd1EgkU5qBZCm4i6HNlKHCOB1GnwMbdZ3/7w7XDjGP4/YEUUF1tfXknX28/nrUfzwfYyQQLtE3wve5YN9HZ0XZzkl2qz6UUSIpD4KMFGci06JpaWl8hzcyp3gz4MLE35+F0J8vzAW39c3I/BR3PF7d4HLzxXdE76nWde4dikiJBKJRCKRSCQSt8a5EBQ8gry3t6etrS3NZrMScY/F7Oji4DUMPCIunS5q6M6EpaUl9Xq94jio6+M2lNPptFGw0VsuOoGJBMlJiadRQEoQHJzkOeH2FAPGCqEG0QlBi8iYIkAthfl8XsQWxhh/EA+c/HmxShcG3IXg9+P3uL+/r9lsVrpheMqCkzh3X3i6BoJQdDtQQyOSdqL/EF9fHy+q6YJFjGhHcu6uGODr6+vvnRu8VSl7h5oJS0tL5f74YQ0RrVgTHBvU7IipFj4v0WXD+KMI4OOOzpooJnhb0rPO04Y298JZTokoHkYHg7/e5pKIQpS7N9oExzgHPjafVxfVYrHHRCKRSCQSiUQicRrnQlCQTvLi+UMewuotISWVKLfUbP3mBFI6TXBcUIDsYTWnSKOTWo4hetwWQYegxShn7J4AifS6BJHwxAgu73nU1cHnPCXDyTmpDt6eMNrxfbykifg9OflqS1/wuXWXhn8GAcIjwi4geboG9Qg80s0xTvCc0MfItkfknXT6+sd59HluI7V+jIsZMQXB17Lb7RYxgXtwUYFzIAS1We5Z0yiWxLWJglfcIxG+npGsu9BwlhuiDdHpEcfqz6ULCvH88Tjmwe+3TTCI7oJbjdkdIP75tucwkUgkEolEIpFItONcCAp1fVwMkei12/tXVlbU7/cL6cVBIJ1EeL3AohNoJyeck99xPEDCSR+AaHS7XXW73RI99q4TnN9TEuq6LiTTz8vxCB5OcGMtgEgImY82MYH3vNgfXR5irQSP0LtN3wm5t62MKQttxNmJGOOJHSQYl6eCOGljXt0RwJpGQcE/z5jOEhQiufTUkrb3fV7P2p/ca5w/j6C7yOMdOBCr2OOIWn4OF6g8Ys4+aIOPg+Mi8Y6IaxnJunfk4N5uJkxEd4eLEPGz0ZXgDgTfrzdzUfD7WbUT4nWjsNi2h/296HBIJBKJRCKRSCQSZ+NcCAqSSg2BpaUlDQaDkpIwGAw0GAy0WCy0t7en2WxW0hu83kBEJMQIBu5OAJA8Ug1imgXvLxaLEmF2mzvXot4C7zFWag/gAPCxuWAQ3QseBWec/j75+dyLuxKw2zN+rsX9IZhIJ60WpZOikB5xjukF7tTw6D/vxXoMnovvNSlc/ODajJGIPjUvnCwzfr9Hh4sRUdhx14YXuvRztEXNoyPBibxjaWmpsSaHh4dl3zjR9WKNq6urZd68TgTz78TaxRlvXeqCyllEmPmNRL3N1XPW6xH+XiT4MS2D92LtkjYhwVNsokjQ5nxwN0ocR5uo0ZZGwU8suJlIJBKJRCKRSCTacW4EBXcojEYj9ft99Xo99Xq9En2fzWalmF2v1ztlT/Y6AxA0CHJMZSCvfT6fa3d3t5G/T6oD7gRIree/S82iid4aUGqSdOCEkDoO/p6fl/N5+gTReu7Ru074/QIvPkgtBem08OGFCnmtzQrP+wgBdMOIqQZOXN394c4Q5gLyHHPguQb1E3wcjN/n29MG4tx7HQg+F2sExOi5E9pohWceYvE/7tv3V3RGeLFQxuKCEsdE1wNiA6+x/k64PcXkZoSYe3JXgL8ePxt/5zM+521CRpsDIMJTiXwM/n6b8+RmY4335Pfg6xn37VnuhhQXEolEIpFIJBKJdpwLQQFyyR/usbuCdwjAySCdblvo52rLh/bUAUSC2Wym+Xyuvb29Qso8ik2xQX/fiY2TVcbkxMRJrI/b7d5+34zfI7ggOhvcLh/hUX+OgeT7vHpXizay1kYmub9YRBGS5mPyTguIAZBZxogrwc8d3RhRdDgrqh6j1/F3Xwt3i7gQgzjg14jR9La55tzU+/Dzx0i6ixV+rEfZYyoHx52VEuBEP5J8f9/rB8TUlTaB4Kx5aNsjcR9Fgu/HcX1/Btzdwhjb1rlNiGgj/meNLx4f9w6vJRKJRCKRSCQSibNxLgQFqdnZwMky78WiiVKz24KTj6OjowaB9wguJH6xWGg2m2l3d7e4D6STFATIMS4GnBGxpgH/7RFrJyKQ6G632yDgLli4oMC5nOz5fzsxd9IbESPcfJb5lZqtObmuz9lZkWcndE7+PArvBNXnLZLdNpHBf5gvd5u0RY5vRQjd3dDpdBrjj2Ou67ohCvD5OAf+37gvcLYwr/x46odf19fLRRQXFNoQC1fG133vnCWwRELuRSA9XcEFjLbOHWehzSkQBZQ2d0KbYOLzFD8XjzlrnW4mdPhct+35RCKRSCQSiUQicRrnQlCIpK2NuLQRTcix2+jbIpqeP19VlRaLhfb39zWZTBqpDOTkY1mfz+eldsPh4WHJjYd4x+gxooiTZc/xh1guLy+r2+02RBK/Z4SMxWLRmBsKVkKMJTXqE0AEPZXA55TPModcP5I36hd4C0neZ7zuOogk0IsqUm/CiS5pFnVdNwSOqqoatRj8vuN1HF5XwNeZ+UAg6Pf7GgwGpwQHT2Hgc56GwLFOoKk/weveFaSu69I+k/dcMHEhLN4H43XhjDmNRS997SWdEpiYK8aMQBDJM8e668TH6Q4XxB9Jms1mp8h3XCMX8rieCxqelhPFBhfefC1vRvbjnLaJT/F93w+engJSXEgkEolEIpFIJNpxbgQF6gZAeL2QIaRMUiGcsWDhzc4NYa/rWovFoqQ6eBqD102Qjokz6RAUc/ScfcgXBMeLQxLxRkyA1BHFpqUgnSMkNdpYQqjpXuHncxcH44RQz+fzUsCQTgPcj4sqUXxwchtFGy8ueHR01EiRgFw6KfUaEpBT7yjBnENWGWO02jsR9M/7+Pnx1pMcH90Bvr6IKC6U+JxGoh4j+wg+Tozd/eHj4f7dYYKgxHp66ok7FM5KFWCdXOyJ7UFjtN+FhTbElAxe83ob1Hvg/ttqJMTuF7HuA+OI78Xr+++cKxa2bJufeM/s8/h+vNc4v358CgqJRCKRSCQSiUQ7zoWgIDXb2TlR8bx5J5NtkepbAXKBUCCdVL5HtIAQU1cBEuNRZs4VyRfkDrLnjgNEidiVwGs2QKxjrQA+h3OC1xaLRaODgHdDcEEDsSba2p3keQQ9FkHEzeBE0uff0wZiQUEXKiQ1iHaco+g08PO6C4VzQPzbItdtromYisHxnNuj6D4HLqr4+1FIcSdKdCLcLHLu4o47M1zIaHPe+Bo5UY8R9+ikieeJa+TODRfSKFLK/LelTLS5PeLYzxpLvL6LNWfdhwuKvt5niSg+ngg+69dIMSGRSCQSiUQikTgb50ZQcCLQFh2ORIv/lk6Ia/zjv62oIe0cF4tFI/oqqUEqXVCAJDm85WAsJOfE1yPGbVF2qVm3gXNzXrfSe/FCyJKnTbQVlvQ59RaDXlzP7f0eeeY8nkYRxQS34HtkOq6LixXuRok292g5d3cGY/H6AtEN4PuCMbm4Egm616NgXTgv1442/igmeftG3ndBok0E8NfaagJEy3204fv6+Lj9OYmuighfK8YRRRIXwbwORBQv/DNtzqG21IO25ziSeYSus+4hilq+ZtKJ28TP1yYW+GfjXCYSiUQikUgkEol2nAtBIZKlGGn0OgaQBU8xAB61jjnqy8vLDfIdBYpoefcijf4e1/Gx42BwCztkxcWBGLn1SLCPH+u7py149wDSPkh3iJ/xLhkuaECcPbUiWtc92u8RaebOUy+4f49M34w4QtKia8Dny+eDzzpZ5559LdyxEsfB3PX7/eKe8Nabnk7hY3TRhWP58XQEBAlSVkgL8b3KvUVxAyHAaydwzx6Vj44R9qWnnLCno1jRlhLUJpBw706sPQ3HxZK2tAOfD58nf68NUVRqcwfc7PPuvon3HN0a/m/bnLAeiUQikUgkEolE4snhXAgK0unoZl3XxdK/s7OjxWJR8v3J5fZIvEcVo4uB9zkHZHkwGJQ0AiemkBqInxNo6YRUEcWOxRolnYpwOik7ODgotRz8eIowQjARE3AnOEkj7z46BGK+uzsWvDMEJJU2nNwfqQ2cEyEBIu9j4XNRJPHjve5EW0QYV4S35ozigKcYQLBdRHCHB+Pwc1BHwp0A7kpZXV0tY4lCUyTdPgb2K3UxWBffO4zJ5x7XiV/T22tGYYpxuADF57kv1i2msDgpd0EirkcUdGJ6DmNEuGoTC6LbhPGcRdJdTIhOmbM+c7PXWVcvLBnFqpuJE7dzTCKRSCQSiUQikTgngoKnAzh5J/I+n88LOTmrVaJb8rvd7k1bKlIUD3Ico9GMh/+G7DjhcRu+5/dDfmOtAO4HAklKBeOESEMg3UYfr41jgHsBMU0EuIMAwuVuDiemTmzbUh2i6BOdIF5YkPvwuYnuE09BiETS5yR+3tfKxQQfYxQc4mf8PZ+ztnNGV4of54IJc+JpFO4q4D2KNyKmsAe97oWvpTsAcCfgTPD59rWJiKKLiyQ+vzGVwo9pcyf4vMbUhHhMFDjanEltLpebIR7nKTFP9hw+Dv8cz0EikUgkEolEIpE4jZu3SLgJqqp6l6qqfraqqtdVVfXaqqq+9MbrF6uq+o9VVf3ejX8vPIlzNQg00VnEhLPs3MCJlaTGefwY0O121e/3GzZ1hxMv/93H6KkFbj1n3E6s3MK+WCwa3SO8FkOMQEM8Y24+QkuMJDsRi1FkJ8fugvA5dVIfI9KMy+tMxPVw6710Ev33NAs/h5/HzxfPGefS78lFJnckMHdxbnxNGVebQOFjaRM0/PPch4sxnqrCWHAy4C5wQcFTR2KaQpuYwL5gLeO+bSP28b7aBLqYshBdCTcTDNreO+uZjZ9t20+Mp+2Ys4QH37ttNRDiGNvO6c9hrJ1yHnE3v4sTiUQicfvI7+FEIvEg404cCgeSvryu6/9WVdVY0q9WVfUfJX2mpFfUdf31VVV9laSvkvSVNztRVVWnHAOkJ9DFwBEJAcUJESYg+BwbCTbEDjHBo+ltOefSaXJB1wZPuYj3RLQc0kbhRNo7euTaiZ2nLbgYQToBgoJH4xmTt4J05wXj5LN8nvlmDrHySyppCP55J1y87oKEF11kTXEoUC+B63oHCl+PWHjxLKIa6x844Y6pC205/T5uv4ZH51144TO+7vz4+Fi7NmGLcVMXhDl3ws+Y4vgRKhArXOBoEz/8fngW/Jz+GuvgKSoxpQYh5CwRwV0Mbfcdx3srtLkt3K0BYo2JJ+NKiOJQTL/w890HuGvfxYlEIpF4Ssjv4UQi8cDiKQsKdV2/TdLbbvz3TlVVr5P0HEmfKOnDbxz2fZJeqVt8eS4tLWkwGDTqBEB6ndBCVCBgFMDj2G6323ARQIiJnC8tLanX62l1dVWDwaAQdIgUdQckNTomRGIBYfEIOCTY8/Ap5FhVVRFGptOp5vO5jo6ONBgMGueFWMeCipybDhWICt1ut/F5L+DHfDGG5eXlkmaBO8LTGvb398u43A3ikXOEAYcXKIRQeu2JbrdbxBQnp7wHXOhg3Yjcsw5eg8DP41H1OMaqOq5xgXvAq/67I8OFEu7d19LrdnBMdCcwz9FZwh5C8KGGhqc6IBK0jaut2wLEOdZ9cAENYSlG3hmn1xdg70ViHV0gETdz97QJB/6sIGq1kfb4+TZXgjtheD06E+J985r/t9/frVI2ziPu5ndxIpFIJG4f+T2cSCQeZNyVGgpVVT1f0vtJepWkh258saqu67dVVXX1SXxevV6vRKin02mj3gCkeGlpqbzuaQLekQHBwCP5njLBMd1utxwDWaOLwmKxOBUhlk4s7V7Bn9ejiyI6BOq6LoSesbeRMSekHOuFERmzHw8J8jaX7iZAeMGh4PUQnMRHIuvr05ZCgtgAnHwTSffPuIOg1+uVtdrb22sIQ8ypCzOeJuHXZFxOtKkv4cJA7Ibh9+bpDH4vvB7FJndacKwLT9Hp4oU0XSxzQhxTVnxMnsbhYkIUQNzJ4vujTSxpc014EUbGESP4kWBHgcVFFhenfN3i3okuC69f4mNsG3dEFIci4mfcXeFrxbFPxu1wnnCn38WJRCKRuDPk93AikXjQcMeCQlVVI0n/j6T/ra7r7Scb0auq6mWSXiapROUhf1500MmI/9FPBDa2d8Q6D3mHgHvknNQKJ9+QtbZihVzTSaaTecbR1soSEuS56P554K85aWQuiGhD/GPRSCr9I3b42Bi/1Gxj6XMJwY0E62aE0t0Jfg+ICcwzooYLOv1+v/zMZrMioLhg5KkoEGNcFTHa7q4FH3vcL7FQn1vx28gj10dQaIteu6PD58v3C/uqrS6FCzax6GFbrY7l5eVTz4evaRQCfG2ivZ/PxXoTUdC4WaTfXQw8A1Hw4BqIL/4s+76KIkMk+FEc8efUxTAXZ/zzUdRwtAlL95OgcDe+i3saPH0DTCQSiWc58ns4kUg8iLgjQaGqqo6Ovzj/VV3XP3zj5XdUVfXIDSX2EUnvbPtsXdcvl/RySRqPxzUE2KPwVVWVNIYYlfWoepsoADn1OgCe++4RbyLqkgp5Pzw81MrKSsPK7oQlksa2iHSsjcDrkG4fQyyIiBvDC/fhnIj/g4KsunMjpiI4OeOaHrF3ku6krC1y7QQ9ElPqU/Bvr9drtPFbXl7WYDDQaDTSaDRSv99Xp9MpgomLChDGuF4+l3Vdq9frFSLrbTCdlMbUAD/G79eFHYg0ZNsdH1Fgif/6NakJEutDxNQAdyZwr6urq8XJ4SlBN0tDcbeAPzPusmgTLmihyryypowvOj94DmJKhqcjxGNu1cbRhSPG4ce3iT9c76x0hbjejOMsAc3v4X7p8HC3vovXqov3j4KSSCQS5wj5PZxIJB5UPGVBoTr+K/27JL2urutvtLd+VNJnSPr6G//+yK3OBeFw23td1w1ygc1carY3dJIgnaQf7O7uNmzlXMePayPYsesC7gJ3Qzi5g3hAgP28WP5xDTihA7gI9vf31e12G7UN5vO5ZrNZIyUgFryj9sF8Pm90C4Ag7e3tlTkklQK4eOORWY9Ie00K3nM3A8Uw+QwiQq/XO3U96diNcvnyZa2trWk4HJZxkoLC/d7YY6rrusw3c8l9Ma8uyvA5n1/cG7EeAoikEVLJfUG0nWS3ReXZmxDv6EyI3Rgi6Xaxiv2C06Pb7TaIc0wncNIcxyo1azvUN9JjeMbcNcKcsyfdQRDdJjHdxJ+JeG13efgcxxQNjnGBxeuTUBeCc8Zn3B0+vl/8mqxNFBzcLRIdO+cZd/O7OJFIJBK3j/weTiQSDzLuxKHwpyT9r5J+o6qq19x47Wt0/KX5A1VVfY6kN0v6i7c6UbQne9V+P8aJnEdr+cP/4OBAk8mkIUoAP1eMlHpKhddJ8M8hKECCGI8TlthecTA4tq0Refcod4yAVtVJFwgXAzxNws/NOGL0vc3Szme9I4Gfs42A+3yfFe2PNSKcXHrU2gngcDjU2tqa1tfXNRqNiuCxWCyKM2R1dbVBEt3p4ZZ677LQhjbizd5xt4ELNewpP146Xe8C0hoFBY+SIyKwjqyPR+A9su4kvaqqRtqIOwJctGD9zrJVuhhA0UcXkFgzxIboovBjOJ+LKS4WcExsg+quDb/P6DZgnLE+iYsKfgwCxGKxaIwttp+Nwk3s2sG6+PeAj+c+cCncte/ixIOBlYcf0mPftXavh3FucelrVnT066+7rc+840teqtWPfuxpGtH5weTnr+i5/+AX7/UwziPyeziRSDywuJMuDz8v6azksI+43fN5NHB1dfUUQY3RTj7jnSAgbUTqoyXdSYOT9TbL+Y17LGTEj2UcHBPhXSMklagqxNALOEKWyIv3cUT3gIsibdHqaKPnvp0UeppGzE+PiIICc+6IUXV3DDiJ5XPj8Vjj8Vij0ah09uBakjSfz4tI0Ov1ShTdyb7PH8f6a3Ge4hhJb4nn8vmKBLMtXSIKCjFthbWF1PpcukOBMfscV1VVSHoU2JyI3yx9gNdc3InuGxeAfL68/aevv9+DCxFe9yMKhL4WPnfxdam9QKUf59dtq3lCcVXuJzoY/B49Lcj3ekx/QLA4r7jb38WJZy8WH/snNb+wrPmlJb3m/b71Xg/n3OI9/sIXaeN9PuTU651ZrcEPv0qzT/og7Q2bbsO1P/82/dwf+3fP1BDvGT5l7SP1ljc352ZlUWv4Q696SuerX/ontP2C/i2PO/yJX35K53+mkN/DiUTiQcZd6fJwN+BpAm45hjw4qaG+AWSQegucJ1rhvT0dx3mBw7YWjU5EuaY7KLh+JDxuIe90OmUs7g7w9A3uhboPjMfnBHLukW5SAWKbPOmEWDoRRcxw67jbul1U4TNuHXexxQmhkzxaHxJV579dDLp48aI2NjY0GAwKsXeC7R03+BxjZ90gjkSoIyH19fDUGNaB63qthijCxHv31A4fM4VAvU6E70UXerzto5NWxAPWh/uI9SsYS4z4s17uuvAx+rPg+9uFL6L5se4In2VPxlaP3k4z7okoavmYXFhxYSQKGP55d1uw17zeytHRUak5wZxxH8wXz6zPv89XHOfq6qomk4kSifsRS72edEPUlaSX/r1X6e8/9N/v4YjuD/z257WLLf9+MtJ3/Mf30+d+/Q/r09cef4ZHdT7wQ+/2M9I3/EzjtVfOlvQPf+pPPaXzveFLav3uh337LY/7oP/+7Hd/JBKJxP2KcyEokNMtnXR88AKETngkFUu8F1l0m7Pb4CHqXOfw8FCLxUKz2ayQREmN9oxEySPRpNBgt9s9Rb5jxBlCEwlijNK6A4K0DSdr1GHA2QBJXV4+afno14DMc/8x/cDbacboro+bMcbifTFCfXR01GhpyLiHw2H54T6XlpZKugPFGDudjmazmQ4PD8s6I7y4EMF8I8Aw704yYzTa7fEe2XYhBsLtroTo/HCRygUA707CvwhY7nJxoQmC7uvs9QeiGNAG9rTXx4g1ASL5dhHFybzXufACoPF+EcFcbHGRjOu7GOepES54MA/sGa7n6T+ePuFiFs+fC4/uTuB9Pu8FFlkHT9Xxe/Q5Z9zdbrd1DRKJ+wH9nx7r21/w78vvF5Z6kpbPPD5xc3z8YFsv/a2f1KWlvqT27+cHER/eP9J7/dZPPqXPri+tSurc8rhEIpFInF+cC0EBwgbZ8wKHRAl5DTKwurpaSJlHmZ2wQAZxAECuaSfp5BQiRQ0Dt35HksE4SINos7q7G8AJPMRHOp1r7h0lYhs/z8cHCBDcj0eKXSCIdQbaHAp+rI9pf3+/YYt3azxkj6KB/X6/pDOQ0rC2ttZwNYzH4+LeWF5eVq/XK/fk9y+ddOXgPReU/D5jDQT/nNd68JQPqSmQxBQQ4JFyjnHR5az9jHATxR4nyk5i3YURI+V+Dq/JENMdfB8iciAYICbxvtc98PSCeI7oIkAoiKkjbYUtXbDweef1Xq/X2Gv+vs8754uujTYRgL3o+9+fQ55nruFzz/PE94KnWiUS9xOW19Y0+38u6Bve9d/q6vLwXg/nWYPlainn8wzkvCQSicSDi3MhKHg+s0fyPcIpnRAOj4h79NvJMfniHgmGRCAmOEmKpMjdB/wbSayTXD7jRChWp5eaZLGtAKRb6mOUmuMhtX5+XnMC7qSJMccfv0+IZ4zMe6TfyRfrRAR8dXVVg8FA/X5f/X5fg8GgkEbWcTAYNFqBxnuMv7uNnnmKnSe4X4/KO3E/ODg4VbjR5zda6n39/VjfL/EY4BF6j5w7sWe/RocLr8V97/vLO45wrI/Z3SSedoKg4OIRrgrGzc9Za8FY3fngnVfOun50vUD6aSnqog/H+D37WNztEMfFe/4c+H25sOTOEa914tdKMSFxP2L5JS/SWz/mql79Xt+sbtW718NJJBKJRCLxLMe5ERQimXYbeoy+9vv9QgwgB0TxPcIonVi8nWRCpqWTqK+TskgwPSrLGL0NIfD8eQiLuxg8GuxF+xiLR6kjuJYTN+4DoaEt2uzkFps8bgzugXkksgvJg7y6fZyotINoM2JBv98vrSM5J4JFr9drtN3Eth/TVjxCj7Xd94VH+6UT8YYuEb6XfJ1I0fC9F+fd15H75lif27PEijahgPvmXvwzcb/znu+VuL+9lkEk2JyPegIIB7E+hotHLlb58xjXAoEAUc9rRzgh97QG35PsFdIW5vN56Z7CudoEBd8LLiR69wz2kH/e01g43o+hBkR0R7AXY9HOROI8Y2k81ls/9qp+/W98q9JGnkgkEolE4pnAuRAUJBUi2u12tbe3V0iuR3IhkoPBoGFTPzo6KjUXXJigHsLh4WFp4Tifz7W9va3pdKper1dIlacOOHEkEuypE9EeT+65F4OUjgvCLRYLzefzhlW+rmstFgtNp9NGwUC330snIgLjYGwIEU4EvXAfn0Vw8DQNakhA5Jgzj0Zj2SfdgSg3axRBigM1E5wwenqC2/6duEHqPA+e8RwdHZUaC4gB7nCQTgpbuvDT6XQaIowX+XQC75Fxz6v3ufcoPHPspNVJtf9wHaLxiF/Ue4DYejcMP6c7BhBf9vb2NJ/PJanMJfcRiTyFL6lT4GvN/EWXRUx1iEUSvXbE6uqqptNpGev+/n4jVSemDCwtLZXOHn6MiwmMgXWNzgfG7AIjKRSIXZ7W4ClN/t3g6RM8Fy6wuRskkbhfcPDvN/Tq9/hmpZiQSCQSiUTimcK5EBSWlpbU7/cL+fSIqHS6sKFblCGL5KxDJsg1dxJIjQRe96ilnw8C5edvq0/gpMbt03R38Dz6KAS4OMD4nHw5SfXfeQ0Bw+fGazP4tXFgLBaLU+8xZgh5W+4/hNdbBEKWV1ZWNBqNihgkNd0RLiZEazlzifBA9PtmEX9PH4Bceo0IJ+e+ti4A+RouLS2dKrznJJv94OJEmzXfz+33wJi5BmvmogKFBGNNDT7vbhEEJCfHzDXiAefECeICmIsnsV5CFBNIa/ACn23dO7y2QlvdBuYK10psJer1DjxtCEEiph3F55bxcF7mNc6PX8+fZ38+2dcuMiQS5x1Lg4G6/2Gsr3veD2aaQyKRSCQSiWcU50ZQ8IJ/0kmLPCcOkBSiz04snAh7xX+PNONAiJFmzuFEl6gp5/CuD7H2AmTKbfuxA0PMf+dzjCOSJYhrbEcI2XJ7uM+fEyEXWCQVQSFW1Pfx+Zjb8vD9HhGCSHXw3PS29eX+WAMXKKJrIaaMcJ62YpWQQOaJ/QFBdDHB55r5ijZ5F2/c7eLz5YJEPNav4eP1aLe/h5Di+8HdLC5E+X3xvnSSjuJkPrpW4nh5z/eVk3fSEzx9iGu5U4DxrK6uqt/vn3oOJBWRo9frlc86WffiiRHuoInPn4t4PsfuYvB5iy4Vn2O/hs9tInGesfySF+nNn3RVv/xu36jRUooJiUQicR5Qdbt62xd8wFNuCLO6Vevid//S3R1UIvE04VwICpBIqRlJhhw7+YTg4DLw7gekJyAGEM31/HO3frfVNJB0irjE12JBRsYfUyhcVOD8XlCPz/r529IYpGZxOhcnSBcgeuwuhL29vQZBwhXB+X2ePTef63gefqyJwNzRzcGjwbH+hP/OvTv5dcLrEXVPP4HseTFOJ4KR6PveitFn5jumAHi6icNTafw8XvfA8/DdneCtP91RsrS0VEQaov0xUo7T5qw96v8N+ffODZ42wrgiaXcHgKcY4NxwQYFnjvPyzDE//X5fo9GoIUC4c8RdBNGdEAUDFypcGPEUFOmkfkdcd+bNBYX4vPo+8D3qeyO6ZRKJ84TlSxf1tj97Vb/5pd8qKcWERCKRuNdYvnxJVberowtr+qW/8U0aLJ2uPfZk8L3bV/WDP/WBdzyeg7f+0R2fI5G4Fc7NX8seFY6CwMrKSsnNX11dbTgXIM6kAEDCgBMS0NYSzkmy1CTwbh+H6CwWizJWjw4TaXZBQVJDKHDC4pFqFyqI4HI844L0097SnRPSsWiwWCzKnPg9RVcC9+kigtci6HQ6RTBAUPBuD+TpO1H1PH53ETAH+/v7DVt8r9fT9vZ2o9Agx0IeWSevt+Bz6kTQSbGf09eX/eBOCyfeMcWBlBevgcCaxOh+FCV8XTjGU0D82nt7e42uGtwn641Y5GD/9Pt9DYfD1rX2fcZ8eBcQ3w/8d6fTKW1A+dx0Oi1CBrUcOA/P6Hg8Luuwu7tb5jmKCW2tL7k+Y0ZQcFGO+WHsiFzRveHpGC7kIE763Hqqk7tMPE0nkTiPuPYvLupX/sS36CmHwBKJRCJxV3H0Az392Et+VJLUqZ6amCBJn7n2Tv2VV//YHY3lbYczff57frSOJpM7Ok8icSucC0HBBQJsy5BxCL3b44nAe3FBiA0RYQiCpAbJc+LocDLhOenSSYs9Jy2RjAIEgVg3wavR+3ncmYA44rZs5scLM7p44tdfLBanHBEehY+5/x6tdsLNsVjYEXN4H2JPcUSfw9XVVQ2Hw1JTwZ0KjN8j+/v7+9rZ2dF0Om3UlXCXAsUuvasHKR3ch//rbguPzntRSI6HDLMubtHnmLYUglg/oG1+ndy73Z6oOp9HMPD36aDgLhzfLy5udLtdjUYj9Xq9hnPGnRGMhecn3ovvNc65tramwWCgw8NDzefzstd8/1RVVe5nPB6XWhBO4uNz7iJCTANhTG3PLvDaCi4WuguB87WlEbmY6M8h7zE/bWJkInEeUHW7uvyzfX3Do/9Sy1kzIZFIJO4p5h/3QfrAv/srkqTPv/wD6lTDu3LeTnVnf4M8stzXH//5iQ6Obk90/q3PfomOfv11d3TtxIOFcyMoHBwcNFrMxaihE+foTIAoYM9fXl4unSIkNaLuIEbpAcTDCSzX9lQBXm9Lm/AODBDbGL12wYP7JUItqXGvnDcWeYzwFBEnczFtI463bY6JKntqAu9DeKN9nSj1cDgsIhDXd1Lna763t6fZbFai7y4GICZ4jQry8mN+PMf5v1EccIeDCy1OMNv+jS6QuHcdnI/19TFxDhfGXPjwDg2+F4nk+/rFdUK8AV4Y0teYvc2e83MioOFOIH3BxYHo4MFlgnuI+/J58XQRFxtcdPP5c5GDdYrpKZw37gMfm4/b0ydcTPDvGJ5lf8Yz5SFx3rD87u+m3/+0h/Rv3uUf68Ly4F4PJ5FIJB5obH/ah+ixj5/rPz/y3268cnfEhLuBTrWsf/jQa277cy982Z9U749eesfXH7211oXvzToQDwLOxV/LkGW3yEMGnNjxxz7uBAgn7/d6PfX7/ULOIBHdbre0lYxEx+HkzdsbumvC3QnRReAtJr2OAteCDEcS6p0fpBMi4wQ7dmfwyD/n49qR0Pn9eiE6TwWINQFwIJDm4DZ9//HIb7fb1fr6uobDYSM6zj17+sLR0XGrz93dXU0mk7KWntLR1m3Cc+w9Iu33HQs5QpS9WKCntLjF3oUVxurtBX2vRCcCIGrvYzs6OiqODq8x4DUIvD6ECyucJxYGZT3aiDziRBSMfIycB5KOs6fX65XOHbHuh+93ni32iacHuDDngkJ0j5wlyMQ5ZewuOrpzhz3B64zBXTe+B1yU8v3P51lz9k4icR6w/NBVveN/uqrXff63SkoxIZFIJO4lVl7wPF142Zv1Sy/5iXs9lLuKN37yd9yV83z+Wz5Uf/jzL2h9r/6jd+hoOr0r10nce5wLQeHo6KhYqjudjra3t0tBwU6n0yAIdV1rNpsVZwJEYX19vUTU9/b2JKkRRY81DTgfzoPY3cAJGO6BxWLRaLPojgAnaB4Zhah0Op0yZsbhEVbcCU4quU8XHGKRQ87H+y5YRIdHG2mSTiL3iBhY2KmdgNvAa0W4MID4MBqN9MgjjxQiSkqKp14A3nv88ce1u7tbBKIYuXanBKTZW39yH9zjYrForBOOFUebhd7Xnblg7V1QODw8LPUz+Gwkv95twNeaeVpeXi7pKcw/3Q9cNPM9yT72felpJ4vFoggi7nJwdwrk2FM7EIxYX14bj8daXl7WbDYrKRPeScHTM9gTnU6nuIYQhDy9xPeopya4Y8GLdCIsse+iQ8WfZ18Ddx5ER0NMVYnpLIeHh43uG+lQSJwnvPnbrug3P+Tb7vUwEolE4oHHUq+nb3nlv9ILOqN7PZRzi+947i9JP9f+3od+xRdo7V//8jM7oMTThnPx17LXUNjZ2dF8Pi/kIlr/cSdEG7hHZOu6bhAwiDiEsK2TgH8+FvOTVAi/26KjfdvHK51EQ73gotdBiA4HdwlQ9M4r67uF3VMG2oibR9vb3AwQVYh6zMnH7eG1KyDoCCHM4Xg81sWLF3XlyhVduXKlFNVss/4z5/P5vPwLCY2dObxoIXuA+2ZtmWcXCZhzUgG4NxdfpJMilB7Zhigz11VVaX9/v+Fq8Ki+1+yIgpTfM+0U3bUhHYsP3W5Xg8Gg7E9EJKL13W63cV3u3aP+CDvuIvEijPx3nLfRaFSKjnJNfpfUcAExJy5KudgUUxh8/5OGhPDhcx5TYuJeRVBgTO4uiG4S6aQuA6/7c8Pe96KLbetH541E4jyhqrKVaSKRSNxr7H30B+rj/6//pOeu9O/1UO5bfMXf+dd649dcOfP9//iy/0HVL/76MziixJ3gXAgKkhrk3msOEIUnKnxwcFD+2+3qTuCc0FRVdaoVondi8MJrfNbFB48ae/51W45/hHd+QETwqvJOEKUToucpDpzf6zk4qXZyxjz63Lgo4jZ/7plzuiUcMoq4gOgAMeSch4eHGgwG2tjY0OXLl3Xp0iWtr6+XNUJUcOeBpzXM53PNZrOG/d1rJTA/3CPr6/Pla+yFB3FWQAxjGojXIWDN4/xw3Vg/AYIeazK01adgjH5Pns7j7R69FWq8Vqwj4Ovp43RHjH8mCk44FgaDQXE5zOfzQrBXVlYa7hh3pMSaG37PsRAmY2fdneyzbrGOgtfBcIfK6upqSQuKa+UihItpPnf+Od/rpO64iOP3m0gkEolEIiFJm//rh2rz4yb63y++UVIWbn6q+J9H25K2z3z/277gf9TKJ3zoXb/u6E3SlW+7/+s6LI3HesPXvI90urzb04uv/KHWl8+NoOCR/oODg5KDT4TYCeX+/n75wx8SEKOckSh7UTbIsEea/fw4ESATnCcWcyPaKqk1oumWaUQAFxSkE+LvYkFbgUbIEePyyv2MyQlVW948iEXogNv9IZVE+b0oI1hZWdH6+rquXr2qq1ev6tKlSxoMBppMJkWM8Wi2F6tcLBaazWaaWv5UFJFcgIipJJybNqIcx3p6qkaMfEtqEGz/14myC0UuzrAWLlggaMT5JtrtKRTsAQSnbrdbrue1IBgn5/Xr85z4erOH2Cc+roilpaWS1kJBR9JdWGtPoXFxAjdOTKHxFCCeCX+OvF6EP78urrmgd3BwUIo9MlfeCcTXxUUj3/vuGnJBg/Ej5nhXGRcYXdxJJBKJRCLx4GL5vd5d3b/6dv3OH/t393ooz3q88SO/+2k5719/6wfrDb/wHk/LuZ9J7F0e6rWf/i133AnkdrH8le2vnwtBgUglUX+391NfwIl4v99viAKHh8dt7Vws8Er5EHRvM+i55ZCIs8gXx0FQGBNOCR8r/7rVmoh9WwTbCx5KKvb//f39EmUm4oz13cUE/zd2iHA4UYt59swrAgJEczweF6u+R9g9Gn7lyhU9//nP19WrVzUcDjWdTgvRJBXBSebe3p6m02n52d/fL6KFk0ZfN4+Kcy9uV/fUEzpMUDvBo9Och7ocbnP3NWY87EmPakNCB4PBqQKPXqvCU2DcRUGaiqcDQJ5dPIliBueIdT0QzxBP+BehxY/3op+9Xk8XLlzQxsZGqengHT3YTy70SSrndrQ5ODxlxVNZXPDwZ8Y/5w4jUm+4D68jwn17ShFioLsa3OHia0XxyaqqSq0P5of/9poriUQikUgkHkxUKyv6+p/45/rjq9mq937GtzznVdJPvupeD+Mu4fw4ZO5YUKiqalnSr0h6a13XH1dV1UVJ/1bS8yX9gaS/VNf19VudB4s8UUmpGdWm0KKTEcgZx7ozIdrLpZM2cx7ddMIlnUSuPRrvn4eULBaLUjDOxwMocOipFR5p9igv0dVYG4L8/zaC7ikYLhZwD4zfSSFkrt/vl6g4QgdiQr/fL9F9iDNCDWkpkLGNjQ29x3u8hx599FENBoMyjzHK7KkeCAq7u7ulECcEkOtSX6Etvz6mgMSieZBQugEgziDeQBbd9eJpHAgV7nrwz8YIt+8dPu/1F3Bq+H14XYEomEGWPTWBsfm9kg7AmrJWiAKrq6tFyGIP1nVd5nk8Hmt9fV3dbrdcEzGB4xEseK7cacExPg+eiuPpMb43o5ACPDXEnxff8+5AYU5ZK78G+9gLVvr+8XQVPs++cMcS471fcLe+ixOJRCLx1JDfw4lE4kHE3ag69qWSXme/f5WkV9R1/WJJr7jx+y0RawFIOhUd9ag6lf5jGkGMynqV/Tb3QYxaxorynMs/T7TXxQlvAQicJBIt9fN4OoaTV8/Rb7OWMxeM09Mg/H1P+0DM8Ci035vXSIB04k5wFwdR4eFwqCtXruihhx7SeDwuTgGPFPuaMGfT6bR0r2BeBoOBhsOhhsNhqTkRiaivF2ONXQeY07j+sX5CLMDHPHlRzCjEeMtHrPyxloGTVH/f6yJEISS6E+KeZ30isUUAwE1BAU1+XDxzQYyo/Gg0Uq/Xa6QZ+L6IzxNjiA4Gj/67m4N59fvzPeRwZwdz43ufefL1jWKSOyhi/QzWKLZx9TXidxweXkPkPsJd+S5OJBKJxFNGfg8/C7H8ni/W737zB+jR5UyDTCTacEeCQlVVz5X05yX9M3v5EyV9343//j5Jn/QkzlP+dRIhqSEm8Ec+KQ4ICk4WPcfcSZqT4mjRjpZ1iLpHijm3k38fo//4azH6G8kU1/djuVcveufklPNBfnxcMZ/ef5zwRqGAsUGicCr4OCBcFGK8evWqLly4UIipOxEimffUlMViUQimE1xPI2BefJ45TxvZjDn17o44S6hiX8W5gnwy105wI9llrF5vwttq+v6KexyRJXa4iHUF2oQw1tKt/S5mxHlBFOn3+xoOh0UE8uP8fhiDuzaikBL3vgtqXsOBe4skPtat8Hnlv53wuyDhgoKn+vR6vVJ3gbmIc+rXdEGR+/QxIGCed9yt7+LE+UX1ge+jq+Pdez2MRCJxBvJ7+NmL6Qs29MZP/g5dXh7e66EkEucSd+rn/SZJf1PS2F57qK7rt0lSXddvq6rqatsHq6p6maSXSSfdEJzwSye53rEw3GQyaeQ8x9zsuq6L2IBd2+sZRFIkqWFFxy5OJP3o6KikYWD7l05IDtdz8u32bK7H5/is58pDtpxcOZl0scDz2Knj4PnjHgX2aH8ka/P5vFFkcHV1tVjh19bWSh0CgKPg6tWrevTRR/XCF75Q4/FYR0fHBSqn02khyYvFoqSFQJpdAHKBAhJIAUWuBVFsc6BAfLHmM7cQQL+mE2UIrrsSfC28ewbzCFn2Yn9OvHF1DAaDcg+ezhGFAa8H4CkUXJ89F8Uk3zuslzs1XABCpGBOlpeXNR6PNR6PNRwO1ev1GrVFuAbzSSoRaTf+XHgahKdyIBo4EXdBh3PgbohiYb/fL3Pl8xRrgrjjxs9D6oe3CyXdgT3Ecb4f3D1CigSpPaTy3Af4Jt2F7+Ke7pv7faBQrazoH/3QP8vc3UTifOOblN/DiUTiAcRTFhSqqvo4Se+s6/pXq6r68Nv9fF3XL5f0ckkajUa1E2+p2XKO1yBJ5NjH6DHEGXIJSfPCfIDXIJhEebmm5/6768Gj1m5597FIJ8KFix6MOxIYxg15J8LuIgJj9nmBDHrBybZUB4g4ZKu6USCQmg1E1CH3o9FI4/G45Je7HX1tbU1Xr17V5cuXi5iws7NTRJ79/f3SDnI6nRZySt0EX5ter6fhcFjqNPh6eLSbuXe7O6R0NptpNpsVwYQCe3TJODo6ahRu3N/fLwIAc4TI4a4SrxcQrfJEsb1rAXPI/nMBBEHKa3LEFBW/dttejSLT8vKy+v1+I1rvY/CaGdzv+vq6hsNh2QM7OzuFOPNZL57o1v9YvyPW7uB+vLMJQk9VVQ3HgK8vx+Ou4NnwZyo6Gvx7wgU39pWnZfgcuiDkdTSYJ+6fdBzm+Lzjbn4Xr1UX61scnkgkEomA/B5OJBIPMu7EofCnJH1CVVUfK6knaa2qqn8p6R1VVT1yQ4l9RNI7b3UiiIOkQub5oz/mleMQ2N/fb3xGatZhcFLtUcxy4zcIoaRyLidOHhWnSJvbpSNZAf5Zt1s78Yf8QuIg/U7SuJYX/MOZEMWQtoJ3kYi5Q8HHyNyvrq4WIYF8/Ggx73Q6xTJPpw13IjCmvb09zedzTadTTSaTUoDR2/K5Xd+JthNxj+zHaP3e3l65D15nHhmLuww8sk49BNaLefZCiD7PjIU95SIQe83t97EQqH+GtYz7kWO5fozeE3H3+Yhrwz7lh2suLy+XGhWkDOEoidF/d4HgUOF6nl7EfcVUH/aNdCKquRPE19jdDByDcMQ8uWDgzxVz47UZoiPI938Up/icj4195QLjfVJD4a59FycSiUTiKSG/h5+leOLzPlRLn/T4vR5GInGu8ZRrKNR1/dV1XT+3ruvnS/pUSf+pruu/KulHJX3GjcM+Q9KPPJnztTkSEA+c7EGG2ro3OCGMkU8ndhRsc9HB87e9pgHwKLZb3vmXc0F8PHK7v7/fKEQYo79eK+HG3Daiv0SFvfZBzFl390L8iYUCGSOk01tF0nYxFir08xBtlk6i0IyRdpoICvzM5/PWsXoNCCf90ZnhqRrMiYszkEycJU402UsuvDiJ9LViLWNxSMbhefn+ukfwfZ3dhdJm4XcxhN+BiwVeLDCek2NchEMAwXWCM6GujzuUTCaTIrwAJ9qdTqekcCCW+Pr5nvBUIfZnrHfh7h3AffE8+r2zdi4AxBaObcKKP9NeuyPC14515pnysd0PNRTu9ndxIpFIJG4P+T387MXmh8/16vf7wXs9jETiXOPp6In29ZJ+oKqqz5H0Zkl/8UkNJKQseKE3SCHR38ViUUicdELQIPsesZVULPGQFPLH+Qz2e/LfnWxzTo4F0aUQibF0YpWPaRpODN0xEAFhhjgRMY5pDk6qIEKDweCU6ODuCyL7g8GgUfXfhZZ4bkgkhJG0CY8qb29v6/r169rZ2WmICR4RhphzPV/r2JHB6xA4sYSEs2/4PHvHxSmuzxz4XotOE/LmWXtf32iXbyvM6fcQ6y1wDd+nntZC+oVH+xF6aO/oQobUFD9ceGOvQ9j7/b4ODg7Kmsxms1IHgfnw+hbxeWCduR+vreEdStyREwUcn0+EvcFg0HAi8Z4LMG11JfyZdPHBxSXcKlF4Y/w4EFZWVhpdYxBg6DpyH+MpfRcnEolE4q4hv4cTicSzHndFUKjr+pWSXnnjv5+Q9BG3ew63VUs6Rdh4D+u8F4uDpHlU3V+HsEBAcRJwfggXbgJy/50Qej0EruXWalIooquBn729vdaaD5Ia9+kRVq5DwT9I42Kx0Gw2O5XX3+v1tLGxUez6FCT0nHPIVV3XJX2BH4r6cSzz6M6GG2vcuE9eY1yQVuoqeCScdAJ3Obi7JNZQ8AKTEEup6TIg7YLPQ6JdoGJ/QSBdBOHaEPDhcNjYO4gI3KfDrf/escHJs5PvuOfdvu8pIZD6wWBQBA5P5eDa7D/cIVGQYJ69tgUinad+UEjTHTzuhPEijThVEHhwZLAGCCScn3vkffY/a+Rrzlz42kVBALQ5Tvgc6xGfSd+Dg8FAvV6vMe5ut6u1tbVSO2FnZ6d17c4r7sZ3cSKRSCSeOvJ7OJFIPGh4OhwKtw239zvJjhFkqRmRxGbtUUtvb0ek1ImKF4xzW/jy8nIhXW0FDhmn1CwS6KQQeFqBV9v31AbO610FPJ+7zTJ+dHTUIM/uIoAMuU07EjGfC+bO20h6UUiPfDPv0cbvFvb5fK75fK6dnR3NZrNGUcQoQERXAeNl3pgzxAEIMffiVfwRirgGogERcb8GqR1eU8EFI08NiSk17Mez1p3x8jkXcfhMW90E1j7WAuA+PMUi7kHfm7F2A0IU94JQ5iIVrhpPdeB1ai34ef35ooAixN0dOO5EYcw+l9wTY3NHw1lpKOwPfmceWDPO7c+ed/+IKU+ICZzT56Xf75fnZTqdtq5ZIpFIJBKJZzd+9zv/pL7y/X7iXg8jkTj3OBeCgqSGeOAiAiSR/3Zi49XcvSCbH+8kOhb1k9SIlGJ7jsQI4nO78Ogq43Ii2GaHdzeAk/ezUh0cnmfvxFNqugDaakk4SXaxRlKD7EHm+VleXi7dIryzgzshog3fI8nMsRPmtjXzHHocDk4GOT+E96y6CNxTJKbUA6AIX5sDw8/F2ICLNy4KQNbjWrM2kHLfw7yHm8bHE+tKeN0EzuPPh6TiasF1w9ojGnhxSR9nW8qMiy6e3kBdE6/n4KkqjN3FBJ4RT3Hy1AgvSAriXooOHK9j4bU02HOkN5Fu40LV8vJxVwe6glD7JJFIJBKJxAOGqtL3fcR36sOyW28icUucG0HB0RbZ9PcgBRBaXncS49FVr0/gEVUiraurq4388r29PXW73Ub0V1IhwW79530nd9KJPd+j5k5sYg2GWFzw8PCwIZBAcDxa7PNEPQTaEyKYROKMKNDr9UokNpJlL7Ln6Qfklm9sbGh9fV29Xq8Um5xMJtrc3GwUX+Q+iBI72eSHjhI4RrzYIvNEoce9vb1GEUs/HtLe7/fV6/UaHTW8+B/z60UgIbrMie815t6L9XGMf97FC3eUsAYx2u7gXmMqjNdr8DnjWE8ZcVcNUfZOp1PmDVcL+5178P3M2uCEYe3dKYMgQAR/NpuVGhWc31Nm2P8xZSF2PonzEeeLdXAhEHeRCyAu4iFQ4F7BgUFNCsblIuVwOFRVVUVMSIdC4jygWl3VsrKTXCKRSCQSifOHcyMouDsB0YD2kdKJbXxlZaXk/jsBitZ6oqaLxaI4DjiGSK23LdzZ2WnUZ/BItefRE3GWToQEb89HNB3Lv7sMnGh5tNqj5NyPOzC4H3cKeGV67mU4HGowGEg6JmDky0dLt5NR8umZX0QD6imwBp1ORxcvXtTVq1e1sbFRWhBOJpMiJly7dq3Y6rkuooq7E7xWgc+zE3ePYs/nc9V1Xcjg+vp6yfmHMHvKAvuF9aIlJiRysViU96hbgMiCuOHpMvv7+yV6zXh9Dfjd3TKMITpDoljG3PT7/YbY4SKBPxNtqQ6snd8DaSJ7e3uF9EdRwEUbXvNnif0LvObC3t5eaQkaBSPvkOF73GsbQPwpsMoY2uaGfRhFL8Qzxsxz6c8cLUwRRcbjsTY2NiSpCIsuxvGZ2Wym2WymxWJxk2+tROLpx/5HfaC+/Tu/We+20r/1wYlEIpFIJBLPMM6FoAAxdiImNa3lkG6syhBjt3sDLyTnheDcOg/pkFRaHHKcW7W9EKNfy68HeeF9b6XoxNOt8ER4sZxzXY8We40Cj8J7lXtJhVz1+331+/2GK8DFBG876e9xL15/wmscLC0dFwhcW1vTlStXtLGxoW63W/Lyd3Z2tLu7W9wJTsQRFFxM8EKTKysrxXbOcb1er/zOebxuBmvrBR9J9yCS7a02cS2QCoGrwj9L1FpSY41ZG9ovQtTdGYPDwfcD88/+jW4SPsvnmR+/bqwf4MSfcbqzgXvkWohpsSCpP09RGPH0BC8Y6e4Sf7Z8D3vrRxcDuJ6LfKyRpy342vk9u8vGU3L8eWbO3A3EHHJ/FFxcXl5udHVwtxCFX6fTaYoJiXuOt335S/Xun/S7evfO8F4PJZFIJB4YLL/3S/SOr6/1Xp2fl5Tfv4nErXAuBIVIniKRigUKIYhtVeAhHZBqFwUcXmzw6OioWKljYTdIipM9z+NmjFjzzyoGFyO20olIwLkiyfP0DY/YehV8TwGBFHMvnh4BiXdi6wUNIasINU4wcRNcuHChVMCvquN2jJPJpLSGZL68IGWMgnv6AePx+gAU+/MoNukfrA1klvWFYLZF7UmDwJ3A+WKLRKLdcT8R+SeFwF0moI2ke52Ls/ag103wsUOoY5HM2GrUBSucJXyGe/C9E583d4H4s+Ci11lCRkxVcAHCr8U53EXgIpbXQvDPtu113CQ+Nu/84fuccfJ5r53A9wZOFH82Dw8PS4FJ9l0icS8w/QsfrEf//Jv0Q+/2M/d6KIlEIvFAYe/KUL/6Ad+tFBMSiSeHc/HXMn/gOzGXmi35nDiPRqNSDPDo6KjkOUO6Op3OqWJwHgn26vIQM1rmQV4gyJHwudjhxewkNSK3e3t7paMAP7G2AMID5I5oqQsK3l3Ao/yQKSKvw+FQFy9ebFTcj20lfV48NQQRxiP5nH95eVnr6+t66KGH9NznPrdY86mbgJjgLQ25NyK8ToZ7vZ7G43Eh8LF+AwXxuO+2veDRZUkNi73n/SNQjMfjIlS4e4S5Ix2Ctpd+TdwJ3W63uC+8UCjXj0UBJRUyGh0tLtiwLogZkG6vFeEuBD7raQaku3gKEGvrdUQg335OxAmfE1JSuB9PkUHI8WKjsWYCP15XhHVDsOBzrBGig3d38RoijIPruPDnohkuEheNPE0Kh8t8Pm/sT+7BO72w/onEM46q0t/7x9+RxcASiUQikUice5yLv5YpAiepEXmFJBweHpbo4nA41HA4LGICBGexWBTiF0kzggLngryQWw0xR0xAEIDYQI6IqHtOPIUdF4tFsf3H2gme1w8Riu4JxkwxxMFgcKrlpdvqGcNgMNBoNNL6+rqGw6E2NzfLWA4ODhp2fXdeeD2Gfr/fcDu4i+Ghhx4qP4888kiZe/LnuWfmkEJ92OGxwiMEDQaDRroKJNNJNusiqRwLWZ1MJo3K+9E94nUTPIUDgYO2ljgT2sQEXAne1cBTOCQ1Wl2y1i4muLMmRt35PPsJR4PXCeH6jMEFC/YDx3GP7g6hjScpBnEsiHPcj7srvNYDwlZVVUVAYm3dDeCFFF2E8w4TrLW7IuIzxdxxb7GuA/vZhQovNNnv9xtpGEdHR+U7g/e87oO3P/WOEy5eJBKJRCKRSCQSiXacC0HBHQpSs6AeZN7rBECMF4uFptNpIZhudfdzE4l2eARTUiEu3jXABQm33PtrjGUymTTEhOFwWEgt9wRRc/Lm3QDcSeAWcAinF2jkM0Sn19bWTkXvvVAg90MkGuIL2acQY6zNsLGxoStXrujy5culzd5kMtHW1pa2t7dLWgNjRVxwYgkp9kJ6kF9PUYliDZFoyLwLIZw3Ek7pxLHAD+vC2IjA0/WBInzsQTo+uMOA97m2j8/JLcIU40KwYs/wOVI+EB6w3vMve8cFHuaYPeHH8B4uGZwjcX1YE+pXOIn3/c49sH+J3Hv3DI5hHaMowed4nrzWiD93/jvX8xonLlTgkPHnk/WidgJOEpweg8FAnU5HR0dHRXxkv/n8uTvEHROJxDOJpT/+Hjr4JxP9sc4vSBrc6+EkEolEIpFI3BTnQlCQTsiO5/ZDKNx27sQA8ry/v9+I3vs5+TzERTqJRLZZ0z0NwgmSF9bz9Ami7G6TRhRw10Osn+D3x+8eEff0C78XB1ZuKtQTmSYS7MTOiyV6QbzV1dXiYMDFAPr9vi5cuKALFy5oNBppaWmpIeJ4rrmLMW5r9xaUkHSP5Pv6xNoG3W634aiAzDI/fI5ceEB0H6LPent6SYzqM2avI8H7RPld6PBCgpBPnztPV3B46g5z4Q4ZrusOBs/vdyLvrg7WFOKP28JrWLAOrLd0uvCpCwwIM+wZxAE/p9cu4XUEgNjmNAqG8Xng/pkn9gRz6w4k30O+H1ycwGmC0EBRSMQEnrfocIn3lUg8k9i/ONDPvOf3K8WERCKReOZR/6n31R9+ZPfWByYSiYJzIyhAwJzsSs2ieB5Rdkv34eFheQ/E3HzO7fnTTupjZX/Im6dexPFCnrDT1/VJVwGp6bRoExBc5CD/m8i1t/FDYOG+wOrqqsbjcYnaegqCpFOE06PLcW4p6uiW/EuXLumRRx7RhQsXyj2RcoBw4Tn1/Mu9MXeICYPBoKxDzLP3YomHh4fl/vf390v6hqd/eCqJi0MQ/Vi/wEUHd4C4DR+RwVMYPIUDkcLbJ0I+3X3A+dwdwHq4Pd/HF4UCF6UA6Rhu+5eatRJwJsxms4bzBRFhMBgUNwoCC8d4xwNcFAgxsbYE99cWwWe+AXPKWrnjwNObHKyjO1KYO9bM0x2iMMA5ECFdgPS18GfMRQQfYyKRSCQSiQcDv/cZHf3+x33bvR5GInFf4VwICpBpt/FLJ1H7wWCgwWBQCMb29raeeOIJTafTQj4hCEQw3b4OUXa7s+dyQ/rcou4FGSn0xrFEXKWTQozUM+j3+w3SE+3mkVxBqiCJw+GwiCOLxeKUy8DTBC5duqTxeFyI37Vr1zSbzYo1nIr23mbRi+xRe2F9fV1ra2uFPNFe79FHH9WlS5caYsJkMtHOzo62t7e1tbVVBAxa7XkqAFFvJ/BuRydKjDBBjj52fNbRCeLy8nKxsDsh9daILi5Fa7x3a4A0RkcC12TednZ2GnvBxQT+dfKJa4U9zDHdbrcUB6RgJ9dC3PEuGOwvb7/JvTEOxohTB4GHYxE6qBkxHA4bLTJd9GJeEIEklXocpLeQpuF7kbVxsN+9s0jsDnFWG0ueNdaUIqy0GMUZw77wdqHephQHD+ku0+lU+/v7jYKXiB+Mlz2FI4K9n0gkEolEIpFIJE7jXAgKkDWvTi+duBa8CNt8PtfOzk4hAdJJYTUnrdFm7xX+PWqMG8Ft+/xAVBiTR0AZr1e7JxraFin1fG0Izfb2doOQIUa0VZZ367m3iYRkQeyJRHOt/f19TafTIr64tRxhwc/V7XY1Ho916dIlPfroo43OETs7O6WoIS0jr1+/ru3tbU0mEx0cHJyqkeDrKJ3k1LNOzLkX+vPIcWzdGSP3fr6VlZVSuwJAWGMnAieeEFYXnBgPxyECePtJ1pfrsJc9fYCxUTyR1BLIPmPiB/fC6upqSbMgus7+pkiiiw2ICtwTe8DHiDsBR4s/f8yTd1aYzWZFRHIi7q4bfw54nc97W1BPgXDy7sczB9JJjRMEFp4pd8Kw3uwXT49AUOA+PA0oilUuELKWPM+j0ajlGyuRSCQSiUQikUhI50RQkJqELFZ7h0BhvaZegdQUE7yYnBe+k5rF4fx6Tia8DoC7CbxAJMfF+gae0x5THSQ1xoTA4WkZbt1250SsoQAhom4C94YzASKJoLC7u1vGGlM4ECa8uF+v19P6+rouXryo9fX10sHCU0xms5l2d3e1s7NTXAXY8SH7nlPv8xtTUYgqsz4xXcHrXHhev3Ri9XcSDRnnOqTPOGH0zhKIKZBLr7cQCTrRebfHAxct/NqM3YUe1pB78BoHrJ2khtCFgyDWjnCCHQthurDF3vDOCb4+vt9ZP0QKTyfxfcmcRheOuyJ43etrxPnid/ali0heNNHraPh8nSXAIXZ4IVJ/phmTiysuDvr3RyLxTODgz3yA3vSxp+sBJRKJRCKRSJxXnAtBoa3AG4QDAiSpdBigRgDkALIJifEIIz3pY0G5WEG+jWREUhbH7EQqEh9Pq/CCi0Sqd3d3CxmG2OKmQJTwonZcH3JKTQmcF7TW5J4ZD9b72GmAf4m8c/x4PNbly5d1+fJlDQYDHR0dlUKM1E3Y3d3V5uamnnjiiUZ3CyeypHN41DnWpvCCiawNDodY4JExx2j0/v5+sfPTQjMWffTrQfT5zPr6ulZXV8u9kRrixJc5RUyg5aCLFIwxRuPZw6QZICi46MJe9q4OtFrkPDh12D+MxesncB6cEJLK3nAxi3l3UY7re6oHKQKIKp7qgCDDOXwOvOYIe9f3MM92FJ68aCPjwrGDcEJ7WebDUzdc6OF8pIC4kMjcsZaxfgPz53UqEolnAm/81CX9/sd9+70eRiKRSDyQWH7oqqpedndKJG4X50JQkE5s8ZAX/qiHZJG7P51OC+F3qzTRTAipEyCP4EpqREGJ3OJ64HWPkvNvFCz8nBCbGJ12MeHChQtF4KA4pNdOGA6HxcoOSff5kY47L4xGI41Go5IbDhFHZECc4D1cBXVdF4LmUXNeW19f10MPPaTLly9rY2NDnU5H29vbxRUym8107do1veMd79ATTzyhra0tTafTIpx4oUTmIdYn8HtxR4CnYxAdx/LvFnYEFxwEkoowMBqN1Ov1ShtRT++AQCIabGxsaDweazQaler/s9mskGj2SafT0XA4LPMICfWuItjvuUdEEyz/zLGkRs0PyDiEH9GC9fdIPbUj1tbWSuvUSHa5FnUi5vN5EWFGo1GjLgNFRN0d4Wkk29vb5XmTdCqNhOfN97oXxEQUciEOxwA/+/v7ReRAaEHMYUzUI/ECrLFoJXVCcJn0+/0iBLJeCEOIbIwNkQ+w3rHIayKRSCQSiWc3Pue//LI+abgpKYMJicTt4FwICl5VnT/yo32diK1H/QFFCD1q31adPRaAcws5xINosKdeuCXcLdO85+4Et/RDinq9ni5evKi1tTUdHh42XBa9Xk+j0Ujj8biQ1Lb6C9i8KbZIpJkxUXCPsUCGdnZ2irDgnRfcxk+kt9/v66GHHtKFCxdKG0oIOKQOZ8Lm5mY5rxNMJ2Fe/M7z6yHNnJ/18toJkQy66wI3gc8Ja+97ih8EHESIfr+v8Xhcuk5sbW2Vuhy+3rgBcAz4/mCdXEDiekT1PVLvAhNrxr17Ko0XHWT9Ib3uckDMghgjDnhxUoQKnCd+TS86yvE+RzgfPJWIuQEuGLjDCPGGMfmaMAcuZHh9DRcgjo6OGkKfpxD5nPo4fO8zBuaCAozMLd8zOF54zYtIcmwikUgkEolnNzrVgZarFBMSidvFHT01VVVtVFX1Q1VV/XZVVa+rqupDq6q6WFXVf6yq6vdu/HvhyZzLCToElwik27+9DoKTbm8d52hLV4DYOmF0AuTV593t4AQZOJH2z0CCvVVfjJziTBiPx438ep+P6L7wXH7pxBZOMUIvCunEm7HeWLdGxBa3wtraWomAEy32VIDpdKrNzc1SM8Gt6j5Hbt93kYTjY3E9FyW82KAXoeRHUsNxQuTeC/d5LQP+dYs/e6uu6+JKQKziXryeRaxT4EKFF/bzFATG4BF0F4A8fcDnBTLuZJ819raWDs4Rayy4MIczxlNJmHPcCTgXWHMXQbgfF3bOgtd+8GfC9wDndfLOa44oNjKX/kxHcQ+niH/GBSpPaWJ/+nPOfvU9c95xN7+LE/cG7/iSl+qD3/sN93oYiUTiKSK/hxOJxIOKO5XhvlnST9Z1/R6S/oSk10n6KkmvqOv6xZJeceP3W8I7NuBMIHI4nU6LqACZ8D/0IU5E7Z30+e8QDAgFpBGyAYnj2m7h9sKFjQlcWmqkEbiwgH0aa32v1yvETTpOX4DEQ4ScUDnhY176/X7Dnu7pErFK/mQyKdZ2j5Zzn9i6aad44cIFjUajYk2fTCaNdIednR1tbm6eiuS7qODz4ONhjd2eznrGnHpvg8iecBs9HRi4f1qKSmoIClzTiSTzjuuAlA6vreGCCOkVLiZwndgZhEi6OxQAzgb2EvMQa0p4pN3dJl5PwGsVODx9hX1Jm0ieJRfkuAZiBmkfCAp+vzxnLp5FsB/8efZjuW50KngtCd8LLq5FEcrTgbi2uxM43teFHz/eRTZ303Cd+8ihcNe+ixPPLKrOqlZe+Hz9oy/5Tn3/C/7TvR5OIpF46sjv4UQi8UDiKac8VFW1JunDJH2mJNV1vSdpr6qqT5T04TcO+z5Jr5T0lbc6H/ZqLP3g4OCg0fYNcsEf/7TZg+g7WYq2d3cgeHvG/f39QkRwSMzn8xLxJKIdc6pxN6ysrGhtba1EeL21IzUPNjY2Grnbq6ureuihh0puOyTWo6+epy9JGxsbhVCS5rG+vl4+jygCGZ/NZoWw+7kYG/MwHo918eJFbWxsSFIpwDidTjWbzbS9va3r16/r+vXrjYKEXlDPCZ2nBETyh4Ud0cDFCEmnOkq4WMRecEFobW2tQbTZMw7mlO4YdK6YTCba3d0t53NHinQiRiwWCy0Wi0bKjKc4eNSc4/k80XIEHJwUpL1w7cFgUFwMrD3X8bQCFwy8+Gen09FgMNBgMCg1ARCZSBnyugkuTHjhTVI7INP+DPR6vYYwRw0PHx/7ywUmT+GQTgQtnj93uED6vRYDe4l0EMQ95tMFRNYbcQTRivc9RYY5ZgwIK23FUM8z7vZ3ceIZxvu+RD/+I//iXo8ikUjcAfJ7OJFIPMi4kxoKL5T0mKTvqarqT0j6VUlfKumhuq7fJkl1Xb+tqqqrtzoRxItos6RTEUVvGSc1c8uJ/MdODh5NJuqIVR9C7O3kvKOEuxKiM4FIOUXwiAxD8vx++v2+BoOBVlaOWziS033lyhVtbGw03A0+Vq9WHyv3e/SZIpTMCdH43d3dUqcBkuzEls8x57FA4XQ61WQyKW0hZ7OZFotFI3IMCXNXglvGDw4OShFNFw0goZB8J45EyClqSGcDj/67WIMA5ZFud6awHghCy8vLheBC6DkfY3cy6V0OmEtP9eA6uCaIiJN64u1AIbA4AKrqpIuJR9d5JrwwJ6IDBRm9fgX7LLYM9S4gscMJc8ucMu+e5oIQ5evLs8j8IWIhtnhrRtJFXFTyFBBJpZsCz+/e3l6jzgedHVzUYf8Oh8NS/4R14HgEMcQBd57EdBbm2zuzgOiEOKe4a9/FiWcWb/nql+pLP/3f3+thJBKJO0d+DycSiQcWd5LysCLp/SV9W13X7ydpotuwclVV9bKqqn6lqqpfgdRBXjwHOxJDt1I76ffjHHzGizp6hJZzQTQ8uurpBmHshYS2tXuUTto74h6AsEAiiSR7jjn3HQv4EaWHLEIGse5LTdEEYoZTwotM+jwTsR+PxxoOh0UQIcWBOeNfLyDookK0wLMOEDvG5B0dotUfIcQdEC5ScE6fP+z8ni7i6Stel8Gt+J6W0Jam4RZ9H6ffs8PXLXZm8PNzrLcxZJ9Ed4cXrIxpQJzHP8/7/HgtDd9Tns7BWHCDeDFGF4HYdz42nAysVXxeOD46VDyFgrFzbJxr6oB4TQeeea8N4d0euB/fd+6k4fmJgmL8zvG6C/cB7tp38b4WT9cYEy2YP3Skl63/0b0eRiKRuHPk9/B9jJVHHtYf/L0P1Ys7j9/roSQS9yXuRFB4i6S31HX9qhu//5COv0zfUVXVI5J04993tn24ruuX13X9gXVdfyCkwEmIW/8hGl7ozVvH0RnACUmMlBON5vPezjDmp0snLfCciBK1hpgQXYWgufUbSzbnhahwbToMOGKhQsYBgfLIsrsMYkQ+OjncAeDjpfo/ggLCy2w2K4JCrF0RLeKRzEPYPXUh5rJH9wXEljaR0kl+v6cf8DqFLkejUREUmAfuG9GHVA9Ph/B95HvIa0xEIh7rRUQrvrtpmHcnu35OCjmeRdhJJaBWBbU4uBfvPhALLyIosOfYUy4oeJoD1+FfF318//izyfFO/jmvCxqkMHjqAHvEXSY8d1Gs2t/fb9RP4bln/QeDQXkufGyk7JB+xDljbYy4duwLT2u5T2oo3L3vYnXbDkk8DVh+8Qt1tH5f7K9EInFr5PfwfYzD517R73zWt+k9Vwf3eiiJxH2Jp5zyUNf126uq+sOqql5S1/XvSPoISb914+czJH39jX9/5FbnqqqqpA1IOtWeDzs5hAPrt6caeJV97yvvxQk9X50aCzfu5ZS7wQkq53Yi7h0SvLAjUW9SHfiB4IJer1dIEsTVc76Pjo4K+UdQ4F6pG9HpdDSbzRrFAb2zgxfcOzo6KgIIYybtgi4TBwcH2tzc1O7ubul+MJvNSpSXtQIuJHg0NxZVdHEHQgmB9wKFpDnQxcJt71V13JWCmhOINZBJ1jBGuFkT6gF4oUtPAfD78HQIXB0IH7HAJ0JITMXBgQIh5/4hqpJKPQWfI9IPJpNJ2WcU3XQHCSkJ7tLxWh9HRyctEiHMEHzWhznnfnd2dgoJjw4L1oFCnYeHh6fcQbHQoQtEPIt8rtfr6fLlyxoMBqWeBKkJzIO7ijjvcDjUxsaG1tbWyvzhXtjb29POzk4Rw1gTd59EpwhOCy+A6elR94OgcDe/ixPPHP7Sj/28PnOtlVskEon7DPk9nEgkHmTcSQ0FSfpiSf+qqqpVSW+U9Fk6dj38QFVVnyPpzZL+4q1OAqnznHtIkVu/JRUiSYSePHAszi4S7O3tlSJ+REW9/R7XdiEhFmFzV4O3mHMbvVuzsdtTjBHi7x0LnLB4MToXFDzi604HT8+ARHkaAdFvt+iTd855KBJ54cKFUtSQrg67u7sNAcYL3UFOnbCzNsyFkznEHbeXR6Ia0yggdC5cEIV38u05/aRlEJVmnlkbFwbcieKOFt9rEHYXHDztxsk/QgXikqejcE+x5gL7k/VCVIJYz+fzsofYPy6YedFOF5yoRcDcIxDEOgZu7+d4ag54uojXFTk6OtLm5qZ2dnYkqYhm3Ac1QzyVAnHC17fT6WhtbU3r6+sajUaNVBivlxI7MvDZ0Wik8XhcWoXSfQQhgWfC1zZ27mB8nkbhtTxw5vB9c5/grnwXJxKJROIpI7+HE4nEA4k7EhTqun6NpA9seesjbuc8niMfo9puk/cid0RjKebmNnI+5+kDEFAn1pCslZWVQuwcsauE/+654AgEXmgO4oMlG/s66QlcG7IZxYAYffboOsTUbeqRbDJeSYV4e+75eDzWhQsXNB6PS3eJ7e1t7e7uNto5QnYh2w6vMcCPz4MTTIi51ynwdBLWnOtxD15LgXX1IoBta+12e+aIayIKuVvCU2t8L3Ft5tvz6v1zkhpiApFzruG1Efw8ngaAKEVU39MXOF/M64ckM8/+DC0WC+3s7DTIOdfhx4UUCmW6mOC1H7wrx/LycqkbwtqyX5eWlhoCgYsykjQajbS2tlYEF87rc+pFMTm3Oz8QWSQVFw3PAUIQn/eCmDxH7G9Pj2GvedqM75fzjrv1XZx4+rH80FX9zle/UO/f+yZJvVsdnkgk7hPk93AikXhQcacOhbsCyB9kCgIH2YG0RNIG2XGy5AQIxwKF/JxYxJoHkFOPvjvp9Ai7p0tIKvnokFncCaPRSJ1Op0GQOJe3wURQ8Lx6z+/Hxh5JtKc3OLEHLs7E6vjj8VgbGxullsNisdD29rYmk0mjjgHnwRrOuZz4Ae6L2gpEzL0eRFsBR4/gOzxnnvPj3nC4oNBGlPf39xvOFOYrCgOQTHe6uBDgZN7nmvtiX7Lm3BdriRgSib1H9DnG3Qf8t6Qi7rA+vj9IXaAGBu4c3x8x7cRFFBcGIPAIPLhvuKanGkXHCeKTzyF7d21trTwXOFwYoz8X0SnEHOJM4Fqx1aU7Mc6qtdJWx8MLTsbPJxJ3E/WVi3rDX/p2pZiQSCQS9x4rz32OnnjJ8F4PI5G4r3Fu/lr2QnDSSeQSGzPdFIhQ0n/eI+dOVL2Nnxde9IivR06lZq4/1nvgOfKepw8Jwqbe6/U0Ho919erVkl++t7enyWTSIHUQb79/ouGQJy9MSGqEV7+HhDoh55xua/fCf/1+XxsbG3rooYe0tramlZWV0iJye3u7RPO53t7enra2trS5uVny32P3A+bM01JYL59LH6MTck/RiKIKHQ6wsrMGThBpkXlwcFCEIuoQ7O3tlfum44bn7HN9nzPOEztHxDllz3hHD9wRzA/jHwwGJZruZJk6DDs7Ow3ByusiUI8Bss1ejCLJ3t5ecZngdmCeo0MCN4mvo9euIIWC55D5HY/HZR6pAeJ7dHd3txRFxGnBPqYeBOtGaoHXKeHefNze2QExghSh3d3dIii0pc94V5OqqhodI1z4YkyIcNGhkUgkEolE4tmH3/6Kd7kh8iYSiaeKc/HXslvlIWvkkkOKvE3j2tpaici6bRmyvr293Sh+B6GI+e1EaCMRgQgjRngk3gkktREmk4mWlpYKWb906VKxfhMxJqUCJwZjc7s1kVeINSTKOwB4Mb3FYtHoOuDEmIJ2kHPuH+cEEeatra3S2WGxWJToM/d9/fr1IupIJ8IPc8M6QPidDEPSnJR5mgMOAoeTWtpaelTfo8kINdvb2w0hYrFYlOKBe3t76na7ZY8hwnjE3Z0wvs4+Vo73iLyLPxBd1mVvb0/9fr+0tvRihYgrTurn8/kpEuxdROq61mw2K0SdeWafeR0B7s+LXyKgsXdwenAO9o2vKwSfz9BRg31Q13WjsCRCBikjnIt7wQ3DHvYaC7gmWA93DyGqjMfjRmHKra2tRi0EF1t8Lr3wKc8G6+dpU4zZU2xc5Ewk7hRv+eqX6p9+7nfc62EkEolEIpFI3DWcG0HB87pjLrsXvMOhEHPJPW1AUuN8RF+9DWG068e8fQgXUWPPFXdy5jUaIICSClGmYGBbFNzzzhEPAI4Fb2foLf284BzE1/PIIZ5ehwBih2DgBfG4nqeSePtIz4d3Z0e0/nsnCY+Gew0Ixsr8cS4XC1xoYb6cIEMMcVXwef7ba2q4YwDyDiH2Ion8uJDAZ/xfJ+kuoLDv3K0yGo00HA7LuLgv34MUuvSouK8VcxA7FyAmIKBsbm426mlwDKTe0wJIz4ktN+O8ex0OT3PweiU8r75XeD+2//QUHU9V8hQnr6nBnuK5Jz1nOp0WJ0RbukNcF47xDjK+H1k7vgOiSJdI3A3sj2t9RD9FqkQikUgkEs8enCtBQWoWaIzkAHfB6upqqcIeOwJ4PrykRpTS0xTcleC1DSBgkWx61ByyHPPZnXAR0fYCf543D+GTTlwRg8GgUZsAQcFrArhdG8IJYeY9b7cXo95O7mazWYNEY6F3d4UTNtbHI+1OAL29pUfDAWPh/mJHCndncB2u4Xn/0ok7gVSS6DZx0cXTFty+72vPcdGZ4Dn37mLxzgA4YNiz+/v7GgwGGg6HJdUiCgqePtEmKLAWWPURi5gbahAgJtDq02s3+BhxbjBGvx7z0yYYcb+ekuJ7hvPhcokdFnwPsx9cDHTngNcaQbRhT3lbWTpSuKCAUOCFGPnXRSRaRLow6N8/LjKkmJBIJBKJRCKRSNwc50pQ8Oi1532vrq6WPHTaB0IOYo64k2/IjAsKkhrRVWocQDQgGRAtCAeE2yPDHrHG+k0KhKRTkVAvwsd70rEYMRwOSwvMmDrg94TzgboAtO6bzWaSVEQAb5XID/b5o6MjTafTMv+DwaD8rK6ulrm9fv26dnZ2yvk8csu8eKcMbOnMKdFo7sELZs5mM02nU9V1Xe6j3+8X8cJJKEQaQh9rBfgaucDkHQsQf7zwoe89Twvw/UG9C3eo0CWEvTUYDEodA+oGbGxslC4fPnYQC/+ROkFOf7/fbwgsOzs7pb4Fx+zu7mpzc1O7u7va2tpqCEie5oKAwTp6nQQXN3yP+3MS58rFNhwxCBtOzD11gGfVU31YLz5PCoTP7Xg81mg0KmP1NpGTyUTT6bThcnA3DutOnQWvPcEz4ekO0klHFHdPJBKJRCKRSCQSiXacC0FBau+0AMmCYCEoeIqEkz/ppH6ApAax8CJ7kCfvlABB984G0gmpotBgW443BI6oO6TY30N4YOyLxaJE4KN7QtKp6LG7HiCV4/FYkoojgZaPjJno+GAwKLUTKGK4WCw0Ho91+fLl0soPW/xsNtPW1pZ2d3dLLQI6JXhBRQg6YgXixmQyKYILY8XVQST94OCgpLBsbGyUCD+kj7l3d4R0TPQoIsk6Q4qZQ0+h8HQQJ/y+huwx5h/y63UVEJm8qCf7q6qqEqE/ODhQr9fTpUuXNBqNShqGt2/0WgUutHi9geFwWAoxzudz7e7uNt7f29srpBoxiXl2UYz74TzsK4ojemcLxgPxj103fD7Ypzw/FEbkHH4u72jCmjC/jN+FKfaTi1ySigi1ublZClyyTzzFyYssTqdTbW1tlecRMcHHx3cF+2c6nTbSrRKJRCKRSCQSiUQ7zs1fy21tAyHjED4i3V6pXToRIyBCEAGPqEMM/BjI1NHRURELEAw84uyt9CAh0SLtefFEw8nf9vtyu7hH0GNXCa9RgFUfJ8Xy8nIhWhA5L2rp4yWVgig6Ueput6vxeKzhcKher1eiudRN8HSHtloTWPupHwGxduKOZZ05Jd8f4ri6ulqcGZ5H7/OBaOGCi9d0YJ5cTGAszF3b3DhhhoC6UOV5/KxtLHDoNQS8yCGFGF1k8gKH7k6Je5696mkOCEk4VniPtacego9NahJtxBdv+ejuD+bOnQPsP/71NCTmFjHLUy38PLGmCUAg8/oinurhHSwQRRaLhXZ2dhr37W4JBAN3pCBuMddttVT8+UVk9OKUiUQikUgkEolEoh3nRlBweM0Bih1CFCSdKsDmJMhJoxdc88i6k1fgFmjP35dUnBLucIi1GyBzXkzShY5Y6M8j3pzbr+cChTspGCuE1a38sWAj5DHmn3vXi+FwWCL21CVAUHDi7mvj5NgLR3p0P9abgBg78SY33u+T+/coNp/x+hNec4N/EROibd1FEcbr98TcxH3V5niIApKTWvbq+vp6EZO8wKjX7XD3hBNxfrDis65+feaFueazbWk/Xo+EvcaaeMtRX8M2McFrewCfL0+PiI4bxAf/PHvWW756nQ/GyR73mh5e0yIKCt1utwgZLjx6+pO7DlyUctGLvcI6JhKJRCKRSCQSidM4V4KCkwPpJGJJugMdFCBZkbRLJyQwCgpOPrzwH9fp9XoNchpdCJ5v7q4GSEq32y2EEWLstnYnLbgXSKNYXV1t5Jc72fQ2h7PZrKR9uKDA+15BX1I5zp0dWP673a4uXryo4XBYajCQjrCzs6Pt7W3NZrMyT1700NMQ3GYfuwt4twhy5DudTllLahEwflpr0iaRehI+NxBz1on1cSLqNn6OR2hAmHDSu7Ky0ihY6A4CdxK4kBALgfpeHQ6HJaWGehHedcNTR9wN4YRakqbTaXEpeG0D1vwsMYFjSCVgfvr9/qluC4g7uESc+PNseRFNF0FcTGD8Tty9ACcuG+aLz/taMBb2FAUVER+YD3c9eKoEz5M/L3t7e2XOcSH5GjJOHECTyaS0/ESQSyQSiUQikUjc39ivD3Wkp7c21oqWtVwt3frAZxnOnaDg1nQi6BRlc6u3R3ulkzaBkC6IAESD80tqkCIKKkI0OcZt+xQM9HZ3oNfraTwea2VlRTs7O0Ww8Gr5ECSq8EMAR6NRubYTrziO+XyuyWSiuq5L+sLS0pK2t7e1ublZ6h14SzxIIuQVcj0cDnXp0iU9+uijunLlio6OjjSbzYozgTx1BAonqO6+YO4QVVi72EmCDgQQQeaSFBbInwsUkFjSEhAQANfj/eFweMqyDhGHjLvw4XuM+gdEv0mvGI1GjZQGJ8lcx9sy0tGBLiSQX4i71xFA0PLuBu4m6XQ6DfKMGMA+9/ag7uBwGz81BrxbgjtamBeut7S0VM7nz5WLSNKJ+wHXiRe09JQMd/JwPe/y4M+PO0v8h2sgSJGKgJBAXQicCd7RwQuJemFSvhe8Rsl8Pi/FR+fzeWn36SJmIpFIJBKJROL+xft+yxfred/9+qf1Gq/7u8/X73/Cy5/Wa5xHnAtBoS1lgWgjJC2SMD4nqUROvbgd/3outx8jnVjrXUxwe3ZVVY3Irrfug8R45wTP4ef8kE6K07l7AHdCdD64nR8RgyKL4/FY3W63dJOYTCaFaHk7QAiqux0gvuvr69rY2FCv1ysCAoXoIH84A9qq/LuTQlLj3t2NcXBwoJ2dndLNAQGCcbkt3x0AHrlnPA53BHA9F3s8vYDjII++x7gnhBQi6DgkoqsF0YI6Fqyx11agECCODEhq3LNE7BnLaDQqhRiPjo40mUwanTVcbEM0iTUQEI4Q3bgX9qh04kyQdCrdBnGCtWIvehFJXwP2gBc8Bewdr38Q04S8hoi7g/wa0WmCkOCtUXEeSGqkOXA+3A7crwtepEbwU9d147l08TCRuBP87rd+kD7nf/jZez2MRCKRSCSelXi///qp0k9fPPP9d/3P13T4jnc+rWN48b94VO/3G19Ufn/kU/5AP/GSn3har3kecC4EhQiIPISdqvoe0W0jLy4ocIy33nNbOFFdjoMgQThpr4fDwcna0dFRozZBvB5EysmSFySMxFpSI4LLHMRUDq+FQIoCkWwn+RS0I1oMOp1OERTW1tZUVVXDkcA4YmcFn2cIppNoSQ1RgN/dfeCuCa8v4PUyvC4B53BBwcUNHAecx4UESHasq9DmAnFCiVDBfkBcisIQ43HBxUk/6ROQW/aM35+nppAGgpABYY7kOkbmvZ0l84CQgQPB94E7TNqINednv1FXwx0zXuiR57St/oIXxfTuHbFrQiwkGet1MH/cK7UUEEZcMJLUcFl4SoynY7COjM1TUmJqSHTHJBJPFV/0Ya/Q37j4hns9jEQikUgYxm9c0he99UP0rc/55Xs9lMRt4PPf8qF6bD5qvLb8Yxd06Z/94pmfeSYagVe/8Bpd/YWT3/9w+FL9heU/K0n6nhf+qNaX+s/AKJ55nCtBAeLiEUUi+UTrI+mW1Igg+2vetcGj9JCJWHwOIokTARs7kXyvLo+DArs450ZU2Nvba3QPIGqNMEB3BYrjce7YqYD7ok0kEfW9vT1dv369Qa4QKmjh6BFlXB/r6+u6ePGiLly4oMVioc3NzZKKsbKyUs7nhJz58Xx5dyQ44WQuqB3g+fUIItjhvcikuwFYB0QYyDXrCRlGZEK08B/II2vgbpY22zyiB3uI9+u6LnuRMRHJ9lQa9g2CACkEiCptogPnoNOFCwKIG57KwV6ZTqclxcWLOEKM9/b2ynq7mDCZTEp6BXZ+nivEMgQK9rm35nSRheP8+ogG/jvPjacjscZeo4A5dCcI6TheiBEBjH1FTRHmyGssICR0u91TbWNdTCBVqdPplDQkn5dE4k6xNBhoWdv3ehiJRCKRCHjon/6i3vhLf0z6kRQUzjO2jmY6sqDTm1/2Ah295rcax1zSY8/0sG6JR//RL2ryjyRVlX72d6/of+y9U51qSaOl3r0e2l3FuREU3Orvln3qAHjeNURGUqPjAgT88PCw5GZjh/coLnnZHrHkdQhmp9PR+vp6qd9w/fr1RstDUg+whjNuruGR7oODA02nUx0eHqrb7TbaOE4mE02nU21vbzdy2vv9fuO85NBD0HZ3dxttHREq3PnAGKRjcnXlyhU95znP0fr6ug4PD3Xt2jVtbm6W6yACxChvLB7oBD1W6Wc8nh5CocL19XX1+/2GmINbxDsrkF6CC4N5A1600fPlOSdE2otFerFByCljRJDy49kf1MhgrXZ3d0stCxcGGDvzQl0K9sxgMDhVE4D2khsbG0XMwcpPGo3XHJjP55pOp+W8TpS9CKOkci+4Epgjb8koqYyJ1BSeLwh1m/PEa0Ewr6wHAhS1CXZ3d8vcuPCGk4Zz+t7iHMydC0Xu9mC/x/f8e4LvEIRF9ivzPJ1OdXBwUNKrfF3PcuokEreDlRc8T9/2n/+VHlnuS8o2pIlEIpFI3C4+6XO+WP1X/V75/WjrdfdwNE8Bda2Xf8D76+VLlbY/8j308//0O+71iO4qzo2gABnAdgzB8xoD2NWd3EgnedxSswUfr7lrgUitk0iPWlJkjmKQg8GgRMGp1QD5cAIK8Y7ku83ejkUbwgVphiQNBgOtrq4WIYRxQZ6xgHvHA8+Vj9ZunAuQ+k6nU4itj9UFBU8BiVZ24ASNa/G6d8IYDAZaW1vTeDzW0tJSI//dOzjgxOB9yDoCCSTU18sLdHrqi6e6OEH0Mfp9eDoCjgjmFDEBUr6ystIozhnrAEgqLgLOjXOB+1pdXW1E13d2dhpzwtpDxI+OjrSzs1PWB/eFpBJpj5/BdQHa2pR6FwrOK524UTzNxNMdmG+EHF9H1gMngQstzFesieKOF1/b2WxWRBH2POvCc+IFSd2dwDm5jtcx8babnv7BfnFhLZF4qtj6Kx+iqy/7A73ryujWBycSiUTinmDp9W/Rn/xbX6hv//98sz6gm92dzgNe8j1fqDWrn3jlV39Xh5tb925AdwGH28dOxfVfeJM+8P/4Qv3w137Ds+bvg3MhKEDC3fLsxFs6IanuRoh53BAdXuNzbknHgeAOBhcBIKREj5eXl0vFfJwPEEEvIMi1/Dzcm5N+J3OICTgiODfX5Zz867nzECivZ+D57MwjZM1t7tJJO0ovBIlo4u0A3U3g5FJqdsLgXrlf1nI4HGo8Hpf5dPu6Cw9OOv3+PP8dssycu6DCa54mwDW8qB9CUoR3szg4OCjdGmjpSa0K5gKiyT5krC5aUZei1+s1XAK+F0iNIIff3QF+r3T68IKKy8vLjSKM7AWvX+DCCekiPFM4PBBbmEvWBaeNF6D0PeHCDvePK4WUFubV942vjY/PUxI8DYg9iWDi7VZ53fcpY40FLX3P8i+pUb6nETJcCEwkngq2X7ikX37xT97rYSQSiUTiJji8fl0Xv+eX9Gkf9Xn62+/34/r0tcfv9ZAeSPzoZKBv/P2PkiS94Ie2Vf/aa8t7z6a/xg7e9nZd+p7H9HEf/3m6OJjpvS68/b6v4XFHgkJVVV8m6XMl1ZJ+Q9JnSRpI+reSni/pDyT9pbqur9/sPE7KIYRu3feaB04+V1ZWGlFi6ZioUMTRI6BU8qeOAeSKlIjobFhbW9Pq6mqjmwIWaoi5R/f9XhgPhN5dAjgu5vO5nnjiiUa++8WLFzUajYoVnPxtyBkOBSdYEHqvL8DvzBfnpxUiKRh+Pkick33cB7E+ghNWiKQTONak2+3q4Ycf1sbGRpnn7e3tBpnzdJSqOmnhCDHFdRG7RxBpZp09Mu2uDu+I4Pfg+87dLRBIhJ1Op9PoKsAe9S4YnpJDZ4utra0GWaWGht8TtQpIh+E1IunebWJ3d7e0gcRtgkjB/Xl6CvPJfLhzAaHCu1BEkcedB0TxuWfmlnngc6wxkX3SXbwgojsfIlln/IgkuBP8fP78Ma/uPGEdPS2Ke3FRMj63PGcHBweaTCblmYhFJM8r7tZ3ceLuYWk81uHq6X2WSCSencjv4fsfL/i0X9ff+f/9z/qYT/hGXV0e3uvhPDB4y8FxeuyXveqz9KK/+muSjh+iZzWODvXIJx2nbfzGJ3+w3vLNP6Pn3sduhdOh2ieJqqqeI+lLJH1gXdfvo+Pk0E+V9FWSXlHX9YslveLG7zcFtvbBYFDymImk0lseUgGBQ3hwIWFlZaV8HrJGBNaJE8d5hXmu1ev1tL6+ritXrqjX62lvb68Q/9XVVY1GI62vrxcnAJ+D8MYWgpAboqpEld/5zneWgnf9fl+PPPKILl26VGozEJX2KvcQIm/viPuA1nkuLiwWi1J/YW1tTQ8//LCWlpa0u7urJ554QteuXSudInBgIMJA4DyHHULphIy2nh4xruta/X5fjz76qB566CGtra2V+grci5NW73TBeknHpJ4UDe+84OTYiSlCEQISQlBMi2DP3djHp0Srfr9fCOve3p62trYa1ncXWJy07u7uanNzU5ubm6UQI6kHpJfQacPFKlIjXABh7qmXsbOzI0llbdmXOzs7Zb54DnBhcH3fp4x1sViU+h0u4Ph/+1p7yg1zwX5B5GO8rK93anGBy+suuKDFXFEngpoR7P2VlRVtbGyo3++Xz1Ig09fGXRPcq6cLIZz5fif9aGdnp3zP4Bg677ib38WJu4cX/Kd9/dpnffO9HkYikXgGkN/Dzx68+5f+qj71c770Xg/jgcHv7+/qZX/8z+vz3v0j9eLPeu2tP/AsxODfv1ove79P0JtvCCv3I+40/LYiqV9V1b6OVdg/kvTVkj78xvvfJ+mVkr7yVify6L33tsey7hXo3S4d6yhwDqKbTtIgLRwjneTPY6nvdrva2NhQt9stheqouTAYDAoZdNGAyKp0Ygv3aKy7ByDS8/lcS0tLRaAYj8elm4W7EbwCP79DlEhz8O4JUtPx0el0ipiwsrJScvt3dnYKoXRruOeXI1g4iUcAYH3oKuGRf2o10E2CcfsaeBSdNXKyF4WaeF+ezkDk3t0KXlDQCwVKKnvJ7fbsIYik11+IkXRPzXHbPySY7guMmVoQvsc9so4jx8fO/vGuEsx/7J7A656i4F1CcCjwvpNod4vEuhL8i0Cwt7fXqE/hYoqLftJxSgZpI55mwOe4D9YaMWE+n5f6BQhn7DecHYzJhRTG6o4Z9oS7Etyh4evq88QcelvU+wB37bs4cXcwXF5osJS5uInEA4T8Hn4WoD44UO9X36iXftkX6Dv/4T/Re68+O9v83Wu8+F98oa7+aq2lg1qDrVdLLc7RBwZ1rcNr1/VX/rcv13t91X/Xdzz3l+71iG4bT1lQqOv6rVVV/WNJb5Y0k/TTdV3/dFVVD9V1/bYbx7ytqqqrtzrX0tKS+v1+sXg7efXcc3/PI6juMIBAeI0B7wDgRAhwTpwLw+Gw1E7Y3d0t1fFp9UhhOwQO76QAuYIoQ2CI0ELUXaBApODzRI8hvi6oxHnD/g1J8yh8r9crgsVoNFJd16XtHsTX4fUG+EGocFcAaRVe5wLCSkHL8XistbU1dTqdQp5J74hWdMgj/3rqSSR0HuX2efGiiF7fwItlerSdufTcfgQlb0kZhQd3ojjBp2OAF/pjLOwfF8moD+Ckte16XtPCUzmcvHu6B2sS9zh7gmO9iCGvxRoEiAC854IFax5FLAS02BLSazJwr+w/T0fA4eDrGs/HnLprxNMZeN68rkpMcfB55vre9tVrUZx33M3v4sSdY2kw0Ns/+331AcN/c6+HkkgkniHk9/CzC4dPXNP43/6yPv7P/zWN1mZ64YVr+vcv/ql7Paz7Hj897egrfvNTJEnP/7GZln7+Nfd2QOcJda3BD79KP/c+L9Wn/7mO/vnzfu6eDeWvv/WD9XNvfeEZ7/5/W199yoJCVVUXJH2ipBdI2pT0g1VV/dXb+PzLJL1MOrbNj0bHeSNEMyUV67pHIokket400UsIHpZxj7x6qoSTTAgRqQG0iTw6Oir29aOjI43H4yIAICp4h4Nut9sYJ4TViRckkHz5jY2NIghQ0I7ie1ivPcWB+4UsdrvdMh4+71b38Xisy5cva319Xd1ut1jsERRi3j7XwSUQUwskNYgxRM/TETqdjkajUenqQOTanQdO8vx63COkvo0Ue479YrHQdDptROIhvrE4oXTianDBgfHw3xRiRFDgM4gcFPx0Ynx4eFhqQ7DmdNLwiD2fYezMLUTZ00sQoFh/j+hzDn9WEJdwjHgKh5Ninwt3JXC/zAuvkS7CfflPTGGIx0Rxj7nzFBpSVNhDpLwwdtImOCf7BfeRryv3yfE8cz42vmOYUy/2yR7wmhouWpxX3M3v4p7Of4rHecZSrye9+Hl69Vf/3+pU2SIykXhQkN/Dz068+NP/myRp+6M+UK99+azx3pJqvedqrtWTxVsOdvVVv/U5pW5Aoh3v+nW/qN/7vQ/R6/7BTz5t++udhxM9dni2A/cXv+v99ci3t7skzkpKuZOUh4+U9Pt1XT8mSVVV/bCkl0p6R1VVj9xQYh+R9M62D9d1/XJJL5ekS5cu1VijF4tFif6Tky3pFMH0zgm4G7BMO7kjYnljjA3y7F0RVlZWSiR/MBjozW9+s7a2tkpU3Uny2tpaIcr0ufcaA16kzqPmkJher6cLFy6Uugfcz3w+L3UNyBuHPDmxIRJ96dKlUmiRqC7OgfF4rPF4rIsXL2o8HpfWh1tbW5pMJqVjBQ4BIuwIGbhGyCH3FIo28s6Y+v2+Ll++rLW1NUnSY489pieeeKKIPFjWmY/ZbHaqkCCOC3ddeESdDhUQT2pusD/c2eDFGSGph4eHhXQixOA6gVA6SeV+GVO321VVVYX8slYutnitAUg+UXn2NMKD710Xjlgbjkd48AKQ7LPBYKArV64URwmCEaIZY48OB8g0pJ7Ciuw5L0QZ3TTT6bQhajCfkHTvlMAYGXd0F+BWiMUz3S3g6Rlen8KFHGqVMJ902vBuMTyHnIP7ifuaZ+I+wF37Ll6rLp5/S8Y5xlu/6P31X7/8m9WpOvd6KIlE4plFfg8/i9H56V/Rl7/oTzdeq/p9fcdr/8Ozpu3f041P/D//hq78s1ff62HcF1j7/lfpy3/64/TPX/Njuvw0FAf90//8K/SCr/2vZ75/5fD2O07ciaDwZkkfUlXVQMf2ro+Q9CuSJpI+Q9LX3/j3R251IoiMV6vf3d0tf9xDFrFhU3/Ac/kRH5zEuF3eyT2ELboTqEi/t7dXCutJKmkQ4/FYo9FI/X5fk8mktHf0aK2LCRBcb6HX6/UKwZRU7heiOZvNyjx44TifJ8Y7GAwKWZ7NjpVTzk+6w2AwKPe0u7tbbPb9fr8UEkTIYe4gWUS8nWQxZ25v95/19fXi8KAooneyIO3Ciy9yj8wPhN1TRJgPyDAR6mhPx03gqQwxxQHCG2twYKtvS3fwgpteB4OxIUawF8n957yeTkIdCvZ0mxNneXm53Kek4p5gHRBoqGPB3mRP+XpxjN+Xp8+4Y8RFiFifhP0kqeE68LoE/hy4O6PX66nf72uxWJQxeS0N3wfuBkE0cMLva8vcMM8IN1Fo4LlH/OGeer1ecdkwFzwPiHn3Ae7ad3HiDlFJ3RQTEokHEfk9/CxHHRyL9e6uPuNlX6b6DDPa3mhZP/uN//cD/f+Ev/3OP6af/1sfIkl6+DVv0sHRs6n549OIutbh9S19ysv+N2lJesufWdbrP+3bb+sUr5wt6e98yee0vvduv/N2Hd5lB+6d1FB4VVVVPyTpv0k6kPRrOlZXR5J+oKqqz9HxF+xffDLn81xxL6LnxdWcSLQVhvMWc6CNgPjvEBEir5JKWoATYQQFOkhIKrnqntsunTgIpGYlfLfU8xqiB9F6b93o0V/ywb0bxfLyciE+BwcHJRUDUk4LSiLjiA7MHcTLK+BDdhElILGshxNtyDnRfqL8npaAKMM6+Hg9r5+1ZE69UCPEGhLs14fIu6AAEBJi8cUIP48X64wpAdJJvr2noeBaYC9GIu61Nfx8kHbEJO9WwX5mbphjrx+A2DYYDMpa8xl+2lwXsX6Az1V8ZmLhz7ZUEISBmE6BE8QLd7qYF59NRAMXAuPauWslzrOnNPjacJ/+mj+L8R4QuxAezjvu9ndx4qlh89M/VEd/auteDyORSNwD5PfwA4i61upPnh3l7Q+Heq+Pe5mq5affcPK33/8n9JlrreaXZxS/MD/SZ/zyZ5ffO7870Lv++C9KOn4oEreBo0N1/8Px/nre/AP0okc+s7z1p1/4Bn3Pu/6X8vs3XX++vuXXP7z58WtdvfjHX9V66qdD1rmjLg91XX+tpK8NLy90rMzeFqjuHkkmpDW6DYhKSmoUEYTwQvQjaYm/Q54Hg4FWV1c1n8+1tbVVrM68v7GxoY2NjdJKUjqx/3vhRy8Ix3hcmPDcbnLlJWmxWGhra+tUyz4fM0JFt9stRN+FAGoPdLvd0iqSPHjaJ8Y8cpwJ0+m0zBvRZG8F6U4KTzfhWpBNP4axOUnHJk902+tCRIEGMcEjxaQoOJGPDhHpRHRgP3ghzygweaqCj9Wt/B7BZr0ZDx0NPPofBa9YB8MdGAg+LjBBgNlPvV6v7BMvcEmb09FoVFwNrC3z6nUuvFBpnAd/5gBiAoIFc+viR3Qk+N5lL5HG5CTf5xggKLgo4aSe1xDbvEgm84wLIQoFXkuBdCMvKIozwZ+Ffv/+qO58N7+LE08N7/VFv9n4H3wikXiwkN/DCcfRZKIX/a+/9oxc6+u+7+P04j/9zxqvXVyaP+01HqZHe/q1vRMq+XW//wl6t7/8mqf1mg8iVl7xq3q3V5z8/poveql+4Sv+c/n9n/7sR+vFf71dPHimcKdtI+8aIJ/SSdcFyALRTSeyRCqxwBPhdVIEOaXtnhebo0bAaDTSeDxWt9vV3t6ednZ2dP36dc3ncy0vL2s0Gunq1at6yUteosFgUCL9kG2IiosMkCcI+9HRUSHe0jEp3NnZKQSaon6QRCLUUVggqkoEf3t7W9PptOTv84MF3ovYzWazImogvly7dk1vf/vbG7b6fr+v8Xis4XCowWDQiEa7jZzI+MbGRlkLSDGkjrExDlIdPPJLLQdv1cdeoKYDogR59F6sjzF6rQmIL3DS62kAXlhSaraljIIO8EKEbpvnXhB3vHCju03Yn14TApLswtnBwUERanA/UFuD1IjxeKyNjQ2tra1pNBqVeg7T6VSLxaJ8lvvzVqSkZECk6a7hRTMlnXKq+PGshQsDnvLD8+XPLy4K7hExCLHBz+FiEHDxjrVFFPC0GIC4wLy7IOfi2nQ6LfPm++t+ERQSiUQikUg8mHjxZ/w3fV31AY3Xrn/6h+jV/+DbntbrfuO1P67/8if876S3Pq3XSxzj6rf+or7u207W+8X1vRUTpHMiKEAE3JFABXZqAEjNXHvpJFoMufDIJVZmj8Z2u91CsIgq0yXh4OBAW1tbun79ura3tyVJo9FIDz/8sF784hc36hXUda1+v19IEmN14uPF+qSTgnpelM+t6RA8XieC7YUkHTgAED6IlK+vr2ttba3Ud5jNZo3o/uHhoSaTiZ544gldu3ZNk8mkpC10u12tra2VfPuYnsC9YsEfj8fqdDrlGsxLJJwIBF43wZ0JXhyTz9KJwqPezI2nV3gaRpwjgMgBOWW+vIYB1+D+YoTb8/1Zb35wo3A/Xk+A68cUDxdViNozx5KK+wAHBg4eCC/FLy9cuKDh8LhgC8cgbvHs1HVd9qOLQl5roKqqkorDGng3j7bUIif9niLihUHZS+w/rosg43uLufACmr4GcR4ZE/frwoaLH4gOCG7U6OCz0+m00aa13+8X0SGRSCQSiUTi3CP8DXz5x39XH/mmz268tj9a0X/49m/RYOn2/7550c9+lp7/naGG1e6eVP/m7Y81cec4g/PcK5wLQcHzsYmmIix49NELyUHY3HngRAMRAngv+5WVlVIPwaO3u7u72t7e1mw2K4T5woULunDhglZWVjSbzQphgsy4COJRaBwTRMOl07ndiBAebfUK/y5Q+OuQLa6BIMA9Edl2Sz2keDabaWdnR1tbW9rd3W1EbilK6UIM43Wy7YUlIZduTXdhh/uOdQI8jYP1c9s5goSLK07EcYL4fLAXnLh7UUeuyV7wdWEMbeKNg+t4kcZYv8H3o4/P0wRi5xGOZ04gtOx9F21wh9BylL03mUwa7UC95oHPQ5xTxsRcME5PG2JvxoKHsW4Ce4k94vvJ6yz4PPn6xWKYXhyyLUXC59n3mz9DsXCop5sgJngbybg3Eokng1f/yB/TJ33MIHuVJxKJROKe4/DxJ7T8yicar3UGA733//vXpaXbJ6OP/syyll/ZrP5/viht4l7iXAgKwFsFugUeUgURkprRfalpUYese860t+jz6Cm278lkou3tbe3s7GixWGhtba2ICYPBoGHp95SLWEiOFAys/V4Qz4k9tQoApM0jtTHS7fcN8UaE6ff7Wl9fb5BMj8xLx+6Ira0tbW5uamtrS7PZrDEnEEBP42BcjJHjEB92dnaKXd7XyqPW2PTdcXBWzQKOc/LLXHu6hTsD/Ho+Z9wD7gHIMWRbUin86MJQ3E+Ac7KuXiMhpqe4oyG6J3BKeLcDz/FfXl7WcDgsEXxqYCB8UDfBBTHSdWJLSs7rwk8cH/sX4cdFH38G2U8xrcDvzWtK8HxFQcDFMX+OfY05nnHxu1/nZo4UPusCgTst2Ge7u7uaz+cNoclTIdoEjESiDc/9B7+oN+69VPryez2SRCKRSCRO42g61bt/QbZuTNx9nAtBAaLm5DK2A3QLtHQS7XeyEqPPHumE4PR6vWLr55jZbKbNzU1du3ZN0+lUnU5HV65c0Qtf+EJduXJFKysrJZpP8cBer1fGhK1aOnY6bG9vF7IPIYJYEV0nZSISquhW8AJznIOaAfP5XIPBQMPhUJcvXy4tLamzQKoBJHE2m+natWu6du2atra2inBDrnuv19P+/n6D+Ltlva7rEhmvqqq0hUSQ6Pf7jU4biCu04ITYQ4J9/b2AJT+e3oJTgpoFLjJ4EULO5+eRTjpbYH2XTjprYHNH/PG6ES4KxFaEnqbg+xSc1a3Aa2H4+y7YLC8vl7SP2WxWxB/qYzz00EMaDodlXR9//HEtFoviblhfXy/zxnrMZrMyD57WwXGepuJzxfO0u7tbWovG1AI+w/5g33gKBeNgfnGseNpD7PLgYlCcL0mN1zie58yFRP8u8TmdTqeNwo5LS0tFePHvj0QikUgkEolEInEa50JQiPbmGL3FjuyigduwJRVSACnz6KfbnSG+RLfn87l2dnZ07dq1UrhwY2NDL3rRi0rBQcgQZI36BBBg8tMnk0khXB6xd8LihfJiDrrUjGZ7CoWT18Viod3dXa2srGhjY0MXL17U2tpao3Uh7SC9KCM1InAnrKysFBECIr27u1tIsxeu4/fBYFDOT9cIOgDQvYJINlFz8tMpwkftg3iPTmqZh263W6Lu7iDgc9wbYhPzyPUgxrg2EAIQW/b29k5Fpj1KH/P3PUUE4ks6B+vmnUmi04E9wd52wuqpHHQbwI6/srJSujlQG8HdC5PJpKSjIA7hTGDtXZhiXrgvF4G8GCo1GKjX4WkrrAPzRItI9g3z5qKWp1/QUhT4XovPr6fGuGOGZ8YdTDht+Iy7Ig4ODrSzs1OeU0+JYL1Yz5hmlUjcCs/957+n/+m1n6ef/q5vV6c6/y1HE4lEIpFIJO4U50JQkJo96CE8sTZCfM2JghMlIvlO5Mh79y4Je3t7ms1mmkwm2t3dlXTsZLh06ZLW1taKZRySjMuBqvW0QERUIPefazlZgUSTG7+8vFzImYsIkWR6yoETsaOjI43H41Lhn4iw2/Ih9vP5XNPpVLu7u9rc3Cy1ICB+jA3i56kcnkbCuD1ST7tNr7LPfMxms2Ip96KbviasI+QN4un1FdwG70STHHhSLjyyzZi9Xae7PhgTYo3UTKPxufSWpFj63ZHghQJZQy+46HvXxQb2KOvtbUgRCRCn+v1+ifx3u11JKvsXl4UTeubNU0i4PuIW9+r7JY5VOnEDeScVAIn39fL6DOxvPgdZ9/ao/uxKah1PrDsBYr0FFwfazuWdLtjnPmaEONb7ZvU0EomIw8ceU/8XF3qPH/hrevknfKc+op+CVCIBXvCTn6ul7RtphZX0c5/8j/XcldE9HlUikUgk7hTnQlBwkuN/4Dtx4L+9+GFMEQBEeJ0c8lns9hAHihRiKR+NRrpy5UqpnM9xRD5JKaiqqpAjSApk3ImbF4KMUV8nWp5W4P/6HLjrYGlpqbS8xGEgNTtfcDwt8XZ3d7Wzs1OK9nnhPqndLs7YINJEcHEbDAaDQoLdrTGfzzWZTDSdTkstBl8nJ9IuEPgYnPR6TQnmDdHCC0L6fLGfYltI71LgY/KItAs7TsgRhJhfBAXfpwgKMf0hEnVfL8/v39vbK0IM8043Eq+PgYuB40jpQZhgPiHHfNbJe7xnxu6iBx1FcDH42FkrT0nwNBAn9C5wRNHMuzm4SOBjaiuYyfFcn/vzQpgubHjqjRed5LuEvet1JBKJ28Hh9rZe9GW/rL/9Hp+k4Ut+QB/SS6dC4sHFaxYL/er8eZKk9/o/H9fBG//g+I2q0t9/6UfqA0Z/0Dj+wwev17t1UmRIJBKJ+wnnRlCAFMdcao/qxsikV/X3KOfq6mqxwbtFnVSDg4OD0s2BqP3+/n7p6vDII49oaWmptOA7ODjQ2tqahsNhSXcgvYF/ydX3DhMUzeNecBGQp02U1OsjSM2CgE52JpNJcRYMh8NigY+CAnNIlJt7fPvb3675fF7s/RRwhMjt7+8X0YO884ODg5KmQRvKxWKh5eXlkurg9Qrcgo+gIKlROd8JrEfSIZtcv6oqbW9vN6LJpH64eMG8O5GHWNIKEaFiaWmp2NlxkJDWAvlknbzjhKTGPHCOGEn39Arg9w4YkwtinqLA/iXNBOEIcYTjyPenEKKnnjD/rJcXSowdU3z8XmeC+0RQYOwIBIhlfr88v+5SwCkDocfZwOejuwR4y1gQa4/464gYnobCfLBf2P+M0Ws9+LqSPpVIPBWs/bk36LP/jy/Wb33ht97roSQS9wyf8sNfqnf7cirD/8HJG3WtN/zJud6ghxvHf9O/+zP6jQ/+18/Y+BKJRCJx5zgXggJkp65rzWazhrWZyKUTLnK5+Sykgai7F4CTVPL8V1ZWynvkpxMJ7vV6evjhh/Xoo49qbW2tXOvo6KgUaVxfX28UcuSHsTj5WFpaKoUX3a7thQTdLu4FJ7l37pnIKmS31+tpOBwWgsh1nWDt7+9rc3Oz/Fy7dq3RFYJo9+rqarkGnSe8lgBizvLyciGpkOZ+v99YEwgsjg+PsMeWfdwjzgY/vtvtqq7rQubn83kRaojMU2+B9BKPqHv6x8HBgabTaaMDRWwFCHnnvjqdThkPNn9SCTqdTqNoJPfBXnRnh9fRiLUU3NmAGwPCTW0Bin8iGLkgw96lxgCFRqUTJwtuFpwyo9HoVBqD10BgrZhHBASfL2/JCJhnng32o3cLYV9A8rmeF19tqynBc4NYwLU8pcnrX/Ad4s+/OxTc5cI13B1Diok7ihDFEonbxfO/9bf1Z171ufpP3/vP7vVQEolnBC965Wfq3f/erPz+7u98g24n8eddv3hLH7v+v5x6/fde/113YXSJRCKReDpwLgQF/oDHfu0EEcRibt5eUVIjrcDb40GmcD9AMCE4RP0Hg4E2NjY0Ho8b51heXtbGxobW19fV7XZLjQDcCXt7ew1BA8IG0Y827bbIapwLLzgJyaEwH3nyLiZAziBO3OPOzo52d3dLnQHEET8P48XO76SU+ZPUKKznEXgnr1jwiQR76oKvpQtGh4eHxbYPcYf4+1ozTiLJ7JVYpJPfWevZbNYQRtpSDjytA4EKxwRuB6+9wVwCd0+0FWOMNQdwWHh6jBeklFTWiB+v8+DdKXBhxDaYrAOCQ7fbbcyhCxpOoL2wpc9PrBPh68j8eX0I9j1CEyQfoSXu+bYCinGdENjaai94vQv2THRhRGEnzgeuJ/asu40SiaeCwyeuqffqQ73ku79Q3/mXv00f1rv1ZxKJ+w1v2N/Vx/7LvyFJevTVhzp87Wue8rkO3vJW6S2nX6/rxVM+ZyKRSCSeXpyLv5admLSRUI8g4jDwoniRzEE6IDiQZAgbdQUmk0mJBo/HY43H49ISkeh3t9vVhQsXNBqNChH0VAfIKoIGJGcwGDQKR3oBwliIUVKDXLbZxSWVtA1vgRm7BUCGERIg621ElVoA0knRRUQTxsN8Evn1wne4BWLKg3cC8Ag95DYSd6+4T/cLLOt012AfxCJ7bR0AvH4A68ue4hhPDZHUWD/2iV/Drfduk+cHQu7r4c4TX2sEEd/j0VHjog9iBmkYPAPuqkCQ4z1PUUBUY3/EQpLuFPA0Dn/GmPt4b/7fnMfrM7R1h/B9Dpzc+95jzLwX9yb7hTnlvs8qpuj37Ck38Tsj1ppIJJ4qDje39Py//Uv6m+//Kfq45/6mLqxM9Nc2/vBeDyuRuGN87/ZVvWXvol6z9Vw9/2/90r0eTiKRSCTuEc6NoEBUFds10Uqs10QdIZoQqLquG+SaCC3CBPZ+z9NHECCfu9/v6+GHH9alS5fU7/cLEe31elpbW9OlS5fU6/W0vb2t6XSq7e1tXb9+vRE9p50i0WxILURMOskDhzADiJkXpfTP+n32+30Nh8NG7QScDHzOC0164UDIEkTVo/PdblfD4bARJYb4Q3b39/c1HA4LgaXLghdi9Og98+8E1esaLBYLbW9vl/X0Og0IItSM8Mh/G/FjH0Gc3fK/trZWIvjubHGRg1QPalW4qwFBykUg5gkhxMm0CxzuruC67BN3lZA2w/0wH6RZRJLutS1YS0/T8JQgF2Q81eHg4KA4Vrh3F0l8fLgh/L78OIqW0rJ1f39fOzs7p4o58mx4bRRPR3GxyN0kXmSU4qoILYhZPPuxoKILI9yzp1h4CgXPAmPKtpGJu4X1j329/ot6Wnqf99UX/FTmiCfuf/zzL/kEdX76VyQ9fq+HkkgkEol7iHMhKEAWpJPWeZ7/DFn12gm7u7slQguRQXAgqk1BO0gHzoTZbKbt7W3t7+9rdXVVV69e1UMPPdRwJywtLenhhx/WlStXNBqNNJ/PtbOzo62trUJ2ub6TSS/yB2mLufNexT5Gwt2N4W0cl5eXNRwOtba2psFgUAggcwSZwuYPKY7nQIjAeQAh7fV6Go1GJQWEtUAsIDo9Go2KAEQRRYgsKRGQekgZ8+liy3w+L4UxOTYKQpC7aKP3uhnSSZcQzu+tEnFjREcBRJH6GghAfNYj7qwJ11tZWSkklt8ZJ2SVNWFPMt+xhgMuDUmNLgyegoJLYXd3twhhVVWVopiICYhlPCs+Vx6FZ391Op3yfEgq8+5iAmP1VBjmr67rQuzZV54ugovHz+ER/9htwoUHT2Ng7F7ng+8J7ttFheiE8df98xRrZC/5Pov7JJG4W6h/+/X6hP/hk+/1MBKJO8bqH/2GsrFuIpFIJM6FoOBRSe84IJ1YtCFmRNoRDSBcTgIg+ljYIdnY/6l9QFT1woULpUYCUcnBYKD19XWNx2N1Oh098cQT2t7eLj/eqcDzraM9PxYghCA54SRlQjpp44cjwC354/G4kGOvmwBhdHu6dFJ3wq3x3tqPYpgUeHTrOuN1sYMoPuODOHp9BS+4h0DAf9PtwFMjPGcdISl2dYhpEy4kMN+4GCiY6c4DSLfXDXAnAPvJOwNwbbf4e4TeRQHuKxbeZP6idd/3vQsb3smEgowuljkx5ppetJMWnaQXnFUIlDV1McFdLFFM8NoKvifc8cL+9cKSCIC+p/w5dzeMt690+LgZi987QoJ36fDnw58JL+AZ6zV4HQ5eT0Eh8XSgPjjQwe+/6V4PI5FIJBKJROKu4FwICtEGHm3iLiZ4+kBscefE2ou1eS63W+EHg4GGw2GpkQBxW1paKmICdnIKHBJ1hbg4wfHCeW7zdzLsKQyx1STHOImCjPV6vdKG0q31kHj+ddLqgoSnknAcEWraRyLixDGTShBrUXhUGGIL8XYRwB0E3Lfn1DOP0gmBZD9wLgglaHMnuP0dsutdC3xu2DvsEb8XLxrpQkIcI4U4Wf+4zlFQAO4a8L3v56BWBrZ+Ol74dTmHt0T0lBOvS4DTh/dIl4guAN8fiDIQ7bgn2VNO8OMzhqvA01VYc+BFNv11FxOZN+bDRRLffz42F8U8TcbFRx+PuyVSUEgkEolEIpFIJG6NcyMoOGnzgnXkY1MAEfIXo6NYrd3qLZ2kGFCgkO4HWN2vXLmihx56SKPRqBDZbrer5z73ubpw4YLqutbjjz+ura2tRt0F6SRaCsmHwHjhOO7JW1mSM39wcNAgtuSbc58QLNwSWMZjXryTbSeRCB/MlXRCllZWVsp5ec/JLy6Ruq5LFwG3jzth9nvGts96QEpZJ09H4D3s58yLF87zzhleFNCJJ/UzWGci+Iy7ze3h90w6jM8h+8fXmTFgs8exgWjh5DyKMxEerfdzQN6pl0ENCtw1Xhukrehh3As+Jp4rhCTqYLhrxsWHtqKEnjrQ7XaLGCWptGBtW1/WjXVlH7v4wnvRlSQdu0D6/X5Jq2DN4l70VBjg4p93k+FeXWRwV89ZhR0TiUQikUgkEonEMc6FoADxITWBqCd/5Ht+PiRnZWWl1BRYWVkphIucfI+2IiTgLqB2wMbGhq5evaqrV68W4tbv93XhwgVdunRJnU5H29vbevzxx7W5ualr164VUgfp9Nz+tpQLyBHkhx/vmCCdWMU9LaKu60L6GaOTYsheJGGTyUTXr19vFNIjwkw0eTAY6MKFC4XsIcJEggap9boWpCsQMacGACTeU1ZwNlCLwKPXvE/9Aq+fgBhAGkMko04QmT8XS4j4O0GU1PgMlnlPEWAupBMXA2IKtQcODg4arTt93pyY+3UYAwIDwhd7gHvs9Xoaj8e6fPmyOp1OKXzpnTC83kN0Jfie8xQJRBbSQLrdblknT9/gWHfceF0Ed370+/3GvSP6uXiGcCGdpIkgLiCq8RpwMYF0IBftEKX8/vgeQbhyMcX3ihc8Zb5cCHQxMJFIJBKJRCKRSNwct+yJVlXVd1dV9c6qqn7TXrtYVdV/rKrq9278e8He++qqql5fVdXvVFX10U92IP7HvNvjyQ3HyiydRHQhnEdHR402jpAF0gcQFDxijmhAZwfs1P1+X6PRSN1uV9vb26V2wmQyaVSP9+rzkMFIbnwM/NB2knQHzuUF87Bur66uamNjo7gIPIUCQQOiJalU1p9MJiXSH23vnU6nCDFY6r3WBIRQOs6x9+4IRMS98J8XMITIeWqKOxbonsF9MPaY5hG7N3gdChAt6m59B16nwnPw2wikd2Zw8YIIO9dhf3k7R0SVSHBj6gP30nY/uDuGw2HptuHr4fvFz+0W/1g3xNM4eG6cmEfBgXX2GgJxXhEUvM2ku04QmhCFXFRhTpkDFxPY0349ruVOiZhO4fPJM+xdMVzE8ecMkS12suBcbWt0r/FMfRcnEolEoh35PZxIJBKn8WSarH+vpI8Jr32VpFfUdf1iSa+48buqqnovSZ8q6b1vfOZbq6pa1i3gRdmISEonLfIowOh2fyc1bgmHuECGsEZ7NBSifvHiRa2vrxdBgar65Jbv7u6WVAfEiBv32cg1P6uGAfdFBNwLGZILz48TREgQ5JLuE9IJyY1iAi4Ir6wfhQ9JRTBBNPGCe26dZx28QB+CAD90f3C3hgsrHhUm4uz58F7EMubXR+eHzylrwO9RHADu9OC80U3iRfx4j/Exx9SqcJdMTNOAnPv1Ob+TX8YFvOWlux7Y/150MN5bJPkuwOA88DSAWJDQCxky3jjfUaTx+hg+7/xwTgQjf058DX0+4lryXtvzEcfM55gDT5Hxe/d19/P6XEZnAnN2jvC9epq/ixOJRCJxU3yv8ns4kUgkGriloFDX9c9JuhZe/kRJ33fjv79P0ifZ699f1/Wiruvfl/R6SR/0JK7RIPu9Xq9YvXd3dyWddBlAbOC/ibRS4R4ijbuhre5Br9fTpUuXSncHyDVEe3l5ubSW3NnZKXn5Tpyd/MSCgcCL1CGOEMF1JwbkDFKDuLGxsVHEDq6NM4M0AuaOtpZuBXeSDBGO98w4F4uFrl+/rvl8rqWl43aNpFi4MIM7AZLLumD9j/nzTl691SZiiOfRsz5OMNvm1otfOpH12gVOcvlMdDQgenihv8PDw1LzwdsTeicBCP9isdDu7q62t7cbUXOHC0pRNPJ0FIpjck1qYJCqE/cZZFk6EUog3N59w4mypxWwRj7HzF2sz8H77mbh+DZBgefVC416oUcX5riWp2j4e8wZe8hTR7x4Jqk17CeO5bllP+HocAHMxReeF87P9815wDPxXZxIJBKJs5Hfw4lEInEaT7WGwkN1Xb9Nkuq6fltVVVdvvP4cSb9sx73lxms3hROWfr9fagDs7u5qNptpNBqVwov7+/sNorxYLPS2t71N29vbhax64UPSICAR3W5Xly9f1iOPPKJHHnlEly9fLsQa7O/v67HHHtPm5qZ2dnYahQIZrxNHj6J6Hr6LGRAmSJ6nAkDYPfpNFX6vk8Br1EGo67pBOhEUvAid292vXLlSUiiGw2HJY3/88cd17do17e7uNiK9pGeQosHv5KX3er1iz9/b2yvuCM+/x9UAqYa8M48xj95rHHjk3N0EvBbrVgCPNDOf7B1PiXF3htdfQLDBoYFYVd3I0WduXLjhWNbFXTf8DtlmnT2yTleHWGtiMplod3e3pEREKz/zxmvsea+30Dav0eLfljLCuXHFcA0XAD1NgUKOvkdZX3cLuLDB+rnjwt+LYpunJLCO1E3wueOZ83QKinyyBvG541qe6nKeBIUzcFe/ixOJRCJx28jv4UQi8UDjbhdlbEs4bi2VXlXVyyS9TFIhIDgOaM9INLjf70s6KQYonUR+F4uFptOp9vf3G233PApNBBN3wtramtbW1jQajdTv99Xtdku6BBFeai54ZNjt27GYXCS05JVD0jivE1dvpefRcoSDNrLpEXxEhN3dXe3u7jYK0HnUmjSOjY0NjcfjIs7s7e3p7W9/u5544oniBKFNJsUKZ7NZEUZ43YvydTqdIiQ4kYWku2DQ1h7T0yCYY/712gtOSP14zhUt9O7qYNzsCbftS6drJrAf3dbvFnkcMdwX3TekkxoEUQSJqSecz90Q3pZysVhoa2urzGkUP2IhRZ6POJ+eIuNdU5zA43CJ6SHuoPHiiy4M+P16WkVbbQzu150iZ6WlMFcu0PjvHIswx9y7Q8bngPvhPlxAiSINqUDc332Kp/Rd3NPg6RxTIpFIPEjI7+FEIvFA4KkKCu+oquqRG0rsI5LeeeP1t0h6FzvuuZL+qO0EdV2/XNLLJWltba32wncIBOTxdzqdQkwXi0UjEgmJIMoonbQ8jEXfsEUPh0ONx+NSlNDbIUJW3OIOGXL7NUQEEuL/enTa7eS85hF8j74iJHhVe3/NCfD+/n4RFLylptRMCeAc4/G4FGJcWlrSYrHQ5uamHnvsMe3s7Ghvb684NZi32WxWXCIUBZTUiN56oUa6AHDPvAcZ9ih3W7qIR9QhnlEoiPn47i7gHBzLPMRiibwfj/f0DU/ViPn6vld8LXk/jsnfi9fkXnE4ID5NJhNNJpOGw8TvN8JrNfg1INIukDD/rFGbOyEKCnzGxSG/T6+Z4Xvb3Qk8h/weUw3ahBd3IngtBMYYa3TENA/O25aq5EUtXcjyNW2b63OGu/tdXF3MXpmJRCJxe8jv4UQi8UDjyRRlbMOPSvqMG//9GZJ+xF7/1KqqulVVvUDSiyW9+paDsJ70WPilYxJFFNz7zkN+ZrOZNjc3S26+E24nohCGXq+n0Wik8XisCxcuaDgcljoBEDgiwt76jnO4dd3PzzUB6Q3uPqAdopNld1lUVVUK8pG3jwsA4UM6Kbi3u7urzc3Nkr/PGJykQvD6/b7W19e1trambrerw8NDbW1t6U1vepMef/xx7e7uFkECMWQ6nWp7e7ukQvA+6QBE5akzwdwx99QXQIggau3r10bWiBA7UYT0Qbg9Ku7ReubM3R8efWccXruAPeP35ek1pCkwv+488a4CUrOAod+np2S0kWInxgcHB9rZ2dH169eLC8KdFm01JeI8QJ75QUjzY134cLHFx4Wrhz0dRRm/T+aWtAzmygUOiDpzS9qIO0RYYxc6eLbdgeTEH+HHO0ww137dqqoaz3UUmLjnNgHlHOOufhcnEolE4raR38OJROKBxi0dClVV/RtJHy7pclVVb5H0tZK+XtIPVFX1OZLeLOkvSlJd16+tquoHJP2WpANJf62u6yflGSbXfjKZaHl5ubQshIR6ccOVlZVSGBAxIaY7uC2b6O7q6qoGg4HG47FGo1FxPjz++OPa3NwsVvdYsd6JrOfhe549JMlJ7I05KW4HouC4DThmZWWlFIT02gDD4bAIKogSEKfJZKLNzc1T9n8nWlVVaTAYaH19XRcuXNDa2pqm06muXbumxx57rKQ6YB2XTqL5s9lM165d02KxaHTVcDFkPp9rc3Oz0V0DoYc1WFtbK/PvkX3InJM21gfRA1EGR4qTcoQLJ/Zu7efzvmfcleBEmTXodDplHrgnd1tMp1PNZrMirOAe4X2v5+DiDmOGpCIsIWCMx2OtrKwUR8jm5qauXbt2qn2mux68bsfBwUFxM7iDw1urtrkQfI9zHhe8VlZWGuk6+/v7RewirQcXTKfTKcIKz/JsNpOk4rbxfYyTQFJjzbzeCfPnwg/n47W9vT3t7Ow0uku4kIDI4WlQ/v3AmHlmPI2jra7DvcQz9V2cSCQSiXbk93AikUicxi0FhbquP+2Mtz7ijOP/nqS/dzuDqOu6ED+PqhLp3N7ebpBUSY3oZluhN8+LPjo6KuRqMBhoNBoVkrW/v19IMXUKDg8PNZ1OTxWtw6KN24Fca09x4LgYQUf0iPnl3W631EjwyDVuCie4RPwRUhaLRSO9wYUV0kUQT/r9vubzud7xjndoe3u7tMM8ODgo7gfI0+7ubnEdSGoQPKK8CCWIHFx/Pp8XsuZz5JZ8J4eICcwBYgvzwHowPneh+DG+/qTBRIcJYounUuB+oI7B0tJScVXwGTpoIHAQ8fc0FN/LXrDQ96bXVYiOCEQBHB98nn9jKkN0GLRd090aUXjy2gX8xBSMtn3P/SG0ICSwrxEfmEPW3x1IOBf8OQcIPz6v/O73BuGfTCble8AFNcazurraqNdBcc1YN8H3Fcef5Qi5V3gmvosTiUQicTbyeziRSCRO424XZXxKgOAQjXa3QYx4S02LNxFSfqRm2zuIF9b/fr+v4XCopaWlkl4xnU6LzR5C6dZpj1biMhgMBiXiSupCtJ7zGbetux2fOgRus4fgQsYh8Fjtibp7NwePfHs+f6fTKSS9ruviakAswH0gnUTQ5/N5mRPOH9eDe6R7g+fJE2HG7eHpAE56PY/dI9zcj6+jOwUiOXZ7P3uJgpLsGfZF3HOQSa9h4HuR//b59voRsSCn7xOPrEeC7KSd+aFFqneU8HoC7AvQ5pjx6/lec/GFz7Jmvg6eVsC+8yKPLsSw1xATPIWHc+MccSHCxQh3irigwR4BbYIh54tiQhQUlpaWyn0ghMX9wvj8+8L/TSQSiUQikUgkEu04N4KCR/A9l59oJ04ESSVHHzIQixYCL6JIwT1SCw4PD7Wzs1NaLdI+MkZgIRsQZSK/a2trJU+cMXphRPLhIWNurYaYIXD0ej2trKyUWgqrq6saDodaWVkpAgKRXZwJe3t7DbIIIfR5gqRXVaXFYlHul0KLi8WiROU5F2KDp2jElA6cCb420ontn8i43xckFtLrkXwXFJaXlxutQdty3f1cXEtSuQeEDl5zMur7AkLsef8esUc02d7eLt0t/L44l6cetOXvRzHBHRFE9Tc3N4tTBnHABZVYyNPTcmKdChflPLUE0u/Rd0+FYK+wP732RHyeohBDKsNkMinvI5hwftIcIP0uIDlxv5mYALh39qm7F3wOPFUoCj1+LcYQ66/E75REIpFIJBKJRCJxgnMhKFQ3ChLyxzvF/YhAIjbwR77noZMy4FFGXAaQjqWlpVKMEaK+tbWlzc3N0jViMBiormvNZjPt7OyUSCbuAOoR9Pt9DQYDHR0dFXK/u7vb6GbAeSDbEEEIM6IChMxz3Hu9XrkOIgDdHLxdoQsJ0kmah+fBk8IBMX7ssccaLR4ZG3OL2ED9AEiZpzQ4KY3tB3EDMNfr6+uNaDhEMubzk+7Q6/WKcwNCj4jBGHFqMIe8jtBArj+k0esBuMtCUmsU38UEXAPz+byIF96mEALLPnXyHV0MzDVjGo1GWl5eLnVDrl+/rtlsdqrGQawL4QSZGhyIahBpniMXOJaXl4uLBrC3mV/OwTziYOEH9wF1CQaDQUP0isJGr9croqAXuPR0hJiS4s+xpJJ6wTEIRvxw/6yli2gIfuzfWFOF7xhPd2DOvJgjtSASiUQikUgkEolEE+dGUOCPekizR1Cxdjvpc3s2BMCjsUSpj46OiithOBwWkrO1taX5fK5Op6MrV64UwkUU1avN13VdUiVwQhwcHBSyD8kiig/xcsJLvjgkxYmiCyHetnAymRQ3gUd4iaB6egNEzPPnV1dXG8UuIeOxmB73w3suUjgJhRx73r6nMVBMczQaFXHAhQcnurzGGGIFf8aNOIAQgPMg5sF7Ogbr5/Z9Fz2kZmE//2HPkfaBmETdBNwMPiaP5POeW+49+s7aSCpOEO7TI+NtufsIF5B9SY3UCa8lgRAXU1X8uYqFQhGfiNIzxwg5FGXs9Xql/aiLCS5CeaqBi0c4E1wg9PX09IVYjJFngBQo1sydGf58+v50EY+5dLcFz6CLCW3ulkQikUgkEolEInGCcyEoAE9xkNT4I98j4U4EJTVIiKQiQNABoC21gOhmp9PRYDAoZMXrH7QVYURoWCwWxYUAuSdyHKPqkgophfRFUgoZ87zvyWRSyFqsG8G9upDSVnEf8skP5LeujzsVeNs93uN8nkfu0fjoMPAIMeknbjd3Msl5vaBiLCwJcWYfQBBZD0/R8Ii+k2bmkTVwMYr94+uAmMDaekeK5eXlRjtPT0Ug5SAWNfTrt3UKcAeN1ynwmh9OqhF8mBdELNa7zWkB4t5xUcrJs6f7eH0Od4r4vbFvogOFazI/XIv3XTxiD/sasuaxjoQ/o9FxwD1wjniPLjCxd31czDtj9D2RSCQSiUQikUgk2nEuBAX+yIek+x/5EBqPJjoJklTy292x4BFcdydgM9/f328VGYjaQsDJX+/3+4Uc0rYRou/jcFu41Cyo54UHvXMB/z0cDgsRn06npR1ezHeXVEg7cCLKdbyg4P7+fom4cxyRcsQErwPhOeaQK0QTxgHZ9vQN5tgJoHQSuY/CkHfzwBKPUMPcxwJ8PreIRl70z6PW3B9zKJ3Us4iklbVlvlhbr5vg3Qy8LaWvCXvR6ye4OMa1+Je5jAJJbBnpTgbSfdyd4IJBfIa4H28T6ePkGjxrdV2r2+02BCR3tLAfo4OFZyQKdNJJikkUAl0IcGdPdA5wPdwTvs6+v3y9/bsCp4oXcvS18XtwN00ikUgkEolEIpFox7kQFCSVjgukIXh0FMIVI8pOQNzKvLW1pb29PY1GI21sbGhjY0MPP/ywOp1OIYzURBgMBprNZo1ictRA2N/f18rKisbjsbrdbrFbk/MuqVx3Mploa2ur1ADodDoNcg7hhvxCuJ3krq6ulntiLqQm0eWa7mSARHkbQtIGnPhOJhMdHh6WmgUIKdRVoOWjR44p2iipEbmXTggiP+TgU7jRxRUvbumRcYr2Aa8NwLqyFhznrgnmFJfA0tKSBoNBawSdufM6FogLFOf0uhCxzoUX+sM90lZYEjcDY0UM8PQQxshck27itRpcKGF8zIt38PBnxYsLSieiC0Ta599TBNjDXgfBBQPGzH5HgPJnkr3qrgu/RxcJ3KHCfHv9Ai/c6U4QBD/vMOHn9X3iaUac35/JWFPDv0d4NtvcJYlEIpFIJBKJROIY50JQwBrvhAsy6EX2IHUezfWihx6Rp9Dj+vq6NjY2NBwOC8nd39/X2tpaSWHwYngHBweNIouQOyL80+lUk8mkUQ2f4olOhjwSv7q6qn6/X9pMek67pws4aeIeOM67MkBcuRdEDC8aeHR0pO3t7dIGcnt7u+TAI9h4TQXmH7cH3Q98jZyo8S9k2+srMCbG5YUJ/XySGp0xPAUAoljXdaM9JcdF6z3EE9eFOyliDQj2mJ/fCb+TXRdKWG+6buCoYA7cNeNiGGIOe9gFM/Y4tRpcwPBUFN6HSHs9Dy/UGLsWePqIF2BEKIp1FZgbxoZLxMcUnQUO76jgNTFiLQvGyHPi7g13JrgQgHjo6+H7DmeF18dw14K3gvU1cheOC33u1EkkEolEIpFIJBKncS4EBc/ddvLpEXwnbE4UIRCSGoScQozr6+taX19v5Nx7FBuy4uOgy4G3o4zEW2o6B4jsIg5wPn73ugJthMXrBPBDZNXrCXiOOiSKiDtEyomspzwwjxA7yCzpBU6+22pUuHMh1oFwoun1HSLB5b9dUHCbPuP0Ip0xT9/TXuhCwdwwx7Eon5Pf6GjxqDbXdueFFwxkXkmp8ZQPnxOu7WkRuAk4lnWlVSTuEu/64W0hiciT5sAe9L3gcx4JuafEeNqNzz/gc77ekO2YIsB/u5vI9w9oq0fgggI1Gtgjvjbu5HGRKu49d5/wvjsmYgpKhL/mhT8TiUQikUgkEonEaZwrQUE6yWH2uglOlqUmcYGgQRwQAwaDgdbW1nThwgVtbGyUKO7R0ZE6nY5Go5Hqui6Rb2oOcA4v7MdnndxKKmIC0WqIHt0VvHYCwkRMdZBOIrJtxQCJLO/t7TXaELqw4ekDkhpjIpXB3RBci3t3W7kXK2RtYocEt5mzHgDi7B0WEBMi+YMIe1HCg4OD4oygloTnxHs1fxdHGC+pHi46RQEkpmAgDjihdkHBawzEooixEKMXufT94XuVz7HXSGWgM0dVVcWRgohCKkUUp1x4YM7YE21r62vjjgyvKXBWAcub2f+9ToNH/GOxyTaRwa8dCysidrF3WXd3MPhneWY9ZcI7l/hnfaxx/b3uQiKRSCQSiUQikWjHuRAUIAYQHqKh0XoOofM8av7w90h7r9fT1atX9fDDD+vq1ataX1/X29/+9mKZHo/HDTICCdnZ2SntJLGUE0mO7gSs8tQ6iEUXnWgiNHjU3CP52Og9hWF1dbWkV3gxQrei404Ah4eHpR4CNSFoscc8QtKwv0snBf9ms1nJk19dXS1CikdpcVwgtEyn03IeumG4KOEk0vP4Od7rVngRPYg7EXzpJMXCaxR4Nw9JDUeAn8/HiHWfeZjP5w2Rgfv0+2Z95vO5dnZ2Gl0tYlTd0xzY17TT5HjWiLoVo9FIKysrjXtmb1IvAUGB/eXiBvPj9QAYB/UluAaCUixM6MUcY/HTNkHAOybwntdkcEcAzznX8hQHrunupDbXAXPBs+vXdQGI2iJeiJT96AKEF3H1e/LikW0uhkQikUgkEolEInGMcyEoSM0+9LFSfYy2xqiw1Iye9/t9PfLII3r44Ye1trbWKCDX7XY1GAwaOekIEkTzsZ9D2hATOI8TcM+jHwwGhbxOJpNSh2AwGEhSo4Vi7C7AdSBIXA/i7x0LPPfco7MUWPQIvRdQlKTt7e0G2UYUgHQhKCDeEGV2AYcxe6HIGB32NXH3SBQUPKoPptNpo6p/dCZ0Op0yB6wj88E1nBT7HuMevNBfbGcZbfPe2YP9QVHLmILCvzs7O2XdEBPYU4vFQltbW8UZgUDC2BETcCxQfNGvBVnmeaF2BIiihItyzJULOf78RNHA59H3rws1fNa7PLTVRYipFZzH3SzMI9fy9XABw0UM3nc3kddf8fO7g8LTdNzBEkXNRCKRSCQSiUQicRrnQlCIufleqM9t9U5OYm4z5KPb7erq1au6dOmSRqOROp1OKaIIIYXYeEV3L/zn0UzvlOApD7Q2JCXDCR9jjfnuPn4nTJ7nHV0DnhfvqQJe9NFrQUAy67oukWnmi/uAiB0dHZX6CnVdF5LM+SHbkD6/B+bG3Q8xysy9ko8f0xtYEwdkmc/gwnCrP9d3t4hfI0a8PeqOGMF6sk6O2I2AtWBcsSCkR+pdBKHrxnA4LKKSp6Ewb7hXfA8iRlFXIRYN9HVjLd0V4mkzzJ+TcebFSb+LKF6vwoUHfyb9tehkYC6iEwchwwW1WK8jpiPE63FeRJfobGBuEK5iSoPPpaeItNVfyC4PiUQikUgkEonE2TgXgoLULJrnUUwnI04M3V0gqRCqXq+nhx9+WBcvXlS/35ekEsWmqJ3n/ENgvWUeOfwe5Sfayb9eZwHRAGLprgVvWxcJmZNzCK6TRlwDUtOSzpidzEoqVn8/hnlyohVrKUDaqfwfrfTRBcJ73hZSUiPS73Zxd0x4pX1P1wA+55A5alAwx+4GYP5crHCCylzEKL3n1XOcCxEeufdoN+OJ+9XHvbe3V9IURqNR6fAxnU5LqgPzhhCD44U5p2ZCt9stghTXou4CrpsoiHA/kGScAzhkPOruEXpPAfDXOA4xJT6TXAfxyAWvuA7xHDElwgs0IpD4M+FCXNv4eG54Dvxafs622g3MlQstKSgkEolEIpFIJBJn41wICp7CQLQdcg9h9qKCXoAPgohgsLa2pocfflgbGxulzoEXTIRcez2C6XSqxx9/XNKxCDAcDgtJ9Jx2LP4UCoTwEYn21pL9fl9ra2ulQCNuA3cZQJL29/e1s7NT5gPbNuNBkHCngxel5DUECCdV3W63kKLpdFrOSVoFlnDIFNfGLg9hc6KJcOGEMnYecCLmnSsgam5DB8y3Cw4rKyuldgDjQ0zgv93NEWsyVFVV1ojWnJ6qgbDiRfuYT87vdTsg+pBS5oDr1/Vx15HxeKz19XUNBgOtrq5qMploc3OzpJd4twUELYSvXq+nCxculOtwL15XYjqdFrLsVn53Brjw4fU5nJxLJ+kqPBue+hEdC9KJ+OI1KuJ77kxw8u41RnwfxDSe6HbxMeMk8PF6RwhP0fG58a4g0cERHRYxZSiRSCQSiUQikUicxrkRFHAFONGBLEC0ID2RrEAgRqORrly5okuXLpXCd257hsRAwhaLhabTqba2tnR4eFhI8dLSUokAe+E+rOoQdwrlkf+O0FBVVUkf8JxwHy8OAtIQKCzokXZy7iGyEEYIWyxM6EQIsoZoQi0GPnNwcKDd3V1JKoUOj46OtL29XYh/zNmHrEaC6B0XiPj6ON1xAEHjmogELjRAJD2nnXX3eWwTE5xMelFMyKe3aeQ1ahn4ejmB9XobLmpEEgy5HgwGunLlSpnTzc1NbW1tFQcCBTylY5Fnd3e3FMSk3sJgMGhE/A8ODkoBUJws7rrweWR+EdsQtDzVhvVjnrxgIfstppc4gZdOF65EfDnL+cGz5dc+q+YC52Ot42e8poMXKfVnnet7fYTobnEh0/c65/TxJBKJRCKRSCQSiSbOhaAgnRRt88i3W/vd7u6RcwhLr9fTxsaGrly5on6/37DZx7x+qunPZrPSno+CjeTYe2SaaH+smE/+NsLEZDKRdFxkD0LoZMijv5Bb7x7hZB2SSOcI7h9SBLmLxRk9wu9dHWInBIQMdz1AWBFdPFov6VTElmOYX0g26+KRZSeMkF2Pijvp84g35BGyGJ0JHm128uddAbwNKfeH2MJY+Z2aFVwHguwFKZ2Ucl3G2ev1tLa2VpwhdHuYTqcNVwmuBvYUKSeIVMynO2UQyOIcsk5ec8DTb3x+fB1isUJPJZDUONbXU9KpdXJizx73feJj8tQl5jK6E/xfFxB9b8V95tfz9/y7IooOsV4G9+GCQ6Y9JBKJRCKRSCQS7Vi61QFVVX13VVXvrKrqN+21b6iq6rerqvrvVVX9u6qqNuy9r66q6vVVVf1OVVUf/WQGARHij3m3HXtHAKmZt83v0jGJX19f18bGRqP9HgTR86JxPUDoyOvGoeAFASFkfr7l5eXSVhKhgQ4A0knOfyRxTmC9OB/pDU7YXUiAFDsx8/nyaLnXPoDAOTniOhQOZG6w0Xue/VnF8lzUiSkCUTzgd48gM9du2aewpbdijJF3XxN+XITxvcTYPLWFuXaCGIsUxlx9T7/gGHdc4IhATMBhQF2EyWSi3d3dRs2GqqrKeFiH/397Zxcj2XVV4bW73F1dVV09PcYGGdvENjJIBiFiobxAAlIQ2FaI+RNyxIOlIFmRgkSEkOLIEuQlDwGRR4iMEjlCTmwQRPgFyRZC5AUnJMZObBzHdmLEYOOBjPuvuqbc3XV4qLvOrDp9u9uTmfqZ6fVJpam+fX/2PffcM7322XufZrOJVquV7728T7Vd64HQKaNRHbRHZ9oZ7aDPR6NBSoeXphHQ7jIKQKN+tCCmvq/8zp9VrNfZVGeH9vu6vqbXLFMviDq2aH+ZqlFG+JT3MWumMRYbY4w5HI/DxhhzkGMdCgAeAXBXse0pAD+dUvoZAN8B8AkAiIg7ANwH4KeqY/4iIg5W3itQUULBwRn03d3dsdUYdBk4ioaFhQWcPn0aq6uruZYBZ3PLmW1gNEO/tbWV89YBoNVq5dnyUjDyfIwc4BKAw+Go0OHGxgbW19cBXBDLvGZZT4DbdnZ2sLm5mZ0Jei+sG0DHhNYxUOGjERMRkWfBgQtL7Wn6gob0s111qT1dOUCL/akjgWJV0xA0FaIMH1d4Xq5cwHaiQObsPtMhms1mdgZolATrAWi1f0WFNoCcjkLnkUbDlLP3/L06FMqVL9gv2R50hqysrODUqVNoNpu5ZsL6+jp6vV7uA7zu1tYWdnZ2cm2MdrudizcCGFuqlBEOfNZ0uqiDqHSUsMioCnV1MNT1J/abctUE3rtGWGjf0OuXIl4jILSIpDp61Ea1SSMTNPpC+1sZEVEWXKTToCzaWa6cwnOyHos6L+aIRzDhsdgYY8yRPAKPw8YYM8axKQ8ppa9ExC3Ftiflx6cB/Hb1/V4Aj6WUBgC+FxGvAHgPgH895hp5Zp1igIX/VBCoU0Dz2tfW1rC2toZ2u51nZlkzAEA+j65swIiChYWFLOYoKsrlG7e3t7Gzs5OXADx16hT29vZw9uzZLNzoBGi1WjlyoY69vT30ej1sbm6OiRWKUzormG+us8gqatk+WhOBofMUbLo04dLSUm5XRm2wAKamD1DsawFLCm2KNcLnoukRGgmi98b24P1p5IGmd2iNgjKEfjgcjlXwV7FLoVsuLVmuWKG/o720sU5MU9RqQUlgfJlBFgPtdrtYXFzE9vY2zp07h42NjVzvQNMKGA0SEVhaWkKr1UK3282pGVq/g06AwWCQl5JkfQ4V9bRTCzfSVjro1CGgtQwI3w86PZgKpFEMdNSosC9n9CnGNYpInTNllIe2K+0rIxy0b5HS4VCXlqHtw3PXLQ2pz7u8Pp1+s2YaY7ExxpjD8ThsjDEHuRw1FD4M4PHq+40YDabkTLXtSFRgaN46MD7jyD/4KYwoqlZXV9HpdMZCxUvxpLOk29vbY+kJrVbrwEw7gLFCjFwpgLPm29vb2SmRUspiWGeNNaSa2waDAfr9fhZ83J/3ojn0Knb5sxZxpEOFThLejy59x9oLAMZmaLmPhvVTjKugqhOdpcCjyGw2m2P3q8+OtrXbbSwvL+fnSFuazWaOWNAie1qroPy5FP2l86WMQlC7VYgSFf51YfkqVLXeA1f5AEaOru3tbWxsbOR0hjJtQ5cVpROKyzqy/+tzZjvR0aPOBI2A0XofrB2iEQjsb+UMvKYUaNuXkQJab0AdAmwXXXmhfEb6e163dCbUOdDKCJQyraH8t0xVKKMX1JHAf9X5p0Um5ynd4R1yyWOxMcaYS8LjsDHmxHFJDoWIeAjAHoBHualmt1SzDRHxAIAHgJHQVIFCIUbxoA4FAGNhyc1mE51OJ8/oa/g1xU9ZEZ6pAXQQcPa+zKdnscW9vT202210Op1chLHX6+VIBootFVyc8SacJdZCfFpMr9Fo5Or+rM7P++TxZRFHCniKba1pQJGpEQw8H9tDw995rM68l1Ac688AxopHljPVbFPO5C8vL48VSeQzZAoEZ/DZXhSs5Ux4mWOvjiPapgX2ShFapmWUKweomFanil6LqzUw4oJFGLe2tnKKjPYHdRAwmoL3rtExWhCUtjDKhHUm2Nd5HHAhTUJTGsq0G33+2h7qKNCIFG1jLjeqKRREZ/5VrGs9Dk0z0MiSsl1pS52N+nueS/uD9j3dzm116Ti8Vz2uvPa8c7nG4mW0J2KfMcZc7XgcNsacVH5gh0JE3A/gAwDeny781X0GwM2y200AXq87PqX0MICHAaDVaiWKLYp4ijUNrQaQBT1nasuq+Dpbr7ORWuV/Z2cHw+EwzxA3Go3sxOBxWlWfaRHtdjvXTNje3h7L0dZieMwTV3HL1AkuEbi3t5eFIWslnD59Oott3gPF02AwwPr6+pGrMCwvL+dijXp+neFnRAPbg/fLOgAa+QFgzLGgOfp85BTUTNMYDAYH8uuHw2F2/LTb7bG0hWaziZWVlbGUCS2CqUJcnUx1s9Zle9cV7OMsfZm6wedVOjLKAob6nJl+sLy8jL29PfT7/ZzOoiKW5+R9pJTG2gxATkXhvZfPRyNk9BiKcy1SCSCL/8FgkGtOaLRK3fNke6uTRR0wunSntgvvU/fXfqlowUu2r0Z70BY9T3kNddQodU4L7qvPTms2lP2odIjU3cO8cTnH4tW49srwoBhjzBzhcdgYc5L5gRwKEXEXgI8D+MWU0o786gkAX4yIzwD4UQC3A/jaceejiKQg40y4zr7rTCfD61lRnzP6rInAmW8VHYx8oOOg1WrlIngUGJoa8NZbb6HX6yGlhHa7jcXFRZw7dw69Xg9bW1vY398fyycHLqQDlGkOdGSwFgNFtxZg7Ha7WFpaGotCWF5ezrPsPJ6OAopRLdTHdmA7tVqtscgPpjmosNVVFTR9gfegtSsouLTeAFc24BKau7u7iKq2AiM52u02ut0u1tbWclg900TW1tbQarXytfr9Pra2tg7USgDGV6ngM1PHSZlHrwKT4rmsPaCUjggVpVpAkuehUwsA+v0+NjY2cipNGR1QRmqw3w6Ho+U6+Vw0DUCjIOhQYP/UvkynC58fP9vb2wf6h0Yi8F0qV3oo3x3uo+kj6kzTlSb097x/dfiUkSU8royaqIsKKR0O6hQoHRn8sL21Fkt5TBldUV5/nrncY7ExxpiLw+OwMeakc6xDISK+BOCXAFwXEWcA/AlGFWybAJ6qBNbTKaWPpJReiIi/AfAfGIV9fTSl9I4WcdcidEf9gR8ReXaXQljzoDlLqqKe4dkU8wsLC1hZWclpEgyL53m4H3BBOO7v7+e6CSyGqDUT6kQtcKEwIKv0UyhS6DDsvdPpYDgcot/vo9/v5+M4Y01xSCeEpmnoTDNQnyvOlAaKV9rM/H0NHy/bTgW95tJzxYt2u41Go5GdFlwOkQ4eRoJwOU9em06hxcXFPMPOdipn6OtC8utmj8tQem5L6cLqBOpgYFupA4HPrZyFZ1+kwGffoxNECyFq2+l5+OzUsVIWiOQzYBvrihh0HtD5oHUlmKrCCBvt12VdAt572XYq9NlvSueS2qfRA/re0TlT7ldGBpROuFLss9+WziJ+tP6BRoRoFI+mAWkNDj2ONmsbcHv5fs2KaY3Fxhhj6vE4bIwxB3knqzx8qGbz547Y/1MAPnUxRnB2VmdZVdSq0Isql5uh3xSHDIUmFEsUGOqwYKg6Q8c1ioHRADwnBRqLKWpBPRVkOrNPsUORrOHuKlApTFlsj86E8+fPj0VLME1DoyI0h17biTPHFLsqJnUfXl+Fqjpy9D60TTV8nOkKnDlnW/J+B4MBlpaWcgRDROQZ80ajkdMFKBR16Uqt7cBno9EqurKD1k5QB4iKUL23sp+UIfL6URt4ThWpjMTQlJk6cUyRzmMpuHUWvoT76+oX5SoOWotCl/Jk+kMZcVDO+uv2w5wF6hhhm+s+6rwqhX9ZaLHuOnUOBXWolI5FnvuwCAiNpuHx5UoOJXr+8nzzwjTGYmOMMYfjcdgYYw5yOVZ5uGRSSllI6jb+Ma/ihCKYtQ8osig6ysJwAHLKAZ0ErVYrr9ZAccoZY62xQIfFcDjExsZGru2gdRsojnSFBL0mC+1xRpliTCv8Mwe/1+uNLUPJ6AkWcqTApMAtl7NjsT9GBfD33EanBIDszNAwdYpuOnQokinwKIZ5/m63i263mwsS8l4psPf393O6A6MQ+v1+rrvANA9GhNChwigVXo/PUlcBUbGqkSKaGqMwoqDRaOR+VqamqGDViBfN22cfBJCdRUxz4LMtZ/J5DyyoyL7GfqdREirGtT4FnVpaeFEdSkyBoVOM7V8WOiydG3q/fD+0XWmnpmHwvsoVQUrhrk4Ovkfq5NBz8Z3XaBitAaJ1D8rVIfR58/kzLYrvgaaylNEJpaOlLK5qjDHGGGOMqWcuHAoUieVsI6HoX1xcRKfTyQKLIkWdAjxOw7SZy88w++Xl5bFjh8Nh3oeCnseyNsO5c+cAIAth1ivQ2Xo9J49TwcaoANZAaDabWaxubW3h7NmzGAwGOZSbKRCsS6BpFeVMK8UP24ZCUOsO0KnCMPpmszkWMr60tIRWq5VFKc+hkRp0JnQ6HaytraHT6WRHwebmZi5YCQCdTgfXX389lpaWcjpDRODUqVN5qU+2/ebmJtbX13NKitYCoB28h93d3WxTs9lEs9kcW0FBHTt0DFHU83jm1Wu6A6+h56GDgEJTix3SYUTRXIp8imath8BoHO077OMazq9pFXQmcMURPh/gwjKhzWYzO64YnaDRAewTGvWgfYd9RZ0EPF+Z8qLvWBnJwOgJXr/ZbOb70/oeeg62P4/hsymP0/GiLhpE01jYd9hWpRNC76V0/pRjgzHGGGOMMaaeuXEo6CynzhDSWUDRpFXudSYUuJC6oDPWw+EwpxCwVkGn0wGAMQHJ2V9dTYLiiDPQnC1m/QJdZpFikSJEq/bzoyKZIo/OFK3PwHvgjL86S3gd7qez6ly2UZ0NXDWCDpsyJ18jFlqtVhbQ6pDQqIWFhYUcdbCyspJF5M7ODjY3N9Hv98dm1+lMYNu2Wi10u120220sLCzkYoa9Xg/nz59HSinPLFOkUxRSLOv5W63WmNOGtQR0xllXkCgdTxSMPF4dW3RaaBoJ0zbqVtvQGW3azu9sa+2z6qRR8UqnDdNquOKIFsjk81ZnSbnSQym261JaKJxpp0YcqJODx/K8dekA6oCgs0ffM3UmqENBr6EpDmVaSFlfQeE2th2jizTVqHTA6Tnr2mWe0h2MMcYYY4yZR+bCoaCh2DprqyKR4pRh43VQqJQh1ru7u/lYOiTKGWldKlBnmxlivrCwkB0KKqxUaGl+P2eQeX46IMpVFLgviy7qjKgKunL2lO2mAlNrAaSUstDkNSjEVbQByE4GpiVoNf9SAF5zzTV5CU0WYNzZ2ckOAaZrLC8vo9PpYGFhIUcFDIdDrKys5PoVjMDo9XrY2dnJkRi0kc9BnyMLYjLShEtVlrPJ6lDR5Q7r0iHYFyjIAeSCnRSY+rzoaKKTgY4hFcZ6bu0b7OvqVCpFMiMh1OHENI+yP7Av6Uy8OlNU+LMtdLWEstaBOlrKmh/abmW/GA6HB5xQTMEo+7GeR++9fPfLgqN1DoUyfYHXZdsdVYSx3FbWcbBDwRhjjDHGmKOZC4cC0egEFfzA+DJ9GsZN54IKHAomrV3AmgWcNVWByu8a+kwhNxgMsLu7m0U0UwrUZgBjwp2zourUAJDTIgh/1+v1sL6+jrfffjvfAx0AmvOujghNiwAuzIKriOKykhT0DCfXWgIaAs/0A7YJ24LXSylhZWUF3W4XnU4HjUYD58+fx8bGRl4ykXUTOp0OVldXkVLK52w0GlhdXcXKykp21mxtbeU0k/39/bGUFNpRFiLkUpV8Fuq00boXKtjLCIDSacXnpvUrNL+ekR77+/vo9/tHFlgsIyTKvlzWfVAHEZ9Rq9Uai/7QSAo6p5h+QTGv/UGdA+xTGh2jUS51hRPZ7uxz2vfUycJ7Zd/ndRhhonU46qgrqsjzlakOx4l8Xpt9WR1EpROpPE6voXU47FQwxhhjjDHmcGIe/mCOiP8F0APwfzM25TrbYBtsg20oeFdK6foZXXuqRMQWgJdmbMZJ72+2wTbYhoOcpHHYfxPbBttgG+bVhtqxeC4cCgAQEV9PKf2cbbANtsE2zKMNJ4F5aGfbYBtsg2046cxDW9sG22AbbMM7ZeH4XYwxxhhjjDHGGGPGsUPBGGOMMcYYY4wxF808ORQenrUBsA3ENoywDSNsw8lhHtrZNoywDSNswwjbcLKYh7a2DSNswwjbMMI21DA3NRSMMcYYY4wxxhhz5TBPEQrGGGOMMcYYY4y5Qpi5QyEi7oqIlyLilYh4cErXvDki/jkiXoyIFyLiD6rtn4yI/46IZ6vPPRO247WI+FZ1ra9X266NiKci4uXq39MTvP5Pyr0+GxGbEfGxSbdDRHw+Is5GxPOy7dD7johPVP3jpYj41Qna8GcR8e2I+GZEfDki1qrtt0REX9rjsxO04dC2n2I7PC7Xfy0inq22T6odDnsfp9onTjoeiz0WV9s8FuPkjcUeh+cDj8Meh6ttHodx8sbh6rxX5licUprZB0ADwKsAbgOwBOA5AHdM4bo3ALiz+t4F8B0AdwD4JIA/muL9vwbgumLbnwJ4sPr+IIBPT/FZ/A+Ad026HQC8D8CdAJ4/7r6r5/IcgCaAW6v+0piQDb8C4Jrq+6fFhlt0vwm3Q23bT7Mdit//OYA/nnA7HPY+TrVPnOSPx2KPxcfdt8fivP2qHIs9Ds/+43HY4/Bx9+1xOG+/Ksfh6rxX5Fg86wiF9wB4JaX03ZTS2wAeA3DvpC+aUnojpfRM9X0LwIsAbpz0dd8h9wL4QvX9CwB+fUrXfT+AV1NK/znpC6WUvgLgXLH5sPu+F8BjKaVBSul7AF7BqN9cdhtSSk+mlPaqH58GcNOlXudibTiCqbUDiYgA8DsAvnSp1znGhsPex6n2iROOx+KDeCz2WFzHVTkWexyeCzwOH8TjsMfhOq7Kcbiy4Yoci2ftULgRwH/Jz2cw5UEsIm4B8G4AX602/X4V3vP5SYZWVSQAT0bENyLigWrbj6SU3gBGnQrAD0/YBnIfxl+SabYDcPh9z6qPfBjAP8rPt0bEv0fEv0TEeyd87bq2n0U7vBfAmymll2XbRNuheB/nrU9czcy8TT0WZzwWj+OxeMpjscfhmTHzNvU4nPE4PI7HYf9NfCSzdihEzbapLTsRESsA/g7Ax1JKmwD+EsCPA/hZAG9gFNoySX4+pXQngLsBfDQi3jfh69USEUsAPgjgb6tN026Ho5h6H4mIhwDsAXi02vQGgB9LKb0bwB8C+GJErE7o8oe1/SzelQ9h/D/UibZDzft46K4127xczaXhsdhj8XF4LK7Mqtn3qhmLPQ7PFI/DHoePw+NwZVbNvlfNOAxceWPxrB0KZwDcLD/fBOD1aVw4IhYxelCPppT+HgBSSm+mlPZTSkMAf4UJh4yklF6v/j0L4MvV9d6MiBsqG28AcHaSNlTcDeCZlNKblT1TbYeKw+57qn0kIu4H8AEAv5vSKDmpCiP6fvX9GxjlJ/3EJK5/RNtPux2uAfCbAB4X2ybWDnXvI+akT5wQPBbDY3HFXLx3HotHTHMs9jg8czwOw+NwxVy8dx6HR/hv4uOZtUPh3wDcHhG3Vh7B+wA8MemLVnkwnwPwYkrpM7L9BtntNwA8Xx57GW3oRESX3zEqfvI8Rvd/f7Xb/QD+YVI2CGNet2m2g3DYfT8B4L6IaEbErQBuB/C1SRgQEXcB+DiAD6aUdmT79RHRqL7fVtnw3QnZcFjbT60dKn4ZwLdTSmfEtom0w2HvI+agT5wgPBbDY3HFzN87j8VjTGUs9jg8F3gchsfhipm/dx6Hx/DfxMeRplwFsvwAuAejCpavAnhoStf8BYzCQb4J4Nnqcw+AvwbwrWr7EwBumKANt2FUlfM5AC/w3gH8EIB/AvBy9e+1E26LNoDvAzgl2ybaDhgN1G8A2MXIs/Z7R903gIeq/vESgLsnaMMrGOUhsU98ttr3t6pn9ByAZwD82gRtOLTtp9UO1fZHAHyk2HdS7XDY+zjVPnHSPx6LPRZ7LD65Y7HH4fn4eBz2OOxx+OSOw9V5r8ixOCpDjDHGGGOMMcYYY94xs055MMYYY4wxxhhjzBWIHQrGGGOMMcYYY4y5aOxQMMYYY4wxxhhjzEVjh4IxxhhjjDHGGGMuGjsUjDHGGGOMMcYYc9HYoWCMMcYYY4wxxpiLxg4FY4wxxhhjjDHGXDR2KBhjjDHGGGOMMeai+X9nghhCVzoSHAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of not-sliding / sliding pixel = 0 419123\n", + " Min thresh = 1000\n", + " Sliding\n", + "\n", + "\n" + ] + } + ], + "source": [ + "min_size = 1000\n", + "min_portion = 0.0\n", + "\n", + "for prior in [[0.7,0.6,1.0]]: #[0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6]:\n", + " print('*************')\n", + " print(\"Prior =\", prior)\n", + " correct = 0\n", + " incorrect = 0\n", + " false_negatives = 0\n", + " slice_correct = 0\n", + " slice_incorrect = 0\n", + " slice_false_negatives = 0\n", + " for i in range(num_folds):\n", + " (fcorrect, fincorrect, ffalse_negatives, fslice_correct, fslice_incorrect, fslice_false_negatives) = plot_vfold_training_curves(i, test_loader[i],\n", + " min_size, min_portion, prior, True)\n", + " correct += fcorrect\n", + " incorrect += fincorrect\n", + " false_negatives += ffalse_negatives\n", + " slice_correct += fslice_correct\n", + " slice_incorrect += fslice_incorrect\n", + " slice_false_negatives += fslice_false_negatives\n", + " print()\n", + " print()\n", + " print(\"Patients: Correct =\", correct, \"Incorrect =\", incorrect, \"Not Sliding as Sliding =\", false_negatives)\n", + " print(\"Slices: Correct =\", slice_correct, \"Incorrect = \", slice_incorrect, \"Not Sliding as Sliding =\", slice_false_negatives)\n", + " print('*************')\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.7" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/Experiments/ColumnNet/cufile.log b/Experiments/ColumnNet/cufile.log new file mode 100644 index 0000000..35e1c76 --- /dev/null +++ b/Experiments/ColumnNet/cufile.log @@ -0,0 +1 @@ + 24-11-2021 15:50:31:504 [pid=689821 tid=689821] NOTICE cufio-drv:620 running in compatible mode diff --git a/Experiments/ROINet/cufile.log b/Experiments/ROINet/cufile.log new file mode 100644 index 0000000..5db3f0b --- /dev/null +++ b/Experiments/ROINet/cufile.log @@ -0,0 +1 @@ + 24-11-2021 15:42:27:381 [pid=686717 tid=686717] NOTICE cufio-drv:620 running in compatible mode From 6a896e2915f1fb1989ce8216a55190b4fa395497 Mon Sep 17 00:00:00 2001 From: Christopher Funk Date: Tue, 29 Mar 2022 12:56:53 -0400 Subject: [PATCH 2/2] Updated Patches algorithm - Still need to generalize the network but main code is done. --- ...iddle-ExtrudedNS-VFold-Chris-Patches.ipynb | 363 +++++++++++++++--- Experiments/ARUNet-MiddleLines/cufile.log | 2 + cufile.log | 1 + 3 files changed, 305 insertions(+), 61 deletions(-) create mode 100644 cufile.log diff --git a/Experiments/ARUNet-MiddleLines/ARUNet-3D-Middle-ExtrudedNS-VFold-Chris-Patches.ipynb b/Experiments/ARUNet-MiddleLines/ARUNet-3D-Middle-ExtrudedNS-VFold-Chris-Patches.ipynb index 3adebbf..bb2a7d0 100644 --- a/Experiments/ARUNet-MiddleLines/ARUNet-3D-Middle-ExtrudedNS-VFold-Chris-Patches.ipynb +++ b/Experiments/ARUNet-MiddleLines/ARUNet-3D-Middle-ExtrudedNS-VFold-Chris-Patches.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 1, + "execution_count": 3, "id": "b86771c6", "metadata": {}, "outputs": [], @@ -60,7 +60,7 @@ }, { "cell_type": "code", - "execution_count": 50, + "execution_count": 65, "id": "65a3539d", "metadata": { "scrolled": false @@ -85,17 +85,8 @@ "Shape after layer 7: torch.Size([4, 124, 22, 45, 32])\n", "Shape after layer 8: torch.Size([4, 124, 22, 45, 32])\n", "Shape after layer 9: torch.Size([4, 124, 22, 45, 32])\n", - "Shape after layer 10: torch.Size([4, 124, 22, 45, 32])\n", - "Shape after layer 11: torch.Size([4, 124, 22, 45, 32])\n", - "Shape after layer 12: torch.Size([4, 124, 22, 45, 32])\n", - "Shape after layer 13: torch.Size([4, 124, 22, 45, 32])\n", - "Shape after layer 14: torch.Size([4, 124, 22, 45, 32])\n", - "Shape after layer 15: torch.Size([4, 124, 22, 45, 32])\n", - "Shape after layer 16: torch.Size([4, 124, 22, 45, 32])\n", - "Shape after layer 17: torch.Size([4, 124, 22, 45, 32])\n", - "Shape after layer 18: torch.Size([4, 124, 22, 45, 32])\n", - "Shape after layer 19: torch.Size([4, 124, 22, 45, 32])\n", - "Output Shape torch.Size([4, 2, 160, 320, 32])\n" + "Output Shape torch.Size([4, 2, 160, 320, 32])\n", + "2.57 s ± 62.9 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n" ] } ], @@ -103,8 +94,8 @@ "# Initial Convnet with just increasing\n", "from monai.networks.layers import Conv\n", "from monai.networks.blocks import Convolution, Upsample\n", - "\n", "import torch.nn as nn\n", + "\n", "class Residual(nn.Module):\n", " def __init__(self, fn):\n", " super().__init__()\n", @@ -120,14 +111,14 @@ " hidden_dim, \n", " depth, \n", " img_size, \n", - " data_dims=3, \n", " kernel_size=9, \n", " patch_size=7, \n", " n_classes=1000,\n", " norm=False,\n", " classification=False,\n", " segmentation=True,\n", - " upsample_mode='deconv', # 'deconv' or 'pixelshuffle'\n", + " upsample_mode='deconv', # 'deconv' or 'pixelshuffle',\n", + " verbose=True,\n", " )->None:\n", " \n", " super().__init__()\n", @@ -135,9 +126,11 @@ " self.norm = norm\n", " self.classification = classification\n", " self.segmentation = segmentation\n", + " self.verbose = verbose\n", " \n", " dimensions = len(img_size)-1\n", - " print(dimensions)\n", + " if self.verbose:\n", + " print(dimensions)\n", " self.patch_embedding = Convolution(\n", " dimensions=dimensions,\n", " in_channels=img_size[0], \n", @@ -152,16 +145,29 @@ " [\n", " nn.Sequential(\n", " Residual(\n", - " Convolution(\n", - " dimensions=dimensions,\n", - " in_channels=hidden_dim, \n", - " out_channels=hidden_dim, \n", - " kernel_size=(kernel_size,kernel_size,1), \n", - " strides=(1,1,1),\n", - " groups=hidden_dim,\n", - " act='GELU',\n", - " norm='BATCH',\n", - " padding='same'\n", + " nn.Sequential(\n", + " Convolution(\n", + " dimensions=dimensions,\n", + " in_channels=hidden_dim, \n", + " out_channels=hidden_dim, \n", + " kernel_size=(kernel_size,kernel_size,1), \n", + " strides=(1,1,1),\n", + " groups=hidden_dim,\n", + " act='GELU',\n", + " norm='BATCH',\n", + " padding='same',\n", + " conv_only=True\n", + " ),\n", + " Convolution(\n", + " dimensions=dimensions,\n", + " in_channels=hidden_dim, \n", + " out_channels=hidden_dim, \n", + " kernel_size=(1,1,kernel_size), \n", + " strides=(1,1,1),\n", + " act='GELU',\n", + " norm='BATCH',\n", + " padding='same',\n", + " )\n", " )\n", " ),\n", " Convolution(\n", @@ -180,7 +186,7 @@ " if self.norm:\n", " self.norm = nn.AdaptiveAvgPool2d((1,1))\n", " if self.classification:\n", - " self.classification_head = nn.Linear(dim, n_classes)\n", + " self.classification_head = nn.Linear(hidden_dim, n_classes)\n", " if self.segmentation:\n", " # First upsample using either deconv or pixelshuffel then interpolate to exact same size\n", " self.segmentation_head = nn.Sequential(\n", @@ -206,22 +212,25 @@ " \n", " \n", " def forward(self, x):\n", - " print(f'Initial Shape {x.shape}')\n", + " if self.verbose:\n", + " print(f'Initial Shape {x.shape}')\n", " x = self.patch_embedding(x)\n", - " print(f'After embedding Shape {x.shape}')\n", + " if self.verbose:\n", + " print(f'After embedding Shape {x.shape}')\n", " hidden_states_out = []\n", " for i, blk in enumerate(self.blocks):\n", " x = blk(x)\n", " hidden_states_out.append(x)\n", - " print(f'Shape after layer {i}: {x.shape}')\n", + " if self.verbose:\n", + " print(f'Shape after layer {i}: {x.shape}')\n", " if self.norm:\n", " x = self.norm(x)\n", " if self.classification:\n", " x = self.classification_head(x)\n", " if self.segmentation:\n", " x = self.segmentation_head(x)\n", - " \n", - " print(f'Output Shape {x.shape}')\n", + " if self.verbose:\n", + " print(f'Output Shape {x.shape}')\n", " return x, hidden_states_out\n", "\n", "num_classes = 2\n", @@ -230,19 +239,243 @@ "print(image_shape, check_data['image'].shape)\n", "patches = ConvMixer(\n", " hidden_dim=124, \n", - " depth=20, \n", - " data_dims=1, \n", + " depth=10, \n", + " img_size=image_shape,\n", + " n_classes=2)\n", + "\n", + "patches\n", + "\n", + "patches_out, patches_hidden_states = patches(check_data['image'])\n", + "patches.verbose = False\n", + "%timeit patches(check_data['image'])" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "id": "aaeb4188", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "torch.Size([32, 160, 320]) torch.Size([4, 32, 320, 160])\n", + "2\n", + "Initial Shape torch.Size([4, 32, 320, 160])\n", + "After embedding Shape torch.Size([4, 124, 45, 22])\n", + "Shape after layer 0: torch.Size([4, 124, 45, 22])\n", + "Shape after layer 1: torch.Size([4, 124, 45, 22])\n", + "Shape after layer 2: torch.Size([4, 124, 45, 22])\n", + "Shape after layer 3: torch.Size([4, 124, 45, 22])\n", + "Shape after layer 4: torch.Size([4, 124, 45, 22])\n", + "Shape after layer 5: torch.Size([4, 124, 45, 22])\n", + "Shape after layer 6: torch.Size([4, 124, 45, 22])\n", + "Shape after layer 7: torch.Size([4, 124, 45, 22])\n", + "Shape after layer 8: torch.Size([4, 124, 45, 22])\n", + "Shape after layer 9: torch.Size([4, 124, 45, 22])\n", + "Output Shape torch.Size([4, 1, 22, 45, 124])\n", + "Output Shape torch.Size([4, 2, 160, 320, 32])\n", + "255 ms ± 3.63 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n" + ] + } + ], + "source": [ + "# Initial Convnet with just increasing\n", + "from monai.networks.layers import Conv\n", + "from monai.networks.blocks import Convolution, Upsample\n", + "\n", + "import torch.nn as nn\n", + "class Residual(nn.Module):\n", + " def __init__(self, fn):\n", + " super().__init__()\n", + " self.fn = fn\n", + "\n", + " def forward(self, x):\n", + " return self.fn(x) + x\n", + "\n", + "\n", + "class ConvMixer(nn.Module):\n", + " def __init__(\n", + " self, \n", + " hidden_dim, \n", + " depth, \n", + " img_size, \n", + " kernel_size=9, \n", + " patch_size=7, \n", + " n_classes=1000,\n", + " norm=False,\n", + " classification=False,\n", + " segmentation=True,\n", + " upsample_mode='deconv', # 'deconv' or 'pixelshuffle',\n", + " verbose=True,\n", + " )->None:\n", + " \n", + " super().__init__()\n", + " \n", + " self.norm = norm\n", + " self.classification = classification\n", + " self.segmentation = segmentation\n", + " self.verbose = verbose\n", + " \n", + " dimensions = len(img_size)-1\n", + " if self.verbose:\n", + " print(dimensions)\n", + " self.patch_embedding = Convolution(\n", + " dimensions=dimensions,\n", + " in_channels=img_size[0], \n", + " out_channels=hidden_dim, \n", + " kernel_size=(patch_size,patch_size), \n", + " strides=(patch_size,patch_size),\n", + " act='GELU',\n", + " norm='BATCH',\n", + " padding='valid'\n", + " )\n", + " self.blocks = nn.ModuleList(\n", + " [\n", + " nn.Sequential(\n", + " Residual(\n", + " Convolution(\n", + " dimensions=dimensions,\n", + " in_channels=hidden_dim, \n", + " out_channels=hidden_dim, \n", + " kernel_size=(kernel_size,kernel_size), \n", + " strides=(1,1),\n", + " groups=hidden_dim,\n", + " act='GELU',\n", + " norm='BATCH',\n", + " padding='same',\n", + " conv_only=True\n", + " ),\n", + " ),\n", + " Convolution(\n", + " dimensions=dimensions,\n", + " in_channels=hidden_dim, \n", + " out_channels=hidden_dim, \n", + " kernel_size=(1,1), \n", + " strides=(1,1),\n", + " act='GELU',\n", + " norm='BATCH',\n", + " padding='same'\n", + " )\n", + " ) for i in range(depth)\n", + " ]\n", + " )\n", + " if self.norm:\n", + " self.norm = nn.AdaptiveAvgPool2d((1,1))\n", + " if self.classification:\n", + " self.classification_head = nn.Linear(hidden_dim, n_classes)\n", + " if self.segmentation:\n", + " # First upsample using either deconv or pixelshuffel then interpolate to exact same size\n", + " \n", + " self.segmentation_head = nn.Sequential(\n", + " Upsample(\n", + " spatial_dims=dimensions+1,\n", + " in_channels=1,\n", + " out_channels=n_classes,\n", + " scale_factor=[patch_size,patch_size, 1],\n", + " mode=upsample_mode,\n", + " pre_conv=None\n", + " ),\n", + " Upsample(\n", + " spatial_dims=dimensions+1,\n", + " in_channels=n_classes,\n", + " out_channels=n_classes,\n", + " size=[img_size[1],img_size[2],img_size[0]],\n", + " mode='nontrainable',\n", + " interp_mode='bilinear'\n", + " )\n", + " )\n", + " # self.segmentation_head = nn.Sequential(\n", + " # Upsample(\n", + " # spatial_dims=dimensions+1,\n", + " # in_channels=hidden_dim,\n", + " # out_channels=n_classes,\n", + " # scale_factor=[patch_size,patch_size, img_size[0]],\n", + " # mode=upsample_mode,\n", + " # pre_conv=None\n", + " # ),\n", + " # Upsample(\n", + " # spatial_dims=dimensions+1,\n", + " # in_channels=n_classes,\n", + " # out_channels=n_classes,\n", + " # size=[img_size[1],img_size[2],img_size[0]],\n", + " # mode='nontrainable',\n", + " # interp_mode='bilinear'\n", + " # )\n", + " # )\n", + " \n", + " \n", + " \n", + " \n", + " def forward(self, x):\n", + " if self.verbose:\n", + " print(f'Initial Shape {x.shape}')\n", + " x = self.patch_embedding(x)\n", + " if self.verbose:\n", + " print(f'After embedding Shape {x.shape}')\n", + " hidden_states_out = []\n", + " for i, blk in enumerate(self.blocks):\n", + " x = blk(x)\n", + " hidden_states_out.append(x)\n", + " if self.verbose:\n", + " print(f'Shape after layer {i}: {x.shape}')\n", + " if self.norm:\n", + " x = self.norm(x)\n", + " if self.classification:\n", + " x = self.classification_head(x)\n", + " if self.segmentation:\n", + " x = torch.unsqueeze(torch.transpose(x,1,3),1)\n", + " # x = torch.unsqueeze(x,-1)\n", + " if self.verbose:\n", + " print(f'Output Shape {x.shape}')\n", + " x = self.segmentation_head(x)\n", + " if self.verbose:\n", + " print(f'Output Shape {x.shape}')\n", + " return x, hidden_states_out\n", + "\n", + "num_classes = 2\n", + "image_shape = torch.Size([32, 160, 320])#, label shape: torch.Size([160, 320, 32]) \n", + "squeezed_data = torch.transpose(torch.squeeze(check_data['image'].clone()),1,3) \n", + "print(image_shape, squeezed_data.shape)\n", + "patches = ConvMixer(\n", + " hidden_dim=124, \n", + " depth=10, \n", " img_size=image_shape,\n", " n_classes=2)\n", "\n", "patches\n", "\n", - "patches_out, patches_hidden_states = patches(check_data['image'])" + "patches_out, patches_hidden_states = patches(squeezed_data)\n", + "patches.verbose = False\n", + "%timeit patches(squeezed_data)" ] }, { "cell_type": "code", - "execution_count": 60, + "execution_count": 45, + "id": "160ec8b3", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "torch.Size([4, 32, 320, 160])" + ] + }, + "execution_count": 45, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "squeezed_data = torch.transpose(torch.squeeze(check_data['image'].clone()),1,3)\n", + "squeezed_data.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 28, "id": "bbfb4406", "metadata": { "scrolled": false @@ -250,28 +483,36 @@ "outputs": [], "source": [ "# check_data['label'].shape\n", - "layer = patches.blocks[0][0].fn" + "layer = patches.blocks[0][0].fn[1]" ] }, { "cell_type": "code", - "execution_count": 74, + "execution_count": 70, "id": "e92cae2d", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "torch.nn.modules.conv.Conv3d" + "Sequential(\n", + " (0): UpSample(\n", + " (deconv): ConvTranspose3d(1, 2, kernel_size=(7, 7, 1), stride=(7, 7, 1))\n", + " )\n", + " (1): UpSample(\n", + " (upsample_non_trainable): Upsample(size=[160, 320, 32], mode=trilinear)\n", + " )\n", + ")" ] }, - "execution_count": 74, + "execution_count": 70, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "layer.conv.__class__" + "# layer[1].conv\n", + "patches.segmentation_head" ] }, { @@ -23684,7 +23925,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 5, "id": "15392640", "metadata": {}, "outputs": [ @@ -23761,7 +24002,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 8, "id": "2a1a38d0", "metadata": {}, "outputs": [ @@ -23815,7 +24056,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 9, "id": "3eaf62ae", "metadata": { "scrolled": true @@ -23854,7 +24095,7 @@ " 'label': '/data/krsdata2-pocus-ai-synced/root/Data_PTX/VFoldData/BAMC-PTXSliding-Annotations-Linear/034s_iimage_3401832241774_clean.extruded-overlay-NS.nii.gz'}]]" ] }, - "execution_count": 6, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } @@ -23865,7 +24106,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 10, "id": "c7d528b7", "metadata": {}, "outputs": [ @@ -23880,16 +24121,16 @@ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 5, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQEAAAD8CAYAAAB3lxGOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9ScxtW5emBz2zWtUuv+qUt/qryCjSOA3YCRJIgBMECMm9FNABCSlb9B1tWtlFQkJkwwIaCEPDAiELA5ZAyA2UGKTMjIyM+MtbnPIrd7XKWdAYc+/v3D/ujbBJ/84jxV3S0TnnK/Zee601xxzjHe/7DpVS4ofjh+OH46/vof9Fn8APxw/HD8e/2OOHIPDD8cPx1/z4IQj8cPxw/DU/fggCPxw/HH/Njx+CwA/HD8df8+OHIPDD8cPx1/z4nQUBpdR/Uyn1Z0qpXyil/vh39T4/HD8cPxz/fIf6XfAElFIG+HPgvw58A/xD4L+XUvqn/4m/2Q/HD8cPxz/X8bvKBP414BcppV+llEbgfwv8G7+j9/rh+OH44fjnOOzv6HVfAl9/8P9vgL/9fT9cqDJVzFBlSagtKiVUlO8lBSj5t/IJFSKkBEqRrCYWmmghOkg2gU7yS16hJ+SPT6iQM56UUPGD7CclCBFiJKUk//+uQwHHb6n8nwTKaDAWtIKYIHj5+/Tyf8XrKVBKy2sqBUaTrAGtHt8uptNnRisIETUFiBG0zn/U4+cBkpbXUyGC/61zivH7bsW/kEMZc7rHJMBa+X++L/JD6vFzKpU/HxCP9zZfTFL+rAmUBpP3uRjl9RSg8/vFSJr899/z0wkqOUetH8/leLL5viWlSFYRnSJp0B70EFEhQAhyelrOJ2kl9zTfv1ga+TwpoUL+FAqSUd9zQjyuiSBrJX3wNRKolJ/PYST5AMCO+5uU0tVvv9TvKgj8lYdS6u8Bfw+gouFv67+Dma0Z/rM/ZlhbVATbyQMQrSIWCj0lTBco7nvM/YGkFeFywbgu6c8N7RNN9ywxXU7oMpDuC5pXhuZtYv5qpNiMedEndD/KQ+Esqu1JbSd/+oE0jR+eKCiNrisIgeQ9KSaUsxATyU8oHHq5Qs1q0v5A2h/kV6sSlCbuDyQ/PT5sx4dKyUOtyxI1a+ThB/k5a0izGr+sUCFi7vawO8gDlX8mjROqcKjVklQ6+RzbPaSIqirSYgZao/KDnoxG+SDnpx4Dh1KKuNsT2/bxcx+Dzm8fv/31DxfQ8evqgwQzPQYcZQwYg8qfUxmDOl8zfnpBdBozBAlagNkNcHNPvL2T67+coxZzkjWoyZMKR6oLCYY+yHtbQ9IajCIV9hQo1RTkXgOpcnJNuhHeXRPy9frW58qfSblC3rdpJJjk5yUZjRonWfyzmumy4fCsZFwqlIf5G0/1Zo/edTBOpGlCVSXhckksLLr36NGffg8F1Z3HHjyx0HSXjmGlsX3CHWTTik6dNqFoFcmAGRO2jUSnUBH0lNBjzJtoQg8B+5t3+HfvAfi/xf/9l3/xhv7ugsAr4NMP/v9J/trpSCn9A+AfACzVeTo+OOXrLaZrGM8KpplGhw92MAPRacaLGjMvMK1H957yXaC408xfWYYzR3vp2H3umD4bOCw8w3lB+6xk8bWjvA8Um5FY5ZvRj6TCQVWgVgv0oSMdDsRDJ8EgJSASux6llTzAeWdVRpOCJk0j8WGDnkZUVUFdEzZbGCd58D9YCMegoqyVBVGVqPmMVJXygIaEbnvoetTksT4Qm1KClbWkrid5L68VI3Ec0SFAWZKGgRQiqqnBWtQ+L2pjIATZHcoCnlwQ5iXJaLSPqG5CN7W8DkCIpGEktS1pnEghyGdQGmWNZD+P91E+lrXoxVw+3weBIQ0jaRwleGmNqitUXUPhiE3FtK6ITmPbCbPtc5bjSbsDTCN6PoOyRBWF7JTdIAtbKfl3CPJ+RoImjSU5gxomWehak0oLpQMfUYNHDSPx9p54aB/vzQeBTVmLbhrUxRlhPSeVBr0fUeNEqgsICQrHdFbTPi8JpSzC+WtPcTdi2pGkNeFiIdmG0cTaorxcl/azGe2VIRSK6iHSvJtIRtE+K+nPNUnD4htPcT8SS8OwdkSjUAl8qfA1qADRKEKhMEOi2AWUTySrwIMegwS/upKgnL4/+/tdBYF/CPxMKfUjZPH/d4H//l/6GylC4WDy2E0vkWxZMC4MKj9TodBAxN169BTwM0cyBXoI6DGgO0+zH6neWeZvCu7uK3a/P6E+P3C4KuieWqobx+yVpXoImKHAdgX2tpMHY1kTL+bY7QJztyFutsSukzePQTaMnFYrI19WzqJMSZo8cX9A54VtwozYto9ZxQe7pDIGnJPFpGV3TJUjlnI7UmVRUy03MSVUCCRjUIUjhUDsB4gBtEEdd/OqJK0WkhEaLTviOKH2LenQyq6vDSpEVD+iagdaoUaP3uwfFyqg8rmlY/odQFn5mpo1HwSyD1LknOoS4mMKnhLqWMLEhCoL0mpBWNb4mUP5iLtrUffbx3MEYogoa1F1TYpRAoA1suNbQ6oa+dnJS+YwThLk2l4Cg/4gUzlmQpMH70ldRzgG+N/OdFICbSQAnK2IqxnTWUXSYJwBXUsq7xOh1IxrSzKK8iFSPIyYw0QqDeNlQyg0ySjMGLH7CT0E+suK7ReW4QzcHmavI66N9BeOqVGEAlybWP6qw77fMj1fs/2sJBaQNIRSfsa2YKdEtGAHKHYBPUUJFCFhOk8yiuGqodQa9Y0h+f+Ug0BKySul/sfAvwcY4N9KKf3JX/pLShN+9Aw/c9jdiAoJu5sgJvzckJR8wKnWhGcF1a3HbQdJc52syGRyej16qveRyylRbBz7zxw89cSziXapGM4t1Y2lvE8UW0NjNeXbhHl9iykLUl2S5g1qmtAxEscJOIIUOa30kRS0LMKiQNcVaZyI+wPKDqj5DO0scbMlef+Y/pMDh1KSCTSVpLg+onR+Dw3JapLVp88VC4MpDWbykO4lOKUolzdmjKRyEEEfOugH0jgSDy0xZyR6VktGOU3o3QFlDWmaSCFK5uCcXM+uI3a9lD8hPJZDxpD6vPsaI+l5XcpCPNbcKcnua40ssqY6BYZQFcTGEUpDLDRul3+nKqV0SonUyQagZrUEkXEizWvivEJNsrslpQTSNgaGEZyVIDFOqGHKQbU4ZSVq15J2u1yW+Q8f1Pzs5UBqLXo+Q61X+CcrpnVJtLLLT+6IB0itPi5y5nofKG977PWWVDjG9ZL+3IJSuH3AdIHxrGDzI8fu84SeErNXiuo+ys5eC6alItR3keZVj910jJ+esf0slxgJfEN+v4TtpN53XaJ48KiUmOaSabjWkwrN1GRcJeWMdfp+3ON3hgmklP5d4N/9j/4LETUEpqcVw1mDbSOmj+iQcNtAqDSh1NghEQ10TxzjylLdSQRWo5cHxBgwClKguEssgWJvGV4ZxpWlv0iEeWQ4SyStGJcKXxXMqiW11ej396Tbe0nXU5SH3aUMIP1WND1mB4cWTYOqKtnt9gfi7d0p5cd7Uggoq1GFk4/rvSwma1Fak1KSVk2UnRofTjtqskaCkzPE8wXaWdT9gyzUmIjDgN7t0UlAsdTlWtR7ed38nnF/QNWCF4CcNyDnCJKJxUTa5cwAJABUpZQYSknJ4TPGcEzDda6RNaANyRqp2Z0hlYZoNSok9BTQ/YQeA0lJyprqgrCqJX099Cjv5DxCIPUDqiqJTUGoLNoozBSkXMpZS3KW1JQkq9EpkcqCWNkTeKjHAF0nAeBY7sBj2aIUqihOu39YzQjzglALWKd9OqXZodT4WhNcvlyHnAHcH2DyxPM5/bkjWoUZE/2Z4faPHO2LSHKB6o1h9jrhuoiKYAb529ca7RPaJ/zMMi2X7D5xTHOFDpIF2AO4fcJ1spj1lHAHQRGHlZyQ6yRAxkJLBnKY0NuOGGL+vN+99P6FAYO/fShjMG9vaYDu5YxhZdBzg9sHtE8SEMZIdBpt5QbGQrF/UWLGgmIXsLsJc8jZgTGQEsVdj90ZinWBv9PMXiuGM0MowAwSYQ8vFf2lw326pr5bsfj5ToKB9+jZDJBFm9pOFhjHsuAxO4iHFjWOqKJALXJaPo0w+VMASdMowUCrxwey61HOostSal9rTjV8avPv5wWpikJAwHkNl+fomzt5uCfZQVFKUnlrBWQcRjieU1nI+Ycg53U88nvFtoWHjXQljoi5Npj5TL7mvbx2XZ06KWl/QGtNmtWksngE12KUoGAUKUoAsJsOtf0A2LT2hPxrpSRQ9r1c17J8zLjKQsqGmz1qL9c/+XxN8zXRhxKslQzOGXQ7SnZkNOrwQQD4APxTxmAuL0hnS2JV4GvLcJ7r+yQL1LZBUnyj8QsnqP+UsG3CdgG7GzG7HrRm+vyK/rIgWoWvFNsvNN3LQLKe4sbI7n8X0T4J6p8S41wTSkV00sUqtwo/M3QXhnGlcPuE9hIEAEIJ0SnMAFUX8bXGV/LNYhswfUDFhGkn9ODR25a03aGc/XYA/K3j4wkC1spO9YsDs90l5dWScV0QS4lgGmmHmCESo5J6a0iYDnyjaa8s+sxS7AvsIUh6fcz2pkD1tiU5Sauba8u4MCQtrbTdp5r+MnH4JPGgE/c/W7H+xYL5Vx169CSjSUZjuglzv3vcQb0XANFPkhUMgTQMqK6TtLKqoEwYY0jef1DLW6lzc3chjSMxJtQ4kpwTxN85Qfi11Lux62EY0CHIjm+NBDqlUQa5yV0voCXI4j5mLrmrcVzwR0RcGYOqa6m/rZVdfkoSpDDSASlyidB2JLpvZzfDQLjz6F7KH3KLNY0TpIguS7TWME2ktiN0veAQRXEKVNJiNY+t1LKE1fz0vviAvt1KgPjgeUkZnE3eS/CtSpT3cDdJiZFxiDiOpJRQ1p0CsL44J35yxe7TGUkrTBfxM02/0mgPro24KaH7nG0YeS17OG5IPgcaSM4Q5iXjyhFKTXeh6a/A14nyxlC/TTTX+VlMsqB9JeVEtMiDncD5hK8U04XG14rqNlEcIv1K010pQp0wnWL2OlHdy3mFQkmmvI+4zYjZDahhRPncPlYKnlyg3t/Ch52f3zo+miCg1yvS2RLV9nDocPsWu5zjL+ckp4UjMAVJ+0YFRhFzzez2nmQVvj5iA4qkDTpECIlUW0zymF2P7QaSNbjzOcNlJWnZlDgcNO1zxfA8wL9y4P0fWR7+dMbiy0R964lWASXqkznl/Yg5jKjRY3Yt8WFD3O/lgyR5MMNmC9t9Bg5ldz/iBsBpd+aIvmv9iLpPUj7gCnm4jZbMpx9Iw0DcbGVn74dThFdJsos0DPIaGRE+ff+Y8iv9rfOk60gftPSUEfRfaS07/v4gi3TypGlEuULOJwOkaZLPqofh2wh708iDaI0g1PNGAvnx97RgIrFyJK3RwyTgndbyO5NH7Q6kQ0v0XoLGMSBlIPDYZVHGPGZcxyxqDI+djeMzVjj0i2d0P72UTSOAGRLjyuArhfZQbQKmi6iQiJUhaZv77shmNAZ0L4E2VZZQWaal4/DUMi4VsYBiC81bcPtIsY/oKQmWoBX9mWFYKVQQLkEsBOlHQXDCbZltJHjvXxgOLxMqJZpXivmbgD1Ewge7v20Dph2lhTx56brMasKyFP6BUpQhwv0GvicZ+DiCgIJ0vmJ8OkePM3Q7ofcdapwwh5HQFOgpoHovSK/RpMISKyv1ZgJ7P+DuErF2j8Sg3J5JzhAaS3QNprAoHzG7nsJqfGMp7wLV+0jzvmT74Nj9AXz62Q3nf+cNf/r2Kdt/OmfxmyQ3VCW6JyVmcLiDx9QOkxevtJwe+/iknB0c0XSXSUUhEA8teppkJ86cAyCTYZI85Kf6+xGLkB0/p8UxPabNgd9qBR0XiTu97jEQfLgwkvffqo/lSXHoopAMZZyA6YOfnyCZb703QOw6CSBFgVrMYTEjOZtBQk0sLbG0wnnYD9JD90HKBh+kzDoGrtxW/LAMIkYYRykFQsjkHbmWKXcoVA5CKTwGAOWsgJpKo5oa/2RJKDVmlM8bncJ2keouorz042OhSTahByk/Qy0ljZSkijArCJXBN4bDM0N3KSm9beWPZJjk0kBjiZghSepvkPdKMKwUehCQ0Pby3r5SdJeaYQWhFhBx/cuJ4mGivyroLqWzVd4M6NGjuwm1k10+ni/oPlkwrAxmTPKelaK4cQJgf9RBIEHSmnFpBSCZWbioKB4G9KZFF5bhssb0geK9RDyVEtpHtJUUP1YW3U3obpI+ce9zXaqJTUEsheThl9WJiaVSwrYS1fUYmP9mwh0abGt59/4Z17+354+ev+FwWfLnnz2j/nVB8zZR7BMqKaZk8bUlPW1wuwvc7QHe30p9npI8yP7ISIvyUH/QQ499OHEJpF2oUWUp3zzuaN4LIi/9Sblcx4X7F67jt4HLY0cApR9fa/J/8fdOv6BPgSK27V9Y6Mdg8S2E/YPzSCGgorT3iAn2Hal04GpiaQm1we4ieteRbu/l+oQPspVj1gS545GDwuRlweeMipjkd0KAokAhASDlEiVN0o0x89m3SFhxNcfPHFOj6a400cDsXaR+16N7z3heEwtNKISmmhpp8x1BOJVguCwY55phpRmXMC0TeoTqFkwvOFUySNxUwmRVh3x9tCD6oVD0ORuYvw1U1yPDuWNYapKRsre+geWXnvqXt6SmZPt7S6JTzF+PFLcd+JhLiUS8WDJe1ByeS6uxehCQcVxq2iuNL9ec/6aBzXff9o8iCCit6T9Z4CuJ0EnLQumqhqKyFK8fqIaJ/vmc4dkCtxuFKFNa9BTR7QR5t0lWk5wmzQvsbsDcH9CTh1VDmBfSavTxVE7okDDdJF9TivK65WyqKHaO7nrBP3k6x78YmJ119LWnv6ooHjTlg6Z4SFSbyNQoNj9yaF9R35wxe9VJQPIRtdlLm/C4cyNttCNrLoUg7cZjC6cfBI23VurkE2021/4fvMZ3BoIPjpQRdjJIKosufJvRdzy0QRcONZ/Je4cI00js+kcQTj/utKdg9gFZ6NjbJ4QT2YfyHD8viE7jHgbsq1vi7V3OMI4nmvGJI3U6pW8FPaWVYCyzWe4a9IKRALppHrGFzKlQ1oJz0jqMcq3ies72b6zYP9eMZxCdpNjFRvAjvyjpL2URxZw8uUOiugu43YSfWYaF4fDUMC04/UzzWlE+JEzu2/sgPXEVwfaJ8iHgNiOhEQBgnCmGMwH9zv9swG4H+icN00xTPUTcPmIPHvdui9ruic8u2P9ogRkTs2969BQItcstZOmAtE8dh2c6E5YiZojsXloOnyZCFSkf1LcD928dH0UQADB9IF4azCjILEg6NVwW+PkV1dsD9Tc7/KqClNCd0DZD7VBWQDs9BlKCqBRYiJVD1yWq7dH7AbQmVBaVQHVeAqmR4EEBsTRCybSacispm/aa6aFiXJVQCrHRzyKhVIwLRdLys+6QGJeK7ReGw7M59U3ETAnSmvJ+oni/R232UrOPE9SVtN0mL3XvkVocg6TWxzQeHluVppCfPxI/vo/Ce6K/RuIwPJYJx5aYVmCKEwYhmYUW/KEsoXDS3fCldC1yNqKqUlL9fiDu9vJ6uVOgS2kjxsszYmnQux42O1Q/SoakFOp+S7i5k8/54aH0Y5sS5LMWxamzoZcLwRUmL+dqLeZsLZ+z/IAPMHmoSulUOCHyJGMYr2p2Lx2Hl4pQJsyomL0TVp5rPf2Tmv7c0J8JW8+1ifomUmxk4fRXsvtPM9nl3Q5sJ+0620WhtbvckgwSAIpdpHnVSvvQWUKzkNbhBBd/OlF/s0eNnulyTrKK6tZT3sjmodrccfjRM4aLEttFbOeJpZS1odSn9+vXmv5KYQ8wfxNIGjY/suw/iySXKO4MSSf0xTkcvnvtfRxBQCvcQ89MK8a1JVpFsZmIhWbSlmmmmX6yoLwXgpDqPartMYcOdbY4kYXUFIQB1ypiIUIkxklSbqXk+0cSjjPSm+69dA1qy7iyTM1j20aAoEThwQzqW1+3vQA6yUiwcq2kYCRObaKpUbmPW6JfFhT7NcXW4+57VDsQm1KCWJBsRvcDat8Sbu+/rV8A2QGVkJNUUUj6m9K3dulT9nAk+RyPD6mxSgsV94jyxwR9L6Sig+AwJ2FSFu0okwNEVZGairRs4NmF/FzW5CQj1zxUVoL0fnhk+uWyIvXDo4ZCqVOg07MatViQFo1w/rsRHraoYUDN56RFI/iBD4/dibI4cfiF1zBJUFNaMoPFjHixoH9SsX9uGdYKt4fVrxLFNuAOnqQU49LRnRtCCeVDonoIuL1Hj5FpbvEzAQ1DIV2q8kGwITNEYqEYloZQkduHUG4j9dtBmJAZhPZnDdEqZm8G3PUBtdmLcOhiSTIK20q7Ufko+MnlknFdEiqDSoloFdNMyD/CRBT6cH+uGddQbARn6M40m98Dv54we0P5zsj3HiJpt/ve5fdxBAGl6J7P0EEYVeNCVF5u60Eh7RQDU1NQLgzlw4TVZHApEmsHTqM7hT70ECPaCxElNaW0TIYR1QnhJBQFwRmSVeghoIaA1gHbCZ87FOoE7oDwCWwv6V4oFLGU+q++EdqnyustOtmB7UEisjxAWhhwUdDhaWYJRUOxsZibHW5zEHZd4YirBlYNpqlJm+2JbQg8Ao0RtLWyKGMiWfsIghmDPgqbjqDehzV9xiZQGXuwOXgWQgmOXS9tTD5gNYYAqpBg21QnkG9al/hGC+gJmFGug+kDdjM+BpPeo/qB5AMxP4i6aeQ961pOa1YTm1LwAx8FV1AK5nPSciZkJJDvjyMMg6jzUiK2HUyTpP8xkZIXenVVMK4KpkZ29+ZdYvZmxG1HYmGYFo5xZYhGSD/2WjoCx0CeVP5MCZKSdnKxe+zbdxeW/lwRaiHyzN5FyrtJcKx2JDnDdH6Gn1lCpeV7X9+SNjtS4VBNTWgcvjGoIKzXlOQe+UXBuLL4WnAD10V0T96EZHPpL5QErnuwh0R3pdl9EYlNxN5bio2i2EF5H3E7L63X7zk+iiCQCsf2C4vtZLEFp2ivLG5mhDk4JrqXEgGnmcHXmqo0FM6gtx02BPz5jOm8grMKtxsFULzZkJqKuJqJoGTfYYYR3coDl5yRlNFJy8ttR0wr0k5fG6aZ9GyPtE4zSEsp9iDKVSW7RuczC04RGyeKuF7IG2Ym7DU9yUOmfG4/OYNaNZibLWw7CAHjHGneCD+9adAhfJvogrxnHCe0FvahKhv0QhMPreAOxx1RC8iXfK63rT3V4anrpFvgnPTQnUPN5+ijum+5YHq2YloWuTyCYWnwVT6FiOxKpRI6awLTG9wh4Q6GyioKjSg9D+2JgZhikvR+tSTNG+KsIhZG6lut8iKMwgCcScBRPqK3LXS9SGKnEZQm+V7EUkajZispFwAKRzhr6J5VjDONr4T8U+4CKsLh04buQhML4fw37z16ihKcS2Ha6SFigsiDp5lsDK6VDWqaaYalYppLaTD/OrL4ZsBsR8ifY3wyP2WVZkw0r3vc6zspqeYz4vmC9pM5/dpIW/L2kUU5nVUcnjlCCbaVrCMUiuFKMg5fyeI/liXRwub3YLoaYdIUN4byXlFsEtWDdCVUfOycfNfxUQQBEkwzRX8BbqdOJx6NwpcG20eKbeLwQuFr0W2raFG+otwPqPstru0x6zl+XTGcl9jKUrwKcH13Er6k0kmf2otkVYHQS509lRQ2k0AKDbEp6J5W0ttdZ7nmKLuBChAc+MrgpigP5BAwu4AuHdGKNNYMQVLlHHAkIHj0VoCtuJgJT36cBEy730hfHk59cAHzvn0TYz+gJo8qpA5WmWp7SuGPP59bg6pwmMVCMgMvgppTn0JrWUSruexgq5LDs5LuSjPNZVdMVh48XyfJkow0zlUCt9WYXurk6naS2nZzgD7jH0dmYAY8AVmstWNaFfhGUi7TR2xnRG2XkvTkx3yuPkiH4MmlMAH7USTQi5pQO0Ili3hcGsaFBG8zJnSuProzw/ZTEe+oALM3icWXA6YdmdYVeoq4g4hwklFMS1nEUyNUdT3l9qGVDm51l6hvAs03wg/xq5KQfQEkQ4LyIVBdd5ibLakqCU/XTOuS/QtZ5O4g6j/TB0Jl6Z4WtFeSXc3eS9BqLw3TXMpQleTcbQ++hvZFYnoyoUxC37kMWEtm4FrxJjBDpLjrBOj9nuPjCAIkLv/xyN3vF7QvpOVSbCWaJYN0DXohYXRPEu0ziEYTCocOC4rJE69vUYeWYrfAziv8smJ6tsIaTXp7LaQX56CqRPdf5/QTHg06QkL1w0kQo7cts7bB7WaoWLB/qfBPQAWF7cD0iqQdtVEUD5nVOARUN2EykUmNXpRt/SBp73pGqIX0Ym620PaPKfsH5BZlzAcp/QeAX8YFUkxCQ/aTMAXzoWfNqeZXx987qvuUEsQc4OifkAOHqivCrDgp8HRI6FHy4lADShhr8+tsiIGkquU2Mfumxb0TclRqOwELi0Lu7LFNakwuQTKleZywtx5zcMSsoFQhSuk0CWJPkGCANUKOqkvCupEMzs6ZZhZfy0Idl0pQeyMKveZ9pHwQzUl3qZnmKu+uUF8nZm8nUaIuS/QYcVtPdJrYWGwfiHlXt50QckQ7IIu8vpXU3z30JKsZLuuTnFhPiep2RHdCTiMm/JMV41nJuDT051qu20YCAED3rGScaaaFtCOrI1nomcHPpfwwnfgHhELRvkiEz3qsC3Bb4W4N5YNCj/L+yO3C7TzFw4Bqh29TxX/r+CiCQKgM/YXl/J+NmNHx8PuJaZmIVlPfJNyYBCDvFbFI+CcT46VhfGPxVcVs8YTZzy28eU+6u0e3FcWuIlUFqSyEjdi2IttNkXT3IOj8co6/XKCKLLFVordP44TqA5DQ25ayn7DtjOqu4uGnlu5ZolsmOR+niNaStKLYaYyaTgBlctnkwlnY7kibLXozQ58tT+YWKYNyJ/Qe5DzhLwB6p7aZcuhCA+5EnpGfF/FQUuok+JHXtCduPkeJbu73x35AeY/qeuwwCh25LDD7ivqdCGl8o/GlRoeI22WWWu/BR/S+g7sH4UZkQFEVTlSBcAI0dV1lObNoC7h7EPmvMRilMMYIS/G3jwxQpqogrprM91CEyjDNDVOjTgvc9FBvE811wB4C0WUw1yLZ3SZhWyj2kVhoDi8Fkyh2Ad8cMSIhDWFB+YTtRac/LEUYVN0HytsBPUX8vGA8K4hOFIN2P2HaSXCNyZOcZXwxo79whIKs/ZeMyQ6RkDkJ0UmWZTrZwQH6tcY3OQAMUoKNS8Xhc0952eE7R/xmxvKtLP5YQKiEOWo+yDBOfJnFAu6/e/19FEFA+8S4UPjSsfg6UG40d3+k6D4J+EZEPxI5E/PfaA6fOc7+xh3FF57rhzm7X8y4mF2ychb17lYe/n6A+4fc8ioe619bwnwGw0h8e42936CWC5Gegizcqhbl3VFIEyNm01EPAXcoObwrODzXTAuY5uBrxbiyuIOhvilwO3GJ0b1HITWuiivxBTgcxOFq3pCqQnbtnC4rZx8JMuP0beFQ4aQW7roT4KfqWhSIRzIR0u6LbSvuMmVxau+dfqco0EfjkbKUc8rsvG9RjgHrLM5mluMxeMxzcMmWVcoHuZ7na3CWWOYediY+qlG8H07eBkE+GzGJtiKbtKS2e+T5nz5v7njMG1JVyv+jCEmSEQqyOyTqm4Se4knpNzVC5gmFdGnkGXvEMnwlXRsziDVZOnoyBDGt6eeGca4Rua6A0tpD825EDwHfWMa1xZfS8mte99LXb3soHKkumZ4sOLws6dfqRE4zg8iA3SGeLONUVExa3ssOwjfwZe5G5JjoKxhXCX/uUUXEfz1j9WuN2ydCmaRENmA7CXTlTjocdicAarhYiMz+q+9efx9FEFAxMX8d6M4Nu08NzXXk6v+buP1DQ//pRKgNs1dCznGHxOwrzUO4QH9+4PeeXeOf3PJn5y9JZs3Zf+hJMRKXtYg87jZSClgr+nnvZeHkWlwdOtLNnTj3NA0sJN30q0r0AbknfwIQgXIj7LGpUfhGdqFxCf0VtE8M5b2IlJq3uUc+isZdrZakuwfZkVNEqQVpMRO+QgaN0rzOzjg+uxy1sjjLkvTsQvQKdxsh3Oz333YuOtJmvXAPdCbOHKnHKvseqEbKIeoS09SEm9tHifC3XmcSnoDWElS9l2vo7KNIBaRll1th41oYedpzAtlsFyQ1dvYUQNTkZXef5cU9TCIUOhwyxdpJzz/LoNU4EecFQ3ac8rWkzvWt7MChMgxr4e8fd39h38niI4LyklI3byepk5US2bGWnvs0t0wLgz9mDyBdqkOiuhuJRnN4WUmAUFDsE/OvWuy7DWm3h1mDv1py+Kxh+5lhmmevwUlkwM1NoHgQIDJpJZ2DUgBvOwjNFwW+kdLmCAD6JhHmATVpyteO+q38bLTSjjZDOmUY5SZQ3g2Y3UAyStqThXksDb/j+CiCAECxnSi2E1Nj6S+ENPT0P5zYvbVsfwyHlyKdLDZyYet3iukw55++rzEXA/Pne979FxeQLln+uhUixZMG82KJu+sx9zt5+KpSdqXdAeqKeLVGnS2FyNMPwk4DoquZzmvUFDFDyK0rcW0hi0nMqBknYR0mBf25ZriA/gmgDCoVojzc7AW0y4498SDcf7U/CK3VOZHC7naoaYJ5I6VCU0FToduedGhRPtK/XBJ+ekZ1/Qz79kGQ965/ZAMej5hr/cVcWo7DKMEiJuJ2h2qzJFor4Rx8ILGFR1bg0ZDklKUcjTVLJ1ZgRx5GCJjSYUrDNDNMDUSrKQIQheYc5xXTosgprlzPUMoDaoG0nJ2ESycD1Sg/l+qScVUwLgXxN4OQdXyt6S6qU02ugtBulVK4XRLSV45Vto8UdyPu7YPoFRYNGCGcTXObSTsTSUEsH2W6KiXap6XwPvKO7Q6R+k2HOYykusQ/X3N4WbH93NA/EV8H20r6P3sdmb0ZMa1Q2n1tTkY5to2YAVAw1Vp6/ytZ+NFCconQCBnDbjRuy+nzqChBTY8ifCoevPATfCQ2BX5RSLDJna7vOz6KIBCdxtcWtxmp2h7XildgKDWrX40svtHc/8zRXyamBZhOLq7pobgzhLamsxW4xN0fKnw9Y/XrgWIzMi0LupczimUhRI1uIDWVkEw2W3TbkS7WpPUCdbchbbaoYcR1A/7piuGsZFo6bBfQo5B6XDtijRhmlLVlmllsF1h8E+kvCnYvDbGAcabpn9ZU6Qy9aQXNX68w87nU7l0v8mmlpGdujDDxMhtPWfvo3lM4eNhRWk33cs7+0xrztMLtAm47YG53pNt74fx/KAqKEUpRI9IPJ0+EGNMpUBzJO7osc789Zv1DEIn0CYtQqK4Xm62yBGdkkQ65bBkmbGuxnWAh2oPtROdxpHSrmLJh7IQ+DNiQlYb577iaozLV9+QCrSWldnt/Ar70GMAo+nMp48ptxLaZaZqJPaaP2P4xMKopiv9f4aCpRIBWGIZzRygUzfsRuxlkoc4doRBm3pQDjDtEdBDwrdhOhMYxXFWMc0N3qemeJqZ5xLaK6laowdVdZPZ1SywM3Yuaqc4KwF3ETAJc+koLtrFQDGciHEpAmEeYe5g07sbidh+oD520aIttYvbOU972qE48HKaLmRig5PZm0grXfuTdgaTh8MxSzLX0TPtA/bpjPK8YV5ZiF7j8xwPtU8fuM01/FRkcuL1CjxIQQlLYQWqj+z+A7qpi9etI80ZMRkJl4GqGfTDSdx7Gk05fK0VaS2pOjJKu9z226zH3C8YXS3xloBGLL7cTGbFqA2bTUYCw4kKg+DIw+/WC/nnDsDL0a4Ov59TXBe6mzcpGA+sFet/KLr7bE3c7YdgdU/HJC324bQU3OFsDoN/d0bQD/mpBLGTXHtcltjDYwqFv74kPmxOXH5Bdz3vohHN/yhhOvof5PY9+hpOXAPHhPTqqGjsrSH2EVBpSJjihdVZ0Jsq7EXswwo3wkVBbQmnQYxRD0fsWtdmd6MpHNaCaz6AuT8pD5YOUazGiuwG97zHLRuTkrXgE6s7ndBexn3ca2wmYh4akBESMVqFSwlRWMotsWR5KSe3Le4/ZSzBLRknH4CCvY4ZAKA3T0uQWInRZSBRKCTrjAkiK2TeK5l2kOATcNmA6f2oLitJQev/RKQ7PHNNCfANDDeMqEusICVQdSFGh7xzVncYMZPt8aaerAPVNzEClBIA4L/CNlE+hEqKa9onyfqJ6/ZEzBmUuAHQXmnFeUm7iKYrrKZ7Uhc27iWJn2L807L6A8TyggsI9aNxBEZ30sM0I7aeB9lOY/7rm7M885f2ImgKhEZsuvTHQdqLRD/doH+ByDcs5qs2XxRrUoaP80mPP59KLbiz9ZYXbTSfhkeoG0v0DAHHy8OYdza8rmqdXDJ+s6C4d49KhhxKz7R/tsXw4+QOCKPdOdlezGqizYi5C2wmYlyxqnHCv7iQt3x9QywWxqaTOziadaH2SHROTLP7fsj3/7SMdNfk5AOgq+wp6f2r1xUMnGc1uj24a0qIhLCt5+BToMcou309ivGQ1MWVmYkziz19aWM6z4CcKPyJICZAKS2hkdzfZJFT5IICbVgLcimyQpJQ46AxepOWFkL58ZYilysa0QBJAznRSWsisCnXy/y82QhOW1+RkGKJbAxpCU+Bn5pSFjHP5/dOubKHYQfFKDD+OzEM9RdoXFe0TWcT1jdCNh5Xh8EIznCdCGQmziF5McktGLcSMrWXxpaF4SCRz5GZkq/EhUd9G7EHERgD+rMbPhLItAKnCHSLl3YC92Uv5+z3HxxEEhsDim4HdpyX9mWJcGMqNRk8G10lEjk4xnMnpzt4FzGA4PLf0TyPjswlGTXljcPtMtdwahrPE7qee/tKw/EXN2Z/32K3YcMX1DK015s17wm5HuL3DTCNqPpf0dBihLIhrsdFWvce1I+5aQMf+qmJauGwz5TCTJ+33spuDWJS/fkcZAiqeMc2tDFYZHNoHob1GYbwJ2ac4If9pHKXNN2tQq9njoIpjrQwCdqZ06rnrlERifTTtJPfouz6bkn4HMPQXBEjflg2f9ALZWYhpOrUW096jJ4/yHjNOmKN3ohb/BnX0+z8Eiq16dAs+uiIVTq6BD6jFTGr+s5pYPgqJktXi8kteAErKAhUTsZJgkawSj8kpYh8GYuMYKsM4kx3edunUBfCNORF5tE/YXtibvjJop7EpYY5Cs5kjFRqilKtu7/GVoTsTnYHtQYxCpC43uUc/LDU6iKHIlLsM8zeBYuOJRtFfONpnmv4q4ReRVAWUjcS9wxw0Ra+o3ynmr6UNe6IK14qkpYVohzxXYIqoEBlXBX5u0KPMlgileCQUDxN20xNnFeHJAl5/9/r7KIIAKVH+5hZ3P2P3kwX7l4b2maLYQCgMeq4pdhHbRaaZZqxlMMP8G7C9pr9wjC8m/E8m/OuK6kZhRph/oxh2lnGdePiDxLSoWf3G0XzTotuROC9RX7zAvLuD3B5L+704+hRSG6spEJYVobKYdsLcHzDfXNPsF0yXc8a1Y1xbyqbAvatQh+6xR2+E/WV3sqiTFlqxygsBZ2WnqytZFFphh4l0v5HafrNFHVrBC5KwEvWsyV4DYqGlrCVVheyWKREv1vh1RXIa3Qfs7R7z/uZbLceTKUf+9+k4SowVj+7IVQmzGpXWsmA/DCbWSEvQiDhLb1sBGY+IfiuA5VFARG7/pcUM7UfSTgbIcLEmzArpviQB4pQX3AAgOiO73NG6PMF4VuBrjRkktbe7ET0GohO0vdxE9CRBzc/Mifasg6D9uk+EQuOzm2+xDaIZcAa/KCXDmx4zh/3zQmYCGEH6k+JkBZ40WWEotmDNuzELjDT1G/FCGNeOfm3orjTt04RfBSgiBIW9LqmuBUOobyLV7YR4EWjMKCWL7SXIyOARARSLzci0eMxSQimWZWZK2Fbu6/Bszri02SPhu4+PIgik3HbS9zuW/2TEdmc8/MQxrAX4ML2otcyYcK1IdH0lqHx1Kww+PRUMTwI8HWhLR3FvyOoPiq0iVNA9Tfja0p0tBDh8vZG21flKerxwmlSDNd8yrlReAKq4nokx5vUdxf0We3kmVk6FkbbkUXTj7KPzsVK47XBKZ0Pt0Eq6EAwTab8Dne3HC4daLwXR73vp8bft40JaLkjrBfHFBaqT3ju7g7QRjUG3BaY0BFMwLR1+cYZ+sRIK7iTZhOm9CKpyl4KYTgajKVt5qfkMVYvuwi/k8x3t2k7OTVo9ovv7Sc790EHbZYuv6dE7MIqGIWkDdw9SngwDqq7RVYlJcg4+ay/s8IGbkREvvRQ5jdfSQ6Q65HkTg3j+pawctYeAmSLBPYJjIH1016W84JMIex6khakHsa4blrWw7XpPdIbuacHhqTAOzSh9eBGD5celkmEgZoTlV4H5bw7oTUtqSvyiZDwr6C4s0UF/oegvEv7MoxtP9Bq9s5R3itnrSLGLlLfD6bqaTpiKx/JnmguLsdh4ivuBUJoTpjHNDMFlMdQ+EPIkI19pQvGXr7+PJAgoxpcrind71KGj+fktejzj/m+U9JfCiCofUu7Na1wrWUEoxfap2AIo9GQYzjRhFhjXMXu4ZSLOJCDiuE5MSxjXFZdGUf3qRoJQUwm998OaOQNUuvfoVzcyCKMqRU334goGjwoB+9AJM9Bq/PmMo5/cEXmfVoI02zZgxnhKa7EaSoe518TrW+J2K5z/oshe+ha9cNmePEobcd7Qv1yw+8QRLTTXK2a/2aO/eS875Tih9wOxsFBJu2586mifKvwciFA+wOxtpH4/4h564fn7IKXJlK3Qc3Yi6b1YbMWgKR4ee9DJGfTgZdccpXY/Tm96vLlRjFDysBSdpH2nityxiEnITs7mQCtqzPGsOKkz5XWkzlZjzFZfEoxUN8m8vbLALyt8beX31/akIBTxlwBy5e2AOeTBI5kDMjyb0T6rmbLeoLqXQSH9uZEFPgiaXxzEL9BXmnEhQqLoZBbA8itP/dWGWDq6H58zrizDQjwHkxGhVX+Z8JcTrhmJUcPBUL3TLL6U3b94EJ/GUIlZTqgN41KoyjFXSbM3I3Y3EGrHcFHkRS4lUrkVR+7+QjbQaSZZjh6ke/J9x0cRBIgQSsP4dI67M6h+orxuWVaGbbK0LxLjGVTXmsXXmV/uIWlxaCUJ6hqtwvSgJ3NycdWTIhSJZBPBJTEpDYrDi0R0JevlM2a/2Uv9WhYCrvW9ONQo6aEzTjLEcxikpeesKOGairCossORDMaIlWGaZzVeHgZhusg0M+xfukyiSajosK3MjbPrErdsMEdX3U7+kHv4aj6Di7UM4ShM9vCH/lIxrg3t1ZLFs4biYUSFiF8UhELacWaMuA6a95qxFyRaRQGzQmVQqxKjRIKdKuHxH4e4AHnIZsYhtPT+tVEi4waOFuNijnIgHucwftDpUNn3QBnx+ePyDL+sMO0oVmNGE85mTMuc2uZxXSnfQxXTI1U5O0r52qHHgEmJ2Dj6JzXDSgC7I8nmODeg2EkAqF8f0LteJOZKQe04fNKwfykW9MVG6m1/FA51kcXXk4CGSerwaVkwnWsxC00iUa7uxer78JM100yfpOiiJYBhLjyX6uWedTXSDo72pmTx55bllwF3iJg+SE8/37ujV4HgGpFyIzMO9OAZL2r6M3tSt2qf0AEplZ8ZhjO5z9qLzLnciprw+46PIgiolERJVWrSZSNDE7qJ8nZgVilCbeieJvY/CnRXmuWvLMuvPNX1wLgumOaaMQeA8kHRXwqaqkckQEwKFTWxSIRK2GN6gmGduP0jw7hYsvyyxz70kLKiL8hEWZVHXR0voWpkFEy8vgXANDXm6SV+VZFKmQIjI6PkIdJDwN3vKG4s03kjHgO1JjjFsBbMID61pJ+U2H6dH9ZOJtq0nSj+UoKdBB8qi92NzN4ponO0zxS7L+DhDwzJVKioUJOivFMsvhIDSxWF5Th/JXVvqPTJCy+UhrQuUTOH6cVefVpJvY3isa/fy2dRIYkM20chCfmQZyNM8sd70T6M42n4qJrNxAewKonnC4arRoCsocCMjagsrQSM8mGSVurkBTdRSkDah60sxLpGLxp0VZws5MdVkS288+LLqL3tJcWu37SY2x3ESLha0V/VMsymkN2yzEafYm0nO/fs9Uj15b1QnRcz4qqhe1az/dwyLkXGW1+Lh8I006fytNiJpFwCiWKcKw6fBS5/fEfjJjZdRf/1gos/UcxfSYCxnXSJhotKFJVKnIdtH2XS1kY8EP2yYveTxWlcmR0S7YXJugEJfiFLNmyXjU8PeWLRX3L8cwUBpdRvgB3iY+pTSv95pdQ58G8DXwC/Af5uSul7pAtyJHOcIyBWTaHOk1+nQHU7MSzF2ilU4J9M3F0o2meO9c8Ny1+3FDuDW4pR45gUxYNiOE9My4jphLQSTcIMKjsESWmhvGjl9y8V0VSsfq1wSqGnhnT/QNqMKD+TDOHE7JP5e8oa4nYnPflhxF2e46+WoASZPU6RVVNA9QPc3lO8SpSLOXE9P4lPxrnO2gPFfgFJGcy/tMBtF1R3wgM/MsH03U4s02sZJjp/rVDB0j5TdE1CXw48Pd8ydyPv93Pefb6kuDa4g5yL9vZUz0YL7iBtq/p6QicgJOzugH1o8WdN9lkAUsIcJsxDVgmC0HqzOjF5Lyq1GFGuOJUAui7Q52vh/juDr90paCejUC4RvHALTBdxuwl736L6UbKRoy2e1rCWa0uepaiBFAypdLjdhGs9wQlPQCUxN3H3nVCRhxHmDf7pmuGiYlpIm1HFRPNeAMRY6NNwEdVHitteAlxZZB1AJXqRudT/xTYHDUWeoC3W4OPC0J1r/FwG2/RPPFef31NZz9uHBf7LOWd/Bs11wAwRk41ux7VIqo/6hvIhUN306IMA1v2LBe1TJyDmPuJLzf4TwzR71EVEI5vbMQMxXaLcRZJR7J//bhmD/9WU0s0H//9j4N9PKf19pdQf5///m3/ZC0Qr7T97EG6AytxqnEH3geWXI0kXoAyDgjQL+N9vefuioLuas/75RHE/UjwICjusNG6n6S8N4zqevN+mmfARbCtS4GOPN5Sw/1SBKln9CqxSIiB6yHMEM+vuKMNNzqKCyzMBsvX15MVEYyajxPUoardYOWnzFXl0+F6MT92+xO4q9LMZSds89UYCXX+Z6D7zdIuBGAzxpmT2quLiTxbM/vQate9Qqxo9RRZfj8zeaaZfCqj18Kzh9ScevZigDPiFPuKj+JmURcrLrjt4GYLhq4L6NuAKjUsJdegF5yjsowdCPwqpabN7FC8dZcHZCfh0PTKIqdark3gllpZpaRlWUty6VgAs22ZTln6UOYIxkuqSOK+yrv+xtHEHj73vUK2w+mIjA1zsThaKya5HeorowyAYjzWEF88IM4evjXjzqewCHBWjU0RrxMevF+6+3GOZKtw/renPpC53B1Eh6gnKXTzxDkKtOTwztE8Fcwpzj5p5qmbkshpph4Lr12vKN5bFe2Hv2UPAHiaxOFsXTAtzmslQbDzurpcSrS7wayHNqSh4yeZzS38lhrzlvWTASYMqEK7GANW9UJunRrP/RJ0G8XzX8bsoB/4N4L+S//2/Av7v/FVBwAhRqDSP9FB7mE69YbcdWf8ioacSMIyTwi8Uejax+VuRwwvH6heW6l5qn3Ijf7tW03Wa7lkkOLAHAVj8LKGCoryX2npcKcYlcrFCyfIrYFWiL6RHr7tJauBhFJnxrJZswDmSznbhRp+AQBUS9iDEHGkLFqjSoRppPaU8O0F1I/VvJopNw7gSnjca+jPD4Zlj/2NFedmx+MmB7bOKr581LL94wepXE2YUKarbe8p3e+pxIq4amuuG7YPFNxJY9ChuTSrIpKbj5LToYDiH8Szh59BdWuobQ7l26GkuLSorgJMZErZ2WCc23unoX3CclXC0MTu2GI0GI1Jp3ftHi3dvREbbynh4sxukS9GPeTBqOJm/jKuCWMr8SaEAJ9kcnCE8WRJLk0duiWQ7FuakBjwOqQ3zJX5RMM2N+EFawQmO/v+2l1q63HjcZpLywijMJLhDf1UwzrR4Co5ZmlyIq7E9BGwfGBeO/TPD4ROYFpHUBOqzjifLPb233DzMUd/UNPeKYisWZeW9fH6A4bKkPzfS2++R9P+ux9xtBTSt8gBXJ8a2w5lsFEddgm0zAUuT8bCEO0hQ2H1qTsNQiu3vDhNIwP9FKZWA/0VK6R8AT1NKb/L33wJP/6oXsYMAff25EIWaG3kAi/se03tiYbGbgfWfB1xXs/1MM64EK6CJ+AvP7VJR3BnKO5XlmpI2FXsotjJdaJqlkzbbzxNdVNTvE24nQWFYy1zCpEvhoncCwrEqMGe1IOn3uxORiLp67Jv3g4hpnCXM5YG09x3mYZf98Z2w70onwJTW6FaMRe12j61K8Rp0lvqVZfXnhukflbRPZhyeLdBzKFJ2lHkqAyiElirutOlhiwmRorIsxfND0PPIabGYw4SKUQxXFmLIIXp2hQqCfiufF8uJUkwu0QwqioWXyq3A1HZZhjxJFmBzd8EYIRlVRbaANyRnxFAzZ3q6zUNXC0dYNNmRRcl8gtLIzMkpC7aUPGmxNGJkqoRgdnRtOnYwRCkowKjYhanHOZZ5BmBS4gHpdhNmO6D3rSgknSMtZ0JCqh3jWUFSgsYnK2PuQslperA9eMazgpu/aeleBJJL4CLz85Yniz03+xm7V0vqbwz1+2xJbo5y4sB4VrJ/7hhXUqqVD4n6/UT5/oC+34u8ei3DRNonYpSajul+ko0zaZGxn4RTUbCBcS0ZbvmAUJh3kfSXrPR/3iDwX0opvVJKPQH+r0qpf/bhN1NKKQeIv3Aopf4e8PcAqmLF+Z+29E9K2gvh27vMA69f79G7VmywY2T55xNmmLP71GacQBNtIpYwrWVijNvKgnYHQ/M+Mn8dqO41h6ea9qX0m91W8ID2mURolLDAQgGHTxR9Z5i/VjRvJ8wgJJThssbMC+xDLzPfJn9S1VEWpLZHHTp0IyaXrCuKhx3h5g7Irrp1LeQga04Cn7jdwWYr16Vw6MUCtZyhpkj5LrL8ZYFfOKIRr0LtkyyCdhRnXh+kDr+7x2mFHucyO3GXH3KlRITUj9D1uG6G2cuob932JGeJjSBKMv7biygoi3qS0ScAEJCAlu9HGscT9z/F+Di2vCqz2WaNr2TXtn0gGi2aA6OF7mv0yUM/FPK3dAQk+MRsZqoz4GqGhNtN6FYCmp6kj5icke7MrGSsCpKRtLp4GMShyGRL8MGjNwcx/BwGYozCr1iviJXFL0qGc3dC9w8vCrpLkfbaDur3svPuvqi4/wMFP91TasE2XOFxJvCbtxeYrysW7xXVjQSAqRZrPJXg4Scl3RNpH7o9zN6IC5LpgzAUzxeMlw3tE2EXHg1T9AjjGqaFlAKim1EoD2iY5lLOuI2ieZNobgN6SPiZpr38HWECKaVX+e/3Sql/B/jXgHdKqecppTdKqefA++/53X8A/AOAxfqTlLRi9qst9WtH/7RmnGv6c8O0WNG8qUSXHxKp1My+3GO7hsNTJ2YkM9F/x4MR7XWdsAdFd5XoLzTlnWb+JrL+1URzbdi/0ExLqZ1UhGnB6cEzo6Cc4yqxs5poCxZfDdjNAEYxXFSM6yXV+w6zER79aQBH4WSA5sOBIiXxvrtao/ueuNmdLL2VD/KzTrjeHId2pkQ6+DyzL6JXc+KsRIVI+Xqf62D3mPYGCSKpKlB2LbLib95gbkrUYiGEpf1BfACm+cldmNt79CYPRU0JFSPmuMDzwJLTvL9MIop5epGZz2T2wDEQ1JWQg8gsw1r0BhQui4Bk0apEli0nzEEIPmr6wBHJGHQjkt5YaKa5jAC3fcLtRe14LE+SVoRlgR7ycNacAZBt5cvbXkqhh0OeQiVkNEIQ3MF7MVzJ9u3x6TntU1l005zcrRBs5gguV9dibBMt3P2BYfijjqcXGx4ONd2uIiWYDo7x1rF4pdBjwvYSuLpzjZ+RsxlB8fUkAaV6eMxS/FwykH5t6C/l+U02Udwrphn0TyL6cpC9Y5s5HBqSTcQ6YQ6a2ddCObadCJH6c8PhpcbX37+O//8OAkqpGaBTSrv87/8G8D8B/o/A/wD4+/nv/8Nf9VrRKPafVlR3lurNntkvB6plxXBRMi4M2y8qisuC6jqTKWqD3U3MQ6I/t0wHTX8pdZHtFNNC9NfFRi7e4bNI/0RRvXfM3kUu/8nI/oVj95nU4Cog0TQDRrbL/IIKDi8UU1Myf2up3g8U9wPDZcVwUVEYLUaYgN71qPFAmrK2fvJoZ8U198UVpqpI2102/DhAqkWNt5ihnRMvg2kU85Ms5+X9LdoYMQFpO8EnnpzTfr5kWBlUqqnuPHY/CbhWFbIQs78ATUV6doW+fRD/gqKQToe1QvmdyZOhhlFEUMN44geoppaFDqiul9T/ODVptz9Rj9WsgR9dysIpXU7jhW6djMb0XhYenMxcdTeJf8M4ySj2uiIuavH4czpzPxLlJlHd9FmJ6ECDaT3RaqalIzUWtS7F1Tlr9VXImoUIqc5g7iQWW8lo8RCAU5Yznje0z8SohCTPwrCG7nkgFQl3byhvpf5unyi6LyZefHpLYQKvbtZM20JKr0FTXhtmb2QgSXAqt4qlSyDSd/HM1IOi2CVcl2nNVXbSzl2i/jIxXcg1c7eWaZXwLwYuzvds9hXTfYXucytxEVGTonpjmH8t3aTjANT2ynJ4qfCzhN3/bmjDT4F/J7vaWuB/k1L6Pyul/iHwv1NK/Y+AL4G/+1e9kJkkYu4+cQxna3Hkeeip3gbctmA4d/RnhmlWUT5IfdOf18IC20XKe0+1MWw/s3RXgn5PS5kS5Laa8lYzzRP7zyPtS8X8q4LVryeKnWb/0jCuyDeHk6+8OyRsJ4ywaam4n1uqM8P8jSjOks0z65XszPqsonioMW/vSdMku641eTHkdFwpSaGPU4jaDs5XwrWvS0Gzp0l2UWehXEmqP06PY8tu7qmNIukl3YWhfWLF4hvAalRhUf10MvvAGtL5Sui8Wkg5oSmyXDaIe1I3yLj1vPOTZxKkQtqAKkZpzUXpZx8diFIWQYVFKYKq3OMutoHypj8pCVUue/Suk3MKQa5RCGAq4rxivGhOlt/FLqBG0UYkpUiFEWXirs+eA1W2bc9ioEllvwKFiopUCX3YHCb0fn/SKKhZI9TosiCsa8YzmUugEtQ3oovYPxPMwR407o0sft9A+0nEPm/5/GxLOznevD0j9VkdOeTn7EFS9milG3XkLFR3kin6SjYd00kAUIHsDgTDWjOsYVolwpNRWrobR2gSxcsDF/OW67sl6V2JVpDK3Em41TRvZPgISrpAoVC0Twy7HwEx0bxTzF/9DhiDKaVfAf/yd3z9FvjX/+O8luon1n9+4OH3ZvRr2XnLjaPYBexuono/oKeCw1NLe2Wk96lg/9xge019G6jeD5S3E3d/WLH7XDgAYREIZx577Sg2CrdT+Cax+zwxLhxnPw+sfzHRXVjGlTrVnGRgzQyJNJDnHSj6K0WylnIjTDySEqfbhcrjqwqWtRPn3ZSI8wo/cygfcW1e4JBHbk3i8DOMqNVCnIgrd1rAKspsgvHpXBbHEGXRdhO698x+vaG8rxlXR/24BTw6GdSYsYo28/gv1oSzhbx37vun44QhyGj+B7p+pUhVSSpF/6CcQc0bAUSVgqYk1k40FbsOvR+pgNIIt/1oGHIaNR7jaQBMmiQ952xFquR1/ExEVdVNf8oaZGR53tlDntWwkDkFsRRWod57CcBjkHkFXp1UiKb16AeZe4CXkd2ME6zmdJ8tGBcyWcj2Sfr1udsiRihAEsCteyJU32IxonXim+sz4qRJvUF5hTlobCdu0/WNLLSpVthJQGjtOVm32xaat5HqIYihaYRxZdm/kPmIw3kgzQP0Bt1pYhkpLnqc87z9zQV2awjLgJp5uC9oXmvqawkGx3HnoGifKfqnAbfTzL+E5Zcj5fsPqNy/dXwUjEEA8/V7zqYL9j9eyHy1M0kL3dyIKcJ1j/Ylu5eO7lxT7IQJ1T1V9JeWZamZveo5/5MOM9Rsf6yYlCHOPf5C5rjZvcLtZTJLKGHzI8P8GyVIeyfmjkfWmUwb4tQ31h6CFcdXANtqzJQpwEnRn8nchHFes1pYyjvpXcdC49eWcX1FeTtgr7fCsV/ORZAzTuIJMIwnXYJfiy8cRyBwfDQBCbXYc5v9gL3eYe8NMX8NOKHxgPDx+wG2B9T5Ar+qT0YbYqhhgFJq9/VR3y8uz7EU153QWKa5vF6x8d8y5nRDOCkGdS81vmqz63BMsviMdDzQmjSrUb4QA5KqJJUmt9smCSj79mSrpqaI7qfH6TxKQZBZBCLE0iIfzpOoAZlEBegx4w1KFIrHISZhVtI/qejO7clDMGkpBaNVjEtN90TScRKi8z8fqcsJYyIxKrSOhGAwBy0OV73C7WQCUdIwzpWQdxIMa1mQvkmUd7Ib1+8nuaeDp3tR8/BTk2XFAXTC3FlUVPhFQC8mpsEyvatRgL+YICrMm5JZxh3G1SNFOFoYzhKxiNRvDctfR+Zf97i7Fr/+flDg4wgCR+PPQ8/sa4NtK8alGD76EsLTgqIxlNc9qzGy+6ykP5fpLsUm0V0pbv5lxf55w9mfTyy+GtGTo32q6S8lpUo2Ma0SyWncJrsRFbD/VFPeKlwnDDDtJZILiSiPmUaygWiAnBUkDWES//jF155ia+jPxXh0+7mlXJlH3fcoXnjbn9SoL6SO1z5lY4pEsRnR+15Sfy8tNH9WMi0Mpk8CQj60slsfr5dSkvK3PZqZtDJ9PLUsU5HtvCrJRI7TlnxtTi23lAdpWiV2XckIk8/PskFH4vT5xR0X7H4UwK3LxqSLGeF8xrR0qJBw20LmKj7sJONoKqanS0IpLjfuXgaT6N0BDlmTUJfifuRkzmCyWlqGAQlM3SjeA84S59VpcKxW6nGq0+jR+wEdZceL6xnTeSOy5DGSCn0SF5kxtws1yKxI8fZrnyemszzbMSqYT4L420ACukOFui0oDgo9ZWHbfcJ20J/JvbdtIiVon8icwOgS9XvF8jeB2avuFGT7pzU3f2TpXwTxFNhbyntNNInpPKLqQJy0mIzMA0wKe+Mo74XopjynoSTJwLgWfwK715z9qaK59lTXI/ahw581bH5Sw3/w3cvv4wgCIQhw00jbyu4lHTa1PslAfa1JT2vczrP8smf3ScmwEr52eQ/dMwEAQ+WYfxNxXWL2NlJsFd2VZlwlwiLiFxHQmD6z5hZJ2ok7mXFwpIOi5AL7jCNJv50T2KNCdhnOBijNtae6Twwrk22nHl1vi12iuve4PXRXlt2nDpNJPGaMRFfhSuHJJ6Ow+5HypgNqhjNLKBuKdYndi0kEUaYnpULGlvl1RWgs9uCxdwdpBRoZQ4bR+FUtizSRh4qInDgp4QeYwyipfuHwq5pkFONcPBvq99mZJk8TSj77DoaAms1krsMUcFtIhSY0ebxbHkwaKydBxSpUF04DRVIhfAmQ1P/o+MvRLag7GpgKgzDVhbQ0Hw6U+55YFcTKSht0s5dSK7dq/ZMV/ZMad/CYnVCQozLSgkta7k+RF89CDD7GS4+qPdZFwpgBTCe7f9uW+IPDbI0I0JSk9uWd8PeHpdCEj5Td4LIDUAflrWLxTWD29QE1evxZzeaLioffh/h5S2EDw12NbUXo5lcRZh5dSPYXosLcWcpbcScCTurKZGFaJvw8Cvnt2rD6ZaS+EQ6Fbif8quLhpzX95UfuJ3CUwIqRhUJFJ9x7xanNkrTsWuPKYg+B2dsJ11r6tUaPCfVK0T9RdM8j01Ix/1JRbsWGyQyavlN0aKZVYFoH4l4CgekkXRsuIqFW1O819pBIlkwjFTZhqGUCj+0lIwhlBhGNcA3GhaO6jxT7SPUQTwovMlAzrC3VzcT8m5H+0jEsZFa9qo0QSUol5J+sa1dTwG0nfCNjtWRyjaN6qLBtzI64mVF5CPhaM6xK3NpR3GfzkKP6L3MZoiYrMCN6P8q0pexadGwlum6NCkvMIC04e7MX+nSeY0jhUPPFyQMiGYXuJszd/uR85C8XDBeV9PwjuL0XxWA3gQ/E9VxKGHtkGCrhD1gpf8w+PPo7gDwbgygk8QGsQQN6kC7DUfqMUnJeVlPd9Ni3DxzHzOneMV7N6K6s1OgNJCeuvv7M4+YjV2c7ChN4t1kwjbI0psHCzmE6hfYKu1eUD1Bl0VFwQk6z+XSTAk2CXlEMifkbT/W6JVaWzR8sePh9KP5ww49XGzZDxfvbJZjEdCYmI8VsJHhD6Cz2xgnNeJ/wtTxzxUZYjt2l6GNiHdG9YvaNZvF1EPfi3C3xq5LD84LuqTptZt91fBRBIBWWeLGW3cZLD9keDMOZy2YOj8w3FcnsNWGClTtBXVUE/RpU0Axnke2PFc0bzexdFCT2RqG9pm9t1hPIA6A92H1GlY3MD4hGApB45knUHyrEE64T+jGAlxJUGFxO6kFfmlNNqKckQpDbwLiytE8dxS7i9rk3rNVpCnJ3bgiFAD3mEB7NNrOJRjQwXih2nxtMbzDDkdkHZjCQZBBKLAy2c+hRvh/NUVGW2ZIJ9GQpl47ioUR34omgrIBwcTUT/v0gIGScl6TVU7n2vUdNXlh9MyEX6SnbsXdISl8JEcgMEb0L0rrcdygfiIsaf94QmszvH2VgiK8Mocqg4qBQywpTWPS2k7kRfS8MxLMlaVYL2ejYbixs9hoU5qSakmQubS/t2qoknM9oX9Tsnxv6KxgugsxSVGBXI2fzjrOmIybFq9sV00OFGgQkLHea8g7cTnZ9Mwr4Z/J8QlUqVJKA7mdSn5tB0Pr6eqK47Ym15e4PGm7/C54/+tk3PK+3/Gp3wfXdEmMi1J44GLQLjK3DvS2obxXlg3go+FqeLydjDxnOcgAoI26jad4oqltxW3atRw+ZkfjC0T1VDOtHTcR3HR9HENCK6apBTZV4AGbyh20DSZs8XDIrtTJfPSklo6JCTo/yztu8SRQbTX+ZOHwi2vD6RgglZkjMXkN1q4lO7KHGhRBCbCug4ZGWmcg93iqrxh6UpF5Nws8SelCZVyDOR+WdZAlmSCdaJwrGZfY2QDKC3ScmewpIkBB/OqGUJqPozx2F07jtKHjCkHA2Uhyg2Cl2n2mGi0gsPhC7mCTvoROYxOgiadQQczALCndvKB4ECyGJhLZqNPYg6j3dFFKrPikZ51K/264EhQzjyKrI4iBmmUI1FgpucdfJBKda0H6Vkqged53YnPeDNFyqQoQsx3uoJQBMc6nxbS+yWhVE+Sa9sDx5uKmIhSM2jjATPr2eIpbMO2h7kTQ3lZCkljNSYTl8MufuDyzTIjGuA/aqpyk9SiWeLXeclS3v2wXX+xn7b5ZUbw3lgHzWbWLxjYDSfuYYzlzGFGQT6S4N3YXOGoxAson6taXYClEIreifNzz81LH5WyP/6u/9Gqsi/683n7F/aDBFYOot9n2BCZC0o9oq6mvhGiStMs4kvgBJi85lWor5aHUtlGR3iJTbQPEwEivDw89mtM8kUPhlDnj/KQuI/mMfInQR44YwL3MKdxwIGVFR5LahEOAFQKeUUy9Jy0X7rghOPOBsB+NCMS0lXT+OcSb7DOhJbnJ1De0zzbRMDOuE2wmN2A6C+g9nEEv5HbdX2DZjBbVcWDNI3T8todhAvY+YTiYUHbnqycgCcl0iFoIVCFOPvJiOoGT2zXcKP3PiRdB6bJ/NNEOkemjYvxDXnFDJ/LljMEpGACMzZKVcma+Rl1kNtpMdTeepPGZI6CCW2vowYPKYL/WkpF8ZcdrJHRCybiEUmmIvSjgVRD6bnJFsYJwwh+4xLa+ErKOMERPWbsDsDLo3xMKSCi0SXqMyyOvFOAQJ8nFeocNaypWs4NTtdMIwVMjzCbJhalrOCKtaXKEr4VBIqSYsUnU+UpTy+i9XGwoT+PntFQ93M8xNQX0n916yTKgeopRkc0f7tGCcCfI/LE3uIkTiesRWHp0U6lVFsZVMQGz0HfuXiu73e37vk/e8PSx5e7/A9w5lIn5bUFwbbKcyziS7vfIy3ap7mok+O0UshcUaKuHBVNea6lae83ITcXtP91yGn3RPEtPao+fZwfiuoHll+L7jowgCMvpaYQ4+U4NFHRELJROJMwUzOEUssl7fiG5ApQ92U6vQpcyf05Mgt24vIgu0pPXJwriAUCV0kP5u+ZCEIVhLiZCM+BK6vcyKG5dS+4vmQC66GVM2spAbPpxD90ShvWH1q+nkt58KLUDcIA4x7qDwdZ5M+yAzFlCSxh9NJKPTsjueidV6sfFC6tm3zO721K9mhEZQ/1haYrb/CuUHDkDZnlomJeVyKqWT1bb2iVAqppkg5tW7hLndYYeRZpqjR+nQRCP3x3URO8gu6LYy8ORohRWdxt32J0akqqqTAWpqSgEpC0eqCsJcvBBIon+o38o04GPb8YgThMoQS41ZFjL0ZfDiBPzmWjwXQ+A4s0DmMqyI84rhrKS/MByeacZ1OqkHwzxidCJGxawauW1n3LxbYu4cxQhul12pvEz0sdmJp39S0l08TjUe1gm/DrLAdMLpyLQvaH5ZyPDcfcw1u2b7E0iftKxmPb96dwmAUgldBMLBYXaGWEK3jOhRXIbNIG2//ioRCglGfp7oMwvWbjTNW3XyOiwOkpXc/Y2K7Y+ljVitewwwtA73dcnyl1Buw28vu9PxUQQBAF/nSN/57CHnKX2EC+FS20EsopMRoclRSONrfbJ9Ps5vV1FS+WjUKUgkLf+2O4nUw1rSqvaZ7PBmPGYIsrOPS/KcN0nFdJC6+riomvcjzZt0mkpb7BXtE83hhcJMJYvfdJje42clfmGxfZbQHryIl4zC9B69H6VdphThasVwUREqdTKrOHrdx6ZAWZEfq0OPzT35tG/F0ENpAe2Kgni+wC8rUVlGUa1BtnBbWYITBDsUQo0elpZxMad4+thLNl1ktpUujW9sHpuF9M9Lja7sKXM5Tg1GL4VkZLWQfiYvgphZSbiYMa0cvhbHJdPn+QSbVgxCmvJbXQIzCcClfZR0/9DD/Ya4233gkCyBIGVQub+q2H5mObyE8cqDTuh9bomqhDGReT1w6Av6rxYsv5Khnr56bBeKw1Fi0rKZ9OfynIRSUmuqAEEROytl64Nl+VpR3YlQKCno14rDC4U/m1CT5uHNEj2buDjf0w4FXVuASYRFAJVw95b6rWS501zhZ6BHyRD9LBFmETUqqveG8u4ogZaNcWoU+08M7ScBe9mxrkd2h4r0vmL+tWb2Op4C2vcdH0cQSIIBRKOhFouuUEn6Yg+BUksN60uNO0Tp2SsRp5gxMtXS9lEhnaiTMpaa0w6jJ2nrpVqifbFNaC/agmSkVEgKzCQZwymQOE4DTdxecAlfafYvSupbT3k3Mq4cSQk6e3hu2H6h8WXD7K2XSTjI7n/subuNKNtUjEIjrkpUP2De3FGNS3Sm0AJ5/FmQz9QUqNqJDt8HWXhGBnSkzVYQ/sqjjcb5iJ4V+HnBtHBCJ83jro5lSnTCeQi1+BWaXiyu3S4xeztR3PTo+z120dC/WDx6DVrFcFkIXrEXAZU/a4TUdJywrDWqF6VlcEumZR5UGkAPYlWGUkIk8gE1eEw/CRciT3NSXRYyDcPj5KQ8G0EZg24aeHLB8Pk5Dz8p2P0YpicT1WJgXUzs9jVxzB4KNuFHw81vzpn92vD81wHbTowrQ7TkAae59IlybfxMzFmjE5GO7jTmwQjBKIkStbyXIbkqptOA2v4CxousX+gN5XnH5fLAQ1vT7kpS0KiDQU2K4kEzeyMgY38hz6w9ZLxqLc9L+d7QvJEN4fgMRStuQYeXifBswNUTU2/Zvm2o30qpcForJluqf8/xUQQBlWQXT1YR0SK+GQLT8rFVqGJO69E5I8iqtEBWYR2jeE6HXb55uSYGuYhH/CBmowtxJOb076QQkHEU+WaoxYRkWkgXorqVgDDNpC3Y3Aij8Vjfz94EhrXGN4r9C4vL/m5icSbDJ6aFwW3DiTmmYhJSTzugDr0oEBfVqb8e8/QdGYgaMkkmgC0Il+Lco69WqNGTQOptK4vJdJ5kHSFnTJCzppAw46O3H9mUonoQX7vypkNvW9I4ojaRKkTiohLNRCOf4TgIxG56qcu98D2OcwTTfg/WYoyhzOzEaW7oLx0qOtw+4LYWu+2FLBUjqSxEd5GtyxSQUkSdxrRXqPmM+OKKzc8WbH6s6S8jYS3U3mfLA2dVxxQNbV8QE5hOo/aaYlPQvEvUt15AtqUEABWO48Fy+WDAozBd3hg6hRnlWRMPQskm3V6yzGkmbMNpJjLfsPLo2lM3I89WO2o78dXDmsN9jeoNdpfpyQdF8y5larFYl7tdLllX8tw0rzXNu5gZjblkMqJ8bT8J6PNRXLjf11TvDS4biKgoQLSeUm5hfuRBQCyiRmJtiVafKKHF/YifWYZz0dL7Cqa5xu0EmDpaRR091pQSMow5WtYv5XeON1qHY4chmzI06qQgjAWoCVwrPxtKTqoy00lKOFxEpoWiulOC1hqyTttR3k3YfcQ5jWtlDtzJyipLYMuHbCh5ZgmX4jZsRpODQcCElCcTIQi5gjAzTI242/qZ1K3N+4Ly3gtFWMmE32QVqjCZ5aeYFk5Sxv1E9WonZdSslPbcGE8kIRm2UdBfyFBOM8gDo3fCYFTucZCImbyw+2IC9ShCUtmTIKwbAXm3Ipnm8lzS/ELua3QKX2adRZdHdeUJuuPlDADTC/5BStBUMptwLNGLOXFWM7yYc/f7BZs/9Mye7Cisp9aJZdWzcANzN3DTz3j9sGTcF+ggzL7Za2jeB8FCspGKzLFI2Ewc86VknCALCC0eEyq7H0cnwKA5SLs1WmQ25mUUYLYKmMXEohloionzuiVEzS+vL+kfKlRrcDsBl90O6luxxd+/kABiOyGnHbGM+VfiRTjONe0zuW7aS0drfCaBJhwsxXtLscnnNiSiI2sgZE5HsZsyRfy7j48jCKBkYmwY0c5IIDAaPQWK2x4dEt1VceJjd08U8UFj23TiCAi6nsFBn6jvI7ZX9Bcy6nkq5H2i5cS8ikaQf9uC2cgN8JUYcNpWou00F9chexATiGmRaJ8lynud5ccK3xhmhaK68xS3HXqw6LksHjOIkcaxD+4OHtMHppWTADME8c3zUfThpejwo9WnoZnJQKgV7bNEbCLtM019XZ6YY7YVz3mXZ9MdrcaPXQnVDXBocUWBndeyw05eGIDjRNlU2O3yNANQ+UiqnBiL5InDKCXy5N0Baw22FucgEOZiOGsY16WoMc9KGece0remCjWvWma/zOh/7QiNlRFaM0NwinIThHbrMnsyRqaV+Ot1l5rdZ+C/6Pnpi6/4m7U0zX3SaBI+aX55f8HdzQK9cZheUQQB/Jo3iea9xwwCrvlaPAXNEAVcjuoEmB4zTj+TzUElSIU64U1kRuCwguFSUHgS4CLVaqCp5OEaveHdfs5m1xAeCvSgRbtyEKORcpsIBew+lZmEIFyUWIoXxvxr4Rr0Z+KKdez8dFeJcD6hbCRtCoo7ETBFK8+suCxL58cdpM3ePinYf2Lg3/vu1fdxBAGjhAKaWWXaalGROYPSAXffy1CFy0LQ04Wk28f01WfXFtsJYBKtErn4IGOdkhbeQH8l2MDRnw0QwKeB6r0grtNcXIm0P3IQhFEoAyzEoyAU0iI0vSLUie5Z5PBSUzwUzN44mmvRdCcFdoqUN63szhcN/VVxsu4SdWJBHRLFN3eolPDPz5jmApDpKaKiogzIDq80+x/D9PnA+FyjOlGy6UlRPBjKO019Z2jeDLi7/nEeIIgngbOk0om8+TgEJM9d1L96LWYmZQFNTWwqoXGHeGLkKRAlHgh1eZsBzadr+suKmNPPYaXxlcOMSRb2wYOGUDuZNAQMFxW7T2Q8lhklFRfWY0N08nmHlebwWcI/H/j8xS3/udV7ajNRas/Bl0xJ85vdBV/dnTF+M6N+q1lk6q7bJ2H1taIQPPJLfGmY5hkbUfKMaC8lpR2gbyQAJA1kzxfxl0jSkaqlVTquI7GSDSIVEV0GgtccuhJjIiFohocKe2cpJkRodJDdGQWHZ8IvGC4DqYzgFXZjqN9omveyobVXImiKTn7HL2UTUL3Bbp2Q3FLu3hxkM3Ct2J5rLxyZhxcluy/E//D7jo8jCKREqEXHbfYDqh0w2SoKpGdsDiNVTITG4vbSEktKlG31TaR9IsYQKiLsuUahkjyUxSbh6yN5QlL64j7rv704xA6X0mu2nZQCw5ksfEndFMkKcwstfVqVxTWmUySj8ecT3WWif+I43FjqdxLtk5URXjYPzTR9wje5Fs+jt8azAtMv0V+/x765R50vSaURtxwgOkN5C+W2RCUrllPzeCpXgFO9f7yeetdKBuCsTExyRuTDGtSYe+vjJAafedioKoqTDyJGEea1EHyCzBtgEKOSuKxlWOimAx+YliXtExnUWewkO+uusmnsQVNsrKgwC8SnMAm/ITqVmXeCtwxLxbiW7CVaaL+YuPrkgcvmwNwNHHyJUQkfDVPSXPdzfvHmCverivUrUEHaa3qEcptOC2E4EzDPV4phLWCfHsTZx4zye0LtViLKyUQv5RHizpAYVpIJhkIwIj3KRKtQJ8xBJNfTIlCue1JSTK9mNO+l9tdTLkN9ZpaeSf0/XAbUaiT1luLGMHsNxVZIQsNSCVDYJLHPKyTgVG+s7PijZK7JHtvWkg3aVgJef2bZfa7pL3J3wX/k2oFjS9A3luQ0VilUO8h8OfdYy5h2RI8eU1jSXrjmyidMOzIfAsN5SX9mcs2XBT9KFmx5L4u8N4pUJsa1kJCKDVTX0io74gBmBHcQh6LhIorBxFbhtjBcIDzvKICTPAxgbx1hHk+STpk7pygfFMVOU+ystMWGQHndfpD+iymp8jJSPF7fojdbGUJalWIdZgxqFPegaOfoUdx1TTZUNVPKrsARt89EpUpsyRgnMRRxVqTLk5fAkIODmrKTkbMi6rEC+JHVeRhFwkiaD/h1TfekZGoUqAZfigPueCaZj9tJByAWorcINdkkM4neIgggpjJrMinBbXyTadnLSTj0zcTL1Z6QFG+2S6piojQBHzUJ2LQ1h4ea4o1j9o3U19NM+Bco6C4U0dkTVyIZ2cH9XDQgxUYGeJAyXyJ3TbR/fA7KjbT9unMtFnRIeVDeZQxhJuUGwLQSsc9wV1O9tSzfC+noiENpn4PQhcoAYkStRuJgaH7lKO8FZ/CVPLvDmWJayOBSNYlpSbGV7FdF4br4mZQO5UYmLJku4uvspflcMZ4H0tyjDha3+R15DP4ndsSI2Up+7htLuGqwXSmKuENPmonLbdLS7jHZZx6jTvp55aO42fiScWnEj6A5oqOyM5gBzCA3NLrEtEjZQFKAGrfND0sjIKHda0KV8LOIn0P9xjD7RtGNluHlSDCJ1IqyTHvQDxrlFW6fJ9dqRagUXSFCn1IdWYSVTJXZD0RK4rxgeNLgKou1Rtp94ygEG5cdijOwIz12DSlzGPqsRZiiDO1URylwA5eiGnH3HfphL0ao1oiBybyUsqByUn8XVrgJUxTLtBhRh0AyhlQahsuaaWFOU3u6y2PgTCQnIKYe1WmXVEFstPw8Uny+4/eurimMF4be66VoNRovSr3RYCrPs/Mt53WLJvEw1LzfzukeKtmVXSRNGrW3Uu9vFMtOBDWzt164EEpatVL3587QmNt+ZLLYnTr9f1woVDhyryXlHxeKaZ5kiG0hNt++kYBlOk6ktHGFjMGbc9Lzl+8s1Y2g88lwYgHqSTLT/eeKcRmJTcQsR8KmYPnnluJBfv6oPQglDJdReAReYVstepUE0yxnUUXKVPfc9ZoS01yz+9TQPUuEZz2zRc/+tqF+ZVh89dGXA6D6ATt5YCaGi0tHKJcUty2qn/LAjyA7ZyXiEuWDDKrQYoIhrjaBAomW7aWWiDqH8j7TK1sh9YQyg0Az6J8EhiuoXxmqG4naw1oJPz+B6TV+GWi/mPDvLPW1ImnHeBWIVURPx4k2gJLAIvMTwB0fiAJ8qbEpMqwd8WWRd3C5BFOjiJ85is8bZq8vcbcHmd+XLbpSacQ4JEn3YzgTHnkfDPYgo6mL3SOB5GSO4sAMJfNXDdXrnYwKqwsRCYEYgfiI8oLIx1mJr3LQtZpQG4aVoT+Xa+Z2wqgrdhBG8I048cZZxFe5hx8Vdq/RoxhzLJueuZPAfT5rqb4QXCFETTc6RmcpCs9hKBiDISXF7e0cfV1QDJKey8SoPDimF78+2yGGMDsBG8t7jz3oPGFISg0V+BZZJilJ/ZORhU16NI+ZZoL/uIP0/6MVYNbtHhWjvlGPrcBaPm9xb4Rq3sq1mTK/QH2YFV4m/MqDjegqEG9K1v/MCKaVuxKhlp8fV5LCE5W0N6cjk/VIhhM1o5kEBLRDIjrF/qVh91PP2ScbzpqOX319RfPLguWXkfrG833HxxEEsgQVrbDvt5hDdZKajhcNthX3mOTEiea4g6m9WFZpIKmCVFrRog8eFQpUMKhkODxXDOfgtobZ68TiVaA7l755dQvlreHwaaL9xOMbQ/1e0kUdlNwQA2rQpJln+nzAzwvKG035zjKtIqGOmPaRsouSmxYKaSdWt4JKT43wHFSAWMG40qcH3HaSTm9/pHn4WU35UNO8C8y/7rBv7kmDI14uxFVHSVo9rsSAArKIKIJpNbFKJCMaczXJAzOcl5QvC+q7gOnEQj2ZrAT0OfXXKvfOs2lKkVusLnMqxpSNUiTg9ReyaPxSaLTOBZRKpKQYmwLVScvy/c2Su80MYyNaR7RODL3Dv6/RoyKWkXEWUCYLizqDezCnNP5oMKInyX70JJwGQb/zFKDqkbfgDgGTBV6+zN4OLgeSfO72ICBydy6U4CNhrHmjqG9jzngEr0hGNpJQy+4fC0QLstFUtzKZCKRrMK4/8KAwgi35eSIVCcqAthHzTcXsK0W5FUPS/kJwqVjIDp9sQg06S9dlbF4yYiX+Ia9FdCLS2tx9phn/pZa/85Ofc93P+Uf/6AtWPzdUt1GGndwP37v8Po4gcGS9GeGaqymI+UUeLBFrK+0rLamuPXjMps9koQitcKUh12HtiDmMmHWNyu4Ru8+h/czTvVDMf2No3kZUkhvXXAfKjeLw0jIuE8M52H0Gj97KAzCeQcBCn4hNoH8i9aDbaEKZiGU61aOxSJhO4zaZuGSVLB4ngUDQaDGcNEcrs9y3Nh2MTxP9VWL3hWLz4znzVw22k2h/1Cq4rQBF0UmWAkARMRc9q6ZHK+gnyzhaps4xnVt2CfSgKW+t7G5TLlly6nx0HDqqIUUglcdap0yUUbIb9ufHBzdR3BrsV5ajN2PSUJTppJ5M90LdPbqOhSr3skcFSoBWey1tPXsQxmKyinEhD7z+gK1pswMUSCAEmOaW7kre33V5ruFeWJZJS70fSnWi9ZKJZeNKvP9kbp8AheVW+CfD+hFX8k329M/iM7eV8zyKsMSqLafplhMAGGYi+IlVRM/FGsx+VdG8lnOZGgkA3ctAagJqbzCdxj5oTP+YFQAUW+EtjGv5v9sJw9HXsPtCcfWvvOVfvfqK/+DNj3n4kwtWXynKjfgZVtcd5mb7vcvvowgCsbKE8znm3QNkFxm0TJwFTvPkk9UYreielJiVo3pvxczi6GbbT8RGRCrmbo/76oDZzbHtDNc69p9YDp8Edj/zDGfHHT+d2lSLLyPjUnrAsZBSwR5EHWh7RfdEHgg9GmFpLVIe/SQpWqiyvFeBv5zwc028FuON8p48215qaZWzM+XBBLmZw1pS3fpaMUwKP4u0LyLdM+TzG1n4uhfg8kiAUl640mZjiLeOjc1b0TELdpDKiKo9oTQMMQuxDnm3bAQjkdJHdBRyckdKtTp5Lh6HgqgI1Y2ivknM3ozYw4SfuTztV2eatzq9zjSXlHi8FEKNBuJDQXGrKe8UxVZaW+LqBFOtKe+lBi92WS2IXAdfa4aliLe6c31K0fUE9U2izoNCYyEdJNcmioN8bVyqrEiVRWs6AQDdXrKcIzHnOG0olNK7FyBYsCMRnMkiFUm6vH+0km2Izbjs6HEe0JUn7h2Ln1vKe/m6rxTt80T4VGiJ7nVJcbQOywanw5WIy8zOMC6TaCFGJUGol2d085/x/Jf/5p+xtAP/pz/7mxR/0rB6L6P43C4HgNsd4WIBv/7u9fdRBAGA/mlDFcFcP4jV2LxBWU2ohAJr2kmsx3pPMwW2P2oY1nPq96VYccVIMhI0Ym2Jz1a46z1621L6iA4z3MFR3Rj2nyjGdWT3I/EeqN9CdU+mIj9Kk1OOvL4RN5nZK0X7VCydiHkny4cZH9uGDAofFJyNjHPPcLC4B0N1rR8XmJOsJeUFJoQgeahsKxiG6TV+Jh4GscqW0nUgnUX8JACYMglbTVgrVljDvkQ/WMo7aZcmQ64lNST7OKzCCSfCtkdAVJ10EjLe+rGm1l6a0Se67EGGW2ifsLsJ+9Bmj4CGpJywJfPrgSyS/jIxXnlUFQitRe8MzXt9AraEriuiHbmeWR3a5ck8ec5jLAxhJTP2jkh6slLf2/axLXjkAhyzAz2KDdjUqIzYP0p+k5LX+nCQzbFNaXrZdY88kdk7ce8ZF0ZGfq1UNveUqdcgYGmsBDAlgv2yYv6VjMULhYwrb58l0qcdcVtQf21FgjzKs7b7UcS9PKDaAnaW2OTXOXapDjIbwf9+y3/tx7/gq8MZ/8+fP2f2a0vzVliC7hBPMxu2f+sZd39g4P/93WvvowgCeoy4g8evS9BrzO0OdehQSmEQkklonASCFDHbnsWXiu2Pax5+VuCeFzTvJ2wrIJfuPLEwDJ+sMJ3H3h5wNy16KKmuFfVtye5TS/ssMS6j7FpvhaOt8q4cT/pudRreaQ/QvFWMnToZe9g2I8w5KBy9Cmqv8G8raXstAtPVhJ+ZUx0pqbc6eQJEJ8YiaNFQFBtpa9bvhSo9LR5bPFJ+SH0amojXCWtHnqz2rJ9e881mxf2bJWrSkj2MmupaM3v9CHqGo0dCBrNUemRdSmv12MmQDoSeUmb+ZUahUUSjmFYFqdCnoSB+Zti/MAzn0iJUU0bWB8X85w7buROD8MhtUF7anKdDPWYbNnFSEqbCMq4L+jPFtJAFZztQWZ+RtGLI1vGxyIt4zDV0EnEPCvQHlnXye7mlWShMJx2W6MA9QPnwiKrbQcw+prmhP8ut0bXcA93rkygrFkmMXHaW4kGyHJWEIBQq6J5G0sJjXtXMbiWtDyWMa0X3o5H5Wcv+oUa1llRFARPvpVxCwfYnkc//8A1X9Z7/x69+iv15w/o9NNcx62Pkz3BR8fBjx/ZnkaQ/8u5AMtLvV1H08VwsBP0fRrBCH/Yz2VbsvSDL5jDSvLWM84L+UhEqR7mxFBsvmEE3YXrPtCpJV3MRqbRSVjSDR4UZSVmmudzIw6dRXIjeJYodjMjiVAHKu8wYs+JTX2yh2Ig7rbi9SjA4KhiPRg9mhPgb6M8swxn4hfgTqHAU8cjEWJ93lFhCNAlfS61uW3GZWbwKp9YcyDkJOChjtYe1ZVqWvJ7N+fosm1QGhe40yaWTBFhF8oBOKV9MLwo4GV4K5SZQPAzSgp08cVkzrkvQSrwPlSJURv5kI1VRXhpUEEn1OJMAYwYJimY8gnCcdBRoacHqUTod5SZghsQ0yyKn7CJcXQ/Y/UioHdN5TX/u2PzYMJxLu9fuEcWfzci6eaTOimoUUNIKjIW8v0qczGsFlxEMRALGMThkKvkgHIKk5fW8gn4lMypko8glVKeJRXYqjgp9MBQP+nQu00xYiOM6EmtZ1PbG4TaPas7ooH8aMGVgfz2DqHCXHVU5sXtoMp05EX/S89nTe7Z9yZd/+owmd7SqTTxlL6GQUemHl4r+iUdNmtk3HzlP4PhwmT48jpCaVahhkj9GzDrGVUEyWrj2WVcwW1j2LwzjMjO9ksHPDKZzFNvpUZjUFOj9SMoS5fqduPkenhkhBs0y0OUQo5F7MReJhZCZ6ruYxSca20Zm7yLzN4b9M4OfI2lnBrRCBZOX9LXYy7DJ6VpzeG6YZnnX7SVNLTYet5uIheHwvKB9InPrkpEgtP9E4Q6G4kEYZ75WUAgPob4NVDc9yWi6bAs2rAva54k0k21bj4Il+JlIVatb2f3DcbptLkcENdeEsqKorExgPgwU2TkoWo1fWKZFnhWQKdrDwgiGkgeJai8DNo9GJscuQyiFMyHg2mM70wziLRAqfZoBCKATTAtH96ykvdSESuru4UK6HmK2wQmpV+lx4SajTiVGKBVhJmDk6ecO6kQLTyaDtSFl30k5x1CJXiPmVqI9yMCWccWJHxGrRKwD1XlPXY5sd424Cz2ok/Owr+ScwyyCizBpineO4j4H9KNsuckdho1DLyY+fXpP40Z+8e6S1MnQkWI1ULrAV3/2lMWvDOc7Sf21z+Knef6zgHEVSUXEbg3VjRjkfN/xVwYBpdS/Bfx3gPcppb+Zv3YO/NvAF8BvgL+bUrpXMpPsfwr8t4EW+B+mlP4/f+V7HCWvTgNieMkUTzx3NQSMlnRzOHeE2lDciod786bDDCXbzyVC66ApHyJxYfCNprqdUCkxrkvBBtqROCtJRlG/OlDdmNMIrWGlTpOIdADzgYmIPirJ8sioYi+U5fUhMM0Nw0p2MTVIei2WX4phaXLqK6YRoZRuw3FajPYmLwRP814RbUGftQW2FTuycQGsH63VpoW4GA1nlrNU0vzinvmmZ7psKPYO22v2n2j8TEg8SYFfRA6NytlOFlGpR0KLHfL4bKvYvyzQTwuqe5nwM801Uy0YhDtIMCQj7zokUi6DikPEHqRlFwtpzUX3qNirHoTVFmotu3chLdNQyqCZo1Y+OMV0qRlXRh5mm7B7AS2LrXjzj+tIMoni3mB6CaogTDuh0uZ2miMLtYSleGQKTpnfAEdCT677O8mWopMNwO6PBKFcYpTg57KozXLkfNFidOL63YryG/cYAAKnUi8ZUKPGPhjcNhvY5EwolIrpXHCfVERmly0/vbgB4B9//YJ0W0IV0I1nvKtwX1ou30rwPJZT/VrRX0o7O7p44hOU1wa3k585tnm/6/iPkgn8L4H/GfC//uBrfwz8+ymlv6+U+uP8/38T+G8BP8t//jbwP89//6WHCpkxaGSmnF+U4rrTTZn2m2CYBMBSojqLT5qTY07xMHLWR3afFgzn0lZ0+4RJMubJ7QKkRPe8obwx2LsDcV7iVyXurmX+J1sZalE5/KJgXFkZpHFsM1n9gTNuRr5rg16bE/XU9qIrjxlBV3mmoewueSpsTrslkGTEvdLsn1d5Fz2WCLKLujZhxsDU6NPAE5VEuBQddE8T09wxe3LF4pWUSdqLzXqxk0Xma3n/cSlc9e6Lke4TBVGwDDWKsUV5ryh2svOF+shOEzOScS2sOeVh/kqfAoGeElUbT/V1sZmw9x0YhV9WjGuXB6w8ejrE4iivFn+FI3Hn+Pmjkwe6e5IISw8uoXYWtxfyVcyEHRVlsZ1eNyP1oZaSyzf/P+r+LNbWNM3zg37v8I1r3NMZ48SQWZWZ3VVd3S662wNGMoO4QEgNNxZIiMmiubDFja/gxki+4QKwLCGBGglBX9DGEhJYxhJisGmg7XZX211dWVU5RGRMJ+Kcs8c1fuM7cPG839qR1RldpqqxgiWl4uQ+++y19lrf97zP83/+Q+q4ehm5pvdGjxLZNZyl8cAj3Umf7OiaieshY5PtIl2iDQtZSEhCdjmwXDTsDxXxy5rVa5n9o4oJXE0rxpgITlPyVc4p7i5kSj7DK4cqPPNFx1nd8vPbS/pfLLE9jGshDWW/KClvVaK/c5KpdxeK43uBUHnZEgVxbLbJLWsabWZv/xR+AjHGv6mU+vCPfPmvAP9M+vP/Bvh3kCLwV4C/HmOMwL+nlFpPMeV/3POoFJ5pBoeKMJwVqFlGtu1RKWYqKgQpBkmwzUVu6wuN7Tzrj1uOLwray0QAaRVRp1M8IffH90rK2oqgx0f6JzPyIkNvG+yhw2wt2aYgZka8+UdHmBf4Osdbkyy/EphkJK1IRSHVTEYnRDA8dgR6iKhcTE/5xr93NWnlJZsBwiPlOGtiygiAfB/wmaG7UIkBKNuD7CDP2z5V9Of5yVY8a5KU9CAbhWGuxST1aGifK/IPDmTW0w+Wsbd0K0P3ITBozEFCLnQvRhpRTesuOYnHWkRXJtlv6zGIJ+JMn3IRdQphDSmZFzhRcH0uhJ6pXT65+qT23M2EMw+gWwMtmGbyfYgUB7mpZQ2nTnoEAR85YTMSKhpPoJsvZTUYMtm9K5L4ywpmYqL8O5+nkQDQOnI8l+Aak+S6vg4Uly2zqufhbkH+RU51nazBZjIKTkxNV0V8KduFfJ/4/nUkO8h4dHwRcRcOXTr5nAbLl7eXlK8zrIbhXEbj8toKeW2MjGn0NL24QR0/9MQsiKI0ied0z+nP2T6y/NKRbyaTjX/w8SfFBJ5+48Z+iyQUA7wEvvzG971OX/uHF4G0/pnionUzUAyO4aKmvyjJ9gbTPP4SEzNMDyFVRc04s6iQqKOtYVjq0zw6zoRWGzJZQe1f5egxEwKPBzc3mPOC7ODEJGP0oCOhztC9ZN6bVhxz9NzICRrSGDPAFPDpc5Bqk7IQCk4W5KaT1lAucGG+TZTh8j6e/P5OludKTuUwk4vTjFE8DpaTJ0IkP0KRaK+SdpRuusip6PlMJbxEUd5FTK85MKddJRDrYCQzdOkozlvGuWUYDIxyquheRFL5g6J+Kzz97OBSgpGsY0E6FFcpfJGfTvRp3WeTR/8wvbggv6MrhV7rKgj2G6Bpqx6NXrysMfOd7PKnFt/N9Enzb4+crOVEK8ApAq5ba8bFYzGa6MKmU48dzB7KO5EzT0VAOPpSJCZUvn/iyM46gtc8fHomTj5HubmPL+V3mNypQhmJOorOQ8HhfdkiZFtRFvbnQqlGRcJgUDYwHAvsg5VchCJgHxJF/bR1eMRduksBEolgH+xJUqyCAMZ6hNmbSHnvUR6a58W33n5/amAwxhiVUt+OOnzLQyn1V4G/ClDmKwECB/Grm2Sv+X2Lr0XgAnLhYMTxVtx0layPhkCwRk6eUuimWZO+R0/rIxLhRIgiw+LRoNQ2oGf6FLxp+kjxIFz6cSbmm1GJvn/+iz2+zhjW4qyjvFh12VZ8Dsb54wUnqTFpbegixb3MpuMs8QESMYQgEtx4RKp8imp31SND0PRQpnZViCmKOCNl28kcrHtAy2kaNZhR6LJTaxqNnFiz15q2z3BLScbVncI0Ga6wxCzK2z3dkL0i3yjOfiZRWrpJ6Ua5JeYGn1SQ+VYs4XxpcTNJDS7vAvluPAWqFrMMVwu9t70wtE9hXAXhQEShPJtmkoAL98J0Qs6ZMicm4w9SYdUjJ86AdpxIP8FIofD5I7tPMBD1yLy00lVUN4HyXgxuj8/zU+KUdG1CH3Zrjyo97kZsvKqddHLdhbACo5UtUVCAnzZAop/orySTIL811G/luV0diZVHWSEBxc5AUMRXHfFgmX8iysLuQq4j6ZpSpkXys9CDEL70KBFmGBHDFXdQ34qPgqunw+nbH3/SIvBuavOVUs+B6/T1r4BX3/i+99LX/oFHjPGvAX8NYFW/iFEpyK1wS2Pys7ca3Tow0imodoTCnExITSfuNTrKjexLQ4ip7UsZ8TJnT27DQtjQo2IMaS4vZH+WJ8KMKMk0/bqk2Ijjbcg0oVC4IqO61RRvD9ibPWFeCbcBsI1HjwawuEqKTxwfL7YYZQdd3UTsMYVIzOVCMrX42dnEbJPuIdIvH00tpzgz7YSUEjXJ/EKdOoqJ7KOTc3JIZCHTyykLcjFle+k8VNToUSTSMkpIH61Cot+mYosSEBSlcGc1biZJxS6JsLImYDqIRqd1WsTuHGYn0u+YUo6jUfQrQ/NMc/ggwEVH9Bo6gxp0MkMFdJQZeiufq4qC4Ef7yPabgle+KQGPNq0LUweiB06Ep4n+G3KEeNNIlNhJUbiytOeK4yvhbEzofXcVCCsnRh5f5xQb4YQMa9k4xIlVmQdUFIxlAiHF509eW3FtqN4JVtG8DMSzAUYNOyuksLnHrgfim5Lzn8l1s/sejGcO1WtZlyBr16g4mePoXiWyVLKeeydGLj5XdCuD9pHywZ+i6X7V409aBP4N4L8B/I/Sf/+P3/j6v6CU+tcQQHD7HwUPYBwxt1sJnsyzJFwP39Cza6LWKC9tuZtnjHPxE8h2Dn0cMCFgM4OfZWhnJdU4nQ6TWmxK0TFDJGsD2plEnEkLZOR7sjbgSs3ufYvtTDKgFCR38/2c7PkZ89cDdt9jd/3J2FOPAhBGk+bmTlh505wYlSIOcppnTWSYC07g6gkwEmVYdpQAEz3IdiBqdTLFmADCaJIVesI7srQ56M4FhPRlKkRaeOrZPp5uWGG/afo0a5ebQL4LFA8D9t1W7MKdIyayv6pL3NO1xHpfWIb0O2kH86899ugJuXgICt8j0q8z3LPiFMoaNYwLAbHikxaTecZdQXZrKTbqxJWfotUm0C/kgvh3l2L7jQ6Yo2Acphc0PztwMpWdujCdEqt8AX4xAaRSgCUfIBFqllpIOlcC0BGgep2RHcXKCw16Z8WNqkkjWsXpJneLAAbUqE/r2JBFjE/U5FnAtPKiDu9H3MWIrR1un5HdW+xR0V0FVO0xH1fMXsvmh7+wY5Y5NjfzE/tbDUnZqkFNgrXEMM23AgjbY6A/kwJdbgPFw4g5juj+T6EiVEr9DQQEvFRKvQb+pXTz/+tKqX8O+Bz4Z9O3/1vIevBjZEX43/pjC0B6xP0ehgG1mEHKvAfE3AJOunblAtl2IGQFrtKELCO3iuyhQ3UO2zlMZtBDKcGfS5lNp9l8yv7LmphQbkV3rhnmiupekH6fKfKdJ2roknOwTrkGwSraC8WwKMj3uSTAngJExFbcFdKFlFvJSjw+Mye3mmAVYy0AXn3jCRt5flcKEg0C5OlUwFAy1090ZpsYbRODL2sfO4eJ/NNeaLoLRZxN0Wjps4yTTVogV+AqjZspmZsrhYoZ9lq8BJXWEiDSdcRjg3nI0Ms8rU8j+Y10VeXtINyIFCASc+H2d2tZt7bPxIaLgNhw1Sl3703J/FaR7aTVn+TWE4sPBCiU3XfEl0Jj1J3G9AKgFhvhYUydkB7j6fMda2H0uZrTHF0nb/+oZUMQjaD+3UXEXw7QGmafW8rbiK+U4AaJxWnax47LNklUtBLHHtOI0s+fj6KEfMikACwd5AG/iqjcoRUYZyTh+CBAXn8ZwESqnxbYBh5+0/PiBzf4qHj7dg1OC78gQkSDDeB0Ym7K+1DeRepb8Trsk6nO/I3DHkZipvGzDDf/9pngP8p24L/6LX/1n/0V3xuBf/6P+5n/wCPLUGdr4qFB9SOhTOj8UWyoUQrdDUSfSzTVKBpy5Q0hVykjTotcMkg8Vn7XYPoCKGkvZLV32vVniuPzb5gzjrIW6xdQPchFMiyMtLl98syr5TSJmpOme1hAsJbsqMkOYlxpeiGbDDNJ2p2988y/8mlE4NSRuBLaQp8cYk2bdvXDI/FjwgIkBVnYiicEeNowFCnDL7kv2zYwfxNQ3tI+ETR/AjJB4YpIfkzrw/oxcZkIx5cZ2Y+encRNtouUDykBqReqcH4IxEaR7T2283SXQnAalnLDCM2YxOSbTmeZV4kK/aakfBD+e7ERsovP5PcVa3n5jCbJr/Ky88/2j9JiMwghafZVJ3hDcmaKVtM+LTk+Nxxfpry+W8Xys0D9rmesLYf3LN25rM9UAvFMD/nHhdiR33sxEjXyGaNIicScVp1CWvLYvSRbD+uAed5gosLdigmKPx+pVh3fu7xjnbd8sr3g3c2K2BnsxorXQimgY/VO5vb9b3e89+yBd5sF43UFWcQsRmKA0FkpAIA5aoo7GZeq+0h5OxJyTXcu79HiiwE9hoRbJSOa9jtuOR6sZnxxhtlX0PRpLZfjs1p87LwnWoPqxDsgzMvTiSGoP/Qrg6srittBkOKku6+uB1TI6Jf6dJGadLN156LkUoA9iPtPNDo5wSq6cyOJvskeSrzfZXLQHswxnVYzjSu1hHV2QUA+LYWlvTDi/dbG5AAThOeQiZhlaqtNG0904Ee23aP5RTQyWkyoOWqixkYaayiyx87BdIHZtWPCJ9DCXPMVqIXCHeTiPpFzyqRsW0BXe549f+AvXX1BpjyfN+f87O6K/dsFunuknurBopzYd/laiDu602IvNkJMr7F+q2XDME6iINECRJ0MMZqAzhRmFBxnWMg2IynATytZcYUSjKDYebJ92tgAvsihMIy1Zf+e5fCefKaz14rVp47ypqO/KNh8L6N5EWVk2SpIqr/yVsxSzAhDoi67WrwSBHzjZGs/LIX+m+01+Va6lJhHxk2J3RkM4K4Gnj7d8peffE5lRv792w94+9UZ9l6owqaX3y3fqLTxgeP3R2aLni8/v8TsDHEeMIuRMGpir0VEoRBx2K0WXcldoHhwwq04l6Db+l1PVIr2SS7j39FjGgE9v+3xnSgCkykElDAr0Mntxi1yYmYw+w7VDkSjJdSyH4EFviwZ5iLrJQFpw6ykvnHoMTDOLD6NArN3LtGTFWOl0T5S33j6pWH7fUX3xKN7+WAnhpsvFd2l0EzzJDd1tTCzXCUzenUdk8GHors0ZAchKim5B7+h4hO031ihHeepbZ1UbCFDdtt9QKfRRSLAND5TJ2BvXKgTC05AOCl2hxcmceYjZtDCE2jiacRwZVoV5jCsSFuIxDm407hKTFht6Xg+2/Hb88/57fILsovA1y8W/N6vv+LNsMYFKQT344zXxzVvtkuGwTBuSrK9lnCWPp4AyqwRJuIUPRasws1MMlh5PO3DZDQ68fIzyYfM9lOxILX+Qgvuzy1uNhPGXWIzTjLwYiO23uWDePbf/2jO4fsOVfbEzog0V8fEhUh4xVzhvXALQvaY/iMqR04cAl9Esp2mfhtPPhDFjZHDYBHxT3s+fHHHP3n5KX2w/Ju/+A3cHy5ZvUudnJc15GRw0q8Uxw8dpna0ny0oDvL7EyHc56hREVdOLMaP9iT1lrj5wLiUXIpi6ymvO3xpaZ9laS0tmM64yuhXBv7Wr77/vhtFYHBkuwFfGJQS1aCkzYphhJvNyR969K492XXrzZHSBVSo6c7MKchyWChcmVE9TBedlvirUVDT4t5jS8kB8Jli9vVAeW/Yv2don0n1Jypsm4CnTmi6IZdCYFJs9XjuGZ8ExlVGcSsYgM/BXab05FaKRtZGif9uHGNtcTONyqC6HtGjpV/pU1zaOAOiphg9USgQFHcjvtCMSysmGkou2BPZJsEnZpj8BYUOa4+ik9eeE4pf3QrPfGK0+YITt8A2irE39L7kd/17/Oz2Cau6ZVV0rPMWqz27ocJFTa4d+7Hk7ljTHArYZ7I2u46nTD7bSAZCNOq0FhwXcsF2a4mGz5rIMJO16rB8VG4K9iEncLkJJ/MTV8pYNy2k4zK5G81kPao9p6ReX8D9jwztK4dZiumM3+WYo05dhUoU4XQRatAJm+guFa6MJ+OOydqMCNW18PC1h+YJp+Rnt4qYZy2/9eItT6sdf2/zHn/4yQtmP89ZvROsaRqPxHlZ0V9C+/6Iqjzqq5L6rSD9UUdUSIXlyYgpPf5oTwfB5Js4zjUouYbzmyPjec3xZSGxY0fRYzRP7aOD8rc8vhNFAK0wbx/g6Vr46G3yqU9hGK7SjLOafJcLg7BzCeQKFLctps9pr1J0dHK6bc81WSOBFkL11RyeW/JjJN95TBeItaZ5mpE1kdVnjtk7MasYE4FlnIu/3InoM084QqcIrSYsA+55z7i0ZFtDeSNWU66Udnb2LlDe9IlLECgbR9hqxgSw1W86tC84PjX4SsaHcS5rsOz46KBjeo991+Mqgxks3Shce1Rq80sxIqmvA8Ek0Muqk2vOWItC0R5JlGIviU4z0QSMc35JLef3Ge1tQRsXvCkmXbyAcmpMevyDGGCc7UUMVF/32P2QPBK0jFa5SIuPTy3dpejuo0H8AY9ibDIRqIKVWLRJ3JMdpKDkO08o1ElEJO9lYhbO5WSWTu3R03//gaL/fsfFxQE9ZBwfKhjltU9U7klVaboE+BpZIYvpSJRDIHUAEygs/gwqxZJHQiFzdlw4vvfqhg/n93x2OOfHr3+E+bRkda1OnUWwidOQpY7lLML7LbSW8ucl1bVwG4ZV6h5txD0ZMXnAH62oQntF/VYxexdSxxcobjp0M9K+WtI8sfhcurvmwtA+VScrMld9x8eBUFjC2Ry9bcTTvjCYJP0185L+okxBj0I2yXcjdtsnaqpBD4HifpTV4Fwz+fGHxPW3TcB2gX5lGOYKV1jygyCuIDHSetBUd57Z2/FEg20vRf8tbLVH1pbzEJUmdJmsiLKAL2V8qN9Fik2kO1e0Fxo95uT7EVdkJxxjulFCbijuRlyhT8EWUT2ShFQU5N72lvJO1IaidsvQTuMzyFH4HpiQ6z4yjgqfxnd5zTLLCj1XuP/ZwaFHjekNZhRSi/Qe+uQWPLWeejDShSSWpPZy8+SHQLZ3yVykR/WeUGe4OmNYWYkHX0qEm6uktbEHccZByc3vZvIhSCCMOomBpP2XvMZxbqXjCY9j0EkMdJAxwZVi1dU8i+gPD9SZ52E7w7dCwpE9u2QFmF6dXICnriJr4mkky5ON+HR6Ri1FfVxExnMxRokRlI7Mlh3fP79jPxb82z/5IfZtTrF9BB4fiVrgLmRNOV6M2MWI2+bUX1rKu4mrkBSHcxEnKafx2ww1it/g7GvF8gsneocI2U58M9oXFc2lEam5hvZKzHCijqCk8NrmcevyRx/fiSKgIrTvLSivW/Sxx61rsQjbNJjrDdWxontvKW4uhaI7zymUwm57TCsyXCqD6QKFl9RgX6hH+upMk28c9VsB5SQhRyq9TmaNPofmylBuFPnOkW8Gim3G4bmVpNhR5rA4RLGYSlTdYWEYVhpfTXJdLZJirWivoHlmidqeYqwm9Ly8i+R7uSGLrZwow1KAv4kaO+nQg1Xs388pbzPKh3CS7Qo9NjyKrKJ0IW6W5sqjnETZMVF6KylO+cFgDyP5doAtlEbh6ox+YxMZZ1L0PXL8iRNNOp6KmRnE5hwFfp5DFRkXGd25uBOPc+SmelDUb4QsBTJeuVrQ92yvTq32NO5MhiDBKqIysh1KGoBxMRWoeHJOaq50otE69HIkjIbhmAZvDTiFOWiygz6NDROPYNpCRJ0Ca5KhCvqxQIyL9LMXoyQOOU216niyPNA5y+/+4j3yr3Nmm2+Qw/wkaCKF3nhUJRbrajDEZChi+oQnXUTCi5ayFlJPsysx95mEobZC+Z6/ldllnMl4259L1Ht7qUWHME+diU3JSCaie039RlPefMc7AdU7st1I87Km/lphdx1uWRIWpdhiNx3la9BP5gxrKxW2NOgxw2w7tAtYqxnthIgGsoZTAOYw1wSbke9ktWiPinEpdFcx55BWdKwU/UoDVnbQm55V5zk+z08knckk1DZycxUb6Lea/kI894eVkIKkvU9klXmA+Yi2idAzavaNoXxnyfZGYtJHTmy4fC9zrUlkIVEdys8erw359nFVGFGpYKR1Yyd8gWgmenJS241yMfcXkX3UjFVF1sjab1o1ToDjhIQHI/+z7tEaPTsE8T8oZMPhKpNu4AghCgNTkTARTu7EwAlIE8PQx+IyFbtxnrqClPt4fPrImBRz04ivJFJeTRZwKm0nzgfqWY9zBu+lGyQoVG9+icUHnBKBxF/xMfwkmmRNv5GuwOcyRrkqQhYInZG2fObQOvL5Z1cUbzLmR/m5vpgYmvIc7bOIe9GTV6NsDZwh3BeU7wzZgVPSVf/U8eKDO+ps5M12yfG+wt5nJ8/BfCerS5ck1zqNRGOt2X2kab4/MD9v8MeCcBDpYswD2U0mtmZ72U592+M7UQQIgfyTt+jhiu6qpLgFu+sIdU6YpULQDeTXB/RQ4WoLWpx2VZ2hmxFz6CGCW2T4XAshZuMZ55bmiRXyytxSbDXFgyPfJNCqEq6BdsLk84W08eMsp7yT0WP2ZqA/z2jPRNIr9k3qsS09iBuRq4TKK8g89EGqcewU3hp8FlE2kNcDdhkYzg3DaDjeFRS3OuUgCFEl3z6+PSpwsp5un8ppn+/khhf0XfCKYSUrwHwTqa7lBh+TpLZoBQwbVmk0qOWUdTNxSta9qBKLB7Cb8LjS6+UOHhZGbowysfVaR8hyQq4wreg3RJsgnAWRYCt8YhJOJ/sU7zXRfqNJ69YO+WJMTj+ZIpbpexR0l5HxIpFvRo0adDKf8RSLHmsDw2BwtxX5naHoplFIdvEiC0bGJsXJRMYndyAVobhTpwIgUXEwnAnLz1Qe3xuxF7opCPcVi3TzC11Z8CPbygbp8H5APevITKA/FKiDOUm2CSSnoYh/1vMb77/BBc3PvnyKeVNQJYxDjylhqo90a3NSkE55nPd/LvLyz77hVTbwi+sLESLVjtga6l/kzF/HpI+B8u4fvYrwH+1Da8gz7JsH9LCkfT4jqyzmOAptuMohiYvMcUAP/mRAGgopCKr36M6hC/HN94UWT4D9yCxC80Tort1ZYhnuw0l5FoyAj8pP5iHCOAvG4ktNeT9Q3g0Qcxqr6dePTr/TOud0Ux6EHWcGsbDWw6NRSSgCarAMNqMvPaYSDTmLjv1ZhXlXpLY3JgqujCkhkxsnS0aWUYsKTTnF2CjyvTyv6dMKMcl186PH9Prk3+daEZtMxBx5TY8a/HwLy88d+U6irINR5LtR/B76LGkrwmlzQ4yMtRG3pTacfAGmfEQBLuX5fCan6sT7V+GxJc8OEWPAd9OYIa83GhKA+bgFwWmZ8RXE2qMLz9DkDDtL+c6wuBE+BiQMxEu+n04+Dt25pjtPTkN6QtqnNCcBVceF/P24DlTPD1zNWt7dL9EbS3k74SeJCp5MSaubSLGNdGvJvAwzD/uM2BjKB02+l+9zdVolFhHzvOU3X7zjppnx7pNLZp8JLwX4pb3+lLxdbAK2izRXhtu/7PnhD74iRsUv3l0SgiarB/ybmtXHGtMJLT0/ROp3Pdnb/bfeft+NImA044tzudj2HeV1Q39VM84lv88eR4wLkoibYquVj5heQDxfWiitiI6Sjt2VmmGusZ38jGIrXlKulg/aleYUKWVSQs04E4RYD5y890KmGBYZtvWJCCSElv5cEGQ9Cjp/fCn/f9or+3SKmS5S9WBbTftETiY1CFMntIbdwZKvexarlmMW8G9K7FHGAuvSWDv5F2SP40iwMK4i7TMpNMWDPHe+TWPKzp98EYWyLOOOuAPFE8CW7WV1N3HvJXDEiDNQrjC9Ib8fyA8Dp9g38ygIGmfqRMGd1m2Ta/Nk4OlKYe+B/C7ZXjAHnX63YDjJfbNjTDLryLCUziWkmC/2gtRFm+beo8XcZti9dEbK82gmOiYhUyOv5/BE0z6NhDwkxP+XjTdcmaLLTHJ3fjKwXh/JrefN2zOKXxSnbm9Ypc8+5SEUD4FiF+iXknjlqojZm+SEJMV8nEP78pG/v3i258OzBz5/OKP9yZr5tRwsIcWQRTVdS3Lj61EAvsNzw/0/5nn2wR3XhzmHY0qLCqA/nrP4SkJMhrVwWFYfN2Sv78A8Er3+6OM7UQQkAEP86+wyJ3/oKG4a+suK7iLDzA1FYbDbXrT+/UgsK1wpABcRYjIYObnFIDdwO1Mn8oxNJJxxJhdvyORi6c6EUiwBmdMqUG7w+jagYmScmzRfS8V3c0V/FpJZh7j0DKuAm6nT+kxUfQnxboWUM7kPq8qhbSQ4xbDPGZpkyGGEAORLOaVJ4JdOBWFYyw2lRnVaW/mZZ3Ry0RGn98BQbMQZqV/q04003fyTbdmUmCRpubCpDCqYk7dedqHJ99I5QdqOlCnQI083nAdvObknQQLXSAXVp3jtKO9LdnhkMDa1OhW34kHeWzPlBlgFpEKWT1Zl4HPxclRBDEeyY/IYWMs4ZVopClFJzHx/Ae58kGDOg3RDE0Do82QAmlyAQh7Qi5G8cGzu55jrnHIn+/vmqXQP2f7R42D21qGHwLC2HJ9ruifyPtmjAHquThTjyw4TNDHA86stL+Zbfn53xeGzFQbJGVAxFU8TKe40+S6erM3GmaY70+x+4Fk833Psc7zXlNXA/qGm+qQgO4jYSgWYfR04+/EW9fZOgm2TJP5XPb4TRYDJ+tko2quMUGjyzUi2G9EuMqwszdOCrLayJhv8CTwclznaBdQYUEqhQ8SMAdtoxqWhT6dcMMLYsp1QgIeFtItR/bI1WL6N5Dsx5WyfRbonmsVnkuYi+38pDuWt3ODDOhBy4XIXTjOuYvqaErtyI+DPFKFV3Ct8mxx7Z4FYpJVBUprF5DYshUB2x9HIBZJt5XnGOQwXXpBvmV5ScKoUgP4qELNIfmspHqSr6M/TSewTZ16LV/7JADMo1KhR/UQplk4o2nj6e9kghlPWgXcG+5mQXHRPUkQmFeV0o40kxePjKHOyAo+cdv1mJxfvWKnEkBQjU9sKFjIZavANkBE9hYyI+QcB1Dit5sCvJP3XVwKSVdcqFfmU91cHYhlQhUfpSAwKekO8L4iHktwJeax9Kc4/J9POfaS6DdRvB0Km2X6Us/t1GM9HVK+xe9ECDGceViOzRccwWMpi4L31hnnW8/vvntE8VKizAaeArVixoyG/l/Eh5El8lkuB7a4C9rKjsJ550TN6w1evz8nfyAEyziQjcvWpY/bJBrVvIM+JRS4anG95fDeKQJQLzvQBnxvaC4urtIhUGk/xMNKdZ6KQKgX0y/YOu++JmcHNM2JuhEgSI2oIZONI9hDJ1wX9WSYXVzG1wxJLrkc5CZSH8j6Io8xc0PnZGwGUDh9ENj+C+WeachNPhh56jBQPKQZsJjHj+YM48LhaJJ++mMAiORFc/dgO51uIyhCyVKSKhEjXgfHpCKPG7GVGjEYKgptLcaiuFaazQrLJk+AmIik1KhILUeu52ci4ztGtxs891VVDVQw0XUG3LTBbi+41QUcwkVh4otKi1Os0IRPjC1M7ynJkUXXM8wFN5DDm3G7nDOeekBmR0Fbxsah5dVpTqV5TPGgpPlbeb9sgW4VBVoW+gMN7oL34G+R7+TufS+cW0r8LtVi3RyN6Bz8D3TxqFnwladOK1OUERbaT5OjuIjKce+qnR0od8V6jdUTrQHMs0V8V5NvEYZhHhqcOPRvhmJHfGfKtFIB8F6mvB9zMcvMXMo4fOMgCem/RvWI886jKCwBsA95rZlXPjy6uObiC3/v6BW40LC+PhKg4XM+SWClidxrbyPshLs2PJiJh6fjek3ue11t+vrni7ddnmK2V97QRJ6HVxy3ZzUHuq+zRn2O8nH/r7fcdKQKge3+az8W7T5/IPJPpp3biTOtzg6s0dm4pbzuy+xY/ywm5IWQW03t8laF8EBbbGDCrjHFmTq5CJoFSk5gjmke23zhLjjbbiP6For2SCDKUtICuJikQI+WNovc6hUkKK0+IRal1LeWCzw6kkBEeUd6BU7KNH2XFGLUizCPlqiGcK/pNidna09qsexIYVyJfLR5EUzCdrr5Mdtv3lvhgBfyykVAF1KDpjjnOaVxvwWmhvNoIeTiFgZIF1DqgTaDMHTEqmkPB8XpGUxds6wFjgmQcdhY1d+iLjuWsI7eOXVvSdxkhaIJXMGr0MXU5mhPhZ8IgQiZAWcxEb6EP6fc8V2k+Fn8C2wiOIMEr6VRToFu5afQgBSBY+bq3kVhEog34LGJKx2rRsCgGOmdphgxjAkpF9m8XlF9bUXBW0mXFPHU/NwXFQVp74OSbuHu/5PCehNCYo0YPUszdhegApmBW7zWrWcuz2Z67bsYn7y4BuDrfs28Lmtsa1SWTnCZ5QTaCJY0LhZunbIuXHR8+uWeRdfztLz5kvK2kcCskpv2zwPzLDnMcCPMC3TlpnBYlmx/OObyn4W/+6tvvu1EEFGCUJAhFQBl8ssPylUb30g6KhDeexof+zDDOa4oHR3YY0b1nXGaMi1yKiRUAMWucsKsyYYH4DEmpDWLKoTtO6bsSCpJMKKqEC7yNyWE4WZollZ8ULVGh9ecx2T/JaTH5+csMm35ND8Yn1Dvt5CezTSCJaRT6NqPtDMtne55/dM22LXl4syS7t7JXv3CM52A3lmybZMJpnz4Za4iDkMzRfpYkqO8KfJ7LBZ4H8vOei6XsufZdIaeh8Xxw9cCH83uOLufjzSXHTYUaFBFLl9h30WkYtGAhneGus8SgUIniipJQVtMl1Zx6RNJdnXj0NqUQJXm26cUmqz+LsBrJ64HoNcM+x22thKZEMAdBFXX/SDMWXEH+PC4CYS0hLFpHimLEmkA/Zjw8zImNFVQyKOzGMNvIyNQ8D8SZA6cx0/MlV+NoYZhFTCGFd9raPLo8ReJCTEn80WJmDmMC5/OGF/MtX+7XvHu3RpnAatWwOVT0d8m6Lg/k9+aUyUiA5rmie+qJlWd+0fBiuePNfsHnP30mn8XCoxrD/EvN/LWnvHOETBPnOaZz+EVB86Li4QcmjaPfcZ6AGj3KiVe9aZwMi0srARJJX64HIaKERG7JG9G5u7lhWFtCrsmOkj4U8px+Jeh/LBQhz5KmWth2KqpHQ8gEPj2u+xTFPmBG2QJMqLVtZWfrqpQWZB+ZZ9lR/m4ysZjSfbRTpxtzWlGdvOjlaWVcaBLrLleJZafQbzXtZs1XH+RcrA88ffXAdbWEXYbqtGgrypB8DtUJiAtFIM49qIg6WPGePxjxoEPWitEqyAJZ5glR4YNmHC1+0ASteLNdijioy+m3JfpoHr0aOyHfaK9SQKcCDKHIcFV8XA+iTtsC0QakgpdFwiKFdLYW3ZhkkRUZF4FYe/LFwKzqMTrSjRY3yibFNhqTdvMmUZu/uY4MUTYm4WIkr0bG3hJ6Q7PJsQcjXAidzEusdBemE3fj4UwwFtUasp0UrwlknjqM7CDqRNuCv1CJJRokdhygE8lvvupZzVuezffk2vHZ9pybr9aoPFDNBo5twbDPIXU0xeuM8kbGkPZSjFjUeYe1gVndC4fgF88xGysp7UuHvbPMv1DUSRQ2OW5jFN1Vxf59y+774IsgOoj2O04bxnmyz67xz84Y16UQNx5GXGlO2XeTiyoIU6pfa8q7SPV1SzQaX1lx3ImRfDMSdXbKswN5k0BO/mGuGWecWFRjrk+KPPH+M1S3QcaBUbwI2ycia53YfYdX4OaiNCMqZm8D5UPg8NyI6tBO7WNixrUTS21yyomptZS4sewQKQ+B7ChzoG2gvIdDO+PdkxJmDmUCcS5kkPxebh5fpwuxSO0roEyQzcNqZBwU+YMUjXEVEj8ggtcMg+Wut7jeElsR10cNx9uaphfBjbIR/aTj+cWWyo4cxpx2yDCpKBy7HDcatAnkJtA1OaG1qEGLD36a6aKCmAXMeqDMPENnUa3M6tM4gwYGzfBQMjyUkvGYDFxMq04houpx05ZGhLQdqCPuMhWAzqLuc/K9GKXGxLr0dVpXRun8fBEkTgwx65iMO2VUicQEqhcb8fzXA/TnisOHXm7+mAqrjmTnHS8vtuTas8g7tIr85PYJhy+XYCLF2UDb5ESvMLUj3BXMvjDYI/Rn0L5yZOuOwkSUiljr2e0quCuwJ5ejSPHOsvyFmIUEK9fVxO04vsg5vKdpn8jYpHsxb43fMOv6o4/vRhGwhtj3mNudZAFcVqCUAIWFFhv5EMEnvXwvph/9WjwIiruO4t2BkFv8TGTIxWYk2JR0U+pTJsBk1jmlw2YT5bPk5Px7fBnpzzTlbaIUd4ASgceUUFxdQz/KKRKvIipoZm89s7eeJhpJGZqkvmlvDWLySVD0F6kzqARj6J7ICrHYSFcxhXFU1wi/YS5FLGQy57tZRCfrq1gGynVHlskMH4Ki7zPiIBuIbkLSSwH5jJEuoMpHrPF0Q0Y/kxM3yx1lPuK8YXQyq14ujjyb7Qip3Xg+2/Gs3HORH8iUx0dNE3L2ruST3SWvNyuabYXaCcVbeQFKYy4VuXuQ7sK26pQTIGah6jHZt0yzsJX3S4WEqRgZCaa/94VsIzCROHNoGxivxRE42yfuwCzx9xceTJRRICqZWpw63cimU6i0EXC1bGRswgOCkVO6vwrE9UD0CnqNioqYBc6e73h/tWE/FhzHHBc1r+/W+C9rlAVWI92+kJo4auxnlvkX8lq23wf7/QNnxcDhWOI9GAP7d3PJXkjkM9uoE615ik+rbzz5ZqA/yzk+k2yKYS0/d9pIhSKeYs5+5e33j+Yu/tM9Ym6JL65QuwZ17MiVYriQjsB2XsgrGY/WU4nmKfOlxtU1+TYnv+sw7YivMoLVSawjNljDIsPXQpgRy6VJpDLx2wXIKx7kz+3TyLGUFpAo3188COW2u0jqta0g/76USh4yQ3knpp6uTCGZVhKEpzywKYy0/voxQyAaaZkPH6RQ1OtIsUsf2vQfHU8X6pQW7OsgLWyn6Q452Znjg7MHrsoDD33NLx7OOWwrmHz2TKSqBi5mDZnxNGNGiIrzWYNVgZvjDICP1vc8K/fsXMFnuwv2XcHbh5eMTQ5eUa47eAbPii0r06JVIERNVjie5jt+L3/BT9RTjmONchpccgfaWNRtRpE2AjGtNn0BoRRDzpDFb2AEoA8CEPsiMs6liPg6kJ31mOS3F6JCAa432M/Lk5cgpATmMnU/CnTtKMoRNxpcW6J7xSRQske5gdy5A6/E4ceIv786G6hmA+tspOkKGVEKERMt1w1P5gfeHhc87GuUivSHguxdho7gTURf5yeexPwLCWFtnho2vzXywYc37LqCh7s5DFLs/dGgsojuZBtU3ok5rhmCmOcslPhDjIHD+yXHZzq5KU+GrJw8Et0sSP7Btzy+G0VAwXhek00hJBryTY+fifzWDGKQ4EqTorMjPhNjivwgq8VxaQl5TXHfy3Ygpee6mUmuNl7IPk4x1LK6yvdyoche+vH1FBsRFHUXcpGqoBgKTvzzyW/eDI+7cJDTrL0SdNembDzlFD7K7l9Shh6ZetlRzDCm6Gx/FWnfE5zDf6Up78NJ/CN59x7Va1knJRARjzjkPOS073L+4FnNkydbfm19y48ur/kiP+PQFXiv8U7T95Y7agC6Nsc7zWzRcTFrWFUdxyHnrpthdWBmBp7NdhS2ph8tPvcY63m23vGi2jI3HbXuGaOhiTnvxiXv+iV33YxhMCin0W1yRUrFbALxfBWI65HZqsXqIN3IMSe2hmxjRF3o0wYlycLDUTIAQqUY24wxICCkiTBqyjeW+l08Abf9WijHrhaC1vmLLR+t7+l8xic3l4xWQkX1IN1H+9yjL3tMVPh9hrscqZYdV/OGp/WeEDXboeS8bumd5e5Q45yhLga2fcnmUBG8xg8GdTAnwNe0ye5+Kyw+Ijz80BD//J4PVnte364JdwVmUBDUKcHZ7DWzryLFTmLfoiKNm8nyzEf272e0lzLuuFkUabuTDisq6QKynThmfdvjO1EEVARXGVQsMYcBX+cJhfcopZK3viDuw1wnrzpp6dtzRbHTVLdO/n6Vkz/05NuBQRf4QjMsEt1Ui/Y8a6BfyagwWXD7iYyS3qtsH09ut1MYpavS6TSQYrAiqiBp1DlJW8cFJy46LYQmCXfWQuKJWcQtwW1l9zyFg9qjYsxhfDqwXRv6N5Z8IzeC7iRIROytgaAIVUh0XI0ZFMVG4ZuCd80526uKRS2VyOhACAptAmNvORzyb5B/Is4ZMuP5cH5P6zPu+5qHrsblmiflgVXWoYkcx5wPl/f8+uyaOlkY37oF18OCL9sz3h6XbNuStstwg03cAYhG/PLKasDowFndsiw6rPI89DVvN0vcaIiDJr8V5mPIZfa3zSPN2ZfyXud7QzCGaBN70EB5pyju42ls6M4V/WXALzzLJwd++9lrvl/f8Hl7wd9+c0W3KaEUINI1BvJAte4wJhCjolgeebncsc4bMhWw2hOi5qo88KZd8tXDimGwLGYdpXW0Y4a1YcrJwS0gaJuKn6a6FuS/faI4/GDg5Xv3PBwrvvjZU7KNFg/RqE4r4+wgVme2k5V5v9RiHLsQdaZpYf+eSWKwx3AUdZ9RPOjHAnCvT1jWtz2+E0WAIC4p48xCAN07xnWRnHQCuhcPftOFxOUXmm9+jHRniuZKlBzVzSjUz8pimmS5rCSRI1pwVgDBYhuYvXWMM2mRskPAWvC5lk4EAY3UIeEHmTopxYAkOX3MHzTJ1ltsuxKanKWTfkwsvdM6UFZAepBM++4CsqPwy6ORXXFwilgGhnVAecm5zzcaNz4ab+gBQm7o10IYmrz99Qj5nWEYZtyU1WkVRkBOTBAAbjLaiDB0ljfbJduuxOjAquhkfz6U3LZzXND0ztKNlj8YnvLp7pyzsiVExa4v2aVOIwT9iDeUI/XVwDLvmWU9z6o9C9sRouJ+mLEdS94elzwcK7zTxKjAJenuIkCA8kasxIaVvNehkLZ+2oSoKFuCfCt79f5cHHuGS49dDqwWDd8/u+PXZjd4NP/Gl3+Om9drcfvNpRhPhRAN42BZrg+8mG+5Kg8YFTm4HK0iRkW2Y8EnD5dsdjWuNxSzgVkxYHUgN54iG+lihtIKkyt01eK6jPxtgelg/xHYX9vxanHk69s15tOS6jj9MjBlDOqRR++FRHFvXkTc2Sj5Bi5FqynonjnKq1aaodcz6reirgyZvDeTGnTSsvyqx3ejCACmFWdOXxmxFN/0DOcl49ygaoM9+iQIEZlqdyY3sCQPwfZ7mn6VM3/jJZo8e9wGhAx0H8m8iDzaCyMBH2PE5+LxZ7uQbKtlHal8xNUG5xQ6BzNGXDElA8sNZ1PM+CnwwoPLYDwLDKVneLBU13IT21ZEMtOHbZPmIKY8gukxzcToSFg4xjFDjzJLTtbhkx5eJVyiX4sDElGYdvlOEa9F1DORkyanZV9KyygIuawKlYaht4SgWM1antc7Frbjul/wer8+FYDmUBDvCzYq8mYpe/joFaE3kqYTgSxSnze8XG15NXtgaTtqM9CFjK/aNbfdjG1f4rxhdywZOyucg6AE8DwfUY2heBA3o+ZpZFwFYhVQueQ7xKOluLZi/ZbGqcMrqH5twz/9/Auel1tKPbL3JXtX8v9492u8ebdGPeTYXsk2IIHAE8KPilysD/z5y694UWzZuZJPjxd0PmMMhm1XcmgL2m0JXmHnI8tZh9WB3lkOfc7opeNcL1rqbOTddoF6nYOG7W/3/JkP33DbzPjykyvKtxbbSbfjKtk0mSRIm3wOptDa7olYmlc20O5K4lYzziPuZc8PX73j5jhj+9NzFl+IetBV6uSLOPFZ/mFBgd+JIjBlzOneE62oAu2+J9/09OcF40wLE7CV2Uhov1MwSGJX1YrjS4mTWnypmb0Z0J0/gYm+1KgYH0UjC32KCUcp8oM65dW5SnTx2dGjgqjmJoPIYSV37LSliEZEKr5MO+XEUisWPXE+cCwryrcmjQcK32vi3DEuZB0ltGC5H22rQGkJ2giKbD7gbKTTGdlOP6rMEpHJjDK2THZm41LexyyxRm0bUXtkh24n0ZAQpibkPVaeohzIrUepKK2tl31SiIrL6khuZCd3M5/ztlwyTMQgICsdfVSog0WNCr9yzMqB2g6EqDn6gs1Y81Wz4u1+QZE5lnnPccwZewv7DNvopACUzYdtRK47LORUN6uBshyJUXCMCLh5YDiPxDJw9nTHf/755/zW7Euu7J6vxzN+fHzBx7sr3u0WOKc5Oz9w/p7odN/uFrRtLmOSl3XDB0/u+YsXX/Be/sAYDT89POU4FgQU265ke6hkbTkqYu0pq4HcCM+iHTN80CyrjouqQRP5g6+fEb+sCbPI7Lfu+bXVli83a3afrik3+nSQDGciWTatPrkcTUSkqMVuLH/vyNPVnrtjjd4IE3T+vS1//ulXbIaa+3dLFl/LZslnchjh0gFoxISkuvuuawcAcxzxy/x0KoYywxx6ituIL2uGmaTyTP79po/Ut14isReiGuszRfs8MC4U3bpkdu2TqagnGnPiDUw6cOtkM9AvNc2VOrkDKx9xycJJDB05mZiaXm44FRO9s49kR5UEKbLCwiv6Y47OAixH2jwIwSdKC65swD5taBY55sHKCT+RXiLYRhNbzegVejbiVz6l8z5+X8iTAUmmKLap01iJe+2wE+EQqBNJacI1Qi6rpimbb6gMrjLk1uOD5u5Yc70TnnmZj1SZ47xqWGYdv7F+y2+ff4lHsx0rWp+xG0o+vb2gNxnRRuqLhrOyZQiWh6FiCJa7tmb0hjofWZctxzFn25bExmKPmnwjLX04OSAnP78Lx/zJkRfLHbOsZztUNHWGvoxcVA1XxYHz/MiH5S1r03DjFvyNd3+Zn91dna6rRdXxm+dv+a35a+7djL/z8IEUu3IkBEVWjnz//Ja/uP6Cc3ugCQVf9WsAzsqGw1jQj5ZhV6BGBQvHbNnxZHEg016owVGxLDsK43h7WHB7s0Q9ZITzkavnW0rr+P0vn6Nfl+SNkrWuFkGQX3hUp0/OxuNcukEVFOMqsPxow6v1hjf7JYe3c1h4vvfRO35j/YajK/jp2yfMf5KzeB1Ozk2mndKy5CCo7j3Vm/Zb770/tggopf5XwH8RuI4x/mb62v8Q+O8AN+nb/gcxxn8r/d1/H/jnAA/892KM/+c/7jmiVpIzeBgY1yXRpN1tlaEPA9WbjvBeKam/tUr6aukg8n3ADMnmuxNG4biMHN+HYW0o7jX1rWS0TfHkuZbCETUpjszTXqYUHQ1ZI173UYvoKKoE+BUC9uXbyJgCMki0UuUUMenmda+JTqUQUmk/w8pRzHuZfQFrPXbZ0ecZYZtLezq54A5iiGk3BgdQeNzKgzIiUe0gO8qeeFxI8dGDPFdU4mcoxCdZGenxEXPwhcyHAnAq8jvDOFZsygJdOpSJRK9QGhZVz7PZjovieALHAC6zA98vbyj0yNZXvKyf8eXFGh81F+URFzSNyxl8wbYvafqcKh/xUfHJzSXdrhBNQSsFYPZ1pNgHhpno8fs1uBcDP3z/Ld9b3HGeyBxfdWse+hoXNcusozIjWkU+6y759HjBF7szNvuKPPesa9k6ZMZz0835v3R/hptmRtPnJ06/1oEPzh74c6uvMSrwaX/FbT+nT+DPTTvn3W5B12WoLFCsOxZ1x3nVsC5aXNBcNwsOXcH9OKM75KhDAgMve85WDfum5Oamorg16VpI24paKMqqsRR3Yi/eXwi+oweFWzjO39vww/MbPt5ccvt6DXngxct73p8/sHclf+vzjyj/1pz1Jw5XTSlb6Z4yIoTL94HqbSOJ33/SIgD8r4H/GfDX/8jX/5UY4//4m19QSv1Z4L8C/AbwAvi/KqV+EGP89gwkEolnXmCakey+wyVQ0BcaWxhM45h93aOeF3QrsQU3o6j8fC4IarHxsks9WnYfiKTXzWLSHxjKW01940SINEbAnDTx1fVI8RA5vJeLYUgmYMwved5XQgn2ZeISRJm9BKFOfoKVoP+6k9QdFWWEyI6awVsGGzBWxDl9l+OTZx2VF9VdLzfGtBaLWlhs3gZU5fCjQjnxTZhouKZXadceTntolZiVvoqiaOs1+UawiWiTjHYm5iZmUNiDhqNOa1WRFqssMHpNrj2vygfmpuMX7RU/2T1nDIaXsw1/YfGaK7vnfHnkt+YFmXLcugV/f/dSuoPrGt1JEdxlj6Ifkjw5pvdoWCraJ8JxH58MLC6P/PmrdzwrhaD0RXvGbTfn5jinHTIy4xnn5oQv7JoS7zV1OfDR1T1nZUPnMn7xcE7X5uK6kzuqYqDIHEYHtIrMs4F13vAw1rx2Z2zHksbljMHQjBkPB9n5V9VAuXQU1pEZT27kcn7oa766WRM3ucS7R0UoAyr5HR6agvG+pLy26D45DS8jsfaoLEBryB400UTaS+F84BT+ycCzpxsuqob/4Kv3GK5rGZMqRzdafnz7nLvPzjj/DzXzr0d8pRkW+vT+RiW+gvk+kG963Dzn5i8s4Xf/hEUgxvg3lVIf/nHflx5/BfjXYow98KlS6mPgLwP/7j/0XynwlZWVYCeo/pRs6yuNrq14Bu68oNlzSd6NFaiYJMJIfPbi05byPufh1zNh7SX8S8wWDNUd6EHMQIJNQZyXGbM3PYvPe44vC/qVhFm2V4bi4ZFPENIulqiob4KAOsnmWY/ICWCD+BIcBCQa14Fh6g4ai8uCeOC7BPINCj8PlBctMcJwXZNvJKwyFBBH4EFm9OJBqMviuptorTrN9oqTaKfYSBDJuJQWJiZPAjFFUSeTy2g5Jf0oR6IJTynIioeHOX9nX/P38pePysHeom2gP7cU2rO0LR7NfizZu4LrZsFXt2vim5Jir9M2RKGOEu8V6kA0AvChIuNM3JGyF0eulkeuEgYxeMPvb56fALm+k/egnvVczo9UduRdM2eTbtSX51ueVnsCisNY8NBVUgCioqp75mVPaR2LvOeqENDk6HPu+xnX7QIfNZmWkcgFTTdadKJGl5nDGk87WlzQ6bkXfP7mAn2dY1JasJ97snXPatHSO8PY5JijMP7c/DF5iEETR4VpU4DtTMBJ3Wj8+cjV1Q6A3//kJdlNhjaiCXG7nPtDRv7O8vQPI+XdmPgzj3kKekwp01uHaR3t05I3/0nD2W/cwL/yq2+/Pw0m8C8opf7rwO8A/2KM8QF4Cfx73/ie1+lr/9CH8lG8/lcFmY/SupSW7CAVf1gaVDRpPpfW0XZyOoO0vu2lxucZFUI0uviDwPF5JrLgfqLwKhEWjfrknBM1tBeaflnK2NAFhrlJgZFwfA/GnT4hrdHA8ZX07rO34ZQZmG8VpjX4SpD6CdEPmUZ9cMSYSN9mQjcNYHeayQxEjYpuX3D1dIv5fsPb6gy9s6etw7QWtI2Eh/hcMAlXSyc0jRioVDiM7KSzRhiPk2x3KoimVaDT2i2Pj4EcWqTFqvDoLBCDUJDbfYE6WrFFKyKsByLw8e6SzlmhKkfFvinpNiX2zoKB7tWAsgF1n5M9CPjne814hvgOJPuxUAa0jozesB1KfNAch0wIRF1O8AqlInnpuJg1FMbRuox5PvD0yYGL4ohWkT98eMrNdo7WkRjB2MD5rOXD1T0vyw1P8j2Xdo9H8/P2KW+2Sx66Ch80PihCkBFh9IbDriI6jS1dYgCWuMFSVKNIgDeV4DlB4eYBViPLVcui7Dn2Ocd9KdqItBo2nTpdU+NMBF4hSJdkjhrbaronjnLZc/cwh2uRMAujVREHuWbLO8X8tdjlRTtZ6clnnB2guhW7fD167n9zwc1/auQHH37Nx2+ufsWdJ48/aRH4nwP/MnL2/cvA/wT4b/9/8wOUUn8V+KsAZbakuGnontTEi5Li+ojddXTP57IWJMjpn5KFtZOVnRkn5x3xuesuND7PqW80+WZg+alnWGe4Un8D+dcnh6BgBBjM99KSbj80cuoL/yaJVWT2n1bsyikoI7sfOnxpWf3CY3sZHyQgVD7oYSkf/uIzOI4zuqcSHa06jR7lpjW9uOawkAvtYTtjuWiYnzccVC3fP4lslIBG4yEx6dqJt6CYhi2fR/pzT3+BKOGapGI08j/lOFmoiZoxntJ4gBMHX5mI7w3KRIpqpA8Z9iA38VAHFvOWwVl2bYlWkSofKa2jzxx97iUHQnBJotNoJxe7L2QWpvKYPBBLTzwDo8TgY3SGVmVYHdAKQrLjysuRRd1TZSPNmHEccj5Y3fOD+TUAPzs84Q/ePaM7FOjcY61Ih89nDa/mD/xo9o6n2ZYLe0AT+Hy44ugL8nTy32/mEvOVHIZCY1GjKAK91RxuZjKu1TJXt8cCgsIvPdiIKWTD4rzm7d2K4JQ4FSlZ+5k+YTTrgD8fyUrHeBQg1RxSsOlCVsP925r8QSTaKFGZhhxwinILiy8lQWoSQPULWXHn+0j9dqS4aYiZ4d0/vmT4z2z5tfWOn//hSxYfm2+9F/9ERSDG+O4bN/P/Evg30//9Cnj1jW99L33tV/2Mvwb8NYDl4mVUPlJeNwwXFe6sInu7J7/vaF7WyTlXgCOffPj1KOBdeS8fjB6tRIgtFEdjhaxz8LJWHKVdnjTVw0Kf8viiFWQ930b6tYwB9iAxWP1KoVRi/qWVTsiSv18mQZIqWlaf+FPg6CmIcy92Xz5X1G8g32W4ZDCiJ/urUjTwwQRmi47jvuT+7Uoowb24+5BOEeXllB+WssUgKe8mJBnSqV4GzHxkqC16KwGWwCkUFfXo2S+U5GTWMZmBekXoDKqXPIFu0NIFeHG3MYuRInM0Q8YwWKz1DM6gVGRR9mgV2elI3OXorYBkIY/4RUDPRzITcIMhOIUtHNYGisxRZO60chu8wehAmY9Y65kVA4uixyiZ5V/MtnxvdsvNMOd33r1ifyxZL1penonSMUTFPOt5Uuzpg+XnzRP+vn/JwvaEqLjrZxxdzrYrud/O8DsZNWJQYjGGKB6V07DJoAqcv7dhXXU0Y0ZfWIyOHNqCobP41tDsZ/K51Z6zi73wIPYZIYun+Hd/5lAKxoNoMHSrKW/0KZTWbowIqFTykXRiNKOdbL8E85Lr2eeabm1OIG9168kfxHLv3V+qcP/UDq3gi7/1HmdfPl77v+rxJyoCSqnnMcY36f/+l4Efpz//G8D/Vin1P0WAwV8H/v3/KD9zXJfo3pPfd4TC4s9qzN2BsrC0T1OoSBMZa2m/Jzvr7Kgorhvx31sVdOeW9lLTXBpqwB49vpjWfZ78wRNsgc9klne5+AxmyTjSpbBI7UVDMDGzZDWpUlZBJLsxuCrSXkWiMszeyJvs6lQMUuGNGkIQjUC1j0lXICdwd6bpg6LPC47p5MQpTCMyXts9biYmQ41xjvgBJIrzxMvXAxirCFW6okKK3ErAXDBp2+Ej+TdckbWX4ucS2cgcxeUjJDadOtq0uhLbMjrDu3crATSdrDFbp4hFIFv1ZLkjKxx9YdCtXF7RRjARm3mKYsTUEZ9EP1pFYR42JcNgUcB81vHB+oHaDnTeCt/A5RyGgvNKxoF/5+2v8/X1Gm0DHz29O63MtAoU2nGRHWlCzhfHcz59OKdN+EAYDNHJ+4NXj13fYiTL5UBxo8Ftc3Qrp/3LV3f8+vqGu36GVYHeeN5uFvT3FbrR2CERkK56vvf8lsI4Prs/T/ZqSZ0alRRFgFwOkuqtzHtulgJa1GN3JjyCcApOLR4kZdk2Hp9r2ksjOJeD+lr4MLtfX3D/ZzTqz+7pHirWv5sx20m3nB/+FDwBpdTfAP4Z4FIp9Rr4l4B/Rin1F+Sy4TPgvwsQY/x9pdS/DvwB4IB//o/bDACo0ZPfHCV1KDfoZiRmmjCvyK73EOc0L0oJY2geAZaooL20KFdRfPlAPjj0UGHGjG5t6JdyJ2oXcZUGLNl2oLzpgQIVZS3oK9EmFNtIkRSAwzy54KY5zhfi728GoXKiJF9eiDuSjpvtxa5Mu3hK/Z1WNiETP4SQR5wSULDcBLRTEDV9KAh1SOIgleS1MRF9RDeRHcV8Y1gI1Tg7cNr3y2tVZBuNGwthwqbn9qUIaLKlrCiPdyXmoBPzcPKxi2AgTthHKT6FobGo3mKPoHYSiKocKUNAOhIxBVGMQ8lYhSQG0adMvdx6XOoWFKBUxCBkpG7IZGWYhECLiyMfnd2xyjv2Y0HjcvZDwbapCEFxu5vR79+DQaMXI6+uHqjsyO9vnlMYx4ezeyoz8kV7zmeHc+6PNfttRexlE6NOuYTfeBQem7mTFHvoxA8hZDC7bLisjrw+rtl2peAe9yV2YylSl+Vq8f+7XB/pneXrzZLmZkaezEmCBYNgAL4K6EZWo5IRKfTlmOjL4iSdVn1Rxs/J1di2HlcZDi8szTN57uparrWHZznH9yLjsx776ZzzjwVrc5V0tRNF/lfefzH+Q/iE/zE9VtlV/Kde/NeIRUasC2KRoUaZLVUEvW1wF3Pa548EaCH+yGuPWlHcjxTXR9CaUFqGVc6wkpTW7CihItEIfdi2XtZ+M4nKbi80bi6tev3OUzw4opVq2zyRmQuSBfdhek752kTLdHXyDewitntsvybu92SwGfI0kxeJ558yIfrVo524HpIrT6IYi3svpz0ziJehPZKyAVNKb4rSOvEN/KSnj4xnAb0esOlCn5Dvbl+II04e0KWXlrgzqNJjbMBtc2afW8rbR6zEZ0meax957q4Wi7UJ6UZDmDvyxSDKulHLnOw1cZSjTmXJuTjzzKqeVdUxywZGb9gNBYMzjyBdY2XVuU2xa2cePRvl50VYnx/5jau3VGbk59sr7o41fW9xXSYgYeFRgB+10JRHLTZdNqLmjmrWY03AeU17KIiDIV/2XK0OYr3WFLh9hm5MAmrTGjZhHZNbEgrC0ZLdWbF3S8VyslHTKRY95FFi1xSnTIbJPEU5MYBRTrH6mWL1mUOPgeZJxvGFpruQ4pttFfl+Uq/KyFXcGKp3yWtyFC+MiTb+9/4X/+LfjTH+xT96/303GINKwTiiMgvtgPLyS6hR4Zc5vlhgNx0zF2heVKL4g5Ntlx4D48KCnpNteqJS2KOk5bpaQkxdJglDFDBaK47BTsDFfC+Jwu2TSL82VNdCMCrvZNY/vJKVpDjZCsp7Eg0pqbi2VScE3ueccgtsJ8XHVUJLlkQimeWHdaS/EDMR24G6F+nrhCZPXgOmFdzCttIRRM0pgn1YPQammFEOVJ/F0zgyUVGLG4N6Uwn1eRnpV6IfEGfhFEm20qjKoQrRBLhRqMAhmxKNZfUYk2W42QlHQ54IBq9OAizlBNQcXAmZ0KizzNN3Gd5qjPXM6555IcpCQBiLbU2mAyaR3Q/bCvOmkBCPIF1XyMTck6N0T8VFy7puedMsuT3MOKZAjjBqlA0s5iJcOm4r2NsTMBtthMpzdnbg1XJL5y2brmIchaQVJqAvhZCqXp9MSKa2Xfdgg2LMNDFXRK+xkzFsyjGMRuZ6c1An7wixlpNiGJVI3E2XFJAvRrCR2U9zlp+PBKvYfpjTXalT52D3Aji6MpGMikh+a8g3pNAYcUFylXxW9c23N+TfjSKg07HaD8SzJbEwYikWo5iHzjPiVU121zD7dKR/Nqc7syhknldAvpNswXFdYPePuWv5bkQNgXGVM840Y6VFP5DJpsB24m+vU3Z9fxHonkQOe031VmzGqneR7lJO9HH5GFSRP2jyjaxmdKJqwgQgQj9P9mGtpAIFK0XBjMlOupTIq/5cGJDFg6K4n5KIOZ0S0SZSUqFOUV84ufFJqbdRi2eebeSC8olW7JbhhELXb1KgRafognQ4k4+C8gJMhU4TyiCdxCjtc38RGFYCYiov4hvtVUovknFiWEXGq4Fy1VMVw4lOmxnP0/mBdd4yBMMQLKUR8M4FQ+ftSVCUW8c8H8i05+1+wcPtAnOXCRP0G8ak2T7N0rWAov2h4LOHJ6heE6uAmY3CSSpHisJxOJRC6Gn1STkZLcQqcPVkxz929RqAd+2SwRmRQXuxYlcmohSoBLJOnRUKuREH8TiIlQevsdcZ5b1YyAmOkhKnXNJGKMh2Sd+hOQW4EOVzVO83qNEw+72Ss587hqVh+31Nfx5EQZkJFyQ7SjfWPRGCWnavT1F4k6LVVeKgXW7+4RP5d6YIxIs16n6Lvn0gXJ4RMwNGQYhkuwE3zxkuZ+S3R8rPHjDtkmGdndZbIdPkm158/AuDPQyYzjEuC7JxpPpyR5Fb+icV/dqeLMGbpSbfRknKbZLNdR4ZlwFfKMa5PnnLZRH0qKW9Xga6Z45xbph9rahuHpNfQ6YYEng3uRbnW0DL6nCKyMr3kG+geSEXUn8WT1Hd40p29nqUCygYIBdRTUgiEXuQdtB2iu5SOhDdC6XYNoL8j1Ezrj1+Lbt1V0rn4KtIuBywhSMGMcKIrZGZ2YoXIWMyAU0cArHyShLcPNCbiMlFTHNVdZyVLc+rHYV2bMYKFzUvyw2VGdm5kj5YMhUo9MgYDUdXnMRKvbd0zspJ3hSM+xx9MLJJSSEskgYt70/I0/t4ryUxKRcLLVM78lxSg53THO5qzEMGJlmvjwrdSyJSvhQC0S/2l7RjxsOxotmKqaApRFDlB4O+yaU4zyPDVQoiubfS/ayTR6HT5HcGe5DTeriQ9eG0ow1eXrs9qpN93LCS3w1Sd3DVE44Z5Rc55W3k+NSw+x64lZOC7FVycBa/RHc5QlTk7yzVjaK8l+I9hakWO2ENulKfRudf9fhuFIEQCFVGfHWFvdmhbu7Rs5pYZIQ6J2aGbNfjqwy3qrBKkX9xS3ZXMZ7XqVgI69C0jugU47Igvz1SvBtx6wrlAmZ7pOoGsn1N87wkGI0qoHkmH8wUXUUQY04VJtHNIylJ4rIU2d5IQMWFZ/ejyLDIqN/Gk6MQCEBoW5Eb9+cIip9cjaOWuX+K5dKDOsWNiYORdB6ujqfW02zEOKRfR9xi8o1LhqtOugrgtPsXCbOiuLOCa6jHv1dOEUeNKmUP3wYFlXTzJg8Y69HL1NqnFsc5zXjMhfdfeK7O93xvdUdlRlqf0XnLx7tLNo3cSE/mB87zhoMv+MOHZ2zbkkXZ8+HynkI7Xh/XvN0vBLhrZfSYNBB1o8g38h4KmUmlkzMVgIHkopvUeGsh7fjW0B5kz2+OmnyAmKWPNIGhbh6JS1Elvn57JhhBYvJJWxnwjUU1hmwnnVXzgcMsB9Rg4Ghxaw86ntyS9U5WfdP3GYAoaVOm0djE75g8J8bkeKTT16IGtjmmFRr45ofgrkZ07lHbXDZGCW4Z1kJOojMUbzPRXmxEQORq4b+U90KsG5I35bRG/lWP70YRSODf+GxF99ElxVdb2B1Qo8M0HWE9l0Jw30jISJWBn6GPLfnnDbEuiZkl1BnRStVTMdI9n1PcdZhDj5/lRDtHjR49eOqvO1QoMYOs1Ma5CIfyPZhRnU4eEevEk/vQuHyk2eY7SQLqXni6DwfGpSXfCLKrwqMrjh7VKcjSZZwiucZlpD+Xi1n300knpic6nf7DUtGdK4bzgPKK+m0k30B/pkUDUCbuwFFa4ykleSIFQbphkqHq5JCkR9AHyzBqhmR0Ih6IivigGItIftXwo6fXPK2ExvpVsxZbrsFirOfY5/zu2xeMgz0Re2JIxcVG+tGeuP3duxm6VeyWnuvFAu803BbkG009Fc70eidXnfwg3VU08t67SrCZ0CeBWRDsyNUyNuX3Bu2MhJgkwVTUEIdU3FVC8itZdfIuJx/kc4lFOBGc1NFgOk3UkeHKU18deTFrub5fEp1CzUcYjFiAp+cZzz3VZUNlPRHwCWA0W+FYjEv5+dlWxlGQDY8e5DqIhehDOAuMrT3RqrkryLcSFOOqSMxEY6DvcvK9prqRa2YCoJWH6j5gBtlyiaFNTJkbv/rx3SgCWqG6gex6z/hswfhsQaYVat8Qmx51bNDLBWFeortRxofM4NdzdDegmg7VDyhfEDNDNAZKySI4fDgj36T1yjw/RT77QpMdhcOunWI8SJ6AAuxBLrCsmU5zcT7So+FgteTtlXIqmUG84DzgV54ujyfzD9Mq6jeK8iHg00pvWIuZpR5ktebzSH/hBXBSyd22V2mjwcl9uBk1w0JkzLM3UaSjb+WG9rlcTOVdZFik4JTyG51MFrEp8962abeqVPIx0MLlhxPoxQTRHHN+ev2En/KEEJR0CSaS5Q7vNMd9KSNE8j0MRRBWnYbYGbrjjKFZSGczceS9wt2WckrvRI49ybsn56ap+LmZwR7lRJsciX0+kZs4GWtGJa12viFFkXHa6EzZAYqEIXioP7eyXo0SBBoXDp15Qpd4DWUkXvasFg1XsyP3bc3XX16gBg2lh4P4O0SdXJAWI2dnUmX7UWjU3aFA32X4uae4bAhB434xp7yVjtIydTCR+EHL+aIRgtFDjd6Lw5YcDmIrPy7lGrH7xMYMj25WzdNkU99BvomnAJqskcLjCk0w3/UioITLrrZ7bGbxqxK3rrEhorwntgPxYSubr6ogqigR5UCocyhz9KGF0YExKBUwnXgO+sKyf5WTtZF854V2PAjnPxhS16DIk5+bK1W6cRSujBTb9BJdpLqT1aLET4OaRYbzQMyD0Ht780skoXEdaNASWd7IqJDvI/1e058JOGUbCf9wS7HDHmrYK0v1Tp9Au2wfWXwRGOaKYSkSYjMIZ6LYipZgIjjlO2E6DmvpZpQDlchV2sdTxJVOM2a2V4RcTj3lUwZAEXE2wqjp39bYo0aN0lZ3lyPFsqesBiGtUIh2wSPBpVHBoLFbQ3ZQpwTiYS2W53IBq7Qbl5PLdnJzngJh8gSCptWnL4Ua7qbgFgvjTIq56eVmsS2goH0qeIceEQZfSMYtWjqwYhNPlvP9GvoXYibqnEabiNKiY1jUPSHCx2+eEDa5jE8zcSEmyIqSLJDVI7O6Z3BWzFUVDLsCfTToFy0/en5NiIqf/P4rzj8WzsfkMj2ce4pnDXXZ0w0Z7esF1bU+cWBUTJ4RRVKmOiUSZBPJtoKXjLOUxNzLtiBrpYMScFr9Uojutz2+E0XAF5rxxTnZZ+/Qtw9gLwilJSxKtNGoPCPuDtC0qBCgyIm5FR6BV8IpWFaSZOQjMfWV2okdGYgL0bCwFJtAvnvc45tO4sNcIU49+dHjM8VYa4aV4lhPmgBNlkxEik0yg9wrTGforsT0k16fEORohfMzrgPbH2jmn6eIKSUiID3KjQrycwZnGNeBqCLDE8e41nJjKbBHTfVOY49py5CpU5z6Y7hKGmGSU62SAxmvIWohjfRrufgm7oEZgADZdTwZWrgaYqMwjZGLNZMLF5NUjztLHxWsOsJEbDKPmQJsM8oHLW64KZF4cslRyU5beVEz2k4KQJZOe+1ioidrhpl0A4JzCJgZUnuvvIxipPWnTnqNcSk3jEknqKxo0+vQYBtZBe9fStpR9qzh1XrPcchoyfFeMBHvDA/bmUi9R+FQqMUUkQfZqqcoZAPRD5btthZhmNOYnUFZqN7f84+/+JztWPJ3//AjLn5XNCvH9yJ+lorhTDqq+3dLiq8zFvcqJR7J5+DNYyp1LIKwOAdNcW0kDNdOBU9R3E3ks2SiaxIJLEXr8V0vAmjF4YOKunhB8ekN+m5HvFwRKkvIKnSVofMMmk7WiTGidy0sSknEzS169GkUQFaLndDlQq6xbaAKcHyqOT43YiyyC4/ZgkmUFFXa73upqGaMtBeaYSmuN42SOS7fSDtPFsk3iuygxeFoJeUn26sTxXc4D4xrzwHD7LU+Ba6iZJaTbARxkG0Hk+zJwF2OZCnVtjsUtORkWzlZJclIbnxXTdLiFDOuEG17J6GlkGZjCy7KDA0JExjk74aVOpGgJr9/20jhc7PplE4sRg8qGHqfonmUUIJV0sYXD+rkxjwsBYRzcxk37D6h/SlodFgJIKq8zLR64NSNdZfJralKWo1ERNSDOhWxKTkomkdzUnvUp65iGn/E80HRPFO0H4wsrw58tNzxvN7xpllyd6gZB4vSAWMithhQKjLmlnGwxIgoCgvHxfrAMu+5b2tu3y6xtxnaShdlj7JCXn244c89+Zo37ZI//NlL1r+XMSxg/2sOKo9qrLhHG8PYa6rXGcWDvJ3DAvpLQflDHjGXPfO657Cr0Nc59RtNdojSFeXJuv4gRbxLXpMnl6pUMAkiuPu2x3eiCOhBgIzmWc64eM7s4wfM9gjMpBCUGaGwmF2O6geJXHYeve9QhZV1otYyVqgoqjqrUUmL4BY5eozMQ6S5MnRnGp8pslZ292OtT20pJAZgqU7Jw7ZDZu06reiMAHTFLjLMhWpbPIC/FatrEHAr24uHwbAOuHmgXxnqa5LleQonMSSxU6R+I465UUG2zRnWGe3Cn3bbYlKSsIKt3PDdWqjP4zKRX5DWWQhLwgmwR5V0Bt9409OIOJ08w1I6lfJBLNVUBPegGGslBCUjpxOo03ZBTlv5QXafbM4SrdsXguZHhSD1vYwe0SAhIiYZvhSIFiJAFuIJ4AoZnERbc1ntZfsE7s2kkAoDMwF9gGnNya8xdlL4+nNhMo7zgH3S8sOnt/xgeU2Iml8cLvjyYU3X5Njcs5q3LIqeyo5suoq3TYE/WGHnzQd+8Pya2g78+O1z/E8XzPZShKOX4tQ9d7z46JZXiw0/vnnO5vM19ddGIsaeOzCR7F2eQk7kPbD3VlKpC1n7Dc9HiX7LAh88uadzlrefX1B/YSnvIspJNwNQpwyDYano3pf1bb55NCslgB3SgTZ8x4uA8pHifmRYW3yhaL63pnzXYu4P6C4j5hY/yxmvauzOoJuBmFlU16Maj8oleixmBj8rUDaKc3AmJqG69xJP3itMG+jXlmGu6BdKPP0TEu9zBQOnNttVGjcTxl6exD++kGIwzgVHmH8tXIGoZC9bbDXNlT4pHYs7GRmGdWQ4C6iomX8ZpZrXKrnNyAqxSO2gW4iCrLhX+MYmC/N4CjsdZ/LaTpbm6X+Pu2TpBFwVcfPwqELM5fcUG2qFKh4troMVQZYeQOW/DCL5Mq01v8FCNE3K7Rvkayb9d5wJbuHLRG1NhBrTknb+wrWICYn3pRTR7JBm/VqlSDL5eZOycYoDczNBycVOF+EsBMS8QwmHggD9VaR930MWUUYKZlkNaBX56fYp14c5xzbHj4YYFHkSD3XO8tBUPLxdonoNZWBxdeA3r97SuJy/85OPmP80xyhon4bUZUWKpw1/6fnXNC7ndz77gPiuoNiI1f2QjERFVqzozwL6WQf7DBU4EYvKD/ac1x11NrLKWz59uKD9e+dcfBkhRnyliLlcn1UCgY/vwXA1QlAU12JTdjKuHWXcJcpn+22P70QRmFSBupf0mJiSVfPCYm8P6M0BvTf48zl+noPW6EauOjU6otbEPBMuQDPgFgVkYl0ercZXBkLEjEHoxGPEdob23DDO5OKc2tSQPc6qwUgken8GY5phJ6qyq6G51CybQHE/4mZiZGqGQH0D/VIYgTpd4EQ5rYdVpO0V1Y24BKMS534p7rl2b0T1V3p0pxO7TQg6fg7DhWTfTak7+Z159BbQQqkNOUQt7kQRwSWmVGEVFMEJ4hx10ikMMr4MZ5KJOCkUJwVjtOHEPYg2PoafRoPO5eu+klnfl9LCP96cktcHEByneHJ02teTItTN1IHJNeGriJvHU1FTQZ3SgZUXkDLaiG615BlGKSghD6jaU8wGYpQNR+wNZuZQwOf3Z/R9JgdlSHbpUXG4nXEI0rUoJxLyOHPMLxoK6/m7r1/hv6xZvBGmZfO+g4SDLM+PPF/u+HK/5u3bNfY6l/VxD24uXVPIRL8xVJ5y0dM3okMAGC4CZ+8/8NH6HqsD75oF/+Effsj85xnL25jYn99Qszo4vtAcX0k8mvIK+6Y4kd1EI5MOhlQvsz+NivA/jkfINe1lJiy4JqBdkLanMMQnC7I7jdodMW8fUOcLQp0T6hylFMoHVD8Qywy3qNCDwxxHGSOsRo+C9oyrDF9KmAnIhVTsA70SwGZiYkx0YtOJotC8i+hR069lxp2AKdIapnliqG9ADxFXCjZghki5CZJTkKLUpR+fgDZp/7JDorAqxRg048pLDp5TkAdCHtC5p67lgh76TMxLredqdWBZdHxyfcnwZS2Clr0+UWujjTAKLqBHhau/kVxspMApl7qGQS5SVwlL0XQa3T+uqmOYYsBF+BIGuSkn8kvIpVP5o4+YB1wR8DN96lKYfqaRf6MH2QyJRPoRkyB1MyrIeyUcfE5aCLz6pRDR6flVUHCw9HvZtSsg1qISbNucsRHTUIKCbYZNEWGml2RhFZQg+GvpHg53Nd1dRr5RWOD4XiCeDxJE6hTZbMR5zS/eXTLuc/IbS/4gHWZ7JTyDbNVTFU6i4Lyi2wp/QA+Kce15+dEtf+bsHW/aJT/58in684rLn8uJP854HI9AqObzyHgxYuYOP2jMfYYahXYcMgFG7VFch/N9IDsGst23I4PfiSIQlQRoRC2ob/ngMd5jjvLC3brC5FY6gkN3EhjFwhBMjd416ENHLDLGVYnpHObQg9b4KkN5SS/qzi3RaEwXhC8QU0KLTih7lPHb28RAm0kc9eytxx41rprCLR8Rb1dLNJrtHpWK02569mY8zd6+1LQXlj7lFgQrKC46kZJaRdQmyYcjMWrIorDZgLNZy1AO7JuSobfcH2oy4zlfHrl9oRl2eTIiebQl1x7yvZik+MrQn2uh4CaJ8oQzTPHeKoDdiyOR6ZHOYnIl8hPSLi3C9B5MXocY2ULYvaG4k/fVzcxJVajS9pDUXQQLJHCvuxTUT2SzGtVAfpTv6y+gPwtCwQ1SiKZRYSoCE3swTtyHVJimJF7dWdyD2LWpVMRN94hZCCD8yKUY1mLdhjLYreAZ/XkkPO0p64HuUBBbA1lgPGaM20Kckw9Kgl8M7H7gMec961nHouy5P9anrEWi/N5+5Th/umNdtvzu7QtuPj8TxeadvO5+LaPROJfOiCDF3c+DsBqPFn2UztGfy0igt6JeLO7lEMsayeoYF9+eTf6dKAJSiaE7E0BODDgDWivMtkV7T5xXhPVc/AdjRPUe1Q7EuhDS0KFFH3t0aXG1/Fp222FixM+L0961XxoKBdneo8eA9obWGsm+8ykAM0YIMvu3TxThQYtz6+FxdJlaZZ+Lz1tfJAQ7xBOgpULE7vtT0TJtiekzhrkIgqbuY5qtbZt8A4t4QsCjibSbjOO8olj2WCudTHtX8dmmRJde3I+WA8Er3DGTdtaJD6H83nKD2aPcQKadWmy5kSV0FbKDPpmNQDJImcVEOY74Rp388X3B6WQ2fSoMJp5ciwQ8BNPIKT0lLSmfMIxeJSdo+V31KJTdkIk+fgIsfS7tL6O8ZttKER3nAnpmB07KPGEDJoekAHZnKG/lVJYY87RJqCPjpcPOR1xKT8qvhUAUcskDCEsHg8YtA2458uLJhlk28NntOeohQzuF9gaV3JmU2AYK9vN0xNZOMAgdxJH4PifmEbsayHKHc5os8xyakt//ekXxNmN9I7LskE8nvig+QxnQvTpRf1WvUZ2Wkeuyp54NdG0ObwrqN5ryNlnv2YRrrR/9OH/V4ztRBKJK+/etoPDthcaMFhUiunfo3QhvbmG1IJbiNUCMKOdRmwNhMSOsZ+hdi933hKzC1RY95qh+RPlANPZ0c3Yrgys0+d5jm0Cea9pCMa6EDmx6URaKK69inCtAJ+2+3Ej5IWAb4SWEQjPMjXQKmeQioGCcp5Y0RILVKQUptbQJtdWjPBdRCsowl+BJN4uS6OvTPrjJGI6WYT2QlU6UhvsM9ZAlZmA8SYy1E7RdWv10Qc0ejUcmHwN7FAs0SSWSkz5qIaCokE7/o4Io3IRgobsSa3UAm/zx9KDQZSL55EkNl7wMJq+8k7PxMCkdZa6fbM4gUXqz5JnQQbYjMeyk0OpBCtKw5kRqamfgzhxmPpLnjmGw+E54/7ZVp8QpubHE8jt/eeTJ4sixzxlLQ9fmjMmaLs4cuvQYHaFUlNXAh+f3PK92/M7bV4TPZpSbKeMvGc7knMJRXSW7fGcMPtdsjjPiXUEsPbOrhiIbObYFrre464rizrDcyVZFjyI2kyRl2aJEI92ZbdWJValHISvVV0dy69lua8zbgvJWOlcUDHMpTP1KsKkJa/lVj+9GEUg0UZ1MO0IG7ZmWMFHAWo1Rini/QVtLnNePK8EQ0Zs9gYWQi5oBexgYzgqGs4JsI89h+pCstMGV4lXYnYkbLJFT5LirYVxOefUJOc9lLpu4+NFKe58dFNWdI9uOZAfHWFuGpfkGiAbjzKaMApExS6s6AYxJo58Ky8RPUG/FqWhYyXgiKx+Z7X1fMJxr6rOW0XpGSszBnMgxplNkTboBHYlchNBGE4nIDNLmT2qzaaUUzOR9KASU7DgpEtNGZCVchJgH1JAcmNP7NzkhRYOQnJCCKrwGeZ7+PCULpb361BVMHochjxLVbhNA2whlOzixRfOFor9IEt0s4oqAygNKR3xr6e4KYdYZ6WzGRaD7wGEKj+8N+Wzg/fMtL2dbDmMhOYLeUOUj8yf3AGxbuVuKzDE4w8vljufVlr/5+a8RfjKnenhkOZ6yKPI0nyTjELMeuFwfOPY5obWwcMzPGmIUG/d4tOR3hvJGiDyml/dQCjKn4NX8QWOnrUoObga+joSLkXrR4ZyhuZmR3RuKe0WxFY6FS2C3CIoET3Hnf7rwkf+fP6IR/rNtRbAz7Ti7tcaVOWbIKB5KitsatT3CZocqSyGkazn19GZPXM2JVqObEVtYxoVlXObYxgkuMAT0Nj6e6ApcoUQlGKUAqSBzf7Ayi9km/flMTtF8ly58C3EJ0ViyRuzQ9SDZCMPKyLpxhHGhReKb1IMgF7gvRUpqW5MIRN/Yq3s5GaJWpzRZ5eQ59QBma2l0hSkdqnZ4HU/bguxB6Lq2ESs020XUMaK8MCBRsjaKWopMfyY3lBqnU1PaT4A+neKcPAfEvkyPJvH15fOawFLtFEEJOSeYJAiIws4Uh2TZq4c6gHs0Tgl5JJTizhtyAfd8LmvYYZkKZFovBpvm+V4RBoUAC/La9TDhAQq3dly+2HI1O9CMOYVxvD9/4CrfM0bDvZ7hokaNOa/WNzwt9nxyuGRIoaLtkDEvBkJU/N8//iHZH9bk6aCQgyFxBNLB4JYBfd7z6nLDs9mO1/s1XZujskBeyyarPeawy8g3QqoS6ziVAMAkhNJy+OQ7pANLrlX9pax71WrAmEizK1GNJdtpint1MsYdVlEOlyGtHtdeitKy4Ytvuf++G0UgEUD6C9H065SqoxIDLGqIxpBvC+ZfL5i97si+vIV+AJt+BaNhGKHKxZTEiz7AV8miLG0FghEX4pBCNkwL0SiGpSYkIc4jFTfJVp3Me91TT/eUU36eGST2zGeTw44oxEJyEupTG9s8j6dgiJj0CgTSmk5O2qhlptVOlGbT7HsC+Rx4IwCRnwXwCn/IUIOWQM+TFkJOkhFFfz5dZPzS7zV1RIJrRBH+WEVIPn9TQpDOA2UlF/BxU5F9lTH7KjkcZUk8NUS6tWJQ6pdwDNNqyht1snCfknFNB9oLQOlWwr8XfrU6uRzZo9zUw0qeJ9vJezFxFabfY7L4kuTlFOy5HFjMOs5nDWdFwxAs7y/ueV7uWJmW9/I7upjzd8aPGL3hab3n+/UtB19QGsfTes99N8NbeeN//2fvMfskAyUOPjFxH3RKiXLzCO+1/OUPvuCD+p6jK/idm1fc3C1QJlIvO4psZLeviducIrn/uIrTKBTyZGvfy0E0cUiGRVorr4MUZh2JoyEMoDqD3WnKW+m42qeKYSV09Ogj3RNPftFxOeu4mh0ozch/8C3333eiCMjFISDRcOVQnajS4tnACMSjRc0dsRzZ3VfUn8+4/HHB7OMH1MNOxgJr5b8gKkOdZlmrGZaWbC92Y2LsYeXPCFEpOzqyI3QXGd2ZxiWG3CQ8iUqqsy/EoGM88wQrJ65yiXZ7VOn0lhNsmo9DIRwAfdYTdRByitfEXoOJ6NIz9HL6zM5azmcND03F4c2cbJtksSnIRPwItSjTVqK/HdqM4HLKaykE4yzSXSTGXxVhPVDOBvrRMO5ysnsrGvlR7MiKOy2mrlbm7VALBdg8SKZhm4uFF1rm6b6Rojzx/eVN5KSatMfULrfyPT5LdmqFjAtS2NNJFTXRK3QjJ6Pp0pxd/HIByI6ynh0uPbF2SaBkxXMxE4xCX/S8PN/xbCbRZS4atIo8r7Z8r7ql1gMvsge6mPFVf0brMxZ5x3neMEZDpjwf1ndsXM11syBExdv7JdWXGbZFBF9a9u9E0SkMl47l0wN/7skb/uz8DT9vnvD7d8/Y7CuyZKcOsN3XhIdCCsA20anreOISiPeDqEVViPRnIjAbZ1LwlRN78lAFlPXEXgpAvk1j2kI0EyqCnwXsRccHF1vmeU+uxcr9y/36W++/70QRCFaqYHGnGXuFuxylzRo1y8sj1dWID5rnix3vfbThFz+44KcfvmD14yue/N2a7Ms7CI9kCDV6DBCtFANXa8alRJsrFyGX9ZwYe0RcLZbk5e2IbQ3dmaE7l9jzaReugrgLK2+kS/EJ6IriONM9kRvCtGJe6S5GdOExJrCedRgdmRc9AKM3RGDXlsSocLlG68j5rOH7q1t++70v2H+/5P/w5W9x8+WZ+OkpsY+avYmUdxmHVxb/bKCYDWSrlsO5ePEpD27tyJYD61lHnY+8t9jwstxgdeD3Ni/46eunmK9KiltxJhpnCeBaeFTtiI2FVmZW20jR7K4C/mKkXUEzaPRRwlGzg8IeobgXfnp2jCdrK1887rc5bRFktMmTy06wj9shMyTF4ZkYqdhkAjIsEHstE1G77GT04WYy65brjjxlIbwOa1ZFx/vzBz6qbnkvvyNXni5m/LR7zifNFduxpLYDq6xjDIYxGt4v7vj940t+5/oV/WjxQTM+FGRJqRcy6WjGdWBcOOplx4vFgaf1Hq0C/7frH/LQVCgVKQpH1+YMXSamqoNONvJwfCHXSXUt1PPJsDZrhRR0fKHp14KPoCDbSFTZeOkwM4dvLHov41jzygs+M3kfXvZ8//kt788eOPocTcRFze+9fU5zPfvW++87UQRs6Th+6Kg/t4k6mzFeOLCR/bZi/rTnsj5ilWdmev5Lz/4eP17c8v9+9hGv1+c8+3ct5Wf3qGEkzEpCZdFjwB4GdG9QMRe670wnEDAQMsMwT+q75FwcbIbtxGBUOxEcufpxly4BJon0kvSe0T7SV/XZQDnrUMCq6vgLF6+Zm56VbWlCzs8PT5jZgafFjlKP3I5zfrJ9yud358SoeDbb8WF1x7k98OfKLzn/6MD/vvxtvrg9ozvkDHtL+U5TXUdWP4duU9Bd5PRXA2cXe8KqYXMzR3WG8ZjRJyrsXTdjZgY+qm/5S+efC/+9eE5TzOQ0zaPEn+dyypxCUd0jece0irjNZC2lZYQY9RSckU40FDoD20fqG38KyRjmgotMSUiT8Cmmq08l41YVZDsQTRqJmsd/Y48Kc2fRXmbd7r2R+eWRs7plDJrtseI4FMzqnicziSz/oLhlbY78uH3Fx80TPt5dcugLns73aBW5HQtKM5Jpz/+z+XV+dneFD5p52XO7naNGfWIpukVArQdm856zuuVJveeiOLIfSz7ZXnK7nZPn4uR8fKggKFThMaXHJ/VkfxXQg2L1U6juPcNCE3IothHlI00KZZ3yIbOdbEq6Kyf27y6NP2cj9bqV59pURBOpnh/4J15+zjpr+LI94zBKIvS7uxXxXQHld5wx6Lxm/XzHJp+Tf51RbBTZPqO/DPhZ4OvX57RP9rxY7viyPaPQjt+cvebFRxv+5uLX+GT+Ps/+9hMWP92gjx1+vmSYZ0IRbkaKzjFclIRCi//f3KC9oLKulgvSdJI10F5OfvyRfCdijckeXHtw2QRekVZnQt5QZVLK6cCPLq55WW34jfor/lL5OR9ZwyGO/DvVC/7O4XsAXNo9tR5o5xnXhzmHY8m2r1isO2a6x6P4Xn7Nf+7JT/jJ7Bmtz9j0FZ/eXHD/tqZ6px9tyz8pOH6R078YWV8dJMzjoaZ9M6cbFJtszSeLJ/zO+hVndUvvjZxSZSAswolBF1uL3Roh4DjZ008AWMhkt2/vtcSzxQk8jXRPJgGPZDLaRjjyKsiWQ2bpKIDYfcJGkg5eD6R/I++r9jIC2DZdG1nSOvRyAwyryPhs5Oxyz9XsSO8t/WhxTmOtp8gcpRlZmZZMOf6ge8nffviQ23bOpi1RwF1b8/W4ZHBy+X+sL4lRMSsGVsWR68Oc8bYSr4cydVaLgVnd83Sx59Vswzpr2Iw1P755xv56Lms5kwvb00bq8wZrArvbGaYRJme2Uyw+lRCdw0vZIs3eeLImcHxqT/ZwphXSUbAwrAIUHq0j9bxjVXXU2YCPmre7BTr3XDzd8p9+8XP2ruTv3H7AQ1Nx3JfodwXZUUYmlQJyf9XjO1EEVK/Zvl5RXDUMrwLhTUHxoKi/FkTbzTQPw4r9uuJifZD46KXheb7hn7z4lPKfcPzYfIQrz1j/wQ770OKLGe3TguxgKb4+kG96uqeVGGoMnn4lDi16SCsp+yiCOT4XYob4Dsj852YkJpaiuxR/fRUhFAE9G5ktOsrM0Y+Wn95fEc4VZ7bhLr+m9gfuQ06pRgrt+HdvPyJEKQb3x1rScYLm9WbF/yv7PvVlf0rDeZ490FXSU+/KEh81m1nH/cXsFBemvKZ+p6iuc/YfnJF9eGB51tBWGeNGXHziQ8auW7DLJFfPbqys/qqIW7uTKaafB0Ii6ygnJ7zuU/BJOpVPCr9MMI+wdJjK4YOi15Fs1nE+P3JVHnhebtEq8qZb8TuvX7H/fE79RtaYZlQnTwBfSkcxbWNC/kivBlmZjUvBOPJSTtyHrqIfLUYHXl1u+HB+T2Ec59mRhen4tH/C7+1fchwLoWWPFu80TVOIsWpnIA9k9cD5smFR9Hx2e078ZEa1F3GXWwhb0djAum6ZZz3bseTn2yu+eHOOvi7IfKI1FxK1lhcO5wzdlwvKe2nn9QDVrdjBHT4Q1er6Z2IEunvfSvxdy0nxKRJvUUjOVh0fnt9zVR4Yg2EzVOy7gmGwrJYNf/nJF7zplvzdr1/R3NXog6FInZSsnv//gCdAhOorQ9/Miecj7sIRCkN5ramu1Qkp9ceK6/uC2/M5+6HgB6uKi+zIb66+Jvwlxe8tXzEsVpz/pCN/6Ii2pr2wjLMV9ZuWfDPSn+eSNrTzdGtzMq3UTtYxphNQq3sSGRdCY863Qhvtz4PccG/EantcREIJRTVSp1DO86ph01X87O6K1/s1v1O/z4tqx2aseH1YMwbNoSvYXc/RjTmh/yGLNLXhpzzB6sBvLb/izB45+JKbYUHrM7SKzOyArmSu3OxqnNP4OtI+Ecyieqfowpxu7aQ7sXJTExHdvw1CSU5IvWkVYHFnjvJcZut+sLjRopNfXvtQkt+YtMVA6MR5YrbNAvW65cV6x/uzB96rHvhB+ZZX2R1L1TOg+XK84OPsKe8uFnzSZRxtLt1CmwgtlRScYhNRA4B8PR9kdermCZirPfW8p8gcy7JHqcivrW/54fwd//T8p6x1y0+G5/z95hX/9t0PeHNc4rzBB0XT5RKC4jUhzekUHluIC8vDvubd12uqz3Kyg9ChJ2txnMJ7xVe3a76MZ/jeoB8y8oM6MRDjwmFKR/SK/l1NcW2YbwUQDekQPr6U77VHxeJLoZk//CDDF5xi7LoLIXb5QrYnV68e+MeuXlNox20/5/P9Ge2QsdvXaB14Mj/w44fnfP75FflbS+mERZnvEnsTOHyg8D88fuvt98cWAaXUK+CvA0/lduWvxRj/VaXUOfC/Az5Eosj+2Rjjg1JKAf8q8F8AGuC/GWP8tu2EPEdyw6neKcYmZ7jwxDwKfTPT1O/kjRtW4BsD9xWfbXLuX9T8+sUNZ3nLVXHgP/FnPuXvL1/Qnc+5+vuW/GFAOcuwthzfq6i/7qQQXGQEI0SNiQlnewG2xlr8/cJG0V0GustIeavltc0EBNSjEmpmp7CNpaWmejlw7GsA5mWP0ZE3tyu+3l7xu71gB7rXSYEYxNT2XmZvn9hsPigaX/Pj+Jy7bsbLmdh178eSgyuY254P53ccXcEQDPdhJozCLNJfBYYzWbNFm/CK5ODLFL2VQjQISdU2l91+1EBQjIPF+8eI7svVgQ8WD+yelvzh7Bnhq1Jm+oWk/xTVyMvVnuf1jkXWcZEdObNHFrrFEOii5St3xt89fsjf27zH9X7ObNHRZ57xviQaLQSjLGKaRP5KrM5JJm1byWkARbCWrsqZlQPPZjuelTt+VL3hR8UbFrrjs/GS/9Ptb/E7X7zPuC1k+1KJ/bg2QiqKowKn0bVYh/uHApwUndk7GXXG+aN9GR5U1MQvJHA05pHs/0Pdn8Xctq75fdDv7UY3m69bzW7OqXOOq3HZrkh2nNgKvoAEuEBCspAMMUHGgEVxEYQickHwDZFCpCCBIyRQUCFf2ChQMkmQTWKEYnAAE9uxq2JcpsrVnXPqnN2s7mtmO5q34+J5x5hrl88+VXFZ0WZKW3utb33N/OYc43mf5//8m7FIvluIq4haBYxLxH1VAkDU4nUYOgH85qix5q2meRCnp+PXDdrD9a+J7d3uW5bhWdkwPff87t/1Of/E7fc4xppfePyIV7sNIRj8aLFV4OO7Hd9/vGb87ob1K138L2D9WcT2meHGsP+WYvrRfvFP/IcqAkim4L+Yc/55pdQG+Dml1L8P/LeA/1vO+V9TSv1LwL8E/I+A/xISRPrjwB9GYsz/8A/7AcZTKMPF0SYZqa5Fbjp4QVLNKOu4ZBXuYBker/n5r7d8+OKJq3pgjJaf+OAtn7YTn21uuP1Fw+a7A6vvTYx3DcOLGj1m3D4y3lj8SvLmsgLfKuyYl22APUPzTiKfhrsshqHviqa7+LepQlBpv2956m9JXUSNmn7aLqud6sGw/kQo0VkLo2u8Mvg1iyOx9kKQCauMqhPBGz65v+bdccWLzZGb+ixpuoMQXBrjuaoG1uuB/WBQZ4M5GlIjCH61mlh3A1rBeXSMo5PTrxc6rQpCTJqeia8hILTlkyUmJxwGDe+0OCVt64H1ZuDwgabbDvzeF6/4ifUbnrkD1+ZMozz71PKL54/427tv8t36Gf9Y9wl39shT7Ph8vOLtaU2IsgXxZyHMqFKAoi0Wbx3F51B8H+cEZSEfFRsxYFVNrMyEIfG98Y7/+PgjvB3W/Or9c06fbHB7jS0kpNxrQi2CG0YjRbFKpMFiH4VKnlymvhd/htmt2Z4VKYCKghHFRlaotoxF0614FZhOSCTpvqZ9ZXBnea7jLYRVCaop69PZdWm4ky7SnmD1qXQ7jz9hGJ7LBsQ8G/kj3/wuP7p6y2fDNb/89ILP7q/QOqEUNN1EU3m+9/oW872G9kmeU7WXAuBOkfMLy+EbcmhVv97SvOMfnixU0oc/L38+KKV+CfgY+KPAf6582p8D/oNSBP4o8OezhBz+DaXU9W9KMf4HHiplujfCMPOb2ehCLe6z2crNXz9lql0WLr+C7lPFeG74/Ok5Tx8f6WrPQ+y4agc2f/AV33/+jP55x+0vTjSvzuTaMN7VxEZTPwVQluFKE4uZ5RxoIelAcoO2STHeZPqXmfpRUe3yIg/OZna2zVQ7DTtdNN9gPr3QagXYSlT7gF9ZsUQzl+RiM5RuyGqGteL26oSPmsOp4TvnO3ZXDZ3z7PpGBCwq41ykrTzbZydO5xo+bWleG8ZbhVqP/PjtOyodeBhX+ChhoMep5uncMo0WYxNaJ4ncmix5Et6CrYtl9mCZzo5Xccuhq7lqB3787i3fWt3zB1ff5SP3yGf+hr9x/FGmZNFk3oxrhuhojee1v+Ihrng1XvF2WAOgdaY/1+i9XZSK7qAInSmdkoCJ2QpFe7oSBmO2ELYRs/E8vzlQ6cjbcc33Tjd8vtty3jewt9izxhY1qD0p1F6KnV+JZfccoqImjT1p8TCoM+0rTftWWHsqyc2kcmF21sKqTHVeCoC/ledibMSPFvWuZvW5xh0y01UZE50UdnsqrsGzh+P6oruoH2G8UfQvRAuQu8Cz5wf+8MvfoDUTv3x8yXd3tzzsVlgbcS7ivcFPlv5NR/1O6OLJSmrx9jek/z9+6Ap3BVafQb2PhPofkYBIKfVN4A8AfxN4+d6N/QoZF0AKxPff+7JPyse+tAgA2D5RPwGIm4+aWW658OCL4m0WmyRHMZwElGH0G863nno1MXrLj9w+8k/+nm/zi3cf8OmLLc/+P5bNt080r3um65psFO4g7sGpUFRjLfRLM0qhmSmi76cPq1ROJ80CLM5kDUmhlX+LFVS9JB3bUUgy05WVSPTMEhIpZioUdR+414639YbVWhxM4r7i7dliu4CrghhhRrkQlMr82O07rj4Y+OzlFb/6/ZeYVxX5V9f8zacfZf38RGUDrQu86ATV3q0bPjtecRhq0dcPVhx0Fdg6st2c2TYj+6HmeG7QOlPZyIvuwE9uXgPwc6dv8nN8kyff8f3TNQ99R4ia2gU65+md4zeGW/ro+N7hljf7NePgyCVGPbeJ2CqMv7gbz3oLMxuDKiQGLJb3uqjyzpPj0NeMQ0U8OPRZi3PR9N61dC4xXwVwnK4zaSPOq+osRJtZ4t28kwKQtRT02YiDcr0Nd0KjdnsNCfyzEoSaYNrVVG8s3SvJ/ps2cp2IUUu5Z7IUsvEmkysZe7TQRTh+PYt78CqyuTvxI9dPfHP1wD7UfPt4J0X72GKdAEfnU006WczeUo0U5Sa0rzPrTyOx1mIyaqF5SFTHhJ5y0bP8IygCSqk18G8D/0LOea/U5ZvmnLOaY2p++9/vp4GfBqjba+xJMtZ1gNFLy2/GS277HNU8q/v654pwLV2DStI56NcVU2fJ68i3wx3/2W/9On/yJ/4Gv/jRR/y/v/m7OP1HG25+xVM9TsTGopRIiqeVLQQX8BtRYnWvM/1ztcSgV0/zE5ebNlsWnX39TjPdZEKT6XZyocdahEhZK6qjmDuolJfkoWqflxy/UMwh5+/Hu5rD0aGion1lsGcITSWruJsJWwUSgnYffMNPbl7zT1//Eu9ebvkP7n+CX/jVr1G9dozvrjhtE4/rwPnWcVg1hKQZg+V4aEgnaf2xQhUOg+UprTA68+O377j94IxPhjEZzqHi5x+/zkPfcRxqauf5+nbHj23e8Znd8p3HO56OHUPl0Spj1IohOF7vNgz3reQAViV6OwqJaLoq83L5GFlo42YoIqtJLcKiPBhOoZW5ftLCfBzU4qM4Mw2FYSlFJHYwPMvEG8kVyE8V1UNxXDLys9yB4nuoFtcioIS9ys+2BxldZtNT3oqLT7UrDtI5MxUbcXuU6yU0UtymdZbI+UnJlsZkprtUMu0ybjXxUx99ztqNpKz5pd1LDmON0Yn9uSFFzTQYODh0r6iKCUqqgJzpPhf36vFaL2at1SFTHcTReLwS2rwdfoc8AaWUKwXg38w5/zvlw6/nNl8p9SHwpnz8U+Dr733518rHvvDIOf8M8DMA69uv52wV7hjQY8KOBt/q5cnP6THyhSJISU4kt36Tl/CK2IqXWwoKP2r+H/nHaH984o89+1v84e23+dm7f5LPn33Is7+jaR6kdbJ9pHun6O9McbGRTUS1zzQPlzc3tIU0M4rU2D3mpV3MR1nDjLdS8asnGRugzLE1TFljx0tasDvJRiK0ohv3W5mLxbAjQ5XIURFrTfsa2jdQ7TX9BzXTjYVWrtZ3xxV/z34EwO/rPuVPfvgf8ks3H/FXXv0k3/vsTkwsBsPjuw2P92tBxSuZLVUXUDqjdSZFRRosaTDsji2f2SvsJtEKKsfR1wufIWfFVdfzUbfjeXXgYeqYgmHsJQb8XnX0YyV/L5HiKoIqGgcZpTKhZokeyzaDnjMfLqYg2RbtxoMVzcTWQyieg2PBZopugvReAWiLKWyTYdSoB0v9pJfVZi6qR11cksjiTmzKRmI2j5lZkWKMorBHUwDLeb18GVtdAeCnTfE3uI6QwD0Jwy9so4SXTBqior3p+Sc+lkl9P7W861eMwVLbILmIRSSkz3rJYYyVYBNmhO4z+Zn9rV6sxc2UqY7SFUxrvVC7f0cJRAXt/7PAL+Wc/8x7//SXgD8J/Gvl/3/xvY//95VSP4sAgrsfhgfMj1hrYfn1ETMmbK0JK9nlu0MArYiVMK90gO6trOvOH0pLaY9lhlslzFGjsib4hn8v/BRPP9byzz3/m/zp3/Xv8X+8+kP8lZvfx93PVXT3xU/gccKeDacPHT6Jp8H5pbjnzrbcQtwoOYFOQMTqkEhFCWd7eZP65/J5Kira+4Q7Z1TKhFpYczP6HWv53pISLC3k+KzMjEo+z648/kcie1ez/l6JGvtMQNHQGUILu7Zmt+t482zNr22f81G748ae+S988Pf57Oaav/fwIa8eN0RvSINk9DFq8irSbQa6WuyxzkOFTwqlM0plnvqGXf8hWmWGyTGeyw2dlISIAFZFzqniYew4P3Tog2HsLFPn4OCWky+5LFLo0s3J38EeVcF+sgSYqFksk8k2oWophOpspItYB+gtzWtL/XRR8GUtUnDb58XBKDYKUyvSKOCeGYUZmY0UjFy8DWaOiBjJSihJ3Mj3ML1agFsA+ku3JuK0C4lM93nJRJyuC4EsKuxeF0ameNqro0VFRf21Iz/1weecQ8VUqsjKTazcxCdPV/SfbKhK8Zlj78JK/Bvre724D/Uvijv1SYhXdsz4lWHciK9FNiKD58sbgd9WJ/BHgD8B/IJS6u+Uj/1p5Ob/C0qpPwX8BvBfK//2l5H14K8hK8L/9m/1A7ISBxQVjHBWQsIMER0z09YS1gY9Sb5gLmskM2a6twmUZriT06D7TIvpxSph91qQ5tc1/6/hdzP8Hscfe/G3+W88++us/vDIX6x/P/HnKprHRJsy9hRYfQ79M1kfxhaGW7m4KLiELm1YAIZbTTKS9kIRHLljFtNPJ+BWaCV5yAwZFRPjtnQ3fSaUK9hMeZlDYyNfk5sIXhN8BTYRtpHTx4buc7WYT7RvigrQavy64d2HFW+eb1ltB1b1xG175mV74Mev3mJ04v7UoTay4x1HRwyCKxyTFNYYDLm35ARjsTTLWeF7MS6xoyo3l1x8U7B81l8xJctv3N9iH8TWKgxKci6qRCz2X7ZYk6sIsxe+6S/x3KG9pEGroCTtyMha07gkUumoUCdL+6mhfspLHJk9sSQYzbHt2c0OyWX8mJ1/YqmupROYswdtP4evyBp4AYnHy/uvg3QIM44T2oJXDfIezlLgMDslncvr2haV5mikKCrg456XVwcex46VnbiuzhiV2amG7z7dMn5nQ/OkF5WhSgJOxjrTvta4PcvPu+QrSAFIRpivxkuXMl3J+9be/w7GgZzzX+PSjP/mx3/+B3x+Bv753+r7vv/QUXao09YQG40Z02LVpX1m2hhSWanNNk7aC9mie5swo6Z/Ju3h1a/A6SNDbIWmmbWietL8/O7H+aUffck//fVf5adWn9L94xP/B/WHWP1KxbSpWL02VLtA+86jspP2fo7ySlLt7f5yikPx4Vd6Sc4NrRSo5ilh+0RoFL5VJCM78Nk2q94nXJ8YriUDQaVcPASgeaMJxVhSVHVW5tzZSrpYhttR5Msz0NgqzTTUHJ9ZTl1g3zUcNzVfWz/x8WpHzorDWOFMYlULajV6y/HUEB4azFFjtOy9yUpoxaPBPlrsSWbzsI2odcDYxOFc88v+BdNkme4b6nHWGSjCpMiz+chZhEbGy00lUmtB7bO9mJjMIi3KqIBN5KBJB7M4ItePJdasE6zGlQLgV5JUNBeB5C7K1PpRLbhRaGV1Nzsc1feycYpOcfxYrN5BjDrdXroD7aUAzN83OXmfxRdSnm//XF4f00tqtF/Jaju2svLToxitZgXxxrNuJ4Zg+cb2kZURG/Sdb/il1x8Qf31N8zRb7Mk1Nl0L8ad7JRun8Y4laal6Kh1Q6U58W6Lna1lFkuHqO4nV9/svvf++MozBah8ZbsWSSZebaZ5nJIJKkVqEZpqlqrsSFFrvE1lJCAcKVp9lzh+opU00A9SPmunhmv/z6z/A3/rGj/Dj12/53d/8nF+ePiZW4ku4/kxTP3iq3SXSNpRWSmLDc3E+EsuxWaMf3cWwdLxV7K+0xJSP8rmhcAtiLd6CKmuahygV/hp8GTPcvkRKfwZiOCHFzo6ysZhNUEIrxUWs05NYrhsZR6q9Zbw29LeWe5WpbeBHVo98tNrxudpymirGSdiHUzCE0eKeRJY6bTNxA8oktE2kpEp6kAAZKinyaKSztBGrE4XgJ+lLJS9Be0U+2IuxqINgQZUAV1nDXk5r+d6CA8SVyJaleIi/QNZy2lX7XCy21BIl179QnL8majqSQnmFPehSMPKSyeBXYrgRVglzFiZq85AZbxSnr6XSPYpJavNOch6hFNtzwq80Qcm6cY40k1xK6SqqJwE0JSux+BwWhaAAnwIUmlZWux+vd1Q6cIoV+6nh22/viN9d09xL0cpGbNT8KouM/KmAqXfvBbAeShdUAHNfYsljLSxL7WH1WWLzqwfMu92X3n5fiSKQjaj46p2gnHP6D0pe2PkEBJZ5ObQwbSXZtjolqpLiOzvxiGssheAxI6ZQPxp2n7zkr714hrqZMNsJf9SgNUelic7JSX0UOzKJJctLAuzcPiYnJ5J9TLhRTgh3kot8uFWcPlLY4oSb51OveNGFRhFrU+jKlJ24uBpprzAln0+HXDwJJY9Bh0yFdEzDlcZ3mmrvad6OdG8ssdKkWjFcGU4fWXq/5rujY3fVcNP0XFUDrfU89B1Px5bxvqV6MJizWlR+5qThUJNtFvCwzNg6CsMRNH5j8M8zxiSms0P3elFWCoAlbW+qS/DpbKZSOBNLslBRYOpJLmpQ5EddOr1ZWUjJlASVZQyo9nJTjbeK84cJNl6ixosbsS5mp9P20sCON7KOs2dN96nC9nJQnD+KZJdxT4bV9xXNQ1rW0e6ccftQPCQ143WJsD8Jl2QOpplv2lRMaAARZKkkhSBCajJqO/HB3Y5vbh94N6z45HDNaaw47Rv024r2XdFOVHD+UIDiqqwmh2d50SC4s3zeYu4yyuEwB7fOzMHV55HNr+7Qj0fyMH7p/feVKAIAoTNCqDkkxq3ESfni4abHOQJL5m7bQ73PDDeSWZecpt6lsisuHYDK5GOx0LotfgX7DMhc3b3SnF+2kpZrxYffdwp1K7OYmaS62kH2v+6YqE6JZOXCsiXwY9xqmsdUwkoU7iyuxONWVjaLrfe8wbAyJ54+VNRPMzCoFn6/mIGINkFGHll7VSdZRekA9pSojBiy7r/h6N7JKKNSJrrSFQxQ3xvGXPP2bHlrtiiTsVXAuUiKGjVpdFHnhdV8kaniBlzScYtOYLZnn2frUdecG+EYaF9a7qAvK7YiwZWLFuwpL/O1XxXHo5Ix6A4Sq25H0W/EwrKrSiFMVi3W53aQrmj2KzC9QvW1cAJK6ElYzYKkMn44eS7NW0P3KkPKDM8Vw52MBe7eFHWj8ENmoM30Cb+1jBsRsvktC0ck1oXTEAQIhrLxmUA15aSCS9z72vPND+/5sNvzK4/Pefv6SrYEgDlqus819ixko/FGOgkzKTEbtbJFcSe1rCB1lLSm2ckKTSmCGTdC85hYf++MOo+gFdxsL/u73/T4yhQBkCqmQ6Y+RHyUdc60VUuMd2wy0w1Uj4r2rWwIhpsyu1tN+yBWy7EqSHoEssyLp4/UcupkLVl+tlcMdwIsZlOYaSvwY8ECCninMvTPxYSkvQ8FIdHLnBgLG2tO1TVjouvlFJAVUsk2dKLmGm+kao83soKqdxm1L6GRUqeITi2zr0EsvECVNBmF6xP1Hk4faoY7Q/tOgipnbCJZKZ7VkyaMmtn/IDQO30aUkzCS2IqNeH1fHIB1SSZ2QtaZadVy8sgJPc1dmS005zYSosz5yiSy1+ijOBjVj1DtxFF5znaoDlKU016+TXUUQ9Fs5ESjOBfVD15svLdWAGEu7bnt5aROVjFeKc4vSqpSlcTG3GvsXizBTVTUR6GeqyyzcnIScAKMRwAAeLRJREFU++ZOUmwFnFS4Q6Z5KlhU8YqMJRJdTxeTVtvLiX38UH6vaifXjDgFCzdAT1IU053n937jc7TK/Ie/9rswn4vycC6uM+A7bxZE+wF+G1FZYY6znR3LQeHX8l7N5CozCW6gg7xG1VNAn0YwhrRqiOsafvkH33dfmSIg3vh5gSDNmBdUPmvF1Ak6mrpE6DSh07RvubSG1/Imdm8k3DQ6QeYlfVcKwfmFSFjdXgpFvZcoZ9ASOLoqdM8oMWEq5kL9zMVxGHQw1PuI7QXFSoESOqKWwNAlHCOCCYn6HElO2uhsFNVRosWnqwI0NTMxSi06fZE2l6Iy5QV78GtF3oBKGttnVp/JCDVeyc0wC5IEtCy77b6csO1lVtUuEX0iG9G1C1VbvO1ik4vHY3FYVrLDnx2MU5XhZuLm+kRImpwVVieaymNU5v6wwu/EIGaOY/fdXCjlNK9Osjqd13zJKUItJ5s5Z1avRuxuJKwrtC927pUqXo2K6slTPSbOHzX4lZh/ALIC9WAKLjCPcK6EmURbmJkF9APZCmQDzTtJjkoW+mdaivtCzBGNy3zq+rXkE6Az9b24TfUvhXQFoEvu4PTRxD/2rU/Zjw3f+9WX1K9l7R3bErayk+LrN7Nvg3QtkhYF7lHjDhd/hViBL0Y3pi8jVpD1oC5/rp8i9asThEiuHFlr7Lvjl957X40ikMsaLUmrRtakTroCdy5kkaTIzyF1kK49o7P4K/UFo4rpCqaNqLQkIEM6guog32M2EMlaCcEnaNw50b6VC2tMCn+V6V8m6SzeCJKf9eUCFEqwxh0CLmTGa2Ebmkk+TyW5CPxaLqKsFK43NPee+n4idhYzSMrS6YVl2qpiua0uAJKTUE9xBi4Jx2dpl0FOpeFGwkXMKO7BoVViy1VnCcYobf6c7OOKVt1vFEFBnCrMUS8mnuMdkMvO3oiZqu0vxJvYiFxZRZieR57dHrnrTrw9rTicGsYscl2A6VjR7OV9sH0qDjryc7KWNW91zLhe1la+k7Z4znKodhP6PJG6ium6YrzWspJ1ZfvQKIZr4UkMd+K+o4OifjsHwLDYqM9j5EzTlmyFYsNe0pNjLYdJs5ONjiRQv8eILTTw6eoShRZaGSXMIAnD+VbizNPJSWjuCNMHgY8/fOT7T9fsfuOK7jNTrMMvEWzz1mJWHM5pTmoUsPb9lGFZQcq17Iq+QQXpSmRrlmkeIu3392K6aw1qGNE7Dzl/6e33lSgC84pNVoOldcxyQ4OwBtu3UtJVMEzPgXUgGkPfJsZbLUabQfzphheZaidvkD/JSZj1fApJNZ+uZjWgRIjVT+XknhTDcxheJGKjSa80q9cS5ZScFCYzJtn3HwNmStKuzqIirbBDJE2KcSuzZI9hWmu6N0G+Vpfd7WNER8N4Je1prOQkVOV5hqaQioJarKmrg0hrh2uN74DtTFQSbgLAzMEXgEtdfvezjBLjaAmdkJSWfIQSdKGCdBP2LN3BnEgcbz2mDWiVcSrzuFvx7s0WvbeSJlQyEFWE5qjpPs+096HQwR1ZaXiv42geA+5pJFUGFd2SEKVixq8d/qOWaaUXWzexg5eb2W8Vp42g8BIpxqKdn1OOVIZQszyneUzya7mhzTTzLFik7NNaREV2kOcRGynG420W/0Uv1F+FbJuyguFrnmcf7Ri85XjfYXfCKJyeRW5e7um9ZfcbVzSvjTz3K9lEqEnhjjIuhJVkJIiGImOPptiIy/NIxaw1VllGwZN0iipQyGgyStaPQQpAiJAz6ukAWkNdiTP3lzy+EkVA+Yg7BEJncHuPzqUryOa9tN9M/TjjBpbpRpO3AbwibQLnVlO9kzcgXEf8XWCKijwYcdE5lZOozLMSR14IPae8MMOqJ0G0++fS9p4/UMTG0L1KC3AVWl3a/ow5eeqQ8WsrY0pTdtr3E2Z09INhvNKFfmyp9zLTyvyrl5wBVUgoyYBOMs8354vvfFpJMdBB/OnMmOnvyvc1UB8krtqvSmJSLnvjtRRGvy0n13sdgr/OTPYyggHiRxAKeadh0fsTFGkyqCoSR4t6dFQn+X5ztzDbp9cPQk6xp4ieIu3rRP1Y1oyF8KWnSFw5UVVWSrIhgenOMd5opq28Lu0bOaGFKq7ob7Xw8p10PGaUGzg18vopIZcKFjDHrs/koWIcO1N+s5UDUpW1sx0yzb3MCP1zx+6F4vz1gOoiaueo73XJY5TVbvqJEx/fHERs9W4lBqAmM91Gbj/Y0brAZ69uqItewW+Ke/CoqR9LAehKB1AKQPPGUt/LChKk4E1XQILmodiwuRJbNxTL+l7GJ/f2BF6qoRo9edWSuxo1eFT/FfcYJIP7/Ak+vCa2FrcfMWOEKLZasdVMK7341icL7SstOvmPBpI3UEf81wP6bYXZG6LJNNuR7vYIH8HTbiWxXe8FauhJUntjrdBXLF7y2meaezk1oLzhVgw+zZTJlSLWlqrWmD4ue1rbS/cQOoMdIs2rE/VbRWwd47MK3+r30nVEwTjnEs7kkGyKeGUFUPjxtuTjrSOnH9HU7yztm7zMq8OzTP8BuLkFP+dlztVeboh4lUjPA+HoMEctUWVAnNN8R8k6cHu1gE2xBZQAdXq0xVQ0Y8Jl/TmHuGo/MyAFz/ErCY7RAZp7jz2H8l7KKjO2wnf3regJbBFXxUpSeGb0PdbS9QhzLi8RavPPm2/w5EonkgsbMciNFFu1ZBDqqWwhzvK+xlrGATNk1p8Fuu/tISUOP3nL049phg+idC+vK9rXclhkBaevQfpdPW078en37tBHgytiJ/PxmR999oDRiV979Rz3aUW1K0QjA3ZnFknynLScamE1tm8Mq88E3A61YryVa1CP8rznTEUzCgioEjS7SPtqwBzG8l5piJH48lrEamcPRpO3a/jsB99+X40ioGSWdu+O+LsVYV1hDyN6ihiryVZ40F4XJlWJWKp2iqGqcR/0pIIw5ZcjeVfBqBmOFTEqrjc9X3/xyMO6pT/XhN7CpIlVIjWy+9ZBka4yJBkJzNJiS2GIDQzPZCU18wZipVBRyym20JkTodWM16LQs4cR9/aI6WvCppYLvRYGoe0TzQ5OjWHa8h63Xgw8U11AoiaiV4FVN/Hx1Q5nIp/urnh6WKFOltxGtnfivPv2sOL8dgU2oetIOjiqR4PdGwLlBtmrZVSwZ7W04qa/sOtUFlTfHS66erEPv2wRsrq027pclGTZ3586WXO4oyK0FbZ36Chr1JnxacZEew5on0hG4be28DCkmKhUcJyVrBjdWTCd8UpunFhRdAZyiuKyFLOzkXbfqsXUQ02yihTTmrxcd9U+s/50onpzIlvN4ceuuf99hrDOuCcB5erHXJiJcPwGxI8H0tHRf6+lLtum6S7y7OtPfOv6niE6/v7nLzB/fyUrSUSIVj+oeUkjI3qW8Fl7lNm/e5OXNKL+mTz36knciG0vhjRzxqMdpf1vXssaMDcOFRKkRF41UgDGQG4sORrM7ndgL/afyiNncu0gROzTgH/WEbZ12Q5k9JigERUee2TVVWY7e1ZMu5ru+YmcFePgUNcT+ejAa3yseHusWN+d2bYD22ZkDJanfUd8qAW53ubC+FIS+NBkdAv1UzntLCRV9s4hL4mxWenC2JvXjyKAsmfNeOMYb52su3yUsNQEqbGobJi2Vk7APtHeC9dhvBUjSpWkrTWDgiaTmsiLuz1TMOynmp+6fcV/+cXf5deHF/ydx6/x1LcYnbhtTvxnnn+bFz+5Z0yOmDVv/Iaff/d17o8dNmmGpsKnSopZAFtShoFlLEhWLmzJhgQdE9HJiDCHq4y3mdAlGRXy5WsBaQ2ywj0JgUf29bJ2m1WEySlQGvqEXzkZba7eu2nDBYwDUNfgbxPrj/d8uD7hoyFmxdOpLbZomnQS9uOi35gLlNyHwgNYQdaCNblTwS3OHv+sY/+NmuPXpfNpX8tWyIyXteLpoyILfltTncvmwEoE2fMfeeSbVw88jh2/9hsv2fy9itXngh31t3opPvOqE6SLM4NaxEtZw3CjGZ4VbOUB6se0UMZTJc+5uQ/U9wP66QRaS8s/BdThTN50cqj6JGvBnKXL7ocvvf2+GkVAKwEznIR32t1IuKrFccaoghgHuakQbr73qpBxFLrTDH3FdtMTo8b3TuSyR1nHkOEY1gzbis2656od2L4YeN1sOL1ZoaIANuJ1X2StiBTVFgccHWaeu5we47Wif6FAWZonmbdSpYTw9OYEecXwzDFtHCq02MeMPg1AQ6rl9/IrVazNZcY/Tob+g1zCWMrcd1J4X/NaXdGtR4bJ8brb0F2N/MHVd7myPY++Y0yOfag5p4oP7I6vu3tOqebb0wuuPug5hppjrJmS5Tsf3/HqaUP/0EqY5Zz+M+byu+ZlHTaTcuYY9tgW2+/nnvZqQOssZqfBiBy5t+izoXrSNO+KucUhLYGwsZFtQGhLhFtrOH8ougSQsWTOQlAvR57f7llXE3fNiT909V1euh1PsePT8Ya/f3jJ4C3j6JaIL3csHUnReyQr779sBRQqCyVYh0zzGKl2ntA5hmeO8bokPRVlZ6yEpzJdS/gJNqOmS1K0ShC7jHveo1XmFz7/iOFty/aXLZtPJXfh/Oxiby+pVxfxk44XP4xYz9mL8nyrvbx2ZpQg1lgpmsfE6ntnzGGQ2b9yxK2E8Kr9Sdp+rclWE1dyr7g3J0gJnOPLHl+JIpC1IndStdAarMYMgdAafKfxK03zztO88wzPHKEReqftVTGU0Bxbx9h4mtoTJkP2VvLg9wLKcIJ4bni8toRbzcvNkQ+v9rzWicObNTkoptsseXhTyb9Twt0OazAlTnu6EgKQADeK/rnCrwz1Tk669LKSOXIIqOiYthqVHdBhThMqRuxhlO/9ccW41VQnuRDah4TxRWtQWvS5IIy+5vQ1xe2zA2s7sosrau15NV6xDzXf6u75se413x2e8beO3yKuNXfmyDnV1Cpw05zYhQ6fDc+qI99p7/hkfU3/gRML7sea6l6Slu1R0Twl3Cmho3AQ5rTbeb4miDGpdRGlIAYNO0f9YC7AYOEnHD+UzieViPAwt/AWUhOpbgbWlWwetMpYk/jxm7f8U9ff5rndE9E8xY6NlmV5ypqn0LGbWnb7FbyqaR4EtJNuTU79rBUUCq07C57jzgldoufNOZCclgKwlZGzOkjrPVxrYRU+v6D2yutl8yIsz0wwmWlX8+57K+oHxcvvJZonX0hMAoY2j7mE28jrOFOoZ+GPcFQuGFS1g+6NiND8SpOMYv2Zp3rbo6dAdobcVGSn0b1HPxzAGtK2IzVO/l0r3EMvXIFVS2rdl5oMfiWKgGwCMqlx0jIZRaoN2idUNoxrxbSuWH8WaN55zi8d01rTPEVUEgff/B3LKXfkZz116+mDLPXDdUAfTXGsUeSz4WhaMcZoBzbNyHldk942Yiul5M3y60z9VOzG78TN1x6EYRY6iokDRQIMU9nZ+6RIpqZ5lHWgXxlxdyl0Wj0GVEjYw8Tqc8V4bUV9yIwxCJFljqfKpiDXZ0BVnFY1IWs+n67w2fDt4x2vj2u+V9/yUzefs7Ij3z/f8Lf4Fv/46rsAPIaOc6p45g4YMudUsa8bzqFiezXwoj7wblzznf0tD/sV58mw21esvmsLzbZsTmYVZSO7teA1oQSXmLPGHue2V34XMozXmuPXM+HFRLsd2LQjjQ34pBkmR8wKZyKVjdw0PZ2d6OzEy/rAQ1jxd49f437ssDrxje6BF9WeXej49uGO735+h/l+Q7UryrkK2bA4wXXkOWfqfV5Wu7MATftEqgzTtWVaFZ++faZ9FxhuLMOzOXRGySyoMmYs4SonKWYeVfIFjfAMHqVjDZ2R62PMokWImbDSxGKAIqd/kS93SiTkDYIhjbB6lejeTAx3TrZBbybsOZBrQ2ikW1Y+oseAPvTkriF3YpkHgoXoIUpXcL0iOfHq+LLHV6IIEBP6IFU+bBt0kMzA3ChRcLWG8Vrx+Lsd7duEOwl4MtwYujcBFU2R4lqO31iRX44064nxJOQV/YFnOlvMzorDbVYl8ENhTMKYRGwj9p0VBZwupJy68NrfCXfA3yRUFrAoFUHQbKqmorypyUJ/pwmNCJGqY3FGyuIpALLmVEPAakU2CjOKXmHcikec8dKOqizzdjYyGqy/B6e05m+fv8mnH1yxqUYOUy3TVNK8Gdd8w0y8aA68Grb8Vf97uHUnxuR4mFYYlfh97SdUKqJVYm1G+lTx5FumZPiDzz6BZ/BuWvG2X/Pt7jmxqmnu80KamleSZlRor1HJ4A6yWlUpLwSceVXp1wLetduBH3v+jq91T7R6IhaJXR8dB98wJYPVCVsih79zuuOX373geN/hVp6f+PANPhv+/vFDfuH+Q9792h3d55rqKb+3IZB1Gwie07zL1Ie0aA+odVmdZmJjRW+/1viNjGX17rKxmbkXsZzcs2+g7QsD0oiKr9qLp4Q9Jcwk2yEAe064g3Qa4414S84huEIuk7FA+CHSvZgRNp9Emjcj410FWTYrZORQHKM8/5BQPqLGQLxakWuD7r3cM86gglxrcVuhQkafPXqcgZ9/8PHVKAI5Q0qofsIC4aoVjX0uLK8xE3sBZ3Y/qmneCkAiF6Qte2Rp0Vff15xyw/BswtaRcHKEDNVmItSRdLYoEBFN0nhvyEl86MNWU90bqf6q+AaUU7i+V5JNV4k9nOTHs5w8cjMn2vskirMrAb7qfcL0CTtE9BBQ/SSzm9UonzDngPaaXDYks77AJpnLQ1PkoY10H+J1WPH58TmfdRGCQreBu1uhhY7JsjYjGzvy6fmK7x5ued4euXIDu9DyK8OH/Fj9mpd2hyHz+XTFtw933J9XHH3Ns+bEfmrYD40sPAp5pnmMxEqUiyop8QYovAV3kCKBUgwzM7BYsk3XklDU1hNWRcZosSrSlqiw0VquXc+YLCkrnIpolflOuGMcHCSFNonjVPO33v4In7++xn5ac/NdcCdR/IUGVFbL6ORO0H2eaZ6iyGrrQsdOwg0RzCMzbjShE9ceObFFoWnHTH0QND6Ue2fefgioKe+9O0kB0D6TKkU2BpVE3m56IezM1vY65GWrZSbZJl1UqsL6bN8l2tcjYSW3ZbUL4nAUEvZpIFeF2FCA9LiuSZXBPZxRIZG6ajlwUm3RY8TsB8iZuPnyCKKvRhFQQMrkupIV3XEidQ579GRdkZy0YvYMYwPnjzPuIGBW/0Isq9t3afGbqx8Ug3GErcKuPOHk8K9b8kq84gFSUqzakdFbht6QegsmM37k0UezoOd+I6fBbB82Azr1Li2rMiEQlZ3z28jm3Uh9WzFu5aKwQ8Scg1RvH2CI5KsVceWIjYHCIASoDuKNkJzCjknIT00ZF2phl6UKCes468KUs7wdJI6rKZ6AtQ5sq4HHoeUX33zA882Rn7h6w5u8YRdabuZlOdDZiSfdcn9ecfYVT33D8ZMt7aeG9o3MyL7ThEZLNmPx36MYicRaMV5rkdd2FJ99cIGiWTA86g0hGn787i0rO/IwrfjV8TlaZW6qnloHtEqFkSheBXXj8WfH+K7l+5+scAfN9h7qJ2nv45KTKKOHO8q/VYcixfZ58YFITuG7CxA3bgSc1D6LDdwxEjqD9pn6IRBb8bZw5WVKRi0FQFarYi9nBnG8AsEhtE8on8hOc35RExrxvZi7gHmNOutDdMyYo0jdu1fTUhjcIaJ9wgwBvTuTK0dymlSZZcVsxkj12R5iJG06UmXKwaSwux41CHV4+mDD+WUlHuE/4PHVKAIoEaj4QNq2AOgpymbgFAhtVWS9EM8iBhqeJexJWFf9y4zKegm1nMk3qjcEDdV2ZNIV5kl2falLeJUZbSRnSeVRk7544t15/FZh3zrZNxtJ65mLgF8VZtyTAE2hlnkvGRhvLGaI1G8H7FkQWXPyqClIlW7rhcedrSa2Rm5ydXExmpmJySqqg1ioTRu1kGdUQMwybS6ONhp7b3mVJd34a5snKh0JxTqsP1V8v7/F6sTXVk88JMP38w3Akl9/3fS8Pa24P3acdy3t54bV53LSZS0U6PFWLfZtAHpQuIMmH6UQzLkN1dOlM3BHhe0N/UvFqar5pLrm1WnLfqjpzzVKJzargZfrI7f1mVoUXZxDhVIZNRjq16ZYaOWSfiz2btNG3mvTF4+9ACRRIubi5JQVS7GYR7dpK+DrTC+WtafB9onqaSI78bd0ZW2XjKyYUklfbh6laKiy9tRRRj7tEyomUm0Y7pzs+U+C8IMUxKV7LNeoGYT5172eMOeJsKkxQ8L0AT0F9BDAWcJdi+8ssREnKneIVK8OKB+It2vCppKT/zzJaJ0Sad3Rf33D+YUVG7wveXxFigBkZ8EaSImwqUXBF0VLYPtErAy2L3z6VhGzrPX0JC/s6WuZ9nUxZOzEQAIroFbwhmY7MpqMfVVRf2rwa835mcGuvSwlvCp7cS1RaC8CcZOwb83iYa/9zLMXS6lkFN1bcXfNRjQA00bjzq4QcjJECUBVUyB1FckZUi2ocao0KggTLLQXB6KZ8psbhUpFjlqIL6b4zUsqjpBmwlXE7g3Va8sbf8fjs47b7YnaCBppbMIfKr77+o7+1uFMXHIFlMp0zcS6nnAmcfAGdbBUBxbl4lyY4klRWUU+mGUFp33phoqZhj1l2sdE/ejFDco6VJJiwa907EMnbLlV8dyvEr1N7J20q40Ry/KUBbshXsDX5C7WWbPFm+1ZiE/kjCocBEHa1eJOlY0iJ0jrsjbUM4VcMV5pmicxnDW9J66qcuNKMVYVRawlGxMzpgWE0z6hQkJnEb/FleP8opIotfMFA8hapOSz25IOIjoTzr/HPg2kWkA/U9iVqbJkI6f/eOPwrbgHN28n3JsDOIv/4IpQErjt/Ql16uVAuVlz/saW0wtDvU+svn/p/H7z4ytSBDIqRNJKL7NSbGQ7oEfJIxCWl1hGhU7BRmSxsyQz1ZJb2L4SZ1lfJdxKWuOcFcEbbOMJH4DpJfXY9o7xzsAmSAKOFwpr91rhjk6IKuXmrx/zMoPO66PQCfqtA6w+m6j2lv7OMG0Mpk/y5jdy4Vov9tOpNoRWQKlUzRz/i9b+/VNCZQRbQG4Cv7nQY5kPlUmAzLiSgdUcND63vDo7TJWwLhCjhqQIu4pX+Yrba8EPYtTE3jKdK461xGn53uFKUKgdcpFMixFs+5BYvc7LiQpSJKaNFDAzCRpeP3oZ5YwiVbrItQtZp5PRoS/pTapK5Kx487jhDRuqOnDd9cSspFMIkg6sSpHJTn5vM37R/6B+Kg4/tjDyCmUaSgGteE+kxFJoQdiJ7hAFTFtVTFsheYG8N7PMW0+yYUhOS3GIGaOlwMRKTunx2hCL/XeyarluQ+FaZKWwQ8KdZVNhh4jZT3LdW43uA9lowsrKRsBoputKaPMJ2tfCQE2bhummIawNbh+xj2dhC7Y1VI7+4w3n5wY7ZFafDpjTV1xARM7k40mcmO42C6MsOYNLGXuUUyU0okSr9tINjFcBTCaPBhUVcRs5a6gexdTCXg+smokpGHwwSwrO+CKiPjOYAZrXGj84wioJhbNXRayRC+UVyNKBuBPUT4HqoLCDlTZei9rRDIbukyPta8PwvFn0AZLgq4mrStaDPpGL1h+KcrB4ErheWlk3vZelUBfAqzgZhQbiqjD1VIakFj1E2IgJBQn0zqEmRTH4xZQiE5LiWNei/TeJZDI5KvzJoQZD9Sj+e6vXkeZeEOewssStXOx2SO/lA8rFvv4sFkaenJJo8NuqBMgk6ncDaMV4WzOtbXEckvDU6AxD3wqfI8J5lTnf1Lg6yMndJrIT78DZPccMcjdnU9KLd8KsM5MQa2ZjVjMWG/AtywuuivvOHGpje2jfBVTMDC9bfFe2M8UUZi4WJmbMGIm1IRTps6z4LKlWBTOZwUnKaS/jgryH8vPdOVHtQjGgyehRKmR2RkZgeykAug/42wa/1hgP3WcD7uFMeLZmunLERuOOkfq1FPW0bkHD+KxlvCkdwCe96Aqmr/p2QCkwhrw7YGLCdJXMyq2soKopUe0mUqXorYFKyDx+bdEfDJjVxHisRVF47RmNxR41/VPDix85ctsG3hzX+MmSe4M+a7IDipLMnBWmNxK3bVlOYzPlRcATa8XxIyEvNU+R5ikSWiFy6Jjxa4162dF8eqT79R7/XJgfZu9RKUHMKB+wg0clkcvqSeGy+BNIwKmcGlmLNFQVx5jkxHLLTILID1njbwTkVDaSB4MaNHQJ0wVh7p2c6BrKpmO22nJPmnFcM1Rzq3pREepReBDVQViMM8CVtcy2sdKMW9Hxx0o6nPoxoZLsxFNd1mG1WsaI7m3AnDVh45i2ZulypGiAfjCYSZFKV5fXgW41Yk2iz5CUnMppXUabgylgLDT3xbXIU5KLBTdwp8IJyJBqhY5yN8+5DzAXtCyzfYKwNoRGi43cwROdJjlZ3aoohjex0uKN4ARQlHGn+EaUgmEHufntUAoJQK0wXl5Tt/foIB9XUfb92WrBjCpLWDnxU9idCc83TFuLGTPt6wH71BOuWvzGkZySAvDmLJ3IukGFRFhXxEZT7RPtqzN636NChPNX3W1YadisUDGRD0eq77xBfeM56UVNrDWxNpgxUj949JQZbg3ZaOoHTd9WqOuR9c2Z/lwTRwPXnpAr7L3jk+6ab72857rrOZ1rss7i1XaWHW/wiv4DcWYxhQ8+M7pSIeq4Yuro14rhTrYR9e7iimMmuWljo+m/vqF526NDInROhDm7wts2GiaPOYyoMYLVZW8F4bpmuHNLEGYuqrmFAFLstE0vvAXtBddIxSJcRYV+dESbadYj3mQCFbrXZJdRVxMhaPSTwx4V6qCLt2KpAXkm+ZQILafQTuNXttiVqYXAJF6DcxGRDi3WQnwZb9TifCMLCMt4JZ6Rs2WaXwuGUO1FqBU6mJ5n8rOJuvEoBadTQ9w74XV0EdsGwmgkwxBd2I2XFOlkLms8M6YFjWcE0wfBX+J73UCWIhFr+aVUFkcee/TkUgByAfJUTKRK3KxEyi7fOlkpsJIdkZfxRJx+ZFWYrAjF7Dli96OIfAoxLivAaikElSU2FvcwYB4PpOs1oRWw0u0m7H4g1Y7YypqwvvfyscYRuwY9RlJdVov7gHvo0XvBAfK5J3/liwAZjCFer9BdA08H3PfeoeIt420t7Ks+g5ZTt3mIRY2l8XuDzzVxo6lbz+A1edLo25H4UGO/1/Lt+IwPn+9o24nwthFxTi+tYPc2krWRDUMC91QIIeUairViWgsNtt4nhmuxIfclrFTMTxTuJKBRsorhZSuiJ61ISWPKzZ5qB9083GYI0nLqY0/9eMD01wzPm8WvICtRU89c83kFl61sJ/SoiP3lFNJekV5V9M8UupaTM5sMUbwAbBtIzxK+qpZoK4nUUsVfoczM5QDLSn5ucqqo/+Rit31GFwZkdBdDFL8uq9JWsgVVRBKiVGHKTVwiu44zC5LSOivizjGeLKMC3WvspIjrBDoTveAauEyKmdAKYcxq6QTEF+IyksRKE1YX4o6eEvZ0ATP8RlZtc7aFGQrZp7NLd0fpAFTK5HrGB1hWgsYXSW8hdc34zrwqzEbJKLaXG5YsZJ7UVWSjBTAOST5WGex+QB960rYr4GTCPA7oIZBaR2yFUVvtPHoIpSuwuFPxEIgCULr7kxiKlOssH0/kEPiyx1ekCCCoZlcTrlt069C7M+bxTKWUkCe0wvReKJmVtHLNo+jFszakrOhHg6oSFDGLuvKk4NCfNnw6GtZ3Z+EKUNyMOwGYNt8XdH9WsNm+BHsUGm9shAXYPiSap0Tspd01Xua6XMxJQNM8SF+ajOxxZ36A3FCasK6E9lnkrFkprFLopxPm/kgbErGxy2kEQkHNuRiRljVlqriwFt+T8uoJzKMjroXUk6sMVURXEjmuTCZvPLEysDdYPxtUwKzatL0AgbGSOZcs1l8qCV/Ad3px3PXFD2HuJCSU44uS71RdVnFQiESuGJqaDFn0CnrSkj9Y5YVmbY4ajtWymUl23rcXFWR/+b4S1Kk4b0ULkLWi3iWqvSRM6bO8N/5GpLZmSkWtGQvtWE5/PSbMDErHTOxssSwrd3ri8v6VtF+VRUUqRSAVcFJk5qb38v53lezyk7D4lI9gBPvSg5eC0MraYwbyVD+RupqwEfafPU4QM+OzltgacW6aEuYs4KLyEfW4J+cMIYjVeM68HyD8mx+/ZRFQSn0d+PNI9HgGfibn/L9USv3LwH8XeFs+9U/nnP9y+Zr/MfCngAj8D3LO/9cf+kMyZO8xn79DfXDHdNeiG4vpPXoKGCsjgR5FQnn+WicOPkHchpJVDA2o0Uj8tU3gNXnUSzahvXccpzU0Cb+WkSBbxekDRfc2sf4k0T+TFUxWCh0S7hAJKyPchJX4+plR/PHqQ1wuIOMTvrNMW0NoDc3rs2wCGisSz36UltvqQq0VLreeErlShE2FLW9gqooDT8hgBJmuSEtLTp4JMMhWpBLvAVDFtacUhV4L8zFDdpp4A7qKpMmAVxCVRH4Vc9PF5FVJYUlWADIdZkq0sOLG6+LuXIspRmyENGWPWliUIDFfFlQPzZMwH+fU52mrGLeZuA2L5mCOc58jvlCy+jS9WsQ6i1w5q2XUqHZ58f/TEaa1jCZhJa+BO+XLeGUVuTZyU46Raic/c+56Qmckv7Ds9FXIy8gmTkjpgp1Mshac1aDzx/Qotu/ZasLaCTZwGMlKka5K4TlP6CHIyrKWsVYHGQlJCXxAGbOsy3NbkRqLHqKIh4xmumtIxefSHkb0sZAnUkL1IzkmKQB9D86hrJVR9Esmgt9OJxCAfzHn/PNKqQ3wc0qpf7/827+ec/6fv//JSqnfC/xx4PcBHwF/RSn1Eznn+MN+iHKO3PeoT9/i3AeMdyK5NX2Q1lmB39aYMeL2kXEjpo1QCBcnLWGegG4iNJE0yj47OTABqkdDsmbxqtOjaM2Hay0qs4Imywkv6xs7RKaNw44sCPB4pXAncfs1A+g+0L090axqhmcNsXVUnz6irRFhR1Ohhklo0c4QlLR1+uwxh0jYNqTKYAq/22/ccnGFVi3t+HwjhFZYe/Z8SaZJZTWGlhsobQOqicTRYO4d7o0jOYtJ8n1Tkwh3npAVfm+o32kJTxnzMhK4cxbqqlGLC9C0VfitGJrOUV+2V1S7i/Bpnr1tL6Qh2+fi3CuegbFVqGjLVkSJw25drMzaCC5Bb4q78WW9pycBAOeZfLgrM/kAhGKPbmcbbsF5sqLgGQV4DQllFDoq1ChKQ7+1xNmwI8nYqaLw88kZPcnqmpTRXjgfaC1F15RNwdmjhwm0xt+0su15GqQAdIU0NgTUGKX9b6yc2nEGCaNYghkt0npkY0CWToIkztD+phLH6sdJCsChl25EawEAyyNPE6qpUW0LdSU8nLf8wMdvWQRKovDn5c8HpdQvAR//kC/5o8DP5pxH4DtKqV8D/hDw13/IDxFn1KYhn07ob39KM75g/GCN3zjMlNAhEWvD1DgJWDjL3De3ocrL6Rd1JidFuxpJtS6GEwoGgxkUrpxKsQLtZBcOAobJXhvGMl+H1lLfDzRjZLyrMSX/z7dlN94osi6jymFAf/cV3W5LvF2RNi36fi+VedWS1kKGUVMoCcpyEal+wsVMuGpAa+zbA6gt422pcEotv+OSQ9jLPDzezCAdxOtIasQIM2swTeRrzx9ZVyO/cXPD8c0KczCgpZPIhUfRtBPj1nFeNVRvDd1rOQ1nsGvmaMTKLo7LMnYUld5O4ryqY2HFGZFEz8lFvhNm3/x3KGYlXvIJczndsy4gX1Dok6PaaZRHipqeuRGFsdkIIUxFKYK2nwlBJZxmyKV1l5WcOwYh4KRE6pys4Mp4kFor2o5zlG5IS1E3R7Hrysjf9RTklJ48aE1aN3KDVxpz8uIVYXSZ5SP6Xpx8clOhpyinvNbkVgqCGqMUEasXQVB2Vj4vyg2vfIRSJLCGcNOCLgXg/ojy0hngym3sIY8TeRhQXYdateSq/Lz9PyLLcaXUN4E/gLCQ/wgSQf7fBP420i08IgXib7z3ZZ/ww4sGAtPKPKRSIg8j6vUDtdaMz1pCK+lEekokY4itFqeaAL5WlxMlS/hjTo4+g60D2kRiJW2XUDsLWURREoZLcrAXjCAZyTDIWlPvFMm11A8T9hyl1WwkllxmyFKxtcLfrXCAGibMw4ncVuSrNerUo4ZRLsAr8b/W50lW3l1F3raoMaL7QOwc2ijMcaRS0hG4U5STzIixhGQUQP0o4SXTldiQUSdYJaIu/ICD422zYuwM62bE3xhG3UBUYIRj4AdLSpqcAJ0Jm0w4SM6fSpK7F2uHPUkrnHVhCY4KU4C+5j7TPor6rr8T+vScEjwDhbPIaMEF8nukHVWKeCksZjK4nVqcjpOWbkAXCa6MFVLI3F5d8gldoSwfUkkpSjJyFeEWVuOvG2KtsX3E7AaUDwXslBstWSnMegygFKmrICX0cZT3UG4CsjXkWoqJ8A6S+Pu3TsC53VnGgqaS6zlQxgpQfr7hjdDIS3eSjUGPAh6mq5X8rMmjghSHuG0ggXsaMU9nKQDWSAFQBXwNEcYRveqga6Wo5Iw6/CMCBpVSa+DfBv6FnPNeKfVvAP+KvKX8K8D/Avjv/Cf4fj8N/DRAYzbMUtu8amX0CxH9+oFm2uKfrwiNQWdwx0BIBr82wrpCEzqx0s6miDJGBX1NqB25FepdqmQPbfsC5BRkPNWiC68O4jiT7RwxLTfetFEM1y3tQ1jGhflCr/YSoe6OBQzsKpQxi94bpchNLe2dUqiQiK2T2XDXo3pP3NbQOMxpwpw92WpRgE0RMxYEO85bCkHgZ9qrKsSZVIhDrg7o1jPsa1RvOD+2xKgxRlh5M4cgjwZ1EsFUKgt2NWnsSYg2yy690F21T6gR2kfZuce68OmVdFJ6zKAzKmrCFUzXpTgWemxOUhB0MXGtnwq1dyWbhNAJOKi9OCnNLsmxKcKx4g4MUhjsSWGHwhEojk9zh4SayVVZgL2cybXBrx1hJUCae+jRp57c1sRVJSIuylw/lH39pigCy3ub152MaFqTGkvoxDPRHia5qcsJrwtAlxsJ/SBmlMrklBZ+AEahYrk+9DxOSAEIL6/EbPehF/zHGnJbiXnIrELNmdzW8rWFQKVPPfl8RnWtFICmQp0H2Qwg4/aXPX5bRUAp5ZAC8G/mnP8dgJzz6/f+/X8L/Lvlr58CX3/vy79WPvaFR875Z4CfAbiqP8i5ay4zTVNL24VsDVxMqNsVsZOna0uiT6oUzS4SRk2vFE6pQiOVFVb1aMgHQZznk2z2nE8NC/01NuCznCrVXiii4iAjgqRpowCLHeRNvOyFC+p8FMegXFkxdgTRd/cjxCgKyaZCAVop4roi364whxE9BlJtpQvoA2oI0DoBQn0i1nqxMp8jsfxabpzUFFabzsVoNrPpBjbdwO7YMh0rIUi5KICpyhgrdmBiX6aYtIU2ooPEkbmTuO7omCFQdtxihCLzvhSmUJfNhNRhZmntEuFdduizjboUrLxkNvrVfCGoxVNwXlXKyX4J+lDFY2/mbzQ7CaWZuQrSCbIUL+0zxgsPIGslyrvWoKdMtZvEmLNy+NuO6bpCexkHTC+IfSqrOD0GSJCdFRDPlY5Sq0Xgo3yxRZvCsgJUuvA/NKC1HHAzbwGkaGhN6qx0BpMXafBVS1g53H5aZv1cV5InWOLtAagumJGKGXUeYBjlRi/zvxom8tMOTBmzy9bhBz1+O9sBBfxZ4Jdyzn/mvY9/WPACgP8K8PfKn/8S8L9XSv0ZBBj8ceA/+qE/pPgJ5LYGH6RyVa6AMfIi2bd7zKohrip5EwZZ66Ek1txMmf5WF1BHIrdQJYTkLMlCc9BGLmETqWQQqFhIMq0QiNq3edGM65P823wqmikvkWkqZTFAGUbU6FHOkjYt2QqpBKOl4oeAmhSEiOlH9EHMIecqDhA6C50oEIXWKoXLHUOhpRqMz+SS3qsSeKXRLwdurmT+9MGgVWZVTWzqkU/VFeOuYRqMjACFXqxM8b8PmvqtJTmz3Gzzf2JrLcUgNuICHFZmGYHsKCOUyuBXAmDZMZXQFF1sw0UwY/ti21XwF99JIa6f5HPC8J49evEFTK4AgYWCuzDySj5EdFJQdRFgzQ8zitkrUQC+rAT5VzGLOed5ItcVcVMTO4s7BuxJbn51HsXnMiS5wYfSjtcOorReykdB4wsYJ29eXDwi5r/n2opTVhEYAcInKADfMjqcBnLjiCsxvXVPA+b+EhqiT72IiFaNPEelCl06Q4iocVqyBnBOisbkyfePUgDWK/Kq5XeaQPRHgD8B/IJS6u+Uj/1p4L+ulPr98tbwXeC/J/dz/v8qpf4C8IvIZuGf/602A+SMOvWimV416KPsMmYHYgAqh5oCBkitI6UZ5S+5AT7TPCZpkZJEdIUmo5341KMlLiqW2RPklEnFUjxbAQYlgitiH4X4E2td/OrkgnencrIbJcYRIG9Y2cnqGMl1JZhAV8vMVs9rDI0aPeyOqPsnVFNL15NXpFp8+PzWYs8yZmifFtlodMJPr4rrkNsrmneK8anj7Tcsz1/uaCrPcag5DjVt5emaiRAM6aGGEtmdjWwG1NpLqu2Tk2CWfNn7m0lsriSBVxE2UtRiea3nkz2bi9dB+5DQZ7Fb9yu1uOfMBcUOwqCLlV7SmpITzCB0uUiCpc03HvSTrAfh0gHMstv3xT/ZKGJpAeYOLRWOhRnjMrbMFN7UOlJlyE5jD7KCnum7KCUnuY8X7wcfFiNldZYVHCAHVhB0Pxstp2+52VNXk50uoGpain02CpQBo2Rs8IG0asQZqNiF66N0KbmrZVvQNYStgMoapLMEwQuGSYpKCCityesWNXrSuweIEX21JXeN3EO7w5fefr+d7cBfY9mQfuHxl3/I1/yrwL/6W33v5aEUOUTU7oh6fk28W2P2g7Q0pY3JSkHtiiNPlMTXRoObV2kSIVUdZ5WbKurCjE8S6ZS1xm8TaVALyHSxB5POQNBqmQ+rt6PMk9sKvxbO+rQx1E8BewzzLys7XWPAe/LxBKczetWRNivSqrRh6QIIKaNRx7MQOSYBCV1I2KPDbyr81hBahz3HYp4hwSt2lFAKFUGrTDTiNGTGirf+mvULsV0fBsd530jxTwrTi4GoCkV67A1RZczGk58lgqqpHjXuIB731TGhZwlueedTwVuWVSQsKzl7yrhjwgwJPSaq/QUTiI2YkfhOEVpThGBFOt2xrBt1kP3/rNqcgdtYzfO+vLdV+TmxFlOQWYdgR3FwSpV8XPb9oj9JTknHpapln6/7sKQhyemswFUFYBOEfhHd5Cxbnn4gx4hqWzmBjQCEubIF4CuO2eVGVcUFSEaKghXFCCfZPKTrlbAKey/fQ2vSui4ko0S6apmui2343gu4WD5f9UICyuOIspZ8s5WnOheAm2vyppN7aLeXa+1LHl8NxmDOKKPJk0cde9L6ivhijXs4o/dnKQS1VPCFTJOKrLNSi6wzl5PKjEUXEKR1mjP9mntQSTNthdZqPEQj4KCk3crnzYYeWI15PGMOI+ZZx3jt8CtN/9zRvAO3n8rzqdA+CCsrJfI4knd79OTJt1fETS3t9hiWtiyvO1TlyKcz+dyjlSL7QH0ccI8V48uOVAm/P1Z6Me5EidNRmjn+tbTN7fcdp2GLuhsxNqKbJDbgJ7v41y1ahxH0gyXtrTgtlUIobXtaxDcLOaa4+CxAYCEQiVQ2Ue+Ec699Qp9G1HkgbTv8XUdYmYvDbmHdVYdSdJ0qXoUIA7BwANLCJmRJhZqfuwS9yA0mUel5oQqHYtCiy74/NvP1kEtidMIcp0K6UQXAsyRTWvMhoM+C46hTT05JurWcyf0gY912I6i81uTGiQeAT+hzLzt/H6BrSI1GjTOWoi9g8Shcgni7Et5B70kFLJbXXDqIadswXVt5vXYRtCJ2Ft2HJVcwh4Cqa9KzK3ltXt2TQ0A/vxOA/TyQd4eFM8CXbAm/GkVAqeUXYpiwxwl/3TA9W1GBWCrHBqpO0POqzF6Fpx2dkv3pKTFqU0I8BaiKTjwI/FrcY5t34j8wXWXUThWKrJxosZFVY2gUdtD4TYVVQgSxj73MyMExbQz9C7F7cudAUgq1kj0/MaKcJZ960vEExxP22S1p0y4XF4URlpta2GGTkEGwsjbSp4H2+4HpxUqsup1aZvH55FtMTrO002ZUtK80Yd/ICfrBSLsemUougAoaHRV+I7Rc3Uv6kN5rkeeWg2LaiNnpTJ8WPzx5j3QQ/MX2QoNOTpXWXjFdVZgp4XIWnNAYYi05kq4vK7uprFYboVDnvYCBsblItnWQ9yHbEo1upCDYQQDarE2R4bL49oHgFaHVxa9Pipj2mWqKRdBTCsBpEKzJikffzBkwh1FOVy9jXc5J5mlrhOhlLenlLamyiwgo28L/Pw2oQ+EFrDtSVwkNuJ8ExHNGxgIfwBjC7WqhjseiJdH+8j2n65r+zuB6IWuhYLpy6Cnh3k0CoBuNsg3x2RZixrx5JMeIfvmcXDkJIjkcSP2AbhtUVX3p7ffVKAJGo1Yd+Tyg6gr9dMQBYVMTrlrh1h96zEHcV8R0RFh0thcducyhmuqYGLWsDQWmh1TipqQQyB5cVoHShrpTIQspFucX4ccrUtWg10IAIWfczmMGSSL2aw1KBBzZGdSk5UauEYQ4J/LxRHrzDu2vpaMp+AFl9RNvOtkujJPwy50hNxY1BNz9maykZVRJLa2xGXPxWwBbTtTYZFJLuXkV6rOafuvILqEoN1Yo4GgdiSWowp7BlRSiWeEnkWSytktORrGZSZmcIka9cOaBRSsfa02+bTArOdlCN49owvHwa/MF2a0Z5WSPzSVSPLRzV6YW9+ZUiZFMrEUbIHZiwlmQG0dOUdunC69fiZOQ9qno+oWsk7attOKVkSL+NGIejtLuj6NgOz6gtxvZsyOEn7TpSI3FnEbx7hM3EdR5XHACnCM3tch3zwO5rUmVfI95ixBuV8U8xJf1a1ywhGwUoXNMG7mOm3cT2SrGa4fpE9X9IB1M1wifYC3/N48FSHz5jGQ1+ulIPhzIk0evV2At+fSVdxYq7bEWqS0xofdnjJKWPGstK7Z+xD2cSdWaWCy6/EoX3b+EYGYF9Xu+fMtcGUQ+nCo5WeaoKr8R85A5sny+6HUsltBWoRpFGgqzq7SVzbuJWGbcPBuFhijIbNdchCVtK8jx8QijGEmSsmwUfEu8aYitxR4dqqyoMoa0rtDHCfc4gGogW4nOtkW6/Fiy+Gw5WZXk2oWVoGYqzHMw5C6IPn7Q6FFjH0oUeJoBUZZ2HaQANE/50vKrTC6Mv2XGfg9snjuSZT73CaVUATjlOUxbSWeex67Z1ENlIRIJZiPbgvl5qIAYsHD5u/alEBaprhnkpKdsAVJV2vyS9ahjlpZcIddMCVglZtxjX7YI0sHlXnb1qnLyscK2y0p0GUsBAOF9DAWcq2axhJJ9vw8FK3ColGR9mDLhbk0uwTpEoSBfboBMakUxW+8i1eNIshrfOaqngN2NYKQTAum0CGnJGExXawEc92fy/rh0AChFPveo+qveCSRZnaRNiz4gKxaj0aMnJyMvvJYWUgqBRaVagKYyq5pRrsJxK/OzO4kN+XAr5JZpK6eJO1CkpzKHxibj15e4sWQKJx0tZCQFGaG16oSYShZuuTkHbKHV6sHLvD9OgiprwTjyNKE2G9R6LZTOcy8Ir7XgPVVK+GdrGT1MKRAlsy5eNehRKK+2WFWdnxlJqi1t8JxSFNvLzjzrYmXlMqYLtN2I1YlTX+EPNWYnFOo5pnxm3Jnxvf8K0p618CFUyIuGYHbnATHoDE5OZXfMuGNYgj1USOS6GJE0FwelrNTCMZizApfiG2QbNz+0R3j+hQuggnA3xmtFGAxNFmswMU5RZZ0o2yIV0sWarnD/pVpJh5BaR7Ia93oi+8vNjTGyb1difquMBj8DJ2bh9KucyduVFP+ypstGQ93K+5gzTBFCJF115Ersw+btw9IlFErxvBI2syDIVdT3g4CEnXRXdi/jjB4m6V7qilxbeT/Ok2QOxoiua9lijZNsCZrqH1478J/KIyfUsYdOSA3qPCx0yVwCF/WxLyYbGn3scTGiV3Xh+wuBxZ6FiDJeCae7fko0D2VtiCKsMtM1xV9QDoE5uCKrXPgH8pTGG0WsNNVRvAWF6prFD07Lmy1odmlBQ5JZrSprzRBQmzWcTuClA1B1JcXs3AuK3DRw7HFAvGrlIjaKVAsKnKxCFUMVHTKqT6w/z/R3Vp5fsZKPbt6t52WdpjJiz+U1SmWu2oFn6xPHq4rHq47xscHdW9xRTvVZxaeLV0DWsip1MyPOlvGotYTWih/+VEw3FWJ0WTTz/raj/6DGt4VdaAtGc3zPnbcAYclK6MrcjYSVFGhZB87XR/mfBr+9FJD6MaMepP2fBULJFfnuKF3CLPmVjVJcGJthJYSb6r4XWm2MoDXKWsECCoUdrS5+/7B0GQC5KirRyV+MckHWdymLnDeLlb6kBMeL6Wzr5BrySb4/YM4FR9CK1FSY40iuLP66EYn3blwcqmZeTTZySAqe4cnDID83RlTXom6uSHWFPn7Vx4FCulDHs1TgupJ2+XBGh5q0kZgltTsJGShl1HEQtF1L6EPc1oTOUh3LBmAtVlDulGkeMmOSGDJh3Mk4UO0yelKMNyUXz0JuKaiztNmTApSmOsjOOTuNHnyZ6TTMKLPV0FRyKmi9FAJcJf8PQdZL1qKutmA0abNapKqzuYTM/yI3jo0pFzhiT16L2WX3xmNHS39XEoGKlJagyLHwH6qMyoo8GA4PK84ncRbOIHLiVFaN/tKea5+xZ1lFZsUCwGaliI1dJMe2D0VeK5oHFeVku4TKyvdShfbrThk7ittOqi6KPgH2FNlkJoRFGLry+5atzqJXCDDbvqEkGap7m6j2otUPncGvih33URx7dUhLKz+biGarlqJtj0Hm59IFqMqhrrakYtUlpC8jFO1Qugnk5M6VXQ6A3M1rYMqYF4Qubs1SPJRPMhr4SFzXCx8hO002GnMWJqN0BHLSzwxCM0TsU38pRHNmZ8qiN5ikC80xkX0gjyP65gZe3Ar+sD+TH56+9Pb7ahSBLOQL1Y/k0xnVNtKShQl1OKGL+CZXTl7gyjHLLdXoUWmUqq06vBGzD+PzAmi5XggdodzgyQm/PBvZHJhBSdCoY+Giy4UmF6RvFSpqXIbxWYM7WAkVTYLoitRZQD2MiP2Vko2F0noRbyhrZQtirQStAKmZGXsCcEWnFzRbNVrANjOf1oppqwtLLtHea2wv9ud+rVD6Iu/VRWIc2ywXMg4VwJ3Uou8HeT3cQZiBM44RHYBi2hqyaqj2XuZRkAvdJ3TKF0CrssRVTWoEIzFeMJP6HrlxysUbOyv5f6uyMisdh19JICdaQEpbKMGhU1+Iap+NQc2Qae8zZsj47nIJu3Nafi+MIqFLEdVL7Jjt5TSGwvOPScYEa1HbzaL2FF6+lht3jBc24HwjhiTtvhVLcOUTOnghD607uclHL4dCIbplpYQ3ohV68IuIyPReCsDcSYQoJCKjcbsRfSgt0fzvILT6IGA1lZMR83AUoPDlC/LVWgr1/kx+fCKNX3WeQAjSkq07EQ+degFnrCEPAXZHTMqkTSu/fIxgRVedVoLGUvaw2TixvCo+/aoHVWK0xmSYSu7cvAVIxR569XlZQRnBF/xG/PDccXb+VYvtl99aslXYo18447PsMzsxcMhRobwUB1VXggfEJAVgGOT0rBwqZ9KzThRsQU7HmRbq9gE2dtnXZy0z73zizaKZ2Vgl2zLfVxnthfk3/3/m3wuKXnT0a5g2BQM4lbHCyXbBnWXrogubTk9yE/u1LTt2eU56KjLcJJuHxZbLR3TmCxz3bDUq6lKgSwFYq6LNmC3fxCh0SUFuMhHKJkhAS9sLduPXWmzdDoJDTNcO3xm0E6GYCaJunEFkew6i1ais+AWcB/BeCsC6k+1NovgEKGnNZ+KPqiCV97hy4CAZI79TyuhRWvK0aknrSlaOx15Yr/OjGIrq0mWg5H1WpwJIjsU3oHLo84g+DdLmWyPchKwFiDz3gikpRbreyD3x8CgcgXlFOAg2lQ8HUeVWFQz8wMdXogjknEnHE1prctdIhS1rNOUceRjg3KOaSkgQp56sAxh5gdNVJ3JMJ0DhPGOGleAD9U4oxc2jWIsFCTmSbYGVEycr8cyfASzbZ8YbxXQl60V1LsWghFiERoIfTUjCAsuC+JOzUIWLcER8wQqHe3qvEIQooo9xwjSW8XmHcuJ6o0Zx+dVjxJ7jYoY5qxhF6yC7dUG9peOJjaglVZCbSsJV5XetDqAGKW7DnSo3rNyIw61ayEg6Susu1uKyEpxuarngrBTJ+TGPEHoUMCsXvXyqzIIdCJCY0cX80/apxINJUc09gowXwZEkPIldW6xZNBxGFfymVvgt6HF2RRagz2+Ev6GSAIXunczAqXO4/Sizuxe9iQkJvTsJu9OYL+ruS3enxiA35cwIjYL6YwvHAykAZOSGPxRSm1Hy972g9hizYAjqXLpHY0oBCKhxknViCIvabwYZ5YtU+dwEfhCikDHkTUe46cTr4N0jWWkhCRmN2h3kc4ZBCkDbSrew5wc+vhJFAJAVzSg2XHnVSgVMckMp1Yrr0Kkn3m5RppP9bMwwBDCK2FXCGKslLy+sKHMtnFtFaIxkzp0TKhZTzE6YhcZnxmuNVxfPOjNmuleZ/rlmuFNEZ1i9iZhB9to2lv10MRHNxgjxJ5Uqb6uFe46zcpGVkYcQigBFia3aZ/fUiF+8L6IWPcSlIzBjAdJI0IqIZ8YwJEYdwkYKQG4SOUEMFnsuYFuXCZ2sSaX7kUJhjlDvkZVZoUvP6zntpSDJjXyh6LpTEkxAy2yvo4BncV2TWkuspTjqKYr/gxMSj4vSfosyUoDcZC5jyUzhjSWkIzQssWYgiUWhFeWkHjTNO40dYLyS6HeJHs/UTx739iy0Xq0xuyAgWQEP9fv031UnN4vRsvcHuelCFLrtMAiDL2ix7MpJwN4s1mMawRYIUTj6IMShYZL3vMh9Vc5yHaQiJPJBuDH9KE7As2K2ri6bI7iMmQUHwwfyzZbUVUy3DfbgMW8epUisV1Igdnuyq+C9AqDqSp7/lzy+EkVAgbwpMS2qwdw1crKGKHiB0RJQ4izxdo3Wxap59o3rPak2gtirsvOvyiwJhQQjGwMdpAsIrZw67b1kyA13mskI2hwaOWma+8SQNeMdpMqw/Y0olNdKiWdblplTUVSQ4yS+AZsacitsx6FIQeuKnDNqKN10W1iGPmBeP1ED001DbA2mL6i3kQtNRwExY6tL4q/CDJnqLL9wqmR9F40Ck4mriI9i0GGDIqwz4614K9izxpwFgXdnGUFCq/Bd+T4WSXt+ENQ/1hqVZ2ZhcTFWsj3xawOqaOl9FvHVUTYKsRNTVXtSy9fFxizpS75TgvbXXExSx0xi9j2E7JToPdYR3QboLeap4AZFduzOWYJeYInnhmpp61FOnJ3HSUZNo2FVCAiTl61UmfnF5SeQx0kKQF3JTYaHRlpINXryxsrcH7Pc0MO03LTpekMqdvNqCjDLiMuJvowIgxwIqikkMmsWxZ8cFlE6D6UgJ9LdlrBt8Bsn1nf3x4XPkPdCDlKdMFOzD7KarpwUn6+827DWqKoinc9SXY2BmoX/LHLOSkC23REDxNt14epDWFfCCx8C7mgwG4WpL4w2HVkku/OO3yYAaamnjaZ5iFTHxOFrpjgYS+vZPGRWryJm0ow3isPXjbgTK2Fy6TGK7jwXiacxEMTNRth/FTzt4XGSU0SXUyfEwj+vpNs5D1II4hXTXUtY2cW9FismFHY/iJWV7zi9sMwe9+5ECS/RxKGwB10mVhk2Ara5gypCFrU4+YaVvB6zXHcW7aAET5kvWttnOIdlRZucRseEPsQSqyYzgunlPSALHTa2cnnNp/90JalNpgR3zBLhZCA34g+r/UV8FFYZfxMxGy/q0ceK7lND85CxZxlZqkPCnoIYiRYGHiDCr00t0d/F70/3GVbCGKQfyN6jOgGcSUhrPnk5QetKTnJn5RSvnbTxOZOuOvxGfAj0Ufb1KEXuROoeO1d0FNMFSCzsw9jIqKifTqKMNUYwpK4RU5qY0bvT4rSFlesp3q6Z7lpJtjpFqs/3S2eRD0fwQdiBZbRW6xWqmJXOQqMve3w1igBlPWOtOKRSuoPtirTuZO0yeeFxr1oYvaCrtRN9uNNiyRwFnLJjJp3F234OzZgJLrOHgPYZl2SNFiuFX2nat57153D4mmXaABUMKNp7cSSuDorzC81wo1m9DsRKM7yoqR81qrjS6DK3qcIak19GQ47k40mMHyonF8e5l9+zqaTzOZ7RT0cqWN5wFWVOj51d2GbVg1CMp60m1JeT1J7BjJeWerbxEoYdqKQWWm52RTzlwKeLRbgKogqsjgl79JjzDFZZwqYq7X6SE38ngKy9aomtXVx4s9H4q4rYqBLDpYmtWI+pXEJI2kL9Li5JyQg2kyrBNqarTO4iugmkoFD3FetPtMSSe6Ewu5M8RylOciqrmEFDXFeLDNweRghpQf71oZeObLuRwyQKKKcmLySfriVtO1Lr0L0vhVvWuKmkBKks31efh8X9J65qeY/Ocn0qXwr9TAevBR+weznY5nF3BhNFHTiVQrOW1eR5JK9bprtWuDCniHs4y3P1xVG4cALImXj/KExBY4SoVlWCDUxf9SxCWNY0+uZalHV9L5WsraWN9kFeOKWKXLPEQHUV5iBZd2ElN50dRHJrPCJ2MRIICXJDLWBVOUVBgLbxxlIdIuvPIsePDNOGkm6rSSbTPEW235NQzawV9ZMnNEb42klOn6wVjCOMBZDRipzK0WtEfSYtXDkCx2lhjOVVaTengNtPTFeVEIeitOF+Y+lfVoVoI2DazPcXFhzLKT/7+ethLgDl96zlJtGjwvUsMWvzZmEGVKdeo28qQeRilkLblQqaFakxeCupUfP+PFUSe5Yqse+OhV4804nNJONNqOfAEuk8khOehm8yqU6omwnrImFwpLNFnwzNW7FZmzbFCPVJhEKiFrSEruACZy+jVsFSqtcHVD8SbzZiKjqfzpsV4Xa97OiLNRO5MqTrFWEthiAalteAJLt+e/Ko0aOPArfnuiI15drb9V/wJiDJ12enUWPEnAUMJiYpAFuxLTP7QbYVSkkBahzm6UxuasZnbYkdCxJHvj/J959Zjk7WzXkYULPpaD+gupY8jCJkU+/RMH/T46tTBLTMPWiHurkS5HacCtKev2C0sDippIzfCt3W7AeZ5zZVkcJa2RJoRfvWlzgzAWnmVjRWwi6rDqJPl0hrSRS++nbi+JGlf66ILQhkaWgfIu27VMgmHnPyFzad1airDnPqpUKHAG2DalsRcBSn2tkxiRBlfpu8zJ7WyO9ZG2Hk+URsDGEl2oQZIOyfSQAI+iK5XZx8ixbfrzPZpeI+rL4gJU5uVuEVem1Usj7SgpMkJzebyhqV7EWu26eLBh+56XO5uObYrtAaZuqu8XnxJRBqsIi+slHLelMK2mw7nuDKUzWBabBwsriDpnpUC8gpK06oDhEdE6GzhJX8TPfoMbue3Ig9mH04o54O5O2auHKyeTmPcgNWcpNDYf6FJO38piZ082ESFsr6vJNXWqOCIPrkXDgrSObAFJY5Ple2rPwyeDC+yJOHQghqasG6Ri96g7kr2ArHQAqAY/hwTbZSANzbE7x6JyvAqhKXIW1kdDmdBcOonGygmobsPekgZiLKWfiSZuArUgSytGHN7MBjhFV37gVB3a5kHMARN420WoNHeQsZpqsKZzTmNGGPnlgb2tcRHSqmtdz8bu8xVblAy3oqtKqYhspaKZUgzXhlsENi/WnADobzS01shK+OkrRXd5RdtzmOUgSckVZxU8PHzzCfi7nD7AirjBaJ6mwJpfVFR2CMzKrWyLYBAQWVT1Q7j19bpiuDmTRuH1h9nji/cPiVnOhL1HahxssNo8VZqbgJgYxHZhKrcrjw9VWWEaDe5WLWKlsJO84EomLaWfbbKmWZhX0g15a4rqVrcYpci3CnfpREY+1FBxIbQ0A2G3Nu4ewQLHFoChU0IVaMO4c5ixFK/STkoDmO3Z0y9ZOsL6eNY7gRolX32qPPntxWkvIUMyRIL24I1+LUq59Oi+RXGY1qHNnJKjc1llSVkWuM2LcHWd01FWi7AHfAPwDaKS+ZAfN7mZVCPx7kc2qJHJtNPzGavF3L4TZ52B9lNdi1Yk2nFHp3BmeZnq9AKdzOU336SL5/RM1uQeMEyUghGIaiaszkU+lA/USa48e0uRycP+Dx1SgCmaLi6lGbjfzZWZlzxkleLGdlp57Fo98AepgwgyVbsX9OlZbQx6TJTlPfT+jJETqJDp+jn3VIJWVW2rRpXZiFRznt/NowbgyVTjT30l+fX2pSXQhFao7hanGdEzR8CtghEK4auQifX6PfPsmJUTkpclrLTT4bRmpFDnlxokmtI64raUP7UJ5vptol0BXDtSFZR7ULdG8D42SY1lwUgFla+dCC8uLtPwethI5i9skSuR4amC2/YyWkovZeuAlmiLJiLdZXEqtexrGYUcUOG0A1bgH5BHgFc/KLcCe9d5XNicLzDW3PMEeamUmRDhf7suYhL54Q86ZH8h8zsdUMV8L5qA5IIvLLrmxrFHaIZNMsmn97f5Ibbib/BAn/0FovhCZzEOxJ9aPcsOuVWMPNzLwQC1U4LYCu8EOmiw2eSqizcPjVqru4/va9tOddI9fDOIm3hNbQFs1MSOjTiVxXTM9FQm6PHvd6T358Ql1tic+uih+icAsoVPQcE/l4KCYoSQpAyqANSqv/f+gEhDCEj+SnHfpqi1Lvzf+FM5Brh+pHLBA3tTj+7EdpJBrRh093LfYUSFbix02Jj0pOUmdE9iuYgIwB8vc5ctqdEu4Yl6z7VCuax4gOLMUiW/CtJtSZaVNhJkf9GKjenbFPPakARLmtxU9wNpgMEdK0uL8qZ+FwkgvGF2dbrcBp8HrRoGdncDsPCaYrw3BncaeikCvA5pzKC/NNnyWNOBTKsRPgzYyqkJ4ysYZsc7EGF0AxVobNp4V7H0U6rXyU51bs1NGZ3FZQItbMY6JyBrITlN6Av64l8EOpkuhrFnciKUQS5ZaVYryS7scdBdgFwSqqUxIsR1HSgcrvZyUNKVmxHLPjLHl+rxi2Bu009uilADztZTyLUWZoZ8Xw0yjJFTiLc1CePfsK91/tT7ItaOrSFegiFS+U4n68BIS8zzW4uSKuW/ThLKSwYjeHBtWXjUItgPAiRDqcwYrpSKw17uCxb/bw5h717JbwbCPvx6kwHSd/cT46n+XPQOoFq1BGrOxwbtkk/KDHV6YIkJI48vhA2u3RRWQzAzac+yLMqFDHMyZn4rrGPJ6wKRFoi3GFZbp2X6DJUsQwQc0uxUrUZkkSdqd1caVtFMkanFPYU8IVequOmfatpzrMs38pBrro660iOkdya+p3/RJfNe9381lOAW7X4i04FWfidYeqHephJ5TP04ApghJSujDNYgK05NZ7y3DnGLcGHfMCtqVOLfN8tuVjdQYLehK/RYkAyxcufkbyCJEdvegmFMONIdn6Ms97CX9ZHllQeK21rLg06MFTpUyqjXABjMKUYquSaCHI8lrZUYg9s/uzMA/LJqPIjVWC4UoSoLMGe5atQDYw3EgHMD/n2UVIrMfUYnKiogSQzKlBOAetnMapraRLOJcTWaliZuvl83Im7w9L0ci1W/wFyKUTOvVSMJxQ3ClW47mtJSvgPIoormtJXSO04XMRGLU1ed1KzuBxQj3uwRji7ZqwcaLKfLOXQ+TuRgpAyvJ8i4nJzC/Ip5P8OWXZCBgjl71SUrx8+OqnEuf37JBV14n0dn8QUE1rYVDNK49SbVU/YmbxxDihBwdWY0/gr2QEAC7mGUZuWFtQ1qwEzLKDdAMiEWVZM6ZKlTw72UOrnNFTmQmDRFhno6gfA7ExhcFXwkX3o6Cxqwbtg/i8nU6w7kg3W/Rp1joEcuPg5e2yGprTb0iCumd0UcMJldj2kXqnGa/N4pRcHeQGiZW4A4HQoFXUsv73RVQUWMaDWIMyBSCcxLC03snaTTwEWVx5cgHzVGm1Q2uL1LkRmXAEd4xy4Z7KWhEWoU5WFQYumoM8r2whV4UnYCEVXwOQrsSvZXTQnuJUJOSu2Eg3Ue0h+vn9nXkHRf8xZEwfUL0XsHXVLpHi2Rli6wpeYeBqvcSBLaGex1MB6yrRFcymHCWKLPeD7N7r9/z8Z0FZccKiH4oNuJORb3wvOGTOIxwj+nFPTglur/BXDeYccG+PUmRurwQHKxLkhcY8cwAmj1qt5LlECTOdOwGqcqj2A+o9J6jf/PhKFAHIF6Wd0vJLhQCTWDAR4uKMkvtBUlZ1ljZMazAGfRoW5xZ7jovgZ6Glxiza9StNso760aNjlGQjL+2kjrnsyzP1HDHuNLnSmKcBcxhJjQg3GBR+bamOnvrNidlRdrGTDpHc1cSbDbpyYvn85h59vRUCynzK+0i4bonPV9jDdEGZfSCvGgGukghy1CC2YCokdJDocLlJivBIC4tQewkJ9UWAI/6JGXNQ2FPhHdRKbqj3zEjEmEW+TiVFnTLGB9QkUlxJ4pVLxq/EvCUr4WXY2V2J0rkkmMM49BTlYp9mXwYpMKEVuzG/uVinaV+4C2txfUqVbC9KU0JsEmbQS5JU1gIyRqcXl+TqKZRdvMiH/XYl6+CiJ4itqFCz1aTtezdxBj0EzOjL6Z4XoY4wQcV9KAdxCvriJSzgNkZfbMFrGR/UKJyWJTKsJBmpMWKejjIOXm2ZnnWYIQgoGSLp7rq4BfVFRCTbrNw1l1zEphaAeSrGO8MoXoNtI3oEH9BlTMD/4LvvK1EEFIVpl6WdwWgxHVVK6JupiImqSlZvc+vmA6ly5G0rvPQhkBojq7/iRixotJLWqMyLMwJu+ygvgL6cIK5PBSzLi4Y7rmviusY+ntGHgVw5jI/FUttKRNTjbvF/R2t5Y99luenbGq428PBE3h/ETKSsA9EKPQb8xjG8bMVZppdUo2xEvCNR5hl7vLyLZswkK+DmbEI6C2xSJaes7cEO6r3wFIgtpJKwNJ+wuYR9pOJeJG7LQh2OtcadIrbEfJte5LJ6ssJhUBJT5o6iJ/DbYpxZrL1nyTc+ooeE04qwssRG/B7GrV7SiFRGkiq0jDJhG6EpY8gkYh01aexZVoZmygvoWB1EN2BOfrlpxg82DHcWM2Xa14NsZZyVDsBqkjNkK2Yf8vMFpM21K8zBQRqXso/PqQjb8ux/Vk6YeWy1ZZSrnLTj72UUzODj8kgJfR7JxzPcXOFfXslz351lpNm00pmMQbqQ8vXZaQgJXWz4ct8v1ug5Cp6hi7RYKYW+uZIxoZDwftDjK1EE0HLT51B0+DnL2sPaBVnP3i9Ry3OhQCnUOEmazE0riLRPaK2IM400AmNe3gQxncxSNbWSJKEgbbBfF4DqIDFn2ZnF6zC7UonLPEjOVPsz6Wol8WOrVuTQMzMrRmnLjidxe111UEvVzuOISm7xrjejx1WW4UXNtLXoxuCcWSiwoopUmOuL06542suPUvky9szmGwsfPxQPhdJ2x1r+y0bUdyC4QGyEI2BHqHdpYVmK6m/mXGfUELDnCbPXiyGKvLAQtjV+Y4R1mAFtF0cdjCa1IkX2K0OcC5ZjeR4zWUnMRVlGB0YtzsM2LxoDFaUDQEP1JJ2QbC0Cua3oP15zfm4xXvAcff4iNJ5qAzFjD/6LGI7WqHGQvbvRl1F1XuVaCzP5S4vKdREhwRIRNkedpW3RAsx+ggVPYZwEH7rekK5XmN2A3h0FsKzdxZ7+vbVxnqXIRwEbs7+sJYkRvJcuuRyoersh5yx5hPk3dS7vPb4aRSAXEYZ2RW2Vl5ufFOWFVrLrzF0jAKIxJXNtxD6cmD7aEq7rhQCyJA9bhZkkGTZZiief+sIOWxJyM/VTXKKzdEiETS3gViymErG08HOhAjFtaERkQl3Jm1DsnbQx5H4gnc/QD+jtWogdWdrMPE1QZNIuZ3J1SzK6CHDk97CngL6x+ApyoxbJrS7GILMLb1byu80R4CoiJ2qR4s4nphmlMEj4R5Emu0yq5aYMK0X7NtE8ROqHETVGUifZiFkhOMyIzLizN56GrM3i7WeGJOpCpCMwZ3H/US5j+uL20xTSUMkUiE2GtmgHFJDA7gwqCbfD30T0ypNw+O3F67B+mFeMYu4RblrGG8e01rg+074VC3sSLLFhgB4jZl9cecq1BBmVorTaXXsB+ooRDGbm4uuLD2HtijFJKZQhCuhaiaU5WqHP75mTRlEDqhDJmxVp3Yo78fF84SGMXorKXGALbVufJ9TueOk4leILTMDCSFVKST6C96SnXdHY/A6KgFKqAf6fQF0+/9/KOf9PlFLfAn4WuAN+DvgTOedJKVUDfx74g8A98M/mnL/7W/2cfC5GIjOvPsrNn5MSBtQs98wS7glIcMS6wjyeqd6c8LedtEsAWS64eGXwrZiGzp51oVH4rSksOC+s0OsKkrSUyehCIoHprimOtUK3VV4uanIWUUmx1VKTl+oc0/J7KGtRzpEO8sblQYQmgmkocVAaipz0/pFKKeLNSmb+Q7+cLvWjJetiShnLTa8v67BpC2Gdys2vFqQ9GwEFq70wBlUQSrVKYHrJbAydpDXnqvAmtEZ7jZnA7bWMPVbhNwYw2JMRc47pPadcJVRhe/JUbyeh06YkRKk5U1IpzDGVIx500MLczKJwDOtENhl7MLijkhSjLOPL8LHn5uWenBVPgwS+uoPYw9X7SxR5qjRTJ/6H60+LU3POF1eg8lx1L8g+wygzdTEUnfMF5+QexulSAOYCotQi+LlElr1nMlqyI3JjBc0/TUvQyWzBpkIs8eZlg3Dqy6GX5BDUapEbLwzC+wP5cLwkDBeh2qKM0wqFWbwryFmERSDXXnzv/fpNj99OJzAC/0zO+VjSif+aUur/AvwPgX895/yzSqn/DfCngH+j/P8x5/xjSqk/DvzPgH/2h/6EeY8+edRS2TIZL/MzSLszV8aYyLWFmIkbS1Yr7K7HHkb8dVPWgvK57pgYryUKq96V7IAkoOF05Wh8FPXhSTNeO7Jx2JP4Ceogc3Doig3UlGSHD8JBh8UhhhgF1/CefBgL3dlAltXnXKGJiZwLv72kyBKTbEROsvpMK1kpKS/+fe4YiI0u/oOJOOqFUJOMnJ7JyY1MhjzosgXIkmDUyhxt+nIxRha2XrVTxFGRbC6vl6zjQLYssbNQdBax0oSV8DFsL5JhYia1RohahxKdXRiRFBkuIYovX1stoRuzd+ISa5ZBeX0JIc1CcBpeBjbP5WJ+erem/Z6jfZNp7yPuKJsbYLFhq54CbjdcZut1Kzenk0ODnBfgdqbuLlr/BCA3dT4V7cp2fSkS8+fMnpiDl5EOpJvo6oVLoaZw8Sl05vIz50fBtFQhwi3/ljOMZcZvVqA15uFIfnwSB6QSMZ6HgTxOpUPR5DGg6krGzhBlGwUySqf8O3MWyjJMHMtfXfkvA/8M8M+Vj/854F9GisAfLX8G+LeA/5VSSuUfNpQYvbQyCy6glbgFnUrmelPL+iYmuccLe22mCaeuEgbYGAkru+Tg6ZCpd4lprcXc4iTOPTbLynC8qanvh8I0zExbt3ydRFglqidf7M01ZhTBip6iKBjnU6a8kcqumC3Uc8EOUOL4u+gjIlBV8ntr0axnEOCzjDgCNIkyTp89trfinINgFtmUiK1JwlN8r4kmFdfksv9PkHUmXkXiWqG8/GcmtazpTC8gm56kNZfMAcn7E2xBOiLbR7E7A7JVy7pNpSTMRqMlGOZmRX6+IbZW3JqfJuzTGRDTzlQSpOSmLc9hkpWs8BtkFQhlRLCZ465FPVasPte0b+X5uWOUQNgC6uqQcfsBcxzFEKREfcdWYsIoIaSmDzJK3m7k+ffT4mORh1FouDGhrCHfbBen4dy4sqGRNd9CEirJUakTj399GooTUVrae30cl5Xv7KINSGFRCs7CN5Bxo0TybddgDfrtk5zoWjrInBKMI9mHC44RZXumNmvZqE1exoQkRii6qS8H6A94/LYwAaWUQVr+HwP+18CvA08555mB8Anwcfnzx8D3AXLOQSm1Q0aGdz/kB0gLM/kL8loEFcRI2h/Q11dfcG8FqcTkjPVRMgELcAcsJhvTRjqA5jFesvi8mHRko8hWkWqLOU+Y40QFpGIbJdbiCnWO1IeBcNVK2u0QxBx0dpzVQFLLC53XzTJPqvNQ3phJ3pyUSlejYd2JKGpyF0s1amkNfZCL2VmUUdiDJ3SaUGtsTmWdB8lmmncAivFGzFSzyUVFiJxcSWHOGhUloDWs5URToRiuakU9iOGo8RfAUY9pAVCFal0ERFHa/+m2KV6NqiQiqcXBJ9SqrAItpndistlJZyFiLrUYmyYLuS5FJbNkD+pR4d5aUPYLI84cGJucLi5QqWwUypi1qomNJbZGthRh3jAU7wcEA2LyciPm8udKLOHV5MXwBUSC3Ik9uDmMl5BRWHCA3NRyqu+Gi5uQ3ACSMqzVAt5lW7Cswhlg8gLwKdlgUdkLNrA/kfYH+bjSsinLqYzHRt4bHxbAHF8YkSleVu51YRT+Tv0ESrT471dKXQP/J+Anfztf98MeSqmfBn4aoNGrwn8u7z4ARV1XiSIs7/YFYa+kG3B2oWDmtkJ5teABM3lkbjVPLw2r15H2c1mTZGdAZaq9x3ciQ1XJoc9ecgVW7tKyzrnzCdybA2nbCkB2mgpnQBhzuRQFvTstacriJ98IYcdalCu+8FqLgcreFeZgIxTPYZSTovgUZnUpLOY80b7KjDc1qSqmpz7jzgl3guqo8G+EghuKdVpymTzIBTWHq6hQBDzby3pNxga1ZPslKzwBQeHlgo+1ITeyUpO/a3wruY1o3tsmCAtzKSZakRrLnNJketHRq6ALl0NuejWVMJQsZiIZ6RAExISZOmzP4rScjSraBhlRYiXmqPY08wcUbj+JH0DOiw2Ymvn/MV1We0Bed0JRn/n8ZRTL12s5JIZwcfidT1WlBJ+KxY5s1V46OViun0UsVERIahgF/BvGImQqK2Nn5fnFBLsD6dxLh6K1ALGmFAdrZUsxjihniw/nKArCgqctWwOtyX0v680vefwn2g7knJ+UUn8V+KeAa6WULd3A14BPy6d9Cnwd+EQpZYErBCD8zd/rZ4CfAbgyz3IuDqrKFotuV6HMRWab+wFO50IvLk7EjRMktJg3JKOZ02XMkPCdWfbjxw8NZqhpXp1g8GKRbYWf7TeO6crhrLr41Ze4MF2qdG4sygf0vidt5JQwj6eFDjqz6mZzELU/SUtpjQCCKQu1MyaUkpEnH46oGNE3VxJQ0dXkJC02ky904fJ61cJHMCtHNnLCqVxuvpjLzaexY2bs9ZK7ODsGzXO3uPkCCCiIFiOSPG9SikPy3KrbGdmGwtoTtqCNCT0p7KiWuDZgyUp0J/FJNGc58WbDjZmUZXsv3g7G0r7R+LMAhP46kW1G9xq0IrYJPSrqB037RmjSoZVxIlbSceggXg/V43TxEvRJjEIGOe3nuO9ZTbcIgEpIaK6trPUG8YJAadR2Ta7EXl7vixR8Hl1T+kJbL7oCJWs+o+V9nwtAcZGaHaSWcJqmlu1C4b0wG4WM740aBWtSXbsUAUDSrWJEYaSTKHb2TMU9WQlpKYcgmIBWMob+gMdvZzvwHPClALTAfxEB+/4q8MeQDcGfBP5i+ZK/VP7+18u//99/KB7w/iMncLXcIMUVRTWN7NW7Ttrl2SSyVPHcVuIfB9IeVzJH23OkqhT9jcFMcrP0zyz23ODuT9inM+GmI1WG+nEkzsk6WhUPeZl1ZxNRrCZ1NXoK4gNf3uR5fp/bP+WDgH/DZf0EgtAyjtJm5iRdjzFyMfSiMU9dDbUmWo0OtYBJBZBSQWKzYq3xa8Emqn1Y3HSyUWAz7iisPDOphRuRDMSGJapbIsgLoFhd5nLjyyk7ZzrkjNn1F418LdLbqA16jLixGLaspJuasxyyBV088JQPpE1Lqg1+I+7D9aPo7PUk9mC+U6VoZfSgMKMYiIRVxh411ZOifS3dxXCjCzVaqMHdu0T7esK9O5KdIWwvbfzCWpxzKnxJJHZWbsihgLuVk5t8nOR9SRlqyYbQx2IcWtD6hT6c5VSnzPUqZXjciyKwqeTjpd0vN9LFgRjEQGbWIiglRf88XHCkORGp61Cb1WUEyblslM7MztaqqgQrSFm6ZVjchHJJyQZ+R4zBD4E/V3ABDfyFnPO/q5T6ReBnlVL/U+A/Bv5s+fw/C/zvlFK/BjwAf/y3/AlZaMMKK21N1yxMLbVZX1xYQ5SbK2c5UYsFdGpdOb0EdJJ0m0R9L7TjcatxxTJ8unao0C4KRN2Ihrx6cyJsG8LKYlIJrjAXNplQPSGuZBzR5YRTc75djJf5LibyOF4Sh0zRfeeMKnxzNRM8Sl4cTSXuPcUWS3CGRqK+evHLJ4E7BFAQGqENu2MoUdmK3IkqzvYJHUqMWekW4qAYryC2BVAcMzYrgpo1B5D2Zc/fR1AI936+AUoGnwoZrQUbEHVkuYgLWWnOUfRbB3ojXUBj8VvDtC6sv2ixTpc05dn5WRSPdpCRIFUZt5PUZB3AbxTnDxTTjczk9b2i22U2v7pH9RPh2ZrpRm7Q6skvz2++aefiLDdDQM0eg02zRH3TFrv79epC7Z5lxDORqORkzhTgxVkpRuhaEbgdpGOdfQUF8S/uRTnLQVBXX8S3ZlFQ5ciHkTxN6Osr8u2VYABzN3MeFodi3TYySpQCwPVGNhmHkygi3wu9Qevf0Xbg7wJ/4Ad8/NvAH/oBHx+A/+pv9X2/8CgvYk4JlRNMRt4QEFrl7ZW02UVpSIiyHimGnWpQxO3/r72ziZHsuur479z7vuqre6anx45JImKjbLJAwYqsLKJskIB4Y9h5xYYVHxIsWBhFQmEJEizYEIGUBQhBIGGRDRIBIbHCJiDbcbCcWGBEjD1jz0xXd328z3tZnPNe9Yymxzaarm4ydaRRVb3Xmnvqvlfn3XvO//z/+ZB11mSQ3pCjd0ukyzeVgQ6afesgq6zebRj35NYC14wImeLdB0mokzVhf6JNJ7bqCNMCt6xgud5gxrPU2F31czR8wKajMGpgyHM4uKI3Vd0oRmK5xjsDvEy8Kv8C3cjhxp5kmSgzTohkRw0+78kS0aecYdLrmRv0AKJjaJt2rT79m9CDpUBEZcB6DQJA0ZMnlrTqVPBluLapN9EQ7cLsTmEy0kU3NF8BG71Bp5WEZNFp96X02wrlHKynzvIXEJM4VAZ6JSJgUJJuptECoTC+EZn9lwpK1j+2z+LjmYrIvK0VApxTkZGhESvRkp/xAvTBmq7Tp3euydh4eJVgpCSyNtafPngYOEorVK2+DpBhJQyVk5U2HyWJQciFuCoVZei8+gADqxRYAOgp5lZrxf4fXhuERaS2xOGqJC5VN9FNRsh0avJ2AZlNlHFouSYcnwz9DWIVKJozlgFcFsSgE4UNV8YbsFzpk7LIVW3l1h3k+gHd/gjJU1V7KVM9Nx3rvrpqCZnmAJqZ8c21enz8w5bqcET0QnrSEFJHM0twuSNdnIKNeqc/7Hiq8SP1UDvcfEko9mmnqWK8y4YwznBtN7DG9DwBpAmMC3yeE47mQ4KTYJnddYkUOd3BHnF/BOypvuHJmvS9BfgZzbjX/rOe/qhimyFzw3IdIETdExM3Sby2EBIwMFEkWQXDDWh5sMu0HNillijI5RQC0ZOUCVIHyIV2MtJ9fB2U7iz3tGPzIWqglc7yEk3QubFtVChSQq7l1KRWJuiQ+oFfgGwjjuIaiGHzvUQJnDdMyDnkt8W0JQPjm/pkXX1qT5WI1hrwk6P1IPApXUco0iHgx6j3gJTNgN0YWnyrxrgFM6QN2kTUKXqQvnwnClaj0a5SslSxIFa6ZrnW+nwvaNJvOfqKlwnqDAnKnnXagkFcLlVSfG9PYeh1o0/1LB1AZYAmAyeTzQp6NtX7rm6IR/NNJcAwN8poddmDQK8cm+c2McqiKl2mZZumgaMTvAjt/kgvWpYoHVlVqwKR09JdkjnKUcL6MKW4BUmM+GVN8c6C+nCiWeOjEigor6WETKnHENEM8LpBOgXGOExDzsRQ/a0F3SeuUF/Nyd+3LUG/NCzR4GVZXhJPnI5xiSfOj3WvZ6WjUFW4+bG21xY5YZzTzRSB5uYr0vdXxOsTTXKWm+aWkDjCyNON3LDs7qHQvrI99nGgHcmw8tDuwGBPaUfaqaKSrwPBC80sobzqBgqykECXOtKqgyYgrTLTYD0AftXimpRg3Y045Q0ENsEp6HjSBHxolKTTrrO0ARcjftBXdHATzeek1ipsTW+uRTUWjAFJdQi1/6OZJHTXesLXTiW8K+N77KHeWUI3US7BmHpCn0QG4iin29dVjitbFf8cKw+hX9YDJiDW9QYI1gW9N+tae1gy6//ot6ltq1n7K3uEca7AKdAAYsnG2DRg+S4leNBVSS9A4qYTZDrWgLJeE52Huh4SmIAmCUX0N9L7sSqJt+7QLZYadMQhLhBbyz9d+t4BIJyc6ASkufZo99uDtt3sx05WJF0gTHN96o9T3DpF2kB7JaMXxyhuw+qxhOpABSD65X2yqOkmKZ1RguVeWF/Xhg9XB5pZQnZH2Wdd0ykoyCvMNOxPcMcrsrfn1B/fp75akDmHW5S6V5uMNbE0P9lIlPfJmtkM1mvCyUKrGZkpwsyPoczxxw63N1V58ukIWZYk84pghJeAtp02HXihG2V0mRuIUJRbUJWVfK06Ae3YG9EqNFNjQRZIVkF7Ata6yvFlii9TO9cNVGm9tqI/Wm32toZqS+t2KFtJpYnLmGdDKzUAdYOzbVa0/gJdIWgwdG2AqZZii9smdzbzyn6cMug+NBNlSE7WVj4cac087XUH5g1+3W76GPr7qdDr3KshiQUgaYPRg2dGwNrRznK63OErTQbLukaqWkE6fR+LWQxBf8B9rb8LVr+PuhLcn2nJemWSdD24p1cZ6pviTH8irtd3nZOi0C3BYmnfx84Z/FpyZTyK82P9naQJslgRjubao9LfL6f5A8QBYdiq3WuXIwjYlwvrEpdmSK7NGT2H3QCwSTRyukVFLFICCd1epiSYTaCdpgMxSH4UqPYd9V5CftRQX8mGTHoYJ3hTfJUQqa7qXRcTWH+sYHRDcQBeRMlDRPXl4ihHTlbkb7W0j+8ru3Ceqp9tdzcjTZ7rqqDRCoHkOU6cZnWbZqMOA/qkWa5xo4xQJPgmNRHQDf9dNCYkt25JVgnVvmXjDdekrDzKCtwDZEKS0UyEslCNvqQMd0+7PR18pZ2CflGrCGaPaku8Zq0taTU0yXgHSdzAZkNU7oSJ6hC6LoW9wt4HknmFzNdKxpl4hUUnPQxaWZ/Lq954DHQb0GU9oxAkaxno1H0TScpIfqfVblAgpKovONzlSS/3bWVW5wZ4t6oTYSsSbQUPmVMAWdPh5iuTB1vpdSkKhRenWiLWGr3fzEWMGoCLQtWIrdQ4oFvLclPOE7GksOaP4mKl/BhZqj9UJ7olWK51i9xrFqYK3ZZxofiRk4WV0xMNGCcLwnptT38Z/i+C+jZsR86wyxEEgiKgYtsSjo/xh9dsqek2+7E+w5qlBqoIuKjLv2aaDjeP9sdrt1Z+HKhnjmTtSU9aysNsUO2JiT2dyo7Ru6qk00wSmpmw/lhBcVNITpS9KGQqHCFzkxNblyT/3QzIrh4duGl6Us43jPJJtQcVHiyJVxLI5RIZXxu0BrR2HBStOMkUiiuKXvRrw5Knnm6UED2DlLgzKa4oELzW8dvCGYmKKHWaN67+RhOHzXSsn9ed5g0E3ac/NsLXOekdXVprX7tm6qTpNEnWl7KmY+IoI+yNaKeZlv+SPj+hZCEAxW1DSXqv1YsiJYxSbeUVrQ6sDr3qPVr7MzDwIbgWXB1JbBuQroImGVNHO1HAlKdTBKeRbgDahi2iBCJekDogRJUUbzrIPd00s/ltTU2o1CQc6I8sy7RTMLNAX9W6EghBl/1ONkSfI93K9itDvNclvZF8APqQcKKvjZaMhwAQA7G0jH4MiM+GFTDiBtJSbh3p+dFIg8tqRSgrJEmHUmAPvFNSkQ+uzl+KIBCNWagnDYnLpWY+T9XS8V6X0McL5NoVwkifln5Za0bd+O6JCncNqS7vklQ58wogm7dUBwnNWEkiYyWQqXpQclIbrrzQUtZjOUWfJzBVnYF5tq8V97oBVX2qr1tx56RW7rQoHoOqEQMKflosCe/fxvnrtIczjfydNiz17D0xcYPyULKokapDEgdROfz6pBoC9dRIOq4I5WFUrcSIzUkkWQnNkQxwYwlQ3HFkx8osHKw5qJ14pAmktQJPpGfBMSALrf6TNCFOCkKemAy80bMF7bj01tnnbdvRTXJi5mgLTzP1hk0IpkOggUy7NDUZqMpLGgBGt03J2Ehiq6tanut5D6OTQfLMl/qDDqknZor0HIhG+gz8OKcb6/YxPa41MPQ6EM7pw6ZtldM/M/6IqtaSYi8Wak/aGIJ2g9p2VUuN2ufS9/ur1JiRfoaogKQYtFTYGotUzz8BqiB0yqSwZPNNxdzJ3kzvu1IpzgZCUdtqDojBrvvAVQBckiCgj6Jw97ZAnPYT2HGCtujGtkVuz5HHDwhFiisbkqWKi0Trtccpa1BIhGzewn5CM3FkbaB4v6G6mmqN2ursPXmHW9WMf9jBJyfWMZcM5T0JURmO+34AsH2/18i7WKgGXJbqxTV8gCY9OxO+HOnFDBrJw2JJ+J938XlK89gUQBl6wZbKyvrbFZ7y+oik7JBWgVASoLriaVNN5ilVGNT7ke4TJZNZSZG2VE1CVSdUq4zqJCFZOlylK4h2LKQzIT9RirU+249X6i231OV0LKym7QSKnDAd0+0XdFam9FXA39IkmKuUSmwozaWe6lpBN3KWCJSh2nGaWThZAWtFNLpa8wK+QlWkg6oPN1Y+TNYwfl+3A13m6HL1Pz1pN/yGQHCaCHTzlRJ4zCYWAFL8uhn4/WPqNQ9Q1tbkFa0JbIPAw/tNDz/QMwlJOtaV6VI1JOJ0pgneW0vd66fppiFO3FAqxBB9dAoTj3WDOFE9QXGa4fceN9Gkd3jnhoLnDq4MW86BLSgGwGlgtkQmzilUuO/KfUAwuBRBQMSWSP3nLDMIZK2Z0FO5AUlTaFvVlz/c00BQtfgqpXV6U3a5RtxkrUvqbK5lw3biyeYtxXsVne2TB1x57CnNG8ZvrykfKzZgoGGb4WF/hO+Malpsy+IccmUfFyJhtdKLNRlvsAFVDY3qJ8S9CbiJ5gCsEsLtOX6c0c7yQdBEBTEyFcI4qegmmUJ2+x9e2VHcjpQHCfVUSTmb/Ug3CTgfSX3HflHiisiiyTjygTUFjfeqOARUB6J8hEsF5WTHUSsHpcdniWbD6wbyVEE3mZbb2pl2pblG581XnXIIdEHzCUVGGGeaI0icNfrokztZmay5v5u1GTbJQAlR+QxWeuOuDzYowfwoMr7Zks5ra0aSTYLQJMZi6odcTg97DteuEG31mNxaKj7Dvo/K3GuwG6DaMQw//p7Hwm5WvQ+sgYcQNQCY2lTM003J2bAuelNalSdJFN/frwBi1OpXDFYdU5h5n0CMbUu4c4TLc+TaVXWtTwLaNgLR7Uds2oHJGhhe4wOERwDkwyJ6z9NE5D1gyYM6Dbdnh1y8H5fBB9j5ca/9f/fjx2OM1+89eCmCAICIfCfG+LmdH5fDh50fj44f7oP/ZGc729mPsu2CwM529ojbZQoCf3zRDphdBj8ugw+w8+Ne+5H049LkBHa2s51djF2mlcDOdrazC7ALDwIi8nMi8oaIvCkiL2x57LdE5Lsi8rKIfMeOHYjIt0XkB/Z69RzG/ZqI3BSR104du++4ovaHNj+visjT5+zHV0TkbZuTl0Xk2VPnfsv8eENEfvYh+vFJEflHEfl3EfmeiPy6Hd/qnDzAj63OiYgUIvKSiLxifvyOHX9SRF608b4uIpkdz+3zm3b+Ux9pwBjjhf0DPMpc/BSQAa8An9ni+G8Bh/cc+z3gBXv/AvC75zDuF4Gngdc+aFzgWeBvUSzk54EXz9mPrwC/eZ+//Yxdnxx40q6bf0h+PAE8be9nwPdtvK3OyQP82Oqc2Pea2vsUeNG+518Bz9vxrwK/bO9/BfiqvX8e+PpHGe+iVwLPAG/GGP8jxlijfIXPXbBPz6E6Ctjrzz/sAWKM/4RSr32YcZ8D/jSq/TNK8PrEOfpxlj0H/GWMsYox/ifwJvdhlvo/+vFOjPHf7P0J8DpKXb/VOXmAH2fZucyJfa+ztD6+YcfvnY9+nr4B/LTIA4QG7rGLDgKDRoHZaf2CbVgE/k5E/tUo0AEejzG+Y+/fBR7fki9njXsRc/Rrtsz+2qnt0Fb8sKXsT6FPvwubk3v8gC3PiYh4EXkZpVz5Nh9B6wOYo1ofH8ouOghctH0hxvg08CXgV0Xki6dPRl1fbb18clHjmv0R8BPAZ4F3gN/f1sAiMgW+CfxGjPH49Lltzsl9/Nj6nMQYuxjjZ1E6/2d4CFofZ9lFB4Feo6C30/oF524xxrft9SYqqvIMcKNfWtrrzS25c9a4W52jGOMNuwED8Cdslrfn6oeozuU3gT+PMf6NHd76nNzPj4uaExv7CKX3H7Q+7jPW4Ic8QOvjLLvoIPAvwKct65mhSY1vbWNgEZmIyKx/D/wM8Bob3QS4W0/hvO2scb8F/KJlxD8PzE8tkR+63bO3/gV0Tno/nrdM9JPAp4GXHtKYglLVvx5j/INTp7Y6J2f5se05EZHrompfyEbr43U2Wh9wf60P+KhaH3Cx1YG4yfR+H93zfHmL4z6FZnZfAb7Xj43upf4B+AHw98DBOYz9F+iyskH3dr901rhoprjXf/wu8Llz9uPPbJxX7eZ64tTff9n8eAP40kP04wvoUv9V4GX79+y25+QBfmx1ToCfRLU8XkUDzm+fumdfQhOQfw3kdrywz2/a+ac+yng7xODOdvaI20VvB3a2s51dsO2CwM529ojbLgjsbGePuO2CwM529ojbLgjsbGePuO2CwM529ojbLgjsbGePuO2CwM529ojb/wKALxmJfhmfiwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQEAAAD8CAYAAAB3lxGOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9ScxtW5emBz2zWtUuv+qUt/qryCjSOA3YCRJIgBMECMm9FNABCSlb9B1tWtlFQkJkwwIaCEPDAiELA5ZAyA2UGKTMjIyM+MtbnPIrd7XKWdAYc+/v3D/ujbBJ/84jxV3S0TnnK/Zee601xxzjHe/7DpVS4ofjh+OH46/vof9Fn8APxw/HD8e/2OOHIPDD8cPx1/z4IQj8cPxw/DU/fggCPxw/HH/Njx+CwA/HD8df8+OHIPDD8cPx1/z4nQUBpdR/Uyn1Z0qpXyil/vh39T4/HD8cPxz/fIf6XfAElFIG+HPgvw58A/xD4L+XUvqn/4m/2Q/HD8cPxz/X8bvKBP414BcppV+llEbgfwv8G7+j9/rh+OH44fjnOOzv6HVfAl9/8P9vgL/9fT9cqDJVzFBlSagtKiVUlO8lBSj5t/IJFSKkBEqRrCYWmmghOkg2gU7yS16hJ+SPT6iQM56UUPGD7CclCBFiJKUk//+uQwHHb6n8nwTKaDAWtIKYIHj5+/Tyf8XrKVBKy2sqBUaTrAGtHt8uptNnRisIETUFiBG0zn/U4+cBkpbXUyGC/61zivH7bsW/kEMZc7rHJMBa+X++L/JD6vFzKpU/HxCP9zZfTFL+rAmUBpP3uRjl9RSg8/vFSJr899/z0wkqOUetH8/leLL5viWlSFYRnSJp0B70EFEhQAhyelrOJ2kl9zTfv1ga+TwpoUL+FAqSUd9zQjyuiSBrJX3wNRKolJ/PYST5AMCO+5uU0tVvv9TvKgj8lYdS6u8Bfw+gouFv67+Dma0Z/rM/ZlhbVATbyQMQrSIWCj0lTBco7nvM/YGkFeFywbgu6c8N7RNN9ywxXU7oMpDuC5pXhuZtYv5qpNiMedEndD/KQ+Esqu1JbSd/+oE0jR+eKCiNrisIgeQ9KSaUsxATyU8oHHq5Qs1q0v5A2h/kV6sSlCbuDyQ/PT5sx4dKyUOtyxI1a+ThB/k5a0izGr+sUCFi7vawO8gDlX8mjROqcKjVklQ6+RzbPaSIqirSYgZao/KDnoxG+SDnpx4Dh1KKuNsT2/bxcx+Dzm8fv/31DxfQ8evqgwQzPQYcZQwYg8qfUxmDOl8zfnpBdBozBAlagNkNcHNPvL2T67+coxZzkjWoyZMKR6oLCYY+yHtbQ9IajCIV9hQo1RTkXgOpcnJNuhHeXRPy9frW58qfSblC3rdpJJjk5yUZjRonWfyzmumy4fCsZFwqlIf5G0/1Zo/edTBOpGlCVSXhckksLLr36NGffg8F1Z3HHjyx0HSXjmGlsX3CHWTTik6dNqFoFcmAGRO2jUSnUBH0lNBjzJtoQg8B+5t3+HfvAfi/xf/9l3/xhv7ugsAr4NMP/v9J/trpSCn9A+AfACzVeTo+OOXrLaZrGM8KpplGhw92MAPRacaLGjMvMK1H957yXaC408xfWYYzR3vp2H3umD4bOCw8w3lB+6xk8bWjvA8Um5FY5ZvRj6TCQVWgVgv0oSMdDsRDJ8EgJSASux6llTzAeWdVRpOCJk0j8WGDnkZUVUFdEzZbGCd58D9YCMegoqyVBVGVqPmMVJXygIaEbnvoetTksT4Qm1KClbWkrid5L68VI3Ec0SFAWZKGgRQiqqnBWtQ+L2pjIATZHcoCnlwQ5iXJaLSPqG5CN7W8DkCIpGEktS1pnEghyGdQGmWNZD+P91E+lrXoxVw+3weBIQ0jaRwleGmNqitUXUPhiE3FtK6ITmPbCbPtc5bjSbsDTCN6PoOyRBWF7JTdIAtbKfl3CPJ+RoImjSU5gxomWehak0oLpQMfUYNHDSPx9p54aB/vzQeBTVmLbhrUxRlhPSeVBr0fUeNEqgsICQrHdFbTPi8JpSzC+WtPcTdi2pGkNeFiIdmG0cTaorxcl/azGe2VIRSK6iHSvJtIRtE+K+nPNUnD4htPcT8SS8OwdkSjUAl8qfA1qADRKEKhMEOi2AWUTySrwIMegwS/upKgnL4/+/tdBYF/CPxMKfUjZPH/d4H//l/6GylC4WDy2E0vkWxZMC4MKj9TodBAxN169BTwM0cyBXoI6DGgO0+zH6neWeZvCu7uK3a/P6E+P3C4KuieWqobx+yVpXoImKHAdgX2tpMHY1kTL+bY7QJztyFutsSukzePQTaMnFYrI19WzqJMSZo8cX9A54VtwozYto9ZxQe7pDIGnJPFpGV3TJUjlnI7UmVRUy03MSVUCCRjUIUjhUDsB4gBtEEdd/OqJK0WkhEaLTviOKH2LenQyq6vDSpEVD+iagdaoUaP3uwfFyqg8rmlY/odQFn5mpo1HwSyD1LknOoS4mMKnhLqWMLEhCoL0mpBWNb4mUP5iLtrUffbx3MEYogoa1F1TYpRAoA1suNbQ6oa+dnJS+YwThLk2l4Cg/4gUzlmQpMH70ldRzgG+N/OdFICbSQAnK2IqxnTWUXSYJwBXUsq7xOh1IxrSzKK8iFSPIyYw0QqDeNlQyg0ySjMGLH7CT0E+suK7ReW4QzcHmavI66N9BeOqVGEAlybWP6qw77fMj1fs/2sJBaQNIRSfsa2YKdEtGAHKHYBPUUJFCFhOk8yiuGqodQa9Y0h+f+Ug0BKySul/sfAvwcY4N9KKf3JX/pLShN+9Aw/c9jdiAoJu5sgJvzckJR8wKnWhGcF1a3HbQdJc52syGRyej16qveRyylRbBz7zxw89cSziXapGM4t1Y2lvE8UW0NjNeXbhHl9iykLUl2S5g1qmtAxEscJOIIUOa30kRS0LMKiQNcVaZyI+wPKDqj5DO0scbMlef+Y/pMDh1KSCTSVpLg+onR+Dw3JapLVp88VC4MpDWbykO4lOKUolzdmjKRyEEEfOugH0jgSDy0xZyR6VktGOU3o3QFlDWmaSCFK5uCcXM+uI3a9lD8hPJZDxpD6vPsaI+l5XcpCPNbcKcnua40ssqY6BYZQFcTGEUpDLDRul3+nKqV0SonUyQagZrUEkXEizWvivEJNsrslpQTSNgaGEZyVIDFOqGHKQbU4ZSVq15J2u1yW+Q8f1Pzs5UBqLXo+Q61X+CcrpnVJtLLLT+6IB0itPi5y5nofKG977PWWVDjG9ZL+3IJSuH3AdIHxrGDzI8fu84SeErNXiuo+ys5eC6alItR3keZVj910jJ+esf0slxgJfEN+v4TtpN53XaJ48KiUmOaSabjWkwrN1GRcJeWMdfp+3ON3hgmklP5d4N/9j/4LETUEpqcVw1mDbSOmj+iQcNtAqDSh1NghEQ10TxzjylLdSQRWo5cHxBgwClKguEssgWJvGV4ZxpWlv0iEeWQ4SyStGJcKXxXMqiW11ej396Tbe0nXU5SH3aUMIP1WND1mB4cWTYOqKtnt9gfi7d0p5cd7Uggoq1GFk4/rvSwma1Fak1KSVk2UnRofTjtqskaCkzPE8wXaWdT9gyzUmIjDgN7t0UlAsdTlWtR7ed38nnF/QNWCF4CcNyDnCJKJxUTa5cwAJABUpZQYSknJ4TPGcEzDda6RNaANyRqp2Z0hlYZoNSok9BTQ/YQeA0lJyprqgrCqJX099Cjv5DxCIPUDqiqJTUGoLNoozBSkXMpZS3KW1JQkq9EpkcqCWNkTeKjHAF0nAeBY7sBj2aIUqihOu39YzQjzglALWKd9OqXZodT4WhNcvlyHnAHcH2DyxPM5/bkjWoUZE/2Z4faPHO2LSHKB6o1h9jrhuoiKYAb529ca7RPaJ/zMMi2X7D5xTHOFDpIF2AO4fcJ1spj1lHAHQRGHlZyQ6yRAxkJLBnKY0NuOGGL+vN+99P6FAYO/fShjMG9vaYDu5YxhZdBzg9sHtE8SEMZIdBpt5QbGQrF/UWLGgmIXsLsJc8jZgTGQEsVdj90ZinWBv9PMXiuGM0MowAwSYQ8vFf2lw326pr5bsfj5ToKB9+jZDJBFm9pOFhjHsuAxO4iHFjWOqKJALXJaPo0w+VMASdMowUCrxwey61HOostSal9rTjV8avPv5wWpikJAwHkNl+fomzt5uCfZQVFKUnlrBWQcRjieU1nI+Ycg53U88nvFtoWHjXQljoi5Npj5TL7mvbx2XZ06KWl/QGtNmtWksngE12KUoGAUKUoAsJsOtf0A2LT2hPxrpSRQ9r1c17J8zLjKQsqGmz1qL9c/+XxN8zXRhxKslQzOGXQ7SnZkNOrwQQD4APxTxmAuL0hnS2JV4GvLcJ7r+yQL1LZBUnyj8QsnqP+UsG3CdgG7GzG7HrRm+vyK/rIgWoWvFNsvNN3LQLKe4sbI7n8X0T4J6p8S41wTSkV00sUqtwo/M3QXhnGlcPuE9hIEAEIJ0SnMAFUX8bXGV/LNYhswfUDFhGkn9ODR25a03aGc/XYA/K3j4wkC1spO9YsDs90l5dWScV0QS4lgGmmHmCESo5J6a0iYDnyjaa8s+sxS7AvsIUh6fcz2pkD1tiU5Sauba8u4MCQtrbTdp5r+MnH4JPGgE/c/W7H+xYL5Vx169CSjSUZjuglzv3vcQb0XANFPkhUMgTQMqK6TtLKqoEwYY0jef1DLW6lzc3chjSMxJtQ4kpwTxN85Qfi11Lux62EY0CHIjm+NBDqlUQa5yV0voCXI4j5mLrmrcVzwR0RcGYOqa6m/rZVdfkoSpDDSASlyidB2JLpvZzfDQLjz6F7KH3KLNY0TpIguS7TWME2ktiN0veAQRXEKVNJiNY+t1LKE1fz0vviAvt1KgPjgeUkZnE3eS/CtSpT3cDdJiZFxiDiOpJRQ1p0CsL44J35yxe7TGUkrTBfxM02/0mgPro24KaH7nG0YeS17OG5IPgcaSM4Q5iXjyhFKTXeh6a/A14nyxlC/TTTX+VlMsqB9JeVEtMiDncD5hK8U04XG14rqNlEcIv1K010pQp0wnWL2OlHdy3mFQkmmvI+4zYjZDahhRPncPlYKnlyg3t/Ch52f3zo+miCg1yvS2RLV9nDocPsWu5zjL+ckp4UjMAVJ+0YFRhFzzez2nmQVvj5iA4qkDTpECIlUW0zymF2P7QaSNbjzOcNlJWnZlDgcNO1zxfA8wL9y4P0fWR7+dMbiy0R964lWASXqkznl/Yg5jKjRY3Yt8WFD3O/lgyR5MMNmC9t9Bg5ldz/iBsBpd+aIvmv9iLpPUj7gCnm4jZbMpx9Iw0DcbGVn74dThFdJsos0DPIaGRE+ff+Y8iv9rfOk60gftPSUEfRfaS07/v4gi3TypGlEuULOJwOkaZLPqofh2wh708iDaI0g1PNGAvnx97RgIrFyJK3RwyTgndbyO5NH7Q6kQ0v0XoLGMSBlIPDYZVHGPGZcxyxqDI+djeMzVjj0i2d0P72UTSOAGRLjyuArhfZQbQKmi6iQiJUhaZv77shmNAZ0L4E2VZZQWaal4/DUMi4VsYBiC81bcPtIsY/oKQmWoBX9mWFYKVQQLkEsBOlHQXDCbZltJHjvXxgOLxMqJZpXivmbgD1Ewge7v20Dph2lhTx56brMasKyFP6BUpQhwv0GvicZ+DiCgIJ0vmJ8OkePM3Q7ofcdapwwh5HQFOgpoHovSK/RpMISKyv1ZgJ7P+DuErF2j8Sg3J5JzhAaS3QNprAoHzG7nsJqfGMp7wLV+0jzvmT74Nj9AXz62Q3nf+cNf/r2Kdt/OmfxmyQ3VCW6JyVmcLiDx9QOkxevtJwe+/iknB0c0XSXSUUhEA8teppkJ86cAyCTYZI85Kf6+xGLkB0/p8UxPabNgd9qBR0XiTu97jEQfLgwkvffqo/lSXHoopAMZZyA6YOfnyCZb703QOw6CSBFgVrMYTEjOZtBQk0sLbG0wnnYD9JD90HKBh+kzDoGrtxW/LAMIkYYRykFQsjkHbmWKXcoVA5CKTwGAOWsgJpKo5oa/2RJKDVmlM8bncJ2keouorz042OhSTahByk/Qy0ljZSkijArCJXBN4bDM0N3KSm9beWPZJjk0kBjiZghSepvkPdKMKwUehCQ0Pby3r5SdJeaYQWhFhBx/cuJ4mGivyroLqWzVd4M6NGjuwm1k10+ni/oPlkwrAxmTPKelaK4cQJgf9RBIEHSmnFpBSCZWbioKB4G9KZFF5bhssb0geK9RDyVEtpHtJUUP1YW3U3obpI+ce9zXaqJTUEsheThl9WJiaVSwrYS1fUYmP9mwh0abGt59/4Z17+354+ev+FwWfLnnz2j/nVB8zZR7BMqKaZk8bUlPW1wuwvc7QHe30p9npI8yP7ISIvyUH/QQ499OHEJpF2oUWUp3zzuaN4LIi/9Sblcx4X7F67jt4HLY0cApR9fa/J/8fdOv6BPgSK27V9Y6Mdg8S2E/YPzSCGgorT3iAn2Hal04GpiaQm1we4ieteRbu/l+oQPspVj1gS545GDwuRlweeMipjkd0KAokAhASDlEiVN0o0x89m3SFhxNcfPHFOj6a400cDsXaR+16N7z3heEwtNKISmmhpp8x1BOJVguCwY55phpRmXMC0TeoTqFkwvOFUySNxUwmRVh3x9tCD6oVD0ORuYvw1U1yPDuWNYapKRsre+geWXnvqXt6SmZPt7S6JTzF+PFLcd+JhLiUS8WDJe1ByeS6uxehCQcVxq2iuNL9ec/6aBzXff9o8iCCit6T9Z4CuJ0EnLQumqhqKyFK8fqIaJ/vmc4dkCtxuFKFNa9BTR7QR5t0lWk5wmzQvsbsDcH9CTh1VDmBfSavTxVE7okDDdJF9TivK65WyqKHaO7nrBP3k6x78YmJ119LWnv6ooHjTlg6Z4SFSbyNQoNj9yaF9R35wxe9VJQPIRtdlLm/C4cyNttCNrLoUg7cZjC6cfBI23VurkE2021/4fvMZ3BoIPjpQRdjJIKosufJvRdzy0QRcONZ/Je4cI00js+kcQTj/utKdg9gFZ6NjbJ4QT2YfyHD8viE7jHgbsq1vi7V3OMI4nmvGJI3U6pW8FPaWVYCyzWe4a9IKRALppHrGFzKlQ1oJz0jqMcq3ies72b6zYP9eMZxCdpNjFRvAjvyjpL2URxZw8uUOiugu43YSfWYaF4fDUMC04/UzzWlE+JEzu2/sgPXEVwfaJ8iHgNiOhEQBgnCmGMwH9zv9swG4H+icN00xTPUTcPmIPHvdui9ruic8u2P9ogRkTs2969BQItcstZOmAtE8dh2c6E5YiZojsXloOnyZCFSkf1LcD928dH0UQADB9IF4azCjILEg6NVwW+PkV1dsD9Tc7/KqClNCd0DZD7VBWQDs9BlKCqBRYiJVD1yWq7dH7AbQmVBaVQHVeAqmR4EEBsTRCybSacispm/aa6aFiXJVQCrHRzyKhVIwLRdLys+6QGJeK7ReGw7M59U3ETAnSmvJ+oni/R232UrOPE9SVtN0mL3XvkVocg6TWxzQeHluVppCfPxI/vo/Ce6K/RuIwPJYJx5aYVmCKEwYhmYUW/KEsoXDS3fCldC1yNqKqUlL9fiDu9vJ6uVOgS2kjxsszYmnQux42O1Q/SoakFOp+S7i5k8/54aH0Y5sS5LMWxamzoZcLwRUmL+dqLeZsLZ+z/IAPMHmoSulUOCHyJGMYr2p2Lx2Hl4pQJsyomL0TVp5rPf2Tmv7c0J8JW8+1ifomUmxk4fRXsvtPM9nl3Q5sJ+0620WhtbvckgwSAIpdpHnVSvvQWUKzkNbhBBd/OlF/s0eNnulyTrKK6tZT3sjmodrccfjRM4aLEttFbOeJpZS1odSn9+vXmv5KYQ8wfxNIGjY/suw/iySXKO4MSSf0xTkcvnvtfRxBQCvcQ89MK8a1JVpFsZmIhWbSlmmmmX6yoLwXgpDqPartMYcOdbY4kYXUFIQB1ypiIUIkxklSbqXk+0cSjjPSm+69dA1qy7iyTM1j20aAoEThwQzqW1+3vQA6yUiwcq2kYCRObaKpUbmPW6JfFhT7NcXW4+57VDsQm1KCWJBsRvcDat8Sbu+/rV8A2QGVkJNUUUj6m9K3dulT9nAk+RyPD6mxSgsV94jyxwR9L6Sig+AwJ2FSFu0okwNEVZGairRs4NmF/FzW5CQj1zxUVoL0fnhk+uWyIvXDo4ZCqVOg07MatViQFo1w/rsRHraoYUDN56RFI/iBD4/dibI4cfiF1zBJUFNaMoPFjHixoH9SsX9uGdYKt4fVrxLFNuAOnqQU49LRnRtCCeVDonoIuL1Hj5FpbvEzAQ1DIV2q8kGwITNEYqEYloZQkduHUG4j9dtBmJAZhPZnDdEqZm8G3PUBtdmLcOhiSTIK20q7Ufko+MnlknFdEiqDSoloFdNMyD/CRBT6cH+uGddQbARn6M40m98Dv54we0P5zsj3HiJpt/ve5fdxBAGl6J7P0EEYVeNCVF5u60Eh7RQDU1NQLgzlw4TVZHApEmsHTqM7hT70ECPaCxElNaW0TIYR1QnhJBQFwRmSVeghoIaA1gHbCZ87FOoE7oDwCWwv6V4oFLGU+q++EdqnyustOtmB7UEisjxAWhhwUdDhaWYJRUOxsZibHW5zEHZd4YirBlYNpqlJm+2JbQg8Ao0RtLWyKGMiWfsIghmDPgqbjqDehzV9xiZQGXuwOXgWQgmOXS9tTD5gNYYAqpBg21QnkG9al/hGC+gJmFGug+kDdjM+BpPeo/qB5AMxP4i6aeQ961pOa1YTm1LwAx8FV1AK5nPSciZkJJDvjyMMg6jzUiK2HUyTpP8xkZIXenVVMK4KpkZ29+ZdYvZmxG1HYmGYFo5xZYhGSD/2WjoCx0CeVP5MCZKSdnKxe+zbdxeW/lwRaiHyzN5FyrtJcKx2JDnDdH6Gn1lCpeV7X9+SNjtS4VBNTWgcvjGoIKzXlOQe+UXBuLL4WnAD10V0T96EZHPpL5QErnuwh0R3pdl9EYlNxN5bio2i2EF5H3E7L63X7zk+iiCQCsf2C4vtZLEFp2ivLG5mhDk4JrqXEgGnmcHXmqo0FM6gtx02BPz5jOm8grMKtxsFULzZkJqKuJqJoGTfYYYR3coDl5yRlNFJy8ttR0wr0k5fG6aZ9GyPtE4zSEsp9iDKVSW7RuczC04RGyeKuF7IG2Ym7DU9yUOmfG4/OYNaNZibLWw7CAHjHGneCD+9adAhfJvogrxnHCe0FvahKhv0QhMPreAOxx1RC8iXfK63rT3V4anrpFvgnPTQnUPN5+ijum+5YHq2YloWuTyCYWnwVT6FiOxKpRI6awLTG9wh4Q6GyioKjSg9D+2JgZhikvR+tSTNG+KsIhZG6lut8iKMwgCcScBRPqK3LXS9SGKnEZQm+V7EUkajZispFwAKRzhr6J5VjDONr4T8U+4CKsLh04buQhML4fw37z16ihKcS2Ha6SFigsiDp5lsDK6VDWqaaYalYppLaTD/OrL4ZsBsR8ifY3wyP2WVZkw0r3vc6zspqeYz4vmC9pM5/dpIW/L2kUU5nVUcnjlCCbaVrCMUiuFKMg5fyeI/liXRwub3YLoaYdIUN4byXlFsEtWDdCVUfOycfNfxUQQBEkwzRX8BbqdOJx6NwpcG20eKbeLwQuFr0W2raFG+otwPqPstru0x6zl+XTGcl9jKUrwKcH13Er6k0kmf2otkVYHQS509lRQ2k0AKDbEp6J5W0ttdZ7nmKLuBChAc+MrgpigP5BAwu4AuHdGKNNYMQVLlHHAkIHj0VoCtuJgJT36cBEy730hfHk59cAHzvn0TYz+gJo8qpA5WmWp7SuGPP59bg6pwmMVCMgMvgppTn0JrWUSruexgq5LDs5LuSjPNZVdMVh48XyfJkow0zlUCt9WYXurk6naS2nZzgD7jH0dmYAY8AVmstWNaFfhGUi7TR2xnRG2XkvTkx3yuPkiH4MmlMAH7USTQi5pQO0Ili3hcGsaFBG8zJnSuProzw/ZTEe+oALM3icWXA6YdmdYVeoq4g4hwklFMS1nEUyNUdT3l9qGVDm51l6hvAs03wg/xq5KQfQEkQ4LyIVBdd5ibLakqCU/XTOuS/QtZ5O4g6j/TB0Jl6Z4WtFeSXc3eS9BqLw3TXMpQleTcbQ++hvZFYnoyoUxC37kMWEtm4FrxJjBDpLjrBOj9nuPjCAIkLv/xyN3vF7QvpOVSbCWaJYN0DXohYXRPEu0ziEYTCocOC4rJE69vUYeWYrfAziv8smJ6tsIaTXp7LaQX56CqRPdf5/QTHg06QkL1w0kQo7cts7bB7WaoWLB/qfBPQAWF7cD0iqQdtVEUD5nVOARUN2EykUmNXpRt/SBp73pGqIX0Ym620PaPKfsH5BZlzAcp/QeAX8YFUkxCQ/aTMAXzoWfNqeZXx987qvuUEsQc4OifkAOHqivCrDgp8HRI6FHy4lADShhr8+tsiIGkquU2Mfumxb0TclRqOwELi0Lu7LFNakwuQTKleZywtx5zcMSsoFQhSuk0CWJPkGCANUKOqkvCupEMzs6ZZhZfy0Idl0pQeyMKveZ9pHwQzUl3qZnmKu+uUF8nZm8nUaIuS/QYcVtPdJrYWGwfiHlXt50QckQ7IIu8vpXU3z30JKsZLuuTnFhPiep2RHdCTiMm/JMV41nJuDT051qu20YCAED3rGScaaaFtCOrI1nomcHPpfwwnfgHhELRvkiEz3qsC3Bb4W4N5YNCj/L+yO3C7TzFw4Bqh29TxX/r+CiCQKgM/YXl/J+NmNHx8PuJaZmIVlPfJNyYBCDvFbFI+CcT46VhfGPxVcVs8YTZzy28eU+6u0e3FcWuIlUFqSyEjdi2IttNkXT3IOj8co6/XKCKLLFVordP44TqA5DQ25ayn7DtjOqu4uGnlu5ZolsmOR+niNaStKLYaYyaTgBlctnkwlnY7kibLXozQ58tT+YWKYNyJ/Qe5DzhLwB6p7aZcuhCA+5EnpGfF/FQUuok+JHXtCduPkeJbu73x35AeY/qeuwwCh25LDD7ivqdCGl8o/GlRoeI22WWWu/BR/S+g7sH4UZkQFEVTlSBcAI0dV1lObNoC7h7EPmvMRilMMYIS/G3jwxQpqogrprM91CEyjDNDVOjTgvc9FBvE811wB4C0WUw1yLZ3SZhWyj2kVhoDi8Fkyh2Ad8cMSIhDWFB+YTtRac/LEUYVN0HytsBPUX8vGA8K4hOFIN2P2HaSXCNyZOcZXwxo79whIKs/ZeMyQ6RkDkJ0UmWZTrZwQH6tcY3OQAMUoKNS8Xhc0952eE7R/xmxvKtLP5YQKiEOWo+yDBOfJnFAu6/e/19FEFA+8S4UPjSsfg6UG40d3+k6D4J+EZEPxI5E/PfaA6fOc7+xh3FF57rhzm7X8y4mF2ychb17lYe/n6A+4fc8ioe619bwnwGw0h8e42936CWC5Gegizcqhbl3VFIEyNm01EPAXcoObwrODzXTAuY5uBrxbiyuIOhvilwO3GJ0b1HITWuiivxBTgcxOFq3pCqQnbtnC4rZx8JMuP0beFQ4aQW7roT4KfqWhSIRzIR0u6LbSvuMmVxau+dfqco0EfjkbKUc8rsvG9RjgHrLM5mluMxeMxzcMmWVcoHuZ7na3CWWOYediY+qlG8H07eBkE+GzGJtiKbtKS2e+T5nz5v7njMG1JVyv+jCEmSEQqyOyTqm4Se4knpNzVC5gmFdGnkGXvEMnwlXRsziDVZOnoyBDGt6eeGca4Rua6A0tpD825EDwHfWMa1xZfS8mte99LXb3soHKkumZ4sOLws6dfqRE4zg8iA3SGeLONUVExa3ssOwjfwZe5G5JjoKxhXCX/uUUXEfz1j9WuN2ydCmaRENmA7CXTlTjocdicAarhYiMz+q+9efx9FEFAxMX8d6M4Nu08NzXXk6v+buP1DQ//pRKgNs1dCznGHxOwrzUO4QH9+4PeeXeOf3PJn5y9JZs3Zf+hJMRKXtYg87jZSClgr+nnvZeHkWlwdOtLNnTj3NA0sJN30q0r0AbknfwIQgXIj7LGpUfhGdqFxCf0VtE8M5b2IlJq3uUc+isZdrZakuwfZkVNEqQVpMRO+QgaN0rzOzjg+uxy1sjjLkvTsQvQKdxsh3Oz333YuOtJmvXAPdCbOHKnHKvseqEbKIeoS09SEm9tHifC3XmcSnoDWElS9l2vo7KNIBaRll1th41oYedpzAtlsFyQ1dvYUQNTkZXef5cU9TCIUOhwyxdpJzz/LoNU4EecFQ3ac8rWkzvWt7MChMgxr4e8fd39h38niI4LyklI3byepk5US2bGWnvs0t0wLgz9mDyBdqkOiuhuJRnN4WUmAUFDsE/OvWuy7DWm3h1mDv1py+Kxh+5lhmmevwUlkwM1NoHgQIDJpJZ2DUgBvOwjNFwW+kdLmCAD6JhHmATVpyteO+q38bLTSjjZDOmUY5SZQ3g2Y3UAyStqThXksDb/j+CiCAECxnSi2E1Nj6S+ENPT0P5zYvbVsfwyHlyKdLDZyYet3iukw55++rzEXA/Pne979FxeQLln+uhUixZMG82KJu+sx9zt5+KpSdqXdAeqKeLVGnS2FyNMPwk4DoquZzmvUFDFDyK0rcW0hi0nMqBknYR0mBf25ZriA/gmgDCoVojzc7AW0y4498SDcf7U/CK3VOZHC7naoaYJ5I6VCU0FToduedGhRPtK/XBJ+ekZ1/Qz79kGQ965/ZAMej5hr/cVcWo7DKMEiJuJ2h2qzJFor4Rx8ILGFR1bg0ZDklKUcjTVLJ1ZgRx5GCJjSYUrDNDNMDUSrKQIQheYc5xXTosgprlzPUMoDaoG0nJ2ESycD1Sg/l+qScVUwLgXxN4OQdXyt6S6qU02ugtBulVK4XRLSV45Vto8UdyPu7YPoFRYNGCGcTXObSTsTSUEsH2W6KiXap6XwPvKO7Q6R+k2HOYykusQ/X3N4WbH93NA/EV8H20r6P3sdmb0ZMa1Q2n1tTkY5to2YAVAw1Vp6/ytZ+NFCconQCBnDbjRuy+nzqChBTY8ifCoevPATfCQ2BX5RSLDJna7vOz6KIBCdxtcWtxmp2h7XildgKDWrX40svtHc/8zRXyamBZhOLq7pobgzhLamsxW4xN0fKnw9Y/XrgWIzMi0LupczimUhRI1uIDWVkEw2W3TbkS7WpPUCdbchbbaoYcR1A/7piuGsZFo6bBfQo5B6XDtijRhmlLVlmllsF1h8E+kvCnYvDbGAcabpn9ZU6Qy9aQXNX68w87nU7l0v8mmlpGdujDDxMhtPWfvo3lM4eNhRWk33cs7+0xrztMLtAm47YG53pNt74fx/KAqKEUpRI9IPJ0+EGNMpUBzJO7osc789Zv1DEIn0CYtQqK4Xm62yBGdkkQ65bBkmbGuxnWAh2oPtROdxpHSrmLJh7IQ+DNiQlYb577iaozLV9+QCrSWldnt/Ar70GMAo+nMp48ptxLaZaZqJPaaP2P4xMKopiv9f4aCpRIBWGIZzRygUzfsRuxlkoc4doRBm3pQDjDtEdBDwrdhOhMYxXFWMc0N3qemeJqZ5xLaK6laowdVdZPZ1SywM3Yuaqc4KwF3ETAJc+koLtrFQDGciHEpAmEeYe5g07sbidh+oD520aIttYvbOU972qE48HKaLmRig5PZm0grXfuTdgaTh8MxSzLX0TPtA/bpjPK8YV5ZiF7j8xwPtU8fuM01/FRkcuL1CjxIQQlLYQWqj+z+A7qpi9etI80ZMRkJl4GqGfTDSdx7Gk05fK0VaS2pOjJKu9z226zH3C8YXS3xloBGLL7cTGbFqA2bTUYCw4kKg+DIw+/WC/nnDsDL0a4Ov59TXBe6mzcpGA+sFet/KLr7bE3c7YdgdU/HJC324bQU3OFsDoN/d0bQD/mpBLGTXHtcltjDYwqFv74kPmxOXH5Bdz3vohHN/yhhOvof5PY9+hpOXAPHhPTqqGjsrSH2EVBpSJjihdVZ0Jsq7EXswwo3wkVBbQmnQYxRD0fsWtdmd6MpHNaCaz6AuT8pD5YOUazGiuwG97zHLRuTkrXgE6s7ndBexn3ca2wmYh4akBESMVqFSwlRWMotsWR5KSe3Le4/ZSzBLRknH4CCvY4ZAKA3T0uQWInRZSBRKCTrjAkiK2TeK5l2kOATcNmA6f2oLitJQev/RKQ7PHNNCfANDDeMqEusICVQdSFGh7xzVncYMZPt8aaerAPVNzEClBIA4L/CNlE+hEqKa9onyfqJ6/ZEzBmUuAHQXmnFeUm7iKYrrKZ7Uhc27iWJn2L807L6A8TyggsI9aNxBEZ30sM0I7aeB9lOY/7rm7M885f2ImgKhEZsuvTHQdqLRD/doH+ByDcs5qs2XxRrUoaP80mPP59KLbiz9ZYXbTSfhkeoG0v0DAHHy8OYdza8rmqdXDJ+s6C4d49KhhxKz7R/tsXw4+QOCKPdOdlezGqizYi5C2wmYlyxqnHCv7iQt3x9QywWxqaTOziadaH2SHROTLP7fsj3/7SMdNfk5AOgq+wp6f2r1xUMnGc1uj24a0qIhLCt5+BToMcou309ivGQ1MWVmYkziz19aWM6z4CcKPyJICZAKS2hkdzfZJFT5IICbVgLcimyQpJQ46AxepOWFkL58ZYilysa0QBJAznRSWsisCnXy/y82QhOW1+RkGKJbAxpCU+Bn5pSFjHP5/dOubKHYQfFKDD+OzEM9RdoXFe0TWcT1jdCNh5Xh8EIznCdCGQmziF5McktGLcSMrWXxpaF4SCRz5GZkq/EhUd9G7EHERgD+rMbPhLItAKnCHSLl3YC92Uv5+z3HxxEEhsDim4HdpyX9mWJcGMqNRk8G10lEjk4xnMnpzt4FzGA4PLf0TyPjswlGTXljcPtMtdwahrPE7qee/tKw/EXN2Z/32K3YcMX1DK015s17wm5HuL3DTCNqPpf0dBihLIhrsdFWvce1I+5aQMf+qmJauGwz5TCTJ+33spuDWJS/fkcZAiqeMc2tDFYZHNoHob1GYbwJ2ac4If9pHKXNN2tQq9njoIpjrQwCdqZ06rnrlERifTTtJPfouz6bkn4HMPQXBEjflg2f9ALZWYhpOrUW096jJ4/yHjNOmKN3ohb/BnX0+z8Eiq16dAs+uiIVTq6BD6jFTGr+s5pYPgqJktXi8kteAErKAhUTsZJgkawSj8kpYh8GYuMYKsM4kx3edunUBfCNORF5tE/YXtibvjJop7EpYY5Cs5kjFRqilKtu7/GVoTsTnYHtQYxCpC43uUc/LDU6iKHIlLsM8zeBYuOJRtFfONpnmv4q4ReRVAWUjcS9wxw0Ra+o3ynmr6UNe6IK14qkpYVohzxXYIqoEBlXBX5u0KPMlgileCQUDxN20xNnFeHJAl5/9/r7KIIAKVH+5hZ3P2P3kwX7l4b2maLYQCgMeq4pdhHbRaaZZqxlMMP8G7C9pr9wjC8m/E8m/OuK6kZhRph/oxh2lnGdePiDxLSoWf3G0XzTotuROC9RX7zAvLuD3B5L+704+hRSG6spEJYVobKYdsLcHzDfXNPsF0yXc8a1Y1xbyqbAvatQh+6xR2+E/WV3sqiTFlqxygsBZ2WnqytZFFphh4l0v5HafrNFHVrBC5KwEvWsyV4DYqGlrCVVheyWKREv1vh1RXIa3Qfs7R7z/uZbLceTKUf+9+k4SowVj+7IVQmzGpXWsmA/DCbWSEvQiDhLb1sBGY+IfiuA5VFARG7/pcUM7UfSTgbIcLEmzArpviQB4pQX3AAgOiO73NG6PMF4VuBrjRkktbe7ET0GohO0vdxE9CRBzc/Mifasg6D9uk+EQuOzm2+xDaIZcAa/KCXDmx4zh/3zQmYCGEH6k+JkBZ40WWEotmDNuzELjDT1G/FCGNeOfm3orjTt04RfBSgiBIW9LqmuBUOobyLV7YR4EWjMKCWL7SXIyOARARSLzci0eMxSQimWZWZK2Fbu6/Bszri02SPhu4+PIgik3HbS9zuW/2TEdmc8/MQxrAX4ML2otcyYcK1IdH0lqHx1Kww+PRUMTwI8HWhLR3FvyOoPiq0iVNA9Tfja0p0tBDh8vZG21flKerxwmlSDNd8yrlReAKq4nokx5vUdxf0We3kmVk6FkbbkUXTj7KPzsVK47XBKZ0Pt0Eq6EAwTab8Dne3HC4daLwXR73vp8bft40JaLkjrBfHFBaqT3ju7g7QRjUG3BaY0BFMwLR1+cYZ+sRIK7iTZhOm9CKpyl4KYTgajKVt5qfkMVYvuwi/k8x3t2k7OTVo9ovv7Sc790EHbZYuv6dE7MIqGIWkDdw9SngwDqq7RVYlJcg4+ay/s8IGbkREvvRQ5jdfSQ6Q65HkTg3j+pawctYeAmSLBPYJjIH1016W84JMIex6khakHsa4blrWw7XpPdIbuacHhqTAOzSh9eBGD5celkmEgZoTlV4H5bw7oTUtqSvyiZDwr6C4s0UF/oegvEv7MoxtP9Bq9s5R3itnrSLGLlLfD6bqaTpiKx/JnmguLsdh4ivuBUJoTpjHNDMFlMdQ+EPIkI19pQvGXr7+PJAgoxpcrind71KGj+fktejzj/m+U9JfCiCofUu7Na1wrWUEoxfap2AIo9GQYzjRhFhjXMXu4ZSLOJCDiuE5MSxjXFZdGUf3qRoJQUwm998OaOQNUuvfoVzcyCKMqRU334goGjwoB+9AJM9Bq/PmMo5/cEXmfVoI02zZgxnhKa7EaSoe518TrW+J2K5z/oshe+ha9cNmePEobcd7Qv1yw+8QRLTTXK2a/2aO/eS875Tih9wOxsFBJu2586mifKvwciFA+wOxtpH4/4h564fn7IKXJlK3Qc3Yi6b1YbMWgKR4ee9DJGfTgZdccpXY/Tm96vLlRjFDysBSdpH2nityxiEnITs7mQCtqzPGsOKkz5XWkzlZjzFZfEoxUN8m8vbLALyt8beX31/akIBTxlwBy5e2AOeTBI5kDMjyb0T6rmbLeoLqXQSH9uZEFPgiaXxzEL9BXmnEhQqLoZBbA8itP/dWGWDq6H58zrizDQjwHkxGhVX+Z8JcTrhmJUcPBUL3TLL6U3b94EJ/GUIlZTqgN41KoyjFXSbM3I3Y3EGrHcFHkRS4lUrkVR+7+QjbQaSZZjh6ke/J9x0cRBIgQSsP4dI67M6h+orxuWVaGbbK0LxLjGVTXmsXXmV/uIWlxaCUJ6hqtwvSgJ3NycdWTIhSJZBPBJTEpDYrDi0R0JevlM2a/2Uv9WhYCrvW9ONQo6aEzTjLEcxikpeesKOGairCossORDMaIlWGaZzVeHgZhusg0M+xfukyiSajosK3MjbPrErdsMEdX3U7+kHv4aj6Di7UM4ShM9vCH/lIxrg3t1ZLFs4biYUSFiF8UhELacWaMuA6a95qxFyRaRQGzQmVQqxKjRIKdKuHxH4e4AHnIZsYhtPT+tVEi4waOFuNijnIgHucwftDpUNn3QBnx+ePyDL+sMO0oVmNGE85mTMuc2uZxXSnfQxXTI1U5O0r52qHHgEmJ2Dj6JzXDSgC7I8nmODeg2EkAqF8f0LteJOZKQe04fNKwfykW9MVG6m1/FA51kcXXk4CGSerwaVkwnWsxC00iUa7uxer78JM100yfpOiiJYBhLjyX6uWedTXSDo72pmTx55bllwF3iJg+SE8/37ujV4HgGpFyIzMO9OAZL2r6M3tSt2qf0AEplZ8ZhjO5z9qLzLnciprw+46PIgiolERJVWrSZSNDE7qJ8nZgVilCbeieJvY/CnRXmuWvLMuvPNX1wLgumOaaMQeA8kHRXwqaqkckQEwKFTWxSIRK2GN6gmGduP0jw7hYsvyyxz70kLKiL8hEWZVHXR0voWpkFEy8vgXANDXm6SV+VZFKmQIjI6PkIdJDwN3vKG4s03kjHgO1JjjFsBbMID61pJ+U2H6dH9ZOJtq0nSj+UoKdBB8qi92NzN4ponO0zxS7L+DhDwzJVKioUJOivFMsvhIDSxWF5Th/JXVvqPTJCy+UhrQuUTOH6cVefVpJvY3isa/fy2dRIYkM20chCfmQZyNM8sd70T6M42n4qJrNxAewKonnC4arRoCsocCMjagsrQSM8mGSVurkBTdRSkDah60sxLpGLxp0VZws5MdVkS288+LLqL3tJcWu37SY2x3ESLha0V/VMsymkN2yzEafYm0nO/fs9Uj15b1QnRcz4qqhe1az/dwyLkXGW1+Lh8I006fytNiJpFwCiWKcKw6fBS5/fEfjJjZdRf/1gos/UcxfSYCxnXSJhotKFJVKnIdtH2XS1kY8EP2yYveTxWlcmR0S7YXJugEJfiFLNmyXjU8PeWLRX3L8cwUBpdRvgB3iY+pTSv95pdQ58G8DXwC/Af5uSul7pAtyJHOcIyBWTaHOk1+nQHU7MSzF2ilU4J9M3F0o2meO9c8Ny1+3FDuDW4pR45gUxYNiOE9My4jphLQSTcIMKjsESWmhvGjl9y8V0VSsfq1wSqGnhnT/QNqMKD+TDOHE7JP5e8oa4nYnPflhxF2e46+WoASZPU6RVVNA9QPc3lO8SpSLOXE9P4lPxrnO2gPFfgFJGcy/tMBtF1R3wgM/MsH03U4s02sZJjp/rVDB0j5TdE1CXw48Pd8ydyPv93Pefb6kuDa4g5yL9vZUz0YL7iBtq/p6QicgJOzugH1o8WdN9lkAUsIcJsxDVgmC0HqzOjF5Lyq1GFGuOJUAui7Q52vh/juDr90paCejUC4RvHALTBdxuwl736L6UbKRoy2e1rCWa0uepaiBFAypdLjdhGs9wQlPQCUxN3H3nVCRhxHmDf7pmuGiYlpIm1HFRPNeAMRY6NNwEdVHitteAlxZZB1AJXqRudT/xTYHDUWeoC3W4OPC0J1r/FwG2/RPPFef31NZz9uHBf7LOWd/Bs11wAwRk41ux7VIqo/6hvIhUN306IMA1v2LBe1TJyDmPuJLzf4TwzR71EVEI5vbMQMxXaLcRZJR7J//bhmD/9WU0s0H//9j4N9PKf19pdQf5///m3/ZC0Qr7T97EG6AytxqnEH3geWXI0kXoAyDgjQL+N9vefuioLuas/75RHE/UjwICjusNG6n6S8N4zqevN+mmfARbCtS4GOPN5Sw/1SBKln9CqxSIiB6yHMEM+vuKMNNzqKCyzMBsvX15MVEYyajxPUoardYOWnzFXl0+F6MT92+xO4q9LMZSds89UYCXX+Z6D7zdIuBGAzxpmT2quLiTxbM/vQate9Qqxo9RRZfj8zeaaZfCqj18Kzh9ScevZigDPiFPuKj+JmURcrLrjt4GYLhq4L6NuAKjUsJdegF5yjsowdCPwqpabN7FC8dZcHZCfh0PTKIqdark3gllpZpaRlWUty6VgAs22ZTln6UOYIxkuqSOK+yrv+xtHEHj73vUK2w+mIjA1zsThaKya5HeorowyAYjzWEF88IM4evjXjzqewCHBWjU0RrxMevF+6+3GOZKtw/renPpC53B1Eh6gnKXTzxDkKtOTwztE8Fcwpzj5p5qmbkshpph4Lr12vKN5bFe2Hv2UPAHiaxOFsXTAtzmslQbDzurpcSrS7wayHNqSh4yeZzS38lhrzlvWTASYMqEK7GANW9UJunRrP/RJ0G8XzX8bsoB/4N4L+S//2/Av7v/FVBwAhRqDSP9FB7mE69YbcdWf8ioacSMIyTwi8Uejax+VuRwwvH6heW6l5qn3Ijf7tW03Wa7lkkOLAHAVj8LKGCoryX2npcKcYlcrFCyfIrYFWiL6RHr7tJauBhFJnxrJZswDmSznbhRp+AQBUS9iDEHGkLFqjSoRppPaU8O0F1I/VvJopNw7gSnjca+jPD4Zlj/2NFedmx+MmB7bOKr581LL94wepXE2YUKarbe8p3e+pxIq4amuuG7YPFNxJY9ChuTSrIpKbj5LToYDiH8Szh59BdWuobQ7l26GkuLSorgJMZErZ2WCc23unoX3CclXC0MTu2GI0GI1Jp3ftHi3dvREbbynh4sxukS9GPeTBqOJm/jKuCWMr8SaEAJ9kcnCE8WRJLk0duiWQ7FuakBjwOqQ3zJX5RMM2N+EFawQmO/v+2l1q63HjcZpLywijMJLhDf1UwzrR4Co5ZmlyIq7E9BGwfGBeO/TPD4ROYFpHUBOqzjifLPb233DzMUd/UNPeKYisWZeW9fH6A4bKkPzfS2++R9P+ux9xtBTSt8gBXJ8a2w5lsFEddgm0zAUuT8bCEO0hQ2H1qTsNQiu3vDhNIwP9FKZWA/0VK6R8AT1NKb/L33wJP/6oXsYMAff25EIWaG3kAi/se03tiYbGbgfWfB1xXs/1MM64EK6CJ+AvP7VJR3BnKO5XlmpI2FXsotjJdaJqlkzbbzxNdVNTvE24nQWFYy1zCpEvhoncCwrEqMGe1IOn3uxORiLp67Jv3g4hpnCXM5YG09x3mYZf98Z2w70onwJTW6FaMRe12j61K8Rp0lvqVZfXnhukflbRPZhyeLdBzKFJ2lHkqAyiElirutOlhiwmRorIsxfND0PPIabGYw4SKUQxXFmLIIXp2hQqCfiufF8uJUkwu0QwqioWXyq3A1HZZhjxJFmBzd8EYIRlVRbaANyRnxFAzZ3q6zUNXC0dYNNmRRcl8gtLIzMkpC7aUPGmxNGJkqoRgdnRtOnYwRCkowKjYhanHOZZ5BmBS4gHpdhNmO6D3rSgknSMtZ0JCqh3jWUFSgsYnK2PuQslperA9eMazgpu/aeleBJJL4CLz85Yniz03+xm7V0vqbwz1+2xJbo5y4sB4VrJ/7hhXUqqVD4n6/UT5/oC+34u8ei3DRNonYpSajul+ko0zaZGxn4RTUbCBcS0ZbvmAUJh3kfSXrPR/3iDwX0opvVJKPQH+r0qpf/bhN1NKKQeIv3Aopf4e8PcAqmLF+Z+29E9K2gvh27vMA69f79G7VmywY2T55xNmmLP71GacQBNtIpYwrWVijNvKgnYHQ/M+Mn8dqO41h6ea9qX0m91W8ID2mURolLDAQgGHTxR9Z5i/VjRvJ8wgJJThssbMC+xDLzPfJn9S1VEWpLZHHTp0IyaXrCuKhx3h5g7Irrp1LeQga04Cn7jdwWYr16Vw6MUCtZyhpkj5LrL8ZYFfOKIRr0LtkyyCdhRnXh+kDr+7x2mFHucyO3GXH3KlRITUj9D1uG6G2cuob932JGeJjSBKMv7biygoi3qS0ScAEJCAlu9HGscT9z/F+Di2vCqz2WaNr2TXtn0gGi2aA6OF7mv0yUM/FPK3dAQk+MRsZqoz4GqGhNtN6FYCmp6kj5icke7MrGSsCpKRtLp4GMShyGRL8MGjNwcx/BwGYozCr1iviJXFL0qGc3dC9w8vCrpLkfbaDur3svPuvqi4/wMFP91TasE2XOFxJvCbtxeYrysW7xXVjQSAqRZrPJXg4Scl3RNpH7o9zN6IC5LpgzAUzxeMlw3tE2EXHg1T9AjjGqaFlAKim1EoD2iY5lLOuI2ieZNobgN6SPiZpr38HWECKaVX+e/3Sql/B/jXgHdKqecppTdKqefA++/53X8A/AOAxfqTlLRi9qst9WtH/7RmnGv6c8O0WNG8qUSXHxKp1My+3GO7hsNTJ2YkM9F/x4MR7XWdsAdFd5XoLzTlnWb+JrL+1URzbdi/0ExLqZ1UhGnB6cEzo6Cc4yqxs5poCxZfDdjNAEYxXFSM6yXV+w6zER79aQBH4WSA5sOBIiXxvrtao/ueuNmdLL2VD/KzTrjeHId2pkQ6+DyzL6JXc+KsRIVI+Xqf62D3mPYGCSKpKlB2LbLib95gbkrUYiGEpf1BfACm+cldmNt79CYPRU0JFSPmuMDzwJLTvL9MIop5epGZz2T2wDEQ1JWQg8gsw1r0BhQui4Bk0apEli0nzEEIPmr6wBHJGHQjkt5YaKa5jAC3fcLtRe14LE+SVoRlgR7ycNacAZBt5cvbXkqhh0OeQiVkNEIQ3MF7MVzJ9u3x6TntU1l005zcrRBs5gguV9dibBMt3P2BYfijjqcXGx4ONd2uIiWYDo7x1rF4pdBjwvYSuLpzjZ+RsxlB8fUkAaV6eMxS/FwykH5t6C/l+U02Udwrphn0TyL6cpC9Y5s5HBqSTcQ6YQ6a2ddCObadCJH6c8PhpcbX37+O//8OAkqpGaBTSrv87/8G8D8B/o/A/wD4+/nv/8Nf9VrRKPafVlR3lurNntkvB6plxXBRMi4M2y8qisuC6jqTKWqD3U3MQ6I/t0wHTX8pdZHtFNNC9NfFRi7e4bNI/0RRvXfM3kUu/8nI/oVj95nU4Cog0TQDRrbL/IIKDi8UU1Myf2up3g8U9wPDZcVwUVEYLUaYgN71qPFAmrK2fvJoZ8U198UVpqpI2102/DhAqkWNt5ihnRMvg2kU85Ms5+X9LdoYMQFpO8EnnpzTfr5kWBlUqqnuPHY/CbhWFbIQs78ATUV6doW+fRD/gqKQToe1QvmdyZOhhlFEUMN44geoppaFDqiul9T/ODVptz9Rj9WsgR9dysIpXU7jhW6djMb0XhYenMxcdTeJf8M4ySj2uiIuavH4czpzPxLlJlHd9FmJ6ECDaT3RaqalIzUWtS7F1Tlr9VXImoUIqc5g7iQWW8lo8RCAU5Yznje0z8SohCTPwrCG7nkgFQl3byhvpf5unyi6LyZefHpLYQKvbtZM20JKr0FTXhtmb2QgSXAqt4qlSyDSd/HM1IOi2CVcl2nNVXbSzl2i/jIxXcg1c7eWaZXwLwYuzvds9hXTfYXucytxEVGTonpjmH8t3aTjANT2ynJ4qfCzhN3/bmjDT4F/J7vaWuB/k1L6Pyul/iHwv1NK/Y+AL4G/+1e9kJkkYu4+cQxna3Hkeeip3gbctmA4d/RnhmlWUT5IfdOf18IC20XKe0+1MWw/s3RXgn5PS5kS5Laa8lYzzRP7zyPtS8X8q4LVryeKnWb/0jCuyDeHk6+8OyRsJ4ywaam4n1uqM8P8jSjOks0z65XszPqsonioMW/vSdMku641eTHkdFwpSaGPU4jaDs5XwrWvS0Gzp0l2UWehXEmqP06PY8tu7qmNIukl3YWhfWLF4hvAalRhUf10MvvAGtL5Sui8Wkg5oSmyXDaIe1I3yLj1vPOTZxKkQtqAKkZpzUXpZx8diFIWQYVFKYKq3OMutoHypj8pCVUue/Suk3MKQa5RCGAq4rxivGhOlt/FLqBG0UYkpUiFEWXirs+eA1W2bc9ioEllvwKFiopUCX3YHCb0fn/SKKhZI9TosiCsa8YzmUugEtQ3oovYPxPMwR407o0sft9A+0nEPm/5/GxLOznevD0j9VkdOeTn7EFS9milG3XkLFR3kin6SjYd00kAUIHsDgTDWjOsYVolwpNRWrobR2gSxcsDF/OW67sl6V2JVpDK3Em41TRvZPgISrpAoVC0Twy7HwEx0bxTzF/9DhiDKaVfAf/yd3z9FvjX/+O8luon1n9+4OH3ZvRr2XnLjaPYBexuono/oKeCw1NLe2Wk96lg/9xge019G6jeD5S3E3d/WLH7XDgAYREIZx577Sg2CrdT+Cax+zwxLhxnPw+sfzHRXVjGlTrVnGRgzQyJNJDnHSj6K0WylnIjTDySEqfbhcrjqwqWtRPn3ZSI8wo/cygfcW1e4JBHbk3i8DOMqNVCnIgrd1rAKspsgvHpXBbHEGXRdhO698x+vaG8rxlXR/24BTw6GdSYsYo28/gv1oSzhbx37vun44QhyGj+B7p+pUhVSSpF/6CcQc0bAUSVgqYk1k40FbsOvR+pgNIIt/1oGHIaNR7jaQBMmiQ952xFquR1/ExEVdVNf8oaZGR53tlDntWwkDkFsRRWod57CcBjkHkFXp1UiKb16AeZe4CXkd2ME6zmdJ8tGBcyWcj2Sfr1udsiRihAEsCteyJU32IxonXim+sz4qRJvUF5hTlobCdu0/WNLLSpVthJQGjtOVm32xaat5HqIYihaYRxZdm/kPmIw3kgzQP0Bt1pYhkpLnqc87z9zQV2awjLgJp5uC9oXmvqawkGx3HnoGifKfqnAbfTzL+E5Zcj5fsPqNy/dXwUjEEA8/V7zqYL9j9eyHy1M0kL3dyIKcJ1j/Ylu5eO7lxT7IQJ1T1V9JeWZamZveo5/5MOM9Rsf6yYlCHOPf5C5rjZvcLtZTJLKGHzI8P8GyVIeyfmjkfWmUwb4tQ31h6CFcdXANtqzJQpwEnRn8nchHFes1pYyjvpXcdC49eWcX1FeTtgr7fCsV/ORZAzTuIJMIwnXYJfiy8cRyBwfDQBCbXYc5v9gL3eYe8NMX8NOKHxgPDx+wG2B9T5Ar+qT0YbYqhhgFJq9/VR3y8uz7EU153QWKa5vF6x8d8y5nRDOCkGdS81vmqz63BMsviMdDzQmjSrUb4QA5KqJJUmt9smCSj79mSrpqaI7qfH6TxKQZBZBCLE0iIfzpOoAZlEBegx4w1KFIrHISZhVtI/qejO7clDMGkpBaNVjEtN90TScRKi8z8fqcsJYyIxKrSOhGAwBy0OV73C7WQCUdIwzpWQdxIMa1mQvkmUd7Ib1+8nuaeDp3tR8/BTk2XFAXTC3FlUVPhFQC8mpsEyvatRgL+YICrMm5JZxh3G1SNFOFoYzhKxiNRvDctfR+Zf97i7Fr/+flDg4wgCR+PPQ8/sa4NtK8alGD76EsLTgqIxlNc9qzGy+6ykP5fpLsUm0V0pbv5lxf55w9mfTyy+GtGTo32q6S8lpUo2Ma0SyWncJrsRFbD/VFPeKlwnDDDtJZILiSiPmUaygWiAnBUkDWES//jF155ia+jPxXh0+7mlXJlH3fcoXnjbn9SoL6SO1z5lY4pEsRnR+15Sfy8tNH9WMi0Mpk8CQj60slsfr5dSkvK3PZqZtDJ9PLUsU5HtvCrJRI7TlnxtTi23lAdpWiV2XckIk8/PskFH4vT5xR0X7H4UwK3LxqSLGeF8xrR0qJBw20LmKj7sJONoKqanS0IpLjfuXgaT6N0BDlmTUJfifuRkzmCyWlqGAQlM3SjeA84S59VpcKxW6nGq0+jR+wEdZceL6xnTeSOy5DGSCn0SF5kxtws1yKxI8fZrnyemszzbMSqYT4L420ACukOFui0oDgo9ZWHbfcJ20J/JvbdtIiVon8icwOgS9XvF8jeB2avuFGT7pzU3f2TpXwTxFNhbyntNNInpPKLqQJy0mIzMA0wKe+Mo74XopjynoSTJwLgWfwK715z9qaK59lTXI/ahw581bH5Sw3/w3cvv4wgCIQhw00jbyu4lHTa1PslAfa1JT2vczrP8smf3ScmwEr52eQ/dMwEAQ+WYfxNxXWL2NlJsFd2VZlwlwiLiFxHQmD6z5hZJ2ok7mXFwpIOi5AL7jCNJv50T2KNCdhnOBijNtae6Twwrk22nHl1vi12iuve4PXRXlt2nDpNJPGaMRFfhSuHJJ6Ow+5HypgNqhjNLKBuKdYndi0kEUaYnpULGlvl1RWgs9uCxdwdpBRoZQ4bR+FUtizSRh4qInDgp4QeYwyipfuHwq5pkFONcPBvq99mZJk8TSj77DoaAms1krsMUcFtIhSY0ebxbHkwaKydBxSpUF04DRVIhfAmQ1P/o+MvRLag7GpgKgzDVhbQ0Hw6U+55YFcTKSht0s5dSK7dq/ZMV/ZMad/CYnVCQozLSgkta7k+RF89CDD7GS4+qPdZFwpgBTCe7f9uW+IPDbI0I0JSk9uWd8PeHpdCEj5Td4LIDUAflrWLxTWD29QE1evxZzeaLioffh/h5S2EDw12NbUXo5lcRZh5dSPYXosLcWcpbcScCTurKZGFaJvw8Cvnt2rD6ZaS+EQ6Fbif8quLhpzX95UfuJ3CUwIqRhUJFJ9x7xanNkrTsWuPKYg+B2dsJ11r6tUaPCfVK0T9RdM8j01Ix/1JRbsWGyQyavlN0aKZVYFoH4l4CgekkXRsuIqFW1O819pBIlkwjFTZhqGUCj+0lIwhlBhGNcA3GhaO6jxT7SPUQTwovMlAzrC3VzcT8m5H+0jEsZFa9qo0QSUol5J+sa1dTwG0nfCNjtWRyjaN6qLBtzI64mVF5CPhaM6xK3NpR3GfzkKP6L3MZoiYrMCN6P8q0pexadGwlum6NCkvMIC04e7MX+nSeY0jhUPPFyQMiGYXuJszd/uR85C8XDBeV9PwjuL0XxWA3gQ/E9VxKGHtkGCrhD1gpf8w+PPo7gDwbgygk8QGsQQN6kC7DUfqMUnJeVlPd9Ni3DxzHzOneMV7N6K6s1OgNJCeuvv7M4+YjV2c7ChN4t1kwjbI0psHCzmE6hfYKu1eUD1Bl0VFwQk6z+XSTAk2CXlEMifkbT/W6JVaWzR8sePh9KP5ww49XGzZDxfvbJZjEdCYmI8VsJHhD6Cz2xgnNeJ/wtTxzxUZYjt2l6GNiHdG9YvaNZvF1EPfi3C3xq5LD84LuqTptZt91fBRBIBWWeLGW3cZLD9keDMOZy2YOj8w3FcnsNWGClTtBXVUE/RpU0Axnke2PFc0bzexdFCT2RqG9pm9t1hPIA6A92H1GlY3MD4hGApB45knUHyrEE64T+jGAlxJUGFxO6kFfmlNNqKckQpDbwLiytE8dxS7i9rk3rNVpCnJ3bgiFAD3mEB7NNrOJRjQwXih2nxtMbzDDkdkHZjCQZBBKLAy2c+hRvh/NUVGW2ZIJ9GQpl47ioUR34omgrIBwcTUT/v0gIGScl6TVU7n2vUdNXlh9MyEX6SnbsXdISl8JEcgMEb0L0rrcdygfiIsaf94QmszvH2VgiK8Mocqg4qBQywpTWPS2k7kRfS8MxLMlaVYL2ejYbixs9hoU5qSakmQubS/t2qoknM9oX9Tsnxv6KxgugsxSVGBXI2fzjrOmIybFq9sV00OFGgQkLHea8g7cTnZ9Mwr4Z/J8QlUqVJKA7mdSn5tB0Pr6eqK47Ym15e4PGm7/C54/+tk3PK+3/Gp3wfXdEmMi1J44GLQLjK3DvS2obxXlg3go+FqeLydjDxnOcgAoI26jad4oqltxW3atRw+ZkfjC0T1VDOtHTcR3HR9HENCK6apBTZV4AGbyh20DSZs8XDIrtTJfPSklo6JCTo/yztu8SRQbTX+ZOHwi2vD6RgglZkjMXkN1q4lO7KHGhRBCbCug4ZGWmcg93iqrxh6UpF5Nws8SelCZVyDOR+WdZAlmSCdaJwrGZfY2QDKC3ScmewpIkBB/OqGUJqPozx2F07jtKHjCkHA2Uhyg2Cl2n2mGi0gsPhC7mCTvoROYxOgiadQQczALCndvKB4ECyGJhLZqNPYg6j3dFFKrPikZ51K/264EhQzjyKrI4iBmmUI1FgpucdfJBKda0H6Vkqged53YnPeDNFyqQoQsx3uoJQBMc6nxbS+yWhVE+Sa9sDx5uKmIhSM2jjATPr2eIpbMO2h7kTQ3lZCkljNSYTl8MufuDyzTIjGuA/aqpyk9SiWeLXeclS3v2wXX+xn7b5ZUbw3lgHzWbWLxjYDSfuYYzlzGFGQT6S4N3YXOGoxAson6taXYClEIreifNzz81LH5WyP/6u/9Gqsi/683n7F/aDBFYOot9n2BCZC0o9oq6mvhGiStMs4kvgBJi85lWor5aHUtlGR3iJTbQPEwEivDw89mtM8kUPhlDnj/KQuI/mMfInQR44YwL3MKdxwIGVFR5LahEOAFQKeUUy9Jy0X7rghOPOBsB+NCMS0lXT+OcSb7DOhJbnJ1De0zzbRMDOuE2wmN2A6C+g9nEEv5HbdX2DZjBbVcWDNI3T8todhAvY+YTiYUHbnqycgCcl0iFoIVCFOPvJiOoGT2zXcKP3PiRdB6bJ/NNEOkemjYvxDXnFDJ/LljMEpGACMzZKVcma+Rl1kNtpMdTeepPGZI6CCW2vowYPKYL/WkpF8ZcdrJHRCybiEUmmIvSjgVRD6bnJFsYJwwh+4xLa+ErKOMERPWbsDsDLo3xMKSCi0SXqMyyOvFOAQJ8nFeocNaypWs4NTtdMIwVMjzCbJhalrOCKtaXKEr4VBIqSYsUnU+UpTy+i9XGwoT+PntFQ93M8xNQX0n916yTKgeopRkc0f7tGCcCfI/LE3uIkTiesRWHp0U6lVFsZVMQGz0HfuXiu73e37vk/e8PSx5e7/A9w5lIn5bUFwbbKcyziS7vfIy3ap7mok+O0UshcUaKuHBVNea6lae83ITcXtP91yGn3RPEtPao+fZwfiuoHll+L7jowgCMvpaYQ4+U4NFHRELJROJMwUzOEUssl7fiG5ApQ92U6vQpcyf05Mgt24vIgu0pPXJwriAUCV0kP5u+ZCEIVhLiZCM+BK6vcyKG5dS+4vmQC66GVM2spAbPpxD90ShvWH1q+nkt58KLUDcIA4x7qDwdZ5M+yAzFlCSxh9NJKPTsjueidV6sfFC6tm3zO721K9mhEZQ/1haYrb/CuUHDkDZnlomJeVyKqWT1bb2iVAqppkg5tW7hLndYYeRZpqjR+nQRCP3x3URO8gu6LYy8ORohRWdxt32J0akqqqTAWpqSgEpC0eqCsJcvBBIon+o38o04GPb8YgThMoQS41ZFjL0ZfDiBPzmWjwXQ+A4s0DmMqyI84rhrKS/MByeacZ1OqkHwzxidCJGxawauW1n3LxbYu4cxQhul12pvEz0sdmJp39S0l08TjUe1gm/DrLAdMLpyLQvaH5ZyPDcfcw1u2b7E0iftKxmPb96dwmAUgldBMLBYXaGWEK3jOhRXIbNIG2//ioRCglGfp7oMwvWbjTNW3XyOiwOkpXc/Y2K7Y+ljVitewwwtA73dcnyl1Buw28vu9PxUQQBAF/nSN/57CHnKX2EC+FS20EsopMRoclRSONrfbJ9Ps5vV1FS+WjUKUgkLf+2O4nUw1rSqvaZ7PBmPGYIsrOPS/KcN0nFdJC6+riomvcjzZt0mkpb7BXtE83hhcJMJYvfdJje42clfmGxfZbQHryIl4zC9B69H6VdphThasVwUREqdTKrOHrdx6ZAWZEfq0OPzT35tG/F0ENpAe2Kgni+wC8rUVlGUa1BtnBbWYITBDsUQo0elpZxMad4+thLNl1ktpUujW9sHpuF9M9Lja7sKXM5Tg1GL4VkZLWQfiYvgphZSbiYMa0cvhbHJdPn+QSbVgxCmvJbXQIzCcClfZR0/9DD/Ya4233gkCyBIGVQub+q2H5mObyE8cqDTuh9bomqhDGReT1w6Av6rxYsv5Khnr56bBeKw1Fi0rKZ9OfynIRSUmuqAEEROytl64Nl+VpR3YlQKCno14rDC4U/m1CT5uHNEj2buDjf0w4FXVuASYRFAJVw95b6rWS501zhZ6BHyRD9LBFmETUqqveG8u4ogZaNcWoU+08M7ScBe9mxrkd2h4r0vmL+tWb2Op4C2vcdH0cQSIIBRKOhFouuUEn6Yg+BUksN60uNO0Tp2SsRp5gxMtXS9lEhnaiTMpaa0w6jJ2nrpVqifbFNaC/agmSkVEgKzCQZwymQOE4DTdxecAlfafYvSupbT3k3Mq4cSQk6e3hu2H6h8WXD7K2XSTjI7n/subuNKNtUjEIjrkpUP2De3FGNS3Sm0AJ5/FmQz9QUqNqJDt8HWXhGBnSkzVYQ/sqjjcb5iJ4V+HnBtHBCJ83jro5lSnTCeQi1+BWaXiyu3S4xeztR3PTo+z120dC/WDx6DVrFcFkIXrEXAZU/a4TUdJywrDWqF6VlcEumZR5UGkAPYlWGUkIk8gE1eEw/CRciT3NSXRYyDcPj5KQ8G0EZg24aeHLB8Pk5Dz8p2P0YpicT1WJgXUzs9jVxzB4KNuFHw81vzpn92vD81wHbTowrQ7TkAae59IlybfxMzFmjE5GO7jTmwQjBKIkStbyXIbkqptOA2v4CxousX+gN5XnH5fLAQ1vT7kpS0KiDQU2K4kEzeyMgY38hz6w9ZLxqLc9L+d7QvJEN4fgMRStuQYeXifBswNUTU2/Zvm2o30qpcForJluqf8/xUQQBlWQXT1YR0SK+GQLT8rFVqGJO69E5I8iqtEBWYR2jeE6HXb55uSYGuYhH/CBmowtxJOb076QQkHEU+WaoxYRkWkgXorqVgDDNpC3Y3Aij8Vjfz94EhrXGN4r9C4vL/m5icSbDJ6aFwW3DiTmmYhJSTzugDr0oEBfVqb8e8/QdGYgaMkkmgC0Il+Lco69WqNGTQOptK4vJdJ5kHSFnTJCzppAw46O3H9mUonoQX7vypkNvW9I4ojaRKkTiohLNRCOf4TgIxG56qcu98D2OcwTTfg/WYoyhzOzEaW7oLx0qOtw+4LYWu+2FLBUjqSxEd5GtyxSQUkSdxrRXqPmM+OKKzc8WbH6s6S8jYS3U3mfLA2dVxxQNbV8QE5hOo/aaYlPQvEvUt15AtqUEABWO48Fy+WDAozBd3hg6hRnlWRMPQskm3V6yzGkmbMNpJjLfsPLo2lM3I89WO2o78dXDmsN9jeoNdpfpyQdF8y5larFYl7tdLllX8tw0rzXNu5gZjblkMqJ8bT8J6PNRXLjf11TvDS4biKgoQLSeUm5hfuRBQCyiRmJtiVafKKHF/YifWYZz0dL7Cqa5xu0EmDpaRR091pQSMow5WtYv5XeON1qHY4chmzI06qQgjAWoCVwrPxtKTqoy00lKOFxEpoWiulOC1hqyTttR3k3YfcQ5jWtlDtzJyipLYMuHbCh5ZgmX4jZsRpODQcCElCcTIQi5gjAzTI242/qZ1K3N+4Ly3gtFWMmE32QVqjCZ5aeYFk5Sxv1E9WonZdSslPbcGE8kIRm2UdBfyFBOM8gDo3fCYFTucZCImbyw+2IC9ShCUtmTIKwbAXm3Ipnm8lzS/ELua3QKX2adRZdHdeUJuuPlDADTC/5BStBUMptwLNGLOXFWM7yYc/f7BZs/9Mye7Cisp9aJZdWzcANzN3DTz3j9sGTcF+ggzL7Za2jeB8FCspGKzLFI2Ewc86VknCALCC0eEyq7H0cnwKA5SLs1WmQ25mUUYLYKmMXEohloionzuiVEzS+vL+kfKlRrcDsBl90O6luxxd+/kABiOyGnHbGM+VfiRTjONe0zuW7aS0drfCaBJhwsxXtLscnnNiSiI2sgZE5HsZsyRfy7j48jCKBkYmwY0c5IIDAaPQWK2x4dEt1VceJjd08U8UFj23TiCAi6nsFBn6jvI7ZX9Bcy6nkq5H2i5cS8ikaQf9uC2cgN8JUYcNpWou00F9chexATiGmRaJ8lynud5ccK3xhmhaK68xS3HXqw6LksHjOIkcaxD+4OHtMHppWTADME8c3zUfThpejwo9WnoZnJQKgV7bNEbCLtM019XZ6YY7YVz3mXZ9MdrcaPXQnVDXBocUWBndeyw05eGIDjRNlU2O3yNANQ+UiqnBiL5InDKCXy5N0Baw22FucgEOZiOGsY16WoMc9KGece0remCjWvWma/zOh/7QiNlRFaM0NwinIThHbrMnsyRqaV+Ot1l5rdZ+C/6Pnpi6/4m7U0zX3SaBI+aX55f8HdzQK9cZheUQQB/Jo3iea9xwwCrvlaPAXNEAVcjuoEmB4zTj+TzUElSIU64U1kRuCwguFSUHgS4CLVaqCp5OEaveHdfs5m1xAeCvSgRbtyEKORcpsIBew+lZmEIFyUWIoXxvxr4Rr0Z+KKdez8dFeJcD6hbCRtCoo7ETBFK8+suCxL58cdpM3ePinYf2Lg3/vu1fdxBAGjhAKaWWXaalGROYPSAXffy1CFy0LQ04Wk28f01WfXFtsJYBKtErn4IGOdkhbeQH8l2MDRnw0QwKeB6r0grtNcXIm0P3IQhFEoAyzEoyAU0iI0vSLUie5Z5PBSUzwUzN44mmvRdCcFdoqUN63szhcN/VVxsu4SdWJBHRLFN3eolPDPz5jmApDpKaKiogzIDq80+x/D9PnA+FyjOlGy6UlRPBjKO019Z2jeDLi7/nEeIIgngbOk0om8+TgEJM9d1L96LWYmZQFNTWwqoXGHeGLkKRAlHgh1eZsBzadr+suKmNPPYaXxlcOMSRb2wYOGUDuZNAQMFxW7T2Q8lhklFRfWY0N08nmHlebwWcI/H/j8xS3/udV7ajNRas/Bl0xJ85vdBV/dnTF+M6N+q1lk6q7bJ2H1taIQPPJLfGmY5hkbUfKMaC8lpR2gbyQAJA1kzxfxl0jSkaqlVTquI7GSDSIVEV0GgtccuhJjIiFohocKe2cpJkRodJDdGQWHZ8IvGC4DqYzgFXZjqN9omveyobVXImiKTn7HL2UTUL3Bbp2Q3FLu3hxkM3Ct2J5rLxyZhxcluy/E//D7jo8jCKREqEXHbfYDqh0w2SoKpGdsDiNVTITG4vbSEktKlG31TaR9IsYQKiLsuUahkjyUxSbh6yN5QlL64j7rv704xA6X0mu2nZQCw5ksfEndFMkKcwstfVqVxTWmUySj8ecT3WWif+I43FjqdxLtk5URXjYPzTR9wje5Fs+jt8azAtMv0V+/x765R50vSaURtxwgOkN5C+W2RCUrllPzeCpXgFO9f7yeetdKBuCsTExyRuTDGtSYe+vjJAafedioKoqTDyJGEea1EHyCzBtgEKOSuKxlWOimAx+YliXtExnUWewkO+uusmnsQVNsrKgwC8SnMAm/ITqVmXeCtwxLxbiW7CVaaL+YuPrkgcvmwNwNHHyJUQkfDVPSXPdzfvHmCverivUrUEHaa3qEcptOC2E4EzDPV4phLWCfHsTZx4zye0LtViLKyUQv5RHizpAYVpIJhkIwIj3KRKtQJ8xBJNfTIlCue1JSTK9mNO+l9tdTLkN9ZpaeSf0/XAbUaiT1luLGMHsNxVZIQsNSCVDYJLHPKyTgVG+s7PijZK7JHtvWkg3aVgJef2bZfa7pL3J3wX/k2oFjS9A3luQ0VilUO8h8OfdYy5h2RI8eU1jSXrjmyidMOzIfAsN5SX9mcs2XBT9KFmx5L4u8N4pUJsa1kJCKDVTX0io74gBmBHcQh6LhIorBxFbhtjBcIDzvKICTPAxgbx1hHk+STpk7pygfFMVOU+ystMWGQHndfpD+iymp8jJSPF7fojdbGUJalWIdZgxqFPegaOfoUdx1TTZUNVPKrsARt89EpUpsyRgnMRRxVqTLk5fAkIODmrKTkbMi6rEC+JHVeRhFwkiaD/h1TfekZGoUqAZfigPueCaZj9tJByAWorcINdkkM4neIgggpjJrMinBbXyTadnLSTj0zcTL1Z6QFG+2S6piojQBHzUJ2LQ1h4ea4o1j9o3U19NM+Bco6C4U0dkTVyIZ2cH9XDQgxUYGeJAyXyJ3TbR/fA7KjbT9unMtFnRIeVDeZQxhJuUGwLQSsc9wV1O9tSzfC+noiENpn4PQhcoAYkStRuJgaH7lKO8FZ/CVPLvDmWJayOBSNYlpSbGV7FdF4br4mZQO5UYmLJku4uvspflcMZ4H0tyjDha3+R15DP4ndsSI2Up+7htLuGqwXSmKuENPmonLbdLS7jHZZx6jTvp55aO42fiScWnEj6A5oqOyM5gBzCA3NLrEtEjZQFKAGrfND0sjIKHda0KV8LOIn0P9xjD7RtGNluHlSDCJ1IqyTHvQDxrlFW6fJ9dqRagUXSFCn1IdWYSVTJXZD0RK4rxgeNLgKou1Rtp94ygEG5cdijOwIz12DSlzGPqsRZiiDO1URylwA5eiGnH3HfphL0ao1oiBybyUsqByUn8XVrgJUxTLtBhRh0AyhlQahsuaaWFOU3u6y2PgTCQnIKYe1WmXVEFstPw8Uny+4/eurimMF4be66VoNRovSr3RYCrPs/Mt53WLJvEw1LzfzukeKtmVXSRNGrW3Uu9vFMtOBDWzt164EEpatVL3587QmNt+ZLLYnTr9f1woVDhyryXlHxeKaZ5kiG0hNt++kYBlOk6ktHGFjMGbc9Lzl+8s1Y2g88lwYgHqSTLT/eeKcRmJTcQsR8KmYPnnluJBfv6oPQglDJdReAReYVstepUE0yxnUUXKVPfc9ZoS01yz+9TQPUuEZz2zRc/+tqF+ZVh89dGXA6D6ATt5YCaGi0tHKJcUty2qn/LAjyA7ZyXiEuWDDKrQYoIhrjaBAomW7aWWiDqH8j7TK1sh9YQyg0Az6J8EhiuoXxmqG4naw1oJPz+B6TV+GWi/mPDvLPW1ImnHeBWIVURPx4k2gJLAIvMTwB0fiAJ8qbEpMqwd8WWRd3C5BFOjiJ85is8bZq8vcbcHmd+XLbpSacQ4JEn3YzgTHnkfDPYgo6mL3SOB5GSO4sAMJfNXDdXrnYwKqwsRCYEYgfiI8oLIx1mJr3LQtZpQG4aVoT+Xa+Z2wqgrdhBG8I048cZZxFe5hx8Vdq/RoxhzLJueuZPAfT5rqb4QXCFETTc6RmcpCs9hKBiDISXF7e0cfV1QDJKey8SoPDimF78+2yGGMDsBG8t7jz3oPGFISg0V+BZZJilJ/ZORhU16NI+ZZoL/uIP0/6MVYNbtHhWjvlGPrcBaPm9xb4Rq3sq1mTK/QH2YFV4m/MqDjegqEG9K1v/MCKaVuxKhlp8fV5LCE5W0N6cjk/VIhhM1o5kEBLRDIjrF/qVh91PP2ScbzpqOX319RfPLguWXkfrG833HxxEEsgQVrbDvt5hDdZKajhcNthX3mOTEiea4g6m9WFZpIKmCVFrRog8eFQpUMKhkODxXDOfgtobZ68TiVaA7l755dQvlreHwaaL9xOMbQ/1e0kUdlNwQA2rQpJln+nzAzwvKG035zjKtIqGOmPaRsouSmxYKaSdWt4JKT43wHFSAWMG40qcH3HaSTm9/pHn4WU35UNO8C8y/7rBv7kmDI14uxFVHSVo9rsSAArKIKIJpNbFKJCMaczXJAzOcl5QvC+q7gOnEQj2ZrAT0OfXXKvfOs2lKkVusLnMqxpSNUiTg9ReyaPxSaLTOBZRKpKQYmwLVScvy/c2Su80MYyNaR7RODL3Dv6/RoyKWkXEWUCYLizqDezCnNP5oMKInyX70JJwGQb/zFKDqkbfgDgGTBV6+zN4OLgeSfO72ICBydy6U4CNhrHmjqG9jzngEr0hGNpJQy+4fC0QLstFUtzKZCKRrMK4/8KAwgi35eSIVCcqAthHzTcXsK0W5FUPS/kJwqVjIDp9sQg06S9dlbF4yYiX+Ia9FdCLS2tx9phn/pZa/85Ofc93P+Uf/6AtWPzdUt1GGndwP37v8Po4gcGS9GeGaqymI+UUeLBFrK+0rLamuPXjMps9koQitcKUh12HtiDmMmHWNyu4Ru8+h/czTvVDMf2No3kZUkhvXXAfKjeLw0jIuE8M52H0Gj97KAzCeQcBCn4hNoH8i9aDbaEKZiGU61aOxSJhO4zaZuGSVLB4ngUDQaDGcNEcrs9y3Nh2MTxP9VWL3hWLz4znzVw22k2h/1Cq4rQBF0UmWAkARMRc9q6ZHK+gnyzhaps4xnVt2CfSgKW+t7G5TLlly6nx0HDqqIUUglcdap0yUUbIb9ufHBzdR3BrsV5ajN2PSUJTppJ5M90LdPbqOhSr3skcFSoBWey1tPXsQxmKyinEhD7z+gK1pswMUSCAEmOaW7kre33V5ruFeWJZJS70fSnWi9ZKJZeNKvP9kbp8AheVW+CfD+hFX8k329M/iM7eV8zyKsMSqLafplhMAGGYi+IlVRM/FGsx+VdG8lnOZGgkA3ctAagJqbzCdxj5oTP+YFQAUW+EtjGv5v9sJw9HXsPtCcfWvvOVfvfqK/+DNj3n4kwtWXynKjfgZVtcd5mb7vcvvowgCsbKE8znm3QNkFxm0TJwFTvPkk9UYreielJiVo3pvxczi6GbbT8RGRCrmbo/76oDZzbHtDNc69p9YDp8Edj/zDGfHHT+d2lSLLyPjUnrAsZBSwR5EHWh7RfdEHgg9GmFpLVIe/SQpWqiyvFeBv5zwc028FuON8p48215qaZWzM+XBBLmZw1pS3fpaMUwKP4u0LyLdM+TzG1n4uhfg8kiAUl640mZjiLeOjc1b0TELdpDKiKo9oTQMMQuxDnm3bAQjkdJHdBRyckdKtTp5Lh6HgqgI1Y2ivknM3ozYw4SfuTztV2eatzq9zjSXlHi8FEKNBuJDQXGrKe8UxVZaW+LqBFOtKe+lBi92WS2IXAdfa4aliLe6c31K0fUE9U2izoNCYyEdJNcmioN8bVyqrEiVRWs6AQDdXrKcIzHnOG0olNK7FyBYsCMRnMkiFUm6vH+0km2Izbjs6HEe0JUn7h2Ln1vKe/m6rxTt80T4VGiJ7nVJcbQOywanw5WIy8zOMC6TaCFGJUGol2d085/x/Jf/5p+xtAP/pz/7mxR/0rB6L6P43C4HgNsd4WIBv/7u9fdRBAGA/mlDFcFcP4jV2LxBWU2ohAJr2kmsx3pPMwW2P2oY1nPq96VYccVIMhI0Ym2Jz1a46z1621L6iA4z3MFR3Rj2nyjGdWT3I/EeqN9CdU+mIj9Kk1OOvL4RN5nZK0X7VCydiHkny4cZH9uGDAofFJyNjHPPcLC4B0N1rR8XmJOsJeUFJoQgeahsKxiG6TV+Jh4GscqW0nUgnUX8JACYMglbTVgrVljDvkQ/WMo7aZcmQ64lNST7OKzCCSfCtkdAVJ10EjLe+rGm1l6a0Se67EGGW2ifsLsJ+9Bmj4CGpJywJfPrgSyS/jIxXnlUFQitRe8MzXt9AraEriuiHbmeWR3a5ck8ec5jLAxhJTP2jkh6slLf2/axLXjkAhyzAz2KDdjUqIzYP0p+k5LX+nCQzbFNaXrZdY88kdk7ce8ZF0ZGfq1UNveUqdcgYGmsBDAlgv2yYv6VjMULhYwrb58l0qcdcVtQf21FgjzKs7b7UcS9PKDaAnaW2OTXOXapDjIbwf9+y3/tx7/gq8MZ/8+fP2f2a0vzVliC7hBPMxu2f+sZd39g4P/93WvvowgCeoy4g8evS9BrzO0OdehQSmEQkklonASCFDHbnsWXiu2Pax5+VuCeFzTvJ2wrIJfuPLEwDJ+sMJ3H3h5wNy16KKmuFfVtye5TS/ssMS6j7FpvhaOt8q4cT/pudRreaQ/QvFWMnToZe9g2I8w5KBy9Cmqv8G8raXstAtPVhJ+ZUx0pqbc6eQJEJ8YiaNFQFBtpa9bvhSo9LR5bPFJ+SH0amojXCWtHnqz2rJ9e881mxf2bJWrSkj2MmupaM3v9CHqGo0dCBrNUemRdSmv12MmQDoSeUmb+ZUahUUSjmFYFqdCnoSB+Zti/MAzn0iJUU0bWB8X85w7buROD8MhtUF7anKdDPWYbNnFSEqbCMq4L+jPFtJAFZztQWZ+RtGLI1vGxyIt4zDV0EnEPCvQHlnXye7mlWShMJx2W6MA9QPnwiKrbQcw+prmhP8ut0bXcA93rkygrFkmMXHaW4kGyHJWEIBQq6J5G0sJjXtXMbiWtDyWMa0X3o5H5Wcv+oUa1llRFARPvpVxCwfYnkc//8A1X9Z7/x69+iv15w/o9NNcx62Pkz3BR8fBjx/ZnkaQ/8u5AMtLvV1H08VwsBP0fRrBCH/Yz2VbsvSDL5jDSvLWM84L+UhEqR7mxFBsvmEE3YXrPtCpJV3MRqbRSVjSDR4UZSVmmudzIw6dRXIjeJYodjMjiVAHKu8wYs+JTX2yh2Ig7rbi9SjA4KhiPRg9mhPgb6M8swxn4hfgTqHAU8cjEWJ93lFhCNAlfS61uW3GZWbwKp9YcyDkJOChjtYe1ZVqWvJ7N+fosm1QGhe40yaWTBFhF8oBOKV9MLwo4GV4K5SZQPAzSgp08cVkzrkvQSrwPlSJURv5kI1VRXhpUEEn1OJMAYwYJimY8gnCcdBRoacHqUTod5SZghsQ0yyKn7CJcXQ/Y/UioHdN5TX/u2PzYMJxLu9fuEcWfzci6eaTOimoUUNIKjIW8v0qczGsFlxEMRALGMThkKvkgHIKk5fW8gn4lMypko8glVKeJRXYqjgp9MBQP+nQu00xYiOM6EmtZ1PbG4TaPas7ooH8aMGVgfz2DqHCXHVU5sXtoMp05EX/S89nTe7Z9yZd/+owmd7SqTTxlL6GQUemHl4r+iUdNmtk3HzlP4PhwmT48jpCaVahhkj9GzDrGVUEyWrj2WVcwW1j2LwzjMjO9ksHPDKZzFNvpUZjUFOj9SMoS5fqduPkenhkhBs0y0OUQo5F7MReJhZCZ6ruYxSca20Zm7yLzN4b9M4OfI2lnBrRCBZOX9LXYy7DJ6VpzeG6YZnnX7SVNLTYet5uIheHwvKB9InPrkpEgtP9E4Q6G4kEYZ75WUAgPob4NVDc9yWi6bAs2rAva54k0k21bj4Il+JlIVatb2f3DcbptLkcENdeEsqKorExgPgwU2TkoWo1fWKZFnhWQKdrDwgiGkgeJai8DNo9GJscuQyiFMyHg2mM70wziLRAqfZoBCKATTAtH96ykvdSESuru4UK6HmK2wQmpV+lx4SajTiVGKBVhJmDk6ecO6kQLTyaDtSFl30k5x1CJXiPmVqI9yMCWccWJHxGrRKwD1XlPXY5sd424Cz2ok/Owr+ScwyyCizBpineO4j4H9KNsuckdho1DLyY+fXpP40Z+8e6S1MnQkWI1ULrAV3/2lMWvDOc7Sf21z+Knef6zgHEVSUXEbg3VjRjkfN/xVwYBpdS/Bfx3gPcppb+Zv3YO/NvAF8BvgL+bUrpXMpPsfwr8t4EW+B+mlP4/f+V7HCWvTgNieMkUTzx3NQSMlnRzOHeE2lDciod786bDDCXbzyVC66ApHyJxYfCNprqdUCkxrkvBBtqROCtJRlG/OlDdmNMIrWGlTpOIdADzgYmIPirJ8sioYi+U5fUhMM0Nw0p2MTVIei2WX4phaXLqK6YRoZRuw3FajPYmLwRP814RbUGftQW2FTuycQGsH63VpoW4GA1nlrNU0vzinvmmZ7psKPYO22v2n2j8TEg8SYFfRA6NytlOFlGpR0KLHfL4bKvYvyzQTwuqe5nwM801Uy0YhDtIMCQj7zokUi6DikPEHqRlFwtpzUX3qNirHoTVFmotu3chLdNQyqCZo1Y+OMV0qRlXRh5mm7B7AS2LrXjzj+tIMoni3mB6CaogTDuh0uZ2miMLtYSleGQKTpnfAEdCT677O8mWopMNwO6PBKFcYpTg57KozXLkfNFidOL63YryG/cYAAKnUi8ZUKPGPhjcNhvY5EwolIrpXHCfVERmly0/vbgB4B9//YJ0W0IV0I1nvKtwX1ou30rwPJZT/VrRX0o7O7p44hOU1wa3k585tnm/6/iPkgn8L4H/GfC//uBrfwz8+ymlv6+U+uP8/38T+G8BP8t//jbwP89//6WHCpkxaGSmnF+U4rrTTZn2m2CYBMBSojqLT5qTY07xMHLWR3afFgzn0lZ0+4RJMubJ7QKkRPe8obwx2LsDcV7iVyXurmX+J1sZalE5/KJgXFkZpHFsM1n9gTNuRr5rg16bE/XU9qIrjxlBV3mmoewueSpsTrslkGTEvdLsn1d5Fz2WCLKLujZhxsDU6NPAE5VEuBQddE8T09wxe3LF4pWUSdqLzXqxk0Xma3n/cSlc9e6Lke4TBVGwDDWKsUV5ryh2svOF+shOEzOScS2sOeVh/kqfAoGeElUbT/V1sZmw9x0YhV9WjGuXB6w8ejrE4iivFn+FI3Hn+Pmjkwe6e5IISw8uoXYWtxfyVcyEHRVlsZ1eNyP1oZaSyzf/P+r+LNbWNM3zg37v8I1r3NMZ48SQWZWZ3VVd3S662wNGMoO4QEgNNxZIiMmiubDFja/gxki+4QKwLCGBGglBX9DGEhJYxhJisGmg7XZX211dWVU5RGRMJ+Kcs8c1fuM7cPG839qR1RldpqqxgiWl4uQ+++y19lrf97zP83/+Q+q4ehm5pvdGjxLZNZyl8cAj3Umf7OiaieshY5PtIl2iDQtZSEhCdjmwXDTsDxXxy5rVa5n9o4oJXE0rxpgITlPyVc4p7i5kSj7DK4cqPPNFx1nd8vPbS/pfLLE9jGshDWW/KClvVaK/c5KpdxeK43uBUHnZEgVxbLbJLWsabWZv/xR+AjHGv6mU+vCPfPmvAP9M+vP/Bvh3kCLwV4C/HmOMwL+nlFpPMeV/3POoFJ5pBoeKMJwVqFlGtu1RKWYqKgQpBkmwzUVu6wuN7Tzrj1uOLwray0QAaRVRp1M8IffH90rK2oqgx0f6JzPyIkNvG+yhw2wt2aYgZka8+UdHmBf4Osdbkyy/EphkJK1IRSHVTEYnRDA8dgR6iKhcTE/5xr93NWnlJZsBwiPlOGtiygiAfB/wmaG7UIkBKNuD7CDP2z5V9Of5yVY8a5KU9CAbhWGuxST1aGifK/IPDmTW0w+Wsbd0K0P3ITBozEFCLnQvRhpRTesuOYnHWkRXJtlv6zGIJ+JMn3IRdQphDSmZFzhRcH0uhJ6pXT65+qT23M2EMw+gWwMtmGbyfYgUB7mpZQ2nTnoEAR85YTMSKhpPoJsvZTUYMtm9K5L4ywpmYqL8O5+nkQDQOnI8l+Aak+S6vg4Uly2zqufhbkH+RU51nazBZjIKTkxNV0V8KduFfJ/4/nUkO8h4dHwRcRcOXTr5nAbLl7eXlK8zrIbhXEbj8toKeW2MjGn0NL24QR0/9MQsiKI0ied0z+nP2T6y/NKRbyaTjX/w8SfFBJ5+48Z+iyQUA7wEvvzG971OX/uHF4G0/pnionUzUAyO4aKmvyjJ9gbTPP4SEzNMDyFVRc04s6iQqKOtYVjq0zw6zoRWGzJZQe1f5egxEwKPBzc3mPOC7ODEJGP0oCOhztC9ZN6bVhxz9NzICRrSGDPAFPDpc5Bqk7IQCk4W5KaT1lAucGG+TZTh8j6e/P5OludKTuUwk4vTjFE8DpaTJ0IkP0KRaK+SdpRuusip6PlMJbxEUd5FTK85MKddJRDrYCQzdOkozlvGuWUYDIxyquheRFL5g6J+Kzz97OBSgpGsY0E6FFcpfJGfTvRp3WeTR/8wvbggv6MrhV7rKgj2G6Bpqx6NXrysMfOd7PKnFt/N9Enzb4+crOVEK8ApAq5ba8bFYzGa6MKmU48dzB7KO5EzT0VAOPpSJCZUvn/iyM46gtc8fHomTj5HubmPL+V3mNypQhmJOorOQ8HhfdkiZFtRFvbnQqlGRcJgUDYwHAvsg5VchCJgHxJF/bR1eMRduksBEolgH+xJUqyCAMZ6hNmbSHnvUR6a58W33n5/amAwxhiVUt+OOnzLQyn1V4G/ClDmKwECB/Grm2Sv+X2Lr0XgAnLhYMTxVtx0layPhkCwRk6eUuimWZO+R0/rIxLhRIgiw+LRoNQ2oGf6FLxp+kjxIFz6cSbmm1GJvn/+iz2+zhjW4qyjvFh12VZ8Dsb54wUnqTFpbegixb3MpuMs8QESMYQgEtx4RKp8imp31SND0PRQpnZViCmKOCNl28kcrHtAy2kaNZhR6LJTaxqNnFiz15q2z3BLScbVncI0Ga6wxCzK2z3dkL0i3yjOfiZRWrpJ6Ua5JeYGn1SQ+VYs4XxpcTNJDS7vAvluPAWqFrMMVwu9t70wtE9hXAXhQEShPJtmkoAL98J0Qs6ZMicm4w9SYdUjJ86AdpxIP8FIofD5I7tPMBD1yLy00lVUN4HyXgxuj8/zU+KUdG1CH3Zrjyo97kZsvKqddHLdhbACo5UtUVCAnzZAop/orySTIL811G/luV0diZVHWSEBxc5AUMRXHfFgmX8iysLuQq4j6ZpSpkXys9CDEL70KBFmGBHDFXdQ34qPgqunw+nbH3/SIvBuavOVUs+B6/T1r4BX3/i+99LX/oFHjPGvAX8NYFW/iFEpyK1wS2Pys7ca3Tow0imodoTCnExITSfuNTrKjexLQ4ip7UsZ8TJnT27DQtjQo2IMaS4vZH+WJ8KMKMk0/bqk2Ijjbcg0oVC4IqO61RRvD9ibPWFeCbcBsI1HjwawuEqKTxwfL7YYZQdd3UTsMYVIzOVCMrX42dnEbJPuIdIvH00tpzgz7YSUEjXJ/EKdOoqJ7KOTc3JIZCHTyykLcjFle+k8VNToUSTSMkpIH61Cot+mYosSEBSlcGc1biZJxS6JsLImYDqIRqd1WsTuHGYn0u+YUo6jUfQrQ/NMc/ggwEVH9Bo6gxp0MkMFdJQZeiufq4qC4Ef7yPabgle+KQGPNq0LUweiB06Ep4n+G3KEeNNIlNhJUbiytOeK4yvhbEzofXcVCCsnRh5f5xQb4YQMa9k4xIlVmQdUFIxlAiHF509eW3FtqN4JVtG8DMSzAUYNOyuksLnHrgfim5Lzn8l1s/sejGcO1WtZlyBr16g4mePoXiWyVLKeeydGLj5XdCuD9pHywZ+i6X7V409aBP4N4L8B/I/Sf/+P3/j6v6CU+tcQQHD7HwUPYBwxt1sJnsyzJFwP39Cza6LWKC9tuZtnjHPxE8h2Dn0cMCFgM4OfZWhnJdU4nQ6TWmxK0TFDJGsD2plEnEkLZOR7sjbgSs3ufYvtTDKgFCR38/2c7PkZ89cDdt9jd/3J2FOPAhBGk+bmTlh505wYlSIOcppnTWSYC07g6gkwEmVYdpQAEz3IdiBqdTLFmADCaJIVesI7srQ56M4FhPRlKkRaeOrZPp5uWGG/afo0a5ebQL4LFA8D9t1W7MKdIyayv6pL3NO1xHpfWIb0O2kH86899ugJuXgICt8j0q8z3LPiFMoaNYwLAbHikxaTecZdQXZrKTbqxJWfotUm0C/kgvh3l2L7jQ6Yo2Acphc0PztwMpWdujCdEqt8AX4xAaRSgCUfIBFqllpIOlcC0BGgep2RHcXKCw16Z8WNqkkjWsXpJneLAAbUqE/r2JBFjE/U5FnAtPKiDu9H3MWIrR1un5HdW+xR0V0FVO0xH1fMXsvmh7+wY5Y5NjfzE/tbDUnZqkFNgrXEMM23AgjbY6A/kwJdbgPFw4g5juj+T6EiVEr9DQQEvFRKvQb+pXTz/+tKqX8O+Bz4Z9O3/1vIevBjZEX43/pjC0B6xP0ehgG1mEHKvAfE3AJOunblAtl2IGQFrtKELCO3iuyhQ3UO2zlMZtBDKcGfS5lNp9l8yv7LmphQbkV3rhnmiupekH6fKfKdJ2roknOwTrkGwSraC8WwKMj3uSTAngJExFbcFdKFlFvJSjw+Mye3mmAVYy0AXn3jCRt5flcKEg0C5OlUwFAy1090ZpsYbRODL2sfO4eJ/NNeaLoLRZxN0Wjps4yTTVogV+AqjZspmZsrhYoZ9lq8BJXWEiDSdcRjg3nI0Ms8rU8j+Y10VeXtINyIFCASc+H2d2tZt7bPxIaLgNhw1Sl3703J/FaR7aTVn+TWE4sPBCiU3XfEl0Jj1J3G9AKgFhvhYUydkB7j6fMda2H0uZrTHF0nb/+oZUMQjaD+3UXEXw7QGmafW8rbiK+U4AaJxWnax47LNklUtBLHHtOI0s+fj6KEfMikACwd5AG/iqjcoRUYZyTh+CBAXn8ZwESqnxbYBh5+0/PiBzf4qHj7dg1OC78gQkSDDeB0Ym7K+1DeRepb8Trsk6nO/I3DHkZipvGzDDf/9pngP8p24L/6LX/1n/0V3xuBf/6P+5n/wCPLUGdr4qFB9SOhTOj8UWyoUQrdDUSfSzTVKBpy5Q0hVykjTotcMkg8Vn7XYPoCKGkvZLV32vVniuPzb5gzjrIW6xdQPchFMiyMtLl98syr5TSJmpOme1hAsJbsqMkOYlxpeiGbDDNJ2p2988y/8mlE4NSRuBLaQp8cYk2bdvXDI/FjwgIkBVnYiicEeNowFCnDL7kv2zYwfxNQ3tI+ETR/AjJB4YpIfkzrw/oxcZkIx5cZ2Y+encRNtouUDykBqReqcH4IxEaR7T2283SXQnAalnLDCM2YxOSbTmeZV4kK/aakfBD+e7ERsovP5PcVa3n5jCbJr/Ky88/2j9JiMwghafZVJ3hDcmaKVtM+LTk+Nxxfpry+W8Xys0D9rmesLYf3LN25rM9UAvFMD/nHhdiR33sxEjXyGaNIicScVp1CWvLYvSRbD+uAed5gosLdigmKPx+pVh3fu7xjnbd8sr3g3c2K2BnsxorXQimgY/VO5vb9b3e89+yBd5sF43UFWcQsRmKA0FkpAIA5aoo7GZeq+0h5OxJyTXcu79HiiwE9hoRbJSOa9jtuOR6sZnxxhtlX0PRpLZfjs1p87LwnWoPqxDsgzMvTiSGoP/Qrg6srittBkOKku6+uB1TI6Jf6dJGadLN156LkUoA9iPtPNDo5wSq6cyOJvskeSrzfZXLQHswxnVYzjSu1hHV2QUA+LYWlvTDi/dbG5AAThOeQiZhlaqtNG0904Ee23aP5RTQyWkyoOWqixkYaayiyx87BdIHZtWPCJ9DCXPMVqIXCHeTiPpFzyqRsW0BXe549f+AvXX1BpjyfN+f87O6K/dsFunuknurBopzYd/laiDu602IvNkJMr7F+q2XDME6iINECRJ0MMZqAzhRmFBxnWMg2IynATytZcYUSjKDYebJ92tgAvsihMIy1Zf+e5fCefKaz14rVp47ypqO/KNh8L6N5EWVk2SpIqr/yVsxSzAhDoi67WrwSBHzjZGs/LIX+m+01+Va6lJhHxk2J3RkM4K4Gnj7d8peffE5lRv792w94+9UZ9l6owqaX3y3fqLTxgeP3R2aLni8/v8TsDHEeMIuRMGpir0VEoRBx2K0WXcldoHhwwq04l6Db+l1PVIr2SS7j39FjGgE9v+3xnSgCkykElDAr0Mntxi1yYmYw+w7VDkSjJdSyH4EFviwZ5iLrJQFpw6ykvnHoMTDOLD6NArN3LtGTFWOl0T5S33j6pWH7fUX3xKN7+WAnhpsvFd2l0EzzJDd1tTCzXCUzenUdk8GHors0ZAchKim5B7+h4hO031ihHeepbZ1UbCFDdtt9QKfRRSLAND5TJ2BvXKgTC05AOCl2hxcmceYjZtDCE2jiacRwZVoV5jCsSFuIxDm407hKTFht6Xg+2/Hb88/57fILsovA1y8W/N6vv+LNsMYFKQT344zXxzVvtkuGwTBuSrK9lnCWPp4AyqwRJuIUPRasws1MMlh5PO3DZDQ68fIzyYfM9lOxILX+Qgvuzy1uNhPGXWIzTjLwYiO23uWDePbf/2jO4fsOVfbEzog0V8fEhUh4xVzhvXALQvaY/iMqR04cAl9Esp2mfhtPPhDFjZHDYBHxT3s+fHHHP3n5KX2w/Ju/+A3cHy5ZvUudnJc15GRw0q8Uxw8dpna0ny0oDvL7EyHc56hREVdOLMaP9iT1lrj5wLiUXIpi6ymvO3xpaZ9laS0tmM64yuhXBv7Wr77/vhtFYHBkuwFfGJQS1aCkzYphhJvNyR969K492XXrzZHSBVSo6c7MKchyWChcmVE9TBedlvirUVDT4t5jS8kB8Jli9vVAeW/Yv2don0n1Jypsm4CnTmi6IZdCYFJs9XjuGZ8ExlVGcSsYgM/BXab05FaKRtZGif9uHGNtcTONyqC6HtGjpV/pU1zaOAOiphg9USgQFHcjvtCMSysmGkou2BPZJsEnZpj8BYUOa4+ik9eeE4pf3QrPfGK0+YITt8A2irE39L7kd/17/Oz2Cau6ZVV0rPMWqz27ocJFTa4d+7Hk7ljTHArYZ7I2u46nTD7bSAZCNOq0FhwXcsF2a4mGz5rIMJO16rB8VG4K9iEncLkJJ/MTV8pYNy2k4zK5G81kPao9p6ReX8D9jwztK4dZiumM3+WYo05dhUoU4XQRatAJm+guFa6MJ+OOydqMCNW18PC1h+YJp+Rnt4qYZy2/9eItT6sdf2/zHn/4yQtmP89ZvROsaRqPxHlZ0V9C+/6Iqjzqq5L6rSD9UUdUSIXlyYgpPf5oTwfB5Js4zjUouYbzmyPjec3xZSGxY0fRYzRP7aOD8rc8vhNFAK0wbx/g6Vr46G3yqU9hGK7SjLOafJcLg7BzCeQKFLctps9pr1J0dHK6bc81WSOBFkL11RyeW/JjJN95TBeItaZ5mpE1kdVnjtk7MasYE4FlnIu/3InoM084QqcIrSYsA+55z7i0ZFtDeSNWU66Udnb2LlDe9IlLECgbR9hqxgSw1W86tC84PjX4SsaHcS5rsOz46KBjeo991+Mqgxks3Shce1Rq80sxIqmvA8Ek0Muqk2vOWItC0R5JlGIviU4z0QSMc35JLef3Ge1tQRsXvCkmXbyAcmpMevyDGGCc7UUMVF/32P2QPBK0jFa5SIuPTy3dpejuo0H8AY9ibDIRqIKVWLRJ3JMdpKDkO08o1ElEJO9lYhbO5WSWTu3R03//gaL/fsfFxQE9ZBwfKhjltU9U7klVaboE+BpZIYvpSJRDIHUAEygs/gwqxZJHQiFzdlw4vvfqhg/n93x2OOfHr3+E+bRkda1OnUWwidOQpY7lLML7LbSW8ucl1bVwG4ZV6h5txD0ZMXnAH62oQntF/VYxexdSxxcobjp0M9K+WtI8sfhcurvmwtA+VScrMld9x8eBUFjC2Ry9bcTTvjCYJP0185L+okxBj0I2yXcjdtsnaqpBD4HifpTV4Fwz+fGHxPW3TcB2gX5lGOYKV1jygyCuIDHSetBUd57Z2/FEg20vRf8tbLVH1pbzEJUmdJmsiLKAL2V8qN9Fik2kO1e0Fxo95uT7EVdkJxxjulFCbijuRlyhT8EWUT2ShFQU5N72lvJO1IaidsvQTuMzyFH4HpiQ6z4yjgqfxnd5zTLLCj1XuP/ZwaFHjekNZhRSi/Qe+uQWPLWeejDShSSWpPZy8+SHQLZ3yVykR/WeUGe4OmNYWYkHX0qEm6uktbEHccZByc3vZvIhSCCMOomBpP2XvMZxbqXjCY9j0EkMdJAxwZVi1dU8i+gPD9SZ52E7w7dCwpE9u2QFmF6dXICnriJr4mkky5ON+HR6Ri1FfVxExnMxRokRlI7Mlh3fP79jPxb82z/5IfZtTrF9BB4fiVrgLmRNOV6M2MWI2+bUX1rKu4mrkBSHcxEnKafx2ww1it/g7GvF8gsneocI2U58M9oXFc2lEam5hvZKzHCijqCk8NrmcevyRx/fiSKgIrTvLSivW/Sxx61rsQjbNJjrDdWxontvKW4uhaI7zymUwm57TCsyXCqD6QKFl9RgX6hH+upMk28c9VsB5SQhRyq9TmaNPofmylBuFPnOkW8Gim3G4bmVpNhR5rA4RLGYSlTdYWEYVhpfTXJdLZJirWivoHlmidqeYqwm9Ly8i+R7uSGLrZwow1KAv4kaO+nQg1Xs388pbzPKh3CS7Qo9NjyKrKJ0IW6W5sqjnETZMVF6KylO+cFgDyP5doAtlEbh6ox+YxMZZ1L0PXL8iRNNOp6KmRnE5hwFfp5DFRkXGd25uBOPc+SmelDUb4QsBTJeuVrQ92yvTq32NO5MhiDBKqIysh1KGoBxMRWoeHJOaq50otE69HIkjIbhmAZvDTiFOWiygz6NDROPYNpCRJ0Ca5KhCvqxQIyL9LMXoyQOOU216niyPNA5y+/+4j3yr3Nmm2+Qw/wkaCKF3nhUJRbrajDEZChi+oQnXUTCi5ayFlJPsysx95mEobZC+Z6/ldllnMl4259L1Ht7qUWHME+diU3JSCaie039RlPefMc7AdU7st1I87Km/lphdx1uWRIWpdhiNx3la9BP5gxrKxW2NOgxw2w7tAtYqxnthIgGsoZTAOYw1wSbke9ktWiPinEpdFcx55BWdKwU/UoDVnbQm55V5zk+z08knckk1DZycxUb6Lea/kI894eVkIKkvU9klXmA+Yi2idAzavaNoXxnyfZGYtJHTmy4fC9zrUlkIVEdys8erw359nFVGFGpYKR1Yyd8gWgmenJS241yMfcXkX3UjFVF1sjab1o1ToDjhIQHI/+z7tEaPTsE8T8oZMPhKpNu4AghCgNTkTARTu7EwAlIE8PQx+IyFbtxnrqClPt4fPrImBRz04ivJFJeTRZwKm0nzgfqWY9zBu+lGyQoVG9+icUHnBKBxF/xMfwkmmRNv5GuwOcyRrkqQhYInZG2fObQOvL5Z1cUbzLmR/m5vpgYmvIc7bOIe9GTV6NsDZwh3BeU7wzZgVPSVf/U8eKDO+ps5M12yfG+wt5nJ8/BfCerS5ck1zqNRGOt2X2kab4/MD9v8MeCcBDpYswD2U0mtmZ72U592+M7UQQIgfyTt+jhiu6qpLgFu+sIdU6YpULQDeTXB/RQ4WoLWpx2VZ2hmxFz6CGCW2T4XAshZuMZ55bmiRXyytxSbDXFgyPfJNCqEq6BdsLk84W08eMsp7yT0WP2ZqA/z2jPRNIr9k3qsS09iBuRq4TKK8g89EGqcewU3hp8FlE2kNcDdhkYzg3DaDjeFRS3OuUgCFEl3z6+PSpwsp5un8ppn+/khhf0XfCKYSUrwHwTqa7lBh+TpLZoBQwbVmk0qOWUdTNxSta9qBKLB7Cb8LjS6+UOHhZGbowysfVaR8hyQq4wreg3RJsgnAWRYCt8YhJOJ/sU7zXRfqNJ69YO+WJMTj+ZIpbpexR0l5HxIpFvRo0adDKf8RSLHmsDw2BwtxX5naHoplFIdvEiC0bGJsXJRMYndyAVobhTpwIgUXEwnAnLz1Qe3xuxF7opCPcVi3TzC11Z8CPbygbp8H5APevITKA/FKiDOUm2CSSnoYh/1vMb77/BBc3PvnyKeVNQJYxDjylhqo90a3NSkE55nPd/LvLyz77hVTbwi+sLESLVjtga6l/kzF/HpI+B8u4fvYrwH+1Da8gz7JsH9LCkfT4jqyzmOAptuMohiYvMcUAP/mRAGgopCKr36M6hC/HN94UWT4D9yCxC80Tort1ZYhnuw0l5FoyAj8pP5iHCOAvG4ktNeT9Q3g0Qcxqr6dePTr/TOud0Ux6EHWcGsbDWw6NRSSgCarAMNqMvPaYSDTmLjv1ZhXlXpLY3JgqujCkhkxsnS0aWUYsKTTnF2CjyvTyv6dMKMcl186PH9Prk3+daEZtMxBx5TY8a/HwLy88d+U6irINR5LtR/B76LGkrwmlzQ4yMtRG3pTacfAGmfEQBLuX5fCan6sT7V+GxJc8OEWPAd9OYIa83GhKA+bgFwWmZ8RXE2qMLz9DkDDtL+c6wuBE+BiQMxEu+n04+Dt25pjtPTkN6QtqnNCcBVceF/P24DlTPD1zNWt7dL9EbS3k74SeJCp5MSaubSLGNdGvJvAwzD/uM2BjKB02+l+9zdVolFhHzvOU3X7zjppnx7pNLZp8JLwX4pb3+lLxdbAK2izRXhtu/7PnhD74iRsUv3l0SgiarB/ybmtXHGtMJLT0/ROp3Pdnb/bfeft+NImA044tzudj2HeV1Q39VM84lv88eR4wLkoibYquVj5heQDxfWiitiI6Sjt2VmmGusZ38jGIrXlKulg/aleYUKWVSQs04E4RYD5y890KmGBYZtvWJCCSElv5cEGQ9Cjp/fCn/f9or+3SKmS5S9WBbTftETiY1CFMntIbdwZKvexarlmMW8G9K7FHGAuvSWDv5F2SP40iwMK4i7TMpNMWDPHe+TWPKzp98EYWyLOOOuAPFE8CW7WV1N3HvJXDEiDNQrjC9Ib8fyA8Dp9g38ygIGmfqRMGd1m2Ta/Nk4OlKYe+B/C7ZXjAHnX63YDjJfbNjTDLryLCUziWkmC/2gtRFm+beo8XcZti9dEbK82gmOiYhUyOv5/BE0z6NhDwkxP+XjTdcmaLLTHJ3fjKwXh/JrefN2zOKXxSnbm9Ypc8+5SEUD4FiF+iXknjlqojZm+SEJMV8nEP78pG/v3i258OzBz5/OKP9yZr5tRwsIcWQRTVdS3Lj61EAvsNzw/0/5nn2wR3XhzmHY0qLCqA/nrP4SkJMhrVwWFYfN2Sv78A8Er3+6OM7UQQkAEP86+wyJ3/oKG4a+suK7iLDzA1FYbDbXrT+/UgsK1wpABcRYjIYObnFIDdwO1Mn8oxNJJxxJhdvyORi6c6EUiwBmdMqUG7w+jagYmScmzRfS8V3c0V/FpJZh7j0DKuAm6nT+kxUfQnxboWUM7kPq8qhbSQ4xbDPGZpkyGGEAORLOaVJ4JdOBWFYyw2lRnVaW/mZZ3Ry0RGn98BQbMQZqV/q04003fyTbdmUmCRpubCpDCqYk7dedqHJ99I5QdqOlCnQI083nAdvObknQQLXSAXVp3jtKO9LdnhkMDa1OhW34kHeWzPlBlgFpEKWT1Zl4HPxclRBDEeyY/IYWMs4ZVopClFJzHx/Ae58kGDOg3RDE0Do82QAmlyAQh7Qi5G8cGzu55jrnHIn+/vmqXQP2f7R42D21qGHwLC2HJ9ruifyPtmjAHquThTjyw4TNDHA86stL+Zbfn53xeGzFQbJGVAxFU8TKe40+S6erM3GmaY70+x+4Fk833Psc7zXlNXA/qGm+qQgO4jYSgWYfR04+/EW9fZOgm2TJP5XPb4TRYDJ+tko2quMUGjyzUi2G9EuMqwszdOCrLayJhv8CTwclznaBdQYUEqhQ8SMAdtoxqWhT6dcMMLYsp1QgIeFtItR/bI1WL6N5Dsx5WyfRbonmsVnkuYi+38pDuWt3ODDOhBy4XIXTjOuYvqaErtyI+DPFKFV3Ct8mxx7Z4FYpJVBUprF5DYshUB2x9HIBZJt5XnGOQwXXpBvmV5ScKoUgP4qELNIfmspHqSr6M/TSewTZ16LV/7JADMo1KhR/UQplk4o2nj6e9kghlPWgXcG+5mQXHRPUkQmFeV0o40kxePjKHOyAo+cdv1mJxfvWKnEkBQjU9sKFjIZavANkBE9hYyI+QcB1Dit5sCvJP3XVwKSVdcqFfmU91cHYhlQhUfpSAwKekO8L4iHktwJeax9Kc4/J9POfaS6DdRvB0Km2X6Us/t1GM9HVK+xe9ECDGceViOzRccwWMpi4L31hnnW8/vvntE8VKizAaeArVixoyG/l/Eh5El8lkuB7a4C9rKjsJ550TN6w1evz8nfyAEyziQjcvWpY/bJBrVvIM+JRS4anG95fDeKQJQLzvQBnxvaC4urtIhUGk/xMNKdZ6KQKgX0y/YOu++JmcHNM2JuhEgSI2oIZONI9hDJ1wX9WSYXVzG1wxJLrkc5CZSH8j6Io8xc0PnZGwGUDh9ENj+C+WeachNPhh56jBQPKQZsJjHj+YM48LhaJJ++mMAiORFc/dgO51uIyhCyVKSKhEjXgfHpCKPG7GVGjEYKgptLcaiuFaazQrLJk+AmIik1KhILUeu52ci4ztGtxs891VVDVQw0XUG3LTBbi+41QUcwkVh4otKi1Os0IRPjC1M7ynJkUXXM8wFN5DDm3G7nDOeekBmR0Fbxsah5dVpTqV5TPGgpPlbeb9sgW4VBVoW+gMN7oL34G+R7+TufS+cW0r8LtVi3RyN6Bz8D3TxqFnwladOK1OUERbaT5OjuIjKce+qnR0od8V6jdUTrQHMs0V8V5NvEYZhHhqcOPRvhmJHfGfKtFIB8F6mvB9zMcvMXMo4fOMgCem/RvWI886jKCwBsA95rZlXPjy6uObiC3/v6BW40LC+PhKg4XM+SWClidxrbyPshLs2PJiJh6fjek3ue11t+vrni7ddnmK2V97QRJ6HVxy3ZzUHuq+zRn2O8nH/r7fcdKQKge3+az8W7T5/IPJPpp3biTOtzg6s0dm4pbzuy+xY/ywm5IWQW03t8laF8EBbbGDCrjHFmTq5CJoFSk5gjmke23zhLjjbbiP6For2SCDKUtICuJikQI+WNovc6hUkKK0+IRal1LeWCzw6kkBEeUd6BU7KNH2XFGLUizCPlqiGcK/pNidna09qsexIYVyJfLR5EUzCdrr5Mdtv3lvhgBfyykVAF1KDpjjnOaVxvwWmhvNoIeTiFgZIF1DqgTaDMHTEqmkPB8XpGUxds6wFjgmQcdhY1d+iLjuWsI7eOXVvSdxkhaIJXMGr0MXU5mhPhZ8IgQiZAWcxEb6EP6fc8V2k+Fn8C2wiOIMEr6VRToFu5afQgBSBY+bq3kVhEog34LGJKx2rRsCgGOmdphgxjAkpF9m8XlF9bUXBW0mXFPHU/NwXFQVp74OSbuHu/5PCehNCYo0YPUszdhegApmBW7zWrWcuz2Z67bsYn7y4BuDrfs28Lmtsa1SWTnCZ5QTaCJY0LhZunbIuXHR8+uWeRdfztLz5kvK2kcCskpv2zwPzLDnMcCPMC3TlpnBYlmx/OObyn4W/+6tvvu1EEFGCUJAhFQBl8ssPylUb30g6KhDeexof+zDDOa4oHR3YY0b1nXGaMi1yKiRUAMWucsKsyYYH4DEmpDWLKoTtO6bsSCpJMKKqEC7yNyWE4WZollZ8ULVGh9ecx2T/JaTH5+csMm35ND8Yn1Dvt5CezTSCJaRT6NqPtDMtne55/dM22LXl4syS7t7JXv3CM52A3lmybZMJpnz4Za4iDkMzRfpYkqO8KfJ7LBZ4H8vOei6XsufZdIaeh8Xxw9cCH83uOLufjzSXHTYUaFBFLl9h30WkYtGAhneGus8SgUIniipJQVtMl1Zx6RNJdnXj0NqUQJXm26cUmqz+LsBrJ64HoNcM+x22thKZEMAdBFXX/SDMWXEH+PC4CYS0hLFpHimLEmkA/Zjw8zImNFVQyKOzGMNvIyNQ8D8SZA6cx0/MlV+NoYZhFTCGFd9raPLo8ReJCTEn80WJmDmMC5/OGF/MtX+7XvHu3RpnAatWwOVT0d8m6Lg/k9+aUyUiA5rmie+qJlWd+0fBiuePNfsHnP30mn8XCoxrD/EvN/LWnvHOETBPnOaZz+EVB86Li4QcmjaPfcZ6AGj3KiVe9aZwMi0srARJJX64HIaKERG7JG9G5u7lhWFtCrsmOkj4U8px+Jeh/LBQhz5KmWth2KqpHQ8gEPj2u+xTFPmBG2QJMqLVtZWfrqpQWZB+ZZ9lR/m4ysZjSfbRTpxtzWlGdvOjlaWVcaBLrLleJZafQbzXtZs1XH+RcrA88ffXAdbWEXYbqtGgrypB8DtUJiAtFIM49qIg6WPGePxjxoEPWitEqyAJZ5glR4YNmHC1+0ASteLNdijioy+m3JfpoHr0aOyHfaK9SQKcCDKHIcFV8XA+iTtsC0QakgpdFwiKFdLYW3ZhkkRUZF4FYe/LFwKzqMTrSjRY3yibFNhqTdvMmUZu/uY4MUTYm4WIkr0bG3hJ6Q7PJsQcjXAidzEusdBemE3fj4UwwFtUasp0UrwlknjqM7CDqRNuCv1CJJRokdhygE8lvvupZzVuezffk2vHZ9pybr9aoPFDNBo5twbDPIXU0xeuM8kbGkPZSjFjUeYe1gVndC4fgF88xGysp7UuHvbPMv1DUSRQ2OW5jFN1Vxf59y+774IsgOoj2O04bxnmyz67xz84Y16UQNx5GXGlO2XeTiyoIU6pfa8q7SPV1SzQaX1lx3ImRfDMSdXbKswN5k0BO/mGuGWecWFRjrk+KPPH+M1S3QcaBUbwI2ycia53YfYdX4OaiNCMqZm8D5UPg8NyI6tBO7WNixrUTS21yyomptZS4sewQKQ+B7ChzoG2gvIdDO+PdkxJmDmUCcS5kkPxebh5fpwuxSO0roEyQzcNqZBwU+YMUjXEVEj8ggtcMg+Wut7jeElsR10cNx9uaphfBjbIR/aTj+cWWyo4cxpx2yDCpKBy7HDcatAnkJtA1OaG1qEGLD36a6aKCmAXMeqDMPENnUa3M6tM4gwYGzfBQMjyUkvGYDFxMq04houpx05ZGhLQdqCPuMhWAzqLuc/K9GKXGxLr0dVpXRun8fBEkTgwx65iMO2VUicQEqhcb8fzXA/TnisOHXm7+mAqrjmTnHS8vtuTas8g7tIr85PYJhy+XYCLF2UDb5ESvMLUj3BXMvjDYI/Rn0L5yZOuOwkSUiljr2e0quCuwJ5ejSPHOsvyFmIUEK9fVxO04vsg5vKdpn8jYpHsxb43fMOv6o4/vRhGwhtj3mNudZAFcVqCUAIWFFhv5EMEnvXwvph/9WjwIiruO4t2BkFv8TGTIxWYk2JR0U+pTJsBk1jmlw2YT5bPk5Px7fBnpzzTlbaIUd4ASgceUUFxdQz/KKRKvIipoZm89s7eeJhpJGZqkvmlvDWLySVD0F6kzqARj6J7ICrHYSFcxhXFU1wi/YS5FLGQy57tZRCfrq1gGynVHlskMH4Ki7zPiIBuIbkLSSwH5jJEuoMpHrPF0Q0Y/kxM3yx1lPuK8YXQyq14ujjyb7Qip3Xg+2/Gs3HORH8iUx0dNE3L2ruST3SWvNyuabYXaCcVbeQFKYy4VuXuQ7sK26pQTIGah6jHZt0yzsJX3S4WEqRgZCaa/94VsIzCROHNoGxivxRE42yfuwCzx9xceTJRRICqZWpw63cimU6i0EXC1bGRswgOCkVO6vwrE9UD0CnqNioqYBc6e73h/tWE/FhzHHBc1r+/W+C9rlAVWI92+kJo4auxnlvkX8lq23wf7/QNnxcDhWOI9GAP7d3PJXkjkM9uoE615ik+rbzz5ZqA/yzk+k2yKYS0/d9pIhSKeYs5+5e33j+Yu/tM9Ym6JL65QuwZ17MiVYriQjsB2XsgrGY/WU4nmKfOlxtU1+TYnv+sw7YivMoLVSawjNljDIsPXQpgRy6VJpDLx2wXIKx7kz+3TyLGUFpAo3188COW2u0jqta0g/76USh4yQ3knpp6uTCGZVhKEpzywKYy0/voxQyAaaZkPH6RQ1OtIsUsf2vQfHU8X6pQW7OsgLWyn6Q452Znjg7MHrsoDD33NLx7OOWwrmHz2TKSqBi5mDZnxNGNGiIrzWYNVgZvjDICP1vc8K/fsXMFnuwv2XcHbh5eMTQ5eUa47eAbPii0r06JVIERNVjie5jt+L3/BT9RTjmONchpccgfaWNRtRpE2AjGtNn0BoRRDzpDFb2AEoA8CEPsiMs6liPg6kJ31mOS3F6JCAa432M/Lk5cgpATmMnU/CnTtKMoRNxpcW6J7xSRQske5gdy5A6/E4ceIv786G6hmA+tspOkKGVEKERMt1w1P5gfeHhc87GuUivSHguxdho7gTURf5yeexPwLCWFtnho2vzXywYc37LqCh7s5DFLs/dGgsojuZBtU3ok5rhmCmOcslPhDjIHD+yXHZzq5KU+GrJw8Et0sSP7Btzy+G0VAwXhek00hJBryTY+fifzWDGKQ4EqTorMjPhNjivwgq8VxaQl5TXHfy3Ygpee6mUmuNl7IPk4x1LK6yvdyoche+vH1FBsRFHUXcpGqoBgKTvzzyW/eDI+7cJDTrL0SdNembDzlFD7K7l9Shh6ZetlRzDCm6Gx/FWnfE5zDf6Up78NJ/CN59x7Va1knJRARjzjkPOS073L+4FnNkydbfm19y48ur/kiP+PQFXiv8U7T95Y7agC6Nsc7zWzRcTFrWFUdxyHnrpthdWBmBp7NdhS2ph8tPvcY63m23vGi2jI3HbXuGaOhiTnvxiXv+iV33YxhMCin0W1yRUrFbALxfBWI65HZqsXqIN3IMSe2hmxjRF3o0wYlycLDUTIAQqUY24wxICCkiTBqyjeW+l08Abf9WijHrhaC1vmLLR+t7+l8xic3l4xWQkX1IN1H+9yjL3tMVPh9hrscqZYdV/OGp/WeEDXboeS8bumd5e5Q45yhLga2fcnmUBG8xg8GdTAnwNe0ye5+Kyw+Ijz80BD//J4PVnte364JdwVmUBDUKcHZ7DWzryLFTmLfoiKNm8nyzEf272e0lzLuuFkUabuTDisq6QKynThmfdvjO1EEVARXGVQsMYcBX+cJhfcopZK3viDuw1wnrzpp6dtzRbHTVLdO/n6Vkz/05NuBQRf4QjMsEt1Ui/Y8a6BfyagwWXD7iYyS3qtsH09ut1MYpavS6TSQYrAiqiBp1DlJW8cFJy46LYQmCXfWQuKJWcQtwW1l9zyFg9qjYsxhfDqwXRv6N5Z8IzeC7iRIROytgaAIVUh0XI0ZFMVG4ZuCd80526uKRS2VyOhACAptAmNvORzyb5B/Is4ZMuP5cH5P6zPu+5qHrsblmiflgVXWoYkcx5wPl/f8+uyaOlkY37oF18OCL9sz3h6XbNuStstwg03cAYhG/PLKasDowFndsiw6rPI89DVvN0vcaIiDJr8V5mPIZfa3zSPN2ZfyXud7QzCGaBN70EB5pyju42ls6M4V/WXALzzLJwd++9lrvl/f8Hl7wd9+c0W3KaEUINI1BvJAte4wJhCjolgeebncsc4bMhWw2hOi5qo88KZd8tXDimGwLGYdpXW0Y4a1YcrJwS0gaJuKn6a6FuS/faI4/GDg5Xv3PBwrvvjZU7KNFg/RqE4r4+wgVme2k5V5v9RiHLsQdaZpYf+eSWKwx3AUdZ9RPOjHAnCvT1jWtz2+E0WAIC4p48xCAN07xnWRnHQCuhcPftOFxOUXmm9+jHRniuZKlBzVzSjUz8pimmS5rCSRI1pwVgDBYhuYvXWMM2mRskPAWvC5lk4EAY3UIeEHmTopxYAkOX3MHzTJ1ltsuxKanKWTfkwsvdM6UFZAepBM++4CsqPwy6ORXXFwilgGhnVAecm5zzcaNz4ab+gBQm7o10IYmrz99Qj5nWEYZtyU1WkVRkBOTBAAbjLaiDB0ljfbJduuxOjAquhkfz6U3LZzXND0ztKNlj8YnvLp7pyzsiVExa4v2aVOIwT9iDeUI/XVwDLvmWU9z6o9C9sRouJ+mLEdS94elzwcK7zTxKjAJenuIkCA8kasxIaVvNehkLZ+2oSoKFuCfCt79f5cHHuGS49dDqwWDd8/u+PXZjd4NP/Gl3+Om9drcfvNpRhPhRAN42BZrg+8mG+5Kg8YFTm4HK0iRkW2Y8EnD5dsdjWuNxSzgVkxYHUgN54iG+lihtIKkyt01eK6jPxtgelg/xHYX9vxanHk69s15tOS6jj9MjBlDOqRR++FRHFvXkTc2Sj5Bi5FqynonjnKq1aaodcz6reirgyZvDeTGnTSsvyqx3ejCACmFWdOXxmxFN/0DOcl49ygaoM9+iQIEZlqdyY3sCQPwfZ7mn6VM3/jJZo8e9wGhAx0H8m8iDzaCyMBH2PE5+LxZ7uQbKtlHal8xNUG5xQ6BzNGXDElA8sNZ1PM+CnwwoPLYDwLDKVneLBU13IT21ZEMtOHbZPmIKY8gukxzcToSFg4xjFDjzJLTtbhkx5eJVyiX4sDElGYdvlOEa9F1DORkyanZV9KyygIuawKlYaht4SgWM1antc7Frbjul/wer8+FYDmUBDvCzYq8mYpe/joFaE3kqYTgSxSnze8XG15NXtgaTtqM9CFjK/aNbfdjG1f4rxhdywZOyucg6AE8DwfUY2heBA3o+ZpZFwFYhVQueQ7xKOluLZi/ZbGqcMrqH5twz/9/Auel1tKPbL3JXtX8v9492u8ebdGPeTYXsk2IIHAE8KPilysD/z5y694UWzZuZJPjxd0PmMMhm1XcmgL2m0JXmHnI8tZh9WB3lkOfc7opeNcL1rqbOTddoF6nYOG7W/3/JkP33DbzPjykyvKtxbbSbfjKtk0mSRIm3wOptDa7olYmlc20O5K4lYzziPuZc8PX73j5jhj+9NzFl+IetBV6uSLOPFZ/mFBgd+JIjBlzOneE62oAu2+J9/09OcF40wLE7CV2Uhov1MwSGJX1YrjS4mTWnypmb0Z0J0/gYm+1KgYH0UjC32KCUcp8oM65dW5SnTx2dGjgqjmJoPIYSV37LSliEZEKr5MO+XEUisWPXE+cCwryrcmjQcK32vi3DEuZB0ltGC5H22rQGkJ2giKbD7gbKTTGdlOP6rMEpHJjDK2THZm41LexyyxRm0bUXtkh24n0ZAQpibkPVaeohzIrUepKK2tl31SiIrL6khuZCd3M5/ztlwyTMQgICsdfVSog0WNCr9yzMqB2g6EqDn6gs1Y81Wz4u1+QZE5lnnPccwZewv7DNvopACUzYdtRK47LORUN6uBshyJUXCMCLh5YDiPxDJw9nTHf/755/zW7Euu7J6vxzN+fHzBx7sr3u0WOKc5Oz9w/p7odN/uFrRtLmOSl3XDB0/u+YsXX/Be/sAYDT89POU4FgQU265ke6hkbTkqYu0pq4HcCM+iHTN80CyrjouqQRP5g6+fEb+sCbPI7Lfu+bXVli83a3afrik3+nSQDGciWTatPrkcTUSkqMVuLH/vyNPVnrtjjd4IE3T+vS1//ulXbIaa+3dLFl/LZslnchjh0gFoxISkuvuuawcAcxzxy/x0KoYywxx6ituIL2uGmaTyTP79po/Ut14isReiGuszRfs8MC4U3bpkdu2TqagnGnPiDUw6cOtkM9AvNc2VOrkDKx9xycJJDB05mZiaXm44FRO9s49kR5UEKbLCwiv6Y47OAixH2jwIwSdKC65swD5taBY55sHKCT+RXiLYRhNbzegVejbiVz6l8z5+X8iTAUmmKLap01iJe+2wE+EQqBNJacI1Qi6rpimbb6gMrjLk1uOD5u5Yc70TnnmZj1SZ47xqWGYdv7F+y2+ff4lHsx0rWp+xG0o+vb2gNxnRRuqLhrOyZQiWh6FiCJa7tmb0hjofWZctxzFn25bExmKPmnwjLX04OSAnP78Lx/zJkRfLHbOsZztUNHWGvoxcVA1XxYHz/MiH5S1r03DjFvyNd3+Zn91dna6rRdXxm+dv+a35a+7djL/z8IEUu3IkBEVWjnz//Ja/uP6Cc3ugCQVf9WsAzsqGw1jQj5ZhV6BGBQvHbNnxZHEg016owVGxLDsK43h7WHB7s0Q9ZITzkavnW0rr+P0vn6Nfl+SNkrWuFkGQX3hUp0/OxuNcukEVFOMqsPxow6v1hjf7JYe3c1h4vvfRO35j/YajK/jp2yfMf5KzeB1Ozk2mndKy5CCo7j3Vm/Zb770/tggopf5XwH8RuI4x/mb62v8Q+O8AN+nb/gcxxn8r/d1/H/jnAA/892KM/+c/7jmiVpIzeBgY1yXRpN1tlaEPA9WbjvBeKam/tUr6aukg8n3ADMnmuxNG4biMHN+HYW0o7jX1rWS0TfHkuZbCETUpjszTXqYUHQ1ZI173UYvoKKoE+BUC9uXbyJgCMki0UuUUMenmda+JTqUQUmk/w8pRzHuZfQFrPXbZ0ecZYZtLezq54A5iiGk3BgdQeNzKgzIiUe0gO8qeeFxI8dGDPFdU4mcoxCdZGenxEXPwhcyHAnAq8jvDOFZsygJdOpSJRK9QGhZVz7PZjovieALHAC6zA98vbyj0yNZXvKyf8eXFGh81F+URFzSNyxl8wbYvafqcKh/xUfHJzSXdrhBNQSsFYPZ1pNgHhpno8fs1uBcDP3z/Ld9b3HGeyBxfdWse+hoXNcusozIjWkU+6y759HjBF7szNvuKPPesa9k6ZMZz0835v3R/hptmRtPnJ06/1oEPzh74c6uvMSrwaX/FbT+nT+DPTTvn3W5B12WoLFCsOxZ1x3nVsC5aXNBcNwsOXcH9OKM75KhDAgMve85WDfum5Oamorg16VpI24paKMqqsRR3Yi/eXwi+oweFWzjO39vww/MbPt5ccvt6DXngxct73p8/sHclf+vzjyj/1pz1Jw5XTSlb6Z4yIoTL94HqbSOJ33/SIgD8r4H/GfDX/8jX/5UY4//4m19QSv1Z4L8C/AbwAvi/KqV+EGP89gwkEolnXmCakey+wyVQ0BcaWxhM45h93aOeF3QrsQU3o6j8fC4IarHxsks9WnYfiKTXzWLSHxjKW01940SINEbAnDTx1fVI8RA5vJeLYUgmYMwved5XQgn2ZeISRJm9BKFOfoKVoP+6k9QdFWWEyI6awVsGGzBWxDl9l+OTZx2VF9VdLzfGtBaLWlhs3gZU5fCjQjnxTZhouKZXadceTntolZiVvoqiaOs1+UawiWiTjHYm5iZmUNiDhqNOa1WRFqssMHpNrj2vygfmpuMX7RU/2T1nDIaXsw1/YfGaK7vnfHnkt+YFmXLcugV/f/dSuoPrGt1JEdxlj6Ifkjw5pvdoWCraJ8JxH58MLC6P/PmrdzwrhaD0RXvGbTfn5jinHTIy4xnn5oQv7JoS7zV1OfDR1T1nZUPnMn7xcE7X5uK6kzuqYqDIHEYHtIrMs4F13vAw1rx2Z2zHksbljMHQjBkPB9n5V9VAuXQU1pEZT27kcn7oa766WRM3ucS7R0UoAyr5HR6agvG+pLy26D45DS8jsfaoLEBryB400UTaS+F84BT+ycCzpxsuqob/4Kv3GK5rGZMqRzdafnz7nLvPzjj/DzXzr0d8pRkW+vT+RiW+gvk+kG963Dzn5i8s4Xf/hEUgxvg3lVIf/nHflx5/BfjXYow98KlS6mPgLwP/7j/0XynwlZWVYCeo/pRs6yuNrq14Bu68oNlzSd6NFaiYJMJIfPbi05byPufh1zNh7SX8S8wWDNUd6EHMQIJNQZyXGbM3PYvPe44vC/qVhFm2V4bi4ZFPENIulqiob4KAOsnmWY/ICWCD+BIcBCQa14Fh6g4ai8uCeOC7BPINCj8PlBctMcJwXZNvJKwyFBBH4EFm9OJBqMviuptorTrN9oqTaKfYSBDJuJQWJiZPAjFFUSeTy2g5Jf0oR6IJTynIioeHOX9nX/P38pePysHeom2gP7cU2rO0LR7NfizZu4LrZsFXt2vim5Jir9M2RKGOEu8V6kA0AvChIuNM3JGyF0eulkeuEgYxeMPvb56fALm+k/egnvVczo9UduRdM2eTbtSX51ueVnsCisNY8NBVUgCioqp75mVPaR2LvOeqENDk6HPu+xnX7QIfNZmWkcgFTTdadKJGl5nDGk87WlzQ6bkXfP7mAn2dY1JasJ97snXPatHSO8PY5JijMP7c/DF5iEETR4VpU4DtTMBJ3Wj8+cjV1Q6A3//kJdlNhjaiCXG7nPtDRv7O8vQPI+XdmPgzj3kKekwp01uHaR3t05I3/0nD2W/cwL/yq2+/Pw0m8C8opf7rwO8A/2KM8QF4Cfx73/ie1+lr/9CH8lG8/lcFmY/SupSW7CAVf1gaVDRpPpfW0XZyOoO0vu2lxucZFUI0uviDwPF5JrLgfqLwKhEWjfrknBM1tBeaflnK2NAFhrlJgZFwfA/GnT4hrdHA8ZX07rO34ZQZmG8VpjX4SpD6CdEPmUZ9cMSYSN9mQjcNYHeayQxEjYpuX3D1dIv5fsPb6gy9s6etw7QWtI2Eh/hcMAlXSyc0jRioVDiM7KSzRhiPk2x3KoimVaDT2i2Pj4EcWqTFqvDoLBCDUJDbfYE6WrFFKyKsByLw8e6SzlmhKkfFvinpNiX2zoKB7tWAsgF1n5M9CPjne814hvgOJPuxUAa0jozesB1KfNAch0wIRF1O8AqlInnpuJg1FMbRuox5PvD0yYGL4ohWkT98eMrNdo7WkRjB2MD5rOXD1T0vyw1P8j2Xdo9H8/P2KW+2Sx66Ch80PihCkBFh9IbDriI6jS1dYgCWuMFSVKNIgDeV4DlB4eYBViPLVcui7Dn2Ocd9KdqItBo2nTpdU+NMBF4hSJdkjhrbaronjnLZc/cwh2uRMAujVREHuWbLO8X8tdjlRTtZ6clnnB2guhW7fD167n9zwc1/auQHH37Nx2+ufsWdJ48/aRH4nwP/MnL2/cvA/wT4b/9/8wOUUn8V+KsAZbakuGnontTEi5Li+ojddXTP57IWJMjpn5KFtZOVnRkn5x3xuesuND7PqW80+WZg+alnWGe4Un8D+dcnh6BgBBjM99KSbj80cuoL/yaJVWT2n1bsyikoI7sfOnxpWf3CY3sZHyQgVD7oYSkf/uIzOI4zuqcSHa06jR7lpjW9uOawkAvtYTtjuWiYnzccVC3fP4lslIBG4yEx6dqJt6CYhi2fR/pzT3+BKOGapGI08j/lOFmoiZoxntJ4gBMHX5mI7w3KRIpqpA8Z9iA38VAHFvOWwVl2bYlWkSofKa2jzxx97iUHQnBJotNoJxe7L2QWpvKYPBBLTzwDo8TgY3SGVmVYHdAKQrLjysuRRd1TZSPNmHEccj5Y3fOD+TUAPzs84Q/ePaM7FOjcY61Ih89nDa/mD/xo9o6n2ZYLe0AT+Hy44ugL8nTy32/mEvOVHIZCY1GjKAK91RxuZjKu1TJXt8cCgsIvPdiIKWTD4rzm7d2K4JQ4FSlZ+5k+YTTrgD8fyUrHeBQg1RxSsOlCVsP925r8QSTaKFGZhhxwinILiy8lQWoSQPULWXHn+0j9dqS4aYiZ4d0/vmT4z2z5tfWOn//hSxYfm2+9F/9ERSDG+O4bN/P/Evg30//9Cnj1jW99L33tV/2Mvwb8NYDl4mVUPlJeNwwXFe6sInu7J7/vaF7WyTlXgCOffPj1KOBdeS8fjB6tRIgtFEdjhaxz8LJWHKVdnjTVw0Kf8viiFWQ930b6tYwB9iAxWP1KoVRi/qWVTsiSv18mQZIqWlaf+FPg6CmIcy92Xz5X1G8g32W4ZDCiJ/urUjTwwQRmi47jvuT+7Uoowb24+5BOEeXllB+WssUgKe8mJBnSqV4GzHxkqC16KwGWwCkUFfXo2S+U5GTWMZmBekXoDKqXPIFu0NIFeHG3MYuRInM0Q8YwWKz1DM6gVGRR9mgV2elI3OXorYBkIY/4RUDPRzITcIMhOIUtHNYGisxRZO60chu8wehAmY9Y65kVA4uixyiZ5V/MtnxvdsvNMOd33r1ifyxZL1penonSMUTFPOt5Uuzpg+XnzRP+vn/JwvaEqLjrZxxdzrYrud/O8DsZNWJQYjGGKB6V07DJoAqcv7dhXXU0Y0ZfWIyOHNqCobP41tDsZ/K51Z6zi73wIPYZIYun+Hd/5lAKxoNoMHSrKW/0KZTWbowIqFTykXRiNKOdbL8E85Lr2eeabm1OIG9168kfxHLv3V+qcP/UDq3gi7/1HmdfPl77v+rxJyoCSqnnMcY36f/+l4Efpz//G8D/Vin1P0WAwV8H/v3/KD9zXJfo3pPfd4TC4s9qzN2BsrC0T1OoSBMZa2m/Jzvr7Kgorhvx31sVdOeW9lLTXBpqwB49vpjWfZ78wRNsgc9klne5+AxmyTjSpbBI7UVDMDGzZDWpUlZBJLsxuCrSXkWiMszeyJvs6lQMUuGNGkIQjUC1j0lXICdwd6bpg6LPC47p5MQpTCMyXts9biYmQ41xjvgBJIrzxMvXAxirCFW6okKK3ErAXDBp2+Ej+TdckbWX4ucS2cgcxeUjJDadOtq0uhLbMjrDu3crATSdrDFbp4hFIFv1ZLkjKxx9YdCtXF7RRjARm3mKYsTUEZ9EP1pFYR42JcNgUcB81vHB+oHaDnTeCt/A5RyGgvNKxoF/5+2v8/X1Gm0DHz29O63MtAoU2nGRHWlCzhfHcz59OKdN+EAYDNHJ+4NXj13fYiTL5UBxo8Ftc3Qrp/3LV3f8+vqGu36GVYHeeN5uFvT3FbrR2CERkK56vvf8lsI4Prs/T/ZqSZ0alRRFgFwOkuqtzHtulgJa1GN3JjyCcApOLR4kZdk2Hp9r2ksjOJeD+lr4MLtfX3D/ZzTqz+7pHirWv5sx20m3nB/+FDwBpdTfAP4Z4FIp9Rr4l4B/Rin1F+Sy4TPgvwsQY/x9pdS/DvwB4IB//o/bDACo0ZPfHCV1KDfoZiRmmjCvyK73EOc0L0oJY2geAZaooL20KFdRfPlAPjj0UGHGjG5t6JdyJ2oXcZUGLNl2oLzpgQIVZS3oK9EmFNtIkRSAwzy54KY5zhfi728GoXKiJF9eiDuSjpvtxa5Mu3hK/Z1WNiETP4SQR5wSULDcBLRTEDV9KAh1SOIgleS1MRF9RDeRHcV8Y1gI1Tg7cNr3y2tVZBuNGwthwqbn9qUIaLKlrCiPdyXmoBPzcPKxi2AgTthHKT6FobGo3mKPoHYSiKocKUNAOhIxBVGMQ8lYhSQG0adMvdx6XOoWFKBUxCBkpG7IZGWYhECLiyMfnd2xyjv2Y0HjcvZDwbapCEFxu5vR79+DQaMXI6+uHqjsyO9vnlMYx4ezeyoz8kV7zmeHc+6PNfttRexlE6NOuYTfeBQem7mTFHvoxA8hZDC7bLisjrw+rtl2peAe9yV2YylSl+Vq8f+7XB/pneXrzZLmZkaezEmCBYNgAL4K6EZWo5IRKfTlmOjL4iSdVn1Rxs/J1di2HlcZDi8szTN57uparrWHZznH9yLjsx776ZzzjwVrc5V0tRNF/lfefzH+Q/iE/zE9VtlV/Kde/NeIRUasC2KRoUaZLVUEvW1wF3Pa548EaCH+yGuPWlHcjxTXR9CaUFqGVc6wkpTW7CihItEIfdi2XtZ+M4nKbi80bi6tev3OUzw4opVq2zyRmQuSBfdhek752kTLdHXyDewitntsvybu92SwGfI0kxeJ558yIfrVo524HpIrT6IYi3svpz0ziJehPZKyAVNKb4rSOvEN/KSnj4xnAb0esOlCn5Dvbl+II04e0KWXlrgzqNJjbMBtc2afW8rbR6zEZ0meax957q4Wi7UJ6UZDmDvyxSDKulHLnOw1cZSjTmXJuTjzzKqeVdUxywZGb9gNBYMzjyBdY2XVuU2xa2cePRvl50VYnx/5jau3VGbk59sr7o41fW9xXSYgYeFRgB+10JRHLTZdNqLmjmrWY03AeU17KIiDIV/2XK0OYr3WFLh9hm5MAmrTGjZhHZNbEgrC0ZLdWbF3S8VyslHTKRY95FFi1xSnTIbJPEU5MYBRTrH6mWL1mUOPgeZJxvGFpruQ4pttFfl+Uq/KyFXcGKp3yWtyFC+MiTb+9/4X/+LfjTH+xT96/303GINKwTiiMgvtgPLyS6hR4Zc5vlhgNx0zF2heVKL4g5Ntlx4D48KCnpNteqJS2KOk5bpaQkxdJglDFDBaK47BTsDFfC+Jwu2TSL82VNdCMCrvZNY/vJKVpDjZCsp7Eg0pqbi2VScE3ueccgtsJ8XHVUJLlkQimeWHdaS/EDMR24G6F+nrhCZPXgOmFdzCttIRRM0pgn1YPQammFEOVJ/F0zgyUVGLG4N6Uwn1eRnpV6IfEGfhFEm20qjKoQrRBLhRqMAhmxKNZfUYk2W42QlHQ54IBq9OAizlBNQcXAmZ0KizzNN3Gd5qjPXM6555IcpCQBiLbU2mAyaR3Q/bCvOmkBCPIF1XyMTck6N0T8VFy7puedMsuT3MOKZAjjBqlA0s5iJcOm4r2NsTMBtthMpzdnbg1XJL5y2brmIchaQVJqAvhZCqXp9MSKa2Xfdgg2LMNDFXRK+xkzFsyjGMRuZ6c1An7wixlpNiGJVI3E2XFJAvRrCR2U9zlp+PBKvYfpjTXalT52D3Aji6MpGMikh+a8g3pNAYcUFylXxW9c23N+TfjSKg07HaD8SzJbEwYikWo5iHzjPiVU121zD7dKR/Nqc7syhknldAvpNswXFdYPePuWv5bkQNgXGVM840Y6VFP5DJpsB24m+vU3Z9fxHonkQOe031VmzGqneR7lJO9HH5GFSRP2jyjaxmdKJqwgQgQj9P9mGtpAIFK0XBjMlOupTIq/5cGJDFg6K4n5KIOZ0S0SZSUqFOUV84ufFJqbdRi2eebeSC8olW7JbhhELXb1KgRafognQ4k4+C8gJMhU4TyiCdxCjtc38RGFYCYiov4hvtVUovknFiWEXGq4Fy1VMVw4lOmxnP0/mBdd4yBMMQLKUR8M4FQ+ftSVCUW8c8H8i05+1+wcPtAnOXCRP0G8ak2T7N0rWAov2h4LOHJ6heE6uAmY3CSSpHisJxOJRC6Gn1STkZLcQqcPVkxz929RqAd+2SwRmRQXuxYlcmohSoBLJOnRUKuREH8TiIlQevsdcZ5b1YyAmOkhKnXNJGKMh2Sd+hOQW4EOVzVO83qNEw+72Ss587hqVh+31Nfx5EQZkJFyQ7SjfWPRGCWnavT1F4k6LVVeKgXW7+4RP5d6YIxIs16n6Lvn0gXJ4RMwNGQYhkuwE3zxkuZ+S3R8rPHjDtkmGdndZbIdPkm158/AuDPQyYzjEuC7JxpPpyR5Fb+icV/dqeLMGbpSbfRknKbZLNdR4ZlwFfKMa5PnnLZRH0qKW9Xga6Z45xbph9rahuHpNfQ6YYEng3uRbnW0DL6nCKyMr3kG+geSEXUn8WT1Hd40p29nqUCygYIBdRTUgiEXuQdtB2iu5SOhDdC6XYNoL8j1Ezrj1+Lbt1V0rn4KtIuBywhSMGMcKIrZGZ2YoXIWMyAU0cArHyShLcPNCbiMlFTHNVdZyVLc+rHYV2bMYKFzUvyw2VGdm5kj5YMhUo9MgYDUdXnMRKvbd0zspJ3hSM+xx9MLJJSSEskgYt70/I0/t4ryUxKRcLLVM78lxSg53THO5qzEMGJlmvjwrdSyJSvhQC0S/2l7RjxsOxotmKqaApRFDlB4O+yaU4zyPDVQoiubfS/ayTR6HT5HcGe5DTeriQ9eG0ow1eXrs9qpN93LCS3w1Sd3DVE44Z5Rc55W3k+NSw+x64lZOC7FVycBa/RHc5QlTk7yzVjaK8l+I9hakWO2ENulKfRudf9fhuFIEQCFVGfHWFvdmhbu7Rs5pYZIQ6J2aGbNfjqwy3qrBKkX9xS3ZXMZ7XqVgI69C0jugU47Igvz1SvBtx6wrlAmZ7pOoGsn1N87wkGI0qoHkmH8wUXUUQY04VJtHNIylJ4rIU2d5IQMWFZ/ejyLDIqN/Gk6MQCEBoW5Eb9+cIip9cjaOWuX+K5dKDOsWNiYORdB6ujqfW02zEOKRfR9xi8o1LhqtOugrgtPsXCbOiuLOCa6jHv1dOEUeNKmUP3wYFlXTzJg8Y69HL1NqnFsc5zXjMhfdfeK7O93xvdUdlRlqf0XnLx7tLNo3cSE/mB87zhoMv+MOHZ2zbkkXZ8+HynkI7Xh/XvN0vBLhrZfSYNBB1o8g38h4KmUmlkzMVgIHkopvUeGsh7fjW0B5kz2+OmnyAmKWPNIGhbh6JS1Elvn57JhhBYvJJWxnwjUU1hmwnnVXzgcMsB9Rg4Ghxaw86ntyS9U5WfdP3GYAoaVOm0djE75g8J8bkeKTT16IGtjmmFRr45ofgrkZ07lHbXDZGCW4Z1kJOojMUbzPRXmxEQORq4b+U90KsG5I35bRG/lWP70YRSODf+GxF99ElxVdb2B1Qo8M0HWE9l0Jw30jISJWBn6GPLfnnDbEuiZkl1BnRStVTMdI9n1PcdZhDj5/lRDtHjR49eOqvO1QoMYOs1Ma5CIfyPZhRnU4eEevEk/vQuHyk2eY7SQLqXni6DwfGpSXfCLKrwqMrjh7VKcjSZZwiucZlpD+Xi1n300knpic6nf7DUtGdK4bzgPKK+m0k30B/pkUDUCbuwFFa4ykleSIFQbphkqHq5JCkR9AHyzBqhmR0Ih6IivigGItIftXwo6fXPK2ExvpVsxZbrsFirOfY5/zu2xeMgz0Re2JIxcVG+tGeuP3duxm6VeyWnuvFAu803BbkG009Fc70eidXnfwg3VU08t67SrCZ0CeBWRDsyNUyNuX3Bu2MhJgkwVTUEIdU3FVC8itZdfIuJx/kc4lFOBGc1NFgOk3UkeHKU18deTFrub5fEp1CzUcYjFiAp+cZzz3VZUNlPRHwCWA0W+FYjEv5+dlWxlGQDY8e5DqIhehDOAuMrT3RqrkryLcSFOOqSMxEY6DvcvK9prqRa2YCoJWH6j5gBtlyiaFNTJkbv/rx3SgCWqG6gex6z/hswfhsQaYVat8Qmx51bNDLBWFeortRxofM4NdzdDegmg7VDyhfEDNDNAZKySI4fDgj36T1yjw/RT77QpMdhcOunWI8SJ6AAuxBLrCsmU5zcT7So+FgteTtlXIqmUG84DzgV54ujyfzD9Mq6jeK8iHg00pvWIuZpR5ktebzSH/hBXBSyd22V2mjwcl9uBk1w0JkzLM3UaSjb+WG9rlcTOVdZFik4JTyG51MFrEp8962abeqVPIx0MLlhxPoxQTRHHN+ev2En/KEEJR0CSaS5Q7vNMd9KSNE8j0MRRBWnYbYGbrjjKFZSGczceS9wt2WckrvRI49ybsn56ap+LmZwR7lRJsciX0+kZs4GWtGJa12viFFkXHa6EzZAYqEIXioP7eyXo0SBBoXDp15Qpd4DWUkXvasFg1XsyP3bc3XX16gBg2lh4P4O0SdXJAWI2dnUmX7UWjU3aFA32X4uae4bAhB434xp7yVjtIydTCR+EHL+aIRgtFDjd6Lw5YcDmIrPy7lGrH7xMYMj25WzdNkU99BvomnAJqskcLjCk0w3/UioITLrrZ7bGbxqxK3rrEhorwntgPxYSubr6ogqigR5UCocyhz9KGF0YExKBUwnXgO+sKyf5WTtZF854V2PAjnPxhS16DIk5+bK1W6cRSujBTb9BJdpLqT1aLET4OaRYbzQMyD0Ht780skoXEdaNASWd7IqJDvI/1e058JOGUbCf9wS7HDHmrYK0v1Tp9Au2wfWXwRGOaKYSkSYjMIZ6LYipZgIjjlO2E6DmvpZpQDlchV2sdTxJVOM2a2V4RcTj3lUwZAEXE2wqjp39bYo0aN0lZ3lyPFsqesBiGtUIh2wSPBpVHBoLFbQ3ZQpwTiYS2W53IBq7Qbl5PLdnJzngJh8gSCptWnL4Ua7qbgFgvjTIq56eVmsS2goH0qeIceEQZfSMYtWjqwYhNPlvP9GvoXYibqnEabiNKiY1jUPSHCx2+eEDa5jE8zcSEmyIqSLJDVI7O6Z3BWzFUVDLsCfTToFy0/en5NiIqf/P4rzj8WzsfkMj2ce4pnDXXZ0w0Z7esF1bU+cWBUTJ4RRVKmOiUSZBPJtoKXjLOUxNzLtiBrpYMScFr9Uojutz2+E0XAF5rxxTnZZ+/Qtw9gLwilJSxKtNGoPCPuDtC0qBCgyIm5FR6BV8IpWFaSZOQjMfWV2okdGYgL0bCwFJtAvnvc45tO4sNcIU49+dHjM8VYa4aV4lhPmgBNlkxEik0yg9wrTGforsT0k16fEORohfMzrgPbH2jmn6eIKSUiID3KjQrycwZnGNeBqCLDE8e41nJjKbBHTfVOY49py5CpU5z6Y7hKGmGSU62SAxmvIWohjfRrufgm7oEZgADZdTwZWrgaYqMwjZGLNZMLF5NUjztLHxWsOsJEbDKPmQJsM8oHLW64KZF4cslRyU5beVEz2k4KQJZOe+1ioidrhpl0A4JzCJgZUnuvvIxipPWnTnqNcSk3jEknqKxo0+vQYBtZBe9fStpR9qzh1XrPcchoyfFeMBHvDA/bmUi9R+FQqMUUkQfZqqcoZAPRD5btthZhmNOYnUFZqN7f84+/+JztWPJ3//AjLn5XNCvH9yJ+lorhTDqq+3dLiq8zFvcqJR7J5+DNYyp1LIKwOAdNcW0kDNdOBU9R3E3ks2SiaxIJLEXr8V0vAmjF4YOKunhB8ekN+m5HvFwRKkvIKnSVofMMmk7WiTGidy0sSknEzS169GkUQFaLndDlQq6xbaAKcHyqOT43YiyyC4/ZgkmUFFXa73upqGaMtBeaYSmuN42SOS7fSDtPFsk3iuygxeFoJeUn26sTxXc4D4xrzwHD7LU+Ba6iZJaTbARxkG0Hk+zJwF2OZCnVtjsUtORkWzlZJclIbnxXTdLiFDOuEG17J6GlkGZjCy7KDA0JExjk74aVOpGgJr9/20jhc7PplE4sRg8qGHqfonmUUIJV0sYXD+rkxjwsBYRzcxk37D6h/SlodFgJIKq8zLR64NSNdZfJralKWo1ERNSDOhWxKTkomkdzUnvUp65iGn/E80HRPFO0H4wsrw58tNzxvN7xpllyd6gZB4vSAWMithhQKjLmlnGwxIgoCgvHxfrAMu+5b2tu3y6xtxnaShdlj7JCXn244c89+Zo37ZI//NlL1r+XMSxg/2sOKo9qrLhHG8PYa6rXGcWDvJ3DAvpLQflDHjGXPfO657Cr0Nc59RtNdojSFeXJuv4gRbxLXpMnl6pUMAkiuPu2x3eiCOhBgIzmWc64eM7s4wfM9gjMpBCUGaGwmF2O6geJXHYeve9QhZV1otYyVqgoqjqrUUmL4BY5eozMQ6S5MnRnGp8pslZ292OtT20pJAZgqU7Jw7ZDZu06reiMAHTFLjLMhWpbPIC/FatrEHAr24uHwbAOuHmgXxnqa5LleQonMSSxU6R+I465UUG2zRnWGe3Cn3bbYlKSsIKt3PDdWqjP4zKRX5DWWQhLwgmwR5V0Bt9409OIOJ08w1I6lfJBLNVUBPegGGslBCUjpxOo03ZBTlv5QXafbM4SrdsXguZHhSD1vYwe0SAhIiYZvhSIFiJAFuIJ4AoZnERbc1ntZfsE7s2kkAoDMwF9gGnNya8xdlL4+nNhMo7zgH3S8sOnt/xgeU2Iml8cLvjyYU3X5Njcs5q3LIqeyo5suoq3TYE/WGHnzQd+8Pya2g78+O1z/E8XzPZShKOX4tQ9d7z46JZXiw0/vnnO5vM19ddGIsaeOzCR7F2eQk7kPbD3VlKpC1n7Dc9HiX7LAh88uadzlrefX1B/YSnvIspJNwNQpwyDYano3pf1bb55NCslgB3SgTZ8x4uA8pHifmRYW3yhaL63pnzXYu4P6C4j5hY/yxmvauzOoJuBmFlU16Maj8oleixmBj8rUDaKc3AmJqG69xJP3itMG+jXlmGu6BdKPP0TEu9zBQOnNttVGjcTxl6exD++kGIwzgVHmH8tXIGoZC9bbDXNlT4pHYs7GRmGdWQ4C6iomX8ZpZrXKrnNyAqxSO2gW4iCrLhX+MYmC/N4CjsdZ/LaTpbm6X+Pu2TpBFwVcfPwqELM5fcUG2qFKh4troMVQZYeQOW/DCL5Mq01v8FCNE3K7Rvkayb9d5wJbuHLRG1NhBrTknb+wrWICYn3pRTR7JBm/VqlSDL5eZOycYoDczNBycVOF+EsBMS8QwmHggD9VaR930MWUUYKZlkNaBX56fYp14c5xzbHj4YYFHkSD3XO8tBUPLxdonoNZWBxdeA3r97SuJy/85OPmP80xyhon4bUZUWKpw1/6fnXNC7ndz77gPiuoNiI1f2QjERFVqzozwL6WQf7DBU4EYvKD/ac1x11NrLKWz59uKD9e+dcfBkhRnyliLlcn1UCgY/vwXA1QlAU12JTdjKuHWXcJcpn+22P70QRmFSBupf0mJiSVfPCYm8P6M0BvTf48zl+noPW6EauOjU6otbEPBMuQDPgFgVkYl0ercZXBkLEjEHoxGPEdob23DDO5OKc2tSQPc6qwUgken8GY5phJ6qyq6G51CybQHE/4mZiZGqGQH0D/VIYgTpd4EQ5rYdVpO0V1Y24BKMS534p7rl2b0T1V3p0pxO7TQg6fg7DhWTfTak7+Z159BbQQqkNOUQt7kQRwSWmVGEVFMEJ4hx10ikMMr4MZ5KJOCkUJwVjtOHEPYg2PoafRoPO5eu+klnfl9LCP96cktcHEByneHJ02teTItTN1IHJNeGriJvHU1FTQZ3SgZUXkDLaiG615BlGKSghD6jaU8wGYpQNR+wNZuZQwOf3Z/R9JgdlSHbpUXG4nXEI0rUoJxLyOHPMLxoK6/m7r1/hv6xZvBGmZfO+g4SDLM+PPF/u+HK/5u3bNfY6l/VxD24uXVPIRL8xVJ5y0dM3okMAGC4CZ+8/8NH6HqsD75oF/+Effsj85xnL25jYn99Qszo4vtAcX0k8mvIK+6Y4kd1EI5MOhlQvsz+NivA/jkfINe1lJiy4JqBdkLanMMQnC7I7jdodMW8fUOcLQp0T6hylFMoHVD8Qywy3qNCDwxxHGSOsRo+C9oyrDF9KmAnIhVTsA70SwGZiYkx0YtOJotC8i+hR069lxp2AKdIapnliqG9ADxFXCjZghki5CZJTkKLUpR+fgDZp/7JDorAqxRg048pLDp5TkAdCHtC5p67lgh76TMxLredqdWBZdHxyfcnwZS2Clr0+UWujjTAKLqBHhau/kVxspMApl7qGQS5SVwlL0XQa3T+uqmOYYsBF+BIGuSkn8kvIpVP5o4+YB1wR8DN96lKYfqaRf6MH2QyJRPoRkyB1MyrIeyUcfE5aCLz6pRDR6flVUHCw9HvZtSsg1qISbNucsRHTUIKCbYZNEWGml2RhFZQg+GvpHg53Nd1dRr5RWOD4XiCeDxJE6hTZbMR5zS/eXTLuc/IbS/4gHWZ7JTyDbNVTFU6i4Lyi2wp/QA+Kce15+dEtf+bsHW/aJT/58in684rLn8uJP854HI9AqObzyHgxYuYOP2jMfYYahXYcMgFG7VFch/N9IDsGst23I4PfiSIQlQRoRC2ob/ngMd5jjvLC3brC5FY6gkN3EhjFwhBMjd416ENHLDLGVYnpHObQg9b4KkN5SS/qzi3RaEwXhC8QU0KLTih7lPHb28RAm0kc9eytxx41rprCLR8Rb1dLNJrtHpWK02569mY8zd6+1LQXlj7lFgQrKC46kZJaRdQmyYcjMWrIorDZgLNZy1AO7JuSobfcH2oy4zlfHrl9oRl2eTIiebQl1x7yvZik+MrQn2uh4CaJ8oQzTPHeKoDdiyOR6ZHOYnIl8hPSLi3C9B5MXocY2ULYvaG4k/fVzcxJVajS9pDUXQQLJHCvuxTUT2SzGtVAfpTv6y+gPwtCwQ1SiKZRYSoCE3swTtyHVJimJF7dWdyD2LWpVMRN94hZCCD8yKUY1mLdhjLYreAZ/XkkPO0p64HuUBBbA1lgPGaM20Kckw9Kgl8M7H7gMec961nHouy5P9anrEWi/N5+5Th/umNdtvzu7QtuPj8TxeadvO5+LaPROJfOiCDF3c+DsBqPFn2UztGfy0igt6JeLO7lEMsayeoYF9+eTf6dKAJSiaE7E0BODDgDWivMtkV7T5xXhPVc/AdjRPUe1Q7EuhDS0KFFH3t0aXG1/Fp222FixM+L0961XxoKBdneo8eA9obWGsm+8ykAM0YIMvu3TxThQYtz6+FxdJlaZZ+Lz1tfJAQ7xBOgpULE7vtT0TJtiekzhrkIgqbuY5qtbZt8A4t4QsCjibSbjOO8olj2WCudTHtX8dmmRJde3I+WA8Er3DGTdtaJD6H83nKD2aPcQKadWmy5kSV0FbKDPpmNQDJImcVEOY74Rp388X3B6WQ2fSoMJp5ciwQ8BNPIKT0lLSmfMIxeJSdo+V31KJTdkIk+fgIsfS7tL6O8ZttKER3nAnpmB07KPGEDJoekAHZnKG/lVJYY87RJqCPjpcPOR1xKT8qvhUAUcskDCEsHg8YtA2458uLJhlk28NntOeohQzuF9gaV3JmU2AYK9vN0xNZOMAgdxJH4PifmEbsayHKHc5os8xyakt//ekXxNmN9I7LskE8nvig+QxnQvTpRf1WvUZ2Wkeuyp54NdG0ObwrqN5ryNlnv2YRrrR/9OH/V4ztRBKJK+/etoPDthcaMFhUiunfo3QhvbmG1IJbiNUCMKOdRmwNhMSOsZ+hdi933hKzC1RY95qh+RPlANPZ0c3Yrgys0+d5jm0Cea9pCMa6EDmx6URaKK69inCtAJ+2+3Ej5IWAb4SWEQjPMjXQKmeQioGCcp5Y0RILVKQUptbQJtdWjPBdRCsowl+BJN4uS6OvTPrjJGI6WYT2QlU6UhvsM9ZAlZmA8SYy1E7RdWv10Qc0ejUcmHwN7FAs0SSWSkz5qIaCokE7/o4Io3IRgobsSa3UAm/zx9KDQZSL55EkNl7wMJq+8k7PxMCkdZa6fbM4gUXqz5JnQQbYjMeyk0OpBCtKw5kRqamfgzhxmPpLnjmGw+E54/7ZVp8QpubHE8jt/eeTJ4sixzxlLQ9fmjMmaLs4cuvQYHaFUlNXAh+f3PK92/M7bV4TPZpSbKeMvGc7knMJRXSW7fGcMPtdsjjPiXUEsPbOrhiIbObYFrre464rizrDcyVZFjyI2kyRl2aJEI92ZbdWJValHISvVV0dy69lua8zbgvJWOlcUDHMpTP1KsKkJa/lVj+9GEUg0UZ1MO0IG7ZmWMFHAWo1Rini/QVtLnNePK8EQ0Zs9gYWQi5oBexgYzgqGs4JsI89h+pCstMGV4lXYnYkbLJFT5LirYVxOefUJOc9lLpu4+NFKe58dFNWdI9uOZAfHWFuGpfkGiAbjzKaMApExS6s6AYxJo58Ky8RPUG/FqWhYyXgiKx+Z7X1fMJxr6rOW0XpGSszBnMgxplNkTboBHYlchNBGE4nIDNLmT2qzaaUUzOR9KASU7DgpEtNGZCVchJgH1JAcmNP7NzkhRYOQnJCCKrwGeZ7+PCULpb361BVMHochjxLVbhNA2whlOzixRfOFor9IEt0s4oqAygNKR3xr6e4KYdYZ6WzGRaD7wGEKj+8N+Wzg/fMtL2dbDmMhOYLeUOUj8yf3AGxbuVuKzDE4w8vljufVlr/5+a8RfjKnenhkOZ6yKPI0nyTjELMeuFwfOPY5obWwcMzPGmIUG/d4tOR3hvJGiDyml/dQCjKn4NX8QWOnrUoObga+joSLkXrR4ZyhuZmR3RuKe0WxFY6FS2C3CIoET3Hnf7rwkf+fP6IR/rNtRbAz7Ti7tcaVOWbIKB5KitsatT3CZocqSyGkazn19GZPXM2JVqObEVtYxoVlXObYxgkuMAT0Nj6e6ApcoUQlGKUAqSBzf7Ayi9km/flMTtF8ly58C3EJ0ViyRuzQ9SDZCMPKyLpxhHGhReKb1IMgF7gvRUpqW5MIRN/Yq3s5GaJWpzRZ5eQ59QBma2l0hSkdqnZ4HU/bguxB6Lq2ESs020XUMaK8MCBRsjaKWopMfyY3lBqnU1PaT4A+neKcPAfEvkyPJvH15fOawFLtFEEJOSeYJAiIws4Uh2TZq4c6gHs0Tgl5JJTizhtyAfd8LmvYYZkKZFovBpvm+V4RBoUAC/La9TDhAQq3dly+2HI1O9CMOYVxvD9/4CrfM0bDvZ7hokaNOa/WNzwt9nxyuGRIoaLtkDEvBkJU/N8//iHZH9bk6aCQgyFxBNLB4JYBfd7z6nLDs9mO1/s1XZujskBeyyarPeawy8g3QqoS6ziVAMAkhNJy+OQ7pANLrlX9pax71WrAmEizK1GNJdtpint1MsYdVlEOlyGtHtdeitKy4Ytvuf++G0UgEUD6C9H065SqoxIDLGqIxpBvC+ZfL5i97si+vIV+AJt+BaNhGKHKxZTEiz7AV8miLG0FghEX4pBCNkwL0SiGpSYkIc4jFTfJVp3Me91TT/eUU36eGST2zGeTw44oxEJyEupTG9s8j6dgiJj0CgTSmk5O2qhlptVOlGbT7HsC+Rx4IwCRnwXwCn/IUIOWQM+TFkJOkhFFfz5dZPzS7zV1RIJrRBH+WEVIPn9TQpDOA2UlF/BxU5F9lTH7KjkcZUk8NUS6tWJQ6pdwDNNqyht1snCfknFNB9oLQOlWwr8XfrU6uRzZo9zUw0qeJ9vJezFxFabfY7L4kuTlFOy5HFjMOs5nDWdFwxAs7y/ueV7uWJmW9/I7upjzd8aPGL3hab3n+/UtB19QGsfTes99N8NbeeN//2fvMfskAyUOPjFxH3RKiXLzCO+1/OUPvuCD+p6jK/idm1fc3C1QJlIvO4psZLeviducIrn/uIrTKBTyZGvfy0E0cUiGRVorr4MUZh2JoyEMoDqD3WnKW+m42qeKYSV09Ogj3RNPftFxOeu4mh0ozch/8C3333eiCMjFISDRcOVQnajS4tnACMSjRc0dsRzZ3VfUn8+4/HHB7OMH1MNOxgJr5b8gKkOdZlmrGZaWbC92Y2LsYeXPCFEpOzqyI3QXGd2ZxiWG3CQ8iUqqsy/EoGM88wQrJ65yiXZ7VOn0lhNsmo9DIRwAfdYTdRByitfEXoOJ6NIz9HL6zM5azmcND03F4c2cbJtksSnIRPwItSjTVqK/HdqM4HLKaykE4yzSXSTGXxVhPVDOBvrRMO5ysnsrGvlR7MiKOy2mrlbm7VALBdg8SKZhm4uFF1rm6b6Rojzx/eVN5KSatMfULrfyPT5LdmqFjAtS2NNJFTXRK3QjJ6Pp0pxd/HIByI6ynh0uPbF2SaBkxXMxE4xCX/S8PN/xbCbRZS4atIo8r7Z8r7ql1gMvsge6mPFVf0brMxZ5x3neMEZDpjwf1ndsXM11syBExdv7JdWXGbZFBF9a9u9E0SkMl47l0wN/7skb/uz8DT9vnvD7d8/Y7CuyZKcOsN3XhIdCCsA20anreOISiPeDqEVViPRnIjAbZ1LwlRN78lAFlPXEXgpAvk1j2kI0EyqCnwXsRccHF1vmeU+uxcr9y/36W++/70QRCFaqYHGnGXuFuxylzRo1y8sj1dWID5rnix3vfbThFz+44KcfvmD14yue/N2a7Ms7CI9kCDV6DBCtFANXa8alRJsrFyGX9ZwYe0RcLZbk5e2IbQ3dmaE7l9jzaReugrgLK2+kS/EJ6IriONM9kRvCtGJe6S5GdOExJrCedRgdmRc9AKM3RGDXlsSocLlG68j5rOH7q1t++70v2H+/5P/w5W9x8+WZ+OkpsY+avYmUdxmHVxb/bKCYDWSrlsO5ePEpD27tyJYD61lHnY+8t9jwstxgdeD3Ni/46eunmK9KiltxJhpnCeBaeFTtiI2FVmZW20jR7K4C/mKkXUEzaPRRwlGzg8IeobgXfnp2jCdrK1887rc5bRFktMmTy06wj9shMyTF4ZkYqdhkAjIsEHstE1G77GT04WYy65brjjxlIbwOa1ZFx/vzBz6qbnkvvyNXni5m/LR7zifNFduxpLYDq6xjDIYxGt4v7vj940t+5/oV/WjxQTM+FGRJqRcy6WjGdWBcOOplx4vFgaf1Hq0C/7frH/LQVCgVKQpH1+YMXSamqoNONvJwfCHXSXUt1PPJsDZrhRR0fKHp14KPoCDbSFTZeOkwM4dvLHov41jzygs+M3kfXvZ8//kt788eOPocTcRFze+9fU5zPfvW++87UQRs6Th+6Kg/t4k6mzFeOLCR/bZi/rTnsj5ilWdmev5Lz/4eP17c8v9+9hGv1+c8+3ct5Wf3qGEkzEpCZdFjwB4GdG9QMRe670wnEDAQMsMwT+q75FwcbIbtxGBUOxEcufpxly4BJon0kvSe0T7SV/XZQDnrUMCq6vgLF6+Zm56VbWlCzs8PT5jZgafFjlKP3I5zfrJ9yud358SoeDbb8WF1x7k98OfKLzn/6MD/vvxtvrg9ozvkDHtL+U5TXUdWP4duU9Bd5PRXA2cXe8KqYXMzR3WG8ZjRJyrsXTdjZgY+qm/5S+efC/+9eE5TzOQ0zaPEn+dyypxCUd0jece0irjNZC2lZYQY9RSckU40FDoD20fqG38KyRjmgotMSUiT8Cmmq08l41YVZDsQTRqJmsd/Y48Kc2fRXmbd7r2R+eWRs7plDJrtseI4FMzqnicziSz/oLhlbY78uH3Fx80TPt5dcugLns73aBW5HQtKM5Jpz/+z+XV+dneFD5p52XO7naNGfWIpukVArQdm856zuuVJveeiOLIfSz7ZXnK7nZPn4uR8fKggKFThMaXHJ/VkfxXQg2L1U6juPcNCE3IothHlI00KZZ3yIbOdbEq6Kyf27y6NP2cj9bqV59pURBOpnh/4J15+zjpr+LI94zBKIvS7uxXxXQHld5wx6Lxm/XzHJp+Tf51RbBTZPqO/DPhZ4OvX57RP9rxY7viyPaPQjt+cvebFRxv+5uLX+GT+Ps/+9hMWP92gjx1+vmSYZ0IRbkaKzjFclIRCi//f3KC9oLKulgvSdJI10F5OfvyRfCdijckeXHtw2QRekVZnQt5QZVLK6cCPLq55WW34jfor/lL5OR9ZwyGO/DvVC/7O4XsAXNo9tR5o5xnXhzmHY8m2r1isO2a6x6P4Xn7Nf+7JT/jJ7Bmtz9j0FZ/eXHD/tqZ6px9tyz8pOH6R078YWV8dJMzjoaZ9M6cbFJtszSeLJ/zO+hVndUvvjZxSZSAswolBF1uL3Roh4DjZ008AWMhkt2/vtcSzxQk8jXRPJgGPZDLaRjjyKsiWQ2bpKIDYfcJGkg5eD6R/I++r9jIC2DZdG1nSOvRyAwyryPhs5Oxyz9XsSO8t/WhxTmOtp8gcpRlZmZZMOf6ge8nffviQ23bOpi1RwF1b8/W4ZHBy+X+sL4lRMSsGVsWR68Oc8bYSr4cydVaLgVnd83Sx59Vswzpr2Iw1P755xv56Lms5kwvb00bq8wZrArvbGaYRJme2Uyw+lRCdw0vZIs3eeLImcHxqT/ZwphXSUbAwrAIUHq0j9bxjVXXU2YCPmre7BTr3XDzd8p9+8XP2ruTv3H7AQ1Nx3JfodwXZUUYmlQJyf9XjO1EEVK/Zvl5RXDUMrwLhTUHxoKi/FkTbzTQPw4r9uuJifZD46KXheb7hn7z4lPKfcPzYfIQrz1j/wQ770OKLGe3TguxgKb4+kG96uqeVGGoMnn4lDi16SCsp+yiCOT4XYob4Dsj852YkJpaiuxR/fRUhFAE9G5ktOsrM0Y+Wn95fEc4VZ7bhLr+m9gfuQ06pRgrt+HdvPyJEKQb3x1rScYLm9WbF/yv7PvVlf0rDeZ490FXSU+/KEh81m1nH/cXsFBemvKZ+p6iuc/YfnJF9eGB51tBWGeNGXHziQ8auW7DLJFfPbqys/qqIW7uTKaafB0Ii6ygnJ7zuU/BJOpVPCr9MMI+wdJjK4YOi15Fs1nE+P3JVHnhebtEq8qZb8TuvX7H/fE79RtaYZlQnTwBfSkcxbWNC/kivBlmZjUvBOPJSTtyHrqIfLUYHXl1u+HB+T2Ec59mRhen4tH/C7+1fchwLoWWPFu80TVOIsWpnIA9k9cD5smFR9Hx2e078ZEa1F3GXWwhb0djAum6ZZz3bseTn2yu+eHOOvi7IfKI1FxK1lhcO5wzdlwvKe2nn9QDVrdjBHT4Q1er6Z2IEunvfSvxdy0nxKRJvUUjOVh0fnt9zVR4Yg2EzVOy7gmGwrJYNf/nJF7zplvzdr1/R3NXog6FInZSsnv//gCdAhOorQ9/Miecj7sIRCkN5ramu1Qkp9ceK6/uC2/M5+6HgB6uKi+zIb66+Jvwlxe8tXzEsVpz/pCN/6Ii2pr2wjLMV9ZuWfDPSn+eSNrTzdGtzMq3UTtYxphNQq3sSGRdCY863Qhvtz4PccG/EantcREIJRTVSp1DO86ph01X87O6K1/s1v1O/z4tqx2aseH1YMwbNoSvYXc/RjTmh/yGLNLXhpzzB6sBvLb/izB45+JKbYUHrM7SKzOyArmSu3OxqnNP4OtI+Ecyieqfowpxu7aQ7sXJTExHdvw1CSU5IvWkVYHFnjvJcZut+sLjRopNfXvtQkt+YtMVA6MR5YrbNAvW65cV6x/uzB96rHvhB+ZZX2R1L1TOg+XK84OPsKe8uFnzSZRxtLt1CmwgtlRScYhNRA4B8PR9kdermCZirPfW8p8gcy7JHqcivrW/54fwd//T8p6x1y0+G5/z95hX/9t0PeHNc4rzBB0XT5RKC4jUhzekUHluIC8vDvubd12uqz3Kyg9ChJ2txnMJ7xVe3a76MZ/jeoB8y8oM6MRDjwmFKR/SK/l1NcW2YbwUQDekQPr6U77VHxeJLoZk//CDDF5xi7LoLIXb5QrYnV68e+MeuXlNox20/5/P9Ge2QsdvXaB14Mj/w44fnfP75FflbS+mERZnvEnsTOHyg8D88fuvt98cWAaXUK+CvA0/lduWvxRj/VaXUOfC/Az5Eosj+2Rjjg1JKAf8q8F8AGuC/GWP8tu2EPEdyw6neKcYmZ7jwxDwKfTPT1O/kjRtW4BsD9xWfbXLuX9T8+sUNZ3nLVXHgP/FnPuXvL1/Qnc+5+vuW/GFAOcuwthzfq6i/7qQQXGQEI0SNiQlnewG2xlr8/cJG0V0GustIeavltc0EBNSjEmpmp7CNpaWmejlw7GsA5mWP0ZE3tyu+3l7xu71gB7rXSYEYxNT2XmZvn9hsPigaX/Pj+Jy7bsbLmdh178eSgyuY254P53ccXcEQDPdhJozCLNJfBYYzWbNFm/CK5ODLFL2VQjQISdU2l91+1EBQjIPF+8eI7svVgQ8WD+yelvzh7Bnhq1Jm+oWk/xTVyMvVnuf1jkXWcZEdObNHFrrFEOii5St3xt89fsjf27zH9X7ObNHRZ57xviQaLQSjLGKaRP5KrM5JJm1byWkARbCWrsqZlQPPZjuelTt+VL3hR8UbFrrjs/GS/9Ptb/E7X7zPuC1k+1KJ/bg2QiqKowKn0bVYh/uHApwUndk7GXXG+aN9GR5U1MQvJHA05pHs/0Pdn8Xctq75fdDv7UY3m69bzW7OqXOOq3HZrkh2nNgKvoAEuEBCspAMMUHGgEVxEYQickHwDZFCpCCBIyRQUCFf2ChQMkmQTWKEYnAAE9uxq2JcpsrVnXPqnN2s7mtmO5q34+J5x5hrl88+VXFZ0WZKW3utb33N/OYc43mf5//8m7FIvluIq4haBYxLxH1VAkDU4nUYOgH85qix5q2meRCnp+PXDdrD9a+J7d3uW5bhWdkwPff87t/1Of/E7fc4xppfePyIV7sNIRj8aLFV4OO7Hd9/vGb87ob1K138L2D9WcT2meHGsP+WYvrRfvFP/IcqAkim4L+Yc/55pdQG+Dml1L8P/LeA/1vO+V9TSv1LwL8E/I+A/xISRPrjwB9GYsz/8A/7AcZTKMPF0SYZqa5Fbjp4QVLNKOu4ZBXuYBker/n5r7d8+OKJq3pgjJaf+OAtn7YTn21uuP1Fw+a7A6vvTYx3DcOLGj1m3D4y3lj8SvLmsgLfKuyYl22APUPzTiKfhrsshqHviqa7+LepQlBpv2956m9JXUSNmn7aLqud6sGw/kQo0VkLo2u8Mvg1iyOx9kKQCauMqhPBGz65v+bdccWLzZGb+ixpuoMQXBrjuaoG1uuB/WBQZ4M5GlIjCH61mlh3A1rBeXSMo5PTrxc6rQpCTJqeia8hILTlkyUmJxwGDe+0OCVt64H1ZuDwgabbDvzeF6/4ifUbnrkD1+ZMozz71PKL54/427tv8t36Gf9Y9wl39shT7Ph8vOLtaU2IsgXxZyHMqFKAoi0Wbx3F51B8H+cEZSEfFRsxYFVNrMyEIfG98Y7/+PgjvB3W/Or9c06fbHB7jS0kpNxrQi2CG0YjRbFKpMFiH4VKnlymvhd/htmt2Z4VKYCKghHFRlaotoxF0614FZhOSCTpvqZ9ZXBnea7jLYRVCaop69PZdWm4ky7SnmD1qXQ7jz9hGJ7LBsQ8G/kj3/wuP7p6y2fDNb/89ILP7q/QOqEUNN1EU3m+9/oW872G9kmeU7WXAuBOkfMLy+EbcmhVv97SvOMfnixU0oc/L38+KKV+CfgY+KPAf6582p8D/oNSBP4o8OezhBz+DaXU9W9KMf4HHiplujfCMPOb2ehCLe6z2crNXz9lql0WLr+C7lPFeG74/Ok5Tx8f6WrPQ+y4agc2f/AV33/+jP55x+0vTjSvzuTaMN7VxEZTPwVQluFKE4uZ5RxoIelAcoO2STHeZPqXmfpRUe3yIg/OZna2zVQ7DTtdNN9gPr3QagXYSlT7gF9ZsUQzl+RiM5RuyGqGteL26oSPmsOp4TvnO3ZXDZ3z7PpGBCwq41ykrTzbZydO5xo+bWleG8ZbhVqP/PjtOyodeBhX+ChhoMep5uncMo0WYxNaJ4ncmix5Et6CrYtl9mCZzo5Xccuhq7lqB3787i3fWt3zB1ff5SP3yGf+hr9x/FGmZNFk3oxrhuhojee1v+Ihrng1XvF2WAOgdaY/1+i9XZSK7qAInSmdkoCJ2QpFe7oSBmO2ELYRs/E8vzlQ6cjbcc33Tjd8vtty3jewt9izxhY1qD0p1F6KnV+JZfccoqImjT1p8TCoM+0rTftWWHsqyc2kcmF21sKqTHVeCoC/ledibMSPFvWuZvW5xh0y01UZE50UdnsqrsGzh+P6oruoH2G8UfQvRAuQu8Cz5wf+8MvfoDUTv3x8yXd3tzzsVlgbcS7ivcFPlv5NR/1O6OLJSmrx9jek/z9+6Ap3BVafQb2PhPofkYBIKfVN4A8AfxN4+d6N/QoZF0AKxPff+7JPyse+tAgA2D5RPwGIm4+aWW658OCL4m0WmyRHMZwElGH0G863nno1MXrLj9w+8k/+nm/zi3cf8OmLLc/+P5bNt080r3um65psFO4g7sGpUFRjLfRLM0qhmSmi76cPq1ROJ80CLM5kDUmhlX+LFVS9JB3bUUgy05WVSPTMEhIpZioUdR+414639YbVWhxM4r7i7dliu4CrghhhRrkQlMr82O07rj4Y+OzlFb/6/ZeYVxX5V9f8zacfZf38RGUDrQu86ATV3q0bPjtecRhq0dcPVhx0Fdg6st2c2TYj+6HmeG7QOlPZyIvuwE9uXgPwc6dv8nN8kyff8f3TNQ99R4ia2gU65+md4zeGW/ro+N7hljf7NePgyCVGPbeJ2CqMv7gbz3oLMxuDKiQGLJb3uqjyzpPj0NeMQ0U8OPRZi3PR9N61dC4xXwVwnK4zaSPOq+osRJtZ4t28kwKQtRT02YiDcr0Nd0KjdnsNCfyzEoSaYNrVVG8s3SvJ/ps2cp2IUUu5Z7IUsvEmkysZe7TQRTh+PYt78CqyuTvxI9dPfHP1wD7UfPt4J0X72GKdAEfnU006WczeUo0U5Sa0rzPrTyOx1mIyaqF5SFTHhJ5y0bP8IygCSqk18G8D/0LOea/U5ZvmnLOaY2p++9/vp4GfBqjba+xJMtZ1gNFLy2/GS277HNU8q/v654pwLV2DStI56NcVU2fJ68i3wx3/2W/9On/yJ/4Gv/jRR/y/v/m7OP1HG25+xVM9TsTGopRIiqeVLQQX8BtRYnWvM/1ztcSgV0/zE5ebNlsWnX39TjPdZEKT6XZyocdahEhZK6qjmDuolJfkoWqflxy/UMwh5+/Hu5rD0aGion1lsGcITSWruJsJWwUSgnYffMNPbl7zT1//Eu9ebvkP7n+CX/jVr1G9dozvrjhtE4/rwPnWcVg1hKQZg+V4aEgnaf2xQhUOg+UprTA68+O377j94IxPhjEZzqHi5x+/zkPfcRxqauf5+nbHj23e8Znd8p3HO56OHUPl0Spj1IohOF7vNgz3reQAViV6OwqJaLoq83L5GFlo42YoIqtJLcKiPBhOoZW5ftLCfBzU4qM4Mw2FYSlFJHYwPMvEG8kVyE8V1UNxXDLys9yB4nuoFtcioIS9ys+2BxldZtNT3oqLT7UrDtI5MxUbcXuU6yU0UtymdZbI+UnJlsZkprtUMu0ybjXxUx99ztqNpKz5pd1LDmON0Yn9uSFFzTQYODh0r6iKCUqqgJzpPhf36vFaL2at1SFTHcTReLwS2rwdfoc8AaWUKwXg38w5/zvlw6/nNl8p9SHwpnz8U+Dr733518rHvvDIOf8M8DMA69uv52wV7hjQY8KOBt/q5cnP6THyhSJISU4kt36Tl/CK2IqXWwoKP2r+H/nHaH984o89+1v84e23+dm7f5LPn33Is7+jaR6kdbJ9pHun6O9McbGRTUS1zzQPlzc3tIU0M4rU2D3mpV3MR1nDjLdS8asnGRugzLE1TFljx0tasDvJRiK0ohv3W5mLxbAjQ5XIURFrTfsa2jdQ7TX9BzXTjYVWrtZ3xxV/z34EwO/rPuVPfvgf8ks3H/FXXv0k3/vsTkwsBsPjuw2P92tBxSuZLVUXUDqjdSZFRRosaTDsji2f2SvsJtEKKsfR1wufIWfFVdfzUbfjeXXgYeqYgmHsJQb8XnX0YyV/L5HiKoIqGgcZpTKhZokeyzaDnjMfLqYg2RbtxoMVzcTWQyieg2PBZopugvReAWiLKWyTYdSoB0v9pJfVZi6qR11cksjiTmzKRmI2j5lZkWKMorBHUwDLeb18GVtdAeCnTfE3uI6QwD0Jwy9so4SXTBqior3p+Sc+lkl9P7W861eMwVLbILmIRSSkz3rJYYyVYBNmhO4z+Zn9rV6sxc2UqY7SFUxrvVC7f0cJRAXt/7PAL+Wc/8x7//SXgD8J/Gvl/3/xvY//95VSP4sAgrsfhgfMj1hrYfn1ETMmbK0JK9nlu0MArYiVMK90gO6trOvOH0pLaY9lhlslzFGjsib4hn8v/BRPP9byzz3/m/zp3/Xv8X+8+kP8lZvfx93PVXT3xU/gccKeDacPHT6Jp8H5pbjnzrbcQtwoOYFOQMTqkEhFCWd7eZP65/J5Kira+4Q7Z1TKhFpYczP6HWv53pISLC3k+KzMjEo+z648/kcie1ez/l6JGvtMQNHQGUILu7Zmt+t482zNr22f81G748ae+S988Pf57Oaav/fwIa8eN0RvSINk9DFq8irSbQa6WuyxzkOFTwqlM0plnvqGXf8hWmWGyTGeyw2dlISIAFZFzqniYew4P3Tog2HsLFPn4OCWky+5LFLo0s3J38EeVcF+sgSYqFksk8k2oWophOpspItYB+gtzWtL/XRR8GUtUnDb58XBKDYKUyvSKOCeGYUZmY0UjFy8DWaOiBjJSihJ3Mj3ML1agFsA+ku3JuK0C4lM93nJRJyuC4EsKuxeF0ameNqro0VFRf21Iz/1weecQ8VUqsjKTazcxCdPV/SfbKhK8Zlj78JK/Bvre724D/Uvijv1SYhXdsz4lWHciK9FNiKD58sbgd9WJ/BHgD8B/IJS6u+Uj/1p5Ob/C0qpPwX8BvBfK//2l5H14K8hK8L/9m/1A7ISBxQVjHBWQsIMER0z09YS1gY9Sb5gLmskM2a6twmUZriT06D7TIvpxSph91qQ5tc1/6/hdzP8Hscfe/G3+W88++us/vDIX6x/P/HnKprHRJsy9hRYfQ79M1kfxhaGW7m4KLiELm1YAIZbTTKS9kIRHLljFtNPJ+BWaCV5yAwZFRPjtnQ3fSaUK9hMeZlDYyNfk5sIXhN8BTYRtpHTx4buc7WYT7RvigrQavy64d2HFW+eb1ltB1b1xG175mV74Mev3mJ04v7UoTay4x1HRwyCKxyTFNYYDLm35ARjsTTLWeF7MS6xoyo3l1x8U7B81l8xJctv3N9iH8TWKgxKci6qRCz2X7ZYk6sIsxe+6S/x3KG9pEGroCTtyMha07gkUumoUCdL+6mhfspLHJk9sSQYzbHt2c0OyWX8mJ1/YqmupROYswdtP4evyBp4AYnHy/uvg3QIM44T2oJXDfIezlLgMDslncvr2haV5mikKCrg456XVwcex46VnbiuzhiV2amG7z7dMn5nQ/OkF5WhSgJOxjrTvta4PcvPu+QrSAFIRpivxkuXMl3J+9be/w7GgZzzX+PSjP/mx3/+B3x+Bv753+r7vv/QUXao09YQG40Z02LVpX1m2hhSWanNNk7aC9mie5swo6Z/Ju3h1a/A6SNDbIWmmbWietL8/O7H+aUffck//fVf5adWn9L94xP/B/WHWP1KxbSpWL02VLtA+86jspP2fo7ySlLt7f5yikPx4Vd6Sc4NrRSo5ilh+0RoFL5VJCM78Nk2q94nXJ8YriUDQaVcPASgeaMJxVhSVHVW5tzZSrpYhttR5Msz0NgqzTTUHJ9ZTl1g3zUcNzVfWz/x8WpHzorDWOFMYlULajV6y/HUEB4azFFjtOy9yUpoxaPBPlrsSWbzsI2odcDYxOFc88v+BdNkme4b6nHWGSjCpMiz+chZhEbGy00lUmtB7bO9mJjMIi3KqIBN5KBJB7M4ItePJdasE6zGlQLgV5JUNBeB5C7K1PpRLbhRaGV1Nzsc1feycYpOcfxYrN5BjDrdXroD7aUAzN83OXmfxRdSnm//XF4f00tqtF/Jaju2svLToxitZgXxxrNuJ4Zg+cb2kZURG/Sdb/il1x8Qf31N8zRb7Mk1Nl0L8ad7JRun8Y4laal6Kh1Q6U58W6Lna1lFkuHqO4nV9/svvf++MozBah8ZbsWSSZebaZ5nJIJKkVqEZpqlqrsSFFrvE1lJCAcKVp9lzh+opU00A9SPmunhmv/z6z/A3/rGj/Dj12/53d/8nF+ePiZW4ku4/kxTP3iq3SXSNpRWSmLDc3E+EsuxWaMf3cWwdLxV7K+0xJSP8rmhcAtiLd6CKmuahygV/hp8GTPcvkRKfwZiOCHFzo6ysZhNUEIrxUWs05NYrhsZR6q9Zbw29LeWe5WpbeBHVo98tNrxudpymirGSdiHUzCE0eKeRJY6bTNxA8oktE2kpEp6kAAZKinyaKSztBGrE4XgJ+lLJS9Be0U+2IuxqINgQZUAV1nDXk5r+d6CA8SVyJaleIi/QNZy2lX7XCy21BIl179QnL8majqSQnmFPehSMPKSyeBXYrgRVglzFiZq85AZbxSnr6XSPYpJavNOch6hFNtzwq80Qcm6cY40k1xK6SqqJwE0JSux+BwWhaAAnwIUmlZWux+vd1Q6cIoV+6nh22/viN9d09xL0cpGbNT8KouM/KmAqXfvBbAeShdUAHNfYsljLSxL7WH1WWLzqwfMu92X3n5fiSKQjaj46p2gnHP6D0pe2PkEBJZ5ObQwbSXZtjolqpLiOzvxiGssheAxI6ZQPxp2n7zkr714hrqZMNsJf9SgNUelic7JSX0UOzKJJctLAuzcPiYnJ5J9TLhRTgh3kot8uFWcPlLY4oSb51OveNGFRhFrU+jKlJ24uBpprzAln0+HXDwJJY9Bh0yFdEzDlcZ3mmrvad6OdG8ssdKkWjFcGU4fWXq/5rujY3fVcNP0XFUDrfU89B1Px5bxvqV6MJizWlR+5qThUJNtFvCwzNg6CsMRNH5j8M8zxiSms0P3elFWCoAlbW+qS/DpbKZSOBNLslBRYOpJLmpQ5EddOr1ZWUjJlASVZQyo9nJTjbeK84cJNl6ixosbsS5mp9P20sCON7KOs2dN96nC9nJQnD+KZJdxT4bV9xXNQ1rW0e6ccftQPCQ143WJsD8Jl2QOpplv2lRMaAARZKkkhSBCajJqO/HB3Y5vbh94N6z45HDNaaw47Rv024r2XdFOVHD+UIDiqqwmh2d50SC4s3zeYu4yyuEwB7fOzMHV55HNr+7Qj0fyMH7p/feVKAIAoTNCqDkkxq3ESfni4abHOQJL5m7bQ73PDDeSWZecpt6lsisuHYDK5GOx0LotfgX7DMhc3b3SnF+2kpZrxYffdwp1K7OYmaS62kH2v+6YqE6JZOXCsiXwY9xqmsdUwkoU7iyuxONWVjaLrfe8wbAyJ54+VNRPMzCoFn6/mIGINkFGHll7VSdZRekA9pSojBiy7r/h6N7JKKNSJrrSFQxQ3xvGXPP2bHlrtiiTsVXAuUiKGjVpdFHnhdV8kaniBlzScYtOYLZnn2frUdecG+EYaF9a7qAvK7YiwZWLFuwpL/O1XxXHo5Ix6A4Sq25H0W/EwrKrSiFMVi3W53aQrmj2KzC9QvW1cAJK6ElYzYKkMn44eS7NW0P3KkPKDM8Vw52MBe7eFHWj8ENmoM30Cb+1jBsRsvktC0ck1oXTEAQIhrLxmUA15aSCS9z72vPND+/5sNvzK4/Pefv6SrYEgDlqus819ixko/FGOgkzKTEbtbJFcSe1rCB1lLSm2ckKTSmCGTdC85hYf++MOo+gFdxsL/u73/T4yhQBkCqmQ6Y+RHyUdc60VUuMd2wy0w1Uj4r2rWwIhpsyu1tN+yBWy7EqSHoEssyLp4/UcupkLVl+tlcMdwIsZlOYaSvwY8ECCninMvTPxYSkvQ8FIdHLnBgLG2tO1TVjouvlFJAVUsk2dKLmGm+kao83soKqdxm1L6GRUqeITi2zr0EsvECVNBmF6xP1Hk4faoY7Q/tOgipnbCJZKZ7VkyaMmtn/IDQO30aUkzCS2IqNeH1fHIB1SSZ2QtaZadVy8sgJPc1dmS005zYSosz5yiSy1+ijOBjVj1DtxFF5znaoDlKU016+TXUUQ9Fs5ESjOBfVD15svLdWAGEu7bnt5aROVjFeKc4vSqpSlcTG3GvsXizBTVTUR6GeqyyzcnIScAKMRwAAeLRJREFU++ZOUmwFnFS4Q6Z5KlhU8YqMJRJdTxeTVtvLiX38UH6vaifXjDgFCzdAT1IU053n937jc7TK/Ie/9rswn4vycC6uM+A7bxZE+wF+G1FZYY6znR3LQeHX8l7N5CozCW6gg7xG1VNAn0YwhrRqiOsafvkH33dfmSIg3vh5gSDNmBdUPmvF1Ak6mrpE6DSh07RvubSG1/Imdm8k3DQ6QeYlfVcKwfmFSFjdXgpFvZcoZ9ASOLoqdM8oMWEq5kL9zMVxGHQw1PuI7QXFSoESOqKWwNAlHCOCCYn6HElO2uhsFNVRosWnqwI0NTMxSi06fZE2l6Iy5QV78GtF3oBKGttnVp/JCDVeyc0wC5IEtCy77b6csO1lVtUuEX0iG9G1C1VbvO1ik4vHY3FYVrLDnx2MU5XhZuLm+kRImpwVVieaymNU5v6wwu/EIGaOY/fdXCjlNK9Osjqd13zJKUItJ5s5Z1avRuxuJKwrtC927pUqXo2K6slTPSbOHzX4lZh/ALIC9WAKLjCPcK6EmURbmJkF9APZCmQDzTtJjkoW+mdaivtCzBGNy3zq+rXkE6Az9b24TfUvhXQFoEvu4PTRxD/2rU/Zjw3f+9WX1K9l7R3bErayk+LrN7Nvg3QtkhYF7lHjDhd/hViBL0Y3pi8jVpD1oC5/rp8i9asThEiuHFlr7Lvjl957X40ikMsaLUmrRtakTroCdy5kkaTIzyF1kK49o7P4K/UFo4rpCqaNqLQkIEM6guog32M2EMlaCcEnaNw50b6VC2tMCn+V6V8m6SzeCJKf9eUCFEqwxh0CLmTGa2Ebmkk+TyW5CPxaLqKsFK43NPee+n4idhYzSMrS6YVl2qpiua0uAJKTUE9xBi4Jx2dpl0FOpeFGwkXMKO7BoVViy1VnCcYobf6c7OOKVt1vFEFBnCrMUS8mnuMdkMvO3oiZqu0vxJvYiFxZRZieR57dHrnrTrw9rTicGsYscl2A6VjR7OV9sH0qDjryc7KWNW91zLhe1la+k7Z4znKodhP6PJG6ium6YrzWspJ1ZfvQKIZr4UkMd+K+o4OifjsHwLDYqM9j5EzTlmyFYsNe0pNjLYdJs5ONjiRQv8eILTTw6eoShRZaGSXMIAnD+VbizNPJSWjuCNMHgY8/fOT7T9fsfuOK7jNTrMMvEWzz1mJWHM5pTmoUsPb9lGFZQcq17Iq+QQXpSmRrlmkeIu3392K6aw1qGNE7Dzl/6e33lSgC84pNVoOldcxyQ4OwBtu3UtJVMEzPgXUgGkPfJsZbLUabQfzphheZaidvkD/JSZj1fApJNZ+uZjWgRIjVT+XknhTDcxheJGKjSa80q9cS5ZScFCYzJtn3HwNmStKuzqIirbBDJE2KcSuzZI9hWmu6N0G+Vpfd7WNER8N4Je1prOQkVOV5hqaQioJarKmrg0hrh2uN74DtTFQSbgLAzMEXgEtdfvezjBLjaAmdkJSWfIQSdKGCdBP2LN3BnEgcbz2mDWiVcSrzuFvx7s0WvbeSJlQyEFWE5qjpPs+096HQwR1ZaXiv42geA+5pJFUGFd2SEKVixq8d/qOWaaUXWzexg5eb2W8Vp42g8BIpxqKdn1OOVIZQszyneUzya7mhzTTzLFik7NNaREV2kOcRGynG420W/0Uv1F+FbJuyguFrnmcf7Ri85XjfYXfCKJyeRW5e7um9ZfcbVzSvjTz3K9lEqEnhjjIuhJVkJIiGImOPptiIy/NIxaw1VllGwZN0iipQyGgyStaPQQpAiJAz6ukAWkNdiTP3lzy+EkVA+Yg7BEJncHuPzqUryOa9tN9M/TjjBpbpRpO3AbwibQLnVlO9kzcgXEf8XWCKijwYcdE5lZOozLMSR14IPae8MMOqJ0G0++fS9p4/UMTG0L1KC3AVWl3a/ow5eeqQ8WsrY0pTdtr3E2Z09INhvNKFfmyp9zLTyvyrl5wBVUgoyYBOMs8354vvfFpJMdBB/OnMmOnvyvc1UB8krtqvSmJSLnvjtRRGvy0n13sdgr/OTPYyggHiRxAKeadh0fsTFGkyqCoSR4t6dFQn+X5ztzDbp9cPQk6xp4ieIu3rRP1Y1oyF8KWnSFw5UVVWSrIhgenOMd5opq28Lu0bOaGFKq7ob7Xw8p10PGaUGzg18vopIZcKFjDHrs/koWIcO1N+s5UDUpW1sx0yzb3MCP1zx+6F4vz1gOoiaueo73XJY5TVbvqJEx/fHERs9W4lBqAmM91Gbj/Y0brAZ69uqItewW+Ke/CoqR9LAehKB1AKQPPGUt/LChKk4E1XQILmodiwuRJbNxTL+l7GJ/f2BF6qoRo9edWSuxo1eFT/FfcYJIP7/Ak+vCa2FrcfMWOEKLZasdVMK7341icL7SstOvmPBpI3UEf81wP6bYXZG6LJNNuR7vYIH8HTbiWxXe8FauhJUntjrdBXLF7y2meaezk1oLzhVgw+zZTJlSLWlqrWmD4ue1rbS/cQOoMdIs2rE/VbRWwd47MK3+r30nVEwTjnEs7kkGyKeGUFUPjxtuTjrSOnH9HU7yztm7zMq8OzTP8BuLkFP+dlztVeboh4lUjPA+HoMEctUWVAnNN8R8k6cHu1gE2xBZQAdXq0xVQ0Y8Jl/TmHuGo/MyAFz/ErCY7RAZp7jz2H8l7KKjO2wnf3regJbBFXxUpSeGb0PdbS9QhzLi8RavPPm2/w5EonkgsbMciNFFu1ZBDqqWwhzvK+xlrGATNk1p8Fuu/tISUOP3nL049phg+idC+vK9rXclhkBaevQfpdPW078en37tBHgytiJ/PxmR999oDRiV979Rz3aUW1K0QjA3ZnFknynLScamE1tm8Mq88E3A61YryVa1CP8rznTEUzCgioEjS7SPtqwBzG8l5piJH48lrEamcPRpO3a/jsB99+X40ioGSWdu+O+LsVYV1hDyN6ihiryVZ40F4XJlWJWKp2iqGqcR/0pIIw5ZcjeVfBqBmOFTEqrjc9X3/xyMO6pT/XhN7CpIlVIjWy+9ZBka4yJBkJzNJiS2GIDQzPZCU18wZipVBRyym20JkTodWM16LQs4cR9/aI6WvCppYLvRYGoe0TzQ5OjWHa8h63Xgw8U11AoiaiV4FVN/Hx1Q5nIp/urnh6WKFOltxGtnfivPv2sOL8dgU2oetIOjiqR4PdGwLlBtmrZVSwZ7W04qa/sOtUFlTfHS66erEPv2wRsrq027pclGTZ3586WXO4oyK0FbZ36Chr1JnxacZEew5on0hG4be28DCkmKhUcJyVrBjdWTCd8UpunFhRdAZyiuKyFLOzkXbfqsXUQ02yihTTmrxcd9U+s/50onpzIlvN4ceuuf99hrDOuCcB5erHXJiJcPwGxI8H0tHRf6+lLtum6S7y7OtPfOv6niE6/v7nLzB/fyUrSUSIVj+oeUkjI3qW8Fl7lNm/e5OXNKL+mTz36knciG0vhjRzxqMdpf1vXssaMDcOFRKkRF41UgDGQG4sORrM7ndgL/afyiNncu0gROzTgH/WEbZ12Q5k9JigERUee2TVVWY7e1ZMu5ru+YmcFePgUNcT+ejAa3yseHusWN+d2bYD22ZkDJanfUd8qAW53ubC+FIS+NBkdAv1UzntLCRV9s4hL4mxWenC2JvXjyKAsmfNeOMYb52su3yUsNQEqbGobJi2Vk7APtHeC9dhvBUjSpWkrTWDgiaTmsiLuz1TMOynmp+6fcV/+cXf5deHF/ydx6/x1LcYnbhtTvxnnn+bFz+5Z0yOmDVv/Iaff/d17o8dNmmGpsKnSopZAFtShoFlLEhWLmzJhgQdE9HJiDCHq4y3mdAlGRXy5WsBaQ2ywj0JgUf29bJ2m1WEySlQGvqEXzkZba7eu2nDBYwDUNfgbxPrj/d8uD7hoyFmxdOpLbZomnQS9uOi35gLlNyHwgNYQdaCNblTwS3OHv+sY/+NmuPXpfNpX8tWyIyXteLpoyILfltTncvmwEoE2fMfeeSbVw88jh2/9hsv2fy9itXngh31t3opPvOqE6SLM4NaxEtZw3CjGZ4VbOUB6se0UMZTJc+5uQ/U9wP66QRaS8s/BdThTN50cqj6JGvBnKXL7ocvvf2+GkVAKwEznIR32t1IuKrFccaoghgHuakQbr73qpBxFLrTDH3FdtMTo8b3TuSyR1nHkOEY1gzbis2656od2L4YeN1sOL1ZoaIANuJ1X2StiBTVFgccHWaeu5we47Wif6FAWZonmbdSpYTw9OYEecXwzDFtHCq02MeMPg1AQ6rl9/IrVazNZcY/Tob+g1zCWMrcd1J4X/NaXdGtR4bJ8brb0F2N/MHVd7myPY++Y0yOfag5p4oP7I6vu3tOqebb0wuuPug5hppjrJmS5Tsf3/HqaUP/0EqY5Zz+M+byu+ZlHTaTcuYY9tgW2+/nnvZqQOssZqfBiBy5t+izoXrSNO+KucUhLYGwsZFtQGhLhFtrOH8ougSQsWTOQlAvR57f7llXE3fNiT909V1euh1PsePT8Ya/f3jJ4C3j6JaIL3csHUnReyQr779sBRQqCyVYh0zzGKl2ntA5hmeO8bokPRVlZ6yEpzJdS/gJNqOmS1K0ShC7jHveo1XmFz7/iOFty/aXLZtPJXfh/Oxiby+pVxfxk44XP4xYz9mL8nyrvbx2ZpQg1lgpmsfE6ntnzGGQ2b9yxK2E8Kr9Sdp+rclWE1dyr7g3J0gJnOPLHl+JIpC1IndStdAarMYMgdAafKfxK03zztO88wzPHKEReqftVTGU0Bxbx9h4mtoTJkP2VvLg9wLKcIJ4bni8toRbzcvNkQ+v9rzWicObNTkoptsseXhTyb9Twt0OazAlTnu6EgKQADeK/rnCrwz1Tk669LKSOXIIqOiYthqVHdBhThMqRuxhlO/9ccW41VQnuRDah4TxRWtQWvS5IIy+5vQ1xe2zA2s7sosrau15NV6xDzXf6u75se413x2e8beO3yKuNXfmyDnV1Cpw05zYhQ6fDc+qI99p7/hkfU3/gRML7sea6l6Slu1R0Twl3Cmho3AQ5rTbeb4miDGpdRGlIAYNO0f9YC7AYOEnHD+UzieViPAwt/AWUhOpbgbWlWwetMpYk/jxm7f8U9ff5rndE9E8xY6NlmV5ypqn0LGbWnb7FbyqaR4EtJNuTU79rBUUCq07C57jzgldoufNOZCclgKwlZGzOkjrPVxrYRU+v6D2yutl8yIsz0wwmWlX8+57K+oHxcvvJZonX0hMAoY2j7mE28jrOFOoZ+GPcFQuGFS1g+6NiND8SpOMYv2Zp3rbo6dAdobcVGSn0b1HPxzAGtK2IzVO/l0r3EMvXIFVS2rdl5oMfiWKgGwCMqlx0jIZRaoN2idUNoxrxbSuWH8WaN55zi8d01rTPEVUEgff/B3LKXfkZz116+mDLPXDdUAfTXGsUeSz4WhaMcZoBzbNyHldk942Yiul5M3y60z9VOzG78TN1x6EYRY6iokDRQIMU9nZ+6RIpqZ5lHWgXxlxdyl0Wj0GVEjYw8Tqc8V4bUV9yIwxCJFljqfKpiDXZ0BVnFY1IWs+n67w2fDt4x2vj2u+V9/yUzefs7Ij3z/f8Lf4Fv/46rsAPIaOc6p45g4YMudUsa8bzqFiezXwoj7wblzznf0tD/sV58mw21esvmsLzbZsTmYVZSO7teA1oQSXmLPGHue2V34XMozXmuPXM+HFRLsd2LQjjQ34pBkmR8wKZyKVjdw0PZ2d6OzEy/rAQ1jxd49f437ssDrxje6BF9WeXej49uGO735+h/l+Q7UryrkK2bA4wXXkOWfqfV5Wu7MATftEqgzTtWVaFZ++faZ9FxhuLMOzOXRGySyoMmYs4SonKWYeVfIFjfAMHqVjDZ2R62PMokWImbDSxGKAIqd/kS93SiTkDYIhjbB6lejeTAx3TrZBbybsOZBrQ2ikW1Y+oseAPvTkriF3YpkHgoXoIUpXcL0iOfHq+LLHV6IIEBP6IFU+bBt0kMzA3ChRcLWG8Vrx+Lsd7duEOwl4MtwYujcBFU2R4lqO31iRX44064nxJOQV/YFnOlvMzorDbVYl8ENhTMKYRGwj9p0VBZwupJy68NrfCXfA3yRUFrAoFUHQbKqmorypyUJ/pwmNCJGqY3FGyuIpALLmVEPAakU2CjOKXmHcikec8dKOqizzdjYyGqy/B6e05m+fv8mnH1yxqUYOUy3TVNK8Gdd8w0y8aA68Grb8Vf97uHUnxuR4mFYYlfh97SdUKqJVYm1G+lTx5FumZPiDzz6BZ/BuWvG2X/Pt7jmxqmnu80KamleSZlRor1HJ4A6yWlUpLwSceVXp1wLetduBH3v+jq91T7R6IhaJXR8dB98wJYPVCVsih79zuuOX373geN/hVp6f+PANPhv+/vFDfuH+Q9792h3d55rqKb+3IZB1Gwie07zL1Ie0aA+odVmdZmJjRW+/1viNjGX17rKxmbkXsZzcs2+g7QsD0oiKr9qLp4Q9Jcwk2yEAe064g3Qa4414S84huEIuk7FA+CHSvZgRNp9Emjcj410FWTYrZORQHKM8/5BQPqLGQLxakWuD7r3cM86gglxrcVuhQkafPXqcgZ9/8PHVKAI5Q0qofsIC4aoVjX0uLK8xE3sBZ3Y/qmneCkAiF6Qte2Rp0Vff15xyw/BswtaRcHKEDNVmItSRdLYoEBFN0nhvyEl86MNWU90bqf6q+AaUU7i+V5JNV4k9nOTHs5w8cjMn2vskirMrAb7qfcL0CTtE9BBQ/SSzm9UonzDngPaaXDYks77AJpnLQ1PkoY10H+J1WPH58TmfdRGCQreBu1uhhY7JsjYjGzvy6fmK7x5ued4euXIDu9DyK8OH/Fj9mpd2hyHz+XTFtw933J9XHH3Ns+bEfmrYD40sPAp5pnmMxEqUiyop8QYovAV3kCKBUgwzM7BYsk3XklDU1hNWRcZosSrSlqiw0VquXc+YLCkrnIpolflOuGMcHCSFNonjVPO33v4In7++xn5ac/NdcCdR/IUGVFbL6ORO0H2eaZ6iyGrrQsdOwg0RzCMzbjShE9ceObFFoWnHTH0QND6Ue2fefgioKe+9O0kB0D6TKkU2BpVE3m56IezM1vY65GWrZSbZJl1UqsL6bN8l2tcjYSW3ZbUL4nAUEvZpIFeF2FCA9LiuSZXBPZxRIZG6ajlwUm3RY8TsB8iZuPnyCKKvRhFQQMrkupIV3XEidQ579GRdkZy0YvYMYwPnjzPuIGBW/0Isq9t3afGbqx8Ug3GErcKuPOHk8K9b8kq84gFSUqzakdFbht6QegsmM37k0UezoOd+I6fBbB82Azr1Li2rMiEQlZ3z28jm3Uh9WzFu5aKwQ8Scg1RvH2CI5KsVceWIjYHCIASoDuKNkJzCjknIT00ZF2phl6UKCes468KUs7wdJI6rKZ6AtQ5sq4HHoeUX33zA882Rn7h6w5u8YRdabuZlOdDZiSfdcn9ecfYVT33D8ZMt7aeG9o3MyL7ThEZLNmPx36MYicRaMV5rkdd2FJ99cIGiWTA86g0hGn787i0rO/IwrfjV8TlaZW6qnloHtEqFkSheBXXj8WfH+K7l+5+scAfN9h7qJ2nv45KTKKOHO8q/VYcixfZ58YFITuG7CxA3bgSc1D6LDdwxEjqD9pn6IRBb8bZw5WVKRi0FQFarYi9nBnG8AsEhtE8on8hOc35RExrxvZi7gHmNOutDdMyYo0jdu1fTUhjcIaJ9wgwBvTuTK0dymlSZZcVsxkj12R5iJG06UmXKwaSwux41CHV4+mDD+WUlHuE/4PHVKAIoEaj4QNq2AOgpymbgFAhtVWS9EM8iBhqeJexJWFf9y4zKegm1nMk3qjcEDdV2ZNIV5kl2falLeJUZbSRnSeVRk7544t15/FZh3zrZNxtJ65mLgF8VZtyTAE2hlnkvGRhvLGaI1G8H7FkQWXPyqClIlW7rhcedrSa2Rm5ydXExmpmJySqqg1ioTRu1kGdUQMwybS6ONhp7b3mVJd34a5snKh0JxTqsP1V8v7/F6sTXVk88JMP38w3Akl9/3fS8Pa24P3acdy3t54bV53LSZS0U6PFWLfZtAHpQuIMmH6UQzLkN1dOlM3BHhe0N/UvFqar5pLrm1WnLfqjpzzVKJzargZfrI7f1mVoUXZxDhVIZNRjq16ZYaOWSfiz2btNG3mvTF4+9ACRRIubi5JQVS7GYR7dpK+DrTC+WtafB9onqaSI78bd0ZW2XjKyYUklfbh6laKiy9tRRRj7tEyomUm0Y7pzs+U+C8IMUxKV7LNeoGYT5172eMOeJsKkxQ8L0AT0F9BDAWcJdi+8ssREnKneIVK8OKB+It2vCppKT/zzJaJ0Sad3Rf33D+YUVG7wveXxFigBkZ8EaSImwqUXBF0VLYPtErAy2L3z6VhGzrPX0JC/s6WuZ9nUxZOzEQAIroFbwhmY7MpqMfVVRf2rwa835mcGuvSwlvCp7cS1RaC8CcZOwb83iYa/9zLMXS6lkFN1bcXfNRjQA00bjzq4QcjJECUBVUyB1FckZUi2ocao0KggTLLQXB6KZ8psbhUpFjlqIL6b4zUsqjpBmwlXE7g3Va8sbf8fjs47b7YnaCBppbMIfKr77+o7+1uFMXHIFlMp0zcS6nnAmcfAGdbBUBxbl4lyY4klRWUU+mGUFp33phoqZhj1l2sdE/ejFDco6VJJiwa907EMnbLlV8dyvEr1N7J20q40Ry/KUBbshXsDX5C7WWbPFm+1ZiE/kjCocBEHa1eJOlY0iJ0jrsjbUM4VcMV5pmicxnDW9J66qcuNKMVYVRawlGxMzpgWE0z6hQkJnEb/FleP8opIotfMFA8hapOSz25IOIjoTzr/HPg2kWkA/U9iVqbJkI6f/eOPwrbgHN28n3JsDOIv/4IpQErjt/Ql16uVAuVlz/saW0wtDvU+svn/p/H7z4ytSBDIqRNJKL7NSbGQ7oEfJIxCWl1hGhU7BRmSxsyQz1ZJb2L4SZ1lfJdxKWuOcFcEbbOMJH4DpJfXY9o7xzsAmSAKOFwpr91rhjk6IKuXmrx/zMoPO66PQCfqtA6w+m6j2lv7OMG0Mpk/y5jdy4Vov9tOpNoRWQKlUzRz/i9b+/VNCZQRbQG4Cv7nQY5kPlUmAzLiSgdUcND63vDo7TJWwLhCjhqQIu4pX+Yrba8EPYtTE3jKdK461xGn53uFKUKgdcpFMixFs+5BYvc7LiQpSJKaNFDAzCRpeP3oZ5YwiVbrItQtZp5PRoS/pTapK5Kx487jhDRuqOnDd9cSspFMIkg6sSpHJTn5vM37R/6B+Kg4/tjDyCmUaSgGteE+kxFJoQdiJ7hAFTFtVTFsheYG8N7PMW0+yYUhOS3GIGaOlwMRKTunx2hCL/XeyarluQ+FaZKWwQ8KdZVNhh4jZT3LdW43uA9lowsrKRsBoputKaPMJ2tfCQE2bhummIawNbh+xj2dhC7Y1VI7+4w3n5wY7ZFafDpjTV1xARM7k40mcmO42C6MsOYNLGXuUUyU0okSr9tINjFcBTCaPBhUVcRs5a6gexdTCXg+smokpGHwwSwrO+CKiPjOYAZrXGj84wioJhbNXRayRC+UVyNKBuBPUT4HqoLCDlTZei9rRDIbukyPta8PwvFn0AZLgq4mrStaDPpGL1h+KcrB4ErheWlk3vZelUBfAqzgZhQbiqjD1VIakFj1E2IgJBQn0zqEmRTH4xZQiE5LiWNei/TeJZDI5KvzJoQZD9Sj+e6vXkeZeEOewssStXOx2SO/lA8rFvv4sFkaenJJo8NuqBMgk6ncDaMV4WzOtbXEckvDU6AxD3wqfI8J5lTnf1Lg6yMndJrIT78DZPccMcjdnU9KLd8KsM5MQa2ZjVjMWG/AtywuuivvOHGpje2jfBVTMDC9bfFe2M8UUZi4WJmbMGIm1IRTps6z4LKlWBTOZwUnKaS/jgryH8vPdOVHtQjGgyehRKmR2RkZgeykAug/42wa/1hgP3WcD7uFMeLZmunLERuOOkfq1FPW0bkHD+KxlvCkdwCe96Aqmr/p2QCkwhrw7YGLCdJXMyq2soKopUe0mUqXorYFKyDx+bdEfDJjVxHisRVF47RmNxR41/VPDix85ctsG3hzX+MmSe4M+a7IDipLMnBWmNxK3bVlOYzPlRcATa8XxIyEvNU+R5ikSWiFy6Jjxa4162dF8eqT79R7/XJgfZu9RKUHMKB+wg0clkcvqSeGy+BNIwKmcGlmLNFQVx5jkxHLLTILID1njbwTkVDaSB4MaNHQJ0wVh7p2c6BrKpmO22nJPmnFcM1Rzq3pREepReBDVQViMM8CVtcy2sdKMW9Hxx0o6nPoxoZLsxFNd1mG1WsaI7m3AnDVh45i2ZulypGiAfjCYSZFKV5fXgW41Yk2iz5CUnMppXUabgylgLDT3xbXIU5KLBTdwp8IJyJBqhY5yN8+5DzAXtCyzfYKwNoRGi43cwROdJjlZ3aoohjex0uKN4ARQlHGn+EaUgmEHufntUAoJQK0wXl5Tt/foIB9XUfb92WrBjCpLWDnxU9idCc83TFuLGTPt6wH71BOuWvzGkZySAvDmLJ3IukGFRFhXxEZT7RPtqzN636NChPNX3W1YadisUDGRD0eq77xBfeM56UVNrDWxNpgxUj949JQZbg3ZaOoHTd9WqOuR9c2Z/lwTRwPXnpAr7L3jk+6ab72857rrOZ1rss7i1XaWHW/wiv4DcWYxhQ8+M7pSIeq4Yuro14rhTrYR9e7iimMmuWljo+m/vqF526NDInROhDm7wts2GiaPOYyoMYLVZW8F4bpmuHNLEGYuqrmFAFLstE0vvAXtBddIxSJcRYV+dESbadYj3mQCFbrXZJdRVxMhaPSTwx4V6qCLt2KpAXkm+ZQILafQTuNXttiVqYXAJF6DcxGRDi3WQnwZb9TifCMLCMt4JZ6Rs2WaXwuGUO1FqBU6mJ5n8rOJuvEoBadTQ9w74XV0EdsGwmgkwxBd2I2XFOlkLms8M6YFjWcE0wfBX+J73UCWIhFr+aVUFkcee/TkUgByAfJUTKRK3KxEyi7fOlkpsJIdkZfxRJx+ZFWYrAjF7Dli96OIfAoxLivAaikElSU2FvcwYB4PpOs1oRWw0u0m7H4g1Y7YypqwvvfyscYRuwY9RlJdVov7gHvo0XvBAfK5J3/liwAZjCFer9BdA08H3PfeoeIt420t7Ks+g5ZTt3mIRY2l8XuDzzVxo6lbz+A1edLo25H4UGO/1/Lt+IwPn+9o24nwthFxTi+tYPc2krWRDUMC91QIIeUairViWgsNtt4nhmuxIfclrFTMTxTuJKBRsorhZSuiJ61ISWPKzZ5qB9083GYI0nLqY0/9eMD01wzPm8WvICtRU89c83kFl61sJ/SoiP3lFNJekV5V9M8UupaTM5sMUbwAbBtIzxK+qpZoK4nUUsVfoczM5QDLSn5ucqqo/+Rit31GFwZkdBdDFL8uq9JWsgVVRBKiVGHKTVwiu44zC5LSOivizjGeLKMC3WvspIjrBDoTveAauEyKmdAKYcxq6QTEF+IyksRKE1YX4o6eEvZ0ATP8RlZtc7aFGQrZp7NLd0fpAFTK5HrGB1hWgsYXSW8hdc34zrwqzEbJKLaXG5YsZJ7UVWSjBTAOST5WGex+QB960rYr4GTCPA7oIZBaR2yFUVvtPHoIpSuwuFPxEIgCULr7kxiKlOssH0/kEPiyx1ekCCCoZlcTrlt069C7M+bxTKWUkCe0wvReKJmVtHLNo+jFszakrOhHg6oSFDGLuvKk4NCfNnw6GtZ3Z+EKUNyMOwGYNt8XdH9WsNm+BHsUGm9shAXYPiSap0Tspd01Xua6XMxJQNM8SF+ajOxxZ36A3FCasK6E9lnkrFkprFLopxPm/kgbErGxy2kEQkHNuRiRljVlqriwFt+T8uoJzKMjroXUk6sMVURXEjmuTCZvPLEysDdYPxtUwKzatL0AgbGSOZcs1l8qCV/Ad3px3PXFD2HuJCSU44uS71RdVnFQiESuGJqaDFn0CnrSkj9Y5YVmbY4ajtWymUl23rcXFWR/+b4S1Kk4b0ULkLWi3iWqvSRM6bO8N/5GpLZmSkWtGQvtWE5/PSbMDErHTOxssSwrd3ri8v6VtF+VRUUqRSAVcFJk5qb38v53lezyk7D4lI9gBPvSg5eC0MraYwbyVD+RupqwEfafPU4QM+OzltgacW6aEuYs4KLyEfW4J+cMIYjVeM68HyD8mx+/ZRFQSn0d+PNI9HgGfibn/L9USv3LwH8XeFs+9U/nnP9y+Zr/MfCngAj8D3LO/9cf+kMyZO8xn79DfXDHdNeiG4vpPXoKGCsjgR5FQnn+WicOPkHchpJVDA2o0Uj8tU3gNXnUSzahvXccpzU0Cb+WkSBbxekDRfc2sf4k0T+TFUxWCh0S7hAJKyPchJX4+plR/PHqQ1wuIOMTvrNMW0NoDc3rs2wCGisSz36UltvqQq0VLreeErlShE2FLW9gqooDT8hgBJmuSEtLTp4JMMhWpBLvAVDFtacUhV4L8zFDdpp4A7qKpMmAVxCVRH4Vc9PF5FVJYUlWADIdZkq0sOLG6+LuXIspRmyENGWPWliUIDFfFlQPzZMwH+fU52mrGLeZuA2L5mCOc58jvlCy+jS9WsQ6i1w5q2XUqHZ58f/TEaa1jCZhJa+BO+XLeGUVuTZyU46Raic/c+56Qmckv7Ds9FXIy8gmTkjpgp1Mshac1aDzx/Qotu/ZasLaCTZwGMlKka5K4TlP6CHIyrKWsVYHGQlJCXxAGbOsy3NbkRqLHqKIh4xmumtIxefSHkb0sZAnUkL1IzkmKQB9D86hrJVR9Esmgt9OJxCAfzHn/PNKqQ3wc0qpf7/827+ec/6fv//JSqnfC/xx4PcBHwF/RSn1Eznn+MN+iHKO3PeoT9/i3AeMdyK5NX2Q1lmB39aYMeL2kXEjpo1QCBcnLWGegG4iNJE0yj47OTABqkdDsmbxqtOjaM2Hay0qs4Imywkv6xs7RKaNw44sCPB4pXAncfs1A+g+0L090axqhmcNsXVUnz6irRFhR1Ohhklo0c4QlLR1+uwxh0jYNqTKYAq/22/ccnGFVi3t+HwjhFZYe/Z8SaZJZTWGlhsobQOqicTRYO4d7o0jOYtJ8n1Tkwh3npAVfm+o32kJTxnzMhK4cxbqqlGLC9C0VfitGJrOUV+2V1S7i/Bpnr1tL6Qh2+fi3CuegbFVqGjLVkSJw25drMzaCC5Bb4q78WW9pycBAOeZfLgrM/kAhGKPbmcbbsF5sqLgGQV4DQllFDoq1ChKQ7+1xNmwI8nYqaLw88kZPcnqmpTRXjgfaC1F15RNwdmjhwm0xt+0su15GqQAdIU0NgTUGKX9b6yc2nEGCaNYghkt0npkY0CWToIkztD+phLH6sdJCsChl25EawEAyyNPE6qpUW0LdSU8nLf8wMdvWQRKovDn5c8HpdQvAR//kC/5o8DP5pxH4DtKqV8D/hDw13/IDxFn1KYhn07ob39KM75g/GCN3zjMlNAhEWvD1DgJWDjL3De3ocrL6Rd1JidFuxpJtS6GEwoGgxkUrpxKsQLtZBcOAobJXhvGMl+H1lLfDzRjZLyrMSX/z7dlN94osi6jymFAf/cV3W5LvF2RNi36fi+VedWS1kKGUVMoCcpyEal+wsVMuGpAa+zbA6gt422pcEotv+OSQ9jLPDzezCAdxOtIasQIM2swTeRrzx9ZVyO/cXPD8c0KczCgpZPIhUfRtBPj1nFeNVRvDd1rOQ1nsGvmaMTKLo7LMnYUld5O4ryqY2HFGZFEz8lFvhNm3/x3KGYlXvIJczndsy4gX1Dok6PaaZRHipqeuRGFsdkIIUxFKYK2nwlBJZxmyKV1l5WcOwYh4KRE6pys4Mp4kFor2o5zlG5IS1E3R7Hrysjf9RTklJ48aE1aN3KDVxpz8uIVYXSZ5SP6Xpx8clOhpyinvNbkVgqCGqMUEasXQVB2Vj4vyg2vfIRSJLCGcNOCLgXg/ojy0hngym3sIY8TeRhQXYdateSq/Lz9PyLLcaXUN4E/gLCQ/wgSQf7fBP420i08IgXib7z3ZZ/ww4sGAtPKPKRSIg8j6vUDtdaMz1pCK+lEekokY4itFqeaAL5WlxMlS/hjTo4+g60D2kRiJW2XUDsLWURREoZLcrAXjCAZyTDIWlPvFMm11A8T9hyl1WwkllxmyFKxtcLfrXCAGibMw4ncVuSrNerUo4ZRLsAr8b/W50lW3l1F3raoMaL7QOwc2ijMcaRS0hG4U5STzIixhGQUQP0o4SXTldiQUSdYJaIu/ICD422zYuwM62bE3xhG3UBUYIRj4AdLSpqcAJ0Jm0w4SM6fSpK7F2uHPUkrnHVhCY4KU4C+5j7TPor6rr8T+vScEjwDhbPIaMEF8nukHVWKeCksZjK4nVqcjpOWbkAXCa6MFVLI3F5d8gldoSwfUkkpSjJyFeEWVuOvG2KtsX3E7AaUDwXslBstWSnMegygFKmrICX0cZT3UG4CsjXkWoqJ8A6S+Pu3TsC53VnGgqaS6zlQxgpQfr7hjdDIS3eSjUGPAh6mq5X8rMmjghSHuG0ggXsaMU9nKQDWSAFQBXwNEcYRveqga6Wo5Iw6/CMCBpVSa+DfBv6FnPNeKfVvAP+KvKX8K8D/Avjv/Cf4fj8N/DRAYzbMUtu8amX0CxH9+oFm2uKfrwiNQWdwx0BIBr82wrpCEzqx0s6miDJGBX1NqB25FepdqmQPbfsC5BRkPNWiC68O4jiT7RwxLTfetFEM1y3tQ1jGhflCr/YSoe6OBQzsKpQxi94bpchNLe2dUqiQiK2T2XDXo3pP3NbQOMxpwpw92WpRgE0RMxYEO85bCkHgZ9qrKsSZVIhDrg7o1jPsa1RvOD+2xKgxRlh5M4cgjwZ1EsFUKgt2NWnsSYg2yy690F21T6gR2kfZuce68OmVdFJ6zKAzKmrCFUzXpTgWemxOUhB0MXGtnwq1dyWbhNAJOKi9OCnNLsmxKcKx4g4MUhjsSWGHwhEojk9zh4SayVVZgL2cybXBrx1hJUCae+jRp57c1sRVJSIuylw/lH39pigCy3ub152MaFqTGkvoxDPRHia5qcsJrwtAlxsJ/SBmlMrklBZ+AEahYrk+9DxOSAEIL6/EbPehF/zHGnJbiXnIrELNmdzW8rWFQKVPPfl8RnWtFICmQp0H2Qwg4/aXPX5bRUAp5ZAC8G/mnP8dgJzz6/f+/X8L/Lvlr58CX3/vy79WPvaFR875Z4CfAbiqP8i5ay4zTVNL24VsDVxMqNsVsZOna0uiT6oUzS4SRk2vFE6pQiOVFVb1aMgHQZznk2z2nE8NC/01NuCznCrVXiii4iAjgqRpowCLHeRNvOyFC+p8FMegXFkxdgTRd/cjxCgKyaZCAVop4roi364whxE9BlJtpQvoA2oI0DoBQn0i1nqxMp8jsfxabpzUFFabzsVoNrPpBjbdwO7YMh0rIUi5KICpyhgrdmBiX6aYtIU2ooPEkbmTuO7omCFQdtxihCLzvhSmUJfNhNRhZmntEuFdduizjboUrLxkNvrVfCGoxVNwXlXKyX4J+lDFY2/mbzQ7CaWZuQrSCbIUL+0zxgsPIGslyrvWoKdMtZvEmLNy+NuO6bpCexkHTC+IfSqrOD0GSJCdFRDPlY5Sq0Xgo3yxRZvCsgJUuvA/NKC1HHAzbwGkaGhN6qx0BpMXafBVS1g53H5aZv1cV5InWOLtAagumJGKGXUeYBjlRi/zvxom8tMOTBmzy9bhBz1+O9sBBfxZ4Jdyzn/mvY9/WPACgP8K8PfKn/8S8L9XSv0ZBBj8ceA/+qE/pPgJ5LYGH6RyVa6AMfIi2bd7zKohrip5EwZZ66Ek1txMmf5WF1BHIrdQJYTkLMlCc9BGLmETqWQQqFhIMq0QiNq3edGM65P823wqmikvkWkqZTFAGUbU6FHOkjYt2QqpBKOl4oeAmhSEiOlH9EHMIecqDhA6C50oEIXWKoXLHUOhpRqMz+SS3qsSeKXRLwdurmT+9MGgVWZVTWzqkU/VFeOuYRqMjACFXqxM8b8PmvqtJTmz3Gzzf2JrLcUgNuICHFZmGYHsKCOUyuBXAmDZMZXQFF1sw0UwY/ti21XwF99JIa6f5HPC8J49evEFTK4AgYWCuzDySj5EdFJQdRFgzQ8zitkrUQC+rAT5VzGLOed5ItcVcVMTO4s7BuxJbn51HsXnMiS5wYfSjtcOorReykdB4wsYJ29eXDwi5r/n2opTVhEYAcInKADfMjqcBnLjiCsxvXVPA+b+EhqiT72IiFaNPEelCl06Q4iocVqyBnBOisbkyfePUgDWK/Kq5XeaQPRHgD8B/IJS6u+Uj/1p4L+ulPr98tbwXeC/J/dz/v8qpf4C8IvIZuGf/602A+SMOvWimV416KPsMmYHYgAqh5oCBkitI6UZ5S+5AT7TPCZpkZJEdIUmo5341KMlLiqW2RPklEnFUjxbAQYlgitiH4X4E2td/OrkgnencrIbJcYRIG9Y2cnqGMl1JZhAV8vMVs9rDI0aPeyOqPsnVFNL15NXpFp8+PzWYs8yZmifFtlodMJPr4rrkNsrmneK8anj7Tcsz1/uaCrPcag5DjVt5emaiRAM6aGGEtmdjWwG1NpLqu2Tk2CWfNn7m0lsriSBVxE2UtRiea3nkz2bi9dB+5DQZ7Fb9yu1uOfMBcUOwqCLlV7SmpITzCB0uUiCpc03HvSTrAfh0gHMstv3xT/ZKGJpAeYOLRWOhRnjMrbMFN7UOlJlyE5jD7KCnum7KCUnuY8X7wcfFiNldZYVHCAHVhB0Pxstp2+52VNXk50uoGpain02CpQBo2Rs8IG0asQZqNiF66N0KbmrZVvQNYStgMoapLMEwQuGSYpKCCityesWNXrSuweIEX21JXeN3EO7w5fefr+d7cBfY9mQfuHxl3/I1/yrwL/6W33v5aEUOUTU7oh6fk28W2P2g7Q0pY3JSkHtiiNPlMTXRoObV2kSIVUdZ5WbKurCjE8S6ZS1xm8TaVALyHSxB5POQNBqmQ+rt6PMk9sKvxbO+rQx1E8BewzzLys7XWPAe/LxBKczetWRNivSqrRh6QIIKaNRx7MQOSYBCV1I2KPDbyr81hBahz3HYp4hwSt2lFAKFUGrTDTiNGTGirf+mvULsV0fBsd530jxTwrTi4GoCkV67A1RZczGk58lgqqpHjXuIB731TGhZwlueedTwVuWVSQsKzl7yrhjwgwJPSaq/QUTiI2YkfhOEVpThGBFOt2xrBt1kP3/rNqcgdtYzfO+vLdV+TmxFlOQWYdgR3FwSpV8XPb9oj9JTknHpapln6/7sKQhyemswFUFYBOEfhHd5Cxbnn4gx4hqWzmBjQCEubIF4CuO2eVGVcUFSEaKghXFCCfZPKTrlbAKey/fQ2vSui4ko0S6apmui2343gu4WD5f9UICyuOIspZ8s5WnOheAm2vyppN7aLeXa+1LHl8NxmDOKKPJk0cde9L6ivhijXs4o/dnKQS1VPCFTJOKrLNSi6wzl5PKjEUXEKR1mjP9mntQSTNthdZqPEQj4KCk3crnzYYeWI15PGMOI+ZZx3jt8CtN/9zRvAO3n8rzqdA+CCsrJfI4knd79OTJt1fETS3t9hiWtiyvO1TlyKcz+dyjlSL7QH0ccI8V48uOVAm/P1Z6Me5EidNRmjn+tbTN7fcdp2GLuhsxNqKbJDbgJ7v41y1ahxH0gyXtrTgtlUIobXtaxDcLOaa4+CxAYCEQiVQ2Ue+Ec699Qp9G1HkgbTv8XUdYmYvDbmHdVYdSdJ0qXoUIA7BwANLCJmRJhZqfuwS9yA0mUel5oQqHYtCiy74/NvP1kEtidMIcp0K6UQXAsyRTWvMhoM+C46hTT05JurWcyf0gY912I6i81uTGiQeAT+hzLzt/H6BrSI1GjTOWoi9g8Shcgni7Et5B70kFLJbXXDqIadswXVt5vXYRtCJ2Ft2HJVcwh4Cqa9KzK3ltXt2TQ0A/vxOA/TyQd4eFM8CXbAm/GkVAqeUXYpiwxwl/3TA9W1GBWCrHBqpO0POqzF6Fpx2dkv3pKTFqU0I8BaiKTjwI/FrcY5t34j8wXWXUThWKrJxosZFVY2gUdtD4TYVVQgSxj73MyMExbQz9C7F7cudAUgq1kj0/MaKcJZ960vEExxP22S1p0y4XF4URlpta2GGTkEGwsjbSp4H2+4HpxUqsup1aZvH55FtMTrO002ZUtK80Yd/ICfrBSLsemUougAoaHRV+I7Rc3Uv6kN5rkeeWg2LaiNnpTJ8WPzx5j3QQ/MX2QoNOTpXWXjFdVZgp4XIWnNAYYi05kq4vK7uprFYboVDnvYCBsblItnWQ9yHbEo1upCDYQQDarE2R4bL49oHgFaHVxa9Pipj2mWqKRdBTCsBpEKzJikffzBkwh1FOVy9jXc5J5mlrhOhlLenlLamyiwgo28L/Pw2oQ+EFrDtSVwkNuJ8ExHNGxgIfwBjC7WqhjseiJdH+8j2n65r+zuB6IWuhYLpy6Cnh3k0CoBuNsg3x2RZixrx5JMeIfvmcXDkJIjkcSP2AbhtUVX3p7ffVKAJGo1Yd+Tyg6gr9dMQBYVMTrlrh1h96zEHcV8R0RFh0thcducyhmuqYGLWsDQWmh1TipqQQyB5cVoHShrpTIQspFucX4ccrUtWg10IAIWfczmMGSSL2aw1KBBzZGdSk5UauEYQ4J/LxRHrzDu2vpaMp+AFl9RNvOtkujJPwy50hNxY1BNz9maykZVRJLa2xGXPxWwBbTtTYZFJLuXkV6rOafuvILqEoN1Yo4GgdiSWowp7BlRSiWeEnkWSytktORrGZSZmcIka9cOaBRSsfa02+bTArOdlCN49owvHwa/MF2a0Z5WSPzSVSPLRzV6YW9+ZUiZFMrEUbIHZiwlmQG0dOUdunC69fiZOQ9qno+oWsk7attOKVkSL+NGIejtLuj6NgOz6gtxvZsyOEn7TpSI3FnEbx7hM3EdR5XHACnCM3tch3zwO5rUmVfI95ixBuV8U8xJf1a1ywhGwUoXNMG7mOm3cT2SrGa4fpE9X9IB1M1wifYC3/N48FSHz5jGQ1+ulIPhzIk0evV2At+fSVdxYq7bEWqS0xofdnjJKWPGstK7Z+xD2cSdWaWCy6/EoX3b+EYGYF9Xu+fMtcGUQ+nCo5WeaoKr8R85A5sny+6HUsltBWoRpFGgqzq7SVzbuJWGbcPBuFhijIbNdchCVtK8jx8QijGEmSsmwUfEu8aYitxR4dqqyoMoa0rtDHCfc4gGogW4nOtkW6/Fiy+Gw5WZXk2oWVoGYqzHMw5C6IPn7Q6FFjH0oUeJoBUZZ2HaQANE/50vKrTC6Mv2XGfg9snjuSZT73CaVUATjlOUxbSWeex67Z1ENlIRIJZiPbgvl5qIAYsHD5u/alEBaprhnkpKdsAVJV2vyS9ahjlpZcIddMCVglZtxjX7YI0sHlXnb1qnLyscK2y0p0GUsBAOF9DAWcq2axhJJ9vw8FK3ColGR9mDLhbk0uwTpEoSBfboBMakUxW+8i1eNIshrfOaqngN2NYKQTAum0CGnJGExXawEc92fy/rh0AChFPveo+qveCSRZnaRNiz4gKxaj0aMnJyMvvJYWUgqBRaVagKYyq5pRrsJxK/OzO4kN+XAr5JZpK6eJO1CkpzKHxibj15e4sWQKJx0tZCQFGaG16oSYShZuuTkHbKHV6sHLvD9OgiprwTjyNKE2G9R6LZTOcy8Ir7XgPVVK+GdrGT1MKRAlsy5eNehRKK+2WFWdnxlJqi1t8JxSFNvLzjzrYmXlMqYLtN2I1YlTX+EPNWYnFOo5pnxm3Jnxvf8K0p618CFUyIuGYHbnATHoDE5OZXfMuGNYgj1USOS6GJE0FwelrNTCMZizApfiG2QbNz+0R3j+hQuggnA3xmtFGAxNFmswMU5RZZ0o2yIV0sWarnD/pVpJh5BaR7Ia93oi+8vNjTGyb1difquMBj8DJ2bh9KucyduVFP+ypstGQ93K+5gzTBFCJF115Ersw+btw9IlFErxvBI2syDIVdT3g4CEnXRXdi/jjB4m6V7qilxbeT/Ok2QOxoiua9lijZNsCZrqH1478J/KIyfUsYdOSA3qPCx0yVwCF/WxLyYbGn3scTGiV3Xh+wuBxZ6FiDJeCae7fko0D2VtiCKsMtM1xV9QDoE5uCKrXPgH8pTGG0WsNNVRvAWF6prFD07Lmy1odmlBQ5JZrSprzRBQmzWcTuClA1B1JcXs3AuK3DRw7HFAvGrlIjaKVAsKnKxCFUMVHTKqT6w/z/R3Vp5fsZKPbt6t52WdpjJiz+U1SmWu2oFn6xPHq4rHq47xscHdW9xRTvVZxaeLV0DWsip1MyPOlvGotYTWih/+VEw3FWJ0WTTz/raj/6DGt4VdaAtGc3zPnbcAYclK6MrcjYSVFGhZB87XR/mfBr+9FJD6MaMepP2fBULJFfnuKF3CLPmVjVJcGJthJYSb6r4XWm2MoDXKWsECCoUdrS5+/7B0GQC5KirRyV+MckHWdymLnDeLlb6kBMeL6Wzr5BrySb4/YM4FR9CK1FSY40iuLP66EYn3blwcqmZeTTZySAqe4cnDID83RlTXom6uSHWFPn7Vx4FCulDHs1TgupJ2+XBGh5q0kZgltTsJGShl1HEQtF1L6EPc1oTOUh3LBmAtVlDulGkeMmOSGDJh3Mk4UO0yelKMNyUXz0JuKaiztNmTApSmOsjOOTuNHnyZ6TTMKLPV0FRyKmi9FAJcJf8PQdZL1qKutmA0abNapKqzuYTM/yI3jo0pFzhiT16L2WX3xmNHS39XEoGKlJagyLHwH6qMyoo8GA4PK84ncRbOIHLiVFaN/tKea5+xZ1lFZsUCwGaliI1dJMe2D0VeK5oHFeVku4TKyvdShfbrThk7ittOqi6KPgH2FNlkJoRFGLry+5atzqJXCDDbvqEkGap7m6j2otUPncGvih33URx7dUhLKz+biGarlqJtj0Hm59IFqMqhrrakYtUlpC8jFO1Qugnk5M6VXQ6A3M1rYMqYF4Qubs1SPJRPMhr4SFzXCx8hO002GnMWJqN0BHLSzwxCM0TsU38pRHNmZ8qiN5ikC80xkX0gjyP65gZe3Ar+sD+TH56+9Pb7ahSBLOQL1Y/k0xnVNtKShQl1OKGL+CZXTl7gyjHLLdXoUWmUqq06vBGzD+PzAmi5XggdodzgyQm/PBvZHJhBSdCoY+Giy4UmF6RvFSpqXIbxWYM7WAkVTYLoitRZQD2MiP2Vko2F0noRbyhrZQtirQStAKmZGXsCcEWnFzRbNVrANjOf1oppqwtLLtHea2wv9ud+rVD6Iu/VRWIc2ywXMg4VwJ3Uou8HeT3cQZiBM44RHYBi2hqyaqj2XuZRkAvdJ3TKF0CrssRVTWoEIzFeMJP6HrlxysUbOyv5f6uyMisdh19JICdaQEpbKMGhU1+Iap+NQc2Qae8zZsj47nIJu3Nafi+MIqFLEdVL7Jjt5TSGwvOPScYEa1HbzaL2FF6+lht3jBc24HwjhiTtvhVLcOUTOnghD607uclHL4dCIbplpYQ3ohV68IuIyPReCsDcSYQoJCKjcbsRfSgt0fzvILT6IGA1lZMR83AUoPDlC/LVWgr1/kx+fCKNX3WeQAjSkq07EQ+degFnrCEPAXZHTMqkTSu/fIxgRVedVoLGUvaw2TixvCo+/aoHVWK0xmSYSu7cvAVIxR569XlZQRnBF/xG/PDccXb+VYvtl99aslXYo18447PsMzsxcMhRobwUB1VXggfEJAVgGOT0rBwqZ9KzThRsQU7HmRbq9gE2dtnXZy0z73zizaKZ2Vgl2zLfVxnthfk3/3/m3wuKXnT0a5g2BQM4lbHCyXbBnWXrogubTk9yE/u1LTt2eU56KjLcJJuHxZbLR3TmCxz3bDUq6lKgSwFYq6LNmC3fxCh0SUFuMhHKJkhAS9sLduPXWmzdDoJDTNcO3xm0E6GYCaJunEFkew6i1ais+AWcB/BeCsC6k+1NovgEKGnNZ+KPqiCV97hy4CAZI79TyuhRWvK0aknrSlaOx15Yr/OjGIrq0mWg5H1WpwJIjsU3oHLo84g+DdLmWyPchKwFiDz3gikpRbreyD3x8CgcgXlFOAg2lQ8HUeVWFQz8wMdXogjknEnHE1prctdIhS1rNOUceRjg3KOaSkgQp56sAxh5gdNVJ3JMJ0DhPGOGleAD9U4oxc2jWIsFCTmSbYGVEycr8cyfASzbZ8YbxXQl60V1LsWghFiERoIfTUjCAsuC+JOzUIWLcER8wQqHe3qvEIQooo9xwjSW8XmHcuJ6o0Zx+dVjxJ7jYoY5qxhF6yC7dUG9peOJjaglVZCbSsJV5XetDqAGKW7DnSo3rNyIw61ayEg6Susu1uKyEpxuarngrBTJ+TGPEHoUMCsXvXyqzIIdCJCY0cX80/apxINJUc09gowXwZEkPIldW6xZNBxGFfymVvgt6HF2RRagz2+Ev6GSAIXunczAqXO4/Sizuxe9iQkJvTsJu9OYL+ruS3enxiA35cwIjYL6YwvHAykAZOSGPxRSm1Hy972g9hizYAjqXLpHY0oBCKhxknViCIvabwYZ5YtU+dwEfhCikDHkTUe46cTr4N0jWWkhCRmN2h3kc4ZBCkDbSrew5wc+vhJFAJAVzSg2XHnVSgVMckMp1Yrr0Kkn3m5RppP9bMwwBDCK2FXCGKslLy+sKHMtnFtFaIxkzp0TKhZTzE6YhcZnxmuNVxfPOjNmuleZ/rlmuFNEZ1i9iZhB9to2lv10MRHNxgjxJ5Uqb6uFe46zcpGVkYcQigBFia3aZ/fUiF+8L6IWPcSlIzBjAdJI0IqIZ8YwJEYdwkYKQG4SOUEMFnsuYFuXCZ2sSaX7kUJhjlDvkZVZoUvP6zntpSDJjXyh6LpTEkxAy2yvo4BncV2TWkuspTjqKYr/gxMSj4vSfosyUoDcZC5jyUzhjSWkIzQssWYgiUWhFeWkHjTNO40dYLyS6HeJHs/UTx739iy0Xq0xuyAgWQEP9fv031UnN4vRsvcHuelCFLrtMAiDL2ix7MpJwN4s1mMawRYIUTj6IMShYZL3vMh9Vc5yHaQiJPJBuDH9KE7As2K2ri6bI7iMmQUHwwfyzZbUVUy3DfbgMW8epUisV1Igdnuyq+C9AqDqSp7/lzy+EkVAgbwpMS2qwdw1crKGKHiB0RJQ4izxdo3Wxap59o3rPak2gtirsvOvyiwJhQQjGwMdpAsIrZw67b1kyA13mskI2hwaOWma+8SQNeMdpMqw/Y0olNdKiWdblplTUVSQ4yS+AZsacitsx6FIQeuKnDNqKN10W1iGPmBeP1ED001DbA2mL6i3kQtNRwExY6tL4q/CDJnqLL9wqmR9F40Ck4mriI9i0GGDIqwz4614K9izxpwFgXdnGUFCq/Bd+T4WSXt+ENQ/1hqVZ2ZhcTFWsj3xawOqaOl9FvHVUTYKsRNTVXtSy9fFxizpS75TgvbXXExSx0xi9j2E7JToPdYR3QboLeap4AZFduzOWYJeYInnhmpp61FOnJ3HSUZNo2FVCAiTl61UmfnF5SeQx0kKQF3JTYaHRlpINXryxsrcH7Pc0MO03LTpekMqdvNqCjDLiMuJvowIgxwIqikkMmsWxZ8cFlE6D6UgJ9LdlrBt8Bsn1nf3x4XPkPdCDlKdMFOzD7KarpwUn6+827DWqKoinc9SXY2BmoX/LHLOSkC23REDxNt14epDWFfCCx8C7mgwG4WpL4w2HVkku/OO3yYAaamnjaZ5iFTHxOFrpjgYS+vZPGRWryJm0ow3isPXjbgTK2Fy6TGK7jwXiacxEMTNRth/FTzt4XGSU0SXUyfEwj+vpNs5D1II4hXTXUtY2cW9FismFHY/iJWV7zi9sMwe9+5ECS/RxKGwB10mVhk2Ara5gypCFrU4+YaVvB6zXHcW7aAET5kvWttnOIdlRZucRseEPsQSqyYzgunlPSALHTa2cnnNp/90JalNpgR3zBLhZCA34g+r/UV8FFYZfxMxGy/q0ceK7lND85CxZxlZqkPCnoIYiRYGHiDCr00t0d/F70/3GVbCGKQfyN6jOgGcSUhrPnk5QetKTnJn5RSvnbTxOZOuOvxGfAj0Ufb1KEXuROoeO1d0FNMFSCzsw9jIqKifTqKMNUYwpK4RU5qY0bvT4rSFlesp3q6Z7lpJtjpFqs/3S2eRD0fwQdiBZbRW6xWqmJXOQqMve3w1igBlPWOtOKRSuoPtirTuZO0yeeFxr1oYvaCrtRN9uNNiyRwFnLJjJp3F234OzZgJLrOHgPYZl2SNFiuFX2nat57153D4mmXaABUMKNp7cSSuDorzC81wo1m9DsRKM7yoqR81qrjS6DK3qcIak19GQ47k40mMHyonF8e5l9+zqaTzOZ7RT0cqWN5wFWVOj51d2GbVg1CMp60m1JeT1J7BjJeWerbxEoYdqKQWWm52RTzlwKeLRbgKogqsjgl79JjzDFZZwqYq7X6SE38ngKy9aomtXVx4s9H4q4rYqBLDpYmtWI+pXEJI2kL9Li5JyQg2kyrBNqarTO4iugmkoFD3FetPtMSSe6Ewu5M8RylOciqrmEFDXFeLDNweRghpQf71oZeObLuRwyQKKKcmLySfriVtO1Lr0L0vhVvWuKmkBKks31efh8X9J65qeY/Ocn0qXwr9TAevBR+weznY5nF3BhNFHTiVQrOW1eR5JK9bprtWuDCniHs4y3P1xVG4cALImXj/KExBY4SoVlWCDUxf9SxCWNY0+uZalHV9L5WsraWN9kFeOKWKXLPEQHUV5iBZd2ElN50dRHJrPCJ2MRIICXJDLWBVOUVBgLbxxlIdIuvPIsePDNOGkm6rSSbTPEW235NQzawV9ZMnNEb42klOn6wVjCOMBZDRipzK0WtEfSYtXDkCx2lhjOVVaTengNtPTFeVEIeitOF+Y+lfVoVoI2DazPcXFhzLKT/7+ethLgDl96zlJtGjwvUsMWvzZmEGVKdeo28qQeRilkLblQqaFakxeCupUfP+PFUSe5Yqse+OhV4804nNJONNqOfAEuk8khOehm8yqU6omwnrImFwpLNFnwzNW7FZmzbFCPVJhEKiFrSEruACZy+jVsFSqtcHVD8SbzZiKjqfzpsV4Xa97OiLNRO5MqTrFWEthiAalteAJLt+e/Ko0aOPArfnuiI15drb9V/wJiDJ12enUWPEnAUMJiYpAFuxLTP7QbYVSkkBahzm6UxuasZnbYkdCxJHvj/J959Zjk7WzXkYULPpaD+gupY8jCJkU+/RMH/T46tTBLTMPWiHurkS5HacCtKev2C0sDippIzfCt3W7AeZ5zZVkcJa2RJoRfvWlzgzAWnmVjRWwi6rDqJPl0hrSRS++nbi+JGlf66ILQhkaWgfIu27VMgmHnPyFzad1airDnPqpUKHAG2DalsRcBSn2tkxiRBlfpu8zJ7WyO9ZG2Hk+URsDGEl2oQZIOyfSQAI+iK5XZx8ixbfrzPZpeI+rL4gJU5uVuEVem1Usj7SgpMkJzebyhqV7EWu26eLBh+56XO5uObYrtAaZuqu8XnxJRBqsIi+slHLelMK2mw7nuDKUzWBabBwsriDpnpUC8gpK06oDhEdE6GzhJX8TPfoMbue3Ig9mH04o54O5O2auHKyeTmPcgNWcpNDYf6FJO38piZ082ESFsr6vJNXWqOCIPrkXDgrSObAFJY5Ple2rPwyeDC+yJOHQghqasG6Ri96g7kr2ArHQAqAY/hwTbZSANzbE7x6JyvAqhKXIW1kdDmdBcOonGygmobsPekgZiLKWfiSZuArUgSytGHN7MBjhFV37gVB3a5kHMARN420WoNHeQsZpqsKZzTmNGGPnlgb2tcRHSqmtdz8bu8xVblAy3oqtKqYhspaKZUgzXhlsENi/WnADobzS01shK+OkrRXd5RdtzmOUgSckVZxU8PHzzCfi7nD7AirjBaJ6mwJpfVFR2CMzKrWyLYBAQWVT1Q7j19bpiuDmTRuH1h9nji/cPiVnOhL1HahxssNo8VZqbgJgYxHZhKrcrjw9VWWEaDe5WLWKlsJO84EomLaWfbbKmWZhX0g15a4rqVrcYpci3CnfpREY+1FBxIbQ0A2G3Nu4ewQLHFoChU0IVaMO4c5ixFK/STkoDmO3Z0y9ZOsL6eNY7gRolX32qPPntxWkvIUMyRIL24I1+LUq59Oi+RXGY1qHNnJKjc1llSVkWuM2LcHWd01FWi7AHfAPwDaKS+ZAfN7mZVCPx7kc2qJHJtNPzGavF3L4TZ52B9lNdi1Yk2nFHp3BmeZnq9AKdzOU336SL5/RM1uQeMEyUghGIaiaszkU+lA/USa48e0uRycP+Dx1SgCmaLi6lGbjfzZWZlzxkleLGdlp57Fo98AepgwgyVbsX9OlZbQx6TJTlPfT+jJETqJDp+jn3VIJWVW2rRpXZiFRznt/NowbgyVTjT30l+fX2pSXQhFao7hanGdEzR8CtghEK4auQifX6PfPsmJUTkpclrLTT4bRmpFDnlxokmtI64raUP7UJ5vptol0BXDtSFZR7ULdG8D42SY1lwUgFla+dCC8uLtPwethI5i9skSuR4amC2/YyWkovZeuAlmiLJiLdZXEqtexrGYUcUOG0A1bgH5BHgFc/KLcCe9d5XNicLzDW3PMEeamUmRDhf7suYhL54Q86ZH8h8zsdUMV8L5qA5IIvLLrmxrFHaIZNMsmn97f5Ibbib/BAn/0FovhCZzEOxJ9aPcsOuVWMPNzLwQC1U4LYCu8EOmiw2eSqizcPjVqru4/va9tOddI9fDOIm3hNbQFs1MSOjTiVxXTM9FQm6PHvd6T358Ql1tic+uih+icAsoVPQcE/l4KCYoSQpAyqANSqv/f+gEhDCEj+SnHfpqi1Lvzf+FM5Brh+pHLBA3tTj+7EdpJBrRh093LfYUSFbix02Jj0pOUmdE9iuYgIwB8vc5ctqdEu4Yl6z7VCuax4gOLMUiW/CtJtSZaVNhJkf9GKjenbFPPakARLmtxU9wNpgMEdK0uL8qZ+FwkgvGF2dbrcBp8HrRoGdncDsPCaYrw3BncaeikCvA5pzKC/NNnyWNOBTKsRPgzYyqkJ4ysYZsc7EGF0AxVobNp4V7H0U6rXyU51bs1NGZ3FZQItbMY6JyBrITlN6Av64l8EOpkuhrFnciKUQS5ZaVYryS7scdBdgFwSqqUxIsR1HSgcrvZyUNKVmxHLPjLHl+rxi2Bu009uilADztZTyLUWZoZ8Xw0yjJFTiLc1CePfsK91/tT7ItaOrSFegiFS+U4n68BIS8zzW4uSKuW/ThLKSwYjeHBtWXjUItgPAiRDqcwYrpSKw17uCxb/bw5h717JbwbCPvx6kwHSd/cT46n+XPQOoFq1BGrOxwbtkk/KDHV6YIkJI48vhA2u3RRWQzAzac+yLMqFDHMyZn4rrGPJ6wKRFoi3GFZbp2X6DJUsQwQc0uxUrUZkkSdqd1caVtFMkanFPYU8IVequOmfatpzrMs38pBrro660iOkdya+p3/RJfNe9381lOAW7X4i04FWfidYeqHephJ5TP04ApghJSujDNYgK05NZ7y3DnGLcGHfMCtqVOLfN8tuVjdQYLehK/RYkAyxcufkbyCJEdvegmFMONIdn6Ms97CX9ZHllQeK21rLg06MFTpUyqjXABjMKUYquSaCHI8lrZUYg9s/uzMA/LJqPIjVWC4UoSoLMGe5atQDYw3EgHMD/n2UVIrMfUYnKiogSQzKlBOAetnMapraRLOJcTWaliZuvl83Im7w9L0ci1W/wFyKUTOvVSMJxQ3ClW47mtJSvgPIoormtJXSO04XMRGLU1ed1KzuBxQj3uwRji7ZqwcaLKfLOXQ+TuRgpAyvJ8i4nJzC/Ip5P8OWXZCBgjl71SUrx8+OqnEuf37JBV14n0dn8QUE1rYVDNK49SbVU/YmbxxDihBwdWY0/gr2QEAC7mGUZuWFtQ1qwEzLKDdAMiEWVZM6ZKlTw72UOrnNFTmQmDRFhno6gfA7ExhcFXwkX3o6Cxqwbtg/i8nU6w7kg3W/Rp1joEcuPg5e2yGprTb0iCumd0UcMJldj2kXqnGa/N4pRcHeQGiZW4A4HQoFXUsv73RVQUWMaDWIMyBSCcxLC03snaTTwEWVx5cgHzVGm1Q2uL1LkRmXAEd4xy4Z7KWhEWoU5WFQYumoM8r2whV4UnYCEVXwOQrsSvZXTQnuJUJOSu2Eg3Ue0h+vn9nXkHRf8xZEwfUL0XsHXVLpHi2Rli6wpeYeBqvcSBLaGex1MB6yrRFcymHCWKLPeD7N7r9/z8Z0FZccKiH4oNuJORb3wvOGTOIxwj+nFPTglur/BXDeYccG+PUmRurwQHKxLkhcY8cwAmj1qt5LlECTOdOwGqcqj2A+o9J6jf/PhKFAHIF6Wd0vJLhQCTWDAR4uKMkvtBUlZ1ljZMazAGfRoW5xZ7jovgZ6Glxiza9StNso760aNjlGQjL+2kjrnsyzP1HDHuNLnSmKcBcxhJjQg3GBR+bamOnvrNidlRdrGTDpHc1cSbDbpyYvn85h59vRUCynzK+0i4bonPV9jDdEGZfSCvGgGukghy1CC2YCokdJDocLlJivBIC4tQewkJ9UWAI/6JGXNQ2FPhHdRKbqj3zEjEmEW+TiVFnTLGB9QkUlxJ4pVLxq/EvCUr4WXY2V2J0rkkmMM49BTlYp9mXwYpMKEVuzG/uVinaV+4C2txfUqVbC9KU0JsEmbQS5JU1gIyRqcXl+TqKZRdvMiH/XYl6+CiJ4itqFCz1aTtezdxBj0EzOjL6Z4XoY4wQcV9KAdxCvriJSzgNkZfbMFrGR/UKJyWJTKsJBmpMWKejjIOXm2ZnnWYIQgoGSLp7rq4BfVFRCTbrNw1l1zEphaAeSrGO8MoXoNtI3oEH9BlTMD/4LvvK1EEFIVpl6WdwWgxHVVK6JupiImqSlZvc+vmA6ly5G0rvPQhkBojq7/iRixotJLWqMyLMwJu+ygvgL6cIK5PBSzLi4Y7rmviusY+ntGHgVw5jI/FUttKRNTjbvF/R2t5Y99luenbGq428PBE3h/ETKSsA9EKPQb8xjG8bMVZppdUo2xEvCNR5hl7vLyLZswkK+DmbEI6C2xSJaes7cEO6r3wFIgtpJKwNJ+wuYR9pOJeJG7LQh2OtcadIrbEfJte5LJ6ssJhUBJT5o6iJ/DbYpxZrL1nyTc+ooeE04qwssRG/B7GrV7SiFRGkiq0jDJhG6EpY8gkYh01aexZVoZmygvoWB1EN2BOfrlpxg82DHcWM2Xa14NsZZyVDsBqkjNkK2Yf8vMFpM21K8zBQRqXso/PqQjb8ux/Vk6YeWy1ZZSrnLTj72UUzODj8kgJfR7JxzPcXOFfXslz351lpNm00pmMQbqQ8vXZaQgJXWz4ct8v1ug5Cp6hi7RYKYW+uZIxoZDwftDjK1EE0HLT51B0+DnL2sPaBVnP3i9Ry3OhQCnUOEmazE0riLRPaK2IM400AmNe3gQxncxSNbWSJKEgbbBfF4DqIDFn2ZnF6zC7UonLPEjOVPsz6Wol8WOrVuTQMzMrRmnLjidxe111UEvVzuOISm7xrjejx1WW4UXNtLXoxuCcWSiwoopUmOuL06542suPUvky9szmGwsfPxQPhdJ2x1r+y0bUdyC4QGyEI2BHqHdpYVmK6m/mXGfUELDnCbPXiyGKvLAQtjV+Y4R1mAFtF0cdjCa1IkX2K0OcC5ZjeR4zWUnMRVlGB0YtzsM2LxoDFaUDQEP1JJ2QbC0Cua3oP15zfm4xXvAcff4iNJ5qAzFjD/6LGI7WqHGQvbvRl1F1XuVaCzP5S4vKdREhwRIRNkedpW3RAsx+ggVPYZwEH7rekK5XmN2A3h0FsKzdxZ7+vbVxnqXIRwEbs7+sJYkRvJcuuRyoersh5yx5hPk3dS7vPb4aRSAXEYZ2RW2Vl5ufFOWFVrLrzF0jAKIxJXNtxD6cmD7aEq7rhQCyJA9bhZkkGTZZiief+sIOWxJyM/VTXKKzdEiETS3gViymErG08HOhAjFtaERkQl3Jm1DsnbQx5H4gnc/QD+jtWogdWdrMPE1QZNIuZ3J1SzK6CHDk97CngL6x+ApyoxbJrS7GILMLb1byu80R4CoiJ2qR4s4nphmlMEj4R5Emu0yq5aYMK0X7NtE8ROqHETVGUifZiFkhOMyIzLizN56GrM3i7WeGJOpCpCMwZ3H/US5j+uL20xTSUMkUiE2GtmgHFJDA7gwqCbfD30T0ypNw+O3F67B+mFeMYu4RblrGG8e01rg+074VC3sSLLFhgB4jZl9cecq1BBmVorTaXXsB+ooRDGbm4uuLD2HtijFJKZQhCuhaiaU5WqHP75mTRlEDqhDJmxVp3Yo78fF84SGMXorKXGALbVufJ9TueOk4leILTMDCSFVKST6C96SnXdHY/A6KgFKqAf6fQF0+/9/KOf9PlFLfAn4WuAN+DvgTOedJKVUDfx74g8A98M/mnL/7W/2cfC5GIjOvPsrNn5MSBtQs98wS7glIcMS6wjyeqd6c8LedtEsAWS64eGXwrZiGzp51oVH4rSksOC+s0OsKkrSUyehCIoHprimOtUK3VV4uanIWUUmx1VKTl+oc0/J7KGtRzpEO8sblQYQmgmkocVAaipz0/pFKKeLNSmb+Q7+cLvWjJetiShnLTa8v67BpC2Gdys2vFqQ9GwEFq70wBlUQSrVKYHrJbAydpDXnqvAmtEZ7jZnA7bWMPVbhNwYw2JMRc47pPadcJVRhe/JUbyeh06YkRKk5U1IpzDGVIx500MLczKJwDOtENhl7MLijkhSjLOPL8LHn5uWenBVPgwS+uoPYw9X7SxR5qjRTJ/6H60+LU3POF1eg8lx1L8g+wygzdTEUnfMF5+QexulSAOYCotQi+LlElr1nMlqyI3JjBc0/TUvQyWzBpkIs8eZlg3Dqy6GX5BDUapEbLwzC+wP5cLwkDBeh2qKM0wqFWbwryFmERSDXXnzv/fpNj99OJzAC/0zO+VjSif+aUur/AvwPgX895/yzSqn/DfCngH+j/P8x5/xjSqk/DvzPgH/2h/6EeY8+edRS2TIZL/MzSLszV8aYyLWFmIkbS1Yr7K7HHkb8dVPWgvK57pgYryUKq96V7IAkoOF05Wh8FPXhSTNeO7Jx2JP4Ceogc3Doig3UlGSHD8JBh8UhhhgF1/CefBgL3dlAltXnXKGJiZwLv72kyBKTbEROsvpMK1kpKS/+fe4YiI0u/oOJOOqFUJOMnJ7JyY1MhjzosgXIkmDUyhxt+nIxRha2XrVTxFGRbC6vl6zjQLYssbNQdBax0oSV8DFsL5JhYia1RohahxKdXRiRFBkuIYovX1stoRuzd+ISa5ZBeX0JIc1CcBpeBjbP5WJ+erem/Z6jfZNp7yPuKJsbYLFhq54CbjdcZut1Kzenk0ODnBfgdqbuLlr/BCA3dT4V7cp2fSkS8+fMnpiDl5EOpJvo6oVLoaZw8Sl05vIz50fBtFQhwi3/ljOMZcZvVqA15uFIfnwSB6QSMZ6HgTxOpUPR5DGg6krGzhBlGwUySqf8O3MWyjJMHMtfXfkvA/8M8M+Vj/854F9GisAfLX8G+LeA/5VSSuUfNpQYvbQyCy6glbgFnUrmelPL+iYmuccLe22mCaeuEgbYGAkru+Tg6ZCpd4lprcXc4iTOPTbLynC8qanvh8I0zExbt3ydRFglqidf7M01ZhTBip6iKBjnU6a8kcqumC3Uc8EOUOL4u+gjIlBV8ntr0axnEOCzjDgCNIkyTp89trfinINgFtmUiK1JwlN8r4kmFdfksv9PkHUmXkXiWqG8/GcmtazpTC8gm56kNZfMAcn7E2xBOiLbR7E7A7JVy7pNpSTMRqMlGOZmRX6+IbZW3JqfJuzTGRDTzlQSpOSmLc9hkpWs8BtkFQhlRLCZ465FPVasPte0b+X5uWOUQNgC6uqQcfsBcxzFEKREfcdWYsIoIaSmDzJK3m7k+ffT4mORh1FouDGhrCHfbBen4dy4sqGRNd9CEirJUakTj399GooTUVrae30cl5Xv7KINSGFRCs7CN5Bxo0TybddgDfrtk5zoWjrInBKMI9mHC44RZXumNmvZqE1exoQkRii6qS8H6A94/LYwAaWUQVr+HwP+18CvA08555mB8Anwcfnzx8D3AXLOQSm1Q0aGdz/kB0gLM/kL8loEFcRI2h/Q11dfcG8FqcTkjPVRMgELcAcsJhvTRjqA5jFesvi8mHRko8hWkWqLOU+Y40QFpGIbJdbiCnWO1IeBcNVK2u0QxBx0dpzVQFLLC53XzTJPqvNQ3phJ3pyUSlejYd2JKGpyF0s1amkNfZCL2VmUUdiDJ3SaUGtsTmWdB8lmmncAivFGzFSzyUVFiJxcSWHOGhUloDWs5URToRiuakU9iOGo8RfAUY9pAVCFal0ERFHa/+m2KV6NqiQiqcXBJ9SqrAItpndistlJZyFiLrUYmyYLuS5FJbNkD+pR4d5aUPYLI84cGJucLi5QqWwUypi1qomNJbZGthRh3jAU7wcEA2LyciPm8udKLOHV5MXwBUSC3Ik9uDmMl5BRWHCA3NRyqu+Gi5uQ3ACSMqzVAt5lW7Cswhlg8gLwKdlgUdkLNrA/kfYH+bjSsinLqYzHRt4bHxbAHF8YkSleVu51YRT+Tv0ESrT471dKXQP/J+Anfztf98MeSqmfBn4aoNGrwn8u7z4ARV1XiSIs7/YFYa+kG3B2oWDmtkJ5teABM3lkbjVPLw2r15H2c1mTZGdAZaq9x3ciQ1XJoc9ecgVW7tKyzrnzCdybA2nbCkB2mgpnQBhzuRQFvTstacriJ98IYcdalCu+8FqLgcreFeZgIxTPYZSTovgUZnUpLOY80b7KjDc1qSqmpz7jzgl3guqo8G+EghuKdVpymTzIBTWHq6hQBDzby3pNxga1ZPslKzwBQeHlgo+1ITeyUpO/a3wruY1o3tsmCAtzKSZakRrLnNJketHRq6ALl0NuejWVMJQsZiIZ6RAExISZOmzP4rScjSraBhlRYiXmqPY08wcUbj+JH0DOiw2Ymvn/MV1We0Bed0JRn/n8ZRTL12s5JIZwcfidT1WlBJ+KxY5s1V46OViun0UsVERIahgF/BvGImQqK2Nn5fnFBLsD6dxLh6K1ALGmFAdrZUsxjihniw/nKArCgqctWwOtyX0v680vefwn2g7knJ+UUn8V+KeAa6WULd3A14BPy6d9Cnwd+EQpZYErBCD8zd/rZ4CfAbgyz3IuDqrKFotuV6HMRWab+wFO50IvLk7EjRMktJg3JKOZ02XMkPCdWfbjxw8NZqhpXp1g8GKRbYWf7TeO6crhrLr41Ze4MF2qdG4sygf0vidt5JQwj6eFDjqz6mZzELU/SUtpjQCCKQu1MyaUkpEnH46oGNE3VxJQ0dXkJC02ky904fJ61cJHMCtHNnLCqVxuvpjLzaexY2bs9ZK7ODsGzXO3uPkCCCiIFiOSPG9SikPy3KrbGdmGwtoTtqCNCT0p7KiWuDZgyUp0J/FJNGc58WbDjZmUZXsv3g7G0r7R+LMAhP46kW1G9xq0IrYJPSrqB037RmjSoZVxIlbSceggXg/V43TxEvRJjEIGOe3nuO9ZTbcIgEpIaK6trPUG8YJAadR2Ta7EXl7vixR8Hl1T+kJbL7oCJWs+o+V9nwtAcZGaHaSWcJqmlu1C4b0wG4WM740aBWtSXbsUAUDSrWJEYaSTKHb2TMU9WQlpKYcgmIBWMob+gMdvZzvwHPClALTAfxEB+/4q8MeQDcGfBP5i+ZK/VP7+18u//99/KB7w/iMncLXcIMUVRTWN7NW7Ttrl2SSyVPHcVuIfB9IeVzJH23OkqhT9jcFMcrP0zyz23ODuT9inM+GmI1WG+nEkzsk6WhUPeZl1ZxNRrCZ1NXoK4gNf3uR5fp/bP+WDgH/DZf0EgtAyjtJm5iRdjzFyMfSiMU9dDbUmWo0OtYBJBZBSQWKzYq3xa8Emqn1Y3HSyUWAz7iisPDOphRuRDMSGJapbIsgLoFhd5nLjyyk7ZzrkjNn1F418LdLbqA16jLixGLaspJuasxyyBV088JQPpE1Lqg1+I+7D9aPo7PUk9mC+U6VoZfSgMKMYiIRVxh411ZOifS3dxXCjCzVaqMHdu0T7esK9O5KdIWwvbfzCWpxzKnxJJHZWbsihgLuVk5t8nOR9SRlqyYbQx2IcWtD6hT6c5VSnzPUqZXjciyKwqeTjpd0vN9LFgRjEQGbWIiglRf88XHCkORGp61Cb1WUEyblslM7MztaqqgQrSFm6ZVjchHJJyQZ+R4zBD4E/V3ABDfyFnPO/q5T6ReBnlVL/U+A/Bv5s+fw/C/zvlFK/BjwAf/y3/AlZaMMKK21N1yxMLbVZX1xYQ5SbK2c5UYsFdGpdOb0EdJJ0m0R9L7TjcatxxTJ8unao0C4KRN2Ihrx6cyJsG8LKYlIJrjAXNplQPSGuZBzR5YRTc75djJf5LibyOF4Sh0zRfeeMKnxzNRM8Sl4cTSXuPcUWS3CGRqK+evHLJ4E7BFAQGqENu2MoUdmK3IkqzvYJHUqMWekW4qAYryC2BVAcMzYrgpo1B5D2Zc/fR1AI936+AUoGnwoZrQUbEHVkuYgLWWnOUfRbB3ojXUBj8VvDtC6sv2ixTpc05dn5WRSPdpCRIFUZt5PUZB3AbxTnDxTTjczk9b2i22U2v7pH9RPh2ZrpRm7Q6skvz2++aefiLDdDQM0eg02zRH3TFrv79epC7Z5lxDORqORkzhTgxVkpRuhaEbgdpGOdfQUF8S/uRTnLQVBXX8S3ZlFQ5ciHkTxN6Osr8u2VYABzN3MeFodi3TYySpQCwPVGNhmHkygi3wu9Qevf0Xbg7wJ/4Ad8/NvAH/oBHx+A/+pv9X2/8CgvYk4JlRNMRt4QEFrl7ZW02UVpSIiyHimGnWpQxO3/r72ziZHsuur479z7vuqre6anx45JImKjbLJAwYqsLKJskIB4Y9h5xYYVHxIsWBhFQmEJEizYEIGUBQhBIGGRDRIBIbHCJiDbcbCcWGBEjD1jz0xXd328z3tZnPNe9Yymxzaarm4ydaRRVb3Xmnvqvlfn3XvO//z/+ZB11mSQ3pCjd0ukyzeVgQ6afesgq6zebRj35NYC14wImeLdB0mokzVhf6JNJ7bqCNMCt6xgud5gxrPU2F31czR8wKajMGpgyHM4uKI3Vd0oRmK5xjsDvEy8Kv8C3cjhxp5kmSgzTohkRw0+78kS0aecYdLrmRv0AKJjaJt2rT79m9CDpUBEZcB6DQJA0ZMnlrTqVPBluLapN9EQ7cLsTmEy0kU3NF8BG71Bp5WEZNFp96X02wrlHKynzvIXEJM4VAZ6JSJgUJJuptECoTC+EZn9lwpK1j+2z+LjmYrIvK0VApxTkZGhESvRkp/xAvTBmq7Tp3euydh4eJVgpCSyNtafPngYOEorVK2+DpBhJQyVk5U2HyWJQciFuCoVZei8+gADqxRYAOgp5lZrxf4fXhuERaS2xOGqJC5VN9FNRsh0avJ2AZlNlHFouSYcnwz9DWIVKJozlgFcFsSgE4UNV8YbsFzpk7LIVW3l1h3k+gHd/gjJU1V7KVM9Nx3rvrpqCZnmAJqZ8c21enz8w5bqcET0QnrSEFJHM0twuSNdnIKNeqc/7Hiq8SP1UDvcfEko9mmnqWK8y4YwznBtN7DG9DwBpAmMC3yeE47mQ4KTYJnddYkUOd3BHnF/BOypvuHJmvS9BfgZzbjX/rOe/qhimyFzw3IdIETdExM3Sby2EBIwMFEkWQXDDWh5sMu0HNillijI5RQC0ZOUCVIHyIV2MtJ9fB2U7iz3tGPzIWqglc7yEk3QubFtVChSQq7l1KRWJuiQ+oFfgGwjjuIaiGHzvUQJnDdMyDnkt8W0JQPjm/pkXX1qT5WI1hrwk6P1IPApXUco0iHgx6j3gJTNgN0YWnyrxrgFM6QN2kTUKXqQvnwnClaj0a5SslSxIFa6ZrnW+nwvaNJvOfqKlwnqDAnKnnXagkFcLlVSfG9PYeh1o0/1LB1AZYAmAyeTzQp6NtX7rm6IR/NNJcAwN8poddmDQK8cm+c2McqiKl2mZZumgaMTvAjt/kgvWpYoHVlVqwKR09JdkjnKUcL6MKW4BUmM+GVN8c6C+nCiWeOjEigor6WETKnHENEM8LpBOgXGOExDzsRQ/a0F3SeuUF/Nyd+3LUG/NCzR4GVZXhJPnI5xiSfOj3WvZ6WjUFW4+bG21xY5YZzTzRSB5uYr0vdXxOsTTXKWm+aWkDjCyNON3LDs7qHQvrI99nGgHcmw8tDuwGBPaUfaqaKSrwPBC80sobzqBgqykECXOtKqgyYgrTLTYD0AftXimpRg3Y045Q0ENsEp6HjSBHxolKTTrrO0ARcjftBXdHATzeek1ipsTW+uRTUWjAFJdQi1/6OZJHTXesLXTiW8K+N77KHeWUI3US7BmHpCn0QG4iin29dVjitbFf8cKw+hX9YDJiDW9QYI1gW9N+tae1gy6//ot6ltq1n7K3uEca7AKdAAYsnG2DRg+S4leNBVSS9A4qYTZDrWgLJeE52Huh4SmIAmCUX0N9L7sSqJt+7QLZYadMQhLhBbyz9d+t4BIJyc6ASkufZo99uDtt3sx05WJF0gTHN96o9T3DpF2kB7JaMXxyhuw+qxhOpABSD65X2yqOkmKZ1RguVeWF/Xhg9XB5pZQnZH2Wdd0ykoyCvMNOxPcMcrsrfn1B/fp75akDmHW5S6V5uMNbE0P9lIlPfJmtkM1mvCyUKrGZkpwsyPoczxxw63N1V58ukIWZYk84pghJeAtp02HXihG2V0mRuIUJRbUJWVfK06Ae3YG9EqNFNjQRZIVkF7Ata6yvFlii9TO9cNVGm9tqI/Wm32toZqS+t2KFtJpYnLmGdDKzUAdYOzbVa0/gJdIWgwdG2AqZZii9smdzbzyn6cMug+NBNlSE7WVj4cac087XUH5g1+3W76GPr7qdDr3KshiQUgaYPRg2dGwNrRznK63OErTQbLukaqWkE6fR+LWQxBf8B9rb8LVr+PuhLcn2nJemWSdD24p1cZ6pviTH8irtd3nZOi0C3BYmnfx84Z/FpyZTyK82P9naQJslgRjubao9LfL6f5A8QBYdiq3WuXIwjYlwvrEpdmSK7NGT2H3QCwSTRyukVFLFICCd1epiSYTaCdpgMxSH4UqPYd9V5CftRQX8mGTHoYJ3hTfJUQqa7qXRcTWH+sYHRDcQBeRMlDRPXl4ihHTlbkb7W0j+8ru3Ceqp9tdzcjTZ7rqqDRCoHkOU6cZnWbZqMOA/qkWa5xo4xQJPgmNRHQDf9dNCYkt25JVgnVvmXjDdekrDzKCtwDZEKS0UyEslCNvqQMd0+7PR18pZ2CflGrCGaPaku8Zq0taTU0yXgHSdzAZkNU7oSJ6hC6LoW9wt4HknmFzNdKxpl4hUUnPQxaWZ/Lq954DHQb0GU9oxAkaxno1H0TScpIfqfVblAgpKovONzlSS/3bWVW5wZ4t6oTYSsSbQUPmVMAWdPh5iuTB1vpdSkKhRenWiLWGr3fzEWMGoCLQtWIrdQ4oFvLclPOE7GksOaP4mKl/BhZqj9UJ7olWK51i9xrFqYK3ZZxofiRk4WV0xMNGCcLwnptT38Z/i+C+jZsR86wyxEEgiKgYtsSjo/xh9dsqek2+7E+w5qlBqoIuKjLv2aaDjeP9sdrt1Z+HKhnjmTtSU9aysNsUO2JiT2dyo7Ru6qk00wSmpmw/lhBcVNITpS9KGQqHCFzkxNblyT/3QzIrh4duGl6Us43jPJJtQcVHiyJVxLI5RIZXxu0BrR2HBStOMkUiiuKXvRrw5Knnm6UED2DlLgzKa4oELzW8dvCGYmKKHWaN67+RhOHzXSsn9ed5g0E3ac/NsLXOekdXVprX7tm6qTpNEnWl7KmY+IoI+yNaKeZlv+SPj+hZCEAxW1DSXqv1YsiJYxSbeUVrQ6sDr3qPVr7MzDwIbgWXB1JbBuQroImGVNHO1HAlKdTBKeRbgDahi2iBCJekDogRJUUbzrIPd00s/ltTU2o1CQc6I8sy7RTMLNAX9W6EghBl/1ONkSfI93K9itDvNclvZF8APqQcKKvjZaMhwAQA7G0jH4MiM+GFTDiBtJSbh3p+dFIg8tqRSgrJEmHUmAPvFNSkQ+uzl+KIBCNWagnDYnLpWY+T9XS8V6X0McL5NoVwkifln5Za0bd+O6JCncNqS7vklQ58wogm7dUBwnNWEkiYyWQqXpQclIbrrzQUtZjOUWfJzBVnYF5tq8V97oBVX2qr1tx56RW7rQoHoOqEQMKflosCe/fxvnrtIczjfydNiz17D0xcYPyULKokapDEgdROfz6pBoC9dRIOq4I5WFUrcSIzUkkWQnNkQxwYwlQ3HFkx8osHKw5qJ14pAmktQJPpGfBMSALrf6TNCFOCkKemAy80bMF7bj01tnnbdvRTXJi5mgLTzP1hk0IpkOggUy7NDUZqMpLGgBGt03J2Ehiq6tanut5D6OTQfLMl/qDDqknZor0HIhG+gz8OKcb6/YxPa41MPQ6EM7pw6ZtldM/M/6IqtaSYi8Wak/aGIJ2g9p2VUuN2ufS9/ur1JiRfoaogKQYtFTYGotUzz8BqiB0yqSwZPNNxdzJ3kzvu1IpzgZCUdtqDojBrvvAVQBckiCgj6Jw97ZAnPYT2HGCtujGtkVuz5HHDwhFiisbkqWKi0Trtccpa1BIhGzewn5CM3FkbaB4v6G6mmqN2ursPXmHW9WMf9jBJyfWMZcM5T0JURmO+34AsH2/18i7WKgGXJbqxTV8gCY9OxO+HOnFDBrJw2JJ+J938XlK89gUQBl6wZbKyvrbFZ7y+oik7JBWgVASoLriaVNN5ilVGNT7ke4TJZNZSZG2VE1CVSdUq4zqJCFZOlylK4h2LKQzIT9RirU+249X6i231OV0LKym7QSKnDAd0+0XdFam9FXA39IkmKuUSmwozaWe6lpBN3KWCJSh2nGaWThZAWtFNLpa8wK+QlWkg6oPN1Y+TNYwfl+3A13m6HL1Pz1pN/yGQHCaCHTzlRJ4zCYWAFL8uhn4/WPqNQ9Q1tbkFa0JbIPAw/tNDz/QMwlJOtaV6VI1JOJ0pgneW0vd66fppiFO3FAqxBB9dAoTj3WDOFE9QXGa4fceN9Gkd3jnhoLnDq4MW86BLSgGwGlgtkQmzilUuO/KfUAwuBRBQMSWSP3nLDMIZK2Z0FO5AUlTaFvVlz/c00BQtfgqpXV6U3a5RtxkrUvqbK5lw3biyeYtxXsVne2TB1x57CnNG8ZvrykfKzZgoGGb4WF/hO+Malpsy+IccmUfFyJhtdKLNRlvsAFVDY3qJ8S9CbiJ5gCsEsLtOX6c0c7yQdBEBTEyFcI4qegmmUJ2+x9e2VHcjpQHCfVUSTmb/Ug3CTgfSX3HflHiisiiyTjygTUFjfeqOARUB6J8hEsF5WTHUSsHpcdniWbD6wbyVEE3mZbb2pl2pblG581XnXIIdEHzCUVGGGeaI0icNfrokztZmay5v5u1GTbJQAlR+QxWeuOuDzYowfwoMr7Zks5ra0aSTYLQJMZi6odcTg97DteuEG31mNxaKj7Dvo/K3GuwG6DaMQw//p7Hwm5WvQ+sgYcQNQCY2lTM003J2bAuelNalSdJFN/frwBi1OpXDFYdU5h5n0CMbUu4c4TLc+TaVXWtTwLaNgLR7Uds2oHJGhhe4wOERwDkwyJ6z9NE5D1gyYM6Dbdnh1y8H5fBB9j5ca/9f/fjx2OM1+89eCmCAICIfCfG+LmdH5fDh50fj44f7oP/ZGc729mPsu2CwM529ojbZQoCf3zRDphdBj8ugw+w8+Ne+5H049LkBHa2s51djF2mlcDOdrazC7ALDwIi8nMi8oaIvCkiL2x57LdE5Lsi8rKIfMeOHYjIt0XkB/Z69RzG/ZqI3BSR104du++4ovaHNj+visjT5+zHV0TkbZuTl0Xk2VPnfsv8eENEfvYh+vFJEflHEfl3EfmeiPy6Hd/qnDzAj63OiYgUIvKSiLxifvyOHX9SRF608b4uIpkdz+3zm3b+Ux9pwBjjhf0DPMpc/BSQAa8An9ni+G8Bh/cc+z3gBXv/AvC75zDuF4Gngdc+aFzgWeBvUSzk54EXz9mPrwC/eZ+//Yxdnxx40q6bf0h+PAE8be9nwPdtvK3OyQP82Oqc2Pea2vsUeNG+518Bz9vxrwK/bO9/BfiqvX8e+PpHGe+iVwLPAG/GGP8jxlijfIXPXbBPz6E6Ctjrzz/sAWKM/4RSr32YcZ8D/jSq/TNK8PrEOfpxlj0H/GWMsYox/ifwJvdhlvo/+vFOjPHf7P0J8DpKXb/VOXmAH2fZucyJfa+ztD6+YcfvnY9+nr4B/LTIA4QG7rGLDgKDRoHZaf2CbVgE/k5E/tUo0AEejzG+Y+/fBR7fki9njXsRc/Rrtsz+2qnt0Fb8sKXsT6FPvwubk3v8gC3PiYh4EXkZpVz5Nh9B6wOYo1ofH8ouOghctH0hxvg08CXgV0Xki6dPRl1fbb18clHjmv0R8BPAZ4F3gN/f1sAiMgW+CfxGjPH49Lltzsl9/Nj6nMQYuxjjZ1E6/2d4CFofZ9lFB4Feo6C30/oF524xxrft9SYqqvIMcKNfWtrrzS25c9a4W52jGOMNuwED8Cdslrfn6oeozuU3gT+PMf6NHd76nNzPj4uaExv7CKX3H7Q+7jPW4Ic8QOvjLLvoIPAvwKct65mhSY1vbWNgEZmIyKx/D/wM8Bob3QS4W0/hvO2scb8F/KJlxD8PzE8tkR+63bO3/gV0Tno/nrdM9JPAp4GXHtKYglLVvx5j/INTp7Y6J2f5se05EZHrompfyEbr43U2Wh9wf60P+KhaH3Cx1YG4yfR+H93zfHmL4z6FZnZfAb7Xj43upf4B+AHw98DBOYz9F+iyskH3dr901rhoprjXf/wu8Llz9uPPbJxX7eZ64tTff9n8eAP40kP04wvoUv9V4GX79+y25+QBfmx1ToCfRLU8XkUDzm+fumdfQhOQfw3kdrywz2/a+ac+yng7xODOdvaI20VvB3a2s51dsO2CwM529ojbLgjsbGePuO2CwM529ojbLgjsbGePuO2CwM529ojbLgjsbGePuO2CwM529ojb/wKALxmJfhmfiwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -23901,7 +24142,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQEAAAD8CAYAAAB3lxGOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAATCklEQVR4nO3df5BdZX3H8fdnf2RjEgKJQAhJkF+hFm0JuCYBGaqiAmHGwJTSUFsoxkYRWhhtFbCjdMZO1dEwZRQ0FCRaSkCQIRVaCZFqVX4tv/KzyJIEkzUkQCAEGMNm8+0f90m4bHazm733nnvZ5/Oa2bnnPuec+3zvyeaTc55zcx9FBGaWr6Z6F2Bm9eUQMMucQ8Ascw4Bs8w5BMwy5xAwy1zNQkDS6ZKektQp6fJa9WNmlVEtPicgqRn4DfBRYAPwCHBeRKyqemdmVpFanQlMBzojYk1EvAEsAmbXqC8zq0BLjV53ErC+7PkGYEZ/G49QW4xkdI1KMTOAbbz0QkQc1Lu9ViEwIEnzgHkAIxnFDJ1ar1LMsnBf3P5sX+21uhzoAqaUPZ+c2naLiAUR0R4R7a201agMMxtIrULgEWCqpCMkjQDmAItr1JeZVaAmlwMRsUPSJcBPgWbgxohYWYu+zKwyNRsTiIh7gHtq9fpmVh3+xKBZ5hwCZplzCJhlziFgljmHgFnmHAJmmXMImGXOIWCWOYeAWeYcAmaZcwiYZc4hYJY5h4BZ5hwCZplzCJhlziFgljmHgFnmHAJmmXMImGXOIWCWOYeAWeYcAmaZcwiYZc4hYJY5h4BZ5iqagUjSOmAb0APsiIh2SeOBW4HDgXXAuRHxUmVlmlmtVONM4EMRMS0i2tPzy4GlETEVWJqem1mDqsXlwGxgYVpeCJxVgz7MrEoqDYEA7pX0qKR5qW1CRGxMy88BEyrsw8xqqNJZiU+OiC5JBwNLJP1f+cqICEnR144pNOYBjGRUhWWY2VBVdCYQEV3pcTNwJzAd2CRpIkB63NzPvgsioj0i2ltpq6QMM6vAkENA0mhJ++1aBj4GrAAWAxekzS4A7qq0SDOrnUouByYAd0ra9Tr/ERH/LekR4DZJc4FngXMrL9PMamXIIRARa4Dj+mh/ETi1kqLMrDj+xKBZ5hwCZplzCJhlziFgljmHgFnmHAJmmXMImGXOIWCWOYeAWeYcAmaZcwiYZc4hYJY5h4BZ5hwCZplzCJhlziFgljmHgFnmHAJmmXMImGXOIWCWOYeAWeYcAmaZcwiYZc4hYJY5h4BZ5gYMAUk3StosaUVZ23hJSyQ9nR7HpXZJukZSp6Rlkk6oZfFmVrnBnAncBJzeq+1yYGlETAWWpucAZwBT08884LrqlGlmtTJgCETEL4AtvZpnAwvT8kLgrLL2H0TJg8ABu6YpN7PGNNQxgQkRsTEtP0dphmKAScD6su02pDYza1AVDwxGRACxr/tJmiepQ1JHN9srLcPMhmioIbBp12l+etyc2ruAKWXbTU5te4iIBRHRHhHtrbQNsQwzq9RQQ2AxcEFavgC4q6z9/HSXYCawteyywcwaUMtAG0i6BfggcKCkDcBXgK8Bt0maCzwLnJs2vweYBXQCrwMX1qBmM6uiAUMgIs7rZ9WpfWwbwMWVFmVmxfEnBs0y5xAwy5xDwCxzDgGzzDkEzDLnEDDLnEPALHMOAbPMOQTMMucQMMucQ8Ascw4Bs8w5BMwy5xAwy5xDwCxzDgGzzDkEzDLnEDDLnEPALHMOAbPMOQTMMucQMMucQ8Ascw4Bs8w5BMwyN2AISLpR0mZJK8rarpLUJemJ9DOrbN0VkjolPSXptFoVbmbVMZgzgZuA0/tovzoipqWfewAkHQvMAd6T9rlWUnO1ijWz6hswBCLiF8CWQb7ebGBRRGyPiLWUJiadXkF9ZlZjlYwJXCJpWbpcGJfaJgHry7bZkNrMrEENNQSuA44CpgEbgW/t6wtImiepQ1JHN9uHWIaZVWpIIRARmyKiJyJ2Atfz5il/FzClbNPJqa2v11gQEe0R0d5K21DKMLMqGFIISJpY9vRsYNedg8XAHEltko4ApgIPV1aimdVSy0AbSLoF+CBwoKQNwFeAD0qaBgSwDvg0QESslHQbsArYAVwcET01qdzMqkIRUe8aGKvxMUOn1rsMs2Htvrj90Yho793uTwyaZc4hYJY5h4BZ5hwCZplzCJhlziFgljmHgFnmHAJmmXMImGXOIWCWOYeAWeYcAmaZcwiYZc4hYJY5h4BZ5hwCZplzCJhlziFgljmHgFnmHAJmmXMImGXOIWCWOYeAWeYcAmaZcwiYZW7AEJA0RdL9klZJWinp0tQ+XtISSU+nx3GpXZKukdSZpi4/odZvwsyGbjBnAjuAz0fEscBM4GJJxwKXA0sjYiqwND0HOIPSRKRTgXmUpjE3swY1YAhExMaIeCwtbwNWA5OA2cDCtNlC4Ky0PBv4QZQ8CBzQaxZjM2sg+zQmIOlw4HjgIWBCRGxMq54DJqTlScD6st02pDYza0CDDgFJY4A7gMsi4pXydVGa2nifpjeWNE9Sh6SObrbvy65mVkWDCgFJrZQC4OaI+HFq3rTrND89bk7tXcCUst0np7a3iIgFEdEeEe2ttA21/iy0TJlM288P4aW7p9J8wP71LseGmZaBNpAk4AZgdUTML1u1GLgA+Fp6vKus/RJJi4AZwNayywYbgt/NPozHp14LwDn/+RGeWXQSAIf8fAubTxrHzlaVNgyY+O8r6Hnllf5eqvFIvPjJmfSMLL2Hgx57DT3wZJ2LyotKZ/J72UA6GfhfYDmwMzVfSWlc4DbgMOBZ4NyI2JJC49vA6cDrwIUR0bG3PsZqfMzQqZW8j2FryydP5KYvz+c9I96xx7ovbprGVw56mFFNI3a3HXnvXI75m+VE9xtFljk0Tc2s/9IMfjXvm4xrHgXA/C1HsuQvpsPaLna++ioM8Ptpg3df3P5oRLT3bh8wBIrgEOhb87hxbPj+ISybfsug9+mOHv7ohkt415cfqGFlVdDUzJp/mc6Tn/jXt4QYwMYdr9INnPntL3DoN35dn/qGof5CwJ8YbGA7j568TwEA0Kpmzvn4L1l/+3t58VMn1qiyyq2/YgaPf+LqPQIAYGLLGA5rGcPdl3yD5y9q3PcwXAw4JmBvP189eDlfPXg5m2e8xkf2/wfGruvZvW7/Xz/Ljo3P1bG6knfMfIExTSP3us1hLWNo+/hmmm8/iJ7nnweg5fDD2Pq+vj92MnbVFnpWP131Woc7h8AwdnDzaJZ9/tq3tL3/sXN555++RLzRa8yg4MvCJg1uuweOu4M/mTGPkT95nuaxY9FN3fzymO/1ue3f/e79PHP2ZHas31DFSoc/h0BmHjx+EUtX7nlL9rN3zeXoKx8nttf+Mxsvn38idx/3TWD0oPdpmTKZnoXBPcfc3e821xz6CDNP+Qz73+wQ2BcOgcw0q4mPjereo73zvO9yzBsXccQVtR9Q7B5VOksZNMFvzzuM5e++dsBNz73iXn5689gKqsuPQ8B2++szf8avvnM0Ozbs8dmuurri6oUc0PQ60FzvUoYl3x2w3a488Ck6Lzqs3mXs4fRR25k50gFQKw4BK1TTe9/NZZf9qN5lWBmHgBUmTjqOWbc+wPljX6h3KVbGIWDFaGrmt6eN5m/HPVvvSqwXh4AVouXQQ+iYO3/gDa1wDgErROw/hlZ5cK8ROQSsEGMXPE+bWutdhvXBIWCFGNG0o94lWD8cAmaZcwiYZc4hYIVoVv2/vMb65hAAaGpGbW387gsnQVMzaJD/z9UGrSd8TBtV9v+BKD4wjU99/04OadnKsa0/Y9VnRvPD5z9A119OoOfpNfUuz6zmsj8T2PaP2zh3zFZOGQkHNo/mlJFw/ZRf0XnhhIF3NhsGsg6B5gkHM2nM1j7XdU/opmnk3r/+ymw4yDoENp5zNLcfdV+f69ae8W/EHx5VcEVmxcs6BKw4vjvQuBwCVgjfHWhcDgErhM8EGteAISBpiqT7Ja2StFLSpan9Kkldkp5IP7PK9rlCUqekpySdVss3YG8PPhNoXIP5nMAO4PMR8Zik/YBHJS1J666OiG+WbyzpWGAO8B7gUOA+ScdERA9m1nAGPBOIiI0R8Vha3gasBibtZZfZwKKI2B4Ra4FOYHo1ijWz6tunMQFJhwPHU5qRGEpTkC+TdKOkcaltErC+bLcN7D00LAMeE2hcgw4BSWOAO4DLIuIV4DrgKGAasBH41r50LGmepA5JHd3UftYbqy+PCTSuQYWApFZKAXBzRPwYICI2RURPROwErufNU/4uYErZ7pNT21tExIKIaI+I9lb2nBbLhhefCTSuwdwdEHADsDoi5pe1l08NezawIi0vBuZIapN0BDAVeLh6Jdvbkc8EGtdg7g58APgrYLmkJ1LblcB5kqYBAawDPg0QESsl3QasonRn4WLfGTBrXAOGQET8Eugrxu/Zyz7/DPxzBXWZWUH8iUGzzDkEzDLnELBC+O5A43IIWCF8d6BxOQTMMucQMMucQ8Ascw4BK4QHBhuXQ8Ascw4BK4TvDjQuh4BZ5hwCVgiPCTQuh4AVwpcDjcshYJY5h4BZ5hwCZplzCJhlziFgljmHgBXCtwgbl0PACuFbhI3LIWCWOYeAWeYcAmaZcwiYZc4hYIXw3YHGNZi5CEdKeljSk5JWSvqn1H6EpIckdUq6VdKI1N6Wnnem9YfX+D3Y24DvDjSuwZwJbAc+HBHHUZqG/HRJM4GvA1dHxNHAS8DctP1c4KXUfnXazswa1IAhECWvpqet6SeADwO3p/aFwFlpeXZ6Tlp/aprZ2Mwa0KDGBCQ1pxmJNwNLgGeAlyNiR9pkAzApLU8C1gOk9VuBd1ax5prriZ2c0PHnNP12Y71LMau5QYVARPRExDRgMjAdeHelHUuaJ6lDUkc32yt9uapZsPVQ/uB/5jLhvA30vLil3uUMGx4YbFwDTk1eLiJelnQ/cCJwgKSW9K/9ZKArbdYFTAE2SGoB9gde7OO1FgALAMZqfH1+QwK6owcoPR5/06W8657XOerXj7OzLgUNXx4YbFwDhoCkg4DuFADvAD5KabDvfuAcYBFwAXBX2mVxev5AWv+ziGjIfwYO+eFyZt97DgDaGRy+9kFooFKbXtvO3a+P5MxRv693KTaMDeZyYCJwv6RlwCPAkoj4CfBF4HOSOild89+Qtr8BeGdq/xxwefXLro6d27bR07mWns617FizrqECAKBn1W+47I4L612GDXMDnglExDLg+D7a11AaH+jd/nvgz6pSnTF1/jPMP/NIPjd+Tb1LsWHKnxhscD2bNvO9u06rdxk2jDkE3gYOfN+mepdgw5hD4G3gQ4c8Xe8SbBhzCDS45y47ic+Mf6DeZdgw5hBocK9PDCa3jKl3GTaMOQSsEP7EYONyCFgh/InBxuUQMMucGuETvZKeB14DXqh3LcCB1L+ORqgBXEdvb/c63hURB/VubIgQAJDUERHtrqMxanAd+dThywGzzDkEzDLXSCGwoN4FJI1QRyPUAK6jt2FZR8OMCZhZfTTSmYCZ1UHdQ0DS6ZKeSvMUFPoFJJLWSVou6QlJHaltvKQlkp5Oj+Nq0O+NkjZLWlHW1me/KrkmHZ9lkk6ocR1XSepKx+QJSbPK1l2R6nhKUtX+f7OkKZLul7QqzW1xaWov9JjspY5Cj0nhc31ERN1+gGZK31x8JDACeBI4tsD+1wEH9mr7BnB5Wr4c+HoN+j0FOAFYMVC/wCzgvwABM4GHalzHVcDf97HtsenPpw04Iv25NVepjonACWl5P+A3qb9Cj8le6ij0mKT3NSYttwIPpfd5GzAntX8XuCgtfxb4blqeA9y6L/3V+0xgOtAZEWsi4g1K31c4u841lc+bUD6fQtVExC+A3l9l3F+/s4EfRMmDlL7gdWIN6+jPbGBRRGyPiLVAJ318s9QQ69gYEY+l5W3AakpfXV/oMdlLHf2pyTFJ76uwuT7qHQK75yhIyucvKEIA90p6VNK81DYhInZNOPAcMKGgWvrrtx7H6JJ0mn1j2eVQIXWkU9njKf3rV7dj0qsOKPiYFDnXR71DoN5OjogTgDOAiyWdUr4ySudXhd8+qVe/yXXAUZSmnNsIfKuojiWNAe4ALouIV8rXFXlM+qij8GMSNZjroz/1DoFdcxTsUj5/Qc1FRFd63AzcSelgb9p1apkeNxdUTn/9FnqMImJT+gXcCVzPm6e3Na1DUiulv3g3R8SPU3Phx6SvOup1TFLfL1P6ev/dc3300dfuOrSXuT76U+8QeASYmkY9R1Aa1FhcRMeSRkvab9cy8DFgBW/OmwBvnU+h1vrrdzFwfhoRnwlsLTtFrrpe19ZnUzomu+qYk0aijwCmAg9XqU9R+qr61RExv2xVocekvzqKPiaSDpJ0QFreNdfHat6c6wP6nusDhjLXRzVGVSscCZ1FaRT2GeBLBfZ7JKWR3SeBlbv6pnQttRR4GrgPGF+Dvm+hdFrZTenabm5//VIaKf5OOj7LgfYa1/HD1M+y9Ms1sWz7L6U6ngLOqGIdJ1M61V8GPJF+ZhV9TPZSR6HHBPhj4PHU3wrgy2W/sw9TGoD8EdCW2kem551p/ZH70p8/MWiWuXpfDphZnTkEzDLnEDDLnEPALHMOAbPMOQTMMucQMMucQ8Asc/8PInkpU56yxuAAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQEAAAD8CAYAAAB3lxGOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAATCklEQVR4nO3df5BdZX3H8fdnf2RjEgKJQAhJkF+hFm0JuCYBGaqiAmHGwJTSUFsoxkYRWhhtFbCjdMZO1dEwZRQ0FCRaSkCQIRVaCZFqVX4tv/KzyJIEkzUkQCAEGMNm8+0f90m4bHazm733nnvZ5/Oa2bnnPuec+3zvyeaTc55zcx9FBGaWr6Z6F2Bm9eUQMMucQ8Ascw4Bs8w5BMwy5xAwy1zNQkDS6ZKektQp6fJa9WNmlVEtPicgqRn4DfBRYAPwCHBeRKyqemdmVpFanQlMBzojYk1EvAEsAmbXqC8zq0BLjV53ErC+7PkGYEZ/G49QW4xkdI1KMTOAbbz0QkQc1Lu9ViEwIEnzgHkAIxnFDJ1ar1LMsnBf3P5sX+21uhzoAqaUPZ+c2naLiAUR0R4R7a201agMMxtIrULgEWCqpCMkjQDmAItr1JeZVaAmlwMRsUPSJcBPgWbgxohYWYu+zKwyNRsTiIh7gHtq9fpmVh3+xKBZ5hwCZplzCJhlziFgljmHgFnmHAJmmXMImGXOIWCWOYeAWeYcAmaZcwiYZc4hYJY5h4BZ5hwCZplzCJhlziFgljmHgFnmHAJmmXMImGXOIWCWOYeAWeYcAmaZcwiYZc4hYJY5h4BZ5iqagUjSOmAb0APsiIh2SeOBW4HDgXXAuRHxUmVlmlmtVONM4EMRMS0i2tPzy4GlETEVWJqem1mDqsXlwGxgYVpeCJxVgz7MrEoqDYEA7pX0qKR5qW1CRGxMy88BEyrsw8xqqNJZiU+OiC5JBwNLJP1f+cqICEnR144pNOYBjGRUhWWY2VBVdCYQEV3pcTNwJzAd2CRpIkB63NzPvgsioj0i2ltpq6QMM6vAkENA0mhJ++1aBj4GrAAWAxekzS4A7qq0SDOrnUouByYAd0ra9Tr/ERH/LekR4DZJc4FngXMrL9PMamXIIRARa4Dj+mh/ETi1kqLMrDj+xKBZ5hwCZplzCJhlziFgljmHgFnmHAJmmXMImGXOIWCWOYeAWeYcAmaZcwiYZc4hYJY5h4BZ5hwCZplzCJhlziFgljmHgFnmHAJmmXMImGXOIWCWOYeAWeYcAmaZcwiYZc4hYJY5h4BZ5gYMAUk3StosaUVZ23hJSyQ9nR7HpXZJukZSp6Rlkk6oZfFmVrnBnAncBJzeq+1yYGlETAWWpucAZwBT08884LrqlGlmtTJgCETEL4AtvZpnAwvT8kLgrLL2H0TJg8ABu6YpN7PGNNQxgQkRsTEtP0dphmKAScD6su02pDYza1AVDwxGRACxr/tJmiepQ1JHN9srLcPMhmioIbBp12l+etyc2ruAKWXbTU5te4iIBRHRHhHtrbQNsQwzq9RQQ2AxcEFavgC4q6z9/HSXYCawteyywcwaUMtAG0i6BfggcKCkDcBXgK8Bt0maCzwLnJs2vweYBXQCrwMX1qBmM6uiAUMgIs7rZ9WpfWwbwMWVFmVmxfEnBs0y5xAwy5xDwCxzDgGzzDkEzDLnEDDLnEPALHMOAbPMOQTMMucQMMucQ8Ascw4Bs8w5BMwy5xAwy5xDwCxzDgGzzDkEzDLnEDDLnEPALHMOAbPMOQTMMucQMMucQ8Ascw4Bs8w5BMwyN2AISLpR0mZJK8rarpLUJemJ9DOrbN0VkjolPSXptFoVbmbVMZgzgZuA0/tovzoipqWfewAkHQvMAd6T9rlWUnO1ijWz6hswBCLiF8CWQb7ebGBRRGyPiLWUJiadXkF9ZlZjlYwJXCJpWbpcGJfaJgHry7bZkNrMrEENNQSuA44CpgEbgW/t6wtImiepQ1JHN9uHWIaZVWpIIRARmyKiJyJ2Atfz5il/FzClbNPJqa2v11gQEe0R0d5K21DKMLMqGFIISJpY9vRsYNedg8XAHEltko4ApgIPV1aimdVSy0AbSLoF+CBwoKQNwFeAD0qaBgSwDvg0QESslHQbsArYAVwcET01qdzMqkIRUe8aGKvxMUOn1rsMs2Htvrj90Yho793uTwyaZc4hYJY5h4BZ5hwCZplzCJhlziFgljmHgFnmHAJmmXMImGXOIWCWOYeAWeYcAmaZcwiYZc4hYJY5h4BZ5hwCZplzCJhlziFgljmHgFnmHAJmmXMImGXOIWCWOYeAWeYcAmaZcwiYZW7AEJA0RdL9klZJWinp0tQ+XtISSU+nx3GpXZKukdSZpi4/odZvwsyGbjBnAjuAz0fEscBM4GJJxwKXA0sjYiqwND0HOIPSRKRTgXmUpjE3swY1YAhExMaIeCwtbwNWA5OA2cDCtNlC4Ky0PBv4QZQ8CBzQaxZjM2sg+zQmIOlw4HjgIWBCRGxMq54DJqTlScD6st02pDYza0CDDgFJY4A7gMsi4pXydVGa2nifpjeWNE9Sh6SObrbvy65mVkWDCgFJrZQC4OaI+HFq3rTrND89bk7tXcCUst0np7a3iIgFEdEeEe2ttA21/iy0TJlM288P4aW7p9J8wP71LseGmZaBNpAk4AZgdUTML1u1GLgA+Fp6vKus/RJJi4AZwNayywYbgt/NPozHp14LwDn/+RGeWXQSAIf8fAubTxrHzlaVNgyY+O8r6Hnllf5eqvFIvPjJmfSMLL2Hgx57DT3wZJ2LyotKZ/J72UA6GfhfYDmwMzVfSWlc4DbgMOBZ4NyI2JJC49vA6cDrwIUR0bG3PsZqfMzQqZW8j2FryydP5KYvz+c9I96xx7ovbprGVw56mFFNI3a3HXnvXI75m+VE9xtFljk0Tc2s/9IMfjXvm4xrHgXA/C1HsuQvpsPaLna++ioM8Ptpg3df3P5oRLT3bh8wBIrgEOhb87hxbPj+ISybfsug9+mOHv7ohkt415cfqGFlVdDUzJp/mc6Tn/jXt4QYwMYdr9INnPntL3DoN35dn/qGof5CwJ8YbGA7j568TwEA0Kpmzvn4L1l/+3t58VMn1qiyyq2/YgaPf+LqPQIAYGLLGA5rGcPdl3yD5y9q3PcwXAw4JmBvP189eDlfPXg5m2e8xkf2/wfGruvZvW7/Xz/Ljo3P1bG6knfMfIExTSP3us1hLWNo+/hmmm8/iJ7nnweg5fDD2Pq+vj92MnbVFnpWP131Woc7h8AwdnDzaJZ9/tq3tL3/sXN555++RLzRa8yg4MvCJg1uuweOu4M/mTGPkT95nuaxY9FN3fzymO/1ue3f/e79PHP2ZHas31DFSoc/h0BmHjx+EUtX7nlL9rN3zeXoKx8nttf+Mxsvn38idx/3TWD0oPdpmTKZnoXBPcfc3e821xz6CDNP+Qz73+wQ2BcOgcw0q4mPjereo73zvO9yzBsXccQVtR9Q7B5VOksZNMFvzzuM5e++dsBNz73iXn5689gKqsuPQ8B2++szf8avvnM0Ozbs8dmuurri6oUc0PQ60FzvUoYl3x2w3a488Ck6Lzqs3mXs4fRR25k50gFQKw4BK1TTe9/NZZf9qN5lWBmHgBUmTjqOWbc+wPljX6h3KVbGIWDFaGrmt6eN5m/HPVvvSqwXh4AVouXQQ+iYO3/gDa1wDgErROw/hlZ5cK8ROQSsEGMXPE+bWutdhvXBIWCFGNG0o94lWD8cAmaZcwiYZc4hYIVoVv2/vMb65hAAaGpGbW387gsnQVMzaJD/z9UGrSd8TBtV9v+BKD4wjU99/04OadnKsa0/Y9VnRvPD5z9A119OoOfpNfUuz6zmsj8T2PaP2zh3zFZOGQkHNo/mlJFw/ZRf0XnhhIF3NhsGsg6B5gkHM2nM1j7XdU/opmnk3r/+ymw4yDoENp5zNLcfdV+f69ae8W/EHx5VcEVmxcs6BKw4vjvQuBwCVgjfHWhcDgErhM8EGteAISBpiqT7Ja2StFLSpan9Kkldkp5IP7PK9rlCUqekpySdVss3YG8PPhNoXIP5nMAO4PMR8Zik/YBHJS1J666OiG+WbyzpWGAO8B7gUOA+ScdERA9m1nAGPBOIiI0R8Vha3gasBibtZZfZwKKI2B4Ra4FOYHo1ijWz6tunMQFJhwPHU5qRGEpTkC+TdKOkcaltErC+bLcN7D00LAMeE2hcgw4BSWOAO4DLIuIV4DrgKGAasBH41r50LGmepA5JHd3UftYbqy+PCTSuQYWApFZKAXBzRPwYICI2RURPROwErufNU/4uYErZ7pNT21tExIKIaI+I9lb2nBbLhhefCTSuwdwdEHADsDoi5pe1l08NezawIi0vBuZIapN0BDAVeLh6Jdvbkc8EGtdg7g58APgrYLmkJ1LblcB5kqYBAawDPg0QESsl3QasonRn4WLfGTBrXAOGQET8Eugrxu/Zyz7/DPxzBXWZWUH8iUGzzDkEzDLnELBC+O5A43IIWCF8d6BxOQTMMucQMMucQ8Ascw4BK4QHBhuXQ8Ascw4BK4TvDjQuh4BZ5hwCVgiPCTQuh4AVwpcDjcshYJY5h4BZ5hwCZplzCJhlziFgljmHgBXCtwgbl0PACuFbhI3LIWCWOYeAWeYcAmaZcwiYZc4hYIXw3YHGNZi5CEdKeljSk5JWSvqn1H6EpIckdUq6VdKI1N6Wnnem9YfX+D3Y24DvDjSuwZwJbAc+HBHHUZqG/HRJM4GvA1dHxNHAS8DctP1c4KXUfnXazswa1IAhECWvpqet6SeADwO3p/aFwFlpeXZ6Tlp/aprZ2Mwa0KDGBCQ1pxmJNwNLgGeAlyNiR9pkAzApLU8C1gOk9VuBd1ax5prriZ2c0PHnNP12Y71LMau5QYVARPRExDRgMjAdeHelHUuaJ6lDUkc32yt9uapZsPVQ/uB/5jLhvA30vLil3uUMGx4YbFwDTk1eLiJelnQ/cCJwgKSW9K/9ZKArbdYFTAE2SGoB9gde7OO1FgALAMZqfH1+QwK6owcoPR5/06W8657XOerXj7OzLgUNXx4YbFwDhoCkg4DuFADvAD5KabDvfuAcYBFwAXBX2mVxev5AWv+ziGjIfwYO+eFyZt97DgDaGRy+9kFooFKbXtvO3a+P5MxRv693KTaMDeZyYCJwv6RlwCPAkoj4CfBF4HOSOild89+Qtr8BeGdq/xxwefXLro6d27bR07mWns617FizrqECAKBn1W+47I4L612GDXMDnglExDLg+D7a11AaH+jd/nvgz6pSnTF1/jPMP/NIPjd+Tb1LsWHKnxhscD2bNvO9u06rdxk2jDkE3gYOfN+mepdgw5hD4G3gQ4c8Xe8SbBhzCDS45y47ic+Mf6DeZdgw5hBocK9PDCa3jKl3GTaMOQSsEP7EYONyCFgh/InBxuUQMMucGuETvZKeB14DXqh3LcCB1L+ORqgBXEdvb/c63hURB/VubIgQAJDUERHtrqMxanAd+dThywGzzDkEzDLXSCGwoN4FJI1QRyPUAK6jt2FZR8OMCZhZfTTSmYCZ1UHdQ0DS6ZKeSvMUFPoFJJLWSVou6QlJHaltvKQlkp5Oj+Nq0O+NkjZLWlHW1me/KrkmHZ9lkk6ocR1XSepKx+QJSbPK1l2R6nhKUtX+f7OkKZLul7QqzW1xaWov9JjspY5Cj0nhc31ERN1+gGZK31x8JDACeBI4tsD+1wEH9mr7BnB5Wr4c+HoN+j0FOAFYMVC/wCzgvwABM4GHalzHVcDf97HtsenPpw04Iv25NVepjonACWl5P+A3qb9Cj8le6ij0mKT3NSYttwIPpfd5GzAntX8XuCgtfxb4blqeA9y6L/3V+0xgOtAZEWsi4g1K31c4u841lc+bUD6fQtVExC+A3l9l3F+/s4EfRMmDlL7gdWIN6+jPbGBRRGyPiLVAJ318s9QQ69gYEY+l5W3AakpfXV/oMdlLHf2pyTFJ76uwuT7qHQK75yhIyucvKEIA90p6VNK81DYhInZNOPAcMKGgWvrrtx7H6JJ0mn1j2eVQIXWkU9njKf3rV7dj0qsOKPiYFDnXR71DoN5OjogTgDOAiyWdUr4ySudXhd8+qVe/yXXAUZSmnNsIfKuojiWNAe4ALouIV8rXFXlM+qij8GMSNZjroz/1DoFdcxTsUj5/Qc1FRFd63AzcSelgb9p1apkeNxdUTn/9FnqMImJT+gXcCVzPm6e3Na1DUiulv3g3R8SPU3Phx6SvOup1TFLfL1P6ev/dc3300dfuOrSXuT76U+8QeASYmkY9R1Aa1FhcRMeSRkvab9cy8DFgBW/OmwBvnU+h1vrrdzFwfhoRnwlsLTtFrrpe19ZnUzomu+qYk0aijwCmAg9XqU9R+qr61RExv2xVocekvzqKPiaSDpJ0QFreNdfHat6c6wP6nusDhjLXRzVGVSscCZ1FaRT2GeBLBfZ7JKWR3SeBlbv6pnQttRR4GrgPGF+Dvm+hdFrZTenabm5//VIaKf5OOj7LgfYa1/HD1M+y9Ms1sWz7L6U6ngLOqGIdJ1M61V8GPJF+ZhV9TPZSR6HHBPhj4PHU3wrgy2W/sw9TGoD8EdCW2kem551p/ZH70p8/MWiWuXpfDphZnTkEzDLnEDDLnEPALHMOAbPMOQTMMucQMMucQ8Asc/8PInkpU56yxuAAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -23931,7 +24172,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 12, "id": "2c0866cc", "metadata": {}, "outputs": [], @@ -23991,7 +24232,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 13, "id": "b61bb3d8", "metadata": {}, "outputs": [ @@ -23999,12 +24240,12 @@ "name": "stderr", "output_type": "stream", "text": [ - "Loading dataset: 100%|████████████████████████████████████████████████████████████████████| 4/4 [00:00<00:00, 5.55it/s]\n", - "Loading dataset: 100%|████████████████████████████████████████████████████████████████████| 4/4 [00:00<00:00, 5.91it/s]\n", - "Loading dataset: 100%|████████████████████████████████████████████████████████████████████| 6/6 [00:01<00:00, 5.91it/s]\n", - "Loading dataset: 100%|████████████████████████████████████████████████████████████████████| 4/4 [00:00<00:00, 6.95it/s]\n", - "Loading dataset: 100%|████████████████████████████████████████████████████████████████████| 6/6 [00:00<00:00, 7.22it/s]\n", - "Loading dataset: 100%|████████████████████████████████████████████████████████████████████| 4/4 [00:00<00:00, 6.82it/s]\n" + "Loading dataset: 100%|██████████| 4/4 [00:00<00:00, 4.93it/s]\n", + "Loading dataset: 100%|██████████| 4/4 [00:00<00:00, 5.10it/s]\n", + "Loading dataset: 100%|██████████| 6/6 [00:01<00:00, 5.16it/s]\n", + "Loading dataset: 100%|██████████| 4/4 [00:00<00:00, 7.22it/s]\n", + "Loading dataset: 100%|██████████| 6/6 [00:00<00:00, 6.71it/s]\n", + "Loading dataset: 100%|██████████| 4/4 [00:00<00:00, 7.22it/s]\n" ] } ], @@ -24022,7 +24263,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 14, "id": "f5c1f433", "metadata": {}, "outputs": [ @@ -24037,7 +24278,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsYAAADHCAYAAAAaq5U5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAADXxklEQVR4nOz9eZisWVrWC98rIjLmiIzMPVQV1VU9YDdCH5TTcFBAAW0UGhA+PIh6zgEEtJAWFUfA73O4OB/nQ0ERDwI2B0QcUVBBRoGj4qEZukGUoWnppruhq6ur9t6ZGXNkZES83x+ZvxX3u3ZW17R3Ze5d67mufe29Y3jfNb2x7ud+7udZoSgKZcuWLVu2bNmyZcv2UrfKRTcgW7Zs2bJly5YtW7bLYBkYZ8uWLVu2bNmyZcumDIyzZcuWLVu2bNmyZZOUgXG2bNmyZcuWLVu2bJIyMM6WLVu2bNmyZcuWTVIGxtmyZcuWLVu2bNmyScrAONsltxDCL4cQPvGi25EtW7Zs2Z67hRDeHUL4pGfxuSKE8Fue5z2e93ezZUutdtENyJbtA1lRFK+96DZky5YtW7Zs2V4alhnjbNmyZcuWLVu2bNmUgXG2S26E4UIIfyOE8K9CCP8khDAOIfxiCOE1IYSvDCE8FUL4zRDC77fvfUEI4W1nn/31EMIXJ9f9yyGEJ0II7wsh/HEPxYUQGiGErwsh/EYI4ckQwreEEFovdt+zZcuW7X6xEMJHhxB+KoRwdPbb+40hhHrysU89+72+GUL42hBCxb7/hWe/6YchhB8JIbz8Re5CtpeIZWCc7V6yPyDpH0vak/RfJP2ITtfww5K+StI/sM8+JenTJfUlfYGkrw8hvE6SQgifIunPS/okSb9F0icm9/kaSa+R9BFn7z8s6a/dhf5ky5Yt20vF1pL+nKSrkj5G0uslvTH5zGdJ+ihJr5P0mZK+UJJCCJ8p6a9I+oOSrkn6z5L++YvS6mwvOQtFUVx0G7Jle1oLIbxb0h+X9LskfVxRFL/v7PU/oNMfxt2iKNYhhJ6kkaS9oiiOzrnOv5X0H4qi+IYQwrdLerIoiq88e++3SPo1Sa+W9E5JE0m/rSiKd569/zGS/llRFK+8m33Nli1btvvN+A0viuLHkte/TNInFEXxWWf/LyS9oSiKHz77/xsl/c9FUbw+hPBDkr67KIpvO3uvotPf6Q8tiuI9Z999dVEU73ix+pXt/rXMGGe7l+xJ+/dc0s2iKNb2f0nqSlII4Q0hhJ8OIRyEEI4kfapOmQpJ+iBJv2nX8n9fk9SW9HNnIb8jST989nq2bNmyZXsediZ9+/4QwvtDCCNJ/4e2v8mY/xa/R6e/1ZL0cknfYL/JB5KCTqN52bLdUcvAONt9ZyGEhqTvkfR1kh4oimIg6Qd1+kMqSU9Iepl95RH7902dguzXFkUxOPuzWxRF9+63PFu2bNnuW/tmSb+qU2a3r1NpREg+47/Fj0p639m/f1PSF9tv8qAoilZRFG++663O9pKzDIyz3Y9Wl9SQdEPSKoTwBkm/397/l5K+IITwoSGEtqS/yhtFUWwkfatONcnXJSmE8HAI4ZNftNZny5Yt2/1nyN0mIYTfKulLzvnMXwoh7IUQHpH0ZyV919nr3yLpK0MIr5WkEMJuCOEPvRiNzvbSswyMs913VhTFWNKf0SkAPpT0v0j6Pnv/hyT9PUn/QdI7JP302VvHZ39/Oa+fhfx+TNKHvCiNz5YtW7b70/6iTn+LxzolH77rnM98r6Sfk/QLkn5A0rdJUlEU/0bS35T0L85+k39J0hvufpOzvRQtJ99le8lbCOFDdfpD2yiKYnXR7cmWLVu2bNmyXYxlxjjbS9JCCJ91Vq94T6dMxL/LoDhbtmzZsmV7aVsGxtleqvbFOq11/E6d1tc8T++WLVu2bNmyZXsJ2V0DxiGETwkhvD2E8I4Qwlfcrftky/Z8rCiKTzmrNrFfFMVnFUXxxEW3KVu2i7T8m50tW7Zsd0ljHEKoSvrvkn6fpPdKeoukP1oUxa/c8Ztly5YtW7YXZPk3O1u2bNlO7W4xxh8t6R1FUfx6URRLSf9Cp8c7ZsuWLVu2y2f5NztbtmzZJNXu0nUfVvkEm/dK+h3+gRDCY5Iek6RKpfKRzWZTsNeVSkWVyilm32w28bXNZqOTkxNtNhuFEFSpVOLfOzs7qlar8TOVSkW1Wk3ValXL5VJFUWhnZ0e1Wk2bzUar1Uqr1UpFUSiE0xrjRVHEP/4a9wshxPdqtdOhW6/X2mw2qlarsQ0hBG02G63Xa61WK63Xp4ez1et11et11Wo1hRC0XC61Wq0UQih9jz+05Wy8VKlUYh9pO2Pg7eL7GO9VKhUVRRHbnBr3rNfr2tnZie3h/unnmCN/f71ea71eyyMR3j765HNGm/gs169Wq3Fc0jHgPpvNpnQtvwdzd3JyouPjY63Xa9VqNTWbTVUqlbgG0rl28/XAH8bAx8bHKn3fP+PryecunWu/13nrkmfE++nPT7Vaje1gnPg+4+TrLZ1Dv5bPSfps+rMRQijNSfrM8G/mmuv4WvJxSNddGt1KP+dj4/eif+kzlt7Tv5/ew993o/+bzeZmURT38umIz/ibLZV/t6uqfmRb/Renddkuv9kzKEmt37rRy2qzC2zQ5bFChd7xSz0V5+y72S7GFppqWRzf/qOuuweMn9GKoniTpDdJUrfbLT78wz88AsWdnR0NBgPVajUNh0NtNhvt7u6qVqvpfe97n5588kltNhu12201m011u13t7+/r2rVrWi6XeuKJJ7RYLPSKV7xCjzzyiA4ODvQbv/EbarfbetnLXqb1eq2bN29qPB5H4MpmuFwutVwuFULQzs6OlsulJpOJarWa6vW6VqvTwgXdbletVkvL5VLD4VDValVXr17V/v6+ut2uNpuNRqORbt26pdFopKIo1O12deXKFT366KMaDAaaTCZ64okndHx8rFarFQHfZrPRcrnUYrHQdDrVcrlUvV5Xq9VSt9tVrVbT4eGhRqORNpuN6vW62u12bHNRFJrNZiqKQrVaLQKPdrstSRqNRprP51qtViVgtFgstFgstL+/r5e//OXa39/XbDbTfD6P9wdQzufzOCaAr2q1qvF4rMPDQy2XS1WrVZ2cnETQUqvVVKvVtFqtdHJyot3dXT344INqNBqaTCaazWYR7C0WC4UQdPXqVXW7p4fOrddr1et1Xb9+XZJ0cHCgo6Mjrddr7e3taX9/X+12O4JhAM98Ptev/dqv6Z3vfKeq1ao++IM/WK961as0m810dHSkk5MT7ezsaL1ex/46qAb84FhJimOwWq3UaDTUbDa1Xq81mUzimprP5zo+Pla1WlWr1VK73dZ6vdZ4PI7r1wG6pOjYSFKr1VKz2dTJyYkWi0UE99VqVY1GQ+12W41GQ8fHx5rP55rP5xH8sz43m41ms5lms5kWi4U2m02ct3q9Lkk6OTkpfXe9Xsd7SlKn0ynNZavVUr1e13K51Gw202q1Uq1W087OjlarlabTqYqiiJ/DarWaKpWKxuOxptNp/A7rtF6vx7ZIUqPRiI5T6jT6PNBOfg8cGNP3zWajVqulRqOh9Xqt4+Pj6BSxTnZ2dmJbd3Z2bltHOBw4p4Dmk5MTzWaz99yJ38XLbv673Q/7xe8Ir7/gFmW7aAuNhiq9rt72Na/Uuz71/0revXIhbbqMNtzM9Tkv+5iLbka2M/uZ4sef9r27BYwfV/lox5edvXauFUURgQGbEQCgXq9rNpvp+PhYjUZDvV5Pw+FQ4/FYx8fHajab2mw2Oj4+1mKxiCBxMplE4Njv99VutzWbzTQajdRoNCJYA4jx71qtpuVyqfV6rZ2dHTWbTS2Xy9PBOtuMT05OYnt3dnbUaDQ0n8918+bNuGH6Bg3bLUnHx8d68skntVwuS0BzsVhEUEQ7Go1GBK+SIgNdqVTUbDYjcAZIdDqdyPadnJzENhurFRnDRqOher2uxWKh0WgUmVRJJRC1s7OjyWSi8Xiser2uZrNZYnnp43q9jsw8YySdMnknJyfxe61WS5J0eHiog4MDhRB0/fp1dTqd0vcAmg7QFouFer2e5vN5dCTo32Kx0Hg8jmuANgG6rl27plu3bumJJ57Q+973PrXbbfX7fTUajdgHZ6cXi4WWy+VtzC9j6mwuQJ95ow8ALcam0WhEYDabzSIQxXmhrdVqNYJlxpjxoE+shWq1WlpnfM/BNiwvbeP78/lcIQQ1Gg21Wq0I5Jk31j7PHmCReaGPPH/cq1arxWvxf74nnQJeWHwfJwA2zhPXSxl11h+RgvV6HR0HAD+/I8wrzwTrEHDrkRkH4PTP598dQP4PsL4P7Dn9ZmfLJkmVdlvv+orfrl/949980U259FZVUO0Vjz7t+8V4ovWtgxexRdmezu4WMH6LpFeHEF6p0x/XP6LTE2/OtTQ8vFqtNJvNtLOzE0Pky+VSJycnarfb6na7ms1m8TWACcxqu92OoG86nWp/f1+dTieyR/V6vbThnhciZWOu1+saDAal8Df3Ozk5iUCGTXM6nZZkCPTJ5RbHx8d66qmntLu7G/uYsobOtPF9AJakCFolaTqdSjoFGL1eL4JRl3HwvUajEZk7gKCzfoDx4XCo/f392A7GstPpRHC3XC41n89VqVRKIWvGE+ZdOgWHgCuueXh4qMPDQ+3s7OjKlSsRpDp7z5hz/eFwqGazqWazGUGU95G5abVaETAxLteuXdPR0ZFu3rypnZ0dXb9+Xe12O/abMcPZ4lrMC3ORSmYY23q9XpJzAMhgn4+Pj6OzBZjy9b1YLCI4dqkNn3f5DuCUKIOk6CjwGYChM60urQBU+pqjz7QNxpq2A9qZF9Yiz4WDcMAoa4D1SF/4v69HlzjQd/rD9RgfxpDxOT4+1nQ6jcCXtrlshXXozqbLbbg2c+5SCq5HGx2o3wf2nH6zs2Wr9Hp6z5/5cP3qH/+mi27KPWHdSlM/8Obve9r3P+zN/5te/lWn0dDwm09qfXj4YjUtW2J3BRgXRbEKIXyppB+RVJX07UVR/PLTfZ6NlA0XEAEjXKvVYuiz0+lod3c3spgAH1hXGKFOp6P5fK7pdKperxfZWRgwZ1EBQWzmtIn27OzslPSItHW5XEZAAVgklHxeyBVwXKvVYhi/1WpF1g3WK4SgwWAQ5Qep5MH1tWzKw+EwbvqE7WFakRMANAEihNwJ7ztbd3x8rIODA127dk3NZrMEYnd3dyNIAUCk4BFw4XpsjwTA4A+HQx0cHMTrwuS7vpg+VioVwtbqdDqlULw7I4A7/j+fz+Oa6Ha7WiwWGg6HEVR3Op0Sw8+9AMH0D7YV5pd7Ib9xMIXDxfdxpFijrFlYdGQDx8fHkX1mTTBeDmRxFo6Pj0sRFweNMLYpKOa+rEXWtsshWLNcj3bB1C6XyzjmAHvYa9pnvwe3aXV5bmDm3dnA0aBfRHhY/0hfXPtMu5E+sT54zZ0Y2swz71GC9Xpd0rS77hvj2TvPob5X7bn+ZmfLNv7kD9Ov/KkMiu+U/crH/hPph0///erv/BK98t/NVfvFX9d6NLrYhr0E7a5pjIui+EFJP/hsPgtb5IloMMCwjAATtJntdjuCvcViEf8PkG42m5rP55pMJlosFmq1Wup0OhHMAQIc1DjIgxE9OTlRp9OJGz2gms8CfhqNRtx0YQhhprHFYlHSpKJlhUUFxAFo+v1+iV3EAHSE2QEA9NfZVKxarWo6nUa9NvdjLPgOMgt0q4vFIgLB8Xisg4OD2B6XG3APwIIz0w7gcWQARrVaTZPJJI4J4f4QQhy/SqUS5RHT6TSCO6IHziy7hIP7o1eu1Wra3d2Nc47UBrBLG7kGEgZkK/P5PIJDHBpAkjPHLgOgDbD4y+WyJEfxsUMuwXUAyoDpTqdzm6wAltaZ2DQCcfY8liQh3Id1gkPSbDZvS0yt1+tR900OANdi7XN/T5qkPaxXj2Awp9VqNT7HrDPALOww65L1BVMOs8981ev1uG75vz8vnpDnkQjWIWvFHQcHv55ImCYU3g/2XH6zs720rbq3p1uvvS8iJZfSfu3zvln6POm13/hGXf1vK7X/71/SZpYTGV8su7DkOzcSw1Jw6kCXzbgoipgIVq1WI9AC/AIqYbYmk4nm83lkpACUaBGREQCO2SxhNrkumzDvA64ASAA3AAgbfbPZjMlW0lb24FpI9Mztdjsy2tPpVPV6vZREBWsH4AV0A7QAbzDtkiLwxnFAStJoNOI4OxDgewBaxrNer2u9Xuvw8DCGv9FiS9twMt8jSWtnZycCF0kxGc0dGJjjZrOpwWBQqrhBW3FsYGABJThJrA0cF8B3o9EoAXgAJhGB4XAYGUi04s6sp6w1Eh7pNDkOdt1ZzlRa4tIexhsWlDazNl1GwjyzHq5cuRLXJmAfeYCkCPhoN06gs+AAQIBqCj4llXTXzia7/IHxw8GpVCrRaXFZRsr+44x5EiHRB6QMPKv+Gg6SO6g8d0VRaLlcRoafZ9NlUq7FZv2gfeY5JjnS9dBeXcMT9egX7xOdyZbtpWDHr3uV3vbFmS2+2/bLX3o6xr/t696o9pMbDb7rrSqM8Mh2d+xSAGPpFGSQZMcGOp1O1Wq11Ov1IjsHqCDjfTqdarFYaDabqdVqRW0pG9x0OtXR0ZEGg4EkxQ0PAAObxMbmCTkAxk6nE7WoHhpfLBbq9/txg5cUZQ8wXq7T5L5UmgDQApZ2dnbUarViQt14PI6bPwwcoM0rPXB92DBAR6VSidUpSGR00OBgzTWsDojQbQNuALGMm4+Jay25Z7vdju0GiI1GozhftP/4+Fij0SgCZu/Ler1Ws9mM+nG0uCSOASoBmMwrwNj7vdls4neWy6UODg7i3Ozv75ekBoAfdOAAuJOTE02nU+3u7sZKIePxOH6X7wGwKpVKlPPAZrqWFVANyGX9EXUgUQ79OtEJ1/p6iTbmnzYzT6xb3uNeJH4yLjhsPCNc06s94ACdnJxE58UrRLAmnVmmDTxbSH+QPfH8MT6VSiX+HuDgpW2H0aYtrp13dp31yxi5s8Cz2mg0YgUUl1t5RQpn63nNq1lky5Yt2522//YXTwHyhz/0Rn3Q3/kZabO+4Bbd33YpgDGbnusdpdNNfDKZxLq6fFZSKfTuiWCuF5VOgep4PI7VEHwDlbZg7jxwwsY8nU5LpaAANc7IeXiZTd8rW8zOwiCAfkqmdbvdCF7QkTp7TuUA14p6OyVFtg8dNqCGTR3GHAADYAPMUOoLIOXhY0CM62UXi8VtYMwdCcaIdsJAUuJtsVhoMplE0L2zsxMBd7VajVVEXEe7Wq00GAwiCKXU3mq1ioxlWknAATJzBthhnVCphO/CPktl9huW26ML3Lvb7UY236UVnpgpqeQIMW+sPRhP1wIz70gjZrNZXCPNZlOjM+2ZJ7wxH6xB18Kiy3WnAtaf+/IZZ3zTqg3OwrqUwce4Uqmo1WqVyp05iHVZA9GfdAx5RmHH6Suaf5ftSCo5hay9NPnQr0MfWJMeXfF1Tzv5jmub/RnIli1btrtpv/jnv0kf1nyjwlp62f/vzRfdnPvWLgUwZiMktOmJOrDBvV4vMkFewgpwQ4iWxCxAIOFY2EJYLDZxz+SH/fJEH5g7BxnOICJNgM0iBOwbPPcAUAF8SRSStslUbPIAE08WYgP3tjkIcKZV2mp+AV58jvC9dFqPmbZ6mN/ngWtRrs11xQ4AXerh1TgAOc5yr1YrHRwcxMoc6HgBx5VKpZTkNplMtLu7G5lXyrN5BQUkNAB0Z8rd8XKJA+Xfjo+PNRwOSwy9M9YAIGQRrnWFbSXJz8cOh4kScw50fY4cLNNGnw/GdzKZRCeNZ8N1zA5OcZKYcwf3yIa4DmvAow1clzXlAJf1h2PqGmYiJe12O0p8nPl1aQrXwbkh6ZZrer4B8+JOmT+/Lmnhul4hw5MU/fv0h3XNmsH4zfHEPBw25ixbtpeK1R56UO/4gnxQxUXZr7zxlD1+ze6X6JVf8VMX3Jr70y7FLzqbDhuMZ8WniTgOGgBPrkvm8+iQ0cjyecAxIXZAjbNGnhjFHxKgABOwhDCuhKP5DPdic0YHvVgsYmUNtK9ssABwZ8y85BigwEP9zhxL27rBHjLnHoyBM16tVkuDwUBFUUQ5gINexhbwCnBwUODh9+l0quPj43j4BO0HhABU6vV6lIuQZCgpOhvSNoFPUgTCzI0fJjEej9Xtdkugz50J1woD9JjPwWCgk5OTeFAIbXdniXUG8OQ9JDOewEg/WUvp53if+fWEOObH5xnJDZIVHL1msxk16SlzyXzwfUAmLK5r63F2AKX+WfrKmKUOEfPvax0QzRrEiSSq484WshDAJm1ONdrc31lkvx/tQBqU1i9mPP35cr0y8+rXdU2xJ+ql8+WRlGzZXhJWFNqcVJ75c9nuqv3y536jXjP4ElXmFf2WP/fTF92c+8ouBTAGrLJBArrYZF2v66wy7B6Axlk29JlUokgT7mazWQRLHmqHvYLVpCrEbDaLQI2EIZioNGnQk+oklZLzYM+uXbumXq+n8XisGzdulGoio8UF7NAfQIYfb8xnuBeha5L3YHQdPLtcBabOy44BgJx5rdVq6vV6UdcNWPBqDgA+qm2kCYl8BxADaF8sFup2uxHoOZvumlJOVINVR54xHA6jHp15czadufFIBBpxdKVebg3wz3U84ZGxoF8AQNabJ4r6eLOGuLavOweLOHX0EacM9tXZWyImyG28uoQnwAHMWTOczDiZTOL64F7eFsaDNcJ64rOMB88l9wAYwxKzTnjOAbSsZ1+fXmmC9rgcxuUn3IfXvUKGy1FYCx4JcqfVq2Xw++K5CN5XqZy4t9lsDzfJlu2lYKv3P6lX/ZOXSZ980S15adtOqOpdn/EmHa5nel3zy/SaL/nZi27SfWOXBhhPp9PIXDlAgUFqt9slgMLGBtPo2k82NdgcKgdwjC5gAemEHyTCRgyY4XUYy8FgUAK+gGJAFJ8HvAK8uA+b+Wq10u7ubtQbeyUGL7eVsmQAS3/PwdhkMolJaAAalzu4xtJ1lzs7O+p2uzo8PCxl2DtD6bVmAQw+/g6kCfNTAcKBhqTotPi9AIOAHnTjsODUmeUAD+r/ok925wVgDlBjvCRF0AtwI+wPs817sIWuS3fNsVd2gIXk3owLc+UsPdeu1WqlE/ywVOIDOGZNAn6JXrju3LXdrFMft9lsFgE1Tp2zww7oWR8uw8HZQNNN9RVnl/15dNDqUSDGDUcHB4l1SyUWZ+xZf4wxkRrWkycd+m8A5slzrAueWfpJH/keAN2jMymr72OWLVu2bC+m7VXbevOn/R197Lf+Ob3mT7zloptzX9ilAMaSdHBwoCtXrpR0ipJKABMdqes/XU4xn8/jhnx8fBxBB4DGa6V61jlMm7RlwhzYsKHOZjN1u92YTOaJVWmYHdaWEDunr7GpE8rnfUAlr4VwWrPXgYuDL8y1kvSNY56bzWZkdGH8/NQvvg+TiEQESYWH0ElA5DpUegCoABIZM4AtLKqznQ7auLcDLk9aY854T9om/0kqVfIgVA8YBajRfpg914/ikADu/EAPZwjRATs77Mym66i9UgHJbCTXSYoVMVxb73PK+vbXmDPWA/3wKAkg0sEgzHG1elpR5OTkRPP5XIPBILaN5wOgl8oPfL14gibvIU2q1Wpqt9uSVCqDyPpMD9lJ1wzPBWPu96I97jQg/5jP5/FZ9ueReXDGl9dZexwTzb3cifT140yzO6Q+1tmyZct2EfZQrav//Mlfr9/97V+m13zhWy+6Ofe8XQpgXBRFPOQhBcZsXiRGAXzY2NgQCRvDyHGalqQSIwRQcCADMIFl8vAyDFYIQUdHR5pMJlGfmMoTCOWyYcPgAt7YgJErUAnCGWva1+/3JSkeysE9XIoAqKHNDipTUOLfY3y9wgDjTWKb61YJF8OuwboBilLgmyaPMY/MB7IQHAJnYfmeJznxXS99R3toJ86OJ/fhmJCUSaIaDkPK9HoVA8BbtVotHYNNSTIHh17KjPWcAmUvgYa0hjlIkwKZV5dcAHwB2O4swp76nHtkgFq/Lg9Be586WX5//u1yAgDsZrMpjSHgERbb9f44HOiZPVnODz2hOkkqgQDgunTJmV2PLPkY4cD5M0JEid8LnlNYdFhn/+PPsyfi0SbWeLZsLxVr/Nw79GHf9MaYCJbt4u1lta7+0yf9XX3Ct32ZXvNFGRy/ELsUwFhS1JT6xsOGBsvFUcts9A68PON+PB5HYABrDIhCKzsej2OImA27Wq3G8KyDO4r/oyd1/a+01SUCXLkekgmS50hIozwaOmDYMcAZ4II+UO3AE+78/jgIAAmYQLTXgG5pe2CBS0FgCgEcHFzBmDA/sGuSYiJhWsaKueBeAEj0uF7ZoNvtKoSg2WwW2+UMHHMAKHGH4ebNmxHkweKh/0arDPvo48H6qdVqUbPMHPI5xgagLynqyhknDp5w4OjAn+u6dhX5ggNlZ6alcgKeM/2eDOjssOt+YU5peyrJIHmP+zFvtJHkNZwNT+BLk9WcZWZOvU40c0GVCb6LE4oEhOeDPqLDd3DuDhBr0fXi7oR4XkK1Wo0HwDAvaf9ns1msoUytbIy1jbQJR4Y+ewWPbNleSrY+Gmr/V3Mt3ctmj9a6+k+/7+/qE9705/Sax7Ks4vnapflFd+0lAMnZWo7G5Y8nVJHQBiO6Xq91dHSkw8PD0vGxAMR+v6+rV6/GDVPankTHpgrT5SWg+LwDUU8OAtSFcHq0LslgAHsAxpUrV7S3txflGbB/MK9stkgbOGAEoApDnh424qfUwSZiXAvQSngfllVSBLoAe+5DDWjuA0hARwwAdZYNZ4GQOcAUthdZA/MC8KJ9zp46C9hoNNTv99Xv90tOAoBR2oJQ2DzYPUAPa4t7+Zpj3LwKCH2nvYBkADnjAftNgp3rULk2cwiAb7VaJTCOA+JMNhIZ75Ov+X6/r16vF9eKnwbHM8X40jfXyXq1Ba++0e12Y8UQHDeXZkgqJWACPDlUhnux1jhS28E+EpX0pDrWiifZORDn9TS505llT6ik3jRSKNYo/Z1Op1H+4QyzM8gYa5n5dtY9W7aXivV+6Jf02v/zjRfdjGyJPVrr6s2f8vX6tb/3Oy66KfesXZpfdEAYjJpXXKASA8lVvhmxqR8fH0cQB2ADoDzwwAOlUmOcprdarXTr1q0IQpwx8kSy0WgUwQybPLpXaXtIAOwfGzwAik2UAz0A4UVxWiKNZC3X6gJCOIlrs9mo0+nE+0uKoNtLVAFcYDdhA+kfffNkLBg0rgEwdomAJ0U6eIXt87JcsMOARkqgAer5e7ValQ5UcEmBy0dCCBqPxzo6OtLu7m48+ZBQPkCFMm+AH5I66SPgkPHd2dmJLCtOQSptAYwRxWD9sPZS4CxtE8FcWkFfHXADxnHunAVlfj0qQUJhvV6PNY0BzV7FgvUxGo2iI9PpdGJ/XBKAAQhxiBgryrtNJpPYx/P0vjg67qgwxh59gQ0G6OME4MAyJt4GHAecLNf7OoPrOQPpWuIP/QME0/c0WdA1z84cu4yE/ubku2wvRdtMp3r0639eH9p4o972WJZUXCZ7qNbVz37W39HHzP+iXvXludbxc7VLAYwdSAFGpW0iFqeRwagBqgDHaAA5bKPX60VN6XA4jPpBWNdut6vBYKDNZqPZbKbDw8MY2oex88oE0+k01j1GriFtQ+bOKPkpYGymAN7FYqGjoyM1Gg0NBoNYP9h1ul7315PdPEydJnsxhh56lxSTEhk79JbUT5YUQTXfRUbSarUii4deG1BJHx0w8xnaxxx5+S5nhmkT5lU0qtXqbeF0yrLdunUr3htAzlHL4/E4nqrHuvCqJM7yuqwC0Mc8MO4emgfs0VbAMmtiOp2WwDHJc16JAUbVy/cBRr0qA697Uh7Php++x3r3vqasKvNFZRHGnvdgwLmHVzjhnl4FwrXErHHmwte+tD1N0p9pnBD65nILoia0n3FmTLyaBADZdfDeLpwXn3Pawji4XpvnHhaetnmCIPkDOBvunGfL9lK0zWKhl3/1W/Wp3/B79La/9Vv0rk/71otuUrYzu1rtaN3OTvvzsUsBjCXFDQgmCYbPARlspDNALhcAXCA9mEwmmkwmcZPb399Xr9dTpVJRv9/XZrPRU089pZs3b0bWdn9/X0dHRyWw7olyADXXOwLOJMXMf9eFsrFT8q3f78eELvTOhJU3m008OrnVapWA3XK5LMkzJJVq3roUAQAKAHBwTHvSMlWSIkDkc86YwYoDhhh7rwKBphvA7aXsYNIBP5gDKten0g9Y8slkooODgwgmHezwZz6f6+joKGqSpa32GTAM4GetwWROJpMS05vqsVkPHi1wtn84HMaxdOkF/efUQj9ABHYUXTeOCe97Uih/w/wDtJkTgCyRCubSjwr32sfO1LoO3/uHzIf2pTXFHSCS3Ee7PYHRZUbMuSchprp9PpuuFZ5/5omxcrDP/V3KwbPKe54PQBu9tB9OQ6fTiWDeowV+sErWGGd7KVtxstT6cKkP+ZL/ok+pbsP3v/2nj/U3H/iFi2tYNr39D36TftutP61H/0Y+Pvq52PMGxiGERyR9p6QHJBWS3lQUxTeEEP6GpD8h6cbZR/9KURQ/+IGu5aDLQZnrEZvNZtTQAlgAKlxDUon589PRDg8P1Ww2tbe3d9rxWk3Xr1/XAw88oCeeeCIm9iFfcNlArVaLhyzAZgF8CL9yVDDyBIDZer2OGk20xk8++WTUb7q2GYaM/jkrBjj0UmWUQ+t2uxEcAEi4f6PRiAdynM1b6Q/hYWQIVHCAsQbsOCB09s+1wZ4kxfhTVcOT8FarVenYZeYNptcdEE8cg3EHWDpLzzrgOpvNJspWPPzuzo6kKBVg/XHkMn/8VEKMuQf8e8UF18MDrvr9viqVim7dulUCZ0hPnEnHeJ8++lHgaKiZC9hV5AoARj/wAlAL2Gu1WhqPx7GaBeCYscHx8PY6Q4qMInUUuRZzBsvs/XGwzxrE8aNvfmiGS058/XHfVCvNOPFs4dz4b4U/Y7TBZR2AY54vHBvANu97tZV7we7k73a2bG7FaiVZhZZfeF3QJ+t/vMAWZZOkR4sMip+rvRDGeCXpLxRF8fMhhJ6knwsh/OjZe19fFMXXPdsLoTn0JCuvECCptHkCjJxdBVycnJzEGr7oZNfrtSaTicbjcdQpUuHg+vXr6na7unnzZkkygD7VE4IwNmZC/4BxWGCvewqwpFzbfD7XZDLR+9//fknbBB8/upr+AP4AIfP5XLPZTO12O27GlUpFu7u76na7EVjCMFcqlQjYPWTs7DvJZmhxvQIByYbOoAIgXL8MIHdgl4IRr37BtQBaOBqAOq8hzVzAHsKqXr16VZ1OR6vVSkdHR5rNZnGckKMwR15BIGUyea3f78fksNlsplarFRPZnJWlXawBKhpcu3atlJzJfNVqtZhsyfHVzLFXZmAc6C+VOhgjr8CC0R7Xs1MCDbCHM4eGmTWOMyVJk8kkyhv8Xu12O2q3iWjw3KEJTzXxvM/aZ86dXcWJ4nVnxAGqnmOQGmNE3x3o4ph4ZRsiLPQLh44xp21Ij3ztOnCmYk2alHleGy+x3bHf7WzZPqCZA5st271kzxsYF0XxhKQnzv49DiG8TdLDz+davrGzebHJsnkCEmGkOp2OpO0mzibKRu1hT9iyGzduqN1u6+GHH9ZqtVK329Ujjzyi3d1dnZycxPJpvuEDIGG7qtVqZAQJofsJYK6hpc2wbn7C2ng8jqAV5pH+wtZyPb7rukgSzKjty0ZOu5B0bDYbtVqt2A8MMB9CiNURAEj0AdkCQA8wDriGaeYwlV6vp06nU6rV7CAd1o8wNKy2h9qdjWfe02O/YWMrlUqUzTDPnhiIrMEBecrCAsRhBo+OjmLFB8r0HR8fR9Y9Tcqj/NdoNIoHWDAnrJPlchl17YB41g5r3itcsG5gggFqzJe0LRHoemnkDg4aXTONY8m49Pv9mLyJtMJBJ+uePuJgebWPZrMZxwsQ6Yl0AFzWN86L6/S9ygvg1hPx0ogDUSQHxfzxtnmSLOuQtc8c+m+Qr0Nvm48lx51zb+blXrE7+budLVu2bPej3RFxXAjhFZL+R0k/c/bSl4YQ/lsI4dtDCHvP5hpeTYFEJk+8cTbKM9upFOGgD1CL/tMP3Xjqqaf03ve+VwcHB1qv19rb29PDDz+sXq8XAS4bImDBs9I7nU4puQhg42wrFRM8PI5+FV3rer3W4eGhJpNJBCsAPq99C4jj79lsFqsN8D7t4vhl2EjXkLqm1ccJwOwsGACN/nt1iTTRCKkKIXOvEwsIZs4A6rDxyAMAOs5GAqS5DmsAQO0nIiINoO2Ml8tRSB6DKQasTSaTOJ6dTkeDwSBWS3DmlfECLJL4BzhCi+1rFaeI9yiphuPAGsW5S8GiA9a0djdl8nzN+hqAOZa2FUnQlI9GoygBabfb6na7sUoLiXAkrnoCJmsVMMgzSlUR5sSTYlmfzF0qa2G9ADR5llOdNzIrB7M8ky7R8MRGQD/OCfdjXFkP5CoA/AHkmOvjkTSl5eXuRbsTv9vZsmXLdr/ZCwbGIYSupO+R9GVFUYwkfbOkD5b0ETplJv7203zvsRDCW0MIb031tZIi0ALkehgXXSQ6XZgoB2SehEPNWMLbN2/e1Pve977I2l67dk17e3txM3XNJUDVM9Op7eqZ8r7JU+0A4MR1kXKg/UUWQHKUl48CbALG6AdgLz3dC1BAxj0VOGDcGFfP6JfKR9wydm4uIfBkL68iQt8AGmkSlMsDJEW2FBDGdVw+43NJ+1zf6QeMoJuF6Ucr6kl3DjZ9vQEC0YX3+311u90S+HMJA/PtABjj8wBG+kM/6/W6dnd3Yx8AmTiFLkVh/SDtcFkFjgprB6DG+gSEpvIBwCOHy6DnZ63AzLOOAcrMB5UwuB/HbANqmSuvw8ycuZzHtekOnnH+3DFyNtb7kWrmvc6ySzX86G3GzZNZPZqTtoF/s955FlPJ0L1od+J3+0TH530kW7Zs2e5pe0FVKUIIOzr9cf2nRVH8a0kqiuJJe/9bJX3/ed8tiuJNkt4kSZ1Op/BQN5saNXLTrHRC1Lu7uzFJilq1ziw6QD5rj1arlUajkW7cuKEnn3xSnU5H165di1pjEs8AbgA1NlKkBxihVdrkiWPcUypX3UhPxjuPIVsulzo6Ooq6ZfpFwhaMNpUXYIk98Y6KCA6KYc4ADF6DmXsDwtLKCV71wJMTASIAYgCyz6m0lb2QjOayCdejck9nAKXtUdLozW/evBn15p1OR91uNzpUjKU7TfwB6PH3er2O2t9erxeronjIHaBHGwFKsMIuu8FpYAwB5DgwyA9cU02EgXmB5fUEOPrDawBwNNMAXbTsXIvnwNfieDwuVWxAckFdZx83P4yD9QUAnk6nsW04Se7IkvzHnLJOPBriDrE7S4yds7VITXAQvSqGyynQ+qcstbPS7vS6Y+4gmPEBZPO8pg7bvWR36ne7H/aziDRbtmz3nb2QqhRB0rdJeltRFH/HXn/oTMcmSZ8l6ZeexbUkbZkiWC0v4+WJUoTAYd880ckZM2mb/Ob1VxeLhW7cuKHHH39c+/v7ajQasULF448/LukUzPX7/Qh4SUI6OTlRq9WKoIrDRJzxBUx5SDYFZgAikqK8fi1H8SI1gFFzQA3rOBwOVRSFrly5UgJckiJQhsX05DtvB9dyRhIDwDqTBmjx7H9PIKP6hpcsA8AhT2i1WhFAeiUFaXtwhutJeR02XtpWhXBwjEbYZQn87U5CmjAF4OUIbTTv1JCm336SG2vTqywAGmH5XZc9nU4jCHNpEOOLYwazDtuOdIKKKZRgo58uF0ilAM6SOnAEOANc6Y8zoK5v9vq/Hjkg+dDHGvDLXHn5N9rL80x7PULDGPJsM5c4yc5MM54ebXA5jUuE3Plk3LmWOz6w/FwXAO2RDJ4bf1buBbuTv9vZsmXLdj/aC2GMP07S50r6xRDCL5y99lck/dEQwkfotBTQuyV98bO5GMwOG6knWPlm6KzTdDrV/v5+qeQYm3EaakVXCKidzWZ63/vep4cffljXrl3T7u6u+v2+bty4UQISbLhelxeQAHDiiFk3NlivpcrhAX5d2FbPwvdqF/Sz1+tFqQTAjUoeVLrY3d0taaWlbc1b16e61hemsdFoxOQzBw0pW8zrzlzCguN0wChzqAbjBZhZLBbq9XqStqeXwURzWAdzx1gBkFxS4pIA1gnJci5/4T4A8BSEk+zooAfwTS1pZAtojGHtz6uzjUNAfWsfa5wsgDHrerPZRImJryWS6nDKSLjk+6xz1gHz7NdNx5J+83l3mGgvc8LYIe1wJplx9mRJl0DwvCAVcWcSR9Y1+ziuLk9i/TpQ9XVLW1NZC+3hWfS5xhnwRMMUNAPgHTi7ebWYe8zu6O92tmzZst1v9kKqUvw/ks4T2D2v2pcOftnkPNOdMCobFGzVarWKOlv0j16T1WUBngTmB0Zw4MZgMFC73dbR0VHMoucP+khPMGKj5pQ42Cnuzx+Ao3TKcnJIhzPDAC42eQDwdDotyTBwGqStLnI+n8c6zbXa6SEbaeUMAASMHEDp+PhY4/FYvV5PrVYrln1DRkKCmzsuzpByTYCFg1KAInMIuKUmtFfTQCdMQth8Po9ADlDmbDdseFEUsW6xpHhKIpIA2uC6Z8aSa3pVB2d5cUSq1WoEc161gz77Uduu6+W9VFqDwwHA9/Fzp3C12h4jzfperVaxiojX+mVcU9kR48t8w94iv/DoivdZ2taQZi6pIIKDw3V9LXgyJeuB5zuVosB8A0bdASPCARBPK7+4LAT5hc+LyyWYT9rmjg/PA2OA40WUya9FH+lPCsTvBbvTv9vZsmXLdr/ZpfllJ2TNxpuGOdk0MZg5ws6tVkuj0SgCJ098A2hy2AQbKRpJKhJcvXpVe3t7MZxNYhegDQALa8y1PZsdkOBAALAHu8l1KOk1Ho8j8KDdJENJiiyj13vF0BEfHx/r4OBAV69eLYW8PXQPuPfkNLTMgPxerxdlEABPyuBJWza11WophKDZbBbrJ8MKAqRgvaWtBtoBs5e745js3d1dbTYb3bx5M+pyAYYAXObQmUscGU7eQ14jbU88AwShi2UdFWcVK9Apez1bgBIyDWpbO3hjfdTrdY1Go3gvr7HtjC2abg/Hp8mKJIYB1gHCAErGE0dS2tZUxmnDufRrM8+w+/4+kQAOtHCHgjkCEHqi3nmVTaQyS+9SIRhb7s1zz/MuKa45DrHZ2dmJzyXrm3vhFBBZ8DwD//1g7QH+GTccOcaV2tWMN067a44ZX3/ms2XLli3bvW+XAhi7HtMTpRwgswk7u4Mkwlk13/wAloTyAbfO6MEYcuhBv9/XrVu3omaTMPtgMCiFjtkUnREGeLFRphnufgrZfD6P9WUBQr65s2nDgLp+kj+AMvoxHo8j0wyoKYoiMr6S4rjA+kmKzsVgMIgA3/sC4OE7gBtYV0AFVTDQ0rpeFTDiIIpT4Rjnfr+vq1evRtb94OCgBOoBT7PZLAIzTzxbr9elk+xcEgATiV5X2obYi+K0RGCr1dJgMFCr1SpJBZxpBJi6XERSdKCcrce5oA1IYKgZjVzHtbkAMy/d51pcr0ZC+1krfIdygRx3zFp3qQ5rhuiDtJUdeTSDZ+z4+Dj20edUUrwHbaW/OHP+OteGiXdNNusO55Zr0/ZKpRIjAV7GkHUJiHaHlDFlnI6Pj6PD4k4IAN2jQbDbLr9x9t3Xd7Zs2bJluz/sUgBjrNFolNgzD8MDSH3ThHUCWHQ6Hc3n85KkAWBdqVSinpHN15meer0eD4totVoaDocx+Y2DG7rdbgR9gBruAZPq9W9dSuBVBiRFQA+4QeZBPV7XgwL86AufZ9OH/ZpMJjo6OiodLiFtATpjSRkwTzhaLBaRUfcwPgx5Gu5mTJvNpnq9XjxS26UDXmMX1hxwAlAeDAZRswtLvrOzo93d3Qh8vc8kQTL2ABrGjnYDlpzpA6wBIJ3FXK1W8XREJB3Slo30Em2MD2vRQRmlAX2NuNaXfru0gzWCbIUEUta8h+/pr7SVZXAd15bjULAm6SfzRt9dH+zrirYCKr2P9MerOTAWyEMYq7Q8IM8c/aTaC2sxTValfd5+9Mb+PPBZxsTlO2nZRMbeQTyRC+qD035PBPSkPU9uvNcS8LJly5Yt29PbpQHGgC5pyw6x6TiAkbZaRmdzYGRDCJG5lFSqTlCtnp6Yhx4xLa/VbrfV7/fjkcu+kc7nc+3t7UU5gGfqA5xcQ8lmyd+u7wQcAPAADlRt8O+hnwZ4sCkDEjwrn2sAHsn+B6y6rIFyVtwDFjvd6GHVaDftdSbQZTDOKrqOlPJ63W5X4/E4AuZms6mrV69GIOmhagA9zC0sLIyvRxcYCy+xxnh4WbBqdXtyYaWyPYwFkM3R2DD14/G4lHxJ2/gbR4O1xj0At0QAvDKIr2/GlbYinajVajFqwVgSbWANsHaZB0Ai64i583JmyFAAj+n13GGk7R7RcLDo0gdn1hkP5AwutyDiQIk6l1AA2r3iCSCVZ8rv79EHT8r1z8JMu4YYCQnfcxDt4NhzFRgP2upzmKUU2bJly3b/2KUBxtI2q91D177hPt0mD8ACpPnJV9R2ZXMj/O8sHUw0G3az2YwJYAC7yWSiXq8X7w+YAMS4rtYBPMa1SaiTbj8wY71eq9PplBIMXZfK+ACCaTsbuCdScT1kIs6iAgJcB03VDEklKYInY6XSFoCJaz0llSQDANmDgwPt7u5qMBioKAoNh8OYLNntdlWv1+NpZDC6gBAAImwpINrD2rDOjAfz4WuJdgPQfDxZP0hSkC2MRqPSWEtbsAYg9VPl3GnysQwhaDKZlFhN1+NSfQQpCEl43h/GxFlYoia+Fl33mrKbLkdyp9EdC+nUGWm327c5Yc4wuyML+KQKBeufaIvreH3uXJfupxK6/IW16GudNhNR8NJ3vj74PNEHxg3HyBNJ/Vkm0c+fKWeR6bsn5mXLli1btnvfLgUwTjeZVBuahsNh6QirUmXAmWWYQdfJ8h4hd8LnhOGdEfRErqLYlpjymqzeToB4moAEKJC2VSQAZamdnJzo8PBQ3W5XnU5H0u3yB1g8wBFaVbSRnpXvmmB3DhhrQICDnJOTE3W7XUlboMupgZJiJRCAo4MwSoZ5oiCgfrlc6tatW+r3+3H8qb9bFIX29vbU6/X05JNPxhq7AJTJZBIrTzCGDm6dVXc21BlNzN9zdpq5dt06/z86OooSjXSMSfREa+16W9aItAXT9AvWHuBFAmAqsSG6wZzhfNF+l7Z4dIX58+oRzKf/DWBlrTGmPB9EGxgL5p71C7hEBsW8EMWAeXUJCOw/48b3GTsAqjsikuLYIbeRtrpqHLyUoWa+cNCc7ea58L4wdoyF10f2BEN3EDIwzpYtW7b7xy4FMEZmQMhc0m1A2EPPkkobHglYXu+W0lKAFa8bC5CSpMlkEpk6NmY2zXa7HZO80OHSFu7NZprKDbCUrSO87sCG71GhYjQa6cqVK+p0OhEMwGwCkgEXHB0NkKFyQLPZjJKFk5OTeKKbSxacOXcGk8QtZ2A5WATWDZDH/PFd2FbXh1LzGeb4wQcfVLvdjpUXVqtVlC4cHBzEseC45ul0qvF4HOUurVarBK5JOJMUQ+EOjryvPn+E2r02MLKZWq0WGVOkF91uN64x17mzHumzlyDzeWaMCNUD8HDiqMvMHFYqFc1ms8is4rCxRlnD9NsjEPzxsmc+J5JKn+P5gFEFhDuIT9czc49T4Pfz9ei1vPkeFWFg6rk/lTUYF0kxEpSeiucJkPztUSZ3BpxlB+Cz9p1lZ3yYv9RpIBrl+vcMjLNly5bt/rFLA4wBT4RHPeQLu8l7GBuqh9cxmDxJJX0oG6FXNZhOp+p2u6X7shm7tAMglko6SBrzEK60BR4ASRju9XpdOsXOpRXT6TRu9H5PGDhpW/qsWq1qNBqV6g7D7pHsRnITbfZkOjZ5T0aDOXU5igMX2uROgTsas9lM8/m8BPhhDYuiiEC+2+1GMAzYcQYUpng4HEbdL4Ae4AiLzny75MABvCdYwfjRH4AbIXfGw/Wrfl2v2MBceig/TR51R8vXrBvtQPoDMPckRtrhiXMksFWr1XgACA6TJxqy3gCK7hzQXmdPibA4UES/788sY4J2v1KpaDKZREfVHUwf+9RxIpoB4+ssu7O5flgKffBKL65R528/8dKZbsCtt9MT/2iDv7ZcLkva6DSxMFu2bNmy3ft2aYBxu92ObBesqicsAY5haglzssEDBlqtVky+AzzC4gFUAL5sqABiBwIeBvaDFADhtIfSXrBiHkKn3ZgDY8Ar7QCoYbzWaDSiPIH+8h7g1xlSgBtAhz45QAVUMJ4A03q9rna7HR0GgJmDEf7vTCggDeaQ44sZf8Ag0o/hcBjb4Iw/oBRJwWw203g81ng8juCdU+godQc4AQAxv8yDh9jpgyd3+Zz7gSMwl5yI50DOx4G2S6fgsdlsxhPl+A5r2kuWcR1ntF2nnOrGiVawjvgD4HVQjjPmDDZt8DFgfQLufL2zvtxp4pnwsXNQTTUOmGt31mB3XWYjbWUdrFuv+uHPHG2mTVTIcIfRJVeMLWPAd3H2XHPuZd64jj+zLpXySi+U1cvAOFu2bNnuH7s0wJgat1RUYDP1JDLP1p/NZnEDYwP08C41ZSkPBtBB1wpohMXymsKSSgAm1WF6SBag4LWMARIpQwvLeXx8rNFoFCUKMJKNRkO7u7sRCAFm2MS9+gQsZaPRiMdAj8fjUtKaJ+Itl8tYw9idCNdk4kzACFMlwWUsgGkHK4wXDKakEhBLx2I8HkfGHCBNuTdKpjlARkftoX4AGA4Un3GmmrXggBGHwHW2AK3pdBr7QzvH43FJz0wNZdfD41jBnMNi8p5HGVhfnrDIPLkOHBAJk0k7nX32SIBfm7XJfBOFoN04CqwN/u1yCtawJ865kweg9IiIl6qjffzhOg7qGQdYcHTFk8kkPpu00Q9JwaFiLJz99uu6nlgql59zDT59c71xqqNmXF0/Trt9vWXLli1btnvbLgUwlraMkesKAWBeNcJBMOFyB8388WoBHC8sbbWNhP75PMDYw+TUB3YtprTdKKVt2NUZbUA9IBh2ibbDcAO6PHEK5pwweKfTiSXhJJW0lmzMnU4nggCAlOssPQnPKxcwTtyTMmO026/HdwEoAFMAbypRQJICOPaQM/0FcMEM12q1ElNMYqTPk6TIRDqL50mWACeXeXiSlutTWV/ME5IAl8Ug9wBcwmw66IUl94oS9JeEPt5nXACUgOOUEZYUZSCMmSd4AvpgTPkuzwTOhx8nzZiwjh1cwvITgXDNP4CQOXCHNWWCvXaya5XdUuANY+vMuYN3X+/+LHkuAuPFeuXeDlpZ+/Td2+fRBebGk+5wYKmVTvuzxjhbtmzZ7h+7NMCYDRpw6XIB36Sd4XJwBePkCXMepiY5SzqtrICWFuP/6Fcp6QRjyv2cofK2AjzZkLlvmqTmjOZ4PJakKMHYbDYlDeNisYgsLOCDPsO6AuTq9bq63W4EDphXk4BlB0gwZgBrSSUwSageOYonQ3oCmIfvkWRI5VMF3QjtA1gPDg50cHCgTqej2Wym0Wikw8NDDYfDqFf28nIOIAGxnrQFMOfz1FlOnQfKsxFFACSlR2oD6lgT4/E46l0Jw8OMMn44c9K2OoTLKmi7t8kdrtSJIFFvMpnEcnhpghvRERIIkd5QCo/nxnXHOH4AQJ4l1qi/TrucdXVwz/tcA2mKJ92x/lzjz2fa7XbU3VOrGmeHfvpzhTwqBcf+rLEuvX2S4jPmvz+02xMlPQGVftAmZ9CzZcuWLdv9YZcCGKcJWAAGgIYzlB5e5v8e6m02m9rf34+vs3l5qHm9XsdKFGywkmI9XWmrfWTzdKAE4+jAeLFYxBrIDiS8lBjgCbDhIMKToLy6hh9fy31wFJbLZWQhYQ65Hywm4BS5gIMFr5BBCJyx5fQ310Ez3jDNaYUDxtoT9xwI8R3u79rXmzdv6vj4OCbaDYdDjUajOK6cWgjYcy2pH20MQHSW30FoCn4Ye2dGXTPqYByQBEvMXM7ncx0dHakoihilQGvsEhSAoAMrn3fYTDSxLv9Av4z8xcsIrlar6NwAFKm97ZIh5scPpEHK48+BywV8bFLwyPPhY5smyHriZTrmnpxIuTf/jkcZzovIVCqVCPgZu1Q6wf89GTNlyrkX8+2/QalMCzbZdePu0GTLli1btnvbLgUwXiwWOjw8VLvdLr2OvGBnZyfqGdlgnS2WyppHNlGAi7QFuK5T5e/pdBrr9yKf8KzzNJveQ+RssoAYACB1d/f390the/TOZLi77hMJhwNWP/Ia1lHa1rcFEMLoAiIXi0WsVuFjhcyAP5486Myeg/50rL190vZEMHTBHrp2BrZSqUTJAiAMoO/l15hHwL8nE3qbGDOPGrg5MGYOAb4ORJGnwDryPlEHgKAz3w5mSSpcrVbq9Xrq9XqRzWfeGcOiKGIonnF3vTp9ZK3xXRhjGFWcSAfy9J/16I6LzxdtBoC7PAIn1YGij6M7Op7MB6vKukJzzHPkLKwDZJ4JxtyfB1/3Dl496ZM1RvTDkxAZX5hl+sPzTaTGnRx3prlWKk1yh4ZrZsuWLVu2+8MuBTDebDalBCsAQloFwLPnXW/MNabTqQ4ODuLRzWxobg4E2CRXq5VGo5GuXr0aQQ3vc28Pv9MWaauVBKDRHhKe+v2+9vb2JJ1u8MPhMLYFcABbC8BD98rG7aACiQD/JpHOJQIw2s1mM5bxclCETMOdDQc6LjPxgzZgqrkOjkAa2nZw4ppenzvaD7ggGRE2k/EBTI/H45IGnNC6z6nPFa85U+8SDmf/YdlxxJBi0FeXnQDYUm0trDUglugB/eNwCWnLOrq8AyaeNnU6nRLwnc1mkd1lfDwREVBLu2BE00Q3n1eAMX0kOuGsK/1OIzYAZBINXXbhjDvtpF84HCkzT5k6nmWeewfmOCauX3Ym3yVPAHzPOwDQ+vPE+gHcp0mGjJdrpD1ilb6XLVu2bNnubXvBwDiE8G5JY0lrSauiKD4qhLAv6bskvULSuyV9TlEUh093Dd/cMWfNzu5TStpK9X0wcaPRSO9///t1/fr1uNH5UbCSSgwgGy9AFm0kwJwN1MPaJEEB9DwpzQFCevAI9/UKEyQ88TneB8zC9KXAm9JogAlAh1+/3W6XdMWAZj9S2kPFXjmCMYBNXSwWkUnkOu5AuMyB8YEVp68ATaoU8FnmYDwexyoUgDYAiOu9AVGALWdzU/aOefA14PPoUhckEp1OR5PJJLLfqRbY5QXck7lw4O0A3aMQvE9bAJYOKpkDyvUBurkuc+7jwxiwDv0ACh8j/j4+Pi5psXEGAMsOgp3B5dp8z5+tVH7AGvHKJ87I+rPurKzPDyw048hYANhxNADMDtR53l3X7Zp1jz4wLrzG9z3hlHGXtqfu8f97xe7Eb3a2bNmy3a92p37Rf09RFDft/18h6ceLoviaEMJXnP3/yz/QBRxQSFtNIRslG63/zSbLRrxanVY4ODw8jGAUAOuMl7TdLLkHVRDQXbKRAkypIOHXSrWWtN/bJm3BGhszpen4DMDRGUZP8IP98oMeqOcK+wbAc3AN80j7CIF3u92o52WsAY/SFgjwHUCdjxuAB60wwKvZbMY59dA3fecaztgC8Ji78Xgc2+YSiNFoFJligJzPhZfj8jakWmP+uHQFLS7z5LIMl1g4Q+8MqrPMh4eneIIEPR+DzWZTaj9zCPhLD48g4QzHhPZJivPtJwgydzxTvt7pB3INnAaiHs72s85cG8waS3X9zvDzHvf3/iN5oA+0jzXF/dy5ZG6YP77jsikcSQfy7mTgtPn88iy5PMLv75Ib/5t+ekTiHmWMX/BvdrZs2bLdj3a3qI7PlPSJZ//+R5L+oz7AjyysLppMSSWAk8oY2Lz4tzPLy+VSR0dHMZwtbUOrDqABiTBFq9VKk8kkMrhsxs6YoecF1FIdwMEi4MlBPWwgf3c6nail5H0AOG0lFI+m1A8ZoT0O0DxJi7ZWKhX1ej01Go3IHiKVYKxdDwprCjA4OTlRs9mM5dxoAwmG0qlEAHDpMg7exzzpzN9zzfh8PtdkMtFkMtFsNoustydE0i8qQTC/SBEcwHB9QA79hNmeTqcRZLHmAIuuo6Zfzjh7cppfG7DNcdzOoPs6QIsOkARUMsasTfq62WxK0hcfQ54Pnh1kNDgOHonxMmM4Kl4Pmfc8KdGjBDibrkN2YOzPmbPEjBUSIZ4vlwCdFw0C7LsT6s+SR2HcCcAA9XzXgTTJqHw+/Yz/SUEy7eB+qXzkHrTn9JudLVu2bPer3QlgXEj69yGEQtI/KIriTZIeKIriibP33y/pgQ94AZNLwJ4BdJx5ZQNz5heAy6YLsBkOhzGpxzd8Z/kAk71eT5XKaYZ7v98v1X4F9AFMADNsyLDLKfNLyNerGLjWE0ANKwZA975SFYLPOFtGCJzPAOQ8aa8oTqtNUFd3Pp/HRLfd3d3IwkqKmmzYScYSIN1qtTSdTm/TFXuZMpKppO0RwgA512/yuidHAvr4nOtKcRBGo1FkkilN56yxS0087M+Ysg683BjrxtuFjIFSga6PBcAyj+5oOZPuFTfcOQJYA2L5HgAOIMr8uSbe/00EYWdnJ1YQoVYxgNGfE54rNMEOXrkP2nIHsi6R4Flz9tyBsBt9ZgxYl4wBjqUz0j6W/lk/hdLHAQBPn7Hz5DS8DrD1BEYHz84e811+L+gXr7vW+h6zF/ybnS1btmz3q90JYPy7iqJ4PIRwXdKPhhB+1d8siqI4+wEuWQjhMUmP8X8Ps6e6Pd+UnLlzvS3JQw7oAJBIIlqtVmQLXUpB6TVOX+Oo5fF4HJkl13c6Y0W7nInjBDC+w+EOHkqmDWzK/jrjAPNHAhr9oaoFp95Rqss3c1jCSqWi3d3dUsgegO8Jd4A6wKInrNE+6gwDaqh+MR6Pb9MP4xw4OANEMMeARKpnAAxhL10rChACqJIo5mF7xs0ZvDTJivclxcMsPKEQx8pP5vPT21x+42sIcAbIdVbZJTWAPmeTAZz0A7Du38VwSiqVSimhzw/GSMfcr+POiYNExs914jyH9MVBKs6Qj68zs8w192PcXYLhMhjM++2A21naanV7aqM7NGnVCo/A8H0HwKncgmfb1xBtcAc9lXeldbrvAXtev9lS+Xe7qfZ5H8mWLVu2e9peMDAuiuLxs7+fCiH8G0kfLenJEMJDRVE8EUJ4SNJT53zvTZLeJEkhhIKQOWyds2oezkb2IKkEgl0n6uDHk3AAO8gNUiYOEEvST61WiwlVzrylYWXftB3osHlzkIcncsGIe1JeWvGCTRowwmYMMKbPvV7vNsYu1XC2Wi01m82Y2OanoiFzqFROj8YGCNL3arWqfr9fqiEMW93tdiUpyiAArLQb5hBA5ElO0laX6mwqCZCMEZ8DmACenMlzCYSDrhRY+Tz5v935osKEs6M4N6xTv54Dx9SYW+aB6EYK/BxkexURT/Lz9dVqtWL0gPVIXe5UY+uyCWeUAagpGPZ/0zacKo8Y8Lw60OQ5ow1pkiJ98mRSZ/kdOONoel/ov8sfnLV1aYsDY0B8up74DMl9Plb+TDmbzHtpv+8Ve76/2Wffib/b/bB/b3U8W7Zs2Z6FvSBgHELoSKoURTE++/fvl/RVkr5P0udL+pqzv7/3WVwrglPMNzU2QsCmpAi4XEPp3/WQOQwZoM6BgrQFaGSak2jEZwBhDohcvuEbOZ8FWKH5dbCPzKPVap2b1U5bAegeOkYGQgLR7u6uQgixioKzqIAPr34B+IHdBkRTRQJwTDUKKkIwlswL18RoE3Pi0hcHW+68uC4YOYWkUjIcIJsSZrDekkp6cJc9+PoBbMMIO1jDvC+wyB5ZgK2nL55oKZ1KR1x368DJWXJYbmciaau0rTfMGkq1tT72OIn+eX+GeB1WE4Ceanl93bpuG9DMHLEmvBJIKjnwZy2tDsG88Nn08/5MAYh9PJz99eiGOwD0kfu4k+CJni6LoR08F87S+zV8Prmv3/9esDv5m50tW7Zs96O9UMb4AUn/5mwjqUn6Z0VR/HAI4S2S/mUI4YskvUfS5zzThYbDoTqdTqligWtQXWJAqN7lAa75k24P2/Na+neq90SqEMLpEbWj0Ujj8TgCENcsI1lA7xnCtq4rYB1AVxRFrB3smy+AjI0Zcy20JwRKimXYAFiNRiOymN4W13k6y81rkiIwBgDDJHe7XS0Wiziuzs7zGqDRk+2KYnsoCWPl12C80SBzvxBCLJkHMAIU8sfBsleZqNfrtx2bnR5LzfzSBz9Iw8cYYLlYLDSbzUpMsoN3QF46vjDV7pjxfRwaxsmlF85cu3aV7/EZnos0SuEgm++5DIJnCAfCNe3OfNL+5XJZAr7SttawP2epU5cyqQBs14B7e9xhpf1cP2WdcbpcduSg1ceJezmIdemSr1dnjJl/Z7K9DZ7s5w7IPWR37Dc7W7Zs2e5He0HAuCiKX5f02895/Zak1z+Xa733ve/V/v6+2u12BBuuQ5W2IWHXCWKuO+ZvgBubM5/jWsgS5vO5ut1uSYfJd/h+qlV00EKy1GQyie/Rhp2dHfV6PVWr1Qg+uTesKuybg3zfjAG+sI0AQQdC/B+A7YdfeK3aRqOh2WwWK2c4Gw/oarfbajab6vV65yb9pdrhtP4y12IOGDfa4vMjbWUE6/U6Ohb0CwOEOMvsa+K8Um3ezhTMwKK63tklAn58dwrc3Jni3wB5Z3VhqnHmuC9r1dcQ93AnjXb7mndWl3sDFrkO4+3PCNdK++Nl2XA0WIcOJiVFB8ojJw4UAd4pUGQs6LNHMfhO6ry6Y+drgT7C6LuUwkEvY+xOhv8OuMSGMfG1mcpdfEzpE32+l+xO/mZny5Yt2/1ol6YyvUscnLnyUKVvSg4s+L5rFVNgm26igKjVahWrT8AipuFZB9ts1LBL6GUd2Ph10MvWajVNJpNYNo2Nmj7D5iJ1oG0ASKpY8Fqz2YxtTNlT6udSmgzgDiuKRhkw6CAEVo7rAHRTwOfsH30AnDG+9NGrgjAHXmoOB6HRaKjb7ZbkINzbgZFXVmDsGWfmxsEfgImxcCDrDCNrhjGCOXWZgyfoOeBjDh3IAuC8ioe0PbktZScdCPOaA2UHd/RjsVjcBghxhPzzzvD6WgYUe5IjRm1l+pK2n3u4nCK9j8sVvO18xtvJ51PZC9/zcfW2OThNnY2n+63hmXHn1sE7a8375eswZaGzZcuWLdv9YZcGGEvbqgHSlmWStqCMTZzNzJNznKVKN05nx9jsnK06OjpSs9nUYDAoAQUMICRt2WBPiuP+XjEAzSn3g4EFuFASDYDkWfGupyRhy8EH7Uf6MRqNIhAAHDvAR57gGksAsKSSE+KsMMy0AxlAMZ+BFXVG1OeSeaRqgjPurhVer9dxjJAy+CEOsLv0nwNOHDx6OTM/PIPxT1lljwAAjHAwWC/OhvocMQ5c3xltSSUA56DZASn3Zi58vs8DlFwXS6UF/tykiYnuvDDPXBN5DWDfHRg+585pKiGgfc4yuwMKGE6/l7aRP14VgrWGlIZx87rQzuz6c34eYGW+3LHy3xB39HxNu5OVRjLuNdY4W7Zs2bI9vV0qYOw6WjYjzDcjmFrfVNMQ6Wq1iscsU93Aw8awUgBjQui7u7uq1+uRVUWj6kwvLDEsrjONtJ9QsW+qtVpN/X4/bupombk3ZcNca+zsGTILpBUAnKOjI0mKoJg/rin1ELezwx7aB3BMJpP4f08qow/OHgMSHXC608LnAHDnSR6cMfeDWQDF0vbAC2lbEg5A546SA2P6DXB0XTBtB7hxP5faeIkxB8UAvPN0p2mZNT7v1RtcwpICWde5IjHwefMIhQNNjz4gp6Ft/vlU2uEAMO2/X8efRweifIfPpsxq6jA5sKSPDmhdJuNrx1lldxxdTuRzw/W8LYB3xszHjrFyJ5u2po53+l62bNmyZbt/7FIBYw/xelhVKoNFl0nArD0dO8SGfV6tUde9jsdj7e3taTAYqNFoaLM5LdE1n891fHwcjz32Y6ubzWZJ3gDwS8PSAMtKpRLrG3PKHhusH7EsqRR+93FARkEbKS02Ho+jzthLUqXVCxyUeEIdgGm1Oj30Y7FYqNfrxdP9SETjvlIZHHjCIeYAg/vBHEuKJwnS1nReSDKUtkdu4/CkWlZKhGEe6ncgj9Pg9YvPcyCcffdrOUsplVnqNNEPJ8IZbQfvLsVwYOug9Ty9LuPp0ROPsLg8AbaY92mDj4sDU5cQpbIiZ8+pmZyWXUvlEqkEwtfDeQ6DV64ABHNPHA+YdAeszvq69CIdP/+MX9elLbyXOud+DWeks5QiW7Zs2e4fuzTA2AExYAGgKZVr1zr7dR5r7Nfkddg3lz5wfeQDhN4BD/P5XNPptFSJgE2dz3k9V0+Q8zJai8UitpWkuH6/X9Ij81k23UajET8rbYHjarVSu93WYDCIAG86nZZC0QARAITXz2WzB9gwTtIW+AC2N5uNrl69Gtl5gK3Pl7OmqU7TwSFz6HIZB6weNkde4W1GhwyoSytfAGAdoKcgy8GQpNuqnhwfH8d5cu23z4HrVp3h5bppiJ5EvhQc0ycHlq6P5drnOSE+/t5G+p6WEPRqGev1OrL2XsHEwTgOkjsrqYQp1SL7uNA3rufscdp+d3LpnwNn3sdJdBbdZTku2fA17WPnzoDrpr1ftNWjClyD66YyjQyMs2XLlu3+sUsDjCWVwCGbHUAMwOlMEZ9JN2ZntjxcjbTCGTpYX5goQu+EXWezWTz0wyUcfJ5T8wCz1Wo1yi7YQOfzuYri9HjmTqcTT8ZzsOftJxENsAcTCWjdbE7rH1+5ckUnJye6ceOGZrNZTEDje5yW52wYulz6XRRFKeEPZ2E8Hms8Hmt3d7dUA9elCqlu1AECCXwOZpgb/k6rYTBHOBKMAe95GxkL7i1tq2OkThP3csmHs8Sw9ScnJxoOh/HzXsM3XV/nOWHp/dJ7u4QHZ8wdC4Aj68elHvzxBEl37lwSQP/8eykj71IXpCmsYb7rf/t33bF0Vh5j/F2ikrLOPm7pOPo401Z+B9yR8Dn2teVMMp/DPKnP2WK+m+YYuJPD+J8XjciWLVu2bPeHXRpgvNls9F//63/Vq1/96ts2eKlcvsk3LQ8l8zlneVJ9Lt+DrYW5PTo6iuDLN2KAaArG1+u1xuNxbB/HSANS2JCpNMERzkgEeA3Q4Cwf0gqvq+uMH2zelStX4qZ/69YthXB6IprXFYYF5Whp2goAms/nOjg4iOC/3+9H9hT2EWfA/ziwQ6IAkEvD/Iw/kg6OpPa5pwoE70tbkA645lQ9GETXEQNYHKyxFgBpOCAODJ1BdDaSZD+ArIMxZ2h9XTxd6J3PnidtSUEVaxMmN9UEM14paEXekEoAHPA5oHNgnEogfN6cxfU28jl/Hvz5cseQPqUgO2VrU12zf97n0Z0r3uf+HgHg3ucBcS8xiNQJx881xy6f8eiFj63LvLJly5Yt271tlwYYVyqVWOfXQ6WAQd+cvEzT0wERSZF5dJDgTBaHb3BiHGXbOHDCw9owyKvVKp4Cx4lwXv+21WrFjZLXAdDcu1arqdPpaDabaTKZxJrCgBPf4D2sDPjhdY55pt2Afd/MGTvALUwsAHo0Guno6KgkIWm321osFppMJprNZrEfzkZL29P7JEXJBgDcwQJMcMpeemUQ15PSV9qdlgMDYPqYOmMrKbYFMMznuI+k0ql9rAfXzZ53wIyztDgPXsEEYOdgMgVzVPs4Pj6Oc+SJZyloZl5Yx/55l3545Q+vouLPmCc/ck3X6rvkJHUsPDoA0GU94fz4971tfM+BtgNwdxBcBuJg23XYqfPla4dnjO/z3BL1cYeL17iPJyD6vLn8gvWYarCzZcuWLdu9b5cGGDvrJpU3dDYrQItrhR2UYM5SwVS6PtiZYYAczK5nrfsGvtlsImh25rDVamkwGMQNutlslsCo1xt26YKkCGrn83mp+sF8Pi85CPRxZ2cngmGYx8FgEPs0nU5jchxsqtfdZQzq9bra7XbUKHslAMLprVZLs9ksstoOJtIwuzOInU5Hg8FA0+k06rZToAfDXKvVYnt9jtFWw5p6sqFfBwae9jsAQ+aCo4KEBKdBUiz/5fIEZy9pA+31NenaXU9643ru5Dgb6glnDoZT8OwMtIf+YWeZS9dRo2l2dtzXMk4Bc8Z8unPhrHH6LDobzR8iD4wlOn0Hrc7Op6DYdemAT68A4vIRgH8aAeK7Pq6uvUYukkY3eM9/M+gnrzGOHmlgPFxW9IEc9GzZsmXLdu/YpQHGGBuQlyQDGKSVKQCgXu/YwYWkCCLS0HLKPhLe9tqwaEO9WsF8Pi/JFdD6uoa02+1GBndnZ0f9fj9WjECm4Pcmwc9Dt/P5PDLBntzFvQGCyEGGw2E8lQwgsFqt1Ol0tFqtNB6PNZ1OY0m6TqcTx9FD82zyMI7SNolMUpRQALpxBKgwsbOzo263q0qlouFwGJ0SQPbJyUl0RrrdbgS3VMKAwQwhxFrGHFTC2AFmnE120Mxcw8xOp9O4FphXvi8p1pTmNWe1nQEFUKcADBDMOKVaeB8/B7wp4+1r1JlKNMAAUWlbhs2BPt8HcPtYuEbW59VlJg6G3fy58qQ4wLVr7wGfgFmXcnh7+LxXF1kul5Hlp28Obn3OPSrh0YaUFWfsXafvURgcBQC3OwVcz5lhb5OXp8uWLVu2bPeHXTpgfHx8HOUJJKhRdcHZqhQMp5tTylTxWWmrHQTwSiptwISHvSIGoEpSLGkGO7e3txfr/8LIcnqaVE4KI8y92WxKpcvQDdOX2Wymo6MjtdttdbtdSVugQJIffeF7zvziMPD5xWKh2WwWQRBsMYleDvIWi4Xm83lk6UIIsXoHbDb9gs0FqNA2Z9VarVb87uHhYXwdaQYaYwxgDNBKS6Qxv+iMqTe9WCxKkpFUiuCOFdIXZ2KfjhEGLLE+lstlqYIFgNNZdb7jWvG01Jyz3KmO3dcCVhRFZPiZY3emSLTk+w5E3SFw3bwz1866st5YG9zPbb1ex0NsuAbAnXvg2HE9/k4dC48qwD77s+4RCb6PNth/C5wJ9jHG8QUMe6lAZ89TOZNHDxwcszZpSwbH2bJly3Z/2KUBxh7uRfdHKbPzdLMezpXKTDAg0WUEgBRPnloul5pMJhG8wBySCOalydignWmiFi4SCk8aQ0LhbWeDBci12+1SGBpmC9A+mUxi++gjIMJDwK7TrVar6nQ6Ojg4iJ9FIwzoddAym80i+wtoR/4AqACccj0YTJdWMOZ+GiD9r1Qqmk6npcoafrgJ4+UyFTfXcSInAXC5nIO5YlycIU01pUQkTk5OIoOPwVoC3ny9AcSWy2UE4V6iD8AN844D4OF/B5guCUr7IJXrOzvjzVxQ2cTXBvMQQlnv7M7EefplAJ7LLfw5pJoGbDDjEEKIziwRAE+yTGtOMz8OOokE+Dh53Wdnqd059AgCz547C7423bH1Z8cdNJ8b5jwdcy9Vl4FxtnvaQnjmz2S7OLuo35UXui7u8d/DSwOMpXK5NjYpNkFYT99kUzbN2S/AJuBB0m3gzYEFQFraygWcJeT6MJQA0fF4rPl8rn6/XwLe6Bi9ugUbNdfgMBCYRv6QhAhrTFKftGWCU12jl/1KmTh0upyu54whAIY2p/V2/QQ9mDvAPKXyXFrBvLlzkoIwwDbSDq6FxAImF9ADQwuIBoRJ0nw+j4AU4OPsrK8h7ku/qtVqdGZoJ21OJQ6uJXaQ5ubyAua90+mUksOYp/O0tB6ax5HDcCK8fBv35D1vj0tMHHRzLf52BwBn0J8XnkUvXQe7z/u02+UL9MudLu8bURnWa1Fsq0M4AOaPM9k+frSBkoi851El5sLH2pl0fj/OA7dEefgMenXWk2vKs2W71BaCQm170NXbv+W36V1v+L8usEHZnsk+/o2Pqf0Dv6DiZPnMH34BFna2e031wev6gZ/5/hd0vTe8+uNULE/uervvll0qYCxtE9ScEWVTBsiclxQkbTdLlxr4+1Rc6Ha7Eej4oRWVymlljMPDw7jZwbxxHcL+RVGUgCbtAuQC3prNZin5i0Q2NlRJEUjxGkCR0Pl8Po/AhwTB3d3dUvUEr0Xsh4PMZrMIWJrNZkyIg80DxPBv2E7ux5hUKpVYDcSTAF0e4Axto9GIrLnXIYapBYABsgDGjEfKbuKotNvtEkjlb8AuoIvPwHw7cEyPnQaAulMAmGOtudb0mcpz0U6/r0uBWAOeOIe5Y+GMKtIKNypj8B4gl/nkuUEWw3d4xlh3zoAyzq7h92cQSQ3t5n48ew5iXSvs4+hgnHXKevf5dqcplY+4lhhnEWfMNcI4fl6GjvXi0iOPBjl4Zt78N8BZdZegZMt2aa1S1cHnf7Te8tXfbC/+7IU1J9uzs5/4pjdJkj75D36eqr/ybq1Ho2f93bBTV6XVfOYPSvret/0H7YTqM3/wWdoP/dpP6qRY6zM/9Pc8pzZfFrs0wNg3WNgzrxDxgT7vGxUbqYeF2dicMfaMfWnLAq7Xa41GIy2XSw2Hw9LJYCnAYrOmBjKbbQghbviNRiPKBjxk7ZpPQKFrKQFrtVpNi8VCIQRNp1MNh0OtVitduXIl9m02m0UZiLO1kqJcwgEpYJp6xmhgW63WbWWv1uu1JpNJKUGPfuJQUAMZcOL67OFwqPl8Ho/WJuHOazkzJowZYW0v/+Ugy3XU0ha0+gErSF1cNsDn2u22Go1G6XQ2AB2WstyYJ3KmazGVAXENACafdSbW7+XrkTl0va1fC1Dnshp/fnDqkMek2mFnxF2rjHPhNardKfHx9zY6+MU5dYbd1w7rxwGy65CZP5wajzw4APbID2xz6jy4/MV/BwDd/NZ4UqG0zUNIne+UqffxyJbtMlqo1TT67I9KQHG2e8l+5F9/pyTpU1//hxSOxpKk1RPvv+1zYaeu6tV9SdI7vvSVevsXPNs5v3OgGNsJVf3LX/n3+sP/0/9LxWaj9ZNP3fF73C173sA4hPAhkr7LXnqVpL8maSDpT0i6cfb6XymK4gefy7XTTfG87G82xzTJiPd803K2zSsEnFd5ACCA7tSlG75Bwz63Wi2dnJxoPB5Hlk7aamEBCFwHUI4u05mr0WhUkj6gvQ0hxKOfJ5NJBAIOXgGZMMSwwkgu0EZ6+SkYO4AslSqkbfIUbPRyuYyyCkmR0YNV9jG6du2aOp2OnnrqqZIkZbU6PaRjuVxqd3e3pAPFKXGW1AGygzivfMA8wn46KHegA+B3h8TBN0wm8+5g1ZlBX0v+mRSQYYy9J3o6kEpD8O7AuWaXNgH2WSOSoiae8aedfM9ZZ7dUJuBrkWfHn0UvfUi0xBlq/u0SCGdk0+fSJQ04bcgiXPueap/pi0cv/DfCHUxPkKTPDs5pmzPFDuJdAuK/EazdVA9/2e1u/m5nu3wWajVNPvMj9ea/8y0X3ZRsd8B+8Mf/lSRpXWz0Bz7xs297/+bHPaCf/T8ujwPUrTT1Az/3w/q546X+2u/9Q1q96z0X3aRnZc8bGBdF8XZJHyFJIYSqpMcl/RtJXyDp64ui+Lrnc102LNfxOiPmmy8AiO+l2uSztnmbSwCpOEsE80QjpAOSSppO1+2GcJodv7+/H7PkHdT5Zg+YBMTBAKKZ5bQ8AGxRnB7XTCiedp6nbwUk+oEnJycnGo1GsXyb60aRdEjb2qvcg88RKgfMIRNxEOTX9TYBtPf29nT9+nWtVis9+eSTajabMSkt1eumgBeQDGhrtVpqtVqlxCyv/ODzDVPJ+nGNNJ93yYqf3ncesPVkK2cQXSvsrL/rcL1SAtdKpQcpC8m1XH/rQNm1wu6kudwHEOvsKmvZ54v7OtPt447z6PWb/XRG2P00MVFSjAiwdhlrxsBlHvQ3jah46USvN+0gnD4wPy6hgRX2MfTogQNmLzmYOlvc1xP53Lk6L5p1me1u/W5nu4RWqWr6GR+p/+f//AcX3ZJsd9iqoaIf/E//+qKb8aztIxt1vfFHf0R//zM+Q+tf+e8X3ZxntDslpXi9pHcWRfGep2POnos5a+iMFZpKB3GYh0y9DZ7Iw+ZIshmMIdZqtUoArl6vq9vtajQalZhPNt1+v68rV66o3W6XkoUA6GkSEteECYXhBPTAQpPY43rq9XodAbMnuhF2dgaMU+tgeZEXLJdLTadTVatVTSaTCCSw9XqtdrutdrtdqjssbSUFXhYMwEtfOVCj3+9rMBio0+lELTLaYKQu55VBA+QCUADGaJUnk0kExoCZ6XSq6XSqzWYT6yfTVhIOuT73B3gRfk8Tsuivn5jm4+vm8gNAkwN/199yHyxNdHQJjIM/fw4YN+Qv9I3v8CzgCNAGIgMuXXEmFcbVkze5L8ZadkmRJ6/yeeaH9vDsIDdKtc0Oxl2O4uA1TS6kLWnOAc8e/XWH2UEyf1KH1qUqrmF2x8bbdY9LKe7o73a2y2W1hx7Qf/7GDIqzXQ77tPZC7/+en9C/+txPUvHWX7ro5nxAu1PA+I9I+uf2/y8NIXyepLdK+gtFURymXwghPCbpMf4P68QBEGmI0lnizWYTASaMqbN5znABBNj4jo+P41HOgE+SywCpDlJarZa63W4peY7rEbbn8A4vVeYAEjDjIVuXAtBWgGC32411hqnhzCZO8hwsMMBQKtdnBtRxwh3/BwhOp9MIUNnkGS/G+2yeShUqAMrcwxMjGb96va79/X09+OCDunHjhkajUdQpdzod7e7uRgDpCYse1qevrVZLvV4vvj8ajUprgTkHxDuw43OMnYfOcVQcgHrSWuqceD9dPgBAdRDIOK/X67hGdnZ24jw93bp2SQmA26UIOAzMCWvNZQs+x75WO51OPOwEIM/YuDPniXMAYJc9OAj1g1eoKCJt2WzG2+VDrCPai4PHazD9AGHvpzPxDmBTmZXX1/aokDvSXIvrMp/uwPD6ebIaXnfm/x60F/S73VT7RWlktudhlapu/L6XX3QrsmUr2Rftvl8H3/FT+r6/9klqv3cm/ewvXnSTzrUXDIxDCHVJnyHpK89e+mZJ/7uk4uzvvy3pC9PvFUXxJklvOrtGIZ0yRzdu3IibrUsfPITpSUke3mWDdMaL95wh8tPXNpvTKhNslGzUDkAASZI0Ho9LFQ8AQn4iHQDj6OhI1WpVR0dHEVgDgDlsg/6hE202m+p0OlFKQYk6gBKHfcBoTqfTqMd0QORAnQ0eAIPW10P36/U6Jgl6uN6rEDigcs0ngLjT6ajT6USH4sqVK7p69aqeeuqpeLDH/v6+9vf3Y7UAB8aMu5e/ApR2Op3oKPC6s3geene2ESDrTkjK6Ho1C4CZgx/mkzGh/4xvq9W6LXkPQHa2vqPzxNi648Q4cz9ed429y4m4JnNHDehKpRIdP5c4ABQpx8fx2rSLfvsaTfvq7CztYix5HpkXvsua87lxh8UBPVp6l1vwN2MXQohjmpa/c4kGz4mXH6RtXId59d8NZ/2fjgXmM/7b0mw2NbrHMq/vxO92P+zfsx7B/W7VfvdSaU2zZcP+0v479Ze+8Z36vPd8vN7/Fz9C4Sd/4aKbdJvdCcb4DZJ+viiKJyWJvyUphPCtkp5VQTw2GxLJnJ1y5g8wQijdAUDKHPm1z5NnwFoirXBG1lnldJOfz+cxjH90dFRiEwEOq9VKs9lMq9Xpccyw0oTvOeqYjR7pAv2EEQe0nI1tiRFfLpexjjIAwQ8dAVCgrSS8THk1PyQDBhiHAC0yQNolKi7BANi1220NBgMNBoN4306no16vF99rNpvq9/vqdrsRACLpcN3w8fFxBKvOzHmtYubQmeBULuFAC920f85BdMoE87fruAFT6Yl5SEpYtwBF5Cyr1aokJ0EqgKX3p50k3+E0sX7TBDJ06e5Q+qElrCOM9hGhYH275Id7EL1hvZ+cnMQKJ+cBdu7J/ZwRd9lNyurTdhxHX+ueT4DzxLxyP9YH8wGTz5pivlLm2383fIxdWuBAOP2NgQG/B+2O/G5ny5Yt2/Ox73z5T+izv6auX/vXH6sHf3J8qdjjOwGM/6gsHBdCeKgoiifO/vtZkp6VmMQBnzNMgGFADqCRTfY8UOyaRoCKb8TS7eAIsAMDu1gsIljhPQ+zhhA0mUx069atuGnDHPP58XgcQTHh3MViEbWU9Pf4+DjqmGHOAD0eXj8+Po6AB4YX0EafYAxd1wqDCLBkfJ0NBWjCUAKMCZd7shlOBAYo2d3djQmJkmJy4e7ubqzH7ICl3W6XkhJZBy5RQDLCEcywnScnJ5EphyVE+kC/uR71klkPjHuqMwe8uZwAAAjA9fC/a3t9XFg3zsI6MHXtubPKDiZdH+z9qdVqkdlnXTNvgFjWi0sCHMTSVv7GAXQZBoasBEeqWq1GNhYnkiiFrxGcKe+Ts80uQXKpDn1hPQNqvRoGkhmPKLkUBxmF/57gYHoUwOeF9U9bXZrl8qfzkihT2dc9YnfkdztbtmzZnq999wf/mPSXfkwf/ymfpRs/9bGSpFf+kye0fse7LrRdLwgYhxA6kn6fpC+2l/9WCOEjdBqSe3fy3rMyNlU2UmeJPLnKWSVnjjyRizAtGkv/rLStAEAoejabRRDlJdbYKAEfgCU0vl6mDUkFANPrMTu4AoROp9PICgKYnd3yihKABEA276UgQdJtzBrAiM878PCQPCXhiqK4LbOfsDyAHeYbhvjq1ava39+PEoxGo6F+v6/1eh2vizyCA0f4P86QpMiw0g8AGHPBQSchBPV6vVj6DofI14CH01M9sQNcjwwwJn4gBt9D/7parUoHeDD/fJ45TrXvXMcjGP4Zb3daRQHgTl9gc9HKNpvNWF6PPjHnXNufISIT3v+0agVrkWsh9eHgGZ6DtBwdEQnayHuNRkOdTufcdcrhK8ikpG1ZPdpIO1jzXjlE2jLkOB+MrTstzDvPkuv/XXrkgNjbmjrZ95Ldrd/tbJfHNvOFXvm9j+ldn/mmi25KtmzPaD/x4f9G+vDTf3/oaz9Xy/f+Tn3I1/z6hdU+fkHAuCiKqaQryWuf+4JapPJGk2aHu+bQw7gAEwd7gJNOp6PBYBCBqFeDKIpC3W431iNGx8r9HAg5oAM4LpdLzefzqNXkEATXQtMuB6eAMmQbgCM2YQ/le9m0oihi/72EGowmsgYkG1zXAaKDNNdvc/Q09/FxZA4AJYAJxkE6BYX9fl+7u7vxuvV6Xb1eL7ZzNBqVtNA+x4ATH/dqtRoPCPHqB1yv2+1qb29P/X4/AloYQuaQ++CwAGQ96Yz7eSgdoMgYMscwxoBPT1pjvmEnqTWMdtllEAA5B+6ptjUF3Q7imBNn//15oa0AZdf0OtvJPd1ZSyMrtBFnAUeEyAInGPIdr6FNP2gP1UsajUZ0emCBXbrE9wCj3ifWAX1z3TPfdQbck/9SiQ7mjouPvzPhPid81yvb3At2t363s10eK46P9WH/3/dKn3nRLcmW7bnZ2z7uH0uSXvvo/6qX//ETrQ9vywG+63apTr5Lk2AkRXBBOD8N5adaUt+IHQC5xrPRaMRjoWFg2+12SfbgiWlYKi9wPbEDBxhDSrqdnJxoOBxGbS+HXNAf2gQInkwm6vf7EewiQwCgNptNFUWh2WwWwQ0ly3Z3d9XtdkuJiYBLGDwHR66RhI11TbfrM5GwwCASWvfwOIAHiQNjjW55MplE9tcZcELkztIx/6ksxvWvJOb1er0I6mazWQRTfrodUgnGmdcAXYwHY+anwEnbE91wRFhz0rZMGfV9AedegszHCcDMmgCMur7XGWX64I6WV0ORFB0a2gqIpcShOwMu3fDvuD7bHQMcOKIFDtL5Ln2SVJJCMYeMD/NNmUNJkXHmd8DnYr1e3xa5oB2MNcb6dg26j5/3K3VC3GnCUtkF1/C58s9ny5YtW7YXbr/8Mf9U/9M//hzNjj9Ij/zht6uw3/m7bZcGGLO5sIHCRgGMOa6Yzc7Z0zSZJv03+uBOpxPlApJKJ83x+TSk6iFkD6fDMDuAYzMH7Lo+czabxfD/bDYrgWc2en+fRCckG14vFnDkmtnxeByBX7/fj+11DSWsoX8fh4G+A9Rcb8v4pWAKYNntdmNFCph4wB0JZEVRxHrE8/m8VE8asNjpdEp9Pj4+Lo27a2eZT9YKoBHQ6gCGNtN+5gwWMa2p685DqiulrBhA1x0zaRvGRy8Oo+sJkVSI4HM4SYwzQDfVrgKs/bhp1i5Jlw4C03C/O5M+7n59xtAZWqIV1M8GxANUndEFrOMAcV2X4TC2ODa0gfUPEHbQSVudnW+1WiqKIq5ZHzMkSD4eDtTpB8y7f4/vuITL2+DzzrOVLVu2bNnurL3ldf9SkvTJP/Lp0ic9Lr1IJMSlAcbSdpNPNbYeVgdkpBshbKdUlgoQ1t1sTkuhXb16NWb6T6fTknwBMMf3zjPXxAIcfcN2/S6JSuv1WoeHhxqNRhHwUlUD8Oo6Zmc9YZUBLM6a+cYNy03ikYedU2aQA0xgddHyzmazWEnDx0La6r6dvYfBbrfb8bS7fr8fx8UdCxwBpCeAQNqL1hVg4qftOUOHrpgKG7zuAJ614t8FBLtmdLPZRE0rABKnB7DmyWU4B3zOQSSyCuYKJ8DXFYlusMq87hpYbzsMvQPRarUaj0B2Fr1SqUSHwyUb7rixfpkT+uh1rx0IOmPtumeSQJENMV9+GEuj0YhjJ21BZbfbLdX/7nQ60ZH0ccaJdYkQ/XGGHcfLn1eP4ji4Bhy7E86c4QAQHXC9us8ra8Odb+Y+W7bLYpVORy//twcX3Yxs2e6I/ciHfr8+780fryc/5sUpi3mpgDHmzFaqdfSQpm9+fDatluCfo74puktAFRIDT1hygOwJe4STASiw2pvNJuod03bCVAIq1uu1er1eZItT3SkAgM86q+uADqkAQJPNXNo6DIvFIpaC4xhqKlvgQLDZhxA0HA4lqaT3dWCUjivW7/e1v78fJQ2wf7B2VNGYTCY6Pj5Wq9XSYDBQr9eLfQ4hqN/vx3akzgkacLTFAFqXQfjfMM8w8mmiHOY1hAH6Xr/Zx90dNW8Xn3MgyLHIlUolOh9IAKhP7fIG2o6jQP+QfbiTwX1ZZw6C/Rny9rBeAJSsa9YtDiTsr7OrHpmZz+fxOeBegGqXp9BHXmu1WvFkRxwh5oXrMMawwchvPM8AR2SxWNzmJLrW2BPm/LfE5Vq+fpgPn1/AvfeBOaTf52mTs2W7SAs7NX3Twz950c3Ilu2O2T989D/qU/W6F+Velw4Ys3kT6oVdm81mkso6S8p1eWUGZ5kdMPkmKG2z9NGQoi1OM/LRijqIgHXzGr+SIpPqzBvgAI3marVSp9PRlStX1Gg0Ymk4wDahdkLw6/Xp6Wkk1DEOXuPYQbiH5AFVw+GwpO0FDDsz2el0Igh3ptDBl7PyAF1JEeju7u5GsMTYudYXUCxJ3W5Xg8EgAn4v28ax14B9T+YC6MI44jTAXvraYT0BTOv1eumQChyMdrsdHSMqmLBGnJUH+LojA2OILMRLicF8so6Pj49LyXgeymeds17b7XZsB/dPQaRHLwCZXJfv+NqUthIYnx+uwzPkjgMMOsCcdTybzeJhMy7ZcEYfxxFWl7mC6We9sz54nmHXWXsAYBwbnlUcWuYZh89BLmvKEyVdZiNtHWEcDn4ncIox/w3hfb9PtmzZsmW7O1YNFX36Lx/q+1+7d9fvdWmAMRsQtUzRD8O0skmhzwTgAIzTzHCXHwDovOyXh0jZ6LkPGz2brrTVHi4Wi1KyFq+n4ACA4sCd1+gHwHU2m0Ww5SfoMS5sxAAFr7Lg4ByWk2OTV6vTUnAAUkA0DKmDMcAVfyifxuZPez0hCpAbQojA08GFJ6ZNJpN4vHWr1dLe3l48Gpox9WQor01M8hhjGULQfD5Xq9WSJPV6Pe3v72uz2cRDNXCgaBOsuAOn9Xod24JMxzXYrBVP6GSccRQA8DCxOEPoZJEQ8F0cLE8oREPP2kF/S5Il+nqeB9rEmnJwjRPmJ/jxx6Ux7hC63INngGfDJTkefZlMJmq32/G5BPzyOeaOaAb9YR5cL01bqIji68xZXp5p9MGLxSKuYZd04Hx4vyuVSqmvtDkFvoBfB8/8wTlirbIOspQiW7Zs2e6+/em992j3V6f6p7/1ZXf1PpcGGGNshFRqAAAAiPiDVhUW1kuLIV1gswa0AUY4cY3kIGlbHcA3Q6ksSSAk68wdIIXvrNfrWJcYDS/aWPoBkJIUgSuHXwwGA0lPf9qWb84paw14Ho1GqlarUYrBeDjY9iTBNHkInehkMindnyOo0UAD6gaDgfr9fhwrZ/vb7XasX4yGttfraW9vT+12OzokrhNm3Pr9vur1ug4PDzUej0tSDua/1+tFrSpjBrOOfAFWWFJknJnbdrutXq8XnRQfe2eFXffOe8w3DoSvAa7lDC7zSR+QHDSbzXgaIOPqc4+e3eU93AdQhvPnwM0TxDypFcfN6x07AOX+aNbRfgN0kQRxPDf357ngufOyivwfAJ9Wh/DvecIo4B19Nm2EoXdHgXXNWPsJfS4HwZHluy6TYazTsnWMoydVEgXIlu2y2fpoqDd8yh/RD/3wv7jopmTLdkft8/o3VX/7Wv/wQ15+1+5x6YAxm7IDScKkbLLOhLr8QdoyrF6RwBONPCHKmTaXSACkpXKYGLCeSh1IyuE1dL/nARQ2bWcYvUav6xZhhmGVcQII+zM+zqzxGglSXl0gHQ9kCmkoGDAB2AIIhRA0nU4jGGg0GhoMBvEkNB93l2fM53O12211u93I6DkLjtMBI79er+MpehybDUNN+B1Q4+w8+s9WqxXBrlfKAMjx+Xa7rX6/HxPAuLcDXdYMrLPrhllD0hYYpjr3w7MajD4HrAkAJwCc8fCKHM7Cp6Dc1xXPjjtBfBeH0ZlcP3ade7tUiKgFQLEotodv8F3a6Lpl5sbBJY6Oa+BTppZnLQXvRDlwnHj+XS/NOPnYpmUJvd/0j3nxhD7azrPiMhdAtevBPaqULdtlsWq/r+/8gW+T1LnopmTLdsftt9bfL+klAIydpQKsAew86QmWmPJUaXKcgwaYOpgqwq2+ubLxcT1nOwGqntCVJkCl1SIAkePxuMQuA5jZSOfzeUygQ3bAddj0JUVnwKUQRVFoOp1GLTEAwPWzAEn0nhxTzWbvGf7SVvrgelYADeAdgIpml0oUsLZc05lhr3zR7XYj44yu2svRHR8fx+OO9/b21Ol0IuAGhDSbzXiYx3Q6LWm36QvgeLPZRGkKfUCvjDzEmWDGzWU2MKbIG9xhcmDKvJLUSYQCHTYAGCDmaxUwzvrEQQBUArhxBHAOcBqksnwHcOzr1MGia6f5HOvDAT/9A0DTb/rmz1K73Y46eUAxY+Mlzri29wejjf7Me7URj7gA+Pm3g1ScQSIfyDNoO5IK18z7fPgzlbLM7nDjnHkSarZsF21hp67v/pUfU7uSQXG2+9M+otHQF7z9PXeNNb40wJgN2HWQXoeUTTMFtlK5BjIhV4AhGzQspUszPHEGZoxNFTAEOw2odZaQ2r3OOBHmdTbLQ95edspZvFqtpitXrqjb7aooipiIBIsIY8zmzWvNZjPqa70MGuAKQAAI9aQjb4/LBGAeAQcOLvgsrCyJaz4uDmyQMcDCM2/T6bTkXDAfnuzogBi2knmp1+uRAaa9gKROpxPD4rQJMATwdeAImGUM+CzjAYgiIQ4HgTbTf9YqJehchw2j3Gq1SuF3d+LQJ6cJfPyf+XRtrEszHNC5DjZ1egCNkkoyA67nzhXridepN81nJ5NJdJQ8cdMdU09s8zXobcLJpS8+ry7JoD2sMeay1WqpXq/HSAnXYR3y/AFicT69jjKVa3CkeT5CCPGavm5w8DxilS3bhVqlqh9+z89Kql90S7Jlu6vWrhxLIdyV2saXBhhLZRmEtM3GdxbLN1QHB84a+Sbs9XZdbsBmlpZycmaQklB8liQh9MmDwUA7Ozsx2QmmzsEI+trJZBI1rQAINnWAFJIEQK0De0/wAqQAhGAxYUQ9aQxwATPOGAI+cRjoe7Vajayt19UFkPR6vQgSSaiivwApvuv3BpAyJ4vFIjJ2gEbXEDsorVar6vV6cb7QceM44GjM5/PSqWonJycaj8elAyoYb0kxcWo6nZYOfoGt9c+5/ASQ5tU6WB+SoubZqyZwLLnXr/YSeqwHX9cAN+Z8uVzGNtAOXz/cxyUpREwA+jxTqdzAq2Ww5lw/7xICku4A6j5GPCvO4DNWMMSu1cdR9QNKGF//XXBdMk4DERSXMvF7wDVclsLa4hlj/lKdvkswJEXnhPtzHQfm2bJdBvvB33yLpMozfi5btnvdPqMz06//0qF+6LWDO37tSwWMpW0SkW/MUpnJ4t/OFMOOOdBzoIpmcjabRbDqoX/XAwMMfHP30DkVFtbrtdrtdtzMPSzLxoneGBBBmDkNOTs7yuEjy+UylvsCnBJ6brfbMSsfYIZUgQ3fJSaMC4Cae8LAuqTAdc4+HwBivlOr1dTtdkvJaw7eXRsKk+dJgABbQJ2kCOI42MLnHXmHH8QA+4nMhtJxtGE2m8XXYdyplezsMNcCRHud61arFRlJ1hZrIw3J4/zgWHlInvrIrpX3Ork4cGkymdcL9nq+jB/AOIQQmX2PUjC3rHVPUqONRVFE/TyJqM7oMl7Ml4N3HBfXvjNGjI+zt6xPHEaeD0+g9TJzOCV+XTTarAscBtaLV+egH5Ii28+YAIS5LnPommWXVnkUyOt0Z8uWLVu2+8MuFTBmwyaEnIJfGCcHzJ5sxCaHnAJ2iD+wXM4MeSIewCfVvoYQ1O12S+CCzbzb7cZQLpu6J27N53ONRqOo23UQCrvp34PtI6TuiYOud6Y9DnL5v6TbABwAAsAlbZl2Qv6w3iQoAeLQYDszDIgaDAaxwgRzx/cJjzsjSEJYmqznyYt8n0odkiIwAYjQdj9aGWkFQM7LvLmuGPYZwAx4czCZMrI4UYwT3wP0omf1OYAVlRTBGyDUpTwAcyQSPgcpMPb61bTPpRUO3jyxjnsx/6kUwxP2XEftjDxr16MIlIXz5FYALmvOQbFr0NFfIxuCNccppT9c3+UrHkE6TzoymUxKa4Xr0d/NZhPnDZDuvytpdMmjVlzXnYBs2S7aag89eNFNyJbtvrBLA4y9MoJXaGBz98SoFNw5q8MmClDx0KiHcSnfBQCVdBsI5bMAbXSjfmiHh+95DV2ltJVzUOWB8C7/TrPwAbKAY9pE/wFsAHEPOwMISc4CXAIIPdTMtTwpzY/a9jC5J+sBbhlvDnLgwBAYOUDQ8fGxhsOhDg8PY0UKnBZ3IPg3DoykWN/Zdd8whwAo5pz7clIaLDRzw5x1u13t7u5qvV7H60sqlS5jvXD0MtdhXCaTSZTGdDqdWEbM9bqAYuaWfsBgkhDJ+sMxY134QRmUcmNcXUebhv39+fEoBOPl+lhf4zhCaGxhZH3NpJUbcCCd6fbyaoBsgD73Y64AyLSZ97gXbDbXgZnlWfLnlPZ70ijX5LeCceK6VDGpVCrxueWaLgnx9cx68DJ8GRxnuwz2v/zHt6gasowi20vHepWFaq94VKt3/8Ydve6lAcaYs26wwzBcqcTCQ7sAND88wLW1nuAE2ARIepa5tD16mM9yShubIxstyW9og0nq843ZM+JhoOnbYDCIwIU++YbLBu2gSNpWwmC8pG2CH8y0Jz+5HMUZM1hWPusMmMtLGBcACCCbzzD29NePFkanjTQBYAzzx3jDajMP1Jr2SguATa9MwKEmgLL5fF5KOERzy7HC3W5XjUZDo9GoVGWD/qGhBeQyVozRfD6PiZCw2CT7eY1kwCIadNftwvJ6OTXXV7uevNlsand3V8vlMspCuA6Al3lw+Yq0lVA4K4xTQtTDWX4HvOfVFE6TDpmDVDLDGkE64qyrtD2mvCiKWKsaGYhLVOgjDoZHN+ifVE6oo72MvTtQgGnWB0mhDorpqwNg3sNx5Fn25ypbtou27/yQR/RHHr+RwXG2l4x90e779V+/+wm9/aPu7HWfFTAOIXy7pE+X9FRRFP/D2Wv7kr5L0iskvVvS5xRFcRhOd6tvkPSpkmaS/lhRFD//bBuUahodvPqmjwGCO52OHnzwwQhgOEbWS1s5YwcLDRjzcm4cHsHm2e12owyh1+uV2C0AFyAFZowNms2d78DgEiYnVM5nuLdroB1YwBg7gPCkNml7KAn34fMeJvbrklDI5/z7nliWajsBvQ4i5vN5PNzETyjESeF6qTbTQ+e007/r+u2dnZ0I8EgWBJA7i+6yBk/SKooiMvKsD0/a5Ghl+u1yAgehtVpN7XY7OgXU963VaqXKCKw1rkGFDeo6U02Ee7J+AMXdblez2SxKfzzRlPnziArOmb/OunFpAmw2YBcmlTFzPTRjIamU4Ml6AbDy3KUyDOae97inSywcYHs/GT+cLZ5r1vDJyUmU4gDU/bmmL65Tps62V9zwSJRHbegzziPOWJoHcZnsxfzNznY5bPX6j5SUpy1bthdqz9a1/A5Jn5K89hWSfrwoildL+vGz/0vSGyS9+uzPY5K++dncwIGPVM5kZ0N0Jsw/D0t67do1Xbt2rXR8MRt0vV6PbKEnpQGG2PzT0mhXr17V3t5eBFX9fl+9Xi8CZNciwyYBHJ09JuTuAAFgSViXDZdqBmhLYeHY+Al9A0YAxs4eSiqxwABH7okMZDabxT9+LQCXtAV3VKbw09C4Nqwb4BHAx3WRfwDGvPyVtGXpADXoTbku4+JMKuF1gDHsdb/fjyy+a0L9sArmC4DJfEnbRE++R/9ZR2hTKdfnB4ugz/XkNXfAYIupgtHtdiNAo7+A5263WwJ8/gfAyh+cMsadY8C9mgSAlGfI2V9PuKOvgEzWAOPE9zjsBUeDSiGpjtn77ODe9eE4U/5M40z585k+/y4RcYafduNE9Xq96ODCZjNXLtny3ANPvEVfzfrwyE7623VJ7Dt0l3+zs10u+95/9PczW5wt2x2wZ8UYF0XxEyGEVyQvf6akTzz79z+S9B8lffnZ699ZnO5MPx1CGIQQHiqK4olnuk+asc+m7iyypNLfbPQkVTUajRjydqaOP4S2AZrcj00ZFni9XqvX62l/fz8CMA+H+2Ea0vb0r06no9VqFcPeq9Uqlg8jvA7odtaWGqwAI09Gg5UFcLiMwk8H81JbvJ/qtGHYYCcJd3NNZ+wA6M7mAuba7Xas9AGoRZPKgSaule33+7cxyui2XdssKTocAByqC+AAAbD4DGuB8el0OhFQUeEDp4W54v9evxoQDsAisQztr0cxqNAB20y7Aaq+JgDS0laugTMEGBuNRvHztAsnDuCH/IJnwuU3gH3mnP7x3Ljm21l5f5ZYG4yJJyA6SHYQjqOBc5gmqtF2vsdaZlyLoigl36UJcClb7AmjgHCvRsP65dlj/F1iler2Yfn5HeG5ow2eMMu/uY/rpC+TvVi/2dkuhx3+sY/RTnjLRTcjW7b7wl6IxvgB++F8v6QHzv79sKTftM+99+y10o9sCOExnbIT0brdrmq1WgwtpxniHqIF5LH5dTqdCNiGw2G8pm/OsGBs4BgbNvIAEsw6nY729va0s7MTAQXgB9DgDBubK6XWCH/DLpLQheaWttMv+uOJhLDOhKidXR6PxxEcS9vjpqWtntglBeiCXcrBvbmOgxdJkY1FVkHSWKvVUqfTiQd8AGAIV1cq2+N3SVKjnFe1elrea3d3N4IT18u69AMgShk6GHk+y/8BVi5PQcs6m80iiMbxQD/u7DRSDJwrl7ukII37Mu6pBt7XH9/DMWBNA0BhX1mXPp6APe7nlTl43zXKDtJ9bl0qkGq0aYNLGACOAEuXGQGm/Tn0ZDqe1+Pj4+g8bTabmLSIYwFL786gRw4A59yLZ5kky/TZllSqasIYObPurLRHXCSVTll0SRFA3KMLfB+H5R6xF/SbLZV/t5tq372WZntO9t1f9bVqhO5FNyNbthfV3rac6Yd+/KP0Kv3UHb3uHUm+K4qiCCE8J6FdURRvkvQmSQohFGhXPUzKRu56XQ/BSrotVCyVQ6mABxLSJEUgCYhDWuDsNCB2MBioVqvFUmAAVNdo1uv1yFZTng32EbYRHbIzs+lGC7uafhZA5aF43mezp+1s4v5/Nm9YP4AuDB0MMvIGvk+I24GxA7Z2u61+vx/H1pO/PDzO3ALeqLSwt7cXGW80uoT/AaW1Wq3EKNI+2uqVH3wd8Br1plkvXh3BwawzgYA12uAaXdeqOsPp4NdD8M6guq6ZMWZO6ZdHIbgm7CRrlggDAM4rofghLjChruPl3jhgvoYAmV6FxJ8/Z4/T59RLyzH2VP3AueMIb67LOFOWD2024BV9L4wsa9pL3XkVEBxLB7uuwef/PFMAbN5j/t3B5L4upcCc3b/X7Pn8Zp99L/5u98P+5RNXvwTtvV/5sdqt3FlgkC3bvWA/Mv0wverL7/zafyHA+EnCbSGEhyQ9dfb645Iesc+97Oy1ZzQHVvz/vPelss4QUOTgg82Oww8AXoTyYcn4PJuwM1SAUBihzWaj8XgcPwd44KSzer0eD//w5Cs/rcxBUxpmpoKFAxb+AHx43ccDkOAgzOvz0n/uBeNKnxg3tMCe4IdO2JO2aGO/39fu7m4sVwagOT4+1ng8jiXNACez2Uzr9VqdTic6ErTZw9PIXAB/nkjFGMLqO0PJdRhLak17+J3IAP1kDOmTy1tgSFkbzu6n8hyiCqw9ZAJIQBhHWEwYSQfnzAXXQyvvFTy87q60Pe2QNeH1tF3/6g4An0V2w7x7XV8HiOdVfaD9tI91jmQIln61WkWHEadEOnUCZrNZdDhd64+D4Eeas6a9NrH/PjBX7tQwn6nsiftUKpUI3mGiHey7pTpxniUciXvE7vhvdraLt3/42Ddot9K66GZky3bf2AtR6n+fpM8/+/fnS/pee/3zwqn9TknDZ6NVg3Vi42Pzc32kM1+uLWUDRh88nU41m81KEosQQgTADjZhzzzU7Al0gGMkAx7qdWaZZLzpdKrxeHybXEO6nb1yoMnmTZ/SMK8zd66bdV0loAMGmFAvDLRXXuBebPgAQELlMI5eeQIgCjO4t7en3d3dWDOZpMXRaKThcBiZ3uVyGWsZr1YrtVottdvt20AI95RU0vA2Go2YPAVjClvoAAVAd3x8rMlkEueBMQGcObMMo+nJaYwB7CTrxMP0IYSYcAdj6evLE9VITGNdOgvvTLc7ZRy5vV6vI9NarVbj2DE2foCN674xZ7nprzP3OH1IdBqNRgnQsw4B4B7x8HYCFgGJfAc5S6ojP4+t9TUMoGW8cdxYty5lYo15aUDXn3uUxJ3h2Wx2Wz1inBD/4xIunAccTnfM7gG7o7/Z2S6HfdHf/7M6XM8uuhnZsr2o9svLuf7R3//Uu3LtZ1uu7Z/rNGnjagjhvZL+uqSvkfQvQwhfJOk9kj7n7OM/qNOyP+/QaemfL3i2jSF5zEPdqTyCzdrZO+l0Iz44ONB8Ptfh4aFOTk7Ubrc1GAzU6XQkKW6EfgKZa5ldLwiY8MNC2OBdioEsoF6vazweR0DoofY0Gc7ZKICmJ365FAEGEVBYFIVGo1GppBagADAAc+aMJMAF4ACj5uN7fHx8G4CCfQMAtdvtmJTIiXdFUZTA3sHBQaxBzPePjo40m83U6XQigPV6uIz/2XqLoA3taSo3cGZT2jKOrmdl/DxRi2s6W8x7Hsb3CgeMJQA6hNMDYqhIgQaaShBIgnCEYK0Bmzhb0rZsHfMD4IRVxlnxBDMMJtwPyQDQM64uO6JvLuPge8hzfH3SBxwF2kdNavrP+mW80mf1PEvlTrSZ58bXiFdLYW7cQeY7Dmz9t4E++ecZP2eJPUETWQ+sujvL/P10fbsM9mL9Zme7ePugr3uzxn9mo72Lbki2bC+ivfPkiq5/05vvyrWfbVWKP/o0b73+nM8Wkv7U82kMG9h5rJ7LK1xW4EcF37hxI4Znw1l5sH6/Hw+UgEVutVolhgrwykEVAGQSxjyxx5ngavX0aOZ+v68QgiaTSQTFUvl4XGevnBl22QKAnxJknnAHCAeEwe4BSrwyAfeA/QPMEdL3Y7E9NO4gjbbCjrvm+qGHHtLLXvayeEAJIAJgCFvN/3Eq6AsSDal88uB50hSYatcR+zHDtu6iEwDL6WF7nA4YYZelAEA5PIPjrfkujhBh9Ha7rd3dXfX7fUmK8pxUH8t3kSp40p9HCjzpEFCMFIc1Ryk4l8/AXLMOkDWk8hBkJC7P8TaQ7ErUxTXsDkaZDzTjVAjxkxz9JD8/VIPvMY5pTgBVJCSV3qtUKqUoD3PgMg//vDPQrnt3AJwmDXIfpBfStoY2+Qk4MlyXsXLH9zLZi/Wbne1y2B/+8r+oH//av6d25Z5JBM2W7Xnbu04m+ltf8cXq6GfuyvUvzcl3bDCegARoTAEQn4GtAkh4map6va7r169rf39fkjSZTGI42nWvkmJYvNvtRkBEyNRPJ2Mj9NAp4fT5fK7hcBgZQ0DxeRsoQD5ltTCY2uVyGduBA+CHSABK0NzCLsPs8j73nc1mGo/HpYMzuB+sM8AQIARYAEj1ej1du3ZN169fV7VajaBwOBxqPB7H8SmKQsPhMB6AQh84VpsDVFxKQPs5NAMngXWBBpujmplDAKOHwT18z3dg3B3sIYEA3MPKOsj2REAAIZKFVNPuyaCwrcVZhQXeJ2IBGw2gZixcH+3sLgAfLTMMNu11OZDLVLxNmDtF3k9ANmsYEMn6cwDPe6xj2j+bzWLlEtY6z3Sq1WVemTfXbLsD4A5bCkQB5P7b4M+VS5f4LmsLJ9LHh+fL59rL7bl0izHKlu0i7YE/+S41Ql6H2V4aNtzsqPM9dwcUS5cIGMNuegUA15x6hj6gjk0LVoikOvSvV65cUafT0XK5jIDQE5BcQ8iGDKjg1DEADMDJtaAArvV6rRs3bujGjRtar9dRekEoH+CFFhQQCkgADNEGPg/IcXYP0EJpOgdX0inT5cfxOkhwZtlBBu0BGCLvcDZeOgVTu7u7unr1aqy7jN756OhI4/E4amABv8hjqGCB9AMnhTZIW2kATJ8nV8IaMkcwvDDnSE8ALtSiZi4BkMy5l+7zusbMKwDL9ew+91TcwCFxoOlA9+TkRJ1OJ+qFnfV0uQF/JJUY9c1mU3K00pJ6AFln913rC+jl3zxH6GVpe6rb57Opdpj16MmMzgYjqWB9nqfTddDqDDftd0DtjpP3w2UYOEkAXMbAozv+DPHs+xy7vEXalm7jmfXETP/j0axs2S7K/t4rv0fVXK4t20vAnlpP9Zf/1zcq6L/etXtcGmCchlnZbAAsgDQv79VoNNRut2NCU61WiyDkypUr2t3dVbVa1eOPP673v//9WiwWETB6gp+0DaXC6HEimeszndV1gLNYLKK2GPDoekbYTAAnDB9lvwBS6GoJ3cN8I+ngM7u7u9rd3dXOzk5kRgHtzhqn1RYALYAT2gOzSlIdbG1RFGo0GpG57na76vV66nQ6UcdLwh1A0Z0J5pM+oJMej8dRcuFgE6ACcMbBgJ2DaT0+PtZoNIptxpGg8oODX6/E4YxgGspHHoBcwEvgeX+KorgNpHNtnBmAK2ONHnk6nZbu61Uv3PlIw/xeuYS/WTfME2vZy5fxWfripdsAuC4xcIfPATCgFjlGyrx7RAdnkWfHnQqvXezyE5fFEAnxCA3t5Dlk/NJKFunzmUqwHDiniY8u+3BJC2OA7MXrPSMZysA4W7Zs2e6+zTZLff6nfZHCf7t7oFi6RMAYkOMAmE3bk88ARIQ30fsBVHq9ntrttvb399VqtTSZTPTUU0/p4OAgXh+mECbLE70AgWyUbLh+ZC1AAbZ6NBrFwwy4HsAM5m29Pj04QlKphFgIITJbrr2EvaItsGcwr4PBIGbjAzDQoXJEMayjZ+W7xtSlACQaOUO2Xp+WVgvh9OQ6JA6cVgcoBuTCbqKHBmBTUQLtbnr6mmtxYREZZ5fH4EigXQakenibuZK2gJJ7AHSk8qExOCsArbRihLQFYbQRwAu76cldMMkcR4xEx/+wbtPa1a5hlRR1vIBl+gxTC0gF7LJ2cCAcdAOAPUJC/5Av8CymzC7OAI7MbDYrRR4AnTir1K12lhw5AqCeUmmsdZc5AZS9prJXg/EqJP6ey0joKwyzy634HuNAMmeqOeZ3gHllHFhrHOmeLdtF2Rt++UgPV/NhK9nub1sXG/2h3/XZ2rz7V+/6vS7NLzobOmDTQ5wkY3m2e6ohRBtLfdxu9zSsdHR0pKOjIy0Wixg6TuvCenIaUoQUxPqJZYA0r1xAKS1nPwHKgE3fyD37nWRB12sC4NvtdolBhIEFTHKABRpa7kN1DsbVw8bOcgESAC0AH4AH0ogHH3xQe3t7sY9+fLW01W/SfhITW62Wrl27FoF1CCGCIsC+64F5zSuE0GecCJdo+FwC7PwACMzBEnMIIG02m/GerlPmfT9wxdnlarUaPwtg9cgCoJh5dmeJfjpzz7zwfT+aGQOU8X2eD9cPO5BkrGGW3Wlx/S0SGthUr6bhYBIAyTh7AqmPLd9hrryiBu3CuZHKyZM4fIy/zyMMss8Ha5r7e1sklSJNPAewwgBf1627g0pfF4uFJpNJdOD9vj722bK92PbvP+GD9dk//0t6WS1LKbLdv/YZH/kGrd7/Gy/KvS4NMIa5cWaMjdwBFSyeA0mAHJs2oAWJAwyfl6Pi2oA3au06YIHZdC2kh865JsC31+tF4O1MIKwffaC/Hv4FkAC2YOOc3Qb4AigAFw6giqLQeDzWaDSKgAQZBYDBnQMAMAeeMDbSKbinNu6DDz4YtcXubMDGeZUHxo8kvk6nE2UH9BlQT0ida1CdgEND0AUD0AA4ODGeXEcIHjYVR8KTq7w6BEAMkIQBeBzsY55ECAjGOWG9eOQA6YCzlO7gOVBGcsM6Yz5Zv6wd18fCBvsRzi7RYIwAkshavMoHAJC5cVkHr8GM1uv1KJ1BD+zJhO5wudPCGvfoAM8IkhovwccaIrEyZfvpD3KLVM4h3V5BwpMA+b3w69Jm1nIKinEUuF4ahciW7SJsffOWNs/8sWzZ7kn7tI/+NG0Oj7SZPvmi3fPS/KL7ZubAAEDJIQmezNXtdiM4QErBtY6OjuKmSEgfUOQh516vp1arpfF4HO/pjBrgDwbRgSR6ZSoj8FlP+vFNHFCeOgCuffVTyABD3i5JGg6HJZDQ6/WipACwBrAAaEjbULXX0wU4Axxoy2w202w2U7VaVa/X02AwUK/X03q91s2bN3V4eKgQgjqdTkl3S9IhmmqvdYvDMBqNdHh4qFu3bkUmv91uR7Dh9Y29egHACikBIXvvW6r5dAbU9aLSVqvr1RAYv5TZJ+SPpMcrjkjbsmqMKRVNPEkLA3gyf65VB+ghh6AdaHEZH8C6H8RByB85icsoAPNoz89zjkgk9IiApBJYpo2z2SyuUb7vkQZn0DG+x/rgXjxXOJw4PzD4AH6cJOYbc7mEG05nmkAJO857RISm02lJTuF6ccbT5R5ci2hLtmzZsmW7c/ZpH/eZWr33PS/6fS8FMHbGzqtESNuw8GQy0WQyiQCY0+bYDCeTSdS3AlL4f7t9qr/y5BxpC1r5AxuM5tiBqpfNAhDDNnvY3UPhnhAFyHF9KWDHWWlJJdkFABP9MIDC2TkHfA6maAubOcyefxam2Zl3wu+TyUSdTkeDwUAf9EEfpCtXrsSxXq1WkU0mKRAAAWAkfA+zvVqtNB6PdfPmTd28eVMHBweq1Wrqdrvqdruaz+cRQMMqsj4A9JSFo9qEH9jBvDO3jKFXuJC2jDBa4NVqFQ+BcTkIn91sNhG845wAjNBvw+p6JAPw7PPlNZs9Qc6Pk3ZpBYmm/jy4HnY2Oz3xCnDG2OHoIOlxJ8IdIQeuHqXw9evjB4BcLpe36at5LugT88JnxuNxqYqFjwHAmPUCAKauMpEU5pb2Ma4OVs8znAo/BRA2PF07/lvBaZokdfrhLTzbGRhnuzALQf/7r/+sHs0yimz3ia2Ljd7wOV+o8JO/oNNziF58uzTAWFJJLuDsH0fippnrftQzzE2j0Yhlu2D42OgBEbC2MEewTYBFQMRkMomMFff244l3d3dLTJWz3I1GQ9PptJQFD2CazWa6efNmvJdLADzxDjbS2TQvK4Y5w767uxs3eTZ9Zwm9jbCS9AsHYjqdxuObSZq7evWqut1uqWYvY+d6S0+iIwlxOBxG1vOJJ57QzZs3NRwOtVwu40EelKljzp25lVQC+uiBAb84C57w5fIO18kyXpJi4qAzsawdrx5BZKHX60U5DKAMUAvL78DQtcDOWjKnLrPw95kTgLvPP0CT61IGkPs6S4tW3bXwaSUQ7olD4Mdb00+vREHCpTt0JMniGHhFDYA2VUN8PDCeeR835spZYsab1+mPO4KAY8aTdjJ+/PGIBOvDfwNwxIhOMKa+Nv13KFu2i7DH3v5OfXRj56KbkS3bC7bj4kQnxVqf/tifVuMn33KhbbkUwFgqn04Gs4luE0YOq9fr6vf76vf7cZNuNptROwnL5Il1rr/cbDYRSPvmXq/XIwgkHA1YlxT1svzxygok/9Xr9XjAAUDcmePFYqHRaKTZbBY3VRIOOXmNthImp8+AFACYJ0cVRRGvRZ+90gIADl0rumhAEqCYwzomk4mkU3C1v7+vwWCgdrsdgRgAimO2GUMS6QAnk8kkgqNbt27pqaeeipVFAOmerOXsKUw0jgWnGlKVxJ0ngJ1LRJCJ4BAwF5IiqwqABgQBsAHAOC+MK9fabE5PIByPx1qv15E1BFwB0pw1BlClulbWj7QtVwjrjswD8Mna8KhIt9tVpVKJMgfmH1mPzwtVS+gfzw+OEa9T7WS1WkVHjz4URREdOk9KpT8+5qxTP21xZ2endDIhBtB35tblOZ6s544y48Ka4jXXkePEwTz7oTt+HS9Rx3zyN84d/eU3JmuMs2XLlu352+F6ptd/9V/QtW/5KTV0saBYuiTAGOAD8Gy325E9dGDhFRsAoYBDmGE2LpiylAXy0lVoLtEGNxoNDQYDdbvdCNAAlgAokqu4FjV1YUhhAh30eR8JdcMkAzIJ08KeOeNG6BcQQ9kzNKDcw6sFAMQ9AQzg5Nn4JK41Go2o/wSAtlot7e3t6aGHHtKDDz4YxxVdMcdAM0fj8TgCaoA2zkGlUomVKGirJ315yTfmDIaQseZeHGAibaU3Dk680oNruN08FE6Yn5J3HiFwWQRtZyxhT12i4qx2KqXwJE6cEk+A436wkmiJPeKAdpe5J/mNe/GMOHMNK833qcLBekDHTyIc/eIe9AknhLWDI0dfeBbROjN/yDaYE496APT5rJc/4zOebMk44pjBKLukwueb8UCCxfPH2JLk6aw3Y+fmSZg8k0SOnk6+kS1btmzZPrA9sZro93/jX9YHfcubL7op0S4FMJZON3BqELMxOhuLAYwBMJKihhfmEk2uazqlrf4SBhNtqycCoXMcj8eSVALBgACXOozH41iVwCUhAAQ+C3Dxcl6u65UUmUoAFOyl1w1mfFwq4QCTPkrbUnReUgwQBihm/JBBwBbP53P1ej3t7e2p3++r1Wpps9mo1+upWq1qOBxqOp2WKjKMx+Mov+j3+xqNRqVKALT3POAD0Ab0ML+AoclkUooEkPTocwQ4SsvjOdAFtOFE+EmELjVhXJxZ5XVO+qOWb7omXAaSap2dgWQ9AFiZS64B4HTQ66F8IiU4HS6ToO1+WIbLN/ygHEA9wBTHiDWMjAJw6Rpdd7y8bjZANo0EAWzd0fU1CuhkLFnL9MF/B3AI+Jzr5V0X7bINH3d3lP159ecRh93BN+PKOvR2ZcuWLVu2Z7b3rib6+ePr+vJ/8kY9+rcuDyiWLhEw9goG0ikoAaAB6vgcjLHrTD0su7e3p263Wwors+GfnJzEpKF2u612u62jo6MIllarVQzXw8wSQiZs6lnsN27c0HA4jCAGUFCtVkvso8siYK48IY4N2LW6gK5qtRoPEaEkHPdwIEW4ejablQAejKGDVL8G4e7JZBJP8Gu1Wtrf39ejjz6q69evx74hERmPx7p161Y8cZD2Ig/x2rHIUTxB0UuO0V7q7VLz2KtTcIAKunLXeUoqjTGg0Fm+tJoB68blEUhMms1mBELubDBv4/E4JmORqCkp6mgB/AA/l3swjilAI6rBWnO9L8mOnuiGc4fudzqdRkfKNcHeR/rpshHWOMDUK2Ogw8dZo0+AdBwSaesQ0EaX7jC2lUqldMoi8+EgFnDqUhKPungyIE6CJz8yb4wBvx0+Dqw7HELM9diMswNil+z4MdHT6fRO/ARmy5Yt20vCfmM10Sf+u7+gV/+pn9GjulygWLokwLhSqajT6ajf72tvby/KE847chW5A9UBeB+2Ci0smz36RBL4YJVIqPLDERyQppUFXBN7fHyso6MjTafTCFhhw5AEAFyQW4zH4wiCHeQDGAFJUllv6ify8T1PJAPMALj4f7vdjiysa2kxAIUfZDIcDqP+dzAY6IEHHtAjjzyiwWBQ0vDOZrNYHQIwxDx6jV9C8rTbWeu0L85eo4FFZwww4dpch/Z4vWmADvPFZ/zACAAw44CkAvDmACi9BmvJ9bI+ngAuWFBJpfWbzgF998oL6N2lbQUNZ765HsCMQzRYs14dBRDIumK8PdrAugOUp7rjoigi4wxLizH+PiaMhSfKSdtDTnjNIyau78UR8n464HWgzmd8/QOKcaAA8Wj8+bxLIGCaPcHP+8EYetWOzWYTHe5s2bJly/bM9q6TiX7vD/15veZP/cxFN+Vp7VIA4xCCrly5ouvXr2t/f1+PP/54qSA/mx9JVbDFzu6yyXoJKUmRQU3DxiQU+SbLNWE+AReAKlgidJgw2jB4sEcACyQABwcHms/nsbwbzGuv14sn+gGgvWIAIJ5QPoCHBCUAO44FyVBpeNo3dsaGSgqezASIQGbyspe9TIPBII4L4fLhcKjDw8PI8AIw/Ghdjm12AO+sqc89CXbIYLxkm5fUcr2tj7kzjmnJNmnr8MDeIgVw9pC1wH3SpE0YTKIOXurOK0r40c6w2n4fl4/QJq8I4oDegSHg3Ss2uN7YZTcws75OnP1mzbhUBVBOkh7lAQGqVGBgPbJmXYYCOKUyCa+l65Cx5ZlmvHCYvCIG7zG+zL+0rVLBe0g9UicDR8XXqieQcl0HxavV9uhxf3YcvLMW0iTCbNmyZct2u/3GaqLf+6Nfptf8yZ+96KZ8QHtGYBxC+HZJny7pqaIo/oez175W0h+QtJT0TklfUBTFUQjhFZLeJuntZ1//6aIo/uQz3aNSqejRRx/Vo48+GkOw1Ep1fSCJZ3t7e6rVahoOh1H7id7PdbWEWmGTea9arcZNEfBF+TI2d0klYOYyCrS1sKFstvP5PDLI7XZbs9lMo9Eo9oXPITfg4AuAxHK5jEdAE8qWVCqZlSY0kSBISJ8kJweP5zHUMKAASfTAAIsHHnhAL3/5y9XpdGJlCem0hvHR0VEM76PJlsoHiHA9l1QARiRF5g7pgldwQLMJkEW/zb9JsATMoPF1IIj+VlJJ80ubYFsBQoBlQI/LH2gTbWSMXDqTjoFXr/AKGDDBrEmSGWHZAYdpsqnrtAHZXjfaHSpe93FiPOkv14Jt98oPsLde+YMxZsxgdFn/rG1POpS2VSW4tycGMq9eMSSVUHB/l494zoEz4shRPBmROaFtzvSnOQGMt5dpk3Sbo+QRnsuqL34xfrezXayN//Dv1CM7b5GUy7Vlu9x2uJ7pDb/4eXryN/YvPSiWnh1j/B2SvlHSd9prPyrpK4uiWIUQ/qakr5T05WfvvbMoio94Lo2oVqt66KGHtLe3pyeeeELj8TjWk3XjUA2qRsAWdzqdeCKZb95e/gkwxHXQMXK0LXpjQsOwqsgZYOIAv7DIMFqSIosMw0k5LzZPpAutVivW73UG2JO4XJ8KMAZwUQ8WUOCnpAGCvLYu7YNt5xqc5oVEYLM5LWPX6/X0wAMPaG9vL4Jm2oUGGWmG95/2TqdTTSaT25KwAE8AJcbWEye9bi+sKzpcxsLZX+a1VqtF3S9gzEEmjLRLP3yc3ekA+HB9xovx8aQ41zR7mB3A58lhXIv7UB4QJhZg7EDbJQGMEaDYHUfu5SfTuebYxx1AzzUZP18zOBWe5Edtb4+KcH3u7+PuMhmAMfMKaHX5AuPkjhHv03ZnkL36B0wuzwEgOK3xTH+4Zio3ARizxnGmeY9/OwN+XhWLS2Dfobv8u53tYu2z/uqP5hrG2S69TTYLve6H/qxe89hbtHvRjXmW9ozAuCiKnzhjFPy1f2///WlJn/1CGlGtVnXlyhXVajUdHR1pNBpFxsz1mdRglU6ZSypHwCJ5CSxCoCRN8TlkAp7gAxPdarVKJcO89Bu6V9hfZwYBJIAGSqkB6JrN5m2HdXjSEmHv9GQy+k9SHa+n2tsUjHFNABdaUsANAAGQD1uGDnNvb097e3sqikLD4VCtViue8Ec1Bq5HeN/ZSlhzAI+z6gAKWDvC/rCcOBXStiwa4+ZVBgCJ/X4/6ov5LADJJQyur2VeU71oWl7NGUv64BUZ3DnC3JkDdAGyXSPsCXeMS1rRwqUczk4yLv4ZwCZrA4BPX1zG4ddz1pwxpl3ueFHdAt04iYeMoTO09N1Bayp5cQDNmnZ5iR+b7kyzS1fc4XLH15MLeaaQZ7gEx+Vazkan5eUwnw9YbZd5XCZ7MX63s12cPfWnPla/o/1NF92MbNk+oL3y+x5TOK7oNX/2py+6Kc/J7oTG+AslfZf9/5UhhP8iaSTp/1MUxX8+70shhMckPSYp6oLH47GefPLJUqIZG6knThHmBKC5Rtg3PF5jI3R2UdrqPJFgYB6KhWWl9qtv3DB8MEwceessHYDSmd1UNkD7AfBoc10PDNDgjwM439QdkPhx2H59gJWHln1cSF4E5ANQAP+e0ITxGeQjAGKALv2mL4ApgDkMv4NRQvsAcO7hcgl0116VwUE648V68gQtN5dhALY44hhmFGCEvha5Swr23FnyZE7MGWHGxFlgTyL0deL6auYKqYzr1AGgzlD7M8R1PaGM58TlF16isFqtxiiDP0usOT9t0hl3Z/49kdGrPVDNw9llPudzzXgBlj2S4iDaJUbO0ONwONvMeKVlIhkTny/uhXPla/setBf8u91U+7yPZHsR7GP+2M/r4/NJ5Nkusb36H3+JXvPlP3XRzXhe9oJ+0UMI/29JK0n/9OylJyQ9WhTFrRDCR0r6tyGE1xZFMUq/WxTFmyS9SZKuXr1arFar205FczbGj3AG2Hk4lJDpeZuWh0n5HMCFTZdN1bP6YUUBiuhqHThTXxig7qFZdL/OUMJgOTAK4bQuKiCadgD6eQ3ZB6CJz3jpLhgwQDGlx2CRYWhh9+ibJyy6ThuNdlEUkREnxMw9YdDm87kmk0kp89/DzM50A3q8hJxLM5whda2r991lDjhJzsSneljAn7RNcktBJW0D+HnJL+aL+QCQueSFz+KcuYPH/Vl3qSSAseDzRAsYf38eXCLj7KmDYpd7sEY8gc9lFM4W0ybWB06h6/49Ec31zF7dQSpXlGDcGR+eA0/8pN2MM4fvSCqB9lQb7mx/WpYwlXjwbxxIpFJUPPF2uFafdYlj7nKZe8nu1O92P+wX6fvZsmXL9mF//4161VdfvjJsz9aeNzAOIfwxnSZ3vL442/2LojiWdHz2758LIbxT0mskvfUZrqXJZKKbN2+W9KuAFNhJjmH2UCngixPA2Ew9E11STCbi1C5pyxi75hFQiBaVJDlKYtHe5XIZ5RwpMEjD5M6cUQ2DNsA6AlC9UoFXDUC7S19c5+pAAxYN+QPX8KN2zwOjkmLZOQcbgAfC6CTRuYyC+RiNRqWjfwGWtM9LXwHmfNy5N/eFrWS8nbnDXDIDgw3LKKkEYgHYgFbXiQJuWDO0HSCEfIZrArQBRjgb9BPGHvbTQSmJlq519SgA84JzwLy4Zvc8UAbw82Q7dyy9RJ2fguigj8+TKEgkZTqdRrYY54zkOT+mO9UEezKdg2TGEIcAh9SlKy5zcIeQ/rHGWC8u5ahWtzXCXXOM8X8cbp4nl5GkrDTrxX97HKTfC3Ynf7ezZcuWLbXf/rVv1CN/995kirHnBYxDCJ8i6S9L+oSiKGb2+jVJB0VRrEMIr5L0akm//kzXK4pCN2/e1I0bN2LSEBvR2XXVarXi4Q4csLBer6M2mKNZ/dhgDyV7ohebJcwPQBxwDXsIMCBUD5u0Xq91eHgYpRN+YpvLGhxASFvWu9PplELilOtyiQIgBpYb8CVtQX4IocS2OSD3ihfT6TRqJj1Jyh0H2gigBsTM53Pt7OzEcLek6GBIKgFjHATGE6bPtbM+Hq63TVlv+uTVExgPNwfMkkr3gfFG5+oadECXh9jpk0crHPjATgMCAUZIabzKB/NG/3CEYLd97XufYfsBlfTbZSjuyMEQOzPtunxPSmO8kET455hLgDdrP00iZUyZWz+Ax+UOrCln2H3sU32zr00H9zgjvObSKoC/R0DOc0zRsLPm0YfjLOEMwyZzP57RVNbh65C+3Qt2p3+3s12c/cpf+3B9zzf8iv7n7m2kfrZsF2av+6ov0YNv+hmpuLeDSc+mXNs/l/SJkq6GEN4r6a/rNJu5IelHzzYqyvt8vKSvCiGcSNpI+pNFURw80z02m40ODw/jSWoeIoZl9dPQOOmrUqnE6g4OoGBcAQlskp7U4yFswAtAADat3+9H3eV8Po+h1sPDQx0cHJTYOsKvftRyypByah9Al+90u101Go3I+rKxA+gJZXuVDE8aQ0YAeOCaAGdPwAJUOXgFEPhRyoAX1y4D/mG8YUcBxF7lAMDiIWtnMvkbRs4POnGHSNomsQEw6bszkjCqnuTFew6SHKi5thlnyZlAQKmvEwev9JEqHLzHmqXd3Hs+n8djs+kD4+IOgyd1YjhgWDqWrCfGzJ+tVNdLVRPm2nW4JIwy1kRGSNhk7EheRVIAO+vt41lMHQycEZ8r7u/OWuoEsSb8er42XIbBukXqxDwAzNfrdaxk4wmMtN3nI70Xn3ed9GWzF+N3O9vFWeOH3qJf/9prOpWEZ8t28fZRf/VLdP07f07F5t6Slp1nz6YqxR895+Vve5rPfo+k73mujQAYUzCf8LuDDA7CALRKWw0rGx7saa/Xi4ddUP7LAQPAjzA8x1E78JZUShyiDYeHhzo8PNR0Oi3pbF1D6iFyWETAuifD8X+YRRKsaCv981JingTkrBagrVbbHsSAoav2a5w3JgALD+sD9vwgCAAh7OdsNoul3wC6sJ3OHqZJZSlohRFl7DCvPHC2ziKQcV2t63MB7KkD4CwgYwzb7olszAX99XA884y8BAkJbWGsaTf3nUwmJTmOA23+BqwCzvjb9c8OIGkL7bRnsTSOALvzxtM1x8vlslRKcLFYxGgJn2XsuGYq7eHZYq0BJHG00iiI63id2UZK41U2HERjfI5rMmY4asyZO15UYGENMaYpYOf3yV9zZ/KyAuMX43c728Xaj3/u79Trvvvden3r3gci2e5t++i/8iW6+s9/XsXJ5azr/lztUqRTI1XwZCU2ODZdSTFcjZQAWQSsKcyh63XTWq9+T5guTvkCUMHMegJTp9NRtVqNQIjNnU0d5smvCxBZLpdRpsFGD4Cl8gGJfc5wA2CQVzSbzVICEv1B9oAcoNvtRuCWsqtPB64B84vFIh424eWtnG0HcEwmk5h46NIFaRtOd10zTGlRFLGKgR/44UlaHjKnv856wkg6w+sl7gBcACZAUaoZlU71zR4tYB36tR10AmTX67XG43EJ8HpNY3d4cPrcYB8Bci6HcW2uj2saTcEAn+lnpC3wZe7RD7scxyUSgFNAMcmUrCO/flpuzv/tkggHj9wXRpfn5+k03Hw/Taajzz7HjKsneXpJOdfgs07ccUzBruulfYy9P5cRGGe7/634L7+so3VHmTXOdlH22//mG/VBP36g/V/7eRUW0bzX7VIAY8K7KUPnTJ7XFEbiAIBk4wYUekk3D306m8Tn04QbAByAjc16Z2dH4/FY4/FYJycn8bQylz9gAC9P/HPw5QAeoAxAALDQBwdEKcsJ0KTtKfPJa2k9VkAF4NDZVJ8PmPJ+vx/7AkMMI0uIn8M1pC077MAMIOkVBKRtWTAHnw4+UoDqbfWEOBhogAwsPX983n0sGC+va03yJuuG77MOAJNoV/2+6XVduuGOjjPJgH1nPUnQS9nLpzOXVqQg3u/hsiLm38vUsU7X63VMLmUsWYcpu+4MrjscGPPrSZup9tiZYtrJ+Dlj7FIbPsM9WUvuDLusiX6g9/ZEQJ5jbxdj4s4lY+1a6HutKkW2+8e+/ff+bn3wf/7X+ggrnZkt24thH/5336iX/YOf18aIk/vFLgUw9jA7ANCBIPrVavX0hDwP9brGdn9/X7u7u7eVuEIT6+CF1x30eNi11WrFUlXcH/as0+lE8OB1jWkPIBAZSLVajVINzKUAlMGCCe90OpG9Po9xgzUDLACGAMGu0fTQrwMkAAoA1rXWsPdopvkskgGkBgB3StVxT8A8INgZSQelzvABMlJG0tk6B+7O/KL95h7OLDO/zpDTX6kMYP2gERh+xt4lGw6cAFtoV9GEcwIjiW7Mb6qvlhT75eXcnF32OU7XQpr8lTLurBPuT/SF9c5nuD9zzby6JAIHwp0b2oqkydleIhDr9fZIadpImzabTWSQXYvebDZL69ZlIO4o8AzxnidbkjTqkSieMfpPv9Lnyq+Dk+Ta41S2ki3bRdjqvY9rqdu1+Nmy3S374O/6k/qQr/41PTx8qzb3iXQitUsBjNlYUqkDG+h4PFalUtFgMFC73Va/31ez2dRsNtNwOJQk9ft97e/vRxkATJuXAPOMdTS/kqIWmc2v0WhoMBjo2rVrkcFDTwvg9XCuV2hwjTHAqt1ux7aT0AQryMbdaDSiNlpSrM4B6GdM0Go6Q+g6Z8YRHTWggLA18gJAMfdno4cJrtfrunbtWpSZHB8fR/aQ9k2n01JFABLYGJudnZ0IDAGy0vZQCqmcNOavOZuIE+TsuSe1MTaeWOVMJAmPAGIAH/ND35GFSColSXJNDOcAIHlychLlFH4kOSDKGWHXn3siJECcsXM9tQN9N2feXd/O95gL7uF9dUDJ50kOdQ05a5XIBPdxiQhzyvpnPlmnXp6Qz/jJcZJK65T7sB55NmnveREFj/Yw7+jcPXKCQwtg94Q9HD6+g513Px+3Z2Lzs2W7m/bXP/R36x/89x/To7XuRTcl231sH/qTn6tXfP479erlW7Ve3RuVeJ6vXRpgDHODzpENxxOaAI+9Xk8hhAhoe72erly5EssuSYobH2BY2tY2RWPY6/VKpZzYDPf29nTlyhV1Op3YRsAUIPK8o4ol3ZYhzybPcdaumSSjv1araXd3N9Zp5l4w1GiTAS1eocJrucJ0uc5Z2p6klybDOSBmrAEsjUZDV65c0bVr1yQpJthxHerauiba9ccpwyZtawSn4+XMLGCJdrlUwsP10lbjCsB0SQBrptPpxGPEF4uFxuNxBFowitIpMAPEe0UJIgXcC5DqJdiQPQD+YYppo+thuZczwiTc+Vh59RRnqIloAPxwnIgyMO4pKObeqfSB8cTBgy1GE+1OK+uY9c/R39TLZp5wkJhzvy/XAnw6g+6MONIHqngwJh5x4LoeceKZlLYOLyx+6rjRd19jqaPnwJl7eBJellFku2jbLBb6E6/4BIVK0A+852dVDZlBznZn7Xf9tz+oRz/nl7R5iUTHLgUw9g2djSaVDoQQ1O121e/31el0Sock9Ho97e7ulg5BYFMHiMEc89re3p7a7bYODg5UqVQ0nU61Xq/V6/V07do17e7uql6vR6AIg+YlyVyHykbrmzevdTodXblyRa1WKwJqwAla4729PfV6PU0mE00mE41Go8jQcigIgA72MWW7XAcKwE5rCHviGuPXarW0Xq91cHCg2Wymer2uwWCgbrer1Wql4XCow8PDeK2jo6NYVs+ZTdd3AiBSoEGtZz+NLi195Yy81zambwB6wCGAFXDJvdBwS9tEMk8ohB10VpZ7eGWNVAMtbat4ACJhi2u1WinxjARQIgGr1So6GNL2ZDkYVtfbMh4+tjhJRBNwLFh37hw4iOM58LlxGQH1wHkWvDScjwnrjTloNpvRUfVT8T6Q/tZlDV7hIZWqAJ7dwaUPLkVyzTF/3EHDiWFuXN6B1KYoijgvXN/vwbj5GmBdEAXKlu3CbLNWsZE+9eHXXXRLst2H1nmJlTW/FMBYOh8Ie5iy2Wyq2+1GVhhWFbAMwACkpKweeuLNZqN2u61utxtZ2KIoNJvNtLOzo263q+vXr0eGiQQzQCMsl7N2Doq5j6QI2jqdTkk37OCnVqvpypUrun79uqrVaqxycOPGDY1Gowj6nG2rVColBswTF2H1Uj2ts3GwmTgJLkOoVCp66KGH9PDDD6vdbsfDHQC40+k0HgvtmtGUoeT/jAXWbDZvC0W75ANw60l0zni6tpq+uqyFsa3X61HTTR1egBbtQx8LCGYOU6eCcZfKJ+NJWyadOXHgCKPriaIw7axJ1tBisYiyEQfWsM/j8TjqZmFsAfh+UqG3mXa75AQpCZKaoijUbrejzAfJkDsqPl9pgiJ9YF5wPr2qhstlPNmR6zGuOCfME20IIZSOcvfxd0eHOeIaOF5ec9qlFS55cecSeRJzkyba0SZ3OLJly5Yt2/1hlxIYY2w4sH8kvbmUAc0x2kff+AHFngwVQoiJdZ7Utdls1O/39fKXv1z9fj8C89FopKeeeqrEzrEpspkCkgEKlUqlVEWD8nHINlx60Ov1YjLhanVa63Y4HJaqXThrBaDx+zhw9IQlH1MPaft7AJLpdKoQgq5evarr16+rVqtpOBxG3a0nmzEnjLdXEkiT/bhPs9nUYDBQvV6Ppw16e72dsMJcG1CElne1WsX5Yy14u0h6xIECLAL0+L8DGg//ozV1Z8QBIveFded+sMK8xni5XhZW0iMLyDAAYlK5xBrX81rUJPpxDfqJxpZ2ss6caXfZB89GtVrVfD6PCZZpAqRreJk/1jvODSwskQLAsz/jPC84ZKm2nLlkrgCqPHfpGnedsifqwTK7Q+UOpjuvrFnXnHulCu7J932tA5izZcuWLdv9YZcCGJ+3ufj/q9XT45r39vZi1QkAR7/fLyWTHR0daTKZxJD9er3W3t5e1CR3Oh1dvXpV3W43Mp+S1Ov1dP36dV29elXNZlPL5VLD4VAHBwcajUYRzNTr9ZiU5MlCMI0AA9rd6/XiwSFII0hoo1/NZjOydc5iemkrT9TzU8YALWhE6XcKNr2SgEsTPNzd7/d19epV9fv9EkgB9PA39/DKFJKiLMRZbFg1HwfAdjpeACrXUTO2OBbOZEoqRQc8CTGEEAEcDpG0ZTw9wc31w6kGlc+4JMATtZA3pOXGJJXqAm82m8i8MyfSNpHPJQ7eL/7PGPC5nZ2dOBaMP2DX/6RyGw//E8nAwUqri/jnWTPOAMMOw5rjGHAtwL5HAQCraVk31pKz5YBPl4GkyXb0mbFy4OvOoMuIfN0zRshRUobY17A7kzir6bOWLVu2bNnubbsUwJhwsbM/Upkx3t/f15UrV1SpVDQej7VcLtVut2OpJ0k6ODiIYLfZbMa/Ydp2dna0v78fj0tmE6W+6pUrVyJbjIQAcCydstNsyLB4rVarxBhL2/qoHMqBJAOgByiGZYQB9FrGMJjOVLkUAPPkNwArEg7Cwe12O46xh4/Z3GE8SQCUFOcD8JDqRSlrBugE5KOF9uQmNODVajVqpyVFBwGw6ocyAJAo8+U6ZAAPjJ6PgbSVCwDApG2dY9pGJRHAK9di7NN7YYxXCq4Brc6eA0ArlUrpIBSXPjAfLnlIwbtXdPDkTpfI8FlP5HM5hkcKvCwbzDYVJmCcAZPMuSd1EsVwGQhzAINfFEWpHjfPH/PlEgZ3RtyxSeUrOHbetzQ3gc87m+vSEv/Nwdl15htnAMmT39sjM6nePFu2bNmy3R92KYAxm/F5oK9ararf7+uhhx7S7u6uimJ7Sp5vnjCyACLYHwdVMJoOOmu105rF/X5fjzzyiDqdjsbjsabTqZ566indunUrVmlotVo6OjqKelVKegFoaAv9gMV0DS0AmhA2OlTaK6n0PQCfn/JGWBnwwvVg8Bw0tFqtCKpTcARAA6QzB8gzAEGSIjuKYwAoBojRTgciADXK6/mBGM6Uu2TAAQegxauTAFS4jzP2zmLjHCC9AexIijIM74/LChx4O8ilbWlCmYf1vaqGn1ZIlQfG2wEpLLxUrqWL5pikMcAla8MTVVMQ50wvjDVrFAcKeYWkeCAOANvBJuvRq604C+2MO2sMx4xxO4+9ZbwcKLtcAsMRcX1v+juBeeTAk3Bdg+xjhkyH9fR0yZa0wwE3c5krU2TLli3b/WOXAhhLWwYmDUs2Go0Y3t/Z2dHBwYGGw6EWi0WUPKzX65jUhPaSTcuPn221Wup2u7HsGRtlp9OJlSg44OLmzZs6OjrSdDqNoMn1qZVKJTJiAAM/SQwAy8bpiURIMgD5hLI9JO7aVWQEAFgSpXiNsLikuLnD9HY6nQhGAHi8DgAC8ABA0YrSFoAw14XN9YNOmDcPb1M3FgdgNBrFRDX64CF6SbGN55VpIwnLteEAY5dK+OEMADyvZMF9WW+0F+fH++oygHStOlsJwPMqCK63dUbagRsA2A/IAKCmdY/dscF5wbnhvjgBjFnabm8zTiRzyprzpEnvC8cueySDcaLtPH9+QqA7F56I5zIdf/YdwPI9XwO8zvfcQeY6qZ7YpRAuz/AcA9rvY+YA2Z8Rb0sGxtmyZct2/9ilAcbnMTQAUg6+mM1munXrVjzUw0Oro9FIw+EwsmqABpK2YPBarVYEEGgeO51OTAzjIAvuA3jw0C8hYU/WATDAiFJiDRkHbQAEVSqVyLry/mQyKQF8QKWzW1wX4MjrnU5Hy+UynqLHa17SDIBDn+mXJyK5BILX0LsC3gBCOBKE4HFSXBYA8KWG8Hq9joCahC9K5XlI+jxnIpWr0C/ACk6LS3L4nCdMcW1vL+zuer2OsgeXUfB95BKMEWCL5E5epy9es9hZVMAZINKrTTizzPwB2ljPzij7c5My74yXs96se9aVs918x+/PuuP67gQxP3yXteHAl3u7tMNZ4vMAsQN4IgPuBKS/FT5PqdY4ZZgdSPv6wCk8D2iniXb+zGRgnC1btmz3j10qYIx5ljilpCqVikajkW7duqXJZBLDy57MtVgsSmwxiWAAE0BxChCQUqAtvnXrlg4ODjQej2NbnJ0FxABaXfpARj/AFDYYEAeLCXhD2zidTnV0dBQTtCg3BliXttIExsvrEPspbWiZATZodfk+SXqAXcbovIQzB6CAKEAtbKqzflyP/yPhgJGsVqux7N5qtYoJiYApQIi0PSVNUpxXrpWG/b1yBqCTPtAW5twBGvdA0jGdTmMCmmt7MQfrrvelbdyH+wKccEhYT67T9cQ95sHlMs6Ccx+eF3dmcLBcduLJap64mJbBcwad9jk4lhTlKA6ouZfr0dPEPfrMuLkkgdccwHKNVIJEe1wn778X3n6fa3dw6JtXqUiZ37R9vObm7z8dSM+WLVu2bPeePeMROSGEbw8hPBVC+CV77W+EEB4PIfzC2Z9Ptfe+MoTwjhDC20MIn/xsGuGMDhuX16JFJ0oNXYzNEdaRELiHp/1gBGdw/ahbDlhYLBY6OjrSzZs3Y/1ZQCAgGgAH++oMMJUjqIeMjANg2el04pHVgMFqtarFYhEZathepAYeppe2iYoASuQiAAmvYwtgca0qzKtn7aMrlranfaF9dvBNe7kW2lkABdflb0B6etSyH3vtelSprBF1kAx4InzPISvStqIB93ZWGXbVQeHTAafpdBorkPjcOfBMq2I4yE1lIRhadGeXcU4cALMuAGuw817hwbXlq9UqrneXdMBu84fPOVNN2/nbQSnzARAtiiIeAQ6j7WN7nnyDfnAdn08H4yk4ZQ0wlqm23OU+/PG55Lr+Hv/2Z8i1zv6MeYm3VNbl6yeNaFw2ezF+t7Nly5btfrRnwxh/h6RvlPSdyetfXxTF1/kLIYQPk/RHJL1W0gdJ+rEQwmuKoviAsUbfgDzhyo9CZnNn03cGcTab6ejoKCbbAVgBZrxOgpNrPs/aHeUYTz31VLwWjCFMmAMJBzqSYla/pFJCD2yh12BeLpfqdDpROzyZTHR0dFQCy/SX8fGSX67j9FJ1qf5ZUilsTrs5qQswgJPQ6XSiMwED7+FjDxlT4cFlGs7MSYosrrSVEXAPnAgHoNK2TJhLMmg/7DT3ZJ6ZSweCrst1AMy4eJk5XyubzSZWbAD8Meep3MfBMdpg1g39wElgvJHHSOUwPOuCNeDaYsavXq+X2umOAOPj4JZ1Tf9dt53qkh2M8xmvm4xEyNl1+sTnU6mEA3AAMWPj0iR3hBgLB/wun2BtpL8fKcvrQDm1VMLhgN0lE+n3GS++447bJbTv0F3+3c6WLVu2+9GeERgXRfETIYRXPMvrfaakf1EUxbGkd4UQ3iHpoyX91DPcI4IaT0Jio/byVmyA6IWLotBwOIz6YkqxoXEEnFABwbW+3Icw/2w2i6XgnE2VthpNZAlcH1A6m810fHxcqg6BTrjb7arVakXpANfj/8gnSFZDJ0xIHeBDqbPVaqVWq6Vr165FjSn9kBRZbhhxwIQDI1hI+ull7cbjcal8HuAHZpSx8kMmAGEpMAHESopzCUPNvCAlkbYaVgAfQN7BlFSWxRRFEdlXD+2nrC5aWT8Mw7/HWvEyZkgtXALhAJlKGPyh9Jczya77Zbwpd8c1HPCl8gzGT9JtEQE/KMQ18Kx11zen5jpyXwup1MSdUr7n8g4Hwt4Pl8awTnASvPpDKqtwUOwMszsKtN3lGc4Up9KslC1OJRL+fcYglfbwG3UvaIpfjN/tbNmyZbsf7YVojL80hPB5kt4q6S8URXEo6WFJP22fee/Zax/QYIeRBUhbfakzbGzUACdPlptMJqpUTg+S8HDrycmJer2eWq2WJEUw22g0SiwvyWHT6bQUZvUwOsAGBhuZAgwr7JekKIkIIUQQx8EgrVYrggNKzAH0act8Po+gkOuhQ5YUZRkw14Abxsw3edrKtQiJM97OyI5Goxh2d6AhKSanASwllZhNdzpSq1Qq6na7EbCv1+uSNhrA5I6MJ6dJ2xC5a15dNgPAdM0o1/AEMsrtSVt23xOvGG8/VdDLcjnD6lpidO04GKwd2GnW8WQyiTIS+pb2xTXLjNFsNivVGsZpApyTnMea8FJljJ1Xs2DdEGVIGV6X5rjzClAGdNMegCQOFYDYowkpKAYs+/h7xCB1vADKzhKnbHIqwfG1zDpKf3+ejl3mOh6hOg/430N2x363s2XLlu1+tGfUGD+NfbOkD5b0EZKekPS3n+sFQgiPhRDeGkJ4q6TIlvZ6vdOGnVWkGAwG8TADNlRPTlosFppMJpGBhO1zWQEJfM4uAlQBGvybezjzxL8BxSTMAQL8KF5PDgIgwLDBEIYQSuy0SwxghZ0VpFzabDaLAAXJSJzIM3Dh7DqJiXzPS8ehg+52u/HUvaOjIw2Hw9juNJnLNbDO5PtYAM4BM1iz2YwOAuCW0nOw7oA2TmRDj+yHcTCvx8fHkVmn/4Awry/NugJoo8/ebDaxlnJRFCXZh7R1JqRtmS6fD2c7JUWHBNAOUEvHZLFYaDQaRS0zgC+tpcw1+Jsa0ABy7kfpQf8+Eh2qOdAfJES0DcDu7LZLM/i86299bACJjH36HuMCyMbh45rcz6ULaZWK86pKOLPtTK9HCXxuUokH1362gNYZbZeMYE8Hqi+h3dHf7RMd3+HmZcuWLdvF2/NijIuieJJ/hxC+VdL3n/33cUmP2Edfdvbaedd4k6Q3SVKtVitarZZ6vZ5qtZqGw6FqtdPjnhuNRgRNgE9AFlIEKkHAnrF5UQHh6tWr8aAL2GKqDwAK2Lgd4Lp2t1arRYBNYh4bKyAWsO66W1hKAAEgj2SmzWYTwQ2giUQydKfz+TyWdpO2J/XB3gE8PAkLsIQsxAGbOx2VSiUmGyItoO0epvZ+AkA9/O36XY7NBli22231er3IfOLYIN/AISmKItaa5rqARBjz2WxWAksAOeYV4IohK2DMj46OomyF9jI3sLCM+3q9juA8TcBzEMnrngzorCLOAwmNfmKgy06cHWfs6A/1ghkPwL5/lrlD1gFg4/nxcXEHxxlY+u9OKM8I682PQ3dQzNz6a8WZhh0w7AlszgTzXcYMZ8SZ7Kf5HSl9F3suLK5/1kFvCqyfzjyacJntTv9u98P+PeMRZMuWLduztecFjEMIDxVF8cTZfz9LEpnP3yfpn/3/2zubGMmuq47/Tlf1V1V3VXU8HxolEdjIEsoCGStCQYqiCMRHvDFIWZgNWUQCQZBgwcIoEoRFFiCRBRIiAiVSQCgfBBDZIBHAEitsAtiOncjJAJaINcS0Z6prqqZ63D1zWbz3v3Pq0eVpxpN+dUfnJ5W66lX1q3/dV3Xf/5177rlm9imqSRyPAs+dZp/9fp/BYMB0OsWsWtii3+/naJ5OxsrZ7ff7zOdzJpMJt2/fzqXNNCwOlXm4ePEig8FgIZcWyEPpihrKSMqMyeRev349G8nd3d08cU25vTJRfva9jIr2I4Mqcz2fzxdyMxV9vHHjBtPplMPDw/w+SveQ2VIbqCoEkCORimgpeqg28yal06mWaNZkwPl8znQ6ZT6fL5THk3lV9NlHj5WXKzMuQ6d29BHzXq9Hv99fmKzoI7u68Egp0ev1silWGyrSeXBwwHQ6XWhrP1nMm/nmMVCqgVIYZN404uCX4tb/6oLFT5j0kWIflW5G2DVp0a+K6C9UlPJw0qQ5+L/1gf2kPl2wadTDl63rdrsLvxVvZH0Kks+nbppif5Hlfu8Ln89fDImT8pSb1SN8NFcR9Cb+Is4bZB+1ln5pahrZ5v2THjff0+/rbqbaG2ZpLMEYfy/67SAIggeNuxpjM/s88EHgnJl9B/gt4INm9hiQgFeBXwRIKb1sZl8CvgEcAx9Lp5jZ3OlUyz73ej0mk0meXKeTtB+W7ff7eYLd1atXmUwm2VCNRqMc/V1fX+fcuXNcuHCB9fV1Dg8P80lWw/Cbm5t5yH4+n+dcVJ10U0rM5/M85K+UCFUXkJn1ucWz2Yz19XUGg0E2PvoMvV6Pzc3NbGhlNOp2zuZC5tw/r9co+uqrMfj3UPUK32Y+d9RXMjg+Pubg4ICjoyO2t7cZjUY5z1nGWKZSUcfbt+9UbfDHRrmtMvc3btyg260WAVG03ufGqkSeTJhSVBTx1GsVZR2Px0yn03yMfA6p0jI2NjaYzWb5/Xu9HkA2xTKsMmWKxGrFN7WlDJ5yqhXN9pPxFLmVadV3Qzm0flKcDLWG+xUt9SkAvhSZzDcsVlCRcdUFi/bpc4L9ctiK1nrT5lNA/KQ2P9qhCyu1h7T5HHIZaj/h0htKGWuZzWber8/Z9ebW4/OndYy8ofbVJfxn0s3nAy+jafD99+A06AJHv+lV4Sz67SAIggeR01Sl+LkTNn/mLV7/SeCT/x8RyplVdNQPW+tEePPmzYVI8ng8Zjwe50jf+fPn2drayidvpVDIiGqBDuVqHh8f0+/32d3dzWYEyBFnRUQ1tC0jKmMh0+QrM+h9FCn0E3+k3Vc1OD6uFpRoVjLQ8td+39qP8oLhTmRR+/KltryJUITWm2wZQ73HcDhkOBzmY7C2VtUululSZNmnDyi9RTWONTFPFSZ2dnZyiTFFmpUGolxsRemVA678ahkvTVC8fv16bneVC5NGRb/X1tZyuoXaQ1FhrSboo59KT/DpIv47p/fX8dNrVTdaJrKZsiDzCneqSPg0Al/xRN8hXxrNpwX4qL90NKO3iuorWqyLI28ofUUF7a+Z/wxk4672V4Tam3ifF6w2g+VLJHuT6bWclAbRNNm62FAaia/77A219qn0jObzyyLBvub2sujzMry5XzXOot8OgiB4EFmJle90Qrt27drChDdFA3WS99Uk9vf3GY/HdDodzp8/z2g0ynm6GxsbjEYjhsMht27dWpjkpuHnbrebl4G+evVqNsveKCj6p//VydMvZ6zosZkt5Awrt1U1e/2wu2oEz2Yzjo6OcrR0Pp/n6PfGxkY2if5krfrHSkHwkT1tl9n15ljRRF8dQSXXtra2uHTpEkBeREVRckURp9Nprugho3d8fLxQ7UEXBlClMKj6hiKqMug+F9fXala1DKFJh8q5Xl9fz9FnXRDt7Ozk/OXxeMwbb7zBbDbLNY51/GRI/WiAbjJH+h9FO32lCJkmn5rhj40uDLwR8xPRmjm8MtpeG9zJ01WE1v8OmqkWPufbl4STfj32lVI0quANqL9Ya0aLvQlXJL1pOpvR5yY+Uuxzhn00uTmZTcfOR311fHyahjfG/oLGV1PxFz5ek89xbpr70+D/PwiCIHgwWAljnFJiPB7nfE+dgFWxQEPJijhOJhNmsxmdToe9vT329vbY2dlhOp0C1WSvwWAAVKWxlJ6h6LAmeW1vb3Pr1q28ap4qP2xtbeVJb3ofH23t9Xq5tJmiljJJ29vbOa9WaRrKm1bkcjweM5/P8+sfeuihbGgGgwG7u7sLE+f8pENF/WQ4Nayu4W5FMf3wvDdhfoKZqlUoBUXl4FTho5nTqfJuMiubm5u5PJlWn5MJ1kQ4vyiErxiiFAmZdbU1kC8gZrNZ/hy9Xi9HsJVSoVxppUxMp9P8HVBEWuZbxsdXDtF7yRTDnQilz7H1aSlqF7Wz2kXbvAFXfnRz8po3lr78XNPAK8Kt5xXBFv7CyBtIH3n2qTT6/NqXTLJMuD6j2sFHwqXFG2M99ubaG1zf5n4EpanZm1Lp8qZZv329t7/Y8cfUt7s3q00Dr++1n8R5t9ziZiTZG+owxkEQBA8OK2OMFV1ThGx3dzcbHkVhB4NBNrLKix0Oh+zt7S3M1h8Oh6ytrXHt2jUmkwn7+/tcuHAhn7w7nare7NraWl4cZDKZMJ1O81Dy4eEhV65cyUO4a2tr2TSrDNrR0RH9fj9PelKupips9Pv9fAJXPrJSAjqdDqPRKC8drcVBhsMhW1tb2UwDefheJ31FVWV8fFTQn6hlMt58880cNVfE2UcTVcZsMpnkJZ5VNs9XM/CTubSan0+h8LmwKgGnsmKqYazqEko7UDk5X19XEXWltGjVQhk4VcDQBZBGGw4ODhYmxqmtdNHiKz34XGs/cU0pF748n8ywjoevEqELD0VWfS3ek8q9NSuHCB2zZj6vRhpklL1xlBFslpPT8z6CqtcL/53xUWo/UdM/p3xf7cundTRLxsk0yoTqc+m77NvnJFPpUylkXNV2Psru9UqzLnybucLNx950380U+//373UvUeYgCIJgtVkJYwwsnLx3d3e5ePEiOzs7OWKoyXn7+/s5FUImVNEkDXN3u91cEmt/f59ut5sn7cnoKhqtaOXBwQHz+Zxut5vr+c5mM4bD4YIOn6esKg4pJabTaTYQvvauX8VLJ3ylWmjyn1/4YzAY5EirzKbMgUyBDJMm88n8Avk1Mh8ppRx9VvtqX4o0Hx4e5pztmzdv5v3KBHvT682QTKyvJ6zPrgsMlV9T6slkMlkwN/p/pTToeOgzDgaDbHK9IdNkO5ltGX+fKyzdy4b94U40U3Wm/QQ9LSLjjaYMoK8RrAsHP6ogndLYHHKXHr+Yh6L5Ol7S69/TRzr98dBn8ZHwZRPJvCn0kXGfa+wjqdq3R2khvubySSkL2q9/3pv306CREH+x4aPOat+T9nuSoVWb6rfQbJ+TWGawte00+wiCIAhWH1uFDt3M/geYAftta7lHzlGudihbf8naIfS3yf3U/n0ppfP3aV9FYGbXgVfa1vE2iO9ue5Ssv2TtULb+M+mzV8IYA5jZ11JK721bx71QsnYoW3/J2iH0t0nJ2leB0tuvZP0la4ey9ZesHcrWf1ba73VJ6CAIgiAIgiB4oAhjHARBEARBEASsljH+o7YFvA1K1g5l6y9ZO4T+NilZ+ypQevuVrL9k7VC2/pK1Q9n6z0T7yuQYB0EQBEEQBEGbrFLEOAiCIAiCIAhao3VjbGY/bWavmNllM3u6bT2nwcxeNbOvm9nzZva1ets7zOyrZvbt+u9e2zqFmX3WzF43s5fcthP1WsXv18fjRTN7vD3lS7V/wsxeq9v/eTN7wj33G7X2V8zsp9pRnbW828yeMbNvmNnLZvar9fZS2n6Z/lLaf8vMnjOzF2r9v11vf9jMnq11ftHMNurtm/Xjy/Xz39+m/lWmtH47+uyzo+Q+u9ZTbL8dffZ96rNV4L6NG9AB/h14BNgAXgDe06amU+p+FTjX2Pa7wNP1/aeB32lbp9P2AeBx4KW76QWeAP4GMOB9wLMrqP0TwK+f8Nr31N+hTeDh+rvVaVH7JeDx+v4u8K1aYyltv0x/Ke1vwE59fx14tm7XLwFP1ds/DfxSff+XgU/X958Cvthm+6/qrcR+O/rs1rUX0WfUmortt6PPvj99dtsR4x8BLqeU/iOl9CbwBeDJljXdK08Cn6vvfw74mfakLJJS+kfgamPzMr1PAn+SKv4JGJnZpTMRegJLtC/jSeALKaWbKaX/BC5TfcdaIaV0JaX0r/X968A3gXdSTtsv07+MVWv/lFKa1g/X61sCfgz4cr292f46Ll8Gftws1ns+gQel344++3tAyX02lN1vR599f/rsto3xO4H/co+/w1sfxFUhAX9rZv9iZr9Qb7uYUrpS3/9v4GI70k7NMr2lHJNfqYetPuuGQFdWez3E88NUV8DFtX1DPxTS/mbWMbPngdeBr1JFRMYpJa2F7TVm/fXzB8BDZyq4DFbuOJ+C6LPbp4g+w1Nyvx199r3TtjEulfenlB4HPgR8zMw+4J9MVVy/mHIfpekF/hD4AeAx4Arwe62quQtmtgP8BfBrKaWJf66Etj9BfzHtn1K6lVJ6DHgXVSTkB9tVFLRE9NntUkyfIUrut6PPfnu0bYxfA97tHr+r3rbSpJReq/++DvwV1cH7roZP6r+vt6fwVCzTu/LHJKX03frHcxv4Y+4M/aycdjNbp+qg/iyl9Jf15mLa/iT9JbW/SCmNgWeAH6Ua6uzWT3mNWX/9/BB442yVFsHKHudlRJ/dLqX1GSX329Fnv/0+u21j/M/Ao/WMww2q5OmvtKzpLTGzvpnt6j7wk8BLVLo/Ur/sI8Bft6Pw1CzT+xXg5+uZtu8DDtzw0UrQyN/6War2h0r7U/VM1YeBR4HnzlqfqHOdPgN8M6X0KfdUEW2/TH9B7X/ezEb1/W3gJ6hy7p4BPly/rNn+Oi4fBv6hjgwFixTVb0ef3T6l9BlQdr8dffZ96rObs/HO+kY1o/NbVHkkH29bzyn0PkI1i/MF4GVppspr+Xvg28DfAe9oW6vT/Hmq4ZMjqvycjy7TSzUr9A/q4/F14L0rqP1Pa20v1j+MS+71H6+1vwJ8qGXt76cabnsReL6+PVFQ2y/TX0r7/xDwb7XOl4DfrLc/QtX5Xwb+HNist2/Vjy/Xzz/Spv5VvpXUb0efvRLai+gzaj3F9tvRZ9+fPjtWvguCIAiCIAgC2k+lCIIgCIIgCIKVIIxxEARBEARBEBDGOAiCIAiCIAiAMMZBEARBEARBAIQxDoIgCIIgCAIgjHEQBEEQBEEQAGGMgyAIgiAIggAIYxwEQRAEQRAEAPwv7mW0TSjLBDEAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsYAAADHCAYAAAAaq5U5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAADXxklEQVR4nOz9eZisWVrWC98rIjLmiIzMPVQV1VU9YDdCH5TTcFBAAW0UGhA+PIh6zgEEtJAWFUfA73O4OB/nQ0ERDwI2B0QcUVBBRoGj4qEZukGUoWnppruhq6ur9t6ZGXNkZES83x+ZvxX3u3ZW17R3Ze5d67mufe29Y3jfNb2x7ud+7udZoSgKZcuWLVu2bNmyZcv2UrfKRTcgW7Zs2bJly5YtW7bLYBkYZ8uWLVu2bNmyZcumDIyzZcuWLVu2bNmyZZOUgXG2bNmyZcuWLVu2bJIyMM6WLVu2bNmyZcuWTVIGxtmyZcuWLVu2bNmyScrAONsltxDCL4cQPvGi25EtW7Zs2Z67hRDeHUL4pGfxuSKE8Fue5z2e93ezZUutdtENyJbtA1lRFK+96DZky5YtW7Zs2V4alhnjbNmyZcuWLVu2bNmUgXG2S26E4UIIfyOE8K9CCP8khDAOIfxiCOE1IYSvDCE8FUL4zRDC77fvfUEI4W1nn/31EMIXJ9f9yyGEJ0II7wsh/HEPxYUQGiGErwsh/EYI4ckQwreEEFovdt+zZcuW7X6xEMJHhxB+KoRwdPbb+40hhHrysU89+72+GUL42hBCxb7/hWe/6YchhB8JIbz8Re5CtpeIZWCc7V6yPyDpH0vak/RfJP2ITtfww5K+StI/sM8+JenTJfUlfYGkrw8hvE6SQgifIunPS/okSb9F0icm9/kaSa+R9BFn7z8s6a/dhf5ky5Yt20vF1pL+nKSrkj5G0uslvTH5zGdJ+ihJr5P0mZK+UJJCCJ8p6a9I+oOSrkn6z5L++YvS6mwvOQtFUVx0G7Jle1oLIbxb0h+X9LskfVxRFL/v7PU/oNMfxt2iKNYhhJ6kkaS9oiiOzrnOv5X0H4qi+IYQwrdLerIoiq88e++3SPo1Sa+W9E5JE0m/rSiKd569/zGS/llRFK+8m33Nli1btvvN+A0viuLHkte/TNInFEXxWWf/LyS9oSiKHz77/xsl/c9FUbw+hPBDkr67KIpvO3uvotPf6Q8tiuI9Z999dVEU73ix+pXt/rXMGGe7l+xJ+/dc0s2iKNb2f0nqSlII4Q0hhJ8OIRyEEI4kfapOmQpJ+iBJv2nX8n9fk9SW9HNnIb8jST989nq2bNmyZXsediZ9+/4QwvtDCCNJ/4e2v8mY/xa/R6e/1ZL0cknfYL/JB5KCTqN52bLdUcvAONt9ZyGEhqTvkfR1kh4oimIg6Qd1+kMqSU9Iepl95RH7902dguzXFkUxOPuzWxRF9+63PFu2bNnuW/tmSb+qU2a3r1NpREg+47/Fj0p639m/f1PSF9tv8qAoilZRFG++663O9pKzDIyz3Y9Wl9SQdEPSKoTwBkm/397/l5K+IITwoSGEtqS/yhtFUWwkfatONcnXJSmE8HAI4ZNftNZny5Yt2/1nyN0mIYTfKulLzvnMXwoh7IUQHpH0ZyV919nr3yLpK0MIr5WkEMJuCOEPvRiNzvbSswyMs913VhTFWNKf0SkAPpT0v0j6Pnv/hyT9PUn/QdI7JP302VvHZ39/Oa+fhfx+TNKHvCiNz5YtW7b70/6iTn+LxzolH77rnM98r6Sfk/QLkn5A0rdJUlEU/0bS35T0L85+k39J0hvufpOzvRQtJ99le8lbCOFDdfpD2yiKYnXR7cmWLVu2bNmyXYxlxjjbS9JCCJ91Vq94T6dMxL/LoDhbtmzZsmV7aVsGxtleqvbFOq11/E6d1tc8T++WLVu2bNmyZXsJ2V0DxiGETwkhvD2E8I4Qwlfcrftky/Z8rCiKTzmrNrFfFMVnFUXxxEW3KVu2i7T8m50tW7Zsd0ljHEKoSvrvkn6fpPdKeoukP1oUxa/c8Ztly5YtW7YXZPk3O1u2bNlO7W4xxh8t6R1FUfx6URRLSf9Cp8c7ZsuWLVu2y2f5NztbtmzZJNXu0nUfVvkEm/dK+h3+gRDCY5Iek6RKpfKRzWZTsNeVSkWVyilm32w28bXNZqOTkxNtNhuFEFSpVOLfOzs7qlar8TOVSkW1Wk3ValXL5VJFUWhnZ0e1Wk2bzUar1Uqr1UpFUSiE0xrjRVHEP/4a9wshxPdqtdOhW6/X2mw2qlarsQ0hBG02G63Xa61WK63Xp4ez1et11et11Wo1hRC0XC61Wq0UQih9jz+05Wy8VKlUYh9pO2Pg7eL7GO9VKhUVRRHbnBr3rNfr2tnZie3h/unnmCN/f71ea71eyyMR3j765HNGm/gs169Wq3Fc0jHgPpvNpnQtvwdzd3JyouPjY63Xa9VqNTWbTVUqlbgG0rl28/XAH8bAx8bHKn3fP+PryecunWu/13nrkmfE++nPT7Vaje1gnPg+4+TrLZ1Dv5bPSfps+rMRQijNSfrM8G/mmuv4WvJxSNddGt1KP+dj4/eif+kzlt7Tv5/ew993o/+bzeZmURT38umIz/ibLZV/t6uqfmRb/Renddkuv9kzKEmt37rRy2qzC2zQ5bFChd7xSz0V5+y72S7GFppqWRzf/qOuuweMn9GKoniTpDdJUrfbLT78wz88AsWdnR0NBgPVajUNh0NtNhvt7u6qVqvpfe97n5588kltNhu12201m011u13t7+/r2rVrWi6XeuKJJ7RYLPSKV7xCjzzyiA4ODvQbv/EbarfbetnLXqb1eq2bN29qPB5H4MpmuFwutVwuFULQzs6OlsulJpOJarWa6vW6VqvTwgXdbletVkvL5VLD4VDValVXr17V/v6+ut2uNpuNRqORbt26pdFopKIo1O12deXKFT366KMaDAaaTCZ64okndHx8rFarFQHfZrPRcrnUYrHQdDrVcrlUvV5Xq9VSt9tVrVbT4eGhRqORNpuN6vW62u12bHNRFJrNZiqKQrVaLQKPdrstSRqNRprP51qtViVgtFgstFgstL+/r5e//OXa39/XbDbTfD6P9wdQzufzOCaAr2q1qvF4rMPDQy2XS1WrVZ2cnETQUqvVVKvVtFqtdHJyot3dXT344INqNBqaTCaazWYR7C0WC4UQdPXqVXW7p4fOrddr1et1Xb9+XZJ0cHCgo6Mjrddr7e3taX9/X+12O4JhAM98Ptev/dqv6Z3vfKeq1ao++IM/WK961as0m810dHSkk5MT7ezsaL1ex/46qAb84FhJimOwWq3UaDTUbDa1Xq81mUzimprP5zo+Pla1WlWr1VK73dZ6vdZ4PI7r1wG6pOjYSFKr1VKz2dTJyYkWi0UE99VqVY1GQ+12W41GQ8fHx5rP55rP5xH8sz43m41ms5lms5kWi4U2m02ct3q9Lkk6OTkpfXe9Xsd7SlKn0ynNZavVUr1e13K51Gw202q1Uq1W087OjlarlabTqYqiiJ/DarWaKpWKxuOxptNp/A7rtF6vx7ZIUqPRiI5T6jT6PNBOfg8cGNP3zWajVqulRqOh9Xqt4+Pj6BSxTnZ2dmJbd3Z2bltHOBw4p4Dmk5MTzWaz99yJ38XLbv673Q/7xe8Ir7/gFmW7aAuNhiq9rt72Na/Uuz71/0revXIhbbqMNtzM9Tkv+5iLbka2M/uZ4sef9r27BYwfV/lox5edvXauFUURgQGbEQCgXq9rNpvp+PhYjUZDvV5Pw+FQ4/FYx8fHajab2mw2Oj4+1mKxiCBxMplE4Njv99VutzWbzTQajdRoNCJYA4jx71qtpuVyqfV6rZ2dHTWbTS2Xy9PBOtuMT05OYnt3dnbUaDQ0n8918+bNuGH6Bg3bLUnHx8d68skntVwuS0BzsVhEUEQ7Go1GBK+SIgNdqVTUbDYjcAZIdDqdyPadnJzENhurFRnDRqOher2uxWKh0WgUmVRJJRC1s7OjyWSi8Xiser2uZrNZYnnp43q9jsw8YySdMnknJyfxe61WS5J0eHiog4MDhRB0/fp1dTqd0vcAmg7QFouFer2e5vN5dCTo32Kx0Hg8jmuANgG6rl27plu3bumJJ57Q+973PrXbbfX7fTUajdgHZ6cXi4WWy+VtzC9j6mwuQJ95ow8ALcam0WhEYDabzSIQxXmhrdVqNYJlxpjxoE+shWq1WlpnfM/BNiwvbeP78/lcIQQ1Gg21Wq0I5Jk31j7PHmCReaGPPH/cq1arxWvxf74nnQJeWHwfJwA2zhPXSxl11h+RgvV6HR0HAD+/I8wrzwTrEHDrkRkH4PTP598dQP4PsL4P7Dn9ZmfLJkmVdlvv+orfrl/949980U259FZVUO0Vjz7t+8V4ovWtgxexRdmezu4WMH6LpFeHEF6p0x/XP6LTE2/OtTQ8vFqtNJvNtLOzE0Pky+VSJycnarfb6na7ms1m8TWACcxqu92OoG86nWp/f1+dTieyR/V6vbThnhciZWOu1+saDAal8Df3Ozk5iUCGTXM6nZZkCPTJ5RbHx8d66qmntLu7G/uYsobOtPF9AJakCFolaTqdSjoFGL1eL4JRl3HwvUajEZk7gKCzfoDx4XCo/f392A7GstPpRHC3XC41n89VqVRKIWvGE+ZdOgWHgCuueXh4qMPDQ+3s7OjKlSsRpDp7z5hz/eFwqGazqWazGUGU95G5abVaETAxLteuXdPR0ZFu3rypnZ0dXb9+Xe12O/abMcPZ4lrMC3ORSmYY23q9XpJzAMhgn4+Pj6OzBZjy9b1YLCI4dqkNn3f5DuCUKIOk6CjwGYChM60urQBU+pqjz7QNxpq2A9qZF9Yiz4WDcMAoa4D1SF/4v69HlzjQd/rD9RgfxpDxOT4+1nQ6jcCXtrlshXXozqbLbbg2c+5SCq5HGx2o3wf2nH6zs2Wr9Hp6z5/5cP3qH/+mi27KPWHdSlM/8Obve9r3P+zN/5te/lWn0dDwm09qfXj4YjUtW2J3BRgXRbEKIXyppB+RVJX07UVR/PLTfZ6NlA0XEAEjXKvVYuiz0+lod3c3spgAH1hXGKFOp6P5fK7pdKperxfZWRgwZ1EBQWzmtIn27OzslPSItHW5XEZAAVgklHxeyBVwXKvVYhi/1WpF1g3WK4SgwWAQ5Qep5MH1tWzKw+EwbvqE7WFakRMANAEihNwJ7ztbd3x8rIODA127dk3NZrMEYnd3dyNIAUCk4BFw4XpsjwTA4A+HQx0cHMTrwuS7vpg+VioVwtbqdDqlULw7I4A7/j+fz+Oa6Ha7WiwWGg6HEVR3Op0Sw8+9AMH0D7YV5pd7Ib9xMIXDxfdxpFijrFlYdGQDx8fHkX1mTTBeDmRxFo6Pj0sRFweNMLYpKOa+rEXWtsshWLNcj3bB1C6XyzjmAHvYa9pnvwe3aXV5bmDm3dnA0aBfRHhY/0hfXPtMu5E+sT54zZ0Y2swz71GC9Xpd0rS77hvj2TvPob5X7bn+ZmfLNv7kD9Ov/KkMiu+U/crH/hPph0///erv/BK98t/NVfvFX9d6NLrYhr0E7a5pjIui+EFJP/hsPgtb5IloMMCwjAATtJntdjuCvcViEf8PkG42m5rP55pMJlosFmq1Wup0OhHMAQIc1DjIgxE9OTlRp9OJGz2gms8CfhqNRtx0YQhhprHFYlHSpKJlhUUFxAFo+v1+iV3EAHSE2QEA9NfZVKxarWo6nUa9NvdjLPgOMgt0q4vFIgLB8Xisg4OD2B6XG3APwIIz0w7gcWQARrVaTZPJJI4J4f4QQhy/SqUS5RHT6TSCO6IHziy7hIP7o1eu1Wra3d2Nc47UBrBLG7kGEgZkK/P5PIJDHBpAkjPHLgOgDbD4y+WyJEfxsUMuwXUAyoDpTqdzm6wAltaZ2DQCcfY8liQh3Id1gkPSbDZvS0yt1+tR900OANdi7XN/T5qkPaxXj2Awp9VqNT7HrDPALOww65L1BVMOs8981ev1uG75vz8vnpDnkQjWIWvFHQcHv55ImCYU3g/2XH6zs720rbq3p1uvvS8iJZfSfu3zvln6POm13/hGXf1vK7X/71/SZpYTGV8su7DkOzcSw1Jw6kCXzbgoipgIVq1WI9AC/AIqYbYmk4nm83lkpACUaBGREQCO2SxhNrkumzDvA64ASAA3AAgbfbPZjMlW0lb24FpI9Mztdjsy2tPpVPV6vZREBWsH4AV0A7QAbzDtkiLwxnFAStJoNOI4OxDgewBaxrNer2u9Xuvw8DCGv9FiS9twMt8jSWtnZycCF0kxGc0dGJjjZrOpwWBQqrhBW3FsYGABJThJrA0cF8B3o9EoAXgAJhGB4XAYGUi04s6sp6w1Eh7pNDkOdt1ZzlRa4tIexhsWlDazNl1GwjyzHq5cuRLXJmAfeYCkCPhoN06gs+AAQIBqCj4llXTXzia7/IHxw8GpVCrRaXFZRsr+44x5EiHRB6QMPKv+Gg6SO6g8d0VRaLlcRoafZ9NlUq7FZv2gfeY5JjnS9dBeXcMT9egX7xOdyZbtpWDHr3uV3vbFmS2+2/bLX3o6xr/t696o9pMbDb7rrSqM8Mh2d+xSAGPpFGSQZMcGOp1O1Wq11Ov1IjsHqCDjfTqdarFYaDabqdVqRW0pG9x0OtXR0ZEGg4EkxQ0PAAObxMbmCTkAxk6nE7WoHhpfLBbq9/txg5cUZQ8wXq7T5L5UmgDQApZ2dnbUarViQt14PI6bPwwcoM0rPXB92DBAR6VSidUpSGR00OBgzTWsDojQbQNuALGMm4+Jay25Z7vdju0GiI1GozhftP/4+Fij0SgCZu/Ler1Ws9mM+nG0uCSOASoBmMwrwNj7vdls4neWy6UODg7i3Ozv75ekBoAfdOAAuJOTE02nU+3u7sZKIePxOH6X7wGwKpVKlPPAZrqWFVANyGX9EXUgUQ79OtEJ1/p6iTbmnzYzT6xb3uNeJH4yLjhsPCNc06s94ACdnJxE58UrRLAmnVmmDTxbSH+QPfH8MT6VSiX+HuDgpW2H0aYtrp13dp31yxi5s8Cz2mg0YgUUl1t5RQpn63nNq1lky5Yt2522//YXTwHyhz/0Rn3Q3/kZabO+4Bbd33YpgDGbnusdpdNNfDKZxLq6fFZSKfTuiWCuF5VOgep4PI7VEHwDlbZg7jxwwsY8nU5LpaAANc7IeXiZTd8rW8zOwiCAfkqmdbvdCF7QkTp7TuUA14p6OyVFtg8dNqCGTR3GHAADYAPMUOoLIOXhY0CM62UXi8VtYMwdCcaIdsJAUuJtsVhoMplE0L2zsxMBd7VajVVEXEe7Wq00GAwiCKXU3mq1ioxlWknAATJzBthhnVCphO/CPktl9huW26ML3Lvb7UY236UVnpgpqeQIMW+sPRhP1wIz70gjZrNZXCPNZlOjM+2ZJ7wxH6xB18Kiy3WnAtaf+/IZZ3zTqg3OwrqUwce4Uqmo1WqVyp05iHVZA9GfdAx5RmHH6Suaf5ftSCo5hay9NPnQr0MfWJMeXfF1Tzv5jmub/RnIli1btrtpv/jnv0kf1nyjwlp62f/vzRfdnPvWLgUwZiMktOmJOrDBvV4vMkFewgpwQ4iWxCxAIOFY2EJYLDZxz+SH/fJEH5g7BxnOICJNgM0iBOwbPPcAUAF8SRSStslUbPIAE08WYgP3tjkIcKZV2mp+AV58jvC9dFqPmbZ6mN/ngWtRrs11xQ4AXerh1TgAOc5yr1YrHRwcxMoc6HgBx5VKpZTkNplMtLu7G5lXyrN5BQUkNAB0Z8rd8XKJA+Xfjo+PNRwOSwy9M9YAIGQRrnWFbSXJz8cOh4kScw50fY4cLNNGnw/GdzKZRCeNZ8N1zA5OcZKYcwf3yIa4DmvAow1clzXlAJf1h2PqGmYiJe12O0p8nPl1aQrXwbkh6ZZrer4B8+JOmT+/Lmnhul4hw5MU/fv0h3XNmsH4zfHEPBw25ixbtpeK1R56UO/4gnxQxUXZr7zxlD1+ze6X6JVf8VMX3Jr70y7FLzqbDhuMZ8WniTgOGgBPrkvm8+iQ0cjyecAxIXZAjbNGnhjFHxKgABOwhDCuhKP5DPdic0YHvVgsYmUNtK9ssABwZ8y85BigwEP9zhxL27rBHjLnHoyBM16tVkuDwUBFUUQ5gINexhbwCnBwUODh9+l0quPj43j4BO0HhABU6vV6lIuQZCgpOhvSNoFPUgTCzI0fJjEej9Xtdkugz50J1woD9JjPwWCgk5OTeFAIbXdniXUG8OQ9JDOewEg/WUvp53if+fWEOObH5xnJDZIVHL1msxk16SlzyXzwfUAmLK5r63F2AKX+WfrKmKUOEfPvax0QzRrEiSSq484WshDAJm1ONdrc31lkvx/tQBqU1i9mPP35cr0y8+rXdU2xJ+ql8+WRlGzZXhJWFNqcVJ75c9nuqv3y536jXjP4ElXmFf2WP/fTF92c+8ouBTAGrLJBArrYZF2v66wy7B6Axlk29JlUokgT7mazWQRLHmqHvYLVpCrEbDaLQI2EIZioNGnQk+oklZLzYM+uXbumXq+n8XisGzdulGoio8UF7NAfQIYfb8xnuBeha5L3YHQdPLtcBabOy44BgJx5rdVq6vV6UdcNWPBqDgA+qm2kCYl8BxADaF8sFup2uxHoOZvumlJOVINVR54xHA6jHp15czadufFIBBpxdKVebg3wz3U84ZGxoF8AQNabJ4r6eLOGuLavOweLOHX0EacM9tXZWyImyG28uoQnwAHMWTOczDiZTOL64F7eFsaDNcJ64rOMB88l9wAYwxKzTnjOAbSsZ1+fXmmC9rgcxuUn3IfXvUKGy1FYCx4JcqfVq2Xw++K5CN5XqZy4t9lsDzfJlu2lYKv3P6lX/ZOXSZ980S15adtOqOpdn/EmHa5nel3zy/SaL/nZi27SfWOXBhhPp9PIXDlAgUFqt9slgMLGBtPo2k82NdgcKgdwjC5gAemEHyTCRgyY4XUYy8FgUAK+gGJAFJ8HvAK8uA+b+Wq10u7ubtQbeyUGL7eVsmQAS3/PwdhkMolJaAAalzu4xtJ1lzs7O+p2uzo8PCxl2DtD6bVmAQw+/g6kCfNTAcKBhqTotPi9AIOAHnTjsODUmeUAD+r/ok925wVgDlBjvCRF0AtwI+wPs817sIWuS3fNsVd2gIXk3owLc+UsPdeu1WqlE/ywVOIDOGZNAn6JXrju3LXdrFMft9lsFgE1Tp2zww7oWR8uw8HZQNNN9RVnl/15dNDqUSDGDUcHB4l1SyUWZ+xZf4wxkRrWkycd+m8A5slzrAueWfpJH/keAN2jMymr72OWLVu2bC+m7VXbevOn/R197Lf+Ob3mT7zloptzX9ilAMaSdHBwoCtXrpR0ipJKABMdqes/XU4xn8/jhnx8fBxBB4DGa6V61jlMm7RlwhzYsKHOZjN1u92YTOaJVWmYHdaWEDunr7GpE8rnfUAlr4VwWrPXgYuDL8y1kvSNY56bzWZkdGH8/NQvvg+TiEQESYWH0ElA5DpUegCoABIZM4AtLKqznQ7auLcDLk9aY854T9om/0kqVfIgVA8YBajRfpg914/ikADu/EAPZwjRATs77Mym66i9UgHJbCTXSYoVMVxb73PK+vbXmDPWA/3wKAkg0sEgzHG1elpR5OTkRPP5XIPBILaN5wOgl8oPfL14gibvIU2q1Wpqt9uSVCqDyPpMD9lJ1wzPBWPu96I97jQg/5jP5/FZ9ueReXDGl9dZexwTzb3cifT140yzO6Q+1tmyZct2EfZQrav//Mlfr9/97V+m13zhWy+6Ofe8XQpgXBRFPOQhBcZsXiRGAXzY2NgQCRvDyHGalqQSIwRQcCADMIFl8vAyDFYIQUdHR5pMJlGfmMoTCOWyYcPgAt7YgJErUAnCGWva1+/3JSkeysE9XIoAqKHNDipTUOLfY3y9wgDjTWKb61YJF8OuwboBilLgmyaPMY/MB7IQHAJnYfmeJznxXS99R3toJ86OJ/fhmJCUSaIaDkPK9HoVA8BbtVotHYNNSTIHh17KjPWcAmUvgYa0hjlIkwKZV5dcAHwB2O4swp76nHtkgFq/Lg9Be586WX5//u1yAgDsZrMpjSHgERbb9f44HOiZPVnODz2hOkkqgQDgunTJmV2PLPkY4cD5M0JEid8LnlNYdFhn/+PPsyfi0SbWeLZsLxVr/Nw79GHf9MaYCJbt4u1lta7+0yf9XX3Ct32ZXvNFGRy/ELsUwFhS1JT6xsOGBsvFUcts9A68PON+PB5HYABrDIhCKzsej2OImA27Wq3G8KyDO4r/oyd1/a+01SUCXLkekgmS50hIozwaOmDYMcAZ4II+UO3AE+78/jgIAAmYQLTXgG5pe2CBS0FgCgEcHFzBmDA/sGuSYiJhWsaKueBeAEj0uF7ZoNvtKoSg2WwW2+UMHHMAKHGH4ebNmxHkweKh/0arDPvo48H6qdVqUbPMHPI5xgagLynqyhknDp5w4OjAn+u6dhX5ggNlZ6alcgKeM/2eDOjssOt+YU5peyrJIHmP+zFvtJHkNZwNT+BLk9WcZWZOvU40c0GVCb6LE4oEhOeDPqLDd3DuDhBr0fXi7oR4XkK1Wo0HwDAvaf9ns1msoUytbIy1jbQJR4Y+ewWPbNleSrY+Gmr/V3Mt3ctmj9a6+k+/7+/qE9705/Sax7Ks4vnapflFd+0lAMnZWo7G5Y8nVJHQBiO6Xq91dHSkw8PD0vGxAMR+v6+rV6/GDVPankTHpgrT5SWg+LwDUU8OAtSFcHq0LslgAHsAxpUrV7S3txflGbB/MK9stkgbOGAEoApDnh424qfUwSZiXAvQSngfllVSBLoAe+5DDWjuA0hARwwAdZYNZ4GQOcAUthdZA/MC8KJ9zp46C9hoNNTv99Xv90tOAoBR2oJQ2DzYPUAPa4t7+Zpj3LwKCH2nvYBkADnjAftNgp3rULk2cwiAb7VaJTCOA+JMNhIZ75Ov+X6/r16vF9eKnwbHM8X40jfXyXq1Ba++0e12Y8UQHDeXZkgqJWACPDlUhnux1jhS28E+EpX0pDrWiifZORDn9TS505llT6ik3jRSKNYo/Z1Op1H+4QyzM8gYa5n5dtY9W7aXivV+6Jf02v/zjRfdjGyJPVrr6s2f8vX6tb/3Oy66KfesXZpfdEAYjJpXXKASA8lVvhmxqR8fH0cQB2ADoDzwwAOlUmOcprdarXTr1q0IQpwx8kSy0WgUwQybPLpXaXtIAOwfGzwAik2UAz0A4UVxWiKNZC3X6gJCOIlrs9mo0+nE+0uKoNtLVAFcYDdhA+kfffNkLBg0rgEwdomAJ0U6eIXt87JcsMOARkqgAer5e7ValQ5UcEmBy0dCCBqPxzo6OtLu7m48+ZBQPkCFMm+AH5I66SPgkPHd2dmJLCtOQSptAYwRxWD9sPZS4CxtE8FcWkFfHXADxnHunAVlfj0qQUJhvV6PNY0BzV7FgvUxGo2iI9PpdGJ/XBKAAQhxiBgryrtNJpPYx/P0vjg67qgwxh59gQ0G6OME4MAyJt4GHAecLNf7OoPrOQPpWuIP/QME0/c0WdA1z84cu4yE/ubku2wvRdtMp3r0639eH9p4o972WJZUXCZ7qNbVz37W39HHzP+iXvXludbxc7VLAYwdSAFGpW0iFqeRwagBqgDHaAA5bKPX60VN6XA4jPpBWNdut6vBYKDNZqPZbKbDw8MY2oex88oE0+k01j1GriFtQ+bOKPkpYGymAN7FYqGjoyM1Gg0NBoNYP9h1ul7315PdPEydJnsxhh56lxSTEhk79JbUT5YUQTXfRUbSarUii4deG1BJHx0w8xnaxxx5+S5nhmkT5lU0qtXqbeF0yrLdunUr3htAzlHL4/E4nqrHuvCqJM7yuqwC0Mc8MO4emgfs0VbAMmtiOp2WwDHJc16JAUbVy/cBRr0qA697Uh7Php++x3r3vqasKvNFZRHGnvdgwLmHVzjhnl4FwrXErHHmwte+tD1N0p9pnBD65nILoia0n3FmTLyaBADZdfDeLpwXn3Pawji4XpvnHhaetnmCIPkDOBvunGfL9lK0zWKhl3/1W/Wp3/B79La/9Vv0rk/71otuUrYzu1rtaN3OTvvzsUsBjCXFDQgmCYbPARlspDNALhcAXCA9mEwmmkwmcZPb399Xr9dTpVJRv9/XZrPRU089pZs3b0bWdn9/X0dHRyWw7olyADXXOwLOJMXMf9eFsrFT8q3f78eELvTOhJU3m008OrnVapWA3XK5LMkzJJVq3roUAQAKAHBwTHvSMlWSIkDkc86YwYoDhhh7rwKBphvA7aXsYNIBP5gDKten0g9Y8slkooODgwgmHezwZz6f6+joKGqSpa32GTAM4GetwWROJpMS05vqsVkPHi1wtn84HMaxdOkF/efUQj9ABHYUXTeOCe97Uih/w/wDtJkTgCyRCubSjwr32sfO1LoO3/uHzIf2pTXFHSCS3Ee7PYHRZUbMuSchprp9PpuuFZ5/5omxcrDP/V3KwbPKe54PQBu9tB9OQ6fTiWDeowV+sErWGGd7KVtxstT6cKkP+ZL/ok+pbsP3v/2nj/U3H/iFi2tYNr39D36TftutP61H/0Y+Pvq52PMGxiGERyR9p6QHJBWS3lQUxTeEEP6GpD8h6cbZR/9KURQ/+IGu5aDLQZnrEZvNZtTQAlgAKlxDUon589PRDg8P1Ww2tbe3d9rxWk3Xr1/XAw88oCeeeCIm9iFfcNlArVaLhyzAZgF8CL9yVDDyBIDZer2OGk20xk8++WTUb7q2GYaM/jkrBjj0UmWUQ+t2uxEcAEi4f6PRiAdynM1b6Q/hYWQIVHCAsQbsOCB09s+1wZ4kxfhTVcOT8FarVenYZeYNptcdEE8cg3EHWDpLzzrgOpvNJspWPPzuzo6kKBVg/XHkMn/8VEKMuQf8e8UF18MDrvr9viqVim7dulUCZ0hPnEnHeJ8++lHgaKiZC9hV5AoARj/wAlAL2Gu1WhqPx7GaBeCYscHx8PY6Q4qMInUUuRZzBsvs/XGwzxrE8aNvfmiGS058/XHfVCvNOPFs4dz4b4U/Y7TBZR2AY54vHBvANu97tZV7we7k73a2bG7FaiVZhZZfeF3QJ+t/vMAWZZOkR4sMip+rvRDGeCXpLxRF8fMhhJ6knwsh/OjZe19fFMXXPdsLoTn0JCuvECCptHkCjJxdBVycnJzEGr7oZNfrtSaTicbjcdQpUuHg+vXr6na7unnzZkkygD7VE4IwNmZC/4BxWGCvewqwpFzbfD7XZDLR+9//fknbBB8/upr+AP4AIfP5XLPZTO12O27GlUpFu7u76na7EVjCMFcqlQjYPWTs7DvJZmhxvQIByYbOoAIgXL8MIHdgl4IRr37BtQBaOBqAOq8hzVzAHsKqXr16VZ1OR6vVSkdHR5rNZnGckKMwR15BIGUyea3f78fksNlsplarFRPZnJWlXawBKhpcu3atlJzJfNVqtZhsyfHVzLFXZmAc6C+VOhgjr8CC0R7Xs1MCDbCHM4eGmTWOMyVJk8kkyhv8Xu12O2q3iWjw3KEJTzXxvM/aZ86dXcWJ4nVnxAGqnmOQGmNE3x3o4ph4ZRsiLPQLh44xp21Ij3ztOnCmYk2alHleGy+x3bHf7WzZPqCZA5st271kzxsYF0XxhKQnzv49DiG8TdLDz+davrGzebHJsnkCEmGkOp2OpO0mzibKRu1hT9iyGzduqN1u6+GHH9ZqtVK329Ujjzyi3d1dnZycxPJpvuEDIGG7qtVqZAQJofsJYK6hpc2wbn7C2ng8jqAV5pH+wtZyPb7rukgSzKjty0ZOu5B0bDYbtVqt2A8MMB9CiNURAEj0AdkCQA8wDriGaeYwlV6vp06nU6rV7CAd1o8wNKy2h9qdjWfe02O/YWMrlUqUzTDPnhiIrMEBecrCAsRhBo+OjmLFB8r0HR8fR9Y9Tcqj/NdoNIoHWDAnrJPlchl17YB41g5r3itcsG5gggFqzJe0LRHoemnkDg4aXTONY8m49Pv9mLyJtMJBJ+uePuJgebWPZrMZxwsQ6Yl0AFzWN86L6/S9ygvg1hPx0ogDUSQHxfzxtnmSLOuQtc8c+m+Qr0Nvm48lx51zb+blXrE7+budLVu2bPej3RFxXAjhFZL+R0k/c/bSl4YQ/lsI4dtDCHvP5hpeTYFEJk+8cTbKM9upFOGgD1CL/tMP3Xjqqaf03ve+VwcHB1qv19rb29PDDz+sXq8XAS4bImDBs9I7nU4puQhg42wrFRM8PI5+FV3rer3W4eGhJpNJBCsAPq99C4jj79lsFqsN8D7t4vhl2EjXkLqm1ccJwOwsGACN/nt1iTTRCKkKIXOvEwsIZs4A6rDxyAMAOs5GAqS5DmsAQO0nIiINoO2Ml8tRSB6DKQasTSaTOJ6dTkeDwSBWS3DmlfECLJL4BzhCi+1rFaeI9yiphuPAGsW5S8GiA9a0djdl8nzN+hqAOZa2FUnQlI9GoygBabfb6na7sUoLiXAkrnoCJmsVMMgzSlUR5sSTYlmfzF0qa2G9ADR5llOdNzIrB7M8ky7R8MRGQD/OCfdjXFkP5CoA/AHkmOvjkTSl5eXuRbsTv9vZsmXLdr/ZCwbGIYSupO+R9GVFUYwkfbOkD5b0ETplJv7203zvsRDCW0MIb031tZIi0ALkehgXXSQ6XZgoB2SehEPNWMLbN2/e1Pve977I2l67dk17e3txM3XNJUDVM9Op7eqZ8r7JU+0A4MR1kXKg/UUWQHKUl48CbALG6AdgLz3dC1BAxj0VOGDcGFfP6JfKR9wydm4uIfBkL68iQt8AGmkSlMsDJEW2FBDGdVw+43NJ+1zf6QeMoJuF6Ucr6kl3DjZ9vQEC0YX3+311u90S+HMJA/PtABjj8wBG+kM/6/W6dnd3Yx8AmTiFLkVh/SDtcFkFjgprB6DG+gSEpvIBwCOHy6DnZ63AzLOOAcrMB5UwuB/HbANqmSuvw8ycuZzHtekOnnH+3DFyNtb7kWrmvc6ySzX86G3GzZNZPZqTtoF/s955FlPJ0L1od+J3+0TH530kW7Zs2e5pe0FVKUIIOzr9cf2nRVH8a0kqiuJJe/9bJX3/ed8tiuJNkt4kSZ1Op/BQN5saNXLTrHRC1Lu7uzFJilq1ziw6QD5rj1arlUajkW7cuKEnn3xSnU5H165di1pjEs8AbgA1NlKkBxihVdrkiWPcUypX3UhPxjuPIVsulzo6Ooq6ZfpFwhaMNpUXYIk98Y6KCA6KYc4ADF6DmXsDwtLKCV71wJMTASIAYgCyz6m0lb2QjOayCdejck9nAKXtUdLozW/evBn15p1OR91uNzpUjKU7TfwB6PH3er2O2t9erxeronjIHaBHGwFKsMIuu8FpYAwB5DgwyA9cU02EgXmB5fUEOPrDawBwNNMAXbTsXIvnwNfieDwuVWxAckFdZx83P4yD9QUAnk6nsW04Se7IkvzHnLJOPBriDrE7S4yds7VITXAQvSqGyynQ+qcstbPS7vS6Y+4gmPEBZPO8pg7bvWR36ne7H/aziDRbtmz3nb2QqhRB0rdJeltRFH/HXn/oTMcmSZ8l6ZeexbUkbZkiWC0v4+WJUoTAYd880ckZM2mb/Ob1VxeLhW7cuKHHH39c+/v7ajQasULF448/LukUzPX7/Qh4SUI6OTlRq9WKoIrDRJzxBUx5SDYFZgAikqK8fi1H8SI1gFFzQA3rOBwOVRSFrly5UgJckiJQhsX05DtvB9dyRhIDwDqTBmjx7H9PIKP6hpcsA8AhT2i1WhFAeiUFaXtwhutJeR02XtpWhXBwjEbYZQn87U5CmjAF4OUIbTTv1JCm336SG2vTqywAGmH5XZc9nU4jCHNpEOOLYwazDtuOdIKKKZRgo58uF0ilAM6SOnAEOANc6Y8zoK5v9vq/Hjkg+dDHGvDLXHn5N9rL80x7PULDGPJsM5c4yc5MM54ebXA5jUuE3Plk3LmWOz6w/FwXAO2RDJ4bf1buBbuTv9vZsmXLdj/aC2GMP07S50r6xRDCL5y99lck/dEQwkfotBTQuyV98bO5GMwOG6knWPlm6KzTdDrV/v5+qeQYm3EaakVXCKidzWZ63/vep4cffljXrl3T7u6u+v2+bty4UQISbLhelxeQAHDiiFk3NlivpcrhAX5d2FbPwvdqF/Sz1+tFqQTAjUoeVLrY3d0taaWlbc1b16e61hemsdFoxOQzBw0pW8zrzlzCguN0wChzqAbjBZhZLBbq9XqStqeXwURzWAdzx1gBkFxS4pIA1gnJci5/4T4A8BSEk+zooAfwTS1pZAtojGHtz6uzjUNAfWsfa5wsgDHrerPZRImJryWS6nDKSLjk+6xz1gHz7NdNx5J+83l3mGgvc8LYIe1wJplx9mRJl0DwvCAVcWcSR9Y1+ziuLk9i/TpQ9XVLW1NZC+3hWfS5xhnwRMMUNAPgHTi7ebWYe8zu6O92tmzZst1v9kKqUvw/ks4T2D2v2pcOftnkPNOdMCobFGzVarWKOlv0j16T1WUBngTmB0Zw4MZgMFC73dbR0VHMoucP+khPMGKj5pQ42Cnuzx+Ao3TKcnJIhzPDAC42eQDwdDotyTBwGqStLnI+n8c6zbXa6SEbaeUMAASMHEDp+PhY4/FYvV5PrVYrln1DRkKCmzsuzpByTYCFg1KAInMIuKUmtFfTQCdMQth8Po9ADlDmbDdseFEUsW6xpHhKIpIA2uC6Z8aSa3pVB2d5cUSq1WoEc161gz77Uduu6+W9VFqDwwHA9/Fzp3C12h4jzfperVaxiojX+mVcU9kR48t8w94iv/DoivdZ2taQZi6pIIKDw3V9LXgyJeuB5zuVosB8A0bdASPCARBPK7+4LAT5hc+LyyWYT9rmjg/PA2OA40WUya9FH+lPCsTvBbvTv9vZsmXLdr/ZpfllJ2TNxpuGOdk0MZg5ws6tVkuj0SgCJ098A2hy2AQbKRpJKhJcvXpVe3t7MZxNYhegDQALa8y1PZsdkOBAALAHu8l1KOk1Ho8j8KDdJENJiiyj13vF0BEfHx/r4OBAV69eLYW8PXQPuPfkNLTMgPxerxdlEABPyuBJWza11WophKDZbBbrJ8MKAqRgvaWtBtoBs5e745js3d1dbTYb3bx5M+pyAYYAXObQmUscGU7eQ14jbU88AwShi2UdFWcVK9Apez1bgBIyDWpbO3hjfdTrdY1Go3gvr7HtjC2abg/Hp8mKJIYB1gHCAErGE0dS2tZUxmnDufRrM8+w+/4+kQAOtHCHgjkCEHqi3nmVTaQyS+9SIRhb7s1zz/MuKa45DrHZ2dmJzyXrm3vhFBBZ8DwD//1g7QH+GTccOcaV2tWMN067a44ZX3/ms2XLli3bvW+XAhi7HtMTpRwgswk7u4Mkwlk13/wAloTyAbfO6MEYcuhBv9/XrVu3omaTMPtgMCiFjtkUnREGeLFRphnufgrZfD6P9WUBQr65s2nDgLp+kj+AMvoxHo8j0wyoKYoiMr6S4rjA+kmKzsVgMIgA3/sC4OE7gBtYV0AFVTDQ0rpeFTDiIIpT4Rjnfr+vq1evRtb94OCgBOoBT7PZLAIzTzxbr9elk+xcEgATiV5X2obYi+K0RGCr1dJgMFCr1SpJBZxpBJi6XERSdKCcrce5oA1IYKgZjVzHtbkAMy/d51pcr0ZC+1krfIdygRx3zFp3qQ5rhuiDtJUdeTSDZ+z4+Dj20edUUrwHbaW/OHP+OteGiXdNNusO55Zr0/ZKpRIjAV7GkHUJiHaHlDFlnI6Pj6PD4k4IAN2jQbDbLr9x9t3Xd7Zs2bJluz/sUgBjrNFolNgzD8MDSH3ThHUCWHQ6Hc3n85KkAWBdqVSinpHN15meer0eD4totVoaDocx+Y2DG7rdbgR9gBruAZPq9W9dSuBVBiRFQA+4QeZBPV7XgwL86AufZ9OH/ZpMJjo6OiodLiFtATpjSRkwTzhaLBaRUfcwPgx5Gu5mTJvNpnq9XjxS26UDXmMX1hxwAlAeDAZRswtLvrOzo93d3Qh8vc8kQTL2ABrGjnYDlpzpA6wBIJ3FXK1W8XREJB3Slo30Em2MD2vRQRmlAX2NuNaXfru0gzWCbIUEUta8h+/pr7SVZXAd15bjULAm6SfzRt9dH+zrirYCKr2P9MerOTAWyEMYq7Q8IM8c/aTaC2sxTValfd5+9Mb+PPBZxsTlO2nZRMbeQTyRC+qD035PBPSkPU9uvNcS8LJly5Yt29PbpQHGgC5pyw6x6TiAkbZaRmdzYGRDCJG5lFSqTlCtnp6Yhx4xLa/VbrfV7/fjkcu+kc7nc+3t7UU5gGfqA5xcQ8lmyd+u7wQcAPAADlRt8O+hnwZ4sCkDEjwrn2sAHsn+B6y6rIFyVtwDFjvd6GHVaDftdSbQZTDOKrqOlPJ63W5X4/E4AuZms6mrV69GIOmhagA9zC0sLIyvRxcYCy+xxnh4WbBqdXtyYaWyPYwFkM3R2DD14/G4lHxJ2/gbR4O1xj0At0QAvDKIr2/GlbYinajVajFqwVgSbWANsHaZB0Ai64i583JmyFAAj+n13GGk7R7RcLDo0gdn1hkP5AwutyDiQIk6l1AA2r3iCSCVZ8rv79EHT8r1z8JMu4YYCQnfcxDt4NhzFRgP2upzmKUU2bJly3b/2KUBxtI2q91D177hPt0mD8ACpPnJV9R2ZXMj/O8sHUw0G3az2YwJYAC7yWSiXq8X7w+YAMS4rtYBPMa1SaiTbj8wY71eq9PplBIMXZfK+ACCaTsbuCdScT1kIs6iAgJcB03VDEklKYInY6XSFoCJaz0llSQDANmDgwPt7u5qMBioKAoNh8OYLNntdlWv1+NpZDC6gBAAImwpINrD2rDOjAfz4WuJdgPQfDxZP0hSkC2MRqPSWEtbsAYg9VPl3GnysQwhaDKZlFhN1+NSfQQpCEl43h/GxFlYoia+Fl33mrKbLkdyp9EdC+nUGWm327c5Yc4wuyML+KQKBeufaIvreH3uXJfupxK6/IW16GudNhNR8NJ3vj74PNEHxg3HyBNJ/Vkm0c+fKWeR6bsn5mXLli1btnvfLgUwTjeZVBuahsNh6QirUmXAmWWYQdfJ8h4hd8LnhOGdEfRErqLYlpjymqzeToB4moAEKJC2VSQAZamdnJzo8PBQ3W5XnU5H0u3yB1g8wBFaVbSRnpXvmmB3DhhrQICDnJOTE3W7XUlboMupgZJiJRCAo4MwSoZ5oiCgfrlc6tatW+r3+3H8qb9bFIX29vbU6/X05JNPxhq7AJTJZBIrTzCGDm6dVXc21BlNzN9zdpq5dt06/z86OooSjXSMSfREa+16W9aItAXT9AvWHuBFAmAqsSG6wZzhfNF+l7Z4dIX58+oRzKf/DWBlrTGmPB9EGxgL5p71C7hEBsW8EMWAeXUJCOw/48b3GTsAqjsikuLYIbeRtrpqHLyUoWa+cNCc7ea58L4wdoyF10f2BEN3EDIwzpYtW7b7xy4FMEZmQMhc0m1A2EPPkkobHglYXu+W0lKAFa8bC5CSpMlkEpk6NmY2zXa7HZO80OHSFu7NZprKDbCUrSO87sCG71GhYjQa6cqVK+p0OhEMwGwCkgEXHB0NkKFyQLPZjJKFk5OTeKKbSxacOXcGk8QtZ2A5WATWDZDH/PFd2FbXh1LzGeb4wQcfVLvdjpUXVqtVlC4cHBzEseC45ul0qvF4HOUurVarBK5JOJMUQ+EOjryvPn+E2r02MLKZWq0WGVOkF91uN64x17mzHumzlyDzeWaMCNUD8HDiqMvMHFYqFc1ms8is4rCxRlnD9NsjEPzxsmc+J5JKn+P5gFEFhDuIT9czc49T4Pfz9ei1vPkeFWFg6rk/lTUYF0kxEpSeiucJkPztUSZ3BpxlB+Cz9p1lZ3yYv9RpIBrl+vcMjLNly5bt/rFLA4wBT4RHPeQLu8l7GBuqh9cxmDxJJX0oG6FXNZhOp+p2u6X7shm7tAMglko6SBrzEK60BR4ASRju9XpdOsXOpRXT6TRu9H5PGDhpW/qsWq1qNBqV6g7D7pHsRnITbfZkOjZ5T0aDOXU5igMX2uROgTsas9lM8/m8BPhhDYuiiEC+2+1GMAzYcQYUpng4HEbdL4Ae4AiLzny75MABvCdYwfjRH4AbIXfGw/Wrfl2v2MBceig/TR51R8vXrBvtQPoDMPckRtrhiXMksFWr1XgACA6TJxqy3gCK7hzQXmdPibA4UES/788sY4J2v1KpaDKZREfVHUwf+9RxIpoB4+ssu7O5flgKffBKL65R528/8dKZbsCtt9MT/2iDv7ZcLkva6DSxMFu2bNmy3ft2aYBxu92ObBesqicsAY5haglzssEDBlqtVky+AzzC4gFUAL5sqABiBwIeBvaDFADhtIfSXrBiHkKn3ZgDY8Ar7QCoYbzWaDSiPIH+8h7g1xlSgBtAhz45QAVUMJ4A03q9rna7HR0GgJmDEf7vTCggDeaQ44sZf8Ag0o/hcBjb4Iw/oBRJwWw203g81ng8juCdU+godQc4AQAxv8yDh9jpgyd3+Zz7gSMwl5yI50DOx4G2S6fgsdlsxhPl+A5r2kuWcR1ntF2nnOrGiVawjvgD4HVQjjPmDDZt8DFgfQLufL2zvtxp4pnwsXNQTTUOmGt31mB3XWYjbWUdrFuv+uHPHG2mTVTIcIfRJVeMLWPAd3H2XHPuZd64jj+zLpXySi+U1cvAOFu2bNnuH7s0wJgat1RUYDP1JDLP1p/NZnEDYwP08C41ZSkPBtBB1wpohMXymsKSSgAm1WF6SBag4LWMARIpQwvLeXx8rNFoFCUKMJKNRkO7u7sRCAFm2MS9+gQsZaPRiMdAj8fjUtKaJ+Itl8tYw9idCNdk4kzACFMlwWUsgGkHK4wXDKakEhBLx2I8HkfGHCBNuTdKpjlARkftoX4AGA4Un3GmmrXggBGHwHW2AK3pdBr7QzvH43FJz0wNZdfD41jBnMNi8p5HGVhfnrDIPLkOHBAJk0k7nX32SIBfm7XJfBOFoN04CqwN/u1yCtawJ865kweg9IiIl6qjffzhOg7qGQdYcHTFk8kkPpu00Q9JwaFiLJz99uu6nlgql59zDT59c71xqqNmXF0/Trt9vWXLli1btnvbLgUwlraMkesKAWBeNcJBMOFyB8388WoBHC8sbbWNhP75PMDYw+TUB3YtprTdKKVt2NUZbUA9IBh2ibbDcAO6PHEK5pwweKfTiSXhJJW0lmzMnU4nggCAlOssPQnPKxcwTtyTMmO026/HdwEoAFMAbypRQJICOPaQM/0FcMEM12q1ElNMYqTPk6TIRDqL50mWACeXeXiSlutTWV/ME5IAl8Ug9wBcwmw66IUl94oS9JeEPt5nXACUgOOUEZYUZSCMmSd4AvpgTPkuzwTOhx8nzZiwjh1cwvITgXDNP4CQOXCHNWWCvXaya5XdUuANY+vMuYN3X+/+LHkuAuPFeuXeDlpZ+/Td2+fRBebGk+5wYKmVTvuzxjhbtmzZ7h+7NMCYDRpw6XIB36Sd4XJwBePkCXMepiY5SzqtrICWFuP/6Fcp6QRjyv2cofK2AjzZkLlvmqTmjOZ4PJakKMHYbDYlDeNisYgsLOCDPsO6AuTq9bq63W4EDphXk4BlB0gwZgBrSSUwSageOYonQ3oCmIfvkWRI5VMF3QjtA1gPDg50cHCgTqej2Wym0Wikw8NDDYfDqFf28nIOIAGxnrQFMOfz1FlOnQfKsxFFACSlR2oD6lgT4/E46l0Jw8OMMn44c9K2OoTLKmi7t8kdrtSJIFFvMpnEcnhpghvRERIIkd5QCo/nxnXHOH4AQJ4l1qi/TrucdXVwz/tcA2mKJ92x/lzjz2fa7XbU3VOrGmeHfvpzhTwqBcf+rLEuvX2S4jPmvz+02xMlPQGVftAmZ9CzZcuWLdv9YZcCGKcJWAAGgIYzlB5e5v8e6m02m9rf34+vs3l5qHm9XsdKFGywkmI9XWmrfWTzdKAE4+jAeLFYxBrIDiS8lBjgCbDhIMKToLy6hh9fy31wFJbLZWQhYQ65Hywm4BS5gIMFr5BBCJyx5fQ310Ez3jDNaYUDxtoT9xwI8R3u79rXmzdv6vj4OCbaDYdDjUajOK6cWgjYcy2pH20MQHSW30FoCn4Ye2dGXTPqYByQBEvMXM7ncx0dHakoihilQGvsEhSAoAMrn3fYTDSxLv9Av4z8xcsIrlar6NwAFKm97ZIh5scPpEHK48+BywV8bFLwyPPhY5smyHriZTrmnpxIuTf/jkcZzovIVCqVCPgZu1Q6wf89GTNlyrkX8+2/QalMCzbZdePu0GTLli1btnvbLgUwXiwWOjw8VLvdLr2OvGBnZyfqGdlgnS2WyppHNlGAi7QFuK5T5e/pdBrr9yKf8KzzNJveQ+RssoAYACB1d/f390the/TOZLi77hMJhwNWP/Ia1lHa1rcFEMLoAiIXi0WsVuFjhcyAP5486Myeg/50rL190vZEMHTBHrp2BrZSqUTJAiAMoO/l15hHwL8nE3qbGDOPGrg5MGYOAb4ORJGnwDryPlEHgKAz3w5mSSpcrVbq9Xrq9XqRzWfeGcOiKGIonnF3vTp9ZK3xXRhjGFWcSAfy9J/16I6LzxdtBoC7PAIn1YGij6M7Op7MB6vKukJzzHPkLKwDZJ4JxtyfB1/3Dl496ZM1RvTDkxAZX5hl+sPzTaTGnRx3prlWKk1yh4ZrZsuWLVu2+8MuBTDebDalBCsAQloFwLPnXW/MNabTqQ4ODuLRzWxobg4E2CRXq5VGo5GuXr0aQQ3vc28Pv9MWaauVBKDRHhKe+v2+9vb2JJ1u8MPhMLYFcABbC8BD98rG7aACiQD/JpHOJQIw2s1mM5bxclCETMOdDQc6LjPxgzZgqrkOjkAa2nZw4ppenzvaD7ggGRE2k/EBTI/H45IGnNC6z6nPFa85U+8SDmf/YdlxxJBi0FeXnQDYUm0trDUglugB/eNwCWnLOrq8AyaeNnU6nRLwnc1mkd1lfDwREVBLu2BE00Q3n1eAMX0kOuGsK/1OIzYAZBINXXbhjDvtpF84HCkzT5k6nmWeewfmOCauX3Ym3yVPAHzPOwDQ+vPE+gHcp0mGjJdrpD1ilb6XLVu2bNnubXvBwDiE8G5JY0lrSauiKD4qhLAv6bskvULSuyV9TlEUh093Dd/cMWfNzu5TStpK9X0wcaPRSO9///t1/fr1uNH5UbCSSgwgGy9AFm0kwJwN1MPaJEEB9DwpzQFCevAI9/UKEyQ88TneB8zC9KXAm9JogAlAh1+/3W6XdMWAZj9S2kPFXjmCMYBNXSwWkUnkOu5AuMyB8YEVp68ATaoU8FnmYDwexyoUgDYAiOu9AVGALWdzU/aOefA14PPoUhckEp1OR5PJJLLfqRbY5QXck7lw4O0A3aMQvE9bAJYOKpkDyvUBurkuc+7jwxiwDv0ACh8j/j4+Pi5psXEGAMsOgp3B5dp8z5+tVH7AGvHKJ87I+rPurKzPDyw048hYANhxNADMDtR53l3X7Zp1jz4wLrzG9z3hlHGXtqfu8f97xe7Eb3a2bNmy3a92p37Rf09RFDft/18h6ceLoviaEMJXnP3/yz/QBRxQSFtNIRslG63/zSbLRrxanVY4ODw8jGAUAOuMl7TdLLkHVRDQXbKRAkypIOHXSrWWtN/bJm3BGhszpen4DMDRGUZP8IP98oMeqOcK+wbAc3AN80j7CIF3u92o52WsAY/SFgjwHUCdjxuAB60wwKvZbMY59dA3fecaztgC8Ji78Xgc2+YSiNFoFJligJzPhZfj8jakWmP+uHQFLS7z5LIMl1g4Q+8MqrPMh4eneIIEPR+DzWZTaj9zCPhLD48g4QzHhPZJivPtJwgydzxTvt7pB3INnAaiHs72s85cG8waS3X9zvDzHvf3/iN5oA+0jzXF/dy5ZG6YP77jsikcSQfy7mTgtPn88iy5PMLv75Ib/5t+ekTiHmWMX/BvdrZs2bLdj3a3qI7PlPSJZ//+R5L+oz7AjyysLppMSSWAk8oY2Lz4tzPLy+VSR0dHMZwtbUOrDqABiTBFq9VKk8kkMrhsxs6YoecF1FIdwMEi4MlBPWwgf3c6nail5H0AOG0lFI+m1A8ZoT0O0DxJi7ZWKhX1ej01Go3IHiKVYKxdDwprCjA4OTlRs9mM5dxoAwmG0qlEAHDpMg7exzzpzN9zzfh8PtdkMtFkMtFsNoustydE0i8qQTC/SBEcwHB9QA79hNmeTqcRZLHmAIuuo6Zfzjh7cppfG7DNcdzOoPs6QIsOkARUMsasTfq62WxK0hcfQ54Pnh1kNDgOHonxMmM4Kl4Pmfc8KdGjBDibrkN2YOzPmbPEjBUSIZ4vlwCdFw0C7LsT6s+SR2HcCcAA9XzXgTTJqHw+/Yz/SUEy7eB+qXzkHrTn9JudLVu2bPer3QlgXEj69yGEQtI/KIriTZIeKIriibP33y/pgQ94AZNLwJ4BdJx5ZQNz5heAy6YLsBkOhzGpxzd8Z/kAk71eT5XKaYZ7v98v1X4F9AFMADNsyLDLKfNLyNerGLjWE0ANKwZA975SFYLPOFtGCJzPAOQ8aa8oTqtNUFd3Pp/HRLfd3d3IwkqKmmzYScYSIN1qtTSdTm/TFXuZMpKppO0RwgA512/yuidHAvr4nOtKcRBGo1FkkilN56yxS0087M+Ysg683BjrxtuFjIFSga6PBcAyj+5oOZPuFTfcOQJYA2L5HgAOIMr8uSbe/00EYWdnJ1YQoVYxgNGfE54rNMEOXrkP2nIHsi6R4Flz9tyBsBt9ZgxYl4wBjqUz0j6W/lk/hdLHAQBPn7Hz5DS8DrD1BEYHz84e811+L+gXr7vW+h6zF/ybnS1btmz3q90JYPy7iqJ4PIRwXdKPhhB+1d8siqI4+wEuWQjhMUmP8X8Ps6e6Pd+UnLlzvS3JQw7oAJBIIlqtVmQLXUpB6TVOX+Oo5fF4HJkl13c6Y0W7nInjBDC+w+EOHkqmDWzK/jrjAPNHAhr9oaoFp95Rqss3c1jCSqWi3d3dUsgegO8Jd4A6wKInrNE+6gwDaqh+MR6Pb9MP4xw4OANEMMeARKpnAAxhL10rChACqJIo5mF7xs0ZvDTJivclxcMsPKEQx8pP5vPT21x+42sIcAbIdVbZJTWAPmeTAZz0A7Du38VwSiqVSimhzw/GSMfcr+POiYNExs914jyH9MVBKs6Qj68zs8w192PcXYLhMhjM++2A21naanV7aqM7NGnVCo/A8H0HwKncgmfb1xBtcAc9lXeldbrvAXtev9lS+Xe7qfZ5H8mWLVu2e9peMDAuiuLxs7+fCiH8G0kfLenJEMJDRVE8EUJ4SNJT53zvTZLeJEkhhIKQOWyds2oezkb2IKkEgl0n6uDHk3AAO8gNUiYOEEvST61WiwlVzrylYWXftB3osHlzkIcncsGIe1JeWvGCTRowwmYMMKbPvV7vNsYu1XC2Wi01m82Y2OanoiFzqFROj8YGCNL3arWqfr9fqiEMW93tdiUpyiAArLQb5hBA5ElO0laX6mwqCZCMEZ8DmACenMlzCYSDrhRY+Tz5v935osKEs6M4N6xTv54Dx9SYW+aB6EYK/BxkexURT/Lz9dVqtWL0gPVIXe5UY+uyCWeUAagpGPZ/0zacKo8Y8Lw60OQ5ow1pkiJ98mRSZ/kdOONoel/ov8sfnLV1aYsDY0B8up74DMl9Plb+TDmbzHtpv+8Ve76/2Wffib/b/bB/b3U8W7Zs2Z6FvSBgHELoSKoURTE++/fvl/RVkr5P0udL+pqzv7/3WVwrglPMNzU2QsCmpAi4XEPp3/WQOQwZoM6BgrQFaGSak2jEZwBhDohcvuEbOZ8FWKH5dbCPzKPVap2b1U5bAegeOkYGQgLR7u6uQgixioKzqIAPr34B+IHdBkRTRQJwTDUKKkIwlswL18RoE3Pi0hcHW+68uC4YOYWkUjIcIJsSZrDekkp6cJc9+PoBbMMIO1jDvC+wyB5ZgK2nL55oKZ1KR1x368DJWXJYbmciaau0rTfMGkq1tT72OIn+eX+GeB1WE4Ceanl93bpuG9DMHLEmvBJIKjnwZy2tDsG88Nn08/5MAYh9PJz99eiGOwD0kfu4k+CJni6LoR08F87S+zV8Prmv3/9esDv5m50tW7Zs96O9UMb4AUn/5mwjqUn6Z0VR/HAI4S2S/mUI4YskvUfS5zzThYbDoTqdTqligWtQXWJAqN7lAa75k24P2/Na+neq90SqEMLpEbWj0Ujj8TgCENcsI1lA7xnCtq4rYB1AVxRFrB3smy+AjI0Zcy20JwRKimXYAFiNRiOymN4W13k6y81rkiIwBgDDJHe7XS0Wiziuzs7zGqDRk+2KYnsoCWPl12C80SBzvxBCLJkHMAIU8sfBsleZqNfrtx2bnR5LzfzSBz9Iw8cYYLlYLDSbzUpMsoN3QF46vjDV7pjxfRwaxsmlF85cu3aV7/EZnos0SuEgm++5DIJnCAfCNe3OfNL+5XJZAr7SttawP2epU5cyqQBs14B7e9xhpf1cP2WdcbpcduSg1ceJezmIdemSr1dnjJl/Z7K9DZ7s5w7IPWR37Dc7W7Zs2e5He0HAuCiKX5f02895/Zak1z+Xa733ve/V/v6+2u12BBuuQ5W2IWHXCWKuO+ZvgBubM5/jWsgS5vO5ut1uSYfJd/h+qlV00EKy1GQyie/Rhp2dHfV6PVWr1Qg+uTesKuybg3zfjAG+sI0AQQdC/B+A7YdfeK3aRqOh2WwWK2c4Gw/oarfbajab6vV65yb9pdrhtP4y12IOGDfa4vMjbWUE6/U6Ohb0CwOEOMvsa+K8Um3ezhTMwKK63tklAn58dwrc3Jni3wB5Z3VhqnHmuC9r1dcQ93AnjXb7mndWl3sDFrkO4+3PCNdK++Nl2XA0WIcOJiVFB8ojJw4UAd4pUGQs6LNHMfhO6ry6Y+drgT7C6LuUwkEvY+xOhv8OuMSGMfG1mcpdfEzpE32+l+xO/mZny5Yt2/1ol6YyvUscnLnyUKVvSg4s+L5rFVNgm26igKjVahWrT8AipuFZB9ts1LBL6GUd2Ph10MvWajVNJpNYNo2Nmj7D5iJ1oG0ASKpY8Fqz2YxtTNlT6udSmgzgDiuKRhkw6CAEVo7rAHRTwOfsH30AnDG+9NGrgjAHXmoOB6HRaKjb7ZbkINzbgZFXVmDsGWfmxsEfgImxcCDrDCNrhjGCOXWZgyfoOeBjDh3IAuC8ioe0PbktZScdCPOaA2UHd/RjsVjcBghxhPzzzvD6WgYUe5IjRm1l+pK2n3u4nCK9j8sVvO18xtvJ51PZC9/zcfW2OThNnY2n+63hmXHn1sE7a8375eswZaGzZcuWLdv9YZcGGEvbqgHSlmWStqCMTZzNzJNznKVKN05nx9jsnK06OjpSs9nUYDAoAQUMICRt2WBPiuP+XjEAzSn3g4EFuFASDYDkWfGupyRhy8EH7Uf6MRqNIhAAHDvAR57gGksAsKSSE+KsMMy0AxlAMZ+BFXVG1OeSeaRqgjPurhVer9dxjJAy+CEOsLv0nwNOHDx6OTM/PIPxT1lljwAAjHAwWC/OhvocMQ5c3xltSSUA56DZASn3Zi58vs8DlFwXS6UF/tykiYnuvDDPXBN5DWDfHRg+585pKiGgfc4yuwMKGE6/l7aRP14VgrWGlIZx87rQzuz6c34eYGW+3LHy3xB39HxNu5OVRjLuNdY4W7Zs2bI9vV0qYOw6WjYjzDcjmFrfVNMQ6Wq1iscsU93Aw8awUgBjQui7u7uq1+uRVUWj6kwvLDEsrjONtJ9QsW+qtVpN/X4/bupombk3ZcNca+zsGTILpBUAnKOjI0mKoJg/rin1ELezwx7aB3BMJpP4f08qow/OHgMSHXC608LnAHDnSR6cMfeDWQDF0vbAC2lbEg5A546SA2P6DXB0XTBtB7hxP5faeIkxB8UAvPN0p2mZNT7v1RtcwpICWde5IjHwefMIhQNNjz4gp6Ft/vlU2uEAMO2/X8efRweifIfPpsxq6jA5sKSPDmhdJuNrx1lldxxdTuRzw/W8LYB3xszHjrFyJ5u2po53+l62bNmyZbt/7FIBYw/xelhVKoNFl0nArD0dO8SGfV6tUde9jsdj7e3taTAYqNFoaLM5LdE1n891fHwcjz32Y6ubzWZJ3gDwS8PSAMtKpRLrG3PKHhusH7EsqRR+93FARkEbKS02Ho+jzthLUqXVCxyUeEIdgGm1Oj30Y7FYqNfrxdP9SETjvlIZHHjCIeYAg/vBHEuKJwnS1nReSDKUtkdu4/CkWlZKhGEe6ncgj9Pg9YvPcyCcffdrOUsplVnqNNEPJ8IZbQfvLsVwYOug9Ty9LuPp0ROPsLg8AbaY92mDj4sDU5cQpbIiZ8+pmZyWXUvlEqkEwtfDeQ6DV64ABHNPHA+YdAeszvq69CIdP/+MX9elLbyXOud+DWeks5QiW7Zs2e4fuzTA2AExYAGgKZVr1zr7dR5r7Nfkddg3lz5wfeQDhN4BD/P5XNPptFSJgE2dz3k9V0+Q8zJai8UitpWkuH6/X9Ij81k23UajET8rbYHjarVSu93WYDCIAG86nZZC0QARAITXz2WzB9gwTtIW+AC2N5uNrl69Gtl5gK3Pl7OmqU7TwSFz6HIZB6weNkde4W1GhwyoSytfAGAdoKcgy8GQpNuqnhwfH8d5cu23z4HrVp3h5bppiJ5EvhQc0ycHlq6P5drnOSE+/t5G+p6WEPRqGev1OrL2XsHEwTgOkjsrqYQp1SL7uNA3rufscdp+d3LpnwNn3sdJdBbdZTku2fA17WPnzoDrpr1ftNWjClyD66YyjQyMs2XLlu3+sUsDjCWVwCGbHUAMwOlMEZ9JN2ZntjxcjbTCGTpYX5goQu+EXWezWTz0wyUcfJ5T8wCz1Wo1yi7YQOfzuYri9HjmTqcTT8ZzsOftJxENsAcTCWjdbE7rH1+5ckUnJye6ceOGZrNZTEDje5yW52wYulz6XRRFKeEPZ2E8Hms8Hmt3d7dUA9elCqlu1AECCXwOZpgb/k6rYTBHOBKMAe95GxkL7i1tq2OkThP3csmHs8Sw9ScnJxoOh/HzXsM3XV/nOWHp/dJ7u4QHZ8wdC4Aj68elHvzxBEl37lwSQP/8eykj71IXpCmsYb7rf/t33bF0Vh5j/F2ikrLOPm7pOPo401Z+B9yR8Dn2teVMMp/DPKnP2WK+m+YYuJPD+J8XjciWLVu2bPeHXRpgvNls9F//63/Vq1/96ts2eKlcvsk3LQ8l8zlneVJ9Lt+DrYW5PTo6iuDLN2KAaArG1+u1xuNxbB/HSANS2JCpNMERzkgEeA3Q4Cwf0gqvq+uMH2zelStX4qZ/69YthXB6IprXFYYF5Whp2goAms/nOjg4iOC/3+9H9hT2EWfA/ziwQ6IAkEvD/Iw/kg6OpPa5pwoE70tbkA645lQ9GETXEQNYHKyxFgBpOCAODJ1BdDaSZD+ArIMxZ2h9XTxd6J3PnidtSUEVaxMmN9UEM14paEXekEoAHPA5oHNgnEogfN6cxfU28jl/Hvz5cseQPqUgO2VrU12zf97n0Z0r3uf+HgHg3ucBcS8xiNQJx881xy6f8eiFj63LvLJly5Yt271tlwYYVyqVWOfXQ6WAQd+cvEzT0wERSZF5dJDgTBaHb3BiHGXbOHDCw9owyKvVKp4Cx4lwXv+21WrFjZLXAdDcu1arqdPpaDabaTKZxJrCgBPf4D2sDPjhdY55pt2Afd/MGTvALUwsAHo0Guno6KgkIWm321osFppMJprNZrEfzkZL29P7JEXJBgDcwQJMcMpeemUQ15PSV9qdlgMDYPqYOmMrKbYFMMznuI+k0ql9rAfXzZ53wIyztDgPXsEEYOdgMgVzVPs4Pj6Oc+SJZyloZl5Yx/55l3545Q+vouLPmCc/ck3X6rvkJHUsPDoA0GU94fz4971tfM+BtgNwdxBcBuJg23XYqfPla4dnjO/z3BL1cYeL17iPJyD6vLn8gvWYarCzZcuWLdu9b5cGGDvrJpU3dDYrQItrhR2UYM5SwVS6PtiZYYAczK5nrfsGvtlsImh25rDVamkwGMQNutlslsCo1xt26YKkCGrn83mp+sF8Pi85CPRxZ2cngmGYx8FgEPs0nU5jchxsqtfdZQzq9bra7XbUKHslAMLprVZLs9ksstoOJtIwuzOInU5Hg8FA0+k06rZToAfDXKvVYnt9jtFWw5p6sqFfBwae9jsAQ+aCo4KEBKdBUiz/5fIEZy9pA+31NenaXU9643ru5Dgb6glnDoZT8OwMtIf+YWeZS9dRo2l2dtzXMk4Bc8Z8unPhrHH6LDobzR8iD4wlOn0Hrc7Op6DYdemAT68A4vIRgH8aAeK7Pq6uvUYukkY3eM9/M+gnrzGOHmlgPFxW9IEc9GzZsmXLdu/YpQHGGBuQlyQDGKSVKQCgXu/YwYWkCCLS0HLKPhLe9tqwaEO9WsF8Pi/JFdD6uoa02+1GBndnZ0f9fj9WjECm4Pcmwc9Dt/P5PDLBntzFvQGCyEGGw2E8lQwgsFqt1Ol0tFqtNB6PNZ1OY0m6TqcTx9FD82zyMI7SNolMUpRQALpxBKgwsbOzo263q0qlouFwGJ0SQPbJyUl0RrrdbgS3VMKAwQwhxFrGHFTC2AFmnE120Mxcw8xOp9O4FphXvi8p1pTmNWe1nQEFUKcADBDMOKVaeB8/B7wp4+1r1JlKNMAAUWlbhs2BPt8HcPtYuEbW59VlJg6G3fy58qQ4wLVr7wGfgFmXcnh7+LxXF1kul5Hlp28Obn3OPSrh0YaUFWfsXafvURgcBQC3OwVcz5lhb5OXp8uWLVu2bPeHXTpgfHx8HOUJJKhRdcHZqhQMp5tTylTxWWmrHQTwSiptwISHvSIGoEpSLGkGO7e3txfr/8LIcnqaVE4KI8y92WxKpcvQDdOX2Wymo6MjtdttdbtdSVugQJIffeF7zvziMPD5xWKh2WwWQRBsMYleDvIWi4Xm83lk6UIIsXoHbDb9gs0FqNA2Z9VarVb87uHhYXwdaQYaYwxgDNBKS6Qxv+iMqTe9WCxKkpFUiuCOFdIXZ2KfjhEGLLE+lstlqYIFgNNZdb7jWvG01Jyz3KmO3dcCVhRFZPiZY3emSLTk+w5E3SFw3bwz1866st5YG9zPbb1ex0NsuAbAnXvg2HE9/k4dC48qwD77s+4RCb6PNth/C5wJ9jHG8QUMe6lAZ89TOZNHDxwcszZpSwbH2bJly3Z/2KUBxh7uRfdHKbPzdLMezpXKTDAg0WUEgBRPnloul5pMJhG8wBySCOalydignWmiFi4SCk8aQ0LhbWeDBci12+1SGBpmC9A+mUxi++gjIMJDwK7TrVar6nQ6Ojg4iJ9FIwzoddAym80i+wtoR/4AqACccj0YTJdWMOZ+GiD9r1Qqmk6npcoafrgJ4+UyFTfXcSInAXC5nIO5YlycIU01pUQkTk5OIoOPwVoC3ny9AcSWy2UE4V6iD8AN844D4OF/B5guCUr7IJXrOzvjzVxQ2cTXBvMQQlnv7M7EefplAJ7LLfw5pJoGbDDjEEKIziwRAE+yTGtOMz8OOokE+Dh53Wdnqd059AgCz547C7423bH1Z8cdNJ8b5jwdcy9Vl4FxtnvaQnjmz2S7OLuo35UXui7u8d/DSwOMpXK5NjYpNkFYT99kUzbN2S/AJuBB0m3gzYEFQFraygWcJeT6MJQA0fF4rPl8rn6/XwLe6Bi9ugUbNdfgMBCYRv6QhAhrTFKftGWCU12jl/1KmTh0upyu54whAIY2p/V2/QQ9mDvAPKXyXFrBvLlzkoIwwDbSDq6FxAImF9ADQwuIBoRJ0nw+j4AU4OPsrK8h7ku/qtVqdGZoJ21OJQ6uJXaQ5ubyAua90+mUksOYp/O0tB6ax5HDcCK8fBv35D1vj0tMHHRzLf52BwBn0J8XnkUvXQe7z/u02+UL9MudLu8bURnWa1Fsq0M4AOaPM9k+frSBkoi851El5sLH2pl0fj/OA7dEefgMenXWk2vKs2W71BaCQm170NXbv+W36V1v+L8usEHZnsk+/o2Pqf0Dv6DiZPnMH34BFna2e031wev6gZ/5/hd0vTe8+uNULE/uervvll0qYCxtE9ScEWVTBsiclxQkbTdLlxr4+1Rc6Ha7Eej4oRWVymlljMPDw7jZwbxxHcL+RVGUgCbtAuQC3prNZin5i0Q2NlRJEUjxGkCR0Pl8Po/AhwTB3d3dUvUEr0Xsh4PMZrMIWJrNZkyIg80DxPBv2E7ux5hUKpVYDcSTAF0e4Axto9GIrLnXIYapBYABsgDGjEfKbuKotNvtEkjlb8AuoIvPwHw7cEyPnQaAulMAmGOtudb0mcpz0U6/r0uBWAOeOIe5Y+GMKtIKNypj8B4gl/nkuUEWw3d4xlh3zoAyzq7h92cQSQ3t5n48ew5iXSvs4+hgnHXKevf5dqcplY+4lhhnEWfMNcI4fl6GjvXi0iOPBjl4Zt78N8BZdZegZMt2aa1S1cHnf7Te8tXfbC/+7IU1J9uzs5/4pjdJkj75D36eqr/ybq1Ho2f93bBTV6XVfOYPSvret/0H7YTqM3/wWdoP/dpP6qRY6zM/9Pc8pzZfFrs0wNg3WNgzrxDxgT7vGxUbqYeF2dicMfaMfWnLAq7Xa41GIy2XSw2Hw9LJYCnAYrOmBjKbbQghbviNRiPKBjxk7ZpPQKFrKQFrtVpNi8VCIQRNp1MNh0OtVitduXIl9m02m0UZiLO1kqJcwgEpYJp6xmhgW63WbWWv1uu1JpNJKUGPfuJQUAMZcOL67OFwqPl8Ho/WJuHOazkzJowZYW0v/+Ugy3XU0ha0+gErSF1cNsDn2u22Go1G6XQ2AB2WstyYJ3KmazGVAXENACafdSbW7+XrkTl0va1fC1Dnshp/fnDqkMek2mFnxF2rjHPhNardKfHx9zY6+MU5dYbd1w7rxwGy65CZP5wajzw4APbID2xz6jy4/MV/BwDd/NZ4UqG0zUNIne+UqffxyJbtMlqo1TT67I9KQHG2e8l+5F9/pyTpU1//hxSOxpKk1RPvv+1zYaeu6tV9SdI7vvSVevsXPNs5v3OgGNsJVf3LX/n3+sP/0/9LxWaj9ZNP3fF73C173sA4hPAhkr7LXnqVpL8maSDpT0i6cfb6XymK4gefy7XTTfG87G82xzTJiPd803K2zSsEnFd5ACCA7tSlG75Bwz63Wi2dnJxoPB5Hlk7aamEBCFwHUI4u05mr0WhUkj6gvQ0hxKOfJ5NJBAIOXgGZMMSwwkgu0EZ6+SkYO4AslSqkbfIUbPRyuYyyCkmR0YNV9jG6du2aOp2OnnrqqZIkZbU6PaRjuVxqd3e3pAPFKXGW1AGygzivfMA8wn46KHegA+B3h8TBN0wm8+5g1ZlBX0v+mRSQYYy9J3o6kEpD8O7AuWaXNgH2WSOSoiae8aedfM9ZZ7dUJuBrkWfHn0UvfUi0xBlq/u0SCGdk0+fSJQ04bcgiXPueap/pi0cv/DfCHUxPkKTPDs5pmzPFDuJdAuK/EazdVA9/2e1u/m5nu3wWajVNPvMj9ea/8y0X3ZRsd8B+8Mf/lSRpXWz0Bz7xs297/+bHPaCf/T8ujwPUrTT1Az/3w/q546X+2u/9Q1q96z0X3aRnZc8bGBdF8XZJHyFJIYSqpMcl/RtJXyDp64ui+Lrnc102LNfxOiPmmy8AiO+l2uSztnmbSwCpOEsE80QjpAOSSppO1+2GcJodv7+/H7PkHdT5Zg+YBMTBAKKZ5bQ8AGxRnB7XTCiedp6nbwUk+oEnJycnGo1GsXyb60aRdEjb2qvcg88RKgfMIRNxEOTX9TYBtPf29nT9+nWtVis9+eSTajabMSkt1eumgBeQDGhrtVpqtVqlxCyv/ODzDVPJ+nGNNJ93yYqf3ncesPVkK2cQXSvsrL/rcL1SAtdKpQcpC8m1XH/rQNm1wu6kudwHEOvsKmvZ54v7OtPt447z6PWb/XRG2P00MVFSjAiwdhlrxsBlHvQ3jah46USvN+0gnD4wPy6hgRX2MfTogQNmLzmYOlvc1xP53Lk6L5p1me1u/W5nu4RWqWr6GR+p/+f//AcX3ZJsd9iqoaIf/E//+qKb8aztIxt1vfFHf0R//zM+Q+tf+e8X3ZxntDslpXi9pHcWRfGep2POnos5a+iMFZpKB3GYh0y9DZ7Iw+ZIshmMIdZqtUoArl6vq9vtajQalZhPNt1+v68rV66o3W6XkoUA6GkSEteECYXhBPTAQpPY43rq9XodAbMnuhF2dgaMU+tgeZEXLJdLTadTVatVTSaTCCSw9XqtdrutdrtdqjssbSUFXhYMwEtfOVCj3+9rMBio0+lELTLaYKQu55VBA+QCUADGaJUnk0kExoCZ6XSq6XSqzWYT6yfTVhIOuT73B3gRfk8Tsuivn5jm4+vm8gNAkwN/199yHyxNdHQJjIM/fw4YN+Qv9I3v8CzgCNAGIgMuXXEmFcbVkze5L8ZadkmRJ6/yeeaH9vDsIDdKtc0Oxl2O4uA1TS6kLWnOAc8e/XWH2UEyf1KH1qUqrmF2x8bbdY9LKe7o73a2y2W1hx7Qf/7GDIqzXQ77tPZC7/+en9C/+txPUvHWX7ro5nxAu1PA+I9I+uf2/y8NIXyepLdK+gtFURymXwghPCbpMf4P68QBEGmI0lnizWYTASaMqbN5znABBNj4jo+P41HOgE+SywCpDlJarZa63W4peY7rEbbn8A4vVeYAEjDjIVuXAtBWgGC32411hqnhzCZO8hwsMMBQKtdnBtRxwh3/BwhOp9MIUNnkGS/G+2yeShUqAMrcwxMjGb96va79/X09+OCDunHjhkajUdQpdzod7e7uRgDpCYse1qevrVZLvV4vvj8ajUprgTkHxDuw43OMnYfOcVQcgHrSWuqceD9dPgBAdRDIOK/X67hGdnZ24jw93bp2SQmA26UIOAzMCWvNZQs+x75WO51OPOwEIM/YuDPniXMAYJc9OAj1g1eoKCJt2WzG2+VDrCPai4PHazD9AGHvpzPxDmBTmZXX1/aokDvSXIvrMp/uwPD6ebIaXnfm/x60F/S73VT7RWlktudhlapu/L6XX3QrsmUr2Rftvl8H3/FT+r6/9klqv3cm/ewvXnSTzrUXDIxDCHVJnyHpK89e+mZJ/7uk4uzvvy3pC9PvFUXxJklvOrtGIZ0yRzdu3IibrUsfPITpSUke3mWDdMaL95wh8tPXNpvTKhNslGzUDkAASZI0Ho9LFQ8AQn4iHQDj6OhI1WpVR0dHEVgDgDlsg/6hE202m+p0OlFKQYk6gBKHfcBoTqfTqMd0QORAnQ0eAIPW10P36/U6Jgl6uN6rEDigcs0ngLjT6ajT6USH4sqVK7p69aqeeuqpeLDH/v6+9vf3Y7UAB8aMu5e/ApR2Op3oKPC6s3geene2ESDrTkjK6Ho1C4CZgx/mkzGh/4xvq9W6LXkPQHa2vqPzxNi648Q4cz9ed429y4m4JnNHDehKpRIdP5c4ABQpx8fx2rSLfvsaTfvq7CztYix5HpkXvsua87lxh8UBPVp6l1vwN2MXQohjmpa/c4kGz4mXH6RtXId59d8NZ/2fjgXmM/7b0mw2NbrHMq/vxO92P+zfsx7B/W7VfvdSaU2zZcP+0v479Ze+8Z36vPd8vN7/Fz9C4Sd/4aKbdJvdCcb4DZJ+viiKJyWJvyUphPCtkp5VQTw2GxLJnJ1y5g8wQijdAUDKHPm1z5NnwFoirXBG1lnldJOfz+cxjH90dFRiEwEOq9VKs9lMq9Xpccyw0oTvOeqYjR7pAv2EEQe0nI1tiRFfLpexjjIAwQ8dAVCgrSS8THk1PyQDBhiHAC0yQNolKi7BANi1220NBgMNBoN4306no16vF99rNpvq9/vqdrsRACLpcN3w8fFxBKvOzHmtYubQmeBULuFAC920f85BdMoE87fruAFT6Yl5SEpYtwBF5Cyr1aokJ0EqgKX3p50k3+E0sX7TBDJ06e5Q+qElrCOM9hGhYH275Id7EL1hvZ+cnMQKJ+cBdu7J/ZwRd9lNyurTdhxHX+ueT4DzxLxyP9YH8wGTz5pivlLm2383fIxdWuBAOP2NgQG/B+2O/G5ny5Yt2/Ox73z5T+izv6auX/vXH6sHf3J8qdjjOwGM/6gsHBdCeKgoiifO/vtZkp6VmMQBnzNMgGFADqCRTfY8UOyaRoCKb8TS7eAIsAMDu1gsIljhPQ+zhhA0mUx069atuGnDHPP58XgcQTHh3MViEbWU9Pf4+DjqmGHOAD0eXj8+Po6AB4YX0EafYAxd1wqDCLBkfJ0NBWjCUAKMCZd7shlOBAYo2d3djQmJkmJy4e7ubqzH7ICl3W6XkhJZBy5RQDLCEcywnScnJ5EphyVE+kC/uR71klkPjHuqMwe8uZwAAAjA9fC/a3t9XFg3zsI6MHXtubPKDiZdH+z9qdVqkdlnXTNvgFjWi0sCHMTSVv7GAXQZBoasBEeqWq1GNhYnkiiFrxGcKe+Ts80uQXKpDn1hPQNqvRoGkhmPKLkUBxmF/57gYHoUwOeF9U9bXZrl8qfzkihT2dc9YnfkdztbtmzZnq999wf/mPSXfkwf/ymfpRs/9bGSpFf+kye0fse7LrRdLwgYhxA6kn6fpC+2l/9WCOEjdBqSe3fy3rMyNlU2UmeJPLnKWSVnjjyRizAtGkv/rLStAEAoejabRRDlJdbYKAEfgCU0vl6mDUkFANPrMTu4AoROp9PICgKYnd3yihKABEA276UgQdJtzBrAiM878PCQPCXhiqK4LbOfsDyAHeYbhvjq1ava39+PEoxGo6F+v6/1eh2vizyCA0f4P86QpMiw0g8AGHPBQSchBPV6vVj6DofI14CH01M9sQNcjwwwJn4gBt9D/7parUoHeDD/fJ45TrXvXMcjGP4Zb3daRQHgTl9gc9HKNpvNWF6PPjHnXNufISIT3v+0agVrkWsh9eHgGZ6DtBwdEQnayHuNRkOdTufcdcrhK8ikpG1ZPdpIO1jzXjlE2jLkOB+MrTstzDvPkuv/XXrkgNjbmjrZ95Ldrd/tbJfHNvOFXvm9j+ldn/mmi25KtmzPaD/x4f9G+vDTf3/oaz9Xy/f+Tn3I1/z6hdU+fkHAuCiKqaQryWuf+4JapPJGk2aHu+bQw7gAEwd7gJNOp6PBYBCBqFeDKIpC3W431iNGx8r9HAg5oAM4LpdLzefzqNXkEATXQtMuB6eAMmQbgCM2YQ/le9m0oihi/72EGowmsgYkG1zXAaKDNNdvc/Q09/FxZA4AJYAJxkE6BYX9fl+7u7vxuvV6Xb1eL7ZzNBqVtNA+x4ATH/dqtRoPCPHqB1yv2+1qb29P/X4/AloYQuaQ++CwAGQ96Yz7eSgdoMgYMscwxoBPT1pjvmEnqTWMdtllEAA5B+6ptjUF3Q7imBNn//15oa0AZdf0OtvJPd1ZSyMrtBFnAUeEyAInGPIdr6FNP2gP1UsajUZ0emCBXbrE9wCj3ifWAX1z3TPfdQbck/9SiQ7mjouPvzPhPid81yvb3At2t363s10eK46P9WH/3/dKn3nRLcmW7bnZ2z7uH0uSXvvo/6qX//ETrQ9vywG+63apTr5Lk2AkRXBBOD8N5adaUt+IHQC5xrPRaMRjoWFg2+12SfbgiWlYKi9wPbEDBxhDSrqdnJxoOBxGbS+HXNAf2gQInkwm6vf7EewiQwCgNptNFUWh2WwWwQ0ly3Z3d9XtdkuJiYBLGDwHR66RhI11TbfrM5GwwCASWvfwOIAHiQNjjW55MplE9tcZcELkztIx/6ksxvWvJOb1er0I6mazWQRTfrodUgnGmdcAXYwHY+anwEnbE91wRFhz0rZMGfV9AedegszHCcDMmgCMur7XGWX64I6WV0ORFB0a2gqIpcShOwMu3fDvuD7bHQMcOKIFDtL5Ln2SVJJCMYeMD/NNmUNJkXHmd8DnYr1e3xa5oB2MNcb6dg26j5/3K3VC3GnCUtkF1/C58s9ny5YtW7YXbr/8Mf9U/9M//hzNjj9Ij/zht6uw3/m7bZcGGLO5sIHCRgGMOa6Yzc7Z0zSZJv03+uBOpxPlApJKJ83x+TSk6iFkD6fDMDuAYzMH7Lo+czabxfD/bDYrgWc2en+fRCckG14vFnDkmtnxeByBX7/fj+11DSWsoX8fh4G+A9Rcb8v4pWAKYNntdmNFCph4wB0JZEVRxHrE8/m8VE8asNjpdEp9Pj4+Lo27a2eZT9YKoBHQ6gCGNtN+5gwWMa2p685DqiulrBhA1x0zaRvGRy8Oo+sJkVSI4HM4SYwzQDfVrgKs/bhp1i5Jlw4C03C/O5M+7n59xtAZWqIV1M8GxANUndEFrOMAcV2X4TC2ODa0gfUPEHbQSVudnW+1WiqKIq5ZHzMkSD4eDtTpB8y7f4/vuITL2+DzzrOVLVu2bNnurL3ldf9SkvTJP/Lp0ic9Lr1IJMSlAcbSdpNPNbYeVgdkpBshbKdUlgoQ1t1sTkuhXb16NWb6T6fTknwBMMf3zjPXxAIcfcN2/S6JSuv1WoeHhxqNRhHwUlUD8Oo6Zmc9YZUBLM6a+cYNy03ikYedU2aQA0xgddHyzmazWEnDx0La6r6dvYfBbrfb8bS7fr8fx8UdCxwBpCeAQNqL1hVg4qftOUOHrpgKG7zuAJ614t8FBLtmdLPZRE0rABKnB7DmyWU4B3zOQSSyCuYKJ8DXFYlusMq87hpYbzsMvQPRarUaj0B2Fr1SqUSHwyUb7rixfpkT+uh1rx0IOmPtumeSQJENMV9+GEuj0YhjJ21BZbfbLdX/7nQ60ZH0ccaJdYkQ/XGGHcfLn1eP4ji4Bhy7E86c4QAQHXC9us8ra8Odb+Y+W7bLYpVORy//twcX3Yxs2e6I/ciHfr8+780fryc/5sUpi3mpgDHmzFaqdfSQpm9+fDatluCfo74puktAFRIDT1hygOwJe4STASiw2pvNJuod03bCVAIq1uu1er1eZItT3SkAgM86q+uADqkAQJPNXNo6DIvFIpaC4xhqKlvgQLDZhxA0HA4lqaT3dWCUjivW7/e1v78fJQ2wf7B2VNGYTCY6Pj5Wq9XSYDBQr9eLfQ4hqN/vx3akzgkacLTFAFqXQfjfMM8w8mmiHOY1hAH6Xr/Zx90dNW8Xn3MgyLHIlUolOh9IAKhP7fIG2o6jQP+QfbiTwX1ZZw6C/Rny9rBeAJSsa9YtDiTsr7OrHpmZz+fxOeBegGqXp9BHXmu1WvFkRxwh5oXrMMawwchvPM8AR2SxWNzmJLrW2BPm/LfE5Vq+fpgPn1/AvfeBOaTf52mTs2W7SAs7NX3Twz950c3Ilu2O2T989D/qU/W6F+Velw4Ys3kT6oVdm81mkso6S8p1eWUGZ5kdMPkmKG2z9NGQoi1OM/LRijqIgHXzGr+SIpPqzBvgAI3marVSp9PRlStX1Gg0Ymk4wDahdkLw6/Xp6Wkk1DEOXuPYQbiH5AFVw+GwpO0FDDsz2el0Igh3ptDBl7PyAF1JEeju7u5GsMTYudYXUCxJ3W5Xg8EgAn4v28ax14B9T+YC6MI44jTAXvraYT0BTOv1eumQChyMdrsdHSMqmLBGnJUH+LojA2OILMRLicF8so6Pj49LyXgeymeds17b7XZsB/dPQaRHLwCZXJfv+NqUthIYnx+uwzPkjgMMOsCcdTybzeJhMy7ZcEYfxxFWl7mC6We9sz54nmHXWXsAYBwbnlUcWuYZh89BLmvKEyVdZiNtHWEcDn4ncIox/w3hfb9PtmzZsmW7O1YNFX36Lx/q+1+7d9fvdWmAMRsQtUzRD8O0skmhzwTgAIzTzHCXHwDovOyXh0jZ6LkPGz2brrTVHi4Wi1KyFq+n4ACA4sCd1+gHwHU2m0Ww5SfoMS5sxAAFr7Lg4ByWk2OTV6vTUnAAUkA0DKmDMcAVfyifxuZPez0hCpAbQojA08GFJ6ZNJpN4vHWr1dLe3l48Gpox9WQor01M8hhjGULQfD5Xq9WSJPV6Pe3v72uz2cRDNXCgaBOsuAOn9Xod24JMxzXYrBVP6GSccRQA8DCxOEPoZJEQ8F0cLE8oREPP2kF/S5Il+nqeB9rEmnJwjRPmJ/jxx6Ux7hC63INngGfDJTkefZlMJmq32/G5BPzyOeaOaAb9YR5cL01bqIji68xZXp5p9MGLxSKuYZd04Hx4vyuVSqmvtDkFvoBfB8/8wTlirbIOspQiW7Zs2e6+/em992j3V6f6p7/1ZXf1PpcGGGNshFRqAAAAiPiDVhUW1kuLIV1gswa0AUY4cY3kIGlbHcA3Q6ksSSAk68wdIIXvrNfrWJcYDS/aWPoBkJIUgSuHXwwGA0lPf9qWb84paw14Ho1GqlarUYrBeDjY9iTBNHkInehkMindnyOo0UAD6gaDgfr9fhwrZ/vb7XasX4yGttfraW9vT+12OzokrhNm3Pr9vur1ug4PDzUej0tSDua/1+tFrSpjBrOOfAFWWFJknJnbdrutXq8XnRQfe2eFXffOe8w3DoSvAa7lDC7zSR+QHDSbzXgaIOPqc4+e3eU93AdQhvPnwM0TxDypFcfN6x07AOX+aNbRfgN0kQRxPDf357ngufOyivwfAJ9Wh/DvecIo4B19Nm2EoXdHgXXNWPsJfS4HwZHluy6TYazTsnWMoydVEgXIlu2y2fpoqDd8yh/RD/3wv7jopmTLdkft8/o3VX/7Wv/wQ15+1+5x6YAxm7IDScKkbLLOhLr8QdoyrF6RwBONPCHKmTaXSACkpXKYGLCeSh1IyuE1dL/nARQ2bWcYvUav6xZhhmGVcQII+zM+zqzxGglSXl0gHQ9kCmkoGDAB2AIIhRA0nU4jGGg0GhoMBvEkNB93l2fM53O12211u93I6DkLjtMBI79er+MpehybDUNN+B1Q4+w8+s9WqxXBrlfKAMjx+Xa7rX6/HxPAuLcDXdYMrLPrhllD0hYYpjr3w7MajD4HrAkAJwCc8fCKHM7Cp6Dc1xXPjjtBfBeH0ZlcP3ade7tUiKgFQLEotodv8F3a6Lpl5sbBJY6Oa+BTppZnLQXvRDlwnHj+XS/NOPnYpmUJvd/0j3nxhD7azrPiMhdAtevBPaqULdtlsWq/r+/8gW+T1LnopmTLdsftt9bfL+klAIydpQKsAew86QmWmPJUaXKcgwaYOpgqwq2+ubLxcT1nOwGqntCVJkCl1SIAkePxuMQuA5jZSOfzeUygQ3bAddj0JUVnwKUQRVFoOp1GLTEAwPWzAEn0nhxTzWbvGf7SVvrgelYADeAdgIpml0oUsLZc05lhr3zR7XYj44yu2svRHR8fx+OO9/b21Ol0IuAGhDSbzXiYx3Q6LWm36QvgeLPZRGkKfUCvjDzEmWDGzWU2MKbIG9xhcmDKvJLUSYQCHTYAGCDmaxUwzvrEQQBUArhxBHAOcBqksnwHcOzr1MGia6f5HOvDAT/9A0DTb/rmz1K73Y46eUAxY+Mlzri29wejjf7Me7URj7gA+Pm3g1ScQSIfyDNoO5IK18z7fPgzlbLM7nDjnHkSarZsF21hp67v/pUfU7uSQXG2+9M+otHQF7z9PXeNNb40wJgN2HWQXoeUTTMFtlK5BjIhV4AhGzQspUszPHEGZoxNFTAEOw2odZaQ2r3OOBHmdTbLQ95edspZvFqtpitXrqjb7aooipiIBIsIY8zmzWvNZjPqa70MGuAKQAAI9aQjb4/LBGAeAQcOLvgsrCyJaz4uDmyQMcDCM2/T6bTkXDAfnuzogBi2knmp1+uRAaa9gKROpxPD4rQJMATwdeAImGUM+CzjAYgiIQ4HgTbTf9YqJehchw2j3Gq1SuF3d+LQJ6cJfPyf+XRtrEszHNC5DjZ1egCNkkoyA67nzhXridepN81nJ5NJdJQ8cdMdU09s8zXobcLJpS8+ry7JoD2sMeay1WqpXq/HSAnXYR3y/AFicT69jjKVa3CkeT5CCPGavm5w8DxilS3bhVqlqh9+z89Kql90S7Jlu6vWrhxLIdyV2saXBhhLZRmEtM3GdxbLN1QHB84a+Sbs9XZdbsBmlpZycmaQklB8liQh9MmDwUA7Ozsx2QmmzsEI+trJZBI1rQAINnWAFJIEQK0De0/wAqQAhGAxYUQ9aQxwATPOGAI+cRjoe7Vajayt19UFkPR6vQgSSaiivwApvuv3BpAyJ4vFIjJ2gEbXEDsorVar6vV6cb7QceM44GjM5/PSqWonJycaj8elAyoYb0kxcWo6nZYOfoGt9c+5/ASQ5tU6WB+SoubZqyZwLLnXr/YSeqwHX9cAN+Z8uVzGNtAOXz/cxyUpREwA+jxTqdzAq2Ww5lw/7xICku4A6j5GPCvO4DNWMMSu1cdR9QNKGF//XXBdMk4DERSXMvF7wDVclsLa4hlj/lKdvkswJEXnhPtzHQfm2bJdBvvB33yLpMozfi5btnvdPqMz06//0qF+6LWDO37tSwWMpW0SkW/MUpnJ4t/OFMOOOdBzoIpmcjabRbDqoX/XAwMMfHP30DkVFtbrtdrtdtzMPSzLxoneGBBBmDkNOTs7yuEjy+UylvsCnBJ6brfbMSsfYIZUgQ3fJSaMC4Cae8LAuqTAdc4+HwBivlOr1dTtdkvJaw7eXRsKk+dJgABbQJ2kCOI42MLnHXmHH8QA+4nMhtJxtGE2m8XXYdyplezsMNcCRHud61arFRlJ1hZrIw3J4/zgWHlInvrIrpX3Ork4cGkymdcL9nq+jB/AOIQQmX2PUjC3rHVPUqONRVFE/TyJqM7oMl7Ml4N3HBfXvjNGjI+zt6xPHEaeD0+g9TJzOCV+XTTarAscBtaLV+egH5Ii28+YAIS5LnPommWXVnkUyOt0Z8uWLVu2+8MuFTBmwyaEnIJfGCcHzJ5sxCaHnAJ2iD+wXM4MeSIewCfVvoYQ1O12S+CCzbzb7cZQLpu6J27N53ONRqOo23UQCrvp34PtI6TuiYOud6Y9DnL5v6TbABwAAsAlbZl2Qv6w3iQoAeLQYDszDIgaDAaxwgRzx/cJjzsjSEJYmqznyYt8n0odkiIwAYjQdj9aGWkFQM7LvLmuGPYZwAx4czCZMrI4UYwT3wP0omf1OYAVlRTBGyDUpTwAcyQSPgcpMPb61bTPpRUO3jyxjnsx/6kUwxP2XEftjDxr16MIlIXz5FYALmvOQbFr0NFfIxuCNccppT9c3+UrHkE6TzoymUxKa4Xr0d/NZhPnDZDuvytpdMmjVlzXnYBs2S7aag89eNFNyJbtvrBLA4y9MoJXaGBz98SoFNw5q8MmClDx0KiHcSnfBQCVdBsI5bMAbXSjfmiHh+95DV2ltJVzUOWB8C7/TrPwAbKAY9pE/wFsAHEPOwMISc4CXAIIPdTMtTwpzY/a9jC5J+sBbhlvDnLgwBAYOUDQ8fGxhsOhDg8PY0UKnBZ3IPg3DoykWN/Zdd8whwAo5pz7clIaLDRzw5x1u13t7u5qvV7H60sqlS5jvXD0MtdhXCaTSZTGdDqdWEbM9bqAYuaWfsBgkhDJ+sMxY134QRmUcmNcXUebhv39+fEoBOPl+lhf4zhCaGxhZH3NpJUbcCCd6fbyaoBsgD73Y64AyLSZ97gXbDbXgZnlWfLnlPZ70ijX5LeCceK6VDGpVCrxueWaLgnx9cx68DJ8GRxnuwz2v/zHt6gasowi20vHepWFaq94VKt3/8Ydve6lAcaYs26wwzBcqcTCQ7sAND88wLW1nuAE2ARIepa5tD16mM9yShubIxstyW9og0nq843ZM+JhoOnbYDCIwIU++YbLBu2gSNpWwmC8pG2CH8y0Jz+5HMUZM1hWPusMmMtLGBcACCCbzzD29NePFkanjTQBYAzzx3jDajMP1Jr2SguATa9MwKEmgLL5fF5KOERzy7HC3W5XjUZDo9GoVGWD/qGhBeQyVozRfD6PiZCw2CT7eY1kwCIadNftwvJ6OTXXV7uevNlsand3V8vlMspCuA6Al3lw+Yq0lVA4K4xTQtTDWX4HvOfVFE6TDpmDVDLDGkE64qyrtD2mvCiKWKsaGYhLVOgjDoZHN+ifVE6oo72MvTtQgGnWB0mhDorpqwNg3sNx5Fn25ypbtou27/yQR/RHHr+RwXG2l4x90e779V+/+wm9/aPu7HWfFTAOIXy7pE+X9FRRFP/D2Wv7kr5L0iskvVvS5xRFcRhOd6tvkPSpkmaS/lhRFD//bBuUahodvPqmjwGCO52OHnzwwQhgOEbWS1s5YwcLDRjzcm4cHsHm2e12owyh1+uV2C0AFyAFZowNms2d78DgEiYnVM5nuLdroB1YwBg7gPCkNml7KAn34fMeJvbrklDI5/z7nliWajsBvQ4i5vN5PNzETyjESeF6qTbTQ+e007/r+u2dnZ0I8EgWBJA7i+6yBk/SKooiMvKsD0/a5Ghl+u1yAgehtVpN7XY7OgXU963VaqXKCKw1rkGFDeo6U02Ee7J+AMXdblez2SxKfzzRlPnziArOmb/OunFpAmw2YBcmlTFzPTRjIamU4Ml6AbDy3KUyDOae97inSywcYHs/GT+cLZ5r1vDJyUmU4gDU/bmmL65Tps62V9zwSJRHbegzziPOWJoHcZnsxfzNznY5bPX6j5SUpy1bthdqz9a1/A5Jn5K89hWSfrwoildL+vGz/0vSGyS9+uzPY5K++dncwIGPVM5kZ0N0Jsw/D0t67do1Xbt2rXR8MRt0vV6PbKEnpQGG2PzT0mhXr17V3t5eBFX9fl+9Xi8CZNciwyYBHJ09JuTuAAFgSViXDZdqBmhLYeHY+Al9A0YAxs4eSiqxwABH7okMZDabxT9+LQCXtAV3VKbw09C4Nqwb4BHAx3WRfwDGvPyVtGXpADXoTbku4+JMKuF1gDHsdb/fjyy+a0L9sArmC4DJfEnbRE++R/9ZR2hTKdfnB4ugz/XkNXfAYIupgtHtdiNAo7+A5263WwJ8/gfAyh+cMsadY8C9mgSAlGfI2V9PuKOvgEzWAOPE9zjsBUeDSiGpjtn77ODe9eE4U/5M40z585k+/y4RcYafduNE9Xq96ODCZjNXLtny3ANPvEVfzfrwyE7623VJ7Dt0l3+zs10u+95/9PczW5wt2x2wZ8UYF0XxEyGEVyQvf6akTzz79z+S9B8lffnZ699ZnO5MPx1CGIQQHiqK4olnuk+asc+m7iyypNLfbPQkVTUajRjydqaOP4S2AZrcj00ZFni9XqvX62l/fz8CMA+H+2Ea0vb0r06no9VqFcPeq9Uqlg8jvA7odtaWGqwAI09Gg5UFcLiMwk8H81JbvJ/qtGHYYCcJd3NNZ+wA6M7mAuba7Xas9AGoRZPKgSaule33+7cxyui2XdssKTocAByqC+AAAbD4DGuB8el0OhFQUeEDp4W54v9evxoQDsAisQztr0cxqNAB20y7Aaq+JgDS0laugTMEGBuNRvHztAsnDuCH/IJnwuU3gH3mnP7x3Ljm21l5f5ZYG4yJJyA6SHYQjqOBc5gmqtF2vsdaZlyLoigl36UJcClb7AmjgHCvRsP65dlj/F1iler2Yfn5HeG5ow2eMMu/uY/rpC+TvVi/2dkuhx3+sY/RTnjLRTcjW7b7wl6IxvgB++F8v6QHzv79sKTftM+99+y10o9sCOExnbIT0brdrmq1WgwtpxniHqIF5LH5dTqdCNiGw2G8pm/OsGBs4BgbNvIAEsw6nY729va0s7MTAQXgB9DgDBubK6XWCH/DLpLQheaWttMv+uOJhLDOhKidXR6PxxEcS9vjpqWtntglBeiCXcrBvbmOgxdJkY1FVkHSWKvVUqfTiQd8AGAIV1cq2+N3SVKjnFe1elrea3d3N4IT18u69AMgShk6GHk+y/8BVi5PQcs6m80iiMbxQD/u7DRSDJwrl7ukII37Mu6pBt7XH9/DMWBNA0BhX1mXPp6APe7nlTl43zXKDtJ9bl0qkGq0aYNLGACOAEuXGQGm/Tn0ZDqe1+Pj4+g8bTabmLSIYwFL786gRw4A59yLZ5kky/TZllSqasIYObPurLRHXCSVTll0SRFA3KMLfB+H5R6xF/SbLZV/t5tq372WZntO9t1f9bVqhO5FNyNbthfV3rac6Yd+/KP0Kv3UHb3uHUm+K4qiCCE8J6FdURRvkvQmSQohFGhXPUzKRu56XQ/BSrotVCyVQ6mABxLSJEUgCYhDWuDsNCB2MBioVqvFUmAAVNdo1uv1yFZTng32EbYRHbIzs+lGC7uafhZA5aF43mezp+1s4v5/Nm9YP4AuDB0MMvIGvk+I24GxA7Z2u61+vx/H1pO/PDzO3ALeqLSwt7cXGW80uoT/AaW1Wq3EKNI+2uqVH3wd8Br1plkvXh3BwawzgYA12uAaXdeqOsPp4NdD8M6guq6ZMWZO6ZdHIbgm7CRrlggDAM4rofghLjChruPl3jhgvoYAmV6FxJ8/Z4/T59RLyzH2VP3AueMIb67LOFOWD2024BV9L4wsa9pL3XkVEBxLB7uuwef/PFMAbN5j/t3B5L4upcCc3b/X7Pn8Zp99L/5u98P+5RNXvwTtvV/5sdqt3FlgkC3bvWA/Mv0wverL7/zafyHA+EnCbSGEhyQ9dfb645Iesc+97Oy1ZzQHVvz/vPelss4QUOTgg82Oww8AXoTyYcn4PJuwM1SAUBihzWaj8XgcPwd44KSzer0eD//w5Cs/rcxBUxpmpoKFAxb+AHx43ccDkOAgzOvz0n/uBeNKnxg3tMCe4IdO2JO2aGO/39fu7m4sVwagOT4+1ng8jiXNACez2Uzr9VqdTic6ErTZw9PIXAB/nkjFGMLqO0PJdRhLak17+J3IAP1kDOmTy1tgSFkbzu6n8hyiCqw9ZAJIQBhHWEwYSQfnzAXXQyvvFTy87q60Pe2QNeH1tF3/6g4An0V2w7x7XV8HiOdVfaD9tI91jmQIln61WkWHEadEOnUCZrNZdDhd64+D4Eeas6a9NrH/PjBX7tQwn6nsiftUKpUI3mGiHey7pTpxniUciXvE7vhvdraLt3/42Ddot9K66GZky3bf2AtR6n+fpM8/+/fnS/pee/3zwqn9TknDZ6NVg3Vi42Pzc32kM1+uLWUDRh88nU41m81KEosQQgTADjZhzzzU7Al0gGMkAx7qdWaZZLzpdKrxeHybXEO6nb1yoMnmTZ/SMK8zd66bdV0loAMGmFAvDLRXXuBebPgAQELlMI5eeQIgCjO4t7en3d3dWDOZpMXRaKThcBiZ3uVyGWsZr1YrtVottdvt20AI95RU0vA2Go2YPAVjClvoAAVAd3x8rMlkEueBMQGcObMMo+nJaYwB7CTrxMP0IYSYcAdj6evLE9VITGNdOgvvTLc7ZRy5vV6vI9NarVbj2DE2foCN674xZ7nprzP3OH1IdBqNRgnQsw4B4B7x8HYCFgGJfAc5S6ojP4+t9TUMoGW8cdxYty5lYo15aUDXn3uUxJ3h2Wx2Wz1inBD/4xIunAccTnfM7gG7o7/Z2S6HfdHf/7M6XM8uuhnZsr2o9svLuf7R3//Uu3LtZ1uu7Z/rNGnjagjhvZL+uqSvkfQvQwhfJOk9kj7n7OM/qNOyP+/QaemfL3i2jSF5zEPdqTyCzdrZO+l0Iz44ONB8Ptfh4aFOTk7Ubrc1GAzU6XQkKW6EfgKZa5ldLwiY8MNC2OBdioEsoF6vazweR0DoofY0Gc7ZKICmJ365FAEGEVBYFIVGo1GppBagADAAc+aMJMAF4ACj5uN7fHx8G4CCfQMAtdvtmJTIiXdFUZTA3sHBQaxBzPePjo40m83U6XQigPV6uIz/2XqLoA3taSo3cGZT2jKOrmdl/DxRi2s6W8x7Hsb3CgeMJQA6hNMDYqhIgQaaShBIgnCEYK0Bmzhb0rZsHfMD4IRVxlnxBDMMJtwPyQDQM64uO6JvLuPge8hzfH3SBxwF2kdNavrP+mW80mf1PEvlTrSZ58bXiFdLYW7cQeY7Dmz9t4E++ecZP2eJPUETWQ+sujvL/P10fbsM9mL9Zme7ePugr3uzxn9mo72Lbki2bC+ivfPkiq5/05vvyrWfbVWKP/o0b73+nM8Wkv7U82kMG9h5rJ7LK1xW4EcF37hxI4Znw1l5sH6/Hw+UgEVutVolhgrwykEVAGQSxjyxx5ngavX0aOZ+v68QgiaTSQTFUvl4XGevnBl22QKAnxJknnAHCAeEwe4BSrwyAfeA/QPMEdL3Y7E9NO4gjbbCjrvm+qGHHtLLXvayeEAJIAJgCFvN/3Eq6AsSDal88uB50hSYatcR+zHDtu6iEwDL6WF7nA4YYZelAEA5PIPjrfkujhBh9Ha7rd3dXfX7fUmK8pxUH8t3kSp40p9HCjzpEFCMFIc1Ryk4l8/AXLMOkDWk8hBkJC7P8TaQ7ErUxTXsDkaZDzTjVAjxkxz9JD8/VIPvMY5pTgBVJCSV3qtUKqUoD3PgMg//vDPQrnt3AJwmDXIfpBfStoY2+Qk4MlyXsXLH9zLZi/Wbne1y2B/+8r+oH//av6d25Z5JBM2W7Xnbu04m+ltf8cXq6GfuyvUvzcl3bDCegARoTAEQn4GtAkh4map6va7r169rf39fkjSZTGI42nWvkmJYvNvtRkBEyNRPJ2Mj9NAp4fT5fK7hcBgZQ0DxeRsoQD5ltTCY2uVyGduBA+CHSABK0NzCLsPs8j73nc1mGo/HpYMzuB+sM8AQIARYAEj1ej1du3ZN169fV7VajaBwOBxqPB7H8SmKQsPhMB6AQh84VpsDVFxKQPs5NAMngXWBBpujmplDAKOHwT18z3dg3B3sIYEA3MPKOsj2REAAIZKFVNPuyaCwrcVZhQXeJ2IBGw2gZixcH+3sLgAfLTMMNu11OZDLVLxNmDtF3k9ANmsYEMn6cwDPe6xj2j+bzWLlEtY6z3Sq1WVemTfXbLsD4A5bCkQB5P7b4M+VS5f4LmsLJ9LHh+fL59rL7bl0izHKlu0i7YE/+S41Ql6H2V4aNtzsqPM9dwcUS5cIGMNuegUA15x6hj6gjk0LVoikOvSvV65cUafT0XK5jIDQE5BcQ8iGDKjg1DEADMDJtaAArvV6rRs3bujGjRtar9dRekEoH+CFFhQQCkgADNEGPg/IcXYP0EJpOgdX0inT5cfxOkhwZtlBBu0BGCLvcDZeOgVTu7u7unr1aqy7jN756OhI4/E4amABv8hjqGCB9AMnhTZIW2kATJ8nV8IaMkcwvDDnSE8ALtSiZi4BkMy5l+7zusbMKwDL9ew+91TcwCFxoOlA9+TkRJ1OJ+qFnfV0uQF/JJUY9c1mU3K00pJ6AFln913rC+jl3zxH6GVpe6rb57Opdpj16MmMzgYjqWB9nqfTddDqDDftd0DtjpP3w2UYOEkAXMbAozv+DPHs+xy7vEXalm7jmfXETP/j0axs2S7K/t4rv0fVXK4t20vAnlpP9Zf/1zcq6L/etXtcGmCchlnZbAAsgDQv79VoNNRut2NCU61WiyDkypUr2t3dVbVa1eOPP673v//9WiwWETB6gp+0DaXC6HEimeszndV1gLNYLKK2GPDoekbYTAAnDB9lvwBS6GoJ3cN8I+ngM7u7u9rd3dXOzk5kRgHtzhqn1RYALYAT2gOzSlIdbG1RFGo0GpG57na76vV66nQ6UcdLwh1A0Z0J5pM+oJMej8dRcuFgE6ACcMbBgJ2DaT0+PtZoNIptxpGg8oODX6/E4YxgGspHHoBcwEvgeX+KorgNpHNtnBmAK2ONHnk6nZbu61Uv3PlIw/xeuYS/WTfME2vZy5fxWfripdsAuC4xcIfPATCgFjlGyrx7RAdnkWfHnQqvXezyE5fFEAnxCA3t5Dlk/NJKFunzmUqwHDiniY8u+3BJC2OA7MXrPSMZysA4W7Zs2e6+zTZLff6nfZHCf7t7oFi6RMAYkOMAmE3bk88ARIQ30fsBVHq9ntrttvb399VqtTSZTPTUU0/p4OAgXh+mECbLE70AgWyUbLh+ZC1AAbZ6NBrFwwy4HsAM5m29Pj04QlKphFgIITJbrr2EvaItsGcwr4PBIGbjAzDQoXJEMayjZ+W7xtSlACQaOUO2Xp+WVgvh9OQ6JA6cVgcoBuTCbqKHBmBTUQLtbnr6mmtxYREZZ5fH4EigXQakenibuZK2gJJ7AHSk8qExOCsArbRihLQFYbQRwAu76cldMMkcR4xEx/+wbtPa1a5hlRR1vIBl+gxTC0gF7LJ2cCAcdAOAPUJC/5Av8CymzC7OAI7MbDYrRR4AnTir1K12lhw5AqCeUmmsdZc5AZS9prJXg/EqJP6ey0joKwyzy634HuNAMmeqOeZ3gHllHFhrHOmeLdtF2Rt++UgPV/NhK9nub1sXG/2h3/XZ2rz7V+/6vS7NLzobOmDTQ5wkY3m2e6ohRBtLfdxu9zSsdHR0pKOjIy0Wixg6TuvCenIaUoQUxPqJZYA0r1xAKS1nPwHKgE3fyD37nWRB12sC4NvtdolBhIEFTHKABRpa7kN1DsbVw8bOcgESAC0AH4AH0ogHH3xQe3t7sY9+fLW01W/SfhITW62Wrl27FoF1CCGCIsC+64F5zSuE0GecCJdo+FwC7PwACMzBEnMIIG02m/GerlPmfT9wxdnlarUaPwtg9cgCoJh5dmeJfjpzz7zwfT+aGQOU8X2eD9cPO5BkrGGW3Wlx/S0SGthUr6bhYBIAyTh7AqmPLd9hrryiBu3CuZHKyZM4fIy/zyMMss8Ha5r7e1sklSJNPAewwgBf1627g0pfF4uFJpNJdOD9vj722bK92PbvP+GD9dk//0t6WS1LKbLdv/YZH/kGrd7/Gy/KvS4NMIa5cWaMjdwBFSyeA0mAHJs2oAWJAwyfl6Pi2oA3au06YIHZdC2kh865JsC31+tF4O1MIKwffaC/Hv4FkAC2YOOc3Qb4AigAFw6giqLQeDzWaDSKgAQZBYDBnQMAMAeeMDbSKbinNu6DDz4YtcXubMDGeZUHxo8kvk6nE2UH9BlQT0ida1CdgEND0AUD0AA4ODGeXEcIHjYVR8KTq7w6BEAMkIQBeBzsY55ECAjGOWG9eOQA6YCzlO7gOVBGcsM6Yz5Zv6wd18fCBvsRzi7RYIwAkshavMoHAJC5cVkHr8GM1uv1KJ1BD+zJhO5wudPCGvfoAM8IkhovwccaIrEyZfvpD3KLVM4h3V5BwpMA+b3w69Jm1nIKinEUuF4ahciW7SJsffOWNs/8sWzZ7kn7tI/+NG0Oj7SZPvmi3fPS/KL7ZubAAEDJIQmezNXtdiM4QErBtY6OjuKmSEgfUOQh516vp1arpfF4HO/pjBrgDwbRgSR6ZSoj8FlP+vFNHFCeOgCuffVTyABD3i5JGg6HJZDQ6/WipACwBrAAaEjbULXX0wU4Axxoy2w202w2U7VaVa/X02AwUK/X03q91s2bN3V4eKgQgjqdTkl3S9IhmmqvdYvDMBqNdHh4qFu3bkUmv91uR7Dh9Y29egHACikBIXvvW6r5dAbU9aLSVqvr1RAYv5TZJ+SPpMcrjkjbsmqMKRVNPEkLA3gyf65VB+ghh6AdaHEZH8C6H8RByB85icsoAPNoz89zjkgk9IiApBJYpo2z2SyuUb7vkQZn0DG+x/rgXjxXOJw4PzD4AH6cJOYbc7mEG05nmkAJO857RISm02lJTuF6ccbT5R5ci2hLtmzZsmW7c/ZpH/eZWr33PS/6fS8FMHbGzqtESNuw8GQy0WQyiQCY0+bYDCeTSdS3AlL4f7t9qr/y5BxpC1r5AxuM5tiBqpfNAhDDNnvY3UPhnhAFyHF9KWDHWWlJJdkFABP9MIDC2TkHfA6maAubOcyefxam2Zl3wu+TyUSdTkeDwUAf9EEfpCtXrsSxXq1WkU0mKRAAAWAkfA+zvVqtNB6PdfPmTd28eVMHBweq1Wrqdrvqdruaz+cRQMMqsj4A9JSFo9qEH9jBvDO3jKFXuJC2jDBa4NVqFQ+BcTkIn91sNhG845wAjNBvw+p6JAPw7PPlNZs9Qc6Pk3ZpBYmm/jy4HnY2Oz3xCnDG2OHoIOlxJ8IdIQeuHqXw9evjB4BcLpe36at5LugT88JnxuNxqYqFjwHAmPUCAKauMpEU5pb2Ma4OVs8znAo/BRA2PF07/lvBaZokdfrhLTzbGRhnuzALQf/7r/+sHs0yimz3ia2Ljd7wOV+o8JO/oNNziF58uzTAWFJJLuDsH0fippnrftQzzE2j0Yhlu2D42OgBEbC2MEewTYBFQMRkMomMFff244l3d3dLTJWz3I1GQ9PptJQFD2CazWa6efNmvJdLADzxDjbS2TQvK4Y5w767uxs3eTZ9Zwm9jbCS9AsHYjqdxuObSZq7evWqut1uqWYvY+d6S0+iIwlxOBxG1vOJJ57QzZs3NRwOtVwu40EelKljzp25lVQC+uiBAb84C57w5fIO18kyXpJi4qAzsawdrx5BZKHX60U5DKAMUAvL78DQtcDOWjKnLrPw95kTgLvPP0CT61IGkPs6S4tW3bXwaSUQ7olD4Mdb00+vREHCpTt0JMniGHhFDYA2VUN8PDCeeR835spZYsab1+mPO4KAY8aTdjJ+/PGIBOvDfwNwxIhOMKa+Nv13KFu2i7DH3v5OfXRj56KbkS3bC7bj4kQnxVqf/tifVuMn33KhbbkUwFgqn04Gs4luE0YOq9fr6vf76vf7cZNuNptROwnL5Il1rr/cbDYRSPvmXq/XIwgkHA1YlxT1svzxygok/9Xr9XjAAUDcmePFYqHRaKTZbBY3VRIOOXmNthImp8+AFACYJ0cVRRGvRZ+90gIADl0rumhAEqCYwzomk4mkU3C1v7+vwWCgdrsdgRgAimO2GUMS6QAnk8kkgqNbt27pqaeeipVFAOmerOXsKUw0jgWnGlKVxJ0ngJ1LRJCJ4BAwF5IiqwqABgQBsAHAOC+MK9fabE5PIByPx1qv15E1BFwB0pw1BlClulbWj7QtVwjrjswD8Mna8KhIt9tVpVKJMgfmH1mPzwtVS+gfzw+OEa9T7WS1WkVHjz4URREdOk9KpT8+5qxTP21xZ2endDIhBtB35tblOZ6s544y48Ka4jXXkePEwTz7oTt+HS9Rx3zyN84d/eU3JmuMs2XLlu352+F6ptd/9V/QtW/5KTV0saBYuiTAGOAD8Gy325E9dGDhFRsAoYBDmGE2LpiylAXy0lVoLtEGNxoNDQYDdbvdCNAAlgAokqu4FjV1YUhhAh30eR8JdcMkAzIJ08KeOeNG6BcQQ9kzNKDcw6sFAMQ9AQzg5Nn4JK41Go2o/wSAtlot7e3t6aGHHtKDDz4YxxVdMcdAM0fj8TgCaoA2zkGlUomVKGirJ315yTfmDIaQseZeHGAibaU3Dk680oNruN08FE6Yn5J3HiFwWQRtZyxhT12i4qx2KqXwJE6cEk+A436wkmiJPeKAdpe5J/mNe/GMOHMNK833qcLBekDHTyIc/eIe9AknhLWDI0dfeBbROjN/yDaYE496APT5rJc/4zOebMk44pjBKLukwueb8UCCxfPH2JLk6aw3Y+fmSZg8k0SOnk6+kS1btmzZPrA9sZro93/jX9YHfcubL7op0S4FMJZON3BqELMxOhuLAYwBMJKihhfmEk2uazqlrf4SBhNtqycCoXMcj8eSVALBgACXOozH41iVwCUhAAQ+C3Dxcl6u65UUmUoAFOyl1w1mfFwq4QCTPkrbUnReUgwQBihm/JBBwBbP53P1ej3t7e2p3++r1Wpps9mo1+upWq1qOBxqOp2WKjKMx+Mov+j3+xqNRqVKALT3POAD0Ab0ML+AoclkUooEkPTocwQ4SsvjOdAFtOFE+EmELjVhXJxZ5XVO+qOWb7omXAaSap2dgWQ9AFiZS64B4HTQ66F8IiU4HS6ToO1+WIbLN/ygHEA9wBTHiDWMjAJw6Rpdd7y8bjZANo0EAWzd0fU1CuhkLFnL9MF/B3AI+Jzr5V0X7bINH3d3lP159ecRh93BN+PKOvR2ZcuWLVu2Z7b3rib6+ePr+vJ/8kY9+rcuDyiWLhEw9goG0ikoAaAB6vgcjLHrTD0su7e3p263Wwors+GfnJzEpKF2u612u62jo6MIllarVQzXw8wSQiZs6lnsN27c0HA4jCAGUFCtVkvso8siYK48IY4N2LW6gK5qtRoPEaEkHPdwIEW4ejablQAejKGDVL8G4e7JZBJP8Gu1Wtrf39ejjz6q69evx74hERmPx7p161Y8cZD2Ig/x2rHIUTxB0UuO0V7q7VLz2KtTcIAKunLXeUoqjTGg0Fm+tJoB68blEUhMms1mBELubDBv4/E4JmORqCkp6mgB/AA/l3swjilAI6rBWnO9L8mOnuiGc4fudzqdRkfKNcHeR/rpshHWOMDUK2Ogw8dZo0+AdBwSaesQ0EaX7jC2lUqldMoi8+EgFnDqUhKPungyIE6CJz8yb4wBvx0+Dqw7HELM9diMswNil+z4MdHT6fRO/ARmy5Yt20vCfmM10Sf+u7+gV/+pn9GjulygWLokwLhSqajT6ajf72tvby/KE847chW5A9UBeB+2Ci0smz36RBL4YJVIqPLDERyQppUFXBN7fHyso6MjTafTCFhhw5AEAFyQW4zH4wiCHeQDGAFJUllv6ify8T1PJAPMALj4f7vdjiysa2kxAIUfZDIcDqP+dzAY6IEHHtAjjzyiwWBQ0vDOZrNYHQIwxDx6jV9C8rTbWeu0L85eo4FFZwww4dpch/Z4vWmADvPFZ/zACAAw44CkAvDmACi9BmvJ9bI+ngAuWFBJpfWbzgF998oL6N2lbQUNZ765HsCMQzRYs14dBRDIumK8PdrAugOUp7rjoigi4wxLizH+PiaMhSfKSdtDTnjNIyau78UR8n464HWgzmd8/QOKcaAA8Wj8+bxLIGCaPcHP+8EYetWOzWYTHe5s2bJly/bM9q6TiX7vD/15veZP/cxFN+Vp7VIA4xCCrly5ouvXr2t/f1+PP/54qSA/mx9JVbDFzu6yyXoJKUmRQU3DxiQU+SbLNWE+AReAKlgidJgw2jB4sEcACyQABwcHms/nsbwbzGuv14sn+gGgvWIAIJ5QPoCHBCUAO44FyVBpeNo3dsaGSgqezASIQGbyspe9TIPBII4L4fLhcKjDw8PI8AIw/Ghdjm12AO+sqc89CXbIYLxkm5fUcr2tj7kzjmnJNmnr8MDeIgVw9pC1wH3SpE0YTKIOXurOK0r40c6w2n4fl4/QJq8I4oDegSHg3Ss2uN7YZTcws75OnP1mzbhUBVBOkh7lAQGqVGBgPbJmXYYCOKUyCa+l65Cx5ZlmvHCYvCIG7zG+zL+0rVLBe0g9UicDR8XXqieQcl0HxavV9uhxf3YcvLMW0iTCbNmyZct2u/3GaqLf+6Nfptf8yZ+96KZ8QHtGYBxC+HZJny7pqaIo/oez175W0h+QtJT0TklfUBTFUQjhFZLeJuntZ1//6aIo/uQz3aNSqejRRx/Vo48+GkOw1Ep1fSCJZ3t7e6rVahoOh1H7id7PdbWEWmGTea9arcZNEfBF+TI2d0klYOYyCrS1sKFstvP5PDLI7XZbs9lMo9Eo9oXPITfg4AuAxHK5jEdAE8qWVCqZlSY0kSBISJ8kJweP5zHUMKAASfTAAIsHHnhAL3/5y9XpdGJlCem0hvHR0VEM76PJlsoHiHA9l1QARiRF5g7pgldwQLMJkEW/zb9JsATMoPF1IIj+VlJJ80ubYFsBQoBlQI/LH2gTbWSMXDqTjoFXr/AKGDDBrEmSGWHZAYdpsqnrtAHZXjfaHSpe93FiPOkv14Jt98oPsLde+YMxZsxgdFn/rG1POpS2VSW4tycGMq9eMSSVUHB/l494zoEz4shRPBmROaFtzvSnOQGMt5dpk3Sbo+QRnsuqL34xfrezXayN//Dv1CM7b5GUy7Vlu9x2uJ7pDb/4eXryN/YvPSiWnh1j/B2SvlHSd9prPyrpK4uiWIUQ/qakr5T05WfvvbMoio94Lo2oVqt66KGHtLe3pyeeeELj8TjWk3XjUA2qRsAWdzqdeCKZb95e/gkwxHXQMXK0LXpjQsOwqsgZYOIAv7DIMFqSIosMw0k5LzZPpAutVivW73UG2JO4XJ8KMAZwUQ8WUOCnpAGCvLYu7YNt5xqc5oVEYLM5LWPX6/X0wAMPaG9vL4Jm2oUGGWmG95/2TqdTTSaT25KwAE8AJcbWEye9bi+sKzpcxsLZX+a1VqtF3S9gzEEmjLRLP3yc3ekA+HB9xovx8aQ41zR7mB3A58lhXIv7UB4QJhZg7EDbJQGMEaDYHUfu5SfTuebYxx1AzzUZP18zOBWe5Edtb4+KcH3u7+PuMhmAMfMKaHX5AuPkjhHv03ZnkL36B0wuzwEgOK3xTH+4Zio3ARizxnGmeY9/OwN+XhWLS2Dfobv8u53tYu2z/uqP5hrG2S69TTYLve6H/qxe89hbtHvRjXmW9ozAuCiKnzhjFPy1f2///WlJn/1CGlGtVnXlyhXVajUdHR1pNBpFxsz1mdRglU6ZSypHwCJ5CSxCoCRN8TlkAp7gAxPdarVKJcO89Bu6V9hfZwYBJIAGSqkB6JrN5m2HdXjSEmHv9GQy+k9SHa+n2tsUjHFNABdaUsANAAGQD1uGDnNvb097e3sqikLD4VCtViue8Ec1Bq5HeN/ZSlhzAI+z6gAKWDvC/rCcOBXStiwa4+ZVBgCJ/X4/6ov5LADJJQyur2VeU71oWl7NGUv64BUZ3DnC3JkDdAGyXSPsCXeMS1rRwqUczk4yLv4ZwCZrA4BPX1zG4ddz1pwxpl3ueFHdAt04iYeMoTO09N1Bayp5cQDNmnZ5iR+b7kyzS1fc4XLH15MLeaaQZ7gEx+Vazkan5eUwnw9YbZd5XCZ7MX63s12cPfWnPla/o/1NF92MbNk+oL3y+x5TOK7oNX/2py+6Kc/J7oTG+AslfZf9/5UhhP8iaSTp/1MUxX8+70shhMckPSYp6oLH47GefPLJUqIZG6knThHmBKC5Rtg3PF5jI3R2UdrqPJFgYB6KhWWl9qtv3DB8MEwceessHYDSmd1UNkD7AfBoc10PDNDgjwM439QdkPhx2H59gJWHln1cSF4E5ANQAP+e0ITxGeQjAGKALv2mL4ApgDkMv4NRQvsAcO7hcgl0116VwUE648V68gQtN5dhALY44hhmFGCEvha5Swr23FnyZE7MGWHGxFlgTyL0deL6auYKqYzr1AGgzlD7M8R1PaGM58TlF16isFqtxiiDP0usOT9t0hl3Z/49kdGrPVDNw9llPudzzXgBlj2S4iDaJUbO0ONwONvMeKVlIhkTny/uhXPla/setBf8u91U+7yPZHsR7GP+2M/r4/NJ5Nkusb36H3+JXvPlP3XRzXhe9oJ+0UMI/29JK0n/9OylJyQ9WhTFrRDCR0r6tyGE1xZFMUq/WxTFmyS9SZKuXr1arFar205FczbGj3AG2Hk4lJDpeZuWh0n5HMCFTZdN1bP6YUUBiuhqHThTXxig7qFZdL/OUMJgOTAK4bQuKiCadgD6eQ3ZB6CJz3jpLhgwQDGlx2CRYWhh9+ibJyy6ThuNdlEUkREnxMw9YdDm87kmk0kp89/DzM50A3q8hJxLM5whda2r991lDjhJzsSneljAn7RNcktBJW0D+HnJL+aL+QCQueSFz+KcuYPH/Vl3qSSAseDzRAsYf38eXCLj7KmDYpd7sEY8gc9lFM4W0ybWB06h6/49Ec31zF7dQSpXlGDcGR+eA0/8pN2MM4fvSCqB9lQb7mx/WpYwlXjwbxxIpFJUPPF2uFafdYlj7nKZe8nu1O92P+wX6fvZsmXL9mF//4161VdfvjJsz9aeNzAOIfwxnSZ3vL442/2LojiWdHz2758LIbxT0mskvfUZrqXJZKKbN2+W9KuAFNhJjmH2UCngixPA2Ew9E11STCbi1C5pyxi75hFQiBaVJDlKYtHe5XIZ5RwpMEjD5M6cUQ2DNsA6AlC9UoFXDUC7S19c5+pAAxYN+QPX8KN2zwOjkmLZOQcbgAfC6CTRuYyC+RiNRqWjfwGWtM9LXwHmfNy5N/eFrWS8nbnDXDIDgw3LKKkEYgHYgFbXiQJuWDO0HSCEfIZrArQBRjgb9BPGHvbTQSmJlq519SgA84JzwLy4Zvc8UAbw82Q7dyy9RJ2fguigj8+TKEgkZTqdRrYY54zkOT+mO9UEezKdg2TGEIcAh9SlKy5zcIeQ/rHGWC8u5ahWtzXCXXOM8X8cbp4nl5GkrDTrxX97HKTfC3Ynf7ezZcuWLbXf/rVv1CN/995kirHnBYxDCJ8i6S9L+oSiKGb2+jVJB0VRrEMIr5L0akm//kzXK4pCN2/e1I0bN2LSEBvR2XXVarXi4Q4csLBer6M2mKNZ/dhgDyV7ohebJcwPQBxwDXsIMCBUD5u0Xq91eHgYpRN+YpvLGhxASFvWu9PplELilOtyiQIgBpYb8CVtQX4IocS2OSD3ihfT6TRqJj1Jyh0H2gigBsTM53Pt7OzEcLek6GBIKgFjHATGE6bPtbM+Hq63TVlv+uTVExgPNwfMkkr3gfFG5+oadECXh9jpk0crHPjATgMCAUZIabzKB/NG/3CEYLd97XufYfsBlfTbZSjuyMEQOzPtunxPSmO8kET455hLgDdrP00iZUyZWz+Ax+UOrCln2H3sU32zr00H9zgjvObSKoC/R0DOc0zRsLPm0YfjLOEMwyZzP57RVNbh65C+3Qt2p3+3s12c/cpf+3B9zzf8iv7n7m2kfrZsF2av+6ov0YNv+hmpuLeDSc+mXNs/l/SJkq6GEN4r6a/rNJu5IelHzzYqyvt8vKSvCiGcSNpI+pNFURw80z02m40ODw/jSWoeIoZl9dPQOOmrUqnE6g4OoGBcAQlskp7U4yFswAtAADat3+9H3eV8Po+h1sPDQx0cHJTYOsKvftRyypByah9Al+90u101Go3I+rKxA+gJZXuVDE8aQ0YAeOCaAGdPwAJUOXgFEPhRyoAX1y4D/mG8YUcBxF7lAMDiIWtnMvkbRs4POnGHSNomsQEw6bszkjCqnuTFew6SHKi5thlnyZlAQKmvEwev9JEqHLzHmqXd3Hs+n8djs+kD4+IOgyd1YjhgWDqWrCfGzJ+tVNdLVRPm2nW4JIwy1kRGSNhk7EheRVIAO+vt41lMHQycEZ8r7u/OWuoEsSb8er42XIbBukXqxDwAzNfrdaxk4wmMtN3nI70Xn3ed9GWzF+N3O9vFWeOH3qJf/9prOpWEZ8t28fZRf/VLdP07f07F5t6Slp1nz6YqxR895+Vve5rPfo+k73mujQAYUzCf8LuDDA7CALRKWw0rGx7saa/Xi4ddUP7LAQPAjzA8x1E78JZUShyiDYeHhzo8PNR0Oi3pbF1D6iFyWETAuifD8X+YRRKsaCv981JingTkrBagrVbbHsSAoav2a5w3JgALD+sD9vwgCAAh7OdsNoul3wC6sJ3OHqZJZSlohRFl7DCvPHC2ziKQcV2t63MB7KkD4CwgYwzb7olszAX99XA884y8BAkJbWGsaTf3nUwmJTmOA23+BqwCzvjb9c8OIGkL7bRnsTSOALvzxtM1x8vlslRKcLFYxGgJn2XsuGYq7eHZYq0BJHG00iiI63id2UZK41U2HERjfI5rMmY4asyZO15UYGENMaYpYOf3yV9zZ/KyAuMX43c728Xaj3/u79Trvvvden3r3gci2e5t++i/8iW6+s9/XsXJ5azr/lztUqRTI1XwZCU2ODZdSTFcjZQAWQSsKcyh63XTWq9+T5guTvkCUMHMegJTp9NRtVqNQIjNnU0d5smvCxBZLpdRpsFGD4Cl8gGJfc5wA2CQVzSbzVICEv1B9oAcoNvtRuCWsqtPB64B84vFIh424eWtnG0HcEwmk5h46NIFaRtOd10zTGlRFLGKgR/44UlaHjKnv856wkg6w+sl7gBcACZAUaoZlU71zR4tYB36tR10AmTX67XG43EJ8HpNY3d4cPrcYB8Bci6HcW2uj2saTcEAn+lnpC3wZe7RD7scxyUSgFNAMcmUrCO/flpuzv/tkggHj9wXRpfn5+k03Hw/Taajzz7HjKsneXpJOdfgs07ccUzBruulfYy9P5cRGGe7/634L7+so3VHmTXOdlH22//mG/VBP36g/V/7eRUW0bzX7VIAY8K7KUPnTJ7XFEbiAIBk4wYUekk3D306m8Tn04QbAByAjc16Z2dH4/FY4/FYJycn8bQylz9gAC9P/HPw5QAeoAxAALDQBwdEKcsJ0KTtKfPJa2k9VkAF4NDZVJ8PmPJ+vx/7AkMMI0uIn8M1pC077MAMIOkVBKRtWTAHnw4+UoDqbfWEOBhogAwsPX983n0sGC+va03yJuuG77MOAJNoV/2+6XVduuGOjjPJgH1nPUnQS9nLpzOXVqQg3u/hsiLm38vUsU7X63VMLmUsWYcpu+4MrjscGPPrSZup9tiZYtrJ+Dlj7FIbPsM9WUvuDLusiX6g9/ZEQJ5jbxdj4s4lY+1a6HutKkW2+8e+/ff+bn3wf/7X+ggrnZkt24thH/5336iX/YOf18aIk/vFLgUw9jA7ANCBIPrVavX0hDwP9brGdn9/X7u7u7eVuEIT6+CF1x30eNi11WrFUlXcH/as0+lE8OB1jWkPIBAZSLVajVINzKUAlMGCCe90OpG9Po9xgzUDLACGAMGu0fTQrwMkAAoA1rXWsPdopvkskgGkBgB3StVxT8A8INgZSQelzvABMlJG0tk6B+7O/KL95h7OLDO/zpDTX6kMYP2gERh+xt4lGw6cAFtoV9GEcwIjiW7Mb6qvlhT75eXcnF32OU7XQpr8lTLurBPuT/SF9c5nuD9zzby6JAIHwp0b2oqkydleIhDr9fZIadpImzabTWSQXYvebDZL69ZlIO4o8AzxnidbkjTqkSieMfpPv9Lnyq+Dk+Ta41S2ki3bRdjqvY9rqdu1+Nmy3S374O/6k/qQr/41PTx8qzb3iXQitUsBjNlYUqkDG+h4PFalUtFgMFC73Va/31ez2dRsNtNwOJQk9ft97e/vRxkATJuXAPOMdTS/kqIWmc2v0WhoMBjo2rVrkcFDTwvg9XCuV2hwjTHAqt1ux7aT0AQryMbdaDSiNlpSrM4B6GdM0Go6Q+g6Z8YRHTWggLA18gJAMfdno4cJrtfrunbtWpSZHB8fR/aQ9k2n01JFABLYGJudnZ0IDAGy0vZQCqmcNOavOZuIE+TsuSe1MTaeWOVMJAmPAGIAH/ND35GFSColSXJNDOcAIHlychLlFH4kOSDKGWHXn3siJECcsXM9tQN9N2feXd/O95gL7uF9dUDJ50kOdQ05a5XIBPdxiQhzyvpnPlmnXp6Qz/jJcZJK65T7sB55NmnveREFj/Yw7+jcPXKCQwtg94Q9HD6+g513Px+3Z2Lzs2W7m/bXP/R36x/89x/To7XuRTcl231sH/qTn6tXfP479erlW7Ve3RuVeJ6vXRpgDHODzpENxxOaAI+9Xk8hhAhoe72erly5EssuSYobH2BY2tY2RWPY6/VKpZzYDPf29nTlyhV1Op3YRsAUIPK8o4ol3ZYhzybPcdaumSSjv1araXd3N9Zp5l4w1GiTAS1eocJrucJ0uc5Z2p6klybDOSBmrAEsjUZDV65c0bVr1yQpJthxHerauiba9ccpwyZtawSn4+XMLGCJdrlUwsP10lbjCsB0SQBrptPpxGPEF4uFxuNxBFowitIpMAPEe0UJIgXcC5DqJdiQPQD+YYppo+thuZczwiTc+Vh59RRnqIloAPxwnIgyMO4pKObeqfSB8cTBgy1GE+1OK+uY9c/R39TLZp5wkJhzvy/XAnw6g+6MONIHqngwJh5x4LoeceKZlLYOLyx+6rjRd19jqaPnwJl7eBJellFku2jbLBb6E6/4BIVK0A+852dVDZlBznZn7Xf9tz+oRz/nl7R5iUTHLgUw9g2djSaVDoQQ1O121e/31el0Sock9Ho97e7ulg5BYFMHiMEc89re3p7a7bYODg5UqVQ0nU61Xq/V6/V07do17e7uql6vR6AIg+YlyVyHykbrmzevdTodXblyRa1WKwJqwAla4729PfV6PU0mE00mE41Go8jQcigIgA72MWW7XAcKwE5rCHviGuPXarW0Xq91cHCg2Wymer2uwWCgbrer1Wql4XCow8PDeK2jo6NYVs+ZTdd3AiBSoEGtZz+NLi195Yy81zambwB6wCGAFXDJvdBwS9tEMk8ohB10VpZ7eGWNVAMtbat4ACJhi2u1WinxjARQIgGr1So6GNL2ZDkYVtfbMh4+tjhJRBNwLFh37hw4iOM58LlxGQH1wHkWvDScjwnrjTloNpvRUfVT8T6Q/tZlDV7hIZWqAJ7dwaUPLkVyzTF/3EHDiWFuXN6B1KYoijgvXN/vwbj5GmBdEAXKlu3CbLNWsZE+9eHXXXRLst2H1nmJlTW/FMBYOh8Ie5iy2Wyq2+1GVhhWFbAMwACkpKweeuLNZqN2u61utxtZ2KIoNJvNtLOzo263q+vXr0eGiQQzQCMsl7N2Doq5j6QI2jqdTkk37OCnVqvpypUrun79uqrVaqxycOPGDY1Gowj6nG2rVColBswTF2H1Uj2ts3GwmTgJLkOoVCp66KGH9PDDD6vdbsfDHQC40+k0HgvtmtGUoeT/jAXWbDZvC0W75ANw60l0zni6tpq+uqyFsa3X61HTTR1egBbtQx8LCGYOU6eCcZfKJ+NJWyadOXHgCKPriaIw7axJ1tBisYiyEQfWsM/j8TjqZmFsAfh+UqG3mXa75AQpCZKaoijUbrejzAfJkDsqPl9pgiJ9YF5wPr2qhstlPNmR6zGuOCfME20IIZSOcvfxd0eHOeIaOF5ec9qlFS55cecSeRJzkyba0SZ3OLJly5Yt2/1hlxIYY2w4sH8kvbmUAc0x2kff+AHFngwVQoiJdZ7Utdls1O/39fKXv1z9fj8C89FopKeeeqrEzrEpspkCkgEKlUqlVEWD8nHINlx60Ov1YjLhanVa63Y4HJaqXThrBaDx+zhw9IQlH1MPaft7AJLpdKoQgq5evarr16+rVqtpOBxG3a0nmzEnjLdXEkiT/bhPs9nUYDBQvV6Ppw16e72dsMJcG1CElne1WsX5Yy14u0h6xIECLAL0+L8DGg//ozV1Z8QBIveFded+sMK8xni5XhZW0iMLyDAAYlK5xBrX81rUJPpxDfqJxpZ2ss6caXfZB89GtVrVfD6PCZZpAqRreJk/1jvODSwskQLAsz/jPC84ZKm2nLlkrgCqPHfpGnedsifqwTK7Q+UOpjuvrFnXnHulCu7J932tA5izZcuWLdv9YZcCGJ+3ufj/q9XT45r39vZi1QkAR7/fLyWTHR0daTKZxJD9er3W3t5e1CR3Oh1dvXpV3W43Mp+S1Ov1dP36dV29elXNZlPL5VLD4VAHBwcajUYRzNTr9ZiU5MlCMI0AA9rd6/XiwSFII0hoo1/NZjOydc5iemkrT9TzU8YALWhE6XcKNr2SgEsTPNzd7/d19epV9fv9EkgB9PA39/DKFJKiLMRZbFg1HwfAdjpeACrXUTO2OBbOZEoqRQc8CTGEEAEcDpG0ZTw9wc31w6kGlc+4JMATtZA3pOXGJJXqAm82m8i8MyfSNpHPJQ7eL/7PGPC5nZ2dOBaMP2DX/6RyGw//E8nAwUqri/jnWTPOAMMOw5rjGHAtwL5HAQCraVk31pKz5YBPl4GkyXb0mbFy4OvOoMuIfN0zRshRUobY17A7kzir6bOWLVu2bNnubbsUwJhwsbM/Upkx3t/f15UrV1SpVDQej7VcLtVut2OpJ0k6ODiIYLfZbMa/Ydp2dna0v78fj0tmE6W+6pUrVyJbjIQAcCydstNsyLB4rVarxBhL2/qoHMqBJAOgByiGZYQB9FrGMJjOVLkUAPPkNwArEg7Cwe12O46xh4/Z3GE8SQCUFOcD8JDqRSlrBugE5KOF9uQmNODVajVqpyVFBwGw6ocyAJAo8+U6ZAAPjJ6PgbSVCwDApG2dY9pGJRHAK9di7NN7YYxXCq4Brc6eA0ArlUrpIBSXPjAfLnlIwbtXdPDkTpfI8FlP5HM5hkcKvCwbzDYVJmCcAZPMuSd1EsVwGQhzAINfFEWpHjfPH/PlEgZ3RtyxSeUrOHbetzQ3gc87m+vSEv/Nwdl15htnAMmT39sjM6nePFu2bNmy3R92KYAxm/F5oK9ararf7+uhhx7S7u6uimJ7Sp5vnjCyACLYHwdVMJoOOmu105rF/X5fjzzyiDqdjsbjsabTqZ566indunUrVmlotVo6OjqKelVKegFoaAv9gMV0DS0AmhA2OlTaK6n0PQCfn/JGWBnwwvVg8Bw0tFqtCKpTcARAA6QzB8gzAEGSIjuKYwAoBojRTgciADXK6/mBGM6Uu2TAAQegxauTAFS4jzP2zmLjHCC9AexIijIM74/LChx4O8ilbWlCmYf1vaqGn1ZIlQfG2wEpLLxUrqWL5pikMcAla8MTVVMQ50wvjDVrFAcKeYWkeCAOANvBJuvRq604C+2MO2sMx4xxO4+9ZbwcKLtcAsMRcX1v+juBeeTAk3Bdg+xjhkyH9fR0yZa0wwE3c5krU2TLli3b/WOXAhhLWwYmDUs2Go0Y3t/Z2dHBwYGGw6EWi0WUPKzX65jUhPaSTcuPn221Wup2u7HsGRtlp9OJlSg44OLmzZs6OjrSdDqNoMn1qZVKJTJiAAM/SQwAy8bpiURIMgD5hLI9JO7aVWQEAFgSpXiNsLikuLnD9HY6nQhGAHi8DgAC8ABA0YrSFoAw14XN9YNOmDcPb1M3FgdgNBrFRDX64CF6SbGN55VpIwnLteEAY5dK+OEMADyvZMF9WW+0F+fH++oygHStOlsJwPMqCK63dUbagRsA2A/IAKCmdY/dscF5wbnhvjgBjFnabm8zTiRzyprzpEnvC8cueySDcaLtPH9+QqA7F56I5zIdf/YdwPI9XwO8zvfcQeY6qZ7YpRAuz/AcA9rvY+YA2Z8Rb0sGxtmyZct2/9ilAcbnMTQAUg6+mM1munXrVjzUw0Oro9FIw+EwsmqABpK2YPBarVYEEGgeO51OTAzjIAvuA3jw0C8hYU/WATDAiFJiDRkHbQAEVSqVyLry/mQyKQF8QKWzW1wX4MjrnU5Hy+UynqLHa17SDIBDn+mXJyK5BILX0LsC3gBCOBKE4HFSXBYA8KWG8Hq9joCahC9K5XlI+jxnIpWr0C/ACk6LS3L4nCdMcW1vL+zuer2OsgeXUfB95BKMEWCL5E5epy9es9hZVMAZINKrTTizzPwB2ljPzij7c5My74yXs96se9aVs918x+/PuuP67gQxP3yXteHAl3u7tMNZ4vMAsQN4IgPuBKS/FT5PqdY4ZZgdSPv6wCk8D2iniXb+zGRgnC1btmz3j10qYIx5ljilpCqVikajkW7duqXJZBLDy57MtVgsSmwxiWAAE0BxChCQUqAtvnXrlg4ODjQej2NbnJ0FxABaXfpARj/AFDYYEAeLCXhD2zidTnV0dBQTtCg3BliXttIExsvrEPspbWiZATZodfk+SXqAXcbovIQzB6CAKEAtbKqzflyP/yPhgJGsVqux7N5qtYoJiYApQIi0PSVNUpxXrpWG/b1yBqCTPtAW5twBGvdA0jGdTmMCmmt7MQfrrvelbdyH+wKccEhYT67T9cQ95sHlMs6Ccx+eF3dmcLBcduLJap64mJbBcwad9jk4lhTlKA6ouZfr0dPEPfrMuLkkgdccwHKNVIJEe1wn778X3n6fa3dw6JtXqUiZ37R9vObm7z8dSM+WLVu2bPeePeMROSGEbw8hPBVC+CV77W+EEB4PIfzC2Z9Ptfe+MoTwjhDC20MIn/xsGuGMDhuX16JFJ0oNXYzNEdaRELiHp/1gBGdw/ahbDlhYLBY6OjrSzZs3Y/1ZQCAgGgAH++oMMJUjqIeMjANg2el04pHVgMFqtarFYhEZathepAYeppe2iYoASuQiAAmvYwtgca0qzKtn7aMrlranfaF9dvBNe7kW2lkABdflb0B6etSyH3vtelSprBF1kAx4InzPISvStqIB93ZWGXbVQeHTAafpdBorkPjcOfBMq2I4yE1lIRhadGeXcU4cALMuAGuw817hwbXlq9UqrneXdMBu84fPOVNN2/nbQSnzARAtiiIeAQ6j7WN7nnyDfnAdn08H4yk4ZQ0wlqm23OU+/PG55Lr+Hv/2Z8i1zv6MeYm3VNbl6yeNaFw2ezF+t7Nly5btfrRnwxh/h6RvlPSdyetfXxTF1/kLIYQPk/RHJL1W0gdJ+rEQwmuKoviAsUbfgDzhyo9CZnNn03cGcTab6ejoKCbbAVgBZrxOgpNrPs/aHeUYTz31VLwWjCFMmAMJBzqSYla/pFJCD2yh12BeLpfqdDpROzyZTHR0dFQCy/SX8fGSX67j9FJ1qf5ZUilsTrs5qQswgJPQ6XSiMwED7+FjDxlT4cFlGs7MSYosrrSVEXAPnAgHoNK2TJhLMmg/7DT3ZJ6ZSweCrst1AMy4eJk5XyubzSZWbAD8Meep3MfBMdpg1g39wElgvJHHSOUwPOuCNeDaYsavXq+X2umOAOPj4JZ1Tf9dt53qkh2M8xmvm4xEyNl1+sTnU6mEA3AAMWPj0iR3hBgLB/wun2BtpL8fKcvrQDm1VMLhgN0lE+n3GS++447bJbTv0F3+3c6WLVu2+9GeERgXRfETIYRXPMvrfaakf1EUxbGkd4UQ3iHpoyX91DPcI4IaT0Jio/byVmyA6IWLotBwOIz6YkqxoXEEnFABwbW+3Icw/2w2i6XgnE2VthpNZAlcH1A6m810fHxcqg6BTrjb7arVakXpANfj/8gnSFZDJ0xIHeBDqbPVaqVWq6Vr165FjSn9kBRZbhhxwIQDI1hI+ull7cbjcal8HuAHZpSx8kMmAGEpMAHESopzCUPNvCAlkbYaVgAfQN7BlFSWxRRFEdlXD+2nrC5aWT8Mw7/HWvEyZkgtXALhAJlKGPyh9Jczya77Zbwpd8c1HPCl8gzGT9JtEQE/KMQ18Kx11zen5jpyXwup1MSdUr7n8g4Hwt4Pl8awTnASvPpDKqtwUOwMszsKtN3lGc4Up9KslC1OJRL+fcYglfbwG3UvaIpfjN/tbNmyZbsf7YVojL80hPB5kt4q6S8URXEo6WFJP22fee/Zax/QYIeRBUhbfakzbGzUACdPlptMJqpUTg+S8HDrycmJer2eWq2WJEUw22g0SiwvyWHT6bQUZvUwOsAGBhuZAgwr7JekKIkIIUQQx8EgrVYrggNKzAH0act8Po+gkOuhQ5YUZRkw14Abxsw3edrKtQiJM97OyI5Goxh2d6AhKSanASwllZhNdzpSq1Qq6na7EbCv1+uSNhrA5I6MJ6dJ2xC5a15dNgPAdM0o1/AEMsrtSVt23xOvGG8/VdDLcjnD6lpidO04GKwd2GnW8WQyiTIS+pb2xTXLjNFsNivVGsZpApyTnMea8FJljJ1Xs2DdEGVIGV6X5rjzClAGdNMegCQOFYDYowkpKAYs+/h7xCB1vADKzhKnbHIqwfG1zDpKf3+ejl3mOh6hOg/430N2x363s2XLlu1+tGfUGD+NfbOkD5b0EZKekPS3n+sFQgiPhRDeGkJ4q6TIlvZ6vdOGnVWkGAwG8TADNlRPTlosFppMJpGBhO1zWQEJfM4uAlQBGvybezjzxL8BxSTMAQL8KF5PDgIgwLDBEIYQSuy0SwxghZ0VpFzabDaLAAXJSJzIM3Dh7DqJiXzPS8ehg+52u/HUvaOjIw2Hw9juNJnLNbDO5PtYAM4BM1iz2YwOAuCW0nOw7oA2TmRDj+yHcTCvx8fHkVmn/4Awry/NugJoo8/ebDaxlnJRFCXZh7R1JqRtmS6fD2c7JUWHBNAOUEvHZLFYaDQaRS0zgC+tpcw1+Jsa0ABy7kfpQf8+Eh2qOdAfJES0DcDu7LZLM/i86299bACJjH36HuMCyMbh45rcz6ULaZWK86pKOLPtTK9HCXxuUokH1362gNYZbZeMYE8Hqi+h3dHf7RMd3+HmZcuWLdvF2/NijIuieJJ/hxC+VdL3n/33cUmP2Edfdvbaedd4k6Q3SVKtVitarZZ6vZ5qtZqGw6FqtdPjnhuNRgRNgE9AFlIEKkHAnrF5UQHh6tWr8aAL2GKqDwAK2Lgd4Lp2t1arRYBNYh4bKyAWsO66W1hKAAEgj2SmzWYTwQ2giUQydKfz+TyWdpO2J/XB3gE8PAkLsIQsxAGbOx2VSiUmGyItoO0epvZ+AkA9/O36XY7NBli22231er3IfOLYIN/AISmKItaa5rqARBjz2WxWAksAOeYV4IohK2DMj46OomyF9jI3sLCM+3q9juA8TcBzEMnrngzorCLOAwmNfmKgy06cHWfs6A/1ghkPwL5/lrlD1gFg4/nxcXEHxxlY+u9OKM8I682PQ3dQzNz6a8WZhh0w7AlszgTzXcYMZ8SZ7Kf5HSl9F3suLK5/1kFvCqyfzjyacJntTv9u98P+PeMRZMuWLduztecFjEMIDxVF8cTZfz9LEpnP3yfpn/3/2zubGMmuq47/Tlf1V1V3VXU8HxolEdjIEsoCGStCQYqiCMRHvDFIWZgNWUQCQZBgwcIoEoRFFiCRBRIiAiVSQCgfBBDZIBHAEitsAtiOncjJAJaINcS0Z6prqqZ63D1zWbz3v3Pq0eVpxpN+dUfnJ5W66lX1q3/dV3Xf/5177rlm9imqSRyPAs+dZp/9fp/BYMB0OsWsWtii3+/naJ5OxsrZ7ff7zOdzJpMJt2/fzqXNNCwOlXm4ePEig8FgIZcWyEPpihrKSMqMyeRev349G8nd3d08cU25vTJRfva9jIr2I4Mqcz2fzxdyMxV9vHHjBtPplMPDw/w+SveQ2VIbqCoEkCORimgpeqg28yal06mWaNZkwPl8znQ6ZT6fL5THk3lV9NlHj5WXKzMuQ6d29BHzXq9Hv99fmKzoI7u68Egp0ev1silWGyrSeXBwwHQ6XWhrP1nMm/nmMVCqgVIYZN404uCX4tb/6oLFT5j0kWIflW5G2DVp0a+K6C9UlPJw0qQ5+L/1gf2kPl2wadTDl63rdrsLvxVvZH0Kks+nbppif5Hlfu8Ln89fDImT8pSb1SN8NFcR9Cb+Is4bZB+1ln5pahrZ5v2THjff0+/rbqbaG2ZpLMEYfy/67SAIggeNuxpjM/s88EHgnJl9B/gt4INm9hiQgFeBXwRIKb1sZl8CvgEcAx9Lp5jZ3OlUyz73ej0mk0meXKeTtB+W7ff7eYLd1atXmUwm2VCNRqMc/V1fX+fcuXNcuHCB9fV1Dg8P80lWw/Cbm5t5yH4+n+dcVJ10U0rM5/M85K+UCFUXkJn1ucWz2Yz19XUGg0E2PvoMvV6Pzc3NbGhlNOp2zuZC5tw/r9co+uqrMfj3UPUK32Y+d9RXMjg+Pubg4ICjoyO2t7cZjUY5z1nGWKZSUcfbt+9UbfDHRrmtMvc3btyg260WAVG03ufGqkSeTJhSVBTx1GsVZR2Px0yn03yMfA6p0jI2NjaYzWb5/Xu9HkA2xTKsMmWKxGrFN7WlDJ5yqhXN9pPxFLmVadV3Qzm0flKcDLWG+xUt9SkAvhSZzDcsVlCRcdUFi/bpc4L9ctiK1nrT5lNA/KQ2P9qhCyu1h7T5HHIZaj/h0htKGWuZzWber8/Z9ebW4/OndYy8ofbVJfxn0s3nAy+jafD99+A06AJHv+lV4Sz67SAIggeR01Sl+LkTNn/mLV7/SeCT/x8RyplVdNQPW+tEePPmzYVI8ng8Zjwe50jf+fPn2drayidvpVDIiGqBDuVqHh8f0+/32d3dzWYEyBFnRUQ1tC0jKmMh0+QrM+h9FCn0E3+k3Vc1OD6uFpRoVjLQ8td+39qP8oLhTmRR+/KltryJUITWm2wZQ73HcDhkOBzmY7C2VtUululSZNmnDyi9RTWONTFPFSZ2dnZyiTFFmpUGolxsRemVA678ahkvTVC8fv16bneVC5NGRb/X1tZyuoXaQ1FhrSboo59KT/DpIv47p/fX8dNrVTdaJrKZsiDzCneqSPg0Al/xRN8hXxrNpwX4qL90NKO3iuorWqyLI28ofUUF7a+Z/wxk4672V4Tam3ifF6w2g+VLJHuT6bWclAbRNNm62FAaia/77A219qn0jObzyyLBvub2sujzMry5XzXOot8OgiB4EFmJle90Qrt27drChDdFA3WS99Uk9vf3GY/HdDodzp8/z2g0ynm6GxsbjEYjhsMht27dWpjkpuHnbrebl4G+evVqNsveKCj6p//VydMvZ6zosZkt5Awrt1U1e/2wu2oEz2Yzjo6OcrR0Pp/n6PfGxkY2if5krfrHSkHwkT1tl9n15ljRRF8dQSXXtra2uHTpEkBeREVRckURp9Nprugho3d8fLxQ7UEXBlClMKj6hiKqMug+F9fXala1DKFJh8q5Xl9fz9FnXRDt7Ozk/OXxeMwbb7zBbDbLNY51/GRI/WiAbjJH+h9FO32lCJkmn5rhj40uDLwR8xPRmjm8MtpeG9zJ01WE1v8OmqkWPufbl4STfj32lVI0quANqL9Ya0aLvQlXJL1pOpvR5yY+Uuxzhn00uTmZTcfOR311fHyahjfG/oLGV1PxFz5ek89xbpr70+D/PwiCIHgwWAljnFJiPB7nfE+dgFWxQEPJijhOJhNmsxmdToe9vT329vbY2dlhOp0C1WSvwWAAVKWxlJ6h6LAmeW1vb3Pr1q28ap4qP2xtbeVJb3ofH23t9Xq5tJmiljJJ29vbOa9WaRrKm1bkcjweM5/P8+sfeuihbGgGgwG7u7sLE+f8pENF/WQ4Nayu4W5FMf3wvDdhfoKZqlUoBUXl4FTho5nTqfJuMiubm5u5PJlWn5MJ1kQ4vyiErxiiFAmZdbU1kC8gZrNZ/hy9Xi9HsJVSoVxppUxMp9P8HVBEWuZbxsdXDtF7yRTDnQilz7H1aSlqF7Wz2kXbvAFXfnRz8po3lr78XNPAK8Kt5xXBFv7CyBtIH3n2qTT6/NqXTLJMuD6j2sFHwqXFG2M99ubaG1zf5n4EpanZm1Lp8qZZv329t7/Y8cfUt7s3q00Dr++1n8R5t9ziZiTZG+owxkEQBA8OK2OMFV1ThGx3dzcbHkVhB4NBNrLKix0Oh+zt7S3M1h8Oh6ytrXHt2jUmkwn7+/tcuHAhn7w7nare7NraWl4cZDKZMJ1O81Dy4eEhV65cyUO4a2tr2TSrDNrR0RH9fj9PelKupips9Pv9fAJXPrJSAjqdDqPRKC8drcVBhsMhW1tb2UwDefheJ31FVWV8fFTQn6hlMt58880cNVfE2UcTVcZsMpnkJZ5VNs9XM/CTubSan0+h8LmwKgGnsmKqYazqEko7UDk5X19XEXWltGjVQhk4VcDQBZBGGw4ODhYmxqmtdNHiKz34XGs/cU0pF748n8ywjoevEqELD0VWfS3ek8q9NSuHCB2zZj6vRhpklL1xlBFslpPT8z6CqtcL/53xUWo/UdM/p3xf7cundTRLxsk0yoTqc+m77NvnJFPpUylkXNV2Psru9UqzLnybucLNx950380U+//373UvUeYgCIJgtVkJYwwsnLx3d3e5ePEiOzs7OWKoyXn7+/s5FUImVNEkDXN3u91cEmt/f59ut5sn7cnoKhqtaOXBwQHz+Zxut5vr+c5mM4bD4YIOn6esKg4pJabTaTYQvvauX8VLJ3ylWmjyn1/4YzAY5EirzKbMgUyBDJMm88n8Avk1Mh8ppRx9VvtqX4o0Hx4e5pztmzdv5v3KBHvT682QTKyvJ6zPrgsMlV9T6slkMlkwN/p/pTToeOgzDgaDbHK9IdNkO5ltGX+fKyzdy4b94U40U3Wm/QQ9LSLjjaYMoK8RrAsHP6ogndLYHHKXHr+Yh6L5Ol7S69/TRzr98dBn8ZHwZRPJvCn0kXGfa+wjqdq3R2khvubySSkL2q9/3pv306CREH+x4aPOat+T9nuSoVWb6rfQbJ+TWGawte00+wiCIAhWH1uFDt3M/geYAftta7lHzlGudihbf8naIfS3yf3U/n0ppfP3aV9FYGbXgVfa1vE2iO9ue5Ssv2TtULb+M+mzV8IYA5jZ11JK721bx71QsnYoW3/J2iH0t0nJ2leB0tuvZP0la4ey9ZesHcrWf1ba73VJ6CAIgiAIgiB4oAhjHARBEARBEASsljH+o7YFvA1K1g5l6y9ZO4T+NilZ+ypQevuVrL9k7VC2/pK1Q9n6z0T7yuQYB0EQBEEQBEGbrFLEOAiCIAiCIAhao3VjbGY/bWavmNllM3u6bT2nwcxeNbOvm9nzZva1ets7zOyrZvbt+u9e2zqFmX3WzF43s5fcthP1WsXv18fjRTN7vD3lS7V/wsxeq9v/eTN7wj33G7X2V8zsp9pRnbW828yeMbNvmNnLZvar9fZS2n6Z/lLaf8vMnjOzF2r9v11vf9jMnq11ftHMNurtm/Xjy/Xz39+m/lWmtH47+uyzo+Q+u9ZTbL8dffZ96rNV4L6NG9AB/h14BNgAXgDe06amU+p+FTjX2Pa7wNP1/aeB32lbp9P2AeBx4KW76QWeAP4GMOB9wLMrqP0TwK+f8Nr31N+hTeDh+rvVaVH7JeDx+v4u8K1aYyltv0x/Ke1vwE59fx14tm7XLwFP1ds/DfxSff+XgU/X958Cvthm+6/qrcR+O/rs1rUX0WfUmortt6PPvj99dtsR4x8BLqeU/iOl9CbwBeDJljXdK08Cn6vvfw74mfakLJJS+kfgamPzMr1PAn+SKv4JGJnZpTMRegJLtC/jSeALKaWbKaX/BC5TfcdaIaV0JaX0r/X968A3gXdSTtsv07+MVWv/lFKa1g/X61sCfgz4cr292f46Ll8Gftws1ns+gQel344++3tAyX02lN1vR599f/rsto3xO4H/co+/w1sfxFUhAX9rZv9iZr9Qb7uYUrpS3/9v4GI70k7NMr2lHJNfqYetPuuGQFdWez3E88NUV8DFtX1DPxTS/mbWMbPngdeBr1JFRMYpJa2F7TVm/fXzB8BDZyq4DFbuOJ+C6LPbp4g+w1Nyvx199r3TtjEulfenlB4HPgR8zMw+4J9MVVy/mHIfpekF/hD4AeAx4Arwe62quQtmtgP8BfBrKaWJf66Etj9BfzHtn1K6lVJ6DHgXVSTkB9tVFLRE9NntUkyfIUrut6PPfnu0bYxfA97tHr+r3rbSpJReq/++DvwV1cH7roZP6r+vt6fwVCzTu/LHJKX03frHcxv4Y+4M/aycdjNbp+qg/iyl9Jf15mLa/iT9JbW/SCmNgWeAH6Ua6uzWT3mNWX/9/BB442yVFsHKHudlRJ/dLqX1GSX329Fnv/0+u21j/M/Ao/WMww2q5OmvtKzpLTGzvpnt6j7wk8BLVLo/Ur/sI8Bft6Pw1CzT+xXg5+uZtu8DDtzw0UrQyN/6War2h0r7U/VM1YeBR4HnzlqfqHOdPgN8M6X0KfdUEW2/TH9B7X/ezEb1/W3gJ6hy7p4BPly/rNn+Oi4fBv6hjgwFixTVb0ef3T6l9BlQdr8dffZ96rObs/HO+kY1o/NbVHkkH29bzyn0PkI1i/MF4GVppspr+Xvg28DfAe9oW6vT/Hmq4ZMjqvycjy7TSzUr9A/q4/F14L0rqP1Pa20v1j+MS+71H6+1vwJ8qGXt76cabnsReL6+PVFQ2y/TX0r7/xDwb7XOl4DfrLc/QtX5Xwb+HNist2/Vjy/Xzz/Spv5VvpXUb0efvRLai+gzaj3F9tvRZ9+fPjtWvguCIAiCIAgC2k+lCIIgCIIgCIKVIIxxEARBEARBEBDGOAiCIAiCIAiAMMZBEARBEARBAIQxDoIgCIIgCAIgjHEQBEEQBEEQAGGMgyAIgiAIggAIYxwEQRAEQRAEAPwv7mW0TSjLBDEAAAAASUVORK5CYII=", "text/plain": [ "
" ] diff --git a/Experiments/ARUNet-MiddleLines/cufile.log b/Experiments/ARUNet-MiddleLines/cufile.log index bfb46f9..c29b4f4 100644 --- a/Experiments/ARUNet-MiddleLines/cufile.log +++ b/Experiments/ARUNet-MiddleLines/cufile.log @@ -13,3 +13,5 @@ 09-03-2022 17:04:21:582 [pid=312946 tid=312946] NOTICE cufio-drv:620 running in compatible mode 17-03-2022 15:45:53:591 [pid=417918 tid=417918] NOTICE cufio-drv:693 running in compatible mode 17-03-2022 16:12:07:54 [pid=421224 tid=421224] NOTICE cufio-drv:693 running in compatible mode + 22-03-2022 15:16:56:64 [pid=205165 tid=205165] NOTICE cufio-drv:693 running in compatible mode + 22-03-2022 15:17:59:261 [pid=203810 tid=203810] NOTICE cufio-drv:693 running in compatible mode diff --git a/cufile.log b/cufile.log new file mode 100644 index 0000000..505aed0 --- /dev/null +++ b/cufile.log @@ -0,0 +1 @@ + 22-03-2022 15:15:45:29 [pid=204450 tid=204450] NOTICE cufio-drv:693 running in compatible mode